Application of Artificial Intelligence

Opportunities and limitations through life & Life sciences examples

Clovis Galiez

Grenoble

Statistiques pour les sciences du Vivant et de l'Homme

March 31, 2020

Disclaimer

- You should form teams of 2 persons on Teide.
- Answer the questions in the template at https: //clovisg.github.io/teaching/asdia/ctd2/quote2.Rmd and post-it on teide.
- You can use the following Riot channel https://riot.ensimag.fr/#/room/#ASDIA:ensimag.fr, I'll be present to answer live questions during the lecture slots. Do not hesitate to post your understandings and mis-understandings out of the time slots, I won't judge it, I'll only judge your involvment and curiosity.
- You can send me emails (clovis.galiez@grenoble-inp.fr) for specific questions, and I'll answer publicly on the riot channel.

Goals

- Have a critical understanding of the place of AI in society
- Discover and practice machine learning (ML) techniques
 - Linear regression
 - Logistic regression
- Experiment some limitations
 - Curse of dimensionality
 - Hidden overfitting
 - Sampling bias
- Towards autonomy with ML techniques
 - Design experiments
 - Organize the data
 - Evaluate performances

Today's outline

- Short summary of the last lecture
- Lasso regularization
- Experiment the curse of dimensionality
- Logistic regression

Remember

Remember

What do you remember from last lecture?

Phantasm and opportunities of AI

Remember

- Phantasm and opportunities of AI
- Microbiomes

Remember

- Phantasm and opportunities of AI
- Microbiomes
 - Diverse
 - Still a lot to discover
 - Play key roles in global geochemical cycles and in human health

Remember

- Phantasm and opportunities of AI
- Microbiomes
 - Diverse
 - Still a lot to discover
 - Play key roles in global geochemical cycles and in human health
- Curse of dimensionality

Remember

- Phantasm and opportunities of AI
- Microbiomes
 - Diverse
 - Still a lot to discover
 - Play key roles in global geochemical cycles and in human health
- Curse of dimensionality
 - Overfit can stem from too many features (capacity of description increases exponentially)
 - More data helps

Remember

- Phantasm and opportunities of AI
- Microbiomes
 - Diverse
 - Still a lot to discover
 - Play key roles in global geochemical cycles and in human health
- Curse of dimensionality
 - Overfit can stem from too many features (capacity of description increases exponentially)
 - More data helps
 - Restricting the parameter space: regularization
 - Ridge

Ridge regularization example

Let's come back to the model $Y = \sum\limits_{i=0}^{3} \beta_i x^i + \epsilon.$

The maximum likelihood with 4 points will give a $\vec{\beta}$ fitting perfectly the points:

Maximum likelihood coefficients:

$$\beta_0$$
 β_1 β_2 β_3 5.169 -54.388 155.755 -114.487

Ridge regularization example

Let's come back to the model $Y = \sum_{i=0}^{3} \beta_i x^i + \epsilon$.

With a prior $\mathcal{N}(0, \eta^2)$ the maximum a posteriori of the vector $\vec{\beta}$ corresponds to (blue curve):

Maximum a posteriori coefficients

$$\beta_0$$
 β_1 β_2 β_3 -0.1279 2.2561 -1.5779 0.3180

Ridge regularization

Consider the linear model $Y = \vec{\beta}.\vec{X} + \epsilon$ with $\epsilon \sim \mathcal{N}(0, \sigma^2)$.

Facts

1. The maximum likelihood solution is the same as the solution of the following optimization problem:

$$\min_{\vec{\beta}} \sum_{i=0}^{N} (y_i - \vec{\beta}.\vec{x_i})^2$$

2. Putting a Gaussian prior $\beta_i \sim \mathcal{N}(0, \eta^2)$ on the parameters is the same as solving the following optimization problem (ridge regularization):

$$\min_{\vec{\beta}} \sum_{i=0}^{N} (y_i - \vec{\beta}.\vec{x_i})^2 + \frac{\sigma^2}{\eta^2} ||\vec{\beta}||_2^2$$

3. It tells the model **to avoid high values** for the parameters. It is equivalent to introduce *fake* data at coordinates:

$$\vec{x} = (\frac{\sigma}{\eta}, \frac{\sigma}{\eta}, ..., \frac{\sigma}{\eta}), y = 0$$

From ridge to lasso

Suppose you model a variable Y depending on some explanatory variables x with a linear model:

$$Y = \beta_0 + \vec{\beta} \cdot \vec{x} + \epsilon$$
 with $\epsilon \sim \mathcal{N}(0, \sigma^2)$.

Imagine now that you know that actually **only few** variables actually explain your target variable.

Question!

Gaussian priors on β_i centered on 0 avoid high values of β_i . Will it push the non-explanatory variables down to 0?

- Think individually (5')
- Vote

Lasso penalization

What should be the shape around 0 of the prior distribution if we want to use less parameters?

