Δυναμική Πολύπλοκων Δικτύων

Κεφάλαιο 6: Θεωρία Παιγνίων

Διάλεξη 2: Σημείο Ισορροπίας Nash σε Καθαρές & Μικτές Στρατηγικές

Στην Προηγούμενη Διάλεξη...

- Είδαμε την Θεωρία Παιγνίων μέσα από παραδείγματα.
- Μελετήσαμε την συμπεριφορά των παικτών όταν έχουν αυστηρά κυρίαρχες στρατηγικές.
- Αναλύσαμε το διάσημο Δίλημμα του Φυλακισμένου.
- Ορίσαμε την έννοια της βέλτιστης απόκρισης.
- Επεκτείναμε την ανάλυσή μας σε παίγνια όπου μόνο ένας παίκτης έχει αυστηρά κυρίαρχη στρατηγική.

Υπενθυμίζουμε: Βέλτιστες Αποκρίσεις

Μια στρατηγική S*, του παίκτη 1 είναι *αυστηρά* βέλτιστη απόκριση σε μια στρατηγική Τ του παίκτη 2, όταν

$$P_1(S^*, T) > P_1(S, T)$$
 (2)

για κάθε άλλη στρατηγική $S \neq S^*$ του παίκτη 1.

- Με SBR₁(T) συμβολίζουμε το σύνολο βέλτιστων αποκρίσεων του παίκτη 1, στη στρατηγική Τ του παίκτη 2. Συμμετρικά για $SBR_2(T)$.
- Αν υπάρχει κάποια αυστηρά βέλτιστη απόκριση, τότε αυτή θα είναι μοναδική, για την στρατηγική Τ του παίκτη 2.

Σημείο Ισορροπίας Nash

Παίγνιο 3 Πελατών

Θεωρούμε 2 εταιρείες (συμ. Ετ. 1, Ετ. 2) οι οποίες θέλουν να προσεγγίσουν 3 πελάτες, τους Α, Β, С.

- Οι παίκτες Ετ. 1, Ετ. 2 έχουν 3 στρατηγικές, δ.δ. Α, Β, С.
- Μπορούν να προσεγγίσουν μόνο έναν από αυτούς τους πελάτες.
- Αν και οι δύο εταιρείες προσεγγίσουν τον ίδιο πελάτη, τότε πελάτης θα μοιράσει την δουλειά και στους δύο παίκτες (κατά το ήμισυ).
- Η Ετ. 1 είναι *πολύ μικρή*, οπότε αν προσεγγίσει μόνη της έναν πελάτη δεν θα αναλάβει την δουλειά του. Πληρωμή 0.
- Αν η Ετ. 2 προσεγγίσει τους πελάτες Β ή C θα πάρει το σύνολο της δουλειάς τους. Αντίθετα, μπορεί να προσεγγίσει τον πελάτη Α, μόνο από κοινού με την Ετ. 1.
- Η αξία εργασιών του πελάτη Α αξίζει 8. Αντίθετα, η αξία εργασιών των πελατών Β, C αξίζει 4.

Κανένας από τους παίκτες δεν έχει κυρίαρχες στρατηγικές.

	А	В	С
Α	(4, 4)	(0, 2)	(0, 2)
В	(0, 0)	(1, 1)	(0, 2)
С	(0, 0)	(0, 2)	(1, 1)

- Κανένας από τους παίκτες δεν έχει κυρίαρχες στρατηγικές.
- Πως περιμένουμε να συμπεριφερθούν οι παίκτες σε αυτή την περίπτωση;

	А	В	С
Α	(4, 4)	(0, 2)	(0, 2)
В	(0, 0)	(1, 1)	(0, 2)
С	(0, 0)	(0, 2)	(1, 1)

- Κανένας από τους παίκτες δεν έχει κυρίαρχες στρατηγικές.
- Πως περιμένουμε να συμπεριφερθούν οι παίκτες σε αυτή την περίπτωση;
- Το 1950 ο Nash υποστήριξε ότι οι θα κινηθούν προς την *ισορροπία*.

