

# 计算机视觉期中报告

院(系):智能工程学院

**学号:** 20354270

姓名: 张子骏

**日期:** 2022/11/05

实验名称: Plant Pathology 图像分类

## 1. 任务介绍

细粒度多目标分类问题一直是图像分类中较为困难的任务。植物病理学Plant Pathology数据集,包含 4000 张苹果叶面病害的高质量 RGB 图像,其中包含了大量人工注释的标签。由于一个植物可能患有多种疾病,所以该任务为多标签分类问题。但由于标签中有重复特征且重复特征体现在图像上没有区别,所以可以通过一热编码(One-Hot Encoding)转化为六个二分类问题。并且由于数据集本身的细粒度特征,类间差距小而类内差别大,使得图像分类更加困难。

针对以上问题,我使用 pytorch 和 Mindspore 框架,分别搭建了 ViT 模型和 ResNet 模型(由于 ViT 模型太大,使用 ascend910 难以单卡训练,多卡过于昂贵),并对损失函数和网络架构进行了优化。

具体的训练和测试的环境和接口说明在两个文件夹(pytorch/mindspore)的 readme. md 文件(一定要看哦)中,最终得到的最优模型位于两个文件夹的 results 目录下。在 run. sh 文件中定义了四卡的分布式训练方式,如果显卡充足,可换成八卡进行训练。

## 2. 模型介绍

#### 2.1 ViT 模型

随着 Transformer 模型在 NLP 领域的大火,如何将 Transformer 模型应用于 CV 领域成为了研究的热门。其中,ViT 模型成功得将 Transformer 模型应用于 CV 领域。为解决图片的输入问题,ViT 将图片打成不同的 Patch,从而输入进 Transformer 模型的 Encoder 中,经过若干由归一化、多头注意力层、多层感知机组成的 Encoder Block 和 Decoder Block 后,最后由检测头得到最终的分类结果。

我的模型使用了 ViT 模型搭建而成,修改了其中的多头注意力层以及检测头的输出层后,得到了较为优异的结果,在不使用预训练模型的情况下,测试集上的准确率能达到近 70%。



#### 2.2 ResNet 模型

我使用了 Mindspore 的 modelzoo 中的 ResNet18 模型,根据预期的输出,对模型的结构进行调整,改变了输出维度和部分架构。



虽然在训练效果上远不及 ViT 模型,但 ResNet 经典的架构和可理解性让其成为广受欢迎的模型。

## 3. 思考以及主要创新点

我的创新点主要有三个:

● 对 ViT 模型中自注意力网络进行改进,将注意力机制的计算方式改为多头注意力模型,增加了注意力头的数量,使得自注意力层可以更多的得到关于图像内的全局信息。

```
class Attention(nn.Module):
    def __init__(self,
                            # 输入token的dim
                    dim,
                    num_heads=8,
                    qkv_bias=False,
                    qk_scale=None,
                    attn_drop_ratio=0.,
                    proj_drop_ratio=0.):
         super(Attention, self).__i
self.num_heads = num_heads
                                       init
         head_dim = dim // num_heads
         self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
         self.attn_drop = nn.Dropout(attn_drop_ratio)
         self.proj = nn.Linear(dim, dim)
         self.proj_drop = nn.Dropout(proj_drop_ratio)
```

- 针对多目标分类任务,使用一热编码(One-Hot Encoding)完成对目标特征的编码,让复杂的十二分类问题转化为简单的六个二分类问题。
- 受到论文 DETR: End-to-End Object Detection with Transformers 的启发,针对原有计算损失函数的方式(交叉熵损失),根据 Transformer 的 Encoder/Decoder Block 不改变输入输出维度特性,对其中两个 Decoder Block 使用 detection head 得到预测结果,综合两个结果的损失,进行反向传播,提升了模型的鲁棒性。(在下文仔细描述)

### 4. 实验主要模块说明

4.1 One-Hot Encoding

One-Hot Encoding 是广泛应用于自然语言处理 NLP 领域的方法。对每个主要是采用 N 位状态寄存器来对 N 个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候只有一位有效。Onehot 编码是分类变量作为二进制向量的表示。

