

Mark Scheme (Results)

January 2024

Pearson Edexcel International Advanced Level In Chemistry (WCH15) Paper 01 Transition Metals and Organic Nitrogen Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2024

Question Paper Log Number P73457RA

Publications Code WCH15_01_2401_MS

All the material in this publication is copyright

© Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners
 must mark the first candidate in exactly the same way as
 they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the meaning of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

Question Number	Answer	Mark
1(a)	The only correct answer is D (zinc platinum)	(1)
	A is incorrect because zinc is part of the reaction equation so the electrode must be zinc	
	B is incorrect because zinc is needed in electrode 1 and chromium metal is not inert in electrode 2 so cannot be used	
	C is incorrect because chromium metal is not inert in electrode 2	

Question Number	Answer	Mark
1(b)	The only correct answer is C (358 g)	(1)
	A is incorrect because this is the mass of chromium ions required for a 1 mol dm ⁻³ solution	
	B is incorrect because this is the mass of the anhydrous solid required	
	D is incorrect because this mass of the hydrate gives a 2 mol dm ⁻³ solution of Cr^{3+}	

Question Number	Answer	Mark
1(c)	The only correct answer is A (ΔS_{total} and $\ln K$ are positive)	(1)
	${\it B}$ is incorrect because both are directly proportional to E^o_{cell}	
	${\it C}$ is incorrect because both are directly proportional to E^o_{cell}	
	$m{D}$ is incorrect because both are directly proportional to E_{cell}^o	

Question Number	Answer	Mark
2(a)	The only correct answer is $C (H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l))$	(1)
	A is incorrect because water is the product, not a reactant	
	B is incorrect because oxygen is a reactant, not a product	
	D is incorrect because this is the reverse equation	

Question Number	Answer	Mark
2(b)	The only correct answer is D (+1.23V)	(1)
	A is incorrect because the sign is incorrect	
	B is incorrect because this is the sum of the two electrode potentials and the first value must be positive not negative	
	C is incorrect because this is the changing of both signs for the electrode potentials and then subtracting	

Question Number	Answer	Mark
3	The only correct answer is B (759 1561 2958 5290 7236)	(1)
	A is incorrect because there is a large difference between ionisation 3 and 4 so this element is in Group 3 C is incorrect because there is a large difference between ionisation 4 and 5 so this element is in Group 4 D is incorrect because there is a large difference between ionisation 3 and 4 so this element is in Group 3	

Question Number	Answer	Mark
4	The only correct answer is D $(Fe^{2+} < V^{2+} < Cr^{2+})$	(1)
	A is incorrect because V^{2+} ($V^{3+} + e^- \Rightarrow V^{2+} = -0.26V$) has a greater reducing strength than Fe^{2+} ($Fe^{3+} + e^- \Rightarrow Fe^{2+} = +0.77V$)	
	B is incorrect because Cr^{2+} ($Cr^{3+} + e^- \Rightarrow Cr^{2+} = -0.41V$) has the greatest reducing strength	
	C is incorrect because this is the reverse order to the correct one	

Question Number	Answer	Mark
5(a)	The only correct answer is D ([Ar] $3d^{10} 4s^1$ [Ar] $3d^{10}$ [Ar] $3d^9$)	(1)
	$m{A}$ is incorrect because the copper atom has the structure $[Ar]3d^{10}4s^1$ and Cu^+ is $[Ar]3d^{10}$	
	B is incorrect because the copper atom has the structure $[Ar]3d^{10}4s^1$ and Cu^+ is $[Ar]3d^{10}$ and Cu^{2+} is $[Ar]3d^9$	
	C is incorrect because Cu^+ has the structure $[Ar]3d^{10}$ and Cu^{2+} is $[Ar]3d^9$	

