Name: TANDANG, Bernard Jezua R. Date: December 19, 2023

Section: CMSC 150 - BIL

CMSC 150 Lab Project Manual

Imported Files:

- GaussianElimination.R
- QuadraticSpline.R
- PolynomialReg.R
- FoodItem.csv

R Libraries Used:

- readr
- R Shiny
- R Shiny JS
- R Shiny Matrix
- R Shiny Themes

User Interface

The opening screen UI can be shown in the figure below when the file "ui.R" is run.

CMSC 150 Project

The UI mainly involves three tab panels, namely, **QSI Calculator**, **PR Calculator**, and **Simplex Method**. These panels, when clicked, show different types of solvers needed for a problem.

Each panel consists of a side panel which asks the users for certain parameters, and a main panel which shows the outputs (Function f(x) Per Interval, Polynomial Function, and Estimated Value).

Quadratic Spline Interpolation Calculator

To perform the Quadratic Spline Interpolation, you need to upload the **CSV file** which contains the numeric X and Y values that you want to solve and enter the corresponding **value to be evaluated**.

After the parameters are filled, clicking the **Generate** button will perform the calculations and show the outputs: **Function** f(x) **Per Interval** and **Estimated Value**. A test case is shown in the figure below.

If the value to be evaluated is not within the range of the X values, then the Estimated Value will print as **NA**. But the f(x) per interval result will still show.

Polynomial Regression Calculator

To perform Polynomial Regression, you need to upload the CSV file which contains the numeric X and Y values that you want to solve. Enter the **polynomial degree** and the **value of X** that will be used to substitute the polynomial function and show the estimated value.

After the parameters are filled, clicking the **Generate** button will perform the calculations and show the outputs: **Polynomial Function** and **Estimated Value**. A test case is shown in the figure below.

The polynomial degree must be *greater than zero* and not more than the *number of data points - 1*. Otherwise, the polynomial function and/or estimated value will return as NULL values. As for the X value, it can be *any* from *-Inf to +Inf*.

Simplex Method for Diet Problem

To perform the Simplex Method (Minimization), the user must select any food item present in the selection. The user has an option to **check all** items, **reset** them, or continue to **solve**.

Unfortunately, this specification is unfinished due to time constraints and personal reasons. This concludes the manual for my CMSC 150 project. Thank you!