CB N° 11 - GEOMETRIE DANS L'ESPACE - SUJET 1

EXERCICE 1

Soit \mathscr{S} la surface de \mathbb{R}^3 d'équation

$$x^2 + y^2 - z^2 = 0$$

1. Déterminer les points réguliers de \mathscr{S} .

Soit
$$F: (x, y, z) \mapsto x^2 + y^2 - z^2$$
.

 $F \in C^1(\mathbb{R}^3, \mathbb{R})$ puisque polynomiale, et le gradient de F existe en tout point (x, y, z) de \mathbb{R}^3 , et vaut : $\overrightarrow{\operatorname{grad}}F(x,y,z)=(2x,2y,-2z)$. Comme $(0,0,0)\in\mathscr{S}$, tous les points de \mathscr{S} sont réguliers sauf (0,0,0).

2. Démontrer qu'en un point régulier M(a,b,c) une équation du plan tangent à $\mathscr S$ est

$$ax + by - cz = 0$$

Soit M(a,b,c) un point régulier de \mathscr{S} . Alors \mathscr{S} admet en M un plan tangent d'équation cartésienne 2a(x-a) + 2b(y-b) - 2c(z-c) = 0, c'est à dire $ax + by - cz - (a^2 + b^2 - c^2) = 0$ ou encore (puisque $a^{2} + b^{2} - c^{2} = 0$): ax + by - cz = 0

EXERCICE 2

Soit Σ la surface de \mathbb{R}^3 d'équation

$$(x^2 + y^2 + z^2 + 3)^2 - 16(x^2 + y^2) = 0$$

1. Démontrer que Σ est régulière.

Soit
$$F: (x, y, z) \mapsto (x^2 + y^2 + z^2 + 3)^2 - 16(x^2 + y^2)$$
.

 $F \in C^1(\mathbb{R}^3, \mathbb{R})$ puisque polynomiale, et le gradient de F existe en tout point (x, y, z) de \mathbb{R}^3 , et vaut :

$$\overrightarrow{\operatorname{grad}}F(x,y,z) = (4x(x^2+y^2+z^2+3)-32x, 4y(x^2+y^2+z^2+3)-32y, 4z(x^2+y^2+z^2+3)).$$
Ainsi, $\overrightarrow{\operatorname{grad}}F(x,y,z) = \vec{0}$ si, et seulement si :
$$\begin{cases} 4x(x^2+y^2-5) = 0 \\ 4y(x^2+y^2-5) = 0 \\ z = 0 \end{cases}$$

Si $x^2 + y^2 - 5 \neq 0$, alors on en déduit que x = y = z = 0, mais $(0,0,0) \notin \Sigma$.

Si
$$x^2 + y^2 - 5 = 0$$
 et $z = 0$, alors $F(x, y, z) = -16 \neq 0$, et donc $(x, y, z) \notin \Sigma$.

On peut conclure que tous les points de Σ sont réguliers, c'est à dire que Σ est régulière.

2. Donner en A(3,0,0) une équation du plan tangent à Σ .

A(3,0,0) est un point de Σ donc est régulier. $\overrightarrow{\operatorname{grad}}F(A)=(48,0,0)$, donc Σ admet en M un plan tangent d'équation x - 3 = 0

EXERCICE 3

Soit Γ la courbe paramétrée : $\left\{ \begin{array}{ll} x=t^2\\ y=t+1\\ z=t^2-t+1 \end{array} \right.,\quad t\in\mathbb{R}$

1. Montrer que Γ est plane. Déterminer \vec{u} , un vecteur normal au plan contenant Γ .

On a immédiatement $\forall t \in \mathbb{R}, \ x(t) - y(t) - z(t) = -2$ donc la courbe Γ est incluse dans le plan d'équation x - y - z = -2 dont $\vec{u}(1, -1, -1)$ est un vecteur normal.

Spé PT B Page 1 sur 4 2. Déterminer un paramétrage puis une équation cartésienne du cylindre \mathscr{C} de section droite Γ , c'est à dire de directrice Γ et de direction normale au plan contenant Γ .

direction normale au pian contenant 1.
$$M(X,Y,Z) \in \mathscr{C} \iff \begin{cases} X = t^2 + \lambda \\ Y = t + 1 - \lambda \\ Z = t^2 - t + 1 - \lambda \end{cases} \qquad (t,\lambda) \in \mathbb{R}^2 \quad \text{qui constitue un paramétrage de } \mathscr{C}.$$

On en déduit que \mathscr{C} a pour équation cartésienne :

$$(X + 2Y - Z - 1)^2 = 3(2X + Y + Z - 2)$$

CB N° 11 - GEOMETRIE DANS L'ESPACE - SUJET 2

EXERCICE 1

Soit \mathscr{S} la surface de \mathbb{R}^3 d'équation

$$x^2 - y^2 + z^2 = 0$$

1. Déterminer les points réguliers de \mathscr{S} .

Soit $F: (x, y, z) \mapsto x^2 + -^2 + z^2$.

