Final Presentation: Keyboard Snooping

An Le, Eugene Chu, Zixuan Zhong

Overall Project Goals and Specific Aims

- Perform keyboard snooping with microphone and smartwatch (motion sensors)
- Given audio and motion sensor (accelerometer, gyroscope, or linear accelerometer) data
 - Identify specific keys
 - Identify 6-digit PINs
 - Identify tasks involving keyboard

Technical Approach

- Algorithms
 - Key identification
 - Audio: lossless wave \rightarrow extract peaks \rightarrow FFT \rightarrow NN classifiers
 - Motion Sensor: extract displacement manually? direct training?
 - Task identification
 - Neural network classifier
- Datasets
 - Task 1: single keys, each has an audio wave file
 - o Task 2: 6-digit PINs, each has an audio wave file and five accelerometer data
 - Task 3: each sample is at least 30 seconds long and has both audio data and accelerometer data
- Platform
 - Data collection:
 - Audio Recording: A Python Program (software), The built-in microphone of macbook pro (hardware)
 - Motion Sensor: Android Physical Toolbox Suite (app), any android phone (simulating a smart watch)
 - Training and inference:
 - Keras

Task 1 Implementation: Recording and Keylogging

- A python program instruct the user to type
 - Audio: Macbook built-in stereo microphone (.wav)
 - Keylogger: Python keyboard module (.csv)


```
Current devices:
> 0 Built-in Microphone, Core Audio (2 in, 0 out)
< 1 Built-in Output, Core Audio (0 in, 2 out)
Choose mic (index): 0
Recording parameters set.
Started microphone . . .
Please start actual recording by pressing [SPACE] . . .
Start actual recording:
1) space 2 enter
2) enter 3 enter
3) enter 4 enter
4) enter 5 enter
5) enter 6 enter
Stop recording.
Writing key logs to outputs/0320074758.csv . . .
```

Task 1 Implementation: Preprocessing and Architecture

- Audio processing
 - Peak extraction
 - Detect peaks given threshold and minimum time between keystrokes
 - Ensure threshold large enough to filter out release peaks
 - Grab audio from 5ms before peak to 20ms after peak
 - Feature extraction
 - Sliding window of length 20ms and stride of 1ms
 - Take average of FFTs of sliding windows
 - Each feature normalized
- Neural network
 - MLP with two hidden FC layers (64, 64), dropout (0.5), FC softmax output (36)
 - Output layer size 36 (a-z, 0-9)

Task 1 Implementation: Machine Learning and Result

- Dataset
 - 4807 total keystrokes (a-z, 0-9)
 - Train-val-test split: 70%-15%-15%
- Training
 - Batch size 128
 - o 100 epochs
 - Save model with lowest validation loss
- Results (top-1 accuracy)
 - Single model: 96-98%
 - o Ensemble (averaging) of 5 models: 99%
 - o cf. Keyboard Acoustic Emanations (2004): 79%

Task 2 Implementation: Which sensor should we use and how?

- Can we extract displacement manually?
 - Conversion from the device's frame to the world's frame, and Double integration from accelerometer to displacement (high school physics)
 - Need linear accelerometer data and orientation data (low sampling rate)
 - Large error even the Kalman Filter is used
 - We lose details when doing manual extraction
 - Previously: a sequence of sensor data; After: only one value
- Which motion sensor to use, accelerometer, gyroscope, or linear accelerometer?
 - Trained three model (accelerometer, gyroscope, or linear accelerometer)
 - Gyroscope: hard to find peaks
 - Accelerometer V.S. linear accelerometer: 80% > 70%

Task 2 Implementation: Hardware and Software

- ZenWatch 2 & AndroidSensorDemo
 - NESL has a app for ZenWatch 2
 https://github.com/nesl/AndroidSensorDemo
 which can dump GRAVITY, ACCELEROMETER, and LINEAR_ACCELEROMETER sensor data
 - Sampling rate not high enough
 - Some logging issues
- Android phone & Physics Toolbox Sensor Suite
 - High sampling rate: 400 Hz
 - All sensors
 - Single sensor or customized combinations of multiple sensors

Task 2 Implementation: Synchronization and Labeling

Synchronization

- 1. Find the peak from the first X seconds of the audio data
- 2. Find the peak from the first Y seconds of the accelerometer data
- 3. Based on keylogs, cut a recording into groups
 - a. Each group contains a single key (Task 1)
 - b. Each group contains 6 digits (Task 2)
- 4. For the PIN task, Find 6 peaks for each group and cut the accelerometer data into 5 parts