	А	В	С
Α	(4, 4)	(0, 2)	(0, 2)
В	(0, 0)	(1, 1)	(0, 2)
С	(0, 0)	(0, 2)	(1, 1)

- Πως περιμένουμε να συμπεριφερθούν οι παίκτες σε αυτή την περίπτωση;
- Το 1950 ο Nash υποστήριξε ότι οι θα κινηθούν προς την *ισορροπία*.
- Παρατηρίστε την στρατηγική κατάσταση (A, A).

	А	В	С
Α	(4, 4)	(0, 2)	(0, 2)
В	(0, 0)	(1, 1)	(0, 2)
С	(0, 0)	(0, 2)	(1, 1)

- Κανένας από τους παίκτες δεν έχει κυρίαρχες στρατηγικές.
- Πως περιμένουμε να συμπεριφερθούνοι παίκτες σε αυτή την περίπτωση;
- Το 1950 ο Nash υποστήριξε ότι οι θα κινηθούν προς την *ισορροπία*.
- Παρατηρίστε την στρατηγική κατάσταση (A, A).
- Η Ετ. 1 δεν έχει κίνητρο να αλλάξει στρατηγική

	А	В	С
Α	(4, 4)	(0, 2)	(0, 2)
В	(0, 0)	(1, 1)	(0, 2)
С	(0, 0)	(0, 2)	(1, 1)

- Πως περιμένουμε να συμπεριφερθούν οι παίκτες σε αυτή την περίπτωση;
- Το 1950 ο Nash υποστήριξε ότι οι θα κινηθούν προς την *ισορροπία*.
- Παρατηρίστε την στρατηγική κατάσταση (A, A).
- Η Ετ. 1 δεν έχει κίνητρο να αλλάξει στρατηγική.
- Ομοίως, και η Ετ. 2.

	А	В	С
Α	(4, 4)	(0, <mark>2</mark>)	(0, 2)
В	(0, 0)	(1, 1)	(0, 2)
С	(0, 0)	(0, 2)	(1, 1)

Ορισμός: Σημείο Ισορροπίας Nash (για 2-παίκτες)

Έστω ότι ο πίνακας πληρωμών Ρ. Έστω η στρατηγική κατάσταση (ή *προφίλ* στρατηγικών) (S^* , T^*). Το (S^* , T^*) είναι σημείο ισορροπίας Nash όταν ισχύουν αμφότερα:

$$P_1(S^*, T^*) \ge P_1(S, T^*)$$
 (1)

για κάθε άλλη στρατηγική S του παίκτη 1. Και,

$$P_2(S^*, T^*) \ge P_2(S^*, T)$$
 (2)

για κάθε άλλη στρατηγική Τ του παίκτη 2.

Ορισμός: Σημείο Ισορροπίας Nash (για 2-παίκτες)

Έστω ότι ο πίνακας πληρωμών Ρ. Έστω η στρατηγική κατάσταση (ή *προφίλ* στρατηγικών) (S^* , T^*). Το (S^* , T^*) είναι σημείο ισορροπίας Nash όταν ισχύουν αμφότερα:

$$P_1(S^*, T^*) \ge P_1(S, T^*)$$
 (1)

για κάθε άλλη στρατηγική S του παίκτη 1. Και,

$$P_2(S^*, T^*) \ge P_2(S^*, T)$$
 (2)

για κάθε άλλη στρατηγική Τ του παίκτη 2.

Ο κάθε παίκτης, δεν μπορεί να "πάει καλύτερα", δεδομένου ότι ο άλλος μείνει στην στρατηγική του.

