SI231 Matrix Analysis and Computations Basic Concepts

Ziping Zhao

Spring Term 2022–2023

School of Information Science and Technology ShanghaiTech University, Shanghai, China

http://si231.sist.shanghaitech.edu.cn

Basic Concepts

- notations and conventions
- subspace, linear independence, basis, dimension
- rank, invertible matrices, determinant
- vector norms, inner product, orthogonality
- projections onto subspaces, orthogonal complements, four fundamental subspaces
- orthogonal and orthonormal bases, orthogonal matrix, Gram-Schmidt
- matrix multiplications and representations, block matrix manipulations
- complexity, floating point operations (flops)

 \mathbb{R} the set of real numbers, or real space

 \mathbb{C} the set of complex numbers, or complex space

 \mathbb{R}^n *n*-dimensional real space

 \mathbb{C}^n *n*-dimensional complex space

 $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices

 $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices

x column vector

 $x_i, [\mathbf{x}]_i$ ith entry of \mathbf{x}

A matrix

 $a_{ij}, [\mathbf{A}]_{ij}$ (i, j)th entry of \mathbf{A}

 \mathbb{S}^n set of all $n \times n$ real symmetric matrices; i.e, $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$

for all i, j

 \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices; i.e, $\mathbf{A} \in \mathbb{H}^{n \times n}$ and $a_{ij} = a_{ji}^*$

for all i, j

• vector: $\mathbf{x} \in \mathbb{R}^n$ means that \mathbf{x} is a real-valued n-dimensional column vector; i.e.,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \qquad x_i \in \mathbb{R} \text{ for all } i.$$

Similarly, $\mathbf{x} \in \mathbb{C}^n$ means that \mathbf{x} is a complex-valued n-dimensional column vector.

ullet transpose: let $\mathbf{x} \in \mathbb{R}^n$. The notation \mathbf{x}^T (\mathbf{x}^T , \mathbf{x}^T) means that

$$\mathbf{x}^T = \begin{bmatrix} x_1, & x_2, & \dots, & x_n \end{bmatrix}.$$

ullet conjugate/Hermitian transpose: let $\mathbf{x} \in \mathbb{C}^n$. The notation \mathbf{x}^H (\mathbf{x}^H) means that

$$\mathbf{x}^H = \begin{bmatrix} x_1^*, & x_2^*, & \dots, & x_n^* \end{bmatrix},$$

where the superscript * denotes the complex conjugate.

• matrix: $\mathbf{A} \in \mathbb{R}^{m \times n}$ means that \mathbf{A} is real-valued $m \times n$ matrix

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \qquad a_{ij} \in \mathbb{R} \text{ for all } i, j.$$

Similarly, $\mathbf{A} \in \mathbb{C}^{m \times n}$ means that \mathbf{A} is a complex-valued $m \times n$ matrix.

• unless specified, we denote the *i*th column of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ as $\mathbf{a}_i \in \mathbb{R}^m$; i.e.,

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1, & \mathbf{a}_2, & \dots, & \mathbf{a}_n \end{bmatrix}.$$

The same notation applies to $\mathbf{A} \in \mathbb{C}^{m \times n}$.

• transpose: let $\mathbf{A} \in \mathbb{R}^{m \times n}$. The notation \mathbf{A}^T means that

$$\mathbf{A}^{T} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & & & \vdots \\ a_{1n} & a_{m2} & \dots & a_{mn} \end{bmatrix} \in \mathbb{R}^{n \times m}.$$

- or, we have $\mathbf{B} = \mathbf{A}^T \iff b_{ij} = a_{ji}$ for all i, j.
- properties:

$$* (c\mathbf{A})^T = c\mathbf{A}^T$$

$$* (\mathbf{A}^T)^T = \mathbf{A}$$

$$* (\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$$

$$* (\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$$

- symmetric and skew-symmetric matrices: a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric if $\mathbf{A}^T = \mathbf{A}$ and skew-symmetric if $\mathbf{A}^T = -\mathbf{A}$.
 - for any matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, it can be decomposed as $\mathbf{A} = \mathbf{T} + \mathbf{S}$ where $\mathbf{T} = \frac{\mathbf{A} + \mathbf{A}^T}{2}$ is symmetric and $\mathbf{S} = \frac{\mathbf{A} \mathbf{A}^T}{2}$ is skew-symmetric.

• conjugate/Hermitian transpose: let $\mathbf{A} \in \mathbb{C}^{m \times n}$. The notation \mathbf{A}^H means that

$$\mathbf{A}^{H} = \begin{bmatrix} a_{11}^{*} & a_{21}^{*} & \dots & a_{m1}^{*} \\ a_{12}^{*} & a_{22}^{*} & \dots & a_{m2}^{*} \\ \vdots & & & \vdots \\ a_{1n}^{*} & a_{m2}^{*} & \dots & a_{mn}^{*} \end{bmatrix} \in \mathbb{C}^{n \times m}.$$

- or, we have $\mathbf{B} = \mathbf{A}^H \iff b_{ij} = a_{ji}^*$ for all i, j.
- properties (same as transpose):
 - $* (c\mathbf{A})^{H} = c^{*}\mathbf{A}^{H}$ $* (\mathbf{A}^{H})^{H} = \mathbf{A}$ $* (\mathbf{A} + \mathbf{B})^{H} = \mathbf{A}^{H} + \mathbf{B}^{H}$ $* (\mathbf{A}\mathbf{B})^{H} = \mathbf{B}^{H}\mathbf{A}^{H}$
- Hermitian and skew-Hermitian matrices: a matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is Hermitian if $\mathbf{A}^H = \mathbf{A}$ (or, equivalently, $\mathbf{A}^T = \mathbf{A}^*$) and skew-Hermitian if $\mathbf{A}^H = -\mathbf{A}$.
 - for any matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$, it can be decomposed as $\mathbf{A} = \mathbf{T} + \mathbf{S}$ where $\mathbf{T} = \frac{\mathbf{A} + \mathbf{A}^H}{2}$ is Hermitian and $\mathbf{S} = \frac{\mathbf{A} \mathbf{A}^H}{2}$ is skew-Hermitian.
 - the Hermitian matrix is also called the self-adjoint matrix

• trace: let $\mathbf{A} \in \mathbb{R}^{n \times n}$. The trace of \mathbf{A} is

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}.$$

– properties:

- * $\operatorname{tr}(c\mathbf{A}) = c\operatorname{tr}(\mathbf{A})$
- * $\operatorname{tr}(\mathbf{A}^T) = \operatorname{tr}(\mathbf{A})$
- * $\operatorname{tr}(\mathbf{A} + \mathbf{B}) = \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B})$
- * $\operatorname{tr}(\mathbf{AB}) = \sum_{i,j} a_{ij} b_{ji} = \operatorname{tr}(\mathbf{BA})$ for \mathbf{A}, \mathbf{B} of appropriate sizes
 - $\cdot \operatorname{tr}(\mathbf{b}\mathbf{a}^T) = \mathbf{a}^T \mathbf{b}$
 - $\operatorname{tr}(\mathbf{ABC}) = \operatorname{tr}(\mathbf{BCA}) = \operatorname{tr}(\mathbf{CAB})$ (cyclic property)
- * for three symmetric matrices, $tr(\mathbf{ABC}) = tr(\mathbf{CBA}) = tr(\mathbf{ACB})$
- * for symmetric **A** and skew-symmetric **B**, $tr(\mathbf{AB}) = 0$
- matrix power: let $\mathbf{A} \in \mathbb{R}^{n \times n}$. The notation \mathbf{A}^2 means $\mathbf{A}^2 = \mathbf{A}\mathbf{A}$, and \mathbf{A}^k means

$$\mathbf{A}^k = \underbrace{\mathbf{A}\mathbf{A}\cdots\mathbf{A}}_{k\ \mathbf{A}'\mathsf{s}}.$$

$$- A^0 = I$$

- A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is said to be
 - square if m = n;
 - rectangular (or non-square) if $m \neq n$;
 - * tall, skinny if m > n;
 - * short, fat if m < n.
- A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is said to be
 - upper (or right) triangular if $a_{ij} = 0$ for all i > j;
 - lower (or left) triangular if $a_{ij} = 0$ for all i < j.

Examples:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 2 & 0 \\ \frac{1}{8} & 3 & 0 \end{bmatrix}.$$

The definitions can be extended to non-square matrices, which are also often called the upper (lower) trapezoidal matrix.

- ullet A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is said to be
 - a upper Hessenberg matrix if $a_{ij} = 0$ for all i > j + 1;
 - a lower Hessenberg matrix if $a_{ij} = 0$ for all i < j + 1.

• all-one/unitary vectors: we use the notation

$$\mathbf{1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

to denote a vector of all 1's.

- zero/null vectors or matrices: we use the notation 0 to denote either a vector of all zeros, or a matrix of all zeros.
- unit/canonical vectors: unit vectors are vectors that have only one nonzero element and the nonzero element is 1. We use the notation

$$\mathbf{e}_i = \begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}^T$$

to denote a unit vector with the nonzero element at the ith entry.

• identity matrix:

$$\mathbf{I} = egin{bmatrix} 1 & & & & \ & 1 & & & \ & & \ddots & & \ & & 1 \end{bmatrix},$$

where, as a convention, the empty entries are assumed to be zero. (In some literature, also referred to as the unitary matrix.)

• diagonal matrices: we use the notation

$$Diag(a_1, \dots, a_n) = \begin{bmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{bmatrix}$$

to denote a diagonal matrix with diagonals a_1, \ldots, a_n . We also use the shorthand notation $\text{Diag}(\mathbf{a}) = \text{Diag}(a_1, \ldots, a_n)$ with $\mathbf{a} = [a_1, \ldots, a_n]$.

• the (main) diagonal or principal diagonal of a matrix A is the collection of entries a_{ij} with i=j; super-diagonal: a_{ij} with $i\leq j$; sub-diagonal: a_{ij} with $i\geq j$; note: the notion of diagonal matrices can be extended to rectangular matrices in which case only the main diagonals are nonzero

A vector or matrix is said to be sparse if it contains many zero elements (or, equivalently, few nonzero elements)

- Special data structures can be used to store such matrices.
- A simple strategy is to store every nonzero, a_{ij} , together with its row and column indices, i and j.

A shift matrix is a matrix with ones only on the super-diagonal or sub-diagonal, and zeroes elsewhere.

• A shift matrix with ones on the super-diagonal (sub-diagonal) is an upper (lower) shift matrix.

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is said to be a band/banded (diagonal) matrix (a special type of sparse matrix) if all matrix elements are zero outside a diagonally bordered band

$$a_{ij} = 0$$
 if $i > j + p$ or $j > i + q$

where $p \geq 0$ and $q \geq 0$ are called the lower bandwidth and upper bandwidth, respectively.

special cases:

- identity matrix, shift matrix
- $p = q = 0 \ (1, 2, ...)$, diagonal (tridiagonal, pentadiagonal, ...) matrix
- $p = 0, q = 1 \ (p = 1, q = 0)$, upper (lower) bidiagonal matrix
- $p = 0, q = n 1 \ (p = n 1, q = 0)$, upper (lower) triangular matrix
- $p = 1, q = n 1 \ (p = n 1, q = 1)$, upper (lower) Hessenberg matrix
- block diagonal matrices (see the definition for block matrices later)

• ...

Toeplitz matrices: matrices with constant diagonals (may not be square)

$$\mathbf{A} = \begin{bmatrix} a_0 & a_{-1} & a_{-2} & \cdots & \cdots & a_{-(n-1)} \\ a_1 & a_0 & a_{-1} & \cdots & & \vdots \\ a_2 & a_1 & \cdots & \cdots & a_{-1} & a_{-2} \\ \vdots & \cdots & \cdots & a_1 & a_0 & a_{-1} \\ a_{n-1} & \cdots & \cdots & a_2 & a_1 & a_0 \end{bmatrix}$$

a special case: circulant matrices (or the transpose of this form)

$$\mathbf{A} = \begin{bmatrix} a_0 & a_{n-1} & a_{n-2} & \cdots & \cdots & a_1 \\ a_1 & a_0 & a_{n-1} & \cdots & & \vdots \\ a_2 & a_1 & \cdots & \cdots & a_{n-1} & a_{n-2} \\ \vdots & \ddots & \ddots & \ddots & a_{n-1} & a_{n-2} \\ \vdots & & \ddots & a_1 & a_0 & a_{n-1} \\ a_{n-1} & \cdots & \cdots & a_2 & a_1 & a_0 \end{bmatrix}$$

• reference: R. M. Gray, *Toeplitz and Circulant Matrices: A review*, 2006. Available online at https://ee.stanford.edu/~gray/toeplitz.pdf.

 Hankel matrices: matrices with constant anti-diagonals (or skew-diagonals), i.e., upside down Toeplitz matrices

$$\mathbf{A} = \begin{bmatrix} a_0 & \cdots & \cdots & a_{n-3} & a_{n-2} & a_{n-1} \\ a_1 & & a_{n-2} & a_{n-1} & a_n \\ \vdots & & a_n & a_{n+1} \\ a_{n-3} & a_{n-2} & & & \vdots \\ a_{n-2} & a_{n-1} & a_n & & & a_{2n-3} \\ a_{n-1} & a_n & a_{n+1} & \cdots & \cdots & a_{2n-2} \end{bmatrix}$$

• Vandemonde matrices: matrices with the terms of a geometric progression in each row, i.e., $a_{ij}=\alpha_i^{j-1}$

$$\mathbf{A} = \begin{bmatrix} 1 & \alpha_1 & \alpha_1^2 & \cdots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \alpha_2^2 & \cdots & \alpha_2^{n-1} \\ 1 & \alpha_3 & \alpha_3^2 & \cdots & \alpha_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha_m & \alpha_m^2 & \cdots & \alpha_m^{n-1} \end{bmatrix}$$

(sometimes Vandermonde matrix is referred to as the transpose of the above one)

• involutory matrices: matrix A is involutory if and only if

$$\mathbf{A}^2 = \mathbf{I}$$

• idempotent matrices: matrix A is idempotent if and only if

$$\mathbf{A}^2 = \mathbf{A}$$

hence, $\mathbf{A}^k = \mathbf{A}$ for $k \ge 1$

• nilpotent matrices: matrix A is nilpotent if

$$\mathbf{A}^k = \mathbf{0}$$

for some k > 0.

ullet unipotent matrices: matrix ${f A}$ is unipotent if ${f A}-{f I}$ is nilpotent

$$(\mathbf{A} - \mathbf{I})^k = \mathbf{0}$$

for some k > 0.

