Instituto Tecnológico de Costa Rica Escuela de Matemática Álgebra Lineal para Computación

 \mathcal{T} iempo: 3 horas, 20 minutos \mathcal{P} untaje \mathcal{T} otal: 61 puntos \mathcal{V} erano 2009 – 2010

\mathcal{I} Examen \mathcal{P} arcial

Instrucciones: Esta es una prueba de desarrollo; por lo tanto, debe presentar todos los pasos necesarios que le permitieron obtener cada una de las respuestas. Trabaje en forma clara, ordenada y utilice bolígrafo para resolver el examen. No se aceptan reclamos de exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de calculadora programable ni de teléfono celular.

- 1. Utilizando el método de Gauss–Jordan, determine el conjunto solución del sistema de ecuaciones lineales siguiente: $\begin{cases} a-2b+c-d+2e=10\\ -4a+8b+c-11d-2e=-10\\ 2a-4b+4d+2e=8 \end{cases} \tag{5 pts}$
- 2. Sea A alguna matriz de orden n. Se dice que A es involutiva si $A^2 = \mathcal{I}_n$, y se dice que A es idempotente si $A^2 = A$.
 - (a) Determine si la matriz $A = \begin{pmatrix} 4 & 3 & 3 \\ -1 & 0 & -1 \\ -4 & -4 & -3 \end{pmatrix}$ es involutiva, idempotente o si no es de alguno de los tipos mencionados. (3 pts)
 - (b) Demuestre que si B es alguna matriz de orden n, tal que B es idempotente, entonces la matriz $C = 2B \mathcal{I}_n$ es involutiva. (4 pts)
- 3. Si se sabe que |B| = 4, halle el valor de la expresión $|AB^{-1}|$ con: (6 pts)

$$A = \begin{pmatrix} -2z_1 & z_1 - 5y_1 & x_1 \\ -2z_2 & z_2 - 5y_2 & x_2 \\ -2z_3 & z_3 - 5y_3 & x_3 \end{pmatrix} \quad \text{y} \quad B = \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix}$$

4. Considere el sistema de ecuaciones $\left\{\begin{array}{l} 2cx+cy=d\\ cx-3y=1 \end{array}\right., \text{ donde } c,d\in\mathbb{R}$

Determine el valor o los valores (en caso de existir) que deben tomar c y d, respectivamente, para que el sistema de ecuaciones anterior: no tenga solución, tenga solución única y posea infinito número de soluciones, respectivamente. (8 pts)

- 5. Sean A una matriz de orden n y B la matriz que se obtiene de A luego de multiplicar la r-ésima fila de A por un número real δ . Con base en la definición de determinante, demuestre que $|B| = \delta \cdot |A|$ (4 pts)
- 6. Sean $A \in \mathcal{M}_{z \times w}(\mathbb{R})$, $B \in \mathcal{M}_{w \times r}(\mathbb{R})$ y $\lambda \in \mathbb{R}$. Demuestre que, entrada por entrada, se cumple la igualdad siguiente: $A(\lambda B) = \lambda(AB)$. (5 pts)
- 7. Demuestre que si $A \in \mathcal{M}_n(\mathbb{R})$ y A es no singular, entonces $(A^t)^{-1} = (A^{-1})^t$ (4 pts)
- 8. Sea $\mathcal{E} = \{3, 2, 1, 0\}$. Sobre \mathcal{E} se define una ley de composición interna \otimes , tal que $\forall x, y \in \mathcal{E}$, $x \otimes y = \mathcal{R}$, donde \mathcal{R} es el residuo que se obtiene luego de dividir xy por 4.
 - (a) Determine la tabla de operación binaria para \mathcal{E} y \otimes . (2 pts)
 - (b) Considere la estructura algebraica (\mathcal{E}, \otimes) y determine su elemento neutro. (1 pto)
 - (c) ¿Cuáles elementos de \mathcal{E} poseen elemento simétrico y cuáles no bajo la aplicación \otimes ?

 Justifique. (2 pts)
- 9. Sea $(\mathcal{G}, *)$ algún grupo con elemento neutro e. Demuestre que $\forall x \in \mathcal{G}, (x')' = x$. (3 pts)
- 10. Sea $(\mathcal{G}, *)$ algún grupo con elemento neutro e. Usando inducción matemática, demuestre que $\forall x \in \mathcal{G}, \forall n \in \mathbb{Z}^+$, se cumple que: (4 pts)

$$(x^n)' = (x')^n$$

11. En $\mathbb{R}^* \times \mathbb{R}$ se define la operación \otimes de la manera siguiente: $\forall (a, b), (c, d) \in \mathbb{R}^* \times \mathbb{R}$,

$$(a,b)\otimes(c,d)=(ac,ad+b)$$

Si se define $\mathcal{H} = \left\{ (x,0) \middle/ x \in \mathbb{R}^* \right\}$ y se sabe que $(\mathbb{R}^* \times \mathbb{R}, \otimes)$ es grupo con elemento neutro e = (1,0), demuestre que $(\mathcal{H}, \otimes) \leq (\mathbb{R}^* \times \mathbb{R}, \otimes)$. (4 pts)

- 12. Sea $\mathcal{D} = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \middle/ a, b \in \mathbb{R} \right\}$. Si + y · representan la adición y multiplicación usuales de matrices, conteste lo que se pide.
 - (a) Demuestre que $(\mathcal{D}, +, \cdot)$ es anillo conmutativo. (3 pts)
 - (b) ¿Cuál es el elemento unidad de $(\mathcal{D}, +, \cdot)$? (1 pts)
 - (c) ¿Es $(\mathcal{D}, +, \cdot)$ un dominio de integridad? Justifique. (2 pts)