The ratio of items of present in a hash table to the total size is called
A. Balance Factor
B. Load Factor
C. Item Factor
D. Weight Factor
ANSWER: B
The linear probing technique for collision resolution can lead to
A. Primary Clusturing
B. Secondary Clusturing
C. Overflow
D. Effiecent Storage Utilization
ANSWER: A
A height balance binary search tree is a binary tree in which the height of two sub tress of every node never differ by more than
A. 3
B. 2
C. 1
D. 4
ANSWER: C
Which of the following is not related to Hashing
A. Synonyms
B. Collision
C. Balance Factor
D. Load Factor
ANSWER: C
In which collision processing method, it is not required to detect a given list position, if it is occupied or not ?

A. Quadratic
B. Linked
C. Rehashing
D. None of the above
ANSWER: B
Which of the following is not requirement of good hashing function
A. Avoid Collision
B. Reduce the Storage Space
C. Make Faster Retrieval
D. None of the above
ANSWER: D
What is the inequality that holds in tree rotation ?
A. Rectangular Inequality
B. Triangular Inequlaity
C. Co-linear Inequality
D. All of these
ANSWER: B
Balance Factor set for AVL tree is
A. 1,0,2
B. 0,3,-1
C. 1,0,-1
D. 0,1,-2
ANSWER: C
Which of the following probing method eliminates primary clusturing but suffers from secondary clusturing
A. Linear Probing

B. Quadratic Probing
C. Linear and Qudratic Probing
D. None of the above
ANSWER: B
What is the best defination of a collision in a hash table ?
A. Two entries are identical except their keys
B. Two entries with different data have the exact same key
C. Two entries with different keys have the same exact hash key
D. Two entries with different keys have the different hash key
ANSWER: C
Which of the following is a collision reolution technique that puts all the elements that hash to the same slot in a linked list
A. Chaining
B. Open addressing
C. Closed addressing
D. None of the above
ANSWER: A
Suppose you place m items in a hash table with an array size of s. What is the correct formula for the load factor
A. s+m
B. s-m
C. s*m
D. m/s
ANSWER: D
Perferct hashing is also called
A. Dynamic Hashing
B. Optimcal Hashing

C. Dynamic and Optimal Hashing
D. None of the above
ANSWER: B
A hash table that uses a perfect hash has
A. One Collision
B. Multiple Collision
C. NO Collision
D. None of the above
ANSWER: C
A conceptual method of open addressing for a hash table is called
A. Universal Hashing
B. Uniform Hashing
C. Optimal Hashing
D. None of the above
Answer: B
A hash table that grows to handle more items is called
A. Optimal Hashing
B. Dynamic Hashing
C. Minimal Perfect Hashing
D. None of the above
ANSWER: B
A hash table in which the hash function is the last few bits of the key and the table refers to buckets is called
A. Optimal Hashing
B. Dynamic Hashing
C. Miinimal Perfect Hashing
D. Extendibel Hashing

ANSWER: D
Given hash table T with 25 slots that stores 2000 elements, the load factor T is
A. 8000
B. 0.8
C. 80
D. 800
ANSWER: C
Hashing technique which allows increase or decrease in number of buckets without a
need of directory is classified as
A. global depth hashing
B. linear hashing
C. relative hashing
D. local depth hashing
ANSWER: B
Division hashing function is .
A. $f(k)=f(k+1)$ %size of table.
B. $f(k)=f(key)+f(k)$.
B. f(k)=f(key)+f(k). C. f(k)=k%size of table.

how many main forms of hashing are there?
A. 1.
B. 2.
C. 3.
D. 4.
ANSWER: B
what should be size of table in a open Hashing technique?
A. greater than total number of keys.
B. greater than or equal to total number of keys.
C. equal to total number of key.
D. less than total number of keys.
ANSWER: B
which method gives best cache performance ?
A. open addressing.
B. chaining .
C. both of them.
D. none of them.
ANSWER: A
The problem of wastage of space occurs in
A. open addressing.
B. chaining .
C. both of them.

D. none of them.
ANSWER: B
m = Number of slots in hash table
n = Number of keys to be inserted in has table .
Then the open addressing load factor($lpha$) is?
A. ά=n/m.
B. ά=m/n.
C. ά=m*n.
D. ά=m+n.
ANSWER: A
Open addressing, multiple hashing and chaining are all methods used for
A. multiple hashing resolution
B. chaining resolution
C. collision resolution
D. address space resolution
ANSWER: C
a hash function that maps each item into a unique slot is referred to as a
A. perfect hash function.
B. simple hash function.
B. simple hash function.C. special hash function.

When two items hash to the same slot, we must have a systematic method for placing the second item in the hash table. This process is called
A. collision problem.
B. collision function.
C. collision resolution.
D. none of above
ANSWER: C
allows many items to exist at the same location in the hash table.
A. open addressing.
B. chaining .
C. both of them.
D. none of them.
ANSWER: B
In a hash table of size 13 which index positions would the following two keys map to? 27, 130
A. 1, 10
B. 13, 0
C. 1, 0
D. 2, 3
ANSWER: C
Suppose you are given the following set of keys to insert into a hash table that holds exactly 11 values: 113 , 117 , 97 , 100 , 114 , 108 , 116 , 105 , 99 Which of the following best demonstrates the contents of the has table after all the keys have been inserted using linear probing?

A. 100, __, __, 113, 114, 105, 116, 117, 97, 108, 99

B. 99, 100,, 113, 114,, 116, 117, 105, 97, 108
C. 100, 113, 117, 97, 14, 108, 116, 105, 99,,
D. 117, 114, 108, 116, 105, 99,,, 97, 100, 113
ANSWER: B
In hashing is considered a unit of storage.
A. cell
B. bucket.
C. memory location.
D. key
ANSWER: B
maps all the set of search-keys K to the address where actual records are
placed.
A. collision function.
B. Hash function.
C. searching function.
D. all of above.
ANSWER: B
When buckets are full, a new bucket is allocated for the same hash result and is linked after the previous one. This mechanism is called
A. open hashing.

B. collision.

C. Closed Hashing.
D. none of them.
ANSWER: C
hashing provides a mechanism in which data buckets are added and removed on- demand.
A. static
B. collision free.
C. dynamic
D. none of above
ANSWER: C
Dynamic hashing is also known as
A. collision
B. extended
C. run time collision
D. none of above
ANSWER: B
The prefix of an entire hash value is taken as a
A. hash value
B. hash index
C. hash function
D. hash key
ANSWER: B
table does not have an empty location to store new record.

