1 第二章线性算子

1.1 §1 线性映射的矩阵

定义 设 V,W 是 F 上的线性空间,Hom(V,W) 是从 V 到 W 的线性映射的集合, 它是 F 上的线性空间.

1.1.1 §1.1 矩阵表示

设 $\vec{e}_1,...,\vec{e}_n$ 是 V 的基, $\vec{e}_1,...,\vec{e}_m$ 是 W 的基. $\phi \in Hom(V,W) \forall j \in 1,...,n$.

1.2 §5 特征子空间的应用

1.2.1 §5.1 线性算子和矩阵的对角化

定义 设 $A \in \mathcal{L}(V)$, A 在 F 中互不相同的特征根的集合称为 A 在 F 上的谱(spectrum)

定义 设 $A \in \mathcal{L}(V)$, 如果 A 在 V 的某组基下的矩阵是对角的,则称 A 是可对角化的。设 $A \in M_n(F)$, 如果 A 相似于某个对角矩阵,则称 A 在 F 上是可对角化的。

定理 5.1 设 $A \in \mathcal{L}(V)$,则下列断言等价:

- (i) A 可对角化
- (ii)A 有 n 个线性无关的特征向量, 其中 n=dim(V)
- (iii)V= $\bigoplus_{\lambda \in spec(A)}$

推论 5.1 设 $A \in \mathcal{L}(V)$,dimV=n, 如果 A 在 F 中有 n 个互不相同的特征根,则 A 可对角化.

定理 5.2 设 $A \in \mathcal{L}(V)$, 则 A 可对角化 \Leftrightarrow (i) \mathcal{X}_A 在 F 中可以分解为一次多项式之积 (ii)A 在 每个特征根的代数重数与几何重数相同.

1.2.2 §5.2 复数方阵的三角化

引理 5.2 设 V 是 \mathbb{C} 上的 n 维线性空间,n>0, $A \in \mathcal{L}(V)$, 则 A 有 n-1 维不变子空间.

定理 5.3 设 $A \in \mathcal{L}(V)$, 其中 $V \in \mathbb{C}$ 上 n 维线性空间, 则存在 V 中一组基, 使得 A 在该基下的矩阵是上三角型的.

推论 5.2 设 $A \in M_n(\mathbb{C})$, 则 A 相似于一个上三角型矩阵.

引理 5.3 设 $A \in \mathcal{L}(V)$,U 是 A-子空间, 定义:

 $\overline{\mathcal{A}}: V/U \to V/U$ $\vec{a} + U \mapsto \mathcal{A}(\vec{a}) + U$ 则 $\overline{\mathcal{A}} \in \mathcal{L}(V/U)$

定义 设 $A \in \mathcal{L}(V)$,U 是 A-子空间,则

 $\overline{\mathcal{A}}: V/U \to V/U$ $\vec{v} + U \mapsto \mathcal{A}(\vec{v}) + U$ 称为 \mathcal{A} 关于 U 的商算子.

命题 5.1 设 $A \in \mathcal{L}(V)$, U 是 A-子空间

 $\Pi: V \to V/U$ 自然投射

则 (i) $\Pi \circ A = \overline{A} \circ \Pi$, 其中 \overline{A} 是 A 关于 U 的商映射.

(ii) 设 $\varphi: V/U \to V/U$ 满足 $\pi \circ A = \varphi \circ \pi$, 则 $\varphi = \overline{A}$

定理 5.3 设 V 是 n 维线性空间,n>1, 设 $\mathcal{A} \in \mathcal{L}(V)$,U 是 \mathcal{A} -子空间,d=dimU>0, 设 $\vec{e}_1,...,\vec{e}_d$ 是 U 的基, $\vec{e}_1,...,\vec{e}_d$, $\vec{e}_{d+1},...,\vec{e}_n$ 是 V 的基. 记 A|_U 为 A_U, \mathcal{A} 关于 U 的商算子为 $\overline{\mathcal{A}}$. 令 A_U 为 A_U 在 $\vec{e}_1,...,\vec{e}_d$ 下的矩阵. $\overline{\mathcal{A}}$ 为 $\overline{\mathcal{A}}$ 在 $\vec{e}_{d+1},...,\vec{e}_n$ 下的矩阵,则 \mathcal{A} 在 $\vec{e}_1,...,\vec{e}_d$, $\vec{e}_{d+1},...,\vec{e}_n$ 下的矩阵

