Decidability II

Sides based on material by Kani, Erickson, Chekuri, et. al.

All mistakes are my own! - Ivan Abraham (Fall 2024)

Meta definition: Problem X reduces to problem Y, if having a solution to Y, implies a solution to X. We denote this as $X \Longrightarrow Y$.

Meta definition: Problem X reduces to problem Y, if having a solution to Y, implies a solution to X. We denote this as $X \Longrightarrow Y$.

Definition: Oracle $ORAC_L$ for language L is a function that maps a word w to $TRUE \iff w \in L$

$$A_{TM} = \{ \langle M, w \rangle : TM M accepts w \}$$

Meta definition: Problem X reduces to problem Y, if having a solution to Y, implies a solution to X. We denote this as $X \Longrightarrow Y$.

Definition: Oracle $ORAC_L$ for language L is a function that maps a word w to $TRUE \iff w \in L$

Lemma: A language X reduces to a language Y, if one can construct a TM decider for X using an oracle $ORAC_Y$ for Y.

Meta definition: Problem X reduces to problem Y, if having a solution to Y, implies a solution to X. We denote this as $X \Longrightarrow Y$.

Definition: Oracle $ORAC_L$ for language L is a function that maps a word w to $TRUE \iff w \in L$

Lemma: A language X reduces to a language Y, if one can construct a TM decider for X using an oracle $ORAC_Y$ for Y.

We will also denote this by $X \implies Y$.

• Let Y be the problem/language for which we want to prove something (e.g. undecidability) and denote by L the language of Y.

- Let Y be the problem/language for which we want to prove something (e.g. undecidability) and denote by L the language of Y.
- Proof via reduction is essentially a proof by contradiction.

- Let Y be the problem/language for which we want to prove something (e.g. undecidability) and denote by L the language of Y.
- Proof via reduction is essentially a proof by contradiction.

- Let Y be the problem/language for which we want to prove something (e.g. undecidability) and denote by L the language of Y.
- Proof via reduction is essentially a proof by contradiction.
- Assume L is decided by a TMM. Create a decider for known undecidable problem X using M.
 - Results in decider for X (i.e., A_{TM}).

- Let Y be the problem/language for which we want to prove something (e.g. undecidability) and denote by L the language of Y.
- Proof via reduction is essentially a proof by contradiction.
- Assume L is decided by a TM M. Create a decider for known undecidable problem X using M.
 - Results in decider for X (i.e., A_{TM}).
- Contradiction since X is known not to be decidable. Thus, L must be not decidable.

Key diagram

A picture is worth atleast a few slides of proofs.

Reduction implies decidability

Lemma: Let X and Y be two languages, and assume that $X \implies Y$. Then if Y is decidable then X is decidable.

Reduction implies decidability

Lemma: Let X and Y be two languages, and assume that $X \implies Y$. Then if Y is decidable then X is decidable.

onale for resint.

Proof: Since X reduces to Y, there is a procedure $T_{X|Y}$ (i.e., decider) for X that uses an oracle for Y as a subroutine. Since Y is decidable, let T be a decider for Y (i.e., a program or a TM). We replace the calls to the oracle in $T_{X|Y}$ with calls to T. The resulting program T_X is a decider and its language is X. Thus X is decidable (or more formally TM decidable).

The contrapositive ...

Lemma: Let X and Y be two languages, and assume that $X \implies Y$. Then if X is undecidable then Y is undecidable.

Halting The halting problem

Define the language of all pairs $\langle M, w \rangle$ such that M halts on w as:

 $A_{\text{HALT}} = \{ \langle M, w \rangle | M \text{ is a } TM \text{ and } M \text{ stops on } w \}$

Halting

The halting problem

Define the language of all pairs $\langle M, w \rangle$ such that M halts on w as:

$$A_{\text{HALT}} = \{\langle M, w \rangle | M \text{ is a } TM \text{ and } M \text{ stops on } w\}$$

"Similar" to language we already know to be undecidable:

$$A_{TM} = \{\langle M, w \rangle | M \text{ is a } TM \text{ and } M \text{ accepts } w\}$$

Lemma: The language A_{TM} reduces to A_{HALT} . Namely, given an oracle for A_{HALT} one can build a decider (that uses this oracle) for A_{TM} .

