Analysis of Markovian Population Models Dissertation Defense

Michael Backenköhler

Saarland Informatics Campus

September 20, 2022

Motivation

- stochastic concentration changes
- systems biology: switches,
- ▶ applications: queueing, metabolic networks, bio-switches, traffic etc.
- ▶ goal: do *rigorous* analysis on such models

Markovian population models

Framework

- populations of identical agents
- ► state space ~ population sizes
- often huge to infinite

- continuous time
- exponential jump times / CTMC dynamics
- ► Kolmogorov equation for probabilities:

$$\frac{d}{dt}\pi(t)=\pi(t)Q$$

Markovian population models

How they behave

Example (birth-death process) $X \to \varnothing, \quad \alpha_1(x) = 0.1 \cdot x \\ \varnothing \to X, \quad \alpha_2(x) = 10$

- changes depend on current state only
- lacktriangle ergodic chains converge to unique distribution $(t o \infty)$
- ► Foster-Lyapunov functions for bounds

Markovian population models

Approaches to their analysis

Moment equation

Moments such as mean E (X_t) and variance E $(X_t^2)-E\left(X_t\right)^2$ are described by (often linear) ODEs.

$$\frac{d}{dt} E\left(f(\vec{X}_t)\right) = \sum_{j=1}^{n_R} E\left(\left(f(\vec{X}_t + \vec{v}_j) - f(\vec{X}_t)\right) \alpha_j(\vec{X}_t)\right)$$

Moment-Based Methods

Markovian Population Models

Martingale process

- start with the moment ODE
- ▶ multiply time-weighting: $w(t) = t^k$, $k \in \mathbb{N}$ or $w(t) = \exp(\lambda t)$
- ▶ analytic integration results in a martingale

$$\begin{split} Z_T &:= w(T) f(\vec{X}_T) - w(0) f(\vec{X}_0) - \int_0^T \frac{dw(t)}{dt} f(\vec{X}_t) \, dt \\ &- \sum_{i=1}^{n_R} \int_0^T w(t) (f(\vec{X}_t + \vec{v}_j) - f(\vec{X}_t)) \alpha_j(\vec{X}_t) \, dt \end{split}$$

▶ known expectation: $E(Z_T) = 0$, $\forall T \ge 0$

Bounding mean first-passage times

Linear moment constraints

- $\tau = \inf\{X_t \geqslant H \mid t \geqslant 0\} \wedge T$
- ightharpoonup time weighting $w(t) = t^k$
- ► exp. occupation measure ξ
- ightharpoonup exit location measures v_1 , v_2

Linear moment constraint

$$\begin{split} 0 = E\left(Z_{T}\right) = T^{k} \overbrace{E\left(X_{\tau}^{m}; \tau = T\right)}^{\nu_{1}} + H^{m} \overbrace{E\left(\tau^{k}; \tau < T, X_{\tau} = H\right)}^{\nu_{2}} \\ - 0^{k} x_{0}^{m} + \sum_{i} c_{i} \underbrace{E\left(\int_{0}^{\tau} t^{k_{i}} X_{t}^{m_{i}} \ dt\right)}_{\xi} \end{split}$$

Bounding mean first-passage times

Moment matrices

Moment matrices

The moment matrix must be positive semi-definite.

$$\mathsf{E} \begin{pmatrix} X^0 & X^1 & X^2 & \dots & X^n \\ X^1 & X^2 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ X^n & X^{n+1} & \dots & \dots & X^{2n} \end{pmatrix} \succeq \mathsf{0} \,,$$

where $M \succeq 0$ iff. $\forall v \in \mathbb{R}^n . v^T M v \geqslant 0$.

Example

$$\text{Let } M = \begin{pmatrix} 1 & \text{E}\left(X\right) \\ \text{E}\left(X^2\right) \end{pmatrix} \! . \text{ Then } \det M = \text{E}\left(X^2\right) - \text{E}\left(X\right)^2 = \sigma^2 \geqslant 0.$$

Bounding mean first-passage times

Semi-definite program

- measure support can be restricted using semi-definite constraints
- resulting SDPs can be solved using off-the-shelf software.

Semi-definite program (SDP)

An optimization problem with

- 1. linear constraints on moments and
- 2. positive semi-definite constraints on certain matrices.
- ▶ alternative: linear *Hausdorff constraints* instead of semi-definite constraints

$$\int_{[0,1]^{\vec{\pi}}} \vec{x}^{\vec{\ell}} (1-\vec{x})^{\vec{k}} d\mu(\vec{x}) \geqslant 0$$

Bounding mean first-passage times Results

- ▶ fast convergence of bounds with increasing order
- ► SDPs are usually solved within seconds
- numerically challenging (inherent stiffness)
- scaling state-space / model size is difficult

Using correlated RVs with known expected value

- ▶ improve MC estimates using Z_T
- ightharpoonup use correlations between Z_T and X_T
- $\begin{tabular}{ll} E\left(X_T+bZ_T\right) \mbox{ instead of } E\left(X_T\right) \\ \mbox{ (recall } E\left(Z_T\right)=0\end{tabular}$
- $\blacktriangleright \ \, \text{time-weighting} \,\, w(t) = \exp(\lambda t)$

Linear control variates

Given a control variate vector \vec{Z} , the estimator

$$\hat{V} - (\hat{\Sigma}_{\vec{Z}}^{-1}\hat{\Sigma}_{\vec{Z}V})^{\mathsf{T}}\hat{\vec{Z}}$$

has lower or equal variance as \hat{V} .

