```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib as mpl
   import matplotlib.pyplot as plt
   import seaborn as sns
   import warnings
   warnings.filterwarnings('ignore')
```

About Delhivery

• Delhivery is the largest and fastest-growing fully integrated player in India by revenue in Fiscal 2021. They aim to build the operating system for commerce, through a combination of world-class infrastructure, logistics operations of the highest quality, and cutting-edge engineering and technology capabilities. The Data team builds intelligence and capabilities using this data that helps them to widen the gap between the quality, efficiency, and profitability of their business versus their competitors.

Loading the Dataset

Out[2]:

	data	trip_creation_time	route_schedule_uuid	route_type	trip_uuid	source	
0	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388	
1	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388	
2	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388	
3	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388	
4	training	2018-09-20 02:35:36.476840	thanos::sroute:eb7bfc78- b351-4c0e-a951- fa3d5c3	Carting	trip- 153741093647649320	IND388	
5 r	5 rows × 24 columns						
4						•	

What is the shape of the loaded dataset?

```
In [3]: df.shape
Out[3]: (144867, 24)
```

What are the columns present in the dataset?

Basic Information about the Dataset

```
In [5]:
           df.dtypes
Out[5]:
                                                 0
                                      data
                                             object
                         trip_creation_time
                                             object
                      route_schedule_uuid
                                             object
                                route_type
                                             object
                                  trip_uuid
                                             object
                            source_center
                                             object
                             source name
                                             object
                        destination center
                                             object
                         destination_name
                                             object
                             od_start_time
                                             object
                              od_end_time
                                             object
                   start_scan_to_end_scan
                                            float64
                                  is_cutoff
                                               bool
                              cutoff_factor
                                              int64
                         cutoff_timestamp
                                             object
            actual_distance_to_destination
                                            float64
                                            float64
                               actual_time
                                            float64
                                osrm_time
                            osrm_distance
                                            float64
                                            float64
                                     factor
                      segment_actual_time
                                            float64
                      segment_osrm_time
                                            float64
                  segment_osrm_distance
                                            float64
```

dtype: object

float64

segment_factor

```
In [6]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 144867 entries, 0 to 144866

```
Data columns (total 24 columns):
    Column
                                   Non-Null Count
                                                    Dtype
    -----
                                   144867 non-null object
 0
    data
 1
    trip_creation_time
                                   144867 non-null object
                                   144867 non-null object
 2
    route_schedule_uuid
 3
    route_type
                                  144867 non-null object
 4
    trip uuid
                                  144867 non-null object
                                  144867 non-null object
 5
    source_center
                                   144574 non-null object
 6
    source name
 7
    destination_center
                                  144867 non-null object
                                  144606 non-null object
    destination_name
                                  144867 non-null object
 9
    od_start_time
 10 od_end_time
                                   144867 non-null object
11 start_scan_to_end_scan
12 is cutoff
                                 144867 non-null float64
144867 non-null bool
13 cutoff_factor 144867 non-null int64
14 cutoff_timestamp 144867 non-null
15 actual distance 1
                                   144867 non-null object
 15 actual_distance_to_destination 144867 non-null float64
 16 actual_time
                                  144867 non-null float64
                                   144867 non-null float64
 17 osrm time
 18 osrm_distance
                                   144867 non-null float64
 19 factor
                                  144867 non-null float64
 20 segment_actual_time
                                  144867 non-null float64
dtypes: bool(1), float64(10), int64(1), object(12)
memory usage: 25.6+ MB
```

Dropping unknown fields

How many unique entries present in each column?

```
In [8]:
        for i in df.columns:
            print(f"Unique entries for column {i:<30} = {df[i].nunique()}")</pre>
        Unique entries for column data
                                                               = 2
        Unique entries for column trip_creation_time
                                                               = 14817
        Unique entries for column route schedule uuid
                                                               = 1504
        Unique entries for column route_type
                                                               = 2
        Unique entries for column trip_uuid
                                                               = 14817
        Unique entries for column source_center
                                                               = 1508
        Unique entries for column source_name
                                                               = 1498
        Unique entries for column destination_center
                                                               = 1481
        Unique entries for column destination name
                                                              = 1468
        Unique entries for column od_start_time
                                                              = 26369
        Unique entries for column od_end_time
                                                               = 26369
        Unique entries for column start_scan_to_end_scan
                                                              = 1915
        Unique entries for column actual_distance_to_destination = 144515
        Unique entries for column actual_time
                                                               = 3182
        Unique entries for column osrm_time
                                                               = 1531
        Unique entries for column osrm_distance
                                                               = 138046
        Unique entries for column segment_actual_time
                                                              = 747
        Unique entries for column segment_osrm_time
                                                               = 214
                                                           = 113799
        Unique entries for column segment_osrm_distance
```

Updating the datatype of the datetime columns

```
In [9]: datetime_columns = ['trip_creation_time', 'od_start_time', 'od_end_time']
    for i in datetime_columns:
        df[i] = pd.to_datetime(df[i])
```

1. Basic data cleaning and exploration:

1. Handle missing values in the data.

