Statistical Inference Using Identity-by-Descent Segments

Seth D. Temple
Ph.D. Dissertation Defense
August 14, 2024

Agenda

- 1. Adaptive evolution and identity-by-descent (IBD)
- 2. Asymptotic normality of IBD rate
- 3. Genome-wide threshold for IBD selection scan
- 4. Modeling selective sweeps w/ IBD data (general exam)

Motivation, details, & simulation studies in Topics 2, 3, & 4.

Case study

- 1. Change in environment: pollution
- 2. Black color phenotype is advantageous
- 3. Alleles leading to black phenotype increase in frequency

Identity-by-descent segments

4

Coalescent at a locus

Primary aims

In studying positive selection with IBD segments, we want to:

- 1. Propose genome-wide scan threshold that controls family-wise error rate (FWER)
- 2. Estimator \hat{s} for selection coefficient that has desirable properties (general exam)
 - Confidence intervals (CIs) have proper coverage

Standard normal distribution

Asymptotic normality of the detectable IBD rate

Temple and Thompson (2024) pre-print

Example: 4 haplotypes

Recombination Process

Sample Mean

W's are Erlang(shape 2) with rate depending on common ancestor time

w centiMorgans threshold

Segment threshold w is important scale factor

The binomial model concerns *independent* binary observations. "Success" prob. is $\approx (w \text{ cM} \times \text{population size } N)^{-1}$.

Seminal Theorem.

Under the following interpretable conditions (+1 other), the IBD rate is normally distributed.

- 1. Large sample size n & population size $N \times w$
- 2. Population size much smaller than sample size ^2
 - You have enough data
- 3. Sample size much smaller than scaled population size
 - Vanishing covariance terms

Covariance (IBD seg. AB, IBD seg. AB)

Covariance (IBD seg. AB, IBD seg. BC)

Covariance (IBD seg. AB, IBD seg. CD)

There are $\sim n^4$ of these terms

There are two possible trees

Scaled population much larger than sample

Algorithm to simulate IBD segments

- 1. Simulate a coalescent tree
- 2. At each coalescent event:
 - i. Draw recombination endpoints
 - ii. Compare endpoints of haplotypes
 - iii. Track the long enough segments

Probabilistic speed ups

- Why?
 - Billions of simulations to test distributional properties
 - Increasing sample size ^ 2
- Pruning
 - If haplotype segment shorter than w threshold, stop making comparisons
- Merging
 - If haplotype segments have same endpoints, treat them henceforth as same

Central limit works, kind of

* Theorem says we should reject less when population size or cM threshold increase

Comments:

- cM threshold fixed by user
- Tradeoff between sample and population size
- When we reject null: heavier tailed distr.

Contribution to the field

- Normality motivates,
 - i. Multiple testing
 - ii. Confidence intervals

- Existing literature
 - Central limits hard to get in genetics
 - Shai et al. (2014): data "looks" normally distributed
 - Palamara et al., Field et al. : data "looks" gamma distributed

 H_0 : $\mu = \mu_0$ H_1 : $\mu > \mu_0$ μ is genome-wide IBD rate We use a Z-test

Genome-wide threshold for IBD-based selection scan

Temple and Browning, in progress

FWER existing literature

- Standard deviation thresholds (Sabeti et al., Voight et al., Browning x2, Temple et al.)
- Bonferroni correction (Palamara et al.)
- GWAS significance level 5e-8 (Field et al., Speidel et al., Taliun et al.)

