МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

ІНСТИТУТ КОМП'ЮТЕРНИХ НАУК ТА ІНОРМАЦІЙНИХ ТЕХНОЛОГІЙ

3BIT

Про виконання лабораторної роботи № 4

З дисципліни

«Дискретна математика»

Студентки групи IT-11

Проців Роксолани Василівни

Прийняв викладач Юринець Р.В.

Графи

Мета роботи: Вивчення основних властивостей графів, способів подання графів, шляхів та циклів, обходу графі, розфарбовування графів, набуття практичних навичок програмування алгоритмів, що базуються на графах.

Хід роботи:

Варіант №20

Завдання 1: Неорієнтований граф на 6 вершинах заданий вектором Rmn (табл. 1), де m та n — номера вершин графа, m= 1,6 та n= 1,6. Елементи вектора Rmn відповідають кількості ребер між відповідними вершинами m та n.

1	n	1	1	1	1	1	2	2	2	2	3	3	3	2	2	5
	n	2	3	4	5	6	3	4	5	6	4	5	6	5	6	6
R	mn	2	0	1	1	0	0	1	0	1	0	0	0	0	2	1

Для заданого графа необхідно:

- 1. Побудувати матрицю суміжності та матрицю інцидентності для заданого графа. Намалювати граф.
- 2. Визначити тип графа.
- 3. Виписати усі ейлерові та гамільтонові ланцюги та цикли (якщо ε). Відповідь обґрунтувати.
- 4. Визначити хроматичне число та реберне хроматичне число графа.
- 5. Розфарбувати вершини та ребра графа

Розв'язок:

1. Матриця суміжності:

Матриця інцидентності:

	1	2	3	4	5	6
1	0	2	0	1	1	0
2	2	0	0	1	0	1
3	0	0	0	0	0	0
4	1	1	0	0	0	2
5	1	0	0	0	0	1
6	0	1	0	2	1	0

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9
v_1	1	1	0	1	0	0	0	1	0
v_2	1	1	1	0	0	0	0	0	1
v_3	0	0	0	0	0	0	0	0	0
v_4	0	0	0	0	0	1	1	1	1
v_5	0	1	0	1	1	0	0	0	0
v_6	0	0	1	0	1	1	1	0	0


```
#include <stdio.h>
#include <conio.h>
#include <iostream>
#include <math.h>
using namespace std;
int main()
{
    int x, y, w, chromatic;
    int summond[6];
    int m[15] = { 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5 };
    int n[15] = { 2, 3, 4, 5, 6, 3, 4, 5, 6, 4, 5, 6, 5, 6, 6 };
```

```
int contiguity[6][6];
      int Rmn[15] = { 2, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 1 };
      cout << "Input values:\n2 0 1 1 0 0 1 0 1 0 0 0 0 2 1" << endl;</pre>
      int k = 0, j = 0, z = -1;
      for (int i = 0; i <= 5; i++)
      {
             z += 1;
             for (j = z; j \le 5; j++)
                    if (i == j)
                          contiguity[i][j] = 0;
                    }
                    else
                    {
                           contiguity[i][j] = Rmn[k];
                           contiguity[j][i] = Rmn[k++];
                    }
             }
      cout << "\nMatrix of contiguity:\n\n";</pre>
      for (int i = 0; i <= 5; i++)
             for (int k = 0, j = 0; j <= 5; j++)
                    cout << contiguity[i][j] << " ";</pre>
                    if (j == 5) cout << "\n";</pre>
      _getch();
³ ጩ с:\users\user\source\repos\дискретна\uyskretna4\uepug\uyskretna4.exe
Input values:
201100101000021
Matrix of contiguity:
020110
200101
000000
110002
100001
010210
```

- 2. Тип графа: неорієнтовний мультиграф
- 3. Ейлерові цикли:

$$\begin{array}{c} e_1(1,2) \to e_2(2,1) \to e_8(1,4) \to e_9(4,2) \to e_3(2,6) \to e_6(6,4) \to e_7(4,6) \to e_5(6,5) \to \\ \to e_4(5,1) \end{array}$$

$$\begin{array}{c} e_1(1,2) \to \ e_2(2,1) \to e_4(1,5) \to e_5(5,6) \to e_7(6,4) \to e_6(4,6) \to e_3(6,2) \to e_9(2,4) \\ \to e_8(4,1) \end{array}$$

$$e_4(1,5) \rightarrow e_5(5,6) \rightarrow e_3(6,2) \rightarrow e_9(2,4) \rightarrow e_6(4,6) \rightarrow e_7(6,4) \rightarrow e_8(4,1) \rightarrow e_2(1,2) \rightarrow e_1(2,1)$$

$$\begin{array}{c} e_4(1,5) \rightarrow e_5(5,6) \rightarrow e_7(6,4) \rightarrow e_6(4,6) \rightarrow e_3(6,2) \rightarrow e_9(2,4) \rightarrow e_8(4,1) \rightarrow e_2(1,2) \\ \rightarrow e_1(2,1) \end{array}$$

Якщо не враховувати 3 ізольовану вершину, тоді оскільки степінь всіх вершин є парним, то у графа є такі гальмітонові цикли:

4. Хроматичне число = 3

Хроматичне реберне число = 6

Завдання 2 За алгоритмом Дейкстри знайти найкоротші віддалі від вершини а до вершини g графа з табл. 2.

	b	С	d	е	f	g
а	8	∞	21	8	8	8
b (8)	0	22	8	9	8	8
e (9)	∞	∞	37	0	8	22

Відповідь: найкоротший шлях — abeg = 22

Висновок: я вивчила основні властивосі графів, способи подання графів, шляхів та циклів, обходу графів, розфарбовування графів, набуття практичних навичок програмування алгоритмів, що базуються на графах.