[CSE3081(2반)] 알고리즘 설계와 분석

2020학년도 2학기강의자료(2020.09.29 화요일)

서강대학교 공과대학 컴퓨터공학과 임 인 성 교수

- 본 강의에서 제작하여 제공하는 PDF 파일, 동영상, 그리고 예제 코드 등의 강의 자료의 저작권은 특별히 명기되어 있지 않은 한 서강대학교에 있습니다.
- 본인의 학습 목적 외에 공개된 장소에 올리거나 타인에게 배포하는 등의 행위를 금합니다. 협조 부탁합니다.

서강대학교 공과대학 컴퓨터공학과

(1/3)

CSE3081 (2반): 알고리즘 설계와 분석 [숙제 1]

담당 교수: 임인성

2020년 9월 22일

마감: 10월 6일 화요일 오후 8시 정각 제출물, 제출 방법, LATE 처리 방법 등: 조교가 과목 게시판에 공지함.

목표: 이번 숙제는 주어진 문제에 대하여 서로 다른 시간 복잡도를 가지는 두 알고리즘을 구현한 후, 다양한 크기의 입력 데이터에 대한 수행 시간을 측정하여, 이론적인 시간 복잡도와 실제 수행 시간 간의 연관 관계를 분석해봄을 목표로한다.

문제

1. 다음과 같은 Maximum Sum Subarray Problem (1D)을 고려하자.

Given a 1-dimensional integer array of size n, find the maximum-sum subarray with at least one element.

- 이 문제를 해결해주는 다음과 같은 시간 복잡도를 가지는 두 가지 알고리즘을 구현하라. 각 방법은 최대 합뿐만 아니라 그에 해당하는 subarray의 처음과 마지막 원소의 인덱스를 찾아주어야 한다.
 - Algorithm 1: 시간 복잡도 $O(n \log n) \leftarrow$ Divide-and-conquer 기법을 적용한 방법
 - Algorithm 2: 시간 복잡도 O(n) ← Dynamic programming 기법을 적용한 방법 (Kadane's algorithm)

2. 다음과 같은 Maximum Sum Subrectangle Problem (2D)을 고려하자.

Given a 2-dimensional integer array of size $n \times n$, find the maximum-sum subrectangle with at least one element.

이 문제를 해결해주는 다음과 같은 시간 복잡도를 가지는 세 가지 알고리즘을 구현하라. 각 방법은 최대 합뿐만 아니라 그에 해당하는 subrectangle의 위-왼쪽 모서리와 아래-오른쪽 모서리 원소들의 인덱스를 찾아주어야 한다.

- Algorithm 4: 시간 복잡도 $O(n^3 \log n) \longleftarrow 1D$ 문제를 풀기 위하여 Algorithm 1을 적용한 방법
- Algorithm 5: 시간 복잡도 $O(n^3) \longleftarrow 1D$ 문제를 풀기 위하여 Algorithm 2를 적용한 방법(강의 설명)

3. 이번 숙제의 목적은

- (a) 2D 문제를 서로 다른 시간 복잡도를 가지는 Algorithm 3, Algorithm 4, 그리고 Algorithm 5로 구현하여,
- (b) 충분히 큰 여러 크기의 입력 크기 n에 대하여 수행 시간을 측정한 후,
- (c) 과연 그러한 수행시간이 이론적인 시간 복잡도와 일치하는지를 확인하는 것이다.

[주제 3] Divide-and-Conquer Techniques and Sorting Techniques

The Divide-and-Conquer Approach

- ① **Divide** an instance of a problem into one or more smaller instances.
- 2 Conquer (Solve) each of the smaller instances. Unless a smaller instance is sufficiently small, use recursion to do this.
- If necessary, combine the solutions to the smaller instances to obtain the solution to the original instance.

Merge Sort

Problem: Sort *n* keys in nondecreasing sequence.

Inputs: positive integer *n*, array of keys *S* indexed from 1 to *n*.

Outputs: the array *S* containing the keys in nondecreasing order.

- ① Divide the array into two subarrays each with ~n/2 items.
- Conquer each subarray by sorting it recursively.
- 3 Combine the solutions to the subarrays by merging them into a single sorted array.

A simple implementation

```
// Sort a list from A[left] to A[right].
// Should be optimized for higher efficiency!!!
void merge sort(item type *A, int left, int right) {
  int middle;
                     ^{-}(n)
  if (left < right) {</pre>
                                            Divide
    middle = (left + right)/2;
    merge sort(A, left, middle);
                                           Conquer
    merge sort(A, middle + 1, right);
```

merge(A, left, middle, right);

Combine

An example of merging two arrays

k	left	right	merged			
1	1 <mark>0</mark> 12 20 27	13 15 22 25	10			
2	10 <mark>12</mark> 20 27	13 15 22 25	10 12			
3	10 12 <mark>20</mark> 27	13 15 22 25	10 12 13			
4	10 12 <mark>20</mark> 27	13 <mark>15</mark> 22 25	10 12 13 15			
5	10 12 <mark>20</mark> 27	13 15 <mark>22</mark> 25	10 12 13 15 20			
6	10 12 20 <mark>27</mark>	13 15 <mark>22</mark> 25	10 12 13 15 20 22			
7	10 12 20 27	13 15 22 <mark>25</mark>	10 12 13 15 20 22 25			
-			10 12 13 15 20 22 25 27			


```
item type *buffer; // extra space for merge sort, allocated beforehand
void merge(item type *A, int left, int middle, int right) {
  int i, i left, i right;
 memcpy(buffer + left, A + left, sizeof(item type)*(right - left + 1));
 i left = left;
 i = left;
 while ((i left <= middle) && (i right <= right)) {
    if (buffer[i left] < buffer[i right])</pre>
     A[i++] = buffer[i left++];
                                                     middle middle+1 right
   else
     A[i++] = buffer[i right++];
                                       buffer
 while (i left <= middle)</pre>
   A[i++] = buffer[i left++];
 while (i right <= right)</pre>
                                               left = 0, right = n-1
   A[i++] = buffer[i right++];
```


27 10 12 20 25 13 15 22 Divide 27 10 12 20 25 13 15 22

- Worst-case time complexity
 - 편의상 $n = 2^m$ 이라 할 경우 (m은 0보다 같거나 큰 정수),

T(n)	= O(r	$n \log n$

Merge Sort							
Divide	Conquer	Combine					
O(1)	2T(n/2)	O(n)					

- -n개의 원소를 k개와 l개로 나누어 진행한다고 가정하면 (n=k+l), T(n)=T(k)+T(l)+cn (kpprox l)
 - $n=2^m$ 이 아닌 일반적인 경우에도 같은 시간 복잡도를 가짐을 증명할 수 있음.

Solving Recurrence Equations

- Solve the following recurrences T(n) for given T(1) = 1:
 - ① T(n) = aT(n-1) + bn
 - $(2) T(n) = T(n/2) + bn \log n$
 - $(3) T(n) = aT(n-1) + bn^2$
 - $(4) T(n) = aT(n/2) + bn^2$
 - $(5) T(n) = T(n/2) + c \log n$
 - 6 T(n) = T(n/2) + cn
 - (7) T(n) = 2T(n/2) + cn
 - $T(n) = 2T(n/2) + cn\log n$
 - (9) T(n) = T(n-1) + T(n-2), for T(1) = T(2) = 1

Some Derivations

1.
$$T(n) = 2 \cdot T(n/2) + c \cdot n$$
, $T(1) = 1$
(Assum $n = 2^m$, i.e., $m = \log_2 n$ for some integer $m \ge 0$)

$$T(2^{m}) = 2 \cdot T(2^{m-1}) + c \cdot 2^{m}$$

$$= 2\{2 \cdot T(2^{m-2}) + c \cdot 2^{m-1}\} + c \cdot 2^{m}$$

$$= 2^{2} \cdot T(2^{m-2}) + 2 \cdot c \cdot 2^{m}$$

$$= 2^{2}\{2 \cdot T(2^{m-3}) + c \cdot 2^{m-2}\} + 2 \cdot c \cdot 2^{m}$$

$$= 2^{3} \cdot T(2^{m-3}) + 3 \cdot c \cdot 2^{m}$$

$$\vdots$$

$$= 2^{m} \cdot T(2^{0}) + m \cdot c \cdot 2^{m}$$

$$= n \cdot 1 + (\log_{2} n) \cdot c \cdot n$$

$$= O(n \log n)$$

2.
$$T(n) = T(n-1) + c \cdot n$$
, $T(1) = 1$

3.
$$T(n) = 2 \cdot T(n/2) + c \cdot n^2$$
, $T(1) = 1$
(Assum $n = 2^m$ for some nonnegative integer m)

$$T(2^{m}) = 2 \cdot T(2^{m-1}) + c \cdot 2^{2m} = 2\{2 \cdot T(2^{m-2}) + c \cdot 2^{2(m-1)}\} + c \cdot 2^{2m}$$

$$= 2^{2} \cdot T(2^{m-2}) + c\{2^{2m-1} + 2^{2m}\}$$

$$= 2^{2}\{2 \cdot T(2^{m-3}) + c \cdot 2^{2(m-2)}\} + c\{2^{2m-1} + 2^{2m}\}$$

$$= 2^{3} \cdot T(2^{m-3}) + c\{2^{2m-2} + 2^{2m-1} + 2^{2m}\}$$

$$\vdots$$

$$= 2^{m} \cdot T(2^{m-m}) + c\{2^{2m-(m-1)} + \dots + 2^{2m-2} + 2^{2m-1} + 2^{2m}\}$$

$$\vdots$$

$$= 2^{m} + 2 \cdot c \cdot 2^{2m} - 2 \cdot c \cdot 2^{m}$$

$$= 2 \cdot c \cdot n^{2} - (2 \cdot c - 1)n$$

$$= O(n^{2})$$

Another Implementation of Merge Sort

[Horowitz 7.6.3]

Program 7.11: Recursive merge sort

```
typedef struct {
   int key;
   int link;
} element;
```

i	0	1	2	3	4	5	6	7	8	9
key	26	5	77	1	61	11	59	15	48	19
link	8	5	-1	1	2	7	4	9	6	0


```
int listmerge(element list[], int first, int second)
/* merge lists pointed to by first and second */
  int start = n:
  while (first !=-1 && second !=-1)
     if (list[first].key <= list[second].key) {</pre>
     /* key in first list is lower, link this element to
     start and change start to point to first */
       list[start] link = first;
       start = first;
       first = list[first].link;
     else {
     /* key second list is lower, link this element into
     the partially sorted list */
       list[start].link = second;
       start = second;
       second = list[second].link;
                                    listmerge takes two sorted chains, first and second,
  /* move remainder */
  if (first == -1)
                                    and returns an integer that points to the start of a new sorted
     list[start].link = second;
                                    chain that includes the first and second chains.
  else
     list[start].link = first;
  return list[n].link; /* start of the new list */
```

Program 7.12: Merging linked lists

listmerge 함수 수행 예

Quick Sort

- ① Divide: Select a pivot element, and then divide the array into two subarrays such that
- ② Conquer: sort each subarray recursively.

3 Combine: do nothing.

• A **simple** implementation


```
// Sort a list from A[left] to A[right].
// Should be optimized for higher efficiency!!!
void quick sort(item type *A, int left, int right) {
  int pivot;
  if (right - left > 0) {
                                             Divide
   pivot = partition(A, left, right);
    quick sort(A, left, pivot - 1);
                                            Conquer
    quick sort(A, pivot + 1, right);
```



```
#define SWAP(a, b) { item type tmp; tmp = a; a = b; b = tmp; }
int partition (item type *A, int left, int right) {
  int i, pivot;
  pivot = left;
  for (i = left; i < right; i++) {
    if (A[i] < A[right]) {
      SWAP(A[i], A[pivot]);
      pivot++;
                                 How is the pivot element chosen in this function?
  SWAP(A[right], A[pivot]);
  return (pivot);
```

 18
 20
 28
 0
 38
 8
 2
 16
 10
 14
 24
 30
 34
 12
 32
 22
 6
 4
 36
 26

 18
 20
 0
 8
 2
 16
 10
 14
 24
 12
 22
 6
 4
 26
 32
 38
 30
 34
 36
 28

 (13)

Cost Analysis

Quick SortDivideConquerCombineO(n)T(m1) +T(m2)O(1)

15 22 13	27 12 10 20 25	
10 13 12	15 22 27 20 25	
	F	
10 13 12	15 20 22 27 2	25
10 12 13	15 20 22 25	27

$$T(n) = T(m_1) + T(m_2) + cn (m_1 + m_2 = n - 1) \text{ if } n > 1$$

 $T(1) = 1$

- Worst-case time complexity
 - 매 단계에서 선택한 pivot element가 가장 크거나 가장 작을 경우,

$$T(n) = T(0) + T(n-1) + cn$$

Skewed vs well-balanced trees

$$T(n) = T(n-1) + cn, \text{ if } n > 1$$

$$T(1) = 1$$

$$T(n) = O(n^2)$$

Average-case time complexity

$$T(n) = \sum_{p=1}^{n} \frac{1}{n} \{ T(p-1) + T(n-p) \} + cn$$

$$T(0) = 1$$

$$T(n) = O(n \log n)$$

직관적인 시간 복잡도 추정

$$T(n) = T(m_1) + T(m_2) + cn \ (m_1 + m_2 = n - 1) \text{ if } n > 1$$

 $T(1) = 1$

