code

September 3, 2023

0.1 Assignment 1

0.1.1 Name: Bannuru Rohit Kumar Reddy

0.1.2 Roll Number: 21CS30011

```
[48]: # import all the necessary libraries here
import pandas as pd

import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import KFold
```

```
[49]: df = pd.read_csv('../../dataset/cross-validation.csv')
print(df.shape)
```

(614, 13)

Analysing the data

```
[50]: # Printing the basic information about the data

print(df.head())
print(df.dtypes)
print(df.describe())
```

	Loan_ID	Gender	Married	Dependents	Education	n Self_Employed	\
0	LP001002	Male	No	0	Graduat	e No	
1	LP001003	Male	Yes	1	Graduat	e No	
2	LP001005	Male	Yes	0	Graduat	e Yes	
3	LP001006	Male	Yes	0	Not Graduat	e No	
4	LP001008	Male	No	0	Graduat	e No	
	ApplicantIncome		Coappl	icantIncome	LoanAmount	Loan_Amount_Ter	m \
0		5849		0.0	NaN	360.	0
1		4583		1508.0	128.0	360.	0
2		3000		0.0	66.0	360.	0
3		2583		2358.0	120.0	360.	0
4		6000		0.0	141.0	360.	0

```
Credit_History Property_Area Loan_Status
0
                           Urban
               1.0
                                            Y
1
              1.0
                           Rural
                                            N
2
                                            Y
              1.0
                           Urban
3
              1.0
                           Urban
                                            Y
                                            Y
4
              1.0
                           Urban
Loan_ID
                       object
Gender
                       object
Married
                       object
Dependents
                       object
Education
                       object
Self_Employed
                       object
ApplicantIncome
                        int64
CoapplicantIncome
                      float64
LoanAmount
                      float64
Loan_Amount_Term
                      float64
Credit_History
                      float64
Property_Area
                       object
Loan_Status
                       object
dtype: object
                         CoapplicantIncome
                                                          Loan Amount Term
       ApplicantIncome
                                             LoanAmount
                                                                  600.00000
count
            614.000000
                                 614.000000
                                             592.000000
mean
           5403.459283
                                1621.245798
                                             146.412162
                                                                  342.00000
std
           6109.041673
                                2926.248369
                                              85.587325
                                                                   65.12041
min
            150.000000
                                   0.000000
                                                9.000000
                                                                   12.00000
25%
                                   0.000000
                                             100.000000
                                                                  360.00000
           2877.500000
50%
           3812.500000
                                1188.500000
                                             128.000000
                                                                  360.00000
75%
           5795.000000
                                2297.250000
                                             168.000000
                                                                  360.00000
max
          81000.000000
                              41667.000000
                                             700.000000
                                                                  480.00000
       Credit_History
count
           564.000000
             0.842199
mean
std
             0.364878
             0.00000
min
25%
             1.000000
50%
              1.000000
75%
             1.000000
             1.000000
max
Check for Missing Values
```

51]· Ioan ID

[51]: df.isnull().sum()

[51]: Loan_ID 0
Gender 13
Married 3

```
Dependents
                      15
Education
                       0
Self_Employed
                      32
ApplicantIncome
                       0
CoapplicantIncome
                       0
LoanAmount
                      22
Loan_Amount_Term
                      14
Credit_History
                      50
Property Area
                       0
Loan_Status
                       0
dtype: int64
```

Since the number of missing values is not too large, We will drop all the rows which have missing values

```
[52]: df = df.dropna()
print(df.shape)
```

(480, 13)

(480,)

Separating the data into the input features and the output feature Note: We are removing the column 'Loan_ID' from the set of input features as the id will not affect in the prediction of loan status

```
[53]: X_df = df.drop(['Loan_Status','Loan_ID'], axis=1)
X_df_withloanID = df.drop(['Loan_Status'], axis=1)
y_df = df['Loan_Status']

print(X_df.shape)
print(y_df.shape)
(480, 11)
```

Dealing with categorical data We will first have to convert the categorical data into numerical columns before we can train our model, as the model can only take numbers as input

```
# Changing gender column to 0 and 1 here
X_df['Gender'] = X_df['Gender'].apply(lambda x: 0 if x == 'Male' else 1)
# Changing married column to 0 and 1 here
X_df['Married'] = X_df['Married'].apply(lambda x: 1 if x == 'Yes' else 0)
# Changing education column to 0 and 1 here
X df['Education'] = X df['Education'].apply(lambda x: 0 if x == 'Graduate' else,
 →1)
# Changing self employed column to 0 and 1 here
X df['Self Employed'] = X df['Self Employed'].apply(lambda x: 0 if x == 'Yes' |
 ⇔else 1)
# encoding the property area column here
X_final = pd.get_dummies(X_df, columns=['Property_Area'])
# Preprocess the 'Dependents' column to convert '3+' to a numeric value
X_final['Dependents'] = X_final['Dependents'].replace('3+', 3).astype(float)
```

Applying the Standard Scalar on the numerical data

```
[55]: scaler = StandardScaler()
    X_final[['ApplicantIncome', 'CoapplicantIncome', 'LoanAmount', | 
     ⇔fit_transform(X_final[['ApplicantIncome', 'CoapplicantIncome', 'LoanAmount', _
     ⇔'Loan_Amount_Term', 'Credit_History', 'Dependents']])
    X_final.head()
```

```
[55]:
                Married Dependents Education Self_Employed ApplicantIncome \
        Gender
      1
              0
                       1
                            0.218599
                                              0
                                                             1
                                                                      -0.137970
              0
      2
                       1
                           -0.762033
                                              0
                                                             0
                                                                      -0.417536
      3
              0
                       1
                           -0.762033
                                              1
                                                             1
                                                                      -0.491180
              0
                           -0.762033
                                              0
      4
                       0
                                                             1
                                                                       0.112280
      5
              0
                       1
                            1.199231
                                              0
                                                                       0.009319
        CoapplicantIncome LoanAmount Loan_Amount_Term Credit_History \
      1
                 -0.027952
                             -0.208089
                                                0.275542
                                                                0.413197
      2
                 -0.604633 -0.979001
                                                0.275542
                                                                0.413197
      3
                  0.297100 -0.307562
                                                0.275542
                                                                0.413197
      4
                 -0.604633 -0.046446
                                                0.275542
                                                                0.413197
      5
                  0.999978
                            1.520245
                                                0.275542
                                                                0.413197
        Property Area Rural Property Area Semiurban Property Area Urban
                        True
                                                False
                                                                     False
      1
      2
                       False
                                                False
```

True

```
3 False False True
4 False False True
5 False False True
```

```
[56]: import numpy as np
      # Create an array of shuffled indexes
      data_indexes = np.arange(len(X_final))
      np.random.shuffle(data_indexes)
      # Define the number of folds for cross-validation
      num_folds = 5
      # Calculate the size of each fold
      fold size = len(data indexes) // num folds
      # Initialize lists to store evaluation metrics
      fold accuracies = []
      fold_precisions = []
      fold_recalls = []
      # Perform k-fold cross-validation
      for fold_num in range(num_folds):
          # Determine the current fold's start and end indexes
          start_idx = fold_num * fold_size
          end_idx = (fold_num + 1) * fold_size if fold_num < (num_folds - 1) else_
       →len(data_indexes)
          # Extract the current fold's indexes
          current_fold_indexes = data_indexes[start_idx:end_idx]
          # Create training and testing sets based on the fold indexes
          training_indexes = [idx for idx in data_indexes if idx not in_
       ⇔current_fold_indexes]
          X_train, y_train = X_final.iloc[training_indexes], y_df.
       →iloc[training indexes]
          X_test, y_test = X_final.iloc[current_fold_indexes], y_df.
       →iloc[current_fold_indexes]
          # Train your model (replace this with your model training code)
          # For example, you can use a Logistic Regression model
          model.fit(X_train, y_train)
          # Make predictions on the test data
          y_pred = model.predict(X_test)
          # Calculate evaluation metrics (replace this with your evaluation code)
```

```
# For example, you can calculate accuracy, precision, and recall
   fold_accuracy = np.mean(y_pred == y_test)
   fold_precision = np.sum((y_pred == 1) & (y_test == 1)) / np.sum(y_pred == 1)
   fold_recall = np.sum((y_pred == 1) & (y_test == 1)) / np.sum(y_test == 1)
    # Append evaluation metrics to the respective lists
   fold_accuracies.append(fold_accuracy)
   fold_precisions.append(fold_precision)
   fold_recalls.append(fold_recall)
# Calculate and print the mean evaluation metrics across all folds
mean_fold_accuracy = np.mean(fold_accuracies)
mean_fold_precision = np.mean(fold_precisions)
mean_fold_recall = np.mean(fold_recalls)
# Print the mean evaluation metrics
print(f"Mean Accuracy: {mean_fold_accuracy:.4f}")
print(f"Mean Precision: {mean_fold_precision:.4f}")
print(f"Mean Recall: {mean_fold_recall:.4f}")
```

Mean Accuracy: 0.8021 Mean Precision: 0.7926 Mean Recall: 0.9675

[]: