ESTRUTURA ELECTRÓNICA DOS ÁTOMOS TABELA PERIÓDICA

1. Dada a informação da tabela seguinte, preencha os espaços vazios, referentes a uma determinada espécie iónica X.

Nº atómico	Nº de massa	Carga	Nº protões	Nº electrões	Nº neutrões
		-2	52		76

- 2. Escreva todos os conjuntos de possíveis números quânticos para os electrões no segundo nível principal de energia.
- 3. Um electrão num átomo está no nível quântico n=3. Escreva os valores possíveis de l e m_l.
- 4. Considerando um electrão num átomo, indicar qual ou quais dos seguintes conjuntos de números quânticos (n, I, m_I, m_s) não são possíveis:
 - a) (4, 2, 0, +1/2)

b) (3, 3, 3, -1/2)

c) (2, 0, 1, +1/2)

- d) (4, 3, 0, +1/2) e) (3, 2, -2, -1)
- 5. Quais dos seguintes conjuntos de números quânticos são impossíveis para um electrão num átomo? <u>Justifique</u>.
 - i) n = 3l = 2 $m_l = 1$ $m_s = +1/2$
- ii) n = 2 l = 2 $m_l = -2$ $m_s = -1/2$
- iii) n = 3 l = 2 $m_l = -2$ $m_s = -1$
- 6. Em cada alínea é apresentado um conjunto de números quânticos. Se o conjunto for uma combinação permitida de n, l, m_l e m_s indique a sub-camada a que pertence esta função de onda (1s, 2s, 2p, etc.). Se a combinação de números quânticos não for permitida diga qual a razão.
 - i) n = 5 l = 2 $m_l = 0$ $m_s = +1/2$

I = 0 $m_l = 1$ $m_s = +1/2$

iii) n = 3 l = 1 $m_l = 1$ $m_s = -1/2$

iv) n = 1I = 1 $m_I = 0$ $m_S = -1/2$

v) n = 4l = 2 $m_l = 2$ $m_s = +1/2$

- I = 0 $m_l = 0$ $m_s = +1/2$
- 7. Escreva a configuração electrónica completa para um átomo de cada um dos seguintes elementos:
 - a) ₁₅P
- b) ₁₂Mg
- c) 35Cl
- d) ₃₄Se
- e) 51Sb
- 8. Os átomos de um elemento X têm a seguinte configuração electrónica:

$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$$

- a) Indicar qual o seu número atómico e qual o período da Tabela Periódica a que pertence.
- b) Indicar o conjunto de números quânticos que caracterizam o electrão de maior energia.

electrónica para este elemento. Indique qual o grupo e o período da tabela periódica que lhe correspondem.

- 9. Escreva o símbolo, incluindo número atómico, número de massa e carga, para um metal alcalino (represente genericamente o elemento químico por M) com 18 electrões, 20 neutrões e carga +1.
- 10. Explique qual o átomo que apresenta:
 - a) maior 1ª energia de ionizaçãoca: Rb ou Sr.
 - b) maior (mais negativa) afinidade electrónica: Br ou I.
- 11. Diga, explicando, qual a espécie maior:
 - a) O^{2-} ou F^{-}

- b) Mg²⁺ ou Al³⁺
- **12.** Disponha por ordem crescente de tamanho S²⁻, K⁺, Ca²⁺, Ar, Cl⁻, explicando a resposta dada.

13. Atendendo às respectivas posições na Tabela Periódica diga qual o átomo com maior raio atómico em dos seguintes pares:			m cada um			
	a) Be ou Ba;	b) K ou Cs	c)	Al ou P		
14.	Relacione os raios	atómicos do potássio e o	o bromo com os	raios iónicos d	los respectivos iões.	
15.	Represente cada u	um dos seguintes conjunt	os de átomos e id	es por ordem	crescente de tamanho:	
	b) a) K, Ca, Rb,	Ti, Br, Cl; b) Rb, Sr, Cs	s, Rb ⁺ , Sr ²⁺ , Cs ⁺		c) Na ⁺ , H ⁺ , Cl ⁻ , Br ⁻	
		LIGAÇÃO QUÍ	MICA. GEOMET	RIA MOLECU	LAR.	
1.	Desenhe as estru	•	s para as espéc	es químicas s	eguintes, usando a noção	de "octeto
	a) oxigénio;	b) brometo d	e notássio:	c) N ₂ O ₃		
	d) H ₃ PO ₄	e) SO ₄ ²⁻	e potassio,	f) BrF ₅		
	•	•			i) CE	
	g) PF ₃	h) ICl ₃			i) SF ₄	
	j) H₃BO₃		m)	HNO ₃		
	n) H ₂ SO ₄	o) HClO ₃			p) CH ₄	
	q) HCN	r) CH ₃ NH ₂		s) CH₃C	OONa	
2.	Use a teoria da	repulsão dos pares elec	trónicos da can	ada de valên	cia (VSEPR) para prever	as formas
	geométricas das	espécies e indique o esta	do de hibridizaçã	o do átomo cei	ntral.	
	a) CH₂O	b) SiCl ₄	c) SbCl ₅			
	d) SF ₆	e) CIO ₃	f) (CH₃OH		
3.	Considere a molécula de dióxido de carbono, O=C=O.					
	a) Quantas l	ligações □ e quantas liga	ções □ existem r	esta molécula	?	
	b) Qual é a	geometria da molécula? (lual é a hibridiza	ção mais prová	ivel do átomo de carbono?	
4.	As moléculas seg	guintes contêm, pelo men	os, uma ligação	covalente dup	la. Apresente uma estrutui	ra plausível
	para cada.					
	a) CS ₂	b) H	₂ CO		c) Cl ₂ CO	
5.	Atribua as cargas	s formais a cada um do	s átomos das es	pécies químic	as representadas abaixo.	Indique os
	possíveis casos o	onde não existam cargas f	ormais.			
6.	Para cada uma da	as seguintes moléculas: ČH ₄ NI	H ₃ H	₂ C [*] = [*] CH ₂	*CH ₃ *CN	
	a) Indique a hibrio	dização dos átomos assin	alados com *			
	b) Represente a	distribuição espacial das	igações em torn	o dos átomos	assinalados, indicando os	ângulos de
	ligação e diga qua	al a sua geometria.				
	c) Identifique as ligações σ e π .					
	d) Discuta compa	rativamente os ângulos d	e ligação das mo	léculas CH₄ e∃	NH ₃ .	
7.	A estrutura do á	cido fórmico HCOOH é	apresentada aba	ixo. Proponha	um esquema de hibridiz	ação e um

esquema de ligação consistentes com esta estrutura.

- A molécula de água apresenta geometria angular. Diga qual a hibridização do átomo central e justifique a geometria da molécula.
- Represente as estruturas de ressonância para os iões: 9.

10. Considere a reacção:

$$BF_3 + NH_3 \rightarrow F_3B-NH_3$$

Descreva as mudanças de hibridização (se é que existem) dos átomos de B e N, como resultado desta reacção.

11. a) Coloque as seguintes espécies químicas por ordem crescente de estabilidade:

$$O_2$$

$$O_2^-$$

$$O_2^{2}$$

Utilize diagramas de energia de orbitais moleculares para justificar a sua escolha.

c) Quais as propriedades magnéticas de cada uma destas espécies? Justifique.

TERMOQUÍMICA

3. Calcule ∆H⁰, a 25^oC, para a reacção esquematizada pela equação química

$$Na_2O_{(s)}$$
 + 2 HCl $_{(g)}$ \longrightarrow 2 $NaCl_{(s)}$ + $H_2O_{(g)}$

sabendo que:

$$\Delta H_{\rm f}^{0}$$
 [Na₂O(s)] = -415,9 kJ mol⁻¹ $\Delta H_{\rm f}^{0}$ [HCl (g)] = -92,3 kJ mol⁻¹

