

Departamento de Engenharia Electrotécnica Instituto Superior de Engenharia do Porto

TESISTeoria dos Sistemas

Revisões da Transformada de Laplace e suas Aplicações

_

Exercícios Propostos e Soluções

1. Calcule a transformada de Laplace $F(s) = L\{f(t)\}$ dos seguintes sinais f(t), usando a definição:

a)
$$f(t) = u(t-2)$$

b)
$$f(t) = e^{-at}$$

c)
$$f(t) = \sin(t)$$

d)
$$f(t) = e^{-5t}u(t-1)$$

Solução:

a)
$$F(s) = \frac{e^{-2s}}{s}$$
, $\Re e\{s\} > 0$

b)
$$F(s) = \frac{1}{s+a}$$
, $\Re e\{s\} > -a$

c)
$$F(s) = \frac{1}{s^2 + 1}$$
, $\Re e\{s\} > 0$

d)
$$F(s) = \frac{e^{-(s+5)}}{s+5}$$
, $\Re e\{s\} > -5$

2. Usando os pares de transformadas da Tabela A e as propriedades listadas na Tabela B, calcule a transformada de Laplace $F(s) = L\{f(t)\}$ das seguintes funções f(t):

a)
$$f(t) = \cos(4t)$$

b)
$$f(t) = 3\sin(2t) - t\cos(4t)$$

c)

Sugestão: Decomponha f(t) como a soma de três funções envolvendo o atraso de três degraus unitários: u(t), u(t-4) e u(t-6).

d)
$$f(t) = \cos\left(4t + \frac{\pi}{3}\right)$$

e)
$$f(t) = t^2 \cos(2t)$$

f)
$$f(t) = e^{-3t} \cos\left(4t + \frac{\pi}{3}\right)$$

g)
$$f(t) = e^{-3t} \int_{0}^{t} t \sin(2t) dt$$

a)
$$F(s) = \frac{s}{s^2 + 16}$$

b)
$$F(s) = \frac{6}{s^2 + 4} - \frac{s^2 - 16}{(s^2 + 16)^2}$$

c)
$$F(s) = \frac{2}{s} - \frac{1}{s^2} e^{-4s} + \frac{1}{s^2} e^{-6s}$$

d)
$$F(s) = \frac{1/2s - 2\sqrt{3}}{s^2 + 16}$$

e)
$$F(s) = \frac{2s(s^2 - 12)}{(s^2 + 4)^3}$$

f)
$$F(s) = \frac{1/2s + (3/2 - 2\sqrt{3})}{s^2 + 6s + 25}$$

g)
$$F(s) = \frac{4}{((s+3)^2+4)^2}$$

3. Calcule a transformada inversa de Laplace $f(t) = L^{-1}\{F(s)\}$ das seguintes transformadas F(s):

a)
$$F(s) = \frac{s+1}{s^2}$$

b)
$$F(s) = \frac{s^2 - 3}{s + 2}$$

c)
$$F(s) = \frac{e^{-\tau s}}{s^2}$$

d)
$$F(s) = \frac{10}{s(s+1)(s+10)}$$

e)
$$F(s) = \frac{2s^2 + 10s + 11}{s^2 + 5s + 6}$$

f)
$$F(s) = \frac{1}{s(s^2 + s + 1)}$$

g)
$$F(s) = \frac{1}{s^2} (1 - 2.e^{-s} + e^{-2.s})$$
 e esboce o gráfico da função $f(t)$

