Analiza numeryczna

3. Interpolacja

Rafał Nowak

Interpolacja

Zadanie interpolacyjne Lagrange'a

- **4** dane: $[x_0, x_1, \dots, x_n]$, $[y_0, y_1, \dots, y_n]$

$$L_n(x_i) = y_i, \qquad i = 0, 1, \dots, n$$

rozwiązanie (postać Lagrange'a):

$$L_n(x) = \sum_{k=0}^n y_k \lambda_k(x),$$

gdzie

$$\lambda_k(x) := \prod_{j=0, j \neq k}^n \frac{x - x_j}{x_k - x_j}$$

Inne postaci wielomianu interpolacyjnego

Niech

$$\sigma_k := \prod_{j=0, j \neq k}^n \frac{1}{x_k - x_j} \qquad (0 \leqslant k \leqslant n)$$

postać barycentryczna

$$L_n(x) = \begin{cases} \sum_{k=0}^n \frac{\sigma_k}{x - x_k} y_k \middle/ \sum_{k=0}^n \frac{\sigma_k}{x - x_k}, & \text{gdy } x \not\in \{x_0, x_1, \dots, x_n\}, \\ y_k, & \text{gdy } x = x_k, \ 0 \leqslant k \leqslant n. \end{cases}$$

Algorytm Wernera

Algorytm (Werner, 1984)

1 Obliczamy pomocnicze wielkości $a_k^{(i)}$ wg wzorów

$$a_0^{(0)} := 1, \quad a_k^{(0)} := 0 \quad (k = 1, 2, \dots, n),$$

$$a_k^{(i)} := a_k^{(i-1)} / (x_k - x_i),$$

$$a_i^{(k+1)} := a_i^{(k)} - a_k^{(i)}$$

$$\left. \begin{cases} i = 1, 2, \dots, n; \ k = 0, 1, \dots, i - 1 \end{cases} \right),$$

Wówczas

$$\sigma_k := a_k^{(n)} \quad (k = 0, 1, \dots, n).$$

Inne postaci wielomianu interpolacyjnego

Niech

$$p_0(x) \equiv 1, \quad p_k(x) := (x - x_0)(x - x_1) \dots (x - x_{k-1}) \quad (1 \le k \le n + 1)$$

oraz

$$b_k := \sum_{i=0}^k \frac{y_i}{p'_{k+1}(x_i)} = \sum_{i=0}^k \frac{y_i}{\prod_{j=0, j \neq i}^k (x_i - x_j)} \quad (k = 0, 1, \dots, n)$$

postać Newtona

$$L_n(x) = \sum_{k=0}^{n} b_k p_k(x)$$

Uogólniony schemat Hornera

Algorytm (uogólniony algorytm Hornera)

$$w_n := b_n;$$

 $w_k := w_{k+1}(x - x_k) + b_k (k = n - 1, n - 2, ..., 0);$
 $w(x) = w_0.$

Ponieważ

$$\sigma_k = \frac{1}{p'_{n+1}(x_k)},$$

więc

inny wariant wzoru Lagrange'a

$$L_n(x) = p_{n+1}(x) \sum_{k=0}^{n} y_k \frac{\sigma_k}{x - x_k}.$$

Ilorazy różnicowe

Definicja

Niech funkcja f będzie określona w parami różnych punktach x_0, x_1, \ldots Iloraz różnicowy k-tego rzędu (krócej: k-ty iloraz różnicowy) $(k=0,1,\ldots)$ funkcji f w punktach x_0,x_1,\ldots,x_k oznaczamy symbolem $f[x_0,x_1,\ldots,x_k]$ i określamy wzorem

$$f[x_0, x_1, \dots, x_k] := \sum_{i=0}^k \frac{f(x_i)}{\prod_{j=0, j \neq i}^k (x_i - x_j)}.$$
 (1)

