TEAM: The Phospho Force

Protein Function Prediction

(Differentiating Kinases for Targeted Drug Discovery)

Dhanashree Lokesh, Yumeng Li, Lara Brindisi

Why Kinases?

- Central Role in Cell Signalling
- Abundance and Diversity
- Druggability
- Potential for Combination Therapies
- Biomarkers and Pharmacodynamics
- Versatility and Adaptability

Stakeholders

- Pharmaceutical & Biotechnology Companies
- Academic and Research Institutions
- Regulatory Bodies
- Investors and Funding Agencies
- Government and Policy Makers
- Ethics Committees

Objective

- Predict the GO term based on the sequence
- A classification problem

Data

- 5,363,863 proteins (= # of rows)
- Length of sequence ranges from 3 to 11391 with a focus under 1500.
- 31,466 different GO terms (classes)

	seq_id	sequence	term	aspect
0	P20536	${\tt MNSVTVSHAPYTITYHDDWEPVMSQLVEFYNEVASWLLRDETSPIP}$	0008152	BPO
1	P20536	${\tt MNSVTVSHAPYTITYHDDWEPVMSQLVEFYNEVASWLLRDETSPIP}$	0071897	BPO
2	P20536	${\tt MNSVTVSHAPYTITYHDDWEPVMSQLVEFYNEVASWLLRDETSPIP}$	0044249	BPO
3	P20536	${\tt MNSVTVSHAPYTITYHDDWEPVMSQLVEFYNEVASWLLRDETSPIP}$	0006259	BPO
4	P20536	${\tt MNSVTVSHAPYTITYHDDWEPVMSQLVEFYNEVASWLLRDETSPIP}$	0009059	BPO

Exploratory Data Analysis

Data Setup

term	name	namespace	EntryID	aspect	sequence
GO:0033549	MAP kinase phosphatase activity	molecular_function	P35182	MFO	MSNHSEILERPETPYDITYRVGVAENKNSKFRRTMEDVHTYVKNFA
GO:1990439	MAP kinase serine/threonine phosphatase activity	molecular_function	P35182	MFO	MSNHSEILERPETPYDITYRVGVAENKNSKFRRTMEDVHTYVKNFA
GO:0004672	protein kinase activity	molecular_function	Q0KHV6	MFO	MSVRLLTVRLIKHGRYILRSYCKRDIHANILDQNQLKTRSKRGFPL
GO:0004674	protein serine/threonine kinase activity	molecular_function	Q0KHV6	MFO	MSVRLLTVRLIKHGRYILRSYCKRDIHANILDQNQLKTRSKRGFPL
GO:0016301	kinase activity	molecular_function	Q0KHV6	MFO	MSVRLLTVRLIKHGRYILRSYCKRDIHANILDQNQLKTRSKRGFPL

Pre-processing:

- Random subsample (n=2000, 10000, 60000)
- Select 100 most frequent GO terms
- Filter for kinases

Classification Models:

- Random Forest
- SVM
- Keras Neural Network

Random Forest

Limitations:

- Computational resources
- Time

Solution:

- Select 100 most frequent GO terms
- Truncate sequence
- Encode target labels with Label_Encoder()
- Accuracy = 2.1%

https://www.tibco.com/reference-center/what-is-a-random-forest

Limitations:

- Computational resources
- Time

Solution 1:

- Select 100 most frequent GO terms
- Truncate sequence
- Encode target labels with Label_Encoder()
- Accuracy = 2.1%

- Filter for kinases
- Vectorize with TfidfVectorizer()
- Accuracy = 8.9%

https://www.analyticsvidhya.com/blog/ 2021/10/support-vector-machinessvma-complete-guide-for-beginners/

Keras

Limitations:

- Computational resources
- Time
- For ex)
 - Epochs = 100
 - Subsample_size = 10,000
 - Batch_size = 32
 - --> 6.3 years to run

Solution:

- K-mer numeric representation
- Filter for kinases
- Accuracy = 10-11%
- Choose less expensive layers
 ex) GlobalAveragePooling1D over LSTM

Conclusion

- Keras neural network performed best at 10-11%
- Optimization would require greater memory capacity
- Future prospective:
 - Optimize:
 - Layer choice
 - Batch size
 - Encoding strategy
 - Identify signature sequences on predicted kinases
 - Differentiate prokaryotic and eukaryotic kinases
 - Comparative proteomics studies