Am => AHALT

Proof: Let $ORAC_{A_{\text{HALT}}}$ be the given oracle for A_{HALT} . We build the following decider for A_{TM} .

```
AnotherDecider-A_{TM}(\langle M, w \rangle):

res \leftarrow ORAC<sub>Halt</sub>(\langle M, w \rangle) -

// if M does not halt on w then reject

if res = reject then

halt and reject

// M halts on w since res = accept.

// Simulating M on w terminates in finite time.

res<sub>2</sub> \leftarrow Simulate M on w

return res<sub>2</sub>
```

Proof: Let $ORAC_{A_{HALT}}$ be the given oracle for A_{HALT} . We build the following decider for A_{TM} .

```
AnotherDecider-A_{TM}(\langle M, w \rangle):
  res \leftarrow ORAC<sub>Halt</sub> (\langle M, w \rangle)
  // if M does not halt on w then reject
  if res = reject then
        halt and reject
  // M halts on w since res = accept.
  // Simulating M on w terminates in finite time.
  res_2 \leftarrow Simulate M on w
  return res<sub>2</sub>
```

This procedure always returns and as such its a decider for A_{TM} . And if undertable

The Halting problem is not decidable

Theorem: The language A_{HALT} is not decidable.

The Halting problem is not decidable

Theorem: The language $A_{\rm HALT}$ is not decidable. Theorem for the language $A_{\rm HALT}$ is not decidable.

Proof: Assume, for the sake of contradiction, that $A_{\rm HALT}$ is decidable. As such, there is a TM, denoted by $TM_{\rm HALT}$, that is a decider for $A_{\rm HALT}$. We can use $TM_{\rm HALT}$ as an implementation of an oracle for $A_{\rm HALT}$, which would imply that one can build a decider for A_{TM} . However, A_{TM} is undecidable which is contradiction. Therefore it must be the case that $A_{\rm HALT}$ is undecidable.

... if A_{HALT} is decidable, then A_{TM} is decidable, which is impossible!

The language of empty languages

- Let $E_{TM}=\left\{ \langle M\rangle\,|\,M$ is a TM and $L(M)=\varnothing\,\,\right\}$ and let TM_{ETM} be a decider for $E_{TM}.$

- Let $E_{TM}=\left\{ \langle M\rangle\,|\,M$ is a TM and $L(M)=\varnothing\,\,\right\}$ and let TM_{ETM} be a decider for $E_{TM}.$
- Need to use TM_{ETM} to build a decider for A_{TM} .

- Let $E_{TM}=\left\{ \langle M\rangle\,|\,M$ is a TM and $L(M)=\varnothing\,\,\right\}$ and let TM_{ETM} be a decider for $E_{TM}.$
- Need to use TM_{ETM} to build a decider for A_{TM} .
- Decider for A_{TM} : Given M and w decide whether M accepts w.

- Let $E_{TM} = \{ (M) \mid M \text{ is a } TM \text{ and } L(M) = \emptyset \ \}$ and let TM_{ETM} be a decider for E_{TM} .
- Need to use TM_{ETM} to build a decider for A_{TM} .
- Decider for A_{TM} : Given M and w decide whether M accepts w.

- Let $E_{T\!M}=\left\{ \langle M\rangle\,|\,M$ is a $T\!M$ and $L(M)=\varnothing\,\,\right\}$ and let $T\!M_{E\!T\!M}$ be a decider for $E_{T\!M}.$
- Need to use TM_{ETM} to build a decider for A_{TM} .
- Decider for A_{TM} : Given M and w decide whether M accepts w.
- Need to somehow make the second input (w) disappear

• Suppose given program $\langle M \rangle$ and input w we can output a program $\langle M_w \rangle$.

