Values of the Carmichael function versus values of the Euler function

Advanced Topics in Number Theory

College of Science for Women Baghdad University

Francesco Pappalardi

April 1, 2014

Introduction: The Euler φ -function

 $\varphi(n) := \#\{m \in \mathbb{N} : 1 \le m \le n, \gcd(m, n) = 1\}$ is the Euler φ function

Elementary facts:

$$\varphi(1) = 1, \varphi(2) = 1, \varphi(3) = 2, \varphi(4) = 3, \varphi(5) = 4, \varphi(6) = 2, \dots$$

iff p is a prime number

$$\varphi(p^a) = p^{a-1}(p-1)$$

if p is a prime number

if
$$(n,m)=1$$
 then $\varphi(nm)=\varphi(n)\varphi(m))$ (φ is a multiplicative function)

if
$$n = pq$$
 is an RSA module then $\varphi(pq) = (p-1)(q-1).$

Introduction

$$\varphi(n) := \#(\mathbb{Z}/n\mathbb{Z})^*$$

Euler φ function

$$\lambda(n) := \exp(\mathbb{Z}/n\mathbb{Z})^*$$

Carmichael λ function

$$= \min\{k \in \mathbb{N} \text{ s.t. } a^k \equiv 1 \mod n \ \forall a \in (\mathbb{Z}/n\mathbb{Z})^*\}$$

Elementary facts:

iff
$$n=2,4,p^a,2p^a$$
 with $p\geq 3$

 $\forall n \in \mathbb{N}$

if (n,m)=1 then $\lambda(nm)=\mathrm{lcm}(\lambda(n),\lambda(m))$

 $(\lambda \text{ is not multiplicative})$

$$\lambda(2^{\alpha}p_1^{\alpha_1}\cdots p_s^{\alpha_s}) = \operatorname{lcm}\{\lambda(2^{\alpha}), p_1^{\alpha_1-1}(p_1-1), \dots, p_s^{\alpha_s-1}(p_s-1)\}$$

$$\lambda(2^{\alpha}) = 2^{\alpha-2}$$
 if $\alpha \geq 3$, $\lambda(4) = 2$, $\lambda(2) = 1$

if n = pq is an RSA module—then $\lambda(n)$ should not be too small.

Minimal, Normal and Average Orders of λ

Erdős, Pomerance & Schmutz (1991):

$$\lambda(n) > (\log n)^{1.44 \log_3 n}$$
 for all large n ;

$$\lambda(n) < (\log n)^{3.24 \log_3 n}$$
 for ∞ -many n 's;

$$\lambda(n) = n(\log n)^{-\log_3 n - A + E(n)}$$
 for almost all n .

$$A = -1 + \sum_{l} \frac{\log l}{(l-1)^2} = 0.2269688 \cdots, E(n) \ll (\log_2 n)^{\varepsilon-1} \ \forall \varepsilon > 0 \text{ fixed};$$

Let
$$B = e^{-\gamma} \prod_{l} \left(1 - \frac{1}{(l-1)^2(l+1)} \right) = 0.37537 \cdots$$
. Then
$$\sum_{n \le x} \lambda(n) = \frac{x^2}{\log x} \exp\left\{ \frac{B \log_2 x}{\log_3 x} (1 + o(1)) \right\} \quad (x \to +\infty)$$

A recent result

Friedlander, Pomerance & Shparlinski (2001):

$$\forall \Delta \geq (\log \log N)^3$$
,

$$\lambda(n) \ge N \exp(-\Delta)$$

for all n with $1 \le n \le N$, with at most $N \exp(-0.69(\Delta \log \Delta)^{1/3})$ exceptions

Has Cryptographic Application...

 \longrightarrow Most of the times $\lambda(pq)$ is not too small...