虽然数据集中数据标签总共有十二类,但由于多标签是由单标签组合而来,所以十二类标签可以由六个二分类标签组合而成。所以可以采用 One-Hot Encoding 的方法对标签进行编码。其代码如下:

```
    label_dict = {'complex': 0, 'frog_eye_leaf_spot': 1, 'healthy': 2,' powdery_mildew': 3, 'rust': 4, 'scab': 5}
    def one_hot(label):
    # label: <type=numpy> [1,4] 表示特征为第2个和第4个
    labels = np.zeros(6, dtype=np.float32)
    num = len(label)
    for i in range(num):
    labels[i] = 1
    return labels
```

#### 4.2 数据预处理 data transform

由于图像具有细粒度的特征,图像的绝大部分地方均无法体现叶子生病的特征,例如硕大的叶片中仅有一小块锈块,便会被判断为 rust,如果采用 randomcrop 等会对图片进行裁剪和选择的变换方式,则会产生大量看不出病态特征的图片被标记为有病而非 healthy,这会极大影响判断的结果。

受此因素的影响,我对其仅进行大小缩放,归一化,数据类型变换、随机 反转等。这样的数据增强更符合数据本身的特性。

经过 data transform之后的图片如下图所示:



#### 4.3 数据集的构建

无论在 pytorch 中还是在 mindspore 中,数据集的构建都是类似的。都需要一个 dataset 类来完成数据的加载。

在 pytorch 中,我的 dataset 类包含三个在构造类时便会自动调用的函数, init 初始化完成对象的传入和建立。\_\_getitem\_\_完成对数据对象的获取和简单变换, len 函数完成对数据集长度的获取。

- class MyDataset(Dataset):
   def \_\_init\_\_(self, data\_type, data\_dict, data\_transform, read \_\_data, train\_small\_batch=None):
- 3. super(). init ()
- 4. self.train small = train small batch
- 5. self.data\_dict = data\_dict
- 6. self.read data = read data
- 7. self.data transform = data transform
- 8. self.images, self.labels = read\_data(data\_type, self.data
  \_dict, self.data\_transform, self.train\_small)

在 mindspore 中, dataset 类与在 pytorch 中类似。\_\_next\_\_完成对数据对象的获取和简单变换, len 函数完成对数据集长度的获取。

#### 4.4 损失函数 Loss

由于分类问题为多标签分类转化为的六个二分类问题,网络最终输出的预测结果维度是[batch\_size, 6]维度的 tensor。所以可以使用交叉熵损失函数进行误差计算和反向传播。其类如下:

据此可以计算出输出和 label 的交叉熵损失,从而进行反向传播。在 Mindspore 的 ResNet 中,我是用 reduction=' mean' 的 BCEloss 实现。

由于 ViT 中 Decoder 模型不改变输入输出维度的特征,我对损失函数进行了优化,如下图为 ViT 的一个 Block 的结构图:

```
(9): Block(
  (norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
  (attn): Attention(
      (qkv): Linear(in_features=768, out_features=2304, bias=True)
      (attn_drop): Dropout(p=0.0, inplace=False)
      (proj): Linear(in_features=768, out_features=768, bias=True)
      (proj_drop): Dropout(p=0.0, inplace=False)
)
      (drop_path): Identity()
      (norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
      (mlp): Mlp(
            (fc1): Linear(in_features=768, out_features=3072, bias=True)
            (act): GELU()
            (fc2): Linear(in_features=3072, out_features=768, bias=True)
            (drop): Dropout(p=0.0, inplace=False)
      )
)
```

受到论文 DETR: End-to-End Object Detection with Transformers 的启发,我在中间一个 Block 后,使用 detection head 得到预测结果。和经历完整的网络后的输出相结合,对二者的 loss 进行加权,之后进行反向传播。

```
self.blocks = nn.Sequential(*[
    Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop_ratio=drop_ratio, attn_drop_ratio=attn_drop_ratio, drop_path_ratio=dpr[i], norm_layer=norm_layer, act_layer=act_layer)

for i in range(depth)

])

self.blocks1 = nn.Sequential(*[
    Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop_ratio=drop_ratio, attn_drop_ratio=attn_drop_ratio, drop_path_ratio=dpr[i], norm_layer=norm_layer, act_layer=act_layer)

for i in range(depth-1)

对 ViT 类的 forward 函数修改加下,可返回两个计算结果。从而输出,计算误
```

