ToViSTopic Based Video Suggestion System

Tushaar Gangarapu (15IT117)
Himadri Pal (15IT119)
Pratyush Prakash (15IT130)
Suraj Hegde (15IT146)

Agenda

- Introduction
- Literature Survey
- Outcome of Literature Survey
- Motivation
- Problem Statement
- Objectives
- Proposed Work
- Conclusion
- **□** Timeline of Project
- Individual Contribution
- References

Introduction

YouTube

Hulu

Literature Review

Authors	Methodology	Advantages	Limitations	
J. Davidson et al.	Collaborative filtering	Recommendations are more accurate	Presentation bias, only co-viewed videos	
Shumeet Baluja et al.	Co-view graph	Same as above	Same as above	
Bo Yang et al.	Hybrid model	Considers both video info and co-views (multimodal)	Small scale	

Outcome of Literature Review

- Current state-of-the-art video suggestion systems are based on the *collaborative filtering analysis*—less applicable to fresh videos or tail videos with few views, since they have very sparse and noisy co-view data.
- Lack of *content based* video retrieval systems
- Topic based indexing retrieval has not be done on a large scale before

Issues and Challenges

- Hand-crafted playlists
 - Does not scale for large video collections
- Metadata/Topic based playlists
 - More of the same/non-diverse
 - Poor metadata
 - User feedback is not considered
- Co-view counts
 - Works well for popular videos with many views
 - Fresh/tail content will have very sparse and noisy co-view data

Motivation

- Abundance of content supply and demand: video retrieval, recommendation and discovery
- Least number of people are willing to spend more time on website
- Related video suggestion: ubiquitous on the web
- CNN, Netflix, Hulu, YouTube: related videos—improving these suggestions
- Improve "user" engagement and browsing experience (click-through analytics)

Problem Statement

- Model videos using weighted topic vectors
- Use an information retrieval approach to find related videos

 - Query– watch video
 - Documents

 ranked videos
 - Topic weights

 tf-idf / learn from user feedback

Research Objectives

- Video Representation
 - Topic Assignment
 - Topic Indexing
- Retrieval with weighted topics

Experimental Setup

- 1. Twenty people chosen, not random.
- 2. Selected a random movie trailer and navigated through 10 other movies.
- 3. Co view graph constructed.
- 4. Users defined tags for movies watched.

Proposed Model

Methodology: Video Representation

- Semantic representation of video content
- Annotate video 'V' using textual annotations, query logs, anchor text information

metadata
uploader keywords
common search queries
playlist names
Freebase entities
Wikipedia articles

Soundtrack (0.335)
Fifty_Shades_Freed (0.894)
Hailee_Steinfeld (0.995)
Video Song (0.112)

Methodology: IR Weights

 $Sc(V_W,V_R)=q(V_R)\sum_{ au\in V_W\cap V_R}\mathcal{I}_s(au)rac{c(au,V_W)}{log(1+df(au))}c(au,V_R)$ idf component: dampened Indicator function: "stopword" removal

$$\mathcal{I}_s = egin{cases} 1 & df(au) < df_{max} & ext{some large constant} \ 0 & else \end{cases}$$

* Note that there is **no** need for any document length normalization since all the videos have roughly the same number of topics associated with them

Work Done

- Evaluation Methodologies
 - Historical data, user studies, online evaluation
 - Choice of method
 – population of users
- Limitations to Large Scale Recommendations
 - Biased Sample
 - Subjective w.r.t. users
 - Gap between information need and information query

Future Work

- Query Optimization
- Dynamic Model
- Hybrid Model

Table 4.1: Summary of Likert Evaluation (20 users)

				V. A.	
Question Asked	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
Did the recommender system recommend relevant videos?	3	8	6	1	2
Did your session time increase as result of suggestions?	1	3	10	4	2
Did you have Overall Satisfaction?	4	6	7	2	1

Figure 4.1: Watch Time for 20 Users (Based on Experimental Setup)

Figure 4.2: Completion Rate for 20 Users (Based on Experimental Setup)

Dunston Checks In (1996)

Watch Next:

- It Takes Two (1995)
- Toy Story (1995)
- Dracula: Dead and Loving It (1995)
- Big Green, The (1995)
- Mr. Wrong (1996)
- Don't Be a Menace to South Central While Drinking Your Juice in the Hood (1996)
- Four Rooms (1995)
- Muppet Treasure Island (1996)
- Happy Gilmore (1996)
- Black Sheep (1996)

Ace Ventura: When Nature Calls (1995)

Watch Next:

- Dracula: Dead and Loving It (1995)
- Mr. Wrong (1996)
- Don't Be a Menace to South Central While Drinking Your Juice in the Hood (1996)
- Four Rooms (1995)
- Happy Gilmore (1996)
- Black Sheep (1996)
- Friday (1995)
- Bio-Dome (1996)
- Two if by Sea (1996)
- It Takes Two (1995)

Timeline of Project

Milestones	Feb 2018	Mid-Mar 2018	End-Mar 2018	April 2018
Literature Survey	•	•	~	~
Topic Indexing		~	•	~
Weighted Topic Retrieval (IRTopics)			•	~
User Simulated metric evaluation (Testing)				~

Individual Contribution

References

- [1] Bendersky, M., Harmsen, J.J., Josifovski, V., Lepikhin, D., & Pueyo, L.G. (2014). Up next: retrieval methods for large scale related video suggestion. KDD.
- [2] Broder, A. Z., Carmel, D., Herscovici, M., Soffer, A., & Zien, J. (2003, November). Efficient query evaluation using a two-level retrieval process. In Proceedings of the twelfth international conference on Information and knowledge management (pp. 426-434). ACM.
- [3] Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., ... & Sampath, D. (2010, September). The YouTube video recommendation system. In Proceedings of the fourth ACM conference on Recommender systems (pp. 293-296). ACM.