Artificial Neural Networks & Deep Learning

HW #2

Breast Cancer Wisconsin Dataset

- Classification problem
 - 10 input variables
 - 1 binary output variable (benign or malignant)
- Originally hosted by UCI
- 569 data samples
 - Use the first 100 samples as test set
 - Use the next 100 samples as validation set
 - Use the others as training set
- https://archive.ics.uci.edu/ml/datasets/Breas t+Cancer+Wisconsin+%28Diagnostic%29

Data Preparation

- Download breast-cancer-wisconsin.data
- Remove the rows with missing values "?"
 - With any text editor
- Load it in the python
- Drop the first column:
 - The first column is ID, which does not carry any information about the tissue.
- Normalize the input variables.
- Set the output variable
 - Set Malignant: 1, benign: 0
- Data split: train, test, & validation set

Basic model

- Model Structure
 - 9 inputs
 - 10 hidden neurons with ReLu activation functions
 - 1 output neuron with sigmoid activation function.
- Compile and learning condition
 - Optimizer=rmsprop,
 - Loss function=binary crossentropy
 - Epochs=200
 - Batch_size=10
 - EarlyStopping with patience=2

Q1: (1 point)

- Show your code.
- 0.5 points for data preparation.
 - 1. data load
 - 2. data normalization
 - 3. output coding
 - 4. data split
- 0.5 points for the model definition and learning.
 - 1. model definition
 - 2. model setup (loss, optimizer)
 - 3. correct fitting procedure
 - 4. correct evaluation procedure

Q2: (1 point)

- Repeat training of the model 5 times, and collect their losses and accuracies using the table below.
 - 0.5 points for collecting the data.
- Are they all consistent over trials? If not, why?
 - 0.5 points for the answer of this question

	Trial #1	Trial #2	Trial #3	Trial #4	Trial #5
Training loss					
Training accuracy					
Test Loss					
Test accuracy					

Q3: (1 point)

- Investigate whether the activation function of the hidden layer affects the accuracy.
 - Still the same model (the # of hidden neurons: 10)
 - 4 different cases: None, Relu, sigmoid, tanh
 - For each case, repeat training 10 times and report the mean and standard deviation of loss and accuracy in the training and test data set.
 - Use the similar table in the problem #2.
 - 0.5 points for collecting data
- Which one is the best? Why? (0.5 points)

Q4: (2 points)

- Let's investigate how the number of hidden neurons affects the performance.
 - Set the activation function of the hidden layer to Relu.
- Change # of hidden neurons systematically, and then re-training the model.
 - Collect the data and construct the table for the following # of hidden neurons: 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000.
 - For each case, repeat training 5 times and report the mean and standard deviation of loss and accuracy in the training and test data set.
 - 1 points for collecting data.
- What is the best case? Why did you select it? (i.e. which one did you use among 4 metrics you collected?)
 - 1 points for the answer.

Q E1(0.5 points)

- Generally, after performing the rough search we did in the Q4, we performed the more fine-tuned search for the optimal # of hidden neurons.
 - As an example, if we found that the best performance was achieved near 20~50, we performed another experiment varying # of hidden neurons: 25, 30, 35, 40, 45, and select the case with the best performance.
- The question is "why didn't we try all cases at once?"
 - As an example, we can try for all cases: 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60
 - But we don't. Why? (0.5 points)

Q E2 (0.5 point)

- After learning, we can analyze the learned weights.
- Construct a model without a hidden layer; all input units are directly corrected to the output.
- After learning, using the following commands, you can get the weights and bias.
 - w=model.get_weights()[0]
 - b=model.get_weights()[1]
- Please analyze the model based on the learned weights. What does the large weight mean? What does the weight near zero mean? What does the negative value mean?
 - · Check breast-cancer-wisconsin.names.

Deadlines & Submission

- Total scores: 5 points + extra 1 points
- Due: Apr 12. 2021. 11:59 PM (Monday)
 - No grace period.
 - Be punctual, 1 day delay = 1 point penalty.
- How to submit
 - Use Blackboard's assignment tab.
 - 블랙보드(kulms.korea.ac.kr) -> assignments 탭에서 제출
 - No email submission. (이메일 제출 안 받습니다.)
 - Use the given template file to write a report.
 - 주어진 템플릿 파일 사용해서 리포트 작성.
 - Also submit the codes you used. The compressed file name should be hw2_codes.zip. If you do not submit the codes, the score will not given.
 - 사용하신 코드를 압축해서 제출해주세요. 압축화일 이름은 hw2_codes.zip으로 해주세요. 코드를 제출 안 하시면 숙제 점수는 0점입니다.