A. full
B. hash
C. overloaded
D. all of above
ANSWER: A
load factor is also called as
A. load volume
B. load density
C. load efficiency
D. load value
ANSWER: B
Which of the following hashing techinque allows records to be strored in unlimited space?
Which of the following hashing techinque allows records to be strored in unlimited space? A. Table hashing
A. Table hashing
A. Table hashing B. Open hashing
A. Table hashing B. Open hashing C. Close hashing
A. Table hashingB. Open hashingC. Close hashingD. Internal hashing
A. Table hashingB. Open hashingC. Close hashingD. Internal hashing
A. Table hashing B. Open hashing C. Close hashing D. Internal hashing ANSWER: B
A. Table hashing B. Open hashing C. Close hashing D. Internal hashing ANSWER: B The mapping defined by a hash function is going to be
A. Table hashing B. Open hashing C. Close hashing D. Internal hashing ANSWER: B The mapping defined by a hash function is going to be
A. Table hashing B. Open hashing C. Close hashing D. Internal hashing ANSWER: B The mapping defined by a hash function is going to be

A perfect Hash function istunction
A. subjective
B. injective
C. bijective
D. none of the above
ANSWER: B
The load density or the load factor of a hash table is the ratio., where n= number of keys
T=size of hash table
A. n*T
B. n+T
C. n/T
D. n-T
ANSWER: C
Consider a hash table of size seven, with starting index zero, and a hash function $(3x + 4) \mod 7$. Assuming the hash table is initially empty, which of the following is the contents of the table when the sequence 1, 3, 8, 10 is inserted into the table using closed hashing? Note that '_' denotes an empty location in the table.
A. 8,_,_,_10
B. 1,8,10,,_,10
C. 1,_,_,_3
D. 1,10,8,,_3
ANSWER: B
Given a hash table T with 25 slots that stores 2000 elements, the load factor α for T is

C. Mid square method
D. Mid square division method
ANSWER: C
The hashing method in which the given key is partitioned into subparts k1,k2,k3kn is
known as
A. Mid square method
B. Division method
C. Partition method
D. Folding method
ANSWER: D
The types of folding method are
A. fold shift
B. fold boundary
C. both
D. none of these
ANSWER: C
In which of the following, the left and right numbers are reversed on except the center number
A. Division method
B. fold boundary
C. fold shift
D. folding method
ANSWER: B

If the number is 164257408 and table size is 100 then the location where number will get store by fold shift mehod is
A. 6
B. 3
C. 56
D. 63
ANSWER: D
If the number is 123456789 and table size is 1000 then address where number will get store by fold shift method is
A. 8
B. 136
C. 368
D. either b or c
ANSWER: D
If number is 15547012 and table size is 100 then address of number by fold boundary method is
A. 1
B. 51
C. 96
D. 6
ANSWER: C
The disadvantage of mid square method is
A. more complex
B. size of key

Let H be a finite collection of hash functions that map a given universe U of keys into the range {0,

1, 2,, m – 1}.
H is called universal if for each pair of distinct keys x, y belongs to U, the number of hash functions h belongs to H for which $h(x) = h(y)$ is precisely equal to
A. H /m
B. h/m
C. 1
D. none
ANSWER: A
Given the following input
4322, 1334, 1471, 9679, 1989, 6171, 6173, 4199 .
The hash function is x mod 10.
Which of the following statements are true?
i. 9679, 1989, 4199 have the same hash value
ii. 1471, 6171 has to the same hash value
iii. All elements hash to the same value
iv. Each element hashes to a different value
A. i only
B. ii only
C. i and ii only
D.iii or iv
ANSWER: C
What is the hash key of 954 if the number being used to divide is 3?
A. 9
B. 2
C. 5

D. None of these

Answer: D

Which of the following are not the examples of the dictionary
A. Binary Search Tree
B. CBST
C. Sets
D. None of these
Answer: D
Which of the following is not true
A. AVL tree is a dictionary
B. B-tree is not a dictionary.
C. Sets are the dictionary
D. CBST is a dictionary
Answer:B
Which is not a valid of the operation supported by a Dictionary
A. Insert
B. Delete
C. Search

In the Skip list every 2ith node can have a pointer to the node ahead of it
A. 2i
B. 2i+1
C. 2i-1
D. 2.2i
Answer:A
Skip list requires comparisons to search an element.
A. Log N
B. N log N
C. N
D. N log N2
Answer: A
AVL trees have LL, LR, RR, RL rotations to balance the tree to maintain the balance
factor (LR: Insert node in Right sub tree of Left sub tree of node A, etc). Among
rotations the following are single and double rotations
A. LL, RL and LR, RR
B. LL, RR and LR, RL
C. LR, RR and LL, RL
D. LR, RL and LR, RL
Answer: B
What is the maximum height of any AVL-tree with 7 nodes? Assume that the height of a tree with a single node is 0.

A. 2

B. 3
C. 4
D. 5
Answer: B
The average time-complexity for insertion, deletion, and search in ais O(logn)
A. binary search tree
B. AVL tree
C. binary heap
D. none of these
Answer: B
What is the maximum height of any AVL-tree with 7 nodes? Assume that the height of a tree with a single node is 0.
A. 2
B. 3
C. 4
D. 5
Answer: B
The time complexity for insertion, deletion, and search is O(logn) for a
A. binary tree
B. binary search tree
C. AVL tree
D. binary heap

In a, the element just inserted is always at the leaf.
A. binary search tree
B. AVL tree
C. binary heap
D. None of these
Answer: A
AVL trees have LL, LR, RR, RL rotations to balance the tree to maintain the balance
factor (LR: Insert node in Right sub tree of Left sub tree of node A, etc). Among
rotations the following are single and double rotations
A. LL, RL and LR, RR
B. LL, RR and LR, RL
C. LR, RR and LL, RL
D. LR, RL and LR, RL
Answer: B
In, the difference between the height of the left sub tree and height of the right tree, for each node, is almost one.
A. Binary search tree
B. AVL - tree
C. Complete tree
D. Threaded binary tree
Answer: B

Answer: C

The hieght of AVL Tree with n nodes is
A. O(log n)
B. O(n2)
C. O(nlon)
D. O(n)
Answer: A
what is the size of the smallest AVL tree of height 8
A. 8
B. 16
C. 24
D. 32
Answer: C
Insert following numbers in an empty AVL tree in the sequence 1,2,3,4,8,7,6find the root node
A. 3
B. 4
C. 8
D. none of the above
Answer: B

if after insertion of new data in an AVL tree the balance factor of the node, its left and right chold

are -2,-1,1 repectively.find the type of rotation
A. RR
B. LL
C. LR
D. RL
Answer:D
In an AVL tree, the balance factor of every node must be
A. <2
B. >2
C. >-1
D. <2 and >-2
Answer: D
LR rotation requires
A. first left rotation and then right rotation
B. First right rotation and then left rotation
C. one left rotation
D. one right rotation
Answer: A
Insert following numbers in an empty AVL tree in the sequence 1,2,3,4,8,7,6 Perform inorder traversal
A. 1234678
B. 2143768
C. 3124768
D. None of these

Answer: A

If the balance factor of any node is -1 then

- A. The height of the left subtree is one more than the right subtree
- B. The height of the left subtree is one less than the right subtree
- C. The height of the left and right subtrees are equal
- D. None of the abve

Answer: B

If the balance factor of any node is +1 then

- A. The height of the left subtree is one more than the right subtree
- B. The height of the left subtree is one less than the right subtree
- C. The height of the left and right subtrees are equal
- D. None of the abve

Answer: A

```
node *temp(node *T)
{
T = rotateleft(T);
return (T);
}
```

Above is the function for

- A. LL
- B. LR
- C. RL

```
D. RR
Answer: D
node *temp(node *T)
{
T = rotateright(T);
return (T);
}
Above is the function for
A. LL
B. LR
C. RL
D. RR
Answer: A
int data(node *T)
{
Int lth,rth;
If(T->left == NULL)
lh=0;
else
lh=1+T->left->height;
if(T->right==NULL)
rh=0;
else
rh=1+T->right->height;
```

```
if(lh>rh)
return lh;
return rh;
}
Above if the C++ function for
A. Height of the AVL tree
B. Rotate right
C. Rotate left
D. Creation of an AVL tree
Answer: A
AVL trees have a faster _____
A. Insertion
B. Deletion
C. Updation
D. Retrival
Answer: D
Which of the following is AVL Tree?
A.
    100
  / \
  50
        200
        \
10
         300
```

```
B.
```

100
/ \
50 200
/ / \
10 150 300
/

C.

