Sprint-3

Machine Learning and the Stock Market

Goals

Investigate possible avenues of ML techniques for stock trading, adapting techniques from Physics and Mathematics.

Unsupervised

Used techniques from randomness in order to denoise correlation and cluster similar stocks together

Supervised

Recurrent Neural Networks for price forecasting

Reinforcement Learning

Train an AI trader for automatically acting on stock market

Goals

Investigate possible avenues of ML techniques for stock trading, adapting techniques from Physics and Mathematics.

Unsupervised

Supervised

Reinforcement Learning

TECHNOLOGY | ARTIFICIAL INTELLIGENCE

How Wall Street Lenders Are Betting Big on the AI Boom

Some of the largest-ever private-debt financing deals are being backed by the GPU chips powering the tech revolution

By Asa Fitch [Follow] and Miriam Gottfried [Follow]
May 21, 2024 12:50 pm ET

Neural Network Forecasting

The architectures tested were all mostly successful in forecasting in unseen data.

Caveat: Hyperparameter tuning can be time and resource consuming.

	Simple RNN	GRU	LSTM
A -Hidden States	40-80-40	40-80-40	40-80-40
B - Activation	Relu	Relu	Relu
C - Dropout	0.05	0.05	0.05
D - Batch	2	2	2
E - Learning Rate	0.001	0.001	0.001
F - Optimizer	Adam	Adam	RMSprop
MSE train	0.0029	0.0029	0.0035
MSE test	0.0017	0.0011	0.0039

Neural Network Forecasting

Simple test on same architecture on different stock:

Maybe not optimized but still promising forecast

- Basic Reinforcement Learning
- Action (Buy, Hold, Sell) 1 stock at a time.
- Simple model, mostly for proof of concept.
- Trade only 1 stock position at a time, trained only on 2 months of data

 Reward requires fine-tuning for trader to learn

$$reward_a = \frac{portfolio_{new} - portfolio_{old}}{portfolio_{old}}$$

Rewards instant profits

$$\mathsf{reward}_b = \lambda \times \left(\frac{\mu - P_t}{\sigma}\right)$$

Compare price to past prices average and std

 State: Includes a pre-trained NN price prediction, as well as past 3 prices

Training AI to Play Pokemon with Reinforcement Learning

•••

Prices with the actions at each day!

- Overall learned to sell as the market was rising!
- Example: Training 2 months of data, rolling window of size 3.

Reinforcement Learning Trader

- Example of how resources evolved during said strategy
- Overall wealth increased!
- Even in this simple model, the AI trader learned strategies to buy, hold and sell
- As good as the training data (very limited window in my case)

Conclusion

- Explored promising possible avenues for different Machine Learning application for Stock Market analysis.
- Important to say we only looked at historical data and there would be MANY adjustments to do before trying to apply to real trading environment.
- Enough exciting progress for personal learning and base study for future analysis.
- Probably I will expand on my Reinforcement Learning model for Capstone 2!

Thank you BrainStation instructors and friends!