

SENIOR CERTIFICATE EXAMNATIONS SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P2/WISKUNDE V2

2017

MARKING GUIDELINES/NASIENRIGLYNE

MARKS: 150 *PUNTE: 150*

These marking guidelines consist of 22 pages. *Hierdie nasienriglyne bestaan uit* 22 *bladsye.*.

SCE/SSE—Marking guidelines/Nasienrigi

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.
- Geometry:
 - S = a mark for a correct statement (a statement mark is independent of a reason)
 - R = a mark for a correct reason (a reason mark may only be awarded if the statement is correct)
 - S/R = award a mark if statement and reason are both correct

NOTA:

- As 'n kandidaat 'n vraag TWEEKEER beantwoord, merk slegs die EERSTE poging.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, merk die doodgetrekte poging.
- Volgehoue akkuraatheid word in ALLE aspekte van die memorandum toegepas. Hou op nasien by die tweede berekeningsfout.
- Aanvaar van antwoorde/waardes om 'n probleem op te los, word NIE toegelaat nie.
- Euklidiese Meetkunde:
 - S = 'n punt vir 'n korrekte bewering ('n beweringspunt is onafhanklik van die rede)
 - R = 'n punt vir 'n korrekte rede ('n punt kan slegs vir 'n rede toegeken word, indien die bewering korrek is
 - S/R = 'n punt word toegeken indien beide die bewering en rede korrek is

QUESTION/VRAAG/VRAAG 1

TIME TAKEN (IN HOURS)	5	7	5	8	10	13	15	20	18	25	23
COST (IN THOUSANDS OF RANDS)	10	10	15	12	20	25	28	32	28	40	30

1.1	a = 4,806 = 4,81	$\checkmark a = 4.81$
	b = 1,323 = 1,32	✓ $b = 1.32$
	y = 4.81 + 1.32x	✓ equation
		(3)
1.2	Cost = 25,974 = 25,97 thousand rand (calculator)	√ 25,97
	= R25 970	✓ answer (in Rands)
		(2)
	OR/OF	
	y = 4.81 + 1.32(16)	✓ substitution
	y = 25,93	
	Cost = R25930	✓ answer (in Rands)
		(2)
1.3	r = 0.949 = 0.95	✓ answer
1.3	r = 0,949= 0,93	(1)
1.4	x = 0	$\checkmark x = 0$
1.7	y = 4.81 OR (4.80647)	· 10
	∴ R4 810 OR R4806,47	✓ answer
	ICT 010 OIK ICT000, T/	(2)
		[8]
		L - J

2.1	modal class: $80 < x \le 100$)		✓ correct class (1)
2.2	Commission earned (in thousands of Rands)	Frequency	Cumulative Frequency	
	$20 < x \le 40$	7	7	
	$40 < x \le 60$	6	13	
	$60 < x \le 80$	8	21	√ 13;21
	$80 < x \le 100$	10	31	
	$100 < x \le 120$	4	35	✓ 31;35 (2)
2.3		OGIVE		
	30 30 20 10 0 20	40 60 8	0 100 120	✓ grounded/geanker ✓ upper limits/ boonste limiet ✓ cum frequency / Kum frekwensie ✓ shape/vorm
		on earned (in thousan		(4)
2.4	No. of salesmen awarded = 9 salesmen	bonuses: 35 – 26		✓ accept (25 – 27) ✓ accept (8 – 10) (2)
2.5	$= \frac{2410}{35}$	$(7) + (50 \times 6) + (70 \times 8) + (70$		✓ top line using midpts & freq ✓ 2410
		nousand rand or R68 85 0 or 69 thousand rand	7,14	✓ answer (nearest) (3) [12]

3.1	$m_{\rm CD} = \frac{-3 - (-5)}{4 - 0}$	✓ substitution of C & D
	$=\frac{-3+5}{4-0}$	
	$=\frac{1}{2}$	✓answer (2)
3.2	$m_{AD} = \frac{-5 - 3}{0 - \left(-4\right)}$	✓ substitution of A & D
	= -2 1	$\checkmark m_{AD} = -2$
	$m_{CD} \times m_{AD} = \frac{1}{2} \times -2$ $= -1$	\checkmark product = -1
	∴ AD ⊥ DC	(3)
3.3	$AB = \sqrt{(3+4)^2 + (4-3)^2} = \sqrt{50} = 5\sqrt{2}$	✓ correct substitution ✓ length of AB
	BC = $\sqrt{(4-3)^2 + (-3-4)^2} = 5\sqrt{2}$	✓ correct substitution
	AB = BC	✓ length of BC
	∴ ∆ABC is an iscosceles triangle/'n gelykbenige driehoek	(4)

