

SECOND SEMESTER 2022-2023

Course Handout Part II

Date: 16-01-2023

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : BIOT F346
Course Title : Genomics

Instructor-in-Charge: AMARTYA SANYAL

1. Scope and Objective of the Course:

Genomics is a highly inter-disciplinary field to study genome(s) and to decode the functional information hidden in DNA sequences. It employs high-throughput technologies for collective and comprehensive characterization of sequence, structure, function, and evolution of genomes using powerful computational and statistical methods. This course is designed to teach you the fundamentals of genome architecture, organization, variation, and function, including regulatory mechanisms both at genetic and epigenetic levels. The course will introduce you to the modern genomics technologies and practices for genome and epigenome interrogations, functional genomics, structural genomics, comparative genomics, DNA copy number assessment, genome-wide association studies, etc. You will also learn the recent breakthroughs in genomics and genomic technologies and their impact on human health and disease, especially in the field of precision medicine. Moreover, this course will bring a broader understanding of systems biology approach to integrate datasets generated from a plethora of related 'omics' techniques (such as genomics, transcriptomics, proteomics, metabolomics, epigenomics, etc.) to model complex biological systems.

Upon successful completion, students will gain knowledge and skills to:

- a) Describe how next-generation sequencing (NGS)-based genomics experiments are used to diagnose, predict, and treat human diseases
- b) Evaluate current scientific literature on genomics and communicate their findings in layman's terms
- c) Design experiments applying current genomics technologies to study genome(s) and genome function
- d) Apply genomics technologies to assess the genetic risks of common and complex diseases which can guide genomics-based personalized healthcare services
- e) Discuss and debate societal and ethical impacts resulting from advances in genomics

2. Textbooks:

- 1. Genomes, TA Brown, 3rd Edition, Garland Science Publishing
- 2. Introduction to Genomics, Arthur M. Lesk, 2nd Edition. Oxford University Press.

3. Reference books

- 1. Microbial Genome Methods, Kenneth W Adolph, CRC Press.
- 2. Genome Analysis, A Laboratory Manual, Vol. 4, Mapping Genomes, Bruce Birren, Cold Spring Harbor Laboratory Press.

4. Course Plan:

Lecture No.	Learning objectives	Topics to be covered	Chapter in the Text Book
1-6	Studying Genomes	Genomes, Transcriptomes and Proteomes,	T1: Ch. 1-6
		Studying DNA and RNA, Understanding a	and Class notes
		Genome Sequence, Understanding How a	
		Genome Functions, Concept of Epigenome	
7-10	Genome Anatomies	Eukaryotic Nuclear Genomes, Genomes of	T1: Ch. 7-9 &
		Prokaryotes and Eukaryotic Organelles, Virus	Class notes
	_	Genomes and Mobile Genetic Elements	
11-16	How Genomes	Genome Replication, Mutations and DNA	T1: Ch. 15-19
	Replicate and Evolve	Repair, Recombination, How Genomes Evolve,	& Class notes
		Molecular Phylogenetics	
17-25	How Genomes	Accessing the Genome, Assembly of the	T1: Ch. 10-14
	Function	Transcription Initiation Complex, Synthesis and	& Class notes
		Processing of RNA, Regulation of Genome	
		Activity including Epigenetic Regulation,	
		Synthesis and Processing of the Proteome	
26-31	Mapping, Sequencing	Human genome project, Genome sequencing	Class notes
	and Interpreting	techniques and approaches, Next-generation	
	Genome	sequencing, Techniques to study genome	
		function and epigenome	
32-35	Genome Variation	Types of variation between human genomes-	Class notes
		SNPs, indels, CNVs, etc., pathogenic DNA	
		variants, Detection and analysis of genetic	
		variations	
36-40	Systems biology	Applications of 'omics' data in health and	T2: Ch. 11 &
		disease, WGS, GWAS, Precision medicine,	Class notes
		Social and Ethical impacts of genomics	

5. Evaluation Scheme:

Component	Duration	Weightage (Marks)	Date & Time	Nature of Component				
Mid semester	90 mins	30% (60	14/03/2023	Closed Book				
examination		marks)	11.30 - 1.00PM					
Quizzes	Variable	20% (40	Continuous evaluation	Closed Book				
		marks)	(Quizzes will be					
			conducted during class					
			hours)					
Assignments	Variable	10% (20	Continuous evaluation	Open Book				
		marks)						
Comprehensive	180 mins	40 % (80	10/05/2023	20% Open Book				
examination		marks)	AN	+ 20% Closed				
				Book				

- **6. Chamber Consultation Hour:** The specific timings and logistics of consultation will be provided after discussion with the students.
- **7. Notices:** Notices will be displayed on the course pages of CMS or through email.
- **8. Make-up Policy:** Prior permission has to be obtained from the Instructor-in-Charge for make-up. No make-up for assignments.
- **9. Academic Honesty and Integrity Policy:** All the students are required to maintain academic honesty and integrity throughout the semester and academic dishonesty in any form is unacceptable.

It is highly desirable that you attend the lectures regularly for better understanding of the course content. Obtaining feedback from students is a significant means for instructors to improve their teaching. Therefore, you are encouraged to provide constructive feedback about the course and presentation to the instructor on a regular basis to enhance your learning experience.

Instructor-in-Charge