MATH 135 Fall 2020: Extra Practice 11

Warm-Up Exercises

WE01. Find a real cubic polynomial whose roots include 1 and i.

Solution. Apply the Factor Thorem to create f(x) = (x-1)(x-i)(x-r). To ensure the polynomial is real, make (x-r) the conjugate of (x-i), i.e., r=-i. Then, $f(x) = (x-1)(x^2+1) = x^3 - x^2 + x - 1$.

WE02. Divide $f(x) = x^3 + x^2 + x + 1$ by $g(x) = x^2 + 4x + 3$ to find the quotient q(x) and remainder r(x) that satisfy the requirements of the Division Algorithm for Polynomials (DAP)

Solution. Perform polynomial long division:

$$\begin{array}{r}
x - 3 \\
x^2 + 4x + 3) \overline{\smash{\big)}\ x^3 + x^2 + x + 1} \\
\underline{-x^3 - 4x^2 - 3x} \\
-3x^2 - 2x + 1 \\
\underline{3x^2 + 12x + 9} \\
10x + 10
\end{array}$$

and conclude that q(x) = 10x + 10 and r(x) = x - 3.

Recommended Problems

RP01. Let $z \in \mathbb{C}$. Prove that $(x-z)(x-\overline{z}) \in \mathbb{R}[x]$.

Proof. Let z be a complex number. Expand the product to obtain

$$(x-z)(x-\overline{z}) = x^2 - zx - \overline{z}x + z\overline{z}$$
$$= x^2 - (z+\overline{z})x + z\overline{z}$$

which is a polynomial in x with coefficients $1, -(z + \overline{z}), \text{ and } z\overline{z}$. Clearly, $1 \in \mathbb{R}$. From PCJ3, we have $z + \overline{z} = 2 \operatorname{Re} z$ so $-(z + \overline{z}) = -2 \operatorname{Re} z \in \mathbb{R}$. Also, from PM3, $z\overline{z} = |z|^2 \in \mathbb{R}$. Therefore, the polynomial is a member of $\mathbb{R}[x]$.

RP02. Prove that there exists a polynomial in $\mathbb{Q}[x]$ with the root $2-\sqrt{7}$.

Proof. We propose $f(x) = x^2 - 4x - 3 \in \mathbb{Q}[x]$.

$$f(2-\sqrt{7}) = (2-\sqrt{7})^2 - 4(2-\sqrt{7}) - 3 = 11 - 4\sqrt{7} - 8 + 4\sqrt{7} - 3 = 0$$

RP03. For each of the following polynomials $f(x) \in \mathbb{F}[x]$, write f(x) as a product of irreducible polynomials in $\mathbb{F}[x]$.

(a)
$$x^2 - 2x + 2 \in \mathbb{C}[x]$$

Solution. We apply the quadratic formula to find that $x = \frac{2+\sqrt{-4}}{2} = 1+i$. Then, we also have x = 1-i as a solution. Therefore, we may write in irreducible polynomials f(x) = (x-1-i)(x-1+i).

(b)
$$x^2 + (-3i + 2)x - 6i \in \mathbb{C}[x]$$

Solution. By inspection, x = -2 is a root. Divide by g(x) = x + 2 to obtain q(x) = x - 3i. Therefore, we write in irreducible polynomials f(x) = (x + 2)(x - 3i).

(c)
$$2x^3 - 3x^2 + 2x + 2 \in \mathbb{R}[x]$$

Solution. The RRT gives $x=1,-1,2,-2,\frac{1}{2},-\frac{1}{2}$ as candidates for roots of f. We find that $f(-\frac{1}{2})=0$, so we divide by g(x)=2x+1 to find $q(x)=x^2-2x+2$. Now, the discriminant of q is negative, so it has no real solutions and is irreducible in $\mathbb{R}[x]$. Therefore, we write $f(x)=(2x+1)(x^2-2x+2)$.

(d)
$$3x^4 + 13x^3 + 16x^2 + 7x + 1 \in \mathbb{R}[x]$$

Solution. By inspection, x = -1 is a root. Divide by g(x) = x + 1 to obtain $q(x) = 3x^3 + 10x^2 + 6x + 1$. To find roots of this cubic, the RRT gives candidates $x = 1, -1, \frac{1}{3}, -\frac{1}{3}$. In fact, $q(-\frac{1}{3}) = 0$. Dividing q(x) by (3x + 1), we obtain the factor $(x^2 + 3x + 1)$. The discriminant of this quadratic is negative, so it is irreducible in $\mathbb{R}[x]$. Therefore, $f(x) = (x + 1)(3x + 1)(x^2 + 3x + 1)$.

