Devoir maison n°11 : Équation de Pell-Fermat

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier 1E1

Partie A - Premières propriétés

$$(E): x^2 - 5y^2 = 1$$

1) Symétries: Les variables x et y sont mises au carré dans (E) et donc toujours positives. Donner un nombre négatif présent dans \mathbb{Z} est équivalent à donner son opposé qui est dans \mathbb{N} . Il suffit donc de chercher toutes les solutions (x,y) positives qui sont dans \mathbb{N}^2 pour obtenir toutes les solutions dans \mathbb{Z}^2 de (E).

2) Nombre de solutions

а) Soient $a,b\in\mathbb{N}$. L'identité de Вканмадирта est équivalente à :

$$(a^2 + 5b^2)^2 - (a^2 - 5b^2)^2 = 5(2ab)^2$$

En factorisant le côté gauche de l'équation, on trouve :

$$\begin{aligned} \left(a^2 + 5b^2\right)^2 - \left(a^2 - 5b^2\right)^2 &= \left(a^2 + a^2 + 5b^2 - 5b^2\right) \left(a^2 - a^2 + 5b^2 + 5b^2\right) \\ &= \left(2a^2\right) \left(2 \cdot 5b^2\right) \\ &= 5(2ab)^2 \end{aligned}$$

Ce qu'il fallait démontrer.

b) Soit $(x,y) \in \mathbb{N}^2$, tel que $(x,y) \neq (1,0)$ et (x,y) solution de $(E): x^2 - 5y^2 = 1$.

l'identité de Brahmagupta assure que :

$$1 = \left(a^2 + 5b^2\right) - 5(2ab)^2$$

Autrement dit, $(a^2 + 5b^2, 2ab)$ est également une solution de (E). Comme $a^2 + 5b^2 > a$ et 2ab > b, cette solution est également différente de (a,b) et de tout autre solution (x,y) où x < a, y < b. Il existe donc, en itérant ce procédé, une infinité de solutions de (E) dans \mathbb{N}^2 .

c) $(a,b) \in \mathbb{N}^2$ est solution de (E) si et seulement si $a^2 = 1 + 5b^2$. Comme $b^2 \ge 0$ et $a \ge 0$, on trouve que (a,b) est solution si et seulement si $a = \sqrt{1+5b^2}$. On pose donc $f(b) = \sqrt{1+5b^2}$.

La solution est valide si et seulement si $f(b) \in \mathbb{N}$.

Voici un script Haskell qui détermine des couples solution :

```
f :: Double -> Double
f b = sqrt (1 + 5 * b^2)

test_to :: Double -> [Double]
test_to n = filter (isNat . f) [1..n]
```

On obtient:

- [4, 72, 1292, 23184, 416020, 7465176, 16692641, 24157817, 31622993, 48315634, 55780810, 63245986, 79938627, 87403803, 94868979, 111561620, 119026796, 126491972, 133957148, ..., 3077073806,3077489826, 3078836095, ...]
- **d)** Supposons que (a,b) et (a',b) soient solutions. Alors a=f(b)=a' et a=a'. On peut donc bien choisir un « couple minimal » comme le couple avec le b minimal.

Partie B - L'ensemble
$$\mathbb{Z}\big[\sqrt{5}\big] = \big\{a + b\sqrt{5} \mid a,b \in \mathbb{Z}\big\}$$

1) L'existence de cette écriture est assurée par la définition de $\mathbb{Z}\left[\sqrt{5}\right]$. Supposons que $x=a+b\sqrt{5}=c+d\sqrt{5}$ pour $(a,b),(c,d)\in\mathbb{Z}^2$. Si $b\neq d$, alors :

$$a + b\sqrt{5} = c + d\sqrt{5}$$

$$\iff \sqrt{5} = \frac{c - a}{b - d}$$

Ce qui contredit l'irrationalité de $\sqrt{5}$. Donc b=d, et $a+b\sqrt{5}=c+b\sqrt{5}$, d'où a=c. Donc l'écriture $x=a+b\sqrt{5}$ de chaque $x\in\mathbb{Z}\left[\sqrt{5}\right]$ est unique.

2) Posons $x = a + b\sqrt{5}, y = c + d\sqrt{5}$. Alors :

$$\overline{x+y} = \overline{(a+c) + (b+d)\sqrt{5}}$$

$$= (a+c) - (b+d)\sqrt{5}$$

$$= \left(a-b\sqrt{5}\right) + \left(c-d\sqrt{5}\right)$$

$$= \overline{x} + \overline{y}$$

Et similairement :

$$\overline{xy} = \overline{(ac + 5bd) + (ad + bc)\sqrt{5}}$$

$$= ac + 5bd - (ad + bc)\sqrt{5}$$

$$\overline{x} \cdot \overline{y} = (a - b\sqrt{5}) \cdot (c - d\sqrt{5})$$

$$= (ac + 5bd) - (ad + bc)\sqrt{5}$$

D'où $\overline{xy} = \overline{x} \cdot \overline{y}$.

Partie C - Détermination d'un élément générateur de \mathbb{U} .