Wk13-2 : 군집분석

- 계층적 군집분석-

POSTECH

ⓒ포항공대 산업경영공학과 이혜선

1. 계층적 군집분석

13-2 계층적 군집분석

- •사전에 군집 수 k를 정하지 않고 단계적으로 군집을 형성한다.
- 유사한 객체들을 군집으로 묶고, 그 군집을 기반으로 그와 유사한 군집을 새로운 군집으로 묶어 가면서 군집을 계층적으로 구성함

POSTECH

2. 단일연결법

13-2 계층적 군집분석

- 군집 i와 군집 j의 유사성 척도로 두 군집의 모든 객체 쌍의 거리 중 가장 가까운 거리를 사용
 - 객체 쌍의 가장 짧은 거리가 작을수록 두 군집이 더 유사하다고 평가

3

3. 그 외 연결법

13-2 계층적 군집분석

- •완전연결법 (complete linkage method)
 - 두 군집의 모든 객체 쌍의 거리 중 가장 먼 거리를 사용

$$D(C_i, C_j) = \max_{u \in C_i, v \in C_j} d(u, v)$$

- 평균연결법 (average linkage method)
 - 두 군집의 모든 객체 쌍의 평균 거리를 사용

$$D(C_i, C_j) = \frac{1}{|C_i||C_j|} \sum_{u \in C, v \in C_i} d(u, v)$$
 (| C_i |: 군집 i 의 객체 수)

- 중심연결법 (centroid linkage method)
 - 두 군집의 중심 좌표

$$D(C_i, C_j) = d(c_i, c_j) \qquad c_i = (\overline{X_1}^{(i)}, \overline{X_2}^{(i)}, \dots, \overline{X_p}^{(i)})$$

$$\overline{X_k}^{(i)} = \frac{1}{|C_i|} \sum_{i \in C_i} X_{kj}, (k = 1, \dots, p)$$

4. 단일연결법 예제

•단일연결법을 사용한 군집화 과정 (유클리디안 거리 사용)

(1단계) 군집 사이 거리가 최소인 두 군집 4와 5를 묶어 하나의 군집으로 만든다.

ID	소득	브랜드 충성도
1	150	50
2	130	55
3	80	80
4	100	85
5	95	91

ID	1	2	3	4	5
1	0.0				
2	20.6	0.0			
3	76.2	55.9	0.0		
4	61.0	42.4	20.6	0.0	
5	68.6	50.2	18.6	7.8	0.0

POSTECH
POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY

4. 단일연결법 예제

13-2 계층적 군집분석

•단일연결법을 사용한 군집화 과정 (유클리디안 거리 사용)

(2단계) 군집 사이 거리가 최소인 두 군집 3과 (4,5)를 묶어 하나의 군집으로 만든다.

$$D\{(1), (4,5)\} = \min\{d_{14}, d_{15}\} = d_{14} = 61.0$$

$$D\{(2), (4,5)\} = \min\{d_{24}, d_{25}\} = d_{24} = 42.4$$

$$D\{(3), (4,5)\} = \min\{d_{34}, d_{35}\} = d_{35} = 18.6$$

ID	1	2	3	4	5
1	0.0				
2	20.6	0.0			
3	76.2	55.9	0.0		
4	61.0	42.4	20.6	0.0	
5	68.6	50.2	18.6	7.8	0.0

4. 단일연결법 예제

•단일연결법을 사용한 군집화 과정 (유클리디안 거리 사용)

$$D\{(1), (2)\} = \min\{d_{12}\} = d_{12} = 20.6$$

 $D\{(1), (3,4,5)\} = \min\{d_{13}, d_{14}, d_{15}\} = d_{14} = 61.0$
 $D\{(2), (3,4,5)\} = \min\{d_{23}, d_{24}, d_{25}\} = d_{24} = 42.4$

ID	1	2	3	4	5
1	0.0				
2	20.6	0.0			
3	76.2	55.9	0.0		
4	61.0	42.4	20.6	0.0	
5	68.6	50.2	18.6	7.8	0.0

(3단계) 군집 사이 거리가 최소인 두 군집 1과 2를 묶어 하나의 군집으로 만든다.

POSTECH

13-2 계층적 군집분석

4. 단일연결법 예제

- •덴드로그램은 군집 그룹과 유사성 수준을 표시하는 트리 다이어그램
 - 군집이 어떻게 형성되는지 확인하고 형성된 군집의 유사성 수준을 평가

POSTECH

5. 완전연결법 vs 평균연결법

- •데이터 설명
 - 1833년 영국 Lancashire 방직 공장 임금
 - 총 51개의 객체
 - 객체별 5개의 속성
 - 1) 나이(age)
 - 2) 남성 근로자 수(mnum)
 - 3) 남성 근로자 평균 임금(mwage)
 - 4) 여성 근로자 수(fnum)
 - 5) 여성 근로자 평균 임금(fwage)

```
age
age in years

mnum
number of male workers

mwage
average wage of male workers

fnum
number of female workers

fwage
average wage of female workers
```

> head(wages1833,n=10)						
	age	mnum	mwage	fnum	fwage	
1	10	204	30.5	122	35	
2	11	195	37.8	198	38	
3	12	245	43.0	241	44	
4	13	233	50.5	233	46	
5	14	256	56.5	236	59	
6	15	240	63.0	215	68	
7	16	204	83.5	256	72	
8	17	141	88.5	245	78	
9	18	164	141.0	279	90	
10	19	135	138.3	251	98	

0

5. 완전연결법 vs 평균연결법

13-2 계층적 군집분석

•데이터 불러오기

```
# lec13_2_clus.R
# Clustering
# Hierarchical Clustering
# Linkage method, Dendrogram

# wage1833.csv : the wages of Lancashire cotton factory

# set working directory
setwd("D:/tempstore/moocr/wk13")

# read csv file
wages1833
-read.csv(file="wages1833.csv")
head(wages1833)

# remove observations with the missing values
dat1<-wages1833
dat1<-na.omit(dat1)
str(dat1)
```

데이터 불러오기

결측치 데이터 삭제 (전처리)

5. 완전연결법 vs 평균연결법

• 계층적 군집분석 : hclust(거리계산결과, method="")

calculate distance between each nodes dist_data<-dist(dat1)

(1) 완전연결법 적용결과 (거리 계산은 유클리디안 사용)

POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY

11

5. 완전연결법 vs 평균연결법

13-2 계층적 군집분

(2) <u>평균연결법</u> 적용결과 (거리 계산은 유클리디안)

6. 워드 연결방법 (Ward's method)

(3) <u>워드방법을</u> 적용한 결과 (거리 계산은 유클리디안)