• A block/partitioned matrix is a matrix whose entries are themselves matrices. A $q \times r$ block matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is given by

$$\mathbf{A} = egin{bmatrix} \mathbf{A}_{11} & \cdots & \mathbf{A}_{1r} \ dots & dots \ \mathbf{A}_{q1} & \cdots & \mathbf{A}_{qr} \end{bmatrix}$$

where $\mathbf{A}_{ij} \in \mathbb{R}^{m_i \times n_j}$ with $\sum_{i=1}^q m_i = m$ and $\sum_{j=1}^r n_j = n$ designates the (i,j) submatrix and is related to \mathbf{A} by $\mathbf{A}_{ij} = \mathbf{A}_{\tau+1:\tau+m_i,\mu+1:\mu+n_j}$ where $\tau = m_1 + \ldots + m_{i-1}$ and $\mu = n_1 + \ldots + n_{j-1}$

- special cases: partitioning into column vectors or row vectors
- generally, a submatrix can take any groups of columns (indexed by α) and any groups of rows (indexed by β) from A
 - * principal submatrix (a square matrix): $\alpha = \beta$ (length of α determines the order of the principal submatrix)
 - * leading (resp. trailing) principal submatrix: $\alpha = \beta = [1, ..., k]$ (resp. $\alpha = \beta = [\ell, ..., \min\{m, n\}]$)
- terms used to describe matrices with scalar entries have block analogs
 - * block diagonal, block lower/upper triangular, block tridiagonal, block band...

Subspace, Linear Independence, Basis, Dimension

Subspace

A subset S of \mathbb{R}^m is said to be a linear subspace or subspace if it is nonempty and

$$\mathbf{x}, \mathbf{y} \in \mathcal{S}, \\ \alpha, \beta \in \mathbb{R} \implies \alpha \mathbf{x} + \beta \mathbf{y} \in \mathcal{S}.$$

- if S is a subspace and $\mathbf{a}_1, \ldots, \mathbf{a}_n \in S$, any linear combination of $\mathbf{a}_1, \ldots, \mathbf{a}_n$, i.e., $\sum_{i=1}^n \alpha_i \mathbf{a}_i$ for some $\alpha \in \mathbb{R}^n$, lies in S.
- ullet trivial subspaces: $\{{f 0}\}$ (zero/null subspace) and ${\mathbb R}^m$
- some quick facts: let S_1, S_2 be subspaces of \mathbb{R}^m .
 - the intersection $S_1 \cap S_2$ is a subspace
 - the union $\mathcal{S}_1 \cup \mathcal{S}_2$ is only a subspace if $\mathcal{S}_1 \subseteq \mathcal{S}_2$ or $\mathcal{S}_2 \subseteq \mathcal{S}_1$
 - the sum $\mathcal{S}_1+\mathcal{S}_2$ is a subspace (fact: smallest subspace containing $\mathcal{S}_1\cup\mathcal{S}_2$) ¹
- if S_1, S_2 are subspaces of \mathbb{R}^m with $S_1 \cap S_2 = \{0\}$ and $S_1 + S_2 = S_3$, we define the direct sum $S_3 = S_1 \oplus S_2$
 - subspace S_1 (S_2) is the complement (i.e., a complementary subspace) to subspace S_2 (S_1) of space S_3 ; S_1 and S_2 are mutually complementary
 - complementary subspaces are not unique

¹note the notation $\mathcal{X} + \mathcal{Y} = \{\mathbf{x} + \mathbf{y} \mid \mathbf{x} \in \mathcal{X}, \mathbf{y} \in \mathcal{Y}\}.$

Span

The span of a collection of vectors $\mathbf{a}_1,\ldots,\mathbf{a}_n\in\mathbb{R}^m$ is defined as

$$\operatorname{span}\{\mathbf{a}_1,\ldots,\mathbf{a}_n\} = \left\{\mathbf{y} \in \mathbb{R}^m \mid \mathbf{y} = \sum_{i=1}^n \alpha_i \mathbf{a}_i, \ \boldsymbol{\alpha} \in \mathbb{R}^n \right\}.$$

- ullet the set of all possible linear combinations of ${f a}_1,\ldots,{f a}_n$
- it is a subspace
- Question: any span is a subspace. But can any subspace be written as a span?

Theorem 1. Let S be a subspace of \mathbb{R}^m . There exists a positive integer n and a collection of vectors $\mathbf{a}_1, \dots, \mathbf{a}_n \in S$ such that $S = \operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$.

Implication: we can always represent a subspace by a span

For example, we can represent \mathbb{R}^m by

$$\mathbb{R}^m = \operatorname{span}\{\mathbf{e}_1, \dots, \mathbf{e}_m\}.$$

Range Space and Null Space

The range space (or column space, image space) of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as

$$\mathcal{R}(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{R}^m \mid \mathbf{y} = \mathbf{A}\mathbf{x}, \ \mathbf{x} \in \mathbb{R}^n \}.$$

ullet essentially the same as span, i.e., $\mathcal{R}(\mathbf{A}) = \mathrm{span}\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}$

The null space (nullspace) (or kernel space) of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{0} \}.$$

- a null space is a subspace (verify as a mini exercise)
- by Theorem 1, we can represent a null space by $\mathcal{N}(\mathbf{A}) = \mathcal{R}(\mathbf{B})$ for some $\mathbf{B} \in \mathbb{R}^{n \times r}$ with positive integer r.
- Define a linear mapping $L : \mathbb{R}^n \to \mathbb{R}^m$, $L(\mathbf{x}) = \mathbf{A}\mathbf{x}$. $\mathcal{R}(\mathbf{A})$ is the image/range of L. $\mathcal{N}(\mathbf{A})$ is the kernal/null space of L.
- Also, the row space of A is $\mathcal{R}(A^T)$ and the left null space of A is $\mathcal{N}(A^T)$.

A collection of vectors $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^m$ is said to be linearly independent if

$$\sum_{i=1}^n \alpha_i \mathbf{a}_i \neq \mathbf{0}, \quad \text{for all } \boldsymbol{\alpha} \in \mathbb{R}^n \text{ with } \boldsymbol{\alpha} \neq \mathbf{0};$$

and linearly dependent otherwise.