$$\Delta H^{O}_{f}$$
 [HCl (a)] = -92.3 kJ mol⁻¹

$$\Delta H^{0}_{f}$$
 [NaCl (s)] = -412,1 kJ mol⁻¹ ΔH^{0}_{f} [H₂O (g)] = -241,8 kJ mol⁻¹

$$\Delta H^{0}_{f} [H_{2}O](a)] = -241.8 \text{ k.l mol}^{-1}$$

4. a) Calcule ΔH^O_r, a 25^OC, para a combustão de um mole de acetileno (C₂H₂, g) para formar H₂O (I) e CO₂ (g), sabendo que:

$$C_{(s)}$$
 + $O_{2(g)}$ \longrightarrow $CO_{2(g)}$ $\Delta H^{\circ}_{r} = -393,52 \times 10^{3} \text{ J}$
 $H_{2(g)}$ + $1/2 O_{2(g)}$ \longrightarrow $H_{2}O_{(l)}$ $\Delta H^{\circ}_{r} = -285,83 \times 10^{3} \text{ J}$
 $2 C_{(s)}$ + $H_{2(g)}$ \longrightarrow $C_{2}H_{2(g)}$ $\Delta H^{\circ}_{r} = +226,70 \times 10^{3} \text{ J}$

- b) Classifique a reacção como endotérmica ou exotérmica. Justifique.
- **5.** Calcule ΔS^O298 para a reacção

sabendo que:

$$S_{f}^{o}[CO_{2}(g)] = 213.6 \text{ J K}^{-1} \text{ mol}^{-1}$$
 $S_{f}^{o}[C \text{ (grafite)}] = 5.74 \text{ J K}^{-1} \text{ mol}^{-1}$ $S_{f}^{o}[CO_{g}] = 197.6 \text{ J K}^{-1} \text{ mol}^{-1}$

6. A equação de formação do NH₄Cl a partir dos seus elementos é:

$$\frac{1}{2}$$
 N_{2 (g)} + 2 H_{2(g)} + $\frac{1}{2}$ Cl_{2 (g)} \longrightarrow NH₄Cl (s)

Calcule a energia livre padrão de formação do cloreto de amónio a 25ºC.

$$S^{o}$$
 (N₂) = 191,5 J K⁻¹ mol⁻¹ S^{o} (H₂) = 130,6 J K⁻¹ mol⁻¹ S^{o} (Cl₂) = 223,0 J K⁻¹ mol⁻¹ S^{o} (NH₄Cl) = 94,6 J K⁻¹ mol⁻¹ ΔH_{f}^{o} (NH₄Cl) = -314,4 kJ mol⁻¹

7. A energia livre padrão de formação da amónia a 25^oC é -16,5 kJ mol⁻¹. Calcule a constante de equilíbrio, a esta temperatura, para a reacção: (dados: R= 8,314 J K⁻¹ mol⁻¹)

$$N_{2 (g)}$$
 + 3 $H_{2 (g)}$ \longrightarrow 2 $NH_{3 (g)}$

8. a) Calcule o valor da constante de equilíbrio, a 25^oC, para:

$$2 SO_{2(q)} + O_{2(q)} = 2 SO_{3(q)}$$

sabendo que ΔG_{f}^{0} (SO₂, g) = -300,2 kJ mol⁻¹ e ΔG_{f}^{0} (SO₃, g) = -371,1 kJ mol⁻¹.

Diga se se verifica aumento ou diminuição de entropia no sistema (sentido directo), prevendo o sinal de $\Box S^{\circ}$. <u>Justifique</u>.

9. a) A equação química seguinte traduz a reacção de produção do metanol (CH₃OH) gasoso, a 25°C:

$$CO_{(q)} + 2 H_{2(q)} \longrightarrow CH_3OH_{(q)}$$

Calcule ΔH^{o}_{r} . Que informação pode tirar do valor encontrado? <u>Justifique</u>.

