ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

EAPINO EEAMHNO 2021-2022

ΜΑΘΗΜΑ «ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ»

ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ Δ. ΣΤΑΜΟΥΛΗΣ, ΚΑΘΗΓΗΤΗΣ

ΒΟΗΘΟΙ: ΔΙΟΝΥΣΙΟΣ ΔΑΜΑΣΙΩΤΗΣ, ΙΑΚΩΒΟΣ ΠΙΤΤΑΡΑΣ, ΘΕΟΔΟΣΗΣ ΓΙΑΝΝΟΠΟΥΛΟΣ

1η Σειρά Ασκήσεων

Μαθήτριες:

Πελαγία Ροδίτη	p3190346
Ελευθερία Ντούλια	p3180129
Αγγελική Ναούμ	s6180070

1. Βασικά χαρακτηριστικά των καρτών δικτύωσης

1.1. 300 Mbps

1.2. IP: 192.168.1.4

DG: 192.168.1.254

DNS: 192.168.1.254

1.3. Φυσική διεύθυνση (MAC address) σε δεκαεξαδική μορφή:

1.3.1.4C-BB-58-B3-29-2B

- 1.4.1.LLDP
- 1.4.2.TCP/IPv4
- 1.4.3. Microsoft Network Adapter multiplexor protocol
- 1.4.4. TCP/IPv6
- 1.4.5. SMB
- 1.4.6. LLTD

1.5. Κατασκευαστής της κάρτας δικτύωσης:

Qualcomm Atheros Communications Inc.

1.6. Τη θέση της στο PCI bus του υπολογιστή: PCI Slot 8 (PCI bus 2, device 0, function 0)

1.7 Έκδοση του οδηγού (driver) της κάρτας: 10.0.0.341 Το όνομα του σχετικού αρχείου: athw10x.sys

a. Διακοπή (interrupt – IRQ) που χρησιμοποιεί:0x00000010 (16)

2. Αρχική Χρήση Αναλυτή Πρωτοκόλλων Wireshark

2.1 Η διεύθυνση IP του εξυπηρετητή που «φιλοξενεί» το http://grad.cs.aueb.gr/ είναι 195.251.248.252.

```
195.251.248.252 192.168.1.191 HTTP
                                                                                   0.000000000 HTTP/1.1 200 OK (JPEG JFIF image)
   1782 23.639971
   1783 23.640093
                        192.168.1.191
                                           195.251.248.252 TCP
                                                                                   0.000000000 54299 → 80 [ACK] Seq=2567 Ack=6782 Win=262656 Len=0
   1784 23.640316
                        192.168.1.191
                                           195.251.248.252 HTTP
                                                                       708
                                                                                   {\tt 0.000000000~GET~/images/vertical\_facebook.jpg~HTTP/1.1}
                        195.251.248.252
                                           192.168.1.191 TCP
192.168.1.191 HTTP
   1785 23.649259
                                                                      1506
                                                                                   0.000000000 80 \rightarrow 54298 [ACK] Seq=51619 Ack=3779 Win=13440 Len=145
   1786 23.649259
                        195.251.248.252
                                                                                   0.000000000 HTTP/1.1 200 OK (JPEG JFIF image)
                                                                       739
                                                                                   0.000000000 54298 → 80 [ACK] Seq=3779 Ack=53756 Win=262656 Len=0
   1787 23.649378
                        192.168.1.191
                                           195.251.248.252 TCP
   1788 23.666971
                        192.168.1.191
                                           195.251.248.252 TCP
                                                                        54
                                                                                   0.000000000 54297 \rightarrow 80 [ACK] Seq=3882 Ack=79835 Win=261632 Len=0
                                                                                   0.000000000 GET /images/banner_background.jpg HTTP/1.1
0.000000000 GET /images/homepage_slim_divider.jpg HTTP/1.1
   1901 24 000675
                        192.168.1.191
                                           195.251.248.252 HTTP
                                                                       708
                        192.168.1.191
   1903 24.001810
                                           195.251.248.252 HTTP
                                                                       712
   1904 24.009476
                        195.251.248.252
                                           192.168.1.191 HTTP
                                                                                   0.000000000 HTTP/1.1 200 OK (JPEG JFIF image)
                                                                                   0.000000000 HTTP/1.1 200 OK (JPEG JFIF image)
   1906 24.011066
                        195.251.248.252
                                           192.168.1.191 HTTP
   1909 24 051141
                        192.168.1.191
                                           195.251.248.252 TCP
                                                                        54
                                                                                   0.000000000 54298 \rightarrow 80 [ACK] Seq=4433 Ack=54397 Win=262144 Len=0
                                                                        54
                                                                                   0.000000000 54299 → 80 [ACK] Seq=3225 Ack=7355 Win=262144 Len=0
   1910 24.051179
                        192.168.1.191
                                           195.251.248.252 TCP
   2117 25.431114
                        192.168.1.191
                                           195.251.248.252 HTTP
                                                                                   0.000000000 GET /favicon.ico HTTP/1.1
   2119 25.440250
                        195.251.248.252
                                           192.168.1.191 HTTP
                                                                                   0.000000000 HTTP/1.1 302 Found (text/html)
   2129 25.497251
2130 25.505993
                                                                                   0.000000000 GET /favicon.ico HTTP/1.1
0.000000000 HTTP/1.1 302 Found (text/html)
                        192.168.1.191
                                           195.251.248.252 HTTP
                                                                       753
                        195.251.248.252
                                           192.168.1.191 HTTP
                                                                       537
   2133 25.715295
                                                                                   0.000000000 54299 → 80 [ACK] Seq=4623 Ack=8321 Win=262656 Len=0
                        192.168.1.191
                                          195.251.248.252 TCP
        .... ...0 .... = IG bit: Individual address (unicast)
  Source: HewlettP_14:75:ac (80:ce:62:14:75:ac)
       Address: HewlettP_14:75:ac (80:ce:62:14:75:ac)
        .....0. .... = LG bit: Globally unique address (factory default)
        .... ...0 .... = IG bit: Individual address (unicast)
     Type: IPv4 (0x0800)
✓ Internet Protocol Version 4, Src: 192.168.1.191 Dst: 195.251.248.252
    0100 .... = Version: 4
.... 0101 = Header Length: 20 bytes (5)
   Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
        0000 00.. = Differentiated Services Codepoint: Default (0)
......00 = Explicit Congestion Notification: Not ECN-Capable Transport (0)
```

