0.1 R3 数学選択

 $\boxed{\mathbf{A}}$ $(1)\varphi\colon k[x,y]\to k; x\mapsto a,y\mapsto b$ とする. φ は全射環準同型である. $\ker\varphi\supset (x-a,y-b)$ である. $f\in\ker\varphi$ とする. $f(x,y)=(x-a)g(x,y)+(y-b)h(y)+c\quad (g\in k[x,y],h\in k[y],c\in k)$ とできる. $\varphi(f)=0$ より c=0 である. よって $\ker\varphi=(x-a,y-b)$ である.

すなわち $k[x,y]/(x-a,y-b) \cong k$ である. k は体であるから (x-a,y-b) は極大イデアルである.

 $(2)x^2+y^2-1\in (x-a,y-b)$ なら $\varphi(x^2+y^2-1)=0$ より $a^2+b^2=1$ である. $a^2+b^2-1=0$ なら $\varphi(x^2+y^2-1)=0$ より $x^2+y^2-1\in (x-a,y-b)$ である.

(3)J を $I=(xy,x^2+y^2-1)$ を含む極大イデアルとする. $(x+J)(y+J)=0\in k[x,y]/J$ より x+J=0 または y+J=0 である. すなわち $x\in J$ または $y\in J$ である.

 $x \in J$ なら $y^2-1 \in J$ であるから $y-1 \in J$ または $y+1 \in J$ である.ここで $\langle x,y-1 \rangle \subset J$ とすると,左辺 は極大イデアルであるから $J = \langle x,y-1 \rangle$ である.

同様にして J の候補は $\langle x, y+1 \rangle$, $\langle x, y-1 \rangle$, $\langle x+1, y \rangle$, $\langle x-1, y \rangle$ でつくされるとわかる.

 $\boxed{\textbf{B}}\ (1)(\alpha-\omega)^3=5\ \mbox{$\rlap{$\downarrow$}$}\ \ 0\ \alpha^3-3\alpha^2\omega+3\alpha\omega^2-1=5\ \mbox{$\Large{$\tau$}$}\ \mbox{$\Large{$\delta$}$}.\ \ \omega^2=-1-\omega\ \mbox{$\rlap{$\downarrow$}$}\ \ 0\ \ 6-\alpha^3+3\alpha=\omega(-3\alpha^2-3\alpha)$ である. $\alpha\neq 0, \alpha\neq -1\ \mbox{$\rlap{$\downarrow$}$}\ \ 0\ \ \omega=\frac{\alpha^3-3\alpha-6}{3\alpha^2+3\alpha}\ \mbox{$\Large{$\xi$}$}\ \mbox{$\rlap{$\xi$}$}\ \mbox{$\Large{\xi$}$}\ \mbox{$\Large{\omega$}$}\ \mbox{$\Large{\xi$}$}\ \mbox{$

 $\omega \in F$ より $\alpha - \omega = \sqrt[3]{5} \in F$ である. よって $\sqrt[3]{5}\omega \in F$ であるから, $F \supset L$ である.

(2)(1) より $F=\mathbb{Q}(\omega,\sqrt[3]{5}\omega)=L(\omega)$ である。 $\omega\in L$ なら L/M となる。 L/\mathbb{Q} の拡大次数は x^3-5 が最小多項式となるため 3 である。 M/\mathbb{Q} の拡大次数は x^2+x+1 が最小多項式となるため 2 である。これは $[L:\mathbb{Q}]=[L:M][M:\mathbb{Q}]$ に矛盾。したがって $\omega\notin L$ である。よって [F:L]=2 であるから $[F:\mathbb{Q}]=[F:L][L:\mathbb{Q}]=6$ である。

 $(3)(\alpha-\omega)^3=5$ より $p(x)=x^3-3\omega x^2+3x\omega^2-6$ は α を根にもつ。 [F:M]=3 であるから α の M 上最小多項式は 3 次である。よって p(x) が最小多項式.

 $(4)F=\mathbb{Q}(\sqrt[3]{5},\omega)$ である. $\sqrt[3]{5},\omega$ の \mathbb{Q} 上共役は全て F に属すから F/\mathbb{Q} は Galois 拡大である. したがって F/L, F/M は Galois 拡大である. また M/\mathbb{Q} は Galois 拡大で L/\mathbb{Q} は Galois 拡大でない.

 $(5)\alpha^3 = 5 + 3\sqrt[3]{5}\omega + 3\sqrt[3]{5}\omega^2 + 1$ である. $\sqrt[3]{5}\omega = \beta$ とすれば $R(x) = x^3 - 3\beta x - 6$ が L 上の α を根にもつ多項式である. F/L の拡大次数が 2 であるから,R は既約でないため R は L に根を持つはずである. $(x^3 - 3\beta x - 6) = (x - \alpha)(x^2 + \alpha x + \alpha^2 - 3\beta)$ である. よって $\frac{-\alpha \pm \sqrt{\alpha^2 - 4(\alpha^2 - 3\beta)}}{2} = \frac{-\alpha \pm \sqrt{-3}\sqrt{\alpha^2 - 4\beta}}{2}$ である. $\alpha^2 - 4\beta = \sqrt[3]{5}^2 - 2\beta + \omega^2 = (\sqrt[3]{5} - \omega)^2$ より $\frac{-(\sqrt[3]{5} + \omega) \pm (2\omega + 1)(\sqrt[3]{5} - \omega)}{2}$ である. ここで + のときは $\beta + 1$ となる. よって $x^3 - 3\beta x - 6 = (x - (\beta + 1))(x^2 + (\beta + 1)x + \beta^2 - \beta + 1)$ であるから $Q(x) = x^2 + (\beta + 1)x + \beta^2 - \beta + 1$ である.