BCC204 - Teoria dos Grafos

Marco Antonio M. Carvalho

Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto

Conteúdo

Algoritmo de Floyd-Warshall

Teoria dos grafos

Fonte

Este material é baseado no livro

► Goldbarg, M., & Goldbarg, E. (2012). *Grafos: conceitos, algoritmos e aplicações*. Elsevier.

Licença

Este material está licenciado sob a Creative Commons BY-NC-SA 4.0. Isto significa que o material pode ser compartilhado e adaptado, desde que seja atribuído o devido crédito, que o material não seja utilizado de forma comercial e que o material resultante seja distribuído de acordo com a mesma licença.

Histórico

O algoritmo proposto por *Robert Floyd* em 1962 é baseado no algoritmo de *Stephen Warshall* do mesmo ano para cálculo de fechos transitivos em grafos.

Referências

Warshall, Stephen (January 1962). "A theorem on Boolean matrices". Journal of the ACM 9 (1): 11–12. doi:10.1145/321105.321107.

Floyd, Robert W. (June 1962). "Algorithm 97: Shortest Path". Communications of the ACM 5 (6): 345. doi:10.1145/367766.368168.

Princípio

O algoritmo de *Floyd-Warshall* calcula os caminhos mais curtos entre todos os pares de vértices de um grafo direcionado e ponderado que eventualmente possua arcos com peso negativo, mas que não possua ciclos de custo negativo.

Trata-se novamente de um algoritmo de programação dinâmica bottom-up.

Também de maneira similar, o conceito de relaxação do comprimento dos caminhos mais curtos é empregado: incrementalmente, aprimora-se uma estimativa utilizada, até que o valor ótimo seja atingido.

Princípio

O algoritmo compara os caminhos entre os vértices i e j passando por k vértices intermediários, $k = 1, \ldots, n$.

Em outras palavras, todos os caminhos entre cada par de vértices são analisados.

Uma matriz armazena o valor dos caminhos mais curtos entre os vértices, porém, não há informação sobre composição do caminho.

k=0

Na iteração k=0, somente os caminhos representados por uma única adjacência no grafo são conhecidos.

k=

Na iteração k=1, todos os caminhos que passam pelo vértice 1 são descobertos.

Em particular, o caminho [2,1,3] substitui o caminho [2,3].

k=2

Na iteração k=2, todos os caminhos que passam pelo vértice 2 ou pelos vértices 2 e 1 são descobertos.

Em particular, o caminho [4, 2, 3] não é considerado, dado que [4, 2, 1, 3] é um caminho mais curto até então.

k=3

Na iteração k=3, todos os caminhos que passam pelo vértice 3 ou pelos vértices 3 e 2 ou 1 são descobertos.

k=4

Finalmente, em k=4, todos os caminhos mais curtos são determinados.

$$k = 4:$$

$$3 \xrightarrow{2} 4 \xrightarrow{-1} 2$$

$$3 \xrightarrow{2} 4 \xrightarrow{-1} 2 \xrightarrow{4} 1$$

$$1 \xrightarrow{-2} 3 \xrightarrow{2} 4 \xrightarrow{-1} 2$$

Terminologia

- L: Matriz que armazena os caminhos mais curtos entre os vértices;
 - Inicialmente, L é inicializada com os pesos dos arcos do grafo (d_{ij}) ;
 - ightharpoonup Caso não haja arco entre dois vértices i e j, $d_{ij} = \infty$.
- $ightharpoonup l_{ij}$: elemento da matriz L na linha i e coluna j.

Referência

A versão do algoritmo com três laços aninhados é devida a Peter Ingerman.

Ingerman, Peter Z. (November 1962). "Algorithm 141: Path Matrix". Communications of the ACM 5 (11): 556. doi:10.1145/368996.369016

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ 臺 ∽9<</p>

```
Entrada: Grafo G=(V,E) e matriz de pesos D=\{d_{ij}\} para os arcos \{i,j\} 1 L\leftarrow D;//Inicializa os elementos da matriz L 2 para k\leftarrow 1 até n faça 3 para i\leftarrow 1 até n faça 4 para j\leftarrow 1 até n faça 5 se l_{ij}>l_{ik}+l_{kj} então 6 ll_{ij}\leftarrow l_{ik}+l_{kj}; fim 6 fim 9 fim
```

10 fim

Ciclos de Custo Negativo

O algoritmo de Floyd-Warshall detecta ciclos de custo negativo.

Caso haja valores negativos na diagonal principal da matriz L (inclusive durante a execução do algoritmo), significa que o vértice relacionado está contido em um ciclo de custo negativo.

