

Theoretische Informatik Sommersemester 2021

Übung 5

A1. Sei die Sprache $L = \{yy \mid y \in \{0,1\}^*\}$ gegeben. Zeigen Sie, dass L nicht regulär ist.

$L\ddot{O}SUNG$

Annahme: L ist regulär.

Dann gibt es laut Pumping-Lemma eine Zahl n, so dass alle Wörter $w \in L$ mit $|w| \ge n$ eine Zerlegung w = uvw gibt mit $1 \le |v| \le |uv| \le n$, so dass $uv^iw \in L$ für alle $i \ge 0$ (insbesondere auch $uw \in L$).

Wähle $w = 0^n 10^n 1$. Es gilt $w \in L$ und |w| = 2n + 2.

Sei w = uvw eine Zerlegung mit $1 \le |v| \le |uv| \le n$, so dass $uw \in L$.

Der Teil v besteht folglich nur aus Nullen. Das Wort $uw = 0^{n-|v|}10^n1 \notin L$, da es nicht aus zwei gleichen Hälften besteht.

Das steht im Widerspruch zu $uw \in L$. Folglich ist die Annahme falsch und die Sprache somit nicht regulär.

A2. Sei $L \subseteq \{0,1\}^*$ die Sprache der binären Wörter, die mehr Einsen als Nullen besitzt. Zeigen Sie, dass L nicht regulär ist.

A3. Sei $L = \{0^i 1^i 2^i \mid i > 0\}$. Zeigen Sie, dass L nicht regulär ist.

$L\ddot{O}SUNG$

Sei n die Pumping-Lemma Zahl n.

Sei $w = 0^n 1^n 2^n$. Somit ist klar, dass $w \in L$ und $|w| \ge n$.

Aus dem Lemma folgt $u = uvw \ge n$, $|uv| \le n$, |v| > 1.

Da $|uv| \le n$ und in unserem Wort $w |0^n| = n$, müssen sowohl u, als auch v nur aus Nullen bestehen. Der Teil v muss wegen |v| > 1 mindestens eine Null beinhalten.

Wählen wir k=2, dann hat das Wort $w=uv^kw$ mindestens eine Null mehr als Einsen oder Zweien, und ist somit nicht in L enthalten. Folglich ist die Sprache nicht regulär. Der Widerspruch lässt sich hier auch mit k=0 oder k>1 herbeiführen.

A4. Sei $L = \{w \mid \#_0(w) > 2\#_1(w)\}$. Zeigen Sie, dass L nicht regulär ist.

(Die Funkion $\#_0(x)$ gibt die Anzahl von Nullen im Wort x an)

$L\ddot{O}SUNG$

Sei n die Pumping-Lemma Zahl n.

Sei $w = 0^{2n+1}1^n$. Somit ist klar, dass $w \in L$ und |w| > n.

Aus dem Lemma folgt $u = uvw \ge n$, $|uv| \le n$, |v| > 1.

Wir haben w so gewählt, dass der Teil uv nur aus Nullen besteht (da $|uv| \le n$).

Wählen wir k = 0, dann hat das Teilwort uv^0 wegen |v| > 1 höchstens 2n Nullen. Somit gilt $\#_0(w) \not > 2\#_1(w)$, und $w = uv^0w$ ist nicht in L enthalten. Folglich ist die Sprache nicht regulär.