Continuous Assessment Test II- March 2024

Name and Address of the Owner, or the Owner,	-	B.Tech. (ECE)		Winter Sem 2023-24	
Programme Course Code & Course Title	-		Class Nbr	: CH2023240500952 CH2023240500930 CH2023240500944 CH2023240500948 CH2023240500933 CH2023240500940	
Faculty		Dr. Priyanka Das Dr. D. Thiripurasundari Prof. Ralph Samuel Thangaraj Dr. S. Usha Rani Dr. Vetrivelan P Dr. Vydeki D		: A2	
Duration	1	90 Minutes	Max. Marks	: 50	

General Instructions:

 Write only your registration number on the question paper in the box provided and do not write other information.

Only non-programmable calculator without storage is permitted

Only non-programmable calculator without storage is permitted. Answer all questions					
Q.No. Sub.					
1.		The Okumura model is one of the most widely used models for signal prediction in sub-urban areas. Following is the data given: the distance between the transmitter and the receiver is 5 km, base station antenna height is 30 m and mobile antenna height is 2 m. The median attenuation relative to free space is 22 dB and the gain due to the type of environment encountered by the radio signal is 11.5 dB.	[40]		
		Using this model, calculate the median value of the propagation path loss of a radio signal at carrier frequency of 2 GHz. Answer the following question without carrying out any calculation. Will the median path loss computed using the Hata model closely resemble your answer?			

2.	M.	Sketen the power	Table	wideband channel given in Power-delay Profile		
			Delay (ms)	Power level (dB)		
			0	1		
			0.8	3		
			1.8	6		
			3	8		
	0	above 0.5. [5] (ii) For a vehicle which the channel Design a radio sy handle a certain	sy spread & coherce traveling 75 m/s to all appears stationary estem for public sate amount of Dopple	ety which operates at 800 Mr spread. What maximum I	find the time at MHz, and it can Doppler spread	
~		can be handled communicate whi	if a fast-moving ile driving at 140 m	emergency vehicle would iles per hour? [3]	ld be able to	
(3.)	a.	experiencing a ma 1900 MHz. Compute the follo (i) If a bit error of what is the aver modulation with a	aximum Doppler from the course whenever the age number of bit data rate of 100 by	oution which follows an equency of 40 Hz. The carries bit encounters a fade for t errors per second for a ss? [4]	er frequency is which $\rho = 0.1$, binary digital	[10]
	b.	receives digital di MHz carrier free	ata from a wireless	ling at a uniform velocity communication system op- ould be the minimum syst [5]	erating at 900	
+		#3 30 PE 10	4/11/10	15 20 25 Distance	· ·	[5]
		in Fig.1, with suita (ii) If rms delay spi	e of fading indicate ble explanation. [3 read of a specific m KHz, is this a fl	Fig.1 ed by the (a) solid line (b) fl Marks] ultipath channel is 2µs, for ut fading or frequency sel	a svetem with	

Page 2 of 3

- For the scenario given, choose and justify your choice between a multicarrier modulation scheme and a single carrier modulation scheme.
 - A new seaport boasts high automation, including driverless trailers for container transport.
 - Containers are unloaded from ships onto these trailers, which stack them in the port's storage area.
 - Stacks can reach heights of up to 8 containers and fluctuate as containers are moved.
 - Due to safety concerns and initial costs, human operators control the trailers remotely from a central center.
 - Trailers transmit low-resolution, high frame-rate video and sensor data multiplexed into a single stream.
 - Operators send low data rate control signals to the trailers.
 - Safety is paramount for both human operators and cargo security.
- b. An OFDM signal has a bandwidth of 6 MHz and 512 subcarriers. If the cyclic prefix is said to be 18% of the raw OFDM symbol time, and is 1.4 times the maximum delay spread, how many samples of the CP are affected by ISI. What could be the data rates for the signal with CP, if (i) 64-QAM is used and (ii) OPSK is used.

000