M4P54 Differential Topology

Lectured by Prof Paolo Cascini Typed by David Kurniadi Angdinata

Spring 2020

Syllabus

Contents

0	Inti	roduction	3
1	Differential forms on manifolds		
	1.1	Alternating p -forms on a vector space	4
	1.2	Differential forms on manifolds	
	1.3	Local description of p -forms	6
	1.4	Integrations on manifolds	
	1.5	Orientation	
	1.6	Partitions of unity	9
	1.7	Manifolds with boundary	
	1.8	Stokes' theorem	
	1.9	Applications of Stokes' theorem	
2	De	Rham cohomology	15
	2.1	De Rham cohomology	15
	2.2	Homotopy invariance	
	2.3	Some homological algebra	
	2.4	The Mayer-Vietoris sequence	
	2.5	Compactly supported de Rham cohomology	

0 Introduction

Differential topology is the study of the topology of a manifold using analysis. The topics are

Lecture 1 Thursday 09/01/20

- a review of differential forms,
- de Rham cohomology,
- Morse theory, and
- singular homology.

The following are references.

- J M Lee, Introduction to smooth manifolds, 2000
- L W Tu, Introduction to smooth manifolds, 2008
- J Milnor, Morse theory, 1960
- $\bullet\,$ A Banyaga and D Hurtubise, Lectures on Morse homology, 2004

1 Differential forms on manifolds

1.1 Alternating p-forms on a vector space

Let V be a vector space over \mathbb{R} , and let $p \geq 0$. Then $V^p = V \times \cdots \times V$.

Definition 1.1. A multilinear map $\omega: V^p \to \mathbb{R}$ is called an alternating *p*-form if we have

$$\omega\left(v_{\sigma(1)},\ldots,v_{\sigma(p)}\right)=\epsilon\left(\sigma\right)\omega\left(v_{1},\ldots,v_{p}\right),\qquad v_{1},\ldots,v_{p}\in V\qquad\sigma\in\mathcal{S}_{p},$$

where S_p is the group of permutations of p elements and $\epsilon(\sigma)$ is the signature of σ .

Recall that if m is the number of transpositions in a decomposition of σ , then $\epsilon(\sigma) = (-1)^m$, where a **transposition** is $(a_i a_j)$ for $a_i \neq a_j$.

Notation 1.2. $\Lambda^p V^* = \{\text{alternating } p\text{-forms } \omega \text{ on } V\} \text{ is called the } p\text{-th exterior power of } V.$

Check that it is a vector space. ¹

Example 1.3.

- $\bullet \ \Lambda^0 V^* = \mathbb{R}.$
- $\Lambda^1 V^* = V^* = \operatorname{Hom}(V, \mathbb{R})$, the dual of V.

Definition 1.4. Let $\omega_1 \in \Lambda^p V^*$ and $\omega_2 \in \Lambda^q V^*$. We define the **exterior product** $\omega_1 \wedge \omega_2 \in \Lambda^{p+q} V^*$ of ω_1 and ω_2 by

$$\omega_{1} \wedge \omega_{2}\left(v_{1}, \ldots, v_{p+q}\right) = \sum_{\sigma \in \mathcal{S}_{p,q}} \epsilon\left(\sigma\right) \omega_{1}\left(v_{\sigma(1)}, \ldots, v_{\sigma(p)}\right) \omega_{2}\left(v_{\sigma(p+1)}, \ldots, v_{\sigma(p+q)}\right), \qquad v_{1}, \ldots, v_{p+q} \in V,$$

where

$$S_{p,q} = \{ \sigma \in S_{p+q} \mid \sigma(1) < \dots < \sigma(p), \ \sigma(p+1) < \dots < \sigma(p+q) \}.$$

Example 1.5.

• Assume $\omega_1, \omega_2 \in \Lambda^1 V^*$. Then

$$\omega_1 \wedge \omega_2 (v_1, v_2) = \omega_1 (v_1) \omega_2 (v_2) - \omega_1 (v_2) \omega_2 (v_1), \quad v_1, v_2 \in V.$$

• Assume $\omega_1, \ldots, \omega_p \in \Lambda^1 V^*$. Then

$$\omega_1 \wedge \cdots \wedge \omega_p (v_1, \dots, v_p) = \det (\omega_i (v_i))_{i,i=1,\dots,p}, \quad v_1, \dots, v_p \in V.$$

Proposition 1.6. Let $\omega_i \in \Lambda^{p_i} V^*$ for i = 1, 2, 3.

- Associativity $(\omega_1 \wedge \omega_2) \wedge \omega_3 = \omega_1 \wedge (\omega_2 \wedge \omega_3)$.
- Distributivity $\omega_1 \wedge (\omega_2 + \omega_3) = \omega_1 \wedge \omega_2 + \omega_1 \wedge \omega_3$, assuming $p_2 = p_3$.
- Supercommutativity $\omega_1 \wedge \omega_2 = (-1)^{p_1 \cdot p_2} \omega_2 \wedge \omega_1$.

Definition 1.7. Let $\Phi: V \to W$ be a linear map between vector spaces over \mathbb{R} . Let $\omega \in \Lambda^p W^*$. Then the **pull-back** $\Phi^* \omega \in \Lambda^p V^*$ of ω is an alternating p-form on V defined by

$$\Phi^*\omega\left(v_1,\ldots,v_p\right) = \omega\left(\Phi\left(v_1\right),\ldots,\Phi\left(v_p\right)\right), \qquad v_1,\ldots,v_p \in V.$$

 $^{^{1}}$ Exercise

Proposition 1.8. Given $\Phi: V \to W$ a linear map,

• the pull-back

$$\begin{array}{ccccc} \Phi^* & : & \Lambda^p W^* & \longrightarrow & \Lambda^p V \\ & \omega & \longmapsto & \Phi^* \omega \end{array}$$

is a linear map that preserves exterior products, that is

$$\Phi^* (\omega_1 \wedge \omega_2) = \Phi^* \omega_1 \wedge \Phi^* \omega_2, \qquad \omega_1 \in \Lambda^p W^*, \qquad \omega_2 \in \Lambda^q W^*,$$

• if $\Psi: W \to Z$ is linear then

$$(\Psi \circ \Phi)^* \omega = \Phi^* \Psi^* \omega, \qquad \omega \in \Lambda^p Z^*,$$

• assuming V = W and $p = \dim V$, then

$$\Phi^*\omega = (\det \Phi) \omega, \qquad \omega \in \Lambda^p V^*.$$

1.2 Differential forms on manifolds

Let M be a smooth manifold of dimension n, and let $x \in M$. Then the tangent space T_xM of M at x is a vector space of dimension n.

Notation 1.9. Let

$$\Lambda^{p} T_{x}^{*} M = \Lambda^{p} \left(T_{x} M \right)^{*}.$$

Consider the set

$$\Lambda^p \mathbf{T}^* M = \bigsqcup_{x \in M} \Lambda^p \mathbf{T}_x^* M,$$

the *p*-th exterior bundle on M. There exists a morphism $\pi: \Lambda^p T^*M \to M$ such that for all $x \in M$, $\pi^{-1}(x) = \Lambda^p T^*_{\tau} M$, so $\Lambda^p T^*M$ is a vector bundle and it is a smooth manifold, and π is a smooth morphism.

Example 1.10.

- $\Lambda^0 T^* M = M \times \mathbb{R}$.
- $\Lambda^1 T^* M$ is the **cotangent bundle**, the dual of the tangent bundle.

Lecture 2 Monday 13/01/20

Definition 1.11. A differential *p*-form ω on M is a smooth section of π . That is, it is a smooth morphism $\omega: M \to \Lambda^p T^*M$ such that $\pi \circ \omega = \mathrm{id}_M$.

Thus, $\omega(x) \in \Lambda^p T_x^* M$.

Notation 1.12.

$$\Omega^{p}\left(M\right)=\left\{ \text{differential }p\text{-forms }\omega\text{ on }M\right\} ,\qquad \Omega^{\bullet}\left(M\right)=\bigoplus_{p}\Omega^{p}\left(M\right) .$$

Example 1.13.

$$\Omega^0(M) \cong \{ f : M \to \mathbb{R} \ \mathrm{C}^{\infty}\text{-function} \}.$$

Exercise. If $n = \dim M$, then $\Omega^{n+1}(M) = 0$.

The algebra is the same as last week.

Definition 1.14. Let $\omega_1 \in \Omega^p(M)$ and $\omega_2 \in \Omega^q(M)$. Then $\omega_1 \wedge \omega_2 \in \Omega^{p+q}(M)$ is defined by

$$\omega_1 \wedge \omega_2(x) = \omega_1(x) \wedge \omega_2(x) \in \Lambda^{p+q} T_x^* M, \qquad x \in M.$$

By Proposition 1.6, associativity, distributivity, and supercommutativity hold for $\Omega^p(M)$. Let $F: M \to N$ be a smooth morphism between manifolds. Then for all $x \in M$, the differential of F at x is the linear map

$$DF_x: T_xM \to T_{F(x)}N.$$

Thus, for all $p \geq 0$, we have a natural map, called the **pull-back**,

Thus, we can define

$$\begin{array}{cccc} F^{*} & : & \Omega^{p}\left(N\right) & \longrightarrow & \Omega^{p}\left(M\right) \\ & & \omega\left(x\right) & \longmapsto & F^{*}\omega\left(F\left(x\right)\right) \end{array}, \qquad \omega \in \Omega^{p}\left(N\right).$$

By Proposition 1.8, the pull-back preserves the exterior product, so

$$F^* (\omega_1 \wedge \omega_2) = F^* \omega_1 \wedge F^* \omega_2.$$

If $G: N \to P$,

$$(G \circ F)^* \omega = F^* G^* \omega.$$

1.3 Local description of p-forms

Let M be a manifold of dimension n, let $x_0 \in M$, let (U, ϕ) be a local chart around x_0 , and let (x_1, \ldots, x_n) be local coordinates around x_0 . A basis of $T_{x_0}M$ is given by

$$\left\{\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right\}.$$

A basis of $T_{x_0}^*M$ is given by

$$\{dx_1, \dots, dx_n\}, \qquad dx_i \left(\frac{\partial}{\partial x_j}\right) = \delta_{ij}.$$

A basis of $\Lambda^p T_{x_0}^* M$ is

$$\mathrm{d}x_{i_1} \wedge \cdots \wedge \mathrm{d}x_{i_p}, \qquad i_1 < \cdots < i_p.$$

Thus, $\omega \in \Omega^p(M)$ is locally given by

$$\omega\left(x\right) = \sum_{|I|=p} f_{I}\left(x\right) dx_{i_{1}} \wedge \dots \wedge dx_{i_{p}}, \qquad I = \left(i_{1}, \dots, i_{p}\right), \qquad i_{1} < \dots < i_{p},$$

where f_I is a C^{∞} -function on U for all I.

Example 1.15. Let $F: M \to N$ be a smooth morphism between manifolds of dimension n, and let $\omega \in \Omega^n(N)$. Locally,

$$\omega(y) = f(y) dy_1 \wedge \cdots \wedge dy_n, \quad y \in N,$$

for some $f \in \mathbb{C}^{\infty}$. Proposition 1.8 implies that

$$F^*\omega(x) = (f \circ F)(x) \det DF_x dx_1 \wedge \cdots \wedge dx_n, \qquad x \in M.$$

where $y_i = p_i \circ F$ and $p_i : \mathbb{R}^n \to \mathbb{R}$ is the *i*-th projection.