λ -analogue of the Artin Conjecture 1/3

 \mathbb{S} If $a, n \in \mathbb{N}$ with (a, n) = 1, then $\operatorname{ord}_n(a) = \min\{k \in \mathbb{N} \text{ s.t. } a^k \equiv 1 \mod n\}.$

We say that a is a λ -primitive root modulo n if $\operatorname{ord}_n(a) = \lambda(n)$

(i.e. a has the maximum possible order modulo n)

 \otimes If r(n) is the number of λ -primitive roots modulo n in $(\mathbb{Z}/n\mathbb{Z})^*$. Then

$$r(n) = \varphi(n) \prod_{p|\lambda(n)} \left(1 - p^{-\Lambda_n(p)}\right)$$

where $\Lambda_n(p)$ is the number of summand with highest p-th power exponent in the decomposition of $(\mathbb{Z}/n\mathbb{Z})^*$ a product of cyclic groups

 $\triangle \text{Li } (1998)$: $r(n)/\varphi(n)$ does't have a continuous distribution

$$r(p) = \varphi(p-1)$$

SKátai (1968): $\varphi(p-1)/(p-1)$ has a continuous distribution

λ -analogue of the Artin Conjecture 2/3

 \triangle Artin Conjecture. If $a \neq \square, \pm 1, \exists A_a > 0, \text{ s.t.}$

 $\#\{p \le x \mid a \text{ is a primitive root mod } p\} \sim A_a \operatorname{li}(x).$

(It is a Theorem under GRH (Hooley's Theorem))

Let

$$N_a(x) = \#\{n \le x \mid (a,n) = 1, a \text{ is a } \lambda\text{-primitive root modulo } n\}$$

 \mathbb{Q} Question(λ -Artin Conjecture): Determine when/if $\exists B_a > 0$, with

$$N_a(x) \sim B_a x$$
?

λ -analogue of the Artin Conjecture 3/3

SLi (2000):

$$\limsup_{x \to \infty} \frac{1}{x^2} \sum_{1 \le a \le x} N_a(x) > 0 \quad \text{but} \quad \liminf_{x \to \infty} \frac{1}{x^2} \sum_{1 \le a \le x} N_a(x) = 0.$$

 $(\lambda$ -Artin Conjecture is wrong on Average)

 \triangle Li & Pomerance (2003): On GRH, $\exists A > 0$ such that

$$\limsup_{x \to \infty} \frac{N_a(x)}{x} \ge \frac{A\varphi(|a|)}{|a|},$$

as long as $a \notin \mathcal{E} := \{-\Box, 2\Box, m^c(c \ge 2)\}$ while if $a \in \mathcal{E} \Longrightarrow N_a(x) = o(x)$.

 \triangle Li (1999): For all $a \in \mathbb{Z}$,

$$\lim_{x \to \infty} \inf \frac{N_a(x)}{x} = 0$$

 $(\lambda$ -Artin Conjecture is always wrong)

λ vs average order of elements in $(\mathbb{Z}/n\mathbb{Z})^*$

Shparlinski & Luca (2003)

Shparlinski & Luca (2003)

ELet

$$u(n) := \frac{1}{\varphi(n)} \sum_{a \in \mathbb{Z}/\mathbb{Z}^*} \operatorname{ord}_n(a)$$

(the average multiplicative order of the elements of $(\mathbb{Z}/n\mathbb{Z})^*$)

B

$$\lim_{n \to \infty} \inf \frac{u(n) \log \log n}{\lambda(n)} = \frac{\pi^2}{6e^{\gamma}} \quad \text{and} \quad \lim_{n \to \infty} \frac{u(n)}{\lambda(n)} = 1$$

The sequence

$$(u(n)/\lambda(n))_{n\in\mathbb{N}}$$

is dense in [0,1]

k-free values of φ

Sanks & ₽ (2003)

$$S_{\varphi}^{k}(x) = \{ n \leq x \text{ t.c. } \varphi(n) \text{ is } k\text{-free} \}.$$

 $\forall k \geq 3,$

$$\mathcal{S}_{\varphi}^{k}(x) = \frac{3\alpha_{k}}{2(k-2)!} \frac{x \left(\log\log x\right)^{k-2}}{\log x} \left(1 + o_{k}(1)\right) \qquad (x \to +\infty)$$

where

$$\alpha_k := \frac{1}{2^{k-1}} \prod_{l>2} \left(1 - \frac{1}{l^{k-1}} \sum_{i=0}^{k-2} \sum_{j=0}^{k-2-i} {k-1 \choose i} {k-1+j \choose j} \frac{(l-2)^j}{(l-1)^{i+j+1}} \right).$$

k-free values of λ

♥₱, Saidak & Shparlinski (2002)

$$S_{\lambda}^{k}(x) = \#\{n \le x \text{ s.t. } \lambda(n) \text{ is } k\text{-free}\}$$

