M1IF03 Conception d'applications Web

INTRODUCTION

LIONEL MÉDINI OCTOBRE-DÉCEMBRE 2020

Plan du cours

- Partie 1
 - o Présentation de l'UE
- Partie 2
 - o Généralités sur le World Wide Web

Objectif général de l'UE

- Comment envisager cette UE ?
 - o Créer des pages Web
 - Savoir faire un site Web dynamique
- Débouchés
 - Surtout Webmaster
 - Un peu Administrateur système

Objectif général de l'UE

Comment envisager cette UE ?

 Permettre aux utilisateurs d'utiliser un ensemble de services applicatifs à travers leurs navigateurs Web

Débouchés

- Concepteur
- Consultant
- o Chef de projet...

Présentation générale de l'UE

• Intitulé de l'UE

- « Conception … »
 - ▼ GL, méthodes de conception, patterns
 - Et développement!
- o « ... d'applications... »
 - Ensemble de briques fonctionnelles
 - × Service rendu à l'utilisateur
- o « ... Web »
 - × 2 définitions
 - Tout ce qui peut être transféré par le protocole HTTP(S)
 - Pages Web (HTML), autres types de documents (MIME)
 - o Tout ce qui peut être traité dans un navigateur Web

Présentation générale de l'UE

- Thématique générale « application Web »
 - o Définition provisoire
 - « Application dont l'interface se situe dans un navigateur »
 - Sera précisée tout au long du déroulement de l'UE
 - o Large éventail
 - ▼ De solutions techniques (sockets, serveurs web, services web...)
 - ▼ De paradigmes de programmation (POO, architectures distribuées ou orientées services...)
 - ➤ De niveaux de complexité (échanges de données, de documents, appels de méthodes distantes, chorégraphie de services...)
 - → Aperçu des outils existants forcément limité

Positionnement de l'UE

Prérequis

- Conception de pages web
 - ▼ Description et mise en forme de pages Web : (X)HTML, CSS
 - × Structuration de données :
 - o XML, DTD, XML-Schema, XSL
 - o JSON, JSON-Schema

Scripting

- Côté serveur : PHP (ou similaire)
- Côté client : JavaScript

Autres

- × Algorithmique et programmation (C, Java)
- Génie Logiciel (design patterns)
- Réseaux (couches « basses », sockets…)
- Persistance (bases de données)

Positionnement de l'UE

Autres UE en parallèle

o M1IF05: Réseaux

○ M1IF01 : POO

o M1IF01 : gestion de projet

M1IFo3 : BD avancées

Projet commun: multimif (non alternants)

UE dépendant de celle-ci

o M1IF13: Programmation Web avancée et mobile

o M2 TIW: Intergiciels et Services

M2 TIW: Technologies Web synchrones et multi-dispositifs

o M2 SRIV: Modèle C/S

M2 SRIV : Applications de l'Internet et administration réseau

Objectifs pédagogiques de l'UE

Approche DevOps

- o Installation d'une « stack » complète
- o Déploiement / intégration continus
- o Gestion du « run » (performance)

Paradigmes de programmation

- o Programmation déclarative (HTML, XSL, JSP...)
- o Programmation événementielle (JavaScript)
- o Mécanismes de scripting (côtés serveur et client)

Démarches et outils de conception

- o Les mêmes qu'en M1IF01 (modélisation, méthodes de GL)
- o Couche persistance non abordée

Programme de l'UE

- Technologies côté serveur
 - o Utilisation d'un serveur Web
 - Configuration et fonctionnement
 - × Protocole HTTP
 - Sécurisation (HTTPS)
 - o Programmation côté serveur
 - × POO (Servlets)
 - × Scripting (JSP)
 - Initiation aux services Web
 - REpresentational State Transfer (REST)