5

100

/ \
50 200

/ \ / \
10 60 150 300

/ \ \ \ \
5 180 400

A. Only A

 $\boldsymbol{B.\,A}$ and \boldsymbol{C}

C. A, B and C

D. Only B

Answer: B

Consider the following AVL tree.

60

/ \

20 100

/ \

80 120

Which of the following is updated AVL tree after insertion of $70\,$

A.

70

/ \

60 100

/ / \

20 80 120

B.

100

/ \

60 120

/\//

20 70 80

C.

80

/ \

```
60 100
/ \ \ \
20 70 120
```

70 120

A. A

20

B. B

C. C

D. D

Answer: C

Which of the following is TRUE?

A. The cost of searching an AVL tree is ? (log n) but that of a binary search tree is O(n)

B. The cost of searching an AVL tree is ? (log n) but that of a complete binary tree is ? (n log n)

C. The cost of searching a binary search tree is O (log n) but that of an AVL tree is ?(n)

D. The cost of searching an AVL tree is ? (n log n) but that of a binary search tree is O(n)

Answer: A

Id	1
Question	A hash table of length 10 uses open addressing with hash function h(k)=k mod 10, and linear probing. After inserting 6 values into an empty hash table, the table is as shown 0
A	46, 42, 34, 52, 23, 33
В	34, 42, 23, 52, 33, 46
С	46, 34, 42, 23, 52, 33
D	42, 46, 33, 23, 34, 52
Answer	С
Marks	2
Unit	3

Id	2
Question	How many different insertion sequences of the key values using the same hash function and linear probing will result in the hash table shown above?
A	10
В	20
С	30
D	40
Answer	С
Marks	1
Unit	3
Id	2

Id	2
Question	Given the following input (4322, 1334, 1471, 9679, 1989, 6171, 6173, 4199) and the hash function x mod 10, which of the following statements are true? i. 9679, 1989, 4199 hash to the same value ii. 1471, 6171 has to the same value iii. All elements hash to the same value iv. Each element hashes to a different value
A	i only
В	ii only
С	i and ii only
D	iii or iv
Answer	С
Marks	2
Unit	3
Id	2

Id	4
Question	Given a hash table T with 25 slots that stores 2000 elements, the load factor α for T is
A	80

В	0.0125
С	8000
D	1.25
Answer	A
Marks	1
Unit	3

Id	5
Question	Which one of the following hash functions on integers will distribute keys most uniformly over 10 buckets numbered 0 to 9 for i ranging from 0 to 2020?
A	$h(i) = i^2 \mod 10$
В	$h(i) = i^3 \mod 10$
С	$h(i) = (11 * i^2) \mod 10$
D	$h(i) = (12 * i) \mod 10$
Answer	A
Marks	1
Unit	3

Id	6
Question	The average search time of hashing , with linear probing will be less if load factor
A	is much less than one
В	equals one
С	Is far greater than one
D	None of the above
Answer	A
Marks	1
Unit	3

Id	7
Question	A hash table has space for 100 records , what is the probability of collision before the table is 10% full?
A	0.45
В	0.5
С	0.3
D	0.34
Answer	A
Marks	1
Unit	3

Id	8
Question	Which of the following statement(s) is TRUE?
	1. A hash function takes a message of arbitrary length and generates a fixed length code.
	2. A hash function takes a message of fixed length and generates a code of variable length.
	3. A hash function may give the same hash value for distinct messages.
A	I only
В	II and III only
С	I and III only
D	II only
Answer	С
Marks	1
Unit	3

Id	9
Question	Which of the following is true?
A	The cost of searching an AVL tree is O(logn) but that of a BST is O(n).
В	The cost of searching an AVL tree is O(logn) but that of a complete Binary tree O(nlogn).
С	The cost of searching a BST is O(logn) but that of an AVL tree is O(n).
D	The cost of searching an AVL tree is O(logn) but that of a BST is O(logn).
Answer	A
Marks	1
Unit	4

Id	10
Question	The OBST is an example of
A	Static symbol table
В	Dynamic symbol table
С	All of above
D	None of above
Answer	A
Marks	1
Unit	4

Id	11
Question	What will be the time complexity for insering a node into an AVL tree?
A	O(n)
В	O(logn)
С	n
D	n^2
Answer	В

Marks	1
Unit	4

Id	12
Question	What is the time complexity of OBST?
A	$O(n^{3)}$
В	O(nlogn)
С	O(logn)
D	$O(n^{2)}$
Answer	A
Marks	1
Unit	4

Id	13
Question	The OBST is an example of
A	Static symbol table
В	Dynamic symbol table
С	All of above
D	None of above
Answer	A
Marks	1
Unit	4

TJ	1 1
110	\perp 1 Δ
Iu	

Question	The worst case height of an AVL tree with n nodes is
A	1.44log(n+2)
В	2.44log(n+2)
С	3.44log(n+2)
D	4.44log(n+2)
Answer	A
Marks	1
Unit	4

(A) 0,1 or -1 (B) -2,-1 or 0 (C) 0,1 or 2 (D) All the above Ans: (A)
 2. In, the difference between the height of the left sub tree and height of the right tree, for each node, is almost one. (A) Binary search tree (B) AVL - tree (C) Complete tree (D) Threaded binary tree Ans: (B) 3. AVL trees have a faster A. Insertion B. Deletion C. Updation D. Retrival
Right Answer: D 4. An AVL Tree is constructed by inserting the elements in the following order 5,4,2,3,7,6 the elements which are in the leaf node are *
4. [©] 2,7,6
5. ^Q 5,7
6. ^Q 3,6
7. [©] 5,3,7
5. Which of the following is/are true a)AVL Tree was the first self-balancing BST to be invented b)The insertion of an element in an AVL tree takes O(log n) time in average case and O(nlogn) in worst case c)The insertion of an element in an AVL tree takes O(log n) time in both average and worst case d)The insertion of an element in AVL tree takes O(nlog n) time in both average and worst case *
Only a is correct
Only d is correct
both a and b are correct
both a and c are correct
6. The following insertions are made to an initially empty AVL Tree : 3,2,1,4,7,5,6 then the root of the right subtree of the AVL Tree is \ast
. C ₇

