Productivity and Efficiency Analysis

6) Multiple outputs and bad outputs
6e) StoNED with multiple outputs

Timo Kuosmanen

Aalto University School of Business

https://people.aalto.fi/timo.kuosmanen

Motivation

- Modeling joint production as parallel processes ignores synergies of joint production
- DEA can handle synergies and bad outputs, but is sensitive to noise
- SFA extends to multiple outputs using parametric distance functions, but the parametrizations violate free disposability and/or convexity, and cannot handle specialized firms
- Need for better tools...

Directional distance function: illustration

Directional data generating process (DGP):

Assume the observed data $(\mathbf{x}_i, \mathbf{y}_i)$ are perturbed in direction $(\mathbf{g}^{\mathbf{x}}, \mathbf{g}^{\mathbf{y}})$ such that

$$\mathbf{x}_i = \mathbf{x}_i^* + \varepsilon_i \mathbf{g}^x \ \forall i = 1, \dots, n,$$

$$\mathbf{y}_i = \mathbf{y}_i^* - \varepsilon_i \mathbf{g}^y \ \forall i = 1, \dots, n.$$

Target points $(\mathbf{x}_i^*, \mathbf{y}_i^*)$:

$$\overrightarrow{D}_T(\mathbf{x}_i^*, \mathbf{y}_i^*, \mathbf{g}^x, \mathbf{g}^y) = 0$$

Then DDF equals composite error term

Proposition 2. If the observed data are generated according to the DGP described in Section 2.3, then the value of the DDF in observed data $(\mathbf{x}_i, \mathbf{y}_i)$ point is equal to the realization of the random variable ε_i , specifically,

$$\overrightarrow{D}_T(\mathbf{x}_i, \mathbf{y}_i, \mathbf{g}^x, \mathbf{g}^y) = \varepsilon_i \ \forall i.$$

Convex regression of DDF

Regression equation:

$$y_{1i}/g_1^y = \overrightarrow{D}_T(\vec{\mathbf{x}}_i, \vec{\mathbf{y}}_i, \mathbf{g}^x, \mathbf{g}^y) - \varepsilon_i.$$

where

$$\vec{\mathbf{x}}_i = \mathbf{x}_i + (y_{1i}/g_1^y)\mathbf{g}^x,$$

$$\vec{\mathbf{y}}_i = \mathbf{y}_i - (y_{1i}/g_1^y)\mathbf{g}^y.$$

Note: the arbitrary choice of y_1 as the dependent variable does not affect results in any way. Any other output or input could be used.

Convex regression with multiple outputs

Regression equation:

$$y_{1i}/g_1^y = \overrightarrow{D}_T(\vec{\mathbf{x}}_i, \vec{\mathbf{y}}_i, \mathbf{g}^x, \mathbf{g}^y) - \varepsilon_i.$$

Proposition 3. If the observed data are generated by the DGP described in Section 2.3, then the transformed input-output variables $(\vec{\mathbf{x}}_i, \vec{\mathbf{y}}_i)$ are uncorrelated with the error term ε_i , that is,

$$Cov(\varepsilon_i, \vec{\mathbf{x}}_i) = \mathbf{0} \ \forall i \ \text{and} \ Cov(\varepsilon_i, \vec{\mathbf{y}}_i) = \mathbf{0} \ \forall i$$

Convex regression with multiple outputs

Regression equation:

$$y_{1i}/g_1^y = \overrightarrow{D}_T(\vec{\mathbf{x}}_i, \vec{\mathbf{y}}_i, \mathbf{g}^x, \mathbf{g}^y) - \varepsilon_i.$$

Convex nonparametric least squares (CNLS) estimator

$$\min_{\alpha,\beta,\gamma,\varepsilon^{\circ}} \sum_{i=1}^{n} (\varepsilon_{i}^{\circ})^{2}$$

subject to

$$y_{1i}/g_1^y = \alpha_i + \beta'_i \vec{\mathbf{x}}_i - \gamma'_i \vec{\mathbf{y}}_i + \varepsilon_i^{\circ} \ \forall i$$

$$\alpha_i + \beta'_i \vec{\mathbf{x}}_i - \gamma'_i \vec{\mathbf{y}}_i \le \alpha_h + \beta'_h \vec{\mathbf{x}}_i - \gamma'_h \vec{\mathbf{y}}_i \ \forall i, h$$

$$\beta'_i \mathbf{g}^x + \gamma'_i \mathbf{g}^y \le 1 \ \forall i$$

$$\beta_i \geq \mathbf{0}, \, \gamma_i \geq \mathbf{0} \, \, \forall i$$

Convex regression with multiple outputs

Equivalent CNLS formulation

$$\min_{\alpha,\beta,\gamma,\varepsilon} \sum_{i=1}^{n} (\varepsilon_i^{CNLS})^2$$
subject to

$$\mathbf{\gamma}'_{i}\mathbf{y}_{i} = \alpha_{i} + \mathbf{\beta}'_{i}\mathbf{x}_{i} - \varepsilon_{i}^{CNLS} \ \forall i = 1, ..., n$$

$$\alpha_{i} + \mathbf{\beta}'_{i}\mathbf{x}_{i} - \mathbf{\gamma}'_{i}\mathbf{y} \leq \alpha_{h} + \mathbf{\beta}'_{i}\mathbf{x}_{i} - \mathbf{\gamma}'_{h}\mathbf{y}_{i} \ \forall h, i = 1, ..., n$$

$$\mathbf{\gamma}'_{ii}\mathbf{g}^{y} + \mathbf{\beta}'_{ii}\mathbf{g}^{x} = 1 \ \forall i = 1, ..., n$$

$$\mathbf{\beta}_{i} \geq \mathbf{0} \ \forall i = 1, ..., n$$

$$\mathbf{\gamma}_{i} \geq \mathbf{0} \ \forall i = 1, ..., n$$

Application to electricity distribution firms revisited

Regulation periods 4 (2016-2019), and 5 (2020-2023)

```
Inputs:
Variable input:
      x = \text{Controllable operational expenditure (COPEX, } \in)
Fixed input:
      K = \text{Capital stock (replacement value, } \in)
Outputs:
Desirable outputs y:
      v_1 = Energy supply (GWh, weighted by voltage)
      y_2 = Network length (km)
      y_3 = Number of use points
Undesirable output:
      b = \text{Outages (hedonic damage cost, } \in)
Contextual variables:
```

z =Connection points / Use points

Application to electricity distribution firms revisited

- Step 1: CNLS estimation of the DDF
- Step 2: Kernel density estimation of the CNLS residuals
- Step 3: Directional shifting of the DDF to the frontier
- Step 4: Computing shadow prices of the frontier
- Step 5: Excel spreadsheet for computing efficient level of COPEX x, given K, y, b, and z.

Conditional yardstick competition

Figure 1: Illustration of the OPEX and TOTEX norms and the conditional yardstick.

Further research

- Extending StoNED to the radial input and output distance functions
- First attempt by Schaefer and Clermont (2018)
 - Sensitive to the choice of the output variable as the dependent variable on the LHS of the equation.
 - This problem is solvable, but the solution remains to be published.

Next lesson

7) Productivity analysis