- b) Calcule ΔS°_r.
- c) Explique se esta reacção é espontânea a esta temperatura. Apresente cálculos.

$$\Delta H^{o}_{f}(CO, g) = -110,53 \text{ kJ mol}^{-1}$$

$$\Delta H^{o}_{f}(CH_{3}OH, g) = -200,66 \text{ kJ mol}^{-1}$$

$$S^{o}_{f}(H_{2}, g) = 130,68 \text{ J K}^{-1} \text{ mol}^{-1}$$

$$S^{o}_{f}(CH_{3}OH, g) = 239,81 \text{ J K}^{-1} \text{ mol}^{-1}$$

10. Os dados da tabela foram obtidos para a reacção representada pela equação seguinte (a 298 K).

$$\Delta H^{o}_{f}$$
, kJ mol⁻¹ S^{o}_{f} , J K⁻¹ mol⁻¹ $NH_{4}NO_{4}3(s)$ -365,6 151,1 $N_{2}O(g)$ +82,05 219,7 $H_{2}O(I)$ -285,8 69,92

 $NH_4NO_{3(s)}$ -----> $N_2O_{(g)}$ + 2 $H_2O_{(l)}$

- a) Classifique a reacção como exotérmica ou endotérmica. <u>Justifique</u> apresentando cálculos.
- b) Calcule ΔG° para esta reacção a esta temperatura.

CINÉTICA QUÍMICA

1. A constante de velocidade de uma reacção de 1ª ordem é 2,5 x 10⁻⁶ s⁻¹ e a concentração inicial do reagente é 0,1 mol L⁻¹. Qual é o valor da velocidade inicial em mol L⁻¹ s⁻¹, em mol cm⁻³ s⁻¹ e em mol cm⁻³ min⁻¹?

- **2.** Quais são as unidades da constante de velocidade para uma reacção de 3ª ordem, quando as concentrações são expressas em mol L⁻¹ e o tempo em minutos?
- 3. Para a reacção representada pela equação química seguinte

$$2 \text{ NO}_{(g)} + \text{Cl}_{2 (g)} \rightarrow 2 \text{ NOCl}_{(g)}$$

verifica-se que se duplicarmos [NO] e $[Cl_2]$ a velocidade aumenta 8 vezes, mas se duplicarmos unicamente $[Cl_2]$ a velocidade apenas aumenta duas vezes. Determine a ordem da reacção.

4. Para a reacção traduzida pela equação química X + Y → Z, a expressão da velocidade da reacção é:

$$v = k [X]^2 [Y]^{1/2}$$

De quanto aumentará a velocidade da reacção se se quadruplicar as concentrações quer de X quer de Y?

5. Considere a reacção

$$N_{2 (g)} + 3 H_{2 (g)} \rightarrow 2 NH_{3 (g)}$$

Suponha que num determinado instante o hidrogénio molecular reage a uma velocidade de 0,074 M s⁻¹. A que velocidade se forma o amoníaco?

6. A equação cinética para a reacção

$$NH_4^+_{(aq)} + NO_2^-_{(aq)} \rightarrow N_{2(q)} + 2 H_2O_{(l)}$$

é dada por v = k[NH₄⁺] [NO₂⁻]. A constante de velocidade é 3,0 x 10⁻⁴ M⁻¹ s⁻¹ a 25°C. Calcule a velocidade da reacção a esta temperatura se [NH₄⁺] = 0,26 M e [NO₂⁻] = 0,080 M.

7. A 383^oC, medidas da decomposição de NO₂ (para formar NO e O₂) forneceram os seguintes dados:

[NO₂] /mol L ⁻¹	
0,10	
0,017	
0,0090	
0,0062	
0,0047	

Mostre que a reacção é de 2ª ordem e calcule a constante de velocidade.

- 8. Qual é o tempo de meia-vida de uma reacção de 1ª ordem para a qual k=1,4x10⁻²min⁻¹?
- 9. A reacção 2A → B é uma reacção de 2ª ordem com uma constante de velocidade de 51 M⁻¹ min⁻¹ a 24°C.
 - a) Se se iniciar a reacção com [A] = 0,0092 M, qual o tempo que é necessário decorrer até que se tenha [A] = 3,7 x 10⁻³ M?
 - b) Calcule o tempo de meia-vida da reacção.
- **10.** Considere a reacção A + B \rightarrow produtos.

