

Deep Learning based Text Processing

Lec 10: Introduction to Long-Short Term Memory

Overview of Course

Introduction to Recurrent Neural Network

- ✓ Simple RNN, BPTT, Memory Cell
- ✓ Code: Implementing an RNN with Keras

Introduction to Long-Short Term Memroy

- ✓ Cell state, LSTM, and GRU, and Applications
- ✓ A Visual Guide to Recurrent Layers in Keras
- ✓ Code: A simple LSTM layers

Text generation with RNN

- ✓ Tokenizer, Character-Level Language model
- ✓ Code: Alice's Adventures in Wonderland

Sequence to Sequence Learning model with RNN

- ✓ Introduction to Seq2Seq and Attention model
- ✓ Code: Character-Level Neural Machine Translation

Reference Materials

O'REILLY®

Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow

딥 러닝을 이용한 자연어 처리 입문

https://wikidocs.net/book/2155

Reviewing the last class: RNN

Recurrent NN for processing sequences

- RNN can handle interactions more flexibly
- they are applied in a step-by-step fashion to a sequential input
 - ✓ a sequence of words, characters, or something else
- RNNs use a state representing what has happened previously
 - ✓ after each step, a new state is computed

Different Types of Sequence Modeling Tasks

RNN example

https://chalmers.instructure.com/courses/16100

training RNNs: backpropagation through time

simple RNN implementation

the simple RNN looks similar to a feedforward NN

- ✓ the next state is computed like a hidden layer in a feedforward NN
- ✓ the output is identical to the state representation:

backpropagation through time

✓ To train an RNN the trick is to unroll it through time and then simply use regular backpropagation.

simple RNNs have a drawback

 simple RNNs suffer from the problem of vanishing gradients (Hochreiter, 1998)

Solutions to the vanishing/exploding gradient problems

- Truncated backpropagation through time (TBPTT)
 - ✓ simply limits the number of time steps the signal can backpropagate after each forward pass.
 - E.g., even if the sequence has 100 elements/steps, we may only backpropagate through 20 or so
- Long short-term memory (LSTM)
 - ✓ uses a memory cell for modeling long-range dependencies and avoid vanishing gradient problems
- Gradient Clipping
 - ✓ set a max value for gradients if they grow to large
 - solves only exploding gradient problem)

Long-Short Term Memory (장단기 메모리)

LSTM Tasks and Usage Over Time: 2022

<source> https://paperswithcode.com/method/lstm

Long-short term memory (LSTM)

Cell states and Gates

Cell state

✓ Gates control the flow of information to/from the memory

Understanding the roles played by gates in LSTM

Forget Gate

✓ whether we should keep the information from the previous timestamp or forget it.

Input Gate

✓ Decide how much this unit adds to the current state

New information: Memory Upgate

✓ The cell state vector aggregates the two components (old memory via the forget gate and new memory via the input gate)

Output Gate

✓ Decide what part of the current cell state makes it to the output

gating

- gating architectures allow information flow to be controlled more carefully
 - ✓ should we copy the previous state, or replace it?

$$y_t = s_t$$
 $s_t = g(\boldsymbol{W} \cdot (s_{t-1} \oplus x_t) + \boldsymbol{b})$

LSTM: Cell state and hidden state

Gates are controlled by a concatenation of the output from the previous time step and the current input and optionally the cell state vector.

S: Sigmoid

T: tanh

Gated Recurrent Units (GRU)

Gated Recurrent Units (GRU, 게이트 순환 유닛)

- Just like LSTM, GRU uses gates to control the flow of information.
 - ✓ GRU simplifies the architecture of LSTM, which was similar in performance to LSTM and was complex

$$egin{aligned} r_t &= \sigma(W_{xr}x_t + W_{hr}h_{t-1} + b_r) \ z_t &= \sigma(W_{xz}x_t + W_{hz}h_{t-1} + b_z) \ g_t &= tanh(W_{hg}(r_t \circ h_{t-1}) + W_{xg}x_t + b_g) \ h_t &= (1-z_t) \circ g_t + z_t \circ h_{t-1} \end{aligned}$$

source: https://www.researchgate.net/figure/Structure-of-a-GRU-cell_fig1_334385520

limitations of RNNs

Even with gated RNNs, it can be hard to cram the useful information into the last state

Simple LSTM layer

RNN Sliding window size and horizon

Data windowing

A model: prediction one hour into the future, given six hours of history

Many-to-One RNN Data Structure

Step1: set the number of window_size, horizon

Step2: set the number of window_size, horizon

LSTM Parameters

LSTM has 3 important parameters

- ✓ neurons: dimensionality of the output space
- ✓ return_sequences: whether to return the last output. (hidden state, memory cell,h)
 - in the output sequence, or the full sequence.
 - Default: False.
- ✓ return_state: whether to return the last state in addition to the output. (cell state, c)
 - Default: False.

return_sequences=False (the default)

Return_sequences=False

- ✓ the layer only returns the output of the final time step
- ✓ giving the model time to warm up its internal state before making a single prediction:

return_sequences=True

Return_sequences=True

- ✓ the layer returns an output for each input. This is useful for Stacking RNN layers.
- ✓ Training a model on multiple time steps simultaneously

a sequence modeling problem: predict the next word

a sequence modeling problem

"This morning I took the dog for a walk."

given these words

predict what comes next?

