ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский университет ИТМО» Факультет Программной Инженерии и Компьютерной Техники

VİTMO

Лабораторная работа №1
по дисциплине
«Методы оптимизации»
Вариант №16

Выполнили студенты группы Р3215 Федоров Егор Владимирович Преподаватель: Кудашов Вячеслав Николаевич

Содержание

1	Задание	2
2	Работа программы	2
3	Исходный код	5

1 Задание

$$f(x) = x^2 + 3x + x \ln x$$
 $\varepsilon = 10^{-10}$ $[a, b] = [1, 2]$

2 Работа программы

Рис. 1: График функции

№	a	b	x_1	x_2	f(a)	f(b)	$f(x_1)$	$f(x_2)$
1	1.000000000000	2.00000000000	1.49999999995	1.50000000005	-2.00000000000	-0.61370563888	-1.64180233791	-1.64180233777
2	1.000000000000	1.50000000005	1.24999999997	1.25000000008	-2.00000000000	-1.64180233777	-1.90857056088	-1.90857056080
3	1.000000000000	1.25000000008	1.12499999999	1.12500000009	-2.00000000000	-1.90857056080	-1.97686908489	-1.97686908485
4	1.000000000000	1.12500000009	1.06249999999	1.06250000009	-2.000000000000	-1.97686908485	-1.99418008932	-1.99418008930
5	1.000000000000	1.06250000009	1.03125000000	1.03125000010	-2.00000000000	-1.99418008930	-1.99854016450	-1.99854016449
6	1.000000000000	1.03125000010	1.01562500000	1.01562500010	-2.000000000000	-1.99854016449	-1.99963441992	-1.99963441992
7	1.000000000000	1.01562500010	1.00781250000	1.00781250010	-2.000000000000	-1.99963441992	-1.99990852643	-1.99990852643
8	1.000000000000	1.00781250010	1.00390625000	1.00390625010	-2.000000000000	-1.99990852643	-1.99997712173	-1.99997712173
9	1.000000000000	1.00390625010	1.00195312500	1.00195312510	-2.000000000000	-1.99997712173	-1.99999427919	-1.99999427919
10	1.000000000000	1.00195312510	1.00097656250	1.00097656260	-2.000000000000	-1.99999427919	-1.99999856964	-1.99999856964
11	1.000000000000	1.00097656260	1.00048828125	1.00048828135	-2.000000000000	-1.99999856964	-1.99999964239	-1.99999964239
12	1.000000000000	1.00048828135	1.00024414062	1.00024414072	-2.000000000000	-1.99999964239	-1.99999991060	-1.99999991060
13	1.000000000000	1.00024414072	1.00012207031	1.00012207041	-2.000000000000	-1.99999991060	-1.99999997765	-1.99999997765
14	1.000000000000	1.00012207041	1.00006103516	1.00006103526	-2.000000000000	-1.99999997765	-1.99999999441	-1.99999999441
15	1.000000000000	1.00006103526	1.00003051758	1.00003051768	-2.000000000000	-1.99999999441	-1.99999999860	-1.99999999860
16	1.000000000000	1.00003051768	1.00001525879	1.00001525889	-2.000000000000	-1.99999999860	-1.9999999965	-1.9999999965
17	1.000000000000	1.00001525889	1.00000762939	1.00000762949	-2.000000000000	-1.99999999965	-1.99999999991	-1.99999999991
18	1.000000000000	1.00000762949	1.00000381470	1.00000381480	-2.000000000000	-1.99999999991	-1.99999999998	-1.99999999998
19	1.000000000000	1.00000381480	1.00000190735	1.00000190745	-2.000000000000	-1.99999999998	-1.99999999999	-1.99999999999
20	1.000000000000	1.00000190745	1.00000095367	1.00000095377	-2.000000000000	-1.99999999999	-2.000000000000	-2.000000000000
21	1.00000095367	1.00000190745	1.00000143051	1.00000143061	-2.000000000000	-1.99999999999	-2.000000000000	-2.000000000000
22	1.00000095367	1.00000143061	1.00000119209	1.00000119219	-2.00000000000	-2.00000000000	-2.000000000000	-2.000000000000
23	1.00000095367	1.00000119219	1.00000107288	1.00000107298	-2.00000000000	-2.00000000000	-2.00000000000	-2.000000000000
24	1.00000107288	1.00000119219	1.00000113249	1.00000113259	-2.00000000000	-2.00000000000	-2.00000000000	-2.000000000000
25	1.00000107288	1.00000113259	1.00000110269	1.00000110279	-2.00000000000	-2.00000000000	-2.00000000000	-2.000000000000

Таблица 1: Результат работы метода половинного деления

Ответ, полученный с помощью метода половинного деления:

 $x_{\text{min}=1.00000110274}$ $f(x_{\text{min}})=-2.00000000000$

No॒	a	b	x_1	x_2	f(a)	f(b)	$f(x_1)$	$f(x_2)$
1	1.000000000000	2.00000000000	1.38196601125	1.61803398875	-2.00000000000	-0.61370563888	-1.78899211784	-1.45745088876
2	1.000000000000	1.61803398875	1.23606797750	1.38196601125	-2.000000000000	-1.45745088876	-1.91837338126	-1.78899211784
3	1.000000000000	1.38196601125	1.14589803375	1.23606797750	-2.000000000000	-1.78899211784	-1.96855350437	-1.91837338126
4	1.000000000000	1.23606797750	1.09016994375	1.14589803375	-2.000000000000	-1.91837338126	-1.98792103373	-1.96855350437
5	1.000000000000	1.14589803375	1.05572809000	1.09016994375	-2.000000000000	-1.96855350437	-1.99536963720	-1.98792103373
6	1.000000000000	1.09016994375	1.03444185375	1.05572809000	-2.00000000000	-1.98792103373	-1.99822733256	-1.99536963720
7	1.000000000000	1.05572809000	1.02128623625	1.03444185375	-2.000000000000	-1.99536963720	-1.99932193481	-1.99822733256
8	1.000000000000	1.03444185375	1.01315561750	1.02128623625	-2.00000000000	-1.99822733256	-1.99974077159	-1.99932193481
9	1.000000000000	1.02128623625	1.00813061876	1.01315561750	-2.00000000000	-1.99932193481	-1.99990092878	-1.99974077159
10	1.000000000000	1.01315561750	1.00502499874	1.00813061876	-2.00000000000	-1.99974077159	-1.99996214518	-1.99990092878
11	1.000000000000	1.00813061876	1.00310562002	1.00502499874	-2.000000000000	-1.99990092878	-1.99998553767	-1.99996214518
12	1.000000000000	1.00502499874	1.00191937873	1.00310562002	-2.000000000000	-1.99996214518	-1.99999447516	-1.99998553767
13	1.000000000000	1.00310562002	1.00118624129	1.00191937873	-2.000000000000	-1.99998553767	-1.99999788953	-1.99999447516
14	1.000000000000	1.00191937873	1.00073313744	1.00118624129	-2.00000000000	-1.99999447516	-1.99999919383	-1.99999788953
15	1.000000000000	1.00118624129	1.00045310385	1.00073313744	-2.000000000000	-1.99999788953	-1.99999969206	-1.99999919383
16	1.000000000000	1.00073313744	1.00028003358	1.00045310385	-2.000000000000	-1.99999919383	-1.99999988238	-1.99999969206
17	1.000000000000	1.00045310385	1.00017307027	1.00028003358	-2.00000000000	-1.99999969206	-1.99999995507	-1.99999988238
18	1.000000000000	1.00028003358	1.00010696331	1.00017307027	-2.000000000000	-1.99999988238	-1.99999998284	-1.99999995507
19	1.000000000000	1.00017307027	1.00006610696	1.00010696331	-2.000000000000	-1.9999995507	-1.9999999344	-1.99999998284
20	1.000000000000	1.00010696331	1.00004085635	1.00006610696	-2.000000000000	-1.99999998284	-1.99999999750	-1.99999999344
21	1.000000000000	1.00006610696	1.00002525061	1.00004085635	-2.000000000000	-1.9999999344	-1.99999999904	-1.99999999750
22	1.000000000000	1.00004085635	1.00001560574	1.00002525061	-2.000000000000	-1.99999999750	-1.99999999963	-1.99999999904
23	1.000000000000	1.00002525061	1.00000964488	1.00001560574	-2.000000000000	-1.99999999904	-1.99999999986	-1.99999999963
24	1.000000000000	1.00001560574	1.00000596086	1.00000964488	-2.000000000000	-1.9999999963	-1.99999999995	-1.99999999986
25	1.000000000000	1.00000964488	1.00000368401	1.00000596086	-2.000000000000	-1.99999999986	-1.99999999998	-1.99999999995

Таблица 2: Результат работы метода золотого сечения

 $x_{\min=1.00000482244}$ $f(x_{\min})=-1.99999999997$

Nº	x	f(x)	f'(x)	f''(x)
1	$1.5000\mathrm{E}{+00}$	-1.6418E+00	1.4055E+00	2.6667E+00
2	9.7295E-01	-1.9989E+00	-8.1521E-02	3.0278E+00
3	9.9987E-01	-2.0000E+00	-3.7597E-04	3.0001E+00
4	1.0000E+00	-2.0000E+00	-7.8535E-09	3.0000E+00
5	1.0000E+00	-2.0000E+00	0.0000E+00	3.0000E+00

3 Исходный код

```
import numpy as np
from numpy import log as ln
def f(x):
    return x**2 - 3 * x + x * ln(x)
def f_der(x):
    return 2 * x + ln(x) - 2
def f_second_der(x):
    return 1 / x + 2
eps = 10**(-10)
print("a = 1, b = 2, epsilon = 10^{(-10)}n")
print_iters = True
def half_del_method(f, f_der, a, b, eps, iter_count):
    x1 = (a + b - eps) / 2
    x2 = (a + b + eps) / 2
    y1 = f(x1)
    y2 = f(x2)
    if print_iters:
        print(f"{iter_count:2d} & {a:.11f} & {b:.11f}")
    if abs(b - a) < eps or iter_count >= 25:
        return (a + b) / 2
    if y1 >= y2:
        return half_del_method(f, f_der, x1, b, eps, iter_count + 1)
    return half_del_method(f, f_der, a, x2, eps, iter_count + 1)
if print_iters:
    print(f"No & a & b & x1 & x2 & f(a) & f(b) & f(x1) & f(x2)")
ans_half = half_del_method(f, f_der, 1, 2, eps, 1)
print(f"Answer from half division method: {ans_half:.11f}")
print(f"f(x_min) = \{f(ans_half):.11f\}")
phi = (1 + 5 ** 0.5) / 2
def golder_ratio_method(f, f_der, a, b, y1, y2, eps, iter_count):
    x1 = b - (b - a) / phi
    x2 = a + (b - a) / phi
    if y1 is None:
        y1 = f(x1)
    if y2 is None:
        y2 = f(x2)
    if print_iters:
        print(f"{iter_count:2d} & {a:.11f} & {b:.11f} & {x1:.11f} & {x2:.11f} &
        \rightarrow {f(a):.11f} & {f(b):.11f} & {f(x1):.11f} & {f(x2):.11f} \\\")
```

```
if abs(b - a) < eps or iter_count >= 25:
        return (a + b) / 2
    if y1 >= y2:
        return golder_ratio_method(f, f_der, x1, b, y2, None, eps, iter_count + 1)
    return golder_ratio_method(f, f_der, a, x2, None, y1, eps, iter_count + 1)
def newton_method(f, f_der, x, eps, iter_count):
    if print_iters:
        print(f"\{iter\_count:2d\} \& \{x:.11f\} \& \{f\_der(x):.4E\} ")
    if abs(f_der(x)) <= eps or iter_count >= 25:
        return x
    return newton_method(f, f_der, x - f_der(x) / f_second_der(x), eps, iter_count + 1)
print("\n")
if print_iters:
    print(f"No & a & b & x1 & x2 & f(a) & f(b) & f(x1) & f(x2)")
ans_golden = golder_ratio_method(f, f_der, 1, 2, None, None, eps, 1)
print(f"Answer from golden ratio method: {ans_golden:.11f}")
print(f"f(x_min) = {f(ans_golden):.11f}")
print("\n")
ans_newton = newton_method(f, f_der, 1.5, eps, 1)
print(f"Answer from Newton method: {ans_newton:.11f}")
print(f"f(x_min) = {f(ans_newton):.11f}")
print(f"f'(x_min) = {f_der(ans_newton):.11f}")
                                          \frac{\lambda v\tau}{\beta} = \Lambda
```