$$A = \begin{bmatrix} A_U & B \\ 0 & \overline{A} \end{bmatrix} \tag{1}$$

,其中 B $\in F^{d\times(n-d)}$

推论 5.2 沿用定理 5.3 中记号, $\mathcal{X}_{\mathcal{A}}(t) = \mathcal{X}_{\overline{\mathcal{A}}}(t)\mathcal{X}_{\mathcal{A}_{\mathcal{A}}}$

命题 5.2 设 $A \in \mathcal{L}(V)$.U 是 A-不变子空间, $P \in F[t]$ 则

- (i) U 是 $\mathcal{P}(\mathcal{A})$ -子空间
- (ii) 设 \overline{A} 和 $\overline{\mathcal{P}(A)}$ 是 \overline{A} 和 $\overline{\mathcal{P}(A)}$ 关于 \overline{U} 的商算子,则 $\overline{\mathcal{P}(A)} = P(\overline{A})$

定义 设 $A \in \mathcal{L}(V)$, $\vec{v} \in V$, 由 \vec{v} , $A(\vec{v})$, $A^2(\vec{v})$, ... 生成的子空间称为由 A 和 \vec{v} 生成的循环子空间, 记为 $F[A] \cdot \vec{v}$

命题 **5.3** 设 $A \in \mathcal{L}(V), \vec{v} \in V$

- (i) $F[A] \cdot \vec{v}$ 是 A-子空间
- (ii) $F[A] \cdot \vec{v} = \{p(A)(\vec{v}) | p \in F[t]\}$
- (iii) $dim F[A] \cdot \vec{v}$ 为 d⇔ \vec{v} , $A(\vec{v})$, ..., $A^{d-1}(\vec{v})$ 是 $F[A] \cdot \vec{v}$ 的一组基 (这里 $\vec{v} \neq \vec{0}$)

定义 设 $A \in \mathcal{L}(V), \vec{v} \in V, p \in F[t]$

- (i) 如果 $p(A)(\vec{v}) = \vec{0}$, 则称 p(t) 是关于 A 和 \vec{v} 的零化多项式
- (ii) 在关于 A 和 \vec{v} 的所有零化多项式中,非零,次数最低,首一的多项式,称为关于 A 和 \vec{v} 的极小多项式,记为 $\mu_{A,\vec{v}}$

命题 **5.4** 设 $A \in \mathcal{L}(V)$, $\vec{v} \in V$

- (i) $\mu_{\mathcal{A},\vec{v}}$ 存在且唯一
- (ii) 若 $p \in F[t]$ 是关于 A 和 \vec{v} 的零化多项式, 则 $\mu_{A.\vec{v}}|p$. 特别地 $\mu_{A.\vec{v}}|\mu_A$
- (iii) $dim_F F[\mathcal{A}] \cdot \vec{v} = deg\mu_{\mathcal{A}, \vec{v}}$

引理 5.4 设 $A \in \mathcal{L}(V)$ 且 $\vec{v} \in V$, 如果 $V = F[A] \cdot \vec{v}$, 则 $\mu_A(t) = \mathcal{X}_A(t)$, 特别地 $\mathcal{X}_A(t)$ 零化 A.

Cayley-Hamilton 定理 设 $A \in \mathcal{L}(V)$, 则 $\mathcal{X}_{A}(t)$ 零化 A.