2.2 Η διεύθυνση ΙΡ του υπολογιστή είναι 192.168.1.191.

2.3 Η διεύθυνση ΜΑC του υπολογιστή σε δεκαεξαδική μορφή είναι 80:ce:62:14:75:ac.

2.4 Ο κατασκευαστής της κάρτας δικτύου είναι HewlettP_14:75:ac.

2.5 1. HTTP

- 2. TCP
- 3. TLSv1

	692 20.347587	192.168.1.191	195.251.248.252 TLS	v1 61	0.
	689 20.346536	192.168.1.191	195.251.248.252 TLS	v1 61	0.
	681 20.340358	195.251.248.252	192.168.1.191 TLS	v1 1369	0.
	680 20.340105	195.251.248.252	192.168.1.191 TLS	v1 1369	0.
	677 20.331856	192.168.1.191	195.251.248.252 TLS	v1 571	0.
	676 20.331461	192.168.1.191	195.251.248.252 TLS	v1 571	0.
	2133 25.715295	192.168.1.191	195.251.248.252 TCP	54	0.
	1910 24.051179	192.168.1.191	195.251.248.252 TCP	54	0.
	1909 24.051141	192.168.1.191	195.251.248.252 TCP	54	0.
	1788 23.666971	192.168.1.191	195.251.248.252 TCP	54	0.
	672 20.323521	195.251.248.252	192.168.1.191 T	CP 66	
П	669 20.315837	192.168.1.191	195.251.248.252 T	CP 66	
	668 20.315010	192.168.1.191	195.251.248.252 T	CP 66	
	2130 25.505993	195.251.248.252	192.168.1.191 H	TTP 537	
	2129 25.497251	192.168.1.191	195.251.248.252 H	TTP 753	
	2119 25.440250	195.251.248.252	192.168.1.191 H	TTP 537	
	2117 25.431114	192.168.1.191	195.251.248.252 H	TTP 753	

3. Το πλαίσιο Ethernet

1. H mac address του υπολογιστή είναι η 80:ce:62:14:75:ac

- 2. Η mac address του προορισμού του πλαισίου είναι a4:91:b1:ed:96:02...
- 3. Η mac address προορισμού είναι αυτή του router, το οποίο χρησιμοποιούμε για να βγούμε από το τοπικό δίκτυο. Για αυτό το λόγο αν επισκεφτούμε άλλη ιστοσελίδα δεν θα αλλάξει.
- 4. Η δεκαεξαδική τιμή του πεδίου Τύπος (Type) του παραπάνω πλαισίου είναι 0x0800. Το πρωτόκολλο που υποδεικνύει είναι το IPv4.

