Fundamentos Matemáticos del Aprendizaje por Refuerzo

Una Introducción Teórica

Dr. Darío Ezequiel Díaz

IPEC

April 20, 2025

Contenidos

- 1 Introducción al Aprendizaje por Refuerzo
- Procesos de Decisión de Markov
- Funciones de Valor y Políticas
- 4 Ecuaciones de Bellman
- Métodos de Resolución
- 6 Aproximación de Funciones y Deep RL
- Exploración vs. Explotación
- 8 Conexión con Implementación Práctica
- Onclusiones y Recursos

¿Qué es el Aprendizaje por Refuerzo?

- El Aprendizaje por Refuerzo (RL) constituye un paradigma de machine learning donde un agente aprende mediante la interacción con un entorno.
- Características distintivas:
 - Aprendizaje basado en señales de recompensa
 - No requiere supervisión explícita
 - Balance entre exploración de nuevas acciones y explotación del conocimiento adquirido
 - Orientado hacia la maximización del retorno acumulado a largo plazo
- Diverge de otros enfoques: el agente no recibe instrucciones explícitas sobre qué acción tomar

El Ciclo del Aprendizaje por Refuerzo

- En cada paso temporal t:
 - El agente observa el estado actual S_t
 - Selecciona una acción A_t
 - ullet El entorno transiciona a un nuevo estado S_{t+1}
 - El entorno emite una recompensa R_{t+1}
- El objetivo: desarrollar una estrategia (política) para maximizar la recompensa acumulada

Procesos de Decisión de Markov (MDP)

- Marco matemático formal para modelar la toma de decisiones secuenciales bajo incertidumbre
- Un MDP se define como una tupla $M = (S, A, P, R, \gamma)$ donde:
 - S: Conjunto de estados
 - A: Conjunto de acciones
 - P: Función de probabilidad de transición P(s'|s,a)
 - R: Función de recompensa R(s, a) o R(s, a, s')
 - γ : Factor de descuento $\gamma \in [0,1)$
- La Propiedad de Markov: el futuro depende solo del presente, no del pasado

Componentes del MDP: Análisis Detallado

- Estados (*S*): Representan configuraciones del entorno. Pueden ser finitos o infinitos, discretos o continuos.
- Acciones (A): Decisiones disponibles para el agente. También pueden ser finitas o infinitas, discretas o continuas.
- Transiciones (P): $P(s'|s,a) = \mathbb{P}(S_{t+1} = s'|S_t = s, A_t = a)$, la probabilidad de transitar al estado s' tras ejecutar la acción a en el estado s.
- Recompensas (R): Señal escalar que evalúa la calidad de cada transición. Define el objetivo a corto plazo.
- Factor de descuento (γ) : Pondera la importancia relativa de recompensas futuras vs. inmediatas.

La Propiedad de Markov: Implicaciones

La propiedad de Markov establece:

$$P(S_{t+1} = s' | S_t = s, A_t = a, S_{t-1}, A_{t-1}, \dots, S_0, A_0)$$
 (1)

$$= P(S_{t+1} = s' | S_t = s, A_t = a)$$
 (2)

- Interpretación: "El futuro es independiente del pasado dado el presente"
- Consecuencias prácticas:
 - Simplifica enormemente el modelado y resolución de problemas
 - Permite formular políticas basadas únicamente en el estado actual
 - Habilita el desarrollo de algoritmos eficientes mediante programación dinámica
 - Posibilita la recursión en las ecuaciones de Bellman
- Limitación: muchos problemas reales no satisfacen completamente esta propiedad

Políticas y Retorno

- **Política** π : Estrategia de comportamiento del agente
 - Política determinística: $\pi(s) = a$
 - Política estocástica: $\pi(a|s) = P[A_t = a|S_t = s]$
- Retorno: Suma de recompensas descontadas

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- Interpretación del descuento γ :
 - $\gamma \approx$ 0: Agente "miope" (corto plazo)
 - $\gamma \approx$ 1: Agente "previsor" (largo plazo)
 - Garantiza convergencia matemática en horizontes infinitos

Funciones de Valor

• Función de valor de estado:

$$V^{\pi}(s) = \mathbb{E}_{\pi}\left[G_t|S_t = s
ight] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}|S_t = s
ight]$$

- ullet Valor esperado del retorno iniciando en estado s y siguiendo política π
- Función de valor acción-estado (Función Q):

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}\left[G_t|S_t = s, A_t = a\right] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}|S_t = s, A_t = a\right]$$

• Valor esperado del retorno iniciando en s, tomando acción a y siguiendo π después

Relación entre V^{π} y Q^{π}

$$V^{\pi}(s) = \sum_{a \in A} \pi(a|s) Q^{\pi}(s,a)$$
(3)

$$Q^{\pi}(s,a) = \sum_{s',r} p(s',r|s,a)[r + \gamma V^{\pi}(s')]$$
 (4)

- La función V^π representa el valor promedio de todas las acciones posibles según π
- La función Q^π descompone el valor en recompensa inmediata más valor futuro esperado
- Estas relaciones forman la base para derivar las ecuaciones de Bellman
- Las funciones de valor permiten comparar políticas: $\pi' \geq \pi$ si $V^{\pi'}(s) \geq V^{\pi}(s)$ para todo s

Ecuaciones de Bellman: El Corazón del RL

Las ecuaciones de Bellman representan relaciones recursivas fundamentales entre valores de estados y sus sucesores.

