Discrete Mathematics Midterm Exam (GEDB007-46, Fall 2021)

You may write your solutions in English or Korean (or both). Calculators are not allowed.

Problem 1. Prove or disprove each statement.

- (1) $\forall x \exists y (x^2 = y)$, the domain of discourse is $\mathbb{R} \times \mathbb{R}$.
- (2) $\forall y \exists x (x^2 = y)$, the domain of discourse is $\mathbb{R} \times \mathbb{R}$.
- (3) $\forall x \forall y ((x^2 = y^2) \to (x = y))$, the domain of discourse is $\mathbb{R} \times \mathbb{R}$.
- (4) $\forall x \exists y ((x^2 = y^2) \to (x = y))$, the domain of discourse is $\mathbb{R} \times \mathbb{R}$.
- (5) $\exists x \forall y ((x^2 = y^2) \to (x = y))$, the domain of discourse is $\mathbb{R} \times \mathbb{R}$.

Problem 2. Prove or disprove each statement. Here $\mathcal{P}(A)$ is the set of all subsets of A.

- (1) For all sets A and B, we have $\mathcal{P}(A) \mathcal{P}(B) \subseteq \mathcal{P}(A B)$.
- (2) For some sets A and B, we have $\mathcal{P}(A) \mathcal{P}(B) \subseteq \mathcal{P}(A B)$.
- (3) For some sets A and B, we have $\mathcal{P}(A-B) \subseteq \mathcal{P}(A) \mathcal{P}(B)$.
- (4) For all sets A and B, we have $\mathcal{P}(A-B) \mathcal{P}(\emptyset) \subseteq \mathcal{P}(A) \mathcal{P}(B)$.

Problem 3. Let $X = \{1, 2, ..., 10\}$. Define a relation R on X by $(a, b) \in R$ if and only if $lcm(a, b) \leq 10$. Prove or disprove each statement.

- (1) R is reflexive.
- (2) R is symmetric.
- (3) R is antisymmetric.
- (4) R is transitive.

Problem 4. Let $X = \{1, 2, ..., 1000\}$ and define a relation R on X by $(a, b) \in R$ if and only if the binary expressions of a and b have the same number of digits. For example, $(6,7) \in R$ because both $6 = 110_2$ and $7 = 111_2$ have 3 digits in their binary expressions.

- (1) Show that R is an equivalence relation.
- (2) Find the equivalent class containing 278.

Problem 5. For a sequence $s = (s_1, ..., s_n)$ of integers, the diameter of s is defined to be the largest difference $|s_i - s_j|$ of two elements in this sequence. For example, the diameter of (3, 8, 2, 3, 5) is |8-2| = 6. Write an algorithm that receives (s, n), where $s = (s_1, ..., s_n)$ is a sequence of n integers $(n \ge 2)$, and returns the diameter of s.

Problem 6. Prove or disprove:

$$\log_2 1 + \log_2 2 + \dots + \log_2(2n) = \Theta(n \log_2 n).$$

Problem 7. For each positive integer i, let p_i be the ith smallest prime. For example, $p_1 = 2$, $p_2 = 3$, $p_3 = 5$, $p_4 = 7$, $p_5 = 11$. Prove that for every integer n with $n \ge 2$, at least one of the following is true:

- $p_2p_3\cdots p_n+1=2^k$ for some integer k,
- $p_2p_3\cdots p_n+1\geq 2p_{n+1}$.

Problem 8. (1) Find the inverse of 44 mod 213.

(2) Find the inverse of 213 mod 44.