Em outras palavras, é possível sair do vértice, percorrer parte do grafo e retornar ao vértice inicial com custo negativo.

Algumas versões do algoritmo consideram que não haverá ciclos de custo negativo e definem inicialmente a distância de um vértice para si próprio como $-\infty$, implicando em não haver atualização possível.

Complexidade

Os três laços aninhados são executados n vezes, logo, a complexidade final é $O(n^3)$, ou mais precisamente, $\Theta(n^3)$.

Embora a complexidade seja alta, é importante notar que todas as arestas são verificadas, e um grafo pode ter mais do que n^2 arestas, tornando-o uma boa opção para grafos densos.

Para grafos esparsos, executar uma boa implementação do algoritmo de ${\it Dijkstra}$ para cada um dos n vértices é uma melhor opção, com complexidade $O(nm\ lg\ n).$

Caso haja arestas de peso negativo, o algoritmo de *Johnson* pode ser utilizado.

Composição dos Caminhos

Conforme visto, não são armazenadas informações sobre quais vértices compõem os caminhos mais curtos calculados, no entanto, o algoritmo pode ser modificado.

Não é necessário, entretanto, armazenar de fato todos os vértices dos caminhos mais curtos, implicando na necessidade de uma matriz tridimensional.

Árvores de Caminhos Mais Curtos podem ser utilizadas para este fim.

	1	2	3	4	5	6
1	0	1	∞	∞	∞	∞
2	∞	0	1	3	2	∞
3	3	∞	0	2	∞	∞
4	∞	∞	∞	0	∞	2
5	∞	∞	∞	-3	0	∞
6	∞	∞	∞	∞	3	0

Matriz L inicial.

$$j=1, l_{11} = \min\{l_{11}; (l_{11}+l_{11})\}=0$$

$$j=2, l_{12} = \min\{l_{12}; (l_{11}+l_{12})\}=1$$

$$j=3, l_{13} = \min\{l_{13}; (l_{11}+l_{13})\} = \infty$$

$$j=4$$
, $l_{14} = \min\{l_{14}; (l_{11}+l_{14})\} = \infty$

$$> j=5, l_{15} = \min\{l_{15}; (l_{11}+l_{15})\} = \infty$$

$$\downarrow$$
 j=6, $l_{16} = \min\{l_{16}; (l_{11}+l_{16})\}=\infty$

	1	2	3	4	5	6
1	0	1	∞	∞	∞	∞
2	∞	0	1	3	2	∞
3	3	∞	0	2	∞	∞
4	∞	∞	∞	0	∞	2
5	∞	∞	∞	-3	0	∞
6	∞	∞	∞	∞	3	0

Iteração k = 1, i=1.

A matriz não é alterada.

$$j=1, l_{21} = \min\{l_{21}; (l_{21}+l_{11})\} = \infty$$

$$j=2, l_{22} = \min\{l_{22}; (l_{21}+l_{12})\}=0$$

$$j=3, l_{23} = \min\{l_{23}; (l_{21}+l_{13})\}=1$$

$$j=4$$
, $l_{24} = \min\{l_{24}; (l_{21}+l_{14})\}=3$

$$j=5, l_{25} = \min\{l_{25}; (l_{21}+l_{15})\}=2$$

$$j=6, l_{26} = \min\{l_{26}; (l_{21}+l_{16})\} = \infty$$

	1	2	3	4	5	6
1	0	1	∞	∞	∞	∞
2	∞	0	1	3	2	∞
3	3	∞	0	2	∞	∞
4	∞	∞	∞	0	∞	2
5	∞	∞	∞	-3	0	∞
6	∞	∞	∞	∞	3	0

Iteração k = 1, i=2.

A matriz não é alterada novamente.

$$j=1, l_{31} = \min\{l_{31}; (l_{31}+l_{11})\}=3$$

$$j=2, l_{32} = \min\{l_{32}; (l_{31}+l_{12})\}=4$$

$$\downarrow$$
 j=3, $l_{33} = \min\{l_{33}; (l_{31}+l_{13})\}=0$

$$j=4$$
, $l_{34} = \min\{l_{34}; (l_{31}+l_{14})\}=2$

$$j=5, l_{35} = \min\{l_{35}; (l_{31}+l_{15})\} = \infty$$

$$j=6, l_{36} = \min\{l_{36}; (l_{31}+l_{16})\} = \infty$$

	1	2	3	4	5	6
1	0	1	∞	∞	∞	∞
2	∞	0	1	3	2	∞
3	3	∞	0	2	∞	∞
4	∞	∞	∞	0	∞	2
5	∞	∞	∞	-3	0	∞
6	∞	∞	∞	∞	3	0

Iteração k = 1, i=3. A matriz é alterada!

