RSQSim Runs

Contents

Run 1	1
Run 2	2
Run 3	2
Run 4	2
Run 5	2
Run 6	2
Run 7	3
Run 8	3
Run 100	3
Run 101	3
Run 102	3
Run 103	3
Run 104	3
Results table	4
References	4

NOTE: Results table (at end of document) is latex/pdf specific and does not work in html.

Run 1

- Main fault
 - 5 km x 3 km
 - vertical
 - strike-slip
 - 100 m elements
 - top edge at 2 km depth
 - initial normal stress: 100 MPa
 - initial shear stress: 65 MPa
- Random faults
 - n = 2000
 - $-\,$ size: to produce GR between M=0 and M=2

- orientation: parallel to main fault
- position: exponentially distributed distance from random main fault element, random direction
- eliminate those within 10 m of main fault
- initial stresses: same as main fault
- Injection
 - makeInjectionHistory()'s default values:
 - * diffusivity, $\kappa = 0.008 \mathrm{m}^2/\mathrm{s}$
 - * porosity, $\phi = 0.05$
 - * compressibility, $c = 5 \cdot 10^{-10} \text{Pa}^{-1}$
 - * injection rate, Q = 0.0069m³/s
 - 500 m from center point of main fault

Run 2

Same as Run1 except for:

- Random faults
 - orientation: perturbed from that of main fault with a standard deviation of 10° about uniformly distributed random axes

Run 3

Same as Run 2 except:

- Main fault
 - initial shear stress: 63 MPa
- Random faults
 - initial shear stress: 63 ± 1 MPa (mean \pm standard deviation)

Run 4

Same as Run 3 except:

- Main fault
 - initial shear stress: 62 MPa

Run 5

Same as Run 4 except:

- Main fault
 - initial shear stress: 62.8 MPa

Run 6

Same as Run 5 except:

- Main fault
 - initial shear stress: 63.2 MPa

Run 7

Same as Run 6 except:

- Random faults
 - -initial shear stress: 65 \pm 1 MPa

Run 8

Same as Run 7 except:

- Random faults
 - -initial shear stress: 66 ± 1 MPa

Run 100

Same as Run 6 except:

- Random faults
 - n = 5000

Run 101

Same as Run 100 except:

- Random faults
 - n = 10000

Run 102

Same as Run 101 except:

- Injection
 - 1500 m from center of fault

Run 103

Same as Run 102 except:

- Injection
 - 1000 m from center of fault

Run 104

Same as Run 103 except:

- Main fault
 - initial shear stress: 66.7 MPa

Results table

	Run	$t_{M\geq 5}$	N	$N_{ m b}$	$N_{\rm a}$	N_{ex}	$f_{\rm as}$	$f_{\rm as}$		$f_{\rm as}$		$f_{\rm as}$	$f_{\rm as}$	$f_{\rm as}$	$f_{\rm as}$
							naive	SS-all	(0.16)	SS-ex	(0.84)	Z-all	Z- ex	H-all	H-ex
1	Run1	6.2	52	20	31	2	0.54	0.93	0.39	0.45	0.57	0.55	0.53	0.96	0.82
2	Run2	6.1	48	20	27	1	0.52	0.92	0.46	0.57	0.83	0.55	0.59	0.96	0.81
3	Run3	38.4	49	19	29	0	0.47	0.62	0.52	0.62	0.89	0.54	0.52	0.81	0.81
4	Run4		22			0	0.00	0.05	0.01	0.04	0.36	0.24	0.24	0.79	0.79
5	Run5	79.2	45	21	23	0	0.49	0.80	0.68	0.80	0.95	0.55	0.55	0.88	0.88
6	Run6	27.8	49	19	29	0	0.57	0.50	0.44	0.50	0.72	0.71	0.71	0.58	0.58
7	Run7	29.9	109	66	42	0	0.36	0.29	0.25	0.29	0.59	0.30	0.29	0.85	0.85
8	Run8	10.5	195	116	78	5	0.37	0.98	0.22	0.25	0.29	0.32	0.33	0.98	0.71
9	Run100	12.6	81	48	32	5	0.35	0.80	0.39	0.52	0.83	0.39	0.40	0.86	0.66
10	Run101	27.8	212	126	85	10	0.35	0.50	0.26	0.30	0.36	0.39	0.42	0.87	0.59
11	Run102		22			0	0.00	0.04	0.01	0.04	0.25	0.33	0.00	0.42	0.42
12	Run103		46			0	0.00	0.09	0.02	0.10	0.43	0.04	0.07	0.51	0.51
13	Run104	18.3	124	34	89	3	0.64	0.95	0.52	0.57	0.65	0.65	0.68	0.96	0.80

Table 1: Summary of run results. $t_{M\geq 5}$: time until first $M\geq 5$ event (yrs). N: total number of events. $N_{\rm b}$: number of events before first $M\geq 5$ event. $N_{\rm a}$: number of events after first $M\geq 5$ event. $N_{\rm ex}$: number of very late outlying events. $f_{\rm as}$ -naive: aftershock fraction taking events within 5 years of $M\geq 5$ as aftershocks. $f_{\rm as}$ -SS-all: aftershock fraction from Bayesian fitting of Saichev and Sornette [2007] to all events. $f_{\rm as}$ -SS-ex: as previous but excluding very late events. (0.16) and (0.84): 68% confidence intervals of previous. $f_{\rm as}$ -Z-all: aftershock fraction ala Zaliapin and Ben-Zion [2016] using all events. $f_{\rm as}$ -Z-ex: as previous but excluding very late events. $f_{\rm as}$ -H-all: aftershock fraction from Hainzl et al. [2006] $f_{\rm as}$ -H-ex: as previous but excluding very late events.

If you take the f_{as} -naive as being the true answer, and if you count the cases where f_{as} -naive is 0.00 and the lower end of the 68% CIs for Bayesian fitting of *Saichev and Sornette* [2007] is 0.01 or 0.02 as being close enough, then the true answer falls within the 68% CIs 9 out of 13 times, so 69% of the time (when the late outliers are removed).

The Hainzl et al. [2006] method seriously overestimates the aftershock fraction in most cases.

The Zaliapin and Ben-Zion [2016] method works quite well (or agrees with the naive counting anyway) though it does have issues when there are zero aftershocks.

References

Hainzl, S., F. Scherbaum, and C. Beauval (2006), Estimating background activity based on interevent-time distribution, *Bulletin of the Seismological Society of America*, 96(1), 313–320.

Saichev, A., and D. Sornette (2007), Theory of earthquake recurrence times, *Journal of Geophysical Research:* Solid Earth, 112(B4).

Zaliapin, I., and Y. Ben-Zion (2016), Discriminating characteristics of tectonic and human-induced seismicity, Bulletin of the Seismological Society of America, 106(3), 846–859.