3 .4	$m_{CD} = m_{BF} = \frac{1}{2}$ [BF DC] $4 = \frac{1}{2}(3) + c$ $y - 4 = \frac{1}{2}(x - 3)$ $c = \frac{5}{2}$ OR/OF $y - 4 = \frac{1}{2}x - 1\frac{1}{2}$ $y = \frac{1}{2}x + \frac{5}{2}$ $y = \frac{1}{2}x + 2\frac{1}{2}$	$ √ m_{BF} = \frac{1}{2} $ ✓ substitution of B(3; 4) ✓ equation	(2)
3.5	$\tan \alpha = -2$ $\therefore \alpha = 116.57^{\circ}$ $\alpha = 90^{\circ} + \theta \qquad [\text{ext } \angle \Delta]$ $\therefore \theta = 26,57^{\circ}$	$ \sqrt{\tan \alpha} = -2 $ $ \sqrt{\alpha} = 116.57^{\circ} $ $ \sqrt{\theta} = 26,57^{\circ} $	(3)
	OR/OF $\tan \alpha = -2$ OR $m_{AD} = -2$ ∴ $\tan \theta = \frac{1}{2}$ ∴ $\theta = 26,57^{\circ}$ OR/OF		(3)
	Inclination of DE is β : $\tan \beta = \frac{1}{2}$ $\therefore \beta = 26,57^{\circ}$ $\therefore \text{ ODE} = 63,43^{\circ}$ $\therefore \theta = 90^{\circ} - 63,43^{\circ}$ $= 26,57^{\circ}$	\checkmark β = 26,57° \checkmark ODE = 63,43° \checkmark θ = 26,57°	(3)
3.6	$x^{2} + y^{2} = r^{2}$ $(4)^{2} + (-3)^{2} = 25$ $x^{2} + y^{2} = 25$	$\checkmark r^2 = 25$ \checkmark equation	(2)
		_	[17]

S P(1;4)

R N

4.1	$N\left(\frac{1+(-3)}{2}; \frac{4+(-2)}{2}\right)$ $N(-1; 1) \text{ is the centre of the circle}$	✓ substitution M & P ✓ x-value of N ✓ y-value of N
4.2	$r = \sqrt{(1 - (-1))^2 + (4 - 1)^2}$ $r = \sqrt{13} = \text{radius}$ $(x + 1)^2 + (y - 1)^2 = 13$ OR/OR	(3) ✓ substitution N & P ✓ $r = \sqrt{13}$ ✓ LHS of eq ✓ RHS of eq (4)
	$r = \sqrt{(-3 - (-1))^2 + (-2 - 1)^2}$ $r = \sqrt{13} = \text{radius}$ $(x+1)^2 + (y-1)^2 = 13$	✓ substitution N & M ✓ $r = \sqrt{13}$ ✓ LHS of eq ✓ RHS of eq (4)

M(-3; -2)

4.3	m v m = 1 [radius tangant/ngal/thm]	
7.5	$m_{\text{NM}} \times m_{\text{MR}} = -1$ [radius \perp tangent/raakklyn]	
	$m_{\text{NM}} = \frac{1 - (-2)}{-1 - (-3)}$ $OR m_{\text{PM}} = \frac{4 - (-2)}{1 - (-3)}$	✓ correct
		substitution
	$=\frac{3}{2}$ $=\frac{3}{2}$	$\checkmark m_{\rm NM}$
	$\frac{2}{2}$	NM
	$m_{\rm MR} = -\frac{2}{3}$	
	$y - y_1 = -\frac{2}{3}(x - x_1)$ OR/OF $y = -\frac{2}{3}x + c$	$\checkmark m_{\rm MR}$
	$y - y_1 = -\frac{2}{3}(x - x_1)$ OR/OF $y = -\frac{2}{3}x + c$	
	$y+2=-\frac{2}{3}(x+3)$ OR/OF $-2=-\frac{2}{3}(-3)+c$	✓ substitution of
	3	$m_{\rm MR} \& (-3;-2)$
	$y = -\frac{2}{3}x - 4$	✓ equation
	3	(2)
4.4	Symmetry of a kite: S(-3; 4)	(5) $\checkmark x$ -value of S
1.4	Symmetry of a kite. S(3, 4)	\checkmark y-value of S
	OR/OF	(2)
	$P\hat{S}M = 90^{\circ}$ [\angle in semi circle]	
	$PS \perp SM$	✓ x-value of S
	$\therefore S(-3;4)$	✓ y-value of S
	OR/OF	(2)
	$(NS)^2 = (radius)^2$	
	$(-3+1)^2 + (y-1)^2 = 13$	
	$(y-1)^2 = 9$	
	$y-1=\pm 3$	✓ x-value of S
	$y = 4 OR y \neq -2$	\checkmark y-value of S
	\therefore S(-3; 4)	(2)
4.5	$(SR)^2 = (RM)^2$ Tangents from common pt/rklyne v dies punt	
	$(x+3)^2 + (y-4)^2 = (x+3)^2 + (y+2)^2$	✓ equating
	$v^2 - 8v + 16 = v^2 + 4v + 4$	lengths
	y - 3y + 10 - y + 4y + 4 $-12y = -12$	✓ simplification
	y = -12 $y = 1$	
	•	✓ y-value of R
	$\frac{2}{3}x = -4 - 1$ or $1 = -\frac{2}{3}x - 4$	
	$x = -\frac{15}{2} \qquad x = -7\frac{1}{2}$	✓ <i>x</i> -value of R
	$\therefore R\left(-7\frac{1}{2};1\right)$	
	ODVOE	(4)
	OR/OF	

