Лабораторная работа 2

Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных.

Цель лабораторной работы: изучение способов предварительной обработки данных для дальнейшего формирования моделей.

Задание: Выбрать набор данных (датасет), содержащий категориальные признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.) Для выбранного датасета (датасетов) на основе материалов лекции решить следующие задачи: обработку пропусков в данных; кодирование категориальных признаков; масштабирование данных.

Ввод [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

Ввод [2]:

```
data = pd.read_csv('./restaurant-scores-lives-standard.csv', sep=",")
```

Ввод [3]:

```
# размер набора данных data.shape
```

```
Out[3]: (53973, 23)
```

Ввод [4]:

типы колонок data.dtypes

Out[4]:

business_id	int64
business_name	object
business_address	object
business_city	object
business_state	object
business_postal_code	object
business_latitude	float64
business_longitude	float64
business_location	object
business_phone_number	float64
inspection_id	object
inspection_date	object
inspection_score	float64
inspection_type	object
violation_id	object
violation_description	object
risk_category	object
Neighborhoods (old)	float64
Police Districts	float64
Supervisor Districts	float64
Fire Prevention Districts	float64
Zip Codes	float64
Analysis Neighborhoods	float64
dtype: object	

Ввод [5]:

проверим есть ли пропущенные значения data.isnull().sum()

Out[5]:

business_id	0
business_name	0
business_address	0
business_city	0
business_state	0
business_postal_code	1018
business_latitude	19556
business_longitude	19556
business_location	19556
business_phone_number	36938
inspection_id	0
inspection_date	0
inspection_score	13610
inspection_type	0
violation_id	12870
violation_description	12870
risk_category	12870
Neighborhoods (old)	19594
Police Districts	19594
Supervisor Districts	19594
Fire Prevention Districts	19646
Zip Codes	19576
Analysis Neighborhoods	19594
dtype: int64	

Ввод [6]:

Первые 5 строк датасета data.head()

Out[6]:

	business_id	business_name	business_address	business_city	business_state	business_postal
0	101192	Cochinita #2	2 Marina Blvd Fort Mason	San Francisco	CA	
1	97975	BREADBELLY	1408 Clement St	San Francisco	CA	
2	92982	Great Gold Restaurant	3161 24th St.	San Francisco	CA	
3	101389	HOMAGE	214 CALIFORNIA ST	San Francisco	CA	
4	85986	Pronto Pizza	798 Eddy St	San Francisco	CA	

5 rows × 23 columns

Ввод [7]:

```
total_count = data.shape[0]
print('Всего строк: {}'.format(total_count))
```

Всего строк: 53973

Обработка пропусков в данных

Простые стратегии - удаление или заполнение нулями

```
Ввод [8]:
```

```
# Удаление колонок, содержащих пустые значения data_new_1 = data.dropna(axis=1, how='any') (data.shape, data_new_1.shape)

Out[8]:
((53973, 23), (53973, 8))

Ввод [9]:

data_new_1.head()
```

Out[9]:

	business_id	business_name	business_address	business_city	business_state	inspection_i
0	101192	Cochinita #2	2 Marina Blvd Fort Mason	San Francisco	CA	101192_2019060
1	97975	BREADBELLY	1408 Clement St	San Francisco	CA	97975_2019072
2	92982	Great Gold Restaurant	3161 24th St.	San Francisco	CA	92982_2017091
3	101389	HOMAGE	214 CALIFORNIA ST	San Francisco	CA	101389_2019062
4	85986	Pronto Pizza	798 Eddy St	San Francisco	CA	85986_2016101

Ввод [10]:

```
# Удаление строк, содержащих пустые значения data_new_2 = data.dropna(axis=0, how='any') (data.shape, data_new_2.shape)
```

```
Out[10]:
((53973, 23), (6566, 23))
```

Ввод [11]:

data_new_2.head()

Out[11]:

	business_id	business_name	business_address	business_city	business_state	business_pos
11	4794	VICTOR'S	210 TOWNSEND St	San Francisco	CA	
172	63652	SFDH - Banquet Main Kitchen	450 Powell St 2nd Floor	San Francisco	CA	
327	328	Miyako	1470 Fillmore St	San Francisco	CA	
372	2684	ERIC'S RESTAURANT	1500 Church St	San Francisco	CA	
397	328	Miyako	1470 Fillmore St	San Francisco	CA	

5 rows × 23 columns

[&]quot;Внедрение значений" - импьютация (imputation)

Ввод [12]:

```
# Выберем числовые колонки с пропущенными значениями
# Цикл по колонкам датасета
num_cols = []
for col in data.columns:
# Количество пустых значений
temp_null_count = data[data[col].isnull()].shape[0]
dt = str(data[col].dtype)
if temp_null_count>0 and (dt=='float64' or dt=='int64'):
    num_cols.append(col)
    temp_perc = round((temp_null_count / total_count) * 100.0, 2)
    print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(col,
```

Kолонка business_latitude. Тип данных float64. Количество пустых значений 195 56, 36.23%.

