

AD-A148 489 A FORTRAN PLOTTING PACKAGE FOR GRAPHIC VDUS(U) ROYAL
SIGNALS AND RADAR ESTABLISHMENT MALVERN (ENGLAND)
V J MIFSUD ET AL. AUG 84 RSRE-MEMO-3739 DRIC-BR-93478

1/1

UNCLASSIFIED

F/G 9/2

NL

END

FILMED

DTIC

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

RSRE MEMORANDUM No. 3739

AD-A148 489

UNLIMITED

BR93478

①

RSRE
MEMORANDUM No. 3739

ROYAL SIGNALS & RADAR
ESTABLISHMENT

A FORTRAN PLOTTING PACKAGE FOR GRAPHIC VDUs

Authors: V J Mifsud and
C Broughton

PROCUREMENT EXECUTIVE,
MINISTRY OF DEFENCE,
RSRE MALVERN,
WORCS.

DTIC FILE COPY

DTIC
ELECTE
DEC 12 1984
S E D

UNLIMITED

REF ID: A6910

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 3739

Title: A FORTRAN PLOTTING PACKAGE FOR GRAPHIC VDUS
Authors: V J Mifsud, C Broughton
Date: August 1984

Summary

A set of plotting routines have been implemented in FORTRAN on DEC LSI-11, PDP-11 and VAX-11 computers to provide a transportable graphics capability to improve data presentation and machine control on vector scan particle beam lithography machines. The routines are general in nature and have already proved to be of use in many scientific applications requiring compact and tailored graphics capabilities within specific programs. This document is designed to act as a User's Guide for the suite. Versions of the routines are available for ReGIS, Tektronics 4010/4014 and SIGMA native-mode graphics terminals.

Accession For	
NTIS GRA&I <input checked="" type="checkbox"/>	
DTIC TAB <input type="checkbox"/>	
Unannounced <input type="checkbox"/>	
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A-1	

Copyright
C
Controller HMSO London

1984

UNLIMITED

A FORTRAN PLOTTING PACKAGE
FOR GRAPHIC VDUS
USERS GUIDE

V J Mifsud, C Broughton
Lithography Section
SP1 Division
RSRE Malvern

UNLIMITED

Introduction	2
Index of Subroutines	3
Notes on Usage	5
Detailed description of the package subroutines	7
Example using package routines	20
Index	23
Figures	25

1. Introduction

The specific requirements of pattern verification and wafer layout control in lithographic applications requires a limited set of graphics routines to improve data presentation and to ease machine operation. The specific requirements have been defined and a suite of subroutines written to satisfy this need. The suite is highly modular and is written in a high-level language to ease its adaptation to suit a variety of tasks.

This package is intended to be used in conjunction with both monochrome and colour terminals. The former include the DEC VT125, VT24X and Tektronics 4014-compatible graphics terminals (including the Pericom series, the VT24X and VT100 type terminals upgraded with the Selanar graphics option), the latter include the SIGMA range of compatible terminals and the VT241. It is coded mainly in FORTRAN-77 with MACRO-11 used where required for speed. The suite of subroutines is designed to run on RSX-11M systems on PDP-11 or LSI-11 computers. A VAX VMS version is also available. Conversion to run on other terminals or operating systems should be easily achievable due to the use of high level routines and a modular structure.

2. Overview

The package is designed to present a set of subroutines that include a one to one correspondence with the DEC supplied routines for the Servogor 281 plotter (also marketed by Philips and Calcomp). The intention is to permit programs requiring graphic output to have direct access to the Servogor plotter, a ReGIS terminal or a Tektronics PLOT-10 compatible terminal. Identical calls are provided as appropriate, requiring only that a graphics program be task built with the appropriate libraries to suit the specific terminal type. In addition, further routines provide a broader range of functions, though compatibility with the plotter is then not available.

**Fortran Plotting Package
for Graphic VDUs**

The package expects its coordinates (either: user's or the terminal's) in 0.1 mm units (integers) and does not accept real numbers denoting cm. Two types of routines are provided, those that correspond to an A4 page (30 by 21 cm), and those that use the coordinates of the terminal directly.