Let $f: M \to \mathbb{R}$ be a smooth function, so $f \in \Omega^0(M)$. Locally, the **differential** is

$$\mathbf{d} : \Omega^{0}(M) \longrightarrow \Omega^{1}(M)$$

$$f \longmapsto \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \, \mathbf{d}x_{i} .$$

Check that $df \in \Omega^1(M)$, so df is a 1-form on M. Alternatively, $df = f^*dx$ for dx a 1-form on \mathbb{R} , or df(X) = X(f) for any vector field X on M. More in general, let $\omega \in \Omega^p(M)$. Locally,

$$\omega = \sum_{|I|=p} f_I dx_{i_1} \wedge \dots \wedge dx_{i_p}, \qquad f_I \in C^{\infty},$$

so $d\omega \in \Omega^{p+1}(M)$. Then the **de Rham differential** is

$$d : \Omega^{p}(M) \longrightarrow \Omega^{p+1}(M)$$

$$\omega \longmapsto \sum_{|I|=p} df_{I} \wedge dx_{i_{1}} \wedge \cdots \wedge dx_{i_{p}}.$$

Lecture 3

Tuesday 14/01/20

Proposition 1.16.

• The Leibnitz rule

$$d(\omega_1 \wedge \omega_2) = d\omega_1 \wedge \omega_2 + (-1)^p \omega_1 \wedge d\omega_2, \qquad w_1 \in \Omega^p(M), \qquad \omega_2 \in \Omega^q(M).$$

• $d^2 = 0$, that is

$$d(d\omega) = 0, \qquad \omega \in \Omega^p(M).$$

• Let $F: M \to N$ be a smooth morphism between manifolds. Then

$$F^* d\omega = d(F^*\omega), \qquad \omega \in \Omega^p(M)$$

so

$$\begin{array}{ccc} \Omega^{p}\left(M\right) & \stackrel{\mathrm{d}}{\longrightarrow} & \Omega^{p+1}\left(M\right) \\ & & & \uparrow^{F^{*}} & & \uparrow^{F^{*}} & \cdot \\ & & & \Omega^{p}\left(N\right) & \stackrel{\mathrm{d}}{\longrightarrow} & \Omega^{p+1}\left(N\right) \end{array}$$

Definition 1.17.

- $\omega \in \Omega^p(M)$ is **closed** if $d\omega = 0$.
- $\omega \in \Omega^p(M)$ is **exact** if there exists $\omega' \in \Omega^{p-1}(M)$ such that $d\omega' = \omega$.

 ω is exact implies that ω is closed, since if $\omega = d\omega'$ then $d\omega = d^2\omega' = 0$.

1.4 Integrations on manifolds

Let M be a manifold of dimension n, let $F: M \to M$ be a smooth morphism, and let $\omega \in \Omega^n(M)$. Then

$$F^*\omega(x) = \det DF_x\omega(F(x)).$$

Locally, assume $\omega = f dy_1 \wedge \cdots \wedge dy_n$ for some coordinates (y_1, \dots, y_n) and $f \in C^{\infty}$. Let $\{(U_{\alpha}, \phi_{\alpha})\}$ be an atlas of M, where $\phi_{\alpha} : U_{\alpha} \to V_{\alpha} \subset \mathbb{R}^n$. Then

$$h_{\alpha\beta} = \phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha} (U_{\alpha} \cap U_{\beta}) \subset \mathbb{R}^{n} \to \phi_{\beta} (U_{\alpha} \cap U_{\beta}) \subset \mathbb{R}^{n},$$

such that

$$h_{\alpha\beta}^*\omega(x) = (f \circ h_{\alpha\beta})(x) \det(Dh_{\alpha\beta})_x dx_1 \wedge \cdots \wedge dx_n.$$

Let $D \subset \mathbb{R}^n$ be compact such that ∂D has zero measure, so D is a domain of integration, let $f: U \to \mathbb{R}$ be a C^{∞} -function where $U \subset \mathbb{R}^n$ is open such that $D \subset U$, and let $h: U \to h(U)$ be a diffeomorphism. Then

$$\int_{h^{-1}(D)} f(y) \, \mathrm{d}y_1 \dots \mathrm{d}y_n = \int_{h^{-1}(D)} f(y) \, \mathrm{d}y_1 \wedge \dots \wedge \mathrm{d}y_n = \int_D (f \circ h)(x) |\det Dh_x| \, \mathrm{d}x_1 \wedge \dots \wedge \mathrm{d}x_n.$$

Let us assume that $\omega = f(y) dy_1 \wedge \cdots \wedge dy_n$ on U. We define

$$\int_{D} \omega = \int_{D} f(y) \, dy_1 \wedge \cdots \wedge dy_n, \qquad D \subset U.$$

Definition 1.18. Let $U \subset \mathbb{R}^n$ be an open set. We define the support of ω as

$$\operatorname{supp} \omega = \overline{\{x \in U \mid \omega(x) \neq 0\}}, \qquad \omega(x) \in \Lambda^p T_x^* U.$$

Then ω has **compact support**, if supp ω is compact.

Fact. Under this assumption, we can define

$$\int_{U}\omega=\int_{D}\omega\in\mathbb{R},$$

which is well-defined. Under the same assumption, if $\phi: V \to U$ is a diffeomorphism, provided that $\det D\phi_x > 0$, since $\det D\phi_x \neq 0$ for all x, then

$$\int_{U} \omega = \int_{V} \phi^* \omega.$$

1.5 Orientation

Let V be a vector space over \mathbb{R} of dimension n, and let $B = (b_1, \ldots, b_n) \subset V$ and $B' = (b'_1, \ldots, b'_n) \subset V$ be ordered bases of V. Then B and B' have the **same orientation** if det T > 0 where

$$\begin{array}{cccc} T & : & V & \longrightarrow & V \\ & b_i & \longmapsto & b'_i \end{array}$$

is a linear map. Let $\omega \in \Lambda^n V^*$ for $\omega \neq 0$. Then B and B' have the same orientation if and only if $\omega (b_1, \ldots, b_n)$ has the same sign as $\omega (b'_1, \ldots, b'_n)$, by Proposition 1.8. An **orientation** Λ of V is a set of all the ordered basis of V with the same orientation. Let $\phi : V \to W$ be an isomorphism of vector spaces with fixed orientations Λ_v and Λ_w respectively. We say that ϕ is **orientation preserving** if an ordered basis of V induces an ordered basis of W, so Λ_v induces Λ_w . Let $V = \mathbb{R}^n$, and let $e_i = (0, \ldots, 0, 1, 0, \ldots, 0)$. Then e_1, \ldots, e_n defines an orientation of V called **positive**. Let M be a manifold. The idea is to find an orientation Λ_x of $\Gamma_x M$ for all $x \in M$.

Special case. Let $M = U \subset \mathbb{R}^n$ be open. There exists a natural isomorphism $\phi_x : T_x U \to \mathbb{R}^n$. Let Λ_x^+ be an orientation on $T_x U$ such that ϕ_x is orientation preserving with respect to the positive orientation on \mathbb{R}^n . Let $\Lambda^+ = \{\Lambda_x^+\}$.

General case. Let $\{(U_{\alpha}, \phi_{\alpha})\}$ be an atlas on M. On U_{α} , we define the orientation so that $(\mathrm{D}\phi_{\alpha})_x : \mathrm{T}_x U_{\alpha} \to \mathrm{T}_{\phi_{\alpha}(x)}\phi_{\alpha}(U) \subset \mathbb{R}^n$ is orientation preserving. This is called the positive orientation on the chart $(U_{\alpha}, \phi_{\alpha})$. We define Λ on M, which is a collection of Λ^+ on $\mathrm{T}_x M$ for all $x \in M$. Then M is **orientable** if there exists an atlas with positive orientation charts. This coincides in assuming that $\det \mathrm{D}\left(\phi_{\beta}^{-1} \circ \phi_{\alpha}\right) > 0$ for all α and β .

Notation 1.19. For all $p \geq 0$,

Lecture 4 Thursday 16/01/20

$$\Omega_{\mathrm{c}}^{p}\left(M\right) = \left\{\omega \in \Omega^{p}\left(M\right) \mid \operatorname{supp} M \text{ is compact}\right\}.$$

If M is compact $\Omega_{\rm c}^p(M) = \Omega^p(M)$. Let $\omega \in \Omega_{\rm c}^r(M)$. Assume ${\rm supp}\,\omega \subset U$ where (U,ϕ) is a chart of M, and $\phi: U \to \phi(U) \subset \mathbb{R}^n$. Assume also that (U,ϕ) is positively oriented. Let $\phi^{-1}: \phi(U) \to U$ such that $(\phi^{-1})^* \omega \in \Omega_{\rm c}^n(\phi(U))$, that is ${\rm supp}\,(\phi^{-1})^* \omega \subset \phi(U)$. We define

$$\int_{M} \omega = \int_{\phi(U)} \left(\phi^{-1}\right)^* \omega. \tag{1}$$

We need to show that, under the assumptions above, $\int_M \omega$ does not depend on (U, ϕ) . Let $(\overline{U}, \overline{\phi})$ be also a positively oriented chart such that supp $\omega \subset \overline{U}$. We want to show that

$$\int_{\phi(U)} (\phi^{-1})^* \omega = \int_{\overline{\phi}(\overline{U})} (\overline{\phi}^{-1})^* \omega.$$

Let $\overline{\phi} \circ \phi^{-1} : \phi(U \cap \overline{U}) \to \overline{\phi}(U \cap \overline{U})$, so

$$\mathbb{R}^n \supset \phi\left(U \cap \overline{U}\right) \xrightarrow{\overline{\phi} \circ \phi^{-1}} \overline{\phi}\left(U \cap \overline{U}\right) \subset \mathbb{R}^n$$

Since both charts are positively oriented the determinant of the differential D $(\overline{\phi} \circ \phi^{-1})$ is positive, so

$$\int_{\overline{\phi}(U)} \left(\overline{\phi}^{-1}\right)^* \omega = \int_{\overline{\phi}(U \cap \overline{U})} \left(\overline{\phi}^{-1}\right)^* \omega = \int_{\overline{\phi}(U \cap \overline{U})} \left(\overline{\phi} \circ \phi^{-1}\right)^* \left(\overline{\phi}^{-1}\right)^* \omega = \int_{\overline{\phi}(U \cap \overline{U})} \left(\phi^{-1}\right)^* \overline{\phi}^* \left(\overline{\phi}^{-1}\right)^* \omega \\
= \int_{\overline{\phi}(U \cap \overline{U})} \left(\phi^{-1}\right)^* \left(\overline{\phi}^{-1} \circ \overline{\phi}\right)^* \omega = \int_{\overline{\phi}(U \cap \overline{U})} \left(\phi^{-1}\right)^* \omega = \int_{\overline{\phi}(U)} \left(\phi^{-1}\right)^* \omega,$$

by a property of the pull-back and since $\left(\overline{\phi}^{-1}\right)^*\omega=0$ outside $\overline{\phi}\left(U\cap\overline{U}\right)$.

1.6 Partitions of unity

Definition 1.20. Let M be a manifold, and let $U = \{U_{\alpha}\}$ be an open covering. A **partition of unity** with respect to U is a collection of smooth functions $f_{\alpha}: M \to [0,1]$ such that

- 1. supp $f_{\alpha} = \overline{\{x \in M \mid f_{\alpha}(x) = 0\}} \subset U_{\alpha}$ for all α ,
- 2. $\sum_{\alpha} f_{\alpha}(x) = 1$ for all $x \in M$, and
- 3. for all $x \in M$, there exists $U \ni x$ open such that supp $f_{\alpha} \cap U \neq \emptyset$ for only finitely many α .

Remark. 3 implies that 2 is a finite sum.

Example 1.21. Let

$$M = S^1 = \{x \in \mathbb{R}^2 \mid |x| = 1\}, \qquad U_1 = S^1 \setminus \{(1,0)\}, \qquad U_2 = S^1 \setminus \{(-1,0)\},$$

so $\{U_i\}$ is a cover. Let

$$f_1(\cos\theta,\sin\theta) = \frac{1}{2} - \frac{1}{2}\cos\theta, \qquad f_2(\cos\theta,\sin\theta) = \frac{1}{2} + \frac{1}{2}\cos\theta.$$

Then f_i is a partition of unity.

Proposition 1.22. Let M be a manifold, and let $U = \{U_{\alpha}\}$ be an open covering of M. Then there exists a partition of unity f_{α} with respect to U.

Proof. We omit the proof.

Proposition 1.23. Let M be a manifold, and let $n = \dim M$. Then M is orientable if and only if there exists $\omega \in \Omega^n(M)$ which is never vanishing on M, so $\omega(x) \neq 0$ for all $x \in M$.

 ω is called a **volume form** on M.

Proof.

Æ Assume $ω ∈ Ω^n(M)$ is a volume form. We want to construct an orientation Λ on M, that is $Λ_x$ on T_xM for all x ∈ M. Given an oriented basis $v_1, ..., v_n$ of T_xM we say that it is **positively oriented** if $ω(x)(v_1, ..., v_n) > 0$. For all x ∈ M, we define the orientation $Λ_x$ on T_xM by considering the class of positively oriented ordered basis of T_xM which is compatible with the choice of an atlas on M. Take any atlas $\{(U_α, φ_α)\}$, where $φ_α : U_α \to \mathbb{R}^n$. On $U_α$,

$$\omega = g_{\alpha} \phi_{\alpha}^* \mathrm{d} x_1 \wedge \cdots \wedge \mathrm{d} x_n.$$

Since $\omega \neq 0$, $g_{\alpha} > 0$ or $g_{\alpha} < 0$. If $g_{\alpha} < 0$ then switch x_1 with x_2 , so $g_{\alpha} > 0$. After this change of coordinates, $(U_{\alpha}, \phi_{\alpha})$ is positively oriented, so M is orientable.

Lecture 5 Monday 20/01/20

 \implies Assume that M is orientable, that is there exists an atlas $\{(U_{\alpha}, \phi_{\alpha})\}$ of positively oriented charts. On U_{α} , we consider

$$\omega_{\alpha} = \phi_{\alpha}^* dx_1 \wedge \cdots \wedge dx_n.$$

Let f_{α} be a partition of unity with respect to $\{U_{\alpha}\}$. Let $\widetilde{\omega_{\alpha}} = f_{\alpha}\omega_{\alpha} \in \Omega^{n}(U_{\alpha})$. We may assume that $\widetilde{\omega_{\alpha}} \in \Omega^{n}(M)$ by extending equal to zero outside U_{α} . We define $\omega = \sum_{\alpha} \widetilde{\omega_{\alpha}} \in \Omega^{n}(M)$. For all α , since $\sum_{\alpha} f_{\alpha} = 1$ there exists α such that $\widetilde{\omega_{\alpha}} \neq 0$, so $\omega \neq 0$.

Let M be an orientable manifold of dimension n, and let $\omega \in \Omega^n_{\rm c}(M)$. We want to define $\int_M \omega$. So far we defined for ω such that supp $\omega \subset U_\alpha$ where (U_α, ϕ_α) is a chart.

Definition 1.24. Let $\{(U_{\alpha}, \phi_{\alpha})\}$ be a positively oriented atlas on M, and let f_{α} be a partition of unity with respect to $\{U_{\alpha}\}$. Then supp $f_{\alpha}\omega \subset U_{\alpha}$, so let

$$\int_{M} \omega = \sum_{\alpha} \int_{U_{\alpha}} f_{\alpha} \omega.$$

Remark 1.25. Note that for each α , we have that the support of $f_{\alpha}\omega$ is contained in U_{α} and therefore each term of the sum is well-defined as in (1). Indeed, we have

$$\int_{M} \omega = \sum_{\alpha} \int_{U_{\alpha}} f_{\alpha} \omega = \sum_{\alpha} \int_{\phi_{\alpha}(U_{\alpha})} (\phi^{-1})^{*} f_{\alpha}.$$

Lemma 1.26. $\int_M \omega$ does not depend on $\{(U_\alpha, \phi_\alpha)\}$ and f_α .

Proof. Under the assumption that $\sup \omega \subset U_{\alpha}$ then we showed $\int_{U_{\alpha}} \omega$ does not depend on $(U_{\alpha}, \phi_{\alpha})$. Let $\{(U_{\alpha}, \phi_{\alpha})\}$ and $\{(\overline{U_{\alpha}}, \overline{\phi_{\alpha}})\}$ be two atlases with positively oriented charts, and let f_{α} and $\overline{f_{\alpha}}$ be two partitions of unity with respect to $\{U_{\alpha}\}$ and $\{\overline{U_{\alpha}}\}$ respectively. Then $\sum_{\alpha} f_{\alpha} = \sum_{\alpha} \overline{f_{\alpha}} = 1$, so $\int_{M} f_{\alpha}\omega = \sum_{\beta} \int_{M} \overline{f_{\beta}} f_{\alpha}\omega$. Thus

 $\int_{M} \omega = \sum_{\alpha} \int_{M} f_{\alpha} \omega = \sum_{\alpha,\beta} \int_{M} \overline{f_{\beta}} f_{\alpha} \omega = \sum_{\beta} \int_{M} \sum_{\alpha} f_{\alpha} \overline{f_{\beta}} \omega = \sum_{\beta} \int_{M} \overline{f_{\beta}} \omega.$

Proposition 1.27. Let M and N be orientable manifolds of dimension n, and let $\omega, \eta \in \Omega_c^n(M)$.

1. Linearity

$$\int_{M} (a\omega + b\eta) = a \int_{M} \omega + b \int_{M} \eta.$$

2. Orientation reversal. Let \overline{M} be the manifold M with opposite orientation $\Lambda^- = \{\Lambda_x^- \mid x \in M\}$, which is the orientation opposite than the one induced by M with orientation Λ . Then

$$\int_{M} \omega = -\int_{\overline{M}} \omega.$$

3. Positivity. Let ω be the volume form on M. Then

$$\int_{M} \omega > 0.$$

4. Diffeomorphism invariance. Let $F: N \to M$ be an orientation preserving diffeomorphism. Then

$$\int_{M} \omega = \int_{N} F^* \omega.$$

Proof.

- 1. Exercise. ²
- 2. Exercise. ³
- 3. Choose a positively oriented chart $(U_{\alpha}, \phi_{\alpha})$ on U_{α} , so

$$\omega = g_{\alpha} \phi_{\alpha}^* dx_1 \wedge \cdots \wedge dx_n, \qquad g_{\alpha} > 0.$$

Then $\int_M \omega = \sum_{\alpha} \int_{U_{\alpha}} f_{\alpha} \omega$ where f_{α} is a partition of unity. For all $x \in M$ there exists α such that $x \in U_{\alpha}$ and $\int_{U_{\alpha}} f_{\alpha} \omega > 0$, so $\int_M \omega > 0$.

4. Let $(U_{\alpha}, \phi_{\alpha})$ be a positively oriented atlas on M. Then $(F^{-1}(U_{\alpha}), \phi_{\alpha} \circ F)$ is an atlas on N which is positively oriented. Let f_{α} be a partition of unity with respect to $\{U_{\alpha}\}$. Then $f_{\alpha} \circ F$ is a partition of the unity with respect to $\{F^{-1}(U_{\alpha})\}$, so

$$\int_{N} F^{*}\omega = \sum_{\alpha} \int_{N} \left(f_{\alpha} \circ F \right) F^{*}\omega = \sum_{\alpha} \int_{N} F^{*} \left(f_{\alpha}\omega \right) = \sum_{\alpha} \int_{M} f_{\alpha}\omega = \int_{M} \omega.$$

10

²Exercise

 $^{^3}$ Exercise

1.7 Manifolds with boundary

Denote

$$\mathbb{R}^{n}_{\geq 0} = (\mathbb{R}_{\geq 0})^{n}, \qquad \mathbb{R}^{n}_{+} = \{(x_{1}, \dots, x_{n}) \in \mathbb{R}^{n} \mid x_{n} \geq 0\}.$$

Let $U \subset \mathbb{R}^n_+$ be open, and let $F: U \to \mathbb{R}^m$ be a function. Then F is C^{∞} if it can be extended to a C^{∞} -function $\widetilde{F}: \widetilde{U} \to \mathbb{R}^m$ where $\widetilde{U} \supset U$ and \widetilde{U} is open.

Lecture 6 Tuesday 21/01/20

Definition 1.28. A manifold with boundary of dimension n is a Hausdorff topological space M such that there exists an open covering $\{U_{\alpha}\}$, and for all α , there exists a homeomorphism $\phi_{\alpha}: U_{\alpha} \to \mathbb{R}^n_+ = \mathbb{R}^{n-1} \times \mathbb{R}_{\geq 0}$ such that for all α and β ,

$$\phi_{\alpha} \circ \phi_{\beta}^{-1} : \phi_{\beta} (U_{\alpha} \cap U_{\beta}) \subset \mathbb{R}_{+}^{n} \to \phi_{\alpha} (U_{\alpha} \cap U_{\beta}) \subset \mathbb{R}_{+}^{n}$$

is a diffeomorphism, so

$$\mathbb{R}^{n}_{+} \supset \phi_{\alpha} \left(U_{\alpha} \cap U_{\beta} \right) \xrightarrow{\phi_{\alpha} \circ \phi_{\beta}^{-1}} \phi_{\beta} \left(U_{\alpha} \cap U_{\beta} \right) \subset \mathbb{R}^{n}_{+}$$

The **boundary** of M is

$$\partial M = \left\{ x \in M \mid \exists \alpha, \ \phi_{\alpha}(x) \in \partial \mathbb{R}^{n}_{+} = \mathbb{R}^{n-1} \times \{0\} \right\}.$$

Then $(U_{\alpha}, \phi_{\alpha})$ is called a **chart** and $\{(U_{\alpha}, \phi_{\alpha})\}$ is called an **atlas**.

Remark 1.29.

- ∂M is closed in M.
- $\mathring{M} = M \setminus \partial M$ is a manifold of dimension n.

Example 1.30.

- M = [0, 1] is a manifold with boundary $\partial M = \{0, 1\}$.
- The closed disc $D = \{x \in \mathbb{R}^n \mid |x| < 1\}$ is a manifold with boundary $\partial D = S^{n-1}$.
- $M = [0,1] \times S^1$ is a manifold with boundary $\partial M = S^1 \sqcup S^1$.