h)
$$F(s) = \frac{s+3}{(s+1)(s+2)^2}$$

i)
$$F(s) = \frac{s^3 + 2s + 4}{(s^4 - 16)}$$

a)
$$f(t)=1+t$$
, $t \ge 0$

b)
$$f(t) = -2\delta(t) + \frac{d}{dt}\delta(t) + e^{-2t}, t > 0^{-1}$$

c)
$$f(t) = (t-\tau)u(t-\tau)$$

d)
$$f(t)=1-\frac{10}{9}e^{-t}+\frac{1}{9}e^{-10t}, \quad t\geq 0$$

e)
$$f(t) = 2\delta(t) - e^{-2t} + e^{-3t}$$
, $t > 0^{-1}$

f)
$$f(t) = 1 - 1.154e^{-0.5t} \cos(0.865t - 0.523), \quad t \ge 0$$

g)
$$f(t) = tu(t) - 2(t-1)u(t-1) + (t-2)u(t-2), t \ge 0$$

h)
$$f(t) = 2e^{-t} - (2+t)e^{-2t}$$
, $t \ge 0$

i)
$$f(t) = 0.25e^{-2t} + 0.5e^{2t} + 0.25\cos(2t) - 0.25\sin(2t)$$
, $t \ge 0$

4. Resolva as seguintes equações diferenciais para as entradas e condições iniciais especificadas:

a)
$$y''(t) + 5y'(t) + 4y(t) = x(t)$$
, $y(0) = y'(0) = 0$, $x(t) = 2e^{-2t}$

b)
$$y''(t) + y(t) = x(t)$$
, $y(0) = 1, y'(0) = -1, x(t) = t$
c) $y''(t) + 2y'(t) = e^t$, $y(0) = y'(0) = 0$

c)
$$y''(t) + 2y'(t) = e^t$$
, $y(0) = y'(0) = 0$

d)
$$y''(t) + y'(t) = \sin(t)$$
, $y(0) = \alpha$, $y'(0) = \beta$

e)
$$y'(t) + 3y(t) + 2\int_{0}^{t} y(t)dt = 1$$
, $y(0) = 1$

a)
$$y(t) = \frac{2}{3}e^{-t} - e^{-2t} + \frac{1}{3}e^{-4t}, \quad t \ge 0$$

b)
$$y(t) = t + \cos(t) - 2\sin(t)$$
, $t \ge 0$

c)
$$y(t) = -\frac{1}{2} + \frac{1}{6}e^{-2t} + \frac{1}{3}e^{t}, \quad t \ge 0$$

d)
$$y(t) = 1 - \frac{1}{2}e^{-t} - \frac{1}{2}\cos(t) - \frac{1}{2}\sin(t) + \alpha + \beta(1 - e^{-t}), \quad t \ge 0$$

e)
$$y(t) = e^{-2t}, t \ge 0$$

5. Analise os circuitos apresentados a seguir. Considere que os sistemas se encontram em repouso no instante em que o interruptor é fechado, para t = 0. Determine a corrente i(t)e a tensão aos terminais da inductância, $v_L(t)$, para $t \ge 0$.

a)
$$i(t) = 1 - e^{-t}$$
, $v_L(t) = e^{-t}$, $t \ge 0$

b)
$$i(t) = 0.04e^{-0.6t} \sin(1000t), \ v_L(t) = -32e^{-0.6t} \cos(1000t - 1.57), \ t \ge 0$$

6. Considere o circuito RC representado na figura seguinte. Assuma que o condensador C se encontra inicialmente descarregado. Determine a corrente i(t) e a tensão aos terminais do condensador, $v_c(t)$, quando à entrada é aplicado o sinal $v_i(t)$.

Solução

$$i(t) = (2 - 2e^{-t})u(t) + (-2 + 2e^{-(t-1)} - 2e^{-(t-1)})u(t-1)$$

$$v_C(t) = (-2 + 2t + 2e^{-t})u(t) - 2(t-1)u(t-1)$$

7. Considere o circuito RC representado na figura seguinte. O interruptor é fechado no instante t = 0. Assuma que o condensador C se encontra inicialmente carregado com uma tensão $v(0^-) = v_0$.

- a) Determine a corrente i(t).
- b) Determine a tensão aos terminais do condensador, $v_c(t)$.

Solução:

a)
$$i(t) = \frac{V - v_0}{R} e^{-\frac{t}{RC}}, \quad t \ge 0$$

b)
$$v_C(t) = V\left(1 - e^{-\frac{t}{RC}}\right) + v_0 e^{-\frac{t}{RC}}, \quad t \ge 0$$

8. Considere o circuito representado na figura seguinte. Os dois interruptores são fechados ao mesmo tempo no instante t = 0. As tensões nos condensadores C_1 e C_2 , antes de os interruptore serem fechados, são de 1 V e de 2 V, respectivamente.

