hw2

共配置29'

2.40

- (a) 2 (1')
- (b) -17 (1')
- (c) Positive infinity(1')
- (d) -3.125(1')

2.48

- (a) x100 (1')
- (b) x6F (1')
- (c) x75BCD15 (1')
- (d) xD4(1')

3.6

Α	В	С	D	Z
0	0	1	1	0
0	1	1	0	0
1	0	0	1	0
1	1	0	0	1

(共2'有一处错误扣一分)

Z = (C or D)' = (A' or B')' = A and B (2' 过程一分 结果一分)

3.20

1(1')

4(1')

3.30

- (a) $X=0 \Rightarrow S = A+B, X=1 \Rightarrow S = A+C$ (1')
- (b) Circuit diagram is same as following Figure with the following modifications: C = NOT (B), Carry-in = X (2' 两个修改各一分)

3.36

(a) (共2'有一处错误扣一分)

Α	В	G	E	L
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

(b) (共2'有一处错误扣一分)

(c) (共2'有一处错误扣一分)

3.40

- (a) 4 locations (1')
- (b) 4 bits (1')
- (c) 0001(1')

3.50

(3'每个步骤各1')

- (1) implement a NOT gate with a NAND gate (A nand A)
- (2) implement an AND gate using a NAND gate followed by a NOT gate (nand后面加一个 (1) 中的not即可)
- (3) implement an OR gate using just AND gates and NOT gates (德摩根定律)