

APELLIDOS Y NOMBRE	
DNI	
CDUDO DA1	MODELOA

Ejercicio 1.

Calcular el equivalente Thevenin entre A y B de los siguientes circuitos:

Datos:

 $u_E=12 \text{ V}; \text{ R1}=12 \text{ k}\Omega; \text{ R2}=6 \text{ k}\Omega$

 $u_E=15 \text{ V}$; R1=12 $k\Omega$; R2=24 $k\Omega$; R3=5 $k\Omega$

Solución:

CIRCUITO 1

U _{TH}	12 V
R _{TH}	12 kΩ

U _{TH}	10 V
R _{TH}	13 kΩ

En el circuito de la figura, se deja evolucionar el circuito hasta alcanzar el régimen permanente.

Datos: $u_E=18 \text{ V}$; $R1=9 \text{ k}\Omega$; $R2=18 \text{ k}\Omega$; $C=1\mu\text{F}$

En el instante t=0 se abre el interruptor I

Se pide, considerando los sentidos de tensiones y corrientes que se muestran en la figura, indicar:

- a) Valor inicial de la tensión en el condensador: uc(0)
- b) Valor final de la tensión en el condensador (nuevo régimen permanente): $u_{\mathbb{C}}(\infty)$
- c) Valor inicial de la corriente por el condensador: $i_c(0)$
- d) Valor final de la corriente por el condensador (nuevo régimen permanente): $i_c(\infty)$
- e) Constante de tiempo del circuito (τ)

uc(0)	12 V	ic(0)	0,66667 mA
uc(∞)	18 V	ic(∞)	0 mA
τ	9 ms		

- g) Calcular la tensión $u_C(t)$ para $t=t_1=5$ ms
- h) Calcular el tiempo t_2 necesario para alcanzar una tensión $u_C(t_2)$ = 15 V

u _C (t1)	14,56 V
t ₂	6,2383 ms

APELLIDOS Y NOMBRE	
DNI	
CPLIDO DA1	MODELO R

Ejercicio 1.

Calcular el equivalente Thevenin entre A y B de los siguientes circuitos:

Datos:

 $u_E=9 \text{ V}; \text{ R1=24 k}\Omega; \text{ R2=12 k}\Omega$

 u_E =6 V; R1=30 k Ω ; R2=60 k Ω ; R3=30 k Ω

Solución:

CIRCUITO 1

U _{TH}	9 V
R _{TH}	24 kΩ

UTH	4 V
R _{TH}	50 kΩ

En el circuito de la figura, se deja evolucionar el circuito hasta alcanzar el régimen permanente.

Datos: $u_E=9 \text{ V}$; R1=15 $k\Omega$; R2=30 $k\Omega$; C=100nF

En el instante t=0 se abre el interruptor I

Se pide, considerando los sentidos de tensiones y corrientes que se muestran en la figura, indicar:

- a) Valor inicial de la tensión en el condensador: uc(0)
- b) Valor final de la tensión en el condensador (nuevo régimen permanente): $u_c(\infty)$
- c) Valor inicial de la corriente por el condensador: ic(0)
- d) Valor final de la corriente por el condensador (nuevo régimen permanente): $ic(\infty)$
- e) Constante de tiempo del circuito (τ)

uc(0)	6 V	ic(0)	0,2 mA
u _C (∞)	9 V	i _C (∞)	0 mA
τ	1,5 ms		

- g) Calcular la tensión $u_C(t)$ para $t=t_1=1$ ms
- h) Calcular el tiempo t_2 necesario para alcanzar una tensión $u_C(t_2)=7 \text{ V}$

u _C (t1)	7,46 V
t ₂	0,6082 ms

APELLIDOS Y NOMBRE	
DNI	
CDUDO DA1	MODELOC

Ejercicio 1.

Calcular el equivalente Thevenin entre A y B de los siguientes circuitos:

Datos:

 $u_E=15 \text{ V}; \text{ R1}=24 \text{ k}\Omega; \text{ R2}=12 \text{ k}\Omega$

 $u_E=12 \text{ V}$; R1=6 $k\Omega$; R2=3 $k\Omega$; R3=3 $k\Omega$

Solución:

CIRCUITO 1

U _{TH}	15 V
R _{TH}	24 kΩ

U _{TH}	4 V
R _{TH}	5 kΩ

En el circuito de la figura, se deja evolucionar el circuito hasta alcanzar el régimen permanente.

