QUOTIENTS OF ALGEBRAIC GROUPS

1. Introduction

Throughout this notes k denote a field and G denote a group scheme over k. We denote by e the identity of G. We also fix a k-scheme X equipped with an action of G determined by morphism $a : G \times_k X \to X$.

2. Basic properties of scheme group quotients

The following result gives scheme-theoretic criterion for topological quotient in the case of group scheme actions.

Proposition 2.1. Let Y be a k-scheme with the trivial action of G and let $q: X \to Y$ be a G-equivariant morphism. Assume that q is submersive and and the morphism $G \times_k X \to X \times_Y X$ induced by a and pr_X is surjective. Then the diagram

$$\mathbf{G} \times_k X \xrightarrow{q} X \xrightarrow{q} Y$$

is a cokernel in the category topological spaces.

Proof. Let π_1 and π_2 be distinct projections $X \times_Y X \to X$. Pick points x_1 and x_2 in X such that $q(x_1) = q(x_2)$. Then there exists a field extension K over k such that $k(x_1) \subseteq K$ and $k(x_2) \subseteq K$. These give rise to K-points $\overline{x_1}$ and $\overline{x_2}$ of X such that their images under q is the same K-point of Y. Since we have an identification

$$(X \times_Y X)(K) = X(K) \times_{Y(K)} X(K)$$

induced by π_1 and π_2 , we derive that there exists a K-point \overline{z} of $X \times_Y X$ such that $\pi_1(\overline{z}) = \overline{x_1}$ and $\pi_2(\overline{z}) = \overline{x_2}$. Let z be the point of $X \times_Y X$ corresponding to \overline{z} . Then $\pi_1(z) = x_1$ and $\pi_2(z) = x_2$. By assumption a and pr_X induce surjection $G \times_k X \twoheadrightarrow X \times_Y X$. Thus there exists a point u of $G \times_k X$ such that $a(u) = x_1$ and $\operatorname{pr}_X(u) = x_2$. Thus x_1 and x_2 are identified by an equivalence relation on the underlying set of X which is determined by the pair (a,pr_X) . Therefore, fibers of q are equivalence classes with respect to this relation. Since q is submersive, this implies that the diagram

$$\mathbf{G} \times_k X \xrightarrow{p_{\mathbf{r}_X}} X \xrightarrow{q} Y$$

is a cokernel in the category topological spaces.

Now we prove a series results concerning fpqc descent. For this we fix a k-scheme Y with the trivial action of G and a G-equivariant morphism $q: X \to Y$. Let $g: Y' \to Y$ be a morphism of k-schemes and consider the cartesian square

$$X' \xrightarrow{g'} X$$

$$\downarrow^{q'} \downarrow^{q} \qquad \downarrow^{q}$$

$$Y' \xrightarrow{g} Y$$

of k-schemes. Note that X' admits a unique action a' of G such that the square above consists of G-equivariant morphism (we consider g as a G-equivariant morphism between trivial G-schemes).

Fact 2.2. Suppose that g is faithfully flat and quasi-compact. Assume that g' is (universally) submersive. Then g is (universally) submersive.

Proof. It suffices to prove that submersive morphisms have descent property. This follows from the fact that g (as faithfully flat and quasi-compact morphism) and q' are submersive. Details are left for the reader.

Fact 2.3. Suppose that g is faithfully flat and quasi-compact. Then the canonical morphism $X' \times_{Y'} X' \to X \times_Y X$ is faithfully flat and quasi-compact and there is the cartesian square

$$G \times_k X' \longrightarrow G \times_k X$$

$$\downarrow \qquad \qquad \downarrow$$

$$X' \times_{Y'} X' \longrightarrow X \times_Y X$$

in which the left vertical arrow is induced by $\langle a', \operatorname{pr}_{X'} \rangle : \mathbf{G} \times_k X' \to X' \times_k X'$, the right vertical arrow is induced by $\langle a, \operatorname{pr}_X \rangle : \mathbf{G} \times_k X \to X \times_k X$ and the bottom horizontal morphism is the canonical morphism.

Proof. Note that squares

$$X' \times_{Y'} X' \longrightarrow X' \times_{Y} X'$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad X' \times_{Y} X' \longrightarrow X \times_{Y} X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Y' \longrightarrow_{g} Y$$

$$X' \times_{k} X' \xrightarrow{g' \times_{k} g'} X \times_{k} X$$

are cartesian. Since both g and $g' \times_k g'$ are faithfully flat and quasi-compact, we derive that both morphisms $X' \times_{Y'} X' \to X' \times_Y X'$ and $X' \times_Y X' \to X \times_Y X$ are faithfully flat and quasi-compact. Then their composition i.e. the canonical morphism $X' \times_{Y'} X' \to X \times_Y X$ is faithfully flat and quasi-compact.

Finally we need the following notion

Definition 2.4. Let *Y* be a *k*-scheme with the trivial action of **G** and let $q: X \to Y$ be a **G**-equivariant morphism. Consider a pair

$$q_*\mathcal{O}_X \xrightarrow[q_*pr_X^\#]{} q_*\left(\operatorname{pr}_X\right)_* \mathcal{O}_{\mathbf{G}\times_k X} = q_*a_*\mathcal{O}_{\mathbf{G}\times_k X}$$

of morphisms of sheaves of rings on Y. Suppose that $q^{\#}: \mathcal{O}_{Y} \to q_{*}\mathcal{O}_{X}$ is a kernel of this pair. Then \mathcal{O}_{Y} is the sheaf of \mathbf{G} -invariants for q.

Proposition 2.5. Suppose that g is faitfully flat and quasi-compact. Assume that q' is quasi-compact, semiseparated and $\mathcal{O}_{Y'}$ is the sheaf of G-invariants for q'. Then \mathcal{O}_{Y} is the sheaf of G-invariants for q.

Proof. We denote by a' the action of G on X'. First note that q is semiseparated and quasi-compact morphism as these classes of morphisms admit descent along quasi-compact and faithfully flat

morphisms. Since q is quasi-compact, semiseparated and g is flat, we derive that for every quasi-coherent sheaf $\mathcal F$ on X the canonical morphism $q'_*g'^*\mathcal F \to g^*q_*\mathcal F$ is an isomorphism. Thus the diagram

$$\mathcal{O}_{Y'} \xrightarrow{q^{\#}} q'_{\star} \mathcal{O}_{X'} \xrightarrow{q'_{\star} a'^{\#} \atop q'_{\star} \operatorname{pr}_{Y'}^{\#}} q'_{\star} \left(\operatorname{pr}_{X'}\right)_{\star} \mathcal{O}_{G \times_{k} X'} = q'_{\star} a'_{\star} \mathcal{O}_{G \times_{k} X'}$$

is isomorphic to the diagram

$$g^*\mathcal{O}_Y \xrightarrow{g^*q^\#} g^*\left(q_*\mathcal{O}_X\right) \xrightarrow{g^*q_*n^\#} g^*\left(q_*\left(\operatorname{pr}_X\right)_*\mathcal{O}_{\mathbf{G}\times_kX}\right) = g^*\left(q_*a_*\mathcal{O}_{\mathbf{G}\times_kX}\right)$$

Since $\mathcal{O}_{Y'}$ is the sheaf of **G**-invariants for q', the first diagram is a kernel diagram. Hence the second is a kernel diagram. According to the fact that g is faithfully flat we deduce that the diagram

$$\mathcal{O}_{Y} \xrightarrow{q^{\#}} q_{*}\mathcal{O}_{X} \xrightarrow{q_{*}\mathbf{pr}_{Y}^{\#}} q_{*} \left(\mathbf{pr}_{X}\right)_{*} \mathcal{O}_{\mathbf{G}\times_{k}X} = q_{*}a_{*}\mathcal{O}_{\mathbf{G}\times_{k}X}$$

is also a kernel diagram. Thus \mathcal{O}_Y is the sheaf of **G**-invariants for q.

