DEVOIR DE MATHEMATIQUES N°7 - MAI 2022 DUREE 04 HEURES

EXERCICE 1: (10 points)

Partie 1

On considère les deux fonctions f et g définie par $g(x) = \frac{-4}{x}$ et $f(x) = \frac{3x-1}{x+1}$

- 1) Déterminer les réels a et b tels que f(x) = g(x + a) + b
- 2) En déduire la transformation permettant de construire Cf à partir de Cg
- 3) Construire dans le même repère les courbes Cg et Cf
- 4) Montrer que le point A(-1,3) est centre de symétrie de Cf.

Partie 2

On considère la suite (U_n) définie par $\begin{cases} U_o = 3 \\ U_{n+1} = \frac{3U_n - 1}{U_n + 1} \end{cases}$

- 1°) a) Représenter graphiquement les termes U_1 , U_2 , U_3 , sur l'axe (ox) d'un repère orthonormé (o,ij) à l'aide de la courbe Cf d'une fonction f bien choisie en utilisant la courbe de la fonction f construite à la partie 1. .
- b) Quelle conjecture peut-on faire sur le sens de variation de (Un) ?
- c) Démontrer par récurrence que **L**/**1 1**
- d) Démontrer par récurrence la conjecture faite sur le sens de variation de (Un)
- 2°) On considère la suite (V_n) définie par $V_n = \frac{U_n + 1}{U_n 1}$
- a) Exprimer V_{n+1} en fonction de U_n
- b) Démontrer que V_{n+1} - V_n est constante et en déduire la nature de la suite (V_n)
- c) Exprimer V_n en fonction de n puis U_n en fonction de n.
- d) On pose $S_n = V_o + V_1 + \dots + V_{n-1}$; exprimer S_n en fonction de n
- e) (Un) est-elle convergente?

Exercice 2 (07 Pts)

Calculer la limite de la fonction f en x_0 dans chacun des cas suivants :

1)
$$f(x) = -x + 1 + \sqrt{x^2 - x + 1}$$
, $x_0 = -\infty$ puis $x_0 = +\infty$

LYCEE D'EXCELLENCE BILLES CLASSE 1^{ère} S1

ANNEE SCOLAIRE 2021 - 2022

2)
$$f(x) = \frac{x^3 - 3x^2 + 2}{x^2 - 1}$$
, $x_0 = 1$ puis $x_0 = -1$ (calculer la limite à gauche et la limite à droite en -1)

3)
$$f(x) = \frac{\sqrt{x^2 + x + 1} - 1}{x}$$
, $x_0 = 0$ puis $x_0 = -\infty$

4)
$$f(x) = \frac{1-\sqrt{2}cosx}{1-\sqrt{2}sinx}$$
, $x_0 = \frac{\pi}{4}$ (Poser $t = x - \frac{\pi}{4}$)

EXERCICE 3: (03 points)

On considère la fonction f définie par
$$\begin{cases} f(x) = \frac{x^2 - 1}{x - 1 - \sqrt{|x^2 - 1|}} & \text{si } x \neq 1 \\ f(1) = 0 \end{cases}$$

- 1) A l'aide d'un tableau, écrire f(x) sans le symbole de la valeur absolue suivant les valeurs x.
- 2) Etudier la continuité de f en 1.

Bonne inspiration!