- a) Determine as correntes $i_1(t)$ e $i_2(t)$.
- b) Determine as tensões aos terminais dos condensadores para $t = 0^+$, $v_{C_1}(0^+)$ e $v_{C_2}(0^+)$.

a)
$$i_1(t) = \delta(t) + \frac{3}{4}e^{-\frac{t}{4}}, i_2(t) = \delta(t) - \frac{3}{4}e^{-\frac{t}{4}}, t > 0^-$$

b)
$$v_{C_1}(0^+) = 2 \text{ V}, \ v_{C_2}(0^+) = 3 \text{ V}$$

Tabela A: Pares de Transformada de Laplace *

	f(t)	F(s)
1	Impulso unitário $\delta(t)$	1
2	Degrau unitário $u(t)$	$\frac{1}{s}$
3	Rampa unitária t	$\frac{1}{s^2}$
4	$\frac{t^{n-1}}{(n-1)!} (n=1, 2, 3, \ldots)$	$\frac{1}{s^n}$
5	$t^n (n=1,2,3,\ldots)$	$\frac{n!}{s^{n+1}}$
6	e^{-at}	$\frac{1}{s+a}$
7	te ^{-at}	$\frac{1}{(s+a)^2}$
8	$\frac{1}{(n-1)!}t^{n-1}e^{-at} (n=1,2,3,)$	$\frac{1}{(s+a)^n}$
9	$t^n e^{-at}$ $(n=1, 2, 3,)$	$\frac{n!}{(s+a)^{n+1}}$
10	$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$
11	$\cos(\omega t)$	$\frac{s}{s^2 + \omega^2}$
12	$\sinh(\omega t)$	$\frac{\omega}{s^2 - \omega^2}$
13	$\cosh(\omega t)$	$\frac{s}{s^2 - \omega^2}$
14	$\frac{1}{a}\left(1-e^{-at}\right)$	$\frac{1}{s(s+a)}$
15	$\frac{1}{b-a} \left(e^{-at} - e^{-bt} \right)$	$\frac{1}{(s+a)(s+b)}$
16	$\frac{1}{b-a} \Big(b e^{-bt} - a e^{-at} \Big)$	$\frac{s}{(s+a)(s+b)}$
17	$\frac{1}{ab}\left[1+\frac{1}{a-b}\left(be^{-at}-ae^{-bt}\right)\right]$	$\frac{1}{s(s+a)(s+b)}$
18	$\frac{1}{a^2} \left(1 - e^{-at} - ate^{-at} \right)$	$\frac{1}{s(s+a)^2}$

^{*} K. Ogata, *Modern Control Engineering*, Fourth Edition, Prentice-Hall, 2002.

(cont.)

(cont.)		
19	$\frac{1}{a^2} \left(at - 1 + e^{-at} \right)$	$\frac{1}{s^2(s+a)}$
20	$e^{-at}\sin(\omega t)$	$\frac{\omega}{\left(s+a\right)^2+\omega^2}$
21	$e^{-at}\cos(\omega t)$	$\frac{s+a}{\left(s+a\right)^2+\omega^2}$
22	$\frac{\omega_n}{\sqrt{1-\xi^2}}e^{-\xi\omega_n t}\sin\left(\omega_n\sqrt{1-\xi^2}t\right) (0<\xi<1)$	$\frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$
	$-\frac{1}{\sqrt{1-\xi^2}}e^{-\xi\omega_n t}\sin(\omega_n\sqrt{1-\xi^2}t-\phi)$	
23	$\phi = \tan^{-1} \left(\frac{\sqrt{1 - \xi^2}}{\xi} \right)$	$\frac{s}{s^2 + 2\xi\omega_n s + \omega_n^2}$
	$\left(0<\xi<1, 0<\phi<\frac{\pi}{2}\right)$	
24	$1 - \frac{1}{\sqrt{1 - \xi^2}} e^{-\xi \omega_n t} \sin \left(\omega_n \sqrt{1 - \xi^2} t + \phi \right)$	
	$\phi = \tan^{-1} \left(\frac{\sqrt{1 - \xi^2}}{\xi} \right)$	$\frac{\omega_n^2}{s(s^2 + 2\xi\omega_n s + \omega_n^2)}$
	$\left(0<\xi<1, 0<\phi<\frac{\pi}{2}\right)$	
25	$1-\cos(\omega t)$	$\frac{\omega^2}{s(s^2+\omega^2)}$
26	$\omega t - \sin(\omega t)$	$\frac{\omega^3}{s^2(s^2+\omega^2)}$
27	$\sin(\omega t) - \omega t \cos(\omega t)$	$\frac{2\omega^3}{\left(s^2+\omega^2\right)^2}$
28	$\frac{1}{2\omega}t\sin(\omega t)$	$\frac{s}{\left(s^2+\omega^2\right)^2}$
29	$t\cos(\omega t)$	$\frac{s^2 - \omega^2}{\left(s^2 + \omega^2\right)^2}$
30	$\frac{1}{\omega_2^2 - \omega_1^2} \left[\cos(\omega_1 t) - \cos(\omega_2 t) \right] \left(\omega_1^2 \neq \omega_2^2 \right)$	$\frac{s}{\left(s^2+\omega_1^2\right)\left(s^2+\omega_2^2\right)}$
31	$\frac{1}{2\omega}[\sin(\omega t) + \omega t \cos(\omega t)]$	$\frac{s^2}{\left(s^2+\omega^2\right)^2}$