Question Number	Answer	Mark
5(b)	The only correct answer is C (T S P)	(1)
	A is incorrect because T is the only $Cu(0)$ present in the scheme	
	B is incorrect because T is the only $Cu(0)$ present in the scheme	
	$m{D}$ is incorrect because S is the only $Cu(I)$ in the scheme other than $Cu(I)$ in copper(I) iodide	

Question Number	Answer	Mark
5(c)	The only correct answer is D (NH ₃)	(1)
	A is incorrect because aqueous ammonia is needed to convert $Cu(OH)_2$ to $[Cu(NH_3)_4(H_2O)_2]^{2+}$	
	${\it B}$ is incorrect because aqueous ammonia is needed to convert $Cu(OH)_2$ to $[Cu(NH_3)_4(H_2O)_2]^{2+}$	
	${\it C}$ is incorrect because aqueous ammonia is needed to convert $Cu(OH)_2$ to $[Cu(NH_3)_4(H_2O)_2]^{2+}$	

Question Number	Answer	Mark
6	The only correct answer is D (ketone)	(1)
	$m{A}$ is incorrect because there are two methyl groups attached to two of the nitrogen atoms	
	B is incorrect because there are two amide groups in the six-membered ring	
	$m{C}$ is incorrect because there are two amine groups in the five-membered ring	

Question Number	Answer	Mark
7	The only correct answer is B (5)	(1)
	A is incorrect because glycine, glutamic acid, 4 aspartic acid, tryptophan and phenylalanine are linked	
	C is incorrect because glycine, glutamic acid, 4 aspartic acid, tryptophan and phenylalanine are linked	
	D is incorrect because this is the total number of amino acids, but 4 are aspartic acid so 5 different types	

Question Number	Answer			Mark	
8	The only correct answer is B (H ³ N ⁺ O NH ₂	H ₂ N 0 - NH ₂)	(1)
	A is incorrect because lysine is a zwitte	rion as a solid		-	
	C is incorrect because lysine is a zwitte	rion as a solid and the s	tructure in solution is fo	or low pH	
	D is incorrect because the structure in s	solution is for low pH			

Question Number	Answer	Mark
9	The only correct answer is C (
	A is incorrect because there is no sulfur in the molecular formula	
	B is incorrect because this has 2 more hydrogen atoms than the correct number	
	D is incorrect because this has one more carbon atom and four more hydrogen atoms than the correct number	

Question Number	Answer	Mark
10(a)	The only correct answer is C (R and S only)	(1)
	A is incorrect because P has six peaks	
	B is incorrect because Q has six peaks	
	C is incorrect because Q has six peaks	

Question Number	Answer	Mark
10(b)	The only correct answer is A (P)	(1)
	$m{B}$ is incorrect because $m{Q}$ has a methyl group adjacent to a carbon with only one hydrogen so giving a doublet	
	$m{C}$ is incorrect because $m{R}$ has a methyl group adjacent to a carbon with only one hydrogen so giving a doublet	
	$m{D}$ is incorrect because $m{S}$ has a methyl group adjacent to a carbon with only one hydrogen so giving a doublet	

Question Number	Answer	Mark
10(c)	The only correct answer is A (Q only)	(1)
	B is incorrect because R does not have a chiral carbon	
	$m{C}$ is incorrect because $m{R}$ and $m{S}$ do not have a chiral carbon	
	$m{D}$ is incorrect because $m{R}$ and $m{S}$ do not have a chiral carbon	

Question Number	Answer	Mark
11	The only correct answer is B (X and Y)	(1)
	$m{A}$ is incorrect because $m{Z}$ is a condensation polymer	
	C is incorrect because Z is a condensation polymer	
	$m{D}$ is incorrect because $m{Z}$ is a condensation polymer	

Question Number	Answer	Mark
12a	The only correct answer is A $(\pm 0.0025 g)$	(1)
	B is incorrect because a balance must be used twice to measure a mass	
	C is incorrect because this answer is obtained by doubling the percentage uncertainty rather than halving it	
	D is incorrect because a balance must be used twice to measure a mass and also the value has been multiplied by 10	

