HITELES ENERGETIKAI TANÚSÍTVÁNY

Lechner Nonprofit Kft.

ÖSSZESÍTŐ LAP

HET-00345838

Épület (önálló rendeltetési egység)

Rendeltetés: Lakó- és szállásjellegű

Alapterület: 54 m²

1188 Budapest Cím:

Felleg utca 45

HRSZ: 142224

Megrendelő

Név: Szabó Katalin Cím: Magyarország (HU) 1188 Budapest Felleg utca 45.

Az energetikai minőség szerinti besorolás:

Gyenge

Energetikai adatok

Épület A/V aránya: 1,29 Fűtött alapterület: 54 m²

Fajlagos hőveszteségtényező értéke: 1,74 W/m³K

Fajlagos hőveszteségtényező a

követelményérték százalékában: 303,13%

Fajlagos primer energiafogyasztása: 620,28 kWh/m²a Követelményérték (viszonyítási alap): 228,56 kWh/m²a

Fajlagos primer energiafogyasztás a

követelményérték százalékában: 271,4%

Nyári túlmelegedés kockázata nem áll fenn.

Tanúsító szakember adatai

FREI ILDIKÓ Név: Cím: 2000 Szentendre

Szirt u. 1. 20/993-0906 Telefon:

Email: freiildiko@fpgepeszet.hu

Jogosultsági szám: TÉ-01-12322 Tanúsítvány azonosítója a tanúsítónál:

FP-2693/2015.

Tanúsítványt készítő szoftver megnevezése:

WinWatt 7.34 (2015. 6. 29.)

A tanúsítvány készítésének dátuma:

2015. november 4.

Hitelesítés (feltöltés) dátuma:

2015. november 4.

Korszerűsítési javaslat

Külső falak hőszigetelése 12 cm vtg.-ban, padlásfödém hőszigetelése 15 cm vtg.-ban (lambda szig=0,037 W/mK), nyílászárók cseréje korszerű, mai követelménynek megfelelő minőségűre (Uw=1,6 W/m2K), kondenzációs kombi gázkazán radiátoros fűtés kialakítással.(amennyiben elhelyezése lehetséges)

A javaslat megvalósítása esetén elérhető minősítés: 🛕

Megjegyzés

A számítás a 7/2006. TNM rendelet 2015.I.1-i állapot szerint készült. A tanúsítvány helyszíni szemrevételezés (felmérés dátuma: 2015. 10. 11.04), ill. adatszolgáltatás alapján az épület korának figyelembe vételével készült, falbontás nem történt! A tanúsítvány a fenti helyrajzi számon nyilvántartott önálló rendeltetési egységre lett kiállítva!

> Aláírás (Pecsét helye)

Energetikai minőségtanúsítvány összesítő

Épület: Családi ház

1188 Budapest Felleg utca 45. Hrsz: 142224

Megrendelő: Szabó Katalin

1188 Budapest, Felleg utca 45.

Tanúsító: Frei Ildikó

2000 Szentendre, Szirt u. 1.

regisztrációs szám: TÉ-01-12322

Az épület(rész) fajlagos primer energiafogyasztása: 620.3 kWh/m²a Követelményérték (viszonyítási alap): 228.6 kWh/m²a

Az épület(rész) energetikai jellemzője a követelményértékre vonatkoztatva: 271.4 %

Energetikai minőség szerinti besorolás:

H (gyenge)

A tanúsítvány vegyes számítási módszerrel készült, a hőhidasság egyszerűsített, a sugárzási nyereség részletes, a hőfokhíd és fűtési idény hossz egyszerűsített számítással.

A javaslat(ok együttes) megvalósításával elérhető minősítés: A A korszerűsítési javaslatok leírása a számítási rész végén található.

Tanúsítvány azonosító tanúsítónál: FP-2693/2015.

