Пятиминутка №1

- 1. Расстояние Хэмминга число несовопадающих координат векторов $x, y \in E_a^n$, обозначается через $d(x, y) = |\{i \in \{1, ..., n\} : x_i \neq y_i\}|$.
- 2. **Вес Хэмминга** число ненулевых координат вектора x, обозначается: $\omega(x)$, $\omega(x) = d(x,0)$.
- 3. **Код** обозначается через C и является подмножеством кодовых слов: $C \subseteq E_a^n$.
- 4. Параметры кода (n, |C|, d), где: n длина кода, |C| мощность кода, d минимальное кодовое расстояние, т.е. минимум расстояний по всем парам кодовых слов из C.
- 5. **Кодер** биекция из множества информационных сообщений M, $M \subseteq E^k$ в множество кодовых слов C.
- 6. Принцип макисмума правдоподобия пусть для передачи использовался код C, если y полученный вектор, то декодируем его в ближайшее кодовое слово $x \in C$.
- 7. **Число исправлемых ошибок** пусть C код с кодовым расстоянием d, и пусть при передаче кодового слова $x \in C$ возникло не более $\lfloor (d-1)/2 \rfloor$ ошибок, тогда декодер восстановит сообщение.
- 8. Число обнаруживаемых ошибок пусть C код с кодовым расстоянием d, и пусть при передаче кодового слова $x \in C$ возникло не менее 1 и не более (d-1) и из канала связи получили вектор y. В этом случае кодер может запросить снова передачу данных, так как y не кодовое слово. То есть код обнаруживает (d-1) ошибок.
- 9. **Линейный код** код C называется линейным, если C является векторным подпространством E_q^n .
- 10. Размерность линейного кода C число векторов в базисе C, обозначается через k.
- 11. Параметры линейного кода [n,k,d], где n длина кода, k размерность, d минимальное кодовое расстояние.
- 12. **Кодовое расстояние линейного кода** оно равно минимальному весу среди ненулевых кодовых слов.

- 13. Порождающая матрица матрица $G_{k\times n}$ строки которой образуют базис C, называется порождающей матрицей кода C.
- 14. **Проверочная матрица** матрица $H_{n-k\times n}$ имеющая n-k строк и n столбцов называется проверочной, если выполнено $Hx^T = 0^{n-k}$ $\Leftrightarrow x \in C$.
- 15. Порождающая матрица в каноническом виде порождающая матрица G называется заданной в каноническом виде, если $G = [E_k|A]$, где E_k единичная матрица.
- 16. Проверочная матрица в каноническом виде проверочная матрица H называется заданной в каноническом виде, если $H = [A|E_{n-k}]$, где E_{n-k} единичная матрица.
- 17. Теорема связывающая порождающую и проверочную матрицы если $[E_k|A]$ порождающая матрица в каноническом виде кода C, тогда $[-A^T|E_{n-k}]$ являестя проверочной матрицей в каноническом виде кода C. Верно и обратное.

Пятиминутка №2

1. **Теорема о столбцах проверочной матрицы** Пусть H – проверочная матрица линейного кода C. Кодовое расстояние C равно d тогда и только тогда когда любые d-1 столбцов H линейно независимы и существует d линейно зависимых столбцов.

Или кратко:

Пусть H - проверочная матрица линейного кода C, тогда $d_C = d \Leftrightarrow \forall d-1$ столбцов проверочной матрицы H линейнонезависимы, и $\exists d$ линейно зависимых столбцов.

Замечание 1

- st двоичный код c проверочной матрицей H.
- Кодовое расстояние C равно 1 тогда и только тогда когда в его проверочной матрице H существует нулевой столбец.
- 3. Замечание 2 Кодовое расстояние C равно 2 тогда и только тогда когда в H нет нулевых столбцов и есть пара одинаковых столбцов.
- 4. Замечание 3 Кодовое расстояние C равно 3 тогда и только тогда когда в H нет нулевых столбцов, столбцы попарно различны и есть столбец равный сумме двух других.

5. **Код Хэмминга** Пусть $r \ge 2$. Двоичным кодом Хэмминга (с r проверками на четность) называется код с проверочной матрицей H, столбцами которой являются все ненулевые векторы длины r. Параметры кода Хэмминга:

 $n = 2^r - 1$ - длина кода;

k = n - r - размерность кода;

d=3 - минимальное кодовое расстояние (все векторы попарно различны, нет нулевых, сумма двух любых столбцов встречается в матрице.)

6. Граница Хэмминга. Теорема Пусть C –двоичный код длины n и кодовым расстоянием d. Тогда

$$|C| \le \frac{2^n}{\sum_{i=0}^{\lfloor (d-1)/2 \rfloor} C_n^i}$$

7. **Шаром** B(x, j) радиуса j с центром в векторе x называется множество всех векторов, находящихся на расстоянии Хэмминга не более j от x.

Или кратко:

$$B(x,j) = \{y \in E_q^n : d(x,y) \le j\}$$

8. Граница Хэмминга для q-значных кодов Пусть C-q-значный код длины n и кодовым расстоянием d. Тогда

$$|C| \le \frac{q^n}{\sum_{i=0}^{\lfloor (d-1)/2 \rfloor} C_n^i (q-1)^i}$$

9. *q*-значный код называется **совершенным** если его мощность достигает границы Хэмминга.

Или кратко:

 $C\subseteq E_q^n$ - **совершенный** код, если

$$|C| = \frac{q^n}{\sum_{i=0}^{\lfloor (d-1)/2 \rfloor} C_n^i (q-1)^i}$$

10. Двоичный код Хэмминга является совершенным кодом с d=3.

Длина $n=2^r-1$

Мощность кода равна 2^{n-r}

Кодовое расстояние 3

Граница Хэмминга: $2^{n-r} \le 2^n/(1+n) = 2^{n-r}$

- 11. **Теорема, Зиновьев, Леонтьев, Титвайнен, 1973** Пусть $q=p^m$ тогда всякий совершенный код имеет параметры совпадающие с одним из следующих кодов:
 - 1. q-значный код Хэмминга,
 - 2. Двоичный кода Голея n=23, k=12, d=7,
 - 3. Троичный (q=3) код Голея n=11, k=6, d=5.
- 12. **Теорема (Граница Синглтона)** Пусть C q-значный код с параметрами n, |C|, d. Тогда $log_q|C| \le n d + 1$. e.g. C = (000), (111)
- 13. Полный четновесовой код $\{x:x\in E^n.w(x)=0 (mod2)\}$ Параметры $n,|C|=2^{n-1},d=2$
- 14. Граница Плоткина Пусть двоичный код длины n с минимальным расстоянием d, и 2d > n. Тогда справедливо неравенство

$$|C| \le 2\lfloor d/(2d-n)\rfloor$$