	D(1) [DN:1	
	[RN is a horizontal line]	$\sqrt{y_R} = 1$
	$\therefore 1 = -\frac{2}{3}x - 4$	✓ horizontal line OR R lies on $y = 1$
	_	✓ equating
	$5 = -\frac{2}{3}x$	
		(1 00
	$x = -\frac{15}{2}$	\sqrt{x} -value of R $(x < -4.6)$
	_	(x < -4,0)
	$\therefore R\left(-\frac{15}{2};1\right)$	(4)
	OR/OF	
	1 4 2	
	$m_{\rm NS} = \frac{1-4}{-1+3} = -\frac{3}{2}$	
	$\therefore m_{\rm RS} = \frac{2}{3}$	
	$y - 4 = \frac{2}{3}(x+3)$	
	2 6	$\sqrt{y} = \frac{2}{3}x + 6$
	$y = \frac{2}{3}x + 6$	3
	$-\frac{2}{3}x-4=\frac{2}{3}x+6$	✓ equating
	$\begin{bmatrix} 3 & -4 & 3 \\ 3 & & \end{bmatrix}$	cquating
	$x = -7\frac{1}{2}$	✓ x-value of R
		(x < -4.6)
	$y = \frac{2}{3}(-\frac{15}{2}) + 6 = 1$	✓ y-value of R
		y varae of it
	$\therefore R\left(-\frac{15}{2};1\right)$	
4.6		(4)
4.0	RS = $\sqrt{(-3+7.5)^2 + (4-1)^2}$ OR/OF RM = $\sqrt{(-3+7.5)^2 + (-2-1)^2}$	
	$RS = \frac{3\sqrt{13}}{2} = 5.41$	✓ RS OR RM
	<u> </u>	(m o4h - 1
	area of RSNM = 2area of \triangle RSN	\checkmark method
	$=2\left(\frac{1}{2}\right)(\sqrt{13})\left(\frac{3\sqrt{13}}{2}\right)$	$\checkmark \sqrt{13} \text{ and} \left(\frac{3\sqrt{13}}{2} \right)$
	$=\frac{39}{2}$ OR/OF 19,5 square units	√ answer
	2	$\begin{array}{c c} & \text{answer} \\ & & (4) \end{array}$
	OR/OF	
		/ mathad
		✓ method
		\checkmark MS = 6
		\checkmark RN = 6,5
		√ answer
		* aliswei

