CD40108BMS

December 1992

CMOS 4 x 4 Multiport Register

Features

- High Voltage Type (20V Rating)
- · Four 4-Bit Registers
- · One Input and Two Output Buses
- Unlimited Expansion in Bit and Word Directions
- · Data Lines have latched Inputs
- 3-State Outputs
- Separate Control of Each Bus, Allowing Simultaneous Independent Reading of Any of Four Registers on Bus A and Bus B and Independent Writing Into Any of the Four Registers
- CD40108BMS is Pin-Compatible with Industry Type MC14580
- Standardized Symmetrical Output Characteristics
- 100% Tested for Quiescent Current at 20V
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Noise Margin (Over Full Package/Temperature Range)
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- 5V, 10V and 15V Parametric Ratings
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Description

The CD40108BMS is a 4 x 4 multiport register containing four 4-bit registers, write address decoder, two separate read address decoders, and two 3-state output buses.

When the ENABLE input is low, the corresponding output bus is switched, independently of the clock, to a high-impedance state. The high-impedance third state provides the outputs with the capability of being connected to the bus lines in a bus-organized system without the need for interface or pull-up components.

When the WRITE ENABLE input is high, all data input lines are latched on the positive transition of the CLOCK and the data is entered into the word selected by the write address lines. When WRITE ENABLE is low, the CLOCK is inhibited and no new data is entered. In either case, the contents of any word may be accessed via the read address lines independent of the state of the CLOCK input.

The CD40108BMS is supplied in these 24-lead outline packages:

Braze Seal DIP H4V Ceramic Flatpack H4P

Applications

- Scratch-Pad Memories
- Arithmetic Units
- Data Storage

Absolute Maximum Ratings

DC Supply Voltage Range, (VDD) -0.5V to +20V (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs -0.5V to VDD +0.5V DC Input Current, Any One Input±10mA Operating Temperature Range -55°C to +125°C Package Types D, F, K, H Storage Temperature Range (TSTG) -65°C to +150°C Lead Temperature (During Soldering) +265°C At Distance $1/16 \pm 1/32$ Inch (1.59mm \pm 0.79mm) from case for 10s Maximum

Reliability Information

Thermal Resistance	θ_{ja}	θ _{jc} 20°C/W
Ceramic DIP and FRIT Package	80°C/W	20°C/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PD		
For $T_A = -55^{\circ}C$ to $+100^{\circ}C$ (Package Typ		
For $T_A = +100^{\circ}$ C to $+125^{\circ}$ C (Package T		
Lineari	ty at 12mW/	C to 200mW
Device Dissipation per Output Transistor .		100mW
For T _A = Full Package Temperature Ran	ige (All Pack	age Types)
Junction Temperature		+175°C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (1	NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	10	μА
				2	+125°C	-	1000	μА
		VDD = 18V, VIN = VDD or GND		3	-55°C	-	10	μА
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
					+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load		1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	/DD = 15V, No Load (Note 3)		1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.	4V	1	+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = ().5V	1	+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1	1.5V	1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.	6V	1	+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.	5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10	μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μΑ	4	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VD	DD or GND	7	+25°C	VOH>	VOL <	V
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2	/2 VDD/2	
		VDD = 18V, VIN = VD	D or GND	8A	+125°C	1		
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V
Tri-State Output	IOZL	VIN = VDD or GND	VDD = 20V	1	+25°C	-0.4	-	μА
Leakage		VOUT = 0V		2	+125°C	-12	-	μА
			VDD = 18V	3	-55°C	-0.4	-	μΑ
Tri-State Output	IOZH	VIN = VDD or GND	VDD = 20V	1	+25°C	-	0.4	μА
Leakage		VOUT = VDD		2	+125°C	-	12	μА
			VDD = 18V	3	-55°C	-	0.4	μΑ

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit implemented.

is 0.050V max.

2. Go/No Go test with limits applied to inputs.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay Clock	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	720	ns
or Write Enable to Q	TPLH1	(Note 1, 2)	10, 11	+125°C, -55°C	-	972	ns
Propagation Delay Read	TPHL2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	600	ns
or Write Address to Q	TPLH2	(Note 1, 2)	10, 11	+125°C, -55°C	-	810	ns
Propagation Delay 3-	TPZH	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
State Disable Delay Time	TPHZ	(Note 2, 3)	10, 11	+125°C, -55°C	-	270	ns
Propagation Delay 3-	TPZL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	260	ns
State Disable Delay Time	TPLZ	(Note 2, 3)	10, 11	+125°C, -55°C	-	351	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
	TTLH	(Note 1, 2)	10, 11	+125°C, -55°C	-	270	ns
Maximum Clock Input	FCL	VDD = 5V, VIN = VDD or GND	9	+25°C	1.5	-	MHz
Frequency		(Note 1, 2)	10, 11	+125°C, -55°C	1.11	-	MHz

