Group 19

Reliability Prediction for Health-Related Content

Tang Wanjia | Mirjana Sadikovikj | Tobias Abraham Haider | Anum Hafeez

Strategy

- Recreating:
 - A data processing and classification experiment
 - The model detects medical disinformation web pages
- Reason for choosing this paper:
 - Well-defined topic and experiment setting
 - Detailed reports of the performance metrics
- Necessary steps to run the code
 - Run the provided jupyter notebook of the adapted code repository

Work progress

Issues:

- Custom implementations and outdated dependencies
- Static file paths incompatible with Windows
- High hardware requirements -> one experiment can not be reproduced

Achievements:

- Elimination of an outdated dependency (symlight)
- Minor code refactoring into one structured jupyter notebook
- Successful reproduction of the first experiment cases

First results

Features	SVM cost factor			Weighted accyracy (%).			
		F1	F1(reliable class	F1 (non reliable class)	1	2	3
Links	1	0.94	0.97	0	93.75	-	-
	2	0.94	0.97	0	_	88.26	_
	3	0.94	0.97	0	_	-	83.4
Links + Commercial	1	0.94	0.97	0	93.75	-	-
	2	0.94	0.97	0	_	88.26	-
	3	0.94	0.97	0	_	-	83.4
Words (removing stopwards)	1	0.91	0.95	0	91.25	-	-
	2	0.91	0.95	0	_	85.88	-
	3	0.91	0.95	0	_	-	81.13
Words (keeping stopwords)	1	0.91	0.95	0	91.25	_	-
	2	0.91	0.95	0	_	85.88	-
	3	0.91	0.95	0	_	_	81.13
All (removing stopwards)	1	0.91	0.95	0	91.25	_	-
	2	0.91	0.95	0	_	85.88	_
	3	0.91	0.95	0	_	_	81.13
All (keeping stopwords)	1	0.91	0.95	0	91.25	_	<u></u> -
	2	0.91	0.95	0	_	85.88	_
	3	0.91	0.95	0	_	_	81.13

Next Steps

- Test a few more cases
- Document the technical changes made to the experiment
- Compare the prediction accuracies of various models
- Report and interpret the results