Praveen Venkatesh

Ph.D. candidate, Carnegie Mellon University

EDII	CAT	ION
טענב	$\cup AI$	\mathbf{r}

Program	Institution	CGPA	Years
Ph.D., Electrical & Computer Engineering	Carnegie Mellon University Pittsburgh, PA	3.88	Fall 2014 – 2019 (expected)
B.Tech (Honors), Electrical Engineering (minor in Physics)	Indian Institute of Technology Madras Chennai, India	9.11	2010 - 2014
	DIVIDITION		

PUBLICATIONS

Journal papers

- A. K. Robinson, P. Venkatesh, M. J. Boring, M. J. Tarr, P. Grover, M. Behrmann, "Very high density EEG elucidates spatiotemporal aspects of early visual processing", (submitted)
- Pulkit Grover and Praveen Venkatesh, "An information-theoretic view of EEG sensing", Proceedings of the IEEE, vol. 105, no. 2, pp. 367–384, February 2017, doi

Conference papers

- P. Venkatesh and P. Grover, "Lower bounds on the Minimax Risk for the Source Localization Problem", International Symposium on Information Theory (ISIT), June 2017, pp. 3080–3084, doi
- Praveen Venkatesh and Pulkit Grover, "Is the direction of greater Granger causal influence the same as the direction of information flow?", *Allerton*, 2015, pp. 672–679, doi
- Pulkit Grover, Jeffrey A. Weldon, Shawn K. Kelly, Praveen Venkatesh, Haewon Jeong, "An information theoretic technique for harnessing attenuation of high spatial frequencies to design ultra-high-density EEG", Allerton, 2015, pp. 901–908, doi

Conference abstracts

- Praveen Venkatesh, Ashwati Krishnan, Jeffrey Weldon, Shawn Kelly, Pulkit Grover,
 "Ultra-resolution Subdermal EEG: Long-term Minimally-invasive Brain Monitoring",
 SfN Neuroscience 2017 (accepted), November 2017
- Praveen Venkatesh and Pulkit Grover, "High Density EEG: Information-theoretic Limits and Algorithms", International Symposium on Information Theory (ISIT), Recent Results, June 2017
- Alireza Chamanzar, Shilpa George, Praveen Venkatesh, Wanqiao Ding, Pulkit Grover, "Systematic and automated algorithms for detecting cortical spreading depolarizations using EEG and ECoG to improve TBI diagnosis and treatment", 12th World Conference on Brain Injury, March 2017
- P. Venkatesh, W. Ding, P. Grover, "Data processing for reliable detection of cortical spreading depolarizations using high-density EEG", American Epilepsy Society annual meeting, December 2016
- Praveen Venkatesh and Pulkit Grover, "Is the direction of greater Granger causal influence the same as the direction of information flow?", SfN Neuroscience 2015, October 2015

AWARDS

- A recipient of the Carnegie Institute of Technology Dean's Fello	wship [2014-15]
– A recipient of the Henry L. Hillman Presidential Fellowship	[2015-16]
 A recipient of the Dowd Fellowship from the College of Engineer at Carnegie Mellon university 	ring [2016-17]
 A recipient of the CMLH Fellowship in Digital Health from the Center for Machine Learning and Health at Carnegie Mellon Un 	

TEACHING

At Carnegie Mellon University

- Teaching Assistant for 18-898: Introduction to Data Science with Applications to Clinical Neural Data
- [Spring, 2017]

- Helped design the course curriculum and homework assignments
- Taught several lectures on statistics and source localization
- Worked closely with students on designing and implementing course projects in collaboration with clinicians
- Teaching Assistant for 18-290: Signals and Systems

[Spring, 2015]

At the Indian Institute of Technology, Madras

- Teaching Assistant for EE4371: Introduction to Data Structures and Algorithms

[Spring, 2014]

RELEVANT COURSEWORK (CMU)

- Neural Data Analysis
- Information Flows: Communication, Computational and Neuronal
- Estimation, Detection and Identification
- Intermediate Statistics

- Compressive Sensing and Sparse Representations
- Information Theory
- Error Control Coding
- Convex Optimization
- Information Processing and Learning