Divisibilité et division

Exercice 1 ★★

Soient $P \in \mathbb{K}[X]$ et $a, b \in \mathbb{K}$ avec $a \neq b$.

- 1. Déterminer le reste de la division euclidienne de P par le polynôme X a.
- 2. Déterminer le reste de la division euclidienne de P par le polynôme $(X a)^2$.
- **3.** Déterminer le reste de la division euclidienne de P par le polynôme (X a)(X b).

Exercice 2 ★★

Soient

$$A = X^{100} - X^4 + X - 1$$
 et $B = X^3 + X^2 + X + 1$.

Trouver le reste de la division euclidienne de A par le polynôme B.

Exercice 3 ★★

Calcul d'un quotient

Soient $a, b \in \mathbb{R}$ et $n \ge 1$. Trouver une condition *nécessaire et suffisante* pour que $(X-1)^2$ divise

$$aX^{n+1} + bX^n + 1.$$

Calculer alors le quotient.

Exercice 4 ★

Soit $n \ge 2$. On pose $P_n = (X - 3)^{2n} + (X - 2)^n - 2$.

- 1. Déterminer le reste de P_n dans la division euclidienne par X-3.
- **2.** Déterminer le reste de P_n dans la division euclidienne par $(X-2)^2$.
- 3. Déterminer le reste de P_n dans la division euclidienne par $(X-2)^2(X-3)^2$.

Exercice 5 ★★

Soient A et B deux polynômes de $\mathbb{R}[X]$ tels que B divise A dans $\mathbb{C}[X]$.

- **1.** Justifier que B divise A dans $\mathbb{R}[X]$.
- **2.** Quels sont les entiers naturels n tels que le polynôme $X^2 + X + 1$ divise $X^{2n} + X^n + 1$?
- **3.** Pour tout entier naturel n, on pose

$$P_n = (1 + X^4)^n - X^4.$$

Déterminer l'ensemble \mathcal{E} des entiers naturels n tels que $X^2 + X + 1$ divise P_n .

Exercice 6 ★★

Soit $\theta \in \mathbb{R}$. Calculer le reste de la division euclidienne de $(\cos \theta + X \sin \theta)^n$ par $X^2 + 1$.

Exercice 7 ★

Calcul d'un reste

Pour tout $n \in \mathbb{N}$, on pose

$$P_n = nX^{n+1} - (n+1)X^n + 1.$$

Déterminer le reste de la division euclidienne de P_n par $(X-1)^3$.

Exercice 8 ★★

Soit $P \in \mathbb{R}[X]$. On suppose que le reste de la division euclidienne de P par X+1 est égal à 7 et que le reste de la division euclidienne de P par X+5 est égal à 3. Peut-on déterminer le reste de la division euclidienne de P par X^2+6X+5 ?

Exercice 9 ★★

Posé aux CCP en PC

Soit $n \in \mathbb{N}^*$. Déterminer le reste dans la division euclidienne de

$$P_n = \prod_{k=1}^n \left(\sin(k\pi/n)X + \cos(k\pi/n) \right)$$

par $X^2 + 1$.

Exercice 10 ★★

Pour quelles valeurs de $m \in \mathbb{N}$ le polynôme $P_m = (X+1)^m - X^m - 1$ est il divisible par $Q = X^2 + X + 1$?

Exercice 11 ★★

- 1. Le polynôme $(X + 1)^{2009} + X^{2009} + 1$ est-il divisible par le polynôme $X^2 + X + 1$?
- **2.** Pour quelles valeurs de $n \in \mathbb{N}$ le polynôme $X^2 + X + 1$ divise-t-il le polynôme $(X+1)^n + X^n + 1$?

Exercice 12 ★

On pose $E = \mathbb{R}_4[X]$. Soit $A = X^2 + 1$ et $F = \{P \in E \mid A \text{ divise } P\}$.

- 1. Montrer que F est un sous-espace vectoriel de E.
- 2. Déterminer une base de F.
- **3.** Montrer que $E = F \oplus \mathbb{R}_1[X]$.

Exercice 13 ★★

La division euclidienne en tant que projection

Soit $A \in \mathbb{K}[X]$ tel que deg $A \ge 1$. On pose $d = \deg A$. On note D l'application qui à un polynôme $P \in \mathbb{K}[X]$ associe le reste de la division euclidienne de P par A.

- **1.** Montrer que D est un endomorphisme de $\mathbb{K}[X]$.
- **2.** Montrer que D est un projecteur de $\mathbb{K}[X]$.
- 3. Montrer que Im D = $\mathbb{K}_{d-1}[X]$.
- **4.** On note $A\mathbb{K}[X]$ l'ensemble des polynômes de $\mathbb{K}[X]$ multiples de A. Déduire de la question précédente que

$$\mathbb{K}[\mathbf{X}] = \mathbf{A}\mathbb{K}[\mathbf{X}] \oplus \mathbb{K}_{d-1}[\mathbf{X}]$$

Exercice 14 ★★

Soit $(m, n) \in (\mathbb{N}^*)^2$. Montrer que m divise n si et seulement si $X^m - 1$ divise $X^n - 1$.

