

TIME: 3 HRS

				Sub	ject	Cod	le: F	KOE	2093
Roll No:									

Printed Page: 1 of 2

BTECH (SEM VIII) THEORY EXAMINATION 2023-24

DATA WAREHOUSING & DATA MINING
M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

	SECTION A		. 4
1.	Attempt all questions in brief.	$2 \times 10 =$	= 20
Qno.	Question	Marks	CO
a.	Define Data Warehousing.	2	1
b.	Discuss the Fact Constellation.	2	1
c.	Explain Distributed DBMS implementation.	2	2
d.	Define Warehousing Software.	2	2
e.	Are all the patterns interesting?	2	3
f.	Differentiate between binary symmetric attributes and asymmetric	2	3
	attributes.		
g.	Find the mode of the following dataset: 12,13,34,32,21,29,40,11,39,23.	2	4
	What is the advantage of mode over mean and median?		
h.	Given two objects represented by the tuples (22, 2, 45, 10) and (20, 10,	2	4
	26, 2):		
	Compute the Manhattan distance between these two objects.		
i.	What do you mean by Temporal Mining?	2	5
j.	Discuss Data Visualization.	2	5
	//X • ▼	10.	

SECTION B

2.	Attempt any three of the following:	$10 \times 3 =$	30
a.	Write short notes on:	10	1
	i. Steps of Knowledge Discovery in data		
	ii. Explain Snow Flakes in detail.		
b.	Explain Market Basket Analysis.	10	2
c.	Draw the box-and-whisker plot of the following dataset: 4.3, 5.1, 3.9,	10	3
	4.5, 4.4, 4.9,5.0, 4.7, 4.1, 4.6, 4.4, 4.3, 4.8, 4.4, 4.2, 4.5, 4.4.		
d.	Cluster the following dataset with points (2,4), (6,8), (1,2), (4,5), (3,5)	10	4
	into two clusters using K-Means algorithm (using Euclidean distance		
	algorithm only).		
e.	Explain ROLAP, MOLAP and HOLAP in detail.	10	5

SECTION C

<i>3.</i>	Attempt any one part of the following:	$10 \times 1 =$	10
a.	How mapping a 2D table into multidimensional data model? Explain	10	1
	with suitable example.		
b.	Write short notes on:	10	1
	i. Data Characterization and Data Discrimination		
	ii.Snow Flakes in detail.		

4.	Attempt any <i>one</i> part of the following:	$10 \times 1 =$: 10
a.	Differentiate between:	10	2
	(i) Min-Max and Z-score Normalization with examples		
	(ii) Binary data variables and Nominal data variables with examples		
b.	Explain the major components of Data Mining Architecture.	10	2

Roll No: Subject Code: KOE093

BTECH (SEM VIII) THEORY EXAMINATION 2023-24 DATA WAREHOUSING & DATA MINING

TIME: 3 HRS M.MARKS: 100

5. Attempt any <i>one</i> part of the	e following:	
---------------------------------------	--------------	--

-	•	4	40
- 10	V	1 =	= 10

Printed Page: 2 of 2

0.	11000	npt any one pt	it of the i	ono wing.			IUAI	10	
a.	Discu	iscuss Decision tree-based classifiers in detail.							
b.		Classify the tuple $X = (age = youth, income = medium, student= yes, credit rating = fair) using Bayes Theorem.$							
	RID	age	income	student	credit_rating	Class: buys_computer			
	1	youth	high	no	fair	no			
	2	youth	high	no	excellent	no			
	3	middle_aged	high	no	fair	yes			
	4	senior	medium	no	fair	yes			
	5	senior	low	yes	fair	yes			
	6	senior	low	yes	excellent	no			

6. Attempt any *one* part of the following:

4	•		1		4	•
- 1	0	Y	-1	=	1	0

a.	Explain var		- 1		9	methods.	Discuss	any	one	10	4
	partitioning	cluster	ing alg	orith	ım. 🤻						
b.	Discuss DBSCAN clustering algorithm with suitable example.					10	4				

7. Attempt any *one* part of the following:

10	100	-	1	41

7.	Attempt any one part of the following:	10 X 1-	- 10
a.	Differentiate between	10	5
	(a) OLAP and OLTP in detail.	/	
	(b) Slice and Dice operations with an example.		
b.	Define Spatial Data? How mining of spatial data is done?	10	5