• an equivalent way of defining linear dependence: a vector set $\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}\subset\mathbb{R}^m$ is linearly dependent if there exists $\boldsymbol{\alpha}\in\mathbb{R}^m$, $\boldsymbol{\alpha}\neq\mathbf{0}$, such that

$$\sum_{i=1}^{n} \alpha_i \mathbf{a}_i = \mathbf{0}.$$

physical meaning: a set of "non-redundant" vectors

Some known facts (some easy to show, some not):

- if $\{a_1, \dots a_n\} \subset \mathbb{R}^m$ is linearly independent, then any a_j cannot be a linear combination of the other a_i 's; i.e., $a_j \neq \sum_{i \neq j} \alpha_i a_i$ for any α_i 's.
- if $\{a_1, \dots a_n\} \subset \mathbb{R}^m$ is linearly dependent, then *there exists* an a_j such that a_j is a linear combination of the other a_i 's; i.e., $a_j = \sum_{i \neq j} \alpha_i a_i$ for some α_i 's.
- $\{a_1, \dots a_n\} \subset \mathbb{R}^m$ is linearly dependent if and only if one of them is zero or a linear combination of the others
- if $\{a_1, \dots a_n\} \subset \mathbb{R}^m$ is linearly independent, then $n \leq m$ must hold. (an exercise)
- let $\{a_1, \ldots, a_n\} \subset \mathbb{R}^m$ be a linearly independent vector set. Suppose $\mathbf{y} \in \operatorname{span}\{a_1, \ldots, a_n\}$. Then the coefficient α for the representation

$$\mathbf{y} = \sum_{i=1}^{n} \alpha_i \mathbf{a}_i$$

is unique; i.e., there does *not* exist a $\beta \in \mathbb{R}^n$, $\beta \neq \alpha$, such that $\mathbf{y} = \sum_{i=1}^n \beta_i \mathbf{a}_i$.

Let $\{\mathbf{a}_1, \dots \mathbf{a}_n\} \subset \mathbb{R}^m$, and denote $\{i_1, \dots, i_k\} \subseteq \{1, \dots, n\}$ as an index subset with $k \leq n$ and $i_j \neq i_l$ for all $j \neq l$.

A vector subset $\{a_{i_1},\ldots,a_{i_k}\}$ is called a maximal linearly independent subset of $\{a_1,\ldots a_n\}$ if

- 1. $\{\mathbf{a}_{i_1},\ldots,\mathbf{a}_{i_k}\}$ is linearly independent;
- 2. $\{\mathbf{a}_{i_1}, \dots, \mathbf{a}_{i_k}\}$ is not contained by any other linearly independent subset of $\{\mathbf{a}_1, \dots \mathbf{a}_n\}$.
- physical meaning: find an irreducibly non-redundant set of vectors for representing the whole vector set $\{a_1, \dots a_n\}$

• example:

$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{a}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{a}_4 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}.$$

The linearly independent subets of $\{a_1, a_2, a_3, a_4\}$ are

$$\{\mathbf{a}_1\}, \{\mathbf{a}_2\}, \{\mathbf{a}_3\}, \{\mathbf{a}_4\},$$
 $\{\mathbf{a}_1, \mathbf{a}_2\}, \{\mathbf{a}_1, \mathbf{a}_3\}, \{\mathbf{a}_1, \mathbf{a}_4\}, \{\mathbf{a}_2, \mathbf{a}_3\}, \{\mathbf{a}_2, \mathbf{a}_4\}, \{\mathbf{a}_3, \mathbf{a}_4\},$
 $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}, \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_4\}, \{\mathbf{a}_1, \mathbf{a}_3, \mathbf{a}_4\}.$

But the maximal linearly independent subsets are

$$\{a_1, a_2, a_3\}, \{a_1, a_2, a_4\}, \{a_1, a_3, a_4\}.$$

Facts:

- $\{\mathbf{a}_{i_1},\ldots,\mathbf{a}_{i_k}\}$ is a maximal linearly independent subset of $\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}$ if and only if $\{\mathbf{a}_{i_1},\ldots,\mathbf{a}_{i_k},\mathbf{a}_j\}$ is linearly dependent for any $j\in\{1,\ldots,n\}\setminus\{i_1,\ldots,i_k\}$
- ullet if $\{{f a}_{i_1},\ldots,{f a}_{i_k}\}$ is a maximal linearly independent subset of $\{{f a}_1,\ldots{f a}_n\}$, then

$$\operatorname{span}\{\mathbf{a}_{i_1},\ldots,\mathbf{a}_{i_k}\}=\operatorname{span}\{\mathbf{a}_1,\ldots\mathbf{a}_n\}.$$

Basis

Let $\mathcal{S} \subseteq \mathbb{R}^m$ be a subspace with $\mathcal{S} \neq \{\mathbf{0}\}$.

A vector set $\{\mathbf{b}_1,\ldots,\mathbf{b}_k\}\subset\mathbb{R}^m$ is called a basis for \mathcal{S} if $\{\mathbf{b}_1,\ldots,\mathbf{b}_k\}$ is linearly independent and

$$\mathcal{S} = \operatorname{span}\{\mathbf{b}_1, \dots, \mathbf{b}_k\}.$$

• examples: let $\{\mathbf{a}_{i_1}, \dots, \mathbf{a}_{i_k}\}$ be a maximal linearly independent vector subset of $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$. Then, $\{\mathbf{a}_{i_1}, \dots, \mathbf{a}_{i_k}\}$ is a basis for $\mathrm{span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$.

Some facts:

- ullet we may have more than one basis for ${\mathcal S}$
- all bases for S have the same number of elements; i.e., if $\{\mathbf{b}_1,\ldots,\mathbf{b}_k\}$ and $\{\mathbf{c}_1,\ldots,\mathbf{c}_l\}$ are bases for S, then k=l

Dimension

The dimension of a subspace S, with $S \neq \{0\}$, is defined as the number of elements of a basis for S.

- The dimension of $\{0\}$ is defined as 0.
- ullet dim ${\mathcal S}$ will be used as the notation for denoting the dimension of ${\mathcal S}$
- physical meaning: effective degrees of freedom of the subspace
- examples:
 - $-\dim \mathbb{R}^m = m$
 - if k is the number of maximal linearly independent vectors of $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$, then $\dim \operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\} = k$.

Dimension

Properties:

- let $S_1, S_2 \subseteq \mathbb{R}^m$ be subspaces. If $S_1 \subseteq S_2$, then $\dim S_1 \leq \dim S_2$.
- let $S_1, S_2 \subseteq \mathbb{R}^m$ be subspaces. If $S_1 \subseteq S_2$ and $\dim S_1 = \dim S_2$, then $S_1 = S_2$.
- let $S \subseteq \mathbb{R}^m$ be a subspace. Then $\dim S = r \iff S = \mathbb{R}^r$.
- let $S_1, S_2 \subseteq \mathbb{R}^m$ be subspaces. We have $\dim(S_1 + S_2) \leq \dim S_1 + \dim S_2$.
 - as a more advanced result, we also have

$$\dim(\mathcal{S}_1 + \mathcal{S}_2) = \dim \mathcal{S}_1 + \dim \mathcal{S}_2 - \dim(\mathcal{S}_1 \cap \mathcal{S}_2).$$

(proof as an excerise)

Rank, Invertible Matrices, Determinant

The rank of a set of vectors $\{\mathbf{a}_1, \dots \mathbf{a}_n\} \subset \mathbb{R}^m$, denoted by $\operatorname{rank}\{\mathbf{a}_1, \dots \mathbf{a}_n\}$, is defined as the number of elements of a maximal linearly independent subset of $\{\mathbf{a}_1, \dots \mathbf{a}_n\}$.

