11 Hote a Hilo	rmanque n 2	Па	ngage C
Nom:		Note: / 20	
Prénom :			
précédente même usuelles du langa On dit qu'un ent par la somme de base 10. Par exer 9) ou encore 190 des nombres hars	nt indépendantes, et le si cette question n'a ge C. lier strictement positif ses chiffres dans une benples, 48 est un nomb (divisible par 10) sont shad.	on pourra toujours utiliser une fonction demandée à une a pas été traitée. On supposera toujours déjà incluses les f est un nombre harshad (ou nombre de Niven) lorsqu'il est base donnée. Dans cet exercice, on s'intéresse aux nombres ha ore harshad puisque 48 est divisible par 12, de même 63 (divisible taussi des nombres harshad. Par contre 28, ou encore 104 ne	librairies divisible arshad en isible par sont pas
1. Ecrire une un nombre	~	e bool est_harshad(int n) qui renvoie true si et seulemen	ıt si n est
			/4
convertit e aucun arg attendus e ./harsh true ./harsa	en entier (avec la fonct ument n'est donné, or	rend un argument en ligne de commande une chaine de cara tion atoi) puis affiche true si cet entier est harshad et false n affiche un message d'erreur. Par exemple, voici des compo écutable s'appelle harshad.exe	sinon. Si
false ./harsh	and ava		
•		exe <entier positif=""></entier>	
	<u> </u>	-	
			/3

.......

	ppel get_harshad(20, &n) renvoie un tableau contenant ces entiers et après l'appel n co lle de ce tableau donc 13.	
١.		
١.		
nor on sig de la	recherche à présent des suites de nombres consécutifs qui sont tous harshad, par exembres 110,111 et 112 sont 3 nombres harshad consécutifs. Dans un tableau quelconque de est donc amené à chercher le nombre maximal de valeurs consécutives. Ecrire une for nature int consecutifs(int tab[], int size, int *start) qui renvoie le nombre valeurs consécutives dans le tableau tab de taille size et met à jour *start afin qu'elle opremière de ces valeurs. Par exemple cette fonction sur le tableau {2, 7, 8, 13, 14, 21} renvoie 3 et *start vaut 13. En effet il v a un maximum de 3 valeurs consécuti	e val nctic max conti
no: on sig de la 18	mbres 110,111 et 112 sont 3 nombres harshad consécutifs. Dans un tableau quelconque de est donc amené à chercher le nombre maximal de valeurs consécutives. Ecrire une for nature int consecutifs(int tab[], int size, int *start) qui renvoie le nombre valeurs consécutives dans le tableau tab de taille size et met à jour *start afin qu'elle consecutives dans le tableau tab de taille size et met à jour *start afin qu'elle consecutives dans le tableau tab de taille size et met à jour *start afin qu'elle consecutives dans le tableau tab de taille size et met à jour *start afin qu'elle consecutives dans le tableau tab de taille size et met à jour *start afin qu'elle consecutives dans le tableau tab de taille size et met à jour *start afin qu'elle consecutives dans le tableau tab de taille size et met à jour *start afin qu'elle consecutives dans le tableau tab de taille size et met à jour *start afin qu'elle consecutives de la consecutive de l	e val nctic max conti
no: on sig de la 18	mbres 110,111 et 112 sont 3 nombres harshad consécutifs. Dans un tableau quelconque de est donc amené à chercher le nombre maximal de valeurs consécutives. Ecrire une for nature int consecutifs(int tab[], int size, int *start) qui renvoie le nombre valeurs consécutives dans le tableau tab de taille size et met à jour *start afin qu'elle or première de ces valeurs. Par exemple cette fonction sur le tableau {2, 7, 8, 13, 14, 21} renvoie 3 et *start vaut 13. En effet il y a un maximum de 3 valeurs consécutions.	e valuetic max conti 15,
no: on sig de la 18	mbres 110,111 et 112 sont 3 nombres harshad consécutifs. Dans un tableau quelconque de est donc amené à chercher le nombre maximal de valeurs consécutives. Ecrire une for nature int consecutifs(int tab[], int size, int *start) qui renvoie le nombre valeurs consécutives dans le tableau tab de taille size et met à jour *start afin qu'elle or première de ces valeurs. Par exemple cette fonction sur le tableau {2, 7, 8, 13, 14, 21} renvoie 3 et *start vaut 13. En effet il y a un maximum de 3 valeurs consécutions.	e val netic max conti 15, ives
no: on sig de la 18	mbres 110,111 et 112 sont 3 nombres harshad consécutifs. Dans un tableau quelconque de est donc amené à chercher le nombre maximal de valeurs consécutives. Ecrire une for nature int consecutifs(int tab[], int size, int *start) qui renvoie le nombre valeurs consécutives dans le tableau tab de taille size et met à jour *start afin qu'elle or première de ces valeurs. Par exemple cette fonction sur le tableau {2, 7, 8, 13, 14, 21} renvoie 3 et *start vaut 13. En effet il y a un maximum de 3 valeurs consécutions.	e val netic max conti 15, ives