The package can be used in FORTRAN-77 under IAS, all RSX11M/M+ systems, RT11 and VMS. It is possible to modify the suite to run under FORTRAN-IV and IV PLUS if required. This description refers specifically to RSX-11M operating systems.

Implementation of these FORTRAN routines in an operational environment is a prerequisite for usage of the any of the higher software level (written normally in FORTRAN), e.g.: the HCFS-Package (Hardware Compatible Fortran Software) and 2-D and 3-D plotting packages already available. Mixed usage of subroutines from different software levels, in the same application program is also possible but should be checked thoroughly.

2.1. Index of subroutines

The package subroutines can logically be divided into functional groups, as follows.

2.1.1. GROUP 1 : Vectors

```
RMOVE,JMOVE    relative move,  
               A4 coords option  
XRMOVE,XJMOVE  relative move,  
               graphic terminal coords option  
R PLOT,J PLOT  relative plot,  
               A4 coords option  
XR PLOT,XJ PLOT relative plot,  
               graphic terminal coords option  
AMOVE,KMOVE    absolute move,
```

Page 4
Fortran Plotting Package
for Graphic VDUs

A4 coords option
XAMOVE,XKMOVE absolute move,
graphic terminal coords option
APLOT,KPLOT absolute plot,
A4 coords option
APLOT,KPLOT absolute plot,
graphic terminal coords option

2.1.2. GROUP 2 : Pen and line type

PENUP dummy in monochrome terminals,
for compatibility
NEWPEN dummy in monochrome terminals,
change colour in colour terminals
PLUMA dummy in monochrome terminals,
change colour in colour terminals
LINTYP select line type

2.1.3. GROUP 3 : Text plotting

SETCHR select character size and angle
NEWCHR select character set
SETSLN select character slant
POINT plot a point mark
TEXT plot text

2.1.4. GROUP 4 : Circle, sector and axes

CIRC plot circle
SECT plot sector
AXEL plot axis

2.1.5. GROUP 5 : Digitising and window

LOCAT get coordinates without user
intervention
DIGTZE digitize interactively (not
available on VT125)
OFFSET select offset coordinates
WINDOW select plotting window
PLTWND verify the current plotting
window

2.1.6. GROUP 6 : Miscellaneous

CHART dummy, for compatibility
PLTON open output channel and ini-

Fortran Plotting Package
for Graphic VDUs

tialize graphic terminal
PLTOFF close O/P channel and logically
disconnect
OFFBUF dummy, graphic terminal used in
real time
ONBUF dummy, graphic terminal used in
real time
PLTNAM change default names (O/P
device and file)
PLTERR transfer ERROR condittion to
user program

2.1.7.

GROUP 7 : Extensions

ARECT Rectangle drawing routine, A4
coordinates
XARECT Rectangle drawing routine,
plotter coords
FILSEL Sets to filled or edged rectan-
gle drawing

CURSOR Returns cursor coordinates and
key code

ERALN Erases a previously drawn line
(A4 coords)
XERALN Erases a previously drawn line
(Terminal units)
ERART Erases a previously drawn rec-
tangle (A4 coords)
XERART Erases a previously drawn rec-
tangle (Term units)
ERASE Selects normal or erase writing
for subsequent features

2.2. Notes on usage

This package, with the exception of the routines LOCAT, CURSOR, and DIGTZE, can also be used with the graphic terminal offline instead of on-line, since all the other routines are output only. This makes it possible to store pictures (plots) in files for later plotting. In this memorandum, online plotting is defined as plotting with the graphic terminal directly connected to a dedicated line, with the plotting program outputting the graphic commands to

Fortran Plotting Package
for Graphic VDUs

the terminal which immediately begins executing them. Offline plotting is considered to be plotting into a file, which later on is output to the graphic terminal by using the appropriate file transfer utility program: PLTPER or PLTVT.

Fortran Plotting Package
for Graphic VDUs

3. Detailed description of the package subroutines

These subroutines will be described complete with variable usage, call and, if possible, examples. The order will be the same as in 2.1.

Equivalent subroutine names are mentioned in parenthesis.

RMOVE (JMOVE)

This subroutine moves the cursor with relative coordinates, within the limits of an A4 page (30cm X 21cm or 3000 X 2100 graphic units).