推论 5.3 设 $A \in \mathcal{L}(V)$, 则 $\mu_A | \mathcal{X}_A$, 特别地, $deg \mu_A \leq dim V$

推论 5.4(Cayley-Hamilton 定理的矩阵版) 设 $A \in M_n(F)$, 则

- (i) $\mathcal{X}_A(t)$ 零化 A
- (ii) $\mu_A(t)|\mathcal{X}_A(t)$, 特别地, $deg\mu_A \leq n$

1.3 §6 各种类型的直和分解

1.3.1 §6.1 预备引理

引理 **6.1** 设 $p_1, ..., p_k, q \in F[t] \setminus \{0\}$

- (i) 如果 $\forall i \in \{1,...,k\}, gcd(p_I,q) = 1, \ \ \ \ \ \ gcd(p_1,...,p_k,q) = 1$
- (ii) 如果 $p_1,...,p_k$ 两两互素, 且 $p_I|q,i=1...k$, 则 $(p_1,\cdots,p_k)|q$.

引理 6.2 设 $p_1,...,p_k \in F[t]\setminus\{0\}$ 两两互素, 则 $lcm(p_1,...,p_k) = p_1...p_k$

引理 6.3 设 $A \in \mathcal{L}(V)$, $f \in F[t]$ 零化 A, 设 f = pq, 其中 $p, q \in F[t] \setminus F$ 且 gcd(p, q) = 1, 令 $K_p = ker(p(A))$ 和 $K_q = ker(q(A))$, 则

- (i) K_p 和 K_q 是 A-子空间且 $V = K_p \bigoplus K_q$
- (ii) $p(A)|_{K_q}$ 和 $q(A)|_{K_p}$ 上都是双射
- (iii) 设 $f = \mu_A$ 且 p, q 都首一, 则 p 和 q 分别是 $A|_{K_q}$ 和 $A|_{K_q}$ 的极小多项式.

1.3.2 §6.2 广义特征子空间分解

定义 设 $A \in \mathcal{L}(V)$, μ_A 在 F[t] 中的不可约因式分解为 $\mu_A = p_1^{m_1}...p_s^{m_s}$, 其中 $p_1,...,p_s \in F[t] \setminus F$, 首一, 不可约, 两两互素, $m_1,...,m_s \in \mathbb{Z}^+$, 则 $ker(p_i^{m_i}(A))$ 称为 A 关于因子 p_i 的广义子空间, 记为 $V(p_i)$.

注 $V(p_I)$ 是 A-子空间

注 书中定义的根子空间是广义子空间的特殊情形, 我们将在之后说明.

定理 6.1 利用上述定义中的记号, 我们有 $V = V(p_1) \oplus ... \oplus V(p_s)$ 且

- (i) $p_I^{m_I}$ 是 $\mathcal{A}|_{V(p_i)}$ 的极小多项式
- (ii) $p_I(A)$ 在 $V(p_1) \oplus ... \oplus V(p_{i-1}) \oplus V(p_{i+1}) \oplus ... \oplus V(p_s)$ 上是可逆的.

推论 6.1 设 $A \in \mathcal{L}(V)$, 则 A 可对角化 $\Leftrightarrow \mu_{A}(t) = (t - \alpha_{1})...(t - \alpha_{m})$, 其中 $\alpha_{1},...,\alpha_{m} \in F$, 两两不同.

推论 6.2 设 $A \in M_n(F)$, 则 A 可对角化 $\Leftrightarrow \mu_A = (t - \alpha_1)...(t - \alpha_s)$, 其中 $\alpha_1, ..., \alpha_s \in F$, 两 两不同.

1.3.3 **§**6.3 循环子空间的分解

命题 5.3 基本性质:

- (i) $F[A] \cdot \vec{v}$ 是 A-子空间,
- (ii) 如果 $d = dim F[A] \cdot \vec{v}$, 则 \vec{v} , $A(\vec{v})$, ..., $A^{d-1}(\vec{v})$ 是 F[A] 的基
- (iii) 如果 \vec{v} , $\mathcal{A}(\vec{v})$, ..., $\mathcal{A}^{d-1}(\vec{v})$ 线性无关, 但 \vec{v} , $\mathcal{A}(\vec{v})$, ..., $\mathcal{A}^{d-1}(\vec{v})$, $\mathcal{A}^d(\vec{v})$ 线性相关, 则 $d=dimF[\mathcal{A}]\cdot\vec{v}$
- (iv) $F[A] \cdot \vec{v} = \{p(A)(\vec{v}) | p \in F[t]\}$

定理 6.2 设 $A \in \mathcal{L}(V)$, 则 $\exists \vec{v}_1, ..., \vec{v}_k \in V$ 使得 $V = F[A] \cdot \vec{v}_1 \oplus ... \oplus F[A] \cdot \vec{v}_k$.

