Peptide Validation

2020.06 김현우

Peptide Assignment by MS/MS

Database searching approach

• SEQUEST(Comet), Mascot

Experimental MS/MS spectrum

Peptide Assignment by MS/MS

READ

DVGAE

DEAR

GAGVDA

EGDVA

Experimental MS/MS spectrum

Peptide Assignment by MS/MS

Peptide Validation

- Peptide assignment
 - interpret each MS/MS spectrum independently
 - different analysis software gives different results
- Manual validation
 - filtering by search scores, NTT, etc.
 - subjective opinion is inevitable
 - hard to estimate the error rate
 - when dataset gets large?
- Statistical validation
 - model-based validation: probabilistic model for score distribution
 - target-decoy: estimate false discovery rate based on the match to the "decoy" database

(Un)reliability of manual validation

Peptide Validation

- Peptide assignment
 - interpret each MS/MS spectrum independently
 - different analysis software gives different results instrument
- Manual validation
 - filtering by search scores, NTT, etc.
 - subjective opinion is inevitable
 - hard to estimate the error rate
 - when dataset gets large?
- Statistical validation
 - model-based validation: probabilistic model for score distribution
 - target-decoy: estimate false discovery rate based on the match to the "decoy" database

Target/Decoy method

3.15

2.47

>Protein A (Target Sequence)

MEMEKEFEQIDKSGSWAAIYQDIDVGAEDFPCRVAKLPK NKNRNRYRDVSPFDHSRKREADDNDYINASLIKMEEAQR SYILTQQIDKSGSWAAIYQDIRHEASDFHEASDFPCRVA KLPKNKDEARYMEKEFEQIDKGAGVDADIRHEMEKEFEQ IDKSGSWAAIYQDIRHE

>Reversed Protein A (Decoy Sequence)
EHRIDQYIAAWSGSKDIQEFEKEMEHRIDADVGAGKDIQ
EFEKEMYRAEDKNKPLKAVRCPFDSAEHFDSAEHRIDQY
IAAWGSGKDIQQTLIYSRQAEEMKILSANIYDNDDAERK
RSHDFPSVDRYRNRNKNKPLKAVRCPFDEAGVDIDQYIA
AWSGSKDIQEFEKEMEM

- T = 1000 # of matches to the target sequence (above score threshold)
- D = 20 # of matches to the decoy sequence (above score threshold)
- False Discovery Rate = ?

Target/Decoy method

Target/Decoy method

- Target/Decoy method is meaningful only for large datasets.
- Decoy database? (database size, amino acid composition, peptide length distribution, precursor mass distribution)
 - Reversed sequence
 - Pseudo-reverse sequence
 - Random (Shuffled) sequence
 - Pseudo-shuffle
- Separated or concatenated?
 - Threshold score 30
 - Match to the target score 50
 - Match to the decoy score 40
 - Is this counted as a false positive?
- FDR calculated as: # of decoy hits / # of target hits above a certain threshold.

- Combine search scores into a single discriminant score.
- The discriminant score, F, can be computed as

$$F(x_1, x_2, ..., x_S) = c_0 + \sum_{i=1}^{S} c_i x_i$$

- with constant c_0 and weights c_i derived such that the ratio of between-class variation to within-class variation is maximized.
- The discriminant score can be substituted to enable tractable calculation.

$$p(+|F) = \frac{p(F|+)p(+)}{p(F|+)p(+) + p(F|-)p(-)}$$

$$p(+|F,NTT) = \frac{p(F|+)p(NTT|+)p(+)}{p(F|+)p(NTT|+)p(+) + p(F|-)p(NTT|-)p(-)}$$

Table 1. Discriminant Functions Derived from Training Dataset Spectra of [M + 2H]²⁺ and [M + 3H]³⁺ Precursor lons^a

	[M +	2H] ²⁺	$[M + 3H]^{3+}$				
variable	coefficient	correlation	coefficient	correlation			
Xcorr'	8.362	0.798	9.933	0.698			
ΔC_n	7.386	0.746	11.149	0.806			
ln SpRank	-0.194	-0.510	-0.201	-0.491			
d_M	-0.314	-0.306	-0.277	-0.251			
constant	-0.959		-1.460				

- Among spectra of $[M + 2H]^{2+}$
 - 84% of correct had discriminant scores of 1.7 or greater,

Training dataset(solid line) and Gaussian and gamma distributions(dashed line).

