第8章・音

2023-06-08 22:52

これは L. D. Landau and E. M. Lifshitz, *Fluid Mechanics*, 2nd English edition, Pergamon Press, 1987. の内容を補ったノートである。内容の正確性は保証できないが、改善点・誤植(内容、体裁のどちらでも構わない)を見つけた方は筆者まで知らせてほしい。図がほとんどないが、徐々に付け加えていく予定である。

なお, ♠ は第2版で新たに加わった部分, ♠ ♠ は筆者が勝手に付け加えた部分である。また、目次、式や問題の番号、各節末尾の「目次へ戻る」ボタンにはハイパーリンクを設定し、利便性を高めたつもりである。 本文中で頻繁に参照する文献の略称は以下の通りである。

- 今井→今井功『物理学選書(4) 流体力学(前編)』裳華房, 1974
- ・ 巽→巽友正『新物理学シリーズ 21 流体力学』培風館, 1982
- Lamb \rightarrow H. Lamb, Hydrodynamics, 6th ed., Cambridge, 1932 (邦訳あり)
- 『力学』, 『統計物理学』, 『物理的運動学』→それぞれ, ランダウ=リフシッツ理論物理学教程の第 1 巻, 第 5 巻, 第 10 巻.

目次

$\S 64$	音波	2
$\S65$	音波のエネルギーと運動量	5
§ 66	音波の反射と屈折	5
§ 67	幾何音響学	5
§ 68	運動する媒質中の音の伝播	5
§ 69	固有振動	5
§ 70	球面波	5
§ 71	円筒波	5
§ 72	波動方程式の一般解	5
§ 73	側方波	6
§ 74	音の放射	6
§ 75	乱流による音の励起	6
§ 76	相反定理	6
§ 77	管の中の音の伝播	6
§ 78	音の散乱	6
§ 79	音の吸収	6

§ 80 音響流 6

§ 81 第 2 粘性 6

§ 64 音波

ここでは圧縮性流体の流れを調べよう。まず微小振動を考える。圧縮性流体の微小振幅の振動は**音波**と呼ばれる。音波により、流体の各点で濃縮と希薄が交互に起こる。

振幅が小さいから速度 v も小さく,Euler 方程式で移流項 $(v \cdot \operatorname{grad})v$ を無視することができる.また,流体の圧力や密度の相対的な変化も小さい.よって

$$p = p_0 + p', \quad \rho = \rho_0 + \rho'$$
 (64.1)

と書くことができる。ここで p_0, ρ_0 は定数で、平衡状態での圧力と密度を表す。 p', ρ' は音波中での圧力と密度 の変化で、 $p' \ll p_0, \rho' \ll \rho_0$ である。連続の式に (64.1) を代入して、2 次の微小量を無視すると

$$\frac{\partial \rho'}{\partial t} + \rho_0 \operatorname{div} \mathbf{v} = 0 \tag{64.2}$$

となる. Euler 方程式は、同程度の近似で

$$\frac{\partial \mathbf{v}}{\partial t} + \frac{1}{\rho_0} \operatorname{grad} p' = 0 \tag{64.3}$$

となる.

線形化された方程式 (64.2)(64.3) が音波の伝播に適用できるための条件は、流体粒子の速度が音速に比べて十分小さいこと $(v \ll c)$ である。この条件は例えば $\rho' \ll \rho_0$ から導くことができる (以下の (64.12) を見よ)。

方程式 (64.2)(64.3) は未知数 v,p',ρ' を含んでいる。ここから 1 つを消去するためには、理想流体中の音波は断熱的であるということに注目すればよい。すなわち p',ρ' は

$$p' = \left(\frac{\partial p}{\partial \rho}\right)_s \rho' \tag{64.4}$$

という関係にある (これ以降, p, ρ の添字 0 を省く). 式 (64.2) に代入し

$$\frac{\partial p'}{\partial t} + \rho \left(\frac{\partial p}{\partial \rho}\right)_s \operatorname{div} \mathbf{v} = 0. \tag{64.5}$$

未知数 v, p' についての方程式 (64.3)(64.5) が、音波を完全に記述する.

全ての未知数を 1 つの未知数で表すためには、 $v=\operatorname{grad}\phi$ により速度ポテンシャルを導入するのが便利である。(64.3) より

$$p' = -\rho \frac{\partial \phi}{\partial t} \tag{64.6}$$

となる(もちろん定数の任意性があるが、 ϕ を定義し直すことによりその影響を消すことができる)。よって (64.5) から

$$\frac{\partial^2 \phi}{\partial t^2} - c^2 \triangle \phi = 0 \tag{64.7}$$

となる。ここで

$$c = \sqrt{\left(\frac{\partial p}{\partial \rho}\right)_s} \tag{64.8}$$

である. (64.7) の形の方程式は**波動方程式**と呼ばれる. (64.7) に grad や $\partial/\partial t$ を作用させることにより、v の 各成分や p', ρ' も波動方程式を満たすことが分かる.

全ての量が1つの座標(例えばx)のみに依存するような音波を考えよう。つまり、流れはyz平面内で完全に一様とする。そのような波は**平面波**と呼ばれる。波動方程式 (64.7) は

$$\frac{\partial^2 \phi}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} = 0 \tag{64.9}$$

となる。この方程式を解くために、新しい変数 $\xi=x-ct,\eta=x+ct$ を導入しよう。このとき (64.9) は $\frac{\partial^2 \phi}{\partial \eta \partial \xi}=0$ となる。 ξ について積分し $\frac{\partial \phi}{\partial \eta}=F(\eta)$ となり、次に η で積分して $\phi=f_1(\xi)+f_2(\eta)$ となる。ここで f_1,f_2 は ξ,η の任意関数である。したがって

$$\phi = f_1(x - ct) + f_2(x + ct) \tag{64.10}$$

となる (d'Alembert **の解**). 平面波における他の諸量 (p', ρ', v) の分布も, 同じ形の関数で与えられる.

話を明確にするために、密度 $\rho'=f_1(x-ct)+f_2(x+ct)$ について考えよう。例えば $f_2=0$ とすると、 $\rho'=f_1(x-ct)$ となる。この解の意味は明らかである; $x={\rm const.}$ という任意の平面では、密度は時間とともに変化する。また、ある瞬間($t={\rm const.}$)の密度は x によって異なる。しかし、 $x-ct={\rm const.}$ (あるいは $x=ct+{\rm const.}$)を満たす組 (x,t) に対しては、密度は同じ値をとる。このことは,t=0 にある点で密度がある値をとるとき、時刻 t にはこの点から x 軸方向に t だけ離れた点で、密度は同じ値をとることを意味する。このことは密度以外の諸量に対しても成り立つ。よって運動のパターンは t 軸に沿って速さ t で媒質中を伝播する。t は音速と呼ばれる。

以上より、 $f_1(x-ct)$ は x 軸の正の方向に伝播する**進行平面波**と呼ばれるものを表している。 $f_2(x+ct)$ が 逆向きに伝播する波を表すことは明らかである。

平面波では、速度 $v=\operatorname{grad}\phi$ の 3 つの成分のうち、 $v_x=\frac{\partial\phi}{\partial x}$ のみが 0 でない。よって音波中の流体の速度は伝播方向に平行である。このため流体中の音波は**縦波**であるという。

進行平面波では、速度 $v_x=v$ は圧力 p' や密度 ρ' と簡単な式で結ばれている。 $\phi=f(x-ct)$ とおくと、 $v=\frac{\partial \phi}{\partial x}=f'(x-ct)$ 、 $p'=-\rho\frac{\partial \phi}{\partial t}=\rho c f'(x-ct)$ であり、両者を比べて

$$v = \frac{p'}{\rho c} \tag{64.11}$$

となる. あるいは, (64.4) を $p' = c^2 \rho'$ と書いて代入すれば

$$v = \frac{c\rho'}{\rho}. (64.12)$$

$$\left(\frac{\partial T}{\partial p}\right)_s = \frac{T}{c_p} \left(\frac{\partial V}{\partial T}\right)_p *1$$
を用いると

$$T' = \frac{T}{c_p} \left(\frac{\partial V}{\partial T}\right)_p \rho c v = \frac{c\beta T}{c_p} v \tag{64.13}$$

となる
$$(\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p = \rho \left(\frac{\partial V}{\partial T} \right)_p$$
 は熱膨張係数).

^{*1} 証明は § 4 を見よ.

