Formalizing type theory in type theory using nominal techniques

Ulrik Buchholtz

TU Darmstadt

HoTT/UF Workshop, Oxford, September 9, 2017

- Motivation
- Preliminaries
- Nominal sets and types
- Formalizing type theory
- Conclusion

Outline

- Motivation
- 2 Preliminaries
- Nominal sets and types
- Formalizing type theory
- Conclusion

Motivation

- Age-old problem: what's the best way to reason (& program) with syntax with binders? α-renaming? HOAS? wHOAS? de Bruijn indices? nominal sets?
- We're not going to settle this today! However, in this talk I'll explore a new approach afforded us by HoTT.
- **③** This is based on the classifying type $B\Sigma_{\infty}$ of the finitary symmetric group Σ_{∞} .
- 4 HoTT lets us escape setoid hell. Will it also let us escape weakening hell?
- Application: will nominal techniques be useful for letting HoTT eat itself (cf. March 2014 blog post by Mike Shulman).

Further applications

Further applications: *Small proofs* (cf. Licata @ Big Proof): S-cohesion, equivariant cohesion, maybe one day real/smooth/differential cohesion, etc.

Further applications

Further applications: *Small proofs* (cf. Licata @ Big Proof): S-cohesion, equivariant cohesion, maybe one day real/smooth/differential cohesion, etc.

Outline

- Motivation
- Preliminaries
- Nominal sets and types
- Formalizing type theory
- Conclusion

Synthetic homotopy theory

- In the HoTT book: Whitehead's theorem, $\pi_1(S^1)$, Hopf fibration, etc.
- (Generalized) Blakers-Massey theorem
- Quaternionic Hopf fibration
- Gysin sequence, Whitehead products and $\pi_4(S^3)$ (Brunerie)
- Homology theory (Snowbird group, Graham)
- Serre spectral sequence for any truncated cohomology theory (van Doorn et al. following outline by Shulman):

$$H^{-(n-s)}(x:X;H^{-s}(Fx;Y)) \Rightarrow H^{-n}((x:X) \times Fx;Y)$$

The homotopy hypothesis

HoTT: types are homotopy types Grothendieck: homotopy types are ∞-groupoids

Thus: types are ∞-groupoids

Elements are objects, paths are morphisms, higher paths are higher morphisms, etc.

Groups in HoTT

It follows that *pointed connected* types A may be viewed as higher groups, with *carrier* $\Omega A = (pt = pt)$.

Writing G for the carrier, it's common to write BG for the pointed connected type such that $G = \Omega BG$ (BG is the *delooping* of G).

Ordinary groups are thus represented by the pointed, connected, 1-types *BG*.

Groups in HoTT

It follows that *pointed connected* types A may be viewed as higher groups, with *carrier* $\Omega A = (pt = pt)$.

Writing G for the carrier, it's common to write BG for the pointed connected type such that $G = \Omega BG$ (BG is the *delooping* of G).

Ordinary groups are thus represented by the pointed, connected, 1-types *BG*.

Yesterday, Thorsten asked how to define \mathbb{Z} ? My answer: $B\mathbb{Z} := \mathbb{S}^1$, the usual HIT giving the free ∞ -group on one generator (turns out to be a 1-group).

Groups in HoTT

It follows that *pointed connected* types A may be viewed as higher groups, with *carrier* $\Omega A = (pt = pt)$.

Writing G for the carrier, it's common to write BG for the pointed connected type such that $G = \Omega BG$ (BG is the *delooping* of G).

Ordinary groups are thus represented by the pointed, connected, 1-types *BG*.

Yesterday, Thorsten asked how to define \mathbb{Z} ? My answer: $B\mathbb{Z}:=\mathbb{S}^1$, the usual HIT giving the free ∞ -group on one generator (turns out to be a 1-group).

0 := idp, i + j := i.j (path composition)

Table of higher groups

A (n-)type G is k-tuply groupal if we have a k-fold delooping, B^kG : Type $_{\mathrm{pt}}^{\geq k}$, such that $G=\Omega^kB^kG$. (We can also take $k=\omega$ by recording the entire sequence of deloopings.)

$k \setminus n$	0	1	• • •	∞
0	pointed set	pointed groupoid	• • •	pointed ∞-groupoid
1	group	2-group	• • •	∞-group
2	abelian group	braided 2-group		braided ∞-group
3	"	symmetric 2-group	• • •	sylleptic ∞-group
:	:	:	٠	:
ω	n	n	• • •	connective spectrum

(Cf. forthcoming paper with van Doorn-Rijke)

Equivalences of categories

Today we stick to ordinary groups.

We have equivalences of univalent categories

$$Grp \simeq Type_{pt}^{=1}$$

and

$$AbGrp \simeq Type_{pt}^{=n} \simeq Sp^{=0}$$

for $n \ge 2$ (formalized in Lean).

Actions

An *action* of G on some object of type U is simply a function $X:BG\to U$. The object of the action is $X(\operatorname{pt}):U$, and it can be convenient to consider evaluation at $\operatorname{pt}:BG$ to be a coercion from actions of type U to U.

If U is a universe of types, then we have actions on types. If X is an action on types, then we can form the:

invariants $X^{hG} := (x:BG) \to X(x)$, also known as the *homotopy fixed points*

coinvariants $X_{hG} := (x : BG) \times X(x)$, also known as the *homotopy quotient* $X /\!\!/ G$.

Automorphism groups

The automorphism group of u:U is simply (u=u) with delooping BAut $u=(v:U)\times \|u=v\|_{-1}$. (This is a 1-group if U is a 1-type.)

An action of G on u is equivalently a homomorphism from G to $\operatorname{Aut} u$.

The finite symmetric groups Σ_n are represented by $\mathrm{BAut}[n]$, where [n] is the canonical set with n elements. (Recall the Set is a 1-type.)

More about finite sets

Let FinSet :=
$$(A : Type) \times ||\exists n : \mathbb{N}, A = [n]||_{-1}$$
.

Then we get an equivalence

$$\mathsf{FinSet} \simeq (n : \mathbb{N}) \times \mathsf{BAut}[n]$$

using the *pigeonhole principle* which implies that $[n] \simeq [m] \to n = m$.

In particular we have the cardinality function $card: FinSet \rightarrow \mathbb{N}.$

More about finite sets

Let FinSet := $(A : Type) \times ||\exists n : \mathbb{N}, A = [n]||_{-1}$.

Then we get an equivalence

$$FinSet \simeq (n : \mathbb{N}) \times BAut[n]$$

using the *pigeonhole principle* which implies that $[n] \simeq [m] \to n = m$.

In particular we have the cardinality function card : FinSet $\rightarrow \mathbb{N}$.

NB these are Bishop sets, not Kuratowski sets; see also Yorgey's thesis for an application to the theory of species. See also Shulman's formalization in the HoTT library in Coq.

Outline

- Motivation
- Preliminaries
- Nominal sets and types
- Formalizing type theory
- Conclusion

The Schanuel topos

Recall the many equivalent ways to present the Schanuel topos:

- **1** The category of finitely supported nominal sets (Σ_{∞} -sets).
- 2 The category of continuous Σ_{∞} -sets.
- 3 The category of continuous Aut N-sets.
- 4 The category of sheaves on FinSet^{op}_{mon} wrt the atomic topology.
- $\textbf{ 5} \ \ \, \text{The category of pullback-preserving functors } FinSet_{mon} \rightarrow Set.$

The Schanuel topos

Recall the many equivalent ways to present the Schanuel topos:

- **1** The category of finitely supported nominal sets (Σ_{∞} -sets).
- 2 The category of continuous Σ_{∞} -sets.
- The category of continuous Aut N-sets.
- 4 The category of sheaves on FinSet^{op}_{mon} wrt the atomic topology.
- $\textbf{ 0} \ \ \, \text{The category of pullback-preserving functors } FinSet_{mon} \rightarrow Set.$

Focus on first two: in HoTT, we can present a variant as a *slice topos* over $B\Sigma_{\infty}$.

From well-scoped de Bruijn and beyond

When representing syntax with binding we have many options:

- Use *names* and quotient by α -equality
- Use de Bruijn indices
- Use well-scoped de Bruijn indices: index by \mathbb{N} (number of free variables)
- (HoTT) Use symmetric well-scoped de Bruijn indices: index by FinSet
- (HoTT) Use *nominal* technique: index by $B\Sigma_{\infty}$.

$$\mathbb{N} \xrightarrow[\text{card}]{[-]} \text{FinSet} \xrightarrow{i} B\Sigma_{\infty} \xrightarrow{j} BAut \mathbb{N}$$

Finitary symmetric group

 $B\Sigma_{\infty}$ is both the homotopy colimit of

$$BAut[0] \rightarrow BAut[1] \rightarrow \cdots$$

and the homotopy coequalizer of

$$id$$
, $(-) + \top : FinSet \rightarrow FinSet$

using the equivalence mentioned above.