Remark 1.31.

- We can define tangent spaces and differential forms exactly in the same way as usual manifolds.
- The definition of orientability is the same. If M is orientable, then ∂M is also orientable. As a convention, the positive orientation on the boundary of $\mathbb{R}^n_+ = \mathbb{R}^{n-1} \times \{0\}$ is given by $(-1)^n dx_1 \wedge \cdots \wedge dx_{n-1}$. This induces a positive orientation on ∂M .
- Also partitions of unity for any open cover U_{α} of M is defined the same way. If M is orientable, for any manifold with boundary, for all open covering $U = \{U_{\alpha}\}$, there exists a partition of unity f_{α} . This implies that if $\omega \in \Omega^n_{\mathbf{c}}(M)$, then $\int_M \omega$ is defined the same way for manifolds.

1.8 Stokes' theorem

Theorem 1.32 (Stokes). For any manifold with boundary M of dimension n, and for any $\omega \in \Omega_c^{n-1}(M)$ we have

$$\int_{M} d\omega = \int_{\partial M} \omega \in \Omega_{c}^{n}(M).$$

Proof. Let $\{(U_{\alpha}, \phi_{\alpha})\}$ be an atlas, and let $f_{\alpha}: M \to \mathbb{R}$ be a partition of unity with respect to this cover. Then $\sum_{\alpha} f_{\alpha} = 1$ on M, so

$$\int_{M} d\omega = \int_{M} d\left(\sum_{\alpha} f_{\alpha}\omega\right) = \sum_{\alpha} \int_{M} d(f_{\alpha}\omega) = \sum_{\alpha} \int_{\phi_{\alpha}(U_{\alpha})} (\phi_{\alpha}^{-1})^{*} d(f_{\alpha}\omega).$$

Proposition 1.16 implies that

$$(\phi_{\alpha}^{-1})^* d(f_{\alpha}\omega) = d(\phi_{\alpha}^{-1})^* (f_{\alpha}\omega).$$

Then $(\phi_{\alpha}^{-1})^*(f_{\alpha}\omega)$ is an (n-1)-form on $\phi_{\alpha}(U_{\alpha})$. In coordinates,

$$\left(\phi_{\alpha}^{-1}\right)^{*}\left(f_{\alpha}\omega\right) = \sum_{j=1}^{n} \widetilde{f_{\alpha}}\omega_{j} dx_{1} \wedge \cdots \wedge \widehat{dx_{j}} \wedge \cdots \wedge dx_{n},$$

where ω_j is a smooth function on $\phi_{\alpha}(U_{\alpha})$ and

$$U_{\alpha} \xrightarrow{\widetilde{\phi_{\alpha}}} \phi_{\alpha} (U_{\alpha})$$

$$f_{\alpha} \downarrow \qquad \qquad \widetilde{f_{\alpha}}$$

$$[0,1]$$

Then

$$d\left(\left(\phi_{\alpha}^{-1}\right)^{*}\left(f_{\alpha}\omega\right)\right) = d\left(\sum_{j=1}^{n}\widetilde{f_{\alpha}}\omega_{j}dx_{1}\wedge\cdots\wedge\widehat{dx_{j}}\wedge\cdots\wedge dx_{n}\right)$$

$$= \sum_{j=1}^{n}\sum_{k=1}^{n}\frac{\partial}{\partial x_{k}}\left(\widetilde{f_{\alpha}}\omega_{j}\right)dx_{k}\wedge dx_{1}\wedge\cdots\wedge\widehat{dx_{j}}\wedge\cdots\wedge dx_{n}$$

$$= \sum_{j=1}^{n}\frac{\partial}{\partial x_{j}}\left(\widetilde{f_{\alpha}}\omega_{j}\right)dx_{j}\wedge dx_{1}\wedge\cdots\wedge\widehat{dx_{j}}\wedge\cdots\wedge dx_{n}$$

$$= \sum_{j=1}^{n}\left(-1\right)^{j-1}\frac{\partial}{\partial x_{j}}\left(\widetilde{f_{\alpha}}\omega_{j}\right)dx_{1}\wedge\cdots\wedge dx_{n},$$

so

$$\sum_{\alpha} \int_{\phi_{\alpha}(U_{\alpha})} d\left(\left(\phi_{\alpha}^{-1}\right)^{*} (f_{\alpha}\omega)\right) = \sum_{\alpha} \int_{\mathbb{R}^{n}_{+}} d\left(\left(\phi_{\alpha}^{-1}\right)^{*} (f_{\alpha}\omega)\right),$$

because $\widetilde{f_{\alpha}} = 0$ outside $\phi_{\alpha}(U_{\alpha})$. Thus

$$\int_{M} d\omega = \sum_{\alpha} \int_{\mathbb{R}^{n}_{+}}^{n} \sum_{j=1}^{n} (-1)^{j-1} \frac{\partial}{\partial x_{j}} \left(\widetilde{f_{\alpha}} \omega_{j} \right) dx_{1} \wedge \cdots \wedge dx_{n}$$

$$= \sum_{\alpha} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \int_{0}^{\infty} \sum_{j=1}^{n} (-1)^{j-1} \frac{\partial}{\partial x_{j}} \left(\widetilde{f_{\alpha}} \omega_{j} \right) dx_{n} dx_{n-1} \cdots dx_{1}$$

$$= \sum_{\alpha} \sum_{j=1}^{n} \int_{-\infty}^{\infty} \cdots \widehat{\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \int_{0}^{\infty} (-1)^{j-1} \frac{\partial}{\partial x_{j}} \left(\widetilde{f_{\alpha}} \omega_{j} \right) \Big|_{x_{n}=0} dx_{n} dx_{n-1} \cdots \widehat{dx_{j}} \cdots dx_{1}$$

$$= \sum_{\alpha} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} (-1)^{n-1} \left(\widetilde{f_{\alpha}} \omega_{j} \right) \Big|_{x_{n}=0} dx_{n-1} \cdots dx_{1},$$

since $(f_{\alpha}\omega_j)|_{x_n=0}=0$ for $j=1,\ldots,n-1$, so

$$\int_{M} d\omega = \sum_{\alpha} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \left(-1\right)^{n-1} \left(\widetilde{f_{\alpha}}\omega_{j}\right)\Big|_{x_{n}=0} dx_{n-1} \dots dx_{1} = \sum_{\alpha} \int_{\partial U_{\alpha}} f_{\alpha}\Big|_{\partial U_{\alpha}} \omega = \int_{\partial M} \omega,$$
 where $\partial U_{\alpha} = U_{\alpha} \cap \partial M$.

1.9 Applications of Stokes' theorem

Theorem 1.33 (Integration by parts). Let M be an orientable n-dimensional manifold with boundary, let $\omega \in \Omega^p_{\rm c}(M)$, let $\eta \in \Omega^{n-p-1}_{\rm c}(M)$, and let $p \in \{0, \ldots, n-1\}$. Then

Lecture 7 Thursday 23/01/20

$$\int_{\partial M} \omega \wedge \eta = \int_{M} d\omega \wedge \eta + (-1)^{p} \int_{M} \omega \wedge d\eta.$$

Proof.

$$\int_{\partial M} \omega \wedge \eta = \int_{M} d(\omega \wedge \eta) = \int_{M} (d\omega \wedge \eta + (-1)^{p} \omega \wedge d\eta),$$

by Stokes and the Leibnitz rule.

Theorem 1.34 (Brouwer's fixed point theorem). Let

$$D = \{ x \in \mathbb{R}^n \mid |x| \le 1 \},\,$$

so

$$\partial D = \mathbf{S}^{n-1} = \left\{ x \in \mathbb{R}^n \mid |x| = 1 \right\},\,$$

and let $f: D \to D$ be a smooth morphism. Then f admits a fixed point, that is there exists $x \in D$ such that f(x) = x.

Proof. Assume that $f(x) \neq x$ for all $x \in D$. For any $x \in D$, consider the ray starting from f(x) and passing through x. Let g(x) be the point where this ray intersects ∂D away from f(x). Note that if $x \in \partial D$ then g(x) = x. Then $g: D \to \partial D$. It is easy to check that g is smooth. Since $\partial D = S^{n-1}$ is orientable by Proposition 1.23 there exists a volume form $\omega \in \Omega^{n-1}(\partial D)$, so $\omega(x) \neq 0$. Since $\omega \in \Omega^{n-1}(\partial D)$, $d\omega \in \Omega^n(\partial D)$, which is an n-dimensional manifold, so $d\omega = 0$. Thus

$$0 < \int_{\partial D} \omega = \int_{\partial D} g^* \omega = \int_{D} dg^* \omega = \int_{D} g^* d\omega = 0,$$

by Stokes, a contradiction.

Example 1.35. Recall any exact form is closed, since $d^2 = 0$. But the opposite is not always true. Let $M = \mathbb{R}^2 \setminus \{0\}$, and let

$$\omega = \frac{x}{x^2 + y^2} dy - \frac{y}{x^2 + y^2} dx \in \Omega^1(M).$$

Then ω is closed, since

$$d\omega = \frac{\partial}{\partial x} \left(\frac{x}{x^2 + y^2} \right) dx \wedge dy - \frac{\partial}{\partial y} \left(\frac{y}{x^2 + y^2} \right) dy \wedge dx = 0.$$

We want to show that ω is not exact. Assume that

$$\omega = df$$
, $f \in \Omega^0(M) = \{C^{\infty}\text{-function}\}.$

In particular $\omega = \mathrm{d}f$ on $\mathrm{S}^1 \subset M$. Let

$$\gamma: [0, 2\pi] \longrightarrow S^1$$

 $\theta \longmapsto (\cos \theta, \sin \theta)$.

Then

$$\int_{S^1} \omega = \int_0^{2\pi} \gamma^* \omega = \int_0^{2\pi} \left(\left(\frac{\cos \theta}{\cos^2 \theta + \sin^2 \theta} \right) \cos \theta d\theta - \left(\frac{\sin \theta}{\cos^2 \theta + \sin^2 \theta} \right) (-\sin \theta) d\theta \right) = \int_0^{2\pi} d\theta = 2\pi,$$

and

$$\int_{\mathbb{S}^1} \omega = \int_{\mathbb{S}^1} df = \int_{\partial \mathbb{S}^1} f = \int_{\emptyset} f = 0,$$

so ω is not exact.

Proposition 1.36. Let M be an orientable manifold of dimension n without boundary, and let $\omega \in \Omega^n_{\rm c}(M)$. Assume ω is exact. Then

$$\int_{M} \omega = 0.$$

Proof. Easy from Stokes.

Proposition 1.37. Let M be an orientable manifold of dimension n with boundary, and let $\omega \in \Omega_c^{n-1}(M)$ be a closed form. Then

$$\int_{\partial M} \omega = 0.$$

Proof. Easy from Stokes.

Let M be an orientable manifold of dimension n, let $\omega \in \Omega_{\mathrm{c}}^{k}(M)$, and let $N \subset M$ be a submanifold of dimension k. We can define

$$\int_{M} \omega = \int_{N} i^{*}\omega,$$

where $i:N\hookrightarrow M$ is the inclusion. We will denote

$$\omega|_{N} = i^{*}\omega \in \Omega_{c}^{k}(N)$$
.