Własności ilorazów różnicowych

- Iloraz $f[x_0, x_1, \dots, x_k]$ jest symetryczną funkcją zmiennych x_0, x_1, \dots, x_k .
- ② Iloraz różnicowy zależy liniowo od funkcji, dla której został utworzony, tj. jeśli f=g+ch (c stała), to $f[x_0,x_1,\ldots,x_k]=g[x_0,x_1,\ldots,x_k]+ch[x_0,x_1,\ldots,x_k].$
- Jeśli $w \in \Pi_m \setminus \Pi_{m-1}$, to $w[x, x_1, \ldots, x_k]$ jest wielomianem stopnia (m-k)-tego zmiennej x; w szczeg. iloraz $w[x, x_1, \ldots, x_m]$ jest stałą, a $w[x, x_1, \ldots, x_{m+1}]$ jest zerem.
- Zachodzi wzór rekurencyjny

$$f[x_0, x_1, \dots, x_k] = \frac{f[x_1, x_2, \dots, x_k] - f[x_0, x_1, \dots, x_{k-1}]}{x_k - x_0}$$

$$(k = 1, 2, \dots).$$

Obliczanie ilorazów różnicowych

Schemat obliczeń

Obliczanie ilorazów różnicowych

Algorytm (Obliczanie współczynników postaci Newtona)

```
Ensure: b_k = f[x_0, \dots, x_k]

1: for k = 0 to n do

2: b_k \leftarrow f(x_k)

3: end for

4: for j = 1 to n do

5: for k = n downto j do

6: b_k \leftarrow (b_k - b_{k-1})/(x_k - x_{k-j})

7: end for

8: end for

9: return b
```

Reszta wzoru interpolacyjnego

Twierdzenie

Niech f będzie funkcją określoną w przedziale [a,b], niech $x_0,x_1,\ldots,x_n\in[a,b]$ będą parami różne i niech wielomian $L_n\in\Pi_n$ spełnia warunki

$$L_n(x_i) = f(x_i)$$
 $(i = 0, 1, ..., n).$ (2)

Wówczas dla każdego $x \in [a,b] \setminus \{x_0,x_1,\ldots,x_n\}$ zachodzi równość

$$f(x) - L_n(x) = f[x, x_0, x_1, \dots, x_n] p_{n+1}(x),$$
(3)

gdzie

$$p_{n+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_n).$$

Twierdzenie

Jeśli funkcja f ma w przedziale [a,b] ciągłą (n+1)-szą pochodną, a wielomian $L_n \in \Pi_n$ interpoluje tę funkcję w parami różnych punktach $x_0,x_1,\ldots,x_n \in [a,b]$, to dla każdego $x \in [a,b]$ zachodzi równość

$$f(x) - L_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi_x) p_{n+1}(x), \tag{4}$$

gdzie ξ_x jest pewną liczbą (zależną od x) z przedziału (a,b).

Twierdzenie

Jeśli funkcja f ma w przedziale [a,b] ciągłą (n+1)-szą pochodną, a wielomian $L_n \in \Pi_n$ interpoluje tę funkcję w parami różnych punktach $x_0, x_1, \ldots, x_n \in [a,b]$, to dla każdego $x \in [a,b]$ zachodzi równość

$$f(x) - L_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi_x) p_{n+1}(x), \tag{4}$$

gdzie ξ_x jest pewną liczbą (zależną od x) z przedziału (a,b).

Wniosek

Jeśli $f\in C^{n+1}[a,b]$, $x_0,x_1,\ldots,x_n,x_{n+1}\in [a,b]$, to istnieje taki punkt $\xi\in (a,b)$, że

$$f[x_0, x_1, \dots, x_{n+1}] = \frac{1}{(n+1)!} f^{(n+1)}(\xi).$$

Wniosek

Jeśli funkcja f ma w przedziałe $\left[-1,\,1\right]$ ciągłą $\left(n+1\right)$ -szą pochodną, to

$$\max_{-1 \leqslant x \leqslant 1} |f(x) - L_n(x)| \leqslant \frac{M_{n+1} P_{n+1}}{(n+1)!},\tag{5}$$

gdzie

$$M_{n+1} := \max_{\substack{-1 \le x \le 1}} |f^{(n+1)}(x)|,$$

$$P_{n+1} := \max_{\substack{-1 \le x \le 1}} |p_{n+1}(x)|.$$

Wielomiany Czebyszewa

Definicja (Wielomiany Czebyszewa (pierwszego rodzaju) $T_k(x)$)

$$T_0(x) \equiv 1;$$
 $T_1(x) = x;$ $T_k(x) = 2xT_{k-1} - T_{k-2}$ $(k = 2, 3, ...).$

