Une sémantique dénotationnelle pour un compilateur synchrone vérifié

Paul Jeanmaire

Thèse encadrée par Timothy Bourke et Marc Pouzet

à l'ENS, Inria, équipe Parkas

20 décembre 2024


```
xs, ys, s1, s2, s3 : Stream svalue
H : History
bs := base of [xs]
H1 : Env.find r H = Some xs
H2 : Env.find _up H = Some s1
H3 : Env.find _pn H = Some s3
H4: Env.find n H = Some vs
H5: fbv (const bs (Venum 1)) s2 s1
H6 : sem_exp H bs ((_up and _n < 5) or (not _up and _n \leq 1)) s2
H7: sem exp H bs (0 fby n) s3
H8: sem exp H bs (if up then (pn + 1) else (pn - 1)) ys
Forall Str (\lambda v \Rightarrow match v with
 \mid present (Vint i) \Rightarrow
      Int.lt Int.zero i && Int.lt i (Int.repr 6) = true
  \Rightarrow \bot
 end) vs.
                       Vélus + CompCert
```


Approche proposée

Approche proposée

Approche proposée

	Kahn	Synchrone dénot.	Relationnelle
flots			
mécanique			
erreurs			

	Kahn	Synchrone dénot.	Relationnelle
flots			D^{∞}
Ŧ			$D := A \mid v$
mécanique			
erreurs			

	Kahn	Synchrone dénot.	Relationnelle
flots	$D^{\omega}=D^*\cup D^{\infty}$		D^{∞}
el)	$D^{\omega} = D^* \cup D^{\infty}$ $D := v$		$D := A \mid v$
mécanique			
erreurs			

	Kahn	Synchrone dénot.	Relationnelle
flots	$D^{\omega}=D^*\cup D^{\infty}$	$D^\omega = D^* \cup D^\infty$	D^{∞}
flo	D := v	$D := A \mid v$	$D := A \mid v$
mécanique			
erreurs			

	Kahn	Synchrone dénot.	Relationnelle
flots	$D^{\omega}=D^*\cup D^{\infty}$	$D^{\omega}=D^*\cup D^{\infty}$	D^{∞}
¥	D := v	$D := A \mid v$	$D := A \mid v$
mécanique			relations/prédicats conjonctions existence supposée
erreurs			

	Kahn	Synchrone dénot.	Relationnelle
ts	$D^{\omega}=D^*\cup D^{\infty}$	$D^\omega = D^* \cup D^\infty$	D^{∞}
flots	D := v	$D := A \mid v$	$D := A \mid v$
mécanique	dénotationnelle (ordre préfixe), $\bot=\epsilon$ fonctions continues et bloquantes calcul du point fixe des équations		relations/prédicats conjonctions existence supposée
erreurs			

	Kahn	Synchrone dénot.	Relationnelle
flots	$D^{\omega}=D^*\cup D^{\infty}$	$D^{\omega}=D^*\cup D^{\infty}$	D^{∞}
flo	D := v	$D := A \mid v$	$D := A \mid v$
mécanique	dénotationnelle (ordre préfixe), $\bot = \epsilon$ fonctions continues et bloquantes		relations/prédicats conjonctions
mé	calcul du point fixe des équations		existence supposée
erreurs			inexistantes

	Kahn	Synchrone dénot.	Relationnelle
flots	$D^{\omega}=D^*\cup D^{\infty}$	$D^\omega = D^* \cup D^\infty$	D^{∞}
flo	D := v	$D := A \mid v$	$D := A \mid v$
mécanique	dénotationnelle (ordre préfixe), $\bot = \epsilon$ fonctions continues et bloquantes calcul du point fixe des équations		relations/prédicats conjonctions existence supposée
	explicites (?)	explicites (?)	inexistantes
erreurs		(1)	

	Kahn	Synchrone dénot.	Relationnelle
flots	$D^{\omega}=D^*\cup D^{\infty}$	$D^\omega = D^* \cup D^\infty$	D^{∞}
flo	D := v	$D := A \mid v$	$D := A \mid v$
mécanique	dénotationnelle (ordre préfixe), $\bot=\epsilon$ fonctions continues et bloquantes calcul du point fixe des équations		relations/prédicats conjonctions existence supposée
erreurs	explicites (?)	explicites (?)	inexistantes

Problème d'encodage

- ightharpoonup comment parler de D^{ω} en Coq?
- ightharpoonup par exemple, filter : $(D o \mathbb{B}) o D^{\infty} o D^{\omega}$

C. Paulin-Mohring, A denotational semantics for Kahn networks in Coq, 2009

Domaines de Scott, $(\omega$ -)CPO, continuité, points fixes . . .

