Matemática Discreta I - MATA42

Profa. Isamara Alves (DMAT/IME/UFBA)

AULA - 18/06/2019

Números Binomiais - Binômio de Newton

SEQUÊNCIA DE FIBONACCI:

```
A Sequência de Fibonacci : \{1,1,2,3,5,8,13,21,\cdots\}; definida pela recorrência: \begin{cases} F_0 &= F_1 &= 1 \\ F_{n+2} &= F_{n+1} + & F_n; n \geq 0 \end{cases} pode ser obtida pela "SOMA DAS DIAGONAIS INVERSAS" do Triângulo de Pascal.
```

```
Linha-n
                0
126 84 36 9 1
```

Números Binomiais - Binômio de Newton

SEQUÊNCIA DE FIBONACCI:

$$F_{0} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 1$$

$$F_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 2$$

$$F_{3} = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = 3$$

$$F_{4} = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} = 5$$

$$F_{5} = \begin{pmatrix} 5 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix} = 8$$

$$F_{6} = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 5 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} = 13$$

$$F_{7} = \begin{pmatrix} 7 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 6 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 5 \\ 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 4 \\ 4 \\ 3 \end{pmatrix} = 21$$

$$\vdots \qquad \vdots \qquad \vdots$$

Números Binomiais - Binômio de Newton

SEQUÊNCIA DE FIBONACCI:

Generalizando, obtemos F_n ; $\forall n \geq 0$ utilizando os números binomiais:

$$F_n = \left\{ \begin{array}{l} \displaystyle \sum_{k=0}^{\frac{n}{2}} \left(\begin{array}{c} n-k \\ k \end{array} \right) & \text{; se } n \text{ for par} \\ \\ \displaystyle \sum_{k=0}^{\frac{n-1}{2}} \left(\begin{array}{c} n-k \\ k \end{array} \right) & \text{; se } n \text{ for impar} \end{array} \right.$$

Exemplo.1:

$$F_{12} = \sum_{k=0}^{\frac{12}{2}} {12-k \choose k} = {12 \choose 0} + {11 \choose 1} + {10 \choose 2} + {9 \choose 3} + {8 \choose 4} + {7 \choose 5} + {6 \choose 6} = (1) + (11) + (45) + (84) + (70) + (21) + (1) = 233; \text{ pois,}$$

$${n \choose 0} = {n \choose n} = 1, \forall n \ge 0; {n \choose 1} = n, \forall n \ge 1; {m+n \choose r} = \sum_{k=0}^{r} {m \choose r-k} + {n \choose k}$$

$${10 \choose 2} = \sum_{k=0}^{2} {5 \choose 2-k} {5 \choose k} = {5 \choose 2} {5 \choose 0} + {5 \choose 1} {5 \choose 1} + {5 \choose 0} {5 \choose 2} = (10) \cdot (1) + (5)(5) + (1)(10) = 45.$$

Definição (Números de Stirling de Segunda Ordem)

Sejam $n, k \in \mathbb{N}$. Definimos os Números de Stirling de Segunda Ordem por recursão:

$$\left\{ \begin{array}{l} S_{n,k} := 0; se \quad n < k \\ S_{0,k} := 0; se \quad k > 0 \\ S_{n,0} := 0; se \quad n > 0 \\ S_{n,n} := 1; se \quad n \geq 0 \\ S_{n,k} := S_{n-1,k-1} + k.S_{n-1,k} \end{array} \right.$$

NOTAÇÃO:
$$S_{n,k} = \left\{ \begin{array}{c} n \\ k \end{array} \right\}$$

Observação: "O Número de Stirling de Segunda Ordem é o número de maneiras de distribuir n objetos distintos em k caixas idênticas, com nenhuma caixa vazia"; ou seja, "existem quantas maneiras de partir um conjunto com n elementos em k subconjuntos disjuntos?"

Proposição: (Números de Stirling de Segunda Ordem)

Sejam $n, k \in \mathbb{N}^*$; $k \le n$ e A um conjunto com n elementos. Então, o Número de Stirling de Segunda Ordem $S_{n,k}$ é o número das k-partições de A.

