DECENTRALIZED ELECTRONIC VOTING SYSTEM

Digital Assignment 3

Submitted by

Name	Registration no.
Abuzar Bagewadi	19BCE0773
Shreyas Chaudhry	19BCE0774
Daksh Paleria	19BCE0779
Harshit Mishra	19BCE0799
Alokam Nikhitha	19BCE2555
Anika Gupta	19BCI0273
Aiswarya Satish	19BCI0265

CSE1901
Technical Answers for Real World Problems (TARP)

Under the guidance of **Prof. Ushus Elizebeth Zachariah**

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Literature Review:

S. No.	Paper and Author	Summary	Inference
1.	A systematic Review of Challenges and Opportunities of blockchain for e- voting	This paper studies the up- to-date state of blockchain-based voting research along with associated possible challenges while aiming to forecast future directions. The methodology applied	from the publications examined that voting systems enabled by
	(09-Aug-2020) Ruhi Tas, Omer Ozgur Tanriover	is a systematic review approach. Following an introduction to the basic structure and features of the blockchain in relation to e-voting, this paper provides a conceptual description of the desired blockchain-based e-voting application.	solutions to conventional electronic voting. The five following categories were used to group the most important current issues: general, integrity, coin-based, privacy, and consensus. This research led to the conclusion that several issues with the current election systems can be resolved by blockchain technologies. On the other side, the issues with blockchain applications that are commonly highlighted are privacy protection and transaction speed. For

			blockchain-based e- voting to be sustainable, remote participation security and scalability should be improved. Due to these misgivings, it
			was determined that frameworks
			needed
			improvements in
			order to be employed in voting
			systems.
2.	Success	A technology created for	This study's
	<u>Implementation</u>	voting is called electronic	conclusion is that
	of E-Voting	voting, or e-voting. It has	there are other
	Technology in	been extensively adopted	factors at play in the
	<u>Various</u>	to employ electronic	•
	Countries: A	voting in the general	_
	Review	election. In this study,	
		countries that have	nations who aim to
	(30-Jan-2020)	effectively implemented electronic voting are	implement e-voting in the future to
	(50-1411-2020)	presented, analysed, and	
		conclusions are drawn	
	Slamet Risnanto,	from the analysis. In order	
	Yahaya Bin Abd	•	other elements that
	Rahim and Nanna	deployment of e-voting	contribute to the
	Suryana Herman	technology from failing,	successful
		this article also lists the	implementation of
		nations that have	e-voting in a
		successfully adopted it as	country are no less
		examples for nations that	significant.
	E Veting Contact	will do so in the future.	
3.	E-Voting System	Any democracy must have	
	Based on Blockchain	an open voting process that satisfies the needs of	
	DIOCRCHAIII	the populace in order to	
		the populate in order to	methods be

Technology: A Survey

(01-Jul-2021)

Sarah Al-Maaitah, Mohammad Qatawneh, Abdullah Quzmar

appropriate | leveraged to give the individual the power. Additionally, there are numerous problems with the current traditional voting systems, including a lack of security and transparency. This survey explores paper the potential for using BC technology in electronic voting systems to enhance the voting process by addressing concerns of trust, privacy, and security. This study attempts to assess various blockchain-based distributed electronic voting system implementations. Others have been put into practise in the actual world, while others have merely been draught blockchainpapers. Α based electronic voting technology enhances security and privacy while further reducing costs.

cut down on election fraud. This study that reveals BC technology is most chosen to address this issue and provide assistance in this situation by monitoring each step and ensuring the entire that process is. Additionally, the majority of the connected works failed to inspire management and maintenance of the blockchain. Identified: Gaps Various limitations were found based on the research done. These limitations included: the scale of the implementation is applied on the small scale, the need to improve the Synchronization, latency, and performance, improvement of cryptography methods and also they do not support complex

4.	Preparatory Component for Adoption E- Voting (01-Oct-2019) Slamet Risnanto	Democracy-based nations often conduct general elections. The traditional general election method is very dangerous, has caused controversy in the past, and is relatively expensive. Many nations strive to use electronic voting technology in national elections. India and Brazil, two sizable democracies, were successful in implementing electronic voting; other unsuccessful nations included England and the Netherlands. This study suggests a thorough research, assessment, and development plan for the	appears to address issues with traditional elections. However, nations who are serious about implementing electronic voting make various preparations in addition to those related to technology. This study makes a complete research, evaluation, and development proposal in support of the
		preparation of e-voting deployment so that there won't be any challenges and it will be successful in the future	readiness of
5.	A Survey on Anonymity and Privacy in Bitcoin- like Digital Cash Systems	The paper explains how bitcoin has become the most widely known distributed, peer-to-peer payment network without existence of central	anonymity which has to be the most
	(26-Mar-2018)	authority and what different flaws are in the	· ·

