CHAN ZIXIAN

LEE EN WEI JONATHAN

LOH YAN XIANG

TAN CHEE KIAN

XU SHAOYONG

ST2 / 971

MA4260 MBOR TWORIAL 1

aroup 1

5. a) Based on the information provided in the question and our interpretation, the tableu form

of the p	noblem shaw	x be as f	01(005)		,
1	Decision us	eriobies	001 5 41 5 5	Requirements	
	х,	× 2_	Relation	pas(tens)	
Drive-train	l	1	€	4000	
Coachwark	2	ı	4	6000	
	ł		,	2500	
Final Assembly		1	<u> </u>	3600	7 /
Objective	590	270	=	z (nex)	

where x, represents Attecs and x2 represents Broncos

Assumptions; The depreciation and fixed overhead costs are fixed at the allocated price based on the planned production.

b) Objective function for the division:

6.

Max 590x, +270x2

optimal solution at (2500, 1000)

... Since, there is no prediction for demand,

they should produce as many vehicles

x,, x2 30 (mteger)

to maximise profit,

.. They should produce 2500 Aztecs

and 1000 Broncas.

Profit = (2500)(590) + (1000)(270) = B

Consider the sub-contractor costs for each vehicle respectively. I.e. \$300 and \$1270. The process of sub-contracting the parts for the drive-trains would imply an increase in the total anse-train capacity of the division. However, it does not change one fact that the final assembly capacity is fixed at 2500 and 3000, respectively. I.e to say, the active constraints as seen for S(c) is dependent an the coachwork and final assembly of Aztres, hence as long as these constraints are not affected, the optimal solution will remain as in part (c) of azs s.

Therefore, the anis: on should NOT pay the sub-contractor for the assembly.

(Assumption: 1 vehicle requires exactly 1 part arive-train and 1 part coach work).

since the question reares that there is a 50% overrine premium, we assume it reters to the labour costs. i.e to say, the profit for Aztecs and Broncos will be reduced to \$390 and \$45 respectively for every disintran produced at overtine.

... Let x_3 , x_4 be the number of Aeters and Broncos (respectively) produced in overtime. Hence, the new objective function is,

Mex 590x, + 270x2 + 390x3 + 45x4 - 150000x5

(Note: Xo takes on values 1 or 0, if elemer xs or xa is now zero,

For the moreoved lixed overhead of 150000)

subjected to $2x_1 + x_2 + 2x_3 + x_4 \le 6000$ (coeonwork)

x1+x3 <2500 , x1+x2 < 4000

x2 + x4 ≤ 3000 , x3 + x4 ≤ Mx5

 $x_1, x_2, x_3, x_4 > 0$, $x_5 \leq M(x_3 + x_4)$, where M is a very large number

0 < x5 < 1

x; E Z Y i = 1,2,3,4,5.

(Note: Drivetiain is not considered, because we passive that the capacity is unimitted due to the overtime production).

Hence,

in consideration of the new problem, we see that as in GES 6, the active constraints (namely, the coachwork and especially the final assumbly capacity) are affill not charged in a way such that the capacities are increased to allow more vehicles to be produced. Therefore, together with all the assumptions hade, the use of overtime production is not propresal for the absumption, especially with the 150000 fixed overtead production.

Hence, the dissipn should not go into overtime drivetian production.

912

MA 4260 Tutorial 1 ST2 Group5

Qn20 Let x_i^+ and x_i^- be the betthe increase and decrease in production from period i-1 to period i respectively.

The LP can be summarised in the following table.

ine L	ı Ca	m ne	Sum	man	seu i	III PIR	e ion	OWIII	guar	ле.									_				_	_		
Var	x_1^+	x_2^+	x_3^+	x_{4}^{+}	x_5^+	$-x_{6}^{+}$	$\overline{x_7^+}$	$\overline{x_8^+}$	x_9^+	x_{10}^{+}	x_{11}^{+}	x_{12}^{+}	$\overline{x_1}$	$\overline{x_2}$	$\overline{x_3^-}$	$\overline{x_4^-}$	$\overline{x_5}$	$\overline{x_6}$	$\overline{x_7}$	$\overline{x_8}$	x_{9}^{-}	\bar{x}_{10}^{-}	$\bar{x_{11}}$	$\bar{x_{12}}$		Value
d1	1												-1												>	-2
d2	2	1						_					-2	-1											>	0
d3	3	2	1					_					-3	-2	-1										<u>></u>	4
d4	4	3	2	1									-4	-3	-2	-1									2	12
d5	5	4	3	2	1								-5	-4	-3	-2	-1								>	24
d6	6	5	4	3	2	1		•					-6	-5	-4	-3	-2	-1							>	40
d 7	7	6	5	4	3	2	1	-					-7	-6	-5	-4	-3	-2	-1						≥	56
$\overline{d8}$	8	7	6	5	4	3	2	1					-8	-7	-6	-5	-4	-3	-2	-1					2	64
d9	9	8	7	6	5	4	3	2	1				-9	-8	-7	-6	-5	-4	-3	-2	-1				//	68
d10	10	9	8	7	6	5	4	3	2	1			-10	-9	-8	-7	-6	-5	-4	-3	-2	-1			>	70
d11	11	10	9	8	7	6	5	4	3	2	1		-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1		2	70
d12	12	11	10	9	8	7	6	5	4	3	2	1	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	≥	70
inv1	1												-1												<u> </u>	8
inv2	2	1						_	-				-2	-1			_	-							≤	10
inv3	3	2	1										-3	-2	-1										\leq	14
inv4	4	3	2	$\overline{1}$									-4	-3	-2	-1									<u> </u>	22
inv5	5	4	3	2	1								-5	-4	-3	-2	-1								<	34
inv6	6	5	4	3	2	1							-6	-5	-4	-3	-2	-1							<u> </u>	50
inv7	7	6	5	4	3	2	1						-7	-6	-5	-4	-3	-2	-1						≤	66
inv8	8	7	6	5	4	3	2	1					-8	-7	-6	-5	-4	-3	-2	-1			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<	74
inv9	9	8	7	6	5	4	3	_2	1				-9	-8	-7	-6	-5	-4	-3	-2	1				<	78
inv10	10	9	8	7	6	5	4	3	2	1			-10	-9	-8	-7	-6	-5	-4	-3	-2	-1			≤	80
inv11	11	10	9	8	7	6	5	4	3	2	1		-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1		≤	80
inv12	12	11	10	9	8	7	6	5	4	3	2	1	-12	\-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	≤	80
obj	500	500	500	500	500	500	500	500	500	500	500	500	250	250	250	250	250	250	250	250	250	250	250	250	=	min
														\neg												