Demonstração: Seja A um conjunto com n elementos: $A = \{1, 2, 3, \dots, n\}$; e sejam os subconjuntos de A não vazios e disjuntos: A_i ; $i = 1, 2, \dots, k$ tais que; $A = \bigcup_{i=1}^k A_i$; e $|A| = \sum_{i=1}^k |A_i|$; Considerando um elemento fixo $x \in A$ temos duas possibilidades para a k-ésima partição de A: (i) Se $\{x\}$ for um bloco da partição para A então, os blocos restantes são formados a partir de (k-1) partições do conjunto $A \setminus \{x\}$, isto é, x ficará sozinho num subconjunto. Assim, temos $S_{n-1,k-1}$ possibilidades. (ii) Se $\{x\}$ não for um bloco da partição para A então $A\setminus\{x\}$ é partido em k blocos; isto é, x não ficará sozinho num subconjunto; isto poderá ser feito de $S_{n-1,k}$ possibilidades. Ou seja, distribuímos os k-1 elementos em k subconjuntos e agora o elemento x precisa ser alocado em um dos k-subconjuntos em k modos distintos. Neste caso, obtemos então $k.S_{n-1,k}$ possibilidades. Logo; pelo princípio da adição, o número das k-partições do conjunto A de n elementos é dado por $S_{n,k} := S_{n-1,k-1} + k.S_{n-1,k}$; ou seja,

$$\left\{\begin{array}{c} n \\ k \end{array}\right\} = \left\{\begin{array}{c} n-1 \\ k-1 \end{array}\right\} + k \cdot \left\{\begin{array}{c} n-1 \\ k \end{array}\right\}.$$

REPRESENTAÇÃO:(Números de Stirling de Segunda Ordem)									
n	k	0	1	2	3	4	5		
0		$\left\{ \begin{array}{c} 0 \\ 0 \end{array} \right\}$							
1		$\left\{\begin{array}{c}1\\0\end{array}\right\}$	$\left\{ \begin{array}{c} 1 \\ 1 \end{array} \right\}$						
2		$\left\{\begin{array}{c}2\\0\end{array}\right\}$	$\left\{\begin{array}{c}2\\1\end{array}\right\}$	$\left\{ \begin{array}{c} 2 \\ 2 \end{array} \right\}$					
3		$\left\{\begin{array}{c}3\\0\end{array}\right\}$	$\left\{\begin{array}{c}3\\1\end{array}\right\}$	$\left\{\begin{array}{c}3\\2\end{array}\right\}$	$\left\{\begin{array}{c}3\\3\end{array}\right\}$				
4		$\left\{\begin{array}{c} 4 \\ 0 \end{array}\right\}$	$\left\{\begin{array}{c}4\\1\end{array}\right\}$	$\left\{\begin{array}{c}4\\2\end{array}\right\}$	$\left\{\begin{array}{c}4\\3\end{array}\right\}$	$\left\{\begin{array}{c}4\\4\end{array}\right\}$			
5		$\left\{\begin{array}{c}5\\0\end{array}\right\}$	$\left\{\begin{array}{c}5\\1\end{array}\right\}$	$\left\{\begin{array}{c}5\\2\end{array}\right\}$	$\left\{\begin{array}{c}5\\3\end{array}\right\}$	$\left\{\begin{array}{c}5\\4\end{array}\right\}$	$\left\{\begin{array}{c}5\\5\end{array}\right\}$		
:		:	:	:	:	:	:	:	

REPRESENTAÇÃO: (Números de Stirling de Segunda Ordem)

		-	`						
n	k	0	1	2	3	4	5		
0		1							
1		0	1						
2		0	1	1					
3		0	1	3	1				
4		0	1	7	6	1			
5		0	1	15	25	10	1		
:		:	:	•	:	:	:	:	
		:		-	•		•		
:	_	•	:	•	•	:	:	:	

Observação:

(i)
$$S_{n,n} = \left\{ \begin{array}{c} n \\ n \end{array} \right\} := 1, n \ge 0; S_{n,0} = \left\{ \begin{array}{c} n \\ 0 \end{array} \right\} := 0, n > 0;$$

$$S_{n,1} = \left\{ \begin{array}{c} n \\ 1 \end{array} \right\} = 1$$
; se $n > 0$; e,

(ii)
$$S_{n,k} := \begin{Bmatrix} n \\ k \end{Bmatrix} = \begin{Bmatrix} n-1 \\ k-1 \end{Bmatrix} + k \cdot \begin{Bmatrix} n-1 \\ k \end{Bmatrix}$$
; por exemplo; $\begin{Bmatrix} 5 \\ 3 \end{Bmatrix} = \begin{Bmatrix} 4 \\ 2 \end{Bmatrix} + 3 \cdot \begin{Bmatrix} 4 \\ 3 \end{Bmatrix} \Rightarrow 25 = 7 + 3.6$.