Proposition 1.38. Let M be an oriented manifold of dimension n, let $\omega \in \Omega^k_c(M)$, and let $S \subset M$ be a compact orientable submanifold of dimension k such that $\partial S = \emptyset$ and $\int_S \omega \neq 0$. Then

- ω is not exact,
- $\omega|_S$ is not exact, and
- S is not the boundary of an orientable manifold $N \subset M$ of dimension k+1.

Proof. Exercise. 4

⁴Exercise

2 De Rham cohomology

2.1 De Rham cohomology

Definition 2.1. Let M be a manifold of dimension n, and let $p \geq 0$. Then $\omega_1, \omega_2 \in \Omega^p(M)$ are said to be **cohomologous** if $\omega_1 - \omega_2 = \mathrm{d}\eta$ where $\eta \in \Omega^{p-1}(M)$. In particular $\omega \in \Omega^p(M)$ is cohomologous to zero if it is exact. Let

 $\begin{array}{c} \text{Lecture 8} \\ \text{Monday} \\ 27/01/20 \end{array}$

$$\mathcal{Z}^{p}\left(M\right) = \operatorname{Ker}\left(d:\Omega^{p}\left(M\right) \to \Omega^{p+1}\left(M\right)\right) = \left\{\omega \in \Omega^{p}\left(M\right) \mid \omega \text{ is closed}\right\} \subset \Omega^{p}\left(M\right),$$

and let

$$\mathcal{B}^{p}\left(M\right) = \operatorname{Im}\left(d:\Omega^{p-1}\left(M\right) \to \Omega^{p}\left(M\right)\right) = \left\{\omega \in \Omega^{p}\left(M\right) \mid \omega \text{ is exact}\right\} \subset \Omega^{p}\left(M\right).$$

Then $\mathcal{B}^{p}(M) \subset \mathcal{Z}^{p}(M)$ for all $p \geq 0$.

Notation. If p = 0, then $\mathcal{B}^0(M) = 0$.

Note. If $\omega_1, \omega_2 \in \mathcal{Z}^p(M)$ then $\omega_1 - \omega_2 \in \mathcal{B}^p(M)$ if and only if ω_1 and ω_2 are cohomologous.

Definition 2.2. Denote the *p*-th de Rham cohomology group as

$$H^{p}(M) = \mathcal{Z}^{p}(M) / \mathcal{B}^{p}(M) = \{ [\omega] \mid \omega \in \mathcal{Z}^{p}(M) \}, \qquad p \ge 0.$$

where

$$[\omega] = \{\omega' \in \Omega^p(M) \text{ cohomologous to } \omega\}$$

is the de Rham class of ω .

Remark. $H^{p}(M)$ is a vector space over \mathbb{R} .

Definition 2.3. $b_p(M) = \dim H^p(M) \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$ is the *p*-th Betti number of M.

Proposition 2.4. If M is connected then

$$H^{0}\left(M\right) =\mathbb{R},$$

that is $b_0(M) = 1$. More in general, $b_0(M)$ is the number of connected components of M.

Proof. Assume M is connected. Then $\mathcal{B}^0(M) = 0$, so

$$\begin{split} \mathbf{H}^{0}\left(M\right) &= \mathcal{Z}^{0}\left(M\right) = \left\{f \in \Omega^{0}\left(M\right) \text{ closed}\right\} \\ &= \left\{f \in \Omega^{0}\left(M\right) \;\middle|\; \text{locally } \forall x \in M, \; \frac{\partial}{\partial x_{i}} \,f\left(x\right) = 0\right\} \\ &= \left\{f \in \Omega^{0}\left(M\right) \text{ locally constant}\right\} = \mathbb{R}. \end{split}$$

Example. Let $M = S^1$. Then $H^0(M) = \mathbb{R}$.

Proposition 2.5. Let M be a manifold of dimension n. Then

$$H^{p}(M) = 0, \qquad p \ge n + 1.$$

Proof. Recall $\Omega^p(M) = 0$ if $p \ge n+1$ because all alternating p-forms for $p \ge n+1$ on an n-dimensional vector space are zero, so $\mathcal{Z}^p(M) = 0$. Thus $H^p(M) = 0$.

Proposition 2.6. Let M be a compact orientable manifold of dimension n without boundary. Then

$$H^n(M) \neq 0.$$

Proof. M is orientable, so there exists a volume form $\omega \in \Omega^n(M) = \Omega^n_{\rm c}(M)$, by Proposition 1.23. Then ω is closed, because $d\omega$ is an (n+1)-form on M, so $\omega \in \mathbb{Z}^n(M)$. We want to show that $[\omega] \neq 0$ in $H^n(M)$. Assume $[\omega] = 0$, so ω is exact. Thus $\omega = d\eta$ where η is an (n-1)-form on M, so

$$0 < \int_{M} \omega = \int_{M} d\eta = \int_{\partial M} \eta = \int_{\emptyset} \eta = 0,$$

by Stokes, a contradiction.

Proposition 2.7. Let $G: M \to N$ be a smooth morphism between manifolds. Then

$$G^*: \Omega^p(N) \to \Omega^p(M), \qquad p \ge 0$$

takes closed forms of N to closed forms on M and exact forms of N to exact forms on M.

Proof. Proposition 1.16 implies that $G^*d = dG^*$. If ω is closed then $dG^*\omega = G^*d\omega = G^*0 = 0$, so $G^*\omega$ is closed. If $\omega = d\eta$ is exact then $G^*\omega = dG^*\eta$ is also exact.

Thus $G^*: \mathcal{Z}^p(N) \to \mathcal{Z}^p(M)$ and $G^*: \mathcal{B}^p(N) \to \mathcal{B}^p(M)$, so there exists a linear map

$$\begin{array}{cccc} G^{*} & : & \operatorname{H}^{p}\left(N\right) & \longrightarrow & \operatorname{H}^{p}\left(M\right) \\ & \left[\omega\right] & \longmapsto & \left[G^{*}\omega\right] \end{array}.$$

Corollary 2.8. Let M and N be diffeomorphic manifolds. Then

$$H^{p}(M) \cong H^{p}(N), \qquad p \geq 0,$$

that is $H^p(M)$ is a diffeomorphic invariant.

Proof. By Proposition 2.7 there exists $F^*: H^p(N) \to H^p(M)$ and $(F^{-1})^*: H^p(M) \to H^p(N)$. By Proposition 1.8,

$$(F^{-1})^* F^* \omega = (F \circ F^{-1})^* \omega = \mathrm{id}_N^* \omega = \omega, \qquad \omega \in \mathrm{H}^p(N)$$

so
$$(F^{-1})^* \circ F^* = \mathrm{id}_{\mathrm{H}^p(N)}$$
. Similarly $F^* \circ (F^{-1})^* = \mathrm{id}_{\mathrm{H}^p(M)}$, so F^* is an isomorphism.

2.2 Homotopy invariance

Definition 2.9. Let M_0 and M_1 be manifolds, and let $f_0, f_1 : M_0 \to M_1$ be smooth morphisms. Then f_0 and f_1 are **smoothly homotopic equivalent** if there exists a smooth morphism $H : M_0 \times [0,1] \to M_1$ such that $H(x,0) = f_0(x)$ and $H(x,1) = f_1(x)$ for all $x \in M_0$. A **homotopy** is a smooth morphism $H : M_0 \times [0,1] \to M_1$ where M_0 and M_1 are smooth manifolds.

Lecture 9 Tuesday 28/01/20

Notation 2.10. Let $f_t(x) = H(x,t)$, so $f_t: M_0 \to M_1$ is a smooth morphism. Then f_0 and f_1 are said to be homotopic equivalent, denoted by $f_0 \sim f_1$. Then \sim is an equivalence. ⁵

Definition 2.11. M_0 and M_1 are **homotopy equivalent** if there exist smooth morphisms $f: M_0 \to M_1$ and $g: M_1 \to M_0$ such that $f \circ g \sim \mathrm{id}_{M_1}$ and $g \circ f \sim \mathrm{id}_{M_0}$.

Example 2.12.

• Let $M_0 = \mathbb{R}^n$ and $M_1 = \{0\}$. Then M_0 and M_1 are homotopy equivalent. Let

Then

$$\begin{array}{cccc} f \circ g & : & M_1 & \longrightarrow & M_1 \\ & 0 & \longmapsto & 0 \end{array},$$

so $f \circ g = \mathrm{id}_{M_1}$, and

$$\begin{array}{cccc} g \circ f & : & M_0 & \longrightarrow & M_0 \\ & & x & \longmapsto & 0 \end{array}.$$

We want to show that $g \circ f \sim \mathrm{id}_{M_0}$. Define a smooth morphism

$$\begin{array}{cccc} H & : & M_0 \times [0,1] & \longrightarrow & M_0 \\ & (x,t) & \longmapsto & tx \end{array}$$

Then $H(x,0) = 0 = (g \circ f)(x)$ for all x, and $H(x,1) = x = \mathrm{id}_{M_0}(x)$ for all x, so $g \circ f \sim \mathrm{id}_{M_0}$. More in general $M \subset \mathbb{R}^n$ is called **convex** if for all $x, y \in M$ the segment joining x to y is contained inside M. If M is convex then M is homotopy equivalent to $M \times \{0\}$.

 $^{^5{\}rm Exercise}$

• Let $M_0 = \mathbb{R}^2 \setminus \{0\}$ and $M_1 = S^1$. Then M_0 and M_1 are homotopy equivalent. Let

Then

$$\begin{array}{cccc} f\circ g & : & M_1 & \longrightarrow & M_1 \\ & x & \longmapsto & x \end{array},$$

so $f \circ g = \mathrm{id}_{M_1}$, and

$$g \circ f : M_0 \longrightarrow M_0$$

$$x \longmapsto \frac{x}{|x|}.$$

Let

$$H: M_0 \times [0,1] \longrightarrow M_0$$

$$(x,t) \longmapsto tx + (1-t)\frac{x}{|x|}$$

be smooth. Then $H\left(x,0\right)=x/|x|=\left(g\circ f\right)\left(x\right)$ and $H\left(x,1\right)=x=\mathrm{id}_{M_{0}}\left(x\right),$ so $g\circ f\sim\mathrm{id}_{M_{0}}.$

Proposition 2.13. Let M and N be manifolds, and let $H: M \times [0,1] \to N$ be smooth. Denote

$$\begin{array}{cccc} f_t & : & M & \longrightarrow & N \\ & & x & \longmapsto & H\left(x,t\right) \end{array}, \qquad t \in \left[0,1\right].$$

Then $f_{t}^{*}: \mathrm{H}^{p}\left(N\right) \to \mathrm{H}^{p}\left(M\right)$ does not depend on t for all $p \geq 0$.

Proof. Let $t_1, t_2 \in [0, 1]$ such that $t_1 < t_2$. The goal is $f_{t_1}^* [\eta] = f_{t_2}^* [\eta]$ for all $[\eta] \in H^p(N)$. Let

$$i_k : M \longrightarrow M \times [0,1]$$

 $x \longmapsto (x,t_k)$, $k = 1,2$.

