Lezione 1 Analisi Reale

Federico De Sisti 2025-02-26

Introduzione al corso 1

Regole varie

Esoneri validi solamente per il primo appello

3 esoneri

Con le prove di esonero possiamo essere esonerati dall'orale.

Lo scritto vale solamente per l'orale successivo.

L'orale sono 2/3 domande tra definizioni, esempi, teoremi, cose sbagliate agli scritti.

1.2 Inizio lezione

Il corso sarà sulla teoria dell'integrazione/teoria della misura.

La teoria dell'integrazione è il primo passo dell'analisi infinitesimale, la derivata è un'operazione che viene ben definita grazie al teorema fondamentale del calcolo integrale

Viene formalizzata relativamente tardi, la prima sistemazione teorica è stata quella di Riemann (quella studiata in Analisi I).

Dal punto di vista teorico ha vari problemi. Questa teoria è stata subito soppiattata da una nuova teoria di integrazione, quella di Lebesgue (1902).

Uno dei punti fondamentali da cui partire è quello delle Serie di Fourier.

1.3 Serie di Fourier

Già nel XIIX secolo Fourier riusciva a risolvere varie equazioni differenziali, riguardanti fenomeni fisici.

Parliamo ora di modelli "ondulosi"

Parliamo della corda vibrante: continua in 1D, con moti ondulatori

$$u: [0, \pi] \times [0, +\infty) \to \mathbb{R}$$

 $(x, t) \to u(x, t)$

Equazione della corda vibrante:
$$\begin{cases} \partial^2 u \frac{1}{\partial t^2 - \frac{\partial^2}{\partial x^2} u = 0} \\ u(0,t) = u(\pi,t) = 0 \quad \forall t \geq 0 \\ u(x,0) = h_0(x), \ \frac{\partial u}{\partial t} = h_1(x) \quad \forall x \in (0,\pi) \end{cases}$$

Condizioni di compatibilità:

$$h_0(0) = h_1(0) = h_0(\pi) = h_1(\pi) = 0.$$

1.4 Due principi:

- esistenza di onde stazionarie:

 $u(x,t) = \psi(t)\phi(x)$ variabili separate

- sovrapposizione:

 u_1, u_2 soluzioni $\Rightarrow u_1 + u_2$ soluzione

Onde stazionarie

$$\begin{array}{l} \frac{\partial^2 u}{\partial t^2} = \psi''(t)\phi(x) = \psi(t)\phi''(x) = \frac{\partial^2}{\partial x^2}u \\ \Rightarrow \frac{\psi''(t)}{\psi(t)} = \frac{\phi''(x)}{\phi(x)} \\ \Rightarrow \frac{\psi''(t)}{\psi(t)} = \text{costante} \ = \frac{\phi''(x)}{\phi(x)} \end{array}$$

Spiegazione:

$$\psi''(t) = -m^2 \psi(t)$$

$$\psi(t) = a_m \cos(mt) + b_m \sin(mt) \quad a_m, b_m \in \mathbb{R}$$

$$\psi(t) = a_m \cos(mt) + b_m \sin(mt) \quad a_m, b_m \in \mathbb{R}$$

$$\phi(x) = A_m \cos(mt) + B_m \sin(mt) \quad A_m, B_m \in \mathbb{R}$$

$$u(x,t) = \psi(t)\phi(x) = (a_m\cos(mt) + b_m\cos(mt))(\underline{A_m\cos(mt)} + B_m\sin(mt))$$

$$\Rightarrow u(0,t) = 0 = \psi(t)A_m \Rightarrow A_m = 0$$

$$(u(\pi,t) = 0 = \psi_m(t)B_m\sin(m\pi) \Rightarrow m \in \mathbb{N}$$

 $\Rightarrow u(x,t) = (a_m(\cos(mt) + b_m\sin(mt))B_m\sin(mx)$ Tutti gli m interi mi danno una soluzione, quindi anche la loro somma è soluzione (principio di sovrapposizione).

$$u(x,t) = \sum_{m=0}^{\infty} (a_m cos(mt) + b_m \sin(mt)) B_m \sin(mx).$$

$$= \sum_{m=1}^{\infty} (\alpha_m \cos(mt) + \beta_m \sin(mt)) \sin(mx).$$

Dove $\alpha_m := a_m B_m$ e $\beta_m := b_m B_m$ Condizion Iniziali:

$$u(x,0) = \sum_{m=0}^{\infty} \alpha_m \sin(mx) = h_0(x) \quad x \in (x,\pi)$$

$$\frac{\partial u}{\partial t}(\alpha, 0) = \sum_{m=0}^{\infty} m\beta_m \sin(mx) = h_1(x)$$
Come trovare α_m, β_m

$$\rightarrow \int_0^{\pi} \sin(nx) \sin(mx) dx = \begin{cases} 0 & m \neq b \\ \frac{1}{2\pi} & m = n \end{cases}$$

$$\rightsquigarrow \int_0^m h_0(x)\sin(mx)dx = \int_0^\pi \sum_{l=0}^\infty \alpha_l \sin(lx)\sin(mx)dx = \frac{1}{2\pi}\alpha_m$$
 (coefficienti di

Fourier)

Passaggi al limite sotto il segno di integrale:

La teoria di Riemann non permette quasi mai di fare questi passaggi.

Esempio: Funzione di Dirichlet

$$D(x) = \begin{cases} 1 & x \in \mathbb{Q} \cap [0, 1] \\ 0 & \text{altrimenti} \end{cases}.$$

ma $D(x) = \lim_{n \to \infty} f_n(x)$, f_n Rimeann integrabile. Numeriamo $\mathbb{Q} \cap [0,1] = \{q_n\}_{n \in \mathbb{N}}$

$$f_n(x) = \begin{cases} 1 & \text{se } x \in \{q_0, q_1, \dots, q_n\} \\ 0 & \text{altriment} \end{cases}$$

Inoltre:

 $D(x) = \lim_{k \to +\infty} \left(\lim_{j \to +\infty} \cos(k!\pi x)^{2j} \right)$ Esercizio "facile"

Esercizio difficile:

non è possibile con una successione di funzioni continue con un parametro Esempio:

 $C([0,1]) \ni f,g$

$$d_1(f,g) = \int_0^1 |f(x) - g(x)| dx.$$
$$||f - g||_1 = \dots.$$

 $(C([0,1],d_1) \text{ non }$ è completo! (le successioni in questo spazio possono convergere al di fuori)

$$||f_m - f_n||_1 \to 0 \text{ se } n, m \to +\infty$$

$$||f_m - f_n||_1 \to 0 \text{ se } n, m \to +\infty$$

$$f_n \to f_\infty = \begin{cases} 0 & x \le \frac{1}{2} \\ 1 & x > \frac{1}{2} \end{cases}$$

Teorema 1

Il completamenteo di $(C[0,1],d_1)$ è lo spazio delle funzioni assolutamente integrabili secondo Lebesgue

1.6 Problema della misura

Dato $E \subseteq \mathbb{R}^n$ vogliamo associare la sua misura (in \mathbb{R}^n)

Stabilire la misura è come definire un integrale.

$$|E| = \int X_E$$

Prerequisiti:

1.
$$|[a,b]| = b - a$$

 $|[a,b] \times [c,d]| = (d-c) \cdot (b-a)$

2.
$$E_1 \cap E_2 = \emptyset \Rightarrow |E_1 \cup E_2| = |E_1| + |E_2|$$

- 3. $\forall E, \forall \tau \in \mathbb{R}^n \ |E + \tau| = |E|$
- 3' $\forall E \ \forall \ \sigma \ \text{isometria} \ |E| = |\sigma(E)|$

Teorema 2 (Paradosso di Banach-Tanski)

in \mathbb{R}^3 non esiste nessunna funzione che soddisfa 1,2 e 3.

Consideriamo la palla unitaria:

$$B_1 = \{x \in \mathbb{R}^3 : |x| \le 1\} = A_1 \cup \ldots \cup A_5.$$

$$A_i \cap A_j = \emptyset \quad \forall i \neq j$$

Troviamo $\sigma_1, \ldots, \sigma_5$ t.c.

 $\sigma_1(A_1) \cup \ldots \cup \sigma_5(A_5) = B_1 \cup B_1(P)$ (La sfera viene scomposta in 2 sfere con lo stesso volume della sferainiziale)

Per avere una teoria consistente dobbiamo studiare il problema della misura rinunciando alla proprietà di additività.

Assioma 1 (della scelta)

Data una famiglia di insiemi non vuoti $\{a_{\lambda}\}_{{\lambda}\in\Lambda}$ è sempre possbile trovare un insieme E composto da uno e un solo elemento di ogni A_x

Equivalentemente

$$\prod_{\lambda \in \Lambda} A_{\lambda} \neq \emptyset.$$

$$\prod_{\lambda \in \Lambda} A_{\lambda} \ni (x_{\lambda})_{\lambda \in \Lambda} \Leftrightarrow x_{\lambda} \in A_{\lambda} \ \forall \lambda \in \Lambda.$$

Lezione 02

Federico De Sisti 2025-02-28

0.1 Prima scheda informazioni

parte da recuperare

0.2 Misure

X insieme non vuoto

 $2^X=$ insieme delle parti di $X=\{$ sottoinsiemi $E\subseteq X\}$

$$\phi, X \in 2^X = \{\chi : X \to \{0, 1\}\}$$
$$\chi \leftrightarrow E = \{\chi = 1\}$$

$$\chi_E(x) = \begin{cases} 1 & \text{se } x \in E \\ 0 & \text{se } x \in X \setminus E \end{cases}$$

Sia X non vuoto. Una misura è una funzione $\mu: 2^X \to [0, +\infty]$ che soddisfa le due proprietà:

1.
$$\mu(\emptyset) = 0$$

2. per ogni famiglia numerabile di sotto
insiemi $E, \{E_i\}_{i\in\mathbb{N}^+}\subseteq X$

$$E \subseteq \bigcup_{i=1}^{\infty} E_i \Rightarrow \mu(E) \le \sum_{i=1}^{\infty} \mu(E_i)$$

La seconda proprietà viene chiamata sub-additività numerabile

Commenti:

1) numerabile \Leftrightarrow al più numerabile

 $\{E_i\}_{i\in\mathbb{N}^+}$ possono essere finite: $\{E_1, E_2, \dots, E_n\}$ $\mathbb{N}^+ = \{1, 2, 3, \dots\}$

2) Proprietà di monotonia: $E \subset F \Rightarrow \mu(E) \leq \mu(F)$

Segue da (ii) prendendo $E_1 = F, E_2 = \emptyset, E_3 = \emptyset, \dots$

3) Gli insiemi $\{E_i\}$ non sono necessariamente disgiunti

4) In generale in (ii) non vale l'uguaglianza neanche se:

 $E = E_1 \cup E_2 \text{ con } E_1 \cap E_2 = \emptyset$

Può accadere che $E \cap F = \emptyset$

$$\mu(E \cup F) < \mu(E) + \mu(F)$$
.

5) Comunemente quello che noi chiamiamo misura sono dette misure esterne

Esempi di misure:

ullet La misura che conta: X

$$\mathbb{H}^0:2^X\to [0,+\infty]$$

$$\mathbb{H}^{0}(E) = \begin{cases} 0 & E = \emptyset \\ n & E \text{ ha n elementi} \\ +\infty & E \text{ infinito} \end{cases}$$

• Misura delta di Dirac:

$$X, x_0 \in X$$

$$\delta_{x_0} : 2^X \to [0, +\infty]$$

$$\delta_{x_0}(E) = \begin{cases} 1 & \text{se } x_0 \in E \\ 0 & \text{se } x_0 \notin E \end{cases}$$

Verifica

 δ_{X_0} è una misura

Osservazione

Se X è infinito allora $H^0(X) = +\infty$

Viceversa δ da finire

0.3 Insiemi misurabili

 $X \neq \emptyset, \mu$ misura su X

Osservazione

Possono esistere E, F t.c.

$$E \cap F = \emptyset$$
 ma $\mu(E \cup F) < \mu(E) + \mu(F)$.

Definizione 2 (Caratheodory)

Sia $X \neq \emptyset$ e μ misura su X

Un insieme $E \subseteq X$ si dice misurabile se vale:

$$\mu(A) = \mu(A \cap E) + \mu(A \setminus E) \quad \forall A \subseteq X.$$

Commenti:

1) A = X

$$\mu(X) = \mu(E) + \mu(E^c).$$

2) Vale sempre

$$\mu(A) \le \mu(A \cap E) + \mu(A \setminus E).$$

E è misurabile

1

$$\mu(A) \ge \mu(A \cap E) + \mu(A \setminus E)$$

Teorema 1

Sia $X \neq \emptyset$ e μ misura.

- 1. la classe degli insiemi misurabili è una σ -algebra:
 - 1) $\emptyset, X \in M$
 - 2) $E \in M \Rightarrow E^c \in M$
 - 3) $\{E_{ii}i \in \mathbb{N}^+ \subseteq M \Rightarrow \bigcup_{i=1}^{\infty} E_i \in M\}$
- 2. μ è numerabilmente additiva su M: se $\{E_i\}_{i\in N^+}$ sono disgiunti a coppie $(E_i \cap E_j = \emptyset \ \forall i \neq j)$ allora

$$\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mu(E_i).$$

Commenti

1) M è chiuso anche per intersezioni numerabili: $E_i \in M$

$$\left(\bigcap_{i} E_{i}\right)^{c} = \bigcup_{i} E_{i}^{c} \in M \Rightarrow \bigcap_{i} E_{i} \in M.$$

2) $\lim \sup_{i \to \infty} E_i := \bigcap_{N \in \mathbb{N}} \bigcup_{i \ge N} E_i$ $\lim \inf_{i \to \infty} E_i := \bigcup_N \in \mathbb{N} \bigcap_{i \ge N} E_i$

Dimostrazione

Passo 1: M è un algebra

 $\cdot \emptyset \in M, X \in M$

 $Vado\ a\ verificare\ che\ \forall A\subseteq X\ vale$

$$\mu(A) = \mu(A \cap \emptyset) + \mu(A \setminus \emptyset) = \mu(\emptyset) + \mu(A).$$

dove sappiamo che $(\emptyset) = 0$

Per X:

$$\mu(A) = \mu(A \cap X) + \mu(A \setminus X) = \mu(A) + \mu(\emptyset).$$

$$\cdot E \in M \Rightarrow E^c \in M$$

Vado a verificare che per ogni $A \subseteq X$ vale le proprietà di Caratheodory: $\mu(A) = \mu(A \cap E^c) + \mu(A \setminus E^c) = \mu(A \setminus E) + \mu(A \cap E)$

 $\cdot E_2, E_2 \in M \Rightarrow E_1 \cup E_2 \in M$ Considero un insieme test $A \subseteq X$: $\mu(A) = \mu(A \cap E_1) + \mu(A \setminus E_1)$

1)
$$\mu(A) = \mu(A \cap E_1) + \mu(A \setminus E_1)$$

$$\mu(A \cap E_1) + \mu((A \setminus E_1) \cap E_2) + \mu((A \setminus E_1) \setminus E_2)$$

il risultato è ottenuto applicando Caratheodory al secondo termine della somma (1)

$$\geq \mu((A \cap E_1) \cup (A \setminus E_1) \cap E_2) + \mu(A \setminus (E_1 \cup E_2))$$

$$\mu(A) \geq \mu(A \cap (E_1 \cup E_2)) + \mu(A \setminus (E_1 \cup E_2)) \Rightarrow E_1 \cup E_2 \in M$$

Passo 2: finita additività di μ in M $E_1, E_2 \in M, E_1 \cap E_2 = \emptyset$ Per ogni $A \subseteq X$:

$$\mu(A \cap (E_1 \cup E_2)) = \mu(A \cap (E_1 \cup E_2) \cap E_1) + \mu(A \cap (E_1 \cup E_2) \setminus E_1)$$

Ottenuto sempre per Caratheodory

$$\mu(A \cap E_1) + \cap (A \cap E_2).$$

Iterando questo passaggio: $E_1, \ldots, E_n \in M$ allora:

$$\mu(A \cap \bigcup_{i=1}^{N} E_i) = \sum_{i=1}^{N} \mu(A \cap E_i).$$

Spiegazione passaggio precedente

$$\mu(A \cap \bigcup_{i=1}^{N} E_i) = \mu(A \cap E_1) + \mu(A \cap \bigcup_{i=2}^{N} E_i) = \dots = \sum_{i=1}^{N} \mu(A \cap E_i).$$

Passo 3: mostriamo le proprietà di σ -algebra e numerabile additività Siano $\{E_i\}_{i\in\mathbb{N}^+}\subseteq M$

Consideriamo gli insiemi:

$$F_1 := E_1, \qquad F_2 = E_2 \setminus E_1$$

$$F_3 := E_3 \setminus (E_1 \cup E_2)$$

quindi definiamo ricorsivamente: $F_k := E_k \setminus \bigcup_{i=1}^{k-1}$

Allora F_i sono disgiunti a coppie

$$(F_i \cap F_i = \emptyset \ \forall i \neq j).$$

$$\bigcup_{i=1}^{\infty} F_i =_{i=1}^{\infty} E_i.$$

 $\cdot F_i \in M$

Fissiamo il test di Caratheodory $A \subseteq X$, $F_i \in M$, Passo 1: M algebra

$$\mu(A) = \mu(A \cap \bigcup_{i=1}^{N} F_i) + \mu(A \setminus \bigcup_{i=1}^{N} F_i).$$

Usando il passo 2: finita additività

$$= \sum_{i=1}^{N} \mu(A \cap F_i) + \mu(A \setminus \bigcup_{i=1}^{N} F_i)$$

$$\geq \sum_{i=1}^{N} \mu(A \cap F_i) + \mu(A \setminus \bigcup_{i=1}^{\infty} F_i).$$

Passiamo al limite $N \to \infty$

$$\mu(A) \ge \lim_{N \to \infty} \sum_{i=1}^{N} \mu(A \cap F_i) + \mu(A \setminus \bigcup_{i=1}^{\infty} F_i) = \sum_{i=1}^{\infty} \mu(A \cap F_i) + \mu(A \setminus \bigcup_{i=1}^{\infty} F_i)$$

$$\ge \mu(A \cap \bigcup_{i=1}^{\infty} F_i) + \mu(A \setminus \bigcup_{i=1}^{\infty} F_i)$$

$$= \mu(A \cap \bigcup_{i=1}^{\infty} E_i) + \mu(A \setminus \bigcup_{i=1}^{\infty} E_i)$$

$$\Rightarrow \bigcup_{i=1}^{\infty} E_i \in M$$

Se prendiamo come test $A = \sum_{i=1}^{\infty} F_i$, allora $\mu(\bigcup_{i=1}^{\infty} F_i) \ge \sum_{i=1}^{\infty} \mu(E_i) \ge \mu(\bigcup_{i=1}^{\infty} F_i)$ $\Rightarrow \mu(\bigcup^{\infty} F_i) = \sum_{i=1}^{\infty} \mu(F_i) - F_i$ sono disgiunti a coppie

Lezione 03 (La prima con la Leoni)

Federico De Sisti2025-03-04

Misura di Lebegque 1

Porprietà delle afunzioen lunghezza di intervalli

I intervallo in \mathbb{R} $|I| = \begin{cases} +\infty & \text{se } I \text{ è illimitato} \\ sup I - inf I & (b-a) & \text{Se } I \text{ è limitato di estremi } a < b \end{cases}$

Esempi di intervallo

 $\emptyset = (a, a) \ \forall a \in \mathbb{R}$

$$\mathbb{R} = (-\infty, \infty) - \{x\} = [x, x] \quad \forall x \in \mathbb{R}$$

Proprietà:

- 1. $|\emptyset| = 0$
- 2. monotonia $I \subseteq J \Rightarrow |I| \le |J|$
- 3. finita additività

$$I = \bigcup_{i=1}^{n} I_i \quad I_i \text{ interevallo}$$

$$I_i \cap I_j = \emptyset \quad \forall i \neq j$$

$$\Rightarrow |I| = \sum_{i=1}^{n} |I_i|$$

$$\Rightarrow |I| = \sum_{i=1}^{n} |I_i|$$

Nota

se I illimitato

$$\Rightarrow |I| = +\infty = |I_i| = \sum_{i=1}^n |I_k|$$

 $\begin{array}{l} \Rightarrow \exists 1 \leq i \leq n \text{ tale che } I_i \text{ illimitato} \\ \Rightarrow |I| = +\infty = |I_i| = \sum_{i=1}^n |I_k| \\ \text{Se } I \text{ limitato} \Rightarrow I_i \text{ limitato } \forall i = 1, \dots, n \\ |I| = \sum_{i=1}^n |I_i| \end{array}$

$$|I| = \sum_{i=1}^{n} |I_i|$$

4.
$$I$$
 intervallo
$$|I| = \sum_{n \in \mathbb{Z}} |I \cap [n, n+1)|$$
$$= |I| = \sum_{n=0}^{\infty} |I \cap [n, n+1)| + \sum_{n=0}^{-\infty} |I \cap [n, n+1)|$$

Nota

Se I illimitato

 $\begin{array}{l} \Rightarrow I\cap[n,n+1]=[n,n+1) \text{ per infiniti indici } n\in\mathbb{Z} \\ \Rightarrow |I|=+\infty=\sum^{n\in\mathbb{Z}}|I\cap[n,n+1)| \text{ per infiniti n} \end{array}$

$$\Rightarrow |I| = +\infty = \sum_{n \in \mathbb{Z}} |I \cap [n, n+1)|$$
 per infiniti m

Se I limitato

$$\Rightarrow I = \bigcup_{n=l}^{k} I \cap [n, n+1] \text{ per } l, k \in \mathbb{Z}$$

5. Numerabile subadditività

Se I intervallo, $\{I_i\}$ successione di intervalli tale che

$$I \subseteq \bigcup_{i=1}^{\infty} I_i$$

\Rightarrow |I| \le \sum_{i=1}^{\infty} |I_i|

Dimostrazione 5.