ullet if $\{{f a}_{i_1},\ldots,{f a}_{i_k}\}$ is a maximal linearly independent subset of $\{{f a}_1,\ldots{f a}_n\}$, then

$$rank\{\mathbf{a}_1,\ldots\mathbf{a}_n\}=rank\{\mathbf{a}_{i_1},\ldots,\mathbf{a}_{i_k}\}=k.$$

ullet equal to the dimension of the subspace $\mathrm{span}\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}$

$$rank\{\mathbf{a}_1,\ldots\mathbf{a}_n\}=\dim span\{\mathbf{a}_1,\ldots,\mathbf{a}_n\}$$

• if $\mathbf{a}_i = \mathbf{0}$ for all i, $\mathrm{rank}\{\mathbf{a}_1, \dots \mathbf{a}_n\}$ is defined as 0

The rank of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, denoted by $\operatorname{rank}(\mathbf{A})$, is defined as the number of elements of a maximal linearly independent subset of $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$.

- \bullet or, rank(A) is the maximum number of linearly independent columns of A
- $\dim \mathcal{R}(\mathbf{A}) = \operatorname{rank}(\mathbf{A})$ by definition, i.e., rank is the dimension of the image of \mathbf{A}
- the rank of **0** is defined as 0

Facts:

- $rank(\mathbf{A}) = rank(\mathbf{A}^T)$, i.e., the rank of \mathbf{A} is also the maximum number of linearly independent rows of \mathbf{A} or the dimension of the column space of \mathbf{A} is equal to the dimension of the row space of \mathbf{A} (proof as an exercise)
- $\operatorname{rank}(\mathbf{A}) \leq \min\{m, n\}$
- $\operatorname{rank}(k\mathbf{A}) = \operatorname{rank}(\mathbf{A})$ for $k \neq 0$
- $rank(\mathbf{A}) = 0$ if and only if $\mathbf{A} = \mathbf{0}$
- $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}\mathbf{A}^T) = \operatorname{rank}(\mathbf{A}^T\mathbf{A})$
- $rank(\mathbf{A} + \mathbf{B}) \le rank(\mathbf{A}) + rank(\mathbf{B})$ (proof)
- $rank(\mathbf{AB}) \le rank(\mathbf{A})$ and $rank(\mathbf{AB}) \le rank(\mathbf{B})$
- $rank(\mathbf{AB}) \leq min\{rank(\mathbf{A}), rank(\mathbf{B})\}$. Also, the equality above holds if the columns of \mathbf{A} are linearly independent *or* the rows of \mathbf{B} are linearly independent. (proof as an exercise)
- $rank(\mathbf{AB}) \ge rank(\mathbf{A}) + rank(\mathbf{B}) n$ for $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$ (Sylvester's rank inequality)
 - if AB = 0, $rank(A) + rank(B) \le n$

- A is said to have
 - full column rank if the columns of A are linearly independent (more precisely, the collection of all columns of A is linearly independent)
 - * $\mathbf{A} \in \mathbb{R}^{m \times n}$ being of full-column rank $\iff m \ge n, \operatorname{rank}(\mathbf{A}) = n$
 - full row rank if the rows of A are linearly independent
 - * $\mathbf{A} \in \mathbb{R}^{m \times n}$ being of full-row rank $\iff m \leq n, \operatorname{rank}(\mathbf{A}) = m$
 - full rank if $rank(\mathbf{A}) = min\{m, n\}$; i.e., it has either full column rank or full row rank
 - rank deficient if $rank(\mathbf{A}) < min\{m, n\}$
- A is said to have low rank or reduced rank when its rank is significantly less than the maximum rank possible for the matrix

Invertible Matrices

A square matrix A is said to be invertible (a.k.a. nonsingular or nondegenerate) if the columns of A are linearly independent (i.e., A has full rank), and noninvertible (a.k.a. singular or degenerate) otherwise.

ullet alternatively, we say ${\bf A}$ is singular if ${\bf A}{\bf x}={\bf 0}$ for some ${\bf x} \neq {\bf 0}$.

The inverse of an invertible A, denoted by A^{-1} , is a square matrix that satisfies

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}.$$

Ziping Zhao

Invertible Matrices

Facts (for a nonsingular A):

- ullet ${f A}^{-1}$ always exists and is unique (or there are no two inverses of ${f A}$)
- A^{-1} is nonsingular
- $(k\mathbf{A})^{-1} = k^{-1}\mathbf{A}^{-1}$ for k > 0
- ullet $\mathbf{A}\mathbf{A}^{-1}=\mathbf{I}$ (can be proved by "if $\mathbf{A}\mathbf{B}=\mathbf{I}$ for square \mathbf{A} and \mathbf{B} , then $\mathbf{B}\mathbf{A}=\mathbf{I}$ ")
- $\bullet (\mathbf{A}^{-1})^{-1} = \mathbf{A}$
- $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$, where \mathbf{A}, \mathbf{B} are (square and) nonsingular
- $(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$
 - as a shorthand notation, we sometimes denote $(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T = \mathbf{A}^{-T}$
 - similar result holds for complex matrices, i.e., $(\mathbf{A}^H)^{-1} = (\mathbf{A}^{-1})^H = \mathbf{A}^{-H}$
 - and $(\mathbf{A}^*)^{-1} = (\mathbf{A}^{-1})^* = \mathbf{A}^{-*}$
- $(\mathbf{A}^k)^{-1} = (\mathbf{A}^{-1})^k = \mathbf{A}^{-k}$
- for nonsingular **P** and **Q**, $rank(\mathbf{PM}) = rank(\mathbf{M}) = rank(\mathbf{MQ}) = rank(\mathbf{PMQ})$

Invertible Matrices

Matrix inversion lemma/Sherman-Morrison-Woodbury formula (Woodbury formula, Woodbury matrix identity): for nonsingular matrices $\mathbf{A} \in \mathbb{R}^{n \times n}, \mathbf{C} \in \mathbb{R}^{k \times k}$ and $\mathbf{U}, \mathbf{V} \in \mathbb{R}^{n \times k}$

$$\left(\mathbf{A} + \mathbf{U}\mathbf{C}\mathbf{V}^T\right)^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{U}\left(\mathbf{C}^{-1} + \mathbf{V}^T\mathbf{A}^{-1}\mathbf{U}\right)^{-1}\mathbf{V}^T\mathbf{A}^{-1}$$

- intuition: the inverse of a rank-k correction to $\bf A$ can be computed by doing a rank-k correction to the inverse of $\bf A$
- ullet (Sherman-Morrison formula) when k=1 and ${f C}=1$ we have

$$\left(\mathbf{A} + \mathbf{u}\mathbf{v}^{T}\right)^{-1} = \mathbf{A}^{-1} - \frac{1}{1 + \mathbf{v}^{T}\mathbf{A}^{-1}\mathbf{u}}\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^{T}\mathbf{A}^{-1}$$

- when n = k = 1 and $\mathbf{C} = 1$, we have

$$\frac{1}{a+uv} = \frac{1}{a} - \frac{uv}{a(a+vu)}$$

Let $\mathbf{A} \in \mathbb{R}^{m \times m}$. The determinant of \mathbf{A} , denoted by $\det(\mathbf{A})$, is defined inductively.