Kelt: 2015.11.04. Aláírás

Szerkezet típusok:

bejárati ajtó_üv

Típusa: üvegezett ajtó (külső, fa és PVC)
x méret:
y méret:
Hőátbocsátási tényező:
Megengedett értéke:
1.60 W/m²K

A hőátbocsátási tényező NEM MEGFELELŐ!

külső ablak

Típusa: ablak (külső, fa és PVC)

Hőátbocsátási tényező: 2.35 W/m²K Megengedett értéke: 1.60 W/m²K **A hőátbocsátási tényező NEM MEGFELELŐ!**

külső fal 25

Kuiso 1a1_23	
Típusa:	külső fal
Rétegtervi hőátbocsátási tényező:	$1.83 \text{ W/m}^2\text{K}$
Megengedett értéke:	$0.45 \text{ W/m}^2\text{K}$
A rétegtervi hőátbocsátási tényező	S NEM MEGFELEI
Hőátbocsátási tényezőt módosító tag	g: 40 %
Eredő hőátbocsátási tényező:	$2.56 \text{ W/m}^2\text{K}$
Fajlagos tömeg:	478 kg/m^2
Fajlagos hőtároló tömeg:	188 kg/m^2

Réteg	No	d	λ	κ	R	δ	R_{v}	μ	c	ρ	kiszell.	
megnevezés	-	[cm]	[W/mK]	-	$[m^2K/W]$		[n ʔ	-	[kJ/kgK]	$[kg/m^3]$	réteg?	
nemes vakolat	1	1,5	0,99		-	0,022	0,68182	-	0,88	1800	-	-
tömör agyagtégla	2	25	0,72		- 0,34722	0,033	7,5758	-	0,88	1700	-	(
javított mészvakolat	3	1,5	0,87		-	0,024	0,625	-	0,92	1700	-	

Vizsgálati jelentés: A szerkezet a szabvány szerint páradiffúziós szempontból MEGFELELŐ

külső fal 30

Rétegek kívülről befelé

Réteg	No	d	λ	κ	R	δ	R_{v}	μ	c	ρ	kiszell.
megnevezés	-	[cm]	[W/mK]	-	$[m^2K/W]$		[m²	-	[kJ/kgK]	$[kg/m^3]$	réteg?
nemes vakolat	1	1,5	0,99		-	0,022	0,68182	-	0,88	1800	-
tömör agyagtégla	2	30	0,72		- 0,41667	0,033	9,0909	-	0,88	1700	-
javított mészvakolat	3	1,5	0,87		-	0,024	0,625	-	0,92	1700	-

Vizsgálati jelentés: A szerkezet a szabvány szerint páradiffúziós szempontból MEGFELELŐ

padlásfödém

400 200

Rétegek belülről kifelé

10 11 12 13 14 15 16 17 18 19 20 21 22

Hőmérséklet [°C]

Réteg	No	d	λ	κ	R	δ	R_{v}	μ	c	ρ	kiszell.
megnevezés	-	[cm]	[W/mK]	-	$[m^2K/W]$		$[n^2]$	-	[kJ/kgK]	$[kg/m^3]$	réteg?
javított mészvakolat	1	1,5	0,87		_	0,024	0,625	-	0,92	1700	-
nádlemez	2	0,5	0,06		-	0,13	0,038462	-	1,47	175	-
gerendázat	3	5	0,13		- 0,38462	0,028	1,7857	-	2,51	400	-
sártapasztás	4	5	0,081		- 0,61728	0,16	0,3125	-	0,96	280	

Vizsgálati jelentés: A szerkezet a szabvány szerint páradiffúziós szempontból MEGFELELŐ

padló

Típusa: padló (talajra fektetett)

Rétegtervi hőátbocsátási tényező: 0.83 W/m²K Megengedett értéke: 0.50 W/m²K A rétegtervi hőátbocsátási tényező NEM MEGFELELŐ!

Vonalmenti hőátbocsátási tényező:
Fajlagos tömeg:
Fajlagos hőtároló tömeg:

1.05 W/mK
973 kg/m²
260 kg/m²

Rétegek kívülről befelé

No	d	λ	κ	R	δ	R_{v}	μ	c	ρ	kiszell.
-	[cm]	[W/mK]	-	$[m^2K/W]$		[m²	-	[kJ/kgK]	$[kg/m^3]$	réteg?
1	15	0,35		- 0,42857	0,072	2,0833	-	0,84	1800	-
2	15	1,55		-	0,008	18,75	-	0,84	2400	-
3	0,4	-			-	1	-	. <u>-</u>	-	-
4	12	0,29		- 0,41379	0,052	2,3077	-	0,75	800	-
5	10	1,28		-	0,012	8,3333	-	0,84	2200	-
6	1,5	1,05		-	0,017	0,88235	-	0,88	1800	-
	1 2 3 4 5	- [cm] 1 15 2 15 3 0,4 4 12 5 10	- [cm] [W/mK] 1 15 0,35 2 15 1,55 3 0,4 - 4 12 0,29 5 10 1,28	- [cm] [W/mK] - 1 15 0,35 2 15 1,55 3 0,4 - 4 12 0,29 5 10 1,28	- [cm] [W/mK] - [m ² K/W] 1 15 0,35 - 0,42857 2 15 1,55 - 3 0,4 4 12 0,29 - 0,41379 5 10 1,28 -	- [cm] [W/mK] - [m ² K/W] 1 15 0,35 - 0,42857 0,072 2 15 1,55 - 0,008 3 0,4 4 12 0,29 - 0,41379 0,052 5 10 1,28 - 0,012	- [cm] [W/mK] - [m ² K/W] [m ³] 1	- [cm] [W/mK] - [m ² K/W] [m ² - 11 15 0,35 - 0,42857 0,072 2,0833 - 0,42857 0,008 18,75 - 0,008 18,75 - 12 0,29 - 0,41379 0,052 2,3077 - 12 10 1,28 - 0,012 8,3333 - 12 10 1,28 - 12 0,012 1,28 - 12 0,012 1,28 - 13 10 1,28 - 14 12 0,29 - 0,012 1,28 - 15 10 1,28 - 1	- [cm] [W/mK] - [m ² K/W] [m ² - [kJ/kgK] 1 15 0,35 - 0,42857 0,072 2,0833 - 0,84 2 15 1,55 - 0,008 18,75 - 0,84 3 0,4 1 4 12 0,29 - 0,41379 0,052 2,3077 - 0,75 5 10 1,28 - 0,012 8,3333 - 0,84	- [cm] [W/mK] - [m²K/W] - [kJ/kgK] [kg/m³] 1 15 0,35 - 0,42857 0,072 2,0833 - 0,84 1800 2 15 1,55 - 0,008 18,75 - 0,84 2400 3 0,4 - - - 1 - - - 4 12 0,29 - 0,41379 0,052 2,3077 - 0,75 800 5 10 1,28 - 0,012 8,3333 - 0,84 2200

Határoló szerkezetek:

Szerkezet megnevezés	tájolás	Hajlásszög	U	A	Ψ	L	AU*+L	$A_{\ddot{u}}$	Q_{sd}	Q_{sd}	Q _{sd}
		[°]	$[W/m^2K]$	$[m^2]$	[W/mK]	[m]	[W/K]	$[m^2]$	[W]	[kWh/a]	[V
külső fal_25	ÉΚ	függőleges	2,563	4,1	-	-	10,519	-	-	-	
külső fal_30	ÉK	függőleges		10,5	-	-	23,822	-	-	-	
külső fal_30	K	függőleges	2,274	5,5	-	-	12,573	-	-	-	
külső fal_30	DK	függőleges	2,274	19,6	-	-	44,63	-	-	-	
külső ablak	DK	függőleges	2,35	5,4	-	-	9,9186	3,8	232	947,5	
külső fal_25	DNY	függőleges	2,563	4,1	-	-	10,519	-	-	-	
külső fal_30	DNY	függőleges		19,8	-	-	44,998	-	-	-	
külső fal_25	ÉNY	függőleges	2,563	6,4	-	-	16,352	-	-	-	
külső fal_30	ÉNY	függőleges	2,274	13,6	-	-	30,967	-	-	-	
külső ablak	ÉNY	függőleges	2,35	3,3	-	-	6,0063	2,3	56	235,4	
bejárati ajtó_üv	ÉNY	függőleges	3	2,1	-	-	6,3	0,6	17	72,0	
padló			-	54,0	1,05	34,3	36,015	-	-	-	
padlásfödém			0,855	54,0	-	-	34,298	-	-	-	

Épület tömeg besorolása: nehéz (mt > 400 kg/m2)

ε: 0.75 (Sugárzás hasznosítási tényező)
 A: 202.4 m² (Fűtött épület(rész) térfogatot határoló összfelület)

V: 157.1 m^3 (Fűtött épület(rész) térfogat) A/V: $1.288 \text{ m}^2/\text{m}^3$ (Felület-térfogat arány) (Sugárzási hőnyereség)

$$\begin{split} \Sigma AU + \Sigma I\Psi; & 286.9 \text{ W/K} \\ q &= \left[\Sigma AU + \Sigma I\Psi - (Q_{sd} + Q_{sid})/72\right]/V = (286.9 - 941 \ / \ 72) \ / \ 157.14 \end{split}$$

Az épület fajlagos hőveszteségtényezője NEM FELEL MEG!

Energia igény tervezési adatok

Épület(rész) jellege: Lakóépület

 54.0 m^2 (Fűtött alapterület) A_N: n: 0.70 1/h (Átlagos légcsereszám a fűtési idényben) 1.00 (Szakaszos üzem korrekciós szorzó) σ: (0.31 + 0) * 0.75 = 0.23 kW(Sugárzási nyereség) $Q_{sd}+Q_{sid}$: 5.00 W/m^2 (Belső hőnyereség átlagos értéke) q_b: 0.00 kWh/m²a (Világítás fajlagos éves nettó energia igénye) E_{vil,n}: 30.00 kWh/m²a (Használati melegvíz fajlagos éves nettó hőenergia igénye) q_{HMV}: 9.00 1/h (Légcsereszám a nyári idényben) n_{nyár}: 0.13 kW (Sugárzási nyereség) Q_{sdnyár}:

Fajlagos értékekből számolt igények

• -	· •	
$Q_b = \Sigma A_N q_b$:	270 W	(Belső hőnyereségek összege)
$\Sigma E_{vil,n} = \Sigma A_N E_{vil,n}$:	0 kWh/a	(Világítás éves nettó energia igénye)
$Q_{HMV} = \Sigma A_N q_{HMV}$:	1620 kWh/a	(Használati melegvíz éves nettó hőenergia igénye)
$V_{\text{átl}} = \Sigma V_n$:	$110.0 \text{ m}^3/\text{h}$	(Átlagos levegő térfogatáram a fűtési idényben)
$V_{LT} = \Sigma V n_{LT} * Z_{LT} / Z_F$:	$0.0 \text{ m}^3/\text{h}$	(Levegő térfogatáram a használati időben)
$V_{inf} = \Sigma V n_{inf} * (1 - Z_{LT} / Z_F)$:	$0.0 \text{ m}^3/\text{h}$	(Levegő térfogatáram a használati időn kívül)
$V_{dt} = \Sigma (V_{atl} + V_{LT}(1-\eta) + V_{inf})$:	$110.0 \text{ m}^3/\text{h}$	(Légmennyiség a téli egyensúlyi hőm. különbséghez.)
$V_{nv\acute{a}r} = \Sigma V n_{nv\acute{a}r}$:	$1414.3 \text{ m}^3/\text{h}$	(Levegő térfogatáram nyáron)

Fűtés éves nettó hőenergia igényének meghatározása

$$\Delta t_b = (Q_{sd} + Q_{sid} + Q_b) / (\Sigma AU + \Sigma \Psi + 0.35 V_{dt}) + 2$$

 $\Delta t_b = (229 + 270) / (286.9 + 0.35 * 109.998) + 2 = 3.5 °C$

;: 20.0 °C (Átlagos belső hőmérséklet)

H: 72000 hK/a (Fűtési hőfokhíd) Z_E: 4400 h/a (Fűtési idény hossza)

 $Q_F = H[Vq + 0.35\Sigma V_{inf,F}]\sigma - P_{LT,F}Z_F - Z_FQ_b$

 $Q_F = 72 * (157,14 * 1,743 + 0,35 * 110) * 1 - 0 * 4,4 - 4,4 * 270 = 21,3 MWh/a$

q_F: 394.53 kWh/m²a (Fűtés éves fajlagos nettó hőenergia igénye)

Nyári túlmelegedés kockázatának ellenőrzése

$$\Delta t_{\text{bnyár}} = \left(Q_{\text{sdnyár}} + Q_{\text{b}}\right) / \left(\Sigma AU + \Sigma \Psi + 0.35 V_{\text{nyár}}\right)$$

 $\Delta t_{\text{bnyár}} = (132 + 270) / (286,9 + 0.35 * 1414,26) = 0.5 \text{ °C}$

Δt_{bnyármax}: 3.0 °C (A nyári felmelegedés elfogadható értéke)

A nyári felmelegedés elfogadható mértékű.

Fűtési rendszer

Gázkonvektor szabályozó termosztáttal.

 A_N : 54.0 m² (a rendszer alapterülete)

q_f: 394.53 kWh/m²a (a fűtés fajlagos nettó hőenergia igénye)

Gázkonvektor, kombinált hőmérsékletszabályozással ellátott, hagyományos

 $e_{\vec{f}}$ 1.00 (földgáz)

C_k: 1.32 (a hőtermelő teljesítménytényezője)

 $q_{k,v}$: 0.00 kWh/m²a (segédenergia igény)

Gázkonvektor szabályozó termosztáttal

 $q_{f,h}$: 5.50 kWh/m²a (a teljesítmény és a hőigény illesztésének pontatlansága miatti veszteség)

Elosztási veszteség nincs

q_{f,v}: 0.00 kWh/m²a (az elosztóvezetékek fajlagos vesztesége)

Keringtetési energia igény nincs

E_{FSz}: 0.00 kWh/m²a (a keringtetés fajlagos energia igénye)

Tárolási veszteség nincs

 $q_{f,t}$: 0.00 kWh/m²a (a hőtárolás fajlagos vesztesége és segédenergia igénye)

 E_{FT} : 0.00 kWh/m²a

 $E_F = (q_f + q_{f,h} + q_{f,v} + q_{f,v})\Sigma(C_k\alpha_k e_f) + (E_{FSz} + E_{FT} + q_{k,v})e_v$

 $E_F = (394,53+5,5+0+0) * 1,32 + (0+0+0) * 2,5 = 528.03 \text{ kWh/m}^2 \text{a}$

Melegvíz-termelő rendszer

Elektromos bojler által előállított használati melegvíz. A_N : 54.0 m² (a rendszer alapterülete)

q_{HMV}: 30.00 kWh/m²a (a melegvíz készítés nettó energia igénye)

Elektromos átfolyós vízmelegítő, tároló

 e_{HMV} : 2.50 (elektromos áram)

C_k: 1.00 (a hőtermelő teljesítménytényezője)

E_k: 0.00 kWh/m²a (segédenergia igény)

Elosztó vezetékek a fűtött téren belül, cirkuláció nélkül

 $q_{HMV,v}$: 10.00 % (a melegvíz elosztás fajlagos vesztesége) E_C : 0.00 kWh/m²a (a cirkulációs szivattyú fajlagos energia igénye)

Elhelyezés a fűtött térben, nappali árammal működő elektromos boyler $q_{HMV,t}$: 13.00 % (a melegvíz tárolás fajlagos vesztesége)

 $E_{HMV} = q_{HMV}(1 + q_{HMV}/100 + q_{HMV}/100)\Sigma(C_k\alpha_k e_{HMV}) + (E_C + E_k)e_v$

 $E_{HMV} = 30 * (1 + 0.1 + 0.13) * 2.5 + (0 + 0) * 2.5 = 92.25 \text{ kWh/m}^2 \text{a}$

Az épület(rész) összesített energetikai jellemzője

$$E_P = E_F + E_{HMV} + E_{vil} + E_{LT} + E_{hii} + E_{+-} = 528,03 + 92,25 + 0 + 0 + 0 + 0$$

E_P: 620.28 kWh/m²a (az összesített energetikai jellemző számított értéke)
E_{Pmax}: 228.56 kWh/m²a (az összesített energetikai jellemző megengedett értéke)

Becsült éves fogyasztás energiahordozók szerint

Energiahordozó típusa	E	e	E_{prim}	e_{CO2}	E_{CO2}	F	á	K
	[MWh/a]	[-]	[MWh/a]	[g/kW	[t/a]	[/a]		[eFt/a]
elektromos áram	1,99	2,50	4,98	365	0,73	1,99 MWh	-	-
földgáz	28,51	1,00	28,51	203	5,79	2851,40 m3	-	-
Összesen			33,50		6,52			_

A javasolt korszerűsítések leírása:

Külső falak hőszigetelése 12 cm vtg.-ban, padlásfödém hőszigetelése 15 cm vtg.-ban (lambda szig=0,037 W/mK), nyílászárók cseréje korszerű, mai követelménynek megfelelő minőségűre (Uw=1,6 W/m2K), kondenzációs kombi gázkazán elhelyezése radiátoros fűtés kialakítással.(amennyiben lehetséges)

A javaslat(ok együttes) megvalósításával elérhető minősítés: A

Egyéb megjegyzés:

A számítás a 7/2006. TNM rendelet 2015.I.1-i állapot szerint készült. A tanúsítvány helyszíni szemrevételezés (felmérés dátuma: 2015. 10. 11.04), ill. adatszolgáltatás alapján az épület korának figyelembe vételével készült, falbontás nem történt! A tanúsítvány a fenti helyrajzi számon nyilvántartott önálló rendeltetési egységre lett kiállítva!

A számítás a 7/2006. TNM rendelet 2015.I.1-i állapot szerint készült.

aláírás