16

FORM PTO-1390 (Modified)

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK O

TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US)

CONCERNING A FILING UNDER 35 U.S.C. 371 INTERNATIONAL APPLICATION NO

INTERNATIONAL FILING DATE

192863US0PCT

ON NO. (IF KNOWN, SEE 37 CFR

PCT/FR98/02667 9 DECEMBER 1998 9 DECEMBER 1997

TITLE OF INVENTION

SEQUENCES ENCODING A KIN17 PROTEIN AND USES THEREOF

APPLICANT(S) FOR DO/EO/US	
Patricia KANNOUCHE, et al.	

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

- This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.
- 2. This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.
- This is an express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay 3 examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1).
- A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date. 4. \boxtimes
 - A copy of the International Application as filed (35 U.S.C. 371 (c) (2))
 - a.

 is transmitted herewith (required only if not transmitted by the International Bureau).
 - has been transmitted by the International Bureau.
 - c. | is not required, as the application was filed in the United States Receiving Office (RO/US).
 - A translation of the International Application into English (35 U.S.C. 371(c)(2)).
- A copy of the International Search Report (PCT/ISA/210).
 - Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371 (c)(3))
 - are transmitted herewith (required only if not transmitted by the International Bureau).
 - b.

 have been transmitted by the International Bureau.
 - have not been made; however, the time limit for making such amendments has NOT expired.
 - have not been made and will not be made.
- ☐ A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
- 10 An oath or declaration of the inventor(s) (35 U.S.C. 371 (c)(4)).
- A copy of the International Preliminary Examination Report (PCT/IPEA/409).
- A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371 (c)(5)). 12.

Items 13 to 18 below concern document(s) or information included:

- An Information Disclosure Statement under 37 CFR 1.97 and 1.98. 13
- An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included. 14
- 15 A FIRST preliminary amendment.
 - A SECOND or SUBSEQUENT preliminary amendment.
 - A substitute specification.
- 17. A change of power of attorney and/or address letter.
- Certificate of Mailing by Express Mail 18
- 19 Other items or information:

Request for Consideration of Documents Cited in International Search Report Notice of Priority

Drawings (28 Sheets) Amended Sheets (Pages 70, 71, 72, 73 and 74)

Y	41	<u>0 F</u>	ecuru	HE	10 09 00	14 2000
u.s. application no. (if known, see 37 cfr	INTERNATIONAL APPLICATION NO. PCT/FR98/02667				ATTORNEY'S DOCKET NUMBER 192863US0PCT	
20. The following fees are submitted:.					CALCULATIONS	
BASIC NATIONAL FEE (37 CFR 1.492 (a) (1) -	(5)):			ŀ	CALCOLATIONS	FIO USE ONLI
Search Report has been prepared by the EPO or JPO						
☐ International preliminary examination fee pai						
\$670.00 No international preliminary examination fee paid to USPTO (37 CFR 1.482)						
but international search fee paid to USPTO (37 CFR 1.445(a)(2))						
international search fee (37 CFR 1.445(a)(2) paid to USPTO						
and all claims satisfied provisions of PCT Article 33(2)-(4)						
ENTER APPROPRI					\$840.00	
Surcharge of \$130.00 for furnishing the oath or declar months from the earliest claimed priority date (37 C	aration later than FR 1.492 (e)).	□ 20) ⊠ 30		\$130.00	
CLAIMS NUMBER FILED	NUMBER EXTRA		RATE			
Total claims 43 - 20 =	23		x \$18.00		\$414.00	
Independent claims 13 - 3 =	10	_	x \$78.00	-	\$780.00	
Multiple Dependent Claims (check if applicable).			×		\$260.00	
	ABOVE CALCUI			=	\$2,424.00	
Reduction of 1/2 for filing by small entity, if application must also be filed (Note 37 CFR 1.9, 1.27, 1.28) (cl	able. Verified Small Entity neck if applicable).	Stat	ement		\$0.00	
	S	UB'	TOTAL	=	\$2,424.00	
Processing fee of \$130.00 for furnishing the English translation later than						
TOTAL NATIONAL FEE =					\$2,424.00	
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31) (check if applicable).						
TOTAL FEES ENCLOSED =					\$2,424.00	
	TOTAL TELES ES		0.02.2		Amount to be: refunded	\$
					charged	S
A check in the amount of \$2,424.00	to cover the above fees	is en	closed.		- Charge	
Please charge my Deposit Account No. in the amount of to cover the above fees. A duplicate copy of this sheet is enclosed.						
■ The Commissioner is hereby authorized to	charge any fees which may	be re	quired, or cr	edit ar	ny overpayment	
to Deposit Account No. 15-0030 A duplicate copy of this sheet is enclosed.						
NOTE: Where an appropriate time limit under 1.137(a) or (b)) must be filed and granted to rest	37 CFR 1.494 or 1.495 ha ore the application to pen	not ding	been met, a status.	petiti	on to revive (37 CF	R
SEND ALL CORRESPONDENCE "			Zai	111	, .	
MARKET	NEUSTADT, P.C.		SIGNAT	URE	<u> </u>	
22850			Norman	F. O	blon	
PATENT TRADEMARK OFFICE		NAME				
			24,618			
WILLIAM E. BEAUMONT		REGISTRATION NUMBER				
REGISTRATION NUMBER 30,996			June 9, 2000			
			DATE 1, POLO			
1			PAJIS			

28/PRTS

09/555529

416 Rec'd PCT/PTO 0 9 JUN 2000

WO 99/29845

Sequences encoding a kin17 protein and uses thereof

The present invention relates to the cDNA sequence encoding the human kin17 protein, to the cDNA sequences encoding a truncated kin17 protein, termed kin17AHR, as well as to the use of said nucleic acid sequences and said proteins in the regulation of cell proliferation.

The present invention also relates to a method for detecting the human Kin17 gene and the mRNA of the human Kin17 gene by in situ hybridization with the aid of oligonucleotides and/or by polymerase chain amplification (PCR).

The present invention also relates to expression vectors or plasmids which express the abovementioned proteins and to the bacteria containing said vectors or plasmids.

The present invention also relates to the use of said vectors for producing and purifying the kin17 protein and truncated or modified forms thereof, and as a medicinal product (gene therapy).

A protein, termed kin17, has been demonstrated in mice by J.F. Angulo et al. (Mutation Res., 1989, 123-134), and is immunologically related to the recA protein of E. coli; its identification has been possible, with the aid of anti-E. coli recA antibodies, in FR 3T3 rat cells. The production of this kin17 protein is induced by genotoxic agents, such as ultraviolet radiation. It is preferentially located in the nucleus. In addition, it is a minority cellular protein, and is very sensitive to enzymatic proteolysis.

It is probably involved in DNA metabolism, since it increases during certain cellular phases of DNA synthesis, and in repair, since it accumulates in the nucleus after DNA modification.

It has been shown (D.S.F. Biard et al., Radiation Research, 1997, 147, 442-450) that the

expression of this kin17 protein in rats is increased in the presence of ionizing radiations, and that it intervenes in DNA repair (A. Tissier et al., *Genomics*, 1996. 38. 238-242).

Continuing with their work, J.F. Angulo et al. (Biochimie, 1991, 73, 251-256) characterized monospecific anti-recA antibodies, which can be used for detecting the expression of said kin17 protein by expression vectors. These authors have thus highlighted a cDNA fragment, termed $Kin17_{so1}$, which is derived from mouse embryonic RNA and which expresses a polypeptide ($kin17_{200}$) which cross-reacts with the anti-recA antibodies.

The comparison of the sequence of the recall denomination of common sequences according to the sequence of the recall protein and the sequences according to the sequences according to the sequences according to the sequences according to the sequence according to the sequence

In Nucleic Acids Research (1991, 19, 5117-5123), J.F. Angulo et al. identified and expressed the Kin17 cDNA (1414 bp) in mice, using the abovementioned Kin17 $_{601}$ fragment as probe.

The mouse Kin17 cDNA presents a single open reading frame, between positions 25 and 1198, which encodes a 391-amino acid protein (protein mm/kin17) which presents a zinc-binding domain ("zinc finger" motif) between residues 28 and 50 and an antigenic determinant of the same type as that of the recA protein between positions 162 and 201.

This protein presents a nuclear localization signal, located between positions 240 and 256, which appears to be similar to those identified in some nuclear proteins, and which is functional.

The chromosomal localization of the gene encoding the murine kin17 protein has been performed by in situ hybridization, and found to be on chromosome 2 in mice. The human Kin17 gene is located on chromosome lop15-p14.

The "zinc finger" motif is involved in the binding of kin17 protein to double-stranded DNA.

kin17 protein binds preferentially to curved DNA; its binding efficiency is correlated with the extent of curving of the DNA.

Two proteins having various modifications (deletions), either in the "zinc finger" motif (kin17 Δ 1) or at the C-terminal end of the protein (kin17 Δ 2), conserve the property of preferential binding to curved DNA; these properties show that the "zinc finger" motif is not essential for preferential binding to this curved DNA, and that another domain which recognizes curved DNA is involved (Mazin et al., N.A.R., 1994, 22, 20, 4335-4341) and is located between amino acids 71 and 281.

Continuing with their work, J.F. Angulo et al., have also shown the presence of kin17 protein in mammals other than mice, and in particular in humans. For example, D.S.F. Biard et al. (Arch. Dermatol. Res., 1997, 289, 448-456), using anti-mouse kin17 antibodies, have detected the human kin17 protein (spkin17) in skin cells and have shown that the levels of spkin17 protein increase in epithelial keratinocytes in the proliferation phase (after 7 days of culture), whereas these levels fall in the differentiation phase.

However, despite the detection of the **skin17 protein, it has not been possible, hereto, to effectively isolate the coding sequence of this human protein, not even using probes of murine origin.

For example, the nucleic acid fragment, of human origin, described in French patent No. 2,706,487 does not make it possible to express the human kin17 protein, or to isolate the complete nucleic acid sequence which is capable of an effective expression of this wkin17 protein.

The inventors have now found, surprisingly, that the expression of the mammalian (in particular mouse and human) kin17 protein is in general correlated with cell proliferation; they have in particular found

- 4 -

that the kin17 protein inhibits cell proliferation; in addition, an overexpression of kin17 protein or of a Cterminal fragment of said kin17 protein drastically inhibits cell proliferation.

They have also found that a truncated protein (deletion of a fragment comprising the region which is homologous (HR) between the kin17 protein and the recA protein) was even more active in inhibiting cell proliferation.

Consequently, the inventors set themselves the aim of providing medicinal products which are capable of regulating cell proliferation, based on these sequences.

A subject of the present invention is a nucleic acid sequence, characterized in that it presents the sequence SEQ ID NO. 1 and in that it is capable of expressing a functional human kin17 protein.

A subject of the present invention is also a nucleic acid sequence, characterized in that it encodes a kin17 protein which is truncated at the region which is homologous to the recA protein.

According to an advantageous embodiment of said nucleic acid sequence, it encodes a truncated kin17 protein which corresponds to a kin17 protein in which at least the fragment between amino acids 162 and 201, and at most the fragment between amino acids 55 to 235, is deleted.

According to an advantageous arrangement of this embodiment, said nucleic acid sequence encodes a truncated kin17 protein which corresponds to the mouse kin17 protein in which the fragment between amino acids 129 to 228 is deleted, and which presents the sequence SEO ID NO. 2.

According to another advantageous arrangement of this embodiment, said nucleic acid sequence encodes a truncated kin17 protein which corresponds to the human kin17 protein in which the fragment 129 to 228 is deleted, and which presents the sequence SEQ ID NO. 3.

A subject of the present invention is also

fragments, of 20 to 40 nucleotides of the sequence SEQ ID NO. 1, for detecting the gene encoding the human kin17 protein, and/or the RNA of the Kin17 gene, in a biological sample.

Such fragments are used in particular as primers for PCR, RT-PCR or in situ hybridization. Depending on the case, they can advantageously be labelled with the aid of a suitable nonradioactive label (fluorescent substances, ligands such as biotin or a hapten).

Among said fragments, mention may be made of in particular the sequences SEQ ID NO. 5 to 21, listed in the table below, as well as the sequences SEQ ID NO. 33 and 34.

Hu89D (SEQ ID NO. 5)	CTCAGGAGACGCTTTGGCACTA
Hu857R (SEQ ID NO. 6)	CCTGGTGCTGGAATTACTGTCT
Hu3r (SEQ ID NO. 7)	TCTTTCGTTTCACTGATGCT
Hu4d (SEQ ID NO. 8)	GGGAGAGAAATATCATAAGAAAAA
Hu5d (SEQ ID NO. 9)	TCCCTCTGTAGCCCTCCCATTT
Hu6d (SEQ ID NO. 10)	TTTTCAGCTACTATCGTTCATT
Hu8d (SEQ ID NO. 11)	CGAGTGCACTGAAGACGATAGG
Hu9r (SEQ ID NO. 12)	ATTCTTTTCGTTTCACTGAT
Hulor (SEQ ID NO. 13)	GGCAATACCAGCGTAGCTTCTGCAGC
Hullr (SEQ ID NO. 14)	CTCTGATGAGATTCGGACATACAAT
Hullar (SEQ ID NO. 15	TCTCCTGAGAAGTTCTAGAAA
Hu-KPNd (SEQ ID NO. 16)	ACTGCCAAATTTATTGAAGAGCAAGTGAGAAG
	AGGCCTGG
Hu-KPNr (SEQ ID NO. 17)	CCAGGCCTCTTCTCACTTGCTCTTCAATAAAT
	TTGGCAGT
HsKin10d (SEQ ID NO. 18)	AGAAAGTGATCGCTGCCGTGGT
HsKin1251r (SEQ ID NO. 19)	GCGAACACCAATTTGATGCTTTAAGA
Hu174D (SEQ ID NO. 20)	TCAGAGACAACTATTGCTGGC
Hu1170R (SEQ ID NO. 21	ATTCCTTCAACTCTGCGTCCTT

A subject of the present invention is also fragments of the sequence SEQ ID NO. 1 which can be used as probes for DNA-DNA or DNA-RNA hybridization.

Among such fragments, mention may be made of the sequence SEQ ID NO. 4, which corresponds to positions 207 to 1208 of the sequence SEQ ID NO. 1 (probe 1000), and the sequences SEQ ID NO. 1 and 5 to 21.

A subject of the present invention is also fragments of a nucleic acid sequence encoding a segment of a mammalian kin17 protein (sequences SEQ ID NO. 1 and SEQ ID NO. 24), these fragments comprising between 300 and 360 nucleotides encoding the C-terminal portion of said kin17 protein, and being capable of controlling cell proliferation.

