0. Outils Mathématiques Utiles (Modulo n)

• Inverse Modulaire a⁻¹ (mod n) avec Euclide Étendu

```
But: Trouver x tel que a \cdot x \equiv 1 \pmod{n} (donc x = a^{-1} \pmod{n}).

Condition: L'inverse existe si pgcd(a, n) = 1.
```

Algorithme Euclide Étendu (version fiche-exam)

```
    Initialiser:

            r0 = n, r1 = a
            x0 = 0, x1 = 1

    Tant que r1 ≠ 0:

            q = r0 // r1
            (r0, r1) = (r1, r0 - q * r1)
            (x0, x1) = (x1, x0 - q * x1)

    À la fin, si r0 = 1 alors l'inverse est x0 mod n (si négatif, ajouter n).
```

Exemple: Calculer l'inverse de 17 modulo 43

Étape	r0	r1	q	x0	x1
init	43	17		0	1
1	17	9	2	1	-2
2	9	8	1	-2	3
3	8	1	1	3	-5
4	1	0	8	-5	

```
À la fin: r0 = 1, x0 = -5
Donc l'inverse est -5 mod 43 = 38
Vérif: 17 × 38 = 646 = 1 mod 43
```

Astuce: Si n est premier, on peut aussi utiliser $a^{-1} \equiv a^{n} (n-2) \mod n$ (exponentiation rapide).

Exponentiation Modulaire Rapide (base^exp mod n)

Algorithme (fiche-exam, version binaire droite-gauche)

Exemple: Calculer 7^13 mod 17

- 13 en binaire: 1101
- Étapes:
 - o res=1, base=7
 - bit 1: res=7, base=49→15, exp=6
 - bit 0 : res=7, base=225→4, exp=3
 - bit 1: res=28→11, base=16, exp=1
 - \circ bit 1: res=176 \rightarrow 6, base=1, exp=0
- Résultat: 6
- 1. Opérations de Base sur la Courbe $y^2 = x^3 + \alpha x + \beta \pmod{q}$
 - Addition de Points sur une Courbe Elliptique (fiche-exam)

```
But: Calculer R = P + Soù P = (xP, yP), S = (xS, yS) sur la courbe.
```

Cas 1: P ≠ S

```
1. Calculer \lambda = (yS - yP) * (xS - xP)^{-1} \mod q
```

- 2. $xR = \lambda^2 xP xS \mod q$
- 3. $yR = \lambda (xP xR) yP \mod q$

Cas 2: P = S (Doublement)

```
1. Calculer \lambda = (3xP^2 + \alpha) * (2yP)^{-1} \mod q
```

- 2. $xR = \lambda^2 2xP \mod q$
- 3. $yR = \lambda (xP xR) yP \mod q$

Cas particuliers

- Si P = O (point à l'infini), R = S
- Si S = O, R = P
- $Si \times P = \times S et yP = -yS \mod q$, R = O

Exemple: Soit P = (2, 7), S = (5, 3), courbe sur F = 11, $\alpha = 1$

- $\lambda = (3-7) * (5-2)^{-1} \mod 11 = (-4) * 3^{-1} \mod 11$
- $3^{-1} \mod 11 = 4 (car 3 \times 4 = 12 \equiv 1 \mod 11)$
- $\lambda = (-4) \times 4 = -16 \equiv 7 \mod 11$
- $xR = 7^2 2 5 = 49 7 = 42 \equiv 9 \mod 11$
- $yR = 7 \times (2-9) 7 = 7 \times (-7) 7 = -49 7 = -56 \equiv 1 \mod 11$
- Donc R = (9, 1)
- Multiplication Scalaire sur Courbe Elliptique (Double-and-Add, fiche-exam)

```
But: Calculer Q = kP (k entier, P point)
```

Algorithme

- 1. Écrire k en binaire : $k = (d_n \dots d_0)_2$
- 2. Q = 0 (point à l'infini)

3. Pour chaque bit de gauche à droite :

- Doubler Q (Q = 2Q)
- o Si le bit vaut 1, = + P
- 4. Résultat : Q

Exemple: Calculer 11P (11 = 1011₂)

