Un Curso de Álgebra Lineal

con notación asociativa y un módulo para Python

Edición curso 2020/2021

Versión: 18 de mayo de 2021

Marcos Bujosa

Licencia: Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional

Copyright © 2008–2021 Marcos Bujosa

Puede encontrar la última versión de este libro en: https://github.com/mbujosab/CursoDeAlgebraLineal

Este libro ha sido escrito con \LaTeX .

Copyright © 2008–2021 Marcos Bujosa Licencia: Creative Commons Reconocimiento-Compartir Igual 4.0 Internacional

Algunos derechos reservados. Esta obra está bajo una licencia Creative Commons Reconocimiento-Compartir
Igual 4.0 Internacional. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-sa/4.0/ o envíe una carta a Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Prefacio

Aunque muchos perciben las matemáticas como una batería de procedimientos mecánicos para resolver problemas tipo, en realidad <u>las matemáticas son un lenguaje</u>. La principal intención de este curso es que el estudiante lo perciba y juegue con las reglas de dicho lenguaje.

También es frecuente escuchar que "las matemáticas están en todas las cosas". Yo discrepo. Creo que las matemáticas son algo al margen de la realidad material del mundo, y comparto la frase de Eduardo Sáenz de Cabezón de que "las matemáticas son el lenguaje en el que nosotros leemos el mundo" (en su charla "Las matemáticas nos hacen más libres y menos manipulables"; minuto 6:40). Es decir, son el lenguaje que usamos para describir la realidad. A las descripciones matemáticas del mundo las llamamos modelos...y cuando nos "ponemos estupendos" incluso las denominamos modelos científicos. Las matemáticas nos sirven para expresar ideas y describir relaciones, pero no necesariamente relacionadas con el mundo real. Por eso considero que las matemáticas son algo distinto al mundo material que denominamos "realidad".

Las matemáticas son un lenguaje formal. Consisten en un conjunto de símbolos y unas reglas para su manipulación. Así es como entiendo la cita de Charles F. Van Loan "Notation is everything". Las matemáticas son notación. No obstante, solemos dar una interpretación subjetiva a dicha notación. Las interpretaciones nos dotan de un esquema mental que nos ayuda a pensar, y por eso son importantes. Pero las interpretaciones corresponden a un nivel distinto. De hecho, una misma notación puede tener interpretaciones alternativas. Por ejemplo, utilizamos el Teorema de Pitágoras cuando trabajamos con distancias euclídeas, con números complejos, al deducir algunas identidades trigonométricas, al analizar señales o series temporales, para tener una interpretación geométrica de la esperanza y la desviación típica, etc... y en todos estos ejemplos el formalismo del Teorema de Pitágoras es el mismo. El formalismo es el pilar sobre el que se apoyan las distintas interpretaciones. Así pues, las matemáticas son un conjunto de símbolos y unas reglas de uso para dichos símbolos. En matemáticas LA NOTACIÓN LO ES TODO.

Fiel a este espíritu, presto especial importancia a la notación y al juego de manipulación de símbolos. También muestro algunas interpretaciones, como la proyección sobre un subespacio de \mathbb{R}^2 o \mathbb{R}^3 , pero el peso recaerá en la manipulación de los símbolos, y no en la interpretación. Así pues, he tenido un especial cuidado en elegir una notación que evite la ambigüedad¹ y que facilite la operar con ella (por ejemplo, explotando la asociatividad lograremos expresiones más simples).

La potencia de la notación como lenguaje se demuestra en su implementación como librería de Python.

¡Qué mejor muestra de que las matemáticas son un lenguaje, que usar dicho lenguaje con un PC para "enseñar" al PC a resolver problemas matemáticos y que todo funcione como se espera!

La librería NAcAL es una implementación literal de la notación empleada en el libro. Así se puede verificar que siguiendo las reglas de reescritura podemos lograr que el ordenador sea capaz de operar con vectores, matrices, resolver sistemas de ecuaciones, diagonalizar matrices, calcular determinantes, etc.

La librería se instala ejecutando² pip install nacal. También puede descargar el código fuente y la documentación desde

¹por ejemplo, hay una nítida distinción entre vectores y matrices,...aquí no encontrara ¡la "transpuesta" de ningún vector!

²Previamente debe tener instalado python3 en su ordenador

https://github.com/mbujosab/nacallib

Pero incluso sin instalar nada, puede usar la librería si abre los Notebooks de Jupyter en su navegador:

https://mybinder.org/v2/gh/mbujosab/nacal-Jupyter-Notebooks/master

Aprenderá mucho si experimenta con el ordenador. No se desanime si le cuesta un poco al principio.

Otros aspectos del libro

Todos los resultados están demostrados³. Muchas de las demostraciones son tan sencillas que están propuestas como ejercicios (frecuentemente se ofrecen pistas que indican los pasos necesarios en la demostración); consecuentemente dichas demostraciones aparecen en la sección de soluciones a los ejercicios⁴. El propósito es doble: por una parte se aligera el texto, y por otra permite al estudiante demostrar los resultados por su cuenta (sin tener la solución a la vista).

El curso gira en torno al Método de Eliminación y las transformaciones elementales. Hay numerosos libros de texto y manuales que siguen este modelo; por ejemplo Cullen (1972); Larson et al. (2004); Lay (2007); Poole (2004); Strang (2007, 2003), o el libro de problemas Arvesú Carballo et al. (2005). Pero este texto presenta una diferencia "operativa" respecto a los anteriores manuales. Por ejemplo, el Profesor Strang indica que "el sistema de ecuaciones $\mathbf{A}x = \mathbf{b}$ tiene solución si el vector \mathbf{b} es una combinación lineal de las columnas de \mathbf{A} ", pero aplica el método de eliminación gaussiana operando con las filas, por lo que realmente acaba resolviendo un sistema distinto aunque equivalente a $\mathbf{A}x = \mathbf{b}$. De hecho es así como se hace en casi todos los manuales de Álgebra Lineal. Sin embargo, aquí se empleará el método de eliminación por columnas, operando así en el espacio columna de \mathbf{A} para encontrar las combinaciones de las columnas que son iguales a \mathbf{b} . Es más, básicamente con un único algoritmo (la eliminación por columnas y sin necesidad de la sustitución hacia atrás) calcularemos casi todo lo necesario (la inversa de una matriz, el conjunto de soluciones a un sistema de ecuaciones lineales, realizaremos operaciones con subespacios de \mathbb{R}^n , calcularemos determinantes, etc.). Solo al diagonalizar necesitaremos la eliminación por filas y por columnas (jambas a la vez!).

Mi experiencia es que los estudiantes de economía no suelen tener una especial afinidad por las matemáticas. Y en aquellos casos en que se sienten a gusto con ellas, es porque conocen una serie de algoritmos que les dan seguridad, pues es reconfortante saber que si se siguen los pasos correctamente se llega a la solución de ciertos problemas. Apoyándome en esto, la exposición de este libro es fundamentalmente algorítmica. ⁵ Tirando del hilo de los algoritmos irán surgiendo distintas estructuras conceptuales, cuya generalización permitirá reconsiderar lo ya visto, pero con un mayor grado de abstracción. No obstante, si uno analiza las demostraciones con perspectiva, se evidencia que de nuevo todo acaba reduciéndose a unas reglas precisas en la manipulación de unos símbolos ("La notación lo es todo").

No obstante, limitarse a la parte algorítmica deja fuera cuestiones más abstractas que son importantes. Por ello he incluido al final de ciertas lecciones una sección de "Generalizaciones o visiones alternativas (\star)". Dichas secciones se pueden omitir sin perder el hilo del libro. No obstante, espero que puedan servir como referencia cuando el alumno se encuentre con otros escenarios distintos a \mathbb{R}^n en futuras asignaturas.

Algunas lecciones disponen de un apéndice que el alumno no debería pasar por alto (aunque en ocasiones puede⁶ posponer). Por ejemplo, los apéndices de las lecciones 3 y 4 contienen material que no es imprescindible para dichas lecciones, aunque es imprescindible para algunas lecciones posteriores. Por el contrario, el apéndice de la Lección 6 contiene material imprescindible para esa misma la lección.

 $^{^3}$ salvo algunas propiedades de los números reales y el Teorema~Fundamental~del~'Algebra cuya demostración está fuera del alcance de este curso.

⁴Si está usando una versión en pdf, sepa que la numeración de los ejercicios es también un enlace que lleva a la solución; y que al final de cada solución hay un cuadrado que es un enlace al correspondiente enunciado.

⁵el desarrollo en paralelo de la librería NAcAL para Python me ha ayudado en este sentido.

 $^{^6}$ la lectura de la Sección 4 . B se debe posponer al menos hasta completar la primera sección de la lección siguiente.

Instrucciones para los alumnos

Antes y durante las clases en el aula. Este libro está dividido en lecciones. Para poder aprovechar adecuadamente las clases recibidas en el aula es IMPRESCINDIBLE leer con antelación la lección correspondiente. El profesor puede dar por supuesto que usted así lo ha hecho.

En clase se dará una exposición general de lo que aparece en este libro. Por tanto, los detalles de cada lección deben ser preparados por el alumno estudiando las secciones correspondientes.

Recuerde que usted debe haber leído las secciones de referencia correspondientes antes de cada clase.

Para ayudar a tener una idea general de cada lección, hay un resumen por lección en el Apéndice A. (**por hacer**). También hay unas transparencias que sirven de apoyo al profesor en sus clases (junto con un resumen previo de cada lección (**por hacer**). Le puede venir bien llevarlas a clase para no tomar tantos apuntes.

El tiempo dedicado a resolver problemas en clase es un buen momento para resolver dudas con su profesor.

También me gustaría acompañar las lecciones con vídeos (**por hacer**)...aunque no creo que nunca puedan ser tan buenos como los de Grant Sanderson de su canal <u>3blue1brown</u>.

Al estudiar Recuerde que el esfuerzo y estudio individual (o en tándem) son imprescindibles; limitarse a atender las explicaciones en clase no es en modo alguno suficiente.

Al final del libro encontrará las soluciones a los problemas, pero no debe mirarlas hasta que haya dado con "su" solución. Consultar la solución de otro sin haber resuelto el ejercicio por cuenta propia sirve de muy poco cuando se estudia. Recuerde que el aprendizaje es una tarea activa, es decir, usted debe encontrar la solución activamente, y no consultar la solución de otro (la mía en particular).

Instrucciones para los profesores

Este libro se acompaña de unas transparencias para proyectar en clase. Son las que yo uso, y las acompaño de un resumen para orientar a quien quiera usarlas en clase (añadir dirección de fichero con las transparencias)

Índice general

Pı	Prefacio		
Ι	Álg	gebra matricial	1
1.		eraciones con vectores y operaciones con matrices	3
	1.1.	Vectores	3
		1.1.1. Definiciones de algunos vectores especiales	5
	1.2.	Sumas de vectores y productos de vectores por escalares	6
		1.2.1. Propiedades	8
		Vectores como representación de datos	10
	1.4.	Matrices	10
		1.4.1. Filas de una matriz	12
		1.4.2. Columnas de una matriz	13
		1.4.3. Resumen de la notación para seleccionar componentes, filas y columnas	14
		1.4.4. Extensión de la notación vectorial y reglas de reescritura	15
		1.4.5. La transposición	16
	4 -	1.4.6. Definiciones de algunas matrices especiales	17
	1.5.	Suma de matrices y producto de matrices por escalares	19
		1.5.1. Propiedades	19
		1.5.2. Operaciones componente a componente	20
		1.5.3. La transposición es un operador lineal	20
	1 6	1.5.4. Operaciones fila a fila	20
	1.0.	Extensión de la notación matricial y las reglas de reescritura	21
2.		nbinaciones lineales	23
	2.1.	Producto punto	23
	2.2.	Matriz por vector	24
		2.2.1. Combinación lineal de vectores	24
		2.2.2. Producto de una matriz por un vector	24
		2.2.3. Propiedades del producto matriz por vector	26
	2.3.	Vector por matriz	27
		2.3.1. Propiedades del producto de un vector por una matriz	28
3.	Mul	ltiplicación matricial	29
		Producto de matrices	29
		3.1.1. Otras dos formas de calcular el producto de matrices	31
		Cálculo del producto de matrices componente a componente (filas por columnas)	31
		Cálculo del producto de matrices operando con las filas	31
		3.1.2. Nuevas reglas de reescritura	32
		Transpuesta de un producto	32

		ndices a la lección	33
		Submatrices mediante selección de una lista de índices	33
	3.B.	Producto matricial como suma de productos de submatrices	34
		3.B.1. Producto como suma de matrices	36
		3.B.2. Submatriz de un producto como suma de productos de submatrices	37
		Matrices partidas en bloques	37
Π	Tr	ransformaciones elementales, métodos de eliminación y matriz inversa	39
4.	Tra	nsformaciones elementales y métodos de eliminación	41
	4.1.		41
		4.1.1. Transformaciones y matrices elementales de Tipo I	41
		4.1.2. Transformaciones y matrices elementales de Tipo II	43
		4.1.3. Transformaciones de las columnas	44
		4.1.4. Sobre las matrices elementales y su notación	44
	4.2.	Secuencias de transformaciones elementales. Parte I	46
		4.2.1. Intercambios	47
	4.0	4.2.2. Permutaciones	48
	4.3.		49
		4.3.1. Método de eliminación (o eliminación de "Izquierda a derecha")	49 50
		4.3.2. Método de eliminación Gauss-Jordan	51
	Ana	ndices a la lección	$\frac{51}{52}$
		Transformaciones elementales de las filas.	$\frac{52}{52}$
		Transformación elemental "espejo" de otra transformación	55
	1.2.		
5.	Mat	trices inversas	57
	5.1.	Matrices invertibles	57
		5.1.1. Inversa de las matrices (transformaciones) elementales	58
		5.1.2. Matrices pre-escalonadas con inversa.	60
		5.1.3. Matrices invertibles	61
		Secuencias de transformaciones elementales. Parte II	64
		Inversa de una matriz triangular	65
	5.4.	Rango de una matriz	67
		5.4.1. Algunas propiedades del rango de una matriz	67
Π	I S	Subespacios y resolución de sistemas de ecuaciones lineales	7 1
6.	Esp	acios vectoriales y funciones lineales	7 3
		Espacios vectoriales	73
		6.1.1. Algunas propiedades	75
	6.2.	Funciones lineales	76
		6.2.1. Ejemplos de funciones lineales que ya hemos usado	76
		6.2.2. Algunas propiedades de las funciones lineales	77
	6.3.		78
		6.3.1. Subespacios	78
		Intersección de subespacios	79
		6.3.2. Espacios vectoriales de productos cartesianos	79
		6.3.3. Espacios vectoriales de funciones	80
		Ejemplos de este tipo de espacios que probablemente encontrará en futuras asignaturas	81
		6.3.4. Subespacio de funciones lineales	81

	0.4		0.1
	0.4.		81
	4		81
	_		83
	6.A.		83
			84
			85
		6.A.3. Composición de funciones	85
7.	Res	olviendo $Ax = 0$	87
			87
		·	87
			88
	7.2.		88
		· · · · · · · · · · · · · · · · · · ·	89
		-	89
	7.3.		93
8.			95
	8.1.	Eliminación sobre la matriz ampliada	
		8.1.1. El Teorema de de Rouché-Frobenius	
	8.2.	Espacio columna de una matriz	
		El espacio columna y la eliminación	
	8.3.	Generalizaciones o visiones alternativas (\bigstar)	01
9	Inde	ependencia, base y dimensión	03
•		Combinaciones lineales de vectores de \mathcal{V}	
	0.1.	9.1.1. Extendiendo la notación matricial a los espacios vectoriales	
		Producto de un sistema de n vectores de \mathcal{V} por un vector de \mathbb{R}^n	
		Sistema de n vectores de \mathcal{V} por una matriz de $\mathbb{R}^{n \times p}$	
	9.2.	Sistemas generadores	
	9.3.		
		Sistemas equivalentes	
	9.4.	Sistemas linealmente dependientes y sistemas linealmente independientes	
		Ejemplos de sistemas linealmente independientes	
	9.5.	Bases y dimensión	
		9.5.1. Eliminación "de izquierda a derecha" y sistemas "acoplados" de vectores	
		Encontrando dos bases de $\mathcal{C}(\mathbf{A})$ y una base de $\mathcal{N}(\mathbf{A})$	
	9.6.	Generalizaciones o visiones alternativas (\star)	
		Conjunto generador de un subespacio	
		Sistemas de vectores y funciones lineales	
		Sistemas linealmente independientes y coordenadas	
10		r	17
	10.1.	Suma de subespacios	
	10.0	Suma directa y subespacios suplementarios	
	10.2.	Los cuatro subespacios fundamentales de una matriz A	
		10.2.1. El espacio fila	
	10.0	10.2.2. El espacio nulo por la izquierda	
	10.3.	Encontrando bases para los espacios $\mathcal{C}\left(\mathbf{A}^{T}\right)$ y $\mathcal{N}\left(\mathbf{A}^{T}\right)$	
		Encontrando una base para el espacio fila de A	
		Encontrando una base para el espacio nulo por la izquierda	2/

IV	Ortogonalidad	127
11.	Vectores ortogonales. Subespacios ortogonales	129
	11.1. Longitud de un vector en \mathbb{R}^2 y en \mathbb{R}^3	. 129
	11.2. Ángulo formado por dos vectores tanto en \mathbb{R}^2 como en \mathbb{R}^3	. 130
	11.3. Generalizando al espacio euclíde o \mathbb{R}^n	. 131
	11.4. Subespacios ortogonales en \mathbb{R}^n	. 134
	11.5. Ortogonalidad de los 4 subespacios fundamentales de A	. 135
	El método de eliminación como generador de bases del complemento ortogonal	. 136
	11.5.1. De las ecuaciones paramétricas a las ecuaciones cartesianas	. 136
	El camino recorrido hasta ahora: de las ecuaciones cartesianas a las paramétricas	. 137
	Recorriendo el camino inverso: de las ecuaciones paramétricas a las cartesianas	. 137
	Puntos, rectas, planos e hiper-planos de \mathbb{R}^n . Espacios afines	. 139
	11.6. Generalizaciones o visiones alternativas (\star)	. 140
	11.6.1. Productos escalares	
	Ejemplos de productos escalares en \mathbb{R}^n	. 140
	Ejemplos de productos escalares en otros subespacios	
	11.6.2. Generalizando los conceptos geométricos a otros espacios vectoriales	. 142
	11.6.3. Subespacios ortogonales en espacios vectoriales abstractos	. 143
	11.6.4. Espacios pre-Hilbert	
	Complementos ortogonales	
	Un subespacio de dimensión infinita y su conjunto ortogonal no siempre son suplemen-	
	tarios	
19	Proyecciones sobre subespacios	147
	12.1. Proyección ortogonal y mínima distancia	
	12.2. Alternativa a un sistema de ecuaciones lineales sin solución	
	12.2.1. Sistema de ecuaciones normales	
	12.3. Expresión matricial de la proyección ortogonal	
	12.3.1. Matrices proyección	
	12.4. Generalizaciones o visiones alternativas (\star)	
	Funciones idempotentes	
	Funciones autoadjuntas	
	12.4.1. Proyección ortogonal	
	Sobre algunos subespacios de dimensión infinita no existe la proyección ortogonal	
	Sobre algunos subespacios de dimension infinita no existe la proyección ortogonar	. 155
	Visión geométrica de la Estadística	155
	13.1. Producto escalar en estadística descriptiva	
	13.2. La media aritmética	
	La media aritmética $\mu_{m{y}}$ es el producto escalar de $m{y}$ con el vector constante 1	
	La media aritmética $\mu_{\boldsymbol{y}}$ es la longitud de la proyección ortogonal de \boldsymbol{y} sobre $\mathcal{L}([1;])$. 156
	13.3. La desviación típica y la varianza	. 157
	La desviación típica es la longitud de la componente ortogonal a \overline{y}	. 157
	La varianza y el Teorema de Pitágoras	. 157
	13.4. Covarianza y correlación	. 158
	13.5. Regresión lineal o ajuste MCO	. 159
	13.5.1. Dos casos sencillos	. 159
	El vector constante 1 como único regresor	. 159
	Regresión lineal simple y la recta de regresión	. 159

\mathbf{V}	Determinantes	163
14.	Propiedades de los determinantes	165
	14.1. Función determinante y función volumen	. 165
	14.1.1. Tres propiedades de la función volumen de un paralelogramo	. 165
	14.1.2. Las tres primeras propiedades (P-1 to P-3)	. 166
	La relación entre la función Volumen y la función Determinante	. 167
	14.2. Resto de propiedades (P-4 a P-9)	
	14.2.1. Determinante de una matriz con una columna de ceros	
	14.2.2. Determinantes de matrices elementales	
	14.2.3. Sucesión de transformaciones elementales por columnas	
	Permutación (o intercambio) de columnas. Propiedad antisimétrica	
	14.2.4. Matriz singular, matriz inversa y producto de matrices	
	Matrices singulares. Matrices inversas	
	Determinante del producto	
	14.2.5. Determinante de la matriz transpuesta	
	14.2.9. Determinante de la matriz transpuesta.	. 108
	Fórmulas para el cálculo del determinante y aplicaciones	171
	15.1. Determinante de matrices triangulares $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	
	15.2. Cálculo del determinante por eliminación Gaussiana $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	
	15.3. Determinante de matrices diagonales por bloques $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	
	15.4. Fórmulas sencillas para matrices de orden menor que 4	. 173
	15.5. No hay fórmulas sencillas para matrices de orden mayor a 3 $\dots \dots \dots \dots \dots$. 174
	15.6. Expansión de Laplace (desarrollo por cofactores)	. 175
	15.6.1. Propiedad multilineal	. 175
	15.6.2. Menores y cofactores	. 176
	Nueva notación y definición de menores y cofactores	
	15.6.3. Desarrollo del determinante por cofactores (Expansión de Laplace)	
	15.7. Aplicación de los determinantes	
	15.7.1. Regla de Cramer para la resolución de un sistema de ecuaciones	
	15.7.2. Cálculo de la inversa de una matriz	
VI	Autovalores y autovectores. Diagonalización y formas cuadráticas	181
16.	Autovalores y autovectores	183
	16.0.1. Cálculo de los autovalores y los autovectores $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$. 183
17.	Matrices semejantes y diagonalización por bloques triangulares	187
	17.1. Diagonalización por bloques triangulares	
	17.1.1. Matrices semejantes	
	Propiedades compartidas por dos matrices semejantes	
	17.1.2. Diagonalización por bloques triangulares	
	17.1.3. Autovalores, determinante y traza	
	17.1.4. Autovectores	
	17.2. Matrices diagonalizables	. 196
18.	Diagonalización ortogonal de matrices simétricas	197
	18.1. Método de Gram-Schmidt	. 197
	18.2. Matrices ortogonales	
	18.3. Nota sobre la conjugación de números complejos	
	18.4. Diagonalización de matrices simétricas	

19.Formas cuadráticas	203
19.1. Formas cuadráticas y matrices definidas positivas	. 203
19.1.1. Formas cuadráticas reales	
19.1.2. Matrices definidas positivas	
19.2. Diagonalización de matrices simétricas por congruencia	. 204
19.3. Algunos tipos de formas cuadráticas	. 207
19.4. Completar el cuadrado para clasificar las formas cuadráticas	. 208
A. Resumen de los temas por lecciones	211
A.1. Resumen del Tema 1	. 211
Soluciones a los ejercicios	217
Soluciones a los Ejercicios	. 217
Bibliografía	249
Glosario	25 1
Símbolos	253
Indice analítico	255

Parte I Álgebra Matricial

Operaciones con vectores y operaciones con matrices

En matemáticas los objetos tienen definiciones muy precisas. Comencemos con una que usaremos mucho: **Definición 1.1.** Un sistema es una lista **ordenada** de objetos¹.

Dos sistemas son distintos si las listas son diferentes, así los siguientes sistemas de números son diferentes:

$$\begin{bmatrix}1; \ 2; \ 1;\end{bmatrix} \neq \begin{bmatrix}1; \ 2;\end{bmatrix} \neq \begin{bmatrix}2; \ 1;\end{bmatrix} \neq \begin{bmatrix}2; \ 1; \ 2;\end{bmatrix} \neq \begin{bmatrix}2; \ 1; \ 1;\end{bmatrix} \neq \begin{bmatrix}2; \ 1; \ 1; \ 1; \ 1;\end{bmatrix} \neq \begin{bmatrix}2; \ 1; \ 1; \ 1;\end{bmatrix}$$

Fíjese que un sistema no es un conjunto (o colección de objetos). En un conjunto no hay orden en la disposición de sus elementos, además si todo elemento del conjunto A está en el conjunto B, y todo elemento del conjunto B está en el conjunto A, se dice que los conjuntos A y B son iguales; por tanto los siguientes conjuntos son iguales:

$$\{1, 2, 1\} = \{1, 2\} = \{2, 1\} = \{2, 1, 2\} = \{2, 1, 1\} = \{2, 1, 1, 1, 1, 2\}.$$

Distinguimos conjuntos y sistemas del siguiente modo: por una parte encerramos los elementos de un conjunto entre llaves, separados por comas; mientras que los elementos de la lista correspondiente a un sistema genérico se encierran entre corchetes, y cada elemento está seguido de un "punto y coma".

En este curso trataremos con dos importantes tipos de sistemas (listas ordenadas): los vectores de \mathbb{R}^n (listas de números) y las matrices (listas de vectores de \mathbb{R}^n).

1.1. Vectores de \mathbb{R}^n

Denotamos por \mathbb{R} al *conjunto de números reales* (por ejemplo los números 7, $\frac{-3}{11}$, $\sqrt{2}$, $6-\pi$). A los números reales también los llamaremos *escalares*.

Definición 1.2. Llamamos vector de \mathbb{R}^n a un sistema (o lista ordenada) de n números reales.

El símbolo " \mathbb{R} " nos indica que el sistema está compuesto por números reales, y el superíndice "n" nos indica la cantidad de componentes que hay en la lista.

Recuerde que los sistemas están <u>ordenados</u> y que las componentes se identifican por su posición: hay una primera componente, una segunda componente, etc. La forma de escribir la lista no es importante siempre que el orden de las componentes quede claro (es decir, siempre que quede claro quien es la primera componente, quien la segunda, etc.). Por eso podemos escribir el *mismo* vector tanto en horizontal como en vertical:

$$(\pi, -1, 0, 1,)$$
 ó $\begin{pmatrix} \pi \\ -1 \\ 0 \\ 1 \end{pmatrix}$.

Ambas son representaciones del vector de \mathbb{R}^4 cuya primera componente es π , la segunda -1, la tercera 0 y la cuarta 1.

 $^{^{1}}$ con "objeto" siempre nos referiremos a objetos matemáticos, es decir, números, funciones, ecuaciones, variables, etc.

Notación. Aunque los vectores de \mathbb{R}^n son sistemas, nosotros usaremos una notación específica con ellos²: siempre escribiremos un vector como una lista entre paréntesis (y con sus elementos seguidos por comas cuando lo escribamos en horizontal).³

Denotaremos los vectores de \mathbb{R}^n con letras minúsculas en negrita cursiva: a, b, c, etc. Y nos referiremos a los componentes genéricos de un vector con la misma letra con la que denotamos al vector completo (pero en cursiva y con un subíndice que indica la posición del componente dentro del vector). Por ejemplo:

$$a = (a_1, a_2, a_3, a_4, a_5, a_6);$$

es un vector de 6 componentes, y cuyo tercer componente es a3; y para indicar que el segundo componente de $\mathbf{b} = (0, 4, 6)$ es un cuatro, escribimos $b_2 = 4$.

Decimos que dos vectores x e y de \mathbb{R}^n son iguales si lo son sus correspondientes listas ordenadas de componentes, es decir, si y solo si: $x_i = y_i$ para i = 1:n (i.e. si son iguales componente a componente).

Por ejemplo, con los números 5, 10, 15 y 20, podemos denotar dos vectores distintos del siguiente modo:

$$x = (20, 10, 15, 5)$$
 y $z = (5, 20, 15, 10)$.

Tenga en cuenta que dos vectores son iguales solo cuando lo son las listas correspondientes a ambos vectores. Por eso los vectores x y z NO son iguales.

El operador selector de componentes " | ". Para homogeneizar la notación que emplearemos con vectores y matrices, también denotaremos la iésima componente de a añadiendo un subíndice en el que aparece el símbolo "|" junto al índice de la componente: $a_{|i|}$. De esta manera indicamos que el operador selector "|" actúa sobre el vector que está a su izquierda para seleccionar la componente iésima. Así, las siguientes son formas equivalentes de denotar la tercera componente de b:

$$\boldsymbol{b}_{13} \equiv b_3.$$

Durante el curso usaremos la librería NAcAL para Python. Así podremos experimentar en el ordenador con los objetos y procedimientos que vayamos viendo a lo largo de este curso de Álgebra Lineal. La librería es una transcripción literal de los objetos y procedimientos que veremos en el libro.

Uso de NAcAL

Para usar la librería, el primer paso es importar la librería en memoria

```
Librería NAcAL para Python
from nacal import * # importamos la librería en memoria
```

Una vez importada la librería, tecleando Vector ([0, 4, 6]) en un terminal obtenemos:

```
terminal de Python
>>> from nacal import *
>>> b = Vector([0, 4, 6]) # Vector b cuya lista de componentes es 0, 4 y 6
>>> b
Vector([0, 4, 6])
```

²si usáramos la notación genérica de sistema, deberíamos escribir $[\pi; -1; 0; 1;]$ (una lista entre corchetes con sus elementos seguidos por puntos y comas como en los ejemplos dados tras la Definición 1.1)

 $^{^3}$ Así (2,) es una lista con un número (un vector) y (2) es un número entre paréntesis.

⁴Si $n \le m \in \mathbb{N}$ denotamos con "n: m" la secuencia $n, n+1, \ldots, m$, es decir, la lista ordenada de números naturales que van de n a m: $\{k \in \mathbb{N} \mid n \le k \le m\}$. Así, con i = 1 : n indicamos que el índice i recorre la sucesión de enteros que va de 1 a n, es decir $1, 2, \ldots, n$. Cuando el primer índice (n) sea mayor que el segundo (m) entenderemos que (n : m) es una lista vacía.

donde el resultado aparece en gris en el anterior recuadro de terminal de Python; y si ejecutamos el código en un Notebook de Jupyter obtenemos:

$$\begin{pmatrix} 0 \\ 4 \\ 6 \end{pmatrix}$$

Para obtener el tercer componente de \boldsymbol{b} tecleamos:

b | 3

de manera que tanto en un terminal de Python como en un Notebook de Jupyter obtenemos el número 6:

Hemos definido un vector de \mathbb{R}^n como un sistema de n números reales. Al encerrar una lista de números entre paréntesis denotamos un vector (cuyas componentes son los números encerrados en el orden en el que aparecen en la lista dentro del paréntesis). Por ejemplo

$$a = (1, 4, 9, 2,).$$

Para seleccionar una componente de la lista usamos el operador "|" y el índice de la componente que queremos seleccionar. Por ejemplo, la tercera componente de a es:

$$a_{13} = a_3 = 9.$$

1.1.1. Definiciones de algunos vectores especiales

Definición 1.3. Llamamos vector nulo (o vector cero) de \mathbb{R}^n al vector cuyas n componentes son cero, y lo denotamos con 0. Por ejemplo, los vectores nulos de \mathbb{R}^1 , \mathbb{R}^2 , de \mathbb{R}^3 y de \mathbb{R}^5 son respectivamente:

$$(0)$$
, $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ y $(0, 0, 0, 0, 0, 0)$.

¡Nótese que estos cuatro vectores nulos **no son iguales**, pues no tienen el mismo número de componentes (y por tanto sus correspondientes listas ordenadas no son iguales)!

VO(3) # vector nulo de tres componentes
$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Definición 1.4. Sea el vector \mathbf{a} . Llamamos vector opuesto de \mathbf{a} al vector $-\mathbf{a}$, que es el vector cuyos componentes son los opuestos de los de \mathbf{a} ; es decir $(-\mathbf{a})_{|i} = -(\mathbf{a}_{|i})$. Por ejemplo:

si
$$\boldsymbol{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$
, entonces $-\boldsymbol{a} = \begin{pmatrix} -a_1 \\ \vdots \\ -a_n \end{pmatrix}$; y si $\boldsymbol{c} = (1, -3\pi, \sqrt{2},)$, entonces $-\boldsymbol{c} = (-1, 3\pi, -\sqrt{2},)$.

$$\begin{pmatrix} 0 \\ -4 \\ -6 \end{pmatrix}$$

1.2. Sumas de vectores y productos de vectores por escalares

Definición 1.5 (suma de vectores). La suma, $\mathbf{a} + \mathbf{b}$, de dos vectores \mathbf{a} y \mathbf{b} de \mathbb{R}^n , es el vector de \mathbb{R}^n en el que cada componente iésima es la suma de las componentes $\mathbf{a}_{|i}$ y $\mathbf{b}_{|i}$. Es decir, sumamos componente a componente:

$$\boxed{(\boldsymbol{a}+\boldsymbol{b})_{|i}=\boldsymbol{a}_{|i}+\boldsymbol{b}_{|i}} \qquad para \ i=1:n.$$

Por tanto:

$$a + b = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ \vdots \\ a_n + b_n \end{pmatrix};$$

suma que también podríamos haber escrito de manera horizontal: $\boldsymbol{a} + \boldsymbol{b} = ((a_1 + b_1), \dots, (a_n + b_n),)$.

Observación. Nótese que el operador " |i" es distributivo para la suma: $(a+b)_{|i} = a_{|i} + b_{|i}$.

Definición 1.6 (producto de un vector por un escalar). El producto, $\lambda \mathbf{b}$, de un vector \mathbf{b} de \mathbb{R}^n por un escalar λ es el vector de \mathbb{R}^n en el que cada componente i ésima es el producto de λ por $\mathbf{b}_{|i}$. Es decir, multiplicamos cada componente de \mathbf{b} por λ :

$$\boxed{ \left(\lambda \boldsymbol{b} \right)_{|i} = \lambda \left(\boldsymbol{b}_{|i} \right) }$$
 para $i = 1:n.$

Al vector $\lambda \mathbf{b}$ lo denominamos múltiplo (o múltiplo escalar) de \mathbf{b} .

Por tanto

$$\lambda \boldsymbol{b} = \lambda \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} = \begin{pmatrix} \lambda b_1 \\ \vdots \\ \lambda b_n \end{pmatrix};$$

múltiplo que también podríamos haber escrito horizontalmente: $\lambda \boldsymbol{b} = \lambda \left(b_1, \dots, b_n, \right) = \left(\lambda b_1, \dots, \lambda b_n, \right)$.

Observación. El operador "|" es asociativo para el producto por escalares: $(\lambda b)_{|i} = \lambda(b_{|i})$. Fíjese como la región cubierta por el paréntesis se desplaza... en un lado del la igualdad " λ " está dentro del paréntesis e "|i|" fuera, pero en el otro lado ocurre lo contrario⁵. Por tanto, con el producto por escalares podemos escribir sencillamente $\lambda b_{|i|}$.

Definición 1.7 (Operador lineal). Un operador distributivo respecto de la suma y asociativo respecto al producto por escalares se dice que es lineal.

Así pues, el operador "|i" (que selecciona el componente iésimo de un vector) es un operador lineal.

 $^{^{5}}$ de manera similar a la propiedad asociativa del producto de escalares: (ab)c = a(bc).

13

La definición de las operaciones de suma de vectores y producto de un vector por un escalar convierten al operador " | i " en un **operador lineal**; es decir, *distributivo* respecto a la suma:

$$(\boldsymbol{a} + \boldsymbol{b})_{|i} = \boldsymbol{a}_{|i} + \boldsymbol{b}_{|i}$$

y asociativo respecto al producto por escalares:

$$(\lambda \boldsymbol{b})_{|i} = \lambda (\boldsymbol{b}_{|i}).$$

Observación. La expresión 2b significa multiplicar el vector por 2, es decir

$$2\boldsymbol{b} \equiv 2 \cdot \boldsymbol{b}$$

donde "·" indica la operación producto. Estamos acostumbrados a omitir el símbolo de la operación producto (con ello logramos expresiones más compactas), y no nos genera ningún problema la ausencia del símbolo de la operación producto. Sin embargo Python no funciona como un humano. El intérprete de Python requiere "explícitamente" el símbolo de la operación producto (en su caso el asterísco "*"):

Librería NAcAL para Python
$$2*b$$
 # multiplica el Vector b por 2 (también podemos escribir $b*2$)
$$\begin{pmatrix} 0 \\ 8 \\ 12 \end{pmatrix}$$

A la operación de multiplicar un vector por un número también se la denomina "escalar el vector" (…es decir, cambiarlo de escala: piense que si tiene un vector con datos de salarios en miles de euros, expresar esos datos en euros es escalar los datos, y se logra multiplicando por 1000).

Observación. El intérprete de Python tiene establecidas una serie de precedencias entre operadores. En el siguiente cuadro de operadores, los de arriba preceden a los de abajo:

T 1 .		1	•
Precedencia	en	las	operaciones

Símbolo en Python	Operación asociada en NAcAL	
(), [], {}		
**	exponenciación	
~ A	transposición	
*, /	multiplicación, división,	
+, -	suma, resta	
&	transformación elemental	
1	selector	

Cuadro 1.1: Precedencia de operadores en Python (más detalles en aquí, en las secciones 6.16. Orden de evaluación y 6.17. Prioridad de operador)

Como la precedencia no es fácil de recordar, por claridad en el código y para asegurar que realizamos las operaciones en el orden deseado, es recomendable usar paréntesis en Python.

EJERCICIO 1. ¿Cómo evalúa la librería NAcAL las siguientes expresiones: (3*b) | 2 ; 3*(b|2) y 3*b|2?

EJERCICIO 2. ¿Qué falla en la expresión b+b|2?

1.2.1. Propiedades de la suma y del producto por un escalar

Explotando las propiedades de la notación (junto con algunas propiedades de los números reales) demostraremos ocho propiedades que verifican la suma de vectores y el producto de un vector por un escalar (Proposición 1.2.1). (ocho propiedades que nos permitirán definir el espacio vectorial \mathbb{R}^n en el Tema 2).

Para empezar recordemos algunas propiedades (¡no todas!) de los números reales que seguro que conoce y que usted ha manejado desde la escuela...

Recordatorio de algunas propiedades del conjunto de numeros reales

Sean a, b y c números reales. Entonces:

1. a + b = b + a.

2. a + (b + c) = (a + b) + c.

3. a + 0 = a.

4. a + (-a) = 0.

5. ab = ba.

6. a(b+c) = ab + ac.

7. a(bc) = (ab)c.

8. 1a = a.

La cuestión que queremos abordar ahora es: ¿también se verificarán estas propiedades cuando operamos con vectores? En concreto, hagámonos las siguientes ocho preguntas (puede investigar con la librería NAcAL):

1. ¿Es verdad que

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}?$$

¿Es cierto solo para los números del ejemplo? o ¿es una regla general para cualquier par de vectores?

2. ¿Es verdad que

$$\binom{1}{2} + \left(\binom{4}{5} + \binom{1}{0} \right) = \left(\binom{1}{2} + \binom{4}{5} \right) + \binom{1}{0}?$$

El paréntesis significa que primero hay que hacer la suma dentro del paréntesis, y al vector resultante sumarle el vector de fuera.

¿Es cierto solo para los números del ejemplo? o ¿es una regla general para cualquier trío de vectores?

3. ¿Es verdad que

$$\begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}?$$

¿Es cierto solo para los vectores del ejemplo? o ¿es una regla general para cualquier par de vectores?

4. ¿Es verdad que

$$\begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} + \begin{pmatrix} -4 \\ -5 \\ -6 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} ?$$

¿Es cierto solo para los vectores del ejemplo? o ¿es una regla general para cualquier par de vectores?

5. ¿Es verdad que

$$2\left(\begin{pmatrix}1\\-1\end{pmatrix}+\begin{pmatrix}4\\5\end{pmatrix}\right)=2\begin{pmatrix}1\\-1\end{pmatrix}+2\begin{pmatrix}4\\5\end{pmatrix}?$$

(recuerde que primero se realizan las operaciones de dentro del paréntesis) ¿Es una regla general para cualquier par de vectores? ¿Y si cambiamos el escalar 2 por otro número?

6. ¿Es verdad que

$$(2+3)$$
 $\begin{pmatrix} 1\\2\\3 \end{pmatrix} = 2 \begin{pmatrix} 1\\2\\3 \end{pmatrix} + 3 \begin{pmatrix} 1\\2\\3 \end{pmatrix}$?

(recuerde que primero se realizan las operaciones de dentro del paréntesis) ¿Es una regla general para cualquier par de vectores? ¿y si cambiamos los escalares 2 y 3 por otros números?

7. ¿Es verdad que

$$2\left(3\begin{pmatrix}1\\2\end{pmatrix}\right) = (2\cdot3)\begin{pmatrix}1\\2\end{pmatrix}?$$

(recuerde, primero las operaciones dentro de los paréntesis). Hágase las mismas preguntas de más arriba.

8. ¿Es verdad que si a=1

$$a \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}?$$

¿Es cierto solo para el escalar a = 1?

En el EJERCICIO 3 se le pide que demuestre las ocho propiedades que acabamos de revisar⁶. Su solución aparece al final de este documento ¡pero usted debe resolverlo por su cuenta y sin mirar! Si "cotillea" previamente la solución, el ejercicio le servirá de muy poco.

Para resolver el ejercicio únicamente necesita aplicar las reglas de notación vistas más arriba (definiciones de *suma* y *producto por escalares* de la Página 6); y cuando tenga que operar con los componentes de los vectores (que son números reales) aplique la propiedad de las operaciones entre números reales que necesite (de entre las del recordatorio de la Página 8).

EJERCICIO 3. Demuestre las propiedades de la siguiente proposición:

Proposición 1.2.1 (Propiedades de las operaciones entre vectores). Para cualesquiera vectores a, b y c con el mismo número de componentes, y para cualesquiera escalares (números) λ y η , se verifican las siguientes ocho propiedades:

1. $a + b = b + a$.	5. $\lambda(\boldsymbol{a} + \boldsymbol{b}) = \lambda \boldsymbol{a} + \lambda \boldsymbol{b}$.
2. $a + (b + c) = (a + b) + c$.	6. $(\lambda + \eta)a = \lambda a + \eta a$.
$3. \ 0 + \mathbf{a} = \mathbf{a}.$	7. $\lambda(\eta \boldsymbol{a}) = (\lambda \eta) \boldsymbol{a}$.
4. $a + (-a) = 0$.	8. $1a = a$.

Pista. Dispone de dos estrategias. La primera se asemeja a la forma de operar mostrada en las ocho preguntas de más arriba (por ello es posible que le parezca más sencilla). La segunda estrategia explota las propiedades de linealidad del operador "|". Es importante que se familiarice con este segundo modo de trabajar: es más abstracto pero mucho más eficiente.

⁶Se le propone como ejercicio una ¡demostración! Las demostraciones son imprescindibles en matemáticas. Es IMPOSIBLE que adquiera una buena formación matemática si no realiza las demostraciones. Solo se adquiere una verdadera comprensión al realizar las demostraciones. Las que se le propondrán en el curso o son muy sencillas (como las de este primer ejercicio) o son "casi" una repetición de otras ya vistas, o las pistas que se le dan describen los pasos necesarios para dar con la demostración.

Aunque las demostraciones son sencillas es posible que le cuesten (quizá sea la primera vez que intenta demostrar algo...y la primera vez suele resultar difícil). No se desanime; es importante lograr demostrar proposiciones sencillas (cuando acabe el curso se dará cuenta de que ha aprendido mucho con ello).

■ Estrategia 1. Como estas propiedades provienen de los escalares (los números reales), la estrategia es operar con las componentes dentro de los vectores. Puede escribir sus vectores o como filas o como columnas (en ambos casos la demostración es idéntica).

Estrategia 2. Recuerde que dos vectores \boldsymbol{v} y \boldsymbol{w} son iguales si son idénticos componente a componente: $\boldsymbol{v}_{|i} = \boldsymbol{w}_{|i}$. Use las propiedades del operador " |i" siempre que pueda; es decir, tenga en cuenta que son intercambiables las expresiones:

•
$$(a+b)_{|i}$$
 y $a_{|i}+b_{|i}$ (propiedad distributiva de " $|i$ ").

•
$$(aa)_{|i}$$
 y $a(a_{|i})$ (propiedad asociativa de " $|i$ ").

Además recuerde que $a_{|i|}$, $b_{|i|}$ y $c_{|i|}$ son números reales; por tanto, puede usar las propiedades de las operaciones entre números reales del mismo modo que en la primera estrategia.

Nota 1. Estas ocho propiedades nos permitirán definir el espacio vectorial \mathbb{R}^n en el Tema 2.

1.3. Vectores como representación de datos

Como los vectores son un *un sistema* de números, podemos interpretar cada componente en función de la posición que ocupa. Por ejemplo, imagine que tiene datos del año 2003 sobre la tasa de crecimiento interanual del PIB de cinco países: España (1), Francia (2), Alemania (3), R. Unido (4) y EEUU (5); entonces podemos interpretar los distintos componentes del siguiente vector en función de su posición en la lista:

$$datos(2003) = \begin{pmatrix} 2.9\\0.9\\-0.2\\2.5\\1.8 \end{pmatrix}.$$

Puesto que el número 1.8 está en la quinta posición, sabemos que corresponde al quinto país, y por tanto sabemos que EEUU creció a una tasa del 1.8% en el año 2003^7 . ¿Qué país no creció en el año 2003?

En algunos manuales verá una interpretación de los vectores como segmentos con norma y dirección. Ésta es una interpretación frecuente en aplicaciones físicas, pero poco natural para los economistas. Para un economista la interpretación más natural es que los componentes de los vectores de \mathbb{R}^n son datos (precios, cantidades, número de parados, tasa de inflación, etc.) y la posición de cada componente indica a quien corresponde el dato (como en el ejemplo anterior). Ésta será la interpretación que use en la asignatura de Econometría dentro de un par de cursos.

Ahora pasamos a definir las matrices como un sistema de n vectores de \mathbb{R}^m (es decir, una lista ordenada de n vectores de \mathbb{R}^m). La siguiente introducción así lo ilustra.

1.4. Matrices de $\mathbb{R}^{m \times n}$

Imagine que además tiene datos anuales de los cinco países de arriba durante el periodo: 2003 a 2006.

$$datos(\textbf{2003}) = \begin{pmatrix} 2.9 \\ 0.9 \\ -0.2 \\ 2.5 \\ 1.8 \end{pmatrix}, \quad datos(\textbf{2004}) = \begin{pmatrix} 3.1 \\ 2.0 \\ 1.1 \\ 3.2 \\ 3.1 \end{pmatrix}, \quad datos(\textbf{2005}) = \begin{pmatrix} 3.3 \\ 1.6 \\ 0.7 \\ 1.9 \\ 3.7 \end{pmatrix}, \quad datos(\textbf{2006}) = \begin{pmatrix} 3.3 \\ 2.0 \\ 0.9 \\ 1.5 \\ 3.5 \end{pmatrix}.$$

 $^{^7}$ fuente: Informe ICAE sobre la economía española (Octubre 2006), publicado por el Instituto Complutense de Análisis Económico

Podemos escribir todos los datos juntos y dar al resultado el nombre de **PIB**. Así tendremos recogidos en **PIB** los datos de crecimiento del PIB de los cinco países en los años 2003–2006. Esto se hace construyendo una *matriz*.

Llamamos *matriz* a una lista ordenada de vectores *con el mismo número de componentes* (... es decir...¡un vector de vectores!). De esta manera podremos definir la matriz **PIB** como una *sistema* de vectores con los datos de los cinco años disponibles:

$$[datos(2003); datos(2004); datos(2005); datos(2006);]$$
.

Ahora bien, como los vectores se pueden escribir tanto en vertical como en horizontal, esta escritura puede arrojar una lista muy larga y visualmente difícil de leer:

$$\left[\left(2.9,\ 0.9,\ -0.2,\ 2.5,\ 1.8,\right);\quad \left(3.1,\ 2.0,\ 1.1,\ 3.2,\ 3.1,\right);\quad \left(3.3,\ 1.6,\ 0.7,\ 1.9,\ 3.7,\right);\quad \left(3.3,\ 2.0,\ 0.9,\ 1.5,\ 3.5,\right);\right].$$

Sabemos que las cuartas componentes de cada uno de los vectores dentro de la matriz corresponden al Reino Unido...pero esta disposición de los datos no es fácil de leer ⁸. Para facilitar la lectura dispondremos los datos según el siguiente convenio: disponemos los datos referidos al año 2003 en una primera columna, los del año 2004 en la segunda, los del año 2005 en la tercera y los del año 2006 en la cuarta. De ese modo se obtiene el siguiente arreglo rectangular de los datos:

$$\mathbf{PIB} = \begin{bmatrix} 2.9 & 3.1 & 3.3 & 3.3 \\ 0.9 & 2.0 & 1.6 & 2.0 \\ -0.2 & 1.1 & 0.7 & 0.9 \\ 2.5 & 3.2 & 1.9 & 1.5 \\ 1.8 & 3.1 & 3.7 & 3.5 \end{bmatrix}.$$

Ahora cada columna corresponde a un año distinto, y cada fila a un país distinto...¡Mucho más fácil de leer!

Definición 1.8. Llamamos matriz de $\mathbb{R}^{m \times n}$ a un sistema de n vectores de \mathbb{R}^m .

$$[a; b; \dots v;]$$
 donde $a, b, \dots v$ son n vectores de \mathbb{R}^m .

Cada uno de los vectores del sistema es una columna de la matriz.

Tampoco con las matrices usaremos la representación genérica de los sistemas ya que, aunque mantendremos los corchetes, omitiremos los puntos y comas que separan las columnas, escribiendo sencillamente:

$$[a \ b \ \cdots \ v].$$

Por tanto, seguiremos el siguiente convenio de notación: encerrando un vector entre corchetes escribimos una matriz con una única columna ($matriz\ columna$). Por ejemplo, si x = (1, 5, 9), entonces

$$\begin{bmatrix} m{x} \end{bmatrix} = egin{bmatrix} 1 \\ 5 \\ 9 \end{bmatrix}.$$

Y encerrando entre corchetes una lista de vectores (todos con el mismo número de componentes), escribimos la matriz cuyas columnas son los vectores de la lista y en el mismo orden en el que aparecen en la lista. Por ejemplo, si:

$$a = (1, 0, 3, 0), b = (2, 2, 2, 2), y 0 = (0, 0, 0, 0),$$

y encerramos "entre corchetes" algunos de estos vectores, creamos matrices cuyas columnas son los vectores de la lista escritos en vertical; por ejemplo,

$$\begin{bmatrix} a & b & 0 & b \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 2 & 0 & 2 \\ 3 & 2 & 0 & 2 \\ 0 & 2 & 0 & 2 \end{bmatrix}; \qquad \begin{bmatrix} \mathbf{0} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

⁸aunque un ordenador no tiene ningún problema con esta representación, los humanos si lo tenemos...¡imagine una lista de 12 vectores con 20 componentes cada uno. Algo similar ocurre si escribimos varios vectores en columna, unos debajo de otros.

Definición 1.9. El orden de la matriz indica su número de filas y columnas, y está compuesto por dos números: el primero corresponde al número de filas (m) y el segundo al número de columnas (n). El orden se suele expresar cómo " $m \times n$ " (y se lee "m por n").

En el ejemplo con datos económicos, el orden de la matriz **PIB** es 5 por 4. Nótese que siempre se indica primero el número de filas y luego el de columnas. Frecuentemente expresaremos el orden de la matriz debajo de su nombre; por ejemplo: **PIB**.

A cada número dentro de la matriz lo denominamos *componente* (o elemento), y al igual que en el caso de los vectores, identificamos los componentes de la matriz por la posición que ocupan. De esta manera podemos decir que el componente de **PIB** ubicado en la primera fila y segunda columna es 3.1.

Notación. Denotamos las matrices de $\mathbb{R}^{m\times n}$ con letras mayúsculas y en negrita: A, B, C; y a los componentes genéricos de la matriz con la misma letra con la que denotamos a la matriz completa, pero en minúscula cursiva y con dos subíndices que indican la posición que ocupa el componente dentro de la matriz, comenzando siempre por la fila, y luego por la columna (por tanto el componente a_{ij} de A se encuentra en la fila iésima y columna jésima). Otras formas que usaremos para denotar dicho componente son:

$$a_{ij} \equiv \operatorname{elem}_{ij}(\mathbf{A}) \equiv {}_{i|}\mathbf{A}_{|j|}.$$

Por ejemplo, escribimos una matriz genérica A de orden 2 por 3 como:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}.$$

Y de la matriz

$$\mathbf{B} = \left[\begin{array}{ccc} 1 & 2 & 3 \\ 0 & -1 & 1 \end{array} \right]$$

podemos afirmar que su orden es 2×3 y que su componente b_{21} es cero, y su componente $2 | \mathbf{B}|_2$ es -1.

```
terminal de Python

>>> a = Vector([1, 0])
>>> b = Vector([2,-1])
>>> c = Vector([3, 1])
>>> B = Matrix([a, b, c]) # Matrix cuya lista de vectores es a, b, c
>>> 2|B|2 # elemento de B situado en la segunda fila, segunda columna
-1
```

Nótese que usamos un solo índice para identificar las componentes de un vector \boldsymbol{x} , pero que necesitamos dos índices para identificar las componentes de una matriz \boldsymbol{A} . Así, cuando nos queremos referir a la componente iésima del vector \boldsymbol{x} escribimos:

$$x_i$$
 ó $x_{|i|}$;

y cuando queremos referirnos al componente situado en la fila iésima y columna jésima de la matriz A:

$$\operatorname{elem}_{ij}(\mathbf{A}),$$
 ó $a_{ij},$ ó $_{i|}\mathbf{A}_{|j}.$

Pero ¿qué pasa si nos queremos referir a toda la fila iésima o toda la columna jésima de A?

1.4.1. Filas de una matriz

La fila iésima de **A** (de orden $m \times n$) es el vector de \mathbb{R}^n cuyos componentes son a_{ik} , donde el índice k recorre todas las columnas (k = 1 : n) y que denotamos como:

$$\operatorname{fila}_i(\mathbf{A}) \equiv {}_{i|}\mathbf{A} = (a_{i1}, \dots, a_{in}) \in \mathbb{R}^n$$

(que por ser un vector de \mathbb{R}^n se puede escribir tanto en horizontal como en vertical).

El operador selector de filas: "i|". Al escribir "i|" como subíndice a la izquierda de la matriz seleccionamos la fila iésima de la matriz.

Por ejemplo, si
$$\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix}$$
; entonces $_{1|}\mathbf{B} = \begin{pmatrix} 1, & 2, & 3, \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.

1.4.2. Columnas de una matriz

La columna jésima de \mathbf{A} (de orden $m \times n$) es el vector de \mathbb{R}^m con componentes a_{kj} , donde el índice k recorre todas las filas (k = 1 : m). Denotaremos dicha columna como $\operatorname{col}_j(\mathbf{A})$ o bien como \mathbf{A}_{lj} :

$$\operatorname{col}_{j}(\mathbf{A}) \equiv \mathbf{A}_{|j} = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{pmatrix} = (a_{1j}, \dots, a_{mj},) \in \mathbb{R}^{m},$$

(puesto que, por ser un vector de \mathbb{R}^m , se puede escribir tanto en horizontal como en vertical).

El operador selector de columnas: "|j". Al escribir "|j" como subíndice a la derecha de la matriz, seleccionamos la columna jésima de la matriz.

Así, si
$$\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix}$$
; entonces $\mathbf{B}_{|2} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$.

¿Y cómo escribir la submatriz de ${\bf B}$ de orden $m \times 1$ cuya única columna es la jésima de ${\bf B}$? Basta encerrar entre "corchetes" dicha columna:

$$\begin{bmatrix} \mathbf{B}_{|2} \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

Matrix(
$$[B|2]$$
) # Matriz cuya única columna es la segunda columna de B
$$\begin{bmatrix} 2\\-1 \end{bmatrix}$$

Nótese que $\binom{2}{-1}$ es un vector (cuya lista contiene dos números que se puede escribir en vertical u horizontal), pero que $\begin{bmatrix} 2\\-1 \end{bmatrix}$ es una matriz cuya lista contiene una única columna. Por tanto son objetos matemáticos distintos (lista de números vs lista de vectores), y su escritura es fácil de distinguir: los vectores se encierran entre "paréntesis" y matrices entre "corchetes".

Así a = (1, 2, 3) es un vector y $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ es una matriz (y por tanto son objetos distintos).

Con la notación que hemos establecido podemos describir una matriz mediante sus columnas:

$$\mathbf{A}_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = \underbrace{\begin{bmatrix} \mathbf{A}_{|1} & \mathbf{A}_{|2} & \dots & \mathbf{A}_{|n} \end{bmatrix}}_{\text{lista de columnas}}; \quad \text{donde} \quad \mathbf{A}_{|j} = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{pmatrix}.$$

Diremos que dos matrices del mismo orden son iguales si y solo si lo son sus correspondientes sistemas de vectores, es decir: $\mathbf{A} = \mathbf{B}$ si y solo si $\mathbf{A}_{|j} = \mathbf{B}_{|j}$ para j = 1:n (i.e. si son iguales columna a columna).

1.4.3. Resumen de la notación para seleccionar componentes, filas y columnas

Disponemos de varias alternativas para denotar tanto los componentes, como las filas y columnas de ${\bf A}$.

Notaciones alternativas

Componente ij (escalar)	Fila i ésima (vector de \mathbb{R}^n)	Columna jésima (vector de \mathbb{R}^m)
a_{ij}		
$i \mathbf{A} j$		$\mathbf{A}_{ j}$
$\mathrm{elem}_{ij}(\mathbf{A})$	$ $ fila $_i(\mathbf{A})$	$\operatorname{col}_j(\mathbf{A})$

En el ejemplo con datos económicos, $_{1|}$ PIB corresponde a los datos de España y $_{5|}$ PIB a los de EEUU; y por otra parte, PIB $_{13}$ corresponde a los datos del año 2005.

$$\begin{cases} \mathbb{R} = & \mathbb{R}^1 \\ \mathbb{R}^{n+1} = & \mathbb{R} \times \mathbb{R}^n \end{cases}.$$

Sin embargo, aquí sigo un convenio alternativo acorde con el funcionamiento interno de Python:

$$\begin{cases} \mathbb{R}^0 = & \{\emptyset\} \\ \mathbb{R}^{n+1} = & \mathbb{R} \times \mathbb{R}^n \end{cases};$$

(donde \emptyset denota al conjunto vacío). De tal manera que $\mathbb{R}^1 = \mathbb{R} \times \{\emptyset\} = \{(\alpha,\emptyset) \mid \alpha \in \mathbb{R}\}$. Así pasa en Python, y por ello una tupla con un único elemento se escribe con (a,). Nótese la coma detrás de la a (que se puede entender que separa el primer elemento, a, del último, que es vacío). De este modo, la selección de los elementos sigue la siguiente función recursiva: si $\mathbf{v} = (v_1, \mathbf{w}) \in \mathbb{R}^n$, donde $\mathbf{w} \in \mathbb{R}^{n-1}$ entonces

$$\begin{cases} (v_1, \boldsymbol{w})_{|1} = v_1 \\ (v_1, \boldsymbol{w})_{|k+1} = \boldsymbol{w}_{|k} \end{cases}.$$

Por tanto, a = (1, 2, 3) es un sistema de tres $n\'{u}meros$ de \mathbb{R} , y $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ es un sistema de tres vectores de \mathbb{R}^1 , a saber (1,), (2,) y (3,).

⁹Nota para profesores de matemáticas y/o lectores "puntillosos". Tradicionalmente se sigue el siguiente convenio

1

La notación de las matrices tiene paralelismos con la de los vectores; pero con importantes diferencias.

Una lista de vectores encerrada entre *corchetes* denota una matriz, cuyas *columnas* son los vectores de la lista en el orden en el que aparecen en la lista dentro del corchete. Por ejemplo

$$a = (1, 2,), b = (1, 0,), c = (9, 2,); A = \begin{bmatrix} a & b & c \end{bmatrix} = \begin{bmatrix} 1 & 1 & 9 \\ 2 & 0 & 2 \end{bmatrix}.$$

Con las matrices NO hay la libertad para escribir horizontal o verticalmente la lista que hemos encerrado (es una importante diferencia con los vectores).

Los subíndices "i|" (por la izquierda) y "|j" (por la derecha) operan sobre la matriz, pero su comportamiento es distinto. El subíndice "i|" a la izquierda de la matriz selecciona la *fila i*ésima y el subíndice "|j" a la derecha selecciona la *columna j*ésima (tanto las filas como las columnas son *vectores*):

$$\mathbf{A}_{|3} = \begin{pmatrix} 9, & 2, \end{pmatrix}, \qquad {}_{2|}\mathbf{A} = \begin{pmatrix} 2, & 0, & 2, \end{pmatrix}.$$

Así, $\mathbf{A}_{|3}$ es un *vector* formado por las componentes de la tercera columna de \mathbf{A} ; pero; $\begin{bmatrix} \mathbf{A}_{|3} \end{bmatrix}$ es una *matriz columna* cuya única columna es igual que la tercera columna de \mathbf{A} .

$$\mathbf{A}_{|3} = \begin{pmatrix} 9, & 2, \end{pmatrix} = \begin{pmatrix} 9 \\ 2 \end{pmatrix} \quad \neq \quad \begin{bmatrix} \mathbf{A}_{|3} \end{bmatrix} = \begin{bmatrix} 9 \\ 2 \end{bmatrix} \quad \neq \quad \begin{bmatrix} 9 & 2 \end{bmatrix}.$$

Cuando se emplean dos subíndices (uno por cada lado) se selecciona la *componente* situada en la fila *ié*sima (indicada por el índice de la izquierda) y columna *jé*sima (indicada por el índice de la derecha)

$$a_{1}$$
A $a_{13} = a_{13} = 9.$

1.4.4. Extensión de la notación vectorial y reglas de reescritura.

Nótese que $_{i|}\mathbf{A}_{|j|}$ es la componente jésima de la fila i, es decir $(_{i|}\mathbf{A})_{|j|}$, pero también es la componente iésima de la columna j, por lo que sería conveniente poder escribir $_{i|}(\mathbf{A}_{|j|})$, de manera que

$$_{i|}\mathbf{A}_{|j}=_{i|}(\mathbf{A}_{|j})=(_{i|}\mathbf{A})_{|j}.$$

Para ello aceptaremos que el operador "|" también pueda operar por la izquierda de un vector. Así

$$_{i|}\boldsymbol{a}=\boldsymbol{a}_{|i}=a_{i}.$$

Con esta flexibilización de la notación, y puesto que tanto las filas como las columnas de una matriz son vectores, cuando seleccionemos las *componentes* de **A**, nos dará igual operar dos veces por el mismo lado o una vez por cada lado (ambas operaciones arrojan necesariamente el mismo resultado). Así

$$\mathbf{A}_{[i]}(\mathbf{A}_{[j]}) = (\mathbf{A}_{[j]})_{[i]} \quad \mathbf{y} \quad (\mathbf{A}_{[j]})_{[j]} = \mathbf{A}_{[i]}(\mathbf{A}_{[j]}).$$

Para no perder la asociatividad de la notación cuando "|" opera por la izquierda de los vectores, también aceptaremos que los escalares aparezcan multiplicando por la derecha. Esto decir, $\lambda b = b\lambda$. Esto da lugar a dos nuevas reglas de reescritura:

¹⁰ Como en estas notas propongo una notación propia, aquí aceptaremos una expresión como "a2"...jexpresión que nunca aparece en los textos! El modo habitual de escribir dicho producto es "2a" con "el coeficiente primero". Aquí lo aceptaremos para mantener la asociatividad por la izquierda, pero tenga en cuenta que no es una forma empleada habitualmente.

B

Primera. - "podemos desplazar los paréntesis" para sacar un símbolo por un lado e introducir otro por el otro lado:

$$(\lambda b)_{|i} = \lambda (b_{|i}) = (i|b)\lambda = i|(b\lambda).$$

Segunda. - "podemos intercambiar las posiciones del escalar y el selector" sacando uno de ellos fuera del paréntesis y metiendo el otro:

$$(\boldsymbol{b}_{|i})\lambda = (\boldsymbol{b}\lambda)_{|i}$$
 y $\lambda(_{i|}\boldsymbol{b}) = _{i|}(\lambda\boldsymbol{b}).$

De hecho, puesto que las ocho expresiones de más arriba arrojan el mismo resultado (aunque el orden de ejecución de las operaciones difiera entre ellas) podemos omitir el paréntesis y escribir sencillamente $\lambda \boldsymbol{b}_{|i}$ o también cualquiera de las siguientes reordenaciones $\lambda \boldsymbol{b}_{|i} = \lambda_{i|} \boldsymbol{b} = \boldsymbol{b}_{|i} \lambda = {}_{i|} \boldsymbol{b} \lambda$.

No obstante a lo anterior, en las demostraciones siempre usaré expresiones con paréntesis (aunque sea innecesario), ya que ayuda a identificar la propiedad empleada en cada paso de la demostración.

Recuerde que en Python también es coveniente usar paréntesis para evitar errores y sorpresas.

EJERCICIO 4. ¿Cómo evalúa la librería NAcAL las siguientes expresiones? (Revise la Tabla 1.2 en la página 7)

- (a) 3*b|1
- (b) 3*1|b
- (c) 3*1|b
- (d) 1|b*3

1.4.5. La transposición

Encerrando a entre corchetes denotamos una matriz con una única columna; para denotar una matriz cuya única única fila es a necesitamos una operación adicional: la transposición, (\intercal) ,...

Definición 1.10 (Matriz transpuesta). Considere la matriz \mathbf{A} de orden m por n, su matriz transpuesta, que denotamos como \mathbf{A}^{T} , es la matriz de orden $n \times m$ cuyas m columnas iguales a las m filas de \mathbf{A} :

$$\left(\mathbf{A}^{\mathsf{T}}\right)_{|i} = {}_{i|}\mathbf{A}; \qquad i = 1:m.$$

Por tanto, la transpuesta de \mathbf{A} es la matriz n por m cuyas columnas son las filas de \mathbf{A} escritas en vertical, es decir,

$$\mathbf{A}^\intercal = \begin{bmatrix} 1 & \mathbf{A} & \dots & m & \mathbf{A} \end{bmatrix}.$$

Ejemplo:
$$\mathbf{A} = \begin{bmatrix} 1 \\ 0 \\ 5 \\ 1 \end{bmatrix} \Rightarrow \mathbf{A}^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 5 & 1 \end{bmatrix}$$
 $\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix} \Rightarrow \mathbf{B}^{\mathsf{T}} = \begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 3 & 1 \end{bmatrix}.$

~B # Transpuesta de la matriz B
$$\begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 3 & 1 \end{bmatrix}$$
 Librería NAcAL para Python

Escribimos las matrices columna (matrices con una única columna) poniendo un vector entre corchetes; ahora podemos escribir matrices fila (matrices con una única fila) trasponiendo matrices columna.

Así $\begin{bmatrix} i \\ A \end{bmatrix}^\mathsf{T}$ es una matriz cuya única fila es igual a la fila *i*ésima de A ; y si

$$\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix}; \text{ entonces } \begin{cases} \begin{bmatrix} 1 & \mathbf{B} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \\ \begin{bmatrix} \mathbf{B}_{|3} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 3 & 1 \end{bmatrix} \end{cases}$$

Librería NAcAL para Python

~Matrix([1|B]) # Matriz cuya única fila es la primera fila de B

[1 2 3]

-Matrix([B|3]) # Matriz cuya única fila es la tercera columna de B

EJERCICIO 5. Demuestre las siguientes propiedades elementales de la transposición:

- (a) La transposición intercambia los índices de las componentes de la matriz: ${}_{k!}(\mathbf{A}^{\mathsf{T}})_{!i} = {}_{j!}\mathbf{A}_{|k}$.
- (b) Si \mathbf{A} entonces $(\mathbf{A}^{\mathsf{T}})^{\mathsf{T}} = \mathbf{A}$.
- (c) Si $\underset{m \times n}{\mathbf{A}}$ y $1 \le i \le n$ entonces $\mathbf{A}_{|i} = {}_{i|} (\mathbf{A}^{\mathsf{T}})$.

Pese a que las expresiones $_{i|}(\mathbf{A}^{\mathsf{T}}), (\mathbf{A}^{\mathsf{T}})_{|j|}$ y $_{i|}(\mathbf{A}^{\mathsf{T}})_{|j|}$ solo tienen una interpretación posible incluso si se quitaran los paréntesis (puesto que *la transposición es una operación sobre matrices* y no sobre vectores) siempre escribiré el paréntesis. Así la notación es más clara.

Fíjese además en las reglas de reescritura: "puedo transponer (o quitar la transpuesta) solo si además cambio de lado los subíndices" (fíjese en su aplicación en las demostraciones de las propiedades anteriores).

1.4.6. Definiciones de algunas matrices especiales

Al igual que hicimos con los vectores, añadiremos algunas definiciones relativas a las matrices. Preste atención al uso de la notación.

Definición 1.11. Llamamos matriz nula (o matriz cero) de orden $m \times n$, $\mathbf{0}$, a la matriz cuyas n columnas son vectores nulos de \mathbb{R}^m : $\mathbf{0}_{|j} = \mathbf{0} \in \mathbb{R}^m$ para j = 1 : n.

Definición 1.12. Sea la matriz \mathbf{A} . Llamamos matriz opuesta de \mathbf{A} a la matriz $-\mathbf{A}$, del mismo orden que \mathbf{A} y cuyas columnas son las de \mathbf{A} multiplicadas por -1, es decir, $(-\mathbf{A})_{|j} = -(\mathbf{A}_{|j})$.

También daremos nombre a ciertas matrices en función de la disposición de sus componentes:

Definición 1.13. Decimos que una matriz es cuadrada cuando tiene el mismo número de filas que de columnas. Es decir, una matriz cuadrada es de orden $n \times n$.

Cuando tenemos una matriz cuadrada de orden n por n abreviamos y decimos sencillamente que es de orden n. Así, si decimos que una matriz es de orden n (y nada más) estamos indicando que es cuadrada.

Definición 1.14. A las matrices que no son cuadradas las denominamos rectangulares.

Recuerde: al expresar el orden de matrices rectangulares es necesario indicar el número de filas y columnas.

Definición 1.15 (Matriz simétrica). Decimos que la matriz \mathbf{A} es simétrica cuando $\mathbf{A} = \mathbf{A}^{\mathsf{T}}$.

Así, $\mathbf{A}_{|j} = (\mathbf{A}^{\mathsf{T}})_{|j} = {}_{j|}\mathbf{A}$. Por tanto, toda matriz simétrica es necesariamente cuadrada. Y puesto que la "columna" jésima es igual a la "fila" jésima, sus componentes iésimas son iguales: ${}_{i|}\mathbf{A}_{|j} = {}_{j|}\mathbf{A}_{|i}$.

Definición 1.16. Decimos que una matriz es diagonal cuando todos los componentes fuera de la diagonal principal son nulos, es decir, si $d_{ij} = 0$ cuando $i \neq j$.

Por ejemplo

$$\mathbf{D} = \begin{bmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{mm} \end{bmatrix}; \quad \mathbf{F} = \begin{bmatrix} f_{11} & 0 & \cdots & 0 & 0 \\ 0 & f_{22} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & f_{mp} & 0 \end{bmatrix}; \quad \mathbf{y} \quad \mathbf{G} = \begin{bmatrix} g_{11} & 0 & \cdots & 0 \\ 0 & g_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & g_{nn} \\ 0 & 0 & \cdots & 0 \end{bmatrix}.$$

Fíjese que de las tres matrices diagonales, solo $\bf D$ es cuadrada. Tenga en cuenta además, que los componentes de la diagonal principal pueden tomar cualquier valor. Así pues, ¡toda matriz nula $\bf 0$ es diagonal! Además, toda matriz diagonal y cuadrada es simétrica, ya que por una parte

$${}_{i|}\mathbf{D}_{|j} = \begin{cases} 0 & (i \neq j) \\ d_{ii} & (i = j) \end{cases}, \quad \text{y por otra} \quad {}_{i|}(\mathbf{D}^{\mathsf{T}})_{|j} = {}_{j|}\mathbf{D}_{|i} = \begin{cases} 0 & (i \neq j) \\ d_{ii} & (i = j) \end{cases}; \quad \text{por tanto} \quad \mathbf{D}^{\mathsf{T}} = \mathbf{D}.$$

Definición 1.17. Llamamos matriz identidad (y la denotamos con I) a la matriz cuadrada y diagonal cuyas componentes en la diagonal principal son unos y el resto de componentes son cero, es decir

$$_{i}|\mathbf{I}|_{j}=\begin{cases} 0 & (i\neq j) \\ 1 & (i=j) \end{cases}.$$

Por ejemplo, las matrices identidad de órdenes 2 y 1 son: $\mathbf{l}_{2\times 2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; \quad \mathbf{l}_{1\times 1} = \begin{bmatrix} 1 \end{bmatrix}$.

Nótese que las matrices identidad son simétricas (pues son cuadradas y diagonales).

1.5. Suma de matrices y producto de matrices por escalares

Definición 1.18 (suma de matrices). Definimos la suma de dos matrices \mathbf{A} y \mathbf{B} , de orden $m \times n$, como la matriz, del mismo orden, cuya columna jésima es la suma de la columna jésima de \mathbf{A} y la jésima de \mathbf{B} :

$$\boxed{ \left(\mathbf{A} + \mathbf{B} \right)_{|j} = \mathbf{A}_{|j} + \mathbf{B}_{|j} }$$
 para $j = 1:n,$

es decir,
$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} (\mathbf{A}_{|1} + \mathbf{B}_{|1}) & \dots & (\mathbf{A}_{|n} + \mathbf{B}_{|n}) \end{bmatrix}$$
.

Definición 1.19 (producto de una matriz por un escalar). *Definimos el producto de una matriz* $\underset{m \times n}{\mathbf{A}}$ por un escalar λ como la matriz resultante de multiplicar las columnas de \mathbf{A} por el escalar λ :

$$\boxed{ \left(\lambda \mathbf{A} \right)_{|j} = \lambda \left(\mathbf{A}_{|j} \right) } \quad para \ j = 1:n,$$

es decir,
$$\lambda \mathbf{A} = \begin{bmatrix} \lambda (\mathbf{A}_{|1}) & \dots & \lambda (\mathbf{A}_{|n}) \end{bmatrix}$$
.

Definición 1.20. Para cualquier λ decimos que $\lambda \mathbf{A}$ es un múltiplo de \mathbf{A} .

De nuevo la definición de las operaciones de suma y producto por un escalar convierten al operador "|j" en un **operador lineal**; es decir, *distributivo* respecto a la suma de matrices

$$(\mathbf{A} + \mathbf{B})_{|i} = \mathbf{A}_{|i} + \mathbf{B}_{|i}$$

y asociativo respecto al producto de una matriz por un escalar

$$(\lambda \mathbf{A})_{|j} = \lambda (\mathbf{A}_{|j}).$$

1.5.1. Propiedades de la suma de matrices y del producto por un escalar

La suma de matrices y producto de matrices por escalares verifican propiedades análogas a las de la Proposición 1.2.1; y su demostración es idéntica a la del Ejercicio 3...

EJERCICIO 6. Demuestre las propiedades de la siguiente proposición.

Proposición 1.5.1 (Propiedades de las operaciones entre matrices). Para cualesquiera matrices **A**, **B** y **C** de idéntico orden y para cualesquiera escalares λ y η , se verifica que:

1.
$$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$
. 5. $\lambda(\mathbf{A} + \mathbf{B}) = \lambda \mathbf{A} + \lambda \mathbf{B}$.

2.
$$\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}$$
. 6. $(\lambda + \eta)\mathbf{A} = \lambda \mathbf{A} + \eta \mathbf{A}$.

3.
$$\mathbf{0} + \mathbf{A} = \mathbf{A}$$
. 7. $\lambda(\eta \mathbf{A}) = (\lambda \eta) \mathbf{A}$.

4.
$$\mathbf{A} + (-\mathbf{A}) = \mathbf{0}$$
. 8. $1\mathbf{A} = \mathbf{A}$.

Pista. Explote que el operador "|j" es distributivo para la suma de matrices y asociativo para el producto por escalares. Use las propiedades de las operaciones con vectores de la Proposición 1.2.1, pues $\mathbf{A}_{|j}$, $\mathbf{B}_{|j}$ y $\mathbf{C}_{|i}$ son vectores de \mathbb{R}^n .

Nota 2. Estas ocho propiedades (de manera similar a las ocho propiedades de las operaciones con vectores de la Proposición 1.2.1) nos permitirán definir en el Tema 2 el espacio vectorial de matrices $\mathbb{R}^{m \times n}$.

1.5.2. Operaciones componente a componente

La mayoría de manuales definen la suma y el producto por escalares componente a componente:

"la suma de dos matrices \mathbf{A} y \mathbf{B} , del mismo orden, es la matriz que resulta de sumar los componentes de \mathbf{A} a los componentes de \mathbf{B} ".

У

"el producto de una matriz ${\bf A}$ por un escalar λ : es la matriz resultante de multiplicar los componentes de ${\bf A}$ por el escalar λ ".

EJERCICIO 7. Demuestre que las definiciones 1.18 y 1.19 implican que las operaciones de suma y producto por escalares se pueden calcular componente a componente:

$$_{i|}(\mathbf{A}+\mathbf{B})_{|j}={}_{i|}\mathbf{A}_{|j}+{}_{i|}\mathbf{B}_{|j}, \qquad \mathbf{y} \qquad {}_{i|}(\lambda\mathbf{A})_{|j}=\lambda\Big({}_{i|}\mathbf{A}_{|j}\Big); \qquad \mathrm{con}\ i=1:m, \quad \mathbf{y} \quad j=1:n.$$

Es decir,

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix}$$

$$= \begin{bmatrix} (a_{11} + b_{11}) & (a_{12} + b_{12}) & \cdots & (a_{1n} + b_{1n}) \\ \vdots & \vdots & \ddots & \vdots \\ (a_{m1} + b_{m1}) & (a_{m2} + b_{m2}) & \cdots & (a_{mn} + b_{mn}) \end{bmatrix};$$

у

$$\lambda \mathbf{A} = \lambda \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} \lambda(a_{11}) & \lambda(a_{12}) & \cdots & \lambda(a_{1n}) \\ \vdots & \vdots & \ddots & \vdots \\ \lambda(a_{m1}) & \lambda(a_{m2}) & \cdots & \lambda(a_{mn}) \end{bmatrix}.$$

1.5.3. La transposición es un operador lineal

Antes de operar por filas necesitamos demostrar las propiedades de linealidad de la transpuesta. 11

Ejercicio 8. Demuestre las siguientes proposiciones.

- (a) **Proposición 1.5.2** (Transpuesta de un múltiplo). Sea \mathbf{A} entonces $(\lambda \mathbf{A})^{\mathsf{T}} = \lambda (\mathbf{A}^{\mathsf{T}})$.
- (b) Proposición 1.5.3 (Transpuesta de una suma). Sean $\mathbf{A}_{m \times n}$ $\mathbf{B}_{m \times n}$ entonces $(\mathbf{A} + \mathbf{B})^{\mathsf{T}} = \mathbf{A}^{\mathsf{T}} + \mathbf{B}^{\mathsf{T}}$.

Así pues, el operador transposición es un operador lineal.

1.5.4. Operaciones fila a fila

Y ahora veamos las operaciones por filas:

EJERCICIO 9. Demuestre que las definiciones 1.18 y 1.19 implican que se puede operar "por filas", es decir:

$$_{i|}\big(\mathbf{A}+\mathbf{B}\big)={}_{i|}\mathbf{A}+{}_{i|}\mathbf{B}, \qquad \mathbf{y} \qquad {}_{i|}\big(\mathbf{A}\lambda\big)=\big({}_{i|}\mathbf{A}\big)\lambda; \qquad \mathrm{donde}\ \underset{\scriptscriptstyle{m\times n}}{\mathbf{A}}\ \mathbf{y}\ \mathrm{donde}\ i=1:m.$$

 $^{^{-11}}$ De la transposición ya solo nos falta demostrar que $(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}$, pero para ello antes tenemos que ver las definiciones de producto de un vector por una matriz aB y producto de matrices AB.

EFF

Por tanto el operador selector de filas, "i|", es lineal; es decir, distributivo respecto a la suma de matrices

$$_{i|}(\mathbf{A} + \mathbf{B}) = _{i|}\mathbf{A} + _{i|}\mathbf{B}$$

y asociativo respecto al producto de una matriz por un escalar

$$_{i}(\lambda \mathbf{A}) = \lambda(_{i}|\mathbf{A}).$$

1.6. Extensión de la notación matricial y las reglas de reescritura

Si de nuevo aceptamos el producto de un escalar por el lado derecho, $\mathbf{A}\lambda = \lambda \mathbf{A}$; entonces logramos unas reglas de reescritura similares a las que obtuvimos en el caso del los vectores.

B

Reglas de re-escritura: como el operador selector de filas es lineal, podemos

• "distribuir el operador" entre sumandos

$$(\mathbf{A} + \mathbf{B})_{|j} = \mathbf{A}_{|j} + \mathbf{B}_{|j}$$
 y $_{i|}(\mathbf{A} + \mathbf{B}) = _{i|}\mathbf{A} + _{i|}\mathbf{B};$

• "desplazar los paréntesis" para sacar un símbolo por un lado e introducir otro por el otro lado:

$$(\lambda \mathbf{A})_{|j} = \lambda (\mathbf{A}_{|j}) \qquad \text{y} \qquad ({}_{i|}\mathbf{A})\lambda = {}_{i|}(\mathbf{A}\lambda).$$

Y además también podemos

• "intercambiar las posiciones del escalar y el selector" dentro y fuera del paréntesis:

$$(\mathbf{A}_{|j})\lambda \quad = \quad (\mathbf{A}\lambda)_{|j} \qquad \quad \mathbf{y} \qquad \quad _{i|}(\lambda\mathbf{A}) \quad = \quad \lambda(_{i|}\mathbf{A}).$$

Como las cuatro últimas expresiones de la mitad izquierda del anterior recuadro arrojan el mismo resultado (pese al distinto orden de ejecución de las operaciones) podemos omitir el paréntesis y escribir $\lambda \mathbf{A}_{|j}$. Y como las cuatro últimas expresiones de la mitad derecha del recuadro arrojan el mismo resultado (pese al distinto orden de ejecución de operaciones) también podemos omitir el paréntesis y escribir $\lambda_{i|}\mathbf{A}$. Por motivos didácticos en las demostraciones siempre usaré los paréntesis para aclarar qué regla o propiedad se aplica en cada paso, pero lo más práctico es omitirlos si no son necesarios (jesa es la ventaja de la **notación asociativa**!). ¹²

La Propiedad 1.5.2 sobre la "traspuesta de un múltiplo" (que volvemos a copiar como primer punto del recuadro de más abajo) junto a permitir multiplicar por la derecha, $\mathbf{A}\lambda = \lambda \mathbf{A}$; nos dota de otra regla de reescritura que nos permite intercambiar la posición entre el escalar y el símbolo de trasposición.

¹² Pero recuerde que dada la precedencia establecida en la ejecución de las operaciones en Python, dicha ventaja desaparece en la librería NAcAL.

B

Reglas de re-escritura: podemos

• "intercambiar las posiciones del escalar y el operador transposición" dentro y fuera del paréntesis:

$$(\mathbf{A}^{\mathsf{T}})\lambda = (\mathbf{A}\lambda)^{\mathsf{T}}.$$

Además, como el operador transposición es lineal, también podemos

• "desplazar los paréntesis" para sacar un símbolo por un lado e introducir otro por el otro lado:

$$(\lambda \mathbf{A})^{\mathsf{T}} = \lambda (\mathbf{A}^{\mathsf{T}})$$
 (y que podemos escribir sencillamente como $\lambda \mathbf{A}^{\mathsf{T}}$)

• "distribuir el operador" en una suma

$$(\mathbf{A} + \mathbf{B})^\intercal = \mathbf{A}^\intercal + \mathbf{B}^\intercal$$

Combinaciones lineales

2.1. Producto punto (o producto escalar usual en \mathbb{R}^n)

Antes de definir las combinaciones lineales, definamos el producto punto entre dos vectores de \mathbb{R}^n :

Definición 2.1. El producto punto $a \cdot b$ (o producto escalar usual en \mathbb{R}^n) de dos vectores $a \cdot y \cdot b$ es

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 + \dots + a_n b_n = \sum_{i=1}^n a_i b_i = \sum_{i=1}^n \mathbf{a}_{|i} \mathbf{b}_{|i}.$$

Este producto será muy importante en la segunda parte del curso para definir la ortogonalidad. Pero su introducción en este momento nos permitirá dotar de propiedades muy potentes a la notación del producto de matrices con vectores, además de lograr demostraciones mucho más "limpias" (pues en lugar de sumatorios podremos usar productos punto) y con pasos más sencillos (tan solo habrá que aplicar repetidamente la linealidad tanto del producto punto como del operador selector).

```
a = Vector((1, 2, 3, 4))
b = Vector((1,-1, 1,-1))
a * b # producto punto entre los vectores a y b

-2
```

Propiedades del producto punto

El producto punto (o producto escalar usual de \mathbb{R}^n) satisface los siguientes axiomas para cualesquiera vectores x, y y z de \mathbb{R}^n y para cualquier escalar a de \mathbb{R} .

EJERCICIO 10. Demuestre que el producto punto cumple con los siguientes axiomas:

- (a) Simetría: $x \cdot y = y \cdot x$
- (b) Linealidad respecto al primer argumento:

```
1. (a\mathbf{x}) \cdot \mathbf{y} = a(\mathbf{x} \cdot \mathbf{y})
2. (\mathbf{x} + \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot \mathbf{z} + \mathbf{y} \cdot \mathbf{z}
```

- (c) **Positivo:** $x \cdot x \ge 0$
- (d) **Definido:** $x \cdot x = 0 \Leftrightarrow x = 0$.

Fíjese que como el producto punto es simétrico, también es lineal en el segundo argumento

$$x \cdot (ay) = (ay) \cdot x = a(y \cdot x) = a(x \cdot y);$$

 $x \cdot (y+z) = (y+z) \cdot x = y \cdot x + z \cdot x = x \cdot y + x \cdot z$

y además se verifica que $x \cdot (ay) = (ax) \cdot y$.

Caso especial 1 (Producto punto de un vector por una fila (o columna) de \mathbf{I}). Al multiplicar un vector de \mathbb{R}^n por la fila (o columna) i ésima de la matriz identidad de orden n, se selecciona la componente i ésima del vector, $(i\mathbf{I}) \cdot \mathbf{x} = i\mathbf{I}\mathbf{x}$:

$$(\mathbf{x}_{i}|\mathbf{I}) \cdot \mathbf{x} = 0x_1 + 0x_2 + \dots + 1x_i + \dots + 0x_n = x_i = \mathbf{x}_i$$

2.2. Producto de una matriz por un vector (a su derecha)

2.2.1. Combinación lineal de vectores

Hay una operación *muy importante* (¡la más importante de todas las que veamos en este curso!): la suma de múltiplos de vectores. Por ejemplo

$$3a + b - 7c + 2d$$

donde 3, 1, -7 y 2 son los coeficientes. Es una operación tan importante que tiene nombre propio:

Definición 2.2 (Combinación lineal de vectores de \mathbb{R}^n). Sean los vectores b_1, \ldots, b_n . Llamamos combinación lineal a cualquier suma de múltiplos de dichos vectores:

$$a_1\boldsymbol{b}_1 + a_2\boldsymbol{b}_2 + \dots + a_n\boldsymbol{b}_n$$

donde los números " a_i " son los coeficientes de la combinación lineal.

EJERCICIO 11. Sean los vectores

$$m{x} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}; \quad m{y} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}; \quad m{z} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}.$$

Compruebe que la combinación lineal 2x + 2y + 2z es el vector nulo.

Ejemplo 1. Nótese que todo vector a de \mathbb{R}^n es combinación lineal de las columnas de $\prod_{n \leq n}$, pues

$$(\mathbf{I}_{|1})a_1 + \dots + (\mathbf{I}_{|n})a_n = \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix} a_1 + \begin{pmatrix} 0\\1\\\vdots\\0 \end{pmatrix} a_2 + \dots \begin{pmatrix} 0\\0\\\vdots\\1 \end{pmatrix} a_n = \begin{pmatrix} a_1\\0\\\vdots\\0 \end{pmatrix} + \begin{pmatrix} 0\\a_2\\\vdots\\0 \end{pmatrix} + \dots \begin{pmatrix} 0\\0\\\vdots\\a_n \end{pmatrix} = \begin{pmatrix} a_1\\a_2\\\vdots\\a_n \end{pmatrix} = \boldsymbol{a}.$$

2.2.2. Producto de una matriz por un vector

El producto de una matriz por un vector a su derecha, $\mathbf{A}\mathbf{b}$, es una combinación lineal de las columnas de la matriz. Para recordarlo, escribiremos el vector de la derecha en forma de columna. Llamaremos a esta operación combinación lineal de las columnas de \mathbf{A} o producto de una matriz por un vector a su derecha.

Definición 2.3 (matriz por un vector a su derecha). El producto de $\mathbf{A}_{m \times n}$ por un vector $\mathbf{b} \in \mathbb{R}^n$ a su derecha es la combinación lineal de las n columnas de \mathbf{A} cuyos coeficientes son los componentes de \mathbf{b} :

$$\mathbf{A}\boldsymbol{b} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \equiv \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} b_1 + \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix} b_2 + \dots + \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} b_n. \tag{2.1}$$

O expresado de forma alternativa: $\mathbf{A}b = (\mathbf{A}_{|1})b_1 + (\mathbf{A}_{|2})b_2 + \cdots + (\mathbf{A}_{|n})b_n$.

Fíjese que el número de columnas de la matriz $\bf A$ debe ser igual al número de componentes del vector $\bf b$ (¡una componente de $\bf b$ por cada columna de $\bf A$ para poder expresar la suma de múltiplos de las columnas!)

Librería NAcAL para Pythor

A = Matrix([Vector([1,1,1]), Vector([1,0,1]), Vector([-2,2,1])])
b = Vector([1,2,-3])
A*b

$$\mathbf{Ab} \ = \left[\begin{array}{ccc} 1 & 1 & -2 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{array} \right] \left(\begin{array}{c} 1 \\ 2 \\ -3 \end{array} \right) \ = \ 1 \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) + 2 \left(\begin{array}{c} 1 \\ 0 \\ 1 \end{array} \right) - 3 \left(\begin{array}{c} -2 \\ 2 \\ 1 \end{array} \right) \ = \ \left(\begin{array}{c} 9 \\ -5 \\ 0 \end{array} \right).$$

EJERCICIO 12. Escriba como producto de una matriz por un vector la combinación lineal del ejercicio 11.

Y ahora veamos un par de casos especialmente sencillos:

Caso especial 2 (Producto de una matriz identidad por un vector). Ahora podemos expresar el producto del Ejemplo 1 de manera mucho más compacta

$$\mathbf{I}a = a$$
.

(es decir, todo vector de \mathbb{R}^n es combinación lineal de las columnas de la matriz identidad de orden n)

Caso especial 3 (Producto de una matriz por una columna de I). Por otra parte, de la Definición 2.3 resulta evidente que

$$\mathbf{A}(\mathbf{I}_{|i}) = \mathbf{A}_{|i}$$

es decir, multiplicar A por la columna jésima de la identidad es lo mismo que seleccionar su columna jésima.

EJERCICIO 13. Demuestre que $\mathbf{A}(\mathbf{I}_{1i}) = \mathbf{A}_{1i}$.

Pues bien, hay una estrecha relación entre el producto $\mathbf{A}b$ y los productos punto de b y las filas de \mathbf{A} :

EJERCICIO 14. Demuestre que la componente iésima del vector $\mathbf{A}\mathbf{b}$ es el producto punto $(i|\mathbf{A}) \cdot \mathbf{b}$:

$$|_{i|}(\mathbf{A}\mathbf{b}) = (_{i|}\mathbf{A}) \cdot \mathbf{b}$$
 donde $i = 1:m$.

Hemos visto que la operación **MATRIZ** (de orden $m \times n$) por un **vector** (de n componentes) es un **vector** formado por una suma de múltiplos de las n columnas:

$$\mathbf{A}\boldsymbol{b} \ = \ \big(\mathbf{A}_{|1}\big)b_1 + \big(\mathbf{A}_{|2}\big)b_2 + \dots + \big(\mathbf{A}_{|n}\big)b_n \quad \in \mathbb{R}^n.$$

A un vector que es suma de múltiplos de vectores se le llama combinación lineal. Por tanto ${\bf A}{\bf b}$ es una combinación lineal de las columnas de ${\bf A}$.

También hemos visto que $_{i|}(\mathbf{A}b)=(_{i|}\mathbf{A})\cdot b, \quad \text{que} \quad \mathbf{I}a=a \quad \text{y que} \quad \mathbf{A}(\mathbf{I}_{|j})=\mathbf{A}_{|j}.$

2.2.3. Propiedades del producto de una matriz por un vector a su derecha

El producto de una matriz por un vector posee dos importantísimas propiedades: las *propiedades de linealidad*. La primera respecto a la suma de vectores, $\mathbf{A}(b+c) = \mathbf{A}b + \mathbf{A}c$, y la segunda respecto al producto por un escalar, $\mathbf{A}(\lambda b) = \lambda(\mathbf{A}b)$. Veámoslo.

EJERCICIO 15. Demuestre las siguientes proposiciones (inténtelo primero sin mirar las pistas).

- (a) **Proposición 2.2.1.** Sea la matriz $\underset{m \times n}{\mathsf{A}}$ y los vectores \mathbf{b} y \mathbf{c} de \mathbb{R}^n , entonces: $\mathsf{A}\big(\mathbf{b}+\mathbf{c}\big) = \mathsf{A}\mathbf{b} + \mathsf{A}\mathbf{c}$. Pista. Demuestre que ambos vectores son iguales componente a componente, es decir, que $_{i|}\big(\mathsf{A}(\mathbf{b}+\mathbf{c})\big)$ es igual a $_{i|}\big(\mathsf{A}\mathbf{b}+\mathsf{A}\mathbf{c}\big)$. Para ello emplee que cada componente es un producto punto y que los productos escalares también son lineales en el segundo argumento. Use también que el operador selector es lineal.
- (b) Proposición 2.2.2. Sea la matriz $\mathbf{A}_{m \times n}$, el vector \mathbf{b} de \mathbb{R}^n y el escalar λ , entonces: $\mathbf{A}(\lambda \mathbf{b}) = \lambda(\mathbf{A}\mathbf{b})$. Pista. Siga la misma estrategia que en el apartado anterior.

El producto de una matriz por un vector es un **operador lineal**; es decir, *distributivo* respecto a la suma de vectores

$$A(b+c) = Ab + Ac.$$

y asociativo respecto al producto de un vector por un escalar

$$\mathbf{A}(\lambda \mathbf{b}) = \lambda(\mathbf{A}\mathbf{b}).$$

EJERCICIO 16. Demuestre el siguiente corolario (inténtelo primero sin mirar las pistas).

Corolario 2.2.3. Sea la matriz $\mathbf{A}_{p \times m}$, la matriz $\mathbf{B}_{m \times n}$, y el vector \mathbf{c} de \mathbb{R}^n , entonces:

$$\mathbf{A}(\mathbf{B}c) = egin{bmatrix} \mathbf{A}(\mathbf{B}_{|1}) \dots & \mathbf{A}(\mathbf{B}_{|n}) \end{bmatrix} c,$$

donde \mathbf{B}_{li} es la iésima columna de \mathbf{B} .

Pista. Comience con la expresión de la izquierda. Exprese el producto dentro de paréntesis como una combinación lineal de columnas (Definición 2.3) y aplique las propiedades de linealidad (proposiciones 2.2.1 y 2.2.2) y de nuevo la Definición 2.3 para obtener la expresión de la derecha de la igualdad.

Para terminar la sección, añadamos dos proposiciones más...la primera se parece a la Proposición 2.2.2 pero no es igual (fíjese en la posición de los paréntesis del lado derecho de las igualdades).

EJERCICIO 17. Demuestre las siguientes proposiciones (inténtelo sin mirar las pistas).

- (a) Proposición 2.2.4. Sea la matriz $\mathbf{A}_{m \times n}$, el vector \mathbf{b} de \mathbb{R}^n y el escalar λ , entonces: $\mathbf{A}(\lambda \mathbf{b}) = (\lambda \mathbf{A})\mathbf{b}$. Pista. Recuerde que el producto punto es lineal en el primer argumento: $\mathbf{x} \cdot (\lambda \mathbf{y}) = (\lambda \mathbf{x}) \cdot \mathbf{y}$.
- (b) Proposición 2.2.5. Sean las matrices $\underset{m \times n}{\mathsf{A}} y \underset{m \times n}{\mathsf{B}} y$ el vector c de \mathbb{R}^n entonces: $(\mathsf{A} + \mathsf{B})c = \mathsf{A}c + \mathsf{B}c$.

Más reglas de reescritura.

De las proposiciones 2.2.2 y 2.2.4 se deduce que

$$(\lambda \mathbf{A})\mathbf{b} = \mathbf{A}(\lambda \mathbf{b}) = \lambda(\mathbf{A}\mathbf{b})$$

y por tanto no son necesarios los paréntesis. Así que sin ninguna ambigüedad podemos escribir:

$$\lambda \mathbf{A} \mathbf{b} = \mathbf{A} \lambda \mathbf{b}.$$

Observe además que (como aceptamos que el escalar multiplique a los vectores y matrices por la derecha) el escalar puede aparecer en cualquier lugar, lo único que se mantiene invariante es la posición relativa del vector respecto de la matriz, pues siempre está a su derecha): $\lambda \mathbf{A} \mathbf{b} = \mathbf{A} \lambda \mathbf{b} = \mathbf{A} \mathbf{b} \lambda$.

Hemos visto varias propiedades que cumple la operación MATRIZ por vector

Propiedades de linealidad

$$\label{eq:Ab} \begin{array}{l} \blacksquare \ \mathsf{A} \big(b + c \big) = \mathsf{A} b + \mathsf{A} c \\ \\ \blacksquare \ \mathsf{A} (\lambda b) = \lambda (\mathsf{A} b) \end{array}$$

Otras propiedades

•
$$A(Bc) = [A(B_{|1}), \dots, A(B_{|n})]c$$

$$\blacksquare (A+B)c = Ac + Bc$$

$$(\lambda \mathbf{A}) \mathbf{b} = \lambda (\mathbf{A} \mathbf{b})$$

2.3. Producto de un vector por una matriz (vector a la izquierda)

Hasta aquí hemos visto que matriz por vector $(\mathbf{A}b)$ es una combinación lineal de las columnas de la matriz.

A continuación veremos que vector por matriz (aB) es una combinación lineal de las filas de la matriz (con propiedades análogas).

Definición 2.4 (producto de un vector por una matriz). El producto de un vector $\mathbf{a} \in \mathbb{R}^m$ que multiplica por la izquierda a una matriz B de m filas es la combinación lineal de las m filas de B cuyos coeficientes son los componentes de a:

$$a\mathbf{B} = (\mathbf{B}^{\mathsf{T}}) a$$

Puesto que el producto $\mathbf{a}\mathbf{B}$ es una combinación lineal de las filas de \mathbf{B} , dicho producto es un vector de \mathbb{R}^n .

Para recordar que estamos operando con las filas de \mathbf{B} , escribiremos a en forma de fila (en horizontal):

$$\mathbf{a}\mathbf{B} = \begin{pmatrix} a_1, & a_2, & \dots & a_m, \end{pmatrix} \begin{bmatrix} b_{11} & \dots & b_{1n} \\ b_{21} & \dots & b_{2n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \dots & b_{mn} \end{bmatrix} = a_1 \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \dots + a_m \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \quad \in \mathbb{R}^n.$$

Cada componente jésima del vector $a\mathbf{B}$ es el producto punto entre a y la columna jésima de \mathbf{B} :

$$\left(\boldsymbol{a}\boldsymbol{\mathsf{B}}\right)_{|j} = \left(\left(\boldsymbol{\mathsf{B}}^{\mathsf{T}}\right)\boldsymbol{a}\right)_{|j} = \prod_{j|} \left(\left(\boldsymbol{\mathsf{B}}^{\mathsf{T}}\right)\boldsymbol{a}\right) = \left(\prod_{j|} \left(\boldsymbol{\mathsf{B}}^{\mathsf{T}}\right)\right) \cdot \boldsymbol{a} = \left(\boldsymbol{\mathsf{B}}_{|j}\right) \cdot \boldsymbol{a} = \boldsymbol{a} \cdot \left(\boldsymbol{\mathsf{B}}_{|j}\right), \quad \text{donde } j = 1:n.$$

print((b*A)|3 == b*(A|3))
b*(A|3)
True
Librería NAcAL para Python

-1

2.3.1. Propiedades del producto de un vector por una matriz

EJERCICIO 18. Demuestre las siguientes propiedades del producto aB.

- (a) Sea el vector \boldsymbol{a} de m componentes y la matriz $\prod_{m \times m}$, entonces: $\boldsymbol{a} \boldsymbol{l} = \boldsymbol{a}$.

 Pista. Recuerde que como \boldsymbol{l} es simétrica, $\boldsymbol{l}^{\mathsf{T}} = \boldsymbol{l}$.
- (b) Sea $(i|\mathbf{I})$ la fila iésima de $\prod_{m \times m}$ y la matriz $\prod_{m \times n}$, entonces: $\left[(i|\mathbf{I})\mathbf{A} = i|\mathbf{A}. \right]$ Pista. Recuerde el caso especial 3 en la página 25 y que como \mathbf{I} es simétrica, $\mathbf{I}_{\mathbf{I}i} = i|\mathbf{I}$.
- (c) Sean \boldsymbol{a} y \boldsymbol{b} vectores de \mathbb{R}^m y sea la matriz $\underset{m \times n}{\mathsf{C}}$, entonces: $(\boldsymbol{a} + \boldsymbol{b})\mathsf{C} = a\mathsf{C} + b\mathsf{C}$ Pista. (*) Recuerde la Proposición 2.2.1 y recuerde que $\boldsymbol{v}\mathsf{A} = (\mathsf{A}^\mathsf{T})\boldsymbol{v}$.
- (d) Sea el escalar λ , el vector \boldsymbol{a} de \mathbb{R}^m y sea la matriz $\underset{m \times n}{\mathsf{B}}$, entonces: $(\lambda \boldsymbol{a})\mathsf{B} = \lambda(\boldsymbol{a}\mathsf{B})$ Pista. (*) Recuerde la Proposición 2.2.2
- (e) Sean \boldsymbol{a} un vector de \mathbb{R}^m y λ un escalar; y sea la matriz $\underset{m \times n}{\mathsf{B}}$, entonces: $\boldsymbol{a}(\lambda \mathsf{B}) = (\lambda \boldsymbol{a}) \mathsf{B}$.
- (f) Sean \boldsymbol{a} un vector de \mathbb{R}^m , y las matrices $\boldsymbol{\mathsf{B}}$ y $\boldsymbol{\mathsf{C}}$ de orden m por n, entonces: $\boldsymbol{a}(\boldsymbol{\mathsf{B}}+\boldsymbol{\mathsf{C}})=\boldsymbol{a}\boldsymbol{\mathsf{B}}+\boldsymbol{a}\boldsymbol{\mathsf{C}}.$ Pista. (*) Recuerde la Proposición 2.2.5.

El producto de un vector (de m componentes) por una MATRIZ (de orden $m \times n$) es una combinación lineal de las m filas de B :

$$a\mathbf{B} = a_1(\mathbf{B}) + \cdots + a_m(\mathbf{B}) \in \mathbb{R}^n.$$

Cada componente del vector $a\mathbf{B}$ se puede expresar como un producto punto:

$$(\mathbf{a}\mathbf{B})_{|j} = \mathbf{a} \cdot (\mathbf{B}_{|j}), \text{ donde } j = 1:n.$$

El producto $a\mathbf{B}$ tiene propiedades análogas a las del producto $\mathbf{A}b$.

- $\mathbf{a} \mathbf{I} = a$
- $\bullet (_{i|} \mathbf{I}) \mathbf{A} = {}_{i|} \mathbf{A};$

Propiedades de linealidad

- $\bullet (a+b)\mathsf{C} = a\mathsf{C} + b\mathsf{C}$
- $(\lambda a)B = \lambda (aB)$

Otras propiedades

- $\bullet \ a(\mathsf{B}+\mathsf{C})=a\mathsf{B}+a\mathsf{C}$
- $a(\lambda \mathbf{B}) = \lambda(a\mathbf{B})$

Multiplicación matricial

3.1. Producto de matrices

Definición 3.1 (producto de matrices (por **columnas**)). Sean \mathbf{A} y \mathbf{B} , definimos la matriz producto (\mathbf{AB}) como aquella matriz cuya columna jésima es el producto de \mathbf{A} por la columna jésima de \mathbf{B} :

$$\left[\left(\mathsf{A}\mathsf{B} \right)_{|j} = \mathsf{A} \left(\mathsf{B}_{|j} \right) \right].$$

Es decir, las columnas de ${\bf AB}$ son combinaciones lineales de las columnas de ${\bf A}$ (y los coeficientes de cada combinación son los componentes de cada una de las columnas de ${\bf B}$).

$$\mathbf{AB} \equiv \begin{bmatrix} \mathbf{A}(\mathbf{B}_{|1}); & \dots & \mathbf{A}(\mathbf{B}_{|n}); \end{bmatrix}.$$

Ejemplo 2. Si
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 1 \end{bmatrix}$$
 y $\mathbf{B} = \begin{bmatrix} -2 & 1 \\ 1 & 1 \\ 1 & -2 \end{bmatrix}$ entonces

$$\mathbf{A}\mathbf{B} = \begin{bmatrix} \mathbf{A}\big(\mathbf{B}_{|1}\big); & \mathbf{A}\big(\mathbf{B}_{|2}\big); \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} -3 \\ -3 \\ 6 \end{pmatrix}; & \begin{pmatrix} 6 \\ -3 \\ -3 \end{pmatrix}; \end{bmatrix} = \begin{bmatrix} -3 & 6 \\ -3 & -3 \\ 6 & -3 \end{bmatrix};$$

nótese que calculamos multiplicando **A** por cada columna de **B**.¹

Deduzcamos algunas propiedades que verifica el producto de matrices...

Ejercicio 19. Demuestre las siguientes proposiciones.

- (a) Proposición 3.1.1. Sean $\underset{m \times p}{\mathsf{A}} y \underset{p \times n}{\mathsf{B}}, \ y \ un \ vector \ c \ de \ \mathbb{R}^n, \ entonces \qquad \mathsf{A}(\mathsf{B}c) = (\mathsf{A}\mathsf{B})c.$
- (b) **Proposición 3.1.2** (El producto de matrices es asociativo). Sean las matrices \mathbf{A} , \mathbf{B} y \mathbf{C} , entonces

$$A(BC) = (AB)C.$$

Nota importante respecto al operador "|j", el producto de matrices y la asociatividad: La definición de producto matricial mantiene la asociatividad del operador "|j", POR LO QUE NO NECESITAMOS PARÉNTESIS. Así, $\mathbf{AB}_{|j}$ se refiere indistintamente a la columna jésima del producto $(\mathbf{AB})_{|j}$, o al producto de \mathbf{A} por $\mathbf{B}_{|j}$ (i.e., la columna jésima), $\mathbf{A}(\mathbf{B}_{|j})$. Y puesto que $\mathbf{A}(\mathbf{BC}) = (\mathbf{AB})\mathbf{C}$; también el producto de matrices es asociativo y por tanto podemos escribir sencillamente \mathbf{ABC} .

¹Si conoce otro método para calcular el producto, no lo emplee por el momento. Ahora es muy importante que se acostúmbre a considerar las columnas de **AB** como combinaciones de las columnas de **A**.

Hemos definido producto (AB) de las matrices A y B como aquella matriz cuya columna jésima es el producto de ${\bf A}$ por la columna jésima de ${\bf B}$

$$(\mathbf{A}\mathbf{B})_{|j} = \mathbf{A}(\mathbf{B}_{|j}).$$

Por tanto las columnas de AB son combinaciones lineales de las columnas de A.

¡De nuevo nótese la asociatividad de la notación en la definición del producto!

El producto solo está definido si la primera matriz tiene tantas columnas como filas tiene la segunda.

Ejercicio 20. Demuestre las siguientes proposiciones.

 $Pista. \text{ Recuerde que } \mathbf{A}(\lambda b) \begin{cases} = \lambda(\mathbf{A}b) \\ & \text{;} \quad \text{(Proposiciones 2.2.2 y 2.2.4 de la Página 26).} \\ = (\lambda \mathbf{A})b \end{cases}$

- (d) Proposición 3.1.6. Sean la matriz identidad I de orden m y la matriz A, entonces IA = A. *Pista*. Recuerde que $\mathbf{a} = \mathbf{a}$ (Caso Especial 2 en la página 25).
- (e) Proposición 3.1.7. Sean la matriz $\underset{m \times n}{\mathsf{A}} y$ la matriz identidad I de orden n, entonces $\mathsf{A}\mathsf{I} = \mathsf{A}$. $Pista. \ \ \text{Recuerde que} \ \mathbf{A} \left(\mathbf{I}_{|j} \right) = \mathbf{A}_{|j} \quad \ \text{(Caso Especial 3 en la página 25)}.$

Muy muy importante: hay que subrayar que no todas las propiedades de las matrices replican las propiedades de los números que usted conoce: por ejemplo, en general AB es distinto de BA.² Por ejemplo:

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \neq \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

Por otra parte: entre los escalares si $\lambda^2 = \lambda$ entonces λ es necesariamente 0 o 1; pero con las matrices $\mathbf{A}^2 = \mathbf{A}$ no implica que la matriz \mathbf{A} sea cero $\mathbf{0}$ o la identidad \mathbf{I} . Por ejemplo, si $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ entonces $\mathbf{A}^2 = \mathbf{A}$.

En los escalares si $\lambda^2 = 0$ entonces λ es necesariamente 0, pero tampoco esto es cierto con las matrices. Por ejemplo, para $\mathbf{B} = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$

$$\mathbf{B}^2 = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \mathbf{0}.$$

²para que ambos productos estén definidos es necesario que ambas matrices sean cuadradas y del mismo orden.

El producto de matrices verifica las siguientes propiedades:

- A(Bc) = (AB)c
- $\quad \blacksquare \ \mathbf{A}(\mathbf{BC}) = (\mathbf{AB})\mathbf{C}$
- $\bullet (A+B)C = AC+BC$
- $\blacksquare \ \mathbf{A}\big(\mathbf{B}+\mathbf{C}\big) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$
- $\bullet \ \mathbf{A}(\lambda \mathbf{B}) = \lambda(\mathbf{A}\mathbf{B}) = (\lambda \mathbf{A})\mathbf{B}$
- IA = A
- AI = A

Pese a las dos últimas propiedades, en general $AB \neq BA$.

Por tanto...

El producto de matrices es un **operador lineal**; pues es distributivo respecto a la suma de matrices

$$A(B+C)=AB+AC.$$

y asociativo respecto al producto de una matriz por un escalar

$$A(\lambda B) = \lambda (AB).$$

Y también es lineal por la izquierda, pues

$$(A + B)C = AC + BC$$
 y $(\lambda A)B = \lambda (AB)$.

3.1.1. Otras dos formas de calcular el producto de matrices

Aplicando las propiedades que ya conocemos, es sencillo deducir otras formas de calcular el producto de matrices; y así completar la visión del producto de matrices (la primera forma de calcular el producto seguramente le resultará familiar...).

Cálculo del producto de matrices componente a componente (filas por columnas)

Ejercicio 21. Demuestre la siguiente proposición:

 ${\bf Proposici\'on~3.1.8~(C\'alculo~del~producto~componente~a~componente)}.~\it Sean~las~matrices~{\bf A}~,~{\bf B}~,~entonces:$

$$\boxed{_{i|}(\mathbf{A}\mathbf{B})_{|j} = (_{i|}\mathbf{A}) \cdot (\mathbf{B}_{|j})}$$

Verifíquelo con el producto del Ejemplo 2 en la página 29 (hágalo a mano y con la librería NAcAL).

Pero hay más formas de calcular el producto...

Cálculo del producto de matrices operando con las filas

Ejercicio 22. Demuestre la siguiente proposición:

Proposición 3.1.9. Sean
$$\underset{m \times p}{\mathbf{A}} y \underset{p \times n}{\mathbf{B}}$$
, entonces: $[i|(\mathbf{AB}) = (i|\mathbf{A})\mathbf{B}$.

Pista. Recuerde que $\mathbf{a} \cdot (\mathbf{B}_{|j}) = (\mathbf{a}\mathbf{B})_{|j}$, para j = 1:n.

Verifíquelo con el producto del Ejemplo 2 en la página 29 (hágalo a mano y con la librería NAcAL).

Por tanto, las filas de AB son combinaciones lineales de las filas de B.

Explotando el producto punto hemos obtenido otras dos formas de calcular AB.

La primera alternativa calcula el producto componente a componente usando el producto punto.

$$| |_{i|} (\mathbf{A} \mathbf{B})_{|j|} = (_{i|} \mathbf{A}) \cdot (\mathbf{B}_{|j|}) | |_{i|}$$

La segunda alternativa calcula el producto fila a fila:

$$_{i|}(\mathsf{AB}) = (_{i|}\mathsf{A})\mathsf{B}$$

de manera que las filas de ${\sf AB}$ son combinaciones lineales de las filas de ${\sf B}$.

3.1.2. Nuevas reglas de reescritura.

Realmente no es necesario escribir el "punto" en los productos

$$\begin{pmatrix} (_{i}|\mathbf{A})\cdot\boldsymbol{b}\,, & \qquad & \boldsymbol{a}\cdot\left(\mathbf{B}_{|j}\right), & \qquad & \begin{pmatrix} (_{i}|\mathbf{A})\cdot\left(\mathbf{B}_{|j}\right) \end{pmatrix}$$

(como tampoco lo es en el producto $2 \cdot x$). Si omitimos el "punto", recuperamos la asociatividad

$$_{il}(\mathbf{A}b) = (_{il}\mathbf{A})b$$

$$\left(\boldsymbol{a}\boldsymbol{\mathsf{B}}\right)_{|j|} = \boldsymbol{a}\left(\boldsymbol{\mathsf{B}}_{|j|}\right)$$

$$\mathbf{A}_{i|}(\mathbf{A}\mathbf{B})_{|j|} = \mathbf{A}_{i|}((\mathbf{A}\mathbf{B})_{|j|}) = \mathbf{A}_{i|}(\mathbf{A}(\mathbf{B}_{|j|})) = (\mathbf{A})(\mathbf{B}_{|j|}).$$

Por tanto podemos escribir sin ambigüedad las siguientes expresiones:

$$_{i|}\mathsf{A}b$$
 ; $a\mathsf{B}_{|j}$; $_{i|}\mathsf{A}\mathsf{B}_{|j}$

pues arrojan el mismo resultado si se interpretan como selección de un componente o como un producto punto.

Transpuesta de un producto

Para finalizar esta lección demuestre la siguiente propiedad de la transposición que usaremos a menudo:

EJERCICIO 23. Recordando que $(\mathbf{A}^{\mathsf{T}})_{|j} = {}_{j|}\mathbf{A}$ y que $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$; demuestre que

$$\boxed{(\mathbf{A}\mathbf{B})^{\mathsf{T}} = (\mathbf{B}^{\mathsf{T}}) \, (\mathbf{A}^{\mathsf{T}})}.$$

Por tanto, para toda matriz \mathbf{A} se verifica que las matrices $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ y \mathbf{A} (\mathbf{A}^{T}) son simétricas:

$$\left(\mathbf{A}^{\mathsf{T}}\mathbf{A}\right)^{\mathsf{T}} = \mathbf{A}^{\mathsf{T}}\left(\mathbf{A}^{\mathsf{T}}\right)^{\mathsf{T}} = \mathbf{A}^{\mathsf{T}}\mathbf{A}; \qquad \mathrm{y} \qquad \left(\mathbf{A}\left(\mathbf{A}^{\mathsf{T}}\right)\right)^{\mathsf{T}} = \left(\mathbf{A}^{\mathsf{T}}\right)^{\mathsf{T}}\left(\mathbf{A}^{\mathsf{T}}\right) = \mathbf{A}\left(\mathbf{A}^{\mathsf{T}}\right).$$

Apendices a la lección

En el Ejercicio 86 de la Sección 15.3 se emplea el *producto de matrices por bloques* para demostrar cómo es el determinante de una matriz diagonal por bloques (resultado que se empleará en el Corolario 17.1.7 de la lección sobre diagonalización por semejanza).

Este apéndice muestra cómo calcular el *producto de matrices por bloques* (aplicación de la Ecuación 3.5 cuando las submatrices son el resultado de "cortar" las matrices en bloques).

3.A. Submatrices mediante selección de una lista de índices

Sea I la matriz identidad de orden n y sea $\boldsymbol{\alpha}$ una lista de índices menores o iguales a n, por ejemplo, $n \geq 4$ y $\boldsymbol{\alpha} = (2,3,4,)$. Definimos $\mathbf{I}_{|\boldsymbol{\alpha}}$ como la matriz (de n filas y tantas columnas como el número de elementos de la lista) cuyas columnas son las columnas de I (de orden n) indicadas en la lista. Por ejemplo

$$\mathbf{I}_{|(2,3,4,)} = \begin{bmatrix} \mathbf{I}_{|2} & \mathbf{I}_{|3} & \mathbf{I}_{|4} \end{bmatrix} \; \neq \; \begin{bmatrix} \mathbf{I}_{|4} & \mathbf{I}_{|2} & \mathbf{I}_{|3} \end{bmatrix} = \mathbf{I}_{|(4,2,3,)}.$$

Y definimos $_{\boldsymbol{\alpha}|}\mathbf{I}$ como: $_{\boldsymbol{\alpha}|}\mathbf{I}=\left(\mathbf{I}_{|\boldsymbol{\alpha}}\right)^{\mathsf{T}}.$

Selección de una submatriz por filas o por columnas Ahora con ayuda del producto de matrices podemos definir dos nuevas operaciones. Sea α una lista de índices, entonces podemos seleccionar una lista de columnas (o filas) de una matriz A para construir una submatriz:

$$\mathbf{A}_{|\boldsymbol{\alpha}} = \mathbf{A}(\mathbf{I}_{|\boldsymbol{\alpha}}), \quad \mathbf{y} \quad _{\boldsymbol{\alpha}|} \mathbf{A} = (_{\boldsymbol{\alpha}|} \mathbf{I}) \mathbf{A}.$$

Consideremos de nuevo la matriz **PIB** de la Página 10. La submatriz con las filas de 2 a 4 de **PIB** (datos de Francia, Alemania y Reino Unido) o la submatriz con sus dos primeras columnas (años 2003 y 2004) son

$${}_{(2,3,4,)|}\mathbf{PIB} = \begin{bmatrix} 0.9 & 2.0 & 1.6 & 2.0 \\ -0.2 & 1.1 & 0.7 & 0.9 \\ 2.5 & 3.2 & 1.9 & 1.5 \end{bmatrix}; \quad \mathbf{y} \quad \mathbf{PIB}_{|(1,2,)} = \begin{bmatrix} 2.9 & 3.1 \\ 0.9 & 2.0 \\ -0.2 & 1.1 \\ 2.5 & 3.2 \\ 1.8 & 3.1 \end{bmatrix}.$$

Y podemos crear submatrices seleccionando simultáneamente filas y columnas; si β es otra lista de índices:

$$_{\boldsymbol{\alpha}|} \Big(\mathbf{A}_{|\boldsymbol{\beta}} \Big) = \big(_{\boldsymbol{\alpha}|} \mathbf{I} \big) \mathbf{A} \big(\mathbf{I}_{|\boldsymbol{\beta}} \big) = \Big(_{\boldsymbol{\alpha}|} \mathbf{A} \Big)_{|\boldsymbol{\beta}},$$

que, aprovechando la asociatividad, podemos escribir sencillamente como: $\alpha_{l}A_{l}B$.

Así, la submatriz con los datos de Francia, Alemania y Reino Unido de los años 2003 y 2004 es

$$_{(2,3,4,)|}$$
PIB $_{|(1,2,)} = \begin{bmatrix} 0.9 & 2.0 \\ -0.2 & 1.1 \\ 2.5 & 3.2 \end{bmatrix}$.

Nótese que

$$\big({}_{\boldsymbol{\alpha}}|A\big)\big(B_{|\boldsymbol{\beta}}\big)=\big({}_{\boldsymbol{\alpha}}|I\big)AB\big(I_{|\boldsymbol{\beta}}\big)={}_{\boldsymbol{\alpha}}|\big(AB\big)_{|\boldsymbol{\beta}},$$

y en particular

$$\left(\mathbf{A}\mathbf{B}\right)_{|\boldsymbol{\beta}} = \mathbf{A}\left(\mathbf{B}_{|\boldsymbol{\beta}}\right) \qquad \mathrm{y} \qquad _{\boldsymbol{\alpha}|} \left(\mathbf{A}\mathbf{B}\right) = \left(_{\boldsymbol{\alpha}|}\mathbf{A}\right)\mathbf{B};$$

por lo que podemos escribir sencillamente: $_{\alpha |}AB_{|\beta}$. Y también se verifica que

$$_{\boldsymbol{\alpha}|}(\mathbf{A} + \mathbf{B})_{|\boldsymbol{\beta}} = _{\boldsymbol{\alpha}|}\mathbf{A}_{|\boldsymbol{\beta}} + _{\boldsymbol{\alpha}|}\mathbf{B}_{|\boldsymbol{\beta}} \qquad \mathbf{y} \qquad \lambda(_{\boldsymbol{\alpha}|}\mathbf{A}_{|\boldsymbol{\beta}}) = _{\boldsymbol{\alpha}|}(\lambda \mathbf{A})_{|\boldsymbol{\beta}}. \tag{3.1}$$

3.B. Producto matricial como suma de productos de submatrices

Ahora considere una lista $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_q)$ de q índices no repetidos, así como la submatriz $\boldsymbol{\alpha}|\mathbf{I}$, de la matriz identidad \mathbf{I} de orden mayor o igual al mayor de los índices en $\boldsymbol{\alpha}$. Si α_j es la j ésima componente de la lista $\boldsymbol{\alpha}$, entonces la columna $(\boldsymbol{\alpha}|\mathbf{I})_{|\alpha_j}$ resulta ser igual a $\mathbf{I}_{|j} \in \mathbb{R}^q$ (donde q es la longitud de la lista $\boldsymbol{\alpha}$):

$$_{\boldsymbol{\alpha}|}\mathbf{I}_{|k} = {}_{(\alpha_1, \dots, \alpha_q,)|}\mathbf{I}_{|k} = {}_{(\alpha_1, \dots, \alpha_q,)|}(\mathbf{I}_{|k}) = \begin{cases} \mathbf{I}_{|j} \in \mathbb{R}^q & \text{si } k = \alpha_j \\ & \in \mathbb{R}^q, \\ \mathbf{0} \in \mathbb{R}^q & \text{si } k \notin \boldsymbol{\alpha} \end{cases}$$
(3.2)

puesto que si de $\mathbf{I}_{|k}$ (cuya única componente no nula es la késima) seleccionamos un subvector de q componentes que coloca su késima componente en la posición j, obtenemos $\mathbf{I}_{|j} \in \mathbb{R}^q$, y si seleccionamos un subvector que no toma su única componente no nula, obtenemos un subvector nulo: $\mathbf{0} \in \mathbb{R}^q$.

Ejemplo 3. Si consideremos la lista de 3 índices $\alpha = (4, 1, 2,)$ (cuyo mayor índice es el 4) y una matriz identidad de orden n mayor o igual que 4, por ejemplo n = 4; entonces

$$_{\boldsymbol{\alpha}|}\mathbf{I} = {}_{(4,1,2,)|}\mathbf{I} = \left[\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right].$$

Fijándonos en las columnas de la anterior matriz observamos que:

• como 4 es el *primer* componente de la lista α , entonces la cuarta columna $({}_{(4,1,2,)|}I)_{|4}$ es igual a la *primera* columna de la identidad de orden 3 (pues 3 es la longitud de la lista):

$$_{(4,1,2,)|}\mathbf{I}_{|4} = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}.$$

• como 1 es la segunda componente de la lista α , entonces la primera columna $((4,1,2,)|\mathbf{I}|)_{|1}$ es igual a la segunda columna de la identidad:

$$_{(4,1,2,)|}\mathbf{I}_{|1} = \begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix} = \begin{pmatrix} 0\\1\\0 \end{pmatrix}.$$

• como 2 es la tercera componente de la lista α , entonces la segunda columna $({}_{(4,1,2,)|}I)_{|2}$ es igual a la tercera columna de la identidad:

$$_{(4,1,2,)|}\mathbf{I}_{|2} = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}.$$

• y como 3 no está en la lista α , entonces la tercera columna $({}_{(4,1,2,)|}\mathbf{I})_{|3}$ es nula

$$_{(4,1,2,)|}\mathbf{I}_{|3} = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}.$$

Librería NAcAL para Python

alpha = (4,1,2,) # indices
Sistema([alpha|I(99)|j for j in (4,1,2,3,)]) # las cuatro columnas del ejemplo

$$\left[\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}; \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}; \right]$$

Y ahora considere las columnas del producto de matrices $(\mathbf{I}_{|\alpha})(\alpha|\mathbf{I})$. Usando (3.2) se deduce que

$$\left((\mathbf{I}_{|\boldsymbol{\alpha}})(\boldsymbol{\alpha}|\mathbf{I}) \right)_{|k} = (\mathbf{I}_{|\boldsymbol{\alpha}})(\boldsymbol{\alpha}|\mathbf{I}_{|k}) = \begin{cases} (\mathbf{I}_{|\boldsymbol{\alpha}})\mathbf{I}_{|j} = (\mathbf{I}_{|\boldsymbol{\alpha}})_{|j} = \mathbf{I}_{|k} & \text{si } k = \alpha_j \\ (\mathbf{I}_{|\boldsymbol{\alpha}})\mathbf{0} = \mathbf{0} & \text{si } k \notin \boldsymbol{\alpha} \end{cases};$$
(3.3)

Así, para $\alpha = (4, 1, 2,)$ y \mathbf{I} tenemos que

$$(\mathbf{I}_{|(4,1,2,)})\big({}_{(4,1,2,)|}\mathbf{I}\big) = \left[\begin{array}{cccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right] \left[\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right] = \left[\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right],$$

de manera que solo hay unos en las posiciones 1, 2 y 4 de la diagonal.

(I(4)|alpha) * (alpha|I(4)) # fijese en la necesidad de los paréntesis

Ahora considere las matrices $\underset{m \times p}{\mathsf{A}}$ y $\underset{p \times n}{\mathsf{B}}$; y las listas de índices $\boldsymbol{\gamma}_1, \dots, \boldsymbol{\gamma}_h$ tales que cada índice j=1:p está en una, y solo una, de las listas $\boldsymbol{\gamma}_i$. Por ejemplo, si $p=5, \boldsymbol{\gamma}_1=(3,1,), \boldsymbol{\gamma}_2=(5,)$ y $\boldsymbol{\gamma}_3=(2,4,)$; entonces

$$\mathbf{A}_{|\boldsymbol{\gamma}_1 + \boldsymbol{\gamma}_2 + \boldsymbol{\gamma}_3} = \mathbf{A}_{|(3,1,5,4,2,)};$$

donde $\boldsymbol{\gamma}_1 + \boldsymbol{\gamma}_2 + \boldsymbol{\gamma}_3 = (3, 1, 5, 4, 2,)$ es la concatenación de las listas $\boldsymbol{\gamma}_1, \boldsymbol{\gamma}_2$ y $\boldsymbol{\gamma}_3$. Así pues, $\boldsymbol{\mathsf{A}}_{|\boldsymbol{\gamma}_1 + \boldsymbol{\gamma}_2 + \boldsymbol{\gamma}_3}$ es un reordenamiento (o permutación) de las columnas, pues todas ellas aparecen una, y solo una, vez.

Si empleamos las listas $\gamma_1, \dots, \gamma_h$ para reordenar tanto las columnas de A y como las filas de B, el producto de las matrices resultantes resulta ser igual al producto AB:

$$\big(\textbf{A}_{|\boldsymbol{\gamma}, + \cdots + \boldsymbol{\gamma}_h}\big)\big(_{\boldsymbol{\gamma}_1 + \cdots + \boldsymbol{\gamma}_h}|\textbf{B}\big) = \textbf{A}\big(\textbf{I}_{|\boldsymbol{\gamma}, + \cdots + \boldsymbol{\gamma}_h}\big)\big(_{\boldsymbol{\gamma}_1 + \cdots + \boldsymbol{\gamma}_h}|\textbf{I}\big)\textbf{B} = \textbf{A}\textbf{I}\textbf{B} = \textbf{A}\textbf{B},$$

pues como todos los índices están incluidos, por (3.3), sabemos que $(\mathbf{I}_{|\boldsymbol{\gamma}, + \cdots + \boldsymbol{\gamma}_h})(\mathbf{\gamma}_1 + \cdots + \mathbf{\gamma}_h)\mathbf{I}) = \mathbf{I}$.

Ejemplo 4. Si usamos las listas $\gamma_1 = (3,1,)$ y $\gamma_2 = (4,2,)$ con $\prod_{4\times 4}$, entonces

$$(\mathbf{I}_{|(3,1,)})(_{(3,1,)}\mathbf{I}) + (\mathbf{I}_{|(4,2,)})(_{(4,2,)}\mathbf{I}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Consecuentemente podemos calcular AB mediante la suma de k productos de submatrices:

$$\sum_{k=1}^{h} (\mathbf{A}_{|\boldsymbol{\gamma}_{k}}) (\boldsymbol{\gamma}_{k}|\mathbf{B}) = \sum_{k=1}^{h} (\mathbf{A}(\mathbf{I}_{|\boldsymbol{\gamma}_{k}}) (\boldsymbol{\gamma}_{k}|\mathbf{I}) \mathbf{B}) = \mathbf{A} \left(\sum_{k=1}^{h} (\mathbf{I}_{|\boldsymbol{\gamma}_{k}}) (\boldsymbol{\gamma}_{k}|\mathbf{I}) \right) \mathbf{B} = \mathbf{A}\mathbf{I}\mathbf{B} = \mathbf{A}\mathbf{B}, \quad (3.4)$$

donde, por (3.3), cada sumando de $\sum_{k=1}^{h} (\mathbf{I}_{|\boldsymbol{\gamma}_k})(\boldsymbol{\gamma}_k|\mathbf{I})$ es una matriz cuadrada cuya jésima columna es $\mathbf{I}_{|j}$, cuando $j \in \boldsymbol{\gamma}_k$, o $\mathbf{0}$, en caso contrario. Y como cada índice está incluido en una y solo una de las listas $\boldsymbol{\gamma}_k$, la suma de dichas matrices es igual a la identidad.

Ejemplo 5. Así, para
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -1 \\ 2 & -2 & 0 \end{bmatrix}$$
 y $\mathbf{B} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \\ -1 & 1 \end{bmatrix}$, y las listas $\boldsymbol{\gamma}_1 = (3,1,)$ y $\boldsymbol{\gamma}_2 = (2,)$; tenemos que

$$\begin{split} \big(\mathbf{A}_{|\pmb{\gamma}_1 + \pmb{\gamma}_2}\big) \big(\pmb{\gamma}_1 + \pmb{\gamma}_2 | \mathbf{B}\big) \; &= \; \big(\mathbf{A}_{|\pmb{\gamma}_1}\big) \big(\pmb{\gamma}_1 | \mathbf{B}\big) + \big(\mathbf{A}_{|\pmb{\gamma}_2}\big) \big(\pmb{\gamma}_2 | \mathbf{B}\big) \; = \; \big(\mathbf{A}_{|(3,1,)}\big) \big({}_{(3,1,)|}\mathbf{B}\big) + \big(\mathbf{A}_{|(2,)}\big) \big({}_{(2,)|}\mathbf{B}\big) \\ &= \left[\begin{array}{cc} -1 & 1 \\ 0 & 2 \end{array} \right] \left[\begin{array}{cc} -1 & 1 \\ 2 & 1 \end{array} \right] + \left[\begin{array}{cc} 2 \\ -2 \end{array} \right] \left[\begin{array}{cc} 1 & 1 \end{array} \right] = \left[\begin{array}{cc} 3 & 0 \\ 4 & 2 \end{array} \right] + \left[\begin{array}{cc} 2 & 2 \\ -2 & -2 \end{array} \right] = \left[\begin{array}{cc} 5 & 2 \\ 2 & 0 \end{array} \right] = \mathbf{A}\mathbf{B}. \end{split}$$

Nota: las listas de un solo elemento se escriben en Python con una coma después del único elemento. Por ejemplo (2,) es la lista que solo contiene el 2. Así se distingue el numero 2 entre paréntesis de la lista que contiene al 2. Por claridad, y puesto que la distinción es importante, hemos seguido el mismo criterio de notación: así, $\mathbf{A}_{|2}$ es una columna de \mathbf{A} (un vector) y $\mathbf{A}_{|(2,)}$ es una submatriz (una matriz columna).

3.B.1. Producto como suma de matrices

Como caso particular, consideremos que cada lista késima contiene únicamente el índice k, es decir, $\gamma_k = (k,)$. Entonces el producto AB queda descrito como una suma matrices:

$$\Big(\mathbf{A}_{m \times p} \Big) \Big(\mathbf{B}_{p \times n} \Big) = \sum_{k=1}^{p} \big(\mathbf{A}_{|(k,)} \big) \big(_{(k,)} | \mathbf{B} \big),$$

donde cada sumando $(\mathbf{A}_{|(k,)})$ (k,) \mathbf{B} es una matriz³ de orden m por n. Ejemplo:

$$\mathbf{AB} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} = (\mathbf{A}_{|(1,)})(_{(1,)|}\mathbf{B}) + (\mathbf{A}_{|(2,)})(_{(2,)|}\mathbf{B}) + (\mathbf{A}_{|(3,)})(_{(3,)|}\mathbf{B})
= \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} -1 & 2 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ -1 & 2 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 3 & 0 \\ 1 & 0 \\ 2 & 0 \end{bmatrix}
= \begin{bmatrix} 2 & 2 \\ 0 & 2 \\ 2 & 0 \end{bmatrix}.$$

³cuando veamos el concepto de rango entenderá que esta expresión es una descripción del producto matricial como suma de matrices de rango uno como máximo.

3.B.2. Submatriz de un producto como suma de productos de submatrices

Y ahora vayamos con la generalización objetivo de este apéndice. Considere una lista de listas $\gamma_1, \dots, \gamma_h$, donde cada índice j = 1 : p está incluido en una y solo una de las listas γ_k ; por (3.4) sabemos que:

$$\mathsf{AB} \ = \ \sum_{k=1}^h \big(\mathsf{A}_{|\boldsymbol{\gamma}_k|} \big) \big(_{\boldsymbol{\gamma}_k|} \mathsf{B} \big).$$

Por tanto, seleccionando algunas filas de $\underset{m \times p}{\mathsf{A}}$ y algunas columnas de $\underset{p \times n}{\mathsf{B}}$, la submatriz $_{\boldsymbol{\alpha}|}(\mathsf{AB})_{|\boldsymbol{\beta}}$ resulta ser

$$_{\boldsymbol{\alpha}|}(\mathbf{A}\mathbf{B})_{|\boldsymbol{\beta}|} = \sum_{k=1}^{h} (_{\boldsymbol{\alpha}|}\mathbf{A}_{|\boldsymbol{\gamma}_{k}})(_{\boldsymbol{\gamma}_{k}|}\mathbf{B}_{|\boldsymbol{\beta}|}). \tag{3.5}$$

Matrices partidas en bloques

Fíjese que en (3.5) no se requiere que las sub-listas γ_k estén formadas por índices consecutivos; pero éste suele ser el caso más habitual en los textos. En tal caso las matrices quedan "cortadas" en bloques. Fíjese en los dos siguientes ejemplos (en los que hemos marcado los bloques mediante líneas horizontales y verticales).

Ejemplo 6. Sean $\boldsymbol{\alpha} = ((1,2,), (3,4,)), \ \boldsymbol{\gamma} = ((1,2,), (3,4,5,));$ y las matrices

$$\mathbf{A} = \begin{bmatrix} \mathbf{C} & \mathbf{E} \\ \mathbf{D} & \mathbf{F} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 2 & -1 & 4 & 2 & 1 \\ 3 & 1 & -1 & 7 & 5 \end{bmatrix} \quad \mathbf{y} \quad \mathbf{B} = \begin{bmatrix} \mathbf{G} \\ \mathbf{H} \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ 5 & 6 \\ 7 & 3 \\ -1 & 0 \\ 1 & 6 \end{bmatrix};$$

$$\begin{array}{l} {\rm donde} \ \ \mathbf{C} = {}_{(1:2)|}\mathbf{A}_{|(1:2)} = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right], \ \ \mathbf{E} = {}_{(1:2)|}\mathbf{A}_{|(3:5)} = \left[\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right], \ \ \mathbf{D} = {}_{(3:4)|}\mathbf{A}_{|(1:2)} = \left[\begin{array}{c} 2 & -1 \\ 3 & 1 \end{array} \right] \ \ \mathbf{y} \\ \mathbf{F} = {}_{(3:4)|}\mathbf{A}_{|(3:5)} = \left[\begin{array}{c} 4 & 2 & 1 \\ -1 & 7 & 5 \end{array} \right]. \ \ \mathbf{Y} \ \ \mathrm{donde} \ \ \mathbf{G} = {}_{(1:2)|}\mathbf{B} = \left[\begin{array}{c} 4 & -2 \\ 5 & 6 \end{array} \right] \ \ \mathbf{y} \ \ \mathbf{H} = {}_{(3:5)|}\mathbf{B} = \left[\begin{array}{c} 7 & 3 \\ -1 & 0 \\ 1 & 6 \end{array} \right].$$

Entonces

$$\mathbf{AB} = \begin{bmatrix} \mathbf{C} & \mathbf{E} \\ \mathbf{D} & \mathbf{F} \end{bmatrix} \begin{bmatrix} \mathbf{G} \\ \mathbf{H} \end{bmatrix} = \begin{bmatrix} \mathbf{CG} + \mathbf{EH} \\ \mathbf{DG} + \mathbf{FH} \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ 5 & 6 \\ \hline 30 & 8 \\ 8 & 27 \end{bmatrix}.$$

Ejemplo 7. De manera similar, sean $\boldsymbol{\alpha} = ((1,2,),(3,4,)), \; \boldsymbol{\gamma} = ((1,2,),(3,4,5,)), \; \boldsymbol{\beta} = ((1,2,),(3,1)); \; y$

$$\mathbf{A} = \begin{bmatrix} \mathbf{C} & \mathbf{E} \\ \mathbf{D} & \mathbf{F} \end{bmatrix} = \begin{bmatrix} 2 & -1 & 3 & 1 \\ 1 & 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{y} \quad \mathbf{B} = \begin{bmatrix} \mathbf{G} & \mathbf{J} \\ \mathbf{H} & \mathbf{K} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 0 & 0 \\ \hline 0 & 5 & 1 \\ 1 & -1 & 0 \end{bmatrix}; \quad \text{entonces}$$

$$AB = \begin{bmatrix} CG + EH & CJ + EK \\ \hline DG + FH & DH + FK \end{bmatrix} = \begin{bmatrix} 4 & 18 & 3 \\ 3 & 5 & 1 \\ \hline 0 & 5 & 1 \\ 1 & -1 & 0 \end{bmatrix}.$$

Parte II

Transformaciones elementales, métodos de eliminación y matriz inversa

Transformaciones elementales y métodos de eliminación

Como veremos a lo largo de este curso, hay un algoritmo que permite resolver gran cantidad de problemas: decidir si una matriz es invertible y si lo es, encontrar su inversa; decidir si un sistema de ecuaciones lineales es resoluble y, si lo es, resolverlo; encontrar una base del complemento ortogonal de un subespacio de \mathbb{R}^n ; pasar de las ecuaciones paramétricas a las cartesianas (y viceversa); calcular determinantes, etc. De hecho, prácticamente todos los problemas que veremos en este curso se puede resolver con un único algoritmo!

Este algoritmo se denomina *Método de Eliminación* y es sorprendentemente simple: consiste en aplicar una secuencia de transformaciones sobre las columnas (o sobre las filas) una matriz. Cada transformación en la secuencia (cada paso enla secuencia) hace una de estas dos posibles operaciones:

- sumar un múltiplo de un vector a otro vector (Tipo I). Ejemplo: $[a; b;] \rightarrow [a; b + \lambda a;]$.
- multiplicar un vector por un número $distinto\ de\ cero$ (Tipo II). $Ejemplo:\ [a;\ b;] \to [a;\ \lambda b;].$

A estas dos operaciones las denominaremos transformaciones elementales. ¹

4.1. Transformaciones y matrices elementales

Denotamos con " τ " al operador correspondiente a la transformación aplicada, y lo situamos como subíndice a la derecha de la matriz para indicar que opera sobre las columnas: \mathbf{A}_{τ} . Entre corchetes, por debajo de cada " τ ", indicaremos los detalles de cada transformación.

La matriz resultante tras aplicar una sola transformación elemental sobre I tiene un nombre especial:

Definición 4.1. Una matriz elemental I_{τ} es cualquier matriz obtenida tras aplicar una sola transformación elemental sobre las columnas de una matriz identidad.

En esta sección veremos que $\mathbf{A}_{\tau} = \mathbf{A} \left(\mathbf{I}_{\tau} \right)$. Es decir, que se puede aplicar una transformación elemental τ mediante un producto de matrices. Vayamos con los detalles.

4.1.1. Transformaciones y matrices elementales de Tipo I

Transformación elemental de Tipo I: τ suma λ veces el vector \boldsymbol{i} ésimo al vector \boldsymbol{j} ésimo $(\cos \boldsymbol{j} \neq \boldsymbol{i})$. (solo modifica el vector cuyo índice aparece en última posición en el corchete).

```
T((8,2,3)) # Suma ocho veces el segundo vector al tercero

T[(8)2+3]
```

 $^{^1}$ En muchos manuales consideran el intercambio como una tercera transformación elemental, pero aquí no lo haremos.

Matriz elemental de Tipo I. Cualquier matriz obtenida tras aplicar una sola transformación elemental de Tipo I sobre una matriz identidad:

$$oldsymbol{ au}_{oldsymbol{[(\lambda)i+j]}}$$

Por ejemplo, si sobre las columnas de la matriz identidad de orden 3 aplicamos la transformación τ [(λ)2+3] (que suma " λ veces" la segunda columna a la tercera) obtenemos:

$$\mathbf{I}_{\underbrace{\boldsymbol{\tau}}_{[(\lambda)^2+3]}} = \begin{bmatrix} 1 & & \\ & 1 & \lambda \\ & & 1 \end{bmatrix};$$

que es como la matriz identidad de orden 3 salvo porque la segunda componente de su tercera columna ha cambiado y ahora es λ (en lugar de cero).

Fíjese que la notación $[(\lambda)i+j]$ indica que sumamos λ veces la iésima columna a la columna jésima; pero también describe la matriz elemental correspondiente: en negrita aparecen los índices (fila iésima, columna jésima) de la componente de la matriz \mathbf{I} que ha cambiado y entre paréntesis su nuevo valor (λ) .

Librería NAcAL para Python

I(3) & T(
$$(8,2,3)$$
) # Transf. de las columnas de la matriz identidad de orden 3

(suma 8 veces la segunda columna a la tercera)

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 8 \\ 0 & 0 & 1 \end{bmatrix}$$

En general, si aplicamos $\boldsymbol{\tau}$ (que suma " λ veces" la iésima columna a la jésima (con $j \neq i$)) sobre las columnas de \boldsymbol{l} (de orden n), cambiamos la jésima columna de manera las columnas de la nueva matriz son:

donde k=1:n. Veamos qué pasa si aplicamos una transformación elemental Tipo I sobre una matriz **A**. **Transformación de las columnas de una matriz A:** En general, si aplicamos $\boldsymbol{\tau}$ a las columnas de **A** obtenemos una matriz cuyas columnas son:

$$\begin{pmatrix} \mathbf{A}_{\boldsymbol{\tau}} \\ \mathbf{A}_{[(\lambda)i+j]} \end{pmatrix}_{|k} = \begin{cases} \lambda \mathbf{A}_{|i} + \mathbf{A}_{|j} &= \mathbf{A} \begin{pmatrix} \lambda \mathbf{I}_{|i} + \mathbf{I}_{|j} \end{pmatrix} = \mathbf{A} \begin{pmatrix} \mathbf{I}_{\boldsymbol{\tau}} \\ \mathbf{I}_{[(\lambda)i+j]} \end{pmatrix}_{|j} & \text{para } k = j \\ & & & = \mathbf{A} \begin{pmatrix} \mathbf{I}_{\boldsymbol{\tau}} \\ \mathbf{I}_{[(\lambda)i+j]} \end{pmatrix}_{|k} & \text{para } k \neq j \end{cases}$$

donde k = 1 : n; y donde hemos usado (4.1).

Por tanto, aplicar la transformación $\boldsymbol{\tau}$ sobre las columnas de \mathbf{A} de orden $m \times n$ es equivalente a multiplicar \mathbf{A} por la correspondiente matriz elemental $\mathbf{I}_{\boldsymbol{\tau}}$ de orden n por la derecha,

$$\mathbf{A}_{\underset{[(\lambda)\mathbf{i}+\mathbf{j}]}{\boldsymbol{\tau}}} = \mathbf{A} \, \Big(\mathbf{I}_{\underset{[(\lambda)\mathbf{i}+\mathbf{j}]}{\boldsymbol{\tau}}}\Big).$$

Por ejemplo, si $\mathbf{A} = \begin{bmatrix} 0 & 0 & c \\ 0 & b & c \\ a & b & c \end{bmatrix}$; al sumar " λ veces" la segunda columna a la tercera obtenemos:

$$\mathbf{A}_{\stackrel{\boldsymbol{\tau}}{[(\lambda)\mathbf{2}+\mathbf{3}]}} = \begin{bmatrix} 0 & 0 & (\lambda 0 + c) \\ 0 & b & (\lambda b + c) \\ a & b & (\lambda b + c) \end{bmatrix} = \begin{bmatrix} 0 & 0 & c \\ 0 & b & c \\ a & b & c \end{bmatrix} \begin{bmatrix} 1 \\ 1 & \lambda \\ 1 \end{bmatrix} = \mathbf{A} \begin{pmatrix} \mathbf{I}_{\stackrel{\boldsymbol{\tau}}{[(\lambda)\mathbf{2}+\mathbf{3}]}} \end{pmatrix}.$$

4.1.2. Transformaciones y matrices elementales de Tipo II

Transformación elemental de Tipo II: τ multiplica por α el **i**ésimo vector (con $\alpha \neq 0$). (solo modifica el vector cuyo índice aparece en última posición en el corchete).

Matriz elemental de Tipo II Cualquier matriz obtenida tras aplicar una sola transformación elemental de Tipo II sobre una matriz identidad:

$$m{ au}_{m{[}(lpha)m{i}m{]}}$$

Si sobre las columnas de la matriz identidad de orden 3 aplicamos la transformación τ (que multiplica la segunda columna por $\alpha \neq 0$) obtenemos:

$$\mathbf{I}_{\underset{[(\alpha)\mathbf{2}]}{\boldsymbol{\tau}}} = \begin{bmatrix} 1 & & \\ & \alpha & \\ & & 1 \end{bmatrix};$$

que es como la matriz $\prod_{3\times 3}$ salvo porque la segunda componente de la diagonal es α .

I(3) & T((5,1)) # Transf. de las columnas de la matriz identidad de orden 3
(multiplica por 5 la primera columna)

$$\begin{bmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

En general, si aplicamos $\boldsymbol{\tau}$ (que multiplica la columna iésima por $\alpha \neq 0$) sobre las columnas de \boldsymbol{l} (de orden n), modificamos su iésima columna, de manera las columnas de la nueva matriz son:

$$\begin{pmatrix} \mathbf{I}_{\underset{[(\alpha)i]}{\boldsymbol{\tau}}} \end{pmatrix}_{|k} = \begin{cases} \text{Cuando } k = i : & \begin{pmatrix} \mathbf{I}_{\underset{[(\alpha)i]}{\boldsymbol{\tau}}} \end{pmatrix}_{|i} = \alpha \mathbf{I}_{|i} \text{ (nueva columna } i\acute{\text{e}sima)} \\ \\ \text{Cuando } k \neq i : & \begin{pmatrix} \mathbf{I}_{\underset{[(\alpha)i]}{\boldsymbol{\tau}}} \end{pmatrix}_{|k} = \mathbf{I}_{|k} \text{ (pero el resto de columnas no cambian)} \end{cases}, \text{ donde } k = 1 : n.$$

Las matrices elementales Tipo II son como la identidad salvo la iésima componente de la diagonal, que es α .

Transformación de las columnas de una matriz A: En general, si aplicamos τ a las columnas de A, de orden $m \times n$, obtenemos una matriz cuyas columnas son:

$$\left(\mathbf{A}_{\stackrel{\boldsymbol{\tau}}{[(\alpha)i]}} \right)_{|k} = \begin{cases} \alpha \mathbf{A}_{|k} &= \mathbf{A} \left(\alpha \mathbf{I}_{|k} \right) & \text{ si } k = i \\ \\ \mathbf{A}_{|k} &= \mathbf{A} \left(\mathbf{I}_{|k} \right) & \text{ para el resto de columnas} \end{cases} = \mathbf{A} \left(\mathbf{I}_{\stackrel{\boldsymbol{\tau}}{[(\alpha)i]}} \right)_{|k}, \quad \text{donde } k = 1:n.$$

De nuevo, aplicar una transformación elemental de $Tipo\ II$ sobre la matriz $\bf A$ (de n columnas) es equivalente a multiplicar dicha matriz $\bf A$ por la correspondiente matriz elemental $Tipo\ II$ de orden n por la derecha.

$$\mathbf{A}_{\stackrel{oldsymbol{ au}}{[(lpha)oldsymbol{i}]}} = \mathbf{A} \Big(\mathbf{I}_{\stackrel{oldsymbol{ au}}{[(lpha)oldsymbol{i}]}} \Big).$$

Por ejemplo, si $\mathbf{A} = \begin{bmatrix} 0 & 0 & c \\ 0 & b & c \\ a & b & c \end{bmatrix}$ entonces al multiplicar la segunda columna por α resulta que:

$$\mathbf{A}_{\underset{[(\alpha)\mathbf{2}]}{\boldsymbol{\tau}}} = \begin{bmatrix} 0 & 0 & c \\ 0 & \alpha b & c \\ a & \alpha b & c \end{bmatrix} = \begin{bmatrix} 0 & 0 & c \\ 0 & b & c \\ a & b & c \end{bmatrix} \begin{bmatrix} 1 \\ & \alpha \\ & & 1 \end{bmatrix} = \mathbf{A} \Big(\mathbf{I}_{\underset{[(\alpha)\mathbf{2}]}{\boldsymbol{\tau}}} \Big).$$

4.1.3. Transformaciones de las columnas

Como al aplicar cualquier transformación elemental au sobre las columnas de ${\bf A}$ siempre se verifica que:

$$\mathbf{A}_{oldsymbol{ au}} = \mathbf{A} ig(\mathbf{I}_{oldsymbol{ au}} ig)$$

disponemos de una nueva regla de reescritura asociativa:

$$(AB)_{\tau} = AB(I_{\tau}) = A(B_{\tau})$$

Por tanto no son necesarios lo paréntesis y basta escribir: AB_{τ}

Recuerde que

- multiplicar una columna por cero no es una transformación elemental;
- restar una columna a si misma tampoco lo es.

4.1.4. Sobre las matrices elementales y su notación

Las matrices elementales (de orden n) se obtienen aplicando las correspondientes transformaciones elementales sobre la matriz identidad (de orden n). Así, la notación empleada "casi" describe por completo las matrices elementales (solo falta indicar el orden de la matriz identidad).

■ La matriz $\mathbf{I}_{\frac{7}{[(-7)\mathbf{1}+2]}}$ (de orden n) es como la matriz identidad (de orden n) salvo por la componente de la fila $\mathbf{1}$ y columna $\mathbf{2}$, que es un "(-7)", es decir:

$$\mathbf{I}_{\frac{\tau}{[(-7)\mathbf{1}+\mathbf{2}]}} = \begin{bmatrix} 1 & -7 \\ 0 & 1 \end{bmatrix}, \text{ pero tambi\'en } \mathbf{I}_{\frac{\tau}{[(-7)\mathbf{1}+\mathbf{2}]}} = \begin{bmatrix} 1 & -7 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ \'o } \mathbf{I}_{\frac{\tau}{[(-7)\mathbf{1}+\mathbf{2}]}} = \begin{bmatrix} 1 & -7 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \text{ \'o...}$$

lacktriangledown La matriz lacktriangledown es como la matriz identidad (de orden n) salvo por la componente lacktriangledown de su diagonal, que es un (3); es decir:

$$\mathbf{I}_{\frac{\boldsymbol{\tau}}{[(3)\mathbf{1}]}} = \begin{bmatrix} 3 \end{bmatrix}; \quad \text{pero tambi\'en}, \quad \mathbf{I}_{\frac{\boldsymbol{\tau}}{[(3)\mathbf{1}]}} = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}; \quad \acute{0} \quad \mathbf{I}_{\frac{\boldsymbol{\tau}}{[(3)\mathbf{1}]}} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \acute{0}...$$

Fíjese que la matriz identidad es simultáneamente de $\bf Tipo~\bf I$ y de $\bf Tipo~\bf II$:

Nota 3. Jugando con la notación es fácil ver que la transpuesta de una matriz elemental es otra matriz elemental:

- para las matrices elementales de Tipo I resulta evidente que $\left(\mathbf{I}_{\substack{\tau \\ [(\lambda)\mathbf{j}+\mathbf{i}]}}\right)^{\mathsf{T}} = \mathbf{I}_{\substack{\tau \\ [(\lambda)\mathbf{j}+\mathbf{i}]}}$,
- y las matrices elementales de Tipo II son simétricas.

Solo hay dos tipos de transformaciones elementales

- Suman a un vector un múltiplo de otro vector: au
- **Tipo II.** Multiplican un vector por un número distinto de cero: au

Llamamos matriz elemental a la resultante de aplicar una sola transformación elemental a las columnas de la matriz identidad, I_{τ} . Hay dos tipos:

Tipo I.
$$I_{\substack{\pmb{\tau} \\ [(\lambda)i+j]}}$$
, donde $j \neq i$

Tipo II.
$$I_{\tau \atop [(\alpha)i]}$$
, donde $\alpha \neq 0$.

Al aplicar una transformación elemental τ sobre las columnas de A, se verifica que:

$$\mathbf{A}_{m{ au}} = \mathbf{A} (\mathbf{I}_{m{ au}}).$$

Consecuentemente tenemos una nueva propiedad asociativa:

$$(AB)_{\tau} = A(B_{\tau}) = AB_{\tau}.$$

La transpuesta de una matriz elemental también es elemental (y del mismo tipo).

Ejercicio 24. Escriba las siguientes matrices elementales de orden 4.

(c)
$$\mathbf{I}_{\tau}$$

(d)
$$\mathbf{I}_{\tau}$$

EJERCICIO 25. ¿Qué operaciones realizan las matrices anteriores si multiplican por la derecha a B?

EJERCICIO 26. Sea la matriz $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix}$, exprese las siguientes transformaciones elementales de \mathbf{A} como productos de \mathbf{A} por matri

A como productos de A por matrices elementales y escriba el resultado:

- (a) Multiplicar la primera columna por 3.
- (b) Restar la primera columna de la segunda.

4.2. Secuencias de transformaciones elementales. Parte I

Considere la aplicación de una secuencia de k transformaciones elementales sobre las columnas de A:

$$\left(\ldots\left(\left(\mathbf{A}_{oldsymbol{ au}_1}
ight)_{oldsymbol{ au}_2}\ldots
ight)_{oldsymbol{ au}_{(k-1)}}
ight)_{oldsymbol{ au}_k}$$

Denotamos la aplicación dicha secuencia con $\mathbf{A}_{\tau_1\cdots\tau_k}$. Es fácil ver que dicha aplicación es equivalente al producto de \mathbf{A} por una secuencia de k matrices elementales:

$$\mathbf{A}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k} \quad = \quad \left(\ldots\left(\left(\mathbf{A}_{\boldsymbol{\tau}_1}\right)_{\boldsymbol{\tau}_2}\ldots\right)_{\boldsymbol{\tau}_{(k-1)}}\right)_{\boldsymbol{\tau}_k} \quad = \quad \left(\cdots\left(\left(\mathbf{A}\mathbf{I}_{\boldsymbol{\tau}_1}\right)\mathbf{I}_{\boldsymbol{\tau}_2}\right)\cdots\mathbf{I}_{\boldsymbol{\tau}_{(k-1)}}\right)\mathbf{I}_{\boldsymbol{\tau}_k} \quad = \quad \mathbf{A}\left(\mathbf{I}_{\boldsymbol{\tau}_1}\right)\cdots\left(\mathbf{I}_{\boldsymbol{\tau}_k}\right).$$

En particular, si $\mathbf{A} = \mathbf{I}$ entonces

$$\boxed{\mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} = (\mathbf{I}_{\boldsymbol{\tau}_1}) \cdots (\mathbf{I}_{\boldsymbol{\tau}_k})}$$
(4.2)

es decir, la matriz $(\mathbf{I}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k})$ es producto de matrices elementales; y por tanto

$$\mathbf{A}_{oldsymbol{ au}_1 \cdots oldsymbol{ au}_k} = \mathbf{A} ig(\mathbf{I}_{oldsymbol{ au}_1 \cdots oldsymbol{ au}_k} ig)$$

EJERCICIO 27. Demuestre que la aplicación de una secuencia de transformaciones elementales de las columnas es un *operador lineal*.

Puesto que la aplicación de una secuencia de transformaciones elementales es un producto de matrices:

$$\mathbf{A}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \ = \ \mathbf{A} \left(\mathbf{I}_{\boldsymbol{\tau}_1} \right) \cdots \left(\mathbf{I}_{\boldsymbol{\tau}_k} \right) \ = \ \mathbf{A} \left(\mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \right)$$

la aplicación de una secuencia de transformaciones elementales de las columnas es un operador lineal.

Notación Denotaremos una secuencia de k trasformaciones de las columnas de \mathbf{A} con el siguiente esquema:

$$\mathbf{A} \xrightarrow{\boldsymbol{\tau}_1} \mathbf{A}_{\boldsymbol{\tau}_1} \xrightarrow{\boldsymbol{\tau}_2} \mathbf{A}_{\boldsymbol{\tau}_1 \boldsymbol{\tau}_2} \xrightarrow{\boldsymbol{\tau}_3} \cdots \xrightarrow{\boldsymbol{\tau}_k} \mathbf{A}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \quad \text{o agregando varios pasos} \quad \mathbf{A} \xrightarrow{\boldsymbol{\tau}_1} \xrightarrow{\boldsymbol{\tau}_2} \mathbf{A}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_p} \xrightarrow{\boldsymbol{\tau}_k} \mathbf{A}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k}.$$

Por ejemplo, la sucesión de transformaciones $\mathbf{A}_{\frac{\mathbf{7}}{[(3)\mathbf{2}][(2)\mathbf{1}+\mathbf{2}]}}^{\mathbf{7}}$ donde $\mathbf{A} = \begin{bmatrix} 0 & 1 & 5 \\ 7 & 0 & 4 \end{bmatrix}$, se escribe como:

$$\begin{bmatrix} 0 & 1 & 5 \\ 7 & 0 & 4 \end{bmatrix} \xrightarrow{[(3)\mathbf{2}]{}} \begin{bmatrix} 0 & 3 & 5 \\ 7 & 0 & 4 \end{bmatrix} \xrightarrow{[(2)\mathbf{1}+\mathbf{2}]{}} \begin{bmatrix} 0 & 3 & 5 \\ 7 & 14 & 4 \end{bmatrix}; \quad \text{o bien como} \quad \begin{bmatrix} 0 & 1 & 5 \\ 7 & 0 & 4 \end{bmatrix} \xrightarrow{[(2)\mathbf{1}+\mathbf{2}]{}} \begin{bmatrix} 0 & 3 & 5 \\ 7 & 14 & 4 \end{bmatrix}.$$

Alternativamente podemos expresar una secuencia de transformaciones elementales mediante productos de matrices elementales. Por ejemplo, para la secuencia anterior:

$$\begin{bmatrix} 0 & 1 & 5 \\ 7 & 0 & 4 \end{bmatrix}_{\substack{\boldsymbol{\tau} \\ [(3)2] \\ [(2)1+2]}} = \begin{bmatrix} 0 & 1 & 5 \\ 7 & 0 & 4 \end{bmatrix} \begin{pmatrix} \mathbf{I}_{\substack{\boldsymbol{\tau} \\ [(3)2]}} \end{pmatrix} \begin{pmatrix} \mathbf{I}_{\substack{\boldsymbol{\tau} \\ [(2)1+2]}} \end{pmatrix} = \begin{bmatrix} 0 & 3 & 5 \\ 7 & 14 & 4 \end{bmatrix}.$$

4.2.1. Intercambios

Aunque solo hemos considerado como transformaciones elementales las de $Tipo\ I\ y\ II$, la mayoría de manuales de Álgebra Lineal consideran como tercer tipo el intercambio:

Intercambio: τ \rightarrow intercambia los vectores iésimo y jésimo.

T(
$$\{1, 3\}$$
) # intercambia los vectores primero y tercero $\frac{\tau}{[1\rightleftharpoons 3]}$

Definición 4.2 (Matriz de intercambio). Cualquier matriz obtenida tras intercambiar las columnas p y q de la matriz identidad de orden n: $\mathbf{1}_{[\mathbf{p}=a]}$

Puesto que en $\begin{bmatrix} \mathbf{I}_{\tau} \\ \mathbf{p} = q \end{bmatrix}$ solo han cambiado las columnas $p \neq q$ de \mathbf{I} , se deduce que $\begin{bmatrix} \mathbf{I}_{\tau} \\ \mathbf{p} = q \end{bmatrix}$ es simétrica:

$$\begin{pmatrix} \mathbf{I}_{\mathbf{p}=\mathbf{q}]} \end{pmatrix}_{|j} = \begin{cases} \mathbf{I}_{|q} & \text{si } j = p \\ \mathbf{I}_{|p} & \text{si } j = q \\ \mathbf{I}_{|j} & \text{si } j \neq p, q \end{cases} \implies \begin{pmatrix} \mathbf{I}_{\mathbf{p}=\mathbf{q}]} \end{pmatrix}_{|j} = \begin{cases} 1 & \text{si } k = q & \text{y } j = p \\ 1 & \text{si } k = p & \text{y } j = q \\ 1 & \text{si } k = j \neq p, q \end{cases} = \begin{pmatrix} \mathbf{I}_{\mathbf{p}=\mathbf{q}]} \end{pmatrix}_{|k},$$

es decir, transponiendo (intercambiando los índices $k \neq j$) la matriz no cambia. Por tanto:

No consideramos el intercambio como una transformación elemental puesto que en realidad es una sucesión de transformaciones elementales de **Tipo I** más una transformación de **Tipo II** que multiplica una de las dos columnas intercambiadas por -1. El siguiente ejercicio le pide que lo compruebe.

EJERCICIO 28.

- (a) Mediante una secuencia de transformaciones elementales Tipo I y II transforme $\mathbf{l}_{3\times3}$ en la matriz \mathbf{l}_{7} .
- (b) Mediante el producto de las matrices elementales correspondientes a los pasos dados en el apartado anterior obtenga la matriz intercambio $\mathbf{I}_{\underbrace{\tau}}$ de orden n.

```
i = 2; j= 4  # indicamos quienes son j e i  
I(4) & T( [(-1,j),(-1,j,i),(1,i,j),(-1,j,i)] )# aplicación de lista de transf. elem. # I(4) & T(\{i,j\})  # es más sencillo aplicar intercambio  
\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}
```

Toda matriz intercambio I_{τ} se puede factorizar como producto de varias matrices elementales **Tipo I** y una matriz elemental **Tipo II**, que multiplica por -1 una de las columnas intercambiadas.

Intercambio de las columnas de A:

$$\begin{pmatrix} \mathbf{A}_{\mathbf{I}} \\ \mathbf{A}_{[i=j]} \end{pmatrix}_{|k} = \begin{cases} \mathbf{A}_{|j} & \text{si } k=i \text{ (es decir, en la posición } i \text{ se coloca la columna } j) \\ \mathbf{A}_{|i} & = \mathbf{A}\mathbf{I}_{|i} \\ \mathbf{A}_{|k} & = \mathbf{A}\mathbf{I}_{|k} \end{cases} & \text{si } k=j \text{ (es decir, en la posición } j \text{ se coloca la columna } i) \\ \mathbf{A}_{|k} & = \mathbf{A}\mathbf{I}_{|k} \end{aligned} = \mathbf{A}_{|k} = \mathbf{A}\mathbf{I}_{|k} \quad \text{en el resto de casos (se mantienen las columnas en su sitio)}$$

Si
$$\mathbf{A} = \begin{bmatrix} a & 0 & 0 \\ b & b & 0 \\ c & c & c \end{bmatrix}$$
, entonces $\mathbf{A}_{\overset{\boldsymbol{\tau}}{[1=2]}} = \mathbf{A} \begin{pmatrix} \mathbf{I}_{\overset{\boldsymbol{\tau}}{[1=2]}} \end{pmatrix} = \begin{bmatrix} a & 0 & 0 \\ b & b & 0 \\ c & c & c \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ intercambia las columnas 1 y 2.

a, b, c, = sympy.symbols('a b c') # definimos variables simbólicas
A = Matrix([[a,0,0], [a,b,0], [a,b,c]])# definimos Matrix fila a fila
A & T(
$$\{1,2\}$$
) # intercambio de las dos primeras columnas
$$\begin{bmatrix} 0 & a & 0 \\ b & a & 0 \\ b & a & c \end{bmatrix}$$

4.2.2. Permutaciones

Mediante una sucesión intercambios se logra un reordenamiento o permutación de vectores.

Permutación: au \to reordena una lista mediante una sucesión de intercambios.

Definición 4.3 (Matriz permutación). Cualquier matriz obtenida tras realizar un número arbitrario de intercambios entre las columnas de la matriz identidad de orden n, \mathbf{I}_{τ} .

Por definición, una matriz permutación se puede factorizar como producto de matrices intercambio. Aunque las matrices intercambio \mathbf{I}_{τ} son simétricas, las matrices permutación \mathbf{I}_{τ} no son simétricas en general:²

$$\begin{pmatrix} \mathbf{I}_{\mathbf{T}} \\ \mathbf{I}_{[1=3]} \end{pmatrix} \begin{pmatrix} \mathbf{I}_{\mathbf{T}} \\ \mathbf{I}_{[1=2]} \end{pmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

 $^{^{2}}$ el producto de dos matrices simétricas es simétrico si y solo si dichas matrices conmutan, es decir AB = BA

13

El intercambio, $\boldsymbol{\tau}$, es una secuencia de transformaciones $Tipo\ I$ junto a una de $Tipo\ II$ (que cambia el signo de uno de los vectores). Las matrices intercambio, $\boldsymbol{l}_{\boldsymbol{\tau}}$, son simétricas y su cuadrado es la matriz identidad ("intercambiar dos veces los mismos vectores nos deja como al principio").

Una secuencia de intercambios da lugar a un reordenamiento de los vectores. Llamamos matriz permutación al resultado de aplicar una sucesión de intercambios sobre las columnas de I. En general las matrices permutación I_{τ} no son simétricas.

4.3. Eliminación por columnas

Definición 4.4. Llamamos pivote de una columna no nula, a su primer componente no nulo, y posición de pivote al índice de la fila en la que está el pivote.

Definición 4.5. Una matriz **K** es pre-escalonada si las componentes a la derecha de cada pivote son nulas. Ejemplo 8.

$$\mathbf{K} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 6 \\ 3 & 0 & 0 & 0 \\ 6 & 0 & 1 & 0 \end{bmatrix}$$

El pivote de la primera columna es 3, el de la tercera es 1, y el de la cuarta 7. La posición de pivote de la primera columna es 4 (cuarta fila), la de la tercera es 5 (quinta fila) y a de la última es 2 (segunda fila).

4.3.1. Método de eliminación (o eliminación de "Izquierda a derecha")

El método de eliminación consiste en *pre-escalonar* una matriz mediante transformaciones elementales, es decir, en lograr una matriz en la que todas las componentes a la derecha de cada pivote son nulas:

$$\begin{bmatrix} 0 & 1 & 1 \\ 2 & -2 & 2 \\ 2 & -8 & 1 \end{bmatrix} \xrightarrow{[(-1)2+3]} \begin{bmatrix} 0 & 1 & 0 \\ 2 & -2 & 4 \\ 2 & -8 & 9 \end{bmatrix} \xrightarrow{\begin{bmatrix} (1)1+2 \\ [(-2)1+3] \\ \end{bmatrix}} \begin{bmatrix} 0 & 1 & 0 \\ 2 & 0 & 0 \\ 2 & -6 & 5 \end{bmatrix}$$

Toda matriz se puede pre-escalonar mediante transformaciones elementales. jEl prácticamente resto del curso descansa sobre en este teorema! Lo demostraremos por inducción; es decir, demostrando que si es cierto para cualquier matriz de n columnas, también lo es para cualquier matriz de n+1 columnas.

Teorema 4.3.1 (Eliminación). Para toda \mathbf{A} existe una secuencia $\mathbf{\tau}_1 \dots \mathbf{\tau}_k$ tal que $\mathbf{A}_{\mathbf{\tau}_1 \dots \mathbf{\tau}_k}$ es pre-escalonada.

Demostración. Por inducción sobre el número de filas de A.

PASO DE INDUCCIÓN: Supongamos que \mathbf{A} tiene m filas y que el resultado es cierto para matrices de (m-1) filas. Es decir, existe una sucesión $\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k$ de trasformaciones elementales de las columnas tal que

$$\mathbf{A}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} = \begin{bmatrix} \mathbf{K} \\ b_{m1} & \cdots & b_{mn} \end{bmatrix};$$
 y donde la submatriz \mathbf{K} es pre -escalonada.

Entonces $\mathbf{A}_{\tau_1\cdots\tau_k}$ es pre-escalonada si se da alguno de los siguientes supuestos para su última fila:

- Supuesto 1. La última fila es nula.
- Supuesto 2. Son nulos los componentes de la última fila que están bajo las columnas nulas de **K** (como en el caso de la segunda columna del Ejemplo 8).

■ Supuesto 3. De los componentes de la última fila situados bajo las columnas nulas de K, solo uno es distinto de cero, y las componentes a su derecha son nulas (como en la última fila del Ejemplo 8, donde 1 es el primer componente no nulo de aquellos con una columna de ceros por encima).

Si no se da ninguno de estos supuestos, entonces necesariamente se da el siguiente caso:

- como no se da el supuesto 1, la última fila es no nula.
- como no se da el supuesto 2, la última fila contiene algún pivote.
- como no se da el supuesto 3, a la derecha del primer pivote en la última fila hay coeficientes no nulos.

Así pues, si b_{mr} es primer pivote de los situados en la última fila (i.e., si de aquellos componentes situados bajo las columnas nulas de K, es el situado más a la izquierda); entonces podemos eliminar los componentes a su derecha restando de cada columna jésima (con $j \ge r$) la columna résima multiplicada por $\left(\frac{b_{mj}}{b_{mr}}\right)$. Es decir, aplicando la secuencia de transformaciones ³

$$\left[\left(\frac{-b_{mj}}{b_{mr}}\right)r+j\right]$$
 para todo $j \ge r$,

obtenemos una matriz que cumple el Supuesto 3.

BASE DE INDUCCIÓN: Se prueba igual que en el paso de inducción, pero sin K, es decir con una matriz A con una sola fila y donde $A_{|r}$ es la primera columna no nula.

Aunque el método de eliminación está implementado en NAcAL, es muy conveniente que usted sepa aplicar el algoritmo con lápiz y papel (o bien, que sepa programarlo). ⁴

4.3.2. Método de eliminación Gaussiano

Definición 4.6. Decimos que la matriz L es escalonada, si toda columna que precede a una no nula $L_{|k}$ es no nula y su posición de pivote es anterior a la posición de pivote de $L_{|k}$.

(Esta definición implica que a la derecha de cualquier pivote solo puede haber ceros).

En una matriz escalonada las columnas no nulas están a la izquierda y las nulas a la derecha (si las hubiere). Además, conforme nos movemos de izquierda a derecha, los pivotes aparecen cada vez más abajo, es decir, los pivotes describen una escalera descendente (de ahí el nombre de matriz "escalonada").

Ejemplo 9.

$$\mathbf{L} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 7 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 6 & 1 & 0 \end{bmatrix}$$

El pivote de la primera columna es 7, el de la segunda es 3 y el de la tercera 1. La posición de pivote de la primera columna es 2 (segunda fila), la de la segunda es 4 (cuarta fila) y la de la tercera es 5.

 $^{^3}$ que no modifican ${\sf K}$ puesto que por encima del pivote b_{mr} todo son ceros

 $^{^4}$ Use la librería solo para verificar los resultados que usted ha obtenido previamente usando lápiz y papel.

Fíjese que aunque toda matriz escalonada es pre-escalonada, las matrices pre-escalonadas no suelen ser escalonadas. (Ejemplo 8 en la página 49).

Toda matriz se puede escalonar mediante transformaciones elementales tal como afirma el siguiente

Corolario 4.3.2 (Eliminación Gaussiana). Para toda \mathbf{A} existen $\boldsymbol{\tau}_1 \dots \boldsymbol{\tau}_k$ tales que $\mathbf{A}_{\boldsymbol{\tau}_1 \dots \boldsymbol{\tau}_k}$ es escalonada.

Demostración. Basta pre-escalonar A y reordenar sus columnas para que los pivotes describan una escalera descendente, dejando las columnas nulas a la derecha de las no nulas. □

Dicho procedimiento se denomina Método de Eliminación de Gaussiano.

4.3.3. Método de eliminación Gauss-Jordan

La eliminación gaussiana se pude llevar más lejos, obteniendo una forma escalonada reducida.

Definición 4.7. Decimos que una matriz R es escalonada reducida, si es escalonada, todos los pivotes son unos y los componentes situados a derecha e izquierda de los pivotes son cero.

Ejemplo 10.

$$\mathbf{R} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ \frac{6}{7} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Corolario 4.3.3 (Eliminación Gauss-Jordan). Para toda \mathbf{A} existen $\boldsymbol{\tau}_1 \dots \boldsymbol{\tau}_k$ tales que $\mathbf{A}_{\boldsymbol{\tau}_1 \dots \boldsymbol{\tau}_k}$ es escalonada reducida.

Demostración. Basta escalonar la matriz, y con cada pivote eliminar el resto de componentes no nulos de su fila. Después se divide cada columna no nula por el valor de su pivote para lograr los "unos".

Dicho procedimiento se denomina Método de Eliminación Gauss-Jordan.

B

Mediante transformaciones elementales podemos pre-escalonar, escalonar, o escalonar y reducir cualquier matriz.

- Una matriz **K** es *pre-escalonada* si las componentes a la derecha de cada pivote son cero.
- Una matriz L es *escalonada* si está pre-escalonada y los pivotes describen una escalera descendente (cada pivote está más bajo que el pivote de la columna anterior) y las columnas nulas (si las hubiere) están todas a la derecha de la matriz.
- Una matriz **R** es *escalonada reducida* si es escalonada, cada pivote es un "1" y el resto de componentes de su fila son ceros (por ejemplo, la matriz identidad es escalonada reducida).

Apendices a la lección

4.A. Transformaciones elementales de las filas.

13

Casi todos los manuales de Álgebra Lineal aplican las transformaciones elementales principalmente sobre las filas. Aquí usaremos las transformaciones sobre las filas en la Página 68 para demostrar la Proposición 5.4.4; pero, sobre todo, serán fundamentales para diagonalizar matrices cuadradas tanto por semejanza como por congruencia (Parte VI del libro). Este apéndice trata brevemente las transformaciones sobre las filas de una matriz y su relación con las transformaciones sobre las columnas.

La primera observación es que siempre podemos aplicar una transformación elemental a las filas de $\bf A$ sencillamente transformando las columnas de $\bf A^T$, y transponiendo de nuevo el resultado. Así concluimos que

$$\left(\left(\mathbf{A}^{\mathsf{T}}\right)_{\boldsymbol{\tau}}\right)^{\mathsf{T}} = \left(\left(\mathbf{A}^{\mathsf{T}}\right)\mathbf{I}_{\boldsymbol{\tau}}\right)^{\mathsf{T}} = \left(\left(\mathbf{I}_{\boldsymbol{\tau}}\right)^{\mathsf{T}}\right)\left(\mathbf{A}^{\mathsf{T}}\right)^{\mathsf{T}} = \left(\left(\mathbf{I}_{\boldsymbol{\tau}}\right)^{\mathsf{T}}\right)\mathbf{A},$$

donde $(\mathbf{I}_{\tau})^{\intercal}$ es una matriz elemental (por ser la transpuesta de una elemental —Nota 3 en la página 45).

Por tanto, al multiplicar por la izquierda de ${\sf A}$, por una matriz elemental, transformamos las filas de ${\sf A}$. Ello sugiere usar la notación ${}_{{\sf \tau}}{\sf A}$ para la transformación ${\sf \tau}$ de las filas de ${\sf A}$;

$$_{m{ au}}\mathbf{A}=\Big((\mathbf{I}_{m{ au}})^{\intercal}\Big)\mathbf{A}$$

y consecuentemente: $_{\boldsymbol{\tau}}$ l para la transformación $\boldsymbol{\tau}$ de las filas de l; es decir, 5

$$_{\boldsymbol{\tau}}\mathbf{I}=(\mathbf{I}_{\boldsymbol{\tau}})^{\intercal}.$$

Así pues,

$$_{\tau}\mathbf{A}=(_{\tau}\mathbf{I})\,\mathbf{A}.$$

¡No solo eso!... Puesto que $\mathbf{I}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k}=(\mathbf{I}_{\boldsymbol{\tau}_1})\cdots(\mathbf{I}_{\boldsymbol{\tau}_k})$ y puesto que el producto de matrices es asociativo, deducimos que la transpuesta de $\mathbf{I}_{\boldsymbol{\tau}_1\boldsymbol{\tau}_2\cdots\boldsymbol{\tau}_k}$ es

$$\left(\mathbf{I}_{\boldsymbol{\tau}_1\boldsymbol{\tau}_2\cdots\boldsymbol{\tau}_k}\right)^{\mathsf{T}} \;=\; \left((\mathbf{I}_{\boldsymbol{\tau}_1})\cdots(\mathbf{I}_{\boldsymbol{\tau}_k})\right)^{\mathsf{T}} \;=\; (\mathbf{I}_{\boldsymbol{\tau}_k})^{\mathsf{T}}\cdots(\mathbf{I}_{\boldsymbol{\tau}_i})^{\mathsf{T}} \;=\; {}_{\boldsymbol{\tau}_k}\mathbf{I}\cdots{}_{\boldsymbol{\tau}_1}\mathbf{I} \;=\; {}_{\boldsymbol{\tau}_k\cdots\boldsymbol{\tau}_2\boldsymbol{\tau}_1}\mathbf{I}$$

Nótese que al transponer no solo cambiamos de lado los subíndices, sino que también invertimos el orden de la secuencia de transformaciones (de manera similar a cuando se transpone un producto de matrices).

Consecuentemente, denotaremos la operación de invertir el orden de un secuencia de las transformaciones con la transposición:

$$(\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k)^{\mathsf{T}} = \boldsymbol{\tau}_k \cdots \boldsymbol{\tau}_1;$$

⁵¡Fíjese que nuevamente la transposición supone cambiar de lado el subíndice!

Una secuencia de transformaciones elementales se comporta casi como un producto de matices: Fíjese que aunque la secuencia $\tau_1\tau_2\cdots\tau_k$ no es un producto de matrices... ¡casi se puede interpretar como tal!... Tan solo falta que las transformaciones actúen sobre una matriz para saber el orden n de las matrices elementales, y entonces sí actúan como un producto de matrices elementales. Así,

$$\big(\mathbf{A}_{(\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k)} \big)^\mathsf{T} \quad = \quad \big(\mathbf{A} \big(\mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \big) \big)^\mathsf{T} \quad = \quad \big(\boldsymbol{\tau}_k \cdots \boldsymbol{\tau}_1 \mathbf{I} \big) (\mathbf{A})^\mathsf{T} \quad = \quad {}_{(\boldsymbol{\tau}_k \cdots \boldsymbol{\tau}_1)} (\mathbf{A})^\mathsf{T} \quad = \quad {}_{(\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k)^\mathsf{T}} (\mathbf{A})^\mathsf{T}.$$

Y en particular, si $\mathbf{A} = \mathbf{I}$ entonces

$$(\mathbf{I}_{(\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k)})^{\mathsf{T}} = {}_{(\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k)^{\mathsf{T}}} \mathbf{I}.$$
 (4.3)

Recuerde que en general $_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k}\mathbf{I}\neq\mathbf{I}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k}$ y que $_{\boldsymbol{\tau}_k\cdots\boldsymbol{\tau}_1}\mathbf{I}\neq\mathbf{I}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k}$. Sin embargo, por (4.3), sabemos que

$$_{oldsymbol{ au}_k\cdotsoldsymbol{ au}_1}oldsymbol{\mathsf{I}}={}_{(oldsymbol{ au}_1\cdotsoldsymbol{ au}_k)^\mathsf{T}}oldsymbol{\mathsf{I}}={}(oldsymbol{\mathsf{I}}_{oldsymbol{ au}_1\cdotsoldsymbol{ au}_k})^\mathsf{T}.$$

(fíjese en el orden de los subíndices).

Tr = T([(-7,1,2), {3,2}, (2,1,3), {1,2}], 'h')

Tr

$$\begin{bmatrix}
\tau & \tau & \tau \\
[(-7)1+2][2=3][(2)1+3][1=2]
\end{bmatrix}$$
Librería NAcAL para Python

~Tr

#Transposición invierte el orden

$$\begin{bmatrix}
\tau & \tau & \tau \\
[1=2][(2)1+3][2=3][(-7)1+2]
\end{bmatrix}$$
Librería NAcAL para Python

I(3) & Tr

$$\begin{bmatrix}
0 & 1 & -5 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix}$$
Librería NAcAL para Python

(~Tr) & I(3)

transpuesta de la matriz anterior

Para indicar que una secuencia de transformaciones actúa sobre las *filas* de una matriz, escribiremos las abreviaturas por debajo de las fechas:

 $\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
-5 & 1 & 0
\end{array}\right]$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow[[(-7)1+2]{\mathbf{\tau}} \begin{bmatrix} 1 & 0 & 0 \\ -7 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\stackrel{\mathbf{\tau}}{[2=3]}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -7 & 1 & 0 \end{bmatrix} \xrightarrow[[(2)1+3]{\mathbf{\tau}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -5 & 1 & 0 \end{bmatrix} \xrightarrow{\stackrel{\mathbf{\tau}}{[1=2]}} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ -5 & 1 & 0 \end{bmatrix}$$

Veremos que la Lección 19 se basa en aplicar, a matrices *simétricas*, transformaciones de la forma

$$\mathbf{B}^{\mathsf{T}}\mathbf{A}\mathbf{B} \ = \ \left(\mathbf{I}_{(\boldsymbol{\tau}_{1}\cdots\boldsymbol{\tau}_{k})}\right)^{\mathsf{T}}\mathbf{A}\left(\mathbf{I}_{(\boldsymbol{\tau}_{1}\cdots\boldsymbol{\tau}_{k})}\right) \ = \ _{(\boldsymbol{\tau}_{1}\cdots\boldsymbol{\tau}_{k})^{\mathsf{T}}}\mathbf{I}\mathbf{A}\mathbf{I}_{(\boldsymbol{\tau}_{1}\cdots\boldsymbol{\tau}_{k})} \ = \ _{(\boldsymbol{\tau}_{1}\cdots\boldsymbol{\tau}_{k})^{\mathsf{T}}}\mathbf{A}_{(\boldsymbol{\tau}_{1}\cdots\boldsymbol{\tau}_{k})},$$
 and
$$\mathbf{B} = \mathbf{I}_{(\boldsymbol{\tau}_{1}\cdots\boldsymbol{\tau}_{k})}.$$

Matriz escalonada por filas

Definición 4.8. Una matriz está escalonada por filas si su transpuesta está escalonada por columnas.

Notación para una secuencia de transformaciones sobre las filas de una matriz. De igual modo que una secuencia de transformaciones de las columnas se puede expresar de varias formas, también disponemos de representaciones alternativas para una secuencia de transformaciones de las *filas* de **A**. Por ejemplo, el escalonamiento por filas de más arriba lo podemos expresar de los siguientes modos alternativos:

$$\frac{\mathbf{7}}{\mathbf{7}} \underbrace{\mathbf{7}}_{[1 \rightleftharpoons 2][(-6)1+3][(1)1+2][(-3)2+3]}^{\mathbf{7}} \begin{bmatrix} 0 & 2 & 2 \\ 1 & -2 & -8 \\ 3 & 6 & -6 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 2 \\ 1 & -2 & -8 \\ 3 & 6 & -6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -6 \\ 0 & 2 & 2 \\ 0 & 0 & 6 \end{bmatrix}.$$

$$\underbrace{\mathbf{7}}_{[1 \rightleftharpoons 2]} \underbrace{\mathbf{7}}_{[(-6)1+3]} \underbrace{\mathbf{7}}_{[(1)1+2]} \underbrace{\mathbf{7}}_{[(-3)2+3]} \underbrace{\mathbf{7}}_{[($$

$$\mathrm{es\ decir},\ \frac{\tau}{[1=2][(-6)1+3][(1)1+2][(-3)2+3]} \mathbf{A}\ =\ \Big(\frac{\tau}{[1=2]}\mathbf{I}\Big)\Big(\frac{\tau}{[(-6)1+3]}\mathbf{I}\Big)\Big(\frac{\tau}{[(1)1+2]}\mathbf{I}\Big)\Big(\frac{\tau}{[(-3)2+3]}\mathbf{I}\Big)\mathbf{A}\ =\ \frac{\tau}{[1=2]}\mathbf{A}.$$

Fíjese que al operar sobre las filas, las primeras transformaciones en actuar son las que quedan más a la derecha de τ τ τ τ τ τ o más abajo de τ . [1 = 2][(-6)1 + 3][(1)1 + 2][(-3)2 + 3] [(-6)1 + 3][(1)1 + 2]

Por último, nótese que incluso cuando operamos con las filas, la notación sigue siendo asociativa:

$$(_{\tau}A)B = _{\tau}(AB)$$

Así que podemos escribir sencillamente _AB.

La siguiente sección del apéndice hace mención a la inversa de transformaciones elementales. Por ello debe posponer su lectura hasta después de haber leído la Sección 5.1.1 de la siguiente lección. En cualquier caso, no emplearemos transformaciones "espejo" hasta el comienzo de la Lección 17.

4.B. Transformación elemental "espejo" de otra transformación

Resulta que podemos obtener una misma matriz elemental operando sobre las filas o sobre las columnas de la matriz identidad. Si la matriz elemental es de $Tipo\ I$, por ejemplo \mathbf{I}_{τ} , es fácil verificar que $_{[(\alpha)^{2}+3]}$

En general, para una misma matriz elemental de $Tipo\ I$ tenemos que

$$_{oldsymbol{ au}}_{oldsymbol{[(lpha)k+j]}} oldsymbol{oldsymbol{I}} = oldsymbol{oldsymbol{I}}_{oldsymbol{\pi}}.$$

Fíjese en el *intercambio entre los índices* \boldsymbol{j} y \boldsymbol{k} en función de si se transforman las filas o las columnas de la matriz identidad. Es decir, la transformación elemental necesaria para crear una matriz elemental de *Tipo I* es distinta en función de si actuamos sobre las filas, o sobre las columnas de \boldsymbol{l} .

A falta de mejor nombre, llamaremos a cada una de estas transformaciones el "espejo" de la otra:

Definición 4.9. Llamamos "espejo" de τ (que denotaremos con $esp(\tau)$) a aquella transformación elemental que actuando por el otro lado de la matriz identidad arroja el mismo resultado; es decir

$$_{esp(oldsymbol{ au})} oldsymbol{\mathsf{I}} = oldsymbol{\mathsf{I}}_{oldsymbol{ au}} \qquad \acute{o} \qquad {}_{oldsymbol{ au}} oldsymbol{\mathsf{I}} = oldsymbol{\mathsf{I}}_{esp(oldsymbol{ au})}$$

El espejo de una transformación elemental $Tipo\ I$ $\tau_{[(\alpha)j+k]}$ es a la transformación que resulta de intercambiar los índices j y k, es decir,

$$esp\Big(oldsymbol{ au}_{[(lpha)oldsymbol{j}+oldsymbol{k}]} \Big) = oldsymbol{ au}_{[(lpha)oldsymbol{k}+oldsymbol{j}]}.$$

En cuanto a las transformaciones elementales $Tipo\ II$ y los intercambios...; son su propio "espejo"! pues tanto las matrices elementales $Tipo\ II$ como las matrices intercambio son simétricas ($_{\tau}\mathbf{l}=\mathbf{l}_{\tau}$). Por ejemplo

$$\begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 \end{bmatrix} = \begin{bmatrix} 1 & & \\ & \alpha & \\ & & 1 \end{bmatrix} = \begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 \end{bmatrix}_{\substack{\boldsymbol{\tau} \\ [(\alpha)\mathbf{2}]}}.$$

Además, el espejo de una sucesión de transformaciones elementales es la sucesión de transformaciones espejo:

$$esp(\boldsymbol{\tau}_1 \dots \boldsymbol{\tau}_k) = esp(\boldsymbol{\tau}_1) \dots esp(\boldsymbol{\tau}_k);$$

es decir

$$esp(\boldsymbol{ au}_1...\boldsymbol{ au}_k)$$
 | = | $\boldsymbol{I}_{\boldsymbol{ au}_1...\boldsymbol{ au}_k}$

```
Tr = T((3,2,1)) & T((-2,3,2)) & T((7,1,3)) & T({2,3}) & T((20,1)) # Suc. transf.

A = I(3) & Tr # Transformación de las columnas de la Identidad

B = Tr.espejo() & I(3) # Transformación espejo sobre las filas de la Identidad

A == B # Verificación de que A y B son iguales

True
```

Espejo de la inversa de una transformación elemental. Como la transformación inversa de au [(lpha)j+i] $\frac{\boldsymbol{\tau}}{\boldsymbol{\alpha})\boldsymbol{j}+\boldsymbol{i}]}; \text{ empleando la transformación espejo resulta que la matriz inversa de } \left(\begin{matrix} \boldsymbol{I} & \boldsymbol{\tau} \\ \boldsymbol{\tau} \end{matrix}\right) \text{ es } \left(\begin{matrix} \boldsymbol{\tau} & \boldsymbol{I} \\ \boldsymbol{\tau} \end{matrix}\right);$ y de manera similar tenemos que la matriz inversa de $\begin{pmatrix} \mathbf{I}_{\boldsymbol{\tau}} \end{pmatrix}$ es $\begin{pmatrix} \boldsymbol{\tau} \\ [(\alpha)^i] \end{pmatrix}$. Así concluimos que

es decir,

$$_{esp(\boldsymbol{\tau}^{-1})}\mathbf{I}_{\boldsymbol{\tau}}=\mathbf{I};$$

y en general

$$esp(oldsymbol{ au}_1^{ extsf{-}1}...oldsymbol{ au}_k^{ extsf{-}1}) oldsymbol{oldsymbol{I}}_{(oldsymbol{ au}_1...oldsymbol{ au}_k)} = oldsymbol{oldsymbol{I}}$$

 $Tr = T((3,2,1)) & T((-2,3,2)) & T((7,1,3)) & T(\{2,3\}) & T((20,1))$ (Tr**-1).espejo() & I(3) & Tr

$$\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]$$

Veremos que la Lección 17 se basa en aplicar, a matrices cuadradas, transformaciones de la forma

Veremos que la Lección 17 se basa en aplicar, a matrices
$$cuadradas$$
, transformaciones de la forma
$$\mathbf{S}^{-1}\mathbf{A}\mathbf{S} \ = \ \left(\mathbf{I}_{(\boldsymbol{\tau}_1...\boldsymbol{\tau}_k)}\right)^{-1}\mathbf{A}\left(\mathbf{I}_{(\boldsymbol{\tau}_1...\boldsymbol{\tau}_k)}\right) \ = \ \left({}_{esp(\boldsymbol{\tau}_1^{-1}...\boldsymbol{\tau}_k^{-1})}\mathbf{I}\right)\mathbf{A}\left(\mathbf{I}_{(\boldsymbol{\tau}_1...\boldsymbol{\tau}_k)}\right) \ = \ {}_{esp(\boldsymbol{\tau}_1^{-1}...\boldsymbol{\tau}_k^{-1})}\mathbf{A}_{(\boldsymbol{\tau}_1...\boldsymbol{\tau}_k)},$$
 donde $\mathbf{S} = \mathbf{I}_{(\boldsymbol{\tau}_1...\boldsymbol{\tau}_k)}.$

La Lección 18 es un caso especial en el que se aplican, a matrices sim'etricas, transformaciones de la forma

$$\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q}$$

donde $\mathbf{Q} = \mathbf{I}_{(\boldsymbol{\tau}_1 \dots \boldsymbol{\tau}_k)}$ es tal que $\mathbf{Q}^{-1} = \mathbf{Q}^\mathsf{T}$, es decir, tal que $_{esp(\boldsymbol{\tau}_1^{-1} \dots \boldsymbol{\tau}_k^{-1})} \mathbf{I} = _{(\boldsymbol{\tau}_1 \dots \boldsymbol{\tau}_k)^\mathsf{T}} \mathbf{I}$; por lo que es un caso particular tanto de la Lección 17 como de la Lección 19.

Matrices inversas

5.1. Matrices invertibles

Definición 5.1 (Matriz invertible). Se dice que **A** es invertible (o tiene inversa) si existe otra matriz **B** del mismo orden tal que

$$AB = BA = I$$
.

(nótese que AB = BA implica que A y B son necesariamente cuadradas).

Pues bien, si A es invertible su inversa es única:

Proposición 5.1.1 (La inversa es única). Si A, B y B' verifican que

$$AB = BA = I$$
 $y \ que$ $AB' = B'A = I$

entonces **B** y **B'** son iguales.

Demostración. En efecto:
$$\mathbf{B} = \mathbf{BI} = \mathbf{B}\underbrace{(\mathbf{AB'})}_{\mathbf{I}=\mathbf{AB'}} = \underbrace{(\mathbf{BA})}_{\mathbf{BA}=\mathbf{I}} \mathbf{B'} = \mathbf{B'}.$$

La unicidad nos permite dar una definición de "la" matriz inversa de A:

Definición 5.2 (Matriz inversa). Si **A** es invertible, denotaremos con **A**⁻¹ a la única matriz tal que

$$\mathbf{A} \left(\mathbf{A}^{\text{-}1} \right) = \left(\mathbf{A}^{\text{-}1} \right) \mathbf{A} = \mathbf{I}.$$

Además diremos que A⁻¹ es la matriz inversa de A.

Definición 5.3 (Matriz singular). Si una matriz cuadrada no tiene inversa se dice que es singular.

A continuación veremos varias propiedades de las matrices inversas. En particular, que el producto de matrices invertibles es invertible; que la transpuesta de una matriz invertible también es invertible; y que si una matriz tiene alguna fila o columna nula, entonces no es invertible.

Ejercicio 29. Demuestre las siguientes proposiciones:

- (a) Proposición 5.1.2. Si A y B (de orden n) tienen inversa entonces: $(AB)^{-1} = B^{-1}A^{-1}$.
- (b) Proposición 5.1.3. $Si \ \mathbf{A}_1, \dots, \mathbf{A}_k \ tienen \ inversa, \ entonces \left[(\mathbf{A}_1 \dots \mathbf{A}_k)^{-1} = \mathbf{A}_k^{-1} \dots \mathbf{A}_1^{-1} \right]$ $Pista. \ (\mathbf{A}_1 \dots \mathbf{A}_k)^{-1} = (\mathbf{A}_1 (\mathbf{A}_2 \dots \mathbf{A}_k))^{-1} = (\mathbf{A}_2 \dots \mathbf{A}_k)^{-1} \mathbf{A}_1^{-1}.$
- (c) Proposición 5.1.4. Sea A de orden n y sea B <u>invertible</u> de orden n. Entonces AB es invertible si y solo si A es invertible.

- (d) **Proposición 5.1.5.** Sea **A** <u>invertible</u> de orden n y sea **B** de orden n. Entonces **AB** es invertible si y solo si **B** es invertible.
- (f) Proposición 5.1.7. Si alguna fila o columna de A es nula entonces la matriz es singular.

 \blacksquare A es invertible si existe B tal que AB = BA = I; su inversa es única y se denota con A^{-1} .

- lacktriangledown el producto de matrices invertibles es invertibles $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$
- lacktriangled la transpuesta de una matriz invertible es invertible: $\left(\mathbf{A}^\intercal\right)^{-1} = \left(\mathbf{A}^{-1}\right)^\intercal$.
- Si alguna fila o columna de **A** es nula la matriz es singular (no tiene inversa).

5.1.1. Inversa de las matrices (transformaciones) elementales.

¡No todas las matrices cuadradas son invertibles!

¿Qué hace que una matriz cuadrada sea invertible?...Todo tiene que ver con las matrices elementales. Veamos primero que las transformaciones elementales (y las matrices elementales) son invertibles.

Las transformaciones elementales son reversibles. Por ejemplo, sumar el doble de la primera columna a la tercera, y luego restar el doble de la primera columna de la tercera, nos deja como al principio:

$$\mathbf{A}_{\frac{\tau}{[(2)\mathbf{1}+\mathbf{3}][(-2)\mathbf{1}+\mathbf{3}]}}^{\tau} = \mathbf{A}\left(\mathbf{I}_{\frac{\tau}{[(2)\mathbf{1}+\mathbf{3}]}}\right)\left(\mathbf{I}_{\frac{\tau}{[(-2)\mathbf{1}+\mathbf{3}]}}\right) = \mathbf{A}\begin{bmatrix}1 & 0 & 2\\0 & 1 & 0\\0 & 0 & 1\end{bmatrix}\begin{bmatrix}1 & 0 & -2\\0 & 1 & 0\\0 & 0 & 1\end{bmatrix} = \mathbf{A}\begin{bmatrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{bmatrix} = \mathbf{A}.$$

Algo similar ocurre cuando multiplicamos y dividimos una columna por $\alpha \neq 0$:

$$\mathbf{A}_{\frac{\tau}{[(5)2]}[(\frac{1}{5})2]} = \mathbf{A} \begin{pmatrix} \mathbf{I}_{\frac{\tau}{[(5)2]}} \end{pmatrix} \begin{pmatrix} \mathbf{I}_{\frac{\tau}{[(5)2]}} \end{pmatrix} = \mathbf{A} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{5} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{A} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{A}$$

En general,

$$\mathbf{A}_{\underset{[(\lambda)i+j][(-\lambda)i+j]}{\boldsymbol{\tau}}} = \mathbf{A}_{\underset{[(-\lambda)i+j][(\lambda)i+j]}{\boldsymbol{\tau}}} = \mathbf{A} \qquad \qquad \mathbf{y} \qquad \qquad \mathbf{A}_{\underset{[(\alpha)i][\left(\frac{1}{\alpha}\right)i]}{\boldsymbol{\tau}}} = \mathbf{A}_{\underset{[(\frac{1}{\alpha})i][(\alpha)i]}{\boldsymbol{\tau}}} = \mathbf{A},$$

es decir, para toda transformación elemental τ existe otra, que denotamos τ^{-1} , tal que

$$\mathbf{A}_{(\boldsymbol{\tau}^{-1})\boldsymbol{\tau}} = \mathbf{A}_{\boldsymbol{\tau}(\boldsymbol{\tau}^{-1})} = \mathbf{A}. \tag{5.1}$$

Recordando que $\mathbf{A}_{\boldsymbol{\tau}_1\boldsymbol{\tau}_2} = \left(\mathbf{A}_{\boldsymbol{\tau}_1}\right)_{\boldsymbol{\tau}_2} = \left(\mathbf{A}_{\boldsymbol{\tau}_1}\right)\mathbf{I}_{\boldsymbol{\tau}_2}$ podemos expresar (5.1) como

$$\left(\mathbf{A}_{\boldsymbol{\tau}^{-1}}\right)\mathbf{I}_{\boldsymbol{\tau}} = \left(\mathbf{A}_{\boldsymbol{\tau}}\right)\mathbf{I}_{\boldsymbol{\tau}^{-1}} = \mathbf{A};$$

si en particular $\mathbf{A} = \mathbf{I}$ tenemos que

$$\left(\mathbf{I}_{\boldsymbol{\tau}^{-1}}\right)\mathbf{I}_{\boldsymbol{\tau}} = \left(\mathbf{I}_{\boldsymbol{\tau}}\right)\mathbf{I}_{\boldsymbol{\tau}^{-1}} = \mathbf{I} \qquad \Longrightarrow \qquad \left(\mathbf{I}_{\boldsymbol{\tau}^{-1}}\right) = \left(\mathbf{I}_{\boldsymbol{\tau}}\right)^{-1}.$$

Así pues, llegamos al siguiente

Teorema 5.1.8. Para toda matriz elemental I_{τ} , existe otra matriz elemental $I_{\tau^{-1}}$, tal que

$$\mathbf{I}_{\boldsymbol{\tau}}\mathbf{I}_{\boldsymbol{\tau}^{-1}}=\mathbf{I}_{\boldsymbol{\tau}^{-1}}\mathbf{I}_{\boldsymbol{\tau}}=\mathbf{I}.$$

En particular:

Como toda transformación elemental es invertible, también lo es cualquier sucesión de transformaciones elementales (por ejemplo un intercambio). Es decir, se verifica la siguiente

Proposición 5.1.9. Si \mathbf{A} es producto de matrices elementales, entonces existe \mathbf{B} (también producto de matrices elementales) tal que $\mathbf{A}\mathbf{B} = \mathbf{I} = \mathbf{B}\mathbf{A}$ (es decir, si $\mathbf{A} = \mathbf{I}_{\tau_1 \cdots \tau_k}$ entonces es invertible).

Pero hay que tener en cuenta que la última trasformación realizada ha de ser la primera en ser invertida (como cuando uno se pone los calcetines y luego los zapatos... para descalzarse se empieza por los zapatos y se finaliza por los calcetines); así, si se realizan una serie de trasformaciones elementales en determinado orden, se deshacen en el orden inverso —véase la Proposición 5.1.3.

Cualquier matriz $\mathbf{E} = \mathbf{I}_{\tau_1 \cdots \tau_k}$ es invertible por ser producto de matrices elementales, en particular,

$$\left(\mathbf{I}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k}\right)\left(\mathbf{I}_{\boldsymbol{\tau}_k^{-1}\cdots\boldsymbol{\tau}_1^{-1}}\right) = \left(\mathbf{I}_{\boldsymbol{\tau}_1}\right)\cdots\left(\mathbf{I}_{\boldsymbol{\tau}_k}\right)\left(\mathbf{I}_{\boldsymbol{\tau}_k^{-1}}\right)\cdots\left(\mathbf{I}_{\boldsymbol{\tau}_1^{-1}}\right) = \mathbf{I}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k\;\boldsymbol{\tau}_k^{-1}\cdots\boldsymbol{\tau}_1^{-1}} = \mathbf{I};$$

por lo que podemos denotar $\boldsymbol{\tau}_k^{\text{-}1} \cdots \boldsymbol{\tau}_1^{\text{-}1}$ como $(\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k)^{\text{-}1}$. Así pues,

$$\mathbf{E}^{-1} = \mathbf{I}_{\boldsymbol{\tau}_{k}^{-1} \cdots \boldsymbol{\tau}_{1}^{-1}} = \mathbf{I}_{(\boldsymbol{\tau}_{1} \cdots \boldsymbol{\tau}_{k})^{-1}}.$$

```
Tr = T([ (3,2), (5,2,3), (10,1,2) ], 'h'); Tr # Secuencia de transformaciones
# el parámetro 'h' es para mostrar
# la secuencia en 'h'orizontal

7 7 7 7 7 [(3)2][(5)2+3][(10)1+2]
```

Tr**(-1) # Inversa de la secuencia de transf.
$$\begin{matrix} \tau & \tau & \tau \\ [(-10)1+2][(-5)2+3]\left[\left(\frac{1}{3}\right)2\right] \end{matrix}$$

5.1.2. Matrices pre-escalonadas con inversa.

Como primer paso para encontrar un algoritmo que calcule la inversa, demostraremos que una matriz K, de orden n, pre-escalonada y $sin\ columnas\ nulas$, se puede transformar en la matriz identidad I mediante una secuencia de transformaciones elementales

$$\mathbf{K}_{\tau_1 \cdots \tau_k} = \mathbf{K} (\mathbf{I}_{\tau_1 \cdots \tau_k}) = \mathbf{I}$$
 (Teorema 5.1.10).

Consecuentemente, K^{-1} es el producto de las correspondientes matrices elementales;

$$\mathbf{K}^{ extsf{-}1} = \mathbf{I}_{oldsymbol{ au}_1 \cdots oldsymbol{ au}_k}$$

Teorema 5.1.10. Si una matriz K, de orden n, es pre-escalonada y sin columnas nulas, existen k trasformaciones elementales tales que $K_{\tau_1 \cdots \tau_k} = I$.

Demostración. Como toda matriz pre-escalonada y sin columnas nulas tiene necesariamente pivotes en todas sus columnas, cualquier matriz cuadrada, pre-escalonada y sin columnas nulas, tiene pivotes en todas sus filas (pues cada pivote ocupa una fila y columna distintas, y todas sus columnas tienen pivote).

Por tanto, basta aplicar las k transformaciones $\tau_1, \dots \tau_k$ de la eliminación Gauss-Jordan (Corolario 4.3.3 en la página 51) que transforman K en su forma escalonada reducida $K_{\tau_1 \dots \tau_k}$; que en este caso resulta ser la matriz identidad de orden n (pues K, de orden n, tiene n pivotes).

Corolario 5.1.11. Si K es pre-escalonada y cuadrada, las siguientes propiedades son equivalentes

- 1. K no tiene columnas nulas
- 2. K es un producto de matrices elementales
- 3. K tiene inversa

Demostración.

 $1. \Rightarrow 2$. Si **K** no tiene columnas nulas, existen transf. elementales $\tau_1 \cdots \tau_k$ tales que $K_{\tau_1 \cdots \tau_k} = I$; así que

donde $\left(\mathbf{I}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k}\right)^{-1} = \mathbf{I}_{(\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k)^{-1}} = \mathbf{I}_{\boldsymbol{\tau}_k^{-1}\cdots\boldsymbol{\tau}_1^{-1}}$ es un producto de matrices elementales.

- $2. \Rightarrow 3.$ ¡Ya se sabe! Proposición 5.1.9 en la página anterior.
- $3. \Rightarrow 1.$ ¡Ya se sabe!... si tuviera columnas nulas sería singular por la Proposición 5.1.7 en la página 58.

(compare con la salida del bloque de código anterior y fíjese cómo la primera transformación inversa deshace la última del bloque anterior, la segunda deshace la penúltima, etc.)

Librería NAcAL para Python I(K.n) & (R.TrC)**-1 # al aplicar la inversa de las #Transf. sobre I(3) recuperamos K $\begin{bmatrix} 0 & 5 & 0 \\ 2 & 0 & 0 \\ 6 & 9 & 3 \end{bmatrix}$

(K.n es el número de columnas de K, así que I(K.n) es la matriz identidad de orden 3)

5.1.3. Matrices invertibles

El siguiente corolario caracteriza las matrices con inversa. Además, nos dice cómo verificar si A es invertible:

■ A es invertible si y solo si tiene alguna forma pre-escalonada sin columnas nulas.

Corolario 5.1.12 (Caracterización de las matrices invertibles). Dada A de orden n, las siguientes propiedades son equivalentes

- 1. Al (pre)escalonar A se obtiene una matriz sin columnas nulas.
- 2. A es producto de matrices elementales.
- 3. A tiene inversa.

Demostraci'on.

 $1.\Rightarrow 2.$ Por el Teorema 4.3.1 sabemos que existen $\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k$ tales que $\boldsymbol{\mathsf{A}}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k}=\boldsymbol{\mathsf{K}}$ es pre-escalonada; y si $\boldsymbol{\mathsf{K}}$ no tiene columnas nulas, entonces es producto de p matrices elementales, $\boldsymbol{\mathsf{K}}=\boldsymbol{\mathsf{I}}_{\boldsymbol{\tau}_1'\cdots\boldsymbol{\tau}_n'}$:

$$\begin{split} \mathbf{A} \big(\mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \big) &= \big(\mathbf{I}_{\boldsymbol{\tau}_1' \cdots \boldsymbol{\tau}_p'} \big) \\ \mathbf{A} \big(\mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \big) \big(\mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \big)^{-1} &= \big(\mathbf{I}_{\boldsymbol{\tau}_1' \cdots \boldsymbol{\tau}_p'} \big) \big(\mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \big)^{-1} \\ \mathbf{A} &= \big(\mathbf{I}_{(\boldsymbol{\tau}_1' \cdots \boldsymbol{\tau}_p')} \big) \big(\mathbf{I}_{(\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k)^{-1}} \big) &= \mathbf{I}_{\boldsymbol{\tau}_1' \cdots \boldsymbol{\tau}_p' \boldsymbol{\tau}_k^{-1} \cdots \boldsymbol{\tau}_1^{-1}}, \end{split}$$

- $2. \Rightarrow 3.$ ¡Ya se sabe! Proposición 5.1.9 en la página 59
- $3. \Rightarrow 1.$ Sean $\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k$ tales que $\mathbf{A}(\mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k}) = \mathbf{K}$ es pre-escalonada. Entonces, puesto que $\mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k}$ es invertible, \mathbf{A} es invertible si y solo si \mathbf{K} es invertible (Proposición 5.1.4 en la página 57).

Por tanto, para saber si una matriz cuadrada es singular o si es invertible, basta con aplicar la eliminación y verificar si la forma pre-escalonada encontrada tiene columnas nulas o no.

61

A = Matrix([[2,-1,0], [-1,2,-1], [0,-1,2]])

K = Elim(A,1) # una forma pre-escalonada de A

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \xrightarrow{\begin{bmatrix} (2)2 \\ (1)1+2 \end{bmatrix}} \begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & -1 \\ 0 & -2 & 2 \end{bmatrix} \xrightarrow{\begin{bmatrix} (1)2+3 \\ (1)2+3 \end{bmatrix}} \begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & 0 \\ 0 & -2 & 4 \end{bmatrix}$$

(Como A es cuadrada y la forma pre-escalonada K no tiene columnas nulas, A es invertible.)

Podemos ver las transformaciones que hemos aplicado para llegar a la forma pre-escalonada K con:

```
Tr = K.TrC # Transformaciones aplicadas a las columnas
T(Tr, 'h') # Las representaremos en 'h'orizontal

7 7 7 7
[(2)2][(1)1+2][(3)3][(1)2+3]
```

Aplicado la inversa de dichas transformaciones sobre K recuperamos la matriz original A:

Matrix(K) & (Tr**-1) # es A
$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Es decir, $\mathbf{A} = \left(\mathbf{I}_{\boldsymbol{\tau}_1'\cdots\boldsymbol{\tau}_p'}\right)_{\boldsymbol{\tau}_1^{-1}\cdots\boldsymbol{\tau}_1^{-1}}$ donde $\mathbf{I}_{\boldsymbol{\tau}_1'\cdots\boldsymbol{\tau}_p'} = \mathbf{K}$ es pre-escalonada, como en la demostración anterior:

$$\mathbf{K}_{\frac{\mathbf{7}}{[(-1)^{2+3}]}[\frac{\mathbf{7}}{[\frac{1}{3}]^3]^{[(-1)^{1+2}]}[\frac{\mathbf{7}}{[\frac{1}{2}]^2]}} = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & 0 \\ 0 & -2 & 4 \end{bmatrix}_{\frac{\mathbf{7}}{[(-1)^{2+3}]}[\frac{\mathbf{7}}{[\frac{1}{2}]^3]^{[(-1)^{1+2}]}[\frac{\mathbf{7}}{[\frac{1}{2}]^2]}} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} = \mathbf{A}.$$

La siguiente proposición nos ofrece una nueva característica de las matrices NO invertibles:

■ Si A tiene columnas que son combinación lineal del resto, entonces es singular.

EJERCICIO 30. Demuestre la siguiente proposición.

B

Proposición 5.1.13. Sea **A** de orden n; si alguna de sus columnas es combinación lineal del resto (o si alguna de sus filas es combinación lineal del resto), entonces **A** es singular.

Y ahora veamos que si A y B son de orden n y AB = I, entonces A y B son una la inversa de la otra.

Este resultado es de gran importancia, pues nos dice que para comprobar que una matriz *cuadrada* es invertible, basta ver si existe inversa por uno cualquiera de sus lados.

Como nos apoyaremos en la eliminación para su demostración, no hemos podido ver antes este resultado.

Proposición 5.1.14. Para A y B de orden n se verifican las siguientes propiedades:

- Si B es singular, entonces AB es singular.
- Si A es singular, entonces AB es singular.
- $Si \ AB = I$, entonces tanto $A \ como \ B \ son invertibles <math>y \ B = A^{-1}$.

Demostración. Vayamos punto por punto:

- Si B es singular, la última columna de cualquiera de sus formas escalonadas es nula. Consecuentemente si E es invertible y tal que BE es escalonada, entonces la última columna de ABE es nula. Y por tanto ABE es singular, pero como E es invertible, necesariamente AB es singular.
- Como \mathbf{A} es singular su transpuesta también. Por tanto $\mathbf{B}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}$ es singular (punto anterior). Pero como $\mathbf{B}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}} = (\mathbf{A}\mathbf{B})^{\mathsf{T}}$ es singular, entonces su transpuesta $\mathbf{A}\mathbf{B}$ también.
- Como I es invertible, por el punto anterior, A tiene que ser invertible, es decir, existe A⁻¹. Multiplicando ambos lados por A⁻¹ obtenemos el resultado deseado:

$$\mathbf{A}^{-1}(\mathbf{A}\mathbf{B}) = \mathbf{A}^{-1}\mathbf{I} \quad \Rightarrow \quad \mathbf{B} = \mathbf{A}^{-1}.$$

B

¡Ya tenemos las piezas para diseñar un algoritmo que encuentre la inversa de una matriz! (lo hace buscando la inversa por el lado derecho mediante eliminación por columnas).

La eliminación permite encontrar una forma pre-escalonada de toda matriz (Teorema 4.3.1 en la página 49)

$$\mathbf{A}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_n} = \mathbf{K},$$

y si K no tiene columnas nulas, aplicando Gauss-Jordan, se puede continuar con las transformaciones elementales hasta reducir K hasta I (Teorema 5.1.10 en la página 60)

$$\mathbf{K}_{\pmb{\tau}_{(p+1)}\cdots \pmb{\tau}_k} = \mathbf{I}.$$

Por tanto, la sucesión de k transformaciones elementales $\tau_1\cdots\tau_p$, $\tau_{(p+1)}\cdots\tau_k$ transforma ${\sf A}$ en ${\sf I}$

$$\mathbf{A}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} = \mathbf{A} (\mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k}) = \mathbf{I};$$

es decir, si K no tiene columnas nulas, entonces $\boxed{\mathsf{A}^{\text{-1}} = \mathsf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k}}$; y si las tiene entonces $\mathsf{A}^{\text{-1}}$ no existe.

ibrería NAcAL para Python

```
a, b, c, d = sympy.symbols('a b c d') # definimos las variables simbólicas
A = Matrix([[a,b], [c,d]]) # definimos la matriz
R = ElimGJ(A,1) # Eliminación hasta obtener la Identidad
Tr = R.TrC # Transformaciones de las Columnas
```

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \xrightarrow{\begin{bmatrix} (-\frac{b}{a})\mathbf{1}+\mathbf{2} \end{bmatrix}} \begin{bmatrix} a & 0 \\ c & d - \frac{bc}{a} \end{bmatrix} \xrightarrow{\begin{bmatrix} (-\frac{ac}{ad-bc})\mathbf{2}+\mathbf{1} \end{bmatrix}} \begin{bmatrix} a & 0 \\ 0 & d - \frac{bc}{a} \end{bmatrix} \xrightarrow{\begin{bmatrix} (\frac{a}{ad-bc})\mathbf{2} \end{bmatrix}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(asumiendo que $a \neq 0$ y que $ad - bc \neq 0$.).

Ahora ya sabemos que aplicando las transformaciones sobre las columnas de I obtenemos la inversa

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}_{\substack{\boldsymbol{\tau} \\ \left[\left(-\frac{b}{a}\right)1+2\right]\left[\left(-\frac{ac}{ad-bc}\right)2+1\right]\left[\left(\frac{1}{a}\right)1\right]\left[\left(\frac{a}{ad-bc}\right)2\right]}} = \begin{bmatrix} \frac{d}{ad-bc} & -\frac{b}{ad-bc} \\ -\frac{c}{ad-bc} & \frac{a}{ad-bc} \end{bmatrix}$$

Librería NAcAL para Python

A * (I(2) & Tr) # comprobación de que I(2) & Tr es la inversa de A $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

... Pero aplicar k transformaciones elementales $\tau_1 \cdots \tau_k$ a las columnas de \mathbf{A} hasta tener \mathbf{I} , y después aplicar dichas transformaciones a las columnas de la matriz identidad \mathbf{I}_{τ_i} puede ser bastante pesado.

¿Hay alguna una forma de realizar ambas operaciones a la vez: la transformación $\mathbf{A}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k}=\mathbf{I}$ y la transformación $\mathbf{I}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k}=\mathbf{A}^{-1}$?

!Si! y es sencillísimo... basta "alargar" las columnas de ${\sf A}$ con ${\sf I}$ y entonces aplicar ${\pmb au}_1 \cdots {\pmb au}_k$ a $\cfrac{{\sf A}}{{\sf I}}$.