推论 6.3(Cayley-Hamilton 定理的加强版) 设 $A \in \mathcal{L}(V)$,

- (i) $\mu_{\mathcal{A}}|\mathcal{X}_{\mathcal{A}}$
- (ii) 设 p 是 \mathcal{X}_A 的一个不可约因子, 则 $p|\mu_A$

推论 6.4 设 $F = \mathbb{C}, A \in \mathcal{L}(V)$, 则

- (i) \mathcal{X}_A 的根与 μ_A 的根相同 (不计重数)
- (ii) \mathcal{A} 可对角化 $\Leftrightarrow gcd(\mu_{\mathcal{A}}, \mu_{\mathcal{A}}^{'}) = 1$

1.3.4 §6.4 根子空间分解

定义 设 $F = \mathbb{C}, A \in \mathcal{L}(V), \lambda \in spec_{\mathbb{C}}(A), A$ 关于 λ 的根子空间是 $\{\vec{v} \in V | \exists k \in \mathbb{N}, (A - \lambda \mathcal{E})^k(\vec{v}) = \vec{0}\}$, 记为 $V(\lambda)$

引理 6.4 利用上述定义中的记号,则 $(t-\lambda)|\mu_A$ 且 $V(t-\lambda)=V(\lambda)$.

1.3.5 §6.5 循环子空间的进一步的性质

命题 6.1 设 $A \in \mathcal{L}(V)$, 则 $V \in A$ -循环的 $\Leftrightarrow deg(\mu_A) = dim V$.

命题 6.2 设 $A \in \mathcal{L}(V)$ 且 V 是 A-循环的, 设 $\mu_A = t^n + \alpha_{n-1}t^{n-1} + ... + \alpha_0, \vec{v}$ 是 V 关于 A 的循环向量, 则 A 在基底 \vec{v} , $A(\vec{v})$, ..., $A^{n-1}(\vec{v})$ 下的矩阵是

$$\begin{bmatrix} 0 & 0 & \cdots & 0 & -\alpha_0 \\ 1 & 0 & \cdots & 0 & -\alpha_1 \\ 0 & 1 & \cdots & 0 & -\alpha_2 \\ & & \cdots & & \\ 0 & 0 & \cdots & 1 & -\alpha_{n-1} \end{bmatrix}_{n \times n}$$

1.3.6 §6.3(实为 6.5) A-不可分子空间

定义 设 $A \in \mathcal{L}(V)$, $U \subset V$ 是 A-子空间, 如果 U 不能写成两个维数为正的 A-子空间的直和,则称 U 是 A-不可分的 (indecomposable), 否则称为 A-可分的

定理 6.3 设 $A \in \mathcal{L}(V)$, 则 V 是有限个 A-不可分子空间的直和.

命题 6.3 设 $A \in \mathcal{L}(V)$, 则 V 是 A-不可分的 \Leftrightarrow

- (i) μ_A 是 F 上某个不可约多项式的幂次
- (ii) V 是 A-循环的.

定理 6.4 设 $A \in \mathcal{L}(V)$, 则 $V = V_1 \oplus \cdots \oplus V_l$, 其中 V_i 既是 A-不可分的, 也是 A-循环的, 特别地 $A|_{V_i}$ 的极小多项式是 F[t] 中某个不可约多项式的幂次

命题 6.4(复 Jordan 块的存在性) 设 $A \in \mathcal{L}(V), F = \mathbb{C}$, 如果 $V \in A$ -不可分的, 则存在 V的一组基, 使得 A 在该基下的矩阵为

$$J_n(\lambda) = \begin{bmatrix} \lambda & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda \end{bmatrix}_{n \times n}$$

 $\lambda \in \mathbb{C}$, 称为关于 λ 的 n 阶 Jordan 块

1.4 §7 复矩阵的 Jordan 标准型 (存在性)

