Feuille d'exercice n° 20 : **Intégration - correction**

Soit f, g uniformément continues. Soit $\varepsilon > 0$, il existe donc $\alpha > 0$ tel que Exercice 1

$$\forall (x,y) \in \mathbb{R}^2, |x-y| \leqslant \alpha \Rightarrow |f(x) - f(y)| \leqslant \varepsilon.$$

Il existe donc $\eta > 0$ tel que

$$\forall (x,y) \in \mathbb{R}^2, |x-y| \leqslant \eta \Rightarrow |g(x) - g(y)| \leqslant \alpha.$$

On vérifie que

$$\forall (x,y) \in \mathbb{R}^2, |x-y| \leqslant \eta \Rightarrow |f(g(x)) - f(g(y))| \leqslant \varepsilon.$$

Sinon, prendre $\varepsilon > 0$, $\alpha > 0$ tq [...], alors pour tout x > 0 $\left| \ln x - \ln \left(x + \frac{\alpha}{2} \right) \right| \leqslant \varepsilon$ et faire Exercice 2 tendre x vers 0.

Exercice 3 Sur [0,2]: Heine.

Sur
$$[1, +\infty[: |\sqrt{x} - \sqrt{y}| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}} \le \frac{1}{2\sqrt{2}}|x - y|.$$

Par conséquent, si on prend $\varepsilon > 0$, prendre $\alpha = \min(\alpha_1, \alpha_2, \frac{1}{2})$ pour ne pas chevaucher.

Exercice 4 f est uniformément continue, donc :

il existe $\alpha > 0$ tel que $\forall x, y \in I, |x - y| \leq \alpha \Rightarrow |f(x) - f(y)| \leq 1$.

Commençons par remarquer qu'on a le résultat suivant : Pour tout $x, y \in I$ et pour tout $p \in \mathbb{N}^*$, $|x - y| \le p\alpha \Rightarrow |f(x) - f(y)| \le p$.

En effet, soient $x, y \in I$ et $p \in \mathbb{N}^*$ tels que $|x - y| \leq p\alpha$, et supposons par exemple que x < y. Coupons l'intervalle [x,y] en p intervalles de même longueur : pour tout $k \in [0,p]$, on pose $x_k = x + \frac{k}{n}(y-x)$.

On a alors $x_0 = x$ et $x_p = y$. De plus, pour tout $k \in [1, p]$, on a $|x_{k-1} - x_k| = \frac{1}{n}(y - x) \leqslant \alpha$, donc $|f(x_{k-1}) - f(x_k)| \le 1$. Or $|f(x) - f(y)| = |f(x_0) - f(x_1) + f(x_1) - f(x_2) \dots + f(x_{p-1}) - f(x_p)| \le 1$ $|f(x_0) - f(x_1)| + |f(x_1) - f(x_2)| \dots + |f(x_{p-1}) - f(x_p)| \le p \times 1$. Notre remarque est donc justifiée. On pose alors $p = \lfloor 1/\alpha \rfloor + 1$, donc $p \ge \frac{1}{\alpha}$. Fixons également un réel M. Alors, puisque $f(n) \xrightarrow[n \to +\infty]{} +\infty$, on a : il existe $N \in \mathbb{N}$, tel que $\forall n \in \mathbb{N}, n \ge N \Rightarrow f(n) \ge M + p$. Soit

 $x \in \mathbb{R}$ tel que $x \geqslant N$. On pose n = |x| + 1. Alors $|x - n| \leqslant 1 \leqslant p\alpha$, d'où $|f(x) - f(n)| \leqslant p$, et ainsi $f(x) \ge f(n) - p$. Mais $n \ge N$, donc $f(n) \ge M + p$, et on en tire $f(x) \ge M$.

Ainsi, pour tout $M \in \mathbb{R}$, on a trouvé un $N \in \mathbb{N}$ tel que $\forall x \in \mathbb{R}, x \geqslant N \Rightarrow f(x) \geqslant M$: ceci signifie bien que $f(x) \xrightarrow[x \to +\infty]{} +\infty$.

f([a;b]) = [m;M] et g positive, donc pour tout $x, mg(x) \leq f(x)g(x) \leq Mg(x)$ on intègre. Exercice 5

Puis : soit $\int_a^b g = 0$ alors c'est OK, sinon, $\frac{\int_a^b fg}{\int_a^b g} \in [m; M]$ et donc par le tvi, ce rapport vaut f(c) pour

un certain c.

