概率论与数理统计 事件的运算

主讲人: 曾华琳

信息科学与技术学院

设试验 E 的样本空间为 S,

A, B, C, A_1 , A_2 ...试验 E 的事件。

1 包含关系

如果事件A 发生必然导致事件 B 发生,则称事件B 包含事件 A (或称事件 A 是事件 B 的子事件),记作 $A \subset B$ 或 $B \supset A$ 。

对于任何事件A,都有 $S \supset A \supset \emptyset$ 。

相等关系 若 $A \subset B$ 且 $B \subset A$,则称事件 A 与事件 B 相等 (或称等价),记作 A = B。

和事件

事件A、B 至少有一个发生所 构成的事件叫做事件△与事件 B的和。记作 $A \cup B$ 。

类似地,称事件 A_1 、 A_2 、…、 A_n 中至少有一个 发生的事件为事件A1、 为 $A_1 \cup A_2 \cup ... \cup A_n$, 简记

称事件 A_1 、 A_2 、…中至少 有一个发生的事件为事件 A_1 、 A_2 、…的和事件。记为 A_2 、...、 A_n 的和事件。记 $A_1 \cup A_2 \cup ...$,简记为 $\bigcup A_n$

事件A、B 同时发生所构成 的事件叫做事件A与事件B 的积事件。记作 $A \cap B$ 或AB。

类似地,称事件 A_1 、 A_2 、...、 A_n 同时发生所构 所构成的事件为事件 A_1 、 A_2 、...、 A_n 的积事件。记 $A_2 \cap ...$,简记为 为 $A_1 \cap A_2 \cap ... \cap A_n$,简记

称事件 A_1 、 A_2 、...同时发生 成的事件为事件 A_1 、 A_2 、...的积事件。记为 A_1

性质

- (1) $A \subset A \cup B$, $B \subset A \cup B$; $A \cap B \subset A$, $A \cap B \subset B$;
- $(2) A \cap (A \cup B) = A, B \cap (A \cup B) = B;$
- (3) $A \cup A = A$, $A \cap A = A$;
- (4) 若 $B \supset A$,则 AB = A, $A \cup B = B$.

4 互斥事件

事件A、B不能同时发生,即AB=Ø,则称事件A与事件B为互斥或不相容事件。基本事件是两两不相容的。

当两事件互不相容时,可将 $A \cup B$ 记为 A+B。

5 对立事件

若事件A与事件B在一次实验中必有且只有其中之一发生,即A、B满足条件

$$A \cup B = S \blacksquare AB = \emptyset$$

则称事件A与事件B为互逆事件,或称事件A、B互为对立事件。 事件A的对立事件记为 \overline{A}

对立事件与互斥事件的关系:

对立一定互斥,但互斥不一定对立。两事件A、B互斥:
 AB=Ø,即A与B不可能同时发生。

两事件A、B互逆或互为对立

事件,除要求A、B互斥($AB = \emptyset$)

外,还要求 $A \cup B = S$ 。

6 差事件

事件A发生而事件B不发生 所构成的事件为事件A与事件B 的差事件,记为A-B。

$$A - B = A\overline{B} = A - AB$$

以上事件之间的各种关系及运算可以用下列各种图示来直观地表示。

 $A \cup B$

 $AB = \varphi A$ 、B 互斥

 $A \subset B$

对立事件 \bar{A}

AB

$$A - B = A\overline{B}$$

a a

事件的运算满足的规律

- (1) 交换律: $A \cup B = B \cup A$,AB = BA;
- $(2) 结合律: (A \cup B) \cup C = A \cup (B \cup C),$ (AB)C = A(BC);
- (3) 分配律: $(A \cup B)C = AC \cup BC$, $(AB) \cup C = (A \cup C)(B \cup C)$;

事件的运算满足的规律

(4) 德•摩根律 (对偶律):

$$\overline{A \cup B} = \overline{A}\overline{B} , \overline{(AB)} = \overline{A} \cup \overline{B} ,$$

$$\bigcup_{i=1}^{n} A_{i} = \bigcap_{i=1}^{n} \overline{A}_{i}, \bigcap_{i=1}^{n} A_{i} = \bigcup_{i=1}^{n} \overline{A}_{i}$$

$$\bigcup_{i=1}^{\infty} A_i = \bigcap_{i=1}^{\infty} \overline{A}_i , \bigcap_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} \overline{A}_i$$

昌 事件的运算满足的规律

$$(5) \ \overline{\overline{A}} = A$$

(6)
$$A - B = A\overline{B} = A - AB$$
.

