Table of derivatives

Table of derivatives

Function	Derivative	Why?
scalars	0	Scalars can be seen as a flat line on the number line, and so there is no rate of change
$x^n,\ n\in\mathbb{N}-\{0\}$	$n \cdot x^{n-1}$	This is the result of calculating the derivative directly (substitute $ o$ expand $ o$ shorten the result)
ln(x)	$\frac{1}{x}$	Why derivative of ln(x) equals 1 over x
e^x	e^x	It really is a special property it uses the fact that $\lim_{x o 0}rac{e^x-1}{x}=1$
$e^{c\cdot x}$	$c \cdot e^{cx}$	Chain rule and previous derivative
\mathbb{C}^x	$oxed{\mathbb{C}^x = ln(\mathbb{C}) \cdot \mathbb{C}^x}$	<u>Derivative of exponential functions</u>
sin(x)	cos(x)	#TODO
cos(x)	-sin(x)	#TODO
tan(x)	$\frac{1}{\cos^2(x)}$	#TODO
(fg)'	f'g+fg'	Imagine a rectangle. nudges to it's side are most visible as 2 lines of specific length
$\frac{f}{g}$	$rac{f'g{-}fg'}{g^2}$	Just notational shorthand for a $(f \cdot \frac{1}{g})$
arcsin(x)	$\frac{1}{\sqrt{1-x^2}}$	#TODO
arccos(x)	$\frac{-1}{\sqrt{1-x^2}}$	#TODO
arctan(x)	$\frac{1}{1-x^2}$	#TODO