```
In [10]: df.isnull().sum()
```

0

```
Out[10]:
```

- data 0
- trip_creation_time 0
- route_schedule_uuid 0
 - route_type 0
 - trip_uuid 0
 - source_center 0
 - source_name 293
 - destination_center 0
 - destination_name 261
 - od_start_time 0
 - od_end_time 0
- start_scan_to_end_scan 0
- actual_distance_to_destination 0
 - actual_time 0
 - osrm_time 0
 - osrm_distance 0
 - segment_actual_time 0
 - segment_osrm_time 0
 - segment_osrm_distance 0

dtype: int64

```
In [11]: df = df.dropna(how='any')
    df = df.reset_index(drop=True)
```

In [12]: df.isnull().sum()

Out[12]:

0

data 0

trip_creation_time 0

route_schedule_uuid 0

route_type 0

trip_uuid 0

source_center 0

source_name 0

destination_center 0

destination_name 0

od_start_time 0

od_end_time 0

start_scan_to_end_scan 0

actual_distance_to_destination 0

actual_time 0

osrm_time 0

osrm_distance 0

segment_actual_time 0

segment_osrm_time 0

segment_osrm_distance 0

dtype: int64

In [14]:

df.describe()

Out[14]:

	trip_creation_time	od_start_time	od_end_time	start_scan_to_end_scan	ac
count	144316	144316	144316	144316.000000	
mean	2018-09-22 13:05:09.454117120	2018-09-22 17:32:42.435769344	2018-09-23 09:36:54.057172224	963.697698	
min	2018-09-12 00:00:16.535741	2018-09-12 00:00:16.535741	2018-09-12 00:50:10.814399	20.000000	
25%	2018-09-17 02:46:11.004421120	2018-09-17 07:37:35.014584832	2018-09-18 01:29:56.978912	161.000000	
50%	2018-09-22 03:36:19.186585088	2018-09-22 07:35:23.038482944	2018-09-23 02:49:00.936600064	451.000000	
75%	2018-09-27 17:53:19.027942912	2018-09-27 22:01:30.861209088	2018-09-28 12:13:41.675546112	1645.000000	
max	2018-10-03 23:59:42.701692	2018-10-06 04:27:23.392375	2018-10-08 03:00:24.353479	7898.000000	
std	NaN	NaN	NaN	1038.082976	
4					•

```
In [15]: df.describe(include='object')
```

Out[15]:

	data	route_schedule_uuid	route_type	trip_uuid	source_center	
count	144316	144316	144316	144316	144316	
unique	2	1497	2	14787	1496	
top	training	thanos::sroute:4029a8a2- 6c74-4b7e-a6d8- f9e069f	FTL	trip- 153837029526866991	IND000000ACB	Gur
freq	104632	1812	99132	101	23267	
4						•

1. Merging the rows.

1. Grouping by segment

a. Create a unique identifier for different segments of a trip based on the combination of the trip_uuid, source center, and destination center and it as segment key.

Out[16]:

	segment_actual_time_sum	segment_osrm_distance_sum	segment_osrm_time_sum
0	14.0	11.9653	11.0
1	24.0	21.7243	20.0
2	40.0	32.5395	27.0
3	61.0	45.5619	39.0
4	67.0	49.4772	44.0
144311	92.0	65.3487	94.0
144312	118.0	82.7212	115.0
144313	138.0	103.4265	149.0
144314	155.0	122.3150	176.0
144315	423.0	131.1238	185.0

144316 rows × 3 columns

1. Aggregating at segment level

a. Create a dictionary named create_segment_dict, that defines how to aggregate and select values.

```
In [17]: | create_segment_dict = {
              'data' : 'first',
              'trip_creation_time': 'first',
              'route_schedule_uuid' : 'first',
              'route_type' : 'first',
              'trip_uuid' : 'first',
              'source_center' : 'first',
              'source_name' : 'first',
              'destination_center' : 'last',
              'destination_name' : 'last',
              'od start time' : 'first',
              'od_end_time' : 'first',
              'start_scan_to_end_scan' : 'first',
              'actual_distance_to_destination' : 'last',
              'actual_time' : 'last',
              'osrm_time' : 'last',
              'osrm_distance' : 'last',
              'segment_actual_time_sum' : 'last',
              'segment_osrm_distance_sum' : 'last',
              'segment_osrm_time_sum' : 'last',
              }
```

