SUSTech AWGIN Channel $X \rightarrow 1$ AWGM $\longrightarrow Y$ Noise (X,Y) are arrelated. Y = X + N = P(X,Y) Y = X + N = P(X,Y)Gaussian Noise N(O, NoB) Information from X to Y without error- $1(X;Y) \stackrel{\triangle}{=} \sum_{x,y} p(x,y) \cdot (eg p(x,y))$ = H(Y) - H(Y)X) H(Y)= - = p(y) (by p(y) HCYIX) = - Zy pcx,y) leg pcylx) Capacity: maximum amount of information from X to Y was without crror. C = max 1(X; Y) = \frac{1}{2} log (1+ \frac{1}{2}).

Flat Fading Channel.
Wistencoder > X > + Vij
Transmitter hail nail Receiver
Channel Power Grain giri]= hii] yir]= hir) xir) + hir]
CSI: CN(O.N.B)
Charmel State/Side Information 5 If the CSI is available at the Rr. (CSIR)
$\frac{y'ci]=\pi ci)+n'ci}{11}$ $\frac{11}{y'ci]/h(i)}=\pi ci)+n'ci}$ $\frac{N_0i}{g(i)}$
=> Two AWGNs: Real + Imaginary In each AWGN, Signal Power: E[xci /2]= P/2. Noise Power: Nob/29[i]
Noise Power: Nob/29[i]

SNR: 9=P/NoB/gii) = gii]P/NoB Enpacity: 2 log (1+ girl) Capacity with Bundwidty Bardwidth 13: C=Blog CIT gist NOB) in the consvent time of gii) 1 1f CSI is available at the Rx, but not available at the Ix. > with CSIR, but no CSIT > Capacity C= Blag(1+ 9/4.B) is feasible. But Tx doesn't know g and C=Blog(1+ NoB) => Tx fixes a data rate R= B. (og (1+ Ymin) (If Y= NOB > Pmin => Error free If V <Vmin => packet loss => outage

verage	Capacity / Ergodic Capacity
	C= So Blug (It). P() dy
30 M	= E[Blog(I+Y)]
If R	$\leq \overline{C} \Rightarrow$ successful transmission $> \overline{C} \Rightarrow$ packet loss
Althor Clistri Inform	igh CSIT is not available. the bution of 7 C Channel Distribution ation, CDI) is usually known to
() .	11/
11.15	Tx knows C
	, U
	$R = \overline{C}$ is alway true.
	or C is achievable
	or data rate is C

D CSIT & CSIR

Because of : R=Ca R=Cb -

Average Capacity: $C = \frac{2}{565} C_5 \cdot Prig=57$

For continuous R.V. g.

ergodic apacity is achievable with shorter