REPRESENTAÇÃO: (Números de Stirling de Segunda Ordem) OBSERVAÇÃO:

O número de maneiras de distribuirmos n objetos distintos em k caixas idênticas, com nenhum vazia é dado por;

$$\left\{\begin{array}{c} n \\ k \end{array}\right\} = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{i} \left(\begin{array}{c} k \\ i \end{array}\right) (k-i)^{n}.$$

"textcolorredNote que podemos calcular o número de Stirling de segunda ordem utilizando os coeficientes binomiais".

Exemplo.1: Calcular $\left\{\begin{array}{c}5\\3\end{array}\right\}$ utilizando os coeficientes binomiais.

$$\begin{cases} 5 \\ 3 \end{cases} = \frac{1}{3!} \sum_{i=0}^{3} (-1)^{i} \begin{pmatrix} 3 \\ i \end{pmatrix} (3-i)^{5} = \\ = \frac{1}{3!} \left(\begin{pmatrix} 3 \\ 0 \end{pmatrix} (3)^{5} - \begin{pmatrix} 3 \\ 1 \end{pmatrix} (2)^{5} + \begin{pmatrix} 3 \\ 2 \end{pmatrix} (1)^{5} - \begin{pmatrix} 3 \\ 3 \end{pmatrix} (0)^{5} \right) = \\ \frac{1}{6} \left(1.(3)^{5} - 3.(2)^{5} + 3.(1)^{5} - 1.(0)^{5} \right) = \frac{1}{6} (243 - 96 + 3 - 0) = 25 \end{cases}$$

Definição (Números de Stirling de Primeira Ordem)

Sejam $n, k \in \mathbb{N}$. Definimos os Números de Stirling de Primeira Ordem por recursão:

$$\begin{cases} P_{n,k} := 0; se & n < k \\ P_{n,0} := 0; se & n > 0 \\ P_{0,k} := 0; se & k > 0 \\ P_{n,1} := (n-1)! \\ P_{n,n} := 1; se & n \ge 0 \\ P_{n,k} := P_{n-1,k-1} + (n-1)P_{n-1,k} \end{cases}$$

NOTAÇÃO:
$$P_{n,k} = \begin{bmatrix} n \\ k \end{bmatrix}$$

Observação: "O Número de Stirling de Primeira Ordem é o número de maneiras de distribuir n pessoas distintas em k mesas idênticas, com nenhuma mesa vazia"; ou seja, "existem quantas maneiras de distribuir os n elementos de um conjunto em k círculos?"

Proposição: (Números de Stirling de Primeira Ordem)

Sejam $n,k\in\mathbb{N}^*;k< n$ e A um conjunto com n elementos. Então, o Número de Stirling de Primeira Ordem $P_{n,k}=\left[\begin{array}{c}n-1\\k-1\end{array}\right]+(n-1)\left[\begin{array}{c}n-1\\k\end{array}\right].$

DEMONSTRAÇÃO: Seja A um conjunto com n elementos: $A = \{1, 2, 3, \dots, n\}$; para serem distribuídos em k círculos **não vazios**.

Considerando um elemento qualquer $x \in A$ temos duas possibilidades: (i) Se $\{x\}$ ficar em um círculo isolado, então os (k-1) círculos restantes são formados por

$$(n-1)$$
 elementos de A . Assim, temos $P_{n-1,k-1}=\left[\begin{array}{c} n-1 \\ k-1 \end{array}\right]$ possibilidades de arranjarmos $(n-1)$ elementos nos $(k-1)$ círculos.

(ii) Caso contrário, $\{x\}$ ficará em um círculo com outros elementos de A. Então, distribuímos os (n-1) elementos em k círculos; neste caso, note que em cada círculo temos (n-1) posições para encaixar o elemento x. Assim, temos

$$P_{n-1,k}=(n-1).\left[egin{array}{c} n-1 \\ k \end{array}
ight]$$
 possibilidades. Logo; pelo princípio da adição,

$$P_{n,k} := P_{n-1,k-1} + (n-1).P_{n-1,k} = \begin{bmatrix} n \\ k \end{bmatrix} = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix} + (n-1).\begin{bmatrix} n-1 \\ k \end{bmatrix}.$$

REPRESENTAÇÃO: (Números de Stirling de Primeira Ordem)

					9				
n	k	0	1	2	3	4	5		
0		1							
1		0	1						
2		0	1	1					
3		0	2	3	1				
4		0	6	11	6	1			
5		0	24	50	35	10	1		
			•	:	•			-	
_:	2		:	:	:		•	:	

