EAI Diffusion Reading Group

Poisson Field Generative Models

01/04/2023

Summary

- 1. The Poisson Equation
- 2. PFGM Derivation
- 3. Results
- 4. PFGM++

The Poisson Equation

Given some source density $ho: \mathbb{R}^N o \mathbb{R}$ (with compact support *)

$$\Delta arphi = -
ho$$

- ullet $\Delta = \sum_{\mu=1}^{N} rac{\partial^2}{\partial x_{\mu}^2}$ Laplacian operator (again!)
- ullet Poisson Field E(x) = abla arphi(x) satisfies Gauss' Law

$$abla \cdot E =
ho$$

One of the most basic PDEs in physics (yields Newtonian gravity, Electrostatic theory, ...)

* ho is zero outside of some bounded set

Analytical solution

Given by Green's function

$$arphi(x) = \int G(x,y)
ho(y) dy$$

• $G(x,y)=rac{1}{(N-2)S_{N-1}}rac{1}{\|x-y\|^{N-2}}$ (Green's function: solution for a single point source)

$$E(x) = -\int
abla_x G(x,y)
ho(y) dy$$

$$ullet \
abla_x G(x,y) = rac{1}{S_{N-1}} rac{x-y}{\|x-y\|^N}$$

Gradient Flow

Consider a charged particle dropped in the field E, its trajectory is given by

$$rac{dx}{dt} = E(x)$$

For a distribution of particles:

$$rac{\partial p_t}{\partial t}(x) = -
abla \cdot (p_t(x)E(x))$$

Field Effects

Finally putting the "consciousness" in large Neural Nets

Rescalable dynamics

The Gradient flow ODE is stiff :(. Luckily, for $f \in \mathcal{C}^1$, strictly positive

$$rac{dx}{dt} = \pm f(x) E(x)$$

follows the same trajectories as the original gradient flow

Forward Process

Figure 1: (a) 3D Poisson field trajectories for a heart-shaped distribution (b) The evolvements of a distribution (top) or an (augmented) sample (bottom) by the forward/backward ODEs pertained to the Poisson field.

From the Physics to the actual forward process

Several steps needed

- 1. Add extra dimension z (avoid mode collapse)
- 2. Normalize field E (numerical stability)
- 3. Replace time with z (for easier batching)

Add extra dimension

Figure 2: (a) Poisson field (black arrows) and particle trajectories (blue lines) of a 2D uniform disk (red). **Left** (no augmentation, 2D): all particles collapse to the disk center. **Right** (augmentation, 3D): particles hit different points on the disk. (b) Proof idea of Theorem 1. By Gauss's Law, the outflow flux $d\Phi_{out}$ equals the inflow flux $d\Phi_{in}$. The factor of two in $p(\mathbf{x})dA/2$ is due to the symmetry of Poisson fields in z < 0 and z > 0.

Add extra dimension

- ullet Instead of solving the Poisson equation $\Delta arphi = -p$ in \mathbb{R}^N , solve in augmented space $ilde x = (x,z) \in \mathbb{R}^{N+1}$
- ullet Embed original data with $x\mapsto (x,0)$

Asymptotics as $\|x\| o \infty$

Since p has bounded support, as x follows $rac{dx}{dt}=E(x)$, E becomes spherically symmetric

This means that for a sufficiently large radius \emph{r} , the distribution \emph{p}_t is effectively uniform on the hemi-sphere of radius \emph{r}

Normalize E

Given a dataset $\mathcal{D}=\{x_i\}_{i=1}^n$, the empirical Poisson field is

$$\hat{E}(ilde{x}) = c(ilde{x}) \sum_{i=1}^n rac{ ilde{x} - ilde{x_i}}{\| ilde{x} - ilde{x_i}\|^{N+1}}$$

where
$$c(ilde{x}) = 1/\sum_{i=1}^n rac{1}{\| ilde{x} - ilde{x}_i\|^{N+1}}$$

Further normalization yields the negative normalized field

$$v(ilde{x}) = -rac{\sqrt{N}\hat{E}(ilde{x})}{\|\hat{E}(ilde{x})\| + \gamma}$$

Notation: fields calculated from batch ${\cal B}$: $\hat{E}_{{\cal B}}$, $v_{{\cal B}}$

NB: γ : small constant to avoid division by zero

Perturbing the augmented training data

Given training datapoint $x \in \mathbb{R}^N$, add noise to $ilde{x} = (x,0)$ to obtain (y,z) :

$$y=x+\|\epsilon_x\|(1+ au)^m u,\quad z=|\epsilon_z|(1+ au)^m$$

- $\overline{oldsymbol{\epsilon}}=\overline{(\epsilon_x,\epsilon_z)}\sim \mathcal{N}(0,oldsymbol{\sigma}^2I)$
- $ullet \ u \sim \mathcal{U}(S_N)$
- $m \sim \mathcal{U}[0, M]$

Hyperparameters: au, σ , M

Loss

Given mini-batch data $\mathcal{B}=\{x_i\}_{i=1}^{|\mathcal{B}|}$ and a larger batch \mathcal{B}_L (for estimating the normalized field), we train a network $f_ heta$ to minimize

$$\mathcal{L}(heta) = rac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \|f_{ heta}(ilde{y}_i) - v_{\mathcal{B}_L}(ilde{y}_i)\|_2^2.$$

