

High-Performance Non-PCI 32-bit 10/100/1000M Gigabit Ethernet Controller

Document No: AX88180/V1.4

Features

- High-performance non-PCI local bus
 - 16/32-bit SRAM-like host interface
 - Support big/little endian data bus type
 - Large embedded SRAM for packet buffers
 - 32K bytes for receive buffer
 - 8K bytes for transmit buffer
 - Support IP/TCP/UDP checksum offloads
 - Support interrupt with high or low active trigger
- Highly-integrated Gigabit Ethernet controller
 - Compatible with IEEE802.3, 802.3u, and 802.3ab standards
 - Support 10/100/1000Mbps data rate
 - Support full duplex operation with 1000Mbps data
 - Support full and half duplex operations with Integrated voltage regulator from 3.3V to 2.5V 10/100Mbps date rate
 - Support 10/100/1000Mbps N-way Auto-negotiation operation
 - Support IEEE 802.3x flow control for full-duplex operation

- Support 10/100/1000Mbps data rate with RGMII or MII in 10/100Mbps data rate.
- Support back-pressure flow control for half-duplex operation
- Support packet length set by software
- Support max 4K bytes JUMBO packet
- Support Wake-on-LAN function by following events
 - Detection of network link-up state
 - Receipt of a Magic Packet
- Support Magic Packet detection for remote wake-up after power-on reset
- Support EEPROM interface
- Support PCMCIA in 16-bit mode
- Support synchronous or asynchronous mode to host
- 2.5V for core and 3.3V I/O with 5V tolerance
- 128-pin LQFP with CMOS process, RoHS package
- US patent approved (NO 6799231)

Product Description

The AX88180 is a high-performance and cost-effective non-PCI Gigabit Ethernet controller for various embedded systems including consumer electronics and home network markets that require a higher bandwidth of network connectivity. The AX88180 supports 16/32-bit SRAM-like host interface and Gigabit Ethernet MAC, which is IEEE802.3 10Base-T, IEEE802.3u 100Base-T, and IEEE802.3ab 1000Base-T compatible. The AX88180 supports full-duplex or half-duplex operation at 10/100/1000Mbps speed with auto-negotiation or manual setting. The AX88180 integrates large embedded SRAM for packet buffers to accommodate high bandwidth applications and supports IP/TCP/UDP checksum to offload processing loading from microprocessor/microcontroller in an embedded system

System Block Diagram

Always contact ASIX for possible updates before starting a design.

This data sheet contains new products information. ASIX ELECTRONICS reserves the rights to modify product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sale of the product.

Released Date: 5/18/2007

Target Applications

- •Multimedia applications
 - Content distribution application
 - Audio distribution system (Whole-house audio)
 - Video-over IP solutions, IP PBX and video phone
 - Video distribution system, multi-room PVR
 - Cable, satellite, and IP set-top box
 - Digital video recorder
 - DVD recorder/player
 - High definition TV
 - Digital media client/server
 - Home gateway
 - IPTV for triple play

Others

- Printer, kiosk, security system
- Wireless router & access point

Applications

The AX88180, design with a high-performance RISC CPU, provides a very low cost yet very high-performance embedded networking solution to enable easy and simple LAN or Internet access capability to high-bandwidth multimedia application needs in the Internet era.

Content

1.0 Introduction	6
1.1 General Description	6
1.2 AX88180 Block Diagram	
1.3 AX88180 Pinout Diagram	
2.0 Signal Description.	8
2.1 Signal Type Definition	
2.3 Host Interface	
2.4 EEPROM Interface	
2.5 Regulator Interface.	
2.6 Miscellaneous	
2.7 Power/ground pin	
3.0 Functional Description	
3.1 Host Interface	
3.2 System Address Range	
3.3 TX Buffer Operation	
3.4 RX Buffer Operation	
3.5 Flow Control	
3.6 Checksum Offloads and Wake-up	
3.7 Burst-Mode support	
3.8 Big/Little-endian support	
3.9 16-bit Mode	
3.10 EEPROM Format	
4.0 Register Description	15
4.1 CMDCommand Register	16
4.2 IMRInterrupt Mask Register	
4.3 ISRInterrupt Status Register	
4.4 TX_CFGTX Configuration Register	
4.5 TX_CMDTX Command Register	
4.6 TXBSTX Buffer Status Register	
4.7 TXDES0TX Descriptor0 Register	
4.8 TXDES1TX Descriptor1 Register	
4.9 TXDES2TX Descriptor2 Register	20
4.10 TXDES3TX Descriptor3 Register	20
4.11 RX_CFGRX Configuration Register	
4.12 RXCURTRX Current Pointer Register	
4.13 RXBOUNDRX Boundary Pointer Register	
4.14 MAC_CFG0MAC Configuration0 Register	
4.15 MAC_CFG1MAC Configuration1 Register	
4.16 MAC_CFG2MAC Configuration2 Register	
4.17 MAC_CFG3MAC Configuration3 Register	
4.18 TXPAUTTX Pause Time Register	
4.19 RXBTHD0RX buffer Threshold0 Register	
4.20 RXBTHD1RX Buffer Threshold1 Register	
4.21 RXFULTHDRX Buffer Full Threshold Register	
4.22 MISC—Misc. Control Register	
4.23 MACIDOMAC IDO Register	
4.24 MACID1MAC ID1 Register	
4.25 MACID2MAC ID2 Register	
4.26 TXLENTX Length Register	
4.27 RXFILTERRX Packet Filter Register	
4.28 MDIOCTRLMDIO Control Register	
4.30 GPIO_CTRLGPIO Control Register	
4.50 Of 10_C I KLOf 10 Collinor Register	20

	DICATORReceive Indicator Register					
	-TX Status Register					
	.KPATMDC Clock Pattern Register					
	CNTRX CRC Error Counter					
4.36 TXFAI	LCNTTX Fail Counter	28				
	DPREEPROM Data Port Register					
	CTRLEEPROM Control Register					
	TABOHash Table0 Register					
4.41 HASH	TAB1Hash Table1 Register	29				
	TAB2Hash Table2 Register					
	TAB3Hash Table3 Register					
	HD1—Watch Dog Timer Threshold1 Register					
	RST Software Reset Register					
5.0 Electrical S	pecification and Timings	31				
5.1 DC Char	racteristics	31				
5.1.1 Abs	solute Maximum Ratings	31				
5.1.2 Gen	neral Operation Conditions					
5.1.3 Lea	skage Current and Capacitance	31				
5.1.4 DC	Characteristics of 2.5V IO Pins					
5.1.5 DC	Characteristics of 3.3V IO Pins	32				
	wer Consumption					
	ermal Characteristics					
	ning Characteristics					
5.2.1 Hos	st Clock	33				
5.2.2 Res	set Timing	33				
	st Single Write Timing					
5.2.4 Hos	st Burst Write Timing	34				
5.2.5 Hos	st Single Read Timing	34				
5.2.6 Hos	st Burst Read Timing					
5.2.7 RG	MII Clock Timing					
5.2.8 RG	MII Receive Timing (1000/100/10 Mbps)	36				
5.2.9 RG	MII Transmit Timing	36				
5.2.10 Mi	DIO Timing					
5.2.11 Sea	rial EEPROM Timing	37				
6.0 Package Inf	formation	38				
7.0 Ordering In	nformation	39				
Appendix A1.	16-bit mode address and data bus	40				
Appendix A2.	32-bit mode address and data bus	42				
Appendix A3.	AX88180 with Giga-PHY Connection	43				
Appendix A4.	Synchronous and asynchronous timing selection	44				
Appendix A5.	ix A5. Wake On LAN (WOL) without driver via Magic Packet					

Revision History	46
List of Figures	
Figure 1 : AX88180 block diagram	6
Figure 2: AX88180 pin connection diagram	7
Figure 3: 32-bit mode address mapping	12
Figure 4: data swap block	13
Figure 5: 16-bit mode memory mapping	14
List of Tables	
Table 1 : RGMII/MII Interface signals group	8
Table 2 : Host Interface signals group	9
Table 3 : EEPROM Interface signals group	10
Table 4: Regulator signals group	10
Table 5 : Miscellaneous signals group	
Table 6 : Power/Ground pins group	11
Table 7: MAC Register Mapping	15

1.0 Introduction

1.1 General Description

The AX88180, SRAM-like 16/32-bit local bus to Gigabit Ethernet bridge, supports a 10/100/1000 Mbps with RGMII (V2.0 in delay timing) or MII in wire-speed operation. AX88180 supports RGMII (802.3ab, 1000Base-T) interface with full-duplex operation at gigabit speed and full-duplex or half-duplex operation at 10/100 Mbps speed. AX88180 can also operate in MII mode with 10/100Mbps speed.

The AX88180 has two built-in synchronous SRAM for buffering packet. The one is 32K bytes for receiving packets from Ethernet PHY; the other is 8K-bytes for transmitting packets from host system to Ethernet PHY. The AX88180 also has 256 bytes built-in configuration registers. For software programming, the total address space used in AX88180 is 64K in 32-bit mode and at least (8K + 8) bytes in 16-bit mode.

Because AX88180 is a SRAM-like device, AX88180 could be treated as a SRAM device and can be attached to SRAM controller of system. Therefore, system can execute DMA cycles to gain the highest performance.

AX88180 needs 2 clock sources. One (HCLK) is the same to host system clock or from stand-along OSC, the other is 125Mhz (CLK125) for AX88180 running in RGMII mode. In general application, the 125MHz clock can be from Giga -PHY for cost effectively.

1.2 AX88180 Block Diagram

Figure 1: AX88180 block diagram

1.3 AX88180 Pinout Diagram

The AX88180 is housed in the 128-pin LQFP package.

