Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$

Case1: △>0 $t_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the t-intercepts of multiplicity 1.

Given a quadratic $x(t) = at^2 + bt + c$ compute its discriminant \triangle :

$$t_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \, ac}}{2a}$$
 computes the t-intercepts of multiplicity 1. $x(0) = c$ computes the single x-intercept.

Example 1. $x(t) = 2t^2 - 14t - 36$ compute its discriminant \triangle :

$$\triangle = 484 > 0$$
 $t_{1,2} = -2,9$
 $x(0) = -36$ x-intercept.

$x(t) = 2t^2 - 12t + 18$ compute its discriminant \triangle : $\triangle = \mathbf{0}$ $t_{1,2}=3,3$

Example 2.

$x(t) = 9t^2 - 180t + 1000$ compute its discriminant \triangle : $\triangle = -3600 < 0$ x(0) = 1000 x-intercept.

However there is a x-intercept.

Example 3.

3000 2000 x-intercept -10