推荐系统 - 介绍和交流

1.0 -> 2.0

吴源林

目录

- 推荐系统1.0
- 推荐系统2.0
 - 推荐算法原理
 - 推荐系统:架构,软、硬件
 - 如何向用户进行推荐 营销、运营和交互设计
 - 推荐效果评估

推荐系统1.0

购物篮分析

•A、B两家餐厅被客户预定的情况(人数)

	A餐厅	非A餐厅	总计
B餐厅	15	5	20
非B餐厅	75	5	80
总计	90	10	100

```
支持度({A餐厅})=90
支持度({B餐厅})=20
支持度({A餐厅,B餐厅})=15
可能性({A餐厅})=90/100=0.9
可能性({B餐厅})=20/100=0.2
可能性({A餐厅,B餐厅})=15/100=0.15
```


可能性(A餐厅|B餐厅)=15/20=0.75 吃过B餐厅吃A餐厅的可能性可能性(B餐厅|A餐厅)=15/90=0.167 吃过A餐厅吃B餐厅的可能性

缺点

- 餐厅-客户个性不能被体现
- 预订少的餐厅容易被剔除在外
- 马太效应:热门餐厅获得推荐机会更多
- 针对单个会员,推荐时机及餐厅变化相对少

推荐系统2.0

协同过滤算法

协同过滤(Collaborative Filtering),利用某兴趣相投、拥有共同经验之群体的喜好来推荐使用者感兴趣的资讯。

- 收集使用者资讯
- 针对用户/项目的最近邻搜索

例如:要对餐厅A 和餐厅 B 进行相似性计算,要先找出同时对 A 和 B 打过分的组合,对这些组合进行相似度计算

• 产生推荐结果

利用会员的偏好,接合群体智慧,进行推荐

Item Based 算法

,	101	102	103	104	105	106	107		U3		R	
101	5	3	4	4	2	2	1		2.0		40.0	
102	3	3	3	2	1	1	0		0.0		18.5	
103	4	3	4	3	1	2	0	X	0.0	=	24.5	
104	4	2	3	4	2	2	1		4.0		40.0	Γ
105	2	1	1	2	2	1	1		4.5		26.0	
106	2	1	2	2	1	2	0		0.0		16.5	
107	1	0	0	1	1	0	1		5.0		15.5	

餐厅亲密度矩阵:两两餐厅,某种行为发生的频次(频次越大,则暗含这两家餐厅存在某种相似性越高)

会员偏好向量:对所有餐厅的偏好度(如点评,下单数,访问数)

预测推荐:用亲密度矩阵和偏好向量进行计算

协同过滤算法

优点

- 解决机器难以自动进行内容分析的资讯
- 共用其他人的经验
- 推荐新资讯
- 个性化,自动化程度较高

缺点

- 新使用者问题(New User Problem) 系统开始时推荐品质较差
- 新项目问题(New Item Problem) 品质取决于历史资料集
- 稀疏性问题(Sparsity)
- 系统延伸性问题 (Scalability)

如何推荐?

• 推荐体验设计

除推荐物品的展示外,还有推荐理由和反馈!

- 可能的推荐时机:
 - 网站|移动客户端|呼叫中心|EDM

运算系统:单点->分布

行业应用案例:Facebook

FB日均处理:

- 25亿 Facebook上分享的内容条数
- 27亿"赞"的数量,
- 3亿 上传照片数
- 500+TB 新产生的数据
- 105TB 每半小时通过Hive扫描的数据
- 100+PB(1PB=1024TB)单个HDFS (分布式文件系统)集群中的磁盘容量

"大数据的意义在于真正对你的生意有内在的洞见。如果你不能好好利用自己收集到的数据,那你只是空有一堆数据而已,不叫大数据。"

http://news.cnet.com/8301-1023_3-57498531-93/facebook-processes-more-than-500-tb-of-data-daily/

DEMO 演示

数据源和同步

- 订单
- 点评
- 点击流
- GPS信息

•

数据同步

- Microsoft Sync Framework
- FTP

效果评估

• 可能的商业产出指标:

- 财务:点击率,转化率,订单增长

- 访问行为:点击量,访问深度,与搜索或分类目录比较

- 体验:用户满意度,<u>净推荐者值(Net Promoter Score)</u>

每次访问的网页浏览量

相关餐厅: 23.61

6.28 所有访问次数: **5.28**

订餐会员访问: 17.63

平均访问持续时间

相关餐厅: 00:20:03

所有访问次数: 00:05:32

订餐会员访问: 00:16:38

	网站搜索状态	订餐转化指标 (目标 1 的转化率) ▼ ↓	访问次数
1.	■ Visits With Site Search		
	相关餐厅	19.82%	0.39%
	所有访问次数	20.23%	11.84%
2.	■ Visits Without Site Search		
	相关餐厅	8.41%	0.85%
	所有访问次数	2.39%	88.16%

效果评估

- 方法:实验、调查和AB测试
 - 预测准确度
 - 覆盖率(对推荐餐厅长尾的发掘能力)
 - 多样性
 - 新颖性
 - 惊喜度
 - 信任度
 - 实时性
 - 健壮性
- 缺陷:
 - 效果评估可能很难做到逻辑完善、结果公正,欠缺公认的定论

推荐阅读

迎接个性化时代浪潮

推荐系统实践 浪潮之巅作者吴军作序推荐

推荐在今天互联网的产品和应用中被广泛采用,包括今天大家经常使用的相关搜索、话题推荐、电子商务的各种产品推荐、社交网络上的交友推荐等。但是,至今还没有一本书从理论上对它进行系统地分析和论述。《推荐系统实践》这本书恰恰弥补了这个空白。

该书总结了当今互联网主要领域、主要公司、各种和推荐有关的产品和服务,包括:

亚马逊的个性化产品推荐;

Netflix的视频和DVD推荐;

Pandora的音乐推荐;

Facebook的好友推荐;

Google Reader的个性化阅读;