데이터베이스 모델링

문혜영

학습 목차

- 01 관계 데이터 모델의 개념
- 02 관계 데이터 모델의 제약조건

• 개념

- 개념적 구조를 논리적 구조로 표현하는 논리적 데이터 모델
- 가장 널리 사용되는 데이터 모델로, 2차원적인 표(Table)를 이용해서 데이터 상호 관계를 정의.
- 기본키(Primary Key)와 이를 참조하는 외래키(Foreign Key)로 데이터 간의 관계를 표현
- 1:1, 1:N, N:M 관계를 자유롭게 표현할
- 하나의 개체에 관한 데이터를 하나의 릴레이션에 저장

관계 데이터 모델

E-R 모델

고객 🗼			주문		→ 주문서			
고객번호	성명	주소	고객번호	주문번호	주문번호	품명	수량	금액
001	조오와	서울	001	101	101	01	2	300
002	김리리	부산	001	102	102	02	3	200
003	이미나	대구	002	103	103	03	4	100
004	최바다	대전	002	104	104	01	7	200
기본키			003	105	105	02	5	300
기단기			003	108	106	05	2	200
			외래키	외래키	기본키			

- <고개> 테이블과 <주문서> 테이블은 <주문> 테이블을 관계로 하여 연결되어 있다.
- <고객> 테이블의 '고객번호'와 <주문서> 테이블의 '주문번호'는 기본키
- <주문> 테이블의 '고객번호'와 '주문번호'는 외래키
- <고객>과 <주문>의 관계는 1:N, 즉 한 명의 고객은 여러 개의 주문 가능
- <주문서>와 <주문>의 관계는 1:1, 즉 '주문서'는 '주문번호' 1개에 대한 정보만을 가지고 있다.

- 데이터베이스의 구성
 - 데이터베이스 스키마(database schema)
 - 데이터베이스의 전체 구조, 데이터베이스를 구성하는 릴레이션 스키마의 모음
 - 데이터베이스 인스턴스(database instance)
 - 데이터베이스를 구성하는 릴레이션 인스턴스의 모음

- 릴레이션의 구성
 - 릴레이션(relation)
 - 하나의 개체에 관한 데이터를 2차원 테이블의 구조로 저장한 것
 - 파일 관리 시스템 관점에서 파일(file)에 대응
 - 릴레이션 스키마(relation schema)
 - 릴레이션의 논리적 구조
 - 릴레이션의 이름과 릴레이션에 포함된 모든 속성의 이름으로 정의
 - 예) 고객(고객아이디, 고객이름, 나이, 등급, 직업, 적립금)
 - 릴레이션 내포(relation intension)라고도 함, 자주 변하지 않는 정적인 특징
 - 릴레이션 인스턴스(relation instance)
 - 어느 한 시점에 릴레이션에 존재하는 튜플들의 집합
 - 릴레이션 외연(relation extension)이라고도 함
 - 튜플의 삽입·삭제·수정이 자주 발생하는 동적인 특징

• 기본용어

- 튜플(tuple)
 - 릴레이션에서 하나의 행(Row)을 의미
 - 파일 관리 시스템 관점에서 레코드(record)에 해당
 - 기수(cardinality) : 하나의 릴레이션에서 튜플의 전체 개수(행의 수)
- 속성(attribute)
 - 데이터베이스를 구성하는 가장 작은 논리적 단위
 - 릴레이션에서 열(column)의 이름
 - 파일 관리 시스템 관점에서 필드(field)에 해당
 - 차수(degree) : 하나의 릴레이션에서 속성의 전체 개수(열의 수)
- 도메인(domain)
 - 하나의 속성이 가질 수 있는 모든 값들의 집합
 - 도메인은 실제 속성값이 나타날때 그 값의 합법 여부를 시스템이 검사하는데 이용
 - 예) 성별의 도메인 : 남, 여

- 릴레이션의 특성
 - 튜플의 유일성
 - 하나의 릴레이션에는 동일한 튜플이 존재할 수 없다.
 - 튜플의 무순서
 - 하나의 릴레이션에서 튜플 사이의 순서는 무의미하다.
 - 튜플들의 삽입, 삭제 등의 작업으로 인해 릴레이션은 시간에 따라 변한다.
 - 속성의 무순서
 - 하나의 릴레이션에서 속성 사이의 순서는 무의미하다.
 - 속성의 원자성
 - 속성 값은 논리적으로 더 이상 쪼갤 수 없는 원자값만을 저장한다.
 - 속성의 유일한 식별을 위해 속성의 명칭은 유일해야 하지만, 속성을 구성하는 값은 동일한 값이 있을 수 있다.
 - 릴레이션을 구성하는 튜플을 유일하게 식별하기 위해 속성들의 부분집합을 키(Key)로 설정한다.

- 키(KEY)
 - 데이터베이스에서 조건에 만족하는 튜플을 찾거나 순서대로 정렬할 때 튜플을 서로 구분할 수 있는 기준이 되는 속성

- 키의 종류
 - 슈퍼키(super key)
 - ✔ 튜플을 유일하게 구분하는 키로서 1개이상의 속성으로 구성
 - ✔ 유일성만 보장하는 속성으로 여러 개 존재 가능
 - 후보키(candidate key)
 - 유일성과 최소성을 만족하는 속성 또는 속성들의 집합
 - 모든 릴레이션에는 반드시 하나이상의 후보키가 존재
 - 기본키(primary key)
 - 후보키 중에서 기본적으로 사용하기위해 선택된 하나의 키
 - 한 릴레이션에서 특정 튜플을 유일하게 구별할 수 있는 속성
 - 중복된 값을 가질 수 없다.
 - 기본키는 NULL을 가질 수 없다.
 - 대체키(alternate key)
 - 후보키 중에서 기본키를 제외한 나머지 키

- 키의 종류
 - 외래키(Foreign Key)
 - 다른 릴레이션의 기본키를 참조하는 속성.
 - 외래키 값은 참조된 릴레이션의 속성에 존재하는 값이거나 NULL 값이어야 한다. (외래키값은 참조된 릴레이션의 속성에 없는 값은 입력할 수 없다.)
 - 외래키 속성과 그것이 참조하는 기본키 속성의 이름은 달라도 되지만 도메인은 같아야 한다.
 - 하나의 릴레이션에는 외래키가 여러 개 존재할 수도 있고 외래키가 기본키로 될 수 있다.
 - 릴레이션들 사이의 관계를 표현
 - 참조하는 릴레이션 : 외래키를 가진 릴레이션
 - 참조되는 릴레이션 : 외래키가 참조하는 기본키를 가진 릴레이션

기본키

- 키의 특성
 - 유일성(uniqueness)
 - 하나의 릴레이션에서 모든 튜플은 서로 다른 키 값을 가져야 함
 - 최소성(minimality)
 - 꼭 필요한 최소한의 속성들로만 키를 구성함

1	
	• 수퍼키 : 유일성을 만족하는 속성
	• 후보키 : 유일성과 최소성을 만족하는 속성
종류	• 기본키 : 후보키 중에서 기본적으로 사용하기 위해 선택한 키
	• 대체키 : 후보키 중에서 기본키로 선택되지 못한 후보키
	• 외래키 : 다른 릴레이션의 기본키를 참조하는 속성

- 제약조건
 - 도메인 제약 (Domain Constraints)
 - 속성(Attribute)에 대한 제약
 - 키제약 (Key Constraints)
 - 릴레이션(Relation)에 대한 제약
 - 개체 무결성 제약 (Entity Integrity Constraints)
 - 기본키(Primary Key)에 대한 제약
 - 참조 무결성 제약 (Referential Integrity Constraints)
 - 외래키(Foreign Key)에 대한 제약

● 도메인 제약 (Domain Constraints)

- 속성 값은 원자성(atomicity)을 가지며, 도메인에서 정의된 값이어야 함
- 복합속성(Composite Attribute)와 다중값속성(Multivalued Attribute)는 허용되지 않음
 - cf) 주소 = 시군구 + 상세주소
- Null 값은 허용됨 (Not Null이 아닌 경우)

학생

_학번	이름	나이	차량번호	취미
91234	진달래	22	22로1234	필라테스
95678	최나나	대한		수영, 골프, 스쿼시

• 키제약 (Key Constraints)

- 릴레이션의 모든 튜플(Tuples)은 서로 식별 가능해야 함
- Q) 다음 중 키 제약을 위반하고 있는 릴레이션은?

1

이름	나이	혈액형	전공
진달래	22	А	데이터사이언스
최나나	23	0	정보시스템

2

이름	나이	학번	주민번호
진달래	22	91234	010215-2363213
최나나	22	95678	010216-1363213

- 개체 무결성 제약 (Entity Integrity Constraints)
 - 기본키 (PK Primary Key) 는 NOT NULL & UNIQUE 이어야 함
 - Q) 다음 중 개체 무결성 제약에 위배되지 않는 튜플은?

학생

Ц	

2

3

4

학번 	이름	나이	차량번호
91234	진달래	22	01가1234
95678	최나나	23	
	김하나	23	
91234	유유이		02나3456

- 참조 무결성 제약 (Referential Integrity Constraints)
 - 외래키 (FK Foreign Key)
 - 릴레이션 R1이 릴레이션 R2를 참조하는 경우, R2의 기본키는 R1 에서 외래키로 사용됨

외래키

■ FK는 자기 자신이 속한 릴레이션을 참조할 수도 있음

학생(R1)

기본키

학번_	이름	나이	소속	멘토
91234	진달래	22	DC	
92345	최나나	23	DC	1234
93456	김하나	23	경영	
94567	유유이	22	컴공	2345

외래키

학과(R2)

학과명	정원	위치
DC	50	백주년관
경영	60	경상관
컴공	50	공학관
수학	40	자연관

- 참조 무결성 제약 (Referential Integrity Constraints)
 - 릴레이션 R1 이 릴레이션 R2 를 참조하는 경우, R1 의 FK는⋯
 - (1) Null 이거나
 - (2) Null 이 아닌 경우 R2 에 실제로 존재하는 값으로 구성되어야 함
 - Q) 다음 중 참조 무결성을 위배하는 튜플은?

