COMP30026 Models of Computation

Lecture 21: Reducibility

Mak Nazecic-Andrlon and William Umboh

Semester 2, 2024

Some material from Michael Sipser's slides

Where are we?

Last time:

- $A_{\rm TM}$ is undecidable
- The diagonalization method
- $\overline{A_{\mathrm{TM}}}$ is T-unrecognizable

Today: (Sipser §5.1, §5.3)

- The Reducibility Method for proving undecidability and T-unrecognizability.
- General reducibility
- Mapping reducibility

Why study reducibility?

Hard problems are everywhere:

- Checking ambiguity of CFGs
- Checking if a program will ever run into an infinite loop (Halting problem)
- Testing equivalence of programs
 - Example: A new Google intern refactored the entire codebase. Does it retain the same behavior/functionality?

Knowing when a problem you want to solve is undecidable can save you time!

The Reducibility Method

If we know that some problem (say $A_{\rm TM}$) is undecidable, we can use that to show other problems are undecidable.

Defn: $HALT_{TM} = \{\langle M, w \rangle | M \text{ halts on input } w\}$

Recall Theorem: $HALT_{TM}$ is undecidable

Proof by contradiction, showing that A_{TM} is reducible to $HALT_{TM}$:

Assume that $HALT_{\rm TM}$ is decidable and show that $A_{\rm TM}$ is decidable (false!).

Let TM R decide $HALT_{TM}$.

Construct TM S deciding A_{TM} .

S ="On input $\langle M, w \rangle$

- 1. Use *R* to test if *M* on *w* halts. If not, *reject*.
- 2. Simulate M on w until it halts (as guaranteed by R).
- 3. If *M* has accepted then *accept*. If *M* has rejected then *reject*.

TM S decides $A_{\rm TM}$, a contradiction. Therefore $HALT_{\rm TM}$ is undecidable.

```
def S(\langle M, w \rangle):

if not R(\langle M, w \rangle):

reject

else:

return M(w)
```

Reducibility – Concept

If we have two languages (or problems) A and B, then A is reducible to B means that we can use B to solve A.

Example 1: Measuring the area of a rectangle is reducible to measuring the lengths of its sides.

Example 2: We showed that A_{NFA} is reducible to A_{DFA} .

If A is reducible to B then solving B gives a solution to A.

- then B is easy $\rightarrow A$ is easy.
- then A is hard $\rightarrow B$ is hard.

this is the form we will focus on today

Mapping Reducibility

Defn: Function $f: \Sigma^* \to \Sigma^*$ is <u>computable</u> if there is a TM F where F on input W halts with f(W) on its tape, for all strings W.

Examples:

- String concatenation $f(\langle x, y \rangle) = xy$.
- If L is decidable, then the following function is computable: f(x) = 1 if x in L and 0 otherwise
- DFA/NFA manipulation procedures we've seen so far

Defn: \underline{A} is mapping-reducible to \underline{B} ($\underline{A} \leq_{\mathrm{m}} B$) if there is a computable function \underline{f} where $\underline{w} \in A$ iff $\underline{f}(\underline{w}) \in B$.

Mapping Reductions - properties

Theorem: If $A \leq_{\mathbf{m}} B$ and B is decidable then so is A

Proof: Say TM R decides B.

Construct TM *S* deciding *A*:

S = "On input w

- 1. Compute f(w)
- 2. Run R on f(w) to test if $f(w) \in B$
- 3. If *R* halts then output same result."

def S(w):

return R(f(w))

Examples for decidability:

- $A_{NFA} \leq_m A_{DFA}$
- $A_{\text{REX}} \leq_{\text{m}} A_{\text{DFA}}$
- $A_{PDA} \leq_{m} A_{CFG}$
- $EQ_{DFA} \leq_{m} E_{DFA}$

Mapping Reductions - properties

Theorem: If $A \leq_{\mathbf{m}} B$ and B is decidable then so is A

Proof: Say TM *R* decides *B*. Construct TM *S* deciding *A*:

- 1. Compute f(w)
- 2. Run R on f(w) to test if $f(w) \in B$
- 3. If *R* halts then output same result."

Corollary: If $A \leq_{\mathbf{m}} B$ and A is undecidable then so is B

Theorem: If $A \leq_{\mathbf{m}} B$ and B is T-recognizable then so is A

Proof: Same as above.

Corollary: If $A \leq_{\mathbf{m}} B$ and A is T-unrecognizable then so is B

Mapping Reducibility

Defn: Function $f: \Sigma^* \to \Sigma^*$ is <u>computable</u> if there is a TM F where F on input W halts with f(W) on its tape, for all strings W.

Defn: <u>A is mapping-reducible to B</u> $(A \le_m B)$ if there is a computable function f where $w \in A$ iff $f(w) \in B$.

Check-in 21.1

Suppose $A \leq_{\mathrm{m}} B$.

What can we conclude?

Check all that apply.

- (a) $B \leq_{\mathrm{m}} A$
- (b) $\overline{A} \leq_{\mathrm{m}} \overline{B}$
- (c) $\overline{B} \leq_m \overline{A}$
- (d) None of the above

Mapping vs General Reducibility

Mapping Reducibility of A to B: Translate A-questions to B-questions.

- A special type of reducibility
- Useful to prove T-unrecognizability

(General) Reducibility of A to B: Use B solver to solve A.

- May be conceptually simpler
- Useful to prove undecidability

A solver B solver

Noteworthy difference:

- A is reducible to \overline{A}
- BUT A may not be mapping reducible to \overline{A} . For example $\overline{A_{\rm TM}} \not \leq_{\rm m} A_{\rm TM}$

Check-in 21.2

We showed that if $A \leq_{\mathrm{m}} B$ and B is T-recognizable then so is A.

Is the same true if we use general reducibility instead of mapping reducibility?

- (a) Yes
- (b) No

Example of general reduction that is not mapping reduction: Halting problem

Reducibility – Templates

To prove B is undecidable:

- Show undecidable \overline{A} is reducible to B. (often A is A_{TM})
- Template: Assume TM *R* decides *B*.

 Construct TM *S* deciding *A*. Contradiction.
- This is called a general reduction.

To prove *B* is T-unrecognizable:

- Show T-unrecognizable A is mapping reducible to B. (often A is $\overline{A_{\rm TM}}$)
- Template: give <u>computable</u> reduction function f.
- This is called a mapping reduction
- This also works to prove A is undecidable and is useful for undecidability proofs

Note: mapping reduction is special case of general reduction

$E_{\rm TM}$ is undecidable

Let $E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Theorem: E_{TM} is undecidable

Proof by contradiction. Show that $A_{\rm TM}$ is reducible to $E_{\rm TM}$.

Assume that $E_{\rm TM}$ is decidable and show that $A_{\rm TM}$ is decidable (false!).

Let TM R decide $E_{\rm TM}$.

Construct TM S deciding A_{TM} .

$$S =$$
"On input $\langle M, w \rangle$

- 1. Transform M to new TM $M_w =$ "On input x
 - 1. If $x \neq w$, reject.
 - 2. else run *M* on *w*
 - 3. Accept if M accepts."
- 2. Use R to test whether $L(M_w) = \emptyset$
- 3. If YES [so *M* rejects *w*] then *reject*. If NO [so *M* accepts *w*] then *accept*.

 M_w works like M except that it always rejects strings x where $x \neq w$.

So
$$L(M_w) = \begin{cases} \{w\} & \text{if } M \text{ accepts } w \\ \emptyset & \text{if } M \text{ rejects } w \end{cases}$$

$E_{\rm TM}$ is T-unrecognizable

Recall $E_{TM} = \{\langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$

Theorem: $E_{\rm TM}$ is T-unrecognizable

Proof: Show $\overline{A_{\text{TM}}} \leq_{\text{m}} E_{\text{TM}}$

Reduction function: $f(\langle M, w \rangle) = \langle M_w \rangle$ Recall TM $M_w =$ "On input x

Explanation: $\langle M, w \rangle \in \overline{A_{\text{TM}}}$ iff $\langle M_w \rangle \in E_{\text{TM}}$

M rejects w iff $L(\langle M_w \rangle) = \emptyset$

1. If $x \neq w$, reject.

2. else run *M* on *w*

3. *Accept* if *M* accepts."

$\overline{EQ_{\mathrm{TM}}}$ and $\overline{EQ_{\mathrm{TM}}}$ are T-unrecognizable

 $EQ_{\mathrm{TM}} = \{\langle M_1, M_2 \rangle | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Theorem: Both EQ_{TM} and $\overline{EQ_{TM}}$ are T-unrecognizable

- Proof: (1) $\overline{A_{\text{TM}}} \leq_{\text{m}} EQ_{\text{TM}}$
 - (2) $A_{\text{TM}} \leq_{\text{m}} EQ_{\text{TM}}$

For any w let $T_w =$ "On input x T_w acts on all inputs the way M acts on w.

 $def T_w(x)$:

1. Ignore x.

return M(w)

- 2. Simulate *M* on *w*."
- (1) Here we give f which maps $\overline{A_{\rm TM}}$ problems (of the form $\langle M, w \rangle$) to $EQ_{\rm TM}$ problems (of the form $\langle T_1, T_2 \rangle$).

 $f(\langle M, w \rangle) = \langle T_w, T_{\text{reject}} \rangle$ T_{reject} is a TM that always rejects.

(2) Similarly $f(\langle M, w \rangle) = \langle T_w, T_{\text{accept}} \rangle$ T_{accept} always accepts.

Reducibility terminology

Why do we use the term "reduce"?

When we reduce A to B, we show how to solve A by using B and conclude that A is no harder than B. (suggests the \leq_m notation)

Possibility 1: We bring A's difficulty down to B's difficulty. (A no harder than B)

Possibility 2: We bring B's difficulty up to A's difficulty. (B no easier than A)

Defn. When $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} A$, then $A =_{\mathrm{m}} B$. The two problems are equivalent, i.e. A is recognizable/decidable iff B is recognizable/decidable.

Defn. When $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} C$, then $A \leq_{\mathrm{m}} C$.

For example, if we showed $A_{TM} \leq_{\mathrm{m}} B$, then to show C is undecidable, we can also show $B \leq_{\mathrm{m}} C$. Moral: We don't always have to reduce from A_{TM} !

Quick review of today

- The Reducibility Method for proving undecidability and T-unrecognizability.
- General reducibility
- Mapping reducibility