Figure 2: AX88180 pin connection diagram

2.0 Signal Description

2.1 Signal Type Definition

I3: Input, 3.3V with 5V tolerance I2: Input, 2.5V with 3.3V tolerance

I25 Input 2.5V only
O3: Output, 3.3V
O2: Output, 2.5V

IO3: Input/Output, input 3.3V with 5V tolerance IO2: Input/Output, input 2.5V with 3.3V tolerance

TSO: Tri-State Output

OD: Open Drain allows multiple devices to share as a wire-OR

Internal 75K Pull Down PD: Internal 75K Pull Up PU: Digital Ground GND: 3.3V power VCC3: 2.5V power VCC2: I: Input only O: Output only IO: Input/Output

2.2 RGMII/MII Interface

Table 1: RGMII/MII Interface signals group

Pin Name	Type	Pin NO	Pin Description	
CLK125	I3	51	Free running clock 125MHz from OSC or Giga-PHY.	
TXEN	O2, 12mA	66	Transmit Enable: TXEN is transition synchronously with respect to the rising and falling edge of TXCX. TXEN indicates that the port is presenting nibbles on TXD [3:0] for transmission.	
TXD[3:0]	O2, 12mA	61,62,63,65	Transmit Data: TXD[3:0] is transition synchronously with respect to the rising and falling edge of TXCX. In rising edge TXD[3:0] is as general TD[3:0] and falling edge TXD[3:0] is as TD[7:4]. TD[7:0] is used in AX88180 as byte unit.	
TXCX	O2, 12mA	68	125MHz Clock Output: It is a continuous 125 MHz clock Output to Giga-PHY operating in RGMII mode. It is a timing reference for TXEN and TXD[3:0]. For normal operation, this pin will be connected to Giga-PHY.	
GTXCLK	O2, 12mA	67	125MHz Clock Output: It is a continuous 125 MHz clock output. This pin is for internal debug purpose only and should be floating for normal operation.	
RXCLK	I2	71	Receive Clock: RXCLK is a continuous clock that provides the timing reference for RXDV, RXD[3:0]. This clock is provided from PHY.	
RXD[3:0]	I2	77,76,75,74	Receive Data: RXD[3:0] is driven by the PHY synchronously with respect to RXCLK. In rising edge RXD[3:0] is as RD[3:0] and falling edge is as RD[7:4]. RD[7:0] is used in AX88180 as byte unit.	
RXDV	I2	70	Receive Data Valid: RXDV is driven by the PHY synchronously with respect to RXCLK in rising and falling edge. It is asserted high when valid data is present on RXD [3:0].	
COL	I2	80	Collision: This signal is driven by PHY when collision is detected.	
CRS	I2	79	Carrier Sense:	

			Asynchronous signal CRS is asserted by the PHY when either the transmitted or receive medium is non-idle.	
MDIO	IO2, PU, 8mA	59	Station Management Data Input /Output: Serial data input/Output transfers from/to the PHY. The transfer protocol conforms to the IEEE 802.3u MII specification.	
MDC	O2, 8mA	58	Station Management Data Clock: The timing reference for MDIO. All data transfers on MDIO are synchronized to the rising edge of this clock.	
PHYINTN	I 2	46	Interrupt signal from PHY, active low.	
TXCLK	I2	69	A clock from Giga-PHY operates in MII mode. If Giga-PHY provides clock for 10/100M in MII mode, AX88180 can use this pin as reference clock. For normal operation, to connect TXCLK of Giga-PHY with this pin.	

2.3 Host Interface

Table 2: Host Interface signals group

Pin Name	Type	Pin NO	Pin Description		
INTN	TSO, 8mA	102	Interrupt to host system When the polarity is active high, this signal must be pulled low, otherwise pulled high in active low environment. Software set the bit6 of command register (CMD) to response the polarity.		
RST_N	I3	103	Reset signal: active low.		
HCLK	13	104	Reference Clock. This clock may be from host (synchronous mode) or the output of stand-alone OSC (asynchronous mode).		
WAKEUP	TSO, 8mA	115	Wake-up signal to system. When the polarity of system is active high, this signal must be pulled low, otherwise pulled high in active low environment. Software set the bit0 of command register (CMD) to response the polarity.		
HD0	IO3, 8mA	19	Data bus bit0.		
HD1	IO3, 8mA	18	Data bus bit1.		
HD2	IO3, 8mA	17	Data bus bit2.		
HD3	IO3, 8mA	16	Data bus bit3.		
HD4	IO3, 8mA	15	Data bus bit4.		
HD5	IO3, 8mA	14	Data bus bit5.		
HD6	IO3, 8mA	12	Data bus bit6.		
HD7	IO3, 8mA	11	Data bus bit7.		
HD8	IO3, 8mA	10	Data bus bit8.		
HD9	IO3, 8mA	9	Data bus bit9.		
HD10	IO3, 8mA	7	Data bus bit10.		
HD11	IO3, 8mA	6	Data bus bit11.		
HD12	IO3, 8mA	5	Data bus bit12.		
HD13	IO3, 8mA	3	Data bus bit13.		
HD14	IO3, 8mA	2	Data bus bit14.		
HD15	IO3, 8mA	128	Data bus bit15.		
HD16	IO3, 8mA	127	Data bus bit16, internal pull down. *		
HD17	IO3, 8mA	126	Data bus bit17, internal pull down. *		
HD18	IO3, 8mA	125	Data bus bit18, internal pull down. *		
HD19	IO3, 8mA	124	Data bus bit19, internal pull down. *		
HD20	IO3, 8mA	122	Data bus bit20, internal pull down. *		
HD21	IO3, 8mA	121	Data bus bit21, internal pull down. *		
HD22	IO3, 8mA	120	Data bus bit22, internal pull down. *		
HD23	IO3, 8mA	118	Data bus bit23, internal pull down. *		
HD24	IO3, 8mA	116	Data bus bit24, internal pull down. *		
HD25	IO3, 8mA	114	Data bus bit25, internal pull down. *		

HD26	IO3, 8mA	113	Data bus bit26, internal pull down. *			
HD27	IO3, 8mA	112	Data bus bit27, internal pull down. *			
HD28	IO3, 8mA	111	Data bus bit28, internal pull down. *			
HD29	IO3, 8mA	110	Data bus bit29, internal pull down. *			
HD30	IO3, 8mA	109	Data bus bit30, internal pull down. *			
HD31	IO3, 8mA	108	Data bus bit31, internal pull down. *			
HA1	I3	42	Address bus bit1.			
HA2	I3	41	Address bus bit2.			
HA3	I3	34	Address bus bit3.			
HA4	I3	33	Address bus bit4.			
HA5	I3	32	Address bus bit5.			
HA6	I3	31	Address bus bit6.			
HA7	I3	30	Address bus bit7.			
HA8	I 3	29	Address bus bit8.			
HA9	I3	28	Address bus bit9.			
HA10	I3	26	Address bus bit10.			
HA11	I3	25	Address bus bit11.			
HA12	I3	24	Address bus bit12.			
HA13	I3	23	Address bus bit13.			
HA14	I3	22	Address bus bit14.			
HA15	I3	21	Address bus bit15.			
WEN	I3	44	Data Write Enable:			
			Host drives WEN and it is active low.			
CSN	I3	45	Chip Select Enable.			
			Host drives CSN and it is active low.			
OEN	13	43	Data Output Enable:			
			Host drives OEN and it is active low.			

^{*}Note: The internal Pull-down of HD16 to HD31 will be disabled in 32-bit mode.

2.4 EEPROM Interface

Table 3: EEPROM Interface signals group

			0 0 .	
Pin Name	Туре	Pin No.	Pin Description	
EECLK	O3, 12mA	47	A low speed clock to EEPROM	
EECS	O3, 12mA	48	Chip select to EEPROM device.	
EEDI	O3, 12mA	49	Data to EEPROM, valid in EECS is high and EECLK in rising edge.	
EEDO	I3, PD	50	Data from EEPROM	

2.5 Regulator Interface

Table 4: Regulator signals group

			0 0 1	
Pin Name	Type	Pin No.	Pin Description	
VCC33R	VCC3	37	3.3V power to internal regulator	
GNDR	GND	36	Ground pin for internal regulator	
REG_EN	I3	39	High to enable internal regulator. Low to disable internal regulator.	
V25OUT	O2	38	2.5V output from internal regulator, max 250mA, when REG_EN pin is high.	

2.6 Miscellaneous

Table 5: Miscellaneous signals group

Pin Name	Type	Pin No.	Pin Description	
GPIO0	IO3, 12mA, PD	55	General Purpose pin. In reset stage this pin defines chip operates in 16 or 32-bit mode. Pull-down is for 32-bit mode and pull-up (by 4.7K) is for 16-bit mode. If this pin is floating, it will be as default for 32-bit mode.	
GPIO1	IO3, 12mA, PD	54	General Purpose pin. In reset stage this pin defines chip operates in little-endian or big-endian mode. Pull-down is little-endian mode and pull-up is big-endian mode. If this pin is floating, it will as default for little-endian mode.	
TEST0	I3, PD	52	Connect to ground for normal operation.	
TEST1	I3, PD	53	Connect to ground for normal operation.	
TEST2	I25	83	Connect to ground for normal operation.	
TEST3	I25	84	Connect to ground for normal operation.	
TEST4	I25	88	Pull-down for normal operation	
TEST5	I25	90	Connect to ground for normal operation.	
TEST6	I25	97	Pull-up (with 4.7K) for normal operation	
NC	О	91,93,94	No connection	

2.7 Power/ground pin

Table 6 : Power/Ground pins group

Pin Name	Type	Pin No.	Pin Description
VCC33	VCC3	1,13,40, 105, 119	3.3V power pins
VCC25	VCC2	4,20,27,35,57,60,64,72,78,81,85,89,96,98,100,107, 117,123	2.5V power pins
GND	GND	8,56,73,82,86,87,92,95,99,101,106	Ground pins

3.0 Functional Description

3.1 Host Interface

AX88180 supports a very simple SRAM-like interface. There are only 3 control signals to operate the read or write. For write operation, host activates CSN and WEN to low with address and data bus. AX88180 will decode and latched the data into internal buffer. For normal operation, the WEN needs at least 4 clocks duration for one 32/16-bit write operation. The CSN can always be driven, but WEN must at least be de-asserted 1 clock before next access. For read operation, host asserts CSN and OEN at least 5 clocks to AX88180, the data will be valid after 4 clocks. AX88180 also support burst mode if host reads/writes AX88180 by continuous access. Note: The burst mode only supports in TX/RX, not supports in registers read/write. That is, reads RX area from XXXX_0000 to XXXX_7FFF or writes TX area from XXXX_8000 to XXXX_FBFF can be accessed by burst mechanism.