Gaussian:
$$p(F|+) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(F-\mu)^2/2\sigma^2}$$
 gamma: $p(F|-) = \frac{(F-\gamma)^{\alpha-1}e^{-(F-\gamma)/\beta}}{\beta^{\alpha}\Gamma(\alpha)}$

Semi-parametric PeptideProphet

- Decoy search results => distribution for incorrect assignments
- EM algorithm to estimate distributions of correct assignments
 - NTT (number of tryptic termini)

Target/Decoy and PeptideProphet

- Cmd 창 실행
 - 시작메뉴
 - Cmd 입력

- Cmd 창
 - cd C:\Inetpub\wwwroot\ISB\data\Comet

```
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:#Windows#system32>cd C:#Inetpub#wwwroot#ISB#data#Comet

C:#Inetpub#wwwroot#ISB#data#Comet>
```

• Cmd 창

– java -jar CometTD.jar -i Sample.txt –fdr 0.01 – d XXX_

```
C:\Inetpub\wwwroot\ISB\data\Comet>java -jar CometTD.jar -i Sample.txt -fdr 0.01
-d XXX
lo Analyze – Sample.txt
Designated FDR: 0.01
Decoy Proteins starting with XXX
_TargetDecoy for Charge State: 2, No. of Enzymatic Termini: 2
Threshold=90.2000 | FDR= 0.96% | Target= 418 | Decoy= 4
_TargetDecoy for Charge State: 3, No. of Enzymatic Termini: 2
Threshold=43.0000 | FDR= 0.00% | Target= 31 | Decoy= 0
_TargetDecoy for Charge State: equal to or more than 4, No. of Enzymatic Termini
Threshold=17.5000 | FDR= 0.00% | Target= 1 | Decoy= 0
_Analysis Report_
At designated FDR 1.00%, Overall No. Identifications: 450
Actual FDR= 0.89% | Target= 450 | Decoy= 4
```

_TargetDecoy for Charge State: 2, No. of Enzymatic Termini: 2 Threshold=90.2000 | FDR= 0.96% | Target= 418 | Decoy= 4

• Threshold 확인

- C:\Inetpub\wwwroot\ISB\data\Comet 폴더 이동
- Sample.txt 파일 excel에서 열기

_TargetDecoy for Charge State: 2, No. of Enzymatic Termini: 2 Threshold=90.2000 | FDR= 0.96% | Target= 418 | Decoy= 4

• Threshold 확인

- 두 번째 행 선택
- Shift + Ctrl + L

_TargetDecoy for Charge State: 2, No. of Enzymatic Termini: 2 Threshold=90.2000 | FDR= 0.96% | Target= 418 | Decoy= 4

- Threshold 확인
 - sp_score에서 숫자 내림차순 정렬

_TargetDecoy for Charge State: 2, No. of Enzymatic Termini: 2 Threshold=90.2000 | FDR= 0.96% | Target= 418 | Decoy= 4

- Threshold 확인
 - Charge에서 2 선택, 확인 클릭

_TargetDecoy for Charge State: 2, No. of Enzymatic Termini: 2 Threshold=90.2000 | FDR= 0.96% | Target= 418 | Decoy= 4

