BINARY

Binary Trees

A **binary tree** is a hierarchical data structure in which each node has at most two children.

Examples of Binary Trees

Figure 5

Properties of Binary Trees

Number of internal nodes = (Leaf node-1)

```
In this figure: Leaf node =5

So, Internal node = (Leaf node -1)

= (5-1)

= 4
```


▶ Total number of nodes = (2 * Internal node)+1

Example: If the leaf node is 5 then how many nodes exist in the tree?

```
Leaf node = 5
Internal nodes = (Leaf node-1)
= 4
```

So , Total number of nodes = (2*Internal nodes)+1= (2*4)+1= 9

Hence,

Total number of nodes =9

Maximum number of nodes at any level 'L' = 2^{L}

 \triangleright At Level 0 , Nodes = 2^0

At Level 1, Nodes = 2^1

At Level 2, Nodes = 2^2

At Level 3, Nodes = 2^3

At Level L, Nodes = 2^L

Maximum number of nodes = $2^{H+1} - 1$

where H is the height of the tree

Example: If height of the tree is three then find the maximum number of nodes.

Height, H=3

Maximum number of nodes = $2^{H+1} - 1$ = $2^{3+1} - 1$ = 15

\blacktriangleright Minimum number of nodes = H+1

Example: If height of the tree is three then find the minimum number of nodes.

Height, H = 3

Minimum number of nodes = H+1

$$= 3+1$$

= 4

Full Binary Tree

A binary tree is a full binary tree if every node has zero or two children.

Complete Binary Tree

A binary tree is a complete binary tree if all the levels are completely filled except possibly the last level.

Figure 2

Figure 3

Perfect Binary Tree

A binary tree is a perfect binary tree in which all the internal nodes have two children and all leaf nodes are at same level.

Perfect Binary Tree

Not Perfect Binary Tree

Degenerate Binary Tree

A binary tree is a degenerate binary tree where for each parent node, there is only one associated child node.

Left Skewed Tree

B B

Figure 1

Right Skewed Tree