Labeling

- Labels of audio data: from key logs
- Labels of accelerometer data: equivalent displacements
 - Encode each key to 2D coordinates: 0: (0, 0),
 1: (-1, 1), 2: (0, 1), 3: (1, 1), 4: (-1, 2), 5: (0, 2),
 6: (1, 2), 7: (-1, 3), 8: (0, 3), 9: (1, 3)
 - If the PIN is "104582", there are 5 key pairs in this PIN, which are: <1, 0>, <0, 4>, <4, 5>,
 <5, 8>, <8, 2>
 - Each key pair is labeled with a vector: (1, -1),
 (-1, 2), (1, 0), (0, 1), (0, -2)

Task 2 Implementation: Preprocessing and Architecture

- Audio processing
 - Same as Task 1
- Accelerometer data processing
 - Use segments between push peaks
 - Tried FFT but accuracy low
 - Instead, we resample segments to fixed length of 256
- Neural network
 - o Audio
 - Same as Task 1 except with 10 output classes (0-9)
 - Accelerometer
 - Similar architecture to audio
 - Linear output layer representing 2D coordinates
 - MSE loss function

Task 2 Implementation: Machine Learning and Result

- Dataset
 - o 718 PINs (0-9) of length 6
 - 2 people, 2 keyboards
 - For each PIN, 6 audio samples and 5 accelerometer samples
 - O Train-val-test split: 70%-15%-15%
- Training
 - Batch size 128 for both models
 - o 100 epochs for both models
 - Save models with lowest validation loss

- Key model evaluation
 - Individual key accuracy: **84.1%**
 - Top-3 accuracy: **95.1%**
- Displacement model evaluation
 - Accuracy (after rounding output): **80.8%**
 - Loss (MSE): 0.172

Task 2 Implementation: Maximum Likelihood Tree Search (MLTS)

- Main idea: find the most probable PIN given key probabilities, displacement estimates assuming that
 - Length of PIN is known
 - O Distribution of displacement estimate is bivariate normal with $\sigma x = \sigma y$
- Objective function (log likelihood)
 - Every subterm is effectively non-positive

$$LL(G) = \sum_{i=1}^{|G|} \log(p(k_i = g_i)) - c \sum_{i=2}^{|G|} |d_i - \hat{d}_i|^2$$

G = PIN subguess with g_i as the i^{th} key

 $K = \text{True PIN with } k_i \text{ as the } i^{\text{th}} \text{ key}$

p =Softmax outputs of key estimator

c = Reliability constant of displacement estimator

 d_i = True displacement from g_{i-1} to g_i

 $\hat{d}_i = \text{Estimate of above}$

Task 2 Implementation: Maximum Likelihood Tree Search (MLTS)

- How to find maximum likelihood
 - Naive search: Try all PIN combinations (1 million!)
 - With heuristic: Set baseline to LL of 6-key PIN guess from key classifier
 - Perform DFS starting with 1-key subguesses
 - If LL(subguess) less than or equal to maximum LL so far, do not go deeper
 - Otherwise, add one more key to subguess
 - Update maximum LL if subguess has 6 keys and its LL is greater than the current max

Example run

- Set baseline
 - Key classifier guesses [6, 9, 5, 0, 9, 9]
 - LL([6, 9, 5, 0, 9, 9]) = -7.424
- Prune bad guesses
 - $LL([1]) = -7.688 \le -7.424$
 - Skip all guesses starting with 1
- Update max LL and best guess if better full guess is found
 - LL([8, 9, 5, 0, 9, 9]) = -5.963 > -7.424
 - Imagine d1 = [1, 0]
- Turns out the true PIN is [8, 9, 5, 0, 9, 9]

Task 2 Implementation: Evaluation after Audio and Accelerometer Fusion

- Individual keys
 - Key classifier only: **84.1%**
 - With fusion + MLTS: 91.8%
- Entire PIN (5 attempts)
 - Key classifier only:
 - With fusion + MLTS: 83.3%
- Additional information from accelerometer reduces error rate

Task 2 Implementation: Evaluation on Additional Test Set

- Different person, different keyboard
- Displacement estimator
 - Accuracy (after rounding output): 51.8%
 - Loss (MSE): 0.420
- Key classifier
 - Key classifier only: **13.6%**
 - With fusion + MLTS, c = 1: **13.6%**
 - With fusion + MLTS, c = 100: **33.3%**
- Performance drop of displacement estimator not as drastic as that of key classifier since hand movement is fairly consistent across different people
- Some information gain from displacement despite poor key classification

Task 3 Implementation: Hardware and Software

In this task we collect sensor fusion data from three user tasks (gaming, messaging, emailing) for classification

- Same setup as Task 2 (Android phone & Physics Toolbox Sensor Suite)
- Dataset: 30 seconds/sample, 30 samples/task
- Main idea: find the most probable task given, accelerometer and audio information

Task 3 Implementation: Preprocessing and Architecture

- For this task, we preprocess accelerometer and audio data to reduce feature size:
 - Calculate mean and standard deviation of acceleration for every 300 samples
 - Fourier Transform on audio waveform with window size of 20ms and stride of 1ms
 - Final feature size: 631 per sample
 - Train-val split: 85%-15%
 - o Batch size: 10
 - o Epochs: 100

- Neural network
 - Audio
 - FFT sample features (1D)
 - Accelerometer
 - Flatten input for FC layer
 - FC layer with batchnorm and dropout
 - Categorical cross-entropy

Task 3 Implementation: Machine Learning and Result

Results:

- High accuracy, but may be have overfitted
- Model easily converges because of small dataset
- Task classification is also dependent on the key press intervals (Intuition):
 - Gaming tasks have constant key presses limited to certain keys (little acceleration change)
 - Messaging has multiple keys pressed clustered in short intervals (requires the other person to reply)
 - Emailing tasks are have more constant typing over a longer period (longer sentences)
 - Dataset is too small

Prior work examples and Relative Novelty: Task 2

- Keyboard Acoustic Emanations (D. Asonov et al., 2004)
 - First work to develop key classifier based on sound of keypress
 - Works because the keyboard plate is struck at different spots, producing different timbres like a drum
- Keyboard Acoustic Emanations Revisited (L. Zhuang et al., 2005)
 - Utilizes clustering and language model to predict keys and words without prior labeling
 - Analyzes key identification attack as substitution cipher
- Don't Skype & Type! Acoustic Eavesdropping in Voice-Over-IP (A. Compagno et al., 2017)
 - Considers different attack scenarios such as knowing or not knowing actual keystrokes or laptop manufacturer
 - Relies on a database of sounds from different keyboards to infer victim's laptop
- Our work: Fusion of audio and motion sensor data
 - Exploits estimated displacement from accelerometer to improve key prediction
 - No language model required

Prior work examples and Relative Novelty: Task 3

- Activity classification using a single wrist-worn accelerometer (S. Chernbum roong et al., 2011)
 - Two models: "Decision Tree C4.5" and "1-layer FC network" for classification of 5 tasks
 - sitting, standing, lying, walking, and running
 - Using Correlation-based Feature Selection gives the best accuracy of 94.13% and F-1 score of 0.91
- A Comprehensive Study of Activity Recognition Using Accelerometers (N. Twomey et al. 2018)
 - The paper surveys and evaluates methods of activity recognition using accelerometers.
 - A window length of 5 to 7 seconds gave the highest prediction accuracy using a single wristband accelerometer.
- Our Work: Fusion of audio and motion sensor data to infer tasks with relatively similar movements

Strengths, Weakness, and Future Directions

Strength

- Multiple scenarios (3 tasks)
- Multiple ways of sensor fusion
- High accuracy

Weakness

- Applicability. Samples from limited number of hardware.
- The model requires high sampling rate which is hard to be achieved
- The Victim may not use the hand with watch to type

Future Directions

- More data samples
- Data samples from different hardware devices
- To identity the user's emotion while typing

Contributions

An Le	Survey of Prior Work, Machine Learning (Task 1 & 2), Maximum Likelihood Search Algorithm (Task 2)
Eugene Chu	Dataset Generation (Task 1 & 2 & 3), Machine Learning (Task 3)
Zixuan Zhong	Explorations on Motion Sensors (Frame Conversion, Double Integration, and Sensor Selection), Dataset Generation (Task 1 & 2 & 3), and Dataset Synchronization (Task 1 & 2 & 3)

GitHub Repo and Project Website

- Github Repo
 - https://github.com/binhanle/keyboard-snooping
- Project Website
 - https://binhanle.github.io/keyboard-snooping/

References

- Android Physical Toolbox Suite: https://www.vieyrasoftware.net
- Python3: https://www.python.org
- Keyboard: https://github.com/boppreh/keyboard
- Keras: https://keras.io