 $\forall k \geq 3$,

$$S_{\lambda}^{k}(x) = (\kappa_{k} + o(1)) \frac{x}{\log^{1-\alpha_{k}} x} \qquad (x \to +\infty)$$

where

$$\kappa_k := \frac{2^{k+2} - 1}{2^{k+2} - 2} \cdot \frac{\eta_k}{e^{\gamma \alpha_k} \Gamma(\alpha_k)}, \quad \alpha_k := \prod_{l \text{ prime}} \left(1 - \frac{1}{l^{k-1}(l-1)} \right)$$

$$\eta_k := \lim_{T \to \infty} \frac{1}{\log^{\alpha_k} T} \prod_{\substack{l \le T \\ l-1 \text{ k-free}}} \log \left(1 + \frac{1}{l} + \dots + \frac{1}{l^k} \right)$$

e.g.
$$k_2 = 0.80328...$$
 and $\alpha_2 = 0.37395...$

Carmichael Conjecture

$$\triangle A_{\varphi}(m) = \#\{n \in \mathbb{N} \mid \varphi(n) = m\}$$

Carmichael Conjecture: $A_{\varphi}(m) \neq 1 \ \forall m \in \mathbb{N}$

$$\otimes \mathcal{B}_{\varphi}(x) = \{ m \leq x \mid A_{\varphi}(m) = 1 \} \text{ and } \mathcal{F}(x) = \{ n \in \mathbb{N} \mid \varphi(n) \leq x \}$$

SFord (1998)

If
$$\mathcal{B}_{\varphi}(x) \neq \emptyset$$
 for some x , then necessarily $\liminf_{x \to \infty} \frac{\#\mathcal{B}_{\varphi}(x)}{\#\mathcal{F}(x)} > 0$

Hence if $\liminf_{x\to\infty} \frac{\#\mathcal{B}_{\varphi}(x)}{\#\mathcal{F}(x)} = 0$, Carmichael Conjecture follows

$$\lim \sup_{x \to \infty} \frac{\# \mathcal{B}_{\varphi}(x)}{\# \mathcal{F}(x)} < 1$$

$$\lim_{x \to \infty} \inf_{x \to \infty} \frac{\# \mathcal{B}_{\varphi}(x)}{\# \mathcal{F}(x)} < 10^{-5000000000}$$

If
$$A_{\varphi}(m) = 1$$
 them $m > 10^{10^{10}}$

Carmichael Conjecture for λ (1/2)

- Sanks, Friedlander, Luca, ₱, Shparlinski(2004)
- $\forall n \leq x, A_{\lambda}(\lambda(n)) \geq \exp\left((\log\log x)^{10/3}\right) \text{ with at most } O(x/\log\log x)$ exceptions
- $\#\{n \le x \mid A_{\lambda}(\lambda(n)) = 1\} \le x \exp\left(-(\log\log x)^{0.77}\right).$
 - The bound $\#\{n \le x \mid A_{\varphi}(\varphi(n)) = 1\} \le x \exp\left(-\log\log x + o((\log_3 x)^2)\right) \text{ implies}$ Carmichael Conjecture (for φ)
 - Non non-trivial upper bound for the above is known
 - Notion of *primitive* counter example to Carmichael Conjecture(s)

Carmichael Conjecture for λ (2/2)

 $n \in \mathbb{N}$ is a primitive counterexample to Carmichael conjecture (CCCP) if

$$A_{\varphi}(\varphi(n)) = 1;$$

$$A_{\varphi}(\varphi(d)) \neq 1 \ \forall d \mid n, d < n.$$

$$\mathcal{C}_{\varphi}(x) = \{ n \leq x \mid n \text{ is (CCCP)} \}$$

$$\# \mathcal{C}_{\varphi}(x) \leq x^{2/3 + o(1)}$$

- If $\#\mathcal{C}_{\lambda}(x)$ is the number of primitive counterexamples up to x to the Carmichael conjecture for λ
- A primitive counterexample to the Carmichael conjecture for λ , if it exists, is unique. i.e.

$$\#\mathcal{C}_{\lambda}(x) \leq 1$$

All counterexamples to Carmichael conjecture for λ (if any) are multiples of the smallest one

Image of φ

™Denote

$$\mathcal{F} := \{ \varphi(m) \mid m \in \mathbb{N} \} \quad \text{and} \quad \mathcal{L} := \{ \lambda(m) \mid m \in \mathbb{N} \}$$

For any set \mathcal{A} and $x \geq 1$, set $\mathcal{A}(x) := \mathcal{A} \cap [1, x]$

 \square A lot of work on $\mathcal{F}(x)$ (Pillai, Erdős, Hall, Maier, Pomerance, ...)

Ford (1998)

$$\mathcal{L}(x) = \frac{x}{\log x} \exp\left\{ C(\log_3 x - \log_4 x)^2 - D\log_3 x - (D + \frac{1}{2} - 2C)\log_4 x + O(1) \right\}$$

where $C = 0.81781464640083632231 \cdots$, $D = 2.17696874355941032173 \cdots$.

 \square Could not find literature on $\mathcal{L}(x)$

Image of φ vs image of λ

Banks, Friedlander, Luca, IP, Shparlinski (2004)

The number of integers $m \leq x$ which are values of both λ and φ satisfies

$$\# (\mathcal{L} \cap \mathcal{F})(x) \ge \frac{x}{\log x} \exp \left((C + o(1)) (\log \log \log x)^2 \right),$$

where $C = 0.81781464640083632231 \cdots$

riangle The number of integers $m \leq x$ which are values of λ but not of φ satisfies

$$\#(\mathcal{L} \setminus \mathcal{F})(x) \ge \frac{x}{\log x} \exp\left((C + o(1))(\log\log\log x)^2\right)$$

C as above.

 \square The number of integers $m \leq x$ which are values of φ but not of λ satisfies

$$\#(\mathcal{F} \setminus \mathcal{L})(x) \gg \frac{x}{\log^2 x}.$$

Image of φ vs image of λ - Numerical Examples

(1/2)

x	$\#\mathcal{F}(x)$	$\#\mathcal{L}(x)$	$\#(\mathcal{F}\cap\mathcal{L})(x)$	$\#(\mathcal{L}\setminus\mathcal{F})(x)$	$\#(\mathcal{F}\setminus\mathcal{L})(x)$
10	6	6	6	0	0
10^2	38	39	38	1	0
10^{3}	291	328	291	37	0
10^4	2374	2933	2369	564	5
10^{5}	20254	27155	20220	6935	34
10^{6}	180184	256158	179871	<mark>76</mark> 287	313
10^7	1634372	2445343	1631666	813677	2706

Criterion.
$$m \in \mathcal{L} \Leftrightarrow m = \lambda(s) \text{ with } s = 2 \prod_{\substack{p \text{ prime} \\ (p-1) \mid m}} p^{v_p(m)+1}$$

Image of φ vs image of λ - Numerical Examples

(2/2)

$$\text{sif } m = 1936 \text{ then } s = 33407040 = 2^6 \cdot 3 \cdot 5 \cdot 17 \cdot 23 \cdot 89$$

but
$$\lambda(33407040) = 176$$
. So $1936 \notin \mathcal{L}$

 $m \in \mathcal{F}(10^9)$ if and only if $m = \varphi(r)$ for some $r \leq 6.113m$.

Contini, Croot & Shparlinski

Deciding whether a given integer m lies in \mathcal{F} is NP-complete.

 $\mathcal{L} \setminus \mathcal{F} = \{90, 174, 230, 234, 246, 290, 308, 318, 364, 390, 410, 414, 450, 510, 516, 530, 534, 572, 594, 638, 644, 666, 678, 680, 702, 714, 728, 740, 770, ...\}$

 $\triangleright \mathcal{F} \setminus \mathcal{L} = \{1936, 3872, 6348, 7744, 9196, 15004, 15488, 18392, 20812, \dots \}$

 $\frac{21160, 22264, 30008, 35332, 36784, 38416, 41624, 42320, 44528, 51304, \ldots}{21160, 22264, 30008, 35332, 36784, 38416, 41624, 42320, 44528, 51304, \ldots}$

Proof of a weaker statement

$$\#(\mathcal{L}\setminus\mathcal{F})(x)\gg \frac{x\log\log x}{\log x}.$$

Proof. Let

$$\mathcal{P}_2(x) = \{q_0 q_1 \le x, \text{s.t.} q_0 \equiv q_1 \equiv 3 \pmod{4} \text{ and } (q_0 - 1, q_1 - 1) = 2\}$$

Then $\forall n \in \mathcal{P}_2(x)$

$$\lambda(n) = \frac{(q_0 - 1)(q_1 - 1)}{2} \equiv 2 \pmod{4}.$$

If $m \in \mathcal{F}$ with $m \equiv 2 \mod 4$, then $m = 4, 2p^a, p^a$ and $p \equiv 3 \mod 4$