Programme de l'UE

- Technologies côté client
 - o Rappels JavaScript et scripting côté client
 - « Dynamisation » des pages statiques
 - o Mécanismes de requêtes asynchrones
 - Document Object Model (DOM)
 - Asynchronous Javascript And XML (AJAX)
 - × Fetch API
 - Bibliothèques
 - × jQuery
 - Templating
 - **Mustache**
- Performance Web

Remarque

Les technologies liées au Web sont nombreuses et très riches

- Cette UE est
 - o un aperçu des types d'outils existants et de leur fonctionnement
 - o une description détaillée d'une partie de ces outils
 - Langages dédiés au Web
 - Programmation côté serveur et côté client
 - Outils de conception d'applications Web complexes
- Cette UE n'est PAS
 - o une présentation exhaustive de tous les outils existants
 - o une référence complète des outils présentés
- → N'hésitez pas à aller voir les pointeurs (références bibliographiques) pour comprendre le cours et réaliser les TP

Organisation pratique de l'UE

- 30 h de présentiel
 - o 7 x 1h30 de CM
 - o 13 x 1h30 de TP
- Évaluation
 - o Compte-rendus de TP + évaluation en direct
 - o Un « mini-projet » à rendre à la fin des TP
 - O Un examen final (2ème session en cours de 2nd semestre)
 - o Coefficients: 50% TP − 50% Examen
- →Il est impératif de travailler en dehors des cours et TP

Tout TP rendu en plusieurs exemplaires sera noté 0 pour tous les groupes l'ayant rendu

Organisation pratique de l'UE

Répartition en TP

- O Votre groupe de TP est le même que pour M1IF04
- Intervenants professionnels
 - Pratiquent les technos
 - ➤ Sont aussi là pour recruter...
 - x Chaque intervenant passe dans un maximum de groupes de TP
 - → Vous devez
 - o Être présents aux TPs
 - Ne pas changer de groupe (*i.e.* avoir un binôme dans le même groupe)
- o Cas particulier du groupe E
 - x Tous les TP en salle de TD
 - × Peuvent servir de séances de soutien

Sources

- Reprise des supports de cours des années précédentes (Lyon 1)
 - o de Sylvain Brandel, eux-mêmes issus de ceux d'Olivier Glück
- Ces supports s'appuient eux-mêmes sur ceux de
 - Fabrice Kordon, Isabelle Mounier, Christian Queinnec (PARIS 6)
 - Dominique Bouillet (INT)
 - Laurent Lefèvre (ENS LYON)
 - o Olivier Aubert, Eric Guérin (LYON 1)
- Autres sources
 - Cours d'autres formations (Lyon1)
 - Livres et sites Web cités en bibliographie

Bibliographie

Ouvrages

- « Webmaster in a nutshell », S. Spainhour & R. Eckstein, O'Reilly
- o « Création d'un site Web du débutant à l'expert », Daniel Ichbiah, Eska
- o « HTML et JavaScript », P. Chaléat et Daniel Charnay, Eyrolles
- o « JavaScript, La référence », D. Flanagan, O'Reilly
- o « Ajax en Pratique », D. Crane, E. Pascarello et D. James, CampusPress

Sites Web

- o http://www.w3.org/
- o http://www.webplatform.org/
- o http://w3schools.com/
- o http://www.developpez.com/
- o http://developpementweb.online.fr/
- o <u>http://www.laltruiste.com/</u>
- o http://www.commentcamarche.net/
- o http://liris.cnrs.fr/~lmedini/CCI/Poly_XML_complet.pdf

Plan de ce cours

- Partie 1
 - o Présentation de l'UE
- Partie 2
 - Généralités sur le World Wide Web

World Wide Web

- Principe original : accéder à des documents textuels
 - o situés sur des machines accessibles par Internet
 - o reliés entre eux par un mécanisme de lien « hypertexte »
- Actuellement : servir des ressources
 - o De différentes natures : texte, image, son, vidéo, contenu applicatif...
 - Hypermédia
 - Interactives
 - O Permettant à l'utilisateur d'accéder à un service donné : rechercher de l'information, acheter un objet, accéder à ses mails, consulter ses comptes en banque...
- → Nombreuses évolutions techniques