3. CATEGORICAL AND GEOMETRIC QUOTIENTS

Definition 3.1. Let *Y* be a *k*-scheme with the trivial action of **G** and let $q: X \to Y$ be a **G**-equivariant morphism. Suppose that the following conditions hold.

- (1) q is submersive.
- (2) The morphism $\mathbf{G} \times_k X \to X \times_Y X$ induced by $\langle a, \operatorname{pr}_x \rangle : \mathbf{G} \times_k X \to X \times_k X$ is surjective.
- (3) \mathcal{O}_{Y} is the sheaf of **G**-invariant for *q*.

Then *q* is a geometric quotient of *X*.

Corollary 3.2. Let q be a geometric quotient of X. Then the diagram

$$\mathbf{G} \times_k X \xrightarrow{p_{\mathbf{r}_X}} X \xrightarrow{q} Y$$

is a cokernel in the category of ringed spaces.

Proof. Due to the fact that \mathcal{O}_Y is the sheaf of **G**-invariants for q it suffices to prove that

$$\mathbf{G} \times_k X \xrightarrow{g} X \xrightarrow{q} Y$$

is the cokernel in the category of topological spaces. This follows from Proposition 2.1.

Definition 3.3. Let $q: X \to Y$ be a morphism of k-schemes such that the diagram

$$\mathbf{G} \times_k X \xrightarrow{g} X \xrightarrow{q} Y$$

is a cokernel in the category of k-schemes. Then $q: X \to Y$ is a categorical quotient of X.

Fact 3.4. Every geometric quotient is categorical.

Proof. Categorical quotient is a cokernel in the category of k-schemes. On the other hand geometric quotient is a cokernel in the category of locally ringed spaces and hence it also satisfies cokernel property in its full subcategory of k-schemes. Thus every geometric quotient is categorical.

Let $q: X \to Y$ be a morphism of k-schemes such that $q \cdot \operatorname{pr}_X = q \cdot a$. For a morphism $g: Y' \to Y$ of k-schemes consider the cartesian square

$$X' \xrightarrow{g'} X$$

$$q' \downarrow \qquad \qquad \downarrow q$$

$$Y' \xrightarrow{g} Y$$

Then there exists a unique action $a' : \mathbf{G} \times_k X' \to X'$ of \mathbf{G} on X' such that the square above consists of \mathbf{G} -equivariant morphism (we consider Y, Y' as \mathbf{G} -schemes equipped with trivial \mathbf{G} -actions). Keeping this in mind we have the following.

Definition 3.5. A morphism $q: X \to Y$ is a uniform categorical (geometric) quotient of X if for every flat morphism $g: Y' \to Y$ its base change $q': X' \to Y'$ is a categorical (geometric) quotient of X'.

Definition 3.6. A morphism $q: X \to Y$ is a universal categorical (geometric) quotient of X if for every morphism $g: Y' \to Y$ its base change $q': X' \to Y'$ is a categorical (geometric) quotient of X'.

Corollary 3.7. Let $g: Y' \to Y$ be a faithfully flat and quasi-compact morphism. Suppose that q' is a geometric quotient, then q is a geometric quotient.

Proof. This follows from Facts 2.2, 2.3 and Proposition 2.5.

In the next result we give a simple example of a universal geometric quotient.

Proposition 3.8. Suppose that **G** is a quasi-compact group scheme over k. Let Y be a k-scheme and consider $\mathbf{G} \times_k Y$ with the action of **G** induced by the regular action on the left factor. Then $\operatorname{pr}_Y : \mathbf{G} \times_k Y \to Y$ is a universal geometric quotient.

Proof. Clearly pr_Y is univerally submersive (it is even universally open). Let $\mu: \mathbf{G} \times_k \mathbf{G} \to \mathbf{G}$ be the multiplication morphism and let $\pi_{23}: \mathbf{G} \times_k \mathbf{G} \times Y \to \mathbf{G} \times_k Y$ be the projection on the last two factors. Then the morphism

$$\mathbf{G} \times_k \mathbf{G} \times_k \Upsilon \to (\mathbf{G} \times_k \Upsilon) \times_{\Upsilon} (\mathbf{G} \times_k \Upsilon) = \mathbf{G} \times_k \mathbf{G} \times_k \Upsilon$$

induced by $\langle \mu \times_k 1_Y, \pi_{23} \rangle : \mathbf{G} \times_k \mathbf{G} \times_k Y \to (\mathbf{G} \times_k Y) \times_k (\mathbf{G} \times_k Y)$ is an isomorphism. We show that \mathcal{O}_Y is the sheaf of \mathbf{G} -invariants for pr_Y . For this pick an affine open subset V of Y. It suffices to check that the diagram

$$\Gamma(V, \mathcal{O}_{Y}) \xrightarrow{\operatorname{pr}_{Y}^{\#}} \Gamma\left(\mathbf{G} \times_{k} V, \mathcal{O}_{\mathbf{G} \times_{k} Y}\right) \xrightarrow{\left(\mu \times_{k} 1_{Y}\right)^{\#}} \Gamma\left(\mathbf{G} \times_{k} \mathbf{G} \times_{k} V, \mathcal{O}_{\mathbf{G} \times_{k} \mathbf{G} \times_{k} Y}\right)$$

is a kernel. Since G is quasi-compact and separated (every group k-scheme is separated), we derive that the diagram above is isomorphic with

$$\Gamma(V, \mathcal{O}_{Y}) \xrightarrow{f \mapsto 1 \otimes f} \Gamma(\mathbf{G}, \mathcal{O}_{\mathbf{G}}) \otimes_{k} \Gamma(V, \mathcal{O}_{Y}) \xrightarrow{\underset{\chi \otimes f \mapsto 1 \otimes \chi \otimes f}{\chi \otimes f \mapsto 1 \otimes \chi \otimes f}} \Gamma(\mathbf{G}, \mathcal{O}_{\mathbf{G}}) \otimes_{k} \Gamma(\mathbf{G}, \mathcal{O}_{\mathbf{G}}) \otimes_{k} \Gamma(V, \mathcal{O}_{Y})$$

Thus the first diagram is the kernel diagram if $f \mapsto 1 \otimes f$ induces an isomorphism of $\Gamma(V, \mathcal{O}_Y)$ with subspace of $\Gamma(G, \mathcal{O}_G) \otimes_k \Gamma(V, \mathcal{O}_Y)$ given by formula

$$\{\chi \in \Gamma(\mathbf{G}, \mathcal{O}_{\mathbf{G}}) | \mu^{\#}(\chi) = 1 \otimes \chi\} \otimes_{k} \Gamma(V, \mathcal{O}_{Y})$$

