

Introduction to Data Science

Lecture 16 Optimization: Convex Function Zicheng Wang

Review: Convex Set

Line Segment

• Let $x_1 \neq x_2$ be two points in \mathbb{R}^n . Points of the form

$$x = \theta x_1 + (1 - \theta) x_2$$

where $\theta \in [0, 1]$, form the line segment between x_1 and x_2 .

Convex Set

Set C is a convex set if the line segment between any two points in C lies in C.

• Formal definition: A set C is convex if $\forall x_1, x_2 \in C, \forall \theta \in [0,1]$ $\theta x_1 + (1-\theta)x_2 \in C$.

Remark: In this lecture, I will use **bold** form to represent a high dimension point. Without bold form, it represents a scalar

Convex Set Examples

- The empty set \emptyset , the singleton set $\{x_0\}$, and the complete space R are convex sets.
- An interval of $[a,b] \subset R$ is a convex set
- In R^n the set $H := \{x \in R^n : a_1x_1 + \dots + a_nx_n = c\}$ is a convex set
- Half spaces, e.g., $H := \{(x, y): y \le ax + b\}$ are convex sets
- A disk with center (0,0) and radius c is a convex subset of \mathbb{R}^2

Remark: In this lecture, I will use **bold** form to represent a high dimension point. Without bold form, it represents a scalar

Steps for Showing the Convexity of a Set

Prove H: =
$$\{(x, y): y = ax + b\}$$
 is a convex set

For any (x_1, y_1) and (x_2, y_2) in H,

- $y_1 = ax_1 + b$ $y_2 = ax_2 + b$ 1. Use the assumption that $(x_1, y_1), (x_2, y_2) \in H$
- $y_2 = ax_2 + \nu$ $\theta(x_1, y_1) + (1 \theta)(x_2, y_2) = (\theta x_1 + (1 \theta)x_2), \theta y_1 + (1 \theta)y_2)$
- Then for any $\theta \in [0,1]$ 2. Characterize the new point within the line segment
 - $\theta y_1 + (1 \theta)y_2 = a(\theta x_1 + (1 \theta)x_2) + b$
 - 3. Use (1) and (2) to show that the new point is in H

Properties of convex sets.

Lemma: If both S_1 and S_2 are convex sets, then $S_1 \cap S_2$ is also a convex set.

Convex Function

Convex Function

Definition: A function $f(x): \mathbb{R}^n \to \mathbb{R}$ is **convex** if (1) its domain is a convex set, and

(2) for any $x_1, x_2 \in dom(f)$ and any $0 \le \lambda \le 1$, we have

$$f(\mathbf{z}) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

where $\mathbf{z} = \lambda x_1 + (1 - \lambda)x_2$.

Function f evaluated at the combination of two points x_1, x_2 is no larger than the same combination of $f(x_1)$ and $f(x_2)$

Other Definition

- Pick any two points on the function curve.
- The line segment between these two points is above the function curve.

Concave Function

Definition: A function $f(x): \mathbb{R}^n \to \mathbb{R}$ is **concave** if (1) the domain of f is a convex

set, and (2) for any $x, y \in dom(f)$ and any $0 \le \lambda \le 1$, we have

$$f(\mathbf{z}) \ge \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

where $\mathbf{z} = \lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$.

the region below a concave function is a convex set.

If f is concave, then -f is convex!

If f is convex, then -f is concave!

Convex function?

Convex function?

Second Order Condition (SOC)

Suppose f is a twice continuously differentiable function. Then f is convex if and only if

- (1) dom(f) is a convex set
- (2) for any $x \in \text{dom}(f)$, any unit vector e and any θ ,

$$\frac{d^2f(\boldsymbol{x}+\theta\boldsymbol{e})}{d\theta^2} \ge 0$$

One dimension: $f''(x) \ge 0$ for all $x \in dom(f)$.