학생(R1)

학번	이름	나이	소속	멘토
91234	진달래	22	DC	
92345	최나나	23	DC	91234
93456	김하나	23		95678
94567	유유이	22	자동차	92345

학과(R2)

학과명	정원	위치
DC	50	백주년관
경영	60	경상관
컴공	50	공학관
수학	40	자연관

- Q) 다음 연산들은 어떤 문제를 야기하는가?
 - - 새 직원 〈'유관순', '555', NULL, 4〉 삽입
 - - 새 직원 < '이방원', '123', '456', 5〉 삽입
 - - ID='A666' 인 직원 삭제

직원

이름	<u>ID</u>	감독자ID	부서번호
강감찬	A111	A222	5
김유신	A222	A888	5
이성계	A333	A444	4
이순신	A444	A888	4
정몽주	A555	A222	5
최무선	A666	A222	5
최치원	A777	A444	4
홍길동	A888	NULL	1

부서

부서명	<u>부서번호</u>	관리자ID
개발팀	5	A222
인사팀	4	A444
기획팀	1	A666

- 무결성(Integrity)
 - 데이터베이스에 저장된 데이터 값과 그것이 표현하는 현실 세계의 실제값이 일치하는 정확성을 의미
 - 무결성 제약 조건 : 데이터베이스에 들어 있는 데이터의 정확성을 보장하기 위해 부정확한 자료가 데이터베이스 내에 저장된 것을 방지하기 위한 제약 조건
- 데이터 무결성 강화
 - 데이터 무결성은 데이터 품질에 직접적인 영향을 미치므로
 데이터 특성에 맞는 적절한 무결성을 정의하고 강화해야 한다.
 - 프로그램이 완성되고 데이터가 저장된 상태에서 무결성을 정의할 경우 많은 비용이 발생하므로 데이터베이스 구축 과정에서 정의한다.
 - 데이터 무결성은 애플리케이션, 데이터베이스 트리거, 제약 조건을 이용하여 강화할 수 있다.

- 데이터 무결성 강화
 - 1) 애플리케이션
 - 데이터를 생성, 수정, 삭제할 때 무결성 조건을 확인하는 코드를 데이터 조작 프로그램에 추가
 - 예) 데이터 유효성검사, 특정규칙 적용
 - 장점: 데이터 유효성 검사를 맞춤형으로 설계 가능, 사용자 정의와 같은 복잡한 무결성 조건의 구현이 가능
 - 단점: 데이터 유효성 검사를 여러곳에서 구현하므로 중복성이 발생할 수 있고 유지보수의 어려움
 - 2) 데이터베이스 트리거
 - 데이터베이스 트리거: 데이터 조작 이벤트(예: INSERT, UPDATE, DELETE)가 발생할 때 자동으로 실행
 - 특정 조건을 충족하지 않는 데이터 조작을 거부하거나, 데이터 조작 시 일관성을 검사
 - 장점: 데이터 조작 이벤트 발생 시 트리거가 자동으로 실행되므로 개발자가 별도의 코드를 작성할 필요가 없음
 - 단점 : 운영 중 변경이 어렵고, 사용상 주의가 필요하다.

- 데이터 무결성 강화
 - 3) 제약 조건
 - 데이터베이스에 제약 조건을 설정하여 무결성을 유지
 - 장점 : 통합 관리 가능, 간단한 선언으로 구현 가능, 변경 용이, 오류 데이터 발생 방지 등이 있다.
 - 단점 : 복잡한 제약 조건의 구현과 예외적인 처리가 불가능하다.

정리

- 관계 데이터베이스
 - Relation ()
 - Degree ()
 - Cardinality ()

이름	<u>ID</u>	감독자ID	부서번호
강감찬	A111	A222	5
김유신	A222	A888	5
이성계	A333	A444	4
이순신	A444	A888	4
정몽주	A555	A222	5
최무선	A666	A222	5
최치원	A777	A444	4
홍길동	A888	NULL	1

정리

• <직원> 릴레이션의 기본키는 '직원번호', <지점> 릴레이션은 기본키가 미설정된 상태이다. <지점>릴레이션의 호부키인 지점번호를 기본키로 설정하면 참조 무결성 제약조건과 개체 무결성 제약조건에 위배된다. 두가지 무결성 제약조건의 위배사유를 설명하시오.

- 참조무결성 위배사유
- 개체무결성 위배사유

<직원>

<u> 직원번호</u>	주민번호	이름	지점번호
A1	A111	A222	101
A2	A222	A888	103
А3	A333	A444	102
A4	A444	A888	106
A5	A555	A222	101

<지점>

지점번호	주소	직원수
101	서울	22
103	서울	88
NULL	부산	44
106	광주	88
104	광주	22

수고하셨습니다