According to an advantageous embodiment of said fragments, they are selected from the group consisting of SEO ID NO. 33 and SEO ID NO. 34.

A subject of the present invention is also a method for detecting genomic DNA or a transcription product of the human Kin17 gene, by gene amplification and/or hybridization, which is carried out starting from a biological sample, this method being characterized in that it comprises:

- (1) a step in which a biological sample to be analysed is brought into contact with at least one probe selected from the group consisting of the sequences SEQ ID NO. 1 to 21 and
- $\begin{tabular}{lll} (2) a step in which the resulting $\operatorname{product}(s)$ of the nucleotide sequence-probe interaction is (are) detected by any suitable means. \\ \end{tabular}$
- In accordance with said method, it can comprise, prior to step (1):
- . a step for extracting the nucleic acid to be detected, and $% \left(1\right) =\left(1\right) \left(1\right)$
- . at least one gene amplification cycle carried out with the aid of a pair of primers selected from the sequences SEQ ID NO. 5 to 21.

According to an advantageous embodiment of said method, the probe in step (1) is optionally labelled with the aid of a label such as a radioactive isotope, an appropriate enzyme or a fluorochrome.

According to an advantageous arrangement of

- 7 -

this embodiment, said probe consists of the sequence SEO ID NO. 4.

According to another advantageous embodiment of said method, said pair of primers consists of a sequence SEQ ID No. 16 paired with a sequence SEQ ID No. 17.

A subject of the present invention is also a method for detecting a transcription product of the human Kinl7 gene, characterized in that it comprises:

- a step for extracting the RNA to be detected,
- a step for synthesizing the cDNA corresponding to said RNA by reverse transcription in the presence of random primers,
- at least one gene amplification cycle carried out with the aid of a pair of primers selected from the sequences SEQ ID NO. 5 to 21, and
 - the detection of the amplified product.

According to an advantageous embodiment of said method, said pair of primers is selected from the group consisting of the following pairs: sequences SEQ ID NO. 5 and SEQ ID NO. 12, for amplifying a 453-bp fragment (fragment A); sequences SEQ ID NO. 18 and SEQ ID NO. 19, for amplifying a 1265-bp fragment (fragment B) and sequences SEQ ID NO. 16 and SEQ ID NO. 7, for amplifying a 224-bp fragment (fragment C).

Advantageously, the amplified cDNA fragments are separated by electrophoresis, preferably on agarose gel, visualized in the presence of ethidium bromide and quantified with the aid of the NIH image program (National Institute of Health, USA).

In accordance with the invention, it also encompasses the reagents for detecting a nucleic acid sequence encoding a mammalian kin17 protein or a modified fragment of these sequences, characterized in that they include the sequences SEQ ID NO. 4 to 21, 33 and 34, as well as the fragments A of 453-bp, B of 1265-bp and C of 224-bp, optionally labelled.

A subject of the present invention is also a $kin17\Delta HR$ protein, characterized in that it corresponds

to a kin17 protein which is truncated at a region which is a homologue of the recA protein.

According to an advantageous embodiment of said truncated kin17AHR protein, it corresponds to a kin17 protein in which at least the fragment between amino acids 162 and 201, and at most the fragment between amino acids 55 to 235, is deleted.

According to an advantageous arrangement of this embodiment, said truncated kinl1 Δ HR protein corresponds to the mouse kinl7 protein in which the fragment between amino acids 129 to 228 is deleted, and presents the sequence SEQ ID NO. 22 (sequence termed wkinl7 Δ HR).

According to another advantageous arrangement of this embodiment, said truncated kin17AHR protein corresponds to a human kin17 protein in which the fragment 129 to 228 is deleted, and presents the sequence SEQ ID NO. 23 (sequence termed Mskin17AHR).

A subject of the present invention is also fragments of kin17 protein, characterized in that they comprise between 100 and 120 amino acids, and are located in the C-terminal position; they are preferably selected from the group consisting of SEQ ID NO. 35 and SEO ID NO. 36.

Unexpectedly, such fragments inhibit cell proliferation; the sequence SEQ ID NO. 35 corresponds to residues 283 to 393 of the human sequence of kin17 (SEQ ID NO. 26); the sequence SEQ ID NO. 36 corresponds to residues 281 to 391 of the mouse sequence of kin17 (SEO ID NO. 25).

A subject of the present invention is also the use of the fragment between amino acids 55 to 235, optionally mutated, preferably the fragment between amino acids 129 and 228, of a mammalian kin17 protein, for regulating the protein-curved DNA interaction.

In fact, the production of mutants in this protein-curved DNA interaction domain constitutes a tool of choice for blocking certain biological processes, such as proliferation, translation or the

integration of the AIDS virus into the human genome, or for transporting effector proteins by constructing curved DNA binding domain-repair enzyme protein fusions, at sites where the DNA is curved.

A subject of the present invention is also the use of a mammalian kin17 protein or of a 100- to 120-amino acid C-terminal fragment of said kin17 protein for preparing a medicinal product which regulates cell proliferation or fertility.

In accordance with the invention, said mammalian kin17 protein or said 100- to 120-amino acid C-terminal fragment is used for preparing a medicinal product which inhibits cell proliferation, and which is in particular intended for treating diseases in which a cellular hyperproliferation is observed.

According to an advantageous embodiment of said use, said sequence is selected from the group consisting of the sequences SEQ ID NO. 22, 23, 25, 26, 35 and 36.

A subject of the present invention is also an expression vector, characterized in that it includes a sequence encoding a mammalian kin17 protein or a fragment of it selected from the group consisting of the sequences SBQ ID NO. 1, 2, 3, 33 and 34.

According to an advantageous embodiment of said vector, said sequence encoding said kin17 protein or said fragment of it is fused with a gene which encodes a fluorescent protein.

Such vectors are in particular useful:

- for preparing a medicinal product which controls cell proliferation,

- as a detection tool, in particular for visualizing the sites and the progression of DNA repair, and the intranuclear centres of biosynthesis.

Advantageously, said vector is combined with appropriate regulatory sequences. $% \begin{center} \end{center}$

A subject of the present invention is also the use of an expression vector which includes a sequence selected from the group consisting of the sequences SEQ - 10 -

ID NO. 1, 2, 3, 24, 33 and 34, for preparing a medicinal product which controls cell proliferation.

Preferably, said vector is a plasmid; it can be maintained in bacteria such as $\it E.~coli;$ by way of example, mention may be made of the bacterium MOS $\it Blue$ (Amersham, France), which possesses the following genotype:

 $\label{eq:condition} \mbox{end AI hsdRl7 } (^c_{kl2}-^m_{kl2}+) \, \mbox{sup E44 thi-l rec AI gyr} \\ \mbox{A96 rel AI lac [F' pro A'B^+ lac_qT^q2\DeltaMl5::Tnl0(Tc^R)]} \, .$

Transformed cMOS bacteria are thus obtained:

- PKI bacterium: cMOS bacterium transformed with the plasmid pMOSBlue (Amersham, France) into which has been introduced the cDNA nsKin17 (defined by SEQ ID NO. 1);

- PK2 bacterium: cMOS bacterium transformed with the plasmid pCMVDT21 (Bourdon et al., 1997, Oncogene) into which has been introduced the cDNA maKin17 (defined by SEQ ID NO. 1).

Besides the above arrangements, the invention comprises other arrangements, which will emerge from the description which will follow, and which refer to examples of use of the method which is the subject of the present invention, as well as to the attached drawings, in which:

- Figure 1 illustrates the detection of the PCR products by gel electrophoresis. The DNA is revealed by ethidium bromide staining. DNA fragments of known size are present in column A, as molecular weight markers.
- Figures 2A and 2B illustrate the comparison of the nucleic acid (Figure 2A) and protein (Figure 2B) sequences $_{18}Kin17$ and $_{28}Kin17$. Nucleotides = 86% identity, amino acids = 92.4% identity.
- Figure 3 represents an autoradiograph of the hybridization analysis of the total RNAs extracted from various human tissues (panel A) or from various human tumour cells (panel B), using the probe-1000 (SEQ ID NO. 4).
- Figure 4 illustrates the detection of the messenger RNA of the Kin17 gene in mouse testicle, by

- 11 -

in situ hybridization.

- Figure 5 is a schematic representation of the proteins produced by transient transfection. The amino acid sequence is represented linearly. The name of the proteins is indicated to the left of each protein, and the size is mentioned to the right.
- Figure 6 illustrates the detection of the HeLa cells transfected with the vector pCMV_{Bm}Kin17. The nuclei are stained in blue using DAPI. The green intranuclear coloration corresponds to the location of the pmkin17 protein; Figure 6A illustrates the detection of pmkin17 in cells which express a low level of pmkin17 protein and Figure 6B illustrates the detection of pmkin17 in cells which express a high level of kin17 protein; magnification: 1000.
- Figure 7 represents the HeLa cells which express a low level of warkin17 protein (with intranuclear foci having a diameter of approximately 0.5 µm; panel A) or cells which express a high level of kin17 protein (detection of nuclear morphology deformations NMD; panel B).
- Figure 8 represents the immunodetection of the $_{MN}$ kin17 Δ HR protein in the HeLa cells transfected with the plasmid pCMVKin17 Δ HR. Use of p Δ hanti-rec Δ as first antibody (panel Δ). Detection with the antibody p Δ b2064 (panel B).
- Figure 9 corresponds to the analysis by immunocytochemistry and by phase contrast microscopy of the HeLa cells which overproduce the $_{\rm Me}{\rm kinl}7\Delta{\rm CT}$ protein.
- Figure 10 shows that the nuclear morphology deformation is correlated with an inhibition of the DNA replication. Figure 10A represents the immunodetection of the mekin17ΔHR protein (in red) and the incorporation of BrdU (in green) in the HeLa cells expressing the mekin17ΔHR protein. BrdU (bromodeoxyuridine) is a nucleotide (thymidine) analogue which incorporates into DNA during replication. Figure 10B is a summary table which shows the inhibition of DNA replication after formation of nuclear morphology deformations (NMD), due

- 12 -

to the expression of the Mmkin17 DHR or Mmkin17 proteins.

- Figure 11 illustrates the genetic map of the plasmids pEBVMT Δ (pB220) and pEBVMT_{Me}kin17 (pB223).
- Figure 12 illustrates the laser scanning cytometry analysis of the Mmkin17 protein in the cells of the clone B223.1. 9 months after the transfection, both the B223.1 cells and the B220 cells are seeded in a proportion of 3 × 104 cells/cm2, three days before beginning the treatment with heavy metals (100 µM ZnCl2 and 1 µM CdSO4). 24 hours later, the cells are fixed and stained with an anti-recA antibody specific for the Mmkin17 protein. The immunocytochemical detection is carried out using the ACAS 570 cytometer (Meridian Inc.). Panels A and B correspond to the B223.1 cells, with or without heavy metals; panels C and D correspond to the B220 cells, with or without heavy metals. Each section is analysed for the Mckin17 protein (left-hand panel) and propidium iodide (PI) (right-hand panel) at the same time. The intensities of fluorescence specific for the xmkin17 protein and for PI are represented using arbitrary scales of fluorescence.
- Figure 13 illustrates the immunocytochemical detection of the Mmkin17 protein in the cells of the clone B223.1: 6 months after the transfection, the B223.1 and B220 cells are seeded in a proportion of 6 × 104 cells or 104 cells/cm2 respectively, and treated under the same conditions as those set out for Figure 12. The staining is carried out with the antirecA antibody. Panels A and B correspond to the B223.1 cells, with or without heavy metals; panels C and D correspond to the B220 cells, with or without heavy metals. An anti-recA antibody and a secondary antibody conjugated to the fluorochrome Cy2™ are used to detect the Mmkin17 protein. The fluorescence is analysed using a Visiolab 1000 program (Biocom) coupled to an Axiphot 2 microscope (Zeiss) and a cooled camera, as specified above (magnification of each panel: 100).
- Figure 14 shows polynucleated B223.1 cells overexpressing the $_{\text{Km}}\text{kin17}$ protein: 8 months after the

- 13 -

transfection, B223.1 cells are seeded as specified above (see Figure 12). 24 hours after the treatment with heavy metals (100 μ M ZnCl₂ and 1 μ M CdSO₄), these cells are fixed and stained with an anti-recA antibody. Magnification: (A) 504; (B and C) 1000; (D and F) 1260; (E) 2000. The fluorescence is analysed using a Visiolab 1000 program.

- Figure 15 illustrates the cell cycle analysis in HEK293 cells overexpressing the $_{10}$ kin17 protein: 6 months after the transfection, the cells are seeded at the same dilutions and, three days later, a treatment with heavy metals for 24 hours. The cells are recovered and analysed. The arrows indicate the polynucleated cells.
- Figure 16 illustrates the influence of the overproduction of the wkin17 protein on the efficiency of the B223.1 cells in forming clones: 8 months after the transfection, the B220, B223.1 and B223.2 cells are seeded at 10^3 , 10^2 and 10^1 cells/cm² in the presence of hygromycin B ($125 \ \mu\text{g/ml}$). After 10, 12 and 18 days in culture respectively, the cells are fixed and stained.
- Figure 17 illustrates the proliferation rate of the B223.1 cells: at various moments after the transfection, cell growth is evaluated. (A): cells are seeded at the same dilution $(10^3 \text{ cells/cm}^2)$ in the presence of hygromycin B (125 μ g/ml). At various moments after the seeding, the cells are trypsinized and counted. (B): to evaluate the efficiency in forming clones, the three cell lines are evaluated at various densities: 103/cm2 for the B220 cells, 2×103/cm2 for the B223.2 cells and 104/cm2 for the B223.1 cells. The experiments are carried out in the presence or absence of hygromycin B (125 µg/ml). For each curve, the mean of three culture dishes is calculated: -O-: B220 cells without hygromycin; ---: B220 cells with hygromycin; -□-: B223.1 cells without hygromycin; -■-: B223.1 cells with hygromycin; -p-: B223.2 cells without hygromycin; -V-: B223.2 cells with hygromycin.
 - Figure 18 illustrates the $in\ vivo\ {\tt detection},$

- 14 -

by fluorescence, of the fusion proteins GFP-kin17 Δ CT (to the left) and GFP-kin17 Δ CT (to the right) after transfection of HeLa cells with the plasmids pEGFP-Kin17 Δ CT and pEGFP-Kin17 Δ CT respectively.

In these figures, the various stainings appear in a greyish form.