定理 7.1 设 $A \in M_n(\mathbb{C})$,则存在 $\lambda_1, \dots, \lambda_l \in \mathbb{C}$ (不必两两不同), $d_1, \dots, d_l \in \mathbb{Z}^+$,使得

$$A \sim_s J_{\mathcal{A}} = \begin{bmatrix} J_{d_1}(\lambda_1) & & & 0 \\ & \ddots & & \\ & & \ddots & \\ & & & \ddots & \\ 0 & & & J_{d_l}(\lambda_l) \end{bmatrix}_{n \times n}$$

注 (1) $\lambda_1, \dots, \lambda_l$ 互不相同的元素组成 $spce_{\mathbb{C}}(A)$

$$(2) \mathcal{X}_A = (t - \lambda_1)^{d_1} \cdots (t - \lambda_l)^{d_l}$$

$$\mu_A = lcm((t - \lambda_1)^{d_1} \cdots (t - \lambda_l)^{d_l})$$

(3) 如果 $d_1 = \cdots = d_l = 1$, 则

$$J_{\mathcal{A}} = \begin{bmatrix} \lambda_1 & & & 0 \\ & \ddots & & \\ & & \ddots & \\ 0 & & & \lambda_l \end{bmatrix}_{n \times n}$$

即 A 可对角化

注 d_1, \dots, d_l 是否唯一?l 是否唯一? 即 J_A 是否唯一

1.5 §8 矩阵的准素有理规范型简介

定理 8.1 设 $A \in M_n(F)$, 则存在 $d_1, \dots, d_l \in \mathbb{Z}^+$, 则存在 $l_1, \dots, l_s \in \mathbb{Z}^+, p_1, \dots, p_s \in F[t] \setminus F$ 不可约, 使得

$$A \sim egin{bmatrix} J_{l_1}(p_1) & & & 0 & & \\ & \ddots & & & & \\ & & & \ddots & & \\ 0 & & & J_{l_s}(p_s) & \end{bmatrix}_{n imes n}$$

1.6 **§**9 初等因子组

定义 重集 (multi-sets)-集合中相同的元素允许出现若干次

定义 $A \in \mathcal{L}(V), V = V_1 \oplus \cdots \oplus V_l(*),$

其中 V_1, \dots, V_l 是 A-不可分的,设 $A_i = A|_{V_i}, I = 1, \dots, l$,则重集 $\{\mu_{A_1}, \dots, \mu_{A_l}\}$ 称为 A 关于 (*) 的初等因子组.

目的 (1) 证明初等因子组由 A 确定,与 V 的 A-不可分子空间的直和分解无关 (2) 通过初等因子组可以"唯一"地确定 Jordan 标准型

引理 9.1 设 $\mathcal{A} \in \mathcal{L}(V), V = F[\mathcal{A}] \cdot \vec{v}, \mu_{\mathcal{A}, \vec{v}} = pq$, 其中 $p, q \in F[t] \setminus F$, 首一, 令 $\vec{w} = q(\mathcal{A})(\vec{v})$, 则 $\mu_{\mathcal{A}, \vec{w}}$.

引理 9.2 设 $A \in \mathcal{L}(V), V = F[A] \cdot \vec{v}$, 设 $\mu_A = p^m$, 其中 $p \in F[t]$, 则 $\forall k \in \mathbb{N}$

$$rank(p(\mathcal{A})^k) = \begin{cases} (m-k)deg(p) & 0 \le k < m \\ 0 & k \ge m \end{cases}$$

引理 9.3 设 $A \in \mathcal{L}(V)$, $f \in F[t]$, 如果 $U \subset V$ 是 A-不变的, 则 U 也是 f(A) — 不变的.

