1 Exercice: Point fixe et Newton

On cherche a calculer $\bar{x} = \sqrt{3}$. $\forall x \in \mathbb{R}$, on pose $g(x) = x^2 - 3$ et f(x) = x - g(x).

La méthode de résolution de l'équation g(x) = x par la méthode du point fixe utilise le fait que, pour g(x) et x_0 correctement choisis, la suite récurrente $x_{n+1} = g(x_n)$ est convergente.

1. Implémentation de la méthode du point fixe:

- (a) Écrire une fonction PointFixe(f,x0,epsilon, Nmax) qui renvoie : la valeur approchée de la solution x^* de f à une tolérance e près et le nombre d'itérations effectué e pour atteindre la convergence. On arrêtera l'algorithme après un nombre maximal d'itérations 'Nmax'.
- (b) Application: Tester la fonction PointFixe(f,x0,epsilon,Nmax) pour : x0 = 1, $\varepsilon = 10^{-7}$ et Nmax = 1000.
- (c) La Méthode converge-t-elle avec ce choix de *x*0 ?

2. Implémentation de la méthode du point fixe avec relaxation:

La méthode du point fixe avec relaxation consiste à modifier l'itération de base : $x_{n+1} = f(x_n)$ en introduisant un paramètre de relaxation $\omega \in [0,1]$ par : $x_{n+1} = \omega f(x_n) + (1-\omega)x_n$.

- (a) Écrire une fonction python PointFixeRelaxation(f,w,x0,epsilon,Nmax) implémentant l'algorithme avec paramètre de relaxation ω .
- (b) Application: Tester la fonction PointFixeRelaxation(f,w,x0,epsilon,Nmax) pour w=1/2, un test d'arrêt sur le résidu avec $\varepsilon=10^{-7}$ et un nombre maximal d'itérations Nmax=1000.
- (c) On choisit $x_0 = 1$ et $\omega = i/10$ avec $i = 1 \cdots 10$, donner selon la valeur de ω , lorsque la méthode converge (c'est à dire avec la méthode s'arrête avec un résidu inférieur a 10^{-7}) le nombre d'itération nécessaires.
- (d) Même question avec $x_0 = 2$, $x_0 = 4$ et $x_0 = 8$.

3. Implémentation de la méthode de Newton

- (a) Écrire la fonction Newton(g,x0,eps,Nmax) pour trouver $\sqrt{3}$ comme solution de g(x) = 0 avec un test d'arrêt et un nombre maximal d'itérations.
- (b) Tester la fonction de Newton pour $x0 = \{1, 2, 4, 8\}$ et $\epsilon = 10^{-7}$. Donner, dans chaque cas, le nombre d'itérations.