Datos: $u_E=12 \text{ V}$; R1=12 $k\Omega$; R2=6 $k\Omega$; C=500nF

En el instante t=0 se abre el interruptor I

Se pide, considerando los sentidos de tensiones y corrientes que se muestran en la figura, indicar:

- a) Valor inicial de la tensión en el condensador: uc(0)
- b) Valor final de la tensión en el condensador (nuevo régimen permanente): $u_c(\infty)$
- c) Valor inicial de la corriente por el condensador: ic(0)
- d) Valor final de la corriente por el condensador (nuevo régimen permanente): $ic(\infty)$
- e) Constante de tiempo del circuito (τ)

uc(0)	4 V	ic(0)	0,6667 mA
u _C (∞)	12 V	i _C (∞)	0 mA
τ	6 ms		

- g) Calcular la tensión $u_C(t)$ para $t=t_1=3$ ms
- h) Calcular el tiempo t_2 necesario para alcanzar una tensión $u_C(t_2)=8$ V

u _C (t1)	7,15 V
t ₂	4,1589 ms

APELLIDOS Y NOMBRE	
DNI	
CPUIDO DA1	MODELOD

Ejercicio 1.

Calcular el equivalente Thevenin entre A y B de los siguientes circuitos:

Datos:

 $u_E=18~V;~R1=9~k\Omega;~R2=18~k\Omega$

 u_E =18 V; R1=15 $k\Omega$; R2=30 $k\Omega$; R3=15 $k\Omega$

Solución:

CIRCUITO 1

U _{TH}	18 V
R _{TH}	9 kΩ

UTH	12 V
R _{TH}	25 kΩ

En el circuito de la figura, se deja evolucionar el circuito hasta alcanzar el régimen permanente.

Datos: $u_E=15 \text{ V}$; $R1=24 \text{ k}\Omega$; $R2=12 \text{ k}\Omega$; $C=2\mu\text{F}$

En el instante t=0 se abre el interruptor I

Se pide, considerando los sentidos de tensiones y corrientes que se muestran en la figura, indicar:

- a) Valor inicial de la tensión en el condensador: uc(0)
- b) Valor final de la tensión en el condensador (nuevo régimen permanente): $u_c(\infty)$
- c) Valor inicial de la corriente por el condensador: ic(0)
- d) Valor final de la corriente por el condensador (nuevo régimen permanente): $ic(\infty)$
- e) Constante de tiempo del circuito (τ)

uc(0)	5 V	ic(0)	0,4167 mA
u _C (∞)	15 V	i _C (∞)	0 mA
τ	48 ms		

- g) Calcular la tensión $u_C(t)$ para $t=t_1=20$ ms
- h) Calcular el tiempo t_2 necesario para alcanzar una tensión $u_C(t_2) = 10 \text{ V}$

u _C (t1)	8,41 V
t ₂	33,27 ms

APELLIDOS Y NOMBRE	
DNI	
GRUPO PA1	MODELO E

Ejercicio 1.

Calcular el equivalente Thevenin entre A y B de los siguientes circuitos:

Datos:

 $u_E=9~V;~R1=15~k\Omega;~R2=30~k\Omega$

 $u_E=9~V;~R1=18~k\Omega;~R2=9~k\Omega;~R3=30~k\Omega$

Solución:

CIRCUITO 1

U _{TH}	9 V
R _{TH}	15 kΩ

UTH	3 V
R _{TH}	36 kΩ

En el circuito de la figura, se deja evolucionar el circuito hasta alcanzar el régimen permanente.

Datos: $u_E=12 \text{ V}$; $R1=12 \text{ k}\Omega$; $R2=6 \text{ k}\Omega$; $C=5\mu\text{F}$

En el instante t=0 se abre el interruptor I

Se pide, considerando los sentidos de tensiones y corrientes que se muestran en la figura, indicar:

- a) Valor inicial de la tensión en el condensador: uc(0)
- b) Valor final de la tensión en el condensador (nuevo régimen permanente): $u_{C}(\infty)$
- c) Valor inicial de la corriente por el condensador: ic(0)
- d) Valor final de la corriente por el condensador (nuevo régimen permanente): $ic(\infty)$
- e) Constante de tiempo del circuito (τ)

UC	(0)	4 V	ic(0)	0,6667 mA
uc	(%)	12 V	i _C (∞)	0 mA
,	τ	60 ms		

- g) Calcular la tensión $u_C(t)$ para $t=t_1=30$ ms
- h) Calcular el tiempo t2 necesario para alcanzar una tensión uc(t2)= 6 V

u _C (t1)	7,15 V
t ₂	17,2609 ms

APELLIDOS Y NOMBRE	
DNI	
CDUDO DA 2	MODELOA

Ejercicio 1.