- Suppose given program $\langle M \rangle$ and input w we can output a program $\langle M_w \rangle$.
 - The program $\langle M_w \rangle$ simulates M on w. And accepts/rejects accordingly.

- Suppose given program $\langle M \rangle$ and input w we can output a program $\langle M_w \rangle$.

 The program $\langle M_w \rangle$ simulates M on w. And accepts/rejects accordingly.
- Let EmbedString $(\langle M \rangle, w)$ take as input two strings $\langle M \rangle$ and w, and outputs a string encoding (TM) $\langle M_{w} \rangle$.

- Suppose given program $\langle M \rangle$ and input w we can output a program $\langle M_w \rangle$.
 - The program $\langle M_w \rangle$ simulates M on w. And accepts/rejects accordingly.
- Let EmbedString $(\langle M \rangle, w)$ take as input two strings $\langle M \rangle$ and w, and outputs a string encoding (TM) $\langle M_w \rangle$.

Question: What is $L(M_w)$?

Embedding strings

- Suppose given program $\langle M \rangle$ and input w we can output a program $\langle M_w \rangle$.
 - The program $\langle M_w \rangle$ simulates M on w. And accepts/rejects accordingly.
- Let EmbedString $(\langle M \rangle, w)$ take as input two strings $\langle M \rangle$ and w, and outputs a string encoding (TM) $\langle M_w \rangle$.

Question: What is $L(M_w)$?

Since M_w ignores any input ... language M_w is either Σ^* or \emptyset . It is Σ^* if M accepts w, and it is \emptyset if M does not accept w.

Theorem: The language E_{TM} is undecidable.

Theorem: The language E_{TM} is undecidable.

• Assume (for contradiction), that $E_{\it TM}$ is decidable and let ${\it TM}_{\it ETM}$ be its decider.

Theorem: The language E_{TM} is undecidable.

- Assume (for contradiction), that $E_{\it TM}$ is decidable and let ${\it TM}_{\it ETM}$ be its decider.
- Build decider Another Decider-A_{TM} for A_{TM} :

Theorem: The language E_{TM} is undecidable.

- Assume (for contradiction), that $E_{\it TM}$ is decidable and let $\it TM_{\it ETM}$ be its decider.
- Build decider Another Decider-A_{TM} for A_{TM} :

```
AnotherDecider-A_{TM}(\langle M, w \rangle):
\langle M_w \rangle \leftarrow \text{EmbedString}(\langle M \rangle, w)
r \leftarrow TM_{ETM}(\langle M_w \rangle)
if r = \text{accept then}
return \ reject
// TM_{ETM}(\langle M_w \rangle) \ rejected \ its \ input
return \ accept
```

Ami=1 M, wy, m aeupk wy

... is undecidable.

Consider the possible behavior of Another Decider- A_{TM} on the input $\langle M, w \rangle$.

• If TM_{ETM} accepts $\langle M_w \rangle$, then $L\langle M_w \rangle$ is empty. This implies that M does not accept w. As such, AnotherDecider- A_{TM} rejects its input $\langle M, w \rangle$.

... is undecidable.

Consider the possible behavior of Another Decider- A_{TM} on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L\langle M_w \rangle$ is empty. This implies that M does not accept w. As such, AnotherDecider- A_{TM} rejects its input $\langle M, w \rangle$.
- If TM_{ETM} accepts $\langle M_w \rangle$, then $L\langle M_w \rangle$ is not empty. This implies that M accepts w. So AnotherDecider- A_{TM} accepts $\langle M, w \rangle$.

... is undecidable.

Consider the possible behavior of Another Decider- A_{TM} on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L\langle M_w \rangle$ is empty. This implies that M does not accept w. As such, AnotherDecider- A_{TM} rejects its input $\langle M, w \rangle$.
- If TM_{ETM} accepts $\langle M_w \rangle$, then $L\langle M_w \rangle$ is not empty. This implies that M accepts w. So AnotherDecider- A_{TM} accepts $\langle M, w \rangle$.

