۱۳ نوبت سیزدهم

تمرین ۷۳: نشان دهید که .ACF

- ۱. سورها را حذف میکند (سامانهای رفت وبرگشتی پیدا کنید).
- ۲. تاپیها در آن در تناظر با ایدهآلهای اول در حلقه ی چندجملههایند (یعنی متناظر با هر n تایپ $I_p \in k[X_1,\ldots,X_n]$ یافت، و $p \in S_n(k)$ برای یک میدان $p \in S_n(k)$ برعکس.
 - ω پایدار است.
 - ۴. \aleph جازم نیست ولی \aleph جازم است.
 - ۵. مرتبهی مُرلی در آن معادل با بُعد ِ کرول است (پروژهی احتمالی خانم آجرلو).

تمرین ۷۴: فرمول $\phi(\bar{x},\bar{y})$ را گوییم که **دارای ویژگی ترتیبی** است هرگاه (در مدل ِسترگ) دنبالههای $i < j \in \omega$ و بان موجود باشند که برای هر $(\bar{b}_i)_{i \in \omega}$

$$\models \phi(\bar{a}_i, \bar{b}_i)$$
 اگروتنهااگر $i < j$.

دارای $\phi(\bar x, \bar y)$ اگر روزگی ترتیبی، نسبت به x,y تقارنی است؛ یعنی اگر ویژگی ترتیبی باشد آنگاه دنبالههای $(\bar a_i), (\bar b_i)$ چنان موجودند که

$$\models \phi(\bar{a}_i, \bar{b}_j)$$
 اگروتنهااگر $j < i$.

- ۲. نشان دهید که اگر فرمولی دارای ویژگی ترتیبی پیدا شود، تئوری مورد نظر پایدار نیست.
- ۳. عکس مورد بالا هم برقرار است: اگر T پایدار نباشد، یک فرمول دارای ویژگی ترتیبی یافت می شود.

تمرین ۷۵: آشنا شدن با مدل سترگ (خواندن گروهی قضیهی ۱۷-۱-۶ و نتیجهی ۱۸-۱-۶ در کتاب تنتوزیگلر).