Tabela B: Propriedades da Transformada de Laplace †

1	L[Af(t)] = AF(s)
2	$L[f_1(t) \pm f_2(t)] = F_1(s) \pm F_2(s)$
3	$L_{\pm} \left[\frac{d}{dt} f(t) \right] = sF(s) - f(0^{\pm})$
4	$L_{\pm}\left[\frac{d^2}{dt^2}f(t)\right] = s^2F(s) - sf(0^{\pm}) - \dot{f}(0^{\pm})$
5	$L_{\pm} \left[\frac{d^{n}}{dt^{n}} f(t) \right] = s^{n} F(s) - \sum_{k=1}^{n} s^{n-k} f^{(k-1)} (0^{\pm})$ onde $f^{(k-1)}(t) = \frac{d^{k-1}}{dt^{k-1}} f(t)$
6	$L_{\pm} \left[\int f(t) dt \right] = \frac{F(s)}{s} + \frac{1}{s} \left[\int f(t) dt \right]_{t=0^{\pm}}$
7	$L_{\pm} \left[\int \dots \int f(t) (dt)^{n} \right] = \frac{F(s)}{s^{n}} + \sum_{k=1}^{n} \frac{1}{s^{n-k+1}} \left[\int \dots \int f(t) (dt)^{k} \right]_{t=0^{\pm}}$
8	$L\left[\int_{0}^{t} f(t)dt\right] = \frac{F(s)}{s}$
9	$\int_{0}^{\infty} f(t)dt = \lim_{s \to 0} F(s) \text{ se } \int_{0}^{\infty} f(t)dt \text{ existe}$
10	$L[e^{-\alpha t}f(t)] = F(s+\alpha)$
11	$L[f(t-\alpha)u(t-\alpha)] = e^{-\alpha s}F(s), \alpha > 0$
12	$L[tf(t)] = -\frac{dF(s)}{ds}$
13	$L[t^2f(t)] = \frac{d^2}{ds^2}F(s)$
14	$L[t^n f(t)] = (-1)^n \frac{d^n}{ds^n} F(s), (n = 1, 2, 3,)$
15	$L\left[\frac{1}{t}f(t)\right] = \int_{s}^{\infty} F(s)ds \text{ se } \lim_{t \to 0}^{\infty} f(t) \text{ existe}$
16	$L\left[f\left(\frac{1}{a}\right)\right] = aF(as)$
17	$L\left[\int_{0}^{t} f_{1}(t-\tau)f_{2}(\tau)d\tau\right] = F_{1}(s)F_{2}(s)$
18	$L[f(t)g(t)] = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} F(p)G(s-p)dp$

 $^{^\}dagger$ K. Ogata, Modern Control Engineering, Fourth Edition, Prentice-Hall, 2002.