# **MRlaggr**

un package pour la gestion et le traitement de données multivariées d'imagerie

#### Brice Ozenne

Équipe Biostatistique Santé, LBBE, CNRS UMR 5558, France Service de Biostatistiques, Hospices Civils de Lyon, France

**4**<sup>ième</sup> **rencontres R**, Grenoble - 26 juin 2015







## Contexte de l'imagerie médicale

## Étude typique

3 niveaux de mesure :

- Temps d'observation
- Patient
- Paramètre IRM

(étude I-know)

4 temps

63 patients

11 paramètres



00

## Aperçu d'un fichier - format .txt



1 valeur = 1 voxel (pixel 3D)

000

# Imagerie médicale - Enjeux

| Volume de données                                | (I-know)         |
|--------------------------------------------------|------------------|
| <ul> <li>Nombreux fichiers de données</li> </ul> | 2296 fichiers    |
| <ul> <li>Taille des données</li> </ul>           | 2,80 Go          |
|                                                  | n>327680/fichier |

000

| Volume de données                                  |                |
|----------------------------------------------------|----------------|
| Normalisation des données                          | (I-know)       |
| <ul> <li>formats spécifiques</li> </ul>            | nifti          |
| <ul> <li>nb de paramètres IRM variables</li> </ul> | entre 17 et 31 |
| <ul> <li>résolution spatiale variable</li> </ul>   | de 128×128×15  |
|                                                    | à 256×256×20   |

# Imagerie médicale - Enjeux

#### Volume de données

Normalisation des données

### Prétraitement des données

- Identification des structures cérébrales
- Normalisation des paramètres



# Imagerie médicale - Enjeux

#### Volume de données

Contexte

Normalisation des données

#### Prétraitement des données

- Identification des structures cérébrales
- Normalisation des paramètres



## Limites des outils sous R

Des packages d'analyse existent ...

(http://cran.r-project.org/web/views/MedicalImaging.html)

- ... Mais la gestion de données reste difficile :
  - stockage univarié :
    - → 1 array / paramètre / patient
    - → incompatible avec les fonctions usuelles
  - outils de pré-traitement dispersés
    - → packages EBImage, mmand, RNiftyReg, fsIR, mritc . . .
    - → ou inexistants

# 

- agrégeant l'ensemble de l'information patient
- facilitant le prétraitement des données
- permettant la visualisation des données et résultats
- compatible avec les fonctions statistiques usuelles

## Quelques définitions de POO

## Objet

• Entité informatique représentant un concept réel ex : cerveau d'un patient

#### **Attributs**

• Caractéristiques intrinsèques à l'objet :

fixes: identifiant patient

ajustables : localisation de la lésion

#### Méthodes

• fonctions spécialement conçues pour traiter les objets :

multiplot: affichage graphique

selectClinic : sélection des données cliniques calcHemisphere : identification des hémisphères

#### Illustration



## Illustration



432 34 5 2 134.91 76.10 ...

433 35 5 2 136.86 81.07 ...

#### Préfixes associés aux méthodes :

- read/write : lecture/écrite de fichiers d'image
- const : construction d'objets MRlaggr
- calc : prétraitement des données update.objet=TRUE : mise à jour automatique de l'objet
- **select**: extraction d'informations
- alloc/suppr : mis à jour des données
- plot : affichage graphique

```
R> path <- system.file("nifti",package = "MRIaggr")</pre>
R> T1 <- readMRI(file=file.path(path, "T1_t0.nii"),</pre>
                      format="nifti")
+
R> Patient1 <- constMRIaggr(T1,</pre>
                               identifier="001".
+
+
                               param="T1")
Merging: (1) T1
R> summary(Patient1)
# image dimensions (i,j,k) : 78x100x3 voxels
# ...
```

## Import et conversion en MRlaggr

## Similaire en multiparamétrique :

```
R> T2 <- readMRI(file=file.path(path, "T2_GRE_t0.nii"),
                  format="nifti")
+
R> Lesion <- readMRI(file=file.path(path, "MASK_DWI_t0.nii"),</pre>
                    format="nifti")
+
R> Patient1 <- constMRIaggr(list(T1,T2,Lesion),</pre>
+
                           identifier="001",
                           param=c("T1", "T2", "Lesion")
+
Merging: (1) T1 (2) T2 (3) MASK
```

# Exemple de prétraitement Définition du masque cérébral (k-means) :

```
R> calcBrainMask(Patient1,param="T2",
```

+ update.object=TRUE)



00000

## Exemple de prétraitement Lissage du masque cérébral (critères de voisinage spatial) :

```
R> calcSmoothMask(Patient1,update.object=TRUE,
```

overwrite=TRUE)

allocContrast[MRIaggr] : Cartography "mask" has been updated



# Affichage graphique

Affichage du T2, de la lésion et du masque cérébral :

```
R> multiplot(Patient1,param="T2",num=3,
+ index1="Lesion",as.logical=TRUE,
+ index2=list(coords="mask",outline=TRUE)
```



Utilisation 00000

## Élimination des voxels hors cerveau :

```
R> Patient1r <- constReduceMRIaggr(Patient1,</pre>
                                        mask="mask")
+
```

```
R> object.size(Patient1r)/object.size(Patient1)
0.664266703682022 bytes
```

# Autres pré-traitements possibles



## Utilisation des fonctions stat usuelles

R> data.df <- selectContrast(Patient1r,param=c("TTP","Lesion"))</pre>

R> glm\_DWI <- glm(Lesion ~ TTP,data=data.df,family=binomial)</pre>



## Discussion

## Apports du package MRlaggr

- unifie le stockage des données
- propose un pipeline de pré-traitement (© 10 min)
- facilite l'affiche graphique
- possibilité d'inclure des résultats externes

## À venir

- interaction avec RNiftiReg pour la co-registration
- ajouter des fonctions de segmentation (en cours) :
  - segmentation de lésion (OZENNE et al. 2015)
  - lissage par morceaux (STORATH et WEINMANN 2014)

# OZENNE et al. 2015

Segmentation de la lésion avec régularisation de forme :

T2 FLAIR





Résout le problème de Potts :

$$u^* = \operatorname{argmin}_{u} \gamma ||\nabla u||_0 + ||u - f||_2^2$$

T2 FLAIR



modèle de Potts 2D ( $\gamma = 0.75$ )

Discussion



# Bibliographie I

OZENNE, B. et al. (2015). « Spatially regularized mixture model for lesion segmentation with application to stroke patients ». Dans: Biostatistics (In Press). URL: http://www.ncbi.nlm.nih.gov/pubmed/25745872.

STORATH, M. et A. WEINMANN (2014). « Fast partitioning of vector-valued images ». Dans: SIAM Journal on Imaging Sciences 7.3, p. 1826-1852. URL:

http://bigwww.epfl.ch/preprints/storath1402p.pdf.