area RSNM = $\frac{1}{2}$ (MS × RN) (area of a kite/opp v vlieër)	((4)
$= \frac{1}{2}(6)(6,5)$ $= \frac{39}{2} \text{ OR } 19,5 \text{ square units}$	\checkmark RS OR RM \checkmark $\left(\frac{1}{2}\right)\sqrt{13}\left(\frac{3\sqrt{13}}{2}\right)$	
OR/OF RS = $\sqrt{(-3+7,5)^2 + (4-1)^2}$ OR/OF RM = $\sqrt{(-3+7,5)^2 + (-2-1)^2}$ RS = $\frac{3\sqrt{13}}{2}$ or 5,41	✓ method ✓ answer	
area of $\triangle RSN = \left(\frac{1}{2}\right)(\sqrt{13})\left(\frac{3\sqrt{13}}{2}\right)$ $= \frac{39}{4} \mathbf{OR}/\mathbf{OF} 9,75 \text{ square units}$ area of RSNM = 2area of $\triangle RSN$	✓ method	(4)
$= \frac{39}{2} \mathbf{OR}/\mathbf{OF} 19,5 \text{ square units}$ \mathbf{OR}/\mathbf{OF}	$\checkmark MS = 6$ $\checkmark h = 1 & 5\frac{1}{2}$ $\checkmark \text{ answer}$	
SM = 6 area of RSNM = Area of \triangle SMN + Area of \triangle RSM $= \frac{1}{2}(6)(1) + \frac{1}{2}(6)(5\frac{1}{2})$ $= 3 + 16\frac{1}{2}$ $= 19\frac{1}{2}$		(4)
2	[2	22]

5.1.1	$\tan A = \frac{\sin A}{\cos A}$	√identity
	$= \frac{2p}{2}$	identity
	= 2	✓ value of tan A (2)
	OR/OF	()
	$\tan A = \frac{2p}{p}$ $= 2$	$\checkmark \frac{y}{x}$
	=2 (p;2p)	√value of tan A (2)
5.1.2	$\sin^2 A + \cos^2 A = 1$	(2)2, 2, 1
	$(2p)^2 + p^2 = 1$ $4p^2 + p^2 = 1$	$\checkmark (2p)^2 + p^2 = 1$
	$5p^2 = 1$	✓ simplification of LHS
	$p^2 = \frac{1}{5}$	
	$\therefore p = -\frac{1}{\sqrt{5}}$	✓answer (3)
5.2	$2\sin^2 x - 5\sin x + 2 = 0$	
3.2	$(2\sin x - 3\sin x + 2 = 0)$ $(2\sin x - 1)(\sin x - 2) = 0$	✓ factors or formula
	$\sin x = \frac{1}{2} \text{or} \sin x = 2(\text{no solution})$	✓ both equations
	$ref \angle = 30^{\circ}$	✓ no solution/geen opl
	$\therefore x = 30^{\circ} + k.360^{\circ} \text{ or } x = 150^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$	$\sqrt{30^{\circ} + k.360^{\circ}}$ $\sqrt{150^{\circ} + k.360^{\circ}}$; $\sqrt{k} \in Z$
		(6)
5.3.1	$\sin(x + 300^\circ) = \sin x \cos 300^\circ + \cos x \sin 300^\circ$	✓ expansion/ <i>uitbreiding</i> (1)
5.3.2	$\sin(x+300^{\circ})-\cos(x-150^{\circ})$	
	$= \sin x \cos 300^{\circ} + \cos x \sin 300^{\circ} - (\cos x \cos 150^{\circ} + \sin x \sin 150^{\circ})$	√2 nd expansion/
	$= \sin x \cos 60^{\circ} - \cos x \sin 60^{\circ} - (-\cos x \cos 30^{\circ} + \sin x \sin 30^{\circ})$	2de uitbreiding ✓✓ reduction/reduksie
	$= \sin x \cos 60^{\circ} - \cos x \sin 60^{\circ} + \cos x \cos 30^{\circ} - \sin x \sin 30^{\circ}$	· · · reduction/redukste
	$\begin{vmatrix} = \frac{1}{2}\sin x - \frac{\sqrt{3}}{2}\cos x + \frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x \\ = 0 \end{vmatrix}$	✓ special angle values/ spesiale hoekwaardes
	- v	✓ answer
	OR/OF	(5)