Rappel: Internet

- Un réseau de réseaux interconnectés (d'où le nom)
- Un ensemble de matériels, logiciels et protocoles (notamment IP)
- Un ensemble de **services**
 - Application qui utilise un protocole et un numéro de port
 - o e-mail, transfert de fichiers, connexion à distance, WWW...
- Une somme « d'inventions » qui s'accumulent
 - Mécanismes réseau de base (TCP/IP)
 - Nommage et adressage des ressources (DNS, URL)
 - Outils et protocoles spécialisés
 - Langages d'échange d'informations standardisés (HTML, XML...)

Bref historique d'Internet

- 1959-1968 : Programme ARPA
 - o le ministère américain de la défense lance un réseau capable de supporter les conséquences d'un conflit nucléaire
- 1969 : ARPANET, l'ancêtre d'Internet
 - o les universités américaines s'équipent de gros ordinateurs et se connectent au réseau ARPANET
- 1970-1982 : Ouverture sur le monde
 - o premières connexions avec la Norvège et Londres
- 1983 : Naissance d'Internet
 - o protocole TCP/IP: tous les réseaux s'interconnectent
 - o les militaires quittent le navire
- 1986: Les autoroutes de l'Information
 - o la National Science Fondation déploie des super-ordinateurs pour augmenter le débit d'Internet
- 1987-1992 : Les années d'expansion
 - o les fournisseurs d'accès apparaissent
 - o les entreprises privées se connectent au réseau
- 1993-2003 : L'explosion d'Internet
 - o ouverture au grand public
 - o avènement du WEB et du courrier électronique

marché considérable

Genèse du Web: la notion d'hypertexte

Principe

- S'abstraire de l'aspect linéaire du document textuel
- Mécanisme intellectuel permettant le cheminement d'une information à une autre → navigation, butinage, transclusion

Historique

- o 1945 : invention de la notion d'hypertexte
 - × Vannevar Bush, As We may think, *Atlantic Monthly*, 1945
- o 1965: invention du terme d'hypertexte
 - × Ted Nelson, projet Xanadu
- Années 1960 : premier système hypertexte fonctionnel
 - ▼ NLS (oNLine System), Douglas Englebart
- o 1987-2004 : diffusion du logiciel HyperCard
 - Programme et environnement graphique de programmation, créé par Bill Atkinson pour Mac OS, livré avec les Mac
- o 1987 : première conférence HyperText
 - Sponsorisée par l'ACM

Naissance du Web (1989-1991)

- Mars 89 : projet de création d'un hypertexte documentaire distribué sur le réseau du CERN
 - Origine: Tim Berners-Lee, puis Robert Cailliau (1990)
 - Choix des technologies TCP/IP et ouverture de la première connexion du CERN avec Internet
 - Mise au point des 3 technologies de base du Web : URL, HTML et HTTP
- Septembre 90 : 1er site Web fonctionnel (mode texte)
 - o 1er serveur Web: nxoco1.cern.ch
 - o 1^{er} navigateur Web : WorlWideWeb (rebaptisé plus tard Nexus), développé en Objective C
- Août 1991 : publication du projet WorldWideWeb dans un message sur UseNet
- Décembre 91 : démonstration publique à la conférence Hypertext'91 (San Antonio)

Le premier serveur Web, un NeXT Cube (source : Wikipédia)

