

#### BHARATIYA VIDYA BHAVAN'S

## SARDAR PATEL INSTITUTE OF TECHNOLOGY

MUNSHI NAGAR, ANDHERI (WEST), MUMBAI - 400 058, India (Autonomous College Affiliated to University of Mumbai)

### End Semester Examination April/May 2018

Max. Marks: 100

Class: FYMCA Course Code: MCA 25

Subject: Probability and Statistics Instructions:

Duration: 3 hrs Semester: II

Date: 03/06/2018 Time:102pm-05pm

(1) All questions are compulsory.

(2) Use of scientific calculator is allowed.

(3) Assume any necessary data but justify the same.

| Q.N       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |             |             |      |                      |        |        |            |          |           | Marks | CO   |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|------|----------------------|--------|--------|------------|----------|-----------|-------|------|
| 1.<br>(a) | State and prove Baye's theorem.  Measurements at the University of Mumbai on a certain day indicated that the source of incoming jobs is 15% from MIDC Thane, 35% from MIDC Taloja, and 50% from MIDC Andheri. Suppose that the probabilities that a job initiated from these MIDCs requires set-up are 0.01, 0.05, and 0.02 respectively. Find the probability that a job chosen at random at University of Mumbai requires set-up. Also find the probability that a randomly chosen job comes from MIDC Taloja, given that it requires set-up. |             |             |             |      |                      |        | S<br>t | CO-4       |          |           |       |      |
|           | From the following skewness.  Age (years) Number of employees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | data on a   | 25-30<br>12 | 30-35<br>20 | 35   | ulate t<br>-40<br>25 | 40-    |        | 45-5<br>12 | 0 50     | 0-55<br>8 | [10]  | CO-4 |
| (b)       | Prove with example wise independent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e that thre | ee event    | s may be    | mutu | ally i               | indepe | enden  | t but n    | eed not  | be pair   | [10]  | CO-4 |
| 2.<br>(a) | The lengths in cm of 10 nails produced by a certain machine are as: 5.10, 4.98, 5.03, 4.99, 5.00, 5.07, 5.04, 5.03, 4.91, 4.97 Can it be concluded that average length of a nail produce by the machine is 5cm. [Given: The value of $t_{\alpha}$ at 5% level of significance for 9 degrees of freedom is 1.833]                                                                                                                                                                                                                                 |             |             |             |      |                      |        |        | [10]       | CO-3     |           |       |      |
|           | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | number      | of accid    |      |                      | ty dur |        | ) days     | of time. | . Find    | [10]  | CO-3 |



## BHARATIYA VIDYA BHAVAN'S

## SARDAR PATEL INSTITUTE OF TECHNOLOGY

MUNSHI NAGAR, ANDHERI (WEST), MUMBAI – 400 058, India (Autonomous College Affiliated to University of Mumbai)

| (b)      | (i) In the frequency distribution of 100 families given below, the number of families corresponding to expenditure groups (20-40) and (60-80) are missing. The median is |                                 |                                             |                              |                |               |      |      |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------|------------------------------|----------------|---------------|------|------|--|
|          | known to be 50. Find Expenditure (Rs.)                                                                                                                                   | the missing fr                  | equencies. 20-40                            | 40-60                        | 60-80          | 80-100        |      |      |  |
|          | No of families                                                                                                                                                           | 14                              | **                                          | 27                           |                | 15            |      |      |  |
|          | (ii) Let X be a random and b such that Y=aX-                                                                                                                             | n variable for<br>b has expecta | which E(X)=<br>tion zero and                | =10 and V(X<br>d variance 1. | )=25. Find the | e values of a | [5]  | CO-2 |  |
| 3<br>(a) | (i) From the following<br>Marks in PS:<br>Marks in DS:                                                                                                                   | 25 28 35 3                      | 2 31 36                                     | 29 38 34                     | 32             |               | [10] | CO-2 |  |
|          | OR (ii) A continuous rand $f(x)=k(2-x)$ $=kx(x)$ $=0,$ Find k and median of                                                                                              | ),<br>-2),                      | $0 \le x < 2$<br>$2 \le x < 3$<br>otherwise |                              |                |               | [10] | CO-2 |  |
| (b)      | Find the coefficient of                                                                                                                                                  | of variation fo                 | r the following                             | ng distributio               | on.            |               | [10] | CO-2 |  |
|          | . 3                                                                                                                                                                      | 7 12                            |                                             | 80-100                       | 100-120        | 120-140       |      |      |  |
| 4<br>(a) | The lifetime of certain kinds of electronic devices have a mean life of 300 hours and                                                                                    |                                 |                                             |                              |                |               |      |      |  |
|          | OR Show that the r <sup>th</sup> moment of Beta distribution of second kind about origin is $\mu'_r = \frac{1}{\beta(m,n)} \beta(m+r,n-r)$                               |                                 |                                             |                              |                |               |      |      |  |
|          | Hence or otherwise s $\frac{m(m+n-1)}{(n-1)^2(n-1)}$ where m and n are p                                                                                                 | show that the $\frac{1}{2}$     | variance Bet                                |                              | of second kin  | nd is         |      |      |  |



# SARDAR PATEL INSTITUTE OF TECHNOLOGY

MUNSHI NAGAR, ANDHERI (WEST), MUMBAI – 400 058, India (Autonomous College Affiliated to University of Mumbai)

| (b)      | Two discrete random variables X and Y have joint pmf given by the following table.                                                                                                                                                                                                                                                                                                                        |     |      |  |  |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|--|--|--|--|
|          | Y                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |  |  |  |  |
| 5<br>(a) | (i) A random sample of 1000 farms in a year gives an average yield of wheat of 2500 kg. per hectare with a s.d. 200 kg. A random sample of 1000 farms in the following year gives an average yield of wheat of 2700 kg. per hectare with a s.d. 250 kg. Can it be inferred that there is a significant increase in the mean yield? [Given: The value of $Z_{\alpha}$ at 1% level of significance is 2.58] |     |      |  |  |  |  |
|          | (ii) The probability that a man aged 60 will live up to 70 is 0.65. What is the probability that out of 10 such men now at 60, at least 7 will live up to 70?                                                                                                                                                                                                                                             | [5] | CO-5 |  |  |  |  |
| (b)      | (i) A coin is tossed until a head appears. What is the expectation of the number of tosses required?                                                                                                                                                                                                                                                                                                      | [5] | CO-4 |  |  |  |  |
|          | (ii) A series of n jobs arrive at a computing centre with n processors. Assume that each of the n <sup>n</sup> possible assignments vectors (processor for job 1,, processor for job n) is equally likely. Find the probability that exactly one processor will be idle?                                                                                                                                  | [5] | CO-4 |  |  |  |  |