```
In [18]: segment = df.groupby('segment_key').agg(create_segment_dict).reset_index()
    segment = segment.sort_values(by=['segment_key','od_end_time'], ascending=T
    rue).reset_index()
```

In [19]: segment

Out[19]:

	index	segment_key	data	trip_creation_time	
0	0	trip- 153671041653548748IND209304AAAIND000000ACB	training	2018-09-12 00:00:16.535741	tha
1	1	trip- 153671041653548748IND462022AAAIND209304AAA	training	2018-09-12 00:00:16.535741	tha
2	2	trip- 153671042288605164IND561203AABIND562101AAA	training	2018-09-12 00:00:22.886430	tha
3	3	trip- 153671042288605164IND572101AAAIND561203AAB	training	2018-09-12 00:00:22.886430	tha
4	4	trip- 153671043369099517IND000000ACBIND160002AAC	training	2018-09-12 00:00:33.691250	tha
26217	26217	trip- 153861115439069069IND628204AAAIND627657AAA	test	2018-10-03 23:59:14.390954	th
26218	26218	trip- 153861115439069069IND628613AAAIND627005AAA	test	2018-10-03 23:59:14.390954	th
26219	26219	trip- 153861115439069069IND628801AAAIND628204AAA	test	2018-10-03 23:59:14.390954	th
26220	26220	trip- 153861118270144424IND583119AAAIND583101AAA	test	2018-10-03 23:59:42.701692	tha
26221	26221	trip- 153861118270144424IND583201AAAIND583119AAA	test	2018-10-03 23:59:42.701692	tha
26222	rows × :	21 columns			
→					•

3. Feature Engineering:

Extract features from the below fields:

1. Calculate time taken between od_start_time and od_end_time and keep it as a feature named od_time_diff_hour. Drop the original columns, if required.

Out[20]:

	od_time_diff_hour
0	21.010074
1	16.658423
2	0.980540
3	2.046325
4	13.910649
26217	1.035253
26218	1.518130
26219	0.736240
26220	4.791233
26221	1.115559

26222 rows × 1 columns

dtype: float64

```
In [21]: #Drop the original columns
    segment.drop(['od_start_time', 'od_end_time'], axis=1, inplace=True)
```

4. In-depth analysis:

- 1. Grouping and Aggregating at Trip-level
 - a. Groups the segment data by the trip_uuid column to focus on aggregating data at the trip level.
 - b. Apply suitable aggregation functions like first, last, and sum specified in the **create_trip_dict** dictionary to calculate summary statistics for each trip.

```
In [22]: | create_trip_dict = {
               'data' : 'first',
               'trip_creation_time': 'first',
               'route_schedule_uuid' : 'first',
               'route_type' : 'first',
               'trip_uuid' : 'first',
               'source_center' : 'first',
               'source_name' : 'first',
               'destination center' : 'last',
               'destination_name' : 'last',
'start_scan_to_end_scan' : 'sum',
               'od_time_diff_hour' : 'sum',
               'actual_distance_to_destination' : 'sum',
               'actual_time' : 'sum',
'osrm_time' : 'sum',
               'osrm_distance' : 'sum',
               'segment_actual_time_sum' : 'sum',
               'segment_osrm_distance_sum' : 'sum',
               'segment_osrm_time_sum' : 'sum',
               }
```

In [24]: trip

Out[24]:

s	trip_uuid	route_type	route_schedule_uuid	trip_creation_time	data	
IN	trip- 153671041653548748	FTL	thanos::sroute:d7c989ba- a29b-4a0b-b2f4- 288cdc6	2018-09-12 00:00:16.535741	training	0
IN	trip- 153671042288605164	Carting	thanos::sroute:3a1b0ab2- bb0b-4c53-8c59- eb2a2c0	2018-09-12 00:00:22.886430	training	1
IN	trip- 153671043369099517	FTL	thanos::sroute:de5e208e- 7641-45e6-8100- 4d9fb1e	2018-09-12 00:00:33.691250	training	2
IN	trip- 153671046011330457	Carting	thanos::sroute:f0176492- a679-4597-8332- bbd1c7f	2018-09-12 00:01:00.113710	training	3
IN	trip- 153671052974046625	FTL	thanos::sroute:d9f07b12- 65e0-4f3b-bec8- df06134	2018-09-12 00:02:09.740725	training	4
IN	trip- 153861095625827784	Carting	thanos::sroute:8a120994- f577-4491-9e4b- b7e4a14	2018-10-03 23:55:56.258533	test	14782
IN	trip- 153861104386292051	Carting	thanos::sroute:b30e1ec3- 3bfa-4bd2-a7fb- 3b75769	2018-10-03 23:57:23.863155	test	14783
IN	trip- 153861106442901555	Carting	thanos::sroute:5609c268- e436-4e0a-8180- 3db4a74	2018-10-03 23:57:44.429324	test	14784
IN	trip- 153861115439069069	Carting	thanos::sroute:c5f2ba2c- 8486-4940-8af6- d1d2a6a	2018-10-03 23:59:14.390954	test	14785
11	trip- 153861118270144424	FTL	thanos::sroute:412fea14- 6d1f-4222-8a5f- a517042	2018-10-03 23:59:42.701692	test	14786

14787 rows × 18 columns

