The interplay between geometry and convergence in Bregman proximal methods

Waïss Azizian (supervised by Franck lutzeler, Jérôme Malick, Panayotis Mertikopoulos)

SMAI MODE 2024

Variational Inequality

For
$$\mathcal{K} \subset \mathbb{R}^d$$
, $v : \mathcal{K} \to \mathbb{R}^d$,

Find
$$x^* \in \mathcal{K}$$
 such that $\langle v(x^*), x - x^* \rangle \ge 0$ for all $x \in \mathcal{K}$.

(VI)

Example (Minimization)

Karush-Kuhn-Tucker (KKT) points of
$$\min_{x \in \mathcal{K}} f(x) \iff$$
 (VI) with $v = \nabla f$.

Example (Saddle-point)

Stationary points of
$$\min_{x_1 \in \mathcal{K}_1} \max_{x_2 \in \mathcal{K}_2} \Phi(x_1, x_2) \iff \text{(VI) with } v = \begin{pmatrix} \nabla_{x_1} \Phi \\ -\nabla_{x_2} \Phi \end{pmatrix}$$

Classical methods

Gradient method: $\mathcal{K} = \mathbb{R}^d$

$$X_{t+1} = X_t - \gamma v(X_t)$$

Projected gradient method:

$$X_{t+1} = \operatorname{proj}_{\mathcal{K}}(X_t - \gamma v(X_t))$$

Multiplicative weight update: K = simplex

$$X_{t+1,i} \propto X_{t,i} e^{-\gamma v(X_t)_i}$$

Classical methods

Gradient method: $\mathcal{K} = \mathbb{R}^d$

$$X_{t+1} = X_t - \gamma v(X_t)$$

Projected gradient method:

$$X_{t+1} = \operatorname{proj}_{\mathcal{K}}(X_t - \gamma v(X_t))$$

Multiplicative weight update: K = simplex

$$X_{t+1,i} \propto X_{t,i} e^{-\gamma v(X_t)_i}$$

Mirror Descent:

$$X_{t+1} = P_{X_t}(-\gamma v(X_t))$$

Bregman divergences, prox-mapping

Bregman divergence: For $h: \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ 1-strongly convex with dom $h = \mathcal{K}$

$$D(p, x) = h(p) - h(x) - \langle \nabla h(x), p - x \rangle$$
, for all $p \in \mathcal{K}, x \in \mathcal{K}$.

Prox-mapping: $P: \mathcal{K} \times \mathbb{R}^d \to \mathcal{K}$

$$P_x(y) = \operatorname*{arg\,min}_{x' \in \mathcal{K}} \{ \langle y, x - x' \rangle + D(x', x) \} \qquad \text{for all } x \in \mathcal{K}, y \in \mathcal{Y}.$$

Example: in one dimension

	$\mathcal K$	h(x)	D(p,x)	$P_{\times}(y)$
Euclidean	$[0,+\infty)$	$\frac{x^2}{2}$	$\frac{(p-x)^2}{2}$	$(x + y)_{+}$
Entropy	$[0,+\infty)$	$x \log x$	$p \log \frac{p}{x} + p - x$	xe ^y
Tsallis entropy, $q>0$	$[0,+\infty)$	$\frac{-x^q}{q(1-q)}$	$\frac{(1-q)x^q - p(x^{q-1} - p^{q-1})}{q(1-q)}$	Explicit
Hellinger	[-1, 1]	$-\sqrt{1-x^2}$	Explicit	Explicit

Mirror Descent:

$$X_{t+1} = P_{X_t}(-\gamma v(X_t))$$

What happens across divergences?

Convergence of Mirror Methods

Question:

How can we explain those differences in last-iterate convergence between divergences?

Existing results:

(VI)	Convergence	Setting	Deterministic	Stochastic
Monotone Strongly Monotone	Ergodic Last-iterate	Bregman Only Euclidean	O(1/t)Linear	$O(1/\sqrt{t})$ with $\gamma_t \propto 1/\sqrt{t}$ $O(1/t)$ with $\gamma_t \propto 1/t$

(Nemirovski, 2004), (Juditsky et al., 2011, Gidel et al., 2019), (Hsieh et al., 2019)

Convergence of Mirror Methods

Question: _____

How can we explain those differences in last-iterate convergence between divergences?

Existing results:

(VI)	Convergence	Setting	Deterministic	Stochastic
Monotone Strongly Monotone	Ergodic Last-iterate	Bregman Only Euclidean	O(1/t)Linear	$O(1/\sqrt{t})$ with $\gamma_t \propto 1/\sqrt{t}$ $O(1/t)$ with $\gamma_t \propto 1/t$

(Nemirovski, 2004), (Juditsky et al., 2011, Gidel et al., 2019), (Hsieh et al., 2019)

Our contribution —

For locally strongly monotone (VI), characterization of the last-iterate convergence of Mirror methods

The topology of several standard divergences

Plot D(0, x) on $[0, +\infty)$

"Degenerate" Bregman geometry

► Since *h* is strongly convex,

$$D(p,x) = h(p) - h(x) - \langle \nabla h(x), p - x \rangle \ge \frac{1}{2} \|p - x\|^2$$
 for all $p \in \mathcal{K}, x \in \mathcal{K}$

Consequence: $D(p, x_t) \to 0 \implies ||x_t - p|| \to 0$.

