Proposition 3.1. Let A, B, C be nonempty¹ sets.

- (i) $A \subseteq A$
- (ii) If $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.

Proof. (i) $A \subseteq A$ means "if $x \in A$ then $x \in A$ ", which is apparently a true statement.

(ii) Suppose $A \subseteq B$ and $B \subseteq C$. We need to show that if $x \in A$ then $x \in C$. Given $x \in A$, $A \subseteq B$ implies that $x \in B$. This, in turn, implies with $B \subseteq C$ that $x \in C$.

Proposition 3.2. Let A, B, C be nonempty sets.

- (i) A = A
- (ii) If A = B then B = A.
- (iii) If A = B and B = C then A = C.

Proof. (i) follows from Proposition 3.1(i): $A \subseteq A$, so by definition, A = A.

- (ii) Suppose A = B, i.e., $A \subseteq B$ and $B \subseteq A$. But this also means, by definition, that B = A.
- (iii) Suppose A=B, i.e., $A\subseteq B$ and $B\subseteq A$, and B=C, i.e., $B\subseteq C$ and $C\subseteq B$. Then by Proposition 3.1(ii), $A\subseteq C$ (since $A\subseteq B$ and $B\subseteq C$) and $C\subseteq A$ (since $C\subseteq B$ and $B\subseteq A$), i.e., A=C.

 $^{^{1}}$ A set is *nonempty* if it contains at least one element. The *empty set*, which contains no element, will be defined in Chapter 4; then you can convince yourself that this and the next proposition also hold if one of A, B, C are empty.