Use : CALL RMOVE (IX,IY)

IX = x-coordinate
IY = y-coordinate

XRMOVE (XJMOVE)

This subroutine moves the cursor with relative coordinates, within the limits of the particular graphic terminal.

For a VT125/24X, this is 680 X 480 units.
For a Pericom or Tektronics equivalent,
this is 1024 X 780 units.
For a SIGMA colour terminal,
this is 768 X 512 units.

Use : CALL XRMOVE (IX,IY)

IX = x-coordinate
IY = y-coordinate

RPLOT (JPLOT)

This subroutine plots a line with relative coordinates, within the limits of an A4 page (30cm X 21cm or 3000 X 2100 graphic units).

Use : CALL RPLOT (IX,IY)

IX = x-coordinate
IY = y-coordinate

XRPLLOT (XJPLLOT)

This subroutine plots a line with relative coordinates, within the limits of the particular graphic terminal.

For a VT125/24X, this is 680 X 480 units.

For a Pericom or Tektronics equivalent,
this is 1024 X 780 units.

For a SIGMA colour terminal,
this is 768 X 512 units.

Use : CALL XRPLLOT (IX,IY)

IX = x-coordinate
IY = y-coordinate

AMOVE (KMOVE)

This subroutine moves the pen with absolute coordinates, within the limits of an A4 page (30cm X 21cm or 3000 X 2100 graphic units).

Use : CALL AMOVE(IX,IY)

IX = x-coordinate
IY = y-coordinate

XAMOVE (XKMOVE)

This subroutine moves the pen with absolute coordinates, within the limits of the particular graphic terminal.

For a VT125/24X, this is 680 X 480 units.

For a Pericom or Tektronics equivalent,
this is 1024 X 780 units.

For a SIGMA colour terminal,
this is 768 X 512 units.

Use : CALL XAMOVE(IX,IY)

IX = x-coordinate
IY = y-coordinate

APLOT (KPLOT)

Fortran Plotting Package
for Graphic VDUs

This subroutine plots a line with absolute coordinates, within the limits of an A4 page (30cm X 21cm or 3000 X 2100 graphic units).

Use : CALL APLOT(IX,IY)

IX = x-coordinate
IY = y-coordinate

XAPLOT (XKPLOT)

This subroutine plots a line with absolute coordinates, within the limits of the particular graphic terminal.

For a VT125/24X, this is 680 X 480 units.

For a Pericom or Tektronics equivalent,
this is 1024 X 780 units.

For a SIGMA colour terminal,
this is 768 X 512 units.

Use : CALL XAPLOT(IX,IY)

IX = x-coordinate
IY = y-coordinate

PENUP

This subroutine is a dummy, to match the plotter routine that raises or lowers the pen

Use : CALL PENUP(IM)

IM = 0 : pen up
IM = 1 : pen down

NEWPEN

In the plotter suite, this subroutine selects one of the 8 pens on the plotter. It is also possible to park the current pen without selecting a new pen.

In this suite, it is a dummy routine for monochrome terminals. For colour terminals, the subroutine provides colour selection. The colour selection depends on the type of terminal used.

Fortran Plotting Package
for Graphic VDUs

Use : CALL NEWPEN(IP)

IP = 0 : parks current pen (plotter only)
1..8 : select pen, return to location
: or select colour, remain at loc-
ation

PLUMA

In the plotter package, this subroutine selects one of the 8 pens on the plotter. It is also possible to park the current pen without selecting a new one.

In this suite, it is a dummy routine for monochrome terminals. For colour terminals, the subroutine provides colour selection. The colour selected depends on the type of terminal used.

Use : CALL PLUMA(IP)

IP = -1 : parks current pen (plotter
only)
0...7 : select pen, return to location
: or select colour, remain at
location

LINTYP

This subroutine selects the line type and length of elements if dashed.

Use : CALL LINTYP(IN,IL)

IN = 0 : continuous line
1 : dotted line
2 : dashed line
3 : dashed dashed
4 : dashed dotted
IL = dummy, included for compatibility

SETCHR

This subroutine is used to set text and plot mark characteristics, the detail of which depends on the

Page 11
Fortran Plotting Package
for Graphic VDUs

graphic terminal.

