Project Target:

Designing a ML for predicting properties prices in each area of California,

Criteria:

- · Population of the region,
- Average Earnings,
- · Number of bedrooms,

The concept of the "Reagin" in the project refers to the smallets geograpgic unit with a population of 600 and 3000 people,

Date of information: 1990

Technolologies and libraries Used:

- Pandas,
- Numpy,
- Sklearn,
- · Matplotlib,

In [40]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from pandas.plotting import scatter_matrix
from sklearn.impute import SimpleImputer

# Custom transformer for creating new attributes by combining existing attributes
from sklearn.base import BaseEstimator, TransformerMixin

#Standardization Feature scaling
from sklearn.preprocessing import StandardScaler
```

In [8]:

```
#Download the "Housing Price.csv" file
property_price_report= pd.read_csv('property_price_report.csv')
```

In [9]:

```
#"head" is a function which shows the first 5 rows of our dataset
property_price_report.head()
```

Out[9]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	househ
0	-122.23	37.88	41.0	880.0	129.0	322.0	1
1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1 1
2	-122.24	37.85	52.0	1467.0	190.0	496.0	1
3	-122.25	37.85	52.0	1274.0	235.0	558.0	2
4	-122.25	37.85	52.0	1627.0	280.0	565.0	2
4							•

In [10]:

```
property_price_report.shape
```

Out[10]:

(20640, 10)

In [37]:

```
property_price_report.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):
```

#	Column	Non-Null Count	Dtype
0	longitude	20640 non-null	float64
1	latitude	20640 non-null	float64
2	housing_median_age	20640 non-null	float64
3	total_rooms	20640 non-null	float64
4	total_bedrooms	20433 non-null	float64
5	population	20640 non-null	float64
6	households	20640 non-null	float64
7	median_income	20640 non-null	float64
8	<pre>median_house_value</pre>	20640 non-null	float64
9	ocean_proximity	20640 non-null	object
1.0	C1 (C4/O)	-+/1)	

dtypes: float64(9), object(1)

memory usage: 1.6+ MB

In [11]:

```
property_price_report.columns
```

Out[11]:

```
In [74]:
property_price_report['ocean_proximity']
Out[74]:
         NEAR BAY
1
         NEAR BAY
2
         NEAR BAY
         NEAR BAY
3
         NEAR BAY
20635
           INLAND
20636
           INLAND
20637
           INLAND
           INLAND
20638
20639
           INLAND
Name: ocean_proximity, Length: 20640, dtype: object
In [12]:
property_price_report['ocean_proximity'].unique()
Out[12]:
array(['NEAR BAY', '<1H OCEAN', 'INLAND', 'NEAR OCEAN', 'ISLAND'],</pre>
      dtype=object)
In [40]:
property_price_report['ocean_proximity'].value_counts()
Out[40]:
<1H OCEAN
              9136
INLAND
              6551
NEAR OCEAN
              2658
              2290
NEAR BAY
ISLAND
Name: ocean_proximity, dtype: int64
In [13]:
property_price_report[property_price_report['ocean_proximity']=='ISLAND']
Out[13]:
```

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	hou
8314	-118.32	33.35	27.0	1675.0	521.0	744.0	
8315	-118.33	33.34	52.0	2359.0	591.0	1100.0	
8316	-118.32	33.33	52.0	2127.0	512.0	733.0	
8317	-118.32	33.34	52.0	996.0	264.0	341.0	
8318	-118.48	33.43	29.0	716.0	214.0	422.0	
4							•

In [42]:

property_price_report['population'][property_price_report['ocean_proximity']=='ISLAND']

Out[42]:

8314 744.0 8315 1100.0 8316 733.0 8317 341.0 8318 422.0

Name: population, dtype: float64

In [14]:

property_price_report[['population','ocean_proximity']][property_price_report['ocean_pro

Out[14]:

	population	ocean_proximity
8314	744.0	ISLAND
8315	1100.0	ISLAND
8316	733.0	ISLAND
8317	341.0	ISLAND
8318	422.0	ISLAND

In [15]:

property_price_report.describe()

Out[15]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	р
count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000000	2064
mean	-119.569704	35.631861	28.639486	2635.763081	537.870553	142
std	2.003532	2.135952	12.585558	2181.615252	421.385070	113
min	-124.350000	32.540000	1.000000	2.000000	1.000000	
25%	-121.800000	33.930000	18.000000	1447.750000	296.000000	78
50%	-118.490000	34.260000	29.000000	2127.000000	435.000000	116
75%	-118.010000	37.710000	37.000000	3148.000000	647.000000	172
max	-114.310000	41.950000	52.000000	39320.000000	6445.000000	3568
4						•

In [16]:

property_price_report.hist(bins=50,figsize=(20,15)) plt.show()

In [17]:

train_set, test_set = train_test_split(property_price_report, test_size = 0.2, random_st

In [51]:

train_set.shape

Out[51]:

(16512, 10)

In [18]:

data = train_set.copy()

In [19]:

data.shape

Out[19]:

(16512, 10)

In [20]:

```
data.plot(kind='scatter', x="longitude", y="latitude", figsize=(10,7))
```

Out[20]:

<AxesSubplot:xlabel='longitude', ylabel='latitude'>

In [45]:

```
data.plot(kind='scatter', x="longitude", y="latitude", figsize=(10,7), alpha=0.1)
```

Out[45]:

<AxesSubplot:xlabel='longitude', ylabel='latitude'>

In [22]:

Out[22]:

<AxesSubplot:xlabel='longitude', ylabel='latitude'>

In [63]:

Out[63]:

<AxesSubplot:xlabel='longitude', ylabel='latitude'>

In [24]:

```
# standard correlation coefficient
corr_matrix = data.corr()
corr_matrix
```

Out[24]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms
longitude	1.000000	-0.924485	-0.101818	0.038676	0.063064
latitude	-0.924485	1.000000	0.005296	-0.029224	-0.059998
housing_median_age	-0.101818	0.005296	1.000000	-0.360922	-0.320624
total_rooms	0.038676	-0.029224	-0.360922	1.000000	0.930489
total_bedrooms	0.063064	-0.059998	-0.320624	0.930489	1.000000
population	0.094276	-0.102499	-0.292283	0.857936	0.878932
households	0.049306	-0.064061	-0.302796	0.920482	0.980255
median_income	-0.017040	-0.076571	-0.121711	0.198268	-0.009141
median_house_value	-0.046349	-0.142983	0.103706	0.133989	0.047980
4					•

In [25]:

```
corr_matrix["median_house_value"].sort_values(ascending=False)
```

Out[25]:

median_house_value 1.000000 median_income 0.690647 total_rooms 0.133989 housing_median_age 0.103706 households 0.063714 total_bedrooms 0.047980 population -0.026032 longitude -0.046349 latitude -0.142983

Name: median_house_value, dtype: float64

In [26]:

```
features = ["median_house_value", "median_income", "total_rooms", "housing_median_age"]
scatter_matrix(data[features], figsize = (15,10))
plt.show()
```


In [46]:

data.plot(kind="scatter", x= "median_income", y="median_house_value", alpha= 0.2, figsiz

Out[46]:

<AxesSubplot:xlabel='median_income', ylabel='median_house_value'>

In [28]:

data.head()

Out[28]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	ho
14196	-117.03	32.71	33.0	3126.0	627.0	2300.0	
8267	-118.16	33.77	49.0	3382.0	787.0	1314.0	
17445	-120.48	34.66	4.0	1897.0	331.0	915.0	
14265	-117.11	32.69	36.0	1421.0	367.0	1418.0	
2271	-119.80	36.78	43.0	2382.0	431.0	874.0	
4							•

```
In [29]:
```

```
data["total_bedrooms_per_total_rooms"]=data["total_bedrooms"]/data["total_rooms"]
data["population_per_households"]=data["population"]/data["households"]
data["total_rooms_per_households"]=data["total_rooms"]/data["households"]
data.head()
```

Out[29]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	ho
14196	-117.03	32.71	33.0	3126.0	627.0	2300.0	
8267	-118.16	33.77	49.0	3382.0	787.0	1314.0	
17445	-120.48	34.66	4.0	1897.0	331.0	915.0	
14265	-117.11	32.69	36.0	1421.0	367.0	1418.0	
2271	-119.80	36.78	43.0	2382.0	431.0	874.0	
4							•

In [30]:

```
corr_matrix = data.corr()
corr_matrix["median_house_value"].sort_values(ascending=False)
```

Out[30]:

```
median_house_value
                                   1.000000
median_income
                                   0.690647
total_rooms_per_households
                                   0.158485
total_rooms
                                   0.133989
housing_median_age
                                   0.103706
households
                                   0.063714
total bedrooms
                                   0.047980
population_per_households
                                  -0.022030
population
                                  -0.026032
longitude
                                  -0.046349
latitude
                                  -0.142983
total_bedrooms_per_total_rooms
                                  -0.257419
Name: median_house_value, dtype: float64
```

In [83]:

```
#Preparing the Data
```

In [31]:

```
df = train_set.copy()
```

In [32]:

```
df_label = df["median_house_value"].copy
df = df.drop(["median_house_value"], axis=1)
```

In [33]:

df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 16512 entries, 14196 to 15795
Data columns (total 9 columns):

Column Non-Null Count Dtype ----------_ _ _ longitude 16512 non-null float64 0 latitude 16512 non-null float64 1 2 housing_median_age 16512 non-null float64 3 total rooms 16512 non-null float64 16512 non-null float64 total_bedrooms 4 5 16512 non-null float64 population 6 households 16512 non-null float64 median_income 7 16512 non-null float64 ocean_proximity 16512 non-null object

dtypes: float64(8), object(1)

memory usage: 1.3+ MB

In [34]:

