

【低功耗】雷达模块串口通信协议

V4.0

注意事项:

- 1、模块上电后, 需等待 300ms 后再操作 UART。
- 2、发送控制帧后,需等待模块的回复帧后,方可再次操作 UART。
- 3、若通信错误或数据格式错误, 雷达模块不发回复帧, 安全的做法是发送控制帧后, 50ms 内没有收到回复帧, 则说明通信失败, 重新发送控制帧。
- 4、写入参数后,模块会自动软件复位自检,OUT 脚电平变化为先输出低,再输出高,之后进入正常感应阶段

版本信息

【低功耗】雷达模块串口通信协议最新版本是 V4(2023 年 3 月起用),协议向下兼容,

版本号	修改内容	修改人	日期
V1.0	首版协议	Paul Chen	2021.3.17
V2.0	增加距离档位到16个	Paul Chen	2021.8.23
V3.0	增加光敏、开关雷达	Paul Chen	2021.12.1
V4.0	增加封锁时间、增益档位、功耗档位	Paul Chen	2023.3.20
	默认光敏关闭	, XX	

目录

1,	概述	4
2,	通信协议定义	4
:	2.1 帧数据格式	4
3、	命令说明	7
	3.1 基本命令	7
	3.1.1 设置感应距离	7
	3.1.2 获取感应距离	
	3.1.3 设置延迟时间	8
	3.1.4 莽取延迟时间	8
	3.1.5 开关雷达	8
	3.1.6 查询雷达开关	8
	3.1.7 开关光感	
	3.1.8 查询光感开关	9
	3.1.9 设置光感阈值(HIGH)	
	3.1.10 读取光感阈值(HIGH)	
	3.1.11 设置光感阈值(LOW)	9
	3.1.12 读取光感阈值(LOW)	
	3.1.13 设置封锁时间	. 10
	3.1.14 查询封锁时间	. 10
	3.1.15 设置增益值	. 10
	3.1.16 读取增益值	. 11
	3.1.17 设置功耗档位	. 11
	3.1.18 查询功耗档位	. 11

1、 概述

本公司提供的 5.8GHz【低功耗】雷达模块支持通过 UART 通信来设置雷达模块的各类参数和获取雷达模块工作状态等信息。本文主要介绍了我司【低功耗】雷达模块的通信协议格式和各命令说明,便于客户使用我司的雷达模块集成到自己的产品中。

2、 通信协议定义

通信协议的帧数据主要分为控制帧数据和回复帧数据,控制帧为上位机给雷 达模块发送控制命令的帧数据格式,回复帧为雷达模块执行完上位机控制的指令 后回复给上位机的帧数据格式。详细的帧数据格式描述如下。

2.1 帧数据格式

控制帧主要为外部 MCU 或者上位机通过 UART 发送给雷达模块的控制帧数据,每次给雷达模块发控制帧,雷达模块收到后,都会上传回复帧。控制帧和回复帧格式是一样的,其格式定义如下:

■ 串口通信波特率: 9600bps

■ 串口结构: 1+8+1, 即起始位+数据位+停止位, 无奇偶校验, 无流控。

■ 串口数据格式:

1 · · · /// #	1 1 1 290 4 1 1 1 2 0						
Byte地址	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6
域	Hea	ad	Data2	Data3	Data4	CheckCode	Tail
描述	55	5A	命令帧	高字节	低字节		FE

各部分说明:

Head: 帧头,两个字节,值为 0x55, 0x5A;

Data2: 命令帧, 定义如下:

0x09: 雷达开启/关闭使能,写 0x01 打开雷达,写 0x00 关闭雷达

0x89: 读取雷达开/关参数

0x01: 写雷达距离等级(灵敏度)参数

0x81: 读取雷达距离等级参数

0x02: 写雷达延迟时间参数

0x82: 读取雷达延迟时间参数

0x03: 光感开/关参数,写 0x01 开启光感,写 0x00 关闭光感

0x83: 读取光感开/关参数

0x04: 写光感阈值(HIGH)参数

0x84: 读取光感阈值(HIGH)参数

0x05: 写光感阈值(LOW)参数

0x85: 读取光感阈值(LOW)参数

0x06: 设置封锁时间参数0x86: 读取封锁时间参数0x07: 设置增益档位参数0x87: 读取增益档位参数0x08: 设置功耗档位参数

0x88: 读取功耗档位参数

Data3 Data4:参数高8位和低8位(详见下面表格)

Check Code: 校验码,长度为 1byte,值为=Data2^Data3^Data4(即相互异或)

