Solutions of Equations in One Variable

The Bisection Method

In this chapter, we consider one of the most basic problems of numerical approximation, the root-finding problem. This process involves finding a root, or solution, of an equation of the form f(x) = 0, for a given function f. A root of this equation is also called a zero of the function f.

The first technique is called the Bisection, or Binary-search, method.

Suppose f is a continuous function defined on the interval [a, b], with f(a) and f(b) of opposite sign. The Intermediate Value Theorem implies that a number p exists in (a, b) with f(p) = 0. Although the procedure will work when there is more than one root in the interval (a, b), we assume for simplicity that the root in this interval is unique. The method calls for a repeated halving (or bisecting) of subintervals of [a, b] and, at each step, locating the half containing p. To begin, set $a_1 = a$ and $b_1 = b$, and let p_1 be the midpoint of [a, b]; that is,

$$p_1 = a_1 + \frac{b_1 - a_1}{2} = \frac{a_1 + b_1}{2}.$$

- If $f(p_1) = 0$, then $p = p_1$, and we are done.
- If $f(p_1) \neq 0$, then $f(p_1)$ has the same sign as either $f(a_1)$ or $f(b_1)$.
- If $f(p_1)$ and $f(a_1)$ have the same sign, $p \in (p_1, b_1)$. Set $a_2 = p_1$ and $b_2 = b_1$.
- If $f(p_1)$ and $f(a_1)$ have opposite signs, $p \in (a_1, p_1)$. Set $a_2 = a_1$ and $b_2 = p_1$.

Then reapply the process to the interval $[a_2, b_2]$. This produces the method described in Algorithm 2.1. (See Figure 2.1.)

Algorithm:

```
To find a solution to f(x) = 0 given the continuous function f on the interval [a, b], where f(a) and f(b) have opposite signs:
```

INPUT endpoints a, b; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

Step 1 Set
$$i=1$$
;
 $FA = f(a)$.
Step 2 While $i \le N_0$ do Steps 3-6.
Step 3 Set $p = a + (b-a)/2$; (Compute p_i .)
 $FP = f(p)$.
Step 4 If $FP = 0$ or $(b-a)/2 < TOL$ then
OUTPUT (p) ; (Procedure completed successfully.)
STOP.
Step 5 Set $i = i + 1$.

Step 6 If
$$FA \cdot FP > 0$$
 then set $a = p$; (Compute a_i, b_i .)
$$FA = FP$$
else set $b = p$. (FA is unchanged.)

Step 7 OUTPUT ('Method failed after N_0 iterations, $N_0 =$ ', N_0); (The procedure was unsuccessful.) STOP.

Note that to start the Bisection Algorithm, an interval [a, b] must be found with f(a). f(b) < 0. At each step the length of the interval known to contain a zero of f is reduced by a factor of 2; hence it is advantageous to choose the initial interval [a, b] as small as possible.

For example, if $f(x) = 2x^3 - x^2 + x - 1$, we have both

$$f(-4) \cdot f(4) < 0$$
 and $f(0) \cdot f(1) < 0$

so the Bisection Algorithm could be used on [-4,4] or on [0,1]. Starting the Bisection Algorithm on [0,1] instead of [-4,4] will reduce by 3 the number of iterations required to achieve a specified accuracy.

The following example illustrates the Bisection Algorithm. The iteration in this example is terminated when a bound for the relative error is less than 0.0001.

Example:

Show that $f(x) = x^3 + 4x^2 - 10 = 0$ has a root in [1,2], and use the Bisection method to determine an approximation to the root that is accurate to at least within 10^{-4} .

Solution Because f(1) = -5 and f(2) = 14.

For the first iteration of the Bisection method we use the fact that at the midpoint of [1,2] we have f(1.5) = 2.375 > 0. This indicates that we should select the interval [1,1.5] for our second iteration. Then we find that f(1.25) = -1.796875 so our new interval becomes [1.25,1.5], whose midpoint is 1.375. Continuing in this manner gives the values in Table 2.1. After 13 iterations, $p_{13} = 1.365112305$ approximates the root p with an error

$$|p - p_{13}| < |b_{14} - a_{14}| = |1.365234375 - 1.365112305| = 0.000122070$$

Since $|a_{14}| < |p|$, we have

$$\frac{|p - p_{13}|}{|p|} < \frac{|b_{14} - a_{14}|}{|a_{14}|} \le 9.0 \times 10^{-5}$$

Table 2.1

n	a_n	b_n	p_n	$f(p_n)$
1	1.0	2.0	1.5	2.375
2	1.0	1.5	1.25	-1.79687
3	1.25	1.5	1.375	0.16211
4	1.25	1.375	1.3125	-0.84839
5	1.3125	1.375	1.34375	-0.35098
6	1.34375	1.375	1.359375	-0.09641
7	1.359375	1.375	1.3671875	0.03236
8	1.359375	1.3671875	1.36328125	-0.03215
9	1.36328125	1.3671875	1.365234375	0.000072
10	1.36328125	1.365234375	1.364257813	-0.01605
11	1.364257813	1.365234375	1.364746094	-0.00799
12	1.364746094	1.365234375	1.364990235	-0.00396
13	1.364990235	1.365234375	1.365112305	-0.00194

so the approximation is correct to at least within 10^{-4} . The correct value of p to nine decimal places is p = 1.365230013. Note that p_9 is closer to p than is the final approximation p_{13} . You might suspect this is true because $|f(p_9)| < |f(p_{13})|$, but we cannot be sure of this unless the true answer is known.