1. (60 points) Figure below shows how nitrogen gas under a pressure P_{N2} = 190,000. [Pa] (this is gauge pressure) can be used for 'pumping' a flammable fuel (biodiesel) through an elevation increase of H = 10. [m]. A particle filter (packed bed) is installed in the pipeline to filter particulates in the biodiesel fuel. The filter was made from sintered SS particles $d_v = 500 \; [\mu m]$; the length of the filter is $\ell_{filter} = 0.01 \; [m]$.

a) What is the flow rate of biodiesel $F_{\text{biodiesel}}$ [m³/s], if it flows through a commercial steel pipe of diameter d_{pipe} =0.025 [m]. The equivalent length (all pipe fittings are included) of the pipe is L_{equ} =100. [m]

(Note: Neglect exit kinetic energy effects.)

Data: $\rho_{\text{biodiesel}}$ =880. [kg/m³];

 $\mu_{\text{biodiesel}}$ = 0.005 [kg/ms];

 L_{equ} = 100. [m];

 $d_{pipe} = 0.025[m];$

H = 10. [m]

P_{N2-gauge}=190,000. [Pa]

P_{atm} =100,000. [Pa]

 $d_p = 500 \, [\mu m];$

 $\ell_{filter} = 0.01 [m]$

F_{biodiesel}=??? [m³/s]