5. Το μήκος του πλαισίου είναι 383 bytes.

```
Arrival Time: Mar 26, 2022 18:28:49.456972000 GTB Standard Time
   [Time shift for this packet: 0.000000000 seconds]
  Epoch Time: 1648312129.456972000 seconds
  [Time delta from previous captured frame: 0.002931000 seconds]
  [Time delta from previous displayed frame: 0.002931000 seconds]
  [Time since reference or first frame: 17.958984000 seconds]
  Frame Number: 200
  Frame Length: 383 bytes (3064 bits)
  Capture Length: 383 bytes (3064 bits)
  [Frame is marked: False]
  [Frame is ignored: False]
  [Protocols in frame: eth:ethertype:ip:tcp:http]
  [Coloring Rule Name: HTTP]
  [Coloring Rule String: http || tcp.port == 80 || http2]
Ethernet II, Src: 80:ce:62:14:75:ac, Dst: a4:91:b1:ed:96:02
Destination: a4:91:b1:ed:96:02
```

6. Ο χαρακτήρας ASCII "G" εμφανίζεται μετά από 54 bytes. Υπάρχουν 14 Byte στο πλαίσιο Ethernet, 20 bytes IP header και ακολουθούν 20 bytes TCP header πριν τα HTTP data.

4. Γενικές Ερωτήσεις και Ασκήσεις

1. Η πρόταση ότι όταν αυξάνει η γεωγραφική απόσταση δύο κόμβων αυξάνει αναλογικά η συνολική καθυστέρηση ενός πλαισίου, από τη στιγμή που θα αρχίσει η αποστολή του από τον ένα κόμβο μέχρι τη στιγμή που θα παραληφθεί από τον άλλο κόμβο είναι σωστή, αφού στον συνολικό χρόνο καθυστέρησης μετάδοσης του πακέτου συμπεριλαμβάνεται ο χρόνος μετάδοσης, ο οποίος είναι το μέγεθος πακέτου / ρυθμός συνδέσμου, αλλά και ο χρόνος διάδοσης, ο οποίος υπολογίζεται από τον τύπο: απόσταση / ταχύτητα φωτός. Επομένως αν αυξηθεί η απόσταση μεταξύ των κόμβων, αυξάνεται και η συνολική καθυστέρηση του πλαισίου. Επιπλέον στην καθυστέρηση αυτή προστίθεται χρόνος αναμονής έως την έναρξη της μετάδοσης, ο οποίος όμως για την περίπτωση μας δεν διαδραματίζει κάποιο σημαντικό ρόλο.

Η πρόταση ότι όταν αυξάνει το μήκος ενός πλαισίου αυξάνει αναλογικά η συνολική καθυστέρηση του από τη στιγμή που θα αρχίσει η αποστολή του μέχρι τη στιγμή που θα παραληφθεί από τον άλλο κόμβο είναι επίσης σωστή, λόγω του πρώτου μέρους της προηγούμενης δικαιολόγησης, δηλαδή ότι η συνολική καθυστέρηση μετάδοσης επηρεάζεται από τον χρόνο μετάδοσης. Όσο πιο μεγάλο είναι το μήκος του πλαισίου, τόσο περισσότερο θα καθυστερήσει ο ενίοτε κόμβος να τον προωθήσει στην

κατάλληλη διεπαφή, εφόσον έχει συγκεκριμένο ρυθμό συνδέσμου με τον οποίο επεξεργάζεται και προωθεί τα πακέτα.

