Függvények aszimptotikus viselkedése*

Vadász Péter

1 Fogalmak

Definíció 1.1. Aszimptotikusan pozitív függvény: Egy f függvény aszimptotikusan pozitív, ha $\exists N \in \mathbb{N}$, hogy $\forall n \geq N$ esetén f(n) > 0

Definíció 1.2. O, Ω, Θ Adott $f, g : \mathbb{N} \to \mathbb{R}$ aszimptotikusan pozitív függvények, definiáljuk a következő függvényhalmazokat:

- $O(g)=\{f|\exists c>0 \land N\in \mathbb{N},\ \mathrm{hogy}\ \forall n\geq N\ \mathrm{eset\'{e}n}\ f(n)\leq c*g(n)\}$ $f\text{-nek}\ g$ aszimptotikus felső korlátja (f legfeljebb olyan gyorsan nő, mint g), ha $f\in O(g)$
- $\Omega(g)=\{f|\exists c>0 \land N\in \mathbb{N},\ \mathrm{hogy}\ \forall n\geq N\ \mathrm{eset\'{e}n}\ c*g(n)\leq f(n)\}$ f-nek g aszimptotikus alsó korlátja, ha $f\in \Omega(g)$
- $\Theta(g) = \{f | \exists c_1, c_2 > 0 \land N \in \mathbb{N}, \text{ hogy } \forall n \geq N \text{ eset\'en } c_1 * g(n) \leq f(n) \leq c_2 * g(n) \}$ f-nek g aszimptotikus éles korlátja, ha $f \in \Theta(g)$

Definíció 1.3. Aszimptotikusan kisebb függvény: Adott $f, g : \mathbb{N} \to \mathbb{R}$ függvények, ekkor f aszimptotikusan kisebb, mint g azaz $f \prec g \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$.

Haf,gaszimptotikusan pozitív akkor $f \prec g \iff f \in o(g),$ azaz $o(g) = \{f | f \prec g\}$

Definíció 1.4. Aszimptotikusan nagyobb függvény: Adott $f, g : \mathbb{N} \to \mathbb{R}$ függvények, ekkor f aszimptotikusan nagyobb, mint g azaz $f \succ g \iff g \prec f$.

Haf,gaszimptotikusan pozitív akkor $f\succ g\iff f\in\omega(g),$ azaz $\omega(g)=\{f|f\succ g\}$

^{*}A jegyzet Veszprémi Anna, Dr Tichler Krisztián, Dr Ásványi Tibor anyagai alapján készült

Ábra 1.: $f \in \Theta(g)$

1.1 Tulajdonságok

Az alábbiakban legyenek f,g,haszimptotikusan pozitív függvények!

- $\Theta(g) = O(g) \cap \Omega(g)$
- $o(g) \subset O(g) \setminus \Omega(g)$
- $\omega(g) \subset \Omega(g) \setminus O(g)$
- ha $f \in O(g)$ és $g \in O(h)$, akkor $f \in O(h)$ (tranzitivitás, Ω és Θ esetén is teljesül)
- $f \in \Theta(g) \iff g \in \Theta(f)$ (szimmetria)
- $f \in O(g) \iff g \in \Omega(f)$ (felcserélt szimmetria)
- $f \in O(f)$ és $f \in \Omega(f)$ és $f \in \Theta(f)$ (reflexivitás)
- ha $f, g \in O(h)$, akkor $f + g \in O(h)$ (Ω és Θ esetén is)
- $f + g \in \Theta(\max\{f, g\})$
- Ha $f \in O(h_1)$ és $g \in O(h_2)$, akkor $f * g \in O(h_1 * h_2)$

Tétel 1.1. Az f,g aszimptotikusan pozitív függvényekre:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0\Rightarrow f\prec g\Rightarrow f\in o(g)\Rightarrow f\in O(g)\wedge f\notin \Omega(g)$$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c\in\mathbb{P}\Rightarrow f\in\Theta(g)$$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty\Rightarrow f\succ g\Rightarrow f\in\omega(g)\Rightarrow f\in\Omega(g)\land f\notin O(g)$$

1.2 Konkrét függvények

- Ha $P(n) = a_k n^k + \cdots + a_0 \ (a_k > 0)$, akkor $P(n) \in O(n^k)$, illetve $P(n) \in \Theta(n^k)$
- Minden P(n) polinomra és c > 1 konstansra $P(n) \in O(c^n)$, de $P(n) \notin \Omega(c^n)$
- Minden c > d > 1 konstansokra $d^n \in O(c^n)$, de $d^n \notin \Omega(c^n)$
- Minden a,b>1 esetén $\log_a n\in\Theta(\log_b n)$ (1-nél nagyobb alapú logaritmus függvények aszimptotikusan egyenértékűek)
- $\log(n!) \in \Theta(n \log n)$
- Ha $c, d \in \mathbb{R}$ és c < d, akkor $n^c \prec n^d$
- Ha $c \in \mathbb{P}_0$, akkor $c^n \prec n! \prec n^n$
- Ha $c \in \mathbb{P}$, akkor $\log n \prec n^c$
- Ha $c \in \mathbb{R}$ és $d \in \mathbb{P}$, akkor $n^c \log n \prec n^{c+d}$

Példa aszimptotikusan pozitív függvények nagyságrendjére

$$\log n \prec \sqrt{n} \prec n \prec n \log n \prec n^2 \prec n^2 \log n \prec n^3 \prec 2^n \prec n!$$

2 Feladatok

1. feladat: Adjunk meg olyan f és g aszimptotikusan pozitív függvényt, melyekre $f \in O(g) \land f \notin \Omega(g)$

Legyen
$$f(n) = 3n + 2$$
, $g(n) = 2n^2 + 3$

Vizsgáljuk meg, hogy teljesülnek O definíciójának feltételei

 $3n+2 \leq 4n^2+6=2*g(n).$ A definíció szerint $c=2, n \geq N=1$ választással nyilván $f \in O(g).$

Ezután ellenőrizzük, hogy $f \notin \Omega(g)$:

Feltételezve, hogy $f \in \Omega(g), g \in O(f)$ is teljesül. Akkor pedig van olyan c>0 konstans, hogy elég nagy n értékekre

$$2n^2 + 3 \le c * (3n + 2)$$
, azaz $\frac{2n^2 + 3}{3n + 2} \le c$

Számítsuk ki az egyenlőtlenség baloldalán lévő tört határértékét:

$$\lim_{n \to \infty} \frac{2n^2 + 3}{3n + 2} = \lim_{n \to \infty} \frac{2\frac{n^2}{n} + \frac{3}{n}}{3\frac{n}{n} + \frac{2}{n}} = \lim_{n \to \infty} \frac{2n + \frac{3}{n} \to \infty + 0}{3 + \frac{2}{n} \to 3 + 0} = \infty$$

Azt látjuk, hogy a tört nem korlátos (∞ a határértéke), tehát nem lehet kisebb-egyenlő c-nél, ami azt jelenti, hogy $f \notin \Omega(g)$

 $Megjegyz\acute{e}s$: a határérték kiszámolásakor figyelembe vettük, hogy $\frac{polinom}{polinom}$ alakú törtünk van, ebben az esetben a határérték kiszámításához célszerű a nevezőben található polinom domináns tagjával osztani a teljes kifejezést.

2. feladat: Igazoljuk O tranzitivitását!

Legyenek $f, g, h : \mathbb{N} \to R_0^+$ függvények:

$$f \in O(g): \exists c_1 > 0, N_1 \in \mathbb{N} \text{ hogy } \forall n \geq N_1 \text{ esetén } f(n) \leq c_1 * g(n)$$

$$g \in O(h): \exists c_2 > 0, N_2 \in \mathbb{N}$$
hogy $\forall n \geq N_2$ esetén $g(n) \leq c_2 * h(n)$

A fentiek miatt:

$$\forall n \geq \max\{N_1, N_2\}$$
 esetén $f(n) \leq c_1 * g(n) \leq c_1 * c_2 * h(n)$

Mivel
$$c_1, c_2 > 0 \Rightarrow c_1 * c_2 > 0$$
, azaz $f \in O(h)$

3. feladat: Hasonlítsuk össze a következő függvényeket! Hogyan viszonyulnak egymáshoz aszimptotikusan?

$$f(n) = 5 * 2^n + n^3$$

$$g(n) = 3^n + 2n$$

Azt sejtjük, hogy $f \prec g$, ennek igazolásához számítsuk ki a következő határértéket:

$$\lim_{n \to \infty} \frac{5 * 2^n + n^3}{3^n + 2n} = \lim_{n \to \infty} \frac{5 * (\frac{2}{3})^n + \frac{n^3}{3^n} \to 0 + 0}{1 + 2\frac{n}{3^n} \to 1 + 0} = 0$$

A határéték 0, tehát az 1.1 tétel értelmében $f \prec g$, azaz (figyelembe véve, hogy f és g [aszimptotikusan] pozitív függvények) $f \in o(g) \subset O(g) \setminus \Omega(g)$

Megjegyzés: a határérték kiszámításakor a korábbiakhoz hasonlóan a nevezőben található legnagyobb hatványalapú taggal oszottunk le.

- 4. feladat: Igazoljuk, a következő állításokat!
 - 1. $P(n) = a_k n^k + \dots + a_1 n + a_0 \ (a_k > 0)$ esetén $P(n) \in \Theta(n^k)$
 - 2. Ha c > d > 1, akkor $d^n \in O(c^n)$
 - 3. Minden a, b > 1 esetén $\log_a n \in \Theta(\log_b n)$
 - 1. $\frac{P(n)}{n^k} = \frac{a_k n^k + \dots + a_1 n + a_0}{n^k} = a_k + a_{k-1} \frac{1}{n} + \dots + a_0 \frac{1}{n^k} \to a_k$

Mivel $(a_k > 0)$ az **1.1 tétel** szerint $P(n) \in \Theta(n^k)$

2. ha c > d > 1, akkor:

$$\lim_{n \to \infty} \frac{c^n}{d^n} = \lim_{n \to \infty} \left(\frac{c}{d}\right)^n = \infty$$

Így a 1.1 tétel alapján $d^n \in O(c^n) \setminus \Omega(c^n)$

3. Áttérés a alapú logaritmusra:

$$\log_b n = \frac{\log_a n}{\log_a b}$$

$$\log_a n = \log_a b * \log_b n$$

Az utóbbi kifejezésben $\log_a b$ konstans, tehát $\log_a n \in \Theta(\log_b n)$

5. feladat: Igazoljuk Θ szimmetriáját!

Ha $f \in \Theta(g)$, akkor $\exists c_1, c_2 > 0$ és $N \in \mathbb{N}$, hogy $\forall n \geq N : c_1 * g(n) \leq f(n) \leq c_2 * g(n)$ Ekkor azonban:

$$\forall n \ge N : \frac{1}{c_2} * f(n) \le g(n) \le \frac{1}{c_1} * f(n)$$

6. feladat: Adottak a következő függvények. Rendezzük őket aszimptotikusan növekvő sorrendbe, határozzuk meg az egyes függvének nagyságrendjét is!

$$log_3(n!),\ n^{1.01} + 3\sqrt{n},\ n^{0.03} + 2\ln n,\ (\tfrac{2}{3})^n,\ 100n^{100} + 3^n,\ 3^n + 2^n,\ 4\log_{17}(n+5),\ n!,\ n^{3/2}$$

Függvény	Nagyságrend	Sorszám	
$log_3(n!)$	$\Theta(n \log n)$	4	
$n^{1.01} + 3\sqrt{n}$	$\Theta(n^{1.01})$	5	
$n^{0.03} + 2\ln n$	$\Theta(n^{0.03})$	3	
$\left(\frac{2}{3}\right)^n$	$\Theta(\frac{2}{3})^n$	1	
$100n^{100} + 3^n$	$\Theta(3^n)$	7-8	
$3^n + 2^n$	$\Theta(3^n)$	7-8	
$4\log_{17}(n+5)$	$\Theta(\log(n))$	2	
n!	$\Theta(n!)$	9	
$n^{3/2}$	$\Theta(n^{3/2})$	6	

7. feladat: Adottak a következő függvények. Rendezzük őket aszimptotikusan növekvő sorrendbe, határozzuk meg az egyes függvének nagyságrendjét is!

$$n^4 - 1, \ n \ln(n+1), \ \log_{10} 2^n, \ (n+1) \log_2 n, \ 100 n^2 + 2n, \ 5 \sqrt{n} - 100, \ 5 n^{1/3} + \ln n n^{1/3} + 2n n^{1/3}$$

Függvény	Nagyságrend	Sorszám	
$n^4 - 1$	$\Theta(n^4)$	7	
$n\ln(n+1)$	$\Theta(n \log n)$	4-5	
$\log_{10} 2^n = n \log_{10} 2$	$\Theta(n)$	3	
$(n+1)\log_2 n$	$\Theta(n \log n)$	4-5	
$100n^2 + 2n$	$\Theta(n^2)$	6	
$5\sqrt{n} - 100$	$\Theta(\sqrt{n})$	2	
$5n^{1/3} + \ln n$	$\Theta(n^{1/3})$	1	

8. feladat: Adottak a következő algoritmusok és ezek költsége. Számítsuk ki, hogy különféle inputméretek esetén nagyságrendileg mennyi ideig tartana az algoritmusok futása, ha a számítógépünk processzorának órajele 4GHz.

• Bináris keresés: $\Theta(\log n)$

- Prímszámteszt: $\Theta(\sqrt{n})$

• Maximumkiválasztás (rendezetlen tömb esetén): $\Theta(n)$

• Összefésülő rendezés: $\Theta(n \log n)$

• Buborékrendezés: $\Theta(n^2)$

• Floyd-Warshall algoritmus, CYK algoritmus: $\Theta(n^3)$

• Hanoi tornyai: $\Theta(2^n)$

 \bullet Utazóügynök probléma megoldása brute-force módszerrel: $\Theta(n!)$

Ha a processzor órajele 4GHz az azt jelenti, hogy egy másodperc alatt $4*10^9$ művelet elvégzésére képes. A Θ jelölésben elrejtett konstans szorzókat a számításokban 1-nek tekintjük.

input	$\log n \ (ns)$	$\sqrt{n} \ (ns)$	$n (\mu s)$	$n \log n \; (\mu s)$	$n^2 (ms)$	n^3 (s)	2^n (év)	n! (év)
10	0.83	0.79	0.0025	0.0083	0.000025	$0.25 \; (\mu s)$	$0.26 \; (\mu s)$	0.91 (ms)
100	1.66	2.5	0.025	0.17	0.0025	0.00025	$1.01*10^{13}$	$7.84*10^{140}$
1000	2.49	7.9	0.25	2.49	0.25	0.25	$8.52*10^{283}$	$3.2*10^{2549}$
10^{6}	4.98	250	250	4982	250000	$2.5*10^8$	-	-

Látható, hogy legtöbb esetben már 1000 elemre domináns az aszimptotikus nagyságrend alapján kijövő érték a Θ jelölésben elrejtett esetleges nagyobb konstans szorzóhoz képest. Egymillió elemnél pedig már mindenütt olyan nagy a nagyobb/kisebb nagyságrendek hányadosa, ami nehezen lenne ellensúlyozható kedvezőbb konstans szorzókkal.