Assumptions of Linear Regression

22 November 2022 04:13 PM

1 Linear Relationship bein Dependent and Independent Variables

⇒ Linear Relation bet? x 4 y (Linearly seperable)

2] Normally Distributed error component:

shape curve

Normally Distribution

2) Shapiro wilk Test)

i.e. Normality Test

3] There should not be theterocedocity "i.e.

Narionce of regiduals lessons must be constant across predicted values.

vitomocedacity V

Helenocedocity X

redided X A FIF

prediction line

4] No mulicollinearity: ->

4) No mulicollinearity: ->
-> instability of regression coefficient
-> TWO OF MIDRE PREDICION VOLVENIEL COL
strongly coordaled with other
J 50 50
$\hat{y} = b_1 x_1 + b_2 x_2 + \dots + a_{indeprept}$ coefficient.
=> lei's Assume &, & x2 Feature having
Some Coefficient.
* Fullicollinearly Diagnosis! ->
y: bix, + b2x2 + bxxx + 9
Ly Tolerance Lyzf: Variation
$T = 1 - R^2$ factor
$T = 1 - R$ $= b \cdot Coerlicient of VIFz = 1 - R$ $= determination = 1 - R$
coefficient
[T< 6.1]
Delemination {VIF>10}