Submission of Exploring Weather trends project for Data Analysis Nanodegree. Adriana Zurawska <u>adrianazurawska@icloud.com</u>

1. Extracting the data from database using SQL query and saving as CSV file

## City data

SELECT \*
FROM city\_data
WHERE city = 'London'
AND country = 'United Kingdom'
ORDER BY year ASC

## Global data

SELECT \*
FROM global\_data

After reviewing the feedback, now I know I could use one query to extract all needed data.

I tried using the query suggested in the feedback but it gave me an error that column 'London' does not exist. I tried adding the country condition first and then adding London in my query, and this time it worked. I wonder if it was because there is more than one city called London in the world?

So the query I could use might look like this:

SELECT city\_data.year,
 city\_data.avg\_temp as city\_temp,
 global\_data.avg\_temp as global\_temp
FROM city\_data, global\_data
WHERE city\_data.year = global\_data.year
 AND NOT city\_data.avg\_temp is NULL
 AND city\_data.country = 'United Kingdom'
 AND city\_data.city = 'London'

2. Opening the CSV file using Excel.
Using "Text to columns" tool to create an Excel table.



3. Calculating 10-year moving average and 5-year moving average. At the end, I decided to use 5-year moving average for my data visualisation.

| F6 | , A  | $\times$ $\checkmark$ $f_{x}$ =AVERAGE(D2:D6) |                |          |             |                 |
|----|------|-----------------------------------------------|----------------|----------|-------------|-----------------|
|    | Α    | В                                             | С              | D        | Е           | F               |
| 1  | year | city                                          | country        | avg_temp | 10-years MA | 5-years MA_city |
| 2  | 1743 | London                                        | United Kingdom | 7,54     |             |                 |
| 3  | 1744 | London                                        | United Kingdom | 10,34    |             |                 |
| 4  | 1745 | London                                        | United Kingdom | 4,13     |             |                 |
| 5  | 1746 | London                                        | United Kingdom |          |             |                 |
| 6  | 1747 | London                                        | United Kingdom |          |             | 7,336666667     |
| 7  | 1748 | London                                        | United Kingdom |          |             | 7,235           |
| 8  | 1749 | London                                        | United Kingdom |          |             | 4,13            |
| 9  | 1750 | London                                        | United Kingdom | 10,25    |             | 10,25           |
| 10 | 1751 | London                                        | United Kingdom | 9,99     |             | 10,12           |
| 11 | 1752 | London                                        | United Kingdom | 6,54     | 8,13166667  | 8,926666667     |
| 12 | 1753 | London                                        | United Kingdom | 9,42     | 8,445       | 9,05            |
| 13 | 1754 | London                                        | United Kingdom | 9,2      | 8,255       | 9,08            |
| 14 | 1755 | London                                        | United Kingdom | 8,95     | 9,05833333  | 8,82            |
| 10 | 1756 | London                                        | United Vinadom | 0.42     | 0.11        | 0 706           |

- 4. After comparing both datasets (city and global) I decided to start plotting the line chart form data starting at year 1755. This allowed me to omit the missing temperatures between 1746 and 1750, and to have the first moving average complete (complete 5 years) for both datasets. I skipped the missing data and included the data that is represented in both global and city (London) datasets.
- 5. Line chart visualising 5-year moving averages of temperatures for London and overall global trends. I added the Celsius degrees on the y axis.



\*Out of curiosity I reworked the dataset with the other SQL query (as discussed above) to see if this would affect the line graph. The colours are nor reversed, to show that this is a different attempt. I really like it.



## 6. My observations:

- a) Global 5-years moving average and London 5-years moving average dropped drastically between 1774 and 1780.
- b) London 5-years moving averages are the subject of more drastic changes and are dropping or increasing over the bigger number of degrees.
- c) London 5-years moving average is always significantly higher than the global 5-years moving average.
- d) Between 2000 and 2010 the London 5-years moving average was dropping drastically, while the global was more stable.