5.2. Secuencias de transformaciones elementales. Parte II

Concatenando \mathbf{A} y \mathbf{B} (ambas con el mismo número de columnas), es decir, alargando las columnas de \mathbf{A} poniendo las de \mathbf{B} por debajo $\frac{\mathbf{A}}{\mathbf{B}}$; podemos aplicar una transformación elemental $\boldsymbol{\tau}$ a las columnas de esta matriz "alargada", y el resultado es equivalente a transformar tanto \mathbf{A} como \mathbf{B} y concatenar luego las matrices resultantes:

$$\frac{\begin{bmatrix} \mathbf{A} \\ \mathbf{B} \end{bmatrix} \xrightarrow{\boldsymbol{\tau}} \begin{bmatrix} \mathbf{A} \\ \mathbf{B} \end{bmatrix}_{\boldsymbol{\tau}} = \begin{bmatrix} \mathbf{A}_{\boldsymbol{\tau}} \\ \mathbf{B}_{\boldsymbol{\tau}} \end{bmatrix},$$

de manera que la columna jésima $\begin{bmatrix} \mathbf{A}_{\tau} \\ \mathbf{B}_{\tau} \end{bmatrix}_{|j|}$ es la concatenación de las columnas $(\mathbf{A}_{\tau})_{|j|}$ y $(\mathbf{B}_{\tau})_{|j|}$.

Lo mismo ocurre si aplicamos una secuencia de k transformaciones elementales:

$$\frac{\begin{bmatrix} \mathbf{A} \\ \mathbf{B} \end{bmatrix}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} = \frac{\begin{bmatrix} \mathbf{A}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \\ \mathbf{B}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \end{bmatrix}.$$

Por tanto, si antes de realizar las transformaciones "pegamos" por debajo de $\mathbf{A} = \begin{bmatrix} 0 & 1 & 5 \\ 7 & 0 & 4 \end{bmatrix}$ la matriz \mathbf{I} de orden 3 y aplicamos algunas transformaciones:

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 5 \\ 7 & 0 & 4 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} \mathbf{C} \\ [(3)\mathbf{2}] \\ [(3)\mathbf{2}] \\ (0 & 0 & 1 \end{bmatrix}} \begin{bmatrix} 0 & 3 & 5 \\ 7 & 0 & 4 \\ 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} \mathbf{C} \\ [(2)\mathbf{1}+\mathbf{2}] \\ (2)\mathbf{1}+\mathbf{2}] \\ (2)\mathbf{1}+\mathbf{2}]} \begin{bmatrix} 0 & 3 & 5 \\ 7 & 14 & 4 \\ 1 & 2 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{\tau} \\ \frac{\mathbf{C}}{[(3)\mathbf{2}][(2)\mathbf{1}+\mathbf{2}]} \\ \mathbf{I} & \mathbf{\tau} \\ \frac{\mathbf{C}}{[(3)\mathbf{2}][(2)\mathbf{1}+\mathbf{2}]} \end{bmatrix},$$

entonces sin necesidad de multiplicar sabemos por una parte que

$$\mathbf{I}_{\substack{\tau \\ [(3)\mathbf{2}][(2)\mathbf{1}+\mathbf{2}]}}^{} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad \text{y por la otra que} \quad \mathbf{A}_{\substack{\tau \\ [(3)\mathbf{2}][(2)\mathbf{1}+\mathbf{2}]}}^{} = \begin{bmatrix} 0 & 3 & 5 \\ 7 & 14 & 4 \end{bmatrix}.$$

Teniendo en cuenta lo anterior, podemos calcular fácilmente la inversa de ${\bf A}$: basta con "pegar" la matriz identidad debajo y tratar de transformar la submatriz superior (la matriz ${\bf A}$) en la matriz identidad ${\bf I}$ mediante transformaciones elementales.

Ejemplo 11.

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 2 & -2 \\ \hline 1 & 0 \\ 0 & 1 \end{bmatrix} \xrightarrow{[(1)2+1]} \begin{bmatrix} \mathbf{7} \\ 0 & -2 \\ \hline 1 & 0 \\ 1 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} (\frac{1}{5})1 \\ 0 & -2 \\ \hline 1 & 0 \\ 1 & 1 \end{bmatrix}} \begin{bmatrix} \frac{\mathbf{7}}{(\frac{1}{5})1} \\ \frac{[(\frac{-1}{2})^2]}{(\frac{1}{5})^2} \\ \frac{1}{1/5} & 0 \\ 1/5 & -1/2 \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{\boldsymbol{\tau}_1\boldsymbol{\tau}_2\boldsymbol{\tau}_3} \\ \mathbf{I}_{\boldsymbol{\tau}_1\boldsymbol{\tau}_2\boldsymbol{\tau}_3} \end{bmatrix}.$$

Puesto que $\mathbf{A}_{\boldsymbol{\tau}_1\boldsymbol{\tau}_2\boldsymbol{\tau}_3} = \mathbf{I}$, entonces $\mathbf{I}_{\boldsymbol{\tau}_1\boldsymbol{\tau}_2\boldsymbol{\tau}_3} = \begin{bmatrix} 1/5 & 0 \\ 1/5 & -1/2 \end{bmatrix} = \mathbf{A}^{-1}$.

Método para encontrar la inversa de una matriz (cuadrada)

- 1. Con transformaciones elementales de las columnas encuentre una forma escalonada reducida de $\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix}$.
- 2. Si en la matriz obtenida $\left[\begin{array}{c} \mathbf{R} \\ \mathbf{I}_{\tau_1 \cdots \tau_k} \end{array} \right]$ la submatriz \mathbf{R} tiene columnas nulas, entonces \mathbf{A} no tiene inversa.
- 3. En caso contrario, $\mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k}$ es la inversa de \mathbf{A} .

5.3. Inversa de una matriz triangular

Definición 5.4. Decimos que una matriz L es triangular inferior cuando todos los componentes por encima de la diagonal principal son nulos, es decir, si $l_{ij} = 0$ cuando $i \leq j$.

Por ejemplo las matrices

$$\mathbf{A} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm} \end{bmatrix}; \quad \mathbf{B} = \begin{bmatrix} b_{11} & 0 & \cdots & 0 & 0 \\ b_{21} & b_{22} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mp} & 0 \end{bmatrix}; \quad \mathbf{y} \quad \mathbf{C} = \begin{bmatrix} c_{11} & 0 & \cdots & 0 \\ c_{21} & c_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mn} \end{bmatrix}.$$

Las tres son triangulares inferiores, aunque solo \boldsymbol{A} es cuadrada. Fíjese que las componentes de la diagonal principal y por debajo pueden tomar cualquier valor (por eso el nombre de "inferior")...; Por tanto, una matriz nula $\boldsymbol{0}$ siempre es triangular inferior... y también es triangular superior...

Definición 5.5. Decimos que una matriz U es triangular superior cuando todos los componentes por debajo la diagonal principal son nulos, es decir, si $u_{ij} = 0$ cuando $i \ge j$.

Por tanto, una matriz es triangular superior si su transpuesta es triangular inferior.

Las matrices diagonales son simultáneamente triangulares superiores e inferiores.

Veamos ahora que una matriz triangular no puede tener ceros en la diagonal principal y ser invertible.

Por ejemplo, la siguiente matriz no es invertible, pues es imposible encontrar un vector (x, y, z) tal que

$$\begin{bmatrix} 1 & a & b \\ & 0 & c \\ & & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \mathbf{I}_{|2}.$$

Por una parte z es necesariamente cero, y por otra, con la primera y segunda columnas no podemos obtener la segunda componente del vector del lado derecho... Ahora vayamos con la demostración general.

Proposición 5.3.1. Una matriz triangular invertible no tiene ceros en la diagonal principal.

Demostración. Si A es triangular superior (si las componentes por debajo de la diagonal son nulas).

¿Puede haber un cero en a_{11} ? (en la primera posición de la diagonal). Puesto que las componentes por debajo de la diagonal son cero, si además a_{11} también fuera cero, entonces la primera columna seria nula, lo cual es imposible dado que **A** es invertible. **Por tanto** a_{11} **no puede ser cero.**

¿Puede haber un primer cero en la posición jésima de la diagonal? Por ser el primer cero de la diagonal, las anteriores componentes de la diagonal serían distintas de cero. Así que aplicando eliminación, podemos anular todas las componentes por encima de a_{jj} ; pero como todas las componentes por debajo también son cero (por ser la matriz triangular superior), anularíamos la columna; algo imposible, pues **A** es invertible. **Así que** a_{jj} **tampoco puede ser cero.** (La demostración es semejante para una triangular inferior)

Consecuentemente, una matriz triangular inferior e invertible está necesariamente escalonada, pues los elementos en la diagonal son distintos de cero. Así, para encontrar la inversa solo necesitamos aplicar las dos últimas etapas de la eliminación Gauss-Jordan: *la eliminación "de derecha a izquierda"* para anular (en cada fila) los componentes situados a la izquierda de la diagonal, y *normalizar los pivotes* dividiendo cada columna por el valor de su pivote (fíjese en el Ejemplo 11 en la página anterior).

$$\begin{bmatrix} \mathbf{L} \\ \mathbf{I} \end{bmatrix} \xrightarrow{\boldsymbol{\tau}_1, \dots, \boldsymbol{\tau}_n} \begin{bmatrix} \mathbf{I} \\ \mathbf{L}^{-1} \end{bmatrix}.$$

Como las transformaciones aplicadas en la eliminación "de derecha a izquierda" (y en la normalización) no modifican las componentes nulas a la derecha (y por encima) de la diagonal principal de la matriz identidad, llegamos a la siguiente conclusión:

Proposición 5.3.2. La inversa de una matriz triangular inferior es triangular inferior.

Además, puesto que la inversa de transpuesta es la transpuesta de la inversa, tenemos el siguiente corolario:

Corolario 5.3.3. La inversa de una matriz triangular superior es triangular superior.

Vimos (Corolario 5.1.12) que si una matriz es invertible, ninguna de sus formas pre-escalonadas tiene columnas nulas. Una generalización de este resultado da lugar a la definición de rango que usaremos aquí.

5.4. Rango de una matriz

Puesto que una forma escalonada es tan solo una reordenación de las columnas de una pre-escalonada (Corolario 4.3.2), y como es mucho más sencillo visualizar la estructura de una forma escalonada; el siguiente razonamiento lo realizaremos usando matrices escalonadas sin pérdida de generalidad.

Supongamos que $\mathsf{E} = \mathsf{I}_{\tau_1 \cdots \tau_k}$ y $\mathsf{E}' = \mathsf{I}_{\tau_1' \cdots \tau_p'}$ son dos matrices invertibles tales que $\mathsf{AE} = \mathsf{L}$ y $\mathsf{AE}' = \mathsf{L}'$ son escalonadas. Veamos que las posiciones de los pivotes de L y L' son coincidentes.

Por simetría basta comprobar que la posición de pivote de cualquier columna no nula de L' coincide con la posición de pivote de alguna columna no nula de L^1 . Para ello tendremos en cuenta que como

$$L' = AE' = LE^{-1}E',$$
 pues $A = LE^{-1},$

por tanto las columnas de $\mathbf{L}' = \mathbf{L} \left(\mathbf{E}^{-1} \mathbf{E}' \right)$ son combinación lineal de las de \mathbf{L} . Además, por ser \mathbf{L} escalonada, la posición del pivote de cualquier combinación lineal de columnas de \mathbf{L} coincide con la posición de pivote de la primera columna que esté multiplicada por un número no nulo. Por ejemplo, si la primera componente no nula del vector está en la tercera posición, obtenemos un vector cuyo pivote tiene la misma posición que el pivote de la tercera columna (es decir, quinta fila):

donde "*" son pivotes y " $\star \neq 0$ ".

Así pues, la posición del pivote de cualquier combinación lineal de columnas de L coincide con la posición del pivote de alguna de columna de L... y por tanto la posición de pivote de cada columna de L' (que es una combinación de las columnas de L) coincide con la posición de pivote de alguna columna L; y lo mismo se puede decir de las columnas de L respecto de las de L', pues $L = L'((E')^{-1}E)$. Concluimos que como las posiciones de los pivotes de L y L' son coincidentes, el numero de columnas no nulas de L coincide con el número de columnas no nulas de L'. Este resultado nos permite dar la siguiente definición:

Definición 5.6 (Rango de una matriz). El rango de **A** es el número de columnas no nulas de cualquiera de sus formas pre-escalonadas, es decir, el número de pivotes de cualquiera de sus formas pre-escalonadas.

5.4.1. Algunas propiedades del rango de una matriz

Proposición 5.4.1. Si E es invertible, entonces rango $(\mathsf{A}) = \operatorname{rango}(\mathsf{A}\mathsf{E})$.

Demostración. Con ambas matrices se pueden obtener idéntica forma pre-escalonada $\mathbf{A}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k}$:

$$\text{Sea } \mathbf{E} = \mathbf{I}_{\boldsymbol{\tau}_1' \cdots \boldsymbol{\tau}_p'}, \text{ entonces } \mathbf{A}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} = \left(\mathbf{A} \mathbf{E} \mathbf{E}^{\text{-}1}\right)_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} = \left(\mathbf{A} \mathbf{E}\right)_{(\boldsymbol{\tau}_1' \cdots \boldsymbol{\tau}_p')^{-1} \boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k}.$$

Proposición 5.4.2. El rango de AB es menor o igual que el de B.

Demostración. Sea $\textbf{E}=\textbf{I}_{\tau_1\cdots\tau_k}$ tal que BE=Les escalonada. Entonces

 $^{^1}$ por "simetría" me refiero a que siguiendo el mismo razonamiento también se llega a que la posición del pivote de cualquier columna no nula de L coincide con la posición del pivote el de alguna columna no nula de L'

- Aplicando la proposición anterior tenemos que en particular: rango (AB) = rango ((AB)E).
- Por otra parte tenemos que (AB)E = A(BE) = AL, y si k es el número de columnas nulas de la matriz escalonada L, las últimas k columnas de AL son necesariamente nulas.
- lacktriangle Si realizamos transformaciones elementales sobre las columnas de lacktriangle de manera que no modificamos las k últimas, obtendremos una forma escalonada con al menos k columnas nulas. Por tanto, el rango de lacktriangle es menor o igual que el rango de lacktriangle, por lo que finalmente concluimos que

$$\operatorname{rango}(\mathbf{AB}) = \operatorname{rango}(\mathbf{ABE}) = \operatorname{rango}(\mathbf{AL}) \le \operatorname{rango}(\mathbf{L}) = \operatorname{rango}(\mathbf{B}).$$

Proposición 5.4.3. Si E es invertible, entonces rango (EA) = rango(A).

Demostración. La proposición anterior nos indica que rango $(\mathbf{E}\mathbf{A})$ ≤ rango (\mathbf{A}) , pero también nos indica que rango $(\mathbf{E}^{-1}(\mathbf{E}\mathbf{A}))$ ≤ rango $(\mathbf{E}\mathbf{A})$; por tanto rango (\mathbf{A}) ≤ rango $(\mathbf{E}\mathbf{A})$. Por tanto, rango $(\mathbf{E}\mathbf{A})$ = rango (\mathbf{A}) .

Aplicando eliminación gaussina por filas² a una matriz escalonada reducida \mathbf{R} (anulando las componentes por debajo de los pivotes y dejando las filas nulas por debajo de las no nulas), obtenemos una matriz \mathbf{S} escalonada reducida cuyos pivotes están en la diagonal principal. Así, tanto \mathbf{S} como su transpuesta son diagonales (con idéntica diagonal); consecuentemente rango $(\mathbf{S}) = \text{rango}(\mathbf{S}^{\mathsf{T}})$:

Vamos a aprovechar este hecho para demostrar la siguiente proposición.

Proposición 5.4.4. Si R es escalonada reducida, entonces rango (R) = rango (R^{T}) .

Demostración. Puesto que podemos encontrar una matriz invertible \mathbf{E} tal que $\mathbf{E}\mathbf{R} = \mathbf{S}$ es diagonal. Así, por las proposiciones 5.4.3 y 5.4.1, y puesto que \mathbf{E}^{T} también es invertible:

$$\operatorname{rango}(\mathbf{R}) = \operatorname{rango}(\mathbf{E}\mathbf{R}) = \operatorname{rango}(\mathbf{S}) = \operatorname{rango}(\mathbf{S}^{\mathsf{T}}) = \operatorname{rango}(\mathbf{R}^{\mathsf{T}}\mathbf{E}^{\mathsf{T}}) = \operatorname{rango}(\mathbf{R}^{\mathsf{T}}).$$

 $^{^2{\}mbox{V\'e}}ase el Apéndice 4.A en la página 52$

Proposición 5.4.5. rango $(\mathbf{A}) = \text{rango}(\mathbf{A}^{\mathsf{T}})$.

Demostración. Sea \mathbf{E} invertible tal que $\mathbf{A}\mathbf{E} = \mathbf{R}$ es escalonada reducida, entonces (aplicando la Proposición 5.4.3 en la última igualdad) tenemos que: rango $(\mathbf{A}) = \operatorname{rango}(\mathbf{A}\mathbf{E}) = \operatorname{rango}(\mathbf{R}) = \operatorname{rango}(\mathbf{R}^{\mathsf{T}}) = \operatorname{rango}(\mathbf{A}^{\mathsf{T}})$.

Y por último

Proposición 5.4.6. El rango de AB es menor o igual que el de A.

```
Demostraci\'on. \operatorname{rango}(\mathbf{AB}) = \operatorname{rango}(\mathbf{B}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}) \leq \operatorname{rango}(\mathbf{A}^{\mathsf{T}}) = \operatorname{rango}(\mathbf{A}).
```

```
Elim(A).rango # rango es una atributo de la clase Elim
A.rango() # rango() es un método de la clase Matrix
```

Rango completo por columnas (por filas). Una matriz cuyas formas pre-escalonadas tienen pivote en todas las columnas se dice que es de rango completo por columnas; y si tienen pivote en todas las filas se dice que es de rango completo por filas.

Rango completo. Una matriz que es de rango completo tanto por filas como por columnas (y que por tanto es cuadrada) se dice que es de rango completo.

Así pues, por el Corolario 5.1.11, una matriz de rango completo es invertible, pues es cuadrada y sin columnas nulas (por tener todas pivote).

Ahora ya puede completar el estudio de las transformaciones elementales con la Sección 4.B en la página 55. Aunque también puede posponer dicha lectura hasta el inicio de la Lección 17.

Parte III

Subespacios y resolución de sistemas de ecuaciones lineales

Espacios vectoriales y funciones lineales

B

El propósito de esta lección es introducir terminología abstracta que usaremos a partir de ahora. De paso recapitularemos lo visto hasta aquí empleando la nueva terminología.

Comenzaremos con los espacios vectoriales y las funciones lineales. Luego veremos formas de definir espacios más pequeños que uno dado (los subespacios) y espacios más grandes a partir de otros suespacios: mediantes productos cartesianos y con funciones cuya imagen está contenida en un espacio vectorial.

Casi cualquier espacio vectorial con el que se encuentre en otras disciplinas será fruto de un encadenamiento de espacios vectoriales de funciones y/o productos cartesianos, o subespacios de estos.

6.1. Espacios vectoriales

Para cualesquiera números reales a, b y c (y empleando la suma y producto habituales) se verifica que:

1.
$$a + b = b + a$$
.

2.
$$a + (b + c) = (a + b) + c$$
.

3.
$$a + 0 = a$$
.

4.
$$a + (-a) = 0$$
.

$$5. \ a(b+c) = ab + ac.$$

6.
$$(a+b)c = ac + bc$$
.

7.
$$a(bc) = (ab)c$$
.

8.
$$1a = a$$
.

También sabemos que si definimos la suma y el producto por escalares para \mathbb{R}^n como:

$$(a+b)_{|i} = a_{|i} + b_{|i}$$
 y $(\lambda b)_{|i} = \lambda (b_{|i}),$

se verifican las siguientes propiedades (Proposición 1.2.1 en la página 9):

1.
$$a + b = b + a$$

5.
$$\lambda(\boldsymbol{a} + \boldsymbol{b}) = \lambda \boldsymbol{a} + \lambda \boldsymbol{b}$$

2.
$$a + (b + c) = (a + b) + c$$

6.
$$(\lambda + \eta)\mathbf{a} = \lambda \mathbf{a} + \eta \mathbf{a}$$

3.
$$a + 0 = a$$

7.
$$\lambda(\eta \mathbf{a}) = (\lambda \eta) \mathbf{a}$$

4.
$$a + (-a) = 0$$

8.
$$1a = a$$

Y si definimos la suma y el producto por escalares para $\mathbb{R}^{m \times n}$ (matrices de orden m por n) como

$$(\mathbf{A} + \mathbf{B})_{|j} = \mathbf{A}_{|j} + \mathbf{B}_{|j} \qquad \mathbf{y} \qquad (\lambda \mathbf{A})_{|j} = \lambda (\mathbf{A}_{|j}),$$

se verifican las siguientes propiedades (Proposición 1.5.1 en la página 19):

1.
$$A + B = B + A$$

5.
$$\lambda(\mathbf{A} + \mathbf{B}) = \lambda \mathbf{A} + \lambda \mathbf{B}$$

2.
$$A + (B + C) = (A + B) + C$$

6.
$$(\lambda + \eta)\mathbf{A} = \lambda \mathbf{A} + \eta \mathbf{A}$$

3.
$$A + 0 = A$$

7.
$$\lambda(\eta \mathbf{A}) = (\lambda \eta) \mathbf{A}$$

4.
$$\mathbf{A} + (-\mathbf{A}) = \mathbf{0}$$

8.
$$1A = A$$

A primera vista es evidente que subyace una estructura común a \mathbb{R} , a \mathbb{R}^n y al conjunto de matrices $\mathbb{R}^{m \times m}$ (con sus respectivas operaciones de suma y producto por escalares). Esta estructura se denomina *espacio vectorial*.

Definición 6.1. Un espacio vectorial es un conjunto V de objetos¹ junto con dos operaciones que denominamos: suma y producto por escalares.

En cuanto a los elementos de V:

■ se denominan vectores y los denotaremos genéricamente con letras minúsculas en cursiva y con una flecha por encima: \vec{x} , \vec{y} , \vec{z} ,...

En cuanto a las operaciones:

lacksquare la suma asocia cualquier par de elementos de $\mathcal V$ con otro elemento de $\mathcal V$.

Dicho de otro modo, la suma de dos vectores, \vec{x} e \vec{y} , de \mathcal{V} es otro vector de \mathcal{V} que denotamos $\vec{x} + \vec{y}$. Esto se representa esquemáticamente con²

$$_+_: \begin{matrix} \mathcal{V} \times \mathcal{V} \to \mathcal{V} \\ (\overrightarrow{x}, \overrightarrow{y}) \to \overrightarrow{x} + \overrightarrow{y} \end{matrix}$$

(Puesto que sumando vectores de \mathcal{V} se obtienen elementos \mathcal{V} , se dice que \mathcal{V} es cerrado para la suma).

La operación suma debe verificar las siguientes cuatro propiedades:

- 1. $\vec{x} + \vec{y} = \vec{y} + \vec{x}$
- 2. $\vec{x} + (\vec{y} + \vec{z}) = (\vec{x} + \vec{y}) + \vec{z}$
- 3. Existe un vector, $\vec{0}$, que denotamos con $\vec{0}$ (vector nulo) tal que $\vec{x} + \vec{0} = \vec{x}$, para todo $\vec{x} \in \mathcal{V}$.
- 4. Para cada $\vec{x} \in \mathcal{V}$ existe un vector, que denotamos con $-\vec{x}$ (vector opuesto) tal que $\vec{x} + (-\vec{x}) = \vec{0}$.
- el producto por escalares asocia cualquier par, formado por un un escalar y un vector de V, con un vector de V.

Dicho de otro modo, el producto de $a \in \mathbb{R}$ por $\overrightarrow{x} \in \mathcal{V}$ es otro vector de \mathcal{V} que denotamos $a \cdot \overrightarrow{x}$. Esto se representa esquemáticamente con

$$-: -: \mathbb{R} \times \mathcal{V} \to \mathcal{V}$$

 $(a, \overrightarrow{y}) \to a \cdot \overrightarrow{x}$

(normalmente omitimos el "punto" y escribimos sencillamente $a\overrightarrow{x}$, que llamaremos $m\'{u}ltiplo$ de \overrightarrow{x}).

La operación producto por un escalar debe verificar las siquientes cuatro propiedades:

- 5. $a(\vec{x} + \vec{y}) = a\vec{x} + a\vec{y}$
- 6. $(a+b)\vec{x} = a\vec{x} + b\vec{x}$
- 7. $(ab)\vec{x} = a(b\vec{x})$
- 8. $1\vec{x} = \vec{x}$

Por tanto, y recordando lo visto en la Lección 1, sabemos que el conjunto de números reales \mathbb{R} , el conjunto de listas ordenadas \mathbb{R}^n y el conjunto de matrices $\mathbb{R}^{m \times n}$ (junto con las operaciones de suma y producto por escalares definidas respectivamente en a cada conjunto) son espacios vectoriales.

EJERCICIO 31. Demuestre que

- (a) si $\vec{z} + \vec{x} = \vec{x}$ para cualquier \vec{x} , entonces necesariamente $\vec{z} = \vec{0}$.
- (b) si $\vec{z} + \vec{x} = \vec{0}$ entonces $\vec{z} = -\vec{x}$.

¹objetos del mismo tipo: o números, o vectores, o matrices, o funciones, o polinomios, o variables aleatorias, etc.

 $^{^2\}mathrm{V\'e}$ ase la Sección 6.A.1 en la página 84 del apéndice a esta lección.

 $^{^3\}mathbf{y}$ por tanto $\mathcal{V}\neq\emptyset$

Por tanto, en todo espacio vectorial los vectores $\overrightarrow{0}$ y, para cada \overrightarrow{x} , el vector opuesto son únicos.

Notación. En el caso particular de \mathbb{R}^n usamos los símbolos a, x, 0, etc. para denotar las *listas ordenadas* de números reales (i.e., los vectores de \mathbb{R}^n); y en el caso de $\mathbb{R}^{m \times n}$ usamos A, X, 0, etc. para las matrices (i.e., los vectores de $\mathbb{R}^{m \times n}$). Pero en general denotamos los vectores de un espacio vectorial genérico \mathcal{V} con \overrightarrow{a} , \overrightarrow{x} , $\overrightarrow{0}$, etc.

Para denotar espacios vectoriales genéricos usaremos caracteres como: C, N, X, V, W...

囵

Fíjese que la definición de espacio vectorial es abstracta, pues nada se dice sobre la naturaleza de los objetos que constituyen el conjunto \mathcal{V} , como tampoco sobre la definición de las operaciones suma de vectores y producto de un escalar por un vector; tan solo se enumeran las propiedades que deben verificar las operaciones.

Consecuentemente, para definir un espacio vectorial concreto necesitaremos indicar qué elementos constituyen el conjunto; y definir las operaciones (suma y producto por escalares) de manera que verifiquen las propiedades indicadas. Implícitamente así lo hicimos en la Lección 1. (véase el ejercicio a continuación del recuadro)

EJERCICIO 32. Considere el conjunto de números reales *positivos*, \mathbb{R}^+ , junto con las siguientes definiciones: suma de \overrightarrow{x} e \overrightarrow{y} es xy; y el producto de un escalar por el vector \overrightarrow{x} es x^c , es decir,

$$-+-: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R} \qquad \text{y} \qquad -\cdot -: \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}$$
$$(\overrightarrow{x}, \overrightarrow{y}) \to xy \qquad \qquad (c, \overrightarrow{x}) \to x^c$$

Demuestre que \mathbb{R}^+ junto con las operaciones indicadas es un espacio vectorial. ¿Quien es $\overrightarrow{0}$ en este caso?

6.1.1. Algunas propiedades

Hay algunas propiedades muy elementales que se cumplen en cualquier espacio vectorial \mathcal{V} y que se deducen de las ocho propiedades descritas más arriba: para el vector nulo $\overrightarrow{0} \in \mathcal{V}$ y cualquier escalar a:

$$a\overrightarrow{0} = a(\overrightarrow{0} + \overrightarrow{0}) = a\overrightarrow{0} + a\overrightarrow{0}.$$

Restando $-(a\vec{0})$ a ambos lados deducimos que $\vec{0} = a\vec{0}$. Y para el escalar 0 y cualquier vector $\vec{x} \in \mathcal{V}$:

$$0\vec{x} = (0+0)\vec{x} = 0\vec{x} + 0\vec{x}$$

Restando $-(0\vec{x})$ a ambos lados deducimos que $\vec{0} = 0\vec{x}$. Además, $(-1)\vec{x} = -\vec{x}$, puesto que

$$\vec{x} + (-1)\vec{x} = 1\vec{x} + (-1)\vec{x} = (1-1)\vec{x} = 0\vec{x} = \vec{0}.$$

Por último, si $a\vec{v} = \vec{0}$, hay dos casos posibles. O bien a = 0; o si es distinto de cero, multiplicando ambos lados por a^{-1} , tenemos $a^{-1}(a\vec{v}) = a^{-1}\vec{0}$. Desarrollando el lado izquierdo llegamos a $a^{-1}(a\vec{v}) = (a^{-1}a)\vec{v} = 1\vec{v} = \vec{v}$; y el lado derecho es $\vec{0}$, pues $\vec{0}$ por cualquier escalar es $\vec{0}$. Así llegamos a que si $a \neq 0$ entonces $\vec{v} = \vec{0}$.

Acabamos de demostrar el siguiente

Teorema 6.1.1. Si V es un espacio vectorial

- 1. $\vec{0} = a \vec{0} \text{ para } \vec{0} \in \mathcal{V} \text{ y } a \in \mathbb{R}.$
- 2. $\vec{0} = 0 \vec{x} \ para \ \vec{x} \in \mathcal{V} \ y \ 0 \in \mathbb{R}$.
- 3. $(-1)\vec{x} = -\vec{x}$ para todo $\vec{x} \in \mathcal{V}$.
- 4. Si $a\vec{v} = \vec{0}$ o bien a = 0 o bien $\vec{v} = \vec{0}$.

Particularizando a los espacios \mathbb{R}^n y $\mathbb{R}^{m \times n}$ tenemos que:

En \mathbb{R}^n 1. $\mathbf{0} = a\mathbf{0}$ para $\mathbf{0} \in \mathbb{R}^n$ y $a \in \mathbb{R}$.

2. $\mathbf{0} = 0a$ para $\mathbf{x} \in \mathbb{R}^n$ y $0 \in \mathbb{R}$.

3. (-1)a = -a para todo $\mathbf{x} \in \mathbb{R}^n$.

4. Si $a\mathbf{x} = \mathbf{0}$ o bien a = 0 o bien $\mathbf{x} = \mathbf{0}$.

En $\mathbb{R}^{m \times n}$ 1. $\mathbf{0} = a\mathbf{0}$ para $\mathbf{0} \in \mathbb{R}^{m \times n}$ y $a \in \mathbb{R}$.

2. $\mathbf{0} = 0\mathbf{A}$ para $\mathbf{A} \in \mathbb{R}^{m \times n}$ y $0 \in \mathbb{R}$.

3. $(-1)\mathbf{A} = -\mathbf{A}$ para todo $\mathbf{A} \in \mathbb{R}^{m \times n}$.

4. Si $a\mathbf{A} = \mathbf{0}$ o bien a = 0 o bien $a = \mathbf{0}$ o bien $a = \mathbf{0}$.

Hemos visto que el conjunto de matrices m por n ($\mathbb{R}^{m \times n}$), las listas ordenadas de n números (\mathbb{R}^n) y el conjunto de números reales \mathbb{R} , comparten una estructura común: la estructura de espacio vectorial.

Dicha estructura consiste en un conjunto de objetos junto con las operaciones de *suma* y *producto por escalares* que verifican las mismas propiedades que ya vimos para la suma y producto para escalares en la Lección 1. Los elementos de un espacio vectorial \mathcal{V} se denominan *vectores* de \mathcal{V} .

En la Definición 2.2 de la Página 24 definimos las combinaciones lineales de vectores de \mathbb{R}^n . Ahora daremos una definición de combinación lineal para vectores de un espacio vectorial genérico \mathcal{V} :

Definición 6.2 (Combinación lineal). Sea $[\vec{v}_1; \vec{v}_2; \dots \vec{v}_n]$ un sistema de n vectores de \mathcal{V} . Llamamos combinación lineal a cualquier suma de múltiplos de dichos vectores:

$$a_1 \overrightarrow{v}_1 + a_2 \overrightarrow{v}_2 + \cdots + a_n \overrightarrow{v}_n$$

donde los "a_i" son los coeficientes de la combinación lineal.

En este curso trabajaremos principalmente con el espacio vectorial \mathbb{R}^n , pero debe saber que existen otros muchos conjuntos que (con la definición de suma y producto por escalares adecuada) poseen estructura de espacio vectorial y con los que usted se encontrará en otras asignaturas (véase la Sección 6.3.3).

6.2. Funciones lineales

El segundo término abstracto de la lección son las funciones lineales...

A lo largo de estas lecciones hemos indicado en numerosas ocasiones que ciertos operadores eran lineales. En cada una de esas ocasiones lo que hemos visto es un ejemplo de función lineal. ⁵

Definición 6.3 (Función lineal). Sean \mathcal{D} y \mathcal{V} dos espacios vectoriales. Decimos que la función $f: \mathcal{D} \to \mathcal{V}$ es lineal si satisface las siguientes propiedades:

- 1. Para todo $\vec{x}, \vec{y} \in \mathcal{D}, \quad f(\vec{x} + \vec{y}) = f(\vec{x}) + f(\vec{y}).$
- 2. Para todo $\vec{x} \in \mathcal{D}$ y para todo $\alpha \in \mathbb{R}$, $f(\alpha \vec{x}) = \alpha f(\vec{x})$.

Repasemos las operaciones empleadas hasta el momento y veremos que casi todas son funciones lineales...

6.2.1. Ejemplos de funciones lineales que ya hemos usado

Ejemplo 12. Las definiciones de suma y producto por escalares dadas en la Sección 1.2 en la página 6 convierten a la función $f(x) = x_{|i|}$ que selecciona la componente iésima de un vector de \mathbb{R}^n en una función

 $^{^4}$ Consideraremos como sinónimos los términos: función lineal, aplicación lineal, transformación lineal u operador lineal.

 $^{^5}$ Se supone que usted conoce las funciones, pero dispone de un Apéndice 6.A en la página 83 con todo lo necesario.

lineal que podemos describir con el siguiente esquema

$$-|_i \colon \mathbb{R}^n \to \mathbb{R}$$
$$\boldsymbol{x} \to x_i$$

Y sabemos que la función que selecciona la iésima componente $x \to x_{|i}$ es lineal puesto que

$$(\boldsymbol{x} + \boldsymbol{y})_{|i} = \boldsymbol{x}_{|i} + \boldsymbol{y}_{|i}$$

 $(\lambda \boldsymbol{x})_{|i} = \lambda(\boldsymbol{x}_{|i}).$

EJERCICIO 33. Describa con un esquema (al modo de ejemplo anterior) las siguientes funciones lineales, e indique (como en el ejemplo anterior) por qué son funciones lineales:

- (a) La selección de la columna jésima de una matriz:
 ${\bf A} \to {\bf A}_{|j}$ (Página 19)
- (b) La selección de la componente de la fila iésima y columna jésima de una matriz: $\mathbf{A} \rightarrow i \mathbf{A}_{i}$ (Página 20)
- (c) La transposición de una matriz: $\mathbf{A} \to \mathbf{A}^{\mathsf{T}}$ (Página 20)
- (d) La selección de la fila iésima de una matriz: $\mathbf{A} \rightarrow_{i|} \mathbf{A}$ (Página 20)
- (e) El producto de una matriz por el vector \boldsymbol{b} por su derecha: $\boldsymbol{A} \to \boldsymbol{A}\boldsymbol{b}$ (Página 26)
- (f) El producto de un vector por una matriz **A** a su izquierda: $b \to \mathbf{A}b$ (Página 24)
- (g) El producto de una matriz por el vector \boldsymbol{a} por su izquierda: $\boldsymbol{\mathsf{B}} \to \boldsymbol{a}\boldsymbol{\mathsf{B}}$ (Página 27)
- (h) El producto de un vector por una matriz **B** a su derecha: $a \rightarrow a$ **B** (Página 28)
- (i) El producto de una matriz por una matriz $\bf B$ a su derecha: $\bf A \to \bf A \bf B$ (Página 31)
- (j) El producto de una matriz por una matriz $\bf A$ a su izquierda: $\bf B \to \bf AB$ (Página 31)
- (k) Una transformación elemental $\pmb{\tau}$ de las columnas de una matriz: $\pmb{\mathsf{A}} \to \pmb{\mathsf{A}}_{\pmb{\tau}}$ (Página 44)
- (1) Una transformación elemental τ de las filas de una matriz: $\mathbf{A} \to_{\tau} \mathbf{A}$ (Página 52)

¡Fíjese que podríamos haber titulado "Ejemplos de funciones lineales" a las cuatro primeras lecciones!

6.2.2. Algunas propiedades de las funciones lineales

A continuación vamos a ver algunos resultados básicos de las funciones lineales. Empecemos con la composición y la inversa de funciones lineales:

EJERCICIO 34. Demuestre las siguientes proposiciones (ambas demostraciones son muy similares):

- (a) **Proposición 6.2.1.** La composición $g \circ f$ de dos funciones lineales $f: \mathcal{D} \to \mathcal{V}$ $y g: \mathcal{V} \to \mathcal{W}$ es una función lineal.
- (b) **Proposición 6.2.2.** Si $f: \mathcal{D} \to \mathcal{V}$ es lineal e invertible, su inversa $f^{-1}: \mathcal{V} \to \mathcal{D}$ también es lineal.

¡En las primeras lecciones también nos hemos topado con composiciones de funciones lineales! Por ejemplo:

• La selección de la componente de la fila iésima y columna jésima de una matriz $f(\mathbf{A}) = {}_{i|}\mathbf{A}_{|i|}$, es decir

$$_{i \mid _\mid j} : \mathbb{R}^{m \times n} \to \mathbb{R}$$

es la composición de la función que selecciona la iésima fila de la matriz, con la función que selecciona la componente jésima de la fila.

$$i|-|j:\mathbb{R}^{m\times n}\xrightarrow{i|-}\mathbb{R}^n\xrightarrow{-|j|}\mathbb{R}$$

(fíjese que del mismo modo es la composición de la función que selecciona la jésima columna de la matriz, con la función que selecciona la componente iésima de la columna.)

■ El producto de dos matrices por un vector $\mathbf{AB}x$ es un ejemplo de composición de funciones lineales; pues si $f_{\mathbf{A}}(x) = \mathbf{A}x$ y $f_{\mathbf{B}}(x) = \mathbf{B}x$; entonces

$$[f_{\mathsf{A}} \circ f_{\mathsf{B}}](x) = f_{\mathsf{A}}(f_{\mathsf{B}}(x)) = f_{\mathsf{A}}(\mathsf{B}x) = \mathsf{AB}x = f_{\mathsf{AB}}(x).$$

Fíjese que aunque en el ejemplo anterior el orden en el que aparecen compuestas las funciones coincide con el orden en el que aparecen las matrices en el producto, ocurre lo contrario cuando se multiplica por la izquierda: si $g_{\mathbf{A}}(x) = x\mathbf{A}$ y $g_{\mathbf{B}}(x) = x\mathbf{B}$, entonces

$$[g_{A} \circ g_{B}](x) = g_{A}(g_{B}(x)) = g_{A}(xB) = xBA = g_{BA}(x).$$

Otro ejemplo es el producto de varias matrices: ABX.

• Una sucesión de k transformaciones elementales de las columnas $\mathbf{A}_{\tau_1\cdots\tau_k}$ es una composición de k funciones lineales; y lo mismo una sucesión de transformaciones de las filas... o también una sucesión de transformaciones elementales tanto de las filas como de las columnas (puesto que las transformaciones elementales sobre \mathbf{A} se pueden representar como un producto de varias matrices).

Como ejemplos de funciones lineales invertibles con las que ya hemos trabajado podemos indicar:

- Las transformaciones elementales.
- Si **A** es invertible, entonces $f_{\mathbf{A}}$ es invertible; en particular $(f_{\mathbf{A}})^{-1} = f_{\mathbf{A}^{-1}}$.

 Explicación: por una parte $f_{\mathbf{A}}(f_{\mathbf{A}^{-1}}(x)) = \mathbf{A}\mathbf{A}^{-1}x = x$ y por otra $f_{\mathbf{A}^{-1}}(f_{\mathbf{A}}(y)) = \mathbf{A}^{-1}\mathbf{A}y = y$. (Proposición 6.A.1 en la página 85 del apéndice de la lección).

6.3. Creación de nuevos espacios vectoriales

Comencemos con la creación de espacios vectoriales dentro de espacios vectoriales.

6.3.1. Subespacios

Algunos subconjuntos de un espacio vectorial \mathcal{V} (y con las mismas operaciones de \mathcal{V}) son espacios vectoriales por si mismos. Dichos subconjuntos se denominan *subespacios*.

Definición 6.4. Un subconjunto W no vacío de un espacio vectorial V es un subespacio de V si es cerrado para la suma y el producto de por escalares. Es decir, si para todo \vec{x} e \vec{x} en W y todo escalar a,

1.
$$\vec{x} + \vec{y}$$
 esta en el subespacio W 2. $a\vec{x}$ esta en el subespacio W

Así, para demostrar que \mathcal{W} es un subespacio de \mathcal{V} basta comprobar que es cerrado tanto para la suma como para el producto por escalares. Alternativamente, también basta demostrar que es cerrado para las combinaciones lineales, pues si para todo \vec{x} e \vec{x} en \mathcal{W} y para todo $a, b \in \mathbb{R}$

$$a\vec{x} + b\vec{y}$$
 esta en el subespacio W

entonces con a=b=1 satisfacemos la primera condición de la definición y con b=0 la segunda. Por tanto, decir que el conjunto es cerrado para las combinaciones lineales de cualquier para de vectores es equivalente a decir que el conjunto es cerrado para la suma y el producto por escalares.

EJERCICIO 35. ¿Es subespacio el conjunto de combinaciones lineales de n vectores de un espacio vectorial?

Fíjese que si W es un subconjunto de un espacio vectorial \mathcal{V} ; sabremos inmediatamente que W no es un subespacio si $\overrightarrow{0}$ no está en W, o si está \overrightarrow{x} pero no $-\overrightarrow{x}$.

13

Un subespacio es un espacio vectorial que está contenido dentro de otro espacio vectorial.

Para comprobar que W es subespacio basta verificar si es cerrado para la suma y el producto por escalares (es decir, que es cerrado para las combinaciones lineales).

Ejemplos de subespacios

 \blacksquare Los vectores de \mathbb{R}^3 cuya primera componente es cero

Si sumamos dos vectores con primera componente nula, obtenemos otro vector con la primera componente nula; y lo mismo ocurre con cualquier múltiplo de un vector con primera componente nula.

- Las funciones reales ($\mathbb{R} \to \mathbb{R}$) que además son continuas (véase la Sección 6.3.3 en la página siguiente). Si sumamos dos funciones reales y continuas, obtenemos otra función real y continua; y lo mismo ocurre si multiplicamos una función real y continua por un escalar.
- Polinomios ($\mathbb{R}[x]$).
- Variables aleatorias con esperanza cero: su suma tiene esperanza cero y cualquier múltiplo también.
- Variables aleatorias con distribución normal (gaussiana).

B

Nótese que como todo conjunto está contenido en si mismo, todo espacio vectorial es un *subespacio* de si mismo. Por tanto, para cualquier espacio vectorial \mathcal{V} , son subespacios tanto \mathcal{V} , como el subconjunto $\{\vec{0}\}$ que solo contiene el vector nulo (pues obviamente es cerrado para la suma y el producto por escalares).

Intersección de subespacios

La intersección de subespacios es un subespacio:

Teorema 6.3.1. Sean V_1 y V_2 subespacios de S, entonces la intersección de $W = V_1 \cap V_2$ también lo es.

Demostración. Sabemos que la intersección es no vacía pues el $\overrightarrow{0}$ está en ambos subespacios. Así que basta probar que la intersección es cerrada para las combinaciones lineales de dos vectores. Para ello tomamos a y b de \mathbb{R} y \overrightarrow{x} e \overrightarrow{y} de \mathcal{W} . Como \mathcal{W} es la intersección, entonces \overrightarrow{x} e \overrightarrow{y} pertenecen tanto a \mathcal{V}_1 como \mathcal{V}_2 .

- Por ser V_1 un subespacio (i.e., cerrado para las comb. lineales) sabemos que $a\vec{x} + b\vec{y} \in V_1$.
- Por ser V_2 un subespacio (i.e., cerrado para las comb. lineales) sabemos que $a\vec{x} + b\vec{y} \in V_2$.

Por tanto, si \vec{x} y \vec{y} pertenecen a \mathcal{W} , entonces $a\vec{x} + b\vec{y} \in \mathcal{V}_1 \cap \mathcal{V}_2 = \mathcal{W}$.

Sin embargo, la unión de subespacios no suele ser cerrada para la suma (piense en la unión del conjunto de vectores de \mathbb{R}^3 cuya primera componente es cero y el conjunto de vectores de \mathbb{R}^3 cuya última componente es cero; si sumamos un vector del primer grupo con uno del segundo, generalmente obtendremos un vector en el que no son cero ni la primera, ni la última componentes (al sumar nos "salimos" del conjunto).

6.3.2. Espacios vectoriales de productos cartesianos

Y ahora una forma de construir espacios vectoriales "más grandes" a partir de otros espacios vectoriales.

El producto Cartesiano de dos conjuntos A y B, que denotamos con $A \times B$, es el conjunto de pares ordenados (a,b) donde $a \in A$ y $b \in B$:

$$A \times B = \{ (a,b) \mid a \in A \ y \ b \in B \}.$$

Si \mathcal{A} y \mathcal{B} son espacios vectoriales, definimos la suma de pares ordenados del conjunto $\mathcal{A} \times \mathcal{B}$ como el par ordenado formado por la suma de las primeras componentes y la suma de las segundas:

$$(\vec{a}, \vec{b}) + (\vec{b}, \vec{c}) = (\vec{a} + \vec{c}, \vec{b} + \vec{d}); \tag{6.1}$$

donde es importante hacer notar que el símbolo "+" de la izquierda representa la suma de pares ordenados; pero que los símbolos "+" de la derecha representan las sumas de los vectores de los respectivos espacios vectoriales. Por ejemplo, si consideramos pares del producto Cartesiano $\mathbb{R}^n \times \mathbb{R}^{p \times q}$, entonces

$$(x, A) + (y, B) = (x + y, A + B)$$

evidentemente los tres tipos de sumas, lo son de objetos muy distintos.

Y definimos el producto de un escalar λ por un par ordenado como el par ordenado que resulta de multiplicar cada componente por el escalar λ

$$\lambda(\vec{a}, \vec{b}) = (\lambda \vec{a}, \lambda \vec{b}); \tag{6.2}$$

siguiendo con los productos el mismo critero que con las sumas en la definición anterior. Por ejemplo

$$\lambda(\boldsymbol{x}, \boldsymbol{\mathsf{A}}) = (\lambda \boldsymbol{x}, \ \lambda \boldsymbol{\mathsf{A}}).$$

EJERCICIO 36. Demuestre la siguiente

Proposición 6.3.2. El producto Cartesiano $\mathcal{A} \times \mathcal{X}$ de los espacios vectoriales \mathcal{A} y \mathcal{X} , junto con la suma de pares ordenados (6.1) y el producto de un par ordenado por un escalar (6.2) es un espacio vectorial.

Generalizando, el producto Cartesiano de n conjuntos $A, B, \dots M$, que denotamos con $A \times B \times \dots M$, e consiste en el conjunto de n-tuplas ordenadas (a, b, \dots, m) donde $a \in A, b \in B, \dots$ y $m \in M$:

$$A \times B \times \cdots M = \{ (a, b, \dots m) \mid a \in A, b \in B, \dots y \ m \in M \}.$$

Pero alternativamente podemos considerar esta generalización como el producto cartesiano del primer conjunto con el producto cartesiano del los n-1 restantes:

$$A \times B \times \cdots M = A \times (B \times \cdots M).$$

Ejemplo 13.

$$A \times B \times C \times D = A \times (B \times (C \times D)).$$

De este modo, aprovechamos la Proposición anterior para saber que el producto Cartesiano $\mathcal{A} \times \mathcal{B} \times \cdots \mathcal{X}$ de los espacios vectoriales $\mathcal{A}, \mathcal{B}, \dots \mathcal{X}$, junto con la suma de pares ordenados (6.1) y el producto de un par ordenado por un escalar (6.2) es un espacio vectorial.

6.3.3. Espacios vectoriales de funciones

Con la suma de funciones y el producto de un escalar por una función lograremos una potente herramienta para crear nuevos espacios vectoriales... y con algunos de ellos se encontrará en otras asignaturas.

Definamos la suma y el producto por escalares para funciones con el mismo dominio X y cuyas imágenes están contenidas en el mismo espacio vectorial \mathcal{V} :

Definición 6.5. Se define la suma de dos funciones $f: X \to V$ $g: X \to V$ como la función

$$[f+g]: X \to V$$

$$\overrightarrow{x} \to f(\overrightarrow{x}) + g(\overrightarrow{x})$$

$$(6.3)$$

Definición 6.6. Se define producto de un escalar α por una función $f: X \to \mathcal{V}$ como la función

$$[\alpha \cdot f] \colon X \to \mathcal{V} \qquad (6.4)$$

$$\overrightarrow{x} \to \alpha \ f(\overrightarrow{x})$$

Con \mathcal{V}^D denotaremos al conjunto de funciones cuvo dominio es D y cuva imagen está contenida en \mathcal{V} :

$$\mathcal{V}^D = \{ f \mid f \colon D \to \mathcal{V} \} .$$

EJERCICIO 37. Demuestre la siguiente

Proposición 6.3.3. El conjunto \mathcal{V}^D de funciones cuyo dominio es D y cuya imagen está contenida en \mathcal{V} junto con la suma (6.3) y el producto por escalares (6.4), es un espacio vectorial.

Ejemplos de este tipo de espacios que probablemente encontrará en futuras asignaturas...

aunque quizá no le indiquen explícitamente que está trabajando con espacios vectoriales...

- $\blacksquare \mathbb{R}^{\mathbb{R}}$: funciones reales de variable real: $f: \mathbb{R} \to \mathbb{R}$.
- $\blacksquare \mathbb{R}^{(\mathbb{R}^n)}$: funciones reales de varias variables reales: $f: \mathbb{R}^n \to \mathbb{R}$.
- $\mathbb{R}^{\mathbb{N}}$: sucesiones infinitas de números reales (con índice sobre los números naturales): $\mathbf{a} : \mathbb{N} \to \mathbb{R}$.
- $\mathbb{R}^{\mathbb{Z}}$: sucesiones infinitas de números reales (con índice sobre los números enteros): $\mathbf{a} \colon \mathbb{Z} \to \mathbb{R}$.
- \blacksquare \mathbb{R}^{Ω} : variables aleatorias (donde Ω es el conjunto de sucesos elementales): $X : \Omega \to \mathbb{R}$.
- $(\mathbb{R}^{\Omega})^{\mathbb{Z}}$: series temporales: $\mathbf{Y} \colon \mathbb{Z} \to \mathbb{R}$.
- Etcetera.

6.3.4. Subespacio de funciones lineales

EJERCICIO 38. Demuestre las siguientes proposiciones (ambas demostraciones son muy similares):

- (a) Proposición 6.3.4. La suma de dos funciones lineales es una función lineal.
- (b) Proposición 6.3.5. El producto de un escalar por una función lineal es una función lineal.

Por tanto, concluimos que el conjunto de funciones lineales que van del espacio vectorial \mathcal{D} al espacio vectorial \mathcal{V} es un subespacio del espacio vectorial $\mathcal{V}^{\mathcal{D}}$ (el conjunto de funciones cuyo dominio es \mathcal{D} y cuya imagen está contenida en el espacio vectorial \mathcal{V}).

Por tanto, cerramos la lección con el siguiente

Corolario 6.3.6. Dados \mathcal{D} y \mathcal{V} , el conjunto de funciones lineales $f: \mathcal{D} \to \mathcal{V}$ es un subespacio de $\mathcal{V}^{\mathcal{D}}$.

(hemos citado algunos ejemplos en la Sección 6.3.1)

6.4. Generalizaciones o visiones alternativas (★)

Hay una estrecha relación entre subespacios y funciones lineales que no se suele contar.

6.4.1. Subespacios y funciones lineales

Proposición 6.4.1. Si V y W son dos espacios vectoriales y $f \subset V \times W$ las siguientes propiedades son equivalentes:

- 1. $f: \mathcal{V} \to \mathcal{W}$ es una aplicación lineal
- 2. f es un subespacio vectorial de $V \times W$ suplementario⁶ de $\{\vec{0}\} \times W$.

Demostración. 1. \Rightarrow 2. Veamos en primer lugar que f es un subespacio vectorial de $\mathcal{V} \times \mathcal{W}$.

 $^{^6}$ es decir $\mathcal{V}\times\mathcal{W}=f\oplus(\{\overrightarrow{0}\}\times\mathcal{W}).$ (véase la Definición 10.2 en la página 119)

- 1. Por ser f una función cuyo dominio es \mathcal{V} y cuya imagen está contenida en \mathcal{W} , cualquier elemento de f es un par ordenado cuya primera componente pertenece a \mathcal{V} y cuya segunda componente pertenece a \mathcal{W} . Por tanto $f \subset \mathcal{V} \times \mathcal{W}$.
- 2. Como \mathcal{V} es un espacio vectorial $\mathcal{V} \neq \emptyset$. Luego, $dom(f) = \mathcal{V} \neq \emptyset$ y por consiguiente $f \neq \emptyset$.
- 3. Si (\vec{v}_1, \vec{w}_1) y (\vec{v}_2, \vec{w}_2) pertenecen a f y $\alpha_1, \alpha_2 \in \mathbb{R}$ entonces, como $f(\vec{v}_1) = \vec{w}_1$ y $f(\vec{v}_2) = \vec{w}_2$ y f es lineal, tendremos que

$$f(\alpha_1 \overrightarrow{v}_1 + \alpha_2 \overrightarrow{v}_2) = \alpha_1 f(\overrightarrow{v}_1) + \alpha_2 f(\overrightarrow{v}_2) = \alpha_1 \overrightarrow{w}_1 + \alpha_2 \overrightarrow{w}_2$$

Luego $(\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2, \alpha_1 \vec{w}_1 + \alpha_2 \vec{w}_2) \in f$ y por consiguiente

$$\alpha(\vec{u}_1, \vec{w}_1) + \beta(\vec{u}_2, \vec{w}_2) = (\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2, \alpha_1 \vec{w}_1 + \alpha_2 \vec{w}_2) \in f$$

Veamos en segundo lugar que f y $\{\vec{0}\} \times \mathcal{W}$ son subespacios suplementarios:

1. Si $(\vec{v}, \vec{w}) \in f \cap (\{\vec{0}\} \times \mathcal{W})$ tendremos que $\vec{w} = f(\vec{v})$ y que $\vec{v} = \vec{0}$. Luego, por ser f lineal, necesariamente $\vec{w} = \vec{0}$. Por tanto

$$f \cap (\{\vec{0}\} \times \mathcal{W}) = (\vec{0}, \vec{0})$$

2. Dado $(\vec{v}, \vec{w}) \in \mathcal{V} \times \mathcal{W}$, como $\mathcal{V} = \text{dom}(f)$, tendremos que

$$(\vec{v}, \vec{w}) = (\vec{v}, f(\vec{v})) + (\vec{0}, \vec{w} - f(\vec{v})) \in f + (\{\vec{0}\} \times \mathcal{W})$$

Por tanto $\mathcal{V} \times \mathcal{W} = f \oplus (\{\vec{0}\} \times \mathcal{W}).$

Figura 6.1: Representación esquemática de que $\mathcal{V} \times \mathcal{W} = f \oplus (\{\vec{0}\} \times \mathcal{W})$.

- $1. \Leftarrow 2.$ Veamos primero que f es una función cuyo dominio es \mathcal{V} y cuya imagen está contenida en \mathcal{W} .
 - 1. Como $f \subset \mathcal{V} \times \mathcal{W}$, los elementos de f son pares ordenados de primeras componentes en \mathcal{V} y de segundas en \mathcal{W} .
 - 2. Si (\vec{v}, \vec{w}_1) y (\vec{v}, \vec{w}_2) pertenecen a f, por ser f un subespacio vectorial de $\mathcal{V} \times \mathcal{W}$, tendremos que su diferencia $(\vec{0}, \vec{w}_1 \vec{w}_2) \in f$. Como dicha diferencia pertenece al subespacio $\{\vec{0}\} \times \mathcal{W}$ que es suplementario de f, necesariamente⁷ $\vec{w}_1 \vec{w}_2 = \vec{0}$. Por tanto $\vec{w}_1 = \vec{w}_2$, con lo que es imposible encontrar dos pares distintos de f cuyas primeras componentes sean coincidentes.

 $^{^{7}}f\cap (\{\vec{0}\}\times \mathcal{W})=(\vec{0},\vec{0})$

- 3. De momento ya sabemos que f es una función cuyo dominio está contenido en \mathcal{V} y cuya imagen está contenida en \mathcal{W} . Veamos que $\mathcal{V} = \text{dom}(f)$.
 - Si $\vec{v} \in \mathcal{V}$, como $\{\vec{0}\} \times \mathcal{W}$ y f son suplementarios, el vector $(\vec{v}, \vec{0})$ se descompone en suma de un vector (\vec{x}, \vec{y}) de f y otro $(\vec{0}, \vec{z})$ de $\{\vec{0}\} \times \mathcal{W}$.

$$(\vec{v}, \vec{0}) = (\vec{x}, \vec{y}) + (\vec{0}, \vec{z})$$

Como en dicha descomposición necesariamente $\vec{x} = \vec{v}$, concluimos que $\vec{v} \in \text{dom}(f)$.

Ya solo falta comprobar que $f: \mathcal{V} \to \mathcal{W}$ es lineal.

Si $\vec{v}_1, \vec{v}_2 \in \mathcal{V}$ y $\alpha_1, \alpha_2 \in \mathbb{R}$, como $(\vec{v}_1, f(\vec{v}_1))$ y $(\vec{v}_2, f(\vec{v}_2))$ pertenecen al subespacio f, tendremos que

$$\left(\alpha_1 \overrightarrow{v}_1 + \alpha_2 \overrightarrow{v}_2, \alpha_1 f(\overrightarrow{v}_1) + \alpha_2 f(\overrightarrow{v}_2)\right) = \alpha_1 \left(\overrightarrow{v}_1, f(\overrightarrow{v}_1)\right) + \alpha_2 \left(\overrightarrow{v}_2, f(\overrightarrow{v}_2)\right) \in f$$

Luego $f(\alpha_1 \overrightarrow{v}_1 + \alpha_2 \overrightarrow{v}_2) = \alpha_1 f(\overrightarrow{v}_1) + \alpha_2 f(\overrightarrow{v}_2).$

Apendices a la lección

Se suele asumir que los estudiantes conocen las funciones, pero creo oportuno añadir el siguiente apéndice.

6.A. Funciones

Definición 6.7. Una función es un conjunto de pares ordenados en los que no existen dos pares distintos que tengan su primeras componentes iguales.

Dada una función f, se llama dominio de f, al conjunto de primeras componentes de los pares de f.

$$dom(f) = \{x \mid \text{existe } y \text{ tal que } (x, y) \in f\}.$$

Dada una función f, se llama imagen de f, al conjunto de segundas componentes de f.

$$imagen(f) = \{y \mid \text{existe } x \text{ tal que } (x, y) \in f\}.$$

Ejemplos.

Ejemplo 14. El siguiente conjunto (en el que las segundas componentes son el cuadrado de las primeras) es una función

$$f = \{(x, x^2) \mid x \in \mathbb{Z}\} = \{(0, 0), (1, 1), (-1, 1), (2, 4), (-2, 4), (3, 9), (-3, 9), \dots\}$$

donde \mathbb{Z} es el conjunto de números enteros.

Sin embargo, este otro conjunto (en el que las primeras componentes son el cuadrado de las segundas) NO es función:

$$\{(x^2, x) \mid x \in \mathbb{Z}\} = \{(0, 0), (1, 1), (1, -1), (4, 2), (4, -2), (9, 3), (9, -3), \dots\}$$

pues hay pares distintos que tienen la misma primera componente; por ejemplo (1,1) y (1,-1).

Ejemplo 15 (Función nula). La función nula es aquella cuyas segundas componentes son todas nulas, es decir

$$n = \{(x,0) \mid x \in \text{dom}(n)\} = \{(x,0), (y,0), (z,0), \ldots\};$$

(donde con el símbolo "0" denotamos el elemento *nulo* del conjunto que contiene la *imagen* de la función —véase un ejemplo de función nula más abajo).

Ejemplo 16 (Función identidad). La función identidad es aquella cuyas segundas componentes son iguales a las primeras, es decir

$$id = \{(x, x) \mid x \in \text{dom}(id)\} = \{(x, x), (y, y), (z, z), \ldots\}.$$

6.A.1. Notación

Son habituales distintas formas de notación relacionadas con las funciones.

Por ejemplo, la expresión

$$f: X \to Y$$

es una forma abreviada de expresar lo siguiente:

- 1. f es una función
- 2. dom(f) = X
- 3. $imagen(f) \subset Y$

Por otra parte, el esquema

$$f \colon X \to Y$$

 $x \to expresión de x$

es una forma abreviada de expresar el siguiente conjunto de pares:

$$f = \{(x, expresi\'on \ de \ x) \mid x \in X\}.$$

Así,

- \blacksquare el Ejemplo 14 en la página anterior se puede expresar como $f\colon \mathbb{Z} \to \mathbb{N} \ .$ $x \to x^2$
- lacktriangle la función nula que asigna a todo número real el vector nulo de \mathbb{R}^2 se puede expresar como

$$n \colon \mathbb{R} \to \mathbb{R}^2$$
, donde $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ es el elemento $nulo$ en \mathbb{R}^2 .

• y podemos expresar la función identidad en \mathbb{R}^3 como $id: \mathbb{R}^3 \to \mathbb{R}^3$. $x \to x$

Uso de la notación funcional. Posiblemente esté más familiarizado con la siguiente notación funcional

$$y = f(x)$$

que equivale a escribir $(x, y) \in f$.

Así, el Ejemplo 14 en la página anterior se puede expresar como:

$$f(x) = x^2$$
, donde $x \in \mathbb{Z}$;

pues indica que cada par (x, x^2) pertenece a f. Seguramente alguna vez haya tenido que representar gráficamente los pares (x, x^2) de esta función, y sabrá que describen una parábola.

De igual modo, expresamos la función nula que asigna a todo número real la matriz nula de $\mathbb{R}^{2\times 2}$:

$$f(x) = \mathbf{0}, \quad \text{donde } x \in \mathbb{R} \quad \text{y} \quad \mathbf{0}_{2 \times 2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Y podemos expresar la función identidad en \mathbb{R}^3 como:

$$f(\boldsymbol{x}) = \boldsymbol{x}, \quad \text{donde } \boldsymbol{x} \in \mathbb{R}^3.$$

Por tanto, empleando la notación funcional podemos expresar la imagen de f como:

$$imagen(f) = \{ y \mid \text{existe } x \in \text{dom}(f) \text{ tal que } y = f(x) \}.$$
 (6.5)

A veces se usa la notación f(X) para indicar la imagen de $f: X \to Y$ (donde X es el dominio):

$$f(X) = \{ y \mid \text{ existe } x \in X \text{ tal que } y = f(x) \}.$$

6.A.2. Invertibilidad

Decimos que una función es invertible si al invertir el orden de los pares se obtiene una función. En tal caso dicha función se denota f^{-1} , y se llama función inversa de f.

Fíjese que de los tres ejemplos anteriores, únicamente la función identidad es invertible. En los otros dos, al invertir el orden de los pares se obtienen pares distintos pero que comparten la misma primera componente (si invertimos el orden de los pares de la función nula, todos tendrán como primera componente la matriz nula $\mathbf{0}$; y ya vimos qué pasaba al invertir los pares ordenados del Ejemplo 14 en la página 83).

Puesto que intercambiando dos veces el orden de los pares recuperamos los pares originales, tenemos que

$$\left(f^{-1}\right)^{-1} = f.$$

También es evidente que $dom(f^{-1}) = imagen(f)$, y que $imagen(f^{-1}) = dom(f)$.

Proposición 6.A.1. Si f y g son dos funciones tales que

$$g(f(x)) = x$$
 para todo $x \in dom(f)$ y $f(g(y)) = y$ para todo $y \in dom(g)$

entonces f es invertible y su inversa es g.

Demostración. Puesto que f y g son funciones basta comprobar que $(x,y) \in f$ si y solo si $(y,x) \in g$.

Por una parte

$$(x,y) \in f \implies y = f(x) \implies g(y) = g(f(x)) = x \implies (y,x) \in g(x)$$

y por otra

$$(y,x) \in g \Rightarrow g(y) = x \Rightarrow f(g(y)) = f(x) = y \Rightarrow (x,y) \in f$$

6.A.3. Composición de funciones

Si tenemos dos funciones f y g tales que el dominio de g contiene a la imagen de f, llamamos composición de f y g al conjunto de pares

$$g \circ f = \{(x, z) \mid \text{ existe } z \text{ de modo que } (x, y) \in f \text{ y } (y, z) \in g\}.$$

La composición de funciones se escribe usando la notación funcional como

$$[g \circ f](x) = g(f(x)).$$

pues $z = [g \circ f](x)$ siempre que y = f(x) y z = g(y).

Así, resulta evidente que si f es invertible entonces

$$[f^{-1} \circ f](x) = f^{-1}(f(x)) = x,$$
 para todo $x \in \text{dom}(f)$.

Igualmente evidente es que

$$[f \circ f^{-1}](y) = f(f^{-1}(y)) = y,$$
 para todo $y \in \text{dom}(f^{-1}).$

1

Resolviendo Ax = 0

7.1. Ecuaciones lineales y sistemas de ecuaciones lineales

B

La Parte III del curso trata sobre sistemas de ecuaciones lineales. Como veremos enseguida, los sistemas de ecuaciones lineales están íntimamente relacionados con los subespacios de \mathbb{R}^n .

Una advertencia. Quizá conozca algún método de resolución de sistemas. Mi experiencia es que generalmente los alumnos saben ejecutar unos pasos a ciegas para obtener una solución, pero sin entender bien el método... y con alguna frecuencia no son capaces de ejecutar el método correctamente.

El método que veremos es deliberadamente distinto del que se cuenta habitualmente. Con ello pretendo, entre otras cosas, que el estudiante no aplique ciegamente una batería de recetas (mal aprendidas en muchos casos). Así pues, por el momento olvide lo que sabe y trate de entender el método que expondré aquí.

Por suerte el método es muy sencillo, aplicable a otros problemas que veremos más adelante... y para mayor fortuna justed ya lo ha empleado en la Lección 5 para invertir matrices!

Llamamos ecuación lineal a aquella que se puede escribir de la siguiente forma

$$a_1x_1 + \dots + a_nx_n = b,$$

donde b y los coeficientes $a_1, \ldots a_n$ denotan números fijos y $x_1, \ldots x_n$ son las variables, es decir, etiquetas para ser reemplazadas por números.

Llamamos solución a los valores que, reemplazando a las variables, hacen cierta la igualdad.

7.1.1. Sistemas de ecuaciones lineales

Se llama sistema de ecuaciones lineales a una colección de ecuaciones en la que cada variable es reemplazada por idéntico valor en todas las ecuaciones. Por ejemplo,

$$\begin{cases} x + y - 2z = 1 \\ x - 2y + z = 2 \\ -2x + y + z = 3 \end{cases}$$

es un sistema de tres ecuaciones con tres variables (o incógnitas) x, y y z. La llave indica que cada variable debe ser reemplazada por el mismo valor en cada una de las tres ecuaciones, es decir, si asignamos el valor x = 5, lo hacemos para las tres ecuaciones a la vez. No hay un orden ni en la disposición de las ecuaciones ni en las sumas dentro de cada ecuación; de manera que el anterior sistema también lo podemos escribir como

$$\begin{cases} z + y - 2x = 3 \\ y + x - 2z = 1 \\ x + z - 2y = 2 \end{cases}$$

pero esta libertad en la notación tradicional no ayuda a trabajar con ellos.

7.1.2. Notación matricial

Aquí emplearemos la notación matricial en lugar de la tradicional. Ello nos permitirá aprovechar fácilmente toda la potencia de los conceptos de espacio vectorial.

El primer paso para usar la notación matricial requiere tomar una decisión inicial y arbitraria. Hemos de establecer quién es la primera variable, quién la segunda y quién la tercera; y también decidir qué ecuación será la primera, cuál la segunda y cuál la tercera. La decisión que tomemos no es importante, pero una vez tomada, debe ser mantenida.

Volviendo al ejemplo anterior, podemos decidir que el orden de las variables es, primero x, luego y y por último z; definiendo de este modo el vector de incógnitas: $\mathbf{x} = (x, y, z)$. También podemos establecer que las ecuaciones serán ordenadas tal como aparecen dentro de la llave en la primera versión del ejemplo. Siguiendo este criterio, generamos una matriz de coeficientes cuya primera fila contiene los coeficientes de la primera ecuación (y en el orden que hayamos establecido para las variables), cuya segunda fila contiene los coeficientes de la segunda ecuación (respetando el mismo orden de las variables), etc.

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 2 \end{bmatrix}.$$

El orden de las ecuaciones también determina el orden de las componentes del vector que contiene los números que aparecen a la derecha de cada ecuación. En el ejemplo anterior será b = (1, 2, 3). A este vector lo denominamos vector del lado derecho.

Así, con la siguiente ecuación matricial:

$$\mathbf{A}x = \mathbf{b}$$

denotamos de manera compacta un sistema de ecuaciones, y donde la variable \boldsymbol{x} es una etiqueta para ser reemplazada por un vector. Así, con

$$\begin{bmatrix} 1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 2 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \quad \text{denotamos} \quad \begin{cases} x + y - 2z = 1 \\ x - 2y + z = 2 \\ -2x + y + z = 3 \end{cases}$$

Llamaremos solución al conjunto de vectores que, reemplazando a x = (x, y, z), hacen cierta la igualdad.

La ecuación matricial, $\mathbf{A}x = \mathbf{b}$ define un sistema de ecuaciones lineales.

7.2. Sistemas de ecuaciones homogéneos

Cuando el vector del lado derecho es un vector nulo el sistema de ecuaciones se dice que es *homogéneo*. En esta Lección 7 solo nos ocuparemos del los sistemas de ecuaciones que son homogéneos:

$$\mathbf{A}x = \mathbf{0}$$
.

Fíjese que el lado izquierdo de un sistema de ecuaciones esta formado por el producto $\mathbf{A}x$, es decir, el lado izquierdo es una combinación lineal de las columnas de la matriz de coeficientes. Por tanto, el sistema de más arriba nos está preguntando ¿qué combinaciones lineales de las columnas de \mathbf{A} son vectores nulos? Evidentemente si el vector de incógnitas \mathbf{x} es igual a $\mathbf{0}$, tenemos que

$$A0 = 0$$
.

Pero aparte de la solución trivial x = 0, ¿existen otros vectores $x \neq 0$ para los que la combinación lineal $\mathbf{A}x$ es el vector nulo? Veamos un par de ejemplos. Imagine que la matriz de coeficientes es la matriz identidad

de orden 3, entonces tenemos el sistema $\mathbf{I}x = \mathbf{0}$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Puesto que el lado izquierdo del sistema

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

tiene que ser igual al vector del lado derecho (que es $\mathbf{0}$); no hay más solución que aquella en la que todas las componentes de \mathbf{x} son nulas (es decir, la solución trivial $\mathbf{10} = \mathbf{0}$).

Sin embargo, es posible encontrar soluciones no triviales para el sistema

$$\begin{bmatrix} 1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 2 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix};$$

por ejemplo x = (2, 2, 2). Piense un poco y seguro que es capaz de encontrar muchísimas más.

7.2.1. Espacio nulo de una matriz $\mathcal{N}(\mathbf{A})$

Los ejemplos anteriores muestran que el conjunto de soluciones de algunos sistemas de ecuaciones homogéneos solo contiene el vector nulo $\mathbf{0}$ (la solución trivial), pero que para otros sistemas el conjunto de soluciones tambi'en contiene otros vectores que no son el $\mathbf{0}$.

Vamos a dar un nombre corto al "conjunto de soluciones del un sistema homogéneo $\mathbf{A}x = \mathbf{0}$ ":

Definición 7.1. Sea **A** de orden $m \times n$. Denominamos espacio nulo de **A** (que denotamos con $\mathcal{N}(\mathbf{A})$) al subconjunto de vectores de \mathbb{R}^n que son solución del sistema $\mathbf{A}x = \mathbf{0}$, es decir ¹

$$\mathcal{N}(\mathbf{A}) = \{ \boldsymbol{x} \in \mathbb{R}^n | \mathbf{A} \boldsymbol{x} = \mathbf{0} \}.$$

En el primer ejemplo de la página anterior vimos que el espacio nulo de I solo contiene el vector 0, es decir, $\mathcal{N}(I) = \{0\}$. En el segundo ejemplo, $\mathcal{N}(A)$ contiene infinitos vectores (además del 0). Pues bien, en todos los casos el espacio nulo de una matriz de n columnas es un subespacio vectorial de \mathbb{R}^n .

Proposición 7.2.1. Para cualquier A de orden $m \times n$, el espacio nulo $\mathcal{N}(A)$ es un subespacio de \mathbb{R}^n .

EJERCICIO 39. Demuestre la Proposición 7.2.1.

Pista. Basta comprobar que el conjunto es cerrado para las combinaciones lineales.

Es importante subrayar que aunque el conjunto de soluciones de sistemas homogéneos es un subespacio, el conjunto de soluciones de sistemas NO homogéneos $\mathbf{A}x = \mathbf{b} \ (\cos \mathbf{b} \neq \mathbf{0})$ nunca es un subespacio, pues el vector nulo $\mathbf{0}$ no pertenece al conjunto de soluciones.

7.2.2. Resolución de un Sistema Homogéneo por eliminación

Puesto que $\mathcal{N}(\mathbf{A})$ es un subespacio, sabemos que si conocemos algunas soluciones del sistema $\mathbf{A}x = \mathbf{0}$, también son solución sus combinaciones lineales, pero ¿cómo encontrar todas las soluciones? es decir ¿cómo calcular $\mathcal{N}(\mathbf{A})$?

¹Esta forma de caracterizar los elementos de un conjunto como soluciones de un sistema de ecuaciones se denomina *ecuación* cartesiana.

Revisitando el método de eliminación. Vimos en la Sección 5.2 que si aplicamos una secuencia de transformaciones elementales $\tau_1 \cdots \tau_k$ a las columnas de la matriz que resulta de concatenar \mathbf{A} con \mathbf{I} , tenemos:

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix}_{\boldsymbol{\tau}_1 \dots \boldsymbol{\tau}_k} = \begin{bmatrix} \mathbf{A}_{\boldsymbol{\tau}_1 \dots \boldsymbol{\tau}_k} \\ \mathbf{I}_{\boldsymbol{\tau}_1 \dots \boldsymbol{\tau}_k} \end{bmatrix} = \begin{bmatrix} \mathbf{A} \left(\mathbf{I}_{\boldsymbol{\tau}_1 \dots \boldsymbol{\tau}_k} \right) \\ \mathbf{I}_{\boldsymbol{\tau}_1 \dots \boldsymbol{\tau}_k} \end{bmatrix} = \begin{bmatrix} \mathbf{A} \mathbf{E} \\ \mathbf{E} \end{bmatrix}, \qquad \text{donde} \quad \mathbf{E} = \mathbf{I}_{\boldsymbol{\tau}_1 \dots \boldsymbol{\tau}_k}.$$

Ahora fijémonos en la columna j-ésima de la matriz resultante

$$\begin{bmatrix} \mathbf{AE} \\ \mathbf{E} \end{bmatrix}_{|j} = \begin{pmatrix} \mathbf{A}(\mathbf{E}_{|j}) \\ \mathbf{E}_{|j} \end{pmatrix};$$

para cada columna jésima tenemos que el vector de la parte inferior, $\mathbf{E}_{|j}$, contiene los coeficientes ("la receta") de la combinación lineal de las columnas de \mathbf{A} que hemos usado para calcular ("cocinar") la parte superior de la columna, $\mathbf{AE}_{|j}$.

Ejemplo 17. Apliquemos la eliminación (de izquierda a derecha) para la concatenación de la matriz

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}$$

con la matriz identidad de orden 4. Y fíjese cómo la parte inferior de cada columna, de cada matriz en cada uno de los pasos de la eliminación, indica cómo calcular la parte superior de esa misma columna:

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{ \begin{bmatrix} (-2)\mathbf{1} + \mathbf{2} \\ [(-1)\mathbf{1} + \mathbf{4}] \\ \vdots \\ [(-1)\mathbf{1} + \mathbf{4}] \end{bmatrix}} \xrightarrow{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{ \begin{bmatrix} \mathbf{1} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & -2 & 2 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}} = \begin{bmatrix} \mathbf{A}_{\boldsymbol{\tau}_1 \boldsymbol{\tau}_2 \boldsymbol{\tau}_3} \\ \mathbf{I}_{\boldsymbol{\tau}_1 \boldsymbol{\tau}_2 \boldsymbol{\tau}_3} \end{bmatrix}$$

Por ejemplo, la 1^a columna de la 1^a matriz, la 2^a columna de la 2^a matriz, y la 3^a columna de la 3^a matriz, verifican respectivamente que:

$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \mathbf{A} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}; \qquad \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \mathbf{A} \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix}; \quad \circ \qquad \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \mathbf{A} \begin{pmatrix} 2 \\ -1 \\ 1 \\ 0 \end{pmatrix}.$$

Y no puede ser de otra manera, ya que la relación $(\mathbf{A}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k})_{|j} = \mathbf{A}(\mathbf{I}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k})_{|j}$ se cumple en todas y cada una de las columnas, de todas y cada una de las matrices en todos y cada uno de los pasos de eliminación.

En todo momento a lo largo de la secuencia de transformaciones

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix}_{\boldsymbol{\tau}_1} \rightarrow \ldots \rightarrow \begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} = \begin{bmatrix} \mathbf{A}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \\ \mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \end{bmatrix}.$$

la parte inferior de cada columna indica qué combinación lineal de las columnas de ${\bf A}$ hemos usado para calcular la parte superior de la columna: $({\bf A}_{{m au}_1\cdots{m au}_h})_{|j}={\bf A}({\bf I}_{{m au}_1\cdots{m au}_h})_{|j}; \quad h=1:k.$

Por el Teorema 4.3.2 sabemos que para cualquier ${\bf A}$ existen k transformaciones elementales tales que ${\bf A}_{{\bf T},\cdots {\bf T}_k}={\bf K}$ es pre-escalonada. Por tanto

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} = \begin{bmatrix} \mathbf{A}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \\ \mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \end{bmatrix} = \begin{bmatrix} \mathbf{A} \left(\mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \right) \\ \mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \end{bmatrix} = \begin{bmatrix} \mathbf{A} \, \mathbf{E} \\ \mathbf{E} \end{bmatrix} = \begin{bmatrix} \mathbf{K} \\ \mathbf{E} \end{bmatrix}; \quad \text{donde} \quad \mathbf{E} = \mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k}.$$

Y ahora solo caben dos posibilidades, que K tenga columnas nulas o que no tenga:

Cuando K tiene columnas nulas: si la columna K_{lj} es nula sabemos que

$$\mathbf{K}_{|j} = \mathbf{A} \left(\mathbf{E}_{|j} \right) = \mathbf{0}$$
 y por lo tanto $\mathbf{E}_{|j} \in \mathcal{N} \left(\mathbf{A} \right)$.

Es decir, que si K tiene columnas nulas, los vectores que aparecen por debajo de las columnas nulas son soluciones al sistema $\mathbf{A}x = \mathbf{0}$ (así como todas las combinaciones lineales de dichos vectores).

Así pues, buscar soluciones no nulas del sistema $\mathbf{A}x = \mathbf{0}$ es tan sencillo como alargar \mathbf{A} poniendo la matriz identidad por debajo, y aplicar transformaciones elementales a las columnas de la matriz por bloques hasta pre-escalonar el bloque superior. Si la forma pre-escalonada \mathbf{K} tiene columnas nulas, los vectores que hay debajo son soluciones no nulas de $\mathbf{A}x = \mathbf{0}$. Siguiendo la nomenclatura de G. Strang, llamaremos a dichas soluciones encontradas por eliminación soluciones especiales.

Volviendo al Ejemplo 17 en la página anterior, sabemos que los vectores

$$\begin{pmatrix} 2 \\ -1 \\ 1 \\ 0 \end{pmatrix} \qquad y \qquad \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

son soluciones especiales del sistema $\mathbf{A}x = \mathbf{0}$. Y también es solución cualquier combinación lineal de ambos vectores. Por ejemplo, si sumamos ambos vectores obtenemos una nueva solución

$$\begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \begin{pmatrix} 2 \\ -1 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Cuando K no tiene columnas nulas: cuando K es de rango completo por columnas (i.e., no tiene columnas nulas) podemos continuar con la eliminación Gauss-Jordan hasta alcanzar una forma escalonada reducida AE = R. Como cada columna tiene un pivote y cada pivote es el único elemento no nulo de su fila, es evidente que Rx = 0 si y solo si x = 0. Así pues tenemos que

$$\mathsf{A} x = 0 \quad \Rightarrow \quad \mathsf{A} \mathsf{E} \mathsf{E}^{\text{-}1} x = 0 \quad \Rightarrow \quad \mathsf{R} \left(\mathsf{E}^{\text{-}1} x\right) = 0 \quad \Rightarrow \quad \mathsf{E}^{\text{-}1} x = 0 \quad \Rightarrow \quad \mathsf{E} \mathsf{E}^{\text{-}1} x = \mathsf{E} 0 \quad \Rightarrow \quad x = 0$$

Así que la única solución es x = 0 (la solución trivial).

Y ahora nos puede surgir una duda, ¿existen otras soluciones que no sean combinación lineal de las soluciones especiales que hemos encontrado mediante la eliminación)?

La Proposición 7.2.4 en la página siguiente demuestra que no; es decir, todas las soluciones son combinación lineal de las soluciones especiales.

Pero antes necesitamos demostrar un resultado previo:

EJERCICIO 40. Demuestre que

Lema 7.2.2. Si K es pre-escalonada, entonces Kx = 0 si y solo si son nulos los coeficientes x_j correspondientes a las columnas no nulas de K.

Veamos ahora el resultado fundamental de esta lección...

Proposición 7.2.3. Si A tiene soluciones especiales, todo vector de $\mathcal{N}(\mathbf{A})$ es combinación lineal de ellas.

Demostración. Sea $\mathbf{E} = \mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k}$ tal que $\mathbf{A}\mathbf{E} = \mathbf{K}$ es pre-escalonada. Puesto que \mathbf{E} es invertible, para todo vector \boldsymbol{x} de \mathbb{R}^n existe un *único* vector tal que

$$\mathbf{E} \boldsymbol{y}_r = \boldsymbol{x};$$

concretamente $\boldsymbol{y}_x = (\mathbf{E}^{-1})\boldsymbol{x}$.

Si $\mathbf{K}_{|p_1}, \dots \mathbf{K}_{|p_r}$ son las r columnas no nulas de \mathbf{K} (es decir, las columnas con pivote), por el Lemma 7.2.2 sabemos que la condición necesaria y suficiente para que $\mathbf{K} \mathbf{y}_x = \mathbf{0}$ es que las componentes del vector \mathbf{y}_x que multiplican a las columnas con pivote sean nulas, es decir, $(\mathbf{y}_x)_{|p_1} = \dots = (\mathbf{y}_x)_{|p_r} = 0$.

Así, si $\{e_1,...,e_{n-r}\}$ es el conjunto de índices correspondientes a las columnas nulas de K, es decir, si $\{p_1,...p_r\} \cup \{e_1,...,e_{n-r}\} = \{1,...,n\}$; como

$$m{x} = m{\mathsf{E}}m{y}_x = (m{\mathsf{E}}_{|p_1})(m{y}_x)_{|p_1} + \ldots + (m{\mathsf{E}}_{|p_r})(m{y}_x)_{|p_r} + (m{\mathsf{E}}_{|e_1})(m{y}_x)_{|e_1} + \ldots + (m{\mathsf{E}}_{|e_{(n-r)}})(m{y}_x)_{|e_{(n-r)}},$$

tendremos que $\mathbf{A}x=\mathbf{0}$, es decir, que $\mathbf{A}\mathbf{E}y_x=\mathbf{K}y_x=\mathbf{0}$ y como sabemos que las componentes $(y_x)_{|p_1},\ldots,(y_x)_{|p_r}$ de y_x son nulas, llegamos a que x es combinación lineal de $(\mathbf{E}_{|e_1}),\ldots,(\mathbf{E}_{|e_{(n-r)}})$, pues

$$oldsymbol{x} = ig(oldsymbol{\mathsf{E}}_{oldsymbol{|}e_1} ig) ig(oldsymbol{y}_x ig)_{oldsymbol{|}e_{(n-r)}} + \ldots + ig(oldsymbol{\mathsf{E}}_{oldsymbol{|}e_{(n-r)}} ig) ig(oldsymbol{y}_x ig)_{oldsymbol{|}e_{(n-r)}}.$$

Por tanto tenemos el siguiente

Corolario 7.2.4. O todas las soluciones de $\mathbf{A}x = \mathbf{0}$ son combinaciones lineales de las soluciones especiales, o bien, la forma pre-escalonada de \mathbf{A} no tiene columnas nulas y la única solución es $\mathbf{0}$, es decir:

$$O(\mathcal{N}(\mathbf{A}) = \{combinaciones \ lineales \ de \ las \ soluciones \ especiales\}$$
 $O(\mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}.$

Ahora ya podemos terminar el Ejemplo 17 en la página 90 concluyendo que el espacio nulo de **A** (es decir, el conjunto de soluciones del sistema $\mathbf{A}x = \mathbf{0}$) es:

$$\mathcal{N}\left(\mathbf{A}\right) = \left\{ \boldsymbol{x} \in \mathbb{R}^4 \left| \text{existen } a, b \in \mathbb{R} \ \text{tales que } \boldsymbol{x} = a \begin{pmatrix} 2 \\ -1 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Es decir, $\mathcal{N}(\mathbf{A})$ es el subconjunto de vectores \mathbf{x} de \mathbb{R}^4 que verifican que, para cada \mathbf{x} , es posible encontrar dos números reales a y b tales que a veces la primera solución especial más b veces la segunda es igual a \mathbf{x} .²

 $^{^2}$ Esta forma de identificar los elementos \boldsymbol{x} de un subconjunto como aquellos que para los que es posible encontrar parámetros que permitan expresar cada \boldsymbol{x} como una combinación lineal se denomina ecuación paramétrica.

Fíjese que con las ecuaciones paramétricas es muy fácil obtener elementos del conjunto, basta elegir dos valores a y b cualesquiera para obtener una solución. Por el contrario, las ecuaciones cartesianas (Definición 7.1) nos sirven para verificar si un vector x pertenece o no al conjunto, basta verificar que Ax es cero. ¡Cada tipo de ecuación sirve para una cosa distinta, unas para generar ejemplos, y las otras para verificar la pertenencia!

Nomenclatura usada por G. Strang Siguiendo la nomenclatura de G. Strang, a las columnas de A que acaban siendo nulas en la forma pre-escalonada K se denominarán columnas libres y el resto (i.e. las que mantienen un pivote) se llamarán columnas pivote.

Las variables (o incógnitas) correspondientes a columnas pivote, se denominarán variables pivote (o variables endógenas), el resto se denominarán variables libres (o variables exógenas); y las columnas que quedan debajo de las columnas nulas de **K** se denominarán soluciones especiales (realmente no son especiales, pero así es como las llama G. Strang).

噯

Algoritmo para resolver $\mathbf{A}x = \mathbf{0}$

- 2. Si hay soluciones especiales (columnas de E bajo las columnas nulas de K)
 - Solución completa: $\mathcal{N}(\mathbf{A}) = \{\text{combinaciones lineales de las } soluciones especiales}\}$
- 3. Si no hay soluciones especiales (si K no tiene columnas nulas)
 - Solución completa: $\mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}$

$$\begin{array}{c} A = \text{Matrix}(\ [\ [1,2,0,1] \ , [0,1,1,0] \ , [1,2,0,1] \] \) \\ \text{Homogenea}(A,\ 1) & \# \textit{Resuelve la ecuación homogenea} \\ \\ \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ \frac{1}{2} & 2 & 0 & 1 \\ \frac{1}{2} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \ \end{bmatrix} \\ & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ \frac{1}{2} & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \ \end{bmatrix} \\ & \mathcal{L} \left(\begin{bmatrix} 2 \\ -1 \\ 1 \\ 0 \\ \end{bmatrix}; \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \\ \end{bmatrix}; \right) \\ \\ \\ \mathcal{L} \left(\begin{bmatrix} 2 \\ -1 \\ 1 \\ 0 \\ \end{bmatrix}; \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \\ \end{bmatrix}; \right) \\ \\ \end{array} \right)$$

7.3. Generalizaciones o visiones alternativas (*)

Podemos generalizar la Proposición 7.2.1:

EJERCICIO 41. Demuestre la siguiente

Proposición 7.3.1. Para toda función lineal $f: \mathcal{V} \to \mathcal{W}$, el conjunto

$$\mathcal{N}\left(f\right) = \left\{ \left. \overrightarrow{v} \right| f(\overrightarrow{v}) = \overrightarrow{0} \right\}$$

es un subespacio de V.

Fíjese que la Proposición 7.2.1 es un caso particular en el que la función es $f_{\mathbf{A}} : \mathbb{R}^n \to \mathbb{R}^m$.

Resolviendo Ax = b

En esta lección veremos que el método de eliminación también nos permite deducir si es resoluble $\mathbf{A}x = \mathbf{b}$ y, cuando lo es, encontrar el conjunto de vectores \mathbf{x} tales que $\mathbf{A}x$ es igual a \mathbf{b} .

8.1. Eliminación sobre la matriz ampliada

Considere el sistema NO homogéneo $\mathbf{A}x = \mathbf{b}$ (es decir, con $\mathbf{b} \neq \mathbf{0}$). Podemos re-escribir el sistema para que tenga una apariencia de sistema homogéneo:

$$\mathbf{A}x = \mathbf{b} \qquad \Longleftrightarrow \qquad \mathbf{A}x - \mathbf{b} = \mathbf{0} \qquad \Longleftrightarrow \qquad \begin{bmatrix} \mathbf{A} \mid -\mathbf{b} \end{bmatrix} \begin{pmatrix} x \\ 1 \end{pmatrix} = \mathbf{0}; \tag{8.1}$$

donde el vector de incógnitas, $\begin{pmatrix} x \\ 1 \end{pmatrix}$, tiene una restricción: su última componente debe ser un 1.

La matriz $[A \mid -b]$ se denomina matriz de coeficientes "ampliada", y marcamos una línea vertical para recordar que la parte izquierda de la matriz corresponde a la matriz de coeficientes del sistema Ax = b y que la columna de la derecha es el vector del lado derecho...; pero con el signo cambiado!

Pues bien, el método de resolución que exponemos aquí intenta resolver este "pseudo-sistema homogéneo" tratando de encontrar soluciones que tengan un 1 en su última componente (es decir, trataremos de encontrar algún vector de $\mathcal{N}\left(\left[\begin{array}{c|c}\mathbf{A} & -\mathbf{b}\end{array}\right]\right)$ que tenga un 1 en la última componente).

Las implicaciones "si y solo si" de más arriba indican que encontrar soluciones de $\mathbf{A}x = \mathbf{b}$ es equivalente a encontrar vectores del espacio nulo de la matriz ampliada que tengan un 1 como última componente.

La mecánica consiste en aplicar el método de eliminación como en la lección anterior, pero usando ahora la matriz de coeficientes "ampliada". Si logramos anular la última columna de la matriz de coeficientes "ampliada", entonces el sistema tiene solución. ¡Si además logramos mantener el 1 de la solución especial correspondiente a la última columna, entonces tendremos a la vista una solución a $\mathbf{A}x = \mathbf{b}$!

Para resolver el sistema $\mathbf{A}_{m \times n} \mathbf{x} = \mathbf{d}$ por eliminación, "alargamos" la matriz ampliada $[\mathbf{A} \mid -\mathbf{d}]$, de (n+1) columnas, con una matriz identidad de orden (n+1) por debajo:

$$\begin{bmatrix} \mathbf{A} & -d \\ \hline \mathbf{I} & \\ \hline \mathbf{I} & \\ \hline n \times n & 1 \end{bmatrix} \qquad \text{donde} \qquad \mathbf{I} = \begin{bmatrix} \mathbf{I} & \\ \hline n \times n & \\ \hline \end{bmatrix};$$

y distinguimos los bloques correspondientes a las distintas partes con líneas horizontales y verticales. Después pre-escalonamos la matriz como hicimos en la lección anterior con los sistemas homogéneos.

Probemos con el siguiente ejemplo de sistema de ecuaciones sin solución:

Ejemplo 18. Considere el sistema
$$\mathbf{A}x = d$$
 con $\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 4 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix}$ y $\mathbf{d} = \begin{pmatrix} 5 \\ -1 \\ 1 \\ -1 \end{pmatrix}$.

$$\begin{bmatrix} \mathbf{A} \mid -\mathbf{d} \\ \boxed{\mathbf{I} \mid 1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \mid -5 \\ 2 & 2 & 4 & 1 \\ 3 & 1 & 4 & -1 \\ 4 & 1 & 5 & 1 \\ \hline 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{ \begin{bmatrix} \mathbf{T} \\ [(-1)1+2] \\ [(-2)1+3] \\ [(5)1+4] \end{bmatrix} } \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 11 \\ 3 & -2 & -2 & 14 \\ 4 & -3 & -3 & 21 \\ \hline 1 & -1 & -2 & 5 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{ \begin{bmatrix} \mathbf{T} \\ [(-1)2+3] \\ [(7)2+4] \end{bmatrix} } \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 11 \\ 3 & -2 & 0 & 0 \\ 4 & -3 & 0 & 0 \\ \hline 1 & -1 & -1 & -2 \\ 0 & 1 & -1 & 7 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

Como no hemos encontrado un vector de $\mathcal{N}\left(\left[\begin{array}{c|c}\mathbf{A} & -d\end{array}\right]\right)$ cuya última componente sea un uno, el sistema $\mathbf{A}x=d$ NO tiene solución.

Ejemplo 19. Ahora considere el sistema
$$\mathbf{A}x = \mathbf{b}$$
 con $\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 4 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix}$ y $\mathbf{b} = \begin{pmatrix} 5 \\ 10 \\ 1 \\ -1 \end{pmatrix}$. Aplicando el

método de eliminación sobre la matriz ampliada tenemos

$$\begin{bmatrix} 1 & 1 & 2 & | & -5 \\ 2 & 2 & 4 & | & -10 \\ 3 & 1 & 4 & | & -1 \\ 4 & 1 & 5 & 1 \\ \hline 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 2 & 0 & 0 & | & 0 \\ 3 & -2 & -2 & | & 14 \\ 4 & -3 & -3 & | & 21 \\ \hline 1 & -1 & -2 & | & 5 \\ 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & | & 0 \end{bmatrix} \xrightarrow{\tau} \begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 2 & 0 & 0 & | & 0 \\ \hline 3 & -2 & 0 & | & 0 \\ \hline 4 & -3 & 0 & | & 0 \\ \hline 1 & -1 & -1 & | & -2 \\ \hline 0 & 1 & 0 & | & 0 \\ \hline 0 & 0 & 1 & | & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{bmatrix}$$

Hemos encontrado dos soluciones especiales (los vectores por debajo de las dos columnas nulas), de las cuales la segunda tiene un 1 como ultima componente. Así pues, por las implicaciones "si y solo si" de la Ecuación 8.1 sabemos que el sistema $\mathbf{A}x = \mathbf{b}$ es resoluble y que $\mathbf{x} = \begin{pmatrix} -2, & 7, & 0 \end{pmatrix}$ es una solución, pues

$$\left[egin{array}{c|c} \mathbf{A} & -d \end{array}
ight] egin{pmatrix} x \ 1 \end{array} = \mathbf{0} \quad \Longleftrightarrow \quad \mathbf{A}x - d = \mathbf{0} \quad \Longleftrightarrow \quad \mathbf{A}x = d.$$

¿Una solución o infinitas soluciones?

Fíjese en la última matriz obtenida en el proceso de eliminación del último ejemplo. Sumando cualquier múltiplo de la tercera columna a la cuarta obtenemos otro vector de $\mathcal{N}\left(\left[\begin{array}{c|c}\mathbf{A} & -b\end{array}\right]\right)$ con un 1 como última componente. Es decir, el conjunto de vectores de $\mathcal{N}\left(\left[\begin{array}{c|c}\mathbf{A} & -b\end{array}\right]\right)$ con un 1 en la última componente es

$$\left\{ \boldsymbol{y} \in \mathbb{R}^4 \middle| \text{ existe } a \in \mathbb{R} \text{ tal que } \boldsymbol{y} = \begin{pmatrix} -2 \\ 7 \\ 0 \\ 1 \end{pmatrix} + a \begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \end{pmatrix} \right\}$$

Consecuentemente (Ecuación 8.1) el conjunto de soluciones del sistema $\mathbf{A}x = \mathbf{b}$ es

$$\left\{ \boldsymbol{x} \in \mathbb{R}^3 \middle| \text{existe } a \in \mathbb{R} \text{ tal que } \boldsymbol{x} = \begin{pmatrix} -2 \\ 7 \\ 0 \end{pmatrix} + a \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \right\}$$

Estas ecuaciones paramétricas nos permiten obtener tantos ejemplos de soluciones como queramos, basta con dar valores arbitrarios al parámetro a (obtenga alguna otra solución y y compruebe que Ay = b).

Una vez visto el funcionamiento en un ejemplo. Veamos el caso general de sistema $\mathbf{A}x=\mathbf{b}$ con solución.

Considere un sistema $\mathbf{A}x = \mathbf{b}$ que tiene solución y donde r es el rango de la matriz de coeficientes \mathbf{A} de n columnas; y sean $\begin{bmatrix} \mathbf{A} & -\mathbf{b} \end{bmatrix}_{\tau_1 \cdots \tau_k}$ una forma pre-escalonada de la matriz de coeficientes ampliada y $\mathbf{E} = \mathbf{I}_{\tau_1 \cdots \tau_k}$.

Sabemos que el espacio nulo $\mathcal{N}\left(\left[\begin{array}{c|c} \mathbf{A} & -\mathbf{b}\end{array}\right]\right)$ contiene todas las combinaciones lineales de las soluciones especiales. Como en la demostración de la Proposición 7.2.4 en la página 92, sea $\{e_1,...,e_{n-r},(n+1)\}$ el conjunto de índices correspondientes a las columnas nulas de la forma pre-escalonada (y donde sabemos que el último índice es n+1 puesto que $\mathbf{A}\mathbf{x}=\mathbf{b}$ tiene solución); entonces:

$$\mathcal{N}\left(\left[\begin{array}{c|c}\mathbf{A} \mid -\mathbf{b}\end{array}\right]\right) = \left\{\boldsymbol{x} \in \mathbb{R}^{(n+1)} \text{ tales que } \boldsymbol{x} = \left(\mathbf{E}_{|e_1}\right)\lambda_{e_1} + \ldots + \left(\mathbf{E}_{|e_{(n-r)}}\right)\lambda_{e_{(n-r)}} + \left(\mathbf{E}_{|(n+1)}\right)\lambda_{(n+1)}\right\};$$

y como únicamente la solución especial $\mathbf{E}_{|n+1}$ tiene un 1 en su última componente¹, el conjunto de vectores de $\mathcal{N}([\mathbf{A} \mid -b])$ con un 1 en su última componente es

$$\left\{ \boldsymbol{x} \in \mathbb{R}^{n+1} \text{ tales que } \boldsymbol{x} = \left(\mathbf{E}_{|e_1} \right) \lambda_{e_1} + \ldots + \left(\mathbf{E}_{|e_{(n-r)}} \right) \lambda_{e_{(n-r)}} + \mathbf{E}_{|n+1} \right\}; \tag{8.2}$$

es decir, necesariamente $\lambda_{(n+1)} = 1$. De esto se deduce que cuando $\mathbf{A}x = \mathbf{b}$ es resoluble:

- 1. El conjunto de soluciones del sistema $\mathbf{A}x = \mathbf{b}$ es el resultado de quitar la última componente de las soluciones especiales de la Ecuación (8.2).
- 2. si la forma pre-escalonada de **A** tiene columnas nulas (si rango (**A**) < n) entonces el sistema tiene infinitas soluciones. Y si por el contrario $\mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}$, entonces existe un único vector solución... (el vector cuyas n componentes son las n primeras componentes de la solución especial $\mathbf{E}_{\lfloor n+1}$).

Algoritmo de resolución de un sistema no homogéneo

Aplicando el método de eliminación de izquierda a derecha para pre-escalonar, logramos:

donde $[K \mid c]$ es una matriz pre-escalonada de la matriz de coeficientes ampliada $[A \mid -b]$; y donde la única componente distinta de cero, de la última fila, es d en la última columna. Si sigue el algoritmo de la demostración del Teorema 4.3.1 en la página 49, entonces d siempre será igual a 1, pues no ha empleado transformaciones de $Tipo\ II$. Pero si usted opera como lo hace la librería NAcAL (que multiplica algunas columnas por números no nulos para evitar operar con fracciones en la medida de lo posible), entonces d podrá tomar cualquier valor no nulo.

Tras la eliminación en (8.3), solo caben dos posibilidades:

1. Si c = 0, entonces el sistema $\mathbf{A}x = \mathbf{b}$ tiene solución, pues debajo de c hay un vector del espacio nulo de la matriz ampliada cuya última componente d es distinta de cero (es lo que pasó en el segundo de los dos ejemplos anteriores). Si $d \neq 1$, basta dividir la última columna por d para obtener un vector del espacio nulo de la matriz ampliada cuya última componente es un 1.

 $^{^{1}}$ recuerde que la última componente del resto de vectores $\mathbf{E}_{\mid j}$ con $j\neq (n+1)$ es un 0

y donde $s_p = \frac{1}{d}v$ es un vector solución, es decir $\mathbf{A}(s_p) = \mathbf{b}$. Al vector s_p se le suele llamar "solución particular" (aunque no tiene nada de particular, salvo que es el encontrado por eliminación).

2. Si $c \neq 0$, entonces el sistema $\mathbf{A}x = \mathbf{b}$ NO tiene solución.

Por tanto, el sistema tiene solución si y solo si logramos transformar $-\mathbf{b}$ en el vector $\mathbf{0}$.

Mediante la eliminación podemos saber si $\mathbf{A} x = \mathbf{b}$ es resoluble (y encontrar *una* solución cuando lo es).

Algoritmo para resolver $\mathbf{A}x = \mathbf{b}$

Pre-escalonamos (y luego dividimos la última columna por su última componente, d) a :

$$\begin{bmatrix} \begin{array}{c|c} \mathbf{A} & -b \\ \hline \mathbf{I} & \\ \hline & 1 \end{array} \end{bmatrix} \xrightarrow{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k \cdots \boldsymbol{\tau}_p} \begin{bmatrix} \begin{array}{c|c} \mathbf{K} & f \\ \hline \mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} & v \\ \hline & d \end{array} \end{bmatrix} \xrightarrow{ \begin{bmatrix} (\frac{1}{d})(\mathbf{n}+\mathbf{1}) \end{bmatrix}} \begin{bmatrix} \begin{array}{c|c} \mathbf{K} & \boldsymbol{c} \\ \hline \mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} & \boldsymbol{s} \\ \hline & 1 \end{bmatrix}$$

donde $\mathbf{K} = \mathbf{A}_{\tau_1 \cdots \tau_k}$ está pre-escalonada; y por tanto: $\mathbf{K}_{|j} = \mathbf{0} \implies (\mathbf{I}_{\tau_1 \cdots \tau_k})_{|j} \in \mathcal{N}(\mathbf{A}).$

- Si $\mathbf{c} \neq \mathbf{0}$ el sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$ NO tiene solución.
- Si c = 0, entonces As = b, y el conjunto de todas las soluciones es

$$\{x \in \mathbb{R}^n \mid \text{existe } y \in \mathcal{N}(\mathbf{A}) \text{ tal que } x = s + y\}.$$

Por tanto, cuando **K** no tiene columnas nulas $(\mathcal{N}(\mathbf{A}) = \{0\})$ la única solución es s.

 a Nótese que d siempre es igual a 1 si se aplica el algoritmo de la demostración del Teorema 4.3.1 en la página 49, pero si también se emplean transformaciones $Tipo\ II$, entonces d podría tomar cualquier valor no nulo.

$$\begin{bmatrix} 7 & -2 & 0 & | & -4 \\ 6 & 4 & 2 & | & -12 \\ \hline 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{\begin{bmatrix} [7/2] \\ [2]/1+2] \\ [4]/1+4]} \begin{bmatrix} 7 & 0 & 0 & | & 0 \\ 6 & 40 & 2 & | & -60 \\ \hline 1 & 2 & 0 & | & 4 \\ 0 & 7 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & | & 7 \end{bmatrix} \xrightarrow{\begin{bmatrix} [7/2] \\ [2]/1+2] \\ [4]/1+4]} \begin{bmatrix} [7/2] \\ [4]/1+4] \\ \hline 0 & 0 & 0 & | & 4 \\ 0 & 7 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & | & 7 \end{bmatrix} \xrightarrow{\begin{bmatrix} [7/3] \\ [2]/1+3] \\ [3]/2+4]} \begin{bmatrix} 7 & 0 & 0 & | & 0 \\ 6 & 40 & 0 & | & 0 \\ \hline 1 & 2 & -2 & | & 1 \\ 0 & 7 & -7 & | & 21 \\ \hline 0 & 0 & 20 & | & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{bmatrix}$$
$$\begin{bmatrix} \frac{7}{6} & 40 & 0 & | & 0 \\ 40 & 0 & 0 & | & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{bmatrix}$$
$$\begin{bmatrix} \frac{7}{6} & 40 & 0 & | & 0 \\ 40 & 0 & 0 & | & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{bmatrix}$$
$$\begin{bmatrix} \frac{7}{6} & 40 & 0 & | & 0 \\ 40 & 0 & 0 & | & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{bmatrix}$$
$$\begin{bmatrix} \frac{7}{6} & 40 & 0 & | & 0 \\ 40 & 0 & 0 & | & 0 \\ \hline 0 & 0 & 20 & | & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{bmatrix}$$
$$\begin{bmatrix} \frac{7}{6} & 40 & 0 & | & 0 \\ 40 & 0 & 0 & | & 0 \\ \hline 0 & 0 & 20 & | & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{bmatrix}$$
$$\begin{bmatrix} \frac{7}{6} & 40 & 0 & | & 0 \\ 40 & 0 & 0 & | & 0 \\ \hline 0 & 0 & 20 & | & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{bmatrix}$$

(Como multiplicamos la cuarta columna por 7 y por 2, al final debemos dividir la cuarta columna por 14.)

8.1.1. El Teorema de de Rouché-Frobenius

Del procedimiento anterior se deduce que los rangos de la matriz de coeficientes \mathbf{A} y de la matriz ampliada $\left[\mathbf{A}|-\mathbf{b}\right]$ nos clasifican los posibles casos en cuanto al número de soluciones del sistema $\mathbf{A}\mathbf{x}=\mathbf{b}$.

Sabemos que tras aplicar el método de eliminación sobre las columnas de la matriz de coeficientes ampliada

$$egin{bmatrix} m{\mathsf{A}} \mid -m{b} \end{bmatrix} \xrightarrow{m{ au}_1 \cdots m{ au}_k} m{\mathsf{K}} \mid m{c} \end{bmatrix}$$

solo se pueden dar dos casos: que la última columna sea nula (c=0), o que no lo sea $(c\neq 0)$:

1. Si $c \neq 0$, entonces la matriz ampliada tiene una columna pivote adicional, es decir,

$$\operatorname{rango}\left(\left[\mathbf{A}\mid-\boldsymbol{b}\right]\right)>\operatorname{rango}\left(\mathbf{A}\right)\qquad\Longleftrightarrow\qquad\text{el sistema NO tiene solución}.$$

2. Si $\mathbf{c} = \mathbf{0}$, entonces

$$\operatorname{rango}\left(\left[\mathbf{A}\mid-\boldsymbol{b}\right]\right)=\operatorname{rango}\left(\mathbf{A}\right)\qquad\Longleftrightarrow\qquad \text{el sistema es resoluble}.$$

Si además \boldsymbol{A} es de rango completo por columnas (si todas sus columnas son columnas pivote), entonces la forma pre-escalonada \boldsymbol{K} no tiene columnas nulas (es decir, $\mathcal{N}\left(\boldsymbol{A}\right)=\left\{\boldsymbol{0}\right\}$), por lo que el sistema tiene una única solución.

Pero si el rango es menor que n entonces el sistema tiene infinitas soluciones, ya que a una solución x se le puede sumar cualquier vector de $\mathcal{N}(\mathbf{A})$ para obtener otra solución.

El anterior resultado se resume en el siguiente

Teorema 8.1.1 (Rouché-Frobenius). Un sistema de ecuaciones lineales $\mathbf{A}x = \mathbf{b}$ con n incógnitas tiene solución si y solo si el rango de la matriz de coeficientes \mathbf{A} es igual al rango de la matriz de coeficientes ampliada $[\mathbf{A}|-\mathbf{b}]$. En particular:

- 1. $Si \operatorname{rango}(\mathbf{A}) = n$, la solución es única.
- 2. En caso contrario hay infinitas soluciones.

Si además \mathbf{A} es de rango completo por filas (si su rango es igual a su número de filas m), el sistema tiene solución para cualquier vector $\mathbf{b} \in \mathbb{R}^m$; pues al pre-escalonar la matriz ampliada se anulan todas las componentes de $-\mathbf{b}$, por estar a la derecha de \mathbf{A} y haber un pivote en cada fila de \mathbf{A}).

