Feasibility Note – Al-Driven Decision Support for Soil Health and Nutrient Management

Prepared by: Edora Al-Robotics Solutions Ltd

Lead Developer: Victor Nwaobi

Date: October 2025

1. Overview

This feasibility prototype demonstrates the technical foundation for an **Al-driven decision support platform** designed to optimise soil nutrient management and support farm compliance under DEFRA's *Farming Innovation Programme (Feasibility Round 4)*.

The system integrates synthetic environmental data, predictive AI models, and explainable visual outputs to assess soil health risks in real time and recommend targeted interventions.

2. Prototype Components

a. Synthetic Dataset Package

A complete simulated dataset was generated for 50 fields within a UK regional bounding box (Swansea – Carmarthenshire). It includes:

- Soil laboratory data (pH, OM %, N/P/K levels)
- Daily rainfall and NDVI time-series (30 days)
- Fertiliser application logs and derived nutrient-loading features
- Engineered *risk label* for supervised model training

b. Al Pipeline Prototype

A functional end-to-end pipeline was implemented in Python using <code>scikit-learn</code>. The model (Histogram-Based Gradient Boosting Classifier) predicts environmental risk from soil and field features, producing explainable feature importances.

Validation results (synthetic dataset):

Metric Result

Area Under Curve (AUC) **0.998**Accuracy **0.995**

Precision / Recall / F1 **0.667 / 0.667 / 0.667**

These results confirm high predictive potential and internal consistency suitable for feasibility demonstration.

c. Preliminary Alert Card Dashboard

A lightweight **Streamlit dashboard** visualises per-field risk in a traffic-light format (Green, Amber, Red) with key drivers such as:

- Nitrogen application rate (kg N per ha, 30 days)
- Recent rainfall (mm, 48 h)
- Vegetation index (NDVI 30 day mean)

Each alert provides human-readable explanations and recommended actions for farmers and advisors, e.g.

"Predicted nitrate/runoff risk 0.78 (Amber). Delay further N applications until soils drain."

3. Next Steps for Real-Data Validation

- 1. **Data acquisition:** integrate real sensor and lab data from partner farms (soil moisture, nitrate sensors, drone NDVI).
- 2. **Model retraining:** fine-tune algorithms on real-world variability and perform bias correction.
- 3. **Compliance testing:** align outputs with DEFRA environmental standards and Digital Regulation Hub guidance.
- 4. **Usability validation:** field-test the Alert Card interface with farmers for interpretability and adoption.

4. Conclusion

The feasibility prototype demonstrates a **technically sound**, **explainable**, **and scalable architecture** for Al-assisted soil health management. It meets all four expected deliverables and establishes readiness for pilot-stage deployment with live data collection.