

JEDI Program/JDI01

Compound Screening for SARS-CoV-2 Proteins Using MST/Dianthus

NanoDSF/MST measurements

SARS-CoV-2-Nucleocapsid protein

September 16, 2021

Status

nanoDSF:

- The effect of 2 nanobodies on nucleocapsid thermal stability was tested.
 - Only VHH E4-3 (NTD nanobody) significantly stabilized the nucleocapsid: $\Delta Tm = +6^{\circ}C$

Labelled MST (NT.115/NT.A):

- Using the previously established assay conditions, RED-Tris-NTA labelled nucleocapsid was tested for reproducibility of VHH H3-3 and VHH E4-3 binding on two instruments and with both dye generations.
 - > Except for one experiment with VHH E4-3 (K_D < 1 nM), no reproducible binding was observed
- Following the nanoDSF results, further buffer optimization was performed using VHH E4-3.
 - ➤ Binding with large ΔFnorm, signal-to-noise ratio and high reproducibility was observed for VHH E4-3 in buffers containing DTT or GSH: K_D of 2-5 nM
- > An MST assay was successfully established for nucleocapsid, and compound screening is on-going

Labelled MST

SARS-CoV-2 Nucleocapsid protein (ECJ1, 15199-2)

Fluor. Molecule	50 nM SARS-CoV-2 Nucleocapsid protein (ECJ1, PD15199-2)	50 nM SARS-CoV-2 Nucleocapsid protein (ECJ1, PD15199-2)					
Fluorophore	12.5 nM RED-tris-NTA 2 nd gen.						
	100 nM protein / 25 nM dye						
Labelling conditions Incubation time: 30 min							
	Centrifugation: 10 min at 15000g						
Instrument	Monolith NT.A						
Capillary type	Monolith [™] NT.Automated MST Premium Coated 24-Capillary Chips	Monolith™ NT.Automated MST Premium Coated 24-Capillary Chips					
	LED Power: 12 %						
Management mayons story	MST Power: 40 %						
Measurement parameter	MST settings: $3 - 20 - 1$ (s) (initial fluorescence – MST on time – back-diffusion)						
	Duplicate						
Access buffer	20 mM HEPES pH 7.5, 150 mM NaCl, 0.1% PEG 8000, 0.05% Tween2	20					
Assay buffer	DMSO: 0%						
	VHH H3-3 (nanobody against CTD)	EEG1 (PD14991-1) (stored at 4°C)	1 μM – 0.49 nM (12 conc.)				
Titrant	VHH E4-3 (NTD nanobody)	EEF1 (PD14989-1) (stored at 4°C)	τ μινι ο. τ ο πινι (τε conc.)				
Titiant	Dialyzed into: 20 mM Hepes pH 7.5, 150 mM NaCl, 0.05% Tween,						
	0.1% PEG 8000						

Fluorophore	Fluor. Molecule	Titrant	K _D [M]	K _D Confidence [M]	ΔFnorm [‰]	Signal / Noise	MST on [s]	Comment
RED-tris-NTA 2 nd gen.	Nucleocapsid	VHH E4-3	<1.0E-09	-	19.1	7.8	20	
RED-tris-NTA 2 nd gen.	Nucleocapsid	VHH H3-3	-	-	-	-	20	

- RED-tris-NTA 2^{nd} gen. labelled Nucleocapsid binds VHH E4-3 with an estimated $K_D < 1$ nM.
- RED-tris-NTA 2nd gen. labelled Nucleocapsid does not bind VHH H3-3.

