Experiments on Komlós conjecture Thoughts, Ideas and Experiments

Vikram Mullachery mv333@nyu.edu

NYU

May 1, 2018

Table of Contents

- The conjecture
 - Statement
 - Examples
- 2 Intuition
 - Matrix as a linear transformation
 - Algorithmic
- 3 Empirical Results
- Related Areas?

Statement

Given n, let K(n) denote the infimum over all real numbers such that: for all set of n vectors $u_1 \cdots u_n \in \mathbb{R}^n$ satisfying $||u_i||_2 \leq 1$, there exist signs $\epsilon_i = \pm 1$ such that

$$||\epsilon_1 u_1 + \cdots + \epsilon_n u_n||_{\infty} \leq K(n)$$

There exists a universal constant K such that $K(n) \leq K$ for all n.

What is it saying?

Statement

$$\min \|A\epsilon\|_{\infty} \leq K(n) \leq K$$

Consider this as a two player game, where Player 1 picks matrix A, and Player 2 picks vector ϵ in such a way as to minimize $\|A\epsilon\|_{\infty}$. Since Player 2's universe of game choices is known, $\pm 1^n$, we could simply take the position of Player 1 and ask ourselves how do we create a matrix A so as to maximize $A\epsilon$'s infinity norm?

$$\mathbb{R}^2$$

$$\left\| \begin{bmatrix} a & u \\ b & v \end{bmatrix} \begin{bmatrix} \pm 1 \\ \pm 1 \end{bmatrix} \right\|_{\infty} \le K(2) \le K; \ a^2 + b^2 \le 1; \ u^2 + v^2 \le 1$$

$$\mathbb{R}^3$$

$$\left\| \begin{bmatrix} a & p & u \\ b & q & v \\ c & r & w \end{bmatrix} \begin{bmatrix} \pm 1 \\ \pm 1 \\ \pm 1 \end{bmatrix} \right\|_{\infty} \le K(3) \le K;$$

$$a^{2} + b^{2} + c^{2} \le 1; \ p^{2} + q^{2} + r^{2} \le 1; \ u^{2} + v^{2} + w^{2} \le 1$$

Propositions

Trivially, we can assert that K(1)=1

$$u_1 = [1]$$

$$\epsilon_1=\pm 1$$
 yields $K(1)=1$

Working in \mathbb{R}^2

One could think of vectors in \mathbb{R}^2 that yield the maximal infinity norms. One might naturally attempt the orthogonal basis vectors e_1, e_2 . That would yield us

$$\left\|1\begin{bmatrix}1\\0\end{bmatrix}\pm1\begin{bmatrix}0\\1\end{bmatrix}\right\|_{\infty}=1$$

Can one do better?

Corners of a cube, ϵ

Plotting in \mathbb{R}^2

Rotated in \mathbb{R}^2

Rotation Matrix (by
$$\frac{\pi}{4}$$
):
$$\begin{bmatrix} \cos \frac{\pi}{4} & -\sin \frac{\pi}{4} \\ \sin \frac{\pi}{4} & \cos \frac{\pi}{4} \end{bmatrix}$$
$$\|.\|_{\infty} \text{ is now } \sqrt{2} \approx 1.414$$

$$K(2) = \sqrt{2}$$

Lemma

For n = 2, Komlós constant $K(n) = \sqrt{2}$

Proof.

 $\begin{bmatrix} \cos\theta & \cos\alpha \\ \sin\theta & \sin\alpha \end{bmatrix} \text{ can be used to represent a 2D matrix with unit norm} \\ \text{columns. By symmetry, there are only two unique vector assignments} \\ \text{possible } [1,1] \text{ and } [-1,1]. \text{ Assuming equal maximums for these} \\ \text{assignments } \cos\theta + \cos\alpha = \sin\theta - \sin\alpha, \text{ and setting the first order} \\ \text{derivatives to } 0, \text{ we arrive at } \frac{d\alpha}{d\theta} = -\frac{\sin\theta}{\sin\alpha}, \text{ and } \frac{d\theta}{d\alpha} = \frac{\cos\alpha}{\cos\theta}. \text{ Simplifying,} \\ \theta = -\alpha = \frac{\pi}{4}. \text{ We have intentionally ignored the case of vectors with norm} \\ \text{strictly less than } 1, \text{ because vectors with norm} = 1 \text{ strictly dominate in} \\ \mathbb{R}^2 \\ \end{bmatrix}$

Turn based Analogy

Sequential Turns

Imagine each player takes turns. Player 1 selects a vector from A at each time step t. Player 2 picks the corresponding ϵ_t . Define the loss accrued by Player 2 as $\|\sum_t A_t \epsilon_t\|_{\infty}$. Obviously she wishes to minimize the loss.

Minimize $\|.\|_{\infty}$ at each step

Proposition

K(n) is upper bounded by $O(\sqrt{n})$

- At each turn, Player 2 could choose a ± 1 assignment that greedily minimizes $\|.\|_{\infty}$ of the running sum $\sum_t A_t \epsilon_t$
- ② In order to counter that, Player 1 starts by picking A_1 so that it is equally distant from all coordinate axes, thus projecting $\frac{1}{\sqrt{n}}$ on each
- 3 Player 2 is indifferent to ± 1 here
- **4** For the subsequent vectors, Player 1 picks a vector, A_t , orthogonal to all previously chosen vectors, $A_{1:t-1}$
- **9** Player 1 accrues, in a best case, $\frac{1}{\sqrt{n}}$ at each pick along at least one coordinate axis, thus summing to $O(\sqrt{n})$
- 6 Note that this is a very loose upper bound

Results

n	K(n) estimation observations	Repetitions
3	1.5559	10 million
4	1.6206	400 million
5	1.4799	12 million
6	1.3885	12 million
7	n/a	n/a
8	1.1649	120 thousand
9	1.0828	120 thousand
10	0.9564	1200
11	0.9850	1200

Reading the Results

Reading the Results

Transformed unit vectors. Angular separations of: 86.96°, 102.72°, and 90.55°

Reading the Results

Empirical best in \mathbb{R}^3

Related Ideas

Pertinent for future work

- Ideas from the Lévy-Steinitz Theorem and Polygonal Confinement Theorem
- On-line learning and regret bounds in a bandit setting, with regrets defined as $\frac{1}{T} (\sum_{i=1}^{T} v_t^T A_t \inf_{i_t} \sum_{t=1}^{T} v_{i_t}^T A_t)$
- Relax ϵ_i to be a vector in \mathbb{R}^n , along the lines of work by A. Nikolov on vector colorings

Thank you for your attention!

Miscellaneous

ML

Imagine each player takes turns. Player 1 select a vector of A at each time step t. Player 2 sees all the previous choices made and accordingly picks $\epsilon_t = \pm 1$. This is exactly the same as regret bounds in On-line Machine Learning and the bounds are $O(\sqrt{T})$ (in a generic setting), where T is the total rounds played. The regret to Player 2 in such a setting is typically defined as $\frac{1}{T}(\sum_{i=1}^T v_t^T A_t - \inf_{i_t} \sum_{t=1}^T v_{i_t}^T A_t)$. It is as if Player 2 has the opportunity to look at all possible combinations of v_{i_t} assignments and then choose the one with the minimum regret (loss). Here the relaxation is that $v_t \in \mathbb{R}^n$, so that $v_t^T A_t \in \mathbb{R}$