

- $\bullet\,$  Métodos computacionales I.
- Manuel Alejandro Segura D.

## Contents

| 1 | Derivada finita        | 3 |
|---|------------------------|---|
| 2 | Problema de aplicación | 4 |

## List of Figures

## 1 Derivada finita

1. (**Theoretical**) Demuestre la formula alternativa para la estimación de la segunda derivada discreta:

$$\frac{d^2f(x_i)}{dx^2} = \frac{f(x_{i+2}) - 2f(x_i) + f(x_{i-2})}{4h^2} \tag{1}$$

2. Usando la definición de derivada central (con h = 0.05) estime la derivada de la función:

$$f(x) = \frac{1}{\sqrt{1 + e^{-x^2}}},\tag{2}$$

- a) En el intervalo  $-10 \le x \le 10$ .
- b) Para el intervalo anterior, estimar el error en cada punto nodal.
- 3. (Machine Learning analogy) El operador derivada central se puede definir a través de la operación de convolución usando un kernel muy específico. Sea M una máscara de convolución:

$$\mathbb{M} = [1, 0, -1] \tag{3}$$

El operador derivada central queda expresado como la convolución discreta entre la función y la máscara M:

$$Df(x_n) = \frac{1}{2h} \sum_{m=-\infty}^{\infty} M[m+1]f(x_{n-m}).$$
 (4)

Note que el kernel está centrado en m = 0, de modo que la sumas realmente van entre m = -1 hasta m = 1. Implemente este algoritmo para calcular la derivada de la función del punto 2).

- 4. Diseñe un kernel de convolución para expresar el operador segunda derivada.
  - a) Dar la expresión matemática:  $D^2 f(x) = ?$ .
  - b) Implementar el cálculo de esta derivada a la función del punto 2).
- 5. (**Theoretical**) Show that the  $D^4f$  operator is given by:

$$D^{4}f(x_{j}) \cong \frac{f(x_{j+2}) - 4f(x_{j+1}) + 6f(x_{j}) - 4f(x_{j-1}) + f(x_{j-2})}{h^{4}}$$
 (5)

For this operator, what is the order  $(\mathcal{O}(h^k))$  of the approximation?

## 2 Problema de aplicación

- 1. Calcular el campo de velocidades cerca de la superficie de un cilindro de radio  $R=2\ cm$ . Para esta tarea realizar los siguientes pasos:
  - a) Definir una discretización en los ejes x e y, donde la región es:  $A \in [-4, 4]$  con 25 puntos en cada eje.
  - b) Definir la función potencial del flujo dada por:

$$\phi(x,y) = Vx \left( 1 - \frac{R^2}{x^2 + y^2} \right) \tag{6}$$

donde  $V = 2 \ cm/s$ 

c) Calcule y guarde adecuadamente el campo de velocidades usando la definición de derivada parcial central como:

$$v_x = \frac{\partial \phi}{\partial x}$$

$$v_y = -\frac{\partial \phi}{\partial y}$$
(7)

use h = 0.001. Note que al interior del cilindro el campo de velocidades debe ser igual a cero.

d) Dibuje el campo de velocidades usando el método: ax.quiver(x[i],y[j],Vx[i,j],Vy[i,j]). Debería obtener algo como 1:



Figure 1: Campo de velocidades cerca de un cilindro sólido.