- if m = 1, $\det(\mathbf{A}) = a_{11}$.
- if $m \ge 2$, we have the following:
 - let $\mathbf{A}_{ij} \in \mathbb{R}^{(m-1)\times (m-1)}$ be a submatrix of \mathbf{A} obtained by deleting the ith row and jth column of \mathbf{A} .
 - let

$$c_{ij} = (-1)^{i+j} \det(\mathbf{A}_{ij}).$$

– cofactor expansion:

$$\det(\mathbf{A}) = \sum_{j=1}^{m} a_{ij} c_{ij}, \text{ for any } i = 1, \dots, m$$

$$\det(\mathbf{A}) = \sum_{i=1}^{m} a_{ij} c_{ij}, \text{ for any } j = 1, \dots, m$$

- remark: c_{ij} 's are called the cofactors, $\det(\mathbf{A}_{ij})$'s are called the minors

- principal minor: the determinant of a principal submatrix
- leading principal minor: the determinant of a leading principal submatrix
- Given an $m \times n$ matrix and rank r, then there exists at least one non-zero $r \times r$ minor, while all larger minors are zero.
- leading principal submatrix can be used to determine the definiteness of a matrix (cf. PSD Topic)

Ziping Zhao 40

Some interpretations of determinant:

- a matrix **A** is nonsingular if and only if $det(\mathbf{A}) \neq 0$
- (important) Ax = 0 for some $x \neq 0$ if and only if det(A) = 0, i.e., A is singular
- $|\det(\mathbf{A})|$ is the volume of the parallelepiped $\mathcal{P} = \{\mathbf{y} = \sum_{i=1}^{m} \alpha_i \mathbf{a}_i \mid \alpha_i \in [0,1] \ \forall i\}$

Source: Wiki. r_1, r_2, r_3 are $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ on \mathbb{R}^3 .

Properties:

- $\det(\mathbf{AB}) = \det(\mathbf{A}) \det(\mathbf{B})$ for any $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times m}$
- $\det(\mathbf{A}^T) = \det(\mathbf{A})$, but $\det(\mathbf{A}^H) = (\det(\mathbf{A}^T))^* = (\det(\mathbf{A}))^*$,
- $\det(\alpha \mathbf{A}) = \alpha^m \det(\mathbf{A})$ for any $\alpha \in \mathbb{R}, \mathbf{A} \in \mathbb{R}^{m \times m}$
- $det(\mathbf{A}^{-1}) = 1/det(\mathbf{A})$ for any nonsingular \mathbf{A}
- $det(\mathbf{B}^{-1}\mathbf{A}\mathbf{B}) = det(\mathbf{A})$ for any nonsingular \mathbf{B}
- $\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})}\tilde{\mathbf{A}}$, where $\tilde{a}_{ij} = c_{ji}$ (the cofactor) for all i, j (\mathbf{A} is nonsingular)
 - remark: $\tilde{\mathbf{A}}$ is called the adjoint of \mathbf{A}

More properties:

• if $\mathbf{A} \in \mathbb{R}^{m \times m}$ is triangular, either upper or lower,

$$\det(\mathbf{A}) = \prod_{i=1}^{m} a_{ii}$$

- proof: apply cofactor expansion inductively
- ullet if $\mathbf{A} \in \mathbb{R}^{m imes m}$ takes a block (upper or lower) triangular form

$$\mathbf{A} = egin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{0} & \mathbf{A}_{22} \end{bmatrix} \quad \text{or} \quad \mathbf{A} = egin{bmatrix} \mathbf{A}_{11} & \mathbf{0} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix},$$

where A_{11} and A_{22} are square (and can be of different sizes), then

$$\det(\mathbf{A}) = \det(\mathbf{A}_{11}) \det(\mathbf{A}_{22}).$$

More properties:

• Matrix determinant lemma: Suppose A is invertible

$$\det(\mathbf{A} + \mathbf{u}\mathbf{v}^T) = \det(\mathbf{A}) (1 + \mathbf{v}^T \mathbf{A}^{-1} \mathbf{u}).$$

more generally, we have

$$\det(\mathbf{A} + \mathbf{U}\mathbf{V}^T) = \det(\mathbf{A})\det(\mathbf{I} + \mathbf{V}^T\mathbf{A}^{-1}\mathbf{U}).$$

and

$$\det(\mathbf{A} + \mathbf{U}\mathbf{C}\mathbf{V}^T) = \det(\mathbf{A})\det(\mathbf{C}^{-1} + \mathbf{V}^T\mathbf{A}^{-1}\mathbf{U})\det(\mathbf{C}).$$

- Special case: Weinstein-Aronszajn identity (Sylvester's determinant theorem) Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times m}$

$$\det(\mathbf{I}_m + \mathbf{AB}) = \det(\mathbf{I}_n + \mathbf{BA})$$

Vector Norms, Inner Product, Orthogonality

Vector Norms

A function $f: \mathbb{R}^n \to \mathbb{R}$ is called a vector norm if

- 1. $f(\mathbf{x}) \geq 0$ for any $\mathbf{x} \in \mathbb{R}^n$ (positive definiteness)
- 2. $f(\mathbf{x}) = 0$ if and only if $\mathbf{x} = \mathbf{0}$ (positive definiteness)
- 3. $f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y})$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ (triangle inequality)
- 4. $f(\alpha \mathbf{x}) = |\alpha| f(\mathbf{x})$ for any $\alpha \in \mathbb{R}$, $\mathbf{x} \in \mathbb{R}^n$ (homogeneity)
- used to measure the length of a vector
- ullet we usually use the notation $\|\cdot\|$ to denote a norm
- also used to measure the distance of two vectors, specifically, via $\|\mathbf{x} \mathbf{y}\|$ where \mathbf{x}, \mathbf{y} are the two vectors

Vector Norm

Examples of norm:

• 2-norm or Euclidean norm: $\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n |x_i|^2 = (\mathbf{x}^T\mathbf{x})^{1/2}}$

- 1-norm or Taxicab norm or Manhattan norm: $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$
- ∞ -norm or maximum norm or sup-norm: $\|\mathbf{x}\|_{\infty} = \max_{i=1,...,n} |x_i|$
- p-norm $(p \ge 1)$ or Hölder norm: $\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$

They are also called ℓ_1 -norm, ℓ_2 -norm, ℓ_∞ -norm, and ℓ_p -norm, respectively.

ℓ_p Function

Let

$$f_p(\mathbf{x}) = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}, \qquad p > 0.$$

- (a) Region of $f_p(\mathbf{x}) = 1$, $p \ge 1$. (b) Region of $f_p(\mathbf{x}) = 1$, 0 .
- f_p is not a norm for 0
- when $p \to 0$, f_p is like the cardinality function $\operatorname{card}(\mathbf{x}) = \|\mathbf{x}\|_0 = \sum \mathbb{1}\{x_i \neq 0\}$,

where $1\{x \neq 0\} = 1$ if $x \neq 0$ and $1\{x \neq 0\} = 0$ if x = 0.