	$\sin(x+300^{\circ}) - \cos(x-150^{\circ})$ = $\sin x \cos 300^{\circ} + \cos x \sin 300^{\circ} - (\cos x \cos 150^{\circ} + \sin x \sin 150^{\circ})$ = $\sin x \cos 60^{\circ} - \cos x \sin 60^{\circ} - (-\cos x \cos 30^{\circ} + \sin x \sin 30^{\circ})$ = $\sin x \cos 60^{\circ} - \cos x \sin 60^{\circ} + \cos x \cos 30^{\circ} - \sin x \sin 30^{\circ}$ = $\sin x \sin 30^{\circ} - \cos x \sin 60^{\circ} + \cos x \sin 60^{\circ} - \sin x \sin 30^{\circ}$ = 0	✓ 2 nd expansion/ 2de uitbreiding ✓ reduction/reduksie ✓ co-ratios / ko-verh ✓ answer (5)
5.4	Consider: $\frac{\tan x + 1}{\sin x \tan x + \cos x} = \sin x + \cos x$ $LHS = \frac{\left(\frac{\sin x}{\cos x} + 1\right)}{\left(\sin x \cdot \frac{\sin x}{\cos x} + \cos x\right)} = \frac{\left(\frac{\sin x + \cos x}{\cos x}\right)}{\left(\frac{\sin^2 x + \cos^2 x}{\cos x}\right)}$ $= \frac{\frac{\sin x + \cos x}{\cos x}}{\frac{1}{\cos x}}$ $= \frac{\sin x + \cos x}{\cos x} \times \frac{\cos x}{\cos x}$	✓ identity of $\tan x$ ✓ $\frac{\sin x + \cos x}{\cos x}$ ✓ $\frac{\sin^2 x + \cos^2 x}{\cos x}$ ✓ $\sin^2 x + \cos^2 x = 1$
	$= \sin x + \cos x$ $= RHS$	✓ simplify (5)
	$LHS = \frac{\left(\frac{\sin x}{\cos x} + 1\right)}{\left(\sin x \cdot \frac{\sin x}{\cos x} + \cos x\right)} = \frac{\left(\frac{\sin x}{\cos x} + 1\right)}{\left(\frac{\sin^2 x + \cos^2 x}{\cos x}\right)}$	✓ identity of $\tan x$ ✓ $\frac{\sin^2 x + \cos^2 x}{\cos x}$
	$=\frac{\left(\frac{\sin x}{\cos x}+1\right)}{\frac{1}{\cos x}}$ $\left(\sin x + 1\right) \cdot \cos x$	$\sqrt{\sin^2 x + \cos^2 x} = 1$
	$= \left(\frac{\sin x}{\cos x} + 1\right) \times \frac{\cos x}{1}$ $= \sin x + \cos x$ $= RHS$	✓ simplify ✓ multiplication (5)
5.5.1	$\left(\sqrt{1+k}\right)^2 = \left(\sin x + \cos x\right)^2$ $1+k = \sin^2 x + 2\sin x \cos x + \cos^2 x$ $1+k = 1+\sin 2x$ $k = \sin 2x$	✓ square both sides ✓ $\sin^2 x + \cos^2 x = 1$ ✓ $\sin 2x$ (3)

SCE/SSE-	Markina	muidalinas	Masion	rialyna
SCE/SSE-	marking	guiaeiines,	masien	rigiyne

5.5.2	From 5.5.1		
	$\sin x + \cos x = \sqrt{1 + \sin 2x}$		
	$\therefore \max \text{ value} : \sin x + \cos x = \sqrt{1+1}$	$\sqrt{\max \text{ of } \sin 2x} = 1$	
	$=\sqrt{2}$	✓ answer	(2)
	OR/OF		
	Maximum value of $1 + \sin 2x = 1 + 1$	\checkmark max of sin $2x = 1$	
	$= 2$ $\therefore \text{ maximum value of } \sin x + \cos x = \sqrt{2}$	✓ answer	(2)
	OR/OF		
	$(\sin x + \cos x)^2 = \sin^2 x + 2\sin x \cos x + \cos^2 x$		
	$=1+\sin 2x$		
	$\therefore \max \text{ value} (\sin x + \cos x)^2 = 1 + 1 = 2$	$\sqrt{\max \text{ of } \sin 2x} = 1$	
	$\therefore \max \text{ value } \sin x + \cos x = \sqrt{2}$	✓ answer	
			(2)
			[27]

6.1	Period = 180°	✓ answer
		(1)
6.2	-75°	✓ answer
		(1)
6.3	$\sin 2x \le \frac{1}{\sqrt{2}}\cos x + \frac{1}{\sqrt{2}}\sin x$	
	$\sin 2x \le \cos 45^{\circ}.\cos x + \sin 45^{\circ}.\sin x$	$\checkmark \cos 45^{\circ} \cdot \cos x + \sin 45^{\circ} \cdot \sin x$
	$\sin 2x \le \cos(x - 45^{\circ})$	$\checkmark \cos(x-45^{\circ})$
	$x \in [-75^{\circ}; 165^{\circ}]$	$\checkmark \cos(x - 45^{\circ})$ $\checkmark \checkmark \text{answer}$
	[,]	(4)
		[6]

Figure/Figuur (i)

Figure / Figuur (ii)

