

Fashion Recommendation: Outfit Compatibility Using GNN

CSE 6240 Web Search & Text Mining

Saksham Arora, Yeojin Chang, Samaksh Gulati, Suraj Shourie

Outline

Introduction & Motivation

Problem
Statement &
Data

Approaches (Option 1.)

Experiments & Evaluation

Introduction

Is this a good outfit?

"Fashion companies that now embed AI into their businesses models could see a 118 percent cumulative increase in cash flow by 2030. [1]

Which item would "complete" this outfit?

Example of compatible and incompatible outfits

Available Dataset

Polyvore Fashion Dataset

- Polyvore.com platform for stylists to showcase their outfits
- 21,889 total outfits
- Each item belongs to 1 of
 120 clothing/accessory categories
- Images, category information, titles, number of likes

Example of outfit in Polyvore dataset

Problem Formulation and Tasks

Fill-In-The-Blank

- Given a set of fashion items (variable length), find most compatible item from a candidate set to fill in the blank
- Metric of evaluation: Accuracy

Outfit Compatibility Prediction

- Predict the compatibility score for any given outfit
- Metric of evaluation: AUC

0.9

0.26

Data Preparation

Polyvore Fashion Dataset

- Took a subset of 1600 outfits with 9,429 items
- 70%-30% split for training and test
- We create image embeddings and textual embeddings for each item.
- For Fill-in-the-Blank task, mask 1 item and randomly sample 4 negatives items
- For Outfit Compatibility task, for each actual outfit, create corresponding fake outfit pair with randomly sampled items

Problem Complexity

Initial solutions and Past work

Recommend next item based on **simple rules** like colour palette match/fabric match/texture etc.

Use a **Neural Network to learn interactions** between items to score
outfits

Use Sequential NNs like RNN/LSTM to learn interactions between items

Pitfalls

Hard to define a static & **consistent set of rules**

Different outfits have different number of items – cannot use fixed input framework of a simple Neural Networks

Introduces bias as outfits don't inherently possess a sequence

Motivation for using Graphs

Rule Based

Sequential Representation

Approach 1 Node-wise Graph NN (NGNN)

Salient Features

- **Circumvents variable length** by representing outfits as subgraphs of a category graph
- Category specific item mapping for features of items
- Weighted edge interaction instead of parameter sharing used in GNN, here aggregation strategy is modified to use different weights for different category interactions.
- Attention mechanism to distil subgraph and compute compatibility score

Overview of Method:

We create Fashion Graph where each node represents a category and each edge signifies the interactions between nodes.

Each outfit is treated as a sub-graph, where using image and text embeddings of the items, the NGNN model learns node representations. Finally, an attention layer is used to calculate the outfit compatibility score.

Training flow

Approach 2: Hypergraph Neural Networks

We explored how we can model even more complex relationship in the outfit?

Salient features in addition to the NGNN:

A hyper-egde can represents the matching interactions between multiple categories

- Better Node Representation: hyperedges in a hypergraph can connect any number of nodes.
- Flexible hypergraph structure has been employed to model high-order correlation among data

What is a Hypergraph?

Overview of Method:

Training flow

Experiments and Evaluations

Experimental Setup:

- Replicated using TensorFlow 1.15.
- Hyper-parameters (learning, rate, λ , β , hidden size, propagation steps) were finalized using grid-search strategy.
- Experimented with the following:
 - Using of text and visual features
 - Using VIT image embeddings instead of inception
- We ran until convergence which was around 15 epochs.
- All experiments were run on COC ICE servers with 1 RTX6000 GPUs.

Evaluations:

• FITB Score:

In this task, Given a set of fashion items and a blank, we aim to find the most compatible item from the candidates set to fill in the blank. We compare FITB score across the two methods

AUC Compatibility score:

We calculate AUC score and evaluate the two methods based on this in the next slide

RESULTS

Method	Accuracy (FITB)	AUC (Compatibility)
Random	24%	0.51
NGNN	38%	0.65
HGNN	39%	0.76
NGNN with VIT	40%	0.68
HGNN with VIT	40%	0.77

Method	Accuracy (FITB)	AUC (Compatibility)
NGNN (visual)	35%	0.62
NGNN (textual)	37%	0.64
NGNN (multi-modal)	38%	0.65

Performance Comparison

- HGNN performs slightly better than NGNN in both metrics.
- We also compare results for image embeddings created using VIT model and we notice that both metrics increase slightly.

Impact of different modalities

- For NGNN, multi-modal is the best approach, and text-only model is slightly better than the visual model.
- This happens because detailed textual descriptions are concise enough to capture key features of the items.

Future Work

User-specific Compatibility

- Assigning compatibility scores personal to a user
- Determining style preferences

Better Evaluation Tasks

- 1. Current Fill-in-the-Blank task formulation might have irrelevant choices
- For actual recommendation, needs evaluation of ALL items

Further Ablation Study

- Examine affect of different added features of NGNN paper over vanilla GNN
- 2. Turn off Category specific feature transformation currently used

THANK YOU!:)