SEQUENCE LISTING

<110> NELSON, DAVID R. 5 <120> A LIVE, AVIRULENT STRAIN OF V. ANGUILLARUM THAT PROTECTS FISH AGAINST INFECTION BY VIRULENT V. ANGUILLARUM <130> 5112 10 <140> <141> <160> 4 15 <170> PatentIn Ver. 2.1 <210> 1 <211> 3609 20 <212> DNA <213> V. Anguillarum <220> <223> "n" bases may be a, t, c, g, other or unknown <400> 1 gtcgacttat tgcattgatg gcgtacatgg tagtgccatc cttcgtttgc taacaagcgt 60 tgtataaaag cttggtcggt ttcatcaagt tgaacacaat actcatgatt tttcccactt 120 ccggaaaggg aaaagtgaaa atagcttttg agatcagcct gttctagcag cttttcaatg 180 30 atctttttcq tcqttacqtt ttqaaaaatc tqacqactqc gtttgtattg caacaaqcta 240 agtggatcca atatctctat ttgataataa aactgctgct tgtctttgct atatcctgtq 300 aattgcagag tgctacatat acctgaaaaa aaacgctttc cagaatctaa ttcgtaaqac 360 acacaaacaq ctttacctaq qtttttqqta tcqatctcca tgtttqccqc qatgqaaacq 420 qaaaactqac acccqccqqa tacqctttcc tctccqatta attqcqtqac aatataactt 480 [] []5 ttgctatctg aaagcttaat ggtgagggag cgggtttggt gctttaattc gttactgctc 540 atattcaatt aattcactat taaataaaca gttctaaaag gctgtttatt ggatgaatat 600 G tcgaaattat cacataataa ttgatgctat tattacttgc tgtattggta tcaactttca 660 ļΨ tgctctatac atgtaatata tttcgagtta gaccttaatt caaggtaatt tgtctattta 720 attattatct qaataatatq taatcqattq ctttqtqqtt atttttatqt ttqtttcatt 780 40 tttaatqacq qtqaqcttqt qcattcatat tttttatqat qacaacatct ttqatqaaqt 840 atttaagata ttgttaatgc atgaggggtt tgcgtgtatt ttttatatta aatcataata 900 aaatcaacaa tatatgttat tttgtgtctt tttatagtgt tcttttaaag aggtaggatg 960 acctaaaqqt cqcctagaaa tatqqcqtaa attqccattq ctataattca cctcaaaqat 1020 acactattgg caaattgaca aatatgtcac ttcgtatgaa acaatattag tagatgttgt 1080 45 ttttgctgca aaaataaaaa tttttctggt tgaaataact caaggcctct agcgttttcc 1140 tttatcttaa aatacaggaa atagcgattg aagttaattg acacttaagc aasdramgaa 1200 tagtcaacct aacagagcag gaacctatgc ctttgtcaaa gcatcaaatt gagcaacttt 1260 ctaaacctct gagtgatgat tcgatctgtg gcgtttatct taaactggaa aaaagtgctt 1320 ttcgcccatt acgtaatgaa tttaatgtcg cgcaaactgc gctgcgtaag ctaagtcaaa 1380 accctagtgc tgacgagaga gatgcgttac aagaggcatg tctaaataag tggaagattc 1440 50 ggtttgttgc tgctcaattc cttctcgata ccacattaga aagtgctgcg aatagccttg 1560 agtggttagc ggatttaagt gagaagcact gggatcacct caaccctgta ctaccagttg 1620 aaacgctcaa atctgatgat gataagggca aagaaagaga gcaagcagat gcgaaagtta 1680 55 aaqcattttt ccaactaqtc qqcqataqcq aqqaaaqctc qattctctat qcqccqqtqc 1740 tgcaactgcc cttagtcggg gaagtgacgt tttttgactt tcaaagtgca gagagaaaag 1800 qcqaaatcaq ccaactqaaa tctatqctta cgaccacggt ggcgcaagag cgtttcgcaa 1860

```
ttcaattcaa qatqqaaaac qccaaacgtt gtgtcaccca attagatcgt ttgtcagcgt 1920
     tggtgagcac taagtgtcat tctctaggca gtcaaagtac caacttcgga tttgcgaagt 1980
     cactgettac cegtgttgaa aacgetttgg ttcatetaag tggaattaag ttagcacega 2040
     aagcggaggc caagacagta gagcaagagg ttgccgaaag ttcagtttct gaaggggagc 2100
     tgccaagcca tatggataca aaacatatag agcgaatacc gatggcatca gagcaggctc 2160
     agaccqtaaq ccaacactta cacqcaqqaa acctctctga actgggtaat ttaaacaata 2220
     tgaaccgaga cttagctttc catttgttga gagaagtctc tgattatttt cgccagagcg 2280
     aaccgcatag cccaatttca tttttgttag aaaaagcgat tcgatgggga tatttatcct 2340
     tacctgagtt gctgcgagaa atgatgtcgg aacaaaacgg tgacgctctt agtacgattt 2400
 10
     ttaatgccgc cggattgaat catctcgatc aggttttgct gccggaggtg agtactccaa 2460
     cqqtqqqcat tqaaaqcccc caaacacctc aagcgaaqcc ttccqtttcg gatccgcgaa 2520
     qtqttqaaqa qcatqtatct cagacttccc ctgtagatac ccaatctaag caagatcaaa 2580
     aaccacaatc atccgcta*s drbcgtcggc tctgagttgg taattgtgtt taaaaaataa 2640
     ggaaaaatca tggcaagtat ttacatgcgt gtaagcggtc ttcaagttga gggcgcagcg 2700
 15
     actateggte agetagaaac ggetgaaggt aaaaatgaeg gttggtttge aateaactet 2760
     tactcttggg gtggcgctcg taacgttgct atggacatcg gtaacggcac caatgcggat 2820
     tcaggcatgg ttggcgtaag cgaagttagc gtaactaaag aagtcgatgg tgcttctgaa 2880
     gacctactgt cttatttatt caacccaggt aaagacggta aaactgttga ggttgcattt 2940
     actaageett ctaacgatgg tcaaggtgca gacgtttact tccaagttaa gctagaaaaa 3000
     gcacgtttag tttcttacaa cgtgagcggg actgacggat ctcaaccgta cgagagccta 3060
20
     tctctttctt acacttctat ttctcagaag catcactatg agaaagaagg tggtgaacta 3120
     caaaqcqqtq qtgttqtqac ttacqaccta ccqaccggga aaa*tgactt ctgqtaagta 3180
Ü
     attettteat tagacatgee aegttaattg geatgtetat tteatgaata tetesdreat 3240
Q
     tttaggacac cgttatggca ttgaactcac aacataagcg cgttagtaag aaccgtgtca 3300
gcatcaccta tgacgttgaa acgaatggcg ccgtaaagac gaaagagctg ccgtttgttg 3360
     ttqqcqtcat tqqcqacttt tcaggacaca aaccagaatc agaaaaagtt gatttagaag 3420
     agcgagagtt cacgggtatc gataaagaca acttcgatac agtgatgggg caaattcacc 3480
     cgcgtctttc gtacaaggtt gataacaagc ttgctaatga tgatagccag tttgaagtga 3540
[]
     acttgagect cegttegatg aaagatttee acceagagaa ettagttgat naaattgage 3600
(30
                                                                        3609
     cgcttaaag
<210> 2
     <211> 463
     <212> PRT
     <213> V. Anguillarum
Ь÷
     <400> 2
     Met Pro Leu Ser Lys His Gln Ile Glu Gln Leu Ser Lys Pro Leu Ser
40
     Asp Asp Ser Ile Cys Gly Val Tyr Leu Lys Leu Glu Lys Ser Ala Phe
                  20
                                      25
45
     Arg Pro Leu Arg Asn Glu Phe Asn Val Ala Gln Thr Ala Leu Arg Lys
     Leu Ser Gln Asn Pro Ser Ala Asp Glu Arg Asp Ala Leu Gln Glu Ala
                              55
50
     Cys Leu Asn Lys Trp Lys Ile Leu Ser Asp Ser Leu Tyr Glu Gln Phe
                          70
                                              75
     Ser Lys Thr Thr Arg Asp Ile Glu Leu Ile Ser Trp Phe Val Ala Ala
55
                                          90
     Gln Phe Leu Leu Asp Thr Thr Leu Glu Ser Ala Ala Asn Ser Leu Glu
```