• the 1-norm is the convex envelope of cardinality function

Inner Product and Angle

The inner product or dot product of two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ is defined as

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} y_i x_i = \mathbf{y}^T \mathbf{x} = \mathbf{y}^T \cdot \mathbf{x}.$$

- ${\bf x},{\bf y}$ are said to be orthogonal or perpendicular to each other if $\langle {\bf x},{\bf y}\rangle=0$, denoted by ${\bf x}\perp{\bf y}$
- \mathbf{x}, \mathbf{y} are said to be parallel if $\mathbf{x} = t\mathbf{y}$ for some t
 - for parallel \mathbf{x}, \mathbf{y} we have $\langle \mathbf{x}, \mathbf{y} \rangle = \pm \|\mathbf{x}\|_2 \|\mathbf{y}\|_2$

The angle between two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ is defined as

$$\theta = \angle(\mathbf{x}, \mathbf{y}) = \cos^{-1}\left(\frac{\mathbf{y}^T \mathbf{x}}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2}\right).$$

- \mathbf{x}, \mathbf{y} are orthogonal if $\theta = \pm \pi/2$
- \mathbf{x}, \mathbf{y} are parallel if $\theta = 0$ or $\theta = \pm \pi$

Important Inequalities for Inner Product

Cauchy-Schwartz inequality:

$$|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}||_2 ||\mathbf{y}||_2.$$

Also, the above equality holds if and only if $\mathbf{x} = \alpha \mathbf{y}$ for some $\alpha \in \mathbb{R}$.

• proof: suppose $y \neq 0$; the case of y = 0 is trivial. For any $\alpha \in \mathbb{R}$,

$$0 \le \|\mathbf{x} - \alpha \mathbf{y}\|_2^2 = (\mathbf{x} - \alpha \mathbf{y})^T (\mathbf{x} - \alpha \mathbf{y}) = \|\mathbf{x}\|_2^2 - 2\alpha \mathbf{x}^T \mathbf{y} + \alpha^2 \|\mathbf{y}\|_2^2.$$
 (*)

Also, the equality above holds if and only if $\mathbf{x} = t\mathbf{y}$ for some t.

Let

$$f(\alpha) = \|\mathbf{x}\|_2^2 - 2\alpha \mathbf{x}^T \mathbf{y} + \alpha^2 \|\mathbf{y}\|_2^2.$$

The function f is minimized when $\alpha = (\mathbf{x}^T \mathbf{y})/\|\mathbf{y}\|_2^2$. Plugging this α back to (*) leads to the desired result.

Important Inequalities for Inner Product

Hölder inequality:

$$|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}||_p ||\mathbf{y}||_q,$$

for any p, q such that 1/p + 1/q = 1, $p \ge 1$.

• examples:

- (p,q) = (2,2): Cauchy-Schwartz inequality
- $-(p,q)=(1,\infty)$: $|\mathbf{x}^T\mathbf{y}| \leq ||\mathbf{x}||_1||\mathbf{y}||_{\infty}$. This can be easily verified to be true:

$$|\mathbf{x}^T \mathbf{y}| \le \sum_{i=1}^n |x_i y_i| \le \max_j |y_j| \left(\sum_{i=1}^n |x_i|\right) = \|\mathbf{x}\|_1 \|\mathbf{y}\|_{\infty}.$$

Dual Norm

For a given norm $\|\cdot\|$ on \mathbb{R}^n , the dual norm, denoted $\|\cdot\|_*$, is the function from \mathbb{R}^n to \mathbb{R} with values

$$\|\mathbf{y}\|_* = \max_{\|\mathbf{x}\| \le 1} \langle \mathbf{x}, \mathbf{y} \rangle$$

- The above definition indeed corresponds to a norm: it is convex, as it is the pointwise maximum of convex (in fact, linear) functions $\mathbf{x} \to \langle \mathbf{x}, \mathbf{y} \rangle$; it is homogeneous of degree 1, that is, $\|\alpha \mathbf{x}\|_* = \alpha \|\mathbf{x}\|_*$ for every \mathbf{x} in \mathbb{R}^n and $\alpha \geq 0$.
- By definition of the dual norm,

$$\mathbf{y}^T \mathbf{x} \le \|\mathbf{x}\| \cdot \|\mathbf{y}\|_*.$$

- Examples:
 - The norm dual to the 2-norm is itself. (Cauchy-Schwartz inequality)
 - The norm dual to the ∞ -norm is the 1-norm. $(\mathbf{x}^T\mathbf{y} \leq \|\mathbf{x}\|_{\infty} \cdot \|\mathbf{y}\|_1)$
 - The norm dual to the p-norm is the q-norm where 1/p + 1/q = 1.
- The dual of the dual norm is the original norm.

Orthogonality

- a vector $\mathbf{x} \in \mathbb{R}^n$ is said to be orthogonal to a nonempty set $\mathcal{S} \subseteq \mathbb{R}^n$ if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ for any $\mathbf{y} \in \mathcal{S}$, denoted by $\mathbf{x} \perp \mathcal{S}$
- nonempty sets $S_1, S_2 \subseteq \mathbb{R}^n$ are said to be orthogonal to each other if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ for any $\mathbf{x} \in S_1$ and $\mathbf{y} \in S_2$, denoted by $S_1 \perp S_2$
- properties:
 - given a nonempty set $S \subseteq \mathbb{R}^n$, for any $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \perp S \Rightarrow \mathbf{x} \perp \operatorname{span} S$.
 - if $S_1, S_2 \subseteq \mathbb{R}^n$ are orthogonal sets, $S_1 \cap S_2 = \{0\}$ or $S_1 \cap S_2 = \emptyset$ (disjoint).
- ullet note: the above results can be generalized to subspaces $\mathcal{S}\subseteq\mathbb{R}^n$

Projections Onto Subspaces, Orthogonal Complements, Four Fundamental Subspaces

Projection

Let $S \subseteq \mathbb{R}^m$ be a nonempty closed set (not necessarily a subspace) and let $y \in \mathbb{R}^m$ be given. A projection of y onto S is any solution to

$$\min_{\mathbf{z} \in \mathcal{S}} \|\mathbf{z} - \mathbf{y}\|_2^2$$

- ullet a projection of ${f y}$ onto ${\cal S}$ is any point that is closest to ${f y}$ and lies in ${\cal S}$
- ullet interpratation: to find a point in ${\mathcal S}$ that is closest to ${\mathbf y}$ in the Euclidean sense.
- in general, there may be more than one such closest point.
- notation: if, for every $y \in \mathbb{R}^m$, there is always *only one* projection of y onto S, then we denote

$$\Pi_{\mathcal{S}}(\mathbf{y}) = \arg\min_{\mathbf{z} \in \mathcal{S}} \|\mathbf{z} - \mathbf{y}\|_2^2$$

and $\Pi_{\mathcal{S}}$ is called *the* projection (or projection operator) of \mathbf{y} onto \mathcal{S} .

• we are interested in projections onto subspaces, which play a crucial role in linear algebra and matrix analysis.

