

Gaussian Mixture Models, Expectation Maximization

Gaussian Mixture Models

- Assume data came from mixture of Gaussians (elliptical data)
- Assign data to cluster with certain probability (soft clustering)

• Very similar at high-level to *k*-means: iterate between assigning examples and updating cluster centers

GMM Example

Univariate Gaussian Distribution

(scalar) random variable X

parameters: (scalar) mean μ , (scalar) variance σ^2

$$X \sim N(\mu, \sigma^2)$$
 $p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$

Multivariate Gaussian Distribution

random variable vector $\boldsymbol{X} = [X_1, ..., X_n]^T$ parameters: mean vector $\boldsymbol{\mu} \in \mathbb{R}^n$

covariance matrix Σ (symmetric, positive definite)

$$\boldsymbol{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \quad p(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^n |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right)$$

Covariance Matrix

Recall for pair of r.v.'s X and Y, covariance is defined as

$$cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

For $X = [X_1, ..., X_n]^T$, covariance matrix summarizes covariances across all pairs of variables:

$$m{\Sigma} = \mathbb{E}[(m{X} - \mathbb{E}[m{X}])(m{X} - \mathbb{E}[m{X}])^T]$$
 $m{\Sigma}$ is $n imes n$ matrix s.t. $\Sigma_{ij} = \mathrm{cov}(X_i,\,X_j)$

GMMs as Generative Model

- There are k components
- Component j
 - has associated mean vector $oldsymbol{\mu}_j$ and covariance matrix $oldsymbol{\Sigma}_i$
 - generates data from $N(oldsymbol{\mu}_j, oldsymbol{\Sigma}_j)$
- Each example $x^{(i)}$ is generated according to following recipe:
 - pick component j at random with probability ϕ_i
 - sample $\boldsymbol{x}^{(i)} \sim N(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$

GMM Optimization

Assume supervised setting (known cluster assignments)

MLE for univariate Gaussian

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$
 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \hat{\mu})^2$

sum over points generated

MLE for multivariate Gaussian

$$\hat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}^{(i)} \qquad \hat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} \left(\boldsymbol{x}^{(i)} - \hat{\boldsymbol{\mu}} \right) \left(\boldsymbol{x}^{(i)} - \hat{\boldsymbol{\mu}} \right)^{T}$$

Expectation Maximization

· Clever method for maximizing marginal likelihoods

$$\arg\max_{\theta} \prod_{i=1}^{n} P\left(\boldsymbol{x}^{(i)}\right) = \arg\max_{\theta} \prod_{i=1}^{n} \sum_{j=1}^{k} P\left(\boldsymbol{x}^{(i)}, z^{(i)} = j\right)$$

- Excellent approach for unsupervised learning
- Can do "trivial" things (upcoming example)
- One of most general unsupervised approaches with many other uses (e.g. HMM inference)

Overview

- Begin with guess for model parameters
- Repeat until convergence
 - Update latent variables based on our expectations [E-step]
 - Update model parameters to maximize log likelihood [M-step]

Silly Example

Let events be "grades in a class"

component 1 = gets an A $P(A) = \frac{1}{2}$

component 2 = gets a B P(B) = p

component 3 = gets a C P(C) = 2p

component 4 = gets a D $P(D) = \frac{1}{2} - 3p$ (note $0 \le p \le 1/6$)

Assume we want to estimate \ensuremath{p} from data. In a given class, there were

a A's, b B's, c C's, d D's.

What is the MLE of *p* given *a*, *b*, *c*, *d*?

so if class got

а	b	С	d
14	6	9	10

Same Problem with Hidden Information

Someone tells us that Remember

of high grades (A's + B's) = h P(A) = $\frac{1}{2}$

of C's = c P(B) = p

of D's = d P(C) = 2p

What is the MLE of p now? $P(D) = \frac{1}{2} - 3p$

We can answer this question circularly:

EXPECTATION If we know value of p,

we could compute $\ensuremath{\mathbf{expected}}$ values of a and b.

MAXIMIZATION | |

If we know expected values of a and b, we could compute maximum likelihood value of p.

EM for Our Silly Example

- Begin with initial guess for p
- Iterate between Expectation and Maximization to improve our estimates of p and $a \ \& \ b$
- Define $p^{(t)}$ = estimate of p on $t^{\rm th}$ iteration $b^{(t)}$ = estimate of b on $t^{\rm th}$ iteration
- Repeat until convergence

E-step
$$b^{(t)} = \frac{p^{(t)}}{\frac{1}{2} + p^{(t)}} h$$
 $= \mathbb{E}[b|p^{(t)}]$

M-step
$$p^{(t+1)} = rac{b^{(t)} + c}{6\left(b^{(t)} + c + d
ight)} =$$
 MLE of p given $b^{(t)}$

EM Convergence

- Good news: converging to local optima is guaranteed
- Bad news: local optima

Aside (idea behind convergence proof)

- likelihood must increase or remain same between each iteration [not obvious]
- likelihood can never exceed 1 [obvious]
- so likelihood must converge [obvious]

In our example, suppose we had

$$h = 20, c = 10, d = 10$$

 $p^{(0)} = 0$

Error generally decreases by constant factor each time step (e.g. convergence is linear)

t	$p^{(t)}$	$b^{(t)}$
0	0	0
1	0.0833	2.857
2	0.0937	3.158
3	0.0947	3.185
4	0.0948	3.187
5	0.0948	3.187
6	0.0948	3.187

Final Comments

EM is not magic

- Still optimizing non-convex function with lots of local optima
- Computations are just easier (often, significantly so!)

Problems

- EM susceptible to local optima
- ⇒ reinitialize at several different initial parameters

Extensions

- EM looks at maximum log likelihood of data
- ⇒also possible to look at maximum *a posteriori*

Clustering methods: Comparison

	Hierarchical	K-means	GMM
Running time	naively, O(N ³)	fastest (each iteration is linear)	fast (each iteration is linear)
Assumptions	requires a similarity / distance measure	strong assumptions	strongest assumptions
Input parameters	none	<i>K</i> (number of clusters)	K (number of clusters)
Clusters	subjective (only a tree is returned)	exactly <i>K</i> clusters	exactly <i>K</i> clusters