Machine Learning Exercise Sheet 10

Dimensionality Reduction & Matrix Factorization

In-class Exercises

Problem 1: In this exercise, we use proof by induction to show that the linear projection onto an M-dimensional subspace that maximizes the variance of the projected data is defined by the M eigenvectors of the data covariance matrix S, given by

$$S = rac{1}{N} \sum_{n=1}^{N} (oldsymbol{x}_n - ar{oldsymbol{x}}) (oldsymbol{x}_n - ar{oldsymbol{x}})^T \qquad ar{oldsymbol{x}} = rac{1}{N} \sum_{n=1}^{N} oldsymbol{x}_n$$

corresponding to the M largest eigenvalues. In Section 12.1 in Bishop this result was proven for the case of M=1. Now suppose the result holds for some general value of M and show that it consequently holds for dimensionality M+1. To do this, first set the derivative of the variance of the projected data with respect to a vector \mathbf{u}_{M+1} defining the new direction in data space equal to zero. This should be done subject to the constraints that \mathbf{u}_{M+1} be orthogonal to the existing vectors $\mathbf{u}_1, \dots \mathbf{u}_M$, and also that it be normalized to unit length. Use Lagrange multipliers to enforce these constraints. Then make use of the orthonormality properties of the vectors $\mathbf{u}_1, \dots, \mathbf{u}_M$ to show that the new vector \mathbf{u}_{M+1} is an eigenvector of S. Finally, show that the variance is maximized if the eigenvector is chosen to be the one corresponding to eigenvector λ_{M+1} where the eigenvalues have been ordered in decreasing value.

Suppose that the result holds for projection spaces of dimensionality M. The M+1 dimensional principal subspace will be defined by the M principal eigenvectors $\boldsymbol{u}_1,\ldots,\boldsymbol{u}_M$ together with an additional direction vector \boldsymbol{u}_{M+1} whose value we wish to determine. We must constrain \boldsymbol{u}_{M+1} such that it cannot be linearly related to $\boldsymbol{u}_1,\ldots,\boldsymbol{u}_M$ (otherwise it will lie in the M-dimensional projection space instead of defining an M+1 independent direction). This can easily be achieved by requiring that \boldsymbol{u}_{M+1} be orthogonal to $\boldsymbol{u}_1,\ldots,\boldsymbol{u}_M$, and these constraints can be enforced using Lagrange multipliers η_1,\ldots,η_M .

Following the argument given in section 12.1.1 for u_1 we see that the variance in the direction u_{M+1} is given by $u_{M+1}^T S u_{M+1}$. We now maximize this using a Lagrange multiplier λ_{M+1} to enforce the normalization constraint $u_{M+1}^T u_{M+1} = 1$. Thus we seek a maximum of the function:

$$m{u}_{M+1}^T m{S} m{u}_{M+1} + \lambda_{M+1} (1 - m{u}_{M+1}^T m{u}_{M+1}) + \sum_{i=1}^M \eta_i m{u}_{M+1}^T m{u}_i$$

with respect to u_{M+1} . The stationary points occur when

$$0 = 2Su_{M+1} - 2\lambda_{M+1}u_{M+1} + \sum_{i=1}^{M} \eta_{i}u_{i}$$

Left multiplying with u_j^T , and using the orthogonality constraints, we see that $\eta_j = 0$ for j = 1, ..., M. We therefore obtain

$$Su_{M+1} = \lambda_{M+1}u_{M+1}$$

and so u_{M+1} must be an eigenvector of S with eigenvalue λ_{M+1} . The variance in the direction u_{M+1} is given by $u_{M+1}^T S u_{M+1} = \lambda_{M+1}$ and so is maximized by choosing u_{M+1} to be the eigenvector having the largest eigenvalue amongst those not previously selected. Thus the result holds also for projection spaces of dimensionality M+1, which completes the inductive step. Since we have already shown this result explicitly for M=1 if follows that the result must hold for any $M \ll D$.

Problem 2: Proof that minimizing the error is equivalent to maximizing the variance.

See Bishop chapter 12.1.2.