Constructors:

- $i: \text{FinSet} \to B\Sigma_{\infty} \text{ or } i: (n:\mathbb{N}) \to B\text{Aut}[n] \to B\Sigma_{\infty},$
- $g: (A: \text{FinSet}) \rightarrow i(A) = i(A + \top).$

Shift and weakening

The shift map is a special case of shifting by an arbitrary finite set B, $iA \mapsto i(B+A)$, illustrated as follows:

Thus we get a map $FinSet \times B\Sigma_{\infty} \to B\Sigma_{\infty}$, which we write suggestively as mapping A and X to A+X.

If $f: I \to I$ is any function, we get operations

$$\mathsf{Type}^I \xrightarrow{f_!} \mathsf{Type}^J \xrightarrow{f_*} \mathsf{Type}^J$$

where $f^*Z(i) = Z(fi)$,

$$\begin{split} f_!Y(j) &= (i:I) \times (f\,i=j) \times Y(i), \quad \text{and} \\ f_*Y(j) &= (i:I) \to (f\,i=j) \to Y(i). \end{split}$$

Applying these to the functions between \top , \mathbb{N} , FinSet and $B\Sigma_{\infty}$, we get adjunctions connecting the various kinds of nominal types.

Applying these to the shift maps $B+-:B\Sigma_\infty\to B\Sigma_\infty$, we get that the name abstraction operations have both adjoints.

The atoms

We define $\mathbb{A}:B\Sigma_\infty\to Type$ by recursion

$$\mathbb{A}\,iA:=A+\mathbb{N}$$
 ap $\mathbb{A}\,gA:=(A+\mathbb{N}\simeq A+(1+\mathbb{N})\simeq (A+1)+\mathbb{N})$

Proposition

For all $X : B\Sigma_{\infty}$, $[1]\mathbb{A} X \simeq (1 + \mathbb{A}) X$. Hence, $[1]\mathbb{A} \stackrel{.}{\simeq} 1 + \mathbb{A}$.

Transpositions

We need to see the generators of Σ_{∞} equivariantly.

Define $(--): \mathbb{A} X \to \mathbb{A} X \to X = X$ by induction on X.

(Not yet formalized.)

Then we get $(a b)^2 = 1$, $((a b)(a c))^3 = 1$, (a b)(c d) = (c d)(a b) (using fresh name convention).

Basic nominal theory

```
nominal set Z: \mathrm{B}\Sigma_\infty \to \mathrm{Set}

nominal type Z: \mathrm{B}\Sigma_\infty \to \mathrm{Type}

element x \in Z means x: Z(\mathrm{pt})

action by finite permutation for \pi \in \mathrm{Aut}[n] and x \in X we get \pi \cdot x by transporting to [n], applying \pi, and transporting back.

equivariant action by transpositions for a,b: \mathbb{A} X, transport along (a\ b): X = X.

terms with support Z@A = (X: \mathrm{B}\Sigma_\infty) \to Z(A+X)
```

Generic syntax

Following Allais-Atkey-Chapman-McBride-McKinna, we introduce a universe of descriptions of scope-safe syntaxes, Desc: Set:

$$A: \mathrm{Type}_0$$
 $A \text{ has dec.eq.} \qquad m: \mathbb{N}$
 $d: A \to \mathrm{Desc} \qquad d: \mathrm{Desc}$
 $\sigma A d: \mathrm{Desc} \qquad X m d: \mathrm{Desc}$

with semantics $\llbracket - \rrbracket : \mathrm{Type}^I \to \mathrm{Type}^I$ for any I with $S: I \to I$:

$$\llbracket \sigma A d \rrbracket Z i := (a : A) \times \llbracket d a \rrbracket Z i$$

$$\llbracket X m d \rrbracket Z i := Z (S^m i) \times \llbracket d \rrbracket Z i$$

$$\llbracket \bullet \rrbracket Z i := \top$$

Terms and semantics in cubical sets model

The terms are then the inductive type family $\operatorname{Tm} d : \operatorname{B}\Sigma_{\infty} \to \operatorname{Type}$:

$$\frac{a : \mathbb{A} X}{\operatorname{var} a : \operatorname{Tm} d X} \qquad \frac{z : \llbracket d \rrbracket (\operatorname{Tm} d) X}{\operatorname{con} z : \operatorname{Tm} d X}$$

(We can use any *I* with an atom family $A: I \to \text{Type.}$)

Inductive families of this kind (Dybjer calls them *restricted*) have straight-forward semantics in the cubical models with composition-operators working index-wise.