3.2 System Address Range

AX88180 is suitable to attach to SRAM controller, so it needs 64K memory space for operation. The designer can allocate any block (64K) in system space. From offset 0x0000 to 0x7FFF is for RX operation, and offset 0x8000 to 0xFBFF is for TX operation. The internal configuration register of AX88180 is allocated in offset 0xFC00 to 0xFCFF. Below is the mapping of addressing.

Figure 3: 32-bit mode address mapping

3.3 TX Buffer Operation

AX88180 employs 4 descriptors to maintain transmit information, such as packet length, start bit. These descriptors are located in offset 0xFC20, 0xFC24, 0xFC28 and 0xFC2C. Driver can choose any descriptor whenever there is data needed to be transmitted. Since there are only 4 descriptors, upon running out of descriptors, driver must wait for the descriptor is to be released by AX88180.

3.4 RX Buffer Operation

AX88180 is built a 32K SRAM for RX operation. It utilizes ring structure to maintain the input data from PHY and read out to host. There are two pointer registers located in offset 0xFC34 and 0xFC38. AX88180 will maintain RXCURT register. Upon it receives a valid packet from PHY it will update RXCURT according to the packet length. Driver reads data from AX88180 and maintains the RXBOUND register. When driver finishes reading packet, it must update RXBOUND according to the packet length. AX88180 utilizes RXCURT and RXBOUND to provide receive buffer status, full or empty.

3.5 Flow Control

In full duplex mode, AX88180 supports the standard flow control mechanism defined in IEEE 802.3x standard. It enables the stopping of remote node transmissions via a PAUSE frame information interaction. When space of the packet buffer is less than the threshold values (RXBTHD0, RXBTHD1), AX88180 will send out a PAUSE-ON packet to stop the remote node transmission. And then AX88180 will send out a PAUSE-OFF packet to inform the remote node to retransmit packet if it has enough space to receive packets.

3.6 Checksum Offloads and Wake-up

To reduce the computing loading of CPU, AX88180 is built checksum operator for IP, UDP or TCP packet. AX88180 will detect the packet whether it is IP, UDP or TCP packet. If it is an IP packet, AX88180 will calculate the checksum of header and put the result in checksum filed of IP. Then it continuously checks the packet whether it is UDP or TCP. It will perform the checksum operation whenever it is a UDP or TCP packet. AX88180 also automatically skip the VLAN tag when checksum is executed. AX88180 also supports to detect magic packet or link-up to wake up system when system is in sleep state or needs to cold start by magic packet.

3.7 Burst-Mode support

To improve the throughput in embedded system, AX88180 supports fast-mode (burst) for TX/RX buffer access. Host can access AX88180 by driving CSN to low and toggle WEN (write) or OEN (read). AX88180 can support the burst until whole packet access. The access timing can refer to section 5.2.4 and 5.2.6. This mechanism is only for TX/RX buffer access. For configuration register access, it must use single access.

3.8 Big/Little-endian support

AX88180 supports "Big" or "Little" endian data format. The default is Little-endian. Designer can pull-up GOIO1 pin to high to swap the data format. Below table can depict the relation. This swap is only valid in 32-bit mode.

Figure 4: data swap block

3.9 16-bit Mode

AX88180 also supports 16-bit mode operation. AX88180 driver should request at least (8K + 8) bytes space for TX, RX and register access. For example, the driver requests a 16K bytes space from system and then sets the new window base address to MEMBAS6 register. After that, driver should set bit 0 (DECODE_EN) of MEMBASE register to start decoding for TX buffer, RX buffer and registers access. (Note: AX88180 H/W only decodes low 16-bit offset address.)

MEMBASE--Memory base Address

Field	Name	Type	Default	Description
15:1	-	R/W	-	Reserved. The output value is undefined if software read this field.
0	DECODE_EN	R/W	0	16-bit decode enable
				Set to '1' to start decoding.

MEMBAS6--Memory base Address + 6

Field	Name	Type	Default	Description
15:8	ı	R/W	-	Reserved. The output value is undefined if software read this field.
7:0	WINSIZE	R/W	0x00	Window Base Pointer. (The MSB of new window base address, 16-bit offset) This field defines another new windows base address for TX, RX and register access. The total size is 8K bytes. TX areas occupy 3840 bytes Registers occupy 256 bytes. RX areas occupy 4096 bytes.

Note: The WINSIZE field of this address is used to define the MSB of new window base address, the TX buffer, RX buffer and registers should be accessed through this new window base address in 16-bit mode. Please refer to below mapping mechanism for details.

Figure 5: 16-bit mode memory mapping

The following is an example to indicate how to define a new window base address in 16-bit mode by configuring the MEMBAS6 register. If AX88180 is allocated at the memory base address 0x20_0000 by hardware (i.e. the MEMBASE register is allocated at 0x20_0000) and users would like to set the new window base address to 0x20_1000, the driver should write 0x0010 to the MEMBAS6 register (offset 0x20_0006). In this case, the TX buffer area will be allocated from 0x20_1000 to 0x20_1EFF; the registers area will be allocated from 0x20_1FFF and the RX buffer area will be allocated from 0x20_2000 to 0x20_20000 to 0x20_2000 to 0x20_2000 to 0x20_2000 to 0x20_2000 to 0x20_20

3.10 EEPROM Format

AX88180 will auto-load data from EEPROM device after hardware reset. If the EEPROM device is not attached, the loading operation will be discarded. The EEPROM mainly provides MAC address information and CIS information if it is used in PCMCIA environment. Below table is the format if EEPROM device is employed. Note: If the MAC address is 12 34 56 78 9A BC (MSB-LSB) then driver should set MACID0=0x9ABC, MACID1=0x5678 and MACID2=0x1234.

Address	16-bits data Description
0	Pointer to starting address of CIS area. Set this field to 0x0070 to shorten the download EEPROM if there is
	no CIS needed. AX88180 only supports the 16-bit mode of 93C56, thus the max value of this field is
	0x007F. This field should not be set to 0x0000 or 0xFFFF; otherwise, AX88180 will not recognize the
	EEPROM during hardware reset.
1	MACID0 data
2	MACID1 data
3	MACID2 data
4	Reserved, keep all 0's
5	Bit0: When GPIO0 is set to '1' in reset stage, this bit indicates AX88180 whether it is in the environment of
	PCMCIA.
	0 = General 16-bit mode,
	1= Special for PCMCIA environment of 16-bit mode.
	Bit1: must be '0'
	Bit2: 1 = set RGMII mode by EEPROM, 0 = none. (The setting will be cleared when software resets)
	Bit3: 1 = set Gigabit mode by EEPROM, 0=none (The setting will be cleared when software resets)
	Others bits must set to 0s
6 ~ 11	Reserved, keep all 0's
12 ~ 127	CIS area, if AX88180 is used in PCMCIA system, otherwise set them to all '0s'

4.0 Register Description

There are some registers located from 0xFC00 to 0xFCFF. All of the registers are 32-bit boundary alignment, but only low 16-bit are available (exception 0xFC54). For reserved bits, don't set them in normal operation.

Table 7: MAC Register Mapping

Offset	Name	Description	Default value
0xFC00	CMD	Command Register	0x0000 0201
0xFC04	IMR	Interrupt Mask Register	0x0000 0000
0xFC08	ISR	Interrupt Status Register	0x0000 0000
0xFC10	TX_CFG	TX Configuration Register	0x0000_0040
0xFC14	TX_CMD	TX Command Register	0x0000 0000
0xFC18	TXBS	TX Buffer Status Register	0x0000 0000
0xFC20	TXDES0	TX Descriptor0 Register	0x0000 0000
0xFC24	TXDES1	TX Descriptor1 Register	0x0000 0000
0xFC28	TXDES2	TX Descriptor2 Register	0x0000 0000
0xFC2C	TXDES3	TX Descriptor3 Register	0x0000_0000
0xFC30	RX_CFG	RX Configuration Register	0x0000_0101
0xFC34	RXCURT	RX Current Pointer Register	0x0000_0000
0xFC38	RXBOUND	RX Boundary Pointer Register	0x0000_07FF
0xFC40	MAC_CFG0	MAC Configuration 0 Register	0x0000_8157
0xFC44	MAC_CFG1	MAC Configuration 1 Register	0x0000_6000
0xFC48	MAC_CFG2	MAC Configuration2 Register	0x0000_0000
0xFC4C	MAC_CFG3	MAC Configuration3 Register	0x0000_060E
0xFC54	TXPAUT	TX Pause Time Register	0x001F_E000
0xFC58	RXBTHD0	RX Buffer Threshold0 Register	0x0000 0300
0xFC5C	RXBTHD1	RX Buffer Threshold1 Register	0x0000_0500
0xFC60	RXFULTHD	RX Buffer Full Threshold Register	0x0000_0000
0xFC68	MISC	Misc. Control Register	0x0000_0100
0xFC70	MACID0	MAC ID0 Register*	0x0000_0013
0xFC70	MACID1	MAC ID1 Register*	0x0000_0000
0xFC74 0xFC78	MACID2	MAC ID1 Register*	0x0000_0000
0xFC76	TXLEN	TX Length Register	0x0000_0000 0x0000_05FC
0xFC80	RXFILTER	RX Packet Filter Register	0x0000_031 C
0xFC84	MDIOCTRL	MDIO Control Register	0x0000_0004
0xFC88	MDIODP	MDIO Data Port Register	0x0000_0000
0xFC8C	GPIO_CTRL	GPIO Control Register*	0x0000_0003
0xFC90	RXINDICATOR	Receive Indicator Register	0x0000_0000
0xFC90	TXST	TX Status Register	0x0000_0000
0xFCA0	MDCLKPAT	MDC Clock Pattern Register	0x0000_8040
0xFCA4	RXCHKSUMCNT	RX IP/UDP/TCP Checksum Error Counter	0x0000_0000
0xFCA8	RXCRCNT	RX CRC Error Counter	0x0000_0000
0xFCAC	TXFAILCNT	TX Fail Counter	0x0000_0000
0xFCB0	PROMDPR	EEPROM Data Port Register	0x0000_0000
0xFCB0 0xFCB4	PROMCTRL	EEPROM Control Register	0x0000_0000
0xFCB4 0xFCB8	MAXRXLEN	MAX. RX packet Length Register	0x0000_0000 0x0000_0600
0xFCG8	HASHTAB0	Hash Table0 Register*	0x0000_0000 0x0000_0000
0xFCC0 0xFCC4	HASHTAB1	Hash Table 1 Register*	0x0000_0000 0x0000_0000
0xFCC4 0xFCC8			0x0000_0000 0x0000_0000
	HASHTAB2	Hash Table 2 Register* Hash Table 2 Register*	-
0xFCCC	HASHTAB3	Hash Table3 Register* Wetch Dog Timer Threshold0 Register	0x0000_0000
0xFCE0	DOGTHD1	Watch Dog Timer Threshold Register	0x0000_FFFF
0xFCE4	DOGTHD1	Watch Dog Timer Threshold1 Register	0x0000_0000
0xFCEC	SOFTRST	Software Reset Register	0x0000_0003

