

図 1: ガスを噴射しながら加速運動をするロケット。

ロケットの質量 m を非相対論的に座標時間 t の関数として、および相対論的に固有時間 τ の関数として表した式を比較して意味を論じる問題。m の表式は次のようになる。

• 非相対論的: $m(t) = m_0 e^{-\frac{\alpha}{v_{gas}}t}$

• 相対論的: $m'(\tau) = m_0 e^{-\frac{\alpha}{v_{gas}}\tau}$

回答例としては、ロケットからこの系を見た時、実際の速度は光速度で頭打ちになるが、いつまでも一定加速 度 α で加速し続けているように見えることを意味する、ということらしい。

$$t = \frac{\tau}{\sqrt{1 - \frac{v^2}{c^2}}}$$

なので、ローレンツ因子 $\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}$ の分変わってくるのはわかるが、解釈の仕方が今ひとつわからない、

 $t > \tau$ だから、m < m' で、運動している物体の質量は静止質量よりも大きいね、ということかと思ったけど、違うのかな・・・?