. 0	6
. 0	4
. 0	2
	ximum number of nodes with height h in an AVL Tree is given by (here N(h) represents r of nodes in AVL tree with height h) *
. 0	N(h)=N(h-1)+N(h-1)+1
. 0	N(h)=N(h-1)+N(h-2)+1
. 0	N(h)=N(h-1)+N(h-3)+1
. 0	Cannot be determined
8What is	the approximate height of an AVL tree having 30 nodes *
. 0	8
. 0	10
. 0	7
. 0	6
balance fa	owing steps were followed during the creation of particular AVL Tree, then what is the ctor of the root node after the process -elements are inserted in the order 8,6,15,3,19,29 - nt 19 is removed -Then the element 6 is removed *
. 0	1
. 0	-1
. 0	0
. 0	2
	L Tree is constructed by insertion of the following elements in the given order 4 then how many double rotations and single rotations were involved in the creation of

• ^Q 1,1

- · ^Q 2,1
- ^Q _{1,2}
- No rotations were involved

11. Which of the following are true for an AVL Tree

- a)All AVL Trees are Binary search trees(BST) but all BST's are not AVL Trees
- b)All BST are AVL trees but all AVL Trees are not BST's
- c)The minimum number of nodes in an AVL Tree of height h is N(h)=N(h-1)+N(h-2)+1
- d)The relation h=O(log n) where h=height and n=number of nodes in an AVL tree is true *
 - a and c are correct
 - b and c are correct
 - a and d are correct
 - all a,c and d are correct

12. The balance factor of a node A was 0 and a node was inserted to the left of the node A then *

- then it is required to balance Node A
- then it is required to balance Parent of node A
- then it is required to balance Right child of A
- Balancing may or may not be required for A

13

Consider the following AVL tree.

Which of the following is updated AVL tree after insertion of 70

A		A
В		В
C		С
D		D

1> A hash table of length 10 uses open addressing with hash function $h(k)=k \mod 10$, and linear probing. After inserting 6 values into an empty hash table, the table is as shown below. Which one of the following choices gives a possible order in which the key values could have been inserted in the table?

ans o

2> How many different insertion sequences of the key values using the same hash function and linear probing will result in the hash table shown above?

a> 10

b> 20

c > 30

d> 40

ans c

4> Consider a hash table of size seven, with starting index zero, and a hash function (3x + 4)mod7. Assuming the hash table is initially empty, which of the following is the contents of the table when the sequence 1, 3, 8, 10 is inserted into the table using closed hashing? Note that '_' denotes an empty location in the table.

ans b

5> Given the following input (4322, 1334, 1471, 9679, 1989, 6171, 6173, 4199) and the hash function x mod 10, which of the following statements are true? i. 9679, 1989, 4199 hash to the same value ii. 1471, 6171 has to the same value iii. All elements hash to the same value iv. Each element hashes to a different value

a> i onlyb> ii onlyc> i and ii onlyd> iii or iv

ans c

6> Consider a hash table with 100 slots. Collisions are resolved using chaining. Assuming simple uniform hashing, what is the probability that the first 3 slots are unfilled after the first 3 insertions?

$$a > (97 \times 97 \times 97)/100^3$$

$$b > (99 \times 98 \times 97)/100^3$$

$$c > (97 \times 96 \times 95)/100^3$$

$$d>(97 \times 96 \times 95)/(3! \times 100^3)$$

ans a

7> Which one of the following hash functions on integers will distribute keys most uniformly over 10 buckets numbered 0 to 9 for i ranging from 0 to 2020?

 $a > h(i) = i2 \mod 10$

 $b > h(i) = i3 \mod 10$

 $c > h(i) = (12 * i) \mod 10$

 $d > h(i) = (11 * i2) \mod 10$

ans b

8> Given a hash table T with 25 slots that stores 2000 elements, the load factor α for T is _____

a> 80

b> 0.0125

c> 8000

ans a

a> After insertion of 22

b> After insertion of 24

c> After insertion of 38

d>None of these

9>Which of the following statement(s) is TRUE?

I.A hash function takes a message of arbitrary length and generates a fixed length code.

II.A hash function takes a message of fixed length and generates a code of variable length.

III. A hash function may give the same hash value for distinct messages. a> i only b> ii and iii only c> i and iii only d> ii only ans c 12 AVL Tree is a _____ a> binary tree b> binary search tree c> expression tree d>complete binary tree ANS 13> Construct the AVL tree for 65,85,95,30,6,71,23,99,44,21. When do we require RR rotation a> After insertion 65 b> After insertion of 85 c> After insertion of 95 d>None of these ANS С 14> Construct teh AVL tree for 25,38,15,22,10,24. When do we require LR rotation?

ANS b

15>Following is called single rotation

I) LL II) LR III) RR IV) RL

a> ii and iv only

b> i and ii only

c> i and iii only

d> iv only

ans c

Id	
Question	The balance factor of a node A was 0 and a node was inserted to the left of the node A
	then
A	Then it is required to balance Node A
В	Then it is required to balance Parent of node A
C	Then it is required to balance Right child of A
D	Balancing may or may not be required for A
Answer	В
Marks	1
Unit	4

Id	
Question	The balance factor of a node A was 0 and a node was inserted to the left of the node A
	then
A	Then it is required to balance Node A
В	Then it is required to balance Parent of node A
С	Then it is required to balance Right child of A
D	Balancing may or may not be required for A
Answer	В
Marks	1
Unit	4

Id	
Question	A AVL is traversed in the following order recursively: Right, root, left The output sequence will be in
A	Ascending order
В	Descending order
C	Level-wise order
D	No specific order
Answer	В
Marks	1
Unit	4

Id Question	In which of the following tree, parent nodes has a key greater than or equal to its both children?
A	Max Heap
В	Binary Search Tree
C	Threaded Binary Tree
D	Complete Binary Tree
Answer	В
Marks	1
Unit	4

Id	
Question	An AVL tree is a
A	Binary Search Tree
В	Complete Binary Tree
C	Threaded Tree
D	Both I and II
Answer	D
Marks	1
Unit	4

Id	
Question	Rotation of the binary search tree preserves
A	The order of nodes in an inorder traversal
В	Number of levels in the tree
С	Balance factor of its nodes
D	Height of the tree
Answer	A
Marks	1
Unit	4

Id	
Question	A binary search tree whose left subtree and right subtree differ in height by at most 1 unit
	is called
A	Red-Black Tree
В	Heap Tree
C	Game Tree
D	AVL Tree
Answer	D
Marks	1
Unit	4

Id	
Question	Balance factor of AVL tree should be
A	1 or 2 or 3
В	0 or 1 or 2
С	-1 or 1 or 0
D	0 or 1
Answer	С
Marks	1
Unit	4

lu

Question	An is a BST which has minimal expected cost.
A	AVL Tree
В	Red Black Tree
C	Optimal Binary Search Tree
D	Heap Tree
Answer	C
Marks	1
Unit	4