Observação:

(i)
$$P_{n,n} = \begin{bmatrix} n \\ n \end{bmatrix} := 1, n \ge 0; P_{n,0} = \begin{bmatrix} n \\ 0 \end{bmatrix} := 0, n > 0;$$

 $P_{n,1} = \begin{bmatrix} n \\ 1 \end{bmatrix} := (n-1)!, n > 0; e,$

(ii)
$$P_{n,k} := P_{n-1,k-1} + (n-1).P_{n-1,k} = \begin{bmatrix} n \\ k \end{bmatrix} = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix} + (n-1).\begin{bmatrix} n-1 \\ k \end{bmatrix};$$
 por exemplo; $\begin{bmatrix} 5 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} + (5-1).\begin{bmatrix} 4 \\ 3 \end{bmatrix} \Rightarrow 35 = 11 + 4.6.$

(1) Calcule os seguintes números de Stirling de Segunda Ordem:

$$\begin{cases} 4 \\ 2 \end{cases} = \frac{1}{2!} \sum_{i=0}^{2} (-1)^{i} \binom{2}{i} (2-i)^{4} = \\ \frac{1}{2} \left(\binom{2}{0} (2)^{4} - \binom{2}{1} (1)^{4} + \binom{2}{2} (0)^{4} \right) = \\ \frac{1}{2} (1.16 - 2.1 + 2.0) = \frac{1}{2} (14) = 7. \end{cases}$$

$$\begin{cases} 6 \\ 3 \end{cases} =$$

$$\left\{ \begin{array}{l} 6 \\ 3 \end{array} \right\} = \left\{ \begin{array}{l} 5 \\ 2 \end{array} \right\} + (3). \left\{ \begin{array}{l} 5 \\ 3 \end{array} \right\} = \left\{ \begin{array}{l} 4 \\ 1 \end{array} \right\} + (2). \left\{ \begin{array}{l} 4 \\ 2 \end{array} \right\} + 3. \left\{ \begin{array}{l} 4 \\ 2 \end{array} \right\} + \\ 9. \left\{ \begin{array}{l} 4 \\ 3 \end{array} \right\} = \left\{ \begin{array}{l} 4 \\ 1 \end{array} \right\} + 5. \left\{ \begin{array}{l} 4 \\ 2 \end{array} \right\} + 9. \left\{ \begin{array}{l} 3 \\ 2 \end{array} \right\} + 27. \left\{ \begin{array}{l} 3 \\ 3 \end{array} \right\} = \\ \left\{ \begin{array}{l} 4 \\ 1 \end{array} \right\} + 5. \left\{ \begin{array}{l} 3 \\ 1 \end{array} \right\} + 10. \left\{ \begin{array}{l} 3 \\ 2 \end{array} \right\} + 9. \left\{ \begin{array}{l} 3 \\ 2 \end{array} \right\} + 27. \left\{ \begin{array}{l} 3 \\ 3 \end{array} \right\} = \\ \left\{ \begin{array}{l} 4 \\ 1 \end{array} \right\} + 5. \left\{ \begin{array}{l} 3 \\ 1 \end{array} \right\} + 19. \left\{ \begin{array}{l} 3 \\ 2 \end{array} \right\} + 27. \left\{ \begin{array}{l} 3 \\ 3 \end{array} \right\} = \left\{ \begin{array}{l} 4 \\ 1 \end{array} \right\} + 5. \left\{ \begin{array}{l} 3 \\ 1 \end{array} \right\} + 19. \left\{ \begin{array}{l} 2 \\ 2 \end{array} \right\} + 27. \left\{ \begin{array}{l} 3 \\ 3 \end{array} \right\} = 1 + 5.1 + 19.1 + 38.1 + 27.1 = 90.$$
 ou;
$$\left\{ \begin{array}{l} 6 \\ 3 \end{array} \right\} = \frac{1}{3!} \sum_{i=0}^{3} (-1)^{i} \left(\begin{array}{l} 3 \\ i \end{array} \right) (3 - i)^{6} =$$

$$\frac{1}{6} \left(\left(\begin{array}{l} 3 \\ 0 \end{array} \right) (3)^{6} - \left(\begin{array}{l} 3 \\ 1 \end{array} \right) (2)^{6} + \left(\begin{array}{l} 3 \\ 2 \end{array} \right) (1)^{6} - \left(\begin{array}{l} 3 \\ 3 \end{array} \right) (0)^{6} \right) =$$

$$\frac{1}{6} (1.3^{6} - 3.2^{6} + 3.1^{6} - 1.0^{6}) = \frac{1}{6} (540) = 90.$$