	Merve Can Kus Khalilov, Albert Levi	architecture of bitcoin. It explains how bitcoin is not completely anonymous but pseudo-anonymous. The paper also deals about describing how different transactions on careful study can be attributed to revelation of the identity of a person on this distributed chain and hence there is still various loop-holes when it comes to anonymity and privacy on blockchain as network.	democracy in the world. Although, bitcoin protocols provide huge applications all in fields of smart contracts and more
6.	Exploring Ethereum's Blockchain Anonymity Using smart contract code attribution (27-Feb-2020)	The paper deals about explaining various architecture of blockchains and how are users identified, added and removed from a blockchain and the concepts of public keys and private keys along with asymmetric key	interpreted that the architecture of Ethereum is not full-proof anonymous. But we can use the concept of stylometry, heuristics and
	Shlomi Linoy, Natalia Stakhanova, Alina Matyukhina	encryption protocols. It again deals with how a blockchain network is not completely anonymous and is more of pseudoanonymous. They deal with analysing how public addresses can be linked back to the users. In this work, they proposed a leverage "stylometry" approach to explore the extent to which a deployed smart contract's source code can	identify the weaknesses in a smart contract and correct them out.

		contribute to the	
		affiliation of account	
		addresses.	
7.	Blockchain-based	The paper proposes an	Their proposed
	RBAC for User	integration of two	architecture is a bit
	<u>Authentication</u>	different models, RBAC	different from how
	with Anonymity	and P2P networks. RBAC	we want our smart-
		stands for Role-Based	contract to be, but
		Access Control and P2P	it has got all the
	(24-Sep-2019)	stands for peer-to-peer	essence of what we
		networks. RBAC is a very	need (except the
		popular means of ensuring	anonymity). We can
	YongJoo Lee,	authentication in fields of	use their
	Keon Myung Lee	security and P2P is widely	authentication
		used a distributed	services to ensure
		architecture which	that votes are
		primarily deals with	coming in from valid
		decentralization of	sources and there is
		resources and ledgers.	no multiple voting
		They have used an	by same source.
		architecture that has	This can provide a
		payment based on	big break-through
		cryptocurrency for a smart	in ensuring free and
		contract. So, their	fair conduct of any
		proposed model allows	e-election.
		user to be identified as	
		individuals at the same	
		time. Users are authorized	
		to the role to which they	
		belonged. They defined a	
		list that can manage role	
		of user units called CRL,	
		and linked this to personal	
		authentication by using	
		Roll Pass (RP). To provide	
		this simple and powerful	
		authentication based on	
_		RBAC.	
8.	Anonymity on	According to the paper,	
	blockchain based	the transactions of most	an architecture to

e-cash protocols - A survey

(01-May-2021)

Nitish Andola, Raghav, Vijay Kumar Yadav, S. Venkatesan, Sekhar Verma

the of blockchain framework-based cryptocurrencies are publicly available, thereby accessible to all users by design. However, the anonymity of blockchain transactions is necessary for acceptance of such frameworks. There is a need to preserve the privacy of the identities of the blockchain members and the transaction. They have listed the concepts of mixings and pooling to preserve one's identity in the ledger and make sure the transactions are not traceable. The paper also provides a comprehensive study of the threats and attacks that aim to deanonymize the e-cash protocols. They also redefined anonymity on blockchain the and categorized the anonymity – provisioning methods and protocols with their outcomes.

ensure the anonymity of any user in our smartcontract. They were, mixers and pools. Use of pools in our scenario is not possible as it will make it obvious for each voter's vote to their pool and hence mixers can come to rescue. Mixers will have to be set-up by the election committee itself and it can be similar done polling booth set-up for each ward. In fact, here we can use mixers at whole new levels by ensuring even wards are not traceable using random allocation of wards to each mixer based on any mathematical function.

