4 Lecture 4

Supporting and separating hyperplanes

Why do we need supporting and separating hyperplanes? We need them to characterize vertices. Vertices are important as the set of optimal solutions to a given lpp, if nonempty, always contains a vertex. (We shall see this in the fundamental theorem of linear programming.) These two concepts are very useful.

- [4.1] <u>Definition</u> Let $S \subseteq \mathbb{R}^n$ and $w \in \partial S$ (boundary). A hyperplane H containing w and containing S in one of its closed halfspaces is called a SUPPORTING HYPERPLANE of S at w. (With an appropriate point of view, it would look like as if the set S is lying just above the hyperplane H touching it at w.) For our convenience, for some time, we shall use the nonstandard term H POSITIVELY SUPPORTS S AT w to mean that 'H supports S at S and S at S
- that 'H supports S at w and $S \subseteq H_+$ '. The term H NEGATIVELY SUPPORTS S AT w has a similar meaning. [4.2] Recall Recall that any point of S is either an interior point or a boundary point. If $w \in S^{\circ}$, then it is not possible to have a supporting hyperplane of S at w.!! So, if H supports S at w, then w must be in ∂S .
- [4.3] Example The hyperplane x + y = 1 supports the region $S = \text{conv}(e_1, e_2, e_3) \subseteq \mathbb{R}^3$ negatively at any point on the line segment $[e_1, e_2]$. Can you give a hyperplane that supports S positively at e_3 only?
- [4.4] <u>Fact</u> a) It is easy to see that if $H_i: c_i^t x = \alpha_i$, i = 1, ..., k support S at w positively, and $\lambda_1, ..., \lambda_k > 0$, then $H: (\sum \lambda_i c_i)^t x = (\sum \lambda_i \alpha_i)$ also supports S at w positively.
- b) Thus, if there are two linearly independent hyperplanes supporting S at a, then there are infinitely many hyperplanes supporting S at a.

- b) We say H STRICTLY SEPARATES S and T if S is contained in one open halfspace and T is contained in the other.
- c) We say H STRONGLY SEPARATES S and x, if S is contained in one closed half space and x is contained in the other open halfspace.

[4.6] Examples

1. In \mathbb{R}^2 , the hyperplane $x_1 = 0$ separates $S = \{x \mid x_1 \leq 0\}$ and $T = \{x \mid x_1 \geq 0\}$.

Indeed if, $H: c^t x = \alpha$ supports S positively at a and $B_{\epsilon}(a) \subseteq S$, then $x := a - \frac{c\epsilon}{2\|c\|} \in B_{\epsilon}(a)$. But then $c^t x < \alpha$, a contradiction.

- 2. In \mathbb{R}^2 , the hyperplane $x_1 = 0$ strictly separates the sets $S = \{x \mid x_1 < -1\}$ and $T = \{x \mid x_1 > 0\}$.
- 3. In \mathbb{R}^2 , the hyperplane $x_1 = 0$ strongly separates the set $S = \{x \mid x_1 \leq 0\}$ and the point e_1 .

<u>Theorem</u> (Point of shortest distance) Let $S \subseteq \mathbb{R}^n$ be a nonempty, closed and convex set and $x \notin S$. Then there exists a <u>unique</u> $x_0 \in S$, such that $||x - x_0|| = \min_{z \in S} ||x - z||$.

Proof. The existence of a point x_0 of minimum distance is a routine exercise in calculus. To show the uniqueness, let $x_1 \in S$, $x_1 \neq x_0$ be such that $||x - x_1|| = ||x - x_0||$. Take the midpoint $y = \frac{x_0 + x_1}{2}$ of x_0 and x_1 . Then, as y is a point in S,

$$||x - x_0|| \le ||x - y|| = ||\frac{(x - x_0) + (x - x_1)}{2}|| \le \frac{||x - x_0|| + ||x - x_1||}{2} = ||x - x_0||.$$

So we must have equality in the previous inequality. That is, $\|(x-x_0)+(x-x_1)\| = \|x-x_0\| + \|x-x_1\|$. Hence $x - x_0 = \lambda(x - x_1)$, for some $\lambda \ge 0$. But as $||x - x_0|| = ||x - x_1|| \ne 0$, we get $\lambda = 1$. So $x_0 = x_1$.