7.1	KC = 6 cm	✓ answer (1)
7.2	Let P be the point of intersection of KL and CB	
	$\frac{KP}{KC} = \sin 60^{\circ}$ $KP = 6 \sin 60^{\circ}$ $KP = 3\sqrt{3} \text{ or } 5,20$ $\therefore KL = 8 + 3\sqrt{3} \text{ or } 13,20 \text{ cm}$ $F \qquad L \qquad G$	✓ trig ratio ✓ length of KP ✓ answer (3)
7.3	$DK^{2} = 6^{2} + 12^{2}$ $DK = \sqrt{180} \text{ or } 6\sqrt{5} \text{ or } 13,42 \text{ cm}$ $\frac{\sin K\hat{D}L}{KL} = \frac{\sin D\hat{L}K}{DK}$ $\frac{\sin K\hat{D}L}{\sin D\hat{L}K} = \frac{KL}{DK}$ $= \frac{8 + 3\sqrt{3}}{6\sqrt{5}} \text{ or } \frac{13,20}{13,42} \text{ or } 0,98$	✓ DK = $6\sqrt{5}$ ✓ use of sine rule ✓ $\frac{\sin K\hat{D}L}{\sin D\hat{L}K} = \frac{KL}{DK}$ ✓ answer
		(4) [8]

8.1	$\hat{L} = 100^{\circ}$ [ext \angle cyclic quad = int opp \angle / buite \angle kdvh = tos \angle]	✓S ✓R (2)
	OR/OF	
	$\hat{N}_1 = 80^{\circ}$ [\(\sqrt{s} \) on straight line]	
	$\hat{L} = 100^{\circ}$ [opp \angle s of cyclic quad]	\checkmark S \checkmark R (2)
8.2	$\hat{N}_1 = 80^{\circ}$ [\(\neq \text{s on straight line}/\neq \text{op reguitlyn}\)]	✓S
	∴ $\hat{O}_1 = 160^{\circ}$ [\angle at centre = 2 × \angle at circumference/midpts \angle = 2 omtreks \angle]	✓S ✓R (3)
	OR/OF reflex $\hat{KOM} = 200^{\circ}$ [\angle at centre=2 × \angle at circumference/midpts $\angle = 2 \times \text{omtreks} \angle$] $\therefore \hat{O}_1 = 160^{\circ}$ [\angle s around a pt/ \angle e om 'n pt]	✓S ✓R ✓S
		(3)
8.3	$\hat{\mathbf{M}}_1 = 360^{\circ} - (100^{\circ} + 55^{\circ} + 160^{\circ})$ [sum $\angle s$ of quad/som $\angle e$ v vierhoek] $\therefore \hat{\mathbf{M}}_1 = 45^{\circ}$	$\begin{array}{ c c c c } \checkmark S \\ \checkmark S \\ \end{array}$ (2)
		[7]

0.1.1	/· · · 1 / / · 1 1C · 1 1	./
9.1.1	\angle in semi-circle/ \angle in halfsirkel	✓answer
		(1)
9.1.2	Opp \angle s of quad = 180°/ $Teenoorst \angle e \ v \ vierhoek=180°$	✓answer
		(1)
9.2.1	OF \perp AC [line from centre bisects chord/lyn v midpt halv kd]	✓ S ✓ R
	\therefore AC GO [co-interior/ko-binne \angle s = 180°	✓ R
	OR/OF corresp/ooreenkomstige \angle s =]	(3)
0.2.2	1 0 1	
9.2.2	$\hat{G}_1 = \hat{A}_2$ [corresp/ooreenk \(\neq s\); AC \(\ GO \)]	✓ S ✓ R
	$\hat{A}_2 = \hat{B}_1$ [\(\sigma \) sin same segment/\(\sigma \) in dies segment	
	$A_2 = B_1$ [\(\angle \sin \) same segment/\(\angle \) in dies segment]	✓ S ✓ R
	$\therefore \hat{G}_1 = \hat{B}_1$	(4)
	1 1	
	OR/OF	
	$\hat{G}_1 = \hat{B}_2$ [ext \angle cyclic quad/buite \angle koordevh]	✓ S ✓ R
	but $\triangle ABF \equiv \triangle CBF$ [s, \angle , s]	✓ R
	$\therefore \hat{\mathbf{B}}_2 = \hat{\mathbf{B}}_1$	✓ S
	â â	~
	$\therefore \hat{G}_1 = \hat{B}_1$	(4)
9.3	OF: $FB = 3: 2$ $DB = 2r$	
	DO 51 1DE 01 0D/05 DE 0 2 8	
	$\therefore DO = 5k \text{ and } DF = 8k \qquad \mathbf{OR}/\mathbf{OF} \qquad DF = 2r - \frac{2}{5}r = \frac{8}{5}r$	
	$\therefore \frac{DG}{DJ} = \frac{P}{DD} = \frac{P}{Q}$ [line side of $\Delta/lyn \parallel sy v \Delta$]	✓ S ✓ R
	$\therefore \frac{DG}{DA} = \frac{DO}{DF} = \frac{r}{\frac{8}{5}r}$ [line side of $\Delta/lyn syv\Delta$]	
	5	
	DG 5	✓ S
	$ \therefore \frac{1}{DA} = \frac{1}{8}$	(3)
	שת ט	[12]
		[12]

