5. Limiti notevoli

I limiti notevoli, già considerati per le funzioni, valgono anche per le successioni.

1) Il numero e

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

- 2) $\lim_{n\to\infty} n\sin\left(\frac{1}{n}\right) = 1$ (porre $\frac{1}{n} = t$ e ricordare che $\lim_{t\to 0} \frac{\sin t}{t} = 1$)
- 3) $\lim_{n \to \infty} n^2 \left(1 \cos \left(\frac{1}{n} \right) \right) = \frac{1}{2} ;$ 4) $\lim_{n \to \infty} n \log \left(1 + \frac{1}{n} \right) = 1$
- 5) $\lim_{n \to \infty} n \left(e^{\frac{1}{n}} 1 \right) = 1$

Esercizi

(gli esercizi con asterisco sono avviati)

Calcolare i seguenti limiti:

$$1) \lim_{n\to\infty} (4n^3 - n^2)$$

3)
$$\lim_{n\to\infty} \frac{5n-2}{n-1}$$

5)
$$\lim_{n \to \infty} \frac{9n-2}{4-3n}$$

7)
$$\lim_{n \to \infty} \frac{\sqrt{n+5n^2}}{(n-2)^2}$$

$$9) \quad \lim_{n \to \infty} \sqrt{\frac{4n}{9n+1}}$$

11)
$$\lim_{n\to\infty} \frac{n}{sinn}$$

*13)
$$\lim_{n\to\infty} \sqrt[n]{\frac{3n}{7n+1}}$$

*15)
$$\lim_{n\to\infty} (\sqrt{n^2-2} - \sqrt{3+2n^2})$$

17)
$$\lim_{n\to\infty} \frac{1}{\sqrt[3]{n^2-3n}+n}$$

19)
$$\lim_{n\to\infty} \frac{1}{\sqrt{3n-2}-\sqrt{n}}$$

2)
$$\lim_{n\to\infty} (5+4n-2n^3)$$

4)
$$\lim_{n \to \infty} \frac{n^2 - 2}{2n - 1}$$

6)
$$\lim_{n \to \infty} \frac{n^2 + 2}{n^3 - 1}$$

8)
$$\lim_{n\to\infty} \frac{\sqrt[3]{n-3n^2+n^3-1}}{(1-n)^3}$$

*10)
$$\lim_{n\to\infty}\frac{\cos n}{n}$$

*12)
$$\lim_{n\to\infty} \frac{\sqrt[3]{n^2 + \cos(n!)}}{2+n}$$

14)
$$\lim_{n \to \infty} \frac{e^{-n} - n}{3 + 4n}$$

*16)
$$\lim_{n\to\infty} \frac{1}{\sqrt{n+2}-\sqrt{n-1}}$$

*18)
$$\lim_{n\to\infty} \frac{n+1}{\sqrt{n^2+3n}}$$

20)
$$\lim_{n\to\infty} \frac{1}{\sqrt{n+2}-\sqrt{n}}$$

L. Mereu – A. Nanni

Successioni numeriche

21)
$$\lim_{n\to\infty} \frac{1}{\sqrt[3]{n^2-3n}+n}$$

23)
$$\lim_{n\to\infty} \frac{\sqrt{4n^2+1}}{\sqrt[3]{n^3-3n}+n}$$

*25)
$$\lim_{n\to\infty} \left[1-\cos\left(\frac{1}{2n}\right)\right] \cdot n^2$$

*27)
$$\lim_{n \to \infty} \frac{5n + 1 + \sin(2n)}{3n - 1}$$

29)
$$\lim_{n\to\infty} (4e^{\frac{2}{n-1}} - \log \frac{e^{n+1}}{n})$$

*31)
$$\lim_{n\to\infty} \frac{n-arctgn}{n!}$$

*33)
$$\lim_{n\to\infty} \frac{e^{n^2+n}}{e^{n^2-n}}$$

35)
$$\lim_{n\to\infty} \left(\log_{\frac{1}{2}}^2 n - \log_{\frac{1}{2}} n \right)$$

37)
$$\lim_{n\to\infty} \left(arctg(n) - arctg(-n) \right)$$

*39)
$$\lim_{n \to \infty} \left(\frac{n+1}{n} \right)^{2n+3}$$

41)
$$\lim_{n \to \infty} \left(1 + \frac{1}{4+n} \right)^{1-n}$$

*43)
$$\lim_{n\to\infty} \left(\frac{n+4}{n+2}\right)^n$$

45)
$$\lim_{n \to \infty} \left(1 - \frac{2}{n+1}\right)^n$$

*47)
$$\lim_{n\to\infty} \left(\frac{n+3}{n-1}\right)^{2n-1}$$

$$49) \lim_{n \to \infty} (n+1) \log \left(1 + \frac{1}{n+2}\right)$$

$$51) \lim_{n \to \infty} \left(1 + \frac{1}{n^3 + 1} \right)^{\frac{n^3}{2}}$$

*53)
$$\lim_{n\to\infty} \frac{\log(n+e^n)}{n}$$

* 55)
$$\lim_{n\to\infty} \sqrt[n]{3^n + 5^n}$$

22)
$$\lim_{n\to\infty} \frac{\sqrt{n^2+1}}{3n+2}$$

*24)
$$\lim_{n\to\infty} n\sin\left(\frac{-2}{n}\right)$$

*26)
$$\lim_{n\to\infty} \frac{\sin(\frac{1}{n^2})}{\sin(-\frac{5}{n^2})}$$

28)
$$\lim_{n\to\infty} \frac{\cos n - 2n}{\sin n + 3n}$$

30)
$$\lim_{n\to\infty} \left(2^{\frac{2n}{n-1}} - \log_{\frac{1}{3}} \frac{9n+1}{n}\right)$$