C. Paulin-Mohring, A denotational semantics for Kahn networks in Coq, 2009

Domaines de Scott, (ω -)CPO, continuité, points fixes . . .

fixp :
$$(D \rightarrow_c D) \rightarrow_c D$$

fixp
$$F \simeq_D F(\text{fixp } F)$$

$$\forall F \ P$$
, admissible $P \to P \perp \to (\forall x, \ P \ x \to P(F \ x)) \to P(\text{fixp } F)$

C. Paulin-Mohring, A denotational semantics for Kahn networks in Coq, 2009

Domaines de Scott, (ω -)CPO, continuité, points fixes . . .

$$\begin{split} & \mathsf{fixp} : (D \to_c D) \to_c D \\ & \mathsf{fixp} \ F \simeq_D F(\mathsf{fixp} \ F) \\ & \forall F \ P, \ \mathsf{admissible} \ P \to P \perp \to (\forall x, \ P \ x \to P(F \ x)) \to P(\mathsf{fixp} \ F) \end{split}$$

Construction de D^{ω}

```
CoInductive Str (D : Type) :=
    | Cons : D -> Str D -> Str D
    | Tau : Str D -> Str D.
```

CoFixpoint bot := Tau bot.

C. Paulin-Mohring, A denotational semantics for Kahn networks in Coq, 2009

Domaines de Scott, $(\omega$ -)CPO, continuité, points fixes . . .

fixp:
$$(D \to_c D) \to_c D$$

fixp $F \simeq_D F(\text{fixp } F)$
 $\forall F \ P$, admissible $P \to P \perp \to (\forall x, \ P \ x \to P(F \ x)) \to P(\text{fixp } F)$

Construction de D^{ω}

CoFixpoint bot := Tau bot.

C. Paulin-Mohring, A denotational semantics for Kahn networks in Coq, 2009

Domaines de Scott, $(\omega$ -)CPO, continuité, points fixes . . .

$$\begin{split} & \mathsf{fixp} : (D \to_c D) \to_c D \\ & \mathsf{fixp} \ F \simeq_D F(\mathsf{fixp} \ F) \\ & \forall F \ P, \ \mathsf{admissible} \ P \to P \perp \to (\forall x, \ P \ x \to P(F \ x)) \to P(\mathsf{fixp} \ F) \end{split}$$

Construction de D^{ω}

CoFixpoint bot := Tau bot.

C. Paulin-Mohring, A denotational semantics for Kahn networks in Coq, 2009

Domaines de Scott, $(\omega$ -)CPO, continuité, points fixes . . .

$$\begin{split} & \mathsf{fixp} : (D \to_c D) \to_c D \\ & \mathsf{fixp} \ F \simeq_D F(\mathsf{fixp} \ F) \\ & \forall F \ P, \ \mathsf{admissible} \ P \to P \perp \to (\forall x, \ P \ x \to P(F \ x)) \to P(\mathsf{fixp} \ F) \end{split}$$

Construction de D^{ω}

$$\perp \stackrel{\text{def}}{=} \tau \cdot \tau$$

$$[a; b] \stackrel{\text{def}}{=} a \cdot b \cdot \tau \cdot \tau \cdot \tau \cdot \tau \cdot \tau \cdot \tau \cdot \tau$$

$$\simeq \tau \cdot \tau \cdot a \cdot \tau \cdot b \cdot \tau \cdot \tau \cdot \tau \cdot \tau$$

C. Paulin-Mohring, A denotational semantics for Kahn networks in Coq, 2009

Domaines de Scott, $(\omega$ -)CPO, continuité, points fixes . . .

$$\begin{split} & \mathsf{fixp} : (D \to_c D) \to_c D \\ & \mathsf{fixp} \ F \simeq_D F(\mathsf{fixp} \ F) \\ & \forall F \ P, \ \mathsf{admissible} \ P \to P \perp \to (\forall x, \ P \ x \to P(F \ x)) \to P(\mathsf{fixp} \ F) \end{split}$$

