Tecniche di Digital Watermarking

Alfredo De Santis

Dipartimento di Informatica Università di Salerno

ads@dia.unisa.it

http://www.dia.unisa.it/professori/ads

Settembre 2019

Outline

- Definizione di Watermarking
 - Motivazioni
 - > Applicazioni
- Tipologie di Watermarking
- Proprietà del Watermarking
 - > Percettibilità
 - Robustezza
- Schemi di Watermarking
- Watermarking di Dati Multimediali
 - Immagini
 - > Audio

Definizione

- Il watermark è essenzialmente una sorta di «filigrana»
 - ➤ In <u>ambito informatico</u> si parla di <u>digital watermark</u>, che tipicamente è costituito da una <u>sequenza di bit</u>
 - Un logo, una stringa, etc.
- > Il <u>watermarking</u> è invece la <u>tecnica</u> che permette:
 - L'inserimento (embedding) del watermark all'interno dei dati
 - La **rilevazione** e/o **estrazione** (**detection** o **extraction**) del watermark stesso, dai dati in cui esso è stato inserito
- Applicabile su: immagini, video, audio, dati testuali, etc.

Motivazioni

- > Il digital watermark è principalmente utilizzato per
 - > Copy-protection
 - > Copyright-protection
- > Mediante il digital watermark è possibile
 - > Rendere identificabile il legittimo proprietario dei dati
 - > Dimostrare l'originalità di dati non contraffatti
 - > Evitare la distribuzione di copie non autorizzate
 - > Inserire all'interno del dato informazioni ad esso relate
 - >Etc.

Cenni Storici

- > 1826 Tecnica del dandy roll
 - > Ideata da John Marshall

Durante la fabbricazione della carta, veniva impresso su di essa un marchio (mark) mediante un timbro metallico rivestito d'acqua (water)

Tipologie di Watermarking

- Diverse tipologie di watermaking sono state introdotte in letteratura
- Tali tipologie sono caratterizzate <u>in base al modo</u> <u>in cui il watermark può essere rilevato e/o</u> <u>estratto</u>, da parte di una componente detta <u>decodificatore</u> (o decoder)
- Le principali tipologie sono le seguenti
 - Blind Watermarking
 - Semi-Blind Watermarking
 - Non-Blind Watermarking

Tipologie di Watermarking

- Diverse tipologie di watermaking sono state introdotte in letteratura
- Tali tipologie sono caratterizzate <u>in base al modo</u> <u>in cui il watermark può essere rilevato e/o</u> <u>estratto</u>, da parte di una componente detta <u>decodificatore</u> (o decoder)
- > Le principali tipologie sono le seguenti
 - > Blind Watermarking
 - > Semi-Blind Watermarking
 - > Non-Blind Watermarking

Blind Watermarking

- Sia M un dato (video, immagine, etc.) o un documento e sia M' la versione di M in cui è stato inserito il watermark w
 - > M' è detto dato marchiato (o marcato)
- È possibile rilevare e/o estrarre il watermark w direttamente da M'
 - > Non è necessario quindi il dato originale
- Le tecniche di blind watermarking richiedono generalmente <u>fasi di progettazione ed</u> <u>implementazione più complesse</u>

Tipologie di Watermarking

- Diverse tipologie di watermaking sono state introdotte in letteratura
- Tali tipologie sono caratterizzate <u>in base al modo</u> <u>in cui il watermark può essere rilevato e/o</u> <u>estratto</u>, da parte di una componente detta <u>decodificatore</u> (o decoder)
- > Le principali tipologie sono le seguenti
 - > Blind Watermarking
 - > Semi-Blind Watermarking
 - > Non-Blind Watermarking

Semi-Blind Watermarking

- Le tecniche di semi-blind watermarking <u>necessitano</u> di <u>alcune informazioni per poter rilevare e/o</u> <u>estrarre</u> il watermark
 - Generalmente viene fornito al decodificatore il watermark stesso
 - In tal modo è possibile individuare se il watermark è presente o meno, per cui viene restituito un valore booleano: true o false