Claim that for all p there exists a linear map $h: \Omega^p(M \times [t_1, t_2]) \to \Omega^{p-1}(M)$ such that

$$d(h(\omega)) + h(d\omega) = i_2^* \omega - i_1^* \omega \in \Omega^p(M), \qquad \omega \in \Omega^p(M \times [0, 1]). \tag{2}$$

Step 1. The claim implies the proposition. Let $\eta \in \Omega^p(N)$ be closed, so $d\eta = 0$. Then $H^*\eta$ is also closed, so let $\omega = H^*\eta \in \Omega^p(M \times [t_1, t_2])$. Apply h. Then $d\omega = 0$, so $d(h(\omega)) = i_2^*\omega - i_1^*\omega$ is exact. Thus

$$f_{t_1}^*[\eta] = \left[f_{t_1}^* \eta \right] = \left[i_1^* H^* \eta \right] = \left[i_1^* \omega \right] = \left[i_2^* \omega \right] = \left[i_2^* H^* \eta \right] = \left[f_{t_2}^* \eta \right] = f_{t_2}^*[\eta].$$

so the proposition follows.

Lecture 10 Thursday 30/01/20

Step 2. The proof of the claim. Let $\omega \in \Omega^p (M \times [t_1, t_2])$. Then for all $(x, t) \in M \times [t_1, t_2]$, $\omega(x, t)$ is an alternating p-form on $T_{(x,t)} (M \times [t_1, t_2])$. We want an alternating (p-1)-form $h(\omega)(x)$ on T_xM . Let $v_1, \ldots, v_{p-1} \in T_xM$. Then

$$h(\omega)(x)(v_1,\ldots,v_{p-1}) = \int_{t_1}^{t_2} \omega(x,t) \left(\frac{\partial}{\partial t}, v_1,\ldots,v_{p-1}\right) dt$$

is a (p-1)-form on M, and $\frac{\partial}{\partial t}$ is a global vector field. Check h is linear. ⁶ It is enough to prove (2) locally. Remark that exactness is not a local property. Fix local coordinates (x_1, \ldots, x_n, t) around a point of $M \times [0, 1]$. Then

$$\omega = \sum_{|I|=p} \omega_I + \sum_{|J|=p-1} \omega_J, \qquad \omega_I = g_I dx_{i_1} \wedge \dots \wedge dx_{i_p}, \qquad \omega_J = g_J dx_{j_1} \wedge \dots \wedge dx_{j_{p-1}} \wedge dt,$$

where g_I and g_J are smooth functions. Any term of (2) is linear. So we just need to check (2) holds for ω_I and ω_J .

 $^{^6}$ Exercise

 ω_I . Let $\omega = g(x,t) dx_{i_1} \wedge \cdots \wedge dx_{i_n}$. Then

$$d\left(h\left(\omega\left(x,t\right)\left(\frac{\partial}{\partial t},v_{1},\ldots,v_{p-1}\right)\right)\right) = d\left(h\left(0\right)\right) = 0,$$

and

$$h(d\omega) = h\left(\frac{\partial}{\partial t} g(x,t) dt \wedge dx_{i_1} \wedge \dots \wedge dx_{i_p} + \sum_{j=1}^n \frac{\partial}{\partial x_j} g(x,t) dx_j \wedge dx_{i_1} \wedge \dots \wedge dx_{i_p}\right)$$

$$= \left(\int_{t_1}^{t_2} \frac{\partial}{\partial t} g(x,t) dt\right) dx_{i_1} \wedge \dots \wedge dx_{i_p} + 0$$

$$= (g(x,t_2) - g(x,t_1)) dx_{i_1} \wedge \dots \wedge dx_{i_p} = i_2^* \omega - i_1^* \omega,$$

so (2) holds.

 ω_J . Let $\omega = g(x,t) dx_{j_1} \wedge \cdots \wedge dx_{j_{p-1}} \wedge dt$. Then

$$d(h(\omega)) = (-1)^{p-1} d\left(\left(\int_{t_1}^{t_2} g(x,t) dt\right) dx_{j_1} \wedge \dots \wedge dx_{j_{p-1}}\right)$$

$$= (-1)^{p-1} \sum_{j=1}^{n} \frac{\partial}{\partial x_j} \left(\int_{t_1}^{t_2} g(x,t) dt\right) dx_j \wedge dx_{j_1} \wedge \dots \wedge dx_{j_{p-1}}$$

$$= (-1)^{p-1} \sum_{j=1}^{n} \left(\int_{t_1}^{t_2} \frac{\partial}{\partial x_j} g(x,t) dt\right) dx_j \wedge dx_{j_1} \wedge \dots \wedge dx_{j_{p-1}},$$

and

$$h(d\omega) = h\left(\sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} g(x,t) dx_{j} \wedge dx_{j_{1}} \wedge \dots \wedge dx_{j_{p-1}} \wedge dt + 0\right)$$
$$= (-1)^{p-1} \sum_{j=1}^{n} \left(\int_{t_{1}}^{t_{2}} \frac{\partial}{\partial x_{j}} g(x,t) dt\right) dx_{j} \wedge dx_{j_{1}} \wedge \dots \wedge dx_{j_{p-1}} = -d(h(\omega)),$$

and $i_2^*\omega = i_1^*\omega = 0$, so (2) holds.

Corollary 2.14. Assume M and N are homotopy equivalent. Then there exist isomorphisms

$$H^{p}(N) \to H^{p}(M), \qquad p \ge 0.$$

Proof. There exist $f: M \to N$ and $g: N \to M$ such that $g \circ f \sim \mathrm{id}_M$ and $f \circ g \sim \mathrm{id}_N$. By Proposition 2.13 $(g \circ f)^* : \mathrm{H}^p(M) \to \mathrm{H}^p(M)$ coincides with $\mathrm{id}_M^* = \mathrm{id}_{\mathrm{H}^p(M)}$. Then $f^* \circ g^* = (g \circ f)^* = \mathrm{id}_{\mathrm{H}^p(M)}$. Similarly $g^* \circ f^* = \mathrm{id}_{\mathrm{H}^p(N)}$, so g^* and f^* are isomorphisms.

Definition 2.15. Let M be a manifold. Then M is **smoothly contractible** if M is homotopy equivalent to a point.

Example. \mathbb{R}^n is contractible, by Example 2.12. If $M \subset \mathbb{R}^n$ is convex then M is contractible.

Theorem 2.16 (Poincaré lemma). If M is a contractible manifold then

$$H^p(M) = 0, \quad p > 1.$$

Proof. By previous Corollary 2.14, there exists an isomorphism $H^p(M) \to H^p(\{\text{point}\})$. Then $\{\text{point}\}$ is a zero-dimensional manifold, so by Proposition 2.5, $H^p(\{\text{point}\}) = 0$ for all p > 0.

Thus $H^p(\mathbb{R}^n) = 0$ for all p > 0, so \mathbb{R}^n is not diffeomorphic to any compact orientable manifold.

Lecture 11 Monday 03/02/20

Proposition 2.17. Let M be a manifold, and let $\omega \in \Omega^p(M)$ be a closed p-form for p > 0. Then for all $x \in X$, there exists a neighbourhood $U \ni x$ such that ω is exact on U, that is there exists $\eta \in \Omega^{p-1}(U)$ such that $\omega = \mathrm{d}\eta$ on U.

Proof. Let (U, ϕ) be a chart around x. I may assume that $V = \phi(U)$ is a ball in \mathbb{R}^n . Then U is diffeomorphic to $B = \{z \mid |z - z_0| < r\}$ for some $z_0 \in \mathbb{R}^n$ and r > 0, so $H^p(U) \cong H^p(B)$ for all $p \geq 0$. Since B is contractible, $H^p(B) = 0$ for all p > 0. The restriction of ω on U gives a class $[\omega] \in H^p(U) = 0$, so ω is cohomologous to zero on U. Thus ω is exact on U.

Definition 2.18. Let M be a manifold, let $\gamma : [0,1] \to M$ be a continuous or smooth path, and let $x = \gamma(0)$ and $y = \gamma(1)$. A **homotopy of paths** from x to y is a map

$$\begin{array}{ccccc} F & : & [0,1] \times [0,1] & \longrightarrow & M \\ & & (0,t) & \longmapsto & x \\ & & (1,t) & \longmapsto & y \end{array}.$$

Proposition 2.19. Let γ_0 and γ_1 be homotopic paths on a manifold M, and let $\omega \in \Omega^1(M)$ be closed. Then

$$\int_0^1 \gamma_0^* \omega = \int_{\gamma_0} \omega = \int_{\gamma_1} \omega.$$

Proof. Lee's introduction to smooth manifolds. The idea is

$$\int_{\gamma_0} \omega - \int_{\gamma_1} \omega = \int_{\gamma_0 \cup \gamma_1} \omega = \int_{\operatorname{Im} F} \omega = 0,$$

by Stokes' theorem.

Recall that M is **simply connected**, so $\pi_1(M) = 0$, if any path γ from x to x is homotopic equivalent to a point.

Proposition 2.20. Let M be a simply connected orientable manifold. Then

$$H^1(M) = 0.$$

Proof. Let $\omega \in \Omega^1(M)$ be a closed form. Then claim that ω is exact if and only if $\int_{\gamma} \omega = 0$ for all loops γ , that is paths from x to x.

• The proof of the claim. Assume that $\omega = df$ is exact for $f \in \Omega^0(M)$. By Proposition 2.19,

$$\int_{\gamma} \omega = \int_{\text{trivial loop}} \omega = 0.$$

Assume that $\int_{\gamma} \omega = 0$ for all loops γ . Fix x. Let

$$f(y) = \int_{x}^{y} \omega.$$

Since $\int_{\gamma_1 \cup \gamma_2} \omega = 0$, f is well-defined, that is it does not depend on the choice of the path. Then $df = \omega$. This can be checked locally, that is in an open set of \mathbb{R}^n . Here it follows from the fundamental theorem of calculus.

• The claim implies the proposition. Being simply connected, any loop inside M is homotopic equivalent to the trivial loop. For all loops γ and for all closed ω , $\int_{\gamma} \omega = 0$ by Proposition 2.19, so ω is exact. Thus $[\omega] = 0$ in $H^1(M)$.

Lecture 12 Tuesday

04/02/20

2.3 Some homological algebra

Let C^{\bullet} be a sequence of vector spaces, that is C^k is a vector space for $k \in \mathbb{Z}$.

Definition 2.21. $(C^{\bullet}, d^{\bullet})$ is a **cochain complex** if C^{\bullet} is a sequence of vector spaces and d^{\bullet} is a sequence of linear maps $d^k: C^k \to C^{k+1}$ such that the composition $d^{k+1} \circ d^k: C^k \to C^{k+1} \to C^{k+2}$ is zero for all k. Then d^{\bullet} is the **differential**.

Definition 2.22. The elements of

$$\mathcal{Z}^k\left(C^{\bullet}, d^{\bullet}\right) = \operatorname{Ker}\left(d^k : C^k \to C^{k+1}\right) \subset C^k$$

are called **cocycles**. The elements of

$$\mathcal{B}^k\left(C^{\bullet}, d^{\bullet}\right) = \operatorname{Im}\left(d^k : C^{k-1} \to C^k\right) \subset C^k$$

are called **coboundaries**. Then $d^{k-1} \circ d^k = 0$, so $\mathcal{B}^k \subset \mathcal{Z}^k$. The quotients

$$\mathrm{H}^{k}\left(C^{\bullet},d^{\bullet}\right)=\mathcal{Z}^{k}\left(C^{\bullet},d^{\bullet}\right)/\mathcal{B}^{k}\left(C^{\bullet},d^{\bullet}\right)$$

are the k-th cohomology groups of $(C^{\bullet}, d^{\bullet})$.