Question Number	Answer	Mark
12b	The only correct answer is C (colourless)	(1)
	A is incorrect because this is the colour of the solution after starch is added just before the end-point	
	B is incorrect because this is the colour of a solution of iodine	
	$m{D}$ is incorrect because this is the colour of the solution just before the end-point before starch indicator is added	

TOTAL FOR SECTION A = 20 MARKS

Section B

Question Number	Answer	Additional Guidance	Mark
13(a)	An explanation that makes reference to the following points:	Ignore references to bond angles	(2)
	• (the x-ray diffraction shows) the bonds are the same length (1)	Allow it is a regular hexagon Ignore just it is a hexagon Ignore bond energy is the same	
	• (therefore) electrons are evenly distributed (around the benzene ring) (1)	Ignore electrons are delocalised / there is a ring of electrons	
	 Kekule structure would have shorter double bonds / longer single bonds (1) 	Ignore shorter π bonds / longer σ bonds Ignore double bonds and single bonds are of different length	

Question Number	Answer		Additional Guidance	Mark
13(b)	 An explanation that makes reference to the following points: because a Kekulé structure would have two isomers / two different structures one with the chlorines attached to carbons with a single bond between them and one with a double bond between them 	(1) (1)	Allow shown as diagrams Cl Cl Cl Two diagrams showing the two possible structures would score (2)	(2)

Question Number	Answer	Additional Guidance	Mark
13(c)	An answer that makes reference to the following points:	Allary 2 times authology about a forgal above a	(1)
	• the Kekulé structure would be expected to have an enthalpy change of hydrogenation of 3 x -118 kJ mol ⁻¹ / -354 kJ mol ⁻¹ (which is significantly different from the actual value of -205 kJ mol ⁻¹)	Allow 3 times enthalpy change of cyclohexene Award the actual value is 149 kJ mol ⁻¹ less exothermic than expected Award the actual value is 149 kJ mol ⁻¹ more stable than expected	

Question Number	Answer		Additional Guidance	Mark
13(d)	A description that makes reference to the following points		All three marks are available from labelled diagrams	(3)
	• there are six sigma bonds between carbon atoms / sigma bonds between pairs of carbon atoms	(1)	Allow there are twelve sigma bonds 6 of which are between carbon atoms Ignore reference to C-H sigma bonds	
	• six p _z orbitals (not involved in sigma bonding)	(1)	Allow six p-orbitals Allow six electrons in (3) pi bonds Allow six electrons from the carbon (atoms) Allow six electrons from p-orbitals	
	 which overlap (continuously) above and below the carbon ring / which overlap to form a (large) pi-system 	(1)	Allow around the benzene ring Ignore reference to numbers of electrons above and below the ring	

(Total for Question 13 = 8 marks)

Question Number	Answer		Additional Guidance	Mark
14(a)(i)	An explanation that makes reference to the following points:		If name and formula are given both must be correct	(2)
	 concentrated / conc sulfuric acid concentrated / conc H₂SO₄ 	(1)	Do not award (dilute) sulfuric acid	
	• nitronium ion / NO ₂ ⁺	(1)	Allow balanced or unbalanced equation to form $/$ NO_2^+ Do not award NO_2 without charge If no electrophile is given in (a)(i) allow the mark if NO_2^+ is used in the mechanism in (a)(ii) Allow answers in any order	

Question Number	Answer	Additional Guidance	Mark
14(a)(ii)	 arrow from on or within the circle to N of NO₂⁺ structure of intermediate ion curly arrow from C-H bond to within ring and correct organic product 	Example of mechanism NO ₂ H NO ₂ (+ H ⁺) (1) Allow arrow from within hexagon Allow to anywhere on NO ₂ including positive charge Allow TE on incorrect electrophile from (a)(i) (1) 'Horseshoe' facing tetrahedral carbon and covering at least three carbons. Some part of the positive sign within the horseshoe. Do not award dotted/dashed C–H/C–N bonds unless clearly a 3D structure (1)	(3)

Question Number	Answer	Additional Guidance	Mark
14(b)(i)	An answer that makes reference to the following points: • tin / Sn and (concentrated / conc) hydrochloric acid / HCl(aq)	If name and formula are given both must be correct Allow HCl Do not award other acids Ignore concentration even if incorrect	(1)

Question Number	Answer	Additional Guidance	Mark
14(b)(ii)	An answer that makes reference to the following point:		(1)
	• reduction	Accept redox Ignore hydrogenation	

Question Number	Ληςνωρ		Additional Guidance	Mark
*14(c)	Marks are awarded for indicative constructured and shows lines of reason. The following table shows how the indicative content. Number of indicative marking	nkages and fully sustained reasoning. ontent and for how the answer is ning.	Guidance on how the mark scheme should be applied. The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	(6)
	Answer shows a coherent logical structure with linkages and fully sustained lines of reasoning demonstrated throughout Answer is partially structured with some linkages and lines of reasoning Answer has no linkages between points and is unstructured	marks should be awarded for Number of marks awarded for structure of answer and sustained lines of reasoning 2	In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks 3 or 4 indicative points would get 1 reasoning mark 0, 1 or 2 indicative points would get zero reasoning marks If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s). Comment: Look for the indicative marking points first, then consider the mark for the structure of the answer and sustained line of reasoning	

Allow reverse arguments For IPs 1-5. award IPs if not attributed to an advantage or disadvantage to a maximum of 5 IPs For IPs 1-5, award IPs if attributed incorrectly to advantage or disadvantage, but deduct one reasoning mark
Allow hydrogen chloride may be produced as a corrosive mist (and is hard to handle / control) Allow hydrogen chloride means the reaction must be used in a fume cupboard
Allow this is neutral because both ethanoyl chloride (and ethanoic anhydride are) also flammable
Ignore comments about other hazards unless incorrect, then penalise in logic mark
Ignore just ethanoyl chloride is more dangerous Accept ethanoyl chloride is too reactive / unsafe

IP5 atom economy calculation either calculation of atom economy for ethanoic anhydride and ethanoyl chloride or calculation of the molecular mass of HCl and ethanoic acid and a link to the lower mass giving the higher atom economy	Ignore sale of the other product ethanoic anhydride = 69.231 / 69.2 % and ethanoyl chloride = 78.717 / 78.7 % Or Mr ethanoic acid = 60 and HCl = 36.5 so ethanoyl chloride gives higher atom economy	
IP6 atom economy statement identification that the starting material with the lower atom economy (ethanoic anhydride) is at a disadvantage / that the higher atom economy is an advantage	Ignore sale of the other product Allow TE relative to calculations in IP5 Allow a statement that one has a higher atom economy and that this is an advantage if IP5 has not been scored	