Fast Forward...

Não há outras alterações para k=1 e i=4, 5, 6.

Nos *slides* a seguir só serão exibidas as iterações do algoritmo em que ocorrem alterações na matriz L.

Atenção: este exemplo possui erros de digitação no livro do Goldbarg!

	1	2	3	4	5	6
1	0	1	∞	∞	∞	∞
2	∞	0	1	3	2	∞
3	3	4	0	2	∞	∞
4	∞	∞	∞	0	∞	2
5	∞	∞	∞	-3	0	∞
6	∞	∞	∞	∞	3	0

Matriz L para k = 1.

$$\downarrow$$
 j=1, $l_{11} = \min\{l_{11}; (l_{12}+l_{21})\}=0$

$$i=2, l_{12} = \min\{l_{12}; (l_{12}+l_{22})\}=1$$

$$\downarrow$$
 j=3, $l_{13} = \min\{l_{13}; (l_{12}+l_{23})\}=2$

$$j=4$$
, $l_{14} = \min\{l_{14}; (l_{12}+l_{24})\}=4$

$$j=5, l_{15} = \min\{l_{15}; (l_{12}+l_{25})\}=3$$

$$j=6, l_{16} = \min\{l_{16}; (l_{12}+l_{26})\} = \infty$$

	1	2	3	4	5	6
1	0	1	∞	∞	∞	∞
2	∞	0	1	3	2	∞
3	3	4	0	2	∞	∞
4	∞	∞	∞	0	∞	2
5	∞	∞	∞	-3	0	∞
6	∞	∞	∞	∞	3	0

Iteração k = 2, i=1.

$$j=1, l_{31} = \min\{l_{31}; (l_{32}+l_{21})\}=3$$

$$i=2, l_{32} = \min\{l_{32}; (l_{32}+l_{22})\}=4$$

$$j=3, l_{33} = \min\{l_{33}; (l_{32}+l_{23})\}=0$$

$$j=4$$
, $l_{34} = \min\{l_{34}; (l_{32}+l_{24})\}=2$

$$j=5, l_{35} = \min\{l_{35}; (l_{32}+l_{25})\}=6$$

$$j=6, l_{36} = \min\{l_{36}; (l_{32}+l_{26})\} = \infty$$

∞	3			2		
	3	4	2	1	0	1
∞	2	3	1	0	∞	2
∞	∞	2	0	4	3	3
2	∞	0	∞	∞	∞	4
∞	0	-3	∞	∞	∞	5
0	3	∞	∞	∞	∞	6
֡	∞ ∞ 0	2 0 -3	$0 \\ \infty \\ \infty$	4 ∞ ∞	3 ∞ ∞	3 4 5

Iteração k = 2, i=3.

	1	2	3	4	5	6
1	0	1	2	4	3	∞
2	∞	0	1	3	2	∞
3	3	4	0	2	6	∞
4	∞	∞	∞	0	∞	2
5	∞	∞	∞	-3	0	∞
6	∞	∞	∞	∞	3	0

Matriz L para k = 2.

$$j=1, l_{21} = \min\{l_{21}; (l_{23}+l_{31})\}=4$$

$$\downarrow$$
 $j=2, l_{22} = \min\{l_{22}; (l_{23}+l_{32})\}=0$

$$j=3, l_{23} = \min\{l_{23}; (l_{23}+l_{33})\}=1$$

$$j=4$$
, $l_{24} = \min\{l_{24}; (l_{23}+l_{34})\}=3$

$$j=5, l_{25} = \min\{l_{25}; (l_{23}+l_{35})\}=2$$

$$j=6, l_{26} = \min\{l_{26}; (l_{23}+l_{36})\} = \infty$$

	1	2	3	4	5	6
1	0	1	2	4	3	∞
2	∞	0	1	3	2	∞
3	3	4	0	2	6	∞
4	∞	∞	∞	0	∞	2
5	∞	∞	∞	-3	0	∞
6	∞	∞	∞	∞	3	0

Iteração k = 3, i=2.