If $m = \lambda(n) \in \mathcal{F}$ then $m \leq 3x$

Hence

$$\#\{\lambda(n) \in \mathcal{F} \mid n \in \mathcal{P}_2(x)\} \le \#\{p^a \le 3x\} \ll \frac{x}{\log x}$$

It is enough to show that there are sufficiently many elements in

$$\mathcal{L}_2(x) = \{\lambda(n) : n \in \mathcal{P}_2(x)\} \subset \mathcal{L}(x)$$

It is enough to show that

$$\mathcal{L}_2(x) = \{\lambda(n) : n \in \mathcal{P}_2(x)\} \subset \mathcal{L}(x)$$

has sufficiently many elements. i.e.

$$\#\mathcal{L}_2(x) \gg \frac{x}{\log x} \log_2 x. \tag{1}$$

Lemma 1 If $Q \le x^{1/4}$ and $N_Q(x) = \#\{n = q_0 q_1 \in \mathcal{P}_2(x) \text{ with } q_1 \le Q\}$.

Then $N_Q(x) \gg \frac{x}{\log x} \log_2 Q$.

Lemma 2 If $Q \leq x^{1/4}$ and

$$S_Q(x) = \# \left\{ (p_0, p_1, q_0, q_1) \text{ s.t. } \substack{q_1 < p_1 \le Q, p_0 p_1 \le x, q_0 q_1 \le x, \\ (p_0 - 1)(p_1 - 1) = (q_0 - 1)(q_1 - 1)} \right\}.$$

Then $S_Q(x) \ll \frac{x}{(\log x)^2} (\log Q)^3$.

$$\forall Q \quad \#\mathcal{L}_2(x) \ge N_Q(x) - 2S_Q(x) \ge c_1 \frac{x}{\log x} \log_2 Q - c_2 \frac{x}{(\log x)^2} (\log Q)^3$$

Take
$$Q = \exp\left((\log x)^{1/3}\right)$$
 and get (1)

Proof of Lemma 1

The contribution to $N_Q(x)$ from primes $q_1 \leq Q$, $q_1 \equiv 3 \pmod{4}$ is

$$\sum_{\substack{q_0 \le x/q_1 \\ q_0 \equiv 3 \pmod{4}}} \sum_{\substack{d \mid (\frac{q_0-1}{2}, \frac{q_1-1}{2}) \\ q_0 \equiv 3 \pmod{4}}} \mu(d) = \sum_{\substack{d \mid (q_1-1)/2 \\ q_0 \equiv 3 \pmod{4} \\ q_0 \equiv 1 \pmod{d}}} \mu(d) \sum_{\substack{q_0 \le x/q_1 \\ q_0 \equiv 3 \pmod{4} \\ q_0 \equiv 1 \pmod{d}}} 1$$

Therefore

$$N_Q(x) = \sum_{\substack{q \le Q \\ q \equiv 3 \pmod{4}}} M_q + \sum_{\substack{q \le Q \\ q \equiv 3 \pmod{4}}} R_q$$

where

$$M_{q} = \frac{\operatorname{li}(x/q)}{2} \sum_{d|(q-1)/2} \frac{\mu(d)}{\varphi(d)},$$

$$R_{q} = \sum_{d|(q-1)/2} \mu(d) \left(\pi(x/q; 4d, a_{d}) - \frac{\operatorname{li}(x/q)}{2\varphi(d)} \right),$$

and a_d is the residue class modulo 4d determined by the classes 3 (mod 4) and 1 (mod d).

For the sum R_q over $q \leq Q$, Bombieri-Vinogradov (since $Q \leq x^{1/4}$) implies, $\forall A > 1$,

$$\sum_{\substack{q \leq Q \\ q \equiv 3 \pmod{4}}} R_q \ll \sum_{\substack{q \leq Q \\ q \equiv 4}} \sum_{\substack{d \mid (q-1)/2}} \left| \pi(x/q; 4d, a_d) - \frac{1}{2\varphi(d)} \operatorname{li}(x/q) \right|$$

$$\ll \sum_{\substack{q \leq Q \\ q \leq Q}} \frac{x}{q} (\log x)^{-A} \ll x (\log x)^{1-A},$$

For the sum of M_q over q

$$\sum_{\substack{q \equiv 3 \pmod{4}}} M_q \gg \sum_{\substack{q \leq Q \pmod{4}}} \operatorname{li}(x/q) \prod_{\substack{p \mid (q-1)/2}} \left(1 - \frac{1}{p-1}\right)$$

$$\gg \frac{x}{\log x} \sum_{\substack{q \leq Q \pmod{4}}} \frac{\varphi(q-1)}{q(q-1)} \gg \frac{x}{\log x} \log_2 Q$$

by a classical formula (Stephens) via partial summation.

