Aulas 1 e 2

1 Introdução ao curso

Este curso pode ser dividido em dois tópicos principais. Lógica e combinatória. O nome "discreta", usado em contraponto a "contínua", implica que as estruturas e objetos estudados neste ramo da matemática podem ser enumerados com os números inteiros. Exemplos de tais estruturas são fórmulas lógicas, conjuntos finitos e seus subconjuntos, e números racionais.

A parte de lógica deste curso consistirá no estudo de proposições, predicados e quantificados, técnicas de demonstração de proposições, com destaque à indução matemática. A parte de combinatória conterá uma revisão de métodos elementares de contagem, estudo de conjuntos e relações, métodos mais sofisticados de contagem e grafos.

2 Proposições lógicas

Uma proposição é uma sentença que possua um estado definido de verdadeiro ou falso. Considere os exemplos a seguir:

Exemplo 1.

- (a) 2+2=4.
- (b) $\pi + 2 < 5$.
- (c) O número 18 é um múltiplo de 3.
- (d) Para qualquer número real x, $x^2 2x + 10 > 0$.
- (e) Para qualquer inteiro positivo n, $n^2 + 1$ não é um quadrado perfeito.
- (f) Para qualquer inteiro positivo $n, n^2 + 13$ não é um quadrado perfeito.

Se uma sentença não possui um estado definido de ser verdadeira ou falsa, então ela não é uma proposição. Considere os exemplos

Exemplo 2.

- (a) Existe n tal que $90 < n^2 + 10 < 100$?
- (b) Ache x tal que $x^2 4x + 3 < 0$.
- (c) $n^2 > m^3$.

O caso (c) acima é um exemplo de uma $sentença \ aberta$, muito comum em matemática. Uma vez que valores sejam atribuídos às variáveis $n \in m$, (c) passa a se tornar uma proposição, será portanto verdadeira, ou falsa.

Exercício 1.

- 1. Determine se as proposições no primeiro exemplo são verdadeiras ou falsas.
- 2. Ache valores de n and m que tornem a sentença aberta $n^2 > m^3$ verdadeira.

3 Tabela de verdade

Dadas sentenças p, q, r,..., podemos construir uma tabela que expressa o valor de verdade de cada uma delas:

sentença	p	q	r
estado	Т	F	Т

Por exemplo, se p= "o quadrado de todo número real não é negativo", q= "um dia tem 28 horas" e r= "hoje é quarta feira", então a tabela acima corretamente descreve os valores de verdade destas sentenças.

Alguns símbolos são usados para comporem ou alterarem proposições, criando novas proposições.

(a) Negação: o símbolo \neg modifica a proposição de modo que sempre que esta for verdadeira, a nova proposição seja falsa, e vice-versa. Por exemplo, $\neg p =$ "o quadrado de todo número real é negativo". Note que p originalmente era verdadeira, portanto $\neg p$ é falsa. Precisamente.

	dado	consequência
sentença	p	$\neg p$
estado	Т	F
estado	F	Т

Novamente: sempre que uma sentença for verdadeira, sua negação será falsa, e sempre que uma sentença for falsa, sua negação será verdadeira. É preciso muito cuidado para se construir a negação de uma sentença.

Por exemplo, qual a negação da sentença: "Todo corvo é preto" ? Será "Nenhum corvo é preto" ?

(b) Conjunção: A conjunção \land de duas sentenças é a sentença que se obtém adicionando um "e" entre elas. Por exemplo $p \land q =$ "o quadrado de todo número real é não negativo E um dia tem 28 horas". Naturalmente, uma conjunção é verdadeira se ambas as sentenças forem, e falsa se ao menos uma dela for falsa. Em termos da tabela:

dado	dado	consequência
p	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

(c) Disjunção: A disjunção \vee de duas sentenças é a sentença que se obtém adicionando um "ou" entre elas. Por exemplo $p \vee q =$ "o quadrado de todo número real é não negativo OU um dia tem 28 horas". Naturalmente, uma disjunção é verdadeira se alguma das sentenças o for, e falsa se ambas forem falsas. Em termos da tabela:

p	q	$p \lor q$
Т	T	Т
Т	F	Т
F	Т	Т
F	F	F

Note que na nossa linguagem, muitas vezes o uso da palavra "ou" indica que desejamos que apenas uma das sentenças seja verdadeira. Em lógica, esse "ou" é chamado de "ou exclusivo", e é denotado por \oplus .

Por exemplo, ao chegar em um restaurante, você pode ler a frase "o prato feito inclui um pedaço de carne ou um pedaço de frango". Se este "ou" for uma disjunção, significa que você pode escolher carne, frango, ou ambos. O dono do restaurante por outro lado provavelmente desejou usar o "ou exclusivo", onde não há a possibilidade de "ambos".

Exercício 2. Faça a tabela de verdade do "ou exclusivo".

Exercício 3. Complete a tabela de verdade abaixo

p	q	r	$p \wedge r$	$q \lor r$	$p \wedge (q \vee r)$	$(p \wedge r) \vee q$	$\neg (p \land r)$	$\neg (p \land r) \land (q \lor r)$
T	Т	T	T	Т	T	${ m T}$	F	F
T	Т	F						T
T	F	Т	Т				F	
T	F	F		F				F
F	Т	Т			F			
F	Т	F						
F	F	Т		T			Т	
F	F	F	F					

(d) Implicação: A implicação \Rightarrow estabelece que a proposição à direita precisa ser verdade quando a proposição à esquerda o for. Por exemplo, $p\Rightarrow q$ será "SE o quadrado de todo número real não é negativo, ENTÃO um dia tem 28 horas". Neste exemplo, a primeira proposição era verdadeira e a segunda falsa, tornando esta implicação falsa. Note que se a primeira proposição for falsa, a segunda proposição não possui restrição alguma, e portanto a regra que define a implicação verdadeira não é violada, e daí a implicação é automaticamente verdadeira. "SE o céu é verde, ENTÃO a lua é quadrada" é um exemplo de uma implicação verdadeira.

Note que apesar da sugestividade de uma relação de causa e consequência, uma implicação pode ser verdadeira sem que as proposições tenham aparentemente qualquer relação. "SE o céu é azul, ENTÃO a lua é redonda" é um exemplo de implicação verdadeira.

Note também que a ordem das proposições é extremamente relevante. Implicações também podem ser usadas com sentenças abertas, onde o valor de verdade depende de uma atribuição. Note os exemplos abaixo:

• Se n é múltiplo de 6, então n é par. Implicação verdadeira, independente do valor escolhido para n.

• Se n é par, então n é múltiplo de 6. Implicação falsa, uma vez que haverá valores de n que tornam esta implicação falsa.

Há várias maneiras de se expressar linguisticamente uma implicação:

$p \Rightarrow q$.
p implica q.
Se p , então q .
p é uma condição suficiente para q .
q é uma condição necessária para p .
$q ext{ se } p.$
p somente se q .

Por exemplo, substitua p por "n é múltiplo de 6" e q por "n é par", e verifique as proposições equivalentes acima.

Na sentença $p \Rightarrow q$, p é chamado hipótese, e q conclusão. Note a tabela de verdade:

p	q	$p \Rightarrow q$
Τ	Τ	Т
Т	F	F
F	Τ	Т
F	F	Т

Note que dado o valor de uma implicação e de uma das proposições, pode ou não ser possível inferir o valor da outra proposição.

Da	do	Со	nclusão	
$p \Rightarrow q$	p	q	p	q
F			Т	F
Т	Т			Т
Т	F			?
Т		Т	?	
Т		F	F	

Entretanto, dizer que uma implicação é falsa automaticamente implica em dizer que a hipótese é verdadeira, enquanto a conclusão é falsa.

4 Equivalência lógica

Duas proposições são chamadas de "equivalências lógicas" se elas possuem o mesmo estado de verdade. O símbolo \equiv é usado para denotar tal fato.

Usando tabelas de verdade, resolva os exercícios abaixo.

Exercício 4. Mostre que independente dos valores de verdade de p e q, as proposições $(\neg p \land \neg q)$ e $\neg (p \lor q)$ são equivalentes.

Faça o mesmo para $(\neg p \vee \neg q)$ e $\neg (p \wedge q).$

As equivalências neste exercício são chamadas de Leis de De Morgan.

Exemplo 3. Suponha agora que a pergunta seja: qual a negação de uma implicação? Ou seja, $\neg(p \Rightarrow q)$? Vamos primeiro achar uma proposição equivalente à $p \Rightarrow q$.

p	q	$p \Rightarrow q$	$\neg q$	$\neg p$	
Т	T	Т	F	F	
Т	F	F	Τ	F	
F	Т	Т	F	Т	
F	F	Т	Τ	Τ	

Note que $\neg p \lor q$ é logicamente equivalente a $p \Rightarrow q$. A idéia aqui é que se p for verdadeira, então a única maneira em que $\neg p \lor q$ também é verdadeira é se q for, uma vez que $\neg p$ é falsa. Isso reproduz o significado da implicação $p \Rightarrow q$.

Exercício 5. Mostre que $p \Rightarrow q$ e $\neg q \Rightarrow \neg p$ são logicamente equivalentes.

5 Conversa, contrapositiva e inversa, e dupla-implicação

Dada uma implicação $p \Rightarrow q$, define-se três implicações a ela associadas:

- (a) Conversa: $q \Rightarrow p$.
- (b) Contrapositiva: $\neg q \Rightarrow \neg p$
- (c) Inversa: $\neg p \Rightarrow \neg q$.

Exercício 6. Construa a conversa, contrapositiva e inversa, das implicações

- "O time da casa vence sempre que está chovendo."
- "Estar fazendo sol é condição suficiente para eu ir ao clube."

Exercício 7. Usando tabela de verdades, prove que $p \Rightarrow q$ é logicamente equivalente à sua contrapositiva.

Conclua que a conversa e a inversa são logicamente equivalentes.

Mostre que uma implicação e sua conversa não são logicamente equivalentes.

Muitas vezes, tanto a implicação $p \Rightarrow q$ como sua conversa $q \Rightarrow p$ são verdadeiras. Neste caso, escrevemos $p \iff q$, indicando ambos os fatos. Em linguagem natural, dizemos

	$p \iff q$.
	p é equivalente a q .
	p se, e somente se, q .
1	p é uma condição necessária e suficiente para q .

Note que a ordem não é relevante, e podemos dizer igualmente que $q \iff p$.

6 Aplicação

(retirado de www.brilliant.org)

Há 3 caixas fechadas, e exatamente uma contém uma jóia. Você pode ficar com a jóia se escolher a caixa correta em uma tentativa. Na tampa das caixas tem escrito

caixa 1	a jóia está nesta caixa	
caixa 2	a jóia não está nesta caixa	
caixa 3	a jóia não está na caixa 1	

Você foi informado que APENAS UMA das frases é verdadeira. Você sabe onde está a jóia?

7 Tautologias e contradições

Uma tautologia é uma sentença que é sempre verdadeira.

Exemplo 4. Note que $p \vee \neg p$ é uma tautologia, independente do valor de p. Para ver isso, consideremos os dois únicos casos possíveis:

- p é verdadeiro. Neste caso, $\neg p$ é falso, mas ainda assim $p \lor \neg p$ é verdadeiro pois ao menos uma das sentenças é verdadeira.
- p é falso. Neste caso $\neg p$ é verdadeiro, e portanto novamente $p \lor \neg p$ é verdadeiro.

Por exemplo, a frase "ou choveu hoje ou não choveu" é uma tautologia. Uma contradição é uma sentença que é sempre falsa.

Exercício 8. Mostre que, independente do valor de p, a sentença $p \land \neg p$ é uma contradição.

Exercício 9. Mostre que $(p \land q) \Rightarrow (p \lor q)$ é uma tautologia.

8 Revisão

Listamos abaixo várias equivalências lógicas.

Lei de Dupla negação	$\neg(\neg p) \equiv p$
Lei de Distributividade	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
Lei de Distributividade	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
Lei de De Morgan	$\neg (p \land q) \equiv \neg p \lor \neg q$
Lei de De Morgan	$\neg (p \lor q) \equiv \neg p \land \neg q$
Lei da Absorção	$p \land (p \lor q) \equiv p$
Lei da Absorção	$p \lor (p \land q) \equiv p$
Lei da Negação	$p \land \neg p \equiv F$
Lei da Negação	$p \vee \neg p \equiv T$
Implicação	$p \Rightarrow q \equiv \neg p \lor q$
Contrapositiva	$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$
Negação de implicação	$\neg(p \Rightarrow q) \equiv p \land \neg q$

Como revisão da semana, demonstre as equivalências abaixo usando tabelas de verdade.

$$\begin{array}{cccccc} (p\Rightarrow q)\wedge (p\Rightarrow r) & \equiv & p\Rightarrow (q\wedge r) \\ (p\Rightarrow r)\wedge (q\Rightarrow r) & \equiv & (p\vee q)\Rightarrow r \\ (p\Rightarrow q)\vee (p\Rightarrow r) & \equiv & p\Rightarrow (q\vee r) \\ (p\Rightarrow r)\vee (q\Rightarrow r) & \equiv & (p\wedge q)\Rightarrow r \\ p\Longleftrightarrow q & \equiv & (p\Rightarrow q)\wedge (q\Rightarrow p) \\ p\Longleftrightarrow q & \equiv & \neg p\Longleftrightarrow \neg q \\ p\Longleftrightarrow q & \equiv & (p\wedge q)\vee (\neg p\wedge \neg q) \\ \neg (p\Longleftrightarrow q) & \equiv & p\Longleftrightarrow \neg q \end{array}$$

9 Predicados

Como vimos, muitas sentenças não são proposições pois há variáveis sobre as quais não temos informação na sentença. Por exemplo

$$n^2 > m^3.$$

Para formalizarmos este tipo de sentença, introduzimos o conceito de função proposicional, ou predicado:

$$P(n,m)$$
: " $n^2 > m^3$ ".

Esta função recebe dois valores, um para n e o outro para m, e devolve T ou F. Por exemplo

$$P(3,2) = T$$
 e $P(2,3) = F$.

Outro exemplo

P(x): "x é um número racional".

Então

$$P(-1) = T$$
 e $P(\pi) = F$.

Exercício 10. Dado o predicado P(x, y, z): "x + y = z + 2y", descreva todos os números reais $x, y \in z$ tais que P(x, y, z) = T.

10 Quantificadores

Dado um predicado, por exemplo P(x): " $x^2 \ge x$ ", podemos atribuir um valor para x e obtermos um valor para P(x), mas também podemos criar proposições a respeito de P(x) onde os valores de x são descritos como pertencentes a algum intervalo. Por exemplo

Para todo
$$x \in \mathbb{R}, \ x^2 \ge x$$
.

Esta sentença é verdadeira se P(x) for verdadeira para todo $x \in \mathbb{R}$, e falsa caso P(x) seja falsa para pelo menos um $x \in \mathbb{R}$.

O caso dual ocorre quando desejarmos que a sentença seja verdadeira se ela o for para pelo menos um elemento de um dado conjunto. Observe.

Existe algum $x \in \mathbb{R}$ tal que $x^2 > x$.

Esta sentença é verdadeira se existir ao menos um $x \in \mathbb{R}$ tal que P(x) é verdadeira, e será falsa caso P(x) seja falsa para todas as possíveis escolhas de $x \in \mathbb{R}$.

Note que apesar do predicado P(x) ser o mesmo, as sentenças são completamente diferentes. Em particular, neste exemplo, uma delas é falsa, e a outra é verdadeira.

Exercício 11. Qual é qual?

• Observações: "para todo" ou "para qualquer" são sinônimos, e em geral é representado pelo símbolo ∀. "Existe" é representado pelo símbolo ∃. Estes são exemplos de quantificadores.

Definição 1. Uma proposição quantificada é uma proposição da forma

"quantificador" "variável" em "domínio", "predicado contendo variável".

Exercício 12. Determine nas sentenças abaixo as quatro partes que formam uma proposição quantificada:

- (i) Existe um inteiro k tal que $k^2 k$ é um múltiplo de 3.
- (ii) Para todo $x \in \mathbb{R}, x^2 + x^3 + x^4 > 0.$
- (iii) $\forall x \in \mathbb{Q}, x^2 \in \mathbb{Q}.$
- (iv) $\exists n \in \mathbb{Z} : (n > 1 \land n/n^2 \in \mathbb{Z}).$
- (v) A equação $x^2 = 3$ possui uma solução entre os números inteiros.

Determine se as proposições acima são verdadeiras ou falsas. Em cada exemplo, modifique precisamente uma das quatro partes de modo que o estado de verdade seja alterado.

Quando o quantificador \forall é utilizado, pode ser necessário testar todos os elementos do conjunto para obtermos o estado de verdade da proposição.

Exercício 13. Seja $S = \{4, 5, 6\}$. Prove que $\forall x \in S, x^2 > 10$.

As vezes isso não é possível, por exemplo, se o conjunto S for infinito. Neste caso é necessário usar gerais a respeito dos elementos do conjunto.

Exercício 14. Prove que $x^2 \ge x$ para todos os números naturais x.

Para mostrar que uma proposição com o quantificador \exists é verdadeira, é suficiente achar apenas um exemplo no conjunto.

Exercício 15. Seja $S = \{4, 5, 6\}$. Prove que $\exists x \in S, x^2 < 20$.

11 Negação de quantificadores

Exemplo 5. Para todo $n \in \mathbb{Z}$, $n^3 - n > n^2 - 1$. Negar uma proposição como esta significa dizer que a propriedade $n^3 - n > n^2 - 1$ não é verdadeira para todos os números inteiros. Ou seja, é preciso mostrar que "existe um $n \in \mathbb{Z}$ tal que $n^3 - n > n^2 - 1$ é falsa".

Em geral, temos as seguintes regras:

- (1) Proposição: " $\forall x \in S, P(x) = T$ ". Negação: " $\exists x \in S : P(x) = F$ ".
- (2) Proposição: " $\exists x \in S : P(x) = T$ ". Negação: " $\forall x \in S, P(x) = F$ ".

Exercício 16. Negue a proposição abaixo sem usar a palavra "não".

For all
$$x \in \mathbb{R}$$
, se $x^4 + 2x^2 - 2x < 0$, então $0 < x < 1$.

Agora decida se é a proposição ou a sua negação que é verdadeira.

12 Quantificadores aninhados

Muitas proposições possuem mais de um quantificador. Isto ocorre quando o predicado de um proposição quantificada é em si uma proposição quantificada a respeito de uma outra variável. É preciso portanto saber aninhar os quantificadores de uma sentença.

Exemplo 6. Para todo $n \in \mathbb{Z}$, existe um $x \in \mathbb{R}$ tal que $n^2 + x^2$ é primo. Vamos separar esta proposição:

- (i) Quantificador: "para todo".
- (ii) Variável: n.
- (iii) Domínio: Z.
- $(\text{iv}) \ \operatorname{Predicado:} \left\{ \begin{array}{ll} \text{(a)} & \operatorname{Quantificador: "existe".} \\ \text{(b)} & \operatorname{Variável: } x. \\ \text{(c)} & \operatorname{Domínio: } \mathbb{R}. \\ \text{(d)} & \operatorname{Predicado: } n^2 + x^2 \text{ \'e primo.} \end{array} \right.$

Para checar se uma proposição como esta é verdadeira, é preciso começar com um número inteiro arbitrário n e descobrir se é possível achar um número real x (que provavelmente dependerá de n) tal que $n^2 + x^2$ é primo.

