Analysis of proteins involves determining the amino acid content:

which amino acids are present what is the sequence of the amino acids?

A piece of a protein:

How separate and identify?

$$H_3N$$
 H_1
 H_2N
 H_2N
 H_1
 H_2N
 H_2N
 H_2N
 H_1
 H_2N
 H_2N
 H_2N
 H_1
 H_2N
 H_2N
 H_2N
 H_2N
 H_1
 H_2N
 H_2N
 H_2N
 H_1
 H_2N
 H

Henderson-Hasselbach equation:

$$pH = pK_a + log \frac{[A^-]}{[HA^-]} \qquad HA \longrightarrow H^+ + A^-$$

Separation of amino acids by **electrophoresis:**

Amino acids can be (+), (-), or neutral (zwitterion): when the net charge is zero, isoelectric point in pH

Each amino acid has a characteristic pH for the isoelectric point.

	-	isoelectric point	•		
R	name				
H	glycine	6			
CH ₃	alanine	6			
$CH(CH_3)_2$	valine	6			
$CH_2CH(CH_3)_2$	leucine	6			
CHCH ₃ (CH ₂ CH ₃)	isoleucine	6			
-CH ₂ Ph	phenyl alanine	5.9			
-H ₂ COH	tyrosine	5.7	-CH ₂ CO ₂ H	aspartic acid	2.9
$-H_2C$	histidine	7.6	—CH ₂ CH ₂ CO ₂ H	glutamic acid	3.2
Ĥ			-CH ₂ CONH ₂	asparagine	5.4
-H ₂ C	tryptophan	5.9	-CH ₂ CH ₂ CONH ₂	glutamine	5.7
H -CH ₂ OH	serine	5.7	-CH ₂ CH ₂ CH ₂ CH ₂ NH ₂	ysine	9.7
-CH(CH ₃)OH	threonine	5.6	NH_2	arginine	10.8
-CH ₂ SH	cysteine	5.0			
-CH ₂ CH ₂ SCH ₃	threonine	5.6	√ _N CO₂H H	proline	6.1

Assume pH 5.5
$$\bigoplus_{H_3N} \bigoplus_{O} \bigoplus_{O}$$

Apply potential; allow migration. Then "visualize" Add solution of ninhydrin Text 26.2C

$$H_2N$$
 H_2N
 H_2N

The Strecker synthesis

$$R \xrightarrow{O} + NH_4 CN \xrightarrow{H_2N} R \xrightarrow{H_3O} H_3N \xrightarrow{H_3N} R \xrightarrow{H_3N} H \text{ racemic}$$

via:

Substitution reactions:

But how make homochiral amino acids? One enantiomer

Resolution: [recall...] 5

Enzymatic resolution:

Isolate enzyme and purify, mix with the reactants

Extremely efficient: 99% selective

Alternative: Selective organic synthesis

$$H_2N$$
 OH