9. BlendMAS: A
BLockchainEnabled
Decentralized
Microservices
Architecture for
Smart Public
Safety

The authors in the paper have discussed how a centralized authority has all the control over Smart Public Safety (SPS) which was essentially developed using the Internet of Things (IoT) but since the system has entirely relied

The authors have proposed how smart contracts are capable enough to handle complex services to make sure that the main gist of the safety program remains

(02-Jan-2020)

Ronghua Xu, Seyed Yahya Nikouei, Yu Chen, Erik Blasch, Alexander Aved on one single central authority it can result as a single point of failure and then eventually bottleneck the entire purpose of the system which is to provide the safety to the users. The paper discusses how a permissioned blockchain network can be used to the remove central authority from the scenario and create decentralized, trust less network for the system.

intact. The paper was able to enlighten us on how the blockchain can be used to keep the anonymity of the user and also provide a high level of security to the users.

10. Beyond bitcoin:
an early overview
on smart contract

(05-Apr-2017)

Pierluigi Cuccuru

Bitcoin was the very first most successful and blockchain that helped in the path paving decentralization, and trust less networks. But as they say one has to keep moving forward with more new advancements, this is essentially an overview of what the author has discussed in this paper. The authors have mentioned how the technology of decentralization can be added to other applications/domains like finance, and gaming. The authors have discussed how we can look forward by taking all the necessary learnings from bitcoin and then scaling them to

The authors have proposed an early look into the world of smart contracts by relating existing system with the blockchain one, and how the application can contact the attributes that are on the chain. They have discussed the possibilities writing a few lines of code which will be eventually named smart contracts that will help the developers in securing the data, and automate the process at the same time.

		develop much better	
		applications by taking the advantage of the	
		network's security.	
11.	An Overview of	The paper is discussing the	The authors have
	Smart Contract:	developments that we	proposed how
	Architecture,	have achieved in the	smart contracts can
	Applications, and	world of blockchain by	
	Future Trends	introducing the world to	
		smart contracts which are	•
		essentially chunks of code	
	(21-Oct-2018)	that can be automated,	supposed to pay a
		and live on the chain	specific amount of
		which behaves as a public	gas as money to
	Shuai Wang; Yong	ledger. Before the	make sure that the
	Yuan; Xiao Wang;	introduction of smart	
	Juanjuan Li; Rui	contract, blockchains was	through, the
	Qin; Fei-Yue	majorly considered as a	researchers have
	Wang	medium of paying money	
		and as a medium of	'
		processing the transaction	gas efficient
		in a very safe, secured manner without the ill	contracts which eventually will help
		politics a central authority	in saving more
		would play to favor a	
		certain personality. Smart	
		contracts just leveraged	the transaction and
		on these points which can	add it into a block in
		now be followed by	the network.
		writing a few instructions	
		that will behave	
		accordingly.	
12.	Smart Contract:	Based on the attack	,
	Attacks and	reasoning and targeting	in this research that
	<u>Protections</u>	consensus protocols,	
		defects in the smart	not without flaws
	/10 Fab 2020\	contract, malware running	and threats. We
	(10-Feb-2020)	in the operating system,	<u>-</u>
		and fraudulent users, they grouped blockchain	
		grouped blockchain	on the attack vector

exploitation focus Sarwar Sayeed, approaches to on into four groups in this vulnerabilities **Hector Marco**in Gisbert, Tom article. They then smart contract Caira programming. We concentrated on smart vulnerabilities, discovered that not contract vulnerabilities examining the seven most all common attack methods were spotted after establish the true reviewing ten impact on smart contract security tools to technology. determine their Thev discovered that efficiency even in when the detecting ten most extensively used tools for vulnerabilities. This detecting smart contract provides flaws were utilised, they hazardous false still contained known sense of security vulnerabilities, offering a that attackers can dangerously misleading exploit. impression of security. According to their They finished the report study, creating with а discussion of viable solution to recommendations and secure future research directions contracts remains a to move forward toward a problem, and future secure smart contract work will include solution. developing ways to detect and mitigate the primary security issues revealed in this paper. conducted **13. Smart Contract** This They study specifically focused **Development:** exploratory research in **Challenges and** on the Ethereum this article to investigate **Opportunities** the present status and platform to explore prospective the difficulties that issues developers developers face while are (01-Oct-2021) implementing smart having when contracts on blockchains, creating these with a focus on Ethereum. smart contracts. They eventually did their According to the Weiqin Zou, David Lo, Pavneet Singh Kochhar, Xuan-Bach Dinh Le, Xin Xia, Yang Feng, Zhenyu Chen, Baowen Xu investigation in two parts. During the first round, we conducted semistructured interviews with 20 GitHub engineers and industry experts working on smart contracts. To confirm the findings from the interviews, they conducted a survey of 232 practitioners in the second phase.