2.

a. Το RTT(Round Trip Time) του συνδέσμου είναι ο χρόνος που απαιτείται για ένα πακέτο να φτάσει στον προορισμό του, συν τον χρόνο της επιβεβαίωσης (ACK – acknowledge) να επιστρέψει στην πηγή. Επομένως εδώ έχουμε:

Καθυστέρηση διάδοσης συνδέσμου = απόσταση συνδέσμου / ταχύτητα φωτός =

$$\frac{55*10^9 m}{3*10^8 m/s} \approx 183,3 sec$$

Επειδή πρέπει να υπολογίσουμε και την επιστροφή, πολλαπλασιάζουμε αυτό τον αριθμό με το 2 και τελικά παίρνουμε το τελικό αποτέλεσμα: RTT=183,3*2=36,6 sec ή 36.666,66 msec, όπως συνηθίζεται να εκφράζεται το RTT.

b. Χρόνος άφιξης εικόνας στη Γη (αποστολή πλαισίου) $D_{TP} = \frac{\mu έγεθος εικόνας σε bits}{\chi ωρητικότητα συνδέσμου} = \frac{5Mbits}{128Kbps} = \frac{5*10^6 \ bits}{128*10^3*8 \ bits/s} = 4,8828125 \ sec$

Ο συνολικός χρόνος S υπολογίζεται από τον τύπο:

 $D_{TP}+D_{TA}+2*D_{DP}=4,8828125+4,8828125+2*183,3=376,365625$ Εφόσον θεωρήσουμε ότι επιβεβαίωση περιέχεται εμβόλιμα σε πλαίσια επίσης των 5Mbits, τότε απαιτούνται επιπλέον 183,3 sec για την μετάδοση της.

3.

a.
$$D_{TP} = \frac{\mu \acute{\epsilon} \gamma \epsilon \theta o \varsigma \pi \alpha \kappa \acute{\epsilon} \tau o \upsilon \sigma \epsilon \ bits}{\chi \omega \rho \eta \tau \iota \kappa \acute{\epsilon} \tau \eta \tau \alpha \ \sigma \upsilon \nu \delta \acute{\epsilon} \sigma \mu o \upsilon} = \frac{10.000 \ bits}{10.000.000 \ bits/sec} = 0,001 \ sec$$

$$D_{TA} = \frac{\mu \acute{\epsilon} \gamma \epsilon \theta o \varsigma \pi \alpha \kappa \acute{\epsilon} \tau o \upsilon \sigma \epsilon \ bits}{\chi \omega \rho \eta \tau \iota \kappa \acute{\epsilon} \tau \eta \tau \alpha \ \sigma \upsilon \nu \delta \acute{\epsilon} \sigma \mu o \upsilon} = \frac{1.000 \ bits}{10.000.000 \ bits/sec} = 0,0001 \ sec$$

$$D_{P} = \frac{distance}{speed} = \frac{57.600*10^{3} \ bits}{3*10^{8} \ bits/sec} = 0,192 \ sec$$

Ο συνολικός χρόνος S υπολογίζεται από τον τύπο:

$$S = D_{TP} + 2D_{DP} + D_{TA} = 0.001 + 2 * 0.192 + 0.0001 = 0.3851 \,\mathrm{sec}$$

ρυθμός αποστολής ωφέλιμης πληροφορίας = $\frac{\mu \acute{e}\gamma \epsilon \theta o\varsigma\ bits}{\chi \rho \acute{o}vo\varsigma\ sec} = \frac{10000\ bits}{0,3851\ sec} \approx 25967,28\ bits/sec$

Επίσης ρυθμός γραμμής = 10.000.000 bits/sec , άρα το ποσοστό του ονομαστικού ρυθμού της γραμμής που αξιοποιείται είναι: $\frac{100\% * 25.967,28 \ bits/sec}{10.000.000 \ bits/sec} \approx 0.26\%.$

b) Αφού από τα 10.000 bits των πλαισίων δεδομένων τα 200 bits είναι κεφαλίδα, το ωφέλιμο φορτίο των δεδομένων είναι 10.000 - 200 = 9.800 bits. Επομένως ο ρυθμός μετάδοσης πληροφορίας ο οποίος

επιτυγχάνεται είναι:
$$\frac{\alpha \rho \iota \theta \mu \acute{o}\varsigma \ \omega \phi \acute{e} λ \iota \mu \omega \nu \ bits}{\sigma \upsilon \nu ο λ \iota κ \acute{o} \chi \rho \acute{o} \nu o \ sec} = \frac{9.800 \ bits}{0,3851 \ sec} = 25.447,9356 \ bits/sec \acute{\eta}$$
 $\approx 25,44 \ \text{Kbps}$

c) Εύρεση μεγέθους παραθύρου

$$n*D_{TP}$$
 = S άρα $n = \frac{S}{D_{TP}}$

ηλεκτρομαγνητικών σημάτων στο κανάλι, δηλ. 2R= round-trip time (RTT).

Για να «γεμίζει» η γραμμή πρέπει το μέγεθος του παραθύρου η να ικανοποιεί το εξής:

$$n \ge \frac{2bR}{L} + 1 = \frac{2 * 10.000.000 * 0,192}{10.000} + 1 = 2 * 1.000 * 0,192 + 1 = 385$$

Άρα n = 385 είναι το μέγεθος παραθύρου που θα έδινε μέγιστη απόδοση σε πρωτόκολλο GBN ή SRP, με την προϋπόθεση ότι δεν συμβαίνουν σφάλματα.

Εναλλακτικά:
$$n = \frac{S}{D_{TP}} = \frac{0.3851}{0.001} = 385,1$$
, άρα αφού πρέπει να είναι ακέραιος, n=385.

Οπότε στο διάστημα αναμονής για επιβεβαίωση μπορούν να σταλούν άλλα 385 πλαίσια.

Αν στελνόταν ένα μεγάλο πλαίσιο διάρκειας μετάδοσης n^*D_{TP} , τότε θα επιτυγχάνονταν απόδοση: E'= $\frac{n*D_{TP}}{S'} = \frac{n*D_{TP}}{n*D_{TP} + 2*D_P + D_{TA}} = \frac{385*0.001}{385*0.001 + 2*0.192 + 0.0001} = 0,5 = 50\%$

Βλέπουμε ότι υπερβαίνει την αρχική απόδοση.

d) Χρόνος προθεσμίας = χρόνος μετάβασης μετ΄ επιστροφής = RTT = S = 0,3851 sec

Σφάλματα με πιθανότητα $p = 10^{-3}$

Έστω ρ η πιθανότητα να συμβεί σφάλμα σε ένα πλαίσιο , άρα η πιθανότητα να μεταφερθεί σωστά είναι (1-p)

Έστω Χ η τυχαία μεταβλητή που περιγράφει το χρόνο μεταξύ δύο διαδοχικών μεταδόσεων πλαισίων στο δίκτυο. Αν δεν υπάρχουν σφάλματα ο χρόνος αυτός θα είναι ίσος με S. Αν υπάρχει σφάλμα τότε ο αποστολέας περιμένει να περάσει ο χρόνος προθεσμίας (ΧΠ) και ξαναπροσπαθεί. Η μέση τιμή του χρόνου Χ δύο διαδοχικών μεταδόσεων, και έπειτα η απόδοση, δίνονται από τη σχέση:

$$E[X] = S + X\Pi*p/(1-p), Aπόδοση = \frac{D_{TP}}{E[X]}$$

Επομένως έχουμε:

$$E[X] = 0.3851 + \frac{0.3851 \times 10^{-3}}{1 - 10^{-3}} \approx 0.3854$$

Απόδοση = $\frac{0,001}{0.3854} \approx 0,002594 \approx 0,259\%$ (απόδοση χωρίς σφάλματα: $\frac{D_{TP}}{S} = \frac{0,001}{0.3851} \approx 0,002596 \approx 0,260\%$

e)

1. GBN:

- Μετά τη λήξη του χρόνου αναμετάδοσης (timeout) για ένα πλαίσιο, γίνεται επαναμετάδοση αυτού και όλων των επομένων πλαισίων που έχουν ήδη μεταδοθεί.
- Ο παραλήπτης δέχεται μόνο πλαίσια που είναι στη σωστή σειρά, τα υπόλοιπα απορρίπτονται (ακόμα και αν είναι ορθά).
 - Επομένως και οι επιβεβαιώσεις στέλνονται με τη σειρά
- Αν στέλνονται συνέχεια πλαίσια και έχει γίνει η βέλτιστη επιλογή του η, τότε σε κάθε timeout ο αποστολέας «επιστρέφει» κατά η πλαίσια πίσω.
 - Απαιτήσεις για ενταμιευτή:
 - Αποστολέας: n
 - Παραλήπτης: 1 --> το πλαίσιο με την αναμενόμενη αρίθμηση προωθείται κατευθείαν, ενώ τα υπόλοιπα απορρίπτονται