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

			_		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX UN	
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	5	μА
				+125°C	-	150	μА
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	300	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	600	μΑ
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
				-55°C	-	-2.0	mA

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIN	IITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN MAX		UNITS	
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA	
				-55°C	-	-1.6	mA	
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA	
				-55°C	-	-4.2	mA	
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	V	
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	7	-	V	
Propagation Delay	TPLH1			+25°C	-	280	ns	
Clock or Write Enable to Q	TPHL1	VDD = 15V	1, 2, 3	+25°C	-	200	ns	
Propagation Delay	TPHL2	VDD = 10V	1, 2, 3	+25°C	-	240	ns	
Read or Write Address to Q	TPLH2	VDD = 15V	1, 2, 3	+25°C	-	170	ns	
Propagation Delay	TPZH	VDD = 10V	1, 2, 4	+25°C	-	100	ns	
3-State Disable Delay Time	TPHZ	VDD = 15V	1, 2, 4	+25°C	-	80	ns	
Propagation Delay	TPZL	VDD = 10V	1, 2, 4	+25°C	-	120	ns	
3-State Disable Delay Time	TPLZ	VDD = 15V	1, 2, 4	+25°C	-	100	ns	
Transition Time	TTLH	VDD = 10V	1, 2, 3	+25°C	-	100	ns	
TTHL		VDD = 15V	1, 2, 3	+25°C	-	80	ns	
Maximum Clock Input	FCL	VDD = 10V	1, 2, 3	+25°C	3.5	-	MHz	
Frequency		VDD = 15V	1, 2, 3	+25°C	4.5	-	MHz	
Minimum Data Setup T		VDD = 5V	1, 2, 3	+25°C	0		ns	
Time Data to Clock		VDD = 10V	1, 2, 3	+25°C	0		ns	
		VDD = 15V	1, 2, 3	+25°C	0		ns	
Minimum Data Setup	TS	VDD = 5V	1, 2, 3	+25°C	250		ns	
Time Write Enable to Clock		VDD = 10V	1, 2, 3	+25°C	100		ns	
Time Enable to Glock		VDD = 15V	1, 2, 3	+25°C	70		ns	
Minimum Data Setup	TS	VDD = 5V	1, 2, 3	+25°C	250		ns	
Time Write Address to Clock		VDD = 10V	1, 2, 3	+25°C	100		ns	
White Address to Clock		VDD = 15V	1, 2, 3	+25°C	70		ns	
Clock Rise and Fall Time	TRCL	VDD = 5V	1, 2, 3, 5	+25°C	-	15	ns	
	TFCL	VDD = 10V	1, 2, 3, 5	+25°C	-	5	ns	
		VDD = 15V	1, 2, 3, 5	+25°C	-	5	ns	
Minimum Hold Time Data	TH	VDD = 5V	2, 3	+25°C	220		ns	
to Clock		VDD = 10V	2, 3	+25°C	100		ns	
		VDD = 15V	2, 3	+25°C	80		ns	
Hold Time Write Enable	TH	VDD = 5V	2, 3	+25°C	-	270	ns	
to Clock		VDD = 10V	2, 3	+25°C	-	130	ns	
		VDD = 15V	2, 3	+25°C	-	80	ns	
Write Address to Clock	TH	VDD = 5V	2, 3	+25°C	-	330	ns	
		VDD = 10V	2, 3	+25°C	-	140	ns	
		VDD = 15V	2, 3	+25°C	-	90	ns	

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Minimum Clock Pulse	TW	VDD = 5V	3	+25°C	-	350	ns
Width Clock or Write Enable		VDD = 10V	3	+25°C	-	130	ns
		VDD = 15V	3	+25°C	-	90	ns
Minimum Clock Pulse	TW	VDD = 5V	3	+25°C	-	300	ns
Width Write Address		VDD = 10V	3	+25°C	-	150	ns
		VDD = 15V	3	+25°C	-	90	ns
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 4. CL = 50pF, RL = 1K, Input TR, TF < 20ns.
- 5. If more than one unit is cascaded, TRCL should be made less than or equal to the sumof the transition time and the fixed propagation delay of the output of the driving stage for the estimated capacitive load.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVΤΡ	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND VDD = 3V, VIN = VDD or GND	1	+25°C	VOH > VDD/2	VOL < VDD/2	V
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	± 1.0μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP	MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Pre Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Interim Test	1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	e 1)	100% 5004	1, 7, 9, Deltas	
Interim Test	3 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Not	e 1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
Subgroup B-6		Sample 5005	1, 7, 9	
Group D	•	Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND	RECORD	
CONFORMANCE GROUPS	METHOD	PRE-IRRAD POST-IRRAD		PRE-IRRAD	POST-IRRAD	
Group E Subgroup 2	1	1, 7, 9	Table 4	1, 9	Table 4	