- Κανένας από τους παίκτες δεν έχει κυρίαρχες στρατηγικές.
- Πως περιμένουμε να συμπεριφερθούν οι παίκτες σε αυτή την περίπτωση;
- Το 1950 ο Nash υποστήριξε ότι οι θα κινηθούν προς την *ισορροπία*.
- Παρατηρίστε την στρατηγική κατάσταση (A, A).
- Η Ετ. 1 δεν έχει κίνητρο να αλλάξει στρατηγική.
- **Ο**μοίως, και η Ετ. 2.
- Το (A, A) είναι σημείο ισορροπίας Nash!

	А	В	С
Α	(4, 4)	(0, 2)	(0, 2)
В	(0, 0)	(1, 1)	(0, 2)
С	(0, 0)	(0, 2)	(1, 1)

Πολλαπλά Σημεία Ισορροπίας Nash

Παράδειγμα: Παίγνια Συνεννόησης

Όταν υπάρχουν πολλαπλά σημεία ισορροπίας δεν μπορούμε να επιχειρηματολογήσουμε ως προς την κατάληξη του παινίου.

Δίνουμε το εξής παράδειγμα:

- Πρέπει να συνεννοηθείτε με τον συμφοιτητή σας ποιο πρόγραμμα θα γράψετε την παρουσίαση.
- Αν επιλέξετε το ίδιο πρόγραμμα θα είναι πολύ εύκολο να συγχωνεύσετε τις διαφάνειές σας.
- Επιλέγετε πρόγραμμα χωρίς εκ των προτέρων συνεννόηση και ταυτόχρονα.

Παίγνιο Συνεννόησης 1: Παρατηρήσεις

- Αν καταφέρετε να συνεννοηθείτε, τότε αμφότεροι παίρνετε 1 μον. ωφέλειας.
- Διαφορετικά παίρνετε 0 μον. ωφέλειας.
- Εδώ έχουμε δύο σημεία Nash.
- To (PP, PP) και το (LO, LO).
- Παρατηρούμε ότι τα σημεία Nash είναι ισοδύναμα.

	PowerPoint	LibreOffice
PowerPoint	(1, 1)	(0, 0)
LibreOffice	(0, 0)	(1, 1)

Παίγνιο Συνεννόησης 2: Η Μάχη των Φύλων

- Μπορεί όμως να μην ισχύει αυτό.
- Το παίγνιο αριστερά είναι γνωστό και σαν Battle of Sexes.
- Με τον σύντροφό σας θέλτε να βγείτεΣάββατο βράδυ.
- Εσείς θέλετε cinema, αλλά εκείνος γήπεδο.
- Ποια απόφαση θα πάρετε τελικά;

	Cinema	Γήπεδο
Cinema	(1, 2)	(0, 0)
Γήπεδο	(0, 0)	(2, 1)

Παίγνιο Συνεννόησης 2: Η Μάχη των Φύλων

- Μπορεί όμως να μην ισχύει αυτό.
- Το παίγνιο αριστερά είναι γνωστό και σαν Battle of Sexes.
- Με τον σύντροφό σας θέλτε να βγείτε Σάββατο βράδυ.
- Εσείς θέλετε cinema, αλλά εκείνος γήπεδο.
- Ποια απόφαση θα πάρετε τελικά;

Σε επόμενη διάλεξη θα δούμε επιπλέον κριτήρια για να μπορέσουμε να διακρίνουμε (σε ορισμένες περιπτώσεις) μεταξύ σημείων Nash.

	Cinema	Γήπεδο
Cinema	(1, 2)	(0, 0)
Γήπεδο	(0, 0)	(2, 1)

Σημεία Ισορροπίας Nash

Όταν δεν υπάρχουν

Όταν δεν υπάρχουν σημεία Nash

- Στο προηγούμενο παράδειγμα γενικεύσαμε αυστηρά την ανάλυσή μας.
- Τα στρατηγικά προφίλ στα οποία καταλήξαμε με την ανάλυση κυριαρχούμενων στρατηγικών είναι και αυτά σημεία ισορροπίας Nash.
- Φυσικά το αντίθετο δεν ισχύει!
- Παρ' όλα αυτά και πάλι η μέθοδός μας δεν είναι γενική!