Hence it suffices to prove that

$$\{\chi \in \Gamma(\mathbf{G}, \mathcal{O}_{\mathbf{G}}) | \mu^{\#}(\chi) = 1 \otimes \chi\} = \text{constant functions on } \mathbf{G}$$

For this pick a k-algebra A and let $g: \operatorname{Spec} A \to \mathbf{G}$ be an A-point. Next let $e: \operatorname{Spec} A \to \mathbf{G}$ be an A-point of \mathbf{G} which corresponds to the identity element of \mathbf{G} . Suppose that a regular function χ in \mathbf{G} satisfies $\mu^{\#}(\chi) = 1 \otimes \chi$. Then

$$g^{\#}(\chi) = \langle g, e \rangle^{\#} \mu^{\#}(\chi) = \langle g, e \rangle^{\#} (1 \otimes \chi) = e^{\#}(\chi)$$

Recall that e is given by the composition of the structural morphism $\operatorname{Spec} A \to \operatorname{Spec} k$ and the k-point $\operatorname{Spec} k \to \mathbf{G}$ determined by the identity of \mathbf{G} . Thus $g^{\#}(\chi)$ is an element of k. Since this follows for every $g:\operatorname{Spec} A \to \mathbf{G}$, we derive that χ is a constant function. This completes the proof of our claim that

$$\Gamma(V, \mathcal{O}_{Y}) \xrightarrow{\operatorname{pr}_{Y}^{\#}} \Gamma\left(\mathbf{G} \times_{k} V, \mathcal{O}_{\mathbf{G} \times_{k} Y}\right) \xrightarrow{\left(\mu \times_{k} 1_{Y}\right)^{\#}} \Gamma\left(\mathbf{G} \times_{k} \mathbf{G} \times_{k} V, \mathcal{O}_{\mathbf{G} \times_{k} \mathbf{G} \times_{k} Y}\right)$$

is the kernel diagram and hence \mathcal{O}_Y is the sheaf of **G**-invariants for pr_Y . Therefore, we proved that pr_Y is a geometric quotient of $\mathbf{G} \times_k Y$. Consider any morphism $Y' \to Y$. Then base change of pr_Y along this morphism is $\operatorname{pr}_{Y'}$. We conclude that pr_Y is a universal geometric quotient for $\mathbf{G} \times_k Y$.

4. Geometric quotients of separated actions

Definition 4.1. The action of **G** on *X* is *separated* if the morphism $\langle a, \operatorname{pr}_X \rangle : \mathbf{G} \times_k X \to X \times_k X$ has closed set-theoretic image.

Theorem 4.2. Let $q: X \to Y$ be a geometric quotient of X. Assume that q is universally submersive. Then the following assertions are equivalent.

- (i) The action of G on X is separated.
- (ii) Y is separated.

Proof. We have a cartesian square

$$\begin{array}{cccc}
X \times_{Y} X & & & & X \times_{k} X \\
\downarrow & & & & \downarrow q \times_{k} q \\
Y & & & & & Y \times_{k} Y
\end{array}$$

It follows that $X \times_Y X \hookrightarrow X \times_k X$ is a locally closed immersion. Since q is a geometric quotient, we derive that $\langle a, \operatorname{pr}_X \rangle$ factors as a surjective morphism $\mathbf{G} \times_k X \twoheadrightarrow X \times_Y X$ followed by the immersion $X \times_Y X \hookrightarrow X \times_k X$. Thus the action of \mathbf{G} on X is separated if and only if $X \times_Y X$ is a closed subscheme of $X \times_k X$. Since q is universally submersive, we derive that $q \times_k q$ is submersive. As

the square above is cartesian we derive that $\Delta_Y(Y) \subseteq Y \times_k Y$ is closed if and only if $X \times_Y X \subseteq X \times_k X$ is closed. Therefore, Y is separated if and only if the action of G on X is separated.

5. GEOMETRIC QUOTIENTS OF FREE ACTIONS AND PRINCIPAL BUNDLES

Definition 5.1. The action of **G** on *X* is *free* if the morphism $\langle a, \operatorname{pr}_X \rangle : \mathbf{G} \times_k X \to X \times_k X$ is a closed immersion.

Definition 5.2. Let x be a k-point of X. Suppose that the orbit morphism $\mathbf{G} \to X$ of x given by the composition

$$\mathbf{G} = \mathbf{G} \times_k \operatorname{Spec} k \xrightarrow{\operatorname{induced} \operatorname{by} x} \mathbf{G} \times_k X \longrightarrow X$$

is a closed immersion. Then the action of G on X has a closed free orbit at x.

Fact 5.3. *If the action of* G *on* X *is free, then every k-point of* X *has a closed free orbit.*

The following result states that over special type of local complete noetherian *k*-algebras geometric quotients of free actions correspond to trivial **G**-bundles.

Theorem 5.4. Suppose that k is an algebraically closed field and G is a smooth algebraic group over k. Let $q: X \to Y$ be a geometric quotient locally of finite type and let Y be the spectrum of a complete local noetherian k-algebra such that the residue field of the closed point of Y is k. Then the following assertions hold.

(1) If x is a k-point of X which has a closed free orbit, then there exists a G-equivariant, étale and surjective morphism $f: G \times_k Y \to X$ such that the triangle

is commutative and the morphism

$$Y = \operatorname{Spec} k \times_k Y \xrightarrow{e \times_k 1_Y} \mathbf{G} \times_k Y \xrightarrow{f} X$$

is a section of q.

(2) If the action of G on X is free, then f is an isomorphism.

The proof relies on two algebraic lemmas. The first describe free actions in context of complete rings (it is [Mumford et al., 1994, lemma on page 18]) and the second is a version of Hensel's lemma.

Lemma 5.4.1. Let (R, \mathfrak{m}, k) be a complete local noetherian k-algebra and let $\sigma : R \to R[[x_1, ..., x_n]]$ be a local morphism into a ring of formal power series over R. Assume that the composition

$$R \xrightarrow{\sigma} R[[x_1,...,x_n]] \xrightarrow{f \mapsto f \operatorname{mod}(x_1,...,x_n)} R$$

is the identity and the composition

$$R \xrightarrow{\sigma} R[[x_1, ..., x_n]] \xrightarrow{f \mapsto f \bmod \mathfrak{m}} (R/\mathfrak{m})[[x_1, ..., x_n]] = k[[x_1, ..., x_n]]$$

is surjective. Consider elements $y_1,...,y_n$ of R such that $\sigma(y_i) \mod \mathfrak{m} = x_i$ for i = 1,...,n. Then the composition

$$R \xrightarrow{\sigma} R[[x_1,...,x_n]] \xrightarrow{f \mapsto f \operatorname{mod}(y_1,...,y_n)} (R/(y_1,...,y_n))[[x_1,...,x_n]]$$

is an isomorphism.