Determine a ordem da reacção e calcule a constante de velocidade a partir dos resultados obtidos a uma dada temperatura:

[A] (M)	[B] (M)	Velocidade (M s ⁻¹)
1,50	1,50	3,20 x 10 ⁻¹
1,50	2,50	$3,20 \times 10^{-1}$
3,00	1,50	6,40 x 10 ⁻¹

- **11.** A velocidade de uma reacção é 1,6 x 10⁻² M s⁻¹ quando [A] = 0,35 mol L⁻¹. Calcule a constante de velocidade se a reacção for:
 - a) de 1ª ordem em relação a A;
 - b) de 2ª ordem em relação a A.
- **12.** Considere a reacção X + Y \rightarrow Z. Obtiveram-se os resultados seguintes, a 360 K:

Vel. inicial de consumo de X (M s ⁻¹)	[X] (M)	[Y] (M)
0,147	0,10	O,50
0,127	0,20	0,30
4,064	0,40	0,60
1,016	0,20	0,60
0,508	0,40	0,30

- a) Determine a ordem da reacção.
- b) Calcule a velocidade inicial de desaparecimento de X se a concentração de X for 0,30 M e a de Y for 0,40 M.
- 13. A constante de velocidade da reacção de 2ª ordem

$$2\;\text{NOBr}_{\;(g)} \rightarrow \;\; 2\;\text{NO}_{\;(g)} + \;\text{Br}_{2\;(g)}$$

é 0,80 M s⁻¹ a 10°C. Calcule a concentração de NOBr após 22 s de reacção se a concentração inicial for de 0.086 M.

- **14.** Qual o tempo de meia-vida de um composto se 75% de uma dada amostra desse composto se decompuser em 60 min? Admita que a reacção segue uma cinética de 1ª ordem.
- **15.** Considere a reacção de 2^a ordem $A \rightarrow$ produtos.

A uma determinada temperatura, a constante de velocidade é 1,46 M⁻¹ s⁻¹. Calcule o tempo de meia-vida da reacção se a concentração inicial de A for 0,86 M.

- **16.** A constante de velocidade da reacção de 2ª ordem $2 \text{ NO}_{2 \text{ (g)}} \rightarrow 2 \text{ NO}_{\text{ (g)}} + O_{2 \text{ (g)}} \text{ é 0,54 M}^{-1}\text{s}^{-1}$, a 300°C. Qual o tempo necessário para que a concentração de NO₂ diminua de 0,62 M para 0,28M?
- **17.** Para a reacção 2 A + B → C + 3 D obtiveram-se as seguintes velocidades iniciais:

[A] _o (M)	[B] _o (M)	Vel. inicial (M s ⁻¹)
0,127	0,346	1,64 x 10⁻ ⁶
0,254	0,346	3,28 x 10 ⁻⁶
0,254	0,692	1,31 x 10 ⁻⁵

- a) Escreva a equação de velocidade da reacção.
- b) Calcule o valor da constante de velocidade.
- c) Calcule a velocidade de consumo quando [A] = 0,100 M e [B] = 0,200 M.
- **18.** A decomposição de N_2O_5 ocorre com uma constante de velocidade igual a 8,7 x 10^{-3} s⁻¹ a 65°C e 3,38 x 10^{-5} s⁻¹ a 25°C. Calcule a energia de activação da reacção.
- **19.** A constante de velocidade de uma reacção de 1ª ordem é 3,46 x 10⁻² s⁻¹ a 25°C. Qual será a constante de velocidade a 77°C se a energia de activação da reacção for 50,2 kJ mol⁻¹?
- **20.** A constante de velocidade para uma reacção de 1ª ordem é 4,60 x 10⁻⁴ s⁻¹ a 350°C. Calcule a temperatura para a qual a constante de velocidade será 8,80x10⁻⁴ s⁻¹ se a energia de activação da reacção for 104 kJ mol⁻¹.
- **21.** A constante de velocidade para uma reacção de 1ª ordem é 4,60 x 10⁻⁴ s⁻¹ a 350°C. Calcule a temperatura para a qual a constante de velocidade será 8,80 x 10⁻⁴ s⁻¹, sabendo que a energia de activação é 104 kJ/mol. (Dados: R = 8,314 J K⁻¹ mol⁻¹)
- **22.** A equação cinética para a reacção $2 H_{2 (g)} + 2 NO_{(g)} \rightarrow N_{2 (g)} + 2 H_2O_{(g)}$ é $v = k [H_2] [NO]^2$

