12

Remark. Co(S) is a convex set. The convex hull Co(S) is actually the smallest convex set in \mathbb{R}^n containing S.

Theorem 1.6 The convex hull of the set S is the set of all convex combination of the point in S i.e.

$$\underline{Co(S) = \left\{\underline{x} : \underline{x} = \sum_{i=1}^{k} \lambda_i \underline{x}_i, \underline{x}_i \in S, 0 \leq \lambda_i \leq 1, \sum_{i=1}^{k} \lambda_i = 1\right\}}.$$

1.2 Supporting and separating hyperplane

Definition 1.14 (A hyperplane H containing a convex set $S \subseteq \mathbb{R}^n$ in one of its closed half spaced H_+ or H_- and a boundary point of S said to be supporting hyperplane of S, if the boundary point w of S lies in the supporting hyperplane H, then H is supporting hyperplane of S at w. Let w be a boundary point S, then $a^T \underline{x} = c$ is a supporting hyperplane of S at w if $a^T \underline{w} = c$ and either $a^T \underline{x} \ge c$ for $\underline{x} \in S$ or $\underline{a}^T \underline{x} \le c$ for all $\underline{x} \in S$.

Theorem 1.7 If $\underline{S} \subseteq \mathbb{R}^n$ be a convex set and \underline{y} be a boundary point exterior to the closure of S, then there exist a vector $\underline{a} \neq 0 \in \mathbb{R}^n$ such that

$$\underline{a}^T \underline{y} < \inf_{\underline{x} \in S} (\underline{a}^T \underline{x}).$$

ST-101

Proof. Let \tilde{S} be the closure of S. Define δ by

$$\delta = \inf_{\underline{x} \in S} ||\underline{x} - \underline{y}||.$$

Observing $\delta > 0$, since $\underline{y} \notin \tilde{S}$. Let $B_{2\delta}\left(\underline{y}\right) = \left\{\underline{x} : |\underline{x} - \underline{y}| < 2\delta\right\}$, then

$$\delta = \inf_{\underline{x} \in S} ||\underline{x} - \underline{y}|| = \inf_{\underline{x} \in \tilde{S} \cap B_{2\delta}} ||\underline{x} - \underline{y}||.$$

Sus'=(S)

The derived set of all limit to collection of all limit pts. of S

Define $f: \tilde{S} \cap B_{2\delta} \to R$ by $f(\underline{x}) = ||\underline{x} - \underline{y}||$. Then f is continuous function on closed set $\tilde{S} \cap B_{2\delta}$. Therefore f attains its minimum value on $\tilde{S} \cap B_{2\delta}$. Thus there exist a point $\underline{x}_0 \in \tilde{S} \cap B_{2\delta}$ such that

$$\delta = \min_{\underline{x} \in \tilde{S} \cap B_{2\delta}} ||\underline{x} - \underline{y}|| = ||\underline{x}_0 - \underline{y}||.$$

Clearly, \underline{x}_0 is a boundary point of \tilde{S} . We claim that $\underline{a} = \underline{x}_0 - \underline{y}$ will satisfies required condition. Let $\underline{x}, \underline{x}_0 \in \tilde{S}$. Then for $0 \le \lambda \le 1$, $\lambda \underline{x} + (1 - \lambda) \underline{x}_0 \in \tilde{S}$ and therefore

$$\begin{split} &|\lambda\underline{x} + (1 - \lambda)\,\underline{x}_0 - \underline{y}| \ge \left|\underline{x}_0 - \underline{y}\right| \\ \Rightarrow &\left|\left(\underline{x}_0 - \underline{y}\right) + \lambda\left(x - \underline{x}_0\right)\right| \ge \left|\underline{x}_0 - \underline{y}\right| \\ \Rightarrow &\left|\left(\underline{x}_0 - \underline{y}\right) + \lambda\left(x - \underline{x}_0\right)\right|^2 \ge \left|\underline{x}_0 - \underline{y}\right|^2 \end{split}$$

$$\Rightarrow \left[\left(\underline{x}_{0} - \underline{y} \right) + \lambda \left(\underline{x} - \underline{x}_{0} \right) \right]^{T} \left[\left(\underline{x}_{0} - \underline{y} \right) + \lambda \left(\underline{x} - \underline{x}_{0} \right) \right] \ge \left(\underline{x}_{0} - \underline{y} \right)^{T} \left(\underline{x}_{0} - \underline{y} \right)$$

$$\Rightarrow \left[\left(\underline{x}_{0} - \underline{y} \right)^{T} + \lambda \left(\underline{x} - \underline{x}_{0} \right)^{T} \right] \left[\left(\underline{x}_{0} - \underline{y} \right) + \lambda \left(\underline{x} - \underline{x}_{0} \right) \right] \ge \left(\underline{x}_{0} - \underline{y} \right)^{T} \left(\underline{x}_{0} - \underline{y} \right)$$

$$\Rightarrow \left(\underline{x}_{0} - \underline{y} \right) \left(\underline{x}_{0} - \underline{y} \right)^{T} + \lambda \left(\underline{x} - \underline{x}_{0} \right)^{T} \left(\underline{x} - \underline{x}_{0} \right) + \lambda \left(\underline{x} - \underline{x}_{0} \right)^{T} \left(\underline{x}_{0} - \underline{y} \right) + \lambda^{2} \left(\underline{x} - \underline{x}_{0} \right) \left(\underline{x}_{0} - \underline{y} \right)$$

$$\ge \left(\underline{x}_{0} - \underline{y} \right)^{T} \left(\underline{x}_{0} - \underline{y} \right)$$

$$\Rightarrow 2\lambda \left(\underline{x}_{0} - \underline{y} \right)^{T} \left(\underline{x} - \underline{x}_{0} \right) + \lambda^{2} |\underline{x} - \underline{x}_{0}|^{2} \ge 0.$$

Letting $\lambda \to 0$, we have

$$(\underline{x}_{0} - y)^{T} (\underline{x} - \underline{x}_{0}) \ge 0$$

$$\Rightarrow (\underline{x}_{0} - \underline{y})^{T} \underline{x} \ge (\underline{x}_{0} - \underline{y})^{T} \underline{x}_{0}$$

$$\Rightarrow \underline{a}^{T} \underline{x} \ge (\underline{x}_{0} - \underline{y})^{T} (\underline{x}_{0} - \underline{y} + \underline{y})$$

$$\Rightarrow \underline{a}^{T} \underline{x} \ge (\underline{x}_{0} - \underline{y})^{T} (\underline{x}_{0} - \underline{y}) + (\underline{x}_{0} - \underline{y})^{T} \underline{y}$$

$$\Rightarrow \underline{a}^{T} \underline{x} \ge (\underline{x}_{0} - \underline{y})^{T} + |\underline{x}_{0} - \underline{y}|^{2}$$

$$\Rightarrow \underline{a}^{T} \underline{x} \ge (\underline{x}_{0} - \underline{y})^{T} + \delta^{2} \forall \underline{x} \in S$$

$$\Rightarrow \underline{a}^{T} \underline{x} \ge (\underline{x}_{0} - \underline{y})^{T} \forall \underline{x} \in S, \ since \ \delta > 0$$

$$\Rightarrow \underline{a}^{T} \underline{y} < \inf_{\underline{x} \in S} \underline{a}^{T} \underline{x}.$$

Theorem 1.8 If $S \subseteq \mathbb{R}^n$ be a convex set and \underline{y} be the boundary point of S, then there is a supporting hyperplane of S at \underline{y} .

Proof. Let $S \subseteq \mathbb{R}^n$ and \underline{y} be a boundary point of S. Let $\left\{\underline{y}_n\right\}$ be a sequence in exterior to \tilde{S} converging to \underline{y} . Then by Theorem 1.7, there exists a sequence $\left\{\underline{a}_n\right\}$ of non zero vectors \underline{a}_n such that $\underline{a}_n^T y_n < \underline{a}_n^T \underline{x}$, $\forall \underline{x} \in S$. We can normalize $\left\{\underline{a}_n\right\}$ with $\left|\underline{a}_n\right| = 1$.

that $\underline{a}_n^T \underline{y}_n < \underline{a}_n^T \underline{x}$, $\forall \underline{x} \in S$. We can normalize $\{\underline{a}_n\}$ with $|\underline{a}_n| = 1$.

