Making Reinforcement Learning Practical For Real World Developers

Praveen Veerath
Sr. Al Solutions Architect
Amazon Web Services

THE AWS ML STACK

Broadest and deepest set of capabilities

AI Services

VISION		SPEECH		LANGUAGE		CHATBOTS	FORECASTING	RECOMMENDATIONS	
@	®	•			A E E	E G	\[\(\phi\)\[\(\phi\)\]	ad a	®
R E K O G N I T I O N I M A G E	REKOGNITION VIDEO	TEXTRACT		TRANSCRIBE	TRANSLATE	COMPREHEND & COMPREHEND MEDICAL	LEX	FORECAST	P E R S O N A L I Z E

ML Services

Amazon SageMaker	Ground Truth	Notebooks	Algorithms + Marketplace	Reinforcement Learning	Training	Optimization	Deployment	Hosting

ML Frameworks + Infrastructure

FRAMEWORKS	INTERFACES	INFRASTRI	UCTURE					
↑ TensorFlow mxnet	⊘ GLUON	j	Õ	Ō	Ó	2)		
PYT <mark>Ö</mark> RCH	K Keras	EC2 P3 & P3DN			FPGAS	G R E E N G R A S S	ELASTIC INFERENCE	INFERENTIA

Reinforcement Learning in the broader AI context

Machine Learning Overview

SUPERVISED

Example Driven
Training – every
datum has a
corresponding label

UNSUPERVISED

No labels for training data

REINFORCEMENT

Learns through consequences of actions in a specific environment

How do you build machine learning models that can make decisions when there is no labeled data?

Complexity vs Data

Amount of labeled training data required

How do you learn in RL?

Learn by interacting with the environment

Trial and error

Observe results

Optimize learning strategy to maximize long term reward

Model learns how to make complex decisions

What is an RL environment?

Real-world or a representation of the real world

Programmed to represent real world conditions

Enables interaction with user or a computer program

Dynamic and updates itself based on the interactions and programmed behavior

How SageMaker RL works

Let's train our humanoid, Harry, to walk

The players

At first, Harry can't even stand up

Actions and Observations

Learning from Harry's actions and observations

Interactions in the environment generate training data

Training results in model updates

Harry learns to stand and step

Multiple training episodes improve learning

RL Agents try to maximize rewards

After many episodes of training

Eventually, Harry learns how to walk and run

You can continue training Harry to jump obstacles, play games, dance, and more

Evaluate and deploy trained models

AWS DeepRacer Origin

How can we put
Reinforcement
Learning
in the hands of all
developers? *literally*

Our Objective: Teach developers RL

AWS DeepRacer Car Specifications

Car: 1/18th scale 4WD with monster truck chassis

CPU: Intel Atom™ Processor

Memory: 4GB RAM

Storage: 32GB (expandable)

Wi-Fi: 802.11ac

Camera: 4 MP camera with MJPEG

Software: Ubuntu OS 16.04.3 LTS, Intel® OpenVINO™ toolkit, ROS Kinetic

Drive battery: 7.4V/1100mAh lithium polymer

Compute battery: 13600mAh USB-C PD

Ports: 4x USB-A, 1x USB-C, 1x Micro-USB, 1x HDMI

Sensors: Integrated accelerometer and gyroscope

AWS DeepRacer Architecture

Reinforcement Learning with DeepRacer

MODEL

AGENT

ACTION

ENVIRONMENT

GOAL

Coordinate system and track waypoints

How to train a reinforcement learning model.

Training an RL model

Training is an iterative process. In a simulator the agent explores the environment and builds up experience. The experiences collected are used to update the neural network periodically and the updated models are used to create more experiences.

With AWS DeepRacer, we are training a vehicle to drive itself. It can be tricky to visualize the process of training, so let's take a look at a simplified example.

Previous

Reward Function Example

```
def reward_function(params):
    Example of rewarding the agent to follow center line
   # Read input parameters
    track_width = params['track_width']
    distance_from_center = params['distance_from_center']
   # Calculate 3 markers that are at varying distances away from the center line
   marker 1 = 0.1 * track width
   marker_2 = 0.25 * track_width
    marker_3 = 0.5 * track_width
   # Give higher reward if the car is closer to center line and vice versa
    if distance from center <= marker 1:
        reward = 1.0
    elif distance from center <= marker 2:
        reward = 0.5
    elif distance_from_center <= marker_3:</pre>
        reward = 0.1
    else:
        reward = 1e-3 # likely crashed/ close to off track
    return float(reward)
```


Understand the model: Grad-CAM

Reward debugging

Reward Function – Center Lane

Reward Function – Left Lane

Sim2Real Debug

Optimal Path

Converged path

- 2.0

- 1.5

- 1.0

- 0.5

- 0.0

-0.5

SageMaker RL + AWS RoboMaker accelerate learning for AWS DeepRacer

You can use commercial simulation environments

MATLAB[®] and Simulink[®] for modeling and simulation

Customers are using Amazon SageMaker RL

SyntheticGestalt

Scientific Research by Artificially Intelligent Agents

DeepRacer Links

DeepRacer Simulator:

https://github.com/aws-robotics/aws-robomaker-sample-application-deepracer

SageMaker RL:

https://github.com/awslabs/amazon-sagemakerexamples/tree/master/reinforcement_learning/rl_deepracer_robo maker_coach_gazebo

Let's look at some other examples

These examples and many others are available today in Amazon SageMaker RL

Amazon SageMaker RL contextual bandits solution

personalized web services (content layout, ads, search, product recommendations, etc.) are continuously faced with decisions to make, often based on some contextual information

Autoscaling

Objective	Adapt instance capacity to load profile			
State	Current load, failed jobs, active machines			
Action	Remove or add machines			
Reward	Positive for successful transactions			
	High penalty for losing transactions			

https://aws.amazon.com/blogs/aws/amazon-sagemaker-rl-managed-reinforcement-learning-with-amazon-sagemaker/

Financial portfolio management

Objective	Maximize the value of a financial portfolio			
State	Current stock portfolio, price history			
Action	Buy, Sell stocks			
Reward	Positive when return is positive			
	Negative when return is negative			

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning/rl_portfolio_management_coach_customEnv

Thank You