Fluor. Molecule	50 nM SARS-CoV-2 Nucleocapsid protein (ECJ1, PD15199-2)						
Fluorophore	12.5 nM RED-tris-NTA 2 nd gen.	12.5 nM RED-tris-NTA 2 nd gen.					
	100 nM protein / 25 nM dye						
Labelling conditions	Incubation time: 30 min						
	Centrifugation: 10 min at 15000g						
Instrument	Monolith NT.115 (03)						
Capillary type	Monolith [™] NT.115 Series MST Premium Coated Capillaries	Monolith™ NT.115 Series MST Premium Coated Capillaries					
	LED Power: 90 %						
	MST Power: 40 %						
Measurement parameter	MST settings: 3 – 20 – 1 (s) (initial fluorescence – MST on time –	back-diffusion)					
	Duplicate						
Access buffer	20 mM HEPES pH 7.5, 150 mM NaCl, 0.1% PEG 8000, 0.05% Tween2	.0					
Assay buffer	DMSO: 0%						
	VHH H3-3 (nanobody against CTD)	EEG1 (PD14991-1) (stored at 4°C)	1 μM – 0.49 nM (12 conc.)				
Titrant	VHH E4-3 (NTD nanobody)	EEF1 (PD14989-1) (stored at 4°C)	1 μινι - 0.43 πινι (12 conc.)				
Titialit	Dialyzed into: 20 mM Hepes pH 7.5, 150 mM NaCl, 0.05% Tween,						
	0.1% PEG 8000						

Fluorophore	Fluor. Molecule	Titrant	K _D [M]	K _D Confidence [M]	ΔFnorm [‰]	Signal / Noise	MST on [s]	Comment
RED-tris-NTA 2 nd gen.	Nucleocapsid	VHH E4-3	-	-	-	-	10	
RED-tris-NTA 2 nd gen.	Nucleocapsid	VHH H3-3	-	-	-	-	10	

RED-tris-NTA 2nd gen. labelled Nucleocapsid does not bind VHH E4-3 and VHH H3-3

Fluor. Molecule	50 nM SARS-CoV-2 Nucleocapsid protein (ECJ1, PD15199-2)						
Fluorophore	12.5 nM RED-tris-NTA 1 st and 2 nd gen.	12.5 nM RED-tris-NTA 1st and 2nd gen.					
	100 nM protein / 25 nM dye						
Labelling conditions	Labelling conditions Incubation time: 30 min						
	Centrifugation: 10 min at 15000g						
Instrument	Monolith NT.A						
Capillary type	Monolith [™] NT.Automated MST Premium Coated 24-Capillary Chips	Monolith™ NT.Automated MST Premium Coated 24-Capillary Chips					
NA	MST Power: 40 %						
Measurement parameter	MST settings: 3 – 20 – 1 (s) (initial fluorescence – MST on time – back-diffusion)						
	Duplicate						
Access buffer	20 mM HEPES pH 7.5, 150 mM NaCl, 0.1% PEG 8000, 0.05% Tween2	0					
Assay buffer	DMSO: 0%						
	VHH H3-3 (nanobody against CTD)	EEG1 (PD14991-1) (stored at 4°C)	1 μM – 0.49 nM (12 conc.)				
Titrant	VHH E4-3 (NTD nanobody)	EEF1 (PD14989-1) (stored at 4°C)	1 μινι - 0. 1 3 πινι (12 conc.)				
Titialit	Dialyzed into: 20 mM Hepes pH 7.5, 150 mM NaCl, 0.05% Tween,						
	0.1% PEG 8000						

Fluorophore	Fluor. Molecule	Titrant	K _D [M]	K _D Confidence [M]	ΔFnorm [‰]	Signal / Noise	MST on [s]	Comment
RED-tris-NTA 1st gen.	Nucleocapsid	VHH E4-3	-	-	-	-	5	
RED-tris-NTA 2 nd gen.	Nucleocapsid	VHH E4-3	-	-	-	-	5	

RED-tris-NTA 1st and 2nd gen. labelled Nucleocapsid does not bind VHH E4-3.

Fluorophore	Fluor. Molecule	Titrant	K _D [M]	K _D Confidence [M]	ΔFnorm [‰]	Signal / Noise	MST on [s]	Comment
RED-tris-NTA 1st gen.	Nucleocapsid	VHH H3-3	-	-	-	-	5	
RED-tris-NTA 2 nd gen.	Nucleocapsid	VHH H3-3	-	-	-	-	5	

• RED-tris-NTA 1st and 2nd gen. labelled Nucleocapsid does not bind VHH H3-3.