Use : CALL SETCHR(IH,ID,IW)

On a VT125,

IH = character height
ID = character direction in degrees
IW = character width

On a Pericom,

IH = character height
ID = character direction in degrees
(not implemented)
IW = character width (not used)

On a SIGMA,

IH = character height
ID = character direction in degrees
(0,90,180,270 available)
IW = character width (not used)

NEWCHR

This subroutine selects one of five character sets of the graphic terminal. The detail depends on the actual terminal type.

Use : CALL NEWCHR(IN)

IN = 0 : standard ASCII set
1 : German set
2 : Spanish set
3 : Swedish-Finnish set
4 : Danish-Norwegian set

SIGMA terminals do not offer this facility.

SETSLN

This subroutine is used to set the character slant.

Use : CALL SETSLN(IN)

IN = 0 : 90 degrees (straight)
1 : 75 degrees (forward slant)
-90<IN<90 slant angle (forward or back)

POINT

This subroutine is used to plot a point mark

Use : CALL POINT(IN)

IN = 0...4 : plot point mark
(see figure 1 for marks)

TEXT

This subroutine plots text with a given number of characters.

Use : CALL TEXT(STRING ,IN)

STRING = string to be plotted (BYTE array)
IN = number of characters in STRING.

N.B. This routine requires the number of characters to be explicitly stated. The option to leave out the number of characters is not presently available.

CIRC

This subroutine plots a circle.

Use : CALL CIRC(IR)

IR = radius of circle.
Will plot the circle from the perimeter point corresponding to 0 degrees
if > 0 : counterclockwise plot
if < 0 : clockwise plot

Fortran Plotting Package
for Graphic VDUs

SECT

This subroutine will plot sectors of a circle.

Use : CALL SECT(IR,IA,IB)

IR = radius of circle of which the
sector is a part
 if > 0 : counterclockwise plot
 if < 0 : clockwise plot
IA = start angle (degrees)
IB = end angle (degrees)

AXEL

This subroutine plots a x- or y-axis with tic-marks.

Use : CALL AXEL(IM,IL,ID,IT1,IT2)

IM = select axis :
 if 0 : x-axis
 if 1 : y-axis
IL = absolute length of axis
ID = distance between tic-marks
 if > 0 : right
 if < 0 : left
IT1 = length of first tic-mark
 if > 0 : up
 if < 0 : down
IT2 = length of second tic-mark
 if > 0 : up
 if < 0 : down

(See Figure 2 for illustration)

LOCAT

This subroutine is used to get the user's plotting coordinates from the plotter. Note that it can only be used with online plotting.

Use : CALL LOCAT(IX,IY)

IX = integer variable to receive the x-coordinate
IY = integer variable to receive the y-coordinate

DIGTZE

Subroutine to digitize interactively with the graphic terminal, if this supports the feature (VT125 type terminals do not). To use on the Pericom, either depress the optional light pen at the desired location, or use the cursor positioning arrows to set the cursor hairs onto the desired location and then depress the space bar. This can only be used for online work. On SIGMA terminals, the optional joystick is supported.

Use : CALL DIGTZE(IX,IY)

IX = integer variable to receive the x-coordinate
IY = integer variable to receive the y-coordinate

OFFSET

This subroutine is used to set a fixed x and/or y offset for all subsequent graphical display.

Use : CALL OFFSET(IX,IY)

IX = x offset
IY = y offset

WINDOW

Subroutine to set the display window. All subsequent plotting will only be recognized and plotted inside this window. Note that this does not scale the coordinates in any way.

Use : CALL WINDOW(IXMIN,IXMAX,IYMIN,IYMAX)

IXMIN = x-coordinate of lower left corner
IXMAX = x-coordinate of upper right corner
IYMIN = y-coordinate of lower left corner
IYMAX = y-coordinate of upper right corner

PLTWND

Subroutine to display the current window.

Fortran Plotting Package
for Graphic VDUs

Use : CALL PLTWND

no arguments

CHART

This routine is a null operation in the graphic terminals.

use : CALL CHART(ICM)

ICM = advance paper ICM cm. Range : 1...64

PLTON

This subroutine opens the output channel (disc file or terminal line), verifies the output buffer and sends a string initialising the plotter.

Only subroutines PLTNAM and PLTERR can be called before PLTON is called.

