Code ▼

Clustering

This notebook tests 3 clustering algorithms: kMeans, Hierarchical and Model-Based.

I am using a dataset on patient survival. (https://www.kaggle.com/datasets/mitishaagarwal/patient)

As there is a lot of data in the dataset, I am going to limit the amount of data used for our clustering algorithms by only using the first 2000 rows and specific relevant columns. I am also making sure I get rid of the NA and invalid fields.

Hide

```
data <- read.csv("dataset.csv", header = TRUE, stringsAsFactors = TRUE) # read in csv
patientData <- data[c(1:2000), c(4, 6, 27, 29, 34, 37, 41, 42, 43, 49, 54, 61, 69, 70, 72, 73, 7
5, 76, 78, 81, 85)] # select relavent columns
patientData <- patientData[complete.cases(patientData), ] # remove all rows with NA in any colum
n
patientData <- patientData[patientData$apache_4a_hospital_death_prob >= 0,] #remove invalid valu
es
patientData <- patientData[patientData$apache_4a_icu_death_prob >= 0,] #remove invalid values
patientData <- scale(patientData)
head(patientData)</pre>
```

	_			resprate_apa			_	_		_
	0.3296004	-	0.5609668	0.3060		-0.6754347		6469094	-1.5208	3080
	0.8935729		0.5609668	0.1106		1.4795236		6021883		
	1.1442273		1.7814272	-1.7779	994	1.4795236		5127459		
	0.2669368		0.5609668	0.2409	341	-0.6754347	0.	3785825	0.8089	9840
7 -	0.2343721	-	0.5609668	1.4132	2181	1.4795236	0.	3338613	1.9738	3799
8	0.4549276	-	0.5609668	-0.2149	9541	1.4795236	0.	6021883	-0.5614	4819
		e_min d1	_spo2_max	d1_spo2_min	d1_temp_mir	h1_heartra	ate_max h1	_resprat	e_min o	d1_glucos
e_m	in									
1 840	-0.40419 17	97416	0.5714806	-1.6378217	1.2451357	1.:	1258059	0.21	18341	-0.12
2 324	0.00598 87	32957	0.5714806	-2.0529092	-1.4705956	0.9	9071942	1.86	12974	0.41
4	-1.01946	57976	0.5714806	0.5413879	-1.8585572	0.2	2950813	-0.94	127903	-0.72
706 6	-0.40419	97416 -	2.4226986	0.1263004	0.4692125	-0.4	4481985	-0.77	78439	0.32
7727175	0.82634	13703	0.5714806	-0.2887872	-1.5999161	-0.6	6230879	0.21	18341	0.44
8 175	0.00598	32957	0.5714806	0.2300723	0.4692125	1.0	0820836	1.53	314047	0.44
		um_max a	pache_4a_h	ospital_deat	:h_prob apad	he_4a_icu_o	death_prob	cirrho	sis dia	abetes_me
11i	tus									
1	-0.353	363526		0.07	027375	- (0.04754737	-0.1489	172	1.
646	513									
2	-0.036	566452		2.58	8674774		1.91286724	-0.1489	172	1.
646	513									
4 606		121840		-0.33	3780311	- (0.21091525	-0.1489	172	-0.
6	-0.512	212062		-0.26	5979030	- (0.29259920	-0.1489	172	1.
646										
7		L21840		0.07	027375	- (0.04754737	-0.1489	172	1.
646	513									
8	2.499	910133		0.13	8828656	(0.03413657	-0.1489	172	-0.
606	932									
i	mmunosuppr	ression	solid_tumc	or_with_metas	stasis hospi	tal_death				
1	-0.2	2609018		-0.19	30605 -	0.2518908				
2	-0.2	2609018		-0.19	30605 -	0.2518908				
4	-0.2	2609018		-0.19	30605 -	0.2518908				
6	-0.2	2609018		-0.19	30605 -	0.2518908				
	0 -	2609018		-0 10	30605 -	0.2518908				
7	-0.2	2009019		0.12	,50005	0.2310300				

kMeans Clustering

kMeans clustering is a centroid-based algorithm that uses Euclidean distances between observations/points to assign to its nearest centroid.

First, I should determine the best number of clusters. I can use the NbClust() function to find the best k value.

```
library(NbClust)
set.seed(1234)
nc <- NbClust(patientData, min.nc=2, max.nc=15, method ="kmeans")</pre>
```

```
Registered S3 methods overwritten by 'htmltools':
```

method from

Warning: did not converge in 10 iterationsWarning: did not converge in 10 iterations

*** : The Hubert index is a graphical method of determining the number of clusters.

In the plot of Hubert index, we seek a significant knee that corresponds to a significant increase of the value of the measure i.e the significant peak in Hub

ert

index second differences plot.

*** : The D index is a graphical method of determining the number of clusters.

In the plot of D index, we seek a significant knee (the significant peak in Dind ex second differences plot) that corresponds to a significant increase of the value of the measure.

- * Among all indices:
- * 10 proposed 2 as the best number of clusters
- * 3 proposed 3 as the best number of clusters
- * 1 proposed 4 as the best number of clusters
- * 2 proposed 7 as the best number of clusters
- * 1 proposed 12 as the best number of clusters
- * 6 proposed 14 as the best number of clusters
- * 1 proposed 15 as the best number of clusters

***** Conclusion *****

* According to the majority rule, the best number of clusters is 2

```
table(nc$Best.n[1,])
```

```
0 2 3 4 7 12 14 15
2 10 3 1 2 1 6 1
```

Hide

```
barplot(table(nc$Best.n[1,]),
    xlab="Number of Clusters", ylab="Number of Criteria",
    main="Number of Clusters")
```

Number of Clusters

The NbClust() function showed that 2 clusters are optimal. Now I will try clustering with kmeans().

```
Hide
```

```
set.seed(1234)
patientCluster <- kmeans(patientData, 2, nstart=24)
patientCluster</pre>
```

211 212	_					_			_					_			_	
2 2	2	2	2	2	2	2	2	1	2	1	2	2	2	2	2	2	2	
2 2 213 214	215	216	217	210	220	222	วาว	225	226	227	220	220	222	224	225	226	227	
238 239	213	210	217	210	220	222	223	223	220	221	223	230	232	234	233	230	237	
2 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
2 2		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
240 241	242	244	245	246	247	250	251	253	254	256	258	259	261	262	263	265	268	
269 270																		
2 2	2	2	2	2	2	1	2	2	2	2	2	2	2	2	2	2	2	
2 2																		
272 274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	291	292	
294 298	2	2	2	1	2	2	2	2	2	1	2	2	2	2	1	2	1	
2 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1	
299 300	302	304	305	306	308	309	312	313	314	315	316	317	318	321	322	323	325	
326 328						302		5_5	J	5_5	3_0		3_0			5_5	5_5	
1 2	2	2	2	2	1	2	2	2	2	2	2	2	2	2	2	2	2	
2 2																		
330 332	333	335	337	338	339	340	342	343	345	346	348	350	352	353	354	355	356	
359 362																		
2 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1	2	
2 2	266	267	260	260	272	276	277	270	200	201	202	202	204	200	200	201	202	
363 364 393 394	300	367	308	309	3/2	3/6	3//	3/9	380	201	382	363	384	300	389	391	392	
2 2	2	2	2	2	2	2	2	1	2	1	2	2	2	2	2	2	2	
2 2	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
395 396	397	399	400	402	405	406	407	409	410	411	412	413	414	415	416	417	418	
419 421																		
2 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
2 2																		
422 423	425	426	427	428	429	431	432	433	434	435	436	437	438	439	440	441	442	
443 444	2	2	า	า	1	า	า	ว	1	า	า	า	า	า	า	2	า	
2 2	2	2	2	2		2	2	2		2	2	2	2	2	2	2	2	
445 446	447	448	449	450	451	452	453	454	455	456	458	460	461	462	463	466	467	
468 469			-												- -		-	
1 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
2 2																		
471 472	473	475	476	478	479	480	481	484	486	487	488	490	491	492	493	495	496	
497 498	4	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
2 2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
499 500	501	503	504	505	508	511	512	514	515	517	518	520	521	523	524	525	526	
528 529	JU1	203	J 0 -	202	200	J	J	J	2-2	J_,	310	220	J	2_2	J	223		
2 2	2	2	2	2	2	2	2	2	1	2	2	2	2	2	2	2	1	
2 2																		
530 531	532	533	534	535	536	538	540	541	542	544	545	547	548	549	551	552	553	
555 556																		
2 2	2	2	2	2	2	2	2	2	2	2	2	1	2	2	2	2	2	
2 2	FF0	F.C.1	E C 2	E C 4	ECT	E 6 7	E C O	ECO	E 7 2	E74	- 7-	E76	E 7.0	E 70	E00	E01	EOO	
557 558	559	56I	562	564	565	56/	568	569	5/3	5/4	5/5	5/6	5/8	5/9	580	281	582	