- Principio subyacente: El valor de un estado puede descomponerse en:
 - Recompensa inmediata esperada
 - Valor descontado esperado del estado siguiente
- Dos tipos principales:
 - Ecuaciones de expectativa (para evaluar una política fija)
 - Ecuaciones de optimalidad (para encontrar la mejor política)
- Basadas en la estructura Markoviana: permiten dividir un problema completo en subproblemas más simples

Ecuaciones de Bellman de Expectativa

Para una política fija π :

$$V^{\pi}(s) = \sum_{a \in A} \pi(a|s) \sum_{s' \in S} P(s'|s, a) [R(s, a, s') + \gamma V^{\pi}(s')]$$
 (5)

$$Q^{\pi}(s,a) = \sum_{s' \in S} P(s'|s,a)[R(s,a,s') + \gamma \sum_{a' \in A} \pi(a'|s')Q^{\pi}(s',a')]$$
 (6)

- Estas ecuaciones definen un sistema lineal para los valores de todos los estados
- Permiten calcular valores exactos de una política mediante iteración o álgebra lineal
- Base para algoritmos de evaluación de políticas

Ecuaciones de Bellman de Optimalidad

Para la política óptima π^* :

$$V^*(s) = \max_{a \in A} \sum_{s' \in S} P(s'|s, a) [R(s, a, s') + \gamma V^*(s')]$$
 (7)

$$Q^*(s,a) = \sum_{s' \in S} P(s'|s,a)[R(s,a,s') + \gamma \max_{a' \in A} Q^*(s',a')]$$
(8)

- Introducen no-linealidad a través del operador max
- Caracterizan los valores óptimos y, por tanto, la política óptima
- La política óptima puede extraerse fácilmente de Q^* :

$$\pi^*(s) = \arg\max_{a \in A} Q^*(s, a)$$

• Base para algoritmos de optimización de políticas

4□ > 4□ > 4 = > 4 = > = 90

Programación Dinámica

Métodos que resuelven MDPs cuando se conoce el modelo completo (P y R):

Iteración de Valor (Value Iteration):

- Actualiza directamente la función de valor óptima
- Algoritmo iterativo:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')]$$

• Converge a V* según el Teorema del Punto Fijo

Iteración de Política (Policy Iteration):

- Alterna entre evaluación y mejora de la política
- Evaluación: calcular V^{π_k} para política actual π_k
- Mejora: $\pi_{k+1}(s) \leftarrow \arg\max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_k}(s')]$
- Converge en menos iteraciones pero cada iteración es más costosa

Métodos sin Modelo (Model-Free)

Cuando no se conoce el modelo del entorno (P y R):

- Métodos de Monte Carlo:
 - Aprenden directamente de episodios completos
 - Estiman valores promediando retornos observados
 - No requieren conocimiento de la dinámica
 - Insesgados pero alta varianza
- Métodos de Diferencia Temporal (TD):
 - Combinan ideas de Monte Carlo y programación dinámica
 - Aprenden de transiciones individuales, sin esperar al final del episodio
 - Actualizan estimaciones basadas en otras estimaciones (bootstrapping)
 - Ejemplos: TD(0), SARSA (on-policy), Q-Learning (off-policy)

Métodos de Gradiente de Política

Métodos que optimizan directamente la política:

- Características principales:
 - Parametrizan la política: $\pi_{\theta}(a|s)$ con parámetros θ
 - \bullet Optimizan θ para maximizar el retorno esperado
 - No requieren almacenar valores de todos los estados/acciones
 - Naturalmente aplicables a espacios continuos
- Teorema del Gradiente de Política:

$$abla_{ heta}J(heta)\propto\sum_{s}d^{\pi_{ heta}}(s)\sum_{a}Q^{\pi_{ heta}}(s,a)
abla_{ heta}\pi_{ heta}(a|s)$$

• Métodos principales: REINFORCE, Actor-Crítico, PPO, TRPO

Aproximación de Funciones

Para espacios de estados/acciones grandes o continuos:

- Limitación tabular: Imposible almacenar valores para cada estado
- Solución: Aproximar funciones de valor o políticas
 - Lineales: $\hat{V}(s, \mathbf{w}) = \mathbf{w}^T \phi(s)$
 - No lineales: Redes neuronales $\hat{V}(s, \mathbf{w}) = NN(s, \mathbf{w})$
- Métodos de actualización: basados en descenso de gradiente
- Desafíos específicos:
 - Bootstrapping con aproximación puede diverger
 - ullet La "Tríada Mortal": bootstrapping + off-policy + aproximación

