Diagrama de Estados

1

III. El Paradigma OO: Diagrama de Estados

Diagrama de Estados

- Los Diagramas de Estados representan autómatas de estados finitos, desde el p.d.v. de los estados y las transiciones
- Son útiles sólo para los objetos con un comportamiento significativo

... Diagrama de Estados

- Cada objeto está en un estado en cierto instante
- El estado está caracterizado parcialmente por los valores de algunos de los atributos del objeto
- El estado en el que se encuentra un objeto determina su comportamiento
- Cada objeto sigue el comportamiento descrito en el D. de Estados asociado a su clase
- Los D. De Estados y escenarios son complementarios

3

III. El Paradigma OO: Diagrama de Estados Diagrama de Estados Estados y Transiciones Evento [condición] / Acción A B Tanto el evento como la acción se consideran instantáneos

... Diagrama de Estados

 Ejemplo de un Diagrama de Estados para la clase persona:

III. El Paradigma OO: Diagrama de Estados

... Acciones

 Se puede especificar el ejecutar una acción como consecuencia de entrar, salir, estar en un estado, o por la ocurrencia de un evento:

estado A

entry: *acción* por entrar exit: *acción* por salir

do: acción mientras en estado

on evento: acción

Generalización de Estados

- Podemos reducir la complejidad de estos diagramas usando la generalización de estados
- Distinguimos así entre superestado y subestados
- Un estado puede contener varios subestados disjuntos
- Los subestados heredan las variables de estado y las transiciones externas

7

III. El Paradigma OO: Diagrama de Estados

Generalización de Estados

• Ejemplo:

Generalización de Estados

• Quedaría como:

A

e1

B

e2

c

... Generalización de Estados

- Las transiciones de entrada deben ir hacia subestados específicos:

- B
- B
- C
- C

... Generalización de Estados

 Es preferible tener estados iniciales de entrada a un nivel de manera que desde los niveles superiores no se sepa a qué subestado se entra:

Transiciones temporizadas

- Las esperas son actividades que tienen asociada cierta duración
- La actividad de espera se interrumpe cuando el evento esperado tiene lugar
- Este evento desencadena una transición que permite salir del estado que alberga la actividad de espera. El flujo de control se transmite entonces a otro estado

13

Transiciones temporizadas - Ejemplo: A Abrir ranura esperar dinero entry: Mostrar mensaje exit: cerrar ranura Depósito efectuado B

Diagrama de Actividad

- El Diagrama de Actividad es una especialización del Diagrama de Estado, organizado respecto de las acciones y usado para especificar:
 - Un método
 - Un caso de uso
 - Un proceso de negocio (Workflow)
- Las actividades se enlazan por transiciones automáticas. Cuando una actividad termina se desencadena el paso a la siguiente actividad

Diagrama de Componentes

III. El Paradigma OO: Diagrama de Componentes

Diagrama de Componentes

- Los diagramas de componentes describen los elementos físicos del sistema y sus relaciones
- Muestran las opciones de realización incluyendo código fuente, binario y ejecutable

19

III. El Paradigma OO: Diagrama de Componentes

...Diagrama de Componentes

- Los componentes representan todos los tipos de elementos software que entran en la fabricación de aplicaciones informáticas.
 Pueden ser simples archivos, paquetes de Ada, bibliotecas cargadas dinámicamente, etc.
- Las relaciones de dependencia se utilizan en los diagramas de componentes para indicar que un componente utiliza los servicios ofrecidos por otro componente

Diagrama de Despliegue

III. El Paradigma OO: Diagrama de Despliegue

Diagrama de Despliegue

 Los Diagramas de Despliegue muestran la disposición física de los distintos nodos que componen un sistema y el reparto de los componentes sobre dichos nodos

23

III. El Paradigma OO: Diagrama de Despliegue

... Diagrama de Despliegue

- Los estereotipos permiten precisar la naturaleza del equipo:
 - Dispositivos
 - Procesadores
 - Memoria
- Los nodos se interconectan mediante soportes bidireccionales que pueden a su vez estereotiparse

III. El Paradigma OO: Diagrama de Despliegue Diagrama de Despliegue Ejemplo de conexión entre nodos: <<Cli>ente>> <<Servidor>> <<TCP/IP>> Terminal Punto Base de de Venta Datos <<RDSI>> <<RDSI>> Podemos distinguir tipos Control de nodos y connexiones por estereotipado 25

Proceso de Desarrollo de SW basado en UML

Define Quién debe hacer Qué, Cuándo y Cómo debe hacerlo

Requisitos nuevos o modificados

Proceso de Desarrollo de SW Sistema nuevo o modificado

Romando Proceso de Desarrollo de Software

No existe un proceso de software universal. Las características de cada proyecto (equipo de desarrollo, recursos, etc.) exigen que el proceso sea configurable

... Elementos en RUP

Workers

Analyst workers

- Business-Process Analyst
- Business Designer
- Business-Model Reviewer
- Requirements Reviewer
- System Analyst
- Use-Case Specifier
- User-Interface Designer

Developer workers

- Architect
- Architecture Reviewer
- Code Reviewer
- Database Designer
- Design Reviewer
- Designer
- Implementer
- Integrator