Exercice 15 ***

Critère d'irréductibilité d'Eisenstein

Soient p un nombre premier et $P_n = a_n X^n + \cdots + a_1 X + a_0 \in \mathbb{Z}[X]$ avec $n \ge 1$. On suppose que

$$p \nmid a_n$$
, $\forall 0 \le k \le n-1$, $p \mid a_k$ et $p^2 \nmid a_0$.

Montrer que P_n est irréductible dans $\mathbb{Q}[X]$.

Factorisations

Exercice 16 ***

Evaluations

On pose, pour
$$n \in \mathbb{N}^*$$
, $P_n(X) = \sum_{k=0}^{n-1} X^{2k}$.

1. Montrer que la décomposition en produit de facteurs irréductibles sur $\mathbb R$ de $\mathbb P_n$ s'écrit

$$P_n(X) = \prod_{k=1}^{n-1} (X^2 - 2\cos(k\pi/n)X + 1).$$

2. En déduire que

$$\prod_{k=1}^{n-1} \sin(k\pi/(2n)) = \frac{\sqrt{n}}{2^{n-1}}.$$

3. Calculer la valeur de

$$\prod_{k=1}^{n-1} \cos(k\pi/n).$$

Exercice 17 ★★

Décomposer sur $\ensuremath{\mathbb{R}}$ les polynômes suivants :

1.
$$A = X^3 + 1$$
;

5.
$$E = X^8 + 1$$
:

2.
$$B = X^4 + 1$$
;

6.
$$F = X^8 + X^4 + 1$$
;

3.
$$C = X^4 + X^2 + 1$$
;

7.
$$G = X^4 - X^2 - 12$$
;

4.
$$D = X^6 + 1$$
:

8.
$$H = X^6 - 1$$
.

Exercice 18 ★★

Racines n-ièmes de -1

Soit $n \ge 1$. Décomposer $X^n + 1$ sur \mathbb{C} puis sur \mathbb{R} .

Exercice 19 ★

Soit P le polynôme suivant,

$$X^6 + X^5 + 3X^4 + 2X^3 + 3X^2 + X + 1$$
.

- 1. Vérifier que *i* est racine multiple de P.
- **2.** En déduire la décomposition de P sur \mathbb{R} .

Exercice 20 ★

Quelques factorisations

Factoriser en produits de facteurs irréductibles dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$ les polynômes :

1.
$$X^{2n+1} - 1$$
;

3.
$$1 + X^3 + X^6 + X^9$$
;

2.
$$\sum_{k=0}^{2n} X^k$$
;

Exercice 21 ★

Soit $P = X^4 - 9X^3 + 30X^2 - 44X + 24$.

- 1. Vérifier que 2 est une racine multiple de P.
- 2. Déterminer toutes les racines de P.
- **3.** Décomposer P sur \mathbb{R} .

Exercice 22 ★

Une décomposition

Soit le polynôme $P = X^8 + 2X^6 + 3X^4 + 2X^2 + 1$.

- 1. Montrer que j est racine de ce polynôme. Déterminer son ordre de multiplicité.
- 2. Quelle conséquence peut-on tirer de la parité de P?
- 3. Décomposer P en facteurs irréductibles dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X].$

Exercice 23 ★

Soit $a \in \mathbb{R}$.

- 1. Donner sous forme trigonométrique les racines cubiques de e^{ia} .
- **2.** Résoudre dans \mathbb{C} l'équation (E) d'inconnue z suivante : $z^6 2z^3 \cos a + 1 = 0$.
- **3.** Dans cette question, on suppose que $a = \frac{\pi}{2}$.
 - a. Représenter graphiquement les solutions de l'équation (E) (unité : 4cm).
 - **b.** Factoriser $z^6 + 1$ sous la forme d'un produit de trois trinômes du second degré à coefficients réels.

Exercice 24 ★

Banque CCP

On considère les polynômes $P = 3X^4 - 9X^3 + 7X^2 - 3X + 2$ et $Q = X^4 - 3X^3 + 3X^2 - 3X + 2$.

- **1.** Décomposez P et Q en facteurs irréductibles sur $\mathbb{R}[X]$, puis sur $\mathbb{C}[X]$ (on pourra calculer les valeurs de P et Q en 1 et 2).
- 2. Déterminer le PPCM et le PGCD des polynômes P et Q.

Exercice 25 ★★

Banque CCP

Soient $\theta \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Décomposez en produit de polynômes irréductibles dans $\mathbb{C}[X]$, puis dans $\mathbb{R}[X]$ le polynôme :

$$P = X^{2n} - 2X^n \cos(n\theta) + 1$$

Exercice 26 ★★

Soient $n, p \in \mathbb{N}^*$. Déterminer le pgcd de $X^n - 1$ et $X^p - 1$.

Exercice 27 ★★★

Soit $(P, Q) \in \mathbb{Z}[X]^2$ tel que $P \wedge Q = 1$. Pour $n \in \mathbb{N}$, on pose $u_n = P(n) \wedge Q(n)$. Montrer que la suite (u_n) est périodique.

Exercice 28 ★★

Soit $P \in \mathbb{K}[X]$ un polynôme scindé. Exprimer $P \wedge P'$ à l'aide des racines de P et de leurs multiplicités.