Use : CALL PLTON (IBUF,LBUF [,LUN])

IBUF = name of array reserved in user program
and used as output buffer

LBUF = length of array IBUF in words
in range 42...512, if IBUF has length
>512, space over 512 words is unused;
optimal LBUF for disc access = 512
words

LUN = optional channel number used for ouput
channel; default LUN=1 (hint: most
users may prefer automatic channel
allocation by system subroutine
GTCHN to get a free channel number)

PLTOFF

This subroutine switches the graphic processor to logically off. The terminal will exit graphics mode after this call.

Use : CALL PLTOFF
no arguments

OFFBUF

This subroutine switches buffering OFF, that means, every call to another subroutine causes immediate output of a string to the plotter. Initial software mode is BUFFERED. This call has no effect when writing to disc file.

use : CALL OFFBUF
no arguments

ONBUF

This subroutine switches buffering ON, that means, every call to another subroutine causes buffered output of a string to the plotter.

use : CALL ONBUF
no arguments

PLTNAM

This subroutine changes default names for output file and device and can be called only once and only before CALL START.

use : CALL PLTNAM (FNAM,LFNAM,DNAM,LDNAM)

FNAM = Array containing ASCII string
of new file name

LFNAM = length of new file name string

DNAM = array containing ASCII string of new device
name

LDNAM = length of device name

Fortran Plotting Package
for Graphic VDUs

PLTERR

This subroutine establishes decoding of possible errors, when using this software package. Once called, it allows one to determine the nature of the fault. (Not fully implemented as not needed in this case).

Use : CALL PLTERR (IER)

IER = array of two words reserved for error information; lower word contains error number from plotter control processor; high word contains status information from file control processor; in both cases value equal zero mean success.

Possible error number are:
0 = no errors detected

ARECT

This routine draws the border or fills a rectangle, given the bottom left and top right coordinates in A4 units.

Use : CALL ARECT(IX1,IY1,IX2,IY2)

IX1 = x coordinate of lower left corner
IY1 = y coordinate of lower left corner
IX2 = x coordinate of top right corner
IY2 = y coordinate of top right corner

XARECT

This routine draws the border or fills a rectangle, given the bottom left and top right coordinates in terminal units.

Use : CALL XARECT(IX1,IY1,IX2,IY2)

IX1 = x coordinate of lower left corner
IY1 = y coordinate of lower left corner
IX2 = x coordinate of top right corner
IY2 = y coordinate of top right corner

FILSEL

This subroutine selects the drawing mode for rectangle plotting. If set, the rectangles are filled, if cleared, only the edges are drawn.

Use : CALL FILSEL(ILOG)

ILOG = BYTE variable. If set, block drawing is selected until changed.
If cleared, edge drawing is selected until changed.

CURSOR

Operates as for DIGTZE, but it also returns the ASCII code for the key depressed to transmit the current cursor coordinates, as well as the coordinates themselves.

Use : CALL CURSOR(IX,IY,CHAR)

IX = X cursor coordinate
IY = Y cursor coordinate
CHAR = BYTE variable, containing the ASCII code of the key

ERALN

This routine allows the erasure of a previously drawn line, that has been defined using A4 units. It is necessary to select the same line characteristics (ie solid, dotted etc) as those used to draw the line before calling this routine.

Use : CALL ERLAN (IX,IY)

IX = X-coordinate (absolute)
IY = Y-coordinate (absolute)

A complement or erase line is drawn from the current position to that defined by the subroutine arguments.

Fortran Plotting Package
for Graphic VDUs

XERALN

This routine allows the erasure of a previously drawn line that has been defined using graphic terminal units. It is necessary to select the same line characteristics (ie solid, dotted etc) as those used to draw the line before calling this routine.

Use : CALL XERALN (IX,IY)

IX = X-coordinate (absolute)
IY = Y-coordinate (absolute)

A complement or erase line is drawn from the current position to that defined by the subroutine arguments.

ERART

This subroutine provides a means of erasing a previously drawn rectangle, be it in border or filled-in state. This routine accepts A4 coordinates, and is complemented by the following routine that uses terminal coordinates.

Use : CALL ERART (IX1,IY1,IX2,IY2)

IX1 = X-coordinate of lower left corner (absolute)
IY1 = Y-coordinate of lower left corner (absolute)
IX2 = X-coordinate of top right corner (absolute)
IY2 = Y-coordinate of top right corner (absolute)

This routine uses complement drawing to erase the figure. Consequently, it is necessary to choose the same line or fill characteristics as were used to draw the figure before calling this routine.

XERART

This subroutine provides a means of erasing a previously drawn rectangle, be it in border or filled-in state. This routine accepts terminal coordinates, and is complemented by the previous routine that uses A4 coordinates.

Use : CALL XERART (IX1,IY1,IX2,IY2)

Fortran Plotting Package
for Graphic VDUs

IX1 = X-coordinate of lower left corner (absolute)
IY1 = Y-coordinate of lower left corner (absolute)
IX2 = X-coordinate of top right corner (absolute)
IY2 = Y-coordinate of top right corner (absolute)

This routine uses complement drawing to erase the figure. Consequently, it is necessary to choose the same line or fill characteristics as were used to draw the figure before calling this routine.

ERASE

This subroutine switches the terminal from normal to complement writing (and vice versa). It can be used to erase a block of lines or rectangles before returning to normal writing.

Use : CALL ERASE (ILOG)

ILOG = BYTE variable. If true, erase writing is selected until ERASE is called with ILOG set to false.
If false, normal writing is resumed.

4. An example using the package calls

```
C*** This is a program in FORTRAN-77 to test the
package calls
C
C* Allocate 512 words buffer for output
C
      INTEGER IBUF(512)
C
C* Create two logical variables
C
      LOGICAL LOG1,LOG2
      DATA ILOG1,ILOG2/.TRUE.,.FALSE./
C
C* Initialize plotter
C
      CALL PLTON(IBUF,512,3)
C
C* Create a border by filling the screen then erasing
the drawing zone
C
      CALL FILSEL(ILOG1)
      CALL XARECT(0,0,1023,779)
      CALL XERART(40,40,984,740)
      CALL FILSEL(ILOG2)
C
C* Write in a title
C
      CALL SETCHR(80,10,10)
      CALL XAMOVE(250,675)
      CALL TEXT('TEST PROGRAMME FOR FORTRAN GRAPHICS
PACKAGE',43)
C
C* Draw some nested circles
C
      DO 10 I=1,5
      CALL XAMOVE(100,500)
      CALL CIRC(I*-100)
10    CONTINUE
C
C* Draw a rectangular pattern
C
      CALL XARECT(100,100,240,200)
      CALL XAMOVE(100,100)
      CALL XRPLT(140,100)
      CALL XRMVE(-140,0)
      CALL XRPLT(140,-100)
      CALL FILSEL(ILOG1)
      CALL XERART(150,130,190,170)
```

Fortran Plotting Package
for Graphic VDUs

```
C
C* Demonstrate the various text sizes
C
    CALL SETCHR(5,10,10)
    CALL XAMOVE(500,550)
    CALL TEXT('THIS IS THE SMALLEST WRITING',28)
    CALL SETCHR(30,10,10)
    CALL XAMOVE(500,525)
    CALL TEXT('THIS IS THE NEXT SIZE UP',24)
    CALL SETCHR(55,10,10)
    CALL XAMOVE(500,500)
    CALL TEXT('THIS IS THE NEXT SIZE UP',24)
    CALL SETCHR(80,10,10)
    CALL XAMOVE(425,450)
    CALL SETSLN(1)
    CALL TEXT('THIS IS THE LARGEST SIZE WITH
SLANT',35)
C
C* Draw a chequer pattern
C
    DO 30 J=1,5
    DO 30 I=1,4
    K=0
    IF(J.EQ.2.OR.J.EQ.4)K=50
    IX1=400+I*100+K
    IY1=50+J*50
    CALL XARECT(IX1,IY1,IX1+50,IY1+50)
30    CONTINUE
C
C* End of plot. Sign off
C
    CALL PLTOFF
    STOP
    END
```

A screen dump of the graphical output of this program is included as Figure 3.

Other typical examples of graphical output produced using these routines are included as Figures 4,5,6 and 7.

Fortran Plotting Package
for Graphic VDUs

AMOVE (KMOVE)	8
APLOT (KPLOT)	8
ARECT	17
AXEL	13
CHART	15
CIRC	12
Circle, sector and axes	4
CURSOR	18
Detailed description of package	7
Digitising and window	4
DIGTZE	14
ERALN	18
ERART	19
ERASE	20
Extensions	5
FILSEL	18
Index of Subroutines	3
Introduction	2
Line type	4
LINTYP	10
LOCAT	13
Miscellaneous	4
NEWCHR	11
NEWPEN	9
Notes on usage	5
OFFBUF	16
OFFSET	14
ONBUF	16
Overview	2
PENUP	9
PLTERR	17
PLTNAM	16
PLTOFF	15
PLTON	15
PLTWND	14
PLUMA	10
POINT	12
RMOVE	7
RPLOT (JPLOT)	7

Fortran Plotting Package
for Graphic VDUs

SECT	13
SETCHR	10
SETSIN	11
TEXT	12
Text Plotting	4
Vectors	3
WINDOW	14
XAMOVE (XKMOVE)	8
XAPLOT (XKPLOT)	9
XARECT	17
XERALN	19
XERART	19
XRMOVE (XJMOVE)	7
XRPLT (XJPLOT)	8

Figure 1 : Point plot markers

Type 1

Type 2

Type 3

Type 4

Type 5

Figure 2: Schematic of parameters in AXEL

TEST PROGRAMME FOR FORTRAN GRAPHICS PACKAGE

THIS IS THE SMALLEST WRITING

THIS IS THE NEXT SIZE UP

THIS IS THE NEXT SIZE UP

THIS IS THE LARGEST SIZE WITH SCANT

Figure 4 : Plot of small feature cross-section

Figure 5 : Example Slice Plot

EBRF2 EXPOSURE FILE NAME =
ON 21-AUG-84
CHIP SIZE = 3 7500 2 4002
REPEAT DISTANCES = 3 7500 3500 0002

TOTAL NUMBER OF CHIPS 4

Figure 6 : Example Plot of Monte-Carlo Simulation

MONTE CARLO SIMULATION OF ELECTRON TRAJECTORIES

100 ELECTRONS at 20.0 keV

8.50 Microns of PMMA on SILICON

14.0 Percent BACKSCATTERED

11.0 Percent REEMERGED

1.00 Micron x grid spacings

1.00 Micron y grid spacings

PRINTED

Page 31
Fortran Plotting Package
for Graphic VDUs

Figure 7 : Example 3-D plot

DRAW3D -- STOP END OF PLOT

ENERGY DEPOSITION SURFACE FOR 20 keV ELECTRONS

FROM COMEN25.DAT

UNLIMITED

DOCUMENT CONTROL SHEET

UNCLASSIFIED

Overall security classification of sheet

(As far as possible this sheet should contain only unclassified information. If it is necessary to enter classified information, the box concerned must be marked to indicate the classification eg (R) (C) or (S))

1. DRIC Reference (if known)	2. Originator's Reference MEMORANDUM 3739	3. Agency Reference	4. Report Security Classification Unclassified
5. Originator's Code (if known)	6. Originator (Corporate Author) Name and Location Royal Signals and Radar Establishment		
5a. Sponsoring Agency's Code (if known)	6a. Sponsoring Agency (Contract Authority) Name and Location		

7. Title

A FORTRAN PLOTTING PACKAGE FOR GRAPHIC VDU'S

7a. Title in Foreign Language (in the case of translations)

7b. Presented at (for conference papers) Title, place and date of conference

8. Author 1 Surname, initials V J Mifsud	9(a) Author 2 C Broughton	9(b) Authors 3,4...	10. Date	pp. ref.
11. Contract Number	12. Period	13. Project	14. Other Reference	

15. Distribution statement

Unlimited

Descriptors (or keywords)

continue on separate piece of paper

Abstract A set of plotting routines have been implemented in FORTRAN on DEC LSI-11, PDP-11 and VAX-11 computers to provide a transportable graphics capability to improve data presentation and machine control on vector scan particle beam lithography machines. The routines are general in nature and have already proved to be of use in many scientific applications requiring compact and tailored graphics capabilities within specific programs. This document is designed to act as a User's Guide for the suite. Versions of the routines are available for ReGIS, Tektronics 4010/4014 and SIGMA native-mode graphics terminals.

END

FILMED

1-85

DTIC