FPGA 视频处理开发平台 用户手册

AV4040

REV 1.0 版

芯驿电子科技(上海)有限公司 黑金动力社区

目录

	ĵΪ	刘介	4
二、	IJ	〕能实现	7
	(—)	视频输入7	
	(<u></u>)	视频输出9	
三、	F	PGA 核心板	10
	(—)	简介11	
	(—)	DDR211	
	(<u></u>)	SPI Flash13	
	(三)	FPGA 供电电源15	
	(四)	扩展接口17	
	(五)	电源接口20	
	(<u>></u> \)	外部晶振21	
	(七)	LED	
	(八)	核心板结构尺寸图25	
四、	打	`展板	27
	(—)	简介27	
	(_)	VGA 显示接口28	
	(三)	HDMI 输出接口30	
	(四)	HDMI 输入接口32	
	(五)	视频输入接口34	
	(<u>/</u> \)	干兆以太网接口36	
	(七)	ARM 控制器 38	
		1) 实时时钟	40
		2) EEPROM	41
		3) LED	41
		4) USB 串口	42
		5) SD卡	43
	(八)	CMOS 摄像头接口44	

(九)	扩展口	45
(十)	JTAG 接口	47
(+-)	按键	48
(+ -)	供由由源	49

专业级 ALTERA FPGA 视频图像处理开发平台(型号: AV4040)正式发布了,为了让您对此开发平台可以快速了解,我们编写了此用户手册。

这款 FPGA 视频图像处理开发平台是根据本公司 ALTERA 的视频开发 板 AX822 改进衍生而来,在硬件设计上我们在原有的基础上增加了 HDMI 输入,干兆以太网,CMOS Camera 接口和 Micro SD 卡座等外设。这极大的丰富了视频图像处理板的功能,不仅满足 FPGA 视频图像处理的功能,还为视频图像存储,视频图像的网络通信提供了可能。因此,这款开发平台可以堪称"专业级"和"全能级"。这样的一款产品非常适合即将从事或者正在从事 FPGA 视频图像处理或者视频图像通信及存储的学生、工程师等群体。

一、简介

在这里,对这款 ALTERA FPGA 开发平台进行简单的功能介绍。

开发板的整个结构,继承了我们一贯的核心板+扩展板的模式来设计的。核心板和扩展板之间使用高速板间连接器连接。

核心板主要由 FPGA+ DDR2(2片)+ FLASH构成, 承担视频图像处理的核心算法, 充分利用了 FPGA 并行处理的能力, 加上 FPGA 和 DDR2

之间的高速数据读写,整个系统的带宽高达 8.5Gb/s (266.7M*32bit);另外两片 DDR2 容量高达 2Gbit,满足视频处理过程中对高缓冲区的需求。我们选用的 FPGA 为 ALTERA 公司 CYCLONE IV 系列的 EP4CE40F23C8 这款高速的 FPGA 芯片。我们选用的 FPGA 是 BGA 484 封装。FPGA 和两个 DDR2 芯片连接组成 32 位的总线宽度, FPGA 和 DDR2 之间通信的时钟频率达到 133.3Mhz, DDR2 内部 266.7Mhz,这种高频率和高带宽设计充分满足了四路 1080p 视频处理的需求。

下图为整个开发系统的结构示意图:

通过这个示意图,我们可以看到,我们这个开发平台所能实现的功能。

● 四路视频输入

我们选用了 Techwell 公司的 TW2867, 可输入 4 路复合视频信号, PAL/NTSC/SECAM 自动识别,输出 BT656,可多路复用总线,FPGA端解复用,节省 IO;

● 一路 VGA 输出

我们选用了 ADI 公司的三通道、10 位 DAC 转换芯片 ADV7123,支持 RGB 数字输入和 VGA 接口的输出。支持最大 240MSPS 的转换速率,最高支持 1080p@60Hz 视频图像输出;

● 一路 HDMI 输出

我们选用了 Silion Image 公司的 SIL9134 HDMI 编码芯片 ,最高支持 1080P@60Hz 输出 , 支持 3D 输出。

● 一路 HDMI 输入

我们选用了 Silion Image 公司的 SIL9013 HDMI 解码芯片,最高支持 1080P@60Hz 输入,支持不同格式的数据输出。

● 一路 10/100M/1000M 以太网 RJ-45 接口

干兆以太网接口芯片采用 Realtek 公司的 RTL8211EG 以太网 PHY 芯片为用户提供网络通信服务。RTL8211EG 芯片支持 10/100/1000 Mbps 网络传输速率;

