Práctico 3

Aprendizaje bayesiano. Aprendizaje por casos. Metodología.

Ejercicio 1

Suponga que cuenta con un conjunto de entrenamiento D sin ruido, y se considera un espacio H en donde las hipótesis a priori, cuanto más generales, mayor probabilidad tienen de ser el concepto objetivo. Indique si las siguientes afirmaciones son verdaderas o falsas. Justifique.

- i. Find-S da una hipótesis MAP.
- ii. Find-S da una hipótesis ML.
- iii. Candidate-Elimination con votación es un clasificador bayesiano óptimo.

Ejercicio 2

Se desea aplicar el principio MDL a un espacio de conjunciones de hasta n atributos booleanos; por ejemplo: Soleado Λ SinCambios. Se tiene un conjunto de m ejemplos.

Cada hipótesis se transmite listando sus atributos; cada atributo se codifica utilizando log(n) bits. Dada una hipótesis h, la codificación de un ejemplo tiene largo cero si h lo clasifica correctamente, y largo log(m) en caso contrario (para indicar cuál ejemplo es errado).

- a) Dé la expresión a minimizar según el principio MDL.
- b) ¿Es posible construir un conjunto de entrenamiento que tenga una hipótesis consistente pero haga que MDL elija otra menos consistente? Justifique.
- c) Plantee distribuciones para P(h) y P(D|h) bajo las cuales el algoritmo MDL da como resultado una hipótesis MAP.

Ejercicio 3

A partir de la aplicación de la «ley de inclusión financiera», se decide monitorear cómo se comportan los consumidores respecto a los medios de pago. Se recaba el siguiente conjunto de ejemplos, siendo «Medio» el atributo objetivo:

#	Edad	Medio	Gasto	Mercancía	Sexo
1	18	efectivo	80	1ra. necesidad	М
2	35	débito	12	1ra. necesidad	F
3	55	crédito	180	1ra. necesidad	М
4	73	efectivo	80	cultura	?
5	45	crédito	540	electrodomésticos	М
6	27	débito	150	electrodomésticos	F

Los atributos numéricos son enteros, edad ∈ [18, 80], gasto ∈ [0, 1000], sexo ∈ {M, F}, medio ∈ {efectivo, débito, crédito} y mercancía ∈ {1ra. necesidad, electrodomésticos, cultura}.

- a) Explique cómo se podrían tratar los atributos numéricos y los atributos faltantes según se apliquen los siguientes algoritmos: ID3, Naive Bayes y KNN.
- b) Defina lo necesario para aplicar 3-NN sobre el conjunto de ejemplos. Justifique.

- c) Aplique los algoritmos Naive Bayes e ID3 sobre el conjunto de datos, ahora preprocesados, en donde se consideran tres rangos de edades: <30, 30-60, >60; y tres rangos para los gastos: <100, 100-500, >500.
- d) Compare la solución por rangos utilizada en (c) con su solución en (a).
- e) Clasifique a la siguiente instancia según sus tres clasificadores obtenidos en (b) y (c).

#	Edad	Medio	Gasto	Mercancía	Sexo
7	38	?	950	electrodomésticos	М

Ejercicio 4

Suponga que quiere implementar un detector de correo no deseado y cuenta con el siguiente conjunto de entrenamiento:

#	Agendado	Idioma	Para	Venta	Deseado
1	Sí	Inglés	Sí	Sí	Sí
2	No	Otro	No	No	Sí
3	No	Español	No	Sí	Sí
4	Sí	Otro	Sí	No	No
5	No	Español	Sí	Sí	No

Considere al ejemplo:

	#	Agendado	Idioma	Para	'Venta'	Deseado
П	6	Sí	Inglés	No	Sí	??

- a) ¿Cómo clasificaría un clasificador bayesiano sencillo al correo #6? ¿Con qué probabilidad?
- b) ¿Qué modificación debería hacer en la parte anterior, si le informan que el atributo «Idioma» puede tomar el valor «francés»?
- c) ¿Cómo implementaría un 2-NN? Ejemplifique su solución clasificando a #6.

Ejercicio 5

Se quiere resolver el siguiente problema de clasificación: «¿Qué días Pedro compra paltas?», y se cuenta con el siguiente conjunto de entrenamiento:

#	Precio (\$/Kg)	Ciudad	Mes	Humor	Calidad	Peso (Kg)	¿Compra?
1	100	Salto	Febrero	Bueno	Buena	0,300	Sí
2	140	Florida	Marzo	Malo	Media	0,200	No
3	80	Salto	Marzo	Malo	Buena	0,500	Sí
4	160	Durazno	Agosto	Bueno	?	0,700	Sí
5	200	Salto	Octubre	Bueno	Buena	0,100	No

donde Ciudad∈{Salto, Florida, Durazno}, Humor∈{Bueno, Malo} y Calidad∈{Buena, Media, Mala} y Precio y Peso son atributos numéricos.