It should be well understood however that these examples are given only by of illustration of the subject of the invention, of which they in no way constitute a limitation

EXAMPLE 1: Method for cloning the human Kin17 gene (g_0Rin17) cDNA.

isolate the "sKin17 gene cDNA, lymphoblastoid cells, termed Boleth cells, which possess a normal carotype, were used. 107 cells were treated with a denaturing solution (RNA-B, Bioprobe, France); the proteins were removed after centrifugation at 12,000 rpm for 20 min. at 4°C. The total RNAs are recovered in the aqueous phase and precipitated by addition of one volume of isopropyl alcohol at -20°C and centrifuged. After resuspending distilled H_2O , the RNAs are again precipitated at -20°C in one volume of isopropyl alcohol and 0.2 M NaCl. After recovering by centrifugation and rinsing with 70% ethanol, the RNAs are resuspended in water and stored at -80°C. The RNAs thus obtained were subsequently used in the RNA reverse transcription reaction (RT), for synthesizing the corresponding complementary DNAs. The cDNAs obtained are treated by polymerase chain reaction (PCR), in the presence of a heat-stable polymerase, to obtain an MSKin17 cDNA fragment.

Production of a 1000-nucleotide fragment of the human cDNA by RT-PCR.

Oligonucleotides derived from the nucleotide sequence of the mouse $\mathit{Kin17}$ CDNA (Oligonucleotide pair SEQ ID NO. 27 = TCAAAGACAACTGTTGCTGGC and SEQ ID NO. 28 = ARACCTTCAACTCTGCGTCCTT) were used in the following way: 1 μ g of total RNAs was mixed with 5 mM MgCl₂, 1X PCR buffer, 1 mM dNTPs, 1 U/ml of RNase inhibitor,

- 15 -

2.5 U/ml 2.5 mM oligo d(T)16 and of reverse transcriptase. The mixture is incubated for 20 min. at room temperature to allow the oligo d(T)16 sequence to hybridize with the polyA+ ends of the RNAs and to initiate the reverse transcriptase. The mixture is then incubated for 20 min. at 42°C, and then for 5 min. at 99°C and for 5 min. at 5°C. These various incubations allow the reverse transcription of the messenger RNAs into complementary DNA. The PCR is carried out using the abovementioned oligonucleotides SEQ ID NO. 27 and PCR, the amplification products were After separated on a 1.5% agarose gel. The presence of DNA is revealed with ethidium bromide (Figure 1). The size markers present in column A of Figure 1 made possible to determine the size of the amplification products. A 1000-base pair DNA fragment is clearly detectable in the case of an amplification carried out on the cDNA obtained (column C). Conversely, when the enzyme which enables the reverse transcription step is omitted, it is observed that this DNA fragment is absent (column B). This clearly demonstrates presence of the ${}_{\mathit{HS}}\mathit{Kinl7}$ messenger RNA in the human cells; the 1000-base pair fragment obtained (SEQ ID NO. 4) is not due to a genomic DNA contamination.

The sequence of the 1000-base pair fragment is determined according to the automatic sequencing technique described in Tissier A. et al., 1996, mentioned above. The sequence SEQ ID NO. 4, which corresponds to an **skin17** cDNA fragment, is 86% identical to that of mouse **skin17*. The polypeptide encoded is 92.4% identical. It is the isolation of this **skin17** cDNA fragment which has effectively made it possible to undertake the cloning of the complete **skin17* cDNA (Figure 2: comparison of the sequences of the **skin17* cDNA fragments with the mouse Kin17* cDNA).

EXAMPLE 2: Screening a human cDNA library: cloning and determination of the nucleotide sequence of the **skin17* cDNA in the mule of the **skin17* cDNA in the mule of the **skin17* cDNA in the mule of the **skin18* cdoing and determination of the nucleotide sequence of the **skin18* cdoing and determination of the **skin18* cdoing and determination of the **skin18* cdoing and determination of the **skin18* cdoing and **skin18* cdoing and

gene complementary cDNA.

The radiolabelled 1000-base pair fragment of

- 16 -

the $_{IS}Kin17$ gene cDNA (termed probe-1000; SEQ ID NO. 4) was used as probe for screening a human cDNA library obtained from messenger RNAs expressed in testicles and inserted in the vector λ gtll. The DNA of the phages which hybridize with the probe was purified, and the human cDNA was sequenced.

PROTOCOL: The library was obtained from polyA+ RNA purified from human testicles. The complementary DNAs were obtained using a poly d(T) sequence as primer. After reverse transcription and degradation of the RNAs which served as matrix, nucleotide sequences corresponding to the restriction site of the EcoRI digestion enzyme were grafted onto both sides of the cDNA ends. After digestion with the EcoRI enzyme, all the cDNAs are inserted at the EcoRI site of the Agtl1 250,000 recombinant λgtl1 bacteriophages containing human cDNAs are incubated for 20 min. at 37°C with 0.3 ml of receptor bacteria 6334 (16 h preculture at 37°C), and then mixed with 9 ml of LB agarose medium heated to 48°C. The whole mixture is poured onto Petri dishes of 140 mm in diameter containing LB-agar medium. The dishes are then incubated at 42°C for 5 hours, and then at 37°C for 16 h, until then lysis plaques reach confluence. A dry nitrocellulose filter (Schleicher & Shuell, BA85) is then laid, for 1 min., onto the surface of the dish, which is asymmetrically marked with China ink. In this way, a replica of the lysis plaques is obtained on the filter. The radiolabelled 1000-base pair fragment (probe-1000) (SEQ ID NO. 4) of the HSKin17 gene cDNA is used for the screening according to the following treatments:

a) Denaturation and immobilization of the $\lambda gt11$ bacteriophage DNA on nitrocellulose filters.

The filters are placed for 5 min., with the surface which was in contact with the phages facing upwards, onto sheets of Whatmann paper which has been presoaked in denaturing solution (0.5 N NaOH, 1.5 M NaCl), to enable phage lysis and DNA denaturation. The

- 17 -

filters are then transferred into the neutralization solution (1.5 M NaCl, 0.5 M Tris-HCl, pH = 7.4) for 5 min., then washed for 10 min. in 2X SSC buffer, and then dried at 80°C, under vacuum, for 2 hours. A second series of the filters is brought into contact with the lysis plaques, for 2 min., at the surface of the dish. They will be treated in the same way as the first imprint. The dishes containing the phages are stored at $4^{\circ}\mathrm{C}$ in the dark. The DNA fixed to the filters is then hybridized with the radiolabelled probe-1000 (Maniatis et al., Molecular Cloning, a Laboratory Manual, 1989). The second series of the filters with imprints were hybridized with a radiolabelled probe corresponding to the mouse Kin17 cDNA (Angulo et al., N.A.R., 1991, mentioned above).

b) Hybridization of the recombinant DNAs and detection of the phages which hybridize with the probe.

Six filters were each placed in a tube and incubated for 3 hours at 65°C in the hybridization solution (5 X SSPE, 5 X Denhardt's solution, 0.5% SDS), in the presence of 50 μ g/ml final of sonicated herring sperm DNA (previously denatured at 100°C, for 10 min., then placed in ice).

b-1)- Radioactive labelling of probes: 30 ng of DNA corresponding to the 1000-bp fragment of the HSKin17 (probe-1000 of sequence SEQ ID NO. 4) corresponding to the mouse Kin17 cDNA (probe-1400) were heated for 10 min. at 100°C and incubated in the presence of primers (hexamers). labelled with radioactive deoxyribonucleotide phosphorus ($[\alpha^{-32}P]$ -dCTP), of three other nonradioactive deoxyribonucleotide triphosphates and of the Klenow fraction of the E. coli polymerase I. The labelling is carried out at 37°C for 30 min. and then the probe is purified through a molecular sieve (Sephadex G50, Pharmacia). The level of incorporation radioactivity is measured using a liquid scintillation counter. The specific activity of the probe-1000 and probe-1400 was 0.8-3×108 cpm/µg (Random Primed DNA - 18 -

Labelling Kit. Boehringer).

b-2)- Hybridization: The filters are incubated in the hybridization solution into which has been added the radiolabelled probe-1000 (SEQ ID NO. 4) or probe-1400 (previously denatured at 100°C for 10 min.). The incubation is carried out for 16 hours at 65°C. After hybridization, the filters are washed in the following way:

3 washes of 10 min. in 2 X SSC buffer, 0.1% SDS at room temperature,

1 wash of 45 min. in 1 X SSC buffer, 0.1% SDS at 65°C.

After removal of excess radioactivity, the filters are placed in contact with X-OMAT AR films (Kodak), which are placed at $-80\,^{\circ}\mathrm{C}$ for 16 hours.

c) Isolation of the phages which possess the $_{\mbox{\tiny MSR}}\mbox{Kin17}$ gene cDNA.

The lysis plaques which gave a positive result by autoradiography were located on the Petri dishes, sampled and resuspended in 100 to 300 μ l of SM buffer (0.1 M NaCl, 10 $^{-3}$ M MgSO₄, 0.02 M Tris-HCl pH

7.5, 0.01% of gelatin) containing 5 μl of chloroform. The same protocol as that used for the screening makes it possible to subsequently purify the positive phages and their DNA, to determine the size of the inserts and the sequence of the cDNA.

Purification of the $\lambda gt11$ phage DNA and determination of the nucleotide sequence of the $_{12}Kin17$ gene complementary DNA.

Procedures are carried out as described in French patent No. 2,706,487.

Example 3: Methods for characterizing the expression of the Kin17 gene by detection of the messenger RNA and of the protein encoded.

Immunodetection of the kin17 protein (mouse and human) in cells in culture.

The cells cultured on coverslips are washed 3 times with PBS, and then fixed using a methanol/acetone solution (3v/7v) for 10 minutes at -20°C. The immunodetection is then carried out at room

- 19 -

temperature in a humid chamber. After rehydration of the cells for 10 min. in PBS, the coverslips are incubated for 10 min. in a solution of 3% of H_2O_2 in PBS. After 3 5-min. washes with PBS, the coverslips are incubated for 30 min. in 5% of goat serum in PBS. The coverslips are then rinsed 3 times 5 min. in PBS, and then incubated for 2 hours with an antibody directed against the kin17 protein, termed pAb2064 (Biard et al., Arch. Dermatol., 1997, mentioned above) or an anti-recA antibody, diluted at 1/100 in PBS. After 3 5min. rinses in PBS, the coverslips are incubated with a biotinylated anti-rabbit immunoglobulin produced in goats, diluted at 1/200 in PBS. After 3 5min. washes in PBS, the coverslips are covered for 30 min. with the ABC reagent (Vectastain, Elite ABC Kit, Vector Laboratories), which contains avidin and biotinylated horse radish peroxidase, then rinsed again 3 times 5 min. in PBS. The peroxidase is revealed with diaminobenzidine (Polysciences Inc.), used at the concentration of 0.5 mg/ml in the presence of 0.01% of H_2O_2 in Tris buffer pH 7.4. The reaction is stopped after a few minutes by immersing the coverslips in water. The coverslips are then mounted with improved Aquamount (BDH, Gurr) and observed using a Carl Zeiss microscope equipped for Axiophote 2 immunofluorescence and with a cooled camera (CCD Coolview, Photonic Science, UK) which controlled by a computer.

Detection of the messenger RNA of the $_{\rm RS}{\rm Kin}17$ by in situ hybridization in T lymphocytes.

The human lymphocytes, placed onto the slides by cytospin, were fixed with 4% paraformaldehyde for 10 min., rinsed with PBS, and then dehydrated by successive passages in solutions of alcohol at 70%, 90% and 100%, before being stored at -80°C. After hydration in PBS, all the detection steps were carried out in a humid chamber. The slides are incubated for 10 min. with a solution of 3% $\rm H_{2O_2}$ in PBS, and then rinsed 3 times 5 min in PBS. The slides are successfully treated

- 20 -

for 10 min. with solutions of 0.1 M glycine in PBS and 0.3% Triton X-100 also in PBS, before being incubated for 2 hours at 37°C in the prehybridization buffer (50% of deionized formamide, 4x SSC, 1x Denhardt's solution, 0.1 mg/ml of salmon sperm DNA, 0.125 mg/ml of transfer RNA and 0.8% of sarcosyl).

Labelling of the oligonucleotide with digoxigenin.

100 pm are used of a 40-nucleotide synthetic oligonucleotide (SEQ ID NO. 16 or 17) which is labelled with Dig-11-dUTP at the 3' end using the Boehringer Mannheim kit (Dig Oligonucleotides Tailing Kit. Ref. 1417231). The probe labelling is controlled with the aid of an alkaline phosphatase-coupled anti-digoxigenin antibody (revelation with a solution of NPET-BCIP).

Hybridization conditions and revelation of hybrids.

 $100~\mu l$ of hybridization solution, composed of 4 pmol of labelled probe for 96 μl of prehybridization buffer, were placed onto each slide comprising fixed lymphocytes. The hybridization is carried out at 37°C for 16 hours.

The revelation is carried out using the TSA^{TM} Direct kit (NEN kit Ref. NEL 731). After hybridization, the slides are successively washed 3 times for 10 min. in 2 X SSC, 1 X SSC and 0.5 X SSC buffer at room temperature, and then 3 times for 5 min. in 0.1 M Tris-HCl, pH 7.5, 0.15 M NaCl, 0.05% Tween-20 buffer (TNT). The cells are then incubated with a blocking buffer composed of 0.1 M Tris-HCl pH 7.5, 0.15 M NaCl and 0.5% of blocking reagent for 30 min. After blocking, the immunodetection is carried out for 90 min. with a peroxidase-coupled anti-digoxiqenin (Boehringer Mannheim, Ref. 1207733). The antibody is used at a dilution of 1/100 in the blocking buffer of the hybridization kit (TSA™ Direct). The incubation is followed by 3 5-min. rinses in the TNT buffer, and then the peroxidase is detected by reacting the fluoresceincoupled tyramide for 5 min. as described by the

- 21 -

supplier (TSA™ Direct, NEN). After 3 5-min. washes in the TNT, the cells are stained with a solution of 10-3 μg/ml of 4',6-diamidino-2-phenylindole (DAPI) for 10 min. The slides are then rinsed in the TNT buffer, before being mounted using Vectashield®, which is a fluorescence-protecting mounting product Laboratories, Ref. H-1000). The fluorescein is observed at 525 nm and the DAPI at 425 nm using a Carl Zeiss Axiophote 2 microscope equipped for and with a cooled camera, immunofluorescence specified above.

Detection of the messenger RNA of the $_{\mathtt{MS}}\mathtt{Kin17}$ gene by in situ hybridization in mouse testicles.