Construction de D^{ω}

$$\perp \stackrel{\text{def}}{=} \tau \cdot \tau$$

$$[a; b] \stackrel{\text{def}}{=} a \cdot b \cdot \tau \cdot \tau \cdot \tau \cdot \tau \cdot \tau \cdot \tau \cdot \tau$$

$$\simeq \tau \cdot \tau \cdot a \cdot \tau \cdot b \cdot \tau \cdot \tau \cdot \tau \cdot \tau$$

$$\prec a \cdot b \cdot c \cdot \tau \cdot \tau \cdot \tau \cdot \tau \cdot \tau \cdot \tau$$

Bibliothèque de flots (suite)

C. Paulin-Mohring, A denotational semantics for Kahn networks in Coq, 2009

filter:
$$(A \to \mathbb{B}) \to A^{\omega} \to_{c} A^{\omega}$$

filter $f(a \cdot s) \simeq a \cdot \text{filter } fs$ si $(fa) = T$
filter $f(a \cdot s) \simeq \text{filter } fs$ si $(fa) = F$
filter $f \perp \simeq \bot$

Bibliothèque de flots (suite)

C. Paulin-Mohring, A denotational semantics for Kahn networks in Coq, 2009

filter:
$$(A \to \mathbb{B}) \to A^\omega \to_c A^\omega$$

filter $f(a \cdot s) \simeq a$ · filter fs si $(fa) = T$
filter $f(a \cdot s) \simeq$ filter fs si $(fa) = F$
filter $f \perp \simeq \bot$
map $f(a \cdot s) \simeq (fa)$ · map fs
map $f(a \cdot s) \simeq (fa)$ · map fs

Bibliothèque de flots (suite)

C. Paulin-Mohring, A denotational semantics for Kahn networks in Coq, 2009

filter:
$$(A \to \mathbb{B}) \to A^{\omega} \to_{c} A^{\omega}$$

filter $f(a \cdot s) \simeq a \cdot \text{filter } f(a \cdot s) \simeq \text{filter } f(a \cdot s) \simeq \text{filter } f(a \cdot s) = \text{F}$
filter $f(a \cdot s) \simeq \text{filter } f(a \cdot s$

$$\mathsf{map}: (A \to B) \to A^\omega \to_c B^\omega$$

$$\mathsf{map} \ f \ (a \cdot s) \simeq (f \ a) \cdot \mathsf{map} \ f \ s$$

$$\mathsf{map} \ f \ \bot \simeq \bot$$

zip :
$$(A \to B \to C) \to A^{\omega} \to_{c} B^{\omega} \to_{c} C^{\omega}$$

zip $f(a \cdot s_{1}) (b \cdot s_{2}) \simeq (f \ a \ b) \cdot zip \ f \ s_{1} \ s_{2}$
zip $f \ s \perp \simeq zip \ f \perp s \simeq \bot$

XS	Α	10	10	Α	10	10	
xs ys	Α	10	5	Α	2	1	
rs	Α	1	2	Α	5	10	

$$\begin{array}{ll} \mathsf{lift} & : \mathsf{Str} \to_c \mathsf{Str} \to_c \mathsf{Str} := \\ \mathsf{zip} & \end{array}$$

$$\frac{\text{LIFT } xs \ ys \ rs}{\text{LIFT } (A \cdot xs) (A \cdot ys) (A \cdot rs)}$$

$$\frac{\text{LIFT } xs \ ys \ rs}{\text{LIFT } (v_1 \cdot xs) (v_2 \cdot ys) (r \cdot rs)}$$

lift :
$$\operatorname{Str} \to_c \operatorname{Str} \to_c \operatorname{Str} := \operatorname{zip}(\lambda A, A \to A)$$

$$\frac{\text{LIFT } xs \ ys \ rs}{\text{LIFT } (A \cdot xs) (A \cdot ys) (A \cdot rs)}$$

$$\frac{\text{LIFT } xs \ ys \ rs}{\text{LIFT } (v_1 \cdot xs) (v_2 \cdot ys) (r \cdot rs)}$$


```
\begin{array}{l} \mathsf{lift} & : \mathsf{Str} \to_c \mathsf{Str} \to_c \mathsf{Str} := \\ \mathsf{zip} \left( \lambda \ \mathsf{A}, \mathsf{A} \to \mathsf{A} \right. \\ & \mid v_1, v_2 \to \left( \mathsf{match} \ v_1 \div v_2 \ \mathsf{with} \right. \\ & \mid \mathsf{Some} \ r \to r \\ & \mid \mathsf{None} \to \mathsf{err}_{\mathsf{rt}} \right) \\ & \\ \left. \right) \end{array}
```

