TARGET Readout Status

Jose Duron, Jonathan Hendriks, <u>Kurtis Nishimura</u>, Anthony Schluchin, Gary Varner

University of Hawaii

WATCHMAN DAQ Pre-Meeting January 10, 2019

TARGET Introduction/Reminder

Parameter	Value	Unit/comment
Number of channels	16	
Sampling rate	0.4 - 1.2	GSPS
Storage depth	16,384	512 windows of 32 samples
Digitizer	On-chip	Wilkinson
Dynamic range	9-10	bits ENOB
Digitization time	2-8	μs
Trigger output		Varies by ASIC

- TARGET series of ASICs are fast (~1 GSPS) waveform samplers developed by G. Varner.
- Switched-capacitor based sampling with deep analog storage.
- Main variants of interest for this talk:
 - TARGETX: >20k channels installed in Belle II.
 - TARGETC: used in Cherenkov Telescope Array.
 - (More on technical differences on next slide.)
- FMC prototype cards for WATCHMAN developed for both of these ASICs...

TARGET 2

FMC Prototype Cards – Common

- FMC connector to FPGA card.
 - Tested/developed on μZed & Xilinx AC701.
- 4 PMT inputs (BNC).
- 4 gain stages per input:
 - · X10
 - X1
 - · x1/10
 - · x1/100
- TARGET ASIC records waveforms from 16 total channels, on-chip Wilkinson ADC for digitization.
- What's the difference between TARGETX/C?

Two FMC TARGET Cards

TARGETX Card (first):

- First prototype, based on another similar design.
- TARGETX has internal trigger comparators, so does not require external components for identifying hits...
- ...but potentially can miss pulses (only has a "write enable" control to avoid overwriting.

TARGETC Card (present):

- TARGETC has no on-chip comparators...
 - Card uses external comparators (ADCMP601) on 10x gain channels to get maximum sensitivity.
- ...but TARGETC has full control over analog memory write addresses, can truly run dead time-less.
- Firmware and software development is currently focused on this card.

TARGETC Firmware & Readout – Data Flow

- Note that Zynq devices are FPGA fabric (PL) coupled with ARM microprocessor (PS).
- Present scheme uses PL for ASIC interfaces & readout.
- PL sends data to PS for processing (pedestal subtraction, feature extraction) and readout.
- PS interfaces to PC (GbE), data path for waveforms, control path for register interfaces.
- → Development is for FMC prototype, but straightforward scalable to full system.

Status of UH TARGET Design, FW & SW

- Prototype Version (4x Channels)
- Prototype design is well understood and is capable to meet the expectations.
- Validated :
 - Target C design.
 - VHDL system description.
 - Ethernet design readout.
 - Python Gui application.
- Ongoing:
 - Optimization of System (Fine tune of parameters of the ASIC).
 - Trigger system Hardware issue (VHDL simulated and validated).
- Signal processing on full wave after signal compensation.
- Real test with PMT signals.

Firmware Structure

- Developed using Vivado IP integrator, but important TARGET control blocks are VHDL.
- Project lives in github for version control.

1

Sampling frequency 1GS/s

If the parameters of TARGET C ASIC are well optimized and calibrated the sampling frequency is up to 1GS/s in accordance with the TARGET Architecture.

Readout latency WCS: AVG 65.53 us(sampling till readout 1st window: 32 samples)

Readout frequency: 15kHz

2

Readout latency WCS: AVG 65.53 us(sampling till readout 1st window: 32 samples)

Readout frequency: 15kHz

Values using non-optimized firmware. Optimization to be done:

- Ramp Charge (~20us overall charge => divide by 4 so 5 us)

Estimated reduction: - 15 us

Increment Sample (wait ~500 ns for 1 sample increment => 16 us for 32 samples readout, could be reduced probably to 125 ns)

Estimated reduction: - 12 us

Overall reduction: 65us - 15 us - 12 us = 38 us

Frequency: 26 kHz

2

Readout latency WCS: AVG 65.53 us(sampling till readout 1st window: 32 samples)

Readout frequency: 15kHz

Additional speed-up:

- Frequency increase on the different interfaces of TARGET C
- Data Minimizer send 2x 12bits on a single data of 32bits on AXI stream

Software Development – Python GUI

TargetC Register Access

UDP Commands

Software Development – Python GUI

HW Development – Toward 16 Channel VME

16x Channel Version - Conceptual Design

- Gain Stages and Comparator
- First VME version uses dual MicroZed boards for rapid development.
 - This version is presently in layout.
- FPGA can be pulled onto board in next revision.