^{*}Note: It is not affected by software reset

4.1 CMD--Command Register

Offset Address = 0xFC00 Default = $0x0000_0201$

Field	Name	Type	Default	Description
31:16	-	R/W	All 0's	Reserved
15	RXVLAN	R/W	0	RX VLAN indicator Driver enables this bit to indicate AX88180 that the received packet will include 4 bytes VLAN tag; AX88180 will skip 4 bytes when it calculates the checksum of IP, TCP or UDP packet. 1 = enable 0 = disable
14	TXVLAN	R/W	0	TX VLAN indicator Driver enables this bit to indicate AX88180 that the transmitted packet will include 4 bytes VLAN tag; AX88180 will skip 4 bytes when it calculates the checksum of IP, TCP or UDP packet. 1 = enable 0 = disable
13:10	-	R/W	All 0's	Reserved
9	RXEN	R/W	1	RX Function Enable When this bit is enabled, MAC starts to receive packets. 1 = enable 0 = disable
8	TXEN	R/W	0	TX Function Enable When this bit is enabled, MAC could start to transmit packet to Ethernet. 1 = enable 0 = disable
7	-	R/W	0	Reserved
6	INTMOD	R/W	0	Interrupt Active Mode Driver sets this bit to indicate AX88180 the interrupt of system is activated high or low. 1: Active high 0: Active low
5:1	-	R/W	All 0's	Reserved
0	WAKEMOD	R/W	1	WAKEUP pin polarity Driver sets this bit to indicate AX88180 the polarity of system wake-up signal is activated high or low. 1: Active high 0: Active low

4.2 IMR--Interrupt Mask Register

Offset Address = 0xFC04

Field	Name	Type	Default	Description
31:6	-	R	All 0's	Reserved
5	PHYMASK	R/W	0	PHY interrupt Mask
				When this bit is enabled, an interrupt request from PHY set in bit 5 of
				Interrupt Status Register will make AX88180 to issue an interrupt to host.
				1 = enable
				0 = disable
4	PRIM	R/W	0	Packet Received Interrupt Mask
				When this bit is enabled, a received interrupt request set in bit 4 of Interrupt
				Status Register will make AX88180 to issue an interrupt to host.
				1 = enable
				0 = disable
3	PTIM	R/W	0	Packet Transmitted Interrupt Mask
				When this bit is enabled, a transmitted interrupt request set in bit 3 of Interrupt
				Status Register will make AX88180 issue an interrupt to host.

				1 = enable 0 = disable
2	-	R/W	0	Reserved
1	DOGIM	R/W	0	Watch Dog Timer Interrupt Mask
				When this bit is enabled, a watch dog timer expired interrupt request set in
				bit1 of Interrupt Status Register will make AX88180 to issue an interrupt to
				host
				1 = enable
				0 = disable
0	RXFULIM	R/W	0	RX Buffer Full Interrupt Mask
				When this bit is enabled, a RX buffer full interrupt request set in bit 0 of
				Interrupt Status Register will make AX88180 to issue an interrupt to host.
				1 = enable
				0 = disable

4.3 ISR--Interrupt Status Register

Offset Address = 0xFC08

	Huuress			Detault = 0x0000_0000
Field	Name	Type	Default	Description
31:6	-	R	All 0's	Reserved
5	PHYIG	R/W	0	PHY Interrupt Generation If this bit is set to '1', it means there is an interrupt request from PHY. AX88180 will forward this interrupt to system. Meantime driver should poll PHY and adopt proper procedure. Write '1' to this bit to clear this request status. 1 = have interrupt request 0 = no interrupt request
4	RPIG	R/W	0	Receive Packet Interrupt Generation If this bit is set to '1', it means AX88180 receives a packet or (packets) from PHY. The packet is kept in RX buffer. Write '1' to this bit to clear this request status. 1 = have received packet 0 = no received packet
3	FTPI	R/W	0	Finish Transmitting Packet Interrupt If this bit is set to '1', it means AX88180 had transmitted packet to PHY. Write '1' to this bit to clear this request status. 1 = finish transmission 0 = none
2	-	R/W	0	Reserved
1	WDTEI	R/W	0	Watch Dog Timer Expired Interrupt If this bit is set to '1', it means the WATCH DOG timer is expired. AX88180 will issue an interrupt to host. Write '1' to this bit to clear this request status. The expired duration can refer to DOGTHD0 and DOGTHD1 registers. 1 = timer expired happens 0 = none
0	RXFULI	R/W	0	RX Buffer Full Interrupt If this bit is set to '1' it means RX buffer is full and no more packets will be received until packets are read out. Write '1' to this bit to clear this request status. 1 = RX buffer full 0 = None

4.4 TX_CFG--TX Configuration Register

Offset Address = 0xFC10 Default = $0x0000_0040$

Field	Name	Type	Default	Description
31:7	-	R	All 0's	Reserved
6	TXCRCAP	R/W	1	TXCRC Auto-Append
				When this bit is enabled, AX88180 will append CRC to the transmitted
				packet in FCS field.
				1 = enable
				0 = disable
5	-	R/W	0	Reserved.
4	TXCHKSUM	R/W	0	TX Checksum Generation
				When this bit is enabled, AX88180 will append checksum to the transmitted
				packet that is IP or TCP or UDP packet.
				1 = enable
				0 = disable
3:2	-	R	00	Reserved
1:0	TXDS	R	00	TX Description Status
				AX88180 reports which descriptor is transmitted now
				Default: 2'b00

4.5 TX_CMD--TX Command Register

Offset Address = 0xFC14

Default = 0x0000 0000

Field	Name	Type	Default	Description
31:16	-	R	All 0's	Reserved
15	HWI	R/W	0	Host Writes Indication
				Before host begins to send a packet to TX buffer, this bit should be set. At the end of host writes the packet, this bit should be cleared by software. 1 = Start Writing 0 = End Writing
14:13	TXDP	R/W	00	TX Descriptor Pointer To specify which TX descriptor to be written.
12	-	R/W	0	Reserved
11:0	DATALEN	R/W	All 0's	Byte Count. Data length is written to transmitted buffer.

4.6 TXBS--TX Buffer Status Register

Offset Address = 0xFC18 Default = $0x0000_0000$

Field	Name	Type	Default	Description
31:4	-	R	All 0's	Reserved
8	INTXDS	R	0	Internal TX descriptor status.
				This bit reports the TX descriptor status. When there is data to be transmitted,
				this bit will be set to '1' otherwise it will be '0'
				1 = have data in TX buffer
				0 = all data are transmitted to PHY
7:6	-	R	00	Reserved
5:4	TXDUSE	R	00	TX Descriptor In Transmitting
				These status bits indicate which descriptor is transmitting now.
				00: Descriptor 0 in transmitting
				01: Descriptor 1 in transmitting
				10: Descriptor 2 in transmitting
				11: Descriptor 3 in transmitting
3	TXD3O	R/W	0	TX Descriptor 3 Occupied
				Driver set this bit to '1' to indicate that it had used TX descriptor3. When the

				transmission is finished, AX88180 will auto-clear this bit.
2	TXD2O	R/W	0	TX Descriptor 2 Occupied
				Driver set this bit to '1' to indicate that it had used TX descriptor2. When the
				transmission is finished, AX88180 will auto-clear this bit.
1	TXD10	R/W	0	TX Descriptor 1 Occupied
				Driver set this bit to '1' to indicate that it had used TX descriptor1. When the
				transmission is finished, AX88180 will auto-clear this bit.
0	TXD0O	R/W	0	TX Descriptor 0 Occupied
				Driver set this bit to '1' to indicate that it had used TX descriptor0. When the
				transmission is finished, AX88180 will auto-clear this bit.

4.7 TXDES0--TX Descriptor0 Register

Offset Address = 0xFC20

Field	Name	Type	Default	Description
31:16	-	R	All 0's	Reserved
15	TXD0_EN	R/W	0	Transmit TX descriptor 0 If this bit is enabled, MAC will begin to transmit data that are stored in TX buffer. In former, driver had already written data that is assigned to TX descriptor 0 to TX buffer. This bit will be cleared by hardware when MAC finished the transmission. 1= enable 0= disable
14:13	-	R	00	Reserved
12:0	TXD0_LEN	R/W	All 0's	TX packet length (unit: byte) Driver set this field to indicate AX88180 how many bytes will be transmitted.