Racines

Exercice 29 ★

Soit \mathcal{E} l'équation $2z^3 - (7+2i)z^2 + (11+i)z - 4 = 0$.

- 1. Montrer que \mathcal{E} admet une racine réelle que l'on calculera.
- **2.** Résoudre \mathcal{E} sur \mathbb{C} .

Exercice 30 ★★

Soit $n \in \mathbb{N}$. Le polynôme

$$P_n = \sum_{k=0}^n \frac{X^k}{k!}$$

possède-t-il une racine multiple?

Exercice 31 ★★★

- **1.** Soit $n \in \mathbb{N}^*$. Factoriser sur \mathbb{C} le polynôme $P_n = X^{n-1} + X^{n-2} + \cdots + X + 1$.
- 2. En déduire une expression simple de $A_n = \prod_{k=1}^{n-1} \sin \frac{k\pi}{n}$.
- 3. Donner une expression simple de $B_n = \prod_{k=0}^{n-1} \sin\left(\frac{k\pi}{n} + \theta\right)$.
- **4.** On pose $\omega = e^{\frac{2i\pi}{n}}$. Calculer $C_n = \prod_{\begin{subarray}{c}0 \le k, l \le n-1\\k \ne l\end{subarray}} (\omega^k \omega^l).$

Exercice 32 ★★

- 1. Montrer que le polynôme $R = X^3 + X + 1$ admet trois racines complexes distinctes notées a, b, c.
- **2.** Montrer que a, b, c, -a, -b, -c sont six complexes distincts.
- 3. Soit $P \in \mathbb{C}[X]$. Montrer qu'il existe un unique polynôme Q tel que $Q(X^2) = P(X)P(-X)$.
- **4.** En déduire un polynôme de degré 3 ayant pour seules racines a^2, b^2, c^2 .

Exercice 33 ★★ Petites Mines

On cherche les polynômes $P \in \mathbb{C}[X]$ de la forme (X - a)(X - b) tels que P divise $P(X^3)$.

- 1. Déterminer les polynômes P dans le cas où a = b.
- **2.** Montrer que si $a \neq b$ et $a^3 \neq b^3$, il existe 6 tels polynômes P dont 4 dans $\mathbb{R}[X]$.
- **3.** Déterminer les polynômes P dans le cas où $a \neq b$ et $a^3 = b^3$.
- **4.** En déduire que 13 polynômes en tout conviennent dont 7 dans $\mathbb{R}[X]$.

Exercice 34 ★★

Soit $P \in \mathbb{R}[X]$ de degré supérieur ou égal à 2 scindé sur \mathbb{R} . Montrer que P' est scindé sur \mathbb{R} .

Exercice 35 ★★

Soit $P \in \mathbb{R}[X]$ unitaire. Montrer que P est scindé sur \mathbb{R} si et seulement si

$$\forall z \in \mathbb{C}, |P(z)| \ge |\operatorname{Im}(z)|^{\operatorname{deg}(P)}$$

Exercice 36 ★★★

Théorème de Niven

On souhaite déterminer les angles appartenant à $2\pi\mathbb{Q}$ dont le cosinus est rationnel.

- **1.** Soit $(n, \theta) \in \mathbb{N}^* \times \mathbb{R}$. Factoriser $\cos((n+1)\theta) + \cos((n-1)\theta)$.
- 2. Montrer par récurrence que pour tout $n \in \mathbb{N}$, il existe un unique polynôme T_n tel que

$$\forall \theta \in \mathbb{R}, \ T_n(2\cos\theta) = 2\cos(n\theta)$$

- **3.** Soit P un polynôme unitaire à coefficients entiers. Montrer que les racines rationnelles de P sont en fait entières.
- **4.** Soit $\theta \in 2\pi\mathbb{Q}$ tel que $\cos \theta \in \mathbb{Q}$. Déterminer les valeurs possibles de $\cos \theta$ ainsi que celles de θ .
- 5. Même question en remplaçant cos par sin.
- **6.** Même question en remplaçant cos par tan.

Exercice 37 ★★

Soit $n \in \mathbb{N}$. On pose $T_n = X^n - X + 1$.

- 1. Déterminer le nombre de racines réelles de T_n .
- **2.** Montrer que T_n est scindé à racines simples sur $\mathbb{C}[X]$.

Lien coefficients/racines

Exercice 38 ★

Résoudre dans $\mathbb C$ le système suivant :

$$\begin{cases} |x| = |y| = |z| = 1\\ x + y + z = 1\\ xyz = 1 \end{cases}$$

Exercice 39 ★

Résoudre dans $\mathbb C$ le système suivant :

$$\begin{cases} x + y + z = 1 \\ x^2 + y^2 + z^2 = 9 \\ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1 \end{cases}$$

Exercice 40 ★★

Pour $n \ge 2$, on pose $P_n = (X + i)^n - (X - i)^n$.

- 1. Déterminer les racines complexes de P_n .
- 2. En déduire les valeurs de

$$\mathbf{A}_n = \sum_{k=1}^{n-1} \cot(k\pi/n) \quad \text{et} \quad \mathbf{B}_n = \prod_{k=1}^{n-1} \cot(k\pi/n).$$

Exercice 41 ★

Une somme de Newton

Soient a, b et c les racines complexes du polynôme $P = X^3 - 2X + 5$.