 \Longrightarrow AnotherDecider- A_{TM} is a decider for A_{TM}

... is undecidable.

Consider the possible behavior of AnotherDecider- A_{TM} on the input $\langle M, w \rangle$.

- If TM_{ETM} accepts $\langle M_w \rangle$, then $L\langle M_w \rangle$ is empty. This implies that M does not accept w. As such, AnotherDecider- A_{TM} rejects its input $\langle M, w \rangle$.
- If TM_{ETM} accepts $\langle M_w \rangle$, then $L\langle M_w \rangle$ is not empty. This implies that M accepts w. So AnotherDecider- A_{TM} accepts $\langle M, w \rangle$.

 \Longrightarrow Another Decider- A_{TM} is a decider for A_{TM}

But $A_{\it TM}$ is undecidable ... so the assumption that $E_{\it TM}$ is decidable must be false.

Emptiness is undecidable via diagram

NOTE: AnotherDecider- A_{TM} never actually runs the code for $M_{\scriptscriptstyle W}$. It hands the code to a function TM_{ETM} which analyzes what the code would do if run*. So it does not matter that $M_{\scriptscriptstyle W}$ might go into an infinite loop.

Emptiness is undecidable via diagram

NOTE: Another Decider- A_{TM} never actually runs the code for M_w . It hands the code to a function TM_{ETM} which analyzes what the code would do if run*. So it does not matter that M_w might go into an infinite loop.

Since M_w ignores any input ... language M_w is either Σ^* or \emptyset . It is Σ^* if M accepts w, and it is \emptyset if M does not accept w.

7 2(Mw) is "empty"

(: M column accept w)

NOTE: AnotherDecider- A_{TM} never actually runs the code for $M_{\scriptscriptstyle W}$. It hands the code to a function TM_{ETM} which analyzes what the code would do if run*. So it does not matter that M_w might go into an infinite loop.

> Since M_w ignores any input ... language M_w is either Σ^* or \emptyset . It is accepts w, and it is \emptyset if M does not accept w.

Equality is undecidable

Let:

$$EQ_{TM} = \left\{ \langle M,N \rangle \, | \, M \text{ and } N \text{ are TM's and } L(M) = L(N) \right\}$$

Equality is undecidable

Let:

$$EQ_{TM} = \left\{ \langle M,N \rangle \mid M \text{ and } N \text{ are TM's and } L(M) = L(N) \right\}$$

Lemma: The language EQ_{TM} is undecidable

Equality is undecidable

Let:

$$EQ_{TM} = \left\{ \langle M, N \rangle \mid M \text{ and } N \text{ are TM's and } L(M) = L(N) \right\}$$

Lemma: The language EQ_{TM} is undecidable

Let's try something different. We know $E_{\it TM}$ is undecidable.

Equality is undecidable

Let:

$$EQ_{TM} = \left\{ \langle M, N \rangle \mid M \text{ and } N \text{ are TM's and } L(M) = L(N) \right\}$$

Lemma: The language EQ_{TM} is undecidable

Let's try something different. We know $E_{\it TM}$ is undecidable.

Equality is undecidable

Let:

$$EQ_{TM} = \left\{ \langle M,N \rangle \mid M \text{ and } N \text{ are TM's and } L(M) = L(N) \right\}$$

Lemma: The language EQ_{TM} is undecidable

Let's try something different. We know $E_{\it TM}$ is undecidable.

Equality is undecidable

Let:

$$EQ_{TM} = \left\{ \langle M,N \rangle \, | \, M \text{ and } N \text{ are TM's and } L(M) = L(N) \right\}$$

Lemma: The language EQ_{TM} is undecidable

Let's try something different. We know $E_{\it TM}$ is undecidable.

Equality is undecidable

Let:

$$EQ_{TM} = \left\{ \langle M, N \rangle \mid M \text{ and } N \text{ are TM's and } L(M) = L(N) \right\}$$

Lemma: The language EQ_{TM} is undecidable

Let's try something different. We know $E_{\it TM}$ is undecidable.

Equality is undecidable

Let:

$$EQ_{TM} = \left\{ \langle M, N \rangle \mid M \text{ and } N \text{ are TM's and } L(M) = L(N) \right\}$$

Lemma: The language EQ_{TM} is undecidable

Let's try something different. We know $E_{\it TM}$ is undecidable.

Equality is undecidable

Let:

$$EQ_{TM} = \left\{ \langle M,N \rangle \, | \, M \text{ and } N \text{ are TM's and } L(M) = L(N) \right\}$$

Lemma: The language EQ_{TM} is undecidable

Let's try something different. We know E_{TM} is undecidable.

DFAs

DFAs are empty?

 $E_{DFA} = \{\langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$

TDE? encoclye of DFH's orecepting no struigs. What does the above language describe? Is the language above decidable?

DFAs

DFAs are empty?

$$E_{DFA} = \{\langle A \rangle | A \text{ is a DFA and } L(A) = \emptyset \}$$

What does the above language describe?

Is the language above decidable?

Lemma

The language E_{DFA} is decidable.

1. Input =
$$\langle A \rangle$$

Unlike in the previous cases, we can directly build a decider (DeciderEmptyDFA) for E_{DFA} .

1. Input =
$$\langle A \rangle$$

2. Mark start state of A as visited.

- 1. Input = $\langle A \rangle$
- 2. Mark start state of A as visited.
- 3. Repeat until no new states get marked:

- 1. Input = $\langle A \rangle$
- 2. Mark start state of A as visited. \rightarrow keep M = 2 \rightarrow 3. Repeat until no new states get marked:
 - Mark any state that has a transition coming into it from any state that is already marked.

- 1. Input = $\langle A \rangle$
- 2. Mark start state of A as visited.
- 3. Repeat until no new states get marked:
 - Mark any state that has a transition coming into it from any state that is already marked.
- 4. If no accept state is marked, then accept.

- 1. Input = $\langle A \rangle$
- 2. Mark start state of A as visited.
- 3. Repeat until no new states get marked:
 - Mark any state that has a transition coming into it from any state that is already marked.
- 4. If no accept state is marked, then accept.
- 5. Otherwise, then reject.

Equal DFAs

DFAs are equal?

$$EQ_{DFA} = \{\langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$$

What does the above language describe?

Equal DFAs

DFAs are equal?

$$EQ_{DFA} = \{\langle A, b \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$$

What does the above language describe?

Is the language above decidable?

Equal DFAs DFAs are equal?

$$EQ_{DFA} = \{\langle A, b \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$$

What does the above language describe?

Is the language above decidable?

Lemma

The language E_{DFA} is decidable.

Equal DFAsDFAs are equal?

$$EQ_{DFA} = \{\langle A, b \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$$

What does the above language describe?

Is the language above decidable?

Lemma

The language E_{DFA} is decidable.

Can we show this using reductions?

Equal DFA trick I

Need a way to determine if there any strings in one language and not the other...

Equal DFA trick I

Need a way to determine if there any strings in one language and not the other...

Equal DFA trick I

Need a way to determine if there any strings in one language and not the other...

This is known as the symmetric difference. Given A, B, can create a new DFA (call it C) which represents the symmetric difference of L_A and L_B .

Need a way to determine if there any strings in one language and not the other...

This is known as the symmetric difference. Given A, B, can create a new DFA (call it C) which represents the symmetric difference of L_A and L_B .

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$$

Notice with L(C):

- If L(A) = L(B) then $L(C) = \emptyset$
- If $L(A) \neq L(B)$ then L(C) is not empty

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$$

$$L(A) \cap L(A) \cup \left(L(A) \cap L(B)\right)$$

$$L(A) \cap L(A) \cup \left(L(A) \cap L(B)\right)$$

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$$

Notice with L(C):

- If L(A) = L(B) then $L(C) = \emptyset$
- If $L(A) \neq L(B)$ then L(C) is not empty

Good time to use E_{DFA} proof from before...

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$$

Notice with L(C):

- If L(A) = L(B) then $L(C) = \emptyset$
- If $L(A) \neq L(B)$ then L(C) is not empty

Good time to use E_{DFA} proof from before...

How do we show EQ_{DFA} is decidable using a reduction?

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$$

Notice with L(C):

- If L(A) = L(B) then $L(C) = \emptyset$
- If $L(A) \neq L(B)$ then L(C) is not empty

Good time to use E_{DFA} proof from before...

How do we show EQ_{DFA} is decidable using a reduction?

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$$

Notice with L(C):

- If L(A) = L(B) then $L(C) = \emptyset$
- If $L(A) \neq L(B)$ then L(C) is not empty

Good time to use E_{DFA} proof from before...

How do we show EQ_{DFA} is decidable using a reduction?

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$$

Notice with L(C):

- If L(A) = L(B) then $L(C) = \emptyset$
- If $L(A) \neq L(B)$ then L(C) is not empty

Good time to use E_{DFA} proof from before... How do we show EQ_{DFA} is decidable using a reduction?

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$$

Notice with L(C):

- If L(A) = L(B) then $L(C) = \emptyset$
- If $L(A) \neq L(B)$ then L(C) is not empty

Good time to use E_{DFA} proof from before...

How do we show EQ_{DFA} is decidable using a reduction?

- Turns out, almost any property defining a TM language induces a language which is undecidable.
- The proofs all have the same basic pattern.

- Turns out, almost any property defining a TM language induces a language which is undecidable.
- The proofs all have the same basic pattern.
- E.g. Regularity language: Regular_{TM} = $\{\langle M \rangle \mid M \text{ is a } TM \text{ and } L(M) \text{ is regular}\}$

- Turns out, almost any property defining a TM language induces a language which is undecidable.
- The proofs all have the same basic pattern.
- E.g. Regularity language: Regular_{TM} = $\{\langle M \rangle \mid M \text{ is a } TM \text{ and } L(M) \text{ is regular}\}$
- DeciderRegL/OracRegL_{TM}: Assume *TM* decider for Regular_{TM}.

- Turns out, almost any property defining a TM language induces a language which is undecidable.
- The proofs all have the same basic pattern.
- E.g. Regularity language: Regular_{TM} = $\{\langle M \rangle \mid M \text{ is a } TM \text{ and } L(M) \text{ is regular}\}$
- DeciderRegL/OracRegL_{TM}: Assume *TM* decider for Regular_{TM}.
- Reduction from halting requires to turn problem about deciding whether a TM M accepts w (i.e., is $w \in A_{TM}$) into a problem about whether some TM accepts a regular set of strings.

• Given M and w, consider the following TM, M'_w :

- Given M and w, consider the following TM, M'_w :
 - Input = x, if x has the form a^nb^n , halt and accept.

Sout of like 2 Embed Stry

- Given M and w, consider the following TM, M'_w :
 - Input = x, if x has the form a^nb^n , halt and accept.
 - Otherwise, simulate M on w.

- Given M and w, consider the following TM, M'_w :
 - Input = x, if x has the form a^nb^n , halt and accept.
 - Otherwise, simulate M on w.
 - If the simulation accepts, then accept.
 - If the simulation rejects, then reject.