Proof of the lemma. For convienience let ϕ denote the morphism given by the rule $r \mapsto \sigma(r) \mod (y_1, ..., y_n)$. Also denote $R/(y_1, ..., y_n)$ by S. According to assumptions we have

$$\sigma(y_i) = x_i + y_i + \sum_{j=1}^n x_j \cdot \mathfrak{m}[[x_1, ..., x_n]]$$

for each i. Thus $\phi(y_i) = \sum_{j=1}^n f_{ij} \cdot x_j$ where $f_{ij} \in S$ are elements such that the matrix $[f_{ij}]_{1 \le i,j \le n}$ is invertible in S. Hence

$$S[[x_1,...,x_n]] = S[[\phi(y_1),...,\phi(y_n)]]$$

and ϕ composed with $S[[\phi(y_1),...,\phi(y_n)]] \twoheadrightarrow S$ is the quotient morphism $R \twoheadrightarrow S$. From this observations we derive that ϕ is surjective. It remains to prove that it is injective. Consider z in R such that $\phi(z) = 0$. Suppose that $z \in (y_1,...,y_n)^m$ for some $m \in \mathbb{N}$. Write

$$z = \sum_{\alpha \in \Lambda} c_{\alpha} \cdot y_1^{\alpha_1} ... y_n^{\alpha_n}$$

for some $c_{\alpha} \in R$ where $\Lambda = \{\alpha \in \mathbb{N}^n \mid \alpha_1 + ... + \alpha_n = m\}$. Hence

$$0 = \phi(z) = \sum_{\alpha \in \Lambda} \phi(c_{\alpha}) \cdot \phi(y_{1})^{\alpha_{1}} ... \phi(y_{n})^{\alpha_{n}}$$

Thus $\phi(c_{\alpha}) \in (\phi(y_1),...,\phi(y_n))$ for every $\alpha \in \Lambda$. Since ϕ composed with $S[[\phi(y_1),...,\phi(y_n)]] \twoheadrightarrow S$ is the quotient morphism $R \twoheadrightarrow S$, we derive that

$$c_{\alpha} \mod (y_1, ..., y_n) = \phi(c_{\alpha}) \mod (\phi(y_1), ..., \phi(y_n)) = 0$$

for every $\alpha \in \Lambda$. Thus $c_{\alpha} \in (y_1, ..., y_n)$ for every $\alpha \in \Lambda$, which implies that $z \in (y_1, ..., y_n)^{m+1}$. Thus we proved that

$$\phi(z) = 0 \text{ and } z \in (y_1, ..., y_n)^m \Rightarrow z \in (y_1, ..., y_n)^{m+1}$$

By m-adic completeness of R this implies that $\phi(z)=0$ if and only if z=0. Hence ϕ is also injective.

Lemma 5.4.2. Let (R, \mathfrak{m}) be a complete local noetherian ring and let $R \to S$ be a local morphism into a local noetherian ring. Suppose that there exists a finitely generated R-submodule R of R such that

$$S = N + mS$$

Then S = N.

Proof of the lemma. Pick s in S. Since $S = N + \mathfrak{m}S$, there exists a sequence $\{x_n\}_{n \in \mathbb{N}}$ such that $x_n \in \mathfrak{m}^n N$ and

$$s - \sum_{i < n} x_i \in \mathfrak{m}^{n+1} S$$

According to the assumption that (R, \mathfrak{m}) is complete with respect to \mathfrak{m} -adic topology and N is finitely generated over R, we deduce that N is complete with respect to \mathfrak{m} -adic topology. Hence there exists a unique element x in N such that

$$x = \sum_{n \in \mathbb{N}} x_n$$

where above series is convergent with respect to m-adic topology. Note also that

$$x - \sum_{i < n} x_i \in \mathfrak{m}^{n+1} N$$

for every $n \in \mathbb{N}$. Thus we have

$$s - x = \left(s - \sum_{i \le n} x_i\right) - \left(x - \sum_{i \le n} x_i\right) \in \mathfrak{m}^{n+1}S + \mathfrak{m}^{n+1}N = \mathfrak{m}^{n+1}S$$

for every $n \in \mathbb{N}$. Hence

$$x - s \in \bigcap_{n \in \mathbb{N}} \mathfrak{m}^n S$$

Since $R \to S$ is local morphism and S is a local ring, we deduce that $\mathfrak{m}S$ is contained in the maximal ideal of S. By assumptions S is noetherian. Therefore, S is separated with respect to \mathfrak{m} -adic topology. This implies that

$$0 = \bigcap_{n \in \mathbb{N}} \mathfrak{m}^n S$$

Thus s - x = 0 and we infer that s is an element of N. This completes the proof that S = N. \square

In what follows we shall denote by Gx the closed subscheme determined by the orbit morphism $G \to X$ of a k-point x of X which has a closed free orbit. For readers convienience we include the following lemmas, which have topological content.

Lemma 5.4.3. Let $q: X \to Y$ be a geometric quotient and assume that Y is the spectrum of a local k-algebra such that the residue field of the closed point o of Y is k. Let x be a k-point of X with free closed orbit, then $q^{-1}(o) = \mathbf{G}x$ as closed subschemes of X.

Proof of the lemma. Morphism q induces the morphism of residue fields $k(q(x)) \hookrightarrow k(x) = k$ over k. This implies that k(q(x)) = k and hence q(x) is a k-point of Y. Note that o is the unique k-point of Y. Thus q(x) = o. Clearly $q^{-1}(o)$ is a closed G-stable subscheme of X (it is the preimage of o under G-equivariant q), that contains x. Since G is the smallest closed G-stable subscheme of X containing x, we deduce that $Gx \subseteq q^{-1}(o)$ scheme-theoretically. Consider the pair of arrows

$$\mathbf{G} \times_k X \xrightarrow{pr_X} X$$

Passing to functors of points we obtain that $a^{-1}(\mathbf{G}x) = \operatorname{pr}_X(\mathbf{G}.x)$. Since q is the cokernel of the pair (a,pr_X) in the category of topological spaces, we deduce that there exists a closed subset Z of Y such that $q^{-1}(Z) = \mathbf{G}x$. Clearly $o \in Z$ and hence $q^{-1}(o) \subseteq \mathbf{G}x$ set-theoretically. On the other hand above we proved that $\mathbf{G}x \subseteq q^{-1}(o)$ scheme-theoretically. This can only happen if $q^{-1}(o) = \mathbf{G}x$ as closed subschemes of X.

Lemma 5.4.4. Let $q: X \to Y$ be a geometric quotient and assume that Y is the spectrum of a local kalgebra such that the residue field of the closed point o of Y is k. Let U be an open **G**-stable subset of X which contain a k-point. Then U = X.

Proof of the lemma. Consider the pair of arrows

$$\mathbf{G} \times_k X \xrightarrow{pr_X} X$$

Since U is **G**-stable open subset of X, we derive that $\operatorname{pr}_X^{-1}(U) = a^{-1}(U)$. Next by definition q is the cokernel of the above pair in the category of topological spaces. Hence there exists an open subset V of Y such that $U = q^{-1}(V)$. Since U contains a k-point of X, we deduce as in Lemma 5.4.3 that $o \in V$. Thus V = Y and finally $U = q^{-1}(V) = X$.