Si può assumere I_i limitato $\forall i$ 1) caso, I compatto, I_i aperti $\forall i$ $I = [a, b], I_i = (a_i, b_i) \quad a_i < b_i$ I compatto, $\{I_i\}$ ricoprimento aperto $\Rightarrow \exists$ sottoricoprimento finito

$$I = [a, b] \subseteq \bigcup_{k=1}^{n} I_k.$$

Dato che sono un numero finito di intervalli dico che I_1 è quello con l'estremo più a sinistra di tutti.

si può supporre che $a_1 < a < b_1$ se $b_1 > b \Rightarrow I \subseteq I_1 \Rightarrow |I| \le |I_2| \le \sum_{i=1}^{\infty} |I_i|$ Reiterando trovo l'aperto contenente a_1 , se questo contiene anche b mi fermo

abbiamo quindi rinumerato I_1, \ldots, I_n in modo che $a_{i+1} < b_i < b_{i+1} \quad \forall 1 \le i \le n$ $\sum_{i=1}^{n} |I| = \sum_{i=1}^{n} b_i - a_i = b_1 - a_1 + \ldots + b_n - a_n$ notiamo che $b_1 > a_2$ quindi $b_1 - a_2 > 0$, procedendo così per ogni coppia otteniamo

$$\geq b_n - a_1 \geq b - a = |I|.$$

2) caso I limitato, I_i limitati

$$I^{\varepsilon} \subset I \subset I^{\infty}$$
, $I_{\varepsilon} \subset I^{\infty}$, I^{ε}

2) caso
$$I$$
 inintatio, I_i inintation
$$\forall \varepsilon > 0 \exists I^{\varepsilon} \text{ chiuso}, \ I^{\varepsilon} \subset I \text{ tale che } |I^{\varepsilon}| = (1 - \varepsilon)|I|$$

$$\forall i \ \exists I_i^{\varepsilon} \text{ aperto tale che } I_i \subset I_i^{\varepsilon} \text{ e} \mid \sum_i^{\varepsilon} \mid = (1 - \varepsilon)|I_i|$$

$$I^{\varepsilon} \subset I \subset \bigcup_{i=1}^{\infty} I_i \subseteq \bigcup_{i=1}^{\infty} I_i^{\varepsilon}$$

$$I_i = \frac{1}{1-\varepsilon}|I^{\varepsilon}| \leq \sum_{i=1}^{\infty} |I^{\varepsilon}| = \frac{1+\varepsilon}{1-\varepsilon} \sum_{i=1}^{\infty} |I_i|$$

$$Quindi \ |I| \leq \sum_{i=1}^{\infty} |I_i|$$
3) caso I illimitatio, I_i limitati $n \in \mathbb{Z}$

$$n \in \mathbb{Z}$$
 $I \cap [n, n+1) \subseteq \bigcup_{n=1}^{\infty} (I_i \cap [n, n+1))$

Quindi ho un intervallo limitato coperto da intervalli limitati per il 2 caso

$$|I \cap [n, n+1)| \le \sum_{n=1}^{\infty} |I \cap [n, n+1)|$$

Per la 4)

$$\sum_{n\in\mathbb{Z}} |I\cap[n,n+1)| \le \sum_{n\in\mathbb{Z}} \sum_{i=1}^{\infty} |I_i\cap[n,n+1)|$$
$$= \sum_{i=1}^{\infty} \sum_{n\in\mathbb{Z}} |I_i\cap[n,n+1)|$$

$$\sum_{i=1}^{n} \sum_{n \in \mathbb{Z}} |I_i \cap [n, n+1]|$$

$$\sum_{i=1}^{\infty} |I_i|.$$

6. numerabile additività

$$\begin{array}{l} I = \bigcup_{i=1}^{\infty} I_i, \ I_i \cap I_j = \emptyset \quad \forall i \neq j \\ \Rightarrow |I| = \sum_{i=1}^{\infty} |I_i| \end{array}$$

Dimostrazione $|I| \le \sum_{i=1}^{\infty} |I_i| \text{ vero per la 5})$

Ci basta dimostrare l'altro verso della disuquaglianza

se I limitato, (con estremi a < b)

 $\forall k \geq 1 \ consideriamo \ I_1, I_2, \dots, I_k \ sono \ contenuti \ in \ I \ e \ disgiunti$

questi possono essere rinumerati in modo che $a_1 < b_1 \le a_2 < b_2 \le \ldots \le a_k < b_k$ $\begin{array}{l} \sum_{i=1}^{k} \leq b - a \\ \sum_{i=1}^{k} |I_i| = \sum_{i=1}^{k} (b_i - a_i) \\ = b_1 - a_1 + b_2 - a_2 + \ldots + b_k - a_k \leq b_k - a_1 \leq b - a = |I| \end{array}$

$$\sum_{i=1}^{n} \leq b - a$$

$$= b_1 - a_1 + b_2 - a_2 + \ldots + b_k - a_k \le b_k - a_1 \le b - a = |I|$$

per lo stesso ragionamento di prima, possiamo formare coppie positive

$$|I| \ge \sum_{i=1}^{k} |I_i| \quad \forall k \ge 1.$$

$$\Rightarrow |I| \ge \sum_{i=1}^{\infty} |I_i|.$$

 $Se\ I\ illimitato$

$$I = \bigcup_{i=1}^{\infty} I_i, I_i \cap I_j = \emptyset \text{ se } i \neq j$$

$$I \cap [n, n+1) = \bigcup_{i=1}^{\infty} I_i \cap [n, n+1)$$

$$\Rightarrow |I \cap [n, n+1)| = \sum_{i=1}^{\infty} |I_i \cap [n, n+1)|$$

$$I = \bigcup_{i=1}^{\infty} I_i, I_i \cap I_j = \emptyset \text{ se } i \neq j$$

$$I \cap [n, n+1) = \bigcup_{i=1}^{\infty} I_i \cap [n, n+1)$$

$$\Rightarrow |I \cap [n, n+1)| = \sum_{i=1}^{\infty} |I_i \cap [n, n+1)|$$

$$\Rightarrow \sum_{n \in \mathbb{Z}} |I \cap [n, n+1)| = \sum_{n \in \mathbb{Z}} \sum_{i=1}^{\infty} |I_i \cap [n, n+1)| = \sum_{i=1}^{\infty} |I_i|$$

7. I intervallo, $x \in \mathbb{R}$

I + x traslato di I

$$|I + x| = |I|$$

(invarianza per traslazioni)

Definizione 1 (Misura esterna)

 $Sia\ E \subseteq \mathbb{R}$

Si definisce misura (esterna) di Lebesgue di E

$$m(E) = \inf\{\sum_{i=1}^{\infty} |I_i| : E \subseteq \bigcup_{i=1}^{\infty} I_i, I_i \text{ intervalli}\}.$$

$$M:P(\mathbb{R})=2^{\mathbb{R}}\to [0,+\infty]$$

Osservazione

Se $D \subset$ è un insieme nullo:

$$\forall \varepsilon > 0 \ \exists \{I_i\} \text{ successione di intervalli tale che } D \subseteq \bigcup_{i=1}^{\infty} I_i \text{ e } \sum_{i=1}^{\infty} |I_i| < \varepsilon.$$

$$\Leftrightarrow m(D) = 0.$$

Ricordiamo che tra gli insiemi di misura nulla, ci sono gli insiemi numerabili 2) Per definire m si usano ricoprimenti numerabili ma anche i ricoprimenti finiti sono ammessi,

$$E \subseteq \bigcup_{i=1}^{n} I_i = \bigcup_{i=1}^{n} I_i \cup \bigcup_{i=n+1}^{\infty} \emptyset$$

C'è una differenza enorme tra considerare ricoprimenti finiti o ricoprimenti numerabili

$$E \subset \mathbb{R}$$

$$E\subseteq\mathbb{R}$$
 inf $\{\sum_{i=1}^{\infty}, E\subseteq\bigcup_{i=1}^{\infty}I_{i} \text{ intervallo}\}\leq\inf\{\sum_{i=1}^{n}|I_{i}|, E\subseteq\bigcup_{i=1}^{n}I_{i}, I_{i} \text{ intervalli}\}$ La disuguaglianza può essere stretta

Esempio

$$E = \mathbb{Q} \cap [0,1]$$

è numerabile $\Rightarrow m(E) = 0$

Sia $\{I_1,\ldots,I_n\}$ ricoprimento finito di E con intervalli

$$E = \mathbb{Q} \cap [0, 1] \subseteq \bigcup_{i=1}^{n} I_i \Rightarrow \sum_{i=1}^{n} |I_i| \ge 1$$

Infatti

$$\begin{split} R &= \mathbb{Q} \cap [0,1] \subseteq \bigcup_{i=1}^n I_i \Rightarrow [0,1] \subseteq_{i=1}^n I_i \\ &\Rightarrow [0,1] = \overline{\mathbb{Q}} \cap [0,1] \\ &\leq (\bigcup_{i=1}^n I_i) \leq \bigcup_{i=1}^n \overline{I_i} \Rightarrow 1 = |[0,1]| \leq \sum_{i=1}^n |\overline{I_i}| = \sum_{i=1}^n |I_i| \\ &\Rightarrow \inf\{\sum_{i=1}^n |I_i|, E \subseteq \bigcup_{i=1}^n I_i, I_i \text{ intervallo }\} \geq 1 \text{ ma } E \subseteq [0,1] \\ &\Rightarrow \inf\{\sum_{i=1}^n |I_i|, E \subseteq \bigcup_{i=1}^n I_i, I_i \text{ intervallo }\} \leq 1 \end{split}$$

Se avessi ricoprimenti finiti Q avrebbe misura 1, e questo non ci piace perché è un insieme numerabile, questo è il motivo per cui ammetto ricoprimenti infiniti.

Lezione 4 Analisi Reale

Federico De Sisti2025-03-05

0.1 Misura di Lesbegue

Reminderi (misura di Lesbegue)

$$m(E) = \inf \{ \sum_{i=1}^{\infty} |I_i| : |I_i| \text{ intervalli} \quad E \subseteq \bigcup_{i=1}^{\infty} I_i.$$

Proposizione 1

- 1) $m(\emptyset) = 0$
- 2) $E \subseteq F \Rightarrow m(E) \leq m(F)$
- 3) subadditività numerabile, $\{E_i\}$ successione di insiemi

$$m(\bigcup_{i=1}^{\infty}) \le \sum_{i=1}^{\infty} m(E_i).$$

- 4) $\forall I \ intervallo \ m(I) = |I|$
- 5) $\forall E \subseteq \mathbb{R}, \forall x \in \mathbb{R}, m(E+x) = m(E)$

Dimostrazione

- 1) $m(\emptyset) \leq |\emptyset| = 0$ dato che l'insieme vuoto è un intervallo
- 2) $\forall \{I_i\}$ intervalli tale che $F \subseteq \bigcup_{i=1}^{\infty} I_i \Rightarrow \{I_i\}$ è un ricoprimento anche di $E \Rightarrow m(E) \leq \sum_{i=1}^{\infty} |I_i|$ prendendo l'inf rispetto a $\{I_i\}$ $m(E) \leq m(F)$
- 3) Se $\exists i \ tale \ che \ m(E_i) = +\infty \Rightarrow tesi \ ovvia$

possiamo supporre $m(E_i) < +\infty \quad \forall i > 1$

Dato $\varepsilon > 0$ $\exists \{I_k^i\}_k$ intervalli tali che $\bigcup_{k=1}^{\infty} I_k^i$ e

$$\sum_{k=2}^{\infty} |I_k^i| - \frac{\varepsilon}{2^i} < m(E_i) \le \sum_{k=1}^{\infty} |I_k^i|$$

$$\{I_k^i\}_{i,k} \ successione \ di \ intervalli \\ \bigcup_{i=1}^{\infty} E_i \subseteq \bigcup_{i=1}^{\infty} \bigcup_{k=1}^{\infty} I_k^i \\ quindi$$

$$m(\bigcup_{i=1}^{\infty} E_i) \le \sum_{i=1}^{\infty} \sum_{k=1}^{\infty} |I_k^i| \le \sum_{i=1}^{\infty} (m(E_i) - \frac{\varepsilon}{2^i}) = \sum_{i=1}^{\infty} m(E_i) + \varepsilon.$$

 $e \ per \ \varepsilon \to 0$

$$m(\bigcup_{i=1}^{\infty} E_i) \le \sum_{i=1}^{\infty} m(E_i).$$

4) E = I $m(E) \le |I|$ scegliendo I stesso come sottoricoprimento $\forall \{I_i\}$ successione di intervalli tale che $I \subseteq \bigcup_{i=1}^{\infty} I_i$

$$|I| \le \sum_{i=1}^{\infty} |I_i| \ per \ la \ numerabile \ additività \ di \ | \ |.$$

$$\Rightarrow |I| \le m(I) = m(E).$$

5) $E \subseteq \mathbb{R}, x \in \mathbb{R}$

 $\forall \{I_i\}$ successione di intervalli tale che $E \subseteq \bigcup_{i=1}^{\infty} I_i$

$$\Rightarrow E + x \subseteq \bigcup_{i=1}^{\infty} I_i + x = \bigcup_{i=1}^{+\infty} (I_i + x).$$

$$m(E+x) \le \sum_{i=1}^{\infty} |I_i = x| = \sum_{i=1}^{\infty} |I_i|.$$

quindi sappiamo che $\Rightarrow m(E+x) \leq m(E)$ sappiamo che E=E+x-x

$$m(E) = m(E + x - x) \le m(E + x).$$

$$\Rightarrow m(E) = m(E + x)$$

Osservazione

È vero che se $\{E_i\}$ successione di insiemi disgiunti $E_i \cap E_j = \emptyset$ per $i \neq j$

$$m(\bigcup_{i=1}^{\infty} = \sum_{i=1}^{\infty} m(E_i).$$

è vero? In generale no.

Osserviamo che se valesse la finita additività, ovvero

$$m(E_1 \cup \ldots \cup E_n) = m(E_1) + m(E_2) + \ldots + m(E_n).$$

con $E_i \cap E_j = \emptyset$, $i \neq j \Rightarrow$ sarebbe vera anche la finita additività. Infatti

$$m(\bigcup_{i=1}^{\infty}) \leq \sum_{i=1}^{\infty} m(E_i)$$
 sempre vero per subadditività.

Se
$$E_i \cap E_j = \emptyset$$
 per $i \neq j$ e $\forall k \geq 1$ $m(\bigcup_{i=1}^k E_i = \sum_{i=1}^k m(E_i)$

$$\Rightarrow m(\bigcup_{i=1}^{\infty} \ge m(\bigcup_{i=1}^{k} E_i) = \sum_{i=1}^{k} m(E_i) \Rightarrow m(\bigcup_{i=2}^{\infty}) \ge \sum_{i=1}^{\infty} m(E_i)$$

Il problema che impedisce la numerabile additività è che non sempre è vero che $E_1 \cap E_2 \subseteq \mathbb{R}, \quad E_1 \cap E_2 = \emptyset$

$$m(E_1 \cup E_2) = m(E_1) + m(E_2).$$

perché nella famiglia di intorni ci possono essere intorni che ricoprono parte sia di E_1 che di E_2 quindi

$$\sum_{i=1}^{\infty} |I_i| \neq \sum_{i \cap E_2} |I_i| + \sum_{i \cap E_2} |I_i|.$$

Tuttavia, è vero che Se I_1,\dots,I_n intervalli, $I_i\cap I_j=\emptyset$ per $i\neq j$ $m(\bigcup_{i=1}^\infty I_i)=\sum_{i=1}^n |I_i|$ Si può supporre gli I_i limitati (sennò misura è infinita)

$$I = \bigcup_{i=1}^{n} I_i \cup \bigcup_{i=1}^{i=1} J_i$$

$$m(I) = |I| = \sum_{i=1}^{n} |I_i| + \sum_{i=1}^{n-1} |J_i| \ge m(\bigcup_{i=1}^{n} I_i) + m(\bigcup_{i=1}^{n-1} J_i)$$

$$\leq m(\bigcup_{i=1}^{n} I_i \cup \bigcup_{i=1}^{n-1} J_i) = m(I).$$

ma ciò vuol dire che sono tutte uguaglianze

$$\Rightarrow \sum_{i=1}^{n} |I_i| = m(\bigcup_{i=1}^{n} I_i).$$

se I_i intervalli con $I_i \cap I_j = \emptyset$ $i \neq j$

Definizione 1

Se X un insieme non vuoto, Una misura su X è una funzione

$$\mu: P(x) \to [0, +\infty].$$

 $tale\ che$

- 1. $\mu(\emptyset) = 0$
- 2. (monotonia) $E \subseteq F \Rightarrow \mu(E) \leq \mu(F)$
- 3. (subadditività) $\mu(\bigcup_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} \mu(E_i)$

$$2.+3. \Leftrightarrow E \subseteq \bigcup_{i=1}^{\infty} E_i, \quad \mu(E) \le \sum_{i=1}^{\infty} (E_i)$$

Esempi di misura

1) $x_0 \in \mathbb{R}$

$$\delta_{x_0}: P(\mathbb{R}) \to [0, +\infty).$$

$$E\subseteq\mathbb{R}\quad \delta_{x_0}(E)=\begin{cases} 1 & \text{se }x_0\in E\\ 0 & \text{se }x_0\not\in E \end{cases} \quad \text{difatti:}$$

$$-\delta_{x_0}(\emptyset)=0$$

$$-\text{se }E\subseteq F \text{ se }x_0\not\in E\Rightarrow \delta_{x_0}(E)=0\leq \delta_{x_0}(F)$$

$$\text{se }x_0\in E\to x_0\in F\Rightarrow \delta_{x_0}(E)=\delta_{x_0}(F)=1$$

$$\text{se }\delta_{x_0}(\bigcup_{i=1}^\infty E_i)=0\Rightarrow x_0\not\in\bigcup_{i=1}^\infty E_i\Rightarrow x_0\not\in E \quad \forall i$$

$$\text{se }\delta_{x_0}(\bigcup_{i=1}^\infty E_i)=1\Rightarrow \exists i, \quad t.c. \quad x_0\in E_i\Rightarrow \sum_1^\infty \delta_{x_0}(E_i)\geq 1$$
 2) misura "che conta"
$$\mu^\#:P(\mathbb{R})\to [0,+\infty]$$

$$\mu^{\#}(E) = \begin{cases} \text{cardinalità di } E \text{ se } E \text{ è finito} \\ +\infty & \text{se } E \text{ è infinito} \end{cases}$$

Esempio di insieme di misura di Lesbegue nulla

Non misurabile, insieme di Cantor

Al passo $n=1,I_1^1=(\frac13,\frac23),\ C_1=J_1^1\cup J_2^1=[0,\frac13]\cup [\frac23,1]$ Reitero così, dividendo in 3 parte tutti gli insiemi J e rimuovendo gli intervalli centrali.

 C_n è un insieme di 2^n intervalli chiusi, disgiunti, ogniuno di ampiezza $\frac{1}{3^n}$ C_n è alternato da C_{n-1} eimuovendo 2^{n-1} intervalil aperti di ampiezza $\frac{1}{3^n}$ L'insieme di Cantor è definita da $C=\bigcap_{n=1}^{\infty}C_n=\bigcap_{n=1}^{\infty}\bigcup_{i=1}^{2^n}J_i^n=[0,1]\setminus\bigcup_{n=1}^{\infty}\bigcup_{k=1}^{2^{n-1}}I_k^n$

$$m(C) \le m(C_n) = m(\bigcup_{i=1}^{2^n} J_i^n) = \sum_{i=1}^{2^n} |J_i^n| = \frac{2^n}{3^n} = (\frac{2}{3})^n.$$

 $\forall x \in [0,1]$ si scrive nella forma $x=\sum_{i=1}^\infty \frac{x_i}{3^i}, \quad x_i \in \{0,1,2\}$ $x=\frac{1}{3}+\frac{0}{9}+\ldots+\frac{x_i}{3^i}+\ldots$

Lezione 5 Analisi Reale

Federico De Sisti 2025-03-07

1 Qui manca la parte precedente della lezione

 $fs.c.i \Leftrightarrow f^{-1}(a, +\infty))$ aperto $\forall a \in \mathbb{R}$

Dimostrazione

```
(\Rightarrow) \ f(x) \leq \lim_{x \to x_0} \inf f(x)
c - \in \{f > a\} \Leftrightarrow f(x_0) > a \Rightarrow \lim_{x \to x_0} \inf (fx) \geq f(x_0) > a \Rightarrow \inf (fx) > a \ per
\delta \ sufficientemente \ piccolo
\Rightarrow f(x) > a \ per \ |x - x_0| < \delta
\Rightarrow (x_0 - \delta, x_0 + \delta) \subset \{f > a\}
\Rightarrow \{f > a\} \ aperto
(\Leftarrow)_0 \in \mathbb{R} \ \forall a < f(x_0) \ x_0 \in \{f > a\}
\Rightarrow \exists \delta > 0 \ t.c. \ f(x) > a \ \forall \ x \in (x_0 - \delta, x_0 + \delta)
\Rightarrow \lim \inf_{x \to x_0| \ \geq \inf_{0 < |x - x_0| < \delta} f(x) > a}
\Rightarrow \lim \inf_{x \to x_0} \geq a \ \forall a < f(x_0)
\lim \inf_{x \to x_0} f(x) \geq f(x_0)
\Rightarrow f \ s.c.i
```

2

Lezione 6 Analisi Reale

Federico De Sisti 2025-03-11

Insieme di Vitali 1

Controesempio all'additività di m

Insieme di Vitali

In \mathbb{R} consideriamo la relazione d'equivalenza

$$x, y \in \mathbb{R}$$
 $x \sim y \Leftrightarrow x - y \in \mathbb{Q}$.

sia [x] la classe di equivalenza di un elemento $x \in \mathbb{R}$

$$[x] = \{ y \in \mathbb{R} \mid x \sim y \} = x + \mathbb{Q}.$$

V insieme di Vitali è costruito scegliendo un elemento in [0,1] da ogni classe d'equivalenza. $V \subseteq [0,1], x \in V$

$$\begin{array}{l} \forall x \in [0,1] \Rightarrow \exists \hat{x} \in V \text{ tale che } x \sim \hat{x} \Leftrightarrow x - \hat{x} \in \mathbb{Q} \Rightarrow x - \hat{x} = q \in \mathbb{Q} \\ \Rightarrow x = \hat{x} + q \in V + q \text{ dove } q \in \mathbb{Q} \cap [-1,1] \\ -1 \leq x - \hat{x} \leq x \leq 1 \end{array}$$

Quindi abbiamo dimostrato

$$[0,1] \subseteq \bigcup_{q \in \mathbb{Q} \cap [-1,1]} V + q \subseteq [-1,2].$$

L'osservazione cruciale è che tutti questi insiemi sono disgiunti siano $q_1, q_2 \in \mathbb{Q} \cap [-1, 1]$

se
$$V + q_1 \cap V + q_2 \neq$$

$$\Rightarrow \exists x_1, x_2 \in \mathbb{Q}$$
 tale che

$$x_1 + q_1 = x_2 + q_2.$$

$$x_1 - x_2 = q_1 + q_2 \in \mathbb{Q}.$$

Ciò vuol dire che $x_1 \sim x_2$ che è assurdo dato che in V prendiamo solo un rappresentate per ogni classe di equivalenza.

Ciò vuol dire che $\cup_{i\in\mathbb{Q}\cap[-1,1]}$ è unione numerabile di insiemi disgiunti Vediamo la misura di questo insieme

$$m([0,1]) = 1 \le mi \left(\bigcup_{q \in \mathbb{Q} \cap [-1,1]} V + 1 \right)$$
 per monotonia

Supponiamo che valga l'additività.

$$= \sum_{q \in Q \cap [-1,1]} m(V+q).$$

(1)

$$= \sum m(V) \le m([-1,2]) = 3.$$

$$1 \leq \sum_{q \in \mathbb{Q} \cap [-1,1]} m(V) \leq 3$$

Però le due disuguaglianze indicano che m(V) > 0 e m(V) = 0 (la somma deve

essere di termini positivi, e deve essere finita), che è assurdo. Ma qualunque sottoinsieme di \mathbb{R} ha una misura, quindi l'assurdo deriva dal fatto che utilizziamo l'additività (1).

Tuttavia non vogliamo rinunciare all'additività, possiamo quindi considerare l'insieme degli insiemi per cui vale l'additività della misura.

Definizione 1 (Caratheodory)

X insieme non vuoto μ misura su XUn insieme $E \subseteq X$ si dice μ -misurabile se $\forall F \subseteq X$ si ha

$$\mu(F) = \mu(F \cap E) + \mu(F \setminus E).$$

Ovvero E spezza additivamente ogni altro insieme

Osservazione

- 1. $E \subseteq X$ è μ misurabile $\Leftrightarrow \mu(F) \ge \mu(F \cap E) + \cap (F \setminus E) \quad \forall F \subseteq X$ perché \ge è sempre vero per la subadditività Quindi si può anche supporre $\mu(F) < +\infty$
- 2. La definizione di misurabilità è simmetrica per E e $E^c = X \setminus E$, E misurabile $\Leftrightarrow \mu(F) \geq \mu(F \cap E) + \mu(F \setminus E) = \mu(F \setminus E^c) + \mu(F \cap E^c)$ che è la misura che dovrei testare per E^c Quindi E è μ -misurabile $\Leftrightarrow E^c$ è μ -misurabile
- 3. Se $\mu(E) = 0 \Rightarrow E$ è μ -misurabile. $\forall F \subseteq X$ $\mu(F \cap E) + \mu(F \setminus E) \leq \mu(E) + \mu(F) \Rightarrow E$ è μ -misurabile.

Indicheremo con η_{μ} la classe dei sottoinsiemi μ -misurabili $\eta_{\mu} = \{ E \subseteq X \mid E \mid \mu$ -misurabile $\} = \{\emptyset, X, \dots\}$

Teorema 1

Sia μ una misura su X, η_{μ} la classe degli insiemi μ -misurabili, Allora:

1. se
$$\{E_i\}_{i\in\mathbb{N}}\subset\eta_\mu\Rightarrow\bigcup_{i=1}^{+\infty}E_i\in\eta_\mu$$

2. Se
$$\{E_i\}_{i\in\mathbb{N}}\subset\eta_{\mu}$$
 tale che $E_i\cap E_j=\emptyset$ se $i\neq j$
 $\Rightarrow \mu\left(\bigcup_{i=1}^{\infty}E_i\right)=\sum_{i=1}^{+\infty}\mu(E_i)$

3. Se
$$\{E_i\}_{i\in\mathbb{N}} \subset \eta_{\mu}$$

tale che $E_1E_2 \subseteq \cdots \subseteq E_i \subseteq E_{i+1} \subseteq \cdots$
 $\Rightarrow \mu\left(\bigcup_{i=1}^{+\infty} E_i\right) = \lim_{i\to\infty)\mu(E_i)}$

4. Se
$$\{E_i\}_{i\in\mathbb{N}} \subset \eta_{\nu}$$

tale che $E_1 \supseteq E_2 \supseteq \ldots \subseteq E_i \supseteq E_{i+1} \supseteq \ldots$
 $e \ \mu(E_1) < +\infty$
 $\mu(\bigcup_{i=1}^{\infty} E_i) = \lim_{i\to\infty} \mu(E_i)$

Dimostrazione

Primo passo, l'unione finita di numerabili è misurabile

$$E_1, E_2 \in \eta_u$$
 $th: E_1 \cup E_2 \in \eta_u$.

 $\forall F \subset X$

$$\mu(F) = \mu(F \cap E_1) + \mu(F \setminus E_1) = \mu(F \cap E_1) + \mu(F \setminus E_1 \cap E_2) + \check{(}F \setminus E_1 \setminus E_2) \ge \mu(F \cap E_1 \cup (F \setminus E_1 \cap E_2)) + \mu(F \setminus (E_1 \cup E_2)) = \mu(F \cap (E_1 \cup E_2)) + \mu(F \setminus (E_1 \cup E_2))$$

$$per \ subadditivit\grave{a}$$

Induttivamente:

Thauttivamente:
se
$$E_1, ..., E_k \in \eta_{\mu} \Rightarrow \bigcup_{i=1}^k E_i = \bigcup_{i=1}^{k-1} E_i \cup E_k \in \eta_{\mu}$$

Se $E_1, \ldots, E_k \in \eta_\mu \Rightarrow E_1^c, \ldots, E_k^c \in \eta_\mu \Rightarrow \bigcup_{i=1}^k E^c \in \eta_\mu \Rightarrow (\bigcup_{i=1}^k E_i^c)^c \in \eta_\mu$ Secondo passo finita additività:

$$E_1, \ldots, E_k \in \eta_{\mu}, E_1, \ldots, E_k disgiunti$$

$$\mu\left(\bigcup_{i=1}^{k} E_i\right) = \mu\left(\bigcup_{i=1}^{k} E_i \cap E_k\right) + \mu\left(\bigcup_{i=1}^{k} \setminus E_k\right) = \mu(E_k) + \mu\left(\bigcup_{i=1}^{k-1} E_i\right)$$

terzo passo: Numerabile additività

$$\{E_i\} \subset \eta_\mu, E_i \cap E_j = \emptyset \ \forall i \neq j$$

$$\sum_{i=1}^{+\infty} \mu(E_i) \ge \mu\left(\bigcup_{i=1}^{+\infty} E_i\right) \ge \mu\left(\bigcup_{i=1}^{k} E_i\right) = \sum_{i=1}^{k} \mu(E_i) \quad \forall k.$$

$$\Rightarrow \sum_{i=1}^{+\infty} \mu(E_i) \ge \mu(\bigcup_{i=1}^{+\infty} \mu(E_i) \ge \mu\left(\bigcup_{i=1}^{+\infty} E_i\right) \ge \sum_{i=1}^{+\infty} \mu(E_i).$$

Osserviamo che $\{E_i\}_{i\in\mathbb{N}}\subset\eta_{\mu}$, disgiunti

$$F \subseteq X$$

$$\Rightarrow \mu\left(F \cap \bigcup_{i=1}^{k} E_i\right) = \mu\left(\bigcup_{i=1}^{k} F \cap E\right)$$

$$\begin{array}{l} e \ \mu(F \cap \bigcup_{i=1}^{+\infty} E_i = \sum_{i=1}^{+} \mu(F \cap E_i) \\ quardo \ passo \\ \{E_i\}_{i \in \mathbb{N}} \in \eta_{\mu} \\ E_1 \subseteq E_2 \subseteq \dots \\ \Rightarrow \mu(\bigcup_{i=1}^{+\infty} E_i = \lim_{i \to +\infty} \mu(E_i) \\ \bigcup_{i=1}^{+\infty} E_i = E_1 \cup E_2 \setminus E_2 \cup E_{\dots \cup 2 \setminus E_2 \dots \cup E_k \setminus E_{k-1}} \\ \bigcup_{i=1}^{+\infty} E_i = E_1 \cup \bigcup_{i=2}^{+\infty} E - iE_{i-1} \\ \{E_1, E_i \setminus E_{i-1}\}_{i \geq 2} \\ \text{successione d instemi d isgiunti e m isurabili.} \\ E_i \setminus E_{i+1} = E_i \cap (E_{i-1})^c \\ \text{per il $passo 3$} \ \mu\left(\bigcup_{i=1}^{+\infty} E_i\right) = \mu(E_1) + \sum_{i=2}^{+\infty} \mu(E_i \setminus E_{i-1}) \\ = \mu(E_1) + \sum_{i=2}^{+\infty} (\mu(E_i) - \mu(E_{i-1})) \\ E_i = E_{i-1} \cup E_i \setminus E_{i-1} \\ \Rightarrow \mu(E_i) = \mu(E_{i-1}) + \mu(E_i \setminus E_{i-1}) \\ \mu\left(\bigcup_{i=1}^{+\infty} E_i\right) = \mu(E_1) + \lim_{k \to +\infty} \sum_{i=2}^{k} (\mu(E_i) - \mu(E_{i-1})). \\ = \mu(E_2) + \lim_{k \to +\infty} (\mu(E_2) - \mu(E_1) + \mu(E_3) - \mu(E_2) + \dots + \mu(E_k) - \mu(E_{k-1}). \\ \text{Inottre:} \\ \text{se } E_1 \subseteq \dots \quad \{E_i\}_{i \in \mathbb{N}} \subset \eta_{\mu} \\ \forall F \subseteq X \\ \mu\left(F \cap \bigcup_{i=1}^{+\infty} E_i\right) = \lim_{i \to +\infty} \mu(F \cap E_i) \\ \text{Quinto $passo} \\ \{E_i\}_{i \in \mathbb{N}} \subset \eta_{\mu} \\ E_2 \supseteq E_2 \supseteq \dots \quad \mu(E_1) < +\infty \\ E_1 \supseteq_2 \subseteq_1 \setminus E_3 \subseteq \dots \\ \mu\left(\bigcup_{i=1}^{+\infty} E_i E_i\right) = \lim_{i \to +\infty} \mu(E_1 \setminus E_i) = \lim_{i \to +\infty} (\mu(E_1) - \mu(E_1)) = \mu(E_1) - \lim_{i \to +\infty} \mu(E_i). \\ \text{se } S_1 \subseteq X \\ \mu(F \cap \bigcup_{i=1}^{+\infty} E_i) = \lim_{i \to +\infty} \mu(E_1 \setminus E_i) = \lim_{i \to +\infty} (\mu(E_1) - \mu(E_1)) = \mu(E_1) - \lim_{i \to +\infty} \mu(E_1) = \mu(E_1) = \lim_{i \to +\infty} \mu(E_1) = \mu(E_1) = \lim_{i \to +\infty} \mu(E_1) = \lim_{i \to +\infty} \mu(E_1) = \mu(E_1) = \lim_{i \to +\infty} \mu(E_1) = \lim_{i \to +\infty} \mu(E_1) = \mu(E_1) =$$

Lezione 07 Analisi Reale

Federico De Sisti 2025-03-18

0.1 σ -algebra

Definizione 1

X insieme non vuoto, Una famiglia $\eta \subseteq P(X)$ si dice σ -algebra su X se

- 1. $\emptyset, X \in \eta$
- 2. $E \in \eta \Rightarrow E^c \in \eta$
- 3. $\{E_i\} \subseteq \eta \Rightarrow \bigcup_{i=1}^{+\infty} E_i \in \eta$

Osservazione

Se η è σ -algebra e $\{E_i\} \subseteq \eta \Rightarrow \bigcap_{i=1}^{+\infty} E_i \in \eta$ $E_i \in \eta \to E_i^c \in \eta \quad \forall i$ $\Rightarrow \bigcup_{i=1}^{+\infty} E_i^c \in \eta \Rightarrow (\bigcup_{i=1}^{+\infty} E_i^c)^c \in \eta$

Una misura individua una σ -algebra

In generale

se μ è una misura su X

$$\eta_{\mu} = \{ R \subseteq X : E \in \mu - \text{misurabile} \}.$$

è una σ -algebra

In particolare in $\mathbb R$ c'è la σ -algebra di Lesbegue = famiglia degli insiemi misurabili secondo Lesbegue

Definizione 2

Sia X un insieme non vuoto e sia $F \subset P(X)$ si chiama σ -algebra generata da F la σ -algebra data da

$$\Sigma_F = \bigcap_{\substack{\eta \ \hat{e} \ algebra\\ F \subseteq \eta}} \eta.$$

la più piccola σ -algebra che contiene F

Definizione 3

Se (X, ι) è uno spazio topologico la σ -algebra generata da ι si dice σ -algebra di Borel

Vogliamo ora indagare sulla σ -algebra di Lesbegue in $\mathbb{R} \eta_m = \eta$

Proposizione 1

Se $I \subseteq \mathbb{R}$ è un intervallo $\Rightarrow I \in \eta$ (è misurabile secondo Lesbegue)

Dimostrazione

 $I \subseteq \mathbb{R} \ intervallo \Rightarrow \ \forall F \subseteq \mathbb{R} \ m(F) \geq m(F \cap I) + m(F \setminus I) \ \textit{Primo caso}$

Supponiamo $I = (a, +\infty) \ a \in \mathbb{R}$

Sia $F \subseteq \mathbb{R}$, con $m(F) < +\infty$

 $\forall \varepsilon > 0 \ \exists \{I_i\} \ successione \ di \ intervalli \ tale \ che \ F \subseteq \bigcup_{i=1}^{+\infty} I_i \ e \ m(F) \le \sum_{i=1}^{+\infty} |I_i| < 0$ $m(F) + \varepsilon$

$$m(F) + \varepsilon > \sum_{i=1}^{+\infty} |I_i| = \sum_{i=1}^{+\infty} (|I_i \cap I| + |I \setminus I|)$$

$$=\sum_{i=1}^{+\infty}|I_i\cap I|+\sum_{i=1}^{+\infty}|I_i\setminus I|\geq m(F\cap I)+m(F\setminus I).$$

 $e \ per \ \varepsilon \to 0 \ si \ ha \ m(F) \ge m(F \cap I) + m(F \setminus I) \ I_i = (\alpha_i, \beta_i) \ |I_i| = \beta_i - \alpha_i = 0$ $\beta_i - a + a - \alpha_i = |I_i \cap I| + |I_i \cap I|$ $F \subseteq \bigcup_{i=1}^{+\infty} I_i$

 $F \cap I \subseteq \bigcup_{i=1}^{+\infty} (I_i \cap I)$ $F \setminus I \subseteq \bigcup_{i=1}^{+\infty} (I_i \setminus I)$

Quindi:

Intervalli del tipo $I=(a,+\infty)\in\eta\to I=(-\infty,a]\in\eta$

$$\rightarrow (a, b] \in \eta$$

$$\Rightarrow (-\infty, a) \in \eta$$

$$\Rightarrow (a,b) \in \eta$$

⇒ vale anche per gli intervalli chiusi

tutti gli intervalli sono misurabili, quindi anche tutti gli aperti.

Teorema 1

Ogni aperto $a \subseteq \mathbb{R}$ è unione al più numerabile di intervalli aperti disgiunti

Corollario 1

 σ -algebra di Borel in $\mathbb{R} = \beta \subseteq \eta = \sigma$ -algebra di Lesbegue

L'inclusione puo essere stretta perché F insieme misurabili con Lesbegue e non con Borel

Quindi in \mathbb{R} si ha:

 $B \subseteq \eta \subsetneq P(R)$, che è stretta perché e come controesempio abbiamo l'insieme di Vitali perchè non vale l'additività $V \in P(\mathbb{R}) \setminus \eta$

Teorema 2 (Caratterizzazione sui misurabili secondo Lesbegue) $Sia\ E \subseteq \mathbb{R}\ sono\ equivalenti$

1.
$$E \in \eta$$

2.
$$\forall \varepsilon > 0 \ \exists A_{\varepsilon} \subseteq \mathbb{R} \ aperto \ t.c. \ E \subseteq A_{\varepsilon} \ e \ m(A_{\varepsilon} \setminus E) < \varepsilon$$

3.
$$\exists \ F \in B \ (F \ \grave{e} \ intersezione \ numerabile \ di \ aperti) \ tali \ che \ E \subseteq F \ e \ m(F \setminus E) = 0$$

4.
$$\forall \varepsilon > 0 \; \exists \; C_{\varepsilon} \; chiuso \; tale \; che \; C_{\varepsilon} \subseteq E \; e \; m(E \setminus C_{\varepsilon}) < \varepsilon$$

5.
$$\exists G \in B$$
 (G è unione numerabile di chiusi) tale che $G \subseteq E$ e $m(E \setminus G) = 0$

```
Dimostrazione
1) \Rightarrow 2)
Hp E \in \eta
 Primo caso: m(E) < +\infty
\forall \varepsilon > 0 \exists \{I_i\} successione di intervalli aperti tali che E \subseteq \bigcup_{i=1}^{+\infty} I_i^{\varepsilon} (l'insieme A_{\varepsilon}
 aperto) e \sum_{i=1}^{+\infty} |I_i^{\varepsilon}| < m(E) + \varepsilon
E \in \eta \Rightarrow m(A_{\varepsilon}) = m(A_{\varepsilon} \cap E) + m(A_{\varepsilon} \setminus E) =
= m(E) + m(A_{\varepsilon} \setminus E)
\Rightarrow m(A_{\varepsilon}) - m(E) = m(A_{\varepsilon} \setminus E)
 quindi
quantit
(A_{\varepsilon} \setminus E) = m(A_{\varepsilon}) - m(E) \leq \sum_{i=1}^{+\infty} m(I_i^{\varepsilon}) - m(E) = \sum_{i=1}^{+\infty} |I_i^{\varepsilon}| - m(E) < \varepsilon - Secondo caso: m(E) = +\infty
E = \bigcup_{n=1}^{+\infty} E \cap (-n, n)
E \in \eta \Rightarrow \forall nE \cap (-n, n) = E_n \in \eta, \eta(E_n) < +\infty
 applicando il primo caso
\forall n, \ \forall \varepsilon
\exists A_n^{\varepsilon} \ aperto \ tale \ che \ A_n^{\varepsilon} \geq E_n \ e \ m(A_n^{\varepsilon} E_n) < \varepsilon
A_{\varepsilon} = \bigcup_{n=1}^{+\infty} A_n^{\varepsilon} \supseteq \bigcup_{n=1}^{+\infty} E_n = E
m(A_{\varepsilon} \setminus E) = m(\bigcup_{n=1}^{+\infty} (A_n^{\varepsilon} \setminus E)) \le m(\bigcup_{n=1}^{+\infty} (A_n^{\varepsilon} \setminus E_n)) \le \sum_{n=1}^{+\infty} m(A_n^{\varepsilon} \setminus E_n) \le \sum_{n=1}^{+\infty} \frac{\varepsilon}{2^n} = 0
Se è misurabile c'è un aperto che lo contiene e la misura della differenza è finita
2) \Rightarrow 3)
Hp \ \forall > 0, \exists A_{\varepsilon} \ aperto, \ A_{\varepsilon} \supseteq E \ e \ m(A_{\varepsilon} \setminus E) < \varepsilon
 Th \exists F \in B \ tale \ che \ F \supseteq E \ e \ m(F \setminus E) = 0
Per \varepsilon = \frac{1}{n}, \forall n \ge 1 \exists A_n \text{ aperto } t.c. A_n \supseteq E \text{ } e \text{ } m(A_nE) < \frac{1}{n}

F = \bigcap_{n=1}^{+\infty} A_n \in B, \quad F \supseteq E \text{ } e \text{ } m(F \setminus E) \le m(A_n \setminus E) \le \frac{1}{n}

\Rightarrow n \to +\infty \quad m(F \setminus E) = 0
3) \Rightarrow 1)
Hp \ \exists F \in B : \ F \supseteq E \ e \ m(FE) = 0
E = F(F \setminus E) = F \cap (F \setminus E)^c \in \eta
1) \Rightarrow 4)
E \in \eta \Rightarrow E^c \in \eta \Rightarrow \forall \varepsilon > 0 \exists A_{\varepsilon} \ aperto
tale che A_{\varepsilon} \supseteq E^c e m(A_{\varepsilon} \setminus E^c) < \varepsilon
C_{\varepsilon} = A_{\varepsilon}^{c} è chiuso
E^{c} \subseteq A_{\varepsilon} \Rightarrow E \supseteq A_{\varepsilon}^{c} = C_{\varepsilon}
m(E \setminus C_{\varepsilon}) = m(E \cap C^{c}) = m(E \cap A_{\varepsilon}) = m(A_{\varepsilon} \setminus E^{c}) < \varepsilon
```

4)
$$\Rightarrow$$
 5)
 $Per \ \varepsilon = \frac{1}{n} \ \forall \in \mathbb{N}$
 $\exists C_n \ chiuso, \ C_n \subseteq E \ tale \ che \ m(E \setminus C_n) < \frac{1}{n}$

$$G = \bigcup_{n=1}^{+\infty} C_n \in B, \quad G \subseteq E.$$

$$m(E \setminus C) \le m(E \setminus C_n) \le \frac{1}{n} \quad \forall n$$

 $per \ n \to +\infty m(E \setminus G) = 0$

5)
$$\Rightarrow$$
 1)
Hp: $\exists G \in B \text{ tale che } G \subseteq E \text{ e } m(E \setminus G) = 0$
 $\Rightarrow E = G \cup (E \setminus G) \in \eta \text{ perch\'e unione di misurabili}$

Lezione 8 Analisi Reale

Federico De Sisti 2025-03-18

0.1 Approccio agli integrali di Lesbegue

La somma infinitesima viene fatta orizzontalmente piuttosto che verticalmente.

Definizione 1

Sia X un insieme non vuoto e η una σ -algebra in X. ((X, η) spazio misurabile) Sia X uno spazio topologico, una funzione $f: X \to Y$ si dice misurabile se $f^{-1}(A) \in \eta \ \forall A \subseteq Y$ A aperto

Esempi

1) se $\eta = P(X) \Rightarrow$ ogni funzione $f: X \to Y$ è misurabile Se $\eta = \{\emptyset, X\} \Rightarrow f: X \to Y$ è η -misurabile $\Leftrightarrow f$ è costante.

2) Se X è spazio topologico e se $\eta \supseteq B(Borel)$

 $f: X \to Y$ continua $\Rightarrow f$ misurabile

3) $X = \mathbb{R}$ con topologia euclidea

$$f(x) = \gamma_E(x) = \begin{cases} 1 & \text{se } x \in E \\ 0 & \text{se } x \notin E \end{cases}$$

 $E \subseteq X$

 $A \subseteq \mathbb{R}$ aperto

$$f^{-1}(A) = \begin{cases} X & \text{se } 0, 1 \in A \\ E^c & \text{se } 0 \in A, 1 \not\in A \\ E & \text{se } 0 \not\in A, 1 \in A \end{cases} \in \eta \Leftrightarrow E \in \eta$$

$$\emptyset & \text{se } 0, 1 \not\in A$$

Proposizione 1

Dimostrazione

Difficult allows
$$f^{-1}(\emptyset) = \emptyset \in \eta \Rightarrow \emptyset \in S$$

$$f^{-1}(Y) = X \in \Rightarrow Y \in S$$

$$F \in S \text{ ovvero } f^{-1}(F) \in \eta$$

$$f^{-1}(F^c) = f^{-1}(Y \setminus F) = X \setminus f^{-1}(F) = f^{-1}(F)^c \in \eta \Rightarrow F^c \in S$$
Facciamo vedere che S è chiusa per le unioni numerabili e abbiamo finito.
$$\{F_I\} \subset S \text{ ovvero } f^{-1}(F_i) = \eta \quad \forall_i$$

$$\Rightarrow f^{-1}(\bigcup_{i=1}^{+\infty} F_i) = \bigcup_{i=1}^{+\infty} f^{-1}(F_i) \in \eta = \bigcup_{i=1}^{+\infty} F_i \in S$$

Proposizione 2

Sia (X, η) uno spazio misurabile $f: X \to \mathbb{R}$

Allora f è misurabile se e solo se

 $\{x \in X : f(x) > t\} \in \eta, \in \mathbb{R}$

 $\Leftrightarrow \{x \in X : f(x) \ge t\} \ \forall t \in \mathbb{R}$

 $\Leftrightarrow \{x \in X : f(x) < t\} \in \eta, \in \mathbb{R}$

 $\Leftrightarrow \{x \in X : f(x) \le t\} \ \forall t \in \mathbb{R}$

Dimostrazione

 $f \ e \ misurabile \Leftrightarrow f^{-1}(B) \in \eta \ \forall B \subseteq \mathbb{R} \ B \ boreliano$

$$\Leftrightarrow f^{-1}((t,+\infty)) \in \eta \quad \forall t \in \mathbb{R}$$

$$\Leftrightarrow f^{-1}([t,+\infty)) \in \eta \quad \forall t \in \mathbb{R}$$

$$\Leftrightarrow f^{-1}((-\infty,t)) \in \eta \quad \forall t \in \mathbb{R}$$

$$\Leftrightarrow f^{-1}((-\infty,t]) \in \eta \quad \forall t \in \mathbb{R}$$

Proposizione 3

Sia (X, η) uno spazio misurabile

1. Se $f,g:X\to\mathbb{R}$ sono misurabili $\Rightarrow f+g, \lambda f \quad \lambda\in\mathbb{R}, \ f\cdot g, rac{f}{g} \quad se \ g\neq 0, |f|, \min\{f,g\}, \max\{f,g\}$ sono misurabili

2. Se $\{f_k\}$ successione di funzioni misurabili $\Rightarrow \sup_{k} f_k$, $\inf f_k$, $\limsup_{k \to \infty} f_k$, $\liminf_{k \to +\infty} f_k$ sono misurabili In particolare, se $\exists \lim_{k\to\infty} f_k(x) = f(x) \Rightarrow f \ \hat{e} \ misurabile$

Dimostrazione

 $f,g:X\to\mathbb{R}$ misurabili

$$t \in \mathbb{R} \ \{f+g>t\} = \bigcup_{\substack{r,s \in \mathbb{Q} \\ r+s=t}} \{f>r\} \cap \{g>s\} \in \eta \ \textit{perch\'e} \ f,g \ \textit{misurabili}$$

se x tale che $f(x) + g(x) > t \Rightarrow f(x) > t = g(x)$

$$\Rightarrow \exists r \in \mathbb{Q} \ tale \ che \ f(x) > r > t - q(x)$$

quindi $g(x) > t - r \rightarrow s \in \mathbb{Q}$ tale che g(x) > s > t - r

$$f, g, X \to \mathbb{R} \text{ numerabili, } \lambda \in \mathbb{R}, f \text{ misurabile}$$

$$\Rightarrow \{f > t'\} = \begin{cases} \{f > \frac{t}{\lambda}\} & \text{se } \lambda > 0 \\ \{f < \frac{t}{\lambda}\} & \text{se } \lambda < 0 \end{cases}$$

f misurabile

$$\begin{cases} f & \text{misurable} \\ \{f^2 > t\} = \begin{cases} X & \text{set} < 0 \\ \{f > \sqrt{t}\} \cup \{f < -\sqrt{t}\} & \text{se} \ t \ge 0 \end{cases}$$
 sef,gmisurabili
$$\Rightarrow (f+g)^2, f^2, g^2 \text{ sono misurabili}$$

$$\Rightarrow fg = \frac{1}{2}[(f+g)^2 - f^2 - g^2]$$

$$\Rightarrow fg = \frac{1}{2}[(f+g)^2 - f^2 - g^2]$$

f misurabile

 $f^+ = \max\{f(x), 0\} = f(x)$ Guarda sta dimsotrzione usl libro o ricopila dalle foto perchè è assolutametne insensato

Sia (X, η) spazio misurabile

se η è la σ -algebra di misurabili di misura μ allora è vero che tutti gli insiemi di misura nulla appartengono a η_μ

Proposizione 4

 $Sia~(X,\eta,\mu)~spazio~di~misura$

(μ è una misura su X e η è la σ 0algebra di μ misurabili)

Sia $f: X \to \mathbb{R}$ misurabile

 $e \ sia \ g: X \rightarrow \mathbb{R} \ tale \ che \ f = g \ quasi \ ovunque \ (ovvero \ m(\{f = g\}) = 0)$

 \Rightarrow anche g è μ -misurabile

Dimostrazione

 $\forall t \in \mathbb{R}$

 $\{g>t\}=\{g>t\}\cap\{g\neq f\}\cup\{g>t\}\setminus\{g\neq f\}$

Il primo insieme è contenuto in $\{g \neq f\}$ quindi ha misura nulla

 $\Rightarrow \in \eta_{\mu}$

il secondo insieme è $\{f>t\}\cap\{f=g\}\in\eta$ perché sono un misurabile e il complementare di un misurabile.

Corollario 1

se $f_k: X \to \mathbb{R}$ sono misurabili k > 1 ed esiste $\lim_{k \to \infty} f(x)$ per quasi ogni $x \in X$

 \Rightarrow la funzione limite puntuale è definita a meno di un insieme di misura nulla ed è misurabile.

Dimostrazione

 $X_1 = \{x \in X \mid \exists \lim_{k \to +\infty} f_k(x)\} = \{x \in X \mid \limsup_{k \to +\infty} f_k(x) = \liminf_{k \to +\infty} f_k(x)\}$ è misurabile

 $\mu(X \setminus X_1) = 0$

$$\tilde{f}_k(x) = \begin{cases} f_k(x) & se \ x \in X_1 \\ 0 & se \ x \notin X_1 \end{cases}.$$

è misurabile $\forall k \ perché \ \tilde{f}_i = f_i \ quasi \ ovunque$

$$\exists \lim_{k \to +\infty} \tilde{f}_k(x) = f_k(x) \quad \forall x$$
quindi è misurabile

0.2Funzione di Lesbegue-Vitali o funzione di Cantor o scala del diavolo

$$L:[0,1]\to [0,1].$$

 $L:[0,1]\to[0,1].$ $\forall n\ [0,1]=\bigcup_{i=1}^nJ_i^n\cup\bigcup_{k=1}^{2^{k-1}}I_i^{(k)}$ gli J sono intervalli chiusi, disgiunti di ampiezza $\frac{1}{3^n}$, le I sono di ampiezza $\frac{1}{3^k}$

$$L_n(x) = \begin{cases} 0 & \text{se } x = 0\\ \text{lineare con pendenza } (\frac{3}{2})^2 & \text{se } x \in \bigcup_{i=1}^{2^n} J_i^n\\ \text{costante} & \text{se } x \in [0, 1] \setminus \bigcup_{i=1}^{2^n} J_i^n \end{cases}.$$

Lezione 9 Analisi Reale

Federico De Sisti 2025-03-19

0.1 Funzione di Lebesgue-Vitali

 $L: [0,1] \to [0,1] \ n=1 \ [0,1] = [0,1/3] \cup [2/3,1] \cup (1/3,2/3)$

Al primo passo abbiamo questa situazione, gli intervalli restanti (chiusi) sono gli
$$J_i^1$$
 e quelli rimossi (aperti) sono gli J_i^1 al passo $n=2$ abbiamo $[0,1]=J_1^2\cup J_2^2\cup J_1^2\cup J_1^2\cup J_{12}\cup J_1^2$ In generale al passo n -esimo abbiamo $[0,1]=\bigcup_{i=1}^{2^n}J_i^n\cup\bigcup_{i=1}^{2^n-1}I_i^n$ con $|J_i^n|=\frac{1}{3^n}$ e $|J_i^n|=\frac{1}{2^n}$ [0 se $x=0$ $L_1(x)=\begin{cases} 0 \text{ se } x=0\\ \text{lineare con pendenza}/2 \text{ su } J_1^1\cup J_2^1\\ \text{costante suI}_1^1 \end{cases}$ $L_2(x)=\begin{cases} 0 \text{ se } x=0\\ \text{lineare con pendenza}(3/2)^2 \text{ su } \bigcup_{i=1}^4J_i^2\\ \text{costante altrimenti} \end{cases}$
$$L_n(x)=\begin{cases} 0 \text{ se } x=0\\ \text{lineare con pendenza}(3/2)^n \text{ su } \bigcup_{i=1}^{2^n}J_i^n\\ \text{costante altrimenti} \end{cases}$$

$$\sup_{[0,1]}|L_{n+1}(x)-L_n(x)|,$$

$$|L_{n+1}(x)=L_n(x)| \forall x\in[0,1]\setminus\bigcup_{i=1}^2J_i^n.$$

$$=\sup_{x\in[0,\frac{1}{3^n}]}|L_{n+1}(x)-L_n(x)|=L_{n+1}(\frac{1}{3^{n+1}})-L_n(\frac{1}{3^{n+1}}).$$

$$=\left(\frac{3}{2}\right)^{n+1}\frac{1}{3^{n+1}}-\left(\frac{3}{2}\right)^n\frac{1}{3^{n+1}}.$$

$$=\frac{1}{2^{n+1}}-\frac{1}{2^n}\frac{1}{3^n+1}-\left(\frac{3}{2}\right)^n\frac{1}{3^{n+1}}.$$

$$=\frac{1}{2^{n+1}}-\frac{1}{2^n}\frac{1}{3^n+1}-\left(\frac{3}{2}\right)^n\frac{1}{3^n+1}.$$

$$=\frac{1}{2^{n+1}}-\frac{1}{2^n}\frac{1}{3^n+1}-\left(\frac{3}{2}\right)^n\frac{1}{3^n+1}.$$

$$=\frac{1}{2^{n+1}}-\frac{1}{2^n}\frac{1}{3^n+1}-\left(\frac{3}{2^n}\right)^n\frac{1}{3^n+1}.$$

$$=\frac{1}{2^{n+1}}-\frac{1}{2^n}\frac{1}{3^n+1}-\left(\frac{1}{2^n}\frac{1}{3^n+1}-\left(\frac{1}{2^n}\frac{1}{3^n+1}-\left(\frac{1}{2^n}\frac{1}{3^n+1}-\left(\frac{1}{2^n}\frac{1}{3^n+1}-\left(\frac{1}{2^n}\frac{1}{3^n+1}-\left(\frac{1}{2^n}\frac{1}{3^n+1}-\left(\frac{1}{2^n}\frac{1}{3^n+1}-\left(\frac{1}{2^n}\frac{1}{3^n+1}-\left(\frac{1}{2^n}\frac$$

L è localmente costante su $\bigcup_{n=1}^{+\infty}\bigcup_{k=1}^{2^{n-1}}I_k^m$ $x\in\bigcup_{n=1}^{+\infty}\bigcup_{j=1}^{2^{n-1}}I_k^n$ $\Rightarrow \exists m, \exists k\ x\in I_k^n\ L=\text{costante in }I_k^n\Rightarrow L'(x)=0$ $\Rightarrow L$ è derivabile quasi ovunque (in $[0,1]\setminus C$) e L'=0 quasi certamente.

$$\int_0^1 L'(x)dx = 0 \neq L(1) - L(0).$$

Integrale di Riemann perché L' è discontinua in C, non funziona quindi il teorema fondamentale del calcolo integrale

Proposizione 1
$$L(C) = [0,1] \ \forall x \in X \ x = \sum_{i=1}^{+\infty} \frac{x_i}{3^i}, \ x_i \in \{0,2\}$$
 $L(x) = \sum_{i=1}^{+\infty} \frac{x_i/2}{2^i}$

Dimostrazione

Primo caso $x \in C$ tale che $\exists n \geq 1$ $x = \sum_{i=1}^{n} \frac{x_i}{e^i}$ Usiamo l'induzione su n se $n = 1 \Rightarrow x = 0$ oppure $x = \frac{2}{3} \Rightarrow L(0) = 0L(2/3) = L_1(2/3) = \frac{1}{2} \Rightarrow ok$ Supponiamo vero per $L(\sum_{n=1}^{i=1} \frac{x_i}{3^i}) = \sum_{n=1}^{i=1} \frac{x^i/2}{2^i}$ e sia $x = \sum_{i=1}^{n} \frac{x_i}{3^i}$, con $x_n = 2$ $L(x) = L_n(x) = L_n(x - \frac{1}{3^n}) = L_n(x - \frac{2}{3^n}) + (\frac{3}{2})^n \frac{1}{3^n}$ $L(x + \frac{2}{3^n}) + \frac{1}{2^n} = L(\sum_{i=1}^{n-1} \frac{x_i}{3^i}) + \frac{1}{2^n} = \sum_{i=1}^{n-1} \frac{x_i/2}{2^i} + \frac{x/2}{2^n} = \sum_{i=1}^{n} \frac{x/2}{2^i}$ secondo caso $x \in C \Rightarrow x = \sum_{i=1}^{+\infty} \frac{x_i}{3^i} = \lim_{n \to +\infty} \sum_{i=1}^{n} \frac{x_i}{3^i}$ è continua

$$\Rightarrow L(x) = \lim_{n \to +\infty} L(\sum_{i=1}^{n} \frac{x_i}{3^i}) = \lim_{n \to +\infty} \sum_{i=1}^{n} \frac{x_i/2}{2^i} = \sum_{i=1}^{+\infty} \frac{x_i/2}{2^i}.$$

$$L(C) = [0, 1]$$

 $Quindi\ L\ manda\ un\ insieme\ di\ misura\ nulla\ in\ un\ insieme\ di\ misura\ positiva.$

Consideriamo

$$\begin{array}{l} \phi(x) = L(x) + x \\ \phi : [0,1] \rightarrow [0,2] \ strettamente \ crescente \\ \exists \phi^{-1} : [0,2] \rightarrow [0,1] \ strettamente \ crescente, \ con \ immagine \ in \ un \ intervallo \\ \Rightarrow continua \\ \Rightarrow \phi \ \grave{e} \ un \ omomorfismo \ di \ [0,1] \ in \ [0,2] \ \phi([0,1]) = \phi(C \cup \bigcup_{n=1}^{+\infty} \bigcup_{i=1}^{2^{n-1}} I_i^n) \\ = \phi(C) \cup \bigcup_{i=1}^{+\infty} \phi(I_i^n) \ insiemi \ misurabili \ e \ disgiunti \\ \phi(x) = 2 = m(\phi([0,1]) = m(\phi(C)) + \sum_{n=1}^{+\infty} \sum_{i=1}^{2^{n-1}} m(\phi(I_i^n)) \\ x \in I_i^n \ \phi(x) = x + L(x) = x + a_i^n \Rightarrow \phi(I_i^n)) = I_i^n + a_i^n \\ \Rightarrow m(\phi(I_i^n)) = |I_i^n| = \frac{1}{3^n} \\ = m(\phi(C)) + \frac{1}{2} \sum_{n=1}^{+\infty} (\frac{2}{3})^2 \\ = m(\phi(C)) + 1 \end{array}$$

$$\begin{split} & \Rightarrow m(\phi(C)) = 1 \\ & m(\phi(C)) > 0 \\ & \Rightarrow \exists V \subset \phi(C) \text{ tale che } V \not \in \eta \\ & \text{ma } E = \phi^{-1}(V) \subset C \Rightarrow m(E) = 0 \Rightarrow E \in \eta \\ & \text{quindi } E \in \eta \text{ ma } \phi(E) \not \in \eta \end{split}$$

Proposizione 2

La σ -algebra η non è chiusa per omeomorfismi continui

Dimostrazione

$$E \in \eta \ ma \ \phi(E) = V \not\in \eta$$

$$E \in \eta \ se \ E \in B \Rightarrow \phi(E) = (\phi^{-1})^{-1}(E)$$

$$\phi^{-1} \ \dot{e} \ continua \Rightarrow \phi^{-1} \ \dot{e} \ misurabile \ secondo \ Lesbegue$$

$$\Rightarrow (\phi)^{-1}(E) \in \eta \quad \forall E \in B$$

$$da \ capire \ come \ finisce \ sta \ roba \ (\ non \ so \ manco \ se \ questa \ sia \ la \ dimostrazione)$$

Proposizione 3

 $\eta \setminus B \neq \emptyset$

Lezione 10 Analisi Reale

Federico De Sisti 2025-03-25

0.1 Continuando sulle funzioni misurabili

Definizione 1 (Funzione semplice)

Sia (X,A,μ) uno spazio di misura. Una funzione semplice in X è una funzione del tipo

$$s(x) = \sum_{i=1}^{N} c_i \chi_{E_i}(x), \ con \ c_i \in \mathbb{R}, N \ge 1, E_i \in A.$$

 $con E_i \cap E_j = \emptyset \ se \ i \neq j \ e \bigcup_{i=1}^N E_i = X$

Teorema 1

Sia (X,A,μ) uno spazio di misura, e $f:X\to [-\infty,+\infty]$ Allora f misurabile $\Leftrightarrow \exists \{s_m\}$ successione di funzioni semplici tale che $s_m(x)\xrightarrow{m\to +\infty} f(x) \ \forall x\in X$ Inoltre

- 1. se $f \ge 0 \Rightarrow si \ può \ scegliere \ \{s_m\} \ tale \ che \ s_m(x) \le s_{m+1}(x) \quad \forall x \in X, \forall m \ge 1.$
- 2. se $f \ \dot{e} \ limitata \Rightarrow s_m \rightarrow f \ uniformemente in X$.

Dimostrazione

- (⇐) ovvia, perché f è limite puntuale di una successione di funzioni misurabili
- (\Rightarrow) Primo caso: $f \geq 0$, limitata, si può supporte $0 \leq f(x) \leq 1 \ \forall x \in X$

$$\begin{array}{l} \forall n \geq 1 \ [0,1) = \bigcup_{k=1}^{2^n} \left[\frac{k-1}{2^n}, \frac{k}{2^n}\right) \\ E_k^n = \left\{\frac{k-1}{2^n} \leq f(x) < \frac{k}{2^n}\right\} \quad k = 1, \dots, 2^n \\ f \ \textit{misurabile} \Rightarrow E_k^n \ \textit{misurabile} \ \forall k = 1, \dots, 2^n, \ \forall n \geq 1 \\ E_k^n \cap E_j^n = \emptyset \ \textit{se} \ i \neq j \ \textit{e} \ X = \bigcup_{k=1}^{2^n} E_k^n \end{array}$$

$$s_n(x) = \sum_{k=1}^{2^n} \frac{k-1}{2^n} \chi_{E_k^n}(x)$$

 $\forall x \in X, \forall n \geq 1 \quad \exists ! 1 \leq k \leq 2^n \text{ tale che } x \in E_k^n \\ \Rightarrow 0 \leq s_n(x) = \frac{k-1}{2^n} \leq f(x) \\ x \in E_k^n \Leftrightarrow \frac{k-1}{2^n} f(x), \frac{k}{2^n} \\ \frac{2(k-1)}{2^{n+1}} \leq f(x) < \frac{2k}{2^{n+1}} \\ \Rightarrow sono \ possibili \ due \ casi$

$$s_n(x) = \frac{2k-2}{2^{n+1}} \iff x \in E_{2k-1}^{n+1} \Leftrightarrow \frac{2k-2}{2^{n+1}} \le f(x) < \frac{2k-1}{2^{n+1}}.$$

oppure

$$s_n(x) = \frac{2k-1}{2^{n+1}} \Leftarrow x \in E_{2k-1}^{n+1} \Leftrightarrow \frac{2k-1}{2^{n+1}} \le f(x) < \frac{2k}{2^{n+1}}.$$

$$\begin{aligned} & nel \; caso \; 1 \\ & s_n(x) = \frac{k-1}{2^n} = s_{n+1}(x) \\ & nel \; caso \; 2 \\ & s_n(x) = \frac{k-1}{2^n} < \frac{2k-1}{2^{n+1}} = s_{n+1}(x) \\ & \forall x \in X \; \exists 11 \leq k \leq 2^{n+1} \\ & tale \; che \; x \in E_k^n \\ & \Leftrightarrow s_n(x) \leq f(x) < \frac{k}{2^n} \\ & 0 \leq f(x) - s_n(x) < \frac{1}{2^n} \\ & \sup_{x \in X} |f(x) - s(x)| \leq \frac{1}{2^n} \\ & \Rightarrow s_m \to f \; uniformemete \; in \; X \\ (\Rightarrow) \; secondo \; caso: \; f \geq 0 \\ & \forall n \geq 1 \\ & E_I^n = \{f < n\}, \quad E_{II}^n = \{f \geq n\}. \\ & E_{I,k}^n = \{\frac{k-1}{2^n} \leq f < \frac{k}{2^n} \} \\ & \bigcup_{k=1}^{2^n} E_{I,k}^n = E_I^n \end{cases} \\ & s_n(x) = n\chi_{E_{II}^n}(x) + \sum_{k=1}^{2^n} \frac{k+1}{2^n}\chi_{E_{I,k}^n}(x). \\ & E_{II}^n \cup \bigcup_{k=1}^{2^n} E_{I,k}^n = X. \\ & s_n(x) \leq s_{n+1}(x) \; \forall x \; (come \; nel \; caso \; 1) \\ & Se \; f(x) = +\infty \Rightarrow f(x) \geq m \; \forall m \\ & \Leftrightarrow x \in E_{II}^n \\ & \Rightarrow s_n(x) = n \to +\infty = f(x) \\ & Se \; f(x) < +\infty \Rightarrow \exists \bar{n} \; tale \; che \; f(x) \leq \bar{n} \\ & \Rightarrow x \in E_I^n = \bigcup_{k=1}^{2^n} E_{I,k}^n \\ & s_n(x) = \frac{k-1}{2^n} \leq f(x) < \frac{k}{2^n} \\ & \Rightarrow 0 \leq f(x) - s_n(x) < \frac{1}{2^n} \; \forall n \geq \bar{n} \\ & la \; convergenza \; non \; \dot{e} \; uniforme \; perche \; \bar{n} \; dipende \; da \; f. \\ & \Rightarrow s_n(x) \to f(x) \end{aligned}$$

 $f\ misurabile <=>f^-,f^+\ misurabili$

 $\exists \{s_n\} \text{ funzioni semplici } s_n(x) \to f^+(x) \ \forall x \ \{t_n\} \text{ funzioni semplici } t_n(x) \to f^-(x) \ \forall x$

 $Per\ il\ secondo\ caso$

Definizione 2

Sia (X, A, μ) spazio di misura e sia $s(x) = \sum_{i=1}^{N} c_i \chi_{E_i}(x), c_i \ge 0$ si definisce

$$\int_X s \ d\mu = \sum_{i=1}^N c_i \mu(E_i).$$

dove si usa la convenzione $0 \cdot (+\infty) = 0$ e, inoltre, $\forall E \in A$

$$\int_{E} s \ f\mu = \int_{X} s \cdot \chi_{E} \ d\mu = \sum_{i=1}^{N} c_{i}\mu(E \cap E_{i}).$$

$$\sum_{i=1}^{N} c_i \chi_{E_i \cap E}.$$

dato che $\chi_{E_i} \cdot \chi_e = \chi_{E_i \cap E}$

Definizione 3

Sia $(X, A, \mu \text{ spazio di misura e sia } f: X \to [0, +\infty] \text{ misurabile}$ $\Rightarrow \int_X f \ d\mu = \sup\{\int_X s \ d\mu \ s \ funzione \ semplice \ 0 \le s \le f\} \ e \ \forall E \in A$

$$\int_{E} f \ d\mu = \int_{X} \chi_{E} \ d\mu.$$

Proprietà immediate dell'integrazione

- 1. f=0 quasi certamente in $X\Rightarrow \int_X f\ d\mu=0$
- 2. Se $N \subseteq X, \mu(N) = 0 \Rightarrow \int_N f \ d\mu = 0$
- 3. $0 \le f \le g$, f, g misurabili $\Rightarrow \int_X f d\mu \le \int_X g d\mu$
- 4. Se $E, F \in A$ $E \subseteq F$ $\int_E f \ d\mu = \leq \int_F f \ d\mu$

Esempio

$$f(x)=\chi_{\mathbb{Q}}(x)=\chi_{\mathbb{Q}}(x)=0\cdot\chi_{\mathbb{R}\backslash\mathbb{Q}}\Rightarrow\int_{\mathbb{R}}f\ d\mu=1\mu(\mathbb{Q})=0$$
 s funzione semplice $0\leq s\leq f$

Proposizione 1

Sia s(x) funzione semplice, ≥ 0 , e sia $\mu_s: A \to [0, +\infty)$ definita da

$$\mu_s(E) = \int_E s \ d\mu.$$

 μ_s è una misura su A (cioè $\mu_S(\emptyset) = 0$ ed è additiva su misurabili disgiunti)

Dimostrazione

 $\mu_s(\emptyset) = \int_s d\mu = 0$

Siano $\{E_i\} \subset A$ disgiunti e sia $s(x) = \sum_{k=1}^N c_k \chi_{F_k}(x)$ $F_k \in A$ $F_k \cap F_j = \emptyset$ per ogni $k \neq j$ $\bigcup_{k=1}^N F_k = X$

$$\mu_s\left(\bigcup_{i=1}^K E_i\right) = \int_{\bigcup_{i=1}^K E_i} s \ d\mu = \int_X s\chi_{\bigcup_{i=1}^K E_i} \ d\mu.$$

con

$$\chi_{\bigcup_{i=1}^{+K} E_i} = \sum_{i=1}^{K} \chi_{E_i}.$$

$$x \in \bigcup_{i=1}^{K} E_i \Leftrightarrow \exists ! i \ x \in E_i.$$

$$\int_X s \sum_{i=1}^K \chi_{E_i} \ d\mu = \int_X \sum_{i=1}^K s \chi_{E_i} \ d\mu = \int_X \sum_{i=1}^K \sum_{j=1}^N c_j \chi_{F_j \cap E_i} \ d\mu.$$

$$\sum_{i=1}^{K} \sum_{j=1}^{N} c_j \mu(E_j \cap E_i) = \sum_{i=1}^{K} \int_{E_i} s \ d\mu = \sum_{i=1}^{K} \mu_s(E_i).$$

$$\mu_s(\bigcup_{i=1}^{+\infty} E_i \ge \mu_S\left(\bigcup_{i=1}^k E_i\right) = \sum_{i=1}^K \mu_s(E_i) \Rightarrow \mu_s\left(\bigcup_{i=1}^{+\infty} E_i\right) = \sum_{i=1}^{+\infty} \mu_s(E_i).$$

Osservazione

Se
$$N \subseteq X, \mu(N) = 0$$

$$\Rightarrow \int_N \overline{S} \ d\mu = 0$$

$$\mu_s(N) = 0 \quad \forall N : \mu(N) = 0$$

 $\mu_s \ll \mu_s$ è assolutamente continua rispetto a μ .

Lezione 11 Analisi Reale

Federico De Sisti 2025-03-26

0.1 Esercitazioni, Foglio 4

Esercizio 4

$$f: X \to Y$$

1. se $B\subseteq 2^Y$ σ -algebra di Y $A=\{f^{-1}(B), B\in B\}$ è una σ -algebra in X

Svolgimento

$$\begin{array}{l} \emptyset \in B \Rightarrow f^{-1}(\emptyset) = \emptyset \\ \text{sia } f^{-1}(C) \in A, \text{ con } C \in B \\ (f^{-1}(C))^c = X \setminus f^{-1}(C) = f^{-1}(C^c) \\ C \in B \Rightarrow C^c \in B \Rightarrow (f^{-1}(C))^c = f^{-1}(C^c) \in A \\ \{f^{-1}(C_i)\}_I \ge 1, C \in B \\ = \bigcup_{i=1}^{+\infty} f^{-1}(C_i) = f^{-1}(\bigcup_{i=1}^{+\infty} C_i) \in A \end{array}$$

2. A σ -algebra in X $B = \{B \subseteq Y \mid f^{-1}\}B \in A\}$ è una sigma algebra in Y

Svolgimento

$$\begin{array}{l} f^{-1}(\overset{\frown}{\emptyset})=\emptyset\Rightarrow\in B\\ C\in B\Leftrightarrow f^{-1}(C)\in A\Rightarrow f^{-1}(C)^c\in A\Rightarrow f^{-1}(C^c)\in A\Rightarrow C^c\in B\\ \{C_i\}\subset B\Leftrightarrow f^{-1}(C_i)\in A\ \ \forall i\\ \Rightarrow\bigcup_{i=1}^{+\infty}f^{-1}(C_i)=f^{-1}(\bigcup_{i=1}^{+\infty}C_i)\in A\Rightarrow\bigcup_{i=1}^{+\infty}C_i\in C \end{array}$$

3.
$$X \xrightarrow{f} Y$$

 $f^{-1}(\sigma < F >) \leftarrow \sigma < F > \text{con } F \subset 2^X$
 \parallel
 $\sigma < f^{-1}(F) > \leftarrow F \text{ con } F \subset 2^X$

Soluzione

Per il primo punto dell'esercizio la contro immagine della σ -algebra e comunque una σ -algebra.

$$\begin{array}{l} f^{-1}(\sigma < F >) \supset f^{-1}(F) \Rightarrow f^{-1}(\sigma < F >) \supseteq \sigma < f^{-1}(F) > \\ \sigma < f^{-1}(F) > \quad B = \{B \subseteq Y \mid f^{-1}(B) \in \sigma < f^{-1}(F) >\} \\ \text{questa e'una } \sigma\text{-algebra in } Y \text{ (punto 2)} \end{array}$$

 $f^{-1}(B) \subseteq < f^{-1}(F)>$ quindi sono l'una contenuta nell'altra, quindi le due σ -algebre coincidono.

Esercizio 5

Sia X un insieme (\neq) A una σ -algebra in X e sia $\mu: A \to [0, +\infty]$ tale che:

1.
$$\mu(\emptyset) = 0$$

2.
$${E_i} \subset A, E_i \cap E_j = \emptyset \quad \forall i \neq j$$

$$\Rightarrow \bigcup_{i=1}^{+\infty} E_i = \sum_{i=1}^{+\infty} \mu(E_i)$$

Osservazione

 μ rimane monotona e subadditiva

```
Infatti:
A, B \in A \ A \subseteq B \Rightarrow B \setminus A \in A
B = A \cup B \setminus A \cup \emptyset \cup \dots
\Rightarrow \mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A)Inoltre \{A_i\} \subset A, \bigcup_{i=1}^{+\infty} A_i = A_1 \cup A_2 \setminus A_1 \cup A_3 \setminus (A_1 \cup A_2)

\bigcup_{i=1}^{+\infty} A_i = \bigcup_{i=1}^{+\infty} (A_i \setminus \bigcup_{k=1}^{i-1} A_k) 

\mu(\bigcup_{i=1}^{+\infty} A_i) = \sum_{i=1}^{+\infty} \mu(A_i \setminus \bigcup_{k=1}^{i-1} A_k) \le \sum_{i=1}^{+\infty} \mu(A_i)

Esercizio
Dimostrare che \exists \bar{\mu}: 2^X \to [0, +\infty] misura
tale che A \subseteq \sigma-algebra dei \bar{\mu}-misurabili e \forall A \in \mathbb{A} \bar{\mu}(A) = \mu(A)
E \subseteq X \ \overline{(E)} = \inf\{\mu(A), A \in \mathbb{A}, A \supset E\}
\bar{\mu}(\emptyset) \le \mu(\emptyset) = 0 \Rightarrow \bar{\mu}(\emptyset) = 0
E \subseteq \bigcup_{i=1}^{+\infty} E_i \text{ se } \exists i \text{ t.c. } \bar{\mu}(E_i) = +\infty
Allora \bar{\mu}(E) \le \sum_{i=1}^{+\infty} \bar{\mu}(E_i) = +\infty
se \bar{\mu}(E_i) < +\infty \forall i \exists A_i \in A \text{ tale che } E_i \subseteq A_i \quad \bar{\mu}(E_i) \le \mu(A) < \bar{\mu}(E_i) + \frac{\varepsilon}{2^i} \Rightarrow
\bigcup_{i=1}^{+\infty} A_i \in A \Rightarrow \bar{\mu}(E) \leq \mu(\bigcup_{i=1}^{+\infty} A_i) \leq \sum_{i=1}^{+\infty} \mu(A_i)
\leq \sum_{i=1}^{+\infty} \bar{\mu}(E_i) + \varepsilon \Rightarrow \bar{\mu}(E) \leq \sum_{i=1}^{+\infty} \bar{\mu}(E_i)
Se E \in A \Rightarrow \bar{\mu}(E) < \mu(E)
e \ \forall A \in A, A \supseteq E \Rightarrow \mu(A) \ge \mu(E) \Rightarrow \bar{\mu}(E) \ge \mu(E) \Rightarrow \mu(E) = \bar{\mu}(E)
A \subseteq \mathbb{A} \Rightarrow A \Rightarrow A \stackrel{.}{\text{e}} \bar{\mu}-misurabile cioè \forall F \subseteq X
                                                       \bar{\mu}(F) \ge \bar{\mu}(F \cap A) + \bar{\mu}(F \setminus A).
Se F \in \mathbb{A} \Rightarrow A, F \in \mathbb{A} \Rightarrow \bar{\mu}(F) = \mu(F)
= \mu(F \cap A) + \mu(F \setminus A) = \bar{\mu}(F \cap A) + \bar{\mu}(F \setminus A)
se F \notin A, e \bar{\mu}(F) < \infty
\forall k \; \exists A_k \in A \mid F \subseteq A_k, \; e \; \bar{\mu}(F) \leq \mu(A_k) < \bar{\mu}(F) + \frac{1}{k}
A = \bigcap_{k=1}^{+\infty} A_k \in \mathbb{A}, A \supseteq F
\bar{\mu}(F) \leq \bar{\mu}(A) \leq \liminf_{k \to +\infty} \mu(A_i) \leq \bar{\mu}(F)
\exists A \in \mathbb{A} \text{ tale che } \bar{\mu}(F) = \mu(A) F \subseteq A
\bar{\mu}(F) = \mu(B \cap A) + \mu(B \setminus A) \ge \bar{\mu}(F \cap A) + \bar{\mu}(F \setminus A)
Dato che \exists B \in \mathbb{A} tale che F \subseteq B \ \dot{\mu}(F) = \mu(B)
Esercizio 6
f: \mathbb{R} \to \mathbb{R} continua
f(E) \in \eta \ \forall E \in \eta \Leftrightarrow m(f(E)) = 0 \ \forall E \ \text{se } m(E) = 0
(\Rightarrow) sia N tale che m(N)=0
per assurdo supponiamo m(f(N)) > 0
\Rightarrow \exists V \subset f(N) \ V \not\in \eta (ogni insieme di misura positiva contiene un insieme non
misurabile)
```

 $\Rightarrow f^{-1}(V) \cap N \in eta \Rightarrow f(f^{-1}(V) \cap N) = V \notin \eta$ ma dovrebbe appartenerci in

 $f^{-1}(V) \cap N \subset N \Rightarrow m(f^{-1}(V) \cap N) = 0$

 $E \in \eta \Leftrightarrow E = B \cup N \ m(N) = 0 \ B$ boreliano.

 $E \in \eta$ tale che $f(E) \in \eta$

quanto è immagine di un misurabile (ha misura nulla).

$$B = \bigcup_{n=1}^{+\infty} C_n \subseteq E, C_n \text{ chiusi}$$

$$f(E) = f(L)^{+\infty} C_n + N = L^{+\infty} f(C_n) + f(N)$$

$$B = \bigcup_{n=1}^{+\infty} C_n \subseteq E, C_n$$
 chiusi $f(E) = f(\bigcup_{i=1}^{+\infty} C_n \cup N) = \bigcup_{i=1}^{+\infty} f(C_n) \cup f(N)$ con $m(f(N)) = 0$ per ipotesi $\Rightarrow f(N) \in \eta$

Se E è limitato $\Rightarrow C_n$ sono compatti $\forall n$

 $\Rightarrow f(C_n) \text{ è compatto } \forall n \text{ (} f \text{ continua)}$ $\Rightarrow \bigcup_{n=1}^{+\infty} f(C_n) \in B \subseteq \eta \text{ (boerliano)}$ $\Rightarrow f(E) \in \eta$

In generale, se $E\in\eta\Rightarrow\bigcup_{n=1}^{+\infty}E\cap[-n,n]$, limitati $\forall n\ f(E)=\bigcup_{i=1}^{+\infty}f(E\cap\{n\})$ [-n, n]) $\in \eta$ unione misurabile di misurabili.

Esercizio 11

 $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} 0 & \text{se } x < 0, x > 1, \ x \in [0, 1] \cap \mathbb{Q} \\ n - 1 & \text{se } x \in [0, 1] \setminus \mathbb{Q}, \ x = \sum_{k=n}^{+\infty} \frac{a_k}{10^k} \ a_n \neq 0 \ a_k \in \{0, 1, \dots, 9\} \end{cases}$$

le prime n-1 cifre sono tutte nulle, e gli a_k sono le cifre del numero irrazionale $x\in [0,1]a_1\neq 0 \Rightarrow x\geq \frac{a_1}{10}\geq \frac{1}{10}$ Se $x\in [0,\frac{1}{10}], a_2\neq 0 \Rightarrow x>\frac{1}{100}$ $f(x)=\chi_{(\frac{1}{100},\frac{1}{10})\backslash \mathbb{Q}}$ (tra 0,01 e 0,1)

$$x \in [0,1]a_1 \neq 0 \Rightarrow x \ge \frac{a_1}{10} \ge \frac{1}{10}$$

Se
$$x \in [0, \frac{1}{10}], a_2 \neq 0 \Rightarrow x > \frac{1}{100}$$

$$f(x) = \chi_{(\frac{1}{100}, \frac{1}{10}) \setminus \mathbb{Q}} \text{ (tra 0.01 e 0.1)}$$

$$\begin{split} f(x) &= \sum_{k=2}^{+\infty} (k-1) \chi_{(\frac{1}{10^k},\frac{1}{10^{k-1}}) \backslash \mathbb{Q}} = \lim_{n \to +\infty} \sum_{k=2}^n (k-1) \chi_{(\frac{1}{10^k},\frac{1}{10^{k-1}}) \backslash \mathbb{Q}}(x) \\ \text{Quindi } f \text{ è misurabile perché limite puntuale di funzioni misurabili.} \end{split}$$

Lezione 12 Analisi Reale

Federico De Sisti2025-04-01

0.1 Boh

$$\begin{array}{l} (X,m,\mu) \\ s = \sum_{i=1}^{N} c_{j} x_{E_{j}}, c_{j} \geq 0 \quad E_{j} \in m \\ \int_{X} s d\mu = \sum_{j=1}^{N} c_{j} \mu(E_{j}) \\ \mu_{S}(E) = \int_{E} s d\mu = \int_{X} s x_{E} d\mu = \int_{X} \sum_{j=1}^{N} c_{i} \chi_{E_{j} \cap E} d\mu = \sum_{j=1}^{N} c_{j} \mu(E_{j} \cap E) \end{array}$$

Proposizione 1

Sia (X, m, μ) spazio di misura sia $s(x) = \sum_{j=1}^{N} c_j \chi_{E_j}(x)$ funzione semplice $\geq 0 \ (c_j \geq 9 \ \forall j)$ $\Rightarrow \mu_S : m \to [0, +\infty]$

$$\mu_S(E) = \int_E s d\mu \quad \forall E \in m.$$

è una misura.

Dimostrazione

$$\mu_{S}(\emptyset) = \int_{\emptyset} s \ d\mu = 0$$

$$\{F_{i}\} \subset m, F_{i} \cap F_{l} = \emptyset \text{ se } i \neq l$$

$$F = \bigcup_{i=1}^{+\infty} F_{i}$$

$$\mu_{S}(F) = \int_{F} s \ d\mu = \sum_{j=1}^{N} c_{j}\mu(E_{j} \cap F) = \sum_{j=1}^{N} c_{j}\mu(E_{j} \cap \bigcup_{i=1}^{+\infty} F_{i})$$

$$= \sum_{j=1}^{N} c_{j}\mu(\bigcup_{i=1}^{+\infty} E_{j} \cap F_{i})$$

$$= \sum_{j=1}^{N} c_{j} \sum_{i=1}^{+\infty} \mu(E_{j} \cap F_{i}) \qquad dato \ che \ E_{j} \cap F_{i} \ sono \ disgiunti \ e \ misurabili$$

$$= \sum_{i=1}^{+\infty} \sum_{j=1}^{N} c_{j}\mu(E_{j} \cap F_{i})$$

$$= \sum_{i=1}^{+\infty} \int_{F_{i}} s \ d\mu = \sum_{i=1}^{+\infty} \mu_{S}(F_{i})$$

I teoremi di passaggio al limite sotto il segno di integrale sono risultati che garantiscono la proprietà:

 $\{f_n\}$ succesione di funzioni misurabili

$$f_n(x) \to f(x)$$
 per q.o. $x \in X$

$$\lim_{n \to +\infty} \int_X f_n \ d\mu = \int_X \lim_{n \to +\infty} f_n \ d\mu = \int_X f \ d\mu$$

Osservazione

Per l'integrale di Riemann la validità del passaggio al limite sotto il segno d'integrale richiede la convergenza uniforme.

Esempio

$$\mathbb{Q} \cap [0,1] = \{a_n\}
\forall n \ge 1 s_n(x) = \chi_{\{q_1,\dots,q_n\}}
s_n \ \text{è discontinua in } \{q_1,\dots,q_n\}
\Rightarrow s_n \in R([0,1])$$

$$s_n(x) \xrightarrow{n \to +\infty} \chi_{\mathbb{Q} \cap [0,1]}(x).$$

 $s_n(x) \le s_{n+1}(x) \quad \forall x \in [0,1]$ ma $\chi_{\mathbb{O}\cap[0,1]} \not\in R([0,1])$

Teorema 1 (convergenza monotona, B. Levi)

 $Sia(X, m, \mu)$ spazio di misura e sia $\{f_n\}$ successione di funzioni misurabili $f_n: X \to [0, +\infty] \quad \forall n$

monotona crescente $f_n(x) \leq f_{n+1}(x) \quad \forall n \geq , \ q.o.$

$$f(x) = \lim_{n \to +\infty} f_n(x) = \sup_{n > 1} f_n(x).$$

 $f: X \to [0, +\infty]$ definita quasi ovunque è misurabile e

$$\lim_{n \to +\infty} \int_X f_n \ d\mu = \int_X f \ d\mu.$$

Dimostrazione

 $\int_X f_n \ d\mu \ e$ una successione numerica monotona crescente

$$\Rightarrow \exists \lim_{n \to +\infty} \int_{X} f_n d\mu \leq \int_{X} f d\mu$$

 $f_n \leq f \quad \forall n \quad \int_X f_n \ d\mu \leq \int_X f \ d\mu$ $Tesi: \lim_{n \to +\infty} \int_X f_n \ d\mu \geq \int_X f \ d\mu = \sup\{\int_X s \ d\mu.s \ Semplice \ 0 \leq s \leq f\}$ $\Leftrightarrow \lim_{n \to +\infty} \int_X f_n \ d\mu \geq \int_X s \ d\mu \quad \forall s \ funzione \ semplice \ 0 \leq s \leq f$ $Sia \ s \ funzione \ semplice, \ 0 \leq s \leq f \ Sia \ \varepsilon > 0 \ e \ \forall n$

$$E_n = \{ f_n \ge (1 - \varepsilon)s \}.$$

- $E_n \in m \ \forall n \ perché \ f_n (1 \varepsilon)s \ e \ misurabile$
- $E_n \subseteq E_{n+1} \quad \forall n \ge 1 \text{ poiché } f_n \le f_{n+1}$

•
$$\bigcup_{n=1}^{+\infty} E_n = X$$
 poiché sia $x \in X$

 $se\ s(x) = 0 \Rightarrow x \subseteq E_n \ \forall n$

$$se\ s(x) > 0 \Rightarrow f(x) > 0 \quad \sup_{n \ge 1} f_n(x) \quad \exists \bar{n} \ tale \ che$$

$$(1 - \varepsilon)s \le (1 - \varepsilon)f(x) < f_{\bar{n}}(x) \le f(x) \Rightarrow x \in E_{\bar{n}}$$

$$(1-\varepsilon)\int_X s \ d\mu = \mu_{(1-\varepsilon)s}(X) = \mu_{(1-\varepsilon)s}(\bigcup_{n=1}^{+\infty} E_n$$
$$= \lim_{n \to +\infty} \mu_{(1-\varepsilon)s}(E_n)$$

$$= \lim_{n \to +\infty} \int_{E_n} (1 - \varepsilon)s \ d\mu \le \lim_{n \to +\infty} \int_{E_n} f_n \ d\mu \le \lim_{n \to +\infty} \int_X f_n d\mu$$

$$\begin{array}{l} \Rightarrow \int_X d \ d\mu \leq \lim_{n \to +\infty} \int_X f_n \ d\mu \\ \Rightarrow \int_X f \ d\mu \leq \lim_{n \to +\infty} \int_X f_n \ d\mu \end{array} \quad \forall s$$

$$\Rightarrow \int_X^{\mathbf{r}} f \ d\mu \le \lim_{n \to +\infty} \int_X^{\mathbf{r}} f_n \ d\mu$$

Osservazione

1. $f: X \to [0, +\infty]$ misurabile $\Rightarrow \exists \{s_n\}$ successione di funzioni misurabili tale che

$$s_n(x) \to f(x) \ \forall x \in X.$$

 $0 \le s_n(x) \le s_{n+1}$

$$s_n(x) = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \chi_{\left\{\frac{k-1}{2^n} \le f < \frac{k}{2^n}\right\}} + n \chi_{\left\{f \ge n\right\}}.$$

Per il teorema di B. Levi $\lim_{n\to+\infty} \int_X s_n \ d\mu = \int_X f \ d\mu$

2. Se $f_n: X \to [0, +\infty]$ misurabile $\forall n$ $f_n(X) \ge f_{n+1}(x) \quad \forall n$ $f(x) = \lim_{n \to +\infty} f_n(x) = \inf_{n \to +\infty} f_n(x)$ $\int_{X} g_{n} d\mu \to \int_{X} (f_{1} - f) d\mu$ $\int_{X} (f_{1} - f_{n}) d\mu$ $\operatorname{Se} \int_{X} f_{1} d\mu < +\infty$ $\Rightarrow \int_{X} f_{n} d\mu \to \int_{X} f d\mu$ $\operatorname{In generale non vale se} \int_{X} f_{1} d\mu = +\infty$ Esempio: $f_n = \chi_{[n,+\infty)}$ $\int_{\mathbb{R}} f_n \ dm = 1m([n,+\infty]) = +\infty$

Corollario 1

Siano $f_n: X \to [0, +\infty]$ misurabili $\forall n$

$$=\int_X\sum_{n=1}^{+\infty}f_nd\mu=\sum_{n=1}^{+\infty}\int_Xd_n\ d\mu.$$

Dimostrazione

Finosoriation: $f(x) = \sum_{n=1}^{+\infty} f_n(x) < +\infty \text{ oppure } +\infty \Rightarrow f: X \to [0, +\infty] \text{ è misurabile}$ $= \lim_{k \to +\infty} \sum_{n=1}^{k} f_n(x)$ $g_k(x) \leq g_{k+1}(x) \quad \forall x$

 $\Rightarrow \int_X \lim_{k \to +\infty} g_k d\mu = \lim_{k \to +\infty} \int_X g_k d\mu$ $= \int_X \sum_{n=1}^{+\infty} f_n d\mu \doteq \lim_{k \to +\infty} \int_X \sum_{n=1}^k f_n d\mu$ $= \sum_{n=1}^{+\infty} \int_X f_n d\mu$

dove il penultimo passaggio (\(\ddoc)\) \(\delta\) ancora da giustificare

Proposizione 2

Siano $f, g: X \to [0, +\infty]$ misurabili $\Rightarrow \int_X (f+g)d\mu = \int_X fd\mu + \int_X gd\mu$

primo caso: f, g funzioni semplici, $f = s = \sum_{j=1}^{+\infty} x_j \chi_{E_j}$ $c_j \ge 0$ $E_j \in m$ dis-

$$\begin{aligned} & giunti \quad \cup E_j = X \\ & g = t = \sum_{k=1}^{M} d_k \chi_{F_k} \ d_k \ge 0, F_k \in m \ disgiunti \cup F_k = X \\ & E_j = E_j \cap X = E_j \cap \bigcup_{k=1}^{M} F_k = \bigcup_{k=1}^{M} E_j \cap F_k \end{aligned}$$

$$s = \sum_{j=1}^{N} c_j \chi_{\bigcup_{k=1}^{M} E_j \cap F_k} = \sum_{j=1}^{N} c_j \sum_{k=1}^{M} \chi_{E_j \cap F_k}$$

Vero poiché unione di insiemi disgiunti

$$t = \sum_{k=1}^{M} d_k \chi_{\bigcup_{j=1}^{N} F_k \cap E_j}.$$

$$t = \sum_{k=1}^{M} d_k \chi_{\bigcup_{j=1}^{N} F_k \cap E_j} = \sum_{k=1}^{M} d_k \sum_{j=1}^{N} chi_{F_k \cap E_j}.$$

quindi

$$\int_X (s+t) d\mu = \int_X \sum_{j=1}^N \sum_{k=1}^M c_j \chi_{F_k \cap E_j} + \sum_{k=1}^M \sum_{j=1}^N d_k \chi_{F_k \cap E_j} d\mu.$$

$$= \sum_{j=1}^{N} \sum_{k=1}^{M} (c_j + d_k) \mu(F_k \cap E_j) = \int_X s \ d\mu + \int_X t \ d\mu.$$

 $secondo caso f, g \ge 0 misurabili$

$$\exists s_n \uparrow f \ e \ \exists t_n \uparrow g$$

$$\Rightarrow s_n + t_n \uparrow f + g$$

 $(\uparrow = tende)$

$$\Rightarrow s_n + t_n \uparrow f + g$$

$$\int_X (f+g)d\mu = \lim_{n \to +\infty} \int_X (s_n + t_n)d\mu = \lim_{n \to +\infty} \left(\int_X s \ d\mu + \int_X t_n d\mu \right).$$
$$\int_X f \ d\mu + \int_X g \ d\mu.$$

Esercizio

Sia $\{a_n\}$ una successione a termini mai negativi $a_n \geq 0$

 $\{a_n\}$ può essere pensata come una funzione

$$f:\mathbb{N}\to[0,+\infty]$$

$$n \to f(n) = a_n$$

 $(\mathbb{N},2^{\mathbb{N}},\mu^*)$ $\int_{\mathbb{N}}f\ d\mu^*=?$ dove μ^* calcola la cardinalità dei sottoinsiemi

Lezione 13 Analisi Reale

Federico De Sisti2025-04-25

0.1Lemma di Fatou

Lemma 1 (di Fatou)

Sia (X, M, μ) uno spazio di misura e $f_n : X \to [0, +\infty]$ successione di funzioni misurabili

$$\int_X \liminf_{n \to +\infty} f_n d\mu \le \liminf_{n \to +\infty} \int_X f_n d\mu.$$

Dimostrazione

 $\lim \inf_{n \to +\infty} f_n(x) = \lim_{k \to +\infty} g_k(x) \ con \ 0 \le g_k(x) \le g_{k+1}(x) \ \forall k, \forall x$ e sono misurabili

 $\int_X \liminf_{n \to +\infty} f_n d\mu = \int_X \lim_{k \to +\infty} g_k d\mu = \lim_{k \to +\infty} \int_X g_k d\mu$ $ma \ g_k \le f_k \ \ \forall k$

$$\Rightarrow \int_{X} g_k d\mu \leq \int_{X} f_k d\mu \ e \ applicando \ il \ \lim \inf$$

$$\Rightarrow \liminf_{k \to +\infty} \int_X g_k d\mu \le \liminf_{k \to +\infty} \int_X f_k d\mu$$

$$\lim_{k \to +\infty} \int_{X} g_{k} d\mu = \lim_{k \to +\infty} \int_{X} g_{k} d\mu$$

$$\lim_{k \to +\infty} \int_{X} f_{k} d\mu \leq \lim_{k \to +\infty} \int_{X} f_{k} d\mu$$
Esempio 1

 $f_n(x) = n\chi_{[0,\frac{1}{2}]}$ funzioni misurabili ≥ 0

$$\lim_{n \to +\infty} f_n = \begin{cases} 0 & \text{se } x < 0 \\ 0 & \text{se } x > 0 \\ +\infty & \text{se } x = 0 \end{cases}$$

 $\int_{\mathbb{R}} \liminf_{n \to +\infty} \widehat{f_n} d\mu = \int_{\mathbb{R}} \liminf_{n \to +\infty} f_n d\mu = 0$ $< \liminf_{n \to +\infty} \int_{\mathbb{R}} f_n d\mu = \lim_{n \to +\infty} n \cdot \mu([0, \frac{1}{n}]) = \lim_{n \to +\infty} 1 = 1$

Esempio 2

$$f_n(x) = \chi_{[n,+\infty)}(x) \to 0 \quad \forall x \in \mathbb{R}$$
$$\int_{\mathbb{R}} f_n d\mu = +\infty \quad \forall n$$

Definizione 1 (Funzioni integrabili)

Sia (X, M, μ) spazio di misura e sia $f: X \to [-\infty, +\infty]$ misurabile. Se $\int_X f^+ d\mu < +\infty$ oppure $\int_X f^- d\mu < +\infty$ allora f si dice integrabile e

$$\int_{Y} f d\mu = \int_{Y} f^{+} d\mu - \int_{Y} f^{-} d\mu.$$

se $\int_X f^+ d\mu, \int_X f^- d\mu < +\infty \Rightarrow f$ si dice sommabile e $\int_X |f| d\mu < +\infty$ questo tipo di funzioni definisce

$$L^1(X)=\{f:X\to [-\infty,+\infty]\ \text{misurabili,}\ \int_X |F|d\mu<+\infty\}.$$

Proposizione 1

Sia (X, M, μ) spazio di misura

- 1. Se f è integrabile su X $\Rightarrow |\int_X f d\mu| \le \int_X |f| d\mu$
- 2. (disuguaglianza di Chebychev) $f \in L^1(X) \Rightarrow \forall t > 0$ $\mu(\{|f| > t\}) \leq \frac{1}{t} \int_X |f| d\mu$
- 3. $f \in L^1(X) \Rightarrow |f(x)| < +\infty$ quasi ovunque in X (?)
- 4. $f \in L^1(X), \int_X |f| d\mu = 0 \Rightarrow f = 0$ quasi ovunque
- 5. $f,g\in L^1(X)\to f+g\in L^1$ $(f+g\ \grave{e}\ definita\ quasi\ ovunque)\ e$ $\int_X (f+g)d\mu=\int_X fd\mu+\int_X gd\mu$

Dimostrazione

Dimostriamo ogni punto:

- 1. $se \int_X |f| d\mu = +\infty$ ovvio $Se \int_X |f| d\mu < +\infty \Rightarrow \int_X f^+ f\mu, \int_X f^{-1} < +\infty \Rightarrow |\int_X f d\mu| = |\int_X f^+ d\mu \int_X f^{-1} d\mu| \leq \int_X |f^+| d\mu + \int_X |f^-| d\mu = \int_X |f| d\mu$
- 2. $\int_X |f| d\mu \ge \int_X f|\chi_{\{|f|>t\}} d\mu \ge \int_X t\chi_{(\{|f|>t\})}$
- 3. $f \in L^{1}(X)$ $se |f| = +\infty = \bigcap_{n=1}^{+\infty} \{|f| > n\} \text{ chiamo } E_{n} = \{|f| > n\}$ $E_{n+1} \subseteq E_{n} \subseteq \ldots \subseteq E_{1}$ $\mu(E_{1}) \le \int_{X} |f| d\mu < +\infty$ $\Rightarrow \mu(\{|f| = -\infty\}) = \mu(\bigcap_{n=1}^{+\infty} E_{n}) = \lim_{n \to +\infty} (\mu(E_{n})) \le_{n \to +\infty} \frac{1}{n} \int_{Y} |f| d\mu = 0$
- 4. $\int_{X} |f| f \mu = 0$ $\{|f| > 0\} = \bigcup_{n=1}^{+\infty} \{|f| > \frac{1}{n}\}$ $\mu(\{|f| > \frac{1}{n}\}) \le n \int_{X} |f| d\mu = 0$ $\Rightarrow \mu(\{|f| > 0\}) \le \sum_{n=1}^{+\infty} \mu(\{|f| > \frac{1}{n}\}) = 0$
- 5. f+g è definita su $X\setminus(\{|f|=+\infty\}\cup\{|g|=+\infty\})$ (dove il secondo insieme ha misura nulla

posso quindi calcolare il suo integrale

$$\begin{split} \int_X (f+g) d\mu &= \int_{X \setminus (\{|f| = +\infty\} \cup \{|g| = +\infty\})} (d+g) d\mu \\ |f+g| &\leq |f| + |g| \Rightarrow \int_X |f+g| d\mu \leq \int_X |f| d\mu + \int_X |g| d\mu < +\infty \\ chiamiamo \ f+g &= h \\ \int_X (f+g) d\mu &= \int_X h^+ - \int_X h^- d\mu \\ h^+ - h^- &= f^+ - f^- + g^+ - g^- \\ &\Rightarrow \int_x (h^+ + f^- + g^-) d\mu = \int_X (f^+ + g^+ + h^-) d\mu \end{split}$$

$$\int_X h^+ d\mu + \int_X f^- d\mu + \int_X g^- d\mu = \int_X f^+ d\mu + \int_X g^+ + \int_X h^-$$

$$\int_{X} (f+g) d\mu = \int_{X} h^{+} d\mu - \int_{X} h^{-} d\mu = \int_{X} f^{+} d\mu - \int_{X} f^{-} d\mu + \int_{X} g^{+} d\mu - \int_{X} g^{-} d\mu = \int_{X} f d\mu + \int_{X} g d\mu$$

Teorema 1 (convergenza dominata o Teorema di Lebesgue) Sia (X, M, μ) spazio di misura e siano $f_n : X \to [-\infty, +\infty]$ misurabili tali che $\lim_{n \to +\infty} f_n$ per q.o. $x \in X$ se $\exists g \in L^1(X)$ tale che $|f_n| \leq g$ quasi ovunque in $X \ \forall n \in \mathbb{N}$ Allora:

$$\int_X |f_n - f| d\mu \to 0.$$

Dimostrazione

 $|f_n| \leq g \rightarrow f_n \in L^1(X)$ e $|f| \leq g$ quasi ovunque $\rightarrow f \in L^1(X)$ $\Rightarrow 2g - |f_n - f| \geq 0$ quasi ovunque in X (perché $|f_n - f| \leq |f_n| + |f| \leq 2g$) quindi puntualmente per q.o. $x \in X$ fissato

$$2g(x) - |f_n(x) - f(x)| \to 2g(x).$$

 \Rightarrow Usando il lemma di Fatou

$$\int_X g d\mu \le \liminf_{n \to +\infty} \int_X (2g - |f_n - f|) d\mu.$$

 $sfruttiamo\ la\ linearit\`{a}\ dell'integrale$

$$\Rightarrow \limsup_{n \to +\infty} \int_X |f_n - f| d\mu \le 0.$$

Lezione 14 Analisi Reale

Federico De Sisti2025-04-29

0.1Boh

Proposizione 1

 (X,μ) spazio di misura; $f_n,f:X\to [-\infty,+\infty]$ finite quasi ovunque; $f_n\to f$ q.o. $\Leftrightarrow \ \forall \varepsilon>0 \quad \mu(\bigcap_{k=1}^{+\infty}\bigcup_{n=k}^{+\infty}\{|f_n-f|\geq \varepsilon\})=0$

Dimostrazione

(⇒) Già visto

$$(\Leftarrow) \forall y \ \mu(\bigcap_{n=1}^{+\infty} \bigcup_{n=k}^{+\infty} \{|f_n - f| \ge \frac{1}{y}\}) = 0$$

$$(\Rightarrow) \ Gia \ visto$$

$$(\Leftarrow) \ \forall y \ \mu(\bigcap_{n=1}^{+\infty}\bigcup_{n=k}^{+\infty}\{|f_n-f| \ge \frac{1}{y}\}) = 0$$

$$\Rightarrow \mu(\bigcup_{y=1}^{+\infty}\bigcap_{k=1}^{+\infty}\bigcup_{n=k}^{+\infty}\{|f_n-f| \ge \frac{1}{y}\}) := \mu(N) = 0$$

$$x \in X \setminus N \Leftrightarrow x \in \bigcap_{y=1}^{+\infty}\bigcup_{k=1}^{+\infty}\bigcap_{n=k}^{+\infty}\{|f_n-f| < \frac{1}{y}\}$$
Used directly $\forall y \in X$ when $\forall y \in X$ is the set of $X \in X$.

$$x \in X \setminus N \Leftrightarrow x \in \bigcap_{u=1}^{+\infty} \bigcup_{k=1}^{+\infty} \bigcap_{n=k}^{+\infty} \{ |f_n - f| < \frac{1}{u} \}$$

Vuol dire che $\forall y \;\; \exists k_y \;\; (dipendente \; da \; y) \; tale \; che \; |f_n(x) - f(x)| < \frac{1}{y}$

$$\forall n \ge k_y \Rightarrow f_n(x) \to f(x) \Rightarrow f_n \to f \text{ quasi ovunque}$$

Se io so che
$$\forall \varepsilon > 0 \quad \mu(\{f_n - f | \ge \varepsilon\}) \xrightarrow{n \to +\infty} 0 \Leftrightarrow ?$$

 $\forall \varepsilon > 0 \quad \mu(\bigcup_{n=k}^{+\infty} \{|f_n - f| \ge \varepsilon\}) \xrightarrow{n \to +\infty} 0 \Leftrightarrow ?$

$$\forall \varepsilon > 0 \ \mu(\bigcup_{n=k}^{+\infty} \{|f_n - f| \ge \varepsilon\}) \xrightarrow{n \to +\infty} 0 \Leftrightarrow ?$$

È una condizione più forte o debole? Osserviamo che $\bigcup_{n=k}^{+\infty}\{|f_n-f|\geq\varepsilon\}$ forma

una successione decrescente
$$(F_1 \supseteq F_2 \supseteq \ldots)$$

$$\mu(\bigcap_{n=1}^{+\infty} F_n^{\varepsilon} = \mu(\bigcap_{n=1}^{+\infty} \bigcup_{n=k}^{+\infty} \{|f_n - f| \ge \varepsilon\}) \le \lim_{n \to +\infty} \mu(\bigcup_{n=k}^{+\infty} \{|f_n - f| \ge \varepsilon\})$$
Se poi diventano di misura finita (da un certo punto in poi) vale =

Definizione 1

 $f_n, f: X \to [-\infty, +\infty]$ misurabili finite quasi ovunque; $f_n \to f$ in misura $se \ \forall \varepsilon > 0 \qquad \mu(\{|f_n - f| \ge \varepsilon\}) \xrightarrow{n \to +\infty} 0$

Proposizione 2

 $Sia(X,\mu)$ spazio di misura finita $(\mu(X) < +\infty)$. $Se\ f_n, f: X \to [-\infty, +\infty]$ misurabili, finite quasi ovunque $\Rightarrow f_n \to f$ in misura

Dimostrazione

Per la proposizione precedente:

 $\forall \varepsilon > 0, f_n \to f \text{ q.o.} \Leftrightarrow \mu(\bigcap_{k=1}^{+\infty} \bigcup_{n=k}^{+\infty} \{|f_n - f| \ge \varepsilon\}) = 0$ ma questo per ipotesi è uguale a

$$\lim_{n \to +\infty} \sup \mu(\{|f_n - f| \ge \varepsilon\}) \le \lim_{k \to +\infty} \mu(\bigcup_{n=k}^{+\infty} \{|f_n - f| \ge \varepsilon\}) = 0.$$

se il $\limsup = 0 \Rightarrow \lim = 0$ Quindi $\mu(\{f_n - f | \geq \varepsilon\}) \to 0$

Proposizione 3

Se $f_n, f \in L^1(X, \mu); f_n \to f$ in $L^1(X) \Rightarrow f_n \to f$ in misura

Dimostrazione

 $\forall \varepsilon > 0$

$$\varepsilon\mu(\{|f_n - f| \ge \varepsilon\}) \le \int_{\{|f_n - f| \ge \varepsilon\}} |f_n - f| d\mu \le \int_X |f_n - f| d\mu \to 0. \Rightarrow f_n \to f$$
 in misura

 $f_n \to f$ in misura $\stackrel{?}{\Rightarrow} f_n \to f$ quasi ovunque

 $\mu(\{|f_n - f| \ge \varepsilon\}) \to 0$

definiamo $g_n := |f_n - f|, f_n : X \to [0, +\infty] \Rightarrow \mu(\{g_n > \varepsilon\}) \to 0 \stackrel{?}{\Rightarrow} g_n \to 0$ quasi

L'insieme di sopralivello può muoversi sull'asse x. Non è detto che fissata xallora le successioni di funzioni tendano a 0.

 $\forall n$ dividiamo [0,1] in 2^n intervalli di ampiezza $\frac{1}{2^n}$

$$I_{n,m} = \left[\frac{k-1}{2^n}, \frac{k}{2^n}\right) \ 1 \le k \le 2^n$$

 $\begin{array}{l} I_{n,m} = [\frac{k-1}{2^n},\frac{k}{2^n}) \quad 1 \leq k \leq 2^n \\ \{\chi_{I_{k,n}}\}_{1 \leq k \leq 2^n, n \geq 1} \text{ successione di funzioni misurabili secondno } Lebesgue \text{ su } [0,1]. \\ \text{Cosa succede per } n \rightarrow +\infty \text{ C'è convergenza solo a } 0 \end{array}$

$$\forall \varepsilon > 0, n(\{X_{I_{n,k}} \ge \varepsilon\}) = \begin{cases} \emptyset & \text{se } \varepsilon > 1 \\ \frac{1}{2^n} = m(I_{k,n}) & \text{se } 0 < \varepsilon < 1 \end{cases} \xrightarrow{n \to +\infty}$$

 $\Rightarrow \chi_{I_{n,k}} \xrightarrow{n \to +\infty} 0$ in misura.

 $\forall x \in [0,1), \chi_{I_{k,n}}(x) = 1$ per infiniti indici

$$\int_{[0,1)} |\chi_{I_k,n}| dm = m(I_{k,n}) = \frac{1}{2^n} \xrightarrow{n \to +\infty} 0$$

$$\chi_{I_{k,n}} \to 0$$
 in $L^1([0,1])$.

Quindi c'è anche la convergenza in L^1

Quindi la convergenza in misura (e in L^1) \Rightarrow convergenza puntuale (quasi ovunque)

Ma $\{\chi_{I_{n,m}}$ ha un'estratta che converge puntualmente a 0

$$\chi_{I_{n,m}} = \chi_{[0,\frac{1}{2^n})} \to 0$$
 q.o. in $[0,1)$.

Siano $f_n, f: X \to [-\infty, +\infty]$ misurabili, finite quasi ovunqe. Se $f_n \to f$ in misura $\Rightarrow \exists$ sottosuccessione $\{f_{n_k}\}$ tale che $f_{n_k} \to f$ quasi ovunque

Dimostrazione (Errata)

Dimostrazione (Errata)
$$a_n \geq 0, a_n \to 0 \quad \sum_{n=1}^{+\infty} a_n < +\infty \text{ no!}$$

$$\varepsilon > 0 \text{ fissato, } \forall k \exists n_k \text{ tale che } \mu(\{|f_n - f| \geq \varepsilon\}) < \frac{1}{2^k}$$

$$\Rightarrow \mu(\{|f_n - f| \geq \varepsilon\}) < \frac{1}{2^n} \Rightarrow \mu(\bigcup_{n=1}^{+\infty} \{|f_{n_k} - f| \geq \varepsilon\}) \leq \sum_{n=1}^{+\infty} \mu(\{|f_{n_k} - f| \geq \varepsilon\}) \leq$$

$$\sum_{n=1}^{+\infty} \frac{1}{2k} < +\infty$$

$$\mu(\bigcup_{n=j}^{+\infty} \{|f_{n_k} - f| \ge \varepsilon\}) \le \sum_{k=j}^{+\infty} \frac{1}{2^k} \to 0.$$

$$\Rightarrow \mu(\bigcap_{j=1}^{+\infty} \bigcup_{n=j}^{+\infty} \{|f_{n_k} - f| \ge \varepsilon\}) = \lim_{j \to +\infty} \mu(\bigcup_{n=j}^{+\infty} \{|f_{n_k} - f| \ge \varepsilon\}) = 0.$$

Dov'è l'errore? Qui l'estratta dipende da ε , invece io voglio un'estratta che valga $\forall \varepsilon > 0$. In questo caso presa un'estratta questa vale $\forall \varepsilon' \geq \varepsilon$. Quindi voglio sostituire ε con una cosa infinitesima. La dimostrazione è lasciata per esercizio.

Se $f_N, f \in L^1(X, \mu), f_n \to f$ in $L^1 \Rightarrow \exists$ estratta $\{f_{n_k}\}$ tale che $f_{n_k} \to f$ quasi ovunque.

Dimostrazione

$$f_n \to in \ L^1 \Rightarrow f_n \to f \ in \ misura$$
 (disuguaglianza di Chebychev (?)) $\Rightarrow \exists \{f_{n_k}\}: f_{n_k} \to f \ quasi \ ovunque.$

Osservazione

In generale non tutta $\{f_n\}$ converge puntualmente. Per esempio $\chi_{I_{n,k}}$

Osservazione

Se
$$\mu(X) = +\infty$$
, $f_n \to f$ quasi ovunque $\Rightarrow f_n \to$ in misura? $\mu(\bigcap_{k=1}^{+\infty} \bigcup_{n=k}^{+\infty} \{|f_n - f| \ge \varepsilon\}) = 0$

Può essere che si formino tutte misure finite e l'intersezione faccia 0.

In generale non vale per esempio $f_n = \chi_{[n,+\infty)}, f_n(x) \to 0 \ \forall x \in \mathbb{R}$

Ma $m(\{f_n > \varepsilon\}) = +\infty$ per $\varepsilon < 1 \implies f_n \gg 0$ in misura

Ma quindi bisogna che i sottoinsiemi vadano a $+\infty$, quindi di un ambiente di misura infinita.

Se $\mu(X) < +\infty, f_n \to f$ quasi ovunque $\Leftrightarrow \mu(\bigcap_{k=1}^{+\infty} \bigcup_{n=k}^{+\infty} \{|f_n - f| \ge \varepsilon\}) = 0 =$ $\lim_{n \to +\infty} \mu(\bigcup_{n=k}^{+\infty} \{ |f_n - f| \ge \varepsilon \})$

$$\Rightarrow \forall \delta > 0 \ \exists k = k(\delta, \varepsilon) \ \text{tale che } \mu(\bigcup_{n=k}^{+\infty} \{|f_n - f| \ge \varepsilon\}) < \delta$$

$$x \in X \setminus F_{\delta,\varepsilon} \Leftrightarrow x \in \bigcap_{n=k}^{+\infty} \{|f_n - f| < \varepsilon\} \Leftrightarrow |f_n(x) - f(x)| < \varepsilon \ \forall n \ge k$$

 $\Rightarrow \forall \delta > 0 \ \exists k = k(\delta, \varepsilon) \ \text{tale che } \mu(\bigcup_{n=k}^{+\infty} \{|f_n - f| \ge \varepsilon\}) < \delta$ $x \in X \setminus F_{\delta,\varepsilon} \Leftrightarrow x \in \bigcap_{n=k}^{+\infty} \{|f_n - f| < \varepsilon\} \Leftrightarrow |f_n(x) - f(x)| < \varepsilon \ \forall n \ge k$ Abbiamo trovato il k per cui l'ultima disequazione è piccola. Questo è vero $\forall x$. Ma allora $\sup_{X \setminus F_{\delta,\varepsilon}} |f_n - f| < \varepsilon \quad \forall n \ge k \Rightarrow f_n \to f$ uniformemente in $X \setminus F_{\delta}$

Definizione 2

Siano (X, μ) uno spazio di misura $e f_n, f : X \to [-\infty, +\infty]$ misurabili finita quasi ovunque si dice $f_n \to f$ quasi uniformemente se $\forall \delta > 0 \ \exists F_{\delta} \subset X, F_{\delta}$ misurabile, $\mu(F_{\delta}) < \delta$ tale che $f_n \to f$ uniforme in $X \setminus F_{\delta}$.

Esempio

$$f_n(x) = x^n, x \in [0, 1]$$

$$\begin{split} f_n(x) &\xrightarrow{n \to +\infty} \begin{cases} 0 & 0 \le x < 1 \\ 1 & \text{se } x = 1 \end{cases} = f(x) \\ \sup_{[0,1]} |f_n - f| &= \sup_{0 \le x \le 1} |f_n - f| = 1 \\ \text{Se tolgo } 1, \sup_{[0,1]} |f_n - f| &= \sup_{[0,1)} x^n = 1 \text{ comunque le cose vanno male!} \\ \text{Dobbiamo togliere un intorno di } 1 &\Rightarrow \sup_{[0,1-\delta]} |f_n - f| &= \sup_{[0,1-\delta]} x^n = (1-\delta)^n \xrightarrow{n \to +\infty} 0 \\ &\Rightarrow f_n \to 0 \text{ uniformemente in } [0,1-\delta] \forall \delta > 0 \end{split}$$

Lezione 15 Analisi Reale

Federico De Sisti2025-04-16

0.1 Convergenze varie (alberto agostinelli)

Definizione 1 (Convergenza quasi uniforme)

 $f_n \to f$ quasi uniformemente se $\forall \delta > 0 \ \exists F_\delta \subseteq X, F_\delta$ misurabile $\mu(F_\delta) < \delta$ tale che $\sup_{X \setminus F_\delta} |f_n - f| \to 0 \ (f_n \to f \ uniformemente \ in \ X \setminus F_\delta)$

Proposizione 1

 $f_n \to f \text{ quasi uniformemente} \Leftrightarrow \forall \varepsilon > 0 \mu(\bigcup_{n=k}^{+\infty} \{|f_n - f| \ge \varepsilon\}) \xrightarrow{k \to +\infty} 0$

Dimostrazione

 (\Rightarrow)

 $\forall \delta > 0 \exists F_{\delta} \subset X, \mu(F_s) < \delta \text{ tale che, } f_n \to f \text{ uniformemente in } X \setminus F_{\delta} \Leftrightarrow \forall \delta > 0 \exists F_{\delta} \subset X, \mu(F_{\delta}) < \delta$

tale che $\forall \varepsilon > 0 \exists k = k(\varepsilon, \delta) : |f_n(x) - f(x)| < \varepsilon \quad \forall n \ge k \quad \forall x \in XF_{\delta}$ $\Leftrightarrow \forall \delta > 0 \exists F_{\delta} \subset X, \mu(F_{\delta}) < \delta \text{ tale che } \forall \varepsilon > 0 \exists k = k(\delta, \varepsilon)$

$$X \setminus F_{\delta} \subseteq \bigcap_{n=k}^{+\infty} \{ |f_n - f| < \varepsilon \}.$$

 $\Leftrightarrow \forall \delta > 0 \quad \exists F_{\delta} \subset X \quad \mu(F_{\delta}) < \delta$ $tale \ che \ \forall \varepsilon > 0 \quad \exists k = k(\varepsilon, \delta)$

$$\left(\bigcap_{n=k}^{+\infty} \{f_n - f | < \varepsilon\}\right)^c = \bigcup_{n=k}^{+} \{f_n - f | \ge \varepsilon\} \subseteq F_{\delta}.$$

 $\Rightarrow \forall \delta > 0 \quad \forall \varepsilon > 0 \quad \exists k = k(\delta, \varepsilon)$

$$\mu(\bigcup_{n=k}^{+\infty} \{|f_n - f| \ge \varepsilon\}) < \delta \Rightarrow \mu(\bigcup_{n=k}^{+\infty} \{|f_n - f| \ge \varepsilon\}) \xrightarrow{k \to +\infty} 0.$$

 (\Leftarrow)

 $\varepsilon > 0 \quad \forall \delta > 0 \quad \exists k = k(\varepsilon, \delta) \ tale \ che$

$$\mu(\bigcup_{n=k}^{+\infty} \{|f_n - f| \ge \varepsilon\}) < \delta.$$

 $\forall j \in \mathbb{N} \ per \ \varepsilon = \frac{1}{j}, \ \delta = \frac{\nu}{2^j}, \nu > 0 \ fissato$

 $\Rightarrow \exists k_j = k_j(j,\nu)$ tale che $\mu(\bigcup_{n=k_j}^{+\infty} (\{f_n - f | \geq \frac{1}{j}\}) < \frac{\nu}{2^j}$

$$\Rightarrow \mu(\bigcup_{j=1}^{+\infty} \bigcup_{n=k_j}^{+\infty} \{|f_n - f| \ge \frac{1}{j}\}) \le \sum_{j=1}^{+\infty} \frac{\nu}{2^j} = \nu.$$

 $x \in X \setminus F_{\nu}$ (dove F_{ν} è l'argomento della misura precedente)

 $\Rightarrow x \in \bigcap_{j=1}^{+\infty} \bigcap_{n=k_j}^{+\infty} \{ |f_n - \tilde{f}| < \frac{1}{j} \}$

 $\Rightarrow \forall j \quad \exists k_j \ tale \ che \ |f_n(x) - f(x)| < \tfrac{1}{j} \quad \forall n \geq k_j - - \Rightarrow \sup_{X \setminus F_{\nu}} |f_n - f| \xrightarrow{n \to +\infty}$

 $0 \Rightarrow f_n \rightarrow f$ uniformemente su $X \setminus F_{\nu}$

Abbiamo caratterizzato la convergenza quasi uniforme con la misura dei sopralivelli $\forall \varepsilon > 0$

conseguenza:

$$f_n \to f \ q.u. \Rightarrow \begin{cases} f_n \to f \ q.u. \\ f_n \to f \ in \ misura \end{cases}$$

$$\forall \varepsilon > 0 \ \mu \left(\bigcup_{n=k}^{+\infty} \{ |f_n - f| \ge e \} \right) \xrightarrow{k \to +\infty} 0.$$

ma allora

$$0 = \lim_{k \to +\infty} \mu(\bigcup_{n=k}^{+\infty} \{|f_n - f| \ge \varepsilon\}) = \mu(\bigcap_{k=1}^{+\infty} \bigcup_{n=k}^{+\infty} \{|f_n - f|\} \ge \varepsilon\}).$$

$$\forall k \ \mu(\{f_k - f | \ge \varepsilon\} \le \mu(\bigcup_{n=k}^{+\infty} \{n - f | \ge \varepsilon\}) \to 0.$$

 $\Rightarrow f_n \to f$ in misura

Teorema 1 (Egorov)

Sia (X, μ) spazio di misura finita ($\mu(X) < +\infty$) Allora:

$$f_n \to f$$
 q.o. \Leftrightarrow $f_n \to f$ q.u..

Teorema 2 (Vitali)

Sia (X, μ) uno spazio di misura finita e siano $f_n, f \in L^1(X)$ tale che $f_n \to f$ quasi ovunque quasi ovunque

allora $f_n \to f$ in $L^1 \Leftrightarrow \{f_n\}$ equi-assolutamente integrabili $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ tale \ che$

$$\int_{E} |F_{n}| d\mu < \varepsilon \text{ se } E \in M \quad \forall n, \mu(E) < \delta.$$

Dimostrazione

 (\Rightarrow) già visto

 (\Leftarrow)

 $f_n \to f$ quasi ovunque $+ \mu(X) < +\infty$

 \Rightarrow (per Eqorov)

 $\forall \delta > 0 \exists f_{\delta} \in M, \mu(F_{\delta}) < \delta \text{ tale che } f_n \to f \text{ uniformemente in } X \setminus f_{\delta}$

 $Sia \varepsilon > 0$ fissato

 \Rightarrow sia = $\delta(\varepsilon)$ dato dall'ipotesi di equi-assoluta integrabilità e sia $f_{\delta} \in M$ dato dal teorema di Egorov

$$\Rightarrow \int_{X} |f_{n} - f| d\mu = \int_{X \setminus F_{\delta}} |f_{n} - f| d\mu + \int_{F_{\delta}} |f_{n} - f| d\mu.$$

$$\leq \sup_{X \setminus F_{\delta}} |f_{n} - f| \mu(X \setminus F_{\delta}) + \int_{F_{\delta}} |f_{n}| d\mu + \int_{F_{\delta}} |f| d\mu.$$

$$\leq (\sup_{X \setminus F_{\delta}} |f_{n} - f|) \mu(X) + \varepsilon + \varepsilon \quad (dato \ che \ \mu(F_{\delta}) < \delta).$$

$$\Rightarrow \lim_{n \to +\infty} \int_{X} |f_{n} - f| d\mu \leq 2\varepsilon \quad \forall \varepsilon > 0.$$

$$\Rightarrow \int_{X} |f_{n} - f| d\mu \to 0.$$

 $f: \mathbb{R} \to \mathbb{R} \ (\mathbb{R}, m)$

f continua $\Rightarrow f$ misurabile

f continua quasi ovunque $\Rightarrow f$ misurabile

MANCA UNA PARTE

$$D_f = \{x \in \mathbb{R} \mid f \text{ è discontinua in } X\}.$$

 $m\mu(D_f) = 0$ f è misurabile, infatti:

$$\forall t \in \mathbb{R} \ \{f > t\} = \{f > t\} \cap D_f \cup \{f > t\} \setminus D_f.$$

 \Rightarrow ha misura nulla \Rightarrow è misurabile

$$x \in \{f > t\} \setminus D_f$$

$$\lim_{y\to x} f(y) \Longrightarrow f(x) > t \text{ e } f \text{ è continua in } X$$

$$\Rightarrow \exists \delta_x > 0 : f(y) > t \quad \forall y \in (x - \delta_x, x + \delta_x)$$

$$\Rightarrow \{f > t\} \setminus D_f = \bigcup_{x \in \{f > t\} \setminus D_f} (x - \delta_x, x + \delta_x) \setminus D_f = \bigcup_{x \in \{f > t\} \setminus D_f} (x - \delta_x, x + \delta_x)$$

 $\delta_x)D_f$ aperto è misurabile

$$f: \mathbb{R} \to \mathbb{R}$$

se
$$\exists g \in C(\mathbb{R})$$

tale che f = g quasi ovunque $\Rightarrow f$ misurabile

$$\exists N \subset \mathbb{R}, m(N) = 0$$

tale che
$$f = g$$
 in $\mathbb{R} \setminus N$

$$\forall t \in \mathbb{R} \ \{f > t\} = \{f > t\} \setminus N \cup \{f > t\} \setminus N \text{ è misurabile}$$

 $f = \chi_{\mathbb{O}} = 0$ quasi ovunque

f = g quasi ovunque $\exists N, \mu(N)$ f = g in $\mathbb{R} \setminus N$

$$x \in \mathbb{R} \setminus N \quad \lim_{y \to x} f(y)$$

 $f=\chi_{[}0,1]$ è continua quasi ovunque ma non può essere ugguale quasi ovunque ad una funzione continua

Teorema 3

Sia $f: \mathbb{R} \to R$ misurabile $\Rightarrow \forall \delta > 0$ $\exists g_{\delta} \in C(\mathbb{R})$ tale che $m(\{f \neq g\}) < \delta$ $e \sup_{\mathbb{R}} |g_{\delta}| \leq \sup_{\mathbb{R}} |f|$

Lezione 16 Analisi Reale

Federico De Sisti2025-05-01

0.1 altri teoremi

Teorema 1 (Lisin) $f: \mathbb{R} \to \mathbb{R} \ \textit{misurabile} \Rightarrow \forall \delta > 0 \exists g_\delta \in C(\mathbb{R}) \mid m(\{f\}) < \delta \quad \sup |g_\delta| \leq \sup |f|$

Dimostrazione

Procediamo per passi:

- 1. $s: [a,b] \to \mathbb{R}$ semplice. $Tesi: \forall \delta \exists F \subseteq [a,b] \mid m([a,b] \setminus F) < \delta, s|_F$ continua $\exists n \in \mathbb{N}, c \in \mathbb{R}^n, E \subseteq M^n \mid s(x) = \sum_{k=1}^n c_k \chi_{E_n}(x)$ SPDG $E_k \cap E_h = \emptyset$ $\forall h, k$ $\forall \delta > 0, k \in [n] \exists F_k \subseteq E_k$ chiuso $\mid m(E_k \setminus F_k) < \frac{\delta}{n}$ $\Rightarrow F := \bigcup_{k=1}^n F_k, \quad m([a,b] \setminus F) = m(\bigcup_{k=1}^n E_k \bigcup_{k=1}^n F_k) \le \sum_{k=1}^n m(E_k \setminus \bigcup_{k=1}^n F_k) = \sum_{k=1}^n m(E_k \setminus F_k) < \delta$ $s|_F$ continua pK
- 2. $f:[a,b] \to \mathbb{R}$ misurabile Obiettivo: $\forall \delta \in (0,+\infty) \exists F \subseteq [a,b] \mid m([a,b] \setminus F) < \delta, f)_F \in C(F)$ La dimostrazione è poco chiara. Guarda da Spadaro.

0.2 Spazi L^p

$$\begin{split} &(X,\mu) \text{ spazio di misura} \\ &L^p(X) = L^p(X,\mu) := \{f: X \to \overline{\mathbb{R}} \text{ misurabile } | \ \int_X |f|^p d\mu < +\infty \} \\ &f(x) = \frac{\chi_{|x| \geq 1}(x)}{|x|} \in L^p(\mathbb{R})? \\ &\int_{\mathbb{R}} |f(x)|^p d\mu = 2 \int_1^+ \infty \frac{1}{x^p} dm = 2 \frac{x^{1-p}}{1-p}|_{p=1}^{+\infty} = \begin{cases} +\infty & p \leq 1 \\ \frac{2}{1-p} & p > 1 \end{cases} \Rightarrow f \in L^p \ \ \forall p > 1 \\ &f(x) = x^{-\frac{1}{2}} \in L^p((0,1)) \Leftrightarrow \int_0^1 x^{-\frac{p}{2}} dx < +\infty \quad \Leftrightarrow \quad \frac{2x^{\frac{2-p}{2}}}{2-p}|_{x=0}^1 < +\infty \quad \Leftrightarrow \quad \frac{2-p}{2} > 0 \Leftrightarrow p < 2 \end{split}$$

Lemma 1 (Disugualgianza di convessità) $\forall a,b \in [0,+\infty)$

1. (Disuguaglianza di Young) $ab \leq \frac{a^p}{p} + \frac{b^{p'}}{p'} \quad \forall p, p' \in \mathbb{R} \mid \frac{1}{p} + \frac{1}{p'} = 1 \quad (p' = \frac{p}{p-1})$

2.
$$a^p + b^p \le (a+p)^p \le 2^{p-1}(a^p + b^p) \forall p \in [1, +\infty)$$

3.
$$a^p + b^p \ge (a+b)^p \ge 2^{p-1}(a^p + b^p) \quad \forall p \in (0,1)$$

Dimostrazione 1.
$$\ln(x)$$
 concava $\forall x \in (0, +\infty)$ $\ln(\frac{1}{p}a^p + \frac{1}{1}p'b^{p'}) \ge \frac{1}{p}\ln(a^p) + \frac{1}{p'}\ln(b^p) = \ln(a) + \ln(b) = \ln(ab)$ $\Rightarrow \frac{1}{p}a^p + \frac{1}{p'}b^{p'} \ge ab$

2.
$$p \ge 1 \Rightarrow f(x) = x^p, x \in [0, +\infty)$$
 convessa

$$\begin{split} &\frac{1}{2^p}(a+b)^p(\frac{1}{2}a+\frac{1}{2}b)^p \leq \frac{1}{2}a^p + \frac{1}{2}b^p = \frac{1}{2}(a^p+b^p) \quad (ottimale, a=b \Rightarrow =). \\ &b=0 \Rightarrow a^p+b^p \leq (a+b)^p \quad \forall p \geq 1 \\ &b>0 \Rightarrow f(x) = (x+1)^p - x^p - 1 \\ &\Rightarrow f'(x) = p(x+1)^{p-1} - px^{p-1} = (x+1)^{p-1} - x^{p-1} \geq 0 \quad \forall x \geq 0, p \geq 1 \\ &\Rightarrow f \nearrow, f(0) = 0 \Rightarrow f \geq 0 \quad \forall x \geq 0 \\ &\Rightarrow (\frac{a}{b}+1)^p - (\frac{a}{b})^p - 1 = f(\frac{a}{b}) \geq 0 \\ &\Rightarrow (\frac{a}{b}+1)^p \geq (\frac{a}{b})^p + 1 \end{split}$$

Lezione 17 Analisi Reale

Federico De Sisti2025-04-30

0.1 Proprietà spazi L^p

Ricorda:

 $L^P(X) = \{f: X \to [-\infty, +\infty], f \text{ misurabile }, \int_X |f|^p d\mu < +\infty\}, 1 \leq p < +\infty.$

Proposizione 1

 L^p è uno spazio vettoriale

Dimostrazione

 $\forall f, g \in L^p(X), \ \forall \alpha, \beta \in \mathbb{R} \Rightarrow \alpha f + \beta g \ \dot{e} \ misurabile$

$$\begin{split} &\int_X |\alpha f + \beta g|^p d\mu \leq \int (|\alpha||f| + |\beta||g|)^p d\mu \\ &\leq 2^{p-1} (\int_X |\alpha|^p |f|^p d\mu + \int_X |\beta|^p |g|^p d\mu) < +\infty. \end{split}$$

Per definizione, su $L^p(X)$ è ben definita la funzione

$$\| \|_p : L^p(X) \to [0, +\infty)$$

 $f \to ||f||_p = (\int_X |f|^p d\mu)^{\frac{1}{p}}$

Proposizione 2 (Disuguaglianza di Hölder)

Sia
$$p > 1$$
 e $p' = \frac{p}{p-1} \left(\frac{1}{p'} + \frac{1}{p} = 1 \right) \quad \forall f \in L^p(X), g \in L^{p'}(X)$
 $\Rightarrow fg \in L^1(X)$ e

$$\int_X |fg| d\mu \le \|f\|_p \|g\|_p = (\int_X |f|^p d\mu)^{1/p} (\int_X |g|^{p'} d\mu)^{1/p'}$$

Dimostrazione

Si usa la disuguaglianza di Young se $f \neq 0, g \neq 0$

$$\Rightarrow ||f||_p = (\int_X |f|^p d\mu)^{1/p} > 0$$

$$||g||_{p'} = (\int_X |g|^{p'} d\mu)^{1/p'} > 0$$

Per quasi ogni (q.o.) $x \in X$

$$|f(x)| < +\infty, \quad |g(x)| < +\infty.$$

$$\begin{split} & \frac{|f(x)|}{\|f\|_{p}} \frac{|g(x)|}{\|g\|_{p'}} \leq \frac{1}{p} \frac{|f(x)|^{p}}{\|f\|_{p}^{p}} + \frac{1}{p'} \frac{|g(x)|^{p'}}{\|g\|_{p'}^{p'}} \\ & \Rightarrow \int_{X} \frac{|f||g|}{\|f\|_{p}\|g\|_{p'}d\mu} \leq \frac{1}{p} \frac{1}{\int_{X} |f|^{p}d\mu} \int_{X} |f|^{p}d\mu + \frac{1}{p'} \frac{1}{\int_{X} |g|^{p'}d\mu} \int_{X} |g|^{p'}d\mu = 1 \end{split}$$

Sia
$$1 \le p < +\infty$$

 $\forall f, g \in L^p(X) \quad ||f + g||_p \le ||f||_p + ||g||_p$
 $((\int_X |f + g|^p d\mu)^{1/p} \le (\int_X |f|^p d\mu)^{1/p} + (\int_X |g|^p d\mu)^{1/p}))$

Dimostrazione

$$\begin{split} &\int_{X} |f+g|^{p} d\mu = \int_{X} |f+g| |f+g|^{p-1} d\mu \leq \int_{X} (|f|+|g|) |f+g|^{p-1} d\mu = \int_{X} |f| |f+g|^{p-1} d\mu = \int_{X} |f| |f+g|^{p-1} d\mu \\ &g|^{p-1} d\mu + \int_{X} |g| |f+g|^{p-1} d\mu \\ &\underset{Holder}{\leq} (\int_{X} |f|^{p} d\mu)^{1/p} (\int_{X} |f+g|^{(p-1)\frac{p}{p-1}})^{\frac{p-1}{p}} + (\int_{X} |g|^{p} d\mu)^{1/p} (\int_{X} |f+g|^{(p-1)\frac{p}{p-1}} d\mu)^{\frac{p-1}{p}} \\ &\leq \|f\|_{p} \|f+g\|_{p}^{p-1} + \|g\|_{p} \|f+g\|_{p}^{p-1} \text{ basta ultimamente dividere per } \|f+g\|_{p}^{p-1} \\ &entrambi \ i \ lati \ della \ disequazione \end{split}$$

Proposizione 4

$$||f||_p = (\int_X |f|^p d\mu)^{1/p}$$
 è una norma su $L^p(X)$

Dimostrazione

 $(i)||_{p} \ge \forall f \in L^{p}(X)$

$$||f||_p = 0 \Leftrightarrow \int_X |f|^p d\mu = 0 \Leftrightarrow f = 0 \text{ q.o.}.$$

(ii)
$$\|\alpha f\|_p \quad \alpha \in \mathbb{R} = |\alpha| \|f\|_p$$

(iii) $\|f + g\|_p \le \|f\|_p + \|g\|_p$

Osservazione:

A rigore bisognerebbe definire $L^p(X)$ come l'insieme i cui elementi sono le classi di equivalenza

$$[f] = \{q : X \to [-\infty, +\infty] : f = q \ q.o.\}.$$

L'insieme quozientato con questa relazione ci permette di definire bene la norma, altrimenti l'elemento nullo non è unico (posso fare cambiamenti di misura nulla).

Teorema 1

Se $p \ge 1 \Rightarrow L^p(X)$ è uno spazio vettoriale normato completo (spazio di Banach)

Dimostrazione (La chiede all'orale)

 $Sia \{f_n\} \subset L^p(X)$ successione di Cauchy

$$\Leftrightarrow \forall \varepsilon > 0 \exists n_{\varepsilon} : \|f_n - f_m\|_p < \varepsilon \quad \forall n, m \ge n_{\varepsilon}$$

Tesi: $\exists f \in L^p(X)$ tale che $f_n \to f$ in $L^p(X) \Leftrightarrow ||f_n - f||_p \to 0$ per $n \to +\infty$ Usiamo la definizione di successione di Cauchy con $\varepsilon = \frac{1}{2^k}$ $\forall k \exists n_k \text{ tale che}$

$$||f_n - f_m|| < \frac{1}{2^k} \quad \forall n, m \ge n_{\varepsilon}.$$

selezionando $n_{k+1} > n_k$ Si seleziona una estratta $\{f_{n_k}\}$ tale che

$$||f_{n_{k+1}} - f_{n_k}||_p < \frac{1}{2^k} \quad \forall k \ge 1.$$

Consideriamo la nuova successione:

$$g_j(x) = \sum_{k=1}^{j} |f_{n_{k+1}}(x) - f_{n_k}(x)| \in L^p(X).$$

$$||g_j||_p = ||\sum_{k=1}^j |f_{n_{k+1}} - f_{n_k}||_p \le \sum_{k=1}^j ||f_{n_{k+1}} - f_k||_p \le \sum_{k=1}^j \frac{1}{2^k} < 1$$

$$\Rightarrow \int_X |g_j|^p d\mu \le 1 \quad \forall j$$

Attenzione

Il modulo è fondamentale così g_j è una funzione crescente!

$$g_{j+1} \ge g_j \quad \forall x \in X \Rightarrow \exists \lim_{j \to +\infty} g_j(x) = g(x) = \sum_{k=1}^{+\infty} |f_{n_k-1}(x) - f_{n_k}(x)|$$

Usando il teorema di B. Levi

$$\int_X |g|^p d\mu = \lim_{j \to +\infty} \int_X |g_j|^p d\mu \le 1.$$

 $\Rightarrow g \in L^p(X) \Rightarrow g^p \in L^1(X) \Rightarrow g^p$ (e quindi anche g) è finita quasi ovunque, per quasi ogni $x \in X$

$$g(x) = \sum_{k=1}^{+\infty} |f_{n_{k+1}} - f_{n_k}(x)| < +\infty.$$

 $\Rightarrow per quasi ogni x \in X$

$$\sum_{k=1}^{+\infty} [f_{n_{k+1}}(x) - f_{n_k}(x)] \ \dot{e} \ convergente.$$

$$\Rightarrow \exists \lim_{j \to +\infty} \sum_{k=1}^{j-1} (f_{n_{k+1}}(x) - f_{n_k}(x))$$

$$= \lim_{j \to +\infty} (f_{n_2} - f_{n_1} + f_{n_3} - f_{n_2} + \dots + f_{n_j} - f_{n_{j-1}})$$

$$= -f_{n_1} + \lim_{j \to +\infty} f_{n_j}$$

$$\Rightarrow \exists \lim_{j \to +\infty} f_{n_j}(x) \text{ per ogni } x$$

$$f(x) = \lim_{j \to +\infty} f_{n_j}(x)$$

$$\exists \text{ quasi ovunque, } \grave{e} \text{ misurabile}$$

$$\forall \varepsilon > 0$$

$$\int_{X} |f_m - f_{n_j}|^p d\mu = \|f_m - f_{n_k}\|_p < \varepsilon \quad \forall m \ge n_e \text{ per } j \text{ suff. grande.}$$

$$\int_{X} |f_{n} - f|^{p} d\mu_{Fatou} \underset{j \to +\infty}{\leq} \liminf_{j \to +\infty} \int_{X} |f_{m} - f_{n_{j}}|^{p} d\mu \leq \varepsilon^{p}.$$

$$\Rightarrow f_{n} - f \in L^{p} e$$

 $||f_n - f||_p \le \varepsilon \quad \forall m \ge n_e$.

$$\Rightarrow f = f_n - (f_m - f) \in L_p \ e \|f_m - f\|_p \le \varepsilon \ \forall m \ge n_e.$$

$$\Rightarrow \|f_m - f\|_p \xrightarrow{m \to +\infty} 0$$