act5-2

October 28, 2024

Jacob Valdenegro Monzón A01640992

```
[43]: # Paso 1: Importar las librerías necesarias
      import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      import seaborn as sns
      from sklearn.decomposition import PCA
      from sklearn.preprocessing import StandardScaler
      from sklearn.linear_model import LinearRegression
      from sklearn.metrics import mean_squared_error, r2_score
      import statsmodels.api as sm
      from statsmodels.stats.outliers_influence import variance_inflation_factor
      from sklearn.cluster import KMeans
      from sklearn.pipeline import make_pipeline
      from fpdf import FPDF
      # Paso 2: Cargar los datos
      data = pd.read_csv("Country-data.csv")
      data_dict = pd.read_csv("data-dictionary.csv")
      # Visualización inicial de los datos y diccionario
      print(data.head())
      print(data_dict)
```

		country	child_mort	exports	health	imports	income	\
0	Af	ghanistan	90.2	10.0	7.58	44.9	1610	
1		Albania	16.6	28.0	6.55	48.6	9930	
2		Algeria	27.3	38.4	4.17	31.4	12900	
3		Angola	119.0	62.3	2.85	42.9	5900	
4	Antigua an	d Barbuda	10.3	45.5	6.03	58.9	19100	
	inflation	life_expec	total_fer	gdpp				
0	9.44	56.2	5.82	553				
1	4.49	76.3	1.65	4090				
2	16.10	76.5	2.89	4460				
3	22.40	60.1	6.16	3530				
4	1.44	76.8	2.13	12200				

```
Column Name
                                                       Description
0
      country
                                              Name of the country
   child_mort
               Death of children under 5 years of age per 100...
1
2
      exports
               Exports of goods and services. Given as %age o...
       health
                      Total health spending as %age of Total GDP
3
4
      imports
               Imports of goods and services. Given as %age o...
5
       Income
                                            Net income per person
6
    Inflation The measurement of the annual growth rate of t...
   life expec The average number of years a new born child w...
7
    total_fer The number of children that would be born to e...
8
               The GDP per capita. Calculated as the Total GD...
9
         gdpp
```

Preparación de los datos

```
[44]: # Eliminar la columna 'country' ya que no es numérica y no se usará como⊔

predictor

X = data.drop(columns=["country", "gdpp"])

y = data["gdpp"]

# Estandarizar las variables predictoras

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)
```

Análisis de multicolinealidad

```
[45]: # Calcular el VIF para cada predictor

vif_data = pd.DataFrame()

vif_data["Feature"] = X.columns

vif_data["VIF"] = [variance_inflation_factor(X_scaled, i) for i in_

range(X_scaled.shape[1])]

print("Valores de VIF:", vif_data)
```

```
Valores de VIF:
                                    VTF
                      Feature
   child_mort 7.206594
1
      exports 4.926676
2
      health 1.367459
3
      imports 3.720285
4
       income 2.488358
5
   inflation 1.260237
6
  life_expec 5.676476
7
   total_fer 3.720211
```

Interpretación de los VIF

child_mort (7.21) y life_expec (5.68) tienen valores relativamente elevados, lo que indica que podrían estar correlacionadas con otras variables en el modelo. El resto de los VIF son menores a 5, lo que implica baja colinealidad en general.

Modelo de regresión lineal múltiple inicial

OLS Regression Results

Dep. Var	iable:	٤	gdpp R-	squared:		0.866
Model:				j. R-squared	:	0.859
Method:		Least Squa		statistic:		127.7
Date:		Mon, 28 Oct 2		ob (F-statis	tic):	6.13e-65
Time:		05:44		g-Likelihood		-1707.9
No. Obse	rvations:		167 AI	_		3434.
Df Residuals:			158 BI	C:		3462.
Df Model			8			
Covarian		nonrob	oust			
	=========	.=======		========		
	coef	std err		t P> t	[0.025	0.975]
const	1.296e+04	532.047	24.36	7 0.000	1.19e+04	1.4e+04
x1	2676.5161	1428.286	1.87	4 0.063	-144.481	5497.513
x2	778.5286	1180.939	0.65	9 0.511	-1553.934	3110.991
хЗ	4241.5150	622.168	6.81	7 0.000	3012.677	5470.353
x4	-678.7091	1026.215	-0.66	1 0.509	-2705.579	1348.160
х5	1.51e+04	839.280	17.99	0.000	1.34e+04	1.68e+04
х6	-1059.1469	597.278	-1.77	3 0.078	-2238.825	120.532
x7	3448.6094	1267.622	2.72	1 0.007	944.940	5952.279
	928.3608	1026.205	0.90	5 0.367	-1098.488	2955.210

Omnibus: 53.684 Durbin-Watson: 1.914 Prob(Omnibus): Jarque-Bera (JB): 287.333 0.000 Skew: 1.040 Prob(JB): 4.04e-63 Cond. No. Kurtosis: 9.080 6.48 ______

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Coeficientes y p-values

Las variables health, income y life_expec son las más relevantes para explicar el PIB per cápita (gdpp), con relaciones significativas y positivas.

Otras variables, como child_mort, inflation, y total_fer, muestran relaciones más débiles o no significativas.

Supuestos del Modelo de Regresión Lineal

Linealidad: La relación entre las variables predictoras y la respuesta es aproximadamente lineal.

Independencia de los errores: El estadístico de Durbin-Watson es 1.914, cercano a 2, lo que indica que los errores son independientes.

```
[50]: model = sm.OLS(y, X).fit()
    residuals = model.resid
    fitted_values = model.fittedvalues

# Gráfica de homocedasticidad (Residuales vs Valores Ajustados)
    plt.figure(figsize=(8, 6))
    plt.scatter(fitted_values, residuals, alpha=0.6)
    plt.axhline(0, color='red', linestyle='--')
    plt.xlabel('Valores Ajustados')
    plt.ylabel('Residuales')
    plt.title('Gráfica de Homocedasticidad (Residuales vs Valores Ajustados)')
    plt.show()
```


Valores Ajustados

Aplicar Componentes Principales (PCA)

```
[47]: pca = PCA(n_components=X.shape[1]) # Inicialmente usar todos los componentes
      pca.fit(X_scaled)
      explained_variance = pca.explained_variance_ratio_
      cumulative_variance = np.cumsum(explained_variance)
      print("Varianza explicada por cada componente:", explained_variance)
      print("Varianza acumulada:", cumulative_variance)
      # Graficar la varianza acumulada para decidir el número de componentes
      plt.figure(figsize=(10, 6))
      plt.plot(range(1, len(cumulative_variance)+1), cumulative_variance, marker='o',__
       →linestyle='--')
      plt.xlabel("Número de Componentes Principales")
      plt.ylabel("Varianza Acumulada")
      plt.axhline(y=0.80, color='r', linestyle='-')
      plt.title("Elección del Número de Componentes Principales")
      plt.show()
      # Selección de los componentes que explican al menos el 80% de la varianza
      n_components = np.argmax(cumulative_variance >= 0.80) + 1
```

```
pca = PCA(n_components=n_components)
X_pca = pca.fit_transform(X_scaled)
print(f"Usando {n_components} componentes principales.")

# Interpretación de los componentes
components_df = pd.DataFrame(pca.components_, columns=X.columns)
print("Componentes principales:\n", components_df)
```

Varianza explicada por cada componente: [0.4468279 0.19299326 0.14542167 0.09234891 0.07027514 0.02793591

0.01356703 0.01063019]

Varianza acumulada: [0.4468279 0.63982116 0.78524283 0.87759173 0.94786687 0.97580278

0.98936981 1.

Usando 4 componentes principales. Componentes principales:

```
child mort
              exports
                       health
                              imports
                                       income inflation life_expec \
0
    0.472880 -0.308396 -0.144568 -0.194640 -0.386787
                                              0.220475
                                                       -0.464191
    0.214124   0.608374   -0.241608   0.661131   0.031207
1
                                              0.005771
                                                       -0.237343
2
    -0.158082
3
    0.115187 0.101508 0.680156 0.056361 0.315029
                                              0.621292
                                                        0.003857
```

total_fer

- 0 0.456952
- 1 0.176702
- 2 0.051085
- 3 0.159304

El análisis de Componentes Principales (PCA) es una técnica de reducción de dimensionalidad que transforma un conjunto de variables correlacionadas en un nuevo conjunto de variables no correlacionadas, llamadas componentes principales.

Varianza Explicada por Cada Componente

• Primer componente (PC1): 44.68% de la varianza

Las variables que más contribuyen a este componente son child_mort, income, life_expec, y total fer.

• Segundo componente (PC2): 19.30% de la varianza

Las variables con mayores pesos son exports y imports.

• Tercer componente (PC3): 14.54% de la varianza

Las variables health, inflation y imports tienen los pesos más significativos.

• Cuarto componente (PC4): 9.23% de la varianza

Las variables health e inflation son nuevamente relevantes en este componente, pero en menor medida.

Con estos 4 componentes obtenemos un 78.52% de la varianza acumulada de los datos originales.

Valores Propios y Direcciones de los Componentes

Los valores propios asociados a cada componente indican cuánta varianza de los datos originales es explicada por cada componente principal.

Las direcciones de los componentes se reflejan en los vectores propios (los pesos de cada variable en cada componente), estos vectores propios indican qué variables contribuyen más a cada componente.

Nueva regresión con los componentes principales seleccionados

```
[48]: X_pca_with_constant = sm.add_constant(X_pca)
model_pca = sm.OLS(y, X_pca_with_constant).fit()
print(model_pca.summary())

# Comparación entre ambos modelos
print("\nModelo con todas las variables predictoras:\n", model.summary())
print("\nModelo con componentes principales:\n", model_pca.summary())
```

OLS Regression Results

=======================================			=========
Dep. Variable:	gdpp	R-squared:	0.610
Model:	OLS	Adj. R-squared:	0.600
Method:	Least Squares	F-statistic:	63.36
Date:	Mon. 28 Oct 2024	Prob (F-statistic):	3.76e-32

Time:	05:46:57	Log-Likelihood:	-1797.1
No. Observations:	167	AIC:	3604.
Df Residuals:	162	BIC:	3620.

Df Model: 4
Covariance Type: nonrobust

	coef	std err	t 	P> t	[0.025	0.975]	
const	1.296e+04	896.556	14.460	0.000	1.12e+04	1.47e+04	
x1	-6705.6797	474.201	-14.141	0.000	-7642.092	-5769.268	
x2	-616.1469	721.542	-0.854	0.394	-2040.987	808.693	
x3	-880.3942	831.224	-1.059	0.291	-2521.825	761.036	
x4	7493.7030	1043.078	7.184	0.000	5433.921	9553.485	
Omnibus:		48.		-Watson:		2.179	
Prob(Omni	lbus):	0.	000 Jarque	-Bera (JB)):	114.651	
Skew:		1.	229 Prob(J	B):		1.27e-25	
Kurtosis:		6.	230 Cond.	No.		2.20	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Modelo con todas las variables predictoras:

OLS Regression Results

			==========
Dep. Variable:	gdpp	R-squared:	0.866
Model:	OLS	Adj. R-squared:	0.859
Method:	Least Squares	F-statistic:	127.7
Date:	Mon, 28 Oct 2024	Prob (F-statistic):	6.13e-65
Time:	05:46:57	Log-Likelihood:	-1707.9
No. Observations:	167	AIC:	3434.
Df Residuals:	158	BIC:	3462.
Df Model:	8		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	1.296e+04	532.047	24.367	0.000	1.19e+04	1.4e+04
x1	2676.5161	1428.286	1.874	0.063	-144.481	5497.513
x2	778.5286	1180.939	0.659	0.511	-1553.934	3110.991
x3	4241.5150	622.168	6.817	0.000	3012.677	5470.353
x4	-678.7091	1026.215	-0.661	0.509	-2705.579	1348.160
x5	1.51e+04	839.280	17.990	0.000	1.34e+04	1.68e+04
x6	-1059.1469	597.278	-1.773	0.078	-2238.825	120.532
x7	3448.6094	1267.622	2.721	0.007	944.940	5952.279
8x	928.3608	1026.205	0.905	0.367	-1098.488	2955.210

Omnibus:	53.684	Durbin-Watson:	1.914
Prob(Omnibus):	0.000	Jarque-Bera (JB):	287.333
Skew:	1.040	Prob(JB):	4.04e-63
Kurtosis:	9.080	Cond. No.	6.48

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Modelo con componentes principales:

OLS Regression Results

=======================================			
Dep. Variable:	gdpp	R-squared:	0.610
Model:	OLS	Adj. R-squared:	0.600
Method:	Least Squares	F-statistic:	63.36
Date:	Mon, 28 Oct 2024	Prob (F-statistic):	3.76e-32
Time:	05:46:57	Log-Likelihood:	-1797.1
No. Observations:	167	AIC:	3604.
Df Residuals:	162	BIC:	3620.
Df Model:	4		

Covariance Type: nonrobust

=======						
	coef	std err	t	P> t	[0.025	0.975]
const	1.296e+04	896.556	14.460	0.000	1.12e+04	1.47e+04
x1	-6705.6797	474.201	-14.141	0.000	-7642.092	-5769.268
x2	-616.1469	721.542	-0.854	0.394	-2040.987	808.693
x3	-880.3942	831.224	-1.059	0.291	-2521.825	761.036
x4	7493.7030	1043.078	7.184	0.000	5433.921	9553.485
Omnibus:	==========	 48.	034 Durbir	======= n-Watson:		2.179
Prob(Omn	ihua).					114.651
Prob(umin	ibus):		•	e-Bera (JB)		
Skew:		1.	229 Prob(J	JB):		1.27e-25
Kurtosis	:	6.	230 Cond.	No.		2.20
=======						

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

El modelo con todas las variables ofrece un mejor ajuste y una interpretación más detallada de cómo cada factor afecta a gdpp, mientras que el modelo basado en PCA es una opción simplificada y estable, aunque con menor capacidad explicativa y menor claridad interpretativa ya que los coeficientes se relacionan con combinaciones de variables.

Análisis de conglomerados (clustering) con KMeans

```
[49]: kmeans = KMeans(n_clusters=3, random_state=0).fit(X_pca)
data['Cluster'] = kmeans.labels_

# Visualización de los clusters
plt.figure(figsize=(10, 8))
sns.scatterplot(x=X_pca[:, 0], y=X_pca[:, 1], hue=data['Cluster'],
palette='viridis')
plt.title("Visualización de Clusters utilizando Componentes Principales")
plt.xlabel("Componente Principal 1")
plt.ylabel("Componente Principal 2")
plt.legend()
plt.show()
```