- Given M and w, consider the following TM, M'_w :
 - Input = x, if x has the form $a^n b^n$, halt and accept.
 - Otherwise, simulate M on w.
 - If the simulation accepts, then accept.
 - If the simulation rejects, then reject.
- Feed $\langle M'_{w} \rangle$ into OracRegL_{TM}

- Given M and w, consider the following TM, M'_w :
 - Input = x, if x has the form a^nb^n , halt and accept.
 - Otherwise, simulate M on w.
 - If the simulation accepts, then accept.
 - If the simulation rejects, then reject.
- Feed $\langle M'_w \rangle$ into OracRegL_{TM}
 - Assume EmbedRegularString: program with input $\langle M \rangle$ and w, and outputs $\langle M'_w \rangle$, encoding the program M'_w .

• If M accepts w, then any x is accepted by $M_w':L(M_w')=\Sigma^*$.

- If M accepts w, then any x is accepted by M'_w : $L(M'_w) = \Sigma^*$.
- If M does not accept w, then $L(M'_w) = \{a^nb^n \mid n \ge 0\}$.

- If M accepts w, then any x is accepted by $M'_w:L(M'_w)=\Sigma^*$.
- If M does not accept w, then $L(M'_w) = \{a^nb^n \mid n \ge 0\}$.
- If OracRegL_{TM} accepts $\Longrightarrow L(M'_w)$ regular (its Σ^*) $\Longrightarrow M$ accepts w. So AnotherDecider-A_{TM} should accept $\langle M, w \rangle$

- If M accepts w, then any x is accepted by $M'_w:L(M'_w)=\Sigma^*$.
- If M does not accept w, then $L(M'_w) = \{a^nb^n \mid n \ge 0\}$.
- If OracRegL_{TM} accepts $\Longrightarrow L(M'_w)$ regular (its Σ^*) $\Longrightarrow M$ accepts w. So AnotherDecider-A_{TM} should accept $\langle M, w \rangle$
- If OracRegL_{TM} rejects $\Longrightarrow L(M'_w)$ is not regular $\Longrightarrow L(M'_w) = a^n b^n \implies M$ does not accept $w \Longrightarrow \text{AnotherDecider-}A_{TM}$ should reject $\langle M, w \rangle$

The above proofs were somewhat repetitious....they imply a more general result.

The above proofs were somewhat repetitious... ...they imply a more general result.

Theorem (Rice's Theorem)

The above proofs were somewhat repetitious....they imply a more general result.

Theorem (Rice's Theorem)

Suppose that L is a language of Turing machines; that is, each word in L encodes a TM. Furthermore, assume that the following two properties hold.

The above proofs were somewhat repetitious... ...they imply a more general result.

Theorem (Rice's Theorem)

Suppose that L is a language of Turing machines; that is, each word in L encodes a TM. Furthermore, assume that the following two properties hold.

(a) Membership in L depends only on the Turing machine's language, i.e. if L(M) = L(N) then $\langle M \rangle \in L \Leftrightarrow \langle N \rangle \in L$.

The above proofs were somewhat repetitious....they imply a more general result.

Theorem (Rice's Theorem)

Suppose that L is a language of Turing machines; that is, each word in L encodes a TM. Furthermore, assume that the following two properties hold.

- (a) Membership in L depends only on the Turing machine's language, i.e. if L(M) = L(N) then $\langle M \rangle \in L \Leftrightarrow \langle N \rangle \in L$.
- (b) The set L is "non-trivial," i.e. $L \neq \emptyset$ and L does not contain all Turing machines.

The above proofs were somewhat repetitious... ...they imply a more general result.

Theorem (Rice's Theorem)

Suppose that L is a language of Turing machines; that is, each word in L encodes a TM. Furthermore, assume that the following two properties hold.

- (a) Membership in L depends only on the Turing machine's language, i.e. if L(M) = L(N) then $\langle M \rangle \in L \Leftrightarrow \langle N \rangle \in L$.
- (b) The set L is "non-trivial," i.e. $L \neq \emptyset$ and L does not contain all Turing machines.

Then L is a undecidable.

Happy Fall Break!

- Happy Fall Break!
 - Stay warm ...

- Happy Fall Break!
 - Stay warm ...
 - ... travel safe!