● 一路 CMOS 输入 CMOS 摄像头接口,可以接黑金公司的 500 万的 OV5640 摄像头模组;

同时,在扩展板上,我们还板载了一片 ARM 芯片(STM32F103),通过 I2C 配置开发板上各个接口芯片和 FPGA。

二、功能实现

(一)视频输入

视频开发板通过 TW2867,可输入 4 路复合视频信号, PAL/NTSC/SECAM 自动识别,输出 BT656;或者通过 SIL9013,可以输入 HDMI 视频信号;再或者通过 CMOS 接口,可以输入 CMOS 摄像头采集的图像信号。因此,开发板可以用的视频信号源有很多,比如

1) 监控摄像头,通过此开发板,可以实现四路监控摄像头通过显示器 (VGA/HDMI接口均可,可实现1080p)进行分屏显示,我们的开发板就相当于下图中的数字视频主机。

2) 机顶盒 ,比如通过连接机顶盒的 HDMI 输出来获得的视频源 ,可以通过我们的开发平台实现画中画 (PIP) 功能

3) CMOS 摄像头, 和黑金开发的 500 万摄像头配置使用, 在 VGA 显示器或者 HDMI 显示器上实时显示 1080P 的视频图像。

(二)视频输出

视频开发板的视频输出可以有 2 种: 可以连接 VGA 显示器显示 VGA 图像;可以连接 HMDI 显示器或电视显示 HDMI 视频信号。VGA 和 HDMI 输出的视频显示最高支持为 1080P@60Hz。

目前的电脑显示器基本上都会支持 VGA 或者 HDMI 输入中的一种。只要连接显示器的 VGA/HDMI 接口中的一个接口到我们视频开发板,就能实现视频图像的效果演示。下图为带 VGA 和 HDMI 显示接口的电脑显示器。

三、 FPGA 核心板

核心板正面照片

核心板背面照片

(一)简介

FPGA+2片 DDR2核心板,是基于 ALTERA 公司的 CYCLONE IV 系列的 EP4CE40F23C8 这款芯片开发的高性能核心板,具有高速,高带宽,高容量等特点,适合视频图像处理,高速数据采集等方面使用。

这款核心板使用了 2 片 MICRON 公司的 MT47H64M16HR-3IT DDR2 芯片, 总容量为 2Gbit; 2 片 DDR2 组成 32bit 总线模式, FPGA 和 DDR2 之间的读写数据带宽高达 8.5Gb ,这样的配置,可以满足 4 路 1080p 视频处理的需求。

这款核心板还扩展出 168 个 IO 口(73 对 LVDS 差分),对于需要大量 IO 的用户,此核心板将是不错的选择。而且,FPGA 芯片到接口之间走线做了等长处理,并且核心板尺寸仅为 60*60 (mm),对于二次开发来说,非常适合。

(**—**) DDR2

下图为 DDR2 的部分原理图(详细的请看我们提供的原理图)

另外,为了让 DDR2 正常工作,我们还需要为 DDR2 的地址线和控制线提供端接电压 VTT 和 DDR2 芯片的参考电压 VREF, VTT 和 VREF 的电压都为 0.9V,下图为电源部分原理图。

DDR2 POWER For VTT/VREF

下图为 DDR2 部分的实物图。

DDR2 及电源部分实物图

DDR2 连接到 FPGA 的 BANK3 和 BANK4 上 , 具体 FPGA 的 DDR2 管脚分配如下:

引脚名称	FPGA 引脚	引脚名称	FPGA 引脚
DDR2_A[0]	U10	DDR2_A[11]	AB3
DDR2_A[1]	Y6	DDR2_A[12]	U14
DDR2_A[2]	T16	DDR2_BA[0]	U7
DDR2_A[3]	R14	DDR2_BA[1]	AB10
DDR2_A[4]	AA4	DDR2_BA[2]	Т9
DDR2_A[5]	T11	DDR2_nCAS	R15
DDR2_A[6]	AB5	DDR2_CKE	U8
DDR2_A[7]	T14	DDR2_CLK_P	AA17
DDR2_A[8]	AA3	DDR2_CLK_N	AB17
DDR2_A[9]	U13	DDR2_DQ[16]	AB15

