ECE 311 Lab 3

Jacob Hutter February 28, 2017

```
function [ y ] = myDFTConv(x, h)
3 %transfer over to frequency domain
  l = size(x,2) + size(h,2) - 1;
  x_w = fft(x, 1);
  h_{-w} = fft(h, l);
  \% element \ multiplication \ to \ get \ y\_w
  y_{-}w = x_{-}w.*h_{-}w;
11 %return to discrete domain
  y = ifft(y_w);
  %plot my result
15 figure;
  subplot (211);
stem(y);
title('myDFTConv');
19
  %plot key
21 subplot (212);
  stem(conv(x,h));
23 title ('conv(x,h)');
  end
```

myDFTConv.m

Because of the use of fft and ifft, the time coplexity is also O(Nlog(N)).

```
_{1} function [y_{n}] = sys1(a,N)
3 %get delta function
  x_n = zeros(1,N);
_{5}|_{\mathbf{x}_{-}\mathbf{n}(1)}=1;
7 %get shifted delta function
   x_n_1 = zeros(1,N);
9 \mid x_n_1(2) = 1;
|y_n| = zeros(1,N+1);
13 for i = 1:N,
       y_n(i+1) = a.*y_n(i) + 0.3.*x_n(i) -2.*x_n_1(i);
  end
  y_n = y_n(2:length(y_n)); % remove first element to get to N
  figure;
  stem(y_n);
19 title ('a = 2, N = 64');
ylabel('y_n');
21 xlabel('x_n');
  end
```

sys1.m

Notice that this function is in the order of $-e^x$ therefore, it is not stable $\lim_{x_n\to\infty} y_n = -\infty$. The system is causal, however, by the finite difference equation, output only depends on past or current inputs.