Así, para el caso de matrices cuadradas, tenemos el siguiente

Corolario 8.1.2. Para toda matriz cuadrada A de orden n, las siguientes afirmaciones son equivalentes:

- 1. El rango de A es n (ó A es de rango completo).
- 2. $\mathbf{A}\mathbf{x} = \mathbf{0}$ si y solo si $\mathbf{x} = \mathbf{0}$.
- 3. $\mathbf{A}\mathbf{x} = \mathbf{b}$ tiene solución única.
- 4. A no es singular.
- 5. A es invertible.
- 6. A es producto de matrices elementales: $\mathbf{A} = \mathbf{I}_{\tau_1 \cdots \tau_k}$.
- 7. $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ es la única solución a $\mathbf{A}\mathbf{x} = \mathbf{b}$

8.2. Espacio columna de una matriz

Considere el conjunto de todas las combinaciones lineales de las columnas de $\bf A$ de orden m por n

$$\left\{ \boldsymbol{b} \in \mathbb{R}^n \mid \text{existen } x_1, \dots, x_n \in \mathbb{R} \text{ tales que } \boldsymbol{b} = x_1 \mathbf{A}_{|1} + \dots + x_n \mathbf{A}_{|n} \right\}$$

o bien, usando la notación matricial,

$$\{ \boldsymbol{b} \in \mathbb{R}^n \mid \text{existe } \boldsymbol{x} \in \mathbb{R}^n \text{ tal que } \boldsymbol{b} = \mathbf{A}\boldsymbol{x} \}$$

Puesto que este subconjunto de \mathbb{R}^n contiene todas las combinaciones lineales de las columnas, obviamente es cerrado para las combinaciones lineales. Por tanto, este conjunto es un subespacio de \mathbb{R}^n . Lo denominamos espacio columna de \mathbf{A} , y lo denotamos por $\mathcal{C}(\mathbf{A})$. Por ejemplo

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}; \qquad \Rightarrow \qquad \mathcal{C}\left(\mathbf{A}\right) = \left\{ \boldsymbol{b} \in \mathbb{R}^n \; \middle| \; \text{existen } x,y,z \in \mathbb{R} \; \text{tales que } \boldsymbol{b} = x \begin{pmatrix} 1 \\ 1 \end{pmatrix} + y \begin{pmatrix} 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}.$$

Evidentemente

$$\mathbf{A}x = \mathbf{b}$$
 tiene solución si y solo si $\mathbf{b} \in \mathcal{C}(\mathbf{A})$.

El espacio columna y la eliminación

El subespacio $\mathcal{C}(\mathbf{A})$ es cerrado para la suma y el producto por escalares, pero precisamente ese es el tipo de operaciones que realizan las transformaciones elementales de las columnas. Por tanto, al aplicar transformaciones elementales sobre las columnas de \mathbf{A} obtenemos nuevas matrices cuyas columnas pertenecen a $\mathcal{C}(\mathbf{A})$. Así, el espacio columna de $\mathbf{A}_{\tau_1\cdots\tau_k}$ está contenido en el espacio columna de \mathbf{A} :

$$\mathcal{C}\left(\mathbf{A}_{\boldsymbol{\tau}_{1}\cdots\boldsymbol{\tau}_{k}}\right)\subset\mathcal{C}\left(\mathbf{A}\right);$$

pero como las transformaciones elementales son "reversibles", mediante una sucesión de transformaciones elementales se puede retornar de $\mathbf{A}_{\tau_1\cdots\tau_k}$ a \mathbf{A} , pues $\mathbf{A}=\left(\mathbf{A}_{\tau_1\cdots\tau_k}\right)_{\tau_k^{-1}\cdots\tau_1^{-1}}$. Por tanto, también ocurre que

$$\mathcal{C}\left(\mathbf{A}\right)\subset\mathcal{C}\left(\mathbf{A}_{\boldsymbol{\tau}_{1}\cdots\boldsymbol{\tau}_{k}}\right).$$

Por tanto

$$\mathcal{C}\left(\mathbf{A}
ight)=\mathcal{C}\left(\mathbf{A}_{oldsymbol{ au}_{1}\cdotsoldsymbol{ au}_{k}}
ight).$$

¡Al aplicar la eliminación, todas las matrices que aparecen en el proceso tienen el mismo espacio columna!

Así pues, concluimos que

$$\mathrm{Si} \ \ \mathbf{B} = \!\! \mathbf{AE} \quad \mathrm{y} \quad \ \mathbf{E} = \!\! \mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k}, \quad \mathrm{entonces} \quad \ \mathcal{C}\left(\mathbf{A}\right) = \mathcal{C}\left(\mathbf{B}\right).$$

8.3. Generalizaciones o visiones alternativas (★)

Resolviendo varios sistemas a la vez El método de resolución que hemos visto en esta lección permite (con una mínima variación) resolver simultáneamente sistemas que compartan la misma matriz de coeficientes. Por ejemplo, podemos resolver simultáneamente los ejemplos 18 y 19:

$$\begin{bmatrix} \mathbf{A} & | & -\mathbf{b} & | & -\mathbf{d} \\ \hline \mathbf{I} & | & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 & | & -5 & | & -5 \\ 2 & 2 & 4 & | & -10 & | & 1 \\ 3 & 1 & 4 & | & -1 & | & -1 \\ 4 & 1 & 5 & | & 1 & | & 1 \\ \hline 1 & 0 & 0 & | & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 & | & 0 \\ \hline 0 & 0 & 1 & | & 0 & | & 0 \\ \hline 0 & 0 & 0 & | & 1 & | & 1 \\ \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & 0 & | & 0 \\ 2 & 0 & 0 & | & 0 & | & 0 \\ 2 & 0 & 0 & | & 0 & | & 1 \\ 3 & -2 & -2 & | & 14 & | & 14 \\ 4 & -3 & -3 & | & 21 & | & 21 \\ \hline 1 & -1 & -2 & | & 5 & | & 5 \\ 0 & 1 & 0 & | & 0 & | & 0 \\ \hline 0 & 0 & 1 & | & 0 & | & 0 \\ \hline 0 & 0 & 1 & | & 1 & | & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & 0 & | & 0 \\ 2 & 0 & 0 & | & 0 & | & 11 \\ 3 & -2 & 0 & | & 0 & | & 0 \\ 4 & -3 & 0 & | & 0 & | & 0 \\ \hline 1 & -1 & -1 & | & -2 & | & -2 \\ 0 & 1 & -1 & | & 7 & | & 7 \\ \hline 0 & 0 & 1 & | & 0 & | & 0 \\ \hline 0 & 0 & 0 & | & 1 & | & 1 \end{bmatrix}$$

Es decir, $\mathbf{A}x = d$ NO tiene solución pero $\mathbf{A}x = b$ si es resoluble, y el conjunto de todas las soluciones es

$$\left\{ \boldsymbol{x} \in \mathbb{R}^3 \;\middle|\; \text{existe } a \in \mathbb{R} \text{ tal que } \boldsymbol{x} = \begin{pmatrix} -2 \\ 7 \\ 0 \end{pmatrix} + a \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \right\}.$$

(Tenga en cuenta que aquí no puede usar la penúltima columna para eliminar componentes de la última).

Imagen de una función lineal y el Espacio columna

EJERCICIO 42. Considere
$$\underset{m \times n}{\mathbf{A}}$$
, y compruebe que $\mathcal{C}(\mathbf{A}) = imagen(f_{\mathbf{A}})$, donde $f_{\mathbf{A}} : \mathbb{R}^n \to \mathbb{R}^n$. $\mathbf{x} \to \mathbf{A}\mathbf{x}$

EJERCICIO 43. Demuestre la siguiente

Proposición 8.3.1. Si $f: \mathcal{D} \to \mathcal{W}$ es una función lineal, entonces imagen(f) es un subespacio de \mathcal{W} .

Independencia, base y dimensión

9.1. Combinaciones lineales de vectores de \mathcal{V}

[Recuerde las definiciones de Espacio Vectorial (Pag. 74) y de Subespacio (Pag. 78)]

En esta lección vamos a tratar con sistemas de vectores de un subespacio genérico \mathcal{V} :

$$Z = [\vec{z}_1; \vec{z}_2; \dots \vec{z}_n;], \text{ con } \vec{z}_i \in \mathcal{V};$$

a dichos sistemas los denotaremos con caracteres del tipo: A, B,... X, Y, Z. De nuevo podemos emplear el operador selector para denotar el jésimo vector de un sistema $Z = [\vec{z}_1; \dots \vec{z}_n;]$:

$$\mathsf{Z}_{|j} = \overrightarrow{z}_{j}; \quad \text{por tanto} \quad \mathsf{Z} = \left[\mathsf{Z}_{|1}; \; \mathsf{Z}_{|2}; \dots \mathsf{Z}_{|n}; \right].$$

Fíjese que las matrices son un caso particular, pues \mathbf{A} de orden m por n es un sistema de n vectores de \mathbb{R}^m :

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{|1}; \ \mathbf{A}_{|2}; \dots \mathbf{A}_{|n}; \end{bmatrix}, \quad \text{con} \quad \mathbf{A}_{|j} \in \mathbb{R}^m.$$

$$\mathbf{A} \ = \ \left[\begin{array}{cc} 1 & 0 & 0 \\ -1 & 0 & 1 \end{array} \right] \ = \ \left[\begin{pmatrix} 1 \\ -1 \end{pmatrix}; \ \begin{pmatrix} 0 \\ 0 \end{pmatrix}; \ \begin{pmatrix} 0 \\ 1 \end{pmatrix}; \right].$$

9.1.1. Extendiendo la notación matricial a los espacios vectoriales

Vamos a extender la notación matricial a subespacios genéricos ¹ empezando por el...

Producto de un sistema de n vectores de \mathcal{V} por un vector de \mathbb{R}^n

Definimos el producto $\mathsf{Z} a$ de un sistema de n vectores de \mathcal{V} por un vector de \mathbb{R}^n como la combinación lineal de los vectores de Z , cuyos coeficientes son las componentes de a:

$$\mathsf{Z}a = (\mathsf{Z}_{|1})a_1 + \dots + (\mathsf{Z}_{|n})a_n;$$

donde $a \in \mathbb{R}^n$ contiene los coeficientes de la combinación lineal.

Por tanto $\mathsf{Z}a$ es un vector de \mathcal{V} . En el caso particular del producto $\mathsf{A}x$ obtenemos un vector de \mathbb{R}^m , pero en el caso general $\mathsf{Z}a$, y dependiendo de la naturaleza de \mathcal{V} , el vector resultante pudiera ser una función, matriz, un polinomio, una variable aleatoria, etc.... todo depende de la naturaleza de \mathcal{V} .

 $^{^{1} \}mathrm{subespacios}$ espacios vectoriales genéricos pero de dimensión finita.

Ejemplo:

A = Matrix([[1, 1, 1], [1, 0, 0]])

B = Matrix([[-1, 1, 1], [0, 1, 0]])

C = Matrix([[2, 0, 1], [0, 0, 1]])

Z = Sistema([A, B, C]) # ¡Sistema de Matrices!

A = Vector([1, 2, 3]) # Sistema por Vector (comb. lineal de matrices)

Z*a

$$\mathbf{Z}\boldsymbol{a} \ = \ \left[\left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 0 & 0 \end{array} \right]; \ \left[\begin{array}{ccc} -1 & 1 & 1 \\ 0 & 1 & 0 \end{array} \right]; \ \left[\begin{array}{ccc} 2 & 0 & 1 \\ 0 & 0 & 1 \end{array} \right]; \right] \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \ = \ \left[\begin{array}{ccc} 5 & 3 & 6 \\ 1 & 2 & 3 \end{array} \right].$$

El siguiente ejercicio muestra que el producto Za verifica las *propiedades de linealidad*: la primera respecto a la suma, Z(b+c)=Zb+Zc, y la segunda respecto al producto por un escalar, $Z(\lambda b)=\lambda(Zb)$.

EJERCICIO 44. Demuestre las siguientes proposiciones.

(a) Proposición 9.1.1. Sean Z, un sistema de n vectores de V, y sean b y c vectores de \mathbb{R}^n ; entonces

$$Z(b+c) = Zb + Zc.$$

(b) Proposición 9.1.2. Sean Z, un sistema de n vectores de V, el escalar λ y b un vector de \mathbb{R}^n ; entonces

$$Z(\lambda b) = \lambda(Zb).$$

Podemos extender aún más la notación matricial.

Sistema de n vectores de \mathcal{V} por una matriz de $\mathbb{R}^{n\times p}$

Si ${\sf Z}$ es un sistema de n vectores y ${\sf A}$ una matriz de n filas y p columnas; entonces denotamos por ${\sf Z}{\sf A}$ al sistema de vectores

$$\mathbf{Z}\mathbf{A} = \left[\mathbf{Z}(\mathbf{A}_{|1}); \dots \mathbf{Z}(\mathbf{A}_{|p}); \right];$$

es decir, el vector jésimo del sistema ZA es

$$(Z\mathbf{A})_{|j} = Z(\mathbf{A}_{|j});$$

(compare esta expresión con la Definición 3.1). Así que podemos escribir sin ambigüedad el vector $\mathsf{Z}\mathsf{A}_{|j}$. Continuando con el ejemplo de más arriba

$$\mathbf{ZD} \ = \ \left[\left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 0 & 0 \end{array} \right]; \ \left[\begin{array}{ccc} -1 & 1 & 1 \\ 0 & 1 & 0 \end{array} \right]; \ \left[\begin{array}{ccc} 2 & 0 & 1 \\ 0 & 0 & 1 \end{array} \right]; \right] \left[\begin{array}{ccc} 1 & -1 \\ 0 & 0 \\ 0 & 1 \end{array} \right] \ = \ \left[\left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 0 & 0 \end{array} \right]; \ \left[\begin{array}{ccc} 1 & -1 & 0 \\ -1 & 0 & 1 \end{array} \right]; \right].$$

Además de las propiedades de linealidad de más arriba, también se verifica la asociatividad con el producto de matrices: Z(Bc) = (ZB)c y Z(BC) = (ZB)C:

Ejercicio 45. Demuestre las siguientes proposiciones.

(a) **Proposición 9.1.3.** Sean Z un sistema de m vectores de \mathcal{V} , la matriz $\underset{m \times n}{\mathsf{B}}$, y el vector c de \mathbb{R}^n , entonces:

$$Z(Bc) = (ZB)c.$$

(b) **Proposición 9.1.4.** Sean Z un sistema de p vectores de \mathcal{V} , $y \underset{p \times q}{\mathsf{B}} y \underset{q \times n}{\mathsf{C}}$, entonces $\mathsf{Z}(\mathsf{BC}) = (\mathsf{ZB})\mathsf{C}$.

Por lo que podemos escribir sin ambigüedad el vector $\mathsf{ZB}c$ y el sistema ZBC .

Al extender la notación matricial para expresar combinaciones lineales en espacios vectoriales genéricos, hemos logrado algunos resultados sobre combinaciones lineales de sistemas de vectores de $\mathcal V$ que nos serán

$$Z(b+c) = Zb + Zc$$
 $Z(\lambda b) = \lambda(Zb)$

$$\mathbf{Z}(\mathbf{B}c) = (\mathbf{Z}\mathbf{B})c$$

$$\mathbf{Z}(\lambda \mathbf{b}) = \lambda(\mathbf{Z}\mathbf{b})$$

$$\mathbf{Z}(\mathbf{BC}) = (\mathbf{ZB})\mathbf{C}$$

9.2. Sistemas generadores

En la Sección 8.2 definimos el espacio columna de la matriz A como el conjunto de todas las combinaciones lineales de sus columnas:

$$\mathcal{C}(\mathbf{A}) = \left\{ \mathbf{y} \in \mathbb{R}^n \mid \text{existen } x_1, \dots, x_n \in \mathbb{R} \text{ tales que } \mathbf{y} = (\mathbf{A}_{|1})x_1 + \dots + (\mathbf{A}_{|n})x_n \right\}.$$

o usando notación matricial

$$\mathcal{C}\left(\mathbf{A}\right) = \left\{ oldsymbol{y} \in \mathbb{R}^n \mid ext{existe } oldsymbol{x} \in \mathbb{R}^n \ ext{tal que } oldsymbol{y} = \mathbf{A} oldsymbol{x}
ight\}.$$

Ahora vamos a generalizar esta idea a cualquier espacio vectorial \mathcal{V} .

Definición 9.1 ($\mathcal{L}(\mathsf{Z})$: subespacio engendrado por un sistema Z). Dado un sistema $\mathsf{Z} = |\vec{z}_1; \ldots; \vec{z}_n| de$ vectores del espacio vectorial V, el subespacio engendrado por dicho sistema es

$$\mathcal{L}(\mathsf{Z}) = \left\{ \vec{v} \in \mathcal{V} \mid existen \ a_1, \dots, a_n \in \mathbb{R} \ tales \ que \ \vec{v} = \vec{z}_1 a_1 + \dots + \vec{z}_n a_n \right\},\,$$

es decir $\mathcal{L}(\mathsf{Z})$ es el conjunto de combinaciones lineales de $\mathsf{Z}_{|j|}$ con $j=1:n;\ o\ usando\ notación\ matricial$

$$\mathcal{L}(\mathsf{Z}) = \left\{ \vec{v} \in \mathcal{V} \mid \text{existe } \mathbf{a} \in \mathbb{R}^n \text{ tal que } \vec{v} = \mathsf{Z}\mathbf{a} \right\}. \tag{9.1}$$

Definición 9.2 (Sistema generador de \mathcal{V}). Decimos que Z es un sistema generador de \mathcal{V} si $\mathcal{V} = \mathcal{L}(Z)$. Ejemplo 20.

■ Las columnas de **A** son un sistema generador de $\mathcal{C}(\mathbf{A})$; es decir $\mathcal{L}(\mathbf{A}) = \mathcal{C}(\mathbf{A})$.

A = Matrix([Vector([1,0,0]), Vector([-1,0,1])]) ${\it SubEspacio}({\it A.sis}())$ # ${\it SubEspacio}$ generado por el ${\it Sistema}$ de columnas de A

(Ecuaciones paramétricas a la izquierda y cartesianas a la derecha)

• Las soluciones especiales de $\mathbf{A}x = \mathbf{0}$ son un sistema generador de $\mathcal{N}(\mathbf{A})$.

Homogenea (C).enulo # Espacio nulo de C
$$\left\{ \boldsymbol{v} \in \mathbb{R}^3 \; \middle| \; \exists \boldsymbol{p} \in \mathbb{R}^1, \; \boldsymbol{v} = \left[\begin{array}{c} 0 \\ -1 \\ 1 \end{array} \right] \boldsymbol{p} \right\} \; = \; \left\{ \boldsymbol{v} \in \mathbb{R}^3 \; \middle| \; \left[\begin{array}{cc} 1 & 0 & 0 \\ 0 & 1 & 1 \end{array} \right] \boldsymbol{v} = \boldsymbol{0} \right\}$$

 $\mathcal{L}(\mathsf{Z})$ es el conjunto de combinaciones lineales de los vectores de $\mathsf{Z};$ y puesto que

- lacksquare la suma de dos combinaciones lineales $\mathsf{Z} b + \mathsf{Z} c$ es la combinación lineal $\mathsf{Z} ig(b + c ig)$
- lacktriangle el producto de una combinación lineal por un escalar $(\mathsf{Z} b)\lambda$ es la combinación lineal $\mathsf{Z}(b\lambda)$

 $\mathcal{L}(\mathsf{Z})$ es un subespacio, pues es cerrado para la suma y el producto por escalares.

Además, puesto que $\mathcal{L}(Y)$ contiene *únicamente* las combinaciones lineales de $Y = [\vec{y}_1; \dots \vec{y}_n;]$, el subespacio $\mathcal{L}(Y)$ está contenido en cualquier otro subespacio que también contenga los vectores $\vec{y}_1, \dots, \vec{y}_n$; es decir, $\mathcal{L}(Y)$ es el subespacio más pequeño que contiene los vectores $\vec{y}_1, \dots, \vec{y}_n$.

Un sistema de vectores Z es un sistema generador de \mathcal{V} si: $\mathcal{V} = \mathcal{L}(\mathsf{Z})$

Ahora ya podemos establecer un criterio para saber si dos sistemas Y y Z generan el mismo subespacio:

Sea Y un sistema de n vectores; puesto que $\mathcal{L}(\mathsf{Y}) \subset \mathcal{L}(\mathsf{Z})$ si y solo si $\mathsf{Y}_{|i} \in \mathcal{L}(\mathsf{Z}), i = 1:n$, y puesto que dos conjuntos A y B son iguales si y solo si $A \subset B$ y $B \subset A$, llegamos al siguiente

Corolario 9.2.1. Sean Y con n vectores y Z con k vectores; entonces $\mathcal{L}(Y) = \mathcal{L}(Z)$ si y sólo si

$$\mathsf{Y}_{|i} \in \mathcal{L}(\mathsf{Z}) \ \textit{para todo} \ i = 1:n \qquad y \qquad \mathsf{Z}_{|j} \in \mathcal{L}(\mathsf{Y}) \ \textit{para todo} \ j = 1:k.$$

Definición 9.3. Diremos que dos sistemas generadores son equivalentes si generan el mismo espacio.

```
A = Matrix( [[2,-1,0],[-1,2,-1]] )
B = ElimGJ(Matrix(A))
SubEspacio( A.sis() ) == SubEspacio( B.sis() ) #¿Son equivalentes?

True
```

9.3. Transformaciones elementales sobre sistemas de vectores

Al igual que con las matrices, podemos aplicar transformaciones elementales sobre los sistemas de vectores:

• (Transformación Tipo I sobre el sistema de vectores) Si $i \neq j$ entonces

$$\mathsf{Z} \ = \ \left[\overrightarrow{z}_1; \dots \overrightarrow{z}_i; \dots \overrightarrow{z}_j; \dots \overrightarrow{z}_n; \right] \ \xrightarrow[(\alpha)^{i+j}]{\tau} \ \left[\overrightarrow{z}_1; \dots (\alpha \overrightarrow{z}_i + \overrightarrow{z}_j); \dots \overrightarrow{z}_j; \dots \overrightarrow{z}_n; \right] \ = \ \mathsf{Z}_{\underbrace{(\alpha)^{i+j}}_{[(\alpha)^{i+j}]}}{\tau} \ = \ \mathsf{Z} \left(\mathsf{I}_{\underbrace{(\alpha)^{i+j}}_{[(\alpha)^{i+j}]}} \right)$$

• (Transformación Tipo II sobre el sistema de vectores) Si $\alpha \neq 0$ entonces

$$\mathsf{Z} \ = \ \left[\overrightarrow{z}_1; \dots \overrightarrow{z}_i; \dots \overrightarrow{z}_n; \right] \ \xrightarrow{\left[(\alpha) \mathbf{i} \right]} \ \left[\overrightarrow{z}_1; \dots (\alpha \overrightarrow{z}_i); \dots \overrightarrow{z}_n; \right] \ = \ \mathsf{Z}_{\left[(\alpha) \mathbf{i} \right]} \ \mathsf{Z}_{\left[(\alpha)$$

Sistemas equivalentes

Así, si mediante una sucesión de transformaciones elementales τ_1,\ldots,τ_k transformamos Z en un nuevo sistema $\mathsf{Y}=\mathsf{Z}_{\tau_1\cdots\tau_k}$; por el Corolario 9.2.1 concluimos que ambos sistemas son equivalentes:

$$\mathcal{L}(\mathsf{Z}) = \mathcal{L}(\mathsf{Z}\mathsf{E}) = \mathcal{L}(\mathsf{Y}), \quad \text{donde } \mathsf{E} = \mathsf{I}_{\tau_1 \cdots \tau_k};$$
 (9.2)

puesto que, por una parte, $Y_{|j} = ZE_{|j}$ y por otra $Z_{|j} = Y(E^{-1})_{|j}$

Consideremos ahora una transformación de naturaleza distinta: quitar vectores nulos de un sistema:

Por el Corolario 9.2.1

$$\mathcal{L}\Big(\big[\overrightarrow{z}_1;\ \overrightarrow{0};\dots\overrightarrow{z}_i;\ \overrightarrow{0};\dots\overrightarrow{z}_n;\ \overrightarrow{0};\big]\Big) = \mathcal{L}\Big(\big[\overrightarrow{z}_1;\dots\overrightarrow{z}_i;\dots\overrightarrow{z}_n;\big]\Big).$$

Es mas, podemos generalizar el resultado con la siguiente

Proposición 9.3.1. Si $Z = [\vec{z}_1; \dots \vec{z}_n;]$ es un sistema de vectores entonces

$$\mathcal{L}\Big(\big[\vec{z}_1;\ldots\vec{z}_{i-1};\ \vec{z}_i;\ \vec{z}_{i+1},\ldots\vec{z}_n;\big]\Big) = \mathcal{L}\Big(\big[\vec{z}_1;\ldots\vec{z}_{i-1};\ \vec{z}_{i+1};\ldots\vec{z}_{n-1};\big]\Big).$$

 $si, y solo si, \vec{z}_i$ es combinación lineal del resto de vectores de Z.

Demostración. Basta aplicar el Corolario 9.2.1.

Como consecuencia, y volviendo al espacio generado por las columnas de una matriz A:

Si L es una forma escalonada de A con r columnas no nulas (rango (A) = r), entonces

$$\mathcal{C}\left(\mathbf{A}\right) = \mathcal{C}\left(\mathbf{L}\right) = \mathcal{C}\left(\mathbf{L}_{\mid (1:r)}\right),$$

 ${\tt donde} \ {\sf L}_{|(1:r)} \ {\tt es} \ {\tt la} \ {\tt submatriz} \ {\tt correspondiente} \ {\tt a} \ {\tt las} \ r \ {\tt primeras} \ {\tt columnas} \ ({\tt v\'ease} \ {\tt Ap\'endice} \ 3. {\tt A} \ {\tt en} \ {\tt la} \ {\tt p\'agina} \ 33).$

Por tanto, las columnas no nulas de cualquier forma pre-escalonada de A generan $\mathcal{C}(A)$.

Observación. Como $\vec{0} \in \mathcal{V}$, y como quitando los vectores nulos de un sistema generador se engendra el mismo espacio $\mathcal{L}(\vec{0}; \vec{0}; \vec{0}$

9.4. Sistemas linealmente dependientes y sistemas linealmente independientes

EJERCICIO 46. Demuestre la siguiente...

Proposición 9.4.1. Dado un sistema de vectores $Z = [\vec{z}_1; \dots \vec{z}_n;]$, existe $i \in \{1, \dots n\}$ tal que z_i es combinación lineal del resto de vectores de Z si, y solo si, existe $a \neq 0$ en \mathbb{R}^n tal que $Za = \vec{0}$.

Esto da lugar a la definición de sistema linealmente dependiente y de sistema linealmente independiente:

Definición 9.4. Diremos que el sistema de n vectores, Z

- es linealmente dependiente si existe $a \in \mathbb{R}^n$ no nulo tal que, $Za = \overrightarrow{0}$.
- es linealmente independiente si ocurre lo contrario, $Za = \vec{0}$ si y solo si a = 0.

Definición 9.5. Sea Z de n vectores de V. Denominamos espacio nulo de Z al subconjunto $\mathcal{N}(\mathsf{Z})$ de vectores x de \mathbb{R}^n tales que $\mathsf{Z} x = \overrightarrow{0}$, es decir

$$\mathcal{N}(\mathsf{Z}) = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \mathsf{Z}\boldsymbol{x} = \overrightarrow{0} \}.$$

Las anteriores definiciones implican que Z es linealmente independiente si y solo si $\mathcal{N}(Z) = \{0\}$.

Ejemplos de sistemas linealmente independientes

■ Las columnas de una matriz A invertible constituyen un sistema linealmente independiente, puesto que

$$\mathbf{A}x = \mathbf{0} \quad \Leftrightarrow \quad \mathbf{A}^{\text{-}1}\mathbf{A}x = \mathbf{A}^{\text{-}1}\mathbf{0} \quad \Leftrightarrow \quad x = \mathbf{0}.$$

- Si, de un sistema Z de vectores linealmente independiente, quitamos uno cualquiera de sus vectores, el sistema resultante sigue siendo linealmente independiente.
- Por tanto, cualquier sistema formado por una selección de columnas de una matriz invertible (sin repetición) es un sistema linealmente independiente.
- Como las soluciones especiales son una selección de columnas de una matriz invertible **E**, las soluciones especiales constituyen un sistema linealmente independiente.

Ahora que hemos definido los sistemas linealmente independientes, ya podemos enunciar la siguiente proposición sobre matrices de rango completo por columnas (¡son equivalencias vistas anteriormente!):

Proposición 9.4.2. Para $\mathbf{A} = [\mathbf{v}_1; \dots \mathbf{v}_n;]$ de n vectores de \mathbb{R}^m , las siguientes propiedades son equivalentes:

- \blacksquare El rango de $\mathbf{A} = [\mathbf{v}_1; \dots \mathbf{v}_n;]$ es n
- lacksquare La combinación lineal $\mathbf{A} \mathbf{x}$ es $\mathbf{0}$ si y solo si $\mathbf{x} = \mathbf{0}$

■ $\mathcal{N}(A) = \{0\}$

■ Las columnas de A son linealmente independientes

9.5. Bases y dimensión

Hemos visto que en un sistema de vectores linealmente dependiente es posible retirar algún vector sin reducir el espacio generado. Pero si el sistema es linealmente independiente, retirar cualquiera de los vectores reduce el espacio engendrado por ellos. Un sistema que tenga el tamaño justo para generar el subespacio \mathcal{V} sin que sobre ningún vector tiene un nombre especial:

Definición 9.6. Diremos que el sistema B es una base de un subespacio V si simultáneamente

- 1. B genera el subespacio, es decir, si $\mathcal{L}(B) = \mathcal{V}$.
- 2. B es linealmente independiente, es decir, $Bx = \vec{0}$ si y solo si x = 0.

²Por tanto el sistema vacío, $\mathsf{Z} = [\;]$, es linealmente independiente, pues no existe $a \neq \mathbf{0}$ tal que $[\;]a = \mathbf{0}$.

Es decir, una base de \mathcal{V} es un sistema de vectores B con un número suficiente elevado de vectores como para generar el subespacio \mathcal{V} pero, simultáneamente, suficientemente reducido como para que el sistema sea linealmente independiente.

Ejemplo 21. Las soluciones especiales encontradas al resolver $\mathbf{A}x = \mathbf{0}$ constituyen una base de $\mathcal{N}(\mathbf{A})$.

Justificación: Por la Proposición 7.2.3 en la página 92 sabemos que las soluciones especiales son un sistema generador de $\mathcal{N}(\mathbf{A})$ y, puesto que son una selección de columnas una matriz invertible, son linealmente independientes.

Un resultado importantísimo es que todas las bases de un subespacio \mathcal{V} tienen el mismo número de vectores. Usaremos la siguiente proposición para demostrarlo:

Proposición 9.5.1. Si X y Z son dos sistemas con p y q vectores de V respectivamente, donde p > q; tales que $\mathcal{L}(X) \subset \mathcal{L}(Z)$ entonces X es linealmente dependiente.

Demostración. Como cada $X_{|i}$ es combinación lineal de los vectores del sistema Z, existe M tal que

$$X_{ij} = ZM_{ij}$$
 para $j = 1 : p$; es decir, tal que $X = ZM$.

Como **M** tiene más columnas que filas, existe $a \neq 0$ tal que $\mathbf{M}a = \mathbf{0}$; y por tanto $\mathbf{X}a = \mathbf{Z}\mathbf{M}a = \mathbf{Z}\mathbf{0} = \overrightarrow{0}$. \square

Así pues, dos bases de un mismo subespacio tienen el mismo número de vectores; pues si una base tuviera más que la otra, por la Proposición 9.5.1, sería un sistema dependiente, y por tanto ya no sería una base.

Definición 9.7. Decimos que un subespacio V es de dimensión finita cuando tiene una base con un número finito de vectores. En tal caso, llamamos dimensión de V al número de vectores de cualquiera de sus bases.

En la sección anterior vimos un procedimiento para generar una base quitando vectores. Veamos otro procedimiento para completar una base añadiendo vectores.

Proposición 9.5.2. Si $[\vec{z}_1; \dots \vec{z}_n;]$ es un sistema linealmente independiente $y \ \vec{z}_{n+1} \notin \mathcal{L}([\vec{z}_1; \dots \vec{z}_n;])$ entonces $[\vec{z}_1; \dots \vec{z}_n; \vec{z}_{n+1};]$ es linealmente independiente.

Demostración. Supongamos que $a_1 \vec{z}_1 + \dots + a_n \vec{z}_n + a_{n+1} \vec{z}_{n+1} = \vec{0}$. Como $\vec{z}_{n+1} \notin \mathcal{L}([\vec{z}_1; \dots \vec{z}_n;])$, necesariamente $a_{n+1} = 0$. Y como $[\vec{z}_1; \dots \vec{z}_n;]$ es linealmente independiente, también $a_1, \dots, a_n = 0$. \square

Corolario 9.5.3. Cualquier subespacio W, de un espacio V de dimensión finita, tiene dimensión finita menor o igual a la dimensión de V.

Demostración. Sea \mathcal{W} un subespacio de \mathcal{V} , entonces sabemos que existen sistemas linealmente independientes formados por vectores de \mathcal{W} . Por ejemplo el vacío. Por otra parte, cualquier sistema de vectores linealmente independientes tiene como mucho tantos vectores como la dimensión del espacio. Tomemos de todos los posibles sistemas linealmente independientes de \mathcal{W} , un sistema M con el mayor número posible de vectores. Entonces $\mathcal{L}(M) \subset \mathcal{W}$. Veamos que si suponemos que existe $\overrightarrow{v} \in \mathcal{W}$ tal que $\overrightarrow{v} \in \mathcal{L}(M)$, necesariamente llegamos a una contradicción. Basta añadir \overrightarrow{v} al sistema M para obtener un sistema linealmente independiente formado por vectores de \mathcal{W} . Pero esto contradice que M sea un sistema linealmente independiente con el mayor número posible de vectores.

Corolario 9.5.4. Si W es un subespacio de V de la misma dimensión de V, entonces W y V son iquales.

Demostración. Tomemos una base B de \mathcal{W} . Entonces sabemos que $\mathcal{L}(\mathsf{B}) = \mathcal{W}$. Para demostrar que $\mathcal{L}(\mathsf{B}) = \mathcal{V}$, supongamos lo contrario. Supongamos que existe $\overrightarrow{v} \in \mathcal{V}$ tal que $\overrightarrow{v} \notin \mathcal{L}(\mathsf{B})$. Entonces podríamos incluir \overrightarrow{v} en B y obtendríamos un sistema linealmente independiente con más elementos que la dimensión de \mathcal{V} . \square

Corolario 9.5.5. Cualquier sistema B de vectores de W linealmente independiente cuyo número de vectores coincida con la dimensión de W es necesariamente es una base.

9.5.1. Eliminación "de izquierda a derecha" y sistemas "acoplados" de vectores

Vamos a diseñar un algoritmo para encontrar una base de $\mathcal{L}(\mathsf{Z})$. La mecánica es sencilla y se basa en que $\mathcal{L}(\mathsf{Z}) = \mathcal{L}(\mathsf{Z}_{\tau_1 \cdots \tau_k})$ (Ecuación 9.2).

• consiste en aplicar la eliminación de "izquierda a derecha" sobre Z, y observar qué vectores de Z no se anulan. Aquellos vectores de Z que no se anulan constituyen una base de $\mathcal{L}(Z)$.

Aunque el procedimiento es sencillo, demostrar por qué funciona no es inmediato. Aprovecharemos para introducir notación y nuevas operaciones; a cambio lograremos una comprensión más profunda de las propiedades de los sistemas obtenidos en el proceso de eliminación ("de izquierda a derecha").

Notación. Denotaremos con $\mathsf{Y}_{|(1:s)}$ al subsistema de $\mathsf{Y} = \left[\overrightarrow{y}_1; \dots \overrightarrow{y}_n; \right]$ formado por sus primeros s vectores

$$\mathsf{Y}_{|(1:s)} = \left[\vec{y}_1; \dots \vec{y}_s; \right] = \left[\vec{y}_j \mid j < s \right] \quad \text{con} \quad s \le n,$$

y asumiremos que $\mathcal{L} \big(\mathsf{Z}_{|(1:0)} \big) = \mathcal{L} \big([\;] \big) = \{ \overrightarrow{0} \}; \; donde \; [\;]$ es la lista vacía.

Definición 9.8 (Sistemas acoplados). Los sistemas Y y Z, de n vectores cada uno, están acoplados si

$$\mathcal{L}([\vec{y}_1; \dots \vec{y}_i;]) = \mathcal{L}([\vec{z}_1; \dots \vec{z}_i;])$$
 para $i = 1:n$,

es decir, si

$$\mathcal{L}\Big(\mathsf{Y}_{|(1:i)}\Big) = \mathcal{L}\Big(\mathsf{Z}_{|(1:i)}\Big) \quad \textit{para } i = 1:n.$$

Proposición 9.5.6 (Eliminación "de izquierda a derecha" en Z). Si transformamos $Z = \begin{bmatrix} \vec{z}_1; \dots \vec{z}_n; \end{bmatrix}$ mediante una secuencia τ_1, \dots, τ_k de transformaciones elementales "de izquierda a derecha"

$$\mathsf{Z}_{\tau_1\cdots\tau_k} = \mathsf{ZE} = \mathsf{Y}; \qquad donde \, \mathsf{E} = \mathsf{I}_{\tau_1\cdots\tau_k}, \quad con \, e_{jj} = 1, \quad es \, decir,$$

$$\mathsf{Y} = \left[\vec{y}_1; \dots \vec{y}_n; \right] = \left[\vec{z}_1; \dots \vec{z}_n; \right] \begin{bmatrix} e_{11} & e_{12} & e_{13} & \cdots & e_{1n} \\ & e_{22} & e_{23} & \cdots & e_{2n} \\ & & e_{33} & \cdots & e_{3n} \\ & & & \ddots & \vdots \\ & & & & e_{nn} \end{bmatrix} = \mathsf{ZE},$$

 $entonces \ \mathbf{Y} \ y \ \mathbf{Z} \ est\'{an} \ acoplados, \ es \ decir, \ \mathcal{L}\Big(\mathbf{Y}_{|(1:i)}\Big) = \mathcal{L}\Big(\mathbf{Z}_{|(1:i)}\Big) \ para \ i=1:n.$

Demostración. Por una parte, como \mathbf{E} es triangular superior sin elementos nulos en la diagonal principal, cada vector $\mathbf{Y}_{|j} = \mathbf{Z}\mathbf{E}_{|j}$ es un múltiplo no nulo $(e_{jj} \neq 0)$ de $\mathbf{Z}_{|j}$ más una combinación lineal de los vectores $\mathbf{Z}_{|k}$ con k = 1 : (j - 1), y por tanto $\mathcal{L}(\mathbf{Y}_{|(1:j)}) \subset \mathcal{L}(\mathbf{Z}_{|(1:j)})$ para j = 1 : n.

Por otra parte, ya que la inversa de una matriz triangular superior es triangular superior (Sección 5.3), sabemos que E^{-1} es triangular superior sin elementos nulos en la diagonal, y como $\mathsf{Z} = \mathsf{Y}\mathsf{E}^{-1}$, usando el mismo argumento del párrafo anterior concluimos que $\mathcal{L}(\mathsf{Z}_{|(1:j)}) \subset \mathcal{L}(\mathsf{Y}_{|(1:j)})$ para j=1:n.

 $^{^{3}}$ del mismo modo que en Teorema 4.3.1 en la página 49

Notación. Sean $Y = [\vec{y}_1; \dots \vec{y}_n;]$ y $Z = [\vec{z}_1; \dots \vec{z}_k;]$ dos sistemas de vectores de V. Denotaremos con Y # Z al sistema de n + k vectores resultante de *concatenar* Y (de n vectores) y Z (de k vectores)

$$Y + Z = [\overrightarrow{y}_1; \dots \overrightarrow{y}_n; \overrightarrow{z}_1; \dots \overrightarrow{z}_k;].$$

Lema 9.5.7. Sean $Y = [\vec{y}_1; \dots \vec{y}_n;]$ $y Z = [\vec{z}_1; \dots \vec{z}_k;]$ dos sistemas de vectores de V tales que $\mathcal{L}(Y) = \mathcal{L}(Z)$. Entonces para cualquier sistema $X = [\vec{x}_1; \dots \vec{x}_r;]$ de vectores de V se verifica que

$$\mathcal{L}\Big(Y+X\Big)=\mathcal{L}\Big(Z+X\Big).$$

Demostración. Hay que demostrar que $\{\vec{z}_1,\ldots,\vec{z}_k,\ \vec{x}_1,\ldots,\vec{x}_r\}\subset \mathcal{L}(Y+X)$ y que $\{\vec{y}_1,\ldots,\vec{y}_n,\ \vec{x}_1,\ldots,\vec{x}_r\}\subset \mathcal{L}(Z+X)$. Como ambos contenidos se prueban de la misma manera, solo comprobaremos el primero.

Por un lado tenemos que $\{\vec{z}_1, \ldots, \vec{z}_k\} \subset \mathcal{L}(\mathsf{Z}) = \mathcal{L}(\mathsf{Y}) \subset \mathcal{L}(\mathsf{Y} + \mathsf{X})$. Por otro que $\{\vec{x}_1, \ldots, \vec{x}_r\} \subset \mathcal{L}(\mathsf{Y} + \mathsf{X})$. Luego $\{\vec{z}_1, \ldots, \vec{z}_k\} \cup \{\vec{x}_1, \ldots, \vec{x}_r\} \subset \mathcal{L}(\mathsf{Y} + \mathsf{X})$.

Corolario 9.5.8. $Si \ Y = [\vec{y}_1; \dots \vec{y}_n;] \ y \ Z = [\vec{z}_1; \dots \vec{z}_n;]$ son dos sistemas acoplados $y \ \vec{z}_k$ es combinación de los vectores que le anteceden en la lista Z

$$\vec{z}_k \in \mathcal{L}\left(\mathsf{Z}_{\mid (1:k-1)}\right) = \mathcal{L}\left(\left[\vec{z}_j \mid j < k\right]\right), \quad entonces$$
 (9.3)

los sistemas resultantes tras quitar el késimo vector, $[\vec{z}_j \mid j \neq k]$ y $[\vec{y}_j \mid j \neq k]$, también están acoplados.

Demostración. El resultado es trivial si k=n. Así que supongamos que k < n. Puesto que Z y Y están acoplados, $\mathcal{L}\left(\mathsf{Y}_{\mid (1:i)}\right) = \mathcal{L}\left(\mathsf{Z}_{\mid (1:i)}\right)$ para todo i < k, y como consecuencia de (9.3) tendremos que

$$\mathcal{L}\left(\mathsf{Y}_{|(1:k-1)}\right) \ = \ \mathcal{L}\left(\mathsf{Z}_{|(1:k-1)}\right) \ \stackrel{(9.3)}{=} \ \mathcal{L}\left(\mathsf{Z}_{|(1:k)}\right) \ = \ \mathcal{L}\left(\mathsf{Y}_{|(1:k)}\right)$$

luego aplicando el Lema 9.5.7 (en $\stackrel{*}{=}$) tendremos que para todo k < i

$$\begin{split} \mathcal{L}\Big(\big[\overrightarrow{y}_j \mid j \neq k \big] \Big) \; &= \; \mathcal{L}\Big(\mathsf{Y}_{|(1:k-1)} + \mathsf{Y}_{|(k+1:i)} \Big) \quad \overset{*}{=} \quad \mathcal{L}\Big(\mathsf{Y}_{|(1:k)} + \mathsf{Y}_{|(k+1:i)} \Big) = \mathcal{L}\Big(\mathsf{Y}_{|(1:i)} \Big) = \mathcal{L}\Big(\mathsf{Z}_{|(1:k)} \Big) \\ &= \quad \mathcal{L}\Big(\mathsf{Z}_{|(1:k-1)} + \mathsf{Z}_{|(k+1:i)} \Big) \\ &\stackrel{*}{=} \quad \mathcal{L}\Big(\mathsf{Z}_{|(1:k-1)} + \mathsf{Z}_{|(k+1:i)} \Big) \; = \; \mathcal{L}\Big(\big[\overrightarrow{z}_j \mid j \neq k \big] \Big). \end{split}$$

Corolario 9.5.9. Si Y y Z son dos sistemas acoplados de n vectores y $\vec{y}_s = \vec{0}$ entonces los sistemas $[\vec{y}_j \mid j \neq s]$ y $[\vec{z}_j \mid j \neq s]$ también están acoplados.

Definición 9.9. Si $[\vec{y}_1; \dots \vec{z}_y;]$ y $[\vec{z}_1; \dots \vec{z}_n;]$ son dos sistemas acoplados diremos que el par (\vec{y}_s, \vec{z}_s) es superfluo si $\vec{y}_s = \vec{0}$. En tal caso diremos que $[\vec{y}_j \mid j \neq s]$ y $[\vec{z}_j \mid j \neq s]$ son los sistemas acoplados resultantes de quitar el par superfluo (\vec{y}_s, \vec{z}_s) .

Corolario 9.5.10. $Si \ [\vec{y}_1; \dots \vec{y}_n;] \ y \ [\vec{z}_1; \dots \vec{z}_n;] \ son \ sistemas \ acoplados, \ también \ lo \ son \ [\vec{y}_j \mid \vec{y}_j \neq \vec{0}] \ y \ [\vec{z}_j \mid \vec{y}_j \neq \vec{0}].$

Demostración. Basta quitar los pares superfluos correspondientes a los ceros en el sistema $[\vec{y}_1; \dots \vec{y}_n;]$. \square

13

El anterior corolario nos muestra una forma de encontrar una base de $\mathcal{L}(\mathsf{Z})$ entre los vectores de Z : Basta seleccionar el subsistema con los vectores de $\mathsf{Z}_{|j|}$ que no se anulen tras aplicar el método de eliminación $\mathsf{Z}_{\tau_1\cdots\tau_k}$, es decir

$$\left[\mathsf{Z}_{|j} \mid \mathsf{ZE}_{|j} \neq \overrightarrow{0} \right], \quad \text{donde} \quad \mathsf{E} = \mathsf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k}.$$

Así pues, tenemos otro ejemplo de base de un subespacio:

Ejemplo 22. Las columnas no nulas de una forma escalonada de A constituyen una base de C(A).

Justificación: Sea $\mathbf{A}_{\tau_1\cdots\tau_k}$ una forma escalonada de \mathbf{A} , por (9.2) sabemos que $\mathcal{L}(\mathbf{A}) = \mathcal{L}(\mathbf{A}_{\tau_1\cdots\tau_k})$; así, al seleccionar las columnas no nulas de $\mathbf{A}_{\tau_1\cdots\tau_k}$ creamos un sistema linealmente independiente.

Encontrando dos bases de $\mathcal{C}(\mathbf{A})$ y una base de $\mathcal{N}(\mathbf{A})$

Concluimos que aplicando la eliminación sobre la matriz resultante de concatenar las n columnas de \mathbf{A} con las columnas de la matriz identidad de orden n, encontramos dos bases de $\mathcal{C}(\mathbf{A})$ y una base de $\mathcal{N}(\mathbf{A})$:

$$\boxed{ \begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 2 \\ 1 & 2 & 1 & 3 \\ 2 & 4 & 3 & 8 \\ \hline 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{ \begin{bmatrix} (-2)3+4 \end{bmatrix} } \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 2 & 1 & 1 \\ 2 & 4 & 3 & 2 \\ \hline 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{ \begin{bmatrix} (-2)1+2 \\ [(-1)1+3] \\ [(-1)1+4] \end{bmatrix} } \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ \hline 1 & -2 & -1 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \boxed{ \begin{bmatrix} \mathbf{K} \\ \mathbf{E} \end{bmatrix} };$$

por una parte, $\mathcal{C}(\mathbf{A}) = \mathcal{L}\left(\left[\mathbf{K}_{|1};\;\mathbf{K}_{|3}\right]\right)$ es de dimensión 2 por ser $\mathbf{K}_{|1}$ y $\mathbf{K}_{|3}$ linealmente independientes. Y por el Corolario 9.5.10 también sabemos que $\mathcal{C}(\mathbf{A}) = \mathcal{L}\left(\left[\mathbf{A}_{|1};\;\mathbf{A}_{|3}\right]\right)$. Como $\left[\mathbf{A}_{|1};\;\mathbf{A}_{|3}\right]$ tiene dos vectores, dicho sistema es otra base de $\mathcal{C}(\mathbf{A})$. Pero además ya vimos (Página 109) que las soluciones especiales $\mathbf{E}_{|2}$ y $\mathbf{E}_{|4}$ constituyen una base de $\mathcal{N}(\mathbf{A})$.

Es evidente que, con este procedimiento, el número de columnas que se anulan (la dimensión de $\mathcal{N}(\mathbf{A})$) más el número de columnas que no se anulan (la dimensión de $\mathcal{C}(\mathbf{A})$) es el número total de columnas de \mathbf{A} . Por tanto podemos enunciar el siguiente

Corolario 9.5.11. $\dim \mathcal{C}(\mathbf{A}) + \dim \mathcal{N}(\mathbf{A})$ es igual al número de columnas de \mathbf{A} .

Pero este resultado no se limita a sistemas de vectores de \mathbb{R}^m . De manera análoga, si mediante eliminación anulamos todos los vectores del sistema Z que son combinación lineal de los vectores que están a su izquierda: $Y = Z_{\tau_1 \cdots \tau_k}$, donde $E = I_{\tau_1 \cdots \tau_k}$

$$\begin{bmatrix}
\mathbf{Z} \\
\mathbf{I}
\end{bmatrix} \xrightarrow{\boldsymbol{\tau}_{1} \cdots \boldsymbol{\tau}_{k}} \begin{bmatrix}
\mathbf{Y} \\
\mathbf{E}
\end{bmatrix} = \begin{bmatrix}
\vec{y}_{1}; & \vec{0}; & \vec{y}_{3}; & \vec{0}; & \cdots & \vec{y}_{n}; \\
1 & e_{12} & e_{13} & e_{14} & \cdots & e_{1n} \\
1 & e_{23} & e_{24} & \cdots & e_{2n} \\
1 & e_{34} & \cdots & e_{3n} \\
1 & \cdots & e_{3n}
\end{bmatrix};$$
(9.4)

el número total de vectores no anulados más el número total de soluciones especiales es igual al número de vectores del sistema Z. Por tanto, también es cierto el siguiente

Corolario 9.5.12. $\dim \mathcal{L}(Z) + \dim \mathcal{N}(Z)$ es igual al número de vectores de Z.

Si tenemos un sistema de vectores y aplicamos el método de eliminación (de "izquierda a derecha"), los sucesivos sistemas que van apareciendo tienen la propiedad de que los subespacios generados por los j primeros vectores de los distintos sistemas generan el mismo espacio. Es decir, para Z, y la sucesión de transformaciones elementales $\boldsymbol{\tau}_1,\dots,\boldsymbol{\tau}_k$ tal que $\boldsymbol{\mathsf{E}}=\boldsymbol{\mathsf{I}}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k}$ es triangular superior

Si
$$Y = Z_{\tau_1 \cdots \tau_k} = ZE$$
, entonces $Y y Z$ están acoplados.

es decir,

$$\mathcal{L}\Big(\big[\mathsf{Z}_{\big|1};\dots\mathsf{Z}_{\big|j};\big]\Big) \;=\; \mathcal{L}\Big(\big[\mathsf{Y}_{\big|1};\dots\mathsf{Y}_{\big|j};\big]\Big) \quad \text{ para } j=1:n.$$

Si algunos vectores de $\mathsf{Y} = \mathsf{Z}_{{m{ au}}_1\cdots{m{ au}}_k}$ acaban anulándose (tras la eliminación de "izquierda a derecha") los correspondientes vectores de Z se pueden quitar y el sistema resultante continúa generando el mismo subespacio (Corolario 9.5.10).

Hemos usado esta idea para encontrar una base de $\mathcal{C}(\mathbf{A})$ entre las columnas de \mathbf{A} pre-escalonando la matriz mediante eliminación (de "izquierda a derecha").

Recordando la Proposición 5.4.5, completemos el Corolario 8.1.2 con cuatro nuevas afirmaciones:

Corolario 9.5.13. Para toda matriz cuadrada A de orden n, las siguientes afirmaciones son equivalentes:

- 1. El rango de \mathbf{A} es n (δ \mathbf{A} es de rango completo). 6. $\mathbf{A} = \mathbf{I}_{\tau_1 \cdots \tau_k}$. (prod. de mat. elementales)
- 2. $\mathbf{A}\mathbf{x} = \mathbf{0}$ si y solo si $\mathbf{x} = \mathbf{0}$.
- 3. $\mathbf{A}\mathbf{x} = \mathbf{b}$ tiene solución única.
- 4. A no es singular.
- 5. A es invertible.

- 7. Las columnas de A son linealmente indep.
- 8. Las filas de A son linealmente independientes.
- 9. Las columnas de **A** forman una base de \mathbb{R}^n .
- 10. Las filas de **A** forman una base de \mathbb{R}^n .

9.6. Generalizaciones o visiones alternativas (★)

Conjunto generador de un subespacio

En algunas ocasiones es necesario definir el subespacio engendrado por un $conjunto\ Z$ de vectores en lugar del espacio engendrado por un $sistema\ {\sf Z}$ de vectores. 4 .

Definición 9.10. Dado un conjunto Z de vectores de V, el subespacio de V engendrado por Z es

$$\mathcal{L}(Z) = \left\{ \overrightarrow{v} \in \mathcal{V} \mid existen \ a_1, \dots, a_n \in \mathbb{R} \ y \ \overrightarrow{z}_1, \dots, \overrightarrow{z}_n \in \mathcal{V} \ tales \ que \ \overrightarrow{v} = a_1 \overrightarrow{z}_1 + \dots + a_n \overrightarrow{z}_n \right\},$$

Sistemas de vectores y funciones lineales

Las proposiciones 9.1.1 y 9.1.2 implican que $\mathbf{Z}\boldsymbol{x}$ es una función lineal; lo que sugiere el uso de la siguiente:

Notación. Sea Z un sistema de n vectores de $\mathcal{V},$ denotaremos con f_{Z} a la función lineal:

$$f_{\mathsf{Z}}\colon \mathbb{R}^n o \mathcal{V} \ .$$
 $oldsymbol{x} o \mathsf{Z} oldsymbol{x}$

Pues para cualquier función lineal $f: \mathbb{R}^n \to \mathcal{V}$, existe Z de n vectores de \mathcal{V} tal que $f(x) = \mathsf{Z}x$ para todo $x \in \mathbb{R}^n$.

Demostración.

$$\begin{split} f(\boldsymbol{x}) = & f(\boldsymbol{l}\boldsymbol{x}) \\ = & f\left(x_1\boldsymbol{\mathsf{I}}_{|1} + \dots + x_n\boldsymbol{\mathsf{I}}_{|n}\right) & \text{por la definición de matriz por vector de } \mathbb{R}^n \\ = & x_1f(\boldsymbol{\mathsf{I}}_{|1}) + \dots + x_nf(\boldsymbol{\mathsf{I}}_{|n}) & \text{por ser } f \text{ una función lineal} \\ = & [f(\boldsymbol{\mathsf{I}}_{|1}); \, \dots f(\boldsymbol{\mathsf{I}}_{|n})]\boldsymbol{x} & \text{por la definición de sistema por vector de } \mathbb{R}^n \\ = & \mathsf{Z}\boldsymbol{x} & \text{donde } \mathsf{Z} = [f(\boldsymbol{\mathsf{I}}_{|1}); \, \dots f(\boldsymbol{\mathsf{I}}_{|n});]. \end{split}$$

Nótese que tanto ZBC como ZBC son composiciones de funciones lineales, ya que por una parte:

$$[f_{\mathsf{Z}} \circ f_{\mathsf{B}}](c) = f_{\mathsf{Z}}(f_{\mathsf{B}}(c)) = f_{\mathsf{Z}}(\mathsf{B}c) = \mathsf{ZB}c = f_{\mathsf{ZB}}(c);$$

es decir

$$f_{\mathsf{ZB}}(\boldsymbol{c}) \colon \mathbb{R}^n \xrightarrow{f_{\mathsf{B}}} \mathbb{R}^n \xrightarrow{f_{\mathsf{Z}}} \mathcal{V}$$

y por otra, si $\underset{n \times p}{\mathsf{B}}$ y $\underset{p \times q}{\mathsf{C}}$

$$[f_{\mathsf{Z}} \circ f_{\mathsf{B}}](\mathsf{C}) = f_{\mathsf{Z}}(f_{\mathsf{B}}(\mathsf{C})) = f_{\mathsf{Z}}(\mathsf{BC}) = \mathsf{ZBC} = f_{\mathsf{ZB}}(\mathsf{C});$$

es decir

$$f_{\mathsf{ZB}}(\mathsf{C}) \colon \mathbb{R}^{p \times q} \xrightarrow{f_{\mathsf{B}}} \mathbb{R}^{n \times q} \xrightarrow{f_{\mathsf{Z}}} \mathcal{V}^n$$

donde \mathcal{V}^n es el conjunto de sistemas de n vectores de \mathcal{V} .

EJERCICIO 47. Compruebe que el espacio engendrado por un sistema Z es la imagen de f_{Z} .

 $^{^4}$ Por ejemplo, lo necesitaremos en la Sección 11.4; también es necesario cuando se trabaja con espacios vectoriales de dimensión infinita

Definición 9.11. Llamamos núcleo (o espacio nulo) de la función lineal $f: \mathcal{V} \to \mathcal{W}$, al siguiente conjunto

$$\mathcal{N}(f) = \{ \overrightarrow{v} \in \mathcal{V} \mid f(\overrightarrow{v}) = \overrightarrow{0} \}.$$

EJERCICIO 48. Demuestre la siguiente

Proposición 9.6.1. El núcleo de una función lineal es un subespacio.

EJERCICIO 49. Demuestre la siguiente

Proposición 9.6.2. La imagen de una función lineal es un subespacio.

EJERCICIO 50. Demuestre la siguiente

Proposición 9.6.3. Sean las funciones $f: \mathcal{V} \to \mathcal{W}$ $y g: \mathcal{W} \to \mathcal{Y}$, entonces la imagen de $g \circ f$ está contenida en la imagen de g.

EJERCICIO 51. Demuestre el siguiente

Corolario 9.6.4. Sean las funciones $f: \mathcal{V} \to \mathcal{W}$ $y g: \mathcal{W} \to \mathcal{Y}$, y donde f es invertible, entonces $imagen(g \circ f) = imagen(g)$.

Sistemas linealmente independientes y coordenadas

Proposición 9.6.5. Un sistema Z de n vectores es independiente si y solo si f_Z es invertible.

Demostración. Si Z es independiente, tenemos que comprobar que el conjunto de pares (Zx, x) tales que $x \in \mathbb{R}^n$ es función. Supongamos que Zx = Zy, entonces Z(x - y) = 0. Como Z es independiente, necesariamente (x - y) = 0; es decir x = y.

Supongamos el conjunto de pares $(\mathbf{Z}\boldsymbol{x},\boldsymbol{x})$ tales que $\boldsymbol{x} \in \mathbb{R}^n$ es función, es decir, $(f_{\mathsf{Z}})^{-1}$; y que $\mathbf{Z}\boldsymbol{x} = \mathbf{0}$. Como también $\mathsf{Z}\mathbf{0} = \mathbf{0}$, los pares $(\mathsf{Z}\boldsymbol{x},\boldsymbol{x})$ y $(\mathsf{Z}\mathbf{0},\mathbf{0})$ pertenecen a $(f_{\mathsf{Z}})^{-1}$. Como las primeras componentes son nulas, necesariamente \boldsymbol{x} tiene que ser $\mathbf{0}$.

Cuando Z es independiente, la función inversa $(f_{\mathsf{Z}})^{-1} \colon \mathcal{L}(\mathsf{Z}) \to \mathbb{R}^n$ se conoce como función de coordenadas respecto a Z ; que denotaremos como

$$\overrightarrow{v}_{/\mathsf{Z}} = (f_{\mathsf{Z}})^{-1}(\overrightarrow{v}) \qquad \Rightarrow \qquad _{-/\!\!/\mathsf{Z}} \colon \mathcal{V} \to \mathbb{R}^n;$$

por tanto $\overrightarrow{v}_{/\mathsf{Z}}$ (las coordenadas de \overrightarrow{v} respecto de Z) es el vector de \mathbb{R}^n que nos indica la única combinación lineal de los vectores el sistema Z que es igual a \overrightarrow{v} . Es decir, $\mathbf{x} = \overrightarrow{v}_{/\mathsf{Z}}$ es el único vector de \mathbb{R}^n tal que

$$\mathsf{Z} x = \mathsf{Z} \left(\overrightarrow{v}_{/\mathsf{Z}} \right) = \overrightarrow{v}.$$

Como la función función de coordenadas respecto a Z es lineal, sabemos que

$$(\overrightarrow{x} + \overrightarrow{y})_{/z} = \overrightarrow{x}_{/z} + \overrightarrow{y}_{/z}$$
 y $(a\overrightarrow{x})_{/z} = a(\overrightarrow{x}_{/z}).$

EJERCICIO 52. Demuestre la siguiente

Proposición 9.6.6. Si B es una base de V, entonces para cualquier función lineal $f: V \to W$ existe un sistema Z de vectores de W tal que $f(\vec{v}) = Z(\vec{v}_B)$

Los cuatro subespacios fundamentales de una matriz A

10.1. Suma de subespacios

Sean \mathcal{A} y \mathcal{B} subespacios de \mathcal{V} . Su *suma*, que escribimos como $\mathcal{A} + \mathcal{B}$, es el conjunto de vectores de \mathcal{V} que se pueden escribir como $\vec{a} + \vec{b}$ con $\vec{a} \in \mathcal{A}$ y $\vec{b} \in \mathcal{B}$. Veamos que la suma $\mathcal{A} + \mathcal{B}$ es un subespacio:

Proposición 10.1.1. Si \mathcal{A} y \mathcal{B} son subespacios de \mathcal{V} , entonces la suma $\mathcal{A} + \mathcal{B}$ también es un subespacio.

Demostración. $\mathcal{A} + \mathcal{B}$ es no vacío por ser no vacío ni \mathcal{A} ni \mathcal{B} (pues ambos contienen $\vec{0}$). Sean $\vec{a}_1, \vec{a}_2 \in \mathcal{A}$ y $\vec{b}_1, \vec{b}_2 \in \mathcal{B}$. Si $\vec{p} = \vec{a}_1 + \vec{b}_1$ y $\vec{q} = \vec{a}_2 + \vec{b}_2$, entonces $\vec{p}, \vec{q} \in \mathcal{A} + \mathcal{B}$. Veamos que cualquier combinación lineal también también pertenece a $\mathcal{A} + \mathcal{B}$. Sean $x, y \in \mathbb{R}$, entonces

$$x\left(\overrightarrow{p}\right) + y\left(\overrightarrow{q}\right) = x\left(\overrightarrow{a}_{1} + \overrightarrow{b}_{1}\right) + y\left(\overrightarrow{a}_{2} + \overrightarrow{b}_{2}\right) = \left(x\left(\overrightarrow{a}_{1}\right) + y\left(\overrightarrow{a}_{2}\right)\right) + \left(x\left(\overrightarrow{b}_{1}\right) + y\left(\overrightarrow{b}_{2}\right)\right) \in \mathcal{A} + \mathcal{B},$$
pues $\left(x\left(\overrightarrow{a}_{1}\right) + y\left(\overrightarrow{a}_{2}\right)\right) \in \mathcal{A} \text{ y } \left(x\left(\overrightarrow{b}_{1}\right) + y\left(\overrightarrow{b}_{2}\right)\right) \in \mathcal{B}.$

$$A = \operatorname{Sistema}([\operatorname{Vector}([1, 0, 1, 0]), \operatorname{Vector}([0, -1, 0, -1])]))$$

$$B = \operatorname{Sistema}([\operatorname{Vector}([1, 1, 1, 1]), \operatorname{Vector}([1, 0, 0, 0])]))$$

$$\operatorname{SubEspacio}(A) + \operatorname{SubEspacio}(B) \# \operatorname{SubEspacio} \operatorname{suma} \operatorname{de} \operatorname{los} \operatorname{SubEspacios} L(A) \ y \ L(B)$$

$$\left\{ \boldsymbol{v} \in \mathbb{R}^4 \ \middle| \ \exists \boldsymbol{p} \in \mathbb{R}^3, \ \boldsymbol{v} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix} \boldsymbol{p} \right\} = \left\{ \boldsymbol{v} \in \mathbb{R}^4 \ \middle| \ [\ 0 \ \ -1 \ \ 0 \ \ 1 \] \boldsymbol{v} = \boldsymbol{0} \right\}$$

Proposición 10.1.2. Sean $\mathsf{A} = \left[\overrightarrow{a}_1; \dots \overrightarrow{a}_p; \right] y \; \mathsf{B} = \left[\overrightarrow{b}_1; \dots \overrightarrow{b}_q; \right] \; dos \; sistemas \; de \; vectores \; de \; \mathcal{V}. \; Y \; sean \; un \; sistema \; \left[\boldsymbol{x}_1; \dots \boldsymbol{x}_s; \right] \; de \; vectores \; de \; \mathbb{R}^p \; y \; un \; sistema \; \left[\boldsymbol{y}_1; \dots \boldsymbol{y}_s; \right] \; de \; vectores \; de \; \mathbb{R}^q; \; tales \; que$

$$\mathcal{L}\big(\big[(\boldsymbol{x}_1 + \boldsymbol{y}_1); \dots (\boldsymbol{x}_s + \boldsymbol{y}_s);\big]\big) = \mathcal{N}\left(\mathsf{A} + \mathsf{B}\right)$$

donde $(\mathbf{x}_i + \mathbf{y}_i)$ es el vector de \mathbb{R}^{p+q} resultante de concatenar los vectores \mathbf{x}_i e \mathbf{y}_i , y donde A + B es el sistema de p+q vectores resultante de concatenar A y B. Entonces $\mathcal{L}([A\mathbf{x}_1; \dots A\mathbf{x}_s;]) = \mathcal{L}(A) \cap \mathcal{L}(B)$.

 $Si\ además, A, B\ y\ [(\boldsymbol{x}_1 + \boldsymbol{y}_1); \dots (\boldsymbol{x}_s + \boldsymbol{y}_s);]\ son\ linealmente\ independientes,\ tambi\'en\ lo\ es\ [A\boldsymbol{x}_1;\ \dots A\boldsymbol{x}_s;].$

Demostración.

1. Demostremos que $Ax_i \in \mathcal{L}(A) \cap \mathcal{L}(B)$.

Puesto que los vectores $(x_i + y_i)$ pertenecen a $\mathcal{N}(A + B)$, es inmediato ver que

$$\begin{bmatrix} \mathsf{A} + \mathsf{B} \end{bmatrix} \begin{pmatrix} \boldsymbol{x}_i \\ \boldsymbol{y}_i \end{pmatrix} = \overrightarrow{0} \quad \Rightarrow \quad \mathsf{A} \boldsymbol{x}_i + \mathsf{B} \boldsymbol{y}_i = \overrightarrow{0}; \quad \Rightarrow \quad \mathsf{A} \boldsymbol{x}_i = -\mathsf{B} \boldsymbol{y}_i \quad \Rightarrow \quad \mathsf{A} \boldsymbol{x}_i \in \mathcal{L} \big(\mathsf{A} \big) \cap \mathcal{L} \big(\mathsf{B} \big),$$

pues Ax_i es también una combinación lineal de los vectores de B.

2. Demostremos que si $\vec{v} \in \mathcal{L}(A) \cap \mathcal{L}(B)$ entonces \vec{v} es una combinación lineal de los vectores Ax_i , es decir, $\vec{v} = \lambda_1 Ax_1 + \cdots + \lambda_s Ax_s$.

Sea $\vec{v} \in \mathcal{L}(A) \cap \mathcal{L}(B)$, entonces existen \boldsymbol{x} e \boldsymbol{y} tales que $\vec{v} = A\boldsymbol{x}$ y $\vec{v} = -B\boldsymbol{y}$. Por tanto $A\boldsymbol{x} + B\boldsymbol{y} = \vec{0}$; es decir $(\boldsymbol{x} + \boldsymbol{y}) \in \mathcal{N}(A + B)$ y por tanto $(\boldsymbol{x} + \boldsymbol{y})$ es combinación lineal del sistema generador de $\mathcal{N}(A + B)$:

$$(\boldsymbol{x} + \boldsymbol{y}) = \lambda_1(\boldsymbol{x}_1 + \boldsymbol{y}_1) + \cdots + \lambda_s(\boldsymbol{x}_s + \boldsymbol{y}_s)$$

consecuentemente $\mathbf{x} = \lambda_1 \mathbf{x}_1 + \dots + \lambda_s \mathbf{x}_s$; y por tanto $\vec{v} = A\mathbf{x} = \lambda_1 A\mathbf{x}_1 + \dots + \lambda_s A\mathbf{x}_s$.

3. Demostremos que si A, B y $[(\boldsymbol{x}_1 + \boldsymbol{y}_1); \dots (\boldsymbol{x}_s + \boldsymbol{y}_s);]$ son linealmente independientes, también lo es $[A\boldsymbol{x}_1; \dots A\boldsymbol{x}_s;]$.

Supongamos que $\lambda_1 A x_1 + \cdots + \lambda_s A x_s = \overrightarrow{0}$. En tal caso, por linealidad, $A(\lambda_1 x_1 + \cdots + \lambda_s x_s) = \overrightarrow{0}$, con lo que al ser A linealmente independiente $\lambda_1 x_1 + \cdots + \lambda_s x_s = 0$. Por otra parte, como $\lambda_1(x_1 + y_1) + \cdots + \lambda_s(x_s + y_s)$ pertenece al conjunto $\mathcal{N}(A + B)$, tendremos que

$$\overrightarrow{0} = \mathsf{A}(\lambda_1 \boldsymbol{x}_1 + \dots + \lambda_s \boldsymbol{x}_s) + \mathsf{B}(\lambda_1 \boldsymbol{y}_1 + \dots + \lambda_s \boldsymbol{y}_s) = \mathsf{B}(\lambda_1 \boldsymbol{y}_1 + \dots + \lambda_s \boldsymbol{y}_s)$$

Por lo que al ser B linealmente independiente $\lambda_1 \boldsymbol{y}_1 + \dots + \lambda_s \boldsymbol{y}_s = \boldsymbol{0}$. Pero entonces tenemos que $\lambda_1(\boldsymbol{x}_1 + \overrightarrow{\boldsymbol{y}}_1) + \dots + \lambda_s(\boldsymbol{x}_s + \boldsymbol{y}_s) = (\boldsymbol{0} + \boldsymbol{0})$, así que al ser $[(\boldsymbol{x}_1 + \boldsymbol{y}_1); \dots (\boldsymbol{x}_s + \boldsymbol{y}_s);]$ un sistema linealmente independiente, necesariamente $\lambda_1 = \dots = \lambda_s = 0$.

Consecuentemente, si A y B son linealmente independientes y $[(\boldsymbol{x}_1 + \boldsymbol{y}_1); \dots (\boldsymbol{x}_s + \boldsymbol{y}_s);]$ es una base de $\mathcal{N}(\mathsf{A} + \mathsf{B})$, entonces $[\mathsf{A}\boldsymbol{x}_1; \dots \mathsf{A}\boldsymbol{x}_s;]$ es una base de $\mathcal{L}(\mathsf{A}) \cap \mathcal{L}(\mathsf{B})$.

Corolario 10.1.3. Si \mathcal{A} y \mathcal{B} son subspacios de \mathcal{V} entonces $\dim(\mathcal{A} + \mathcal{B}) = \dim(\mathcal{A}) + \dim(\mathcal{B}) - \dim(\mathcal{A} \cap \mathcal{B})$.

Demostración. (Esta demostración muestra un método para encontrar una base de $\mathcal{A} \cap \mathcal{B}$)
Por lo de arriba sabemos que si tomamos una base A de \mathcal{A} y una base B de \mathcal{B} , la dimensión de $\mathcal{L}(A) \cap \mathcal{L}(B)$ es igual a la dimensión de $\mathcal{N}(A + B)$. Por tanto, todo se reduce a contar el número de "soluciones especiales" del sistema (A + B)z = 0. De propina veremos que empleando ciertos "sub-vectores" de las soluciones "soluciones especiales" podemos construir una base de dim $(\mathcal{A} \cap \mathcal{B})$:

Si aplicamos la eliminación sobre el sistema (A +B) mediante una secuencia τ_1, \dots, τ_m de transformaciones elementales "de izquierda a derecha" (como en la Proposición 9.5.6 o la Ecuación 9.4 en la página 113):

$$\left[\mathsf{A} + \mathsf{B}\right]_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_m} \ = \ \left[\mathsf{A} + \mathsf{B}\right] \mathsf{E} \quad \text{donde} \quad \mathsf{E} = \mathsf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_m} \quad \text{observaremos el siguiente esquema:}$$

$$\begin{bmatrix} \boxed{\begin{bmatrix} \mathsf{A} + \mathsf{B} \end{bmatrix}} \\ \boxed{\mathsf{I}} \end{bmatrix} \mathsf{E} = \begin{bmatrix} \boxed{\begin{bmatrix} \mathsf{A} + \mathsf{B} \end{bmatrix}} \mathsf{E} \\ \boxed{\mathsf{E}} \end{bmatrix} = \begin{bmatrix} \cdots & \overrightarrow{0} & \cdots \\ \cdots & x_j & \cdots \\ \cdots & y_j & \cdots \end{bmatrix} \quad \text{con} \quad \mathsf{E}_{|j} = \begin{pmatrix} x_j \\ y_j \end{pmatrix}; \ \Rightarrow \ \mathsf{A}x_j + \mathsf{B}y_j = \overrightarrow{0},$$

donde x_j contiene las p primeras componentes de la solución especial, e y_j contiene las q últimas.

Así, tras aplicar la eliminación al sistema A + B, que engendra el subespacio suma $\mathcal{A} + \mathcal{B}$, habremos anulado todos los vectores que eran combinación lineal de los que les anteceden. Por tanto, los vectores no nulos de $[A + B]_{\tau_1 \cdots \tau_m}$ constituyen una base de $\mathcal{A} + \mathcal{B}$ (Corolario 9.5.10). Si tras la eliminación se han anulado s vectores de A + B, entonces $\dim(\mathcal{A} + \mathcal{B}) = p + q - s$.

Y como hemos encontrado s "soluciones especiales" sabemos que $\dim A \cap B = s$, y que $[Ax_1; \dots Ax_s;]$ es una base de $\mathcal{L}(A) \cap \mathcal{L}(B)$ (Proposición 10.1.2).

EJERCICIO 53. Encuentre con NAcAL una base de la intersección de los SubEspacios generados por:

```
A = Sistema([Vector([1, 0, 1, 0]), Vector([0, -1, 0, -1])])
B = Sistema([Vector([1, 1, 1, 1]), Vector([1, 0, 0, 0])])
```

Y ahora verifiquemos que se cumple que $\dim(\mathcal{A} + \mathcal{B}) = \dim(\mathcal{A}) + \dim(\mathcal{B}) - \dim(\mathcal{A} \cap \mathcal{B})$:

```
print( (SubEspacio(A) + SubEspacio(B)).dim ) # dimensión SubEspacio suma
print( SubEspacio(A).dim ) # dimensión SubEspacio generado por A
print( SubEspacio(B).dim ) # dimensión SubEspacio generado por B
print( (SubEspacio(A) & SubEspacio(B)).dim ) # dimensión SubEspacio intersección

3
2
2
1
```

Suma directa y subespacios suplementarios

Definición 10.1 (Suma directa). Si \mathcal{A} y \mathcal{B} son subespacios de \mathcal{V} , y su intersección es $\mathcal{A} \cap \mathcal{B} = \overrightarrow{0}$; entonces la suma de los subespacios \mathcal{A} y \mathcal{B} se denomina suma directa y se denota con $\mathcal{A} \oplus \mathcal{B}$.

Definición 10.2 (Espacios suplementarios). Si \mathcal{A} y \mathcal{B} son subespacios de \mathcal{V} , y su suma directa es todo el espacio, $\mathcal{A} \oplus \mathcal{B} = \mathcal{V}$, entonces decimos que \mathcal{A} y \mathcal{B} son subespacios suplementarios.

Observación. Espacios suplementarios a uno dado hay muchos. Viendo la Figura 6.1 en la página 82 es fácil darse cuenta que cualquier función lineal $g: \mathcal{V} \to \mathcal{W}$ es un espacio suplementario de $\{\overrightarrow{0}\} \times \mathcal{W}$.

Veamos que si $\mathcal{V} = \mathcal{A} \oplus \mathcal{B}$, cualquier vector $\overrightarrow{v} \in \mathcal{V}$ se puede descomponer de manera única en la suma de dos vectores, uno que pertenece a \mathcal{A} y otro que pertenece a \mathcal{B} .

Proposición 10.1.4. $Si \ \vec{v} = \vec{a} + \vec{b} \ con \ \vec{a} \in \mathcal{A}, \ \vec{b} \in \mathcal{B} \ y \ \mathcal{A} \cap \mathcal{B} = \{\vec{0}\}, \ entonces \ \vec{a} \ y \ \vec{b} \ son \ únicos.$

 $Demostraci\'on. \ \text{Imagine que} \ \ \overrightarrow{v} = \overrightarrow{a} + \overrightarrow{b} \ \ \text{y} \ \ \overrightarrow{v} = \overrightarrow{a_*} + \overrightarrow{b_*}, \ \text{con} \ \overrightarrow{a}, \overrightarrow{a_*} \in \mathcal{A} \ \ \text{y} \ \ \overrightarrow{b}, \overrightarrow{b_*} \in \mathcal{B}. \ \text{Entonces}$

$$\overrightarrow{v}-\overrightarrow{v}=\left(\overrightarrow{a}+\overrightarrow{b}\right)-\left(\overrightarrow{a}_*+\overrightarrow{b}_*\right)=\underbrace{\left(\overrightarrow{a}-\overrightarrow{a}_*\right)}_{\in\mathcal{A}}-\underbrace{\left(\overrightarrow{b}+\overrightarrow{b}_*\right)}_{\in\mathcal{B}}=\overrightarrow{0}\qquad\Longrightarrow\qquad \left(\overrightarrow{a}-\overrightarrow{a}_*\right)=-\left(\overrightarrow{b}+\overrightarrow{b}_*\right)\in\mathcal{B}.$$

Es decir, $(\vec{a} - \vec{a}_*) \in \mathcal{A} \cap \mathcal{B} = \{\vec{0}\}$, y por tanto $(\vec{a} - \vec{a}_*) = \vec{0} = (\vec{b} - \vec{b}_*)$, es decir, $\vec{a} = \vec{a}_*$ y $\vec{b} = \vec{b}_*$. \square

EJERCICIO 54. Sea $\mathcal{V} = \mathcal{A} \oplus \mathcal{B}$ y considere $f \colon \mathcal{V} \to \mathcal{A} \times \mathcal{B}$, tal que $\overrightarrow{v} = \overrightarrow{a} + \overrightarrow{b}$ con $\overrightarrow{a} \in \mathcal{A}$ y $\overrightarrow{b} \in \mathcal{B}$. $\overrightarrow{v} \to (\overrightarrow{a}, \overrightarrow{b})$

- (a) Demuestre que f es lineal.
- (b) Considere ahora una función parecida a la anterior, salvo que ahora a cada vector \vec{v} le asocia únicamente la primera de las componentes de los anteriores pares cartesianos; es decir, a cada \vec{v} le asocia la componente \vec{a} correspondiente al subespacio \mathcal{A} ; por tanto $f_{\mathcal{A}} \colon \mathcal{V} \to \mathcal{A}$ de tal manera que $\vec{v} \vec{a} \in \mathcal{B}$.

Demuestre que $f_{\mathcal{A}}$ es lineal.¹

(c) (Opcional) Demuestre que $\mathcal{N}(f_{\mathcal{A}}) = \mathcal{B}$.

¹Esta función f_A es la proyección sobre el subespacio $\mathcal A$ de $\mathcal V$ paralela a $\mathcal B$. En la Lección 12 trataremos del caso particular en el que $\mathcal A$ y $\mathcal B$ son perpendiculares.

10.2. Los cuatro subespacios fundamentales de una matriz A

En esta sección vamos a verificar que toda matriz \mathbf{A} , de orden m por n, define una la descomposición en espacios suplementarios tanto de \mathbb{R}^m como de \mathbb{R}^n . En particular

■ \mathbb{R}^n queda descompuesto en el espacio nulo $\mathcal{N}(\mathbf{A})$ y $\mathcal{C}(\mathbf{A}^\mathsf{T})$ (que denominamos espacio fila):

$$\boxed{\mathbb{R}^{n} = \mathcal{N}\left(\mathbf{A}\right) \oplus \mathcal{C}\left(\mathbf{A}^{\mathsf{T}}\right)}.$$

■ \mathbb{R}^m queda descompuesto en el espacio columna $\mathcal{C}(\mathbf{A})$ y $\mathcal{N}(\mathbf{A}^{\mathsf{T}})$ (denominado espacio nulo por la izquierda).

$$\mathbb{R}^{m}=\mathcal{C}\left(\mathbf{A}
ight)\oplus\mathcal{N}\left(\mathbf{A}^{\intercal}
ight)$$

Además, la dimensión de los espacios columna $\mathcal{C}(\mathbf{A})$ y fila $\mathcal{C}(\mathbf{A}^{\mathsf{T}})$ es igual al rango de la matriz. Así, dada \mathbf{A} de rango r, los espacios \mathbb{R}^m y \mathbb{R}^n quedan descompuestos según el siguiente esquema:

Figura 10.1: Esquema de descomposición de los cuatro subespacios fundamentales de una matriz (parte 1)

El profesor Strang (2007) se refiere a estos cuatro subespacios: $\mathcal{N}(\mathbf{A})$, $\mathcal{C}(\mathbf{A})$, $\mathcal{N}(\mathbf{A}^{\mathsf{T}})$ y $\mathcal{C}(\mathbf{A}^{\mathsf{T}})$, con el nombre de "los cuatro subespacios fundamentales de la matriz \mathbf{A} ".

Fíjese que la notación indica que los dos nuevos espacios son el espacio columna y el nulo de la matriz transpuesta. Veamos estos dos nuevos espacios en detalle.

10.2.1. El espacio fila

El espacio fila de $oldsymbol{A}_{m \times n}$ es el conjunto de las combinaciones lineales de las filas:

$$\mathcal{L}(\text{filas de }\mathbf{A}) = \mathcal{L}(\text{columnas de }\mathbf{A}^{\mathsf{T}}) = \mathcal{L}(\mathbf{A}^{\mathsf{T}}) = \mathcal{C}(\mathbf{A}^{\mathsf{T}}),$$

que es un subespacio de \mathbb{R}^n , pues cada fila tiene n componentes (cada uno situado en una columna diferente).

Como las filas de $\bf A$ son las columnas de $\bf A^T$, tenemos que

$$\mathcal{C}(\mathbf{A}^{\mathsf{T}}) = \{ x \mid \text{existe } y \in \mathbb{R}^m : x = (\mathbf{A}^{\mathsf{T}}) y \}$$

= $\{ x \mid \text{existe } y \in \mathbb{R}^m : x = y \mathbf{A} \}$ ya que $(\mathbf{A}^{\mathsf{T}}) y = y \mathbf{A};$

es decir, el espacio fila $\mathcal{C}(\mathbf{A}^{\mathsf{T}})$ está formado por los vectores que se pueden describir como combinación lineal de las filas de \mathbf{A} . Como el rango de una matriz no cambia al transponerla (Proposición 5.4.5), tenemos que

$$\dim \mathcal{C}(\mathbf{A}) = \operatorname{rango}(\mathbf{A}) = \operatorname{rango}(\mathbf{A}^{\mathsf{T}}) = \dim \mathcal{C}(\mathbf{A}^{\mathsf{T}}).$$

Es decir, para una matriz \mathbf{A} de orden $m \times n$ y rango r, tenemos que dim $\mathcal{C}\left(\mathbf{A}^{\mathsf{T}}\right) = r$ y dim $\mathcal{N}\left(\mathbf{A}\right) = n - r$.

Fíjese que dim $\mathcal{C}\left(\mathbf{A}^{\mathsf{T}}\right)$ + dim $\mathcal{N}\left(\mathbf{A}\right) = n$, es decir, es igual a la dimensión de todo el espacio \mathbb{R}^n . Así, si probamos que $\mathcal{N}\left(\mathbf{A}\right) \cap \mathcal{C}\left(\mathbf{A}^{\mathsf{T}}\right) = \{\mathbf{0}\}$ (i.e., que la dimensión de la intersección es cero), por la Proposición 10.1.4 habremos demostrado que $\mathbb{R}^n = \mathcal{C}\left(\mathbf{A}^{\mathsf{T}}\right) \oplus \mathcal{N}\left(\mathbf{A}\right)$:

Proposición 10.2.1. Para toda A se verifica que $\mathcal{N}(A) \cap \mathcal{C}(A^{\mathsf{T}}) = \{0\}.$

Demostración. Para todo vector $\boldsymbol{y} \in \mathcal{C}\left(\mathbf{A}^{\mathsf{T}}\right)$ (es decir, de la forma $\boldsymbol{y} = \boldsymbol{z}\mathbf{A}$) y para todo vector $\boldsymbol{x} \in \mathcal{N}\left(\mathbf{A}\right)$ (es decir, tal que $\mathbf{A}\boldsymbol{x} = \mathbf{0}$) el producto punto $\boldsymbol{y} \cdot \boldsymbol{x}$ es nulo:

$$y \cdot x = z \mathbf{A} y = z \cdot \mathbf{0} = 0.$$

Por tanto, si v pertenece simultáneamente a los dos subespacios, entonces

$$\mathbf{v} \cdot \mathbf{v} = \sum v_i^2 = 0 \Rightarrow v_i = 0;$$

es decir, si $v \in \mathcal{N}(\mathbf{A}) \cap \mathcal{C}(\mathbf{A}^{\mathsf{T}})$ entonces necesariamente v = 0.

Puesto que $\mathcal{N}\left(\mathbf{A}\right)\cap\mathcal{C}\left(\mathbf{A}^{\mathsf{T}}\right)=\left\{ \mathbf{0}\right\} ,$ por la Proposición 10.1.4 concluimos que $\boxed{\mathbb{R}^{n}=\mathcal{C}\left(\mathbf{A}^{\mathsf{T}}\right)\oplus\mathcal{N}\left(\mathbf{A}\right)}$

10.2.2. El espacio nulo por la izquierda

Fíjese que $\mathcal{N}\left(\mathbf{A}^{\mathsf{T}}\right)$ es el conjunto de soluciones al sistema $\left(\mathbf{A}^{\mathsf{T}}\right)y=0$, que nos pregunta ¿qué combinaciones lineales de las columnas de \mathbf{A}^{T} son iguales a cero? es decir ¿qué combinaciones lineales de las filas de \mathbf{A} son iguales a cero? Por tanto, $\mathcal{N}\left(\mathbf{A}^{\mathsf{T}}\right)$ son las soluciones del siguiente sistema de ecuaciones homogéneo

$$uA = 0$$
.

lo que justifica el nombre de espacio nulo por la izquierda (pues el vector de incógnitas y multiplica por la izquierda). ASí pues, definimos el espacio nulo por la izquierda de A (de orden m por n) como

$$\mathcal{N}(\mathbf{A}^{\mathsf{T}}) = \{ y \mid y\mathbf{A} = \mathbf{0} \}.$$

Si llamamos $\underset{n \times m}{\mathbf{B}}$ a \mathbf{A}^{T} , por la sección anterior sabemos que $\mathbb{R}^{m} = \mathcal{C}\left(\mathbf{B}^{\mathsf{T}}\right) \oplus \mathcal{N}\left(\mathbf{B}\right)$.

Es decir,
$$\mathbb{R}^{m} = \mathcal{C}(\mathbf{A}) \oplus \mathcal{N}(\mathbf{A}^{\mathsf{T}})$$
.

 $\textit{Ejemplo 23. Para} \ \ \textbf{A} = \left[\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & -1 & -1 & 0 \end{array} \right] \ \text{de rango 1, comprobemos el Corolario 10.1.3, es decir, que }$

$$3 = \dim \mathbb{R}^{m} = \dim \mathcal{N}\left(\mathbf{A}^{\mathsf{T}}\right) + \dim \mathcal{C}\left(\mathbf{A}\right) - \dim \left(\mathcal{N}\left(\mathbf{A}^{\mathsf{T}}\right) \cap \mathcal{C}\left(\mathbf{A}\right)\right) = 2 + 1 - 0$$
$$4 = \dim \mathbb{R}^{n} = \dim \mathcal{N}\left(\mathbf{A}\right) + \dim \mathcal{C}\left(\mathbf{A}^{\mathsf{T}}\right) - \dim \left(\mathcal{N}\left(\mathbf{A}\right) \cap \mathcal{C}\left(\mathbf{A}^{\mathsf{T}}\right)\right) = 3 + 1 - 0$$

Librería NAcAL para Python

```
A = Matrix([ [0,1,1,0], [0,2,2,0],[0,-1,-1,0] ])
print( A.rg() ) # Rango de A
```

1

Librería NAcAL para Python

ColA = SubEspacio(A.sis()); # Espacio Columna de A (en R3)
print(ColA.dim); ColA

1

$$\left\{ \boldsymbol{v} \in \mathbb{R}^3 \; \middle| \; \exists \boldsymbol{p} \in \mathbb{R}^1, \; \boldsymbol{v} = \left[\begin{array}{c} 1 \\ 2 \\ -1 \end{array} \right] \boldsymbol{p} \right\} \; = \; \left\{ \boldsymbol{v} \in \mathbb{R}^3 \; \middle| \; \left[\begin{array}{cc} -2 & 1 & 0 \\ 1 & 0 & 1 \end{array} \right] \boldsymbol{v} = \boldsymbol{0} \right\}$$

Librería NAcAL para Python

NulAT = SubEspacio(~A); # Espacio Nulo Izda de A (en R3)
print(NulAT.dim); NulAT

2

$$\left\{oldsymbol{v}\in\mathbb{R}^3\;\left|\;\existsoldsymbol{p}\in\mathbb{R}^2,\;oldsymbol{v}=\left[egin{array}{cccc}-2&1\1&0\0&1\end{array}
ight]oldsymbol{p}
ight.
ight\}\;=\;\left\{oldsymbol{v}\in\mathbb{R}^3\;\left|\;\left[\begin{array}{ccccc}-1&-2&1\end{array}
ight]oldsymbol{v}=oldsymbol{0}
ight.
ight\}$$

Librería NAcAL para Python

FilA = SubEspacio((~A).sis()); # Espacio Fila de A (en R4)
print(FilA.dim); FilA

1

$$\left\{oldsymbol{v}\in\mathbb{R}^4\;\left|\;\existsoldsymbol{p}\in\mathbb{R}^1,\;oldsymbol{v}=\left[egin{array}{c}0\1\1\0\end{array}
ight]oldsymbol{p}
ight\}\;=\;\left\{oldsymbol{v}\in\mathbb{R}^4\;\left|\;\left[egin{array}{cccc}1&0&0&0\0&-1&1&0\0&0&0&1\end{array}
ight]oldsymbol{v}=oldsymbol{0}
ight\}$$

NulA = SubEspacio(A); # Espacio Nulo de A (en R4)
print(NulA.dim); NulA

Librería NAcAL para Python

3

$$\left\{ {\boldsymbol{v}} \in \mathbb{R}^4 \; \middle| \; \exists {\boldsymbol{p}} \in \mathbb{R}^3, \; {\boldsymbol{v}} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] {\boldsymbol{p}} \right\} \; = \; \left\{ {\boldsymbol{v}} \in \mathbb{R}^4 \; \middle| \; \left[\begin{array}{ccc} 0 & 1 & 1 & 0 \end{array} \right] {\boldsymbol{v}} = {\boldsymbol{0}} \right\}$$

Librería NAcAL para Python

```
print( (ColA + NulAT).dim ) # Dim. del SubEspacio suma (suma es todo R3)
print( (ColA & NulAT).dim ) # Dim. de la intersección (que solo contiene el cero)
```

3

(son espacios suplementarios)

```
print( (FilA + NulA).dim ) # Dim. del SubEspacio suma (suma es todo R4)
print( (FilA & NulA).dim ) # Dim. de la intersección (que solo contiene el cero)

4
0
(son espacios suplementarios)
```

10.3. Encontrando bases para los espacios $C(\mathbf{A}^{\mathsf{T}})$ y $\mathcal{N}(\mathbf{A}^{\mathsf{T}})$

Sabemos que aplicando la eliminación sobre las columnas de \mathbf{A} podemos encontrar bases para los espacios columna $\mathcal{C}(\mathbf{A})$ y nulo $\mathcal{N}(\mathbf{A})$. Por tanto, aplicando la eliminación sobre las columnas de \mathbf{A}^{T} encontraremos bases para los nuevos subespacios $\mathcal{C}(\mathbf{A}^{\mathsf{T}})$ y $\mathcal{N}(\mathbf{A}^{\mathsf{T}})$. ¡Pero esto supone que, para encontrar bases de los cuatro espacios, necesitamos aplicar el método de eliminación dos veces! una para \mathbf{A} y otra para \mathbf{A}^{T} .

¿Es posible encontrar bases para cada uno de los cuatro subespacios aplicando únicamente eliminación sobre las columnas de A?... ¡Afortunadamente si!

La siguiente proposición nos da la pista necesaria para hacerlo.

Proposición 10.3.1. Sean **A** de orden m por n y **E** invertible de orden n, entonces $\mathcal{N}\left(\mathbf{A}^{\mathsf{T}}\right) = \mathcal{N}\left((\mathbf{A}\mathbf{E})^{\mathsf{T}}\right)$, es decir, dado $\mathbf{y} \in \mathbb{R}^m$ se verifica que

$$yA = 0 \iff yAE = 0.$$

Demostración. Veamos las implicaciones en uno y otro sentido.

- $\bullet \hspace{0.1cm} \text{Si} \hspace{0.2cm} \boldsymbol{y} \in \mathcal{N} \left(\mathsf{A}^\intercal \right) \implies \boldsymbol{y} \mathsf{A} = \boldsymbol{0} \implies \boldsymbol{y} \mathsf{A} \mathsf{E} = \boldsymbol{0} \mathsf{E} \implies \boldsymbol{y} (\mathsf{A} \mathsf{E}) = \boldsymbol{0} \implies \boldsymbol{y} \in \mathcal{N} \left((\mathsf{A} \mathsf{E})^\intercal \right)$
- $\blacksquare \text{ Si } y \in \mathcal{N}\left((\mathsf{AE})^\intercal\right) \implies y(\mathsf{AE}) = 0 \implies y\mathsf{AEE}^{-1} = 0\mathsf{E}^{-1} \implies y\mathsf{A} = 0 \implies y \in \mathcal{N}\left(\mathsf{A}^\intercal\right).$

Consecuentemente, si \mathbf{A} es de orden m por n y \mathbf{E} es invertible y de orden n, entonces

- un sistema de vectores formado por varias filas $\left[i_1|\mathbf{A};\ \dots\ i_r|\mathbf{A};\right]$ es linealmente independiente si y sólo si el sistema de vectores $\left[i_1|\mathbf{AE};\ \dots\ i_r|\mathbf{AE};\right]$ es linealmente independiente.
- la dimensión del espacio fila de A es igual a la dimensión del espacio fila de AE.

Así pues, podemos pre-escalonar, escalonar ó incluso escalonar y reducir una matriz para obtener otra más simple en la que verificar si las filas son linealmente dependientes o independientes.

El siguiente lema indica que las filas con pivote de cualquier forma pre-escalonada son linealmente independientes.

EJERCICIO 55. Demuestre que

Lema 10.3.2. Si K está pre-escalonada, las filas con pivote son linealmente independientes. Además, cada fila sin pivote es combinación lineal de las filas con pivote que la preceden.

Por tanto, las filas con pivote de una forma pre-escalonada K de la matriz A forman una base del espacio fila de la matriz K, pero no necesariamente forman una base del espacio fila de A. Veamos cómo asegurarnos de escoger correctamente las filas de A

Encontrando una base para el espacio fila de A

Sea $\mathsf{E} = \mathsf{I}_{\tau_1 \cdots \tau_k}$ tal que AE es pre-escalonada; y sea S una matriz que selecciona las filas de AE que forman una base del espacio fila de AE; por ejemplo, las filas pivote:

$$\mathbf{S}(\mathbf{AE}) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & -4 & 0 & 0 \\ 4 & 4 & 0 & 0 \\ -1 & -1 & 1 & 0 \\ -6 & -7 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & -4 & 0 & 0 \\ -1 & -1 & 1 & 0 \end{bmatrix}.$$

Como **S** selecciona una base del espacio fila, entonces para cualquier vector u existe un único vector x (una única combinación lineal de las filas) tal que

$$xSAE = uAE$$
.

Pero entonces también la ecuación xSA = uA tiene una única solución ya que por ser E invertible

$$x\mathsf{SA} = u\mathsf{A} \Longleftrightarrow x\mathsf{SAE} = u\mathsf{AE}.$$

Luego SA (la misma selección, pero de las filas de A) selecciona una base del espacio de fila de A.

Consecuentemente, la dimensión del espacio fila de una matriz coincide con la dimensión del espacio fila de cualquiera de sus formas pre-escalonadas, que a su vez coincide con el rango.

Algoritmo para encontrar una base de $C(\mathbf{A}^{\mathsf{T}})$

- Pre-escalonamos A
 Identificamos las filas con pivote de la forma escalonada K
- Las correspondientes filas de \mathbf{A} forman una base $\mathcal{C}\left(\mathbf{A}^{\mathsf{T}}\right)$

Ejemplo 24.

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix} = \begin{bmatrix} 1 & -2 & -1 & -1 \\ -2 & 0 & 1 & 2 \\ 4 & -4 & -3 & -4 \\ -1 & 1 & 1 & 1 \\ -6 & 5 & 5 & 6 \\ \hline 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{ \mathbf{7} \atop [(2)1+2] \atop [(1)1+3] \atop [(1)1+4]} } \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & -4 & -1 & 0 \\ 4 & 4 & 1 & 0 \\ -1 & -1 & 0 & 0 \\ -6 & -7 & -1 & 0 \\ \hline 1 & 2 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{ \begin{bmatrix} (4)3] \atop [(4)3] \atop [(-1)2+3] \atop [($$

De este proceso de eliminación, deducimos que:

$$\mathcal{C}\left(\boldsymbol{\mathsf{A}}\right) = \mathcal{L}\Big(\big[\boldsymbol{\mathsf{K}}_{|1};\;\boldsymbol{\mathsf{K}}_{|2};\;\boldsymbol{\mathsf{K}}_{|3};\big]\Big), \qquad \mathcal{C}\left(\boldsymbol{\mathsf{A}}^{\intercal}\right) = \mathcal{L}\Big(\big[{}_{1|}\boldsymbol{\mathsf{A}};\;{}_{2|}\boldsymbol{\mathsf{A}};\;{}_{4|}\boldsymbol{\mathsf{A}};\big]\Big) \quad \text{ y } \quad \mathcal{N}\left(\boldsymbol{\mathsf{A}}\right) = \mathcal{L}\Big(\big[\boldsymbol{\mathsf{E}}_{|4};\big]\Big).$$

Encontrando una base para el espacio nulo por la izquierda.

Nos falta un método para encontrar una base de $\mathcal{N}\left(\mathbf{A}^{\mathsf{T}}\right)$.

Por la Proposición 10.3.1 sabemos que $\mathcal{N}(\mathbf{A}^{\mathsf{T}}) = \mathcal{N}((\mathbf{A}\mathbf{E})^{\mathsf{T}})$. Así que la estrategia es simplificar al máximo alguna forma pre-escalonada de A, y mirar ahí qué combinaciones de las filas son nulas. Por tanto aplicaremos la eliminación Gauss-Jordan hasta llegar a \mathbf{R} (es decir, la forma escalonada reducida, donde los pivotes son unos con ceros a derecha e izquierda). Continuando el ejemplo anterior:

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & -1 & -1 \\ -2 & 0 & 1 & 2 \\ 4 & -4 & -3 & -4 \\ -1 & 1 & 1 & 1 \\ -6 & 5 & 5 & 6 \end{bmatrix} \xrightarrow{\begin{bmatrix} (2)1+2) \\ [(1)1+3] \\ [(4)3] \\ [(-1)2+3] \\ \hline \end{bmatrix}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ -2 & -4 & 0 & 0 \\ 4 & 4 & 0 & 0 \\ -1 & -1 & 1 & 0 \\ -6 & -7 & 3 & 0 \end{bmatrix} \xrightarrow{\begin{bmatrix} (2)1) \\ [(2)1] \\ [(-1)2+1] \\ \hline \end{bmatrix}} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 4 & 4 & 0 & 0 \\ -1 & -1 & 1 & 0 \\ -5 & -7 & 3 & 0 \end{bmatrix}$$

$$\xrightarrow{\begin{bmatrix} (1)3+1] \\ [(1)3+2] \\ \hline \end{bmatrix}} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 4 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -2 & -4 & 3 & 0 \end{bmatrix} \xrightarrow{\begin{bmatrix} (\frac{1}{2})1 \\ [\frac{1}{4})2 \end{bmatrix}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 1 & 3 & 0 \end{bmatrix} = \mathbf{R}.$$

Ahora es inmediato ver en R que cada fila sin pivote es combinación de las filas con pivote que la anteceden:

$$\begin{cases} {}_{3|}R = {}_{2}({}_{1|}R) - {}_{1}({}_{2|}R) & \Rightarrow & (-2, \quad 1, \quad 1, \quad 0, \quad 0,)R = 0 \\ y \\ {}_{5|}R = - {}_{1}({}_{1|}R) + {}_{1}({}_{2|}R) + {}_{3}({}_{3|}R) & \Rightarrow & (1, \quad -1, \quad 0, \quad -3, \quad 1,)R = 0 \end{cases}$$

Y las mismas relaciones se verifican en la matriz original A;

$$\begin{cases} {}_{3|}\textbf{A} = 2\big({}_{1|}\textbf{A}\big) - 1\big({}_{2|}\textbf{A}\big) & \Rightarrow & (-2, \quad 1, \quad 1, \quad 0, \quad 0,)\textbf{A} = \textbf{0} \\ y \\ {}_{5|}\textbf{A} = -1\big({}_{1|}\textbf{A}\big) + 1\big({}_{2|}\textbf{A}\big) + 3\big({}_{3|}\textbf{A}\big) & \Rightarrow & (1, \quad -1, \quad 0, \quad -3, \quad 1,)\textbf{A} = \textbf{0} \end{cases}$$

lacktriangleright En el proceso de eliminación $oldsymbol{\mathsf{A}} o oldsymbol{\mathsf{R}}$ "se ven" bases para los cuatro subespacios fundamentales de $oldsymbol{\mathsf{A}}$

Parte IV Ortogonalidad

Vectores ortogonales. Subespacios ortogonales

B

Una importante aplicación de las matemáticas es la medición de distancias y ángulos. Los productos escalares definidos en espacios vectoriales crean el entorno que permite estas mediciones.

Comenzamos con los entornos más familiares: \mathbb{R}^2 y \mathbb{R}^3 . Luego generalizaremos a \mathbb{R}^n con el producto punto. (En la Sección 11.6 generalizamos aún más mediante productos escalares definidos en espacios vectoriales).

11.1. Longitud de un vector en \mathbb{R}^2 y en \mathbb{R}^3

El cálculo de la longitud de un vector \boldsymbol{x} en \mathbb{R}^2 o de un vector \boldsymbol{y} en \mathbb{R}^3 se basa en el teorema de Pitágoras. En ambos casos el vector se corresponde con la hipotenusa de un triángulo rectángulo, de manera que el cuadrado de la longitud de la hipotenusa (el cuadrado de la longitud del vector) es igual a la suma del cuadrado de las longitudes de los catetos. Veámoslo.

En el caso de \mathbb{R}^2 , la longitud de cada cateto es el valor de cada una de las dos componentes. Por tanto

$$\|x\|^2 = x_1^2 + x_2^2 = x \cdot x$$
 \Rightarrow $\|x\| = \sqrt{x_1^2 + x_2^2} = \sqrt{x \cdot x};$

donde $\|x\|$ denota la longitud o norma de un vector x.

Figura 11.1: Longitud de un vector en \mathbb{R}^2 y en \mathbb{R}^3

En \mathbb{R}^3 , la longitud del cateto vertical es el valor y_3 de la tercera componente, pero la longitud del cateto horizontal ha de ser calculada. Como el cateto horizontal es la hipotenusa de de un triángulo rectángulo (como en la figura en \mathbb{R}^2), tenemos que el cuadrado de la longitud de dicho cateto es $(y_1^2 + y_2^2)$:

$$\|\boldsymbol{y}\|^2 = (y_1^2 + y_2^2) + y_3^2 = \boldsymbol{y} \cdot \boldsymbol{y} \qquad \Rightarrow \qquad \|\boldsymbol{y}\| = \sqrt{y_1^2 + y_2^2 + y_3^2} = \sqrt{\boldsymbol{y} \cdot \boldsymbol{y}}.$$

Así, la longitud de un vector (en \mathbb{R}^2 o \mathbb{R}^3) es la raíz cuadrada de la suma de los cuadrados de sus componentes.

11.2. Ángulo formado por dos vectores tanto en \mathbb{R}^2 como en \mathbb{R}^3

Un modo de indicar el grado de abertura del ángulo formado entre dos segmentos unidos por un vértice es mediante la función coseno; que toma valores entre 1 y -1. Cuando la abertura es nula (cuando el ángulo es cero) el coseno toma el valor 1 (marcado con un rombo sobre el eje horizontal de la figura de la izquierda). El coseno disminuye a medida que el ángulo se abre... cuando el ángulo es recto su coseno toma el valor 0 (figura central); y conforme la abertura aumenta el coseno continúa disminuyendo, hasta que se alcanza la abertura máxima, en cuyo caso el coseno alcanza su valor mínimo valor, es decir -1 (figura de la derecha).

Figura 11.2: Relación entre el ángulo θ y su coseno (el círculo exterior es de radio uno)

Ahora piense que tiene tres listones de madera y que ninguno de ellos tiene longitud mayor que la suma de los otros dos. Entonces con ellos se puede formar un triángulo cuyos ángulos están unívocamente determinados por las longitudes de los listones de madera. Es decir, conociendo los lados de un triángulo podemos calcular sus ángulos. Para ello, de nuevo echaremos mano del teorema de Pitágoras.

Figura 11.3: Triángulo formado por $\mathbf{0}$ y dos vectores \mathbf{a} y \mathbf{b} no nulos.

A la izquierda de la Figura 11.3 podemos ver un triángulo formado por los segmentos A, B y C (donde asociamos el segmento A con el vector \boldsymbol{a} y el segmento B con el vector \boldsymbol{b}). Para poder calcular el ángulo formado por los segmentos A y B (que es el mismo que el formado por los vectores \boldsymbol{a} y \boldsymbol{b}), dividimos el triángulo en dos triángulos rectángulos mediante el segmento vertical H. A la derecha aparece esquemáticamente representado el mismo triángulo; pero mostrando que la longitud del segmento C es igual a la longitud del vector $\boldsymbol{b}-\boldsymbol{a}$. Además, también se muestra el cateto X de uno de los triángulos rectángulos resultantes de dividir el triángulo ABC con el segmento vertical H.

En todo $tri\'{a}ngulo$ rect\'angulo, el coseno del ángulo θ formado por cada uno de los catetos con la hipotenusa es el ratio entre las longitudes de dicho cateto y la hipotenusa. Por tanto,

$$\cos \theta = \frac{X}{B} \tag{11.1}$$

donde con X denotamos la longitud del cateto X y con B denotamos la longitud de la hipotenusa B.

 $^{^{1}}$ Como en un triángulo rectángulo ningún ángulo tiene más de 90 grados, el coseno del ángulo de cualquiera de sus vértices siempre es mayor o igual a cero

Puesto que el ángulo formado por los vectores a y b es el mismo que el formado por los segmentos X y B, solo necesitamos calcular el ratio X/B. Por el teorema de Pitágoras, sabemos que

$$X^2 + H^2 = B^2. (11.2)$$

Y si nos fijamos en el segundo triángulo rectángulo, también sabemos que

$$(A-X)^2 + H^2 = C^2$$

$$A^2 - 2AX + X^2 + H^2 = C^2$$
 desarrollando el cuadrado. (11.3)

Restando (11.2) de (11.3) tenemos

$$A^{2} - 2AX = C^{2} - B^{2}$$
$$-2AX = C^{2} - B^{2} - A^{2}$$
$$X = (A^{2} + B^{2} - C^{2})/2A$$

Y sustituyendo en (11.1) llegamos a que $\cos \theta = \frac{A^2 + B^2 - C^2}{2AB}$

Así, como en la figura asociamos el segmento A con el vector a y el segmento B con b, podemos sustituir A y B por las longitudes de los correspondientes vectores asociados y C por la longitud de b-a.

$$A = \|\boldsymbol{a}\| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

$$B = \|\boldsymbol{b}\| = \sqrt{b_1^2 + b_2^2 + b_3^2}$$

$$C = \|\boldsymbol{b} - \boldsymbol{a}\| = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + (b_3 - a_3)^2}$$

Por tanto, operando llegamos a

$$\cos\theta \ = \ \frac{2(a_1b_1 + a_2b_2 + a_3b_3)}{2\sqrt{a_1^2 + a_2^2 + a_3^2}\sqrt{b_1^2 + b_2^2 + b_3^2}} \ = \ \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\|\boldsymbol{a}\| \, \|\boldsymbol{b}\|}; \qquad (\cos\,\boldsymbol{a} \neq \boldsymbol{0} \neq \boldsymbol{b}),$$

donde hemos sustituido la suma de productos de las componentes por el producto punto. Cuando $\cos \theta = 0$ los vectores son perpendiculares (véase la Figura 11.2), es decir, \mathbf{a} y \mathbf{b} son perpendiculares cuando $\mathbf{a} \cdot \mathbf{b} = 0$.