Question Number	Answer	Additional Guidance	Mark
_	 One correct mathematical process even if the answer is incorrect Two further correct mathematical process even if the answer is incorrect Two further correct mathematical processes even if the answers are incorrect 	This calculation involves six mathematical processes 1) Calculation of molecular mass of N-phenylethanamide 2) Calculation of molecular mass of benzene 3) Divide by 135 (molecular mass of N-phenylethanamide) 4 Multiply by 78 (molecular mass of benzene) 5 Divide by 0.879 (density of benzene) 6) Divide by 35.2 × 100 (percentage yield) (1) It is possible to carry out these processes in any order. Look first for the answer. Correct answer with some working scores (4). Next look for the processes and mark as shown in the Answer column. (1) Two examples of calculation Route 1	Mark (4)
	Final process and correct answer	Route 1 $M_{\rm r}$ of N -phenylethanamide = $(12 \times 8) + 9 + 14 + 16 = 135$ (g mol ⁻¹) $M_{\rm r}$ of benzene = $(12 \times 6) + 6 = 78$ (g mol ⁻¹) moles of N -phenylethanamide = $(10 \div 135) = 0.074074$ (mol) mass of benzene for 100% yield = $0.074074 \times 78 = 5.7778 / 5.78$ (g) volume of for 100% yield = $5.7778 \div 0.879 = 6.573$ (cm ³) minimum volume = $6.573 \div 35.2 \times 100 = 18.674 / 18.7 / 19$ (cm ³) Route 2 $M_{\rm r}$ of N -phenylethanamide = $(12 \times 8) + 9 + 14 + 16 = 135$ (g mol ⁻¹) $M_{\rm r}$ of benzene = $(12 \times 6) + 6 = 78$ (g mol ⁻¹) mass of N -phenylethanamide giving actual yield = $10 \div 35.2 \times 100 = 28.409$ (g) moles of N -phenylethanamide = $28.409 \div 135 = 0.21044$ (mol) mass of benzene required = $0.21044 \times 78 = 16.414$ (g) volume of benzene required = $16.414 \div 0.879 = 18.674 / 18.7 / 19$ (cm ³) If no other mark is awarded allow (1) for $10 \div 135 = 0.074074$ (mol) Allow TE throughout Ignore SF except 1SF	

Question Number	Answer	Additional Guidance	Mark	
14(e)	An explanation that makes reference to the following points:			(2)
	• lone pair of electrons on the oxygen (may be shown on a diagram	(1)	Allow lone pair of electrons on the -OH group	
	• overlaps with pi / π cloud		Accept donates / feeds into / interacts with delocalised electrons in the benzene / phenol ring Accept are delocalised into the benzene ring	
	and		Accept are delocalised into the benzene ring	
	activating the ring / increasing the electron density of the ring / making electrophilic attack easier	(1)	Ignore just makes the phenol more reactive. Ignore milder conditions are used to prevent further substitution	

(Total for Question 14 = 19 marks)

Question Number	Answer	Additional Guidance	Mark
15(a)(i)	An answer that makes reference to the following points: • C ₁₇ H ₂₆ O ₄		(1)
	01/112004		

Question Number	Answer		Additional Guidance	Mark	
15(a)(ii)	An answer that makes reference to the following points: • the OH is attached to a chiral carbon / gingerol exists as optical isomers • The wedge shows the stereochemical arrangement / shows the shape of the molecule at the carbon (it is attached to)	(1)	Allow it shows the 3d arrangement of the C-OH bond Allow because the molecule is tetrahedral at the carbon Ignore just the molecule/shape is tetrahedral Ignore the molecule is not planar at the carbon Do not award the molecule is trigonal planar at the carbon Award (a wedged shaped bond) indicates the bond / OH group is in front of the plane of the paper / in the foreground Allow the wedge shaped bond shows the -OH group is in a different plane (to the carbon chain) Do not award a wedge shaped bond indicates the bond is behind the plane of the paper / in the background	(2)	

Question Number	Answer			Additional Guidance		Mark
15(b)	An answer that makes reference to the following points:		Look for any of the give but use only one Route intermediates even if the conditions stated.	(7)		
	Reagents and conditions for Step 1	(1)	Route 1 Oxidation A	Route 2 Oxidation A	Route 3 Reduction	
	• structure of intermediate 1	(1)	но	но	НО	
	• reagents and conditions for Step 2	(1)	Grignard Reagent	Grignard Reagent	Oxidation A	
	• structure of intermediate 2	(1)	НО	но	но	
	• reagents and conditions for Step 3	(1)	Oxidation B	Reduction	Grignard Reagent	
	• structure of intermediate 3	(1)	но	НО	НО	
	• reagents and conditions for Step 4	(1)	Reduction	Oxidation B	Oxidation B	
			Allow any type of struc	tural diagram / skeletal o	diagram	
			Penalise lack of sulfurio	e acid / H ⁺ and/or use of	HCl in oxidation steps	

