Introducing Computation Graphs

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Model nodes, edges and dependencies in a computation graph

Understand the basic parts of a program in TensorFlow

Run TensorFlow programs and visualize results using TensorBoard

The TensorFlow World

Everything is a Graph

A network

Everything is a Graph

Everything is a Graph

...and gets transformed along the way

TensorFlow

TensorFlow

$$Y = (round(A) + floor(B)) *$$

round(A) + abs(round(A) + floor(B))

Edges point forward towards a result i.e. directed

Dependencies

One node can send its output to multiple nodes

Dependencies

Or receive inputs from multiple nodes

Dependencies

There are no cycles in the graph i.e. acyclic

A graph with cycles will never finish computation

Problems in TensorFlow are represented as a directed-acyclic graph

Cyclical Dependencies in Machine Learning

A graph with cycles will never finish computation

The Process of Machine Learning

Corpus of data

Feature Selection & ML

Result

The Process of Machine Learning

The Process of Machine Learning

Unrolling the graph

Unrolling the graph

How much you unroll depends on the number of iterations you want to run

Unroll graphs to model cyclic dependencies

Building and Running Graphs

2 Steps in a TensorFlow Program

Building a Graph

Specify the operations and the data

Running a Graph

Execute the graph to get the final result

Demo

Building and running a graph in TensorFlow

Exploring the graph using TensorBoard

2 Steps in a TensorFlow Program

Building a Graph

Specify the operations and the data

Running a Graph

Execute the graph to get the final result

2 Steps in a TensorFlow Program

Building a Graph

Specify the operations and the data

Running a Graph

Execute the graph to get the final result

Visualizing a Graph

TensorBoard

Visualize how data flows and what computations operate on it

Modeling Computations as Graphs

TensorFlow calculates only that portion of the graph which is required

Running Graphs on a Distributed System

Multiple portions of the graph can be run in parallel across machines in the cluster

Executing simple math commands in TensorFlow

Tensors

Tensor

The central unit of data in TensorFlow. A tensor consists of a set of primitive values shaped into an array of any number of dimensions.

https://www.tensorflow.org/

Tensor

The central unit of data in TensorFlow. A tensor consists of a set of primitive values shaped into an array of any number of dimensions.

https://www.tensorflow.org/

Tensor

The central unit of data in TensorFlow. A tensor consists of a set of primitive values shaped into an array of any number of dimensions.

https://www.tensorflow.org/

Scalars are O-D tensors

3, 6.7, "a"

Vectors are 1-D tensors

[], 3, 5, 7, 9]

Matrices are 2-D tensors

[[], 3, 5], [7, 9, 11]]

N-Dimensional matrices are N-D tensors

Characterization of Tensors

The number of dimensions in a tensor

Shape

The number of elements in each dimension

Data Type

The data type of each element in the tensor

Rank

Tensor	Rank
4	0
[1, 2, 3]	1
[[1, 2], [3, 4]]	2
[[[1], [2]], [[3], [4]]]	3

Shape

Tensor	Shape		
4	[]		
[1, 2, 3]	[3]		
[[1, 2, 3], [4, 5, 6]]	[3, 2]		
[[[1], [2]], [[3], [4]]]	[2, 2, 1]		

Data Type

int float string

Rank, shape and data types are 3 important characteristics which define a Tensor

Use tf.rank() to know the rank of Tensors

Execute the simple math program with Tensors rather than scalar inputs

Use numpy arrays in TensorFlow

Summary

Worked with the directed-acyclic graph to model problems in TensorFlow

Understood constants, operators and sessions

Understood Tensor characteristics such as rank, shape and data type

Run TensorFlow programs and visualized results using TensorBoard