In addition, \forall i, $x_i^+ \geq 0, x_i^- \geq 0$

We use oplex dynamic program, excel, matlab and oplex (p to solve the problem. There are multiple optimal solutions for this question.

Qn23 Denote the decision variables as following i = 1, 2, 3

 \hat{N}_i number of new men being hired at the beginning of period i

 t_i total number of hours which all trained workers work overtime in period i

 l_i total number of radars which are shipped out late in period i

 s_i total number of radars which are kept in the storage space in period i

All variables are non-negative.

total amount of revenue generated in these three month= 500 * 1000

cost incurred = penalty cost for late shipment + storage cost for excess production + hiring cost + employees' salary

Our ojective is to maximize the net profit which equals to the revenue-cost incurred. In this problem, the revenue is a constant number, to maximize the net profit is equivalent to minimize the cost incurred. There is a production conservation constraint and overtime constraint in each period. For example, in March the production conservation constraint is $300 - l_1 + s_1 = \frac{1}{43}(90 * 172 + 129N_1 + t_1)$, the overtime constraint is $0 \le \frac{t_1}{90} \le 35$

There is another constraint about the number of trained men. It requires to have 200 trained men on 1st June. Hence we have $0.95^3(90 + N_1) + 0.95^2N_2 + 0.95N_3 = 200$.

The LP can be summarised in the following table.

Var	N_1	$\overline{N_2}$	$\overline{N_3}$	$\overline{t_1}$	$\overline{t_2}$	$\overline{t_3}$	$\overline{l_1}$	$\overline{l_2}$	$\overline{l_3}$	$\overline{s_1}$	s_2	s_3		Value
Production1	3			$\frac{1}{43}$			1	·		-1			=	-60
Production2	3.8	3			$\frac{1}{43}$		-1	1		1	-1		=	58
Production3	3.61	3.8	3			$\frac{1}{43}$		-1	$\sqrt{1}$		1	-1	=	-24.9
Overtime1				1						\			\$	3150
Overtime1	-33.25				1								\leq	2992.5
Overtime1	$-\frac{2527}{80}$	$-\frac{133}{4}$				1							\leq	$\frac{22743}{8}$
Trained men	0.95^{3}	0.95^{2}	0.95										=	$200 - 0.95^3 * 90$

we use appex 1p and matlab to solve this problem. we have obtained a unique optimal solution.

183. Let N. denote no. of new men being hired on 1 March.

184 t. denote total no. of hours trained workers work overtime in March.

184 L. denote no. of radars which are shipped out late in March.

184 S. denote no. of radars which are kept in storage space in March.

185 total no. of radars produced in March = 300-(1, ts. = $\frac{1}{43}$ (90×172 + 129N, + t1)

186 300-(1, + S1 = 360 + 3N, + $\frac{1}{43}$ 187 3N, + $\frac{1}{43}$ + (1, -S1 = -60)

189 535, N, 20, (1, >0, S1 >0

Revenue generated in March = (300-Li) x500

cost incurred in March = penalty cost for late shipment + storage cost for excess production + hiring cost + employees' salary

= 50 L, + 105, + 200 N, + 860 (90+N,) + 7.5+,

Net income in March = (300-6) x500 - 501, -105, -200 N, - 860(90+N,) -7.56, = 72600 -5501, -105, -1060N, -7.56,

Next, we consider April decision.

let N. denote no of new men being hired on 1 April let t. denote total no. of hours trained men work overtime in April. let 12 denote no. of radars which are shipped out late in April. let 52 denote no. of radars which are kept in storage space in April total no. of radars produced in April = 400 (2+52=

no. of trained men in April = $(90 + N_1)(1 - 170) = 81.5 + 0.91 - N_1$ total no. of rodars produced in April: $(1-5,1400 - (1+5) = \frac{1}{43}[172(81.5 + 0.91 - N_1) + 129N_1 + 1_1]$

1, -5, +400 - 12 +52 = 342 + 3.8 N, + 3N, + 43

 $3.8N_1 + 3N_2 + \frac{t_2}{43} \bullet l_1 + l_2 + s_1 - s_2 = 58$

 $0 \le \frac{1}{85 \le 100} \le 35$, $N_2 > 0$, $l_2 > 0$, $l_2 > 0$ i.e. $0 \le \frac{1}{2} \le 35(85 + 10.95 N_1)$ Revenue generated in April = $(400 - l_1) \times 1000$

cost incurred in April = 50(2 + 105, + 200 N2 + 860[85.5+0.95N, +N2] +7.5 t2

Net income in April = (400 - 62) × 500 - 50(2-1052-200N2-860[85.5+0.95N, +N2) -7562

= 126470 - 55012 - 1052 - 817N, -1060N2 -7.5t2

```
Similarly, for May decision
 let N3 denote a no of new men being hired on 1 May
 let to denote total no. of hours trained men work overtime in May
 let 13 denote no of radars which are shipped out late in May
 let S; denote no. of radars which are kept in storage space in May
 No. of trained man in May = (90+N1)(1-590) + (1-590) N_ = 3249 + 361 N1 + 19 N2
 total no. of radars produced in May:
(1-5,1300 - (3 + 5) = \frac{1}{43} (172 (\frac{5249}{40} + \frac{361}{400}N_1 + \frac{19}{20}N_2) + 129N_3 + t_3) + \frac{1}{129}
3-61 N; +3.8 N1 +3N3 + \frac{t_3}{43} \overline{\bullet} (1+13+51-5) = -24.9
           0 \le \frac{\pm 3}{3244} + \frac{361}{400}N_1 + \frac{15}{20}N_2 = 31 i.e. 0 \le \pm 3 \le 2842 \frac{7}{8} + \frac{2527}{480}N_1 + \frac{133}{4}N_2
              N320, (320, 5,20
Revenue in May = (300-(3) x 500
cost incoursed in May = 5013 + 1053 + 200 Ns + 860 ( 3249 + 361 N, + 19 N2+N3) + 7.5 tz
Net income in May = (300-13) x500 - 5013 - 105, -200 N3 - 860 (3244 + 364 N, + 19 N2+N3) -7.5
                      = 80146-5-55013 -1053 -776.15 N, -817N2 -1060N3 -7.5+3
No. of trained men on 1st June = (90+N1)(1-5%) + N1(1-5%)+ N3(1-5%) = 200
            i.e. 0.953 × 90 + 0.953 N, + /0.951 N, + 0.95 N, = 200
                           0.953N, +0.952N2 +0.95N3 = 200-0.963x90
objective function is to maximize the net we income in these three months.
 max 72600-5501, -105, -1060N, -7. to, +126470-55012-1052-817N, -1060N2-7.5t2
       + 80146.5 -550 (3 - 1053 - 7/6.15 N; - 817 Nz - 1060 N3 - 7.5 + s
=> max 279216.5 - 5to((+(2+(3) - 10(5+52+53) -7.5(+,+t,+t,) - 2653.15N,-1877N,-1060N.
= \min_{550} (1, +(2+13) + 10(5, +52 + 53) + 7.5(t_1 + t_2 + t_3) + 2653.15N_1 + 1877N_2 + 1060N_3
            3N_1 + \frac{t_1}{43} + l_1 - s_1 = -60
constraints:
              3.8N, +3N2 + +2 +1, +12+5, -52 =68
```

 $3.61N_1 + 3.8N_2 + 3N_3 + \frac{t_3}{43} = l_2 + l_3 + 5_2 - 5_3 = -24.9$

-33.25N, + t2 = 2992.5

tz < 35(85.5+0.95Ni) i.e.

 $\frac{2t27}{80}N_1 - \frac{133}{87}N_2 + t_3 \le \frac{22743}{8}$ $0.75^3N_1 + 0.95N_2 + 0.95N_3 = 200 - 0.95^3 \times 90$

ti = 3150

```
function [] = T1 23()
%x = (N1, N2, N3, t1, t2, t3, 11, 12, 13, s1, s2, s3, a1, a2, a3) (a1 a2 a3 are slack
%variables)
c = [2653.15;1877;1060;7.5;7.5;7.5;550;550;10;10;10;10;0;0;0];
b = [-60;58;-24.9;3150;2992.5;22743/8;200-0.95^3*90];
A = [3 \ 0 \ 0 \ 1/43 \ 0 \ 0 \ 1 \ 0 \ 0 \ -1 \ 0 \ 0 \ 0 \ 0; 3.8 \ 3 \ 0 \ 0 \ 1/43 \ 0 \ -1 \ 1 \ 0 \ 1 \ -1 \ 0 \ 0 \ 0; 3.61 \ 3.8 \ 3 \ 0 \ 0 \ \checkmark
1/43 0 -1 1 0 1 -1 0 0 0;0 0 0 1 0 0 0 0 0 0 0 0 0 0 0;-33.25 0 0 0 1 0 0 0 0 0 0 0 1 0;x
-2527/80 -133/4 0 0 0 1 0 0 0 0 0 0 0 0 1;0.95^3 0.95^2 0.95 0 0 0 0 0 0 0 0 0 0 0 0
[x,y,INFO] = sedumi(A,b,c);
Х
optimal = c'*x
maximum net income = 279216.5 - optimal
= A
  Columns 1 through 7
                           0
    3.0000
                                    0.0233
                                                0
                                                             0
                                                                   1.0000
    3.8000
             3.0000
                                              0.0233
                                                                   -1.0000
                             0
                                        0
                                                             0
    3.6100
              3.8000
                         3.0000
                                         0
                                                 0
                                                         0.0233
       Ω
                    0
                              0
                                    1.0000
                                                                         0
                                                    0
                                                               0
  -33.2500
                    0
                               0
                                        0
                                               1.0000
                                                                         0
                                                               0
  -31.5875 -33.2500
                               0
                                         0
                                                    0
                                                         1.0000
   0.8574
             0.9025 0.9500
                                        0
                                                    0
                                                               0
  Columns 8 through 14
                        -1.0000
         0
                    0
                                     0
                                                    0
                                                              0
                                                                         0
                         1.0000
    1.0000
                    0
                                   -1.0000
                                                    0
                                             -1.0000
   -1.0000
             1.0000
                                   1.0000
                              0
                                                               0
                                                                         0
         0
                    0
                              0
                                        0
                                                    0
                                                         1.0000
                                                                         0
         0
                    0
                              0
                                         0
                                                    0
                                                               0
                                                                    1.0000
         0
                    0
                              0
                                                    0
                                                               0
                                                                        - 0
         0
                    0
                              Λ
                                                    0
                                                               0
  Column 15
         0
         0
         0
```

```
SeDuMi 1.1 by AdvOL, 2005 and Jos F. Sturm, 1998, 2001-2003.
Alg = 2: xz-corrector, Adaptive Step-Differentiation, theta = 0.250, beta = 0.500
eqs m = 7, order n = 16, dim = 16, blocks = 1
nnz(A) = 31 + 0, nnz(ADA) = 39, nnz(L) = 23
                                       t/tP* t/tD*
it:
         b*y
                          delta
                                rate
                                                       feas cg cg prec
                   gap
 0:
                7.34E+006 0.000
 1 : 9.28E+005 2.08E+006 0.000 0.2836 0.9000 0.9000
                                                      2.35
                                                           1 1 2.0E+001
 2: 3.23E+005 4.75E+005 0.000 0.2282 0.9000 0.9000 1.87
                                                           1 1
                                                                 3.4E+000
 3 : 1.84E+005 1.08E+005 0.000 0.2273 0.9000 0.9000
                                                      1.10
                                                            1
                                                              1 8.1E-001
 4 : 1.57E+005 3.42E+004 0.000 0.3166 0.9000 0.9000
                                                      1.13 1 1 2.7E-001
  5 : 1.44E+005 6.28E+003 0.000 0.1836 0.9000 0.9000 1.04 1 1
                                                                 5.2E-002
  6: 1.42E+005 5.10E+002 0.000 0.0813 0.9900 0.9900
                                                      0.98 1 1 4.4E-003
 7 : 1.42E+005 4.80E+001 0.000 0.0940 0.9120 0.9000
                                                      0.86 1
                                                              1
                                                                  4.6E-004
 8 : 1.42E+005 1.04E-002 0.049 0.0002 0.9999 0.9999
                                                      0.99 1 1
iter seconds digits
                         C*X
        0.8
              Inf 1.4182743421e+005 1.4182743421e+005
|Ax-b| = 3.4e-013, [Ay-c] + = 1.3E-015, |x| = 5.2e+003, |y| = 1.1e+003
Detailed timing (sec)
  Pre
               IPM
                            Post
5.808E-001
             7.511E-001
                           1.702E-001
Max-norms: ||b||=3150, ||c||=2.653150e+003,
Cholesky |add|=0, |skip| = 0, ||L.L|| = 1.
x =
  1.0e+003 *
   (3,1)
              0.1293
  (10,1)
              0.0600
  (11,1)
              0.0020
  (12,1)
              0.4148
  (13,1)
              3.1500
  (14,1)
              2.9925
              2.8429
  (15,1)
optima1 =
                 < maximum of -cost
  1.4183e+005
maximum net income =
  1.3739e+005
                 + maximum net income
```