The testicles are removed and immediately embedded at -20°C in the OCT embedding medium (OCT compound, Tissue-Tek, Miles. Ref. 4583). 10 µm-thick sections are prepared on a cyrostat at -20°C. They were used immediately, or frozen and kept at -80°C until is fixation use. The first step with paraformaldehyde, and then the protocol is identical to that described above for detecting the human gene in T lymphocytes. The probes used for the mouse are the synthetic oligonucleotides: antisense = 5'-CCA GGC CTC TTC TCA CCT GCT CCT CAA TGA ACT TGG CAG T-3' (SEQ ID NO. 17) and sense probe: 5'-ACT GCC AAG TTC ATT GAG GAG CAG GTG AGA AGA GGC CTG G-3' (SEQ ID NO. 16). A specific hybridization is observed in the zygotene spermatocytes (Figure 4).

Detection of the messenger RNA of the messenger RNA

The amount of *Kinl7* transcript present in various tissues is determined by the Northern method (electrophoresis, transfer and hybridization of the RNAs). Nylon membranes onto which 2 µg of polyA* RNA of various human tissues have been transferred (heart, brain, placenta, lung, liver, skeletal muscle, kidney, pancreas, spleen, thymus, prostate, testicle, ovary, small intestine, colon and peripheral blood lymphocyte

- 22 -

(MTN, Clontech)) are used. The prehybridization and the hybridization are carried out in an oven (hybridization oven/shaker from Amersham). The membrane is placed in tubes and incubated at 42°C for 5 hours with 15 ml of hybridization solution (50% formamide, 5 X SSPE, Denhardt's solution, 0.5% SDS) in the presence of 50 ug/ml final of sonicated herring sperm (previously denaturated at 100°C for 10 min., and then placed in ice). The membrane is then incubated in the hybridization solution into which has been added the radiolabelled probe-1000 (SEQ ID NO. 4) (previously denatured at 100°C for 10 min.). The incubation is carried out for 16 hours at 42°C. To remove excess probe, the membrane is washed twice 20 min. at room temperature in 2 X SSC, 0.1% SDS, twice 15 min. at 42°C in 0.5 X SSC, 0.1% SDS, and then once 15 min. at 60°C in 0.1 X SSC, 0.1% SDS. The filters are then placed in contact with X-OMAT AR films (Kodak) or Hyperfilm-MP (Amersham) at -80°C for 60 to 100 hours. Panel A of shows the autoradiograph obtained after Figure 3 hybridization of the total RNAs extracted from various human tissues with the probe-1000. A preferential expression of the MSKin17 gene exists in certain tissues such as the testicle, the ovary, the heart, skeletal muscle or the small intestine, whereas it is practically undetectable in other tissues such as the kidney, the lung or the brain.

EXAMPLE 4: Detection of the MSKin17 RNA in human tumour lines.

The level of mgKin17 messenger RNA in various cells derived from human tumours (promyelocytic leukaemia (HLGO)), cervical gland adenocarcinoma (HeLa S3), chronic myeloid leukaemia (K-562), lymphoblastic leukaemia (MoLT-4), Burkitt Raji's lymphoma, colorectal adenocarcinoma (SW480), lung carcinoma (A549 and melanoma (G361)) was determined. The protocol for detecting the mgKin17 transcript used is the same as that described for detecting the Kin17 RNA in the human tissues (see Example 3). A membrane onto which 2 µg of

- 23 -

polyA^{*} RNA of various tumour cells have been immobilized (MTN, Clontech) is used. Panel B of Figure 3 represents the autoradiograph obtained after hybridization of the probe-1000 with the total RNAs extracted from various human tumour cells. After quantification of the signals obtained for the **sKin17* RNA* with respect to those calculated for actin RNA, it is observed that the expression of the **sKin17* gene is very variable according to the line: a very weak expression is observed in the HL60 cells, whereas a difference of a factor of 15 in the K-562 cells or of a factor of 10 in the cells derived from the colorectal adenocarcinoma is observed. The tumour cells thus appear to regulate the expression of the **sKin17* gene differently.

EXAMPLE 5: Study of the transient overexpression of the mouse kin17 protein (kakin17) and of its truncated forms in human cells.

been observed that BALB/c fibroblasts, when they are stimulated to proliferate, show an intranuclear accumulation of the mmkin17 protein in the cells in S phase (DNA replication). To better define the role of the kin17 protein in cell proliferation, the effect of an overexpression of the Mmkin17 protein on cell proliferation was tested. A transient transfection system, which makes it possible to overexpress the Mckin17 protein in mammalian cells in culture, was used. The vectors obtained correctly express the Makin17 protein (verification by indirect immunofluorescence techniques with the aid of the polyclonal antibodies pAb2064 directed against the wkin17 protein (Biard et al., Arch. Dermatol. 1997, mentioned above and French patent No. 2,706,487)).

The effect of the transient overexpression of various truncated forms of the kin17 protein on cell proliferation is observed.

Construction of eukaryotic expression vectors.

All the plasmids used for this study were constructed starting from the vector pCMVDT21, which allows a high expression of the transgene (Bourdon et

al., 1997). The open reading frame of the mouse Kin17 cDNA (Angulo et al., 1991, N.A.R., mentioned above) was inserted into the vector pCMVDT21 digested with the restriction enzyme XhoI, to obtain the pCMVKin17. The cDNA termed MrKin17ACT is also used. It corresponds to a deletion of the fragment between nucleotide 854 and nucleotide 1034 of the MmKin17 cDNA, and has already been described (Mazin et al., 1994, mentioned above). This cDNA encodes a protein which is truncated in its C-terminal region, termed $kin17\Delta CT$ protein (deleted in the C-terminal region), and which has a molecular weight of 32407 Daltons. This Kin17ACT cDNA is inserted into the vector pCMVDT21; the plasmid pCMVKin17ACT is thus obtained. A second mutant is obtained by deleting the MmKin17 cDNA from nucleotide 412 to nucleotide 705. Such a nucleic acid encodes a protein which is truncated (absence of 99 amino acids between residues 129 and 228) at a region containing the sequence which is homologous to the recA protein. This mutated protein has been termed μckin17ΔHR (deleted in the Homologous Region). The cDNA McKin17AHR cDNA is generated in the following way:

- a) PCR amplification of the 5' region of the 3m.Kin17 cDNA (between nucleotides 1 to 411), from the vector pcD2Kin17 (Angulo et al., 1991) using the pair of oliqonucleotides:
- 5'-AAGCTGCTGCAGCAGCTTATCGGG-3' (SEQ ID NO. 29) and 5'-GGTACCTTTACACAAGCCCTCTCGCC-3' (SEO ID NO. 30).
- b) PCR amplification of the 3' region of the markin17 cDNA (between nucleotides 706 to 1352) using the primers:
- 5'-<u>GGTACCAGTGCACTGAAGCTGCTGGGG-3'</u> (SEQ ID NO. 31) and 5'-ATTTACCCAACTATTCACTA-3' (SEQ ID NO. 32).

The two amplification products are then mutually ligated at the KpnI site (underlined sequence). The sequencing of the junction of the two fragments showed that the reading frame of the kinl? Protein is intact. The DNA thus obtained is inserted into the vector pCMVDT21 to give the plasmid

- 25 -

pCMVKin17ΔHR.

Figure 5 shows the schematic representation of the various proteins expressed. The amino acid sequence is represented linearly. The name of the proteins is indicated to the left of each protein, and the size is mentioned to the right. The region which is homologous to the recA protein (HR, aa 163 to 201) and the Nuclear Localization Signal (NLS, aa 235 to 285) are shown in hatched rectangles. The deleted residues are numbered as a function of their respective position in the sequence of the kin17 protein, and are indicated as discontinuities.

Transient transfection of expression vectors into human cells.

The various constructs were transfected into HeLa cells, which are human cells derived from a cervical gland adenocarcinoma (reference ATCC CCL-2). 10% of cells transfected is obtained. The transfection is carried out in the following way: the HeLa cells are seeded in 350 mm-diameter dishes into which a glass coverslip had previously been placed. The cells are incubated in a DMEM medium containing 4.5 g/l of glucose, 10% of foetal calf serum and 1% penicillin/streptomycin, at a density of 2×105 cells per dish. 24 hours later, the cells are incubated with the following mixture: for each transfection, 3 ug of DNA are mixed with 10 μl of 2.5 M CaCl₂ in a final volume of The precipitate is homogenized and added dropwise to 100 µl of transfection buffer (274 mM NaCl; 1 mM KCl; 1.5 mM Na₂HPO₄.12 H₂O; 11 mM D(+)glucose; 25 mM HEPES; adjusted to pH 7.15 and sterilized by filtration). The mixture is incubated for 20 minutes at room temperature and then deposited dropwise onto the cells. The incubation lasts 16 hours at 37°C. The cells are then rinsed 3 times with PBS, and then put back into DMEM medium containing 10% of FCS and 1% of penicillin/streptomycin for 24 hours at 37°C. The transfected human cells are fixed methanol/acetone solution (3v/7v) at -20°C for 10 min. - 26 -

and then dried at room temperature for 10 min., in order to analyse, by indirect immunofluorescence, the localization of the overproduced $_{\rm se}{\rm kin17}$ protein.

Detection of the kinl7 protein by indirect immunofluorescence.

The fixed cells are rehydrated for 10 min. in PBS, and then incubated in a humid chamber for 1h30 at 37°C with the pAb2064 antibody diluted at 1/100 in PBS in the presence of 3% BSA. After 3 5-minute washes in PBS at room temperature and with shaking, the cells are incubated with the second Cy™ 2 fluorochrome-coupled goat anti-rabbit immunoglobulin antibody (Jackson Immuno Research Laboratories), diluted to 1/500, for 45 minutes at 37°C and in the dark. The coverslips are then washed 3 times 10 minutes in PBS and incubated in 10⁻³ μg/ml of 4',6-diamidino-2solution of phenylindole (DAPI) for 5 min. The coverslips are then rinsed with water, before being fixed onto a slide with a mounting product (Glycergel, Dako).

Figure 6 corresponds to a photograph of the HeLa cells transfected with the plasmid pCMVKin17 containing the **Kin17 cDNA* under the control of the cytomegalovirus promoter. The labelling of the DNA with the DAPI makes it possible to distinguish the cell nuclei, which are stained blue. The green intranuclear staining corresponds to the indirect labelling of the **Kin17* protein overproduced in the transfected cells.

 $\label{eq:thermodynamics} \text{The }_{Ms}kin17 \text{ protein is localized essentially in discrete intranuclear foci.}$

Cells which express a low level of whin17 protein were detected. The localization is clearly nuclear, and a concentration of the whin17 protein in intranuclear foci of approximately 0.5 µm in diameter is observed (Figure 7A). When the kin17 protein is expressed in large amount, it forms bigger intranuclear foci with dimensions which are similar to, or even large than, the nucleoli (Figure 7B). This result shows that the kin17 protein produced by the vector pcMVKin17 is expressed, that the phb2064 antibodies recognize its

- 27 -

native form and that it presents localization. These results confirm that, in vivo, the nuclear localization signal is indeed functional. The localization of the Mmkin17 protein in discrete intranuclear foci appears to reflect the functional compartmentalization of the biological processes which take place in the nucleus. In fact, similar profiles have already been observed for other proteins which are involved either in the multiprotein replication complex or in the transcription complex, or for proteins which intervene in the alternative splicing of mRNAs.

The overexpression of the $_{\rm Ne}{\rm kin}17\Delta HR$ protein leads to the formation of intranuclear aggregates.

The vector pCMVKin17AHR is transfected into the cells under the same conditions as those described above. The detection of the Mmkin17AHR protein by the indirect immunofluorescence method is carried out either using the anti-kin17 antibody (pAb2064) or the anti-recA antibody (French patent No. 2,706,487, Angulo et al., Biochimie, 1991, mentioned above). It is observed that the antibody pAbanti-recA is incapable of detecting the Mmkinl7AHR protein (Figure 8, panel A; HeLa cells transfected with the plasmid pCMVKin17ΔHR and processed for immunodetection with the antibody pAbanti-recA). This demonstrates that the region which is homologous to the recA protein is indeed responsible for the cross-reactivity between the kin17 protein and the pAbanti-recA antibodies. Conversely, the $kin17\Delta HR$ protein is easily detected using the antibody pAb2064 (Figure 8, panel B; HeLa cells transfected with the plasmid pCMVKin17AHR and process for immunodetection with the antibody pAb2064). A green nuclear staining is observed which corresponds to the indirect labelling of the $kin17\Delta HR$ protein overproduced in the transfected cells. The cell nuclei are stained with DAPI. The distribution of the *kin17AHR protein is different from that of the Mmkin17 protein. Specifically, the $Mmkin17\Delta HR$ protein forms large intranuclear aggregates in all the transfected cells, independently of the amount of - 28 -

protein overproduced. This might indicate that deleting the amino acids between 129 and 228 increases the binding of the $_{\rm Me}{\rm kin17AHR}$ protein to another nuclear component such as DNA or chromatin. Other biochemical approaches have shown that the solubility of the $_{\rm Ne}{\rm kin17AHR}$ protein is different from that of the $_{\rm Ne}{\rm kin17}$ protein.

The presence of the $_{\rm mc}$ kin17 Δ HR protein produces nuclear morphology deformations (NMDs) in the HeLa cells

HeLa cells are transfected with the plasmid pCMVKin17 Δ HR, and then the cells expressing the protein are mπkin17ΔHR detected by immunofluorescence. The analysis by phase contrast microscopy shows that 100% of the transfected cells show nuclear morphology alterations (Figure 8, phase contrast). When the cells overproduce the $_{Mm}kin17\Delta CT$ protein, it is impossible to detect this type of NMD (Figure 9). In the case of the production of low mkin17 protein, the formation amounts of intranuclear foci is observed, and the cells show a normal nuclear morphology without alterations described above). Conversely, the overexpression of a considerable amount of mkin17 protein leads to the formation of very big intranuclear foci, which resemble the distribution of the $_{Mm}kin17\Delta HR$ protein, and in this case, the cells systematically show NMDs (Figure 7). The fact that 100% of the cells which express the Mmkin17AHR protein have nuclear morphology alterations indicates the dominant phenotype of this mutant.

The NMDs are correlated with an inhibition of DNA replication.

It is demonstrated that the expression of the makin17 and mekin17 proteins produces NMDs and affects nuclear biological processes such as replication. A summary of the results is presented in Figure 10. The makin17 Δ HR cDNA is introduced into HeLa human cells. After expression of the plasmid, the kin17 protein is detected by indirect immunofluorescence with the aid of

- 29 -

a rhodamine-labelled antibody (red staining). In parallel, in the same cells, the amount of DNA replication is detected by the incorporation of BrdU (green staining); the genomic DNA contained in the nuclei is visualized by DAPI (blue staining) (Figure 10). The overexpression of the $_{\rm Nm}{\rm kin}17\Delta{\rm HR}$ protein completely inhibits the incorporation of the BrdU (Figure 10).

