Introdução a Computação

História

- Mecanismo de Anticitera
- Charles Babbage
 - Primeira descrição de computador turing completo
- Ada Lovelace
 - Primeira Programadora
 - Cartões perfurados
 - Série de Bernouli
- ENIAC
 - o 27 Toneladas
 - o 16k de memória
 - Valvula
 - Computador como profissão
- Transistores

Hardware x Software

Arquitetura de Von Neumann

Linguagem de Programação

- Conjunto de termos (vocabulário / keywords) e regras (sintax)
- Instruções para controlar a CPU

Compilador

Acusa erros

Boas práticas de programação

Execução

Programa

Bits

- 0 ou 1
- Componentes feitos com transistors
 - Semicondutor
 - +1 bilhão em um pc moderno
- Base 2: 01
- Base 10: 0 1 2 3 4 5 6 7 8 9

Base Binária

Binário para Decimal

Decimal para Binário

Conta	Resultado	Resto
155 / 2	77	1
77 / 2	38	1
38 / 2	19	0
19 / 2	9	1
9 / 2	4	1
4/2	2	0
2/2	1	0
1/2	0	1

Decimal para Binário

Conta	Resultado	Resto
155 / 2	77	1
77 / 2	38	1
38 / 2	19	0
19 / 2	9	1
9 / 2	4	1
4/2	2	0
2/2	1	0
1/2	0	1

Byte

- 1 byte = 8 bits
- 2⁸ = 256 números
- [0, 255]

Os múltiplos do byte			
1 Kilobyte (Kbyte ou KB)	210	1024 bytes	≈ 10 ³ bytes
1 Megabyte (Mbyte ou MB)	2 ²⁰	1.048.576 bytes	≈ 10 ⁶ bytes
1 Gigabyte (Gbyte ou GB)	230	1.073.741.824 bytes	≈ 10 ⁹ bytes
1 Terabyte (Tbyte ou TB)	240	1.099.511.627.776 bytes	≈ 10 ¹² bytes

Algoritmo

- Sequencia de passos
- Entrada e Saída claros
- Objetivo claro
- Exemplos:
 - Receitas
 - Manuais
 - Tutorias
- Passos decisivos (condicionais)
- Passos repetitivos

De problema para algoritmo

Joana e Maria foram à padaria comprar pão. Chegando em casa, o pai delas quis recompensar a filha que carregou mais pães. Ajude-o nesta tarefa.

Entrada	Saída
Joana: 7 Maria: 10	Parabéns Maria!
Joana: 8 Maria: 5	Parabéns Joana!

```
    1) O pai vai perguntar quantos pães a Joana trouxe -> J
    2)
    3)
    4)
    5)
```

- 1) O pai vai perguntar quantos pães a Joana trouxe -> J
- 2) O pai vai perguntar quantos pães a Maria trouxe -> M
- 3)
- 4)
- 5)
- 6

- 1) O pai vai perguntar quantos pães a Joana trouxe -> J
- 2) O pai vai perguntar quantos pães a Maria trouxe -> M
- 3) Se J > M (Se Joana trouxe mais que Maria), vá para o passo 4. Senão, vá para o passo 5
- 4)
- 5)
- 6

- 1) O pai vai perguntar quantos pães a Joana trouxe -> J
- 2) O pai vai perguntar quantos pães a Maria trouxe -> M
- 3) Se J > M (Se Joana trouxe mais que Maria), vá para o passo 4. Senão, vá para o passo 5
- 4) O pai fala "Parabéns Joana!"
- 5)
- 6)

- 1) O pai vai perguntar quantos pães a Joana trouxe -> J
- 2) O pai vai perguntar quantos pães a Maria trouxe -> M
- 3) Se J > M (Se Joana trouxe mais que Maria), vá para o passo 4. Senão, vá para o passo 5
- 4) O pai fala "Parabéns Joana!"
- 5) O pai fala "Parabéns Maria!"
- 6) FIM

- 1) O pai vai perguntar quantos pães a Joana trouxe -> J
- 2) O pai vai perguntar quantos pães a Maria trouxe -> M
- 3) Se J > M (Se Joana trouxe mais que Maria), vá para o passo 4. Senão, vá para o passo 5
- 4) O pai fala "Parabéns Joana!"
- 5) O pai fala "Parabéns Maria!"
- 6) FIM

Entrada	Saída
Joana: 7 Maria: 10	Parabéns Maria!
Joana: 8 Maria: 5	Parabéns Joana!

- 1) O pai vai perguntar quantos pães a Joana trouxe -> J
- 2) O pai vai perguntar quantos pães a Maria trouxe -> M
- 3) Se J > M (Se Joana trouxe mais que Maria), vá para o passo 4. Senão, vá para o passo 5
- 4) O pai fala "Parabéns Joana!"
- 5) O pai fala "Parabéns Maria!"
- 6) FIM

Entrada	Saída
Joana: 7 Maria: 10	Parabéns Maria!
Joana: 8 Maria: 5	Parabéns Joana!

- 1) O pai vai perguntar quantos pães a Joana trouxe -> J
- 2) O pai vai perguntar quantos pães a Maria trouxe -> M
- 3) Se J > M (Se Joana trouxe mais que Maria), vá para o passo 4. Senão, vá para o passo 5
- 4) O pai fala "Parabéns Joana!"
- 5) O pai fala "Parabéns Maria!"
- 6) FIM

Entrada	Saída
Joana: 7 Maria: 10	Parabéns Maria!
Joana: 8 Maria: 5	Parabéns Joana!

Pseudo-Código

Mais explicativo/legível Fins didáticos Documentar Algoritmos

- 1) O pai vai perguntar quantos pães a Joana trouxe -> J
- 2) O pai vai perguntar quantos pães a Maria trouxe -> M
- 3) Se J > M (Se Joana trouxe mais que Maria), vá para o passo 4. Senão, vá para o passo 5
- 4) O pai fala "Parabéns Joana!"
- 5) O pai fala "Parabéns Maria!"
- 6) FIM

Entrada	Saída
Joana: 7 Maria: 10	Parabéns Maria!
Joana: 8 Maria: 5	Parabéns Joana!

Código: Linguagem C

```
#include <stdio.h>
int main() {
   int J = 0;
   int M = 0;
   scanf("%d %d", &J, &M);
   if (J > M) {
       printf("Parabens Joana!\n");
   } else {
       printf("Parabens Maria!\n");
   return 0;
```


Fim