STAT406- Methods of Statistical Learning Lecture 18

Matias Salibian-Barrera

UBC - Sep / Dec 2016

Random forests

- Feature ranking relative importance of each variable
- Given a single tree T, at each node t split we can compute the sum of reductions in sum of squares (or gini or deviance measures) m_t²
- We assign this squared measure m_t^2 to the variable (feature) used in the split

Random forests

- To each feature, we assign the sum of "squared gains" attributed to it
- For the i-th variable X_i we have

$$\mathcal{J}_i^2(T) = \begin{cases} m_t^2 & \text{if split involved } X_i \\ 0 & \text{otherwise} \end{cases}$$

Random forests

For a random forest we use

$$\mathcal{J}_i^2 = \sum_T \mathcal{J}_i^2(T)$$

In other words, we sum (or average)
 the importance of the variable across
 the trees in the forest

Random Forest - plot

Computer

- Whichever software you use, learn it
- We can **help** with R
- We won't teach all of R
- You are responsible for learning it
- There are tons of on-line resoures
- Example: http://swirlstats.com/

Philosophy of the class

- We're here to help you learn (vs. teaching you)
- We'll encourage engagement, curiosity and generosity
- We'll have zero tolerance for plagiarism
- We favour steady work through the Term (vs. sleeping until finals)

Ensembles

- Ensembles of classifiers
- Combine classifiers trained on the same (or similar [e.g. bootstrapped]) data
- Consensus is reached by (equally weighted) voting or averaged estimated probabilities.
- Bagging and Random Forests are examples of ensembles.

- Originally proposed for classification
- Main idea: sequentially re-train a simple classifier assigning more importance to points that were previously misclassified

- The end result is a weighted average of all the classifiers
- Interesting ideas:
 - Not all components of the ensemble are treated equally
 - Members of the ensemble use information about other members
 - The underlying loss function has a "margin" (unlike 0-1 losses)

Boosting - AdaBoost.M1

Algorithm. Data (y_i, \mathbf{x}_i) , with $y_i \in \{-1, 1\}$

- Set initial weights $w_i = 1/n$, $1 \le i \le n$
- For j = 1, ..., K
- Build a classifier $T_{\mathbf{j}}(\mathbf{x})$ to the data using weights $w_{\mathbf{i}}$, $1 \le \mathbf{i} \le n$

Boosting - AdaBoost.M1

Let

$$e_{\mathbf{j}} = \sum_{\mathbf{i}=1}^{n} w_{\mathbf{i}} I(y_{\mathbf{i}} \neq T_{\mathbf{j}}(\mathbf{x}_{\mathbf{i}})) / \sum_{\ell=1}^{n} w_{\ell}$$

- Let $\alpha_{\mathbf{j}} = \log ((1 e_{\mathbf{j}})/e_{\mathbf{j}})$ and $w_{\mathbf{i}} = w_{\mathbf{i}} \exp (\alpha_{\mathbf{j}} I(y_{\mathbf{i}} \neq T_{\mathbf{j}}(\mathbf{x}_{\mathbf{i}}))), \mathbf{i} = 1, \dots, n$
- Final classifier:

$$T(\mathbf{x}) = \operatorname{sign}\left(\sum_{\mathbf{j}=1}^{K} \alpha_{\mathbf{j}} T_{\mathbf{j}}(\mathbf{x})\right)$$

Error evolution - Spam data

AdaBoost error Vs number of trees

Error evolution - Isolet

AdaBoost error Vs number of trees

- Boosting is fitting an additive model
- ... using a forward search algorithm
- ... and a specific loss function

Think of classifiers of the form

$$G(x) = \sum_{j=1}^{K} \beta_j f(\mathbf{x}, \gamma_j)$$

where $f(\mathbf{x}, \gamma_j)$ are simple base classifiers (e.g. trees)

• Given a data set (y_i, \mathbf{x}_i) , $i = 1, \ldots, n$

$$\min_{G} \sum_{i=1}^{n} L(y_i, G(\mathbf{x}_i)) = \\
= \min_{\beta, \gamma} \sum_{i=1}^{n} L(y_i, \sum_{j=1}^{K} \beta_j f(\mathbf{x}_i, \gamma_j))$$
where $\beta = (\beta_i, \dots, \beta_N)'$ and

where
$$\beta = (\beta_1, \dots, \beta_K)'$$
 and $\gamma = (\gamma_1, \dots, \gamma_K)'$

- Find approximate solutions sequentially
- Start with $f_0(\mathbf{x}) = 0$
- for(j in 1:K)
- Find

$$(\beta_j, \gamma_j) = \arg\min_{\beta, \gamma} \sum_{i=1}^n L(y_i, f_{j-1}(\mathbf{x}_i) + \beta f(\mathbf{x}_i, \gamma))$$

• Let $f_i(\mathbf{x}) = f_{i-1}(\mathbf{x}) + \beta_i f(\mathbf{x}, \gamma_i)$