Test for clonogenicity of the cells overexpressing the kin17 protein or mutated forms thereof.

The plasmids pCMVDT21, pCMVKin17, pCMVKin17AHR or pCMVKin17ACT were cotransfected with the plasmid pEGFP-N1 (Clontech) into HeLa cells, which are then incubated for 20 days in a medium containing a selection marker (geneticin). The colonies formed are counted. The number of colonies formed by the cells transfected with the plasmid pCMVDT21 is considered as 100%.

The kin17 protein allows the formation of 10% of colonies. The kin17 Δ HR protein allows the formation of 20% of colonies.

The kin17 Δ CT protein allows the formation of 70% of colonies.

The presence of the kin17 or kin17 Δ HR protein considerably affects the growth of the cells, whereas the kin17 Δ CT protein has no inhibitory action on separate proliferation.

Effects of the overproduction of the kin17 Δ CT protein and role of the C-terminal fragment.

- Construction of the vectors expressing fusion proteins.

The plasmids used for this study were constructed from the vector pEGFP-C3, which expresses the protein GFP (Green Fluorescent Protein, Clontech). The cDNA termed $_{2m}Kin17\Delta CT$ was inserted in phase with the cDNA which encodes GFP. The plasmid pEGFP-Kin17 ΔCT is thus obtained, which expresses the fusion protein GFF-kin17 ΔCT which has a molecular weight of 60 kDa. A

second fusion protein was created by inserting, in phase with the cDNA which encodes GFP, the cDNA, termed makinITNLS-CT, which encodes the nuclear localization signal and the C-terminal portion of the kin17 protein, termed kin17NLS-CT protein. The plasmid pEGFP-Kin17NLS-CT is thus obtained, which expresses the fusion protein GFP-kin17NLS-CT which has a molecular weight of 46 kDa.

- Results:

The detection of the kin17ACT protein by indirect immunofluorescence shows that this truncated protein has rather a homogenous nuclear distribution with a large decrease in the number of intranuclear foci. Conversely, the overproduction of this kinl7ΔCT protein never generates intranuclear deformation. In addition, its presence in the cells affects neither the DNA replication nor the cell proliferation. These results show that the peptide responsible for the formation of intranuclear foci, for nuclear morphology alterations and for inhibition of cell proliferation appears to be the Cterminal region.

To verify this hypothesis, the subcellular localization of the GFP-kin17ACT (deleted in the C-terminal region) and GFP-kin17NLS-CT (possesses the LNS and the C-terminal region of the kin17 protein) fusion proteins was determined.

Figure 18 shows the detection, in vivo, of these two proteins in the HeLa cells; whereas the GFP-kin17ACT fusion protein presents a diffuse nuclear localization, the GFP-kin17NLS-CT protein essentially shows a localization in the form of nuclear foci which are similar to those formed by the kin17 protein. Thus, these observations demonstrate that the C-terminal region of the kin17 protein is capable of directing a heterologous protein (GFP) into the intranuclear foci, and strongly suggest that it is this region which is responsible for the cytotoxic effects observed during the overproduction of the kin17 protein.

EXAMPLE 6: Production of human cells which have a

- 31 -

stable expression of the $_{km}kin17$ protein. Effect on cell proliferation.

To confirm the effects produced bv transient expression of the Makin17 protein, cells which continuously express the mmkin17 protein were isolated and the effect of this ectopic expression on the cell survival, the proliferation and the morphology of the cells was determined. The mouse MmKin17 complementary DNA, carried by "EBV" shuttle vectors, was used to transfect human cells, termed HEK293, in culture. HEK293 cells ("Transformed human embryo kidney cells" established from embryonic kidney are HEK-Ad5), transformed with Adenovirus 5 fragments (Graham F.L. et al., J. Gen. Virol., 1977, 36, 59-72). Cells capable of expressing the Mmkin17 protein are selected. It has been presumed that the overproduction of the mouse kin17 protein in the human cells has a biological effect which is very close to the human protein, given the conservation of the sequences observed between human and mouse (Figures 2A and 2B).

The MmKin17 cDNA is introduced into expression vectors derived from the Epstein Barr virus vectors) under the control of a very powerful viral cytomegalovirus immediate-early ("human promoter" or "IE HCMV") or of a heavy metal-inducible promoter (mouse promoter mMT-I of the metallothionine I gene). These plasmids are derived from those already published (Biard et al., Biochem. BioPhys. Acta, 1992, 1130, 68-74; Biard et al., Exp. Cell Res., 1992, 200, 263-271). These vectors have the following advantages: 1) are maintained as stable episomes (extrachromosomal) in human cells; 2) persist at low copy number per cell (1 to 20 in the established lines); 3) replicate once per cell cycle; 4) segregate between daughter cells as chromosomes; 5) present an extremely low background of spontaneous mutagenesis; 6) do not disturb functional integrity of the transfected cells; 7) allow - 32 -

the selection of the cells which carry them as a result of conferring resistance to hygromycin or to geneticin (G418).

The steps for cloning in the EBV vectors and for analysis of these vectors have already been described (Biard et al., Biochim. BioPhys. Acta, 1992; Biard et al., Exp. Cell Res., 1992; mentioned above). Among the plasmids constructed, 4 of them have more particularly been studied: the vector pEBVMPM_kin17 (or pB223) (Figure 11), the vector pEBVMTA (or pB220) (Figure 11), the vector pEBVCMVAS_kin17 (or pB291) and the vector pEBVCMVAS_kin17 (or pB291AS into which the MacKin17 cDNA has been inserted in the "antisens" position). After cloning, the vectors are amplified in the DH5 bacterium and purified on "Qiagen" columns according to the supplier's recommendation. This DNA is then used to transfect the human cells.

The transfection of human cells.

The eukaryotic cells were cultured in 6-well containing 2 ml dishes of medium per Subsequently, 1 to 2 µg of DNA per well (depending on the cell type) are transfected by calcium chloride precipitation (Biard et al., Biochim. BioPhys. Acta, 1992; Biard et al., Exp. Cell Res., 1992, mentioned above). The cells are incubated at 37°C overnight, and the medium is replaced with fresh medium without antibiotics. 48 hours after the transfection, cellular proteins are analysed by the "Western blot" or immunohistochemistry technique as described (Biard et al., Rad. Res., 1997; Biard et al., Arch. Dermatol. Res., 1997). The purification of the plasmids by the "Hirt" technique allows their characterization by DNA-DNA hybridization or by transformation of DH5α bacteria and amplification (Biard et al., Exp. Cell Res., 1992, mentioned above). The cell cultures are maintained in the presence of 250 µg/ml of hygromycin in the medium for 4 days, and then with 125 $\mu g/ml$ of hygromycin, or of geneticin (750 µg/ml for 4 days, and then 250 µg/ml), in order to determine clonogenic - 33 -

growth and to establish continuous lines.

Effect of the overexpression of the **skin17 protein in H1299 tumour cells.

H1299 cells (ATCC CRL-5803) are human lung epithelial cells which have been established after removal from a patient with a lung carcinoma NSCLC ("non small cell lung cancer"). These tumour cells show an inactivation of the p53 gene. The expression of the MmKin17 cDNA under the control of the powerful IE HCMV promoter leads to a very considerable decrease in the 14 days after the of colonies formed transfection, even in the presence of the selection (hygromycin or geneticin). Under the conditions, the expression of the antisense Mm Kin17 cDNA allows the establishment of very many clones. As a result, it emerges that an ectopic expression of the Mmkin17 protein in H1299 tumour cells leads to a considerable selective disadvantage. It is thus very difficult, or even impossible, to establish lines derived from H1299 cells continuously expressing the wkin17 protein.

Production of immortal HEK 293 cells which overexpress the $_{Mo}$ kin17 protein.

These HEK 293 cells present the following properties: 1) out of 4 to 5 fragments of viral genome, integrated into their genome (12% of the left-hand end and one copy of 9% of the right-hand end) (Aiello L. et al., Virology, 1979, 94, 460-469), only the transcripts from the left-hand end are detected; 2) transformed nature and loss of contact inhibition; 3) secrete their own growth factors and thus grow in low serum medium; 4) moderate tumorigenicity (15% of nude mice present tumours); 5) transfection efficiency higher than 30% (observed 48 h after the transfection of a vector pEBVCMVEGFP).

It is observed that 48 h after the transfection of the vector pEBVCMV_{MB}Kin17, a large number of cells express the mkin17 protein at a very high level. After selection with hydromycin (250 µd/ml), a very

- 34 -

considerable number of clones is observed in all cases, this number always being greater than that observed transfection of the control DEBVCMVASwaKin17. Thus, 14 days after the selection, the viability of the cells is compatible with expression of the makin17 protein. After several weeks, a progressive loss of the number of cells expressing the Mmkin17 protein is observed. This occurs in many transfection experiments. This indicates that ectopic expression of the $_{Mm}kin17$ protein leads to a selective disadvantage for the HEK 293 cells, which leads to their disappearance. Conversely, the HEK 293 cells transfected with other EBV vectors, such as the or pEBVCMVlacI, pEBVCMVlacZ, pEBVMTlacZ, maintain a stable expression of the gene of interest (herein, the bacterial genes lacZ or lacI) for many months, or even many years (Biard et al., Cancer Res., 1992, mentioned above).

HEK 293 cells are transfected with the vector pebvMT_{NE}Kin17. In this vector, the expression of the NEKin17 cDNA is controlled by the mMT-I promoter. As a result, the basal expression of the NEKin17 cDNA is considerably lower than that obtained with the IE HCMV promoter. In addition, the expression can be increased using heavy metals in the culture medium. Several stable clones which express a very low level of NEKin17 protein have been isolated and analysed. The advantage of this system is that the introduction of 100 µM of Zn and 1 µM of Cd in the culture medium activates the mMT-I promoter and increases the expression of the NEKin17 cDNA (Figure 12).

One clone, termed B223.1 cells (Figure 12) since it carries the vector pEBVMT_{Mm}Kin17 (or pB223), presents quite a high basal expression of the Mmkin17 protein, whereas the clone termed pB223.2 presents a low basal expression of the Mmkin17 protein. The characterization of this clone for more than 8 months in continuous culture has shown that the level of the Mmkin17 protein is correlated with a very considerable

- 35 -

decrease in cell proliferation.

The mkin17 protein is detected in the transfected cells by immunorytochemical staining; whereas no signal is observed with the B220 cells (Figure 12C and D), an intense signal is detected in all the B223.1 cells, 24 hours after a treatment with heavy metals, using an anti-reck antibody (Figure 12A and 12B).

Differences in expression are also observed in the B223.1 cell population.

Using conventional microscopy with a narrow filter to analyse the emission of the Cy2TM fluorochrome, less than 1% of B223.1 cells are observed overexpressing the **wkin17* protein in the absence of stimulation with heavy metals (Figure 13A); after stimulation with heavy metals, a strong specific signal is detected, located in the nuclei of the B223.1 cells (Figure 13B).

Under these experimental conditions, the endogenous $_{\rm HS}{\rm kin}17$ protein is not detectable (Figure 12C and 13C).

A decrease in the clonogenic growth of the B223.1 cells, an incapacity to grow at low density and a poor adhesion to the culture support are also observed (Figure 13B). The B223.1 cells are often giant and polynucleated (Figure 14). More polynucleated cells are observed in the B223.1 cell population than in the other two cell lines (B220 and B223.2) (Figure 15). They present multilobed nuclear structures micronuclei. These results indicate that the viability of the human cells HEK 293 is compatible with a low the wkin17 constitutive expression of Conversely, a high expression level negatively affects cell proliferation. These results indicate that the overexpression of the Mmkin17 protein compromises cell viability. All these results reinforce the hypothesis according to which the Mmkin17 protein should intervene in the control (negative) of cell proliferation (Figure 16).

- 36 -

When the B223.1 cells are seeded at a density of 103 cells/cm2, it is observed that, in the absence of heavy metals, these cells are incapable of growing after 7 days in culture; they remain round and do not spread out (Figures 12 and 17A). Whereas the B223.1 cells begin to grow after 7 days in culture, the other two cell lines almost reach confluence (Figure 17A). When these various cell lines are grown at various densities to take into account their efficiency in forming plagues, a reduced rate of proliferation is observed for the B223.1 cells, in comparison with the other two lines (Figure 17B). Since no difference is observed in the presence or in the absence hygromycin B, it should be considered that these results are not due to a difference in sensitivity to the selection medium (Figure 17B).

As emerges from the above, the invention is in no way limited to those of its modes of implementation, of execution and of application which have just been described more explicitly; on the contrary, it embraces all the variants thereof which may occur to the person skilled in the art, without straying from the context or the scope of the present invention.

ART 34 ANDT

WO 99/29845

70

PCT/FR98/02667

CLAIMS

- Nucleic acid sequence, characterized in that it presents the sequence SEQ ID NO. 1 and in that it is capable of expressing a functional human kin17 protein.
- 2) Nucleic acid sequence, characterized in that it encodes a kin17 protein which is truncated at a region which is homologous to the recA protein and in which at least the fragment between amino acids 162 and 201, and at most the fragment between amino acids 55 to 235, is deleted.
- 3) Sequence according to Claim 2, characterized in that said nucleic acid sequence encodes a truncated kin17 protein which corresponds to the mouse kin17 protein in which the fragment between amino acids 129 to 228 is deleted, and in that it presents the sequence SEQ ID NO. 2.
- 4) Sequence according to Claim 2, characterized in that said nucleic acid sequence encodes a truncated kin17 protein which corresponds to the human kin17 protein in which the fragment 129 to 228 is deleted, and in that it presents the sequence SEQ ID NO. 3.
- 5) Fragments of the sequence SEQ ID NO. 1, for detecting the gene encoding the human kin17 protein, and/or the RNA of the Kin17 gene, in a biological sample characterized in that they are selected from the group consisting of sequences SEQ ID NO. 4-21 and 33.
- 6) Method for detecting genomic DNA or a transcription product of the human Kinl7 gene, by gene amplification and/or hybridization, which is carried out starting from a biological sample, this method being characterized in that it comprises:
- (1) a step in which a biological sample to be analysed is brought into contact with at least one probe selected from the group consisting of the sequences SEQ ID No. 1 to 21 and 33 and
 - (2) a step in which the resulting product(s) of

AMENDED PAGE

- 71 -

the nucleotide sequence-probe interaction is (are) detected by any suitable means.