例3 按长度和直径两个指标检验某种圆柱形产品是否为合格品,若设 $A = \{$ 长度合格 $\}$, $B = \{$ 直径合格 $\}$,试用A B 的运算表示事件 $C = \{$ 产品为合格品 $\}$, $D = \{$ 产品为不合格品 $\}$.

解 产品为合格品必须是长度和直径两个指标合格,

因此
$$C = AB$$

产品为不合格品是指长度和直径两个指标中至少有一个指标不合格,因此

$$D = \overline{A} \cup \overline{B}$$
 $\vec{\boxtimes} D = \overline{AB}$.

练习1 设A、B、C 为样本空间S 中的三个随机事件, 试用A、B、C 的运算表示下列随机事件:

- (1) A 发生而 B 与 C 都不发生; $A\overline{BC}$
- (2) A、B、C都不发生; ABC
- (3) A、B、C中恰好有一个发生;

 $A\overline{B}\overline{C} \cup \overline{A}B\overline{C} \cup \overline{A}\overline{B}C$ 或 $A\overline{B}\overline{C} + \overline{A}B\overline{C} + \overline{A}\overline{B}C$

练习1 设 A、B、C 为样本空间 S 中的三个随机事件,试用 A、B、C 的运算表示下列随机事件:

(4) A、B、C中至少有两个发生;

 $\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$ $\overrightarrow{g}AB \cup AC \cup BC$

- (5) A、B、C 中至少有一个发生; $A \cup B \cup C$
- (6) A、B、C 中恰好有两个发生. $\overline{ABC} + A\overline{BC} + AB\overline{C}$

> 事件的运算

练习2 设某射手对一目标接连进行三次射击,记

 $A_i = \{ \hat{\mathbf{x}} i \text{ 次击中目标} \}, \bar{A}_i = \{ \hat{\mathbf{x}} i \text{ 次未击中目标} \},$

i = 1, 2, 3,试用 A_i , \bar{A}_i ,i = 1, 2, 3 表示事件

- (1) $B_j = \{ 三次射击中恰好有<math>j$ 次击中目标 $\}$ j = 0,1,2,3
- (2) $C_k = \{ 三次射击中至少有 k 次击中目标 \}$, k = 0,1,2,3

> 事件的运算

解 (1) $B_0 = \{ \Xi 次射击中恰好有0次击中目标 \} = \overline{A_1}\overline{A_2}\overline{A_3}$

$$B_1 = A_1 \overline{A}_2 \overline{A}_3 \cup \overline{A}_1 A_2 \overline{A}_3 \cup \overline{A}_1 \overline{A}_2 A_3$$

$$B_2 = A_1 A_2 \overline{A}_3 \cup A_1 \overline{A}_2 A_3 \cup \overline{A}_1 A_2 A_3$$

$$B_3 = A_1 A_2 A_3$$

(2)
$$C_0 = \{ \equiv 次射击中至少击中0次 \}$$

 $= \{ \equiv 次中恰好击中 0 次或1次或2次或3次 \}$
 $= B_0 \cup B_1 \cup B_2 \cup B_3$
 $C_1 = B_1 \cup B_2 \cup B_3 = A_1 \cup A_2 \cup A_3$
 $C_2 = B_2 \cup B_3 = A_1 A_2 \cup A_1 A_3 \cup A_2 A_3$
 $C_3 = B_3 = A_1 A_2 A_3$

谢 谢 大家