(e) $x^4 + 27x \in \mathbb{C}[x]$

Solution. Factor: $f(x) = x(x^3 + 27)$. The roots are x = 0 and $x = \sqrt[3]{-27} = 3\sqrt[3]{-1}$. By the CNRT, the cube roots of -1 are -1, $\frac{1}{2} + \frac{\sqrt{3}}{2}i$, and $\frac{1}{2} - \frac{\sqrt{3}}{2}i$. Therefore,

$$f(x) = x(x-1)(x - \frac{3}{2} - \frac{3\sqrt{3}}{2}i)(x - \frac{3}{2} + \frac{3\sqrt{3}}{2}i)$$

RP04. Let $g(x) = x^3 + bx^2 + cx + d \in \mathbb{C}[x]$ be a monic cubic polynomial. Let z_1, z_2 , and z_3 be three roots of g(x) such that

$$g(x) = (x - z_1)(x - z_2)(x - z_3)$$

Prove that

$$z_1 + z_2 + z_3 = -b$$

$$z_1 z_2 + z_2 z_3 + z_3 z_1 = c$$

$$z_1 z_2 z_3 = -d$$

Proof. Let g be a monic cubic polynomial over \mathbb{C} , where z_1 , z_2 , and z_3 are its roots. Then, by CPN, $g(x) = x^3 + bx^2 + cx + d = (x - z_1)(x - z_2)(x - z_3)$ for some coefficients $b, c, d \in \mathbb{C}$. We expand using standard arithmetic:

$$x^{3} + bx^{2} + cx + d = (x - z_{1})(x - z_{2})(x - z_{3})$$

$$= (x^{2} - xz_{1} - xz_{2} + z_{1}z_{2})(x - z_{3})$$

$$= x^{3} - x^{2}z_{1} - x^{2}z_{2} + z_{1}z_{2}x - x^{2}z_{3} - z_{1}z_{3}x - z_{2}z_{3}x - z_{1}z_{2}z_{3}$$

$$= x^{3} - (z_{1} + z_{2} + z_{3})x^{2} + (z_{1}z_{2} + z_{2}z_{3} + z_{3}z_{1})x - z_{1}z_{2}z_{3}$$

Recall that two polynomials are defined to be equal if and only if their coefficients agree. Therefore, $b = -(z_1 + z_2 + z_3)$, $c = z_1z_2 + z_2z_3 + z_3z_1$, and $d = -z_1z_2z_3$ and the conclusion immediately follows.

RP05. Using the Rational Roots Theorem, prove that $\sqrt{3} + \sqrt{7}$ is irrational.

Proof. Let $a = \sqrt{3} + \sqrt{7}$. Then, $a^2 = 10 + 2\sqrt{21}$ and $a^2 - 10 = 2\sqrt{21}$. Squaring again, $a^4 - 20a^2 + 100 = 84$, i.e., $a^4 + 20a^2 - 16 = 0$.

Now, we can let $f(x) = x^4 - 20x^2 + 16$ such that f(a) = 0. The RRT gives that rational roots of f are of the form p/q with coprime integers p and q where $p \mid 16$ and $q \mid 1$. The divisors of 1 are ± 1 and of 16 are $\pm 1, \pm 2, \pm 4, \pm 8, \pm 16$. Note that f is even, so we need only test $x = 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$.

Now,
$$f(1) = 5$$
, $f(\frac{1}{2}) = -\frac{175}{16}$, $f(\frac{1}{4}) = -\frac{3775}{256}$, $f(\frac{1}{8}) = -\frac{64255}{4096}$, and $f(\frac{1}{16}) = -\frac{1043455}{65536}$.

Therefore, f has no rational roots. However, a is a root of f, therefore, a is irrational. \Box

RP06.

(a) Prove that for every prime p, there exists a polynomial f(x) over \mathbb{Z}_p , of degree p, such that every element of \mathbb{Z}_p is a root of f(x).