auo	winsli	Cheryl	U032618L

25. Let $x_i = \text{number of coils of width 100 inches cut as combination } i_{i=1/2,,7}$ Let $x_i = \text{number of coils of width 100 inches cut as combination } i_{i=1/2,,7}$ No. of No. of No. of Trim Combination 24-inen 32-inen 40-ingn waste (inches) 1	ال ال	in Cheryl 4033					Date	: ;	No
Combination No. of No.	g Bi H	ui 40328062	-				Date		
1 4 0 0 4 2 2 1 0 20 3 2 0 1 12 4 1 2 0 12 5 1 1 1 1 4 6 0 3 0 4 7 0 0 2 20 $\frac{x_1}{x_2} \frac{x_3}{x_3} \frac{x_4}{x_5} \frac{x_5}{x_6} \frac{x_7}{x_7} \frac{\text{retation tequirement}}{\text{retation tequirement}}$ $\frac{34 - \text{inch rolls}}{32 - \text{inch rolls}} \frac{4}{0} \frac{2}{0} \frac{1}{0} \frac{1}{0} \frac{0}{0} \frac{1}{2} \frac{3}{0} \frac{3}{0} \frac{1}{0}$ $\frac{32 - \text{inch rolls}}{32 - \text{inch rolls}} \frac{0}{0} \frac{1}{0} \frac{0}{0} \frac{1}{0} \frac{0}{0} \frac{1}{0} \frac{0}{0} \frac{2}{0} \frac{3}{0} \frac{3}{0} \frac{1}{0}$ $\frac{32 - \text{inch rolls}}{32 - \text{inch rolls}} \frac{0}{0} \frac{1}{0} \frac{1}{0} \frac{0}{0} \frac{1}{0} \frac{0}{0} \frac{2}{0} \frac{3}{0} \frac{3}{0} \frac{1}{0} \frac{1}{0}$ $\frac{3}{10} \frac{3}{10} \frac{3}{0} \frac{3}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{2}{0} \frac{3}{0} \frac{3}{0} \frac{3}{0} \frac{1}{0} \frac{1}{0} \frac{3}{0} \frac{3}{0} \frac{1}{0} \frac{1}{0} \frac{3}{0} \frac{3}{0} \frac{3}{0} \frac{1}{0} \frac{3}{0} \frac$	15.	Let zi = numy		of widtu	100 inch		combiy	nation i	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Combination		32-inch	40-inda	waste (in	idnes)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		<u> </u>	4	0		4			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	2	<u>i</u>	0	20			
5 1 1 4 6 0 3 0 4 7 0 0 2 20 $\begin{array}{ccccccccccccccccccccccccccccccccccc$		3	2	0		12			
6 0 3 0 4 7 0 0 2 20 $x_1 x_2 x_3 x_4 x_5 x_6 x_7 \text{relation requirement}$ 24-inch volls 4 2 2 1 1 0 8 \$ 75 32-inch rolls 0 1 0 2 1 3 0 \$ 110 40-inch rolls 0 0 1 0 1 0 2 \$ 50 $x_1 \geqslant 0$, $x_1 = 1/2$,, 7. Min $4x_1 + 20x_2 + 12x_3 + 12x_4 + 4x_5 + 4x_6 + 20x_1$. $+24(4x_1 + 2x_2 + 2x_3 + x_4 + x_5 - 75)$ $+32(x_2 + 2x_4 + x_5 + 3x_6 - 110)$ $+40(x_3 + x_5 + 2x_1 - 50)$ Coptimal solution $x_1 = 4$ $x_3 = 9$ $x_5 = 41$ $x_6 = 23$ $x_1 = x_4 = x_7 = 0$		4		2	0	12			
7 0 0 2 20 x_1 x_2 x_3 x_4 x_5 x_6 x_7 relation requirement 24-inch rolls 4 2 2 1 1 0 0 \Rightarrow 75 32-inch rolls 0 1 0 2 1 3 0 \Rightarrow 110 t0-inch rolls 0 0 1 0 2 \Rightarrow 50 $x_1 \Rightarrow 0$, $x_1 = 1/2$,, 7. min $4x_1 + 20x_2 + 12x_3 + 12x_4 + 4x_5 + 4x_6 + 20x_1$ $+24(4x_1 + 2x_2 + 2x_3 + x_4 + x_5 - 75)$ $+32(x_2 + 2x_4 + x_5 + 3x_6 - 110)$ $+40(x_3 + x_5 + 2x_1 - 50)$ Optimal isolation $x_1 = 4$ $x_3 = 9$ $x_5 = 41$ $x_6 = 23$ $x_2 = x_4 = x_7 = 0$		5	1	(1	4			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6	0	3	0	4			
24-inch rolls 4 2 2 1 1 0 \Rightarrow 75 32-inch rolls 0 1 0 2 1 3 0 \Rightarrow 110 40-inch rolls 0 0 1 0 2 3 \Rightarrow 50 2130 , 1=1,2,,7. Min $4x_1 + 20x_2 + 12x_3 + 12x_4 + 4x_5 + 4x_6 + 20x_1$ $+24(4x_1 + 2x_2 + 2x_3 + x_4 + x_5 - 75)$ $+32(x_2 + 2x_4 + x_5 + 3x_6 - 110)$ $+40(x_3 + x_5 + 2x_1 - 50)$ Coptimal societion $x_1 = 4$ $x_3 = 9$ $x_5 = 41$ $x_6 = 23$ $x_2 = x_4 = x_7 = 0$		7	0	0	2	20	•		
24-inch rolls 4 2 2 1 1 0 0 \geqslant 75 32-inch rolls 0 1 0 2 1 3 0 \geqslant 110 40-inch rolls 0 0 1 0 2 3 50 2; $\geqslant 0$, $i=1,2,,7$. min $4x_1 + 20x_2 + 12x_3 + 12x_4 + 4x_5 + 4x_6 + 20x_1$. $+24(4x_1 + 2x_2 + 2x_3 + x_4 + x_5 - 75)$ $+32(x_2 + 2x_4 + x_5 + 3x_6 - 110)$ $+40(x_3 + x_5 + 2x_1 - 50)$ Cprimal solution $x_i = 4$ $x_3 = 9$ $x_5 = 4$ $x_6 = 23$ $x_2 = x_4 = x_7 = 0$									
32-inon rolls 0 1 0 2 1 3 0 > 110 40-inon rolls 0 0 1 0 1 0 2 7 50 $2i \ge 0 , i = 1/2,, 7.$ min $4x_1 + 20x_2 + 12x_3 + 12x_4 + 4x_5 + 4x_6 + 20x_1.$ $+24 (4x_1 + 2x_2 + 2x_3 + x_4 + x_5 - 75)$ $+32 (x_2 + 2x_4 + x_5 + 3x_6 - 110)$ $+40 (x_3 + x_5 + 2x_1 - 50)$ Coptimal solution $x_1 = 4$ $x_3 = 9$ $x_5 = 41$ $x_6 = 23$ $x_2 = x_4 = x_7 = 0$			$x_1 - x_2$	α3	x4 x	5 X'6	α,	relation	requirement
to-incu rolls 0 0 1 0 1 0 2 7 50 $2i \ge 0$, $i = 1/2$,, 7. Min $4x_1 + 20x_2 + 12x_3 + 12x_4 + 4x_5 + 4x_6 + 20x_1$. $+24(4x_1 + 2x_2 + 2x_3 + x_4 + x_5 - 75)$ $+32(x_2 + 2x_4 + x_5 + 3x_6 - 110)$ $+40(x_3 + x_5 + 2x_1 - 50)$ Coptimal solution $x_1 = 4$ $x_3 = 9$ $x_5 = 41$ $x_6 = 23$ $x_2 = x_4 = x_7 = 0$		24-inch rolls	4 2	2	1 1	0	Ø	>	75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		32-inam rolls	0 1	0	2 \	3/	0	≽	110
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		to-inch rolls	0 0	ŧ	0 (/0	2_	7,	50
min $4x_1 + 20x_2 + 12x_3 + 12x_4 + 4x_5 + 4x_6 + 20x_1$. $+24(4x_1 + 2x_2 + 2x_3 + x_4 + x_5 - 75)$ $+32(x_2 + 2x_4 + x_5 + 3x_6 - 110)$ $+40(x_3 + x_5 + 2x_1 - 50)$ Coptimal solution $x_1 = 4$ $x_3 = 9$ $x_5 = 41$ $x_6 = 23$ $x_2 = x_4 = x_7 = 0$			2:30	ù = 1/2 ,					· · · · · · · · · · · · · · · · · ·
$+24 (4x_1 + 2x_2 + 2x_3 + x_4 + x_5 - 75)$ $+32 (x_2 + 2x_4 + x_5 + 3x_6 - 110)$ $+40 (x_3 + x_5 + 2x_1 - 50)$ Coptimal solution $x_1 = 4$ $x_3 = 9$ $x_5 = 41$ $x_6 - 23$ $x_2 = x_4 = x_7 = 0$									
$+24 (4x_1 + 2x_2 + 2x_3 + x_4 + x_5 - 75)$ $+32 (x_2 + 2x_4 + x_5 + 3x_6 - 110)$ $+40 (x_3 + x_5 + 2x_1 - 50)$ Coptimal solution $x_1 = 4$ $x_3 = 9$ $x_5 = 41$ $x_6 - 23$ $x_2 = x_4 = x_7 = 0$		min 4a	(, + 20 x = +	127, +	12 70 +	47: +43	Y6 + 20) Y 1	
$+32 (x_{2} + 2x_{4} + x_{5} + 3x_{6} - 110)$ $+40 (x_{3} + x_{5} + 2x_{1} - 50)$ $Coptimal solution $									
$ \begin{array}{c} +40(x_3 + x_5 + 2x_1 - 50) \\ \text{Optimal solution} x_i = 4 \\ x_3 = 9 \\ x_5 = 41 \\ x_6 - 23 \\ x_2 = x_4 = x_7 = 0 \end{array} $									
Optimal solution $x_1 = 4$ $x_3 = 9$ $x_5 = 41$ $x_6 - 23$ $x_2 = x_4 = x_7 = 0$									
$\chi_3 = 9$ $\chi_5 = 41$ $\chi_6 = 23$ $\chi_2 = \chi_4 = \chi_7 = 0$		+ -	40 (23 + 3	(5 + 17	1 - 50)	·			
$\chi_3 = 9$ $\chi_5 = 41$ $\chi_6 = 23$ $\chi_2 = \chi_4 = \chi_7 = 0$									
$x_{5} = 41$ $x_{6} = 23$ $x_{2} = x_{4} = x_{7} = 0$		Optimal soluti				·			
$\chi_{6} - 23$ $\chi_{2} = \chi_{4} = \chi_{7} = 0$			$\chi_3 = c$	<u> </u>					
$x_2 = x_4 = x_7 = 0$			X5 = 4	11					·····
			76-5	13					
coith optimal objective value 380			⊃(<u>a</u> ≅ ɔ	(4 = X7=	<u> C</u> .				
		with optimal	objective	value 3	8°C'				# 1 10 1 1
			· ·						