Second Order Condition (SOC)

Suppose f is a twice continuously differentiable function. Then f is concave

if and only if

- (1) dom(f) is a convex set
- (2) for any $x \in \text{dom}(f)$, any unit vector e and any θ ,

$$\frac{d^2 f(\boldsymbol{x} + \theta \boldsymbol{e})}{d\theta^2} \le 0$$

One dimension: $f''(x) \leq 0$ for all $x \in dom(f)$.

Examples of Convex/Concave Functions

Convex

- f(x) = ax + b (also concave)
- $f(x) = x^2$ $f(x) = e^x$

Verify using the second order condition

Examples of Convex/Concave Functions

Convex

- f(x) = ax + b (also concave)
- $f(x) = x^2$
- $f(x) = e^x$
- f(x) = |x|

Examples of Convex/Concave Functions

Convex

- f(x) = ax + b (also concave)
- $f(x) = x^2$
- $f(x) = e^x$
- f(x) = |x|

Concave

- $f(x) = -x^2$
- $f(x) = \log(x)$ on $(0, +\infty)$
- $f(x) = \sin(x)$ on $[0, \pi]$

High dimensional Convex functions

General procedure

$$\frac{d^2f(\boldsymbol{x}+\theta\boldsymbol{e})}{d\theta^2} \ge 0$$

- 1. Choose any \mathbf{y} , any unit vector \boldsymbol{e} and any θ
- 2. Define $g(\theta) = f(y + \theta e)$
- 3. Prove g'' $(\theta) \ge 0$

The Blind Box Problem

In order to show the convexity of the objective function, it suffices to show that $pE[\min(Q,D)] + sE[(Q-D)^+] - cQ$ is concave in Q.

$$\pi(Q) \stackrel{\text{def}}{=} pE[\min(Q,D)] + sE[(Q-D)^+] - cQ$$

Let the pdf of D be h(x) on $[0, \infty)$

$$\pi(Q) = p \int_{0}^{Q} x \, h(x) dx + p \int_{0}^{\infty} Q \, h(x) dx + s \int_{0}^{Q} (Q - x) \, h(x) dx - cQ.$$

$$\pi(Q) \stackrel{\text{def}}{=} pE[\min(Q,D)] + sE[(Q-D)^+] - cQ$$

Let the pdf of D be h(x) on $[0, \infty)$

$$\pi(Q) = p \int_0^Q x \, h(x) dx + p \int_Q^\infty Q \, h(x) dx + s \int_0^Q (Q - x) \, h(x) dx - cQ.$$

$$\pi'(Q) = p \, Q \, h(Q) - p \, Q \, h(Q) + p \int_Q^\infty h(x) dx + (Q - Q) h(Q) + s \int_0^Q h(x) dx - c$$

$$= p \int_0^\infty h(x) dx + s \int_0^Q h(x) dx - c.$$

$$\pi(Q) \stackrel{\text{def}}{=} pE[\min(Q,D)] + sE[(Q-D)^+] - cQ$$

Let the pdf of D be h(x) on $[0, \infty)$

$$\pi(Q) = p \int_0^Q x \, h(x) dx + p \int_Q^\infty Q \, h(x) dx + s \int_0^Q (Q - x) \, h(x) dx - cQ.$$

$$\pi'(Q) = p \, Q \, h(Q) - p \, Q \, h(Q) + p \int_Q^\infty h(x) dx + (Q - Q) h(Q) + s \int_0^Q h(x) dx - c$$

$$= p \int_0^\infty h(x) dx + s \int_0^Q h(x) dx - c.$$

$$\pi''(Q) = -p h(Q) + s h(Q) = (s - p)h(Q).$$

As the salvage value is no larger than the price, $\pi''(Q) \leq 0$

Convex Function vs. Convex Set

• $C = \{x: f(x) \le r\}$ is a convex set if f(x) is a convex function

1. Choose any two points satisfying the conditions

$$x_1: f(x_1) \le r \text{ and } x_2: f(x_2) \le r$$

2. Introduce a new point

$$\lambda x_1 + (1 - \lambda) x_2$$

3. Use (1) to show that the point introduced in (2) satisfies the conditions as well $f(\lambda \; x_1 + (1-\lambda) \; x_2) \leq \lambda f(x_1) + (1-\lambda) f(x_2) \leq r$