- 7) Method according to Claim 6, characterized in that the probe in step (1) is optionally labelled with the aid of a label such as a radioactive isotope, an appropriate enzyme or a fluorochrome.
- 8) Method according to Claim 6 or Claim 7, characterized in that said probe consists of the sequence SEQ ID NO $4\,\cdot$
- 9) Method according to any one of Claims 6 to 8, characterized in that it can comprise, prior to step (1):
- a step for extracting the nucleic acid to be detected, and
- . at least one genic amplification cycle carried out with the aid of a pair of primers selected from the sequences SEQ ID NO. 5 to 21, preferably with the aid of the pair of primers SEQ ID NO. 16 and SEQ ID NO. 17.
- 10) Method for detecting a transcription product of the human Kinl7 gene, characterized in that it comorises:
 - a step for extracting the RNA to be detected,
- a step for synthesizing the cDNA corresponding to said RNA by reverse transcription in the presence of random primers,
- at least one gene amplification cycle carried out with the aid of a pair of primers selected from the sequences SEQ ID No. 5 to 21, and
 - the detection of the amplified product.
- 11) Detection method according to Claim 10, characterized in that said pair of primers is selected from the group consisting of the following pairs: sequences SEQ ID NO. 5 and SEQ ID NO. 12, for amplifying a 453-bp fragment; sequences SEQ ID NO. 18 and SEQ ID NO. 19, for amplifying a 1265-bp fragment and sequences SEQ ID NO. 16 and SEQ ID NO. 7, for amplifying a 224-bp fragment.

AMENDED PAGE

- 72 -

- 12) Detection method according to Claim 10 or Claim 11, characterized in that the detection is carried out by gel electrophoresis and suitable revelation, optionally followed by a quantification.
- 13) Protein, characterized in that it corresponds to a kin17 protein truncated at a region which is homologous to the recA protein and in which at least the fragment between amino acids 162 and 201, and at most the fragment between amino acids 55 to 235, is deleted.
- 14) Protein according to Claim 13, characterized in that said truncated kin17 protein corresponds to the mouse kin17 protein in which the fragment between amino acids 129 to 228 is deleted, and presents the sequence SEQ ID NO. 22 (sequence termed wkin17ARR).
- 15) Protein according to Claim 13, characterized in that said truncated kin17 protein corresponds to a human kin17 protein in which the fragment 129 to 228 is deleted, and presents the sequence SEQ ID NO. 23 (sequence termed mskin17AHR).
- 16) Fragment of a nucleic acid sequence encoding a segment of a mammalian kin17 protein, characterized in that it comprises between 300 and 360 nucleotides encoding the C-terminal portion of a mammalian kin17 protein (SEQ ID NO. 1 or SEQ ID NO. 24), and is capable of controlling cell proliferation.
- 17) Fragment according to Claim 16, characterized in that it is selected from the group consisting of SEQ ID NO. 33 and SEQ ID NO. 34.
- 18) Fragment of kin17 protein, characterized in that it comprises between 100 and 120 amino acids located in the C-terminal position of the sequence SEO ID NO. 25 or of the sequence SEO ID NO. 26.
- 19) Fragment according to Claim 18, characterized in that it is selected from the group consisting of SEQ ID NO. 35 and SEQ ID NO. 36.

AMENDED PAGE

- 73 -

- 20) Use of a mammalian kin17 protein or of a protein fragment according to any one of Claims 13 to 15 and 18, 19, for preparing a medicinal product which controls cell proliferation.
- 21) Use according to Claim 20, for preparing a medicinal product which inhibits cell proliferation, and which is in particular intended for treating diseases in which a cellular hyperproliferation is observed.
- 22) Use of a mammalian kin17 protein or of a protein fragment according to any one of Claims 13 to 15 and 18, 19, for preparing a medicinal product which controls fertility.
- 23) Use according to any one of Claims 20 to 22, characterized in that said sequence is selected from the group consisting of the sequences SEQ ID NO. 22, 23, 25, 26, 35 and 36.
- 24) Expression vector, characterized in that it includes a sequence encoding a mammalian kin17 protein or a fragment of it selected from the group consisting of the sequences SEQ ID NO. 1, 2, 3, 33 and 34.
- 25) Expression vector according to Claim 24, characterized in that said sequence encoding said kin17 protein or said fragment of it is fused with a gene which encodes a fluorescent protein.
- 26) Use of an expression vector which includes a sequence selected from the group consisting of the sequences SEQ ID NO. 1, 2, 3, 24, 33 and 34, for preparing a medicinal product which controls cell proliferation.
- 27) Use of an expression vector which includes a sequence selected from the group consisting of the sequences SEQ ID NO. 1, 2, 3, 24, 33 and 34, as a detection tool, in particular for visualizing the sites and the progression of DNA repair, and the intranuclear centres of biosynthesis.
- 28) Use of the fragment between amino acids 55 to 235, preferably the fragment between amino acids 129

- 74 -

and 228, of a mammalian kin17 protein, for regulating the protein-curved DNA interaction.

29) Reagents for detecting a nucleic acid sequence encoding a mammalian kin17 protein or a modified fragment of these sequences, characterized in that they include the sequences SEQ ID NO. 4 to 21, 33 and 34, as well as the fragments A of 453-bp, B of 1265-bp and C of 224-bp, optionally labelled.

ABSTRACT

The invention concerns a DNAc sequence coding for human kin17 protein, DNAc sequence coding for a truncated kin17 protein, and use of said nucleic sequences and said proteins for regulating cell proliferation. The invention also concerns a method for detecting the human Kin17 gene and the RNAm of the Kin17 gene, by in situ hybridization using oligonucleotides and/or by polymerase chain reaction (PCR). The invention further concerns expression vectors or plasmids expressing said proteins.

DOCKET # 192863450 PCT SHEET

WO 99/29845

DOUBLES DYNADO

1/28

FIGURE 1

CT/FR98/02667

												WO 99
HSKin-imkin pep 16 10 1997 16 00	16 10 1997	16 00 20	30	40	05	09	0,0	8-	8-	001	1	/2984
bekin17 pen	MCKSDFLTPK	ATANRIKSKO	LOKLRWYCOM	COROCRDENO	FKCHCMSESH	MAKSDELTPK AIAMRIKSKO LQKLRMYCQM CQKQCRDENG PKCHCMSESH QRQLLLASEN PQQFYDYFSE EFRHDFLELL RRRECTKRUH NNIVYNEYIS	POOFMOYFSE	EFRNDFLELL	RRREGTKRVH	NNIVYNEYIS		45
	ACS THE SAME	ATANRIKSKG	LOKLRWYCOM	COKOCRDENG	PKCHCMSESH	SI ANIOKIEMICOM COKOCROBNO PKCKCMSESM QROLLIASEN POGEMOYESE EFRNDFLELL, RRREGTKRVII NNIVVNRYIS	PQQFMDYFSE	EFRNDFLELL	RRREGTKRVH	NNIVYNEYIS		
marani. Dep	110	120	130	140	0 150	160	170	180	061	200		
hsKin17.pep	HREHIMMAT	QMETCTDFTK	WLGREGLCKV	DETPKGWY 1Q	YIDRDPETIR	HREHIMMANT GAETLIDETK MIGREGICKV DETPKGHTIQ YIDRDETIR RQLELEKKAK QOLDDEEKTA KFIREQURRG LEGKEGEVPT FTELSRENDE	QDLDDEEKTA	KFIEEQVRRG	LEGKEQEVPT	FTELSRENDE		1
mer 117 men	TAMMAT	OWETLTDFTK	WLGREGLCKV	DETPKGWY 1Q	YIDRDPETIR	HARMANT GAETLIDPTK HLGREGLCKV DETPKGMYTQ YIDRDPETIR RQLELEKKKK QBLDDEEKTA KFIEEQVRRG LEGKEQETPV FTELSRENEE	QDLDDEEKTA	KFIEEQVRRG	LEGKEQETPV	FTELSRENEE	2	XX CI
4-4-1	210	0 250	230	0 240	0 250	0 260	270	280	0 290	300	/28	ŒI :
nsKinl7.pep	EKVTFNLSKG	ACSSSGATSS	KSSTLGPSAL	KTIGSSASVE	RKESSQSSTQ	EKUTPHISKG ACSSSGAMSS KSSTIGPSAL KTIGSSASVK RRESSQSSTQ SKEKKKKKSA LDEIMETERE KKRTARTOVW LQPEITVRIT TKKLGENTHK	LDEIMEIERE	KKRTARTDYW	LQPELIUKI	TKKLGEKYHK		1928
more 71 nem	FKVTFNLAKG	AGGSAGATTS	KSSSLOPSAL	KLLGSAASG	EXVTENIANG AGGSAGATTS KSSLOPSAL KLLGSAASGK RKESSQSS	AQPAKKKKSA	LOBIMELEER	KKRTARTDAW	LQPSIVVKII	APPAKKKKSA LDEIMELEEE KKRTARTDAM LQPSIVVKII TKKLSEKYHK		634
and community	116	0 320	0 230	0 34	340 350	360	0 170	380		190 400	0 1	SOPE
nsKin17.pep	KKAIVKEVID	KYTAVVKMID	SGDKLKLDQT	HUETVIPAR	3 KRILVLNOGY	KKAIVKEVID KYTAVVKHID SODKLKLDOT HLETVIPARO KRILVLNOSY RONEOTLESI NEKTYSATIV IETOPLKORR VEGIOYEDIS KLA	NEKTFSATIV	I ETGPLKGRR	VEGTQYEDIS	KLA.		BHEI
neu Linium	KKGVVKEVID	RYTAVVKMTD	SCDRLKLDQT	HLETVIPAR	S KRVLVLNOGY	** ** ** ** ** ** ** ** ** ** ** ** **	NEKAFSATIV	IETGPLKGRR	VEGIQYEDIS	KLA		T.£
dod : / Till William	410	0 420	0 430	•	440 45	450 460	0 470	0 480	0 49	490 500	5 1	OFA
usKin17.pep												
mmKin17.pep	: :											
												P

FIGURE 2A

OBLON ET AL (703) 413-3000

WO 99/29845

3/28

Cini 7-makin17	16 10 1997 15 59	7 15 59									-
	_	17	E-	\$-	- 20	S-	5 -	8-	8-	100	
Kinl7.seq	TGATTCGACC	TCGGTACCCG	GGGATCCGAT	TAGAAAGTGA	TOPITICENCE TEGETACECO GOGATECCAT TAGAAAGTGA TEGETOCECT GOTEGOCEATG GOGAAGTEGG ATTITICTAE TECCAAGGET ATGCEAACA	GGTCGCCATG	GCCAAGTCGC	ATTTTCTTAC	TCCCAAGGCT	ATCGCCAACA	
Kin17.seg						ATG	GCCAAGTCGG	ATTTTCTGAG	ATG GGCAAGTCGG ATTTTCTGAG CCCCAAGGCC ATCGCCAATA	ATCGCCANTA	
•	=	0 120	0 13	0 140	0 150	160	170	190	0 190	200	
Kinl7.seg	OGATCAAGTC	CAAGGGGCTG	CAGAAGCTAC	CTGGTATTG	DEATHCHAGTE CANODOGETS CHARACTAC DETOCTATE CENGRITORO CHARACTAT OCCOGDACOA GANGGETTT ANGTOTICAT GINTGPICOA	CAGAAGCAGT	OCCOGGACGA	GAATGGCTTT	AAGTGTCATT	GTATGTCCGA	
Kin17.seg	GAATTAAGTC	CANAGGGCTC	CAGAAGCTTC	: GCTOGTACTG	GANTTANGTE CANAGGGCTE CAGANCETTE GETEGTACTE CEAGAIGTICE CANAAGCAAT GEGGCGACGA GAATGGCTTT AAGTGTCACT GIATTCHTGA	CAAAAGCAAT	GCCGCGACGA	GAATGGCTTT	AAGTGTCACT	CTATCTCTGA	
	21	210 220		230 29	240 250	260	270	0 280	0 290	300	3/
Kinl7.seq	ATCTCATCAC	ACACAACTAT	recroserre	AGNAAATCC	APPEAREAG AGACAACRAT TOCTOGCTTC AGAAAATCCT CAGCAGTTTA TOGATTATTT TICAGAGAA TICCGAAATG ACTTICTAGA ACTTICTCAGG	TGGATTATTT	TTCAGAGGAA	TTCCGAAATG	ACTITICITAGA	ACTTICTICAGG	28
Kin17.sed	ATCTCATCA	A AGACAACTG	r recreective	: AGNANACCC!	AFCTEATURA AGACARCTOT TOCTURCTTC AGARANCCOT CAGCADITITA TOCATARITY TICAGAGGAA TRCCGARATO ACTITICIGGA ACTIVITADAC	TOGATTATT	TTCAGAGGAA	TTCCGAAATG	ACTITICAGO	ACTITCTICACG	
		32	320 33	330 34	350 350	360	0 370	986 0	390	0 400	
Kin17.seq	AGACOCTITIE	GCACTAAAAC	GCTCCACAAC	AACATTGTC	AGROCITITO GCACTAMAG GETCCACAR ARCHITETET ACARCOATA CATCAGCAC CGAGACACA TECACATORA TGCCACTERG TEOGRAPHETE	CATCAGCCAC	CCAGAGCACA	TCCACATORA	TGCCACTCAG	TCCCAAACTC	
Kin17.sed	CGACGCTTT	3 GCACTAAAAC	S GGTCCACAA	C AACATTGTC	. I CUNCOCITITO GCACTIANAMO GGTCCACARC ANCATIGICI ACARTUANIA CATCAGCAC CGAUAGCACA TCCACATGAA GGTIACCCAG TUSGAGACAC	CATCAGCCAC	CGAGAGCACA	TCCACATGAA	CGCTACCCAG	TOGGAGACAC	
	4	410	120 4	430 4	440 450	460	0 470	480	490	0 500	
skin17.seq	TUACTGATT	TACTANGTO	g crosccasa	S AAGGCTTGT	TRACTORITY TRETANGING CYCGCKARA ANGICTIOTO CHANGINGAL GRORCINCA ANGICTIONA TRITCHUTAC ATRORCAGGG ACCERCADAS	GAGACACCAA	AAGCTCGT.	TATTCAGTAC	ATAGACAGGG	ACCCAGAAAC	
akin17.seq	TUACCEACT	T TACCAAGTU	s cruadchaA	a AGGCCTTCIN	POACCOATT TACCAMGTUG CTUGGCAGAG AGGOCTICTH TAAGTUGAT GAGACACCOA AAGGCTUGTA CAITCAGTAC ATHOACAGAG ACCCAGAAAC	GAGACACCGA	AAGGCTOGT	CANTICAGIAC	ATAGACAGAG	ACCCAGAAAC	

