$$\frac{\partial^2 u}{\partial t^2} = \Delta u + \beta_1 \Delta \frac{\partial^2 u}{\partial t^2} - \beta_2 \Delta^2 u + \alpha \Delta f(u),$$

$$u(x,0) = u_0(x), \quad \frac{\partial u}{\partial t}(x,0) = u_1(x),$$

$$u(x,t) \to 0, \quad \Delta u(x,t) \to 0, \quad |x| \to \infty$$

$$B(\frac{u^{n+1} - 2u^n + u^{n-1}}{\tau^2}) - (\Lambda^{xx} + \Lambda^{yy})u^n + \beta_2(\Lambda^{xxxx} + \Lambda^{yyyy} + 2\Lambda^{xxyy})u^n = \alpha(\Lambda^{xx} + \Lambda^{yy})F(u^{n+1}, u^n, u^{n-1})$$

$$B = I - (\beta_1 + \sigma \tau^2)(\Lambda^{xx}\Lambda^{yy} + \Lambda^{yy}) + s_1\tau^2\beta_2(\Lambda^{xxxx} + \Lambda^{yyyy}) + 2s_2\tau^2\beta_2\Lambda^{xxyy}$$

$$\sigma, \quad s_1, \quad s_2 \text{ - parameters}$$

$$\tilde{B} = (I - \sigma \tau^2 \Lambda^{xx} + s_1 \tau^2 \beta_2 \Lambda^{xxxx}) (I - \sigma \tau^2 \Lambda^{yy} + s_1 \tau^2 \beta_2 \Lambda^{yyyy}) [I - \beta_1 (\Lambda^{xx} + \Lambda^{yy})]$$

$$u_{tt} = u_{xx} + \beta_1 u_{ttxx} - \beta_2 u_{xxxx} + \alpha (u^2)_{xx}$$
$$x \in [-L_1, L_2], \quad Nh = (-L_1 + L_2), \quad x_i = ih, \quad i = 1, \dots, N-1$$

$$D(\frac{u_i^{n+1}-2u_i^n+u_i^{n-1}}{\tau^2})=Qu_i^n+\alpha\Lambda^{xx}(u_i^n)^2, \text{ or }$$

$$D(\frac{u_i^{n+1}-2u_i^n+u_i^{n-1}}{\tau^2})=Qu_i^n+\alpha\Lambda^{xx}[(u_i^{n+1})^2+u_i^{n+1}u_i^{n-1}+(u_i^{n-1})^2]/3$$

$$D = (I - \beta_1 \Lambda^{xx} - \sigma \tau^2 \Lambda^{xx} + \beta_2 s \tau^2 \Lambda^{xxxx}), \qquad Q = \Lambda^{xx} - \beta_2 \Lambda^{xxxx}$$
$$u_0^{n+1} = u_N^{n+1} = 0, \quad u_{xx,0}^{n+1} = u_{xx,N}^{n+1} = 0$$

$$\Lambda^{xx}u_i = \frac{u_{i+1} - 2u_i + u_{i-1}}{h^2}, \qquad \Lambda^{xxxx}u_i = \frac{u_{i+2} - 4u_{i+1} + 6u_i - 4u_{i-1} + u_{i-2}}{h^4}$$

$$\tilde{u}(x,t;c) = \frac{3(c^2 - 1)}{2\alpha} \operatorname{sech}^2 \left(\frac{1}{2} \sqrt{\frac{c^2 - 1}{\beta_1 c^2 - \beta_2}} (x - ct) \right)$$

Figure 1: $\beta_1 = 1.5$, $\beta_2 = 0.5$, $\alpha = 3$; $\sigma = s = 0.5$

Table 1: $\beta_1 = 1.5$, $\beta_2 = 0.5$, $\alpha = 3$, c = 2, t = 40

$h = \tau$	Rate M1	Rate M2	Error M1	Error M2
0.2	-	-	0.0111339769	0.2651151649
0.1	2.0403	1.8836	0.0027068659	0.0718490891
0.05	2.0094	1.9720	0.0006723417	0.0183149097
0.025	2.0033	1.9929	0.0001677038	0.0046012352
0.0125	2.0578	1.9966	0.0000402788	0.0011529897

$$E_1 = ||\tilde{u} - u_{[h]}||, \quad E_2 = ||\tilde{u} - u_{[h/2]}|| \quad \mathsf{Rate} = \log_2(E_1/E_2)$$

$$Error = \max_{0 \le i \le N} |\tilde{u}_i - u_{[h],i}|$$

Figure 2: Method 1, $\beta_1 = 1.5$, $\beta_2 = 0.5$, $\alpha = 3$, c = 2, $\sigma = s = 0.5$, t = 40