	1	2	3	4	5	6
1	0	1	2	4	3	∞
2	4	0	1	3	2	∞
3	3	4	0	2	6	∞
4	∞	∞	∞	0	∞	2
5	∞	∞	∞	-3	0	∞
6	∞	∞	∞	∞	3	0

Matriz L para k = 3.

$$i=1, l_{11} = \min\{l_{11}; (l_{14}+l_{41})\}=0$$

$$i=2, l_{12} = \min\{l_{12}; (l_{14}+l_{42})\}=1$$

$$\downarrow$$
 j=3, $l_{13} = \min\{l_{13}; (l_{14}+l_{43})\}=2$

$$j=4$$
, $l_{14} = \min\{l_{14}; (l_{14}+l_{44})\}=4$

$$j=5, l_{15} = \min\{l_{15}; (l_{14}+l_{45})\}=3$$

$$j=6, l_{16} = \min\{l_{16}; (l_{14}+l_{46})\}=6$$

	1	2	3	4	5	6
1	0	1	2	4	3	∞
2	4	0	1	3	2	∞
3	3	4	0	2	6	∞
4	∞	∞	∞	0	∞	2
5	∞	∞	∞	-3	0	∞
6	∞	∞	∞	∞	3	0

Iteração k = 4, i=1.

$$i=1, l_{21} = \min\{l_{21}; (l_{24}+l_{41})\}=4$$

$$i=2, l_{22} = \min\{l_{22}; (l_{24}+l_{42})\}=0$$

$$j=3, l_{23} = \min\{l_{23}; (l_{24}+l_{43})\}=1$$

$$j=4$$
, $l_{24} = \min\{l_{24}; (l_{24}+l_{44})\}=3$

$$j=5, l_{25} = \min\{l_{25}; (l_{24}+l_{45})\}=2$$

$$j=6, l_{26} = \min\{l_{26}; (l_{24}+l_{46})\}=5$$

	1	2	3	4	5	6
1	0	1	2	4	3	6
2	4	0	1	3	2	∞
3	3	4	0	2	6	∞
4	∞	∞	∞	0	∞	2
5	∞	∞	∞	-3	0	∞
6	∞	∞	∞	∞	3	0

Iteração k = 4, i=2.

$$j=1, l_{31} = \min\{l_{31}; (l_{34}+l_{41})\}=3$$

$$i=2, l_{32} = \min\{l_{32}; (l_{34}+l_{42})\}=4$$

$$\downarrow$$
 j=3, $l_{33} = \min\{l_{33}; (l_{34}+l_{43})\}=0$

$$j=4$$
, $l_{34} = \min\{l_{34}; (l_{34}+l_{44})\}=2$

$$j=5, l_{35} = \min\{l_{35}; (l_{34}+l_{45})\}=6$$

$$j=6, l_{36} = \min\{l_{36}; (l_{34}+l_{46})\}=4$$

	1	2	3	4	5	6
1	0	1	2	4	3	6
2	4	0	1	3	2	5
3	3	4	0	2	6	∞
4	∞	∞	∞	0	∞	2
5	∞	∞	∞	-3	0	∞
6	∞	∞	∞	∞	3	0

Iteração k = 4, i=3.

$$j=1, l_{51} = \min\{l_{51}; (l_{54}+l_{41})\}=\infty$$

$$j=2, l_{52} = \min\{l_{52}; (l_{54}+l_{42})\} = \infty$$

$$j=3, l_{53} = \min\{l_{53}; (l_{54}+l_{43})\} = \infty$$

$$j=4$$
, $l_{54} = \min\{l_{54}; (l_{54}+l_{44})\}=-3$

$$j=5, l_{55} = \min\{l_{55}; (l_{54}+l_{45})\}=0$$

$$j=6, l_{56} = \min\{l_{56}; (l_{54}+l_{46})\}=-1$$

	1	2	3	4	5	6
1	0	1	2	4	3	6
2	4	0	1	3	2	5
3	3	4	0	2	6	4
4	∞	∞	∞	0	∞	2
5	∞	∞	∞	-3	0	∞
6	∞	∞	∞	∞	3	0

Iteração k = 4, i=5.

	1	2	3	4	5	6
1	0	1	2	4	3	6
2	4	0	1	3	2	5
3	3	4	0	2	6	4
4	∞	∞	∞	0	∞	2
5	∞	∞	∞	-3	0	-1
6	∞	∞	∞	∞	3	0

 $\mathsf{Matriz}\ L\ \mathsf{para}\ k = \mathsf{4}.$

$$i=1, l_{11} = \min\{l_{11}; (l_{15}+l_{51})\}=0$$

$$i=2, l_{12} = \min\{l_{12}; (l_{15}+l_{52})\}=1$$

$$j=3, l_{13} = \min\{l_{13}; (l_{15}+l_{53})\}=2$$

$$j=4$$
, $l_{14} = \min\{l_{14}; (l_{15}+l_{54})\}=0$

$$j=5, l_{15} = \min\{l_{15}; (l_{15}+l_{55})\}=3$$

$$j=6, l_{16} = \min\{l_{16}; (l_{15}+l_{56})\}=2$$

	1	2	3	4	5	6
1	0	1	2	4	3	6
2	4	0	1	3	2	5
3	3	4	0	2	6	4
4	∞	∞	∞	0	∞	2
5	∞	∞	∞	-3	0	-1
6	∞	∞	∞	∞	3	0

Iteração k = 5, i=1.

$$i=1, l_{21} = \min\{l_{21}; (l_{25}+l_{51})\}=4$$

$$i=2, l_{22} = \min\{l_{22}; (l_{25}+l_{52})\}=0$$

$$j=3, l_{23} = \min\{l_{23}; (l_{25}+l_{53})\}=1$$

$$j=4, l_{24} = \min\{l_{24}; (l_{25}+l_{54})\}=-1$$

$$j=5, l_{25} = \min\{l_{25}; (l_{25}+l_{55})\}=2$$

$$j=6, l_{26} = \min\{l_{26}; (l_{25}+l_{56})\}=1$$

	1	2	3	4	5	6
1	0	1	2	0	3	2
2	4	0	1	3	2	5
3	3	4	0	2	6	4
4	∞	∞	∞	0	∞	2
5	∞	∞	∞	-3	0	-1
6	∞	∞	∞	∞	3	0

Iteração k = 5, i=2.

$$j=1, l_{61} = \min\{l_{61}; (l_{65}+l_{51})\} = \infty$$

$$j=2, l_{62} = \min\{l_{62}; (l_{65}+l_{52})\} = \infty$$

$$j=3, l_{63} = \min\{l_{63}; (l_{65}+l_{53})\} = \infty$$

$$j=4$$
, $l_{64} = \min\{l_{64}; (l_{65}+l_{54})\}=0$

$$j=5, l_{65} = \min\{l_{65}; (l_{65}+l_{55})\}=3$$

$$j=6, l_{66} = \min\{l_{66}; (l_{65}+l_{56})\}=0$$

	1	2	3	4	5	6
1	0	1	2	0	3	2
2	4	0	1	3	2	5
3	3	4	0	2	6	4
4	∞	∞	∞	0	∞	2
5	∞	∞	∞	-3	0	-1
6	∞	∞	∞	∞	3	0

Iteração k = 5, i=6.

	1	2	3	4	5	6
1	0	1	2	0	3	2
2	4	0	1	-1	2	1
3	3	4	0	2	6	4
4	∞	∞	∞	0	∞	2
5	∞	∞	∞	-3	0	-1
6	∞	∞	∞	0	3	0

Matriz L para k = 5.

$$j=1, l_{41} = \min\{l_{41}; (l_{46}+l_{61})\} = \infty$$

$$j=2, l_{42} = \min\{l_{42}; (l_{46}+l_{62})\} = \infty$$

$$j=3, l_{43} = \min\{l_{43}; (l_{46}+l_{63})\} = \infty$$

$$j=4$$
, $l_{44} = \min\{l_{44}; (l_{46}+l_{64})\}=0$

$$j=5, l_{45} = \min\{l_{45}; (l_{46}+l_{65})\}=5$$

$$j=6, l_{46} = \min\{l_{46}; (l_{46}+l_{66})\}=2$$

	1	2	3	4	5	6
1	0	1	2	0	3	2
2	4	0	1	-1	2	1
3	3	4	0	2	6	4
4	∞	∞	∞	0	∞	2
5	∞	∞	∞	-3	0	-1
6	∞	∞	∞	0	3	0

Iteração k = 6, i=4.

	1	2	3	4	5	6
1	0	1	2	0	3	2
2	4	0	1	-1	2	1
3	3	4	0	2	6	4
4	∞	∞	∞	0	5	2
5	∞	∞	∞	-3	0	-1
6	∞	∞	∞	0	3	0
	3 4 5	1 0 2 4 3 3 4 ∞ 5 ∞	1 0 1 2 4 0 3 3 4 4 ∞ ∞ 5 ∞ ∞	1 0 1 2 2 4 0 1 3 3 4 0 4 \infty \infty \infty 5 \infty \infty \infty	1 0 1 2 0 2 4 0 1 -1 3 3 4 0 2 4 \infty \infty \infty 0 5 \infty \infty \infty -3	1 0 1 2 0 3 2 4 0 1 -1 2 3 3 4 0 2 6 4 \infty \infty \infty 0 5 5 \infty \infty \infty -3 0

Matriz L para k = 6.

Dúvidas?