once only
Oxidation A K ₂ Cr ₂ O ₇ and H ₂ SO ₄ / H ⁺ (with distillation) Or acidified K ₂ Cr ₂ O ₇ Allow acidified KMnO ₄ / KMnO ₄ and H ₂ SO ₄ Do not award reflux
Oxidation B K ₂ Cr ₂ O ₇ and H ₂ SO ₄ / H ⁺ Or acidified K ₂ Cr ₂ O ₇ Allow acidified KMnO ₄ / KMnO ₄ and H ₂ SO ₄ (and reflux) Allow distillation
Grignard Reagent CH ₃ MgBr or CH ₃ Br + Mg and (in) dry ether (followed by aqueous acid / water / acid) Allow equivalent chloride or iodide compounds
Reduction H ₂ and Ni / Pt (catalyst). Do not award LiAlH ₄ in dry ether

(Total for Question 15 = 10 marks)

Question Number	Answer	Additional Guidance	Mark
16(a)(i)	An answer that makes reference to the following point:	Values may be seen in a calculation Values may be seen as labels on equation in the question	(1)
	 oxygen is -2 / total for oxygen is -8 and hydrogen is +1 / total for hydrogen is +3 and 	Allow just the totals or the values for each atom for oxygen and hydrogen	
	a compound must be 0 overall (so Mn is +5)	This can be scored by a statement or by a mathematical justification through a suitable calculation which assumes overall is 0.	

Question Number	Answer		Additional Guidance	Mark
16(a)(ii)	An answer that makes reference to the following point:			(2)
	correct formula for all three manganese compounds	(1)	$2H_3MnO_4 \rightarrow HMnO_4^- + MnO_2 + 2H_2O + H^+$	
	balanced equation	(1)	Accept $2MnO_4^{3-} + 4H^+ \rightarrow MnO_4^{2-} + MnO_2 + 2H_2O$	
			Dependent on M1 Do not award uncancelled electrons Allow multiples Ignore state symbols even if incorrect	

Question Number	Answer		Additional Guidance	Mark
16(a)(iii)	An answer that makes reference to the following points:		Example of calculation	(2)
	selection of correct values for equation	(1)	$E^{\circ} = 2.90 - 1.28$ Allow (+)1.62(V) with no indication of electrode values	
	• calculation of E^{\bullet} and statement regarding thermodynamic feasibility	(1)	$E^{\circ} = (+)1.62(V)$ Value is positive so (thermodynamically) feasible Allow TE on calculation Allow > 0 for positive	
			If no calculation is attempted allow a positive value of E^{Θ} is feasible Or A negative value for E^{Θ} is unfeasible	

Question Number	Answer	Additional Guidance	Mark
16(b)(i)	An answer that makes reference to the following points:		(1)
	• (pale) pink to colourless	Do not award purple Do not award colourless to pink	

Question Number	Answer		Additional Guidance	Mark
16(b)(ii)	use of two mathematical process	(1)	To mark this item look first for the final answer. Correct answer with some working scores (4). Next look for the processes. Mark according to the number of processes as shown in the Answer column.	(4)
	 use of two further mathematical process 	(1)	This calculation involves eight mathematical processes 1) Calculation of Mr of sodium ethanedioate 2) Divide by calculated Mr (molecular mass of sodium ethanedioate) 3) × 10 ⁻³ or ÷ 1000 an odd number of times	
	 use of two further mathematical processes 	(1)	4) Divide by 250 (volume of sodium ethanedioate solution) 5) Multiply by 22.95 (mean titre volume) 6) multiply by 2/5 (mole ratio of manganate(VII) to ethanedioate) 7) divide by 25 (volume of manganate(VII) solution)	
	 use of two further mathematical processes 	(1)	8) final answer to 2 or 3 SF These processes can be done in any order except process 8. Volumes can be in cm ³ rather than dm ³ (as two of the powers will cancel) so do not penalise. This is covered in process 3.	
			Example of calculation One common route is shown: $1.915 \div 134 = 0.014291 / 0.0143 / 1.4291 \times 10^{-2} / 1.43 \times 10^{-2}$ (mol) $0.014291 \div 250 = 5.7164 \times 10^{-5}$ (mol cm ⁻³) (or = 0.057164 (mol dm ⁻³)) $5.7164 \times 10^{-5} \times 22.95 = 0.0013119$ (mol) $2/5 \times 0.0013119 = 5.2477 \times 10^{-4}$ (mol) $5.2477 \times 10^{-4} \div 25 \times 10^{-3} = 0.0020991$ (mol dm ⁻³) $= 0.0210 / 0.021 / 2.10 \times 10^{-2} / 2.1 \times 10^{-2}$	
			Ignore SF except for final mark Allow TE throughout	

