BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE-PILANI HYDERABAD CAMPUS Second Semester 2020–2021 Course Handout (Part II)

Date: Jan 16 2021

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No. : PHY F312

Course Title : Statistical Mechanics

Instructor-in-Charge : Souri Banerjee

I. Scope and Objective of course:

Statistical mechanics is a unique pillar of physics. While classical mechanics deals with macroscopic objects and quantum mechanics deals with microscopic objects, statistical Mechanics concerns the physical description of a large collection of objects and their relationship with measurable macroscopic thermodynamic properties. Statistical mechanics helps understand arguably the largest variety of physically occurring phenomena. A few examples are Photon gas, Bose-Einstein Condensation, the origin of White dwarfs and other astrophysical objects, phase-equilibrium of mixtures. In this course, the rudiments of this subject will be taught and their application will be shown through illustrative examples.

II. Text Books

Fundamentals of Statistical and Thermal Physics, F Reif, McGraw Hill International Editions.

Reference Books:

- 1. Statistical Mechanics, 3rd. Edition, R K Pathria & P D Beale Elsevier
- 2. Introduction to Statistical Physics Silvio R A Salinas Springer

III. Course Plan:

Lecture No.	Learning Objectives	Topics to be covered	Chapter in the Text Book
1-4	Introduction to Statistical Mechanics and useful statistics concepts	Why we need Statistical Mechanics, Random Walk Problem and its application in Physics	Ch.1
5-10	Statistical Description of system of particles	Macroscopic and Microscopic states, Basic postulates, Specification of a classical and quantum ensembles, Phase Space, Liouville's Theorem, Probability Calculations	Ch.2
11-21	Statistical ensemble	Micro-canonical, Canonical and Grand canonical ensembles and applications in different ensembles, Partition function, Connection with simple Thermodynamics	Ch 3 (a part used bridge) Ch.6

22-32		Calculations of thermodynamic	Ch. 7
	mechanics to describe some	quantities for specific systems,	
	important physical	Gibbs paradox, Equipartition	
	situations	Theorem & its applications to	
		various simple systems	
33-42	Formulation of Quantum Statistics	Maxwell-Boltzmann, Bose- Einstein and Fermi-Dirac statistics with their applications, Photon statistics, Electrons in Metal	Ch. 9

IV. Evaluation Scheme:

Component	Duration	Weigh	Date & time	Nature
		tage		
		(%)		
Midsem	90 mins	30	03/03 1.30 - 3.00PM	Open Book
Quiz (Total 3 and best 2		30	TBA	Open Book
to be taken) + Seminar*				
Comprehensive exam	2 hours	40	08/05 AN	Open Book

^{*}Topic: 1) Maxwell's velocity distribution, 2) BE-Condensation, 3) Phonon Gas, 4) White Dwarf, 5) Calculation of chemical potential of gases at the Classical limit 6) Statistical approach to understand Black Body radiation and 7) Density Matrix

Chamber Consultation Hour: To be announced in the respective tutorials and lecture classes.

Notices: Notices and solutions of tests & Final Comprehensive Examination will be displayed only on the CMS

Make-up Policy: It is applicable to the following two cases and it is permissible on production of evidential documents:

Debilitating illness and Out of station with prior permission from the Institute.

Academic honesty and integrity policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

IC PHY F312