

Estimation a posteriori

rapport scéance 5

Victor Baleux 12 octobre 2025

Table des matières

1	Ana	alyse point millieu	2
	1.1	Objectif du TP	2
	1.2	Problème modèle et solution fabriquée	2
	1.3	Discrétisation numérique	2
	1.4	Description rapide du code	3
	1.5	Résultats numériques	4
		1.5.1 Erreur en fonction de h à $T/2$ et T (RK4)	4
		1.5.2 Évolution de l'erreur au milieu du domaine, RK1RK4	5
	1.6	Conclusion	5
2	Forçage temporel, résidu instationnaire et adaptation de maillage		6
	2.1	Modèle modifié et résidu non nul	6
	2.2	Principe du code adrs_multiple_mesh_adap_time_source.py	6
	2.3	Figures et commentaires	7
	2.4	Conclusion de la partie 2	9
	2.5	Sensibilité du critère de courbure et apparition d'oscillations numériques .	9
A	Ext	rait de code	12

Chapitre 1

Analyse point millieu

1.1 Objectif du TP

Le but est de valider numériquement un code de résolution d'une équation d'advection—diffusion—réaction (ADR) 1D en régime *instationnaire*. Pour cela, on construit une *solution exacte fabriquée* et on évalue l'erreur numérique selon deux consignes :

- Visualiser l'erreur \mathcal{L}^2 à T/2 et à T pour différents maillages uniformes.
- Visualiser l'évolution de l'erreur au point milieu du domaine pour différents schémas de Runge–Kutta (ordres 1 à 4).

1.2 Problème modèle et solution fabriquée

On considère le problème ADR sur le segment [0, L] avec L = 1,

$$\partial_t u + V \, \partial_x u - K \, \partial_{xx} u + \lambda \, u = f(x, t), \qquad u(0, t) = u(L, t) = 0, \qquad u(x, 0) = 0, \quad (1.1)$$

où V=1 (convection), K=0,1 (diffusion) et $\lambda=1$ (réaction). Le code choisit une solution exacte *instationnaire* de la forme

$$u_{\rm ex}(x,t) = \sin(4\pi t) \left[\left(e^{-1000((x-L/3)/L)^2} + e^{-10 e^{-1000((x-L/3)/L)^2}} \right) \sin\left(\frac{5\pi x}{L}\right) \right], \tag{1.2}$$

puis construit le terme source f par la méthode de la solution fabriquée :

$$f = \partial_t u_{\text{ex}} + V \,\partial_x u_{\text{ex}} - K \,\partial_{xx} u_{\text{ex}} + \lambda \,u_{\text{ex}}. \tag{1.3}$$

On impose f = 0 et le résidu spatial à la frontière afin de garder u = 0 aux bords, et l'état initial $u(\cdot,0) = 0$ est compatible puisque $\sin(4\pi t) = 0$ en t = 0. Ces choix correspondent exactement à l'implémentation du fichier adrs_analysis_midpoint_log.py.

1.3 Discrétisation numérique

Discrétisation en espace

Le domaine est maillé uniformément avec N_X nœuds (h le pas d'espace). Les dérivées spatiales sont approchées par des différences centrées : ordre 2 pour ∂_x et ∂_{xx} (« five-

point » réduit à 3 points en 1D) [?] ; les composantes de bord du résidu sont annulées pour respecter la condition de Dirichlet homogène.

Intégration en temps

Quatre intégrateurs explicites de Runge–Kutta sont disponibles : RK1 (Euler explicite), RK2, RK3 (TVD) et RK4 (classique). Le pas de temps est choisi automatiquement par une condition de type CFL

$$\Delta t = \text{safety} \times \min\left(\frac{h}{|V|}, \frac{h^2}{2K}, \frac{1}{\lambda}\right),$$
 (1.4)

avec un facteur de sécurité 0,8. L'erreur \mathcal{L}^2 est calculée par

$$||e||_{\mathcal{L}^2} \approx \sqrt{\sum_i (u_i - u_{\text{ex}}(x_i, t))^2 h}.$$
 (1.5)

1.4 Description rapide du code

- Paramètres (Params) : V, K, λ, L et temps final T = 1. [?]
- Solution fabriquée exact_u et sa dérivée temporelle exact_ut. [?]
- Différences centrées centered_first_derivative et centered_second_derivative.
 [?]
- Forçage forcing_f pour réaliser u_{ex} solution de l'EDP. [?]
- Opérateur spatial spatial_operator assemble $-Vu_x + Ku_{xx} \lambda u + f$. [?]
- CFL cfl_dt calcule Δt selon h, V, K, λ . [?]
- Intégrateurs RK1..4 step_rk. [?]
- Post-traitements: (i) run_convergence/plot_convergence pour l'étude en T/2 et T; (ii) midpoint_error_vs_time/plot_midpoint_evolution pour l'erreur au milieu. [?]