11.3. Generalizando al espacio euclídeo \mathbb{R}^n

Comenzamos la generalización con el concepto de perpendicularidad en el espacio euclídeo \mathbb{R}^n .

^aPara una definición de espacio euclídeo véase la Sección 11.6.4.

Definición 11.1. Decimos que \mathbf{a} y \mathbf{b} son ortogonales o perpendiculares $(\mathbf{a} \perp \mathbf{b})$ cuando $\mathbf{a} \cdot \mathbf{b} = 0$.

Consecuentemente, **0** es ortogonal a todos los vectores (incluido él mismo).

La generalización del concepto de longitud a vectores del espacio vectorial \mathbb{R}^n es inmediata.

Definición 11.2. La longitud (o norma) de un vector a es la raíz cuadrada de $a \cdot a$:

longitud de
$$\mathbf{a} = \|\mathbf{a}\| = \sqrt{\mathbf{a} \cdot \mathbf{a}}$$
.

Por ejemplo, la longitud de
$$\mathbf{x} = \begin{pmatrix} 6 \\ 0 \\ -2 \\ 3 \end{pmatrix}$$
 es $\sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{\begin{pmatrix} 6 \\ 0 \\ -2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 0 \\ -2 \\ 3 \end{pmatrix}} = \sqrt{6^2 + 0^2 + (-2)^2 + 3^2} = \sqrt{49} = 7.$

Puesto que $x \cdot x = 0$ si y solo si x = 0, resulta que: ||x|| = 0 si y solo si x = 0.

Multiplicando x por λ obtenemos un múltiplo de x cuya longitud es $|\lambda|$ veces su longitud original.

$$\|\lambda oldsymbol{x}\| = \sqrt{\lambda^2 ig(oldsymbol{x} \cdot oldsymbol{x} ig)} = |\lambda| \, \|oldsymbol{x}\| \, .$$

Definición 11.3 (Vector unitario). Se dice que un vector es unitario si tiene longitud uno.

Es sencillo obtener un múltiplo unitario (i.e., de norma uno) de $x \neq 0$; basta el vector por su longitud. Por ejemplo, si $x = \begin{pmatrix} 1, & 1, & 1, \\ \end{pmatrix}$ entonces $||x|| = \sqrt{x \cdot x} = \sqrt{4} = 2$. Así,

$$y = \frac{1}{\|x\|}x = \frac{1}{2}x = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$$
 es unitario. ¡Compruébelo!

Una vez definidas la perpendicularidad y la longitud en \mathbb{R}^n ; vamos a generalizar la propiedad más importante que verifican los vectores perpendiculares: el **Teorema de Pitágoras**.

(recuerde las propiedades del producto punto en la Página 23)

Teorema 11.3.1 (Teorema de Pitágoras). Sean \mathbf{x} e \mathbf{y} dos vectores de \mathbb{R}^n ; entonces $\mathbf{x} \cdot \mathbf{y} = 0$ (es decir, son perpendiculares) si \mathbf{y} solo si

$$\|x + y\|^2 = \|x\|^2 + \|y\|^2$$
.

Demostración. Si $x \in y$ son perpendiculares, entonces $x \cdot y = 0$ y

$$\begin{aligned} \left\| \boldsymbol{x} + \boldsymbol{y} \right\|^2 &= (\boldsymbol{x} + \boldsymbol{y}) \cdot (\boldsymbol{x} + \boldsymbol{y}) = \boldsymbol{x} \cdot (\boldsymbol{x} + \boldsymbol{y}) + \boldsymbol{y} \cdot (\boldsymbol{x} + \boldsymbol{y}) \\ &= (\boldsymbol{x} + \boldsymbol{y}) \cdot \boldsymbol{x} + (\boldsymbol{x} + \boldsymbol{y}) \cdot \boldsymbol{y} \\ &= \boldsymbol{x} \cdot \boldsymbol{x} + \boldsymbol{y} \cdot \boldsymbol{x} + \boldsymbol{x} \cdot \boldsymbol{y} + \boldsymbol{y} \cdot \boldsymbol{y} \\ &= \boldsymbol{x} \cdot \boldsymbol{x} + 2(\boldsymbol{x} \cdot \boldsymbol{y}) + \boldsymbol{y} \cdot \boldsymbol{y} \\ &= \boldsymbol{x} \cdot \boldsymbol{x} + 0 + \boldsymbol{y} \cdot \boldsymbol{y} \end{aligned}$$

$$= \left\| \boldsymbol{x} \right\|^2 + \left\| \boldsymbol{y} \right\|^2.$$

Fíjese que en el anterior teorema, $x \in y$ corresponden a los catetos y el vector suma x + y a la hipotenusa.

Para generalizar el coseno del ángulo formado por dos vectores a \mathbb{R}^n , antes necesitamos probar que $\mathbf{a} \cdot \mathbf{b}$ es siempre menor en valor absoluto que $\|\mathbf{a}\| \|\mathbf{b}\|$, de manera que $\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}$ solo toma valores entre -1 y 1. Dicho resultado se denomina Desigualdad de Cauchy-Schwarz

Proposición 11.3.2 (Designaldad de Cauchy-Schwarz). Para $a \ y \ b \ de \ \mathbb{R}^n$ se verifica que $|a \cdot b| \le ||a|| \, ||b||$

Demostración. Caso trivial: a y b son linealmente dependientes. Entonces, o bien a = 0 o bien existe $\lambda \in \mathbb{R}$ tal que $\lambda a = b$. Si ocurre lo primero $a \cdot b = 0$ y ||a|| ||b|| = 0. Si ocurre lo segundo

$$|a \cdot b| = |a \cdot \lambda a| = |\lambda| ||a||^2 = |\lambda| ||a|| ||a|| = ||a|| ||b||.$$

Caso no trivial: $a \ y \ b$ son linealmente independientes. En tal caso veamos que existe un vector b ortogonal a a tal que $\mathcal{L}([a;b;]) = \mathcal{L}([a;b;])$.

Para encontrarlo definimos el vector como $h = b + \alpha a$; así garantizamos que $\mathcal{L}([a; h;]) = \mathcal{L}([a; b;])$; y además vamos a imponer la condición de que $a \perp h$; así

$$0 = \boldsymbol{a} \cdot \boldsymbol{h} = \boldsymbol{a} \cdot (\boldsymbol{b} + \alpha \boldsymbol{a}) = \boldsymbol{a} \cdot \boldsymbol{b} + \alpha \boldsymbol{a} \cdot \boldsymbol{a}$$
 por tanto $\alpha = -\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\boldsymbol{a} \cdot \boldsymbol{a}}$

Figura 11.4: Representación esquemática donde h es combinación lineal de a y b y perpendicular a a.

Por tanto,
$$\|\boldsymbol{b}\|^2 = \boldsymbol{b} \cdot \boldsymbol{b} = (\boldsymbol{h} - \alpha \boldsymbol{a}) \cdot (\boldsymbol{h} - \alpha \boldsymbol{a}) = \boldsymbol{h} \cdot \boldsymbol{h} - 2\alpha \boldsymbol{h} \cdot \boldsymbol{a} + \alpha^2 \boldsymbol{a} \cdot \boldsymbol{a} = \|\boldsymbol{h}\|^2 + \alpha^2 \|\boldsymbol{a}\|^2$$
.

(fíjese que en el esquema de la figura, b es la hipotenusa y h y αa son los catetos de un triángulo rectángulo)

Como a y b son linealmente independientes, necesariamente $h \neq 0$, es decir, ||h|| > 0; y entonces

$$\|\boldsymbol{b}\|^2 = \|\boldsymbol{h}\|^2 + \alpha^2 \|\boldsymbol{a}\|^2 > \alpha^2 \|\boldsymbol{a}\|^2 = \frac{(\boldsymbol{a} \cdot \boldsymbol{b})^2}{(\boldsymbol{a} \cdot \boldsymbol{a})^2} \|\boldsymbol{a}\|^2 = \frac{(\boldsymbol{a} \cdot \boldsymbol{b})^2}{(\|\boldsymbol{a}\|^2)^2} \|\boldsymbol{a}\|^2 = \frac{(\boldsymbol{a} \cdot \boldsymbol{b})^2}{\|\boldsymbol{a}\|^2},$$

de donde $\left(\left\|\boldsymbol{a}\right\|^{2}\right)\left(\left\|\boldsymbol{b}\right\|^{2}\right) > (\boldsymbol{a}\cdot\boldsymbol{b})^{2}$ y por consiguiente $\left\|\boldsymbol{a}\right\|\left\|\boldsymbol{b}\right\| > |\boldsymbol{a}\cdot\boldsymbol{b}|$.

Fíjese que, en un extremo tenemos $\mathbf{a} \cdot \mathbf{b} = 0$ cuando $\mathbf{a} \perp \mathbf{b}$; y en el otro $|\mathbf{a} \cdot \mathbf{b}| = ||\mathbf{a}|| \, ||\mathbf{b}||$ cuando $\mathbf{b} = \lambda \mathbf{a}$.

Ahora, y gracias a que sabemos que se verifica la desigualdad de Cauchy-Schwarz, también podemos generalizar a \mathbb{R}^n el coseno del ángulo formado por dos vectores no nulos.

Definición 11.4. El coseno del ángulo θ formado por los vectores no nulos a y b de \mathbb{R}^n es

$$\cos \theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\|\boldsymbol{a}\| \|\boldsymbol{b}\|}; \qquad -1 \le \cos \theta \le 1.$$

Con esta generalización, la parte derecha de la Figura 11.3 se puede reinterpretar como una representación esquemática de un triángulo formado por vectores de \mathbb{R}^n .

Por experiencia sabemos que la distancia entre dos puntos a y c, siempre es menor o igual que la suma de las distancias del camino indirecto que va de a a b y luego de b a c. Para extender el concepto de distancia debemos comprobar que ocurre lo mismo en \mathbb{R}^n . Para ello demostraremos la desigualdad triangular.

Proposición 11.3.3 (Designaldad triangular). Sean a y b vectores de \mathbb{R}^n , entonces $||a + b|| \le ||a|| + ||b||$.

Demostración.

$$\|\boldsymbol{a} + \boldsymbol{b}\|^2 = (\boldsymbol{a} + \boldsymbol{b}) \cdot (\boldsymbol{a} + \boldsymbol{b}) = \boldsymbol{a} \cdot \boldsymbol{a} + 2(\boldsymbol{a} \cdot \boldsymbol{b}) + \boldsymbol{b} \cdot \boldsymbol{b}$$

$$= \|\boldsymbol{a}\|^2 + 2(\boldsymbol{a} \cdot \boldsymbol{b}) + \|\boldsymbol{b}\|^2$$

$$\leq \|\boldsymbol{a}\|^2 + 2\|\boldsymbol{a}\| \|\boldsymbol{b}\| + \|\boldsymbol{b}\|^2 \qquad \text{puesto que } |\boldsymbol{a} \cdot \boldsymbol{b}| < \|\boldsymbol{a}\| \|\boldsymbol{b}\|$$

$$= (\|\boldsymbol{a}\| + \|\boldsymbol{b}\|)^2$$

Consecuentemente $\|a + b\| \le \|a\| + \|b\|$.

La Desigualdad Triangular con normas de vectores da lugar a la noción de distancia entre vectores de \mathbb{R}^n :

distancia entre
$$x$$
 y y : $d(x, y) = ||x - y|| = ||y - x|| = d(y, x)$,

que verifica otra Desigualdad Triangular (ahora referida a las distancias):

$$d(a, c) = ||a - c|| = ||(a - b) + (b - c)|| \le ||a - b|| + ||b - c|| = d(a, b) + d(b, c).$$

Puesto que $\|\boldsymbol{x}\| = 0$ si y solo si $\boldsymbol{x} = \boldsymbol{0}$, tenemos que $d(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{a} - \boldsymbol{b}\| = 0$ si y solo si $\boldsymbol{a} = \boldsymbol{b}$.

Vectores alineados. Cuando $y = \lambda x$ (cuando y es un múltiplo de x) el producto punto entre ambos es

$$\boldsymbol{y} \cdot \boldsymbol{x} = \lambda \boldsymbol{x} \cdot \boldsymbol{x} = \lambda \|\boldsymbol{x}\|^2$$
.

En tal caso (y si $\lambda \neq 0$) el ángulo que forman x e y es cero o bien 180° (es decir 0 ó π radianes) ya que:

$$\cos \theta = \frac{\boldsymbol{x} \cdot \boldsymbol{y}}{\|\boldsymbol{x}\| \|\boldsymbol{y}\|} = \frac{\lambda \|\boldsymbol{x}\|^2}{|\lambda| \|\boldsymbol{x}\| \|\boldsymbol{x}\|} = \frac{\lambda}{|\lambda|} = \pm 1,$$

y entonces se dice que los vectores están alineados.

Fíjese que cuando \boldsymbol{a} y \boldsymbol{b} están alineados: si $\lambda > 0$ entonces $\boldsymbol{a} \cdot \boldsymbol{b} = \|\boldsymbol{a}\| \|\boldsymbol{b}\|$; y si por el contrario $\lambda < 0$, entonces $\boldsymbol{a} \cdot \boldsymbol{b} = -\|\boldsymbol{a}\| \|\boldsymbol{b}\|$.

11.4. Subespacios ortogonales en \mathbb{R}^n

Definición 11.5 (Conjunto ortogonal al subconjunto A de vectores de \mathbb{R}^n). El conjunto de todos los vectores de \mathbb{R}^n que son perpendiculares a los vectores de $A \subset \mathbb{R}^n$ se denomina conjunto ortogonal (o perpendicular) a A, y se denota con A^{\perp} :

$$A^{\perp} = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{x} \cdot \boldsymbol{a} = 0 \ para \ cada \ \boldsymbol{a} \in A \}$$

EJERCICIO 56. Demuestre que A^{\perp} es un subespacio.

¡Fíjese que aunque A no sea un subespacio, el conjunto ortogonal A^{\perp} si lo es!

EJERCICIO 57.

- (a) Demuestre que si B es un subconjunto de vectores de \mathbb{R}^n y $A \subset B$ entonces $B^{\perp} \subset A^{\perp}$.
- (b) Demuestre que para todo subconjunto A de vectores de \mathbb{R}^n se verifica que $A^{\perp} = \mathcal{L}(A)^{\perp}$. (donde $\mathcal{L}(A)$ corresponde a la Definición 9.10 en la página 114)
- (c) Demuestre que para todo subespacio \mathcal{A} de \mathbb{R}^n se verifica que $\mathcal{A} \cap \mathcal{A}^{\perp} = \{\mathbf{0}\}.$

Proposición 11.4.1 ($\mathcal{A} \subset \mathbb{R}^m$ y \mathcal{A}^{\perp} son suplementarios). ² Sean $\mathcal{A} \subset \mathbb{R}^m$ y \mathcal{A}^{\perp} , entonces $\mathcal{A} \oplus \mathcal{A}^{\perp} = \mathbb{R}^m$.

 $^{^2}$ En espacios vectoriales de dimensión infinita este resultado es falso en general (véase el ejemplo de la Página 144 donde $\mathcal A$ y $\mathcal A^{\perp}$ no son suplementarios); pero si es verdadero cuando $\mathcal A$ es de dimensión finita (Proposición 11.6.4 en la página 144).

Demostración. Sea el sistema A de r vectores una base de \mathcal{A} . Por el apartado (b) del ejercicio anterior sabemos que $\mathcal{A}^{\perp} = \mathcal{L}(\mathsf{A})^{\perp} = \mathsf{A}^{\perp}$.

Si llamamos \mathbf{A} al sistema \mathbf{A} de vectores linealmente independientes de \mathbb{R}^m , entonces \mathcal{A}^{\perp} es el subconjunto de vectores perpendiculares a las columnas de \mathbf{A} ; es decir $\mathcal{A}^{\perp} = \{ \mathbf{x} \in \mathbb{R}^m \mid \mathbf{x}\mathbf{A} = \mathbf{0} \} = \mathcal{N}\left(\mathbf{A}^{\mathsf{T}}\right)$.

Consecuentemente, dim $\mathcal{A}^{\perp} = \dim \mathcal{N}\left(\mathbf{A}^{\mathsf{T}}\right) = m - r$. Como dim $\mathcal{A} = r$, como dim $\mathcal{A}^{\perp} = m - r$ y como dim $\mathcal{A} \cap \mathcal{A}^{\perp} = \dim\{\mathbf{0}\} = 0$, por la Proposición 10.1.4 en la página 119, necesariamente $\mathcal{A} \oplus \mathcal{A}^{\perp} = \mathbb{R}^m$. \square

Observación. Hay muchos subespacios suplementarios a uno dado: viendo la Figura 6.1 en la página 82 es fácil darse cuenta que cualquier función lineal $g: \mathcal{V} \to \mathcal{W}$ es un espacio suplementario de $\{\vec{0}\} \times \mathcal{W}$. Sin embargo, dado un subespacio, el correspondiente subespacio suplementario y ortogonal es único. En la citada figura corresponde al eje horizontal: $(\{\vec{0}\} \times \mathcal{W})^{\perp} = \mathcal{V} \times \{\vec{0}\}$.

Esto da lugar a la siguiente

Definición 11.6 (Complemento ortogonal de $\mathcal{A} \subset \mathbb{R}^n$). En el caso de que $\mathcal{A} \subset \mathbb{R}^n$ sea un subespacio, el subespacio \mathcal{A}^{\perp} (conjunto ortogonal de \mathcal{A}) se llama complemento ortogonal de \mathcal{A} .

Así podemos reescribir el último apartado del ejercicio anterior como: 'Demuestre que la intersección entre un subespacio de \mathbb{R}^n y su complemento ortogonal es $\{0\}$ ".

11.5. Ortogonalidad de los 4 subespacios fundamentales de A

Definición 11.7 (Subconjuntos ortogonales). Dos subconjuntos $A \ y \ B \ de \ \mathbb{R}^n$ son ortogonales $(A \perp B)$, si todo vector de A es perpendicular a todo vector de B; es decir, si $\mathbf{a} \cdot \mathbf{b} = 0$ para cualesquiera $\mathbf{a} \in A \ y \ \mathbf{b} \in B$.

Fíjese que un subespacio \mathcal{A} y su complemento ortogonal \mathcal{A}^{\perp} son un caso particular de subconjuntos (en este caso subespacios) ortogonales, pues $\mathcal{A} \perp (\mathcal{A}^{\perp})$.

EJERCICIO 58. Demuestre la siguiente

Proposición 11.5.1. Sean A y B subconjuntos de \mathbb{R}^n , entonces $A \perp B$ si y solo si $\mathcal{L}(A) \perp \mathcal{L}(B)$.

La siguiente proposición muestra que los subespacios fundamentales de A son ortogonales dos a dos.

Proposición 11.5.2. Sea A de orden m por n, entonces

- El espacio fila y el espacio nulo son ortogonales: $\boxed{\mathcal{C}\left(\mathbf{A}^{\mathsf{T}}\right) \perp \mathcal{N}\left(\mathbf{A}\right)}$
- El espacio columna y el espacio nulo por la izquierda son ortogonales: $C(\mathbf{A}) \perp \mathcal{N}(\mathbf{A}^{\intercal})$

Demostración. El espacio fila es el conjunto de combinaciones lineales de las filas de \mathbf{A} , es decir, es el conjunto de vectores de la forma $f = y\mathbf{A}$ con $y \in \mathbb{R}^m$; y los vectores del espacio nulo son los vectores x tales que $\mathbf{A}x = \mathbf{0}$. Evidentemente los vectores f y x son perpendiculares puesto que:

$$f \cdot x = y \mathbf{A} x = y \cdot \mathbf{0} = 0.$$

Del mismo modo, como el espacio columna es el conjunto de combinaciones lineales de las columnas de A, es decir, es el conjunto de vectores de la forma b = Ax con $x \in \mathbb{R}^n$; y como los vectores del espacio nulo por la izquierda son los vectores y tales que yA = 0; los vectores y y b también son perpendiculares:

$$\mathbf{y} \cdot \mathbf{b} = \mathbf{y} \mathbf{A} \mathbf{x} = \mathbf{0} \cdot \mathbf{x} = 0.$$

```
Librería NAcAL para Python
      = Vector([1, 1, 1])
      = Matrix( [a, -a, a, -a] )
      = SubEspacio(
                      A.sis() ) # Espacio columna de A
      = SubEspacio( (~A).sis() ) # Espacio fila de A
      = SubEspacio( A )
                                  # Espacio nulo de A
   NI = SubEspacio( ~A )
                                  # Espacio nulo por la izquierda de A
   print( F == ~N )
                            # ¿Es cierto que F es igual a complemento ortogonal de N?
   print( NI == ~C )
                            # ¿Es cierto que NI es igual a complemento ortogonal de C?
True
True
```

El método de eliminación como generador de bases del complemento ortogonal

En la lección anterior vimos que con el método de eliminación podemos encontrar bases de los cuatro espacios fundamentales de una matriz. Consecuentemente, podemos encontrar una base del complemento ortogonal de cualquier subespacio de \mathbb{R}^m : si tenemos un sistema de vectores Z de \mathbb{R}^m , basta escribir dichos vectores como filas de una matriz y aplicar el método de eliminación "de izquierda a derecha"; las "soluciones especiales" serán base del complemento ortogonal del espacio $\mathcal{L}(Z)$ generado por Z.

Ejemplo 25. Busquemos una base para el complemento ortogonal del espacio generado por los vectores

$$\begin{bmatrix} \begin{pmatrix} 1 \\ -3 \\ 0 \\ -1 \end{pmatrix}; \begin{pmatrix} 0 \\ -1 \\ 1 \\ 1 \end{pmatrix}; \begin{pmatrix} 1 \\ -4 \\ 1 \\ 0 \end{pmatrix}; \end{bmatrix}.$$

Aplicando la eliminación sobre una matriz cuyas filas son los vectores dados tenemos:

```
 \begin{bmatrix} 1 & -3 & 0 & -1 \\ 0 & -1 & 1 & 1 \\ 1 & -4 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} (3)1+2 \\ (1)1+4 \\ (1)2+3 \\ (1)2+4 \end{bmatrix}} \xrightarrow{\begin{bmatrix} (1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 1 & 3 & 3 & 4 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}  \implies \text{Base del complemento ortogonal: } \begin{bmatrix} \begin{pmatrix} 3 \\ 1 \\ 0 \\ 1 \end{pmatrix}; \begin{pmatrix} 4 \\ 1 \\ 0 \\ 1 \end{pmatrix}; \begin{bmatrix} 4 \\ 1 \\ 0 \\ 1 \end{bmatrix};
```

```
Librería NACAL para Python

S = Sistema( [Vector([1,-3,0,-1]), Vector([0,-1,1,1]), Vector([1,-4,1,0])] )

~Matrix(S)  # Matriz cuyas filas son los vectores de S

Homogenea(~Matrix(S),1).sgen  # Sistema generador del complemento ortogonal

SubEspacio( Homogenea(~Matrix(S)).sgen ) == ~SubEspacio(S)  # Comprobación
```

11.5.1. De las ecuaciones paramétricas a las ecuaciones cartesianas

En la Sección 7.2.2 de la Lección 7 aparecieron por primera vez tanto las ecuaciones paramétricas, como las ecuaciones cartesianas (véase las notas a pie de página números 2 en la página 92 y 1 en la página 89).

Cada modo de representación tiene un propósito distinto: las ecuaciones paramétricas nos permiten generar ejemplos de vectores que pertenecen al conjunto (basta dar valores arbitrarios a los parámetros); las ecuaciones cartesianas nos permiten comprobar si un vector \boldsymbol{y} pertenece al conjunto (basta comprobar si \boldsymbol{y} es solución a las ecuaciones cartesianas).

Veamos ahora cómo pasar de unas a las otras; así dispondremos en todo momento de dos modos de expresar el mismo conjunto de vectores.

El camino recorrido hasta ahora: de las ecuaciones cartesianas a las paramétricas

Dado un sistema de ecuaciones lineales $\mathbf{A}x = \mathbf{b}$, donde \mathbf{A} es de orden m por n, expresamos el conjunto de soluciones con la siguiente ecuación cartesiana:

$$\{ \boldsymbol{x} \in \mathbb{R}^n \, | \mathbf{A} \boldsymbol{x} = \boldsymbol{b} \}$$

Cuando resolvemos el sistema encontrando una solución particular s y una base $[n_1; \dots n_k;]$ de $\mathcal{N}(\mathbf{A})$, re-expresamos el mismo conjunto de soluciones con la ecuación paramétrica:

$$\left\{ oldsymbol{x} \in \mathbb{R}^n \mid \exists oldsymbol{p} \in \mathbb{R}^k ext{ tal que } oldsymbol{x} = oldsymbol{s} + ig\lceil oldsymbol{n}_1; \dots oldsymbol{n}_k; ig
ceil oldsymbol{p}
ight\}.$$

Hasta ahora siempre hemos pasado de las ecuaciones cartesianas (o implícitas) a las ecuaciones paramétricas. Veamos como recorrer el camino inverso.

Recorriendo el camino inverso: de las ecuaciones paramétricas a las cartesianas

En el camino inverso, dadas unas ecuaciones paramétricas del conjunto de soluciones de "un sistema desconocido, $\mathbf{D} x = \mathbf{f}$ ", encontraremos las filas de una matriz de coeficientes \mathbf{A} y un vector del lado derecho \mathbf{b} que definan un sistema de ecuaciones $\mathbf{A} x = \mathbf{b}$ equivalente a $\mathbf{D} x = \mathbf{f}$, es decir, cuyo conjunto de soluciones coincida con el del sistema de ecuaciones desconocido, $\mathbf{D} x = \mathbf{f}$.

Procedimiento. Cuando disponemos de unas ecuaciones paramétricas

$$\left\{oldsymbol{x} \in \mathbb{R}^n \; \left| \; \exists oldsymbol{p} \in \mathbb{R}^k \; ext{tal que} \; oldsymbol{x} = oldsymbol{s} + ig[oldsymbol{n}_1; \dots oldsymbol{n}_k; ig] oldsymbol{p}
ight.
ight\},$$

disponemos tanto de una solución s (un vector del conjunto de soluciones) como de una base $[n_1; \dots n_k;]$ del espacio nulo de la matriz \mathbf{A} que buscamos, es decir, $\mathcal{N}(\mathbf{A}) = \mathcal{L}([n_1; \dots n_k;])$.

Ahora ya sabemos que por eliminación podemos encontrar una base del complemento ortogonal de $\mathcal{N}(\mathbf{A})$, es decir una base de $\mathcal{C}(\mathbf{A}^{\mathsf{T}})$. Los vectores de dicha base serán las filas de \mathbf{A} . Los pasos a seguir son:

Primero encontramos una base del complemento ortogonal de $\mathcal{N}(\mathbf{A}) = \mathcal{L}([\mathbf{n}_1; \dots \mathbf{n}_k;])$. Para ello usamos la matriz \mathbf{Z} cuyas k filas son los vectores $\mathbf{n}_1, \dots, \mathbf{n}_k$, y aplicamos la eliminación "de izquierda a derecha" siguiendo el esquema:

$$\frac{ \left[\mathbf{Z} \right] }{ \left[\mathbf{I} \right] } \rightarrow \frac{ \left[\mathbf{K} \right] }{ \left[\mathbf{E} \right] }; \qquad \text{donde } \mathbf{Z} = \left[\boldsymbol{n}_1; \dots \boldsymbol{n}_k; \right]^{\mathsf{T}} \qquad \text{(n\'otese el símbolo de transposici\'on)}.$$

Después usamos las "soluciones especiales" encontradas (las columnas de ${\sf E}$ bajo vectores nulos de ${\sf K}$) como filas para construir la matriz ${\sf A}$.

Ahora fíjese que si multiplicamos por **A** la ecuación paramétrica $x = s + [n_1; \dots n_k; p]$ tenemos que

$$\mathsf{A} x = \mathsf{A} s + \underbrace{\mathsf{A} ig[n_1; \dots n_k; ig]}_{\mathsf{0}} p \quad \Rightarrow \quad \mathsf{A} x = \mathsf{A} s,$$

donde b = As será el vector del lado derecho del sistema que buscamos. Este sistema es, por construcción, un sistema cuyas soluciones son las ecuaciones paramétricas de las que hemos partido, ya que

$$\begin{cases} \mathbf{A}\boldsymbol{x} = \boldsymbol{b} & \text{cuando} \quad \boldsymbol{x} = \boldsymbol{s} \\ \mathbf{A}\boldsymbol{x} = \boldsymbol{0} & \text{cuando} \quad \boldsymbol{x} \in \mathcal{L}\big(\big[\boldsymbol{n}_1; \dots \boldsymbol{n}_k;\big]\big) = \mathcal{N}\left(\mathbf{A}\right) \end{cases}.$$

Procedimiento abreviado para usar con lápiz y papel. No es necesario encontrar primero los vectores perpendiculares a n_1, \ldots, n_k para luego formar con ellos las filas de \mathbf{A} y después multiplicar la ecuación paramétrica inicial para obtener el sistema $\mathbf{A}x = \mathbf{b}$. Podemos hacer todo esto a la vez con nuestra "herramienta multiusos', es decir, con la eliminación de izquierda a derecha.

Si M es la matriz

$$\mathbf{M} = [\mathbf{n}_1; \dots \mathbf{n}_k; | \mathbf{x}; | \mathbf{s};]^\mathsf{T}$$
 (nótese el símbolo de transposición),

donde $[n_1; \dots n_k;]$ es un sistema generador de $\mathcal{N}(\mathbf{A})$, \boldsymbol{x} es el vector de incógnitas y \boldsymbol{s} es una solución particular; podemos tratar de hacer columnas de ceros en la submatriz con las k primeras filas (correspondientes a los vectores $\boldsymbol{n}_1, \dots, \boldsymbol{n}_k$). Una vez finalizado el proceso de eliminación, "aparecerá" bajo cada columna nula del bloque superior una ecuación del sistema de ecuaciones deseado. Veámoslo.

$$\textit{Ejemplo 26. Sea el conjunto} \left\{ \boldsymbol{x} \in \mathbb{R}^4 \; \middle| \; \exists a,b \in \mathbb{R} \; \text{tales que} \; \boldsymbol{x} = \begin{pmatrix} 0 \\ 2 \\ 0 \\ 5 \end{pmatrix} + a \begin{pmatrix} 1 \\ 2 \\ 0 \\ -2 \end{pmatrix} + b \begin{pmatrix} 0 \\ 0 \\ 1 \\ 3 \end{pmatrix} \right\}.$$

Apliquemos la eliminación sobre la siguiente matriz particionada \mathbf{M} cuya tercera fila es $\mathbf{x} = (x, y, z, w)$ y cuya cuarta y última fila es la solución particular $\mathbf{s} = (0, 2, 0, 5)$:

$$\boxed{ \begin{bmatrix} \mathbf{M} \\ \mathbf{I} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 & -2 \\ 0 & 0 & 1 & 3 \\ \hline x & y & z & w \\ \hline 0 & 2 & 0 & 5 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{ \begin{bmatrix} (-2)^{7} + 2 \\ [(2)^{1} + 4] \\ \hline \end{bmatrix} } \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ \hline x & -2x + y & z & w + 2x \\ \hline 0 & 2 & 0 & 5 \\ \hline 1 & -2 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 \\ \hline 1 & -2 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 \\ \hline 1 & -2 & 0 & 2 \\ 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix} .$$

Entonces
$$\mathbf{A} = \begin{bmatrix} -2 & 1 & 0 & 0 \\ 2 & 0 & -3 & 1 \end{bmatrix}$$
; y consecuentemente $\mathbf{A}\mathbf{x} = \begin{pmatrix} -2x + y \\ 2x + w - 3z \end{pmatrix}$ y $\mathbf{A}\mathbf{s} = \mathbf{b} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$. Es decir

$$\mathbf{A}\boldsymbol{x} = \boldsymbol{b} \longrightarrow \begin{cases} -2x + y &= 2\\ 2x + w - 3z &= 5 \end{cases}.$$

Así pues, la ecuación cartesiana correspondiente a la ecuación paramétrica de este ejemplo es

$$\left\{ \boldsymbol{x} \in \mathbb{R}^4 \; \left| \; \begin{bmatrix} -2 & 1 & 0 & 0 \\ 2 & 0 & -3 & 1 \end{bmatrix} \boldsymbol{x} = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \right\}.$$

Pero si nos fijamos bien veremos que para obtener el sistema de ecuaciones

$$\begin{cases} -2x + y = 2\\ 2x + w - 3z = 5 \end{cases}$$

tampoco es necesario añadir la matriz identidad por debajo de la matriz particionada \mathbf{M} . Es evidente que bajo las columnas nulas ya hemos calculado $\mathbf{A}x$ y $\mathbf{A}s$. Así pues, para encontrar las ecuaciones paramétricas con lápiz y papel basta aplicar la eliminación sobre \mathbf{M} sin necesidad de añadir la identidad por debajo:

$$\begin{bmatrix} 1 & 2 & 0 & -2 \\ 0 & 0 & 1 & 3 \\ \hline x & y & z & w \\ \hline 0 & 2 & 0 & 5 \end{bmatrix} \xrightarrow{[(-2)1+2]} \begin{bmatrix} (-7)1+2 \\ [(2)1+4] \\ \hline \\ \hline \\ 0 & 5 & 0 & 5 \end{bmatrix} \xrightarrow{[(-3)3+4]} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ \hline \hline \\ \hline \\ x & -2x+y & z & w+2x \\ \hline \\ \hline \\ 0 & 5 & 0 & 5 \end{bmatrix} \xrightarrow{[(-3)3+4]} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \hline \hline \\ \hline \\ x & -2x+y & z & w+2x-3z \\ \hline \\ \hline \\ 0 & 2 & 0 & 5 \end{bmatrix} .$$

Mirando las ecuaciones que aparecen bajo las columnas nulas se deduce fácilmente cuál es la correspondiente matriz de coeficientes **A** del sistema formado por dichas ecuaciones.

Puntos, rectas, planos e hiper-planos de \mathbb{R}^n . Espacios afines

Dado un sistema de ecuaciones $\mathbf{A}x = \mathbf{b}$, el conjunto de soluciones posee una forma geométrica que "no se curva". En particular, si dim $\mathcal{N}(\mathbf{A}) = 0$ el conjunto es un punto; si dim $\mathcal{N}(\mathbf{A}) = 1$ el conjunto es una recta; si dim $\mathcal{N}(\mathbf{A}) = 2$ es un plano, y si dim $\mathcal{N}(\mathbf{A}) = d > 2$ es un hiper-plano de dimensión d.

Esto sugiere emplear nuevos nombres para conceptos ya conocidos: podemos denominar ecuaciones de un punto, de una recta, de un plano, etc. tanto a las ecuaciones paramétricas como a las cartesianas que describen el conjunto de soluciones del correspondiente sistema $\mathbf{A}x = \mathbf{b}$. Por tanto, podemos preguntarnos por las ecuaciones cartesianas (o las ecuaciones paramétricas) de, por ejemplo, una recta en \mathbb{R}^n (y al decir recta implícitamente estamos indicando que el espacio nulo de la matriz de coeficientes tiene dimensión uno).

Estos subconjuntos de \mathbb{R}^n descritos como la suma de un vector particular s más las combinaciones lineales de un sistema de vectores $[n_1; \dots n_k;]$ se denominan espacios afines. La librería de Python guarda el conjunto de soluciones de sistema de ecuaciones en forma de espacio afín en el atributo eafin; y su representación en Jupyter muestra tanto las ecuaciones cartesianas como las paramétricas de dichos espacios.

```
A = \text{Matrix}( \begin{bmatrix} [-1,1,0,0], [-1,0,-1,1] \end{bmatrix} )
b = \text{Vector}([0,1])
\text{SEL}(A,b).eafin}
\left\{ \boldsymbol{v} \in \mathbb{R}^4 \middle| \exists \boldsymbol{p} \in \mathbb{R}^2, \ \boldsymbol{v} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} + \begin{bmatrix} -1 & 0 \\ -1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \boldsymbol{p} \right\} = \left\{ \boldsymbol{v} \in \mathbb{R}^4 \middle| \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & -1 & 1 \\ 0 & -1 & 1 \end{bmatrix} \boldsymbol{v} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}
```

Podemos generar un espacio afín con una matriz y un vector

o como con un sistema de vectores v un vector

```
S = \text{Sistema}([\text{Vector}([-1,-1,1,0]), \text{Vector}([0,0,1,1])])
v = \text{Vector}([0,0,0,1])
\text{EAfin}(S,v)
\left\{ \boldsymbol{v} \in \mathbb{R}^4 \middle| \exists \boldsymbol{p} \in \mathbb{R}^2, \ \boldsymbol{v} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} + \begin{bmatrix} -1 & 0 \\ -1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \boldsymbol{p} \right\} = \left\{ \boldsymbol{v} \in \mathbb{R}^4 \middle| \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & -1 & 1 \end{bmatrix} \boldsymbol{v} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}
```

11.6. Generalizaciones o visiones alternativas (★)

B

Aunque hasta este momento nos hemos limitado a trabajar en \mathbb{R}^n , lo interesante es que las ideas de longitud, ortogonalidad, norma, distancia y ángulo entre vectores son "de algún modo" extrapolables a espacios vectoriales genéricos \mathcal{V} cuando en ellos definimos productos escalares.

De hecho, las aplicaciones más interesantes ocurren en espacios vectoriales de dimensión infinita, por ejemplo en la Probabilidad.

En esta sección definimos el concepto de producto escalar en un espacio vectorial abstracto. Luego generalizamos las nociones de longitud, ortogonalidad, norma, distancia y ángulo entre vectores. Para finalizar, trataremos con subespacios ortogonales.

11.6.1. Productos escalares

Llamamos producto escalar entre dos vectores \vec{x} e \vec{y} de \mathcal{V} a cualquier función

$$\langle \quad, \quad \rangle : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$$

que verifique los siguientes axiomas:

- Simetría: $\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$.
- Linealidad respecto al primer argumento:

1.
$$\langle (\alpha \vec{x}), \vec{y} \rangle = \alpha \langle \vec{x}, \vec{y} \rangle$$
.

2.
$$\langle (\vec{x} + \vec{y}), \vec{z} \rangle = \langle \vec{x}, \vec{z} \rangle + \langle \vec{y}, \vec{z} \rangle$$
.

- Positivo: $\langle \vec{x}, \vec{x} \rangle > 0$.
- **Definido:** $\langle \vec{x}, \vec{x} \rangle = 0 \Leftrightarrow \vec{x} = \vec{0}$.

B

Como ilustración veamos algunos ejemplos de productos escalares.

Ejemplos de productos escalares en \mathbb{R}^n

Fíjese que el producto punto es un producto escalar en \mathbb{R}^n

$$\langle _, _ \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$
, $(\boldsymbol{a}, \boldsymbol{b}) \to \boldsymbol{a} \cdot \boldsymbol{b}$

de hecho, el producto punto también se denomina producto escalar usual en \mathbb{R}^n .

Pero hay otros ejemplos de producto escalar en \mathbb{R}^n de uso muy expendido.

Ejemplo~27. En estadística se emplea un producto escalar que garantiza que la norma del vector $\mathbf 1$ que solo contiene unos siempre es 1 independientemente del número de unos que contenga el vector.

$$\langle _\,,\,_ \rangle_s \colon \mathbb{R}^n imes \mathbb{R}^n o \mathbb{R} \ (oldsymbol{a},oldsymbol{b}) o rac{1}{n} (oldsymbol{a} \cdot oldsymbol{b})$$

(Véase la Sección 13.1 en la página 155).

En la Lección 13 veremos que usando este producto escalar, la media aritmética y la desviación típica son longitudes y la correlación es el coseno del ángulo formado entre vectores perpendiculares a 1.

EJERCICIO 59. Demuestre que la función $\langle _, _ \rangle_s : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ es un producto escalar en \mathbb{R}^n . $(\boldsymbol{a}, \boldsymbol{b}) \to \frac{1}{n} (\boldsymbol{a} \cdot \boldsymbol{b})$

Ejemplo 28. En estadística también se emplean las medias ponderadas, en las que unos datos tienen mayor peso que otros. Pero se mantiene la propiedad de que la media (ponderada) de un vector de n datos todos iguales a uno es uno. Por ello, los pesos (todos positivos) deben sumar uno. Así llegamos a

$$egin{aligned} \langle_\,,\,_
angle_{sp}\colon\mathbb{R}^n imes\mathbb{R}^n&
ightarrow\mathbb{R}\ (oldsymbol{a},oldsymbol{b})&
ightarrowoldsymbol{a}oldsymbol{\mathsf{D}}oldsymbol{b} \end{aligned}$$

donde **D** es una matriz diagonal de orden n cuyos elementos en la diagonal son positivos y suman 1. El anterior producto escalar $\langle _, _ \rangle_s$ corresponde al caso particular $\mathbf{D} = \frac{1}{n}\mathbf{I}$.

EJERCICIO 60. Considere la matriz diagonal **D** de orden n y cuyos elementos en la diagonal son positivos y suman 1. Demuestre que la función $\langle _, _ \rangle_{sp} : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$, es un producto escalar en \mathbb{R}^n . $(\boldsymbol{a}, \boldsymbol{b}) \to \boldsymbol{a} \mathbf{D} \boldsymbol{b}$

Ejemplo 29. Para toda matriz **A** de orden n y rango completo, la función

$$\langle _\,,\,_ \rangle: \mathcal{V} imes \mathcal{V} o \mathbb{R} \ (oldsymbol{a},oldsymbol{b}) o oldsymbol{a} oldsymbol{\mathsf{A}}^\mathsf{T} oldsymbol{\mathsf{A}} oldsymbol{b}$$

es un producto escalar en \mathbb{R}^n . De hecho, para cualquier producto escalar definido en \mathbb{R}^n se puede encontrar una matriz **A** tal que dicho producto escalar se puede expresar de esta manera (ha de tenerse en cuenta que dicha matriz **A** no es única —véase la diagonalización por congruencia de la Lección 19).

Ejemplos de productos escalares en otros subespacios

Ejemplo 30. El subconjunto C[a, b] de funciones reales y continuas con dominio en el intervalo [a, b], junto con las operaciones habituales de suma de funciones y producto de funciones por escalares, es un subespacio del espacio $\mathbb{R}^{[a,b]}$ de funciones reales de variable real con dominio en el intervalo [a, b]. En dicho subespacio, la función

$$\langle _, _ \rangle : \mathcal{C}[0,1] \times \mathcal{C}[0,1] \to \mathbb{R}$$

$$(f,g) \longrightarrow \int_a^b f(x)g(x)dx$$

es un producto escalar, pues verifica los axiomas.

- Simetría: $\int_a^b f(x)g(x)dx = \int_a^b g(x)f(x)dx$
- Linealidad respecto al primer argumento:

1.
$$\int_a^b (f(x) + g(x))h(x)dx = \int_a^b f(x)h(x)dx + \int_a^b g(x)h(x)dx$$

2.
$$\int_a^b \alpha f(x)g(x)dx = \alpha \int_a^b f(x)g(x)dx$$

■ **Positivo:** si f no es la función nula entonces $\int_a^b f(x)^2 dx > 0$, ya que en el punto x_0 en el que la función es distinta de cero, existe un entorno tal que si $z \in (x_0 - \delta, x_0 + \delta)$ entonces $f(z)^2 \ge \frac{1}{2} \int_a^b f(x_0)^2 dx$.

■ **Definido:** $\int_a^b f(x)^2 dx = 0$, si y solo si f es la función nula, es decir, f(x) = 0 para todo $x \in [a, b]$.

Ejemplo 31. Otro ejemplo que encontrará en estadística y econometría corresponde al conjunto de variables aleatorias de varianza finita definidas en un espacio de probabilidad (Ω, \mathcal{F}, P) . En dicho subespacio, la esperanza E(XY) del producto entre las variables aleatorias X e Y es un producto escalar.

11.6.2. Generalizando los conceptos geométricos a otros espacios vectoriales

Esta sección replica la Sección 11.3 sustituyendo la notación de producto punto por la de producto escalar.

Definición 11.8. Decimos que \vec{x} e \vec{y} son ortogonales o perpendiculares $(\vec{x} \perp \vec{y})$ cuando $(\vec{x}, \vec{y}) = 0$.

EJERCICIO 61. ¿Qué vector es ortogonal a cualquier otro (incluido él mismo)?

Definición 11.9. La longitud (o norma) de un vector \vec{x} de \mathcal{V} es la raíz cuadrada de $\langle \vec{x}, \vec{x} \rangle$:

longitud de
$$\vec{x} = \|\vec{x}\| = \sqrt{\langle \vec{x}, \vec{x} \rangle}$$
.

EJERCICIO 62. Si $\|\vec{x}\| = 0$, ¿Quién es \vec{x} ?

Multiplicando \vec{x} por λ obtenemos un múltiplo de \vec{x} cuya longitud es $|\lambda|$ veces su longitud original.

Definición 11.10 (Vector unitario). Se dice que un vector es unitario si su longitud es uno.

Para obtener un múltiplo unitario de \vec{x} basta dividir el vector \vec{x} por su longitud.

Teorema 11.6.1 (Teorema de Pitágoras). Sean \vec{x} e \vec{y} son dos vectores de \mathcal{V} ; entonces $\langle \vec{x}, \vec{y} \rangle = 0$ (son perpendiculares) si y solo si

$$\|\vec{x} + \vec{y}\|^2 = \|\vec{x}\|^2 + \|\vec{y}\|^2$$
.

EJERCICIO 63. Demuestre el teorema de Pitágoras en \mathcal{V} con producto escalar $\langle _, _ \rangle : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$.

Proposición 11.6.2 (Desigualdad de Cauchy-Schwarz). Para \vec{x} e \vec{y} de \mathcal{V} y el producto escalar $\langle _, _ \rangle$ definido en \mathcal{V} se verifica que

$$|\langle \vec{x}, \vec{y} \rangle| \le ||\vec{x}|| ||\vec{y}||.$$

EJERCICIO 64. Demuestre la desigualdad de Cauchy-Schwarz.

Así, en un extremo $\langle \vec{x}, \vec{y} \rangle = 0$ cuando $\vec{x} \perp \vec{y}$; y en el otro $|\langle \vec{x}, \vec{y} \rangle| = ||\vec{x}|| ||\vec{y}||$ cuando $\vec{y} = \lambda \vec{x}$.

Definición 11.11. El coseno del ángulo θ formado por los vectores no nulos \vec{x} y \vec{y} de V es

$$\cos \theta = \frac{\langle \vec{x}, \vec{y} \rangle}{\|\vec{x}\| \|\vec{y}\|}; \qquad -1 \le \cos \theta \le 1.$$

Figura 11.5: Representación esquemática del triángulo formado por $\vec{0}$ y dos vectores \vec{x} y \vec{y} no nulos de \mathcal{V} .

Proposición 11.6.3 (Designaldad triangular). Sean \vec{x} \vec{y} vectores de \mathcal{V} , entonces $||\vec{x} + \vec{y}|| \le ||\vec{x}|| + ||\vec{y}||$.

EJERCICIO 65. Demuestre la desigualdad triangular en \mathcal{V} .

La Desigualdad Triangular da lugar a la noción de distancia entre vectores de V:

distancia entre
$$\vec{x}$$
 y \vec{y} : $d(\vec{x}, \vec{y}) = ||\vec{x} - \vec{y}|| = ||\vec{y} - \vec{x}|| = d(\vec{y}, \vec{x}),$

Puesto que $\|\vec{x}\| = 0$ si y solo si $\vec{x} = \vec{0}$, tenemos que $d(\vec{x}, \vec{y}) = \|\vec{x} - \vec{y}\| = 0$ si y solo si $\vec{x} = \vec{y}$.

Vectores alineados. Cuando $\vec{y} = \lambda \vec{x}$ (cuando \vec{y} es un múltiplo de \vec{x}) el producto punto entre ambos es

$$\langle \overrightarrow{y}, \overrightarrow{x} \rangle = \lambda (\langle \overrightarrow{x}, \overrightarrow{x} \rangle) = \lambda ||\overrightarrow{x}||^2$$

En tal caso (y si $\lambda \neq 0$) el ángulo que forman \vec{x} e \vec{y} es cero o bien 180° (es decir 0 ó π radianes) ya que:

$$\cos \theta = \frac{\langle \overrightarrow{x}, \overrightarrow{y} \rangle}{\|\overrightarrow{x}\| \|\overrightarrow{y}\|} = \frac{\lambda \|\overrightarrow{x}\|^2}{|\lambda| \|\overrightarrow{x}\| \|\overrightarrow{x}\|} = \frac{\lambda}{|\lambda|} = \pm 1.$$

y entonces se dice que los vectores están alineados.

11.6.3. Subespacios ortogonales en espacios vectoriales abstractos

Definición 11.12 (Conjunto ortogonal al subconjunto A de vectores de V). Llamamos conjunto ortogonal (o perpendicular) a A, que denotamos como A^{\perp} , al subconjunto de todos los vectores de V que son perpendiculares a todos los vectores de A.

$$A^{\perp} = \{ \overrightarrow{x} \in \mathcal{V} \mid \langle \overrightarrow{x}, \overrightarrow{a} \rangle = 0 \text{ para } cada \overrightarrow{a} \in A \}$$

EJERCICIO 66. Demuestre que A^{\perp} es un subespacio.

¡Fíjese que aunque A no sea un subespacio, A^{\perp} si lo es!

Ejercicio 67.

- (a) Demuestre que si B es un subconjunto de vectores de $\mathcal V$ y $A\subset B$ entonces $B^\perp\subset A^\perp.$
- (b) Demuestre que para todo subconjunto A de vectores de \mathcal{V} , se verifica que $A^{\perp} = \mathcal{L}(A)^{\perp}$. (donde $\mathcal{L}(A)$ corresponde a la Definición 9.10 en la página 114)
- (c) Demuestre que $\mathcal{A} \cap \mathcal{A}^{\perp} = \{\overrightarrow{0}\}.$

11.6.4. Espacios pre-Hilbert

Definición 11.13. Se denomina espacio pre-Hilbert al par $(\mathcal{V}, \langle _, _ \rangle)$, donde \mathcal{V} es un espacio vectorial $y \langle _, _ \rangle$ es un producto escalar definido en \mathcal{V} .

Definición 11.14. En el caso particular de que V sea de dimensión finita, el espacio $(V, \langle _, _ \rangle)$ se denomina espacio euclídeo.

Observación. Cuando nos referimos al espacio euclídeo \mathbb{R}^n se sobreentiende que es aquél definido sobre \mathbb{R}^n junto con el producto punto, es decir, al par: $(\mathbb{R}^n, \underline{\hspace{1em}} \cdot \underline{\hspace{1em}})$.

Complementos ortogonales

Con la Proposición 11.4.1 en la página 134 ya vimos que en el espacio euclídeo ($\mathbb{R}^m, _\cdot _$) todo subespacio $\mathcal{A} \subset \mathbb{R}^m$ y su conjunto ortogonal \mathcal{A}^\perp son suplementarios.

Ahora vamos a de mostrar que en cualquier espacio pre-Hilbert $(\mathcal{V}, \langle _, _ \rangle)$, si el subespacio \mathcal{H} es de dimensión *finita* entonces $\mathcal{V} = \mathcal{H} \oplus \mathcal{H}^{\perp}$, es decir, que subespacios los \mathcal{H} y \mathcal{H}^{\perp} son suplementarios cuando \mathcal{H} es de dimensión *finita*.

Teorema 11.6.4. Si $(\mathcal{V}, \langle \underline{\hspace{0.5cm}}, \underline{\hspace{0.5cm}})$ es un espacio pre-Hilbert y \mathcal{H} es un subespacio vectorial de \mathcal{V} de dimensión finita, entonces necesariamente $\mathcal{H}+\mathcal{H}^{\perp}=\mathcal{V}$. Por tanto si \mathcal{H} es de dimensión finita se cumple que $\mathcal{H}\oplus\mathcal{H}^{\perp}=\mathcal{V}$.

Demostración. Probar que $\mathcal{H} + \mathcal{H}^{\perp} = \mathcal{V}$ consiste en demostrar que para cualquier $\vec{v} \in \mathcal{V}$ existe $\vec{h} \in \mathcal{H}$ tal que $\vec{v} - \vec{h} \in \mathcal{H}^{\perp}$. Para ello razonamos por inducción sobre la dimensión de \mathcal{H} .

- Si dim(\mathcal{H}) = 0 entonces $\mathcal{H} = \{\vec{0}\}\$ y $\mathcal{H}^{\perp} = \mathcal{V}$, con lo que $\mathcal{H} + \mathcal{H}^{\perp} = \mathcal{V}$.
- Ahora supongamos que el resultado es cierto para subespacios de dimensión n y que $\dim(\mathcal{H}) = n + 1$. Sea entonces $[\vec{w}_1; \dots \vec{w}_n;]$ un sistema de n vectores linealmente independientes de \mathcal{H} y denotemos con \mathcal{W} al subespacio $\mathcal{L}([\vec{w}_1; \dots \vec{w}_n;])$. Obviamente $\dim(\mathcal{W}) = n$ y $\mathcal{W} \subset \mathcal{H}$; y como $\dim(\mathcal{H}) = n + 1$, existe $\vec{h} \in \mathcal{H} \mathcal{W}$ tal que $[\vec{w}_1; \dots \vec{w}_n; \vec{h};]$ es una base de \mathcal{H} . Por hipótesis de inducción sabemos que existe $\vec{h}_w \in \mathcal{W}$ tal que $\vec{h} \vec{h}_w \in \mathcal{W}^{\perp}$. Y como $\vec{h}_w \in \mathcal{L}([\vec{w}_1; \dots \vec{w}_n;])$ tendremos que también $[\vec{w}_1; \dots \vec{w}_n; \vec{h} \vec{h}_w;]$ es una base de \mathcal{H} . Denotemos pues con \vec{z} al vector $\vec{h} \vec{h}_w$.

Figura 11.6: Representación esquemática desde dos ángulos distintos. La W es un subespacio de dimensión n, el plano \mathcal{H} es un subespacio de dimensión n+1 que contiene a W, y el espacio vectorial ambiente \mathcal{V} (posiblemente de dimensión infinita) está representado por el espacio tridimensional (la figura derecha muestra la visión desde la vertical sobre \mathcal{H}).

Ahora tómenos $\vec{v} \in \mathcal{V}$. Por hipótesis de inducción existe $\vec{v}_w \in \mathcal{W}$ tal que $\vec{v} - \vec{v}_w$ pertenece a \mathcal{W}^{\perp} . Por tanto $\{\vec{v} - \vec{v}_w, \vec{z}\} \perp \{\vec{w}_1, \dots, \vec{w}_n\}$, con lo que para cualquier $\alpha \in \mathbb{R}$ se verifica que

$$\begin{cases}
\vec{v} - \vec{v}_w - \alpha \vec{z} & \perp \quad {\vec{w}_1, \dots, \vec{w}_n} \\
\vec{v}_w + \alpha \vec{z} & \in \quad \mathcal{H}
\end{cases}$$
(11.4)

Puesto que $\vec{z} \neq \vec{0}$ existe $\alpha_0 \in \mathbb{R}$ tal $\vec{v} - \vec{v}_w - \alpha_0 \vec{z} \perp \vec{z}$ ya que

$$\begin{array}{rcl} 0 & = & \left\langle \left(\overrightarrow{v} - \overrightarrow{v}_w - \alpha_0 \overrightarrow{z} \right), \overrightarrow{z} \right\rangle \\ & = & \left\langle \left(\overrightarrow{v} - \overrightarrow{v}_w \right), \overrightarrow{z} \right\rangle - \alpha_0 \left\| \overrightarrow{z} \right\|^2 \end{array} \right\} \quad \Leftrightarrow \quad \alpha_0 = \frac{\left\langle \left(\overrightarrow{v} - \overrightarrow{v}_w \right), \overrightarrow{z} \right\rangle}{\left\| \overrightarrow{z} \right\|^2}$$

Pero entonces, si denotamos con \vec{v}_h a $\vec{v}_w + \alpha_0 \vec{z}$ tendremos que $\vec{v}_h \in \mathcal{H}$ y $\vec{v} - \vec{v}_h \in \mathcal{H}^{\perp}$ ya que $\vec{v} - \vec{v}_h \perp \{\underbrace{\vec{w}_1, \dots, \vec{w}_n}_{\text{por (11.4)}}, \vec{z}\}.$

Un subespacio de dimensión infinita y su conjunto ortogonal no siempre son suplementarios

Figura 11.7: Representación esquemática. La recta W es un subespacio de dimensión n, el plano (el suelo) \mathcal{H} es un subespacio de dimensión n+1 que contiene a W, a $\mathcal{L}(\vec{z})$ y a $\mathcal{L}(\vec{z})$ (el único subespacio que con seguridad es de dimensión 1), y el espacio vectorial ambiente \mathcal{V} (posiblemente de dimensión infinita) está representado por el espacio tridimensional (si \mathcal{V} es de dimension infinita, entonces \mathcal{H}^{\perp} también).

Acabamos de ver que \mathcal{H} y \mathcal{H}^{\perp} son suplementarios cuando \mathcal{H} es de dimensión finita.

Pero \mathcal{H} y \mathcal{H}^{\perp} pueden no ser suplementarios cuando el subespacio \mathcal{H} es de dimensión infinita.^a En esta sección veremos un ejemplo.

Ejemplo 32. Considere el conjunto $\mathbb{R}[x]$ de sucesiones infinitas de números reales, que se hacen cero a partir de una posición. Este conjunto también es descrito como el conjunto de sucesiones infinitas de números reales con un número finito de componentes son distintas de cero; por lo que dicho conjunto también se llama conjunto de sucesiones casi nulas. Algunos elementos de dicho conjunto son:

$$\begin{split} a = & (1,0,0,0,0,0,0,0,\dots) \\ b = & (1,2,0,0,0,0,0,0,\dots) \\ c = & (3,2,1,0,0,0,0,0,\dots) \\ d = & (0,1,0,1,0,0,0,0,\dots) \\ e = & (1,2,3,4,5,0,0,0\dots) \end{split}$$

Definamos el producto escalar como la suma del producto entre componentes:

$$\langle _, _ \rangle : \mathbb{R}[x] \times \mathbb{R}[x] \to \mathbb{R}$$

$$(p,q) \to \sum_{i=0}^{\infty} p_i q_i$$

(como el producto punto pero con una suma infinita donde a partir de algún índice k los sumandos son cero).

Así, con las sucesiones infinitas anteriores tenemos que: $\langle a, b \rangle = 1$, $\langle c, d \rangle = 2$, y $\langle d, e \rangle = 6$.

Ahora consideremos el subespacio $\mathcal{H} \subset \mathbb{R}[x]$ de sucesiones cuyas componentes suman cero:

$$\mathcal{H} = \left\{ p \in \mathbb{R}[x] \mid \sum_{i} p_i = 0 \right\}.$$

(fíjese que ninguna de las sucesiones a, b, c, d y e pertenece a \mathcal{H})

^aAunque si \mathcal{H} es un subespacio cerrado de un espacio de Hilbert \mathcal{V} , entonces $\mathcal{V} = \mathcal{H} \oplus \mathcal{H}^{\perp}$ (independientemente de la dimensión de \mathcal{H}). En este caso \mathcal{H}^{\perp} se llama complemento ortogonal de \mathcal{V} ... pero esto queda fuera del ámbito del curso.

El conjunto ortogonal a \mathcal{H} es

$$\mathcal{H}^{\perp} = \left\{ p \in \mathbb{R}[x] \mid \langle p, q \rangle = 0 \text{ para todo } q \in \mathbb{R}[x] \right\}.$$

Así, los elementos de \mathcal{H}^{\perp} deben ser:

- perpendiculares a $(1, -1, 0, 0, 0, 0, \dots)$ así que $p_0 = p_1$.
- perpendiculares a (1, 1, -2, 0, 0, 0, ...) así que $p_0 + p_1 = 2p_2$ y por tanto $p_0 = p_1 = p_2$.
- perpendiculares a (1, 1, 1, -3, 0, 0...) así que $p_0 + p_1 + p_2 = 3p_3$ y por tanto $p_0 = p_1 = p_2 = p_3$.
- perpendiculares a (1, 1, 1, 1, -4, 0...) así que $p_0 + p_1 + p_2 + p_3 = 4p_4$ y por tanto $p_0 = p_1 = p_2 = p_3 = p_4$
- **...**

Por tanto, los elementos de \mathcal{H}^{\perp} son sucesiones infinitas cuyas componentes son todas iguales; pero como las sucesiones de $\mathbb{R}[x]$ son cero a partir de alguna posición, el único elemento posible de \mathcal{H}^{\perp} es la sucesión nula.

Consecuentemente, el subespacio $\mathcal{H} + \mathcal{H}^{\perp}$ no contiene ninguna de las sucesiones a, b, c, d y e; es decir, $\mathcal{H} + \mathcal{H}^{\perp}$ no es todo el espacio $\mathbb{R}[x]$. Así pues, \mathcal{H} y \mathcal{H}^{\perp} no son suplementarios.

Fíjese que el subespacio de dimensión infinita formado las sucesiones casi nulas $\mathbb{R}[x]$ resulta ser el conjunto de polinomios, aunque habitualmente se escriben de otra manera... en el caso de los del ejemplo:

$$a = (1, 0, 0, 0, 0, 0, 0, 0, \dots) = 1$$

$$b = (1, 2, 0, 0, 0, 0, 0, 0, \dots) = 1 + 2x$$

$$c = (3, 2, 1, 0, 0, 0, 0, 0, \dots) = 3 + 2x + x^{2}$$

$$d = (0, 1, 0, 1, 0, 0, 0, 0, \dots) = x + x^{3}$$

$$e = (1, 2, 3, 4, 5, 0, 0, 0, \dots) = 1 + 2x + 3x^{2} + 4x^{3} + 5x^{4}$$

así, el exponente de cada "x" indica la posición de su correspondiente coeficiente dentro de la sucesión; donde se asocia la primera posición al índice 0, es decir, puesto que $y^0 = 1$, entonces $ax^0 = (a, 0, 0, \dots)$.

Proyecciones sobre subespacios

12.1. Proyección ortogonal y mínima distancia

Definición 12.1. Llamamos proyección ortogonal sobre el subespacio $\mathcal{V} \subset \mathbb{R}^m$ a la función¹ $f(\mathbf{y})$ tal que la diferencia $\mathbf{y} - f(\mathbf{y})$ es ortogonal \mathcal{V} ; es decir, tal que $(\mathbf{y} - f(\mathbf{y})) \in \mathcal{V}^{\perp}$.

Para cada \boldsymbol{y} de \mathbb{R}^m , el vector $\boldsymbol{p_y} = f(\boldsymbol{y})$ de \mathcal{V} es la proyección ortogonal de \boldsymbol{y} sobre el subespacio $\mathcal{V} \subset \mathbb{R}^m$. Como $\mathbb{R}^m = \mathcal{V} \oplus \mathcal{V}^{\perp}$, sabemos que el vector $\boldsymbol{p_y} \in \mathcal{V}$ existe y es único (Proposición 11.4.1)².

Figura 12.1: Representación esquemática de la proyección ortogonal de y sobre $\mathcal V$

Fíjese que en la Figura 11.4 en la página 133, el vector $-\alpha \mathbf{a}$ es la proyección ortogonal de \mathbf{b} sobre $\mathcal{L}(\mathbf{a})$. Es decir, aún sin nombrar la proyección ortogonal, la hemos empleado implícitamente en la lección anterior.

Lo más interesante de p_y se afirma en la siguiente

Proposición 12.1.1. La proyección ortogonal de $y \in \mathbb{R}^m$ sobre $\mathcal{V} \subset \mathbb{R}^m$ es el vector de \mathcal{V} más próximo a y

 $\label{eq:definition} \textit{Demostración.} \text{ Sea } \boldsymbol{p_y} \text{ la proyección de } \boldsymbol{y} \text{ sobre } \mathcal{V} \text{ y tomemos un vector } \boldsymbol{v} \text{ cualquiera de } \mathcal{V}. \text{ Veamos que } \boldsymbol{y} \text{ está más lejos de } \boldsymbol{v} \text{ que de su proyección ortogonal } \boldsymbol{p_y}.$

Como v y p_y están en \mathcal{V} , su diferencia (p_y-x) está en \mathcal{V} (pues \mathcal{V} es subespacio); consecuentemente (p_y-x) es ortogonal a $(y-p_y)\in\mathcal{V}^\perp$ (por ser p_y la proyección ortogonal sobre \mathcal{V}). Y como la suma de ambos vectores perpendiculares es $(y-p_y)+(p_y-x)=(y-x)$, por el Tma. de Pitágoras concluímos que

$$\left\|oldsymbol{y}-oldsymbol{x}
ight\|^2 = \left\|oldsymbol{y}-oldsymbol{p_y}
ight\|^2 + \left\|oldsymbol{p_y}-oldsymbol{x}
ight\|^2 \geq \left\|oldsymbol{y}-oldsymbol{p_y}
ight\|^2.$$

Por tanto, $\boxed{\|y-x\| \geq \left\|y-p_y\right\|}$ para todo $x \in \mathcal{V}$.

¹Al ser un caso particular del apartado (b) del ejercicio 54 en la página 119, la función proyección es lineal.

²Por otra parte, el vector $y - f_{\mathsf{P}}(y)$ es la proyección ortogonal de y sobre \mathcal{V}^{\perp} .

12.2. Alternativa a un sistema de ecuaciones lineales sin solución

Imagine que tiene el siguiente sistema de ecuaciones

$$\mathbf{A}x = y$$
 donde $y \notin C(\mathbf{A})$.

Como ninguna combinación de las columnas de $\bf A$ es igual a y, no es posible encontrar una solución.

Pero podemos plantearnos el siguiente problema alternativo: ¿que combinación lineal de las columnas de **A** está más próxima a y? Es decir,

$$\mathbf{A}x = \mathbf{p}_{\boldsymbol{u}},$$

donde p_y es la proyección ortogonal de y sobre $\mathcal{C}(\mathbf{A})$. Este segundo problema siempre tiene solución, pues p_y existe y pertenece al subespacio $\mathcal{C}(\mathbf{A})$.

Figura 12.2: Representación esquemática de la descomposición ortogonal de un vector $\boldsymbol{y} \in \mathbb{R}^m$, en la forma $\boldsymbol{y} = \boldsymbol{p_y} + \boldsymbol{e}$, donde $\boldsymbol{p_y} \in \mathcal{C}\left(\mathbf{A}\right)$ y donde $\boldsymbol{e} = (\boldsymbol{y} - \boldsymbol{p_y}) \in \mathcal{N}\left(\mathbf{A}^\intercal\right)$ para una matriz \mathbf{A} de m filas.

Por la Proposición 11.4.1 sabemos que para toda matriz \mathbf{A} de m filas y un vector \mathbf{y} de \mathbb{R}^m , existen $\mathbf{p}_{\mathbf{y}} \in \mathcal{C}(\mathbf{A})$ y $\mathbf{e} \in \mathcal{N}(\mathbf{A}^{\mathsf{T}})$ tales que $\mathbf{y} = \mathbf{p}_{\mathbf{y}} + \mathbf{e}$. Pero ¿como encontrar dichos vectores $\mathbf{p}_{\mathbf{y}}$ y \mathbf{e} ? Veámoslo...

12.2.1. Sistema de ecuaciones normales

Para encontrar la proyección ortogonal p_y del vector y sobre $\mathcal{C}\left(\mathbf{A}\right)$ combinaremos lo que sabemos:

- ullet p_u es una combinación lineal de las columnas de $oldsymbol{\mathsf{A}}$, es decir, existe $x \in \mathbb{R}^n$ tal que $oldsymbol{\mathsf{A}} x = p_u$.
- p_{y} es la proyección ortogonal de y sobre $\mathcal{C}\left(\mathbf{A}\right)$, es decir $(y-p_{y})\in\mathcal{N}\left(\mathbf{A}^{\intercal}\right)$.

Así pues, una combinación lineal $\mathbf{A}x$ resulta ser \mathbf{p}_{y} , si y solo si $\mathbf{A}^{\mathsf{T}}(y-\mathbf{A}x)=\mathbf{A}^{\mathsf{T}}(y-\mathbf{p}_{y})=\mathbf{0}$:

$$\mathbf{A}\boldsymbol{x} = \boldsymbol{p}_{\boldsymbol{y}} \quad \Longleftrightarrow \quad \mathbf{A}^{\mathsf{T}}(\boldsymbol{y} - \mathbf{A}\boldsymbol{x}) \ = \ (\mathbf{A}^{\mathsf{T}})\,\boldsymbol{y} - \big(\mathbf{A}^{\mathsf{T}}\mathbf{A}\big)\boldsymbol{x} \ = \ \mathbf{0} \quad \Longleftrightarrow \quad \boxed{\big(\mathbf{A}^{\mathsf{T}}\mathbf{A}\big)\boldsymbol{x} = (\mathbf{A}^{\mathsf{T}})\,\boldsymbol{y}}. \tag{12.1}$$

El sistema de ecuaciones $(\mathbf{A}^{\mathsf{T}}\mathbf{A})x = (\mathbf{A}^{\mathsf{T}})y$ se denomina sistema de ecuaciones normales; y para obtener la proyección de y sobre $\mathcal{C}(\mathbf{A})$ basta multiplicar \mathbf{A} por cualquiera de las soluciones x de dicho sistema.

Lo llamativo es que para resolver $\mathbf{A}x = p_y$ (para encontrar la combinación lineal de las columnas de \mathbf{A} requerida) resolvemos un sistema diferente (el sistema de ecuaciones normales) en el que no aparece p_y . El motivo por el que este procedimiento indirecto funciona es que las soluciones del sistema de ecuaciones normales también son las soluciones del sistema $\mathbf{A}x = p_y$ (fíjese en las implicaciones "si y solo si" de (12.1)).

Cuando dos sistemas de ecuaciones lineales tienen el mismo conjunto de soluciones decimos que son sistemas de ecuaciones equivalentes.

Como el sistema de ecuaciones $\mathbf{A}x = \mathbf{p}_y$ tiene solución, ya que $\mathbf{p}_y \in \mathcal{C}(\mathbf{A})$, también sabemos que el sistema de ecuaciones normales tiene solución, pues ambos son sistemas de ecuaciones equivalentes.

Es más, por ser sistemas de ecuaciones equivalentes, ambos tienen solución única si y solo si las columnas de **A** son linealmente independientes.

Observación. Cuando la solución es única, ésta suele ser interpretada como "la mejor respuesta" al sistema de ecuaciones irresoluble

$$\mathbf{A}x = y$$
; donde $y \notin C(\mathbf{A})$;

pero recuerde que en realidad es la solución a un sistema de ecuaciones completamente distinto:

$$\mathbf{A}x = \mathbf{p}_{y}$$
; donde \mathbf{p}_{y} es la proyección ortogonal de \mathbf{y} sobre $\mathcal{C}(\mathbf{A})$.

12.3. Expresión matricial de la proyección ortogonal

Por último, vamos a encontrar una expresión matricial de la función proyección sobre un subespacio \mathcal{V} . Dicha expresión es la que se emplea en los manuales de estadística y econometría.

Como $\mathbf{A}x = p_y$ y $(\mathbf{A}^{\mathsf{T}}\mathbf{A})x = (\mathbf{A}^{\mathsf{T}})y$ son sistemas de ecuaciones lineales equivalentes, necesariamente sus matrices de coeficientes tienen el mismo espacio nulo $\mathcal{N}(\mathbf{A}) = \mathcal{N}(\mathbf{A}^{\mathsf{T}}\mathbf{A})$; y como ambas matrices tienen n columnas, también tienen el mismo rango.

Consecuentemente, si las n columnas de \mathbf{A} son linealmente independientes entonces la matriz cuadrada $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ es de rango completo (invertible) y la solución al sistema de ecuaciones normales $(\mathbf{A}^{\mathsf{T}}\mathbf{A})x = (\mathbf{A}^{\mathsf{T}})b$ es

$$\widehat{\boldsymbol{x}} = \left(\mathbf{A}^{\mathsf{T}} \mathbf{A} \right)^{\mathsf{-1}} \left(\mathbf{A}^{\mathsf{T}} \right) \boldsymbol{y}.$$

En tal caso el vector proyección de y sobre $\mathcal{C}(\mathbf{A})$ resulta ser

$$p_y = \mathbf{A}\widehat{x} = \mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}(\mathbf{A}^{\mathsf{T}})y;$$
 (12.2)

y por tanto el vector $proyecci\'{o}n$ de ${m y}$ sobre $\mathcal{N}\left({m A}^{\intercal}\right)$ es

$$\boldsymbol{y} - \boldsymbol{p_y} = \mathbf{I}\boldsymbol{y} - \mathbf{A}\widehat{\boldsymbol{x}} = \left(\mathbf{I} - \mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{^{-1}}\left(\mathbf{A}^{\mathsf{T}}\right)\right)\boldsymbol{y}.$$

12.3.1. Matrices proyección

Si \mathbf{A} es de rango completo por columnas y llamamos \mathbf{P} a la matriz $\mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}$ de la Ecuación 12.2, tenemos que

$$egin{aligned} oldsymbol{p_y} &= \mathbf{P} oldsymbol{y} & ext{es la proyección de } oldsymbol{y} & ext{sobre } \mathcal{C}\left(\mathbf{A}
ight) \ & es \ ext{la proyección de } oldsymbol{y} & ext{sobre } \mathcal{N}\left(\mathbf{A}^\intercal
ight) \end{aligned}$$

Tanto P como (I - P) poseen dos propiedades íntimamente relacionadas con la proyección ortogonal:

Ambas matrices son simétricas:

$$\mathbf{P}^{\mathsf{T}} \; = \; \left(\mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{^{-1}}\mathbf{A}^{\mathsf{T}}\right)^{\mathsf{T}} \; = \; \left(\mathbf{A}^{\mathsf{T}}\right)^{\mathsf{T}}\left(\left(\mathbf{A}^{\mathsf{T}}\mathbf{A}\right)^{^{-1}}\right)^{\mathsf{T}}\mathbf{A}^{\mathsf{T}} \; = \; \mathbf{A}\left(\mathbf{A}^{\mathsf{T}}\mathbf{A}\right)^{^{-1}}\mathbf{A}^{\mathsf{T}} \; = \; \mathbf{P},$$

pues la inversa de una matriz simétrica es simétrica: $((\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1})^{\mathsf{T}} = ((\mathbf{A}^{\mathsf{T}}\mathbf{A})^{\mathsf{T}})^{-1} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}$;

Ejercicio 68. Demuestre que también $(\mathbf{I} - \mathbf{P})^{\intercal} = \mathbf{I} - \mathbf{P}$.

Ambas matrices son idempotentes, es decir, son iguales a su cuadrado:

$$\mathbf{P}^2 \ = \ \mathbf{P}\mathbf{P} \ = \ \mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{^{-1}}\underbrace{\mathbf{A}^{\mathsf{T}}\mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{^{-1}}}_{\mathbf{I}}\mathbf{A}^{\mathsf{T}} \ = \ \mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{^{-1}}\mathbf{A}^{\mathsf{T}} = \mathbf{P}.$$

EJERCICIO 69. Demuestre que también $(\mathbf{I} - \mathbf{P})^2 = \mathbf{I} - \mathbf{P}$.

De hecho, en la Sección 12.4 se demuestra que si $\underset{m \times m}{\mathsf{B}}$ es sim'etrica e idempotente, entonces $f_{\mathsf{B}} \colon \mathbb{R}^m \to \mathcal{C}\left(\mathsf{B}\right)$ $y \to \mathsf{B}y$

es la función proyección ortogonal sobre el subespacio $\mathcal{C}(\mathbf{B})$. Por ello, las matrices simétricas e idempotentes se denominan *matrices proyección*. Así pues, \mathbf{P} y $(\mathbf{I} - \mathbf{P})$ son matrices proyección correspondientes a las respectivas proyecciones ortogonales sobre $\mathcal{C}(\mathbf{A})$ y $\mathcal{N}(\mathbf{A}^{\mathsf{T}})$ (véase el siguiente ejercicio).

EJERCICIO 70. Sea $P = A(A^TA)^{-1}A^T$ y sea M = I - P.

- (a) Demuestre que $\mathcal{C}(\mathbf{P}) = \mathcal{C}(\mathbf{A})$.
- (b) Demuestre que $\mathcal{C}(\mathbf{M}) = \mathcal{N}(\mathbf{A}^{\mathsf{T}})$.

Resumiendo, si las columnas de \mathbf{A} (de orden m por n) son una base de $\mathcal{C}(\mathbf{A})$ y si $\mathbf{P} = \mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}$, entonces la función proyección ortogonal sobre $\mathcal{C}(\mathbf{A})$ es:

$$f_{\mathsf{P}} \colon \mathbb{R}^m o \mathcal{C}\left(\mathsf{A}\right). \ y o \mathsf{P}y$$

Fíjese que como la proyección $f_{\mathsf{P}}(y)$ de y sobre $\mathcal{C}(\mathsf{A})$ pertenece a $\mathcal{C}(\mathsf{A})$, el vector de $\mathcal{C}(\mathsf{A})$ más próximo a $f_{\mathsf{P}}(y)$ resulta ser él mismo; es decir, $f_{\mathsf{P}}(f_{\mathsf{P}}(y)) = \mathsf{PP}y = \mathsf{P}y = f_{\mathsf{P}}(p)$.

12.4. Generalizaciones o visiones alternativas (★)

Hemos definido las proyecciones ortogonales sobre subespacios de \mathbb{R}^m ; también hemos visto que si las columnas de \mathbf{A} son linealmente independientes, podemos definir la matriz $sim\acute{e}trica$ e idempotente $\mathbf{P} = \mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}$. Entonces el producto $\mathbf{P}y$ es la proyección ortogonal de y sobre $\mathcal{C}(\mathbf{A})$. De manera similar, podemos definir la matriz $sim\acute{e}trica$ e idempotente ($\mathbf{I} - \mathbf{P}$). En este caso ($\mathbf{I} - \mathbf{P}$)y es la proyección ortogonal de y sobre el complemento ortogonal de $\mathcal{C}(\mathbf{A})$.

Aquí vamos a generalizar todo esto a subespacios abstractos. Para lograrlo, primero debemos definir propiedades "equivalentes" a la idempotencia y simetría de matrices, pero para funciones.

Funciones idempotentes

Definición 12.2. Una función $f: V \to V$ se dice que es idempotente si verifica:

$$f \circ f = f$$
,

es decir, para todo $x \in V$, f(f(x)) = f(x).

Dicho de otro modo, f es idempotente si

$$f(x) = x$$
 para todo $x \in imagen(f)$.

Fíjese que si $f_{\mathsf{A}}\colon \mathbb{R}^m \to \mathbb{R}^m$ es idempotente implica que A es idempotente, pues $x \to \mathsf{A} x$

$$f(f(x)) = f(x) \Leftrightarrow AAx = Ax.$$

Funciones autoadjuntas

La propiedad equivalente a la simetría tiene un nombre diferente en el caso de las funciones.

Definición 12.3. Una función $f: \mathcal{V} \to \mathcal{V}$, donde en \mathcal{V} hay definido un producto escalar $\langle _, _ \rangle$, se dice que es autoadjunta si verifica que

para todo
$$\vec{x}, \vec{y} \in \mathcal{V} \quad \langle \vec{x}, f(\vec{y}) \rangle = \langle f(\vec{x}), \vec{y} \rangle.$$

En particular, para \mathbb{R}^n con el producto punto, si $f_{\mathbf{A}}: \mathbb{R}^m \to \mathbb{R}^m$ es *autoadjunta*, entonces:

$$xAy = \langle x, Ay \rangle = \langle Ax, y \rangle = \langle y, Ax \rangle = yAx;$$

de donde se deduce que **A** es necesariamente simétrica, pues si $x = {}_{i|} \mathbf{I} = \mathbf{I}_{|i|}$ e $y = \mathbf{I}_{|j|} = {}_{j|} \mathbf{I}$,

$$_{i|}\mathbf{A}_{|j} = {}_{i|}\mathbf{IAI}_{|j} = {}_{j|}\mathbf{IAI}_{|i} = {}_{j|}\mathbf{A}_{|i}.$$

El recíproco también es cierto:

EJERCICIO 71. Demuestre que si **A** es simétrica, entonces $f_{\mathbf{A}}: \mathbb{R}^m \to \mathbb{R}^m$ es autoadjunta.

$$oldsymbol{x}
ightarrow \mathbf{A} oldsymbol{x}$$

12.4.1. Proyección ortogonal

Vayamos ahora con las funciones proyección ortogonal en espacios pre-Hilbert abstractos.

Definición 12.4. Sea $(\mathcal{V}, \langle \underline{\ }, \underline{\ } \rangle)$ un espacio pre-Hilbert. Llamamos proyección ortogonal a toda función $f \colon \mathcal{V} \to \mathcal{V}$ que es idempotente y autoadjunta

$$f \colon \mathcal{V} \to \mathcal{V}$$
 $y \begin{cases} f \circ f = f \\ \langle \overrightarrow{x}, f(\overrightarrow{y}) \rangle = \langle f(\overrightarrow{x}), \overrightarrow{y} \rangle \end{cases}$ para todo $\overrightarrow{x}, \overrightarrow{y} \in \mathcal{V}$.

(contrariamente a lo que ocurre con la Definición 12.1, aquí no se requiere especificar el subespacio sobre el que se proyecta; dicho espacio es la imagen de la función f. Además, f es lineal como se prueba en el siguiente ejercicio).

EJERCICIO 72. (**Opcional**) Sea un espacio pre-Hilbert $(\mathcal{V}, \langle \underline{\hspace{0.5cm}}, \underline{\hspace{0.5cm}} \rangle)$ y sea una función $f \colon \mathcal{V} \to \mathcal{V}$ tal que $f \circ f = f$ (idempotente) y $\forall \overrightarrow{u}, \overrightarrow{v} \in \mathcal{V}, \langle f(\overrightarrow{u}), \overrightarrow{v} \rangle = \langle \overrightarrow{u}, f(\overrightarrow{v}) \rangle$ (autoadjunta).

- (a) Demuestre que $\langle f(\vec{u}), f(\vec{w}) \rangle = \langle f(\vec{u}), \vec{w} \rangle$.
- (b) Demuestre que f es lineal.

Proposición 12.4.1. $f: \mathcal{V} \to \mathcal{V}$ es una proyección ortogonal (es decir, idempotente y autoadjunta) si y solo si

para todo
$$\overrightarrow{h} \in \mathcal{V}$$
 y todo $\overrightarrow{y} \in imagen(f)$ se verifica que $\left\langle \overrightarrow{h} - f(\overrightarrow{h}), \overrightarrow{y} \right\rangle = 0$.

Demostración. Empecemos por demostrar que:

f es proyección ortogonal $\Rightarrow \left\langle \overrightarrow{h} - f(\overrightarrow{h}), \overrightarrow{y} \right\rangle = 0$ para todo $\overrightarrow{h} \in \mathcal{V}$ y todo $\overrightarrow{y} \in imagen(f)$

$$\begin{split} \left\langle \overrightarrow{h} - f(\overrightarrow{h}), \ \overrightarrow{y} \right\rangle &= \left\langle \overrightarrow{h}, \ \overrightarrow{y} \right\rangle - \left\langle f(\overrightarrow{h}), \ \overrightarrow{y} \right\rangle \\ &= \left\langle \overrightarrow{h}, \ \overrightarrow{y} \right\rangle - \left\langle \overrightarrow{h}, f(\overrightarrow{y}) \right\rangle \\ &= \left\langle \overrightarrow{h}, \ \overrightarrow{y} - f(\overrightarrow{y}) \right\rangle \end{split} \qquad \text{por ser } f \text{ autoadjunta}$$

y como $\overrightarrow{y} \in imagen(f)$ sabemos que $\overrightarrow{y} = f(\overrightarrow{z})$ para algún $\overrightarrow{z} \in \mathcal{V}$

Ahora demostremos que

 $\langle \vec{h} - f(\vec{h}), \vec{y} \rangle = 0$ para todo $\vec{h} \in \mathcal{V}$ y todo $\vec{y} \in imagen(f) \Rightarrow f$ es proyección ortogonal

Demostremos que si $\langle \vec{h} - f(\vec{h}), \vec{y} \rangle = 0$ para todo $\vec{h} \in \mathcal{V}$ y todo $\vec{y} \in imagen(f)$ entonces f es idempotente y autoadjunta.

Vamos a demostrar que $f(\vec{p}) = \vec{p}$ para todo $p \in imagen(f)$, y que por tanto f es idempotente. Reemplazando en la hipótesis la variable \vec{h} por un vector $\vec{p} \in imagen(f)$, tenemos $\langle \vec{p} - f(\vec{p}), \vec{y} \rangle = 0$ para todo $\vec{y} \in imagen(f)$, en particular también para $\vec{y} = \vec{p} - f(\vec{p})$:

$$\langle \vec{p} - f(\vec{p}), \vec{p} - f(\vec{p}) \rangle = 0,$$

ya que $(\vec{p}-f(\vec{p})) \in imagen(f)$, pues imagen(f) es subespacio por ser f lineal, y \vec{p} , $f(\vec{p}) \in imagen(f)$. Por tanto $\vec{p}-f(\vec{p})=\vec{0}$, es decir, $f(\vec{p})=\vec{p}$; consecuentemente f es idempotente.

■ Por un lado tenemos que

$$\begin{split} \langle \overrightarrow{v} - f(\overrightarrow{v}) \,,\, \overrightarrow{w} - f(\overrightarrow{w}) \rangle &= \langle \overrightarrow{v} \,,\, \overrightarrow{w} - f(\overrightarrow{w}) \rangle - \underbrace{\langle f(\overrightarrow{v}) \,,\, \overrightarrow{w} - f(\overrightarrow{w}) \rangle}_{=0} \qquad \text{pues } f(\overrightarrow{v}) \in imagen(f) \\ &= \langle \overrightarrow{v} \,,\, \overrightarrow{w} \rangle - \langle \overrightarrow{v} \,,\, f(\overrightarrow{w}) \rangle \end{split}$$

por otro lado

$$\begin{split} \langle \overrightarrow{v} - f(\overrightarrow{v}) \,,\, \overrightarrow{w} - f(\overrightarrow{w}) \rangle \,; &= \langle \overrightarrow{v} - f(\overrightarrow{v}) \,,\, \overrightarrow{w} \rangle - \underbrace{\langle \overrightarrow{v} - f(\overrightarrow{v}) \,,\, f(\overrightarrow{w}) \rangle}_{=0} \qquad \text{pues } f(\overrightarrow{w}) \in imagen(f) \\ &= \langle \overrightarrow{v} \,,\, \overrightarrow{w} \rangle - \langle f(\overrightarrow{v}) \,,\, \overrightarrow{w} \rangle \,. \end{split}$$

Así que necesariamente $\langle \vec{v}, f(\vec{w}) \rangle = \langle f(\vec{v}), \vec{w} \rangle$; es decir, f es autoadjunta.

Conocemos una condición suficiente para asegurar que existe la proyección ortogonal sobre $\mathcal{H},$ Veámoslo...

Por la Proposición 10.1.4 en la página 119, sabemos que si el subespacio $\mathcal{H} \subset \mathcal{V}$ y su conjunto ortogonal \mathcal{H}^{\perp} son suplementarios, entonces para todo $\vec{v} \in \mathcal{V}$ existe una descomposición única $\vec{v} = \vec{h} + \vec{c}$ con $\vec{h} \in \mathcal{H}$ y $\vec{c} \in \mathcal{H}^{\perp}$. Es decir, si $\mathcal{V} = \mathcal{H} \oplus \mathcal{H}^{\perp}$ entonces existe proyección ortogonal tanto sobre \mathcal{H} como sobre \mathcal{H}^{\perp} .

Así pues, por el Teorema 11.6.4 sabemos que si $\mathcal{H} \subset (\mathcal{V}, \langle \underline{\ }, \underline{\ } \rangle)$ es un subespacio de dimensión *finita* entonces $\mathcal{V} = \mathcal{H} \oplus \mathcal{H}^{\perp}$ y por tanto existe proyección ortogonal sobre \mathcal{H} y sobre \mathcal{H}^{\perp} .

13

Veamos ahora que, en el caso de que exista la función proyección ortogonal de $\vec{y} \in \mathcal{V}$ sobre $\mathcal{H} \subset \mathcal{V}$, la proyección del vector \vec{y} es el vector de \mathcal{H} "más próximo" a \vec{y} .

Después, y para finalizar la lección, veremos un ejemplo de subespacio de dimensión *infinita* en el que no existe la función proyección ortogonal, pues no existe el vector "más proximo" a uno dado.

EJERCICIO 73. Demuestre la siguiente proposición:

Proposición 12.4.2. Sea $(\mathcal{V}, \langle \underline{\hspace{0.5cm}}, \underline{\hspace{0.5cm}})$ un espacio pre-Hilbert. En el caso de que exista la proyección ortogonal de $\vec{y} \in \mathcal{V}$ sobre $\mathcal{H} \subset \mathcal{V}$, dicha proyección de \vec{y} es el vector de \mathcal{H} más próximo a \vec{y} .

Sobre algunos subespacios de dimensión infinita no existe la proyección ortogonal

Hay subespacios \mathcal{H} de dimensión infinita en espacios pre-Hilbert \mathcal{V} donde no hay función proyección ortogonal... es decir, donde no existe "el vector más próximo" en \mathcal{H} a un vector $\vec{y} \in \mathcal{V}$ dado.

Un ejemplo son las sucesiones casi nulas $\mathbb{R}[x]$ de la Página 144 y el subespacio $\mathcal{H} \subset \mathbb{R}[x]$ de sucesiones cuyas componentes suman cero:

$$\mathcal{H} = \left\{ p \in \mathbb{R}[x] \mid \sum_{i} p_{i} = 0 \right\}.$$

Es fácil ver que aunque podemos aproximarnos tanto como queramos al vector $\vec{a} = (1, 0, 0, 0, 0, 0, 0, 0, 0, \dots)$ con vectores del subespacio \mathcal{H} , no existe un vector en \mathcal{H} de que sea "el más próximo" a \vec{a} .

Para $\vec{b} = (1, -1, 0, 0, 0, 0, 0, 0, \dots)$ tenemos que

$$d(\vec{a}, \vec{b}) = \left\| \vec{a} - \vec{b} \right\|^2 = \left\| (0, -1, 0, 0, 0, 0, 0, 0, \dots) \right\|^2 = (-1)^2 = 1.$$

Para $\overrightarrow{c} = \left(1, -\frac{1}{2}, -\frac{1}{2}, 0, 0, 0, 0, 0, \dots\right)$ tenemos que

$$d(\overrightarrow{a},\overrightarrow{c}) = \|\overrightarrow{a} - \overrightarrow{c}\|^2 = \left\| \left(0, -\frac{1}{2}, -\frac{1}{2}, 0, 0, 0, 0, 0, \dots \right) \right\|^2 = \frac{1}{2^2} + \frac{1}{2^2} = \frac{1}{2}.$$

Para $\vec{d} = (1, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}, 0, 0, 0, 0, \dots)$ tenemos que

$$d(\vec{a}, \vec{d}) = \left\| \vec{a} - \vec{d} \right\|^2 = \left\| \left(0, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}, 0, 0, 0, 0, \dots \right) \right\|^2 = \frac{1}{3^2} + \frac{1}{3^2} + \frac{1}{3^2} = \frac{1}{3}.$$

Para $\overrightarrow{e} = (1, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, 0, 0, 0 \dots)$ tenemos que

$$d(\overrightarrow{a},\overrightarrow{e}) = \|\overrightarrow{a} - \overrightarrow{e}\|^2 = \left\| \left(0, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, 0, 0, 0 \ldots \right) \right\|^2 = \frac{1}{4^2} + \frac{1}{4^2} + \frac{1}{4^2} + \frac{1}{4^2} = \frac{1}{4}.$$

y en general para $\overrightarrow{z}=\left(1,\underbrace{-\frac{1}{n},-\frac{1}{n},\ldots,-\frac{1}{n}},0\ldots\right)$ tenemos que n componentes

$$d(\overrightarrow{a}, \overrightarrow{z}) = \|\overrightarrow{a} - \overrightarrow{z}\|^2 = \|\left(0, \underbrace{-\frac{1}{n}, -\frac{1}{n}, \dots, -\frac{1}{n}}_{n \text{ components}}, 0 \dots\right)\|^2 = \frac{1}{n}.$$

Es decir, podemos aproximarnos al vector \vec{a} tanto como queramos. Sin embargo, la distancia nunca puede ser cero, pues $d(\vec{a}, \vec{z}) = 0 \Rightarrow \vec{a} = \vec{z}$, y esto es imposible, pues entonces \vec{a} pertenecería a \mathcal{H} , algo que no puede ocurrir puesto que sus componentes no suman cero.

Como no existe el vector \vec{z} más proximo a \vec{a} en \mathcal{H} , no existe la proyección ortogonal sobre \mathcal{H} .

Ejercicios

EJERCICIO 74. Sean $\mathbf{P} = \mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}$ y $\mathbf{M} = \mathbf{I} - \mathbf{P}$, con \mathbf{A} de orden m por n y rango n.

- (a) Demuestre que para todo $y \in \mathbb{R}^m$, la diferencia y Py es perpendicular a $\mathcal{C}(A)$.
- (b) Demuestre que f_{P} actúa como la función identidad con todo $y \in \mathcal{C}(\mathsf{A})$.
- (c) Demuestre que $f_{\mathbf{P}}$ actúa como la función nula con todo $\mathbf{y} \in \mathcal{N}(\mathbf{A}^{\mathsf{T}})$.
- (d) Demuestre que $f_{\mathsf{M}} : \mathbb{R}^m \to \mathcal{N}\left(\mathsf{A}^{\mathsf{T}}\right)$ es la función proyección ortogonal sobre $\mathcal{N}\left(\mathsf{A}^{\mathsf{T}}\right)$. $\mathbf{y} \to \mathsf{M}\mathbf{y}$

Pista. Fíjese en que $f_{\mathsf{M}}(y) = \mathsf{M}y = (\mathsf{I} - \mathsf{P})y = y - \mathsf{P}y = y - f_{\mathsf{P}}(y)$ y también en que $\mathcal{N}(\mathsf{A}^{\mathsf{T}})^{\perp} = \mathcal{C}(\mathsf{A})$.

(e) Demuestre también que $f_{\mathbf{M}}$ actúa como la función identidad con todo $\mathbf{y} \in \mathcal{N}\left(\mathbf{A}^{\mathsf{T}}\right)$ y que actúa como la función nula con todo $\mathbf{y} \in \mathcal{C}\left(\mathbf{A}\right)$.

Aquí hemos explotado la equivalencia de dos sistemas de ecuaciones y la definición de proyección ortogonal. En otros manuales se sigue un argumento distinto que básicamente consiste en demostrar las siguientes proposiciones (que propongo como ejercicio opcional, pues son resultados que ya las hemos visto más arriba).

EJERCICIO 75. (Opcional) Demuestre las siguientes proposiciones:

- (a) Proposición 12.4.3. $\mathcal{N}(\mathbf{A}) = \mathcal{N}(\mathbf{A}^{\mathsf{T}}\mathbf{A})$.
- (b) Corolario 12.4.4. El rango de A^TA es igual al rango de A.
- (c) Proposición 12.4.5. El sistema de ecuaciones normales $(\mathbf{A}^{\mathsf{T}}\mathbf{A})x = (\mathbf{A}^{\mathsf{T}})y$ tiene solución. Pista. Compruebe que la matriz de coeficientes y la matriz ampliada tienen el mismo rango.

Visión geométrica de la Estadística

Una característica esencial de la estadística y la probabilidad es que los subespacios en los que se opera siempre incluyen el vector constante "uno"¹, y que los productos escalares que se emplean (Sección 11.6.1) son tales que *la norma del vector constante "uno" es* 1.²

Fíjese que esto no ocurre con el producto punto, pues:

$$\|\mathbf{1}\|^2 = \langle \mathbf{1}, \mathbf{1} \rangle = \mathbf{1} \cdot \mathbf{1} = \sum_{i=1}^m (\mathbf{1}_{|i})(\mathbf{1}_{|i}) = \sum_{i=1}^m 1 = m \quad \Rightarrow \quad \|\mathbf{1}\| = \sqrt{m}.$$

13.1. Producto escalar en estadística descriptiva

Cuando en estadística descriptiva se trabaja con listas de m datos numéricos se está operando en \mathbb{R}^m . Consecuentemente es necesario un producto escalar tal que el vector constante $\mathbf{1} \in \mathbb{R}^m$ tenga longitud 1. El producto escalar más empleado en estadística es³

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle_s = \frac{1}{m} (\boldsymbol{x} \cdot \boldsymbol{y})$$
 (13.1)

(Fíjese que pongo un subíndice "s" para indicar que nos referimos al producto escalar usado en estadística).

Con este producto escalar el cuadrado de la norma de un vector \boldsymbol{x} es

$$\|\boldsymbol{x}\|^2 = \frac{1}{m}(\boldsymbol{x} \cdot \boldsymbol{x});$$

que arroja el resultado deseado, pues independientemente del número m de componentes del vector 1 tenemos:

$$\|\mathbf{1}\|^2 = \frac{1}{m}(\mathbf{1} \cdot \mathbf{1}) = \frac{1}{m} \sum_{i=1}^{m} 1 = 1; \quad \Rightarrow \quad \|\mathbf{1}\| = \sqrt{1} = 1.$$
 (13.2)

En esta lección, si no se indica lo contrario, al referirnos a "la norma de un vector \boldsymbol{x} ", siempre será la norma correspondiente al producto escalar $\langle _, _ \rangle_s$ de la Ecuación 13.1.

Fíjese además en que si dos vectores de \mathbb{R}^m son perpendiculares con el producto punto, entonces también son perpendiculares con el producto escalar, $\langle _, _ \rangle_s$

$$\boldsymbol{x} \cdot \boldsymbol{y} = 0 \quad \Leftrightarrow \quad \frac{1}{m} (\boldsymbol{x} \cdot \boldsymbol{y}) = 0.$$

¹en \mathbb{R}^m es el vector 1, es decir, aquel cuyas componentes son todas iguales a 1; en el espacio de las variables aleatorias \mathbb{R}^{Ω} , es la variable aleatoria constante 1, es decir, aquella que para todo suceso elemental $w \in \Omega$ toma el valor 1.

²En probabilidad el producto escalar es la esperanza del producto de variables aleatorias, que asegura que cualquier variable aleatoria igual a la variable aleatoria constante uno (salvo en un conjunto de sucesos de probabilidad cero) tiene un valor esperado igual a uno.

³(véase el *Ejemplo* 27 en la página 140)

13.2. La media aritmética

Hay dos formas de ver la media aritmética.

La media aritmética μ_y es el producto escalar de y con el vector constante 1

La media aritmética, μ_y , del vector y de \mathbb{R}^m es el producto escalar, $\langle y, 1 \rangle_s$:

$$\mu_{\boldsymbol{y}} = \langle \boldsymbol{y}, \boldsymbol{1} \rangle_s = \frac{1}{m} (\boldsymbol{1} \cdot \boldsymbol{y}), \quad \text{es decir}, \quad \mu_{\boldsymbol{y}} = \frac{1}{m} \sum_i y_i.$$
 (13.3)

La media aritmética μ_y es la longitud de la proyección ortogonal de y sobre $\mathcal{L}([1;])$

Denotaremos con \overline{y} a la proyección de $y \in \mathbb{R}^m$ sobre la recta de vectores constante $\mathcal{L}(\lceil \mathbf{1}; \rceil) \subset \mathbb{R}^m$.

Por tanto, el vector $\overline{\boldsymbol{y}}$ satisface dos condiciones:

- \overline{y} es necesariamente un múltiplo de 1, es decir, es de forma $\overline{y} = 1\hat{a}$,
- \blacksquare la diferencia $(y-\overline{y})$ es perpendicular a ${\bf 1},$ es decir, $\frac{1}{m}(y-\overline{y})\cdot {\bf 1}=0$.

Combinando ambas condiciones tenemos

$$\overline{\boldsymbol{y}} = \widehat{a} \boldsymbol{1} \quad \Longleftrightarrow \quad \frac{1}{m} (\boldsymbol{y} - \boldsymbol{1} \widehat{a}) \cdot \boldsymbol{1} = 0 \quad \Longleftrightarrow \quad \frac{1}{m} (\boldsymbol{y} \cdot \boldsymbol{1}) - \frac{1}{m} (\boldsymbol{1} \cdot \boldsymbol{1}) \widehat{a} = 0;$$

y puesto que $\frac{1}{m}(\mathbf{1} \cdot \mathbf{1}) = \|\mathbf{1}\| = 1$, concluimos que $\widehat{a} = \frac{1}{m}(\mathbf{y} \cdot \mathbf{1}) = \mu_{\mathbf{y}}$. Es decir, la media aritmética $\mu_{\mathbf{y}}$ es el valor por el que hay que multiplicar el vector $\mathbf{1}$ para lograr el vector constante más próximo a \mathbf{y} .

Así pues, llamaremos vector de medias de
$$\boldsymbol{y}$$
 a la proyección: $\overline{\boldsymbol{y}} = \mu_{\boldsymbol{y}} \boldsymbol{1} = \mu_{\boldsymbol{y}} \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} \mu_{\boldsymbol{y}} \\ \mu_{\boldsymbol{y}} \\ \vdots \\ \mu_{\boldsymbol{y}} \end{pmatrix}$.

Como el vector de medias $\overline{\boldsymbol{y}}$ es el resultado de multiplicar el vector unitario $\boldsymbol{1}$ por el escalar $\mu_{\boldsymbol{y}}$, concluimos que la media aritmética, $\mu_{\boldsymbol{y}}$, es la longitud de la proyección $\overline{\boldsymbol{y}}$.

Figura 13.1: Representaciones esquemáticas de la proyección de y sobre el subespacio de vectores constantes (izquierda); y de la proyección de los vectores v y x sobre el subespacio de vectores constantes (derecha).

Además, como la proyección ortogonal del vector de medias $\overline{y} \in \mathcal{L}([1;])$ sobre el subespacio de vectores constantes $\mathcal{L}([1;])$ es el propio vector \overline{y} , cuya longitud es μ_y , concluimos que:

Proposición 13.2.1. Las medias del vector y y del vector \overline{y} son iguales.

Consecuentemente $\frac{1}{m}(\mathbf{1} \cdot \mathbf{y}) = \mu_{\mathbf{y}} = \frac{1}{m}(\mathbf{1} \cdot \overline{\mathbf{y}})$, así que necesariamente

Proposición 13.2.2. Los productos punto $(1 \cdot \overline{y})$ y $(1 \cdot y)$ son iguales.

Y como $(y - \overline{y})$ es perpendicular a 1, por ser \overline{y} la proyección ortogonal de y sobre $\mathcal{L}([1;])$, tenemos que

$$\frac{1}{m}(\mathbf{1}\cdot(\boldsymbol{y}-\overline{\boldsymbol{y}})) = \frac{1}{m}\sum_{i}(y_i-\mu_{\boldsymbol{y}}) = 0;$$

así, denominando a $(y - \overline{y})$ como el vector de desviaciones de y respecto a su valor medio, hemos llegado al conocido resultado de que "la media aritmética de las desviaciones de y respecto a su valor medio es cero".

13.3. La desviación típica y la varianza

La desviación típica es la longitud de la componente ortogonal a \overline{y}

Sabemos que la longitud de \overline{y} (la proyección de y sobre los múltiplos de 1) es la media aritmética de y

$$\|\overline{\boldsymbol{y}}\| = \mu_{\boldsymbol{y}}.$$

Pues bien, la longitud de la componente de y ortogonal a $\mathbf{1}$ (el vector $(y - \overline{y})$ de la Figura 13.1) se denomina desviación típica de y; que denotaremos con σ_y :

$$\|\boldsymbol{y} - \overline{\boldsymbol{y}}\| = \sigma_{\boldsymbol{y}}.$$

EJERCICIO 76. Demuestre la siguiente

Proposición 13.3.1. Sumar a y un vector constante (no nulo) cambia la media pero no la desviación típica.

Pista. Véase la Figura 13.2.

Figura 13.2: Sumar un vector constante no nulo, a1, cambia la media pero no la desviación típica.

La varianza y el Teorema de Pitágoras

El cuadrado de la desviación típica, $\sigma_{m{y}}^2$ (el cuadrado de la longitud del vector $m{y}-\overline{m{y}}$) se llama varianza.

$$\sigma_{\boldsymbol{y}}^2 = \|\boldsymbol{y} - \overline{\boldsymbol{y}}\|^2 = \frac{1}{m}(\boldsymbol{y} - \overline{\boldsymbol{y}}) \cdot (\boldsymbol{y} - \overline{\boldsymbol{y}}), \quad \text{es decir}, \quad \sigma_{\boldsymbol{y}}^2 = \frac{1}{m} \sum_i (y_i - \mu_{\boldsymbol{y}})^2.$$

Como consecuencia de la Proposición 13.3.1, la varianza no cambia al sumar un vector constante.

Puesto que \overline{y} es perpendicular a $(y - \overline{y})$, por el Teorema de Pitágoras, sabemos que $\|y\|^2 = \|\overline{y}\|^2 + \|y - \overline{y}\|^2$; así que despejando $\|y - \overline{y}\|^2$ obtenemos otra expresión para la varianza de y

$$\sigma_{\boldsymbol{y}}^2 = \|\boldsymbol{y} - \overline{\boldsymbol{y}}\|^2 = \|\boldsymbol{y}\|^2 - \|\overline{\boldsymbol{y}}\|^2 = \frac{1}{m}(\boldsymbol{y} \cdot \boldsymbol{y}) - \mu_{\boldsymbol{y}}^2, \quad \text{es decir}, \quad \sigma_{\boldsymbol{y}}^2 = \frac{\sum_i y_i^2}{m} - \mu_{\boldsymbol{y}}^2.$$

La siguiente propiedad de los vectores ortogonales a 1 permite obtener otra expresión más para la varianza.

EJERCICIO 77. Demuestre la siguiente

Proposición 13.3.2. Sea z un vector perpendicular a 1, y sea x otro vector de \mathbb{R}^m , entonces

para todo
$$a \in \mathbb{R}$$
, $z \cdot (x - a\mathbf{1}) = z \cdot x$.

Así, como $(y - \overline{y})$ es perpendicular a 1 llegamos a otra expresión para la varianza: $\sigma_y^2 = \frac{1}{m}(y - \overline{y}) \cdot y$.

13.4. Covarianza y correlación

La *covarianza muestral* entre x e y es el producto escalar entre las proyecciones $(x - \overline{x})$ y $(y - \overline{y})$:

$$\sigma_{xy} = \frac{1}{m}(x - \overline{x}) \cdot (y - \overline{y});$$

que por la Proposición 13.3.2, podemos escribir como $\sigma_{xy} = \frac{1}{m} x \cdot (y - \overline{y})$ ó como $\sigma_{xy} = \frac{1}{m} y \cdot (x - \overline{x})$.

Ejercicio 78. Demuestre la siguiente proposición:

Proposición 13.4.1. Sean x e y vectores de \mathbb{R}^m , entonces

$$\sigma_{\boldsymbol{x}\boldsymbol{y}} = \frac{1}{m}\boldsymbol{x} \cdot \boldsymbol{y} - \mu_{\boldsymbol{x}}\mu_{\boldsymbol{y}}.$$

Fíjese que la varianza es un caso particular en el que x = y, es decir, $\sigma_{yy} = \sigma_y^2$.

Se denomina coeficiente de correlación lineal entre x e y al coseno del ángulo formado por las proyecciones $(x - \overline{x})$ y $(y - \overline{y})$:

$$\rho_{\boldsymbol{x}\boldsymbol{y}} \; = \; \frac{\left\langle \left(\boldsymbol{x} - \overline{\boldsymbol{x}}\right), \, \left(\boldsymbol{y} - \overline{\boldsymbol{y}}\right)\right\rangle_{s}}{\left\|\left(\boldsymbol{x} - \overline{\boldsymbol{x}}\right)\right\| \cdot \left\|\left(\boldsymbol{y} - \overline{\boldsymbol{y}}\right)\right\|} \; = \; \frac{\frac{1}{m}(\boldsymbol{x} - \overline{\boldsymbol{x}}) \cdot \left(\boldsymbol{y} - \overline{\boldsymbol{y}}\right)}{\left\|\left(\boldsymbol{x} - \overline{\boldsymbol{x}}\right)\right\| \cdot \left\|\left(\boldsymbol{y} - \overline{\boldsymbol{y}}\right)\right\|} \; = \; \frac{\sigma_{\boldsymbol{x}\boldsymbol{y}}}{\sqrt{\sigma_{\boldsymbol{x}}\sigma_{\boldsymbol{y}}}}.$$

Figura 13.3: Visión desde dos perspectivas distintas de la parte derecha de la Figura 13.1 con la representación del ángulo θ cuyo coseno es la correlación entre los vectores \boldsymbol{v} y \boldsymbol{x} .

