

Model Optimization and Tuning Phase Template

Date	12 July 2024
Team ID	SWTID1720108776
Project Title	Ecommerce Shipping Prediction Using Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Selected 3 models for Hyper parameter Tuning

Model	Tuned Hyperparameters	Optimal Values
SVM(Support Vector Machine)	<pre>Kernel, C, gamma. parameters={ 'kernel':['rbf'], 'C':[0.1,0.01], 'gamma':[0.01,0.0001] }</pre>	Accuracy = 70% print(fit1.best_estimatorfit1.best_paramsfit1.best_score_) SVC(C=0.1, gamma=0.01) {'C': 0.1, 'gamma': 0.01, 'kernel': 'rbf'} 0.6996190476190476
Random Forest	n_estimators, criterion, max_depth, max_features	Accuracy = 74%


```
print(fit2.best_estimator_,fit2.best_params_,fit2.best_score_)
                                                   param_grid = {
                                                                                                                                                             RandomForestClassifier(criterion='entropy', max_depth=9, max_features='log 2',
                                                                                                                                                             n_estimators=500, random_state=1) {'criterion': 'entr
opy', 'max_depth': 9, 'max_features': 'log2', 'n_estimators': 500} 0.7364761
904761905
                                                             'n_estimators': [200, 300, 500],
                                                             'criterion': ['entropy'],
                                                             'max_depth': [8,9],
                                                              'max_features': ['log2','sqrt']
                                                min_child_weight, gamma,
                                                                                                                                                            Accuracy = 72%
                                                colsample_bytree, max_depth
                                                                                                                                                              print(fit3.best_estimator_,fit3.best_params_,fit3.best_score_)
                                                                                                                                                             XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bynode=None, colsample_byteve=0.6, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=Non
XG Boost
                                                   params = {
                                                            'min_child_weight': [10, 20],
                                                                                                                                                            e,
gamma=2.5, grow_policy=None, importance_type=None,
interaction_constraints*None, learning_rate=0.5, max_bin=None,
max_cat_threshold=None, max_cat_to_onehot=None,
max_delta_step=None, max_depth=5, max_leaves=None,
min_chid_weight=10, missing=nam, monotone_constraints=None,
multi_strategy=None, __estimators=100, __jobs=None, nthread=3,
num_paralle_tree=None, __) {`colsample_bytere': 0.6, 'gamm
a': 2.5, 'max_depth': 5, 'min_chid_weight': 10) 0.7291428571428572
                                                             'gamma': [1.5, 2.0, 2.5],
                                                             'colsample_bytree': [0.6, 0.8, 0.9],
                                                             'max_depth': [4, 5, 6]
```

Performance Metrics Comparison Report (2 Marks):

Model	Baseline Metric					Optimized Metric
Logistic Regression	ypred=lr.prediprint(classifist of the print(classifist of the print(classifist of the print(classifist of the print(confusion of the prin	ocation_rep precision 0.66 0.69 0.68 0.68	necall 0.73 0.62 0.67 0.67	f1-score 0.69 0.65 0.67 0.67	support 1321 1305 2626 2626 2626	Not done Hyper parametric Tuning, Selected best 3 for tuning

Decision Tree	ypred2=dt.predict(x_test) print(classification_report(y_test,ypred2)) precision recall f1-score support 0 0.71 0.69 0.70 1321 1 0.69 0.71 0.70 1305 accuracy 0.70 0.70 2626 macro avg 0.70 0.70 0.70 2626 weighted avg 0.70 0.70 0.70 2626 [33]: print(confusion_matrix(y_test,ypred2)) [[910 411] [377 928]]	Not done Hyper parametric Tuning, Selected best 3 for tuning
KNN	<pre>ypred3=knn.predict(x_test) print(classification_report(y_test,ypred3))</pre>	Not done Hyper parametric Tuning, Selected best 3 for tuning
SVM		<pre>print(fit1.best_estimator_,fit1.best_params_,fit1.best_score_) SVC(C-0.1, gamma=0.01) {'C': 0.1, 'gamma': 0.01, 'kernel': 'rbf'} 0.69961904 76190476</pre>

	- Const.
	<pre>ypred1=rf.predict(x_test) print(classification_report(y_test,ypred1))</pre>
	precision recall f1-score support
	0 0.69 0.86 0.77 1321 1 0.81 0.62 0.70 1305 print(fit2.best_estimator_,fit2.best_params_,fit2.best_score_) RandomForestClassifier(criterions'entropy', max_depth=9, max_featuress')
Random forest	accuracy 0.74 2626 macro avg 0.75 0.74 0.73 2626 weighted avg 0.75 0.74 0.73 2626
	[30]:
	<pre>print(confusion_matrix(y_test,ypred1))</pre>
	[[1130 191] [501 804]] [41]: ypred5=xg.predict(x_test)
	<pre>print(classification_report(y_test,ypred5)) precision recall f1-score support print(fit3.best_estimator_,fit3.best_params_,fit3.best_score_)</pre>
XG boost	XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bytreese, callbacks=None, colsample_bytreese, colsample_bytreese, colsample_bytreese, colsample_bytreese, colsample_bytreese, colsample_bytreese, colsample_bytreese, colsample_bytreese, callbacks=None, colsample_bytreese, colsample_b

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	This model was chosen for its superior performance, achieving an accuracy of 74%, the highest among all evaluated models. Random Forest is renowned
	for its robustness and ability to handle large datasets with high
	dimensionality. It operates by constructing multiple decision trees during training and outputting the mode of the classes for classification tasks,
Random Forest	ensuring improved accuracy and reduced overfitting.