1.5 Résultats numériques

1.5.1 Erreur en fonction de h à T/2 et T (RK4)

FIGURE 1.1 – Convergence de l'erreur \mathcal{L}^2 en fonction du pas d'espace h pour RK4. La pente mesurée est ≈ 2 à T/2 (ordre 2 en espace) et très élevée à T (ici $\approx 7,4$). Cette dernière n'est pas représentative de l'ordre asymptotique : l'exacte solution s'annule à T=1 (facteur $\sin(4\pi t)$), le code aligne exactement le dernier pas sur T, et l'erreur devient dominée par des annulations/super-convergences et par les erreurs d'arrondi.

Commentaires.

- À T/2, la solution n'est pas exactement nulle au temps atteint numériquement (on prend le premier pas $t \geq T/2$), et l'erreur reflète bien l'ordre 2 des différences centrées, d'où la pente ≈ 2 attendue.
- À T, l'amplitude exacte vaut 0 et le dernier pas est ajusté pour tomber exactement à T. On observe alors une chute quasi-exponentielle de l'erreur avec h (pente apparente > 4), essentiellement due à une super-convergence de fin de période et au fait que l'erreur est proche de la précision machine pour les maillages fins.

1.5.2 Évolution de l'erreur au milieu du domaine, RK1..RK4

FIGURE 1.2 – Évolution temporelle de $|u(x_{\rm mid},t)-u_{\rm ex}(x_{\rm mid},t)|$ en échelle log pour $x_{\rm mid}=0.5$ et pour RK1..RK4. Les minima réguliers correspondent aux instants où $\sin(4\pi t)=0$ (tous les 0.25 s). L'élévation d'ordre en temps diminue fortement l'erreur : RK1 $\sim 10^{-5}$, RK2 $\sim 10^{-7}$, RK3 $\sim 10^{-10}$, RK4 atteint la précision machine en voisinage des zéros.

Commentaires.

- Les creux répétitifs (tous les 0.25 s) sont une conséquence directe du facteur temporel $\sin(4\pi t)$ de la solution fabriquée.
- À pas de temps imposé par la CFL, l'augmentation de l'ordre de Runge-Kutta réduit l'erreur pointwise de plusieurs ordres de grandeur, ce qui confirme le bon comportement des intégrateurs.

1.6 Conclusion

Le code met en place une validation par solution fabriquée d'une EDP ADR 1D instationnaire. Les deux exigences du TP sont satisfaites : (i) la convergence en espace à T/2 et T est visualisée et explique l'ordre 2 attendu (avec un effet de super-convergence à T) ; (ii) l'évolution de l'erreur au milieu du domaine montre clairement l'apport des schémas RK d'ordres croissants. Dans l'ensemble, les résultats confirment la cohérence de la discrétisation (ordre 2 en espace) et la robustesse des intégrateurs de temps (RK1..4).

Chapitre 2

Forçage temporel, résidu instationnaire et adaptation de maillage

Motivation et consignes

Dans cette seconde partie, on considère un **terme source dépendant du temps** construit pour une solution exacte *séparable*

$$u_{\text{ex}}(x,t) = u(t) v(x), \qquad u(t) = \sin(4\pi t).$$

On vérifie les points suivants : (i) modifier l'EDP avec ce terme source, (ii) montrer que le **résidu ne converge pas vers** 0 car le problème reste instationnaire, (iii) **visualiser la solution** à différents instants sur [0,1] pour $t \leq 1$ s, (iv) introduire un **critère d'arrêt mixte** (nombre de points du maillage et erreur \mathcal{L}^2), (v) comparer l'adaptation stationnaire (métrique basée sur la solution finale) et l'adaptation instationnaire (moyenne temporelle des métriques sur [0, Time]).

2.1 Modèle modifié et résidu non nul

En posant $u_{\rm ex}(x,t) = u(t)v(x)$ et en prenant

$$f(x,t) = u'(t) v(x) + u(t) (V v'(x) - K v''(x) + \lambda v(x)),$$

on a bien $\partial_t u_{\rm ex} + V \partial_x u_{\rm ex} - K \partial_{xx} u_{\rm ex} + \lambda u_{\rm ex} = f$. Comme $u(t) = \sin(4\pi t)$, on obtient $u'(t) v(x) = 4\pi \cos(4\pi t) v(x)$. Le résidu instantané (la somme des modules du second membre dans l'intégrateur explicite) **reste périodique** et **ne peut pas tendre vers** 0 : même si l'approximation suit $u_{\rm ex}$, le forçage $\propto \cos(4\pi t)$ ne disparaît pas (sauf aux zéros de cos).