Thus $\underline{a}_n^T \underline{y} + \underline{a}_n^T \underline{y}_n - \underline{a}_n^T \underline{y} < \underline{a}_n^T \underline{x}$ $\forall x \in S$. But $\{\underline{y}_n\}$ converges to \underline{y} , so for large n, we have $\underline{a}_n^T \underline{y} < \underline{a}_n^T \underline{x} \forall x \in S$.

Since $\{\underline{a}_n\}$ is a bounded sequence, so there exists a sub sequence $\{\underline{a}_{nk}\}$ of $\{\underline{a}_n\}$ which is bounded such that $\underline{a}_{nk} \to a$ as $k \to \infty$. Now

$$\underline{a}^T \underline{y} = \lim_{k \in K} \underline{a}_n^T \underline{y} \le \lim_{k \in K} \underline{a}_n^T \underline{x} = \underline{a}^T \underline{x}.$$

Thus, $\underline{a}^T \underline{y} \le \underline{a}^T \underline{x} \ \forall x \in S$. Hence the hyperplane $H = \{\underline{x} : \underline{a}^T \underline{x} = \underline{a}^T \underline{y}\}$ is supporting hyperplane to S at y.

Theorem 1.9 Let $S \subseteq \mathbb{R}^n$ be a convex set. H is a supporting hyperplane of S and $T = S \cap H$. Then every extreme point of T is an extreme point of S.

Proof. We will prove this by method of contradiction. Suppose $\underline{x}_0 \in T$ is an extreme point of T. If \underline{x}_0 is not an extreme point of S. Then there exists $\underline{x}_1, \underline{x}_2 \in S$ with $0 < \lambda < 1$ such that $\underline{x}_0 = \lambda \underline{x}_1 + (1 - \lambda) \underline{x}_2$. Let $H = \{x : \underline{a}^T \underline{x} = c\}$ be a supporting hyperplane of S. We assume that S is contained in the negative closed half space H of S. Therefore, we have $\underline{a}^T \underline{x} \leq c$ for all $\underline{x} \in S$. Since, $\underline{x}_1, \underline{x}_2 \in S \Rightarrow \underline{a}^T \underline{x}_1 \leq c$ and $\underline{a}^T \underline{x}_2 \leq c$. Moreover $\underline{x}_0 \in T \Rightarrow \underline{x}_0 \in H \Rightarrow \underline{a}^T \underline{x}_0 = c$ and

$$\underline{a}^{T} \left(\lambda \underline{x}_{1} + (1 - \lambda) \underline{x}_{2} \right) = c$$

$$\Rightarrow a^{T} \lambda \underline{x}_{1} + \underline{a}^{T} (1 - \lambda) \underline{x}_{2} = c$$

$$\Rightarrow \underline{a}^{T} \underline{x}_{1} + \underline{a}^{T} \underline{x}_{2} - \lambda \underline{a}^{T} \underline{x}_{2} = c.$$

Since $0 < \lambda < 1$, we must have $\underline{a}^T \underline{x}_1 = c$ and $\underline{a}^T \underline{x}_2 = c$. It implies that $\underline{x}_1, \underline{x}_2 \in H \Rightarrow \underline{x}_1, \underline{x}_2 \in T$ and $\underline{x}_0 = \lambda \underline{x}_1 + (1 - \lambda) \underline{x}_2$, $0 < \lambda < 1$. It shows that \underline{x}_0 is not extreme point of T. Clearly, it is a contradiction to our assumption. Hence, every extreme point of T is a extreme point of S.

Theorem 1.10 Every closed bounded convex set in \mathbb{R}^n in equal to the closed convex hull of the extreme point of S.

Proof. Suppose $S = \phi$, then there is no need to prove. So, we assume that $S \neq \phi$. We will give proof by induction on dimension on the spaces \mathbb{R}^n . For n = 1, S is a closed bounded interval