

FONCTIONS LOGARITHMES

I Fonction logarithme népérienne :

a. Activité:

On considère la fonction définie par : $\begin{cases} f :]0, +\infty[\to \mathbb{R} \\ x \mapsto f(x) = \frac{1}{x} \end{cases}$

- 1. Est-ce que admet une fonction primitive sur $]0,+\infty[$? (justifier votre réponse).
- 2. Combien de fonctions primitives F tel que F(1) = 0?

b. Définition :

La fonction primitive \mathbf{F} de $\mathbf{f}(\mathbf{x}) = \frac{1}{\mathbf{x}}$ sur l'intervalle $]0,+\infty[$ qui s'annule en $1(\mathbf{F}(1)=0)$ s'appelle

La fonction logarithme népérienne et note F(x) = ln(x) ou F(x) = ln x. Avec

$$F'(x) = f(x) \Leftrightarrow (\ln x)' = \frac{1}{x}$$

c. Remarque

Au lieu d'écrire $F(x) = \ln x$ on écrit $f(x) = \ln x$.

<u>d.</u> Conséquences :

- La fonction $f(x) = \ln x$ est définie sur $]0,+\infty[$.
- La fonction $f(x) = \ln x$ est dérivable sur $\left[0, +\infty\right]$ (car $\left(\ln x\right)' = \frac{1}{x}$).
- La fonction $f(x) = \ln x$ est continue sur $\left]0,+\infty\right[$ (car la fonction logarithme népérienne est dérivable)
- La fonction $f(x) = \ln x$ est strictement croissante sur $\left[0, +\infty\right] \left(-\cos\left(\ln x\right)' = \frac{1}{x} > 0 \right)$.
- En déduit $\forall a,b \in]0,+\infty[,a < b \Leftrightarrow \ln(a) < \ln(b) \text{ et } \forall a,b \in]0,+\infty[,a = b \Leftrightarrow \ln(a) = \ln(b) \text{ .}$

e. Exercice:

• Déterminons le domaine de définition de la fonction $f(x) = \frac{3}{\ln x}$.

On a: $x \in D_f \Leftrightarrow x > 0$ et $\ln x \neq 0$

$$\Leftrightarrow x > 0$$
 et $\ln x \neq \ln 1$

$$\Leftrightarrow x > 0$$
 et $x \neq 1$

$$\Leftrightarrow$$
 x \in]0,1[\bigcup]1,+ ∞ [

Conclusion: $D_f =]0,1[\cup]1,+\infty[$ ou $D_f =]0,+\infty[\setminus\{1\}.$

• Déterminons le domaine de définition de la fonction $f(x) = \sqrt{\ln x}$.

On a:
$$x \in D_f \Leftrightarrow x > 0$$
 et $\ln x \ge 0$

$$\Leftrightarrow x > 0$$
 et $\ln x \ge \ln 1$

FONCTIONS LOGARITHMES

$$\Leftrightarrow x > 0 \text{ et } x \ge 1$$

$$\Leftrightarrow x \in [1, +\infty[$$
Conclusion: $D_f = [1, +\infty[$.

- Résoudre l'équation suivante : (E) : ln(2x)-ln(x-1)=0.
 - > On détermine D_E l'ensemble de définition de l'équation (E).

$$x \in D_E \Leftrightarrow 2x > 0 \text{ et } x-1 > 0$$

 $\Leftrightarrow x > 0 \text{ et } x > 1$
 $\Leftrightarrow x > 1$

Conclusion 1: $D_E =]1,+\infty[$.

On résout l'équation dans \mathbf{D}_{E}

$$\ln(2x) - \ln(x-1) = 0 \Leftrightarrow \ln(2x) = \ln(x-1)$$
$$\Leftrightarrow 2x = x-1$$
$$\Leftrightarrow x = -1 \notin D_E =]1, +\infty[$$

Conclusion 2: l'équation (E) n'a pas de solution donc $S = \emptyset$

- Résoudre l'équation suivante : (E') : $\ln(2x) \ln(x-1) = 0$.
 - \triangleright On détermine $D_{E'}$ l'ensemble de définition de l'inéquation (E').

