$AP \times LLC$

♦ A classe das linguagens reconhecidas pelos AP é igual à classe das LLC

♦ Outras conclusões

- para qualquer GLC, existe um AP que reconhece a linguagem gerada e sempre pára
- construção de um AP a partir de uma GLC
 - * simples e imediata
- qualquer LLC pode ser reconhecida por um AP com somente um estado de controle lógico
 - * a facilidade de memorização de informações através de estados (como nos autômatos finitos) não aumenta o poder computacional

◆ Teorema. Se L é uma LLC, então existe M, AP tq ACEITA(M) = L

♦ Prova

- suponha que a palavra vazia não pertence à L
- AP a partir de uma gramática na FNG
 - * produções da forma $A \rightarrow a\alpha$, α palavra de variáveis
 - * o AP simula a derivação mais à esquerda lê o símbolo a da fita lê o símbolo A da pilha empilha a palavra de variáveis α

• AP M a partir da gramática G = (V, T, P, S)

* G' = (V', T', P',S), é G na FNG
* M = (T', {q₀, q₁, q_f},
$$\delta$$
, q₀, {q_f}, V')
 δ (q₀, ϵ , ϵ) = {(q₁, S)}
 δ (q₁, a,A) = {(q₁, α) | A \rightarrow a α \in P'}
 δ (q₁,?,?) = {(q_f, ϵ)}

demonstração de ACEITA(M) = GERA(G')

- * indução no número de movimentos de M (ou derivações de G')
- * sugerida como exercício
- * como o autômato pode ser modificado para tratar a palavra vazia?

♦ Exemplo L = $\{a^nb^n \mid n \ge 1\}$

• FNG

G = ({S, B}, {a, b}, P, S), onde
P = {S
$$\rightarrow$$
 aB | aSB, B \rightarrow b}

• AP

$$M = (\{a, b\}, \{q_0, q, q_f\}, \delta, q_0, \{q_f\}, \{S, B\})$$

- ♦ os 2 teoremas que seguem são corolários do anterior
- ♦ Teorema. Se L é uma LLC, então:
 - a) existe M, AP que aceita por estado final, com somente 3 estados tq ACEITA(M) = L
 - b) existe M, AP que aceita por pilha vazia, com somente um estado tq ACEITA(M) = L

♦ Portanto

• o uso dos estados como "memória" não aumenta o poder de reconhecimento dos AP relativamente às LLC

♦ Teorema. Se L é uma LLC, então existe M, AP tal que

- ACEITA(M) = L
- REJEITA(M) = \sum^* L
- LOOP(M) = \emptyset .

♦ Ou seja

• para qualquer LLC existe um AP que sempre pára para qualquer entrada (por que?)

♦ Teorema. Se L é aceita por um AP, então L é LLC

• não será demonstrado

de Pilhas × Poder Computacional

Autômato com Pilha

- modelo adequado para estudos
 - * aplicados
 - * formais
- estrutura de pilha
 - * adequada para implementação em computadores
- poucas modificações sobre a definição do AP
 - * determinam significativas alterações no seu poder computacional
- assim, os principais estudos de linguagens e computabilidade
 - * podem ser desenvolvidos usando exclusivamente o AP
 - * variando o número de pilhas
 - * com ou sem a facilidade de não-determinismo

♦ Principais variações

- Autômato com Pilha, sem usar a estrutura de pilha
- Autômato com Pilha *Deterministico*
- Autômato com Pilha *Não-Determinístico*
- Autômato com *Duas Pilhas*
- Autômato com Mais de Duas Pilhas

♦ Autômato com Pilha, sem usar a estrutura de pilha

- estados
 - * única forma de memorizar informações passadas
- AP sem usar a pilha
 - * muito semelhante ao Autômato Finito
- Classe das Linguagens aceitas por AP sem pilha

- * com ou sem não-determinismo
- * é igual a Classe das Linguagens Regulares
- * exercício

♦ AP Determinístico - APD

- aceita um subconjunto próprio das LLC
 - * Linguagens Livres do Contexto Determinísticas LLCD
- LLCD inclui muitas das linguagens aplicadas em informática, com destaque para as de programação
- a implementação de um APD
 - * simples e eficiente
 - * facilita o desenvolvimento de processadores de linguagens
- é possível definir um tipo de gramática que gera exatamente a Classe das LLCD
 - * não são restrições simples sobre a definição geral de gramática
- é fechada para a operação de complemento

- *não* é fechada para as operações de
 - * união
 - * intersecção
 - * concatenação

♦ AP (Não-Determinístico)

• a classe das linguagens reconhecida pelo AP é exatamente a Livre do Contexto

Autômato com Duas Pilhas - A2P

- é equivalente, em termos de poder computacional, à Máquina de Turing
- assim, se existe um algoritmo para resolver um problema (por exemplo, reconhecer uma determinada linguagem), então este algoritmo pode ser expresso como um A2P

 a facilidade de não-determinismo não aumenta o poder computacional do A2P

♦ Aut. com Mais de Duas Pilhas - AnP

- o poder computacional é equivalente ao do
- ou seja
 - * se um problema é solucionado por um AnP
 - * então o mesmo problema pode ser solucionado por um A2P

Propriedades das LLC

- ♦ As LLC são mais gerais que as LR
 - mas ainda são relativamente restritas
 - é fácil definir linguagens que *não* são LLC

```
* {ww | w pertence a {a, b}*}
```

```
* \{a^nb^nc^n \mid n \ge 0\}.
```

♦ Assim

- como determinar se uma linguagem é LLC?
- a Classe das LLC é fechada para operações como
 - * união?
 - * intersecção?

