ARVI: AR for the Visually Impaired

Final Presentation

What is ARVI?

An iOS app for the visually impaired that uses SLAM to place spatialized, user-defined audio cues in a person's surroundings.

Example Use Case

Scanning

Localizing

Background

Literature review

 Read papers, talked to students, and interviewed members from visually impaired communities

Related Works

- Connects user to remote experts through wearable camera
- Intelligent, but difficult to scale

Orcam

- Wearable camera with CV functionality
- Reads text, recognizes faces, etc.
- Scalable, but limited in scope

Soundscape

- Annotated maps of surroundings through spatial audio
- GPS is imprecise

Findings

- "Solving" <u>obstacle avoidance</u> is a common trap
 - Existing solutions are well-ingrained, satisfactory, and reliable
- Less solved: learning <u>precise semantic info</u>
- Example: the "5 meter problem"
 - □ GPS is often inaccurate to >5m.
 - Difficult to use for precise destinations
 - Doorways, bus stops, store sections, etc.

Methods

SLAM

Requirements

- Persistent environment mapping/tracking
- Robustness > accuracy

Potential Solutions

- ARKit: doesn't support persistent maps natively
- 6D.AI: powerful, but focused on visuals
- Placenote: easy-to-use persistence SDK

Spatial Audio

Requirements

- Binaural Audio: shows depth/direction in sound
- Varying:
 - Volume
 - Time delays

Potential Solutions

Google Resonance:spatial sound SDKdesigned for VR/AR

User Interface

Requirements

- Blind-friendly
- Position-invariant input

Solution

- Gesture recognition (inspired by VoiceOver)
- Swipes to navigate through available UI elements
- Tap to hear current element
- Double-tap to select

Results

Experiment Procedure

- Informal experiment to collect preliminary results
- Setting: supermarket aisle, persons A and B
- Procedure:
 - 1. A selects an object and scans its surroundings
 - Drops audio cue on object
 - 2. *B* localizes to the scan; attempts to find object
 - 3. Time to find object is recorded

Experiment Results

Blindfolded

Searcher	Object	Time
Mengshi	Coffee Mug	1:40
Mengshi	Protein Powder	1:53
James	Detergent	Failure
James	Cat Litter	Failure

Sighted

Searcher	Object	Time
Mengshi	Baby Wipes	0:20
Mengshi	Peanut Butter	0:25
James	Cat Food	0:29
James	Spaghetti	1:05

Insights

- Mobile SLAM still fragile/temperamental
 - Can require specific perspectives to localize
 - Hardware differences
- Lack of feedback during localization disorienting
- Spatial audio was very precise
 - < 1ft navigation</p>

Future Work

Next Steps

Short Term

- User testing + feedback from blind communities
- Ul workflows for sighted users

Long Term

- Integrating GPS navigation
- SLAM improvements for robustness

Open Questions

How can you develop a SLAM solution where the goal isn't precision, but robustness and scalability?

What UI interfaces for VR/AR are best suited for the visually impaired?

Thank you!