- Współczynnik wielomianu T_k $(k \ge 1)$ przy x^k (zwany współczynnikiem wiodącym) jest równy 2^{k-1} .
- 2 Zachodzi równość $T_k(-x) = (-1)^k T_k(x)$ dla $k \ge 0$.
- ① Dla dowolnego x z przedziału [-1,1] k-ty wielomian Czebyszewa $(k\geqslant 0)$ wyraża się wzorem

$$T_k(x) = \cos(k \arccos x).$$

Zatem $|T_k(x)| \leq 1 \quad (-1 \leq x \leq 1; k \geq 0).$

O Punkty ekstremalne wielomianu $T_k(x)$ w przedziale [-1, 1], czyli rozwiązania równania $|T_k(x)|=1$, wyrażają się wzorem

$$u_{kj} = \cos\frac{j\pi}{k} \qquad (j = 0, 1, \dots, k).$$

Stąd, wobec poprzedniej własności, mamy

$$||T_k||_{[-1,1]} = 1$$
 $(k \ge 0).$

• Wielomian Czebyszewa $T_k(x)$ ($k \ge 1$) ma k zer pojedynczych, leżących w przedziale (-1, 1), równych

$$t_{kj} = \cos\frac{2j+1}{2k}\pi$$
 $(j=0,1,2,\ldots,k-1).$

Twierdzenie (Postać Czebyszewa wielomianu)

Każdy wielomian $w \in \Pi_n$ można jednoznacznie przedstawić w postaci

$$w(x) = \sum_{k=0}^{n} c_k T_k(x).$$
 (6)

Twierdzenie (Postać Czebyszewa wielomianu)

Każdy wielomian $w \in \Pi_n$ można jednoznacznie przedstawić w postaci

$$w(x) = \sum_{k=0}^{n} c_k T_k(x).$$
 (6)

Algorytm (algorytm Clenshawa)

Aby obliczyć wartość wielomianu (6) w punkcie x określamy pomocniczo wielkości B_0,B_1,B_{n+2} wzorami

$$B_{n+2} := B_{n+1} := 0;$$

 $B_k := 2xB_{k+1} - B_{k+2} + c_k \qquad (k = n, n - 1, \dots, 0).$

Wówczas

$$w(x) = \frac{1}{2}(B_0 - B_2).$$

Twierdzenie

Dla danych $c_i \in X_{fl}$ i $x \in X_{fl}$ wartość wielomianu (6) obliczonego za pomocą algortymu Clenshawa wyraża sie wzorem

$$fl(w(x)) = \sum_{k=0}^{n} c_k (1 + e_k) T_k(x),$$

gdzie $|e_k| \leq L(n)$ u, przy czym L(n) rośnie kwadratowo wraz z n.

Zatem algortym Clenshawa jest numerycznie poprawny.

Węzły Czebyszewa

• zera wielomianu T_{n+1} :

$$x_k := t_{n+1,k} = \cos \frac{2k+1}{2n+2}\pi$$
 $(k = 0, 1, \dots, n)$

2 punkty ekstremalne wielomianu T_n :

$$x_k := u_{n,k} = \cos\frac{k}{n}\pi$$
 $(k = 0, 1, \dots, n)$

Wielomian $\tilde{T}_n := 2^{1-n}T_n$ ma najmniejszą normę w przedziale [-1, 1] spośród wszystkich wielomianów stopnia $\leqslant n$, o współczynniku wiodącym równym 1.

Wielomian $\tilde{T}_n := 2^{1-n}T_n$ ma najmniejszą normę w przedziale [-1, 1] spośród wszystkich wielomianów stopnia $\leq n$, o współczynniku wiodącym równym 1.

Wniosek

W poniższym oszacowaniu błędu interpolacji

$$\max_{-1 \leqslant x \leqslant 1} |f(x) - L_n(x)| \leqslant \frac{M_{n+1} P_{n+1}}{(n+1)!},\tag{7}$$

prawa strona jest najmniejsza i równa $\frac{M_{n+1}}{2^n(n+1)!}$ wtedy i tylko wtedy, gdy

$$p_{n+1}(x) = 2^{-n} T_{n+1}(x),$$

tj. gdy węzłami x_0, x_1, \ldots, x_n są zera wielomianu Czebyszewa T_{n+1} .