26	Let Y_= number of	No. of	NO. 01	inches cut No of 40-inch	TriM	!
	i.	. 3	0		18	
	2	2	t	. 0	10	
	3	<u>.</u>	0	. \	2	
	4		2	. 0	2	
	5		, i	, (·	18	
	6	, O	. , O	2.	Ö	•
		r:			1	
	χ,	22 23 24	χ5 χ6	X1 9, 42	Y3 Y4 Y5 "	16 relation requirement
At 1 *****	24-inch coll 4	. a. a. 1	1 0	0 3 7	2 1 0	o
	32-inch roll O	1 0 2	ι 3	0 0 1	0 2 1	0 ≥ 180
	40-inch roll 0	0,10	1 0	2 0 0	101	2 > 225
	Machine #1	1 1 1	ι τ τ .	1 0 0	0 0 0	0 400
	Machine #2 0	0 0 0	00.	0 1 1	, , , ,	1 400
		>0 , i	=1,2,,7			
-	43	. ≥ o	= 1,2,,6			
	min 4x,+	2021 + 122	3+1224+4	t x5 + 4 x6 +	- 20x1 + 1841 + 1	012 + 273 + 244 + 1845 + 1046
		+ 7 4 7 + 7 4 3	+ 24 + 25	+ 34, + 242	+ 243 + 44 -2	(00)
	+ 32 (22	+274 + 75 +	-326 + Y2	+ 244 + 45	-180)	
	+40 (X3	+ X5 + 2X	7 + 43 +4	5 + 246 - 2	225)	
	: .					,/
	Optimal soluti					
		X ₆ = ι				
· 	<u> </u>	Y3 = 7				
				= x7 = 41 = 4	2 = Y4 = Y3 = 16 =	J
	optimal object	tive function	on 790.			

Lin Sijia U032920H Group 4: Neo Minfei U032377E Tan Hui Li U032572U Toh Hui Ting U032510 U

MA4260 Model Building in OR Tutorial |

Yap Huilin VO32567E

27a) Each school has a capacity Cig for grade g.

Each of I neighbourhoods has student population Sig for neighbourhood i with grade g. di; = distance from neighbourhood i to school j.

Let Xijg represent the number of students from neighbourhood: (i=1,...,I) to school j (j=1,...,J) with grade g (g=1,...,G).

min izijaga dij Xija St $X_{ijg} \leq C_{ij}$ for $Y_{i=1,...,I}$, $Y_{g} = 1,...,G$ (capacity) $\sum_{j=1}^{I} X_{ijg} = S_{ig} \quad \text{for } Y_{i=1,...,I}, \ Y_{g} = 1,...,G \quad \text{(Student population)}$ $X_{ijg} \geq 0, \ X_{ijg} \quad \text{integer}$

Sixy = number of students in neighbourhood i of race k and grade g. Q_{k} = maximum percent of racial group k assigned to a school. b_{k} = minimum percent of racial group k assigned to a school.