10.1	Tangent-chord theorem		✓ R	(1)
				(1)
10.2.1	$\hat{A}_2 + \hat{A}_3 = \hat{B}_1 + \hat{B}_2$	$[\angle^{S} \text{ opp} = \text{sides}/\angle e teenoor = sye}]$	✓ S ✓ R	
	$\hat{\mathbf{S}}_3 = \hat{\mathbf{B}}_1 + \hat{\mathbf{B}}_2$	$[ext \angle cyclic quad/buite \angle koordevh]$	✓ S ✓ R	
	$\therefore \hat{\mathbf{S}}_3 = \hat{\mathbf{A}}_2 + \hat{\mathbf{A}}_3$			
	∴ AB∥ST	$[corresp/ooreenk \angle^{S} =]$	✓ R	
	OR/OF			(5)
	$R\hat{T}S = B\hat{A}S$	[ext ∠ cyclic quad/buite ∠ koordevh]	✓ S ✓ R	
	$B\hat{A}S = A\hat{B}T$	$[\angle^{S} \text{ opp} = \text{sides}/\angle eteenoor = sye}]$	✓ S ✓ R	
	$\therefore R\hat{T}S = A\hat{B}T$		✓ R	
	∴ AB∥ST	[corresp/ooreenk \angle ^s =]	V K	(5)
				\

19 SCE/SSE– Marking guidelines/Nasienriglyne

10.2.2	$\hat{\mathbf{B}}_2 = x$	[tan chord theorem/raakl – koordst]	✓ S ✓ R	
	$x + \hat{\mathbf{T}}_4 = \hat{\mathbf{B}}_1 + \hat{\mathbf{B}}_2$	[corresp/ooreenk \angle ^s ; AB // ST]	✓ S ✓ R	
	$\therefore \hat{\mathbf{T}}_4 = \hat{\mathbf{B}}_1$			
	$\hat{\mathbf{B}}_1 = \hat{\mathbf{A}}_1$	[tan chord theorem/ $raakl - koordst$]	✓ R	
	$\therefore \hat{T}_4 = \hat{A}_1$			(5)
10.2.3	$\hat{T}_4 = \hat{A}_1$	[proven/bewys in 10.2.2]	✓ S	
	∴ RTAP is a cyclic q	[uadrilateral [line subtends = \angle ^s]	✓ R	
	Is 'n koord	evierhoek [lyn onderspan = $\angle e$]		(2)
				(2)
				13]

11.1	Constr: On sides AF H respective Draw GH/M ΔABC onder $AH = DF$. To	✓ construction/ konstruksie	
	Proof/Bewys:		
	$\Delta AGH \equiv \Delta DEF$	$[s, \angle, s]$	✓ S/R
	$\therefore \mathbf{A}\hat{\mathbf{G}}\mathbf{H} = \hat{\mathbf{E}}$		
	$=\hat{B}$	$[\hat{\mathbf{B}} = \hat{\mathbf{E}}, \mathbf{given}/\mathbf{gegee}]$	✓ S
	∴ GH∥BC	[corresp/ooreenk \angle ^s =]	✓ S/R
	$\therefore \frac{AG}{AB} = \frac{AH}{AC}$	[line side of $\Delta / lyn sye v \Delta$]	✓ S ✓ R
	$\therefore \frac{DE}{AB} = \frac{DF}{AC}$	[constr/konstruksie]	(6)

