601.642/442: Modern Cryptography

Fall 2020

Last Time

- Proof via Reduction: f_{\times} is a weak OWF
- Amplification: From weak to strong OWFs

Today

- Hard Core Predicate
- 1-bit stretch PRGs from hard core predicate.

• OWFs guarantee that f(x) hides x but nothing more!

- OWFs guarantee that f(x) hides x but nothing more!
 - \bullet E.g., it may not hide first bit of x,

- OWFs guarantee that f(x) hides x but nothing more!
 - E.g., it may not hide first bit of x,
 - \bullet Or even first half bits of x

- OWFs guarantee that f(x) hides x but nothing more!
 - E.g., it may not hide first bit of x,
 - Or even first half bits of x
- In fact: if $\mathbf{a}(x)$ is any non-trivial information about x, we don't know if f(x) will hide it (except when $\mathbf{a}(x) = x$)

- OWFs guarantee that f(x) hides x but nothing more!
 - E.g., it may not hide first bit of x,
 - \bullet Or even first half bits of x
- In fact: if $\mathbf{a}(x)$ is any non-trivial information about x, we don't know if f(x) will hide it (except when $\mathbf{a}(x) = x$)

Is there any non-trivial (non-identity) function of x, even 1 bit, that OWFs hide?

ullet A hard core predicate for a OWF f

- \bullet A hard core predicate for a OWF f
 - is a function over its inputs $\{x\}$

- ullet A hard core predicate for a OWF f
 - is a function over its inputs $\{x\}$
 - its output is a single bit (called "hard core bit")

- ullet A hard core predicate for a OWF f
 - is a function over its inputs $\{x\}$
 - its output is a single bit (called "hard core bit")
 - it can be easily computed given x

- ullet A hard core predicate for a OWF f
 - is a function over its inputs $\{x\}$
 - its output is a single bit (called "hard core bit")
 - it can be easily computed given x
 - but "hard to compute" given only f(x)

- ullet A hard core predicate for a OWF f
 - is a function over its inputs $\{x\}$
 - its output is a single bit (called "hard core bit")
 - it can be easily computed given x
 - but "hard to compute" given only f(x)
- <u>Intuition</u>: f may leak many bits of x but it does not leak the hard-core bit.
- In other words, learning the hardcore bit of x, even given f(x), is "as hard as" inverting f itself.

- ullet A hard core predicate for a OWF f
 - is a function over its inputs $\{x\}$
 - its output is a single bit (called "hard core bit")
 - it can be easily computed given x
 - but "hard to compute" given only f(x)
- <u>Intuition</u>: f may leak many bits of x but it does not leak the hard-core bit.
- In other words, learning the hardcore bit of x, even given f(x), is "as hard as" inverting f itself.
- <u>Think</u>: What does "hard to compute" mean for a single bit?

- ullet A hard core predicate for a OWF f
 - is a function over its inputs $\{x\}$
 - its output is a single bit (called "hard core bit")
 - it can be easily computed given x
 - but "hard to compute" given only f(x)
- <u>Intuition</u>: f may leak many bits of x but it does not leak the hard-core bit.
- In other words, learning the hardcore bit of x, even given f(x), is "as hard as" inverting f itself.
- <u>Think</u>: What does "hard to compute" mean for a single bit?
 - you can always guess the bit with probability 1/2.

Hard Core Predicate: Definition

• Hard-core bit cannot be learned or "predicted" or "computed" with probability $> \frac{1}{2} + \nu(|x|)$ even given f(x) (where ν is a negligible function)

Hard Core Predicate: Definition

• Hard-core bit cannot be learned or "predicted" or "computed" with probability $> \frac{1}{2} + \nu(|x|)$ even given f(x) (where ν is a negligible function)

Definition (Hard Core Predicate)

A predicate $h:\{0,1\}^* \to \{0,1\}$ is a hard-core predicate for $f(\cdot)$ if h is efficiently computable given x and there exists a negligible function ν s.t. for every non-uniform PPT adversary $\mathcal A$ and $\forall n \in \mathbb N$:

$$\Pr\left[x \leftarrow \{0,1\}^n : \mathcal{A}(1^n, f(x)) = h(x)\right] \leqslant \frac{1}{2} + \nu(n).$$

Hard Core Predicate: Definition

• Hard-core bit cannot be learned or "predicted" or "computed" with probability $> \frac{1}{2} + \nu(|x|)$ even given f(x) (where ν is a negligible function)

