

IN THE CLAIMS

1. (Currently amended) A method for deforming a workpiece, such as a metal cylinder or plate-(3), by means of a tool, in particular having one or more forming rollers(5), the method comprising:

5 rotating wherein the workpiece (3) and/or the tool (5) are rotated about an axis (4) relative to each other; -

10 moving the tool (5) moves relative to the workpiece through one or more deforming curves and wherein at least part of the workpiece(3) is deformed; -

15 characterized in that measuring values of one or more coordinates of the a position of the an extreme edge of the workpiece (3) are measured during the deforming process, ; and that one or more parameters of the deforming pro- cess is/are changed on the basis of the measured values

20 changing a position and/or a shape of one or more of the deforming curves being passed through during the deforming process, a feeding rate and/or a rotational speed with which the tool and the workpiece are rotated relative to each other on the basis of said measurement or measurements, with the proviso that, if the shape of one or more of the deforming curves is changed, no locally reduced portions will be imposed on the deformed portion.

25 30 2. (Cancelled)

3. (Currently amended) A-The method according to claim 1-or-2, wherein measuring values includes measuring said values are measured in a contactless manner.

4. (Currently amended) A The method according to
any one of the preceding claims claim 1, wherein measuring
values includes measuring the values of one or more coordi-
nates of the position of the extreme edge of the workpiece (3)
5 are measured at least at the end of each pass, but preferably
during the entire deforming process, and wherein preferably
one or more parameters of the deforming process is/are con-
tinuously adjusted on the basis of the measured values.

10 5. (Currently amended) A The method according to
any one of the preceding claim 1-claims, wherein at least the
extreme edge of the workpiece (3) is deformed on a forming
tool, such as a mandrel (15) or a spindle (28).

15 6. (Currently amended) A forming machine (1)—for
deforming a workpiece, such as a metal cylinder or plate (3),
comprising:

a forming tool,
in particular one or more forming rollers (5), one
20 or more driving means drives configured to
move (10, 11) for moving said tool (5),
a control unit (25) comprising a memory, which
wherein the control unit (25)—is arranged for
controlling the tool (5) during the deforming
process at least on the basis of deforming
curves, the feed rate and/or the rotational
speed with which the workpiece (3) and the
tool (5) are rotated relative to each other,
which parameters are stored in the memory,
characterized in that the forming machine (1)
is furthermore provided with
30 at least one detector (19) for measuringconfigured
to measure values of one or more coordinates
of the—a position of the—an extreme edge of
the workpiece and provide said measured values
35 to the control unit (19), and

wherein the control unit is arranged for changing
the position and/or the shape of one or more
of the deforming curves being passed through
during the deforming process, the feeding rate
and/or the rotational speed with which the
5 tool and the workpiece are rotated relative
to each other on the basis of the measurement
or measurements obtained by said at least one
detector, with the proviso that, if the shape
10 of one or more of the deforming curves is
changed, no locally reduced portions will be
imposed on the deformed portion.

7. (Cancelled)

15 8. (Currently amended) A—The forming machine (1)
according to claim 6—~~or~~ 7, wherein the said at least one de-
tector (19) comprises a series of sensors.

20 9. (Currently amended) A—The forming machine (1)
according to any one of the claims 6—8, comprising a claim 6
wherein said forming tool, such as is a mandrel (15) config-
ured such that—~~or~~ a spindle (28), on which at least the
extreme edge of the workpiece (3) can be is deformed.

25 10. (Currently amended) A—The forming machine (1)
according to claim 9, wherein the forming tool (15; 28) is
provided with a stop (15), by means of which theconfigured to
determine a length of at least a portion of the workpiece (3)
30 can be determined.

35 11. (New) The method according to claim 4 wherein
changing one or more parameters of the deforming process in-
cludes continuously adjusting at least one of the parameters
of the deforming process continuously on the basis of the
measured values.