2.2 Principe du code adrs_multiple_mesh_adap_time_source.py

Le code implémente l'EDP ADR 1D sur [0, 1] avec schéma **Euler explicite** et **maillage non uniforme** adaptatif. Les éléments clés sont :

- Solution exacte séparable u(t)v(x) et forçage f(x,t) correspondants (u_time, du_time, v_profile).
- **Dérivées sur maillage non uniforme** centrées (ordre 1 pour u_x , formule dérivée pour u_{xx}).
- Pas de temps CFL basé sur diffusion et advection locales.
- **Résidu** $\sum |RHS|$ stocké à chaque pas pour visualiser l'instationnarité.
- **Snapshots** de u(x,t) à $t \in \{0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0\}$ et calcul de l'erreur \mathcal{L}^2 finale à t = Time.
- Métrique stationnaire : basée sur $|u_{xx}(x, t = \text{Time})|/\text{err_curv}$, tronquée entre h_{\min} et h_{\max} .
- Métrique instationnaire : moyenne temporelle des métriques nodales sur un maillage de fond, équivalente au principe d'intersection des métriques en 1D.
- Reconstruction du maillage à partir des longueurs locales désirées $h(x) = 1/\sqrt{\text{métrique}}$.

Critère d'arrêt mixte. On ne s'arrête que si deux conditions sont simultanément satisfaites : (i) NX_new \geq NX_min_required et (ii) erreur $\mathcal{L}^2 \leq$ L2_tol. À défaut, on reconstruit le maillage et on relance la simulation, avec un maximum de niter_refinement_max itérations.

2.3 Figures et commentaires

FIGURE 2.1 – Résidu en fonction du temps. Il **ne décroît pas vers 0** à cause du **forçage périodique** $u'(t)v(x) = 4\pi\cos(4\pi t)v(x)$. Les minima se produisent près des zéros de $\cos(4\pi t)$ ($t \approx 0.125, 0.375, 0.625, 0.875$).

FIGURE 2.2 – Profils u(x,t) à différents instants pour Time = 1s. La courbe u_ex(x,1.0s) est nulle (car $\sin(4\pi) = 0$) et sert de référence. On observe des changements de signe compatibles avec $u(t) = \sin(4\pi t)$ et une localisation spatiale pilotée par v(x) (pics gaussiens).

FIGURE 2.3 – Longueurs locales désirées h(x). La **métrique stationnaire** (bleu), basée sur l'état final uniquement, présente des pics et des oscillations locales; la **métrique moyenne en temps** (orange) est plus *régulière* et *robuste* pour capturer des structures qui se déplacent dans le temps.

2.4 Conclusion de la partie 2

Le problème avec forçage temporel valide que le **résidu ne peut pas converger vers** $\mathbf{0}$ en régime instationnaire. L'algorithme d'adaptation itérative avec critère d'arrêt **mixte** garantit un contrôle simultané de la taille du maillage et de l'erreur \mathcal{L}^2 . Enfin, l'adaptation instationnaire par *moyenne temporelle* de la métrique (principe d'intersection) fournit un maillage plus pertinent que l'approche strictement stationnaire.

2.5 Sensibilité du critère de courbure et apparition d'oscillations numériques

Contexte. En changeant uniquement la ligne err_curv = 0.013 en err_curv = 0.01298, la métrique d'adaptation devient plus exigeante $(M \propto |u_{xx}|/\text{err}_\text{curv})$ donc les longueurs locales cibles $h(x) \sim 1/\sqrt{M}$ diminuent. Dans notre configuration, cette réduction sature la borne inférieure h_{\min} presque partout. Le pas de temps Δt est ensuite choisi via une CFL simplifiée $\Delta t \leq \text{safety min}\{h/|V|, h^2/(2K), 1/\lambda\}$, adéquate sur maillage uniforme mais souvent trop optimiste sur maillage fortement non uniforme. Il en résulte des oscillations spurielles et, en fin de simulation, un emballement numérique.

FIGURE 2.4 – Longueurs locales désirées : la métrique stationnaire (bleu) est clippée à $h_{\min} \approx 5 \times 10^{-3}$ sur tout le domaine, signe d'une demande de raffinement "à la limite". La métrique moyennée en temps (orange) reste très proche de h_{\min} avec de légères ondulations, ce qui induit de forts contrastes de pas entre cellules voisines.

D'où viennent les oscillations? Deux mécanismes se superposent :

- 1. Stabilité diffusion/advection sur maillage non uniforme. La borne $\Delta t \propto h_{\min}^2$ est insuffisante lorsque des cellules très petites sont adjacentes à des plus grandes : le pas de temps stable dépend des rapports h_{i+1}/h_i (borne plus restrictive que sur maillage uniforme). Dans ce cas, Euler explicite + différences centrées devient trop peu dissipatif \Rightarrow oscillations de type dispersion/Nyquist.
- 2. Forçage périodique non amorti à t=1 s. Le terme source contient $u'(t)v(x)=4\pi\cos(4\pi t)v(x)$, non nul à t=1 s : les erreurs résiduelles peuvent être amplifiées par le couplage advection + maillage très fin à pas de temps trop grand.

FIGURE 2.5 – Résidu vs temps avec err_curv=0.01298. Après une phase calme, on observe une explosion du résidu près de t=1 s, typique d'une instabilité temporelle sur maillage fortement gradué. L'échelle ($\sim 10^{78}$) traduit un emballement numérique, pas une propriété physique.

Conséquence sur l'erreur \mathcal{L}^2 . Les oscillations spurielles dominent la norme \mathcal{L}^2 : on ne peut pas la réduire en abaissant h puisque l'instabilité apparaît avant d'atteindre le régime asymptotique; de plus le maillage est déjà coincé à h_{\min} .

Pistes de remédiation (pratiques)

— Pas de temps plus strict et/ou adaptatif. Diminuer la safety (p. ex. 0.2) et utiliser une borne locale tenant compte des rapports h_{i+1}/h_i ; option simple : limiter la variation gradation $h_{i+1}/h_i \le r_{\max}$ (p. ex. $r_{\max} = 1.2$) et lisser la métrique avant reconstruction.

FIGURE 2.6 – Profils u(x,t) à plusieurs instants. De fortes **ondulations haute fréquence** apparaissent et croissent en amplitude vers la fin (t=1 s), alors que la solution exacte en t=1 est nulle. Ces oscillations dispersives sont cohérentes avec un schéma centré explicitement contraint sur un maillage très raffiné et peu amortissant.

- Schéma en advection plus diffusif/robuste. Remplacer le centrage pur par un flux upwind/Rusanov (Lax-Friedrichs) ou ajouter une petite viscosité artificielle (type Kreiss-Oliger). Utiliser un RK SSP (TVD) d'ordre ≥ 2 .
- Traitement implicite de la diffusion/réaction. Passer à un schéma IMEX (advection explicite, diffusion/réaction implicites) ou Crank-Nicolson pour supprimer la contrainte $\Delta t \propto h^2$.
- Ne pas saturer h_{\min} . Relever h_{\min} ou desserrer err_curv (revenir à 0.013) de sorte que le maillage ne touche pas la borne, et imposer une cible sur le nombre de points et l'erreur \mathcal{L}^2 (critère d'arrêt mixte déjà en place).

En pratique, une combinaison "gradation + lissage de métrique + CFL local plus strict + flux upwind" suffit le plus souvent à supprimer les oscillations et à récupérer une décroissance régulière de l'erreur \mathcal{L}^2 .

