Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 4

Aufgabe 4.1 (4 Punkte)

Auf einem Tisch stehen 10 Gläser. 5 davon stehen kopfüber und die anderen 5 Gläser normal. In einer Iteration darf man 2 beliebige Gläser nehmen und umdrehen. Ist es möglich, nach mehreren Iterationen alle Gläser richtig zu stellen? Warum (nicht)?

Lösung 4.1

Es ist nicht möglich.

Pro Iteration gibt es 3 Möglichkeiten verschiedene Arten von Gläsern umzudrehen: x sei die Anzahl der normal stehenden Gläser, y die Anzahl der kopfüber stehenden Gläser.

- Es werden 2 normal stehende Gläser umgedreht: $(x,y) \to (x-2,y)$
- Es werden 2 kopfüber stehende Gläser umgedreht: $(x,y) \to (x,y-2)$
- Es wird ein normal stehendes und ein kopfüber stehendes Glas umgedreht $(x,y) \to (x,y)$

Als Invariante lässt sich festhalten: In allen 3 Fällen ändert sich die Parität von x und y nicht.

Als gewünschtes Ziel soll (x,y) = (10,0) erreicht werden. Da zu Beginn (5,5) gegeben ist, lässt sich auf Grund der Invariante dieses Ziel nicht erreichen.

Hinweis: 1 Punkt für die richtige Vermutung, 2 Punkte für eine passende Invariante, 1 Punkt für Start/Ziel-Argumentation

Aufgabe 4.2 (2+2+5) Punkte

Gegeben ist der folgende Algorithmus.

```
/\!\!/ Eingabe: n \in \mathbb{N}_+

r \leftarrow 1

k \leftarrow 1

while (k < n) do

r \leftarrow r + k + k + 1

k \leftarrow k + 1

od

/\!\!/ Ausgabe: r
```

- a) Machen Sie eine Beispielrechnung für den Fall n=5. Geben Sie dabei tabellarisch die Werte der einzelnen Variablen r_i und k_i an, wobei der Index i der Variablen den i-ten while-Schleifen-Durchgang angibt.
- b) Finden Sie eine Schleifeninvariante, die das Wesentliche dessen, was der Algorithmus macht, widerspiegelt.
- c) Weisen Sie nach, dass diese Aussage tatsächlich Schleifeninvariante ist.

Lösung 4.2

		r_i	k_i
a) .	Anfangsbelegung:	1	1
	Nach 1. Iteration	4	2
	Nach 2. Iteration	9	3
	Nach 3. Iteration	16	4
	Nach 4. Iteration	25	5

- b) $\forall n \in \mathbb{N}_0 : k < n \Rightarrow r = k^2$
- c) Induktionsanfang: n=0: Wir betrachten die Anfangsbelegungen $r_0 \leftarrow 1, k_0 \leftarrow 1$ $1^2 = 1\sqrt{}$

Induktionsvoraussetzung:

Für ein festes, aber beliebiges $m\in\mathbb{N}_0$ gilt: Wenn es einen Schleifendurchlauf gibt, bei dem k den Wert m hat, gilt $r_m=k_m^2$

Induktionsschluss: Wir zeigen, dass dann auch gilt: $r_{m+1} = k_{m+1}^2$

Nach Algorithmus gilt $r_{m+1} = r_m + k_m + k_m + 1 \stackrel{IV}{=} k_m^2 + k_m + k_m + 1 = k_m^2 + 2 \cdot k_m + 1 \stackrel{bin.Formel}{=} (k_m + 1)^2 \stackrel{Def}{=} k_{m+1}$

Damit ist die Behauptung gezeigt, und damit auch die Schleifeninvariante.

Aufgabe 4.3 (1+2+3 Punkte)

Gegeben sei ein Alphabet A, die Funktion $f: A \times A \to \mathbb{G}_2$:

$$\forall x, y \in A : f(x, y) = \begin{cases} 1 & \text{falls } x = y \\ 0 & \text{sonst} \end{cases}$$

und ein Algorithmus mit Eingabe $w \in A^+$:

$$k \leftarrow 0$$
for $(i \leftarrow 0 \text{ to } |w| - 1)$ do
$$k \leftarrow k + 2^{i} \cdot f(w(i), w(|w| - 1 - i))$$
od

- a) Welchen Wert nimmt k nach der Eingabe des Wortes legovogel an?
- b) Was muss für w gelten, damit nach Abarbeitung von w am Ende k=0 gilt?
- c) Finden Sie eine Schleifeninvariante über k_i und k_{i+1} , die das Wesentliche dessen, was der Algorithmus macht, widerspiegelt. Der Index i gibt dabei den i-ten Schleifen-Durchgang der Variablen an.

Hinweis: Für $0 \le i < |w|$ bezeichnet w(i) den *i*-ten Buchstaben eines Wortes w.

Lösung 4.3

- a) Nach Abarbeitung gilt k = 511
- b) Es muss gelten: $\forall i \in \mathbb{G}_{|w|} : w(i) \neq w(|w| 1 i)$

c)
$$\forall n \in \mathbb{G}_{|w|} : k_{n+1} = \begin{cases} k_n & \text{falls } w(n) \neq w(|w| - 1 - n) \\ k_n + 2^n & \text{sonst} \end{cases}$$

Auch nicht falsch wäre sowas:

$$0 < n < |w| \land k_n = 2^n - 1 \Rightarrow \forall j \le n - 1 : w(j) = w(n - 1 - j)$$