Proof of the theorem. We first prove **(1)**. Denote by o the closed point of Y. Assume that x is a k-point of X which has a closed free orbit. Consider the surjective morphism $\mathcal{O}_{X,x} \twoheadrightarrow \mathcal{O}_{G,e}$ induced by the orbit morphism $G \hookrightarrow X$ of x. Since G is smooth over k, the ring $\mathcal{O}_{G,e}$ is regular. Pick a system of parameters $x_1,...,x_n$ of $\mathcal{O}_{G,e}$ and let $y_1,...,y_n$ be elements of $\mathcal{O}_{X,x}$ such that y_i is send to x_i by the morphism $\mathcal{O}_{X,x} \twoheadrightarrow \mathcal{O}_{G,e}$ for $1 \le i \le n$. Define S to be the quotient ring $\mathcal{O}_{X,x}/(y_1,...,y_n)$. The morphism q induces the morphism $q^\#: \mathcal{O}_{Y,o} \to \mathcal{O}_{X,x}$ and hence the morphism $\mathcal{O}_{Y,o} \to S$. By Lemma 5.4.3 we have

$$S/\mathfrak{m}_{o}S = k$$

where \mathfrak{m}_o is the maximal ideal of $\mathcal{O}_{Y,o}$. According to Lemma 5.4.2 we derive that $\mathcal{O}_{Y,o} \to S$ is surjective. Let $f: \mathbf{G} \times_k \operatorname{Spec} S \to X$ be the unique \mathbf{G} -equivariant morphism induced by the surjection $\mathcal{O}_{X,x} \twoheadrightarrow S$. We have a commutative square

$$G \times_k \operatorname{Spec} S \xrightarrow{f} X$$

$$\operatorname{pr}_{\operatorname{Spec} S} \downarrow \qquad \qquad \downarrow q$$

$$\operatorname{Spec} S \xrightarrow{i} Y$$

where j is a closed immersion induced by $\mathcal{O}_{Y,o} \twoheadrightarrow S$. According to assumptions q is locally of finite type. Moreover, G is an algebraic group over k and hence $\operatorname{pr}_{\operatorname{Spec} S}$ is locally of finite type. These two assertions together with the fact that $\operatorname{Spec} S \hookrightarrow Y$ is a closed immersion of noetherian schemes (and thus is of finite type) imply that f is locally of finite type. Then by Lemma 5.4.1 we deduce that f induces an isomorphism

$$\widehat{\mathcal{O}_{X,x}} \longrightarrow \widehat{S}[[x_1,...,x_n]] = \widehat{S} \hat{\otimes}_k \widehat{\mathcal{O}_{G,e}}$$

of complete local rings. Since f is locally of finite type, it follows that f is étale at a k-point of $\mathbf{G} \times_k \operatorname{Spec} S$ determined by the unique k-point of $\operatorname{Spec} S$ and $e \in \mathbf{G}$. Let U be an étale locus of f. It contains a k-point and hence it is nonempty. Moreover, U is open (it is étale locus) subset of X. Since f is \mathbf{G} -equivariant, we derive that U is \mathbf{G} -stable. Similarly f(U) is open \mathbf{G} -stable subset of X and $X \in f(U)$. Thus by Lemma 5.4.4 we deduce that

$$U = \mathbf{G} \times_k \operatorname{Spec} S, f(U) = X$$

Therefore, f is étale and surjective. Now we pullback $g: X \to Y$ along the closed immersion Spec $S \hookrightarrow Y$. We obtain a cartesian square

$$\tilde{X} \stackrel{\tilde{j}}{\longleftarrow} X \\
\downarrow^{\tilde{q}} \qquad \qquad \downarrow^{q} \\
\operatorname{Spec} S \stackrel{\tilde{j}}{\longleftarrow} Y$$

Then f factors as a morphism $\mathbf{G} \times_k \operatorname{Spec} S \to \tilde{X}$ followed by a closed immersion \tilde{f} . Since f is étale and surjective, we deduce that \tilde{f} is étale and surjective. This implies that \tilde{f} is an isomorphism of schemes. By definition of geometric quotient we derive that the diagram

$$\mathcal{O}_{Y} \xrightarrow{q^{\#}} q_{*}\mathcal{O}_{X} \xrightarrow{q_{*}pr_{*}^{\#}} q_{*} \left(\operatorname{pr}_{X}\right)_{*} \mathcal{O}_{\mathbf{G}\times_{k}X} = q_{*}a_{*}\mathcal{O}_{\mathbf{G}\times_{k}X}$$

is the kernel in the category of sheaves on Y. Hence $q^{\#}: \mathcal{O}_{Y} \to q_{*}\mathcal{O}_{X}$ is a monomorphism of sheaves. On the other hand we have

$$q^\# = j_* q_* \left(\tilde{j}^{-1}\right)^\# \cdot j_* \tilde{q}^\# \cdot j^\#$$

and thus $j^{\#}$ is a monomorphism. Since j is a closed immersion, we infer that j is an isomorphism. Therefore, we can identify Spec S with Y. Then f is a morphism which makes the triangle

commutative. This completes the proof of (1).

For the proof of (2) consider the section $s: Y \hookrightarrow X$ described in (1). Then f fits into a cartesian square

$$\mathbf{G} \times_{k} Y \xrightarrow{f} X \times_{Y} Y = X$$

$$\downarrow_{1_{G} \times_{Y} s} \qquad \downarrow_{1_{X} \times_{Y} s}$$

$$\mathbf{G} \times_{k} X \xrightarrow{\phi} X \times_{Y} X$$

where ϕ is a closed immersion induced by the closed immersion $\langle a, \operatorname{pr}_X \rangle : \mathbf{G} \times_k X \hookrightarrow X \times_k X$ (the action of \mathbf{G} on X is free). Thus f is a closed immersion. By (1) it is étale and surjective. Therefore, f is an isomorphism.

Remark 5.5. We expect that Theorem 5.4 holds for prime spectra of strictly henselian rings.

Now we introduce sufficient condition for smoothness of geometric quotient in case of locally algebraic *k*-schemes.

Corollary 5.6. Suppose that **G** is a smooth algebraic group over k. Let $q: X \to Y$ be a morphism of finite type between k-schemes locally of finite type. Assume that q is a uniform geometric quotient of X and x is a k-point of X with closed free orbit. Then q is smooth at x.

Proof. Since smoothness descent along faithfully flat morphisms, we may assume that k is algebraically closed. Let y = q(x). Then y is a k-point of Y. Now $1_{\text{Spec }\widehat{\mathcal{O}_{Y,y}}} \times_k q$ is a geometric quotient and $\widehat{\mathcal{O}_{Y,y}}$ is a complete local noetherian k-algebra with k as a residue field. Moreover, x is a k-point of $\text{Spec }\widehat{\mathcal{O}_{Y,y}} \times_k X$ with a closed free orbit. By Theorem 5.4 we deduce that $1_{\text{Spec }\widehat{\mathcal{O}_{Y,y}}} \times_k q$ is smooth. From descent for smoothness we infer that q is smooth at x.

Definition 5.7. Let $q: X \to Y$ be a **G**-equivariant morphism into a k-scheme Y equipped with the trivial **G**-action. Suppose that q is faithfully flat, quasi-compact morphism and the square

$$G \times_k X \xrightarrow{a} X$$

$$pr_X \downarrow \qquad \qquad \downarrow q$$

$$X \xrightarrow{q} Y$$

is cartesian. Then *q* is a principal **G**-bundle.

Now we use Theorem 5.4 to describe principal **G**-bundles in the category of locally algebraic k-schemes.

Theorem 5.8. Suppose that **G** is a smooth algebraic group over k. Let $q: X \to Y$ be a morphism of finite type between k-schemes locally of finite type. Then the following assertions are equivalent.

- (i) q is a universal geometric quotient and the action of G on X is free.
- (ii) q is a uniform geometric quotient and the action of G on X is free.
- (iii) q is a principal **G**-bundle.