Id	
Question	Insertion in AVL tree takes place at
A	At nay place in tree
В	At the root node of the tree
C	At leaf nodes
D	At the intermediate levels
Answer	С
Marks	1
Unit	4

Id	
Question	If a Binary search is completely left associated as we want to treat as AVL we will
	classify
	into rotation on it
A	Right of Right and apply Right rotation
В	Right of left and apply left rotation
С	Left of Left and apply Right rotation
D	Left of Right and apply Right rotation
Answer	C
Marks	1
Unit	4

Id	
Question	If any insertion operation carried is carried out on AVL and it creates a imbalance and
	that imbalance leads left subtree high because of right of left is high we will chose to
	apply rotation operations on a node were imbalance is
A	First Right and second Left rotation operation
В	Both right and left operation simultaneously
С	First left and second Right operation
D	Two times right rotation operations
Answer	C
Marks	1
Unit	4

Id	
Question	If any insertion operation carried is out on AVL and it creates a imbalance and that
	imbalance leads right subtree high because of left of right is high we will chose to apply

	rotation operations on a node were imbalance is
A	First Right and second Left rotation operation
В	Both right and left operation simultaneously
С	Both right and left operation simultaneously
D	First right and second left operation
Answer	D
Marks	1
Unit	4

Id	
Question	The OBST makes use of for computing cost.
A	Height of tree
В	Balance factor
С	Leaf nodes
D	Probability of searches
Answer	D
Marks	1
Unit	4

Id	
Question	If LR rotation occurs then, it means the balance factor of unbalanced node is
A	+1
В	-1
C	+2
D	-2
Answer	С
Marks	1
Unit	4

Id	
Question	If RL rotation occurs then, it means the balance factor of unbalanced node is
A	+1
В	-1
С	+2
D	-2
Answer	D
Marks	1
Unit	4

Id	
Question	Time complexity of searching node in AVL tree is:
A	O(n)
В	O(log n)
С	O(n*n)
D	O(1)
Answer	В
Marks	1
Unit	4

Id	
Question	AVL trees have a faster-
A	Insertion
В	Deletion
C	updation
D	Retrieval
Answer	D
Marks	1
Unit	4

Id	
Question	Following are Single rotations
	A LL
	B RR
	C LR
	D RL
A	A and B
В	A and C
С	B and D
D	B and C
Answer	A
Marks	1
Unit	4

Id	
Question	Following are Double rotations
	A LL
	B RR
	C LR
	D RL
A	A and B
В	A and C
C	B and D
D	C and D
Answer	D
Marks	1
Unit	4

Id	
Question	When balance factor is +2 then
	A.LL rotation applied
	B.LR rotation applied
	C.RR rotation applied
	D.RL rotation applied
A	A and B
В	A and C
C	C and D
D	B and C
Answer	D
Marks	1
Unit	4

Id	
Question	When balance factor is -2 then
	A.LL rotation applied
	B.LR rotation applied
	C.RR rotation applied
	D.RL rotation applied
A	A and B
В	A and C
C	C and D
D	B and C
Answer	A
Marks	1

Unit	4

Id	
Question	LR stands for
A	Node is inserted in Left subtree of right child
В	Node is inserted in Right subtree of Left child
C	Node is inserted in Left subtree of Left child
D	Node is inserted in right subtree of right child
Answer	A
Marks	1
Unit	4

Id	
Question	RL stands for
A	Node is inserted in Left subtree of right child
В	Node is inserted in Right subtree of Left child
C	Node is inserted in Left subtree of Left child
D	Node is inserted in right subtree of right child
Answer	В
Marks	1
Unit	4

Id	
Question	When LL rotation occurs then BF of unbalanced node is
A	Plus 1
В	Plus 2
C	Minus 2
D	Minus 1
Answer	С
Marks	1
Unit	4

Id	

Question	When RR rotation occurs then BF of unbalanced node is
A	Plus 1
В	Plus 2
C	Minus 2
D	Minus 1
Answer	В
Marks	
Unit	4

Id	
Question	Construct AVL tree for B,I,N,A,R,Y
	What will be root of Final AVL tree is
A	В
В	I
C	N
D	Y
Answer	В
Marks	1
Unit	4

Id	
Question	Construct AVL tree for B,I,N,A,R,Y
	What will be first rotation ?
A	LL
В	RR
С	LR
D	RL
Answer	A
Marks	1
Unit	4

Id	
Question	Construct AVL tree for B,I,N,A,R,Y
	What will be last rotation
A	LL
В	RR
C	LR

D	RL
Answer	В
Marks	1
Unit	4

Id	
Question	Construct AVL tree for B,I,N,A,R,Y
	For inserting which element there is need to rebalance above tree
A	A
В	N
С	Y
D	None of above
Answer	В
Marks	1
Unit	4

Id	
Question	The balance factor in height balanced tree is
A	hL-hR <=0
В	hL-hR >=0
С	hL-hR <=1
D	hR-hL <=1
Answer	C
Marks	1
Unit	4

Id	
Question	The balance factor in height balanced tree is either
A	-1,0,+1
В	-2,-1,0
C	0,1,2
D	All of above
Answer	A
Marks	1
Unit	4

Id	
Question	If after insertion of new data in an AVL tree, the BF of node, its left child are -2,+1 respectively. Find type of rotation
A	LL
В	RR
C	LR
D	RL
Answer	D
Marks	1
Unit	4

Id	
Question	If after insertion of new data in an AVL tree, the BF of node, its left child are 2,-1 respectively. Find type of rotation
A	LL
В	RR
С	LR
D	RL
Answer	C
Marks	
Unit	4

Id	
Question	Insert the number 1 2 3 4 8 7 6 in an empty AVL tree. Now perform inorder
	traversal on the tree
A	1234678
В	2143768
С	3124768
D	1324678
Answer	A
Marks	1
Unit	4

Id	
Question	Insert the number 1 2 3 4 8 7 6 in an empty AVL tree. Now what will be the node at root
A	4
В	3
С	6
D	7

Answer	A
Marks	1
Unit	4

Id	
Question	In an AVL tree the BF of every node must be
A	<2
В	>2
С	>-1
D	<2 and >-2
Answer	D
Marks	1
Unit	4

Id	
Question	What is the maximum height of any AVL-tree with 7 nodes? Assume that the height of a tree
	with a single node is 0.
A	2
В	3
С	4
D	5
Answer	В
Marks	2
Unit	4

Id	
Question	An AVL Tree is constructed by inserting the elements in the following order 5,4,2,3,7,6
	the elements which are in the leaf node are
A	2,7,6
В	5,7
C	5,3,7
D	3,6
Answer	C
Marks	2
Unit	4

Id	
Question	The following insertions are made to an initially empty AVL Tree: 3,2,1,4,7,5,6 then the
	root of the right subtree of the AVL Tree is
A	7
В	6
С	4
D	2
Answer	A
Marks	2
Unit	4

Id	
Question	An AVL Tree is constructed by insertion of the following elements in the given order
	10,7,8,5,3,4 then how many double rotations and single rotations were involved in the
	creation of this tree
A	1,1
В	2,1
С	1,2
D	2,2
Answer	В
Marks	1
Unit	4