Tipologie di Watermarking

- Diverse tipologie di watermaking sono state introdotte in letteratura
- Tali tipologie sono caratterizzate <u>in base al modo</u> <u>in cui il watermark può essere rilevato e/o</u> <u>estratto</u>, da parte di una componente detta <u>decodificatore</u> (o decoder)
- > Le principali tipologie sono le seguenti
 - > Blind Watermarking
 - > Semi-Blind Watermarking
 - > Non-Blind Watermarking

Non-Blind Watermarking

- Un watermark inserito mediante uno schema di nonblind watermarking può essere <u>rilevato e/o estratto</u> <u>a patto che il decodificatore sia in possesso del dato originale</u>
- Questa tipologia di watermarking è in generale di più facile progettazione ed implementazione
 - Tuttavia, la necessità di avere il dato originale, ne <u>limita gli</u> <u>ambiti applicativi</u>

Percettibilità del Watermark

- ➤Il watermark può essere anche caratterizzato in base alla sua percettibilità
 - > Visibile
 - > Il watermark è percepibile all'utente
 - > Invisibile
 - > Il watermark non è percepibile all'utente
 - Per valutare la presenza del watermark è necessario un algoritmo di estrazione e/o rilevazione

Visibile

Invisibile

Robustezza del Watermark – 1/3

- Un'ulteriore caratterizzazione del watermark viene fatta in base alla sua <u>robustezza</u>
 - Per robustezza si intende la <u>capacità del watermark di</u> <u>«resistere» ad eventuali alterazioni</u>
 - > Involontarie e/o maliziose
- > In base a tale caratterizzazione vengono definite due categorie di watermark
 - > Fragile
 - > Robusto

Robustezza del Watermark – 1/3

- Un'ulteriore caratterizzazione del watermark viene fatta in base alla sua <u>robustezza</u>
 - Per robustezza si intende la <u>capacità del watermark di</u> <u>«resistere» ad eventuali alterazioni</u>
 - > Involontarie e/o maliziose
- In base a tale caratterizzazione vengono definite due categorie di watermark
 - > Fragile
 - > Robusto

Robustezza del Watermark - 2/3

- Un watermark <u>fragile</u> è
 - > Altamente «sensibile» alle alterazioni
 - Anche semplici modifiche al dato in cui il watermark è incluso, possono far fallire il processo di estrazione e/o rilevazione dello stesso
 - > Utile per rilevare manomissioni
 - > Se il dato viene manipolato (manomesso), il watemark può non essere rilevato
 - > Indicando quindi una manomissione

Robustezza del Watermark – 1/3

- Un'ulteriore caratterizzazione del watermark viene fatta in base alla sua <u>robustezza</u>
 - Per robustezza si intende la <u>capacità del watermark di</u> <u>«resistere» ad eventuali alterazioni</u>
 - > Involontarie e/o maliziose
- In base a tale caratterizzazione vengono definite due categorie di watermark
 - Fragile
 - **≻** Robusto

Robustezza del Watermark - 3/3

- Un watermark <u>robusto</u>
 - > Deve essere difficile da rimuovere
 - Deve essere <u>resistente a manipolazioni</u> (involontarie o maliziose) del dato in cui esso è inserito
 - Può essere utilizzato per trasportare informazioni
 - > Tali informazioni potrebbero essere correlate ai dati stessi, ad es., informazioni sul copyright, etc.

Schema di Watermarking

- >Uno schema di watermarking definisce
 - Come il watermark viene inserito (o immerso) nel dato
 - > Fase di inserimento (embedding)
 - Come il watermark viene **rilevato** e/o **estratto** dal dato marchiato e successivamente reso disponibile
 - Fase di estrazione e/o rilevazione (extraction e/o detection)

