IOT102 – Project Nguyễn Viết Bảo Châu – HE150311 – SE1518

P1: Tạo bài hát với buzzer

 $\frac{https://www.tinkercad.com/things/fUyS83jbaXy-copy-of-projeto-musica-eletronica/editel?sharecode=Bp83HJVTur9z9F9w-1LYtwcNB7r2aq4-fKqYhC4fxz0$

Link video lắp mạch thật:

https://drive.google.com/drive/folders/1sljRAAg59NQx0VEfy9n61HUCS4kh3 Pm7?usp=sharing

1. Nội dung

Khi Arduino nhận được điện và code, buzzer sẽ phát theo giai điệu bài "Quốc ca".

Bên cạnh đó, hệ thống 6 đèn sẽ nhấp nháy đến khi kết thúc bản nhạc.

2. Thiết kế

- 1 Arduino
- 1 Breadboard Small
- 1 Buzzer
- 3 led xanh

- 3 led đỏ
- 6 điện trở 220 ohm
- 3. Cách thức hoạt động
- Khai báo nốt theo tần số âm thanh tương ứng.
- Khai báo 6 đèn.
- Chia tempo theo khoảng thời gian (tempo là tốc độ của bản nhạc hay còn gọi là nhịp điều)
 - + semibreve: 4/4
 - + seminima (4/2)
 - + minima (4/1)
 - + colcheia (4/0.5)
 - + semicolcheia (4/0.25)
 - + fusa (4/0.125)
 - + semifusa (4/0.0625)
- Đầu tiên là đưa các nốt của bản nhạc vào trong mảng melodia[] và tempo vào mảng tempoNotas[].
- Chạy vòng lặp for từ nốt đầu đến nốt cuối (ở đây là 80 nốt), nếu chương trình chạy vào nốt ở vị trí chẵn -> đèn đỏ sáng, ở vị trí lẻ -> đèn xanh sáng.

4. Code:

#define NO SOUND 0

#define NOTE_E4 330

#define NOTE G4 392

#define NOTE_A4 440

#define NOTE_B4 494

#define NOTE_C5 523

#define NOTE_D5 587

#define NOTE_E5 659

#define NOTE F5 698

#define NOTE_G5 784

```
#define semibreve (4/4)
#define seminima (4/2)
#define minima (4/1)
#define colcheia (4/0.5)
#define semicolcheia (4/0.25)
#define fusa (4/0.125)
#define semifusa (4/0.0625)
#define p_aumento (1/1.5)
int ledPin1 = 1;
int ledPin2 = 2;
int ledPin3 = 3;
int ledPin4 = 4;
int ledPin5 = 5;
int ledPin6 = 6;
int melodia[] = {
//1
 NO_SOUND, NO_SOUND, NOTE_G4, NOTE_A4, NOTE_G4, NOTE_C5,
NOTE_C5, NOTE_D5, NOTE_C5, NOTE_E5, NOTE_E5,
 //2
 NOTE D5, NOTE C5, NOTE A4, NOTE C5, NOTE C5, NOTE A4,
NOTE_G4, NOTE_E4, NOTE_G4,
 //3
 NOTE C5, NOTE D5, NOTE E5, NOTE E5, NOTE D5,
NOTE_C5, NOTE_G5,
 //4
```

```
NOTE E5, NOTE C5, NOTE D5, NOTE D5, NOTE E5, NOTE B4,
NOTE_G4, NOTE_C5,
//5
 NOTE E5, NOTE F5, NOTE G5, NOTE G5, NOTE A5, NOTE G5,
NOTE_D5,
//6
 NOTE E5, NOTE D5, NOTE C5, NOTE G4, NOTE B4, NOTE B4,
NOTE_D5, NOTE_C5,
//7
 NOTE E5, NOTE F5, NOTE G5, NOTE G5, NOTE A5, NOTE G5,
NOTE D5.
//8
 NOTE_E5, NOTE_D5, NOTE_C5, NOTE_C5, NOTE_G4,
//9
NOTE G5, NOTE E5, NOTE C5, NOTE A5, NOTE G5,
//10
 NOTE E5, NOTE D5, NOTE G4, NOTE D5, NOTE D5, NOTE E5,
NOTE_C5
 , NO_SOUND, NO_SOUND
};
int tempoNotas[] = {
//1
minima, minima, semicolcheia, colcheia, semicolcheia, minima, seminima,
colcheia, colcheia, minima, seminima,
//2
colcheia, colcheia, minima, minima, colcheia, colcheia, colcheia, colcheia,
seminima,
//3
colcheia, colcheia, minima, minima, colcheia, colcheia, seminima,
```

```
//4
 colcheia, colcheia, minima, minima, minima, colcheia, colcheia, seminima,
 //5
 colcheia, colcheia, minima, minima, seminima, colcheia, seminima,
 //6
 seminima, colcheia, minima, minima, minima, colcheia, colcheia, seminima,
 //7
 colcheia, colcheia, minima, minima, seminima, colcheia, seminima,
 //8
 seminima, colcheia, minima, minima, seminima,
 //9
 seminima, seminima, minima, seminima, seminima,
 //10
 colcheia, colcheia, colcheia, minima, seminima, minima, seminima
};
const int compasso = 1850;
void setup() {
 pinMode(ledPin1, OUTPUT);
 pinMode(ledPin2, OUTPUT);
 pinMode(ledPin3, OUTPUT);
 pinMode(ledPin4, OUTPUT);
 pinMode(ledPin5, OUTPUT);
 pinMode(ledPin6, OUTPUT);
 for (int Nota = 0; Nota < 80; Nota++) {
  int tempo = compasso / tempoNotas[Nota];
```

```
tone(13, melodia[Nota], tempo);
  if (Nota \% 2 == 0)
   digitalWrite(ledPin1, HIGH);
   delay(tempo * 0.6);
   digitalWrite(ledPin2, HIGH);
   delay(tempo * 0.4);
   digitalWrite(ledPin3, HIGH);
   delay(tempo * 0.2);
   digitalWrite(ledPin1, LOW);
   digitalWrite(ledPin2, LOW);
   digitalWrite(ledPin3, LOW);
  } else
   digitalWrite(ledPin4, HIGH);
   delay(tempo * 0.6);
   digitalWrite(ledPin5, HIGH);
   delay(tempo * 0.4);
   digitalWrite(ledPin6, HIGH);
   delay(tempo * 0.2);
   digitalWrite(ledPin4, LOW);
   digitalWrite(ledPin5, LOW);
   digitalWrite(ledPin6, LOW);
void loop() {
```

P2: Hệ thống đèn giao thông 4 làn

 $\frac{https://www.tinkercad.com/things/geV5i9vPOLQ-copy-of-4-way-traffic-light-system/editel?sharecode=osfXmut0QiG2qZbFRgFFEUAHreHrGPaBFON6sGX4g08}$

1. Nội dung

Chương trình được thiết kế dựa theo mô hình ngã 4 ở đường phố. Hệ thống gồm 4 làn, khi đèn ở 1 xanh thì đèn bên cạnh sẽ từ vàng chuyển sang đỏ, còn 2 làn còn lại là đỏ. Hệ thống cứ liên tục xoay vòng như thế.

- 2. Thiết kế
- 1 Arduino
- 4 led đỏ
- 4 led vàng
- 4 led xanh
- 16 điện trở 220 ohm
 - 3. Cách thức hoạt động
- Khai báo 16 đèn.

- Cho đèn xanh 1 sáng -> 3 đèn đỏ còn lại sáng.
- Sau khi đèn xanh 1 sáng 9 giây, đèn xanh 1 và đèn đỏ 2 tắt, đèn vàng 1 và 2 sáng 1 giây -> đèn đỏ 1 và đèn xanh 2 sáng.
- Tương tự vòng quay như vậy với các đèn còn lại.

```
4. Code
int redA = 13;
int yellowA = 12;
int greenA = 11;
int redB = 10;
int yellowB = 9;
int greenB = 8;
int redC = 7;
int yellowC = 6;
int greenC = 5;
int redD = 4;
int yellowD = 3;
int greenD = 2;
void setup() {
pinMode (redA, OUTPUT);
pinMode (yellowA, OUTPUT);
pinMode (greenA, OUTPUT);
pinMode (redB, OUTPUT);
pinMode (yellowB, OUTPUT);
pinMode (greenB, OUTPUT);
```

```
pinMode (redC, OUTPUT);
pinMode (yellowC, OUTPUT);
pinMode (greenC, OUTPUT);
pinMode (redD, OUTPUT);
pinMode (yellowD, OUTPUT);
pinMode (greenD, OUTPUT);
}
void loop() {
digitalWrite(greenA, HIGH);
digitalWrite(redB, HIGH);
digitalWrite(redC, HIGH);
digitalWrite(redD, HIGH);
delay(9000);
digitalWrite(greenA, LOW);
digitalWrite(redB, LOW);
digitalWrite(yellowA, HIGH);
digitalWrite(yellowB, HIGH);
delay(1000);
digitalWrite(yellowA, LOW);
digitalWrite(yellowB, LOW);
digitalWrite(redA, HIGH);
```

```
digitalWrite(greenB, HIGH);
delay(5000);
digitalWrite(greenB, LOW);
digitalWrite(redC, LOW);
digitalWrite(yellowB, HIGH);
digitalWrite(yellowC, HIGH);
delay(1000);
digitalWrite(yellowB, LOW);
digitalWrite(yellowC, LOW);
digitalWrite(redB, HIGH);
digitalWrite(greenC, HIGH);
digitalWrite(redD, HIGH);
delay(5000);
digitalWrite(greenC, LOW);
digitalWrite(redD, LOW);
digitalWrite(yellowC, HIGH);
digitalWrite(yellowD, HIGH);
delay(1000);
digitalWrite(yellowC, LOW);
digitalWrite(yellowD, LOW);
```

```
digitalWrite(redC, HIGH);
digitalWrite(yellowD, HIGH);
delay(5000);
digitalWrite(redC, LOW);
digitalWrite(greenD, LOW);
digitalWrite(redA, LOW);
digitalWrite(yellowA, HIGH);
digitalWrite(yellowD, HIGH);
delay(1000);
digitalWrite(yellowA, LOW);
digitalWrite(yellowA, LOW);
```

P3: Hệ thống cảnh báo cháy

 $\frac{https://www.tinkercad.com/things/76x60ZafgXB-p1-gas-detector/editel?sharecode=iA5v5LJLKjyAdjbEBWANY43TgbZF9SZW7gZ-SbyhxHo$

1. Nội dung

Dựa vào hệ thống cảm biến khoảng cảnh, xây dụng được hệ thống báo cháy cảm biến khói.

- 2. Thiết kế
- 2 Arduino
- 1 Breadboard Small
- 1 buzzer
- 2 led xanh
- 2 led đỏ
- 2 led vàng
- 5 điện trở
- 1 lcd
- 1 gas sensor
- 1 potentionmeter
 - 3. Cách thức hoạt động
- Khai báo thư viện và hàm để khởi tạo Gas Sensor -> <Wire.h>
- Khai báo các chân lcd, đèn và buzzer.
- Khi lượng khói nhỏ hơn 160:
 - o 2 led xanh sáng.
 - o Lcd hiện thông báo an toàn.
- Khi lượng khói từ 160 đến 192:
 - o 2 led vàng sáng.

- o Lcd hiện "ALERT" (báo động).
- Khi lượng khói trên 192:
 - o 2 led đỏ sáng.
 - o Lcd báo "DANGER", "WARNING".
 - o Còi buzzer kêu.

4. Code

Arduino 1:

```
#include <LiquidCrystal.h>
#include <Wire.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
int red = 8;
int yellow = 9;
int green = 10;
int alarm = 6;
void setup() {
 pinMode(red,OUTPUT);
 pinMode(yellow,OUTPUT);
 pinMode(green, OUTPUT);
 pinMode(alarm,OUTPUT);
```

Wire.begin(4);

```
Wire.onReceive(receiveEvent);
 Serial.begin(9600);
 lcd.begin(16, 2);
 lcd.print("Alarm ON!");
 delay(500);
 lcd.clear();
}
void loop() {
 lcd.setCursor(0, 1);
 delay(500);
void receiveEvent(int howMany)
{
 while(1 < Wire.available()){</pre>
  char c = Wire.read();
  Serial.print(c);
  delay(300);
  int d = Wire.read();
      Serial.println(d);
      delay(500);
 // FIRST condition
 if (d < 160){
  digitalWrite(green,HIGH);
  digitalWrite(yellow,LOW);
```

```
digitalWrite(red,LOW);
 noTone(alarm);
 lcd.setCursor(0, 1);
     lcd.print("SAFE");
 delay(500);
 lcd.clear();
 lcd.setCursor(0, 1);
     lcd.print("ALL CLEAR");
 delay(500);
 lcd.clear();
}
// SECOND condition
if ((d > 160)) and (d < 192)
 digitalWrite(green,LOW);
 digitalWrite(yellow,HIGH);
 digitalWrite(red,LOW);
 noTone(alarm);
 lcd.setCursor(0, 1);
     lcd.print("");
 delay(500);
 lcd.clear();
}
// THIRD condition
if (d > 192){
 digitalWrite(green,LOW);
```

```
digitalWrite(yellow,LOW);
  digitalWrite(red,HIGH);
  tone(alarm,500,500);
  lcd.clear();
  lcd.setCursor(0,0);
  lcd.print("DANGER!");
  delay(500);
  lcd.clear();
  lcd.setCursor(0,1);
  lcd.print("WARNING !!!");
  delay(500);
  lcd.clear();
 }
}
Arduino 2:
#include <Wire.h>
int a;
void setup(){
 Wire.begin();
 Serial.begin(9600);
}
void loop(){
 a = analogRead(A3);
 Serial.println(a);
 delay(500);
```

```
Wire.beginTransmission(4);
Wire.write("ON ");
Wire.write(a);
Wire.endTransmission();
delay(500);
}
```

P4: Math Game

https://www.tinkercad.com/things/dGuwWqNVn4o-p2-math-game/editel?sharecode=gGH-McLn1cnsflQ72EmA95bQgV0elRAJxb-dU8BuZ78

1. Nội dung

Lcd sẽ đưa ra từng câu hỏi về toán học. Người chơi sẽ nhập đáp án và chương trình sẽ tính điểm theo số lượng câu hỏi đúng.

- 2. Thiết kế
- 1 Arduino
- 1 Breadboard Small

- 1 lcd
- 1 buzzer
- 1 potentionmeter
- 1 keypad 4x4
- 1 điện trở 220 ohm
 - 3. Cách thức hoạt động
- Khai báo lcd, buzzer, ...
- Nhập vào mảng problems 20 câu hỏi về toán học.
- Nhập vào mảng solutions 20 đáp án tương ứng.
- Đặt hàm random để chọn ngẫu nhiên câu hỏi.
- Khi người dùng cho đáp án đúng/sai => buzzer kêu theo tần số đã đặt.
- Với mỗi câu hỏi, người chơi có 1 khoảng thời gian nhất định để tính toán.
- Với mỗi số người dung bấm ở keypad, chương trình đã có 1 tần số âm thanh riêng.
- Khi kết thúc trò chơi là lúc người dùng chọn sai, chương trình sẽ báo xem người chơi được bao nhiều điểm.

4. Code

#define op_1 11

#define op_2 12

```
#include <LiquidCrystal.h>//LCD library
LiquidCrystal lcd(6,5,4,3,2,1);
#include<EEPROM.h>

#define PINtoRESET A0// connected to reset pin of Uno
#define ip_1 7

#define ip_2 8

#define ip_3 9

#define ip_4 10
```

```
#define op_3 13
```

#define BUZZER A1

int randNumber = 0;

unsigned long startMillis; unsigned long currentMillis; const unsigned long period = 10000;

"x - 1 = 4x + 20",

$$"15 + 5x = 0",$$

"
$$x X 33 = 1386$$
",

"
$$4080 : x = 24$$
",

$$x + 1234 + 3012 = 4724$$

"
$$x - 285 + 85 = 2495$$
",

$$8x - 123 = 6x - 37$$
,

"
$$x - 7015 : 5 = 374 \times 7$$
",

"
$$x:30=6$$
",

"
$$-10x - 19 = 19 - 8x$$
",

$$4x + 6 = -10$$
,

$$"12x + 60 = 144",$$

```
"12x + 60 = 144",
      "6: 2 + 7 * 4 = "
      "616 + ? + 333 = 255",
     "20 + 4x = 0"
};
int solutions [20] = \{118, -186, -7, -3, 80, 42, 170, 469, 2695, 80, 20105, 180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -180, -
19, -4, 7, 7, 31, -694, -5};
char keypad[10] = \{1, 10, 10, 10, 10, 10, 10, 10, 10, 10\};
int solcounter = 0;
void setup() {
     randomSeed(analogRead(A2));
     pinMode(PINtoRESET, INPUT);
     digitalWrite(PINtoRESET, LOW);
     lcd.begin(16, 2);
     for (int i = op_1; i \le op_3; i++)
           pinMode(i, OUTPUT);
     pinMode(ip_1, INPUT_PULLUP);
     pinMode(ip_2, INPUT_PULLUP);
```

```
pinMode(ip_3, INPUT_PULLUP);
 pinMode(ip_4, INPUT_PULLUP);
 initiate_Game();
 start_Game();
}
void loop() {
 for (int i = op_1; i \le op_3; i++)
  digitalWrite(i, HIGH);
 column1();
 column2();
 column3();
 currentMillis = millis();
 if ((currentMillis - startMillis) > period)
 {
  lcd.clear();
  lcd.setCursor(0, 0);
  lcd.print("Out of Time!");
  lcd.setCursor(0, 1);
  lcd.print("Your Score =");
  lcd.print(solcounter);
```

```
if(solcounter>EEPROM.read(0)){
    EEPROM.write(0,solcounter);
 }
if (EEPROM.read(1)>9){
  EEPROM.write(1,0);
  }else{
   int x = EEPROM.read(1);
   EEPROM.write(1,++x);
  }
tone(BUZZER, 440, 200);
delay(200);
noTone(BUZZER);
tone(BUZZER, 494, 500);
delay(500);
noTone(BUZZER);
tone(BUZZER, 523, 300);
delay(300);
delay(1000);
lcd.clear();
pinMode(PINtoRESET, OUTPUT);
} else;
```

}

```
void initiate_Game()
{
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print("Welcome to ");
 lcd.setCursor(2, 1);
 lcd.print(" BaoChau ");
 if (EEPROM.read(1)==0){
 for (int positionCounter = 0; positionCounter < 13; positionCounter++) {
  lcd.scrollDisplayLeft();
  delay(200);
 }
 for (int positionCounter = 0; positionCounter < 29; positionCounter++) {
  lcd.scrollDisplayRight();
  delay(200);
 }
 for (int positionCounter = 0; positionCounter < 16; positionCounter++) {
  lcd.scrollDisplayLeft();
  delay(200);
 lcd.setCursor(0,0);
```

```
lcd.print("High. Score=");
 lcd.print(EEPROM.read(0));
 delay(2000);
 for (int i = op_1; i \le op_3; i++)
  digitalWrite(i, LOW);
 int w = 0, x = 0, y = 0, z = 0;
 do
  w = digitalRead(ip_1);
  x = digitalRead(ip_2);
  y = digitalRead(ip_3);
  z = digitalRead(ip_4);
  lcd.setCursor(0, 0);
  lcd.print(" Press to Start");
  lcd.setCursor(0, 1);
  lcd.print("+-*");
  lcd.setCursor(13, 1);
  lcd.print("-+/");
 } while ((w == 1 && x == 1 && y == 1 && z == 1));
 delay(500);
}
void start_Game()
{
```

```
lcd.clear();
 randNumber = random(0, 20);
 lcd.print(problems[randNumber]);
 lcd.setCursor(0, 1);
 startMillis = millis();
}
void fill_Array(int x)
 for (int i = 1; i < 10; i++)
 {
  if (keypad[i] == 10)
  {
   keypad[i] = x;
   i = 10;
  else;
}
void find_Last_Element()
 int endElement = 0;
 for (int i = 1; i < 10; i++)
 {
```

```
if (keypad[i] == 10) {
   endElement = --i;
   i = 10;
  else;
 }
 check_Ans(endElement);
void check_Ans(int endElement)
 long int answer = 0;
 for (int i = endElement, x = 1; (i >= 1) && (x <= endElement); i --, x ++)
 {
  if (x == 1) {
   answer += keypad[i];
  else {
   int tempNum = 1;
   for (int y = 1; y < x; y++)
   {
    tempNum = tempNum * 10;
   answer += keypad[i] * tempNum;
 }// end of for loop
```

```
answer *= keypad[0];
if (answer == solutions[randNumber])
{ //if answer is correct
 lcd.setCursor(0, 1);
 lcd.print("Correct!");
 tone(BUZZER, 523, 300);
 delay(300);
 // turn off tone function for pin A2:
 noTone(BUZZER);
 tone(BUZZER, 494, 500);
 delay(500);
 // turn off tone function for pin A2:
 noTone(BUZZER);
 tone(BUZZER, 440, 200);
 delay(200);
 delay(1000);
 solcounter++;
 if (solcounter == 21) {
  lcd.clear();
  lcd.setCursor(0, 0);
  lcd.print("Congratulations!");
  lcd.setCursor(1, 3);
  lcd.print("Champion");
  int x = 0;
```

```
while (x < 4) {
  tone(BUZZER, 523, 300);
  delay(300);
  // turn off tone function for pin A2:
  noTone(BUZZER);
  tone(BUZZER, 494, 500);
  delay(500);
  // turn off tone function for pin A2:
  noTone(BUZZER);
  tone(BUZZER, 440, 200);
  delay(200);
  // turn off tone function for pin A2:
  noTone(BUZZER);
  tone(BUZZER, 494, 500);
  delay(500);
  // turn off tone function for pin A2:
  noTone(BUZZER);
  x++;
 delay(2000);
 pinMode(PINtoRESET, OUTPUT);// reset the board
keypad[0] = 1;
for (int i = 1; i < 10; i++)
keypad[i] = 10;
```

}

}

```
start_Game();// call this function to display next question
else { //if answer is incorrect
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print("Wrong Answer");
 lcd.setCursor(0, 1);
 lcd.print("Your Score =");
 lcd.print(solcounter);
 if(solcounter>EEPROM.read(0)){
  EEPROM.write(0,solcounter);
 }
 if (EEPROM.read(1)>9){
   EEPROM.write(1,0);
  }else{
   int x = EEPROM.read(1);
   EEPROM.write(1,++x);
  }
 tone(BUZZER, 440, 200);
 delay(200);
 noTone(BUZZER);
 tone(BUZZER, 494, 500);
 delay(500);
```

```
noTone(BUZZER);
  tone(BUZZER, 523, 300);
  delay(300);
  delay(1000);
  lcd.clear();
  pinMode(PINtoRESET, OUTPUT);// reset the board
 }
}
void column1()
{
 digitalWrite(11, LOW);
 int w = digitalRead(ip_1);
 if (w < 1) {
  delay(10);
  lcd.print("1");
  fill_Array(1);// fill the array
  tone(BUZZER, 1906, 200);
  delay(500);
 } else;
 int x = digitalRead(ip_2);
 if (x < 1) {
  delay(10);
  lcd.print("4");
  fill_Array(4);
```

```
tone(BUZZER, 1979, 200);
  delay(500);
 } else;
 int y = digitalRead(ip_3);
 if (y < 1) {
  delay(10);
  lcd.print("7");
  fill_Array(7);
  tone(BUZZER, 2061, 200);
  delay(500);
 } else;
 int z = digitalRead(ip_4);
 if (z < 1) {
  delay(10);
  lcd.print("-");
  keypad[0] = -1;
  tone(BUZZER, 2150, 200);
  delay(500);
 } else;
 for (int i = op_1; i \le op_3; i++)
  digitalWrite(i, HIGH);
//check for the button pressed in column 2
void column2(){
 digitalWrite(12, LOW);
```

```
int w = digitalRead(ip_1);
if (w < 1) {
 delay(10);
 lcd.print("2");
 fill_Array(2);
 tone(BUZZER, 2033, 200);
 delay(500);
} else;
int x = digitalRead(ip_2);
if (x < 1) {
 delay(10);
 lcd.print("5");
 fill_Array(5);
 tone(BUZZER, 2106, 200);
 delay(500);
} else;
int y = digitalRead(ip_3);
if (y < 1) {
 delay(10);
 lcd.print("8");
 fill_Array(8);
 tone(BUZZER, 2188, 200);
 delay(500);
} else;
int z = digitalRead(ip_4);
if (z < 1) {
 delay(10);
```

```
lcd.print("0");
  fill_Array(0);
  tone(BUZZER, 2277, 200);
  delay(500);
 } else;
 for (int i = op_1; i \le op_3; i++)
  digitalWrite(i, HIGH);
}
//check for the button pressed in column 3
void column3(){
 digitalWrite(13, LOW);
 int w = digitalRead(ip_1);
 if (w < 1) {
  delay(10);
  lcd.print("3");
  fill_Array(3);
  tone(BUZZER, 2174, 200);
  delay(500);
 } else;
 int x = digitalRead(ip_2);
 if (x < 1) {
  delay(10);
  lcd.print("6");
  fill_Array(6);
  tone(BUZZER, 2247, 200);
  delay(500);
```

```
} else;
int y = digitalRead(ip_3);
if (y < 1) {
  delay(10);
  lcd.print("9");
  fill_Array(9);
  tone(BUZZER, 2329, 200);
  delay(500);
 } else;
int z = digitalRead(ip_4);
if (z < 1) {
  delay(10);
  lcd.setCursor(0, 1);
                      ");
  lcd.print("
  find_Last_Element();
 } else;
}
```