[BBW19]

Efficiency trade-off

- ▶ infinite possible Z
- ightharpoonup different time-weighting $\lambda \rightarrow$ different correlation
- ▶ the trade-off:

cost: slowdown

$$cost_{old}/cost_{new}$$

- ightharpoonup computing $\int_0^T w(t) X_t^m dt$
- computing the estimate

benefit: variance reduction

$$\sigma_{\text{new}}^2 \big/ \sigma_{\text{old}}^2$$

highly correlated variates

approach: correlations between candidates and the target RV

[BBW19; BBW22]

Selection by filtering

filter criteria:

- 1. low target correlation
- 2. various redundancy heuristics

boundary ϕ $\phi_{sq}(\bar{\rho}) = 1 - \left(\frac{1-\bar{\rho}}{1-\rho_{\min}}\right)^2$

 $\phi_q(\bar{\rho}) = 1 - (1 - \bar{\rho})^2$

 $\phi_t(\bar{\rho}) = \bar{\rho}_{ij}$ Model

Dimerization

◆ Exclusive Switch

Dist. Modification

[BBW19]

Selection by resampling

resampling: proportional to improvement

selection: greedy by improvement

Results:

- performance equal/better than Alg. 1
- less hyper-parameter headaches

[BBW22]

Aggregation & refinement

Finite-space projection

Original

- very large/infinite
- impossible to analyze

Sink state

- transient analysis
- keep track of approx. error

Redirection

- stationary dist.
- dependent on redirection

State-space aggregation

Treating hyper-cubes of states as one

- hyper-cube macro-states
- assumption: uniform dist. within
- closed-form transition rates

- resulting distribution more "flat"
- locate main probability mass

Iterative refinement algorithm

A simple refinement based on approximate solutions:

- 1. start with macro-states of size 2k
- 2. compute approximate distribution
- 3. remove states with low probability
- 4. split the remaining states
- 5. go to step 2

[Bac+21b; Bac+21a]

Bridging problem

Dynamical analysis under initial and terminal constraints

Forward probabilities π

How the process evolves with time: $\text{Pr}(X_t = \boldsymbol{x} \mid X_0 = 0)$

Backward probabilities β

Probability of ending up in a given state: $Pr(X_T = 40 \mid X_t = x)$

Bridging probabilities γ

In between: $Pr(X_t = x \mid X_0 = 0, X_T = 40)$

[Bac+21b]

Bridging problem

Refinement

bridging distribution:

$$\gamma(x_{\text{i}},t) = \pi(x_{\text{i}},t)\beta(x_{\text{i}},t)/\pi(x_{\text{g}},T)$$

- record intermediary times
- remove or split based on $\hat{\gamma}(x_i, t)$

[Bac+21b]

Bridging problem

Bayesian filtering in an SEIR model

$$S + I \rightarrow E + I$$
 $E \rightarrow I$ $I \rightarrow R$

We know:

- ▶ initial state
- uncertain measurement of I at T = 0.3

We are interested in the posterior at T.

Contributions

- local augmentation of Foster-Lyapunov functions
- bounding of mean first-passage times [BBW20]
- ▶ variance reduction for MC estimation [BBW19; BBW22]
- state-space aggregation scheme
 - stationary distribution [Bac+21a]
 - bridging distribution [Bac+21b]
 - importance sampling

References I

- [BBW20] Michael Backenköhler, Luca Bortolussi, and Verena Wolf.
 "Bounding Mean First Passage Times in Population
 Continuous-Time Markov Chains". In: 17th International
 Conference on Quantitative Evaluation of SysTems. Vol. 12289.
 Lecture Notes in Computer Science. Springer, 2020, pp. 155–174.
- [BBW19] Michael Backenköhler, Luca Bortolussi, and Verena Wolf. "Control Variates for Stochastic Simulation of Chemical Reaction Networks". In: 17th International Conference on Computational Methods in Systems Biology. Vol. 11773. Lecture Notes in Computer Science. Springer, 2019, pp. 42–59.
- [BBW22] Michael Backenköhler, Luca Bortolussi, and Verena Wolf.

 "Variance Reduction in Stochastic Reaction Networks using
 Control Variates". In: Principles of Systems Design Essays
 Dedicated to Thomas A. Henzinger on the Occasion of His 60th
 Birthday. Vol. 13660. Lecture Notes in Computer Science.
 Springer, 2022.

References II

- [Bac+21a] Michael Backenköhler et al. "Abstraction-Guided Truncations for Stationary Distributions of Markov Population Models". In: 18th International Conference on Quantitative Evaluation of SysTems. Vol. 12846. Lecture Notes in Computer Science. Springer, 2021, pp. 351–371.
- [Bac+21b] Michael Backenköhler et al. "Analysis of Markov Jump Processes under Terminal Constraints". In: 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Vol. 12651. Lecture Notes in Computer Science. Springer, 2021, pp. 210–229.

Results

- Exclusive Switch
- Dist. Modification

Linear control variates Results

► SMC can improve variance reduction

- less dependence on initial covariates
- more consistent performance