Introdução à Espectoscopia

Alexandre Maphossa Belarmino Matsinhe

DEPARTAMENTO DE FÍSICA

4 de agosto de 2023

Introdução à Espectoscopia

> Alexandre Maphossa Belarmino Matsinhe

Sumário

ntrodução à Disciplina

Objecto de estudo Objectivos e

Conceitos gerais

Introdução à Espectroscopia

- 1. Introdução à disciplina;
- 2. Espectroscopia como Ciência Aplicada;
- 3. Objecto de estudo, Objectivos e Métodos.

Leitura complementar obrigatória: Espectro electromagnético, Efeito Mossbouer, Espectroscopia Mossbouer, Espectroscopia de massa.

Introdução à Espectoscopia

> Alexandre Maphossa Belarmino Matsinhe

Sumário

Introdução à

Objecto de estudo, Objectivos e

onceitos gerais

IM DA AIII A

Espectroscopia como disciplina

1. Distribuição de Aulas: Programa analítico

https://urlscurta.com/zOGhX

2. Acesso ao material da disciplina

https:

//github.com/Macmatsinhe/ESPECTROSCOPIA

Introdução à Espectoscopia

> Alexandre Maphossa Belarmino

Matsinhe

Sumário

Introdução à Disciplina

Objecto de estudo Objectivos e

onceitos gerais

IM DA AHLA

Objectos de estudo

 As mesmas leis da Física, que muito bem sucedidas, foram e continuam sendo aplicadas para o entendimento da composição dos planetas, podem ser usadas para explicar os Fenómenos espectroscópicos (Absorção e emissão da radiação electromagnética por moléculas). Introdução à Espectoscopia

> Alexandre Maphossa Belarmino Matsinhe

Sumário

ntrodução à Disciplina

Objecto de estudo, Objectivos e Métodos

Conceitos gerais

Introdução à Espectoscopia

> Alexandre Maphossa Belarmino

Matsinhe

Sumário

ntrodução à Disciplina

Objecto de estudo, Objectivos e Métodos

Conceitos gerais

IM DA AULA

Objectivos

 Inferir novos conhecimentos de maneira teórica, na base de modelos, aplicando diversas técnicas matemáticas.

Métodos

Os métodos de estudo da Espectroscopia baseiam-se na:

- 1. Observação e Experimentação;
- 2. Lógica e Matemática.

Introdução à Espectoscopia

> Alexandre Maphossa Belarmino Matsinhe

Sumário

Introdução à

Objecto de estudo,
Objectivos e
Métodos

onceitos gerais

IM DA ALILA

- 1. O que é a Espectroscopia?
- 2. Quais são suas aplicações?

Introdução à Espectoscopia

> Alexandre Maphossa Belarmino Matsinhe

Sumário

ntrodução à Disciplina

Objecto de estudo Objectivos e

Conceitos gerais

IM DA ALILA

Figura: Espectro de emissão do hidrogênio

Introdução à Espectoscopia

> Alexandre Maphossa Belarmino

Matsinhe

Sumário

ntrodução à Disciplina

Objectivos e

Conceitos gerais

ΙΜ ΤΑ ΔΙΙΙΑ

Definição:

"Um conjunto de técnicas de análise dos efeitos resultantes da interação da radiação electromagnética com a matéria."

Introdução à Espectoscopia

> Alexandre Maphossa Belarmino

Matsinhe

Sumário

ntrodução à Disciplina

Objectivos e

Conceitos gerais

Aplicações:

- Geofísica: Caracterização Petrofísica de Reservatórios de Petróleo; Composição do petróleo...
- Ambiente: Avaliação da qualidade ambiental (água, alimentos, atmosfera).
- 3. Farmacéutica: Análise da qualidade de farmacos.
- Biotecnologia: Controle de processos de Fermentação; Análise de proteínas...
- 5. Forence: Identificação de Drogas.

Introdução à Espectoscopia

Alexandre Maphossa Belarmino

Matsinhe

Sumário

ntrodução à Disciplina

Objectivos e

Conceitos gerais

Tipos de Espectroscopia

Figura: Espectro electromagnético

Introdução à Espectoscopia Alexandre Maphossa Belarmino Matsinhe

Sumário

ntrodução Disciplina

Objectivos e

Métodos

Conceitos gerais

Grandezas e Unidades Espectroscóopicas

1. Energia Electromagnética

$$E = nh\nu$$
 (1)

2. Número de onda

$$\tilde{\nu} = \frac{1}{\lambda} \tag{2}$$

3. Deslocamento químico

$$\delta = \frac{\Delta \nu(Hz)TMS}{\nu_S(MHz)} \tag{3}$$

Introdução à Espectoscopia

> Alexandre Maphossa Belarmino

Matsinhe

iumário

trodução à isciplina

Objecto de estudo
Objectivos e
Métodos

Conceitos gerais

Grandezas e Unidades Espectroscóopicas

Unit	cm^{-1}	MHz	kJ	eV	kJ mol⁻¹
1 cm ⁻¹	1	29 979.25	1.98645×10^{-26}	1.239 84 × 10 ⁻⁴	1.196 27 × 10 ⁻²
1 MHz	3.33564×10^{-5}	1	6.62608×10^{-31}	$4.135\ 67\times 10^{-9}$	$3.990\ 31\times 10^{-7}$
1 kJ	$5.034\ 11\times 10^{25}$	$1.509 \ 19 \times 10^{30}$	1	$6.241 \ 51 \times 10^{21}$	$6.022\ 14\times 10^{23}$
1 eV	8065.54	2.41799×10^{8}	$1.602\ 18 \times 10^{-22}$	1	96.485
1 kJ mol^{-1}	83.5935	$2.506\ 07 \times 10^6$	$1.660\ 54 \times 10^{-24}$	$1.036 \ 43 \times 10^{-2}$	1

Figura: Unidades de grandezas espectroscópicas

Introdução à Espectoscopia

> Alexandre Maphossa Belarmino

Matsinhe

umário

Introdução à

Objectivos e

Conceitos gerais

EIM DA ALILA

Grandezas e Unidades Espectroscóopicas

Figura: Unidades de grandezas espectroscópicas

Introdução à Espectoscopia

> Alexandre Maphossa Belarmino

Matsinhe

Sumário

itrodução à isciplina

Objecto de estudo, Objectivos e

Conceitos gerais

Introdução à Espectoscopia

> Alexandre Maphossa Belarmino Matsinhe

Sumário

ntrodução à Disciplina

Objectivos e

onceitos gerais