Aufmerksamkeitssteuerung durch Haptische Schnittstellen in Überwachungstätigkeiten

Leon Huck*

Karlsruher Institut für Technologie

ToDo

Zusammenfassung. ToDo

Forschungsfrage: Wo werden Haptische Schnittstellen bereits heute zur Aufmerksamkeitssteuerung, bei Beobachtugnsaufgaben, eingesetzt und wie könnte man diese Bereiche erweitern?

Um diese Frage beantworten zu können muss ich zuerst:

Klären, was Haptische Schnittstellen sind. Welche Möglichkeiten zur Entwicklung und Anpassung es gibt. Welche Probleme sie gemeinsam haben Wie Aufmerksamkeit, zumindest auf einem Abstrakten Niveau, zustande kommt. Wieso eine Beeinflussung durch haptische Schnittstellen sinnvoll ist. ?Welche Probleme auftreten?

Was mit Überwachungstätigkeit gemeint ist. Welche besonderen Aspekte zu berücksichtigen sind.

Anhand dieses Rahmens kann ich dann sinnvolle Bereiche auswählen und zusammenführen.

 $^{^{\}star}$ Unter der Betreuung von: Erik Pescara

Inhaltsverzeichnis

Αι	ıtmerksamkeitssteuerung durch Haptische Schnittstellen in	
Üŀ	perwachungstätigkeiten	1
	Leon Huck	
1	Einleitung	3
2	Die Thematischen Teilgebiete	3
	2.1 Aufmerksamkeitssteuerung	3
	2.2 Überwachungsaufgaben	3
	2.3 Haptische Schnittstellen	4
3	Anwendungen	6
	3.1 Sinneswiederherstellung	6
	3.2 Zwischenmenschliche Kommunikation	7
	3.3 Leistungssteigerung	7
	3.4 Erweiterung des Wahrnehmungsspektrums	7
	3.5 Zuverlässigkeit Erzeugung	7
4	Zusammenfassung und Ausblick	8
5	Anhang	9
	5.1 Glossar	10
	5.2 Selbständigkeitserklärung	10

1 Einleitung

2 Die Thematischen Teilgebiete

Diese Arbeit erkundet die Schnittmenge der drei Teilgebiete Aufmerksamkeitssteuerung, haptische Schnittstellen und Beobachtungsaufgaben. Jedes dieser Teilgebiete enthält viele Informationen, die den Rahmen dieser Arbeit sprengen würde. Was nicht in dieser Arbeit zu finden ist sind die Schnittmengen von nur zwei dieser Gebiete. Es wird keine Aufmerksamkeitssteuerung in einer Beobachtungsaufgabe behandelt, die nicht durch eine haptische Schnittstelle erreicht wird. Im Folgenden soll eine Einführung und Abgrenzung der Teilgebiete erfolgen.

2.1 Aufmerksamkeitssteuerung

Aufmerksamkeit ist ein weitläufiges Feld, das es für den Zweck dieser Arbeit zu konkretisieren gilt. Daniel Kahneman [1] beschreibt unterschiedliche Eigenschaften der Aufmerksamkeit, von denen die Selektierende Eigenschaft die wichtigste, für diese Arbeit, ist. Die Aufmerksamkeit wird in dieser Arbeit als menschliche Ressource aufgefasst, deren Verteilung es zu steuern gilt. Somit werden beispielsweise die Bereiche Äspekte der Intensität"[1] und Erregung"[1] ignoriert.

Eine Steuerung wird immer dann erreicht, wenn ein Stimulus verwendet wird, der die Aufmerksamkeit, eines Menschen, zu der gewünschten Information leitet. Diese Aufmerksamkeitssteuerung kann über jeden Sinn erfolgen. Beispiele wären das Ansprechen eines Menschen mit dem Namen und das Einblenden eines Warnsymbols im Auto. Vorweggreifend soll hier auch eine Anwendung, wie die Handyvibration nicht unerwähnt bleiben.

2.2 Überwachungsaufgaben

Überwachungsaufgaben fordern von dem Aufgaben-Ausführer, dass er über einen längeren Zeitraum Informationen aufnimmt und überwacht. Überwachen heißt dabei, dass der Aufgaben-Ausführer möglichst schnell auf Veränderungen reagieren kann. Ein Beispiel hierfür wäre ein Sicherheitsbeauftragter, der Überwachungsmonitore überprüft. Angenommen die Überwachung findet Nachts statt. Auszeichnendes Merkmal der Überwachungsaufgabe ist, in diesem Fall, dass der Großteil der Zeit der Großteil der Informationen unverändert bleibt. Im Gegensatz dazu steht die Überwachung bei Tag. Hier sind potentiell viele Veränderungen erkennbar, jedoch ist nur ein kleiner Teil für die Überwachungsaufgabe wichtig [?]. Dieses Beispiel zeigt, dass eine Differenzierung von Überwachungsaufgaben nötig ist um diese vereinfachen oder ermöglichen zu können.