Si pour tout $x \in]0,1[, f(x) > x$ alors, comme $x \mapsto f(x) - x$ est continue et strictement positive, $\int_{0}^{1} (f(x) - x) dx > 0$ i.e. $\int_{0}^{1} f > \int_{0}^{1} x dx = 1/2$: c'est exclu.

Même chose pour $\forall x \in]0,1[,f(x)>x.$

Et alors, f(x) - x change de signe sur]0,1[, et par le TVI il existe un $c \in]0,1[$ tel que f(c) = c.

On pouvait aussi appliquer le théorème de Rolle à $x \mapsto \int_0^x (f(t) - t) dt$ sur [0, 1].

Exercice 7 On suppose que f a au plus n points d'annulations, et on note x_1, \ldots, x_n les points d'annulation où f change de signe.

Par linéarité de l'intégrale, si P est un polynôme de degré au plus n s'écrivant $P = \sum_{k=0}^{n} a_k x^k$, alors

$$\int_0^1 f \times P = \sum_{k=0}^n a_k \int_0^1 f(x) \cdot x^k \, \mathrm{d}x = 0. \text{ Posons alors } P = (X - x_1) \cdot \dots \cdot (X - x_n). \text{ Le polynôme } P \text{ change}$$

signe exactement aux mêmes points que f, et ainsi la fonction $f \times P$ est de signe constant. De plus elle continue et d'intégrale nulle : elle est donc nulle. Ainsi f est nulle sur $\mathbb{R} \setminus \{x_1, \dots, x_n\}$. Et par continuité, f est nulle sur \mathbb{R} : c'est absurde.

Exercice 8

Premier cas : $\int_a^b f > 0$, alors $\int_a^b (|f| - f) = 0$ avec $(|f| - f) \ge 0$, d'où |f| = f i.e. f positive Second cas, idem

Exercice 9

- 1) La fonction $f: x \mapsto \sqrt{1+x^n}$ est croissante, donc si $x \in \left[1, 1+\frac{1}{n}\right], f(1) \leqslant f(x) \leqslant f\left(1+\frac{1}{n}\right).$
- 2) Avec la première question, $\frac{1}{n} \le u_n \le \frac{1}{n} \sqrt{1 + (1 + 1/n)^n}$ puis $\lim_{n \to +\infty} (1 + 1/n)^n = e$ et donc par le théorème des gendarmes, $u_n \xrightarrow[n \to +\infty]{} 0$.

Exercice 10 Faire un dessin!

Soit $\varepsilon > 0$, $y = f(1 - \varepsilon) < 1$. Alors pour tout $0 \leqslant t \leqslant 1$, $0 \leqslant f(t) \leqslant y \mathbf{1}_{t \leqslant 1 - \varepsilon} + \mathbf{1}_{t \geqslant 1 - \varepsilon}$ donc

$$0 \leqslant \int_0^1 f^n \leqslant y^n (1 - \varepsilon) + \varepsilon.$$

Il suffit de prendre n suffisamment grand pour que $y^n \leqslant \varepsilon$, alors $0 \leqslant \int_0^1 f^n \leqslant 2\varepsilon$.

Exercice 11 Soit m un point ou le $s=\sup f$ est atteint, $\varepsilon>0,\ I=[c,d]\subset [a,b]$ contenant m sur lequel $f\geqslant s-\varepsilon$, on pose g=s et $h=(s-\varepsilon)\mathbf{1}_I$: $h\leqslant f\leqslant g$.

Facilement, $\left(\int_a^b g^n\right)^{\frac{1}{n}} \to s$ et $\left(\int_a^b h^n\right)^{\frac{1}{n}} \to s - \varepsilon$. Il suffit de prendre n suffisamment grand pour

lequel $\left(\int_a^b h^n\right)^{\frac{1}{n}} \geqslant s - 2\varepsilon$, par encadrement $s - 2\varepsilon \leqslant \left(\int_a^b f^n\right)^{\frac{1}{n}} \leqslant s$.

Exercice 12 On a

a) Pour tout ε , il existe un x_0 à partir duquel $1 - \varepsilon \leqslant \cos(1/t) \leqslant 1$. Donc si $x \geqslant x_0$, $\int_x^{2x} \frac{1 - \varepsilon}{t} dt \leqslant \int_x^{2x} \frac{\cos t}{t} dt \leqslant \int_x^{2x} \frac{1}{t} dt$, soit $(1 - \varepsilon) \ln 2 \leqslant \int_x^{2x} \frac{\cos t}{t} dt \leqslant \ln 2$. Finalement, $\int_x^{2x} \frac{\cos t}{t} dt \xrightarrow[x \to +\infty]{} \ln 2$.

b) IPP :
$$\int_{x}^{2x} \frac{\sin t}{t} dt = \left[-\frac{\cos t}{t} \right]_{x}^{2x} - \int_{x}^{2x} \frac{\cos t}{t^{2}} dt. \text{ Or cos est born\'ee et } \frac{1}{x} \xrightarrow[x \to +\infty]{} 0 \text{ donc } \left[-\frac{\cos t}{t} \right]_{x}^{2x} \xrightarrow[x \to +\infty]{} 0.$$

$$0. \text{ Et } \left| \int_{x}^{2x} \frac{\cos t}{t^{2}} dt \right| \leqslant \int_{x}^{2x} \frac{1}{t^{2}} dt \xrightarrow[x \to +\infty]{} 0, \text{ donc } \int_{x}^{2x} \frac{\sin t}{t} dt \xrightarrow[x \to +\infty]{} 0.$$

c) Pour tout ε , il existe un x à partir duquel $1 \le e^{1/t} \le 1 + \varepsilon$, et on finit comme pourla première question.

Exercice 13

1) IPP pour calculer
$$\int \ln(1+x) dx$$
: $\int_0^1 (e^x + \frac{x^2}{2} - \ln(1+x)) dx = e + \frac{1}{6} - \ln(4)$

2) IPP :
$$\int_0^1 x(x+2-e)e^x dx = 0$$

3)
$$\frac{x-2}{(2x-3)^2} = \frac{1}{2} \cdot \frac{(2x-3)-1}{(2x-3)^2} = \frac{1}{2} \cdot \frac{1}{2x-3} - \frac{1}{2} \cdot \frac{1}{(2x-3)^2}$$
 donc $: \int_0^1 \frac{x-2}{(2x-3)^2} dx = -\frac{1}{4} \ln(3) - \frac{1}{6} \ln(3)$

4) On linéarise :
$$\cos^4 x \sin^2 x = \frac{1}{32} (\cos(2x) - 2\cos(4x) + 2 - \cos(6x))$$
, et donc $\int_0^{\pi/4} \cos^4 x \sin^2 x \, dx = \frac{1}{16} (\frac{\pi}{4} + \frac{1}{3})$

$$5) \int_{1}^{2} \frac{x^3}{(1+x^4)^2} \, \mathrm{d}x = \frac{15}{136}$$

6) Méthode par changement de variable : en posant
$$x = \tan u$$
, $dx = (1 + \tan^2 u) du$, $\int_0^1 \frac{1}{(1 + x^2)^2} dx = \int_0^{\pi/4} \frac{1 + \tan^2 u}{(1 + \tan^2 u)^2} du = \int_0^{\pi/4} \frac{1}{1 + \tan^2 u} du = \int_0^{\pi/4} \cos^2 u du$ et il reste à linéariser. On trouve : $\int_0^1 \frac{dx}{(1 + x^2)^2} = \frac{1}{4} + \frac{\pi}{8}$.

Exercice 14

1) Première IPP :
$$\int \left(\frac{x}{\sqrt{1-x^2}}\right) \times e^{\operatorname{Arcsin} x} dx = -\sqrt{1-x^2} \times e^{\operatorname{Arcsin} x} + \int \sqrt{1-x^2} \times \frac{e^{\operatorname{Arcsin} x}}{\sqrt{1-x^2}} dx.$$
Seconde IPP :
$$\int x \times \left(\frac{e^{\operatorname{Arcsin} x}}{\sqrt{1-x^2}}\right) dx = x \times e^{\operatorname{Arcsin} x} - \int 1 \times e^{\operatorname{Arcsin} x} dx.$$

En prenant la demi-somme de ces deux résultats : $\int \frac{x}{\sqrt{1-x^2}} e^{\operatorname{Arcsin} x} dx = \frac{x-\sqrt{1-x^2}}{2} e^{\operatorname{Arcsin} x}.$

2) Par IPP,
$$\int_0^1 \ln(1+x^2) dx = \ln(1+x^2) = 1 \times \ln(1+x^2)$$
 et par IPP, $\int_0^1 \ln(1+x^2) dx = \frac{\pi}{2} + \ln(2) - 2$.

