BIG MOUNTAIN RESORT CASE STUDY

Strategy Plan 2025

Rinky Abraham

01

Problem Identification

Can we improve ticket price for Big Mountain?

FEATURES INFLUENCING TICKET PRICE

FAST QUADS

vertical_drop

Recommendation

SCENARIO 1

Permanently closing down up to 10 of the least used runs. This doesn't impact any other resort statistics.

SCENARIO 2

Increase the vertical drop by adding a run to a point 150 feet lower down but requiring the installation of an additional chair lift to bring skiers back up, without additional snow making coverage

SCENARIO 3

Same as number 2, but adding 2 acres of snow making cover

SCENARIO 4

Increase the longest run by 0.2 mile to boast 3.5 miles length, requiring an additional snow making coverage of 4 acres

ACTION PLAN

SCENARIO 2: IT BUMPS UP THE TICKET PRICE FROM \$81 TO \$95.87. INCREASES REVENUE COLLECTION BY \$3,474,638

03

MODEL RESULTS & ANALYSIS

1 DATA WRANGLING

EXPLORATORY DATA ANALYSIS (EDA)

7 PRE-PROCESSING

04 MODELLING

Data Wrangling

Initial Data (csv file)	• 330 ski resort rows and 27 columns
Clean Data	 Drop Columns that were not informative in the analysis of ticket price Drop Rows that had missing values
Check for Target Value	Verify if ticket predictor variable is present in data - AdultWeekend
Final Data - Set up for EDA	 Store cleaned data (csv) - 270 rows , 25 columns Generate a new dataset with state information to aid further analysis

Exploratory Data Analysis (EDA)

Check relationship of features	 No direct trends observed between AdultWeekend column and Feature columns
Perform PCA	 No clear groupings in the prices by state.
Heatmaps for Correlation	 Showed correlation of AdultWeekend with fastQuads, Runs, Vertical_Drop and total_chairs
Set up for Pre-processing	Store the analysis of important feature types for Pre-processing

Pre-Processing

Clean data for ML model	 Scaling the data - StandardScaler Imputing missing values using median
Train Model on Random Forest Tree	 (Mean , Std) = (9.644, 1.352) Mean Absolute Error = 9.537
Train Model on Linear Regression	 (Mean , Std) = (10.499, 1.622) Mean Absolute Error = 11.793
Final Model Selected	Random Forest model is chosen for further analysis because it had lower Mean Absolute Error compared to Linear Regression Model

Modelling

Verify Big Mountain facilities with the rest	 Plot distributions of important features and we see Big Mountain is among the big leagues of facilities provided at ski resorts
Apply Random Forest Model	 Predicted Price = \$95.87 Actual Price = \$81.00
Scenario Modelling	Model 4 scenarios discussed and check delta in revenue
Final Suggestion	 By increasing the ticket price to \$1.99, which considers increase in vertical_Drop by 150 feet and additional of a run and chair, we can generate a revenue of \$3474638

04

Closing Comments

Future Work?

- Model doesn't account for operational cost, so something to consider in future after appropriate data collection
- If adopted, strategies to maintain the model need to be considered.

Questions?

THANK YOU