Orthogonal Projections onto Subspaces

Theorem 2 (Projection Theorem). Let S be a subspace of \mathbb{R}^m .

- 1. for every $\mathbf{y} \in \mathbb{R}^m$, there exists a unique vector $\mathbf{y}_s \in \mathcal{S}$ that minimizes $\|\mathbf{z} \mathbf{y}\|_2^2$ over $\mathbf{z} \in \mathcal{S}$. Thus, we can use the notation $\Pi_{\mathcal{S}}(\mathbf{y}) = \arg\min_{\mathbf{z} \in \mathcal{S}} \|\mathbf{z} \mathbf{y}\|_2^2$.
- 2. given $\mathbf{y} \in \mathbb{R}^m$, we have the equivalence

$$\mathbf{y}_s = \Pi_{\mathcal{S}}(\mathbf{y}) \iff \mathbf{y}_s \in \mathcal{S}, \quad \mathbf{z}^T(\mathbf{y} - \mathbf{y}_s) = 0 \text{ for all } \mathbf{z} \in \mathcal{S}.$$

- a special case of the projection theorem for convex sets
 - the latter plays a key role in convex analysis and optimization
- the subspace projection theorem above is very useful, as we will see

Ziping Zhao

Orthogonal Projections onto Subspaces

Ziping Zhao 57

Let $\mathcal{S} \subseteq \mathbb{R}^m$ be a nonempty set. The orthogonal complement of \mathcal{S} is defined as

$$\mathcal{S}^{\perp} = \{ \mathbf{z} \in \mathbb{R}^m \mid \mathbf{y}^T \mathbf{z} = 0 \text{ for all } \mathbf{y} \in \mathcal{S} \},$$

i.e., \mathcal{S}^{\perp} is the largest subset of \mathbb{R}^m orthogonal to \mathcal{S} .

- ullet \mathcal{S}^{\perp} is a subspace in \mathbb{R}^m (easy to verify) and is unique
- properties:
 - any $\mathbf{y} \in \mathcal{S}, \mathbf{z} \in \mathcal{S}^{\perp}$ are orthogonal
 - either $S \cap S^{\perp} = \{0\}$ or $S \cap S^{\perp} = \emptyset$, i.e., if we exclude 0, the sets S and S^{\perp} are non-intersecting.
 - $-(\mathcal{S}^{\perp})^{\perp} = \operatorname{span} \mathcal{S}$
- ullet (Fundamental Subspace Theorem) for any $\mathbf{A} \in \mathbb{R}^{m imes n}$,
 - $\mathcal{R}(\mathbf{A})^{\perp} = \mathcal{N}(\mathbf{A}^T)$
 - $\mathcal{N}(\mathbf{A})^{\perp} = \mathcal{R}(\mathbf{A}^T)$

What happens to the orthogonal complement if S is a subspace?

Theorem 3 (Orthogonal Decomposition Theorem). Let $S \subseteq \mathbb{R}^m$ be a subspace.

1. for every $\mathbf{y} \in \mathbb{R}^m$, there exists a unique $(\mathbf{y}_s, \mathbf{y}_c) \in \mathcal{S} \times \mathcal{S}^{\perp}$ such that

$$\mathbf{y} = \mathbf{y}_s + \mathbf{y}_c.$$

Also, such a $(\mathbf{y}_s, \mathbf{y}_c)$ is $\mathbf{y}_s = \Pi_{\mathcal{S}}(\mathbf{y}), \mathbf{y}_c = \mathbf{y} - \Pi_{\mathcal{S}}(\mathbf{y})$.

- 2. the projection of \mathbf{y} onto \mathcal{S}^{\perp} can be determined by $\Pi_{\mathcal{S}^{\perp}}(\mathbf{y}) = \mathbf{y} \Pi_{\mathcal{S}}(\mathbf{y})$.
- proof sketch: by the Theorem 2. We can rephrase the projection theorem as

$$\mathbf{y}_s \in \Pi_{\mathcal{S}}(\mathbf{y}) \iff \mathbf{y}_s \in \mathcal{S}, \ \mathbf{y} - \mathbf{y}_s \in \mathcal{S}^{\perp}.$$

This leads us to Statement 1.

Consequences of Theorem 3:

Property 1. Let $S \subseteq \mathbb{R}^m$ be a subspace.

- 1. $S + S^{\perp} = \mathbb{R}^m$ or $S \oplus S^{\perp} = \mathbb{R}^m$;
- 2. $\dim \mathcal{S} + \dim \mathcal{S}^{\perp} = m$;
- 3. $(S^{\perp})^{\perp} = S$.
- examples: let $\mathbf{A} \in \mathbb{R}^{m \times n}$.
 - (Orthogonal Decomposition Theorem)
 - * $\mathcal{R}(\mathbf{A}) \oplus \mathcal{R}(\mathbf{A})^{\perp} = \mathcal{R}(\mathbf{A}) \oplus \mathcal{N}(\mathbf{A}^T) = \mathbb{R}^m$
 - $* \mathcal{N}(\mathbf{A}) \oplus \mathcal{N}(\mathbf{A})^{\perp} = \mathcal{N}(\mathbf{A}) \oplus \mathcal{R}(\mathbf{A}^T) = \mathbb{R}^n$
 - $-\dim \mathcal{R}(\mathbf{A}) + \dim \mathcal{R}(\mathbf{A})^{\perp} = \dim \mathcal{R}(\mathbf{A}) + \dim \mathcal{N}(\mathbf{A}^T) = m$
 - * $\operatorname{rank}(\mathbf{A}) = m \dim \mathcal{N}(\mathbf{A})^{\perp}$
 - $-\dim \mathcal{N}(\mathbf{A}) + \dim \mathcal{N}(\mathbf{A})^{\perp} = \dim \mathcal{N}(\mathbf{A}) + \dim \mathcal{R}(\mathbf{A}^{T}) = n$
 - * $\operatorname{rank}(\mathbf{A}) = n \dim \mathcal{N}(\mathbf{A})$
 - * (Rank-Nullity Theorem) $\operatorname{rank}(\mathbf{A}) + \operatorname{nullity}(\mathbf{A}) = n$, $\operatorname{nullity}(\mathbf{A}) = \dim \mathcal{N}(\mathbf{A})$, i.e., nullity is the dimension of the kernal of \mathbf{A}

Property 2. Let $S_1, S_2 \subseteq \mathbb{R}^m$ be a subspace.

1.
$$S_1 \subset S_2 \Longrightarrow S_2^{\perp} \subset S_1^{\perp}$$
;

2.
$$(S_1 \cap S_2)^{\perp} = S_1^{\perp} + S_2^{\perp}$$
;

3.
$$(S_1 + S_2)^{\perp} = S_1^{\perp} \cap S_2^{\perp}$$
.

Four Fundamental Subspaces

The subspaces $\mathcal{N}(\mathbf{A}), \mathcal{R}(\mathbf{A}^T) \subseteq \mathbb{R}^n$ and $\mathcal{R}(\mathbf{A}), \mathcal{N}(\mathbf{A}^T) \subseteq \mathbb{R}^m$ are the four fundamental subspaces associated with matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$.

Ziping Zhao 62