Advanced Artificial Intelligence Assignment Report

The solution to a) was derived from the Artificial Neural Networks, workshop 2's example of collecting probabilities from data.

X=0	Z=1	P(Y X,Z)	P(Y X,¬Z)	No treatmen	t	
T	T	0.81	0.19	Z	P(x0 Z)	
T	F	0.48	0.52	TRUE	0.61	0.39
F	T	0.83	0.17	FALSE	0.04	0.96
F	F	0.55	0.45			
P(X=1)	P(Z=1)	P(Y X,Z)	P(Y X,¬Z)	Placebo		
T	T	0.76	0.24	Z	P(x1 Z)	
I	F	0.55	0.45	TRUE	0.49	0.51
<u>F</u>	T	0.87	0.13	FALSE	0.08	0.92
F	F	0.54	0.46			
P(X=2)	P(Z=1)	P(Y X,Z)	P(Y X,¬Z)	Medicine		
I	T	0.91	0.09	Z	P(x2 Z)	P(x2/X -Z)
I	F	0.55	0.45	TRUE	0.09	0.91
<u>F</u>	T	0.77	0.23	FALSE	0.902	0.098
<u>F</u>	F	0.54	0.46			
Z	0.728	0.272		Υ	0.746	0.254

This is possible for the values of X as well which give us a table of 12 elements.

For a given probability P(y,x,z), the expansion of this gives us the following:

To compute the intervention's probability for part b, I wrote a function that takes in the values of x,y and z and then computes the intervention for all given values of X=0,1,2 and Z=1,0. This returned the probability of Y being true and not being true for the cases

```
def y_do_x(y_x_z, y_x_not_z, y_not_x_z,y_not_x_not_z,z):
    y1_x1 = (y_x_z * z[t]) + (y_x_not_z * z[f])

y1_x0 = (y_not_x_z * z[t]) + (y_not_x_not_z * z[f])

return y1_x1, y1_x0

#Computes Y TRUE/FALSE given Z is TRUE
#AND Y TRUE/FALSE Given Z is false
```

```
y_do_x(p_y_x0_z1,p_y_x0_z0,p_y_x1_z1,p_y_x1_z0,Z)
(array([0.28259259, 0.71740741]), array([0.2998885, 0.7001115]))

y_do_x(p_y_x1_z1,p_y_x1_z0,p_y_x0_z1,p_y_x0_z0,Z)
(array([0.2998885, 0.7001115]), array([0.28259259, 0.71740741]))

y_do_x(p_y_x2_z1,p_y_x2_z0,p_y_x2_z1,p_y_x2_z0,Z)
```

For part C I based my solution on the workshop 3 example based on the condition that:

W in the full probability has no Parents and therefore the pre- and post-intervention are the same: P(y|do(w)) = P(y|w)

(array([0.18778731, 0.81221269]), array([0.18778731, 0.81221269]))

```
sum1 = Y_W(p_y_x1_z1,P_of_not_x1_given_z1,p_y_not_x1_z0,p_y_x1_z0,p_x1_z1,p_x1_z0,P_Z_W,P_W)#y/x1
sum0 = Y_W(p_y_x0_z1,P_of_not_x0_given_z1,p_y_not_x0_z0,p_y_x0_z0,p_x0_z1,P_x0_z0,P_Z_W,P_W)#y/x0
sum2 = Y_W(p_y_x2_z1,P_of_not_x2_given_z1,p_y_not_x2_z0,p_y_x2_z0,p_x2_z1,p_x2_z0,P_Z_W,P_W)#y/x2
Output = sum0+sum1+sum2
Output
```

0.7082547442053746

 $P(Y|w) = \alpha P(Y,w)$

References

Nicola, B. (2021) Lecture 3 – Bayesian Networks, University of Lincoln,25th October. Available from: https://blackboard.lincoln.ac.uk/webapps/blackboard/content/listContent.jsp?course_id=_166752_1&content_id=_5852525_1 [Accessed: 02/12/21]

Nicola, B. (2021) Lecture 6 – Casual Inference I, University of Lincoln, 15th November. Available from: https://blackboard.lincoln.ac.uk/ultra/courses/ 166752 1/cl/outline [Accessed: 02/12/21]