• Threshold 확단

– Threshold 확인 = 90.2

+0T	31/9		948.4730	948.4099	3.93E-U4	1.1//1	0.2559	93.1	5	14 NITIN I DESP K'INITIN I DE K	1	spir303/8	U	
62	7077	2	1444.721	1444.72	7.36E-05	1.3655	0.5741	92.8	6	24 WDDSGNI K.WDDSGI K	Q	sp P26232	7	
63	10466	2	1385.77	1385.767	5.75E-05	1.7048	0.5607	92.8	6	22 VGWEQLL R.VGWEQIR	T	sp P12814	3	
164	1412	2	685.3932	685.3911	3.71E-05	1.4022	0.0689	92.6	4	10 HVVFGK K.HVVFGKK	V	sp P45877	3	
165	4484	2	1027.498	1027.497	1.17E-05	1.1676	0.4557	92.6	6	14 NSLFEYQK K.NSLFEYÇ K	N	sp P02671	1	
166	3518	2	748.4239	748.4232	1.32E-05	1.1051	0.0448	92.5	5	12 VAFSVAR R.VAFSVA R	Α	sp P39023	0	
167	7581	2	1151.609	1151.609	2.78E-04	1.7439	0.5957	92.5	6	18 IANVFTNA R.IANVFTN R	Υ	sp P05164	2	
468	8489	2	989.5718	989.5698	4.56E-07	1.7155	0.4594	92.5	5	14 LGFQVWL R.LGFQVWR	N	sp Q01995	0	
469	1843	2	784.4544	784.4443	1.02E-02	1.3165	0.2394	92	5	14 VLNPSGALR.VLNPSG R	Т	sp Q14315	1	
470	11395	2	1320.671	1320.671	6.84E-05	1.6685	0.6403	92	7	26 STSGGTA/ K.STSGGT/ K	D	sp P01857	1	
471	4086	2	1295.628	1295.626	2.50E-05	1.8041	0.6137	91.9	6	22 GSYVSIHS K.GSYVSIHK	D	sp Q13838	2	
472	7256	2	1418.743	1418.741	7.42E-08	1.6258	0.5878	91.8	10	22 QAQEYEA R.QAQEYER	V	sp P05783	3	
473	2180	2	1030.567	1030.566	8.55E-06	1.4848	0.6746	91.7	5	18 LLEAAAQSR.LLEAAA(R	G	sp Q15149	8	
474	6194	2	1091.565	1091.561	4.04E-07	1.6977	0.5773	91.5	5	16 AELNEFLTI K.AELNEFL K	E	sp P23396	0	
475	7813	2	1734.893	1734.879	1.47E-04	2.0746	0.6146	91.3	7	34 LGNTISSLF K.LGNTISS K	E	sp Q9Y4L1	0	
476	6965	2	965.6288	965.6274	5.55E-06	1.5159	0.6849	91.1	6	16 LPLILVGN R.LPLILVG R	S	sp Q8IXI2	5	
477	9717	2	1352.832	1352.839	8.60E-05	1.825	0.82	91.1	5	22 NLQNLLIL R.NLQNLLIR	Α	sp Q00610	3	
478	7836	2	1083.667	1083.665	1.25E-01	1.0124	0.1871	90.7	6	18 LVLPSLISS K.LVLPSLISK	I	sp Q13228	1	
479	9962	2	1360.692	1360.691	3.76E-07	1.7782	0.6347	90.7	6	20 SLFDYFLTE R.SLFDYFL R	C	sp Q9NQ8	0	
480	4987	2	1409.625	1409.625	2.17E-06	1.6197	0.589	90.6	6	18 YFYNQEEY R.YFYNQEI R	F	sp Q30134	1	
481	3018	2	741.45	741.4497	3.08E-04	1.0032	0.1117	90.3	4	10 LNQLVR K.LNQLVR K	R	XXX_sp Q8	0	
482	3485	2	837.5083	837.496	1.00E+00	0.9294	0.028	90.3	6	14 LPEGVVPkR.LPEGVV R	S	sp Q9NVS	1	
483	6356	2	1399.638	1399.641	1.33E-08	1.6915	0.2732	90.3	7	22 YGGDEIPF K.YGGDEIFK	V	sp P21333	1	
484	8920	2	1518.828	1518.823	1.01E-02	1.5423	0.5992	90.3	6	28 FGANAILG K.FGANAILK	Α	sp P06733	5	
485	9353	2	1502 789	1502 79	8.83F-09	2 221	0.6328	90.3	6	24 LVSDEMV K LVSDEM K	N	splP54819	5	
486	6793	2	1176.638	1176.633	1.84E-02	1.0946	0.1355	90.2	5	18 VLYCAAQ R.VLYCAA R	Α	XXX_sp Q{	1	
487	8234	2	1239.684	1239.684	3.30E-02	1.2782	0.334	89.7	4	18 HRPYQVIT R.HRPYQV R	V	sp Q96MI9	2	
488	3884	2	1549.825	1549.821	8.18E-06	2.1249	0.6669	89.6	8	30 LVGGPVA K.LVGGPV K	G	sp O15230	0	
489	10963	2	1070.548	1070.547	3.73E-06	1.1392	0.4069	89.6	5	16 MFLSFPTT R.MFLSFPTR	T	sp P69905	0	
490	8866	2	1557.806	1557.804	6.01E-07	2.0982	0.4725	89.4	7	26 FLSSSLYTA K.FLSSSLYTK	R	sp Q16706	0	
491	2192	2	1235.507	1235.505	1.73E-07	1.8023	0.6682	89.3	5	22 DGEEAGA R.DGEEAG R	T	sp P30101	0	
192	4105	2	972 5602	972 5604	475F-06	1 2205	0.4463	ହଦ ସ	5	16 ΝΙ Ο\/ΔΙ Τ ⁽ Κ ΝΙ Ο\/ΔΙ Κ	Ω	snlP12111	2	