Figure 3: Method 2, $\beta_1=1.5$, $\beta_2=0.5$, $\alpha=3$, c=2, $\varepsilon=10^{-13}$, $\sigma=s=0.5$, t=40

$$E(t^j)$$
 - discrete "energy" for $t=t^j$

$$E_{error} = \max_{1 \leq j \leq n} \frac{|E(t^j) - E(0)|}{E(0)}$$
 - relative error

$$t^n = 40$$

$$h = \tau = 0.2$$
 $E_{error} = 2.09546213767 \times 10^{-12}$ $h = \tau = 0.1$ $E_{error} = 3.92258760110 \times 10^{-11}$ $h = \tau = 0.05$ $E_{error} = 5.45994876224 \times 10^{-10}$ $h = \tau = 0.025$ $E_{error} = 4.60008425216 \times 10^{-9}$ $h = \tau = 0.0125$ $E_{error} = 8.15913691568 \times 10^{-8}$

Figure 4: Method 2, $\beta_1=1.5$, $\beta_2=0.5$, $\alpha=3$, c=2, $\varepsilon=10^{-13}$, $\sigma=s=0.5$, t=40

$$E(0) = 64.232254483436,$$

 $E(10) = 64.232254263785,$ $E_{osc}(10) = 0.45\%E(10),$

$$E(20) = 64.232254188254, \quad E_{osc}(20) = 0.89\% E(20),$$

$$E(30) = 64.232254258030, \quad E_{osc}(30) = 1.16\% E(30),$$

$$E(40) = 64.232254471093, \quad E_{osc}(40) = 1.59\% E(40)$$

• A.G. Bratsos, A second order numerical scheme for the solution of the one-dimentional Boussinesq equation, *Numer. Algor*, 46 (2007), 45-58.

• A.G. Bratsos, A predictor-corrector scheme for the improved Boussinesq equation, *Chaos, Solitons and Fractals*, 40 (2009), 2083-2094.

• H. El-Zoheiry, Numerical study of the improved Boussinesq equation, *Chaos*, *Solitons and Fractals*, 14 (2002) 377384.

$$t_0 = 0, t = 40, \tau = h = 0.1$$

$$t_0 = 0, t = 40, \tau = h = 0.1$$
 $t_0 = 40, t = 0, \tau = -h = -0.1$

$$t_0 = 40, t = 0, \tau = -h = -0.05$$

Figure 5: Method 1, $\beta_1=1.5$, $\beta_2=0.5$, $\alpha=3$, c=2

$$\tilde{u}(x,t;c) = \frac{3(c^2 - 1)}{2} \operatorname{sech}^2 \left(\frac{1}{2} \sqrt{\frac{c^2 - 1}{\beta_1 c^2 - \beta_2}} (x - ct) \right)$$

$$u(x,0) = \tilde{u}(x + 40, 0; c_1) + \tilde{u}(x - 50, 0; c_2)$$

$$\frac{\partial u}{\partial t}(x,0) = \tilde{u}(x + 40, 0; c_1)_t + \tilde{u}(x - 50, 0; c_2)_t$$

Example 1: $c_1 = 1.2, c_2 = -1.5, h = \tau = 0.025, 0 \le t \le 100.$

Figure 6: Method1, $\beta_1 = 1.5$, $\beta_2 = 0.5$, $\alpha = 3$, $c_1 = 1.2$, $c_2 = -1.5$.

Figure 7: Method1, $\beta_1 = 1.5$, $\beta_2 = 0.5$, $\alpha = 3$, $c_1 = 1.2$, $c_2 = -1.5$.

Example 2: $c_1 = 2, c_2 = -1.5, h = \tau = 0.025, 0 \le t \le 90.$

Figure 8: Method1, $\beta_1 = 1.5$, $\beta_2 = 0.5$, $\alpha = 3$, $c_1 = 2$, $c_2 = -1.5$.

Table 2: $\beta_1 = 1.5$, $\beta_2 = 0.5$, $\alpha = 3$, $c_1 = 2$, $c_2 = -1.5$, t = 80

$h = \tau$	Rate M1	Rate M2	Error M1	Error M2
0.1	-	-	-	-
0.05	2.1088	1.9634	0.0452458182	0.1264965870
0.025	2.0285	1.9931	0.0106743314	0.0322099785
0.0125	1.9428	2.1730	0.0026694457	0.0077848462
0.00625	_	_	_	_

Error =
$$E_1^2/(E_1-E_2)$$
, $E_1=||u_{[h]}-u_{[h/2]}||$, $E_2=||u_{[h/2]}-u_{[h/4]}||$,
$$\mathsf{Rate}=\log_2(E_1/E_2)$$

Example 3: $c_1 = 2.2, c_2 = -2.2, h = \tau = 0.025, 0 \le t \le 27.$

Figure 9: Method1, $\beta_1 = 1.5$, $\beta_2 = 0.5$, $\alpha = 3$, $c_1 = 2.2$, $c_2 = -2.2$.

Figure 10: Method1, $\beta_1 = 1.5$, $\beta_2 = 0.5$, $\alpha = 3$, $c_1 = 2.2$, $c_2 = -2.2$.