Fasi di uno Schema di Watermarking

- >Schema generale
 - > Inserimento (embedding)
 - > Estrazione e/o rilevazione

Fasi di uno Schema di Watermarking

- > Schema generale
 - >Inserimento (embedding)
 - >Estrazione e/o rilevazione

>Input

- >I Dato di Input
- >W Watermark
- >K Chiave

>Input

- >I Dato di Input
- >W Watermark
- >K Chiave

>Input

- >I Dato di Input
- >W Watermark
- >K Chiave

≻Output

>IW - Dato marchiato

Fasi di uno Schema di Watermarking

- > Schema generale
 - >Inserimento (embedding)
 - > Estrazione e/o rilevazione

- >Input
 - >IW Dato di Input
 - >K Chiave

- >Input
 - >I^W Dato di Input
 - >K Chiave
- >Input Opzionali
 - >W Watermark

- >Input
 - >IW Dato di Input
 - >K Chiave
- >Input Opzionali
 - >W Watermark

- >Input
 - >IW Dato di Input
 - >K Chiave
- >Input Opzionali
 - >W Watermark
- **≻Output**
 - >W Watermark

- >Input
 - >IW Dato di Input
 - >K Chiave
- >Input Opzionali
 - >W Watermark
- **≻Output**
 - >W Watermark
- Output Opzionali
 - D Detected
 - > True o false

Watermarking di Dati Multimediali

- > Watermarking su
 - > Immagini

> Audio

Watermarking di Dati Multimediali

- > Watermarking su
 - Immagini

> Audio

Watermarking di Immagini

Le tecniche di watermarking su immagini operano principalmente in due domini

Dominio Spaziale Dominio delle Frequenze

Watermarking di Immagini

Le tecniche di watermarking su immagini operano principalmente in due domini

Dominio Spaziale

Dominio delle Frequenze

Le tecniche di image watermarking che operano nel dominio spaziale <u>effettuano</u> <u>delle elaborazioni sullo spazio dei colori di un'immagine</u>

Un'immagine I può essere vista come una matrice

► Un'immagine I può essere vista come una matrice

→ Pixel (picture element) Altezza (height) Larghezza (width)

►Un'immagine I può essere vista come una matrice
Pixel (picture element)

Un pixel è associato ad una stringa binaria

Può essere rappresentato mediante 8, 16, 24, 32 bit

Contiene informazioni sul colore o la tonalità di grigio in quel punto specifico dell'immagine

Larghezza (width)

➤ Un'immagine I può essere vista come una matrice
Pixel (picture element)

Larghezza (width)

Un pixel è associato ad una stringa binaria

Può essere rappresentato mediante 8, 16, 24, 32 bit

Contiene informazioni sul colore o la tonalità di grigio in quel punto specifico dell'immagine

Watermarkina di Tmmaaini

La risoluzione di un'immagine è data dal numero di pixel dell'immagine stessa

Larghezza (width) × Altezza (height)

una

- Un pixel è associato ad una stringa binaria
 - Può essere rappresentato mediante 8, 16, 24, 32 bit
 - Contiene informazioni sul colore o la tonalità di grigio in quel punto specifico dell'immagine

Larghezza (width)

Anatomia di un pixel

- Nelle immagini a toni di grigio un pixel viene generalmente rappresentato mediante 8 bit
 - > 28 = 256 tonalità di grigio
 - Valori da O (bianco) a 255 (nero)

Anatomia di un pixel

- >Nelle immagini a colori
 - ➤Il colore viene espresso mediante la combinazione di tre componenti (Modello RGB)
 - > Rosso (Red), Verde (Green) e Blu (Blue)
 - > Ogni componente varia in modo indipendente

Anatomia di un pixel

- >Nelle immagini a colori
 - ➤Il colore viene espresso mediante la combinazione di tre componenti (Modello RGB)
 - > Rosso (Red), Verde (Green) e Blu (Blue)
 - > Ogni componente varia in modo indipendente
 - > In genere vengono usati 8 bit per rappresentare un colore
 - \triangleright Quindi un pixel verrà rappresentato da 24 bit (8 bit \times 3)
 - La combinazione di questi tre colori da luogo ad uno spazio tridimensionale (una dimensione per colore) noto come spazio dei colori RGB

