Вариант 2

	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12	p(e)
e1	0	1		3		4	2	2					5
e2	1	0		3	2					4			4
e3			0		3		3				4		3
e4	3	3		0	2	2	1	1		4	4	3	9
e5		2	3	2	0	2		2	2		1	4	8
e6	4			2	2	0		1	1	3	4		7
e7	2		3	1			0	3	1	2		4	7
e8	2			1	2	1	3	0	4	3	4	2	9
e9					2	1	1	4	0			1	5
e10		4		4		3	2	3		0			5
e11			4	4	1	4		4			0		5
e12				3	4		4	2	1			0	5
													72

	x 1	x2	x3	x4	x5	x6	x7	x8	x9	x10	x11	x12	p(x)
x 1	0			4	3	4		2	3				5
x2		0			1			1	4	2		1	5
x3			0					3		3	4		3
x4	4			0		3	1			2			4
x5	3	1			0	2	4		1	2	4		7
x6	4			3	2	0	3	1	1	2	4	3	9
x7				1	4	3	0	2	2				5
x8	2	1	3			1	2	0	3			4	7
x9	3	4			1	1	2	3	0	2	4	2	9
x10		2	3	2	2	2			2	0	1	4	8
x11			4		4	4			4	1	0		5
x12		1				3		4	3	4		0	5
													72

Для графа G1 $\Sigma \rho(x)$ =72. Список $P(x) = \{9,9,8,7,7,5,5,5,5,5,4,3\}.$

Для графа G2 $\Sigma \rho(y)=72$.

Список $P(y) = \{9,9,8,7,7,5,5,5,5,5,4,3\}.$

Разобьем вершины обоих графов на классы по их степеням.

	p(e) = p(x)	p(e) = p(x)	p(e) = p(x)	p(e) = p(x)	p(e) = p(x)	p(e) = p(x)
) = 9) = 8) = 7	= 5) = 4) = 3
Е	e4, e8	e5	e6, e7	e1, e9, e10,	e2	e3
				e11, e12		
X	x6, x9	x10	x5, x8	x1, x2, x7,	x4	x3
				x11, x12		

Из таблицы сразу видно соответствие вершин графов:

Е	X
e5	x10
e2	x4
e3	x3

Для определения соответствия вершин с $\rho(e) = \rho(x) = 3$ попробуем связать вершины из классов с $\rho(e) = \rho(x) = 3$, 4, 8 с неустановленными вершинами.

Е	X
e5 e4	x6 x10
e2 e8	x9 x4
e3	x3

Анализ связей вершин показывает соответствие вершин e4 и x6, e8 и x9 (соединены с установленными вершинами e5 \sim x10 и e2 \sim x4).

Для определения соответствия вершин с $\rho(e) = \rho(x) = 7$ попробуем связать вершины из классов с $\rho(e) = \rho(x) = 8$, 9 с неустановленными вершинами.

Е		X		
e4	e6	x5	7	х6
e8	e7	x8	7	x9
e5/			1	x10

Анализ связей вершин показывает соответствие вершин e6 и x5, e7 и x8 (соединены с установленными вершинами e4 \sim x6, e8 \sim x9 и e5 \sim x10).

Для определения соответствия вершин с $\rho(e) = \rho(x) = 5$ попробуем связать вершины из классов с $\rho(e) = \rho(x) = 3$, 4, 7 с неустановленными вершинами.

Е	X
e3 e1	x1 x3
e2 e9	x2 x4
e6 e10	x7 x5
e7 e11	x11 x8
e12	x12

Анализ связей вершин показывает соответствие вершин e11 и x11, e12 и x12 (соединены с установленными вершинами e3 \sim x3, e2 \sim x4, e6 \sim x5 и e7 \sim x8 . Для определения соответствия вершин с $\rho(e)=\rho(x)=7$ попробуем связать вершины из классов с $\rho(e)=\rho(x)=7$, 4 с неустановленными вершинами.

Е	X

e2	e1	x1	7 x4
e11	e9	x2	x11
e12	e10	x7	x12

Анализ связей вершин показывает, что существует две пары соответствий оставшихся вершин: вершины e1 и x1 и вершины e10 и x7, или e1 и x7 и вершины e10 и x1. Это соответствует действительности, т.к. вершины e1 и e10 в графе G1 и вершины x1 и x7 в графе G2 смежны с одними и теми же вершинами.

Из сказанного можно сделать вывод, что графы G1 и G2 изоморфны.