引理 9.4 如上假设, 再令 $V = U_1 \oplus \cdots \oplus U_l$, 其中 $U_1, ..., U_l$ 是 A-不变子空间, 则 $f(A)(V) = f(A)(U_1) \oplus \cdots \oplus f(A)(U_l)$

定理 9.1 设 $A \in \mathcal{L}(V)$, $\mu_A = p^m$, 其中 $p \in F[t]$ 不可约, 对 $\forall l \in \mathbb{Z}^+$, 令 n_l 为 p^l 是 A 关于 某个 A-不可分子空间直和分解的初等因子组的重数. 再令 $r_l = rank(p(A)^l)$, 其中 $l \in \mathbb{N}$, 则 $n_l = \frac{1}{d}(r_{l+1} + r_{l-1} - 2r_l)$

定理 9.2 设 $A \in \mathcal{L}(V)$, μ_A 的两两不同、首一的不可约因子是 $p_1, \dots, p_s \in F[t]$, 对 $\forall I \in \{1, \dots, s\}, l \in \mathbb{Z}^+$, 令 N(i, l) 是 p_i^l 在 A 的某个初等因子组中的重数, $R_{i,l} = rank(p_I(A)^l)$, 则 $N(i, l) = \frac{1}{dea(p_I)}(R_{i,l+1} + R_{i,l-1} - 2R_{i,l})$

1.7 §10 Jordan 标准型的唯一性和应用

2 第三章内积空间 9

2 第三章内积空间

2.1 1 欧氏空间

2.1.1 1.1 内积

设 V 是 \mathbb{R} 上 n 维线性空间 $f: V \times V \to \mathbb{R}$ 是对称双线性型, 使得 f 对应的二次型是正定的.

双线性: $\forall \vec{x}, \vec{y}, \vec{z} \in V, \alpha, \beta \in \mathbb{R}$,

 $f(\alpha \vec{x} + \beta \vec{y}, \vec{z}) = \alpha f(\vec{x}, \vec{z}) + \beta f(\vec{y}, \vec{z})$

 $f(\vec{x}, \alpha \vec{y} + \beta \vec{z}) = \alpha f(\vec{x}, \vec{y}) + \beta f(\vec{x}, \vec{z})$

对称: $f(\vec{x}, \vec{y}) = f(\vec{y}, \vec{z})$

二次型: $q(\vec{x}) = f(\vec{x}, \vec{x})$ 正定: $\forall \vec{x} \in V \setminus \{\vec{0}\}, q(\vec{x}) > 0$,称 (V, f) 是一个欧氏空间, 其中 f 是 V 上的内积

注 设 $\vec{x} \in V$, 则

(i) $\vec{x} \cdot \vec{0} = \vec{0}$

(ii) $\vec{x} \cdot \vec{x} = \vec{0} \Leftrightarrow \vec{x} = \vec{0}$

定义 设 $\vec{x} \in V, \sqrt{\vec{x} \cdot \vec{x}},$ 称为 \vec{x} 的长度, 记为 $|\vec{x}|$

定义 设 $\vec{x}, \vec{y} \in V, |\vec{x} - \vec{y}|$ 称为 \vec{x} 与 \vec{y} 的距离.

命题 1.1 设V是欧氏空间

- (i) $\forall \vec{x} \in V, \vec{0} \cdot \vec{x} = 0$
- (ii) $\vec{x} \cdot \vec{x} = 0 \Leftrightarrow \vec{x} = \vec{0}$

注 在本节中 V 是欧氏空间, $\vec{v} \in V, L_{\vec{v}} : V \to \mathbb{R}\vec{x} \mapsto \vec{v} \cdot \vec{x}$ 是线性函数, 即 $L_{\vec{v}} \in V^*$

定义 设 $\vec{v}_1, \dots, \vec{v}_s \in V, G(\vec{v}_1, \dots, \vec{v}_s) = (\vec{v}_i \cdot \vec{v}_j)_{i=1,\dots,s,j=1,\dots,s}$ 称为 $\vec{v}_1, \dots, \vec{v}_s$ 的 Gram 矩 阵, $G(\vec{v}_1, \dots, \vec{v}_s)$ 是 s 阶实对称方阵

定理 1.1 设 $\vec{v}_1, \dots, \vec{v}_s \in V$,

 $\vec{v}_1, \dots, \vec{v}_s$ 线性相关 $\Leftrightarrow G(\vec{v}_1, \dots, \vec{v}_s)$ 满秩

2 第三章内积空间 10

2.1.2 1.2 长度 (范数) 和距离

定义 设 $\vec{x} \in V, \sqrt{\vec{x} \cdot \vec{x}}$ 称为 \vec{x} 的长度或范数, 记为 $|\vec{x}|$ 或 $||\vec{x}||$.