Fluor. Molecule	50 nM SARS-CoV-2 Nucleocapsid protein (ECJ1, PD15199-2)	50 nM SARS-CoV-2 Nucleocapsid protein (ECJ1, PD15199-2)						
Fluorophore	12.5 nM RED-tris-NTA 1st and 2nd gen.							
	100 nM protein / 25 nM dye							
Labelling conditions	Incubation time: 30 min							
	Centrifugation: 10 min at 15000g							
Instrument	Monolith NT.115 (03)							
Capillary type	Monolith [™] NT.115 Series MST Premium Coated Capillaries							
	LED Power: 80 %							
Management mayon stay	MST Power: 40 %							
Measurement parameter	MST settings: 3 – 20 – 1 (s) (initial fluorescence – MST on time –	back-diffusion)						
	Duplicate							
Assay buffer	20 mM HEPES pH 7.5, 150 mM NaCl, 0.1% PEG 8000, 0.05% Tween2	20						
Assay buller	DMSO: 0%							
	VHH H3-3 (nanobody against CTD)	EEG1 (PD14991-1) (stored at 4°C)	1 μM – 0.49 nM (12 conc.)					
Titrant	VHH E4-3 (NTD nanobody) EEF1 (PD14989-1) (stored at 4°C)							
Titiant	Dialyzed into: 20 mM Hepes pH 7.5, 150 mM NaCl, 0.05% Tween,							
	0.1% PEG 8000							

Fluorophore	Fluor. Molecule	Titrant	K _D [M]	K _D Confidence [M]	ΔFnorm [‰]	Signal / Noise	MST on [s]	Comment
RED-tris-NTA 1st gen.	Nucleocapsid	VHH E4-3	-	-	-	-	5	
RED-tris-NTA 2 nd gen.	Nucleocapsid	VHH E4-3	-	-	-	-	5	

- RED-tris-NTA 1st gen. labelled Nucleocapsid does not bind VHH E4-3.
- RED-tris-NTA 2nd gen. labelled Nucleocapsid does not bind VHH E4-3.

Fluorophore	Fluor. Molecule	Titrant	K _D [M]	K _D Confidence [M]	ΔFnorm [‰]	Signal / Noise	MST on [s]	Comment
RED-tris-NTA 1st gen.	Nucleocapsid	VHH H3-3	-	-	-	-	5	
RED-tris-NTA 2 nd gen.	Nucleocapsid	VHH H3-3	-	-	-	-	5	

• RED-tris-NTA 1st and 2nd gen. labelled Nucleocapsid does not bind VHH H3-3.

nanoDSF

SARS-CoV-2 Nucleocapsid protein (ECJ1, 15199-2)

nanoDSF Assay Conditions

Protein	0.1 mg/ml SARS-CoV-2 Nucleocapsid protein (ECJ1, PD15199-2)
Assay Buffer	20 mM Hepes pH 7.5, 150 mM NaCl, 0.05% Tween, 0.1% PEG-8k DMSO: 0%
compounds	4 μM VHH H3-3 (nanobody against CTD) 4 μM VHH E4-3 (NTD nanobody)
Instrument	Prometheus NT.48
Capillary type	nanoDSF Standard Capillaries
Measurement parameters	LED Power: 40°C Temperature ramp: 2°C/min

Effect of VHH E4-3 on the SARS-CoV-2 Nucleocapsid protein thermal stability

0.1 mg/ml ECJ1
0.1 mg/ml ECJ1 + VHH E4-3 $4\mu M$
0.1 mg/ml VHH E4-3

Titrant	Ø T _m [°C] ¹	s.d. [°C]	ΔT _m [°C] ²	Ø T _{m2} [°C] ¹	s.d.2 [°C]	Ø T _{agg} [°C]	s.d. [°C]	Analysi s mode
Protein	44.7	0.1	-	-	-	43.6	2.4	ratio
Protein +4 µM VHH E4-3	50.7	0.0	6.0	63.2	0.0	48.5	0.2	ratio
4 μM VHH E4-3	61.5	0.1	=	-	-	75.9	0.3	ratio