Definition (Hard Core Predicate)

A predicate $h:\{0,1\}^* \to \{0,1\}$ is a hard-core predicate for $f(\cdot)$ if h is efficiently computable given x and there exists a negligible function ν s.t. for every non-uniform PPT adversary $\mathcal A$ and $\forall n \in \mathbb N$:

$$\Pr\left[x \leftarrow \{0,1\}^n : \mathcal{A}(1^n, f(x)) = h(x)\right] \leqslant \frac{1}{2} + \nu(n).$$

Hard Core Predicate: Game Based Definition

It is also instructive to think of that definition in this game-based form.

Hard Core Predicate: Game Based Definition

It is also instructive to think of that definition in this game-based form.

Hard Core Predicate: Game Based Definition

It is also instructive to think of that definition in this game-based form.

We want that for all n.u. PPT adversary \mathcal{A} , the adversary wins with probability only at most negligible more than 1/2.

$$\Pr[\mathcal{A} \text{ wins}] \leq \frac{1}{2} + \nu(n).$$

Hard Core Predicate: Construction

ullet Can we construct hard-core predicates for general OWFs f?

Hard Core Predicate: Construction

- Can we construct hard-core predicates for general OWFs f?
- Define $\langle x, r \rangle$ to be the **inner product** function mod 2. I.e.,

$$\langle x, r \rangle = \left(\sum_{i} x_i r_i\right) \mod 2$$

Hard Core Predicate: Construction

- Can we construct hard-core predicates for general OWFs f?
- Define $\langle x, r \rangle$ to be the **inner product** function mod 2. I.e.,

$$\langle x, r \rangle = \left(\sum_{i} x_i r_i\right) \mod 2$$

Theorem (Goldreich-Levin)

Let f be a OWF. Define function

$$g(x,r) = (f(x),r)$$

where |x| = |r|. Then g is a OWF and

$$h(x,r) = \langle x, r \rangle$$

 $is\ a\ hard\text{-}core\ predicate\ for\ f$

Proof?

• Proof via Reduction?

Proof?

- Proof via Reduction?
- Main challenge: Adversary \mathcal{A} for h only outputs 1 bit. Need to build an inverter \mathcal{B} for f that outputs n bits.

• Assumption: Given g(x,r) = (f(x),r), adversary \mathcal{A} always (i.e., with probability 1) outputs h(x,r) correctly

- Assumption: Given g(x,r) = (f(x),r), adversary \mathcal{A} always (i.e., with probability 1) outputs h(x,r) correctly
- Inverter \mathcal{B} :

- Assumption: Given g(x,r) = (f(x),r), adversary \mathcal{A} always (i.e., with probability 1) outputs h(x,r) correctly
- Inverter \mathcal{B} :
 - Compute $x_i^* \leftarrow \mathcal{A}(f(x), e_i)$ for every $i \in [n]$ where:

$$e_i = (\underbrace{0, \dots, 0}_{(i-1)\text{-times}}, 1, \dots, 0)$$

- Assumption: Given g(x,r) = (f(x),r), adversary \mathcal{A} always (i.e., with probability 1) outputs h(x,r) correctly
- Inverter \mathcal{B} :
 - Compute $x_i^* \leftarrow \mathcal{A}(f(x), e_i)$ for every $i \in [n]$ where:

$$e_i = (\underbrace{0, \dots, 0}_{(i-1)\text{-times}}, 1, \dots, 0)$$

• Output $x^* = x_1^* \dots x_n^*$

• Assumption: Given g(x,r) = (f(x),r), adversary \mathcal{A} outputs h(x,r) with probability $3/4 + \varepsilon(n)$ (over choices of (x,r))

- Assumption: Given g(x,r) = (f(x),r), adversary \mathcal{A} outputs h(x,r) with probability $3/4 + \varepsilon(n)$ (over choices of (x,r))
- Main Problem: Adversary may not work on "improper" inputs (e.g., $r = e_i$ as in previous case)

- Assumption: Given g(x,r) = (f(x),r), adversary \mathcal{A} outputs h(x,r) with probability $3/4 + \varepsilon(n)$ (over choices of (x,r))
- Main Problem: Adversary may not work on "improper" inputs (e.g., $r = e_i$ as in previous case)
- Main Idea: Split each query into two queries s.t. each query individually looks random

