Projektowanie Algorytmów i Metody Sztucznej Inteligencji								
Projekt 2	Prowadzący	Mgr inż. Marta Emirsajłow	Termin	Pt, 7:30 – 9:00				
	Wykonał	Amadeusz Janiszyn 249013	Data	03.05.2020				

1. Wprowadzenie

Celem projektu było zbadanie efektywności wybranego algorytmu w zależności od sposobu reprezentacji grafu oraz jego gęstości. Testy zostały wykonane dla 5 różnych wartości wierzchołków: *5, 10, 30, 50, 100* oraz gęstości grafu: *25%, 50%, 75%, 100%*. Dla każdego zestawu zostało wygenerowane po 100 grafów, wyniki zostały uśrednione.

2. Badany algorytm

Badanym algorytmem był algorytm Bellmana-Forda. Algorytm służy do znalezienia najkrótszej ścieżki w grafie ważonym z wierzchołka początkowego do wszystkich pozostałych. Działanie algorytmu opiera się na zasadzie relaksacji czyli sprawdzaniu czy przy przejściu daną krawędzią grafu, nie otrzymamy krótszej ścieżki niż dotychczasowa.

Złóżoność obliczeniowa: O(V * E)

3. Wyniki

LISTA	Gęstość			
Wierzchołki	25%	50%	75%	100%
5	1,5812	1,4397	1,4422	97,5467
10	1,9944	1,7554	1,7762	957,6597
30	3,2213	2,9905	3,1063	29794,1096
50	4,3808	3,9648	4,2403	161732,125
100	6,5172	6,85	6,7413	1783804,432

Tabela 1. Uzyskane wartości czasu podane w [ms] działania algorytmu dla listy.

MACIERZ	Gęstość					
Wierzchołki	25%	50%	75%	100%		
5	12,639	14,104	15,764	18,684		
10	69,677	74,768	75,411	76,812		
30	1642,165	1652,699	1606,768	1686,407		
50	7394,754	7311,304	7190,267	7331,305		
100	56931,916	57216,113	57429,561	56844,835		

Tabela 2. Uzyskane wartości czasu podane w [ms] działania algorytmu dla macierzy.

Wykres 1. Porównanie czasu dla listy oraz macierzy przy gęstości = 25 %

Wykres 2. Porównanie czasu dla listy oraz macierzy przy gęstości = 50 %

Wykres 3. Porównanie czasu dla listy oraz macierzy przy gęstości = 75 %

Wykres 4. Porównanie czasu dla listy oraz macierzy przy gęstości = 100 %

Wykres 5. Porównanie czasu realizacji algorytmu dla poszczególnych zestawów wartości zaimplementowanych na liście.

Wykres 6. Czas realizacji bez uwzględnionego grafu pełnego dla listy

Wykres 7. Porównanie czasu realizacji algorytmu dla poszczególnych zestawów wartości zaimplementowanych na macierzy.

4. Wnioski

Dla poszczególnych struktur (Lista lub Macierz) czas wykonania algorytmu nie różnił się znacząco oprócz pełnej gęstości grafu przy liście. Czas potrzebny na wykonanie testu był znacznie dłuższy niż w przypadku mniejszych gęstości. Prawdopodobną przyczyną było duże obciążenie sprzętowe. (Dlatego zostały umieszczone 2 wykresy dla listy)

Implementacja algorytmu na liście powoduje, że czas wykonania będzie zawsze dużo razy szybszy niż w przypadku macierzy. Czas obliczeniowy potrzebny do wykonania algorytmu na macierzy jest znacznie dłuższy ale za to nie różnił się znacząco przy różnych gęstościach.

Algorytm Bellmana-Forda jest algorytmem o wysokim stopniu złożoności w etapie implementacji. Na wykresach można dostrzec pewne niezgodności które mogły wystąpić poprzez błędy w implementacji lub problemy na poziomie sprzętowym.