1.2 Dataset 2: Nonlinearly separable classes

1.2.1 Dataset Description:

Figure 5: Data Set

Number of samples in each class are:

- 1. Class 1:
 - \bullet Train : 150
 - Test: 60
 - Validation: 90
- 2. Class 2:
 - Train: 300
 - \bullet Test: 120
 - Validation: 180
- 3. Class 3:
 - Train: 400
 - Test: 160
 - Validation: 240

Models Analyzed

- 1. Bayesian Classification
- 2. Multilayer feed forward neural network

Accuracy	k=1	k=3	k=5
Validation Data	100	98.03	100
Test Data	100	96.76	100

Table 9: Accuracy Obtained at different values of number of mixtures

Decision Regions Plots for MLFFNN using batch mode

Figure 6: At different no of hidden nodes(n) with one hidden Layer

Figure 7: Confusion Matrix on validation data depicting the number of nodes giving best results in 1-layer architecture

• Below are the plots for the output at each output node

1.2.3 Inference

- Since the data is linearly non separable, it requires more neurons in the hidden layer for modeling.
- The number of parameters to be estimated becomes too high if the model is assumed to be complex; which inherently requires more training data for learning. For eg: increasing the number of mixtures in GMM beyond a certain limit decreases the accuracy.
- $\bullet\,$ When Output at all nodes is combined a plot similar to the decision region.