Testing professional workers

- Test Designer
- Tester

Manager workers

- Change Control Manager
- Configuration Manager
- Deployment Manager
- Process Engineer
- Project Manager
- Project Reviewer

Other workers

- Any Worker
- Course Developer
- Graphic Artist
- Stakeholder
- System Administrator
- Technical Writer
- Tool Specialist

31

IV. Proceso de Desarrollo de SW basado en UML

Características Esenciales de RUP

- Proceso Dirigido por los Casos de Uso
- Proceso Iterativo e Incremental
- Proceso Centrado en la Arquitectura

... Proceso dirigido por los Casos de Uso

Estado de aspectos de los Casos de Uso al finalizar cada fase

	Modelo de Negocio Terminado	Casos de Uso Identificados	Casos de Uso Descritos	Casos de Uso Analizados	Casos de Uso Diseñados, Implementados y Probados
Fase de Concepción	50% - 70%	50%	10%	5%	Muy poco, puede que sólo algo relativo a un prototipo para probar conceptos
Fase de Elaboración	Casi el 100%	80% o más	40% - 80%	20% - 40%	Menos del 10%
Fase de Construcción	100%	100%	100%	100%	100%
Fase de Transición					

The Unified Software Development Process. I. Jacobson, G. Booch y J. Rumbaugh. página 358. Addison-Wesley, 1999.

35

IV. Proceso de Desarrollo de SW basado en UML

Proceso Iterativo e Incremental

- El ciclo de vida iterativo se basa en la evolución de prototipos ejecutables que se muestran a los usuarios y clientes
- En el ciclo de vida iterativo a cada iteración se reproduce el ciclo de vida en cascada a menor escala
- Los objetivos de una iteración se establecen en función de la evaluación de las iteraciones precedentes

... Proceso Iterativo e Incremental

 Las actividades se encadenan en una minicascada con un alcance limitado por los objetivos de la iteración

.

IV. Proceso de Desarrollo de SW basado en UML

... Proceso Iterativo e Incremental

- Cada iteración comprende:
 - Planificar la iteración (estudio de riesgos)
 - Análisis de los Casos de Uso y escenarios
 - Diseño de opciones arquitectónicas
 - Codificación y pruebas. La integración del nuevo código con el existente de iteraciones anteriores se hace gradualmente durante la construcción
 - Evaluación de la entrega ejecutable (evaluación del prototipo en función de las pruebas y de los criterios definidos)
 - Preparación de la entrega (documentación e instalación del prototipo)

Fases del Ciclo de Vida

- El ciclo de vida consiste en una serie de ciclos, cada uno de los cuales produce una nueva versión del producto
- Cada ciclo está compuesto por fases y cada una de estas fases está compuesta por un número de iteraciones
- Las fases son:
 - Inicio o Estudio de oportunidad
 - Elaboración
 - Construcción
 - Transición

4

IV. Proceso de Desarrollo de SW basado en UML

...Fases del Ciclo de Vida

- Inicio o Estudio de oportunidad (inception)
 - Define el ámbito y objetivos del proyecto
 - Se define la funcionalidad y capacidades del producto
- Elaboración
 - Tanto la funcionalidad como el dominio del problema se estudian en profundidad
 - Se define una arquitectura básica
 - Se planifica el proyecto considerando recursos disponibles

...Fases del Ciclo de Vida

Construcción

- El producto se desarrolla a través de iteraciones donde cada iteración involucra tareas de análisis, diseño e implementación
- Las fases de estudio y análisis sólo dieron una arquitectura básica que es aquí refinada de manera incremental conforme se construye (se permiten cambios en la estructura)
- Gran parte del trabajo es programación y pruebas
- Se documenta tanto el sistema construido como el manejo del mismo
- Esta fase proporciona un producto construido junto con la documentación

43

IV. Proceso de Desarrollo de SW basado en UML

...Fases del Ciclo de Vida

Transición

- Se libera el producto y se entrega al usuario para un uso real
- Se incluyen tareas de marketing, empaquetado atractivo, instalación, configuración, entrenamiento, soporte, mantenimiento, etc.
- Los manuales de usuario se completan y refinan con la información anterior
- Estas tareas se realizan también en iteraciones

Conclusiones

Contexto de Desarrollo: Grado de Complejidad V. Conclusiones

V. Conclusiones

Modelado de SI: Algunas Reflexiones

- Modelar para la concebir el sistema y/o para la documentarlo
- Pragmatismo, los modelos deben ser útiles
- Sencillez y Elegancia
- Distintos nivel de abstracción, diferentes modelos
- Seguimiento de transformaciones durante el proceso (*Traceability*)
- Sincronización de modelos
- Dificultades para la introducción de técnicas y herramientas de modelado

V. Conclusiones

... Finalmente

- Apostar por enfoque Orientado a Objetos usando notación UML
- Problemas actuales en implementación, al usar entornos de programación visual y/o bases de datos relacionales
- Posibles mejoras a mediano plazo
 - Evolución: Uso de BDOO y/o mejoras en los LPOO
 - Revolución: Generación Automática de Código a partir de Modelos OO (Compilación de Modelos)