Calcular el equivalente Thevenin entre A y B de los siguientes circuitos:

Datos:

 $u_E=9~V;~R1=18~k\Omega;~R2=9~k\Omega;~R3=30~k\Omega$

 $u_E=9 \text{ V}; \text{ R1=15 k}\Omega; \text{ R2=30 k}\Omega$

Solución:

CIRCUITO 1

U _{TH}	3 V
R _{TH}	36 kΩ

UTH	9 V
R _{TH}	15 kΩ

En el circuito de la figura, se deja evolucionar el circuito hasta alcanzar el régimen permanente.

Datos: $u_E=12 \text{ V}$; $R1=12 \text{ k}\Omega$; $R2=6 \text{ k}\Omega$; $C=5\mu\text{F}$

En el instante t=0 se abre el interruptor I

Se pide, considerando los sentidos de tensiones y corrientes que se muestran en la figura, indicar:

- a) Valor inicial de la tensión en el condensador: uc(0)
- b) Valor final de la tensión en el condensador (nuevo régimen permanente): $u_c(\infty)$
- c) Valor inicial de la corriente por el condensador: ic(0)
- d) Valor final de la corriente por el condensador (nuevo régimen permanente): $ic(\infty)$
- e) Constante de tiempo del circuito (τ)

uc(C) 4 V	ic(0)	0,6667 mA
uc(∝) 12 V	i _C (∞)	0 mA
τ	60 ms		

- g) Calcular la tensión $u_C(t)$ para $t=t_1=30$ ms
- h) Calcular el tiempo t_2 necesario para alcanzar una tensión $u_C(t_2) \! = \! 6 \ V$

u _C (t1)	7,15 V
t ₂	17,26 ms

GRUPO PA2	MODELO B
DNI	
APELLIDOS Y NOMBRE	

Ejercicio 1.

Calcular el equivalente Thevenin entre A y B de los siguientes circuitos:

Datos:

 $u_E=18~V;~R1=15~k\Omega;~R2=30~k\Omega;~R3=15~k\Omega$

 $u_E=18~V;~R1=9~k\Omega;~R2=18~k\Omega$

Solución:

CIRCUITO 1

UTH	12 V
R _{TH}	25 kΩ

UTH	18 V
R _{TH}	9 kΩ

En el circuito de la figura, se deja evolucionar el circuito hasta alcanzar el régimen permanente.

Datos: $u_E=15 \text{ V}$; $R1=24 \text{ k}\Omega$; $R2=12 \text{ k}\Omega$; $C=2\mu\text{F}$

En el instante t=0 se abre el interruptor I

Se pide, considerando los sentidos de tensiones y corrientes que se muestran en la figura, indicar:

- a) Valor inicial de la tensión en el condensador: uc(0)
- b) Valor final de la tensión en el condensador (nuevo régimen permanente): $u_c(\infty)$
- c) Valor inicial de la corriente por el condensador: ic(0)
- d) Valor final de la corriente por el condensador (nuevo régimen permanente): $ic(\infty)$
- e) Constante de tiempo del circuito (τ)

uc(0)	5 V	ic(0)	0,4167 mA
u _C (∞)	15 V	i _C (∞)	0 mA
τ	48 ms		

- g) Calcular la tensión $u_C(t)$ para $t=t_1=20$ ms
- h) Calcular el tiempo t_2 necesario para alcanzar una tensión $u_C(t_2) = 10 \text{ V}$

u _C (t1)	8,41 V
t ₂	33,27 ms

APELLIDOS Y NOMBRE	
DNI	
GRUPO PA2	MODELO C

Ejercicio 1.

Calcular el equivalente Thevenin entre A y B de los siguientes circuitos:

Datos:

 $u_E=12 \text{ V}$; R1=6 $k\Omega$; R2=3 $k\Omega$; R3=3 $k\Omega$

 $u_E=15 \text{ V}; \text{ R1}=24 \text{ k}\Omega; \text{ R2}=12 \text{ k}\Omega$

Solución:

CIRCUITO 1

Uтн	4 V
R _{TH}	5 kΩ

Uтн	15 V
R _{TH}	24 kΩ

En el circuito de la figura, se deja evolucionar el circuito hasta alcanzar el régimen permanente.