```
In [25]: trip[['actual_time', 'segment_actual_time_sum']]
```

Out[25]:

	actual_time	segment_actual_time_sum
0	1562.0	1548.0
1	143.0	141.0
2	3347.0	3308.0
3	59.0	59.0
4	341.0	340.0
14782	83.0	82.0
14783	21.0	21.0
14784	282.0	281.0
14785	264.0	258.0
14786	275.0	274.0

14787 rows × 2 columns

In [28]: trip[['source_state','destination_state','source_city','destination_city']]

Out[28]:

	source_state	destination_state	source_city	destination_city
0	Uttar Pradesh	Uttar Pradesh	Kanpur	Kanpur
1	Karnataka	Karnataka	Doddablpur	Doddablpur
2	Haryana	Haryana	Gurgaon	Gurgaon
3	Maharashtra	Maharashtra	Mumbai Hub (Maharashtra)	Mumbai
4	Karnataka	Karnataka	Bellary	Sandur
14782	Punjab	Punjab	Chandigarh	Chandigarh
14783	Haryana	Haryana	FBD	Faridabad
14784	Uttar Pradesh	Uttar Pradesh	Kanpur	Kanpur
14785	Tamil Nadu	Tamil Nadu	Tirunelveli	Tirchchndr
14786	Karnataka	Karnataka	Sandur	Sandur

14787 rows × 4 columns

```
In [30]: #Trip_creation_time: Extract features like month, year, day, etc.
    trip['trip_creation_month']=trip['trip_creation_time'].dt.month
    trip['trip_creation_year']=trip['trip_creation_time'].dt.year
    trip['trip_creation_day']=trip['trip_creation_time'].dt.day
```

```
In [31]: trip.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14787 entries, 0 to 14786
Data columns (total 25 columns):

#	Column (total 25 columns):	Non-Null Count	Dtype
0	data	14787 non-null	object
1	trip creation time	14787 non-null	datetime64[ns]
2	route_schedule_uuid	14787 non-null	object
3	route_type	14787 non-null	object
4	trip_uuid	14787 non-null	object
5	source_center	14787 non-null	object
6	source_name	14787 non-null	object
7	destination_center	14787 non-null	object
8	destination_name	14787 non-null	•
9	start_scan_to_end_scan	14787 non-null	float64
10	od_time_diff_hour	14787 non-null	float64
11	actual_distance_to_destination	14787 non-null	float64
12	actual_time	14787 non-null	float64
13	osrm_time	14787 non-null	float64
14	osrm_distance	14787 non-null	float64
15	segment_actual_time_sum	14787 non-null	float64
16	segment_osrm_distance_sum	14787 non-null	float64
17	segment_osrm_time_sum	14787 non-null	float64
18	source_state	14787 non-null	object
19	source_city	14787 non-null	object
20	destination_state	14787 non-null	object
21	destination_city	14787 non-null	object
22	trip_creation_month	14787 non-null	int32
23	trip_creation_year	14787 non-null	int32
24	trip_creation_day	14787 non-null	int32
dtype	es: datetime64[ns](1), float64(9), int32(3), obj	ect(12)
memor	ry usage: 2.7+ MB		

In [32]: trip.describe().T

Out[32]:

	count	mean	min	25%
trip_creation_time	14787	2018-09-22 12:26:28.269885696	2018-09-12 00:00:16.535741	2018-09-17 02:38:18.128431872
start_scan_to_end_scan	14787.0	529.429025	23.0	149.(
od_time_diff_hour	14787.0	8.838559	0.391024	2.49497{
actual_distance_to_destination	14787.0	164.090196	9.002461	22.777099
actual_time	14787.0	356.306012	9.0	67.0
osrm_time	14787.0	160.990938	6.0	29.0
osrm_distance	14787.0	203.887411	9.0729	30.7569
segment_actual_time_sum	14787.0	353.059174	9.0	66.0
segment_osrm_distance_sum	14787.0	222.705466	9.0729	32.5788{
segment_osrm_time_sum	14787.0	180.511598	6.0	30.0
trip_creation_month	14787.0	9.120105	9.0	9.0
trip_creation_year	14787.0	2018.0	2018.0	2018.0
trip_creation_day	14787.0	18.375127	1.0	14.(
4				>