FIGURE 2B

REPLACEMENT SHEET (RULE 26)

WO 99/29845

ORES le 06/06/00 15:56 A4 NORM Pg: 5/29

OBLON ET AL (703) 413-3000 DOCKET # 192868150 PCT SHEET 4 OF 4 09/555529

PCT/FR98/02667

4/28

	510	520	015	540	055	956	270	580	290	009.
	_						44.0000	OK A CHIRD A MODER	ACCTA ACTICAG	AAGAGGCCTG
hekin17 sed	TATECCCCCG	CAACTOGAAC	TOGRGAAAAA	GAAAAAGCAG	TATECOCCOS CARTEGAA TOGAGAAAAA GAAAAACGA GACCTTGATG ATGAGAAAA AACHACAAA HIMIDAAA	AAGAAAA	ACTUCCAAA			
		•		•			011000001	OUT OF STATE A COURT	ACCAGGTGAG	AAGAGGCCTG
mos Linivani	CATCCGTCGG	CAACTGGAAT	TAGAAAAAA	GNAGAAGCAA	CHECCECOS CAACTOGAAT TAGAAAAAAA GAAGAAGCAA GATCTGGACG ATGAAGAAA AACTUCLANG TLAGTONG CONTROL	AAGAAAA	AACTOCCANG	Truitana		
					,		163	089	069	200
	019	62	630	9	- -	-	;-			
						0404.00	TOO A OPPORT	TOTA & TOTATICA C	TAAAGGAGCA	TCTAGCTCAT
hekin 17 sed	GAAGGGAAGG	AACAGGAGGT	CCCCPACTITI	ACGGAATTAA	GARGODARGO AACAGGAGOT CCCTACTITT ACGGAITTA CCAGAGAAA TUATGAANA CANSTANG	TOWNSHOP	TOWNS TOWNS		•	
	•	:	:	•	•		•		000,000	COMPONENTAL
	044000440	CONCORRE	ACCTGTTTTT	ACAGAACTTA	ACCESSED ACCESSED ACCESSED ACCESSED A CONTRACT TO ACCESSED AND ACCESSED TO ACCESSED AND ACCESSED ACCESSED ACCESSED AND ACCESSED ACCESSED ACCESSED AND ACCESSED ACCESS	OCAACAA	AAAGTTACGT	TCAATCTGAA	TAAAGGAGCG	CO TOOL TOOL
makini/.sed	CARGOGRAPIO								700	800
	71.6	72	13	740	750	160	Ξ-	-		
	-					1		10001110001	A A A . In a restoration	COCAGAGCIC
1		011000000	THE REPORT OF THE	PROCEACCEAG	MANAGEMENT STATEMENT STATEMENT AND ACCOUNTS AND ACCOUNTS AND AND ACCOUNTS AND ACCOU	CALFAGGAA	GITCAGCATC	AGICANACCA	MANGRATCI	
hskin17.seq	CCCCACCAAC	ATCTICLANG		•	:		:	•		
	•	•			ALC: OR A COMPOSITION OF THE	A DOMOGRA	CCCACCACC	CCCCAAACCC	AAAGAGTCTT	CACAGAGCTC
makin17 sed	COGGAGCTAC	AACATCCAAG	TCAAGCTCTT	TGGGACCAAG	COSCIDENCE AACATECAAG TEAAGCICTY TOOSACCAAG TOLACTIONAG CICLIOCACA	-				
					2011070	2B (2	orchips 28 (2021)	_		
					LICONE	2	חורדוות			
_	_									

hsKln17-mmKln17	16 10 1997	15 59										ı
	916	820	0 830	840	920	860	870		080	880	900	
nsKin17.seq	ANCTORDECT AMGMAMON AGAMANDAN ATCTOCACTO GATERANTCA TOGROATIVA RENGENANG ANAGNACTO CCCGNACHOA CTACTOGEN	AAAGAAAAGA	AGAAAAAGAA	ATCTOCACTO	GATCARATCA	TOGAGATTGA	AGAGGAAAAG	AAAAGAACT	G CCCGAAC	AGA CTACTG	GCTA .	
mmKin17.seq	CGCCCRGCCT	8	CA AGAAGAAGA CICGGCCTG GATGAGATCA TOGAGCTCGA AGAGGAAAG AAAAGGACCG CACGGACAGA CGCTGGTTA	crececers	GATGAGATCA	TOGAGCTCGA	AGAGGAAAAG	AAAAGGACC	G CACGGAC	AGA COCCTO	GTTA	
	916	920	0 930	0 940	0 950	096 0	970		980	066	1000	
nsKin17.seg	CHOCCTGAA TINTIGIGIA ANTHINGC ANGIANCTEG GAGAGAATA TCATAAGAA AAAGGCTRIT GITAAGGAAG TAATIGACAA AIATACAGC	TATTGTGAA	AATTATAACC	AAGAAACTGG	GAGAGAAATA	TCATAAGAA	AAAGGCTATT	GTTAAGGAA	G TAATTO	ACAA ATATAC	AGCT	
mmKin17.seq	CACCUBGOSA TUCTIVOTGAA AATTATAACG AAGAAGUTTO OQGAGAAATA TUACAAGAAG AAAGOGG TU GITVAAGGAAG TOATTGACAG GTACACAGUT	COTTOTGAA	AATTATAACG	AAGAAGCTTG	GOGAGAAATA	TCACAAGAAG	AAAGOGG TC	GTTAAGGAA	G TOATTO	ACAG GTACAC	AGCT	
	1010	1020	20 1030	30 1040	1050	1060	0 1070		1080	1090	1100	
nsKinl7.seq	CITICIDANCA TOATTUATTE TUGAGACAAG CIGAAACTTO ACCAGACTEA TITAGAGACA GIVATTECAG CACCAGGAAA AAGAATTETA GITTITAAATG	CATTGATTC	TOGAGACAAG	CTGAAACTTG	ACCAGACTICA	TTTAGAGACA	GTAATICCAG	CACCAGGA	A AAGAAT	ICTA GTTTP	NAA'IN	
mKin17.seq	OPOCTRADO TOACTOACTO TOORGACAGO CIGAAACTEG ACCAGACTCA TITHGAGACA GTCAFTCCOG CCCCGGGGAA AAGGGTTCTA GFFFTAAATO	GACTGACTC	TOGAGACAGG	CTGAAACTGG	ACCAGACTCA	TTTAGAGACA	GTCATTCCOG	(00000000	A AAGGGT	ICTA GITTE	VAATG	
	פינונ	1120	20 1130	1140	1150	0911 09	0 1170		1180	1190	1200	Э.
nsKin17.seq	GROCCHACHO AGGAAFTGAA GGTRACCCTAG AATCCATCAA TGAGAGACT TTTTCAGCTA CTATCOTCAT TGAAACTGGC CCTTTAAAAG GAGGCAGAAT	AGGAAATGAA	GGTACCCTAG	AATCCATCAA	TGAGAAGACT	TTTTCAGCTA	CTATEGREAT	TCANACTO	C CCTITA	AAAG GACGCA	GAGT	/ 2 &
nmKin17.seq	GAGGERCAG AGGANTGAA GGCACTCTCG AATCCATCAA TGAGAAGGCT TTTTCAGCCA CGATAGTCAT TGAAACTGGA CCTTTGAAAG GACGCAGAGT	AGGAAATGAA	ogcacteres	AATCCATCAA	TGAGAAGGCT	TTTTCAGCCA	CGATAGTCAT	TCANACTOC	SA COTITIO	AAAG GACGC	AGAGT	
	0121		1220 1230	30 1240	1250	1260	1270		1280	1290	1300	
nsKinl7.seq	TGANGGANTT CANTHTGANG ACAPTICTAA ACTTGCCTGA GTFTGAAANT TTGTTAACAA TACCTTTAAA ATCT TAAAG CATCAAATTG GTGTTCGC	CANTATGAAG	ACATTTCTAA	ACTTGCCTGA	GTTTGAAAAT	TTGTTAACAA	TACCTITAAA	ATCT TAA	AG CATCAA	ATTIG GIGTER	; ;	
mmKin17.seq	ngangghath caanangaag acataathaa acthgchea giftigaaaat thgapaacaa caca ttgaa a ctgtbaag cateaaathg gtettagcea	CAATATGAAC	S ACATATCTAR	ACTTGCTTGA	GTTTGAAAAT	TTGATAACAA	CACA TTGAA	A CTGTGA	AG CATCAA	ATTG CTCTT	NGCCA	
	1310		Et 02(1	1330 1340	1150	1360	1370		1380	1390	1400	
hsKinl7.seq					********	.,			:		i	
mmKin17.seq	AGGENETETIG THACTETINET CTGTTHGGGG AFTTGTTTTG TATTABAAAA AAAAAAATCA TETATTTHAA TACTAGTGAA TAGTTGGGTA AATTTATAAT	TAACTCTAC	r crerragge	ATTIGITETY	TATTABAAAA	ANANANTCA	TCTATTTAAA	TACTAGTG	AA TAGITIG	GCTA AATTE	ATAAT	
	1410		1420 14	1430 14	1440 14	1450 1460		1470	1480	1490	1500	
nsKin17.seg		******	***************************************									
mmKin17.seq	AAAATCTATG	TTTTTT	aaaarctatg tittitttaa otgtaaaaa aaaaaaaa aaaaaaaaa aaaaaaa	A AAAAAAAAA	AAAAAAAA	AAAAA						-
_					FIGU	FIGURE 2B (C	(continued)	_				=

le 06/06/00 15:56 A4 NORM Pg: 7/29 Fax émis par: 33 01 45 62 04 86 09/555529 OBLON ET AL (703) 413-3000 DOCKET #192863450 PCT SHEET 6 OF 28 PCT/FR98/02667 WO 99/29845 6/28 peripheral blood leukocyte skeletal muscle small intestine placenta pancreas kidney prostate testicle brain liver spleen thymus colon ovary Kin-17 β Actin FIGURE 3A

REPLACEMENT SHEET (RULE 26)

OBLON ET AL (703) 413-3000

DOCKET #/928/3/50/PCT_SHEET. 7 & 28

09/55552**9**

PCT/FR98/02667

7/28

В

HL-60 Hela S3

Molt-4 Raji SW480 A 549

Kin-17

β Actin

FIGURE 3B

REPLACEMENT SHEET (RULE 26)

Fax émis par: 33 01 45 62 04 86 ORES

WO 99/29845

ORES le 06/06/00 15:56 A4 NORM Pg: 9/29

OBLON ET AL (703) 413-3000 DOCKET #1928/34/SWPCT_SHEET 8 OF 28

09 / 555529 PCT/FR98/02667

8/28

FIGURE 4A

REPLACEMENT SHEET (RULE 26)

WO 99/29845

ORES le 06/06/00 15:56 A4 NORM Pg: 10/29

OBLON ET AL (703) 413-3000 DOCKET #/92861650PCT_SHEET_9_OF_28

09/555529 PCT/FR98/02667

9/28

FIGURE 4B

REPLACEMENT SHEET (RULE 26)

DOUBLES, DYBACO

PCT/FR98/02667

WO 99/29845

ORES

OBLON ET AL (703) 413-3000

le 06/06/00 15:56 A4 NORM Pg: 12/29

09/555529 PCT/FR98/02667

DOCKET # 19286345 01075HEET 11 OF 28 WO 99/29845

11/28

FIGURE 6A

FIGURE 6B

REPLACEMENT SHEET (RULE 26)

Fax émis par: 33 01 45 62 04 86 ORES le 06/06/00 15:56 A4 NORM Pg: 13/29

OBLON ET AL (703) 413-3000 DOCKET # 192861450 PCT SHEET /2 OF 28 09 / 555529 PCT/FR98/02667

WO 99/29845

FIGURE 7B

FIGURE 7A

REPLACEMENT SHEET (RULE 26)

ORES

le 06/06/00 15:56 A4 NORM Pg: 14/29

WO 99/29845

13/28

PCT/FR98/02667

PIGURE WA

REPLACEMENT SHEET (RULE 26)

Fax émis par: 33 01 45 62 04 86

le 06/06/00 15:56 A4 NORM Pg: 15/29

09/555529

PCT/FR98/02667

WO 99/29845

OBLON ET AL (703) 413-3000 DOCKET #/928630 \$ PC SHEET /4 OF 28

14/28

FIGURE 8B

REPLACEMENT SHEET (RULE 26)

Fax émis par: 33 01 45 62 04 86 ORES 1e 06/06/00 15:56 A4 NORM Pg: 16/29

OBLON ET AL (703) 413-3000 DOCKET # /928/53/50 PC-7SHEET /5 OF 28

09/555529 PCT/FR98/02667

WO 99/29845

Dansasa.ovenso

15/28

-- \$

FIGURE 9

REPLACEMENT SHEET (RULE 26)

Fax émis par: 33 01 45 62 04 86

ORES le 06/06/00 15:56 A4 NORM Pg: 17/29

OBLON ET AL (703) 413-3000 DOCKET # 1928/63/LS 09/45HEBT 16 OF 28 09/555529

PCT/FR98/02667

WO 99/29845

16/28

FIGURE 10A

REPLACEMENT SHEET (RULE 26)

WO 99/29845

ORES

le 06/06/00 15:56 A4 NORM Pg: 18/29 OBLON ET AL (703) 413-3000 DOCKET # 1928/3 USO FT SHEET 17 OF 28

09/555529 PCT/FR98/02667

17/28

Protein expressed	попе	kin17	17	kin∆HR	kin∆CT
		low level	low level high level		
% of cells replicating their DNA.	40	40	0	0	33

FIGURE 10B

DANISSIAS. OPEROD

REPLACEMENT SHEET TRULE 26 Received Time Jun. 6. 10:01AM

OBLON ET AL (703) 413-3000 DOCKET # /92813400 RTSHEET /9 OF 28

/555529

WO 99/29845

19/28

REPLACEMENT SHEET (RULE 26)

ORES 1e 06/06/00 15:56 A4 NORM Pg: 21/29
09/555529
ELON ET AL (703) 413-3000

OBLON ET AL (703) 413-3000 DOCKET #/92963 (60 PCT SHEET, 20 OF 28

WO 99/29845 PCT/FR98/02667

20/28

FIGURE 13A

excupt With

REPLACEMENT SHEET (RULE 26)

ORES le 06/06/00 15:56 A4 NORM Pg: 22/29

OBLON ET AL (703) 413-3000 DOCKET #/728634507CT SHEET 21 OF 28

● û9/5555**29**

WO 99/29845

PCT/FR98/02667

21/28

FIGURE 130

FIGURE 13D

REPLACEMENT SHEET (RULE 26)