3) Par IPP,
$$\int_{1}^{2} \frac{x}{\sqrt{1+x}} dx = \frac{2\sqrt{2}}{3}$$
.

4)
$$\frac{x \, dx}{\sqrt{x+1}\sqrt{x+3}} = \frac{1}{2} \cdot \frac{2(x+2)}{\sqrt{(x+2)^2 - 1}} - \frac{2}{\sqrt{(x+2)^2 - 1}} \, \text{donc} \int \frac{x \, dx}{\sqrt{x+1}\sqrt{x+3}} = \sqrt{(x+2)^2 - 1} - 2\ln\left|(x+2) + \sqrt{(x+2)^2 - 1}\right|.$$

5) avec
$$u = \sqrt{1+x}$$
, $\int_0^1 \frac{x}{1+\sqrt{1+x}} = \int_1^{\sqrt{2}} \frac{2u(u^2-1)}{1+u} du = \int_0^{\sqrt{2}} 2u(u-1) du = \frac{4\sqrt{2}}{3} - \frac{5}{3}$

6)
$$4 - 2\operatorname{Arctan}(2)$$
 en posant $u = \sqrt{x - 1}$

7)
$$\ln(\sqrt{5}-1) - \ln 2 - \ln(\sqrt{2}-1)$$
en posant $u = \sqrt{1+x^2}$ et $\frac{1}{x^2-1} = \frac{1}{x-1} - \frac{1}{x+1}$

8)
$$-\frac{4}{3}(1-\sqrt{x})^{3/2}$$

9)
$$\pi - 2$$

Exercice 15 Que des IPP!

$$1) \int \ln t \, \mathrm{d}t = t \ln t - t$$

2)
$$\int t \arctan t \, dt = \frac{1}{2}t^2 \arctan(t) - \frac{t}{2} + \frac{1}{2}\arctan(t)$$

3)
$$\int (t^2 - t + 1)e^{-t} dt = -(2 + t + t^2)e^{-t}$$

4)
$$\int (t-1)\sin t \, dt = \sin t + \cos t - t\cos t$$

5)
$$\int (t+1)\operatorname{ch} t \, \mathrm{d}t = -\operatorname{ch} t + \operatorname{sh} t + t \operatorname{sh} t$$

6)
$$\int t \sin^3 t \, dt = t \left(-\frac{1}{3} (\sin(t))^2 \cos(t) - \frac{2}{3} \cos(t) \right) + \frac{1}{9} (\sin(t))^3 + \frac{2}{3} \sin(t)$$

Exercice 16

- 1) Pour tout $x \in [0,1]$, $0 \leqslant \frac{1}{1+x^n} \leqslant 1$ donc $0 \leqslant \frac{x^n}{1+x^n} \leqslant x^n$, donc $0 \leqslant I_n \leqslant \int_0^1 x^n dx = \frac{1}{n+1}$. Par encadrement, $I_n \xrightarrow[n \to +\infty]{} 0$.
- 2) Même raisonnement que dans la question précédente : pour tout $x \in [0,1], 0 \leq \ln(1+x^n) \leq x^n$ (c'est une inégalité classique).
- 3) Avec une IPP : $\int_0^1 \ln(1+x^n) dx = \left[x \ln(1+x^n) \right]_0^1 n \int_0^1 \frac{x^n}{1+x^n} dx = \ln 2 n \int_0^1 \frac{x^n}{1+x^n} dx.$ Ainsi $I_n = \frac{\ln 2}{n} - \frac{1}{n} \int_0^1 \ln(1+x^n) dx$. Puisque $\int_0^1 \ln(1+x^n) dx = o(1)$, alors $I_n = \frac{\ln 2}{n} + o\left(\frac{1}{n}\right)$, donc

Exercice 17

- 1) $I_0 = e 1$, $I_1 = 1$.
- **2)** IPP : $I_{n+1} = \left[x(\ln x)^{n+1} \right]_1^e (n+1) \int_1^e (\ln x)^n dx = e (n+1)I_n$.
- 3) $I_n > 0$ et comme $I_{n+1} > 0$, $I_n \leqslant \frac{e}{n+1}$.
- 4) $I_n \to 0$, $I_{n+1} \to 0$ donc $(n+1)I_n \to e$ donc $I_n \sim \frac{e}{n}$.
- 5) $D_{n+1} = (n+1)D_n \text{ donc } D_n = n!D_0 \text{ puis } |u_n| \ge D_n I_n$

La fonction f est continue, donc admet une primitive F qui est de classe \mathscr{C}^1 .