D'après la question précédente on a : $D_{E'} = [1, +\infty]$.

On résout l'équation dans $D_{E'}$

$$\ln(2x) - \ln(x-1) \le 0 \Leftrightarrow \ln(2x) \le \ln(x-1)$$

$$\Leftrightarrow 2x \le x-1$$

$$\Leftrightarrow x \le -1$$

$$\Leftrightarrow x \in]-\infty, -1]$$

Donc l'ensemble des solutions de l'inéquation est $]-\infty,-1] \cap D_{E'} =]-\infty,-1] \cap]1,+\infty[=\emptyset]$

Conclusion 2: l'inéquation (E') n'a pas de solution donc $S = \emptyset$

$\underline{\mathbf{f}}$ Signe de $\ln x$:

Soit: $x \in [0,+\infty)$ on a trois cas:

- 1^{er} cas: x = 1 donc: ln1 = 0.
- $2^{\text{ième}} \times \in \left]1,+\infty\right[$, $\text{donc}: \times \times 1 \Rightarrow \ln \times \times \ln 1$ (c.à.d. $\times \times 1 \Rightarrow \ln \times \times 0$ (car $\ln 1 = 0$)).
- $3^{\text{ième}} \cos x \in \left[0,1\right[, \text{donc}: x < 1 \Rightarrow \ln x < \ln 1 \text{ (c.à.d. } x < 1 \Rightarrow \ln x < 0)$
- D'où le signe de lnx par un tableau

X	0		1		+∞
lnx		_	0	+	

FONCTIONS LOGARITHMES

Propriétés algébriques :

a. Propriétés :

Pour tous a > 0 et b > 0 et $r \in \mathbb{Q}$ on a:

- $\ln \ln ab = \ln a + \ln b$ (propriété admise).
- $\ln\left(\frac{1}{a}\right) = -\ln a$.
- $\frac{3}{h} \ln \frac{a}{b} = \ln a \ln b$
- $4. \quad \ln a^{r} = r \ln a .$

<u>b.</u> Preuve pour la 2^{ième} et la 3^{ième} :

• Pour la 2ième :

On a:
$$0 = \ln 1 \Leftrightarrow 0 = \ln \frac{a}{a}$$

$$\Leftrightarrow 0 = \ln \left(a \times \frac{1}{a} \right)$$

$$\Leftrightarrow 0 = \ln a + \ln \left(\frac{1}{a} \right) \quad ; \text{ (propiété n° 1)}$$

$$\Leftrightarrow -\ln a = \ln \left(\frac{1}{a} \right)$$

Conclusion:
$$\ln\left(\frac{1}{a}\right) = -\ln a$$

• Pour la 3^{ième}

$$\ln \frac{a}{b} = \ln \left(a \times \frac{1}{b} \right)$$

On a: =
$$\ln a + \ln \frac{1}{b}$$

= $\ln a - \ln b$; (propiété n° 2)

Conclusion:
$$\ln \frac{a}{b} = \ln a - \ln b$$

c. Remarque:

- $\ln(\sqrt{a}) = \frac{1}{2} \times \ln a$ et $\ln(\sqrt[3]{a}) = \frac{1}{3} \times \ln a$.
- On écrit :
 - $\ln(x) \times \ln(x) = \ln^2(x)$.
 - On général : $n \in \mathbb{N}^*$ on a : $\underbrace{\ln(x) \times \ln(x) \times \dots \times \ln(x)}_{\text{n fois}} = \ln^n(x) = \ln^n x$

FONCTIONS LOGARITHMES

d. Exemple:

- 1. On pose $\ln 2 = 0.7$ et $\ln 3 = 1.1$; calculons: $\ln 4$ et $\ln 8$ et $\ln \sqrt{3}$ et $\ln \sqrt[3]{2}$ et $\ln \sqrt[3]{3}$. On a:
 - $\ln 4 = \ln 2^2 = 2 \ln 2 = 2 \times 0,7 = 1,4 \text{ donc} : \ln 4 = 1,4$.
 - $\ln 8 = \ln 2^3 = 3 \ln 2 = 3 \times 0,7 = 2,1 \text{ donc} : \ln 8 = 2,1$
 - $\ln \sqrt[3]{2} = \ln 2^{\frac{1}{3}} = \frac{1}{3} \ln 2 = \frac{1}{3} \times 0,7 \approx 0,233 \text{ donc} : \ln 8 = 2,1.$
 - $\ln \sqrt{3} = \ln 3^{\frac{1}{2}} = \frac{1}{2} \ln 3 = \frac{1}{2} \times 1, 1 = 0,55 \text{ donc} : \ln \sqrt{3} = 0,55.$
 - $\ln \sqrt[3]{3^5} = \ln 3^{\frac{5}{3}} = \frac{5}{3} \ln 3 = \frac{5}{3} \times 1, 1 \approx 1,833$.

2. Simplifier

$$\ln^{2}(3-\sqrt{2}) - \ln^{2}(3+\sqrt{2}) = \left(\ln(3-\sqrt{2}) + \ln(3+\sqrt{2})\right) \times \left(\ln(3-\sqrt{2}) - \ln(3+\sqrt{2})\right)$$

$$= \ln\left[\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)\right] \times \ln\left(\frac{3-\sqrt{2}}{3+\sqrt{2}}\right)$$

$$= \ln(9-2) \times \ln\frac{\left(3-\sqrt{2}\right)\left(3-\sqrt{2}\right)}{9-2}$$

$$= \ln7 \times \ln\frac{9-6\sqrt{2}+2}{7} = \ln7 \times \ln\frac{11-6\sqrt{2}}{7} \quad ; \text{ (on ne peut pas simplifier)}$$

Conclusion:
$$\ln^2(3-\sqrt{2})-\ln^2(3+\sqrt{2}) = \ln 7 \times \ln \frac{11-6\sqrt{2}}{7}$$
.

Limites:

a. Propriétés :

$\lim_{x\to +\infty} \ln(x) = +\infty$	$\lim_{x\to 0^+} \ln(x) = -\infty$	$\lim_{x\to 0^+} x \times \ln(x) = 0^-$
$\lim_{x\to +\infty} \frac{\ln(x)}{x} = 0$	$\lim_{x\to +\infty} \frac{\ln(x)}{x^n} = 0$	$\lim_{x\to 0^+} x^n \times \ln(x) = 0^-$
$\lim_{x\to 1}\frac{\ln(x)}{x-1}=1$	$\lim_{x\to 0} \frac{\ln(x+1)}{x} = 1$	

<u>b.</u> Remarques :

- > $\lim_{x\to 0^+} \ln(x) = -\infty$. Done la courbe (C_f) de f admet une asymptote verticale c'est la droite d'équation x = 0 (l'axe des ordonnées).
- $\operatorname{lim}_{x\to +\infty} \ln(x) = +\infty$ Donc la courbe (C_f) de f admet une branche parabolique (à déterminer).
- $\lim_{x\to +\infty} \frac{\ln x}{x} = 0 \text{ donc } a = \lim_{x\to +\infty} \frac{f\left(x\right)}{x} = 0 \text{ .Donc la courbe } \left(C_f\right) \text{ de f admet une branche parabolique de direction l'axe des abscisses .}$

FONCTIONS LOGARITHMES

c. Application :

1. Calculer:
$$\lim_{x\to +\infty} \frac{\ln(x+2)}{x}$$
.

On a:
$$\lim_{x \to +\infty} \frac{\ln(x+2)}{x} = \lim_{x \to +\infty} \frac{\ln(x+2)}{x+2} \times \frac{x+2}{x} = 0$$
 car:

•
$$\lim_{x \to +\infty} \frac{\ln(x+2)}{x+2} = \lim_{t \to +\infty} \frac{\ln t}{t} = 0$$
 (avec $t = x+2$ et $x \to +\infty$ alors $t \to +\infty$).

$$\bullet \quad \lim_{x \to +\infty} \frac{x+2}{x} = 1.$$

Conclusion:
$$\lim_{x \to +\infty} \frac{\ln(x+2)}{x} = 0$$

$$\lim_{\substack{x\to 0\\x>0}}\frac{1}{x\times \ln x}.$$

On a:
$$\lim_{\substack{x\to 0\\x>0}} x \ln x = 0^-$$
 (propriété) d'où $\lim_{\substack{x\to 0\\x>0}} \frac{1}{x \times \ln x} = -\infty$.

Conclusion:
$$\lim_{\substack{x\to 0\\x\to 0}} \frac{1}{x \times \ln x} = -\infty$$
.

3. Calculer:
$$\lim_{x\to 0} \frac{\ln(x+1)}{x^3}$$
.

On a:
$$\lim_{x\to 0} \frac{\ln(x+1)}{x^3} = \lim_{x\to 0} \frac{\ln(x+1)}{x} \times \frac{1}{x^2} = +\infty$$
.

Car
$$\lim_{x\to 0} \frac{\ln(x+1)}{x} = 1$$
 (propriété) et $\lim_{x\to 0} \frac{1}{x^2} = +\infty$; $\left(\lim_{x\to 0} x^2 = 0^+\right)$.

Fonction de la forme : $f(x) = \ln(u(x))$

a. Remarque:

On pose: $g(x) = \ln x$ et la fonction u(x) donc: $g \circ u(x) = g(u(x)) = \ln(u(x))$.

Conclusion: la fonction $f(x) = \ln(u(x))$ est la composée de deux fonctions.

• Domaine de définition de f est de la manière suivante : $x \in D_f \Leftrightarrow (x \in D_u \text{ et } u(x) > 0)$.

• Si de plus la fonction
$$u(x)$$
 est dérivable on $a : \left[\ln(u(x)) \right] = \frac{u'(x)}{u(x)}$.

• De même on a :
$$\left[\ln\left(\left|u(x)\right|\right)\right] = \frac{u'(x)}{u(x)}$$

<u>b.</u> Démonstration :

• pour
$$\left[\ln(u(x))\right]' = \frac{u'(x)}{u(x)}$$

FONCTIONS LOGARITHMES page

$$f'(x) = \left[\ln\left(u(x)\right)\right]' = \left[g\left(u(x)\right)\right]' = u'(x) \times g'\left(u(x)\right) = u'(x) \times \frac{1}{u(x)} \text{ car } g'(x) = (\ln x)' = \frac{1}{x}.$$

Conclusion:
$$\left[\ln(u(x))\right]' = \frac{u'(x)}{u(x)}$$
.

• Pour
$$\left[\ln\left(\left|u(x)\right|\right)\right] = \frac{u'(x)}{u(x)}$$

$$1^{er} \cos |u(x)| = u(x) déjà démontrer$$
.

$$2^{ieme} \cos |u(x)| = -u(x)$$

on a:
$$\left[\ln\left(\left|u(x)\right|\right)\right]' = \left[\ln\left(-u(x)\right)\right]' = \left(-u(x)\right)' \times \ln'\left(-u(x)\right) = -u'(x) \times \frac{1}{-u(x)} = \frac{u(x)}{u(x)}.$$

Conclusion:
$$\left[\ln\left(\left|u(x)\right|\right)\right] = \frac{u'(x)}{u(x)}$$
.

Exemple:

Calculons f' avec $f(x) = \ln |x^2 - x|$.

On a:
$$f'(x) = [\ln |x^2 - x|]' = \frac{(x^2 - x)'}{x^2 - x} = \frac{2x - 1}{x^2 - x}$$
.

d. Vocabulaire et remarque :

Soit f fonction dérivable sur I et $\forall x \in I : u(x) \neq 0$.

La fonction $x \mapsto \frac{u'(x)}{u(x)}$ est appelée la dérivée logarithmique de la fonction u sur I.

❖ Puis que $\left[\ln\left(\left|u(x)\right|\right)\right] = \frac{u'(x)}{u(x)}$ donc les fonctions primitives de la fonction $x \mapsto \frac{u'(x)}{u(x)}$ sur I

sont les fonctions de la forme $F(x) = \ln |u(x)| + c$ avec $c \in \mathbb{R}$.

Exemple:

* Trouver les fonctions primitives de la fonction $f(x) = \frac{5}{x-2}$ sur $\left[2, +\infty \right]$.

On a:
$$f(x) = \frac{5}{x-2} = \frac{(x-2)'}{x-2}$$
.

donc: les fonctions primitives de la fonction $f(x) = \frac{5}{x-2}$ sont les fonctions de la forme

 $F(x) = \ln|x-2| + c$ avec $c \in \mathbb{R}$, puis que $x \in]2, +\infty[$ donc $F(x) = \ln(x-2) + c$ avec $c \in \mathbb{R}$.

Conclusion: les fonctions primitives de la fonction $f(x) = \frac{5}{x-2}$ sont $F(x) = \ln(x-2) + c$ avec $c \in \mathbb{R}$.

Trouver la fonction dérivée logarithmique de la fonction $u(x) = 3x^2 - 5x$.

FONCTIONS LOGARITHMES

La fonction dérivée logarithmique de u est fonction suivante $x \to \frac{6x-5}{3x^2-5x}$.

V. Etude de la fonction $f(x) = \ln x$:

- Domaine de définition : $D_f = [0, +\infty]$.
- Continuité : f est continue sur $D_f =]0,+\infty[$.
- Limites:
 - $\lim_{x\to 0^+} \ln(x) = -\infty.$ Donc la courbe (C_f) de f admet une asymptote verticale c'est la droite d'équation x=0 (l'axe des ordonnées).
 - $ightharpoonup \lim_{x\to +\infty} \ln(x) = +\infty$ Donc la courbe (C_f) de f admet une branche parabolique on détermine :

 $\lim_{x\to +\infty} \frac{\ln x}{x} = 0 \ \text{donc a} = \lim_{x\to +\infty} \frac{f\left(x\right)}{x} = 0 \ \text{.Donc la courbe } \left(C_f\right) \ \text{de f admet une branche parabolique de direction l'axe des abscisses .}$

- Sens de variation de f .
 - > La fonction dérivée de f est : $f'(x) = (\ln x)' = \frac{1}{x} > 0$
 - ightharpoonup La fonction est strictement croissante sur $D_f = \left]0,+\infty\right[$
 - > Tableau de variations de f :

X	0	1 +∞
f'		+
f		-∞ 0 -∞

• La courbe représentative de f :

FONCTIONS LOGARITHMES

* Remarque:

- La fonction $f(x) = \ln x$ est continue sur $]0, +\infty[$.
- La fonction $f(x) = \ln x$ est strictement croissante sur $]0, +\infty[$.
- Donc : $f(]0,+\infty[)=\mathbb{R}$ donc l'équation $x\in]0,+\infty[$; f(x)=1 admet une solution et une seule on note ce nombre unique par e=2,718 (valeur approché) qui est un nombre irrationnel.
- Conclusion: $\ln e = 1$ et $\ln \frac{1}{e} = -1$ et $\ln e^r = r$; $(r \in \mathbb{Q})$.
- Application: on détermine l'ensemble de définition de $f(x) = \frac{1}{3 \ln(x)}$.

$$x \in D_f \Leftrightarrow x > 0 \text{ et } 3 - \ln(x) \neq 0$$

 $\Leftrightarrow x > 0 \text{ et } \ln(x) \neq 3$
 $\Leftrightarrow x > 0 \text{ et } \ln(x) \neq \ln e^3$
 $\Leftrightarrow x > 0 \text{ et } x \neq e^3$

D'où : ensemble de définition de f est : $D_f = \left[0, e^3\right] \cup \left[e^3, +\infty\right]$

Fonction logarithme de base a et propriétés :

- **A.** Fonction logarithme de base a:
- a. Définition :

Soit $a \in \left]0,1\right[\cup \left]1,+\infty\right[$ (c.à.d. a strictement positif et différent de 1).

