SunTec[™]

Product Recommendation - PoC

November 6, 2019

Change history

Doc Version	Author & Created Date	Change Description & Section	Reviewed By & Review Date	Approved By & Approved Date
1.0	Vaisakh B 06 November 2019	All		

Contents

- Product Recommendation Systems
- 2. Classification of Recommendation Systems
- 3. Popularity Based Filtering
- 4. Content Based Filtering
- 5. Collaborative Filtering
- 6. Advantages of Collaborative Filtering
- 7. Implementation Methods
- 8. Memory Based Approach
- 9. Disadvantages of Memory Based Approach
- 10. Model Based Approach [Latent Factor Method]
- 11. Different Latent Factor Methods
- 12. Evaluation of Recommendation Systems
- 13. Major Challenges
- 14. State of the Art

Product Recommendation Systems

"A system to assist user discover new and relevant products, creating a delightful user experience while driving incremental revenue through cross sell and up sell."

Classification of Recommendation Systems

- Popularity Based Filtering
- Content Based Filtering
- Collaborative Filtering

Popularity Based Filtering

- We can recommend items to a user which are most popular among all the users
- Non Personalized Recommendation

Content Based Filtering

- Serves recommendations based on the meta-data or characteristics of the product
- Semi Personalized Recommendation
- Challenges
 - Lack of novelty and diversity
 - Scalability is a challenge

Collaborative Filtering

- Serves recommendations based on user similarity
- Personalized Recommendation

Advantages of Collaborative Filtering

- Benefits from large user bases
- Produces more serendipitous recommendations
- Flexible across different domains

Implementation Methods

- Memory based approach
- Model based approach

Memory Based Approach

User - User filtering

- Finds the similarity between users based past rating
- Predicts the user preference for an item as the weighted sum of user similarities and rating of the given item by different users

Item – Item filtering

- Finds the similarity between items based on its rating
- Predicts the user preference for an item as the weighted sum of item similarities and the given user's rating for different items

Algorithms

- KNN
- Cosine similarity
- Pearson correlation

Disadvantages of Memory Based Approach

Scalability

 When there is large number of users and products, computation power becomes an issue

Data Sparsity

 There may be large number of users and products. But user rating for products won't be available in good numbers, in which case recommendation won't be accurate.

Model Based Approach [Latent Factor Method]

- Solves scalability and sparsity problems
- In this approach, CF models are developed using parametric machine learning algorithms to predict user's rating of unrated items
- The idea behind such models is that preferences of user can be determined by a small number of hidden factors
- These factors are called embeddings/latent features

Different Latent Factor Methods

- Matrix Factorization Method
 - We decompose our original user-item rating matrix into product of 2 low rank orthogonal matrices, which represents the embeddings
 - We will be using Funk SVD method (Regularized SVD)
- Deep Learning
 - Hidden layers models embeddings / new feature space

Evaluation of Recommendation Systems

- User Studies
- Online Evaluation
- Offline Evaluation

Major Challenges

Cold Start Problem

- Hybrid approach
 - Product Cold Start => Content based filtering
 - Visitor Cold Start => Demographic clustering + Popularity based strategy
- Data
 - Data Collection
 - Explicit
 - Implicit
 - Rating function based on behavioral data
 - Time decay algorithm
 - Inverse frequency factor
- Anonymous Users

State of the Art

Figure 1.1 The Netflix start page (before it changed the layout)

Appendix 1 - CF Memory Based Method Prediction Equation

User – User filtering

$$P_{u,i} = \frac{\sum_{v} (r_{v,i} * s_{u,v})}{\sum_{v} s_{u,v}}$$

Item – Item filtering

$$P_{u,i} = \frac{\sum_{N} (s_{i,N} * R_{u,N})}{\sum_{N} (|s_{i,N}|)}$$

Appendix 2 - Algorithm : Funk SVD Method

- Define baseline prediction function
- Calculate the error function
- Optimize the error function using SGD

$$\min_{b,p,q} \sum_{(u,i) \in K} (r_{iu} - \mu - b_u - b_i - q_i p_u)^2$$

$$\begin{array}{ll} \bullet b_{u} \leftarrow b_{u} + \gamma * (e_{ui} - \lambda * b_{u}) \\ \bullet b_{i} \leftarrow b_{i} + \gamma * (e_{ui} - \lambda * b_{i}) \\ \bullet q_{i} \leftarrow q_{i} + \gamma * (e_{ui} * p_{u} - \lambda * q_{i}) \\ \bullet p_{u} \leftarrow p_{u} + \gamma * (e_{ui} * q_{i} - \lambda * p_{u}) \end{array}$$

References

- Practical Recommender Systems Book by Kim Falk
- https://www.analyticsvidhya.com/blog/2018/06/comprehensive-guide-recommendation-engine-python/?

SunTec[™]

Thank You