survey results, smart contract development is still in its early stages. For example, there is widely no accepted method for securing smart contract code, the current development toolchain is inadequate, development and runtime platforms (such as programming virtual languages, machines). and online learning resources and community support are scarce. Gaps identified: The results indicate some specific and practical directions that researchers and practitioners should pursue in the future (e.g., automated smart contract patching, Solidity compiler testing, sourcecode level gas optimization, automated Solidity library construction, etc.). Development

			of smart contracts
			would be made
			easier with progress
			in these directions.
14.	A systematic	They investigated 96	According to the
	literature review	publications (published	analysis conducted,
	of blockchain and	between 2016 and 2020)	it is seen that, the
	smart contract	proposing solutions to	examination of the
	development:	software engineering-	literature is solely
	Techniques,	specific difficulties	focused on
	tools, and open	connected to the creation,	particular topics,
	challenges	testing, and security	including security or
		evaluation of blockchain-	blockchain
		oriented software in this	applications.
	(01-Apr-2021)	work. They specifically	Software
		analyse education articles	engineering best
		(published in international	practises can,
	Anna Vacca,	journals and conferences)	however, enhance
	Andrea Di Sorbo,	on six topics: smart	this technology.
	Corrado A.	contract testing, smart	Based on these
	Visaggio, Gerardo	contract code analysis,	motivations, a
	Canfora	smart contract metrics,	review of the
		smart contract security,	literature was
		Dapp performance, and	conducted in the
		blockchain applications.	area of software
		Beyond a comprehensive	engineering to gain
		analysis of the	a better
		methodologies, tools, and	understanding of
		approaches offered in the	
		literature to handle the	'
		concerns raised by the	
		creation of blockchain-	· · · · · · · · · · · · · · · · · · ·
		based software, they	
		highlighted outstanding	<u> </u>
		challenges that require	
		future research for each of	
		the six afore mentioned	
		themes.	software and to
			pinpoint any
			unresolved issues.

15. A BlockchainBased Smart
Contract System
for Healthcare
Management

(03-Jan-2020)

Asma Khatoon

In application sectors like the financial sector, supply chain management, food industry, energy sector, internet of things, and healthcare, blockchain is developing to be a secure and dependable platform for secure data sharing. In this essay, we examine current research and blockchain-based for applications the healthcare sector. Additionally, for better data management, this paper also suggests a number of workflows for healthcare the sector blockchain using technology. The Ethereum blockchain platform has been used to develop and implement a variety of medical processes, including complicated surgical and clinical trial procedures. Accessing and controlling a sizable amount of medical data are also included. The cost of this system has been estimated as part of a feasibility study that has been extensively reported in this article. This cost is related with the deployment of the workflows of the medical

The proposed solution employs blockchain technology to provide a decentralised, iterative, scalable, safe, and accessible healthcare This ecosystem. would provide patients complete control over the privacy of their medical data while enabling them to freely and securely exchange their medical records with physicians, hospitals, research institutions. other stakeholders. Numerous problems with the current healthcare system, such as data siloing, legacy network incongruity, challenges with collecting unstructured data, unreasonably high administrative expenses, a lack of data security, and unresolved privacy issues. will be resolved as a result.

smart contract system for healthcare management. **16.** A conceptual Blockchain-based Based smart on the framework for contracts are upending systematic, blockchain smart the smart city's real estate thorough literature market. The current study contract research, adoption to examines the body of conceptual manage real research on blockchain framework for smart contracts for smart estate deals in implementing real estate and offers a smart cities blockchain smart contracts for smart conceptual framework for their application in smart real estate (01-Feb-2021) cities. The material management in published between 2000 smart cities is proposed. and 2020 is investigated For Fahim Ullah, Fadi analysed handling smart real and using a estate deals and Al-Turiman systematic review transactions, the 10 methodology. Ten essential highlighted aspects elements of blockchain are connected to smart contracts are identified in and exhibited as six literature levels of blockchain. the and categorised into six tiers These include the for use in smart real application layer, estate. To demonstrate trust layer, network the development of a layer, transaction smart contract that may blockchain layer, be used for blockchain layer, and security smart contracts in real and administration estate, the decentralised layer. A DApps and its interactions with application and its interactions with the the EVM have been Ethereum Virtual Machine shown. which (EVM) are described. For demonstrate how a the real estate owners and smart contract is users who are parties to a created and distributed to the smart contract, a important parties thorough design and interaction mechanism users and owners. For the buyers and are emphasised. Along