La fonction définie par :

$$f:]0,+\infty[\to \mathbb{R}$$

$$x \to f(x) = \frac{\ln(x)}{\ln(a)}$$

S'appelle la fonction logarithme de base a, on note cette fonction par $f = \log_a d'où : f(x) = \log_a(x)$

b. Conséquences :

•
$$\log_a(x) = \frac{\ln(x)}{\ln(a)}$$
 et $\log_a(1) = \frac{\ln(1)}{\ln(a)} = 0$.

•
$$\log_a(a) = \frac{\ln(a)}{\ln(a)} = 1$$
 et $\log_a(e) = \frac{\ln(e)}{\ln(a)} = \frac{1}{\ln(a)}$.

c. Cas particuliers :

- Cas $a = e : \log_e(x) = \frac{\ln(x)}{\ln(e)} = \ln(x)$ donc logarithme de base a = e est le logarithme népérienne.
- Cas a = 10: on obtient la fonction $f(x) = \log_{10}(x)$ s'appelle la fonction logarithme décimale on note $\log_{10} = \text{Log d'où}$: $f(x) = \log_{10}(x) = \text{Log}(x)$.
- $Log(10^r) = r ; Log(10) = 1 ; Log(1) = 0.$

FONCTIONS LOGARITHMES

- **B.** Propriétés logarithme de base a :
- a. Propriétés:

Soit $a \in \left]0,1\right[\cup \left]1,+\infty\right[$ et pour tout x et y de $\left]0,+\infty\right[$ on a :

•
$$\log_a(x \times y) = \log_a(x) + \log_a(y)$$
.

$$\log_a \left(\frac{1}{y} \right) = -\log_a (y) .$$

•
$$\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y)$$
.

•
$$\log_a(x^r) = r \times \log_a(x)$$
 avec $r \in \mathbb{Q}$.

•
$$\log_a(\sqrt{x}) = \frac{1}{2} \times \log_a(x)$$
 et $\log_a(\sqrt[3]{x}) = \frac{1}{3} \times \log_a(x)$.

b. Démonstration :

Démonstration pour $\log_a(x \times y) = \log_a(x) + \log_a(y)$.

On a:
$$\log_a (x \times y) = \frac{\ln(x \times y)}{\ln(a)} = \frac{\ln(x) + \ln(y)}{\ln(a)} = \frac{\ln(x)}{\ln(a)} + \frac{\ln(y)}{\ln(a)} = \log_a(x) + \log_a(y)$$

Conclusion: $\log_a(x \times y) = \log_a(x) + \log_a(y)$.

C. Etude de la fonction :
$$f(x) = \log_a(x)$$
 : avec $f(x) = \log_a(x) = \frac{\ln(x)}{\ln(a)}$

- Domaine de définition de $f: x \in D_f \Leftrightarrow x > 0$ d'où $D_f = \left]0, +\infty\right[$.
- Continuité de f: f est continue sur $]0,+\infty[$.
- Limites aux bornes de D_f :

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \log_a(x) = \lim_{x \to +\infty} \frac{\ln(x)}{\ln(a)} \begin{cases} +\infty & \text{si } a \in]1, +\infty[\\ -\infty & \text{si } a \in]0,1[\end{cases}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to 0^+} \log_a(x) = \lim_{x \to 0^+} \frac{\ln(x)}{\ln(a)} \begin{cases} -\infty \text{ si } a \in]1, +\infty[\\ +\infty \text{ si } a \in]0,1[\end{cases}$$

• Sens de variations de f :

> Tableau de variations de f .

FONCTIONS LOGARITHMES

Cas $a \in]1,+\infty[$:

X	0	1 +∞
f'		+
f		**************************************

cas
$$a \in]0,1[$$
:

• Courbe représentative de f dans un repère orthonormé a=2 et $a=\frac{1}{2}$.

c. Exercices:

1. On simplifie:

$$\log_{2}(8) - \log_{2}(\sqrt[3]{32}) + \log_{2}(9) - \log_{2}(3) = \log_{2}(2^{3}) - \log_{2}(2^{\frac{5}{3}}) + \log_{2}(3^{2}) - \log_{2}(3)$$

$$= 3 - \frac{5}{3} + 2\log_{2}(3) - \log_{2}(3)$$

$$= \frac{4}{3} + \log_{2}(3)$$

2. On simplifie:

$$\log_{3}\left(\frac{15}{4}\right) + \log_{2}\left(\frac{1}{27}\right) + \log_{3}\left(\frac{4}{5}\right) = \log_{3}\left(\frac{15}{4} \times \frac{4}{5}\right) + \log_{2}\left(3^{3}\right)$$

$$= \log_{3} 3 - \log_{2} 3^{3}$$

$$= 1 - \log_{2} 27$$

$$= \log_{2}\left(2\right) - \log_{2}\left(27\right)$$

$$= \log_{2}\left(\frac{2}{27}\right)$$

FONCTIONS LOGARITHMES

rage

3. On simplifier :

$$\log(100) - \log(10^{2013}) + \log\left(\frac{1}{10^{100}}\right) = \log 10^2 - \log 10^{2019} - \log 10^{100}$$
$$= 2\log 10 - 2019\log 10 - 100\log 10$$
$$= -2117\log 10$$

4. Montrer que:
$$\forall a, b \in]1, +\infty[$$
; $\log_b(a) = \frac{1}{\log_a(b)}$

On a:
$$\frac{1}{\log_a(b)} = \frac{1}{\frac{\ln b}{\ln a}} = \frac{\ln a}{\ln b} = \log_b(a).$$

Conclusion:
$$\forall a, b \in]1, +\infty[; \log_b(a) = \frac{1}{\log_a(b)}.$$

See New York Résoudre dans
$$\mathbb{R}$$
: l'équation suivante $\log_3(2x) \times (\log_5(x) - 1) = 0$.

$$x \in D_E \Leftrightarrow 2x > 0 \text{ et } x > 0$$

 $\Leftrightarrow x > 0$
 $\Leftrightarrow x \in]0, +\infty[$

Donc domaine de définition de l'équation est $D_E = [0, +\infty]$.

• On résout l'équation dans
$$D_E =]0,+\infty[$$
 :

$$\begin{split} \log_3\left(2x\right) \times \left(\log_5\left(x\right) - 1\right) &= 0 \Leftrightarrow \log_3\left(2x\right) = 0 \text{ ou } \left(\log_5\left(x\right) - 1\right) = 0 \\ \Leftrightarrow \log_3\left(2x\right) &= \log_3\left(1\right) \text{ ou } \log_5\left(x\right) = 1 \\ \Leftrightarrow 2x = 1 \text{ ou } x = 1 \\ \Leftrightarrow x = \frac{1}{2} \in D_E \text{ ou } x = 1 \in D_E \end{split}$$

Conclusion : ensemble des solutions de l'équation est $S = \left\{\frac{1}{2}, 1\right\}$.

6. Résoudre dans
$$\mathbb{R}$$
 l'inéquation suivante $\log_{\sqrt{3}} (3x-1) \ge \log_{\sqrt{3}} (x+1)$.

• On détermine domaine de définition de l'inéquation :

$$x \in D_{E}$$
 $\Leftrightarrow 3x-1>0$ et $x+1>0$
 $\Leftrightarrow x > \frac{1}{3}$ et $x > -1$
 $\Leftrightarrow x > \frac{1}{3}$
 $\Leftrightarrow x \in \left] \frac{1}{3}, +\infty \right[$

FONCTIONS LOGARITHMES

rage 17

Donc domaine de définition de l'équation est $D_{E'} = \frac{1}{3}, +\infty$.