```
df_num = df.drop("ocean_proximity", axis = 1)
df_num
```

Out[34]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	ho
14196	-117.03	32.71	33.0	3126.0	627.0	2300.0	
8267	-118.16	33.77	49.0	3382.0	787.0	1314.0	
17445	-120.48	34.66	4.0	1897.0	331.0	915.0	
14265	-117.11	32.69	36.0	1421.0	367.0	1418.0	
2271	-119.80	36.78	43.0	2382.0	431.0	874.0	
11284	-117.96	33.78	35.0	1330.0	201.0	658.0	
11964	-117.43	34.02	33.0	3084.0	570.0	1753.0	
5390	-118.38	34.03	36.0	2101.0	569.0	1756.0	
860	-121.96	37.58	15.0	3575.0	597.0	1777.0	
15795	-122.42	37.77	52.0	4226.0	1315.0	2619.0	

16512 rows × 8 columns

•

```
In [35]:
```

```
imputer = SimpleImputer(missing_values = np.nan, strategy = 'median')
imputer.fit(df_num)
x = imputer.transform(df_num)
df_num_impute_tr = pd.DataFrame(x, columns= df_num.columns)
df_num_impute_tr.info()

<class 'pandas.core.frame.DataFrame'>
```

```
RangeIndex: 16512 entries, 0 to 16511
Data columns (total 8 columns):
    Column
                        Non-Null Count Dtype
---
 0
    longitude
                        16512 non-null float64
 1
    latitude
                        16512 non-null float64
 2
    housing_median_age 16512 non-null float64
                        16512 non-null float64
    total_rooms
 3
 4
    total_bedrooms
                       16512 non-null float64
 5
    population
                       16512 non-null float64
 6
    households
                       16512 non-null float64
                       16512 non-null float64
 7
    median_income
dtypes: float64(8)
memory usage: 1.0 MB
```

In [36]:

In [37]:

```
custom = CombinedAttributesAdder()
data_custom_tr_temp = custom.trafnsform(df_num_impute_tr.values)
data_cutom_tr = pd.DataFrame(data_custom_tr_temp)
```

In [38]:

```
columns = list(df_num_impute_tr.columns)
columns.append("rooms_per_household")
columns.append("population_per_household")
columns.append("bedrooms_per_rooms")
data_cutom_tr.columns = columns
data_cutom_tr.head(10)
```

Out[38]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	househ
0	-117.03	32.71	33.0	3126.0	627.0	2300.0	E
1	-118.16	33.77	49.0	3382.0	787.0	1314.0	7
2	-120.48	34.66	4.0	1897.0	331.0	915.0	3
3	-117.11	32.69	36.0	1421.0	367.0	1418.0	3
4	-119.80	36.78	43.0	2382.0	431.0	874.0	3
5	-121.86	37.42	20.0	5032.0	808.0	2695.0	}
6	-117.97	34.04	28.0	1686.0	417.0	1355.0	3
7	-122.53	37.91	37.0	2524.0	398.0	999.0	۷
8	-117.90	34.13	5.0	1126.0	316.0	819.0	;
9	-117.79	34.02	5.0	18690.0	2862.0	9427.0	27
4							•

In [39]:

```
data_cutom_tr.describe()
```

Out[39]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	р
count	16512.000000	16512.000000	16512.000000	16512.000000	16512.000000	165´
mean	-119.582290	35.643149	28.608285	2642.004784	538.496851	142
std	2.005654	2.136665	12.602499	2174.646744	419.007096	113
min	-124.350000	32.550000	1.000000	2.000000	1.000000	
25%	-121.810000	33.930000	18.000000	1454.000000	296.750000	78
50%	-118.510000	34.260000	29.000000	2129.000000	437.000000	116
75%	-118.010000	37.720000	37.000000	3160.000000	647.000000	172
max	-114.310000	41.950000	52.000000	39320.000000	6445.000000	3568
4						•

In [42]:

Feature Scaling (Standardization Mathod)

feature_scale = StandardScaler()

data_num_scaled_tr = pd.DataFrame(feature_scale.fit_transform(data_cutom_tr.values), col
data_num_scaled_tr.head(10)

Out[42]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	hous
0	1.272587	-1.372811	0.348490	0.222569	0.211228	0.768276	0.0
1	0.709162	-0.876696	1.618118	0.340293	0.593094	-0.098901	0.6
2	-0.447603	-0.460146	-1.952710	-0.342597	-0.495226	-0.449818	-0.4
3	1.232698	-1.382172	0.586545	-0.561490	-0.409306	-0.007434	-0.:
4	-0.108551	0.532084	1.142008	-0.119565	-0.256559	-0.485877	-0.:
5	-1.135679	0.831625	-0.683082	1.099060	0.643214	1.115675	0.7
6	0.803897	-0.750327	-0.048268	-0.439627	-0.289972	-0.062842	-0.1
7	-1.469745	1.060961	0.665897	-0.054266	-0.335319	-0.375941	-0.1
8	0.838800	-0.708204	-1.873359	-0.697148	-0.531026	-0.534249	-0.4
9	0.893646	-0.759688	-1.873359	7.379811	5.545428	7.036405	5.9
4							•

In []: