Key concepts on Deep Neural Networks

Quiz, 10 questions

~	Congratulations! You passed!	Next Item
~	1 / 1 points	
1.	the "cache" used for in our implementation of forward propagation and base	award propagation?
O	the "cache" used for in our implementation of forward propagation and back We use it to pass variables computed during forward propagation to the cor propagation step. It contains useful values for backward propagation to com	responding backward
	ect ect, the "cache" records values from the forward propagation units and sends agation units because it is needed to compute the chain rule derivatives.	s it to the backward
	It is used to keep track of the hyperparameters that we are searching over, t	o speed up computation.
	We use it to pass variables computed during backward propagation to the corpropagation step. It contains useful values for forward propagation to comp	-
	It is used to cache the intermediate values of the cost function during training	g.
~	1 / 1 points	
2. Among	the following, which ones are "hyperparameters"? (Check all that apply.)	
Corre	size of the hidden layers $n^{[l]}$	
	bias vectors $oldsymbol{b}^{[l]}$	

Key concepts on Deep Neural Networks

Quiz, 10 que	ஆகுந்yation values $a^{[l]}$
Un-se	lected is correct
	weight matrices $W^{\left[l ight]}$
Un-se	lected is correct
Corre	number of layers L in the neural network $oldsymbol{ct}$
Corre	
	learning rate $lpha$
Corre	ct
	number of iterations
Corre	ct
~	1/1 points
3.	
Which o	of the following statements is true?
	The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.
Corre	ct
	The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers.
	1/1
•	points

Vectorization allows you to compute forward propagation in an L-layer neural network without an explicit for-Keys Conseptis Capille Control of the North Section 1, 2, ..., L. True/False?

Quiz,	10 que	estions
		True

Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines ($a^{[2]}=g^{[2]}(z^{[2]})$, $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$, ...) in a deeper network, we cannot avoid a for loop iterating over the layers: ($a^{[l]}=g^{[l]}(z^{[l]})$, $z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$, ...).

1/1 points

5.

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

```
for(i in range(1, len(layer_dims)/2)):
    parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
    parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims)/2)):
2  parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i-1], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims))):
2  parameter['W' + str(i)] = np.random.randn(layers[i-1], layers[i])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims))):
2  parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

Correct

1/1 points

6.

Consider the following neural network.

Key concepts on Deep Neural Networks

How many layers does this network have?

The number of layers L is 4. The number of hidden layers is 3.

Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

The number of layers \boldsymbol{L} is 3. The number of hidden layers is 3.
The number of layers L is 4. The number of hidden layers is 4.
The number of layers ${\cal L}$ is 5. The number of hidden layers is 4.

1/1 points

7.

During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False?

True

Correct

Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.

False

Key concepts on Deep Neural Networks

Quiz, 10 questions

There are certain functions with the following properties:

(i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?

0	True

Correct

False

1/1 points

9.

Consider the following 2 hidden layer neural network:

Which of the following statements are True? (Check all that apply).

 $oxed{M}^{[1]}$ will have shape (4, 4)

Correct

Yes. More gener	rally, the shap	e of $W^{[i]}$ is	$(n^{\iota_{i}}, n^{\iota_{i}-1}).$
Key concepts	on Deep I	Neural I	Networks
, ,			

•	-
Quiz, 10 ques	$b^{[1]}$ will have shape (4, 1)
Correc Yes. N	Nore generally, the shape of $b^{[l]}$ is $(n^{[l]},1).$
	$W^{\left[1 ight]}$ will have shape (3, 4)
Un-sel	ected is correct
	$b^{[1]}$ will have shape (3, 1)
Un-sel	ected is correct
	$W^{[2]}$ will have shape (3, 4)
Correc Yes. N	St More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$
	$b^{[2]}$ will have shape (1, 1)
Un-sel	ected is correct
	$W^{[2]}$ will have shape (3, 1)
Un-sel	ected is correct
	$b^{[2]}$ will have shape (3, 1)
Correc Yes. N	Aore generally, the shape of $b^{[l]}$ is $(n^{[l]},1).$
	$W^{[3]}$ will have shape (3, 1)
Un-sel	ected is correct
	$b^{[3]}$ will have shape (1, 1)
Correc	ct .

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

Key concepts on Deep Neural Networks

Quiz, 10 questions

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

Un-selected is correct

1/1 points

10.

Whereas the previous question used a specific network, in the general case what is the dimension of W^{[l]}, the weight matrix associated with layer *l*?

- $W^{[l]}$ has shape $(n^{[l+1]}, n^{[l]})$
- $W^{[l]}$ has shape $(n^{[l-1]}, n^{[l]})$
- $W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$

Correct

True

 $W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$