with a step-by-step users of smart process for establishing contracts, a terminating smart thorough design list and contracts, a of interaction mechanism functions for initiating, generating, altering, emphasised. or terminating smart а contract is provided. The results of the current study may lead to a more engaging, intuitive, and visually appealing contractual procedure for users, while increasing business and sales for owners, Prop-tech firms, and real estate agents. **17. Decentralized** Decentralized finance DeFi opens up new Finance: On (DeFi) refers to a financial possibilities and has **Blockchain- and** infrastructure that the ability to build a **Smart Contract**constructed on top of the completely open, **Based Financial** blockchain. Ethereum transparent, and **Markets** DeFi creates protocols irreversible using smart contracts to financial duplicate present financial infrastructure. (14-May-2021) services in a more open, Because DeFi is interoperable, made up of several and transparent manner. This highly Fabian Schär interoperable article discusses the DeFi ecosystem's prospects protocols and apps, and possible hazards. To anybody can verify evaluate the implicit all transactions, and architecture and the many data is easily accessible for users DeFi building elements, such as token standards, and researchers to decentralized exchanges, evaluate. DeFi has decentralized debt sparked a flood of markets, blockchain creativity. On the derivatives, and on-chain one hand,

asset

management

developers

are

		protocols, a multi-layered	creating trust less
		framework is suggested.	copies of standard
		namework is suggested.	financial products
			utilizing smart
			contracts and the
			decentralized
			settlement layer.
			They are, on the
			other hand,
			developing totally
			new financial
			products that would
			not be possible
			without the
			underlying public
			blockchain. Atomic
			swaps, autonomous
			liquidity pools,
			decentralized
			stablecoins, and
			flash loans are just a
			few of the
			numerous
			examples that demonstrate this
			ecosystem's enormous
			potential.
18.	Secure Digital	The paper investigates the	This paper deals
	Voting System	key issues such as voter	with voter
	based on	anonymity, vote	anonymity and
	Blockchain	confidentiality and end-	confidentiality by
	<u>Technology</u>	to-end verification. These	generating a hash
		challenges form the	for each vote such
	(04 1 2040)	foundation of an efficient	that it can't be
	(01-Jan-2018)	voting system preserving	traced back to the
		the integrity of the voting	voter's details. They
	Vachif Mahhaah	process. In this paper, the	use a multichain
	Kashif Mehboob	authors present our	blockchain platform to maintain the
	Khan, Junaid	efforts to explore the use	to maintain the

	T		
	Arshad,	of the blockchain	ledger of voter
	Muhammad	technology to seek	details and votes.
	Mubashir Khan	solutions to these	
		challenges. In particular,	
		their system is based on	
		the Prêt à Voter approach	
		(Ryan, 2008) and uses an	
		open source blockchain	
		platform, Multichain	
		(Multichain, 2017) as the	
		underlying technology to	
		develop our system. In	
		their system, in order to	
		protect the anonymity and	
		integrity of a vote, the	
		system generates strong	
		cryptographic hash for	
		each vote transaction	
		based on information	
		specific to a voter.	
19.	E-Voting with	In this paper, the authors	The proposed
15.	Blockchain: An E-	propose a potential new	voting protocol
	Voting Protocol	e-voting protocol that	• .
	with	utilises the blockchain as a	
	<u>Decentralisation</u>	transparent ballot box.	
	and Voter Privacy	The protocol has been	•
	and voter Frivacy	designed to adhere to	context the
		fundamental e-voting	
	(03-Jul-2018)		
	(03-101-2016)	properties as well as offer a degree of	box. The main
		decentralisation and allow	
	Erova Shoor	for the voter to	reason for using the blockchain in an e-
	Freya Sheer		
	Hardwick,	change/update their vote	voting protocol is to
	Apostolos Gioulis,	(within the permissible	take advantage of
	Raja Naeem	voting period). This paper	the fact that it
	Akram,	highlights the pros and	enables a group of
	Konstantinos	cons of using blockchain	people to maintain
	Markantonakis	for such a proposal from a	a public database,
		practical point view in	that is owned,
		both	updated, and

development/deployment | maintained by every and usage contexts. but user, Concluding the paper is a controlled by no potential roadmap for Since one. the blockchain technology to protocol is based on able the blockchain, it be to support complex applications. will be realised as a network of peers. Each voter will be a peer i.e., a node in a network of equals. Every voter will be responsible for making sure that fraudulent votes are rejected, hence that consensus is maintained according to the election rules. The blockchain also has the additional advantage of being increasingly wellknown and welltrusted to operate as intended. 20. **E-voting using** The authors claim that A nation with less block chain block chain technology voting percentage Technology. mostly works the same as will struggle block develop as choosing the chain technology contained in a right leader for (01-May-2019) the E-voting system and the nation is very focuses on database essential. Their recording. The nodes proposed system designed to provide Pallavi Shejwal, involved in Block chain a secure data and a Aditya Gaikwad, that have been used by Mayur Jadhav, Bitcoin are independently trustworthy Nikhil Nanaware, random and not counted. voting amongst the However, in this e-voting people of the