32)
$$\lim_{n\to\infty} \log_{\frac{1}{3}} \left(\frac{1}{n} - \frac{1}{n^2} \right)$$

*34)
$$\lim_{n\to\infty} (arctg \frac{n+1}{n-1} - cos\pi \left(\frac{n+1}{n^2}\right))$$

36)
$$\lim_{n \to \infty} (log(n^2 + 1) - 2logn)$$

38)
$$\lim_{n\to\infty} \left(\arcsin\left(\frac{1}{n}\right) + \arccos\left(\frac{1}{n}\right) \right)$$

40)
$$\lim_{n\to\infty} \left(\frac{n+2}{n}\right)^{n+2}$$

42)
$$\lim_{n\to\infty} \sqrt[n]{\frac{n}{n+1}}$$

$$44) \lim_{n\to\infty} \left(1+\frac{1}{2n}\right)^{3n}$$

46)
$$\lim_{n\to\infty} \left(1 - \frac{7}{n^2}\right)^{n^2+1}$$

48)
$$\lim_{n\to\infty} arctgn \cdot \left(1+\frac{1}{n}\right)^n$$

*50)
$$\lim_{n \to \infty} n^2 \log \left(1 + \frac{1}{n^2} \right)$$

*52)
$$\lim_{n\to\infty} \left(n\log(n+4) - n\log(n+1)\right)$$

*54)
$$\lim_{n\to\infty} \frac{\log(4n^3+1)}{\log(8n^2+1)}$$

Soluzioni

- 1. S.+ ∞ ; 2. S. - ∞ ; 3. S. 5; 4. S. + ∞ ;
- 5. S. -3; 6. S. 0; 7. S. 5; 8. S. 1; 9. S. $\frac{2}{3}$;
- *10. S. 0; ($\forall n \in \mathbb{N}_0$ risulta -1 < cosn < 1 pertanto $\lim_{n \to \infty} \frac{cosn}{n} = 0$);
- 11. S. non esiste;
- *12. S. 0; ($\forall n \in \mathbb{N} 1 \le cos(n!) < 1$ e il denominatore è un infinito per $n \to \infty$ di ordine 1 mentre il numeratore è un infinito di ordine $\frac{2}{3}$);
- *13. S. 1; $(\lim_{n\to\infty} \sqrt[n]{\frac{3n}{7n+1}} = \lim_{n\to\infty} \left(\frac{3n}{7n+1}\right)^{\frac{1}{n}}$ e poiché $\lim_{n\to\infty} \frac{1}{n} = 0$ risulta $\lim_{n\to\infty} \sqrt[n]{\frac{3n}{7n+1}} = 1$);
- **14.** S. $-\frac{1}{4}$;
- *15. S. $-\infty$; $(\sqrt{n^2-2}-\sqrt{3+2n^2}=n\left(\sqrt{1-\frac{2}{n^2}}-\sqrt{\frac{3}{n^2}+2}\right)=\cdots)$;
- *16. S. $+\infty$; (razionalizzando il denominatore si ha $\frac{1}{\sqrt{n+2}-\sqrt{n-1}}=\frac{\sqrt{n+2}+\sqrt{n-1}}{3}\dots$);
- **17. S.** 0;
- *18. S. 1; $(\lim_{n\to\infty}\frac{n+1}{\sqrt{n^2+3n}}=\lim_{n\to\infty}\frac{n(1+\frac{1}{n})}{n\cdot\sqrt{1+\frac{3}{n}}}=\lim_{n\to\infty}\frac{n}{n}=1);$
- **19.** S. 0; **20.** S. $+\infty$; **21.** S. 0; **22.** S. $\frac{1}{3}$; **23.** S. 1;
- *24. S. -2; ($\lim_{n \to \infty} n \sin\left(\frac{-2}{n}\right) = \lim_{n \to \infty} -2 \frac{\sin\left(\frac{-2}{n}\right)}{\frac{-2}{n}} = -2$ tenendo presente che $\lim_{x \to 0} \frac{\sin x}{x} = 1$);
- *25. S. $\frac{1}{8}$; $\left(\lim_{n\to\infty}\left[1-\cos\left(\frac{1}{2n}\right)\right]\cdot n^2 = \lim_{n\to\infty}\frac{1}{4}\left[1-\cos\left(\frac{1}{2n}\right)\right]\cdot (2n)^2 = \frac{1}{4}\lim_{m\to\infty}\left[1-\cos\left(\frac{1}{m}\right)\right]m^2\dots\right)$;
- *26. S. $-\frac{1}{5}$; (per $n \to \infty \Rightarrow sin\left(\frac{1}{n^2}\right) \sim \frac{1}{n^2}$, $sin\left(-\frac{5}{n^2}\right) \sim -\frac{5}{n^2}$);
- *27. S. $\frac{5}{3}$; ($\lim_{n\to\infty} \frac{5n+1+\sin(2n)}{3n-1} = \lim_{n\to\infty} \frac{n\left(5+\frac{1}{n}+\frac{\sin(2n)}{n}\right)}{n\left(3-\frac{1}{n}\right)} = \frac{5}{3}$ poiché $\lim_{n\to\infty} \frac{\sin(2n)}{n} = 0$);
- **28. S.** $-\frac{2}{3}$; **29.S.** 3; **30.S.** 6;
- *31.S. 0; $(\lim_{n\to\infty} \frac{n-arctgn}{n!} = \lim_{n\to\infty} (\frac{n}{n!} \frac{arctgn}{n!}) = \lim_{n\to\infty} (\frac{1}{(n-1)!} \frac{arctgn}{n!}) = 0$