1																			
583		2	2	2	2	2	2	1	2	1	2	2	2	2	2	2	2	2	
2	2	2	2	2	2	2	2	1	2	1	2	2	2	2	2	2	2	2	
	588	590	591	592	593	594	595	596	599	600	604	606	607	609	611	613	614	616	
617	618																		
1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
2																			
	620	621	622	623	624	625	626	628	629	632	633	636	637	638	639	640	641	642	
643		2	2	2	2	2	2	า	2	2	2	า	1	1	2	2	2	2	
2	2	2	2	2	2	2	2	2	2	2	2	2	1	1	2	2	2	2	
	647	649	651	652	654	655	656	657	658	659	660	663	664	666	668	669	670	671	
673	675																		
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
2	_																		
	678	679	680	681	682	683	684	685	687	691	692	694	695	696	698	699	700	701	
702	703 2	2	2	2	2	2	2	2	2	2	1	2	2	2	2	2	2	2	
2		2	2	2	2	2	2	2	2	2	1	2	2	2	2	2	2	2	
	705	706	707	709	710	711	712	714	715	716	719	724	725	727	728	729	730	731	
732	733																		
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
2																			
	737	738	739	740	743	744	745	746	747	748	749	750	752	753	754	755	756	757	
758	759 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
2		_	_	_	-	_	_	_	_	_	_	_	-	_	-	_	_	-	
	761	762	763	764	766	767	768	770	771	772	774	775	776	777	778	779	781	782	
783	784																		
	2	2	2	2	2	2	1	2	1	2	1	2	2	2	2	2	2	2	
2		707	700	700	700	701	702	705	700	000	001	000	002	005	006	007	000	000	
810	786 911	/8/	788	789	790	/91	792	795	798	800	801	802	803	805	806	807	808	809	
	2	2	2	1	2	2	2	2	2	2	1	2	2	2	2	2	2	2	
2	2																		
812	813	815	817	818	819	820	822	823	824	825	826	827	830	832	833	835	836	837	
838	839																		
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
2	2 842	0/12	0/5	916	017	0/10	940	051	050	OE 1	055	956	057	050	960	061	963	962	
866		043	043	040	047	040	043	931	632	634	دده	0.00	637	920	800	801	802	803	
	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
2	2																		
869	870	872	876	877	879	880	881	882	886	888	889	890	891	892	894	895	896	897	
898		_	_	_	_	_	_		_	_	_	_	_	_	_	_	_		
2	2	2	2	2	2	2	2	2	2	2	2	1	2	2	2	2	2	2	
	2 902	905	906	907	908	909	910	912	913	914	915	918	920	921	922	923	925	926	
927		-05	- 00	-0,	- 00	-05	0					0	- =0					0	
	2	2	2	2	2	2	2	2	2	1	2	2	2	2	2	2	2	2	
2	2																		
931	934	935	936	937	938	939	940	942	943	944	946	947	950	951	958	960	961	964	

```
965 972
  2 2
                 2
                      2
                                2
                                     2
                                                    2
                                                              2
                                                                  2
                                                                                 2
                                                                                      2
                                                                                           2
            1
                           2
                                          1
                                               1
                                                         2
                                                                       1
                                                                            2
973 976 977 978 980 981 982 984 985 987 988 989 990 991 992 993 994 997 998 1
001 1002
                 2
                      2
                           2
                                2
                                    2
                                          2
                                               2
                                                   2
                                                         2
                                                             2
                                                                  2
                                                                       2
                                                                                 2
                                                                                      2
       2
            2
                                                                            2
                                                                                           2
    2
1005 1006 1007 1010 1011 1012 1013 1015 1016 1018 1020 1022 1023 1024 1025 1026 1027 1028 1030 1
031 1033
  2
      2
            2
                 2
                      2
                           2
                                2
                                     2
                                          2
                                               2
                                                    2
                                                        2
                                                             2
                                                                  2
                                                                       2
                                                                            2
                                                                                 2
                                                                                      2
                                                                                           2
1034 1035 1036 1037 1039 1040 1041 1045 1046 1047 1049 1051 1053 1054 1058 1060 1061 1063 1064 1
065 1066
     2
                 2
                                     2
                                                    2
   2
            2
                      2
                           2
                                2
                                          1
                                               2
                                                         2
                                                              2
                                                                  2
                                                                       2
                                                                            2
                                                                                 2
                                                                                           2
1068 1069 1070 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1083 1085 1086 1087 1088 1089 1
090 1091
                                     2
                                               2
                                                   2
                                                         2
                                                                       2
  2
       2
            2
                 1
                      2
                           2
                                2
                                          2
                                                             2
                                                                  2
                                                                            2
                                                                                 2
                                                                                      2
2
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1103 1104 1106 1107 1108 1109 1110 1111 1112 1
113 1114
                                    2
                                                   2
                                                        2
                                                                       2
  2
       2
            2
                 1
                    2
                           2
                                2
                                        1
                                               2
                                                             2
                                                                  2
                                                                            2
                                                                                 2
1115 1116 1118 1119 1121 1122 1123 1124 1125 1126 1128 1129 1130 1132 1133 1134 1135 1136 1137 1
138 1141
  2
      2
            2
                 2
                      2
                           2
                                2
                                     2
                                          2
                                               2
                                                    2
                                                         2
                                                              2
                                                                  1
                                                                       2
                                                                            2
                                                                                 2
                                                                                      2
                                                                                           2
2
1142 1144 1145 1146 1147 1149 1151 1152 1153 1154 1155 1156 1158 1159 1160 1161 1163 1164 1165 1
166 1167
   2 2
            2
                 2
                    2
                         1
                              2
                                  2
                                        2
                                            2
                                                 2
                                                        2
                                                             2
                                                                2
                                                                       2
                                                                            2
                                                                               2
1168 1169 1170 1171 1173 1174 1175 1176 1179 1180 1181 1182 1183 1184 1186 1187 1188 1190 1191 1
192 1194
  2
            2
                 2
                      2
                           2
                                2
                                     2
                                          1
                                               2
                                                    2
                                                         2
                                                             2
                                                                  2
                                                                       2
                                                                            2
                                                                                 2
                                                                                      2
                                                                                           2
       2
1195 1197 1198 1199 1201 1202 1204 1205 1206 1211 1213 1214 1218 1219 1220 1222 1223 1224 1226 1
227 1229
                                                         2
  2
       2
            1
                 2
                      2
                           2
                                2
                                     2
                                          2
                                               2
                                                    2
                                                              2
                                                                  2
                                                                       2
                                                                            2
                                                                                 2
                                                                                      2
                                                                                           2
1230 1231 1232 1234 1235 1236 1237 1238 1240 1241 1242 1244 1245 1246 1248 1249 1250 1251 1252 1
253 1257
     2
            2
                 2
                      2
                           2
                                2
                                    2
                                          2
                                               2
                                                   2
                                                        2
                                                             2
                                                                  2
                                                                       1
                                                                            2
                                                                                 2
                                                                                      2
                                                                                           2
1258 1259 1260 1262 1265 1266 1268 1271 1273 1274 1276 1277 1278 1279 1280 1281 1282 1283 1284 1
285 1286
       2
            2
                 2
                      2
                           2
                                2
                                     2
                                          2
                                               2
                                                    2
                                                         2
                                                              2
                                                                  2
                                                                       2
                                                                                 2
                                                                                      2
  2
                                                                            2
                                                                                           2
1287 1288 1289 1290 1292 1293 1294 1296 1297 1298 1299 1300 1301 1302 1304 1305 1306 1307 1308 1
309 1310
  2
       2
            2
                 2
                      2
                           2
                                1
                                     2
                                          2
                                               2
                                                   1
                                                         2
                                                              2
                                                                  2
                                                                       2
                                                                            2
                                                                                 2
                                                                                      2
                                                                                           2
1311 1312 1313 1314 1315 1317 1318 1320 1322 1324 1325 1326 1329 1330 1331 1333 1334 1335 1336 1
```

```
339 1340
                                                                                                2
1342 1343 1344 1345 1346 1347 1349 1350 1351 1352 1353 1355 1357
        2
             2
                        2
                                  2
                                       2
                                            2
                                                 2
                                                       2
 [ reached getOption("max.print") -- omitted 474 entries ]
Within cluster sum of squares by cluster:
[1] 4039.627 23625.791
 (between_SS / total_SS = 10.6 %)
Available components:
[1] "cluster"
                                   "totss"
                                                                  "tot.withinss" "betweenss"
                    "centers"
                                                   "withinss"
[7] "size"
                    "iter"
                                   "ifault"
```

Now I will plot the kmeans clustering.

Hide

CLUSPLOT(patientData)

These two components explain 27.01 % of the point variability.

Hierarchical Clustering

Hierarchical Clustering uses distance to group observations/points into clusters organized in a hierarchy.

I am using the pvclust package. The pvclust() function performs hierarchical clustering based on p-values, values from 0 to 1 that shows how strong the cluster is supported by the data. I will use Euclidean distance and Ward's method to generate clusters. The pvrect() function then adds rectangles in the dendogram to show the clusters.

```
Hide
library(pvclust)
Warning: package 'pvclust' was built under R version 4.2.3
                                                                                                Hide
fit <- pvclust(patientData, method.hclust = "ward", method.dist="euclidean")</pre>
The "ward" method has been renamed to "ward.D"; note new "ward.D2"
Bootstrap (r = 0.5)... Done.
Bootstrap (r = 0.6)... Done.
Bootstrap (r = 0.7)... Done.
Bootstrap (r = 0.8)... Done.
Bootstrap (r = 0.9)... Done.
Bootstrap (r = 1.0)... Done.
Bootstrap (r = 1.1)... Done.
Bootstrap (r = 1.2)... Done.
Bootstrap (r = 1.3)... Done.
Bootstrap (r = 1.4)... Done.
                                                                                                Hide
plot(fit, hang=-1, cex=.8,
     main="Hierarchical Clustering")
pvrect(fit, alpha=.95)
```

Hierarchical Clustering

Distance: euclidean Cluster method: ward.D

Model-Based Clustering

Model-Based Clustering creates multiple data models and tries to identify the most likely clustering based of a maximum likelihood estimation.

I am using the mclust package. The Mclust() function provides model-based clustering based on parameterized Gaussian mixture models. The model with the largest Bayesian Information Criterion (BIC) is picked as the most optimal.

	Hide
library(mclust)	
Warning: package 'mclust' was built under R version 4.2.3	
	Hide
<pre>fit <- Mclust(patientData)</pre>	

fi	tting
1	0%
1	= 1%
	 ==
I	2%
1	=== 3%
1	==== 4%
	 ==== ====
'	5% ====
1	6%
1	===== 6%
	 ====== 7%
'	
I	8%
1	====== 9%
1	9%
	 ======== 10%
1	10%
I	11%
I	=====================================
	 ========

1	13%
I	 ===================================
I	 ======== 14%
I	 ===================================
I	=====================================
I	 ===================================

========
28%
=======================================
29%
=======================================
30%
=======================================
31%
=======================================
31%
=======================================
32%
=======================================
33%
=======================================
34%
=======================================
35%
=======================================
35%
36%
=======================================
37%
=======================================
38%
=======================================
39%
=======================================
40%
=======================================
41%
42%

I	43%
I	43%
	 ===================================
1	44%
1	45%
	 ====================================
1	46%
ı	46%
1	=====================================
·	
ı	=====================================
•	
ı	=====================================
'	
	=====================================
ı	
	=====================================
ı	50%
ı	51%
	52%
_	 ====================================
	53%
_	======================================
	54% I
	 ===================================
	54% I
	 ===================================
	55% I
	 ===================================

	56%
	 ===================================
1	 57%
I	58%
	 ===================================
	59%
	 60%
•	
1	61%
1	62%
l	63%
1	64%
I	65%
	65%
1	=====================================
•	
ı	67%
	68%
	=====================================
1	69%
1	70%

1	 ===================================
I	 ===================================
ı	 ===================================
I	 ===================================
I	 ===================================
ı	 ===================================
ı	 ===================================
ı	 ===================================
I	 ===================================
ı	 ===================================
I	 ===================================
ı	 ===================================
ı	 81%
ı	
ı	
1	 ===================================
I	

I	86%
I	
I	 ===================================
I	
I	
I	
I	
I	 ===================================
I	 ===================================
ı	 ===================================
ı	 ===================================
I	 ===================================
ı	
ı	
ı	 97%
ı	 98%
=	 ===================================

```
= | 99%
|
|-----=== 100%
```

Hide

plot(fit, what = "classification") # plot results

Hide

summary(fit) # display the best model

Gaussian finite mixture model fitted by EM algorithm

Mclust EEV (ellipsoidal, equal volume and shape) model with 6 components:

	log-likelihood <dbl></dbl>	n <int></int>	df <dbl></dbl>	BIC <dbl></dbl>	ICL <dbl></dbl>
	-27106.63	1474	1412	-64514.85	-64608.75
1 row					

```
Clustering table:
1 2 3 4 5 6
151 162 291 68 496 306
```

Analysis

The kMeans, hierarchical and model-based clustering had varied results:

- KMeans Clustering: 2 Clusters
- Hierarchical Clustering: 6 Clusters
- Model-based Clustering: 6 Clusters

I think model-based clustering showed the best results. KMeans seemed to group most of the points in one cluster and the outliers in another cluster. Hierarchical clustering and model-based clustering provided the same result and had more relevant and useful clusters. However, there is no evidence of a hierarchical structure in our data so I think model-based clustering is more relevant. Model-based clustering also seems the most thorough.