MST Problem – Prim's Algorithm

- Whereas Kruskal's algorithm is based on growing a forest, Prim's is based on growing a tree.
- Prim's algorithm like Kruskal's utilizes the Greedy Method design strategy.
- Again the input is a weighted connected graph G(V,E) and the output is a minimum spanning tree.

The textbook reading for Prim's algorithm is 6.5.2 (Chapter 6, Section 5, Subsection 2), pp. 266-272.

Growing a Tree using Cut

- Suppose we are growing a tree T starting with an initial or root vertex r.
- Then, at any stage of expanding T, we must choose and edge $e = \{u,v\}$ where u is in the tree, i.e., $u \in V(T) =$ the vertex set of T, and v is not in the tree, i.e., $v \in V V(T)$.
- Otherwise, in the case where both u and v belong to the tree a cycle would be formed or in the case both u and v are not in the tree, the edge e would be disconnected from T.
- The set of edges having one end vertex in the tree and the other not in tree, which we denote by Cut(T), is called a cut in graph theory. Thus, in order to expand T we must choose and edge from Cut(T).

High-Level Description of Prim's Algorithm

Start with an initial tree T_0 consisting of a single vertex r and no edges. Vertex r can be chosen arbitrarily to be **any** vertex.

We then grow a spanning tree rooted at r by building a sequence of n-1 trees $T_1,...,T_{n-1}$, where

$$T_i = T_{i-1} + e_i$$
, $i = 1, 2, ..., n-1$,

where e_i is chosen so that it has **minimum weight** among all the edges in $Cut(T_i)$. The final tree T_{n-1} is a minimum spanning tree.

Action of Prim's for sample graph G

PSN. Find a MST in the following weighted graph using Prim's algorithm starting at vertex v_3 .

Finding minimum edge in Cut(T) – Naïve Algorithm

Finding the minimum edges in $Cut(T_i)$ can be very expensive time-wise if we scan all the edges of the cut to locate the one having minimum weight. For example, if G is the complete graph K_n , then the size of a cut when computing e_i is i * (n - i). To see this observe that there are i vertices in T_i and n - i vertices not in T_i . Since G is complete the number of edges joining these sets is i * (n - i), i.e.,

$$|Cut(T_i)| = i * (n-i), i = 0, ..., n-1.$$

Thus the computing time over all these cuts is:

$$\sum_{i=1}^{n} i * (n-i) > \sum_{i=n/4}^{3n/4} i * (n-i) > \sum_{i=n/4}^{3n/4} \frac{n}{4} * \frac{3n}{4} = \frac{n}{2} * \frac{n}{4} * \frac{3n}{4} = \frac{3n^3}{32} \in \Theta(n^3).$$

Using the naïve algorithm to compute the minimum edges in each cut by simply scanning all the edges in the cut would result in Prim's algorithm having worst-case complexity $W(n) \in \Theta(n^3)$

It turns out we can do much better than this.

Improvement using a Priority Queue

We maintain a priority queue of vertices not in the current tree T, i.e., the set of vertices V - V(T). We take the priority of $v \in V - V(T)$ to be

 $Nearest[v] = minimum weight over all edges {u,v} where u belongs to the tree T$

Letting u^* denote the vertex in the tree that is nearest to v, define

$$Parent[v] = u^*$$

Note that $\{u^*,v\}$ is an edge in Cut(T) that has minimum weight over all the edges in Cut(T) that are incident with v.

Minimum Weight Edge in Cut(T)

Based on our last observation, it follows that

minimum weight of the an edge in Cut(T)

- = minimum of *Nearest[v]* over all v not in T
- = minimum over all v in the priority queue.

Thus, this minimum weight over all the edges in Cut(T) can be computed simply by performing one **dequeue** operation.

Maintaining Nearest

After we dequeue a vertex u we must update Nearest. The vertices for which Nearest will be affected are those vertices v not in the tree that are adjacent to u. They can be updated by simply scanning the neighborhood of u and performing the operation

```
if w(uv) < Nearest[v] then
Nearest[v] \leftarrow w(uv)
Parent[v] \leftarrow u
endif
```

Pseudocode for Prim's Algorithm

```
procedure Prim(G, w, Parent[0:n-1])
            G (a connected graph with vertex set V and edge set E)
Input:
             w (a weight function on E)
Output: Parent[0:n-1] (parent array of a minimum spanning tree)
    for v \leftarrow 0 to n-1 do
            Nearest[v] \leftarrow \infty
            InTheTree[v] \leftarrow .false.
    endfor
    Parent[r] \leftarrow -1 // Stage 1: root the tree at an arbitrary vertex r
    Nearest[r] \leftarrow 0
    for Stage \leftarrow 2 to n-1 do
        Select vertex u that minimizes Nearest[u] over all u such that InTheTree[u] = .false.
        InTheTree[u] \leftarrow .true.
                                 // add u to T
            for each vertex v such that uv \in E do
                                                          // update Nearest[v] and
                                                          // Parent[v] for all v \notin V(T)
               if .not. InTheTree[v] then
                         if w(uv) < Nearest[v] then //that are adjacent to u
                            Nearest[v] \leftarrow w(uv)
                            Parent[v] \leftarrow u
                        endif
               endif
             endfor
    endfor
end Prim
```

Action of Prim's Algorithm for Sample Graph G

Slight Savings

Note that the procedure *Prim* terminates after only n-1 stages, even though there are n vertices in the final minimum spanning tree. The reason is simple: After stage n-1 has been completed, InTheTree[0:n-1] is .false. for only one vertex w. Thus, another iteration of the **for** loop controlled by Stage would result in no change to the arrays Nearest[0:n-1] and Parent[0:n-1]. In other words, the last vertex and edge in the minimum spanning tree come in for free.

Analysis of Procedure Prim

- There are n − 1 stages and each stage involves at most n − 2 comparisons of edge weights to find the minimum value of Nearest and at most n − 1 comparisons to update Nearest.
- Thus, Procedure Prim has worst-case complexity

$$W(n) \in \Theta(n^2)$$
.

Using min-heap to implement priority queue

The dequeue operation for each vertex takes time $O(\log n)$, so

the total time for dequeuing is $O(n \log n)$.

Updating the priorities when vertex v is added to the tree T takes time $O(d(v)\log n)$ where d(v) denotes the degree of v. That is because the priority may need to be updated for each vertex in the neighborhood of v and each update takes time $O(\log n)$. Thus,

the total time for updates over the entire algorithm is $O(m \log n)$.

This follows from the observation that the sum of d(v) over all the vertices v equals twice the number of edges, i.e., 2m.

Min-heap implementation of priority queue, cont'd

Thus, the time for updates dominates the time for dequeuing, so that

the computing time of Prim's algorithm is $O(m \log n)$.

Note that to achieve this, it is necessary to implement the digraph *D* using **adjacency lists**. Also, this result is sharp, i.e., the worst-case complexity of Prim's algorithm implemented in this way is given by

 $W(m,n) \in \Theta \ (m \log n).$