Koлoнкa business_longitude. Тип данных float64. Количество пустых значений 19 556, 36.23%.

Koлoнкa business_phone_number. Тип данных float64. Количество пустых значений 36938, 68.44%.

Kолонка inspection_score. Тип данных float64. Количество пустых значений 1361 0, 25.22%.

Koлoнкa Neighborhoods (old). Тип данных float64. Количество пустых значений 1 9594, 36.3%.

Kолонка Police Districts. Тип данных float64. Количество пустых значений 1959 4, 36.3%.

Колонка Supervisor Districts. Тип данных float64. Количество пустых значений 19594, 36.3%.

Колонка Fire Prevention Districts. Тип данных float64. Количество пустых зна чений 19646, 36.4%.

Koлoнкa Zip Codes. Тип данных float64. Количество пустых значений 19576, 36.2 7%.

Колонка Analysis Neighborhoods. Тип данных float64. Количество пустых значен ий 19594, 36.3%.

Ввод [13]:

```
# Фильтр по колонкам с пропущенными значениями data_num = data[num_cols] data_num
```

Out[13]:

	business_latitude	business_longitude	business_phone_number	inspection_score	Neighbo
0	NaN	NaN	1.415043e+10	NaN	
1	NaN	NaN	1.415724e+10	96.0	
2	NaN	NaN	NaN	NaN	
3	NaN	NaN	1.415488e+10	NaN	
4	NaN	NaN	NaN	NaN	
53968	NaN	NaN	NaN	80.0	
53969	NaN	NaN	NaN	NaN	
53970	NaN	NaN	NaN	92.0	
53971	NaN	NaN	NaN	76.0	
53972	NaN	NaN	NaN	80.0	

53973 rows × 10 columns

Ввод [14]:

```
# Гистограмма по признакам

for col in data_num:
    plt.hist(data[col], 50)
    plt.xlabel(col)
    plt.show()
```


Ввод [15]:

```
data_num_inspection_scores = data_num[['inspection_score']]
data_num_inspection_scores.head()
```

Out[15]:

	inspection_score
0	NaN
1	96.0
2	NaN
3	NaN
4	NaN

Ввод [16]:

```
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
```

Ввод [17]:

```
# Фильтр для проверки заполнения пустых значений indicator = MissingIndicator() mask_missing_values_only = indicator.fit_transform(data_num_inspection_scores) mask_missing_values_only
```

Out[17]:

Ввод [18]:

```
strategies=['mean', 'median', 'most_frequent']
```

Ввод [19]:

```
def test_num_impute(strategy_param):
    imp_num = SimpleImputer(strategy=strategy_param)
    data_num_imp = imp_num.fit_transform(data_num_inspection_scores)
    return data_num_imp[mask_missing_values_only]
```

```
Ввод [20]:
strategies[0], test num impute(strategies[0])
Out[20]:
('mean',
 array([86.22679186, 86.22679186, 86.22679186, ..., 86.22679186,
        86.22679186, 86.22679186]))
Ввод [21]:
# Более сложная функция, которая позволяет задавать колонку и вид импьютации
def test num impute col(dataset, column, strategy param):
    temp data = dataset[[column]]
    indicator = MissingIndicator()
    mask_missing_values_only = indicator.fit_transform(temp_data)
    imp num = SimpleImputer(strategy=strategy param)
    data_num_imp = imp_num.fit_transform(temp_data)
    filled_data = data_num_imp[mask_missing_values_only]
    return column, strategy param, filled data.size, filled data[0], filled data[fil
Ввод [22]:
data[['inspection score']].describe()
Out[22]:
      inspection score
         40363.000000
 count
           86.226792
 mean
            8.462915
  std
           45.000000
  min
           81.000000
 25%
 50%
           87.000000
           92.000000
 75%
           100.000000
  max
Ввод [23]:
test_num_impute_col(data, 'inspection_score', strategies[0])
Out[23]:
('inspection score', 'mean', 13610, 86.22679186383569, 86.226791863835
```