Als allgemeine Ziele von allen Geräten, die Überwachungsaufgaben unterstützen lassen sich festhalten:

 Die Aufmerksamkeit des Aufgaben-Ausführers soll auf, für die Erfüllung der Aufgabe, relevante Informationen geleitet werden, ohne das es zu einer Ermüdung kommt. Es soll ermöglicht oder vereinfacht werden die Informationen in relevant und irrelevant zu unterteilen.

2.3 Haptische Schnittstellen

Der Mensch verfügt über einen Tastsinn. Um Informationen über diesen Sinn übertragen zu können, werden haptische Schnittstellen verwendet.

Die für den Tastsinn verantwortlichen Nervenzellen können auf unterschiedliche Arten stimuliert werden. Dementsprechen gibt es unterschiedliche haptische Aktuatoren, die zu Informationsübertragung verwendet werden können. Dabei ist eine Unterscheidung zwischen Aktuatoren zu treffen. Die Kommunikation kann entweder über mechanische Bewegung oder elektrische Impulse erfolgen. Darüber hinaus lassen sich weitere Charakteristiken erkennen:

Für beiden Aktuatoren-Typen vergleichbar sind folgende Charakteristiken:

- Position auf der Haut
- Berührungsfläche
- Dauer

Für die Kommunikation über Vibrationen[2]:

- Frequenz
- Amplitude/Intensität
- Dauer

Für die Kommunikation über elektrische Impulse[3, S. 4]:

- Strom
- Spannung
- Material
- Feuchtigkeit

In beiden Fällen ist auch die Kombination der einzelnen Faktoren ausschlaggebend, wie effektiv die Kommunikation stattfindet. Dabei stellt jede Ausprägung dieser Kombinationen ein Aktivierungsmuster da. Diese Aktivierungsmuster werden von Menschen nicht nur mit unterschiedlichen Informationen, sondern auch mit subjektiven Emotionen belegt[4].

Ein Zusammenschluss von mehreren haptischen Aktuatoren führt zu einer größeren Anzahl von Einstellungsmöglichkeiten. Diese ermöglichen das übertragen von komplexeren Informationen im Vergleich zu einem haptischen Aktuator. Eine Alternative Einsatzmöglichkeit ist zu der Erhöhung der Redundanz bei der Informationsübertragung. Dabei senden die haptischen Aktuatoren, beispielsweise, alle das selbe Übertragungsmuster. Das zu erreichene Ziel ist hierbei dem Menschen, der haptische Aktuator auf der Haut trägt, die Aufnahme der Information zu erleichtern. Diese Anwendung ist gerade in kritischen Situationen,wie sie etwa in militärischen Einsätzen zu finden sind, hilfreich[5]. Nikolic et al. [5] beschreibt, wie haptische Aktoren Piloten bei der Überwachung von Flugzeugdaten unterstützen kann. Je nach Einsatzbereich können zusätzliche Einschränkungen

gelten. In dem Bereits angesprochenen Militärbeispiel ist eine Verwendung von Aktoren, die an dem Finger angebracht sind, nicht sinnvoll. Ein Positionierung an den Fingern würde die Verwendung desselben einschränken.

Lösungen oft durch vereinfachung der datenübertragung. Also genaue Signale gegenüber komplexen, vermeindlich informationsreichen.

Auslagerung der komplexen Informationsaufnahme an andere Sinnesorgane. Verwende Haptik nur um Aufmerksamkeit zu gewinnen. So wie evolutionär entwickelt. [2]

3 Anwendungen

Nun stellt sich die Frage in welchen Ausprägungen diese Teilgebiete zusammengeführt werden können. Deshalb sollen im folgenden Anwendungen, die alle drei Teilgebiete umfassen beleuchtet werden.

3.1 Sinneswiederherstellung

Menschliche Sinne können, von Geburt an oder im laufe der Zeit, nicht, oder nur eingeschränkt, funktionsfähig sein. Um diesen Leistungsverlust ausgleichen zu können bedarf es technischer Hilfsmittel. Hierbei bietet die menschliche Haut eine Möglichkeit zur Aufnahme von Informationen, die typischerweise über andere Sinne aufgenommen werden würden.

Sehvermögen Fragen/Teilgebiete/Gliederungspunkte/Absätze: Nach dem Stand der Forschung ist das Auge das Leistungsstärkste Sinnesorgan, gemessen an der übertragenen Datenmenge[6]. Dabei liegt die absolute Leistung ca. bei der eines Ethernet-Kabels mit 10 Mbit/s[6]. Der Sehsinn kann somit bereits aus technischen gründen nicht vollständig über die Haut simuliert werden. Die für die Überwachung der Umwelt wichtigen Informationen lassen sich von den unwichtigen differenzieren.