对 ViT 类的 forward 函数修改如下,可返回两个计算结果。从而输出,计算误差。

```
def forward(self, x):|
    x, x1 = self.forward_features(x)
    if self.head_dist is not None:
        x, x_dist,x1, x1_dist = self.head(x[0]), self.head_dist(x[1]),self.head(x1[0]), self.head_dist(x1[1])
        if self.training and not torch.jit.is_scripting():
            # during inference, return the average of both classifier predictions
            return x, x_dist,x1, x1_dist
        else:
            return (x + x_dist) / 2, (x1 + x1_dist) / 2
    else:
        x1 = self.head(x1)
    return x,x1
```

#### 4.5 训练步骤

使用 mindspore 和 pytorch 都有的 Adam 优化器,将 learning\_rate 学习率设置较低。根据实验得到的反馈得知,在本实验中,learning\_rate 设置的很小利于 loss 的降低。所以将其设置为 le-5。

在 Mindspore 中设置 Checkpoint Config, callback 函数。随着训练的进行,每隔几次保存训练的权重在 results 文件夹中。

model.train(2000, train\_set,callbacks=[ckpoint\_cb, LossMonitor(per\_prin t\_times=1),eval\_cb],dataset\_sink\_mode=dataset\_sink\_mode)

使用 train 进行训练。

在 pytorch 中,与 mindspore 不同之处在于需要自行定义模型训练的步骤。典型环节是 pytorch 反向传播"三大件":清除梯度,反向传播,梯度更新,代码如下所示:

- loss = criterion(output, labels)
- 2. optimizer.zero\_grad() # 清除梯度
- 3. loss.backward() # 反向传播
- 4. optimizer.step() # 梯度更新

在保存模型时,我选择保存在验证集上取得效果最好的模型。对 eval\_loss 进行判断,保留使 eval loss 最小的模型。

## 5. 实验结果

## 5.1 ResNet 结果

上图为 ResNet18 在 Mindspore 中的训练过程。最终模型位于 result 文件 夹中。

```
[WARNING] MD(1029,7f10189c8740,python):2022-11-05-14:19:40.203.235 [mindspore/ccsrc/minddata/dataset/kernels/data/compose_o p.cc:58] ComposeOp] Compose: input 'transforms'(op_list) has only 1 op. Compose is probably not needed. [WARNING] MD(1029,7f10189c8740,python):2022-11-05-14:19:40.204.580 [mindspore/ccsrc/minddata/dataset/kernels/data/compose_o p.cc:58] ComposeOp] Compose: input 'transforms'(op_list) has only 1 op. Compose is probably not needed. [WARNING] MD(1029,7f10189c8740,python):2022-11-05-14:19:40.285.256 [mindspore/ccsrc/minddata/dataset/kernels/data/compose_o p.cc:58] ComposeOp] Compose: input 'transforms'(op_list) has only 1 op. Compose is probably not needed.
```

{'Accuracy': 0.659722222222222}}

### 5.2 ViT 结果

上图为训练过程中的案例,大致能体现出训练集的训练过程。

## 6. 思考和心得

对于细粒度的分类问题,主要难点在于类间差距小而类内差别大,使得 图像分类更加困难。

首先是编码问题,由于数据集中数据标签总共有十二类,但由于多标签 是由单标签组合而来,所以十二类标签可以由六个二分类标签组合而成。所以 我才用了 One-Hot Encoding 进行编码。

在使用 pytorch 进行代码编写时,遇到了许许多多的问题。尤其是在多卡分布式训练时,给我造成了很大的麻烦。由于单卡 2080Ti 仅 11G 显存,我不得不使用多卡进行编写和训练。在开始时总遇到仅一个卡再跑,其他的空闲,后来在我不断的调整下,终于让四卡同时跑了起来。

在使用 mindspore 进行 resnet18 的输出时,发现输出的预测结果全是 0, loss 一直无法下降. 这是由于经过了 sigmoid 函数,但阈值设置的不合理,计算损失时传播无法进行导致的。后来经过修改后终于可以输出正常的结果。

在本次作业中,经过实践,我学到了许许多多的知识。首先是熟悉了mindspore 的框架,能够使用 mindspore 完成深度学习任务。其次,我对pytorch 框架达到了更深的了解。可以使用多卡进行大型项目的编写。我还对经典架构进行了复现和改进,让我对 resnet 以及"一统天下"的 transformer有了更深的了解。