essendo $0 \le arctgn < \frac{\pi}{2}$;

L. Mereu – A. Nanni Successioni numeriche

*33. S.+
$$\infty$$
; ($\lim_{n\to\infty} \frac{e^{n^2+n}}{e^{n^2-n}} = \lim_{n\to\infty} e^{n^2+n-(n^2-n)} = \lim_{n\to\infty} e^{2n} = +\infty$);

*34. S.
$$\frac{\pi}{4} - 1$$
; ($\lim_{n \to \infty} (arctg \frac{n+1}{n-1} - cos\pi \left(\frac{n+1}{n^2}\right) = arctg(1) - cos(0) = \frac{\pi}{4} - 1$);

35. S.
$$+\infty$$
; 36. S. 0; 37. S. π ; 38.S. $\frac{\pi}{2}$;

*39. S.
$$e^2$$
; $\left(\lim_{n\to\infty} \left(\frac{n+1}{n}\right)^{2n+3} = \lim_{n\to\infty} \left[\left(1+\frac{1}{n}\right)^n\right]^2 \cdot \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^3 = e^2\right)$;

40. S.
$$e^2$$
; **41.** S. e^{-1} ; **42.** S. 1;

*43. S.
$$e^2$$
; $\left(\lim_{n\to\infty} \left(\frac{n+4}{n+2}\right)^n = \lim_{n\to\infty} \left(1 + \frac{2}{n+2}\right)^n = \lim_{n\to\infty} \left(1 + \frac{1}{\frac{n+2}{2}}\right)^{\frac{n+2}{2}\frac{2n}{n+2}} = e^2\right)$;

44. S.
$$e\sqrt{e}$$
; **45.** S. e^{-2} ; **46.** S. e^{-7} ;

*47. S.
$$e^8$$
; ($\frac{n+3}{n-1} = 1 + \frac{4}{n-1}$, porre $\frac{4}{n-1} = \frac{1}{t}$...);

48. S.
$$\frac{\pi}{2}e$$
; 49.S. 1;

*50. S. 1;
$$(\lim_{n\to\infty} n^2 \log\left(1+\frac{1}{n^2}\right) = \lim_{n\to\infty} \log\left(1+\frac{1}{n^2}\right)^{n^2} = 1);$$

51. S.
$$\sqrt{e}$$
 ;

***52. S.** 3;

$$(nlog(n+4) - nlog(n+1) = log\left(\frac{n+4}{n+1}\right)^n = log\left(1 + \frac{3}{n+1}\right)^n = log\left(1 + \frac{1}{\frac{n+1}{2}}\right)^{\frac{n+1}{3}\frac{3n}{n+1}});$$

*53. S. 1;
$$(\lim_{n\to\infty}\frac{\log(n+e^n)}{n}=\lim_{n\to\infty}\frac{\log\left(e^n\left(\frac{n}{e^n}+1\right)\right)}{n}=\lim_{n\to\infty}\left(\frac{\log e^n}{n}+\frac{\log\left(\frac{n}{e^n}+1\right)}{n}\right)=1+\lim_{n\to\infty}\frac{\log\left(\frac{n}{e^n}+1\right)}{n}=1$$
 essendo $\lim_{n\to\infty}\frac{n}{e^n}=0$);

*54.S.
$$\frac{3}{2}$$
; $(log(4n^3+1) = log\left[4n^3\left(1+\frac{1}{4n^3}\right)\right] =$
$$= log4n^3 + log\left(1+\frac{1}{4n^3}\right) \sim 3log4n \text{ per } n \to \infty \; ; \quad log(8n^2+1) \sim 2log8n \;) \; ;$$

*55. S. 5;
$$(\lim_{n\to\infty} \sqrt[n]{3^n+5^n} = 5\lim_{n\to\infty} \sqrt[n]{\left(\frac{3}{5}\right)^n+1} = 5$$
 poiché $\lim_{n\to\infty} \left(\frac{3}{5}\right)^n = 0$);

L. Mereu – A. Nanni Successioni numeriche