Παίγνιο χωρίς σημεία Nash: Μονα-Ζυγά

- Εσείς και ένας φίλος σας κρατάει έναν αριθμό πίσω από την πλάτη του.
- Αποκαλύπτετε ταυτόχρονα τους αριθμούς.
- Αν το άθροισμα βγει ζυγό δίνετε 1€ στο φίλο σας.
- Αν το άθροισμα βγει μονό, ο φίλος σας σας δίνει 1€.
- Αυτό είναι ένα παίγνιο *Ο-αθροίσματος*,
 αφού το δικό σας κέρδος είναι η
 απώλεια του φίλου σας, και το ανάποδο.
- Στην κατάσταση (1, 1), αποκλίνει ο π. 1 στην (2, 1). Εκεί αποκλίνει ο π. 2 στη (2, 2), κτλ..

	1	2
1	(-1, +1)	(+1, -1)
2	(+1, -1)	(-1, +1)

Παρατηρήσεις

- Στο παιχνίδι "μονά-ζυγά" δεν υπάρχει σημείο ισορροπίας.
- Δεν μπορούμε να επιχειρηματολογήσουμε για την έκβαση του παιγνίου.
- Παρ' όλα αυτά ας φανταστούμε ποια στρατηγική θα ακολουθούσαν δύο φίλοι παίζοντας το παίγνιο;

Παρατηρήσεις

- Στο παιχνίδι "μονά-ζυγά" δεν υπάρχει σημείο ισορροπίας.
- Δεν μπορούμε να επιχειρηματολογήσουμε για την έκβαση του παιγνίου.
- Παρ' όλα αυτά ας φανταστούμε ποια στρατηγική θα ακολουθούσαν δύο φίλοι παίζοντας το παίγνιο;

Πιθανότατα θα διάλεγαν τυχαία.

Επεκτείνοντας τον Χώρο των Στρατηγικών

Επεκτείνοντας τον χώρο στρατηγικών

- Μέχρι τώρα ο χώρος στρατηγικών που έχουμε ορίσει για τους παίκτες είναι ισόμορφος με το {1, 2, ..., n}, για κάποιο. Καθαρές στρατηγικές.
- Δεν επιτρέπουμε στους παίκτες να χρησιμοποιήσουν κάποιον τυχαίο μηχανισμό.
- Θα επεκτείνουμε τον χώρο στρατηγικών, ώστε να μπορούν να επιλέξουν μια κατανομή πιθανότητας πάνω στο χώρο στρατηγικών.
- Για η στρατηγικές, θεωρούμε τους αριθμούς λ_1 , λ_2 , ..., $\lambda_n \in [0, 1]$ έτσι ώστε,

$$\sum_{i=1}^{n} \lambda_i = 1$$

Μικτές στρατηγικές.

Γεωμετρική Ερμηνεία του Χώρου Στρατηγικών

- Δίνουμε ένα παράδειγμα σε παίγνια 3 στρατηγικών.
- Ο χώρος καθαρών στρατηγικών αποτελείται από τα μοναδιαία διανύσματα (0, 0, 1), (0, 1, 0), (1, 0, 0).
- Ο χώρος μικτών στρατηγικών αποτελείται από το δισδιάστατο simplex πιθανοτήτων Δ_{s} .

Επιλύοντας 2x2 Παίγνια σε Μικτές Στρατηγικές

Παίγνιο χωρίς σημεία Nash: Μονα-Ζυγά σε Μικτές Στρατηγικές

- Παρατηρήσαμε ότι το παιχνίδι αυτό δεν έχει σημείο Nash σε καθαρές στρατηγικές.
- Υποθέτουμε ότι οι παίκτες παίζουν σε μικτές στρατηγικές.
- Έστω ότι ο π. 2 παίζει "1" με πιθανότηταq και "2" με πιθανότητα (1-q).
- Ομοίως, ο π. 1 παίζει "1" με πιθανότητα ρ και "2" με πιθανότητα (1-p).
- Η ωφέλεια του π. 1 δίνεται από την αναμενόμενη τιμή,

$$-1pq + 1p(1-q) + (1-p)q - 1(1-p)(1-q)$$

	1	2
1	(-1, +1)	(+1, -1)
2	(+1, -1)	(-1, +1)