Tail: 结束码,长度为1Byte,固定为0xFE

命令帧	参数类型(Data3/ Data4)	Data3(高8位)	Data4(低8位)	备注
0.00		0.00		↑大 ロ エッチ 44 1
0x09	打开/关闭雷达	0x00	0x00: 关闭雷达	详见下注释1
			0x01:打开雷达	
0x89	读取雷达开关状态		1,1	
0x01	写入距离等级	0x00	取值: 0-15	详见下注释2
0x81	读取距离等级		/)	
0x02	写入延迟时间	0-255	0-255	详见下注释3
0x82	读取延迟时间			
0x03	打开/关闭光感	0x00	0x00:关闭光感	详见下注释9
	~		0x01:打开光感	
0x83	读取光感开关状			
	态			
0x04	设置光感阈值	0-1	023	
	(HIGH)			
0x84	读取光感阈值			
	(HIGH)			详见下注释10
0x05	设置光感阈值	0-1	023	
	(LOW)		,	
0x85	读取光感阈值 (LOW)			
0x06	设置封锁时间	0-255	0-255	注释4
0x86	读取封锁时间			
0x07	设置增益档位	0x00	3B/4B/5B/6B/	注释5
			7B/8B/9B	
0X87	读取增益档位			
0x08	设置功耗档位	0x00	0x00/0x01/0x02	注释6
0x88	读取功耗档位			

注释 1: 出厂默认打开雷达感应功能。用户设置关闭雷达感应后,将不会感应,感应输出脚(OUT 脚)始终为低电平,并且雷达模块功耗更低(30uA 左右)

注释 2: 调距离就是调灵敏度。距离档位取值范围 0-15,数字越小,灵敏度越高,距离越远。

注释 3: 延时时间计算公式如下:

延时时间={Data3(高 8 位):Data4(低 8 位)}*220(MS)

注意:时间最小值为2

受内部晶振精度影响,这个时间不会很精准,延迟越长,误差可能会更大,所以用户需要实测,以得到符合产品要求的延迟时间,以下几组我司实测数据,仅供参考:

→ \H.I = 1 \→
实测时间
0.6s
1.3s
2s
3. 3s
5. 4s
10s
15s
30s
56s
90s

注释 4: 封锁时间,也称保护时间,当雷达 OUT 引脚由高变低之后,即感应输出结束后,接下来会有一段时间停止检测,这段停止检测的时间被称为封锁时间,默认 1S(数值 0x03e8=1000ms),一般不作修改,如特殊需要修改,应设置不小于500ms。

注释 5: 设置雷达增益档位,可选档位值为: 0x3B、0x4B、0x5B、0x6B、0x7B、0x8B、0x9B 中的一个,增益值越大,距离越近; 一般来说,金属外壳产品需要设置较大增益值,塑料外壳产品增益值可小些。

注释 6: 雷达功耗档位有 3 档可选,寄存器值分别为 0x00(40uA)、0x01(70uA)、0x02(120uA),在同等条件下,功耗选择越大,距离也会更远。

注释 7: 参数配置成功后,模块自动保存 ,并且掉电记忆,无须每次上电都配置。

注释 8: 雷达模块进入睡眠后,模块的串口 RX 脚被配置为输入上拉,TX 脚被配 置为推挽高电平输出。

注释 9: 焊接上光感部分电路后,将增加模块功耗(增加 5uA 左右)

注释 10: 光感阈值分 HIGH 和 LOW 两个档位,取值范围都是 0-1023(出厂默认 HIGH=800, LOW=750), 但请保证 HIGH 大于 LOW 值, 其逻辑关系如下图:

光敏阈值逻辑

命令说明 3、

3.1 基本命令

主要用于设置和查询雷达工作参数。

3.1.1 设置感应距离

指令码: Data2=0x01 Data3=0x00

Data4 为距离等级参数,值为 0 $^{\sim}$ 15【0 距离最远,15 距离最近】 举例:

发送数据格式 (十六进制): 55 5a 01 00 03 02 fe //设置距离等级为 3 回复帧: 55 5a 01 00 03 02 fe

3.1.2 获取感应距离

指令码: Data2=0x81

Data3、Data4 任意值

举例:

发送数据格式 (十六进制): 55 5a 81 00 00 81 fe 回复帧: 55 5a 81 00 03 82 fe //读到距离等级为 3

3.1.3 设置延迟时间(触发感应后输出保持时间)

指令码: Data2=0x02

Data3=时间高 8 位, **Data4**=时间低 8 位

举例:

发送数据格式 (十六进制): 55 5a 02 00 04 06 fe

//设置延迟时间位 4*220=880ms

回复帧: 55 5a 02 00 04 06 fe

3.1.4 获取延迟时间

指令码: Data2=0x82

Data3、Data4 任意值

举例:

发送数据格式 (十六进制): 55 5a 82 00 00 82 fe

回复帧: 55 5a 82 00 04 86 fe

//读到延时时间为 4*220=880ms

3.1.5 1打开/关闭雷达感应功能

指令码: Data2=0x09 Data3=0x00

Data4 为 0x01 时打开雷达感应, 为 0x00 时关闭雷达感应

举例:

发送数据格式 (十六进制): 55 5a 09 00 01 08 fe //打开雷达感应 回复帧: 55 5a 09 00 01 08 fe

发送数据格式 (十六进制): 55 5a 09 00 00 09 fe //关闭雷达感应 回复帧: 55 5a 09 00 00 09 fe

3.1.6 查询雷达感应开/关状态

指令码: Data2=0x89

Data3、Data4 任意值

举例:

发送数据格式 (十六进制): 55 5a 89 00 00 89 fe 回复帧: 55 5a 89 00 01 88 fe //查询到打开状态

3.1.7 打开/关闭光感功能

指令码: Data2=0x03 Data3=0x00

Data4 为 0x01 时打开光感, 为 0x00 时关闭光感

举例:

发送数据格式 (十六进制): 55 5a 03 00 01 02 fe //打开光感 回复帧: 55 5a 03 00 01 02 fe

发送数据格式 (十六进制): 55 5a 03 00 00 03 fe //关闭光感 回复帧: 55 5a 03 00 00 03 fe

3.1.8 查询光感开/关状态

指令码: Data2=0x83

Data3、Data4 任意值

举例:

发送数据格式 (十六进制): 55 5a 83 00 00 83 fe

回复帧: 55 5a 83 00 01 82 fe

//查询到光感为打开状态

3.1.9 设置光感阈值(HIGH 档)

指令码: Data2=0x04

光感阈值(HIGH 档)取值范围 0-1023, 即 Data3(低 2 位)+Data4(8 位): 举例:

发送数据格式 (十六进制): 55 5a 04 03 20 27 fe

//HIGH 档阈值设为 0x0320(800)

回复帧: 55 5a 04 03 20 27 fe

3.1.10 读取光感阈值(HIGH 档)

指令码: Data2=0x84

Data3、Data4 任意值

举例:

发送数据格式 (十六进制): 55 5a 84 00 00 84 fe

回复帧: 55 5a 84 03 20 A7 fe

//读取到HIGH档光感阈值0x0320(800)

3.1.11 设置光感阈值(LOW 档)

指令码: Data2=0x05

光感阈值(LOW 档)取值范围 0-1023, 即 Data3(低 2 位)+Data4(8 位):

举例:

发送数据格式 (十六进制): 55 5a 05 02 EE E9 fe //LOW 档阈值设为 0x02ee (750)

回复帧: 55 5a 02 02 EE E9 fe

3.1.12 读取光感阈值(LOW 档)

指令码: Data2=0x85

Data3、Data4 任意值

举例:

发送数据格式 (十六进制): 55 5a 85 00 00 85 fe

回复帧: 55 5a 85 02 ee 69 fe

//读取到 LOW 档光感阈值 0x02ee (750)

3.1.13 设置封锁时间(也称保护时间)

指令码: Data2=0x06

Data3=时间高 8 位, **Data4**=时间低 8 位, 单位 ms 举例:

发送数据格式 (十六进制): 55 5a 06 03 e8 ed fe

//设置封锁时间位 1000ms (0x03e8=1000)

回复帧: 55 5a 06 03 e8 ed fe

3.1.14 查询封锁时间

指令码: Data2=0x86

Data3、Data4 任意值

举例:

发送数据格式 (十六进制): 55 5a 86 00 00 86 fe

回复帧: 55 5a 86 03 e8 6d fe

//读到封锁时间为 1000ms (0x03e8=1000)

3.1.15 设置增益值

指令码: Data2=0x07 Data3=0x00

Data4 为 0x3B、0x4B、0x5B、0x6B、0x7B、0x8B、0x9B 中的一个 值越大,增益越小,距离越近

举例:

发送数据格式 (十六进制): 55 5a 07 00 3B 3C fe //设置增益 0x3B 回复帧: 55 5a 07 00 3B 3C fe

3.1.16 查询增益值

指令码: Data2=0x87

Data3、Data4 任意值

举例:

发送数据格式 (十六进制): 55 5a 87 00 00 87 fe 回复帧: 55 5a 87 00 3B BC fe //查询到增益值 0x3B

3.1.17 设置功耗档位

指令码: Data2=0x08 Data3=0x00

Data4 为 0x00, 0x01, 0x02

0x00 对应 40uA, 0x01 对应 70uA, 0x02 对应 120uA

举例:

发送数据格式 (十六进制): 55 5a 08 00 00 08 fe

//设置设置功耗档位为 0x00, 即 40uA 档位

回复帧: 55 5a 08 00 00 08 fe

3.1.18 查询功耗档位

指令码: Data2=0x88

Data3、Data4 任意值

举例:

发送数据格式 (十六进制): 55 5a 88 00 00 88 fe

回复帧: 55 5a 88 00 00 88 fe //查询到功耗档位为 0x00, 即 40uA 档位

需更多支持扫码加微信