Como la correlación es el coseno de un ángulo, su valor siempre toma valores entre -1 y 1 (véase las secciones 11.3 y 11.6.2). Si dos vectores tienen correlación cero, significa que sus correspondientes componentes perpendiculares a 1 son ortogonales entre si.

13.5. Regresión lineal o ajuste MCO

Consideremos ahora la proyección sobre el espacio columna de una matriz X, de orden m por n, tal que $\mathcal{C}(X)$ contiene el subespacio de vectores constantes $\mathcal{L}([1;])$. En este contexto, las columnas de X se denominan regresores y la matriz X se llama matriz de regresores.

Denotaremos con \hat{y} a la proyección de $y \in \mathbb{R}^m$ sobre el espacio columna de la matriz de regresores. El vector \hat{y} satisface dos condiciones:

- \hat{y} es combinación lineal de las columnas de la matriz de regresores X, es decir, es de forma $\hat{y} = X\hat{\beta}$,
- por ser la proyección ortogonal, $(y \hat{y})$ es perpendicular a $\mathcal{C}(X)$, es decir, $\frac{1}{m}X^{\mathsf{T}}(y \hat{y}) = 0$.

Combinando ambas condiciones tenemos

$$\widehat{\boldsymbol{y}} = \mathbf{X}\widehat{\boldsymbol{\beta}} \quad \Longleftrightarrow \quad \frac{1}{m}\mathbf{X}^{\mathsf{T}}(\boldsymbol{y} - \mathbf{X}\widehat{\boldsymbol{\beta}}) = \mathbf{0} \quad \Longleftrightarrow \quad \frac{1}{m}(\mathbf{X}^{\mathsf{T}})\,\boldsymbol{y} - \frac{1}{m}\mathbf{X}^{\mathsf{T}}\mathbf{X}\widehat{\boldsymbol{\beta}} = \mathbf{0}.$$

Así llegamos a las ecuaciones normales ⁴

$$\frac{1}{m} \mathbf{X}^{\mathsf{T}} \mathbf{X} \widehat{\boldsymbol{\beta}} = \frac{1}{m} \left(\mathbf{X}^{\mathsf{T}} \right) \boldsymbol{y}. \tag{13.4}$$

El vector \hat{y} es la combinación lineal de los regresores más próxima a y; por tanto es el vector $\hat{y} \in \mathcal{C}(X)$ tal que la distancia al cuadrado $\|y - \hat{y}\|^2$ es mínima:

$$\|\boldsymbol{y} - \widehat{\boldsymbol{y}}\|^2 = \frac{1}{m}(\boldsymbol{y} - \widehat{\boldsymbol{y}}) \cdot (\boldsymbol{y} - \widehat{\boldsymbol{y}}) = \frac{1}{m} \sum_{i} (y_i - \widehat{y}_i)^2,$$
(13.5)

donde cada sumando $(y_i - \widehat{y_i})$ se denomina error de ajuste de la correspondiente componente iésima. Es decir, \widehat{y} minimiza la suma del cuadrado de los errores de ajuste. Por ello, la proyección de y sobre $\mathcal{C}(X)$ se llama ajuste por mínimos cuadrados ordinarios o por sus siglas, ajuste MCO.

13.5.1. Dos casos sencillos

El vector constante 1 como único regresor

Este caso ya lo hemos visto: la proyección \hat{y} del vector y sobre $\mathcal{L}([1;])$ es el vector de medias \overline{y} . El siguiente ejercicio le pide que reproduzca este resultado, pero ahora usando las ecuaciones normales.

EJERCICIO 79. Emplee las ecuaciones normales (13.4) para encontrar el vector $\hat{\boldsymbol{\beta}}$ y con él, el vector $\hat{\boldsymbol{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$ cuando la matriz de regresores \mathbf{X} únicamente tiene la columna $\mathbf{1}$.

Regresión lineal simple y la recta de regresión

Veamos el caso particular de la proyección ortogonal de y sobre el espacio columna de la matriz de regresores X = [1; x;], es decir, busquemos la combinación lineal de los vectores 1 y x más próxima a y (y donde x no es otro vector constante).

Recordando que $_{i|}\mathbf{X}^{\mathsf{T}}\mathbf{X}_{|j} = \mathbf{X}_{|i} \cdot \mathbf{X}_{|j}$, que $_{i|}(\mathbf{X}^{\mathsf{T}}) \mathbf{y} = \mathbf{X}_{|i} \cdot \mathbf{y}$, que $\mathbf{X}_{|1} = \mathbf{1}$ y que $\mathbf{X}_{|2} = \mathbf{x}$, podemos reescribir el sistema de ecuaciones normales (13.4) como

$$\begin{bmatrix} \frac{1}{m}(\mathbf{1}\cdot\mathbf{1}) & \frac{1}{m}(\mathbf{1}\cdot\boldsymbol{x}) \\ \frac{1}{m}(\boldsymbol{x}\cdot\mathbf{1}) & \frac{1}{m}(\boldsymbol{x}\cdot\boldsymbol{x}) \end{bmatrix} \begin{pmatrix} \widehat{a} \\ \widehat{b} \end{pmatrix} = \begin{pmatrix} \frac{1}{m}(\mathbf{1}\cdot\boldsymbol{y}) \\ \frac{1}{m}(\boldsymbol{x}\cdot\boldsymbol{y}) \end{pmatrix}; \text{ es decir } \begin{bmatrix} 1 & \mu_{\boldsymbol{x}} \\ \mu_{\boldsymbol{x}} & \frac{1}{m}(\boldsymbol{x}\cdot\boldsymbol{x}) \end{bmatrix} \begin{pmatrix} \widehat{a} \\ \widehat{b} \end{pmatrix} = \begin{pmatrix} \mu_{\boldsymbol{y}} \\ \frac{1}{m}(\boldsymbol{x}\cdot\boldsymbol{y}) \end{pmatrix};$$

que resolvemos por eliminación:

⁴Normalmente se escribe el sistema $\mathbf{X}^{\intercal}\mathbf{X}\widehat{\boldsymbol{\beta}}=(\mathbf{X}^{\intercal})\boldsymbol{y}$, pero aquí he preferido incluir los factores $\frac{1}{m}$ para recordar que vamos a operar con el producto escalar $\langle _, _ \rangle_s$ habitual en estadística

Figura 13.4: Representación esquemática de la proyección sobre el espacio columna de $\mathbf{X} = [\mathbf{1}; \ x;];$ con $x \notin \mathcal{L}([\mathbf{1};])$. El "suelo" de la figura representa el subespacio $\mathcal{C}(\mathbf{X})$. La figura de la derecha es una visión desde "arriba" (desde esta perspectiva \hat{y} está detrás de y).

$$\begin{bmatrix}
1 & \mu_{x} & -\mu_{y} \\
\mu_{x} & \frac{1}{m}(x \cdot x) & -\frac{1}{m}(x \cdot y) \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\xrightarrow{\begin{bmatrix}
(-\mu_{x})_{1+2}\end{bmatrix}}
\begin{bmatrix}
(-\mu_{y})_{1+2}\end{bmatrix}
\begin{bmatrix}
(-\mu_{y})_{1+2}\end{bmatrix}
\begin{bmatrix}
(-\mu_{y})_{1+3}\end{bmatrix}
\\
1 & -\mu_{x} & \mu_{y} \\
0 & 1 & 0
\end{bmatrix}
\xrightarrow{\begin{bmatrix}
(\frac{\sigma_{xy}}{\sigma_{x}^{2}})_{2+3}\end{bmatrix}}
\xrightarrow{\begin{bmatrix}
(\frac{\sigma_{xy}}{\sigma_{x}^{2}})_{2+3}\end{bmatrix}}
\begin{bmatrix}
(\frac{\sigma_{xy}}{\sigma_{x}^{2}})_{2+3}\end{bmatrix}$$

Es decir, la combinación lineal de ${\bf 1}$ y ${\bf x}$ más próxima a ${\bf y}$ es:

$$\widehat{\boldsymbol{y}} = \underbrace{\left(\mu_{\boldsymbol{y}} - \mu_{\boldsymbol{x}} \frac{\sigma_{\boldsymbol{x}\boldsymbol{y}}}{\sigma_{\boldsymbol{x}}^2}\right)}_{\widehat{a}} \mathbf{1} + \underbrace{\left(\frac{\sigma_{\boldsymbol{x}\boldsymbol{y}}}{\sigma_{\boldsymbol{x}}^2}\right)}_{\widehat{b}} \boldsymbol{x}.$$

(Véase la Figura 13.4)

Recta de regresión Hay una segunda forma de visualizar el juste de la *regresión lineal simple*. Esta segunda visualización es la más habitual en los textos de estadística y econometría, pero con ella se pierde la interpretación geométrica que hemos usado hasta ahora.

Se llama diagrama de dispersión de los vectores \boldsymbol{x} e \boldsymbol{y} a la representación en un plano de los pares de puntos (x_i, y_i) . Por ejemplo, en la Figura 13.5 aparece el diagrama de dispersión de los vectores $\boldsymbol{x} = (1, 2, 3,)$ e $\boldsymbol{y} = (1, 2, 2,)$, es decir, aparece la representación en el plano los tres pares (1, 1), (2, 2) y (3, 2).

Figura 13.5: Diagrama de dispersión de los vectores $\boldsymbol{x}=(1,2,3,)$ e $\boldsymbol{y}=(1,2,2,)$

Cuando \boldsymbol{y} es una combinación lineal de los vectores $\boldsymbol{1}$ y \boldsymbol{x} , es decir, cuando \boldsymbol{y} es de la forma $\alpha \boldsymbol{1} + \beta \boldsymbol{x}$, el diagrama de dispersión muestra los pares (x_i, y_i) que corresponden a la función lineal $\boldsymbol{X} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ y por tanto aparecen alineados sobre la recta cuya ordenada en el origen es α y cuya pendiente es β . Véase la Figura 13.6.

Figura 13.6: Diagrama de dispersión de x = (1, 2, 3,) y la combinación lineal $y = 1 + \frac{1}{3}x$. Los puntos se sitúan sobre la recta cuya abscisa en ordenadas es 1 y cuya pendiente es $\frac{1}{3}$.

Consecuentemente, como \hat{y} es la combinación lineal $\hat{a}\mathbf{1} + \hat{b}x$, los puntos del correspondiente diagrama de dispersión aparecen alineados sobre la recta cuya ordenada en el origen es \hat{a} y cuya pendiente es \hat{b} .

Así, al representar juntos los diagramas de dispersión de \boldsymbol{x} con \boldsymbol{y} y de \boldsymbol{x} con $\widehat{\boldsymbol{y}}$, la diferencia vertical entre los puntos del diagrama de \boldsymbol{y} y los del diagrama de $\widehat{\boldsymbol{y}}$ sobre cada valor x_i corresponden a cada uno de los errores de ajuste (véase la Figura 13.7).

Figura 13.7: Ajuste de la recta de regresión $\hat{y} = \hat{a}\mathbf{1} + \hat{b}x$ donde x = (1, 2, 3,) e y = (1, 2, 2,)

La recta a lo largo de la que se alinean los puntos del diagrama de dispersión de x y \hat{y} se denomina recta de regresión y es, por construcción, la recta que minimiza la suma del cuadrado de los errores de ajuste.

EJERCICIO 80. Encuentre la ordenada en el origen y la pendiente de la recta de regresión de la Figura 13.7. Encuentre también \hat{y} y el vector de errores de ajuste $(y - \hat{y})$.

Parte V Determinantes

Propiedades de los determinantes

14.1. Función determinante y función volumen

14.1.1. Tres propiedades de la función volumen de un paralelogramo

La función volumen¹ ($base \times altura$) de un paralelepípedo de dimensión n, cuyas aristas son las columnas de una matriz cuadrada \mathbf{A} , tiene las siguientes tres propiedades:

■ Dado que las columnas de la matriz identidad tienen norma uno $(\|\mathbf{l}_{|j}\| = 1)$, el volumen (o área) del hipercubo de dimensión n descrito por las columnas de \mathbf{l} es siempre uno:

$$Volumen \left(\underset{n \times n}{\mathbf{I}} \right) = 1.$$

 $\text{Figura 14.1: Area}\big[\boldsymbol{\mathsf{I}}_{|1};\ \boldsymbol{\mathsf{I}}_{|2};\big] = 1\ (\text{izquierda}) \quad \text{y} \quad \text{Volumen}\big[\boldsymbol{\mathsf{I}}_{|1};\ \boldsymbol{\mathsf{I}}_{|2};\ \boldsymbol{\mathsf{I}}_{|3};\big] = 1\ (\text{derecha}).$

■ Al sumar a una de las arístas (columnas) un múltiplo de otra arista (columna), el volumen (o el área) del paralelogramo resultante no cambia; pues se mantiene la misma base y la misma altura h. Por tanto, aplicar una transformación elemental de Tipo I no modifica el volumen:

$$\operatorname{Vol}(\mathbf{A}) = \operatorname{Vol}(\mathbf{A}_{(\alpha)\mathbf{k}+\mathbf{j}}) \operatorname{para} i \neq k.$$

Figura 14.2: Area [a; b;] = Area $[a; (\alpha a + b);]$ (izquierda) y Vol [a; b; c;] = Vol $[a; (\alpha a + b); c;]$ (derecha).

 $^{^{1}\}mathrm{en}$ dimensión 2 se denomina área

■ Al multiplicar una de las aristas (columnas) por un escalar, el volumen (o área) queda multiplicado por el valor absoluto de dicho escalar (no hay áreas o volúmenes negativos).

$$|\alpha| \cdot \text{Vol}(\mathbf{A}) = |\alpha| \cdot \text{Vol}[\dots \mathbf{A}_{|k}; \dots] = \text{Vol}[\dots \alpha \mathbf{A}_{|k}; \dots]$$

Figura 14.3: $|\alpha| \cdot \text{Area}[\boldsymbol{a}; \, \boldsymbol{b};] = \text{Area}[\alpha \boldsymbol{a}; \, \boldsymbol{b};]$ (izquierda) y $|\alpha| \cdot \text{Vol}[\boldsymbol{a}; \, \boldsymbol{b}; \, \boldsymbol{c};] = \text{Vol}[\alpha \cdot \boldsymbol{a}; \, \boldsymbol{b}; \, \boldsymbol{c};]$ (derecha).

Por tanto, aplicar la transformación, $\boldsymbol{\tau}$, donde $\alpha \neq 0$, multiplica el volumen por $|\alpha|$. Y multiplicar una arista por 0 multiplica el volumen por 0.

14.1.2. Las tres primeras propiedades (P-1 to P-3)

Por analogía con la función volumen, definimos el determinante del siguiente modo

Definición 14.1. Denominamos función determinante a toda función que asigna a cada sistema de n vectores de \mathbb{R}^n (a cada matriz cuadrada de orden n) un número real

$$\det: \mathbb{R}^{n \times n} \longrightarrow \mathbb{R}$$

y que verifica las siguientes tres propiedades:

P-1 P-1 Determinante de las matrices identidad:

$$\det \mathbf{I} = 1$$

P-2 | P-2 | Sumar a una columna un múltiplo de otra no altera el determinante:

$$\det \mathbf{A} = \det \left(\mathbf{A}_{\underbrace{\boldsymbol{\tau}}_{[(\alpha)\boldsymbol{k} + \boldsymbol{j}]}} \right) \quad para \ i \neq k.$$

P-3 | P-3 | Multiplicar una columna multiplica el determinante

$$\alpha \cdot \det \mathbf{A} \ = \ \det \left[\ \dots \alpha \mathbf{A}_{\mid k}; \dots \right] \ para \ cualquier \ k \in \{1:n\} \ y \ \alpha \in \mathbb{R}$$

Nótese que como caso particular, concluimos que aplicar una transformación elemental de Tipo II, τ , multiplica el determinante por $\alpha \neq 0$. Consecuentemente, los determinantes pueden tomar valores negativos.

Notación Emplearemos dos notaciones alternativas para el determinante de la matriz A:

determinante de
$$\mathbf{A} \equiv \det(\mathbf{A}) \equiv |\mathbf{A}|$$

de manera que las tres propiedades anteriores se pueden expresar para matrices de orden 3 como:

P-1:
$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1;$$

$$\det \left[\mathbf{I}_{|1}; \ \mathbf{I}_{|2}; \ \mathbf{I}_{|3}; \right] = 1.$$

P-2:
$$\begin{vmatrix} a_1 & (b_1 + \alpha c_1) & c_1 \\ a_2 & (b_2 + \alpha c_2) & c_2 \\ a_3 & (b_3 + \alpha c_3) & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}; \quad \det \left[\boldsymbol{a}; \; (\boldsymbol{b} + \alpha \boldsymbol{c}); \; \boldsymbol{c}; \right] = \det \left[\boldsymbol{a}; \; \boldsymbol{b}; \; \boldsymbol{c}; \right]$$

P-3:
$$\begin{vmatrix} a_1 & (\beta b_1) & c_1 \\ a_2 & (\beta b_2) & c_2 \\ a_3 & (\beta b_3) & c_3 \end{vmatrix} = \beta \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}; \quad \det \begin{bmatrix} \boldsymbol{a}; \ \beta \boldsymbol{b}; \ \boldsymbol{c}; \end{bmatrix} = \beta \det \begin{bmatrix} \boldsymbol{a}; \ \boldsymbol{b}; \ \boldsymbol{c}; \end{bmatrix}.$$

La relación entre la función Volumen y la función Determinante

Nótese que la única diferencia con la función *Volumen* es que los determinantes pueden tomar valores negativos. De hecho, la relación entre la función *Volumen* y la función *Determinante* es tan estrecha que podemos definir la función *Volumen* del paralelogramo cuyas aristas son las columnas de la matriz cuadrada **A** como el valor absoluto del *Determinante* de **A**:

$$Vol(\mathbf{A}) = Valor absoluto de |\mathbf{A}|$$

Advertencia: Una barra vertical a cada lado de una matriz $|\mathbf{A}|$ denota el determinante de \mathbf{A} . Una barra vertical a cada lado de un número |a| significa valor absoluto del número. Es decir, el significado de las barras verticales viene dado por el objeto encerrado entre ellas: si es un número es el valor absoluto, y si es una matriz es el determinante. Jugando con esto, podemos decir que

$$Vol(\mathbf{A}) = Valor absoluto de det(\mathbf{A}) = |\det \mathbf{A}| = |\mathbf{A}|$$
.

Las propiedades P-1, P-2 y P-3 definen la función determinante. Ahora queda deducir todo lo demás...

14.2. Resto de propiedades (P-4 a P-9)

14.2.1. Determinante de una matriz con una columna de ceros

EJERCICIO 81. Demuestre la siguiente propiedad:

P-4 Determinante de una matriz con una columna nula.

P-4

Si A tiene una columna nula entonces:

$$\det(\mathbf{A}) = 0$$

Esta propiedad es análoga a considerar el volumen de un paralelogramo con una arista de longitud cero.

14.2.2. Determinantes de matrices elementales

Ya sabemos que

$$\det\left(\mathbf{A}_{\frac{\boldsymbol{\tau}}{[(\alpha)\boldsymbol{k}+\boldsymbol{j}]}}\right) = |\mathbf{A}|; \qquad \det\left(\mathbf{A}_{\frac{\boldsymbol{\tau}}{[(\alpha)\boldsymbol{k}]}}\right) = \alpha |\mathbf{A}|; \tag{14.1}$$

así que en particular, y puesto que $\det(\mathbf{I}) = 1$:

$$\det\left(\mathbf{I}_{\frac{\boldsymbol{\tau}}{[(\alpha)\boldsymbol{k}+\boldsymbol{j}]}}\right) = 1 \qquad \mathrm{y} \qquad \det\left(\mathbf{I}_{\frac{\boldsymbol{\tau}}{[(\alpha)\boldsymbol{j}]}}\right) = \alpha.$$

Ahora recordando que $\mathbf{A}_{\tau} = \mathbf{A} \left(\mathbf{I}_{\tau} \right)$, y analizando tanto la igualdad de la izquierda como la de la derecha de (14.1), concluimos que

$$\left| \mathbf{A} \left(\mathbf{I}_{\tau} \right) \right| = \left| \mathbf{A} \right| \cdot \left| \mathbf{I}_{\tau} \right| \tag{14.2}$$

donde I_{τ} es una matriz elemental (nos da igual de qué tipo sea).

14.2.3. Sucesión de transformaciones elementales por columnas

Veamos más resultados relacionados con las matrices elementales.

Ejercicio 82. Demuestre las siguientes proposiciones.

- (a) $\det \left(\mathbf{A}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \right) = |\mathbf{A}| \cdot \left| \mathbf{I}_{\boldsymbol{\tau}_1} \right| \cdots \left| \mathbf{I}_{\boldsymbol{\tau}_k} \right|$.
- (b) Si \mathbf{B} es de rango completo, es decir, si $\mathbf{B} = \mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k}$, entonces $|\mathbf{B}| = \left|\mathbf{I}_{\boldsymbol{\tau}_1}\right| \cdots \left|\mathbf{I}_{\boldsymbol{\tau}_k}\right|$, y por tanto $|\mathbf{B}| \neq 0$.
- (c) $Si \ A \ y \ B \ son \ de \ orden \ n, \ y \ B \ es \ de \ rango \ completo \ entonces$

$$\det(\mathbf{A}\mathbf{B}) = |\mathbf{A}| \cdot |\mathbf{B}| \tag{14.3}$$

Ejemplo 33. Una sucesión $\tau_1 \cdots \tau_k$ de transformaciones Tipo I de la matriz **A** no altera el determinante.

$$\left|\mathbf{A}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k}\right| = \left|\mathbf{A}\mathbf{I}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k}\right| = \left|\mathbf{A}\right|\cdot\left|\mathbf{I}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k}\right| = \left|\mathbf{A}\right|\cdot 1 = \left|\mathbf{A}\right|$$

Ejemplo 34. Pero una sucesión de transformaciones Tipo II si puede modificar el valor del determinante:

$$\begin{vmatrix} 2a & 3c \\ 2b & 3d \end{vmatrix} = 6 \begin{vmatrix} a & c \\ b & d \end{vmatrix}$$

Permutación (o intercambio) de columnas. Propiedad antisimétrica

EJERCICIO 83. Demuestre la siguiente propiedad:

P-5 [Propiedad antisimétrica] Intercambiar dos columnas cambia el signo del determinante.

Así

$$\begin{vmatrix} c_1 & b_1 & a_1 \\ c_2 & b_2 & a_2 \\ c_3 & b_3 & a_3 \end{vmatrix} = (-1) \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

14.2.4. Matriz singular, matriz inversa y producto de matrices

Matrices singulares. Matrices inversas

Vamos a demostrar conjuntamente dos propiedades más de la función determinante:

- P-6 Si A es singular entonces |A| = 0.
- **P-7** $\det \left(\mathbf{A}^{-1} \right) = \left(\det \mathbf{A} \right)^{-1}.$

 $Demostraci\'on. \text{ Sea } \mathbf{A}_{n \times n} \text{ y sea } \mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \text{ tal que } \mathbf{A} \big(\mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \big) = \mathbf{R} \text{ es una forma escalonada reducida. Entonces} \\ |\mathbf{A}| \cdot \big| \mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \big| = |\mathbf{R}| \text{ y solo se pueden dar dos casos:}$

$$\begin{cases} \mathbf{A} \text{ singular } (\mathbf{R}_{|n} = \mathbf{0} \) : & |\mathbf{R}| = |\mathbf{A}| \cdot \left| \mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \right| = 0 \quad \Rightarrow \quad |\mathbf{A}| = 0 \\ \\ \mathbf{A} \text{ invertible } (\mathbf{R} = \mathbf{I}) : & |\mathbf{R}| = |\mathbf{A}| \cdot \left| \mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \right| = 1 \quad \Rightarrow \quad \left| \mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \right| = \left| \mathbf{A}^{-1} \right| = \frac{1}{|\mathbf{A}|} \end{cases}.$$

Por tanto, podemos calcular el determinante de la matriz inversa mediante la eliminación gaussiana.

- Cuando la matriz es singular (rango < n) el determinante es cero;
- Cuando la matriz es de rango completo, basta con mirar qué transformaciones elementales Tipo II han ido cambiando el valor del determinante de A hasta llegar a la matriz I (las de Tipo I no importan!...)

Ejemplo 35. Sea
$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$$
, entonces

$$\begin{bmatrix} 1 & 2 \\ 2 & 2 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} \mathbf{\tau}_{(-2)\mathbf{1}+2]} \\ (TipoI) \\ \end{bmatrix}} \begin{bmatrix} 1 & 0 \\ 2 & -2 \\ 1 & -2 \\ 0 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} \mathbf{\tau}_{(-1/2)\mathbf{2}]} \\ (TipoII) \\ \end{bmatrix}} \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 1 & 1 \\ 0 & -1/2 \end{bmatrix} \xrightarrow{\begin{bmatrix} (-2)\mathbf{2}+1] \\ (TipoI) \\ \end{bmatrix}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 1 \\ 1 & -1/2 \end{bmatrix}$$

$$\text{Por tanto,} \quad \left| \mathbf{A}^{-1} \right| = \begin{vmatrix} \mathbf{I}_{\mathbf{\tau}_{((-2)\mathbf{1}+2)}} \right| \cdot \begin{vmatrix} \mathbf{I}_{\mathbf{\tau}_{((-1/2)\mathbf{2})}} \\ \mathbf{I}_{\mathbf{\tau}_{((-1/2)\mathbf{2})}} \end{vmatrix} \cdot \begin{vmatrix} \mathbf{I}_{\mathbf{\tau}_{((-1/2)\mathbf{2})}} \\ \mathbf{I}_{\mathbf{\tau}_{((-1/2)\mathbf{2}+1)}} \end{vmatrix} = 1 \cdot \frac{-1}{2} \cdot 1 = \frac{-1}{2}; \quad \text{es decir} \quad |\mathbf{A}| = -2...$$

Por tanto,
$$\left|\mathbf{A}^{-1}\right| = \left|\mathbf{I}_{\underbrace{\tau}_{[(-2)\mathbf{1}+\mathbf{2}]}}^{\tau}\right| \cdot \left|\mathbf{I}_{\underbrace{\tau}_{[(-1/2)\mathbf{2}]}}^{\tau}\right| \cdot \left|\mathbf{I}_{\underbrace{\tau}_{[(-2)\mathbf{2}+\mathbf{1}]}}^{\tau}\right| = 1 \cdot \frac{-1}{2} \cdot 1 = \frac{-1}{2};$$
 es decir $\left|\mathbf{A}\right| = -2.$

Determinante del producto.

Puesto que para cualquier **B** de orden n, existe una sucesión de transformaciones elementales tal que $\mathbf{B}(\mathbf{I}_{\tau_1\cdots\tau_k})=\mathbf{L}$ es una forma escalonada de \mathbf{B} , si \mathbf{B} es singular entonces $\mathbf{L}_{|n}=\mathbf{0}$. Aplicando las mismas transformaciones elementales a las columnas de ${\sf AB}$ tenemos

$$\left(\mathsf{AB}\left(\mathsf{I}_{{m{ au}}_1\cdots{m{ au}}_k}
ight)
ight)_{|n} = \left(\mathsf{AL}
ight)_{|n} = \mathbf{0};$$

y como $(\mathbf{I}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k})_{\mathbf{I}_n}\neq\mathbf{0}$, necesariamente (**AB**) es singular (véase Corolario 8.1.2 en la página 100).

Este resultado nos permite enunciar una nueva propiedad de la función determinante.

 $\det(\mathbf{AB}) = \det(\mathbf{A}) \cdot \det(\mathbf{B}).$ (14.4)

P-8

$$det(\mathbf{AB}) = det(\mathbf{A}) \cdot det(\mathbf{B}).$$

$$Demostración.$$

$$\begin{cases} \text{Si } \mathbf{B} \text{ es singular, también lo es } \mathbf{AB} \Rightarrow & \det(\mathbf{AB}) = 0 = \det(\mathbf{A}) \cdot \det(\mathbf{B}) \\ \text{Si } \mathbf{B} = \mathbf{I}_{\tau_1 \cdots \tau_k} \Rightarrow & \det(\mathbf{AB}) = \det(\mathbf{A}) \cdot \det(\mathbf{B}) \end{cases} \qquad (14.4)$$

14.2.5. Determinante de la matriz transpuesta.

EJERCICIO 84.

- (a) ¿Qué relación hay entre el determinante de \mathbf{I}_{τ} y el determinante de su transpuesta τ !?
- (b) Sea **B** de rango completo, demuestre que $|\mathbf{B}| = |\mathbf{B}^{\mathsf{T}}|$.

$$|\mathbf{A}| = |\mathbf{A}^{\mathsf{T}}|$$
.

Demostración. Por una parte, si **A** es singular, A^{T} también es singular (véase Proposición 9.5.13 en la página 113); y por tanto ambas matrices tienen determinante nulo. Y por otra, si A es de rango completo, acabamos de ver en el ejercicio anterior que su determinante es igual al de su transpuesta. П

Fórmulas para el cálculo del determinante y aplicaciones

Definición 15.1. Llamaremos matriz extendida de $\mathbf{A}_{n \times n}$ a la matriz $\begin{bmatrix} \mathbf{A} \\ & 1 \end{bmatrix}$ de orden n+1.

Fíjese que si \mathbf{I}_{τ} es de orden n, entonces $\boldsymbol{\tau}$ transforma una de las n primeras columnas, pues tanto si $\boldsymbol{\tau}$ es de $Tipo\ I$: $\boldsymbol{\tau}$, como si es de $Tipo\ II$: $\boldsymbol{\tau}$, los índices $\boldsymbol{p}, \boldsymbol{s}$ son necesariamente menores o iguales a n. $[(\alpha)\boldsymbol{p}+\boldsymbol{s}]$

Por tanto, para la transformación τ y las matrices extendidas de \mathbf{B}_{τ} y \mathbf{B} , se verifica que

$$\begin{bmatrix} \mathbf{B}_{\tau} & \\ & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{B} & \\ & 1 \end{bmatrix}_{\tau}. \tag{15.1}$$

Y como $\begin{bmatrix} \mathbf{I} \\ 1 \end{bmatrix}_{\tau}$ y \mathbf{I}_{τ} son matrices elementales del mismo tipo, ambas tienen idéntico determinante. Así pues, si \mathbf{B} es una matriz identidad \mathbf{I} , repitiendo k veces el paso dado en (15.1) tenemos que

$$\begin{vmatrix} \mathbf{I}_{\boldsymbol{\tau}_{1}\cdots\boldsymbol{\tau}_{k}} & \\ & 1 \end{vmatrix} = \det \begin{pmatrix} \begin{bmatrix} \mathbf{I} & \\ & 1 \end{bmatrix}_{\boldsymbol{\tau}_{1}\cdots\boldsymbol{\tau}_{k}} \end{pmatrix} = \det \begin{pmatrix} \begin{bmatrix} \mathbf{I} & \\ & 1 \end{bmatrix}_{\boldsymbol{\tau}_{1}} \cdots \begin{bmatrix} \mathbf{I} & \\ & 1 \end{bmatrix}_{\boldsymbol{\tau}_{k}} \end{pmatrix} = |\mathbf{I}_{\boldsymbol{\tau}_{1}}| \cdots |\mathbf{I}_{\boldsymbol{\tau}_{k}}| = |\mathbf{I}_{\boldsymbol{\tau}_{1}\cdots\boldsymbol{\tau}_{k}}|. \quad (15.2)$$

Vamos a emplear este resultado para relacionar el determinante de dos matrices de distinto orden:

Proposición 15.0.1. Si **A** es la matriz extendida de **B**, entonces $det(\mathbf{A}) = det(\mathbf{B})$.

Demostración. Solo caben dos posibilidades. Si **B** es de rango completo, es decir, si **B** = $\mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k}$, por (15.2) ya sabemos que

$$|\mathbf{A}| = \begin{vmatrix} \mathbf{B} & \\ & 1 \end{vmatrix} = \begin{vmatrix} \mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} & \\ & 1 \end{vmatrix} = |\mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k}| = |\mathbf{B}|.$$

Si B es singular, entonces las columnas de B son linealmente dependientes; así que también lo son las de A:

$$|A| = 0 = |B|$$
.

15.1. Determinante de matrices triangulares

EJERCICIO 85.

- (a) ¿A qué es igual el determinante de una matriz triangular inferior L de rango completo?
- (b) ¿A qué es igual el determinante de una matriz triangular con algún elemento nulo en su diagonal?
- (c) ¿A qué es igual el determinante de una matriz triangular superior **U**?

15.2. Cálculo del determinante por eliminación Gaussiana

Ahora sabemos que el determinante de una matriz cuadrada y triangular es igual al producto de los elementos de la diagonal principal. Este descubrimiento nos permite calcular de manera sencilla el determinante mediante eliminación: basta con encontrar una forma escalonada de la matriz extendida, compensando en su última fila las transformaciones elementales Tipo II aplicadas sobre las n primeras columnas.

Ejemplo 36. Considere la matriz $\begin{bmatrix} 1 & 5 \\ 2 & 3 \end{bmatrix}$ entonces

$$\begin{bmatrix}
1 & 5 & 0 \\
2 & 3 & 0 \\
\hline
0 & 0 & 1
\end{bmatrix}
\xrightarrow[(-5)1+2]{\tau}
\begin{bmatrix}
1 & 0 & 0 \\
2 & -7 & 0 \\
\hline
0 & 0 & 1
\end{bmatrix}$$

Multiplicando los elementos de la diagonal obtenemos el valor del determiante de $\bf A$. En este caso det $\bf A=-7$.

Ejemplo37. Para la matriz $\left[\begin{array}{ccc} 0 & 2 & 1 \\ 9 & 6 & 3 \\ 0 & 1 & 1 \end{array}\right]$ tenemos

$$\begin{bmatrix} 0 & 2 & 1 & 0 \\ 9 & 6 & 3 & 0 \\ 0 & 1 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{ \begin{bmatrix} (2)3 \\ [(-1)2+3] \\ \hline {\bf 7} \\ [(\frac{1}{2})4] \end{bmatrix} } \begin{bmatrix} 0 & 2 & 0 & 0 \\ 9 & 6 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ \hline 0 & 0 & 0 & \frac{1}{2} \end{bmatrix} \xrightarrow{ \begin{bmatrix} (3)2 \\ [(-2)1+2] \\ \hline {\bf 7} \\ [(\frac{1}{3})4] \end{bmatrix} } \begin{bmatrix} 0 & 6 & 0 & 0 & 0 \\ 9 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ \hline 0 & 0 & 0 & \frac{1}{6} \end{bmatrix} \xrightarrow{ \begin{bmatrix} 6 & 0 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 & 0 \\ \hline {\bf 7} \\ [(-1)4] \end{bmatrix} } \begin{bmatrix} 6 & 0 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 & 0 \\ \hline {\bf 3} & 0 & 1 & 0 \\ \hline {\bf 0} & 0 & 0 & -\frac{1}{6} \end{bmatrix}$$

Y por tanto det $\mathbf{A} = (6)(9)(1)(\frac{-1}{6}) = -9$.

15.3. Determinante de matrices diagonales por bloques

Puesto que para cualquier matriz cuadrada \mathbf{B} se verifica que $\begin{vmatrix} \mathbf{B} \\ 1 \end{vmatrix} = |\mathbf{B}|$; si \mathbf{A} es de orden m y \mathbf{I} de orden n, entonces, aplicando la anterior igualdad repetidamente n veces, deducimos que

$$\begin{vmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \\ \mathbf{0} & \mathbf{I} \\ n \times m & n \times n \end{vmatrix} = \begin{vmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \\ (n-1) \times m & (n-1) \times (n-1) \end{vmatrix} = \begin{vmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \\ (n-2) \times m & (n-2) \times (n-2) \end{vmatrix} = \dots = \begin{vmatrix} \mathbf{A} & 0 \\ 0 & 1 \end{vmatrix} = |\mathbf{A}|.$$

Pero todo lo realizado en las anteriores secciones se podía haber desarrollado de manera similar si en lugar de extender la matriz $\bf B$ con la última fila y columna de la matriz identidad n+1, se hubiera hecho anteponiendo la primera fila y columna de la matriz identidad n+1. Así, para cualquier matriz cuadrada $\bf B$ también se verifica que

$$egin{array}{c|c} 1 & & \\ & & \mathbf{B} \end{array} = \left| \mathbf{B} \right|; \quad \text{por lo que también se deduce que} \quad \left| egin{array}{c|c} \mathbf{I} & & \\ & & \mathbf{A} \end{array} \right| = \left| \mathbf{A} \right|.$$

Producto de matrices por bloques. En la Sección 3.B se vió cómo calcular el producto de matrices por bloques siguiendo la fórmula de la Ecuación 3.5 en la página 37.

Ejercicio 86. Demuestre las siguientes propiedades:

- (a) Sean **A** de orden m y **B** de orden n, entonces $\begin{vmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \overset{m \times n}{\mathbf{B}} \\ {}_{n \times m} \end{vmatrix} = \left| \mathbf{A} \right| \cdot \left| \mathbf{B} \right|.$
- (b) Sean **A** de orden m, **B** de orden n y **C** de orden n por m, entonces

$$\begin{vmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{C} & \mathbf{B} \end{vmatrix} = |\mathbf{A}| \cdot |\mathbf{B}|.$$

15.4. Fórmulas sencillas para matrices de orden menor que 4

Para matrices de orden 1, 2 o 3, hay formulas sencillas. ¡Ojo, para matrices de orden 4 o más NO HAY REGLAS SENCILLAS! No extrapole que lo que funciona para una matriz 3 por 3 se puede hacer de manera similar para una matriz de orden mayor o igual a 4.

Para matrices de orden 1: Para $\mathbf{A} = [a]$ tenemos

$$\Rightarrow$$
 $\det \mathbf{A} = a$.

Para matrices de orden 2. Deduzcamos la formula general para una matriz de la forma $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

■ Caso $a \neq 0$:

$$\begin{bmatrix} a & b & 0 \\ c & d & 0 \\ \hline 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} (-\frac{b}{a})1+2 \end{bmatrix}} \begin{bmatrix} a & 0 & 0 \\ c & d - \frac{bc}{a} & 0 \\ \hline 0 & 0 & 1 \end{bmatrix} \quad \Rightarrow \quad \det \mathbf{A} = ad - bc.$$

• Caso a = 0 y $b \neq 0$:

$$\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\xrightarrow{[1\rightleftharpoons 2]}
\xrightarrow{r}
\begin{bmatrix}
b & a \\
d & c
\end{bmatrix}
\xrightarrow{r}
\begin{bmatrix} (-1)3 \end{bmatrix}
\xrightarrow{r}
\begin{bmatrix} b & a \\
d & c
\end{bmatrix}$$
 \Rightarrow $\det \mathbf{A} = (bc - ad)(-1) = ad - bc$.

Otra vez la misma regla. Por tanto, siempre

$$\det \mathbf{A} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$

Para matrices de orden 3. Deduzcamos la formula general para una matriz de la forma $\mathbf{A} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$

• Caso $a \neq 0$ y $(ae - bd) \neq 0$:

$$\begin{bmatrix} a & b & c & 0 \\ d & e & f & 0 \\ g & h & i & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} (-\frac{b}{a})\mathbf{1} + \mathbf{2} \end{bmatrix}} \begin{bmatrix} a & 0 & 0 & 0 \\ d & e - \frac{bd}{a} & f - \frac{cd}{a} & 0 \\ \frac{g}{a} & h - \frac{bg}{a} & i - \frac{cg}{a} & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} (-\frac{af+cd}{ae-bd})\mathbf{2} + \mathbf{3} \end{bmatrix}} \xrightarrow{\begin{bmatrix} (-\frac{af+cd}{ae-bd})\mathbf{2} + \mathbf{3} \end{bmatrix}}$$

$$\begin{bmatrix} a & 0 & 0 & 0 \\ d & e - \frac{bd}{a} & 0 & 0 \\ \frac{g}{0} & h - \frac{bg}{a} & \frac{aei - afh - bdi + bfg + cdh - ceg}{ae - bd} & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \det \mathbf{A} = (bc - ad)(-1) = aei - afh - bdi + bfg + cdh - ceg.$$

• Caso $a = 0, b \neq 0 \text{ y } (bd - ae) \neq 0$:

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \xrightarrow{\begin{bmatrix} \mathbf{\tau} \\ [1 \rightleftharpoons 2] \\ \hline \mathbf{\tau} \\ [(-1)4] \end{bmatrix}} \begin{bmatrix} b & a & c \\ e & d & f \\ h & g & i \end{bmatrix} \Rightarrow \det \mathbf{A} = aei - afh - bdi + bfg + cdh - ceg.$$

• ...y de modo similar para el caso $a=0,\,b=0,\,c\neq 0$ y $(ce-bf)\neq 0$.

Reordenando los términos, en todos los casos resulta la misma fórmula que se conoce comúnmente como Regla de Sarrus.

$$\det \mathbf{A} = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = aei + bfg + dhc - ceg - bdi - fha$$

15.5. No hay fórmulas sencillas para matrices de orden mayor a 3

A modo de ejemplo, tratemos de calcular el determinante de una matriz genérica de orden 4 (asumiremos que las componentes de la matriz son tales que todos los denominadores son distintos de cero).

$$\begin{bmatrix} a & b & c & d & 0 \\ e & f & h & i & 0 \\ k & l & m & n & 0 \\ 0 & p & q & r & 0 \\ \hline 0 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} \left(-\frac{a}{a}\right)1+3 \right] \\ \left(-\frac{a}{a}\right)1+3 \end{bmatrix}} \begin{bmatrix} a & 0 & 0 & 0 & 0 & 0 \\ e & f - \frac{be}{a} & h - \frac{ce}{a} & i - \frac{de}{q} & 0 \\ k & l - \frac{bk}{a} & m - \frac{ck}{a} & n - \frac{dk}{a} & 0 \\ o & p - \frac{bo}{a} & q - \frac{co}{a} & r - \frac{do}{a} & 0 \\ o & p - \frac{bo}{a} & q - \frac{co}{a} & r - \frac{do}{a} & 0 \\ o & p - \frac{bo}{a} & q - \frac{co}{a} & r - \frac{do}{a} & 0 \\ e & f - \frac{be}{a} & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} \left(-\frac{ai+ee}{af-be}\right)2+4 \right]} \\ \begin{bmatrix} a & 0 & 0 & 0 & 0 & 0 \\ e & f - \frac{be}{a} & 0 & 0 & 0 & 0 \\ k & l - \frac{bk}{a} & \frac{afm-ahl-bem+bhk+cel-cfk}{af-be} & \frac{afn-ail-ben+bik+del-dfk}{af-be} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} \left(-\frac{ah+ee}{af-be}\right)2+4 \right]} \xrightarrow{\begin{bmatrix} \left(-\frac{ah+ee}{af-be}\right)2+4 \right]} \\ \begin{bmatrix} \left(-\frac{ah+ee}{af-be}\right)2+4 \end{bmatrix} \\ \\ \begin{bmatrix} \left(-\frac{ai+de}{af-be}\right)2+4 \end{bmatrix} \\ \\ \begin{bmatrix} \left(-\frac{ai+de}{af-be}\right)2+4 \end{bmatrix} \\ \\ \end{bmatrix}$$

Ahora multiplicando los elementos de la diagonal y simplificando las expresiones se llega a la expresión final:

$$\det \mathbf{A} = \begin{vmatrix} a & b & c & d \\ e & f & h & i \\ k & l & m & n \\ o & p & q & r \end{vmatrix}$$

$$= afmr - afnq - ahlr + ahnp + ailq - aimp - bemr + benq + bhkr - bhno - bikq + bimo$$

$$+ celr - cenp - cfkr + cfno + cikp - cilo - delq + demp + dfkq - dfmo - dhkp + dhlo.$$

Está claro que la fórmula no es ni sencilla ni fácil de recordar... ¡No puedo imaginar lo espantosa que tiene que ser la expresión para una matriz de orden 5 o mayor! Es importante que sepa que:

No hay expresiones sencillas para calcular determinantes de orden mayor que 3

Hay otra forma de calcular el determinante de una matriz de orden n empleando los determinantes de submatrices de orden n-1. Es una descripción recursiva de la función determinante que no emplea la eliminacion gaussiana y se llama *Expansión de Laplace*. Pero tenga en cuenta que, con cualquier procedimiento, el cálculo del determinante de una matriz genérica de orden elevado es computacionalmente intenso.

Para deducir la citada *Expansión de Laplace* necesitamos enunciar una última propiedad de la función determinate, y definir los *menores* y los *cofactores*.

15.6. Expansión de Laplace (desarrollo por cofactores).

15.6.1. Propiedad multilineal

P-10 Propiedad multilineal

P-10

$$\det\left[\ldots(\beta \mathbf{b} + \psi \mathbf{c});\ldots\right] = \beta \det\left[\ldots \mathbf{b};\ldots\right] + \psi \det\left[\ldots \mathbf{c};\ldots\right]$$

Demostración. Puesto que se verifica la propiedad del producto **P-3**, nos basta con demostrar que det $\left[\dots(b+c);\dots\right] = \det\left[\dots b;\dots\right] + \det\left[\dots c;\dots\right]$. Haremos la demostración para la primera columna. La demostración para el resto de columnas es similar.

Hay dos casos: si $\boldsymbol{y}_1,\dots,\boldsymbol{y}_{n-1}$ son linealmente dependientes, entonces la demostración es inmediata pues

$$\det\left[(\boldsymbol{a}+\boldsymbol{b});\;\boldsymbol{y}_1;\ldots\boldsymbol{y}_{n-1};\right]=0=0+0=\det\left[\boldsymbol{a};\;\boldsymbol{y}_1;\ldots\boldsymbol{y}_{n-1};\right]+\det\left[\boldsymbol{b};\;\boldsymbol{y}_1;\ldots\boldsymbol{y}_{n-1};\right].$$

Si por el contrario existe x tal que $\left[x;\;y_1;\dots y_{n-1};\right]$ es una base de \mathbb{R}^n , entonces

$$\det \left[(\alpha \boldsymbol{x} + \psi_1 \boldsymbol{y}_1 + \dots + \psi_{n-1} \boldsymbol{y}_{n-1}); \ \boldsymbol{y}_1; \dots \boldsymbol{y}_{n-1}; \right] \stackrel{*}{=} \det \left[\alpha \boldsymbol{x}; \ \boldsymbol{y}_1; \dots \boldsymbol{y}_{n-1}; \right]$$

$$= \alpha \det \left[\boldsymbol{x}; \ \boldsymbol{y}_1; \dots \boldsymbol{y}_{n-1}; \right]$$

$$(15.4)$$

(*) ya que con una secuencia de transformaciones elementales se puede "simplificar" la primera columna. Ahora, si

$$\mathbf{a} = \alpha \mathbf{x} + \psi_1 \mathbf{y}_1 + \dots + \psi_{n-1} \mathbf{y}_{n-1}$$

$$\mathbf{b} = \beta \mathbf{x} + \gamma_1 \mathbf{y}_1 + \dots + \gamma_{n-1} \mathbf{y}_{n-1}$$

tendremos que

$$a + b = (\alpha + \beta)x + (\psi_1 + \gamma_1)y_1 + \cdots + (\psi_{n-1} + \gamma_{n-1})y_{n-1}$$

y consecuentente

$$\begin{split} \det \left[\boldsymbol{a} + \boldsymbol{b}; \; \boldsymbol{y}_1; \dots; \boldsymbol{y}_{n-1}; \right] &= (\alpha + \beta) \det \left[\boldsymbol{x}; \; \boldsymbol{y}_1; \dots; \boldsymbol{y}_{n-1}; \right] & \text{por } (15.4) \\ &= \alpha \det \left[\boldsymbol{x}; \; \boldsymbol{y}_1; \dots; \boldsymbol{y}_{n-1}; \right] + \beta \det \left[\boldsymbol{x}; \; \boldsymbol{y}_1; \dots; \boldsymbol{y}_{n-1}; \right] & \text{pues } \det \boldsymbol{\mathsf{A}} \text{ es un número} \\ &= \det \left[\alpha \boldsymbol{x}; \; \boldsymbol{y}_1; \dots; \boldsymbol{y}_{n-1}; \right] + \det \left[\beta \boldsymbol{x}; \; \boldsymbol{y}_1; \dots; \boldsymbol{y}_{n-1}; \right] & \text{por } \mathbf{P-3} \\ &= \det \left[\boldsymbol{a}; \; \boldsymbol{y}_1; \dots; \boldsymbol{y}_{n-1}; \right] + \det \left[\boldsymbol{b}; \; \boldsymbol{y}_1; \dots; \boldsymbol{y}_{n-1}; \right] & \text{por } (15.3) \end{split}$$

Ejemplo 38. Para \mathbb{R}^2

$$\begin{vmatrix} a+\alpha & c \\ b+\beta & d \end{vmatrix} = \begin{vmatrix} a & c \\ b & d \end{vmatrix} + \begin{vmatrix} \alpha & c \\ \beta & d \end{vmatrix};$$

es decir

$$\begin{vmatrix} a & c \\ b & d \end{vmatrix} = \begin{vmatrix} a & c \\ 0 & d \end{vmatrix} + \begin{vmatrix} 0 & c \\ b & d \end{vmatrix}.$$

15.6.2. Menores v cofactores

En esta sección veremos como calcular los determinantes mediante formulas más sencillas. Fórmulas que expresan determinantes de matrices de orden n como sumas de determinantes de matrices de un orden más pequeño (n-1).

Proposición 15.6.1. Si
$$\underset{n \times n}{\mathbf{A}}$$
 es de la forma
$$\begin{bmatrix} \mathbf{B} & 0 \\ \vdots \\ a_{11} & \cdots & a_{1n-1} & 1 \end{bmatrix}$$
 entonces $\boxed{\det(\mathbf{A}) = \det(\mathbf{B})}$.

Demostración. Mediante operaciones elementales por columnas de Tipo I, podemos reducir A a

$$\mathbf{A} = \begin{bmatrix} & \mathbf{B} & \begin{vmatrix} 0 \\ \vdots \\ a_{11} & \cdots & a_{1n-1} \end{vmatrix} \xrightarrow{\text{transformaciones } Tipo \ I} \begin{bmatrix} & \mathbf{B} & \begin{vmatrix} 0 \\ \vdots \\ 0 & \cdots & 0 \end{vmatrix} \end{bmatrix} \equiv \begin{bmatrix} \mathbf{B} \\ & 1 \end{bmatrix}$$

Por emplear solo transformaciones $Tipo\ I$, tenemos que $|\mathbf{A}| = \begin{vmatrix} \mathbf{B} & 1 \\ & 1 \end{vmatrix} = |\mathbf{B}|$ (Proposición 15.0.1).

Nueva notación y definición de menores y cofactores

Sea $\mathbf{q} = (q_1, \dots, q_n,)$ de \mathbb{R}^n , si quitamos la jésima componente, q_j , denotamos al nuevo vector de $\mathbb{R}^{(n-1)}$ como

$$\mathbf{q}^{r_j} = (q_1, \dots, q_{j-1}, q_{j+1}, \dots, q_n,) \in \mathbb{R}^{n-1}.$$

Análogamente, si \mathbf{A} es de orden m por n, denotamos a la submatriz que resulta de quitar la iésima fila con $\mathbf{\hat{A}}^{i}$, y a la submatriz que resulta de quitar la jésima columna con $\mathbf{\hat{A}}^{ij}$. Así, i $\mathbf{\hat{A}}^{ij}$, es la submatriz de orden m-1 por n-1 que resulta de quitar la fila iésima y la columna jésima.

Definición 15.2 (menores y cofactores). Sea ${}^{i}\mathbf{A}^{'j}$ la submatriz de \mathbf{A} resultante de eliminar la fila i y la columna j. Llamamos menor de ${}_{i}\mathbf{A}_{|j}$ al determinante

$$\det \left({^{i^{\Lsh}}} \mathbf{A}^{^{\Lsh}} j \right).$$

Los menores con los signos alternados en función de si (i+j) es par (en cuyo caso el signo no cambia) o impar (en cuyo caso se invierte el signo) se denominan cofactores. Así pues, el cofactor de $_{i|}\mathbf{A}_{|j|}$ es

$$\operatorname{cof}_{ij}\left(\mathbf{A}\right) = (-1)^{i+j} \det \left({}^{i} \mathbf{A}^{r_{j}}\right).$$

Ejemplo 39. Para $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$, tenemos

$${}^{\scriptscriptstyle 1^{\scriptscriptstyle \gamma}}\!\mathbf{A}^{^{\scriptscriptstyle f}\!2} = \begin{bmatrix} 4 & 6 \\ 7 & 9 \end{bmatrix}, \qquad {}^{\scriptscriptstyle 3^{\scriptscriptstyle \gamma}}\!\mathbf{A}^{^{\scriptscriptstyle f}\!3} = \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix},$$

y por tanto

$$\operatorname{cof}_{12}\left(\mathbf{A}\right) = (-1)^{1+2} \det \begin{pmatrix} \mathbf{1}^{\uparrow} \mathbf{A}^{\uparrow 2} \end{pmatrix} = (-1) \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix}.$$

у

$$\operatorname{cof}_{33}\left(\mathbf{A}\right) = (-1)^{3+3} \det \begin{pmatrix} 3^{\hat{}} \mathbf{A}^{\hat{}3} \end{pmatrix} = \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix}.$$

15.6.3. Desarrollo del determinante por cofactores (Expansión de Laplace).

Teorema 15.6.2 ([Expansión de Laplace]). Para cualquier matriz \mathbf{A} de orden n, $\det(\mathbf{A})$ se puede expresar como suma de los productos de los elementos de cualquier columna (fila) de \mathbf{A} por sus correspondientes cofactores:

$$\det(\mathbf{A}) = \sum_{i=1}^{n} a_{ij} \operatorname{cof}_{ij} (\mathbf{A}), \quad expansión \ por \ la \ columna \ jésima$$

o bien

$$\det(\mathbf{A}) = \sum_{i=1}^{n} a_{ij} \operatorname{cof}_{ij} (\mathbf{A}), \quad expansión \ por \ la \ fila \ iésima$$

Demostraci'on. Probaremos la expansi\'on por la columna j'esima. La expansi\'on por filas es similar. Primero movemos la columna j'esima a la última posici\'on con una secuencia de intercambios:

$$(\mathbf{A})_{\substack{\tau \\ [j=(j+1)] \ [(j+1)=(j+2)]}} \dots_{\substack{\tau \\ [(n-1)=n]}} = \left[\mathbf{A}_{|1}; \dots \mathbf{A}_{|j-1}; \ \mathbf{A}_{|j+1}; \ \dots \mathbf{A}_{|n}; \Big| \mathbf{A}_{|j}; \right]; = \left[\begin{array}{c|c} \mathbf{A}^{r_j} & \mathbf{A}_{|j} \end{array} \right].$$

Puesto que hay n-j permutaciones en la sucesión, tenemos que

$$\det \mathbf{A} = \det \left[\mathbf{A}_{|1}; \dots \mathbf{A}_{|n}; \right] = (-1)^{n-j} \cdot \det \left[\mathbf{A}^{\hat{j}} \ \middle| \mathbf{A}_{|j} \right].$$

Escribiendo $\mathbf{A}_{|j}$ como $\begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{pmatrix} = \begin{pmatrix} a_{1j} \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ a_{2j} \\ \vdots \\ 0 \end{pmatrix} + \dots + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ a_{nj} \end{pmatrix}, \text{ y empleando la propiedad multilineal } (\textbf{\textit{P-10}}):$

$$\det \mathbf{A} = (-1)^{n-j} \left(\det \left[\begin{array}{c|c} \mathbf{A}^{r_j} & a_{1j} \\ 0 \\ \vdots \\ 0 \end{array} \right] + \det \left[\begin{array}{c|c} \mathbf{A}^{r_j} & a_{2j} \\ \vdots \\ 0 \end{array} \right] + \cdots + \det \left[\begin{array}{c|c} \mathbf{A}^{r_j} & \vdots \\ 0 \\ a_{nj} \end{array} \right] \right).$$

$$\det \mathbf{A} = (-1)^{n-j} \left((-1)^{n-1} \cdot \det \begin{bmatrix} & \mathbf{1}^{\uparrow} \mathbf{A}^{f_j} & \mathbf{0} \\ & & \mathbf{1} \end{bmatrix} + (-1)^{n-2} \cdot \det \begin{bmatrix} & \mathbf{2}^{\uparrow} \mathbf{A}^{f_j} & \mathbf{0} \\ & & \mathbf{2} \end{bmatrix} + \cdots \right)$$

$$\cdots + (-1) \cdot \det \begin{bmatrix} & (n-1)^{\gamma} \mathbf{A}^{r_j} & \mathbf{0} \\ & & & \mathbf{0} \end{bmatrix} + \det \begin{bmatrix} & n^{\gamma} \mathbf{A}^{r_j} & \mathbf{0} \\ & & & \mathbf{0} \end{bmatrix},$$

$$(n-1)|\mathbf{A}^{r_j} & a_{(n-1)j}| \mathbf{A}^{r_j} & a_{(n-1)j}| \mathbf{A}^{r_j} & a_{nj}| \mathbf{A}^{r_j} & a_{nj}|$$

donde $_{i|}\mathbf{A}^{r_{j}}$ es la fila iésima de la submatriz $\mathbf{A}^{r_{j}}$. Así, por la Proposición 15.6.1

$$\det(\mathbf{A}) = (-1)^{n-j} \sum_{i=1}^{n} a_{ij} (-1)^{n-i} \det \left({}^{i} \mathbf{A}^{ij} \right);$$

y puesto que $(-1)^{n-j} \cdot (-1)^{n-i} = (-1)^{2n-(i+j)} = (-1)^{-(i+j)} = (-1)^{i+j}$, sustituyendo llegamos a

$$\boxed{\det(\mathbf{A}) = \sum_{i=1}^{n} a_{ij} \operatorname{cof}_{ij} (\mathbf{A}).}$$

EJERCICIO 87. Calcule el siguiente determinante:

$$\det \mathbf{A} = \begin{vmatrix} 2 & 0 & 3 & 2 \\ 5 & 1 & 2 & 4 \\ 3 & 0 & 1 & 2 \\ 5 & 3 & 2 & 1 \end{vmatrix}$$

EJERCICIO 88. Calcule el determinante de la matriz genérica de orden 3, desarrollado por los cofactores de la segunda columna.

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$$

15.7. Aplicación de los determinantes

15.7.1. Regla de Cramer para la resolución de un sistema de ecuaciones

Suponga el sistema de ecuaciones $\mathbf{A}x = \mathbf{b}$, donde \mathbf{A} es cuadrada y $|\mathbf{A}| \neq 0$. Sabemos que dicho sistema siempre tiene solución única, sea cual sea el vector \mathbf{b} . Dicha solución es

$$\boldsymbol{x} = \mathbf{A}^{-1} \boldsymbol{b}$$
:

que verifica:

$$\boldsymbol{b} = (\mathbf{A}_{|1})x_1 + \dots + (\mathbf{A}_{|j})x_j + \dots + (\mathbf{A}_{|n})x_n, \tag{15.5}$$

donde los coeficiente x_i son los componentes¹ del vector solución x.

Calculemos el determinante de una nueva matriz, idéntica a $\bf A$ excepto por su jésima columna $\bf A_{|j}$, que ha sido sustituida por el vector $\bf b$:

$$\det \left[\mathbf{A}_{|1}; \ \mathbf{A}_{|2}; \ \dots \overbrace{}^{\mathrm{pos.} \ j}; \ \dots \ \mathbf{A}_{|n}; \right].$$

Si nos fijamos en la Ecuación (15.5) es fácil constatar que para pasar de $\bf A$ a la nueva matriz, hemos multiplicado $\bf A_{|j|}$ por x_j y le hemos sumado una combinación lineal del resto de columnas; por tanto:

$$\det \left[\mathbf{A}_{\mid 1}; \ \ldots \ \stackrel{\mathrm{pos.} \ j}{\mathbf{b}}; \ \ldots \ \mathbf{A}_{\mid n};
ight] = x_j \cdot \det (\mathbf{A}).$$

Despejando x_j encontramos la regla de Cramer para la resolución de sistemas de ecuaciones determinados: cada componente x_j de la solución \boldsymbol{x} del sistema $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$ se puede calcular del siguiente modo

$$x_j = \frac{\det\left[\mathbf{A}_{|1}; \dots \underbrace{\mathbf{b}}^{\text{pos. } j}; \dots \mathbf{A}_{|n};\right]}{\det(\mathbf{A})}.$$

 $^{^1}$ las coordenadas de \boldsymbol{b} en la base formada por las columnas de $\boldsymbol{\mathsf{A}}$

15.7.2. Cálculo de la inversa de una matriz

Definición 15.3. Para \mathbf{A} la matriz $\mathbf{Adj}(\mathbf{A})$ (la matriz adjunta de \mathbf{A}) se define como la transpuesta de la matriz resultante de sustituir cada elemento a_{ij} de \mathbf{A} por su correspondiente cofactor $\operatorname{cof}_{ij}(\mathbf{A})$. Es decir,

$$\mathbf{Adj}(\mathbf{A}) = egin{bmatrix} \operatorname{cof}_{11}(\mathbf{A}) & \operatorname{cof}_{12}(\mathbf{A}) & \cdots & \operatorname{cof}_{1n}(\mathbf{A}) \\ \operatorname{cof}_{21}(\mathbf{A}) & \operatorname{cof}_{22}(\mathbf{A}) & \cdots & \operatorname{cof}_{2n}(\mathbf{A}) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{cof}_{n1}(\mathbf{A}) & \operatorname{cof}_{n2}(\mathbf{A}) & \cdots & \operatorname{cof}_{nn}(\mathbf{A}) \end{bmatrix}^{\mathsf{T}}$$

¿Qué obtenemos si multiplicamos la matriz adjunta de A por la matriz invertible A?

$$\underbrace{\begin{bmatrix} \operatorname{cof}_{11}(\mathbf{A}) & \operatorname{cof}_{21}(\mathbf{A}) & \cdots & \operatorname{cof}_{n1}(\mathbf{A}) \\ \operatorname{cof}_{12}(\mathbf{A}) & \operatorname{cof}_{22}(\mathbf{A}) & \cdots & \operatorname{cof}_{n2}(\mathbf{A}) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{cof}_{1n}(\mathbf{A}) & \operatorname{cof}_{2n}(\mathbf{A}) & \cdots & \operatorname{cof}_{nn}(\mathbf{A}) \end{bmatrix}}_{\mathbf{A}\operatorname{dj}(\mathbf{A})} \underbrace{\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}}_{\mathbf{A}}$$

El primer elemento de la diagonal de la matriz resultante es el producto punto entre la primera fila de $\mathbf{Adj}(\mathbf{A})$ y la primera columna de \mathbf{A} ; y resulta ser el desarrollo de la Expansión de Laplace de $|\mathbf{A}|$ por la primera columna de \mathbf{A} . El segundo elemento de la diagonal es el desarrollo de $|\mathbf{A}|$ por la segunda columna, etc. Y en general el componente jésimo de la diagonal es la expansión por la columna jésima:

$$a_{j|\mathbf{A}}\mathbf{d}\mathbf{j}(\mathbf{A})\mathbf{A}_{|j|} = \operatorname{cof}_{1j}(\mathbf{A})a_{1j} + \operatorname{cof}_{2j}(\mathbf{A})a_{2j} + \operatorname{cof}_{3j}(\mathbf{A})a_{3j} + \dots + \operatorname{cof}_{nj}(\mathbf{A})a_{nj} = \sum_{i=1}^{n} a_{ij}\operatorname{cof}_{ij}(\mathbf{A}) = \operatorname{det}(\mathbf{A})a_{ij}$$

Así pues, la diagonal de la matriz resultante está compuesta por el valor del determinante de A.

Los elementos fuera de la diagonal son determinantes de matrices con dos columnas iguales. Por ejemplo, $_{1|}\mathbf{Adj}(\mathbf{A})\mathbf{A}_{|2}$ es el desarrollo por la primera columna de

$$\begin{vmatrix} a_{12} & a_{12} & \dots & a_{1n} \\ a_{22} & a_{22} & \dots & a_{2n} \\ a_{32} & a_{32} & \dots & a_{3n} \\ \vdots & \vdots & & \vdots \\ a_{n2} & a_{n2} & \dots & a_{nn} \end{vmatrix} = a_{12} \operatorname{cof}_{11}(\mathbf{A}) + a_{22} \operatorname{cof}_{21}(\mathbf{A}) + a_{32} \operatorname{cof}_{31}(\mathbf{A}) + \dots + a_{n2} \operatorname{cof}_{n1}(\mathbf{A}) = \sum_{i=1}^{n} a_{i2} \operatorname{cof}_{i1}(\mathbf{A}) = 0,$$

donde la columna 2 aparece repetida en la primera posición, y por lo tanto el determinante es igual a cero.

Y el elemento késimo $(k \neq 1)$ de la primera fila, ₁ $\mathbf{Adj}(\mathbf{A})\mathbf{A}_{|k}$, es

$$\begin{vmatrix} a_{1k} & a_{12} & \dots & a_{1n} \\ a_{2k} & a_{22} & \dots & a_{2n} \\ a_{3k} & a_{32} & \dots & a_{3n} \\ \vdots & \vdots & & \vdots \\ a_{nk} & a_{n2} & \dots & a_{nn} \end{vmatrix} = a_{1k} \operatorname{cof}_{11}(\mathbf{A}) + a_{2k} \operatorname{cof}_{21}(\mathbf{A}) + a_{3k} \operatorname{cof}_{31}(\mathbf{A}) + \dots + a_{nk} \operatorname{cof}_{n1}(\mathbf{A}) = \sum_{i=1}^{n} a_{ik} \operatorname{cof}_{i1}(\mathbf{A}) = 0,$$

donde la columna késima aparece repetida en primera posición, y por lo tanto el determinante es igual a cero. En general $_{il}\mathbf{Adj}(\mathbf{A})\mathbf{A}_{lj}$ es $|\mathbf{A}|$ si i=j y es 0 si $i\neq j$. Por tanto, como

$$\left(\mathbf{Adj}(\mathbf{A})\right)\mathbf{A} = \begin{bmatrix} |\mathbf{A}| & 0 & \cdots & 0 \\ 0 & |\mathbf{A}| & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & |\mathbf{A}| \end{bmatrix} = |\mathbf{A}| \cdot \mathbf{I} \quad \text{concluimos que} \quad \mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \left(\mathbf{Adj}(\mathbf{A})\right).$$

Parte VI

Autovalores y autovectores. Diagonalización y formas cuadráticas

Autovalores y autovectores

Considere la siguiente ecuación donde $\bf A$ es cuadrada y de orden n:

$$\mathbf{A}x = \lambda x \tag{16.1}$$

Definición 16.1 (Autovalor, autovector y espectro). Un autovalor de una matriz cuadrada \mathbf{A} es cualquier número λ tal que (16.1) tiene soluciones no nulas $\mathbf{x} \neq \mathbf{0}$. En tal caso, a los vectores \mathbf{x} se les llama autovectores de \mathbf{A} correspondientes al autovalor λ . Al conjunto de autovalores de \mathbf{A} se le denomina espectro de \mathbf{A} .

Por ejemplo, es fácil ver que

correspondientes a los autovalores de \mathbf{A} , $\lambda_1 = 6$ y $\lambda_2 = 1$ respectivamente (basta multiplicar $\mathbf{A}x_i$ para comprobarlo).

EJERCICIO 89. Demuestre la siguiente proposición:

Proposición 16.0.1. Una combinación lineal de autovectores correspondientes al autovalor λ es otro autovector correspondiente al mismo autovalor λ .

El anterior resultado justifica la siguiente definición:

Definición 16.2 (Autoespacio). Sea **A** de orden n. Se denomina autoespacio correspondiente al autovalor λ de **A** al subespacio formado por los autovectores correspondientes al autovalor λ de **A** junto con el vector nulo.

$$\mathcal{E}_{\lambda}(\mathbf{A}) = \left\{ \left. oldsymbol{x} \in \mathbb{R}^n
ight| \mathbf{A} oldsymbol{x} = \lambda oldsymbol{x}
ight\}.$$

16.0.1. Cálculo de los autovalores y los autovectores

¿Cómo podemos encontrar los autovalores de una matriz? ¿Y qué podemos decir acerca de la existencia de autovalores de una matriz en general? Para responder, escribamos la Ecuación (16.1) de manera diferente

$$\mathbf{A}x = \lambda x$$

$$\mathbf{A}x = \lambda \mathbf{I}x$$

$$\mathbf{A}x - \lambda \mathbf{I}x = \mathbf{0}$$

$$(\mathbf{A} - \lambda \mathbf{I})x = \mathbf{0},$$
(16.2)

es decir, el autoespacio correspondiente a λ es el espacio nulo de $(\mathbf{A} - \lambda \mathbf{I})$:

$$\mathcal{E}_{\lambda}(\mathbf{A}) = \mathcal{N}(\mathbf{A} - \lambda \mathbf{I})$$
.

Como $\mathcal{E}_{\lambda}(\mathbf{A})$ contiene vectores no nulos (los autovectores), $\mathcal{N}(\mathbf{A} - \lambda \mathbf{I})$ también los contiene, es decir, la matriz cuadrada $(\mathbf{A} - \lambda \mathbf{I})$ es singular, y por tanto:

$$\det\left(\mathbf{A} - \lambda \mathbf{I}\right) = 0. \tag{16.3}$$

Así pues, el problema reside en encontrar los valores de λ para los que $(\mathbf{A} - \lambda \mathbf{I})$ es singular (y por tanto $|\mathbf{A} - \lambda \mathbf{I}| = 0$). Como veremos a continuación, al desarrollar el determinante se comprueba que existen n+1 coeficientes p_0, \ldots, p_n de \mathbb{R} , tales que para todo λ

$$\det (\mathbf{A} - \lambda \mathbf{I}) = p_0 + p_1 \lambda + \dots + p_{n-1} \lambda^{n-1} + p_n \lambda^n.$$

 $|\mathbf{A} - \lambda \mathbf{I}|$ es un polinomio en λ que denominamos polinomio característico de \mathbf{A} y que denotamos con $P_{\mathbf{A}}(\lambda)$. En el ejemplo de más arriba:

$$P_{\mathbf{A}}(\lambda) = \det \left(\mathbf{A} - \lambda \mathbf{I} \right) = \begin{vmatrix} 5 - \lambda & 4 \\ 1 & 2 - \lambda \end{vmatrix} = 6 - 7\lambda + \lambda^2 = 0.$$

Vamos a demostrar que efectivamente para cualquier matriz **A** cuadrada, $P_{\mathbf{A}}(\lambda)$ siempre es un polinomio.

Demostración. Vamos a demostrarlo por inducción sobre el orden n.

El resultado es evidente para cualquier matriz de orden uno, pues: $\det(a_{11} - \lambda) = a_{11} - \lambda$. Supuesto que es cierto para cualquier matriz de orden (n-1), veamos que también es cierto para cualquier matriz de orden n:

$$\det (\mathbf{A} - \lambda \mathbf{I}) = \det \begin{bmatrix} & & a_{1n} & & & \\ & & \ddots & & a_{(n-1)n} \\ \hline & * & \dots & * & a_{nn} - \lambda \end{bmatrix}$$

$$= \det \begin{bmatrix} & & & a_{1n} & & & \\ & & & \ddots & * & a_{nn} & \\ \hline & * & \dots & * & a_{nn} \end{bmatrix} - \lambda \det \begin{bmatrix} & & & 0 & \\ & & & \ddots & \\ \hline & * & \dots & * & 1 \end{bmatrix}$$

$$= \det \begin{bmatrix} & & & a_{1n} & & \\ & & & \ddots & \\ \hline & * & \dots & * & a_{nn} \end{bmatrix} - \lambda \det \begin{pmatrix} & & & & \\ & & & & \\ \hline & * & \dots & * & 1 \end{bmatrix}$$

$$= \det \begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ \hline & * & & & \\ & & & & \\ \hline & * & & \\ \hline & * & & \\ \hline \end{pmatrix} - \lambda \det \begin{pmatrix} & & & \\ & & & \\ & & & \\ \hline \end{pmatrix}, \qquad (16.4)$$

donde n \mathbf{A}^{n} es la submatriz de \mathbf{A} que resulta tras quitar la fila y columna nésimas. Por hipótesis de inducción, det $({}^{n}$ $\mathbf{A}^{n} - \lambda \mathbf{I})$ es un polinomio de grado (n-1); por tanto, el término que resta en (16.4) es un polinomio de grado n.

Ahora se presentan dos casos. Si $a_{nn} \neq 0$, mediante transformaciones elementales de Tipo I se pueden anular todos los componentes de la última fila que están a la izquierda de a_{nn} . Entonces

$$\det \begin{bmatrix} & {}^{n} \mathbf{A}^{\hat{\Gamma}_{n}} - \lambda \mathbf{I} & & a_{1n} \\ & & & \vdots \\ & & a_{(n-1)n} \\ \hline * & \dots & * & a_{nn} \end{bmatrix} = \det \begin{bmatrix} & \mathbf{B} - \lambda \mathbf{I} & a_{1n} \\ & \vdots \\ & & a_{(n-1)n} \\ \hline 0 & \dots & 0 & a_{nn} \end{bmatrix} = a_{nn} \cdot \det \left(\mathbf{B} - \lambda \mathbf{I} \right),$$

que por hipótesis de inducción es un polinomio de grado (n-1), por lo que la diferencia de polinomios en (16.4) es un polinomio de grado n. En el segundo caso $a_{nn} = 0$, por tanto

$$\det \begin{bmatrix} & {}^{n} \mathbf{A}^{\vec{r}_n} - \lambda \mathbf{I} & & a_{1n} \\ & & & & \vdots \\ & & & a_{(n-1)n} \\ \hline * & \dots & * & 0 \end{bmatrix} = \det \begin{bmatrix} & {}^{n} \mathbf{A}^{\vec{r}_n} - \lambda \mathbf{I} & & a_{1n} \\ & & & \vdots \\ & & & a_{(n-1)n} \\ \hline * & \dots & * & -1 \end{bmatrix} + \det \begin{bmatrix} & {}^{n} \mathbf{A}^{\vec{r}_n} - \lambda \mathbf{I} & & \vdots \\ & & & \ddots \\ \hline & * & \dots & * & 1 \end{bmatrix}.$$

Repitiendo el argumento de más arriba, constatamos que ambos determinantes son polinomios de grado (n-1), por lo que su diferencia es un polinomio de grado menor o igual que (n-1). Así que de nuevo la diferencia de polinomios en (16.4) es un polinomio de grado n.

Corolario 16.0.2. Todo autovalor de A es raíz del polinomio característico $P_{A}(\lambda)$.

Para el ejemplo de más arriba, puesto que $\det (\mathbf{A} - \lambda \mathbf{I}) = \lambda^2 - 7\lambda + 6 = 0$; tenemos que

$$\lambda = \frac{7 \pm \sqrt{49 - 24}}{2} = \frac{7 \pm 5}{2} = \begin{cases} 6\\1 \end{cases} \implies \text{ El } espectro \text{ de } \mathbf{A} \text{ es } \{6, 1\}.$$

El Teorema Fundamental del Álgebra¹ establece que un polinomio $P(\lambda)$ con coeficientes complejos ² y de grado n > 0 se puede factorizar como

$$P_{\mathbf{A}}(\lambda) \ = \ p_0 + p_1 \lambda + \dots + p_{n-1} \lambda^{n-1} + p_n \lambda^n \ = \ \alpha(\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda), \quad \text{donde } \alpha, \lambda_1, \dots, \lambda_n \in \mathbb{C}.$$

y por tanto, tiene como mínimo una raíz y como máximo n raíces complejas distintas.

A partir de ahora, y para poder hacer uso del Teorema Fundamental del Álgebra, asumiremos que tanto los vectores como las matrices están formadas por números complejos.

Como consecuencia tenemos el siguiente resultado:

Teorema 16.0.3. Los autovalores de una matriz \mathbf{A} de orden n son las raíces del Polinomio Característico $P_{\mathbf{A}}(\lambda)$. Por tanto, \mathbf{A} tiene como mucho n autovalores distintos.

Se denomina *multiplicidad* de una raíz al número de veces que aparece en la factorización del polinomio. Se extiende esta nomenclatura a los autovalores añadiendo la "coletilla" *algebraica*:

Definición 16.3 (Multiplicidad algebráica de un autovalor). Si λ es una raíz de $P_{\mathbf{A}}$ de multiplicidad k diremos que λ es un autovalor de \mathbf{A} de multiplicidad algebraica k; que denotamos con $\mu(\lambda) = k$.

Siguiendo con el ejemplo de más arriba, la multiplicidad algebraica tanto del autovalor $\lambda_1 = 6$ como de $\lambda_2 = 1$ es uno; y los autoespacios de **A** correspondientes a 6 y a 1 son respectivamente los espacios nulos

$$\mathcal{N}(\mathbf{A} - 6\mathbf{I}); \quad \mathbf{y} \quad \mathcal{N}(\mathbf{A} - 1\mathbf{I});$$

por tanto los autovectores de $\bf A$ correspondientes a 6 y 1 son, respectivamente, las soluciones no nulas de los sistemas

$$\begin{bmatrix} -1 & 4 \\ 1 & -4 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}; \quad \mathbf{y} \quad \begin{bmatrix} 4 & 4 \\ 1 & 1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Definición 16.4 (Multiplicidad geométrica de un autovalor). La dimensión del autoespacio $\mathcal{N}\left(\mathbf{A} - \lambda \mathbf{I}\right)$ se denomina multiplicidad geométrica del autovalor λ ; que denotamos con $\gamma(\lambda)$.

 $^{^{1}\}mathrm{cuya}$ demostración está fuera del alcance de este curso

 $^{^2 \}mathrm{El}$ conjunto de números complejos se denota con $\mathbb{C}.$

13

El problema de encontrar los autovalores y autovectores de una matriz requiere los siguientes pasos:

- 1. Encontrar el polinomio característico $P_{\mathbf{A}}(\lambda) = \det (\mathbf{A} \lambda \mathbf{I}).$
- 2. Encontrar las raíces λ_i de la ecuación característica $\,P_{\pmb{\mathsf{A}}}(\lambda)=0.$
- 3. Resolver los sistemas homogéneos $(\mathbf{A} \lambda_i \mathbf{I}) \boldsymbol{x} = \mathbf{0}$ para encontrar los autovectores.

La multiplicidad algebraica de λ es el número de veces que se repite la raíz λ en el polinomio característico $P_{\mathbf{A}}(\lambda)$.

La multiplicidad geom'etrica de λ es la dimensión del correspondiente autoespacio $\mathcal{E}_{\lambda}(\mathbf{A})$.

Matrices semejantes y diagonalización por bloques triangulares

B

Aquí veremos que toda matriz cuadrada se puede transformar en una matriz diagonal **por bloques triangulares**, es decir, tal que cada submatriz (cada bloque) en la diagonal principal es una matriz triangular; además cada uno de dichos bloques tiene repetido un mismo autovalor en su correspondiente diagonal principal. También veremos la condición necesaria para que los bloques sean de tamaño 1, es decir, para que la matriz sea *diagonalizable*.

Antes de empezar esta lección es fundamental que lea la Sección 4.B en la página 55.

17.1. Diagonalización por bloques triangulares

17.1.1. Matrices semejantes

Definición 17.1. Decimos que A y C (del mismo orden) son semejantes si existe S, invertible, tal que

$$A = S^{-1}CS$$
.

Propiedades compartidas por dos matrices semejantes

Las matrices semejantes comparten muchas propiedades; por ejemplo, tienen el mismo determinante:

$$\det \mathbf{A} = \det \left(\mathbf{S}^{-1} \mathbf{C} \mathbf{S} \right) = \det \mathbf{S}^{-1} \cdot \det \mathbf{C} \cdot \det \mathbf{S} = \det \mathbf{C}; \quad \text{ya que } \det \left(\mathbf{S}^{-1} \right) = \frac{1}{\det \left(\mathbf{S} \right)}.$$

Las matrices semejantes también tienen idéntico polinomio característico:

Proposición 17.1.1. Si A y C son semejantes, entonces tienen el mismo polinomio característico.

Demostración. Puesto que son similares, existe una matriz invertible **S** tal que $C = S^{-1}AS$, entonces

$$\begin{split} P_{\mathbf{C}}(\lambda) &= \det \left(\mathbf{C} - \lambda \mathbf{I} \right) = \det \left(\mathbf{S}^{-1} \mathbf{A} \mathbf{S} - \lambda \mathbf{S}^{-1} \mathbf{S} \right) & \text{pues } \mathbf{C} = \mathbf{S}^{-1} \mathbf{A} \mathbf{S} \ \text{y} \ \mathbf{S}^{-1} \mathbf{S} = \mathbf{I} \\ &= \det \left(\mathbf{S}^{-1} \left(\mathbf{A} - \lambda \mathbf{I} \right) \mathbf{S} \right) & \text{sacando factor común} \\ &= \det \left(\mathbf{S}^{-1} \right) \cdot \det \left(\mathbf{A} - \lambda \mathbf{I} \right) \cdot \det \left(\mathbf{S} \right) & \text{determinante de un producto de matrices} \\ &= \det \left(\mathbf{A} - \lambda \mathbf{I} \right) = P_{\mathbf{A}}(\lambda) & \text{ya que } \det \left(\mathbf{S}^{-1} \right) = \frac{1}{\det \left(\mathbf{S} \right)}. \end{split}$$

Y puesto que cada raíz del polinomio característico es un autovalor de la matriz, y que la multiplicidad de cada raíz es la multiplicidad algebraica de cada autovalor; concluimos que dos matrices semejantes tienen los mismos autovalores y con la misma multiplicidad algebraica.

Pero además los autovalores de dos matrices semejantes también tienen la misma multiplicidad geométrica. Es fácil deducirlo. Sea **A** de orden n; sabemos que si **S** es invertible y del mismo orden, entonces $\mathcal{C}(\mathbf{AS}) = \mathcal{C}(\mathbf{A})$, y por tanto las formas escalonadas de las matrices **AS** y **A** tienen el mismo número de columnas y de pivotes; por tanto dim $\mathcal{N}(\mathbf{AS}) = \dim \mathcal{N}(\mathbf{A})$. Por otra parte sabemos que si **S** es invertible, $\mathcal{N}(\mathbf{SA}) = \mathcal{N}(\mathbf{A})$. Combinando ambos resultados y teniendo en cuenta que

$$\mathbf{S}^{-1}\mathbf{A}\mathbf{S} - \lambda_i \mathbf{I} = \mathbf{S}^{-1}\mathbf{A}\mathbf{S} - \lambda_i \mathbf{S}^{-1}\mathbf{S} = \mathbf{S}^{-1}(\mathbf{A} - \lambda_i \mathbf{I})\mathbf{S},$$

tenemos que para cada autovalor λ_i de \mathbf{A} ,

$$\dim \mathcal{N}\left(\mathbf{S}^{-1}\mathbf{A}\mathbf{S} - \lambda_{i}\mathbf{I}\right) = \dim \mathcal{N}\left(\mathbf{S}^{-1}(\mathbf{A} - \lambda_{i}\mathbf{I})\mathbf{S}\right) = \dim \mathcal{N}\left(\mathbf{A} - \lambda_{i}\mathbf{I}\right).$$

Definición 17.2. La traza de A es la suma de los elementos de su diagonal principal, es decir,

$$\operatorname{tr}(\mathbf{A}) = a_{11} + a_{22} + \dots + a_{nn}$$

Pues bien, dos matrices semejantes también tienen la misma traza. Para demostrarlo comenzamos multiplicando $\bf A$ por la matriz elemental $\bf I_{\tau}$ por la derecha y por su inversa, $(\bf I_{\tau})^{-1}$, por la izquierda. Evidentemente la matriz resultante es similar a $\bf A$. Veamos que la traza no cambia¹...

$$\mathbf{Proposici\acute{o}n} \ \ \mathbf{17.1.2.} \ \ \mathit{Si} \ \ \mathbf{A} = \left(\mathbf{I}_{\boldsymbol{\tau}}\right)^{-1} \mathbf{B} \left(\mathbf{I}_{\boldsymbol{\tau}}\right), \ \ \mathit{es \ decir, \ si} \ \mathbf{A} = \underset{esp(\boldsymbol{\tau}^{-1})}{} \mathbf{B}_{\boldsymbol{\tau}}, \ \ \mathit{entonces} \ \ \mathrm{tr} \left(\mathbf{A}\right) = \mathrm{tr} \left(\mathbf{B}\right).$$

Demostración. Veamos que la traza se mantiene tanto con transformaciones Tipo I como Tipo II:

Si τ es de Tipo II y τ multiplica por α a la columna iésima, entonces $esp(\tau^{-1})$ dividirá por α la fila iésima. Por tanto, el iésimo componente de la diagonal no cambiará. Veámoslo:

$$\mathbf{A} \left(\mathbf{I}_{\underline{\tau} \atop [(\alpha)j]} \right)_{|j} = \left(\mathbf{A}_{\underline{\tau} \atop [(\alpha)j]} \right)_{|j} = \alpha \left(\mathbf{A}_{|j} \right);$$

pero al aplicar la inversa también tenemos

$$\left(\begin{matrix} \tau \\ [(\frac{1}{\alpha})j] \end{matrix} \right) \mathbf{A} = \left(\begin{matrix} \tau \\ [(\frac{1}{\alpha})j] \end{matrix} \right) = \frac{1}{\alpha} (j|\mathbf{A}).$$

Como la primera operación multiplica la componente $_{j|}\mathbf{A}_{|j}$ por α y la segunda la divide por α , la diagonal no cambia; y por tanto tampoco cambia la traza.

Si τ es de Tipo I y τ suma α veces la columna iésima a la jésima, entonces la inversa de la correspondiente matriz elemental $\begin{bmatrix} \mathbf{i} \\ (-\alpha)\mathbf{j}+\mathbf{i} \end{bmatrix}$; y por tanto

$$\left(\mathbf{A}\mathbf{I}_{\underset{[(\alpha)\mathbf{i}+\mathbf{j}]}{\boldsymbol{\tau}}}\right)_{|j} = \alpha\left(\mathbf{A}_{|i}\right) + \mathbf{A}_{|j} \quad \Rightarrow \quad \left(\mathbf{A}\mathbf{I}_{\underset{[(\alpha)\mathbf{i}+\mathbf{j}]}{\boldsymbol{\tau}}}\right)_{|j} = \alpha\left({}_{j}|\mathbf{A}_{|i}\right) + {}_{j}|\mathbf{A}_{|j},$$

pero

$$\left(\underset{i|}{\overset{\tau}{\left(\begin{array}{c} \tau \\ [(-\alpha)j+i] \end{array} \right)}} \mathbf{I} \mathbf{A} \right) = -\alpha \left(_{j|} \mathbf{A} \right) + {}_{i|} \mathbf{A} \quad \Rightarrow \quad \left(\underset{i|}{\overset{\tau}{\left(\begin{array}{c} \tau \\ [(-\alpha)j+i] \end{array} \right)}} \mathbf{I} \mathbf{A} \right)_{|i|} = -\alpha \left(_{j|} \mathbf{A}_{|i|} \right) + {}_{i|} \mathbf{A}_{|i|}.$$

Así pues, estas transformaciones cambian los elementos jésimo e iésimo de la diagonal, a uno se le suma $\alpha_{j|} \mathbf{A}_{|i|}$ y al otro se le resta $\alpha_{j|} \mathbf{A}_{|i|}$. Por tanto (aunque cambia la diagonal) la traza no cambia.

... y puesto que las matrices invertibles son producto de matrices elementales, tenemos el siguiente

Corolario 17.1.3. Si A y B son semejantes, entonces tienen la misma traza.

¹Repase las transformaciones *espejo* en la Sección 4.B en la página 55.

No cambia la traza

B

Y ahora veamos el resultado más importante de la lección: que dada $\bf A$ de orden n, y conocidos sus autovalores, siempre es posible transformar $\bf A$ en una matriz diagonal por bloques triangulares similar a $\bf A$ y cuya diagonal contiene todos los autovalores de $\bf A$.

De propina deduciremos que la suma de los autovalores es la traza y que su producto es el determinante.

Nota 4. ¡Recuerde que para obtener matrices semejantes hay que operar tanto con las filas como con las columnas! (... si multiplicamos por la derecha con S debemos multiplicar por la izquierda con S^{-1}).

17.1.2. Diagonalización por bloques triangulares

Teorema 17.1.4. Para toda matriz cuadrada $\mathbf{A} \in \mathbb{C}^{n \times n}$ existe una matriz invertible \mathbf{S} tal que

$$\mathbf{S}^{-1}\mathbf{A}\mathbf{S} = \begin{bmatrix} \mathbf{T}_{\lambda_k} \\ & \ddots \\ & \mathbf{T}_{\lambda_2} \end{bmatrix} \quad donde \ \mathbf{T}_{\lambda_i} = \begin{bmatrix} \lambda_i \\ * \ \lambda_i \\ & * \ \ddots \\ * \ * \ \cdots \ \lambda_i \end{bmatrix} \quad es \ triangular \ y \ de \ orden \ igual \ a \ la \ multiplicidad$$

algebraica de λ_i , y donde $\{\lambda_1, \ldots, \lambda_k\}$ es el conjunto² de autovalores de **A**.

n S

Antes de demostrar este importante teorema, veamos algunos resultados previos que nos ayudarán a entender los pasos del algoritmo de diagonalización por bloques.

Lema 17.1.5 (De paso inicial). Si $\mathbf{A} \in \mathbb{C}^{n \times n}$ es de la forma

$$\mathbf{A} = \begin{bmatrix} \mathbf{C} & | & \\ \hline * & | & \mathbf{L} \end{bmatrix}$$

donde C (de orden m) es singular y L es triangular inferior sin ceros en la diagonal principal, entonces existe una matriz invertible S tal que

$$\mathbf{S}^{-1}\mathbf{AS} = \begin{bmatrix} \mathbf{C'} & & & \\ & \mathbf{0} & & \\ & & \mathbf{L} \end{bmatrix}, \quad donde \ \mathbf{C'} \ es \ de \ orden \ (m-1).$$

 $Y \ si \ \mathbf{A} \ es \ simplemente \ singular, \ entonces \ \mathbf{S}^{-1}\mathbf{AS} = \left[\begin{array}{c|c} \mathbf{C'} & \\ \hline & \mathbf{*} & 0 \end{array} \right], \ donde \ \mathbf{C'} \ es \ de \ orden \ (m-1).$

Demostración. Etapa 1 [Anulando la última columna de C (su columna mésima)]. Como C (de orden m) es singular, podemos anular su última columna por eliminación Gaussiana usando una sucesión de transformaciones elementales, $I_{\tau_1 \cdots \tau_k} = R$, que involucran únicamente a las m primeras columnas de A. Por tanto, al

 $^{^2}$ Asumimos que en el conjunto $\{\lambda_1,\dots,\lambda_k\}$ no hay elementos repetidos.

aplicar las correspondientes transformaciones inversas "espejo" a las filas, $_{esp(\tau_1^{-1}...\tau_k^{-1})}$ $\mathbf{I}=\mathbf{R}^{-1}$, únicamente modificaremos las primeras m filas de \mathbf{A} (todas ellas con un cero en la posición mésima). Así obtenemos una matriz de la forma

$${}_{esp(\boldsymbol{\tau}_{1}^{-1}...\boldsymbol{\tau}_{k}^{-1})}\mathbf{A}_{(\boldsymbol{\tau}_{1}...\boldsymbol{\tau}_{k})} \,=\, \mathbf{R}^{-1}\mathbf{A}\mathbf{R} \,=\, \begin{bmatrix} & & 0 & & & & \\ \frac{\star}{m\times(m-1)} & 0 & & & & \\ & & d_{m+1} & \beta_{m+1} & & & \\ & & d_{m+2} & * & \beta_{m+2} & & \\ & \vdots & * & * & \ddots & \\ & & d_{n} & * & * & \cdots & \beta_{n} \end{bmatrix}$$

Etapa 2 [Anulando el resto de coeficientes de la columna mésima de $\bf A$ (los que quedan a la izquierda de $\bf L$)]. Gracias a que las componentes β_j de la diagonal principal de $\bf L$ son pivotes, mediante una sucesión de transformaciones elementales $\bf I_{\tau_{(k+1)}\cdots\tau_p}$, (del tipo $\bf I_{\tau}=\bf P$, con j>m), se pueden anular las componentes d_{m+1},\ldots,d_n de la columna mésima. Al aplicar la sucesión de las correspondientes transformaciones inversas "espejo", $a_{esp(\tau_{k+1}^{-1}\dots\tau_p^{-1})} \bf I=\bf P^{-1}$, (del tipo $a_{\bf I}$, con $a_{\bf I}$, con $a_{\bf I}$), solo varían las columnas correspondientes a los asteriscos " $\bf *$ ", ya que la fila mésima contiene únicamente ceros a partir de la posición $a_{\bf I}$; resultando la matriz

$$_{esp(\boldsymbol{\tau}_{1}^{-1}...\boldsymbol{\tau}_{k}^{-1},\boldsymbol{\tau}_{(k+1)}^{-1}...\boldsymbol{\tau}_{p}^{-1})}\mathbf{A}_{(\boldsymbol{\tau}_{1}...\boldsymbol{\tau}_{k},\boldsymbol{\tau}_{k+1}...\boldsymbol{\tau}_{p})}\ =\ \left(\mathbf{P}^{-1}\mathbf{R}^{-1}\right)\mathbf{A}\left(\mathbf{RP}\right) = \left[\begin{array}{c|c} \mathbf{C'} & & \\ \hline & \mathbf{0} & \\ \hline & & \mathbf{L} \end{array}\right],\quad \text{donde}\ \mathbf{P} = \mathbf{I}_{\boldsymbol{\tau}_{(k+1)}...\boldsymbol{\tau}_{p}}.$$

Llamando ${\bf S}$ a la matriz ${\bf RP}={\bf I}_{{\bm \tau}_1\cdots{\bm \tau}_p}$ hemos terminado la demostración del primer caso.

Demostrar el caso en que ${\bf A}$ es simplemente singular es más sencillo...basta con aplicar la Etapa~1.

Lema 17.1.6 (Paso de continuación). Si $\mathbf{A} \in \mathbb{C}^{n \times n}$ es de la forma

$$A = \begin{bmatrix} C & \\ \hline * & T \\ \hline * & & L \end{bmatrix}.$$

donde C (de orden k) es singular, donde L (de orden n-m) es triangular inferior sin ceros en la diagonal principal y donde T es triangular inferior con la diagonal principal llena de ceros, entonces existe S (invertible) tal que

$$\mathbf{S}^{-1}\mathbf{A}\mathbf{S} = \begin{bmatrix} \mathbf{C'} & & \\ \hline * & \mathbf{T'} \\ \hline * & & \mathbf{L} \end{bmatrix},$$

donde C' es de orden (k-1) y T' es triangular inferior con la diagonal principal llena de ceros.

 $Y \text{ si } \mathbf{A} \text{ es simplemente de la forma } \begin{bmatrix} \mathbf{C} & \\ \hline * & \mathbf{T} \end{bmatrix}, \text{ entonces } \mathbf{S}^{-1}\mathbf{A}\mathbf{S} = \begin{bmatrix} \mathbf{C'} & \\ \hline * & \mathbf{T'} \end{bmatrix}, \text{ donde } \mathbf{C'} \text{ es de orden } k-1 \text{ y } \mathbf{T'} \text{ es triangular inferior con la diagonal principal llena de ceros.}$

Demostración. Etapa 1 [Anulando la última columna de **C** (su columna késima)]. Aplicando la eliminación Gaussiana como en la Etapa 1 del lema anterior obtenemos una matriz de la forma

Etapa 2 [Anulando coeficientes de la columna késima que están a la izquierda de L]. Hacemos lo mismo que en la Etapa 2 del lema anterior quedando una matriz de la forma

$$\begin{bmatrix} \mathbf{C'} & & & \\ & \mathbf{0} & & \\ & * & \mathbf{T} & \\ & \mathbf{0} & & \mathbf{L} \end{bmatrix}, \quad \text{donde } \mathbf{T'} = \begin{bmatrix} \mathbf{0} & & \\ & * & \mathbf{T} \end{bmatrix}.$$

Y si ${\bf A}$ es simplemente de la forma $\left[\begin{array}{c|c} {\bf C'} & \\ \hline {\bf *} & {\bf L} \end{array}\right]$, entonces basta aplicar el Etapa~1.

Antes de pasar al siguiente corolario, recuérdese que para una matriz triangular por bloques (véase el EJERCICIO 86 en la página 172)

$$\label{eq:A} \boldsymbol{A} = \begin{bmatrix} \begin{array}{c|c} \boldsymbol{B} & \boldsymbol{0} \\ \hline \boldsymbol{C} & \boldsymbol{D} \\ \end{array} \end{bmatrix} \qquad \mathrm{se\ verifica\ que} \qquad |\boldsymbol{A}| = |\boldsymbol{B}| \cdot |\boldsymbol{D}| \,;$$

por tanto, el polinomio característico de la matriz triangular por bloques **A** es igual al producto de los polinomios característicos de **B** y **D**; es decir $P_{\mathbf{A}}(\lambda) = P_{\mathbf{B}}(\lambda) \cdot P_{\mathbf{D}}(\lambda)$, o expresado con determinantes:

$$\det \left(\mathbf{A} - \lambda \mathbf{I} \right) = \det \left(\mathbf{B} - \lambda \mathbf{I} \right) \cdot \det \left(\mathbf{D} - \lambda \mathbf{I} \right).$$

Usaremos este resultado sobre polinomios característicos en la última parte de la demostración del siguiente corolario, que nos indica como iniciar el algoritmo de diagonalización para generar un primer bloque:

Corolario 17.1.7. Si $\mathbf{A} \in \mathbb{C}^{n \times n}$ y λ_1 es un autovalor de \mathbf{A} , entonces existe \mathbf{S} invertible tal que

o bien
$$\mathbf{S}^{-1}\mathbf{AS} = \begin{bmatrix} \mathbf{C'} & \\ & & \mathbf{T}_{\lambda_1} \end{bmatrix}$$
; o bien $\mathbf{S}^{-1}\mathbf{AS} = \mathbf{T}_{\lambda_1}$;

 $donde \quad \mathbf{T}_{\lambda_1} = \begin{bmatrix} \lambda_1 \\ * \ \lambda_1 \\ & * \ \ddots \\ & * \ \cdots \ \lambda_1 \end{bmatrix} \quad es \ de \ orden \ igual \ a \ la \ multiplicidad \ algebraica \ de \ \lambda_1.$

Demostración. Como $(\mathbf{A} - \lambda_1 \mathbf{I})$ es singular, aplicando el Lema de paso inicial e iterando el Lema de paso de continuación mientras sea posible (mientras la submatriz de la esquina superior izquierda sea singular), llegamos a

$$(\mathbf{S}_{k}^{-1} \cdots \mathbf{S}_{1}^{-1}) \cdot (\mathbf{A} - \lambda_{1} \mathbf{I}) \cdot (\mathbf{S}_{1} \cdots \mathbf{S}_{k}) = \begin{cases} \begin{bmatrix} \mathbf{T} \end{bmatrix} & \text{si pudimos continuar hasta el final} \\ \\ \begin{bmatrix} \mathbf{C'} & \\ \hline * & \mathbf{T} \end{bmatrix} & \text{si topamos con una submatriz } \mathbf{C'} \text{ invertible} \end{cases}, (17.1)$$

donde en ambos casos \mathbf{T} es triangular inferior de orden k, con la diagonal llena de ceros (donde k es el número de pasos que hemos dado). Como para cualquier \mathbf{S} invertible se verifica que $\mathbf{S}^{-1}(\mathbf{A}-\lambda_1\mathbf{I})\mathbf{S} = \mathbf{S}^{-1}\mathbf{A}\mathbf{S}-\lambda_1\mathbf{I}$, sumando $(\lambda_1\mathbf{I})$ en (17.1) tenemos

$$\left(\mathbf{S}_k^{-1} \cdots \mathbf{S}_1^{-1} \right) \cdot \mathbf{A} \cdot \left(\mathbf{S}_1 \cdots \mathbf{S}_k \right) \ = \ \begin{cases} \left[\mathbf{T} + \lambda_1 \mathbf{I} \right] \\ \\ \left[\frac{\mathbf{C}' + \lambda_1 \mathbf{I}}{*} \right] \end{cases} ; \quad \text{donde } \mathbf{T}_{\lambda_1} = \left[\mathbf{T} + \lambda_1 \mathbf{I} \right].$$

En el primer caso k=n y el polinomio característico de la matriz **A** coincide con el polinomio característico de \mathbf{T}_{λ_1} , que es $(\lambda_1-\lambda)^n$, donde n es el orden tanto de la matriz **T** como de **A**.

En el segundo caso, el polinomio característico de $\bf A$ es igual al producto de los polinomios característicos de las dos submatrices, es decir, $\left(P_{\left({\bf C}'+\lambda_1{\bf I}\right)}(\lambda)\right)\cdot(\lambda_1-\lambda)^k$. Ahora bien, como λ_1 no es un autovalor³ de $\left({\bf C}'+\lambda_1{\bf I}\right)$, entonces k es la multiplicidad del autovalor λ_1 .

... el último corolario nos dice cómo continuar el algoritmo para seguir generando el resto de bloques en la diagonal (nótese que es casi idéntico al anterior)...

de orden igual a la multiplicidad algebraica del autovalor λ_i y donde λ_{r+1} es un autovalor⁴ de \mathbf{C} , entonces existe \mathbf{S} invertible tal que

$$o \ bien \qquad \mathbf{S^{\text{-1}AS}} = \begin{bmatrix} \mathbf{C'} & & & & & \\ & \mathbf{T}_{\lambda_{r+1}} & & & & \\ & & \ddots & & & \\ & & & \mathbf{T}_{\lambda_1} \end{bmatrix}, \qquad o \ bien \qquad \mathbf{S^{\text{-1}AS}} = \begin{bmatrix} \mathbf{T}_{\lambda_{r+1}} & & & & \\ & \mathbf{T}_{\lambda_r} & & & & \\ & & & \ddots & & \\ & & & & \mathbf{T}_{\lambda_1} \end{bmatrix},$$

$$donde \ \ \mathbf{T}_{\lambda_{r+1}} = \begin{bmatrix} \lambda_{r+1} & & & \\ * & \lambda_{r+1} & & \\ & * & \lambda_{r+1} & \\ * & * & \ddots & \\ * & * & \cdots & \lambda_{r+1} \end{bmatrix} \ es \ de \ orden \ igual \ a \ la \ multiplicidad \ \text{algebraica} \ de \ \lambda_{r+1}.$$

 $^{^3}$ si fuera autovalor, entonces $\mathbf{C'}$ sería singular.

 $^{^4}$ por tanto también es un autovalor de ${\sf A}$ distinto de $\lambda_1,\ldots,\lambda_r$

Demostración. Como $(\mathbf{C} - \lambda_{r+1}\mathbf{I})$ es singular, repitiendo los pasos de la anterior demostración:

$$\left(\mathbf{S}_k^{-1} \cdots \mathbf{S}_1^{-1} \right) \cdot \mathbf{A} \cdot \left(\mathbf{S}_1 \cdots \mathbf{S}_k \right) \ = \ \begin{cases} \boxed{ \mathbf{T}_{\lambda_{r+1}} } \\ & \mathbf{T}_{\lambda_r} \\ & \mathbf{T}_{\lambda_1} \end{bmatrix} & \text{si pudimos continuar hasta el final} \\ \boxed{ \boxed{ \mathbf{C}' + \lambda_{r+1} \mathbf{I} } \\ & \boxed{ \mathbf{T}_{\lambda_{r+1}} } \\ & \mathbf{T}_{\lambda_{r+1}} \end{bmatrix}} & \text{si topamos con una submatriz } \mathbf{C}' \text{ invertible}$$

donde en ambos casos $\mathbf{T}_{\lambda_{r+1}}$ es triangular inferior de orden k, con λ_{r+1} en la diagonal principal y donde k es el número de pasos que hemos dado.

En el primer caso el polinomio característico de la matriz A es el producto de los polinomios característicos

$$P_{\mathbf{A}}(\lambda) = P_{\mathbf{T}_{\lambda_1}}(\lambda) \cdots P_{\mathbf{T}_{\lambda_r}}(\lambda) \cdot P_{\mathbf{T}_{\lambda_{r+1}}}(\lambda) = (\lambda_1 - \lambda)^{\mu(\lambda_1)} \cdots (\lambda_r - \lambda)^{\mu(\lambda_r)} \cdot (\lambda_{r+1} - \lambda)^k,$$

donde $\mu(\lambda_i)$ es la multiplicidad algebraica del autovalor λ_i . En el segundo caso, el polinomio característico de $\bf A$ es

$$P_{\mathbf{A}}(\lambda) = \left(P_{\left(\mathbf{C}' + \lambda_{r+1}\mathbf{I}\right)}(\lambda)\right) \cdot (\lambda_1 - \lambda)^{\mu(\lambda_1)} \cdots (\lambda_r - \lambda)^{\mu(\lambda_r)} \cdot (\lambda_{r+1} - \lambda)^k.$$

Y como λ_{r+1} no es un autovalor de $(\mathbf{C'} + \lambda_{r+1}\mathbf{I})$, entonces k es la multiplicidad del autovalor λ_{r+1} . \square

Ya solo resta demostrar el Teorema 17.1.4, pero...

Demostración del Teorema 17.1.4. Ya no hay nada que demostrar. Basta aplicar el primer corolario e iterar el segundo hasta finalizar la generación de bloques. \Box

 $\textit{Ejemplo 40. Sea} \ \mathbf{A} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & -2 & 1 \end{bmatrix} \ \text{con autovalores 1, 1 y 0. Vamos a diagonalizar por bloques triangulares:}$

$$\underbrace{\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix}}_{\mathbf{0}\mathbf{I}} \overset{(-)}{\underset{\mathbf{0}}{|}} \underbrace{\begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & -2 & 1 \\ \hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\mathbf{0}} \overset{\boldsymbol{\tau}}{\underset{[[2:3]]}{|}} \overset{[(1)\mathbf{1}+\mathbf{2}]}{\underset{[[2:3]]}{|}} \overset{\boldsymbol{\tau}}{\underset{[[2:3]]}{|}} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ \hline 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}} \overset{\boldsymbol{\tau}}{\underset{[[2:3]]}{|}} \overset{\boldsymbol{\tau}}{\underset{[[2:3]]}{|}} \overset{\boldsymbol{\tau}}{\underset{[[2:3]]}{|}} \overset{\boldsymbol{\tau}}{\underset{[[2:3]]}{|}} \overset{\boldsymbol{\tau}}{\underset{[[2:3]]}{|}} \overset{\boldsymbol{\tau}}{\underset{[2:3]}{|}} \overset{\boldsymbol{\tau}}{\underset{[[2:3]]}{|}} \overset{\boldsymbol{\tau}}{\underset{[2:3]}{|}} \overset{\boldsymbol{\tau}}{\underset{[2:3]}{|}} \overset{\boldsymbol{\tau}}{\underset{[2:3]}{|}} \overset{\boldsymbol{\tau}}{\underset{[1:0]}{|}} \overset{\boldsymbol{\tau}}{\underset{[1:0$$

Así pues,

$$\mathbf{D} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} = \mathbf{S}^{-1} \mathbf{AS};$$

Por lo que hemos llegado a una matriz diagonal

Librería NAcAL para Python

Ejemplo 41. Sea la matriz $\mathbf{A} = \begin{bmatrix} -2 & 0 & 3 \\ 3 & -2 & -9 \\ -1 & 2 & 6 \end{bmatrix}$ con autovalores 1, 1 y 0. Vamos a diagonalizar por bloques.

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix} \xrightarrow{(-)} \begin{bmatrix} -3 & 0 & 3 \\ 3 & -3 & -9 \\ -1 & 2 & 5 \\ \hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} \mathbf{7} \\ [(1)1+3] \\ [(-2)2+3] \end{bmatrix}} \begin{bmatrix} \mathbf{7} \\ -1 & 2 & 0 \\ \hline 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} \mathbf{7} \\ [(1)3+1] \\ [(2)3+2] \end{bmatrix}} \begin{bmatrix} -2 & -2 & 0 \\ 1 & 1 & 0 \\ -1 & 2 & 0 \\ \hline 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} (-) \\ 1 \\ (-) \\ (-) \\ (-) \end{bmatrix}} \begin{bmatrix} -2 & -2 & 0 \\ 1 & 1 & 0 \\ \hline 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} (-) \\ 1 \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \end{bmatrix}} \begin{bmatrix} -2 & -2 & 0 \\ 1 & 1 & 0 \\ \hline 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} (-) \\ 1 \\ (-) \\$$

Así pues,

$$\mathbf{C} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 6 & -1 & 1 \\ -9 & 1 & -2 \\ 4 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} -2 & 0 & 3 \\ 3 & -2 & -9 \\ -1 & 2 & 6 \end{bmatrix} \begin{bmatrix} 6 & -1 & 1 \\ -9 & 1 & -2 \\ 4 & 0 & 1 \end{bmatrix} = \mathbf{S}^{-1} \mathbf{A} \mathbf{S}.$$

Por lo que hemos llegado a una matriz diagonal por bloques triangulares.

```
Librería NAcAL para Python

A = Matrix([[-2,0,3],[3,-2,-9],[-1,2,6]]); L=[1,1,0];

C = Diagonaliza (A, L, 1) \# Matriz diagonal por bloques triangulares

S = C.S \# C = (S**-1) * A * S (La matriz S es un atributo de C)

(S**-1) * A * S \# Comprobación
```

Como se ha visto, el algoritmo es bastante pesado para ser calculado con "papel y lápiz"... ¡pero para eso se inventaron los ordenadores!

