MultiNet: Connecting to Multiple IEEE 802.11 Networks Using a Single Wireless Card

Ranveer Chandra, Paramvir Pahl, Pradeep Bahl Cornell University & Microsoft Corp.

Presented by Liang Chen

Ideas

- NIC(Network Interface Card) virtualization
- Use one NIC to connect multiple wireless network as multiple network interface
- Save more power and hardware cost than multi-radio

Other applications:

- Gateway node of a wireless ad hoc network
- Extending the range of an infrastructure network

Problems

- Network interface virtualization
- Buffering protocol
- Switching algorithm
- Synchronization of multiple switching nodes in an ad hoc network

NIC Virtualization

- Implement a MPD (MultiNet Protocol Driver) between IP layers and 802.11 MAC
 - MPD provides multiple virtual NICs to IP layer. Each virtual NIC corresponds to a wireless network
 - MPD instructs 802.11 MAC to associates each wireless network periodically. When a wireless network is associated, it correspond virtual NIC is active.
 - When a virtual NIC is active, MPD schedules the downlink packets through it to the 802.11 MAC and transfer the packets received from 802.11 MAC to the active virtual NIC.
 - MPD buffers packets sent to the inactive virtual NICs.
 - MPD filters out the disassociation interrupt to IP layer when it switches network

Buffering protocol

Issues:

- Delivery packets sent by the MultiNet node when network is not active
 - MultiNet node buffers packets until the network is active
- Delivery packets sent to the MultiNet node when the node is not active
 - Other nodes buffer packets until the MultiNet node is active
 - Notify its neighboring when it leaves and comes back so that its neighboring buffer its packet until it's active again.

Switching Algorithms

- Decide how much time the MultiNet node stays in a network
 - Fixed priority
 - Adaptive Schemes
 - Give more time to the network with more traffic.

Synchronization

Problem

- No active overlap between
 2 MultiNet nodes in ad hoc mode
- They can not discovery each other

Solution

- Stay long enough to listen to other nodes when MultiNet node joins an ad hoc network
- Synchronize with other ad hoc nodes by the announcement of ad hoc network

Evaluation

- Switching Delay
- Switching Strategies
- Adaptive Switching
- MultiNet versus Multiple Radios

Switching Delay

TABLE I
THE DELAYS ON SWITCHING BETWEEN IS AND AH NETWORKS FOR IEEE
802.11 CARDS WITH AND WITHOUT THE OPTIMIZATION OF TRAPPING
MEDIA CONNECT AND DISCONNECT MESSAGES.

Switching	Unoptimized	Optimized	Optimized
From	Legacy	Legacy	Native WiFi
IS to AH	3.9 s	170 ms	25 ms
AH to IS	2.8 s	300 ms	30 ms

Switching Strategies

Simultaneously transfer a 47MB file over MultiNet by FTP.

Adaptive Switching

MultiNet v.s. Multi-Radio

Simulation Scenario

Results(1)

Throughput

Network	Two Radio	MultiNet
Ad Hoc	4.4 Mbps	1.1 Mbps
Infrastructure	5.8 Mbps	4.35 Mbps

Scheme	Avg Delay (in Seconds)
Two Radio	0.001
MultiNet	0.157
Two Radio PS	0.156
MultiNet PS	0.167

Delay

Result(2)

- Power Consumption
 - Two Radios
 - Both radios is no PS
 - MultiNet/MultiNet No PS
 - MultiNet Radio is no PS
 - Two radio PS
 - IS radio is in PS
 - AH radio is not specified
 - MultiNet PS
 - MultiNet Radio is in PS

Maximal Connective in MultiNet

TABLE IV

THE AVERAGE PACKET DELAY IN INFRASTRUCTURE MODE ON VARYING
THE NUMBER OF MULTINET CONNECTED NETWORKS

Num Networks	Avg Delay (in Seconds)
2	0.191
3	0.261
4	0.332
5	0.410
6	0.485

Conclusion

- MultiNet provides an alternative way for multi-radio implementation by TDMA (time division multiple access)
- NIC virtualization in OS integrates the virtual multi-radio interface into network stack gracefully.

Discussion

- The accuracy of power consumption obtained from simulation
- The AH radio of Two Radio PS scenario may be in no PS mode, since most commercial 802.11 NIC does not support AH PS mode.
- The network delay introduced by MultiNet if an ad hoc node uses MultiNet node as the gateway.