Proof of Lemma 2

Fix p_1 and q_1 and estimate S_{p_1,q_1} to $S_Q(x)$ arising.

Then

$$S_{p_1,q_1} = \left\{ m \le \frac{x}{[p_1 - 1, q_1 - 1]} \text{ s.t. } \begin{array}{l} \text{both } \frac{p_1 - 1}{(p_1 - 1, q_1 - 1)} \cdot m + 1 \text{ and } \\ \frac{q_1 - 1}{(p_1 - 1, q_1 - 1)} \cdot m + 1 \text{ are prime} \end{array} \right\}.$$

Applying the sieve

$$S_{p_1,q_1} \ll \frac{x}{(\log x)^2} \frac{(p_1 - 1, q_1 - 1)}{(p_1 - 1)(q_1 - 1)} \prod_{\substack{p \mid [p_1 - 1, q_1 - 1]}} (1 - 1/p)^{-1}$$

$$\leq \frac{x}{(\log x)^2} \frac{(p_1 - 1, q_1 - 1)}{\varphi(p_1 - 1)\varphi(q_1 - 1)}.$$

Sum over $q_1 < p_1 \le Q$, and enlarge the sum to include all integers up to Q:

Sum over $q_1 < p_1 \le Q$, and enlarge the sum to include all integers up to Q:

$$\sum_{q_1 < p_1 \le Q} \frac{(p_1 - 1, q_1 - 1)}{\varphi(p_1 - 1)\varphi(q_1 - 1)} \ll \sum_{k,m \le Q} \frac{(k,m)}{\varphi(k)\varphi(m)}$$

$$= \sum_{k,m \le Q} \frac{1}{\varphi(k)\varphi(m)} \sum_{\substack{d \mid k \\ d \mid m}} \varphi(d)$$

$$\leq \sum_{d \le Q} \frac{1}{\varphi(d)} \sum_{k,m \le Q/d} \frac{1}{\varphi(k)\varphi(m)} \ll (\log Q)^3.$$

This completes the proof of the Lemma.

And the proof of the Theorem too!!

Collision of powers of φ and λ (last topic)

$$\varphi(1729) = \lambda(1729)^2, \quad \varphi(666)^2 = \lambda(666)^3, \quad \varphi(768)^3 = \lambda(768)^4, \dots$$

 \P For $r \geq s \geq 1$

$$\mathcal{A}_{r,s} = \{ n : \varphi(n)^s = \lambda(n)^r \}$$

Banks, Ford, Luca, P & Shparlinski (2004)

$$\mathcal{A}_k(x) \geq x^{19/27k}$$
 for $k \geq 2$

- ightharpoonup Dickson's k-tuples Conjecture implies $\# \mathcal{A}_{r,1} = \infty$
- Schinzel's **Hypothesis** H implies $\#A_{r,1} = \infty$
- The set $\{\log \varphi(n)/\log \lambda(n)\}_{n>3}$ is dense in $[1,\infty)$

k-tuples Conjecture $\forall k \geq 2, let \ a_1, \ldots, a_k, b_1, \ldots, b_k \in \mathbb{Z}, with$

- $a_i > 0$
- $gcd(a_i, b_i) = 1 \ \forall i = 1, \dots, k$
- $\forall p \leq k \ \exists n \ such \ that \ p \nmid \prod_{i=1}^k (a_i n + b_i)$

Then $\exists \infty$ -many n's such that $p_i = a_i n + b_i$ is prime $\forall i = 1, \ldots, k$.

Hypothesis H If $f_1(n), \ldots, f_r(n) \in \mathbb{Z}[x]$

- irreducible
- positive leading coefficients
- $\forall q \; \exists n \; such \; that \; q \nmid f_1(n) \dots f_r(n)$.

Then $f_1(n), \ldots, f_r(n)$ are simultaneously prime for ∞ -many n's.

