The modified naive method for evaluating a microchannel cooling solution

The University of Texas at Austin, Senior Design Spring 2023, Group 3

April 10, 2023

The Naive Method function allows the user to calculate the heat flux q, pressure loss dP, and outlet temperature T_{out} for a simple microchannel cooler which consists of straight rectangular channels.

1 Input

The Naive Method function takes the following input

- 1. Channel Length, L[m]
- 2. Channel Width, W[m]
- 3. Channel Height, H[m]
- 4. Fluid Density, $\rho [kg/m^3]$
- 5. Fluid Viscosity, μ [Pa * s]
- 6. Fluid Specific Heat, $c_p [J/(kg * K)]$
- 7. Fluid Thermal Conductivity, k [W/(m*K)]
- 8. Fluid Inlet Temperature, T_{in} [K]
- 9. Wall Temperature, T_w [K]
- 10. Flow Rate, $Q[m^3/s]$

2 Describing the Flow

The cross-sectional area $[m^2]$

$$A = WH \tag{1}$$

The wetted perimeter [m]

$$P = 2(W+D) \tag{2}$$

The hydraulic diameter [m]

$$D_h = 4\frac{A}{P} \tag{3}$$

The fluid velocity [m/s]

$$v = Q/A \tag{4}$$

2.1 Dimensionless Flow Parameters

The Reynolds number for the flow [ul]

$$Re = \frac{\rho v D_h}{\mu} \tag{5}$$

where ρ is the density of the fluid, v is the speed of the flow, D_h is the hydraulic diameter, and μ is the viscosity of the fluid.

The Prandtl number for the flow [ul]

$$Pr = \frac{c_p \mu}{k} \tag{6}$$

where c_p is the specific heat of the fluid, μ is the viscosity of the fluid, and k is the thermal conductivity of the fluid.

The Nusselt number for the flow [ul] is calculated using the Reynolds number and the Prandtl number. This is an empirical relation known as the Dittus and Boelter equation, for fully developed flow in a circular pipe.

$$Nu = 0.023 * Re^{0.8} * Pr^{0.4} (7)$$

2.2 Heat Transfer

The heat transfer coefficient, $h\left[W/(m^2*K)\right]$

$$h = \frac{Nu * k}{D_h} \tag{8}$$

where Nu is the Nusselt number, k is the fluid thermal conductivity, and D_h is the hydraulic diameter.

For each δL along the length L of the channel,

$$T_{out} = \frac{\delta E}{\rho Q c_p} + T_{in} \tag{9}$$

where δE is

$$\delta E = 4hW\delta L(T_w - T_{in}) \tag{10}$$

Finally, the heat flux $q [w/m^2]$ can be calculated as

$$q = \frac{1}{4WL} \sum \delta E \tag{11}$$

2.3 Pressure Loss

The pressure loss, dP [Pa]

$$dP = \frac{fL\rho v^2}{2D} \tag{12}$$

where f, the Fanning friction factor, is (64/Re), L is the channel length, ρ is the fluid density, v is the fluid velocity, and D is the channel depth.