• $C = \{x: f(x) \le r\}$ is a convex set if f(x) is a convex function

1. Choose any two points satisfying the conditions

$$x_1: f(x_1) \le r \text{ and } x_2: f(x_2) \le r$$

2. Introduce a new point

$$\lambda x_1 + (1 - \lambda) x_2$$

3. Use (1) to show that the point introduced in (2) satisfies the conditions as well $f(\lambda x_1 + (1-\lambda) x_2) \le \lambda f(x_1) + (1-\lambda) f(x_2) \le r$

f is a convex function

• $C = \{x: f(x) \le r\}$ is a convex set if f(x) is a convex function

1. Choose any two points satisfying the conditions

$$x_1: f(x_1) \le r \text{ and } x_2: f(x_2) \le r$$

2. Introduce a new point

$$\lambda x_1 + (1 - \lambda) x_2$$

3. Use (1) to show that the point introduced in (2) satisfies the conditions as well $f(\lambda x_1 + (1-\lambda) x_2) \le \lambda f(x_1) + (1-\lambda) f(x_2) \le r$

$$\lambda f(x_1) + (1-\lambda)f(x_2) \le r$$

$$Step (1)$$

 $C = \{(x, y) : y \ge f(x)\}$ is a convex set if f(x) is a convex function.

Geometrically, this means that the region above a convex function is a convex set.

 $C = \{(x, y) : y \ge f(x)\}$ is a convex set if f(x) is a convex function.

1. Choose any two points satisfying the conditions

$$(x_1, y_1): y_1 \ge f(x_1)$$
 and $(x_2, y_2): y_2 \ge f(x_2)$

2. Introduce a new point

$$\lambda(x_1, y_1) + (1 - \lambda)(x_2, y_2) = (\lambda x_1 + (1 - \lambda) x_2, \lambda y_1 + (1 - \lambda) y_2)$$

3. Use (1) to show that the point introduced in (2) satisfies the conditions as well

$$\lambda y_1 + (1 - \lambda) y_2 \ge \lambda f(x_1) + (1 - \lambda) f(x_2) \ge f(\lambda x_1 + (1 - \lambda) x_2)$$

$$C = \{(x, y) : y \ge f(x)\}$$
 is a convex set if $f(x)$ is a convex function.

1. Choose any two points satisfying the conditions

$$(x_1, y_1): y_1 \ge f(x_1)$$
 and $(x_2, y_2): y_2 \ge f(x_2)$

2. Introduce a new point

$$\lambda(x_1, y_1) + (1 - \lambda)(x_2, y_2) = (\lambda x_1 + (1 - \lambda) x_2, \lambda y_1 + (1 - \lambda) y_2)$$

3. Use (1) to show that the point introduced in (2) satisfies the conditions as well

$$\lambda y_1 + (1 - \lambda) \ y_2 \ge \lambda f(x_1) + (1 - \lambda) f(x_2) \ge f(\lambda x_1 + (1 - \lambda) \ x_2)$$
Step (1)

$$C = \{(x, y) : y \ge f(x)\}$$
 is a convex set if $f(x)$ is a convex function.

1. Choose any two points satisfying the conditions

$$(x_1, y_1): y_1 \ge f(x_1)$$
 and $(x_2, y_2): y_2 \ge f(x_2)$

2. Introduce a new point

$$\lambda(x_1, y_1) + (1 - \lambda)(x_2, y_2) = (\lambda x_1 + (1 - \lambda) x_2, \lambda y_1 + (1 - \lambda) y_2)$$

3. Use (1) to show that the point introduced in (2) satisfies the conditions as well

$$\lambda y_1 + (1 - \lambda) y_2 \ge \lambda f(x_1) + (1 - \lambda) f(x_2) \ge f(\lambda x_1 + (1 - \lambda) x_2)$$

f is a convex function

Application 1

• if f(x) is a convex function, is the following region a convex set?

