Всероссийская олимпиада школьников по физике

11 класс, зональный этап, 1999/2000 год

Задача 1. Найдите сопротивление между точками A и B проволочной сетки с квадратными ячейками (рис.). Сопротивление куска проволоки длиной, равной стороне квадрата ячейки, $r=2.4~\mathrm{Om}.$

MO 7,1 = $\eta \frac{17}{42} = 1$ A

Задача 2. Небольшая шайба B скользит по гладкой внутренней поверхности воронки, описывая окружность в горизонтальной плоскости. В результате незначительного толчка вверх вдоль поверхности скольжения шайба сошла с орбиты и вылетела из воронки со скоростью v. Зная, что расстояние H от начала координат до дна воронки равно 100 см, $H_1=75$ см, найдите v. Считать, что для точек профиля внутренней поверхности воронки координата y обратно пропорциональна квадрату радиуса воронки r: $y \sim 1/r^2$ (см. разрез воронки на рис.).

 $_{\rm D} = \sqrt{2g(H-H)}$ м/с

Задача 3. С горки с углом наклона к горизонту α съезжают по кратчайшему пути с постоянной скоростью v_1 санки массой M (рис.). За санками бежит собака массой m и запрыгивает на них. В начале прыжка её скорость v_0 и направлена под углом β к поверхности горки. Найдите скорость санок с собакой, если известно, что санки после соприкосновения с собакой не останавливались.

 $\frac{\sigma \cos(m+M)}{(\sigma-g)\cos^{2}\sigma + \sigma \cos^{2}\sigma = 0} = \sigma$

Задача 4. Тело массой m может совершать колебания с помощью лёгкой пружины жёсткостью k по горизонтальной поверхности пола вдоль направления оси пружины (рис.). Трения между телом и полом нет, но на тело во время движения действует сила сопротивления, пропорциональная его скорости: $\vec{f} = -\gamma \vec{v}$, где $\gamma > 0$. В случае недеформированной пружи-

ны телу сообщают скорость v_0 , и на него начинает действовать сила, изменяющаяся со временем по гармоническому закону. Оказалось, что полная энергия установившихся колебаний в любой момент времени равна начальной энергии системы. Считая известными $m,\ k,\ \gamma,\ v_0,$ найдите циклическую частоту ω и максимальное значение F_0 вынуждающей гармонической силы.

$$\omega = \sqrt{\frac{k}{m}}, F = \gamma v_0$$

Задача 5. Говорят, что в архиве лорда Кельвина нашли график циклического процесса, совершённого над идеальными газом (рис.). От времени чернила выцвели, и от координатных осей p (давление) и V (объём) осталась только точка O их пересечения. Из пояснений к тексту следовало, что в точке A температура газа максимальна, а кратчайший поворот от положительного направления оси V к положительному направлению оси p совершается против часовой стрелки. Восстановите построением положение осей p и V.