Annexe A

Extrait de code

Pour référence, on peut inclure le script principal :

```
2 import numpy as np
3 import math
 4 import matplotlib.pyplot as plt
 5 from dataclasses import dataclass
 8 # Paramètres du problème
10 @dataclass
11 class Params:
      V: float = 1.0 # vitesse de convection
       K: float = 0.1 # diffusion
13
      lam: float = 1.0 # réaction
      L: float = 1.0 # longueur du domaine [0,L]
      Time: float = 1.0 # temps final
18 # Solution exacte utilisée pour construire f
19 def exact_u(x, t):
      L = 1.0
20
21
      v_{env} = np.exp(-1000*((x - L/3.0)/L)**2)
      v = (v_{env} + np.exp(-10*v_{env})) * np.sin(5*np.pi*x/L)
22
      return np.sin(4*np.pi*t) * v
23
25 def exact_ut(x, t):
      L = 1.0
26
       v_{env} = np.exp(-1000*((x - L/3.0)/L)**2)
27
       v = (v_{env} + np.exp(-10*v_{env})) * np.sin(5*np.pi*x/L)
       return 4*np.pi*np.cos(4*np.pi*t) * v
29
31 # Dérivées spatiales centrées
32 def centered_first_derivative(u, dx):
       ux = np.zeros_like(u)
33
      ux[1:-1] = (u[2:] - u[:-2]) / (2*dx)
34
      return ux
37 def centered_second_derivative(u, dx):
   uxx = np.zeros_like(u)
     uxx[1:-1] = (u[:-2] - 2*u[1:-1] + u[2:]) / (dx*dx)
40
```

```
41
   # Terme source
   def forcing_f(x, t, p: Params):
43
        u = exact_u(x, t)
44
        ut = exact_ut(x, t)
45
        dx = x[1] - x[0]
46
        ux = centered_first_derivative(u, dx)
47
        uxx = centered_second_derivative(u, dx)
48
        f = ut + p.V*ux - p.K*uxx + p.lam*u
49
        f[0] = 0.0
        f[-1] = 0.0
51
        return f
52
53
54
   # Opérateur spatial
55
   def spatial_operator(T, x, t, p: Params):
        dx = x[1]-x[0]
56
        Tx = centered_first_derivative(T, dx)
57
        Txx = centered_second_derivative(T, dx)
58
59
        rhs = -p.V*Tx + p.K*Txx - p.lam*T + forcing_f(x, t, p)
        rhs[0] = 0.0
60
        rhs[-1] = 0.0
61
        return rhs
62
   \# Condition CFL pour le pas de temps
64
   def cfl_dt(x, p: Params, safety=0.9):
        dx = x[1] - x[0]
66
        choices = []
67
        if p.V != 0:
68
69
            choices.append(dx/abs(p.V))
        if p.K > 0:
70
            choices.append(dx*dx/(2*p.K))
71
        choices.append(1.0/max(p.lam, 1e-12))
72
73
        return safety * min(choices)
74
   # Runge-Kutta d'ordre 1 à 4
75
   def step_rk(T, t, dt, x, p: Params, order=4):
        if order == 1:
77
            k1 = spatial_operator(T, x, t, p)
78
            return T + dt * k1
79
        elif order == 2:
80
            k1 = spatial_operator(T, x, t, p)
81
            k2 = spatial\_operator(T + 0.5*dt*k1, x, t + 0.5*dt, p)
82
            return T + dt * k2
83
        elif order == 3:
84
            k1 = spatial_operator(T, x, t, p)
85
            T1 = T + dt*k1
86
            k2 = spatial_operator(T1, x, t + dt, p)
87
            T2 = 0.75*T + 0.25*(T1 + dt*k2)
            k3 = spatial\_operator(T2, x, t + 0.5*dt, p)
89
            return (1.0/3.0)*T + (2.0/3.0)*(T2 + dt*k3)
90
        elif order == 4:
91
            k1 = spatial_operator(T, x, t, p)
92
            k2 = spatial\_operator(T + 0.5*dt*k1, x, t + 0.5*dt, p)
93
            k3 = spatial\_operator(T + 0.5*dt*k2, x, t + 0.5*dt, p)
94
            k4 = spatial_operator(T + dt*k3, x, t + dt, p)
96
            return T + (dt/6.0)*(k1 + 2*k2 + 2*k3 + k4)
97
            raise ValueError("order must be 1, 2, 3, or 4.")
98
```

```
99
00 # Erreur L2
def 12_error(T, Tex, dx):
       return math.sqrt(np.sum((T - Tex)**2) * dx)
102
103
04
   # 1) Erreur à T/2 et T pour différents maillages
05
   # -----
106
def run_convergence(order=4):
       mesh\_list = list(range(10, 101, 10))
108
       p = Params()
109
       err_half, err_final, h_list = [], [], []
10
11
       for NX in mesh_list:
12
           x = np.linspace(0.0, p.L, NX)
           h = x[1]-x[0]
13
           T = np.zeros_like(x)
14
           t = 0.0
15
           dt = cfl_dt(x, p, safety=0.8)
16
17
           half_time = 0.5 * p.Time
           half_recorded = False
18
           while t < p.Time - 1e-14:
19
               if t + dt > p.Time:
20
                   dt = p.Time - t
21
               T = step_rk(T, t, dt, x, p, order=order)
22
23
               t += dt
               if (not half_recorded) and t >= half_time:
124
                   Tex_half = exact_u(x, half_time)
125
                   err_half.append(12_error(T, Tex_half, h))
26
27
                   half_recorded = True
           Tex_T = exact_u(x, p.Time)
28
           err_final.append(12_error(T, Tex_T, h))
29
           h_list.append(h)
131
       return np.array(h_list), np.array(err_half), np.array(err_final)
32
   def plot_convergence(order=4):
33
       h, E_half, E_T = run_convergence(order=order)
34
       coef_half = np.polyfit(np.log(h), np.log(E_half + 1e-30), 1)
35
       coef_T = np.polyfit(np.log(E_T + 1e-30), np.log(E_T + 1e-30), 1) # keep same
36
       behavior as before
       # Fix potential mistake: slope should be computed vs log(h)
37
       coef_T = np.polyfit(np.log(h), np.log(E_T + 1e-30), 1)
38
       p_half, p_T = coef_half[0], coef_T[0]
39
       print(f"[Convergence] RK{order}: slope at T/2 = {p_half:.3f}")
40
       print(f"[Convergence] RK{order}: slope at T = {p_T:.3f}")
41
42
43
       plt.figure()
       plt.loglog(h, E_half, 'o-', label=f"T/2 (pente ~ {p_half:.2f})")
44
       plt.loglog(h, E_T, 's-', label=f"T (pente ~ {p_T:.2f})")
       plt.gca().invert_xaxis()
46
       plt.xlabel("h")
47
       plt.ylabel("Erreur L2")
48
       plt.title(f"Erreur vs h à T/2 et T (RK{order})")
49
50
       plt.legend()
       plt.tight_layout()
51
       plt.savefig("convergence_RK4_vs_h.png", dpi=150, bbox_inches="tight")
52
153
       plt.show()
154
55
   # -----
```

```
# 2) Évolution de lerreur au point milieu (RK1..4) en échelle log
   # -----
   def midpoint_error_vs_time(NX=201, orders=(1,2,3,4)):
158
       p = Params()
59
       x = np.linspace(0.0, p.L, NX)
60
       dx = x[1] - x[0]
61
       i_mid = int(round(0.5 * (NX-1)))
62
       x_mid = x[i_mid]
63
       results = {}
64
       for order in orders:
165
           T = np.zeros_like(x)
166
           t = 0.0
167
           dt = cfl_dt(x, p, safety=0.8)
68
69
           times = [t]
70
            errs = [abs(T[i_mid] - exact_u(x_mid, t))]
           while t < p.Time - 1e-14:</pre>
71
                if t + dt > p.Time:
72
                    dt = p.Time - t
73
74
                T = step_rk(T, t, dt, x, p, order=order)
                t += dt
75
                times.append(t)
76
                errs.append(abs(T[i_mid] - exact_u(x_mid, t)))
77
            results[order] = (np.array(times), np.array(errs))
78
79
       return x_mid, results
80
   def plot_midpoint_evolution(NX=201, orders=(1,2,3,4), eps=1e-16):
81
       0.00
182
       Trace |erreur| au point x_mid en fonction du temps pour RK1..4
83
        en échelle logarithmique (axe Y). On ajoute un petit epsilon pour
84
.85
        éviter log(0) lorsque l'erreur est nulle (par ex. à t=0).
86
       x_mid, results = midpoint_error_vs_time(NX=NX, orders=orders)
87
88
       plt.figure()
89
       for order in orders:
            t, e = results[order]
90
            plt.plot(t, e + eps, label=f"RK{order}")
91
       plt.yscale('log')
92
       plt.xlabel("Temps")
93
       plt.ylabel(f"|erreur| (log) en x={x_mid:.3f}")
94
95
       plt.title("Erreur au milieu du domaine vs temps (RK1..RK4)")
       plt.legend()
96
       plt.tight_layout()
97
       plt.savefig("Erreur_RK1_4.png", dpi=150, bbox_inches="tight")
98
99
       plt.show()
200
201
   if __name__ == "__main__":
202
       plot_convergence(order=4)
203
       plot_midpoint_evolution(NX=201, orders=(1,2,3,4))
204
```

```
1 % Fichier: adrs_analysis_midpoint_log.py
2 % (voir dépôt ou fichier à côté du .tex)
```

Code deuxième partie :

```
1 # -*- coding: utf-8 -*-
2 """
```

```
adrs_multiple_mesh_adap_time_source.py (clean plots)
4
5
7 import numpy as np
8 import math
9 import matplotlib.pyplot as plt
11 # ------ Paramètres physiques ------
12 K = 0.01 # Diffusion
                # Advection
_{13} V = 1.0
14 lamda = 1.0 # Réaction
15 xmin, xmax = 0.0, 1.0
_{16} Time = 1.0
             # On s'arrête à 1s pour les tracés demandés
17
18 # ----- Paramètres numériques -----
19 NX_init = 5
                       # Points initiaux pour lancer l'adaptation
NT_max = 200000
                       # Garde-fou sur le nombre de pas de temps
21 plot_every = 10**9
                       # Désactivé
22 # Schéma : Euler explicite
# ------ Paramètres adaptation ------
hmin, hmax = 0.005, 0.15
26 err_curv = 0.013 # seuil pour la métrique locale /u_xx//err_curv
27  niter_refinement_max = 10
29 # Critère d'arrêt MIXTE (ne pas arrêter tant que les 2 ne sont pas atteints)
NX_min_required = 80  # nombre minimal de points de maillage
31 L2_tol = 1e-3
                       # tolérance sur l'erreur L2 à t=Time
32
  # Option d'utilisation de la métrique en moyenne temporelle (True) ou
33
     stationnaire finale (False)
34 USE_TIME_AVG_METRIC = True
  # Maillage de fond pour interpoler et accumuler la métrique en temps
NX_background = 400
  background_mesh = np.linspace(xmin, xmax, NX_background)
39
  # ----- Fonctions utilitaires -----
40
  def u_time(t):
     """u(t) = \sin(4*pi*t)"""
      return math.sin(4.0*math.pi*t)
43
44
  def du_time(t):
45
      """u'(t) = 4*pi*cos(4*pi*t)"""
      return 4.0*math.pi*math.cos(4.0*math.pi*t)
  def v_profile(x):
49
      """v(x) = somme de gaussiennes (même que Tex de la version initiale)"""
50
     return 2.0*np.exp(-100.0*(x-(xmax+xmin)*0.25)**2) + np.exp(-200.0*(x-(
51
      xmax+xmin)*0.65)**2)
```

```
52
   def central_first_derivative_nonuniform(x, y):
53
       """Dérivée première sur maillage non uniforme (ordre 1 centré)."""
54
       n = len(x)
55
       yp = np.zeros_like(y)
56
       for j in range(1, n-1):
            yp[j] = (y[j+1]-y[j-1])/(x[j+1]-x[j-1])
       yp[0] = yp[1]
59
       yp[-1] = yp[-2]
60
61
       return yp
   def central_second_derivative_nonuniform(x, y):
63
       """Dérivée seconde sur maillage non uniforme à partir de pentes centrées
64
       . . . . .
       n = len(x)
65
       yx = central_first_derivative_nonuniform(x, y)
66
       yxx = np.zeros_like(y)
       for j in range(1, n-1):
           yx_{j} = (y_{j+1}-y_{j})/(x_{j+1}-x_{j})
69
            yx_{im1} = (y[j]-y[j-1])/(x[j]-x[j-1])
70
            denom = 0.5*(x[j+1]+x[j]) - 0.5*(x[j]+x[j-1])
71
            yxx[j] = (yx_ip1 - yx_im1)/denom
       yxx[0] = yxx[1]
       yxx[-1] = yxx[-2]
74
       return yxx
75
76
   def interpolate_piecewise_linear(x_src, y_src, x_query):
77
       """Interpolation linéaire 1D (x_src croissant). Bords étendus par
78
       valeurs aux bords."""
       yq = np.empty_like(x_query)
79
       i = 0
80
       for k, xq in enumerate(x_query):
81
            if xq <= x_src[0]:
82
                yq[k] = y_src[0]; continue
83
            if xq >= x_src[-1]:
                yq[k] = y_src[-1]; continue
           while not (x_src[i] <= xq <= x_src[i+1]):</pre>
86
87
            t = (xq - x\_src[i])/(x\_src[i+1] - x\_src[i])
88
            yq[k] = (1.0-t)*y_src[i] + t*y_src[i+1]
89
       return yq
90
91
   def build_new_mesh_from_hloc(x_old, hloc, hmin, hmax):
92
       """Re-construit un nouveau maillage en suivant les longueurs locales dé
93
       sirées hloc."""
       xnew = [xmin]
       while xnew[-1] < xmax - hmin:</pre>
           for i in range(len(x_old)-1):
96
                if x_old[i] <= xnew[-1] <= x_old[i+1]:</pre>
97
                    h_{here} = (hloc[i]*(x_old[i+1]-xnew[-1]) + hloc[i+1]*(xnew[i+1])
98
       [-1]-x_old[i]))/(x_old[i+1]-x_old[i])
```

```
h_here = min(max(hmin, h_here), hmax)
99
                     xnext = min(xmax, xnew[-1] + h_here)
100
                     xnew.append(xnext)
101
                     break
102
        return np.array(xnew)
103
   if __name__ == "__main__":
105
        # Nettoyage de toutes les figures au démarrage
106
        plt.close("all")
107
108
        itera = 0
        NX = NX_init
110
        errorL2_hist = []
111
        NX_hist = []
112
113
        last_hloc_stationary = None
114
        last_hloc_timeavg = None
116
        # Pour les tracés finaux (évite les doublons)
117
        times_to_save = [0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
118
        snapshots_final = {}
119
        residuals_final = []
120
        times_r_final = []
121
        Tex_final = None
122
        x_final = None
123
124
        while True:
125
            itera += 1
126
            x = np.linspace(xmin, xmax, NX)
            T = np.zeros_like(x) # u(0)=0 \Rightarrow T(x,0)=0
128
129
            v = v_profile(x)
130
            vx = central_first_derivative_nonuniform(x, v)
131
            vxx = central_second_derivative_nonuniform(x, v)
            F_spatial = V*vx - K*vxx + lamda*v
134
135
            dx_{local} = np.diff(x)
136
            dx_min = np.min(dx_local)
137
            dt_diff = 0.45 * dx_min*dx_min / (K + 1e-14)
            dt_adv = 0.45 * dx_min / (abs(V) + 1e-14)
            dt = min(dt_diff, dt_adv)
140
            if dt <= 0:
141
                 dt = 1e-4
142
143
            t = 0.0
144
            nstep = 0
            residuals = []
146
            times_r = []
147
            snapshots = {}
148
            Mback_sum = np.zeros_like(background_mesh)
149
```

```
Mback\_count = 0
150
            to_save_set = set(times_to_save)