Aprendizaje por Refuerzo Profundo

Combinación de RL con redes neuronales profundas:

- Avances clave:
 - DQN (Deep Q-Network)
 - A3C (Asynchronous Advantage Actor-Critic)
 - PPO (Proximal Policy Optimization)
 - SAC (Soft Actor-Critic)
- Técnicas de estabilización:
 - Experience Replay: rompe correlaciones, reutiliza experiencias
 - Target Networks: estabiliza objetivos de aprendizaje
 - Normalización y clipping: controla magnitudes de actualizaciones
- Aplicaciones exitosas: AlphaGo, OpenAl Five, control robótico

El Dilema Fundamental

- Exploración: Probar acciones nuevas para descubrir mejores políticas
- Explotación: Usar el conocimiento actual para maximizar recompensas
- **Trade-off**: La exploración excesiva desperdicia recompensas, mientras que la explotación prematura puede llevar a políticas subóptimas

Estrategias de Exploración

Estrategias simples:

- ullet arepsilon-greedy: arepsilon probabilidad de acción aleatoria
- Softmax: selección proporcional a $e^{Q(s,a)/ au}$
- Optimismo inicial: inicializar valores Q optimistamente

Estrategias avanzadas:

- UCB (Upper Confidence Bound): balance exploración-explotación basado en incertidumbre
- Thompson Sampling: muestreo de distribuciones posteriores
- Exploración basada en conteo: bonificación por visitar estados poco frecuentes
- Exploración dirigida por curiosidad intrínseca
- La estrategia óptima depende del problema y restricciones (episódico vs. continuo, horizonte finito vs. infinito)

Del Marco Teórico a la Implementación

- La implementación práctica traduce conceptos matemáticos a código
- Bibliotecas clave:
 - OpenAl Gym/Gymnasium: entornos estandarizados
 - NumPy: operaciones numéricas eficientes
 - TensorFlow/PyTorch: redes neuronales para aproximación
- En el próximo módulo (coding_moduloVI) implementaremos:
 - Agentes con políticas aleatorias y heurísticas
 - Evaluación sistemática de políticas
 - Algoritmos TD como Q-Learning
 - Integración con frameworks de deep learning

De la Teoría a la Práctica: Ejemplo CartPole

- **Estado**: 4-dimensional $[x, \dot{x}, \theta, \dot{\theta}]$
 - x: posición del carro
 - x: velocidad del carro
 - ullet θ : ángulo del poste
 - $\dot{\theta}$: velocidad angular
- **Acciones**: {0,1} (izquierda/derecha)
- Recompensa: +1 por cada paso que el poste permanece balanceado
- **Terminal**: cuando $|\theta| > 12^{\circ}$ o |x| > 2.4
- Implementaremos políticas con diferentes niveles de sofisticación:
 - Aleatoria: baseline inferior
 - Heurística: basada en física del sistema
 - Aprendida: Q-learning, policy gradient

Conclusiones

- El Aprendizaje por Refuerzo proporciona un marco matemático poderoso para la toma de decisiones secuenciales
- Conceptos fundamentales:
 - MDPs como formulación matemática del problema
 - Funciones de valor como evaluación de estados y acciones
 - Ecuaciones de Bellman estableciendo relaciones recursivas
 - Diversos algoritmos para diferentes escenarios
- La teoría orienta la implementación, permitiendo diseñar agentes efectivos
- El progreso desde métodos tabulares hasta aproximación profunda ha expandido el alcance de aplicaciones
- Balance exploración-explotación permanece como desafío central

Recursos Bibliográficos

Libros fundamentales:

- Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (2^a ed.). MIT Press.
- Bertsekas, D. P. (2019). Reinforcement Learning and Optimal Control. Athena Scientific.

Cursos en línea:

- David Silver's RL Course (DeepMind)
- Stanford CS234: Reinforcement Learning
- Berkeley CS285: Deep Reinforcement Learning

• Recursos de implementación:

- Documentación de Gymnasium/OpenAl Gym
- Tutoriales de PyTorch/TensorFlow para RL
- "Spinning Up in Deep RL" de OpenAl

Referencias Clave

- Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (2ª ed.). MIT Press.
- Bertsekas, D. P. (2019). Reinforcement Learning and Optimal Control. Athena Scientific.
- Szepesvári, C. (2010). Algorithms for Reinforcement Learning. Morgan & Claypool.
- Puterman, M. L. (2014). *Markov Decision Processes: Discrete Stochastic Dynamic Programming.* John Wiley & Sons.
- Silver, D., et al. (2016). Mastering the game of Go with deep neural networks and tree search. *Nature*, 529(7587), 484-489.

¿Preguntas?

¿Dudas o consultas?

Avanzaremos hacia la implementación práctica en coding_moduloVI