La combinazione ar <u>tre cotori aa tuogo ad uno</u> spazio tridimensionale (un dimensione per colore) noto come spazio dei colori RGB

<u>Definizione</u>

- Uno spazio dei colori si definisce mediante un modello matematico, al quale viene associata una funzione di mappatura
 - > Funzione RGB
- **Esempio**
 - $> RGB(0, 0, 0) \rightarrow Bianco$
 - $> RGB(255, 255, 255) \rightarrow Nero$

Immagine RGB scomposta nelle tre componenti: Red, Green, Blue

- Un altro spazio dei colori tridimensionale è quello denominato YUV
- > Tale spazio è caratterizzato da tre componenti
 - > Y che indica la luminanza
 - Intensità della luce espressa in scala di grigio (luminosità)
 - > U che indica la tonalità
 - Presenza del colore (rosso, verde, giallo, etc.)
 - > V che indica la saturazione
 - > Descrive la vividezza del colore (molto forte, quasi bianco, etc.)
- ➤In tale spazio, le due componenti U e V sono rappresentative della colorazione dell'immagine e sono dette componenti di crominanza

- E possibile passare dallo spazio dei colori RGB a quello YUV e viceversa
- La luminanza di un pixel, rappresentato mediante RGB, può essere calcolata attraverso la somma pesata dei tre colori
 - >Y = 30% di R + 60% di G + 10% di B = 0.3 * R + 0.6 * G + 0.1 * B
- La crominanza di un pixel, rappresentato mediante RGB, può essere definita come
 - >U = R Y
 - **>V** = B − Y

- E possibile passare dallo spazio dei colori RGB a quello YUV e viceversa
- >La lumi/
- di un pixel, rappresentato mediante

- Lo spazio dei colori YUV è molto utile nell'ambito della compressione delle immagini
 - Dal momento che l'occhio umano ha meno sensibilità sulle componenti di crominanza è possibile non considerarle

Immagine RGB convertita nello spazio dei colori YUV e scomposta nelle tre componenti: Y, U, V

Watermarking di Immagini Dominio Spaziale

- Le tecniche di image watermarking nel dominio spaziale <u>operano direttamente sui valori dei pixel che compongono l'immagine</u>
 - Le <u>operazioni</u> sono generalmente <u>semplici</u> e poco onerose dal punto di vista della complessità computazionale
 - Utili per implementazione su dispositivi con hardware limitato
 - Un watermark inserito nel dominio spaziale risulta generalmente poco robusto
 - > Fragile

Watermarking di Immagini Dominio Spaziale

- Una tecnica di image watermarking nel dominio spaziale è conosciuta come LSB (Less Significant Bit)
 - > Il watermark viene inserito modellando tutti (o una parte) i valori dei pixel
 - > Effettuando operazioni sul bit meno significativo
- >Il watermark inserito con tale tecnica risulta essere
 - > Poco oneroso dal punto di vista computazionale
 - > Sono necessarie solo poche operazioni bit-a-bit
 - > Fragile
 - Una manipolazione dell'immagine che modifica (ad es. settando a 0) il bit meno significativo di ogni pixel, elimina il watermark

Fase di inserimento (embedding) - 1/2

- > Siano A e B due partizioni dell'immagine I
 - > A e B contengono i valori dei pixel
 - ➤ I valori dei pixel sono uniformemente distribuiti in A e B
 - La dimensione delle due partizioni risulta essere simile
 - > |A| ≈ |B|
 - ➤Il partizionamento viene effettuato mediante una chiave segreta

Fase di inserimento (embedding) - 1/2

Fase di inserimento (embedding) - 2/2

- > Il valore del watermark w (intero)
 - Viene aggiunto al valore di tutti i pixel della partizione A
 - Viene sottratto al valore di tutti i pixel della partizione B
 - >w è un intero piccolo abbastanza
 - La sua addizione/sottrazione non provoca all'immagine una degradazione percettibile
 - > Il watermark risulta essere quindi invisibile

Fase di rilevazione

- Mediante la medesima chiave segreta utilizzata per l'embedding, vengono ridefinite le partizioni A e B dell'immagine I
- Ciascuna partizione contiene i medesimi pixel selezionati nella fase di embedding
 - Viene calcolata la media dei valori di tutti i pixel appartenenti alla partizione A ed alla partizione B
 - Siano A' e B' rispettivamente la media della partizione A e della partizione B
 - La differenza sarà prossima a uno dei seguenti valori
 - > 2 * w, se il watermark w è presente
 - > 0, altrimenti

Watermarking di Immagini

Le tecniche di watermarking su immagini operano principalmente in due domini

Dominio Spaziale

Dominio delle Frequenze

- Le tecniche di image watermarking che operano nel dominio delle frequenze effettuano i seguenti passi
 - 1. Applicano una specifica trasformata all'immagine
 - 2. Effettuano le operazioni relative all'inserimento o alla rilevazione del watermark
 - 3. Applicano la <u>trasformata inversa</u>
 - > Ottenendo così l'immagine marcata

Schema di Inserimento

- > Le trasformate più utilizzate sono
 - >DCT (Discrete Cosine Transform)
 - >DWT (Discrete Wavelet Transform)
 - >DFT (Discrete Fourier Transform)

DCT (Discrete Cosine Transform)

Definizione Matematica

La DCT è una funzione lineare invertibile nel dominio dei numeri reali

$$DCT(x_1, x_1, ..., x_N) = X_1, X_2, ..., X_N$$

>Gli N dati di input, $x_1, x_2, ..., x_N \in R^N$, vengono trasformati nel modo seguente

$$X_k = \sum_{n=0}^{N} x_n \cos \left[\frac{\pi}{n} \left(n + \frac{1}{2} \right) k \right]$$
 $k = 0, 1, ..., N$

DCT (Discrete Cosine Transform) Motivazioni

- ightharpoonupI dati di output della DCT $(X_1, X_2, ..., X_N \in R^N)$ costituiscono una nuova rappresentazione dei dati di input
 - Tale rappresentazione <u>rende l'applicazione di</u> <u>alcune operazioni più efficiente e agevole</u>
 - ►I valori dei dati di input vengono compattati e concentrati nei primi dati di output

DCT (Discrete Cosine Transform)

Esempio 1

Output (Applicazione della DCT)

							_												
× ₁	x ₂	X ₃	x ₄	x ₅	x ₆	x ₇	x ₈	x ₉			X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X ₈	X ₉
22	25	30	27	24	23	28	30	21			76,7	-0,3	-2,1	-2,0	-7,7	3,9	-1,7	1,9	0,7
80	0									L			80	_					

80	
70	
60	
50	
7 40 Agori	
> 30	
20	-
10	
0	
-10	X ₁ X ₂ X ₃ X ₄ X ₅ X ₆ X ₇ X ₈ X ₉ Output

DCT (Discrete Cosine Transform)

Esempio 2

Immagine Originale

Applicazione della DCT

DWT (Discrete Wavelet Transform)

- > La DWT è una trasformata invertibile
 - Calcolando l'inversa della trasformata DWT è possibile ottenere l'informazione iniziale
- Mediante la DWT le componenti di un segnale (l'immagine) vengono scomposte in
 - > Componenti ad alta frequenza
 - > Componenti a bassa frequenza

DWT (Discrete Wavelet Transform)

- >Applicando la DWT, l'immagine viene suddivisa in quattro sottobande
 - > LL, HL, LH e HH

DWT (Discrete Wavelet Transform)

DWT (Discrete Wavelet Transform)

Le sottobande HL, LH e HH contengono le alte frequenze, meno percepibili dall'occhio umano

NWT (Discrete Wavelet Transform)

- > Nelle sottobande delle basse frequenze operano gli algoritimi di watermarking
 - > In tal modo il watermark non risulterà percepibile

DWT (Discrete Wavelet Transform)

La sottobanda LL può essere ulteriormente scomposta mediante l'applicazione di un ulteriore passo della DWT