Wielomian $I_n \in \Pi_n$ interpolujący funkcję f w węzłach

$$t_j \equiv t_{n+1,j} = \cos \frac{2j+1}{2n+2}\pi$$
 $(j=0,1,\ldots,n)$

(zerach wielomianu T_{n+1}) można zapisać w postaci

$$I_n(x) = \sum_{k=0}^{n} \alpha_k T_k(x), \tag{8}$$

gdzie

$$\alpha_k := \frac{2}{n+1} \sum_{j=0}^n f(t_j) T_k(t_j) \qquad (k = 0, 1, \dots, n).$$
 (9)

Wielomian $J_n \in \Pi_n$ interpolujący funkcję f w węzłach

$$u_j \equiv u_{nj} = \cos(j\pi/n)$$
 $(j = 0, 1, \dots, n)$

(punktach ekstremalnych wielomianu T_n) można zapisać wzorem

$$J_n(x) = \sum_{k=0}^{n} {}''\beta_k T_k(x),$$
 (10)

gdzie

$$\beta_k := \frac{2}{n} \sum_{j=0}^{n} f(u_j) T_k(u_j) \qquad (k = 0, 1, \dots, n).$$
 (11)

Wybór węzłów

ullet Wybór węzłów w przedziale [a,b]: Zauważmy, że funkcja

$$t \to \frac{b-a}{2}t + \frac{a+b}{2}$$

przekształca przedział [-1,1] w przedział [a,b].

Wybór węzłów

ullet Wybór węzłów w przedziale [a,b]: Zauważmy, że funkcja

$$t \to \frac{b-a}{2}t + \frac{a+b}{2}$$

przekształca przedział [-1,1] w przedział [a,b].

Oszacowanie reszty wzoru interpolacyjnego:

węzły równoodległe

$$x_k = -1 + 2k/n$$
 $(k = 0, 1, \dots, n);$

Mamy

$$\frac{1}{n^{3/2}} \left(\frac{2}{e}\right)^{n+1} \leqslant P_{n+1}^e \leqslant n! \left(\frac{2}{n}\right)^{n+1},$$

przy czym lewa nierówność zachodzi dla dostatecznie dużego n.

węzły Czebyszewa:

$$P_{n+1} = 2^{-n},$$

DFT

Dyskretna transformata Fouriera (DFT)

DFT przekształca ciąg $m{x}=[x_0,x_1,\dots,x_{N-1}]$ w ciąg $m{y}=[y_0,y_1,\dots,y_{N-1}]$, gdzie

$$y_k = \sum_{j=0}^{N-1} x_j e^{2\pi i jk/N} \qquad (0 \le k < N).$$
 (12)

Wyznaczanie wszystkich wartości y_k wprost ze wzoru (12) wymaga wykonania $\mathcal{O}(N^2)$ operacji arytmetycznych. Okazuje się, że można to zrobić w czasie $\mathcal{O}(N\log N)$ — wykorzystując technikę *dziel i zwyciężaj*.

Algorytm DFT (1/2)

Niech $\omega_N \coloneqq e^{2\pi \mathfrak{i}/N}$. Wówczas wzór (12) można zapisać w postaci

$$y_k = \sum_{j=0}^{N-1} x_j \omega_N^{jk} \qquad (0 \le k < N).$$
 (13)

Załóżmy, że N=2M, a najlepiej niech N będzie potęgą dwójki.

Algorytm DFT (1/2)

Niech $\omega_N \coloneqq e^{2\pi \mathrm{i}/N}$. Wówczas wzór (12) można zapisać w postaci

$$y_k = \sum_{j=0}^{N-1} x_j \omega_N^{jk} \qquad (0 \le k < N).$$
 (13)

Załóżmy, że N=2M, a najlepiej niech N będzie potęgą dwójki. Łatwo sprawdzić, że dla $k=0,1,\dots,M-1$ mamy

$$y_{2k} = \sum_{j=0}^{M-1} (\underbrace{x_j + x_{M+j}}_{a_j}) \omega_M^{jk},$$

$$y_{2k+1} = \sum_{j=0}^{M-1} \left[\underbrace{(x_j - x_{M+j})\omega_N^j}_{b_j} \right] \omega_M^{jk}.$$

Algorytm DFT (1/2)

Niech $\omega_N \coloneqq e^{2\pi \mathfrak{i}/N}$. Wówczas wzór (12) można zapisać w postaci

$$y_k = \sum_{j=0}^{N-1} x_j \omega_N^{jk} \qquad (0 \le k < N).$$
 (13)

Załóżmy, że N=2M, a najlepiej niech N będzie potęgą dwójki. Łatwo sprawdzić, że dla $k=0,1,\dots,M-1$ mamy

$$y_{2k} = \sum_{j=0}^{M-1} (\underbrace{x_j + x_{M+j}}_{a_j}) \omega_M^{jk},$$

$$y_{2k+1} = \sum_{j=0}^{M-1} \left[\underbrace{(x_j - x_{M+j})\omega_N^j}_{b_j} \right] \omega_M^{jk}.$$

Oznacza to, że wektor y można obliczyć wywołując $\mathsf{DFT}(a)$ i $\mathsf{DFT}(b)$ czyli dwukrotnie DFT , ale dla wektorów o połowę krótszych.

Algorytm DFT (2/2)

Algorytm (Szybka transformata Fouriera)

DFT(x)

- 1: $N \leftarrow length(\boldsymbol{x})$
- 2: **if** N = 1 **then**
- 3: **return** X
- 4: end if
- 5: $M \leftarrow N/2$
- 6: $\boldsymbol{x}_{left} \leftarrow \boldsymbol{x}[1:M]$
- 7: $\boldsymbol{x}_{right} \leftarrow \boldsymbol{x}[M+1:N]$
- 8: $y_{\mathsf{even}} \leftarrow DFT(x_{\mathsf{left}} + x_{\mathsf{right}})$
- 9: $y_{odd} \leftarrow DFT((x_{left} x_{right}) .* [\omega_N^j \text{ for } j = 0 : M 1])$
- 10: $oldsymbol{y}[1:2:N-1] \leftarrow oldsymbol{y}_{\text{even}}$
- 11: $y[2:2:N] \leftarrow y_{odd}$
- 12: return y

Uwaga: operator .* oznacza mnożenie wektorów po współrzędnych.

Zbieżność ciągu wielomianów interpolacyjnych

Twierdzenie (Bernstein)

Niech będzie f(x)=|x|, [a,b]=[-1,1], $x_{nk}=-1+\frac{2k}{n}$ $(k=0,1,\ldots,n;\ n>0)$. Wówczas dla $x\not\in\{-1,0,1\}$ ciąg $\{L_n(x)\}$ nie jest zbieżny do f(x)!

Zbieżność ciągu wielomianów interpolacyjnych

Twierdzenie (Bernstein)

Niech będzie f(x)=|x|, [a,b]=[-1,1], $x_{nk}=-1+\frac{2k}{n}$ $(k=0,1,\ldots,n;\ n>0)$. Wówczas dla $x\not\in\{-1,0,1\}$ ciąg $\{L_n(x)\}$ nie jest zbieżny do f(x)!

Twierdzenie (Runge)

Niech będzie $f(x) = 1/(1+25x^2)$, [a,b] = [-1,1], $x_{nk} = -1 + \frac{2k}{n}$ $(k=0,1,\ldots,n;\ n>0)$. Ciąg $\{L_n(x)\}$ jest zbieżny do f(x) tylko dla $|x| \leqslant 0.72668\ldots$ i rozbieżny dla $|x| > 0.72668\ldots$

Zbieżność ciągu wielomianów ...

Twierdzenie (Faber)

Dla każdej tablicy węzłów $\{x_{nk}\}$ istnieje taka funkcja ciągła w przedziale [a,b], do której ciąg wielomianów interpolacyjnych nie jest zbieżny jednostajnie (tj. taka, że $\max_{a\leqslant x\leqslant b}|f(x)-L_n(x)|\not\to 0$).

Zbieżność ciągu wielomianów ...

Twierdzenie (Faber)

Dla każdej tablicy węzłów $\{x_{nk}\}$ istnieje taka funkcja ciągła w przedziale [a,b], do której ciąg wielomianów interpolacyjnych nie jest zbieżny jednostajnie (tj. taka, że $\max_{a\leqslant x\leqslant b}|f(x)-L_n(x)|\not\to 0$).

