Multiple Choice Test

Chapter 07.02 Trapezoidal Rule

- 1. The two-segment trapezoidal rule of integration is exact for integrating at most _____ order polynomials.
 - (A) first
 - (B) second
 - (C) third
 - (D) fourth
- 2. The value of $\int_{0.2}^{2.2} xe^x dx$ by using the one-segment trapezoidal rule is most nearly
 - (A) 11.672
 - (B) 11.807
 - (C) 20.099
 - (D) 24.119
- 3. The value of $\int_{0.2}^{2.2} xe^x dx$ by using the three-segment trapezoidal rule is most nearly
 - (A) 11.672
 - (B) 11.807
 - (C) 12.811
 - (D) 14.633
- 4. The velocity of a body is given by

$$v(t) = 2t,$$
 $1 \le t \le 5$
= $5t^2 + 3, 5 < t \le 14$

where t is given in seconds, and v is given in m/s. Use the two-segment trapezoidal rule to find the distance in meters covered by the body from t = 2 to t = 9 seconds.

- (A) 935.00
- (B) 1039.7
- (C) 1260.9
- (D) 5048.9

- 5. The shaded area shows a plot of land available for sale. The units of measurement are in meters. Your best estimate of the area of the land in m² is most nearly
 - (A) 2500
 - (B) 4775
 - (C) 5250
 - (D) 6000

6. The following data of the velocity of a body is given as a function of time.

Time (s)	0	15	18	22	24
Velocity (m/s)	22	24	37	25	123

The distance in meters covered by the body from t = 12 s to t = 18 s calculated using the trapezoidal rule with unequal segments is

- (A) 162.90
- (B) 166.00
- (C) 181.70
- (D) 436.50

For a complete solution, refer to the links at the end of the book.