Qual dos mecanismos seguintes não é compatível com a expressão da equação cinética experimental? <u>Justifique</u> a sua resposta.

Mecanismo I	Mecanismo II		
$H_2 + NO \rightarrow H_2O + N$ lento	$H_2 + 2 NO \rightarrow N_2O + H_2O$ lento		
N + NO \rightarrow N ₂ + O rápido	$N_2O + H_2 \rightarrow N_2 + H_2O$ rápido		
$O + H_2 \rightarrow H_2O$ rápido			

EQUILÍBRIO QUÍMICO

1. A dissociação de iodo molecular em átomos de iodo é representada por:

A 1000 K a constante de equilíbrio K_C da reacção é 3,8x10⁻⁵. Admita que começa com 0,0456 mol de I_2 num frasco de 2,30 L a 1000 K. Quais as concentrações dos gases no equilíbrio?

2. A pressão da mistura reaccional em equilíbrio é 0,105 atm a 350°C. Calcule as constantes de equilíbrio K_p e K_c da reacção.

$$CaCO_{3(s)}$$
 \longrightarrow $CaO_{(s)}$ + $CO_{2(g)}$

3. Qual o valor de K_p , à temperatura de 1273 $^{
m O}$ C, para a reacção descrita pela equação química:

$$2 CO_{(g)} + O_{2(g)}$$
 \longrightarrow $2 CO_{2(g)}$ se K_C for 2,24x10²² à mesma temperatura?

4. Determinaram-se as seguintes constantes de equilíbrio para o ácido sulfídrico a 25^oC:

$$H_2S_{(aq)} \longrightarrow H^{\dagger}_{(aq)} + HS^{-}_{(aq)}$$
 $K_c = 9.5 \times 10^{-8}$

$$HS^{-}_{(aq)} \longrightarrow H^{+}_{(aq)} + S^{2-}_{(aq)} \qquad K_{c}^{"} = 1,0 \times 10^{-19}$$

Calcule a constante de equilíbrio da reacção seguinte à mesma temperatura:

$$H_2S_{(aq)} = 2 H^+_{(aq)} + S^{2-}_{(aq)}$$

5. Considere a equação química:

$$2 Cl_{2(q)} + 2 H_2O_{(q)}$$
 \longrightarrow $4 HCl_{(q)} + O_{2(q)}$ $\Delta H = 113 kJ$

Admita que o sistema está em equilíbrio. O que ocorrerá ao número de moles de H₂O no recipiente se:

- a) for adicionado O2;
- b) for adicionado Cl₂;
- c) for retirado HCI;
- d) o volume do recipiente for diminuído;
- e) a temperatura for diminuída.

EQUILÍBRIO ÁCIDO-BASE

1. Para cada uma das equações seguintes identifique os ácidos e bases envolvidos quer na reacção directa quer na reacção inversa:

a)
$$HOBr + H_2O \longrightarrow H_3O^+ + OBr^-$$

b)
$$HSO_4^- + H_2O \longrightarrow H_3O^+ + SO_4^{2-}$$

c)
$$HS^{-} + H_2O \longrightarrow H_2S + OH^{-}$$

d)
$$C_6H_5NH_3^+ + OH^- \longrightarrow C_6H_5NH_2 + H_2O$$

e)
$$H_2SO_4 + H_2O \longrightarrow HSO_4^- + H_3O^+$$

- 2. Os ácidos apresentados são todos monopróticos. Escreva a fórmula da base conjugada de cada ácido:
 - a) HIO₄
- b) CH₃ CH₂COOH
- c) C₆H₅COOH
- **d)** (CH₃)₂CHNH₃⁺
- 3. Determine a percentagem de ionização do soluto em $C_6H_5COOH~0,20~M.~(K_a=6,5x10^{-5})$. Calcule o p K_a do ácido.
- **4.** a) Qual é a concentração de cada espécie derivada do soluto numa solução de ácido acético (CH₃COOH) 0,50 M? (K_a =1,8x10⁻⁵)

- b) Qual é a percentagem de ionização deste soluto?
- **5.** Calcule a concentração de todas as espécies de soluto numa solução de H_2SO_3 0,10 M. $(K_1=1,3x10^{-2}; K_2=6.3x10^{-8})$
- 6. Calcule a concentração de todas as espécies de soluto numa solução de H_2SO_3 0,10 M. $(K_1=1,3x10^{-2}; K_2=6,3x10^{-8})$
- 11. O pH de uma solução é 11,68. Qual é a sua concentração de H⁺?
- **12.** Que quantidade de HNO_2 0,083 M deve ser adicionada à água para preparar 1,00L de uma solução com pH = 4,75?
- 13. Calcule o pH de uma solução de Ca(OH)₂ 0,0015 M?
- 14. Qual é o pH de uma solução de cloreto de amónio (NH₄Cl) 0,20 M? (K_b=1,8x10⁻⁵)

EQUILÍBRIO DE SOLUBILIDADE

- Escreva a expressão para a constante do produto de solubilidade, Kps, para cada um dos compostos: SrSO₄;
 Fe(OH)₂.
- 2. Os valores de K_{ps} para o sulfito de mercúrio (II), Hg_2S , e para o sulfito de bismuto, Bi_2S_3 , são, respectivamente, 1.6×10^{-52} e 1×10^{-97} . Qual dos sulfitos tem maior solubilidade em água? (Expressar as solubilidades em moles/litro).
- 3. A constante de produto de solubilidade do cromato de prata, Ag₂CrO₄, é 1,1x10⁻¹² a 25 °C.
- a) Calcular a solubilidade em água, em gramas por litro.
- b) Calcular a solubilidade, em gramas por litro, numa solução 0,1 M de nitrato de prata, AgNO3.
- 4. Adicionaram-se 100 ml de Na₂SO₄ 0,02 M a 100 ml de BaCl₂ 0,02 M.
- a) Quantas moles de sulfato de bário precipitarão?
- b) Quantas moles de Ba^{2+} e SO_4^{2-} ficarão em solução? (Kps para o $BaSO_4$ é 1,1x10⁻¹⁰)
- **5.** A 500 ml de fosfato de sódio 0,01 M são adicionados 500 ml de nitrato de prata, AgNO $_3$. O Kps do fosfato de prata, Ag $_3$ PO $_4$, é 1,4x10 $^{-16}$.
- a) O fosfato de prata precipita? Se a sua resposta for sim qual o peso do precipitado formado?
- b) Qual a concentração de Ag+ em solução, no equilíbrio?
- c) Qual a percentagem de iões Ag+ que permenecem em solução?
- **6.** Calcule a concentração do ião NH₄⁺ (proveniente de NH₄Cl) necessária para evitar a precipitação de Mg(OH)₂ num litro de solução que contem 0,01 moles de amoníaco e 0,001 moles de Mg²⁺. A constante de ionização do amoníaco é 1,75x10⁻⁵. O produto de solubilidade do Mg(OH)₂ é 7,1x10⁻¹².
- **7.** Quanto Ag⁺ permanece em solução quando se misturam volumes iguais de AgNO₃ 0,08M e de HOCN 0,08M? Kps para o AgOCN é 2,3x10⁻⁷. Ka para o HOCN é 3,3x10⁻⁴.