Homework 03 – 2016/11/10

R05546030 彭新翔

1. Let

$$x_n = \frac{1}{n}, \quad n \ge 1$$

By the definition of sequence convergence, prove the sequence x_n converges to 0.

Calculate the limit

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{1}{n} = 0$$

 $\forall \epsilon>0,$ there is a corresponding positive integer $\,N\in\mathbb{N}\,$ such that

$$\frac{1}{N}<\epsilon~$$
 (by the Archimedean Property)

Whenever $n \geq N$, we have that

$$|x_n - 0| = |\frac{1}{n} - 0| = \frac{1}{n} \le \frac{1}{N} < \epsilon$$

Q.E.D

Homework 03 – 2016/11/10

R05546030 彭新翔

2. Let X and Y be sequences in \mathbb{R}^p that converge to x and y respectively. Prove that X+Y converges to x+y.

Since the sequences X and Y are convergent. $\forall \epsilon > 0$, there are corresponding positive integers $N_1, N_2 \in \mathbb{N}$ so that

If
$$n>N_1$$
 then $|X-x|<\frac{\epsilon}{2}$ and if $n>N_2$ then $|Y-y|<\frac{\epsilon}{2}$

Thus whenever we take $n > \max\{N_1, N_2\} = N$, then

$$|(X+Y)-(x+y)| \leq |X-x|+|Y-y| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Q.E.D

Homework 03 – 2016/11/10

R05546030 彭新翔

3. Closed set

- (a) True or False? $\{x \in \mathbb{R} : 0 \le x \le 1\}$ is closed in \mathbb{R} .
- (b) True or False? $\{x \in \mathbb{R} : x \ge 0\}$ is closed in \mathbb{R} .
- (c) True or False? $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ is closed in \mathbb{R}^2 .
- (d) True or False? $\{x \in \mathbb{R} : 0 \le x < 1\}$ is closed in \mathbb{R} .

Definition

A subset S of a metric space (X, d) is **closed** if it is the complement of an open set.

Definition

A subset S of a metric space (X, d) is **open** if it contains an open ball about each of its points – i.e., if

$$\forall x \in S : \exists \epsilon > 0 : B(x, \epsilon) \subseteq S$$

By the definition above.

- (a) True.
- (b) True.
- (c) True.
- (d) False.

Homework 03 – 2016/11/10

R05546030 彭新翔

4. Please give an example of the sequence and closed set to demonstrate that a set S is closed if and only if for any convergent sequence of points $\{x_k\}$ contained in S with limit point \overline{x} , we also have that $\overline{x} \in S$.

We can choose the sequence $\{x_k\} = \frac{1}{k^2}$ and the closed set $[0, \infty)$. So that the sequence converges to $0 \in [0, \infty)$. In fact, $[0, \infty)$ is closed, since every sequence of positive numbers converging to a limit would have an non-negative limit which is in $[0, \infty)$.

5.

Disprove that
$$\{x \in \mathbb{R}^n : \sum_{i=1}^n x_i^2 = 1\}$$
 is convex.

Definition

A set C is **convex** if the line segment between any two points in C lies in C, i.e. $\forall x_1, x_2 \in C, \forall \theta \in [0, 1]$:

$$\theta x_1 + (1 - \theta)x_2 \in C$$

Example of a convex set (left) and a non-convex set (right).

By the definition above. Let arbitrary two point $x_1, x_2 \in \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i^2 = 1\}, \ 0 \le \theta \le 1.$

$$|\theta x_1 + (1 - \theta)x_2| \le \theta |x_1| + (1 - \theta)|x_2|$$

Since that $|\theta x_1+(1-\theta)x_2|\leq \theta|x_1|+(1-\theta)|x_2|\leq \theta+(1-\theta)=1$ only hold when $x_1,x_2\in \left\{x\in\mathbb{R}^n:\sum_{i=1}^n x_i^2\leq 1\right\}$. The set $\left\{x\in\mathbb{R}^n:\sum_{i=1}^n x_i^2=1\right\}$ is not convex.