¹ determined in duplicate

• VHH E4-3 increases the protein thermal stability significantly

$$\rightarrow$$
 $\Delta T_{\rm m} = 6.0$

² referenced to

Effect of VHH H3-3 on the SARS-CoV-2 Nucleocapsid protein

0.1 mg/ml ECJ1 + VHH H3-3 4µM

Л	Titrant	Ø T _m [°C] ¹	s.d. [°C]	ΔT _m [°C] ²	Ø T _{m2} [°C] ¹	s.d.2 [°C]	Ø T _{agg} [°C]	s.d. [°C]	Analysis mode
	Protein	44.7	0.1	-	-	-	43.6	2.4	ratio
	Protein +4 μM VHH H3-3	44.0	-	-0.7	60.2	-	42.4	-	ratio
	4 μM VHH H3-3	58.8	0.0	-	-	-	57.1	0.3	ratio

¹ determined in duplicate

• VHH H3-3 has no significant impact on nucleocapsid thermal stability.

² referenced to

Labelled MST

SARS-CoV-2 Nucleocapsid protein (ECJ1, 15199-2)

			a waxi Apprec company						
Fluor. Molecule	50 nM SARS-CoV-2 Nucleocapsid protein (ECJ1, PD15199-2)								
Fluorophore	12.5 nM RED-tris-NTA 2 nd gen.								
	100 nM protein / 25 nM dye								
Labelling conditions	ditions Incubation time: 30 min								
	Centrifugation: 10 min at 15000g								
Instrument	Monolith NT.115 (02)								
Capillary type	Monolith™ NT.115 Series MST Premium Coated Capillaries								
	LED Power: 100 %								
Maria de la compania del compania del compania de la compania del la compania de la compania della compania del	MST Power: 40 %								
Measurement parameter	MST settings: $3 - 20 - 1$ (s) (initial fluorescence – MST on time –	MST settings: 3 – 20 – 1 (s) (initial fluorescence – MST on time – back-diffusion)							
	Duplicate								
	Buffer 1: 20 mM HEPES pH 7.5, 150 mM NaCl, 0.1% PEG 8000, 0.05%	% Tween20, 5% Glycerol							
	Buffer 2: 20 mM HEPES pH 7.5, 150 mM NaCl, 0.1% PEG 8000, 0.05%	% Tween20, 2 mM DTT							
A constitution	Buffer 3: 20 mM HEPES pH 7.5, 150 mM NaCl, 0.1% PEG 8000, 0.05%	% Tween20, 2 mM GSH							
Assay buffer	Buffer 4: 20 mM HEPES pH 7.5, 150 mM NaCl, 0.1% PEG 8000, 0.05%	% Tween20, 0.5 mM TCEP							
	Buffer 5: 20 mM HEPES pH 7.5, 150 mM NaCl, 0.1% PEG 8000, 0.05% Tween20, 10 mM MgCl2								
	DMSO: 0%								
	VHH E4-3 (NTD nanobody)	EEF1 (PD14989-1) (stored at 4°C)	1 μM – 0.49 nM (12 conc.)						
Titrant	Dialyzed into: 20 mM Hepes pH 7.5, 150 mM NaCl, 0.05% Tween,								
	0.1% PEG 8000								

Fluorophore	Fluor. Molecule	Titrant	K _D [M]	K _D Confidence [M]	ΔFnorm [‰]	Signal / Noise	MST on [s]	Comment
RED-tris-NTA 2 nd gen.	Nucleocapsid	VHH E4-3	-	-	-	-	20	
RED-tris-NTA 2 nd gen.	Nucleocapsid	VHH E4-3	3.1E-09	6.5E-10	25.9	69.6	20	

- RED-tris-NTA 2nd gen. labelled Nucleocapsid does not bind VHH E4-3 in buffer 1.
- RED-tris-NTA 2nd gen. labelled Nucleocapsid binds VHH E4-3 with a determined K_D of 3.1 nM in buffer 2.