Historique du Web

- 1993 : Mosaic : premier navigateur « grand public »
 - o Marc Andreessen, NCSA: plateformes X, puis Mac et Windows
 - o affichage d'images (GIF et XBM) dans les pages Web
 - o prise en charge de formulaires interactifs
- 1994 : création du W3C
 - o à l'initiative du CERN (Genève) et du MIT (Boston)
 - o président : Tim Berners-Lee
 - o but : standardisation et développement du Web
- 1994 : Apparition des navigateurs privés
 - o M. Andreessen crée Netscape Communications Corp.
- 1995 : Microsoft lance la « guerre des navigateurs »
 - Apparition d'Internet Explorer pour Windows 95
- 1995 : Altavista : premier « gros » moteur de recherche
- 1996 : Navigateur Opera
- 1998 : Apparition de Google
- 2003 : Apple lance Safari
- 2004 : Première version de Mozilla Firefox
- 2004 : première conférence « Web 2.0 »
- 2008 : Google lance Google Chrome
- Actuellement : explosion du Web mobile
- En cours de développement : Web sémantique, de données, des objets...

Nombre de sites référencés

1990:1 (CERN)

1991 : premier site hors d'Europe (SLAC, Stanford)

1992: 26

Juin 1993: 130

Juin 1994: 2738

Juin 1995 : 23 500

Janvier 1996 : ~ 100 000

Avril 1997: > 1 million

Février 2000 : > 11 millions

Février 2007 : > 100 millions

Février 2009 : ~ 216 millions

Aspects techniques du Web

- Les 3 mécanismes de base du Web
 - o URL
 - Le Web permet d'accéder à un ensemble de **ressources**
 - Le mécanisme de localisation peut faire appel au protocole DNS

o HTTP

- ▼ Protocole de niveau applicatif
- Paradigme client-serveur
- Protocole sans état (pas de « mémoire » des transactions précédentes)

o HTML

- Langage de description de « pages Web »
 - Texte, images et autres objets
 - Liens hypermédias entre les pages
- Programmation déclarative

Aspects techniques du Web

- Les forces en présence
 - o Côté client : l'utilisateur utilise un navigateur
 - × Client HTTP
 - Interprète les pages Web et les affiche à l'utilisateur
 - Peut effectuer des traitements plus complexes (plugins, moteur de scripts...)
 - o Côté serveur : le Webmaster gère un serveur Web
 - Attend les requêtes HTTP et y répond
 - En renvoyant des ressources dont il dispose
 - En interrogeant plusieurs modules (sécurité, scripting, redirection...)
 - En interrogeant d'autres outils pour les traitements complexes
 - On parle aussi de serveur Web pour désigner la machine qui héberge le programme serveur (abus de langage)

Fonctionnement du Web en un schéma

Le serveur Web est identifié. Une requête HTTP est adressée au serveur Un internaute (utilisateur) *ia* Internet (routage). ar le même moyen.

pour obtenir une ressource (page Web) sur un serveur distant...

utilise un client Web (navigateur)

Navigateur = Client Web

Ressource demandée

Serveur Web

disque)

nt)

Popularité du Web

Pour l'internaute

- Accessibilité « world-wide »
- Interfaces graphiques conviviales
- Interactivité et richesse des services
- o Grande quantité d'informations disponibles (Web « 1.0 »)
- o Possibilité de contribuer en tant qu'utilisateur (Web « 2.0 »)

Pour le développeur

- o Simplicité des développements (technologies de base...)
- o Liens avec les outils applicatifs installés sur le serveur (shell, Perl, Java...)
- o Indépendance par rapport aux plateformes des clients

Répartition des clients (2020)

Usage share of desktop browsers

Fixes

Browser ¢	StatCounter ^[19] August 2020	NetMarketShare ^[20]	W3Counter ^[21] ♦ November 2019	Wikimedia ^[22] ♦ August 2020
Chrome	69.87%	70.89%	59.3%	54.9%
Firefox	8.34%	7.11%	6.1%	13.3%
Safari	8.27%	3.53%	14.6%	9.4%
Edge	6.32%	8.52%	4.2%	6.1%
IE	2.61%	3.79%	5.3%	3.7%
Opera	2.40%	0.98%	3.5%	1.6%
Others	2.19%	5.18%	7.0%	11.0%

Source: http://en.wikipedia.org/wiki/Usage share of web browsers

× Source:

https://gs.statcounter.com/browser-market-share/desktop/worldwide#monthly-201001-202009