- Q = O
- bit 1: $Q = O \times 2 = O$, Q = O + P = P
- bit 0: Q = 2P, pas d'addition
- bit 1: Q = 2×(2P) = 4P, Q = 4P+P = 5P
- bit 1: Q = 2×5P = 10P, Q = 10P+P = 11P

2. Échange de Clés ECDH

ECDH - Échange de Clés

- **Public:** Courbe Cq, Point P.
- Alice: secrète a. Calcule Pa = aP. Envoie Pa à Bob.
- Bob: secrète b. Calcule Pb = bP. Envoie Pb à Alice.
- Alice calcule clé commune: K = a * Pb = abP.
- Bob calcule clé commune: K = b * Pa = baP.
- Avantages: Fournit un secret partagé sans échange préalable de secret. Sécurité basée sur ECDLP.
- Inconvénients: Vulnérable à l'attaque de l'homme du milieu (MitM) si les clés publiques ne sont pas authentifiées.

3. Chiffrement ElGamal-ECC (Version 1)

Chiffrement ElGamal-ECC (Version 1)

- Clés Bob: Secret b. Public (P, Q = bP).
- Alice chiffre Point M: Secret a.

```
    U = aP
    V = M + aQ
    Envoie (U,V).
```

• Bob déchiffre (U,V):

```
1. M' = V - bU = V + (-bU).
```

- Avantages: Chiffrement probabiliste (sécurité sémantique si ECDLP difficile). Bien étudié.
- **Inconvénients:** Nécessite de mapper le message en un point de la courbe (non trivial). Le chiffré est constitué de deux points (taille double).

4. Chiffrement type MQV (Version 2)

Chiffrement type MQV (Version 2)

- Clés Bob: Secret b. Public (P, Q = bP).
- Alice chiffre entier m: Secret a.

```
    R = aP
    A = aQ = (xa, ya)
    c = m * xa (mod q)
    Envoie (R,c).
```

• Bob déchiffre (R,c):

```
1. A' = bR = (xa', ya') (Normalement xa' = xa)
2. m' = c * (xa')^{-1} \pmod{q}.
```

- **Avantages:** Chiffre un entier directement sans mapping vers un point. Chiffré plus compact (un point et un entier).
- Inconvénients: La sécurité repose sur ECDLP et la sécurité de "masquer" m avec xa.

5. Signature ECDSA-like (Version du cours)

• Signature ECDSA (fiche-exam)

But : Signer un message m avec la clé privée a, courbe d'ordre 1, point de base P.

Signature

```
    Choisir k aléatoire < 1, pgcd (k, 1) = 1</li>
    Calculer R = kP = (xr, yr)
    Calculer s = k<sup>-1</sup> × (m - a·xr) mod 1
    Signature = (m, s, Q, R) où Q = aP
```

Vérification

```
    Vérifier 0 < s < 1 et que R est un point valide</li>
    Calculer V1 = xr·Q + s·R
    Calculer V2 = m·P
    Signature valide si V1 = V2
```

Exemple: Soit 1 = 13, a = 3, k = 5, m = 7, P d'ordre 13, Q = 3P

```
• R = 5P = (xr, yr) (supposons xr = 4)
```

- $k^{-1} \mod 13 = 8 (car 5 \times 8 = 40 \equiv 1 \mod 13)$
- $s = 8 \times (7 3 \times 4) \mod 13 = 8 \times (7 12) = 8 \times (-5) = -40 \equiv 5 \mod 13$
- Signature: (7, 5, Q, R)

Conseils Clés pour l'Examen QCM:

- Identifier le Protocole: La question porte-t-elle sur ECDH, ElGamal, MQV, ou Signature ? Cela guide les formules à utiliser.
- Table d'Addition: Si fournie, elle est reine pour les additions/doublements de points.
- Modulo, Modulo: TOUS les calculs finaux sont mod q (pour les coordonnées) ou mod 1 (pour les scalaires dans les signatures).
- Inverse x^{-1} : Soit par Euclide étendu, soit par $x^{(p-2)} \mod p$ si p est premier.

Bonne chance pour tes révisions et l'examen!