Unlocking the Secrets of Heart Transplant Success with Machine Learning

Trevor Leach and Roshan Mathi, MSDS leachta@g.cofc.edu College of Charleston, Department of Computer Science The Medical University of South Carolina

Introduction

- Machine learning (ML) models can be used to predict medical outcomes
- United Network for Organ Sharing (UNOS) collects transplant data from across the
- The dataset used has data on over 40,000 heart transplants
- Current ML models are more accurate than scoring systems in predicting heart transplant failure and mortality¹
- This study uses an XGBoost model to identify patients at risk of heart transplant failure before 365 days posttransplant
- Studies with other UNOS datasets have found success with Random Forest and XGBoost algorithms²

The Process

Collect Data from the Medical University of South Carolina

- Feature Engineering Converted 365DaySurival to bool
- Converted PROTEIN URINE to bool
- Mapped features to new values:

	Gender M 0			ABOMAT		
			0	A	BO incompatible	0
			1	ABO compatible		1
	 	Г	Т		ABO identical	2

Data Cleaning

- Removed object columns
- Selected columns based on physician feedback
- Removed objects with null values

Create, Train, and Test XGBoost Model

Evaluate Metrics and Features

Results

Data Distribution in Original Dataset Failed Transplant Successful Transplant

Figure 1: Data distribution showing

uneven class distributions in dataset

- The dataset is highly skewed, as shown in Figure 1
- Unbalanced classes will likely result in an overfit model favoring the dominant class

- Confusion matrix in Figure 2 built with Scikit-Learn library after model testing
- Test results show high accuracy, but low specificity

Figure 2: Confusion matrix generated from the test data predictions

Classification Rates for Successful Heart Transplants

Classification Rates for Failed Heart Transplants

Figure 3: Classification rates for both classes

- Almost all successful transplants were classified correctly while only half of failed transplants were, as shown in Figure 3
- Table 1 shows good model performance for all metrics except specificity

Metric	Score
Accuracy	0.929
Precision	0.942
Recall	0.98
Specificity	0.504
F1 Score	0.961
AUC ROC	0.742

Table 1: Evaluation metrics calculated from model predictions

- Transplant year and donor age are the top features used in classification, per Figure 4
- Features with a larger SHAP value range play a larger role in classification

Figure 4: Top features impacting transplant success prediction

Conclusions

- The model accurately classifies 93% of successful heart transplants
- The model's specificity is low, only accurately classifying 50% of failed transplants
- · Discrepancy in accuracy and specificity likely due to unbalanced classes
- The model is likely overfit and favors successful transplant classification
- The model is still successful and suggests that ML models can be used to predict heart transplant outcomes

Future Work

- Reduce the model complexity to address overfitting concerns
- Focus on a smaller subset of features
- Return to object-type features for feature engineering
- Try other algorithms, such as Random Forest

Acknowledgements

Thank you to the United Network for Organ Sharing for collecting these data and to the Medical University of South Carolina for supplying the data for this project.

Works Cited

1. Naruka, V., Arjomandi Rad, A., Subbiah Ponniah, H., Francis, J., Vardanyan, R., Tasoudis, P., Magouliotis, D. E., Lazopoulos, G. L., Salmasi, M. Y., & Athanasiou, T. (2022). Machine Learning and Artificial Intelligence in cardiac transplantation: A systematic review. Artificial Organs, 46(9), 1741-1753. https://doi.org/10.1111/aor.14334

2. Miller, R. J. H., Sabovčik, F., Cauwenberghs, N., Vens, C., Khush, K. K., Heidenreich, P. A., Haddad, F., & Kuznetsova, T. (2022). Temporal shift and predictive performance of machine learning for Heart Transplant Outcomes. The Journal of Heart and Lung Transplantation, 41(7), 928-936. https://doi.org/10.1016/j.healun.2022.03.019

Get Connected

LinkedIn SCAN ME

GitHub