Id	
Question	Consider a hash table of size seven, with starting index zero, and a hash function (3x +
	4)mod7. Assuming the hash table is initially empty, which of the following is the contents
	of the table when the sequence 1, 3, 8, 10 is inserted into the table using closed hashing?
	Note that '_' denotes an empty location in the table.
A	8, _, _, _, _, 10
В	1, 8, 10, _, _, _, 3
С	1, _, _, _, _, _, 3
D	1, 10, 8, _, _, _, 3
Answer	В
Marks	2
Unit	4

Id	
Question	Suppose the numbers 7, 5, 1, 8, 3, 6, 0, 9, 4, 2 are inserted in that order into an initially
	empty AVL. The binary search tree uses the usual ordering on natural numbers. What is
	the in-order traversal sequence of the resultant tree?
A	7510324689

В	0243165987
C	0123456789
D	9864230157
Answer	C
Marks	2
Unit	4

Id	
Question	Which rotation is required to make right sub tree balance after insertion of node 7 in
	following tree?
A	RR
В	LL
С	RL
D	LR
Answer	В
Marks	2
Unit	4

Id	
Question	What is the approximate height of an AVL tree having 30 nodes?
A	8
В	10
С	7
D	5
Answer	D
Marks	2
Unit	4

Id	
Question	Insert the following numbers in an empty AVL tree in the sequence 1, 2, 3, 4, 8, 7, 6. Find
	the root node
A	4
В	3
C	6
D	7
Answer	A
Marks	2
Unit	4

Id	
Question	Insert the following numbers in an empty AVL tree in the sequence 1, 2, 3, 4, 8, 7, 6. Give the left child and right child respectively of the root node.
A	3,6
В	2,7
С	2,8
D	3,8
Answer	В
Marks	2
Unit	4

Id	
Question	Suppose there is a AVL tree with n nodes in which k insertions are carried out. Then
	what is the running time purely for balancing the tree in worst case
A	Requires k rotations
В	Requires 2k rotations
С	Requires 3k rotations
D	Requires n+k rotations
Answer	В
Marks	2
Unit	4

Id	
Question	There is a AVL Tree whose preorder traversal is 70, 60, 50, 45, 65, 80, 75 if node with a
	key 70 is deleted then identify at which node key the balance is required in a AVL Tree
A	at 60 it is required
В	at 50 it is required
C	at 65 it is required
D	at 80 it is required
Answer	A
Marks	2
Unit	4

Id	
Question	If we create a AVL tree with the sequence 7, 10, 14, 23, 33, 56, 66, 70, 80 how many left rotations are required?
A	4
В	5
С	6
D	8
Answer	C
Marks	2
Unit	4

Id	
Question	If we create a AVL tree with the sequence 80, 70, 66, 56, 33, 23, 14, 10, 7 how many
	right
	rotations are required and at which addition of element in AVL tree that happens
A	4
В	5
С	6
D	8
Answer	В
Marks	2
Unit	4

Id	
Question	In OBST, the number of comparisons are required to search an element at depth d, with success are:
A	d

В	d+1
С	d-1
D	d*d
Answer	A
Marks	2
Unit	4

Id	
Question	Insert 30,31,32,23,22,28,24,29,26,27,34,36 in the AVL tree. How many total rotations required?
A	7
В	6
С	5
D	9
Answer	A
Marks	2
Unit	4

Id	
Question	Insert following keywords in the empty AVL tree.
	cout, cin, break, std, main
	Which rotations are required?
A	First LL and then RR
В	First RL and then RR
С	RL
D	LL
Answer	Correct option: A.
Marks	2
Unit	4

Id	
Question	Insert following in the empty AVL tree.
	DEC,JAN,APR,MAR,JUL
	Which symbol will rotate first?
A	DEC
В	JAN
С	MAR
D	JUL
Answer	С
Marks	2
Unit	4

Id	
Question	Construct AVL tree for following:
	78,21,11,97.
	If 85 is inserted, which node is unbalance?
A	97
В	21
С	85
D	78
Answer	D
Marks	2
Unit	4

Id	
Question	Following code is for which rotation
	<pre>node * avl::Rotation(node* root)</pre>
	{
	node *temp;
	temp=root->right;
	root->right=temp->left;
	temp->left=root;

	<pre>temp->h=height(temp); root->h=height(root); return temp; }</pre>
A	LL
В	RR
С	RL
D	LR
Answer	В
Marks	2
Unit	4

```
Id
          Following code is for which rotation
Question
                node * avl::Rotation(node* root)
                      node *temp;
                      temp=root->left;
                      root->left=temp->right;
                      temp->right=root;
                      temp->h=height(temp);
                      root->h=height(root);
                      return temp;
                }
          LL
В
          RR
          RL
D
          LR
Answer
          A
Marks
          2
          4
Unit
```

Id	
Question	Following code is for which rotation
	node * avl::rotation(node* root)
	{
	node *temp;
	<pre>root->left=RR(root->left);</pre>

	<pre>root=LL(root); return root; }</pre>
A	LL
В	RR
С	RL
D	LR
Answer	D
Marks	2
Unit	4

Id	
Question	The worst case time complexity of AVL tree for Insert Operations is
A	$O(\log n)$
В	$O(n \log n)$
С	O(n)
D	None of these
Answer	A
Marks	2
Unit	4

Id	
Question	Number of comparisons required to search a balanced binary search tree of N nodes is
A	O(N)
В	$O(N \log N)$
С	O(log2 N)
D	None of these
Answer	C
Marks	2
Unit	4

Id		
Question	Construct AVL tree for 25,38,15,22,10,24.	When do you require LR rotation?

A	After insertion of 22
В	After insertion of 24
С	After insertion of 38
D	After insertion of 10
Answer	В
Marks	2
Unit	4

Id	
Question	An AVL Tree is constructed by insertion of the following elements in the given order
	10,7,8,5,3,4 then how many double rotations and single rotations were involved in the
	creation of this tree
A	1,1
В	2,1
С	1,2
D	2,2
Answer	В
Marks	2
Unit	4

Id	
Question	Suppose the numbers 7, 5, 1, 8, 3, 6, 0, 9, 4, 2 are inserted in that order into an initially empty AVL. The binary search tree uses the usual ordering on natural numbers. What is the in-order traversal sequence of the resultant tree?
A	7510324689
В	0243165987
С	0123456789
D	9864230157
Answer	С
Marks	2
Unit	4

Id	
Question	Which rotation is required to make right sub tree balance after insertion of node 7 in
	following tree?
A	RR
В	LL
C	RL
D	LR
Answer	В
Marks	2
Unit	4

Id	
Question	The elements 32, 15, 20, 30, 12, 25, 16 are inserted one by one in the given order
	into a AVL TREE the resulting tree is

D	12 16 25 32
Answer	A
Marks	2
Unit	4

Id	
Question	What is the approximate height of an AVL tree having 30 nodes?
A	8
В	10
С	7
D	5
Answer	D
Marks	2
Unit	4

