Overheads: - Today's Outline

Recap Pericyclic Reactions:

Electrocyclic: all "allowed" – stereo: even, Δ , con

Last Pericyclic Reaction: Group Transfer Reactions

- Similar to cycloaddition, but one bond is σ instead of π

group G transferred to other componentG usually H

Ene Reaction – most important example

Other Examples:

Diimide (source of "H₂" – reducing agent) – 2 groups get transferred

Decarboxylation of β-keto acids

R C C OH
$$\frac{\Delta}{-CO_2}$$
 R How?

(tautomerizes)

Reverse Ene reaction R CH₂
 CH_2
 CH_2

Application: Malonic Ester Synthesis \rightarrow to make R-CH₂-CO₂H

$$CH_{3}CH_{2}O$$

$$CH_{3}CH_{2}O$$

$$CH_{3}CH_{2}O$$

$$CH_{3}CH_{2}O$$

$$CH_{2}CH_{3}$$

$$CH_{3}CH_{2}O$$

$$CH_{4}CH_{2}O$$

$$CH_{5}CH_{2}CH_{5}C$$

$$CH_{5}CH_{5}CH_{5}CH_{5}C$$

$$CH_{5}CH_{5}CH_{5}CH_{5}C$$

$$CH_{5}CH_{5}CH_{5}CH_{5}C$$

$$CH_{5}CH_{5}CH_{5}CH_{5}CH_{5}C$$

$$CH_{5}CH_{5}CH_{5}CH_{5}CH_{5}C$$

$$CH_{5}CH_{5}CH_{5}CH_{5}CH_{5}CH_{5}C$$

$$CH_{5}CH_$$

Similarly: Acetoacetic Ester Synthesis