Announcement

Project 2 due next Monday!

No Class next Monday!

Midterm: Nov. 2

Bayes Nets: Exact Inference

AIMA Chapter 14.4, PRML Chapter 8.4

Inference

 Inference: calculating some useful quantity from a probability model (joint probability distribution)

• Examples:

- Posterior marginal probability
 - $P(Q|e_1,...,e_k)$
 - E.g., what disease might I have?
- Most likely explanation:
 - $\operatorname{argmax}_{q} P(Q=q | e_1,...,e_k)$
 - E.g., what did he say?

Inference by Enumeration

General case:

Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ Query variable: Q Hidden variables: $H_1 \dots H_r$

We want:

$$P(Q|e_1 \dots e_k)$$

Step 1: Select the entries consistent with the evidence

Step 2: Sum out H to get joint of Query and evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

Inference by Enumeration in Bayes Net

- The joint distribution can be computed from a BN by multiplying the conditional distributions
- Then we can do inference by enumeration

$$P(B \mid +j,+m) \propto_{B} P(B,+j,+m)$$

$$= \sum_{e,a} P(B,e,a,+j,+m)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$

Problem: sums of *exponentially many* products!

Inference by Enumeration in Bayes Net

$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

$$= \sum_{e,a} P(B,e,a,+j,+m)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$

$$= P(B)P(+e)P(+a|B,+e)\frac{P(+j|+a)P(+m|+a)}{P(B)P(-e)P(-a|B,+e)} + P(B)P(+e)P(-a|B,+e)\frac{P(+j|-a)P(+m|-a)}{P(B)P(-e)P(+a|B,-e)\frac{P(+j|+a)P(+m|+a)}{P(+j|+a)P(+m|+a)}} + P(B)P(-e)P(-a|B,-e)\frac{P(+j|-a)P(+m|-a)}{P(+j|-a)P(+m|-a)}$$

Lots of repeated subexpressions!

Can we do better?

- Consider uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz
 - 16 multiplies, 7 adds
 - Lots of repeated subexpressions!
- Rewrite as (u+v)(w+x)(y+z)
 - 2 multiplies, 3 adds

Variable elimination: The basic ideas

- Move summations inwards as far as possible
 - $P(B | j, m) = \alpha \sum_{e,a} P(B) P(e) P(a | B,e) P(j | a) P(m | a)$
 - $= \alpha P(B) \sum_{e} P(e) \sum_{a} P(a|B,e) P(j|a) P(m|a)$
- Do the calculation from the inside out
 - I.e., sum over *a* first, the sum over *e*
 - Problem: P(a|B,e) isn't a single number, it's a bunch of different numbers depending on the values of B and e
 - Solution: use arrays of numbers (of various dimensions)
 with appropriate operations on them; these are called factors