- Assumption: Given g(x,r) = (f(x),r), adversary \mathcal{A} outputs h(x,r) with probability $3/4 + \varepsilon(n)$ (over choices of (x,r))
- Main Problem: Adversary may not work on "improper" inputs (e.g., $r = e_i$ as in previous case)
- Main Idea: Split each query into two queries s.t. each query individually looks random
- Inverter \mathcal{B} :

- Assumption: Given g(x,r) = (f(x),r), adversary \mathcal{A} outputs h(x,r) with probability $3/4 + \varepsilon(n)$ (over choices of (x,r))
- Main Problem: Adversary may not work on "improper" inputs (e.g., $r = e_i$ as in previous case)
- Main Idea: Split each query into two queries s.t. each query individually looks random
- Inverter \mathcal{B} :
 - Let $a := \mathcal{A}(f(x), e_i + r)$ and $b := \mathcal{A}(f(x), r)$, for $r \stackrel{\$}{\leftarrow} \{0, 1\}^n$

- Assumption: Given g(x,r) = (f(x),r), adversary \mathcal{A} outputs h(x,r) with probability $3/4 + \varepsilon(n)$ (over choices of (x,r))
- Main Problem: Adversary may not work on "improper" inputs (e.g., $r = e_i$ as in previous case)
- Main Idea: Split each query into two queries s.t. each query individually looks random
- Inverter \mathcal{B} :
 - Let $a := \mathcal{A}(f(x), e_i + r)$ and $b := \mathcal{A}(f(x), r)$, for $r \stackrel{\$}{\leftarrow} \{0, 1\}^n$
 - Compute $c := a \oplus b$

- Assumption: Given g(x,r) = (f(x),r), adversary \mathcal{A} outputs h(x,r) with probability $3/4 + \varepsilon(n)$ (over choices of (x,r))
- Main Problem: Adversary may not work on "improper" inputs (e.g., $r = e_i$ as in previous case)
- Main Idea: Split each query into two queries s.t. each query individually looks random
- Inverter \mathcal{B} :
 - Let $a := \mathcal{A}(f(x), e_i + r)$ and $b := \mathcal{A}(f(x), r)$, for $r \stackrel{\$}{\leftarrow} \{0, 1\}^n$
 - Compute $c := a \oplus b$
 - $c = x_i$ with probability at least $\frac{1}{2} + \varepsilon$ (Union Bound)

- Assumption: Given g(x,r) = (f(x),r), adversary \mathcal{A} outputs h(x,r) with probability $3/4 + \varepsilon(n)$ (over choices of (x,r))
- Main Problem: Adversary may not work on "improper" inputs (e.g., $r = e_i$ as in previous case)
- Main Idea: Split each query into two queries s.t. each query individually looks random
- Inverter \mathcal{B} :
 - Let $a := \mathcal{A}(f(x), e_i + r)$ and $b := \mathcal{A}(f(x), r)$, for $r \stackrel{\$}{\leftarrow} \{0, 1\}^n$
 - Compute $c := a \oplus b$
 - $c = x_i$ with probability at least $\frac{1}{2} + \varepsilon$ (Union Bound)
 - Repeat and take majority to obtain x_i^* s.t. $x_i^* = x_i$ with prob. $1 \mathsf{negl}(n)(n)$

- Assumption: Given g(x,r) = (f(x),r), adversary \mathcal{A} outputs h(x,r) with probability $3/4 + \varepsilon(n)$ (over choices of (x,r))
- Main Problem: Adversary may not work on "improper" inputs (e.g., $r = e_i$ as in previous case)
- Main Idea: Split each query into two queries s.t. each query individually looks random
- Inverter \mathcal{B} :
 - Let $a := \mathcal{A}(f(x), e_i + r)$ and $b := \mathcal{A}(f(x), r)$, for $r \stackrel{\$}{\leftarrow} \{0, 1\}^n$
 - Compute $c := a \oplus b$
 - $c = x_i$ with probability at least $\frac{1}{2} + \varepsilon$ (Union Bound)
 - Repeat and take majority to obtain x_i^* s.t. $x_i^* = x_i$ with prob. 1 negl(n)(n)
 - Output $x^* = x_1^* \dots x_n^*$

Try on your own

Try on your own (or read from lecture notes)

Try on your own (or read from lecture notes)

• Goldreich-Levin Theorem extremely influential even outside cryptography

Try on your own (or read from lecture notes)

- Goldreich-Levin Theorem extremely influential even outside cryptography
- Applications to learning, list-decoding codes, extractors,...