Definition 2.23. Let $(C^{\bullet}, d^{\bullet})$ and $(D^{\bullet}, d^{\bullet})$ be two cochain complexes. A map $f: (C^{\bullet}, d^{\bullet}) \to (D^{\bullet}, d^{\bullet})$ is a sequence of linear maps $f^k: C^k \to D^k$ such that $f^{k+1} \circ d^k = d^k \circ f^k$ for all k, so

Proposition 2.24. Let $f:(C^{\bullet},d^{\bullet}) \to (D^{\bullet},d^{\bullet})$ be a map between cochain complexes. Then there exists a natural induced map

$$f^k : \mathbf{H}^k \left(C^{\bullet}, d^{\bullet} \right) \to \mathbf{H}^k \left(D^{\bullet}, d^{\bullet} \right).$$

Proof. Let $[\omega] \in H^k(C^{\bullet}, d^{\bullet}) = \mathcal{Z}^k(C^{\bullet}, d^{\bullet}) / \mathcal{B}^k(C^{\bullet}, d^{\bullet})$ for $\omega \in \mathcal{Z}^k(C^{\bullet}, d^{\bullet})$, that is $d^k(\omega) = 0$. I want to check that $f^k(\omega) \in \mathcal{Z}^k(D^{\bullet}, d^{\bullet})$. By definition of maps, $d^k(f^k(\omega)) = f^{k+1}(d^k(\omega)) = 0$, so there is a map

$$\mathcal{Z}^{k}\left(C^{\bullet},d^{\bullet}\right) \to \mathcal{Z}^{k}\left(D^{\bullet},d^{\bullet}\right).$$

Now I need to check that if $\omega \in \mathcal{B}^k\left(C^{\bullet}, d^{\bullet}\right)$ then $f^k\left(\omega\right) \in \mathcal{B}^k\left(D^{\bullet}, d^{\bullet}\right)$.

Definition 2.25. A sequence of linear maps

$$C^1 \xrightarrow{f^1} C^2 \to \cdots \to C^{k-1} \xrightarrow{f^{k-1}} C^k$$

between vector spaces is said to be **exact** if for all i, Ker $f^i = \text{Im } f^{i-1}$.

Example 2.26.

• A sequence

$$0 \to C^1 \xrightarrow{f^1} C^2$$

is exact if and only if f^1 is injective.

• A sequence

$$C^1 \xrightarrow{f^1} C^2 \to 0$$

is exact if and only if f^1 is surjective.

• An exact sequence

$$0 \to C^1 \xrightarrow{f^1} C^2 \xrightarrow{f^2} C^3 \to 0$$

is called a **short exact sequence**. In particular f^1 is injective and f^2 is surjective.

 $^{^7 {\}it Exercise}$

• Any long exact sequence

$$C^1 \xrightarrow{f^1} C^2 \to \cdots \to C^{q-1} \xrightarrow{f^{q-1}} C^q$$

can be split into short exact sequences

Lemma 2.27 (Snake lemma). Consider the commutative diagram

$$C^{1} \xrightarrow{f^{1}} C^{2} \xrightarrow{f^{2}} C^{3} \longrightarrow 0$$

$$\downarrow^{\alpha_{1}} \qquad \downarrow^{\alpha_{2}} \qquad \downarrow^{\alpha_{3}} \qquad ,$$

$$0 \longrightarrow D^{1} \xrightarrow{g^{1}} D^{2} \xrightarrow{g^{2}} D^{3}$$

such that both the horizontal lines are exact sequences. Then there exists a long exact sequence

 $\operatorname{Ker} \alpha_1 \to \operatorname{Ker} \alpha_2 \to \operatorname{Ker} \alpha_3 \xrightarrow{\delta} \operatorname{Coker} \alpha_1 \to \operatorname{Coker} \alpha_2 \to \operatorname{Coker} \alpha_3.$

If

$$0 \longrightarrow C^{1} \xrightarrow{f^{1}} C^{2} \xrightarrow{f^{2}} C^{3} \longrightarrow 0$$

$$\downarrow^{\alpha_{1}} \qquad \downarrow^{\alpha_{2}} \qquad \downarrow^{\alpha_{3}} \qquad ,$$

$$0 \longrightarrow D^{1} \xrightarrow{g^{1}} D^{2} \xrightarrow{g^{2}} D^{3} \longrightarrow 0$$

then

$$0 \to \operatorname{Ker} \alpha_1 \to \operatorname{Ker} \alpha_2 \to \operatorname{Ker} \alpha_3 \xrightarrow{\delta} \operatorname{Coker} \alpha_1 \to \operatorname{Coker} \alpha_2 \to \operatorname{Coker} \alpha_3 \to 0.$$

Proof. We are going to construct $\delta : \operatorname{Ker} \alpha_3 \to \operatorname{Coker} \alpha_1$. Let $x \in \operatorname{Ker} \alpha_3$. There exists $y \in C^2$ such that $f^2(y) = x$ because f^2 is surjective. Let $z = \alpha_2(y)$ then

$$g^{2}(z) = g^{2}(\alpha_{2}(y)) = \alpha_{3}(f^{2}(y)) = \alpha_{3}(x) = 0,$$

since $x \in \operatorname{Ker} \alpha_3$. Then $z \in \operatorname{Ker} g^2 = \operatorname{Im} g^1$, so there exists $w \in D^1$ such that $z = g^1(w)$. The idea is

Define $\delta(x) = [w] \in \operatorname{Coker} \alpha^1 = D^1 / \operatorname{Im} \alpha^1$. Need to check that δ is well-defined, so [w] does not depend on our choice of w and y. The rest is an exercise. 8

 $^{^8}$ Exercise

2.4 The Mayer-Vietoris sequence

The idea is given a manifold M, we may write $M = U \cup V$ with open U and V so that $H^i(U)$, $H^i(V)$, and $H^i(U \cap V)$ are easy to compute, so this will give us $H^i(M)$. Let M be a manifold, and let U and V be open such that $M = U \cup V$. Assume $U \cap V \neq \emptyset$. Let

$$i_U:U\to M, \qquad i_V:V\to M, \qquad j_U:U\cap V\to U, \qquad j_V:U\cap V\to V$$

be inclusions, and let $i_U^*, i_V^*, j_U^*, j_V^*$ be pull-backs.

Proposition 2.28. For all p there exist short exact sequences

$$0 \to \Omega^p(M) \xrightarrow{f} \Omega^p(U) \oplus \Omega^p(V) \xrightarrow{g} \Omega^p(U \cap V) \to 0,$$

where $f = (i_U^*, i_V^*)$ and $g = j_V^* - j_U^*$. More precisely, if $\omega_1 \in \Omega^p(U)$ and $\omega_2 \in \Omega^p(V)$ then $g(\omega_1, \omega_2) = j_V^* \omega_2 - j_U^* \omega_1$.

Proof.

- f is injective. Assume $\omega \in \Omega^p(M)$ such that $f(\omega) = 0$, so $i_U^*\omega = i_V^*\omega = 0$. Since $M = U \cup V$ then $\omega = 0$ on M, so f is injective.
- Im f = Ker g. Let $f(\omega) \in \text{Im } f$, so $f(\omega) = (i_U^* \omega, i_V^* \omega)$. Then $g(f(\omega)) = j_V^* i_V^* \omega j_U^* i_U^* \omega = l^* \omega l^* \omega = 0$, where

so Im $f \subset \text{Ker } g$. Now let $(\omega_1, \omega_2) \in \text{Ker } g$, so $j_V^* \omega_2 = j_U^* \omega_1$ for $\omega_1 \in \Omega^p(U)$ and $\omega_2 \in \Omega^p(V)$. The restriction of ω_2 on $U \cap V$ coincides with the restriction of ω_1 on $U \cap V$. Then define

$$\omega = \begin{cases} \omega_1 & \text{on } U \\ \omega_2 & \text{on } V \end{cases}.$$

Then $f(\omega) = (\omega_1, \omega_2)$, so Ker $g \subset \text{Im } f$.

• g is surjective. Let $\eta \in \Omega^p(U \cap V)$, and let $\{f_U, f_V\}$ be a partition of unity with respect to $\{U, V\}$. Then supp $f_U \subset U$ and $f_U + f_V = 1$. Let $\eta_1 \in \Omega^p(U)$ be defined by

$$\eta_1 = \begin{cases} f_V \cdot \eta & \text{on } U \cap V \\ 0 & \text{outside supp } f_V \end{cases},$$

and let $\eta_2 \in \Omega^p(V)$ be defined by

$$\eta_2 = \begin{cases} f_U \cdot \eta & \text{on } U \cap V \\ 0 & \text{outside supp } f_U \end{cases}.$$

Then $g(-\eta_2, \eta_1) = \eta_1|_{U \cap V} + \eta_2|_{U \cap V} = (f_U + f_V) \cdot \eta = \eta$, so $\eta \in \text{Im } g$.

Lecture 13 Thursday 06/02/20

Theorem 2.29 (Mayer-Vietoris). Let M be a manifold, and let U and V be open in M such that $M = U \cup V$ and $U \cap V \neq \emptyset$. Then for all $p \geq 0$ there exists a linear $\delta : H^p(U \cap V) \to H^{p+1}(M)$ such that

$$\cdots \longrightarrow \mathrm{H}^{p}\left(M\right) \xrightarrow{(i_{U}^{*}, i_{V}^{*})} \mathrm{H}^{p}\left(U\right) \oplus \mathrm{H}^{p}\left(V\right) \xrightarrow{j_{V}^{*} - j_{U}^{*}} \mathrm{H}^{p}\left(U \cap V\right)$$

$$\xrightarrow{\delta}$$

$$\longrightarrow \widetilde{\mathrm{H}^{p+1}\left(M\right)^{(i_{U}^{*}, i_{V}^{*})}} \mathrm{H}^{p+1}\left(U\right) \oplus \mathrm{H}^{p+1}\left(V\right)^{j_{V}^{*} - j_{U}^{*}} \mathrm{H}^{p+1}\left(U \cap V\right) \longrightarrow \cdots$$

is exact.

Example 2.30. Let $M = S^1$, let N = (0,1) and S = (0,-1), and let $U = M \setminus \{N\}$ and $V = M \setminus \{S\}$, so $M = U \cup V$ and $U \cap V = M \setminus \{N,S\}$. Then

$$\mathrm{H}^{p}\left(U\right)\cong\mathrm{H}^{p}\left(V\right)\cong\mathrm{H}^{p}\left(\left(0,1\right)\right)\cong\begin{cases}\mathbb{R}&p=0\\0&p>0\end{cases},\qquad\left(0,1\right)\subset\mathbb{R},$$

and

$$\mathrm{H}^{p}\left(U\cap V\right)=\mathrm{H}^{p}\left(U\setminus\left\{S\right\}\right)=\mathrm{H}^{p}\left(\left(0,\frac{1}{2}\right)\cup\left(\frac{1}{2},1\right)\right)=\begin{cases}\mathbb{R}^{2} & p=0\\ 0 & p>0\end{cases}, \qquad \left(0,\frac{1}{2}\right),\left(\frac{1}{2},1\right)\subset\mathbb{R},$$

SO

Then $\operatorname{Im} \phi = \mathbb{R} \subset \operatorname{H}^0(U \cap V) = \mathbb{R}^2$. Thus

$$\mathrm{H}^{1}\left(M\right)=\mathrm{Coker}\,\phi=\mathbb{R}^{2}/\mathrm{Im}\,\phi\cong\mathbb{R}.$$

Remark 2.31. Let

$$0 \to C^1 \to \cdots \to C^k \to 0$$

be an exact sequence. Then

$$\sum_{k} \left(-1\right)^k \dim C^k = 0.9$$

In our $M = S^1$ case $1 - 2 + 2 - \dim H^1(M) = 0$, so $\dim H^1(M) = 1$. Thus $H^1(M) \cong \mathbb{R}$.