Répartition des clients (2020)

Mobiles

➤ Source:
https://gs.statcounter.com/browser-market-share/mobile/worldwide#monthly-201001-202009

Répartition des clients (2020)

Tous dispositifs

Source:
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet#monthly-201001-202009

31)

Contraction de Developers et Operations teams

→ Un mouvement pour rapprocher ces deux métiers combinant une culture, des pratiques et des outils

Objectifs

- Augmenter la collaboration entre ces équipes
- o Améliorer la qualité de la solution produite
- O Augmenter la fréquence des mises à jour
- Automatiser l'infrastructure, les workflows, les tests...
- Mesurer les performances
- → Répondre plus rapidement à l'évolution des besoins métier

Contraction de Developers et Operations teams

Un mouvement pour rapprocher ces deux métiers, combinant une culture, des pratiques et des outils

Workflow

o Source: AWS

Culture

- o Briser les silos entre les équipes
 - Chaque équipe est consciente des préoccupations des autres
 - Les équipes échangent des informations et se facilitent mutuellement le travail
- o Augmenter les compétences des équipes
 - x Chaque personne connaît sa place dans un workflow global
 - Chaque personne est capable d'améliorer son travail grâce à sa connaissance des entrants et des sortants des autres tâches
- > Employés plus impliqués, mieux valorisés
- → Gains de productivité (facilite l'agilité)
- → Accélération du « time-to-market »
- → Amélioration de la satisfaction du client

Pratiques

- o Déploiement continu
 - × Modulariser le code
 - Réduire le temps de déploiement
- Intégration continue
 - Tester et merger fréquemment son code
- Livraison continue
 - Déployer automatiquement chaque release sur un environnement de test similaire à l'environnement de production
 - Augmenter la fréquence de déploiement sur l'environnement de production

Pratiques

- Microservices
 - ▼ Facilite la modularisation du code et du déploiement
- « Infrastructure as code »
 - Environnements de développement et de production identiques
 - Gestion de la configuration des environnements par du code
 - Opérations de configuration et de déploiement définies programmatiquement
 - On utilise des techniques de GL (versionning, patterns...) pour la gestion des infrastructures
 - Meilleure scalabilité des déploiements

(36)

Pratiques

- Monitoring et logging
 - En termes de : qualité, performance, évolution des besoins
 - Permet d'analyser l'impact des déploiements
 - Améliorer et optimiser le code en continu
- o Communication et collaboration entre les équipes
 - Unification des workflows de développement et de mise en production
 - Mise en place de règles et documentation des processus
 - Responsabilisation de toutes les équipes sur ces processus

L'approche DevOps appliquée au Web

L'approche DevOps appliquée au Web

L'approche DevOps appliquée au Web

• (quelques) Outils

- Gestion du code / documentation
 - × SVN, Git, Mercurial
- Issues / communication
 - * Redmine, Mantis, Bugzilla
- Tests
 - × ..., Chaos Monkey
- Packaging : Binary repository manager
- Déploiement / Intégration continue
 - × Jenkins
- Livraison : Application-release automation (ARA)
 - <u>Chef, Puppet, SaltStack, Ansible...</u>
- Monitoring / logging / mesure de perf : Application Performance Management (APM)
 - **x** Stackify Retrace, New Relic

Les événements liés au Web

• À Lyon

- o Groupes d'utilisateurs
 - ▼ LyonJS, JUG, CARA, LYAUG, apéro PHP, CocoaHeads...
 - Référence : Lyon Tech Hub (calendrier Google)

• À l'UCBL

- Fonds de Soutien et de Développement des Initiatives
 Etudiantes
 http://etu.univ-lyon1.fr/vie-etudiante/financer-votre-projet/fsdie-mode-d-emploi-506763.kjsp?RH=1197015715894
- Cellule concours :
 http://fst-informatique.univ-lyon1.fr/formation/cellule-concours/