Fusion Proteins for Targeted Delivery of Antimicrobial Peptides.ST25.txt SEQUENCE LISTING

```
<110> Shi, Wenyuan
      Anderson, Maxwell
      Morrison, Sherie
      Trinh, Kham
      Wims, Letitia
      Chen, Li
<120> Fusion Proteins for Targeted Delivery of Antimicrobial Peptides
<130> 22851-033
<150> US 09/378,577
<151> 1999-08-20
<160> 15
<u><</u>170>
      PatentIn version 3.1
210>
       1
2211> 563
212> DNA
$213> Synthetic-Murine
<u>2</u>220>
[221> CDS
<u>2</u>222> (69)..(140)
223> Histatin 5
.
.
1
2220>
[€221> CDS
<222> (141)..(188)
<223> Linker Peptide
<220>
<221> CDS
<222> (189)..(563)
<223> VH of SWLA3
<400>
ggatatccac catggacttc gggttgagct tggttttcct tgtccttact ttaaaaggtg
                                                                       60
tccagtgt gat agc cac gct aag cgg cac cac gga tat aag cgg aag ttc
                                                                       110
         Asp Ser His Ala Lys Arg His His Gly Tyr Lys Arg Lys Phe
```

Fusi	on E	Prote 1	eins	for	Targ	eted 5	l Del	iver	y of	Ant	imic 10	robi	al F	epti	des.	ST25.	txt
cac His 15	gag Glu	aag Lys	cac His	cac His	tcg Ser 20	cac His	aga Arg	gga Gly	tac Tyr	tct Ser 25	ggt Gly	ggc Gly	ggt Gly	ggc Gly	tcg Ser 30		158
ggc Gly	gga Gly	ggt Gly	Gly aaa	tcg Ser 35	ggt Gly	ggc Gly	ggc Gly	gga Gly	tcc Ser 40	gac Asp	gtg Val	aag Lys	ctt Leu	gtg Val 45	gag Glu		206
tct Ser	Gly aaa	gga Gly	ggc Gly 50	tta Leu	gtg Val	aac Asn	cct Pro	gga Gly 55	ggg Gly	tcc Ser	ctg Leu	aaa Lys	ctc Leu 60	tcc Ser	tgt Cys		254
gca Ala	gcc Ala	tct Ser 65	gga Gly	ttc Phe	act Thr	ttc Phe	agt Ser 70	agc Ser	tat Tyr	acc Thr	atg Met	tct Ser 75	tgg Trp	gtt Val	cgc Arg		302
C ag	act Thr 80	ccg Pro	gag Glu	aag Lys	agg Arg	ctg Leu 85	gag Glu	tgg Trp	gtc Val	gca Ala	tcc Ser 90	att Ile	agt Ser	agt Ser	ggt Gly		350
lagt Lely Lags	act Thr	tac Tyr	acc Thr	tac Tyr	tat Tyr 100	cca Pro	gac Asp	agt Ser	gtg Val	aag Lys 105	ggc Gly	cga Arg	ttc Phe	acc Thr	atc Ile 110		398
tcc ser	aga Arg	gac Asp	aat Asn	gcc Ala 115	aag Lys	aac Asn	acc Thr	ctg Leu	tac Tyr 120	ctg Leu	caa Gln	atg Met	acc Thr	agt Ser 125	ctg Leu		446
laag Lys	tct Ser	gag Glu	gac Asp 130	Thr	gcc Ala	atg Met	tat Tyr	tac Tyr 135	Cys	tca Ser	aga Arg	gat Asp	gac Asp 140	GLY	tcc Ser		494
tac Tyr	gga	tcc Ser 145	Tyr	tac Tyr	tat Tyr	gct Ala	atg Met 150	Asp	tac Tyr	tgg Trp	ggt Gly	caa Gln 155	Gly	acc Thr	tca Ser		542
		gtc Val															563
<21 <21 <21 <21	1>	2 24 PRT Synt	heti	.c-Mu	ırine												

Fusion Proteins for Targeted Delivery of Antimicrobial Peptides.ST25.txt <400> Asp Ser His Ala Lys Arg His His Gly Tyr Lys Arg Lys Phe His Glu 10 Lys His His Ser His Arg Gly Tyr 20 3 <210> <211> 16 <212> PRT Synthetic-Murine <213> <400> 3 Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser 10 1 Ü ≤210> 4 ₹211> 125 ≤212> PRT Synthetic-Murine **213>** <400> Asp Val Lys Leu Val Glu Ser Gly Gly Gly Leu Val Asn Pro Gly Gly 10 1 L Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30 Thr Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Trp Val 45 40 Ala Ser Ile Ser Ser Gly Gly Thr Tyr Thr Tyr Tyr Pro Asp Ser Val 55 60 50 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr 80

75

70

65

Fusion Proteins for Targeted Delivery of Antimicrobial Peptides.ST25.txt Leu Gln Met Thr Ser Leu Lys Ser Glu Asp Thr Ala Met Tyr Tyr Cys 85 Ser Arg Asp Asp Gly Ser Tyr Gly Ser Tyr Tyr Tyr Ala Met Asp Tyr 110 105 100 Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Ala Ser 125 120 115 <210> 5 <211> 533 <212> DNA <213> Synthetic-Murine <220> CDS **€** 221> (69)..(110) ₹222> [≥ 223 > Dhvar 1 į. £220> CDS k221> (111)..(158) \$ <223> Linker Peptide ×, , , j <220> 221> CDS []<222> (159)..(533) 223> VH of SWLA3 <400> 5 ggatatccac catggacttc gggttgagct tggttttcct tgtccttact ttaaaaggtg 60 tccagtgt aag cgg ctg ttt aag gag ctc aag ttc agc ctg cgc aag tac 110 Lys Arg Leu Phe Lys Glu Leu Lys Phe Ser Leu Arg Lys Tyr 5 1 tct ggt ggc ggt ggc tcg ggc gga ggt ggg tcg ggt ggc gga tcc 158 Ser Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser 15 206 gac gtg aag ctt gtg gag tct ggg gga ggc tta gtg aac cct gga ggg Asp Val Lys Leu Val Glu Ser Gly Gly Gly Leu Val Asn Pro Gly Gly Page 4

Fusi	on l	Prote	eins	for 35	Targ	jeted	l Del	.iver	ry of 40	Ant	imic	robi	al E	Pepti 45	des.	ST25.	txt
tcc Ser	ctg Leu	aaa Lys	ctc Leu 50	tcc Ser	tgt Cys	gca Ala	gcc Ala	tct Ser 55	gga Gly	ttc Phe	act Thr	ttc Phe	agt Ser 60	agc Ser	tat Tyr		254
acc Thr	atg Met	tct Ser 65	tgg Trp	gtt Val	cgc Arg	cag Gln	act Thr 70	ccg Pro	gag Glu	aag Lys	agg Arg	ctg Leu 75	gag Glu	tgg Trp	gtc Val		302
gca Ala	tcc Ser 80	att Ile	agt Ser	agt Ser	ggt Gly	ggt Gly 85	act Thr	tac Tyr	acc Thr	tac Tyr	tat Tyr 90	cca Pro	gac Asp	agt Ser	gtg Val		350
aag Lys 95	ggc Gly	cga Arg	ttc Phe	acc Thr	atc Ile 100	tcc Ser	aga Arg	gac Asp	aat Asn	gcc Ala 105	aag Lys	aac Asn	acc Thr	ctg Leu	tac Tyr 110		398
ctg Leu	caa Gln	atg Met	acc Thr	agt Ser 115	ctg Leu	aag Lys	tct Ser	gag Glu	gac Asp 120	aca Thr	gcc Ala	atg Met	tat Tyr	tac Tyr 125	tgt Cys		446
tca Ser	aga Arg	gat Asp	gac Asp 130	ggc Gly	tcc Ser	tac Tyr	ggc Gly	tcc Ser 135	tat Tyr	tac Tyr	tat Tyr	gct Ala	atg Met 140	gac Asp	tac Tyr		494
tgg Trp	ggt Gly	caa Gln 145	gga Gly	acc Thr	tca Ser	gtc Val	acc Thr 150	gtc Val	tct Ser	tca Ser	gct Ala	agc Ser 155					533
21 421 <21 <21	1> 2>	6 14 PRT Synt	heti	c-Mu	rine												
<40	0>	6															
Lys 1	Arg	, Leu	Phe	Lys 5	Glu	Leu	Lys	Phe	Ser 10	Leu	Arg	Lys	Tyr				
<21 <21 <21 <21	1> 2>	7 16 PRT Synt	heti	c-Mu	rine												
<40	0>	7															

Fusion Proteins for Targeted Delivery of Antimicrobial Peptides.ST25.txt

Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly Ser

1 5 10 15

<210> 8
<211> 125
<212> PRT
<213> Synthetic-Murine
<400> 8

AGD Val Lyg Leu Val Gly Ser Gly Gly Gly Leu Val Asn Pro Gly Gly

Asp Val Lys Leu Val Glu Ser Gly Gly Gly Leu Val Asn Pro Gly Gly 1 5 10 15

Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30

Thr Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Trp Val 40 45

Ala Ser Ile Ser Ser Gly Gly Thr Tyr Thr Tyr Tyr Pro Asp Ser Val

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gln Met Thr Ser Leu Lys Ser Glu Asp Thr Ala Met Tyr Tyr Cys 85 90 95

Ser Arg Asp Asp Gly Ser Tyr Gly Ser Tyr Tyr Tyr Ala Met Asp Tyr 100 105 110

Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Ala Ser 115 120 125

<210> 9

A 111

<211> 89

<212> DNA

<213> Synthetic

Fusion Prot	eins for Ta	rgeted Deli	very of An	timicrobial	Peptides.ST25	.txt
<400> 9 caccactcgc	acagaggata	ctctggtggc	ggtggctcgg	gcggaggtgg	gtcgggtggc	60
ggcggatccg	acgtgaagct	tgtggagtc				89
<210> 10 <211> 84 <212> DNA <213> Synt	thetic					
<400> 10 ggtgtccagt	gtgatagcca	cgctaagcgg	caccacggat	ataagcggaa	gttccacgag	60
aagcaccact	cgcacagagg	atac				84
	chetic					
k400> 11 Jgatatccacc	atggacttcg	ggttgagctt	ggttttcctt	gtccttactt	taaaaggtgt	60
ccagtgtgat	agcc					74
<400> 12 gttcagcctg	cgcaagtact	ctggtggcgg	tggctcggg	c ggaggtgggt	cgggtggcgg	60
	gtgaagcttg					87
<210> 13 <211> 69 <212> DNA <213> Syn						
<400> 13	taaaaggtgt	ccagtgtaag	cggctgttt	a aggagctcaa	gttcagcctg	60

Fusion cgcaagt	Proteins for Targeted Delivery of Antimicrobial Peptides.ST25.	txt 69
	14 65 DNA Synthetic	
<400> ggatato	14 ccac catggacttc gggttgagct tggttttcct tgtccttact ttaaaaggtg	60
tccag		65
<210><211><212><212><213>	15 39 DNA Synthetic	
The small than the state of the	15 gacw gatggggstg ttgtgctagc tgaggagac	39