تعليمات عامة

- يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة ؟
- عدد الصفحات: 3 (الصفحة الأولى تتضمن تعليمات ومكونات الموضوع والصفحتان المتبقيتان تتضمنان موضوع الامتحان) ؛
 - يمكن للمترشح إنجاز تمارين الامتحان حسب الترتيب الذي يناسبه ؛
 - ينبغي تفادي استعمال اللون الأحمر عند تحرير الأجوبة ؛
- بالرغم من تكرار بعض الرموز في أكثر من تمرين ، فكل رمز مرتبط بالتمرين المستعمل فيه ولا علاقة له بالتمارين السابقة أو اللاحقة .

مكونات الموضوع

- يتكون الموضوع من ثلاثة تمارين و مسألة، مستقلة فيما بينها، و تتوزع حسب المجالات كما يلي:

3 نقط	الهندسة الفضائية	التمرين الأول
3 نقط	الأعداد العقدية	التمرين الثاني
3 نقط	حساب الاحتمالات	التمرين الثالث
11 نقط	دراسة دالة عددية وحساب التكامل والمتتاليات العددية	المسألة

- بالنسبة للمسألة ، ln يرمز للوغاريتم النبيري

RS 22

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2015 - الموضوع - مادة: الرياضيات - شعبة العلوم التجريبية بمساكها وشعبة العلوم والتكنولوجيات بمسلكيها

<u>التمرين الأول</u> (3 ن):

x+y+z+4=0 نعتبر ، في الفضاء المنسوب إلى معلم متعامد ممنظم مباشر $\left(0,\vec{i},\vec{j},\vec{k}\right)$ ، المستوى $\left(P\right)$ الذي معادلته $\Omega(1,-1,-1)$ و شعاعها $\sqrt{3}$

$$(S)$$
 مماس للفلكة $d(\Omega,(P))$ و استنتج أن المستوى (P) مماس للفلكة (D) مماس الفلكة (D) مماس الفل

$$(S)$$
 و الفلكة (P) و الفلكة (P) ب) تحقق من أن النقطة $H(0,-2,-2)$ و الفلكة (P) و الفلكة (P)

$$B(1,0,1)$$
 و $A(2,1,1)$ عتبر النقطتين -2

$$(OAB)$$
 و استنتج أن $x-y-z=0$ و استنتج أن $\overrightarrow{OA} \wedge \overrightarrow{OB} = \overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k}$ المستوى 0.75

$$(OAB)$$
 ب) حدد تمثيلا بارامتريا للمستقيم (Δ) المار من Ω و العمودي على المستوى (OAB

(
$$S$$
) و الفلكة (Δ) و الفلكة (Δ) عدد مثلوث إحداثيات كل نقطة من نقطتي تقاطع المستقيم (Δ) و الفلكة (Δ)

<u>التمرين الثاني (</u> 3 ن):

$$z^2 + 10z + 26 = 0$$
: المعادلة C المعدية الأعداد العقدية 0.75

ي التي الحاقها Ω و B و B و A النقط $O, \overrightarrow{e_1}, \overrightarrow{e_2}$ التي الحاقها O و O و O التي الحاقها O التي الحاقها O

$$\omega=-3$$
 و $c=-5-i$ و $b=-5+i$ و $a=-2+2i$: على التوالي هي $a=0$ و $b=0$

$$\frac{b-\omega}{a-\omega}=i$$
 بين أن (0.5

0.5

0.5

0.5

1

$$\Omega AB$$
 ب) استنتج طبیعة المثلث

$$6+4i$$
 لتكن النقطة \vec{u} التي لحقها T بالإزاحة T دات المتجهة التي لحقها D

$$1+3i$$
 هو D النقطة D هو أ

$$\begin{bmatrix} BD \end{bmatrix}$$
 و استنتج أن النقطة A هي منتصف القطعة $\frac{b-d}{a-d}=2$: 0.75

<u>التمرين الثالث(</u> 3 ن) :

يحتوي صندوق على ثماني كرات: 3كرات حمراء و 3كرات خضراء و كرتان بيضاوان (لا يمكن التمييز بينها باللمس) نسحب عشوائيا بالتتابع و بدون إحلال كرتين من الصندوق .

. " الحدث
$$A$$
 التالي: " الحصول على كرة بيضاء واحدة على الأقل " . و الحدث B التالى: " الحصول على كرتين من نفس اللون " .

$$p(B) = \frac{1}{4}$$
 بين أن $p(A) = \frac{13}{28}$

$$X$$
 المتغير العشوائي الذي يساوي عدد الكرات البيضاء المسحوبة .

$$p(X=2) = \frac{1}{28}$$
 بين أن (0.5

$$E(X)$$
 ب) حدد قانون احتمال المتغير العشوائي X و احسب الأمل الرياضي

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2015 - الموضوع - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها

ال<u>مسألة (</u> 11 ن):

$$g(x) = e^x - 2x$$
: بما يلى يا الدالة العددية المعرفة على يا بما يلى يا الدالة العددية المعرفة على إ

$$[\ln 2, +\infty[$$
 لكل x من R ثم استنتج أن g تناقصية على $[-\infty, \ln 2]$ و تزايدية على $g'(x)$ احسب (1 $g'(x)$

$$g(\ln 2)$$
 ثم حدد إشارة $g(\ln 2) = 2(1-\ln 2)$ ثم حدد إشارة (0.5

$$IR$$
 من $g(x) > 0$ لكل من $g(x) > 0$

0.5

1

$$f(x) = \frac{x}{e^x - 2x}$$
: بما يلي بين الدالة العددية f المعرفة على f بما يلي:

(
$$1cm$$
 الوحدة) لمنحنى الممثل للدالة f في معلم متعامد ممنظم (C الوحدة) و ليكن

$$(IR^*$$
 نك x ك $e^x - 2x = x \left(\frac{e^x}{x} - 2\right)$ يين أن $\lim_{x \to -\infty} f(x) = -\frac{1}{2}$ و $\lim_{x \to +\infty} f(x) = 0$ نكل $\lim_{x \to +\infty} f(x) = 0$

ب) أول هندسيا كل نتيجة من النتيجتين السابقتين.

$$IR$$
 نکل $f'(x) = \frac{(1-x)e^x}{(e^x - 2x)^2}$ نکل $f'(x) = \frac{(1-x)e^x}{(e^x - 2x)^2}$ 0.75

$$R$$
 على R على ادرس إشارة $f'(x)$ على الله على R ثم أعط جدول تغيرات الدالم R على R

. المماس للمنحنى
$$(C)$$
 في النقطة O أصل المعلم و O المماس للمنحنى O في النقطة O أصل المعلم .

المستقيم
$$(C)$$
 والمنحنى (C) والمنحنى (C) والمنحنى (C) المستقيم (C) المس

 $(\frac{3}{2}$ انعطاف أفصول إحداهما ينتمي إلى المجال]0,1[و أفصول الأخرى أكبر من

$$[0,+\infty[$$
 لكل x من المجال $xe^{-x} \le \frac{x}{e^x - 2x} \le \frac{1}{e-2}$ أ- بين أن $(4$

$$\int_{0}^{1} xe^{-x} dx = 1 - \frac{2}{e}$$
 بين أن بين أن مكاملة بالأجزاء ، بين أن 0.75

ج- لتكن ، ب
$$(C)$$
 مساحة حيز المستوى المحصور بين المنحنى (C) و محور الأفاصيل و المستقيمين $x=1$ و $x=0$ اللذين معادلتاهما $x=1$

$$1-\frac{2}{e} \le A(E) \le \frac{1}{e-2}$$
 ہین اُن

$$h(x)=f(x)$$
 : يلي الدالة العددية المعرفة على المجال $-\infty,0$ الدالة العددية المعرفة ال

معرفة على مجال
$$J$$
 يتم تحديده . h^{-1} معرفة على مجال h يتم تحديده . h

$$h^{-1}$$
 الممثل للدالة $\left(C_{h^{-1}}
ight)$ ، المنحنى $\left(C_{h^{-1}}
ight)$ الممثل للدالة $\left(0,\vec{i},\vec{j}
ight)$

$$I\!N$$
 من $u_{n+1}=h(u_n)$ و $u_0=-2$: لكن المعرفة بما يلي المعرفة بما يلي -IV

$$IN$$
 من n لكل $u_n \le 0$ الترجع أن $u_n \le 0$ بين بالترجع أن $u_n \le 0$

$$(]-\infty,0]$$
 لكل x من المجال (u_n) تزايدية (u_n) تزايدية (u_n) تزايدية (u_n) تزايدية (u_n) الكل $(2$

. استنتج أن المتتالية
$$(u_n)$$
 متقاربة و حدد نهايتها (3 0.75

الصفحة	DD 00
2	RR 22

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2015 - عناصر الإجابة – مادة: الرياضيات – شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها

مسألة (11 ن)			
$[\ln 2,+\infty[$ و 0.25 ل $g'(x)$ و 0.25 ل $g'(x)$ تناقصية على $g'(x)$ او 0.25 لحساب و $g'(x)$	(1 (I	0.75	
0.25 للتحقق و 0.25 لإشارة (g(ln 2)	(2	0.5	
0.5	(3	0.5	
أ- 0.5 لحساب كل نهاية ب- 0.25 لكل تأويل	(1(II	1.5	
أ- 0.75 ب- 0.25 لإشارة $f'(x)$ على $-\infty,1$ على $-\infty,1$ و 0.25 لإشارة $-\infty,1$ على $-\infty,1$ و 0.25 لجدول التغيرات $-\infty,1$	(2	1.75	
0.25 - _උ	`		
(انظر الشكل)	(3	1	
اً- 0.25 لي الأجزاء و 0.25 و 0.5 لي بية المكاملة بالأجزاء و 0.25 للحساب $xe^{-x} \leq \frac{x}{e^x - 2x}$ و 0.5 للحساب أو تقنية المكاملة بالأجزاء و 0.25 للحساب		2	
$\int_0^1 xe^{-x}dx \le \int_0^1 f(x)dx \le \int_0^1 \frac{1}{e-2}dx$ و 0.25 و 0.25 و $A(E) = \left(\int_0^1 f(x)dx\right)$ cm^2 ن 0.25 -ج	(4		
$J=\left]-rac{1}{2},0 ight]$ لا تقبل دالة عكسية و $oldsymbol{0.25}$ للتوصل إلى المجال المجال h	(1 (III	0.5	
0.5 (انظر الشكل)	(2	0.5	
0.5	(1(IV	0.5	
0.75	(2	0.75	
$h(]-\infty,0])$ و [$-\infty,0$] و $]-\infty,0$ و 0.25 للتركيز على h متصلة على $]-\infty,0$ و التركيز على $h(]-\infty,0]$ و $[-\infty,0]$		0.75	
و 0.25 لَنْهَايَة المتتالية هي ()	(3		