Let X_{ijkg} represent the number of students in neighbourhood i (i=1,...,I), to school j (j=1,...,J) of race k (k=1,...,K) with grade g (g=1,...,G). Let T_j represents the total number of students in school j. i.e. $T_j = \sum_{i=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} X_{ijkg}$

min lajakaga dij Xijka s.t. $j=1\atop k=1$ $\times ijkg$ $\leq C_jg$ for $\forall j=1,...,T$, $\forall g=1,...,G$ (copacity) $\sum_{j=1}^{k} \times ijkg = S_{ikg}$ for $\forall i=1,...,I$, $\forall k=1,...,K$, $\forall g=1,...,G$ (student population) $\sum_{j=1}^{k} \times ijkg \leq \frac{g_k}{100}T_j$ for $\forall j=1,...,I$, $\forall k=1,...,K$ (race upper) $\sum_{j=1}^{k} \sum_{j=1}^{k} \times ijkg \geq \frac{g_k}{100}T_j$ for $\forall j=1,...,I$, $\forall k=1,...,K$ (race upper) Xijky >0, Xijky integer

```
() For (a),
   Let xigh; represent student h (h=1,..., Sig) (a neighbourhood i) (i=1,..., I)
    to school j (j=1,..., J) with grade g (g=1,..., G).
   Note: h is dependent on i and /9.
                         if student h fattends school j
  Let z = dij Xighi
         S.t. Z \geqslant dij \times ighj

\stackrel{Z}{\underset{I}{\underset{S:g}{\longrightarrow}}} X_{ighj} = 1 for \forall i=1,..., I, \forall g=1,..., G, \forall h=1,..., Sig (student population)
           語高Xighi S Cig for サールップ bg=1,...,G
               Xighi > 0, Xighi integer, 2>0
   For (b).
   Let Xirgh; represent student h (h=1,..., Sirg) in neighbourhood i (i=1,..., I)
   to school j (j=1,., J) of race & (k=1,..., K) with grade g (g=1,..., G).
   Note: his dependent on i, k, g.
                        I if student h attends school j
   Let Tj represents the total number of students in school j in Tier the gention Xinghi
    Let Z= dij Xikghi
                Z > dij Xikghij
                                     for Vi=1..., I, Vk=1..., K, Vg=1..., G, Vh=1..., Size (population)
               Siky Xilyhj & Cjg
                                    for tj=1... J. tg=1... G
                                                                      (race upper)
                          5 100 Ti forti=1..., J Vk=1..., K
                         > 100 Tr for Vj=1., J, Vk=1... K
                                                                      (race lower)
             Xirghi >0, Xirghi integer, 2>0
```

MA4260 tutorial 1

Monday group 5

Wang Muran Chew Sze Chong Zhao Ya Goh Siong Thye

Question 28

a) Minimize
$$\sum_{i=1}^{6} (P_i - b_0 - b_1 L_i - b_2 E_i)^2$$

To solve this problem, we can partial differentiate the objective function with respect to b_0 , b_1 , b_2 respectively and equate them to zero.

Partial differentiate with respect to b₀ and equate it to zero will give us

$$2\sum_{i=1}^{6} (P_i - b_0 - b_1 L_i - b_2 E_i) = 0$$

$$\sum_{i=1}^{6} P_i - 6b_0 - b_1 \sum_{i=1}^{6} L_i - b_2 \sum_{i=1}^{6} E_i = 0$$
(1)

Similarly for b₁:

$$\sum_{i=1}^{6} (P_i L_i - b_0 L_i - b_1 L_i^2 - b_2 E_i L_i) = 0$$

$$\sum_{i=1}^{6} P_i L_i - b_0 \sum_{i=1}^{6} L_i - b_1 \sum_{i=1}^{6} L_i^2 - b_2 \sum_{i=1}^{6} E_i L_i = 0$$
 (2)

Similarly for b₂:

$$\sum_{i=1}^{6} (P_i E_i - b_0 E_i - b_1 L_i E_i - b_2 E_i^2) = 0$$

$$\sum_{i=1}^{6} P_i E_i - b_0 \sum_{i=1}^{6} E_i - b_1 \sum_{i=1}^{6} L_i E_i - b_2 \sum_{i=1}^{6} E_i^2 = 0$$
 (3)

Hence I only need to solve the following linear system of equations:

$$6b_0 + b_1 \sum_{i=1}^{6} L_i + b_2 \sum_{i=1}^{6} E_i = \sum_{i=1}^{6} P_i$$

$$b_0 \sum_{i=1}^{6} L_i + b_1 \sum_{i=1}^{6} L_i^2 + b_2 \sum_{i=1}^{6} E_i L_i = \sum_{i=1}^{6} P_i L_i$$

$$b_0 \sum_{i=1}^{6} E_i + b_1 \sum_{i=1}^{6} L_i E_i + b_2 \sum_{i=1}^{6} E_i^2 = \sum_{i=1}^{6} P_i E_i$$

$$b_0 = -50234.98695$$

$$b_1 = 16.82767624$$

$$b_2 = -1.82767624$$

Excel Output:

<u> </u>									
P1	155000	L1	12000	E1	350	P1L1	1860000000	P1E1	54250000
P2	120000	L2	10000	E2	300	P2L2	1200000000	P2E2	36000000
P3	100000	L3	9000	E3_	_100	P3L3	900000000	P3E3_	10000000
P4	70000	L4	8000	E4	200	P4L4	560000000	P4E4	14000000
P5	60000	_L5	6000	E5	100	P5L5	360000000	P5P5	6000000
P6	100000	L6	9000	E6	200	P6L6	900000000	P6E6	20000000
sum	605000		54000		1250		5780000000		140250000
<u></u>	<u> </u>			<u></u>	L	L			
	<u> </u>	L12	144000000	E12	122500	E1L1	4200000		
		L22	100000000	E22	90000	E2L2	3000000		
		L32	81000000	E32	10000	E3L3	900000	l	
		L42	64000000	E42	40000	E4L4	1600000		<u> </u>
		L52	36000000	E52	10000	E5L5	600000		
 		L62_	81000000	E62	40000	E6L6	1800000		
		sum	506000000		312500		12100000		
decision variable									
b0	50234.98695								
b1	16.82767624								
b2	-1.82767624							<u> </u>	
objective function									
min	309530026.1						ļ		
constraint									
LHS	RHS					<u> </u>			
605000	605000			<u> </u>			<u> </u>		
5.78E+09	5780000000				<u> </u>		L		
1.4E+08	140250000		l		<u> </u>		<u> </u>	<u> </u>	