- 1. Calculer $S = a^4 + b^4 + c^4$.
- 2. Trouver un polynôme de degré trois à coefficients entiers dont a^2 , b^2 et c^2 sont les racines.

Exercice 42 ★★

CCP PC

Soient x, y, z trois complexes non nuls tels que x + y + z = 0 et $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0$. Montrer que |x| = |y| = |z|.

Exercice 43 ★★

Calcul de $\zeta(2)$

Pour $n \in \mathbb{N}$, on pose

$$Q_n = \frac{1}{2i} \left((X+i)^{n+1} - (X-i)^{n+1} \right)$$

- 1. a. Déterminer le degré de Q_n pour tout $n \in \mathbb{N}$.
 - **b.** Montrer que pour tout $r \in \mathbb{N}$,

$$Q_{2r} = \sum_{p=0}^{r} (-1)^p \binom{2r+1}{2p+1} X^{2r-2p}$$

- **2. a.** Déterminer les racines de Q_n pour tout $n \in \mathbb{N}$. Vérifier qu'elles sont réelles.
 - **b.** En déduire la décomposition en facteurs irréductibles de Q_n dans $\mathbb{R}[X]$ pour tout $n \in \mathbb{N}$.
 - **c.** Montrer que pour tout $r \in \mathbb{N}^*$,

$$Q_{2r} = (2r+1) \prod_{k=1}^{r} \left(X^2 - \cot^2 \frac{k\pi}{2r+1} \right)$$

d. En déduire que pour tout $r \in \mathbb{N}^*$

$$\sum_{k=1}^{r} \cot^2 \frac{k\pi}{2r+1} = \frac{r(2r-1)}{3}$$

puis que

$$\sum_{k=1}^{r} \frac{1}{\sin^2 \frac{k\pi}{2r+1}} = \frac{2r(r+1)}{3}$$

3. a. Montrer que pour tout $x \in \left]0, \frac{\pi}{2}\right[$

$$\cot^2 x < \frac{1}{x^2} < \frac{1}{\sin^2 x}$$

b. En déduire la valeur de $\lim_{r \to +\infty} \sum_{k=1}^{r} \frac{1}{k^2}$.

Suites de polynômes

Exercice 44 ★★

Pour $n \in \mathbb{N}$, on considère la fonction f_n : $\begin{cases} 0, \pi[\longrightarrow \mathbb{R} \\ \theta \longmapsto \frac{\sin(n+1)\theta}{\sin \theta} \end{cases}.$

- **1.** Montrer que la fonction f_n est prolongeable par continuité en 0 et π . On notera encore f_n ce prolongement. Que valent alors $f_n(0)$ et $f_n(\pi)$?
- **2.** Montrer que pour tout $n \in \mathbb{N}$, il existe un unique polynôme P_n tel que $\forall x \in [-1, 1]$, $P_n(x) = f_n(\arccos x)$. On déterminera le degré et la parité de P_n en fonction de n.
- 3. Déterminer les valeurs de $P_n(1)$, $P_n(-1)$, $P_n(0)$, $P_n'(0)$.
- **4.** Montrer que $|P_n(x)| \le n+1$ pour tout $x \in [-1,1]$.
- **5.** Etablir que les polynômes P_n vérifient la relation de récurrence : $P_{n+1} + P_{n-1} = 2XP_n$.
- **6.** Justifier que f_n est de classe \mathcal{C}^{∞} sur $[0, \pi]$. En dérivant deux fois l'identité sin θ $f_n(\theta) = \sin(n+1)\theta$, déterminer une équation différentielle linéaire homogène que vérifie f_n .
- 7. En déduire une équation différentielle linéaire homogène que vérifie P_n .
- **8.** On note $P_n = \sum_{k=0}^n a_k X^k$. Déduire de la question précédente une relation de récurrence entre a_{k+2} et a_k . Expliciter les a_k (on pourra distinguer le cas n pair et le cas n impair).

Exercice 45 ★★

- **1.** Montrer que, pour tout $n \in \mathbb{N}$, il existe un unique P_n tel que $P_n(X+1) + P_n(X) = 2X^n$.
- **2.** Trouver une relation entre P'_n et P_{n-1} .
- **3.** Montrer que $(P_k)_{k\in\mathbb{N}}$ est une base de $\mathbb{K}[X]$ et décomposer $P_n(X+1)$ sur cette base.
- **4.** Montrer que $P_n(1 X) = (-1)^n P_n(X)$.

Exercice 46 ★★

Polynômes de Tchebychev

On considère la suite de polynômes $(P_n)_{n\in\mathbb{N}}$ définie par $P_0=1,\,P_1=X,$ et

$$\forall n \in \mathbb{N}^*, P_{n+1} = 2XP_n - P_{n-1}$$

- 1. Calculer P_2 , P_3 et P_4 .
- 2. Montrer que $P_n(-X) = (-1)^n P_n(X)$ pour tout $n \in \mathbb{N}$. En déduire que P_n est pair si n est pair, et impair sinon.
- 3. Montrer que deg $P_n = n$ et déterminer le coefficient dominant de P_n .
- **4. a.** Vérifier que pour tout $n \in \mathbb{N}$ et pour tout réel x, $\cos(nx) = P_n(\cos(x))$.
 - **b.** En déduire que P_n est scindé à racines simples et préciser ses racines.