Try on your own (or read from lecture notes)

- Goldreich-Levin Theorem extremely influential even outside cryptography
- Applications to learning, list-decoding codes, extractors,...
- Extremely useful tool to add to your toolkit

• One-way functions are necessary for most of cryptography

- One-way functions are necessary for most of cryptography
- But often not sufficient. <u>Black-box</u> separations known [Impagliazzo-Rudich'89]; <u>full separations not known</u>

- One-way functions are necessary for most of cryptography
- But often not sufficient. <u>Black-box</u> separations known [Impagliazzo-Rudich'89]; <u>full separations not known</u>
- Additional Reading: Universal One-way Functions

- One-way functions are necessary for most of cryptography
- But often not sufficient. <u>Black-box</u> separations known [Impagliazzo-Rudich'89]; <u>full separations not known</u>
- Additional Reading: Universal One-way Functions
 - Suppose somebody tells you that OWFs exist! E.g., they might discover a proof for it!

- One-way functions are necessary for most of cryptography
- But often not sufficient. <u>Black-box</u> separations known [Impagliazzo-Rudich'89]; <u>full separations not known</u>
- Additional Reading: Universal One-way Functions
 - Suppose somebody tells you that OWFs exist! E.g., they might discover a proof for it!
 - But they don't tell you what this function is. E.g., even they might not know the function! They just have a proof of its existence...

- One-way functions are necessary for most of cryptography
- But often not sufficient. <u>Black-box</u> separations known [Impagliazzo-Rudich'89]; <u>full separations not known</u>
- Additional Reading: Universal One-way Functions
 - Suppose somebody tells you that OWFs exist! E.g., they might discover a proof for it!
 - But they don't tell you what this function is. E.g., even they might not know the function! They just have a proof of its existence...
 - Can you use this fact to build an **explicit** OWF?

- One-way functions are necessary for most of cryptography
- But often not sufficient. <u>Black-box</u> separations known [Impagliazzo-Rudich'89]; <u>full separations not known</u>
- Additional Reading: Universal One-way Functions
 - Suppose somebody tells you that OWFs exist! E.g., they might discover a proof for it!
 - But they don't tell you what this function is. E.g., even they might not know the function! They just have a proof of its existence...
 - Can you use this fact to build an **explicit** OWF?
 - Yes! Levin gives us a method!

Back to PRGs

(How to construct PRGs with 1-bit stretch)

 \bullet Here is another interesting way to talk about pseudorandomness

- Here is another interesting way to talk about pseudorandomness
- A pseudorandom string should pass all efficient tests that a (truly) random string would pass

- Here is another interesting way to talk about pseudorandomness
- A pseudorandom string should pass all efficient tests that a (truly) random string would pass
- Next Bit Test: for a truly random sequence of bits, it is not possible to predict the "next bit" in the sequence with probability better than 1/2 even given all previous bits of the sequence so far

- Here is another interesting way to talk about pseudorandomness
- A pseudorandom string should pass all efficient tests that a (truly) random string would pass
- Next Bit Test: for a truly random sequence of bits, it is not possible to predict the "next bit" in the sequence with probability better than 1/2 even given all previous bits of the sequence so far
- A sequence of bits passes the next bit test if no efficient adversary can predict "the next bit" in the sequence with probability better than 1/2 even given all previous bits of the sequence so far

Next-bit Unpredictability

Definition (Next-bit Unpredictability)

An ensemble of distributions $\{X_n\}$ over $\{0,1\}^{\ell(n)}$ is next-bit unpredictable if, for all $0 \le i < \ell(n)$ and n.u. PPT \mathcal{A} , \exists negligible function $\nu(\cdot)$ s.t.:

$$\Pr[t = t_1 \dots t_{\ell(n)} \leftarrow X_n \colon \mathcal{A}(t_1 \dots t_i) = t_{i+1}] \leqslant \frac{1}{2} + \nu(n)$$

Next-bit Unpredictability

Definition (Next-bit Unpredictability)