Id	
Question	Insert the following numbers in an empty AVL tree in the sequence 1, 2, 3, 4, 8, 7, 6. Find
	the root node
A	4
В	3
С	6
D	7
Answer	A
Marks	2
Unit	4

Id	
	Insert the following numbers in an empty AVL tree in the sequence 1, 2, 3, 4, 8, 7, 6. Give the left child and right child respectively of the root node.
A	3,6
В	2,7

С	2,8
D	3,8
Answer	В
Marks	2
Unit	4

Id	
Question	Suppose there is a AVL tree with n nodes in which k insertions are carried out. Then
	what is the running time purely for balancing the tree in worst case
A	Requires k rotations
В	Requires 2k rotations
C	Requires 3k rotations
D	Requires n+k rotations
Answer	В
Marks	2
Unit	4

Id	
Question	There is a AVL Tree whose preorder traversal is 70, 60, 50, 45, 65, 80, 75 if node with a
	key 70 is deleted then identify at which node key the balance is required in a AVL Tree
A	at 60 it is required
В	at 50 it is required
C	at 65 it is required
D	at 80 it is required
Answer	A
Marks	2
Unit	4

Id	
Question	If we create a AVL tree with the sequence 7, 10, 14, 23, 33, 56, 66, 70, 80 how many left rotations are required?
A	4
В	5
С	6
D	8
Answer	С
Marks	2
Unit	4

Id	
Question	If we create a AVL tree with the sequence 80, 70, 66, 56, 33, 23, 14, 10, 7 how many
	right
	rotations are required and at which addition of element in AVL tree that happens
A	4
В	5
С	6

D	8
Answer	В
Marks	2
Unit	4

Id	
Question	In OBST, the number of comparisons are required to search an element at depth d, with success are:
A	d
В	d+1
С	d-1
D	d*d
Answer	A
Marks	2
Unit	4

Id	
Question	Insert 30,31,32,23,22,28,24,29,26,27,34,36 in the AVL tree. How many total rotations required?
A	7
В	6
С	5
D	9
Answer	A
Marks	2
Unit	4

Id	
Question	Insert following keywords in the empty AVL tree.
	cout, cin, break, std, main
	Which rotations are required?
A	First LL and then RR

В	First RL and then RR
С	RL
D	LL
Answer	Correct option: A.
Marks	2
Unit	4

Id	
Question	Insert following in the empty AVL tree.
	DEC,JAN,APR,MAR,JUL
	Which symbol will rotate first?
A	DEC
В	JAN
С	MAR
D	JUL
Answer	С
Marks	2
Unit	4

Id	
Question	Construct AVL tree for following:
	78,21,11,97.
	If 85 is inserted, which node is unbalance?
A	97
В	21
С	85
D	78
Answer	D
Marks	2
Unit	4

```
Id
Question
          Following code is for which rotation
          node * avl::Rotation(node* root)
                      node *temp;
                      temp=root->right;
                      root->right=temp->left;
                      temp->left=root;
                      temp->h=height(temp);
                      root->h=height(root);
                      return temp;
          LL
В
          RR
          RL
          LR
Answer
          В
Marks
          2
Unit
          4
```

Id	
Question	<pre>Following code is for which rotation node * avl::Rotation(node* root) { node *temp; temp=root->left; root->left=temp->right; temp->right=root; temp->h=height(temp); root->h=height(root); return temp; }</pre>
A	LL
В	RR
С	RL
D	LR
Answer	A
Marks	2
Unit	4

```
Id
Question
          Following code is for which rotation
          node * avl::rotation(node* root)
                      node *temp;
                      root->left=RR(root->left);
                      root=LL(root);
                      return root;
                }
Α
          LL
В
          RR
          RL
          LR
Answer
          D
Marks
          2
         4
Unit
```

Id	
Question	The worst case time complexity of AVL tree for Insert Operations is
A	$O(\log n)$
В	$O(n \log n)$
С	O(n)
D	None of these
Answer	A
Marks	2
Unit	4

Id	
Question	Construct AVL tree for 25,38,15,22,10,24. When do you require LR rotation?
A	After insertion of 22
В	After insertion of 24
С	After insertion of 38
D	After insertion of 10
Answer	В
Marks	2
Unit	4

SR . NO		QUESTIONS							A	
1	0/1 knapsack is based onmethod									
	A	greedy method	В	branch and bound	С	dynamic programming	D	divide and conquer		
2	A binary search tree is formed from the sequence 6, 9, 1, 2, 7, 14, 12, 3, 8, The minimum number of nodes required to be added in to this tree to form an extended binary tree is?									
	A	3	В	6	С	8	D	11		
3	Fir	nd the odd one out.								
	A	Merge Sort	В	TVSP Problem	С	Knapsack Problem	D	OBST Problem		
4		om the following algorithm aph?	n d	esign techniques which one	is ı	used to find all the pairs of	f sh	ortest distances in a		
	A	Backtracking	В	Greedy	С	Dynamic Programming	D	Divide		
5				a set of n=5 keys : i 0 1 2 3 4 5 0.05 0.10. The expected o			rob	abilities :p 0.15 0.10 0.05		
	A	2.65	В	2.7	С	2.75	D	2.8		
6	If	a node having two children	n is	to be deleted from binary se	ear	ch tree, it is replaced by its	s?			
	A	In-order predecessor	В	In-order successor	С	Pre-order predecessor	D	None		
7	If	all $c(i, j)$'s and $r(i, j)$'s are	cal	culated, then OBST algorith	ım	in worst case takes one of	the	following time.		
	A	O(nlogn)	В	O(n3)	С	O(n2)	D	O(log n)		
8	If n elements are sorted in a binary search tree. What would be the asymptotic complexity to search a key in the tree?									
	A	O(1)	В	O(logn)	С	O(n)	D	O(nlogn)		
9	If	n numbers are to be sorted	in	ascending order in O(nlogn)) ti	me, which of the following	gtr	ee can be used?		
	A	Binary tree	В	Binary search tree	С	Max-heap	D	Min-heap		
10	In	a full binary tree, every in	teri	nal node has exactly two chi	ldr	en. A full binary tree with	2n-	+1 nodes contains?		
	A	n leaf node	В	n internal nodes	С	n-1 leaf nodes	D	n-1 internal nodes		
11		full binary search tree evenny internal nodes are ther	•	internal node has exactly two the tree?	o c	hildren. If there are 100 le	af r	nodes in the tree, how		
	A	25	В	49	C	99	D	101		
12	In	the case of sub problems s	sha	re sub problems ,which meth	od	is suitable				
	A	greedy method	В	branch and bound	C	dynamic programming	D	divide and conquer		
13	In	which tree, for every node	th	e height of its left subtree ar	ıd r	ight subtree differ almost	by	one?		
	A	Binary search tree	В	AVL tree	C	Threaded Binary Tree	D	Complete Binary Tree		
14		ppose a binary tree is consaximum height of the tree		cted with n nodes, such that l be?	ea	ch node has exactly either	zeı	ro or two children. The		
	A	n+1)/2	В	(n-1)/2	C	n/2 -1	D	(n+1)/2 -1		
15	Su	ppose a complete binary t	ree	has height h>0. The minimu	ım	no of leaf nodes possible	in t	erm of h is?		
	A	2h -1	В	2h -1 + 1	С	2h -1	D	2h +1	\top	
16	Suppose we have numbers between 1 and 1000 in a binary search tree and want to search for the number 363. Which of the following sequence could not be the sequence of the node examined?									