Θεώρημα Υποστηρίγματος (Support Theorem)

- Θεωρούμε ότι οι παίκτες παίζουν την κατανομή πιθανότητα p, 1-p και q, 1-q αντίστοιχα.
- Εξετάζουμε τον π. 1.
- Παρατηρούμε ότι αν p = 1, τότε θα έπαιρνε ωφέλεια,

$$-1q + 1(1-q)$$
 (3)

Αντίστοιχα, av p = 0, τότε θα έπαιρνε,

$$1q - 1(1-q)$$
 (4)

- Για να παίξει ο π. 1 $\alpha \nu \sigma \tau \eta \rho \dot{\alpha}$ μικτή στρατηγική, θα πρέπει (3) = (4).
- Θα είναι *αδιάφορος (indifferent)* ως προς τις καθαρές στρατηγικές του.
- Διαφορετικά, ο π. 1 θα είχε κίνητρο να παίξει μία από τις καθαρές στρατηγικές σου.

Θεώρημα Υποστηρίγματος (Support Theorem) (1/2)

Αν p = 1, τότε θα έπαιρνε ωφέλεια,

$$-1q + 1(1-q)$$
 (3)

Av p = 0, τότε θα έπαιρνε,

$$1q - 1(1-q)$$
 (4)

- Εξισώνοντας (3) = (4).
- Παίρνουμε, $q = \frac{1}{2}$.
- Εντελώς συμμετρικά παίρνουμε $p = \frac{1}{2}$.
- Η αναμενόμενη ωφέλεια και για τους δύο παίκτες είναι (0, 0).
- Άρα καταλήγουμε ακριβώς εκεί που είχαμε επιχειρηματολογήσει διαισθητικά.

Θεώρημα Υποστηρίγματος (Support Theorem) (2/2)

- Το Θεώρημα Υποστηρίγματος *γενικεύεται* για παίγνια nxm 2-παικτών.
- Επιλέγουμε ένα υποστήριγμα (support) για κάθε παίκτη.
- Σε αυτές τις στρατηγικές υποθέτουμε ότι οι παίκτες θα παίξουν με *μη*μηδενικές πιθανότητες.
- Όπως προηγουμένως σηματίζουμε n' + m' εξισώσεις με n' + m' αγνώστους. Όπου n', m' το μήκος των υποστηριγμάτων των παικτών 1, 2 *αντίστοιχα*.
- Αν το σύστημα λύνεται, τότε οι αντίστοιχες κατανομές μας δίνουν ένα σημείο Nash.
- Αυτός ο απλός αλγόριθμος είναι γνωστός σαν απαρίθμηση υποστηριγμάτων (support enumeration).
- Παρατηρήστε ότι είναι *εκθετικός* (γιατί;)

Θεώρημα Nash

Θεώρημα Nash [1950]

Κάθε παίγνιο κανονικής μορφής (normal form game) έχει τουλάχιστον ένα σημείο ισορροπίας Nash, ίσως σε μικτές στρατηγικές.

- Το Θ. Nash βασίζεται πάνω στο *Θεώρημα Σταθερού Σημείου του Brouwer*.
- Μια συνάρτηση f(x) έχει σταθερό σημείο x^* , αν $f(x^*) = x^*$.
- Παρατηρήστε ότι ένα προφίλ στρατηγικών (S*, T*) είναι σημείο Nash, όταν

$$(S^*, T^*) \in BR(S^*, T^*)$$

Είναι υπαρξιακό θεώρημα, μας λέει πως υπάρχει πάντα σημείο ισορροπίας, αλλά δεν μας δίνει έναν αλγόριθμο για την εύρεσή του.

Υπολογιστικές Πτυχές του Θεωρήματος του Nash

- Η εύρεση σημείου Nash είναι ένα *υπολογιστικά δύσκολο* πρόβλημα.
- Για τεχνικούς λόγους *δεν* μπορεί να είναι NP-πλήρες, αφού η απάντηση οποιουδήποτε αλγορίθμου θα είναι πάντα «NAI».
- Όταν παρακάμπτεται το Θ. Nash, όλα τα σχετικά ερωτήματα είναι NP-πλήρη, π.χ. «υπάρχει 2ο σημείο Nash;».
- Δεν υπάρχει γνωστός πολυωνυμικός αλγόριθμος για την εύρεση σημείων Nash σε μικτές στρατηγικές.
- Το 2009 αποδείχτηκε ότι η εύρεση σημείου Nash είναι πλήρες πρόβλημα για την κλάση PPAD, από τους Δασκαλάκη, Goldberg, Παπαδημητρίου.
- Πιστεύεται ότι το πρόβλημα δεν λύνεται πολυωνυμικά.

Κριτική για το Σημείο Ισορροπίας Nash

Κριτική για το Σημείο Ισορροπίας Nash

Έχει διατυπωθεί κριτική για το σημείο ισορροπίας Nash σαν *έννοια λύσης (solution concept)* ενός παιχνιδιού:

- Όπως είδαμε μπορεί να υπάρχουν πολλαπλά σημεία ισορροπίας.
- Οι ωφέλειες για τους παίκτες δεν είναι ισοδύναμες.
- Υπάρχει αναντιστοιχία μια την έννοια λύσης ενός μαθηματικού προβλήματος, π.χ. ενός προβλήματος βελτιστοποίησης.
- Εκεί είτε έχουμε μοναδικές λύσεις, είτε πολλαπλές αλλά ισοδύναμες, λ.χ. μια εξίσωση μπορεί να έχει πολλαπλές λύσεις, αλλά όλες δίνουν την ίδια τιμή.
- Παρ' όλα αυτά τυγχάνει μεγάλης αποδοχής σε εφαρμοσμένες επιστήμες, λ.χ. οικονομικά, βιολογία κ.ά.
- Αναγνωρίζοντας την συνεισφορά της έννοιας στα οικονομικά, ο John Nash μοιράστηκε το βραβείο Νόμπελ το 1994, μαζί με τους John Harsanyi and Reinhard Selten.

Ανασκόπηση

Σε αυτή την διάλεξη..

- Εισαγάγαμε έναν νέο τρόπο ανάλυσης ενός παιγνίου πάνω στο σημείο ισορροπίας Nash.
- Επεκτείναμε τον χώρο στρατηγικών, ώστε να επιτρέπουμε την χρήση τυχαιοκρατικών μηχανισμών στους παίκτες. Μικτές στρατηγικές.
- Είδαμε την επίλυση απλών παιγνίων σε μικτές στρατηγικές.
- Είδαμε το Θεώρημα του Nash.
- Εξετάσαμε τις υπολογιστικές του πλευρές.

Στην επόμενη διάλεξη..

- Θα δούμε τρόπους να διακρίνουμε τα σημεία ισορροπίας:
 - Βελτιστοποίηση κατά Pareto (Pareto Optimality)
 - Βελτιστοποίηση Κοινωνικής Ωφέλειας (Social Wellfare Optimality)
- Ανάλυση κυριαρχούμενων (dominated) στρατηγικών.
- Θα εξετάσουμε παιχνίδια σε γύρους ή δυναμικά παιχνίδια (dynamic games).
- Θα δούμε τα παίγνια σε εκτεταμένη μορφή (extended form games).
- Θα δούμε την σχέση τους με τα παίγνια κανονικής μορφής.

Ευχαριστώ για τον χρόνο σας :)