

Iris Recognition

Cyrille Baptiste

Outline

- Block Diagram
- CASIA Iris image database
- Eye localization
- Iris Segmentation
- Noise detection
- Comparing iris codes
- Possible improvements

Block Diagram How Iris recognition works

CASIA Iris Image database

Version 1.0

- 756 iris images
- 108 different eyes
- 7 images / eye

CASIA Iris Image database

Version 1.0 320 x 280 pixels

CASIA Iris Image database

Version 2.0

- 2400 iris images
- 60 different eyes
- 2 devices
- 20 images / device / eye

Version 2.0 640 x 480 pixels

Algorithm to localize the eye

- 1. Mean intensity of the image
- 2. Cut off the interest part of the image 285 x 245 pixels (640 x 480)

3. Binarization of the interest part

$$threshold = 0.52 \cdot \frac{1}{size_{image}} \sum Intensity_{pixels}$$

640 x 480

285 x 245

4. Projection in the vertical and horizontal direction

$$X_{p}1 = \arg\min_{x} \left(\sum_{y} I(x, y) \right)$$
$$Y_{p}1 = \arg\min_{y} \left(\sum_{x} I(x, y) \right)$$

5. 90 x 90 pixels cut off image, center is Xp1,Yp1

Second projection in the vertical and horizontal direction

$$X_p 2 = \arg\min_{x} \left(\sum_{y} I(x, y) \right)$$
$$Y_p 2 = \arg\min_{y} \left(\sum_{x} I(x, y) \right)$$

7. Calcul of Xp3, Yp3

$$X_p 3 = 0.5 \cdot (X_p 1 + X_p 2)$$

 $Y_p 3 = 0.5 \cdot (Y_p 1 + Y_p 2)$

8. Binarization of the original image

$$threshold = 0.6 \cdot \left(0.52 \cdot \frac{1}{size_{image}} \sum Intensity_{pixels}\right)$$

9. Find the maximum distance between two minimum (black => intensity = 1), vertical direction at Xp3 for a new approximation of Yp3

9. Suite

This distance will be use... pupil's radius

10. Second pupil's radius approximation

11. Second pupil's radius approximation

$$Pupil's_{Radius} = \max\left(\frac{dist1}{2}, \frac{dist2}{2}\right)$$

12. End... The algorithm return a 300 by 240 pixels image, center (Xp3,Yp3)

12. Suite

Parameters of the pupil

"gradient amplitude"
"gamma modification"
"non-maxima suppression"
"hysteresis thresholding".

Parameters of the Iris

"gradient amplitude"
"gamma modification"
"non-maxima suppression"
"hysteresis thresholding".

Noise detection

Canny edge detection Radon transform

Noise detection

Canny edge detection Radon transform

Noise detection

Eyelashes detection

Phase congruency details in [11]

$$N_{1}(x, y) = PC_{2}(x, y) + W_{1}\left(1 - \frac{f(x, y)}{255}\right) - T_{1}$$

$$N_{1}(x, y) = \begin{cases} >= 0...noise \\ < 0...other \end{cases}$$

White pixels ... mask (noise)

Hamming distance

$$Hd = \frac{(A \oplus B) \otimes \square \ mask}{Nbit_{template} - Nbit_{mask}}$$

Hamming distance of two identical vectors is Zero

Test with 253 templates from 39 different eyes

Eye image n°0033_0xy

Iris image	0033_000	0033_001	0033_002	0033_003	0033_004	0033_005	0033_006	0033_007	0033_008	0033_009
0033_000		0.338	0.365	0.369	0.350	0.382	0.376	0.315	0.313	0.329
0033_001			0.299	0.292	0.339	0.400	0.401	0.248	0.332	0.285
0033_002				0.279	0.348	0.387	0.402	0.295	0.336	0.318
0033_003					0.312	0.369	0.425	0.296	0.357	0.304
0033_004						0.407	0.415	0.328	0.334	0.325
0033_005							0.415	0.406	0.388	0.414
0033_006								0.366	0.353	0.380
0033_007									0.324	0.256
0033_008										0.299

Iris image	0033_010	0033_011	0033_012	0033_013	0033_014	0033_015	0033_016	0033_017	0033_018	0033_019
0033_000	0.412	0.374	0.356	0.363	0.390	0.294	0.329	0.365	0.407	0.424
0033_001	0.340	0.371	0.362	0.331	0.319	0.343	0.388	0.375	0.339	0.360
0033_002	0.331	0.434	0.348	0.329	0.322	0.358	0.395	0.396	0.360	0.387
0033_003	0.343	0.394	0.342	0.323	0.335	0.354	0.388	0.370	0.348	0.371
0033_004	0.341	0.390	0.300	0.327	0.351	0.369	0.390	0.408	0.371	0.400
0033_005	0.416	0.405	0.434	0.437	0.427	0.371	0.372	0.387	0.434	0.441
0033_006	0.448	0.458	0.427	0.409	0.429	0.374	0.406	0.436	0.421	0.436
0033_007	0.333	0.396	0.326	0.292	0.323	0.341	0.373	0.370	0.347	0.375
0033_008	0.413	0.402	0.360	0.352	0.374	0.344	0.401	0.402	0.371	0.368
0033_009	0.365	0.392	0.318	0.287	0.330	0.337	0.381	0.372	0.327	0.356
0033_010		0.397	0.355	0.324	0.323	0.408	0.358	0.355	0.407	0.440
0033_011			0.377	0.383	0.402	0.379	0.370	0.388	0.392	0.401
0033_012				0.286	0.335	0.350	0.377	0.404	0.353	0.387
0033_013					0.278	0.348	0.369	0.355	0.307	0.338
0033_014						0.378	0.395	0.380	0.347	0.379
0033_015							0.343	0.350	0.361	0.395
0033_016								0.324	0.417	0.445
0033_017									0.427	0.453
0033_018										0.279
0033_019										

