Definition 1 The two reward functions $\mathcal{R}_1: S^{\otimes} \times 2^{E^{\otimes}} \to \mathbb{R}$ and $\mathcal{R}_2: S^{\otimes} \times E^{\otimes} \times S^{\otimes} \to \mathbb{R}$ are defined as follows.

$$\mathcal{R}_1(s^{\otimes}, \pi) = \begin{cases} r_{n1}(|E| - |\pi|) & \text{if } \llbracket s^{\otimes} \rrbracket_q \notin SinkSet, \\ r_{n1}|E| & \text{if } \llbracket s^{\otimes} \rrbracket_q \in SinkSet, \end{cases}$$
(1)

where |E| means number of elements in the set E and r_{n1} is a negative value.

$$\mathcal{R}_{2}(s^{\otimes}, e, s^{\otimes'}) = \begin{cases}
r_{p} & \text{if } \exists i \in \{1, \dots, n\}, \ (s^{\otimes}, e, s^{\otimes'}) \in \bar{F}_{i}^{\otimes}, \\
r_{n2} & \text{if } [s^{\otimes'}]_{q} \in SinkSet, \\
0 & \text{otherwise},
\end{cases}$$
(2)

Lemma 1 For any policy π and any recurrent class $R_{\pi}^{\otimes i}$ in the Markov chain MC_{π}^{\otimes} , MC_{π}^{\otimes} satisfies one of the following conditions.

1.
$$\delta_{\pi,i}^{\otimes} \cap \bar{F}_i^{\otimes} \neq \emptyset$$
, $\forall j \in \{1,\ldots,n\}$,

2.
$$\delta_{\pi,i}^{\otimes} \cap \bar{F}_j^{\otimes} = \emptyset$$
, $\forall j \in \{1, \dots, n\}$.

Let SV_{φ} be the set of supervisors satisfying the LTL formula φ . For a Markov chain MC_{SV}^{\otimes} induced by a product MDP D^{\otimes} with a supervisor SV, let $S_{SV}^{\otimes} = T_{SV}^{\otimes} \sqcup R_{SV}^{\otimes 1} \sqcup \ldots \sqcup R_{SV}^{\otimes h}$ be the set of states in MC_{SV}^{\otimes} , where T_{SV}^{\otimes} is the set of transient states and $R_{SV}^{\otimes i}$ is the recurrent class for each $i \in \{1, \ldots, h\}$, and let $R(MC_{SV}^{\otimes})$ be the union of all recurrent classes in MC_{SV}^{\otimes} . Let $\delta_{SV,i}^{\otimes}$ be the set of transitions in a recurrent class $R_{SV}^{\otimes i}$, namely $\delta_{SV,i}^{\otimes} = \{(s^{\otimes}, e, s^{\otimes i}) \in \delta^{\otimes}; s^{\otimes} \in R_{SV}^{\otimes i}, \ P_T^{\otimes}(s^{\otimes i}|s^{\otimes}, e) > 0, P_E^{\otimes}(e|s^{\otimes}, SV(s^{\otimes})) > 0\}$, and let $P_{SV}^{\otimes} : S_{SV}^{\otimes} \times S_{SV}^{\otimes} \to [0, 1]$ such that $P_{SV}^{\otimes} = \sum_{e \in SV(s^{\otimes})} P_T^{\otimes}(s^{\otimes i}|s^{\otimes}, e) P_E^{\otimes}(e|s^{\otimes}, SV(s^{\otimes}))$ be the transition probability under SV.

Definition 2 An accepting recurrent class is defined as the recurrent class whose at least one accepting transition in each accepting set \bar{F}_j^{\otimes} with $j \in \{1,\ldots,n\}$. We then define the set of index of accepting recurrent classes as \mathcal{I}_{Acc}^{SV} .

Theorem 1 Let M^{\otimes} be the product DES corresponding to a DES M and an LTL formula φ . Let \mathcal{R}_1 be a reward function for control patterns. Let \bar{k}_{max} denote the maximum expected stopping time of first returning each states in accepting recurrent classes of the Markov chain induced by any supervisor saisfying φ as $\bar{k}_{max} = \max_{SV \in \bar{SV}_{\varphi}} \max_{i \in \mathcal{I}_{Acc}^{SV}} \{\mathbb{E}^{SV}[k_{s^{\otimes}}^{i,SV}|s_0 = s_{init}^{\otimes}]; s^{\otimes} \in R(MC_{SV}^{\otimes})\}$, where $k_{s^{\otimes}}^{i,SV}$ is the stopping time of first returning to the stste $s^{\otimes} \in R_{SV}^{\otimes i}$. If there exists a supervisor SV satisfying φ , then there exist a discount factor γ^* and a positive reward r_p^* that satisfies $\gamma^{k_{max}}r_p^* > (1 + \ldots + \gamma^{\bar{k}_{max}})||\mathcal{R}_1||_{\infty}$ such that any algorithm that maximizes the expected discounted reward with $\gamma > \gamma^*$ and $r_p > r_p^*$ will find a supervisor satisfying φ .

- **Proof 1** Suppose that SV^* be an optimal supervisor but does not satisfy the LTL formula φ or there is a state s_{sink}^{\otimes} reachable from the initial state such that $[s_{sink}^{\otimes}]_q \in SinkSet$ under the supervisor SV^* . Then, for any recurrent class $R_{SV^*}^{\otimes i}$ in the Markov chain $MC_{SV^*}^{\otimes}$ and any accepting set \bar{F}_j^{\otimes} of the product DES M^{\otimes} , $\delta_{SV^*,i}^{\otimes} \cap \bar{F}_j^{\otimes} = \emptyset$ holds for the first case by Lemma 1 and there is a recurrent class $R_{SV^*}^{\otimes i}$ such that $s_{sink}^{\otimes} \in R_{SV^*}^{\otimes i}$ for the second case. We consider the two cases separately.
 - 1. Assume that SV^* does not the LTL formula φ . By the assumption, the system under the supervisor SV^* can obtain rewards only in the set of transient states. We consider the best scenario in the assumption. Let $p^k(s,s')$ be the probability of going to a state s' in s time steps after leaving the state s, and let $Post(T_{\pi^*}^{\otimes})$ be the set of states in recurrent classes that can be transitioned from states in $T_{\pi^*}^{\otimes}$ by one event occurrence. For the initial state s_{init}^{\otimes} in the set of transient states, it holds that

$$\begin{split} V^{SV^*}(s_{init}^{\otimes}) &= \sum_{k=0}^{\infty} \sum_{s^{\otimes} \in T_{\pi^*}^{\otimes}} \gamma^k p^k(s_{init}^{\otimes}, s^{\otimes}) \\ &\qquad \sum_{s^{\otimes'} \in T_{\pi^*}^{\otimes} \cup Post(T_{\pi^*}^{\otimes})} \sum_{e \in SV(s^{\otimes})} P_T^{\otimes}(s^{\otimes'}|s^{\otimes}, e) P_E^{\otimes}(e|s^{\otimes}, SV(s^{\otimes})) \mathcal{R}(s^{\otimes}, SV(s^{\otimes}), e, s^{\otimes'}) \\ &\leq r_p \sum_{k=0}^{\infty} \sum_{s^{\otimes} \in T_{\pi^*}^{\otimes}} \gamma^k p^k(s_{init}^{\otimes}, s^{\otimes}). \end{split}$$

By the property of the transient states, for any state s^{\otimes} in $T_{\pi^*}^{\otimes}$, there exists a bounded positive value m such that $\sum_{k=0}^{\infty} \gamma^k p^k(s_{init}^{\otimes}, s^{\otimes}) \leq \sum_{k=0}^{\infty} p^k(s_{init}^{\otimes}, s^{\otimes}) < m$ [1]. Therefore, there exists a bounded positive value \bar{m} such that $V^{\pi^*}(s_{init}^{\otimes}) < \bar{m}$.

2. Assume that there is a state s_{sink}^{\otimes} reachable from the initial state such that $[s_{sink}^{\otimes}]_q \in SinkSet$ under SV^* . By the assumption, there is at least one recurrent class $R_{SV^*}^{\otimes i}$ reachable from the initial state such that $s_{sink}^{\otimes} \in R_{SV^*}^{\otimes i}$. We consider the best scenario in the assumption.

$$V^{SV^*}(s_{init}^{\otimes}) < Pr_{SV^*}^{M^{\otimes}}(s_{init}^{\otimes} \models \varphi) \sum_{k=0}^{\infty} \gamma^k (r_p + ||\mathcal{R}_1||_{\infty}) + \gamma^l p^l(s_{init}^{\otimes}, s_{sink}^{\otimes}) \sum_{k=0}^{\infty} \gamma^k r_{n2}$$

$$= \frac{1}{1 - \gamma} \{ Pr_{SV^*}^{M^{\otimes}}(s_{init}^{\otimes} \models \varphi)(r_p + ||\mathcal{R}_1||_{\infty}) + \gamma^l p^l(s_{init}^{\otimes}, s_{sink}^{\otimes}) r_{n2} \}.$$

Therefore, if it holds that $r_{n2} < -\frac{Pr_{SV^*}^{M^{\otimes}}(s_{init}^{\otimes} \models \varphi)}{\gamma^l p^l(s_{init}^{\otimes}, s_{sink}^{\otimes})}(r_p + ||\mathcal{R}_1||_{\infty})$, we have $V^{SV^*}(s_{init}^{\otimes}) < 0$ for any $\gamma \in [0, 1)$.

Let SV be a supervisor satisfying φ . We consider the following two cases.

1. Assume that the initial state s_{init}^{\otimes} is in a recurrent class $R_{\bar{\pi}}^{\otimes i}$ for some $i \in \{1, \ldots, h\}$. For any accepting set \bar{F}_j^{\otimes} , $\delta_{\bar{\pi}, i}^{\otimes} \cap \bar{F}_j^{\otimes} \neq \emptyset$ holds by the definition of $\bar{\pi}$. The expected discounted reward for s_{init}^{\otimes} is given by

$$V^{\bar{SV}}(s_{init}^{\otimes}) = \mathbb{E}^{SV}[\sum_{k=0}^{\infty} \gamma^{k} \mathcal{R}(s_{k}, \pi_{k}, e_{k}, s_{k+1}) | s_{0} = s_{init}^{\otimes}]$$
 (3)

Since s_{init}^{\otimes} is in $R_{\pi}^{\otimes i}$, there exists a set of positive numbers $K = \{k \; ; \; k \geq n, p^k(s_{init}^{\otimes}, s_{init}^{\otimes}) > 0\}$ [1]. We consider the worst scenario of returning the initial state in this case. For the stopping time k of first returning to the initial state, it holds that

$$\begin{split} V^{\bar{\pi}}(s_{init}^{\otimes}) > & \mathbb{E}^{S\bar{V}}[\gamma^{k}r_{p} - (1 + \ldots + \gamma^{k})||\mathcal{R}_{1}||_{\infty} + \gamma^{k}V^{\bar{\pi}}(s_{init}^{\otimes})|s_{0} = s_{init}^{\otimes}] \\ \geq & \gamma^{\mathbb{E}^{SV}[k|s_{0} = s_{init}^{\otimes}]}r_{p} - (1 + \ldots + \gamma^{\mathbb{E}^{SV}[k|s_{0} = s_{init}^{\otimes}]})||\mathcal{R}_{1}||_{\infty} + \gamma^{\mathbb{E}^{S\bar{V}}[k|s_{0} = s_{init}^{\otimes}]}V^{\bar{\pi}}(s_{init}^{\otimes}) \\ = & \frac{\gamma^{\mathbb{E}^{S\bar{V}}[k|s_{0} = s_{init}^{\otimes}]}r_{p} - (1 + \ldots + \gamma^{\mathbb{E}^{S\bar{V}}[k|s_{0} = s_{init}^{\otimes}]})||\mathcal{R}_{1}||_{\infty}}{1 - \gamma^{\mathbb{E}^{SV}[k|s_{0} = s_{init}^{\otimes}]}}, \end{split}$$

where second inequality holds since it holds that $\mathbb{E}^{S\bar{V}}[\gamma^k|s_0=s_{init}^{\otimes}] \geq \gamma^{\mathbb{E}^{S\bar{V}}[k|s_0=s_{init}^{\otimes}]}$ and $\frac{1-\gamma^{\mathbb{E}^{S\bar{V}}[k+1|s_0=s_{init}^{\otimes}]}{1-\gamma} \leq \mathbb{E}^{S\bar{V}}[\frac{1-\gamma^{k+1}}{1-\gamma}|s_0=s_{init}^{\otimes}]$ by Jensen's inequality. Therefore, for any $\bar{m} \in (V^{SV^*}(s_{init}^{\otimes}),\infty)$ and any reward function \mathcal{R}_1 defined by definition 1, there exist $\gamma^* < 1$ and a positive reward r_p^* that satisfies $\gamma^{\mathbb{E}^{S\bar{V}}[k|s_0=s_{init}^{\otimes}]}r_p^* > (1+\ldots+\gamma^{\mathbb{E}^{S\bar{V}}[k|s_0=s_{init}^{\otimes}]})||\mathcal{R}_1||_{\infty}$ such that $\gamma > \gamma^*$ and $r_p > r_p^*$ imply $V^{S\bar{V}}(s_{init}^{\otimes}) > \bar{m} > V^{SV^*}(s_{init}^{\otimes})$.

2. Assume that the initial state s_{init}^{\otimes} is in the set of transient states T_{SV}^{\otimes} , $P_{SV}^{M^{\otimes}}(s_{init}^{\otimes} \models \varphi) > 0$ holds by the definition of SV. For a recurrent class $R_{SV}^{\otimes i}$ such that $\delta_{SV,i}^{\otimes} \cap \bar{F}_{j}^{\otimes} \neq \emptyset$ for each accepting set \bar{F}_{j}^{\otimes} , there exist a number $\bar{l} > 0$, a state \hat{s}^{\otimes} in $Post(T_{SV}^{\otimes}) \cap R_{SV}^{\otimes i}$, and a subset of transient states $\{s_{1}^{\otimes}, \ldots, s_{\bar{l}-1}^{\otimes}\} \subset T_{SV}^{\otimes}$ such that $p(s_{init}^{\otimes}, s_{1}^{\otimes}) > 0$, $p(s_{i}^{\otimes}, s_{i+1}^{\otimes}) > 0$ for $i \in \{1, \ldots, \bar{l}-2\}$, and $p(s_{\bar{l}-1}^{\otimes}, \hat{s}^{\otimes}) > 0$ by the property of transient states. Hence, it holds that $p^{\bar{l}}(s_{init}^{\otimes}, \hat{s}^{\otimes}) > 0$ for the state \hat{s}^{\otimes} . Thus, for the stopping time k of first returning to the state \hat{s}^{\otimes} , by ignoring positive rewards in T_{π}^{\otimes} and assuming the system incurs the full costs with regard to disabling events, we have

$$\begin{split} &V^{SV}(s_{init}^{\otimes}) \\ =& \mathbb{E}^{SV}[\sum_{m=0}^{\infty} \gamma^m \mathcal{R}(s_m, S\bar{V}(s_m), e_m, s_{m+1}) | s_0 = s_{init}^{\otimes}] \\ \geq& \mathbb{E}^{SV}[-\sum_{m=0}^{l'} \gamma^m ||\mathcal{R}_1||_{\infty} | s_0 = s_{init}^{\otimes}] \\ &+ \mathbb{E}^{SV}[\gamma^{l'} \sum_{m=0}^{\infty} \gamma^m \mathcal{R}(s_{m+l'}, S\bar{V}(s_{m+l'}), e_{m+l'}, s_{m+l'+1}) | s_0 = s_{init}^{\otimes}] \\ >& \gamma^{l} p^{l}(s_{init}^{\otimes}, \hat{s}^{\otimes}) \mathbb{E}^{S\bar{V}}[\gamma^{k} r_p - (1 + \ldots + \gamma^{k}) ||\mathcal{R}_1||_{\infty} + \gamma^{k} V^{S\bar{V}}(\hat{s}^{\otimes}) |s_l = \hat{s}^{\otimes}] - \frac{1 - \gamma^{\bar{l}}}{1 - \gamma} ||\mathcal{R}_1||_{\infty} \\ \geq& \gamma^{l} p^{l}(s_{init}^{\otimes}, \hat{s}^{\otimes}) \\ &\{ \gamma^{\mathbb{E}^{SV}[k|s_l = \hat{s}^{\otimes}]} r_p - (1 + \ldots + \gamma^{\mathbb{E}^{SV}[k|s_l = \hat{s}^{\otimes}]}) ||\mathcal{R}_1||_{\infty} + \gamma^{\mathbb{E}^{SV}[k|s_l = \hat{s}^{\otimes}]} V^{S\bar{V}}(\hat{s}^{\otimes}) \} - \frac{1 - \gamma^{\bar{l}}}{1 - \gamma} ||\mathcal{R}_1||_{\infty} \\ =& \gamma^{l} p^{l}(s_{init}^{\otimes}, \hat{s}^{\otimes}) \\ &\frac{\gamma^{\mathbb{E}^{S\bar{V}}[k|s_l = \hat{s}^{\otimes}]} r_p - (1 + \ldots + \gamma^{\mathbb{E}^{S\bar{V}}[k|s_l = \hat{s}^{\otimes}]}) ||\mathcal{R}_1||_{\infty}}{1 - \gamma^{\mathbb{E}^{S\bar{V}}[k|s_l = \hat{s}^{\otimes}]}} - \frac{1 - \gamma^{\bar{l}}}{1 - \gamma} ||\mathcal{R}_1||_{\infty}, \\ where \bar{l} = \mathbb{E}^{S\bar{V}}[l'|p^{l'}(s_{init}^{\otimes}, \hat{s}^{\otimes}) > 0]. \ Therefore, for any \ \bar{m} \in (V^{SV^*}(s_{init}^{\otimes}), \infty) \end{split}$$

where $\bar{l} = \mathbb{E}^{\bar{SV}}[l'|p^{l'}(s_{init}^{\otimes}, \hat{s}^{\otimes}) > 0]$. Therefore, for any $\bar{m} \in (V^{SV^*}(s_{init}^{\otimes}), \infty)$ and any reward function \mathcal{R}_1 defined by definition 1, there exist $\gamma^* < 1$ and a positive reward r_p^* that satisfies $\gamma^{\mathbb{E}^{\bar{SV}}[k|s_l=\hat{s}^{\otimes}]}r_p^* > (1 + \ldots + \gamma^{\mathbb{E}^{\bar{SV}}[k|s_l=\hat{s}^{\otimes}]})||\mathcal{R}_1||_{\infty}$ such that $\gamma > \gamma^*$ and $r_p > r_p^*$ imply $V^{\bar{SV}}(s_{init}^{\otimes}) > \bar{m} > V^{SV^*}(s_{init}^{\otimes})$.

The results contradict the optimality assumption of SV^*

References

- [1] R. Durrett, *Essentials of Stochastic Processes*, 2nd Edition. ser. Springer texts in statistics. New York; London; Springer, 2012.
- [2] L. Breuer, "Introduction to Stochastic Processes," [Online]. Available: https://www.kent.ac.uk/smsas/personal/lb209/files/sp07.pdf
- [3] S.M. Ross, Stochastic Processes, 2nd Edition. University of California, Wiley, 1995.
- [4] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári, "Convergence results for single-step on-policy reinforcement learning algorithms" *Machine Learning*, vol. 38, no. 3, pp. 287–308, 1998.

[5] J. Kretínský, T. Meggendorfer, S. Sickert, "Owl: A library for ω -words, automata, and LTL," in *Proc. 16th International Symposium on Automated Technology for Verification and Analysis*, 2018, pp. 543–550.