- a) Dé dos formas de manejar el valor faltante de la instancia 4.
- b) Considere un clasificador que responda afirmativamente únicamente a las paltas con peso mayor a 600 gramos y al conjunto de entrenamiento dado:
 - i. Dé la matriz de confusión.

- ii. Calcule la estimación del acierto micro y macro.
- iii. Dé la estimación de la precisión y el recall de la clase positiva.
- c) ¿Qué modificaciones le realizaría al corpus para aplicar el algoritmo KNN? Justifique
- d) Explique una ventaja y una desventaja de aumentar el valor de K en el algoritmo KNN.
- e) Dé el resultado de clasificar a la siguiente instancia según el algoritmo Naïve Bayes, discretizando a los atributos continuos como crea conveniente:

#	Precio	Ciudad	Mes	Humor	Calidad	Peso	¿Compra?
6	110	Salto	Marzo	Malo	Buena	0,250	?

Ejercicio 6

Considere el siguiente conjunto de datos de estudiantes, y considere el problema de aprender a clasificar cuáles aprobaron el año.

#	Nombre	Turno	Edad	Nota anterior	Sexo	Estatura	Aprueba
1	Luisa	Vespertino	16	10	Fem	1,79	Sí
2	Ana	Vespertino	15	3	Masc	1,65	Sí
3	Juanjo	Matutino	14	4	Masc	?	No
4	Pedro	Vespertino	16	9	Masc	?	Sí
5	Ramiro	Vespertino	15	3	?	1,65	Sí
6	Daniel	Matutino	15	8	Masc	?	No
7	Eduardo	?	14	10	Masc	?	Sí
8	Aiala	?	15	9	Fem	?	Sí
9	Dina	Matutino	15	7	Fem	?	No
10	Mathias	Vespertino	14	11	Masc	1,79	Sí
11	Diego	Matutino	15	5	Masc	?	Sí
12	Santiago	Vespertino	15	6	Masc	1,67	Sí
13	Luis	Maturino	15	6	Masc	1,72	No
14	Alejandra	Vespertino	16	6	Fem	1,73	Sí

- a) ¿Cómo completaría los atributos faltantes para cada uno de los atributos?
- b) ¿Qué sugeriría hacer con el atributo estatura?
- c) ¿Cuál sería el resultado de transfomar el atributo «Turno» utilizando one-hot-encoding?
- d) Divida el conjunto de datos en entrenamiento y evaluación, utilizando estratificación.
- e) Estandarice los valores de edad y nota. Aplique la estandarización al conjunto de evaluación ¿Es lo mismo esto que aplicar la estandarización a todo el dataset?
- f) Suponga un clasificador trivial que predice la clase mayoritaria en el conjunto de entrenamiento. Suponga ahora que nuestra tabla es el conjunto total de entrenamiento, y realice 3-fold cross validation. Reporte precisión, recall, medida F, así como la desviación estándar de cada una de ellas.

Ejercicio 7

- a) Suponga que su conjunto de entrenamiento tiene 8000 instancias y se desea ajustar el hiperparámetro α de un cierto método de aprendizaje automático. Describa el proceso de validación cruzada con 5 folds y accuracy como medida de rendimiento.
- b) Si cuenta con un conjunto de datos con 9200 instancias, divididas en tres clases A, B y C con 8500, 500 y 200 instancias, respectivamente, y ordenadas por clase: ¿cómo dividiría a las instancias en los conjuntos de entrenamiento y evaluación? Justifique.

Se realiza la evaluación de un modelo y se obtiene la siguiente matriz de confusión (en las filas están los valores correctos de las instancias):

	Α	В	C
Α	910	5	5
В	5	20	20
С	6	4	15

- i) Calcule accuracy, precisión, recall y medida F1 para cada una de las clases
- ii) Obtenga los valores de macro y micro average de las medidas. Analícelas.

Ejercicio 8

Considere una clasificador binario h que, cuando es evaluado en un conjunto de 100 instancias, clasifica correctamente a 83 de ellas. ¿Cuál es la desviación estándar y el intervalo de confianza de 95% para la tasa real de error? ¿Y si clasifica correctamente 830 de 1000 instancias?