Datos: $u_E=12 \text{ V}$; R1=12 $k\Omega$; R2=6 $k\Omega$; C=500nF

En el instante t=0 se abre el interruptor I

Se pide, considerando los sentidos de tensiones y corrientes que se muestran en la figura, indicar:

- a) Valor inicial de la tensión en el condensador: uc(0)
- b) Valor final de la tensión en el condensador (nuevo régimen permanente): $u_c(\infty)$
- c) Valor inicial de la corriente por el condensador: ic(0)
- d) Valor final de la corriente por el condensador (nuevo régimen permanente): $ic(\infty)$
- e) Constante de tiempo del circuito (τ)

uc(0)	4 V	ic(0)	0,6667 mA
u _C (∞)	12 V	i _C (∞)	0 mA
τ	6 ms		

- g) Calcular la tensión $u_C(t)$ para $t=t_1=3$ ms
- h) Calcular el tiempo t_2 necesario para alcanzar una tensión $u_C(t_2)=8$ V

u _C (t1)	7,15 V
t ₂	4,1589 ms

APELLIDOS Y NOMBRE	
DNI	
GRUPO PA2	MODELO D

Ejercicio 1.

Calcular el equivalente Thevenin entre A y B de los siguientes circuitos:

Datos:

 $u_E=6~V;~R1=30~k\Omega;~R2=60~k\Omega;~R3=30~k\Omega$

 $u_E=9 \text{ V}; \text{ R1=24 k}\Omega; \text{ R2=12 k}\Omega$

Solución:

CIRCUITO 1

U _{TH}	4 V
R _{TH}	50 kΩ

U _{TH}	9 V
R_{TH}	24 kΩ

En el circuito de la figura, se deja evolucionar el circuito hasta alcanzar el régimen permanente.

Datos: $u_E=9 \text{ V}$; R1=15 $k\Omega$; R2=30 $k\Omega$; C=100nF

En el instante t=0 se abre el interruptor I

Se pide, considerando los sentidos de tensiones y corrientes que se muestran en la figura, indicar:

- a) Valor inicial de la tensión en el condensador: uc(0)
- b) Valor final de la tensión en el condensador (nuevo régimen permanente): $u_c(\infty)$
- c) Valor inicial de la corriente por el condensador: ic(0)
- d) Valor final de la corriente por el condensador (nuevo régimen permanente): $ic(\infty)$
- e) Constante de tiempo del circuito (τ)

uc(0)	6 V	ic(0)	0,2 mA
u _C (∞)	9 V	i _C (∞)	0 mA
τ	1,5 ms		

- g) Calcular la tensión $u_C(t)$ para $t=t_1=1$ ms
- h) Calcular el tiempo t_2 necesario para alcanzar una tensión $u_C(t_2)=7 \text{ V}$

u _C (t1)	7,46 V
t ₂	0,6082 ms

APELLIDOS Y NOMBRE	
DNI	
GRUPO PA2	MODELO E

Ejercicio 1.

Calcular el equivalente Thevenin entre A y B de los siguientes circuitos:

Datos:

 $u_E=15~V;~R1=12~k\Omega;~R2=24~k\Omega;~R3=5~k\Omega$

 $u_E=12 \text{ V}; \text{ R1}=12 \text{ k}\Omega; \text{ R2}=6 \text{ k}\Omega$

Solución:

CIRCUITO 1

U _{TH}	10 V
R _{TH}	13 kΩ

UTH	12 V
R _{TH}	12 kΩ

En el circuito de la figura, se deja evolucionar el circuito hasta alcanzar el régimen permanente.

Datos: $u_E=18 \text{ V}$; $R1=9 \text{ k}\Omega$; $R2=18 \text{ k}\Omega$; $C=1\mu\text{F}$

En el instante t=0 se abre el interruptor I

Se pide, considerando los sentidos de tensiones y corrientes que se muestran en la figura, indicar:

- a) Valor inicial de la tensión en el condensador: uc(0)
- b) Valor final de la tensión en el condensador (nuevo régimen permanente): $u_c(\infty)$
- c) Valor inicial de la corriente por el condensador: ic(0)
- d) Valor final de la corriente por el condensador (nuevo régimen permanente): $ic(\infty)$
- e) Constante de tiempo del circuito (τ)

uc(0)	12 V	ic(0)	0,66667 mA
u _C (∞)	18 V	i _C (∞)	0 mA
τ	9 ms		

- g) Calcular la tensión $u_C(t)$ para $t=t_1=5$ ms
- h) Calcular el tiempo t_2 necesario para alcanzar una tensión $u_C(t_2) = 15 \text{ V}$

u _C (t1)	14,56 V
t ₂	6,2383 ms