Lecture 03

논리게이트

논리 레벨

Source: Texas Instruments, Logic Guide, https://www.ti.com/lit/pdf/sdyu001 (accessed on 2024.08.05).

논리게이트

■ 기본 논리 게이트

■ 기본 논리 게이트의 조합으로 만든 게이트

► 논리 게이트 → 조합논리회로 및 순서논리회로 → 디지털
시스템 → 컴퓨터 시스템

NOT게이트

- 2진수의 논리 반전
 - 입력 한 개
 - 출력 한 개
 - $F = \overline{A}$
- 인버터(inverter)라고도 함

IC 7404 Inverters

진리표(truth table)

입력	출력	
Α	F	
0	1	
1	0	

Source: STMicroelectronics, Datasheet, https://pdf1.alldatasheet.com/datasheet-pdf/view/23020/ (accessed on 2024.08.05).

NOT 게이트

■ 동작 파형

NOT 게이트

■ 예,

버퍼 게이트

- 입력된 신호 그래도 출력하는 게이트
 - 입력 한 개
 - 출력 한 개
 - F = A

IC 7407 Buffers

Α —		—— F
	진리표	

입력	출력	
Α	F	
0	0	
1	1	

Source: Fairchild Semiconductor, Datasheet, https://pdf1.alldatasheet.co.kr/datasheet-pdf/view/50893/ (accessed on 2024.08.05).

- 입력 모두 1인 경우에만 출력 1 됨
 - 입력 두 개 이상
 - 출력 한 개
 - 예, 2입력 AND 게이트의 경우 F = A•B = AB

IC 7408 Quad 2-Input AND Gates

2입력 AND			
A ————————————————————————————————————	F		

진리표

입력		출력
Α	В	F
0	0	0
0	1	0
1	0	0
1	1	1

Source: Hitachi Semiconductor, Datasheet, https://pdf1.alldatasheet.co.kr/datasheet-pdf/view/63807/ (accessed on 2024.08.05).

■ 동작 파형

- 3입력 AND 게이트
 - F = A•B•C = ABC

IC 7411 Triple 3-Input AND Gates

진리표

입력			출력
Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Source: Datasheet, https://pdf1.alldatasheet.com/datasheet-pdf/view/125557/ (accessed on 2024.08.05).

■ 동작 파형

- 입력 모두 0인 경우에만 출력 0 됨
 - 입력 두 개 이상
 - 출력 한 개
 - 예, 2입력 OR 게이트의 경우 F = A + B

입력		출력
Α	В	F
0	0	0
0	1	1
1	0	1
1	1	1

IC 7432 Quad 2-Input OR Gates

Source: STMicroelectronics, Datasheet, https://pdf1.alldatasheet.com/datasheet-pdf/view/21733/ (accessed on 2024.08.05).

■ 동작 파형

- 3입력 OR 게이트
 - F = A + B + C

IC 4075 Triple 3-Input OR Gates

진리표

입력		출력	
Α	В	C	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Source: Texas Instruments, Datasheet, https://pdf1.alldatasheet.com/datasheet-pdf/view/834679/ (accessed on 2024.08.05).

■ 동작 파형

- 입력 모두 1인 경우에만 출력 0 됨
 - 입력 두 개 이상
 - 출력 한 개
 - 예, 2입력 NAND 게이트의 경우 F = A·B = AB

입력		출력
Α	В	F
0	0	1
0	1	1
1	0	1
1	1	0

IC 7400 Quad 2-Input NAND Gates

Source: Fairchild Semiconductor, Datasheet, https://pdf1.alldatasheet.co.kr/datasheet-pdf/view/53738/ (accessed on 2024.08.05).

■ 동작 파형

- 3입력 NAND 게이트
 - $F = \overline{ABC}$

IC 7410 Triple 3-Input NAND Gates

진리표

입력			출력
Α	В	С	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Source: Texas Instruments, Datasheet, https://pdf1.alldatasheet.co.kr/datasheet-pdf/view/7823/ (accessed on 2024.08.05).