Possible improvements

- Eye detection, no need to cut off the original image
- o Approximation of the iris radius
- o Size of the template
- o Brightness of the normalized image, effects on results?
- o Noise detection, eyelashes

- [1] J.Daugmann. « How iris recognition works » *IEEE Transactions on Circuits and Systems for Video Technology vol. 14, n° 1,* January 2004
- [2] L. Ma, T. Tan, Y. Wang, D. Zhang. « Efficient Iris Recognition by Characterizing Key Local Variations », *IEEE Transaction on Image Processing*, vol.13, n°6, June 2004
- [3] L. Ma, T.Tan, Y. Wang, D. Zhang. « Personal Identification Based on Iris Texture Analysis », *IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 25, n°12*, December 2003
- [4] Libor Masek, « Recognition of Human Iris Patterns for Biometric Identification », School of Computer and Software Engineering, The University of Western Autralia, 2003
- [5] P.J. Czerwinsk, R. Chellali, V. Fremont, « Ellipse Detection Using Hough Transform », Warsaw University of Technology and Ecole des Mines de Nantes.
- [6] S. Inverso, « Ellipse Detection Using Randomized Hough Transform »,2002

- [7] A. K. Bachoo, J-R. Tapamo, « A Segmentation Method to Improve Iris-based Person Identification », IEEE Africon, 2004
- [8] D. Schonber, D. Kirovski, « Iris Compression for Cryptographically Secure Person Identification », IEEE Proceedings of the Data Compression Conference, 2004
- [9] J.Daugmann. « How iris recognition works » IEEE Transactions on Circuits and Systems for Video Technology vol. 14, n° 1, January 2004
- [10] Y. Du, R. Ives, T. Welch, « A One-Dimensional Approach for Iris Identification », Electrical Engineering Department, US Naval Academy, Dept. Computer Science, Univ. Maryland, Baltimore.
- [11] J. Huang, Y. Wang, T. Tan, J. Cui, « A New Iris Segmentation Method for Recognition », Proceedings of the 17th International Conference on Pattern Recognition, 2004
- [12] Q-C. Tian, Q. Pan, Y-M. Cheng, Q-X. Gao. « Fast Algorithm and Application of Hough Transform in Iris Segmentation », Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, 2004

- [13] C. Sanchez-Avila, R. Sanchez-Reillo. « Two different approaches for iris recognition using Gabor filters and multiscale zero-crossing representation », The Journal of pattern recognition society, 2004
- [14] Li-Ma, Tieniu Tan, Yunhong Wang, Dexin Zhang. « Local intensity variation analysis for iris recognition », The Journal of pattern recognition society, 2004
- [15] Tsuyoshi Kawaguchi, Mohamed Rizon. « Iris detection using intensity and edge information », The Journal of pattern recognition society, 2002
- [16] Wai-Kin Kong, David Zhang. «Detecting eyelash and reflection for accurate iris segmentation », International Journal of Pattern Recognition, 2003
- [17] Peter Kovesi « Phase Congruency Detects Corners and Edges », School of Computer Science & Software Engineering, The University of Western Autralia Crawley, W.A. 2003 Delft University of Technology, 2004

- [18] Qi-Chuan Tian, Quan Pan, Yong-Mei Cheng, Quan-Xue Gao, « Fast Algorithm and application of Hough transform in iris segmentation », Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shangai, 2004
- [19] M. van Ginkel, C.L. Luengo Hendriks, L.J. van Vilet, « A short introduction to the Radon and Hough transforms and how they relate to each other », Quantitative Imaging Group, Imaging Science & Technology Department, Faculty of Applied Science, Delft University of Technology, 2004

- Libor Masek, Peter Kovesi, Iris Recognition, http://www.csse.uwa.edu.au/~pk/studentprojects/libor/index.html
- O Chinese Academy of Sciences (CASIA),
 Center for Biometrics and Security Research
 www.sinobiometrics.com
- o Webpage for John Daugman http://www.cl.cam.ac.uk/users/jgd1000/
- o International Biometric group, Independent Testing of Iris Recognition Technology http://www.biometricgroup.com/reports/public/ITIRT.html

- o Iridiantech, LGIris, Panasonic Iris.
- o Bundesamt für Sicherheit in der Informationstechnik http://www.bsi.de/fachthem/biometrie/projekte/ind ex.htm
- o Iris Recognition Immigration System (IRIS), UK immigration, http://www.ind.homeoffice.gov.uk/ind/en/home/ap plying/iris/introduction_to_iris.html
- UK Passport Service, Biometrics Enrolment trialhttp://www.passport.gov.uk/downloads/UKPS Biometrics_Enrolment_Trial_Report.pdf

Matlab Code

To create an iris template make_template('0001_014.bmp', 1, 1)

The output is **0001_014.bmp-info.mat**This contains two matrixes mask_G and template_G

To show the iris code and the mask load 0001_014.bmp-info.mat

Matlab Code (suite)

```
To compare two iris codes compare_code_one_to_one('0033_005.bmp info.mat','0001_014.bmp-info.mat');
```

```
To compare one iris code to all compare_code_one_to_all('0016_019.bmp info.mat')
```

Questions?

. . . .

If you want more information, e-mail

cyrille.baptiste@epfl.ch or cyrille.baptiste@unisys.ch