- * concatenação?
- * complemento?
- como verificar se uma LLC é
 - * infinita?
 - * finita (ou até mesmo vazia)?

Investigação se é LLC

- ♦ Prova de que uma linguagem é LLC
 - é suficiente expressá-la usando os formalismos
 - * Gramática Livre do Contexto
 - * Autômato com Pilha

♦ Prova de que uma linguagem *não* é LLC

- necessita ser realizada caso a caso
- "lema do bombeamento" para as LLC

Operações sobre LLC

- ♦ Teorema: As LLC são fechadas p/
 - união
 - concatenação
- ♦ Prova: *União*
 - demonstração é baseada em AP (GLC: exercício)
 - suponha L₁ e L₂, LLC. Então, existem

$$\begin{aligned} M_1 &= (\sum_1,\,Q_1,\,\delta_1,\,q_{0_1},\,F_1,\,V_1)\;e\\ M_2 &= (\sum_2,\,Q_2,\,\delta_2,\,q_{0_2},\,F_2,\,V_2)\\ tq\;\text{ACEITA}(M_1) &= L_1\;e\;\text{ACEITA}(M_2) = L_2 \end{aligned}$$

• seja

$$M_3 = (\sum_1 \cup \sum_2, Q_1 \cup Q_2 \cup \{q_0\}, \delta_3, q_0, F_1 \cup F_2, V_1 \cup V_2)$$

• claramente, M₃ reconhece L₁ ∪ L₂

♦ Prova: Concatenação

- demonstração é baseada em GLC (AP: exercício)
- suponha L₁ e L₂, LLC. Então, existem

$$G_1 = (V_1, T_1, P_1, S_1) e$$

 $G_2 = (V_2, T_2, P_2, S_2)$
 $tq GERA(G_1) = L_1 e GERA(G_2) = L_2$

• seja

$$G_3 = (V_1 \cup V_2 \cup \{S\}, T_1 \cup T_2, P_1 \cup P_2 \cup \{S \rightarrow S_1S_2\}, S)$$

- a única produção de S é S → S₁S₂
- qq palavra terá, como
 - * prefixo, uma palavra de L1
 - * sufixo, uma palavra de L2

- ♦ O próximo teorema mostra que a Classe das LLC *não* é fechada para
 - intersecção
 - complemento
- ♦ Aparentemente, é uma contradição
 - já foi verificado que
 - * se L é LLC, então existe M, AP tal que ACEITA(M) = L e REJEITA(M) = L'
 - * ou seja, M é capaz de *rejeitar* qualquer palavra que não pertença à L
 - o próximo teorema mostra que
 - * se L é LLC, não implica que L' também é LLC
 - * ou seja, não se pode afirmar que existe um AP que aceite L'

♦ Assim

- é perfeitamente possível rejeitar o complemento de uma LLC
- embora nem sempre seja possível aceitar o complemento

♦ Uma explicação intuitiva

- um AP não-determinista
 - * aceita se pelo menos um dos caminhos alternativos aceita

- inverção de aceita por rejeita e vice-versa
 - * a condição continua sendo de aceitação

♦ Portanto

- considerando a facilidade de não-determinismo
 - * o fato de existir um AP capaz de rejeitar o complemento de uma linguagem
 - * não implica que existe um AP capaz de aceitar o mesmo complemento

♦ Teorema: A Classe das LLC não é fechada para as operações

- intersecção
- complemento

♦ Prova: *Intersecção*

- contra- exemplo
- sejam

```
* L_1 = \{a^n b^n c^m \mid n \ge 0 \text{ e } m \ge 0\} \text{ e}
* L_2 = \{a^m b^n c^n \mid n \ge 0 \text{ e } m \ge 0\}
```

- é fácil mostrar que L₁ e L₂ são LLC
- entretanto

```
    * L<sub>1</sub> ∩ L<sub>2</sub> = {a<sup>n</sup>b<sup>n</sup>c<sup>n</sup> | n ≥ 0}
    * não é LLC
```

♦ Prova: Complemento

- considerando que
 - * não é fechada para a intersecção

- * intersecção pode ser representada em termos de união e complemento
- * é fechada para a união
- não pode-se afirmar que é fechada para o complemento

Investigação se uma LLC é Vazia, Finita ou Infinita

♦ Teorema. Se L é LLC, então é possível determinar se L é

- vazia
- finita
- infinita

♦ Prova: Vazia

- seja G = (V, T, P, S), GLC tq GERA(G) = L
- seja G'= (V', T', P', S) equivalente a G, eliminando os símbolos inúteis
- se P' for vazio, então L é vazia

♦ Prova: Finita e Infinita

- seja G = (V, T, P, S) uma GLC tq GERA(G) = L
- seja G' = (V', T', P', S) equivalente a G
 - * Forma Normal de Chomsky
 - * (A \rightarrow a ou A \rightarrow BC)
- considere somente as produções da forma A → BC
- se existe A tq
 - * $A \rightarrow BC$ (A no lado esquerdo)
 - * $X \rightarrow YA$ ou $X \rightarrow AY$ (A no lado direito)
 - e se existe um ciclo em A do tipo $A \Rightarrow^+ \alpha A\beta$ então
 - * A é capaz de gerar palavras de qq tamanho
 - * a linguagem é infinita
 - caso não exista tal A, então a linguagem e finita