In [33]: trip.describe(include='object').T

Out[33]:

	count	unique	top	freq
data	14787	2	training	10645
route_schedule_uuid	14787	1497	thanos::sroute:a16bfa03-3462-4bce-9c82- 5784c7d	53
route_type	14787	2	Carting	8906
trip_uuid	14787	14787	trip-153671041653548748	1
source_center	14787	930	IND000000ACB	1052
source_name	14787	930	Gurgaon_Bilaspur_HB (Haryana)	1052
destination_center	14787	1035	IND000000ACB	821
destination_name	14787	1035	Gurgaon_Bilaspur_HB (Haryana)	821
source_state	14787	29	Maharashtra	2714
source_city	14787	731	Gurgaon	1128
destination_state	14787	31	Maharashtra	2561
destination_city	14787	856	Bengaluru	1088

I am interested to know what is the distribution of number of trips created from different states

```
In [36]: df_source_state=trip['source_state'].value_counts().reset_index()
    df_source_state[:5]
```

Out[36]:

	source_state	count
0	Maharashtra	2714
1	Karnataka	2143
2	Haryana	1823
3	Tamil Nadu	1039
4	Telangana	784

```
In [38]: plt.figure(figsize=(10, 6))
    sns.barplot(x='count', y='source_state', data=df_source_state)
```

Out[38]: <Axes: xlabel='count', ylabel='source_state'>

• It can be seen in the above plot that maximum trips originated from Maharashtra state followed by Karnataka and Haryana. That means that the seller base is strong in these states.

I am interested to know top 30 cities based on the number of trips created from different cities

In [39]: df_source_city=trip['source_city'].value_counts().reset_index()
df_source_city[:30]

Out[39]:

	source_city	count
0	Gurgaon	1128
1	Bengaluru	1052
2	Bhiwandi	697
3	Mumbai	654
4	Bangalore	648
5	Delhi	548
6	Hyderabad	515
7	Pune	480
8	Chennai	338
9	Mumbai Hub (Maharashtra)	300
10	Kolkata	281
11	Sonipat	275
12	Chandigarh	272
13	Jaipur	246
14	MAA	232
15	Ahmedabad	204
16	Del	172
17	Muzaffrpur	159
18	FBD	159
19	Ludhiana	158
20	Kanpur	145
21	Surat	140
22	Noida	129
23	Guwahati	118
24	Bhopal	114
25	HBR Layout PC (Karnataka)	79
26	CCU	75
27	Visakhapatnam	69
28	LowerParel	65
29	Coimbatore	60

```
In [40]: plt.figure(figsize=(10, 6))
    sns.barplot(x='count', y='source_city', data=df_source_city[:30])
```

Out[40]: <Axes: xlabel='count', ylabel='source_city'>

• It can be seen in the above plot that maximum trips originated from Gurgaon city followed by Bengaluru,Bhiwandi and Mumbai. That means that the seller base is strong in these cities.

I am interested to know what is the distribution of number of trips which ended in different states

Out[41]:

	destination_state	count
0	Maharashtra	2561
1	Karnataka	2294
2	Haryana	1640
3	Tamil Nadu	1084
4	Uttar Pradesh	805

```
In [42]: plt.figure(figsize=(10, 6))
    sns.barplot(x='count', y='destination_state', data=df_destination_state)
```

Out[42]: <Axes: xlabel='count', ylabel='destination_state'>

• It can be seen in the above plot that maximum trips ended in Maharashtra state followed by Karnataka, Haryana, Tamil Nadu and Uttar Pradesh. That means that the number of orders placed in these states is significantly high in these states.

I am interested to know top 30 cities based on the number of trips ended in different cities

In [43]: df_destination_city=trip['destination_city'].value_counts().reset_index()
 df_destination_city[:30]

Out[43]:

	destination_city	count
0	Bengaluru	1088
1	Mumbai	966
2	Gurgaon	877
3	Delhi	554
4	Bangalore	551
5	Hyderabad	499
6	Bhiwandi	434
7	Chennai	410
8	Chandigarh	338
9	Sonipat	322
10	Pune	313
11	Kolkata	277
12	Mumbai Hub (Maharashtra)	234
13	MAA	185
14	Jaipur	180
15	Kanpur	148
16	FBD	135
17	HBR Layout PC (Karnataka)	133
18	Bhopal	124
19	Surat	117
20	Ahmedabad	113
21	CCU	107
22	Noida	106
23	Muzaffrpur	102
24	Guwahati	98
25	Faridabad	85
26	BLR	78
27	AMD	75
28	Ludhiana	70
29	Visakhapatnam	64

```
In [44]: plt.figure(figsize=(10, 6))
sns.barplot(x='count', y='destination_city', data=df_destination_city[:30])
```

Out[44]: <Axes: xlabel='count', ylabel='destination_city'>

• It can be seen in the above plot that maximum trips ended in Bengaluru city followed by Mumbai, Gurgaon, Delhi. That means that the number of orders placed in these cities is significantly high.