 $F \in C^1(\mathbb{R}^3, \mathbb{R})$ puisque polynomiale, et le gradient de F existe en tout point (x, y, z) de \mathbb{R}^3 , et vaut : $\overrightarrow{\operatorname{grad}}F(x,y,z)=(2x,-2y,2z)$. Comme $(0,0,0)\in\mathscr{S}$, tous les points de \mathscr{S} sont réguliers sauf (0,0,0).

2. Démontrer qu'en un point régulier M(a,b,c) une équation du plan tangent à $\mathscr S$ est

$$ax - by + cz = 0$$

Soit M(a,b,c) un point régulier de \mathscr{S} . Alors \mathscr{S} admet en M un plan tangent d'équation cartésienne 2a(x-a) - 2b(y-b) + 2c(z-c) = 0, c'est à dire $ax - by + cz - (a^2 - b^2 + c^2) = 0$ ou encore (puisque $a^{2}-b^{2}+c^{2}=0$): ax-by+cz=0

EXERCICE 2

Soit Σ la surface de \mathbb{R}^3 d'équation

$$(x^2 + y^2 + z^2 + 1)^2 - 16(x^2 + y^2) = 0$$

1. Démontrer que Σ est régulière.

Soit
$$F: (x, y, z) \mapsto (x^2 + y^2 + z^2 + 1)^2 - 16(x^2 + y^2)$$
.

Soit $F: (x, y, z) \mapsto (x^2 + y^2 + z^2 + 1) - 10(x^2 + y^2)$. $F \in C^1(\mathbb{R}^3, \mathbb{R})$ puisque polynomiale, et le gradient de F existe en tout point (x, y, z) de \mathbb{R}^3 , et vaut : $\gcd F(x, y, z) = (4x(x^2 + y^2 + z^2 + 1) - 32x, 4y(x^2 + y^2 + z^2 + 1) - 32y, 4z(x^2 + y^2 + z^2 + 1))$. Ainsi, $\gcd F(x, y, z) = \vec{0}$ si, et seulement si : $\begin{cases} 4x(x^2 + y^2 - 7) = 0 \\ 4y(x^2 + y^2 - 7) = 0 \\ z = 0 \end{cases}$

Ainsi,
$$\overrightarrow{\text{grad}}F(x,y,z) = \vec{0}$$
 si, et seulement si :
$$\begin{cases} 4x(x^2 + y^2 - 7) = 0\\ 4y(x^2 + y^2 - 7) = 0\\ z = 0 \end{cases}$$

Si $x^2 + y^2 - 7 \neq 0$, alors on en déduit que x = y = z = 0 mais $(0,0,0) \notin \Sigma$.

Si
$$x^2 + y^2 - 7 = 0$$
 et $z = 0$, alors $F(x, y, z) = -48 \neq 0$, et donc $(x, y, z) \notin \Sigma$.

On peut conclure que tous les points de Σ sont réguliers, c'est à dire que Σ est régulière.

2. Donner en $A(1,0,\sqrt{2})$ une équation du plan tangent à Σ . $A(1,0,\sqrt{2})$ est un point de Σ donc est régulier. $\overrightarrow{\operatorname{grad}}(A)=(-16,0,16\sqrt{2}),$ donc Σ admet en M un plan tangent d'équation $-x+z\sqrt{2}-1=0.$

EXERCICE 3

Soit Γ la courbe paramétrée

$$\begin{cases} x = t^2 \\ y = t+1 \\ z = -t^2 - t + 1 \end{cases}, \quad t \in \mathbb{R}$$

- 1. Montrer que Γ est plane. Déterminer \vec{u} , un vecteur normal au plan contenant Γ . On a immédiatement $\forall t \in \mathbb{R}, \ x(t) + y(t) + z(t) = 2$ donc la courbe Γ est incluse dans le plan d'équation x + y + z = 2 dont $\vec{u}(1,1,1)$ est un vecteur normal.
- 2. Déterminer un paramétrage puis une équation cartésienne du cylindre \mathscr{C} de section droite Γ , c'est à dire de directrice Γ et de direction normale au plan contenant Γ .

$$M(X,Y,Z) \in \mathscr{C} \iff \begin{cases} X = t^2 + \lambda \\ Y = t + 1 + \lambda \\ Z = -t^2 - t + 1 + \lambda \end{cases} \qquad (t,\lambda) \in \mathbb{R}^2 \quad \text{qui constitue un paramétrage de } \mathscr{C}.$$

De plus,
$$\begin{cases} X = t^2 + \lambda \\ Y = t + 1 + \lambda \\ Z = -t^2 - t + 1 + \lambda \end{cases} \iff \begin{cases} X = t^2 + \lambda \\ Y = t + 1 + \lambda \\ X + Y + Z = 2 + 3\lambda \end{cases} \iff \begin{cases} \lambda = \frac{X + Y + Z - 2}{3} \\ t = \frac{-X + 2Y - Z - 1}{3} \\ X = t^2 + \lambda \end{cases}$$

On en déduit que \mathscr{C} a pour équation cartésienne

$$3(2X - Y - Z + 2) = (-X + 2Y - Z - 1)^{2}$$

Spé PT B Page 3 sur 4