Twierdzenie (Kryłow)

Niech dana będzie funkcja $f \in C^1[-1,1]$ i niech $\{L_n\}$ będzie ciągiem wielomianów interpolujących funkcję f w węzłach Czebyszewowskich. Wówczas dla każdego $x \in [-1,1]$ jest

$$\lim_{n\to\infty} L_n(x) = f(x).$$

Funkcja sklejana interpolująca III stopna

Definicja

Dla danej liczby naturalnej n, danych węzłów x_0, x_1, \ldots, x_n ($a=x_0 < x_1 < \ldots < x_n = b$) i danej funkcji f funkcją sklejaną interpolującą III stopnia nazywamy funkcję s, określoną w przedziale [a,b] i spełniającą następujące warunki:

- $1^{\circ} \ s, \ s' \ \mathrm{i} \ s'' \ \mathrm{sa} \ \mathrm{ciag} \ \mathrm{fe} \ \mathrm{w} \ [a,b],$
- 2° w każdym przedziałów $[x_{k-1},x_k]$ $(k=1,2,\ldots,n)$ s jest identyczna z pewnym wielomianem p_k , stopnia co najwyżej trzeciego,

$$3^{\circ} \ s(x_k) = f(x_k) \qquad (k = 0, 1, \dots, n).$$

Jeśli dodatkowe (tzw. brzegowe) dwa warunki mają postać

$$4_{\text{nat}}^{\circ} \ s''(a) = s''(b) = 0$$

$$4_{\text{comp}}^{\circ}$$
 $s'(a) = f'(a)$, $s'(b) = f'(b)$

 $4_{
m per}^{\circ}\ s'(a)=s'(b),\ s''(a)=s''(b)$ (jeśli f jest funkcją okresową o okresie b-a)

to s nazywamy odpowiednio funkcją naturalną, zupełną lub okresową.

Naturalna funkcja sklejana interpolująca III stopnia

Dla dowolnych danych: $n \in \mathbb{N}$, $a = x_0 < x_1 < \ldots < x_n = b$ i funkcji f istnieje dokładnie jedna naturalna funkcja sklejana interpolacyjna III stopnia s. Wartości $M_k := s''(x_k)$ $(k = 0, 1, \ldots, n; \ M_0 = M_n = 0)$ spełniają układ równań liniowych

$$\lambda_k M_{k-1} + 2M_k + (1 - \lambda_k) M_{k+1} = 6f[x_{k-1}, x_k, x_{k+1}] \quad (k = 1, \dots, n-1),$$
 (14)

gdzie $\lambda_k := h_k/(h_k + h_{k+1})$, $h_k := x_k - x_{k-1}$. W każdym z przedziałów $[x_{k-1}, x_k]$ $(k = 1, 2, \dots, n)$ jest

$$s(x) = h_k^{-1} \left[\frac{1}{6} M_{k-1} (x_k - x)^3 + \frac{1}{6} M_k (x - x_{k-1})^3 + \left(f(x_{k-1}) - \frac{1}{6} M_{k-1} h_k^2 \right) (x_k - x) + \left(f(x_k) - \frac{1}{6} M_k h_k^2 \right) (x - x_{k-1}) \right].$$
(15)

Dowód 1/2

s" jest funkcją kawałkami liniową; w przedziale $[x_{k-1},x_k]$ wyraża się wzorem:

$$s''(x) = h_k^{-1}[M_{k-1}(x_k - x) + M_k(x - x_{k-1})].$$
(16)

Całkując dwukrotnie otrzymujemy

$$s'(x) = (2h_k)^{-1} \left[-M_{k-1}(x_k - x)^2 + M_k(x - x_{k-1})^2 \right] + A_k, \tag{17}$$

$$s(x) = (6h_k)^{-1} [M_{k-1}(x_k - x)^3 + M_k(x - x_{k-1})^3] + A_k x + B_k.$$
 (18)

Stałe A_k i B_k wyznaczamy kładąc w (18) $x=x_{k-1},x_k$ i uwzględniając równości $s(x_{k-1})=f(x_{k-1}),s(x_k)=f(x_k)$. Otrzymujemy

$$A_k = \frac{f(x_k) - f(x_{k-1})}{h_k} - \frac{1}{6}h_k(M_k - M_{k-1}),$$

$$B_k = \frac{x_k f(x_{k-1}) - f(x_k)x_{k-1}}{h_k} - \frac{1}{6}h_k(M_{k-1}x_k - M_kx_{k-1}).$$

Wówczas wzór (17) jest równoważny wzorowi (15).

Dowód 2/2

Należy jeśli tylko dobrać tak M_k , aby zapewnić ciągłość s'. Ciągłość s i s'' wynika bowiem odpowiednio z (18) i (16).