5. Hypothesis Testing:

Null Hypothesis (H0): There is no significant difference between od_time_diff_hour (Point a) and start scan to end_scan.

Alternate Hypothesis (H1): There is a significant difference between od_time_diff_hour (Point a) and start scan to end scan.

```
In []: # Hypothesis testing
    from scipy import stats
    t_stat, p_value = stats.ttest_rel(trip['actual_time'], trip['od_time_diff_h
        our'])
    print(f'T-statistic: {t_stat}, P-value: {p_value}')

    if p_value<0.05:
        print("Reject Null Hypothesis")
    else:
        print("Accept Null Hypothesis")

T-statistic: 76.68717434417965, P-value: 0.0
Reject Null Hypothesis</pre>
```

a. actual_time aggregated value and OSRM time aggregated value.

T-statistic: 76.37699387098537 P-value: 0.0 Reject the null hypothesis. There is a significant difference between the actual_time and osrm_time.

```
In [ ]: plt.figure(figsize=(8, 6))
    plt.scatter(trip['actual_time'], trip['osrm_time'])
    plt.xlabel('Actual Time')
    plt.ylabel('OSRM Time')
    plt.title('Scatter Plot of Actual Time vs OSRM Time')
    plt.show()
```


b. actual_time aggregated value and segment actual time aggregated value.

T-statistic: 68.26327799172758

P-value: 0.0

Reject the null hypothesis. There is a significant difference between the actual_time and segment_actual_time.

```
In [ ]: plt.figure(figsize=(8, 6))
    plt.scatter(trip['actual_time'], trip['segment_actual_time_sum'])
    plt.xlabel('Actual Time')
    plt.ylabel('Segment Actual Time')
    plt.title('Scatter Plot of Actual Time vs Segment Actual Time')
    plt.show()
```


Actual Time

c. OSRM distance aggregated value and segment OSRM distance aggregated value.

T-statistic: -37.24135017557747 P-value: 3.046090802811484e-290

Reject the null hypothesis. There is a significant difference between the osrm_distance and segment_osrm_distance.

```
In [ ]: plt.figure(figsize=(8, 6))
    plt.scatter(trip['osrm_distance'], trip['segment_osrm_distance_sum'])
    plt.xlabel('OSRM Distance')
    plt.ylabel('Segment OSRM Distance')
    plt.title('Scatter Plot of OSRM Distance vs Segment OSRM Distance')
    plt.show()
```


d. OSRM time aggregated value and segment OSRM time aggregated value.

```
In [ ]: t_stat, p_value = stats.ttest_rel(trip['osrm_time'], trip['segment_osrm_time_sum'])

print(f"T-statistic: {t_stat}")
print(f"P-value: {p_value}")

alpha=0.05
if p_value < alpha:
    print("Reject the null hypothesis. There is a significant difference be tween the osrm_time and segment_osrm_time.")
else:
    print("Fail to reject the null hypothesis. There is no significant difference between the osrm_time and segment_osrm_time.")</pre>
```

T-statistic: -43.20294257463631

P-value: 0.0

Reject the null hypothesis. There is a significant difference between the osrm_time and segment_osrm_time.

```
In [ ]: plt.figure(figsize=(8, 6))
    plt.scatter(trip['osrm_time'], trip['segment_osrm_time_sum'])
    plt.xlabel('OSRM Time')
    plt.ylabel('Segment OSRM Time')
    plt.title('Scatter Plot of OSRM Time vs Segment OSRM Time')
    plt.show()
```


Out[]:

	count	mean	std	min	25%	
od_time_diff_hour	14787.0	8.838559	10.973591	0.391024	2.494975	4.66
start_scan_to_end_scan	14787.0	529.429025	658.254936	23.000000	149.000000	279.00
actual_distance_to_destination	14787.0	164.090196	305.502982	9.002461	22.777099	48.28
actual_time	14787.0	356.306012	561.517936	9.000000	67.000000	148.00
osrm_time	14787.0	160.990938	271.459495	6.000000	29.000000	60.00
osrm_distance	14787.0	203.887411	370.565564	9.072900	30.756900	65.30
segment_actual_time_sum	14787.0	353.059174	556.365911	9.000000	66.000000	147.00
segment_osrm_time_sum	14787.0	180.511598	314.679279	6.000000	30.000000	65.00
segment_osrm_distance_sum	14787.0	222.705466	416.846279	9.072900	32.578850	69.78
4						>