	Trp	Leu	Ala 115	Asp	Leu	Ser	Glu	Lys 120	His	Trp	Asp	His	Leu 125	Asn	Pro	Val
5	Leu	Pro 130	Val	Glu	Thr	Leu	Lys 135	Ser	Asp	Asp	Asp	Lys 140	Gly	Lys	Glu	Arg
10	Glu 145	Gln	Ala	Asp	Ala	Lys 150	Val	Lys	Ala	Phe	Phe 155	Gln	Leu	Val	Gly	Asp 160
	Ser	Glu	Glu	Ser	Ser 165	Ile	Leu	Tyr	Ala	Pro 170	Val	Leu	Gln	Leu	Pro 175	Leu
15	Val	Gly	Glu	Val 180	Thr	Phe	Phe	Asp	Phe 185	Gln	Ser	Ala	Glu	Arg 190	Lys	Gly
20	Glu	Ile	Ser 195	Gln	Leu	Lys	Ser	Met 200	Leu	Thr	Thr	Thr	Val 205	Ala	Gln	Glu
	Arg	Phe 210	Ala	Ile	Gln	Phe	Lys 215	Met	Glu	Asn	Ala	Lys 220	Arg	Cys	Val	Thr
√ <u>0</u> •25	Gln 225	Leu	Asp	Arg	Leu	Ser 230	Ala	Leu	Val	Ser	Thr 235	Lys	Cys	His	Ser	Leu 240
	Gly	Ser	Gln	Ser	Thr 245	Asn	Phe	Gly	Phe	Ala 250	Lys	Ser	Leu	Leu	Thr 255	Arg
(30 (1)	Val	Glu	Asn	Ala 260	Leu	Val	His	Leu	Ser 265	Gly	Ile	Lys	Leu	Ala 270	Pro	Lys
[] \] [25	Ala	Glu	Ala 275	Lys	Thr	Val	Glu	Gln 280	Glu	Val	Ala	Glu	Ser 285	Ser	Val	Ser
n O	Glu	Gly 290	Glu	Leu	Pro	Ser	His 295	Met	Asp	Thr	Lys	His 300	Ile	Glu	Arg	Ile
<u>∔</u> ≟ 40	Pro 305	Met	Ala	Ser	Glu	Gln 310	Ala	Gln	Thr	Val	Ser 315	Gln	His	Leu	His	Ala 320
	Gly	Asn	Leu	Ser	Glu 325	Leu	Gly	Asn	Leu	Asn 330	Asn	Met	Asn	Arg	Asp 335	Leu
45	Ala	Phe	His	Leu 340	Leu	Arg	Glu	Val	Ser 345	Asp	Tyr	Phe	Arg	Gln 350	Ser	Glu
50	Pro	His	Ser 355	Pro	Ile	Ser	Phe	Leu 360	Leu	Glu	Lys	Ala	Ile 365	Arg	Trp	Gly
	Tyr	Leu 370	Ser	Leu	Pro	Glu	Leu 375	Leu	Arg	Glu	Met	Met 380	Ser	Glu	Gln	Asn
55	Gly 385	Asp	Ala	Leu	Ser	Thr 390	Ile	Phe	Asn	Ala	Ala 395	Gly	Leu	Asn	His	Leu 400
	Asp	Gln	Val	Leu	Leu	Pro	Glu	Val	Ser	Thr	Pro	Thr	Val	Gly	Ile	Glu