TPP 실행 및 로그인

- TPP 실행
 - 바탕화면에 아이콘 실행

TPP 실행 및 로그인

- TPP 실행
 - 바탕화면에 아이콘 실행

- TPP 웹페이지에서 로그인
 - User Name: guest
 - Password: guest
 - Login 클릭

TPP 실행 및 로그인

- TPP 실행
 - 바탕화면에 아이콘 실행

- TPP 웹페이지에서 로그인
 - User Name: guest
 - Password: guest
 - Login 클릭

- Analysis pipeline 확인
 - Comet으로 선택

- Analysis pipeline 확인
 - Analysis Pipeline(Comet)

- Analysis pipeline 확인
 - Analysis Pipeline(Comet)
 - Analyze Peptides 클릭

- Peptide identification 결과 선택
 - Add files 클릭

- Peptide identification 결과 선택
 - Comet 클릭

- Peptide identification 결과 선택
 - Sample.pep.xml 선택

Peptide identification 결과 확인

PeptideProphet option

PeptideProphet Options [Show / Hide]						
✓ RUN PeptideProphet						
Use accurate mass binning, using: PPM V						
Use pI information						
Use Phospho information						
Use N-glyc motif information						
Use Hydrophobicity / RT information						
Use icat information						
Do not use icat information						
☐ Do not use the NTT model						
☐ Do not use the NMC model						
☐ MALDI data						
Only use Expect Score as the discriminant - helpful for data with homologous top hits, e.g. phospho or glyco (Tandem and Comet only)						
Use Gamma distribution to model the negatives (Tandem only)						
☐ Force the fitting of the mixture model (bypass automatic mixture model checks)						
Use decoy hits to pin down the negative distribution. Decoy Protein names begin with: (whitespace not allowed)						
Use Non-parametric model (can only be used with decoy option)						
Report decoy hits with a computed probability (based on the model learned).						
Ignore charge states:						
☐ Run ProteinProphet afterwards						
Enter additional options to pass directly to the command-line (expert use only!)						

- PeptideProphet option
 - Use decoy hits to pin down the negative distribution.
 - Decoy Protein names begin with: XXX_

PeptideProphet Options [Show / Hide]	
☐ RUN PeptideProphet ☐ Use accurate mass binning, using: PPM ☐ ☐ Use pl information ☐ Use Phospho information ☐ Use N-glyc motif information ☐ Use Hydrophobicity / RT information ☐ Use icat information ☐ Do not use icat information ☐ Do not use the NTT model ☐ Do not use the NMC model ☐ MALDI data ☐ Only use Expect Score as the discriminant - helpful for data with homologous top hits ☐ Use Gamma distribution to model the negatives (Tandem only) ☐ Force the fitting of the mixture model (hypass automatic mixture model checks)	, e.g. phospho or glyco (Tandem and Comet only)
\square Use decoy hits to pin down the negative distribution.Decoy Protein names begin with	(whitespace not allowed)
☐ Use Non-parametric model (can only be used with decoy option) ☐ Report decoy hits with a computed probability (based on the model learned). Ignore charge states: ☐ +1 ☐ +2 ☐ +3 ☐ +4 ☐ +5 ☐ Run ProteinProphet afterwards Enter additional options to pass directly to the command-line (expert use only!)	

- PeptideProphet 실행
 - Run XInteract 클릭

ISB/SPC Trans Proteomic Pipeline - xinteract

Your files have been added:
 Sample pep xml

Home mzML/mzXML Database Search Analyze Peptides Combine Analyses Analyze PTMs Analyze Proteins

- PeptideProphet 실행
 - running → finished

• PeptideProphet 실행 결과 확인

PeptideProphet 실행 결과 확인
 – PROB 열