Initial VME Board – Layout in Progress

- Final layout pending some final work on TARGETC FMC prototype:
 - Debugging of trigger comparators, verification of gain stages through full flow.

Initial VME Board – Layout in Progress

- Final layout pending some final work on TARGETC FMC prototype:
 - Debugging of trigger comparators, verification of gain stages through full flow.

Hardware, Firmware Status

Hardware		Status
	TARGET C Prototype Board 4x Channel	ACHIEVED
	- Final analog verification (comparators, amplifiers).	1-2 weeks
	- Investigate power supply noise.	1 week
	Use PMT as test input with HV splitter.	1 week
	Complete initial 16 channel TARGET C VME board.	3-4 weeks

Firmware		Status
	PL → PS DMA Interface (AxiStream).	ACHIEVED
	TARGET C interface & control: - Registers, sample readout, & digitization.	ACHIEVED
	Circular buffer – design, simulation with trigger system).	ACHIEVED
	Circular buffer – optimization for resource utilization.	1 week
	Project cleanup.	1-3 day
	System test of trigger & circular buffers.	1-2 week
	Adapt firmware to 16 channel VME board.	1-2 week

PMT HV/signal splitter based on UCD schematics

S	oftware & Operations	Status
	Initial python GUI.	ACHIEVED
]]	Interrupt systems - timers, watchdogs, data, GbE.	ACHIEVED
	UDP communication - commands, data, registers.	ACHIEVED
	Timestamping.	ACHIEVED
	Log files saved into the SD card.	ACHIEVED
	Data processing - pedestals.	ACHIEVED
	Data processing – transfer functions.	3 days
	Data processing - feature extraction.	ACHIEVED
	Optimize TARGET C parameters.	1-2 weeks
	Integrated test with PMT.	2 weeks

Current Manpower

Hardware development:

- Jose Duron [Master Student] graduating spring/summer <u>Firmware development</u>:
- Jonathan Hendriks [visiting Master's student] departing February. <u>Software development</u>:
- Anthony Schluchin [visiting Master's student] departing February.

Advising/supervising:

- Gary Varner
- Kurtis Nishimura
- \rightarrow Searching for \geq 50% postdoc to handoff development.
- → Vasily Shebalin [postdoc] ramping up in a few months.
- → Jeff Kleyner [EE Ph.D. student] joining later this semester.

Summary and Outlook

4-channel TARGETC FMC prototype:

- Firmware and software development is nearly complete for performance evaluations.
- Should wrap up this month, cards can then be fully characterized.

16-channel VME prototype:

- Layout underway on a first version, fabrication pending some final debugging and performance checks on FMC card.
- Firmware for this version should be straightforward adaptation of FMC prototypes.
- A second streamlined version is envisioned shortly after.

Personnel changes:

- A number of these coming in the next months.
- Working to ensure smooth transition, sufficient coverage for work through downselect – V. Shebalin [Postdoc], J. Kleyner [EE Grad].

BACKUP

Feature Extraction

- Example from another Zynq system (Belle II TOP):
- Rough benchmarking: 3.6 μsec to process each pair of hits using 1 core of ARM PS.
 - 1.5 μsec for pedestal subtraction,
 2.1 μsec for feature extraction.
 - Corresponds to ~550 kHz hits processed.
 - Not very optimized, may be able to speed up FE code in the PS, or can move some of it to PL.
- Roughly consistent with initial results seen on TARGETX w/ µZed.

