Efficient Net:

- -> It is a product of 2 tech-- viques:
 - 1. Neural Architecture Search (NAS)
 - 2. Compound Scaling

Process:

- 1. create au efficient base--line architecture using NAS.
- 2. use the Compound Scaling method to enhance the performance.

1. NAS:

- -> finds efficient and optimized baseline model with better performence and seneral parameters resping in mind.
- -> a good baselive model is always desireable for scale up the performance.

-> It searches and evaluates many architectures in the search space & returns best model suited for the task

2. Compound Scaling:

- rents.
 - -> width scaling
 - -> depth scaling
 - -> resolution scaling
 - -> scaling of the co-ordinates of baseline model (w,d,r) in a balanced and co-ordinated menner.
 - -> scaling of the energ dimension is derived from the compound coefficient = P
 - -> good is to find best exponents, that results best trade-off b/w model accuracy and computational efficiency.
 - -> \$1 > more lightneeight and resource-efficient model.
 - \$1 -> powerful but computation--expensive.

-> mathematically, it can be expressed-

depth: $d = \alpha^{\Phi}$

such that -

resolution: $\gamma = \lambda^{\Phi}$

· $\alpha \geq 1$, $\beta \geq 1$, $\beta \geq 1$

-> R, B, 2 are chosen using grid search.

 \Rightarrow convolution operation (FLOPS) $\propto d$, w^2 , τ^2 L> if we doubles the depth Flors will become 4 times.

 \rightarrow In EfficientNetBO, $\phi = 1$ and $\alpha = 1.2, \beta = 1.1, \beta = 1.15$

-> for different \$, we get models B1 to B7.

