$\varphi_{b} \in Hom(V, V^{*})$ $\varphi_{b}(v) = b(v, \cdot) = (w \mapsto b(v, w))$ Recall: bilinear form b; V × V -> k -> This gives an isom. $B(V) \sim Hom(V, V^*)$.

- · b is nondegenerate if 46 is an isom.
- · in a basis (e,,-,en), represed by a making A with entires a; = b(e;,ej) $b(\Sigma x; e; \Sigma y; e_j) = \Sigma a_{ij} x_i y_j = X^T A Y.$

b is symmetric iff A is symmetric $(a_{ij} = a_{ji})$ nondegenerate iff A is invehible

• the orthogonal of a subspace $S \subset V$ is $S^{\perp} = \{v \in V / b(v, w) = 0 \ \forall w \in S\}$ If b is non-degenerate, $din(S^{\perp}) = din V - din S$ (otherwise \geq) but we need not have $SNS^{\perp} = \{0\}$.

Inner product spaces:

Defn: An inner product space is a vector space V ove R together with a symmetric definite positive bilinear form (.,.): V*V -> TR

Symmetric: <u, v>=<v, u> Def. positive: <u, u> >0 \tev, and <u, u>=0 iff u=0.

This definition only makes sense over an ordered field so "<u, y>>0" makes sense. In practice this means R. We can't do his over C. (we'll see a workaround: Hermitian forms)

- e Let $\varphi: V \to V^{d}$ be the linear map corrupting to <-,.>.
 - <.,> definite positive => φ is injective (since $\forall v \neq 0$, $\varphi(v) \neq 0$! $\varphi(v)(v) > 0$). => (assuming dim V < 00) 4 is an iso. V=V*, ie. <-,.> is nondegenerate. (The convexe is false: <., > nondegue de +) positive).

Prop: V finite-dim inner product space, SCV subspace => V= SOSI.

 Pf_i · We've seen; (.,. > is non degenerate so dim $S^L = dim V - dim S$.

· since C., > is possible definite, vesns+ => <v, v>=0 => v=0. So SnSt = {0}. Since dimensions add up to dim V, This implies S & St = V. D

Des: | The norm of a vector is $||v|| = \sqrt{\langle v, v \rangle}$. • $v, w \in V$ are orthogonal if $\langle v, w \rangle = 0$.

```
Obere: | V-w | 2 = <v-w, V-w> = | v1/2 + | w | 2 - 2 < v, w>.
        - if v and w are orthogonal then ||v-w||^2 = ||v||^2 + ||v||^2 Pythagorean than - in general, by analogy with law of triangles, we define the angle by 2 vectors
              L(v, w) = cos' (⟨v, w⟩ ). This only makes sense if |⟨v, w⟩| ≤ ||v|| ||w||?
Theorem (Cauchy-Schwarz inequality) | Yu, v \ V, | < u, v > | \le ||u|\ ||v||.
  Pf: The inequality is unaffected by scaling so we can assume ||u|| = 1.
Decompose v along V = S \oplus S^{\perp} where S = span(u) \subset V. Explicitly,
            v = v_1 + v_2, v_1 = \langle v_1 u \rangle v \in \text{Span}(u), v_2 = v - \langle v_1 u \rangle u orthogonal to u.
             Then v, 1 v2 so ||v||^2 = ||v_1||^2 + ||v_2||^2 \ge ||v_1||^2 = \langle v, u \rangle^2.
                 This is the desired inequality for ||u||=1.
  Def: V finite lin- IR with inner product \langle v_i, v_j \rangle = \begin{cases} 1 & i=j \ 0 & i \neq j \end{cases} (ie. ||v_i|| = 1)
     In such a basis, (V, \langle \cdot, \cdot \rangle) \cong (\mathbb{R}^n \text{ with standard dist product}).
Thm: Every finite dimensional inner product space (IR) has an orthonormal basis.
 Proof 1: By induction on \dim(V): choose v \neq 0 \in V, let v_1 = \frac{v}{\|v\|} so \|v_1\| = 1.

Then let S = \text{span}(v_1), V = S \oplus S^{\perp}.

Let v_2, ..., v_n be an orthonormal basis for S^{\perp} (the restriction of L_1, L_2) to L_2 is an inner product!)
                Then v,... vn is an orthonormal basis for V (check!).
 Proof 2: start with any basis w. ... Un of V and use the Gram-Schnidt process.
                First set v_1 = \frac{\omega_1}{\|\omega_2\|}. Then take \omega_2 - \angle \omega_2, v_1 > v_1 which is \perp v_1
```

Proof 2: start with any basis U_1 ... In of V and use the Gram-Schmidt process. First set $V_1 = \frac{U_1}{\|W_1\|}$. Then take $U_2 - \langle U_2, V_1 \rangle V_1$ which is $\int V_1 \langle V_1 \rangle V_1 \langle V_2 \rangle V_2 \langle V_1 \rangle V_1 \langle V_1 \rangle V_1 \langle V_1 \rangle V_2 \langle V_1 \rangle V_1 \langle V_1 \rangle V_2 \langle V_1 \rangle V_2 \langle V_1 \rangle V_1 \langle V_1 \rangle V_1 \langle V_1 \rangle V_2 \langle V_1 \rangle V_1 \langle V_1 \rangle V_2 \langle V_1 \rangle V_1 \langle V_1$

So : every finite din- inner product space /R is isomorphic (as an inner product 3 space, not just as a vector space) to standard R^n , n=d in V.