An ensemble of distributions $\{X_n\}$ over $\{0,1\}^{\ell(n)}$ is next-bit unpredictable if, for all $0 \le i < \ell(n)$ and n.u. PPT \mathcal{A} , \exists negligible function $\nu(\cdot)$ s.t.:

$$\Pr[t = t_1 \dots t_{\ell(n)} \leftarrow X_n \colon \mathcal{A}(t_1 \dots t_i) = t_{i+1}] \leqslant \frac{1}{2} + \nu(n)$$

Theorem (Completeness of Next-bit Test)

If $\{X_n\}$ is next-bit unpredictable then $\{X_n\}$ is pseudorandom.

$$H_n^{(i)} := \left\{ x \leftarrow X_n, u \leftarrow U_n \colon x_1 \dots x_i u_{i+1} \dots u_{\ell(n)} \right\}$$

$$H_n^{(i)} := \left\{ x \leftarrow X_n, u \leftarrow U_n \colon x_1 \dots x_i u_{i+1} \dots u_{\ell(n)} \right\}$$

• First Hybrid: H_n^0 is the uniform distribution $U_{\ell(n)}$

$$H_n^{(i)} := \left\{ x \leftarrow X_n, u \leftarrow U_n \colon x_1 \dots x_i u_{i+1} \dots u_{\ell(n)} \right\}$$

- First Hybrid: H_n^0 is the uniform distribution $U_{\ell(n)}$
- Last Hybrid: $H_n^{\ell(n)}$ is the distribution X_n

$$H_n^{(i)} := \left\{ x \leftarrow X_n, u \leftarrow U_n \colon x_1 \dots x_i u_{i+1} \dots u_{\ell(n)} \right\}$$

- First Hybrid: H_n^0 is the uniform distribution $U_{\ell(n)}$
- Last Hybrid: $H_n^{\ell(n)}$ is the distribution X_n
- \bullet Suppose $H_n^{(\ell(n))}$ is next-bit unpredictable but not pseudorandom

$$H_n^{(i)} := \left\{ x \leftarrow X_n, u \leftarrow U_n \colon x_1 \dots x_i u_{i+1} \dots u_{\ell(n)} \right\}$$

- First Hybrid: H_n^0 is the uniform distribution $U_{\ell(n)}$
- Last Hybrid: $H_n^{\ell(n)}$ is the distribution X_n
- Suppose $H_n^{(\ell(n))}$ is next-bit unpredictable but not pseudorandom
- $H_n^{(0)} \not\approx H_n^{(\ell(n))} \implies \exists \ i \in [\ell(n) 1] \text{ s.t. } H_n^{(i)} \not\approx H_n^{(i+1)}$

$$H_n^{(i)} := \left\{ x \leftarrow X_n, u \leftarrow U_n \colon x_1 \dots x_i u_{i+1} \dots u_{\ell(n)} \right\}$$

- First Hybrid: H_n^0 is the uniform distribution $U_{\ell(n)}$
- Last Hybrid: $H_n^{\ell(n)}$ is the distribution X_n
- Suppose $H_n^{(\ell(n))}$ is next-bit unpredictable but not pseudorandom
- $H_n^{(0)} \not\approx H_n^{(\ell(n))} \implies \exists \ i \in [\ell(n) 1] \text{ s.t. } H_n^{(i)} \not\approx H_n^{(i+1)}$
- Now, next bit unpredictability is violated

$$H_n^{(i)} := \left\{ x \leftarrow X_n, u \leftarrow U_n \colon x_1 \dots x_i u_{i+1} \dots u_{\ell(n)} \right\}$$

- First Hybrid: H_n^0 is the uniform distribution $U_{\ell(n)}$
- Last Hybrid: $H_n^{\ell(n)}$ is the distribution X_n
- Suppose $H_n^{(\ell(n))}$ is next-bit unpredictable but not pseudorandom
- $H_n^{(0)} \not\approx H_n^{(\ell(n))} \implies \exists \ i \in [\ell(n) 1] \text{ s.t. } H_n^{(i)} \not\approx H_n^{(i+1)}$
- Now, next bit unpredictability is violated
- Exercise: Do the full formal proof

• Hardcore predicate: It is hard to guess h(s) even given f(s)

- Hardcore predicate: It is hard to guess h(s) even given f(s)
- Let G(s) = f(s) ||h(s)| where f is a OWF

- Hardcore predicate: It is hard to guess h(s) even given f(s)
- Let G(s) = f(s) ||h(s)| where f is a OWF
- Some small issues:

- Hardcore predicate: It is hard to guess h(s) even given f(s)
- Let G(s) = f(s) ||h(s)| where f is a OWF
- Some small issues:
 - -|f(s)| might be less than |s|

- Hardcore predicate: It is hard to guess h(s) even given f(s)
- Let G(s) = f(s) ||h(s)| where f is a OWF
- Some small issues:
 - -|f(s)| might be less than |s|
 - -f(s) may always start with prefix 101 (not random)

- Hardcore predicate: It is hard to guess h(s) even given f(s)
- Let G(s) = f(s) ||h(s)| where f is a OWF
- Some small issues:
 - -|f(s)| might be less than |s|
 - -f(s) may always start with prefix 101 (not random)
- Solution: let f be a one-way permutation (OWP) over $\{0,1\}^n$

- Hardcore predicate: It is hard to guess h(s) even given f(s)
- Let G(s) = f(s) ||h(s)| where f is a OWF
- Some small issues:
 - -|f(s)| might be less than |s|
 - -f(s) may always start with prefix 101 (not random)
- Solution: let f be a one-way <u>permutation</u> (OWP) over $\{0,1\}^n$
 - Domain and Range are of same size, i.e., |f(s)| = |s| = n

- Hardcore predicate: It is hard to guess h(s) even given f(s)
- Let G(s) = f(s) ||h(s)| where f is a OWF
- Some small issues:
 - -|f(s)| might be less than |s|
 - -f(s) may always start with prefix 101 (not random)
- Solution: let f be a one-way permutation (OWP) over $\{0,1\}^n$
 - Domain and Range are of same size, i.e., |f(s)| = |s| = n
 - f(s) is uniformly distributed over $\{0,1\}^n$ if s is

- Hardcore predicate: It is hard to guess h(s) even given f(s)
- Let G(s) = f(s) ||h(s)| where f is a OWF
- Some small issues:
 - -|f(s)| might be less than |s|
 - -f(s) may always start with prefix 101 (not random)
- Solution: let f be a one-way permutation (OWP) over $\{0,1\}^n$
 - Domain and Range are of same size, i.e., |f(s)| = |s| = n
 - f(s) is uniformly distributed over $\{0,1\}^n$ if s is

$$\forall y : \Pr[f(s) = y] = \Pr[s = f^{-1}(y)] = 2^{-n}$$

- Hardcore predicate: It is hard to guess h(s) even given f(s)
- Let G(s) = f(s) ||h(s)| where f is a OWF
- Some small issues:
 - -|f(s)| might be less than |s|
 - -f(s) may always start with prefix 101 (not random)
- Solution: let f be a one-way permutation (OWP) over $\{0,1\}^n$
 - Domain and Range are of same size, i.e., |f(s)| = |s| = n
 - f(s) is uniformly distributed over $\{0,1\}^n$ if s is

$$\forall y : \Pr[f(s) = y] = \Pr[s = f^{-1}(y)] = 2^{-n}$$

 $\Rightarrow f(s)$ is uniformly distributed

- Let $f: \{0,1\}^* \to \{0,1\}^*$ be a **OWP**
- Let $h:\{0,1\}^* \to \{0,1\}$ be a hardcore predicate for f
- Construction: $G(s) = f(s) \parallel h(s)$

- Let $f: \{0,1\}^* \to \{0,1\}^*$ be a **OWP**
- Let $h:\{0,1\}^* \to \{0,1\}$ be a hardcore predicate for f
- Construction: $G(s) = f(s) \parallel h(s)$

Theorem (PRG based on OWP)

G is a pseudorandom generator with 1-bit stretch.

• Think: Proof?

- Let $f: \{0,1\}^* \to \{0,1\}^*$ be a **OWP**
- Let $h: \{0,1\}^* \to \{0,1\}$ be a hardcore predicate for f
- Construction: $G(s) = f(s) \parallel h(s)$

Theorem (PRG based on OWP)

G is a pseudorandom generator with 1-bit stretch.

- Think: Proof?
- <u>Proof Idea</u>: Use next-bit unpredictability. Since first n bits of the output are uniformly distributed (since f is a permutation), any adversary for next-bit unpredictability with non-negligible advantage $\frac{1}{p(n)}$ must be predicting the (n+1)th bit with advantage $\frac{1}{p(n)}$. Build an adversary for hard-core predicate to get a contradiction.