$$\frac{\text{LIFT } xs \ ys \ rs}{\text{LIFT } (A \cdot xs) (A \cdot ys) (A \cdot rs)}$$

$$\frac{\text{LIFT } xs \ ys \ rs}{\text{LIFT } (v_1 \cdot xs) (v_2 \cdot ys) (r \cdot rs)}$$

$$\begin{array}{ll} \mathsf{lift} & : \mathsf{Str} \to_c \mathsf{Str} \to_c \mathsf{Str} := \\ \mathsf{zip} \left(\lambda \ \mathsf{A}, \mathsf{A} \to \mathsf{A} \right. \\ & \mid v_1, v_2 \to \left(\mathsf{match} \ v_1 \div v_2 \ \mathsf{with} \right. \\ & \mid \mathsf{Some} \ r \to r \\ & \mid \mathsf{None} \to \mathsf{err}_{\mathsf{rt}} \right) \\ & \mid v, \mathsf{A} \mid \mathsf{A}, v \to \mathsf{err}_{\mathsf{sync}} \\ & \mid \right) \end{array}$$

LIFT xs ys rs

LIFT
$$(A \cdot xs) (A \cdot ys) (A \cdot rs)$$

LIFT xs ys rs $v_1 \div v_2 = \text{Some } r$

LIFT $(v_1 \cdot xs) (v_2 \cdot ys) (r \cdot rs)$

lift : Str →_c Str →_c Str :=
$$zip (\lambda A, A \to A)$$
| $v_1, v_2 \to (match \ v_1 \div v_2 \ with)$
| Some $r \to r$
| None → err_{rt})
| $v, A \mid A, v \to err_{sync}$
| $err, v_1 \mid v_2 \mid v_3 \mid v_4 \mid A$

$$\frac{\text{LIFT } xs \ ys \ rs}{\text{LIFT } (A \cdot xs) (A \cdot ys) (A \cdot rs)}$$

$$\frac{\text{LIFT } xs \ ys \ rs}{\text{LIFT } (v_1 \cdot xs) (v_2 \cdot ys) (r \cdot rs)}$$

$$\begin{array}{ll} \mathsf{lift} & : \mathsf{Str} \to_c \mathsf{Str} \to_c \mathsf{Str} := \\ \mathsf{zip} \left(\lambda \ \mathsf{A}, \mathsf{A} \to \mathsf{A} \right. \\ & \mid v_1, v_2 \to \left(\mathsf{match} \ v_1 \div v_2 \right. \mathsf{with} \\ & \mid \mathsf{Some} \ r \to r \\ & \mid \mathsf{None} \to \mathsf{err}_{\mathsf{rt}} \right) \\ & \mid v, \mathsf{A} \mid \mathsf{A}, v \to \mathsf{err}_{\mathsf{sync}} \\ & \mid \mathsf{err}, _ \mid _, \mathsf{err} \to \mathsf{err} \right) \end{array}$$

$$\frac{\text{LIFT } xs \ ys \ rs}{\text{LIFT } (A \cdot xs) (A \cdot ys) (A \cdot rs)}$$

$$\frac{\text{LIFT } xs \ ys \ rs}{\text{LIFT } (v_1 \cdot xs) (v_2 \cdot ys) (r \cdot rs)}$$

Théorème : si lift xs ys est sans erreurs, alors LIFT xs ys (lift xs ys)

```
\begin{split} \mathsf{lift}^{\#} : \mathsf{Str} \to_{c} \mathsf{Str} \to_{c} \mathsf{Str} := \\ \mathsf{zip} \left( \lambda \xrightarrow{\mathsf{A}, \mathsf{A} \to \mathsf{A}} \right. \\ \mid v_{1}, v_{2} \to \left( \mathsf{match} \ v_{1} \div v_{2} \right. \mathsf{with} \\ \mid \mathsf{Some} \ r \to r \\ \mid \mathsf{None} \to \mathsf{err}_{\mathsf{rt}} \right) \\ \mid \underbrace{v, \mathsf{A} \mid \mathsf{A}, v \to \mathsf{err}_{\mathsf{sync}}}_{\mid \mathsf{err}, \_\mid \_, \mathsf{err} \to \mathsf{err} \right) \end{split}
```

```
\frac{\text{LIFT xs ys rs}}{\text{LIFT (A \cdot xs) (A \cdot ys) (A \cdot rs)}}
\frac{\text{LIFT xs ys rs}}{\text{LIFT (v_1 \cdot xs) (v_2 \cdot ys) (r \cdot rs)}}
```

- Théorème : si lift xs ys est sans erreurs, alors LIFT xs ys (lift xs ys)
- Théorème : et aussi, $[\text{lift } xs \ ys]_A \simeq [\text{lift}^\# [xs]_A [ys]_A]$

XS	5	5	5	5	5	5	
ys	6	7	8	9	10	11	
rs	5	6	7	8	9	10	• • •

fby
$$^{\#}: \mathsf{Str} \to_c \mathsf{Str} \to_c \mathsf{Str}$$
fby $^{\#} \perp ys \simeq \bot$
fby $^{\#} (v \cdot xs) \ ys \simeq v \cdot ys$

fby# :
$$\operatorname{Str} \to_c \operatorname{Str} \to_c \operatorname{Str}$$
fby# $\perp ys \simeq \perp$
fby# $(v \cdot xs) \ ys \simeq v \cdot ys$

FBY xs ys rs

FBY
$$(A \cdot xs)$$
 $(A \cdot ys)$ $(A \cdot rs)$

FBY $(a \cdot xs)$ $(a \cdot ys)$ $(a \cdot rs)$

FBY $(a \cdot xs)$ $(a \cdot ys)$ $(a \cdot rs)$

FBY $(a \cdot xs)$ $(a \cdot ys)$ $(a \cdot rs)$

FBY $(a \cdot xs)$ $(a \cdot ys)$ $(a \cdot rs)$

FBY $(a \cdot xs)$ $(a \cdot ys)$ $(a \cdot rs)$

FBY $(a \cdot xs)$ $(a \cdot ys)$ $(a \cdot rs)$

fby
$$^{\#}$$
: Str \rightarrow_c Str \rightarrow_c Str
fby $^{\#}$ \perp $ys \simeq \bot$
fby $^{\#}$ $(v \cdot xs)$ $ys \simeq v \cdot ys$

Synchrone dénotationnel

- quelles erreurs?
- x = 0 fby (x + 1)?

fby
$$(A \cdot xs)$$
 $ys := A \cdot fby_A xs ys$
fby $(v \cdot xs)$ $ys := v \cdot fby'_1$ None xs ys

$$fby'_1$$
 None $xs(v \cdot ys) := fby_1 v xs ys$

$$fby_A xs (A \cdot ys) := fby xs ys$$

$$\begin{aligned} &\text{fby}_1 \ v \ (\textbf{A} \cdot xs) \ ys := \textbf{A} \cdot \text{fby}_1' \ (\text{Some } v) \ xs \ ys \\ &\text{fby}_1 \ v \ (v_x \cdot xs) \ ys := v \cdot \text{fby}_1' \ \text{None} \ xs \ ys \end{aligned}$$

fby
$$(A \cdot xs)$$
 $ys := A \cdot fby_A xs ys$
fby $(v \cdot xs)$ $ys := v \cdot fby'_1$ None xs ys
fby $(err \cdot xs)$ $ys := err \cdot map(\lambda x. err) xs$
fby_A xs $(A \cdot ys) := fby xs ys$
fby_A xs $(err \cdot ys) := map(\lambda x. err) xs$
fby_A xs $(v \cdot ys) := map(\lambda x. err_{sync}) xs$

$$\begin{aligned} \mathsf{fby}_1' \ \mathsf{None} \ xs \ (v \cdot ys) &:= \mathsf{fby}_1 \ v \ xs \ ys \\ \mathsf{fby}_1' \ (\mathsf{Some} \ v) \ xs \ (\mathsf{A} \cdot ys) &:= \mathsf{fby}_1 \ v \ xs \ ys \\ \mathsf{fby}_1' \ _ \ xs \ (\mathsf{err} \cdot ys) &:= \mathsf{map} \ (\lambda x. \ \mathsf{err}) \ xs \\ \mathsf{fby}_1' \ _ \ xs \ (_ \cdot ys) &:= \mathsf{map} \ (\lambda x. \ \mathsf{err}_\mathsf{sync}) \ xs \\ \mathsf{fby}_1 \ v \ (\mathsf{A} \cdot xs) \ ys &:= \mathsf{A} \cdot \mathsf{fby}_1' \ (\mathsf{Some} \ v) \ xs \ ys \\ \mathsf{fby}_1 \ v \ (\mathsf{v}_x \cdot xs) \ ys &:= v \cdot \mathsf{fby}_1' \ \mathsf{None} \ xs \ ys \\ \mathsf{fby}_1 \ v \ (\mathsf{err} \cdot xs) \ ys &:= \mathsf{err} \cdot \mathsf{map} \ (\lambda x. \ \mathsf{err}) \ xs \end{aligned}$$