命题 1.2(Cauchy-Buniakowski 不等式) 设 $\vec{x}, \vec{y} \in V, |\vec{x} \cdot \vec{y}| \leq |\vec{x}||\vec{y}|;$ 等号成立 $\Leftrightarrow \vec{x}, \vec{y}$ 线性相关

定义 设 $\vec{x}, \vec{y} \in V, \vec{x}, \vec{y}$ 之间的距离定义为 $|\vec{x} - \vec{y}|$

注 $\vec{x} \in V$, 如果 $|\vec{x}| = 1$, 则称 \vec{x} 是单位向量

2.1.3 1.5 正交矩阵

定义 设 $A \in GL_n(\mathbb{R})$, 如果 $A^t = A$, 则称 A 是正交矩阵.

定理 1.3 设 V 的一组单位正交基是 $\vec{e}_1, \dots, \vec{e}_n$, 而 $\vec{e}_1, \dots, \vec{e}_n$ 是 V 的一组基且 $A \in GL_n(\mathbb{R}), (\vec{e}_1, \vec{e}_n) = (\vec{e}_1, \dots, \vec{e}_n)A$, 则 \vec{e}_1, \vec{e}_n 是单位正交基 $\Leftrightarrow A$ 是正交矩阵.

命题 1.3 设 A 是正交矩阵, 则

- (i) $det(A) = \pm 1$
- (ii) A^t 即 A^{-1} 也是正交矩阵,
- (iii) 再设 B 是正交矩阵, 则 AB 也是正交矩阵.

2.1.4 1.6 正交相似

定义 设 $A, B \in M_n(\mathbb{R})$, 如果存在 $P \in O_n(\mathbb{R})$, 使得 $B = P^{-1}AP$, 则称 $B \subseteq A$ 正交相似,记为 $A \sim_o B$

注 如果 $A \sim_o B$, 则 $A_s B \perp A \sim_c B$

问题 给定 $A \in M_n(\mathbb{R})$, 求 A 在正交相似下的"标准型"

命题 1.4 \sim 是等价关系

2 第三章内积空间 11

定义 设 $U \subset V$, 子空间,U 的正交补 $U^{\perp} = \{\vec{v} \in V | \forall \vec{u} \in U, \vec{v} \perp \vec{u}\}$

命题 1.5 设 $U \subset V$, 子空间, 则

- (i) U^{\perp} 是子空间
- (ii) $V = U \bigoplus U^{\perp}$
- (iii) $(U^{\perp})^{\perp} = U$

2.2 2 正规算子与正规矩阵

2.2.1 2.1 伴随算子

定义 设 V 是 n 维欧氏空间, $A \in \mathcal{L}(V)$, 设 $A^* \in \mathcal{L}(V)$, 使得 $\forall \vec{x}, \vec{y} \in V, A(\vec{x}) \cdot \vec{y} = \vec{x} \cdot A^*(\vec{y})$, 则称 A^* 是 A 的伴随算子.

伴随算子: $\phi:V\to V^*$

 $\vec{v} \mapsto L_{\vec{v}}$

 $\phi(\vec{v}) = 0^*, L_{\vec{v}}(\vec{u}) = 0 \Leftrightarrow \vec{u} \in V, \vec{v} \cdot \vec{u} = 0 \Leftrightarrow ker(\phi) = \{\vec{0}\} \Leftrightarrow \phi \text{ 是线性同构}.$

定理 2.1 设 $A \in \mathcal{L}(V)$, 则

- (i) A 的伴随算子存在且唯一
- (ii) 设 $\vec{e_1}, \cdots, \vec{e_n}$ 是 V 的一组单位正交基, 且 A 在 $\vec{e_1}, \cdots, \vec{e_n}$ 下的矩阵是 A, 则 A 的伴随算子在 $\vec{e_1}, \cdots, \vec{e_n}$ 下的矩阵是 A^t .