

Learning Sentential Paraphrases from Bilingual Parallel Corpora for Text-to-Text Generation

JOHNS HOPKIN CENTER FOR LANGUAGE

Juri Ganitkevitch, Chris Callison-Burch, Courtney Napoles, and Benjamin Van Durme

SPEECH PROCESSING

Abstract

Previous work sucessfully extracted high quality phrasal paraphrases from bilingual parallel corpora. However, it is not clear whether bitexts can yield more sophisticated sentential paraphrases, that are more obviously learnable from monolingual parallel corpora. We extend bilingual paraphrase extraction to syntactic paraphrases and so are able to learn a variety of general paraphrastic transformations, such as passivization and dative shift. We discuss adapting our model to many text-to-text generation tasks by augmenting its feature set, development data, and parameter estimation routine. We illustrate this adaptation by using our paraphrase model for sentence compression and achieve results competitive with state-of-the-art compression systems.

Syntactic Paraphrases from Bitexts

When extracting phrasal paraphrases from a bitext, we pivot over the foreign sides in a translation phrase table and then aggregate probabilities over all common foreign phrases:

For syntactic paraphrases, we first extract syntactic translation SCFGs (i.e. rules with two right-hand sides and exact correspondence between the NTs on the right-hand side: "NP \rightarrow CD of the NNS | CD dieser NNS"). We then analogously pivot and aggregate over the foreign side:

	Adapting from SMT	to Sentence Compression
Feature Functions	Phrasal and lexical probabilities quantify general paraphrase quality. More task- specific properties are not captured.	We add features for the source and target terminal count as well as for the effected difference.
Dev Set	Multiple English references typically used to calculate BLEU for SMT. (By definition sentential paraphrases.)	To obtain paraphrastic reference compressions we select sentence pairs that significantly differ in length from a collection of reference translations.
Objective Function	Optimized for English-to-English BLEU score. Due to typically high interreference BLEU, the system will be tuned to self-paraphrase.	We develop an objective function similar to BLEU, but with a "verbosity penalty" that allows a target compression rate to be set.
Augmen- tations		Additionally, we augment the grammar with deletion rules for specific POS (JJ, RB, DT) allowing for shorter quasiparaphrastic compressions.

Expressiveness of Paraphrases

Our syntactic paraphrase patterns capture a variety of meaning-preserving transformations.

Possessive rule	$\begin{array}{c} \text{NP} \rightarrow \\ \text{NP} \rightarrow \end{array}$	the NN of the NNP the NNP's NN the NNS ₁ made by the NNS ₂ the NNS ₂ 's NNS ₁
Dative shift	$VP \rightarrow VP \rightarrow$	give NN to NP give NP the NN provide NP ₁ to NP ₂ give NP ₂ NP ₁
Adv./adj. phrase move	$\begin{array}{c} S/VP \rightarrow \\ S \rightarrow \end{array}$	ADVP they VBP they VBP ADVP it is ADJP VP VP is ADJP
Verb particle shift	VP →	VB NP up VB up NP
Reduced relative clause	$SBAR/S \rightarrow ADJP \rightarrow$	although PRP VBP that although PRP VBP very JJ that S JJ S
Partitive constructions	$\begin{array}{c} \text{NP} \rightarrow \\ \text{NP} \rightarrow \end{array}$	CD of the NN CD NN all DT\NP all of the DT\NP
Topicalization	$S \rightarrow$	NP, VP. VP, NP.
Passivization	SBAR →	that NP had VBN which was VBN by NP
Light verbs	$\begin{array}{c} \text{VP} \rightarrow \\ \text{VP} \rightarrow \end{array}$	take action ADVP to act ADVP to take a decision PP to decide PP

Future Work

Our approach is highly flexible and can be extended to tasks such as sentence simplification, ESL error correction, legalese "translation", query expansion, question generation, RTE hypothesis generation and poetry generation.

Paraphrastic Sentence Compression

Paraphrase Rules

Lexical paraphrase: JJ → offensive | insulting Reduced relative clause: $NP \rightarrow NP$ that $VP \mid NP VP$ Pred. adjective copula deletion: $VP \rightarrow are JJ to NP \mid JJ NP$

Partitive construction:

 $NP \rightarrow CD$ of the NNS | CD NNS

Pivot Translation Rules

JJ → beleidigend | offensive $VP \rightarrow sind JJ f ur NP \mid are JJ to NP$ $VP \rightarrow sind JJ f ur NP \mid JJ NP$ JJ → beleidigend | insulting $NP \rightarrow NP \text{ die } VP \mid NP VP$ $NP \rightarrow CD$ der $NNS \mid CD$ of the NNS $NP \rightarrow NP$ die $VP \mid NP$ that $VP \mid NP \rightarrow CD$ der $NNS \mid CD$ NNS

Human Evaluation Results

We compare our system to state-of-the-art systems ILP (Clarke & Lapata, '08) and T3 (Cohn & Lapata, '07).

