PRIMER TRABAJO

FECHA LÍMITE DE ENTREGA: 17 de marzo

INDICACIONES:

- El trabajo debe realizarse en tríos. Sin excepción, los trabajos con menos estudiantes no se tendrán en cuenta.
- El informe del trabajo debe ser presentado en procesador de texto, en no más de 10 cuartillas y en las fechas estipuladas. Retrasos en la presentación acarrea penalidad en la nota proporcional al lapso de demora.
- Siempre que haya lugar, se debe adjuntar los códigos diseñados para resolver los ejercicios.
- Se puede asumir a voluntad los valores para los parámetros de diseño de las cartas cuando no se especifiquen.
- No resolver el EJERCICIO 6.

EJERCICIO 1. Sea $X \sim N(\mu; \sigma)$ una característica de calidad. Mediante simulaciones, establezca el comportamiento del ARL (en control y fuera de él) de las *Cartas R* y *S* para observaciones normales con límites 3σ y muestras de tamaño (a) n=3 y (b) n=10 ¿Qué regularidades observa?

EJERCICIO 2. Sea $X \sim N(\mu; \sigma)$ una característica de calidad. Se sabe que los valores objetivo de los parámetros del proceso son $\mu = \mu_0$ y $\sigma = \sigma_0$. Construir las curvas OC de la *Carta S*² con límites de probabilidad. Interpretar los resultados.

EJERCICIO 3. Sea $X \sim N(\mu_0; \sigma_0)$ una característica de calidad. Construya la $Carta \, \bar{X}$ para el monitoreo de la media del proceso. Genere 10 muestras de tamaño n provenientes de X, de tal modo que la media muestral de ninguna de ellas caiga fuera de los límites de control. A partir del undécimo momento de monitoreo se pide generar muestras del mismo tamaño n provenientes de una distribución normal con media $\mu_1 = \mu_0 + k\sigma_0$ y $\sigma_1 = \sigma_0$ (con k = 1,0) hasta que la carta emita una señal por primera vez. Si se asume que el proceso caracterizado por X es estable y que se desconoce el momento en el cual se produjo el incremento en el nivel medio, ¿en qué muestra ocurrió el cambio en la media del proceso más probablemente?

EJERCICIO 4. Sea $X \sim N(\mu_0; \sigma_0)$ una característica de calidad. Se pide:

- a) Mediante simulaciones, establezca el comportamiento del ARL de la Carta \bar{X} con límites tres sigma para observaciones normales.
- b) Genere 20 subgrupos racionales de tamaño n=3 provenientes de X. Asúmase que el proceso es estable en cuanto a dispersión y con los subgrupos iniciales, construya la carta \overline{X} como es habitual hasta verificar la estabilidad del proceso. Establezca el comportamiento del ARL para la carta que se obtiene del análisis de Fase I realizado.
- c) Repetir lo indicado en el literal (b) con 50 subgrupos racionales de tamaño n=3. Comente los resultados.

EJERCICIO 5. Calcular el ARL de la Carta \bar{X} mediante cadenas de Markov. Diseñar la carta con límites de control ubicados a tres desviaciones estándar de la media y dividiendo la región de control estadístico en franjas de ancho igual a una desviación estándar.

EJERCICIO 6. En la tabla que se muestra a continuación de este enunciado, se reportan los tres últimos dígitos de las mediciones de los diámetros interiores de un cilindro para la

construcción de los motores de cierta marca comercial de automóvil. El régimen de la producción de los cilindros es tal que las muestras se pueden recolectar cada media hora, pero con tamaños de máximo cinco unidades. Es de interés establecer si el proceso se encontraba bajo control estadístico cuando se recolectaron las muestras, mediante el diseño de las **Cartas** \overline{X} y R.

MUESTRA	x_1	x_2	x_3	x_4	x_5
1	205	202	204		
2	207	205	202		
3	196	201	198	202	
4	203	198	196	217	
5	201	202	199		
6	197	203			
7	205	196	201		
8	197	199	196		
9	201	200			
10	195	203	204	199	200
11	202	202			
12	198	203			
13	202	196	200		
14	201	187	209	202	200
15	202	196	204	195	197
16	200	204	197	199	
17	197	199	201	201	

MUESTRA	x_1	x_2	x_3	x_4	x_5
18	205	204	202	200	3
19	200	201	199	200	
20	201	205	196	201	
21	197	198	199		
22	200	200	201	205	201
23	202	202	204		
24	198	203	201	198	
25	204	201	201		
26	206	194	197		
27	200	204	198		
28	199	199			
29	198	204			
30	203	200	204	199	200
31	196	203	197	201	
32	197	199	203		
33	197	194	199	200	199
34	203	201	196	201	