■ 동작 파형

- 입력 모두 0인 경우에만 출력 1 됨
 - 입력 두 개 이상
 - 출력 한 개
 - 예, 2입력 NOR 게이트의 경우 F = A + B

입력		술덕
Α	В	F
0	0	1
0	1	0
1	0	0
1	1	0

2입력 NOR

IC 7402 Quad 2-Input NOR Gates

Source: Fairchild Semiconductor, *Datasheet*, https://pdf1.alldatasheet.com/datasheet-pdf/view/50887/ (accessed on 2024.08.05).

■ 동작 파형

- 3입력 NOR 게이트
 - $F = \overline{A + B + C}$

IC 7427 Triple 3-Input NOR Gates

진리표

입력			출력
Α	В	C	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Source: Fairchild Semiconductor, Datasheet, https://pdf1.alldatasheet.co.kr/datasheet-pdf/view/50654/ (accessed on 2024.08.05).

■ 동작 파형

- **홀수 개의 1**이 입력된 경우에 출력 1 됨
 - 입력 두 개 이상
 - 출력 한 개
 - 예, 2입력 XOR 게이트의 경우 F = A ⊕ B

2입력 XOR

진리표

입력		출력
А	В	F
0	0	0
0	1	1
1	0	1
1	1	0

IC 7486 Quad 2-Input XOR Gates

Source: Fairchild Semiconductor, *Datasheet*, https://pdf1.alldatasheet.com/datasheet-pdf/view/50914/ (accessed on 2024.08.05).

- 3입력 XOR 게이트
 - $F = A \oplus B \oplus C$

IC 74386 Single 3-Input XOR Gate

진리표

입력			출력
Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Source: Texas Instruments, Datasheet, https://pdf1.alldatasheet.com/datasheet-pdf/view/96471/ (accessed on 2024.08.05).

■ 동작 파형

- 짝수 개의 1이 입력된 경우에 출력 1 됨
 - 입력 두 개 이상
 - 출력 한 개
 - 0, 2입력 XNOR 게이트의 경우 $F = \overline{A \oplus B}$

2입력 XNOR

진리표

IC 74266 Quad 2-Input XNOR Gates

입력		출력
Α	В	F
0	0	1
0	1	0
1	0	0
1	1	1

Source: Motorola, Datasheet, https://pdf1.alldatasheet.com/datasheet-pdf/view/5701/ (accessed on 2024.08.05).

■ 동작 파형

정논리 및 부논리

- 정논리
 - 전압 레벨 0 : Low 레벨
 - 전압 레벨 1 : High 레벨
- 부논리
 - 전압 레벨 0 : High 레벨
 - 전압 레벨 1 : Low 레벨
- →표현 방법이 다를 뿐 정논리와 부논리는 **논리적으로 같음**

게이트의 전기적 특성

- 전파 지연 시간
 - 출력이 0에서 1로 변할 때 t_{PLH}라고 함
 - 출력이 1에서 0으로 변할 때 t_{phi} 이라고 함
 - tp H와 tp 은 입력이 50%가 될 때부터 출력이 50%가 될 때까지 측정함

게이트의 전기적 특성

- 전력 소모
 - 공급 전압과 공급 전류의 곱 : P_{CC} = V_{CC}×I_{CC} (Watts)
- 잡음 여유도
 - High 레벨의 잡음 여유도 : V_{NH} = V_{OH}(min) V_{IH}(min)
 - Low 레벨의 잡음 여유도 : V_{NL} = V_{IL}(max) V_{OL}(max)

게이트의 전기적 특성

- 팬-인(fanin) 및 팬-아웃(fanout)
 - Fanin : 한 개의 게이트 입력에 접속할 수 있는 최대 입력단의 수
 - Fanout : 정상적인 동작에 영향을 주지 않고, 한 게이트에서 다른 게이트로 의 입력으로 연결 가능한 최대 출력단의 수
- 싱크(sink) 전류 및 소스(source) 전류
 - Sink: 출력 쪽으로 전류가 흘러 들어간다는 뜻임
 - Source : 출력에서 바깥으로 전류가 흐른다는 뜻임