(2) Calcule por recursão os seguintes números de Stirling de Primeira Ordem:

- (3) De quantas maneiras podemos distribuir 5 objetos, numerados de 1 a 5 em duas caixas idênticas, com nenhuma caixa vazia?
- (4) De quantas maneiras podemos distribuir 5 objetos, numerados de 1 a 5 em três caixas idênticas, com nenhuma caixa vazia?
- (5) Um anfitrião tem que distribuir 4 convidados em uma mesa redonda. Qual é o número de maneiras de fazer esta distribuição?
- (6) Um anfitrião tem que distribuir 4 convidados em 2 mesas redondas idênticas. Qual é o número de maneiras de fazer esta distribuição?

- (3) Seja $A = \{o1, o2, o3, o4, o5\}$ o conjunto dos cinco objetos. Vamos iniciar colocando o objeto o1 numa caixa qualquer visto que são idênticas. Agora, vamos alocar os outros, como são duas caixas, temos duas possibilidades para cada: 2^4 . Todavia, temos que eliminar o caso no qual ficamos com todos os objetos na mesma caixa que o1, para que não fique uma caixa vazia. Então, ficamos com $2^4 1 = 15 = \left\{ \begin{array}{c} 5 \\ 2 \end{array} \right\}$ possibilidades de distribuirmos 5 objetos em duas caixas idênticas com nenhuma vazia.
- (4) Seja $A = \{o1, o2, o3, o4, o5\}$ o conjunto dos cinco objetos. Vamos iniciar colocando o objeto o1 numa caixa qualquer visto que são idênticas; e consideremos dois casos: (i) o1 ficar sozinho numa caixa e os outros nas outras duas: $2^3 1 = 7 = \left\{ \begin{array}{c} 4 \\ 2 \end{array} \right\}$; ou (ii) o1 não ficar sozinho numa caixa então os outros podem ser distribuídos nas 3 caixas. Temos que distribuir 4 objetos em 3 caixas idênticas: $\left\{ \begin{array}{c} 4 \\ 3 \end{array} \right\}$ e; o objeto o1 numa das três caixas de 3 modos distintos: 3. $\left\{ \begin{array}{c} 4 \\ 3 \end{array} \right\}$. Pelo princípio da adição, temos $(i)+(ii)=\left\{ \begin{array}{c} 4 \\ 2 \end{array} \right\} + 3$. $\left\{ \begin{array}{c} 4 \\ 3 \end{array} \right\} = \left\{ \begin{array}{c} 5 \\ 3 \end{array} \right\} = 7 + 3.6 = 25$ maneiras de distribuir 5

(5) Um anfitrião tem que distribuir 4 convidados em uma mesa redonda. Qual é o número de maneiras de fazer esta distribuição? $\frac{4!}{4} = (4-1)! = 6 = \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} + 3. \begin{bmatrix} 3 \\ 1 \end{bmatrix} = 0 + 3.2 = 6.$

(6) Um anfitrião tem que distribuir 4 convidados em 2 mesas redondas idênticas. Qual é o número de maneiras de fazer esta distribuição? Seja
$$A = \{c1, c2, c3, c4\}$$
 o conjunto dos convidados. Vamos iniciar acomodando $c1$, para tal, temos duas possibilidades: (i) $c1$ ficar sozinho numa mesa e os outros $c2$, $c3$, $c4$ na outra mesa: $1.(3-1)! = 1.2 = 2$; ou (ii) $c1$ não ficar sozinho numa mesa; e os outros $c2$, $c3$, $c4$ podem ser distribuídos nas 2 mesas: $[c1, c2]\&[c3, c4]$ ou $[c1, c3]\&[c2, c4]$ ou $[c1, c4]\&[c2, c3]$ ou $[c1, c2, c3]\&[c4]$ ou $[c1, c2, c4]\&[c3]$ ou $[c1, c3, c4]\&[c2]$ ou $[c1, c3, c2]\&[c4]$ ou $[c1, c4, c2]\&[c3]$ ou $[c1, c4, c3]\&[c2]$ ou $[c1, c2]\&[c3, c4]$ ou $[c1, c2]\&[c3, c4]$; pelo princípio da adição, temos
$$(i) + (ii) = 2 + 9 = 11 = \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} + 3.\begin{bmatrix} 3 \\ 2 \end{bmatrix} = 2 + 3.3 = 11$$