Example 2.32. Let $M = S^n \subset \mathbb{R}^{n+1}$ be the *n*-dimensional sphere. Then

$$\mathbf{H}^{p}\left(M\right) = \begin{cases} \mathbb{R} & p = 0, n \\ 0 & \text{otherwise} \end{cases}.$$

By induction on n.

n=1. Ok.

$$n > 1$$
. Let $U = M \setminus \{N\}$ and $V = M \setminus \{S\}$, so $U \cap V \neq \emptyset$ and $U \cup V = M$. Then

$$U \cong V \cong \mathbb{R}^n$$
, $U \cap V = V \setminus \{N\} \cong \mathbb{R}^n \setminus \{0\} \cong \mathbb{S}^{n-1}$.

so

$$0 \longrightarrow \mathrm{H}^{0}\left(M\right) \longrightarrow \mathrm{H}^{0}\left(U\right) \oplus \mathrm{H}^{0}\left(V\right) \longrightarrow \mathrm{H}^{0}\left(U \cap V\right) \stackrel{\delta}{\longrightarrow} \mathrm{H}^{1}\left(M\right) \longrightarrow \mathrm{H}^{1}\left(U\right) \oplus \mathrm{H}^{1}\left(V\right) \longrightarrow \dots \\ \mathbb{R} \qquad \mathbb{R} \oplus \mathbb{R} \qquad \mathbb{R} \qquad \mathbb{R} \qquad 0 \oplus 0$$

Then $1-2+1-\dim H^{1}(M)=0$, so $\dim H^{1}(M)=0$. Thus $H^{1}(M)=0$. Then for p>0

$$\dots \longrightarrow \mathrm{H}^{p}\left(U\right) \oplus \mathrm{H}^{p}\left(V\right) \longrightarrow \mathrm{H}^{p}\left(U \cap V\right) \stackrel{\delta}{\longrightarrow} \mathrm{H}^{p+1}\left(M\right) \longrightarrow \mathrm{H}^{p+1}\left(U\right) \oplus \mathrm{H}^{p+1}\left(V\right) \longrightarrow \dots \\ 0 \stackrel{|\mathbb{R}}{\oplus} 0$$

is exact, so $H^p(U \cap V) \cong H^{p+1}(M)$. By induction

$$\mathrm{H}^{p}\left(U\cap V\right)=\mathrm{H}^{p+1}\left(M\right)=egin{cases}\mathbb{R} & p=n-1 \\ 0 & \mathrm{otherwise} \end{cases}.$$

 $^{^9 {\}it Exercise}$

Proof of Theorem 2.29. By Proposition 2.28 for all p

$$0 \longrightarrow \Omega^{p}(M) \longrightarrow \Omega^{p}(U) \oplus \Omega^{p}(V) \longrightarrow \Omega^{p}(U \cap V) \longrightarrow 0$$

$$\downarrow^{\mathrm{d}_{M}^{p}} \qquad \qquad \downarrow^{\mathrm{d}_{U}^{p} \oplus \mathrm{d}_{V}^{p}} \qquad \qquad \downarrow^{\mathrm{d}_{U \cap V}^{p}}$$

$$0 \longrightarrow \Omega^{p+1}(M) \longrightarrow \Omega^{p+1}(U) \oplus \Omega^{p+1}(V) \longrightarrow \Omega^{p+1}(U \cap V) \longrightarrow 0$$

are exact. Recall d commutes with the pull-back. By the strong snake lemma,

which is well-defined, since $d^{p+1} \circ d^p = 0$. By the weak snake lemma again,

$$\operatorname{Ker} \partial_M^p \to \operatorname{Ker} (\partial_U^p, \partial_V^p) \to \operatorname{Ker} \partial_{U \cap V}^p \xrightarrow{\delta} \operatorname{Coker} \partial_M^p \to \operatorname{Coker} (\partial_U^p, \partial_V^p) \to \operatorname{Coker} \partial_{U \cap V}^p.$$

Then $\operatorname{Coker}\operatorname{d}_{M}^{p-1}=\Omega^{p}\left(M\right)/\operatorname{Im}\operatorname{d}_{M}^{p-1}.$ There exists

$$\mathrm{H}^{p}\left(M\right)=\mathrm{Ker}\,\mathrm{d}_{M}^{p}/\operatorname{Im}\mathrm{d}_{M}^{p-1}\xrightarrow{\sim}\mathrm{Ker}\left(\Omega^{p}\left(M\right)/\operatorname{Im}\mathrm{d}_{M}^{p-1}\rightarrow\mathrm{Ker}\,\mathrm{d}_{M}^{p+1}\right)=\mathrm{Ker}\,\partial_{M}^{p}.$$

Similarly, $\operatorname{Ker}(\partial_{U}^{p}, \partial_{V}^{p}) \cong \operatorname{H}^{p}(U) \oplus \operatorname{H}^{p}(V)$ and $\operatorname{Ker}\partial_{U \cap V}^{p} \cong \operatorname{H}^{p}(U \cap V)$. There exists

$$\mathbf{H}^{p+1}\left(M\right)=\operatorname{Ker}\operatorname{d}_{M}^{p+1}/\operatorname{Im}\operatorname{d}_{M}^{p}\xrightarrow{\sim}\operatorname{Coker}\left(\Omega^{p}\left(M\right)/\operatorname{Im}\operatorname{d}_{M}^{p-1}\to\operatorname{Ker}\operatorname{d}_{M}^{p+1}\right)=\operatorname{Coker}\partial_{M}^{p}.$$

Similarly,
$$\operatorname{Coker}\left(\partial_{U}^{p},\partial_{V}^{p}\right)\cong\operatorname{H}^{p+1}\left(U\right)\oplus\operatorname{H}^{p+1}\left(V\right)$$
 and $\operatorname{Coker}\partial_{U\cap V}^{p}\cong\operatorname{H}^{p+1}\left(U\cap V\right)$.

Example 2.33. Let $\mathbb{T}^2 = S^1 \times S^1$ be the torus. Then

$$\mathbf{H}^{p}\left(\mathbb{T}^{2}\right)=egin{cases} \mathbb{R} & p=0,2 \\ \mathbb{R}\oplus\mathbb{R} & p=1 \end{cases}.$$

We leave the proof as an exercise. ¹⁰

Definition 2.34. Let M be a manifold, and let $U = \{U_i\}$ be an open cover of M. Then U is said to be **good** if for all $I = (i_1, \ldots, i_p), U_{i_1} \cap \cdots \cap U_{i_p}$ is either \emptyset or contractible.

Lemma 2.35. Let M be a connected manifold which admits a finite good cover. Then for all $p \ge 0$, $H^p(M)$ is a finite dimensional vector space.

Exercise. Find a counterexample without assuming there exists a finite good cover.

Proof. Let U be a finite good cover. Define k = #U. By induction on k.

 $k=1.\ M=U_1$ is contractible, so

$$\mathbf{H}^{p}\left(M\right) = \begin{cases} \mathbb{R} & p = 0\\ 0 & \text{otherwise} \end{cases}.$$

k>1. Assume ok for covers with at most k-1 elements. Let $U=\bigcup_{i=1}^{k-1}U_i$ and $V=U_k$. Then $U\cup V=M$ and $U\cap V\neq\emptyset$, so Mayer-Vietoris holds. By induction $H^p(U)$ and $H^p(V)$ are finite dimensional, since $H^p(U)$ is covered by k-1 of U_i and $H^p(V)$ is contractible. Then $U\cap V=\bigcup_{i=1}^{k-1}(U_i\cap U_k)$, and $\{U_i\cap U_k\}$ is a good cover of $U\cap V$ with k-1 elements. ¹¹ By induction $H^p(U\cap V)$ is finite dimensional. Thus $H^p(M)$ is also finite dimensional.

Lecture 14 Monday 10/02/20

¹⁰Exercise

¹¹Exercise

Fact. Any manifold admits a good cover.

Theorem 2.36. Let M be a compact connected manifold. Then $H^p(M)$ is finite dimensional.

Proof. Follows from the fact and Lemma 2.35.

2.5 Compactly supported de Rham cohomology

Let M be a manifold, and let $\omega \in \Omega_c^p(M)$. Then $d\omega \in \Omega_c^{p+1}(M)$ and $d^2 = 0$, so

$$\Omega_{c}^{p}(M) \xrightarrow{d} \Omega_{c}^{p+1}(M) \xrightarrow{d} \dots$$

Definition 2.37.

$$\mathrm{H}_{\mathrm{c}}^{p}\left(M\right)=\mathcal{Z}_{\mathrm{c}}^{p}\left(M\right)/\mathcal{B}_{\mathrm{c}}^{p}\left(M\right)=\mathrm{Ker}\left(\mathrm{d}:\Omega_{\mathrm{c}}^{p}\left(M\right)\to\Omega_{\mathrm{c}}^{p+1}\left(M\right)\right)/\mathrm{Im}\left(\mathrm{d}:\Omega_{\mathrm{c}}^{p-1}\left(M\right)\to\Omega_{\mathrm{c}}^{p}\left(M\right)\right).$$

Example. If M is compact, then

$$\mathrm{H}_{\mathrm{c}}^{p}\left(M\right) = \mathrm{H}^{p}\left(M\right), \qquad p \geq 0.$$

Lemma 2.38. Let M be a non-compact connected manifold. Then

$$\mathrm{H}_{\mathrm{c}}^{0}\left(M\right) =0.$$

Recall if M is connected $H^{0}(M) = \mathbb{R}$.

Proof. $H^0(M) = \{f \text{ constant on } M\}$ and $H^0_c(M) = \{f \text{ constant on } M \text{ and with compact support}\}$. Since M is non-compact, if $f \in \Omega^0_c(M)$, then $\operatorname{supp} f \subsetneq M$. Thus there exists $x \in M$ such that f(x) = 0, so $f \equiv 0$, since f is constant.

Let $f: M \to N$ be a smooth morphism between manifolds, and let $\omega \in \Omega^p_{\mathbf{c}}(N) \subset \Omega^p(N)$. Then $f^*\omega \in \Omega^p(M)$, and $\operatorname{supp} f^*\omega \subset f^{-1}(\operatorname{supp}\omega)$, which is not compact in general, so $f^*\omega \notin \Omega^p_{\mathbf{c}}(M)$ in general.

Definition 2.39. f is called **proper** if $f^{-1}(K)$ is compact for all compact subsets $K \subset N$.

If f is proper, then $f^*: \Omega_c^p(N) \to \Omega_c^p(M)$ is well-defined.

Exercise. If f is a diffeomorphism then f^* induces an isomorphism $H_c^p(N) \to H_c^p(M)$.