	Noormohammed	system a block chain	democracy. Block
	Shikalgar	permission is used, for	chain itself has been
		nodes to be made the	used in the Bitcoin
		opposite of the Bitcoin	system known as
		system and the Node in	the decentralized
		question is a place of	Bank system. By
		general election because	adopting block
		the place of elections	chain in the
		must be registered before	distribution of
		the commencement of	databases on e-
		implementation, it must	voting systems one
		be clear the amount and	can reduce the
		the identity. This method	cheating sources of
		aims to maintain data	database
		integrity, which is	manipulation. This
		protected from	project aims to
		manipulations that should	implement voting
		not happen in the election	result using block
		process.	chain algorithm
			from every place of
			election.
21.	Digital Voting: A	The voting method is the	The authors have
	Blockchain-based	component for executing	highlighted how
	E-Voting System	individuals' views to all the	legitimacy of every
	using Biohash and	more likely to manage the	vote is maintained
	Smart Contract	framework. In recent	while using
		years, customary votes	blockchain
		have satisfied neither	mechanisms in
	(06-Oct-2020)	voters	elections. Also, the
		nor government	counting of votes
		specialists. They are not	without
	Syada Tasmia	totally protected since	manipulation and
	Alvi, Mohammed	voting forms are easy to	reduced time for
	Nasir Uddin, Linta	strike. It additionally	counting are other
	Islam	challenges elector safety	benefits that are
		and transparency. Many	going to be
			•
		countries face significant	incorporated in our
		difficulties in protecting	project. Also,
		_	•

1			
		participation and	cast from any
		legitimacy of the voter,	location(remotely)
		the integrity of the vote	
		data, and the counting of	
		votes without	
		manipulation, a	
		blockchain-based voting	
		system using a smart	
		contract has been	
		proposed. This	
		mechanism where the SC	
		performs the	
		authentication process of	
		voter and plays a role in	
		selecting a Miner in the	
		Blockchain to reduce the	
		computational cost. It also	
		counts the vote	
		immediately which	
		reduces the time	
		consumption of the	
		election process. This	
		mechanism provides the	
		· ·	
		environment for the	
		citizens to cast their votes	
		using smart devices from	
		anywhere.	
22.	<u>Blockchain</u>	In this paper, the authors	=
	voting: Publicly	propose a new	this paper employs
,	verifiable online	decentralized publicly	a new encryption
	voting protocol	verifiable online voting	mechanism and
	without trusted	protocol based on	combines a number
	tallying	blockchain technology.	of cryptographic
	<u>authorities</u>	Their new convention	techniques adapted
		utilizes another	and merged in an
		encryption system and	appropriate
	(01-Nov-2020)	combines a number of	fashion. Each vote is
		cryptographic techniques	to be encrypted
		adapted and merged in an	before submission
		appropriate fashion. The	and remains
	•		

Xuechao Yang, Xun Yi, Surya Nepal, Andrei Kelarev, Fengling Han protocol stores all submitted votes in а blockchain database, which can be accessed by all users but is immutable. The proposed protocol also allows voters to cast their ballots by assigning different points different candidates. Each vote is encrypted before submission and remains encrypted at all times. The additive homomorphic of the property exponential **ElGamal** cryptosystem enables effective processing of the ciphertexts during these procedures. Moreover, the eligibility of voters and their submissions can be verified by anyone without revealing the contents of the votes, and our proposed verification and self-tallying algorithms allow any voter to verify the correctness of the final result. The whole blockchain database is maintained by users (voters miners) without a need to involve a third party in verification and tallying. This paper also provides a concise security and performance analysis and confirms the feasibility of

encrypted at all time. Our project aims on using SHA-256 for encryption for all votes so that all the votes remain anonymous and cannot be traced back to its original voter in any way or form.