Question Number	Answer		Additional Guidance	Mark
16(b)(iii)	An answer that makes reference to the following points:			(3)
	• (brown suspension is) MnO ₂	(1)	Allow any identification of MnO ₂ including in an equation.	
	 because only three electrons are required in forming MnO₂ (while five are required on forming Mn²⁺) or because only three electrons are required to convert Mn(VII) to Mn(IV) (while five are required to convert Mn(VII) to Mn(II)) 	(1)	May be shown in an ionic half-equation Allow formation of MnO_2 / $Mn(IV)$ / requires less electrons Allow the ratio of manganese species:ethanedioate is 2:3 for $Mn(IV)$ (but 2:5 for $Mn(II)$)	
	this results in a smaller titration volume / less ethanedioate required	(1)	Dependent on one of the previous two marks	

(Total for Question 16 = 13 marks)

TOTAL FOR SECTION B = 50 MARKS

Section C

Question Number	Answer		Additional Guidance	Mark
17(a)(i)	An answer that makes reference to the following points:		Penalise incorrect use of orbital rather than orbitals once only	(3)
	the presence of chloride ligands / change in ligands / different ligands results in a different energy gap between (lower and higher energy) d-orbitals / result in a different splitting in the d-subshell	(1)	Allow different numbers of chloride ligands results in a different energy gap between the lower and higher energy d-orbitals Allow different ligands result in different splitting of the d-orbitals Allow different ligands give different d-d splitting Do not award the number of ligands is different Do not award the charge on the chromium ion is different Do not award they have different shapes	
	 (colour results from the absorption of light by electrons) as they are promoted between d-orbitals / move from lower energy to higher energy (d-orbitals) / move to a higher energy level (d-orbital) so different wavelengths / frequencies (of light) are absorbed / transmitted / reflected (resulting in different colours) 	(1)	Allow d-d transitions as long as the splitting of the d-orbitals has been stated Do not award d-orbital Do not award d-block electrons Allow different energies of light Allow colour absorbed? Do not award emitted	

Question Number	Answer		Additional Guidance	Mark
17(a)(ii)	An explanation that makes reference to the following points: Reagent		March a charge with an arrestion	(5)
	 use silver nitrate solution (which reacts with free chloride ions) to give a precipitate 	(1)	May be shown with an equation Ignore presence / absence of dilute nitric acid Do not award if other reagents are added but allow other marks to be scored	
	Practical technique		Allow an appropriate titrimetric method	
	• use equal volumes of each solution of the three isomers (because they are equimolar solutions)	(1)	Allow the same amount of solution Allow prepare solutions using the same mass of isomer	
	• add an excess of silver nitrate solution	(1)	Allow add until no more precipitate is produced	
	 collect the precipitate / silver chloride by filtration / centrifuge and dry the precipitate weigh the silver chloride and calculate the number of moles (of silver chloride / chloride ions / silver ions and so find the ratio) or 	(1)	Do not award decant Allow centrifuge (MP4) followed by measure the height of the precipitate (in the tube) and calculate ratio heights (MP5)	
	weigh the silver chloride for each isomer and find the ratio	(1)		