Why Sequence Models?

idea: use a fixed window

"This morning I took the dog for a walk." given these 2 words, [1000001000] predict what comes next? for One hot feature vector indicates what each word is prediction

Why Sequence Models?

problem: we can't model long-term dependencies

"In France, I had a great time and I learnt some of the _____ language."

We need information from the far past and future to accurately guess the correct word.

Why Sequence Models? Bag of words

idea: use entire sequence, as a set of counts

Bag-of-words model:
In this model, a text (such as a sentence or a document) is represented as the bag (multiset) of its words, disregarding grammar and even word order but keeping multiplicity.

problem: counts don't preserve order

"The food was good, not bad at all."

vs

"The food was bad, not good at all."

Why Sequence Models?

idea: use a really big fixed window

Why Sequence Models?

problem: no parameter sharing

```
this morning
[100000000010000100001000001000 ...]
```

each of these inputs has a separate parameter

things we learn about the sequence won't transfer if they appear at different points in the sequence.

Why Sequence Models?

to model sequences, we need:

- 1. to deal with variable-length sequences
- 2. to maintain sequence order
- 3. to keep track of long-term dependencies
- 4. to share parameters across the sequence

A Visual Guide to Recurrent Layers in Keras

source: https://amitness.com/2020/04/recurrent-layers-keras/

RNN: Single Output

Let's take a simple example of encoding

For simplicity, let's assume we used some word embedding to convert each word into 2 numbers.

I am groot

Credits: Marvel Studios

Word	E1	E2
I	0.5	0.4
am	0.3	0.1
groot	0.7	0.5

We could either use one-hot encoding, pretrained word vectors, or learn word embeddings from scratch

https://amitness.com/2020/04/recurrent-layers-keras/

SimpleRNN (1)

SimpleRNN with a Dense layer

✓ to build an architecture for something like sentiment analysis or text classification.

```
import tensorflow as tf
from tensorflow.keras.layers import SimpleRNN #Dense, LSTM
# from tensorflow.keras.models import Sequential
x = tf.random.normal((1, 3, 2))
layer = SimpleRNN(4, input_shape=(3, 2))
output = layer(x)
print(output.shape)
print(x)
(1, 4)
tf.Tensor(
[[[ 0.6887584    1.3883604 ]
 [ 0.01564607 -1.4314882 ]
 [-0.05214449 -0.65099174]]], shape=(1, 3, 2), dtype=float32)
```

SimpleRNN: Many-to-One

we treat each word as a time-step and the embedding as features.

SimpleRNN (3): return_sequences=True


```
# multiple output
layer = SimpleRNN(4, input_shape=(3, 2), return_sequences=True )
output = layer(x)
print(output.shape)
print(output)

(1, 3, 4)
tf.Tensor(
[[[-0.6854385     0.08265962     0.30888444 -0.30752325]
       [ 0.4584542     -0.1935767     -0.91095936     -0.2416075 ]
       [ 0.7241105     -0.49960855     -0.5059616     0.7261468 ]]], shape=(1, 3, 4), dtype=float32)
```

RNN with return_sequences: Many-to-Many

return_sequences = True

✓ True: the output from each unfolded RNN cell is returned instead of only the last cell.

```
model.add(SimpleRNN(4, input_shape=(3, 2), return_sequences=True))
```


RNN with TimeDistributed: Many-to-Many

- Suppose we want to recognize entities in a text.
 - ✓ For example, in our text "I am Groot", we want to identify "Groot" as a name.

Identify entity

(3) RNN: TimeDistributed Layer


```
model.add(SimpleRNN(4, input_shape=(3, 2), return_sequences=True))
model.add(TimeDistributed(Dense(4, activation='softmax')))
```


RNN Stacking Layer: Deep but Many-to-One

We can also stack multiple recurrent layers one after another in Keras

```
model.add(SimpleRNN(4, input_shape=(3, 2), return_sequences=True))
model.add(SimpleRNN(4))
```


Let's Code 2: LSTM

LSTM Example: Parameters

LSTM Example

LSTM Example: many-to-one


```
from keras.models import Model
from keras.layers import Input, Dense, LSTM
import numpy as np
x = np.array([[[1.], [2.], [3.], [4.], [5.]]])
y = np.array([[6.]])
xInput = Input(batch shape=(None, 5, 1))
xLstm = LSTM(3)(xInput)
xOutput = Dense(1)(xLstm)
model = Model(xInput, xOutput)
model.compile(loss='mean_squared_error', optimizer='adam')
print(model.summary())
model.fit(x, y, epochs=50, batch size=1, verbose=0)
model.predict(x, batch size=1)
```

Model: "model_4"		
Layer (type)	Output Shape	Param #
input_5 (InputLayer)	[(None, 5, 1)]	0
lstm_6 (LSTM)	(None, 3)	60
dense_6 (Dense)	(None, 1)	4
Total params: 64 Trainable params: 64 Non-trainable params:	0	=======

Unfolded LSTM: Many to One

return_sequences=False

LSTM many-to-many with TimeDistributed Layer


```
import tensorflow as tf
from tensorflow import keras
import numpy as np
x = np.array([[[1.], [2.], [3.], [4.], [5.]]])
y = np.array([[[2.], [3.], [4.], [5.], [6.]]])
```

```
model2 = keras.models.Sequential([
    keras.layers.LSTM(3, return_sequences=True, input_shape=[5, 1]),
    keras.layers.TimeDistributed(keras.layers.Dense(1) )
    model2.compile(loss='mean_squared_error', optimizer='adam')
model2.summary()
```