	A	2, 252, 401, 398, 330, 344, 397, 363	В	924, 220, 911, 244, 898, 258, 362, 363	С	925, 202, 911, 240, 912, 245, 258, 363	D	2, 399, 387, 219, 266, 382, 381, 278, 363		
17	Th	The difference between the external path length and the internal path length of a binary tree with N internal nodes is?								
	A	A 1 B N C N+1 D 2N								
18	The height of a BST is given as h. Consider the height of the tree as the no. of edges in the longest path from root to the leaf. The maximum no. of nodes possible in the tree is?									
	A	2^(h-1) -1	В	2^(h+1) -1	С	2^(h-1)	D	2^(h-1)+1		
19	The method will choosing when sub problems share sub problems									
	A	Divide and conquer	В	Greedy method	C	Dynamic programming	D	Back tracking		
20	Th	e no of external nodes in a	a fu	ll binary tree with N interna	l no	odes is?{				
	A	N	В	N+1	С	2N	D	2N+1		
21	Th	e symbol table implement	atio	on is based on the property o	of lo	ocality of reference is.				
	A	linear list	В	search tree	С	hash table	D	self-organization list		
22	the	total running time of opti	ima	l binary search tree of n nod	les					
	A	O(n^2)	В	O(n)	C	O(n^3)	D	O(n log n)		
23	Th	e worst case time complex	kity	of AVL tree is better in com	ıpa	rison to binary search tree	fo	[
	A	Search and Insert Operations	В	Search and Delete Operations	С	Insert and Delete Operations	D	Search, Insert and Delete Operations		
24	То	a problem can be viewed	as	the result of a sequence of de	eci	sions	•			
	A	Dynamic programming	В	Backtracking	С	Branch and bound	D	Greedy method		
25	W	hen a binary tree is conver	ted	in to an extended binary tre	e, a	all the nodes of a binary tr	ee 1	becomes?		
	A	Internal nodes	В	External nodes	С	Root nodes	D	None		
26	W	hich of the following conc	ept	s means determining at runt	ime	e what method to invoke?				
	A	Data hiding	В	Dynamic Typing	С	Dynamic binding	D	Dynamic loading		
27	W	hich of the following state	me	nt about binary tree is CORI	RE	CT?				
	A	Every binary tree is either complete or full	В	Every complete binary tree is also a full binary tree	С	Every full binary tree is also a complete binary tree	D	A binary tree cannot be both complete and full		
28	W	hich of the following state	me	nt is true ?						
	A	Optimal binary search tree construction can be performed efficiently using dynamic programming.	В	Breath first search cannot be used to find converted components of a graph.	С	Given the prefix and post fix walks over a binary tree. The binary tree cannot be uniquely construct	D	Depth first search can be used to find connected components of a graph.		
29	Which type of traversal of binary search tree outputs the value in sorted order?									
	A	Pre-order	В	In-order	C	Post-order	D	None		
30	Ifa	a complete binary tree Tn h	as r	n=1000 nodes then its height i	s?					
	A	21	В	10	C	11	D	12		
31		full binary search tree eve my internal nodes are there		internal node has exactly two the tree?	o c	hildren. If there are 100 le	af i	nodes in the tree, how		
		25	Т	49	С	99	D	100		
		·		•						

32	Let T be a binary search tree is	e with 14 nodes and 60 as exter	nal path length. Then The int	ernal path length
	A 50	B 11	C 32	D 28
33	The difference between the	external path length and the int	ernal path length of a binary	tree with n internal nodes is?
	A 1	Bn	C n+1	D 2n
34	Let T Be binary search tree	with 10 nodes and 30 as intern	al path length. Then the exter	nal path length is
	A 50	B 11	C 32	D 28
35	The average number of com	parisons required for a success	ful search in a binary search	tree with n nodes is
	A (I+n)/n	B (I+2n)	C I/n	D E/(I+n) ²
36	The average number of com	parisons required for unsuccess	sful search in a binary search	tree with n nodes is
	A (E+n)/n	B (E+2n)	C E/n	D E/(n+1)
37	Construct a BST for the element of the search tree with these	ments 5,3,7,2,4,8. The average e nodes is	number of comparisons requi	red for a successful search in
	A 20	B 1.33	C 2.33	D 32.66
38	in the Following tree when nev	v node 15 is added then tree becor	7 16 NEWNODE	e resultant tree after rotation
	A (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	B 4 7 7 15 15	C 4 6 7 15 16	D 4 6 15 7 16
39	In the Following tree when nev	w node 15 is added then tree become 4 6	nes non-avl tree, what will be the	e type of problem
	A RR	B LL	C RL	D LR
40	In the Following tree when nev	w node 15 is added then tree becor	mes non-avl tree, what will be the	e rotations

	A	Rig	ht Rot	ation		В	Left Rotation	С	Right-Left Rotation	D	Left-Right Rotation
41	How to calculate the balance factor of Tree										
	A	HL-	HR			В	HR-HL	C	HL-HL	D	HR-HR
42	A Tree is called AVL tree if its balance factor is in the										
	A	(0,-	1,1)			В	(0,-2,1)	C	(-2,1,1)	D	(0,-2,1)
43	Given the following table of data what are the minimum expected no. of comparisons required for an Optimal										
		i	0	1	2	3	4				
	I	Pi		3/16	3/16	1/16	1/16				
		`	2/16		1/16		1/16				
	BS	T tha	at can	be cons	tructed	l with the	ne given data				
	A	2				В	3	С	4	D	1
44	In v 5.	whic	h orde	er the fo	llowing	g numb	ers 12,3,2,4,6,7,5,1 should be i	nse	erted in binary search An emp	oty 1	binary search tree of height
	A	1,2,	3,5,12	2,6,7,4		В	1,2,3,6,5,7,12,4	С	1,2,3,4,6,7,12,5	D	None of these
45	In t	ree (creatio	on whicl	h is the	most s	uitable data structure?				
	A	Arra	ay			В	Stack	C	Queue	D	Linked List
46	Co	nstru	ict BS	T for 10),08,15	,12,13,	07,09,17,20,18,04,05 what will	be	the Node of node 17?		
	A						20	C	10	D	15
47	The	e nui	nber (of nodes	in nul	l binary	tree are			1	
	A	1				В	2	C	0	D	Null tree is invalid tree
48	Αb	inar	y tree	with 14	nodes	what is	s the minimum possible height	of	this tree?		
	A	1				В	2	C	3	D	4
49	Wh	at is	deptl	of follo	owing	tree?					
							(10)			
									_		
							20		60)		
	40 30 50 90										
	70 80										
	A	2				В	4	С	3	D	1
50									I		
	A binary tree with 14 nodes what is the minimum possible height of this tree?										
	A -2, B-4, C-3, D-1										