4.8 TXDES1--TX Descriptor1 Register

Offset Address = 0xFC24

Field	Name	Type	Default	Description
31:16	-	R	All 0's	Reserved
15	TXD1_EN	R/W	0	Transmit TX descriptor 1 If this bit is enabled, MAC will begin to transmit data that are stored in TX buffer. In former, driver had already written data that is assigned to TX descriptor 1 to TX buffer. This bit will be cleared by hardware when MAC finished the transmission. 1= enable 0= disable
14:13	-	R	00	Reserved
12:0	TXD1_LEN	R/W	All 0's	TX packet length (unit: byte) Driver set this field to indicate AX88180 how many bytes will be transmitted.

4.9 TXDES2--TX Descriptor2 Register

Offset Address = 0xFC28 Default = $0x0000_0000$

Field	Name	Type	Default	Description
31:16	-	R	All 0's	Reserved
15	TXD2_EN	R/W	0	Transmit TX descriptor 2 If this bit is enabled, MAC will begin to transmit data that are stored in TX buffer. In former, driver had already written data that is assigned to TX descriptor2 to TX buffer. This bit will be cleared by hardware when MAC finished the transmission. 1= enable 0= disable
14:13	-	R	00	Reserved
12:0	TXD2_LEN	R/W	All 0's	TX packet length (unit: byte)
				Driver set this field to indicate AX88180 how many bytes will be transmitted.

4.10 TXDES3--TX Descriptor3 Register

Offset Address = 0xFC2C

Default = $0x0000_0000$

Field	Name	Type	Default	Description
31:16	-	R	All 0's	Reserved
15	TXD3_EN	R/W	0	Transmit TX descriptor 3 If this bit is enabled, MAC will begin to transmit data that are stored in TX buffer. In former, driver had already written data that is assigned to TX descriptor3 to TX buffer. This bit will be cleared by hardware when MAC finished the transmission. 1= enable 0= disable
14:13	-	R	00	Reserved
12:0	TXD3_LEN	R/W	All 0's	TX Packet Length (unit: byte) Driver set this field to indicate AX88180 how many bytes will be transmitted.

4.11 RX_CFG--RX Configuration Register

Offset Address = 0xFC30

Field	Name	Type	Default	Description
31:9	-	R	All 0's	Reserved
8	RXBME	R/W	1	RX Buffer Monitor Enable
				When this bit is enabled, MAC will monitor the status of receive buffer.
				1 = enable
				0 = disable
7:5	-	R/W	000	Reserved.
4	RXCHKSUM	R/W	0	RX Packet TCP/IP Checksum
				When this bit is set, AX88180 will check the checksum of the received
				packet that is IP, TCP or UDP packet. If there is checksum error, AX88180
				will drop the packet and RXCHKSUMCNT counter will add 1.
				1 = enable
				0 = disable
3:1	-	R/W	000	Reserved
0	RXBUFPRO	R/W	1	RX Buffer Protection
				When this bit is enabled, MAC will protect the RX buffer to avoid overrun.
				For normal operation, this bit should be enabled in initial stage.
				1= enable
				0= disable

4.12 RXCURT--RX Current Pointer Register

Offset Address = 0xFC34

 $Default = 0x0000_0000$

Field	Name	Type	Default	Description
31:11	-	R	All 0's	Reserved
10:0	RXCURPTR	R/W	All 0's	RX Line Current Pointer.
				Point to the last line that will be written by hardware. The unit of line is 16
				bytes. AX88180 will maintain this register.

4.13 RXBOUND--RX Boundary Pointer Register

Offset Address = 0xFC38

 $Default = 0x0000_07FF$

Field	Name	Type	Default	Description
31:11	-	R	All 0's	Reserved
10:0	RXBUNPTR	R/W	0x7FF	RX Line Boundary Pointer. Point to the last line that has been read by driver. The unit of line is 16 bytes. When driver finished reading packet from RX buffer, it must update this field.

4.14 MAC_CFG0--MAC Configuration0 Register

Offset Address = 0xFC40

Default = $0x0000_8157$

Field	Name	Type	Default	Description
31:16	-	R	All 0's	Reserved
15	SPEED100	R/W	1	Line Speed Mode
				When this bit is enabled and bit12 of MAC_CFG1 is disabled, MAC will
				operate in 100Mbps mode otherwise it operates in 10Mbps speed. If bit12
				of MAC_CFG1 is enabled, this bit will be ignored
14	-	R/W	0	Reserved, this bit must set to 0 for normal operation
13	-	R/W	0	Reserved, this bit must set to 0 for normal operation.
12	RXFLOW	R/W	0	RX Flow Control
				If this bit and bit8 of RX_CFG are enabled, MAC will perform flow
				control and send pause on/off frame when the available space of receive
				buffer is less than the value of RXBTHD0.
				1 = enable
				0 = disable
11	-	R/W	0	Reserved, this bit must set to 0 for normal operation.
10:4	IPG100	R/W	0x15	Inter Packet Gap (IPG) for 10/100M
				This field defines the back-to-back transmit packet gap for 10/100M.
3:0	IPG1000	R/W	0x7	Inter Packet Gap for 1000M
				This field defines the back-to-back transmit packet gap for 1000M only.

4.15 MAC_CFG1--MAC Configuration1 Register

Offset Address = 0xFC44

Field	Name	Type	Default	Description
31:15	-	R	All 0's	Reserved
14	PUSRULE	R/W	1	Pause Frame Check Rule
				When this bit is set, AX88180 accepts pause frame that DA can be any
				value.
				1 = don't check DA field.
				0 = check DA is equal to "01 80 C2 00 00 01"
13	CRCCHK	R/W	1	Check CRC of received Packet.
				When this bit is enabled, AX88180 will drop any CRC error packet.

				1 = enable
				0 = disable
12	GIGA_EN	R/W	0	Gigabit Mode Enable
	01011_21	2.5		When this bit is enabled, MAC will operate in 1000Mbps mode.
				1 = enable
				0 = disable
11	RXJUMBO	R/W	0	RX Jumbo Enable
	14.20 01.12 0	10		When this bit is enabled, MAC will receive jumbo package
				1 = enable
				0 = disable
10:7	RXJUBOLEN	R/W	0000	Length Limit of received Jumbo package
				This field defines the maximum length of received jumbo package.
				0001: 1K bytes
				0010: 2K bytes
				0011: 3K bytes
				1110: 14K bytes
				1111: 15K bytes
6	DUPLEX	R/W	0	Duplex Mode.
				1 = Full-Duplex mode
				0 = Half-Duplex mode
5	TXFLW_EN	R/W	0	TX Flow Enable
				When this bit is enabled, MAC will block the transmitted operation when it
				captures pause frame from Ethernet. The re-transmission will be activated
				until the waiting time is expired.
				1 = enable
				0 = disable
4:2	-	R/W	000	Reserved, must set to '0s' for normal operation
1	RGMIIEN	R/W	0	RGMII Mode Enable
				When this bit is enabled, AX88180 will operate in RGMII interface. Driver
				must set external PHY to RGMII mode and enable this bit in initial stage.
				Driver also must set RGMII interface of external PHY with add-delay
				timing in its internal.
				1 = enable
				0 = disable
0	-	R/W	0	Reserved, must set to '0s' for normal operation

4.16 MAC_CFG2--MAC Configuration2 Register

Offset Address = 0xFC48 Default = $0x0000_0100$

Field	Name	Type	Default	Description
15:8	-	R/W	0x01	Reserved, keep this field in default value for normal operation.
7:2	JamLT	R/W	000000	Define Jam Limit for backpressure collision account.
				Normally set this field at 0x19. It can avoid HUB port going to partition state due to
				too many collisions. AX88180 will skip one frame collision backpressure when
				collision counter equal to JamLT. The collision count will be reset to zero when
				every transmit frame with no collision or receive a frame with no backpressure
				collision.
1:0	-	R/W	00	Reserved, must set to '00' for normal operation

4.17 MAC_CFG3--MAC Configuration3 Register

Offset Address = 0xFC4C Default = $0x0000_060E$

Field	Name	Type	Default	Description
15	NOABORT	R/W	0	No Abort
				When this bit is enabled, MAC will keep retry transmit current frame even excessive collision otherwise it will abort current transmission due to excessive collision. 1 = enable 0 = disable
13:7	IPGR1	R/W	0001100	Inter-Frame Gap segment1
6:0	IPGR2	R/W	0001110	Inter-Frame Gap segment2

4.18 TXPAUT--TX Pause Time Register

Offset Address= 0xFC54

 $Default = 0x001F_E000$

Field	Name	Type	Default	Description
31:23	-	R	All 0's	Reserved
22:0	TXPVAL	R/W	0x1F_E000	TX Pause Time out
				It is used to re-transmit a pause-on frame when pause timer expired and
				receive buffer still not enough.
				In 32-bit mode, this field should be set to 0x1F_E000 at 1000Mbps mode
				and set to 0x7F_8000 at 10/100Mbps modes.
				In 16-bit mode, this field should be set to 0xFFFF at 10/100/1000Mbps
				modes. (Note: The bit 16 ~ 22 of this field are invalid in 16-bit mode.)

4.19 RXBTHD0--RX buffer Threshold0 Register

Offset Address= 0xFC58

Default = $0x0000_0300$

Field	Name	Type	Default	Description
31:11	-	R	All 0's	Reserved
10:0	RXLOWB	R/W	0x300	RX Remainder Capacity Low-Bound
				This field defines as the remainder capacity of RX buffer for pause
				operation. If the flow control (bit12 of MAC_CFG0) is enabled, MAC will
				send pause frame when the available space of receive buffer is less than
				this value. The unit is 16-byte.

4.20 RXBTHD1--RX Buffer Threshold1 Register

Offset Address= 0xFC5C

Field	Name	Type	Default	Description
31:11	-	R	All 0's	Reserved
10:0	RXHIGHB	R/W	0x600	RX Remainder Capacity Upper-Bound
				This field defines as upper bound of remainder size of RX buffer for pause
				operation. If the flow control is enabled, MAC will stop to send pause
				frame until the available space of receive buffer is more than this value.
				The unit is 16-byte.

4.21 RXFULTHD--RX Buffer Full Threshold Register

Offset Address= 0xFC60 Default = $0x0000_0100$

Field	Name	Type	Default	Description
31:11	-	R	All 0's	Reserved
10:0	RXFULB	R/W	0x100	RX Full Threshold
				This field defines the least capacity of RX buffer. AX88180 will cause RX
				full if it remains capacity under this value. The unit is 16-byte.

4.22 MISC—Misc. Control Register

Offset Address= 0xFC68 Default = $0x0000_0013$

Field	Name	Type	Default	Description
31:6	-	R	All 0's	Reserved
5	WAKE_LNK	R/W	0	WAKE-UP by Link-Up Function
				If this bit is enabled, MAC will drive wakeup pin whenever there is link-up
				occurrence. The polarity of wakeup pin is according to bit0 of CMD
				register.
				1= enable
				0= disable
4	WAKE_MAG	R/W	1	WAKE-UP by Magic Packet
				If this bit is enabled, MAC will drive wakeup pin whenever there is magic
				packet detected by hardware. The polarity of wakeup pin is according to
				bit0 of CMD register.
				1= enable wake-up by magic packet
		<u> </u>		0 = disable
3:2	-	R/W	00	Reserved
1	-	R/W	1	Reserved
0	SRST_MAC	R/W	1	Software Reset MAC core
				Driver set this bit to '0' to reset core of MAC. The reset duration is
				depended on whenever this bit is de-asserted by driver. There are only
				RXCURT and RXBOUND registers will be cleared by this bit. Others
				registers will not be affected
				1 = in normal operation
				0 = in reset status

4.23 MACID0--MAC ID0 Register

Offset Address = 0xFC70 Default = $0x0000_0000$

Field	Name	Type	Default	Description
31:16	-	R	All 0's	Reserved.
15:0	MID15_0	R/W	0x0000	MAC ID Address [15:0].
				This field defines lower address bit15 to bit0 of MAC. The MACID0, MACID1
				and MACID2 combine into 48-bit MAC address. The MAC address format is
				[47:0] = {MACID2[15:0], MACID1[15:0], MACID0[15:0]}. If the EEPROM is
				attached, this field will be auto-loaded from EEPROM after hardware reset.

4.24 MACID1--MAC ID1 Register

Offset Address = 0xFC74h Default = $0x0000_0000$

Field	Name	Type	Default	Description
31:16	-	R	All 0's	Reserved.
15:0	MID31_16	R/W	0x0000	MAC ID Address [31:16].

4.25 MACID2--MAC ID2 Register

Offset Address = 0xFC78 Default = $0x0000_0000$

Field	Name	Type	Default	Description
31:16	-	R	All 0's	Reserved.
15:0	MID47_32	R/W	0x0000	MAC ID Address [47:32].

4.26 TXLEN--TX Length Register

Offset Address = 0xFC7C Default = $0x0000_05FC$

Field	Name	Type	Default	Description
31:11	-	R	All 0's	Reserved
10:0	MAXTXLEN	R/W	0x5FC	Max TX packet size
				This field defines the maximum raw packet size in transmittance. It is not
				included 4 bytes CRC.

4.27 RXFILTER--RX Packet Filter Register

Offset Address = 0xFC80 Default = $0x0000_0004$

Field	Name	Type	Default	Description
31:6	-	R	All 0's	Reserved
5	GOODCRC	R/W	0	Good CRC enable When this bit is enabled, AX88180 will receive any packet of good CRC. 1 = enable 0 = disable
4	MULTI_HASH	R/W	0	Receive Multicast packet by <i>lookup hash table</i> . When this is enabled, AX88180 will receive multicast packet by the hash mapping function. It will refer to HASTAB0, HASHTAB1, HASHTAB2 and HASHTAB3 to look up the table. 1 = enable 0 = disable
3	BROADCAST	R/W	0	Receive Broadcast packet When this bit is enabled, AX88180 will receive the broadcast packet 1 = enable 0 = disable
2	UNICAST	R/W	1	Receive Directed Packet. If this bit is enabled, AX88180 will compare the destination address field of received packet with the address of MAC (refer to MACID0, MACID1, MACID2). When it is matched and good CRC, the packet will be passed to driver. Otherwise it will be dropped. 1 = enable 0 = disable
1	MULTICAST	R/W	0	Receive all Multicast Packets. If this bit is enabled, any multicast packet (good CRC) will be received and passed to driver. 1 = enable 0 = disable
0	RXANY	R/W	0	Receive Anything. If this bit is enabled, any packet whether it is good or fail will be received and passed to driver. 1 = enable 0 = disable

4.28 MDIOCTRL--MDIO Control Register

Offset Address = 0xFC84 Default = $0x0000_0000$

Field	Name	Type	Default	Description
31:16	-	R	All 0's	Reserved
15	WTEN	R/W	0	Write Enable.
				Driver enables this bit to issue a write cycle to PHY, it will be auto-cleared when
				AX88180 finishes the write cycle
				1 = enable
				0 = disable
14	RDEN	R/W	0	Read Enable.
				Driver enables this bit to issue a read cycle to PHY. This bit will be auto-cleared
				when AX88180 finishes the read cycle
				1 = enable
				0 = disable
12:8	PHYCRIDX	R/W	00000	PHY Register Index
				Driver sets this field to define the internal register index of PHY when it accesses
				PHY.
7:5	-	R	000	Reserved
4:0	PHYID	R/W	00000	PHY ID
				Driver sets the PHY ID value in this field. AX88180 will refer to this field when
				it accesses PHY by MDIO/MDC signals.

4.29 MDIODP--MDIO Data Port Register

Offset Address = 0xFC88 Default = $0x0000_0000$

Field	Name	Type	Default	Description
31:16	-	R	All 0's	Reserved
15:0	MDPORT	R/W	All 0's	PHY Data Port
				To or from PHY data is put in this field.

4.30 GPIO_CTRL--GPIO Control Register

Offset Address = 0xFC8C Default = $0x0000_0003$

Field	Name	Type	Default	Description
31:10	-	R	All 0's	Reserved
9	GPIO1S	R/W	0	GPIO1 Status
				This bit stands for the pin status of GPIO1 when it is set to input mode.
				1 = high state
				0 = low state
8	GPIO0S	R/W	0	GPIO0 Status
				This bit stands for the pin status of GPIO0 when it is set to input mode.
				1 = high state
				0 = low state
7:2	-	R	All 0's	Reserved
1	GPIO1DIR	R/W	1	GPIO1 Mode Direction
				This field defines the direction of GPIO1 pin.
				1 = input mode
				0 = output mode
0	GPIO0DIR	R/W	1	GPIO0 Mode Direction
				This field defines the direction of GPIO pin.
				1 = input mode
				0 = output mode

Note: For output mode, software must firstly set the bit0 or bit1 to output mode then set bit8 or bit9.

4.31 RXINDICATOR--Receive Indicator Register

Offset Address= 0xFC90 Default = $0x0000_0000$

Field	Name	Type	Default	Description
31:1	-	R	All 0's	Reserved
0	RXSTART	R/W	0	Receive Start
				Driver sets this bit to start or end receive operation from RX buffer of AX88180.
				1= Start read RX buffer
				0= End read RX buffer

4.32 TXST--TX Status Register

Offset Address = 0xFC94

Default = 0x0000 0000

Field	Name	Truno	Default	Decarintion
	Name	Type		Description
31:4	-	R	All 0's	Reserved
3	TXD3FAIL	R	0	TX Descriptor3 Transmit Fail
				When this bit is set 1, it means AX88180 fails in transmission of descriptor3.
				This bit will be self-cleared when driver reads TXST register.
2	TXD2FAIL	R	0	TX Descriptor2 Transmit Fail
				When this bit is set 1, it means A88180 fails in transmission of descriptor2.
				This bit will be self-cleared when driver reads TXST register.
1	TXD1FAIL	R	0	TX Descriptor1 Transmit Fail
				When this bit is set 1, it means AX88180 fails in transmission of descriptor1.
				This bit will be self-cleared when driver reads TXST register.
0	TXD0FAIL	R	0	TX Descriptor0 Transmit Fail
				When this bit is set 1, it means AX88180 fails in transmission of descriptor0.
				This bit will be self-cleared when driver reads TXST register.

4.33 MDCLKPAT--MDC Clock Pattern Register

Offset Address = 0xFCA0

Default = $0x0000_{8040}$

				=
Field	Name	Type	Default	Description
31:16	-	R	All 0's	Reserved
15:8	-	R/W	0x80	Reserved, must set to 0x80 for normal operation
7:0	MDCPAT	R/W	0x40	MDC Clock Divide Factor
				This field defines the divided factor of host clock. AX88180 will refer to this
				field and generate a low speed clock to PHY.

4.34 RXCHKSUMCNT--RX IP/UDP/TCP Checksum Error Counter

Offset Address = 0xFCA4

Field	Name	Type	Default	Description
31:16	-	R	All 0's	Reserved
15:0	RXCHKERCNT	R/W	All 0's	RX Checksum Error Counter
				If the RXCHKSUM field of RX_CFG register is set to '1', MAC will check the
				checksum of IP, TCP or UDP packet. Whenever there is checksum error
				detected, this field will be added one. The value will be rounded back to 0x0000
				if it exceeds 0xFFFF.

4.35 RXCRCNT--RX CRC Error Counter

Offset Address = 0xFCA8 Default = $0x0000_0000$

Field	Name	Type	Default	Description
31:16	-	R	All 0's	Reserved
15:0	RXCRCCNT	R/W	All 0's	RX CRC32 Error Counter
				MAC checks the received packet. If there is a CRC error detect, this field will
				be added one. The value will be rounded back to 0x0000 if it exceeds 0xFFFF.

4.36 TXFAILCNT--TX Fail Counter

Offset Address = 0xFCAC Default = $0x0000_0000$

Field	Name	Type	Default	Description
31:16	-	R	All 0's	Reserved
15:0	TXFILCNT	R/W	All 0's	TX Fail Counter
				This field records the number of transmitted error for TX packet. The value will
				be rounded back to 0x0000 if it exceeds 0xFFFF.

4.37 PROMDPR--EEPROM Data Port Register

Offset Address = 0xFCB0 Default = $0x0000_0000$

Field	Name	Type	Default	Description
31:16	-	R	All 0's	Reserved
15:0	PROMDP	R/W	All 0's	EEPROM Data Port
				The data to or from EEPROM is set in this field.

4.38 PROMCTRL--EEPROM Control Register

Offset Address= 0xFCB4 Default = $0x0000_0000$

	1	-	I	
Field	Name	Type	Default	Description
31:15	-	R	All 0's	Reserved
14:12	ROM_CMD	R/W	000	EEPROM Command Code.
				Driver set this field to represent what type command will be send to EEPROM
				device.
				110 = read command
				111 = erase command
				101 = write command
11	ROM_WT	R/W	0	Write EEPROM
				Set to '1' to write EEPROM, it will be auto-cleared when AX88180 finishes the
				write operation.
10	ROM_RD	R/W	0	Read EEPROM
				Set to '1' to read EEPROM, it will be cleared when MAC finished the read
				operation. Driver can read PROMDPR register to get the returned data.
9	ROM_RLD	R/W	0	Reload EEPROM
				Set to '1' to re-load EEPROM, this bit will be auto-cleared when AX88180
				finishes loading operation.
8	-	R	0	Reserved
7:0	ROM_ADDR	R/W	0x00	EEPROM Address
				Set this field to define the address for serial EEPROM access. (only support
				16-bit data access, e.g. 93C56 type)

4.39 MAXRXLEN--Max. RX Packet Length Register

Offset Address= 0xFCB8 Default = $0x0000_0600$

Field	Name	Type	Default	Description
31:11	-	R	All 0's	Reserved
10:0	RXLEN	R/W	0x600	Max RX Packet length
				This field defines the max length of received packet. It doesn't include 4-byte
				CRC.

4.40 HASHTAB0--Hash Table0 Register

Offset Address = 0xFCC0 Default = 0x0000 0000

Field	Name	Type	Default	Description
31:16	-	R	All 0's	Reserved
15:0	HTAB0	R/W	0x0000	Hash table: bit15~bit0 Driver sets HASHTAB0, HASHTAB1, HASHTAB2 and HASHTAB3 to define 64-bit hash table. AX88180 will refer this table to check multicast packet if
				multicast filter is enabled (bit4 of RXFILTER) for RX. When AX88180 receives a packet then it extracts the destination address (DA). The DA is calculated by CRC32 algorithm. After the operation, AX88180 will grab the MSB[31:27] of result as hash table index. The range of index is from 0 to 63. For example, the hash table is composite as {HASHTAB3[15:0], HASHTAB2[15:0], HASHTAB1[15:0], HASHTAB0[15:0]}. If AX88180 detects the MSB[31:27] = 26 of CRC32 of DA for someone multicast packet, and driver set '1' to HASHTAB1[10], then the multicast packet will received by AX88180.

4.41 HASHTAB1--Hash Table1 Register

Offset Address = 0xFCC4 Default = $0x0000_0000$

Field	Name	Type	Default	Description
31:16	-	R	All 0's	Reserved
15:0	HTAB1	R/W	0x0000	Hash table: bit31~bit16

4.42 HASHTAB2--Hash Table2 Register

Offset Address = 0xFCC8 Default = $0x0000_0000$

Field	Name	Type	Default	Description
31:16	-	R	All 0's	Reserved
15:0	HTAB2	R/W	0x0000	Hash table: bit47~bit32

4.43 HASHTAB3--Hash Table3 Register

Offset Address = 0xFCCC Default = $0x0000_0000$

Field	Name	Type	Default	Description			
31:16	-	R	All 0's	Reserved			
15:0	HTAB3	R/W	0x0000	Hash table: bit63 ~ bit48			

4.44 DOGTHD0—Watch Dog Timer Threshold0 Register

Offset Address = 0xFCE0

 $Default = 0x0000_FFFF$

Field	Name	Type	Default	Description
31:16	-	R	All 0's	Reserved
15:0	DOGTH0	R/W	0xFFFF	Watch Dog Timer Low Word
				This register and DOGTHD1[11:0] are defined to an expired threshold for internal watchdog counter. The threshold {[DOGTHD1, DOGTHD0] is a 28-bit value. To multiply 28-bit value with one-cycle period of a host clock is the expired duration. If the DOGEN is set to '1' and WDTEI of ISR is set, then AX88180 will periodically generate interrupt whenever the counter reaches to the threshold.

4.45 DOGTHD1—Watch Dog Timer Threshold1 Register

Address = 0xFCE4

Default = $0x0000_0000$

Field	Name	Type	Default	Description
31:16	-	R	All 0's	Reserved
15	DOGEN	R/W	0	Dog Timer Enable
				1 = Enable internal dog timer
				0 = Disable
14:12	-	R/W	All 0's	Reserved
11:0	DOGTH1	R/W	0x000	Dog Timer High Field.
				This field and DOGTHD0[15:0] combine to a 28-bit register.

4.46 SOFTRST --- Software Reset Register

Address = 0xFCEC

Field	Name	Type	Default	Description
31:2	-	R	All 0's	Reserved
1	-	R/W	1	Reserved
0	RST_MAC	R/W	1	Software Reset enable
				Driver set this bit to '0' to reset MAC. The reset duration is depended on
				whenever this bit is de-asserted by driver. Most registers will be cleared to default
				value.
				1 = in normal operation
				0 = in reset status

5.0 Electrical Specification and Timings

5.1 DC Characteristics

5.1.1 Absolute Maximum Ratings

Symbol	Description	Rating	Units
T_{STG}	Storage Temperature	-40 to 150	°C
VCC3	Power supply of 3.3V	-0.3 to VCC3 + 0.3	V
VCC2	Power supply of 2.5V	-0.3 to VCC2 + 0.3	V
V_{I3}	Input voltage of 3.3V IO with 5V tolerance	-0.3 to 5.5	V
V_{I2}	Input voltage of 2.5V IO with 3.3V tolerance	-0.3 to 3.9	V

Note: Stress above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to Absolute Maximum Ratings conditions for extended period, adversely affect device life and reliability.

5.1.2 General Operation Conditions

Symbol	Description	Min	Тур	Max	Units
Tj	Junction temperature	0	-	115	°C
VCC2	Supply Voltage of 2.5V	2.25	2.5	2.75	V
VCC3	Supply Voltage of 3.3V	3.0	3.3	3.6	V
V_{I3}	Input voltage of 3.3V IO with 5V tolerance	0	3.3	5.25	V
V_{I2}	Input voltage of 2.5V IO with 3.3V tolerance	0	2.5	3.6	V

5.1.3 Leakage Current and Capacitance

Symbol	Description	Min	Тур	Max	Units
I_{IN}	Input Leakage Current	-10	±1	+10	μΑ
I_{OZ}	Tri-state leakage current	-10	±1	+10	μΑ
C_{OUT}	Output capacitance	-	3.1	-	pF
C_{BID}	Bi-directional buffer capacitance	-	3.1	-	pF

5.1.4 DC Characteristics of 2.5V IO Pins

Symbol	Description	Min	Тур	Max	Units
VCC2	Power supply of 2.5V IO	2.25	2.5	2.75	V
Vil	Input low voltage	-	-	0.7	V
Vih	Input high voltage	1.7	-	-	V
Vol	Output low voltage	-	-	0.4	V
Voh	Output high voltage	1.85			V
Rpu	Input pull-up resistance	40	75	190	ΚΩ
Rpd	Input pull-down resistance	40	75	190	ΚΩ

5.1.5 DC Characteristics of 3.3V IO Pins

Symbol	Description	Min	Тур	Max	Units
VCC3	Power supply of 3.3V IO	3.0	3.3	3.6	V
Vil	Input low voltage	-	-	0.8	V
Vih	Input high voltage	2.0	-	-	V
Vol	Output low voltage	-	-	0.4	V
Voh	Output high voltage	2.4			V
Rpu	Input pull-up resistance	40	75	190	ΚΩ
Rpd	Input pull-down resistance	40	75	190	ΚΩ

5.1.6 Power Consumption

Device Only

Measurement bases on 100MHz frequency of HCLK and turn on internal regulator at 25 °C temperature.

Item	Symbol	Power-on with	Operation at	Operation at	Operation at	Stand-by current	Units
		cable removed	10Base-T	100Base-T	1000Base-T	(HCLK is off)	
1	VCC3 (IO)	1.6	1.8	2.4	2.5	0.061	mA
2	VCC3R	87	72	79	105	1.5	mA

Note: The current of VCC3R includes VCC2 core current.

