Glossar

F | G | H | I | K | L | M | R | T | V

 \mathbf{F}

Funktor Eine Abbildung zwischen Kategorien. Es wird zwischen kovarianten Funktoren und kontravarianten Funktoren unterschieden. Für einen kovarianten Funktor F gilt F: $\mathrm{Mor}_{\mathcal{C}}(X,Y) \to \mathrm{Mor}_{\mathcal{D}}(F(X),F(Y))$, im kontravarianten Fall hingegen gilt $F: \mathrm{Mor}_{\mathcal{C}}(X,Y) \to \mathrm{Mor}_{\mathcal{C}}alD(F(Y),F(X))$. 7

 \mathbf{G}

 \mathbf{GL}_n (GL) Allgemeine lineare Gruppe, Gruppe aller regulären $n \times n$ -Matrizen mit Koeffizienten aus einem Körper K. 43

 \mathbf{H}

Halm Ein Halm $\mathcal{O}_{V,x}$ einer quasiprojektiven Varietät V über einem Körper K in $x \in V$ ist definiert als $\mathcal{O}_{V,x} = \{[(U,f)]_{\sim} : U$ offene Umgebung von $x, f \in \mathcal{O}_V(U)\}$ wobei $(u,f) \sim (U',f') \Leftrightarrow f_{U\cap U'} = f'_{U\cap U'}$. 18

Holomorphe Funktion In jedem Punkt aus $U \subseteq \mathbb{C}$ komplex differenzierbare Funktion. Ist sie auf ganz \mathbb{C} komplex differenzierbar, wird sie auch eine ganze Funktion genannt. 9

Ι

Ideal Eine Untergruppe der additiven Gruppe eines Ringes die abgeschlossen bezüglich der Linearkombination ist (also ein Modul). Das bedeutet, dass für jedes $r \in R$, $a \in I$ stets $ra \in I$ ist, man also mit der Multiplikation nicht aus dem Ideal herauskommen kann. In nicht kommutativen Ringen muss zwischen Links- und Rechtsidealen unterschieden werden, dabei werden Ideale, die sowohl Links- und Rechtsideale sind, als zweiseitige Ideale bezeichnet.

Primideal Ein Ideal, bei dem für jedes Produkt auch mindestens ein Faktor darin liegt, also für $ab \in \mathfrak{p}$ ist $a \in \mathfrak{p}$ oder $b \in \mathfrak{p}$. 14

integer irreduzibel und reduziert (auf englisch "integral"). 46, 107

K

Kategorie Eine Kategorie \mathcal{C} besteht aus einer Klasse von Objekten $\mathrm{Ob}(\mathcal{C})$, Mengen $\mathrm{Mor}_{\mathcal{C}}(X,Y)$ von Morphismen von Objekten und Verknüpfungsabbildungen $\mathrm{Mor}_{\mathcal{C}}(Y,Z) \times \mathrm{Mor}_{\mathcal{C}}(X,Y) \to \mathrm{Mor}_{\mathcal{C}}(X,Z), (g,f) \mapsto g \circ f$ (das \circ wird häufig weggelassen). Dabei ist das neutrale Element der Identitätsmorphismus $\mathrm{id}_X: X \to X$. Mit $\mathrm{dom}(f)$ bezeichnet man die Quelle (domain) eines Morphismus f, mit $\mathrm{cod}(f)$ das Ziel (co-domain). 7

Keim Die Elemente eines Helmes, Schreibweise $f_x := (U, f)_{\sim}$. 9

 \mathbf{L}

Lokaler Ring . 18

 \mathbf{M}

Modul Über einem kommutativen Ring mit Eins eine additiv abelsche Gruppe, deren Multiplikationen mit Ringelementen eines Ringes wieder im Modul liegen. Es gelten die Assoziativität und das Distributivgesetz. Man kann das ganze als "Multiplikation mit Skalaren"

interpretieren, wobei die Ringelemente die "Skalare" und die Modulelemente die "Vektoren" sind. 25

Morphismus Allgemein eine Abbildung zwischen zwei Objekten X und Y einer Kategorie \mathcal{C} . Die Menge der Morphismen einer Kategorie wird mit $\mathrm{Mor}_{\mathcal{C}}(X,Y)$ bezeichnet (siehe auch Definition 1.5). 7

Homomorphismus Eine Abbildung zwischen zwei algebraischen Strukturen, die die Verküpfungen erhält. 16

Isomorphismus Ein Morphismus $f: X \to Y$ mit beidseitigem Inversen $g: Y \to X$, das heißt $f \circ g = \mathrm{id}_Y$ und $g \circ f = \mathrm{id}_X$. Allgemein gesprochen ist ein Isomorphismus eine Abbildung, die zwei algebraische Strukturen umkehrbar eindeutig aufeinander abbildet, beide sind also "sozusagen gleich". Dazu muss die Abbildung ein bijektiver Homomorphismus sein. 10

\mathbf{R}

Reguläre Funktion Eine Abbildung $f: U \to \mathbb{A}^1(K)$, die regulär ist für alle $p \in U$, wobei $U \subseteq V$ offen und $V \subseteq \mathbb{A}^n(K)$ eine affine Varietät ist. f heißt dabei regulär in p, wenn es eine Umgebung $U_p \subseteq U$ von p gibt und $g, h \in K[V]$ mit $h(x) \neq 0$ und $f(x) = \frac{g(x)}{h(x)}$ für alle $x \in U_p$. Dieser Begriff wurde in der Vorlesung "Algebraische Geometrie I" im Semester zuvor definiert. 7

\mathbf{T}

Topologischer Raum Eine Menge X zusammen mit einer Topologie T, das heißt einem Mengensystem das offene Teilmengen von X definiert, wobei die leere Menge, die Grundmenge, der Durchschnitt endlich vieler offener Mengen und die Vereinigung beliebig vieler offener Mengen offen sind. 7

\mathbf{V}

Varietät Eine algebraische Varietät ist ein geometrisches Objekt, das durch Polynomgleichungen beschrieben werden kann.

Affine Varietät Eine irreduzible affine algebraische Menge über einem Körper. Affine algebraische Mengen sind definiert als Teilmengen $\{x \in K^n | f_1(x) = \dots f_k(x) = 0\}$ eines affinen Raumes K^n , wobei K ein Körper und $\{f_1, \dots, f_k\}$ eine Menge von Polynomen in $K[X_1, \dots, X_n]$ ist. Eine quasi-affine Varietät ist eine offene Teilmenge einer affinen Varietät. 15

Projektive Varietät Eine irreduzible projektive algebraische Menge über einem Körper. Projektive algebraische Mengen sind definiert als Teilmengen $\{x \in \mathbb{P}^n | f_1(x) = \dots = f_k(x) = 0\}$ eines Projektiven Raumes \mathbb{P}^n über einem Körper K. Dabei sind f_1, \dots, f_k homogene Polynome in $K[X_0, \dots, X_n]$ und $x = [x_0 : \dots : x_n]$ ein Punkt in \mathbb{P}^n . Eine quasi-projektive Varietät ist eine offene Teilmenge einer projektiven Varietät. 7