Ejemplo 42.
$$\mathbf{A} = \begin{bmatrix} 3 & 0 & -1 & 1 \\ 3 & 2 & -2 & 2 \\ 1 & -2 & 2 & 0 \\ -3 & -2 & 3 & -1 \end{bmatrix}$$
 con autovalores 2 (doble) y 1 (doble). Diagonalicemos por bloques:

Librería NAcAL para Python

A = Matrix([[3,0,-1,1],[3,2,-2,2],[1,-2,2,0],[-3,-2,3,-1]]); L=[1,1,2,2];
C = Diagonaliza (A, L) # Añada como tercer argumento un 1 si quiere ver los pasos
C.S # La matriz S se guarda como atributo S

Así pues,
$$\mathbf{C} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & -2 \\ 1 & 0 & 2 & -2 \\ 1 & -1 & 2 & -2 \\ 1 & -1 & 0 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 3 & 0 & -1 & 1 \\ 3 & 2 & -2 & 2 \\ 1 & -2 & 2 & 0 \\ -3 & -2 & 3 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & -2 \\ 1 & 0 & 2 & -2 \\ 1 & -1 & 2 & -2 \\ 1 & -1 & 0 & 2 \end{bmatrix} = \mathbf{S}^{-1} \mathbf{AS}.$$

17.1.3. Autovalores, determinante y traza

Como la matrices semejantes tienen el mismo determinante, la misma traza y los mismos autovalores (con la misma multiplicidad aritmética y geométrica); y puesto que por el Teorema 17.1.4 sabemos que para toda matriz cuadrada podemos encontrar otra similar a ella, que es diagonal por bloques con sus autovalores en la diagonal principal, concluimos que:

Corolario 17.1.9. La suma de los autovalores de A es igual a la traza de A.

Corolario 17.1.10. El producto de los autovalores de A es igual al determinante de A.

17.1.4. Autovectores

Hemos visto que para toda matriz A cuadrada, existe una matriz S invertible tal que

$$C = S^{-1}AS$$

es diagonal por bloques triangulares, y donde cada bloque triangular tiene repetido el mismo autovalor λ_i en su diagonal principal. Fijémonos ahora en aquellas columnas de \mathbf{C} en la que aparezca un autovalor λ_i con únicamente ceros por debajo, es decir, $\mathbf{C}_{|j} = \lambda_i \mathbf{I}_{|j}$ (por ejemplo, las columnas $\mathbf{C}_{|2}$ y $\mathbf{C}_{|4}$ del último ejemplo). Puesto que $\mathbf{C} = \mathbf{S}^{-1}\mathbf{AS}$, tenemos que

$$\mathsf{AS} = \mathsf{SC} \quad \Longrightarrow \quad \mathsf{AS}_{!i} = \mathsf{SC}_{!i},$$

y como para dichas columnas $\mathbf{C}_{|j} = \lambda_i \mathbf{I}_{|j}$, tenemos que $\left. \mathbf{SC}_{|j} = \lambda_i \mathbf{SI}_{|j} = \lambda_i \mathbf{SI}_{|j} \right|$ y por tanto

$$\mathbf{A}(\mathbf{S}_{|j}) = \lambda_i(\mathbf{S}_{|j}).$$

Corolario 17.1.11. $Si C = S^{-1}AS$ es diagonal por bloques triangulares y $C_{|j|}$ tan solo tiene ceros por debajo del autovalor λ_i , entonces $S_{|j|}$ es un autovector asociado al autovalor λ_i .

Así, usando nuestra librería de Python con el último ejemplo, llegamos a

$$\frac{\begin{bmatrix} \mathbf{C} \\ \mathbf{S} \end{bmatrix}}{\begin{bmatrix} \mathbf{S} \end{bmatrix}} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & -2 \\ 1 & 0 & 2 & -2 \\ 1 & -1 & 2 & -2 \\ 1 & -1 & 0 & 2 \end{bmatrix}, \quad \mathbf{y}$$

deducimos que (0, 0, -1, -1) es un autovector para $\lambda = 2$; y (-2, -2, -2, 2) lo es para $\lambda = 1$.

Nótese que tras diagonalizar por bloques triangulares $\frac{\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix}}{\begin{bmatrix} esp(\tau_1^{-1}...\tau_p) \\ \end{bmatrix}} \underbrace{\begin{bmatrix} \mathbf{C} \\ \mathbf{S} \end{bmatrix}}_{\text{donde}} \quad \text{donde} \quad \mathbf{S} = \mathbf{I}_{\boldsymbol{\tau}_1...\boldsymbol{\tau}_p},$

 ${\sf como}\ {\sf S}\ {\sf es}\ {\sf invertible},$ necesariamente los autovectores correspondientes a autovalores distintos son linealmente independientes.

17.2. Matrices diagonalizables

Definición 17.3 (Matriz diagonalizable). Se dice que **A** (de orden n) es diagonalizable si existe una matriz **S** tal que **S**⁻¹**AS** es diagonal.

Ejemplo 43.

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix} \xrightarrow{(-)} \begin{bmatrix} 3 & 4 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ \hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{smallmatrix} \tau \\ [(-2)\mathbf{2}+\mathbf{3}] \\ [(2)\mathbf{1}+\mathbf{3}] \\ \hline \end{smallmatrix}} \begin{bmatrix} 3 & 4 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \hline 1 & 0 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{smallmatrix} \tau \\ [(-2)\mathbf{3}+\mathbf{1}] \\ [(2)\mathbf{3}+\mathbf{2}] \\ \hline \end{smallmatrix}} \begin{bmatrix} 3 & 4 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \hline 1 & 0 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{smallmatrix} t \\ (-2)\mathbf{3}+\mathbf{1} \\ [(2)\mathbf{3}+\mathbf{2}] \\ \hline \end{smallmatrix}} \begin{bmatrix} 3 & 4 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \hline 1 & 0 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{smallmatrix} t \\ (-2)\mathbf{3}+\mathbf{1} \\ [(2)\mathbf{3}+\mathbf{2}] \\ \hline \end{smallmatrix}} \begin{bmatrix} 3 & 4 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \hline 1 & 0 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{smallmatrix} t \\ (-2)\mathbf{3}+\mathbf{1} \\ \hline \end{smallmatrix}} \begin{bmatrix} 3 & 4 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \hline 1 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{smallmatrix} t \\ (-2)\mathbf{3}+\mathbf{1} \\ \hline \end{smallmatrix}} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ \hline 1 & -2 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{D} \\ \mathbf{S} \end{bmatrix}$$

Fíjese que

$$\mathbf{AS}_{|1} = \begin{bmatrix} 3 & 4 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 3\mathbf{A}_{|1}; \quad \mathbf{AS}_{|2} = \begin{bmatrix} 3 & 4 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} = 1\mathbf{A}_{|2}; \quad \mathbf{AS}_{|3} = \begin{bmatrix} 3 & 4 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = 0\mathbf{A}_{|3}.$$

Cuando la matriz es diagonalizable, todas las columnas de S son autovectores (linealmente independientes), y por tanto, la multiplicidad *algebraica* de cada autovalor (el número de veces que aparece cada λ_i en la diagonal) necesariamente coincide con la multiplicidad *geométrica* (el número de autovectores linealmente independientes asociados a dicho autovalor).

Corolario 17.2.1. Si para cada autovalor λ_i de $\mathbf{A} \in \mathbb{C}^{n \times n}$ las multiplicidades algebraica y geométrica coinciden, la matriz es diagonalizable (es decir, los bloques de la diagonalización por bloques son diagonales).

Corolario 17.2.2. Si todos los autovalores A son distintos entre si, entonces A es diagonalizable.

Demostraci'on. Si la multiplicidad algebraica de cada autovalor es uno, entonces al diagonalizar por bloques, cada bloque resultará de orden 1.

Si A es diagonalizable e invertible tenemos que

$$\mathbf{A}^{-1} = \left(\mathbf{S}\mathbf{D}\mathbf{S}^{-1}\right)^{-1} = \mathbf{S}\mathbf{D}^{-1}\mathbf{S}^{-1}.$$

Además, si seguimos el siguiente convenio

$$\mathbf{A}^0 = \mathbf{A}^{(1-1)} = \mathbf{A}^1 (\mathbf{A}^{-1}) = \mathbf{I};$$

entonces, para toda **A** diagonalizable e invertible y todo numero entero n: $\mathbf{A}^n = \mathbf{S} \mathbf{D}^n \mathbf{S}^{-1}$.

Diagonalización ortogonal de matrices simétricas

18.1. Método de Gram-Schmidt

Definición 18.1. Un sistema de vectores es ortogonal si cada uno de los vectores es ortogonal al resto.

Proposición 18.1.1. Un sistema ortogonal sin vectores nulos es linealmente independiente.

Demostración. Sea $\mathbf{Z} = [\mathbf{z}_1; \dots \mathbf{z}_n;]$ un sistema ortogonal sin vectores nulos. Si $\mathbf{0} = a_1 \mathbf{z}_1 + \dots + a_n \mathbf{z}_n$ entonces para cada j = 1:n

$$0 = \mathbf{0} \cdot \mathbf{z}_j = \left(a_1 \mathbf{z}_1 + \dots + a_n \mathbf{z}_n\right) \cdot \mathbf{z}_j = a_j \mathbf{z}_j \cdot \mathbf{z}_j,$$

y como $z_j \cdot z_j \neq 0$ (pues $z_j \neq 0$), necesariamente $a_j = 0$.

Teorema 18.1.2 (Método de Gram-Schmidt). Dado un sistema de vectores, existe una sucesión de transformaciones elementales "de izquierda a derecha" que transforman el sistema en otro equivalente ortogonal.

Demostración. Lo demostraremos por inducción sobre el número de vectores del sistema.

Si el sistema contiene un único vector no hay nada que hacer. Veamos que si el resultado es cierto para sistemas de n vectores, entonces también es cierto para sistemas de n+1 vectores.

Sea el sistema $[y_1; \dots y_n; y_{(n+1)}]$, aplicando la hipótesis de inducción, existe una sucesión, τ_1, \dots, τ_k , de transformaciones elementales de "izquierda a derecha" que transforman el sub-sistema formado por los n primeros vectores en otro sistema $[z_1; \dots z_n;]$ que es equivalente, pero además es ortogonal; por tanto, aplicando las transformaciones elementales sobre el sistema completo tenemos

$$[y_1; \dots y_n; y_{(n+1)};]_{\tau_1 \dots \tau_k} = [z_1; \dots z_n; y_{(n+1)};].$$

Ahora, con una segunda sucesión de transformaciones elementales "de izquierda a derecha", $\boldsymbol{\tau}_{(k+1)}, \ldots, \boldsymbol{\tau}_{p}$, podemos transformar el último vector en $\boldsymbol{z}_{(n+1)} = \boldsymbol{y}_{(n+1)} - a_1\boldsymbol{z}_1 - a_2\boldsymbol{z}_2 \cdots - a_n\boldsymbol{z}_n$. Pues bien, hagámoslo de manera que el nuevo vector $\boldsymbol{z}_{(n+1)}$ sea ortogonal a todos los vectores \boldsymbol{z}_{j} que le anteceden, es decir, de manera que

$$\mathbf{z}_{(n+1)} \cdot \mathbf{z}_j = 0, \quad \text{para } j = 1, \dots, n.$$

Para cada j = 1, ..., n tenemos dos casos posibles:

- Si z_i es cero, entonces z_i y $z_{(n+1)}$ ya son ortogonales (y no hay nada que hacer).
- Si $z_j \neq 0$, entonces

$$0 = \boldsymbol{z}_{(n+1)} \cdot \boldsymbol{z}_j = \left(\boldsymbol{y}_{(n+1)} - \widehat{a_1} \, \boldsymbol{z}_1 - \dots - \widehat{a_n} \, \boldsymbol{z}_n \right) \cdot \boldsymbol{z}_j = \left(\boldsymbol{y}_{(n+1)} \cdot \boldsymbol{z}_j \right) - \widehat{a_j} \, \left(\boldsymbol{z}_j \cdot \boldsymbol{z}_j \right) \ \Leftrightarrow \ \widehat{a_j} = \frac{\boldsymbol{y}_{(n+1)} \cdot \boldsymbol{z}_j}{\boldsymbol{z}_j \cdot \boldsymbol{z}_j}.$$

¹decimos que dos sistemas son equivalentes si generan el mismo espacio (véase la Definición 9.3 en la página 106)

Por tanto, la segunda sucesión de transformaciones elementales realiza la siguiente transformación.

$$\boldsymbol{z}_{(n+1)} = \boldsymbol{y}_{(n+1)} - \sum_{\boldsymbol{z}_j \neq \boldsymbol{0}} \widehat{a_j} \, \boldsymbol{z}_j, \quad \text{donde} \quad \widehat{a_j} = \frac{\boldsymbol{y}_{(n+1)} \cdot \boldsymbol{z}_j}{\boldsymbol{z}_j \cdot \boldsymbol{z}_j}, \quad (18.1)$$

de manera que tras las dos sucesiones de transformaciones elementales tenemos

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

que es un sistema ortogonal equivalente al de partida.

Compare el Teorema 18.1.2 en la página anterior con el Teorema 11.6.4 en la página 144. Fíjese además que $\sum_{z_i \neq 0} \widehat{a_j} z_j$ en la Ecuación 18.1 es la proyección ortogonal de $y_{(n+1)}$ sobre $\mathcal{L}([z_1; \dots z_n;])$.

Corolario 18.1.3. Cualquier sistema ortogonal de vectores de \mathbb{R}^n no nulos se puede extender hasta formar una base ortogonal de \mathbb{R}^n .

Demostración. Sea $[z_1; \ldots z_r;]$ un sistema ortogonal de vectores de \mathbb{R}^n y sea $[y_1; \ldots y_m;]$ un sistema generador de \mathbb{R}^n . Entonces aplicando Gram-Schmidt sobre el sistema ampliado

$$[\boldsymbol{z}_1; \ldots \, \boldsymbol{z}_r; \, \boldsymbol{y}_1; \ldots \, \boldsymbol{y}_m;]$$

comenzando sobre el vector (r+1)ésimo, obtenemos un nuevo sistema equivalente al ampliado y ortogonal²

$$[\boldsymbol{z}_1;\ldots\,\boldsymbol{z}_r;\,\boldsymbol{z}_{r+1};\ldots\,\boldsymbol{z}_{r+m};].$$

Por ser un sistema equivalente al anterior, es un sistema generador de \mathbb{R}^n . Si de este sistema quitamos los vectores nulos, seguirá siendo generador y ortogonal, pero además será linealmente independiente.

18.2. Matrices ortogonales

Definición 18.2. Un sistema de vectores es ortonormal si es ortogonal y cada vector es de norma uno.

En la demostración del Teorema espectral que enunciaremos más adelante, usaremos el siguiente resultado.

Ejercicio 90. Demuestre el siguiente corolario:

Corolario 18.2.1. Dado q de \mathbb{R}^n y unitario, existe una base ortonormal de \mathbb{R}^n cuyo último vector es q.

Habitualmente denotamos con Q las matrices cuvas columnas forman un sistema ortonormal.

EJERCICIO 91. Demuestre la siguiente proposición:

Proposición 18.2.2. Las columnas de $\mathbf{Q}_{m \times n}$ son ortonormales si y solo si $\mathbf{Q}^{\mathsf{T}}\mathbf{Q} = \mathbf{I}_{n \times n}$.

Nótese que cuando m > n = r entonces $\mathbf{Q}^\mathsf{T} \mathbf{Q} = \mathbf{I}_{n \times n} \neq \mathbf{Q}(\mathbf{Q}^\mathsf{T})$. Por ejemplo, si $\mathbf{Q} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$ entonces

$$\mathbf{Q}^{\mathsf{T}}\mathbf{Q} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{\overset{I}{\underset{2\times 2}{\mathbf{I}}}}; \quad \text{pero} \quad \mathbf{Q} \ (\mathbf{Q}^{\mathsf{T}}) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \neq \mathbf{\overset{I}{\underset{3\times 3}{\mathbf{I}}}}.$$

Definición 18.3. Decimos que Q es ortogonal si es cuadrada y sus columnas son ortonormales.

 $^{^2}$ En realidad se puede empezar desde la posición 1, pues los vectores y_i ya son ortogonales entre si, y por tanto el método no los modifica.

Corolario 18.2.3. **Q** es ortogonal si y solo si $\mathbf{Q}^{\mathsf{T}} = \mathbf{Q}^{\mathsf{-1}}$.

Nótese por tanto que las columnas de una matriz ortogonal \mathbf{Q} de orden n forman una base de \mathbb{R}^n .

EJERCICIO 92. Demuestre las siguientes proposiciones:

- (a) **Proposición 18.2.4.** El producto de matrices ortogonales es ortogonal.
- (b) **Proposición 18.2.5.** Si **A** es simétrica y **Q** es ortogonal, entonces **Q**⁻¹**AQ** es simétrica.

18.3. Nota sobre la conjugación de números complejos

Un número complejo se expresa de la forma a+bi, donde a y b son números reales, y donde i es la solución de la ecuación $x^2 = -1$ (es decir, $i^2 = -1$).

Puesto que ningún número real satisface dicha ecuación, a i se le denomina número imaginario. Para el número complejo a + bi, denominamos parte real a "a" y parte imaginaria a "b".

- Para un número complejo a + bi, su conjugado es: $\overline{a + bi} = a bi$ (es decir, se cambia el signo de la parte imaginaria).
- \blacksquare Un número complejo es real si y solo si es igual a su conjugado: $\overline{x}=x.$
- El producto del número a + bi por su conjugado es $(a + bi) \cdot (\overline{a + bi}) = a^2 + b^2$.
- \blacksquare El conjugado de una suma es la suma de los conjugados: $\overline{x+y}=\overline{x}+\overline{y}$.
- El conjugado de un producto es el producto de los conjugados: $\overline{x \cdot y} = \overline{x} \cdot \overline{y}$.

18.4. Diagonalización de matrices simétricas

Proposición 18.4.1. Los autovalores λ de una matriz real y simétrica son reales.

Demostración. Suponga $\mathbf{A}x = \lambda x$ (con $x \neq \mathbf{0}$); y donde tanto λ como x son complejos. Entonces multiplicando $\mathbf{A}x = \lambda x$ por el conjugado \overline{x} , tenemos

$$\overline{x} \mathbf{A} x = \overline{x} \cdot \lambda x = \lambda (\overline{x} \cdot x),$$

donde $\overline{x} \cdot x \neq 0$ por ser $x \neq 0$. Puesto que el conjugado de \mathbf{A} es \mathbf{A} , por ser una matriz real; tomando el conjugado de $\mathbf{A}x = \lambda x$, tenemos $\mathbf{A}\overline{x} = \overline{\lambda}\overline{x}$. Como \mathbf{A} es simétrica, para cualquier \mathbf{y} tenemos que $\mathbf{A}\mathbf{y} = \mathbf{y}\mathbf{A}$, en particular $\mathbf{A}\overline{x} = \overline{x}\mathbf{A} = \overline{\lambda}\overline{x}$. Y multiplicando por \mathbf{x} a ambos lados tenemos

$$\overline{x} \mathbf{A} x = \overline{\lambda} \overline{x} \cdot x = \overline{\lambda} (\overline{x} \cdot x).$$

Como en las dos ecuaciones de más arriba los lados izquierdos son idénticos, necesariamente los lados derechos son iguales; por tanto

$$\lambda = \lambda$$

algo que sólo es posible si la parte imaginaria es cero. Por tanto los autovalores son reales.

Además, como los autovectores provienen de resolver la ecuación real $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$, necesariamente son reales; por tanto, obtenemos el siguiente corolario:

Corolario 18.4.2. Los autovectores x de una matriz real y simétrica son reales.

Teorema 18.4.3. Si $\underset{n \times n}{\mathsf{A}}$ es real y simétrica, entonces existe Q ortogonal y tal que $\mathsf{Q}^{\mathsf{-1}}\mathsf{A}\mathsf{Q}$ es diagonal.

Demostración. Lo demostraremos describiendo un algoritmo que construye dicha base en dos etapas.

Paso inicial. Sea q_n un autovector unitario de **A** correspondiente al autovalor λ_n . Aplicando el Corolario 18.2.1 extendemos el sistema $[q_n;]$ hasta obtener una base ortonormal de \mathbb{R}^n

$$\mathbf{Q}_n = \begin{bmatrix} \mathbf{q}_1; \dots \mathbf{q}_n; \end{bmatrix}$$
.

Por tanto \mathbf{Q}_n es ortogonal, y $\mathbf{Q}_n^{-1}\mathbf{A}\mathbf{Q}_n$ es simétrica y de la forma $\mathbf{Q}_n^{-1}\mathbf{A}\mathbf{Q}_n = \begin{bmatrix} \mathbf{A}' & \mathbf{0} \\ \frac{(n-1)\times(n-1)}{2} & \vdots \\ \frac{n-1}{2} & \frac{n-1}{2} \end{bmatrix}$,

$$\text{que} \quad \left(\mathbf{Q}_{n}^{-1}\mathbf{A}\mathbf{Q}_{n}\right)_{\mid n} = \left(\mathbf{Q}_{n}^{\mathsf{T}}\mathbf{A}\mathbf{Q}_{n}\right)_{\mid n} = \mathbf{Q}_{n}^{\mathsf{T}}\mathbf{A}\boldsymbol{q}_{n} = \lambda_{n} \cdot \mathbf{Q}_{n}^{\mathsf{T}}\boldsymbol{q}_{n} = \lambda_{n} \begin{pmatrix} \boldsymbol{q}_{1} \cdot \boldsymbol{q}_{n} \\ \boldsymbol{q}_{2} \cdot \boldsymbol{q}_{n} \\ \vdots \\ \boldsymbol{q}_{n} \cdot \boldsymbol{q}_{n} \end{pmatrix} = \begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{0} \\ \vdots \\ \lambda_{n} \end{pmatrix} = \lambda_{n} \cdot \mathbf{I}_{\mid n}.$$

Paso de continuación. Supongamos que tras n-k pasos tenemos

$$\mathbf{Q}_{k+1}^{-1} \cdots \mathbf{Q}_n^{-1} \cdot \mathbf{A} \cdot \mathbf{Q}_n \cdots \mathbf{Q}_{k+1} = \begin{bmatrix} \mathbf{A'} & & & & \\ \frac{\mathbf{A'}}{k \times k} & & & & \\ & \lambda_{k+1} & & & \\ & & \ddots & & \\ & & & \lambda_n \end{bmatrix},$$
(18.2)

como $\mathbf{A'}$ es simétrica, tomamos un autovector $\boldsymbol{x}_k \in \mathbb{R}^k$ de $\mathbf{A'}$ correspondiente al autovalor λ_k y de norma 1. Aplicando el Corolario 18.2.1 formamos una base ortonormal $\mathbf{R} = [\mathbf{x}_1; \dots \mathbf{x}_k;]$ de \mathbb{R}^k . Ahora, si consideramos la matriz por bloques

$$\mathbf{Q}_k = \left[egin{array}{c|c} \mathbf{R} & \mathbf{0} & & & \\ \hline \mathbf{0} & \mathbf{I} & & & \\ & & & & & \end{array}
ight] = \left[oldsymbol{y}_1; \dots \, oldsymbol{y}_n;
ight],$$

entonces \mathbf{Q}_k es ortogonal y sus últimas columnas $\mathbf{y}_k, \dots, \mathbf{y}_n$ son autovectores de la matriz de la Ecuación (18.2); es decir, llamando **B** a la matriz de dicha ecuación tenemos que

$$\mathbf{B} \mathbf{y}_j = \lambda_j \mathbf{y}_j$$
; para $j = k, \dots, n$.

Consecuentemente, multiplicando (18.2) por \mathbf{Q}_k^{-1} y por \mathbf{Q}_k tenemos

$$\mathbf{Q}_k^{-1} \cdot \left(\mathbf{Q}_{k+1}^{-1} \cdots \mathbf{Q}_n^{-1} \cdot \mathbf{A} \cdot \mathbf{Q}_n \cdots \mathbf{Q}_{k+1} \right) \cdot \mathbf{Q}_k \ = \ \mathbf{Q}_k^{-1} \mathbf{B} \mathbf{Q}_k \ = \ \begin{bmatrix} \mathbf{A''} \\ \frac{k-1 \times k-1}{2} & & \\ & \lambda_k & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix},$$

ya que,
$$\left(\mathbf{Q}_k^{-1} \mathbf{B} \mathbf{Q}_k \right)_{|j} = \mathbf{Q}_k^{\mathsf{T}} \left(\mathbf{B} \mathbf{Q}_k \right)_{|j} = \mathbf{Q}_k^{\mathsf{T}} \left(\mathbf{B} \mathbf{y}_j \right) = \mathbf{Q}_k^{\mathsf{T}} \left(\lambda_j \mathbf{y}_j \right) = \lambda_j \begin{pmatrix} \mathbf{y}_1 \cdot \mathbf{y}_j \\ \mathbf{y}_2 \cdot \mathbf{y}_j \\ \vdots \\ \mathbf{y}_n \cdot \mathbf{y}_j \end{pmatrix} = \lambda_j \left(\mathbf{I}_{|j} \right).$$

Así, el producto de matrices $\mathbf{Q} = \mathbf{Q}_n \cdots \mathbf{Q}_1$ es ortogonal y $\mathbf{D} = \mathbf{Q}^{-1} \mathbf{A} \mathbf{Q}$ es diagonal con los autovalores $\lambda_1,\dots,\lambda_n$ de $\boldsymbol{\mathsf{A}}$ correspondientes a las columnas de $\boldsymbol{\mathsf{Q}}$ en su diagonal principal.

Definición 18.4. A es diagonalizable ortogonalmente si existe **Q** ortogonal tal que **Q**⁻¹**AQ** es diagonal.

El anterior teorema tiene un importante corolario que se conoce por Teorema Espectral:

Corolario 18.4.4 (Teorema espectral). Si A (de orden n) es real y simétrica, entonces existe una base ortonormal de \mathbb{R}^n formada por autovectores de A.

Para finalizar, demostramos un último resultado acerca de la diagonalización de matrices simétricas:

Proposición 18.4.5. Los autovectores correspondientes a autovalores distintos, de una matriz simétrica, son ortogonales entre si.

Demostración. Considere dos autovectores, x e y, correspondientes a autovalores distintos: $\mathbf{A}x = \lambda_1 x$ y $\mathbf{A}y = \lambda_2 y$. Entonces

$$\lambda_1 \boldsymbol{x} \cdot \boldsymbol{y} = \mathbf{A} \boldsymbol{x} \cdot \boldsymbol{y} = \boldsymbol{x} (\mathbf{A}^{\mathsf{T}}) \boldsymbol{y} = \boldsymbol{x} \mathbf{A} \boldsymbol{y} = \lambda_2 (\boldsymbol{x} \cdot \boldsymbol{y}).$$

Como $\lambda_1 \neq \lambda_2$; necesariamente:

$$\lambda_1(\boldsymbol{x}\cdot\boldsymbol{y}) - \lambda_2(\boldsymbol{x}\cdot\boldsymbol{y}) = 0 \implies (\lambda_1 - \lambda_2)\boldsymbol{x}\cdot\boldsymbol{y} = 0 \implies \boldsymbol{x}\cdot\boldsymbol{y} = 0.$$

EJERCICIO 93. Demuestre la siguiente

Proposición 18.4.6. Si una matriz es diagonalizable ortogonalmente, entonces es simétrica.

Para finalizar, la demostración del Teorema 18.4.3 nos describe un algoritmo para diagonalizar $\bf A$ ortogonalmente, obteniendo una matriz ortogonal $\bf Q$ cuyas columnas son autovectores de $\bf A$; pero, como toda matriz simétrica es diagonalizable, también podemos obtener una matriz $\bf Q$ aplicando el algoritmo descrito en la demostración del Teorema 17.1.4 de diagonalización por bloques triangulares: primero aplicamos la diagonalización por semejanza

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix} \xrightarrow[esp(\boldsymbol{\tau}_1^{-1}...\boldsymbol{\tau}_p]{} \\ \xrightarrow[esp(\boldsymbol{\tau}_1^{-1}...\boldsymbol{\tau}_p]{} \\ \end{bmatrix} \qquad \text{donde} \quad \mathbf{S} = \mathbf{I}_{\boldsymbol{\tau}_1...\boldsymbol{\tau}_p},$$

y a continuación aplicamos Gram-Schmidt sobre las columnas de ${\bf S}$ para asegurarnos que las columnas de ${\bf S}$ que corresponden a autovalores repetidos son perpendiculares; finalmente normalizamos todas las columnas para obtener una matriz ${\bf Q}$.

Formas cuadráticas

19.1. Formas cuadráticas y matrices definidas positivas

Un polinomio es una expresión que contiene variables y coeficientes, y en la que únicamente están involucradas las operaciones de suma, resta, producto y exponentes no negativos de las variables. Un ejemplo de polinomio en x es $x^2 - 4x + 7$. Y un ejemplo de polinomio en tres variables es $x^3 + 2xyz^2 - yz + 1$.

El grado de un polinomio es el mayor de los grados de sus monomios (o términos individuales) con coeficientes no nulos. El grado de cada término es la suma de los exponentes de las variables que aparecen en él, y por tanto nunca es negativo. Así, para los ejemplos anteriores, el grado del polinomio $x^2 - 4x^1 + 7x^0$ es dos; y el grado del polinomio $x^3 + 2x^1y^1z^2 - y^1z^1 + 1$ es cuatro (1+1+2).

Definición 19.1. Una forma cuadrática es un polinomio en el que todos sus términos son de grado dos.

Por ejemplo, $4x^2 + 2xy - 3y^2$ es una forma cuadrática en las variables x e y.

19.1.1. Formas cuadráticas reales

Toda matriz $\bf A$ simétrica de orden n define una forma cuadrática $q_{\bf A}$ en n variables mediante la formula

$$q_{\mathbf{A}}(\mathbf{x}) = \mathbf{x} \mathbf{A} \mathbf{x}.$$

Recíprocamente, dada una forma cuadrática en n variables, sus coeficientes se pueden arreglar en una matriz simétrica de orden n. Volviendo al ejemplo de más arriba

$$4x^{2} + 2xy - 3y^{2} = \begin{pmatrix} x, & y, \end{pmatrix} \begin{bmatrix} 4 & 1 \\ 1 & -3 \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

y con la matriz $\begin{bmatrix} 1 & -2 \\ -2 & 4 \\ & & 5 \end{bmatrix}$ formamos la forma cuadrática

$$(x, y, z,)$$
 $\begin{bmatrix} 1 & -2 \\ -2 & 3 \\ & 5 \end{bmatrix}$ $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = x^2 - 4xy + 3y^2 + 5z^2.$

19.1.2. Matrices definidas positivas

Definición 19.2. Una matriz simétrica $\mathbf{A} \in \mathbb{R}^{n \times n}$ es definida positiva si para todo $\mathbf{x} \neq \mathbf{0}$ de \mathbb{R}^n , $\mathbf{x} \mathbf{A} \mathbf{x} > 0$.

Como consecuencia de la definición tenemos que

Proposición 19.1.1. Si \mathbf{A} tiene rango n, entonces $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ es definida positiva.

Demostración. Por una parte,

$$\boldsymbol{x}\left(\mathbf{A}^{\intercal}\right)\mathbf{A}\boldsymbol{x}=\left(\mathbf{A}\boldsymbol{x}\right)\cdot\left(\mathbf{A}\boldsymbol{x}\right)=\left\|\mathbf{A}\boldsymbol{x}\right\|^{2}\geq0.$$

Como **A** es de rango completo por columnas, si $x \neq 0$, entonces $\mathbf{A}x \neq 0$; y por tanto $x\mathbf{A}x = \|\mathbf{A}x\|^2 > 0$. \square

Hay una estrecha relación entre los signos de los autovalores de una matriz \mathbf{A} y el signo de la forma cuadrática asociada $q_{\mathbf{A}}(\mathbf{x}) = \mathbf{x} \mathbf{A} \mathbf{x}$.

Proposición 19.1.2. Una matriz real y simétrica de orden n es definida positiva si y sólo si, son positivos todos sus autovalores.

Demostración. La demostración se basa en la misma idea de la última demostración junto al hecho de que toda matriz real y simétrica es diagonalizable ortogonalmente de manera que $\mathbf{D} = \mathbf{Q}^{-1}\mathbf{A}\mathbf{Q}$, donde la diagonal principal de \mathbf{D} contiene los autovalores de \mathbf{A} , y donde las columnas de \mathbf{Q} son los correspondientes autovectores...

Puesto que \mathbf{A} es real y simétrica, tenemos que $\mathbf{A} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{-1}$ con $\mathbf{Q}^{-1} = \mathbf{Q}^{\mathsf{T}}$; y por tanto

$$x \mathbf{A} x = x \mathbf{Q} \mathbf{D} (\mathbf{Q}^{\mathsf{T}}) x = ((\mathbf{Q}^{\mathsf{T}}) x) \mathbf{D} ((\mathbf{Q}^{\mathsf{T}}) x) = y \mathbf{D} y,$$
 (donde $y = (\mathbf{Q}^{\mathsf{T}}) x$).

De esta expresión es evidente que xAx es es una suma ponderada de cuadrados:

$$m{x} m{A} m{x} = m{y} m{D} m{y} = ig(y_1, \quad \cdots, \quad y_n, ig) egin{bmatrix} \lambda_1 & & & \ & \ddots & \ & \lambda_n \end{bmatrix} egin{pmatrix} y_1 \ dots \ y_n \end{pmatrix} = \sum_{j=1}^n \lambda_j ig(y_j^2ig),$$

donde las ponderaciones λ_j son los autovalores de \mathbf{A} . Puesto que \mathbf{Q} es invertible, $\mathbf{y} = \mathbf{Q}^\mathsf{T} \mathbf{x}$ es distinto de cero siempre que $\mathbf{x} \neq \mathbf{0}$. Por tanto, si los autovalores son positivos entonces la suma $\sum_{j=1}^n \lambda_j (y_j^2)$ es positiva.

Por otra parte, la forma cuadrática nunca puede ser positiva si algún autovalor λ_j es negativo o cero; para verlo basta elegir $\boldsymbol{y} = \boldsymbol{\mathsf{I}}_{|j|}$ para ver que $\boldsymbol{y} \boldsymbol{\mathsf{D}} \boldsymbol{y} = {}_{j|} \boldsymbol{\mathsf{I}} \boldsymbol{\mathsf{D}} \boldsymbol{\mathsf{I}}_{|j|} = {}_{j|} \boldsymbol{\mathsf{D}}_{|j|} = \lambda_j$.

Ejercicio 94. Demuestre las siguientes proposiciones.

- (a) Si \mathbf{A} y \mathbf{B} son definidas positivas, entonces la suma $(\mathbf{A} + \mathbf{B})$ también es definida positiva.
- (b) Si **A** es simétrica y definida positiva, entonces **A**⁻¹ también es definida positiva.

19.2. Diagonalización de matrices simétricas por congruencia

Podemos diagonalizar cualquier matriz por congruencia (mediante eliminación Gaussiana de filas y columnas). En general, la matriz obtenida con este procedimiento no contiene los autovalores de la matriz original en su diagonal, pero permite expresar cualquier forma cuadrática como sumas y/o restas de términos al cuadrado. Así podremos comprobar si una matriz es definida positiva sin necesidad de calcular sus autovalores (bastará comprobar que la expresión solo contiene sumas de cuadrados).

Este resultado tiene importancia práctica. No es posible encontrar las raíces de un polinomio cualquiera (tan solo está asegurado para polinomios de grado menor o igual a 4). Afortunadamente la diagonalización por congruencia nos revelará los signos de los autovalores de "cualquier" matriz simétrica. Este resultado se llama Ley de inercia^a.

To-Do: Incluir demostración ley de inercia cuando haya incluido aplicaciones lineales en la primera parte del curso

^aAunque este año no incluiré su demostración, pues nos hemos dejado algunas cosas importantes por el camino que necesito para la demostración.

Definición 19.3. Dos matrices A y C son congruentes si existe una matriz B invertible tal que

$$C = B^{\mathsf{T}}AB$$
.

En esta lección veremos que siempre es posible encontrar una matriz diagonal que sea congruente con una matriz simétrica **A**. La demostración describirá los pasos a seguir para diagonalizar por congruencia (paso de inicio y paso de continuación). Pero antes de exponer la demostración, veamos tres ejemplos de diagonalización por congruencia. El método consiste en tratar de escalonar una matriz, pero aplicando a las filas todas las operaciones que hayamos aplicado a las columnas.

 $\textit{Ejemplo 44. Vamos a diagonalizar la matriz } \textbf{A} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \text{ mediante eliminación, pero cada operación sobre las columnas, la repetiremos también sobre las filas:}$

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \xrightarrow{\stackrel{\boldsymbol{\tau}}{[(2)2]}} \begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & -1 \\ 0 & -2 & 2 \end{bmatrix} \xrightarrow{\stackrel{\boldsymbol{\tau}}{[(1)1+2]}} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 6 & -2 \\ 0 & -2 & 2 \end{bmatrix} \xrightarrow{\stackrel{\boldsymbol{\tau}}{[(1)2+3]}} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & -2 & 4 \end{bmatrix} \xrightarrow{\stackrel{\boldsymbol{\tau}}{[(1)2+3]}} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 12 \end{bmatrix}.$$

Aunque la matriz obtenida es diagonal, ni 6 ni 12 son autovalores de **A** (este método NO encuentra los autovalores)... Pero como los componentes de la diagonal son positivos, **A** es definida positiva.

Y cuando en la diagonal tenemos un cero ¿qué podemos hacer?... Podemos sumar a la primera columna otra columna (en un ejemplo posterior veremos que hay que hacerlo con cuidado, pues no siempre funciona).

Ejemplo 45. Considere $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$. La primera componente de la primera fila es un cero, así que no tenemos

un pivote con el que anular todo lo que queda a la derecha de la diagonal. Como la segunda columna si tiene un pivote en la primera fila, podemos sumar la segunda columna a la primera columna y lograr tener un pivote donde nos interesa (pero recuerde que cada operación sobre las columnas se repite sobre las filas):

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \xrightarrow{\stackrel{[(1)2+1]}{\longrightarrow}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix} \xrightarrow{\stackrel{\boldsymbol{\tau}}{\longrightarrow}} \begin{bmatrix} 2 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix} \xrightarrow{\stackrel{\boldsymbol{\tau}}{\longrightarrow}} \begin{bmatrix} 2 & 0 & 0 \\ 1 & -1 & 0 \\ 2 & 0 & -2 \end{bmatrix} \xrightarrow{\stackrel{\boldsymbol{\tau}}{\longrightarrow}} \begin{bmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

Un tercer ejemplo nos indica que debemos andar con cuidado cuando encontramos un cero en la diagonal. *Ejemplo 46*. Considere la matriz $\begin{bmatrix} 0 & 1 \\ 1 & a \end{bmatrix}$, que tiene un cero en donde querríamos tener un pivote con el que eliminar todo lo que queda a su derecha (y por debajo). ¿Qué podemos hacer?

Primer intento: podemos intentar la estrategia del ejemplo anterior, sumando la segunda columna a la primera (y repetir la operación con las filas):

$$\begin{bmatrix} 0 & 1 \\ 1 & a \end{bmatrix} \xrightarrow{[(1)\mathbf{2}+\mathbf{1}]} \begin{bmatrix} \mathbf{1} & 1 \\ 1+a & a \end{bmatrix} \xrightarrow{\boldsymbol{\tau}} \begin{bmatrix} 2+a & 1+a \\ 1+a & a \end{bmatrix}$$

y ahora con el pivote (2+a) podemos anular todo lo que está a su derecha (y por debajo), pero... ¿estamos seguros de que (2+a) es un pivote? Si a=-2 entonces estaríamos como al principio. En el anterior ejemplo la estrategia funcionó porque sumamos una columna que tenía un cero en la diagonal... pero en este ejemplo la columna que sumamos tiene el número a en la diagonal, y esto puede hacer fallar el algoritmo.

Segundo intento: para que la estrategia anterior no falle debemos asegurarnos de que la columna que sumamos tiene un cero en la diagonal. Como en este caso no es así, la solución pasa por intercambiar dos columnas (y filas) para "mover" alguna componente no nula de la diagonal (que esté situada a la derecha y por debajo del cero que queremos sustituir) y colocarla en la posición del cero que ocasiona el problema, y luego continuar como siempre:

$$\begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix} \xrightarrow{[1 \rightleftharpoons 2]} \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \xrightarrow{\underset{[1 \rightleftharpoons 2]}{\boldsymbol{\tau}}} \begin{bmatrix} -2 & 1 \\ 1 & 0 \end{bmatrix} \xrightarrow{\underset{[(1)1+2]}{\boldsymbol{\tau}}} \begin{bmatrix} -2 & 0 \\ 1 & 1 \end{bmatrix} \xrightarrow{\underset{[(1)1+2]}{\boldsymbol{\tau}}} \begin{bmatrix} -2 & 0 \\ 0 & 2 \end{bmatrix}$$

Vayamos con la demostración de los pasos que nos permiten diagonalizar por congruencia:

Proposición 19.2.1 (Paso de inicio). Dada una matriz A, simétrica y de orden n, existe una matriz no singular B tal que B^TAB es una matriz simétrica de la forma

$$\left[\begin{array}{c|c} * & & \\ \hline & \mathbf{A'} \\ \hline & (n-1)\times(n-1) \end{array}\right].$$

Demostración. Tenemos tres casos:

Caso trivial. Si **A** ya tiene la forma de más arriba, es decir, si a la derecha y por debajo de a_{11} son todo ceros, entonces basta que **B** sea la matriz identidad.

En caso contrario hay dos posibilidades: que a_{11} sea cero o que sea distinta de cero.

Caso 1 $(a_{11} \neq 0)$. Cuando a_{11} es un pivote se pueden anular los componentes situados a su derecha por eliminación de izquierda a derecha, y aplicando las mismas operaciones sobre las filas (de arriba a abajo) llegamos a la siguiente matriz congruente con \mathbf{A} :

$$_{\boldsymbol{\tau}_k \cdots \boldsymbol{\tau}_1} \mathbf{A}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} = \mathbf{B}^\mathsf{T} \mathbf{A} \mathbf{B} = \left[\begin{array}{c|c} a_{11} & & \\ \hline & \mathbf{A'} \\ & & \\ \hline & & \\ & & \\ \end{array} \right]; \quad \text{donde} \quad \mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} = \mathbf{B}.$$

Caso 2 $(a_{11} = 0)$. En este caso hay dos posibilidades: que algún otro elemento de la diagonal principal sea distinto de cero, o que todos los elementos de la diagonal sean cero.

- Si el elemento a_{jj} (con j > 1) es distinto de cero; intercambiamos la primera columna con la jésima, de manera que ahora el elemento no nulo se encuentra en la posición (j,1) y a continuación se intercambia la fila jésima por la primera, con lo que el componente no nulo termina por situarse en la posición (1,1). Así hemos llegado a una matriz del Caso 1.
- Si todos los elementos de la diagonal principal son nulos —y puesto que algún elemento a_{1j} es distinto de cero (pues no estamos en el Caso Trivial)— sumamos $\mathbf{A}_{|j}$ a la primera columna, y por tanto, también sumamos $_{j}|\mathbf{A}$ a la primera fila. Entonces de nuevo habremos llegado al Caso 1 ya que

Proposición 19.2.2 (Paso de continuación). Dada una matriz simétrica de orden n de la forma

$$\begin{bmatrix} * & & & & \\ & \ddots & & & \\ & & * & & \\ \hline & & & k \times k \end{bmatrix},$$

existe una matriz no singular B tal que B^TAB es una matriz simétrica de la forma

Demostración. Basta hacer como en el Paso de Inicio, pero trabajando sobre las filas y columnas de A'. $\ \square$

Combinando las dos proposiciones anteriores llegamos al siguiente:

Corolario 19.2.3. Para toda A simétrica de orden n, existe B invertible tal que B^TAB es diagonal.

Ejemplo 47. Diagonalice por congruencia la matriz

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}.$$

Piense en qué pasos debe sumar una columna (y una fila) para generar un pivote en la diagonal, y cuando debe intercambiar columnas (y filas).

Librería NAcAL para Python

A = Matrix([[0,1,0,0],[1,0,1,1],[0,1,0,1],[0,1,1,1]])

D = DiagonalizaC(A,1)

B = D.B

~B*A*B # D es congruente con A

19.3. Algunos tipos de formas cuadráticas

Ahora usaremos el signo de los pivotes de la matriz diagonalizada por congruencia (y su rango) para decidir el signo de las formas cuadráticas.

Decimos que una forma cuadrática (y su correspondiente matriz de orden n) es

- Definida positiva si para cualquier $x \in \mathbb{R}^n$ no nulo se verifica que $x \mathbf{A} x > 0$.
- Semi-definida positiva si para cualquier $x \in \mathbb{R}^n$ no nulo se verifica que $x \mathbf{A} x \geq 0$.
- \blacksquare Definida negativa si para cualquier $\boldsymbol{x} \in \mathbb{R}^n$ no nulo se verifica que $\boldsymbol{x} \boldsymbol{A} \boldsymbol{x} < 0.$
- Semi-definida negativa si para cualquier $x \in \mathbb{R}^n$ no nulo se verifica que $x \mathbf{A} x \leq 0$.
- Indefinida si no es ni semi-definida positiva ni semi-definida negativa.

Nótese que si \mathbf{A} es (semi-) definida positiva, entonces $(-\mathbf{A})$ es (semi-) definida negativa.

EJERCICIO 95. Demuestre que si **A** es definida positiva, entonces todos los elementos de la diagonal deben ser positivos (y si es semidefinida positiva todos los elementos de la diagonal deben ser no negativos).

To-Do: Me falta la otra regla: $|a_{ij}| < |a_{ii}|$

19.4. Completar el cuadrado para clasificar las formas cuadráticas

Se denomina "completar el cuadrado" a expresar una forma cuadrática x A x como sumas (y/o restas) de términos al cuadrado. Pues bien, la diagonalización por congruencia nos permite encontrar muchas formas distintas de completar el cuadrado. Basta darse cuenta de que dada A (simétrica), para toda B invertible tal que B^T AB es diagonal, tenemos que

$$\mathbf{D} = \mathbf{B}^{\mathsf{T}} \mathbf{A} \mathbf{B} \qquad \Rightarrow \qquad \mathbf{A} = \left(\mathbf{B}^{-1}\right)^{\mathsf{T}} \mathbf{D} \mathbf{B}^{-1}$$

y por tanto, denotando con y al vector $(\mathbf{B}^{-1})x$, la forma cuadrática se puede expresar como

$$oldsymbol{x} \mathbf{A} oldsymbol{x} = oldsymbol{y} \mathbf{D} oldsymbol{y} = \sum d_{jj} ig(y_jig)^2;$$

es decir, como una suma de los cuadrados de los elementos de y ponderados por los elementos de la diagonal de \mathbf{D} . Así, si todos los pivotes de \mathbf{D} son positivos, la correspondiente forma cuadrática es definida positiva. Por tanto, hemos demostrado la siguiente proposición:

Proposición 19.4.1. Una matriz real y simétrica de orden n es definida positiva si y sólo si, es congruente con una matriz diagonal cuyos pivotes son todos mayores que cero.

Corolario 19.4.2. Si una matriz real y simétrica de orden n es congruente con una matriz diagonal cuyos pivotes son todos mayores que cero, entonces sus autovalores también son mayores que cero.

Es lo que ocurría con la matriz del Ejemplo 44 en la página 205. Vamos repetir su diagonalización, pero ahora realizando solo transformaciones $Tipo\ I$ (así minimizamos el número de operaciones, con lo que facilitamos pensar quien es la inversa de ${\bf B}$; y además no modificamos su determinante, por lo que el producto de los sucesivos pivotes de ${\bf D}$ calcula los sucesivos menores de la matriz):

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \xrightarrow{\begin{bmatrix} \left(\frac{1}{2}\right)\mathbf{1}+2\right]} \begin{bmatrix} 2 & 0 & 0 \\ -1 & \frac{3}{2} & -1 \\ 0 & -1 & 2 \end{bmatrix} \xrightarrow{\begin{array}{c} \boldsymbol{\tau} \\ -1 & \frac{3}{2} & -1 \\ 0 & -1 & 2 \end{bmatrix}} \xrightarrow{\begin{bmatrix} \boldsymbol{\tau} \\ 0 & \frac{3}{2} & -1 \\ 0 & -1 & 2 \end{bmatrix}} \xrightarrow{\begin{bmatrix} \left(\frac{2}{3}\right)\mathbf{2}+3\right]} \begin{bmatrix} 2 & 0 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & -1 & \frac{4}{3} \end{bmatrix} \xrightarrow{\begin{bmatrix} \left(\frac{2}{3}\right)\mathbf{2}+3\right]} \begin{bmatrix} 2 & 0 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 0 & \frac{4}{3} \end{bmatrix}.$$

Así, la forma cuadrática x A x se puede re-escribir como suma de cuadrados:

$$\begin{aligned} \boldsymbol{x} \mathbf{A} \boldsymbol{x} = & \left(x, \ y, \ z, \right) \begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 1 & 0 \\ 0 & -2/3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3/2 & \\ & 4/3 \end{bmatrix} \begin{bmatrix} 1 & -1/2 & 0 \\ 0 & 1 & -2/3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} & = \boldsymbol{x} (\mathbf{B}^{-1})^{\mathsf{T}} \mathbf{D} \mathbf{B}^{-1} \boldsymbol{x} \\ &= \left(\left(x - \frac{1}{2} y \right), \ \left(y - \frac{2}{3} z \right), \ z, \right) \begin{bmatrix} 2 & 3/2 & \\ & 4/3 \end{bmatrix} \begin{bmatrix} \left(x - \left(\frac{1}{2} y \right) \right) \\ \left(y - \left(\frac{2}{3} \right) z \right) \\ z \end{bmatrix} & = \left(\mathbf{B}^{-1} \boldsymbol{x} \right) \mathbf{D} (\mathbf{B}^{-1} \boldsymbol{x}) \\ &= 2 \left(x - \frac{1}{2} y \right)^2 + \frac{3}{2} \left(y - \frac{2}{3} z \right)^2 + \frac{4}{3} (z)^2 & = \sum \left(j_{|\mathcal{D}|j} \right) \left(w_j \right)^2. \end{aligned}$$

donde $\mathbf{w} = (\mathbf{B}^{-1})\mathbf{x}$. Así, $\mathbf{x}\mathbf{A}\mathbf{x} = \mathbf{w}\mathbf{D}\mathbf{w}$ es suma de tres términos al cuadrado (los componentes de \mathbf{w}) multiplicados por los correspondientes pivotes de \mathbf{D} . Como dichos pivotes son positivos, la forma cuadrática es definida positiva; algo que podemos verificar calculando los autovalores (las raíces de $|\mathbf{A} - \lambda \mathbf{I}| = 0$):

$$\begin{vmatrix} 2 - \lambda & -1 & 0 \\ -1 & 2 - \lambda & -1 \\ 0 & -1 & 2 - \lambda \end{vmatrix} = (2 - \lambda)^3 - 2(2 - \lambda) = 0 \implies \begin{cases} \lambda = 2 \\ (2 - \lambda)^2 - 2 = \lambda^2 - 4\lambda + 2 \begin{cases} \lambda = 2 + \sqrt{2} \\ \lambda = 2 - \sqrt{2} \end{cases}$$

Por el contrario, la matriz diagonal del Ejemplo 45 en la página 205 tiene dos pivotes negativos y uno positivo, así que la correspondiente forma cuadrática es indefinida (sus autovalores son -1 (doble) y 2).

喝

Nota 5. El Teorema Espectral muestra una forma muy especial de completar el cuadrado de una forma cuadrática; pues la diagonalización

$$\mathbf{D} = \mathbf{Q}^{-1} \mathbf{A} \mathbf{Q} = \mathbf{Q}^{\mathsf{T}} \mathbf{A} \mathbf{Q},$$

lo es simultáneamente por semejanza y por congruencia.

Resumen de los temas por lecciones

A.1. Resumen del Tema 1

El tema consta de cinco lecciones que resumimos a continuación.

Lección 1.

En la primera lección solo se establece la notación para vectores, matrices, y operadores selectores junto con algunas reglas de reescritura. Por ejemplo, estas dos reglas de reescritura

$$\boxed{(\boldsymbol{a}+\boldsymbol{b})_{|i}=\boldsymbol{a}_{|i}+\boldsymbol{b}_{|i}} \qquad \text{y} \qquad \boxed{\left(\lambda \boldsymbol{b}\right)_{|i}=\lambda \left(\boldsymbol{b}_{|i}\right)}$$

definen la suma de vectores y su producto por escalares. Jugando con estas reglas se deducen las propiedades de la suma de vectores y producto por escalares que permitirán definir el espacio vectorial \mathbb{R}^n en el Tema 2. Las reglas

$$\boxed{ (\mathbf{A} + \mathbf{B})_{|j} = \mathbf{A}_{|j} + \mathbf{B}_{|j} } \qquad \mathbf{y} \qquad \boxed{ (\lambda \mathbf{B})_{|j} = \lambda (\mathbf{B}_{|j}) }$$

definen la suma de matrices y su producto por escalares (operando con las columnas). Como esta reglas son esencialmente iguales a las anteriores, se obtienen propiedades análogas, lo que permitirá definir el espacio vectorial $\mathbb{R}^{n\times m}$. ¡El juego con las reglas de reescritura, independientemente del significado que tengan los símbolos \boldsymbol{a} o \boldsymbol{A} da lugar a las mismas propiedades! Con la transposición de una matriz

$$\left(\mathbf{A}^{\mathsf{T}}\right)_{|j} = {}_{j|}\mathbf{A}$$

mostraremos que las operaciones con matrices también se pueden definir como operaciones entre filas $_{i}|\mathbf{A}|$ (y también entre componentes $_{i}|\mathbf{A}|_{j}$). Teniendo en cuenta que $\boxed{\lambda a = a \lambda}$ y que $\boxed{\lambda \mathbf{A} = \mathbf{A} \lambda}$, y jugando con la notación se deducen una serie de reglas de reescritura que se usarán en las siguientes lecciones: ¹

Reglas distributivas

$$(\mathbf{a} + \mathbf{b})_{|i} = \mathbf{a}_{|i} + \mathbf{b}_{|i}$$

$$(\mathbf{A} + \mathbf{B})_{|j} = \mathbf{A}_{|j} + \mathbf{B}_{|j}$$

$$i|(\mathbf{a} + \mathbf{b}) = i|\mathbf{a} + i|\mathbf{b}$$

$$i|(\mathbf{A} + \mathbf{B}) = i|\mathbf{A} + i|\mathbf{B}$$

Reglas asociativas (desplazando el paréntesis)

$$\begin{array}{ll} (\lambda \boldsymbol{b})_{|i} = & \lambda (\boldsymbol{b}_{|i}) \\ (\lambda \boldsymbol{A})_{|j} = & \lambda (\boldsymbol{A}_{|j}) \end{array}$$

$$\begin{array}{ll} _{i|}(\boldsymbol{b}\lambda) = (_{i|}\boldsymbol{b})\lambda \\ _{i|}(\boldsymbol{A}\lambda) = (_{i|}\boldsymbol{A})\lambda \end{array}$$

¹De hecho, la librería de Python solo se implementan las reglas recuadradas...y entonces ¡todo lo demás funciona automáticamente!

Intercambio entre el escalar y el operador

$$\begin{aligned} \left(\boldsymbol{b}\lambda\right)_{|i} &= \left(\boldsymbol{b}_{|i}\right)\lambda \\ \left(\boldsymbol{\mathsf{A}}\lambda\right)_{|j} &= \left(\boldsymbol{\mathsf{A}}_{|j}\right)\lambda \end{aligned} \qquad \begin{aligned} &i_{|i|}\left(\lambda\boldsymbol{b}\right) &= \lambda \binom{i}{|i|}\boldsymbol{b} \end{aligned}$$

Lección 2

Comienza con el producto punto (o producto escalar usual) de dos vectores de \mathbb{R}^n y sus propiedades.²

$$a \cdot b = \sum_{i} a_i b_i$$

El uso del producto punto nos dota de una notación muy compacta (sin sumatorios).

La Lección 2 trata de *combinaciones lineales* de vectores de \mathbb{R}^n y su notación matricial $\mathbf{A}b$ (combinación de las columnas de \mathbf{A}) y $a\mathbf{B}$ (combinación de las filas de \mathbf{B}).

$$oxed{\mathbf{A}oldsymbol{b} = \sum_{j} oldsymbol{\left(\mathbf{A}_{|j}
ight)} b_{j}} \qquad \mathrm{y} \qquad oxed{oxed{a}oxed{B} = \left(\mathbf{B}^{\mathsf{T}}
ight)oldsymbol{a}}$$

Usando las reglas de reescritura de la lección anterior, se deducen nuevas reglas para el producto de una matriz por un vector a su derecha $\mathbf{A}\mathbf{b}$:

Propiedades de linealidad

- lacksquare lacksquare lacksquare lacksquare lacksquare lacksquare lacksquare lacksquare
- $\quad \blacksquare \ \mathbf{A}(\lambda \boldsymbol{b}) = \lambda(\mathbf{A}\boldsymbol{b})$

Otras propiedades

- $\mathbf{A}(\lambda \mathbf{b}) = (\lambda \mathbf{A})\mathbf{b}$
- $\blacksquare (A+B)c = Ac + Bc$
- $\label{eq:alpha} \bullet \ \mathbf{A}(\mathbf{B}c) = \left[\mathbf{A} \left(\mathbf{B}_{|1}\right), \quad \dots, \quad \mathbf{A} \left(\mathbf{B}_{|n}\right)\right]c$

y propiedades análogas para el producto de un vector por una matriz aB.

Adicionalmente, y solo en las transparencias de la clase correspondiente a esta lección, se adelanta la interpretación geométrica de un sistema de ecuaciones $\mathbf{A}x = \mathbf{b}$...; qué combinaciones lineales de las columnas $(\mathbf{A}x)$ son iguales al vector del lado derecho \mathbf{b} ?

Lección 3.

Trata sobre el producto de matrices.

$$\boxed{\left(\mathbf{A}\mathbf{B}\right)_{|j} = \mathbf{A}\left(\mathbf{B}_{|j}\right)}$$

(cada columna de AB es una combinación de las columnas de A). Jugando con la definición y con las reglas de reescritura de las lecciones anteriores se deducen las siguientes propiedades

$$\blacksquare A(Bc) = (AB)c$$

■
$$\mathbf{A}(\lambda \mathbf{B}) = \lambda(\mathbf{AB})$$

$$\blacksquare$$
 A(BC) = (AB)C

■
$$\mathbf{A}(\lambda \mathbf{B}) = (\lambda \mathbf{A})\mathbf{B}$$

$$\blacksquare A(B+C) = AB + AC$$

²Como en este material se hace una marcada distinción entre vectores y matrices, aquí carece de sentido "transponer un vector". Así evitamos el frecuente abuso de notación del que hacen uso otros textos.

Y continuado con el mismo juego de manipulación de símbolos, se deducen nuevas interpretaciones del producto

$$_{i|}(\mathbf{A}\mathbf{B}) = (_{i|}\mathbf{A})\mathbf{B}$$
 y $_{i|}(\mathbf{A}\mathbf{B})_{|j} = (_{i|}\mathbf{A})\cdot(\mathbf{B}_{|j})$

es decir, las filas de ${\bf AB}$ son combinaciones lineales de las filas de ${\bf B}$, y los elementos de ${\bf AB}$ son productos punto de las filas de ${\bf A}$ con las columnas de ${\bf B}$. Aquí se evidencian las bondades de la notación. Una expresión como

$$i|AB|_j$$

se puede interpretar como el elemento de la fila i, y columna j de \mathbf{AB} , como el elemento iésimo de la combinación de las columnas $\mathbf{A}(\mathbf{B}_{|j})$, como el elemento jésimo de una combinación de las filas $(i|\mathbf{A})\mathbf{B}$, o como el producto escalar de la fila $i|\mathbf{A}$ con la columna $\mathbf{B}_{|j}$. Todas estas interpretaciones son correctas, y todas ellas están sugeridas en la expresión, $i|\mathbf{AB}_{|j}$. Es destacable la potencia computacional de la notación (véase la demostración de $(\mathbf{AB})^{\mathsf{T}} = \mathbf{B}^{\mathsf{T}}(\mathbf{A}^{\mathsf{T}})$ así como su implementación en la librería de Python).

Lección 4

Trata sobre las transformaciones elementales, y su uso en el método de eliminación.

Aquí solo consideramos dos tipos de transformaciones elementales:

- τ suma λ veces el vector iésimo al jésimo.
- $m{ au}$ multiplica por α el vector iésimo.

Llamamos matriz elemental a la matriz resultante de aplicar una única transformación elemental sobre las columnas (o bien sobre las filas) de una matriz identidad

$$I_{\tau}$$
 o $_{\tau}I$

Dada la transformación elemental, τ , las dos matrices elementales de más arriba son una la transpuesta de la otra. Por tanto, la transpuesta de una matriz elemental es otra matriz elemental. Aplicar una transformación elemental a una matriz es equivalente a multiplicarla por la correspondiente matriz elemental, es decir

$$\mathbf{A}_{\tau} = \mathbf{A} (\mathbf{I}_{\tau})$$
 y $_{\tau} \mathbf{A} = (_{\tau} \mathbf{I}) \mathbf{A}.$

Para describir la aplicación de la secuencia $\tau_1 \dots \tau_k$ de k trasformaciones elementales de las columnas de ${\bf A}$ usamos el esquema. ³

$$\mathbf{A} \xrightarrow{\boldsymbol{\tau}_1} \left(\mathbf{A}_{\boldsymbol{\tau}_1} \right) \xrightarrow{\boldsymbol{\tau}_2} \left(\mathbf{A}_{\boldsymbol{\tau}_1 \boldsymbol{\tau}_2} \right) \cdots \xrightarrow{\boldsymbol{\tau}_k} \left(\mathbf{A}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \right) \quad \text{o agregando varios pasos} \quad \mathbf{A} \xrightarrow{\boldsymbol{\tau}_1} \left(\mathbf{A}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_p} \right) \xrightarrow{\boldsymbol{\tau}_k} \left(\mathbf{A}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \right).$$

Cuando se aplica la sucesión $\tau_1 \dots \tau_k$ de k transformaciones elementales sobre las columnas, o bien la sucesión $\tau_k \dots \tau_1$ de k transformaciones elementales sobre las filas (nótese el distinto orden en las sucesiones) se obtienen relaciones similares a las que encontramos al aplicar una única transformación:

$$\mathbf{A}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} = \mathbf{A} \big(\mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \big) \qquad \mathrm{y} \qquad {}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \mathbf{A} = \big({}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \mathbf{I} \big) \mathbf{A}.$$

$$\mathbf{A} \xrightarrow[\boldsymbol{\tau}_1]{} \left(\boldsymbol{\tau}_1 \mathbf{A}\right) \xrightarrow[\boldsymbol{\tau}_2]{} \left(\boldsymbol{\tau}_2 \boldsymbol{\tau}_1 \mathbf{A}\right) \cdots \xrightarrow[\boldsymbol{\tau}_k]{} \left(\boldsymbol{\tau}_k ... \boldsymbol{\tau}_1 \mathbf{A}\right) \quad \text{o agregando varios pasos} \quad \mathbf{A} \xrightarrow[\boldsymbol{\tau}_1]{} \left(\boldsymbol{\tau}_p ... \boldsymbol{\tau}_1 \mathbf{A}\right) \xrightarrow[\boldsymbol{\tau}_1]{} \left(\boldsymbol{\tau}_k ... \boldsymbol{\tau}_1 \mathbf{A}\right);$$

donde la secuencia $\boldsymbol{\tau}_k \dots \boldsymbol{\tau}_1$ es la transpuesta de la secuencia $\boldsymbol{\tau}_1 \dots \boldsymbol{\tau}_k$, es decir, $(\boldsymbol{\tau}_1 \dots \boldsymbol{\tau}_k)^{\mathsf{T}} = \boldsymbol{\tau}_k \dots \boldsymbol{\tau}_1$, pues al actuar por la izquierda, las primeras transformaciones que se aplican son la que están más a la derecha de la secuencia. Por tanto $\boldsymbol{\tau}_k \dots \boldsymbol{\tau}_1 \mathsf{I}$ es la transpuesta de $\mathsf{I}_{\boldsymbol{\tau}_1 \dots \boldsymbol{\tau}_k}$ (cuando ambas tienen el mismo orden).

³De manera análoga, para describir una secuencia de trasformaciones elementales de las filas de **A** (donde τ_1 es la primera que se aplica, luego τ_1 , ...y por último τ_k) se debe usar el siguiente esquema

Es posible realizar un *intercambio* de posición entre dos vectores mediante una sucesión de transformaciones elementales:

 $m{ au}$ intercambia de posición los vectores iésimo y jésimo. $[i \rightleftharpoons j]$

Llamamos matriz de intercambio a la matriz resultante de aplicar un único intercambio entre dos columnas (o bien dos filas) de una matriz identidad.

$$\begin{bmatrix} \boldsymbol{\tau} & & & & & & \boldsymbol{\tau} \\ \boldsymbol{i} \rightleftharpoons \boldsymbol{j} \end{bmatrix} \qquad \qquad \begin{bmatrix} \boldsymbol{i} \rightleftharpoons \boldsymbol{j} \end{bmatrix}$$

Las matrices intercambio son simétricas (por lo que estas dos de arriba son iguales si tienen el mismo orden). Aplicar un intercambio a una matriz es equivalente a multiplicarla por la correspondiente matriz de intercambio, es decir

$$\mathbf{A}_{\stackrel{\boldsymbol{\tau}}{[i=j]}} = \mathbf{A} \left(\mathbf{I}_{\stackrel{\boldsymbol{\tau}}{[i=j]}} \right) \qquad \mathbf{y} \qquad {\stackrel{\boldsymbol{\tau}}{[i=j]}} \mathbf{A} = \left({\stackrel{\boldsymbol{\tau}}{[i=j]}} \mathbf{I} \right) \mathbf{A}.$$

La aplicación de una sucesión de intercambios da lugar a un reordenamiento de los vectores. Denominamos $matriz\ permutación$ a la matriz que resulta tras una sucesión de intercambios en las columnas (o en las filas) de la matriz identidad. De nuevo tenemos que

$$\mathbf{A}_{\tau} = \mathbf{A} \left(\mathbf{I}_{\tau} \right) \qquad \mathbf{y} \qquad {}_{\tau} \mathbf{A} = \left({}_{\tau} \mathbf{I} \right) \mathbf{A}$$

(la flecha circular denota un reordenamiento de las columnas (o de las filas) de la matriz).

Mediante una sucesión de transformaciones elementales es posible pre-escalonar cualquier matriz. La demostración de este importante teorema describe la implementación del método en Python. A este procedimiento se le llama *Método de eliminación*. Hay dos extensiones más: la *eliminación Gaussiana* que escalona la matriz reordenando las columnas y la eliminación *Gauss-Jordan*, que reduce la matriz escalonada.

Lección 5.

Trata sobre la *inversión de las transformaciones elementales* y la *inversión de matrices* (cuando es posible) aplicando el Método de eliminación Gauss-Jordan.

Definimos la inversa de \mathbf{A} de orden n (por tanto cuadrada) como aquella matriz \mathbf{B} tal que $\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A} = \mathbf{I}$. Y demostramos que, si existe \mathbf{B} , es única y la denotamos por \mathbf{A}^{-1} . A continuación se demuestra que:

- Si \mathbf{A} y \mathbf{B} tienen inversa, entonces $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}(\mathbf{A}^{-1})$.
- Si B es invertible, entonces AB es invertible si y solo si A es invertible.
- Si A es invertible, entonces AB es invertible si y solo si B es invertible.
- Si **A** es invertible, entonces $(\mathbf{A}^{\mathsf{T}})^{-1} = (\mathbf{A}^{-1})^{\mathsf{T}}$.
- Si A tiene alguna columna (o fila) nula entonces no tiene inversa.

Todas las transformaciones elementales se pueden deshacer (todas son invertibles), lo que implica que todas las matrices elementales son invertibles. En la segunda parte de lección relacionamos la invertibilidad de una matriz con las transformaciones elementales, pues cualquier matriz de la forma $\mathbf{I}_{\tau_1 \dots \tau_k}$ es invertible por ser producto de matrices elementales:

$$\left(\mathbf{I}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k}\right)\!\left(\mathbf{I}_{\boldsymbol{\tau}_k^{-1}\cdots\boldsymbol{\tau}_1^{-1}}\right) = \mathbf{E}_1\cdots\mathbf{E}_k\cdot\mathbf{E}_k^{-1}\cdots\mathbf{E}_1^{-1} = \mathbf{I}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k\cdot\boldsymbol{\tau}_k^{-1}\cdots\boldsymbol{\tau}_1^{-1}} = \mathbf{I}.$$

Siguiendo esta idea, se demuestra que

■ Si A es producto de matrices elementales, entonces es invertible.

- Si A tiene columnas que son combinación lineal del resto, entonces no es invertible.
- A es invertible si y solo si sus formas escalonadas L son invertibles.

A continuación se demuestra que toda matriz cuadrada L escalonada y sin columnas nulas se puede transformar en la matriz identidad mediante transformaciones elementales (de nuevo la demostración indica los pasos para implementar el algoritmo en Python). Esto da lugar a un corolario que establece que las siguientes propiedades son equivalentes

- 1. El resultado de escalonar **A** no tiene columnas nulas.
- 2. A es producto de matrices elementales.
- 3. A tiene inversa.

A continuación se demuestra que si $\bf A$ y $\bf B$ son cuadradas y del mismo orden, y $\bf AB = I$, entonces $\bf A$ y $\bf B$ son una la inversa de la otra.

En la lección anterior vimos que el Método de eliminación permite encontrar una forma pre-escalonada de toda matriz (Teorema 4.3.2 en la página 51)

$$\mathbf{A}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_p} = \mathbf{K},$$

y, si K no tiene columnas nulas, se puede continuar con las transformaciones elementales hasta transformar K en I (Teorema 5.1.10 en la página 60)

$$\mathsf{K}_{\boldsymbol{\tau}_{(p+1)}\cdots\boldsymbol{\tau}_k}=\mathsf{I}.$$

Por tanto, la sucesión de k transformaciones elementales $\tau_1 \cdots \tau_p$, $\tau_{(p+1)} \cdots \tau_k$ transforma \mathbf{A} en \mathbf{I} , es decir,

$$\mathbf{A}_{\boldsymbol{ au}_1\cdots\boldsymbol{ au}_k}=\mathbf{A}(\mathbf{I}_{\boldsymbol{ au}_1\cdots\boldsymbol{ au}_k})=\mathbf{I};$$

así, si ${\sf L}$ no tiene columnas nulas, entonces ${\sf A}^{-1}={\sf I}_{{\pmb au}_1\cdots{\pmb au}_k}$. Por otra parte, ${\sf A}^{-1}$ no existe cuando ${\sf L}$ tiene columnas nulas.

La lección finaliza proponiendo un método para encontrar la inversa a la vez que se transforma $\bf A$ en $\bf I$, y dando una definición de rango de una matriz (el número de columnas no nulas de cualquiera de sus formas escalonadas).

Aquí finaliza el primer tema del curso.

Soluciones a los Ejercicios

Ejercicio 1. (3*b)|2, primero multiplica el vector por 3. Después selecciona la segunda componente. En 3*(b|2), primero se selecciona la segunda componente. Luego multiplica dicha componente por 3. 3*b|2 hace exactamente lo mismo que con la primera expresión (pues * tiene precedencia sobre |).

Ejercicio 2. Como en Python el operador + tiene precedencia sobre |, en la expresión b+b|2 primero se suman los vectores, y luego se selecciona la segunda componente del resultado.

Pero para nosotros la expresión es incorrecta, pues entendemos $b + b_{|2}$ como la suma del vector b con la segunda componente de b; y la operación suma entre un vector y un número no está definida.

El modo correcto de escribir la operación sería $(b+b)_{|2}$, así que, por claridad, en Python también deberíamos escribir (b+b) | 2.

Ejercicio 3. Mostraremos ambas estrategias en cada caso. En el caso de la segunda, en azul aparecen las operaciones entre números reales.

1. Estrategia 1:

$$\boldsymbol{a}+\boldsymbol{b}=\begin{pmatrix}a_1\\\vdots\\a_m\end{pmatrix}+\begin{pmatrix}b_1\\\vdots\\b_m\end{pmatrix}=\begin{pmatrix}a_1+b_1\\\vdots\\a_m+b_m\end{pmatrix}=\begin{pmatrix}b_1+a_1\\\vdots\\b_m+a_m\end{pmatrix}=\begin{pmatrix}b_1\\\vdots\\b_m\end{pmatrix}+\begin{pmatrix}a_1\\\vdots\\a_m\end{pmatrix}=\boldsymbol{b}+\boldsymbol{a}.$$

Estrategia 2: $(\boldsymbol{a} + \boldsymbol{b})_{|i} = \boldsymbol{a}_{|i} + \boldsymbol{b}_{|i} = \boldsymbol{b}_{|i} + \boldsymbol{a}_{|i} = (\boldsymbol{b} + \boldsymbol{a})_{|i}$.

2. Estrategia 1:

$$\mathbf{a} + (\mathbf{b} + \mathbf{c}) = \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix} + \begin{pmatrix} \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} + \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix} = \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix} + \begin{pmatrix} b_1 + c_1 \\ \vdots \\ b_m + c_m \end{pmatrix} = \begin{pmatrix} a_1 + b_1 + c_1 \\ \vdots \\ a_m + b_m \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ \vdots \\ a_m \end{pmatrix} + \begin{pmatrix} c_1 \\ \vdots \\ a_m \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} + \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix} = (\mathbf{a} + \mathbf{b}) + \mathbf{c}.$$

Estrategia 2:

$$egin{split} \left(oldsymbol{a} + \left(oldsymbol{b} + oldsymbol{c}
ight)_{|i|} &= oldsymbol{a}_{|i|} + \left(oldsymbol{b} + oldsymbol{c}
ight)_{|i|} + \left(oldsymbol{b}_{|i|} + oldsymbol{c}_{|i|}
ight) &= \left(oldsymbol{a} + oldsymbol{b}_{|i|}
ight) + oldsymbol{c}_{|i|} \ &= \left(oldsymbol{a} + oldsymbol{b}_{|i|} + oldsymbol{c}_{|i|} = \left(oldsymbol{a} + oldsymbol{b}_{|i|}
ight) + oldsymbol{c}_{|i|} \ &= \left(oldsymbol{a} + oldsymbol{b}_{|i|} + oldsymbol{c}_{|i|} = \left(oldsymbol{a} + oldsymbol{b}_{|i|} + oldsymbol{c}_{|i|}
ight) \ &= \left(oldsymbol{a} + oldsymbol{b}_{|i|} + oldsymbol{c}_{|i|} = oldsymbol{a} + oldsymbol{b}_{|i|} + oldsymbol{c}_{|i|} = oldsymbol{a} + oldsymbol{c}_{|i|} + olds$$

3. Estrategia 1:

$$\mathbf{0} + \boldsymbol{a} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix} = \begin{pmatrix} 0 + a_1 \\ \vdots \\ 0 + a_m \end{pmatrix} = \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix} = \boldsymbol{a}.$$

Estrategia 2: $(\mathbf{0} + \mathbf{a})_{|i} = \mathbf{0}_{|i} + \mathbf{a}_{|i} = 0 + \mathbf{a}_{|i} = \mathbf{a}_{|i}$.

4. Estrategia 1:

$$a + (-a) = \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix} + \begin{pmatrix} -a_1 \\ \vdots \\ -a_m \end{pmatrix} = \begin{pmatrix} a_1 - a_1 \\ \vdots \\ a_m - a_m \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} = \mathbf{0}.$$

Estrategia 2: $(\boldsymbol{a} + (-\boldsymbol{a}))_{|i} = \boldsymbol{a}_{|i} + (-\boldsymbol{a})_{|i} = 0 = \boldsymbol{0}_{|i}$.

5. Estrategia 1:

$$\lambda(\boldsymbol{a}+\boldsymbol{b}) = \begin{pmatrix} \lambda(a_1+b_1) \\ \vdots \\ \lambda(a_m+b_m) \end{pmatrix} = \begin{pmatrix} \lambda a_1 + \lambda b_1 \\ \vdots \\ \lambda a_m + \lambda b_m \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_m \end{pmatrix} + \begin{pmatrix} \lambda b_1 \\ \vdots \\ \lambda b_m \end{pmatrix} = \lambda \boldsymbol{a} + \lambda \boldsymbol{b}.$$

Estrategia 2: $\left(\lambda(\boldsymbol{a}+\boldsymbol{b})\right)_{|i} = \lambda\left(\left(\boldsymbol{a}+\boldsymbol{b}\right)_{|i}\right) = \lambda\left(\boldsymbol{a}_{|i}+\boldsymbol{b}_{|i}\right) = \lambda\left(\boldsymbol{a}_{|i}\right) + \lambda\left(\boldsymbol{b}_{|i}\right) = \left(\lambda\boldsymbol{a}\right)_{|i} + \left(\lambda\boldsymbol{b}\right)_{|i} = \left(\lambda\boldsymbol{a}+\lambda\boldsymbol{b}\right)_{|i}$

6. Estrategia 1:

$$(\lambda + \eta)\boldsymbol{a} = \begin{pmatrix} (\lambda + \eta)a_1 \\ \vdots \\ (\lambda + \eta)a_m \end{pmatrix} = \begin{pmatrix} \lambda a_1 + \eta a_1 \\ \vdots \\ \lambda a_m + \eta a_m \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_m \end{pmatrix} + \begin{pmatrix} \eta b_1 \\ \vdots \\ \eta b_m \end{pmatrix} = \lambda \boldsymbol{a} + \eta \boldsymbol{a}.$$

Estrategia 2: $((\lambda + \eta)\boldsymbol{a})_{|i} = (\lambda + \eta)(\boldsymbol{a}_{|i}) = \lambda(\boldsymbol{a}_{|i}) + \eta(\boldsymbol{a}_{|i}) = (\lambda \boldsymbol{a})_{|i} + (\eta \boldsymbol{a})_{|i} = (\lambda \boldsymbol{a} + \eta \boldsymbol{a})_{|i}$

7. Estrategia 1:

$$\lambda(\eta \boldsymbol{a}) = \lambda \left(\begin{array}{c} \eta a_1 \\ \vdots \\ \eta a_m \end{array} \right) = \left(\begin{array}{c} \lambda \eta a_1 \\ \vdots \\ \lambda \eta a_m \end{array} \right) = \lambda \eta \left(\begin{array}{c} a_1 \\ \vdots \\ a_m \end{array} \right) = (\lambda \eta) \boldsymbol{a}.$$

Estrategia 2: $\left(\lambda(\eta \boldsymbol{a})\right)_{|i} = \lambda\left((\eta \boldsymbol{a})_{|i}\right) = \lambda\left(\eta\left(\boldsymbol{a}_{|i}\right)\right) = (\lambda\eta)\left(\boldsymbol{a}_{|i}\right) = ((\lambda\eta)\boldsymbol{a})_{|i}$.

8. Estrategia 1:

$$1oldsymbol{a} = \left(egin{array}{c} 1 \cdot a_1 \ dots \ 1 \cdot a_m \end{array}
ight) = \left(egin{array}{c} a_1 \ dots \ a_m \end{array}
ight) = oldsymbol{a}.$$

Estrategia 2: $(1\boldsymbol{a})_{|i} = 1(\boldsymbol{a}_{|i}) = \boldsymbol{a}_{|i}$.

Ejercicio 4(a) Primero multiplica el vector por 3 y luego selecciona la primera componente.

Ejercicio 4(b) ¡Selecciona la tercera componente del vector!

Ejercicio 4(c) ¡También selecciona la tercera componente del vector!

Ejercicio 4(d) Como en la primera expresión, primero multiplica el vector por 3 y luego selecciona la primera componente.

$$\mathbf{Ejercicio} \ \mathbf{5(a)} \quad \ _{k|} \big(\mathbf{A}^{\mathsf{T}} \big)_{|j} = {}_{k|} \Big(\big(\mathbf{A}^{\mathsf{T}} \big)_{|j} \Big) = {}_{k|} \big({}_{j|} \mathbf{A} \big) = \big({}_{j|} \mathbf{A} \big)_{|k} = {}_{j|} \mathbf{A}_{|k}.$$

Ejercicio 5(b)
$$_{j|}\left(\left(\mathbf{A}^{\mathsf{T}}\right)^{\mathsf{T}}\right)_{|k} = {}_{k|}\left(\mathbf{A}^{\mathsf{T}}\right)_{|j} = {}_{j|}\mathbf{A}_{|k}$$

$$\mathbf{Ejercicio}\ \mathbf{5(c)} \quad \ \mathbf{A}_{|i} = \left(\left(\mathbf{A}^{\mathsf{T}} \right)^{\mathsf{T}} \right)_{|i} = {}_{i|} \left(\mathbf{A}^{\mathsf{T}} \right).$$

Ejercicio 6. Las demostraciones son prácticamente idénticas a las vistas en el caso de los vectores. En azul aparecen las operaciones entre vectores.

1.
$$(\mathbf{A} + \mathbf{B})_{|j} = \mathbf{A}_{|j} + \mathbf{B}_{|j} = \mathbf{B}_{|j} + \mathbf{A}_{|j} = (\mathbf{B} + \mathbf{A})_{|j}$$

2.
$$\left((\mathbf{A} + \mathbf{B}) + \mathbf{C} \right)_{|j|} = (\mathbf{A} + \mathbf{B})_{|j|} + \mathbf{C}_{|j|} = (\mathbf{A}_{|j|} + \mathbf{B}_{|j|}) + \mathbf{C}_{|j|} = \mathbf{A}_{|j|} + (\mathbf{B}_{|j|} + \mathbf{C}_{|j|}) = \mathbf{A}_{|j|} + (\mathbf{B} + \mathbf{C})_{|j|} = (\mathbf{A} + (\mathbf{B} + \mathbf{C}))_{|j|}$$

3.
$$(\mathbf{0} + \mathbf{A})_{1i} = \mathbf{0}_{1i} + \mathbf{A}_{1i} = \mathbf{0} + \mathbf{A}_{1i} = \mathbf{A}_{1i}$$
.

$$4. \ \left(\mathbf{A}+(-\mathbf{A})\right)_{|j}=\mathbf{A}_{|j}+\left(-\mathbf{A}\right)_{|j}=\mathbf{A}_{|j}-\mathbf{A}_{|j}=\mathbf{0}=\mathbf{0}_{|j}.$$

$$5. \ \left(\lambda (\mathbf{A} + \mathbf{B})\right)_{|j} = \lambda \left((\mathbf{A} + \mathbf{B})_{|j}\right) = \lambda \left(\mathbf{A}_{|j} + \mathbf{B}_{|j}\right) = \lambda \left(\mathbf{A}_{|j}\right) + \lambda \left(\mathbf{B}_{|j}\right) = \left(\lambda \mathbf{A}\right)_{|j} + \left(\lambda \mathbf{B}\right)_{|j} = \left(\lambda \mathbf{A} + \lambda \mathbf{B}\right)_{|j}.$$

6.
$$((\lambda + \eta)\mathbf{A})_{|j} = (\lambda + \eta)(\mathbf{A}_{|j}) = \lambda(\mathbf{A}_{|j}) + \eta(\mathbf{A}_{|j}) = (\lambda \mathbf{A})_{|j} + (\eta \mathbf{A})_{|j} = (\lambda \mathbf{A} + \eta \mathbf{A})_{|j}$$

$$7. \ \left(\lambda \left(\eta \mathbf{A}\right)\right)_{|j} = \lambda \left(\left(\eta \mathbf{A}\right)_{|j}\right) = \lambda \left(\eta \left(\mathbf{A}_{|j}\right)\right) = (\lambda \eta) \left(\mathbf{A}_{|j}\right) = \left((\lambda \eta) \mathbf{A}\right)_{|j}.$$

8.
$$(1\mathbf{A})_{|i} = 1(\mathbf{A}_{|i}) = \mathbf{A}_{|i}$$

Ejercicio 7. Comenzamos por la suma.

$$_{i|}(\mathbf{A} + \mathbf{B})_{|j} = _{i|}((\mathbf{A} + \mathbf{B})_{|j}) = _{i|}(\mathbf{A}_{|j} + \mathbf{B}_{|j}) = _{i|}\mathbf{A}_{|j} + _{i|}\mathbf{B}_{|j}.$$

Y ahora el producto.

$$_{i|}(\lambda \mathbf{A})_{|j} = _{i|}((\lambda \mathbf{A})_{|j}) = _{i|}(\lambda (\mathbf{A}_{|j})) = \lambda (_{i|}(\mathbf{A}_{|j})) = \lambda (_{i|}\mathbf{A}_{|j}).$$

Ejercicio 8(a)
$$\left(\left(\lambda \mathbf{A}\right)^{\mathsf{T}}\right)_{|j|} = {}_{j|}\left(\lambda \mathbf{A}\right) = \lambda \left({}_{j|}\mathbf{A}\right) = \lambda \left(\left(\mathbf{A}^{\mathsf{T}}\right)_{|j|}\right) = \left(\lambda (\mathbf{A}^{\mathsf{T}})\right)_{|j|}$$

$$\textbf{Ejercicio 8(b)} \quad \left((\mathbf{A} + \mathbf{B})^\intercal \right)_{|j} = {}_{j|} (\mathbf{A} + \mathbf{B}) = {}_{j|} \mathbf{A} + {}_{j|} \mathbf{B} = \left(\mathbf{A}^\intercal \right)_{|j} + \left(\mathbf{B}^\intercal \right)_{|j} = \left(\mathbf{A}^\intercal + \mathbf{B}^\intercal \right)_{|j}.$$

Ejercicio 9. Comenzamos con la suma

$$_{i|}\big(\mathbf{A}+\mathbf{B}\big)=\big((\mathbf{A}+\mathbf{B})^{\mathsf{T}}\big)_{|i|}=(\mathbf{A}^{\mathsf{T}}+\mathbf{B}^{\mathsf{T}})_{|i|}=\big(\mathbf{A}^{\mathsf{T}}\big)_{|i|}+\big(\mathbf{B}^{\mathsf{T}}\big)_{|i|}={}_{i|}\mathbf{A}+{}_{i|}\mathbf{B}$$

Y continuamos con el producto:

$$_{il} \big(\mathbf{A} \boldsymbol{\lambda} \big) = \big((\mathbf{A} \boldsymbol{\lambda})^{\mathsf{T}} \big)_{|i} = \big((\mathbf{A}^{\mathsf{T}}) \boldsymbol{\lambda} \big)_{|i} = \big(\big(\mathbf{A}^{\mathsf{T}} \big)_{|i} \big) \boldsymbol{\lambda} = \big(_{il} \mathbf{A} \big) \boldsymbol{\lambda}.$$

Ejercicio 10(a) $x \cdot y = x_1y_1 + \cdots + x_ny_n = y_1x_1 + \cdots + y_nx_n = y \cdot x$

Ejercicio 10(b)

- $\bullet (a\mathbf{x}) \cdot \mathbf{y} = ax_1y_1 + \dots + ax_ny_n = a(x_1y_1 + \dots + x_ny_n) = a(\mathbf{x} \cdot \mathbf{y}).$
- $(x + y) \cdot z = (x_1 + y_1)z_1 + \dots + (x_n + y_n)z_n = x_1z_1 + \dots + x_nz_n + y_1z_1 + \dots + y_nz_n = x \cdot z + y \cdot z.$

Ejercicio 10(c) $x \cdot x = x_1^2 + \cdots + x_n^2 \ge 0$.

Ejercicio 10(d) $x \cdot x = x_1^2 + \dots + x_n^2 = 0 \iff x_i = 0 \text{ para } i = 1 : n.$

Ejercicio 11.

$$2\begin{pmatrix}1\\1\\-2\end{pmatrix}+2\begin{pmatrix}1\\-2\\1\end{pmatrix}+2\begin{pmatrix}-2\\1\\1\end{pmatrix}=\begin{pmatrix}2\\2\\-4\end{pmatrix}+\begin{pmatrix}2\\-4\\2\end{pmatrix}+\begin{pmatrix}-4\\2\\2\end{pmatrix}=\begin{pmatrix}2+2-4\\2-4+2\\-4+2+2\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix}=\mathbf{0}.$$

Ejercicio 12. $\mathbf{A}b = \begin{bmatrix} 1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$

Ejercicio 13. $\mathbf{A}(\mathbf{I}_{|j}) = \mathbf{A} \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} = (\mathbf{A}_{|1})0 + \dots + (\mathbf{A}_{|j})1 + \dots + (\mathbf{A}_{|n})0 = \mathbf{A}_{|j}.$

Ejercicio 14. Sea **A**, de *n* columnas y **b** de \mathbb{R}^n , entonces

$$|\mathbf{A}b\rangle = \left((\mathbf{A}_{|1})b_1 + \dots + (\mathbf{A}_{|n})b_n \right)$$

$$= \left| (\mathbf{A}_{|1})b_1 + \dots + \left| (\mathbf{A}_{|n})b_n \right|$$

$$= \left(\left| (\mathbf{A}_{|1})b_1 + \dots + \left| (\mathbf{A}_{|n})b_n \right| \right)$$

$$= \left(\left| (\mathbf{A}_{|1})b_1 + \dots + \left| (\mathbf{A}_{|n})b_n \right| \right)$$

 $\textbf{Ejercicio 15(a)} \quad {}_{i|} \Big(\mathbf{A}(b+c) \Big) = \left({}_{i|} \mathbf{A} \right) \cdot (b+c) = \left({}_{i|} \mathbf{A} \right) \cdot b + \left({}_{i|} \mathbf{A} \right) \cdot c = {}_{i|} \big(\mathbf{A}b \big) + {}_{i|} \big(\mathbf{A}c \big) = {}_{i|} \big(\mathbf{A}b + \mathbf{A}c \big).$

Ejercicio 16.

 $\mathbf{A}(\mathbf{B}\boldsymbol{c}) = \mathbf{A}\left((\mathbf{B}_{|1})c_1 + \dots + (\mathbf{B}_{|n})c_n\right) \qquad \text{por la Definición 2.3 de producto}$ $= \mathbf{A}\left(\mathbf{B}_{|1}\right)c_1 + \dots + \mathbf{A}\left(\mathbf{B}_{|n}\right)c_n \qquad \text{proposiciones 2.2.1 y 2.2.2}$ $= \left[\mathbf{A}\left(\mathbf{B}_{|1}\right), \dots, \mathbf{A}\left(\mathbf{B}_{|n}\right)\right]\boldsymbol{c} \qquad \text{por la Definición 2.3 de producto.}$

 $\begin{aligned} & \mathbf{Ejercicio} \ \mathbf{17(b)} \\ & _{i|} \left((\mathbf{A} + \mathbf{B}) c \right) = \left(_{i|} (\mathbf{A} + \mathbf{B}) \right) \cdot c = \left(_{i|} \mathbf{A} + _{i|} \mathbf{B} \right) \cdot c = \left(_{i|} \mathbf{A} \right) \cdot c + \left(_{i|} \mathbf{B} \right) \cdot c = _{i|} \left(\mathbf{A} c \right) + _{i|} \left(\mathbf{B} c \right) = _{i|} \left(\mathbf{A} c + \mathbf{B} c \right). \end{aligned}$

Ejercicio 18(c) $(a+b)\mathsf{C} = (\mathsf{C}^\intercal)\,(a+b) = (\mathsf{C}^\intercal)\,a + (\mathsf{C}^\intercal)\,b = a\mathsf{C} + b\mathsf{C}.$

Ejercicio 18(d) $(\lambda a)\mathbf{B} = (\mathbf{B}^{\mathsf{T}})(\lambda a) \underset{(*)}{=} \lambda \Big((\mathbf{B}^{\mathsf{T}}) a \Big) = \lambda (a\mathbf{B})$

 $\mathbf{Ejercicio}\ \mathbf{18(e)} \quad \boldsymbol{a}(\lambda \mathbf{B}) = \left((\lambda \mathbf{B})^{\intercal} \right) \boldsymbol{a} = \left(\lambda \left(\mathbf{B}^{\intercal} \right) \right) \boldsymbol{a} \underset{(*)}{=} \left(\mathbf{B}^{\intercal} \right) (\lambda \boldsymbol{a}) = (\lambda \boldsymbol{a}) \mathbf{B}.$

$$\mathbf{Ejercicio} \ \ \mathbf{18(f)} \quad \ \boldsymbol{a}(\mathsf{B}+\mathsf{C}) = (\mathsf{B}+\mathsf{C})^{\intercal}\boldsymbol{a} = \Big(\left(\mathsf{B}^{\intercal}\right) + \left(\mathsf{C}^{\intercal}\right) \Big)\boldsymbol{a} \underset{(*)}{=} \left(\mathsf{B}^{\intercal}\right)\boldsymbol{a} + \left(\mathsf{C}^{\intercal}\right)\boldsymbol{a} = \boldsymbol{a}\mathsf{B} + \boldsymbol{a}\mathsf{C}.$$

Ejercicio 19(a) Recordando la Proposición 2.2.3 en la página 26 (*) y usando la Definición 3.1 de producto:

$$\mathbf{A}(\mathbf{B}c) = \left[\mathbf{A}(\mathbf{B}_{|1}), \dots, \mathbf{A}(\mathbf{B}_{|n})\right]c = (\mathbf{A}\mathbf{B})c.$$

Ejercicio 19(b) Aplicando repetidamente la definición de producto y una vez (*) la proposición anterior tenemos:

$$\left(\mathbf{A}\big(\mathbf{B}\mathbf{C}\big)\right)_{|j} = \mathbf{A}\Big(\big(\mathbf{B}\mathbf{C}\big)_{|j}\Big) = \mathbf{A}\Big(\mathbf{B}\big(\mathbf{C}_{|j}\big)\Big) \underset{(*)}{=} \Big(\mathbf{A}\mathbf{B}\Big)\big(\mathbf{C}_{|j}\big) = \Big(\big(\mathbf{A}\mathbf{B}\big)\mathbf{C}\Big)_{|j}, \quad j=1:n.$$

Ejercicio 20(a) Usando la Definición 3.1 de producto matricial y recordando que $(\mathbf{A} + \mathbf{B})c = \mathbf{A}c + \mathbf{B}c$; para j = 1:n tenemos

$$\left(\left(\mathbf{A} + \mathbf{B} \right) \mathbf{C} \right)_{|j} = \left(\mathbf{A} + \mathbf{B} \right) \left(\mathbf{C}_{|j} \right) = \mathbf{A} \left(\mathbf{C}_{|j} \right) + \mathbf{B} \left(\mathbf{C}_{|j} \right) = \left(\mathbf{A} \mathbf{C} \right)_{|j} + \left(\mathbf{B} \mathbf{C} \right)_{|j} = \left(\mathbf{A} \mathbf{C} + \mathbf{B} \mathbf{C} \right)_{|j}$$

Ejercicio 20(b) Usando la Definición 3.1 de producto matricial y la propiedad de linealidad: $\mathbf{A}(u+v) = \mathbf{A}u + \mathbf{A}v$; para j=1:n tenemos

$$\left(\mathbf{A}(\mathbf{B}+\mathbf{C})\right)_{|j} = \mathbf{A}\left(\left(\mathbf{B}+\mathbf{C}\right)_{|j}\right) = \mathbf{A}\left(\left(\mathbf{B}_{|j}\right) + \left(\mathbf{C}_{|j}\right)\right) = \mathbf{A}\left(\mathbf{B}_{|j}\right) + \mathbf{A}\left(\mathbf{C}_{|j}\right) = \left(\mathbf{A}\mathbf{B}\right)_{|j} + \left(\mathbf{A}\mathbf{C}\right)_{|j} = \left(\mathbf{A}\mathbf{B}+\mathbf{A}\mathbf{C}\right)_{|j}.$$

Ejercicio 20(c)

$$\left(\mathbf{A}(\lambda \mathbf{B}) \right)_{|j} = \mathbf{A} \left(\left(\lambda \mathbf{B} \right)_{|j} \right) = \mathbf{A} \left(\lambda \left(\mathbf{B}_{|j} \right) \right) \begin{cases} = \left(\lambda \mathbf{A} \right) \left(\mathbf{B}_{|j} \right) = \left(\left(\lambda \mathbf{A} \right) \mathbf{B} \right)_{|j} \\ = \lambda \left(\mathbf{A} \left(\mathbf{B}_{|j} \right) \right) = \lambda \left(\left(\mathbf{A} \mathbf{B} \right)_{|j} \right) = \left(\lambda \left(\mathbf{A} \mathbf{B} \right) \right)_{|j} \end{cases} , \quad j = 1:n.$$

 $\mathbf{Ejercicio} \ \mathbf{20(d)} \quad \left(\mathbf{IA}\right)_{|j} = \mathbf{I}\left(\mathbf{A}_{|j}\right) = \mathbf{A}_{|j}, \quad j=1:n.$

Ejercicio 20(e) $(AI)_{|j} = A(I_{|j}) = A_{|j}, \quad j = 1:n.$

$$\mathbf{Ejercicio~21.} \quad _{i|} \big(\mathbf{A} \mathbf{B} \big)_{|j} = {}_{i|} \Big(\big(\mathbf{A} \mathbf{B} \big)_{|j} \Big) = {}_{i|} \Big(\mathbf{A} \big(\mathbf{B}_{|j} \big) \Big) = \big({}_{i|} \mathbf{A} \big) \cdot \big(\mathbf{B}_{|j} \big)$$

Ejercicio 22. Veamos que las componentes jésimas son iguales:

$$\left({}_{i|}(\mathbf{A}\mathbf{B})\right)_{|j} = {}_{i|}(\mathbf{A}\mathbf{B})_{|j} = \left({}_{i|}\mathbf{A}\right) \cdot \left(\mathbf{B}_{|j}\right) = \left(({}_{i|}\mathbf{A})\mathbf{B}\right)_{|j}; \quad \text{por tanto } {}_{i|}(\mathbf{A}\mathbf{B}) = ({}_{i|}\mathbf{A})\mathbf{B}.$$

Ejercicio 23. $_{i|}(AB)^{\mathsf{T}}_{|j|} = _{j|}AB_{|i|} = _{j|}A \cdot B_{|i|} = B_{|i|} \cdot _{j|}A = _{i|}(B^{\mathsf{T}})(A^{\mathsf{T}})_{|j|}$

Ejercicio 24(a)
$$\begin{bmatrix} 1 & 0 & -7 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Ejercicio 24(b)
$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Ejercicio 24(c)
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Ejercicio 24(d)
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -10 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

 $\mathbf{Ejercicio~25.~a)}~\frac{\boldsymbol{\tau}}{[(-7)\mathbf{1}+\mathbf{3}]}~\mathrm{transforma~}\mathbf{B_{|3}},~\mathrm{rest\'{a}ndole~siete~veces~}\mathbf{B_{|1}},~\mathrm{es~decir:~}\left(\mathbf{B_{\boldsymbol{\tau}}}_{[(-7)\mathbf{1}+\mathbf{3}]}\right)_{|3}=-7\mathbf{B_{|1}}+\mathbf{B_{|3}}.$

- b) $\frac{\boldsymbol{\tau}}{[(1)\mathbf{1}+\mathbf{4}]}$ transforma la cuarta columna de \mathbf{B} , sumándole la primera columna: $\left(\mathbf{B}_{\underline{\boldsymbol{\tau}}}\right)_{|\mathbf{4}} = \mathbf{B}_{|\mathbf{1}} + \mathbf{B}_{|\mathbf{4}}$.
- c) $\frac{\boldsymbol{\tau}}{[(3)\mathbf{2}+\mathbf{1}]}$ transforma la primera columna de \mathbf{B} , sumándole tres veces la segunda: $\left(\mathbf{B}_{\frac{\boldsymbol{\tau}}{[(3)\mathbf{2}+\mathbf{1}]}}\right)_{|1} = 3\mathbf{B}_{|2} + \mathbf{B}_{|1}$.
- d) $\frac{\boldsymbol{\tau}}{[(-10)\mathbf{3}]}$ transforma la tercera columna de \mathbf{B} , multiplicándola por -10, es decir: $\left(\mathbf{B}_{\frac{\boldsymbol{\tau}}{[(-10)\mathbf{3}]}}\right)_{|\mathbf{3}} = -10\mathbf{B}_{|\mathbf{3}}$.

$$\begin{aligned} \mathbf{Ejercicio~26(b)} \quad \mathbf{A}_{\frac{\boldsymbol{\tau}}{[(-1)\mathbf{1}+\mathbf{2}]}} &= \mathbf{A} \Big(\mathbf{I}_{\frac{\boldsymbol{\tau}}{[(-1)\mathbf{1}+\mathbf{2}]}} \Big) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 3 & 4 \end{bmatrix}. \end{aligned}$$

Ejercicio 27. Por una parte,

$$\big(\lambda \mathbf{A}\big)_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} = \big(\lambda \mathbf{A}\big) \big(\mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k}\big) = \lambda \big(\mathbf{A}\big(\mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k}\big)\big) = \lambda \big(\mathbf{A}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k}\big),$$

y por otra

$$\big(\mathbf{A}+\mathbf{B}\big)_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k}=\big(\mathbf{A}+\mathbf{B}\big)\big(\mathbf{I}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k}\big)=\mathbf{A}\big(\mathbf{I}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k}\big)+\mathbf{B}\big(\mathbf{I}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k}\big)=\mathbf{A}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k}+\mathbf{B}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k}.$$

Ejercicio 28(a) Una posible sucesión de transformaciones elementales por columnas es:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\text{Tipo I}} \begin{array}{c} \boldsymbol{\tau} \\ \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\boldsymbol{\tau}} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\boldsymbol{\tau}} \begin{bmatrix} 0 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\boldsymbol{\tau}} \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\boldsymbol{\tau}} \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

 $\text{es decir}, \ \ \boldsymbol{\mathsf{I}}_{\overset{\boldsymbol{\tau}}{[1=2]}} \quad = \quad \ \boldsymbol{\mathsf{I}}_{\overset{\boldsymbol{\tau}}{[(1)\mathbf{1}+2][(-1)\mathbf{2}+1][(1)\mathbf{1}+2][(-1)\mathbf{1}]}}.$

 $\textbf{Ejercicio 28(b)} \text{ Hay much$ $as combinaciones posibles. Por ejemplo: } \textbf{I}_{\overset{\boldsymbol{\tau}}{\boldsymbol{\tau}}} = \textbf{I}_{\overset{\boldsymbol{\tau}}{\boldsymbol{\tau}},\overset{\boldsymbol{\tau}}{\boldsymbol{\tau}},\overset{\boldsymbol{\tau}}{\boldsymbol{\tau}},\overset{\boldsymbol{\tau}}{\boldsymbol{\tau}}}.$

 $\mathbf{Ejercicio}\ \mathbf{29(a)}\ \mathrm{Por\ una\ parte}\quad \mathbf{ABB}^{-1}\mathbf{A}^{-1}=\mathbf{AIA}^{-1}=\mathbf{I},\quad \mathrm{y\ por\ otra}\quad \mathbf{B}^{-1}\mathbf{A}^{-1}\mathbf{AB}=\mathbf{B}^{-1}\mathbf{IB}=\mathbf{I}.$

Ejercicio 29(b) Basta aplicar iterativamente la proposición anterior:

$$(\mathbf{A}_1\cdots\mathbf{A}_k)^{-1}=(\mathbf{A}_2\cdots\mathbf{A}_k)^{-1}\mathbf{A}_1^{-1}=(\mathbf{A}_3\cdots\mathbf{A}_k)^{-1}\mathbf{A}_2^{-1}\mathbf{A}_1^{-1}=\cdots=(\mathbf{A}_{k-1}\mathbf{A}_k)^{-1}\mathbf{A}_{k-2}^{-1}\cdots\mathbf{A}_1^{-1}=\mathbf{A}_k^{-1}\cdots\mathbf{A}_1^{-1}.$$

Ejercicio 29(c) Si A es invertible, entonces AB es invertible (Proposición 5.1.2 en la página 57).

Supongamos que AB es invertible. Entonces sabemos que existe C tal que

$$(AB)C = I,$$
 $y \quad C(AB) = I.$

De la primera igualdad tenemos que A es invertible por la derecha, pues

$$A(BC) = I.$$

Solo nos falta comprobar que también es invertible por la izquierda, es decir, que (BC)A = I. Para ello nos fijamos en la segunda igualdad, y multiplicando por B por la izquierda y por B^{-1} por la derecha (a ambos lados de la ecuación) tenemos

$$BC(AB)B^{-1} = BIB^{-1}$$
 \Rightarrow $(BC)A = I$.

Ejercicio 29(d) Si B es invertible, entonces AB es invertible (Proposición 5.1.2 en la página 57).

Supongamos que AB es invertible. Entonces sabemos que existe C tal que

$$(AB)C = I,$$
 y $C(AB) = I.$

De la segunda igualdad tenemos que **B** es invertible por la izquierda, pues

$$(CA)B = I.$$

Solo nos falta comprobar que también es invertible por la derecha, es decir, que B(CA) = I. Para ello nos fijamos en la primera igualdad y multiplicando por A^{-1} por la izquierda y por A por la derecha (a ambos lados de la ecuación) tenemos

$$A^{-1}(AB)CA = A^{-1}IA, \Rightarrow (BC)A = I.$$

Ejercicio 29(e) Aplicando la pista tenemos por un lado: $\mathbf{A}^{\mathsf{T}} (\mathbf{A}^{-1})^{\mathsf{T}} = (\mathbf{A}^{-1}\mathbf{A})^{\mathsf{T}} = (\mathbf{I})^{\mathsf{T}} = \mathbf{I}$ y por el otro $(\mathbf{A}^{-1})^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} = (\mathbf{A}\mathbf{A}^{-1})^{\mathsf{T}} = (\mathbf{I})^{\mathsf{T}} = \mathbf{I}$. Es decir, $(\mathbf{A}^{-1})^{\mathsf{T}} = (\mathbf{A}^{\mathsf{T}})^{-1}$.

Ejercicio 29(f) Sea A de orden n una matriz cuya iésima columna es nula: $A_{|j} = 0$. Si asumimos que existe A^{-1} llegamos a una contradicción. Para verlo multipliquemos la ecuación por A^{-1} :

$$\mathbf{A}^{\text{-}1}\big(\mathbf{A}_{|j}\big) = \mathbf{A}^{\text{-}1}\big(\mathbf{0}\big) \qquad \Rightarrow \qquad \left(\mathbf{A}^{\text{-}1}\mathbf{A}\right)_{|j} = \mathbf{0} \qquad \Rightarrow \qquad \mathbf{I}_{|j} = \mathbf{0}.$$

Pero sabemos que $\mathbf{I}_{|i}$ (la columna iésima de \mathbf{I}) no es $\mathbf{0}$, así que hemos llegado a una contradicción. Por tanto \mathbf{A}^{-1} no puede existir: así, \mathbf{A} es singular (no tiene inversa) si tiene alguna columna nula.

Para las filas, basta repetir lo anterior con \mathbf{A}^T pues, si $_{i|}\mathbf{A}=\left(\mathbf{A}^\mathsf{T}\right)_{|i|}=\mathbf{0}$, llegamos a la misma contradicción.

Ejercicio 30. Si para alguna columna $\mathbf{A}_{|j}$ se verifica que $\mathbf{A}_{|j} = \mathbf{A}x$ (con $x_{|j} = 0$) es decir, $\mathbf{A}_{|j}$ es una combinación lineal del resto de columnas, entonces mediante (n-1) transformaciones elementales τ $[(-x_k)\mathbf{k}+\mathbf{j}]$

(con k=1:n excepto k=j) es posible transformar la columna $\mathbf{A}_{|j}$ en un vector de ceros, es decir, hay transformaciones elementales tales que $(\mathbf{A}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_{(n-1)}})_{|j}=\mathbf{0}$, pues a la columna $\mathbf{A}_{|j}$ se le resta $\mathbf{A}\boldsymbol{x}$:

$$\mathbf{A} \left(\mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_{(n-1)}} \right) = \mathbf{A} \underbrace{ \begin{array}{c} \boldsymbol{\tau} \\ \boldsymbol{\tau} \\ [(-x_1)\mathbf{1} + \mathbf{j}] \\ [(-x_2)\mathbf{2} + \mathbf{j}] \\ \vdots \\ [(-x_n)\mathbf{n} + \mathbf{j}] \end{array} }_{\begin{bmatrix} [(-x_n)\mathbf{n} + \mathbf{j}] \\ [(-x_n)\mathbf{n} + \mathbf{j}] \end{bmatrix}} = \mathbf{A} \begin{bmatrix} 1 & & & -x_1 \\ & 1 & & & -x_2 \\ & & \ddots & \vdots \\ & & & 1 \\ & & & \vdots & \ddots \\ & & & -x_n & & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{|1}; \; \mathbf{A}_{|2}; \cdots \mathbf{0}; \cdots \mathbf{A}_{|n} \end{bmatrix},$$

Como $\mathbf{I}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_{(n-1)}}$ es invertible y el resultado es una matriz singular (por ser la columna jésima nula), \mathbf{A} es singular (Proposición 5.1.4 en la página 57).

Ejercicio 31(a) En particular, también es cierto para $\vec{x} = \vec{0}$; así tenemos que

$$\overrightarrow{0} = \overrightarrow{z} + \overrightarrow{0}$$
 por la propiedad que hemos pedido a \overrightarrow{z}
$$= \overrightarrow{z}$$
 por la propiedad que tiene $\overrightarrow{0}$.

Ejercicio 31(b) $\vec{z} = \vec{z} + \vec{0} = \vec{z} + (\vec{x} + (-\vec{x})) = (\vec{z} + \vec{x}) + (-\vec{x}) = \vec{0} + (-\vec{x}) = -\vec{x}$.

