# Edge Computing Benefits in Low-Latency IoT Applications

Michael Amista'

Prof. Claudio Enrico Palazzi

Wireless Networks for Mobile Applications 2024-2025





### Table of contents



- 1. Internet of Things
- 2. Limitations of traditional Cloud Computing
- 3. Emergence of Edge Computing
- 4. Computing paradigms
- 5. Case studies
  - Mobile Edge Computing (MEC)
  - Mobile Gaming
  - Industrial Manufacturing
- 6. Open research challenges



# Internet of Things







### Limitations of traditional Cloud Computing



- **Network Bandwidth**: Sending large volume of data to centralized cloud servers may lead to network congestion.
- Communication Latency: The physical distance from the servers introduces substantial processing delays.
- Resource Inefficiency: Sending all the collected data to remote servers may be critical for energy-constrained devices.
- Privacy and Security Concerns: Continuous data transmissions to external servers may be a potential point of attack.



# Emergence of Edge Computing



#### **Key features:**

- Proximity to data
- Reduced latency
- Real-time processing capabilities
- Enhanced energy efficiency and data security



Applications: healthcare, video surveillance, industrial manufacturing, etc.



# Computing paradigms



- **Centralized Cloud Computing**: Processes all data in remote servers.
- Fog Computing: Localized processing on network devices like routers.
- Cloudlet Computing: Small servers near IoT devices for lowlatency tasks.
- Mobile Edge Computing (MEC): Computing at mobile network edges for real-time responses.
- Mobile Ad Hoc Cloud (MAC): Dynamic use of nearby mobile devices for processing.
- Hybrid Computing: Combines cloud and edge for balanced performance.



### A study on Mobile Edge Computing (MEC)





Mobility-aware hierarchical MEC framework



### A study on Mobile Edge Computing (MEC)



#### **Energy consumption**



Figure 4. Energy consumption of the task execution with different schemes.

### **Latency reduction**



**Figure 5.** Comparison of average task latency reduction rates with various device speeds.



# A study on mobile gaming



- **Objective**: Evaluate the impact of edge computing on latency in resource-demanding mobile gaming applications.
- Comparison Scenarios:
  - Local Edge Deployment: Server located at the network edge.
  - Specialized Cloud Infrastructure: Centralized cloud computing.
- **Key Metrics**: Response delay, comprising processing delay (PD), network delay (ND), and playout delay (OD).





# A study on mobile gaming



#### Findings:

- <u>Latency</u>: Edge setup achieved network delay (ND) of
  <20ms, outperforming cloud setups which showed >50ms delay.
- Virtualization: Containers delivered near-bare-metal performance, while hypervisor virtualization incurred ~30% higher processing delay.
- o **Resolution**: HD processing times below 70 ms with the edge setup even considering fast-paced interactions.
- **Conclusion**: Proximity of computational resources crucial to enhance the user experience.



### A study on industrial manufacturing





Architecture of an edge computing platform in IoT-based manufacturing



### A study on industrial manufacturing



 Objective: Explores the integration of edge computing in IoTbased manufacturing to address latency, real-time analytics, and resource efficiency.

#### Active Maintenance:

- Enhanced responsiveness through localized processing.
- Case study on candy packaging line showed a 60% reduction in network traffic (from 16-17 Mb/s to 5-6 Mb/s) with improved order handling efficiency.

### Cloud-Edge Cooperation:

- Cloud layers handle long-term data analysis, maintenance planning, and knowledge mining.
- Edge layers focus on real-time processing, security, and immediate business logic execution.



### A study on industrial manufacturing



#### Implementation Challenges:

- Protocol compatibility across legacy and modern systems.
- Real-time processing for time-sensitive manufacturing tasks.

#### • Future Directions:

- Evolution of digital twins for manufacturing optimization.
- Enhanced autonomous systems for process management.
- Continued development in network optimization for seamless edge-cloud integration.



# Open research challenges



- **Heterogeneity**: Need for standardized programming models for diverse devices.
- Resource Management: Efficient allocation in dynamic, constrained environments.
- **Security & Privacy**: Safeguarding sensitive data against evolving threats.
- Data Handling: Efficient preprocessing of large IoT data volumes.
- System Reliability: Ensuring consistent and scalable service delivery.



## References



- 1. N. Hassan, S. Gillani, E. Ahmed, I. Yaqoob and M. Imran, "The Role of Edge Computing in Internet of Things," in IEEE Communications Magazine, vol. 56, no. 11, pp. 110-115, November 2018, doi: 10.1109/MCOM.2018.1700906.
- 2. G. Premsankar, M. Di Francesco and T. Taleb, "Edge Computing for the Internet of Things: A Case Study," in IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1275-1284, April 2018, doi: 10.1109/JIOT.2018.2805263.
- 3. B. Chen, J. Wan, A. Celesti, D. Li, H. Abbas and Q. Zhang, "Edge Computing in IoT-Based Manufacturing," in IEEE Communications Magazine, vol. 56, no. 9, pp. 103-109, Sept. 2018, doi: 10.1109/MCOM.2018.1701231.
- 4. K. Zhang, S. Leng, Y. He, S. Maharjan and Y. Zhang, "Mobile Edge Computing and Networking for Green and Low-Latency Internet of Things," in IEEE Communications Magazine, vol. 56, no. 5, pp. 39-45, May 2018, doi: 10.1109/MCOM.2018.170