Fluorophore	Fluor. Molecule	Titrant	K _D [M]	K _D Confidence [M]	ΔFnorm [‰]	Signal / Noise	MST on [s]	Comment
RED-tris-NTA 2 nd gen.	Nucleocapsid	VHH E4-3	1.5E-08	2.1E-08	46.5	18.7	20	
RED-tris-NTA 2 nd gen.	Nucleocapsid	VHH E4-3	3.2E-08	7.1E-08	7.7	3.2	20	

- RED-tris-NTA 2nd gen. labelled Nucleocapsid binds VHH E4-3 with a determined K_D of 15 nM in buffer 3.
- RED-tris-NTA 2^{nd} gen. labelled Nucleocapsid potentially binds VHH E4-3 with a determined K_D of 32 nM and low signal-to-noise ratio in buffer 4.

Fluorophore	Fluor. Molecule	Titrant	K _D [M]	K _D Confidence [M]	ΔFnorm [‰]	Signal / Noise	MST on [s]	Comment
RED-tris-NTA 2 nd gen.	Nucleocapsid	VHH E4-3	-	-	-	-	20	

• RED-tris-NTA 2nd gen. labelled Nucleocapsid does not bind VHH E4-3 in buffer 5.

			a waxi Apprec company						
Fluor. Molecule	50 nM SARS-CoV-2 Nucleocapsid protein (ECJ1, PD15199-2)								
Fluorophore	12.5 nM RED-tris-NTA 2 nd gen.								
	100 nM protein / 25 nM dye								
Labelling conditions	Incubation time: 30 min								
	Centrifugation: 10 min at 15000g								
Instrument	Monolith NT.115 (02)								
Capillary type	Monolith™ NT.115 Series MST Premium Coated Capillaries								
	LED Power: 100 %								
Mark and the second second	MST Power: 60 %								
Measurement parameter	MST settings: $3 - 20 - 1$ (s) (initial fluorescence – MST on time –	back-diffusion)							
	Duplicate								
	Buffer 1: 20 mM HEPES pH 7.5, 150 mM NaCl, 0.1% PEG 8000, 0.05%	% Tween20, 5% Glycerol							
	Buffer 2: 20 mM HEPES pH 7.5, 150 mM NaCl, 0.1% PEG 8000, 0.05%	% Tween20, 2 mM DTT							
A constitution	Buffer 3: 20 mM HEPES pH 7.5, 150 mM NaCl, 0.1% PEG 8000, 0.05%	% Tween20, 2 mM GSH							
Assay buffer	Buffer 4: 20 mM HEPES pH 7.5, 150 mM NaCl, 0.1% PEG 8000, 0.05%	% Tween20, 0.5 mM TCEP							
	Buffer 5: 20 mM HEPES pH 7.5, 150 mM NaCl, 0.1% PEG 8000, 0.05% Tween20, 10 mM MgCl2								
	DMSO: 0%								
	VHH E4-3 (NTD nanobody)	EEF1 (PD14989-1) (stored at 4°C)	1 μM – 0.49 nM (12 conc.)						
Titrant Dialyzed into: 20 mM Hepes pH 7.5, 150 mM NaCl, 0.05% Tween,									
	0.1% PEG 8000								

Fluorophore	Fluor. Molecule	Titrant	K _D [M]	K _D Confidence [M]	ΔFnorm [‰]	Signal / Noise	MST on [s]	Comment
RED-tris-NTA 2 nd gen.	Nucleocapsid	VHH E4-3	-	-	-	-	10	
RED-tris-NTA 2 nd gen.	Nucleocapsid	VHH E4-3	5.4E-09	3.5E-09	31.6	22.4	10	

- RED-tris-NTA 2nd gen. labelled Nucleocapsid does not bind VHH E4-3 in buffer 1.
- RED-tris-NTA 2nd gen. labelled Nucleocapsid binds VHH E4-3 with a determined K_D of 5.4 nM in buffer 2.