the proposed blockchain online voting protocol for real-life elections. In this paper, the authors do not hide the identification of each vote (because laws in several countries require everyone to vote). In our protocol, everyone can see the sender of each vote via the blockchain database. 23. **Secure large-scale** In this paper, the authors The authors **E-voting system** have proposed a hybrid propose a hybrid based on consensus model (PSCconsensus model blockchain Bchain) in which Proof of (PSC-Bchain) in contract using a Proof of Credibility (PoC) works which hybrid consensus mutually with Proof of Credibility (PoC) model combined Stake (PoS). This led to the works mutually with with sharding Proof of Stake (PoS). creation of a secure hybrid leads blockchain, which ensures This integral security when creation of a secure (30-Nov -2020) applied to the e-voting hybrid blockchain, system. They combined which ensures mechanism the of integral security Yousif Abuidris, sharding when applied to the with the Rajesh Kumar, PSC-Bchain e-voting system. It proposed Ting Yang, Joseph model to emphasize further expands on Onginjo security and enhance the the high scalability and concurrency performance of handling capability the blockchain-based e-voting and high of system. Furthermore, the throughput paper compares attack blockchain systems. execution on both the Our project is being classical blockchain and made for large the proposed hybrid population voting blockchain, also and and hence, high presented attack concurrency an and analysis and security

analysis Evan though the	cocurity will have a
analysis. Even though the	· · · · · · · · · · · · · · · · · · ·
latency for this method is	key role to play.
high the throughput when	
the number of nodes	
increases in such systems.	

Contribution of Each Member:

Abuzar Bagewadi (19BCE0773):

- 1) Digital Voting: A Blockchain-based E-Voting System using Biohash and Smart Contract.
- 2) Blockchain voting: Publicly verifiable online voting protocol without trusted tallying authorities.
- 3) The Application of the Blockchain Technology in Voting Systems: A Review.

Shreyas Chaudhry (19BCE0774):

- 1) E-Voting with Blockchain: An E-Voting Protocol with Decentralisation and Voter Privacy.
- 2) E-voting using block chain Technology.
- 3) Secure Digital Voting System based on Blockchain Technology.

Daksh Paleria (19BCE0779):

- 1) BlendMAS: A BLockchain-Enabled Decentralized Microservices Architecture for Smart Public Safety.
- 2) Beyond bitcoin: an early overview on smart contract.'
- 3) An Overview of Smart Contract: Architecture, Applications, and Future Trends

Harshit Mishra (19BCE0799):

- 1) A Survey on Anonymity and Privacy in Bitcoin-like Digital Cash Systems.
- 2) Exploring Ethereum's Blockchain Anonymity Using smart contract code attribution.
- 3) Blockchain-based RBAC for User Authentication with Anonymity.
- 4) Anonymity on blockchain based e-cash protocols A survey.

Alokam Nikhitha (19BCE2555):

- 1) Smart Contract: Attacks and Protections.
- 2) Smart Contract Development: Challenges and Opportunities.
- 3) A systematic literature review of blockchain and smart contract development: Techniques, tools, and open challenges.

Anika Gupta (19BCI0273):

- 1) A systematic Review of Challenges and Opportunities of blockchain for evoting.
- 2) Success Implementation of E-Voting Technology in Various Countries: A Review.
- 3) E-Voting System Based on Blockchain Technology: A Survey
- 4) Preparatory Component for Adoption E-Voting.

Aiswarya Satish (19BCI0265):

- 1) A Blockchain-Based Smart Contract System for Healthcare Management.
- 2) A conceptual framework for blockchain smart contract adoption to manage real estate deals in smart cities.
- 3) Decentralized Finance: On Blockchain- and Smart Contract-Based Financial Markets.

References:

[1] Taş, R. and Tanrıöver, Ö.Ö., 2020. A systematic review of challenges and opportunities of blockchain for E-voting. *Symmetry*, *12*(8), p.1328.

[2] Goretta, H. et al. (2019) 'Technology criteria analysis and e-voting adoption factors in the 2019 Indonesian presidential election', 2018 International Conference on Advanced Computer Science and Information Systems, ICACSIS 2018. IEEE, pp. 143–149. doi: 10.1109/ICACSIS.2018.8618215.

[3] S. Al-Maaitah, M. Qatawneh and A. Quzmar, "E-Voting System Based on Blockchain Technology: A Survey," 2021 International Conference on Information Technology (ICIT), 2021, pp. 200-205, doi: 10.1109/ICIT52682.2021.9491734.

[4] Risnanto, Slamet & Suryana, Nanna & rahin, yahaya. (2019). Preparatory Component For Adoption E-Voting. 10.1109/TSSA48701.2019.8985461.

- [5] M. C. Kus Khalilov and A. Levi, "A Survey on Anonymity and Privacy in Bitcoin-Like Digital Cash Systems," in IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2543-2585, thirdquarter 2018, doi: 10.1109/COMST.2018.2818623.
- [6] S. Linoy, N. Stakhanova and A. Matyukhina, "Exploring Ethereum's Blockchain Anonymity Using Smart Contract Code Attribution," 2019 15th International Conference on Network and Service Management (CNSM), 2019, pp. 1-9, doi: 10.23919/CNSM46954.2019.9012681.

https://dl.acm.org/doi/abs/10.1145/3338840.3355673

- [7] Lee, Y. and Lee, K.M., 2019, September. Blockchain-based RBAC for user authentication with anonymity. In Proceedings of the Conference on Research in Adaptive and Convergent Systems (pp. 289-294).
- [8] https://doi.org/10.1016/j.cosrev.2021.100394.
- [9] R. Xu, S. Y. Nikouei, Y. Chen, E. Blasch and A. Aved, "BlendMAS: A Blockchain-Enabled Decentralized Microservices Architecture for Smart Public Safety," 2019 IEEE International Conference on Blockchain (Blockchain), 2019, pp. 564-571, doi: 10.1109/Blockchain.2019.00082.
- [10] Pierluigi Cuccuru, Beyond bitcoin: an early overview on smart contracts, *International Journal of Law and Information Technology*, Volume 25, Issue 3, Autumn 2017, Pages 179–195
- [11] S. Wang, Y. Yuan, X. Wang, J. Li, R. Qin and F. -Y. Wang, "An Overview of Smart Contract: Architecture, Applications, and Future Trends," 2018 IEEE Intelligent Vehicles Symposium (IV), 2018, pp. 108-113, doi: 10.1109/IVS.2018.8500488.
- [12] S. Sayeed, H. Marco-Gisbert and T. Caira, "Smart Contract: Attacks and Protections," in IEEE Access, vol. 8, pp. 24416-24427, 2020, doi: 10.1109/ACCESS.2020.2970495.
- [13] W. Zou et al., "Smart Contract Development: Challenges and Opportunities," in IEEE Transactions on Software Engineering, vol. 47, no. 10, pp. 2084-2106, 1 Oct. 2021, doi: 10.1109/TSE.2019.2942301.
- [14] Vacca, A., Di Sorbo, A., Visaggio, C.A. and Canfora, G., 2021. A systematic literature review of blockchain and smart contract development: Techniques, tools, and open challenges. Journal of Systems and Software, 174, p.110891.

- [15] Khatoon, A., 2020. A blockchain-based smart contract system for healthcare management. Electronics, 9(1), p.94.
- [16] Ullah, F. and Al-Turjman, F., 2021. A conceptual framework for blockchain smart contract adoption to manage real estate deals in smart cities. Neural Computing and Applications, pp.1-22.
- [17] Schär, F., 2021. Decentralized finance: On blockchain-and smart contract-based financial markets. FRB of St. Louis Review.
- [18] Khan, K.M., Arshad, J. and Khan, M.M., 2018. Secure digital voting system based on blockchain technology. International Journal of Electronic Government Research (IJEGR), 14(1), pp.53-62.
- [19] Hardwick, F.S., Gioulis, A., Akram, R.N. and Markantonakis, K., 2018, July. E-voting with blockchain: An e-voting protocol with decentralisation and voter privacy. In 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (pp. 1561-1567). IEEE.
- [20] Shejwal, P., Gaikwad, A., Jadhav, M., Nanaware, N. and Shikalgar, N., 2020. E-voting using block chain Technology. International Journal of Scientific Development and Research (IJSDR), 4(5), pp.583-588.
- [21] Alvi, S.T., Uddin, M.N. and Islam, L., 2020, August. Digital voting: A blockchain-based e-voting system using biohash and smart contract. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 228-233). IEEE.
- [22] Yang, X., Yi, X., Nepal, S., Kelarev, A. and Han, F., 2020. Blockchain voting: Publicly verifiable online voting protocol without trusted tallying authorities. Future Generation Computer Systems, 112, pp.859-874.
- [23] Abuidris, Y., Kumar, R., Yang, T. and Onginjo, J., 2021. Secure large-scale E-voting system based on blockchain contract using a hybrid consensus model combined with sharding. Etri Journal, 43(2), pp.357-370.