2

3

4

5

6

[] 12

1<u>.</u>3

14

1

2

3

WHAT IS CLAIMED IS:

(1.)	For	use	in	a	code	division	mult	iple	access	(0	CDMA)
wireless	netwo	ork, a	a sy	stem	for	synchroni	zing	a plu	rality	of	base
stations,	comp	risin	ıg:								

- a gigabit ethernet network for interconnecting said plurality of base stations;
- a global positioning system (GPS) receiver and a holdover stable oscillator in one of said plurality of base stations for receiving a regulated clock signal; and

a clock recovery circuit, in (at least one other of said plurality of base stations) wherein said circuit utilizes said regulated clock signal retrieved from a data stream, from said gigabit Ethernet network, for generating a synchronizing master clock signal for said (at least one other of said plurality of base stations.)

2. $/_{5}$ The system for synchronizing a plurality of base stations as set forth in Claim 1, further comprising a controller for sending said GPS regulated clock signal to said at least one other of said plurality of base stations.

4
5
1
2.5
3
45
[]] . 1
1
31
17

- The system for synchronizing a plurality of base stations
 as set forth in Claim 1, further comprising:
 - a gigabit transceiver circuit, in said at least one other of said plurality of base stations, for processing gigabit Ethernet transmissions.
 - 4. The system for synchronizing a plurality of base stations as set forth in Claim 3, further comprising:
 - a connector for coupling said clock recovery circuit to said gigabit transceiver.
 - 5. h_1 The system for synchronizing a plurality of base stations as set forth in Claim 4, further comprising:
 - a receiver portion of said gigabit transceiver circuit being coupled with said clock recovery circuit for retrieving a transmitted GPS clock signal.

5

1	6.,	The s	ystem for	r	synchroni	izing a	a j	plurality	of	base	stations
	14										
2	as set fo	rth in	Claim 5	, i	further	compr	is	ing:			

- a voltage compensated crystal oscillator for generating said synchronizing signal for said one other of said plurality of base stations.
- 7./3 The system for synchronizing a plurality of base stations as set forth in claim 5, further comprising:
- a synchronizing signal being generated and sent to said receiver portion, and a transmitter portion, of said gigabit ethernet transceiver circuit

DOCKET NO. SAMS01-00135

5

្រើ 1<u>ន</u>្ធ

147

15

16

17

18

PATENT

1	(8)	For use	in a	dist	ributed	radio	system,	a	Code	Division
2	Multiple	Access	wirel	.ess	system	utili	izing (Giga	abit	Ethernet
3	protocols	, compris	sing:							

- a local area network;
- a plurality of base stations; and
- a system for synchronizing said plurality of base stations, comprising:

a gigabit ethernet network for interconnecting said plurality of base stations;

a global positioning system (GPS) receiver and a holdover stable oscillator in one of said plurality of base stations for receiving a regulated clock signal; and

a clock recovery circuit, in at least one other of said plurality of base stations, wherein said circuit utilizes a clock signal retrieved from a data stream, being received from said gigabit Ethernet network, for generating a synchronizing master clock signal for said at least one other of said plurality of base stations.

2

3

- 9. The distributed radio system as set forth in Claim 8, further comprising a controller for sending said GPS regulated clock signal to said at least one other of said plurality of base stations.
- 10. The distributed radio system as set forth in Claim 8,
 2 further comprising:
 - a gigabit transceiver circuit, in said at least one other of said plurality of base stations, for processing gigabit Ethernet transmissions.
 - 11. The distributed radio system as set forth in Claim 10, further comprising:
 - a connection for coupling said clock recovery circuit to said gigabit transceiver.

3

4

5

- 1 12./ The system for synchronizing a plurality of base stations 2 as set forth in Claim 9, further comprising:
 - a receiver portion of said gigabit transceiver circuit being coupled with said clock recovery circuit for retrieving a transmitted GPS clock signal.
 - 13. The system for synchronizing a plurality of base stations as set forth in Claim 12, further comprising:
 - a synchronizing signal being generated and sent to said receiver portion, and a transmitter portion, of said gigabit ethernet transceiver circuit
 - 14. The system for synchronizing a plurality of base stations as set forth in Claim 12, further comprising:
 - a voltage compensated crystal oscillator for generating said synchronizing signal for said one other of said plurality of base stations.

DOCKET NO. SAMS01-00135

1

2

3

4

5

6

7

1

2

3

4

5

6

PATENT

	15.	For	use	in	a	gigabit	ethern	net	comr	nunicat	cion	system,	а
meth	od fo	r syr	nchro	niz	ing	g a plura	ality o	of b	ase	statio	ns,	comprisi	ng
the	steps	of:											

receiving a regulated clock signal into a GPS receiver installed in one of said plurality of base stations;

responsive to a determination that said GPS receiver is offline, utilizing a holdover stable oscillator to generate said clock signal;

utilizing gigabit Ethernet media to transmit said clock signal from said GPS receiver to at least one other base station; and

generating a synchronizing, master clock signal from a received said clock signal for synchronizing said at least one other of said plurality of base stations.

16. The method for synchronizing a base station as set forth in Claim 15, further comprising the steps of:

determining whether said GPS receiver is online; and utilizing a clock recovery circuit to generate a synchronizing, master clock signal for said at least one other of said plurality of said base stations.

5
1
2
3
4
6
7
8

11

12

3

L	17.	The	method	for	synchro	nizir	ng a	base	station,	as	set	forth
2	in claim	14, f	urther	com	prising	the	step	of:				

processing gigabit Ethernet transmissions with a gigabit transceiver circuit in said at least one other of said plurality of base stations.

18. The system for synchronizing a plurality of base stations as set forth in Claim 17, further comprising:

coupling said clock recovery circuit with a receiver portion of said gigabit transceiver circuit for retrieving a GPS regulated clock signal; and

utilizing said retrieved GPS regulated clock signal for generating:

a master clock signal for said one other of said plurality of said base stations; and

a reference signal for said receiver portion, and a transmitter portion, of said gigabit Ethernet transceiver circuit.