Proof. (1) Consider the binary relation \simeq on $A \times (A - \{0\})$ defined as follows:

$$(a,b) \simeq (a',b')$$
 iff $ab' = a'b$.

It is easily seen that \simeq is an equivalence relation. Note that the fact that A is an integral domain is used to prove transitivity. The equivalence class of (a,b) is denoted by a/b. Clearly, $(0,b)\simeq(0,1)$ for all $b\in A$, and we denote the class of (0,1) also by 0. The equivalence class a/1 of (a,1) is also denoted by a. We define addition and multiplication on $A\times(A-\{0\})$ as follows:

$$(a,b) + (a',b') = (ab' + a'b,bb'),$$

 $(a,b) \cdot (a',b') = (aa',bb').$

It is easily verified that \simeq is congruential w.r.t. + and \cdot , which means that + and \cdot are well-defined on equivalence classes modulo \simeq . When $a, b \neq 0$, the inverse of a/b is b/a, and it is easily verified that F is a field. The map $i: A \to F$ defined such that i(a) = a/1 is an injection of A into F and clearly

$$\frac{a}{b} = i(a)i(b)^{-1}.$$

(2) Given an injective ring homomorphism $h: A \to K$ into a field K,

$$\frac{a}{b} = \frac{a'}{b'} \quad \text{iff} \quad ab' = a'b,$$

which implies that

$$h(a)h(b') = h(a')h(b),$$

and since h is injective and $b, b' \neq 0$, we get

$$h(a)h(b)^{-1} = h(a')h(b')^{-1}.$$

Thus, there is a map $\hat{h} \colon F \to K$ such that

$$\widehat{h}(a/b) = \widehat{h}(i(a)i(b)^{-1}) = h(a)h(b)^{-1}$$

for all $a, b \in A$, $b \neq 0$, and it is easily checked that \hat{h} is a field homomorphism. The map \hat{h} is clearly unique.

(3) The uniqueness of F up to isomorphism follows from (2), and is left as an exercise. \Box

The field F given by Proposition 32.7 is called the *fraction field of* A, and it is denoted by Frac(A).

In particular, given an integral domain A, since $A[X_1, \ldots, X_n]$ is also an integral domain, we can form the fraction field of the polynomial ring $A[X_1, \ldots, X_n]$, denoted by $F(X_1, \ldots, X_n)$, where F = Frac(A) is the fraction field of A. It is also called the field