Application 2

Prove a unit disk, e.g., $H \coloneqq \{(x,y): x^2 + y^2 \le 1\}$ is a convex set

Proof: Using the three steps arguments could be complicate.

For any (x_1, y_1) and (x_2, y_2) in H,

•
$$x_1^2 + y_1^2 \le 1$$

•
$$x_2^2 + y_2^2 \le 1$$

•
$$\theta(x_1, y_1) + (1 - \theta)(x_2, y_2) = (\theta x_1 + (1 - \theta)x_2), \theta y_1 + (1 - \theta)y_2)$$

• Then for any $\theta \in [0,1]$

•
$$(\theta x_1 + (1 - \theta)x_2)^2 + (\theta y_1 + (1 - \theta)y_2)^2 \le 1$$
???

Cauchy-Schwarz Inequality
$$\left(\sum_{k=1}^{n} a_k b_k\right)^2 \le \left(\sum_{k=1}^{n} a_k^2\right) \left(\sum_{k=1}^{n} b_k^2\right)$$

Instead, we consider $f(\mathbf{x}) = \sum_i a_i x_i^2$ with $a_i > 0$

Given any point \mathbf{y} , any unit vector \mathbf{e} and any θ

$$g(\theta) = f(\mathbf{y} + \theta \mathbf{e}) = \sum_{i} a_i (y_i + \theta e_i)^2$$

Then $g''(\theta) = \sum_i a_i e_i^2 \ge 0$. So f(x) is a convex function.

 $\{x: f(x) \le r\}$ forms a ball/disk or an ellipsoid, so it is a convex set.

- 1. Choose any \mathbf{y} , any unit vector \boldsymbol{e} and any θ
- 2. Define $g(\theta) = f(y + \theta e)$
 - 3. Prove g'' $(\theta) \ge 0$

Convex Optimization Problem

minimize
$$f(x)$$

subject to $g_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., n$

A convex optimization problem needs to satisfy the following two conditions:

- Its feasible set is a **convex set**.
- Its objective function is a convex function.

Theorem: For convex optimization problems

local minimizer = global minimizer

In other words, any local optimum is also a global optimum.

This theorem, as simple as it is, is one of the most important theorems in convex programming!!

Theorem 1. Consider an optimization problem

s.t.
$$x \in \Omega$$
,

where f is a convex function and Ω is a convex set. Then, any local minimum is also a global minimum.

Proof by contradiction

<u>Proof:</u> Let \bar{x} be a local minimum.

$$\Rightarrow \bar{x} \in \Omega \text{ and } \exists \epsilon > 0 \text{ s.t. } \underline{f}(\bar{x}) \leq f(x) \ \forall x \in B(\bar{x}, \epsilon).$$

Suppose for the sake of contradiction that $\exists z \in \Omega$ with

$$B(\mathbf{x},\varepsilon) = \{\mathbf{y}: ||\mathbf{y} - \mathbf{x}|| \le \varepsilon\}$$

Because of convexity of Ω , we have

$$\lambda \bar{x} + (1 - \lambda)z \in \Omega, \ \forall \lambda \in [0, 1].$$

 $f(z) < f(\bar{x}).$

By convexity of f, we have

$$f(\lambda \bar{x} + (1 - \lambda)z) \le \lambda f(\bar{x}) + (1 - \lambda)f(z)$$
$$< \lambda f(\bar{x}) + (1 - \lambda)f(\bar{x}) = f(\bar{x}).$$

But, as $\lambda \to 1$, $(\lambda \bar{x} + (1 - \lambda)z) \to \bar{x}$ and the previous inequality contradicts local optimality of \bar{x} . \square

This point will eventually move into the ball $B(\bar{x}, \varepsilon)$