MECH 7710 Homework Assignment #4 Nonlinear Estimation

Due Friday 5/6

- 1. Develop a model for a pendulum with inertia $J_p = 2.5 \frac{Nm}{rad/s^2}$ (at pin), mass $m = 1.6 \, kg$, and length $L = 1 \, m$. The pin introduces damping in the system that should be modeled as $\tau_b = b\dot{\theta}^3$ where $b = 1.25 \frac{Nm}{rad/s}$. The input to the system is a torque at the pin given by $\tau = 12Nm$. Assume system is acted on by a horizontal disturbance force at the end of the pendulum $(f(t) = 5 + \eta \text{ where } \eta \sim N(0,2))$. The measurement of the angle of the pendulum is corrupted by zero mean Gaussian white noise with variance of 1 degree.
 - a. Develop a simulation of the system
 - b. Develop an extended Kalman filter to estimate the position and velocity (and any additional needed parameters) of the pendulum given measurement as described
 - c. Develop an unscented Kalman filter to estimate the position and velocity (and any additional needed parameters) of the pendulum given measurement as described
 - d. Use Monte Carlo simulations to compare the performance of the EKF and UKF.
 Be sure to compare expected covariance to sampled covariance from Monte Carlo simulations
- 2. Refer to problem 3 from homework 3 (the "Navigation" filter). Design a particle filter to estimate the East and North position, radar and gyro bias using the data (*hw3_3* from canvas). Compare the performance of the particle filter to the performance of your estimator from homework 3 using at least 3 different numbers of particle (e.g. N=50, 100,1000). Provide plots of estimation error, analytical covariance (from EKF) and numerical covariance (from particle filter).