fby
$$(A \cdot xs)$$
 $ys := A \cdot fby_A xs ys$
fby $(v \cdot xs)$ $ys := v \cdot fby'_1$ None xs ys
fby $(err \cdot xs)$ $ys := err \cdot map (\lambda x. err) xs$
fby_A xs $(A \cdot ys) := fby xs ys$
fby_A xs $(err \cdot ys) := map (\lambda x. err) xs$
fby_A xs $(v \cdot ys) := map (\lambda x. err_{sync}) xs$

$$\begin{aligned} &\text{fby}_1' \; \mathsf{None} \; xs \; (v \cdot ys) := \mathsf{fby}_1 \; v \; xs \; ys \\ &\text{fby}_1' \; \big(\mathsf{Some} \; v\big) \; xs \; (\mathsf{A} \cdot ys) := \mathsf{fby}_1 \; v \; xs \; ys \\ &\text{fby}_1' \; _ \; xs \; (\mathsf{err} \cdot ys) := \mathsf{map} \; (\lambda x. \; \mathsf{err}) \; xs \\ &\text{fby}_1' \; _ \; xs \; (_ \cdot ys) := \mathsf{map} \; (\lambda x. \; \mathsf{err}_{\mathsf{sync}}) \; xs \\ &\text{fby}_1 \; v \; (\mathsf{A} \cdot xs) \; ys := \mathsf{A} \cdot \mathsf{fby}_1' \; \big(\mathsf{Some} \; v\big) \; xs \; ys \\ &\text{fby}_1 \; v \; (v_x \cdot xs) \; ys := v \cdot \mathsf{fby}_1' \; \mathsf{None} \; xs \; ys \\ &\text{fby}_1 \; v \; (\mathsf{err} \cdot xs) \; ys := \mathsf{err} \cdot \mathsf{map} \; (\lambda x. \; \mathsf{err}) \; xs \end{aligned}$$

Théorème : si fby xs ys est sans erreurs, alors FBY xs ys (fby xs ys)

fby
$$(A \cdot xs)$$
 $ys := A \cdot fby_A xs ys$
fby $(v \cdot xs)$ $ys := v \cdot fby'_1$ None xs ys
fby $(err \cdot xs)$ $ys := err \cdot map(\lambda x. err) xs$
fby_A xs $(A \cdot ys) := fby xs ys$
fby_A xs $(err \cdot ys) := map(\lambda x. err) xs$
fby_A xs $(v \cdot ys) := map(\lambda x. err_{sync}) xs$

- Théorème : si fby xs ys est sans erreurs, alors FBY xs ys (fby xs ys)

[Bourke, Brun, Pouzet, 2020]

$$f \vdash [x_1 \cdot x_2 \cdot x_3 \cdot x_4] \Downarrow [y_1 \cdot y_2 \cdot y_3 \cdot y_4]$$

$$\land f \vdash [x_5 \cdot x_6 \cdot x_7] \Downarrow [y_5 \cdot y_6 \cdot y_7]$$

$$\land f \vdash [x_8] \Downarrow [y_8]$$

$$\land \cdots$$

[Bourke, Brun, Pouzet, 2020]

$$f \vdash [x_1 \cdot x_2 \cdot x_3 \cdot x_4] \Downarrow [y_1 \cdot y_2 \cdot y_3 \cdot y_4]$$

$$\land f \vdash [x_5 \cdot x_6 \cdot x_7] \Downarrow [y_5 \cdot y_6 \cdot y_7]$$

$$\land f \vdash [x_8] \Downarrow [y_8]$$

$$\land \cdots$$

$$(\mathsf{masquage} : [x_2 \cdot x_3] \equiv \mathsf{A} \cdot x_2 \cdot x_3 \cdot \mathsf{A} \cdot \mathsf{A} \cdots)$$

[Hamon, Pouzet, 2001]

```
reset<sub>f</sub> rs xs :=

let cs = true-until rs in

merge cs (f (when cs xs))

(reset<sub>f</sub> (whenot cs rs) (whenot cs xs))
```

[Bourke, Brun, Pouzet, 2020]

$$f \vdash [x_1 \cdot x_2 \cdot x_3 \cdot x_4] \Downarrow [y_1 \cdot y_2 \cdot y_3 \cdot y_4]$$

$$\land f \vdash [x_5 \cdot x_6 \cdot x_7] \Downarrow [y_5 \cdot y_6 \cdot y_7]$$

$$\land f \vdash [x_8] \Downarrow [y_8]$$

$$\land \cdots$$

$$(\mathsf{masquage} : [x_2 \cdot x_3] \equiv \mathsf{A} \cdot x_2 \cdot x_3 \cdot \mathsf{A} \cdot \mathsf{A} \cdots)$$

[Hamon, Pouzet, 2001]

```
reset<sub>f</sub> rs xs :=

let cs = \text{true-until } rs \text{ in}

merge cs (f (\text{when } cs xs))

(reset<sub>f</sub> (whenot cs rs) (whenot cs xs))
```

[Gérard, 2013]

$$\begin{array}{lll} \operatorname{sreset}_f \ rs \ xs & := \operatorname{sreset}_f' \ rs \ xs \ (f \ xs) \\ \operatorname{sreset}_f' \ (T \cdot rs) \ xs \ ys & \simeq \operatorname{sreset}_f' \ (F \cdot rs) \ xs \ (f \ xs) \\ \operatorname{sreset}_f' \ (F \cdot rs) \ (x \cdot xs) \ (y \cdot ys) & \simeq y \cdot (\operatorname{sreset}_f' \ rs \ xs \ ys) \\ \operatorname{sreset}_f' \ (A \cdot rs) \ (x \cdot xs) \ (y \cdot ys) & \simeq y \cdot (\operatorname{sreset}_f' \ rs \ xs \ ys) \end{array}$$

[Hamon, Pouzet, 2001]

```
reset<sub>f</sub> rs xs :=

let cs = \text{true-until } rs \text{ in}

merge cs (f (\text{when } cs xs))

(reset<sub>f</sub> (whenot cs rs) (whenot cs xs))
```

[Gérard, 2013]

```
\begin{array}{lll} \operatorname{sreset}_f \ rs \ xs & := \operatorname{sreset}_f' \ rs \ xs \ (f \ xs) \\ \operatorname{sreset}_f' \ (T \cdot rs) \ xs \ ys & \simeq \operatorname{sreset}_f' \ (F \cdot rs) \ xs \ (f \ xs) \\ \operatorname{sreset}_f' \ (F \cdot rs) \ (x \cdot xs) \ (y \cdot ys) & \simeq y \cdot (\operatorname{sreset}_f' \ rs \ xs \ ys) \\ \operatorname{sreset}_f' \ (A \cdot rs) \ (x \cdot xs) \ (y \cdot ys) & \simeq y \cdot (\operatorname{sreset}_f' \ rs \ xs \ ys) \end{array}
```

Théorème : si clock $(rs) \simeq \operatorname{clock}(xs)$ alors $\operatorname{reset}_f rs xs \simeq \operatorname{sreset}_f rs xs$

Constat : seules quelques opérations bien typées peuvent échouer (cf. CompCert/cfrontend/Cop.v)

Constat : seules quelques opérations bien typées peuvent échouer (cf. CompCert/cfrontend/Cop.v)

Constat : seules quelques opérations bien typées peuvent échouer (cf. CompCert/cfrontend/Cop.v)

Procédure : interdire ces opérations lorsque l'opérande est inconnue

- ► check-ops (4 % x) = F
- ightharpoonup check-ops (x / 2) = T

Constat : seules quelques opérations bien typées peuvent échouer (cf. CompCert/cfrontend/Cop.v)

```
n/0 n%0 n >> 64 n << 64
MIN_INT / -1 MIN_INT % -1
(int)NaN (int)Infty (int)2^63-1.0 (int)-2^63.0
```

Procédure : interdire ces opérations lorsque l'opérande est inconnue

- ► check-ops (4 % x) = F
- ightharpoonup check-ops (x / 2) = T
- **.**..
- Théorème : $\forall xs \ f$, si check-ops (f) = T alors no-run-time-errors $f \ xs$

Une correction de la compilation renforcée

```
Théorème (avant ^1)

si compile f = \mathsf{OK} asm

et welltyped-inputs f xs

et f \vdash xs \Downarrow ys

alors asm \Downarrow \langle \mathsf{Load} (xs(i)) \cdot \mathsf{Store} (ys(i)) \rangle_{i=0}^{\infty}
```

12/13

^{1.} avec machines à états

Une correction de la compilation renforcée

```
Théorème (avant 1)
             compile f = OK asm
       et welltyped-inputs f xs
       et f \vdash xs \Downarrow vs
            asm \Downarrow \langle Load(xs(i)) \cdot Store(ys(i)) \rangle_{i=0}^{\infty}
   alors
Théorème (après<sup>2</sup>)
             compile f = OK asm
             welltyped-inputs f xs
       et
            no-run-time-errors f xs
       et
            \exists ys, \ f \vdash xs \Downarrow ys \land asm \Downarrow \langle Load(xs(i)) \cdot Store(ys(i)) \rangle_{i=0}^{\infty}
   alors
```

^{1.} avec machines à états

^{2.} sans machines à états

Une correction de la compilation renforcée

```
Théorème (avant 1)
             compile f = OK asm
       et welltyped-inputs f xs
       et f \vdash xs \Downarrow vs
            asm \Downarrow \langle Load(xs(i)) \cdot Store(ys(i)) \rangle_{i=0}^{\infty}
   alors
Théorème (après<sup>2</sup>)
             compile f = OK asm
       et welltyped-inputs f xs
       et check-ops (f) = T
   alors \exists ys, f \vdash xs \Downarrow ys \land asm \Downarrow \langle Load(xs(i)) \cdot Store(ys(i)) \rangle_{i=0}^{\infty}
```

^{1.} avec machines à états

^{2.} sans machines à états

Nous avons défini :

 une sémantique dénotationnelle synchrone pour un langage à flots de données avec réinitialisation modulaire, dans le cadre du compilateur Vélus

- une sémantique dénotationnelle synchrone pour un langage à flots de données avec réinitialisation modulaire, dans le cadre du compilateur Vélus
- une modélisation précise des erreurs dans le contexte d'une évaluation par point fixe, dans Coq

- une sémantique dénotationnelle synchrone pour un langage à flots de données avec réinitialisation modulaire, dans le cadre du compilateur Vélus
- une modélisation précise des erreurs dans le contexte d'une évaluation par point fixe, dans Coq
- des critères de sa correspondance avec le modèle de Kahn

- une sémantique dénotationnelle synchrone pour un langage à flots de données avec réinitialisation modulaire, dans le cadre du compilateur Vélus
- une modélisation précise des erreurs dans le contexte d'une évaluation par point fixe, dans Coq
- des critères de sa correspondance avec le modèle de Kahn
- une analyse statique pour valider certaines exécutions

Nous avons défini :

- une sémantique dénotationnelle synchrone pour un langage à flots de données avec réinitialisation modulaire, dans le cadre du compilateur Vélus
- une modélisation précise des erreurs dans le contexte d'une évaluation par point fixe, dans Coq
- des critères de sa correspondance avec le modèle de Kahn
- une analyse statique pour valider certaines exécutions

Il reste à faire :

Nous avons défini :

- une sémantique dénotationnelle synchrone pour un langage à flots de données avec réinitialisation modulaire, dans le cadre du compilateur Vélus
- une modélisation précise des erreurs dans le contexte d'une évaluation par point fixe, dans Coq
- des critères de sa correspondance avec le modèle de Kahn
- une analyse statique pour valider certaines exécutions

Il reste à faire :

une extension aux automates hiérarchiques

Nous avons défini :

- une sémantique dénotationnelle synchrone pour un langage à flots de données avec réinitialisation modulaire, dans le cadre du compilateur Vélus
- une modélisation précise des erreurs dans le contexte d'une évaluation par point fixe, dans Coq
- des critères de sa correspondance avec le modèle de Kahn
- une analyse statique pour valider certaines exécutions

Il reste à faire :

- une extension aux automates hiérarchiques
- une analyse statique plus élaborée

Nous avons défini :

- une sémantique dénotationnelle synchrone pour un langage à flots de données avec réinitialisation modulaire, dans le cadre du compilateur Vélus
- une modélisation précise des erreurs dans le contexte d'une évaluation par point fixe, dans Coq
- des critères de sa correspondance avec le modèle de Kahn
- une analyse statique pour valider certaines exécutions

Il reste à faire :

- une extension aux automates hiérarchiques
- une analyse statique plus élaborée
- affiner les critères pour pouvoir raisonner sur le modèle de Kahn