Formale Sprachen und Automaten Prof. Dr. Uwe Nestmann - 25. Februar 2016

Schriftlicher Test

Studentenidentifikation:

NACHNAME	
VORNAME	
Matrikelnummer	
STUDIENGANG	□ Informatik Bachelor, □

Aufgabenübersicht:

AUFGABE	SEITE	Punkte	THEMENBEREICH
1	2	19	MODELLE REGULÄRER SPRACHEN
2	3	16	Untermengen-Konstruktion
3	4	20	MINIMIERUNG EINES DFA
4	5	17	Grenzen Regulärer Sprachen
5	6	12	Modelle Kontextfreier Sprachen I
6	7	16	Modelle Kontextfreier Sprachen II

Zwei Punkte in diesem Test entsprechen einem Portfoliopunkt.

Korrektur:

AUFGABE	1	2	3	4	5	6	\sum
PUNKTE	19	16	20	17	12	16	100
ERREICHT							
Korrektor							
EINSICHT							

Aufgabe 1: Modelle Regulärer Sprachen

(19 Punkte)

Gegeben seien das Alphabet $\Sigma\triangleq\{\ a,\ b\ \}$, die reguläre Sprache $A_1 \triangleq \{ a^n b a^m b^k b \mid n, m, k \in \mathbb{N} \}$, die reguläre Grammatik $G_2 \triangleq (\{ S, T \}, \Sigma, P_2, S)$ und der DFA $M_3 \triangleq (\{ q_0, q_1, q_2, q_3 \}, \Sigma, \delta_3, q_0, \{ q_1 \})$ mit:

a. (**, 5 Punkte) Gib einen DFA M_1 mit $L(M_1) = A_1$ an.

b. (**, 4 Punkte) Gib eine Typ-3 Grammatik G_1 mit $L(G_1) = A_1$ an.

c. (*, 3 Punkte) Gib die Ableitung des Wortes abaab in G_2 an.

d. (**, 2 Punkte) $Gib L(G_2)$ an, ohne auf Automaten oder Grammatiken zu verweisen.

e. (**, 3 Punkte) Gib die Ableitung des Wortes ababa in M_3 an.

f. (***, 2 Punkte) *Gib* $L(M_3)$ *an*, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 2: Untermengen-Konstruktion

(16 Punkte)

Gegeben sei der NFA $M \triangleq (\{\ q_0,\ q_1,\ q_2,\ q_3,\ q_4,\ q_5\ \},\ \Sigma,\ \Delta,\ \{\ q_0,\ q_4\ \},\ \{\ q_5\ \})$ mit $\Sigma = \{ a, b \} \text{ und } \Delta$:

a. (**, 13 Punkte) Konstruiere nur mit Hilfe der Untermengen-Konstruktion den DFA M'zum NFA M. Gib die bei der Untermengen-Konstruktion entstehende Tabelle sowie das Tupel des entstehenden Automaten M' an.

Hinweis: Es ist nicht nötig die Übergangsfunktion δ' von M' anzugeben.

b. (***, 3 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 3: Minimierung eines DFA

(20 Punkte)

Gegeben sei der DFA $M \triangleq (Q, \Sigma, \delta, q_0, \{q_3\})$ mit $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$, $\Sigma = \{a, b\}$ und δ :

- a. (*, 1 Punkt) Gib an: Welche Zustände sind nicht erreichbar?
- b. (**, 7 Punkte) *Gib an:* Fülle die folgende Tabelle entsprechend des Table-Filling-Algorithmus zum Minimieren von DFAs aus. Hinweis: Bitte streiche zunächst alle Zeilen und Spalten für nicht erreichbare Zustände, falls es solche Zustände in M gibt.

c. (**, 4 Punkte) Die Minimierung unterteilt Q in Äquivalenzklassen. Gib alle Äquivalenzklassen an, die sich aus der Tabelle ergeben.

Hinweis: Die Namen der Klassen in der Form $[q_0]$ genügen hier nicht. Es müssen auch die zugehörigen Mengen, also so etwas wie $[q_0] = \{ \dots \}$, angegeben werden.

d. (**, 5 Punkte) Gib den minimierten DFA M' an.

e. (***, 3 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

Aufgabe 4: Grenzen Regulärer Sprachen

(17 Punkte)

a. (***, 11 Punkte) Beweise nur mit Hilfe des Pumping Lemma, dass die Sprache $A_1 \triangleq \{ a^m b^n c d^n d^m \mid n, m \in \mathbb{N} \land m \leq 3 \}$ mit $\Sigma_1 \triangleq \{ a, b, c, d \}$ nicht regulär ist.

b. **(***, 6 Punkte)** Gib alle Myhill-Nerode Äquivalenzklassen für die Sprache $A_2 \triangleq \{ a^n x \mid n \in \mathbb{N} \land x \in \{ b, c \}^* \land |x| = n \}$ über $\Sigma_2 \triangleq \{ a, b, c \}$ an. Hinweis: Die Namen der Klassen in der Form $[\ 0\]$ genügen hier nicht. Es müssen auch die zugehörigen Mengen, also so etwas wie $[\ 0\] = \{\ \dots \}$ oder $[\ 0\] = L(\dots)$, angegeben werden.

Matrikelnummer:	Name:

Aufgabe 5: Modelle Kontextfreier Sprachen I

(12 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{\ a,\ b,\ c\ \}$ und die kontextfreie Sprache

$$A \triangleq \{ a^n x a^m \mid n, m \in \mathbb{N} \land x \in \{ b, c \}^* \land |x| = n + m \}$$

a. (**, 5 Punkte) Gib eine Typ-2 Grammatik G mit $L(G) = A \cap L(a^*b^*c^*)$ an.

b. (**, 7 Punkte) Gib einen PDA M mit $L_{End}(M) = L_{Kel}(M) = A$ an.

Aufgabe 6: Modelle Kontextfreier Sprachen II

(16 Punkte)

Gegeben seien das Alphabet $\Sigma \triangleq \{a, b, c\}$ und der PDA $M \triangleq (\{q_0, q_1\}, \Sigma, \{\Box, +, -\}, \Box, \Delta, q_0, \{q_1\})$ mit Δ :

 $\text{für }X\in\{\;\Box,\;+,\;-\;\}.$

- a. (*, 2 Punkte) Gib eine Ableitung von bac in M an, die zeigt das $bac \in L_{End}(M)$.
- b. (**, 2 Punkte) $Gib \ L_{End}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.
- c. (*, 3 Punkte) Gib eine Ableitung von acab in M an, die zeigt das $acab \in L_{Kel}(M)$.
- d. (***, 3 Punkte) $Gib \ L_{Kel}(M)$ an, ohne auf Automaten oder Grammatiken zu verweisen.
- e. (**, 6 Punkte) Beweise nur mit Hilfe von Abschlusseigenschaften, dass die Sprache $A \triangleq \{ w \in \Sigma^* \mid |w|_b \neq |w|_c \land |w| > 0 \}$ über dem Alphabet Σ nicht regulär ist. Hinweis: Es darf ohne Beweis benutzt werden, dass L(e) für einen regulären Ausdruck e regulär und $\{ b^n c^n \mid n \in \mathbb{N} \}$ nicht regulär aber kontextfrei ist. Sprachen L(e) für reguläre Ausdrücke e sowie Operationen auf Mengen müssen nicht berechnet oder umgeformt werden.

Matrikelnummer:	Name:
Auf dieser Seite löse ich einen T	eil der Aufgabe <u> </u> :
Teilaufgabe:	_