Homework 17 (Due Dec 6, 2023)

Jack Hyatt MATH 554 - Analysis I - Fall 2023

December 5, 2023

Justify all of your answers completely.

1. Let $f: A \to B$ be a bijection between sets. Prove there is a function $g: B \to A$ s.t. $\forall a \in A$ and $\forall b \in B$, f(g(b)) = b and g(f(a)) = a, and g is unique.

Proof. Since f is surjective and injective, $\forall b \in B$, $\exists! a \in A$ s.t. f(a) = b. Then we can define $g: B \to A$ with g(b) = a without any ambiguity. So then f(g(b)) = f(a) = b and g(f(a)) = g(b) = a.

Now to show g is unique. Assume g and h are both inverses of f. Let $I_A:A\to A$ and $I_B:B\to B$ be the identity functions for their respective sets.

Then $f \circ g = I_B = f \circ h$ and $g \circ f = I_A = h \circ f$, meaning

$$f \circ g = f \circ h \implies g \circ (f \circ g) = g \circ (f \circ h)$$

$$\implies (g \circ f) \circ g = (g \circ f) \circ h \implies I_A \circ g = I_A \circ h$$

$$\implies g = h$$

So the inverse is unique.

2. Prove that if $f: A \to B$ is a bijection, then the inverse $f^{-1}: B \to A$ is also a bijection and $(f^{-1})^{-1} = f$.

Proof. First to prove is $(f^{-1})^{-1} = f$.

Since f is bijective, then f^{-1} exists and is unique.

So $\forall a \in A, f^{-1}(f(a)) = a \text{ and } \forall b \in B, f(f^{-1}(b)) = b.$

So then f satisfies the definition of inverse for f^{-1} . So $(f^{-1})^{-1} = f$.

To prove f^{-1} is injective, let $x, y \in B$ and assume $f^{-1}(x) = f^{-1}(y)$.

$$f^{-1}(x) = f^{-1}(y) \implies f(f^{-1}(x)) = f(f^{-1}(y)) \implies x = y$$

To prove f^{-1} is surjective, let $a \in A$. We can choose some $b \in B$ s.t. f(a) = b.

So $f^{-1}(b) = f^{-1}(f(a)) = a$. So every element in the codomain has a matching input.

So f^{-1} is bijective.

3. Let $f: E \to E'$ be a continuous bijection between metric spaces with E compact. Prove the inverse $f^{-1}: E' \to E$ is continuous.

Proof. Assume f is a continuous bijection and E is compact.

The continuous image of a compact set is compact, and since f is surjective, that means E' is compact as well.

Showing f^{-1} is continuous is equivalent to showing the preimage of closed sets of f^{-1} is closed.

Let $K \subseteq E$. The preimage of K is $(f^{-1})^{-1}(K)$.

That is just f(K), and we know that a continuous image of a closed set is closed. So then f(K) is closed, meaning f^{-1} is continuous.

4. Let $f:[a,b] \to [\alpha,\beta]$ be an increasing continuous function with $f(a) = \alpha$ and $f(b) = \beta$. Prove that f is bijective and that the inverse, f^{-1} , is continuous.

Proof. Since f is continuous, f is surjective by Intermediate Value Theorem. Now to show f is injective.

Let $x, y \in [a, b]$ and assume $x \neq y$. WLOG, assume x < y.

Since f is an increasing function, f(x) < f(y). So then $f(x) \neq f(y)$. So f is injective.

So f is bijective. Since f is a bijective continuous function, problem 3 tells us that the inverse is continuous.

5. Let K be a closed bounded subset of \mathbb{R}^2 . Show that there exists $x_*, y_*, z_* \in K$ so that the triangle $\triangle x_* y_* z_*$ has maximum area of triangles with vertices in K. That is $A(x, y, z) \leq A(x_*, y_*, z_*)$ for all $x, y, z \in K$.

Proof. The set of possible triangles in K is a subset of $K \times K \times K$, which is a compact subset of \mathbb{R}^6 . So a triangle in K can be represented as a point in \mathbb{R}^6 .

The area function of triangles, A(x, y, z), is a continuous function from \mathbb{R}^6 (really $\mathbb{R}^2 \times \mathbb{R}^2 \times \mathbb{R}^2$ but they are isomorphic) to \mathbb{R} .

Those facts together means that the image of $A[K \times K \times K]$ is compact, meaning it is closed and bounded.

Since it is closed and bounded, that means it contains a maximum element.

So there exists a triangle in K such that it has a maximum area.