Proof. Let p be a prime number. Then, \mathbb{Z}_p is a field. For each element $[n] \in \mathbb{Z}_p$, there is a linear factor $([1]x - [n]) \in \mathbb{Z}_p[x]$. The product of polynomials is well-defined and is a polynomial, so we may say that the polynomial $f(x) \in \mathbb{Z}_p[x]$

$$f(x) = \prod_{[i] \in \mathbb{Z}_p} ([1]x - [i])$$

has p roots corresponding to each of the p elements in \mathbb{Z}_p . The degree of a product is the sum of the degrees of the factors, but each factor is linear with degree 1 so the sum is simply p.

(b) Prove that for every prime p, there exists a polynomial f(x) over \mathbb{Z}_p , of degree p, which has no roots in \mathbb{Z}_p .

Proof. Let p be a prime number and let g(x) be the polynomial from (a) above for p. Then, $g(x) \equiv 0 \pmod{p}$ for any $x \in \mathbb{Z}_p$. Therefore, $g(x) \not\equiv 1 \pmod{p}$ for any x and we may say the polynomial f(x) = g(x) - 1 has no solutions in \mathbb{Z}_p .

RP07. Suppose $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \in \mathbb{C}[x]$ with degree n. We say f(x) is palindromic if the coefficients a_j satisfy

$$a_{n-j} = a_j$$
 for all $0 \le j \le n$

Prove that

(a) If f(x) is a palindromic polynomial and $c \in \mathbb{C}$ is a root of f(x), then c must be non-zero, and $\frac{1}{c}$ is also a root of f(x).

Proof. Let $f(x) \in \mathbb{C}[x]$ be a palindromic polynomial with coefficients a_n and root c so

$$0 = a_n c^n + a_{n-1} c^{n-1} + \dots + a_1 c + a_0$$

Since f(x) has degree n, $a_n \neq 0$. As f(x) is palindromic, $a_0 \neq 0$. Suppose that c = 0 and substitute above. We have that $a_0 = 0$, which is a contradiction. Therefore, $c \neq 0$. Now, multiplying through by c^{-n} , we have

$$0 = a_n + a_{n-1}c^{-1} + \dots + a_1c^{-n+1} + a_0c^{-n}$$

but since f(x) is palindromic we substitute a_{n-j} for a_j and write

$$0 = a_0 + a_1 \left(\frac{1}{c}\right) + \dots + a_{n-1} \left(\frac{1}{c}\right)^{n-1} + a_n \left(\frac{1}{c}\right)^n$$

But this is just saying $f(\frac{1}{c}) = 0$, that is, $\frac{1}{c}$ is a root of f(x).

(b) If f(x) is a palindromic polynomial of odd degree, then f(-1) = 0.

Proof. Let f(x) be a palindromic polynomial in \mathbb{C} with odd degree n and coefficients a_n . Since n is odd, we have n = 2k + 1 for some integer k. Then,

$$f(-1) = a_{2k+1}(-1)^{2k+1} + a_{2k}(-1)^{2k} + \dots + a_1(-1) + a_0$$

and we apply the fact that $a_{n-j} = a_j$ for all $0 \le j \le k$ to get

$$f(-1) = a_0(-1)^{2k+1} + a_1(-1)^{2k} + \dots + a_k(-1)^{k+1} + a_k(-1)^k + \dots + a_1(-1) + a_0$$

Notice that there are an even (n+1=2k+2) number of terms. We pair them by common coefficients. Let $0 \le i \le k$. Then, the coefficient a_i appears in the terms $a_i(-1)^{2k+1-i}$ and $a_i(-1)^i$. The difference in the powers is 2(k-i)+1, an odd number. Therefore, one is even and the other is odd. Suppose WLOG that i is even. Then, $a_i(-1)^{2k+1-i} = -a_i$ and $a_i(-1)^i = a_i$.

It follows that each term cancels its palindromic term, and the resulting sum is 0. \square

(c) If deg f = 1 and f(x) is a monic, palindromic polynomial, then f(x) = x + 1.

Proof. Let f(x) be a first-degree polynomial in \mathbb{C} , that is, $f(x) = a_1x + a_0$. Since f(x) is monic, its leading coefficient a_1 is 1. However, since f(x) is palindromic, $a_{\deg f-1} == a_{1-1} = a_0 = 1$ as well. Therefore, f(x) = x + 1.

Challenge

C01. We call a polynomial primitive if the greatest common divisor of all of its coefficients is 1. Show that the product of two primitive polynomials is again primitive.