151
152
            while t < Time and nstep < NT_max:</pre>
153
                 nstep += 1
154
                 if t + dt > Time:
                     dt = Time - t
156
157
                 Tx = central_first_derivative_nonuniform(x, T)
158
                 Txx = central_second_derivative_nonuniform(x, T)
159
                 visnum = np.zeros_like(T)
                 for j in range(1, len(x)-1):
162
                     visnum[j] = 0.5*(0.5*(x[j+1]+x[j]) - 0.5*(x[j]+x[j-1]))*abs(
163
       V)
                 xnu = K + visnum
164
                 ut = u_time(t)
                 dut = du_time(t)
167
                 F_time = dut*v + ut*F_spatial
168
169
                 RHS = np.zeros_like(T)
70
                 for j in range(1, len(x)-1):
171
                     RHS[j] = dt * (-V*Tx[j] + xnu[j]*Txx[j] - lamda*T[j] +
172
       F_time[j])
173
                 T[1:-1] += RHS[1:-1]
174
                 T[-1] = T[-2]
175
                 res = float(np.sum(np.abs(RHS[1:-1])))
177
                 residuals.append(res)
178
                 times_r.append(t+dt)
179
180
                 for tk in sorted(list(to_save_set)):
81
                     if t < tk <= t+dt + 1e-14:</pre>
                          snapshots[tk] = (x.copy(), T.copy())
183
                         to_save_set.remove(tk)
184
185
                 metric_nodes = np.minimum(1.0/hmin**2, np.maximum(1.0/hmax**2,
186
       np.abs(Txx)/err_curv))
                 Mback_sum += interpolate_piecewise_linear(x, metric_nodes,
       background_mesh)
                 Mback_count += 1
188
189
                 t += dt
190
            uT = u_time(Time)
            Tex = uT * v
193
194
            # Erreur L2 finale
195
            errL2 = 0.0
196
```

```
for j in range(1, len(x)-1):
197
                wj = 0.5*(x[j+1]-x[j-1])
198
                errL2 += wj * (T[j]-Tex[j])**2
199
            errL2 = math.sqrt(max(errL2, 0.0))
200
201
            errorL2_hist.append(errL2)
            NX_hist.append(NX)
204
            Txx_final = central_second_derivative_nonuniform(x, T)
205
            metric_stationary = np.minimum(1.0/hmin**2, np.maximum(1.0/hmax**2,
206
       np.abs(Txx_final)/err_curv))
            hloc_stationary = 1.0/np.sqrt(metric_stationary)
            last_hloc_stationary = (x.copy(), hloc_stationary.copy())
208
209
            Mback_avg = Mback_sum / max(Mback_count, 1)
210
            metric_timeavg_nodes = interpolate_piecewise_linear(background_mesh,
211
        Mback_avg, x)
            metric_timeavg_nodes = np.minimum(1.0/hmin**2, np.maximum(1.0/hmax
212
       **2, metric_timeavg_nodes))
            hloc_timeavg = 1.0/np.sqrt(metric_timeavg_nodes)
            last_hloc_timeavg = (x.copy(), hloc_timeavg.copy())
214
            # Conserve UNIQUEMENT les données de cette itération (dernière si on
        sort)
            snapshots_final = snapshots
217
            residuals_final = residuals
218
            times_r_final = times_r
219
            Tex_final = Tex
            x_final = x
221
222
            # Critère d'arrêt mixte
223
            hloc_to_use = hloc_timeavg if USE_TIME_AVG_METRIC else
224
       hloc_stationary
            x_new = build_new_mesh_from_hloc(x, hloc_to_use, hmin, hmax)
225
            NX_{new} = len(x_{new})
227
            cond_points = (NX_new >= NX_min_required)
228
            cond_error = (errL2 <= L2_tol)</pre>
229
            print(f"[Iter {itera}] NX_old={NX}, NX_new={NX_new}, L2={errL2:.3e},
230
                  f"points_ok={cond_points}, error_ok={cond_error}")
            if (cond_points and cond_error) or itera >= niter_refinement_max:
                break
234
            NX = NX_{new}
        # ------ TRACÉS (une seule fois) ------
237
        # 1) Solution u(x,t) aux instants demandés
238
       plt.figure("Solution u(x,t) à différents instants"); plt.clf()
239
       for tk in [0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]:
240
            if tk in snapshots_final:
241
```

```
xs, Ts = snapshots_final[tk]
242
                plt.plot(xs, Ts, label=f"t={tk:.1f}s")
243
        if Tex_final is not None:
244
            plt.plot(x_final, Tex_final, label="u_ex(x,1.0s)")
       plt.xlabel("x"); plt.ylabel("u"); plt.legend()
       plt.title("u(x,t) pour t {0.1,0.2,0.3,0.5,0.6,0.7,0.8,0.9,1.0}")
247
248
        # 2) Résidu instationnaire
249
       plt.figure("Résidu vs temps (instationnaire)"); plt.clf()
250
        if len(times_r_final)>0:
251
            plt.plot(np.array(times_r_final), np.array(residuals_final))
       plt.xlabel("temps"); plt.ylabel("résidu (somme |RHS|)")
253
       plt.title("Le résidu ne converge pas vers 0 (forçage périodique)")
254
        # 3) h(x) final : stationnaire vs moyenne en temps (deux courbes sans
256
       doublons)
       plt.figure("Distribution h(x) finale"); plt.clf()
       xs, hs = last_hloc_stationary
       plt.plot(xs, hs, label="h_stationnaire(t=Time)")
259
       xt, ht = last_hloc_timeavg
260
       plt.plot(xt, ht, label="h_moyenne_temps")
261
       plt.xlabel("x"); plt.ylabel("h local"); plt.legend()
       plt.title("Longueurs locales désirées h(x)")
264
        iters = np.arange(1, len(errorL2_hist)+1)
266
        # Sauvegardes
267
       plt.figure("Solution u(x,t) à différents instants")
       plt.savefig("solutions_instants.png", dpi=150, bbox_inches="tight")
       plt.figure("Résidu vs temps (instationnaire)")
270
       plt.savefig("residu_vs_temps.png", dpi=150, bbox_inches="tight")
271
       plt.figure("Distribution h(x) finale")
272
       plt.savefig("h_distribution.png", dpi=150, bbox_inches="tight")
273
```