Arbitrary Initial Data

$$u(x,0) = \mathrm{sech}^{2}(0.5x), \qquad u_{t}(x,0) \equiv 0$$

Figure 11: Method1, $\beta_1 = 1.5$, $\beta_2 = 0.5$, $\alpha = 3$.

Figure 12: Method1, $\beta_1=1.5$, $\beta_2=0.5$, $\alpha=3$.

$$t_0 = 0, t = 110, \tau = h = 0.1$$

$$t_0 = 0, t = 110, \tau = h = 0.1$$
 $t_0 = 110, t = 0, \tau = -h = -0.1$

Figure 13: Method 1, $\beta_1=1.5$, $\beta_2=0.5$, $\alpha=3$

$$u_{tt} = u_{xx} + \beta_1 u_{ttxx} - \beta_2 u_{xxxx} + \alpha(u^2)_{xx}$$

$$D(\frac{u_i^{n+1} - 2u_i^n + u_i^{n-1}}{\tau^2}) = Qu_i^n + \alpha \Lambda^{xx}(u_i^n)^2, \text{ Method 1}$$

$$D(\frac{u_i^{n+1} - 2u_i^n + u_i^{n-1}}{\tau^2}) = Qu_i^n + \alpha \Lambda^{xx}(g(u_i^n))$$

Table 3: $\beta_1 = 1.5$, $\beta_2 = 0.5$, $\alpha = 3$, c = 2, t = 40

$h = \tau$	Rate M2	Rate M3	Error M2	Error M3
0.2	-	-	0.2651151649	0.1441062320
0.1	1.8836	1.9411	0.0718490891	0.0375272732
0.05	1.9720	1.9852	0.0183149097	0.0094783849
0.025	1.9929	1.9961	0.0046012352	0.0023759538
0.0125	1.9966	1.9961	0.0011529897	0.0005956124

Table 4: $\beta_1=1.5$, $\beta_2=0.5$, $\alpha=3$, c=2, t=40, Method1

$h = \tau$	Rate	Rate	Error	Error
	$s = \sigma = 0.5$	$s = \sigma = 0.25$	$s = \sigma = 0.5$	$s = \sigma = 0.25$
0.2	_	-	0.0111339769	0.0337359865
0.1	2.0403	2.0245	0.0027068659	0.0082917701
0.05	2.0094	2.0056	0.0006723417	0.0020648469
0.025	2.0033	2.0019	0.0001677038	0.0005155318
0.0125	2.0578	2.0287	0.0000402788	0.0001263450

$$u_{tt} = u_{xx} + \beta_1 u_{ttxx} - \beta_2 u_{xxxx} + \alpha(u^3)_{xx}$$

$$\tilde{u}(x,t;c) = \sqrt{\frac{2(c^2-1)}{\alpha}} \operatorname{sech}\left(\sqrt{\frac{c^2-1}{\beta_1 c^2 - \beta_2}}(x-ct)\right)$$

Figure 14: Method1, $\beta_1 = 1.5$, $\beta_2 = 0.5$, $\alpha = 3$, c = 2.

Table 5: $\beta_1 = 1.5$, $\beta_2 = 0.5$, $\alpha = 3$, c = 2, t = 40

$h = \tau$	Rate M1 (u^2)	Rate M1 (u^3)	Error M1 (u^2)	Error M1 (u^3)
0.2	-	-	0.0111339769	0.0944116735
0.1	2.0403	2.0535	0.0027068659	0.0227429902
0.05	2.0094	2.0126	0.0006723417	0.0056361787
0.025	2.0033	2.0034	0.0001677038	0.0014057022
0.0125	2.0578	2.0112	0.0000402788	0.0003487118
0.00625		2.8865		0.0000471583

$h = \tau$	Rate M2 (u^2)	Rate M2 (u^3)	Error M2 (u^2)	Error M2 (u^3)
0.2	-	-	0.2651151649	0.6079978518
0.1	1.8836	1.7228	0.0718490891	0.1841944426
0.05	1.9720	1.9387	0.0183149097	0.0480464800
0.025	1.9929	1.9855	0.0046012352	0.0121328769
0.0125	1.9966	1.9953	0.0011529897	0.0030430757
0.00625		1.9264		0.0008006003

$h = \tau$	$E_{error} (u^2)$	$E_{error} (u^3)$
0.2	$2.09546213767 \times 10^{-12}$	$1.61479218399 \times 10^{-12}$
0.1	$3.92258760110 \times 10^{-11}$	$3.28229802044 \times 10^{-11}$
0.05	$5.45994876224 \times 10^{-10}$	$4.43473518418 \times 10^{-10}$
0.025	$4.60008425216 \times 10^{-9}$	$3.74948329820 \times 10^{-9}$
0.0125	$8.15913691568 \times 10^{-8}$	$6.63400242583 \times 10^{-8}$

Figure 15: Method 1, $\beta_1 = 1.5$, $\beta_2 = 0.5$, $\alpha = 3$, c = 2, $\sigma = s = 0.5$, t = 40