- L'applicazione del secondo passo della DWT sulla sottobanda LL genera quattro ulteriori sottobande, denominate LL2, HL2, LH2 e HH2
- La sottobanda LL2 sarà quella contenente le basse frequenze

DWT (Discrete Wavelet Transform)

Esempio

Immagine Originale

Applicazione della DWT

Applicazione della DWT sulla sotto-banda **LL**

DFT (Discrete Fourier Transform)

Definizione Matematica

- La DFT è definita nel dominio dei numeri complessi
 - Trasforma l'input $x_0, x_1, x_2, ..., x_{N-1}$, composto da N numeri complessi, in una successione di N numeri complessi $X_0, X_1, X_2, ..., X_{N-1}$

$$X_{k} = \sum_{n=0}^{N-1} x_{n} e^{-ik\left(\frac{2\pi}{N}\right)n}$$
, $k = 0, 1, 2, ..., N-1$

DFT (Discrete Fourier Transform) Esempio

Immagine Originale

Applicazione della DFT

- Partendo dall'immagine marcata è possibile effettuare diversi attacchi, al fine di rendere il watermark non rilevabile o solo parzialmente rilevabile
- >I principali attacchi sono
 - > Compressione Lossy
 - > Distorsioni Geometriche
 - >Operazioni di Signal Processing
 - > Rewatermarking

- Partendo dall'immagine marcata è possibile effettuare diversi attacchi, al fine di rendere il watermark non rilevabile o solo parzialmente rilevabile
- >I principali attacchi sono
 - > Compressione Lossy
 - > Distorsioni Geometriche
 - >Operazioni di Signal Processing
 - > Rewatermarking

Possibili Attacchi Compressione Lossy

- Molti schemi per la compressione lossy (JPEG, JPEG2000, etc.) eliminano le informazioni meno percepibili dall'uomo
 - > Allo scopo di ridurre le dimensioni dell'immagine
- >Solitamente il watermark viene nascosto proprio nelle informazioni meno percepibili
 - La perdita di tali informazioni può alterare o far perdere il watermark
 - Gli schemi di watermarking nel dominio delle frequenze sono solitamente robusti contro attacchi basati sulla compressione lossy

- Partendo dall'immagine marcata è possibile effettuare diversi attacchi, al fine di rendere il watermark non rilevabile o solo parzialmente rilevabile
- >I principali attacchi sono
 - > Compressione Lossy
 - > Distorsioni Geometriche
 - >Operazioni di Signal Processing
 - > Rewatermarking

Possibili Attacchi Distorsioni Geometriche

- Un altro possibile attacco agli schemi di watermarking è rappresentato dalle distorsioni geometriche
- Tali distorsioni possono essere di diverso tipo
 - Ritaglio (Crop)
 - > Rotazione
 - > Shifting
 - > Allungamento (Stretching)

- Tali distorsioni possono essere di diverso tipo
 - >Ritaglio (Crop)
 - > Rotazione
 - > Shifting
 - > Allungamento (Stretching)

- Partendo dall'immagine marcata è possibile effettuare diversi attacchi, al fine di rendere il watermark non rilevabile o solo parzialmente rilevabile
- >I principali attacchi sono
 - > Compressione Lossy
 - > Distorsioni Geometriche
 - >Operazioni di Signal Processing
 - > Rewatermarking

Possibili Attacchi Operazioni di Signal Processing

- > Attacchi basati sulle operazioni di signal processing
 - > Aggiunta di un offset costante al valore dei pixel
 - > Aggiunta di rumore all'immagine
 - > Aggiunta di disturbo all'immagine
 - > Applicazione di filtri
 - >Etc.
- >Un altro attacco è basato sulla conversione Digitale/Analogico (D/A) → Analogico/Digitale (A/D)
 - Viene effettuata una stampa dell'immagine (conversione D/A) e poi una digitalizzazione di tale stampa, mediante l'acquisizione da scanner (conversione A/D)
 - > Nel processo fra la conversione $D/A \rightarrow A/D$ vengono perse informazioni (e potenzialmente anche il watermark)