Training Algorithms

Algorithm 1 Learning the normalized Poisson Field

```
Input: Training iteration T, Initial model f_{\theta}, dataset \mathcal{D}, constant \gamma, learning rate \eta.

for t=1\dots T do

Sample a large batch \mathcal{B}_L from \mathcal{D} and subsample a batch of datapoints \mathcal{B}=\{\mathbf{x}_i\}_{i=1}^{|\mathcal{B}|} from \mathcal{B}_L Simulate the ODE: \{\tilde{\mathbf{y}}_i=\text{perturb}(\mathbf{x}_i)\}_{i=1}^{|\mathcal{B}|} Calculate the normalized field by \mathcal{B}_L: \mathbf{v}_{\mathcal{B}_L}(\tilde{\mathbf{y}}_i)=-\sqrt{N}\hat{\mathbf{E}}_{\mathcal{B}_L}(\tilde{\mathbf{y}}_i)/(\parallel\hat{\mathbf{E}}_{\mathcal{B}_L}(\tilde{\mathbf{y}}_i)\parallel_2+\gamma), \forall i Calculate the loss: \mathcal{L}(\theta)=\frac{1}{|\mathcal{B}|}\sum_{i=1}^{|\mathcal{B}|}\parallel f_{\theta}(\tilde{\mathbf{y}}_i)-\mathbf{v}_{\mathcal{B}_L}(\tilde{\mathbf{y}}_i)\parallel_2^2 Update the model parameter: \theta=\theta-\eta\nabla\mathcal{L}(\theta) end for return f_{\theta}
```

Algorithm 2 perturb(x)

```
Sample the power m \sim \mathcal{U}[0, M]
Sample the initial noise (\epsilon_{\mathbf{x}}, \epsilon_z) \sim \mathcal{N}(0, \sigma^2 I_{(N+1)\times(N+1)})
Uniformly sample the vector from the unit ball \mathbf{u} \sim \mathcal{U}(S_N(1))
Construct training point \mathbf{y} = \mathbf{x} + \| \epsilon_{\mathbf{x}} \| (1+\tau)^m \mathbf{u}, z = |\epsilon_z|(1+\tau)^m
return \tilde{\mathbf{y}} = (\mathbf{y}, z)
```

Backward ODE

Instead of solving backward ODE in time, solve the equivalent ODE in z:

$$rac{d(x,z)}{dz}=(rac{dx}{dt}rac{dt}{dz},1)=(v(ilde{x})_xv(ilde{x})_z^{-1},1)$$

Start from some $z \leq z_{
m max}$, end at z=0

Map hemisphere to $z=z_{ m max}$ hyperplane

To allow processing batches, map the prior on the hemisphere $r=z_{
m max}$ to the hyperplane

$$p_{\text{prior}}(x) = \frac{2z_{\text{max}}}{S_N(1)(\|x\|_2^2 + z_{\text{max}}^2)^{\frac{N+1}{2}}}$$

In practice: sample on hemisphere and project.

The actual Backward ODE for real

Add new time variable such that $dz=zdt^{\prime}$

$$rac{d(x,z)}{dt'} = (v(ilde{x})_x v(ilde{x})_z^{-1} z,z)$$

z now converges exponentially towards 0 in the backward ODE (actually makes solving the ODE faster)

IHDM

imgflip.com

Results

Table 1: CIFAR-10 sample quality (FID, Inception) and number of function evaluation (NFE).

	Invertible?	Inception ↑	FID↓	NFE↓
PixelCNN [36]	Х	4.60	65.9	1024
IGEBM [8]	×	6.02	40.6	60
ViTGAN [24]	X	9.30	6.66	1
StyleGAN2-ADA [17]	×	9.83	2.92	1
StyleGAN2-ADA (cond.) [17]	×	10.14	2.42	1
NCSN [31]	X	8.87	25.32	1001
NCSNv2 [32]	X	8.40	10.87	1161
DDPM [16]	×	9.46	3.17	1000
NCSN++ VE-SDE [33]	×	9.83	2.38	2000
NCSN++ deep VE-SDE [33]	X	9.89	2.20	2000
Glow [19]	✓	3.92	48.9	1
DDIM, T=50 [30]	✓	-	4.67	50
DDIM, T=100 [30]	✓	-	4.16	100
NCSN++ VE-ODE [33]	✓	9.34	5.29	194
NCSN++ deep VE-ODE [33]	✓	9.17	7.66	194
DDPM++ backbone				
VP-SDE [33]	Х	9.58	2.55	1000
sub-VP-SDE [33]	×	9.56	2.61	1000
VP-ODE [33]		9.46	2.97	134
sub-VP-ODE [33]	✓	9.30	3.16	146
PFGM (ours)	✓	$\boldsymbol{9.65}$	2.48	104
DDPM++ deep backbone				
VP-SDE [33]	Х	9.68	2.41	1000
sub-VP-SDE [33]	X	9.57	2.41	1000
VP-ODE [33]	· · · · · ·	9.47	2.86	134
sub-VP-ODE [33]	✓	9.40	3.05	146
PFGM (ours)	✓	9.68	2.35	110

Results Summary

- Achieves best Inception and FID scores among normalizing flow models
- $(10x \sim 20x)$ Faster than SDE models with similar architectures

Euler method with low step size

Figure 5: (a) Norm- $\sigma(t)$ relation during the backward sampling of VE-ODE (Euler). (b) Norm-z(t') relation during the backward sampling of PFGM (Euler). The shaded areas mean the standard deviation of norms. (c) Number of steps versus FID score.

Miscelaneous

- Likelihood evaluation
- Latent representation

Limitations

- The mini-batch normalized field estimator is biased
- need large training batch to compensate

These are fixed in PFGM++

PFGM++

- ullet Generalize to $z\in\mathbb{R}^D$
- ullet equivalent to Diffusion models for $D o\infty$
- Dispenses with the biased normalized field estimator
- ullet No need to actually solve with the D additional dimensions. One is enough
- ullet Transfer Hyperparameters from Diffusion Models to arbitrary D