已知 $\lim_{x \to 1} f(x)$ 存在,且函数 $f(x) = x^2 + x - 2 \lim_{x \to 1} f(x)$,则 $\lim_{x \to 1} f(x) = ($). (B) $-\frac{2}{3}$ (C) $-\frac{3}{2}$ (D) $\frac{2}{3}$

 $(A)\frac{3}{2}$

例 3. 2 当 $x \rightarrow 1$ 时,函数 $\frac{x^2-1}{x-1}$ e^{$\frac{1}{x-1}$} 的极限().

(A)等于1

(B)等于 0

(C)为∞

(D)不存在且不为∞

例 3.3 在下列区间内,函数 $f(x) = \frac{x\sin(x-3)}{(x-1)(x-3)^2}$ 有界的是().

(A)(-2,1)

(B)(-1,0)

(C)(1,2)

(D)(2,3)

(A) ∞ (B)2 (C)1 (D) $-\frac{1}{2}$

例 3.5 求极限 $\lim_{x\to 0} \frac{\sqrt{1+\tan x} - \sqrt{1+\sin x}}{x\ln(1+x)-x^2}$.

例 3.6 求极限 $\lim_{x\to -\infty} \frac{\sqrt{4x^2+x-1}+x+1}{\sqrt{x^2+\sin x}}$.

例 3.7 求极限 $\lim_{x\to -\infty} x(\sqrt{x^2+100}+x)$.

例 3.8 求极限 lim ln x ln(1-x).

例 3.10 求 $I = \lim_{x \to 0} \left[\frac{10}{x} \right]$,其中[•]为取整符号.

例 3.11 极限 $\lim_{x\to 0} \left[\frac{1}{\ln(1+x)} - \frac{1}{x} \right] = ($).

(A)2 (B) $\frac{3}{2}$ (C)1 (D) $\frac{1}{2}$

例 3.12 求极限 $\lim_{x\to +\infty} [x^2(e^{\frac{1}{x}}-1)-x].$

例 3.13 求极限 $\lim_{x \to +\infty} (x + \sqrt{1+x^2})^{\frac{1}{x}}$.

例 3.14 求极限 $\lim_{x\to 0} \left(\frac{e^x + e^{2x} + e^{3x}}{3}\right)^{\frac{e}{x}}$.

例 3. 16 已知极限 $\lim_{x\to 0} \frac{\tan 2x + x f(x)}{\sin x^3} = 0$,则 $\lim_{x\to 0} \frac{2 + f(x)}{x^2} = ($).

(A) $\frac{13}{9}$ (B) 4 (C) $\frac{10}{3}$ (D) $-\frac{8}{3}$

例 3.17 设 $\lim_{x\to 0} \frac{\ln(1+x)-(ax+bx^2)}{x^2} = 2$,求常数 a,b.

例 3.18 设当 $x\to 0$ 时, $e^x-(ax^2+bx+1)$ 是比 x^2 高阶的无穷小,则().

(A) $a = \frac{1}{2}, b = 1$ (B)a = 1, b = 1 (C) $a = -\frac{1}{2}, b = -1$ (D)a = -1, b = 1

例 3. 19 设 x→0 时, e^{tan x} - e^x 与 xⁿ 是同阶无穷小,则 n 为().

(A)1 (B)2 (C)3 (D)4

例 3. 20 设 $\alpha_1 = x(\cos\sqrt{x} - 1)$, $\alpha_2 = \sqrt{x}\ln(1 + \sqrt[3]{x})$, $\alpha_3 = \sqrt[3]{x + 1} - 1$. 当 $x \to 0^+$ 时,以上 3 个无穷小量 按照从低阶到高阶的排序是(). $(A)_{\alpha_1}, \alpha_2, \alpha_3$ $(B)_{\alpha_2}, \alpha_3, \alpha_1$

 $(C)_{\alpha_2}, \alpha_1, \alpha_3$

 $(D)_{\alpha_3}, \alpha_2, \alpha_1$

例 3.21 设
$$f(x) = \begin{cases} 2x+a, & x \leq 0, \\ e^x(\sin x + \cos x), & x > 0 \end{cases}$$
 在 $(-\infty, +\infty)$ 内连续,则 $a =$ ____.

例 3. 22 设函数 $f(x) = \frac{\ln|x|}{|x-1|} \sin x$,则 f(x)有().

(A)1个可去间断点,1个跳跃间断点 (B)1个可去间断点,1个无穷间断点

(C)2个跳跃间断点

(D)2 个无穷间断点

例 3. 23 函数 $f(x) = \frac{x^2 - x}{x^2 - 1} \sqrt{1 + \frac{1}{x^2}}$ 的无穷间断点的个数为(). (A)0 (B)1 (C)2 (D)3

例 3. 24 求极限 $\lim_{t\to x} \left(\frac{\sin t}{\sin x}\right)^{\frac{x}{\sin t-\sin x}}$,记此极限为 f(x),求函数 f(x)的间断点并指出其类型.

习题

3.1 求极限 $\lim_{x\to 0} \frac{e^{-\frac{1}{x'}}}{x^{100}}$.

3.2 已知 $I = \lim_{x \to 0} \left(\frac{\ln(1 + e^{\frac{2}{x}})}{\ln(1 + e^{\frac{1}{x}})} + a[x] \right)$ 存在,[•]为取整函数,求 I, a.

3.3 已知 a > 0, b > 0,则 $\lim_{x \to +\infty} x(a^{\frac{1}{x}} - b^{\frac{1}{x}}) = \underline{}$.

3.4 求极限
$$\lim_{x\to 0} \left(\frac{e^x + xe^x}{e^x - 1} - \frac{1}{x} \right)$$
.

3.5 设
$$a\neq \frac{1}{2}$$
,计算 $\lim_{n\to\infty} \left[\frac{n-2na+1}{n(1-2a)}\right]^n$.

3.6 求极限 $\lim_{x\to 0^+} \frac{x^x - (\sin x)^x}{x^2 \ln(1+x)}$.

3.7 求极限 $\lim_{x\to 0} \left(\frac{a_1^x + a_2^x + \dots + a_n^x}{n}\right)^{\frac{n}{x}}$,其中 $a_i > 0$, $i = 1, 2, \dots, n$.

3.9 设
$$f(x)$$
在 $(-\infty, +\infty)$ 内有定义,且 $\lim_{x\to\infty} f(x) = a, g(x) = \begin{cases} f\left(\frac{1}{x}\right), & x\neq 0, \\ 0, & x=0, \end{cases}$).

(A)x=0 必是 g(x)的第一类间断点

(B)x=0 必是 g(x)的第二类间断点

(C)x=0 必是 g(x)的连续点

(D)g(x)在点 x=0 处的连续性与 a 的取值有关

3.10 设函数 $f(x) = \lim_{n \to \infty} \frac{1+x}{1+x^{2n}}$, 讨论函数的间断点, 其结论为().

(A)不存在间断点

(B)存在间断点 x=1

(C)存在间断点 x=0

(D)存在间断点 x=-1