09/555529

PCT/FR98/02667 WO 99/29845

REPLACEMENT SHEET (RULE 26)

x504

Fax émis par: 33 01 45 62 04 86 ORES le 06/06/00 15:56 A4 NORM Pg: 24

OBLON ET AL (703) 413-3000 DOCKET #192865 (50) PCTSHEET 23 OF 26 09/555529

PCT/FR98/02667

WO 99/29845

23/26

2000

REPLACEMENT SHEET (RULE 26)

Fax émis par: 33 01 45 62 04 86 ORES le 06/06/00 15:56 A4 NORM Pg: 25/29

> OBLON ET AL (703) 413-3000 DOCKET #1928436608CT SHEET_24OF 28 09/555529

WO 99/29845

PCT/FR98/02667

FIGURE 15

OELON ET AL (703) 413-3000 DOCKET # 192863450897 SHEET 25 OF 36

09/555529

WO 99/29845

PCT/FR98/02667

25 / 28

ORES le 06/06/00 15:56 A4 NORM Pg: 27/29

OBLON ET AL (703) 413-3000 DOCKET # /92863 450 PCT SHEET AL OF & 09/555529

PCT/FR98/02667

WO 99/29845

DOMESTED DEPLOD

26,/28

FIGURE 16 (continued)

OBLON ET AL (703) 413-3000 OBLON ET AL (703) 913-3000

DOCKET #192663/GO PAT SHEET 27 OF 28 09 /555529

WO 99/29845

PCT/FR98/02667

FIGURE 17A

27/28

FIGURE 17B

number of cells 107 106 105 104 day 3 day 5 day 7 day 10

TIME AFTER SEEDING REPLACEMENT SHEET (RULE 26) Received Time Jun. 6. 10:01AM

ax émis par: 33 01 45 62 04 86 ORES le 06/06/00 15:56 A4 NORM Fg: 29/29

OBLON ET AL (703) 413-3000 DOCKET #/92843US OPC/SHEET 28 OF 28

09/555529

WO 99/29845

DOMESTICO, OPERIO

PCT/FR98/0266

28 /28

REPLACEMENT SHEET (RULE 26)

Declaration and Power of Attorney for Patent Application Déclaration et Pouvoirs pour Demande de Brevet French Language Declaration

En tant l'inventeur nommé ci-après, je déclare As a below named inventor, I hereby declare par le présent acte que : Mon domicile, mon adresse postale et ma My residence, post office address and nationalité sont ceux figurant ci-dessous à côté citizenship are as stated next to my name. de mon nom. Je crois être le premier inventeur original et I believe I am the original, first and sole unique (si un seul nom est mentionné ciinventor (if only one name is listed below) or dessous), ou l'un des premiers co-inventeurs an original, first and joint inventor (if plural originaux (si plusieurs noms sont mentionnés names are listed below) of the subject matter ci-dessous) de l'objet revendigué, pour lequel which is claimed an for which a patent is une demande de brevet a été déposée sought on the invention entitled concernant l'invention intitulée Sequences encoding a kin17 protein and uses thereof et dont la description est fournie ci-joint à the specification of which: moins ci-joint is attached hereto. a été déposée le was filed on June 9, 2000 sous le numéro de demande des as United States Application Number Etats-Unis ou le numéro de demande 09/555,529 or PCT International Application international PCT Number (PCT/FR98/02667 filed December 9, 1998) et modifiée le and was amended on (le cas échéant). (if applicable). Je déclare par le présent acte avoir passé en I hereby state that I have reviewed and revue et compris le contenu de la description understand the contents of the above identified ci-dessus, revendications comprises, telles que specification, including the claims, as amended modifiées par toute modification dont il aura by any amendment referred to above. été fait références ci-dessus. reconnais devoir divulguer I acknowledge the duty to disclose information which is material to patentability as defined in information pertinente à la brevetabilité,

Title 37, Code of Federal Regulations, § 1.56.

comme défini dans le Titre 37, § 1.56 du Code

fédéral des réglementations.

French Language Declaration

Le revendique par le présent acie avoir la priorité étrangère, en vertu du Tire 25, 5 119(a)-(d) ou 3 550(b) du Code des Batti-Unis, sur toute demande étrangère de brevet ou certificat d'inventeur ou, en vertu du Tire 55, § 356(s) du même Code, sur toute demande internationale PCT désignant au mons un pays autre que les Etats-Unis et figurant ci-dessous et, en cochant la case, j'ai aussi indiqué ci-dessous toute demande etrangère de brevet, out certificat d'inventeur ou toute demande internationale PCT ayant date de dépôt précédant celle de demande à propos de laquelle une priorité est revendiquée.

Prior Foreign application(s)

Demande(s) de brevet antérieure(s) dans un autre pays.

97 15536	FRANCE
(Number)	(Country)
(Numéro)	(Pays)

(Number) (Country) (Numéro) (Pays)

Je revendique par le présent acte tout bénéfice, en vertu du Titre 35, § 119(e) du Code des Etats-Unis, de toute demande de brevet provisoire effectuée aux Etats-Unis et figurant ci-dessous.

(Application No.) (Filing Date) (N° de demande) (Date de dépôt)

Je revendique par le présent acte tout bénéfice, en vertu du Tirre \$5, \$120 du Code des Etast-Unis, de toute demande de brevet effectuée aux Etast-Unis, ou en vertu du Tirre 35, \$3650 du même Code, de toute demande internationale PCT désignant les Etast-Unis et figurant ci-dessous et, dans la mesure où l'objet de chacane des revendications de cette demande de brevet n'est pas divulgué dans la demande antérieure américaine ou unternationale PCT des dispositions du premier paragraphe du Titre 35, \$112 du code des Etast-Unis, per reconnais devour d'uvilguer toute information permente à la brevetabilité, comme défini dans le Titre 37, \$156 du Codé défidir des réglementations, dont j'i pui disposer entre la date de dépôt de la demande antérieure et la date de dépôt de la demande antérieure et la date de dépôt de la demande antérieure et la date de dépôt de la demande antérieure et la faste de dépôt de la demande antérieure et la fresente demande antérieure et la fresente demande entérieure et la des de depôt de la demande entérieure et la fresente demande entérieure et la des de depôt de la demande entérieure et la des de depôt de la demande entérieure et la des de depôt de la demande entérieure et la des de depôt de la demande entérieure et la des de depôt de la demande entérieure et la des de depôt de la demande entérieure et la des de depôt de la demande entérieure et la des de depôt de la demande entérieure et la des de depôt de la demande entérieure et la des de depôt de la demande entérieure et la des de depôt de la demande entérieure et la des de depôt de la demande entérieure et la des de des des des des des

(Application No.) (Filing Date) (N° de demande) (Date de dépôt)

(Application No.) (Filing Date) (N° de demande) (Date de dépôt)

Je déclare que par le présent acte que toute déclaration d'-incluse ent, à ma commassance, véridique et que toute déclaration formulée à partir de renseignements ou de suppositions est teme pour véridique et de plus, que toutes ces déclarations ont été formulées en aschant que toute fausse déclaration volontaire ou son équivalent est passible d'une amende ou d'une incarération, ou des deux, en vertu de la section 1001 du Titre 18 du Code de Illustrations volontaire ou des deux, en vertu de la section 1001 du Titre 18 du Code de Illustrations volontairement fausses risquent de compromettre la validité de la demande de brevet ou du brevet délivér à partir de celler.

I hereby claim foreign prority under Title 35, United States Code, § 119(a)-(d) or § 565(b) of any foreign application(s) for patent or inventor's certificate, or § 365(a) of any PCT International application which designated at least one country other than the United States, listed below, and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT International application having a filing date before that of the application on which priority is claimed.

Priority claimed

	D	roit de priorité revendiqué
09.12 1997 (Day/Month/Year Filed) (Jour/Mois/Anné de dépêt)	Yes Oui	No Non
(Day/Month/Year Filed) (Jour/Mois/Anné de dépôt)	Yes Oui	No Non

I hereby claim the benefit under Title 35, United States Code, § 119(e) of any United States provisional application(s) listed below.

(Application No.) (Filing Date) (N° de demande) (Date de dépôt)

I hereby claim the benefit under Title 35, United States Code, 8, 20 of any Intries States application (5), or \$ 5650° of any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT international application in the manner provided by the first paragraph of Title 35, United States Code, \$ 112, 1 exhow/bedge the duty to disclose information which is maternal to patentiability as defined in Title 37, Code of Federal Regulations, \$1.56 which became available between the fifting date of the prior application and the national or PCT international filing date of the orths application.

(Status) (patented, pending, abandoned) (Statut) (breveté, en cours d'examen, abandonné)

(Status) (patented, pending, abandoned) (Statut) (breveté, en cours d'examen, abandonné)

I hebery declare that all satements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements are made with the knowledge that willful false statements and the like so made are punishable by fine or impressionment, or both, under Section 11 to 11 to 12 to 12 to 12 to 12 to 13 to 1

French Language Declaration

POUVOIRS: En tant que l'inventeur cité, je désigne par la présente l'(les) avocats(s) et/ou agent(s) suivant(s) pour qu'ils poursuive(n) la procédure de cette demande de brevet et traite(nt) toute affaire s'y rapportant avec l'Office des brevets et des marquees: (mentionner le nom et le numéro d'envesistement). POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to persecute this application and transact all bussiness in the Patent and Trademark Office connected therewith: (list name and ergistration number)

29

DANKUNDO DYNADO

Norman F Oblon, Reg. No. 24,618; Marvin J Spivak, Reg. No. 24,913; C. Irvin McClelland, Reg. No.-24,124; Gregory J. Maier, Reg No. 25,509; Arthur I. Neustadi, Reg. No. 24,824; Richard D. Kelly, Reg. No. 22,737; James D. Hamilton, Reg. No. 28,421; Ickhard H. Kuesters, Reg. No. 28,837; Robort T. Pous, Reg. No. 29,999; Charles I. Gholz, Reg. No. 26,259; William E. Beaumont, Reg. No. 30,996; Jean-Paul Lavalleye, Reg. No.31,451; Stephen G. Baxter, Reg. No. 34,824; Richard L. Treanor, Reg. No.36,379; Stephen P. Weihrocker, Reg. No. 32,529; John T. Golkkarin, Reg. No. 24,612; Richard L. Grim, Reg. No. 34,05; Stephen L. Hipman, Reg. No. 30,011; Carl E. Shlier, Reg. No. 34,426; Jennes J. Kubaski, Reg. No. 34,614; Richard L. Orim, Reg. No. 34,05; Stephen L. Hipman, Reg. No. 30,011; Carl E. Shlier, Reg. No. 34,426; Jennes J. Kubaski, Reg. No. 34,628; Richard A. Neifeld, Reg. No. 35,299; J. Dereck Masson, Reg. No. 35,270; Surinder Sachar Reg. No. 34,626; Villiam Filos, Reg. No. 32,128; Michael E. McCabe, Jr. Reg. No. 37,182; Bradley D. Lytle, Reg. No. 40,073; and Michael R. assy, Reg. No. 40,294, with full powers of subsitution and revocation.

Addresser toute correspondance à :

Send Correspondence to :

OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.
FOURTH FLOOR
1765 BEIERSON DAVIS LIGHWAY

1755 JEFERSON DAVIS HIGHWAY ARLINGTON, VIRGINIA 22202 U.S.A.

Adresser tout appel téléphonique à : (nom et numéro de téléphone) Direct Telephone calls to : (name and telephone number)

(703) 413-3000

0	Nom complete de l'unique ou premier inventeur KANNOUCHE Patricia	Full name of sole or first inventor	
	Signature de l'inventeur Date 28-6-200	Inventor's signature ∞	Date
1	Domicile F 75017 PARIS (France) F R X	Residence	
	Nationalité Française	Citizenship	
	Adresse Postale 95, boulevard Bessières F 75017 PARIS (France)	Post Office Address	
2, 10	Nom complete du second co-inventeur, le cas echcant MAUFFREY Philippe	Full name of second joint inventor, if any	
	Signature de l'inventeur Hauffrut Date 26.6.2000	Second inventor's signature	Date
	Domicile F 94400 Vitry-sur-Seine (France)	Residence	
	Nationalité Française	Citizenship	
	Adresse Postale 40, rue de la Solidarité F – 94400 Vitry-sur-Seine (France)	Post Office Address	

(Fournier les mêmes renseignements et la signature de tout coinventeur supplémentaire.) (Suppply similar information and signature for third and subsequent joint inventors.)

Page 3 of 4

French Language Declaration

	00		
	Nom complete du troisième co-inventeur, le cas échéant PINON-LATAILLADE Ghislaine	Full name of third joint inventor, if any	
	Signature de l'inventeur Date	Third inventor's signature	Date
	ah Iman Ladarlande 26/6/00		
	Domicile F 92210 Saint-Cloud (France) FRX	Residence	
	Nationalité Française	Citizenship	
	Adresse Postale 33 bis, rue du Mont-Valérien F 92210 Saint-Cloud (France)	Post Office Address	
- 12			
00	Nom complete du quatrième co-inventeur, le cas echeant	Full name of fourth joint inventor, if any	
	Signature de l'inventeur Date BIARD Denis Date	Fourth inventor's signature	Date
	Domicile F 94320 Thiais (France) FRX	Residence	
	Nationalité Française	Citizenship	
	Adresse Postale	Post Office Address	
	34, rue Louis Duperrey F 94320 Thiais (France)	Tost Office Address	
OD.	Nom complete du cinquième co-inventeur, le cas echeant	Full name of fifth joint inventor, if any	
	ANGULO MORA Jaima		
	Signature de l'inventeur Date 26 06 00	Fifth inventor's signature	Date
	Domicile F 91470 Cimours (France)	Residence	
	Nationalité Française	Citizenship	
	Adresse Postale 20, avenue Beethoven F 91470 Limours (France)	Post Office Address	
	Nom complete du sixième co-inventeur, le cas echeant	Full name of sixth joint inventor, if any	
	Signature de l'inventeur Date	Sixth inventor's signature	Date
	Domicile	Residence	
	Nationalité	Citizenship	

(Fournier les mêmes renseignements et la signature de tout coinventeur supplémentaire.) (Supply similar information and signature for third and subsequent joint inventors.) $\,$

United States Patent & Trademark Office Office of Initial Patent Examination -- Scanning Division

Application deficiencies were found during scanning:

- ☐ Page(s) were not present for scanning. (Document title)
- □ Page(s) were not present

for scanning. (Document title)

Scanned copy is best available.