Dowód 2/2

Należy jeśli tylko dobrać tak M_k , aby zapewnić ciągłość s'. Ciągłość s i s'' wynika bowiem odpowiednio z (18) i (16).

Ze wzoru (17) otrzymujemy, że

$$s'(x_{k-1}+0) = -\frac{1}{3}h_k M_{k-1} - \frac{1}{6}h_k M_k + f[x_{k-1}, x_k],$$

$$s'(x_k - 0) = \frac{1}{3}h_k M_k + \frac{1}{6}h_k M_{k-1} + f[x_{k-1}, x_k].$$

Żądamy, aby było $s'(x_k-0)=s'(x_k+0)$ dla $k=1,2,\ldots,n-1$, czyli

$$\frac{1}{3}h_k M_k + \frac{1}{6}h_k M_{k-1} + f[x_{k-1}, x_k] =
= -\frac{1}{3}h_{k+1} M_k - \frac{1}{6}h_{k+1} M_{k+1} + f[x_k, x_{k+1}] \qquad (k = 1, 2, \dots, n-1).$$

Po łatwych przekształceniach otrzymuje się stąd układ (14), tj. układ n-1 równań z n-1 niewiadomymi o nieosobliwej macierzy współczynników, który ma jedyne rozwiązanie $M_0, M_1, \ldots, M_{n-1}$, jednoznacznie określające funkcję s.

Dalsze własności

Twierdzenie (Holladay)

W klasie funkcji F mających ciągłą drugą pochodną w przedziale [a,b] i takich, że

$$F(x_k) = y_k \qquad (k = 0, 1, \dots, n)$$
 (19)

najmniejszą wartość całki

$$\int_{a}^{b} \left[F''(x) \right]^{2} dx \tag{20}$$

daje naturalna funkcja sklejana s z twierdzenia 1. Przy tym

$$\int_{a}^{b} \left[s''(x) \right]^{2} dx = \sum_{k=1}^{n-1} \left(f[x_{k}, x_{k+1}] - f[x_{k-1}, x_{k}] \right) M_{k}.$$
 (21)

Algorytm obliczania wielkości M_k

Algorytm

Obliczamy pomocnicze wielkości $p_1, p_2, \ldots, p_{n-1}, q_0, q_1, \ldots, q_{n-1}, u_0, u_1, \ldots, u_{n-1}$ w następujący sposób rekurencyjny:

$$q_0 := u_0 := 0, (22)$$

gdzie

$$d_k := 6f[x_{k-1}, x_k, x_{k+1}] \qquad (k = 1, 2, \dots, n-1).$$
 (24)

Wówczas

$$M_{n-1} = u_{n-1}, (25)$$

$$M_k = u_k + q_k M_{k+1}$$
 $(k = n - 2, n - 3, \dots, 1).$ (26)

Twierdzenie

Niech będzie dana funkcja $f \in C^4[a,b]$. Dla danej liczby naturalnej n niech s będzie naturalną funkcją sklejaną III stopnia interpolującą funkcję f w danych węzłach x_0, x_1, \ldots, x_n $(a = x_0 < x_1 < \ldots < x_n = b)$. Wówczas

$$\max_{a \leqslant x \leqslant b} |f^{(r)}(x) - s^{(r)}(x)| \leqslant C_r h^{4-r} \max_{a \leqslant x \leqslant b} |f^{(r)}(x)| \qquad (r = 0, 1, 2, 3),$$

$$\text{gdzie } C_0 := 5/384, C_1 := 1/24, C_2 := 3/8, C_3 := (\beta + \beta^{-1})/2.$$

$$h := \max_{i} h_{i}, \qquad \beta := h/\min_{i} h_{i}, \qquad h_{i} := x_{i} - x_{-1} \qquad (i = 1, 2, \dots, n).$$

Przykład

W wypadku funkcji Rungego $f(x)=1/(25x^2+1)$ ($-1\leqslant x\leqslant 1$) i równoodległych węzłów uzyskano następujące wyniki:

Tabela: Przykład Rungego: interpolacja za pomocą funkcji sklejanych III stopnia

n	10	20	40	80	160
h	0.2	0.1	0.05	0.025	0.0125
$ f - s _{\infty}^{[-1,1]}$	$2.20 \cdot 10^{-2}$	$3.18 \cdot 10^{-3}$	$2.78 \cdot 10^{-4}$	$1.61\cdot10^{-5}$	$1.61 \cdot 10^{-}$