

scikit-learn

Débora Bianca e Gabriel Arcanjo

SCIKIT-LEARNING

Criado em 2007, anos depois surgiu no projeto **Google Summer of code** em 2010, e ainda continua em desenvolvimento.

É uma biblioteca em **python** que proporciona muitos algoritmos de **aprendizado** não-supervisionado e supervisionado.

Incluso em suas funcionalidades possui: Regressão, Classificação, Clustering, Seleção de Modelos e Pré-processamento.

66

TUTORIAL UTILIZANDO SCIKIT-LEARNING

IRIS FLOWER DATASET

Possuem o mesmo gênero, mas são de espécies diferentes

IRIS FLOWER DATASET

Fisher's Iris Data [hide]

Dataset Order 💠	Sepal length \$	Sepal width ◆	Petal length \$	Petal width ◆	Species ¢			
1	5.1	3.5	1.4	0.2	I. setosa			
2	4.9	3.0	1.4	0.2	I. setosa			
3	4.7	3.2	1.3	0.2	I. setosa			
4	4.6	3.1	1.5	0.2	I. setosa			
5	5.0	3.6	1.4	0.3	I. setosa	4.7	1.4	I. versicolor
6	5.4	3.9	1.7	0.4	I. setosa	4.5	1.5	I. versicolor
7	4.6	3.4	1.4	0.3	I. setosa	4.9	1.5	I. versicolor
8	5.0	3.4	1.5	0.2	I. setosa	4.0	1.3	I. versicolor
9	4.4	2.9	1.4	0.2	I. setosa	4.6	1.5	I. versicolor
10	4.9	3.1	1.5	0.1	I. setosa	4.5	1.3	I. versicolor

	1,000,000										
57	6.3	3.3	4.7	4.7			I. versicolor		6.0	2.5	I. virginica
58	4.9	2.4	3.3		1.0		I. versicolor		5.1	1.9	I. virginica
	10000		, , , , , , , , , , , , , , , , , , , ,				, 80 - 10-10-0		5.9	2.1	I. virginica
59	6.6	2.9	4.6	4.6 1.3		I. versicolor		5.6	1.8	I. virginica	
60	5.2	2.7	3.9		1.4		I. versicolor		5.8	2.2	I. virginica
	'	'		106		7.6	·	3.0	6.6	2.1	I. virginica

106	7.6	3.0	6.6	2.1	I. virginica
107	4.9	2.5	4.5	1.7	I. virginica
108	7.3	2.9	6.3	1.8	I. virginica
109	6.7	2.5	5.8	1.8	I. virginica
110	7.2	3.6	6.1	2.5	I. virginica

CÓDIGO EM PYTHON

```
1# -*- coding: utf-8 -*-
2 import numpy as np
3 import graphviz
4 from sklearn import tree
5 from sklearn.datasets import load_iris
```

```
17 test_idx = [10, 110, 71]
18
19 #training data
20 training_target = np.delete(iris.target, test_idx)
21 training_data = np.delete(iris.data, test_idx, axis = 0)
22
23 #testing data
24 test_target = iris.target[test_idx]
25 test_data = iris.data[test_idx]
26
27 clf = tree.DecisionTreeClassifier()
28 clf.fit(training data, training target)
```

```
30 #predict label to a new flower
31 print ("Data set ID:", test_idx)
32 print ("Data set classification:", test_target)
33 print ("Data test classification:", clf.predict(test_data))
34 print ("[1]Iris setosa\t[2]Iris versicolor\t[3]Iris virginica")
```

```
Data set ID: [10, 110, 71]
Data set classification: [0 2 1]
Data test classification: [0 2 1]
```

ÁRVORE DE DECISÃO

SCIKIT-LEARN E SISTEMA EMBARCADO

SCIKIT-LEARN E SISTEMA EMBARCADO

REFERÊNCIAS

CODE ACADEMY: https://www.codecademy.com/articles/scikit-learn

SCIKIT-LEARN: http://scikit-learn.org/stable/modules/tree.html

YOUTUBE - Google Developers: https://www.youtube.com/watch?v=tNa99PG8hR8

YOUTUBE - Track following RC car: https://www.youtube.com/watch?v=wKVF2ItrGkI

MEDIUM - Self-driving Cars:

https://medium.com/@ricardo.zuccolo/self-driving-cars-opencv-and-svm-machine-learning-with-scikit-learn-for-vehicle-detection-on-the-bf88860e055a

WIKIPEDIA - Iris flower dataset: https://en.wikipedia.org/wiki/Iris_flower_data_set