- Partendo dall'immagine marcata è possibile effettuare diversi attacchi, al fine di rendere il watermark non rilevabile o solo parzialmente rilevabile
- >I principali attacchi sono
 - > Compressione Lossy
 - > Distorsioni Geometriche
 - >Operazioni di Signal Processing
 - > Rewatermarking

Possibili Attacchi Rewatermarking

- Con il termine rewatermarking si intende l'applicazione di un ulteriore watermark ad un'immagine già marcata
- >Gli obiettivi principali di tale attacco sono
 - > «Sovrascrivere» il watermark precedentemente inserito
 - ➤Ingannare l'algoritmo di estrazione e/o rilevazione

Watermarking di Dati Multimediali

- Watermarking su
 - > Immagini

> Audio

Watermarking di Audio

Le tecniche di watermarking che operano su audio digitale si basano principalmente sulla caratteristica del <u>mascheramento uditivo</u> dell'apparato uditivo umano

> Mascheramento Uditivo

Un segnale audio debolmente percettibile, diviene non percettibile in presenza di un forte segnale audio di frequenza leggermente superiore

Watermarking di Audio

- Ad esempio, assumendo la presenza di un segnale principale, a una data frequenza, e di un segnale secondario, di livello più basso e ad una frequenza leggermente inferiore, quest'ultimo segnale è "mascherato" dal primo e l'orecchio umano non è in grado di percepirlo
- E possibile effettuare l'embedding di un watermark operando nel dominio
 - > Temporale
 - > Delle frequenze

Watermarking di Audio Possibili Attacchi

- > Attacchi in ambiente digitale
 - > Compressione Lossy
 - > Audio Processing
 - > Denoising, Equalizzazione, Ricampionamento, etc.
 - Ritaglio (Cropping)
- > Attacchi in ambiente analogico
 - \triangleright Conversione da D/A \rightarrow A/D
 - > Rumore di sottofondo
 - > Modifica dell'ampiezza del segnale

Bibliografia

- Digital Watermarking and Steganography: Fundamentals and Techniques (Second Edition), Frank Y. Shih, 2017, CRC Press.
 - Capitolo 1: da pagina 1 a pagina 6
 - Capitolo 2: da pagina 9 a pagina 14
 - Capitolo 3: da pagina 15 a pagina 20 (Solo definizioni di Least-Significant-Bit Substitution, Discrete Fourier Transform, Discrete Cosine Transform, Discrete Wavelet Transform)
 - Capitolo 4: da pagina 35 a pagina 41 (Sezione 4.2.2 esclusa)
- http://printerblogarchive.yale.edu/blog/2012/09/14/archives-yale-shie dandy-roll

Ulteriori Riferimenti Bibliografici

- Cox, Ingemar J., et al. Digital watermarking. Vol. 1558607145. San Francisco: Morgan Kaufmann, 2002.
- Cox, Ingemar, et al. Digital watermarking and steganography. Morgan Kaufmann, 2007.
- Shih, Frank Y. Digital watermarking and steganography: fundamentals and techniques. CRC Press, 2017.
- Seitz, Juergen. Digital watermarking for digital media. IGI Global, 2005.
- Katzenbeisser, Stefan, and Fabien Petitcolas. Information hiding techniques for steganography and digital watermarking. Artech house, 2000.
- Arnold, Michael Konrad, Martin Schmucker, and Stephen D. Wolthusen. Techniques and applications of digital watermarking and content protection. Artech House, 2002.
- Mintzer, Fred, Gordon W. Braudaway, and Alan E. Bell. "Opportunities for watermarking standards." Communications of the ACM 41.7 (1998): 57-64.
- Cox, Ingemar J., et al. "Secure spread spectrum watermarking for multimedia." IEEE transactions on image processing 6.12 (1997): 1673-1687.
- Dugad, R., Ratakonda, K., Ahuja, N., A new wavelet-based scheme for watermarking images. Proceedings of IEEE ICIP 1998 (Vol. 2, pp. 419-423)