Computational Microelectronics L7 (Pre-recorded)

Sung-Min Hong

smhong@gist.ac.kr

Semiconductor Device Simulation Laboratory, GIST

1D nonlinear Poisson equation

Poisson equation

- Source-free Poisson equation
 - When the net charge density vanishes, we have a special form of the Poisson equation:

$$\nabla \cdot [\boldsymbol{\epsilon}(\mathbf{r}) \nabla \phi] = 0$$

Now we want to keep the net charge density.

$$\nabla \cdot [\boldsymbol{\epsilon}(\mathbf{r}) \nabla \phi] = -\rho(\mathbf{r})$$

Charges inside semiconductor

$$\rho(\mathbf{r}) = qp(\mathbf{r}) - qn(\mathbf{r}) + qN_{dop}^{+}(\mathbf{r})$$

- Hole density, $p(\mathbf{r})$
- Electron density, $n(\mathbf{r})$
- Doping density, $N_{dop}^+(\mathbf{r})$: Positive for donors and negative for acceptors

 GIST Lecture 2024

At equilibrium,

- We have special expressions for charge densities:
 - -Hole density, $p(\mathbf{r}) = n_{int}(\mathbf{r}) \exp\left(-\frac{q\phi(\mathbf{r})}{k_BT}\right)$
 - Electron density, $n(\mathbf{r}) = n_{int}(\mathbf{r}) \exp\left(\frac{q\phi(\mathbf{r})}{k_BT}\right)$
 - By adopting these expressions, we have the nonlinear Poisson equation:

$$\nabla \cdot [\epsilon(\mathbf{r})\nabla\phi] + qn_{int}(\mathbf{r})\exp\left(-\frac{\phi(\mathbf{r})}{V_T}\right) - qn_{int}(\mathbf{r})\exp\left(\frac{\phi(\mathbf{r})}{V_T}\right) + qN_{don}^+(\mathbf{r}) = 0$$

Discretization

- When the nonlinear Poisson equation is considered,
 - We have additional terms related to $\int_{x_{i-0.5}}^{x_{i+0.5}} \rho(\mathbf{r}) dx$.
 - -Simple treatment for this integration:

$$\epsilon(x_{i+0.5}) \frac{\phi(x_{i+1}) - \phi(x_i)}{x_{i+1} - x_i} - \epsilon(x_{i-0.5}) \frac{\phi(x_i) - \phi(x_{i-1})}{x_i - x_{i-1}} + q\left(n_{int} \exp\left(-\frac{q\phi(x_i)}{k_B T}\right) - n_{int} \exp\left(\frac{q\phi(x_i)}{k_B T}\right) + N_{dop}^+(x_i)\right) (x_{i+0.5}) - x_{i-0.5}) = 0$$

– This expression is used to construct the i-th row of b vector.

Only silicon region

- In general, we must consider the oxide layer and the gate contact.
 - For simplicity, consider only the silicon region.
 - -It is assumed that the surface potential, $\phi_s = \phi(x=0) \phi_{\infty}$, is known. Electrostatic potential (V)

Once again, nonlinearity

- There are N unknown variables, ϕ_0 , ϕ_1 , ..., ϕ_{N-1} .

$$\begin{array}{l} -1) \text{ Evaluate the following equation at } N-2 \text{ points, } x_{1}, x_{2}, ..., x_{N-2}. \\ \varepsilon(x_{i+0.5}) \frac{\phi(x_{i+1}) - \phi(x_{i})}{x_{i+1} - x_{i}} - \varepsilon(x_{i-0.5}) \frac{\phi(x_{i}) - \phi(x_{i-1})}{x_{i} - x_{i-1}} \\ + q \left(n_{int} \exp\left(-\frac{q\phi(x_{i})}{k_{B}T} \right) - n_{int} \exp\left(\frac{q\phi(x_{i})}{k_{B}T} \right) + N_{dop}^{+}(x_{i}) \right) (x_{i+0.5}) \end{aligned}$$

 $-x_{i-0.5}$) = 0

-2) Apply the boundary condition at 2 points, x_0 and x_{N-1} .

$$\phi_0 = \phi_s + \phi_\infty$$
$$\phi_{N-1} = \phi_\infty$$

– It is nonlinear!

Newton-Raphson method

- Newton method for multiple variables
 - For a single variable, ϕ , we calculate $f(\phi)$. Its derivative, $\frac{df}{d\phi}$, is useful.
 - For two variables, ϕ and ψ , we calculate $f(\phi, \psi)$ and $g(\phi, \psi)$. Partial derivatives are $\frac{\partial f}{\partial \phi}$, $\frac{\partial f}{\partial \psi}$, $\frac{\partial g}{\partial \phi}$, and $\frac{\partial g}{\partial \psi}$. How can we arrange them to

calculate $\delta\phi$ and $\delta\psi$?

- -Watch my video [CM2020] L6.5 from 26:06.
- Key lesson:
- Partial derivatives construct A.
- -Then, solve Ax = b.

The *i*—th row

- Consider a case of $1 \le i \le N-2$.
 - -Then, (i, i+1) component becomes $\epsilon(x_{i+0.5}) \frac{1}{x_{i+1} x_i}$.

-The diagonal,
$$(i, i)$$
, component becomes
$$-\epsilon(x_{i+0.5}) \frac{1}{x_{i+1} - x_i} - \epsilon(x_{i-0.5}) \frac{1}{x_i - x_{i-1}}$$

$$+ q \left(-\frac{q}{k_B T} n_{int} \exp\left(-\frac{q\phi(x_i)}{k_B T} \right) - \frac{q}{k_B T} n_{int} \exp\left(\frac{q\phi(x_i)}{k_B T} \right) \right) (x_{i+0.5} - x_{i-0.5})$$

-Also, (i, i-1) component becomes $\epsilon(x_{i-0.5}) \frac{1}{x_{i-1}x_{i-1}}$.

Convergence criterion

- By solving Ax = b, we obtain a vector of $\delta \phi$.
 - When every entry of this vector becomes sufficiently small, we can stop the Newton-Raphson iterations.

Flatband condition

- It means that ϕ_s = 0.0 V.
 - Also, the p-type doping concentration is 10^{17} cm⁻³.
 - -Use $\Delta x = 1$ nm. N is 201.

Bias ramping

• Ramp up the surface potential, ϕ_s . (The term, "bias," is usually used for terminal quantities. In this lecture, we instead increase

 ϕ_{S} , only for simplicity.)

-Simply add an outermost loop.

Start at the initial bias.

Electron density at ϕ_S = 0.9 V

- Now, strong inversion
 - -The electron density at x = 0 is 1.5×10^{18} cm⁻³.
 - Numerically integrated electron density is 2.3X10¹¹ cm⁻².

Homework#7

- Due: AM08:00, October 8
- Problem#1
 - Now, we have two methods to calculate semiconductor charges. One is an analytic expression studied in L4. The other is a numerical approach studied in L7. When the p-type doping concentration is 4X10¹⁷ cm⁻³, compare two results.

Thank you for your attention!