405 410 415

Ser Pro Gln Thr Pro Gln Ala Lys Pro Ser Val Ser Asp Pro Arg Ser 420 425 430

Val Glu Glu His Val Ser Gln Thr Ser Pro Val Asp Thr Gln Ser Lys 435 440 445

Gln Asp Gln Lys Pro Gln Ser Ser Ala Thr Ser Ala Leu Ser Trp 10 450 455 460

<210> 3

<211> 176

15 <212> PRT

5

.] 25

135 (11

į.i.

45

<213> V. Anguillarum

<400> 3

Met Ala Ser Ile Tyr Met Arg Val Ser Gly Leu Gln Val Glu Gly Ala 20 1 5 10 15

Ala Thr Ile Gly Gln Leu Glu Thr Ala Glu Gly Lys Asn Asp Gly Trp 20 25 30

Phe Ala Ile Asn Ser Tyr Ser Trp Gly Gly Ala Arg Asn Val Ala Met 35 40 45

Asp Ile Gly Asn Gly Thr Asn Ala Asp Ser Gly Met Val Gly Val Ser 50 55 60

Glu Val Ser Val Thr Lys Glu Val Asp Gly Ala Ser Glu Asp Leu Leu 65 70 75 80

Ser Tyr Leu Phe Asn Pro Gly Lys Asp Gly Lys Thr Val Glu Val Ala

Phe Thr Lys Pro Ser Asn Asp Gly Gln Gly Ala Asp Val Tyr Phe Gln 100 105 110

40 Val Lys Leu Glu Lys Ala Arg Leu Val Ser Tyr Asn Val Ser Gly Thr 115 120 125

Asp Gly Ser Gln Pro Tyr Glu Ser Leu Ser Leu Ser Tyr Thr Ser Ile 130 135 140

Ser Gln Lys His His Tyr Glu Lys Glu Gly Glu Leu Gln Ser Gly 145 150 155 160

Gly Val Val Thr Tyr Asp Leu Pro Thr Gly Lys Met Thr Ser Gly Lys 50 165 170 175

<210> 4

<211> 117

<212> PRT

55 <213> V. Anguillarum

<220>

15

20

<223> "Xaa" may be any, other or unknown amino acid

<400> 4

- Met Ala Leu Asn Ser Gln His Lys Arg Val Ser Lys Asn Arg Val Ser 5 1 5 10 15
 - Ile Thr Tyr Asp Val Glu Thr Asn Gly Ala Val Lys Thr Lys Glu Leu 20 25 30
- 10 Pro Phe Val Val Gly Val Ile Gly Asp Phe Ser Gly His Lys Pro Glu 35 40 45
 - Ser Glu Lys Val Asp Leu Glu Glu Arg Glu Phe Thr Gly Ile Asp Lys 50 55 60
- Asp Asn Phe Asp Thr Val Met Gly Gln Ile His Pro Arg Leu Ser Tyr 65 70 75 80
 - Lys Val Asp Asn Lys Leu Ala Asn Asp Asp Ser Gln Phe Glu Val Asn 85 90 95
 - Leu Ser Leu Arg Ser Met Lys Asp Phe His Pro Glu Asn Leu Val Asp $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$
 - Xaa Ile Glu Pro Leu 115