Algorithm Analysis?

EMBRY-RIDDLE Aeronautical University

- What is algorithm analysis?
 - Algorithm analysis is a means of comparing algorithms to one another
 - Given any problem, many sequences of steps may result in identical results
 - How do you select which is the "best"?

CS 315

College of Engineering, Daytona Beach, FL

1

Algorithm Analysis?

EMBRY-RIDDLEAeronautical University

- What is algorithm analysis?
 - Algorithm analysis is a means of comparing algorithms to one another
 - Given any problem, many sequences of steps may result in identical results
 - How do you select which is the "best"?

Analysis Criteria include:

- Correctness
- Simplicity
- Time consumed
- Space used

College of Engineering, Daytona Beach, FL

Algorithm Analysis?

EMBRY-RIDDLEAeronautical University

- What is algorithm analysis?
 - Algorithm analysis is a means of comparing algorithms to one another
 - Given any problem, many sequences of steps may result in identical results
 - How do you select which is the "best"?

Analysis Criteria/Metrics include:

- Correctness
- Simplicity
- Time consumed
- Space used

College of Engineering, Daytona Beach, FL

CS 315

3

Scientific Method and Analysis

EMBRY-RIDDLEAeronautical University

- Often difficult to formulate a precise measure of an algorithm's performance
 - Varies based upon system inputs
 - Algorithms can be too complex to determine exact time or space performance
- Scientific method can be employed:
 - Observe observe the system
 - Hypothesize develop a model to approximate the system
 - Predict Predict output given inputs
 - Verify evaluate performance versus predictions
 - Validate re-run until hypothesis and observations agree
- Hypothesis must be falsifiable
- Experimental design should permit repeated steps

CS 31

College of Engineering, Daytona Beach, FL

Scientific Method and Analysis

EMBRY-RIDDLE Aeronautical University

- Often difficult to formulate a precise measure of an algorithm's performance
 - Varies based upon system inputs
 - Algorithms can be too complex to determine exact time or space performance
- Scientific method can be employed:
 - Observe observe the system
 - Hypothesize develop a model to approximate the system
 - Predict Predict output given inputs
 - Verify evaluate performance versus predictions
 - Validate re-run until hypothesis and observations agree
- Hypothesis must be falsifiable
- Experimental design should permit repeated steps

In this chapter, the authors are demonstrating this process with the *ThreeSum* example:

- Observations are made
- Models and experiments are used to validate model
- Propositions are made as the authors provide examples of propositions mad analysis and each the text.

CS 315

College of Engineering, Daytona Beach, FL

5

Observation

EMBRY-RIDDLE Aeronautical University

- Observation is not enough to, but observing run-time can help us develop our model
- e.g. Stopwatch / Wall clock time
 - Measurement of the runtime is one approach to observe an algorithms timing performance
 - What are some of the reasons that wall clock time can be problematic?
 - Cannot use results to produce generalized predictions of runtime
 - Conditions such as CPU, system load, compilation methods, available RAM, etc. can influence
 the runtime of software
 - More rigorous experimentation with statistical analysis needed to

CS 315

College of Engineering, Daytona Beach, FL

Analysis of Experimental Data

Aeronautical University

- Given our metric, e.g. run-time, our experiment would need to vary the size of the problem being solved
 - e.g. size of the data set being processed, or some other run-time parameter
- Plotting timing results
 - Standard Plot
 - Logarithmic Plot
- Textbook provides an example of this technique called the D Rule.

CS 315

College of Engineering, Daytona Beach, FL

Modeling Complexity

Aeronautical University

- Donald Knuth observed:
 - Cost of executing each statement
 - How long does the op take?
 - Frequency of execution of each statement
 - How often is a particular operation made?
- Moving away from real-time we focus on approximation:
 - Assume that each read/write/access operation costs roughly one (1) time unit.
 - Each problem is of some size N, which is defined at runtime
 - E.g. an array's length would be of size N for an array processing problem.
- We seek to create as accurate model of the runtime prediction f(r is the number of operations performed as a function of problem

College of Engineering, Daytona Beach, FL

EMBRY-RIDDLE Aeronautical University Approximation of our model Tilde Approximation: order of growth from textbook: description function Definition. We write $\sim f(N)$ to represent any constant function that, when divided by f(N), N(N-1)(N-2)/6166,666,667 approaches 1 as N grows, and we write logarithmic $\log N$ 166,167,000 $g(N) \sim f(N)$ to indicate that g(N)/f(N)approaches 1 as N grows. linear N Leading-term approximation linearithmic $N \log N$ tilde order function quadratic N^2 approximation of growth $N^3/6 - N^2/2 + N/3$ $\sim N^3/6$ N^3 N^3 cubic $N^2/2 - N/2$ $\sim N^2/2$ N^2 lg N + 1 $\sim \lg N$ lg N~ 3 Typical tilde approximations CS 315 College of Engineering, Daytona Beach, FL