Neutral locus

Selected locus

4 standard deviations

Modeling the Ornstein-Uhlenbeck process

Properties

- Normality at each locus
- Spatial homogeneity
- Mean-reverting
- Markov property
- Covariance form ↓↓↓

Cov (IBD at locus 1, IBD at locus 2) = $\exp(-\theta \times \Delta)$

Decay parameter θ ; spacing between loci Δ

Multiple testing methods

- 1. Standardize over genome
- 2. Fit regression : log Covariance = $-\theta \times \Delta$'s
- 3. Multiple testing
 - i. Approximation method (Siegmund and Yakir (2007))

Significance levels when multiple testing

Nominal	Genome-wide (this work)	Bonferroni
0.01	1.08e-6	2.08e-7
0.05	6.24e-6	1.04e-6
0.10	1.36e-5	2.08e-6

- Our method is designed to control FWER
- Bonferroni method may be very conservative

Anti-conservative scan

A)

B)

We appropriately handle the step size Δ

- Precision in locating selected locus
 - Palamara et al. (2018) use ad-hoc 0.05 cM spacing
 - Chen et al. (2023) use ad-hoc 1.0 cM spacing
- Adjust for genome size
 - 5e-8 significance level based on humans
- Choice impacts number of tests / threshold

Power simulations

A)

B)

Selection scan in three different ancestry groups

European, South Asian, African

Analytical: our multiple testing method Heuristic: 4σ above the median Thresholds on top of each other

Analytical: our multiple testing method Heuristic: 4σ above the median

Thresholds on top of each other

Analytical: our multiple testing method Heuristic: 4σ above the median Thresholds **are not** on top of each other

Modeling selective sweeps using IBD segments

Temple, Waples, and Browning (2023)
To appear in *American Journal of Human Genetics*

Weaker selection coefficient *s*

Stronger selection coefficient *s*

<u>Updates</u>

Selection coefficient estimator

- Compared favorably to other methods (tree inference, NNs)
- More empirical coverage simulations
- Simulation study indicating that our estimator is sufficient
- Robustness, interpretation under time-varying selection

Conclusion: an entire workflow

- 1. Detect selection: excess IBD rate
- 2. Estimate freq., location of selection
- 3. Estimate selection coefficient
- 4. Confidence intervals for \hat{s}
 - Our central limit + Delta method

Acknowledgments

- Committee: Sharon, Elizabeth, Kelley, Amy
- Co-authors: Sharon, Ryan, Elizabeth
- Lab members: Ruoyi, Nobu, Robert
- Other StatGen: Elizabeth Blue, Ellen Wijsman, Tim Thornton
- Other STAT: Ellen, Daniela, Ema, office staff

Supplementary Material

Main figures in AJHG paper

Comparing other methods

Real data

Appendix: Central limit theorem

Theorem 3.1. The mean-centered and suitably scaled IBD rate statistic $\mathbf{Z}_{\binom{n}{2},N}$ converges in distribution to the standard normal distribution for n and Nw tending to infinity when the following are true:

- 1. $Nw = o(n^2)$, scaled population size is small relative to the number of pairs;
- 2. n = o(Nw), sample size is small relative to scaled population size;
- 3. $\mathbb{E}[Z_{a,b} \times \mathbf{Z}_{-a,b} | \mathbf{Z}_{-a,b}] \geq 0$ for all $\mathbf{Z}_{-a,b}$.

Demography CLT

CLT: sample size is less important

Third condition (Monte Carlo)

Features of IBD networks

Appendix: Multiple testing

Estimating θ

Rejections are next to each other

Siegmund and Yakir (2007) approximation

$$P(\max_{1 \leq m \leq M} \tilde{\mathbf{Z}}_m \geq z) \approx 1 - \exp(-C[1 - \Phi(z)]) - \theta \cdot L \cdot z \cdot \phi(z) \cdot \nu(z\{2\theta\Delta\}^{1/2})),$$
 Independent tests First Markov hitting time

- C: number of chromosomes
- L: total length of genome
- Δ : spacings
- θ : exponential decay

Simulating true OU process

Appendix: Methods for genetic data

Ranking

Frequency & Location

Diagnostic check for sweeps

Robust to inferring IBD in data

Appendix: Selection coefficient

Strong selection

Weak selection

Experimental design

Using allele frequency over time

Our estimates (approx.)

Comparing against allele frequency method