Lasso penalization

What should be the shape around 0 of the prior distribution if we want to use less parameters? Something like:

Exercise

Work out the formula to see what criterion is minimized when maximizing the posterior probability of the parameters.

Show that curse of dimensionality happens!

Design a simple experiment showing the curse of dimensionality in the linear regression setting.

- Individual reflexion (5')
- Then we decide on a common experimental plan

• Simulate in R a dependence between a vector \vec{X} and an output variable y.

- Simulate in R a dependence between a vector \vec{X} and an output variable y.
- Find the maximum likelihood of the parameters of a linear regression.

- \bullet Simulate in R a dependence between a vector \vec{X} and an output variable y.
- Find the maximum likelihood of the parameters of a linear regression.
- Add components to \vec{X} that are not related to the output variable? Are the coefficients near to 0?

- \bullet Simulate in R a dependence between a vector \vec{X} and an output variable y.
- Find the maximum likelihood of the parameters of a linear regression.
- Add components to \vec{X} that are not related to the output variable? Are the coefficients near to 0?
- Add regularization and check if the correct coefficient are recovered.

Logistic regression (classification)

Let:

- \vec{X} be an M-dimensional random variable.
- and Z binary (0/1) random variable.

 \vec{X} and Z are linked by some unknown joint distribution.

Let:

- \bullet \vec{X} be an M-dimensional random variable,
- and Z binary (0/1) random variable.

 $ec{X}$ and Z are linked by some unknown joint distribution.

A predictor $f:\mathbb{R}^M_+ \to [0,1]$ is a function chosen to minimize some *loss* in order to have

Let:

- \bullet \vec{X} be an M-dimensional random variable,
- and Z binary (0/1) random variable.

 $ec{X}$ and Z are linked by some unknown joint distribution.

A predictor $f: \mathbb{R}^M_+ \to [0,1]$ is a function chosen to minimize some *loss* in order to have $f(\vec{x}) \approx z$ for realizations \vec{x}, z of \vec{X}, Z .

Let:

- \vec{X} be an M-dimensional random variable,
- and Z binary (0/1) random variable.

 \vec{X} and Z are linked by some unknown joint distribution.

A predictor $f: \mathbb{R}^M_+ \to [0,1]$ is a function chosen to minimize some *loss* in order to have $f(\vec{x}) \approx z$ for realizations \vec{x}, z of \vec{X}, Z .

Which loss?

Logistic regression

A natural predictor is $f(\vec{x}) = p(Z = 1|\vec{x})$.

 $^{^1 \}text{This}$ choice is theoretically sound, in particular when $\vec{x}|Z=i \sim \mathcal{N}(\vec{\mu_i}, \Sigma)$, or x_i 's are discrete.

Logistic regression

A natural predictor is $f(\vec{x}) = p(Z=1|\vec{x})$. Problem: $p(Z=1|\vec{x})$ is unknown.

 $^{^1 \}text{This}$ choice is theoretically sound, in particular when $\vec{x}|Z=i \sim \mathcal{N}(\vec{\mu_i}, \Sigma)$, or x_i 's are discrete.

Logistic regression

A natural predictor is $f(\vec{x}) = p(Z=1|\vec{x})$. Problem: $p(Z=1|\vec{x})$ is unknown.

We **model** it by¹:

$$f_w(\vec{x}) = \sigma(\vec{w}.\vec{x} + b)$$

where the function σ is the logistic sigmoid $\sigma: x \mapsto \frac{1}{1+e^{-x}}$

 $^{^1 \}text{This}$ choice is theoretically sound, in particular when $\vec{x}|Z=i\sim \mathcal{N}(\vec{\mu_i},\Sigma)$, or x_i 's are discrete.

Conditional likelihood

Exercise

- 1. Show that it is not possible to find the parameters \vec{w} by maximum likelihood if we don't know the distribution of \vec{x} .
- 2. Let $f(\vec{x})=p(Z=1|\vec{x})=\sigma(\vec{w}.\vec{x}+b)$. Show that the *conditional* log-likelihood $LL=\log P(z_1,...,z_N|\vec{x}_1,...,\vec{x}_N,\vec{w},b)$ writes:

$$LL(\vec{w}, b) = \sum_{i=1}^{N} [z_i \cdot \log f(\vec{x}_i) + (1 - z_i) \cdot \log(1 - f(\vec{x}_i))]$$

- 3. To what well-known loss the optimization of this conditional likelihood corresponds?
- 4. Interpret geometrically the role of parameters \vec{w} and b.

Curse of dimensionality in classification

From the previous exercise, if the k^{th} component of the feature vector \vec{x} plays no role in the classification process, what should be the value of w_k ?

What can you expect in practice?

If you expect only few explanatory components in your vector of features \vec{x} , what shall you do?

Next week we will apply these methods on real data!