Ejercicio 32.

1.
$$\overrightarrow{x} + \overrightarrow{y} = xy = yx = \overrightarrow{y} + \overrightarrow{x}$$
.

2.
$$\overrightarrow{x} + (\overrightarrow{y} + \overrightarrow{z}) = x(yz) = (xy)z = (\overrightarrow{x} + \overrightarrow{y}) + \overrightarrow{z}$$
.

3. Si
$$\vec{0} = 1$$
; entonces $\vec{x} + \vec{0} = x1 = x = \vec{x}$; por tanto $\vec{0} = 1$.

4. Si
$$-\vec{x} = 1/x$$
; entonces $\vec{x} + (-\vec{x}) = x/x = 1 = \vec{0}$.

5.
$$1\vec{x} = x^1 = x = \vec{x}$$
.

6.
$$(ab)\vec{x} = x^{(ab)} = (x^b)^a = (b\vec{x})^a = a(b\vec{x}).$$

7.
$$a(\vec{x} + \vec{y}) = (xy)^a = x^a \cdot y^a = a\vec{x} + a\vec{y}$$
.

8.
$$(a+b)\vec{x} = (x)^{a+b} = x^a \cdot x^b = a\vec{x} + b\vec{x}$$
.

Por tanto, en este espacio vectorial el vector nulo es $\vec{0} = 1$ y el vector opuesto de \vec{x} es $-\vec{x} = 1/x$.

Ejercicio 33(a) Esquema de la función lineal: $-|j|: \mathbb{R}^{m \times n} \to \mathbb{R}^m$. $\mathbf{A} \to (a_{1j}, \dots a_{mj})$

Es lineal puesto que

$$\begin{split} \left(\mathbf{A} + \mathbf{B}\right)_{|j} &= \mathbf{A}_{|j} + \mathbf{B}_{|j} \\ \left(\lambda \mathbf{A}\right)_{|j} &= \lambda \left(\mathbf{A}_{|j}\right). \end{split}$$

Ejercicio 33(b) Esquema de la función lineal: $_{i|\dots|j}\colon\mathbb{R}^{m\times n}\to\mathbb{R}$. A $\to a_{ij}$

Es lineal puesto que

$$_{i|}(\mathbf{A}+\mathbf{B})_{|j} = {}_{i|}\mathbf{A}_{|j} + {}_{i|}\mathbf{B}_{|j}$$

$$_{i|}(\lambda \mathbf{A})_{|j} = \lambda \Big({}_{i|}\mathbf{A}_{|j} \Big).$$

Ejercicio 33(c) Esquema de la función lineal: $_^\intercal \colon \mathbb{R}^{m \times n} \to \mathbb{R}^{n \times m}$. $\mathbf{A} \to [_{1|}\mathbf{A}; \ \dots,_{m|}\mathbf{A}]$

Es lineal puesto que

$$(\mathbf{A} + \mathbf{B})^{\mathsf{T}} = \mathbf{A}^{\mathsf{T}} + \mathbf{B}^{\mathsf{T}}$$

$$(\lambda \mathbf{A})^{\mathsf{T}} = \lambda (\mathbf{A}^{\mathsf{T}}).$$

Ejercicio 33(d) Esquema de la función lineal: i|_: $\mathbb{R}^{m \times n} \to \mathbb{R}^n$. $\mathbf{A} \to (a_{m1}, \dots a_{mn})$

Es lineal puesto que

$$_{i|}ig(\mathbf{A}+\mathbf{B}ig)=_{j|}\mathbf{A}+_{i|}\mathbf{B}$$
 $_{i|}ig(\lambda\mathbf{A}ig)=\lambdaig(_{i|}\mathbf{A}ig).$

Ejercicio 33(e) Esquema de la función lineal: $\underline{b} \colon \mathbb{R}^{m \times n} \to \mathbb{R}^n$ $\mathbf{A} \to (\mathbf{A}_{|1})b_1 + (\mathbf{A}_{|2})b_2 + \dots + (\mathbf{A}_{|n})b_n$

Es lineal puesto que

$$(\mathbf{A} + \mathbf{C})\mathbf{b} = \mathbf{A}\mathbf{b} + \mathbf{C}\mathbf{b}$$

 $(\lambda \mathbf{A})\mathbf{b} = \lambda(\mathbf{A}\mathbf{b}).$

Ejercicio 33(f) Esquema de la función lineal: $\mathbf{A}_{-}: \mathbb{R}^{n} \to \mathbb{R}^{n}$ $b \to (\mathbf{A}_{|1})b_{1} + (\mathbf{A}_{|2})b_{2} + \cdots + (\mathbf{A}_{|n})b_{n}$.

Es lineal puesto que

$$\mathbf{A}(\mathbf{b} + \mathbf{c}) = \mathbf{A}\mathbf{b} + \mathbf{A}\mathbf{c}$$

 $\mathbf{A}(\lambda \mathbf{b}) = \lambda(\mathbf{A}\mathbf{b}).$

Ejercicio 33(g) Esquema de la función lineal: $a_-: \mathbb{R}^{m \times n} \to \mathbb{R}^m$. $\mathbf{B} \to a_1(\mathbf{1}|\mathbf{B}) + \cdots + a_m(\mathbf{1}|\mathbf{B})$.

Es lineal puesto que

$$a(B + C) = aB + aC$$

 $a(\lambda B) = \lambda(aB).$

Ejercicio 33(h) Esquema de la función lineal: $_{\mathbf{B}}: \mathbb{R}^m \to \mathbb{R}^m$ $\mathbf{a} \to a_1(_{1}|\mathbf{B}) + \cdots + a_m(_{m}|\mathbf{B})$

Es lineal puesto que

$$(a+c)B = aB + cB$$

 $(\lambda a)B = \lambda(aB).$

Ejercicio 33(i) Esquema de la función lineal: $\mathbf{A}_{-} \colon \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times p} \\ \mathbf{A}_{-} \to [\mathbf{A}\mathbf{B}_{|1}; \; \dots \mathbf{A}\mathbf{B}_{|p}]$

Es lineal puesto que

$$(\mathbf{A} + \mathbf{C})\mathbf{B} = \mathbf{A}\mathbf{B} + \mathbf{C}\mathbf{B}$$

 $(\lambda \mathbf{A})\mathbf{B} = \lambda(\mathbf{A}\mathbf{B}).$

Ejercicio 33(j) Esquema de la función lineal: _B: $\mathbb{R}^{m \times n} \to \mathbb{R}^{k \times n}$ _B $\to [_{1|}AB; \dots _{k|}AB]^{\mathsf{T}}$

Es lineal puesto que

$$\mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$$

 $\mathbf{A}(\lambda \mathbf{B}) = \lambda(\mathbf{A}\mathbf{B}).$

Ejercicio 33(k) Esquema de la función lineal: $_{-\tau}: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$ donde \mathbf{I}_{τ} es una matriz elemental del $\mathbf{A} \to \mathbf{A} \left(\mathbf{I}_{\tau} \right)$ orden n. Es lineal puesto que

$$\begin{split} (\mathbf{A} + \mathbf{B})_{\pmb{\tau}} &= \mathbf{A}_{\pmb{\tau}} + \mathbf{B}_{\pmb{\tau}} \\ (\lambda \mathbf{A})_{\pmb{\tau}} &= \lambda (\mathbf{A}_{\pmb{\tau}}). \end{split}$$

Ejercicio 33(l) Esquema de la función lineal: $_{\pmb{\tau}}$: $\mathbb{R}^{m\times n}\to\mathbb{R}^{m\times n}$ donde $_{\pmb{\tau}}$ \mathbf{I} es una matriz elemental del $\mathbf{A}\to (_{\pmb{\tau}}\mathbf{I})\,\mathbf{A}$ orden m. Es lineal puesto que

$$_{\pmb{\tau}}(\mathbf{A}+\mathbf{B}) = _{\pmb{\tau}}\mathbf{A} + _{\pmb{\tau}}\mathbf{B}$$

$$_{\pmb{\tau}}(\lambda\mathbf{A}) = \lambda(_{\pmb{\tau}}\mathbf{A}).$$

Ejercicio 34(a) Tenemos que comprobar que la función $[g \circ f]: \mathcal{D} \to \mathcal{W}$ es lineal.

Dados \vec{x} e \vec{y} de \mathcal{D} se verifica que

$$[g \circ f](\overrightarrow{x} + \overrightarrow{y}) = g(f(\overrightarrow{x} + \overrightarrow{y})) = g(f(\overrightarrow{x}) + f(\overrightarrow{y})) = g(f(\overrightarrow{x})) + g(f(\overrightarrow{y})) = [g \circ f](\overrightarrow{x}) + [g \circ f](\overrightarrow{y}).$$

Dados \vec{x} de \mathcal{D} y $\alpha \in \mathbb{R}$ se verifica que

$$[g \circ f](\alpha \overrightarrow{x}) = g(f(\alpha \overrightarrow{x})) = g(\alpha f(\overrightarrow{x})) = \alpha g(f(\overrightarrow{x})) = \alpha [g \circ f](\overrightarrow{x}).$$

Ejercicio 34(b) Tomemos \vec{x} e \vec{y} de \mathcal{V} , entonces

$$f^{-1}(\overrightarrow{x}+\overrightarrow{y}) = f^{-1}(f(f^{-1}(\overrightarrow{x})) + f(f^{-1}(\overrightarrow{y}))) \qquad \text{puesto que } \overrightarrow{x} = f(f^{-1}(\overrightarrow{x})) \text{ e } \overrightarrow{y} = f(f^{-1}(\overrightarrow{y}))$$

$$= f^{-1}(f(f^{-1}(\overrightarrow{x}) + f^{-1}(\overrightarrow{y}))) \qquad \text{puesto que } f \text{ es lineal}$$

$$= f^{-1}(\overrightarrow{x}) + f^{-1}(\overrightarrow{y}) \qquad \text{puesto que en general } \overrightarrow{z} = f^{-1}(f(\overrightarrow{z})).$$

Tomemos $\vec{x} \in \mathcal{V}$ y $\alpha \in R$ entonces

$$f^{-1}\left(\alpha \overrightarrow{x}\right) = f^{-1}\left(\alpha f\left(f^{-1}(\overrightarrow{x})\right)\right) \qquad \text{puesto que } \overrightarrow{x} = f\left(f^{-1}(\overrightarrow{x})\right)$$
$$= f^{-1}\left(f\left(\alpha f^{-1}(\overrightarrow{x})\right)\right) \qquad \text{puesto que } f \text{ es lineal}$$
$$= \alpha f^{-1}(\overrightarrow{x}) \qquad \text{puesto que en general } \overrightarrow{z} = f^{-1}\left(f(z)\right).$$

Ejercicio 35. Si, lo es; pues la suma de dos combinaciones lineales es una combinación lineal; y cualquier múltiplo de una combinación lineal también es una combinación lineal. Por tanto el conjunto es cerrado para la suma y el producto por escalares.

Ejercicio 36. Hay que verificar que se cumplen las ocho propiedades de la Definición 6.1:

Sean los pares (\vec{a}, \vec{x}) , (\vec{b}, \vec{y}) y (\vec{c}, \vec{z}) , donde las primeras componentes son vectores de \mathcal{A} y las segundas componentes son vectores de \mathcal{X} ; y sean los escalares λ y μ . Entonces

1.

$$\begin{split} (\overrightarrow{a},\overrightarrow{x}) + (\overrightarrow{b},\overrightarrow{y}) = & (\overrightarrow{a} + \overrightarrow{b},\overrightarrow{x} + \overrightarrow{y}) \\ = & (\overrightarrow{b} + \overrightarrow{a},\overrightarrow{y} + \overrightarrow{x}) \\ = & (\overrightarrow{b},\overrightarrow{y}) + (\overrightarrow{a},\overrightarrow{x}) \end{split}$$

aplicando la definición de suma de pares puesto que \mathcal{A} y \mathcal{X} son espacios vectoriales aplicando la definición de suma de pares.

2.

$$\begin{split} (\overrightarrow{a},\overrightarrow{x}) + \left((\overrightarrow{b},\overrightarrow{y}) + (\overrightarrow{c},\overrightarrow{z}) \right) &= (\overrightarrow{a},\overrightarrow{x}) + \left((\overrightarrow{b}+\overrightarrow{c}),\ (\overrightarrow{y}+\overrightarrow{z}) \right) \\ &= \left(\overrightarrow{a} + (\overrightarrow{b}+\overrightarrow{c}),\ \overrightarrow{x} + (\overrightarrow{y}+\overrightarrow{z}) \right)) \\ &= \left((\overrightarrow{a}+\overrightarrow{b}) + \overrightarrow{c},\ (\overrightarrow{x}+\overrightarrow{y}) + \overrightarrow{z} \right) \\ &= \left((\overrightarrow{a}+\overrightarrow{b}),\ (\overrightarrow{x}+\overrightarrow{y}) \right) + (\overrightarrow{c},\overrightarrow{z}) \\ &= \left((\overrightarrow{a},\overrightarrow{x}) + (\overrightarrow{b},\overrightarrow{y}) \right) + (\overrightarrow{c},\overrightarrow{z}). \end{split}$$

aplicando la definición de suma de pares aplicando la definición de suma de pares puesto que \mathcal{A} y \mathcal{X} son espacios vectoriales aplicando la definición de suma de pares

3.

$$\begin{split} (\overrightarrow{a},\overrightarrow{x}) + (\overrightarrow{0}_{\mathcal{A}},\overrightarrow{0}_{\mathcal{X}}) = & (\overrightarrow{a} + \overrightarrow{0}_{\mathcal{A}}, \ \overrightarrow{x}, \overrightarrow{0}_{\mathcal{X}}) \\ = & (\overrightarrow{a}, \overrightarrow{x}) \end{split}$$

aplicando la definición de suma de funciones puesto que \mathcal{A} y \mathcal{X} son espacios vectoriales por tanto $\overrightarrow{0} = (\overrightarrow{0}_{\mathcal{A}}, \overrightarrow{0}_{\mathcal{X}})$.

4.

$$\begin{split} (\overrightarrow{a},\overrightarrow{x}) + (-\overrightarrow{a},-\overrightarrow{x}) = & (\overrightarrow{a}-\overrightarrow{a},\ \overrightarrow{x}-\overrightarrow{x}) \\ = & (\overrightarrow{0}_{\mathcal{A}},\overrightarrow{0}_{\mathcal{X}}) \end{split}$$

aplicando la definición de suma de funciones puesto que \mathcal{A} y \mathcal{X} son espacios vectoriales por tanto $(-\vec{a}, -\vec{x}) = -(\vec{a}, \vec{x})$.

5.

$$\begin{split} \lambda \big((\overrightarrow{a}, \overrightarrow{x}) + (\overrightarrow{b}, \overrightarrow{y}) \big) = & \lambda \big((\overrightarrow{a} + \overrightarrow{b}), \ (\overrightarrow{x} + \overrightarrow{y}) \big) \\ = & \big(\lambda (\overrightarrow{a} + \overrightarrow{b}), \ \lambda (\overrightarrow{x} + \overrightarrow{y}) \big) \\ = & \big(\lambda \overrightarrow{a} + \lambda \overrightarrow{b}, \ \lambda \overrightarrow{x} + \lambda \overrightarrow{y} \big) \\ = & \big(\lambda \overrightarrow{a}, \ \lambda \overrightarrow{x} \big) + \big(\lambda \overrightarrow{b}, \ \lambda \overrightarrow{y} \big) \\ = & \lambda (\overrightarrow{a}, \overrightarrow{x}) + \lambda (\overrightarrow{b}, \overrightarrow{y}) \end{split}$$

aplicando la definición de suma de pares aplicando la definición de escalar por par puesto que \mathcal{A} y \mathcal{X} son espacios vectoriales aplicando la definición de suma de pares aplicando la definición de escalar por par

6.

$$(\lambda + \mu)(\vec{a}, \vec{x}) = ((\lambda + \mu)\vec{a}, (\lambda + \mu)\vec{x})$$

$$= ((\lambda \vec{a} + \mu \vec{a}), (\lambda \vec{x} + \mu \vec{x}))$$

$$= (\lambda \vec{a}, \lambda \vec{x}) + (\mu \vec{a}, \mu \vec{x})$$

$$= \lambda(\vec{a}, \vec{x}) + \mu(\vec{a}, \vec{x})$$

aplicando la definición de escalar por par puesto que \mathcal{A} y \mathcal{X} son espacios vectoriales aplicando la definición de suma de pares aplicando la definición de escalar por par 7.

$$(\lambda \mu)(\vec{a}, \vec{x}) = ((\lambda \mu)\vec{a}, (\lambda \mu)\vec{x})$$
$$= (\lambda(\mu \vec{a}), \lambda(\mu \vec{x}))$$
$$= \lambda(\mu \vec{a}, \mu \vec{x})$$

aplicando la definición de escalar por par puesto que \mathcal{A} y \mathcal{X} son espacios vectoriales aplicando la definición de escalar por par

8.

$$1(\vec{a}, \vec{x}) = (1\vec{a}, 1\vec{x})$$
$$= (\vec{a}, \vec{x})$$

aplicando la definición de escalar por par puesto que \mathcal{A} y \mathcal{X} son espacios vectoriales

Ejercicio 37. Hay que verificar que se cumplen las ocho propiedades de la Definición 6.1:

Sean las funciones $f: \mathcal{D} \to \mathcal{V}, g: \mathcal{D} \to \mathcal{V}, y h: \mathcal{D} \to \mathcal{V}; y \text{ sean los escalares } \lambda y \mu$. Entonces 1.

$$[f+g](\overrightarrow{x}) = f(\overrightarrow{x}) + g(\overrightarrow{x})$$
$$= g(\overrightarrow{x}) + f(\overrightarrow{x})$$
$$= [g+f](\overrightarrow{x})$$

aplicando la definición de suma de funciones puesto que $\mathcal V$ es un espacio vectorial aplicando la definición de suma de funciones

2.

$$\begin{split} [f+(g+h)](\overrightarrow{x}) = & f(\overrightarrow{x}) + [g+h](\overrightarrow{x}) \\ = & f(\overrightarrow{x}) + \left(g(\overrightarrow{x}) + h(\overrightarrow{x})\right) \\ = & \left(f(\overrightarrow{x}) + g(\overrightarrow{x})\right) + h(\overrightarrow{x}) \\ = & [f+g](\overrightarrow{x}) + h(\overrightarrow{x}) \\ = & [(f+g) + h](\overrightarrow{x}) \end{split}$$

aplicando la definición de suma de funciones aplicando la definición de suma de funciones puesto que $\mathcal V$ es un espacio vectorial aplicando la definición de suma de funciones aplicando la definición de suma de funciones

3. Sea 0: $X \to \mathcal{V}$, entonces $\overrightarrow{x} \to \overrightarrow{0}$

$$\begin{aligned} [f+0](\overrightarrow{x}) = & f(\overrightarrow{x}) + 0(\overrightarrow{x}) \\ = & f(\overrightarrow{x}) + \overrightarrow{0} \\ = & f(\overrightarrow{x}) \end{aligned}$$

aplicando la definición de suma de funciones pues $0(\vec{x}) = \vec{0}$

4. Sea $-f \colon X \to \mathcal{V}$, entonces $\overrightarrow{x} \to -f(\overrightarrow{x})$

$$[f + (-f)](\overrightarrow{x}) = f(\overrightarrow{x}) + (-f(\overrightarrow{x})))$$

$$= \overrightarrow{0}$$

$$= 0(\overrightarrow{x})$$

aplicando la definición de suma de funciones puesto que en $\mathcal V$ se verifica que $f(\vec x)+\big(-f(\vec x)\big)=\vec 0$ pues $0(\vec x)=\vec 0$

5.

$$\begin{split} [\lambda(f+g)](\overrightarrow{x}) = &\lambda \big([f+g](\overrightarrow{x}) \big) \\ = &\lambda \big(f(\overrightarrow{x}) + g(\overrightarrow{x}) \big) \\ = &\lambda f(\overrightarrow{x}) + \lambda g(\overrightarrow{x}) \\ = &[\lambda f](\overrightarrow{x}) + [\lambda g](\overrightarrow{x}) \\ = &[\lambda f + \lambda g](\overrightarrow{x}) \end{split}$$

aplicando la definición de función por escalar aplicando la definición de suma de funciones puesto que \mathcal{V} es un espacio vectorial aplicando la definición de función por escalar aplicando la definición de suma de funciones

6.

$$\begin{split} [(\lambda + \mu)f](\overrightarrow{x}) = & (\lambda + \mu)f(\overrightarrow{x}) \\ = & \lambda f(\overrightarrow{x}) + \mu f(\overrightarrow{x}) \\ = & [\lambda f](\overrightarrow{x}) + [\mu f](\overrightarrow{x}) \\ = & [\lambda f + \mu f](\overrightarrow{x}) \end{split}$$

aplicando la definición de función por escalar puesto que $\mathcal V$ es un espacio vectorial aplicando la definición de función por escalar aplicando la definición de suma de funciones

7.

$$\begin{split} [(\lambda \cdot \mu)f](\overrightarrow{x}) = & (\lambda \cdot \mu)f(\overrightarrow{x}) \\ = & \lambda \big(\mu f(\overrightarrow{x}) \big) \\ = & \lambda \big([\mu f](\overrightarrow{x}) \big) \\ = & [\lambda (\mu f)](\overrightarrow{x}) \end{split}$$

aplicando la definición de función por escalar puesto que \mathcal{V} es un espacio vectorial aplicando la definición de función por escalar aplicando la definición de función por escalar

8.

$$[1 \cdot f](\overrightarrow{x}) = 1 \cdot f(\overrightarrow{x})$$
$$= f(\overrightarrow{x})$$

aplicando la definición de función por escalar puesto que $\mathcal V$ es un espacio vectorial

Ejercicio 38(a) Tenemos que comprobar que la función $[g+f]: \mathcal{D} \to \mathcal{W}$ es lineal.

Dados \vec{x} e \vec{y} de \mathcal{D} se verifica que

$$[g+f]\left(\overrightarrow{x}+\overrightarrow{y}\right)=g(\overrightarrow{x}+\overrightarrow{y})+f(\overrightarrow{x}+\overrightarrow{y})=g(\overrightarrow{x})+g(\overrightarrow{y})+f(\overrightarrow{x})+f(\overrightarrow{y})=g(\overrightarrow{x})+f(\overrightarrow{x})+g(\overrightarrow{y})+f(\overrightarrow{y})=[g+f](\overrightarrow{x})+[g+f](\overrightarrow{y}).$$

Dados \vec{x} de \mathcal{D} y $\alpha \in \mathbb{R}$ se verifica que

$$[g+f](\alpha \vec{x}) = g(\alpha \vec{x}) + f(\alpha \vec{x}) = \alpha g(\vec{x}) + \alpha f(\vec{x}) = \alpha (g(\vec{x}) + f(\vec{x})) = \alpha [g+f](\vec{x}).$$

Ejercicio 38(b) Tenemos que comprobar que la función $[\alpha \cdot f]: \mathcal{D} \to \mathcal{W}$ es lineal.

Dados \vec{x} e \vec{y} de \mathcal{D} se verifica que

$$[\alpha \cdot f](\vec{x} + \vec{y}) = \alpha f(\vec{x} + \vec{y}) = \alpha (f(\vec{x}) + f(\vec{y})) = \alpha f(\vec{x}) + \alpha f(\vec{y}) = [\alpha \cdot f](\vec{x}) + [\alpha \cdot f](\vec{y}).$$

Dados \vec{x} de \mathcal{D} y $\gamma \in \mathbb{R}$ se verifica que

$$[\alpha \cdot f](\gamma \overrightarrow{x}) = \alpha f(\gamma \overrightarrow{x}) = \alpha \left(\gamma f(\overrightarrow{x}) \right) = \gamma \left(\alpha f(\overrightarrow{x}) \right) = \gamma [\alpha \cdot f](\overrightarrow{x}).$$

Ejercicio 39. Basta comprobar que cualquier combinación de soluciones de $\mathbf{A}x=\mathbf{0}$ es también solución.

Sean x y y dos vectores de $\mathcal{N}(\mathbf{A})$, es decir, $\mathbf{A}x = \mathbf{0}$ y $\mathbf{A}y = \mathbf{0}$, y sean b y c dos números reales; entonces

$$\mathbf{A}(bx + cx) = \mathbf{A}bx + \mathbf{A}cy = b\mathbf{A}x + c\mathbf{A}y = b\mathbf{0} + c\mathbf{0} = \mathbf{0} \quad \Rightarrow \quad (bx + cx) \in \mathcal{N}(\mathbf{A}).$$

Ejercicio 40. Si son nulos los coeficientes correspondientes a las columnas no nulas, entonces

$$\mathbf{K}x = (\mathbf{K}_{|1})x_1 + (\mathbf{K}_{|2})x_2 + \dots + (\mathbf{K}_{|n})x_n = \mathbf{0},$$

pues en cada producto $(\mathbf{K}_{|j})x_j$ es $\mathbf{0}$, ya que o bien $x_j=0$ o bien $(\mathbf{K}_{|j})=\mathbf{0}$.

Recíprocamente, supongamos que algún coeficiente x_k es distinto de cero para una columna no nula, y tomemos $j=\min\left\{k\mid x_k\neq 0\ \text{y}\ \left(\mathbf{K}_{\mid j}\right)\neq \mathbf{0}\right\}$. Por la elección de j, si h< j entonces el producto $\left(\mathbf{K}_{\mid h}\right)x_h=\mathbf{0}$ (ya que alguno de los dos es cero). Por tanto tendremos que $\left(\mathbf{K}_{\mid 1}\right)x_1+\dots+\left(\mathbf{K}_{\mid n}\right)x_n=\left(\mathbf{K}_{\mid j}\right)x_j+\dots+\left(\mathbf{K}_{\mid n}\right)x_n$. Entonces si i es la posición de pivote de $\mathbf{K}_{\mid j}$ tendremos que ${}_{i\mid}\left(\left(\mathbf{K}_{\mid j}\right)x_j+\dots+\left(\mathbf{K}_{\mid n}\right)x_n\right)=\left({}_{i\mid}\mathbf{K}_{\mid j}\right)x_j\neq 0$; pues todas las componentes a la derecha del pivote son nulas por estar \mathbf{K} pre-escalonada. Y por tanto $\mathbf{K}\mathbf{x}\neq\mathbf{0}$.

Ejercicio 41. Basta comprobar que cualquier combinación de vectores de $\mathcal{N}(f) = \{\vec{v} \mid f(\vec{v}) = \vec{0}\}$ pertenece a $\mathcal{N}(f)$.

Sean \vec{x} y \vec{y} dos vectores de $\mathcal{N}(f)$, es decir, $f(\vec{x}) = \vec{0}$ y $f(\vec{y}) = \vec{0}$, y sean b y c dos escalares; entonces $f(b\vec{x} + c\vec{x}) = f(\vec{x}) + f(c\vec{y}) = b \cdot f(\vec{x}) + c \cdot f(\vec{x}) = b\vec{0} + c\vec{0} = \vec{0} \implies (b\vec{x} + c\vec{x}) \in \mathcal{N}(f)$.

(Compare esta demostración con la de la Proposición 7.2.1).

Ejercicio 42. Recordemos que $b = f_{\mathbf{A}}(x)$ es equivalente a decir que $(x, b) \in f_{\mathbf{A}}$ (véase notación funcional en la Página 84). Así pues, la imagen de $f_{\mathbf{A}}$ es

$$imagen(f_{\mathbf{A}}) = \{ \mathbf{b} \mid \text{existe } \mathbf{x} \text{ tal que } (\mathbf{x}, \mathbf{b}) \in f_{\mathbf{A}} \}$$

= $\{ \mathbf{b} \mid \text{existe } \mathbf{x} \in \mathbb{R}^n \text{ tal que } \mathbf{b} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \} = \mathcal{C}(\mathbf{A}).$

Ejercicio 43. Basta demostrar que el conjunto

$$imagen(f) = \{ \overrightarrow{y} \mid \text{existe } \overrightarrow{x} \in \mathcal{D} \text{ tal que } \overrightarrow{y} = f(\overrightarrow{x}) \}$$

es cerrado para la suma y el producto por escalares. Sean \vec{x} , $\vec{y} \in imagen(f)$, es decir, vectores de \mathcal{W} tales que existen \vec{z} y \vec{w} de \mathcal{D} de manera que $\vec{x} = f(\vec{z})$ e $\vec{y} = f(\vec{w})$, y sean los escalares a y b. Entonces para el vector $(a\vec{x} + b\vec{y}) \in \mathcal{W}$ se verifica que

$$a\vec{x} + b\vec{y} = af(\vec{z}) + bf(\vec{w}) = f(a\vec{z} + b\vec{w});$$

pues f es lineal. Es decir, $(a\vec{x} + b\vec{y}) \in imagen(f)$.

Ejercicio 44(a)

$$\mathsf{Z}(\boldsymbol{b}+\boldsymbol{c}) = \sum_{k=1}^{n} \left(\mathsf{Z}_{|k}(b_k + c_k) \right) = \sum_{k=1}^{n} \left(\left(\mathsf{Z}_{|k} \right) b_k \ + \ \left(\mathsf{Z}_{|k} \right) c_k \right) = \sum_{k=1}^{n} \left(\mathsf{Z}_{|k} \right) b_k \ + \ \sum_{k=1}^{n} \left(\mathsf{Z}_{|k} \right) c_k = \mathsf{Z}\boldsymbol{b} + \mathsf{Z}\boldsymbol{c}.$$

Ejercicio 45(a)

$$\mathsf{Z}(\mathsf{B}\boldsymbol{c}) = \mathsf{Z}\left(\sum_{k=1}^n \left(\mathsf{B}_{|k}\right) c_k\right) = \sum_{k=1}^n \left(\mathsf{Z}(\mathsf{B}_{|k}) c_k\right) = \sum_{k=1}^n \left(\left(\mathsf{Z}\mathsf{B}\right)_{|k}\right) c_k = \left[\mathsf{Z}\mathsf{B}_{|1}; \ldots; \mathsf{Z}\mathsf{B}_{|n}\right] \boldsymbol{c} = (\mathsf{Z}\mathsf{B})\boldsymbol{c}.$$

Ejercicio 45(b) Puesto que $C_{|j|}$ es un vector de \mathbb{R}^q , aplicando las definiciones de producto de sistema por matriz, y matriz por matriz junto con la proposición anterior, tenemos:

$$\left(\mathsf{Z}(\mathsf{BC})\right)_{|j} = \mathsf{Z}\left(\mathsf{BC}\right)_{|j} = \mathsf{Z}\left(\mathsf{B}\left(\mathsf{C}_{|j}\right)\right) \underset{(\mathrm{Prop.\,\,9.1.3})}{=} \left(\mathsf{ZB}\right)\left(\mathsf{C}_{|j}\right) = \left(\left(\mathsf{ZB}\right)\mathsf{C}\right)_{|j}, \qquad \forall j = \{1,\ldots,n\}.$$

Ejercicio 46. Por una parte, si z_i es combinación lineal del resto de vectores de Z, entonces

$$\vec{z_i} = a_1 \vec{z}_1 + \dots + a_{i-1} \vec{z}_{i-1} + a_{i+1} \vec{z}_{i+1} + \dots + a_n \vec{z}_n \qquad \Rightarrow
\vec{0} = a_1 \vec{z}_1 + \dots + a_{i-1} \vec{z}_{i-1} + (-1) \vec{z}_i + a_{i+1} \vec{z}_{i+1} + \dots + a_n \vec{z}_n \qquad \Rightarrow
\vec{0} = \mathbf{Z} \boldsymbol{a} \quad (\cos a_i = -1).$$

Por otra parte, si $\vec{0} = \mathbf{Z}\boldsymbol{a}$, con $\boldsymbol{a} \neq \mathbf{0}$, entonces existe un $i \in 1, ..., n$ tal que $a_i \neq 0$, y por lo tanto

$$\vec{0} = a_1 \vec{z}_1 + \dots + a_{i-1} \vec{z}_{i-1} + a_i \vec{z}_i + a_{i+1} \vec{z}_{i+1} + \dots + a_n \vec{z}_n \qquad \Rightarrow
-a_i \vec{z}_i = a_1 \vec{z}_1 + \dots + a_{i-1} \vec{z}_{i-1} + a_{i+1} \vec{z}_{i+1} + \dots + a_n \vec{z}_n \qquad \Rightarrow
\vec{z}_i = \frac{-1}{a_i} (a_1 \vec{z}_1 + \dots + a_{i-1} \vec{z}_{i-1} + a_{i+1} \vec{z}_{i+1} + \dots + a_n \vec{z}_n).$$

Ejercicio 47. Basta expresar la imagen de f_{Z} con la notación funcional (6.5) y comprobar que coincide con la notación matricial de la Definición 9.1 de espacio engendrado por Z (9.1):

$$imagen(f_{\mathsf{Z}}) = \left\{ \overrightarrow{v} \in \mathcal{V} \; \middle| \; ext{existe} \; \boldsymbol{a} \in \mathbb{R}^n \; ext{tal que} \; \overrightarrow{v} = \mathsf{Z}\boldsymbol{a} \; \right\} = \mathcal{L}(\mathsf{Z})$$

Ejercicio 48. Sean $\vec{x}, \vec{y} \in \mathcal{N}(f)$, entonces dados $\alpha, \beta \in \mathbb{R}$

$$f(\alpha \vec{v} + \beta \vec{w}) = f(\alpha \vec{v}) + f(\beta \vec{w}) = \alpha f(\vec{v}) + \beta f(\vec{w}) = \alpha \vec{0} + \beta \vec{0} = \vec{0}.$$

Por tanto $(\alpha \vec{v} + \beta \vec{w}) \in \mathcal{N}(f)$.

Ejercicio 49. Hay que demostrar que la imagen es cerrada para las combinaciones lineales.

Sea $f: \mathcal{V} \to \mathcal{W}$ lineal. Sabemos que la imagen de f es no vacía, pues al ser f lineal, su dominio \mathcal{V} es subespacio y $f(\vec{0}) = \vec{0}$.

Sean $\vec{x}, \vec{y} \in imagen(f)$, entonces existen $\vec{v}, \vec{w} \in \mathcal{V}$ tales que $f(\vec{v}) = \vec{x}$ y $f(\vec{w}) = \vec{y}$. Así, dados $\alpha, \beta \in \mathbb{R}$ $f(\alpha \vec{v} + \beta \vec{w}) = f(\alpha \vec{v}) + f(\beta \vec{w}) = \alpha f(\vec{v}) + \beta f(\vec{w}) = \alpha \vec{x} + \beta \vec{y} \in imagen(f).$

Ejercicio 50. Supongamos que $\vec{z} \in imagen(g \circ f)$. Entonces tiene que existir \vec{x} tal que $(\vec{x}, \vec{y}) \in f$ y $(\vec{y}, \vec{z}) \in g$. Por tanto $\vec{z} \in imagen(g)$.

Ejercicio 51. Por una parte sabemos que $imagen(g \circ f) \subset imagen(g)$.

Por otra, puesto que $imagen(g)=imagen(g\circ f\circ f^{-1}),$ aplicando la proposición anterior tenemos que $imagen(g)=imagen\big([g\circ f]\circ f^{-1}\big)\subset imagen(g\circ f).$

Ejercicio 52. La función $f \circ f_B$ es lineal y va de \mathbb{R}^n a \mathcal{W} . Por tanto existe un sistema Z de vectores de \mathcal{W} tal que $f \circ f_B = f_{\mathsf{Z}}$. Por tanto

$$f(\overrightarrow{v}) = f\Big(\mathsf{B}\big(\overrightarrow{v}_{/\mathsf{B}}\big)\Big) = f\Big(f_{\mathsf{B}}\big(\overrightarrow{v}_{/\mathsf{B}}\big)\Big) = f\circ f_{\mathsf{B}}\big(\overrightarrow{v}_{/\mathsf{B}}\big) = f_{\mathsf{Z}}\big(\overrightarrow{v}_{/\mathsf{B}}\big) = \mathsf{Z}\big(\overrightarrow{v}_{/\mathsf{B}}\big).$$

Ejercicio 53.

De donde deducimos que las últimas dos componentes de la única solución especial nos dicen como combinar los vectores del sistema B (es decir, que el primer vector de dicho sistema es una base de la intersección. Comprobación:

SubEspacio(A) & SubEspacio(B) # SubEspacio intersección $\left\{ \boldsymbol{v} \in \mathbb{R}^4 \; \middle| \; \exists \boldsymbol{p} \in \mathbb{R}^1, \; \boldsymbol{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \boldsymbol{p} \right\} = \left\{ \boldsymbol{v} \in \mathbb{R}^4 \; \middle| \; \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \boldsymbol{v} = \boldsymbol{0} \right\}$

Ejercicio 54(a) Sean $\vec{x}, \vec{y} \in \mathcal{V}$, entonces

$$f(\vec{x}) = (\vec{x}_a, \vec{x}_b)$$
 con $\vec{x}_a \in \mathcal{A}$; y $\vec{x}_b \in \mathcal{B}$, tales que $\vec{x} = \vec{x}_a + \vec{x}_b$
 $f(\vec{y}) = (\vec{y}_a, \vec{y}_b)$ con $\vec{y}_a \in \mathcal{A}$; e $\vec{y}_b \in \mathcal{B}$, tales que $\vec{y} = \vec{y}_a + \vec{y}_b$.

Consecuentemente

$$\alpha \vec{x} + \beta \vec{x} = \underbrace{(\alpha \vec{x}_a + \beta \vec{y}_a)}_{\in \mathcal{A}} + \underbrace{(\alpha \vec{x}_b + \beta \vec{y}_b)}_{\in \mathcal{B}}.$$

Y como, por la Proposición 10.1.4, sabemos que dicha descomposición es única, entonces sabemos que

$$f(\alpha \vec{x} + \beta \vec{y}) = (\alpha \vec{x}_a + \beta \vec{y}_a , \alpha \vec{x}_b + \beta \vec{y}_b)$$
 aplicando f y dado la descomposición es única
$$= (\alpha \vec{x}_a, \alpha \vec{x}_b) + (\beta \vec{y}_a, \beta \vec{y}_b)$$
 aplicando la suma de productos cartesianos
$$= \alpha(\vec{x}_a, \vec{x}_b) + \beta(\vec{y}_a, \vec{y}_b)$$
 aplicando el producto por escalar del producto cartesiano
$$= \alpha f(\vec{x}) + \beta f(\vec{y}).$$

Ejercicio 54(b) La demostración es como la anterior, pero considerando únicamente las primeras componentes de los productos cartesianos. Es decir: $f_{\mathcal{A}}(\alpha \vec{x} + \beta \vec{y}) = \alpha \vec{x}_a + \beta \vec{y}_a = \alpha f_{\mathcal{A}}(\vec{x}) + \beta f_{\mathcal{A}}(\vec{y})$.

Ejercicio 54(c) Debemos demostrar que $\mathcal{N}(f_{\mathcal{A}}) = \{\vec{v} \in \mathcal{V} \mid f(\vec{v}) = \vec{0}\} = \mathcal{B}.$

Por una parte, sea $\vec{x} = \vec{x}_a + \vec{x}_b$ con $\vec{x}_a \in \mathcal{A}$ y $\vec{x}_b \in \mathcal{B}$; entonces

si
$$\vec{x} \in \mathcal{N}(f_{\mathcal{A}}) \implies f(\vec{x}) = f(\vec{x}_a + \vec{x}_b) = \vec{0} \implies \vec{x}_a = \vec{0} \implies \vec{x} = \vec{x}_b \in \mathcal{B}.$$

Por otra parte, sea $\vec{x} \in \mathcal{B}$, entonces $f(\vec{x}) = f(\vec{0} + \vec{x}) = \vec{0}$ por tanto $\vec{x} \in \mathcal{N}(f_{\mathcal{A}})$.

Ejercicio 55. La matriz K es de la forma

$$\mathbf{K} = \begin{bmatrix} 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & *_{i_1} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & \bullet & 0 & \cdots & 0 \\ *_{i_2} & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\ \bullet & \cdots & 0 & *_{i_{r-1}} & 0 & 0 & \cdots & 0 \\ \bullet & \cdots & 0 & \bullet & \bullet & 0 & \cdots & 0 \\ \bullet & \cdots & *_{i_r} & 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

y cada pivote solo puede tener ceros por encima. Fijémonos en la última fila con pivote ($*_{i_r} \neq 0$); puesto que todas las filas que la anteceden tienen un cero en la columna donde se encuentra el pivote, necesariamente la última fila con pivote tiene que estar multiplicada por cero ($x_{i_r} = 0$). Pero entonces fijémonos en la penúltima fila con pivote ($*_{i_{r-1}} \neq 0$); puesto que todas las filas que la anteceden tienen un cero en la columna donde se encuentra el pivote, necesariamente la penúltima fila con pivote tiene que estar multiplicada por cero ($x_{i_{r-1}} = 0$). Pero entonces fijémonos en la antepenúltima fila con pivote ($*_{i_{r-2}} \neq 0$);... razonando sucesivamente es evidente que $x_{i_k} = 0$ para $k = 1, \ldots, r$.

Para ver que cada fila sin pivote es combinación lineal de las filas con pivote que la preceden, basta aplicar la eliminación "de arriba a abajo" sobre las filas de \mathbf{K} para anular las componentes de las filas sin pivote⁴.

Ejercicio 56. Evidentemente **0** pertenece a A^{\perp} , así que el subconjunto A^{\perp} no es vacío.

Sean $c_1, c_2 \in A^{\perp}$ y $x, y \in \mathbb{R}$. Entonces $c_1 \cdot a = 0$ y $c_2 \cdot a = 0$, para cualquier $a \in A$. Consecuentemente

$$(x\mathbf{c}_1 + y\mathbf{c}_2) \cdot \mathbf{a} = x(\mathbf{c}_1 \cdot \mathbf{a}) + x(\mathbf{c}_2 \cdot \mathbf{a}) = x \cdot 0 + y \cdot 0 = 0.$$

y por tanto $(xc_1 + yc_2) \in A^{\perp}$. Es decir, A^{\perp} es cerrado para las combinaciones lineales.

Ejercicio 57(a) $\boldsymbol{x} \in B^{\perp}$ si y solo si $\boldsymbol{x} \cdot \boldsymbol{b} = 0$ para cada $\boldsymbol{b} \in B$; (y como $A \subset B$) en particular también $\boldsymbol{x} \cdot \boldsymbol{a} = 0$ para cada $\boldsymbol{a} \in A$, es decir $\boldsymbol{x} \in A^{\perp}$.

Ejercicio 57(b) Tenemos que demostrar la inclusión de estos subespacios en ambos sentidos.

 $Inclusi\'on\ en\ un\ sentido$: como $A\subset\mathcal{L}(A)$, por el apartado anterior sabemos que $\left|\mathcal{L}(A)^{\perp}\subset A^{\perp}\right|$.

Inclusión en el otro sentido: Sabemos que $\mathbf{x} \in A^{\perp}$ si y solo si $\mathbf{x} \cdot \mathbf{a} = 0$ para cada $\mathbf{a} \in A$. Sea $\mathbf{z} \in \mathcal{L}(A)$, entonces existen $\alpha_1, \dots \alpha_k \in \mathbb{R}$ y $\mathbf{a}_1 \dots \mathbf{a}_k \in A$ tales que $\mathbf{z} = \alpha_1 \mathbf{a}_1 + \dots + \alpha_k \mathbf{a}_k$. Entonces $\mathbf{x} \cdot \mathbf{z} = \mathbf{x} \cdot (\alpha_1 \mathbf{a}_1 + \dots + \alpha_k \mathbf{a}_k) = \alpha_1 \mathbf{x} \cdot \mathbf{a}_1 + \dots + \alpha_k \mathbf{x} \cdot \mathbf{a}_k = \alpha_1 \mathbf{0} + \dots + \alpha_k \mathbf{0} = \mathbf{0}$; es decir $\mathbf{x} \in \mathcal{L}(A)^{\perp}$. Por tanto $A^{\perp} \subset \mathcal{L}(A)^{\perp}$.

Ejercicio 57(c) Sea $\mathbf{a} \in \mathcal{A} \cap \mathcal{A}^{\perp}$; como $\mathbf{a} \in \mathcal{A}$ es perpendicular a todo vector en \mathcal{A}^{\perp} , entonces $\mathbf{a} \cdot \mathbf{a} = 0 \Rightarrow \mathbf{a} = \mathbf{0}$.

Ejercicio 58. Supongamos que tanto A como B contienen al menos un vector no nulo. Entonces sea A una matriz cuyas k columnas son vectores de A que forman una base de $\mathcal{L}(A)$ y sea B otra matriz cuyas p columnas son vectores de B que forman una base de $\mathcal{L}(B)$. Entonces, para todo $a \in \mathcal{L}(A)$ existe un único $x \in \mathbb{R}^k$ tal que a = Ax, y para todo $b \in \mathcal{L}(B)$ existe un único $y \in \mathbb{R}^p$ tal que b = By.

Veamos que
$$A \perp B \Rightarrow \mathcal{L}(A) \perp \mathcal{L}(B)$$

 $A \perp B \quad \Rightarrow \quad \mathbf{A}^{\mathsf{T}} \mathbf{B} = \mathbf{0} \quad \Rightarrow \quad \text{Para todo } \boldsymbol{a} \in \mathcal{L}(A) \text{ y } \boldsymbol{b} \in \mathcal{L}(B) \text{ tenemos que } \boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{x} \mathbf{A}^{\mathsf{T}} \mathbf{B} \boldsymbol{y} = \boldsymbol{a} \mathbf{0} \boldsymbol{y} = 0.$

⁴aplicar la eliminación "de arriba a abajo" sobre las filas es equivalente a aplicar transformaciones elementales "de izquierda a derecha" sobre el sistema de vectores $\begin{bmatrix} 1 & \mathbf{L} & \dots & \mathbf{L} \end{bmatrix}$.

Veamos que
$$\mathcal{L}(A) \perp \mathcal{L}(B) \Rightarrow A \perp B$$
.

$$\mathcal{L}(A) \perp \mathcal{L}(B) \implies \text{para todo } \boldsymbol{a} \in \mathcal{L}(A) \text{ y } \boldsymbol{b} \in \mathcal{L}(B), \ \boldsymbol{a} \cdot \boldsymbol{b} = 0.$$

En particular, también para todo $\boldsymbol{a} \in A$ y $\boldsymbol{b} \in B$.

Ahora veamos qué ocurre cuando alguno de los conjuntos es vacío (o solo contiene el vector cero). Como $A\perp B$ implica que todo vector en A es perpendicular a todo vector en B. Entonces $A\perp B$ es falso solo cuando existe algún vector en a en A y algún vector b en B que no son perpendiculares $(a \cdot b \neq 0)$. Por lo tanto, si se da el caso de que A es vacío (o $\{0\}$), tanto A como $\mathcal{L}(A) = \{0\}$ son ortogonales a cualquier otro subconjunto de vectores (pues no existe tal par de vectores $a \vee b$). Lo mismo ocurre si B es vacío (o $\{0\}$).

Ejercicio 59. Basta comprobar que todas las propiedades del producto punto (Página 2.1) también se verifican si se divide el producto punto por n.

Ejercicio 60. Hay que demostrar que se verifican todos los axiomas:

- Simetría: $\langle a, b \rangle = a \mathsf{D} b = b (\mathsf{D}^\mathsf{T}) a = b \mathsf{D} a = \langle b, a \rangle$, pues **D** es simétrica.
- Linealidad respecto al primer argumento:
 - 1. $\langle (\alpha \mathbf{a}), \mathbf{b} \rangle = (\alpha \mathbf{a}) \mathbf{D} \mathbf{b} = \alpha (\mathbf{a} \mathbf{D} \mathbf{b}) = \alpha \langle \mathbf{a}, \mathbf{b} \rangle$.
 - 2. $\langle (a+b), c \rangle = (a+b)Dc = aDc + bDc = \langle a, c \rangle + \langle b, c \rangle$.
- Positivo: $\langle \boldsymbol{a}, \boldsymbol{a} \rangle = \boldsymbol{a} \boldsymbol{D} \boldsymbol{a} = \sum_{i=1}^{n} a_i d_{ii} a_i = \sum_{i=1}^{n} d_{ii} a_i^2 \geq 0$, ya que $d_{ii} > 0$ y $a_1^2 \geq 0$.
- **Definido:** $\langle \boldsymbol{a}, \boldsymbol{a} \rangle = \sum_{i=1}^{n} d_{ii} a_{i}^{2} = 0$, entonces $a_{i}^{2} = 0$ ya que $d_{ii} > 0$, por tanto $\boldsymbol{a} = \boldsymbol{0}$.

Ejercicio 61. El vector nulo: $\overrightarrow{0}$.

Ejercicio 62. El vector nulo: $\vec{x} = \vec{0}$.

Ejercicio 63. Si \vec{x} e \vec{y} son perpendiculares, entonces $\langle \vec{x}, \vec{y} \rangle = 0$ y

$$\begin{split} \left\| \overrightarrow{x} + \overrightarrow{y} \right\|^2 &= \left\langle \left(\overrightarrow{x} + \overrightarrow{y} \right), \, \left(\overrightarrow{x} + \overrightarrow{y} \right) \right\rangle = \left\langle \overrightarrow{x}, \, \left(\overrightarrow{x} + \overrightarrow{y} \right) \right\rangle + \left\langle \overrightarrow{y}, \, \left(\overrightarrow{x} + \overrightarrow{y} \right) \right\rangle \\ &= \left\langle \left(\overrightarrow{x} + \overrightarrow{y} \right), \, \overrightarrow{x} \right\rangle + \left\langle \left(\overrightarrow{x} + \overrightarrow{y} \right), \, \overrightarrow{y} \right\rangle \\ &= \left\langle \overrightarrow{x}, \, \overrightarrow{x} \right\rangle + \left\langle \overrightarrow{y}, \, \overrightarrow{x} \right\rangle + \left\langle \overrightarrow{x}, \, \overrightarrow{y} \right\rangle + \left\langle \overrightarrow{y}, \, \overrightarrow{y} \right\rangle \\ &= \left\langle \overrightarrow{x}, \, \overrightarrow{x} \right\rangle + 2 \left(\left\langle \overrightarrow{x}, \, \overrightarrow{y} \right\rangle \right) + \left\langle \overrightarrow{y}, \, \overrightarrow{y} \right\rangle \\ &= \left\langle \overrightarrow{x}, \, \overrightarrow{x} \right\rangle + 0 + \left\langle \overrightarrow{y}, \, \overrightarrow{y} \right\rangle \\ &= \left\| \overrightarrow{x} \right\|^2 + \left\| \overrightarrow{y} \right\|^2. \end{split}$$

Ejercicio 64. Sean \vec{x} y \vec{y} vectores de \mathcal{V} y sea el producto escalar $\langle \underline{}, \underline{} \rangle : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$. Veamos que siempre se verifica que $|\langle \vec{x}, \vec{y} \rangle| \leq ||\vec{x}|| ||\vec{y}||$

Caso trivial: \vec{x} y \vec{y} son linealmente dependientes

En tal caso, o bien $\vec{x} = \vec{0}$ o bien existe $\alpha \in \mathbb{R}$ tal que $\alpha \vec{x} = \vec{y}$. Si ocurre lo primero $\langle \vec{x}, \vec{y} \rangle = 0$ y $\|\vec{x}\| \|\vec{y}\| = 0$. Si ocurre lo segundo

$$|\langle \overrightarrow{x}\,,\,\overrightarrow{y}\rangle| = |\langle \overrightarrow{x}\,,\,\alpha\overrightarrow{x}\rangle| = \left|\alpha\,\|\overrightarrow{x}\|^2\right| = \|\overrightarrow{x}\|\,|\alpha|\,\|\overrightarrow{x}\| = \|\overrightarrow{x}\|\,\|\overrightarrow{y}\|\,.$$

Caso no trivial: \vec{x} y \vec{y} son linealmente independientes

En tal caso existe un vector \overrightarrow{h} ortogonal a \overrightarrow{x} tal que $L(\overrightarrow{x}, \overrightarrow{h}) = L(\overrightarrow{x}, \overrightarrow{y})$. Dicho vector lo construimos de la forma $\overrightarrow{h} = \overrightarrow{y} + \alpha \overrightarrow{x}$, con lo que garantizamos que $L(\overrightarrow{x}, \overrightarrow{h}) = L(\overrightarrow{x}, \overrightarrow{y})$ e imponemos que

$$0 = \left\langle \, \overrightarrow{x} \; , \; \overrightarrow{h} \, \right\rangle = \left\langle \, \overrightarrow{x} \; , \; \overrightarrow{y} + \alpha \, \overrightarrow{x} \, \right\rangle = \left\langle \, \overrightarrow{x} \; , \; \overrightarrow{y} \, \right\rangle + \alpha \left\langle \, \overrightarrow{x} \; , \; \overrightarrow{x} \, \right\rangle,$$

con lo que $\alpha = -\frac{\langle \vec{x}, \vec{y} \rangle}{\langle \vec{x}, \vec{x} \rangle}$.

Figura A.1: Representación esquemática donde \vec{h} es combinación lineal de \vec{x} y \vec{y} y perpendicular a \vec{x} .

Por tanto tendremos que

$$\begin{aligned} \|\vec{y}\|^2 &= \langle \vec{y}, \vec{y} \rangle = \left\langle \vec{h} - \alpha \vec{x}, \vec{h} - \alpha \vec{x} \right\rangle = \left\langle \vec{h}, \vec{h} \right\rangle - 2\alpha \left\langle \vec{h}, \vec{x} \right\rangle + \alpha^2 \left\langle \vec{x}, \vec{x} \right\rangle \\ &= \left\| \vec{h} \right\|^2 + \alpha^2 \left\| \vec{x} \right\|^2 > \alpha^2 \left\| \vec{x} \right\|^2 = \frac{\left\langle \vec{x}, \vec{y} \right\rangle^2}{\left\langle \vec{x}, \vec{x} \right\rangle^2} \left\| \vec{x} \right\|^2 = \frac{\left\langle \vec{x}, \vec{y} \right\rangle^2}{\left\| \vec{x} \right\|^2}, \end{aligned}$$

 $\text{de donde } \langle \overrightarrow{x} \,,\, \overrightarrow{y} \rangle^2 < \left\| \overrightarrow{x} \right\|^2 \left\| \overrightarrow{y} \right\|^2 \text{ y por consiguiente } |\langle \overrightarrow{x} \,,\, \overrightarrow{y} \rangle| < \left\| \overrightarrow{x} \right\| \left\| \overrightarrow{y} \right\|.$

Ejercicio 65.

$$\begin{split} \left\| \overrightarrow{x} + \overrightarrow{y} \right\|^2 &= \left\langle \left(\overrightarrow{x} + \overrightarrow{y} \right), \, \left(\overrightarrow{x} + \overrightarrow{y} \right) \right\rangle = \left\langle \overrightarrow{x} \,, \, \overrightarrow{x} \right\rangle + 2 (\left\langle \overrightarrow{x} \,, \, \overrightarrow{y} \right\rangle) + \left\langle \overrightarrow{y} \,, \, \overrightarrow{y} \right\rangle \\ &= \left\| \overrightarrow{x} \right\|^2 + 2 (\left\langle \overrightarrow{x} \,, \, \overrightarrow{y} \right\rangle) + \left\| \overrightarrow{y} \right\|^2 \\ &\leq \left\| \overrightarrow{x} \right\|^2 + 2 \left\| \overrightarrow{x} \right\| \left\| \overrightarrow{y} \right\| + \left\| \overrightarrow{y} \right\|^2 \qquad \text{puesto que } \left| \left\langle \overrightarrow{x} \,, \, \overrightarrow{y} \right\rangle \right| < \left\| \overrightarrow{x} \right\| \left\| \overrightarrow{y} \right\| \\ &= (\left\| \overrightarrow{x} \right\| + \left\| \overrightarrow{y} \right\|)^2 \end{split}$$

Consecuentemente $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$.

Ejercicio 66. Evidentemente $\overrightarrow{0}$ pertenece a A^{\perp} , así que el subconjunto A^{\perp} no es vacío.

Sean \vec{c}_1 , $\vec{c}_2 \in A^{\perp}$ y $x, y \in \mathbb{R}$. Entonces $\langle \vec{c}_1, \vec{a} \rangle = 0$ y $\langle \vec{c}_2, \vec{a} \rangle = 0$, para cualquier $\vec{a} \in A$. Consecuentemente

$$\langle (x\,\overrightarrow{c}_1+y\,\overrightarrow{c}_2)\,,\,\overrightarrow{a}\rangle = x\big(\langle\overrightarrow{c}_1\,,\,\overrightarrow{a}\rangle\,\big) + x\big(\langle\overrightarrow{c}_2\,,\,\overrightarrow{a}\rangle\,\big) = x\cdot 0 + y\cdot 0 = 0.$$

y por tanto $(x\vec{c}_1 + y\vec{c}_2) \in A^{\perp}$. Es decir, A^{\perp} es cerrado para las combinaciones lineales.

Ejercicio 67(a) $\overrightarrow{x} \in B^{\perp}$ si y solo si $\langle \overrightarrow{x}, \overrightarrow{b} \rangle = 0$ para cada $\overrightarrow{b} \in B$; (y como $A \subset B$) en particular también $\langle \overrightarrow{x}, \overrightarrow{b} \rangle = 0$ para cada $\overrightarrow{a} \in A$, es decir $\overrightarrow{x} \in A^{\perp}$.

Ejercicio 67(b) Tenemos que demostrar la inclusión de estos subespacios en ambos sentidos.

 $\mathit{Inclusi\'on\ en\ un\ sentido} \colon \mathsf{como}\ A \subset \mathcal{L}\big(A\big),\,\mathsf{por\ el\ apartado\ anterior\ sabemos\ que}\,\boxed{\mathcal{L}\big(A\big)^{\perp} \subset A^{\perp}}$

Inclusión en el otro sentido: Sabemos que $\vec{x} \in A^{\perp}$ si y solo si $\langle \vec{x}, \vec{a} \rangle = 0$ para cada $\vec{a} \in A$. Sea $\vec{z} \in \mathcal{L}(A)$, entonces existen $\alpha_1, \ldots \alpha_k \in \mathbb{R}$ y $\vec{a}_1 \ldots \vec{a}_k \in A$ tales que $\vec{z} = \alpha_1 \vec{a}_1 + \cdots + \alpha_k \vec{a}_k$. Entonces $\langle \vec{x}, \vec{z} \rangle = \langle \vec{x}, (\alpha_1 \vec{a}_1 + \cdots + \alpha_k \vec{a}_k) \rangle = \alpha_1 \langle \vec{x}, \vec{a}_1 \rangle + \cdots + \alpha_k \langle \vec{x}, \vec{a}_k \rangle = \alpha_1 0 + \cdots + \alpha_k 0 = 0$; es decir $\vec{x} \in \mathcal{L}(A)^{\perp}$. Por tanto $A^{\perp} \subset \mathcal{L}(A)^{\perp}$.

Ejercicio 67(c) Sea $\vec{a} \in \mathcal{A} \cap \mathcal{A}^{\perp}$; como $\vec{a} \in \mathcal{A}$ es perpendicular a todo vector en \mathcal{A}^{\perp} , entonces $\langle \vec{a}, \vec{a} \rangle = 0 \Rightarrow \vec{a} = \vec{0}$.

Ejercicio 68. $(I - P)^{\intercal} = I^{\intercal} - P^{\intercal} = I - P$.

Ejercicio 70(a) Por una parte $\mathcal{C}(\mathbf{P}) \subset \mathcal{C}(\mathbf{A})$, pues para todo $z \in \mathcal{C}(\mathbf{P})$

existe $\boldsymbol{y} \in \mathbb{R}^m$ tal que $\boldsymbol{z} = \mathbf{P} \boldsymbol{y} = \mathbf{A} (\mathbf{A}^\intercal \mathbf{A})^{-1} \mathbf{A}^\intercal \boldsymbol{y} = \mathbf{A} \widehat{\boldsymbol{x}} \in \mathcal{C} (\mathbf{A})$, donde $\widehat{\boldsymbol{x}} = (\mathbf{A}^\intercal \mathbf{A})^{-1} \mathbf{A}^\intercal \boldsymbol{y}$, y por otra $\mathcal{C} (\mathbf{A}) \subset \mathcal{C} (\mathbf{P})$, pues para todo $\boldsymbol{z} \in \mathcal{C} (\mathbf{A})$

existe
$$x \in \mathbb{R}^n$$
: $z = Ax = A\underbrace{(A^TA)^{-1}A^TA}_{I}x = PAx = Pz \in \mathcal{C}(P)$, donde $z = Ax$.

Ejercicio 70(b) Por una parte $\mathcal{C}(\mathbf{M}) \subset \mathcal{N}(\mathbf{A}^{\mathsf{T}})$, pues para todo $\boldsymbol{z} \in \mathcal{C}(\mathbf{M})$ existe $\boldsymbol{y} \in \mathbb{R}^m$ tal que

$$oldsymbol{z} = \mathbf{M} oldsymbol{y} = (\mathbf{I} - \mathbf{P}) oldsymbol{y} = oldsymbol{y} - \mathbf{P} oldsymbol{y} \ \in \mathcal{C}\left(\mathbf{A}
ight)^{\perp} = \mathcal{N}\left(\mathbf{A}^{\intercal}\right)$$

por ser $\mathbf{P}y$ la proyección ortogonal sobre $\mathcal{C}(\mathbf{A})$. Por otra parte $\mathcal{N}(\mathbf{A}^{\mathsf{T}}) \subset \mathcal{C}(\mathbf{M})$, pues para todo $y \in \mathcal{N}(\mathbf{A}^{\mathsf{T}})$ sabemos que $y \perp \mathcal{C}(\mathbf{A})$, y por tanto $\mathbf{P}y = \mathbf{0}$. Así pues

$$y = y + 0 = y + Py = (I + P)y = My \Rightarrow y \in C(M)$$
.

Ejercicio 71. Puesto que $xA = (A^{\mathsf{T}}) x = Ax$, tenemos que $\langle x, Ay \rangle = xAy = \langle xA, y \rangle = \langle Ax, y \rangle$.

Ejercicio 72(a) Por ser autoadjunta e idempotente: $\langle f(\vec{u}), f(\vec{w}) \rangle = \langle f(f(\vec{u})), \vec{w} \rangle = \langle f(\vec{u}), \vec{w} \rangle$.

Ejercicio 72(b) Para la demostración usaremos el resultado del anterior apartado (a). Es sencillo pero pesado.

Por una parte tenemos que demostrar que $f(\vec{u} + \vec{v}) = f(\vec{u}) + f(\vec{v})$, y lo haremos demostrando que la diferencia es $\vec{0}$, pues su norma es cero, es decir, $||f(\vec{u} + \vec{v}) - f(\vec{v})||^2 = 0$:

Y por otra, tenemos que demostrar que $f(\alpha \vec{u}) = \alpha f(\vec{u})$; y seguiremos una estrategia similar, es decir, demostraremos que $||f(\alpha \vec{u}) - \alpha f(\vec{u})||^2 = 0$.

$$\begin{split} \|f(\alpha\overrightarrow{u}) - \alpha f(\overrightarrow{u})\|^2 &= \langle f(\alpha\overrightarrow{u}) - \alpha f(\overrightarrow{u}), f(\alpha\overrightarrow{u}) - \alpha f(\overrightarrow{u}) \rangle \\ &= \langle f(\alpha\overrightarrow{u}), f(\alpha\overrightarrow{u}) \rangle - \langle f(\alpha\overrightarrow{u}), \alpha f(\overrightarrow{u}) \rangle - \langle \alpha f(\overrightarrow{u}), f(\alpha\overrightarrow{u}) \rangle + \langle \alpha f(\overrightarrow{u}), \alpha f(\overrightarrow{u}) \rangle \\ &= \langle f(\alpha\overrightarrow{u}), \alpha\overrightarrow{u} \rangle - \langle f(\alpha\overrightarrow{u}), \alpha f(\overrightarrow{u}) \rangle - \langle \alpha f(\overrightarrow{u}), f(\alpha\overrightarrow{u}) \rangle + \langle \alpha f(\overrightarrow{u}), \alpha f(\overrightarrow{u}) \rangle \quad \text{(por (a))} \\ &= \alpha \langle f(\alpha\overrightarrow{u}), \overrightarrow{u} \rangle - \alpha \langle f(\alpha\overrightarrow{u}), f(\overrightarrow{u}) \rangle - \alpha \langle f(\overrightarrow{u}), f(\alpha\overrightarrow{u}) \rangle + \alpha^2 \langle f(\overrightarrow{u}), f(\overrightarrow{u}) \rangle \\ &= \alpha \langle f(\alpha\overrightarrow{u}), \overrightarrow{u} \rangle - \alpha \langle f(\alpha\overrightarrow{u}), \overrightarrow{u} \rangle - \alpha \langle f(\overrightarrow{u}), \alpha\overrightarrow{u} \rangle + \alpha^2 \langle f(\overrightarrow{u}), \overrightarrow{u} \rangle \quad \text{(por (a))} \\ &= \alpha \langle f(\alpha\overrightarrow{u}), \overrightarrow{u} \rangle - \alpha \langle f(\alpha\overrightarrow{u}), \overrightarrow{u} \rangle - \alpha^2 \langle f(\overrightarrow{u}), \overrightarrow{u} \rangle + \alpha^2 \langle f(\overrightarrow{u}), \overrightarrow{u} \rangle \\ &= 0 \quad \text{(cancelando términos)}. \end{split}$$

Ejercicio 73. Sea \vec{p}_y la proyección de \vec{y} sobre \mathcal{H} y tomemos un vector \vec{v} cualquiera de \mathcal{H} . Veamos que \vec{y} está más lejos de \vec{v} que de su proyección ortogonal \vec{p}_y .

Como \vec{v} y \vec{p}_y están en \mathcal{H} , su diferencia $(\vec{p}_y - \vec{x})$ está en \mathcal{H} (pues \mathcal{H} es subespacio) y es ortogonal a $(\vec{y} - \vec{p}_y)$ (por ser \vec{p}_y la proyección ortogonal sobre \mathcal{H}). Y como la suma de ambos vectores perpendiculares es $(\vec{y} - \vec{p}_y) + (\vec{p}_y - \vec{x}) = (\vec{y} - \vec{x})$, por el Teorema de Pitágoras concluimos que

$$\|\vec{y} - \vec{x}\|^2 = \|\vec{y} - \vec{p}_y\|^2 + \|\vec{p}_y - \vec{x}\|^2 \ge \|\vec{y} - \vec{p}_y\|^2.$$

Por tanto, $||\vec{y} - \vec{x}|| \ge ||\vec{y} - \vec{p}_y||$ para todo $\vec{x} \in \mathcal{H}$.

Ejercicio 74(a) Puesto que como Py = yP (por ser P simétrica):

$$(y - Py)A = (y - yP)A = yA - yA(A^{\mathsf{T}}A)^{\mathsf{T}}A^{\mathsf{T}}A = yA - yA = 0.$$

Ejercicio 74(b) Si y = Ax para algún $x \in \mathbb{R}^n$:

$$f_{\mathsf{P}}(y) = \mathsf{P}y = \mathsf{P}\mathsf{A}x = \mathsf{A}(\mathsf{A}^{\mathsf{T}}\mathsf{A})^{\mathsf{-}1}\mathsf{A}^{\mathsf{T}}\mathsf{A}x = \mathsf{A}x = y;$$

Ejercicio 74(c) Si $A^{T}y = 0$, entonces

$$f_{\mathsf{P}}(y) = \mathsf{P} y = \mathsf{A} (\mathsf{A}^{\mathsf{T}} \mathsf{A})^{\mathsf{-1}} \mathsf{A}^{\mathsf{T}} y = \mathsf{A} (\mathsf{A}^{\mathsf{T}} \mathsf{A})^{\mathsf{-1}} 0 = 0.$$

Ejercicio 74(d) Como $\mathcal{C}(\mathbf{A})$ es el complemento ortogonal de $\mathcal{N}(\mathbf{A}^{\mathsf{T}})$, demostrar que para todo $\boldsymbol{y} \in \mathbb{R}^m$ la diferencia $(\boldsymbol{y} - f_{\mathsf{M}}(\boldsymbol{y}))$ es perpendicular a $\mathcal{N}(\mathbf{A}^{\mathsf{T}})$ es lo mismo que demostrar que dicha diferencia pertenece a $\mathcal{C}(\mathbf{A})$; así

$$y - f_{\mathsf{M}}(y) = y - (y - f_{\mathsf{P}}(y)) = f_{\mathsf{P}}(y) \in \mathcal{C}(\mathsf{A}).$$

Ejercicio 74(e) Por una parte, f_{M} actúa como la función identidad con todo $\boldsymbol{y} \in \mathcal{N}\left(\mathbf{A}^{\mathsf{T}}\right)$, pues en tal caso $f_{\mathsf{P}}(\boldsymbol{y}) = \mathbf{0}$, y por tanto:

$$f_{\mathsf{M}}(\boldsymbol{y}) = \boldsymbol{y} - f_{\mathsf{P}}(\boldsymbol{y}) = \boldsymbol{y} - \boldsymbol{0} = \boldsymbol{y}.$$

Por otra parte, f_{M} actúa como la función nula con todo $y \in \mathcal{C}(\mathsf{A})$, pues en tal caso $f_{\mathsf{P}}(y) = y$, y por tanto:

$$f_{M}(y) = y - f_{P}(y) = y - y = 0.$$

Ejercicio 75(a) Debemos demostrar que cada uno de los conjuntos está contenido en el otro.

 $\mathcal{N}(\mathbf{A}) \subset \mathcal{N}(\mathbf{A}^{\mathsf{T}}\mathbf{A})$: Si $\mathbf{x} \in \mathcal{N}(\mathbf{A})$ entonces $\mathbf{A}\mathbf{x} = \mathbf{0}$. Multiplicando ambos lados de la igualdad por \mathbf{A}^{T} tenemos $\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = (\mathbf{A}^{\mathsf{T}})\mathbf{0} = \mathbf{0}$; y por tanto $\mathbf{x} \in \mathcal{N}(\mathbf{A}^{\mathsf{T}}\mathbf{A})$.

 $\mathcal{N}(\mathbf{A}^{\mathsf{T}}\mathbf{A}) \subset \mathcal{N}(\mathbf{A})$: Si $\mathbf{x} \in \mathcal{N}(\mathbf{A}^{\mathsf{T}}\mathbf{A})$ entonces $\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{0}$. Multiplicando por \mathbf{x} tenemos que $\mathbf{x}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{x} \cdot \mathbf{0} = 0$. Por tanto $\mathbf{A}\mathbf{x}$ tiene norma cero, ya que $\mathbf{x}(\mathbf{A}^{\mathsf{T}})\mathbf{A}\mathbf{x} = (\mathbf{A}\mathbf{x}) \cdot (\mathbf{A}\mathbf{x}) = \|\mathbf{A}\mathbf{x}\|^2$. Como el único vector de norma cero es $\mathbf{0}$, tenemos que $\mathbf{A}\mathbf{x} = \mathbf{0}$; es decir, $\mathbf{x} \in \mathcal{N}(\mathbf{A})$.

Ejercicio 75(b) Como $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ y \mathbf{A} tienen n columnas e idéntico espacio nulo $\mathcal{N}\left(\mathbf{A}^{\mathsf{T}}\mathbf{A}\right) = \mathcal{N}\left(\mathbf{A}\right)$, ambas matrices tienen el mismo rango: $k = n - \dim \mathcal{N}\left(\mathbf{A}\right)$.

Ejercicio 75(c) Sea **A** de rango k. El sistema $(\mathbf{A}^{\mathsf{T}}\mathbf{A})x = (\mathbf{A}^{\mathsf{T}})b$ tiene solución si el rango de la matriz de coeficientes $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ es igual que el rango de la matriz ampliada $[\mathbf{A}^{\mathsf{T}}\mathbf{A} \mid (\mathbf{A}^{\mathsf{T}})b]$; es decir, si $(\mathbf{A}^{\mathsf{T}})b$ es combinación lineal de las columnas de $\mathbf{A}^{\mathsf{T}}\mathbf{A}$. Veámoslo:

Como al añadir una columna a una matriz, el rango (el número de pivotes) no puede disminuir, sabemos que rango $([\mathbf{A}^{\mathsf{T}}\mathbf{A} \mid (\mathbf{A}^{\mathsf{T}}) \mathbf{b}]) \ge \operatorname{rango}(\mathbf{A}^{\mathsf{T}}\mathbf{A}) = \operatorname{rango}(\mathbf{A}) = k$ (por el Corolario 12.4.4).

Por otra parte, $[\mathbf{A}^{\mathsf{T}} \mathbf{A} \mid (\mathbf{A}^{\mathsf{T}}) \mathbf{b}] = \mathbf{A}^{\mathsf{T}} [\mathbf{A} \mid \mathbf{b}]$ es el producto de \mathbf{A}^{T} por la matriz ampliada $[\mathbf{A} \mid \mathbf{b}]$, y por la Proposición 5.4.6 en la página 69 sabemos que rango $(\mathbf{A}^{\mathsf{T}} [\mathbf{A} \mid \mathbf{b}]) \leq \operatorname{rango}(\mathbf{A}^{\mathsf{T}}) = \operatorname{rango}(\mathbf{A}) = k$.

Así, como por una parte rango $([\mathbf{A}^{\mathsf{T}}\mathbf{A} \mid (\mathbf{A}^{\mathsf{T}})\mathbf{b}]) \geq k$ y por la otra rango $([\mathbf{A}^{\mathsf{T}}\mathbf{A} \mid (\mathbf{A}^{\mathsf{T}})\mathbf{b}]) \leq k$, se deduce que rango $([\mathbf{A}^{\mathsf{T}}\mathbf{A} \mid (\mathbf{A}^{\mathsf{T}})\mathbf{b}]) = k$; que es el rango de la matriz de coeficientes $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ del sistema $\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = (\mathbf{A}^{\mathsf{T}})\mathbf{b}$, y por tanto el sistema siempre tiene solución, es decir, para todo $\mathbf{b} \in \mathbb{R}^m$ y toda \mathbf{A} se verifica que $(\mathbf{A}^{\mathsf{T}})\mathbf{b} \in \mathcal{C}(\mathbf{A}^{\mathsf{T}}\mathbf{A})$.

Ejercicio 76. Sea P la matriz proyección correspondiente a la proyección ortogonal sobre $\mathcal{L}([1])$ y, consecuentemente, sea (I - P) la matriz proyección correspondiente a la proyección ortogonal sobre $\mathcal{L}([1])^{\perp}$; entonces, puesto que P1 = 1 y que (I - P)1 = 0, tenemos que

• La media de (y + 1a) es la longitud de la proyección ortogonal

$$P(y + 1a) = Py + P1a = 1\mu_y + 1a = (\mu_y + a)1,$$

cuya longitud es $\mu_y + a$.

• La desviación típica de (y + 1a) es la longitud de la proyección ortogonal

$$(\mathbf{I} - \mathbf{P})(y + 1a) = (\mathbf{I} - \mathbf{P})y + (\mathbf{I} - \mathbf{P})1a = (\mathbf{I} - \mathbf{P})y = y - \overline{y},$$

que es la componente de y ortogonal a 1, cuya longitud es σ_y .

Ejercicio 77.

$$z \cdot (x - a\mathbf{1}) = (z \cdot x) - a \underbrace{y \cdot \mathbf{1}}_{0} = (z \cdot x).$$

Ejercicio 78.

$$\sigma_{\boldsymbol{x}\boldsymbol{y}} = \frac{1}{m}\boldsymbol{x}\cdot(\boldsymbol{y}-\overline{\boldsymbol{y}}) = \frac{1}{m}\boldsymbol{x}\cdot\boldsymbol{y} - \frac{1}{m}\boldsymbol{x}\cdot\overline{\boldsymbol{y}} = \frac{1}{m}\boldsymbol{x}\cdot\boldsymbol{y} - \frac{1}{m}\boldsymbol{x}\cdot\boldsymbol{1}\mu_{\boldsymbol{y}} = \frac{1}{m}\boldsymbol{x}\cdot\boldsymbol{y} - \mu_{\boldsymbol{x}}\mu_{\boldsymbol{y}}.$$

Ejercicio 79. En este caso las ecuaciones normales $\frac{1}{m}\mathbf{X}^{\mathsf{T}}\mathbf{X}\widehat{\boldsymbol{\beta}} = \frac{1}{m}\left(\mathbf{X}^{\mathsf{T}}\right)\boldsymbol{y}$ se reducen a una única ecuación

$$\frac{1}{m}[\mathbf{1}]^{\mathsf{T}}[\mathbf{1}]\widehat{\boldsymbol{\beta}} = \frac{1}{m}\left([\mathbf{1}]^{\mathsf{T}}\right)\boldsymbol{y}.$$

donde $\widehat{\boldsymbol{\beta}}$ es un vector con una sola componente. Calculando los productos

$$[\mathbf{1}]^{\mathsf{T}}[\mathbf{1}] = [n] \quad \mathbf{y} \quad ([\mathbf{1}]^{\mathsf{T}}) \mathbf{y} = (\sum y_i,),$$

y sustituyendo más arriba tenemos: $\hat{\beta} = \left(\frac{\sum y_i}{m},\right) = (\mu_y,);$ y consecuentemente

$$\widehat{\boldsymbol{y}} = \mathbf{X}\widehat{\boldsymbol{\beta}} = [\mathbf{1}](\mu_{\boldsymbol{y}},) = \mathbf{1}\mu_{\boldsymbol{y}} = \overline{\boldsymbol{y}}.$$

Ejercicio 80. Puesto que la matriz de regresores es $\mathbf{X} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$, las ecuaciones normales son

$$\left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 3 \end{array}\right] \left[\begin{array}{ccc} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{array}\right] \left(\widehat{\widehat{b}}\right) = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 3 \end{array}\right] \left(\begin{matrix} 1 \\ 2 \\ 2 \end{matrix}\right),$$

es decir

$$\begin{bmatrix} 3 & 6 \\ 6 & 14 \end{bmatrix} \begin{pmatrix} \widehat{a} \\ \widehat{b} \end{pmatrix} = \begin{pmatrix} 5 \\ 11 \end{pmatrix};$$

que resolvemos por eliminación

$$\begin{bmatrix} 3 & 6 & | & -5 \\ 6 & 14 & | & -11 \\ \hline 1 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{\begin{bmatrix} (-2)1+2 \\ [(3)3] \\ [(5)1+3] \\ \hline 0 & 0 & 3 \end{bmatrix}} \begin{bmatrix} 3 & 0 & | & 0 \\ 6 & 2 & | & -3 \\ \hline 1 & -2 & 5 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 3 \end{bmatrix} \xrightarrow{\begin{bmatrix} (2)3 \\ [(3)2+3] \\ \hline (3)2+3 \end{bmatrix}} \begin{bmatrix} 3 & 0 & | & 0 \\ 6 & 2 & | & 0 \\ \hline 1 & -2 & 4 \\ \hline 0 & 1 & 3 \\ \hline 0 & 0 & 6 \end{bmatrix} \xrightarrow{\begin{bmatrix} \tau \\ (\frac{1}{6})3 \end{bmatrix}} \begin{bmatrix} 3 & 0 & | & 0 \\ 6 & 2 & | & 0 \\ \hline 1 & -2 & \frac{2}{3} \\ \hline 0 & 0 & 1 \end{bmatrix}$$

Es decir, la ordenada en el origen es $\hat{a} = \frac{2}{3}$ y la pendiente $\hat{b} = \frac{1}{2}$.

Por otra parte
$$\widehat{\boldsymbol{y}} = \mathbf{X} \begin{pmatrix} \widehat{a} \\ \widehat{b} \end{pmatrix} = \begin{pmatrix} \frac{7}{6} \\ \frac{5}{3} \\ \frac{13}{6} \end{pmatrix}$$
. Por tanto $(\boldsymbol{y} - \widehat{\boldsymbol{y}}) = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} - \begin{pmatrix} \frac{7}{6} \\ \frac{5}{3} \\ \frac{13}{6} \end{pmatrix} = \begin{pmatrix} -\frac{1}{6} \\ \frac{1}{3} \\ -\frac{1}{6} \end{pmatrix}$.

Ejercicio 81. El vector cero $\mathbf{0}$ de \mathbb{R}^n es múltiplo de cualquier otro vector \mathbf{x} de \mathbb{R}^n , pues $\mathbf{0} = 0 \cdot \mathbf{x}$; y por tanto, por la propiedad P-3 el determinante de \mathbf{A} es cero:

$$\det\left[\mathbf{A}_{|1};\dots\;\mathbf{0};\dots\;\mathbf{A}_{|n};\right] = \det\left[\mathbf{A}_{|1};\dots\;0\boldsymbol{x};\dots\;\mathbf{A}_{|n};\right] = 0\cdot\det\left[\mathbf{A}_{|1};\dots\;\boldsymbol{x};\dots\;\mathbf{A}_{|n};\right] = 0$$

 $\textbf{Ejercicio 82(a)} \hspace{0.1cm} \textbf{Como} \hspace{0.2cm} \textbf{A}_{\boldsymbol{\tau}_{1}\cdots\boldsymbol{\tau}_{k}} = \textbf{A}\left(\textbf{I}_{\boldsymbol{\tau}_{1}\cdots\boldsymbol{\tau}_{k}}\right) = \textbf{A}\left(\textbf{I}_{\boldsymbol{\tau}_{1}}\right)\cdots\left(\textbf{I}_{\boldsymbol{\tau}_{k}}\right), \hspace{0.2cm} \text{aplicando repetidamente } (14.2) \hspace{0.1cm} \text{tenemos}$

$$\begin{split} \det \left(\mathbf{A}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \right) &= \left| \mathbf{A} \left(\mathbf{I}_{\boldsymbol{\tau}_1} \right) \cdots \left(\mathbf{I}_{\boldsymbol{\tau}_k} \right) \right| \\ &= \left| \mathbf{A} \left(\mathbf{I}_{\boldsymbol{\tau}_1} \right) \cdots \left(\mathbf{I}_{\boldsymbol{\tau}_{(k-1)}} \right) \right| \cdot \left| \mathbf{I}_{\boldsymbol{\tau}_k} \right| \\ &= \left| \mathbf{A} \left(\mathbf{I}_{\boldsymbol{\tau}_1} \right) \cdots \left(\mathbf{I}_{\boldsymbol{\tau}_{(k-2)}} \right) \right| \cdot \left| \mathbf{I}_{\boldsymbol{\tau}_{(k-1)}} \right| \cdot \left| \mathbf{I}_{\boldsymbol{\tau}_k} \right| \\ &: \\ &= \left| \mathbf{A} \right| \cdot \left| \mathbf{I}_{\boldsymbol{\tau}_1} \right| \cdots \left| \mathbf{I}_{\boldsymbol{\tau}_k} \right| . \end{split}$$

Ejercicio 82(b)

$$|\mathbf{B}| = \det (|\mathbf{I}_{\tau_1 \cdots \tau_k}|) = |\mathbf{I}| \cdot |\mathbf{I}_{\tau_1}| \cdots |\mathbf{I}_{\tau_k}|.$$

y como los determinantes de las matrices elementales son distintos de cero, necesariamente $|\mathbf{B}| \neq 0$.

Ejercicio 82(c) Si B es de rango completo entonces $B = I_{\tau_1 \cdots \tau_h}$. Así

$$\det(\mathbf{A}\mathbf{B}) = \det\left(\mathbf{A}\mathbf{I}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k}\right) = \det\left(\mathbf{A}_{\boldsymbol{\tau}_1\cdots\boldsymbol{\tau}_k}\right) = |\mathbf{A}|\cdot\left(\left.|\mathbf{I}_{\boldsymbol{\tau}_1}|\cdots|\mathbf{I}_{\boldsymbol{\tau}_k}|\right.\right) = |\mathbf{A}|\cdot|\mathbf{B}|\,.$$

Ejercicio 83. Un intercambio de columnas es una sucesión de transformaciones elementales $Tipo\ I$ y una única transformación elemental de $Tipo\ II$ que multiplica por -1 una columna (EJERCICIO 28 en la página 47).

Ejercicio 84(a) Puesto que ambas son matrices elementales del mismo tipo, det $(I_{\tau}) = \det(\tau I)$.

Ejercicio 84(b) Puesto que $\mathbf{B} = \mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} = (\mathbf{I}_{\boldsymbol{\tau}_1}) \cdots (\mathbf{I}_{\boldsymbol{\tau}_k})$, su determinante es el producto de los determinantes det $(\mathbf{I}_{\boldsymbol{\tau}_i})$

$$|\mathbf{B}| = \det(\mathbf{I}_{\tau_1}) \cdots \det(\mathbf{I}_{\tau_k}) = \prod_{i=1}^k \det(\mathbf{I}_{\tau_i}).$$

Pero también sabemos que $\mathbf{B}^\intercal = {}_{\boldsymbol{\tau}_k \cdots \boldsymbol{\tau}_1} \mathbf{I} = \left({}_{\boldsymbol{\tau}_k} \mathbf{I} \right) \cdots \left({}_{\boldsymbol{\tau}_1} \mathbf{I} \right)$, por lo que su determinante es

$$|\mathbf{B}^{\mathsf{T}}| \ = \ \prod_{i=1}^k \det \left(_{\boldsymbol{\tau}_i} \mathbf{I} \right) \ = \ \prod_{i=1}^k \det \left(\mathbf{I}_{\boldsymbol{\tau}_i} \right) \ = \ |\mathbf{B}| \, .$$

Ejercicio 85(a) Como la matriz de orden n es de rango completo, los n elementos de la diagonal principal son pivotes (i.e., distintos de cero).

$$\mathbf{L} = \begin{bmatrix} *_1 \\ : & *_2 \\ & \vdots \\ : & : & *_n \end{bmatrix} \qquad \text{donde } *_j \text{ son números distintos de cero.}$$

Como sabemos que $|\mathbf{L}| = \begin{vmatrix} \mathbf{L} \\ 1 \end{vmatrix}$, vamos a realizar una secuencia de transformaciones elementales sobre las n primeras columnas esta última matriz, pero aplicaremos tranformaciones elementales sobre la última fila para mantener constante el valor del determinante:

Primero dividimos cada una de las n primeras columnas por su correspondiente pivote $*_j$ (j=1:n) para normalizar dichos pivotes al valor 1 (así que multiplicamos la última fila por cada uno de los n primeros pivotes para compensar dichas transformaciones $Tipo\ II$ y mantener constante el valor de el determinante). De esta manera logramos una matriz en la que todos los pivotes (salvo en de la última columna) son 1. Después aplicamos la eliminación de derecha a izquierda para anular todo lo que queda a la izquierda de los

pivotes (como las transformaciones empleadas en este segundo paso son de tipo I, ahora basta con multiplicar la última fila por 1).

De esta manera hemos obtenido una matriz como la identidad salvo por su última columna, que está multiplicada por el producto de los pivotes de L. Así pues, el determinante de esta última matriz es igual al producto de los pivotes L, y como en todo momento hemos mantenido el valor del determinante, con cluimos que el determinante de una matriz es triangular inferior de rango completo es igual al producto de sus pivotes; es decir, al producto de los elementos de la diagonal.

 $\det(\mathbf{L}) = \text{producto de los elementos de la diagonal}$

Ejercicio 85(b) Una matriz de orden n y triangular solo puede ser de rango completo si los n elementos de la diagonal son distintos de cero. Así, si hay algún cero en su diagonal, la matriz es singular. Consecuentemente su determinante es cero, es decir, es igual al producto de los elementos de la diagonal (donde uno de ellos es cero).

Ejercicio 85(c)

 $\det(\mathbf{U}) = \det(\mathbf{U}^{\mathsf{T}}) = \text{producto de los elementos de la diagonal}$

por ser \mathbf{U}^{T} triangular inferior.

 $\mathbf{Ejercicio} \ \mathbf{86(a)} \ \mathrm{Puesto} \ \mathrm{que} \ \begin{bmatrix} \mathbf{A} & \\ & \mathbf{B} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \\ & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \\ & \mathbf{B} \end{bmatrix} \ \mathrm{entonces} \ \begin{vmatrix} \mathbf{A} & \\ & \mathbf{B} \end{vmatrix} = \begin{vmatrix} \mathbf{A} & \\ & \mathbf{I} \end{vmatrix} \cdot \begin{vmatrix} \mathbf{I} & \\ & \mathbf{B} \end{vmatrix} = |\mathbf{A}| \cdot |\mathbf{B}|.$

Ejercicio 86(b) Puesto que

$$\begin{bmatrix} A & \\ C & B \end{bmatrix} = \begin{bmatrix} A & \\ C & I \end{bmatrix} \begin{bmatrix} I & \\ & B \end{bmatrix}$$

y puesto que mediante una sucesión $\boldsymbol{\tau}_1, \dots \boldsymbol{\tau}_k$ de transformaciones elementales $Tipo\ I$ es posible la transformación $\begin{bmatrix} \mathbf{A} & \\ \mathbf{C} & \mathbf{I} \end{bmatrix} \xrightarrow{\boldsymbol{\tau}_1, \dots \boldsymbol{\tau}_k} \begin{bmatrix} \mathbf{A} & \\ \mathbf{C} & \mathbf{I} \end{bmatrix}$ tenemos que $\begin{vmatrix} \mathbf{A} & \\ \mathbf{C} & \mathbf{I} \end{vmatrix} = \begin{vmatrix} \mathbf{A} & \\ \mathbf{I} \end{vmatrix}$; y por tanto

$$\begin{vmatrix} \mathbf{A} & \\ \mathbf{C} & \mathbf{B} \end{vmatrix} = \begin{vmatrix} \mathbf{A} & \\ \mathbf{C} & \mathbf{I} \end{vmatrix} \begin{vmatrix} \mathbf{I} & \\ & \mathbf{B} \end{vmatrix} = \begin{vmatrix} \mathbf{A} & \\ & \mathbf{I} \end{vmatrix} \begin{vmatrix} \mathbf{I} & \\ & \mathbf{B} \end{vmatrix} = |\mathbf{A}| \cdot |\mathbf{B}| \,.$$

Ejercicio 87. Desarrollando por la segunda columna tenemos

 $\det \mathbf{A} = -0 \begin{vmatrix} 5 & 2 & 4 \\ 3 & 1 & 2 \\ 5 & 2 & 1 \end{vmatrix} + \begin{vmatrix} 2 & 3 & 2 \\ 3 & 1 & 2 \\ 5 & 2 & 1 \end{vmatrix} - 0 \begin{vmatrix} 2 & 3 & 2 \\ 5 & 2 & 4 \\ 5 & 2 & 1 \end{vmatrix} + 3 \begin{vmatrix} 2 & 3 & 2 \\ 5 & 2 & 4 \\ 3 & 1 & 2 \end{vmatrix} = 0 + 17 - 0 + 3 \times 4 = 29$

Ejercicio 88.

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = -b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + e \begin{vmatrix} a & c \\ g & i \end{vmatrix} - h \begin{vmatrix} a & c \\ d & f \end{vmatrix}$$

$$= -b(-fg + id) + e(-cg + ia) - h(-cd + fa)$$

$$= bfg - bdi - ecg + eia + hcd - hfa$$

$$= a(ei - hf) - d(bi - hc) + g(bf - ec)$$

$$= aei + bfg + dhc - gec - dbi - hfa$$
reordenando.

(esta fórmula se denomina regla de Sarrus)

Ejercicio 89. Sea λ un autovalor de \mathbf{A} y sean \mathbf{x} y \mathbf{y} dos autovectores correspondientes al autovalor λ , es decir, tales que $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$ y $\mathbf{A}\mathbf{y} = \lambda\mathbf{y}$; entonces

$$\mathbf{A}(a\mathbf{x} + b\mathbf{y}) = a\mathbf{A}\mathbf{x} + b\mathbf{A}\mathbf{y} = \lambda a\mathbf{x} + \lambda b\mathbf{y} = \lambda(a\mathbf{x} + b\mathbf{y}).$$

Ejercicio 90. Extendemos el sistema [q] hasta formar una base ortogonal de \mathbb{R}^n

$$egin{aligned} m{q} &\longrightarrow m{q}; \; m{z}_1; \ldots \; m{z}_{(n-1)}; \end{bmatrix}; \end{aligned}$$

y luego colocamos q en la última posición y normalizamos todos los vectores; obteniendo la siguiente base ortonormal de \mathbb{R}^n :

$$\left[\frac{1}{\|\boldsymbol{z}_1\|}(\boldsymbol{z}_1); \dots \frac{1}{\|\boldsymbol{z}_{(n-1)}\|}(\boldsymbol{z}_{(n-1)}); \; \boldsymbol{q};\right].$$

$$\mathbf{Ejercicio\ 91.} \quad _{i|}\mathbf{Q}^{\mathsf{T}}\mathbf{Q}_{|j} = \left(\mathbf{Q}_{|i}\right)\cdot\left(\mathbf{Q}_{|j}\right) = \begin{cases} 1 & \text{cuando } i=j\\ 0 & \text{cuando } i\neq j \end{cases}, \quad \text{es decir} \quad \mathbf{Q}^{\mathsf{T}}\mathbf{Q} = \begin{bmatrix} 1 & 0 & \dots & 0\\ 0 & 1 & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & 1 \end{bmatrix} = \mathbf{I}_{n\times n}.$$

Ejercicio 92(a)
$$\left(\mathbf{Q}\mathbf{R}\right)^{\mathsf{T}} = \mathbf{R}^{\mathsf{T}}\left(\mathbf{Q}^{\mathsf{T}}\right) = \mathbf{R}^{-1}\left(\mathbf{Q}^{-1}\right) = \left(\mathbf{Q}\mathbf{R}\right)^{-1}$$
.

 $\mathbf{Ejercicio} \ 92(\mathbf{b}) \quad \left(\mathbf{Q}^{\text{-1}}\mathbf{A}\mathbf{Q}\right)^{\mathsf{T}} = \mathbf{Q}^{\mathsf{T}}\mathbf{A} \left(\mathbf{Q}^{\text{-1}}\right)^{\mathsf{T}} = \mathbf{Q}^{\mathsf{T}}\mathbf{A} \left(\mathbf{Q}^{\mathsf{T}}\right)^{\mathsf{T}} = \mathbf{Q}^{\text{-1}}\mathbf{A}\mathbf{Q}.$

Ejercicio 93. Si
$$\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q} = \mathbf{D}$$
 es diagonal, entonces $\mathbf{A} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{\mathsf{T}}$. Por tanto, $\mathbf{A}^{\mathsf{T}} = \left(\mathbf{Q}\mathbf{D}\mathbf{Q}^{\mathsf{T}}\right)^{\mathsf{T}} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{\mathsf{T}} = \mathbf{A}$.

Ejercicio 94(a) x(A+B)x = (xA+xB)x = xAx+xBx > 0; por ser la suma de dos números positivos.

Ejercicio 94(b) A es invertible y, como es simétrica, es ortogonalmente diagonalizable $\mathbf{A} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{-1} = \mathbf{Q}\mathbf{D}\mathbf{Q}^{\mathsf{T}}$; así

$$\mathbf{A}^{\text{-}1} = \left(\mathbf{Q} \mathbf{D} \mathbf{Q}^{\text{-}1}\right)^{\text{-}1} = \left(\mathbf{Q}^{\text{-}1}\right)^{\text{-}1} \mathbf{D}^{\text{-}1} \mathbf{Q}^{\text{-}1} = \mathbf{Q} \mathbf{D}^{\text{-}1} \mathbf{Q}^{\mathsf{T}};$$

y como los autovalores de ${\bf A}$ son positivos, sus inversos (los autovalores de ${\bf A}^{-1}$ que se encuentran en la diagonal de ${\bf D}^{-1}$) también lo son.

Ejercicio 95. Si **A** es definida positiva, entonces para cualquier $x \in \mathbb{R}^n$ no nulo se verifica que $x \mathbf{A} x > 0$. En particular, si x es la columna jésima de la matriz identidad, tenemos

$$_{j|}\mathbf{IAI}_{|j}=_{j|}\mathbf{A}_{|j}>0.$$

La demostración es análoga para el caso semidefinido.

Bibliografía

- Arvesú Carballo, J., Marcellán Español, F., and Sánchez Ruiz, J. (2005). Problemas resueltos de Álgebra Lineal. Thomson Learning, Madrid. España. ISBN 84-9732-284-3.
- Cullen, C. G. (1972). *Matrices and Linear Transformations*. Dover publications, Inc., New York, USA., second ed.
- Larson, R., Edwars, B. H., and Falvo, D. C. (2004). Álgebra lineal. Ediciones Pirámide, Madrid. España, fifth ed. ISBN 84-368-1878-4. Titulo de la obra original: Elementary Linear Algebra. Houghton Miffin Company.
- Lay, D. C. (2007). Algebra Lineal y sus aplicaciones. Pearson Educación, Inc., third ed.
- Poole, D. (2004). Álgebra lineal. Una introducción moderna. Thomson Learning, Mexico D.F. ISBN 970-686-272-2.
- Strang, G. (2003). *Introduction to Linear Algebra*. Wellesley-Cambridge Press, Wellesley, Massachusetts. USA, third ed. ISBN 0-9614088-9-8.
- Strang, G. (2007). Álgebra Lineal y sus Aplicaciones. Thomsom Learning, Inc, Santa Fe, México, D. F., fourth ed. ISBN 970686609-4.

Glosario

```
\mathbf{C}
combinación lineal de los vectores de Z (Za).
concatenación de los sistemas Y y Z (Y + Z).
conjunto de matrices de orden m \times n \mathbb{R}^{m \times n}.
conjunto de numeros complejos (\mathbb{C}).
conjunto de numeros reales (\mathbb{R}).
conjunto de sistemas de n números reales \mathbb{R}^n.
\mathbf{E}
espacio columna de A (C(A)).
espacio nulo de A (\mathcal{N}(A)).
espacios vectoriales (C, \mathcal{N}, \mathcal{X}, \mathcal{V}, \mathcal{W}).
\mathbf{M}
matrices particionadas (A, B, C).
matrices (\mathbb{R}^{m \times n}) (A, B, C).
    elemental (I_{\tau}).
       Tipo I (I_{\tau}).
       Tipo II (I_{\tau}).
     escalonada reducida (por columnas) (R).
     identidad (I).
    intercambio (I_{\tau}).
     invertible, de rango completo, o no singular (I_{\tau_1\cdots\tau_k}).
     inversa (de A) (A^{-1}).
     nula(0).
    permutación (I_{\tau}).
     pre-escalonada (K).
     rango de A (rango (A)).
     transpuesta (A<sup>T</sup>; transpuesta de A).
     triangular inferior (L).
     triangular superior (U).
\mathbf{o}
operador selector de componentes (| ).
     por la derecha selecciona el elemento iésimo de un sistema (|i\rangle).
     por la izquierda selecciona el elemento iésimo de un vector o la fila iésima de una matriz (i|).
operador transposición (T).
```

```
\mathbf{P}
producto punto (producto escalar usual en \mathbb{R}^n) (a \cdot b).
\mathbf{S}
Sistema de ecuaciones lineales (Ax = b).
sistemas de vectores de un subespacio genérico \mathcal{V} (A, B,... X, Y, Z).
subespacio engendrado por un sistema Z (\mathcal{L}(Z)).
suma directa de los subespacios \mathcal{A} y \mathcal{B} (\mathcal{A} \oplus \mathcal{B}).
\mathbf{T}
Transformación (\tau).
      de las columnas de A (A_{\tau}).
     elemental Tipo I; suma \lambda veces el vector \pmb{i}ésimo al vector \pmb{j}ésimo \binom{\tau}{[(\lambda)\pmb{i}+\pmb{j}]}. elemental Tipo II; multiplica por \alpha el vector \pmb{i}ésimo vector \binom{\tau}{[(\alpha)\pmb{i}]}.
      intercambio entre los vectores iésimo y jésimo \binom{\tau}{[i=i]}.
     inversa de \tau (\tau^{-1}).
     permutación de vectores \left( \tau \right).
V
vectores de \mathbb{R}^n (a, b, c,).
      columna jésima de A (A_{|j}).
      combinación lineal de las columas de A (Ab).
      combinación lineal de las filas de A (aB).
      fila iésima de A (_{i}|A).
      nulo (0).
vectores de un espacio vectorial genérico \mathcal{V}(\vec{x}, \vec{y}, \vec{z}).
```

conjuntos

```
 \begin{cases} X,\ Y,\ X,\ldots \} \text{ conjunto}. \\ \mathbb{C} \text{ conjunto de numeros complejos}. \\ \mathbb{R} \text{ conjunto de numeros reales}. \\ \mathbb{R}^{m\times n} \text{ conjunto de matrices de orden } m\times n. \\ \mathbb{R}^n \text{ conjunto de sistemas de } n \text{ números reales}.
```

espacios y subespacios vectoriales

```
\mathcal{C}(\mathbf{A}) espacio columna de \mathbf{A}.

\mathcal{C}, \mathcal{N}, \mathcal{X}, \mathcal{V}, \mathcal{W} espacios vectoriales.

\mathcal{N}(\mathbf{A}) espacio nulo de \mathbf{A}.

\mathcal{L}(\mathsf{Z}) subespacio engendrado por un sistema \mathsf{Z}.

\mathcal{A} \oplus \mathcal{B} suma directa de los subespacios \mathcal{A} \ \mathcal{Y} \ \mathcal{B}.
```

matrices

```
\begin{bmatrix} \boldsymbol{a} & \boldsymbol{b} & \boldsymbol{c} \dots \end{bmatrix} con \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \in \mathbb{R}^m; matriz de \mathbb{R}^{m \times n}.
\mathbf{A}, \mathbf{B}, \mathbf{C} matrices (\mathbb{R}^{m \times n}).
        R matriz escalonada reducida (por columnas).
        \mathbf{A}^{-1} matriz inversa (de \mathbf{A}).
       \mathbf{I}_{\tau} matriz elemental.
                        matriz elemental Tipo I.
           \mathbf{I}_{\stackrel{\boldsymbol{\tau}}{\boldsymbol{\tau}}} matriz elemental Tipo II.
        I matriz identidad.
                  matriz intercambio.
        \mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \; matriz invertible, de rango completo, o no singular.
        0 matriz nula.
        \mathbf{I}_{\tau} matriz permutación.
        \mathbf{A}^{\mathsf{T}} transpuesta de \mathbf{A}.
        K matriz pre-escalonada.
        rango (A) rango de A.
        L matriz triangular inferior.
        U matriz triangular superior.
```

matrices particionadas

 \mathcal{A} , \mathcal{B} , \mathcal{C} matrices particionadas.

operaciones

 $\boldsymbol{a} \cdot \boldsymbol{b}$ producto punto (producto escalar usual en \mathbb{R}^n).

operadores

T operador transposición.

operador selector de componentes.

i por la izquierda.

|i| por la derecha.

Sistema de ecuaciones lineales

 $\mathbf{A}x = \mathbf{b}$ Sistema de ecuaciones lineales.

sistema de vectores de un espacio vectorial generico

Y # Z concatenación de los sistemas Y y Z.

A, B,... X, Y, Z sistemas de vectores de un subespacio genérico \mathcal{V} .

sistemas genéricos

$$[X; Y; Z; \ldots;]$$
 sistema.

trasnformaciones elementales (o sucesiones de transformaciones elementales)

au Transformación.

au intercambio entre los vectores iésimo y jésimo.

 $[i \rightleftharpoons j]$

au permutación de vectores.

[O]

 \mathbf{A}_{τ} de las columnas de \mathbf{A} .

 τ elemental Tipo II; multiplica por α el vector **i**ésimo vector.

 $[(\alpha) \pmb{i}]$

 τ elemental Tipo I; suma λ veces el vector iésimo al vector jésimo.

 $[(\lambda) \boldsymbol{i} {+} \boldsymbol{j}]$

 $\boldsymbol{\tau}^{-1}$ transformación inversa de $\boldsymbol{\tau}$.

vectores

Za combinación lineal de los vectores de Z.

 \vec{x} , \vec{y} , \vec{z} , vectores de un espacio vectorial genérico \mathcal{V} .

a, b, c, vectores de \mathbb{R}^n .

 $\mathbf{A}_{|j|}$ columna jésima de \mathbf{A} .

 $\mathbf{A}\mathbf{b}$ combinación lineal de las columas de \mathbf{A} .

 $a \, {\sf B} \,$ combinación lineal de las filas de ${\sf A}$.

 $_{i|}$ **A** fila iésima de **A**.

 $(a, b, c, \ldots,)$ vector de \mathbb{R}^n ; con $a, b, c, \ldots \in \mathbb{R}$.

0 nulo.

Índice alfabético

C	
Cauchy-Schwarz (designaldad), 132, 142	columna libre de una matriz, 93
combinación lineal, 24, 27, 76, 103	columna pivote de una matriz, 93
concatenación de sistemas, 111	componente (o elemento) de una, 12
conjunto, 3	cuadrada, 18
coordenadas, 115	diagonal, 18
	elemental, 41
desigualdad triangular, 133, 143	elemental de Tipo I, 42
	elemental de Tipo II, 43
ecuaciones cartesianas, 89	escalonada, 50, 52
ecuaciones paramétricas, 92	escalonada por filas, 54
ecuación lineal, 87	escalonada reducida, 51, 52
eliminación, 49	extendida, 171
de izquierda a derecha, 49, 110	fila de una matriz, 12
pre-escalonar, 49	fila pivote de una matriz, 123
Gauss-Jordan, 51	idempotente, 150
escalonar y reducir, 51	identidad, 18
gaussiana, 50, 51	igualdad, 14
escalonar, 51	intercambio, 47
eliminación por filas, 52	inversa, 57
escalares, 3	invertible, 57 , 59, 61, 69
números reales, 3	matriz columna, 11, 15, 16
espacio euclideo, 143	matriz fila, 16
$\mathbb{R}^{n}, 143$	múltiplo de, 19
espacio vectorial, 74	notación, 12
subespacio, <i>véase</i> subespacios vectoriales	nula, 17
función, 83	opuesta, 17
autoadjunta, 151	orden de una matriz, 12, 18
composición de funciones, 85	permutación, 48
idempotente, 150	pre-escalonada, 49, 52
invertible, 85	producto de matrices, 29, 31, 34
notación, 84	producto por un escalar, 19
producto por un escalar, 80	proyección, 150
suma de funciones, 80	rango, 67
función lineal, 76	rango completo, 69, 113
composición, 77	rango completo por columnas, 69
imagen, 115	rango completo por filas, 69
invertible, 77	rectangular, 18
núcleo o espacio nulo, 115	selección de un elemento (o componente), 14
,	selección de una columna, 13, 14
linealidad, <i>véase</i> operador lineal	selección de una fila, 13, 14
	simétrica, 18, 151
matriz, 11	singular, 57
columna de una matriz, 13	suma, 19

transpuesta, 16, 32	núcleo de una función lineal, 115
triangular inferior, 65	subespacios suplementarios, 119
triangular superior, 66	suma de subespacios, 117
método de eliminación, 49, 90	suma directa de subespacios, 119
Gauss-Jordan, 51	• ,
gaussiano, 51	transformación elemental
,	transpuesta, 52
nomenclatura de G. Strang, 93	transformación elemental, 41
	de las columnas de una matriz, 42, 44
operador lineal, 6 , 19–21, 23, 26, 28, 31, 46, 104	de las filas de una matriz, 52
	de los vectores de un sistema Z, 107
permutación, 48	intercambio, 47
Pitágoras (Teorema), 132, 142	inversa, 58
pivote, 49	permutación, 35, 48
columna pivote, 93	secuencia de transformaciones, 46
posición de pivote, 49, 67	Tipo I, 41
pre-escalonar, 49	Tipo II, 43
producto punto, 23	transpuesta, 52
• ,	transpuesta, 52
Rouché-Frobenius (Teorema), 99	vectores de \mathbb{R}^n
	distancia entre vectores, 134
selector (operador), 4, 13, 14, 29, 33, 103, 110	vectores de \mathcal{V} , 74
sistema, 3, 11, 103	combinación lineal, 76, 103
sistema de vectores de \mathcal{V}	coseno del ángulo formado por, 142
generador de un subespacio, 105, 106	distancia entre vectores, 143
sistemas equivalentes, 106, 197	longitud o norma, 142
linealmente dependiente, 108	múltiplo de, 74
linealmente independiente, 108, 109, 115	- · · · · · · · · · · · · · · · · · · ·
sistemas acoplados, 110	ortogonales (o perpendiculares), 142
sistemas equivalentes, 107, 197	producto por escalares de, 74
sistemas de ecuaciones lineales, 87	suma de, 74
equivalentes, 137, 148	unitario, 142
homogéneos, 88	vectores de \mathbb{R}^n , 3
solución trivial, 88	combinación lineal, 24, 27
matriz de coeficientes ampliada, 95	coseno del ángulo formado por, 133
no homogéneos, 95	igualdad, 4
soluciones especiales, 91, 93	longitud o norma, 131
variables libres (o exógenas), 93	múltiplo de, 6
variables pivote (o endógenas), 93	notación, 4
subespacios vectoriales	nulo, 5
-	opuesto, 5
espacio nulo de un sistema de vectores Z, 108	ortogonales (o perpendiculares), 131
subespacios vectoriales, 78	producto escalar usual en \mathbb{R}^n , <i>véase</i> producto
base, 108	punto
complementos ortogonales, 135, 143, 145	producto por un escalar de, 6
dimensión, 109, 118	selección de una componente, 4, 14, 15
espacio columna de A, 100	suma, 6
espacio nulo de A , 89	unitario, 132
espacio nulo de una función lineal, 115	,
generado por un conjunto $\mathcal{L}(Z)$, 114	
generado por un sistema $\mathcal{L}(Z), 105, 106$	
iguales, 106, 109	
imagen de una función lineal, 115	
intersección de, 79	