• On résout l'équation dans $D_{E'} = \left] \frac{1}{3}, +\infty \right[$:

$$\log_{\sqrt{3}}(3x-1) \ge \log_{\sqrt{3}}(x+1) \Leftrightarrow 3x-1 > x+1 \ ; \left(\text{ car } a = \sqrt{3} > 1 \right)$$

$$\Leftrightarrow 2x > 2$$

$$\Leftrightarrow x > 1$$

$$\Leftrightarrow x \in]1,+\infty[$$

Conclusion: ensemble des solutions de l'inéquation est $S = D_{E'} \cap \left[1, +\infty\right[= \left[\frac{1}{3}, +\infty\right[\cap \left[1, +\infty\right[= \left[\frac{1}{3}, +\infty\right[\cap \left[\frac{1}{3$

- 7. Etudier la fonction suivante : $f(x) = \log_5(x+1)$
- Domaine de définition de f :

$$x \in D_E \Leftrightarrow x+1>0$$

 $\Leftrightarrow x>-1$
 $\Leftrightarrow x \in]-1,+\infty[$

domaine de définition de f est $\mathbf{D}_{E'} = \left] -1, +\infty \right[$

• Limites aux bornes de D_f :

$$\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{+}} \log_{5}(x+1) = \lim_{x \to -1^{+}} \frac{\ln(x+1)}{\ln 5} = -\infty .$$

$$\operatorname{car} \lim_{x \to -1^{+}} \ln(x+1) = -\infty ; \left(\lim_{x \to -1^{+}} x + 1 = 0^{+}\right) \text{ et } \ln 5 > 0$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \log_5(x+1) = \lim_{x \to +\infty} \frac{\ln(x+1)}{\ln 5} = +\infty .$$

$$\operatorname{car} \lim_{x \to +\infty} \ln(x+1) = +\infty ; \left(\lim_{x \to -1^+} x + 1 = +\infty\right) \text{ et } \ln 5 > 0$$

- Branches infinies;
 - ✓ Puis que $\lim_{x\to -1^+} f(x) = -\infty$ donc la courbe $\left(C_f\right)$ admet une asymptote verticale la droite d'équation x=-1 .
 - ✓ On a: $\lim_{x \to +\infty} f(x) = +\infty$ on détermine $a = \lim_{x \to +\infty} \frac{f(x)}{x}$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\frac{\ln(x+1)}{\ln 5}}{x} = \lim_{x \to +\infty} \frac{\ln(x+1)}{x \ln 5} = \lim_{x \to +\infty} \frac{\ln(x+1)}{x+1} \times \frac{1}{\ln 5} = 0$$

Car:
$$\lim_{x \to +\infty} \frac{\ln(x+1)}{x+1} = \lim_{t \to +\infty} \frac{\ln t}{t} = 0(x \to +\infty \Rightarrow t \to +\infty)$$

D'où : la courbe $\left(\mathbf{C}_{\mathrm{f}}\right)$ admet une branche parabolique de direction l'axe des ordonnées .

FONCTIONS LOGARITHMES

page \iint

- Sens de variations de f :
 - ✓ Fonction dérivée de f :

$$f'(x) = \left(\log_5(x+1)\right)' = \left(\frac{\ln(x+1)}{\ln 5}\right)' = \frac{1}{\ln 5} \times \frac{(x+1)'}{x+1} = \frac{1}{\ln 5} \times \frac{1}{x+1} > 0 \text{ car } x \in]-1, +\infty[$$

✓ Tableau de variations de f :

I	X	-1	+∞
	f'		+
	f		→

• La courbe représentative de f dans un repère orthonormé $\left(\overrightarrow{O,i,j} \right)$