Exercice 47 ★★

Polynômes de Hilbert

Soient $n \in \mathbb{N}$ et Δ l'application définie sur $\mathbb{R}[X]$ par

$$P \longmapsto P(X+1) - P(X)$$
.

On pose $\Gamma_0 = 1$ et, pour tout entier $k \ge 1$,

$$\Gamma_k(X) = X(X-1)...(X-k+1).$$

On note Δ_n la restriction de Δ à $\mathbb{R}_n[X]$.

- **1.** Vérifier que $\Delta_n \in \mathcal{L}(\mathbb{R}_n[X])$.
- **2.** Montrer que $\mathcal{B}_n = (\Gamma_0, \dots, \Gamma_n)$ est une base de $\mathbb{R}_n[X]$.
- **3.** Exprimer, pour tout $k \leq n$, $\Delta_n(\Gamma_k)$ dans la base \mathcal{B}_n . En déduire $\operatorname{Im}(\Delta_n)$ et $\operatorname{Ker}(\Delta_n)$.
- **4.** Calculer, pour tout $\ell \in \mathbb{N}$, $(\Delta_n)^{\ell}$. En déduire que Δ_n est nilpotent d'indice n+1.
- **5.** Prouver que $\forall Q \in \mathbb{R}[X]$, il existe $P \in \mathbb{R}[X]$ tel que

$$P(X+1) - P(X) = Q(X).$$

Y-a-t-il unicité de P?

6. Déterminer trois polynômes P_i , $i \in \{1, 2, 3\}$, tels que

$$\forall i , P_i(X+1) - P_i(X) = X^i.$$

7. En déduire la valeur des sommes suivantes,

$$S_n = 1 + ... + n$$
, $T_n = 1^2 + ... + n^2$ et $U_n = 1^3 + ... + n^3$.

Exercice 48 ★★

On considère la suite de polynômes $(P_n)_{n\geqslant 1}$ définie par $P_1=X,\,P_2=X^2-2,$ et

$$\forall n \geqslant 2 \quad P_{n+1} = XP_n - P_{n-1}.$$

- 1. Calculer P₃ et P₄.
- 2. Montrer que P_n est de même parité que n.
- 3. Montrer que deg $P_n = n$, et déterminer le coefficient dominant de P_n .
- **4.** Calculer $P_n(0)$ (on distinguera selon la parité de n).
- **5.** Vérifier que pour tout $n \in \mathbb{N}^*$, on a

$$X^n + \frac{1}{X^n} = P_n \left(X + \frac{1}{X} \right).$$

- **6.** Grâce à ce qui précède, factoriser dans $\mathbb{R}[X]$ les polynômes suivants :
 - a) $Q_1 = X^4 3X^3 + 4X^2 3X + 1$.
 - b) $Q_2 = X^6 + X^5 9X^4 + 2X^3 9X^2 + X + 1$.

Exercice 49 ★★

Pour tout $n \in \mathbb{N}^*$, on pose $P_n = (1 + X)^n - (1 - X)^n$.

- 1. Calculer P₁, P₂, P₃, P₄.
- **2.** Montrer que P_n est impair.
- 3. Quel est le coefficient de X^n dans P_n ? Même question avec X^{n-1} . En déduire que le degré de P_n est égal à n (respectivement n-1) lorsque n est impair (respectivement pair).
- **4.** Montrer que P_n est divisible par X.
- **5. a.** Montrer que $z \in \mathbb{C}$ est racine de P_n si et seulement si $\left(\frac{1+z}{1-z}\right)^n = 1$.
 - **b.** Résoudre dans \mathbb{C} l'équation $\left(\frac{1+z}{1-z}\right)^n = 1$, et en déduire les racines complexes de P_n (on distinguera les cas n pair et n impair). Combien de ses racines sont réelles ?
- **6.** Factoriser P_n dans $\mathbb{C}[X]$, puis dans $\mathbb{R}[X]$ (on distinguera à nouveau les cas n pair et n impair).

Familles de polynômes

Exercice 50 ★★

Interpolation de Lagrange

Soient $n \in \mathbb{N}$ et a_0, a_1, \dots, a_n des nombres réels deux à deux distincts. Soit ψ l'application de $\mathbb{R}_n[X]$ dans \mathbb{R}^{n+1} définie par

$$P \longmapsto (P(a_0), \dots, P(a_n)).$$

- 1. Prouver que ψ est un isomorphisme.
- **2.** En déduire qu'il existe une unique famille de polynômes (L_0, \dots, L_n) de $\mathbb{R}_n[X]$ telle que

$$\forall 0 \leq j, i \leq n$$
, $L_i(a_i) = \delta_{i,j}$.

- **3.** Justifier que $\mathcal{B} = (L_0, L_1, \dots, L_n)$ est une base de $\mathbb{R}_n[X]$. Quelles sont les coordonnées de $P \in \mathbb{R}_n[X]$ dans la base \mathcal{B} ? Justifier la présence du mot *interpolateur* dans le titre de l'exercice.
- **4.** Expliciter les polynômes $(L_0, L_1, ..., L_n)$ sous forme de produits.

Exercice 51 ★★

Soit $n \in \mathbb{N}$. Soient x_0, \dots, x_n n réels distincts. On définit pour $0 \le i \le n$ les polynômes

$$L_i = \prod_{j \neq i} \frac{X - x_j}{x_i - x_j}$$

- **1.** Montrer que $(L_0, ..., L_n)$ est une base de $\mathbb{R}_n[X]$.
- 2. Soit $k \in [0, n]$. Calculer $P = \sum_{i=0}^{n} x_i^k L_i$.

Exercice 52 ★★

D'après CCP PC 2007

Pour tout $n \in \mathbb{N}$, on note $Q_n = (X^2 - 1)^n$ et $P_n = \frac{1}{2^n n!} Q_n^{(n)}$. On pourra confondre polynôme et fonction polynomiale associée.

- 1. Calculer P_0 , P_1 , P_2 et P_3 .
- **2.** Quel est le degré de P_n ?
- **3.** Montrer que P_n a la parité de n. En déduire $P_n(0)$ pour n impair et $P_n'(0)$ pour n pair.
- **4.** En utilisant la formule du binôme de Newton, calculer $P_n(0)$ pour n pair et $P_n'(0)$ pour n impair. On exprimera les résultats à l'aide de factorielles.
- 5. a. Vérifier que

$$\forall n \in \mathbb{N}, (X^2 - 1)Q'_n = 2nXQ_n$$

b. En dérivant n + 1 fois cette relation, montrer que

$$\forall n \in \mathbb{N}, (X^2 - 1)P''_n + 2XP'_n = n(n+1)P_n$$

- **6. a.** Montrer que $Q_n^{(k)}(-1) = Q_n^{(k)}(1) = 0$ pour tout $k \in [0, n-1]$.
 - **b.** En appliquant le théorème de Rolle et à l'aide d'une récurrence, montrer que P_n admet exactement n racines réelles distinctes dans]-1,1[.

Exercice 53 ★★

Soient $a, b \in \mathbb{K}$ avec $a \neq b$. Montrer que la famille $\left((X - a)^k (X - b)^{n-k} \right)_{0 \leq k \leq n}$ est une base de $\mathbb{K}_n[X]$.

Applications linéaires et polynômes

Exercice 54 ★

Soient $n \ge 0$ et f définie sur $E = \mathbb{K}_n[X]$ par f(P) = P - P'. Prouver que $f \in GL(E)$ et expliciter f^{-1} .

Exercice 55 ★

Etude d'un endomorphisme

Soient $n \in \mathbb{N}$ et ϕ l'application définie sur l'espace vectoriel $E_n = \mathbb{R}_n[X]$ par

$$\phi: P \longmapsto \phi(P) = (X+1)P(X) - XP(X+1).$$

- 1. ϕ définit-il un endomorphisme de E_n ?
- **2.** Déterminer le noyau de ϕ .
- 3. ϕ est-il surjectif?

Exercice 56 ★★★

On note
$$U_0 = 1$$
, $U_p = \frac{X(X-1)...(X-p+1)}{p!}$ pour $p \ge 1$ et

$$\Delta: \left\{ \begin{array}{ccc} \mathbb{K}[X] & \longrightarrow & \mathbb{K}[X] \\ P & \longmapsto & P(X+1) - P(X) \end{array} \right.$$

- **1.** Montrer que $(U_p)_{p\in\mathbb{N}}$ est une base de $\mathbb{K}[X]$.
- **2.** Calculer $\Delta^n(U_p)$ pour $n \in \mathbb{N}$.
- 3. En déduire que tout $P \in K[X]$ de degré n peut s'écrire

$$P = P(0) + (\Delta P)(0)U_1 + \dots + (\Delta^n P)(0)U_n$$

- **4.** Montrer que, pour $P \in \mathbb{K}[X]$, $P(\mathbb{Z}) \subset \mathbb{Z}$ si et seulement si les coordonnées de P dans la base $(U_p)_{p \in \mathbb{N}}$ sont entières.
- **5.** Soit $f: \mathbb{Z} \to \mathbb{Z}$. Montrer que f est polynomiale si et seulement si $\exists n \in \mathbb{N}, \Delta^n f = 0$.

Exercice 57 ★★

Soient $n \ge 3$, $E_n = \mathbb{R}_n[X]$, $a \in \mathbb{R}$ et φ_n l'application définie sur E_n par,

$$\varphi_n(P) = (X - a)(P'(X) + P'(a)) - 2(P(X) - P(a)).$$

- **1.** Vérifier que $\varphi_n \in \mathcal{L}(E_n)$.
- 2. On pose $P_k = (X a)^k$ pour tout $k \in [0, n]$. Justifier que la famille (P_0, \dots, P_n) est une base de E_n .
- **3.** Calculer $\varphi_n(P_k)$ pour $0 \le k \le n$. On distinguera les cas $k \le 2$ et $k \ge 3$.
- **4.** En déduire les sous-espaces $\operatorname{Im}(\varphi_n)$ et $\operatorname{Ker}(\varphi_n)$. Quel est le rang de φ_n ?
- **5.** Prouver que $E_n = \text{Ker}(\varphi_n) \oplus \text{Im}(\varphi_n)$.
- **6.** Pour quelles valeurs de $n \ge 3$ l'endomorphisme φ_n est-il un projecteur de E_n ?

Exercice 58 ★★

Polynômes d'Euler

Soit φ l'application de $\mathbb{R}[X]$ dans $\mathbb{R}[X]$ définie par

$$\forall P \in \mathbb{R}[X], \ \varphi(P) = \frac{P(X+1) + P(X)}{2}$$

- 1. Soit $k \in \mathbb{N}$. Déterminer le degré et le coefficient dominant de $\varphi(X^k)$.
- **2.** Établir que φ est un endomorphisme de $\mathbb{R}[X]$.
- 3. Déduire de ce qui précède que φ est un automorphisme de $\mathbb{R}[X]$.
- **4. a.** Justifier l'existence et l'unicité d'un polynôme U_n tel que $U_n(X+1)+U_n(X)=\frac{2X^n}{n!}$.
 - b. Démontrer que

$$U_0 = 1$$
 $\forall n \in \mathbb{N}^*, \ U_n(0) + U_n(1) = 0$ $\forall n \in \mathbb{N}^*, \ U'_n = U_{n-1}$

c. On pose $V_n(X) = (-1)^n U_n(1-X)$. Calculer $\varphi(V_n)$. En déduire que $U_n(1-X) = (-1)^n U_n(X)$.

Exercice 59 ★

Une équation fonctionnelle

Déterminer tous les polynômes $P \in \mathbb{R}[X]$ tels que

$$P(X^2) = (X^2 + 1)P(X).$$

Exercice 60 ★

Une équation courante

Déterminer les polynômes P de $\mathbb{K}[X]$ vérifiant P(X + 1) = P(X).

Exercice 61 ★

Une équation différentielle

Déterminer les polynômes $P \in \mathbb{R}[X]$ tels que

$$(P')^2 = 4P.$$

Exercice 62 ★

Une équation fonctionnelle

On cherche les polynômes $P \in \mathbb{C}[X]$ qui vérifient l'équation

$$P(X^2) = XP(X).$$

- 1. On suppose que $P \neq 0$.
 - a. Quel est le degré de P?
 - **b.** Quelle est la seule racine possible pour P?
- 2. Conclure.

Exercice 63 ★

Une équation non linéaire

Résoudre l'équation P'P" = 18P où P $\in \mathbb{R}[X]$.

Equations d'inconnue polynomiale

Exercice 64 ★★

- **1.** Montrer que, pour tout $n \in \mathbb{N}$, il existe un unique P_n tel que $P_n(X+1) + P_n(X) = 2X^n$.
- **2.** Trouver une relation entre P'_n et P_{n-1} .
- 3. Montrer que $(P_k)_{k\in\mathbb{N}}$ est une base de $\mathbb{K}[X]$ et décomposer $P_n(X+1)$ sur cette base.
- **4.** Montrer que $P_n(1 X) = (-1)^n P_n(X)$.

Exercice 65 ★★

Mines-Ponts MP

Trouver les polynômes $P \in \mathbb{R}[X]$ tels que (X + 4)P(X) = XP(X + 1).

Exercice 66 ★★★

Soit P un polynôme de $\mathbb{C}[X]$ non nul tel que $P(X^2) = P(X+1)P(X)$.

- **1.** Montrer que si $a \in \mathbb{C}$ est une racine de P, alors pour tout $n \in \mathbb{N}$, a^{2^n} est une racine P.
- **2.** Soit $a \in \mathbb{C}$ une racine non nulle de P (s'il en existe). Montrer que a est une racine de l'unité.
- 3. Les racines de P sont-elles toutes nécessairement des racines de l'unité?
- **4.** En raisonnant par l'absurde, montrer que la seule racine non nulle possible pour P est 1.
- **5.** Déterminer tous les polynômes $P \in \mathbb{C}[X]$ tels que $P(X^2) = P(X+1)P(X)$.

Exercice 67 ★★★

Soit $P \in \mathbb{C}[X]$ non nul tel que $P(X^2) = P(X)P(X - 1)$.

- 1. Montrer par l'absurde que 0 n'est pas racine de P.
- **2.** Montrer que les racines de P sont de module 1.
- **3.** En déduire tous les polynômes $P \in \mathbb{C}[X]$ tels que $P(X^2) = P(X)P(X-1)$.

Exercice 68 ★

Déterminer les polynômes $P \in \mathbb{K}[X]$ tels que $6P = X^2P''$.

Exercice 69 ★★

D'après E3A 2011

On identifiera les polynômes et leurs fonctions polynomiales associées. Soit $P \in \mathbb{C}[X]$ non nul vérifiant la relation

(*)
$$P(X^2 - 1) = P(X - 1)P(X + 1)$$

- **1.** Soit $\alpha \in \mathbb{C}$. On définit une suite $(a_n) \in \mathbb{C}^{\mathbb{N}}$ par $a_0 = \alpha$ et $a_{n+1} = a_n^2 + 2a_n$ pour tout $n \in \mathbb{N}$.
 - **a.** Montrer que si α est racine de P, a_n est racine de P pour tout $n \in \mathbb{N}$.
 - **b.** On suppose $\alpha \in \mathbb{R}_+^*$. (a_n) est alors une suite de réels. Montrer que (a_n) est strictement monotone.
 - **c.** En déduire que P n'admet aucune racine strictement positive.
- 2. a. Montrer que -1 n'est pas racine de P.
 - **b.** Pour tout $n \in \mathbb{N}$, exprimer $a_n + 1$ en fonction de α et n.
 - **c.** Pour $n \in \mathbb{N}$, on pose $r_n = |a_n + 1|$. A quelle condition nécessaire et suffisante portant sur α la suite (r_n) est-elle strictement monotone?
 - **d.** En déduire que si α est racine de P, alors $|\alpha + 1| = 1$.
 - e. Montrer que si α est racine de P, alors $|\alpha 1| = 1$.
- **3.** Montrer que si P est non constant, alors P admet 0 pour unique racine.
- **4.** Déterminer tous les polynômes $P \in \mathbb{C}[X]$ vérifiant la relation (*).

Divers

Exercice 70 ★★★

Mines-Ponts MP

Soit $n \in \mathbb{N}$. Montrer qu'il existe un polynôme P tel que X^n divise $1 + X - P^2$.

Exercice 71 ★★★★

X MP 2010

Soit $P \in \mathbb{R}_n[X]$ tel que $\forall x \in \mathbb{R}$, $P(x) \ge 0$. On pose $Q = P + P' + \cdots + P^{(n)}$. Montrer que $\forall x \in \mathbb{R}$, $Q(x) \ge 0$.

Exercice 72 ***

Soient P et Q des polynômes de la forme $\sum_{n \in \mathbb{N}} (-1)^n a_n X^n$ avec (a_n) une suite presque nulle de réels positifs. Montrer que PQ est également de cette forme.

Exercice 73 ★★

Mines MP 2010

Calculer pour $n \in \mathbb{N}$, $\sum_{k=0}^{n} (-1)^k \binom{n}{k}^2$.

Exercice 74 ***

Stabilité

- **1.** Déterminer les polynômes $P \in \mathbb{C}[X]$ tels que $P(\mathbb{R}) \subset \mathbb{R}$.
- **2.** Déterminer les polynômes $P \in \mathbb{C}[X]$ tels que $P(\mathbb{U}) \subset \mathbb{U}$.
- **3.** Déterminer les polynômes $P \in \mathbb{C}[X]$ tels que $P(\mathbb{Q}) \subset \mathbb{Q}$.

Exercice 75 ★★

X MP 2001

Existe-t-il $P \in \mathbb{R}[X]$ tel que $\forall x \in [0, 1], \ P(x) = \cos x$?

Exercice 76 ★

Valuation d'un polynôme

Soit $P = \sum_{n=0}^{+\infty} a_n X^n \in \mathbb{K}[X]$. La valuation de P, noté val P, est définie par :

$$\operatorname{val} P = \begin{cases} \min\{n \in \mathbb{N} \mid a_n \neq 0\} \text{ si } P \neq 0 \\ +\infty \text{ si } P = 0 \end{cases}$$

- **1.** Soit $P \in K[X]$ non nul. Montrer que val $P \leq \deg P$.
- 2. Soient $P, Q \in \mathbb{K}[X]$ des polynômes non nuls. Montrer que $val(P+Q) \ge min(val\ P, val\ Q)$. Donner deux polynômes $P, Q \in \mathbb{K}[X]$ tels que $val(P+Q) > min(val\ P, val\ Q)$.
- 3. Soient $P, Q \in K[X]$ des polynômes non nuls. Montrer que val(PQ) = val P + val Q.

Exercice 77 ★★★

Inégalité de Hilbert

1. Soit $P \in \mathbb{R}[X]$. Montrer que

$$\int_{-1}^{1} \mathbf{P}^{2}(x) \, \mathrm{d}x = -i \int_{0}^{\pi} \mathbf{P}^{2}(e^{i\theta}) e^{i\theta} \, \mathrm{d}\theta$$

En déduire l'inégalité

$$\int_{-1}^{1} P^{2}(x) dx \le \frac{1}{2} \int_{-\pi}^{\pi} |P(e^{it})|^{2} dt$$

2. En déduire que si $(a_0, ..., a_n) \in \mathbb{R}^{n+1}$, alors

$$\sum_{0 \le k, \ell \le n} \frac{a_k a_\ell}{k + \ell + 1} \le \pi \sum_{k=0}^n a_k^2$$

Exercice 78 ★★★★

X MP 2019

Soit
$$P = \sum_{k=0}^{n} a_k X^k \in \mathbb{R}[X]$$
 scindé sur \mathbb{R} . Montrer que

$$\forall k \in [1, n-1], \ a_{k-1}a_{k+1} \le a_k^2$$

Exercice 79 ★★

Existe-t-il un polynôme $P \in \mathbb{C}[X]$ tel que

$$\forall z \in \mathbb{C}, \ P(z) = \overline{z} ?$$