(4)2. Outlier Detection & Treatment

- a. Find any existing outliers in numerical features.
- b. Visualize the outlier values using Boxplot.
- c. Handle the outliers using the IQR method.
- 1. Perform one-hot encoding on categorical features.
- 2. Normalize/ Standardize the numerical features using MinMaxScaler or StandardScaler.

```
In [ ]: for i in numerical_columns:
    Q1 = np.quantile(trip[i], 0.25)
    Q3 = np.quantile(trip[i], 0.75)
    IQR = Q3 - Q1
    LB = Q1 - 1.5 * IQR
    UB = Q3 + 1.5 * IQR
    outliers = trip.loc[(trip[i] < LB) | (trip[i] > UB)]
    print('Column :', i)
    print(f'Q1 : {Q1}')
    print(f'Q3 : {Q3}')
    print(f'IQR : {IQR}')
    print(f'UB : {LB}')
    print(f'UB : {UB}')
    print(f'Number of outliers : {outliers.shape[0]}')
    print('------')
```

```
Column : od_time_diff_hour
01 : 2.494974930972222
Q3 : 10.558961618055555
IQR: 8.063986687083332
LB: -9.601005099652777
UB: 22.654941648680555
Number of outliers: 1275
-----
Column : start_scan_to_end_scan
Q1: 149.0
Q3: 632.0
IQR: 483.0
LB: -575.5
UB: 1356.5
Number of outliers: 1282
-----
Column : actual_distance_to_destination
Q1 : 22.777098943155323
Q3 : 163.5912581579725
IQR: 140.81415921481718
LB: -188.44413987907043
UB: 374.81249698019826
Number of outliers : 1452
-----
Column : actual_time
Q1: 67.0
Q3: 367.0
IQR: 300.0
LB : -383.0
UB: 817.0
Number of outliers: 1646
-----
Column : osrm_time
Q1: 29.0
Q3 : 168.0
IQR: 139.0
LB: -179.5
UB: 376.5
Number of outliers : 1506
-----
Column : osrm_distance
Q1 : 30.7569
Q3: 206.6442
IQR: 175.8873
LB: -233.07405000000003
UB: 470.47515000000004
Number of outliers : 1522
-----
Column : segment_actual_time_sum
01:66.0
Q3: 364.0
IQR: 298.0
LB: -381.0
UB: 811.0
Number of outliers : 1644
-----
Column : segment_osrm_time_sum
Q1:30.0
Q3 : 184.0
IQR: 154.0
```

LB: -201.0

UB: 415.0

Number of outliers: 1485

Column : segment_osrm_distance_sum

Q1 : 32.57885 Q3 : 216.5606

IQR: 183.9817499999998

LB : -243.393775 UB : 492.533225

Number of outliers: 1550

```
In []: plt.figure(figsize = (18, 15))
    for i in range(len(numerical_columns)):
        plt.subplot(3, 3, i + 1)
        clr = np.random.choice(list(mpl.colors.cnames))
        sns.boxplot(trip[numerical_columns[i]],color = clr)
        plt.xlabel(numerical_columns[i])
        plt.title(f"Boxplot of {numerical_columns[i]} column")
        plt.plot()
```



```
In [ ]:
            def handle_outliers_iqr(df, column):
               Q1 = np.quantile(df[column], 0.25)
               Q3 = np.quantile(df[column], 0.75)
               IQR = Q3 - Q1
               LB = Q1 - 1.5 * IQR
               UB = Q3 + 1.5 * IQR
               df[column] = np.where(df[column] < LB, LB, df[column])</pre>
               df[column] = np.where(df[column] > UB, UB, df[column])
               return df
            for column in numerical_columns:
               trip = handle_outliers_iqr(trip, column)
In [ ]: | plt.figure(figsize = (18, 15))
            for i in range(len(numerical_columns)):
                  plt.subplot(3, 3, i + 1)
                  clr = np.random.choice(list(mpl.colors.cnames))
                  sns.boxplot(trip[numerical_columns[i]],color=clr)
                  plt.xlabel(numerical_columns[i])
                  plt.title(f"Boxplot of {numerical_columns[i]} column")
                  plt.plot()
                     Boxplot of od_time_diff_hour column
                                                                                           Boxplot of actual distance to destination column
                                                        Boxplot of start scan to end scan column
                                                                                        350
                                                   1200
                                                                                        300
             od_time_diff_hour
10
                                                                                        250
                                                 scan_to_end
                                                                                       원 200
                                                   600
                                                                                        150
                                                 start
                                                   400
                                                                                        100
                                                   200
                            od time diff hour
                                                               start scan to end scan
                                                                                                  actual distance to destination
                       Boxplot of actual_time column
                                                             Boxplot of osrm_time column
                                                                                                Boxplot of osrm_distance column
              800
                                                   350
               700
              600
                                                   250
             actual_time
                                                   200
                                                                                        200
                                                   100
                                                                                        100
                                                    50
                             actual time
                                                                   osrm time
                                                                                                       osrm distance
                  Boxplot of segment_actual_time_sum column
                                                        Boxplot of segment_osrm_time_sum column
                                                                                           Boxplot of segment_osrm_distance_sum column
                                                                                        500
              800
               700
             E 600
                                                  300 sime 250
             .
500
                                                                                        300
             actual
004
                                                   200
                                                                                        200
              300
                                                   150
             E 200
                                                   100
                                                                                        100
              100
                                                    50
```