Question Number	Answer	Additional Guidance	Mark
17(b)(i)	An answer that makes reference to the following point:		(1)
	• correct equation	$[Pt(NH_3)_2Cl_2] + H_2O \rightarrow [Pt(NH_3)_2(H_2O)Cl]^+ + Cl^-$	
		Allow ligands in any order Allow displayed formula but ignore incorrect shapes Ignore state symbols even if incorrect Ignore omission of square brackets Do not award products without charges	

Question Number	Answer	Additional Guidance	Mark
17(b)(ii)	An answer that makes reference to the following point:		(1)
	a lone pair / pair of electrons on nitrogen is donated to / forms a coordinate bond / forms a dative (covalent) bond (with platinum ion)	Allow a lone pair is attached (to the platinum ion) Allow oxygen Do not award long pair Ignore just guanine/adenine/it has a lone pair Ignore ligand exchange	

Question Number	Answer		Additional Guidance	Mark
17(b)(iii)	An answer that makes reference to the following points:			(2)
	the second chloride is too far from / on the opposite side to the DNA strand	(1)	Ignore just the chloride is on the opposite side Ignore the chloride is on the opposite side of the trans-platin	
	to bind with a second guanine / adenine is too difficult / not possible	(1)	Allow so trans-platin can only form one bond with DNA (while cis-platin can form two)	

Question Number	Answer		Additional Guidance				Mark	
	 calculation of the moles of Cr, S, O and N calculation of the ratio of moles calculation of x, y and z 	(1) (1) (1)	$A_{\rm r}$ $A_{\rm r}$ 0.28188 so Award con	Cr 14.67 ÷ 52.0 = 0.28212	S $36.23 \div 32.1$ $= 1.1287$ 4 $x = 4$	O $4.51 \div 16 \\ = 0.28188$ 1 $z = 1$	N $ 27.65 \div 14 \\ = 1.975 $ 7 $ y = 7 - 5 = 2$	(3)
			Correct va If no other scores 1					

Question Number	Answer		Additional Guidance	Mark
17(c)(ii)	An answer that makes reference to the following points:		Examples of diagram	(2)
	 ammine ligands trans (180°) to each other in an octahedral complex 	(1)	NCS////, NH ₃ –	
	 the rest of the ion correct including charge and at least one dot bond and one wedge bond or the rest of the ion correct including four ligands joined to show them in plane 	(1)	NCS SCN NH ₃	
			NCSSCN NCSSCN NH ₃	
			Allow charge anywhere Allow structure lines with no bracket Ignore connectivity of ligands A cis- structure scores 1 for the octahedral shape and charge on the ion	

Question Number	Answer	Additional Guidance	Mark
17(d)(i)	An answer that makes reference to the following points:		(2)
	• cobalt / central metal ion has four different groups / ligands attached to it (1)	Allow cobalt is a chiral centre Allow Co is bonded to four different atoms / four different ligands Ignore rotation of plane polarised light	
	• giving (two) non-superimposable mirror images (1)		

Question Number	Answer	Additional Guidance	Mark
17(d)(ii)	An answer that makes reference to the following points:	Examples of diagram Correct answers must contain at least one dotted line and one wedged line	(1)
	two structures drawn as mirror images	CI CO HBr Brico CI	
	or	NH_3 NH_3	
	two structures drawn with two ligands swapped	CI CO WBr CI CO WI	
		Accept second molecule in any correct orientation e.g. (compared to the molecule on the left in the examples above)	
		Br Co Br Co Br Co Br Co	
		would all score the mark Ignore connectivity of the ammonia molecule on the vertical bond.	
		Do not award connectivity of ammonia on the three bonds which are not vertical if via the H	

(Total for Question 17 = 20 marks) TOTAL FOR SECTION C = 20 MARKS TOTAL FOR PAPER = 90 MARKS