11.2

AP = PC [diag	\parallel^{m} bisect each other/hoekl \parallel^{m} halveer mekaar]	✓S	
But $TP = PS$ [given	n/gegee]	✓S OR	
AP - TP = PC - PS		S	
\therefore AT = SC			2)
In ΔPSR and ΔPBA	\ :		
$\hat{\mathbf{P}}_1 = \hat{\mathbf{P}}_3$	[vertically opp \angle ^s / regoorst $\angle e$]	✓S ✓R	
$\hat{\mathbf{B}}_1 = \hat{\mathbf{S}}_1$	$[\angle^s \text{ in same segment}/\angle e \text{ in dies segment}]$	✓S ✓R	
$\therefore \Delta PSR \parallel \Delta PBA$	$[\angle, \angle, \angle]$	✓R	
			(5)
OR/OF In $\triangle PSR$ and $\triangle PBA$	A :		
$\hat{P}_1 = \hat{P}_3$	[vertically opp \angle ^s / regoorst \angle e]	✓S ✓R	
$\hat{\mathbf{B}}_{1} = \hat{\mathbf{S}}_{1}$	$[\angle^s \text{ in same segment}/\angle e \text{ in dies segment}]$	✓S ✓R	
$\hat{A}_2 = \hat{R}_1$	$[\operatorname{sum} \angle^{\operatorname{s}} \Delta / \operatorname{som} \angle e \Delta]$	✓S	
$\therefore \Delta PSR \Delta PBA$	$[\angle, \angle, \angle]$		(5)
	But $TP = PS$ [given $AP - TP = PC - PS$] $AP - TP = PC - PS$ $AT = SC$ In $\triangle PSR$ and $\triangle PBA$ $\hat{P}_1 = \hat{P}_3$ $\hat{B}_1 = \hat{S}_1$ $\Delta PSR \parallel \triangle PBA$ OR/OF In $\triangle PSR$ and $\triangle PBA$ $\hat{P}_1 = \hat{P}_3$ $\hat{B}_1 = \hat{S}_1$ $\hat{A}_2 = \hat{R}_1$	But $TP = PS$ [given/gegee] AP - TP = PC - PS $\therefore AT = SC$ In $\triangle PSR$ and $\triangle PBA$: $\hat{P}_1 = \hat{P}_3$ [vertically opp \angle s / regoorst \angle e] $\hat{B}_1 = \hat{S}_1$ [\angle s in same segment/ \angle e in dies segment] $\therefore \triangle PSR \parallel \triangle PBA$ [\angle , \angle , \angle] OR/OF In $\triangle PSR$ and $\triangle PBA$: $\hat{P}_1 = \hat{P}_3$ [vertically opp \angle s / regoorst \angle e] $\hat{B}_1 = \hat{S}_1$ [\angle s in same segment/ \angle e in dies segment]	But $TP = PS$ [given/gegee] $\checkmark S$ OR $AP - TP = PC - PS$ S $AP - TP = PC - PS$ S $AT = SC$ In $\triangle PSR$ and $\triangle PBA$: $\hat{P}_1 = \hat{P}_3$ [vertically opp \angle^s / regoorst $\angle e$] $\checkmark S$ $\checkmark R$ $\hat{B}_1 = \hat{S}_1$ [\angle^s in same segment/ $\angle e$ in dies segment] $\checkmark S$ $\checkmark R$ $\therefore \triangle PSR \parallel \triangle PBA$ [\angle, \angle, \angle] $\checkmark R$ OR/OF In $\triangle PSR$ and $\triangle PBA$: $\hat{P}_1 = \hat{P}_3$ [vertically opp \angle^s / regoorst $\angle e$] $\checkmark S$ $\checkmark R$ $\hat{B}_1 = \hat{S}_1$ [\angle^s in same segment/ $\angle e$ in dies segment] $\checkmark S$ $\checkmark R$ $\hat{A}_2 = \hat{R}_1$ [sum $\angle^s \triangle / som \angle e \triangle$]

11.2.2(a)	$\frac{PR}{PA} = \frac{PS}{PB} \qquad [\Delta s]$ $\therefore \frac{PR}{PA} = \frac{TR}{AD} = \frac{PS}{PB} \qquad [given \frac{PR}{PA} = \frac{TR}{AD}]$ $\therefore \frac{PR}{PA} = \frac{TR}{AD} = \frac{TP}{PD} \qquad [PS = TP; PB = PD]$ $\therefore \Delta RPT \Delta APD \qquad [sides of \Delta in prop/sye v \Delta in dies verhouding]$	✓ S (all 3 ratios) ✓ S ✓ R (3)
11.2.2(b)	$\hat{T}_1 = \hat{D}_2$ [Δs] \therefore ATRD is a cyclic quad [converse: ext \angle of cyclic quad/ Omgekeerde buite \angle v koordevh]	✓ S ✓ R (2)
		[18]

TOTAL/TOTAAL: 150