Do one-hot encoding of categorical variables (like route type)

segment_actual_time_sum

segment_osrm_time_sum

segment_osrm_distance_sum

```
# Get value counts before one-hot encoding
         trip['route_type'].value_counts()
Out[ ]:
                   count
         route_type
            Carting
                    8906
               FTL
                    5881
         dtype: int64
In [ ]: # Perform one-hot encoding on categorical column route type
         from sklearn.preprocessing import LabelEncoder
         label_encoder = LabelEncoder()
         trip['route_type'] = label_encoder.fit_transform(trip['route_type'])
In [ ]: # Get value counts after one-hot encoding
         trip['route_type'].value_counts()
Out[]:
                   count
         route_type
                    8906
                    5881
         dtype: int64
In [ ]: | # Get value counts of categorical variable 'data' before one-hot encoding
         trip['data'].value_counts()
Out[ ]:
                 count
            data
         training
                 10645
                  4142
            test
         dtype: int64
In [ ]: # Perform one-hot encoding on categorical variable 'data'
         label_encoder = LabelEncoder()
         trip['data'] = label_encoder.fit_transform(trip['data'])
```

Normalize/ Standardize the numerical features using MinMaxScaler or StandardScaler.

```
In [ ]: from sklearn.preprocessing import MinMaxScaler, StandardScaler

# Choose a scaler (MinMaxScaler or StandardScaler)
scaler = MinMaxScaler() # Or StandardScaler()

# Fit and transform the numerical features
trip_num[numerical_columns] = scaler.fit_transform(trip[numerical_columns])
```

```
In [ ]: plt.figure(figsize = (18, 15))
    for i in range(len(numerical_columns)):
        plt.subplot(3, 3, i + 1)
        clr = np.random.choice(list(mpl.colors.cnames))
        sns.histplot(trip_num[numerical_columns[i]], color = clr)
        plt.title(f"Distribution of {numerical_columns[i]} column")
        plt.plot()
```


Business Insights

- There are about 14817 unique trip IDs, 1508 unique source centers, 1481 unique destination_centers, 731 unique source cities, 856 unique destination cities.
- Most orders are sourced from the states like Maharashtra, Karnataka, Haryana, Tamil Nadu, Telangana
- Maximum number of trips originated from Gurgaon city followed by Bengaluru, Bhiwandi and Mumbai.
 That means that the seller base is strong in these cities.
- Maximum number of trips ended in Maharashtra state followed by Karnataka, Haryana, Tamil Nadu and Uttar Pradesh. That means that the number of orders placed in these states is significantly high.
- Maximum number of trips ended in Bengaluru city followed by Mumbai, Gurgaon, Delhi and Bangalore.
 That means that the number of orders placed in these cities is significantly high.
- Most orders in terms of destination are coming from cities like bengaluru, mumbai, gurgaon, bangalore, Delhi.
- Features actual time & osrm time are statitically different.
- Features actual_time and segment actual time are statistically different from each other.
- Features osrm distance and segment osrm distance are statistically different from each other.
- Both the osrm time & segment osrm time are not statistically same.

Recommendations

- The OSRM trip planning system needs to be improved. Discrepancies need to be catered to for transporters, if the routing engine is configured for optimum results.
- osrm_time and actual_time are different. Team needs to make sure this difference is reduced, so that better delivery time prediction can be made and it becomes convenient for the customer to expect an accurate delivery time.
- The osrm distance and actual distance covered are also not same i.e. maybe the delivery person is not following the predefined route which may lead to late deliveries or the osrm devices is not properly predicting the route based on distance, traffic and other factors. Team needs to look into it.
- Most of the orders are coming from/reaching to states like Maharashtra, Karnataka, Haryana and Tamil Nadu. The existing corridors can be further enhanced to improve the penetration in these areas.
- Customer profiling of the customers belonging to the states Maharashtra, Karnataka, Haryana, Tamil Nadu and Uttar Pradesh has to be done to get to know why major orders are coming from these states and to improve customers' buying and delivery experience.
- From state point of view, we might have very heavy traffic in certain states and bad terrain conditions in certain states. This will be a good indicator to plan and cater to demand during peak festival seasons.