5.1.7 Thermal Characteristics

A. Junction to ambient thermal resistance, $\,\, \theta_{\rm JA} \,$

Symbol	Min	Тур	Max	Units
$ heta_{ extit{ iny JA}}$	-	46.3	-	°C/W

B. Junction to case thermal resistance, $\; \theta_{\rm JC} \;$

Symbol	Min	Тур	Max	Units
$ heta_{_{JC}}$	-	16.2		°C/W

Note: θ_{JA} , θ_{JC} defined as below

$$\theta_{JA} = \frac{T_J - T_A}{P}, \ \theta_{JC} = \frac{T_J - T_C}{P}$$

T_J: maximum junction temperature

T_A: ambient or environment temperature

T_C: the top center of compound surface temperature

P: input power (watts)

5.2 A.C. Timing Characteristics

5.2.1 Host Clock

A. Reference clock (HCLK)

Description	Min	Тур.	Max	Units
Reference frequency	40	-	100	MHz
Reference clock duty cycle	40	50	60	%

B. Reference clock (CLK125)

Description	Min	Тур.	Max	Units
Reference frequency	-	125	-	MHz
Reference clock duty cycle	45	50	55	%

5.2.2 Reset Timing

Symbol	Description	Min	Тур.	Max	Units
Trst	Reset pulse width	0.5	ı	-	ms

5.2.3 Host Single Write Timing

Symbol	Description	Min	Тур.	Max	Units
Tsetup	CSN, WEN to HCLK setup timing	2	-	-	ns
Tar	HA exceed to WEN timing	0			HCLK
Tad	HA exceed to WEN timing	0			HCLK
Tvalid_cycle	A Valid write cycle timing (synchronous to MCU)	4	ı	-	HCLK
Tvalid_cycle	A Valid write cycle timing- (asynchronous to MCU)	6	-	-	HCLK

5.2.4 Host Burst Write Timing

Symbol	Description	Min	Тур.	Max	Units
Twen	Valid write cycle timing	6	-	-	HCLK

5.2.5 Host Single Read Timing

Symbol	Description	Min	Тур.	Max	Units
Tac	CSN/OEN access timing (synchronous to MCU)	5	1	ı	HCLK
Tac	CSN/OEN access timing (asynchronous to MCU)	6			HCLK
Tovd	OEN assert to valid data timing	4	-	-	HCLK
Tdh	Valid data hold timing to OEN de-asserted	0			ns

5.2.6 Host Burst Read Timing

Symbol	Description	Min	Тур.	Max	Units
Tac	Valid address access timing	6			HCLK
Tovd	OEN assert to valid data timing	4	-	-	HCLK
Tad	Burst mode address to valid data	4			HCLK
Tdh	Valid data hold timing to OEN de-asserted	0			ns

5.2.7 RGMII Clock Timing

Symbol	Description	Min	Тур.	Max	Units
Tcycle-1000	Cycle timing for 1000Base-T	7.2	8	8.8	ns
Thi-1000	High Timing for 1000Base-T	3.6	4	4.4	ns
Tlo1000	Low timing for 1000Base-T	3.6	4	4.4	ns
Tcycle -100	Cycle timing for 100Base-T	32	40	44	ns
Thi-100	High Timing for 100Base-T	16	20	22	ns
Tlo-100	Low timing for 100Base-T	16	20	22	ns
Tcycle -10	Cycle timing for 10Base-T	320	400	440	ns
Thi-10	High Timing for 10Base-T	160	200	220	ns
Tlo-10	Low timing for 100Base-T	160	200	220	ns
Trising	Rising timing	-	0.8	ı	ns
Tfall	Fall timing	_	0.8	-	ns

5.2.8 RGMII Receive Timing (1000/100/10 Mbps)

Symbol	Description	Min	Тур.	Max	Units
Tsetup	Setup timing to RXCLK (at AX88180)	1.0	-	-	ns
Thold	Hold timing to RXCLK (at AX88180)	1.0	-	-	ns

Note: PHY adds the delay in RXCLK

5.2.9 RGMII Transmit Timing

Symbol	Description	Min	Тур.	Max	Units
Tskew	Data to clock TXCX skew	-500	0	+500	ps
Tdelay	Data to clock in PHY site	1.5		2.0	ns

Note: PHY needs to add delay in TXCX

5.2.10 MDIO Timing

Symbol	Description	Min	Тур.	Max	Units
Telk	MDC clock timing*		1340	-	ns
Tod	MDC falling edge to MDIO output delay		ı	32	ns
Ts	MDIO data input setup timing	10	ı	ı	ns
Th	MDIO data input hold timing	4	-	-	ns

5.2.11 Serial EEPROM Timing

Symbol	Description	Min	Тур.	Max	Units
Tclk	EECLK clock timing*		1370	ı	ns
Tod	EECLK falling edge to EEDI output delay		-	5	ns
Ts	EEDO data input setup timing	6	-	-	ns
Th	EEDO data input hold timing	6	-	ı	ns
Tscs	EECS output valid to EECLK rising edge	650			ns
Thes	EECLK falling edge to EECS invalid timing	0			ns
Tlcs	Minimum EECS low timing	-	560	-	ns

6.0 Package Information

SYMBOL	MILIMETER		
	MIN.	NOM	MAX
A1	0.05	0.1	
A2	1.35	1.4	1.45
A			1.6
b	0.13	0.18	0.23
D	13.90	14.00	14.10
Е	13.90	14.00	14.10
e		0.40	
Hd	15.85	16.00	16.15
Не	15.85	16.00	16.15
L	0.45	0.60	0.75
L1		1.00	
θ	0		7

7.0 Ordering Information

AX88180	L	F	
Product name	Package LQFP	F: Lead Free	

Appendix A1. 16-bit mode address and data bus

A1-1. 16-bit mode and separated address and data bus

Note: The name of control signal for MCU is demonstrated only.

A1-1-1. AX88180 is synchronous to host MCU

A1-1-2. AX88180 is asynchronous to host MCU

Note: For asynchronous mode, system must provide extra OSC to output clock to AX88180

A1-2. 16-bit mode multiplexed address and data

Appendix A2. 32-bit mode address and data bus

A2-1. Linear address mode and byte aligned (in synchronous mode)

Note: For asynchronous mode, system must provide extra OSC to output clock to AX88180. Please refer to Section A1-1-2 for details.

A2-2. MCU is double-word boundary and the addressing is DWORD unit

Appendix A3. AX88180 with Giga-PHY Connection

Appendix A4. Synchronous and asynchronous timing selection

AX88180 can support synchronous or asynchronous access from host MCU. Below information provides some references to select clock frequency of host MCU and AX88180.

A4-1. AX88180 is synchronous with host MCU.

The timing selection is suitable for both 32-bit and 16-bit mode.

Frequency	Access type	Valid access timing (OEN/WEN active timing)
Max 100MHz	Single or Burst	Min 5 clocks

A4-2. AX88180 is asynchronous to host MCU.

The timing selection is suitable for both 32-bit and 16-bit mode.

Frequency	Access type	Valid access timing (OEN/WEN active timing)
Max 100MHz	Single or Burst	Min 6 reference clocks (Note)

Note: The reference clock is from OSC, and it's not the output of host MCU. For instance, if AX88180 runs in asynchronous mode and refers a 100MHz clock from OSC, whereas MCU runs in 125MHz environment. In such condition, MCU must at least offer 60ns (min 6 reference clock of 100MHz) access timing to AX88180. The 60ns for MCU is almost reached to 8 clocks (125MHz). We recommend that it is needed to extend the access timing of MCU to AX88180.

Appendix A5. Wake On LAN (WOL) without driver via Magic Packet

A5-1. Wake On LAN (WOL) without driver

AX88180 can support WOL without driver exists. In such situations, system must offer 3.3V voltage, reference clock and rest signal to AX88180. Whenever AX88180 detects magic packet from cable, it will drive WAKEUP signal to host system. AX88180 defaults in MII interface (after reset before EEPROM auto-loaded). Hence if Giga-PHY supports RGMII interface, designer must use EEPROM to set AX88180 to RGMII interface. Users must take care is that AX88180 only supports delay timing of RGMII (refer to 5.2.8), thus it must add extra delay (at least 0.7ns) in PCB board if system needs WOL and without running driver. Below diagram is shown the concept.

Another available method is to set Giga-PHY in MII mode (by configure pin, if Giga-PHY has this feature). After AX88180 detects magic packet and wakes up system, driver can set AX88180 to RGMII mode and also set Giga-PHY to RGMII mode by MDIO interface. If designer employs this approach, the delay timing issue is not needed.

A5-2. Magic packet

The magic packet received by AX88180 is shown as following;

DA + SA + 0x0000 + 0xFFFFFFFFFFF + (at least repeats 16 times) DA + CRC32

DA = MAC address of AX88180 (6 bytes)

SA = Source address (6 bytes)

Revision History

Revision	Date	Comment			
V1.0	2005/10/4	First edition			
V1.0A	2006/3/31	1. Correct some typos in Section 3.4.			
		2. Correct the name definition of some pins in Section 1-3 and Section 2.			
V1.1	2006/7/28	1. Some typo errors corrected between Pin diagram and tables.			
		2. Host read/write timing revised in Section 5.			
		3. Some bits of registers are updated.			
		4. Add some connections between MCU and AX88180 in Appendix.			
		5. Add wake up LAN in Appendix.			
		6. Update the power consumption information in Section 5.1.6.			
V1.2	2007/3/28	1. Correct some information in Section 3.9 for 16-bit mode operation.			
		2. Modify the data access timing information in Section 5.2.5, 5.2.6 and			
		Appendix A4.			
		3. Update the power consumption information in Section 5.1.6.			
		4. Add some information in Section 3.10.			
		5. Define the bit filed name (RXJUBOLEN) for bit 10:7 of MAC_CFG1			
		register.			
		6. Add AX88180 with Gigabit PHY Connection information in Appendix A3.			
		7. Modify some descriptions in Section 1.1, 4.6, 4.16, 4.17, 4.18, 4.22,			
		4.34~4.36, 4.40.			
		8. Modify the description of TXCLK and GTXCLK pin in Section 2.2.			
		9. Rearrange the content of Appendix into Appendix A1~A5.			
		10. Change the number format from 16h'XXXXX to 0xXXXXX for example.			
V1.3	2007/5/4	1. Swap the pin definition of pin #90 and #91 in Section 2.6 and Figure 2.			
		2. Correct some typo errors of pin type in Table 1 and Table 5.			
V1.4	2007/5/18	1. Modify max operation frequency of HCLK from 125MHz to 100MHz.			
		2. Modify some thermal information in Section 5.1.7.			

4F, No.8, Hsin Ann Rd., Hsinchu Science Park, Hsinchu, Taiwan, R.O.C.

TEL: +886-3-5799500 FAX: +886-3-5799558

Email: support@asix.com.tw
Web: http://www.asix.com.tw