Conversely consider,

$$\mathcal{K} = \{x \in \mathbb{R}^2 : \|x\|_2 \le 1\}, \quad h(x) = -\sqrt{1 - \|x\|_2^2}.$$

There exists $(x_t)_t$ s.t. $||x_t - p|| \to 0$ but $D(p, x_t) \nrightarrow 0$

Our proposal: quantify the deficit of regularity w.r.t. ambient norm

Key object: The Legendre exponent of h at $p \in \mathcal{K}$ is the smallest $\beta \in [0, 1)$ such, for some $K \geq 0$ and for all x close enough to p,

$$\frac{1}{2}\|p - x\|^2 \le D(p, x) \le \frac{1}{2} \frac{K}{\|p - x\|^{2(1 - \beta)}}$$

ightarrow *Local* notion around *p* in \mathcal{K}

Example: On $\mathcal{K} = [0, +\infty)$

	ho>0 (interior)	p=0 (boundary)
Euclidean reg.	0	0
Entropy	0	1/2
Tsallis entropy $q \le 2$	0	$\frac{1-q}{2}$
Hellinger	0	3/4

Legendre exponent \(\beta \)

Last-iterate convergence

Lipschitz continuity:

$$||v(x') - v(x)||_* \le L||x' - x||$$
 for all $x, x' \in \mathcal{K}$.

Second-order sufficiency: there exists $\mu > 0$ s.t.,

$$\langle v(x), x - x^* \rangle \ge \mu ||x - x^*||^2$$
 for all x close to x^* .

Legendre exponent: For all x close to x^* ,

$$D(x^*, x) \le \frac{1}{2}K||x^* - x||^{2(1-\beta)}$$

Theorem 1

With classical step-sizes, if X_1 is close enough to x^* ,

$$D(x^*, X_t) \le \begin{cases} \mathcal{O}\left(e^{-\frac{\gamma_{tt}}{2K}}\right) & \text{if } \beta = 0\\ \mathcal{O}\left(1/t^{1/\beta - 1}\right) & \text{if } \beta \in (0, 1) \end{cases}$$

What happens across divergences?

What happens across divergences? Bis

Finer rates for linearly constrained problems

(Standard form) Polyhedron:

$$\mathcal{K} = \{ x \in \mathbb{R}^d : x \ge 0, \ Ax = b \}$$

Decomposable Bregman regularizer:

$$h(x) = \sum_{i=1}^{d} \theta(x_i)$$
 with $\theta: \mathbb{R}_+ \to \mathbb{R} \cup \{+\infty\}$

Key quantity: dual multipliers $\lambda_i > 0$ associated to the constraints $x_i > 0$.

Theorem 2 For *i* such that $x_i^* = 0$ and $\lambda_i > 0$,

$$X_{t,i} = \begin{cases} 0 \text{ in finite time} & \text{if } \theta'(s) = \Omega(1) \text{ at } 0 \\ \mathcal{O}\left(e^{-\nu t}\right) & \text{if } \theta'(s) = \log s + \Omega(1) \text{ at } 0 \\ \mathcal{O}\left(1/t^{1/p}\right) & \text{if } \theta'(s) = \Omega(s^p), \, p \in (0,1) \text{ at } 0 \end{cases}$$

What happens across divergences? Bis

Different situations

Covered by Theorem 1

Conclusion

Take-home message: Convergence of Mirror methods is more complex than just $\mathcal{O}(1/t)$, depends on

- Local behavior of the Bregman divergence
- ► Structrure of the constraints and of the solution

Azizian, W., Iutzeler, F., Malick, J. and Mertikopoulos, P., 2021, July. The last-iterate convergence rate of optimistic mirror descent in stochastic variational inequalities. In Conference on Learning Theory (pp. 326-358). PMLR.

Azizian, W., lutzeler, F., Malick, J. and Mertikopoulos, P., 2022. The rate of convergence of Bregman proximal methods: Local geometry vs. regularity vs. sharpness. arXiv preprint arXiv:2211.08043.

Bibliography I

- G. Gidel, R. A. Hemmat, M. Pezehski, R. L. Priol, G. Huang, S. Lacoste-Julien, and I. Mitliagkas. Negative momentum for improved game dynamics. In AISTATS '19: Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics, 2019.
- Y.-G. Hsieh, F. lutzeler, J. Malick, and P. Mertikopoulos. On the convergence of single-call stochastic extra-gradient methods. In NeurIPS '19: Proceedings of the 33rd International Conference on Neural Information Processing Systems, pages 6936–6946, 2019.
- A. Juditsky, A. S. Nemirovski, and C. Tauvel. Solving variational inequalities with stochastic mirror-prox algorithm. Stochastic Systems, 1(1):17–58, 2011.
- A. S. Nemirovski. Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on Optimization, 15(1):229–251, 2004.