From the Frying Pan to the Fire: Bioinformatics Computing in Two Lectures

Sebastian Smith
Nevada Center for Bioinformatics
stsmith@unr.edu

BCH 709: Intro to Bioinformatics Fall 2015

Overview

- Introduction
- Linux in a nanosecond nutshell
 - Frying pan
- Hands-on genome assembly on UNR Grid
 - Fire
- Today = Computing
- Next = Biochem

WE BUILD GENOMES

Director: Karen Schlauch, Ph.D.Richard L. Tillett, Ph.D.
Juli Petereit
Sebastian Smith

Nevada Center for Bioinformatics

www.unr.edu/bioinformatics

CFB Computing

- Example: Assembly of a new genome exceeds 20,000 hrs of computation
 - >2.25 years for high-quality results
 - Our goal is to complete this computation in **7** days
- How?
 - High-performance software and systems
 - Big computers
 - Advanced algorithms
 - Parallelism
 - Automation

HPC: The Gist

HPC: The Gist

This Class

- 10,000ft view of HPC at CFB
- You will use UNR research computing to:
 - Assemble a genome
 - Perform an analysis
- Goals:
 - Provide a HPC "starter kit"
 - Use as a template for your own work
 - Introduce you to UNR HPC resources

Into the Frying Pan

UNR Grid

- Primary research computer
- Cluster/Grid
 - Collection of computers that work together as one
 - 27 computers
 - 16 CPU, 256GB RAM
 - 432 total CPUs, 4TB RAM
 - 40+TB disk
- Why use it?
 - Annihilate work
 - ~\$200k computer you don't have to buy
- Uses Linux
 - Centos 6.7

Linux

- Monolithic kernel
 - Manages applications, computer hardware and their interaction
- Operating system
 - Highly modular
 - Distributions
 - Manage collections of software, configuration, security
 - Make it easy for end-users
 - Ubuntu, Debian, RedHat, CentOS, Fedora, Mint, Arch, Suse

Why Linux?

- It's free
 - Open source
 - Powerful, free development ecosystem
- Versatile
 - Highly configurable
 - Real time systems, desktop computing, supercomputing, specialty
- Scalable
 - Refrigerators to supercomputers
- Performant
- Stable
- Pervasive
 - 28% mainframe, 29% embedded, 36% web, 53% mobile, 97% top500 supercomputing
 - 48% of 2009 businesses use it

CFB Software

- Non-interactive
 - Automatic, daemon
- Shell
 - Command Line Interface
 - Simple human interface
 - Read-Eval-Print Loop (REPL)
 - Have to memorize commands, complex to learn
 - Fast and powerful
 - Powerful programming languages
 - Automation
 - Control self and other computers
 - Low-bandwidth remote-control

Remote Control

- You're on Windows... how the heck do we control the UNR super computer?
- Secure Shell (ssh)
 - Secure, remote CLI
 - Windows = Putty
 - Linux = ssh
- Secure CoPy (scp)
 - Securely transfer files
 - Windows = WinSCP
 - Linux = scp

Connect to the Grid

- Execute Putty.exe
- Type "login.research.unr.edu" into the "Host Name" box
- Type "22" into the "Port" box
- Click "Open" button
- Input NetID as user name
- Input NetID password as password

The Grid Shell

- Command interpreter
- Bash
 - Bourne-again shell
- Important features
 - Scripting language
 - Can read commands from a file
 - Tab completion
 - Minimize spelling errors

Commands

- Software application
 - Input from the shell
 - Output to the shell
- Structure
 - command [OPTIONS] <ARGUMENTS>
 - Type command name, options, arguments and press enter to execute

\$ rsync -avzP stsmith@bioinformatics.unr.edu:~/class/stsmith@login.research.unr.edu:~/

Files

- Everything is a file
- · Filesystem is a directed graph
 - Root = /
 - Home = /home
 - Your home = /home/<NetID>
- Folders = directories
- Current Working Directory (CWD)
 - Where you are currently located
 - Your home directory when you log in
- Path
 - Specifies a location in the filesystem
 - Absolute
 - · Points to the same location regardless of CWD
 - Always starts at root
 - Relative
 - · Points to a different location dependent on CWD
- "/" = path delimiter

Shortcuts

- ~/ = home directory
- ./ = current directory
- ../ = parent directory

Manipulating Files

- pwd
 - List the current working directory
- Is [path]
 - List directory contents
- cd <path>
 - Change directory
- mkdir <path>
 - Make a directory
- mv <src path> <dest path>
 - Move/rename a file or directory
- cp <src path> <dest path>
 - Copy a file
 - Copy a directory with the -r option

- rm <path>
 - Remove a file
 - Remove a directory with the -r option
- file <file path>
 - Determine file type
- less <file path>
 - Read contents of text files

Editing Text Files

- nano <file path>
- ctrl + x to exit
 - Will prompt to save on exit

Processes

- Three types
 - Interactive, automatic (at, batch, cron), daemon
- ps
 - Report processes
 - Report all processes on system with -ef options
- top
 - Display tasks in table format
 - Updates periodically
- Kill [-s signal] process id>
 - Sends a signal to processes
 - Kill a process with -s 9 option

Cluster Computing

- All users share a common resource
- Resource starvation/software failure if we all run at the same time
- Take turns using the resource
- Batch-queuing system
 - Job queue
 - Job scheduler
 - Program that manages background program execution
- UNR Grid uses Sun/Oracle Grid Engine (SGE)

Cluster Management

- qsub <script>
 - Submit a job to SGE queue
- qstat
 - Show status of SGE jobs
- qdel <job id>
 - Delete SGE job from queue

Into the Fire

We Know Enough To Be Dangerous

- Run a genome assembly on The Grid
- We've packaged a small, simplified assembly task
 - Explore the package on your own time to learn how it works
 - ~5 hour runtime on 16 CPUs
 - 80 CPU hours

1

- Log in to the grid head node
 - SSH to login.research.unr.edu
 - Username = NetID
 - Password = NetID password

\$ cd ~/scratch

- Get class files from Github
 - https://github.com/UNR-CFB/bch-709-intro-bioinform atics-2015f

\$ git clone https://github.com/UNR-CFB/bch-709-intro-bioinformatics-2015f.git

Makes a bch-709-intro-bioinfomratics-2015f directory

\$ cd bch-709-intro-bioinformatics-2015f

- Execute the setup script\$./setup.sh
- This links a directory containing large Illumina sequencer reads that already exists on the grid
 - Faster than copying the files to everyone

\$ cd day-1/sge

Submit the assemble_geno.sge job to the queue

\$ qsub assemble_geno.sge

Watch the status of your job change
 \$ watch qstat

- Let it bake
- 4.5..5 hours

What Did We Just Do?

- \$ less assemble_geno.sge
- We told the SGE queue to find a computer that has 16 free CPUs and run the assemble_geno.sge script on it
- assemble_geno.sge runs an assembler called Spades on the Illumina sequencer reads to produce a genome
- We will use the genome to answer questions tomorrow

Questions?

Getting Help

- Nevada Center for Bioinformatics
 - We help with all stages of research
 - Training, systems administration
 - Sebastian Smith (systems and software)
 - stsmith@unr.edu
 - Richard Tillett (biochem)
 - rltillett@unr.edu
- UNR Grid
 - John Anderson
 - jra@unr.edu
 - http://www.unr.edu/it/research-resources/the-grid