Proof. Clearly (i) \Rightarrow (ii). Suppose that (ii) holds. Let \bar{k} be an algebraic closure of k. Then $1_{\text{Spec}\bar{k}} \times_k q$ is a uniform quotient and the action of Spec $\overline{k} \times_k \mathbf{G}$ on Spec $\overline{k} \times_k X$ induced by the action of \mathbf{G} on *X* is free. Moreover, if $1_{\text{Spec}\bar{k}} \times_k q$ is a principal $\text{Spec}\bar{k} \times_k \mathbf{G}$ -bundle, then q is a \mathbf{G} -bundle. This follows from the observation that property of being a principal bundle descents along faithfuly flat and quasi-compact base extensions. Thus we may assume that k is algebraically closed. Next we pick a k-point y of Y and consider base change $1_{\text{Spec }\widehat{\mathcal{O}_{Y,y}}} \times_Y q$. This is a geometric quotient (because morphism Spec $\widehat{\mathcal{O}_{Y,y}} \to Y$ is flat) and a morphism of finite type. Moreover, the action of **G** on Spec $\mathcal{O}_{Y,y} \times_Y X$ is free. Since $\mathcal{O}_{Y,y}$ is a complete noetherian k-algebra with residue field k, we derive by Theorem 5.4 that Spec $\widehat{\mathcal{O}_{Y,y}} \times_Y q$ is isomorphic as a **G**-equivariant morphism with $\operatorname{pr}_{\operatorname{Spec} \widetilde{\mathcal{O}_{Y,y}}}$. By faithfuly flat descent for flat morphism we deduce that q is flat at every point in the fiber q^{-1} (Spec $\mathcal{O}_{Y,y}$). Since y is an arbitrary k-point, it follows that q is flat at every point of X which specializes to a k-point. Every point of X is a generization of a k-point (X is locally of finite type and k is algebraically closed). Thus q is flat. It is also surjective (as it is a geometric quotient) and quasi-compact (it is of finite type). Therefore, it is faithfully flat and quasi-compact morphism. In order to obtain (iii) it remains to prove that the morphism $\Phi : \mathbf{G} \times_k X \to X \times_Y X$ induced by a and pr_X is an isomorphism. Note that it is a closed immersion (the action of \mathbf{G} on X is closed). Moreover, $1_{\operatorname{Spec} \overline{\mathcal{O}_{Y,y}}} \times_Y \Phi$ is an isomorphism due to the fact that $1_{\operatorname{Spec} \overline{\mathcal{O}_{Y,y}}} \times_Y q$ is isomorphic as a \mathbf{G} -equivariant morphism with $\operatorname{pr}_{\operatorname{Spec} \overline{\mathcal{O}_{Y,y}}}$. By faithfully flat descent we infer that $1_{\text{Spec }\mathcal{O}_{Y,y}} \times_Y \Phi$ is an isomorphism. This holds for every k-point y in Y. Thus Φ induces an isomorphism $\mathcal{O}_{X\times_Y X,\Phi(z)} \to \mathcal{O}_{G\times_k X,z}$ for every k-point z of $X\times_Y X$. Hence a closed immersion Φ is an isomorphism. This completes the proof of (ii) \Rightarrow (iii). Assume now that (iii) holds. Then the square

is cartesian and q is faithfully flat and quasi-compact. By Proposition 3.8 morphism pr_X is a universal geometric quotient. According to Corollary 3.7 we derive that q is universal geometric quotient. Moreover, the cartesian square above shows that the morphism $\mathbf{G} \times_k X \to X \times_Y X$ induced by a and pr_X is an isomorphism. Thus the action of \mathbf{G} on X is free. This is (i). Hence (iii) \Rightarrow (i) holds.

6. Nagata's theorem

We start by proving the following result which give yet another characterization of linearly reductive groups.

Theorem 6.1. Let **G** be a smooth affine algebraic group over k. Then the following assertions are equivalent.

- (i) **G** is linearly reductive.
- (ii) For every finitely dimensional linear representation V of G and for every nonzero G-invariant element v in V there exists a G-invariant linear function $f: V \to k$ such that $f(v) \neq 0$.

We need the following easy result.

Lemma 6.1.1. Let G be an algebraic group over k which satisfies (ii). Suppose that V is a finitely dimensional representation of G. Then the map

$$\operatorname{Hom}_{k}(V,k)^{\mathbf{G}}\ni f\mapsto f_{|V^{\mathbf{G}}}\in \operatorname{Hom}_{k}(V^{\mathbf{G}},k)$$

is an isomorphism of vector spaces over k.

Proof of the lemma. The image of the map in the statement is a k-vector subspace $W \subseteq \operatorname{Hom}_k\left(V^{\mathbf{G}},k\right)$ such that for every nonzero element v in $V^{\mathbf{G}}$ there exists f in W such that $f(v) \neq 0$ (this is a consequence of (ii)). It follows that W cannot be proper subspace of $\operatorname{Hom}_k\left(V^{\mathbf{G}},k\right)$. Hence the map in the statement is an epimorphism. Now fix a nonzero \mathbf{G} -invariant linear function $f:V \to k$. By (ii) there exists a \mathbf{G} -invariant linear function $w:\operatorname{Hom}_k\left(V,k\right) \to k$ such that w(f)=0. Note that the canonical isomorphism

$$V \cong \operatorname{Hom}_{k}(\operatorname{Hom}_{k}(V,k),k)$$

of k-vector spaces is a morphism of representations of \mathbf{G} . Thus w is defined in terms of evaluation in some \mathbf{G} -invariant vector v in V. Therefore, $f(v) \neq 0$ and hence $f_{|V|} \neq 0$. Thus the map described in the statement is also a monomorphism.

Proof of the theorem. Suppose that (i) holds. Consider a **G**-invariant nonzero vector v in a finitely dimensional representation V of **G**. Then $k \cdot v \subseteq V$ is a **G**-subrepresentation. Since **G** is linearly reductive, there exists a morphism of **G**-representations which is a left inverse of $k \cdot v \hookrightarrow V$. This morphism can be identified with a **G**-invariant linear function $f: V \to k$ such that $f(v) \neq 0$. Hence (i) \Rightarrow (ii).

Now suppose that **(ii)** holds. Pick an epimorphism $\theta: V \twoheadrightarrow W$ of finitely dimensional representations V of G. Assume that there exists a nonzero G-invariant vector w in W such that $w \notin \theta(V^G)$. By Lemma 6.1.1 there exists f in $\operatorname{Hom}_k(W,k)^G$ such that $f_{|\theta(V^G)} = 0$ and $f(w) \neq 0$. Then $f \cdot \theta$ is a nonzero element of $\operatorname{Hom}(V,k)^G$ such that $(f \cdot \theta)_{|V^G} = 0$. This is impossible according to Lemma 6.1.1. Hence $\theta^G: V^G \to W^G$ is an epimorphism. Now assume that $\theta: V \twoheadrightarrow W$ is an epimorphism of arbitrary linear representations of G. Since G is affine, every linear representation of G is rational (i.e. it is a sum of its finitely dimensional subrepresentations). This together with the finitely dimensional case considered above imply that $\theta^G: V^G \to W^G$ is an epimorphism. Thus the functor $(-)^G: \operatorname{Rep}(G) \to \operatorname{Vect}_k$ is exact.

The result above motivates the following notion.

Definition 6.2. Let **G** be a smooth affine algebraic group. Suppose that for every finitely dimensional representation V of **G** and for every nonzero **G**-invariant vector v of V there exists a homogenous **G**-invariant polynomial $f: V \to k$ such that $f(v) \neq 0$. Then **G** is *geometrically reductive*.

We state here the following celebrated result.

Theorem 6.3. *If* **G** *is reductive, then it is geometrically reductive.*

The result above is due to Haboush and its proof can be found in [Haboush, 1975]. The following theorem shows that geometric reductivity admits up to an integral extension the same property as linear reductivity (see also Remark 6.5 below).

Theorem 6.4. Suppose that **G** is geometrically reductive. Let A be a k-algebra such that Spec A admits an action of **G** and let \mathfrak{a} be a **G**-stable ideal of A. We consider $A^{\mathbf{G}}/A^{\mathbf{G}} \cap \mathfrak{a}$ as a k-subalgebra of $(A/\mathfrak{a})^{\mathbf{G}}$ by means of the canonical inclusion $A^{\mathbf{G}}/A^{\mathbf{G}} \cap \mathfrak{a} \hookrightarrow A/\mathfrak{a}$. For every element $x \in (A/\mathfrak{a})^{\mathbf{G}}$ there exists positive integer r such that $x^r \in A^{\mathbf{G}}/A^{\mathbf{G}} \cap \mathfrak{a}$.

Proof. Let $d: A \to k[\mathbf{G}] \otimes_k A$ be the coaction of \mathbf{G} on A. Pick an element $x_0 \in A$ which maps to x modulo \mathfrak{a} . Consider finitely dimensional vector subspace $V \subseteq A$ over k such that V is a \mathbf{G} -subrepresentation of A and $x_0 \in V$. Since x is x_0 modulo \mathfrak{a} , we derive that $c(x_0) - 1 \otimes x_0$ is in ideal of $k[\mathbf{G}] \otimes_k A$ generated by $k[\mathbf{G}] \otimes_k \mathfrak{a}$. Thus $W = k \cdot x_0 + V \cap \mathfrak{a} \subseteq A$ is finitely dimensional \mathbf{G} -subrepresentation of A. Let $\lambda: W \to k$ be a k-linear form such that $\lambda(x_0) = 1$ and $\lambda_{|V \cap \mathfrak{a}} = 0$. Since \mathbf{G} is geometrically reductive there exists $f \in \operatorname{Sym}_r(W)^{\mathbf{G}}$ such that $f(\lambda) = 1$. Since the canonical morphism $\operatorname{Sym}_r(W) \to A$ is a morphism of representations of \mathbf{G} , we deduce that f is mapped under this morphism to some \mathbf{G} -invariant element y in A. Note that f is sum of an r-th symmetric power of x_0 and some element of $\operatorname{Sym}_r(V \cap \mathfrak{a})$. Thus $y \operatorname{mod} \mathfrak{a} = x^r$. Hence $x^r \in A^{\mathbf{G}}/A^{\mathbf{G}} \cap \mathfrak{a}$.

Remark 6.5. Let **G** be an algebraic group **G** which acts on Spec *A* for some k-algebra *A* and let \mathfrak{a} be a **G**-stable ideal of *A*. Then the sequence

$$0 \longrightarrow \mathfrak{a}^{\mathbf{G}} \longrightarrow A^{\mathbf{G}} \longrightarrow (A/\mathfrak{a})^{\mathbf{G}}$$

is left exact and it induces a monomorphism $A^{\mathbf{G}}/\mathfrak{a} \cap A^{\mathbf{G}} = A^{\mathbf{G}}/\mathfrak{a}^{\mathbf{G}} \hookrightarrow (A/\mathfrak{a})^{\mathbf{G}}$. If \mathbf{G} is linearly reductive, then the sequence is exact and this monomorphism is an isomorphism. Theorem 6.4 states that if \mathbf{G} is geometrically reductive, then the monomorphism $A^{\mathbf{G}}/\mathfrak{a} \cap A^{\mathbf{G}} \hookrightarrow (A/\mathfrak{a})^{\mathbf{G}}$ is integral.

Now we are going to formulate the main result of this section.

Theorem 6.6. Suppose that G is geometrically reductive. Let A be a finitely generated k-algebra such that Spec A admits an action of G. Then A^G is finitely generated k-algebra.

The theorem above was first proved by Nagata and here we follow Nagata's original proof. In the argument we denote the coaction of k[G] on A by $d: A \to k[G] \otimes_k A$. The proof relies on a series of partial results.

Lemma 6.6.1. Let $A \hookrightarrow B$ be an integral morphism of k-algebras and suppose that B is finitely generated over k. Then A is finitely generated.

Proof of the lemma. Suppose that $b_1,...,b_r$ are generators of B as a k-algebra. For every $1 \le i \le r$ we have a polynomial relation

$$b_i^{n_i} + a_{i,n_i-1}b_i^{n_i-1} + \dots + a_{i,1}b_i + a_{i,0} = 0$$

where $n_i > 0$ and $a_{i,j} \in A$ for $0 \le j \le n_i - 1$. Suppose that \tilde{A} is a k-subalgebra of A generated by $a_{i,j}$ for $1 \le i \le r$ and $0 \le j \le n_i - 1$. Then B is finite over \tilde{A} . Since $\tilde{A} \subseteq A \subseteq B$ and \tilde{A} is noetherian, we derive that A is finite over \tilde{A} . Hence A is finitely generated over k.

Lemma 6.6.2. Suppose that **G** is geometrically reductive. Let A be a k-algebra such that Spec A admits an action of **G**. Assume that A contains **G**-invariant zero divisor and that for every proper **G**-stable ideal \mathfrak{a} of A the k-algebra $(A/\mathfrak{a})^G$ is finitely generated over k. Then A^G is finitely generated over k.

Proof of the lemma. Let f be a **G**-invariant zero divisor of A. By assumption both k-algebras $(A/fA)^{\mathbf{G}}$ and $(A/\operatorname{ann}(f))^{\mathbf{G}}$ are finitely generated over k. Now by combination of Lemma 6.6.1 and Theorem 6.4 we obtain that $A^{\mathbf{G}}/A^{\mathbf{G}} \cap fA$ and $A^{\mathbf{G}}/A^{\mathbf{G}} \cap \operatorname{ann}(f)$ are finitely generated over k. Let B be a finitely generated k-subalgebra of $A^{\mathbf{G}}$ which maps surjectively onto $A^{\mathbf{G}}/A^{\mathbf{G}} \cap fA$ and $A^{\mathbf{G}}/A^{\mathbf{G}} \cap \operatorname{ann}(f)$. Let $u_1, ..., u_n$ be elements in A such that the image of $B \cdot u_1 + ... + B \cdot u_n \subseteq A$ modulo $\operatorname{ann}(f)$ contains a finite B-module $(A/\operatorname{ann}(f))^{\mathbf{G}}$. Fix $a \in A^{\mathbf{G}}$. Since B maps surjectively onto $A^{\mathbf{G}}/A^{\mathbf{G}} \cap fA$, there exist $b \in B$ and $c \in A$ such that a - b = fc. Note that $fc \in A^{\mathbf{G}}$ and thus

$$(1 \otimes f) (d(c) - 1 \otimes c) = 0$$

This implies that c is send to $(A/\operatorname{ann}(f))^{\mathbf{G}}$ modulo $\operatorname{ann}(f)$. Then $c \in B \cdot u_1 + ... + B \cdot u_n$. Hence $a - b \in B \cdot f u_1 + ... + B \cdot f u_n$. Therefore, $a \in B[f u_1, ..., f u_n]$. This completes the proof that $A^{\mathbf{G}}$ is finitely generated over k.

Lemma 6.6.3. Suppose that **G** is geometrically reductive. Let $A = \bigoplus_{n \in \mathbb{N}} A_n$ be a \mathbb{N} -graded k-algebra such that A admits an action of **G**. Assume that A_n is a **G**-subrepresentation of A for every $n \in \mathbb{N}$ and that for every proper **G**-stable homogenous ideal a of A the k-algebra $(A/a)^G$ is finitely generated over k. If A contains **G**-invariant zero divisor, then A^G is finitely generated over k.

Proof of the lemma. Let f be a **G**-invariant zero divisor of A. We may pick f such that it is homogenous. Then both ideals fA and ann(f) are homogenous, **G**-stable and proper in A. Now we proceed as in the proof of Lemma 6.6.2.

Proof of the theorem. We first prove the theorem in case of \mathbb{N} -graded k-algebras and then reduce the general case to this graded case.

Assume that $A = \bigoplus_{n \in \mathbb{N}} A_n$ is \mathbb{N} -graded in such a way that $A_0 = k$ and A_n is a \mathbb{G} -subrepresentation of A for every $n \in \mathbb{N}$. Since A is finitely generated over k and by virtue of noetherian induction, we assume that $(A/\mathfrak{a})^G$ is finitely generated over k for every homogenous \mathbb{G} -stable proper ideal \mathfrak{a} of A. If there are \mathbb{G} -invariant zero divisors of A, then by Lemma 6.6.3 we deduce that A^G is finitely generated over k. So we may assume that A^G contains no zero divisors of A. Pick a nonzero homogenous element $f \in A^G$ of positive degree. If there are no such elements, then $A^G = A_0 = k$ and the result holds. So we may assume that such an element exists. Note that it is noninvertible. Consider $x \in A$ such that $fx \in A^G$. Then

$$0 = d(fx) - 1 \otimes fx = d(f) \cdot d(x) - (1 \otimes f) \cdot (1 \otimes x) = (1 \otimes f) (d(x) - 1 \otimes x)$$

Since f is not a zero divisor in A, we derive that $1 \otimes f$ is not a zero divisor in $k[G] \otimes_k A$. Thus $d(x) = 1 \otimes x$ and $x \in A^G$. This shows that $fA \cap A^G = fA^G$. By Theorem 6.4 $(A/fA)^G$ is integral over $A^G/fA \cap A^G = A^G/fA^G$. Note that $(A/fA)^G$ is finitely generated over k by inductive assumption. According to Lemma 6.6.1 we obtain that A^G/fA^G is finitely generated over k. Clearly

$$A^{\mathbf{G}} = \bigoplus_{n \in \mathbb{N}} A_n^{\mathbf{G}}$$

and hence $A^{\mathbf{G}}/fA^{\mathbf{G}}$ inherits \mathbb{N} -grading from A. The ideal generated by elements of positive degree $\left(A^{\mathbf{G}}/fA^{\mathbf{G}}\right)_{\perp}$ is finitely generated (as is every ideal in noetherian ring). Hence also

$$(A^{\mathbf{G}})_{+} = \bigoplus_{n \in \mathbb{N}_{+}} A_{n}^{\mathbf{G}}$$

is finitely generated (generating set consists of lifts of generators of $(A^{\mathbf{G}}/fA^{\mathbf{G}})_{+}$ and f). This implies that $A^{\mathbf{G}}$ is finitely generated over $A_{0}^{\mathbf{G}} = k$.

Now assume that *A* is an arbitrary finitely generated *k*-algebra. By noetherian induction we may assume that $(A/\mathfrak{a})^{\mathbf{G}}$ is finitely generated over k for every proper **G**-stable ideal \mathfrak{a} of A. Pick a finitely dimensional G-subrepresentation V of A which contains some finite set of generators of A as a k-algebra. Define $S = \operatorname{Sym}(V)$ and $S_n = \operatorname{Sym}_n(V)$ for every $n \in \mathbb{N}$. Then S is \mathbb{N} -graded, $S_0 = k$ and G acts on Spec S in such a way that S_n is a G-subrepresentation of S for every S. By the case considered above S^G is finitely generated over k. The canonical (induced by $V \hookrightarrow A$) surjective morphism $S \rightarrow A$ of k-algebras is also a morphism of representations of G. Let I be its kernel. Then *I* is a **G**-stable ideal of *S*. By Theorem 6.4 we derive that $A^{\mathbf{G}} = (S/I)^{\mathbf{G}}$ is integral over its finitely generated k-subalgebra $S^{\mathbf{G}}/I \cap S^{\mathbf{G}}$. Moreover, by Lemma 6.6.2 we may assume that $A^{\mathbf{G}}$ does not contain zero divisors of A. In particular, it is an integral domain. Hence $S^{\mathbf{G}}/I \cap S^{\mathbf{G}}$ is a domain. Let B be the integral closure of $S^{\mathbf{G}}/I \cap S^{\mathbf{G}}$ in the field L of fractions of $A^{\mathbf{G}}$. Since B is integral over A^{G} , Lemma 6.6.1 shows that it suffices to prove that B is finitely generated over k. This will follow, if we can show that *B* is a finite $S^{\mathbf{G}}/I \cap S^{\mathbf{G}}$ -module. Since fields are Nagata rings, we may reduce this question to proving that L is a finite extension of the field K of fractions of $S^{\mathbf{G}}/I \cap S^{\mathbf{G}}$. Since $K \subseteq L$ is algebraic (due to the fact that $S^{\mathbf{G}}/I \cap S^{\mathbf{G}} \hookrightarrow A^{\mathbf{G}}$ is integral), it suffices to show that L is finitely generated field over K. For this pick a set S of nonzero divisors of A. Note that *S* is a multiplicative subset of *A*. Fix a maximal ideal $\mathfrak{m} \subseteq S^{-1}A$. Since nonzero elements of $\mathfrak{m} \cap A^{\mathbf{G}}$ are zero divisors of A, we derive that $\mathfrak{m} \cap A^{\mathbf{G}} = 0$. Thus L is a subfield of $S^{-1}A/\mathfrak{m}$. The inclusion $A \hookrightarrow S^{-1}A$ induces an isomorphism between the fraction field of $A/\mathfrak{m} \cap A$ and the field $S^{-1}A/\mathfrak{m}$. By our assumption A is finitely generated over k. Thus the fraction field of $A/\mathfrak{m} \cap A$ is finitely generated over \hat{k} as field. It follows that L is a field finitely generated over k. This implies that L is a field finitely generated over K. Therefore, A^{G} is finitely generated k-algebra.

7. GOOD CATEGORICAL QUOTIENTS

REFERENCES

[Haboush, 1975] Haboush, W. J. (1975). Reductive groups are geometrically reductive. *Ann. of Math.* (2), 102(1):67–83. [Mumford et al., 1994] Mumford, D., Fogarty, J., and Kirwan, F. (1994). *Geometric invariant theory*, volume 34. Springer Science & Business Media.