V6	DDR2_DQ[17]	W13
T10	DDR2_DQ[18]	AB14
V7	DDR2_DQ[19]	AA13
R16	DDR2_DQ[20]	AB13
V5	DDR2_DQ[21]	AA14
AA7	DDR2_DQ[22]	U12
AA10	DDR2_DQ[23]	AA15
AA16	DDR2_DQ[24]	T15
V8	DDR2_DQ[25]	V15
W6	DDR2_DQ[26]	W17
W8	DDR2_DQ[27]	AB16
W7	DDR2_DQ[28]	V14
Y3	DDR2_DQ[29]	AB20
Y7	DDR2_DQ[30]	W15
AA5	DDR2_DQ[31]	AB18
U9	DDR2_DQS[0]	V10
AA9	DDR2_DQS[1]	AB9
AB8	DDR2_DQS[2]	Y13
Y10	DDR2_DQS[3]	V13
AA8		
AB7		
V11		
Y8		
W10		
	V7 R16 V5 AA7 AA10 AA16 V8 W6 W8 W7 Y3 Y7 AA5 U9 AA9 AB8 Y10 AA8 AB7 V11 Y8	T10

(二) SPI Flash

核心板上使用了一片 64Mbit 大小的 SPI FLASH 芯片,型号为 M25P64,它使用 3.3V CMOS 电压标准。由于它的非易失特性,在使用中, SPI FLASH 可以作为 FPGA 系统的启动镜像。这些镜像主要包括 FPGA 的 bit 文件、 软核的应用程序代码以及其它的用户数据文件。

SPI FLASH的具体型号和相关参数见下表

位 号	芯片类型	容量	厂家
U8	M25P64	64Mbit	ST

表 1 SPI Flash 的型号和参数

配置芯片引脚分配:

引脚名称	FPGA 引脚
DCLK	K2
nCSO	E2
DATA0	K1
ASDO	D1

下图为 SPI Flash 部分原理图。

SPI FLASH 部分原理图

下图为 SPI FLASH 部分的实物图。

SPI FLASH 部分实物图

(三) FPGA 供电电源

为了让 FGPA 可以正常的工作,我们需要为 FPGA 提供 3.3V、1.8V、2.5V、1.2V 和 VCCIO 五路电源。我们说一下 FPGA 的电源引脚部分,其中包括每一个 bank 的电源引脚,内核电压引脚,模拟电压和锁相环供电引脚,VCCINT 为 FPGA 内核供电引脚,接 1.2V;VCCIO 是 FPGA 的每个 BANK 的供电电压 其中 VCCIO1 是 FPGA 的 BANK1 的供电引脚,同理,VCCIO2~ VCCIO8 分别是 FPGA 的 BANK2~BANK8 的供电引脚,在 AC4040 核心板中, VCCIO3 和 VCCIO4 接了 1.8V,因为 BANK3 和 BANK4 为连接 DDR2 的 IO。 其它 BANK(BANK1~2, BANK5~8)电压接了可调的 VCCIO,这样能够使 FPGA 的这些 BANK IO 电压可以灵活调整,通过调整 VCCIO 电源部分的电阻值来得到不同的输出电压,这样 FPGA 核心板的 IO 电平可以应用于不同电压的场合(默认 VCCIO 的电压为 3.3V)。另外核心板上带有 DDR2,还需要有提供 DDR2 的端接电源 VTT 和参考电源 VREF。

开发板上 3 路电流需求较大的电源(VCCIO, 1.2V, 1.8V)均采用美国 TI 公司进口的 TLV62130RGT DCDC 芯片,它具有效率高,体积小,不发热,可提供电流大,纹波小等特点,是 FPGA 绝佳的电源解决方案;大量使用高档进口的电容电感,保证系统的电源稳定可靠。3 路 DCDC 电源电路设计如下:

DC-DC 电源部分原理图

另 2 路(3.3V 和 2.5V)因为所需电流不大,我们这里采用纹波更小的 LDO 芯片 SPX3819M5-L-3-3 和 SPX3819M5-L-2-5。

LDO 电源部分原理图

下图为电源部分的实物图。

电源部分实物图

(四)扩展接口

核心板一共扩展出 2 个高速扩展口 使用 2 个 100Pin 的板间连接器和扩展板连接。 连接器采用 AMP 泰科 BTB 板对板连接器 5177984-4, PIN 脚间距为 0.8mm,公头, 连接器的高度为 5mm。和底板的母座 AMP 连接器 5177983-4 配置实现高速数据通信。