no: on sig de la 18	mbres 110,111 et 112 sont 3 nombres harshad consécutifs. Dans un tableau quelconque de est donc amené à chercher le nombre maximal de valeurs consécutives. Ecrire une for nature int consecutifs(int tab[], int size, int *start) qui renvoie le nombre valeurs consécutives dans le tableau tab de taille size et met à jour *start afin qu'elle or première de ces valeurs. Par exemple cette fonction sur le tableau {2, 7, 8, 13, 14, 21} renvoie 3 et *start vaut 13. En effet il y a un maximum de 3 valeurs consécutions.	e valuetic max conti 15,
no: on sig de la 18	mbres 110,111 et 112 sont 3 nombres harshad consécutifs. Dans un tableau quelconque de est donc amené à chercher le nombre maximal de valeurs consécutives. Ecrire une for nature int consecutifs(int tab[], int size, int *start) qui renvoie le nombre valeurs consécutives dans le tableau tab de taille size et met à jour *start afin qu'elle or première de ces valeurs. Par exemple cette fonction sur le tableau {2, 7, 8, 13, 14, 21} renvoie 3 et *start vaut 13. En effet il y a un maximum de 3 valeurs consécutions.	e valuetic max conti 15,
no: on sig de la 18	mbres 110,111 et 112 sont 3 nombres harshad consécutifs. Dans un tableau quelconque de est donc amené à chercher le nombre maximal de valeurs consécutives. Ecrire une for nature int consecutifs(int tab[], int size, int *start) qui renvoie le nombre valeurs consécutives dans le tableau tab de taille size et met à jour *start afin qu'elle or première de ces valeurs. Par exemple cette fonction sur le tableau {2, 7, 8, 13, 14, 21} renvoie 3 et *start vaut 13. En effet il y a un maximum de 3 valeurs consécutions.	e val netic max conti 15, ives
no: on sig de la 18	mbres 110,111 et 112 sont 3 nombres harshad consécutifs. Dans un tableau quelconque de est donc amené à chercher le nombre maximal de valeurs consécutives. Ecrire une for nature int consecutifs(int tab[], int size, int *start) qui renvoie le nombre valeurs consécutives dans le tableau tab de taille size et met à jour *start afin qu'elle or première de ces valeurs. Par exemple cette fonction sur le tableau {2, 7, 8, 13, 14, 21} renvoie 3 et *start vaut 13. En effet il y a un maximum de 3 valeurs consécutions.	e val netic max conti 15, ives
no: on sig de la 18	mbres 110,111 et 112 sont 3 nombres harshad consécutifs. Dans un tableau quelconque de est donc amené à chercher le nombre maximal de valeurs consécutives. Ecrire une for nature int consecutifs(int tab[], int size, int *start) qui renvoie le nombre valeurs consécutives dans le tableau tab de taille size et met à jour *start afin qu'elle or première de ces valeurs. Par exemple cette fonction sur le tableau {2, 7, 8, 13, 14, 21} renvoie 3 et *start vaut 13. En effet il y a un maximum de 3 valeurs consécutions.	e valuetic max conti 15,
no: on sig de la 18	mbres 110,111 et 112 sont 3 nombres harshad consécutifs. Dans un tableau quelconque de est donc amené à chercher le nombre maximal de valeurs consécutives. Ecrire une for nature int consecutifs(int tab[], int size, int *start) qui renvoie le nombre valeurs consécutives dans le tableau tab de taille size et met à jour *start afin qu'elle or première de ces valeurs. Par exemple cette fonction sur le tableau {2, 7, 8, 13, 14, 21} renvoie 3 et *start vaut 13. En effet il y a un maximum de 3 valeurs consécutions.	e val netic max conti 15, ives
no: on sig de la 18	mbres 110,111 et 112 sont 3 nombres harshad consécutifs. Dans un tableau quelconque de est donc amené à chercher le nombre maximal de valeurs consécutives. Ecrire une for nature int consecutifs(int tab[], int size, int *start) qui renvoie le nombre valeurs consécutives dans le tableau tab de taille size et met à jour *start afin qu'elle or première de ces valeurs. Par exemple cette fonction sur le tableau {2, 7, 8, 13, 14, 21} renvoie 3 et *start vaut 13. En effet il y a un maximum de 3 valeurs consécutions.	e val netic max conti 15, ives
no: on sig de la 18	mbres 110,111 et 112 sont 3 nombres harshad consécutifs. Dans un tableau quelconque de est donc amené à chercher le nombre maximal de valeurs consécutives. Ecrire une for nature int consecutifs(int tab[], int size, int *start) qui renvoie le nombre valeurs consécutives dans le tableau tab de taille size et met à jour *start afin qu'elle or première de ces valeurs. Par exemple cette fonction sur le tableau {2, 7, 8, 13, 14, 21} renvoie 3 et *start vaut 13. En effet il y a un maximum de 3 valeurs consécutions.	e val nctio max conti
no: on sig de la 18	mbres 110,111 et 112 sont 3 nombres harshad consécutifs. Dans un tableau quelconque de est donc amené à chercher le nombre maximal de valeurs consécutives. Ecrire une for nature int consecutifs(int tab[], int size, int *start) qui renvoie le nombre valeurs consécutives dans le tableau tab de taille size et met à jour *start afin qu'elle or première de ces valeurs. Par exemple cette fonction sur le tableau {2, 7, 8, 13, 14, 21} renvoie 3 et *start vaut 13. En effet il y a un maximum de 3 valeurs consécutions.	e val netic max conti 15, ives