Operators on inner product spaces: Let (V, \angle, \cdot) inner product space. There are two special classes of linear operators on V of interest to us.

 $\frac{\text{Def}_{i}}{\text{poduct}, ie.} \begin{cases} \text{Say } \text{Ti } \text{V} \rightarrow \text{V} \text{ is an } \frac{\text{orthogonal operator}}{\text{operator}} \text{ if it respects the inner} \\ \text{poduct}, ie. & \langle \text{Tu}, \text{Tv} \rangle = \langle u, v \rangle \text{ } \forall u, v \in \text{V}. \end{cases}$

(In other terms, T "preserves lengths and angles").

Remarks: 1) orthogonal operators map orthogonal bases to orthogonal bases! $\langle Te_i, Te_j \rangle = \langle e_i, e_j \rangle = \begin{cases} 1 & \text{if } i \neq j \\ 0 & \text{otherwise} \end{cases}$

in particular, orthogonal operators are always invertible!

2) If T is orthogonal then T' is orthogonal $(\langle T''u\rangle, T''v\rangle = \langle T(T'u), T(T'v)\rangle = \langle u,v\rangle \forall u,v\rangle$ Tothogonal then so is T_1T_2 (check!)

Here: orthogonal operators form a subgroup of Aut(V).

3) If M is the matrix representing T in an orthonormal basis, then $M^TM=I$.

Indeed: enhine of $M^TM = dot$ products of columns of M! $(M^TM)_{ij} = \sum_{k} M_{ik}^T M_{kj} = \sum_{k} M_{ki} M_{kj} = \langle M(e_i), M(e_j) \rangle = \langle e_i, e_j \rangle.$

Adjoint operator:

Def: Let $T: V \rightarrow V$ linear operator on an inner product space (V, <, >)There exists a unique linear operator $T^*: V \rightarrow V$, called the adjoint of (V, V)such that $(V, T(w)) = (T^*(V), w) \forall V, w \in V$.

Indeed: given $v \in V$, the liear functional $V \longrightarrow \mathbb{R}$ $W \longmapsto \langle V, T(w) \rangle$ is, using nondegeneracy of $\langle V, V \rangle$, given by the inner product of W with some element of V, which we call T(v); then check this has linear dependence on V.

Equivalently: <,, > defines an isom. φ , $V \stackrel{\sim}{\to} V^*$. Then T' is the composition (4) $V \longmapsto \langle V, \bullet \rangle \longmapsto \langle V, \top (\cdot) \rangle = \langle \top^{r}(V), \bullet \rangle \longmapsto \top^{r}(V).$ Def: T: V-V is self-adjoint if T"=T. (ie. ∠v,Tw>=∠Tv,w> ∀v,u). In an orthonormal basis $(e_1,...,e_n)$ of V, $\langle v,w\rangle = V^t W$, so if matrix of T is M, T^a is N, homopous gives Cohumn Lead $\langle v,T(u)\rangle = v^t Mw$ a nw vector $\langle T^a(v),w\rangle = (Nv)^t w = v^t N^t w$ \Rightarrow comparing; $N^t = M$, so $N = M^t$. Lv, W> = V W , so

franspok gives Calumn Lector
a nw vector Hence: $M(T^*) = M(T)^t$ in orthonormal basis; T is self-adjoint M(T) symmetric Note that self-adjoint operators (~symmetric matrices) need not be invertible. For example 0 is a self-adjoint operator... $\frac{P_{np}:}{S^{\perp}}$ if T is self-aljoint and SCV is an invariant subspace $(T(S) \subset S)$ Hen S^{\perp} is also an invariant subspace $(T(S^{\perp}) \subset S^{\perp})$ Pf: Let $v \in S^{\perp}$, then $\forall w \in S$, $\forall w \in S$, so $\langle \forall v, w \rangle = \langle v, \forall u \rangle = 0$. Since $\langle \forall v, w \rangle = 0$ $\forall w \in S$, we get: $\forall v \in S^{\perp}$. $(\forall v \in S^{\perp}, \forall u \in S)$ II. Theorem (he spectral theorem for real self adjoint operators) If T; V-1 V is self adjoint then T is d'ayonalizable, with real e'genvalues. Even more, T can be d'ayonalized in an arthonormal basis of (V,<;,>)! The proof (to be seen next time) uses the following key observation: Lerna: If T is self-adjoint then Va E Rx, T2+a is invertible. $\frac{Pf.}{} \forall v \in V_{-\{0\}}, \quad \langle (\tau^2 + a)v, v \rangle = \langle \tau^2 v, v \rangle + a \langle v, v \rangle \\ = \langle \tau v, \tau v \rangle + a \langle v, v \rangle = \| \tau v \|^2 + a \| v \|^2 > 0$ $So \quad (\tau^2 + a)v \neq 0. \quad \text{Here} \quad \ker(\tau^2 + a) = 0.$ -> Corollary: If pER[x] is a quadratic without real rooks and T=T then p(T) is invertible. PF: enough to show T2+bT+c is invertible whenever 62-4c<0. write $T^2 + bT + c = \left(T + \frac{b}{2}\right)^2 + a$, $a = c - \frac{b^2}{4} > 0$, $T + \frac{b}{2}$ self-adjoint

=> by the lemma (applied to T+b) this is invertible.