Fluorophore	Fluor. Molecule	Titrant	K _D [M]	K _D Confidence [M]	ΔFnorm [‰]	Signal / Noise	MST on [s]	Comment
RED-tris-NTA 2 nd gen.	Nucleocapsid	VHH E4-3	1.9E-09	2.9E-09	37.3	12.0	10	
RED-tris-NTA 2 nd gen.	Nucleocapsid	VHH E4-3	2.3E-07	4.6E-07	8.9	5.3	10	

- RED-tris-NTA 2nd gen. labelled Nucleocapsid binds VHH E4-3 with a determined K_D of 1.9 nM in buffer 3.
- RED-tris-NTA 2^{nd} gen. labelled Nucleocapsid binds VHH E4-3 with a determined K_D of 227 nM in buffer 4.

Fluorophore	Fluor. Molecule	Titrant	K _D [M]	K _D Confidence [M]	ΔFnorm [‰]	Signal / Noise	MST on [s]	Comment
RED-tris-NTA 2 nd gen.	Nucleocapsid	VHH E4-3	-	-	-	-	10	

• RED-tris-NTA 2nd gen. labelled Nucleocapsid does not bind VHH E4-3 in buffer 5.

Fluor. Molecule	50 nM SARS-CoV-2 Nucleocapsid	protein (ECJ1, PD15199-2)								
Fluorophore	12.5 nM RED-tris-NTA 2 nd gen.	12.5 nM RED-tris-NTA 2 nd gen.								
	100 nM protein / 25 nM dye									
Labelling conditions	Incubation time: 30 min									
	Centrifugation: 10 min at 15000g									
Instrument	Monolith NT.115 (02)	Monolith NT.115 (02)								
Capillary type	Monolith™ NT.115 Series MST Premium Coated Capillaries									
	LED Power: 100 %									
B.C	MST Power: 40 and 60%									
Measurement parameter	MST settings: 3 – 20 – 1 (s) (ini	tial fluorescence – MST on time – back-diffu	ision)							
	Duplicate									
Access buffer	Buffer 2: 20 mM HEPES pH 7.5, 150 mM NaCl, 0.1% PEG 8000, 0.05% Tween20, 2 mM DTT									
Assay buffer	DMSO: 2.5%									
Titrant	VHH E4-3 (NTD nanobody)	EEF1 (PD14989-1) (stored at 4°C)	500 nM – 0.23 nM (12 conc.)							
Titraiit	- No dialysis									

High MST power

Fluorophore	Fluor. Molecule	Titrant	K _D [M]	K _D Confidence [M]	ΔFnorm [‰]	Signal / Noise	MST on [s]	Comment
RED-tris-NTA 2 nd gen.	Nucleocapsid	VHH E4-3	5.0E-09	3.1E-09	26.7	18.5	20	
RED-tris-NTA 2 nd gen.	Nucleocapsid	VHH E4-3	3.4E-09	3.0E-09	28.2	15.6	10	

• RED-tris-NTA 2^{nd} gen. labelled Nucleocapsid binds VHH E4-3 with a determined K_D of 5.0 nM with medium MST power and with a determined K_D of 3.4 nM with high MST power. Larger signal-to-noise ratio is observed with high MST power, which was chosen for the following compound screening.

Next steps

• 8 pt screening of 119 cpds in singlicate using high MST power and VHH E4-3 (NTD nanobody) as a positive control (on-going)

Crelux GmbH a WuXi AppTec company

Dr. Saskia Villinger
Senior Scientist and Deputy Head of Biophysics & Screening
Am Klopferspitz 19a
82152 Martinsried
Germany

Saskia.Villinger@wuxiapptec.com www.crelux.com www.wuxiapptec.com