(64.8) は、流体の断熱圧縮率を用いて音速を表した式である。これは等温圧縮率とは熱力学の公式

$$\left(\frac{\partial p}{\partial \rho}\right)_{s} = \frac{c_{p}}{c_{v}} \left(\frac{\partial p}{\partial \rho}\right)_{T} \tag{64.14}$$

で結ばれている。

証明にはヤコビアンを用いるのがよい (参照:久保統計3章問題11):

$$\frac{(\partial p/\partial \rho)_s}{(\partial p/\partial \rho)_T} = \frac{\frac{\partial (p,s)}{\partial (\rho,s)}}{\frac{\partial (p,T)}{\partial (\rho,T)}} = \frac{\frac{\partial (p,s)}{\partial (p,T)}}{\frac{\partial (\rho,s)}{\partial (\rho,T)}} = \frac{(\partial s/\partial T)_p}{(\partial s/\partial T)_\rho} = \frac{c_p}{c_v}$$

理想気体の音速を計算してみよう。気体定数を R,分子量を μ とすると,状態方程式は $pV=\frac{p}{\rho}=\frac{RT}{\mu}$ である。比熱比を $\gamma=\frac{c_p}{c_m}$ と書けば

$$c = \sqrt{\gamma \frac{RT}{\mu}} \tag{64.15}$$

となる *2 . γ は温度にわずかにしか依存しないから、気体の音速は \sqrt{T} に比例すると考えてよい *3 . そして、温度一定のとき音速は圧力に依存しない。

単色波と呼ばれる波は非常に重要である。この場合には、全ての量は時間の周期関数(調和振動)である。このような関数を、複素数の実部として書くのが便利である(§ 24 冒頭を見よ)。例として、速度ポテンシャルを

$$\phi = \operatorname{Re}\{\phi_0(x, y, z)e^{-i\omega t}\}\tag{64.16}$$

と書こう(ω は波の振動数). これを (64.7) へ代入することにより,関数 ϕ_0 は Helmholtz 方程式

$$\Delta\phi_0 + \frac{\omega^2}{c^2}\phi_0 = 0 \tag{64.17}$$

を満たすことが分かる.

x 軸の正の方向に伝播する単色進行平面波を考えよう。この場合、全ての量は x-ct のみの関数であるから、ポテンシャルは

$$\phi = \operatorname{Re}\{Ae^{-i\omega(t-x/c)}\}\tag{64.18}$$

と書ける (定数 A は**複素振幅**と呼ばれる). 実定数 a, α を用いて $A = ae^{i\alpha}$ と書けば

$$\phi = a\cos\left(\frac{\omega x}{c} - \omega t + \alpha\right) \tag{64.19}$$

を得る。a は波の振幅、 \cos の引数は位相と呼ばれる。n を伝播方向の単位ベクトルとするとき、ベクトル

$$\mathbf{k} = -\frac{\omega}{c}\mathbf{n} = -\frac{2\pi}{\lambda}\mathbf{n} \tag{64.20}$$

は**波数ベクトル**, その大きさkは**波数**と呼ばれる. k を用いると, (64.18) は一般に

$$\phi = \text{Re}\{Ae^{i(\mathbf{k}\cdot\mathbf{r} - \omega t)}\}\tag{64.21}$$

となる.

 $^{*^2}$ 気体の音速が $c^2=rac{p}{
ho}$ と書けることを最初に示したのは Newton(1687)である。 γ が必要であることは Laplace が指摘した。

ρ
*3 気体の音速は分子の平均熱速度と同じオーダーであることは、知っておくとよい

単色波が重要な理由は、どのような波も様々な波数と振動数をもつ単色平面波の重ね合わせで表現できるからである。波を単色波に分解するには、単に Fourier 級数または Fourier 積分に展開すればよい(スペクトル分解)。展開の各項は波の**単色成分**や Fourier **成分**と呼ばれる。

問題は省略する.

IH]\(\mu \text{FR}\) (4	有門する.	▲ □ ¼→ - □ →
§ 65	音波のエネルギーと運動量	↑ 目次へ戻る
§ 66	音波の反射と屈折	↑ 目次へ戻る
§ 67	幾何音響学	↑ 目次へ戻る
§ 68	運動する媒質中の音の伝播	↑ 目次へ戻る
§ 69	固有振動	↑ 目次へ戻る
§ 70	球面波	↑ 目次へ戻る
§ 71	円筒波	↑ 目次へ戻る
872	波動方程式の一般解	↑ 目次へ戻る
3 ' 2	((A) - (A) -	

↑ 目次へ戻る

§ 73	側方波	
§ 74	音の放射	↑ 目次へ戻る
875	乱流による音の励起	↑ 目次へ戻る
省略す		
§ 76	相反定理	↑ 目次へ戻る
		↑ 目次へ戻る
§ 77	管の中の音の伝播	
0 T 0	☆	↑ 目次へ戻る
978	音の散乱	↑ 目次へ戻る
§ 79	音の吸収	
		↑ 目次へ戻る
§ 80	音響流	
		↑ 目次へ戻る
§ 81	第 2 粘性	
省略す	る.	↑ 目次へ戻る