Обработка пропусков в категориальных данных

69)

```
Ввод [24]:
```

```
# Выберем категориальные колонки с пропущенными значениями
# Цикл по колонкам датасета
cat cols = []
for col in data.columns:
    # Количество пустых значений
    temp null count = data[data[col].isnull()].shape[0]
    dt = str(data[col].dtype)
    if temp_null_count>0 and (dt=='object'):
        cat cols.append(col)
        temp perc = round((temp null count / total count) * 100.0, 2)
        print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(col,
Колонка business postal code. Тип данных object. Количество пустых значений 1
018, 1.89%.
Koлoнкa business_location. Тип данных object. Количество пустых значений 1955
6, 36.23%.
Колонка violation id. Тип данных object. Количество пустых значений 12870, 2
3.85%.
Колонка violation description. Тип данных object. Количество пустых значений
12870, 23.85%.
Колонка risk_category. Тип данных object. Количество пустых значений 12870, 2
3.85%.
Ввод [25]:
cat temp data = data[['risk category']]
cat temp data.head()
Out[25]:
   risk_category
0
          NaN
   Moderate Risk
2
          NaN
          NaN
3
 4
      High Risk
Ввод [26]:
cat temp data['risk category'].unique()
Out[26]:
array([nan, 'Moderate Risk', 'High Risk', 'Low Risk'], dtype=object)
Ввод [27]:
cat temp data[cat temp data['risk category'].isnull()].shape
Out[27]:
(12870, 1)
```

```
Ввод [28]:
# Импьютация наиболее частыми значениями
imp2 = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
data imp2 = imp2.fit transform(cat temp data)
data imp2
Out[28]:
array([['Low Risk'],
       ['Moderate Risk'],
       ['Low Risk'],
       . . . ,
       ['Moderate Risk'],
       ['Moderate Risk'],
       ['Low Risk']], dtype=object)
Ввод [29]:
# Пустые значения отсутствуют
np.unique(data imp2)
Out[29]:
array(['High Risk', 'Low Risk', 'Moderate Risk'], dtype=object)
Ввод [30]:
# Импьютация константой
imp3 = SimpleImputer(missing_values=np.nan, strategy='constant', fill_value='NA')
data imp3 = imp3.fit transform(cat temp data)
data_imp3
Out[30]:
array([['NA'],
       ['Moderate Risk'],
       ['NA'],
       ['Moderate Risk'],
       ['Moderate Risk'],
       ['Low Risk']], dtype=object)
Ввод [31]:
np.unique(data imp3)
Out[31]:
array(['High Risk', 'Low Risk', 'Moderate Risk', 'NA'], dtype=object)
Ввод [32]:
data_imp3[data_imp3=='NA'].size
Out[32]:
```

Преобразование категориальных признаков в числовые

12870

```
cat_enc = pd.DataFrame({'c1':data_imp2.T[0]})
cat_enc
Out[33]:
               с1
          Low Risk
    0
    1 Moderate Risk
          Low Risk
    3
          Low Risk
    4
          High Risk
 53968 Moderate Risk
          Low Risk
 53969
53970 Moderate Risk
53971 Moderate Risk
          Low Risk
53972
53973 rows × 1 columns
Кодирование категорий целочисленными значениями (label encoding)
Использование LabelEncoder
Ввод [34]:
from sklearn.preprocessing import LabelEncoder
Ввод [35]:
cat_enc['c1'].unique()
Out[35]:
```

array(['Low Risk', 'Moderate Risk', 'High Risk'], dtype=object)

cat_enc_le = le.fit_transform(cat_enc['c1'])

Ввод [33]:

Ввод [36]:

le = LabelEncoder()

```
Ввод [37]:
# Наименования категорий в соответствии с порядковыми номерами
# Свойство называется classes, потому что предполагается что мы решаем
# задачу классификации и каждое значение категории соответствует
# какому-либо классу целевого признака
le.classes_
Out[37]:
array(['High Risk', 'Low Risk', 'Moderate Risk'], dtype=object)
Ввод [38]:
cat_enc_le
Out[38]:
array([1, 2, 1, ..., 2, 2, 1])
Ввод [39]:
np.unique(cat_enc_le)
Out[39]:
array([0, 1, 2])
Кодирование категорий наборами бинарных значений
Ввод [40]:
from sklearn.preprocessing import OneHotEncoder
Ввод [41]:
ohe = OneHotEncoder()
cat_enc_ohe = ohe.fit_transform(cat_enc[['c1']])
Ввод [42]:
cat_enc.shape
Out[42]:
(53973, 1)
Ввод [43]:
cat_enc_ohe.shape
Out[43]:
(53973, 3)
```

```
BBOG [44]:

cat_enc_ohe.todense()[0:10]

Out[44]:
```

Ввод [45]:

```
cat_enc.head(10)
```

Out[45]:

```
с1
        Low Risk
0
   Moderate Risk
        Low Risk
2
        Low Risk
3
       High Risk
4
        Low Risk
5
        Low Risk
6
   Moderate Risk
   Moderate Risk
9
        Low Risk
```

Ввод [46]:

```
pd.get_dummies(cat_enc).head()
```

Out[46]:

	c1_High Risk	c1_Low Risk	c1_Moderate Risk
0	0	1	0
1	0	0	1
2	0	1	0
3	0	1	0
4	1	0	0

Ввод [47]:

```
pd.get_dummies(cat_temp_data, dummy_na=True).head()
```

Out[47]:

	risk_category_High Risk	risk_category_Low Risk	risk_category_Moderate Risk	risk_category_nan
0	0	0	0	1
1	0	0	1	0
2	0	0	0	1
3	0	0	0	1
4	1	0	0	0

Масштабирование данных

Ввод [48]:

from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer

Ввод [49]:

```
sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data[['inspection_score']])
```

Ввод [50]:

```
plt.hist(data['inspection_score'], 50)
plt.show()
```


Ввод [51]:

```
plt.hist(sc1_data, 50)
plt.show()
```


Масштабирование данных на основе Z-оценки - StandardScaler

Ввод [52]:

```
sc2 = StandardScaler()
sc2_data = sc2.fit_transform(data[['inspection_score']])
```