

Conditional Mutagenesis of Zebrafish tcf21

Joshua Schaaf¹, Leonard Burg¹, Shannan Lowe¹, Noah Goff¹, and Darius Balciunas¹

College of Science and Technology

1. Department of Biology, Temple University

Introduction

Many eukaryotic genes serve functions in multiple biological processes, at different times and in different tissues. These pleiotropic genes prove difficult to analyze with traditional knock-outs due to their widespread functions. Conditional mutagenesis is needed to test for the necessity of these genes; however, conditional gene inactivation has until recently only been feasible in the mouse. This led other model systems to use substitute approaches such as overexpression of dominant negatives and antisensebased tools³. Mutant *tcf21* is known to be embryonic lethal in zebrafish². It is also expressed specifically in epicardial cells post-amputation of a section of the zebrafish heart², causing some speculation around its necessity for heart regeneration. Complete conditional gene inactivation has previously been successfully described in zebrafish *fleer* and $tbx20^1$, but has yet to be implemented in zebrafish *tcf21*. Described here is a straightforward approach for integrating loxP sequences at tcf21 using CRISPR/Cas9 technology paired with oligonucleotide templates for homology directed repair.

Conditional Gene Inactivation

The loxP sequence:

- 34 bp
- Directional
- Bacteriophage P1

Cre-loxP Interaction:

Cre-Ert2 fusion + 4-hydroxytamoxifen

Why tcf21?

Mutant *tcf21* is embryonic lethal & epicardial expression:

Pharyngeal arches (Alcian Blue)

Burg et.al (2018)

Expression in zebrafish heart pre/post amputation

Kikuchi et.al (2011)

CRISPR/Oligo HDR

Using CRISPR/Cas9 to induce a DSB:

- Guide RNA has region homologous to desired DSB location
- 5' UTR

Oligonucleotide mediated homology directed repair:

- HDR vs NHEJ (majority)
- 3' and 5' homology arms

Expected final integration of loxP sequences on *tcf21*:

- loxP in non-coding region
- Flanking essential part of gene

Genotyping for 5' UTR loxP

PCR/Gel electrophoresis:

Checking for 5' UTR loxP

Sanger sequencing of fish 5 amplicon:

- Forward *tcf21* primer

Sequence alignment

expected tcf21_f1 expected tcf21 f1

SEQUENCE OF FIRST LOXP SITE IN FO FISH

Intron loxP HDR Activity

Checking for any loxP integration: • Sanger sequencing – reverse *tcf21* primer

Possible sequence

LOXP SITE

Injected Fish Mosaicism

FO Injections:

Cross mosaic fish positive for germline edit

Germline Transmission 1

Adult F1 (+) loxP

Injected F0 fish:

- Embryo DNA preparations
- 60 total embryos 1144 bp
- Nested PCRs

tcf21_r4

tcf21_5'f2 and tcf21_r11

Germline Transmission 2

14 & 15 are being in-crossed, and the DNA is being sequenced.

Creating Conditional Mutant

Cross 'floxed' *tcf21* fish with specific *Cre* driver:

• Cre-Ert2: inactive until 4-hydroxytamoxifen is present

Cre-loxP Zebrafish

- Transcribed 2. Translated
- - 3. Protein Degraded

Conclusions

- Confirmed successful integration of 5' UTR loxP site in *tcf21* - Sanger sequencing/alignment
 - Created a line of zebrafish homozygous for 5' UTR loxP
- Confirmed oligonucleotide mediated HDR with sanger sequencing for intron loxP
- Genotyped injected zebrafish homozygous for 5' UTR loxP
 - ~19 f0 injected fish genotyped by germline transmission
 - 1 pair f0 fish positive for germline transmission of the intron loxP

Future Work

- More f0 fish are ready to be screened
- Continuation of germline transmission genotyping
- In-cross and sequence DNA from 14 & 15 progeny
- Cross fully 'floxed' *tcf21* zebrafish with a zebrafish with *Cre*-Ert2 driver

- Observe phenotype(s) of conditionally knocked-out *tcf21* post

cardiac injury - Genotype conditional mutants post tamoxifen treatment

Literature Cited

- Burg L, Palmer N, Kikhi K, Miroshnik ES, Rueckert H, Gaddy E, et al. (2018) Conditional mutagenesis by oligonucleotidemediated integration of loxP sites in zebrafish. PLoSGenet 14(11): e1007754.https://doi.org/10.1371/journal.
- Kikuchi, K., et al. "tcf21+ Epicardial Cells Adopt Non-Myocardial Fates during Zebrafish Heart Development and
- Regeneration." *Development,* vol. 138, no. 14, 2011, pp. 2895–2902., doi:10.1242/dev.067041 Aidas N and Stephen C. Ekker. "Effective Targeted Gene 'Knockdown' in Zebrafish." Nature Genetics, vol. 26, no. 2, 2000, pp. 216-220., doi:10.1038/79951