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCILLATOR	
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Static Burn-In 1 (Note 1)	1, 2, 4 - 7, 22, 23	3, 8 - 12	24			
Static Burn-In 2 (Note 1)	1, 2, 4 - 7, 22, 23	2	3, 8 - 11, 13 - 21, 24			
Dynamic Burn- In (Note 1)	-	2	3, 15, 16, 21, 24	1, 2, 4 - 7, 22, 23	8, 11, 14, 19, 20	9, 10, 13, 17, 18
Irradiation (Note 2)	1, 2, 4 - 7, 22, 23	2	3, 8 - 11, 13 - 21, 24			

NOTES:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of 47K ± 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = 10V ± 0.5V

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (321) 724-7000

FAX: (321) 724-7000

EUROPE

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd.
Taiwan Limited
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310

FAX: (886) 2 2715 3029

Block Diagram

FIGURE 1.TRUTH TABLE

СГОСК	WRITE ENABLE	WRITE 1	WRITE 0	READ 1A	READ 0A	READ 1B	READ 0B	ENABLE A	ENABLE B	DN	QnA	QnB
	1	S1	S2	S1	S2	S1	S2	1	1	1	1	1
	1	S1	S2	S1	S2	S1	S2	1	1	0	0	0
Х	Х	Х	Х	Х	Х	Х	Х	0	0	Х	Z	Z
	1	0	0	0	1	1	0	1	1	Dn to word 0	Word 1 out	Word 2 out
	0	0	0	0	1	1	0	1		Word 0 not altered	Word 1 out	Word 2 out
Х	Х	Х	Х	1	0	0	1	1	1		Word 2 out	Word 1 out
	Х	Χ	Х	Х	Х	Х	Х	1	1	Х	NC	NC

1 = High Level X = Don't Care Z = High Impedance

S! and S2 refer to input states of either 1 or 0 $\,$

Typical Performance Characteristics

FIGURE 2. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 3. MIMIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

Typical Performance Characteristics (Continued) DRAIN-TO-SOURCE VOLTAGE (VDS) (V) DRAIN-TO-SOURCE VOLTAGE (VDS) (V) -10 AMBIENT TEMPERATURE $(T_A) = +25^{\circ}C$ AMBIENT TEMPERATURE $(T_A) = +25^{\circ}C$ OUTPUT HIGH (SOURCE) CURRENT (IOH) (mA) GATE-TO-SOURCE VOLTAGE (VGS) = -5V GATE-TO-SOURCE VOLTAGE (VGS) = -5V -10V -15V -15V -35 FIGURE 4. TYPICAL OUTPUT HIGH (SOURCE) CURRENT FIGURE 5. MINIMUM OUTPUT HIGH (SOURCE) CURRENT **CHARACTERISTICS CHARACTERISTICS** PROPAGATION DELAY TIME (tPLH, tPHL) (ns) AMBIENT TEMPERATURE $(T_A) = +25^{\circ}C$ AMBIENT TEMPERATURE $(T_A) = +25^{\circ}C$ 525 TRANSITION TIME (tTHL, tTLH) (ns) 450 SUPPLY VOLTAGE (VDD) = 5V 200 375 300 150 SUPPLY VOLTAGE (VDD) = 5V 225 100 10V 150 50 75 ·15V 0 10 40 50 60 70 100 100 LOAD CAPACITANCE (CL) (pF) LOAD CAPACITANCE (CL) (pF)

FIGURE 6. TYPICAL PROPAGATION DELAY TIME AS A FUNC-TION OF LOAD CAPACITANCE (CL OR WE TO Q)

FIGURE 7. TYPICAL TRANSISTION TIME AS A FUNCTION OF LOAD CAPACITANCE

10V

OUTPUT HIGH (SOURCE) CURRENT (IOH) (mA)

FIGURE 8. TYPICAL POWER DISSIPATION AS A FUNCTION OF INPUT FREQUENCY

CD40108BMS Schematic Diagram (Continued) **ENABLE** VDD VDD OUTPUT vss vss DETAIL OF 3-STATE OUTPUTS **DETAIL OF** MEMORY CELL FIGURE 9. (Continued) tW(CL) tH(D) tS(D) Dn ← tS(WE) tH(WE) tH(WA) tS(WA) tW(WA) WE WA tPHL tPLH_ tPHL tPLH tPLH tPHL ← tTLH ← tTHL FIGURE 10. TIMING DIAGRAM **0.1** μ**F** VDD 500 μ F CL CL 22 CL 21 CL 20 CL 19 **PULSE** GEN. 2 18 CL 17 **PULSE** ← REPETITIVE WAVEFORMS → CL GEN. 1 15 14 **PULSE** GEN. 3 13

FIGURE 11. POWER-DISSIPATION TEST CIRCUIT AND WAVEFORMS

FIGURE 12. OUTPUT-ENABLE-DELAY-TIMES TEST CIRCUIT AND WAVEFORMS

Chip Dimensions and Pad Layout

Dimensions in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10-3 inch).

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches