Factorization of Hierarchical Low-rank Matrices with Nested Basis

Qianxiang Ma

Rio Yokota Lab

School of Computing

Tokyo Institute of Technology

Presentation Outline

- Problem Review
 - Dense solvers and LU factorization
 - Hierarchical Low-rank Matrices
- Runtime system for batched H-LU factorization on GPU and its results
- Nested basis and H^2 -Matrices and its results
- Conclusion

Problem Review

Block Low Rank Matrices

- Low-rank approximation:
 - Represent blocks as products of matrices of smaller ranks

- Kernel matrices:
 - Full in entries / not sparse
 - Higher ranks closer to the diagonal
 - Blocks further away have lower ranks
 - Green's function, radial basis functions etc.

Admissibility Condition

Low-rank blocks in Hierarchical Matrix:

$$A = U \times S \times V^T$$

or:

$$A = U \times V^T$$

Solving Linear Systems - LU factorization

- Expressed as: Ax = b
- A = LU: solve Ly = b then Ux = y

- Direct / Dense solver
- Compares to:
 - Inexact iterative solvers
 - Sparse solvers

Replacing Exact Linear Algebra with Low-Rank

Related Work

- James Demmel et al., Block LU Factorization. 1995
 - Dense exact solver
 - $O(n^3)$ complexity
- Ronald Kriemann, H-LU factorization on many-core systems. 2013
 - H-solver based on parallelized Hierarchical LU factorization
 - CPU-only execution
- Jack Dongarra et al., MAGMA. 2014
 - Task-based dense exact solver on GPU
 - $O(n^3)$ complexity
- Kadir Akbudak et al. Tile low-rank Cholesky Factorization. 2017
 - Block Low-rank solver parallelized in OpenMP
 - CPU-only execution and $O(n^2)$ complexity

https://people.eecs.berkeley.edu/~demmel/cs267/lecture12/lecture12.html

Problem 1: Data dependency in block & hierarchical LU factorization

http://icl.utk.edu/projectsfiles/magma/tutorial/ecp2018-magma-tutorial.pdf

Problem 2:

LR blocks can exhibit large kernel setup overheads, if they are not batched.

Runtime System Design

CPU:

1. Processes H-matrix tree structure.

2. Batches tasks together.

GPU:

3. Processes the matrix block by block.

3. Scheduling the Tasks

4. GPU Inst generation

1. Dependency Checker

- Naive:
- Check between every two instructions

- More optimized:
- Inherits dependency relations from parent operation

2. Scheduler

- 3 Heuristics
- Schedule using FLOPs estimates

2. Scheduler

- 3 Heuristics
- Schedule using FLOPs estimates
- Dependency relations

2. Scheduler

• 3 Heuristics

Experiments and Results

- We are most interested in
 - 1. Scheduler performance: load balancing and communications
 - 2. Kernel performance: time required to finish H-LU on GPU
 - 3. Runtime setup cost: additional work done other than factorization
- Experiment setup:
 - CPU: Intel Core-i9 9900k
 - GPU: NVIDIA GeForce RTX2080Ti
 - Reference library: HLIBpro that runs on Intel Core i9-9900k

Nested basis and H^2 -Matrices

H2-Matrix

Shared Basis:

$$A = U_i \times S \times V_j$$

Both U and V are from shared entries outside the matrix

Nested Basis:

Connection between different layers in bases

H2-Matrix

H2-Matrix Construction

- 1. Cluster basis construction directly from the entries, 4 steps
 - 1. Accumulation (Top-down recursion on hierarchy)
 - 2. Propagation (Top-down recursion on basis)
 - 3. Orthogonalization (Top-down recursion on basis)
 - 4. Translation (Top-down recursion on basis)
- 2. Cluster basis constructed using admissibility condition (More error but generally faster)

Split

Slice the U and V portion to use in the hierarchical matrix

Split in nested basis context

Slice the U and V portion to use in the hierarchical matrix

Multiplied by translation matrices, sliced parts still shares the basis

Nested basis update

- In order to reflect the accumulated results from other clusters, while keeping the blocks low-rank
- Appending columns to prevent side-effects
- Rows needs to be appended: Input matrix projected off the basis
- $M Basis \times Basis^T \times M = U \times S \times V$

- Enlarged S uses the original entries + appended rows
- Other S uses only the original entries, so no contents changed

Experiments and Results

- We are most interested in:
 - Construction of nested basis: comparing with H-matrix and its algorithmic complexity
 - Storage cost difference between H2-matrix and H-matrix
 - Accuracy of H2-LU factorization and H-LU factorization, with respect to larger matrix dimensions
- Experiment setup:
 - CPU: Intel Core-i9 9900k
 - Reference: H-LU factorized results from GPU

Conclusion and Future Work

Conclusion

- 1. Runtime system for hierarchical LU factorization
 - Achieved 4x speed up without too much effort in optimization when comparing with HLIBpro
 - Less runtime setup overhead exposed comparing with the tasked based runtime system that HLIBpro is using

- 2. Implementation of hierarchical LU factorization with nested basis
 - $O(n^2)$ construction and O(n) storage cost
 - Produced factorization results that is as accurate as dense and H-LU

Future Work

• 1. Aims on both performance and accuracy controlling

• 2. Runtime extendibility to nested basis factorization

Hierarchical LU Factorization	CPU	GPU
Non-nested (H-matrix)	HLIBpro	0
Nested (H2-matrix)	0	In the future

Thank you!

Any question is welcomed

Accumulation

- Admissible blocks contribute to their corresponding row/col
- Init basis with all 0s, fixed dim & rank
- Only accumulate admissible block on current recursion level
- Basis += d x rand_mat(d.n, rank);
- Some might be accumulated more than once
- And some others might never have been accumulated

Accumulation

- Recursion:
- If the node on basis tree has no children, generate empty basis for it (Red Arrow)
- Accumulation on lower level has no effect on the upper level and vice versa (Blue Arrow and Gray Arrow)

Accumulation (finished)

Propagation

- A non-leaf node with n children:
- Slice the basis into n parts b0 bn-1, where the row dimension matches its corresponding children.
- For children i:
- Basis += bi;
- Or
- Basis += bi x rand_mat(rank, rank); // More randomization

So that:

- 1. No empty low-level bases
- 2. Lower-level bases also takes higher-level admis blocks into calculation

Orthogonalization

- Basis gets updated with its orthogonalized version:
- Option 1: Interpolative decomposition (with randomization already completed)
- Basis = Basis.qr().getQ();
- Option 2: RSVD (with randomization already completed)
- Y = Basis.qr().getQ();
- U x S x VT = svd(YT x Basis);
- Basis = Y x U;
- RSVD is more costly but sorts the basis according to their singular values
- Might be better for adaptive-rank H2 construction

Translation

- Use translation matrices at non-leaf levels for more efficient storage
- basis = lower x Trans;
- Which is also:
- Trans = lowerT x basis;
- Lower is aligning the children bases diagonally:

• H2 hierarchy assembly should happen before translation for more efficient calculation

Cluster basis from admissibility condition

Rio Yokota - Introduction of FMM lecture

- Only one cluster determines values in U/V
- Use a "representative" block to obtain U/V

Matrix Vector multiplication with nested basis

- Two accumulator vectors: admissible and non-admissible
- Non-admissible: same as H-matrix

Matrix Vector multiplication with nested basis

- Two accumulator vectors: admissible and non-admissible
- Admissible: Approximates all admissible blocks