Nominal kit for generic syntax

We can of course reason about ${\rm Tm}\,d:{\rm B}\Sigma_\infty\to{\rm Type}$ using the (de Bruijn) techniques of Allais et al.

However, we can also work nominally using equivalences

$$Z(S^m X) \simeq (\operatorname{Vec}(\mathbb{A} X) m \times ZX)_{/\sim}.$$

These should obtain whenever Z is a nominal set with finite support.

Supports and binding

For generic syntax we can obtain the binding equivalences by proving by induction on d that $[\![-]\!]$ preserves the structure of having finite sets of support and binding equivalences.

In the same way can prove that $\operatorname{Tm} dX$ has decidable equality.

(In the formalization I use sized types to convince Agda these inductions are structural.)

Outline

- Motivation
- Preliminaries
- Nominal sets and types
- Formalizing type theory
- Conclusion

Warmup: untyped lambda calculus

The un(i)typed λ -calculus can be represented by the description

$$d_{\lambda} = \sigma [2] (\lambda b, \text{if } b \text{ then } X 1 \blacksquare \text{ else } X 0 (X 0 \blacksquare)$$

Warmup: untyped lambda calculus

The un(i)typed λ -calculus can be represented by the description

$$d_{\lambda} = \sigma [2] (\lambda b, \text{if } b \text{ then } X 1 \blacksquare \text{ else } X 0 (X 0 \blacksquare)$$

A more perspicuous and scalable way to say the same thing:

$$C_{\lambda}: FinSet$$
 $C_{\lambda}:= \{lam, app\}$
 $c_{\lambda}: C_{\lambda} \to Desc$
 $c_{\lambda} lam := X1 \blacksquare$
 $c_{\lambda} app := X0 (X0 \blacksquare)$
 $d_{\lambda}:= \sigma C_{\lambda} c_{\lambda}$

Convenient constructors

Using the binding equivalence

$$\operatorname{Tm} d_{\lambda}(SX) \simeq (\mathbb{A} X \times \operatorname{Tm} d_{\lambda} X)_{/\sim}$$

we get a more convenient lam constructor:

$$lam : \mathbb{A} X \to \operatorname{Tm} d_{\lambda} X \to \operatorname{Tm} d_{\lambda} X.$$

A description of the syntax

A first test would be the $\lambda\Pi$ -calculus:

$$C_{\lambda\Pi}$$
: FinSet
 $C_{\lambda\Pi} := \{ lam, app, pi \}$
 $c_{\lambda\Pi} := C_{\lambda\Pi} \rightarrow Desc$
 $c_{\lambda\Pi} lam := X1 \blacksquare$
 $c_{\lambda\Pi} app := X0 (X0 \blacksquare)$
 $c_{\lambda\Pi} pi := X0 (X1 \blacksquare)$
 $d_{\lambda\Pi} := \sigma C_{\lambda\Pi} c_{\lambda\Pi}$

Next steps

- To formalize the standard semantics of the $\lambda\Pi$ -calculus (and other dependent type theories), we need to prove that the semantics is well-behaved wrt to substitution.
- Probably(?) the best way is to perform a translation into well-typed syntax with explicit substitutions first (but not set-truncated).
- Longer term goal: The groupoid model of type theory with a universe of sets in Type^{≤1}.

Outline

- Motivation
- Preliminaries
- Nominal sets and types
- Formalizing type theory
- Conclusion

Open problems

- Is there a classically equivalent definition of Σ_{∞} that carries the "natural" topology?
- Are there applications of higher-dimensional nominal types?
- What is anyway the "correct" $(\infty, 1)$ -analogue of the Schanuel topos? (Should a transposition cost a sign somehow?)
- In directed type theory, there's a nice way to do HOAS-style syntax.
- Let's make HoTT eat itself!