≦

Αρίθμηση:

- Οι αριθμοί σειράς είναι από 0 έως MAX_SEQ
- Προφανώς πρέπει n < MAX_SEQ +1, άρα αφού n=385 (αριθμός παραθύρων) τότε έστω ότι MAX_SEQ = 386

2. SRP

- Μόνο τα πλαίσια για τα οποία γίνεται λήξη του χρόνου αναμετάδοσης (timeout) πρέπει να σταλούν εκ νέου.
- Ο παραλήπτης δέχεται, αποθηκεύει (μέχρι να ληφθούν τα τυχόν χαμένα πακέτα) και επιβεβαιώνει ατομικά τα πλαίσια εκτός σειράς (τα πλαίσια που έχουν ληφθεί σωστά αναμεταδίδονται μόνο αν χαθεί η επιβεβαίωση τους).
- Το παράθυρο αποστολής κυλίεται όταν επιβεβαιωθεί το πρώτο πλαίσιο του, κατά τόσες θέσεις μέχρι το επόμενο μη επιβεβαιωθέν πλαίσιο
 - Πιο περίπλοκο από την οπισθοχώρηση κατά η αλλά και πιο αποτελεσματικό

- Απαιτήσεις για ενταμιευτή:
 - Αποστολέας: n
 - Παραλήπτης: n

Αρίθμηση:

- Το μέγεθος παραθύρου η πρέπει να είναι το πολύ το μισό του εύρους των αριθμών σειράς (MAX_SEQ+1)/2, δηλ θα πρέπει η≤ (MAX_SEQ+1)/2, οπότε η αρίθμηση των πλαισίων πρέπει να γίνεται κατά modulo (2n)
 - Επομένως έχουμε ότι MAX_SEQ ≥ 2n 1 = 2*385 1 = 769, άρα έστω ότι MAX_SEQ = 770

3. Stop-and-Wait

- Αν και δεν απαιτούνται επιβεβαιώσεις λόγω σφαλμάτων στον σύνδεσμο, απαιτείται έλεγχος ροής των πλαισίων.
- Στέλνεται ένα μόνο πλαίσιο, που λαμβάνεται σωστά. Όταν ο παραλήπτης το επεξεργαστεί και το προωθήσει στο επίπεδο δικτύου, στέλνει επιβεβαίωση. Μόλις ληφθεί η επιβεβαίωση από τον αποστολέα, στέλνεται το επόμενο πλαίσιο
 - Κατάλληλο για μονόδρομη, ημιαμφίδρομη ή αμφίδρομη επικοινωνία σε κανάλι χωρίς σφάλματα

Αρίθμηση:

- Αρίθμηση των πλαισίων με αριθμό σειράς στην κεφαλίδα ώστε να εξασφαλίζεται η διαφοροποίηση βάσει αυτού (οι αναμεταδόσεις ενός πλαισίου διατηρούν τον αριθμό σειράς του).
- Ο παραλήπτης μπορεί να διακρίνει αν έχει ήδη λάβει το πλαίσιο. Αν ναι, πρέπει να το επιβεβαιώσει πάλι και να το απορρίψει.
- Αρκούν δύο αριθμοί σειράς (0 και 1), δηλαδή ένα bit (αρκεί να μπορεί να διακρίνεται ένα πλαίσιο F από το αμέσως προηγούμενο και το αμέσως επόμενο του).

f)

Απόδοση του Stop-and-wait:

$$E = \frac{D_{TP}}{S} = \frac{0,001 \ sec}{0,3851 \ sec} = 0,259\%$$

Αν είχαμε πρωτόκολλο GBN ή SRP με μέγεθος παραθύρου 385, η απόδοση θα ήταν 50% δηλαδή ίση μεταξύ τους και εμφανώς μεγαλύτερη από του Stop-and-wait. Δεδομένου ότι οι απαιτήσεις για ενταμιευτή στο SRP είναι μεγαλύτερες από ότι στο GBN, θα επιλέγαμε το τελευταίο.