It is believed that there is a relationship between atmospheric relative humidity and the hardness of a certain applied finish. Five guitar bodies were finished in each of four different relative humidity environmentation random order and subjected to a Vickers hardness test. The results are presented below (+1)

						/	
RH (%)	Vickers Hardness (VH)					Totals	Averages
	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	TULAIS	WAGI ages
20	31.1	31.7	32.0	30.9	33.8	159.5	1/31.9
40	30.1	30.4	29.9	28.0	31.6	150	/ 30
60	28.2	30.1	29.4	27.3	26.8	141-8	28.36
80	26.2	28.2	25.7	23.9	26.6	130.6/	26,12
			·			5019	19.005

Use Analysis of Variance (ANOVA) to test the null hypothesis that the treatment means are equal at the $\alpha = 0.01$ level of significance. Fill in the ANOVA table.

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	fo
Treatments	90,3895	3	30,12483	16,397
Error	29,4	16	1,4375	-
Total	119.7895	19	•	*

$$\sum_{j=1}^{2} y_{ij}^{2} = 17050.17$$

$$\sum_{j=1}^{2} y_{i}^{2} = 85103.85$$

$$SS_{7} = ZZ y_{11}^{2} - \frac{y_{12}^{2}}{N} = 17050.17 - \frac{581.9}{20}$$

$$SS = \frac{y_{i,2}^2}{N} = \frac{y_{i,2}^2}{N} = \frac{85103.85}{5} = \frac{581.9^2}{20}$$

$$SSE = SST - SSTreatments = \frac{29.4}{5}$$

$$MS_E = \frac{29.1}{16} = 1.8375$$

$$= 17050.17 - \frac{581.9}{20}$$

$$=\frac{85103.85}{5}-\frac{581.9^2}{20}$$

Write a 99% confidence interval on Vickers hardness at the 80% relative humidity level.

 $M_{4}: \qquad J_{4}. \stackrel{+}{=} t_{4/2}, q(n-1) \sqrt{\frac{MSE}{N}}$ $t_{.005,16} = 2.921 \qquad (7)$ $26.12 \stackrel{+}{=} 2.921 \sqrt{\frac{1.8375}{5}}$

Use Fisher's Least Significant Difference to determine which, if any, pairs of relative humidities show significant difference at $\alpha = 0.01$.