[4.8]Exercise+ (Geometric proof to the uniqueness of x_0 in [4.7] using angles) Let $S\subseteq$ \mathbb{R}^n be a closed convex set, $x \notin S$ and $x_0 \in S$ be a point of minimum distance. Let $y \in S$, $y \neq x_0$. Then show that $\langle x_0 - x, y - x_0 \rangle \ge 0$. That is, the angle between $x_0 - x$ and $y - x_0$, is at most 90°. Now use it to prove to the uniqueness of x_0 in [4.7].

[4.9]exists a hyperplane H which strictly separates x and S.

Proof. Let $x_0 \in S$ be closest to x. Put $c = x_0 - x$, $m = \frac{x + x_0}{2}$, and $\alpha = \langle c, m \rangle$. Define $H : c^t y = \alpha$. We have $\langle c, x_0 - m \rangle > 0$ as $x_0 - m = \frac{c}{2} \neq 0$. Thus $\langle c, x_0 \rangle > \langle c, m \rangle = \alpha$. Similarly, $\langle c, m \rangle > \langle c, x \rangle$.

Let $y \in S$. By [4.8], $\langle x_0 - x, y - x_0 \rangle \ge 0$. That is, $c^t(y - x_0) \ge 0$ or $c^t y \ge c^t x_0 > \alpha$.

Theorem (Strong separation by a supporting hyperplane) Let S be nonempty, closed, con-[4.10]vex and $x \notin S$. Then there exists a supporting hyperplane of S which separates S and x strongly."

Lemma (Supporting hyperplane of a cone) Every supporting hyperplane of a nonempty closed [4.11]convex cone is linear."

[4.12]<u>Facts</u> (Some properties of convex sets)

- 1. Let $n \ge 2$ and take $0 < \epsilon < n^{-2}$. Select 2n points x_1, \dots, x_n and y_1, \dots, y_n such that $||x_i e_i|| \le \epsilon$ and $||y_i + e_i|| \le \epsilon$. Geometrically, these are 2n points one of which is close to $\pm e_i$'s. Then 0 is an interior point of $P = \mathsf{conv}(x_1, \dots, x_n, y_1, \dots, y_n)$.
- 2. If $S \subseteq \mathbb{R}^n$ is convex and $B_{\epsilon}(y) \subseteq \overline{S}$, then $B_{\epsilon}(y) \subseteq S$.!! (Use previous item.) Hence, if $a \in \partial S$, then $a \in \partial S$.
 - 3. Let $S \subseteq \mathbb{R}^n$ and $y \in \partial S$. Then by definition each $B_{\epsilon}(y)$ will contain a point of S^c and hence there exists a sequence $y_n \in S^c$ such that $y_n \to y$.
 - \circ But there may not exist a sequence y_n outside \overline{S} such that $y_n \to y$. See for example, \mathbb{Q} .
 - \circ However, if in addition S is given convex, then there exists a sequence $y_n \notin \overline{S}$ such that $y_n \to y$.

The following is a very important, useful and fundamental result.

 $\underline{\text{Theorem}}$ (Existence of a supporting hyperplane at any boundary point) Let S be con-[4.13]vex and $y \in \partial S$. Then there is a supporting hyperplane of S at y.

Consider the coordinate of c of the largest magnitude. Say it is c_1 . Clearly, $c_1 \neq 0$. Assume first that $c_1 < 0$. Then consider the point x_1 . We are supposed to have $c^t x_1 \geq 0$. However, $|c_2 x_2 + \ldots + c_n x_n| \leq |c_1| \frac{n-1}{n^2}$ and $|c_1 x_1| > |c_1| \frac{n^2-1}{n^2}$. Hence $c^t x_1$ must be negative, a contradiction.

Next, if c_1 is positive, then work with $c^t y_1$ to get a contradiction.

⁸ Proof. Note that $y \in \partial \overline{S}$. So we will find a supporting hyperplane to \overline{S} at y and that will serve as a supporting hyperplane to S at y. In view of this, we assume S is closed and $y \in \partial S$. As y is a boundary point, let (y_n) be a sequence of points in S^c converging to y. Using [4.7], let y'_n be the unique point in S closest to y_n . We know that $y_n \neq y'_n$. Put $c_n = \frac{y'_n - y_n}{\|y'_n - y_n\|}$ and $\alpha_n = c_n^t y_n'$. Then the hyperplane $H_n : c_n^t z = \alpha_n$ supports S at y_n' positively. That is,

$$c_n^t x \ge \alpha_n, \quad \forall x \in S, \text{ where } \quad c_n = \frac{y_n' - y_n}{\|y_n' - y_n\|} \quad \text{and} \quad \alpha_n = c_n^t y_n'.$$
 (2)

As the closed unit ball in \mathbb{R}^n is compact, we will have a convergent subsequence of (c_n) , say, $c_{n_k} \to c$. From the beginning, we could have considered the corresponding subsequence of (y_{n_k}) . In view of that, we call assume that $c_n \to c$. As $\|\cdot\|$ is continuous function, it follows that ||c|| = 1. Note that as $||y_n - y_n'|| \le ||y_n - y|| \to 0$. This means, $y_n' \to y$. Hence $c_n^t y_n' \to c^{\tilde{t}} y = \alpha$ (say). As $c_n^t x \ge \alpha_n$ for each $x \in S$, we see that $c^t x \ge \alpha$ for each $x \in S$. That is, $H = \{z \mid c^t z = \alpha\}$ passes through y and contains $S \text{ in } H_+.$

25

⁷Proof. If $0 \notin P^{\circ}$, then either $0 \notin P$ or $0 \in \partial P$. In case $0 \notin P$, there is a hyperplane $H: c^{t}x = 0$ which keeps P in one half space, say in H_+ . In case $0 \in \partial P$, we see by [3.54] that $0 \in \partial \operatorname{cone}(P)$ and hence $\operatorname{cone}(P) \neq \mathbb{R}^n$. So, there is a point outside. Hence we have a supporting hyperplane H of cone(P) such that $cone(P) \subseteq H_+$. But then H must be a linear hyperplane. As $0 \in \partial P$, this hyperplane H is supporting P. So, in this case also, we have a hyperplane $H: c^t x = 0$ which keeps P in H_+ .

The previous results leads us to a very useful technique.

[4.14] <u>Lemma</u> (Useful technique) Let $S \subseteq \mathbb{R}^n$ be convex and $H = \{z \mid c^t z = \alpha\}$ be a supporting \checkmark hyperplane of S. Put $T = S \cap H$. Then each vertex of T is also a vertex of S.

Proof. Let v be a vertex of T. Suppose that it is not a vertex of S. So $\exists x, y \in S, x \neq y$, and $\lambda \in (0,1)$ such that $v = \lambda x + (1 - \lambda)y$. Assume, without loss, that $S \subseteq H_+$. We have

$$\alpha = c^t v = \lambda c^t x + (1 - \lambda)c^t y \ge \lambda \alpha + (1 - \lambda)\alpha = \alpha.$$

So we must have $c^t x = \alpha = c^t y$. Thus $x, y \in H$ and so v cannot be a vertex of T.

[4.15] Example

- 1. This tells us that each point on the boundary of a closed circular disc C is a vertex. (Just take a tangent hyperplane H at a boundary point v. Then $H \cap C = \{v\}$. So v is a vertex of $H \cap C$. So v is a vertex of C.) Of course, we already knew this.
- 2. It also tells us that $0, e_1, e_2, e_1 + e_2$ are the vertices of our favorite set.

[4.16] <u>Fact</u> Let $S \subseteq \mathbb{R}^n$ be a nonempty compact set. Then $\partial S \neq \emptyset$. (This follows from definition. You can give a more geometrical proof if S is given convex.)!!

[4.17] Theorem A nonempty compact convex set in \mathbb{R}^n has a vertex.

Proof. Use induction on n. For n=1, the statement is trivial. Assume the statement $\forall n < m$. Let S be a nonempty compact convex subset of \mathbb{R}^m . Then $\partial S \neq \emptyset$. Let $p \in \partial S$ and H a supporting hyperplane of S at p. Then $H \cap S$ may be seen as a nonempty compact convex set in \mathbb{R}^{m-1} . By induction hypothesis, $H \cap S$ has a vertex w. By [4.14], w is a vertex of S.