Lesen Geschriebene Worte sind eine Darstellung der menschlichen Sprache. Im Fall der Einschränkung des Sehvermögens ist auch die Fähigkeit zu lesen beeinträchtigt.

Optacon Eine Lösung für diese Einschränkung wurde von Bliss et al. 1970 in Form des Öptaconëntwickelt (Zitiert nach:[2]). Dabei werden auf einer Anzeige-fläche die Buchstaben in Form von Vibrationen dargestellt. Das identifiezieren der Buchstaben übernimmt ein Scanner, der über geschrieben Worte bewegt werden kann. Mit diesem Gerät ist war es möglich zwischen 50 und 100 Worte in der Minute zu lesen [2]. Bliss et al. [7] identifiert in seiner Arbeit drei Tests Charakteristiken, die einen Einblick in die Leistung eines "Direkt Übersetzers mit taktilem Ausgang" [7] bieten.

Lesbarkeit

Die Lesbarkeit beschreibt, mit welcher Wahrscheinlichkeit, die gelesene Information von dem Benutzer, wie vorgesehen interpretiert wird. Für das Erreichen der Charakteristik muss es möglich sein Buchstaben zu unterscheiden. Auch ist die Erneuerungsrate, mit dem das Gerät die Buchstaben neu zeichnet, von Bedeutung. Eine zu geringe Wiederholungsrate kann zu Missverständnissen führen.

- Lesegeschwindigkeit
- Lesbarer Ausschnitt

3.2 Zwischenmenschliche Kommunikation

Fragen/Teilgebiete/Gliederungspunkte/Absätze: Eine der grundlegenden menschlichen Fähigkeiten ist die Kommunikation. Hierbei handelt es sich um den Austausch von komplexen Informationen. Dieser Informationenaustausch soll in diesem Abschnitt ausschließlich von Mensch zu Mensch erfolgen. Die Traditionelle Kommunikation basiert auf der Stimme und dementsprechen beim Zuhörer auf den Ohren. Im Bereich Sinneswiederherstellung wurde bereits besprochen, wie man diesen traditionellen Kommunikationsweg wiederherstellen kann. In diesem Kapitel soll es daher um die Erzeugung neuartiger Kommunikationswege gehen.

Quellen, die ich verwenden will: Some Neglected Possibilities of Communication[8]

- 3.3 Leistungssteigerung
- 3.4 Erweiterung des Wahrnehmungsspektrums
- 3.5 Zuverlässigkeit Erzeugung

4 Zusammenfassung und Ausblick

5 Anhang

5.1 Glossar

Aktuator Bauelement, welches elektrische Signale in andere physikalische Größen, wie beispielsweise Bewegung, umsetzt..

5.2 Selbständigkeitserklärung

Literatur

- 1. Daniel Kahneman. Attention and effort, volume 1063. Citeseer, 1973.
- 2. Lynette A. Jones and Nadine B. Sarter. Tactile displays: Guidance for their design and application. *Human Factors*, 50(1):90–111, 2008. PMID: 18354974.
- 3. K. A. Kaczmarek, J. G. Webster, P. Bach-y-Rita, and W. J. Tompkins. Electrotactile and vibrotactile displays for sensory substitution systems. *IEEE Transactions on Biomedical Engineering*, 38(1):1–16, Jan 1991.
- M. A. Baumann, K. E. MacLean, T. W. Hazelton, and A. McKay. Emulating human attention-getting practices with wearable haptics. In 2010 IEEE Haptics Symposium, pages 149–156, March 2010.
- 5. Mark I Nikolic, Aaron E Sklar, and Nadine B Sarter. Multisensory feedback in support of pilot-automation coordination: the case of uncommanded mode transitions. In *Proceedings of the Human Factors and Ergonomics Society Annual Meeting*, volume 42, pages 239–243. SAGE Publications Sage CA: Los Angeles, CA, 1998.
- Kristin Koch, Judith McLean, Ronen Segev, Michael A. Freed, I. I. Berry, Michael J., Vijay Balasubramanian, and Peter Sterling. How ¡em¿much¡/em¿ the eye tells the brain. Current Biology, 16(14):1428–1434, June 2019.
- J. C. Bliss, M. H. Katcher, C. H. Rogers, and R. P. Shepard. Optical-to-tactile image conversion for the blind. *IEEE Transactions on Man-Machine Systems*, 11(1):58–65, March 1970.
- 8. Frank A. Geldard. Some neglected possibilities of communication. Science, 131(3413):1583–1588, 1960.