R output

P	L	E
155000	12000	350
120000	10000	300
100000	9000	100
70000	8000	200
60000	6000	100
100000	9000	200

> data=read.table("C:/model28.txt",header=T)

P L E

> data

```
1 155000 12000 350
2 120000 10000 300
3 100000 9000 100
4 70000 8000 200
5 60000 6000 100
6 100000 9000 200
> attach(data)
> model=lm(P~L+E)
> model
Call:
lm(formula = P ~ L + E)
```

Coefficients:

> summary(model)

Call:

 $lm(formula = P \sim L + E)$

Residuals:

Coefficients:

Estimate Std. Error t value
$$Pr(>|t|)$$

(Intercept) -50234.987 25123.348 -2.000 0.1394
L 16.828 4.103 4.101 0.0262 *
E -1.828 80.408 -0.023 0.9833

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

Residual standard error: 10160 on 3 degrees of freedom Multiple R-Squared: 0.9477, Adjusted R-squared: 0.9129 F-statistic: 27.19 on 2 and 3 DF, p-value: 0.01195

Let
$$R_i = P_i - \hat{P}_i = d_i^+ - d_i^i$$
 where $d_i^+, d_i^- \ge 0$,

Claim 1: For optimal value of min $\{\sum_{i=1}^{6} (d_i^+ + d_i^-)\}$, we have $d_i^+ d_i^- = 0$ for optimal solution.

Proof:

Suppose on the contrary that
$$d_i^+, d_i^-$$
 are both nonzero in the optimal solution. If $R_i = P_i - \widehat{P}_i = d_i^+ - d_i^* \ge 0$, let $\widetilde{d}_i^+ = d_i^+ - d_i^-, \widetilde{d}_i^- = 0$, $\widetilde{d}_i^+ + \widetilde{d}_i^- = d_i^+ - d_i^- < d_i^+ + d_i^-$, contradicting the optimality condition. If $d_i^+ - d_i^+ < 0$, let $\widetilde{d}_i^+ = 0$, $\widetilde{d}_i^- = d_i^- - d_i^+$, $\widetilde{d}_i^+ + \widetilde{d}_i^- = d_i^- - d_i^+ < d_i^+ + d_i^-$, again, contradicting the optimality condition.

Corollory

$$\min\{\sum_{i=1}^{6} (d_i^+ + d_i^-)\} = \min\{\sum_{i=1}^{6} |R_i^-|\} \text{ since } d_i^+ d_i^- = 0 \text{ for optimal solution.}$$

Formulation of Linear Programming:

$$Minimize \sum_{i=1}^{6} (d_i^+ + d_i^-)$$

Subject to:

$$d_i^+ - d_i^- + b_0 + b_1 L_i + b_2 E_i = P_i$$

 $d_i^+, d_i^- \ge 0$ where i takes integer values from 1 to 6.

Optimal solution:

$$b_0 = -55714.28571$$

$$b_1 = 17.14285714$$

$$b_2 = 14.28571429$$

Excel Output:

P1	155000	L1	12000	E1	350
P2	120000	L2	10000	E2	300
P3	100000	L3	9000	E3	100
P4	70000	L4	8000	E4 _	200
P5	60000	L5	6000	E5	100
P6	100000	L6	9000	E6	200
decision variable					
b0	55714.28571				
b1	17.14285714				
b2	14.28571429				
d1+	0				
d1-	0				
d2+	0				
d2-	0				
d3+	0				
d3-	0				
d4+	0				
d4-	14285.71429				
d5+	11428.57143				
d5-	0				
d6+	0				
d6-	1428.571429				
objective function					
min	27142.85714	 -	 -		
111111	21 142.031 14				/-
constraint		 			
LHS	RHS		 		/
155000	155000			/	-
120000	120000	 			
100000	100000				
70000	70000			/	
60000	60000			/	
100000	100000		, ,	/ -	
			<u> </u>		

Notice that $|R_i| = \max\{ R_i, -R_i \}$ $\max_{1 \le i \le 6} |R_i| = \max_{1 \le i \le 6} \{ \max\{ R_i, -R_i \} \} = \max_{1 \le i \le 6} \{ R_i, -R_i \}$

Hence the question posted in part c is a minimax problem.

Minimize z

Subject to

$$z \ge P_i - b_0 - b_1 L_i - b_2 E_i$$

$$z \geq -P_i + b_0 + b_1 L_i + b_2 E_i$$

where i takes integer value from 1 to 6.

It can be rewritten as

Minimize z

Subject to

$$z_i + b_0 + b_1 L_i + b_2 E_i \ge P_i$$

$$z - b_0 - b_1 L_i - b_2 E_i \ge -P_i$$

where i takes integer values from 1 to 6.

$$b_0 = -60000$$

$$b_1 = 20$$

$$b_2 = -100$$

Excel Output:

			- 	Γ	<u> </u>
P1	155000	L1	12000	E1	350
P2	120000		10000		300
P3	100000	L3	9000		100
P4	70000	L4	8000		200
P5	60000		6000	E 5	100
P6	100000		9000	E6	200
					<u> </u>
decision va					
b0	-60000				
b1	20				
b2	-100		<u> </u>		
f	10000			<u> </u>	
objective fu	unction				
min	10000				
constraint			 - -		
LHS	RHS		T		
155000	155000				
-135000	-155000				
120000	120000				
-100000	120000				
120000	100000				
-100000	-100000				
90000	70000				
-70000	-70000				
60000	60000				
-40000	-60000				
110000	100000				
-90000	-1 <u>0</u> 0000				