扩展口实物图

(五)电源接口

为了能使核心板正常工作,底板需要通过扩展口提供给核心板一个+5V的电源,核心板的电源电压工作范围为4.5V~5.5V,电流为1A左右,为了保证一定的余量,底板设计时最好能够提供5V2A的电流。底板提供的5V电源通过扩展口P1,P2的1~4脚(VCC网络)输入给核心板。

如果需要单独调试核心板的话,用户也可以通过核心板的 Mini USB 口(J2)单独给核心板供电,用户只要一根我们提供的 Mini USB 线连接到电脑的 USB 口就可以了。(注意:底板供电或者 J2 供电只能二选一)

(六)外部晶振

核心板板载了 50M 的有源晶振和 27M 的有源晶振,50MHz 时钟连接到 FPGA 的 G1 引脚,27MHz 时钟连接到 FPGA 的 T22 引脚。

晶振原理图

晶振实物图

FPGA 引脚分配:

输入时钟	FPGA 引脚
50MHz	G1
27MHz	T22

(七) LED

核心板板载了 6 个 LED 发光二极管,4 个用户 LED 发光二极管,一个电源指示灯和 1 个 FPGA 配置指示 LED 发光二极管。电源指示灯连接到+5V,如果开发板上电,电源指示 LED 灯亮。FPGA 配置指示灯指示 FPGA 是否配置成功,当 FPGA 没有配置程序时配置指示灯亮;FPGA 配置成功后,配置指示灯灭。电源灯和配置指示灯的原理图如下图。

电源灯和配置指示灯原理图

电源 LED 和配置 LED 实物图

4 个用户 LED 部分的原理图如下图,当 FPGA 的引脚输出为逻辑 0 时,LED 会被点亮。

17137 734-

用户 LED 实物图

FPGA 引脚分配:

LED 名称	FPGA 引脚
LED1	V4
LED2	V3
LED3	P6
LED4	Т5

(八)核心板结构尺寸图

正面图 (Top View)

四、扩展板

(一)简介

通过前面的功能简介,我们可以了解到扩展板部分的功能

- ●四路视频输入 TW2867
- ●一路 HDMI 输入 SiI9013
- ●一路 VGA 输出 ADV7123
- ●一路 HDMI 输出 SIL9134
- ●一路干兆以太网接口 RTL8211E
- ●一路 CMOS 输入
- ●一片 ARM 芯片 STM32F103

通过这些硬件,我们可以做一下实验:

基础实验:

1) DDR2 测试实验;

- 2) VGA 输出 color bar 实验;
- 3) HDMI 输出 color bar 实验;
- 4) TW2867 输入到 VGA 显示实验;
- 5) I2C 通信实验;
- 6) RGB转 Ycbcr 实验;
- 7) Ycbcr444 转 Ycbcr422 实验;
- 8) HDMI 显示 Ycbcr colour bar 实验;
- 9) ycbcr 转 rgb 实验;

进阶实验:

- 1) 4 路视频信号通过 TW2867 采集以后,通过 VGA 接口 4 分屏显示;
- 2) 4 路视频信号通过 TW2867 采集以后,通过 HDMI 接口 4 分屏显示;
- 3) 通过 VGA 实现画中画(PIP)模式;
- 4) 通过 HDMI 实现画中画 (PIP) 模式;
- 5) 将上述 4 个实验整合在一起,实现 4 路视频输入以后,可通过 VGA、HMDI 同时显示,通过串口命令来对单独显示模式、分屏显示模式、画中画模式三种模式的切换。

(二) VGA 显示接口

VGA 显示部分, 我们使用了 ADI 公司的 ADV7123 芯片, 内含三路 10 位 D/A 转换器, 对输入的 RGB 数字信号进行模拟转换输出 VGA 视频信号,最高支持 1080p@60Hz 输出;

在 AV4040 开发板中, FPGA 输出的 RGB 数字信号为 24 位色, 其中红绿蓝三种颜色各 8 位, 在原理图设计中 FPGA 输出的红绿蓝的 8 位数据连接到 ADV7123 的 3 路 D/A 转换的数据输入高 8 位,数据输入的低 2 位置 0。下图为 ADV7123 的原理图设计:

ADV7123 VGA 原理图

下图为 AV4040 开发板上 VGA 的接口实物图:

VGA 接口实物图

VGA 信号的 FPGA 引脚分配:

引脚名称	FPGA 引脚
VGA_CLK	В9
VGA_EN	C3
VGA_HS	E 5
VGA_VS	F2
VGA_R7	F15

VGA_R6	A14
VGA_R5	G16
VGA_R4	B14
VGA_R3	P22
VGA_R2	R22
VGA_R1	P21
VGA_R0	R21
VGA_G7	A20
VGA_G6	C13
VGA_G5	B20
VGA_G4	D13
VGA_G3	A13
VGA_G2	B22
VGA_G1	B13
VGA_G0	B21
VGA_B7	F1
VGA_B6	E6
VGA_B5	E4
VGA_B4	E10
VGA_B3	E3
VGA_B2	D10
VGA_B1	C4
VGA_B0	C7

(三) HDMI 输出接口

HDMI 输出接口的实现,是选用 Silion Image 公司的 SIL9134 HDMI (DVI)编码芯片,最高支持 1080P@60Hz 输出,支持 3D 输出。

其中,SIL9134的 IIC 接口与 STM32F103 相连,通过 STM32F103 来对 SIL9134 进行初始化和控制操作,其他引脚与 FPGA 相连。

HDMI 接口原理图

HDMI 接口实物图

FPGA 引脚分配:

引脚名称	FPGA 引脚
9134_CLK	N17
9134_HS	A15

9134_VS	B15
9134_DE	C22
9134_D[0]	A17
9134_D[1]	A16
9134_D[2]	B17
9134_D[3]	B16
9134_D[4]	A18
9134_D[5]	B18
9134_D[6]	F22
9134_D[7]	G15
9134_D[8]	F21
9134_D[9]	F14
9134_D[10]	H22
9134_D[11]	E21
9134_D[12]	H14
9134_D[13]	E22
9134_D[14]	H15
9134_D[15]	G17
9134_D[16]	H16
9134_D[17]	F17
9134_D[18]	J17
9134_D[19]	D21
9134_D[20]	E16
9134_D[21]	D22
9134_D[22]	F16
9134_D[23]	C21

(四) HDMI 输入接口

我们采用了 Silion Image 公司的 SIL9013 HDMI 解码芯片,最高支持 1080P@60Hz 输入,支持不同格式的数据输出。;

其中, SIL9013的 IIC接口与 STM32F103相连,通过 STM32F103来对 SIL9013

进行初始化和控制操作,其他引脚与 FPGA 相连。

HDMI 输入原理图

HDMI 输入接口实物图

FPGA 引脚分配:

引脚名称	FPGA 引脚
9013_CLK	N17
9013_HS	A15
9013_VS	B15

9013_DE	C22
9013_D[0]	A17
9013_D[1]	A16
9013_D[2]	B17
9013_D[3]	B16
9013_D[4]	A18
9013_D[5]	B18
9013_D[6]	F22
9013_D[7]	G15
9013_D[8]	F21
9013_D[9]	F14
9013_D[10]	H22
9013_D[11]	E21
9013_D[12]	H14
9013_D[13]	E22
9013_D[14]	H15
9013_D[15]	G17
9013_D[16]	H16
9013_D[17]	F17
9013_D[18]	J17
9013_D[19]	D21
9013_D[20]	E16
9013_D[21]	D22
9013_D[22]	F16
9013_D[23]	C21

(五)视频输入接口

我们选用了 Techwell 公司的 TW2867, 可输入 4 路复合视频信号, PAL/NTSC/SECAM 自动识别,输出 BT656,可多路复用总线,FPGA端解复用,节省 IO;

其中, TW2867的 IIC接口和复位引脚与 STM32F103相连, 通过 STM32F103来

对 TW2867 进行初始化和控制操作,其他引脚与 FPGA 相连。

视频输入接口原理图

视频输入接口实物图

引脚分配:

引脚名称	FPGA 引脚
2867_CLKP	T2
2867_CLKN	T1
2867_D[0]	Y2
2867_D[1]	R7
2867_D[2]	Y1
2867_D[3]	Т7
2867_D[4]	W2
2867_D[5]	N7
2867_D[6]	W1
2867_D[7]	P7

(六)干兆以太网接口

开发板上通过 Realtek RTL8211EG 以太网 PHY 芯片为用户提供网络通信服务。 RTL8211EG 芯片支持 10/100/1000 Mbps 网络传输速率,通过 RGMII 接口跟 FPGA 进行数据通信。RTL8211EG 支持MDI/MDX 自适应,各种速度自适应,Master/Slave 自适应,支持 MDIO 总线进行 PHY 的寄存器管理。

RTL8211EG 上电会检测一些特定的 IO 的电平状态,从而确定自己的工作模式。下表描述了GPHY 芯片上电之后的默认设定信息。

配置 Pin 脚	说明	配置值
PHYAD[2:0]	MDIO/MDC 模式的 PHY 地	PHY Address 为 001
	址	
SELRGV	3.3V,2.5V,1.5/1.8V 电压选择	3.3V
AN[1:0]	自协商配置	(10/100/1000M)自适应
RX Delay	RX 时钟 2ns 延时	延时
TX Delay	TX 时钟 2ns 延时	延时
MODE	RGMII 或 GMII 选择	RGMII

当网络连接到干兆以太网时, FPGA 和 PHY 芯片 RTL8211EG 的数据传输时通过 RGMII 总线通信, 传输时钟为 125Mhz,数据在时钟的上升沿和下降沿采样。 接收时钟

E_RXC 由 PHY 芯片提供,发送时钟 E_GTXC 由 FPGA 提供,数据在时钟的上升沿采样。

当网络连接到百兆以太网时,FPGA 和 PHY 芯片 RTL8211EG 的数据传输时通过 MII 总线通信,传输时钟为 25Mhz。接收时钟 E_RXC 和发送时钟 E_TXC 都由 PHY 芯片提供,数据在时钟的上升沿采样。

干兆以太网的原理图设计如下:

千兆以太网接口原理图

干兆以太网接口实物图

以太网引脚分配

引脚名称	FPGA 引脚	备注
E_GTXC	A9	RGMII 发送时钟
E_TXD0	C2	发送数据 bit 0
E_TXD1	C1	发送数据 bit1
E_TXD2	A7	发送数据 bit2
E_TXD3	B2	发送数据 bit3
E_TXEN	C8	发送使能信 号
E_TXC	A3	MII 发送时钟
E_RXC	B4	RGMII 接收时钟
E_RXDV	F11	接收数据有效信号
E_RXD0	В6	接收数据 BitO
E_RXD1	A10	接收数据 Bit1
E_RXD2	A4	接收数据 Bit2
E_RXD3	B10	接收数据 Bit3
E_CRS	В8	Carrier Sense 信号
E_RESET	В7	复位信号
E_MDC	A8	MDIO 管理时钟
E_MDIO	В3	MDIO 管理数据

(七) ARM 控制器

在扩展板上,我们还板载了一片 ARM 芯片(STM32F103),通过 IO 口来复位各接口芯片,通过 I2C 配置各接口芯片的寄存器及和 FPGA 的数据通信。

ARM STM32F103 原理图

STM32F103 实物

同时, ARM 还引出了实时时钟、EEPROM、4个LED、以及串口等。

1) 实时时钟

实时时钟 原理图

实时时钟 实物图

ARM 对应引脚:

引脚名称	ARM 引脚
RTC_SCLK	15
RTC_IO	16

2) EEPROM

EEPROM 原理图

EEPROM 实物图

ARM 对应引脚:

引脚名称	ARM 引脚
24LC04_SDA	59
24LC04_SCL	58

3) LED

LED LED 原理图

LED 实物图

ARM 对应引脚:

引脚名称	ARM 引脚
LED0	57
LED1	56
LED2	55
LED3	54

4) USB 串口

串口实物图

ARM 对应引脚:

引脚名称	ARM 引脚
RXD1	43
TXD1	42
CTS	38
RTS	37

5) SD卡

ARM 通过 SPI 接口跟 Micro SD 卡通信 , 用于 SD 卡数据的读取和存储。

Micro SD 卡原理图

SD卡 实物图

ARM 对应引脚:

引脚名称	ARM 引脚
TFCS	33
TFSCK	34
TFMOSI	36
TFMISO	35

(八) CMOS 摄像头接口

开发板包含了一个 18 针的 CMOS 摄像头接口,可以连接 OV5640 摄像头模块,可以实现视频采集功能,采集以后,可以通过 HDMI 或者 VGA 接口连接显示器进行显示。OV5640,500W 像素,输出分辨率高达为 2592*1944。关于摄像头选择,用户可以根据自己实际需要进行选购。

CMOS 摄像头接口原理图

CMOS 摄像头接口实物图

下表为连接 500 万 CMOS 摄像头(AN5640 模组)的 FPGA 引脚分配:

引脚名称	FPGA 引脚
CMOS_SCLK	V22
CMOS_SDAT	V21
CMOS_VSYNC	R19
CMOS_HREF	W22
CMOS_PCLK	R18
CMOS_XCLK	W21
CMOS_D[7]	P15
CMOS_D[6]	P16
CMOS_D[5]	U19
CMOS_D[4]	U22
CMOS_D[3]	Y21
CMOS_D[2]	Y22
CMOS_D[1]	U20
CMOS_D[0]	U21
CMOS_RESET	-
CMOS_PWDN	-

(九)扩展口

开发板预留 1 个扩展口,扩展口有 40 个信号,其中,5V 电源 1 路,3.3V 电源 2 路,地 3 路,IO 口 34 路。切勿 IO 直接跟 5V 设备直接连接,以免烧坏 FPGA。如果要接 5V 设备,需要接电平转换芯片。

在扩展口和 FPGA 连接之间串联了 33 欧姆的排阻,用于保护 FPGA 以免外界电压

或电流过高造成损坏,扩展口(J13)的电路如下图所示

J13

E37 TOO T 5D	וו 1	2 1/00
EX IO0 L5P	3	4 VCC EX IO0 L5N
EX IOO L6P	5	6 EX IOO L6N
EX IO0 L32P	7	8 EX IO0 L32N
EX IO0 L8P	9	10 EX IO0 L8N
EX IO0 L7P	11	12 EX IO0 L7N
EX IO0 L33P	13	14 EX IO0 L33N
EX IO0 L36P	15	16 EX IO0 L36N
EX IOO L37P	17	18 EX IO0 L37N
EX IO0 L38P	19	20 EX IO0 L38N
EX IO0 L49P	21	22 EX IO0 L49N
EX IO0 L50P	23	24 EX IO0 L50N
EX IO0 L51P	25	26 EX IO0 L51N
EX IO0 L62P	27	28 EX IO0 L62N
EX IO0 L63P	29	30 EX IO0 L63N
EX IO0 L64P	31	32 EX_IO0_L64N
EX IO0 L65P	33	34 EX IO0 L65N
EX IO0 L66P	35	36 EX IO1 L1P
D3V3	37 39	38 40 D3V3

CON40A

扩展口原理图

下图为 J13 扩展口实物图,扩展口的 Pin1, Pin2 已经在板上标示出。

扩展口实物图

扩展口引脚分配

引脚编号	FPGA 引脚	引脚编号	FPGA 引脚
1	GND	2	VCC
3	V2	4	V1
5	N6	6	M7

7	U2	8	U1
9	M8	10	N8
11	R2	12	R1
13	P4	14	P3
15	P2	16	P1
17	M4	18	M3
19	N2	20	N1
21	H10	22	H11
23	M2	24	M1
25	F10	26	G10
27	L6	28	M6
29	J7	30	K7
31	L8	32	K8
33	H6	34	J6
35	J2	36	G4
37	GND	38	GND
39	D3V3	40	D3V3

(十) JTAG 接口

开发板预留了一个 JTAG 接口,用于下载 FPGA 程序或者固化程序到 FLASH。为了带电插拔造成对 FPGA 芯片的损坏,我们在 JTAG 信号上添加了保护二极管来保证信号的电压在 FPGA 接受的范围,避免 FPGA 的损坏。

实物图

(十一) 按键

开发板上含有两个用户按键 KEY1~KEY2。

按键原理图

按键实物图

FPGA 引脚分配:

引脚名称	FPGA 引脚
KEY1	A6
KEY2	E11

(十二) 供电电源

底板的电源输入电压为 DC5V,请使用开发板自带的电源,不要用其他规格的电源,以免损坏开发板。通过三路 DC/DC 电源芯片 MP1482 转化成 D3V3, D1V2, D1V8 三路电源。另外底板的 DC5V 电源通过板间连接器给核心板供电,底板上的电源设计如下:

+1.8V POWER

+1.2V POWER

电源原理图

电源实物图