[CT]. Lin

1 5.1

Solution. in this problem we consider problems related to context free grammars $All_{CFG} = \{\langle G \rangle | G \text{ is a CFG and } L(G) = \Sigma^* \}$ be the language of all CFG_s that accepts all strings Also let

 $EQ_{CFG} = \{\langle \langle G_1G_2 \rangle \rangle | G_1 and G_2 are CFG_S \text{ and } L(G_1) = L(G_2) \}$

be the language of equivalentCFG_s

it is provided in the book that All_{CFG} is undecidable

Use the fact this fact that EQ_{CFG} is undecidable

2 5.4

Solution. No. For example, define the languages $A = \{0^n 1^n | n \ge 0\}$ and $B = \{1\}$, both over the alphabet $\Sigma = \{0,1\}$. Define the function $f: \Sigma^* - > \Sigma^*$ as f(w) = 1 if $w \in A$, or 0 if $w \notin A$ Observe that A is a context-free language, so it is also Turing-decidable. Thus, f is a computable function. Also, $w \in A$ if and only if f(w) = 1, which is true if and only if $f(w) \in B$. Hence, $A \le_m B$. Language A is nonregular, but B is regular since it is finite.

3 5.17

Solution. In the first stage, M checks for a single domino which forms a match. In the second stage, M looks for two dominos which form a match. If it finds such a pair, it can construct a match by picking $(b_j - a_j)$ copies of the ith domino, putting them together with $(a_i - b_i)$ copies of the jth domino. This construction has $a_i(b_j - a_j) + a_j(a_i - b_i) = a_ib_j - a_jb_i$ 1's on top, and $b_i(b_j - a_j) + b_j(a_i - b_i) = a_ib_j - a_jb_i$ 1's on the bottom. If neither stages of M accept, the problem instance contains dominos with all upper parts having more/less 1's than the lower parts. In such a case, no match exists and therefore M rejects.

4 5.24

Solution. Let A be the language $\{\langle M, x \rangle | M \text{ is a TM and M does not accept x} \}$. It is easy to check that A is not Turing-recognizable (by reduction from A_{TM}). We first show how to reduce A to J. This

D:20211207223811Z

is done by the reduction function f(w) = 1w, so that w is in A if and only if f(w) is in J. Obviously, the function f is computable. As A is not Turing-recognizable, J is not Turing-recognizable. We next show how to reduce reduce ATM to J. This is done by the reduction function g(w) = 0w, so that w is in ATM if and only if g(w) is in J. Again, the function g is computable. Since ATM is not Turing-recognizable, J is not Turing-recognizable.