Inhaltsverzeichnis

le Zahlen	1
Zahlenmengen	1
Eigenschaften der reellen Zahlen	1
Wichtige Ungleichungen	
gen	3
, Konvergenz	3
Monotone Folgen	3
hen	4
Definition	4
Konvergenzkriterien	
Rechenregeln	
Exponentialfunktion	

1. Reele Zahlen

1.1 Zahlenmengen

- 1. Definition Abzählbarkeit
 - A ist abzählbar, wenn es eine surjektive Abbildung von \mathbb{N} auf A gibt. $(f:\mathbb{N}\to A)$
 - \iff A kann durchnummeriert werden
 - Beispiele:
 - $\mathbb Q$ ist abzählbar (Alle Brüche können "schlangenartig" durchnummeriert werden, siehe Diagonalargument)
 - ℝ ist nicht abzählbar (Widerspruchsbeweis)
- 2. Anordnung von Körpern
 - Der Körper $\mathbb R$ ist angeordnet da:
 - 1. $\forall a \in \mathbb{R}$ gilt entweder:
 - -a=0 oder
 - -a > 0 oder
 - -a < 0
 - 2. $\forall a, b \in \mathbb{R} \text{ mit } a, b > 0 \text{ gilt:}$
 - -a+b>0 und
 - $-a \cdot b > 0$
 - Der Körper C kann nicht angeordnet werden da:
 - Angenommen: Sei $a \in \mathbb{C}$ und $a \neq 0$ dann muss entweder:
 - * a > 0, und laut definition von Anordnung auch $a \cdot a > 0$ oder
 - * -a > 0, und somit auch $(-a) \cdot (-a) = a^2 > 0$
 - Somit gilt in jedem Fall $a^2 > 0$
 - * Sei a = i dann gilt $a^2 = -1$
 - * Das ist ein Widerspruch

1.2 Eigenschaften der reellen Zahlen

- 1. Beschränktheit
 - Eine Menge $M \subseteq \mathbb{R}$ ist nach oben beschränkt, falls sein $s_0 \in \mathbb{R}$ existiert, sodass $\forall s \in M$ gilt: $s \leq s_0$
 - Die Zahl s_0 heißt obere Schranke von ${\cal M}$
- 2. Supremumsaktiome von \mathbb{R}
 - Jede nichtleere, nach oben beschränkte Menge von $\mathbb R$ hat eine kleinste obere Schranke, diese heißt sup $M\in\mathbb R$
 - Jede nichtleere, nach unten beschränkte Menge von $\mathbb R$ hat eine größte untere Schranke, diese heißt inf $M\in\mathbb R$
 - Falls das Supremum oder das Infimum einer Menge M auch selbst in M liegt, dann wird es auch als Maximum bzw. Minimum von M bezeichnet

1. REELE ZAHLEN 2

- Konventionen:
 - $-\sup M=\infty$ falls Mnicht nach oben beschränkt ist $-\inf M=-\infty$ falls Mnicht nach unten beschränkt ist $-\sup\emptyset=-\infty$
- 3. R ist archimedisch
 - $\forall a \in \mathbb{R}$ existiert $n \in \mathbb{N}$ mit a < n
- 4. Die rationalen Zahlen liegen dicht in $\mathbb R$
 - $\forall a, b \in \mathbb{R}$ mit a < b existiert $r \in \mathbb{N}$ mit a < r < b

1.3 Wichtige Ungleichungen

- 1. Dreiecksungleichung
 - $\begin{array}{ll} \bullet & \forall x,y \in \mathbb{R} \text{ gilt:} \\ & |x+y| \leq |x| + |y| \\ & |x+y| \geq ||x| |y|| \end{array}$
- 2. Cauchy-Schwarz ungleichung
 - $|\langle x, y \rangle| \le ||x|| \cdot ||y||$
 - "Der Betrag vom Skalarprodukt ist kleiner oder gleich dem Produkt der Beträge der Vektoren"

2. Folgen

- 2.1 Konvergenz
- 2.2 Monotone Folgen

3. Reihen

- 3.1 Definition
- 3.2 Konvergenzkriterien
- 3.3 Rechenregeln
- 3.4 Exponential funktion