- 1) On a $\varphi(x) = F(x^2) F(2x)$, donc φ est \mathscr{C}^1 par opération sur les fonctions de classe \mathscr{C}^1 . $\varphi'(x) = 2xf(x^2) - 2f(2x).$
- 2) On a $\chi(x) = x \int_0^x f(t) dt = x(F(x) F(0))$. De même, χ est \mathscr{C}^1 par opération sur les fonctions de $\chi'(x) = F(x) - F(0) - xf(x) = \int_0^x f(t) dt - xf(x).$
- 3) On pose u = t + x et $\psi(x) = \int_{x}^{2x} f(u) du = F(2x) F(x)$. De même, ψ est \mathscr{C}^{1} par opération sur les fonctions de classe \mathscr{C}^1 . $\psi'(x) = 2f(2x) - f(x).$

Exercice 19

- 1) Prolongement par continuité en 0.
- 2) Avec u = tx, $F(x) = \int_0^{\pi x} \frac{|\sin u|}{u} du$, on dérive $: F'(x) = \pi \frac{|\sin(\pi x)|}{\pi x} = \frac{|\sin(\pi x)|}{x}$.
- a) Relation de Chasles.
 - **b)** Directement, $\int_{\pi^{\lfloor x \rfloor}}^{\pi x} \frac{|\sin t|}{t} dt = o(1)$. Ensuite,

$$\sum_{k=0}^{\lfloor x\rfloor-1} \int_{k\pi}^{(k+1)\pi} \frac{|\sin t|}{t} \, \mathrm{d}t \geqslant \sum_{k=0}^{\lfloor x\rfloor-1} \int_{k\pi}^{(k+1)\pi} \frac{|\sin t|}{(k+1)\pi} \, \mathrm{d}t = \frac{\int_0^{\pi} \sin t \, \mathrm{d}t}{\pi} \sum_{k=1}^{\lfloor x\rfloor} \frac{1}{k} = \frac{2}{\pi} (\ln \lfloor x\rfloor + o(\ln(\lfloor x\rfloor)))$$

 et

$$\sum_{k=0}^{\lfloor x\rfloor - 1} \int_{k\pi}^{(k+1)\pi} \frac{|\sin t|}{t} \, \mathrm{d}t \leqslant \int_0^{\pi} \frac{|\sin t|}{t} \, \mathrm{d}t + \sum_{k=1}^{\lfloor x\rfloor - 1} \int_{k\pi}^{(k+1)\pi} \frac{|\sin t|}{k\pi} \, \mathrm{d}t$$

$$\leqslant O(1) + \frac{\int_0^{\pi} \sin t \, \mathrm{d}t}{\pi} \sum_{k=1}^{\lfloor x\rfloor - 1} \frac{1}{k}$$

$$\leqslant \frac{2}{\pi} (\ln \lfloor x\rfloor + o(\ln(\lfloor x\rfloor)).$$

Exercice 20

- 1) OK par $0 \leq \sin \leq 1$.
- 2) IPP à la Wallis:

$$f(x+1) = \int_0^{\pi/2} \sin t (\sin t)^x dt$$

$$= [-\cos t (\sin t)^x]_0^{\pi} + x \int_0^{\pi} \cos^2 t (\sin t)^{x-1} dt$$

$$= 0 - x \int_0^{\pi} (1 - \sin^2 t) (\sin t)^{x-1} dt$$

$$= x f(x-1) - x f(x+1)$$

d'où le résultat.

- 3) $\varphi(x+1) = (x+1)f(x+1)f(x) = xf(x-1)f(x) = \varphi(x)$
- **4)** $\varphi(n) = \varphi(1) = f(0)f(1) = \frac{\pi}{2}$.
- **5)** De 2) on tire $f(x+1) \sim f(x-1)$, f est décroissante donc $f(x-1) \leqslant f(x) \leqslant f(x+1)$ donc $f(x) \sim f(x+1)$, on injecte dans $\varphi: xf^2(x) \sim \varphi(x)$.

Donc sur \mathbb{N}^* , $nf^2(n) \sim \frac{\pi}{2}$ donc $f(n) \sim \sqrt{\frac{\pi}{2n}}$.

Par décroissance de f, on tire $f(x) \sim \sqrt{\frac{\pi}{2x}}$, donc $\varphi(x) = xf(x)f(x-1) \to \frac{\pi}{2}$ et cela montre que φ est constante.

Exercice 21

1) Soit $\varepsilon > 0$ et $\alpha > 0$ tel que si $0 \le x \le \alpha$, $|f(x)| \le \varepsilon$. Alors si $0 \le bx \le \alpha$,

$$\left| \int_{ax}^{bx} \frac{f(t)}{t} dt \right| \leqslant \varepsilon \int_{ax}^{bx} \frac{dt}{t} = \varepsilon \left[\ln t \right]_{ax}^{bx} = \varepsilon \ln \frac{b}{a}.$$

2) Avec f = f - f(0) + f(0), il suffit de montrer que $\int_{ax}^{bx} \frac{f(0)}{t} dt = f(0) \ln \frac{b}{a}$.

Exercice 22

tercice 22
$$f(0) = 0$$
.
 $f'(x) = \frac{1}{1+x} \text{ donc } f'(0) = 1$.

Si $n \ge 1$, $f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n}$ donc $f^{(n)}(0) = (-1)^{n-1} (n-1)!$.

Inégalité de Taylor-Lagrange

$$|f(1) - u_n| \leqslant \frac{1}{n!} \sup |f^{(n)}| \leqslant \frac{1}{n}.$$

Exercice 23 On trouve:

- 1) $\arctan(t) 1/2i \ln(t^2 + 1)$
- **2)** $1/2 e^t \cos(t) + 1/2 e^t \sin(t)$
- 3) $(-1/2t + 1/2) e^t \cos(t) + 1/2 t e^t \sin(t)$

Exercice 24 Si $t \in \mathbb{R}$,

$$\frac{1}{t-\lambda} = \frac{1}{(t-a)-ib} = \frac{t-a+ib}{(t-a)^2+b^2} = \frac{1}{2} \frac{2(t-a)}{(t-a)^2+b^2} + \frac{i}{b} \frac{1}{\left(\frac{t-a}{b}\right)^2+1}.$$

Cela se primitive bien en

$$\ln|t - \lambda| + i \operatorname{Arctan}\left(\frac{t - a}{b}\right)$$

Exercice 25 Il s'agit d'une somme de Riemann. On trouve ln 3/12.

Exercice 26 C'est une somme de Riemann : $S_n = \frac{1}{n} \sum_{k=1}^n \frac{n}{\sqrt{n^2 + 2kn}} = \frac{1}{n} \sum_{k=1}^n \frac{1}{\sqrt{1 + 2\frac{k}{n}}}$, qui a pour

limite
$$\int_0^1 \frac{dt}{\sqrt{1+2t}} = \left[\sqrt{1+2t}\right]_0^1 = \sqrt{3} - 1.$$

Exercice 27 Cette somme est nulle! Ajouter un terme pour k=0 et effectuer le changement de variables k'=n-k pour le voir. Ou même, remarquer que c'est la partie imaginaire de la somme des racines n-èmes de l'unité.

Exercice 28 Par décalage d'indice,

$$\prod_{k=n+1}^{2n} k^{\frac{1}{k}} = \prod_{k=1}^{n} (n+k)^{\frac{1}{n+k}}$$

On passe au log:

$$\sum_{k=1}^{n} \frac{1}{n+k} \ln(n+k) = \frac{\ln n}{n} \sum_{k=1}^{n} \frac{1}{1+\frac{k}{n}} + \frac{1}{n} \sum_{k=1}^{n} \frac{\ln\left(1+\frac{k}{n}\right)}{1+\frac{k}{n}}$$

Comme $t\mapsto \frac{1}{1+t}$ et $t\mapsto \frac{\ln(1+t)}{t}$ sont continues, par le théorème de convergence des sommes de Riemann,

$$\frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + \frac{k}{n}} \xrightarrow[n \to +\infty]{} \int_{0}^{1} \frac{\mathrm{d}t}{1 + t}$$

et

$$\frac{1}{n} \sum_{k=1}^{n} \frac{\ln\left(1 + \frac{k}{n}\right)}{1 + \frac{k}{n}} \xrightarrow[n \to +\infty]{} \int_{0}^{1} \frac{\ln(1+t)}{1+t} dt.$$

Ainsi,

$$\sum_{k=1}^{n} \frac{1}{n+k} \ln (n+k) \xrightarrow[n \to +\infty]{} +\infty,$$

donc, $P_n \xrightarrow[n \to +\infty]{} +\infty$.

Comme $t \mapsto \frac{1}{1+t}$ et $t \mapsto \frac{\ln(1+t)}{t}$ sont \mathscr{C}^1 , par le théorème de convergence des sommes de Riemann,

$$\frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + \frac{k}{n}} = \int_{0}^{1} \frac{\mathrm{d}t}{1 + t} + O\left(\frac{1}{n}\right) = \ln(2) + O\left(\frac{1}{n}\right)$$

et

$$\frac{1}{n} \sum_{k=1}^{n} \frac{\ln\left(1 + \frac{k}{n}\right)}{1 + \frac{k}{n}} = \int_{0}^{1} \frac{\ln(1+t)}{1+t} dt + O\left(\frac{1}{n}\right) = \frac{\ln^{2}(2)}{2} + O\left(\frac{1}{n}\right).$$

Ainsi,

$$\sum_{k=1}^{n} \frac{1}{n+k} \ln(n+k) = \ln(n) \ln(2) + \frac{\ln^2(2)}{2} + O\left(\frac{\ln(n)}{n}\right) = \ln(n) \ln(2) + \frac{\ln^2(2)}{2} + o(1),$$

donc

$$P_n = 2^{\ln n} \exp\left(\frac{\ln^2(2)}{2}\right) \exp\left(o(1)\right) \sim 2^{\ln n} \exp\left(\frac{\ln^2(2)}{2}\right).$$

Exercice 29

$$\frac{1}{n}\sqrt[n]{\prod_{p=1}^n(n+p)}=\sqrt[n]{\prod_{p=1}^n\left(1+\frac{p}{n}\right)}$$

On passe au log : $\frac{1}{n} \sum_{k=1}^{n} \ln\left(1 + \frac{p}{n}\right) \xrightarrow[n \to +\infty]{} \int_{0}^{1} \ln(1+t) dt = \ln 4 - 1$. Et donc $P_n \xrightarrow[n \to +\infty]{} \frac{4}{e}$.

Exercice 30 Fixons $n \in \mathbb{N}^*$, notons

$$T_n = \sum_{k=1}^n \sqrt{k} = \sqrt{n} \sum_{k=1}^n \sqrt{\frac{k}{n}} = n\sqrt{n} \times \frac{1}{n} \sum_{k=1}^n \sqrt{\frac{k}{n}}.$$

Par le théorème de convergence des sommes de Riemann, on a

$$T_n \sim n\sqrt{n} \int_0^1 \sqrt{t} \, \mathrm{d}t \sim \frac{3}{2} n\sqrt{n}$$

On pouvait retrouver ce la par comparaison série-intégrale en écrivant sur pour $n-1\leqslant t\leqslant n\leqslant u\leqslant n+1$:

$$\sqrt{t} \leqslant \sqrt{n} \leqslant \sqrt{u}$$

et en intégrant :

$$\int_{n-1}^{n} \sqrt{t} \, \mathrm{d}t \leqslant \sqrt{n} \leqslant \int_{n}^{n+1} \sqrt{u} \, \mathrm{d}u$$

soit

$$\frac{2}{3}\Big(n\sqrt{n}-(n-1)\sqrt{n-1}\Big)\leqslant \sqrt{n}\leqslant \frac{2}{3}\Big((n+1)\sqrt{n+1}-(n)\sqrt{n}\Big)$$

ce qui permet d'obtenir par sommation télescopique

$$\frac{2}{3}(n\sqrt{n}) \leqslant T_n \leqslant \frac{2}{3}((n+1)\sqrt{n+1}-1).$$

Dans les deux cas,

$$u_n \sim \frac{2}{3} \times \frac{1}{n^{\alpha - 3/2}}$$

Comme $\left(\sum_{n=1}^{N} \frac{1}{n^{\alpha-3/2}}\right)_{N\geqslant 1}$ converge si et seulement si $\alpha-\frac{3}{2}>1$ (série de Riemann de paramètre $\alpha-\frac{3}{2}$),

par comparaison de séries à termes positifs, $\left(\sum_{n=1}^{N} u_n\right)_{N\geqslant 1}$ converge si et seulement si $\alpha>\frac{5}{2}$.