Exercício 17. Mostre que a proposição do exemplo acima é verdadeira. Mostre que ela se torna falsa se trocarmos \mathbb{R} por \mathbb{Z} .

Note que a ordem em que os quantificadores estão aninhados é extremamente relevante. De fato, ao alterar esta ordem, a proposição pode se tornar falsa. Em

Para todo $n \in \mathbb{Z}$, existe um $x \in \mathbb{R}$ tal que $n^2 + x^2$ é primo,

é preciso mostrar como achar um x específico que funcione para qualquer n. Por outro lado, na frase

Existe um
$$x \in \mathbb{R}$$
 tal que para todo $n \in \mathbb{Z}$, $n^2 + x^2$ é primo,

seria preciso achar um único $x \in \mathbb{R}$ que funcione para todo $n \in \mathbb{Z}$. Esta última proposição é claramente falsa.

Com 2 variáveis, é possível escrever quatro tipos de proposições com quantificadores aninhadas.

- (i) $\forall x \in S, \forall y \in T, P(x, y).$
 - Para mostrar que tal proposição é verdadeira, é preciso checar que P(x,y) é verdadeira para quaisquer escolhas possíveis de x e y.
 - A negação: $\exists x \in S : \exists y \in T : \neg P(x, y)$.
- (ii) $\forall x \in S, \exists y \in T, P(x, y).$
 - Para mostrar que tal proposição é verdadeira, é preciso começar com o elemento arbitrário $x \in S$ e achar um $y \in T$ que possivelmente dependa de x tal que P(x,y) é verdadeira para eles.
 - A negação: $\exists x \in S : \forall y \in T, \neg P(x, y).$
- (iii) $\exists x \in S : \forall y \in T, P(x, y).$
 - Para mostrar que tal proposição é verdadeira, é preciso um elemento particular $x \in S$ tal que para qualquer escolha de y, P(x, y) seja verdadeira.
 - A negação: $\forall x \in S : \exists y \in T : \neg P(x, y)$.
- (iv) $\exists x \in S : \exists y \in T : P(x, y).$
 - Para mostrar que tal proposição é verdadeira, é preciso achar dois elementos particulares $x \in S$ e $y \in T$ tais que P(x, y) seja verdadeira.
 - A negação: $\forall x \in S, \forall y \in T, \neg P(x, y)$.

Exercício 18. Neste exercício, expresse a negação da proposição. A seguir prove se a proposição é verdadeira ou falsa usando ela ou sua negação.

- (1) Existe um número real x tal que para todos os números inteiros n, $xn^2 = (2^x 1)n^3$.
- (2) Para todos os inteiros $n \in m$, $n^2 > m^3$ ou n < m.
- (3) Para todos os inteiros positivos n, existe um número real x tal que $n+1>x^3>n$.
- (4) Existe um inteiro n e existe um número real x tais que $n^2 > x^2 > (n+1)^2$ e x < n.

Aulas 3 e 4

13 Demonstrações matemáticas

Nesta seção, vamos estudar como se estrutura o conhecimento matemático. Começamos com uma introdução à terminologia:

- Um axioma (ou postulado) é afirmação assumida como verdadeira sem a necessidade de uma prova; axiomas são considerados verdades auto-evidentes.
- Um teorema é uma afirmação que se pode demonstrar ser verdadeira. Um teorema é um resultado considerado interessante em si mesmo.
- Uma **proposição** é também uma afirmação que se pode demonstrar verdadeira, mas considerada um teorema de menor interesse.
- Um **lema** é uma afirmação auxiliar a ser provada, geralmente para quebrar a prova de um teorema grande em pedaços menores.
- Uma **prova** (ou demonstração) é um argumento que mostra que uma afirmação (teorema, proposição ou lema) segue de um conjunto de premissas.
- Um **corolário** é afirmação derivável facilmente a partir de um teorema já provado. Colorários são consequências imediatas de outros resultados.
- Uma conjectura é suposição bem fundada, porém (ainda) sem prova. Uma vez provada, uma conjectura se torna um teorema ou uma proposição.

Note que para chamarmos algo de prova, é necessário checar que de fato trata-se de um argumento, assim como definido na seção anterior. Ou seja, é preciso que a conclusão possa ser inferida a partir de um conjunto de premissas bem explicitadas. Em contraponto a outras ciências naturais, uma quantidade significativa de evidências é absolutamente irrelevante para determinar se uma proposição é verdadeira. Observe o exemplo.

Exemplo 7.

$$p(n) = n^2 + n + 41$$

Conjectura: $\forall n \in \mathbb{N} : p(n) \text{ é primo.}$

Podemos facilmente achar evidências de que a conjectura estaria certa:

Testando valores de $n=0,1,\ldots,39$ a proposição é sempre verdadeira, ou seja, p(n) é primo para $0 \le n \le 39$.

n	0	1	2	3	 20	 39
p(n)	41	43	47	53	 461	 1601

Isto não pode ser uma coincidência! A hipótese deve ser verdadeira!

Mas não é: $p(40) = 1681 = 41 \cdot 41$, que não é primo!

Logo, a conjectura é falsa.

Exemplo 8.

• Em 1769, Euler (1707–1783) conjecturou que

$$a^4 + b^4 + c^4 = d^4$$

não tem solução no conjunto dos números inteiros positivos. Durante mais de dois séculos, ninguém conseguiu encontrar valores de a, b, c e d que satisfizessem a equação. O insucesso de todos os matemáticos envolvidos era evidência de que a conjectura poderia ser verdadeira. 218 anos depois, em 1987, Noam Elkies proveu um contraexemplo, mostrando que

$$95\,800^4 + 217\,519^4 + 414\,560^4 = 422\,481^4$$
.

Logo, esta conjectura também é falsa.

• Resumindo: Ausência de prova não o mesmo que prova de ausência!

Para escrever uma boa prova matemática, não existe uma receita fechada. O melhor conselho é praticar bastante, mas existe pelo menos uma regra geral a ser seguida:

 Ao se ler a prova em voz alta, substituindo cada símbolo matemático por palavras, a prova deve fazer sentido! Ou seja, é importante definir todas as variáveis usadas, utilizar preposições e pontuação adequada, assim como se certificar que a ordem das proposições faz sentido logicamente.

Uma prova deve estar sempre organizada da seguinte forma:

Teorema. Proposição que se deseja mostrar. Pode listar algumas hipóteses, e deve estar claro qual a conclusão desejada.

Demonstração. Argumento utilizando como premissas (1) axiomas (2) proposições conhecidas (3) hipóteses listadas no enunciado do teorema (4) definições, e chegando à conclusão enunciada no teorema.

Observe o seguinte exemplo. Lembre-se que um número inteiro n é definido como par se existe um número inteiro k tal que n=2k, e é definido como ímpar se existe um número inteiro k tal que n=2k+1.

Teorema. Se $n \notin impar$, então $n^2 \notin impar$.

Demonstração. Se n é impar, então existe $k \in \mathbb{Z}$ tal que n = 2k + 1. Note então que

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1.$$

Por sua vez, podemos reorganizar $4k^2 + 4k + 1$ como $2(2k^2 + 2k) + 1$. Daí concluímos que existe um número inteiro, no caso $m = 2k^2 + 2k$ tal que $n^2 = 2m + 1$. Por definição, n^2 é um número ímpar.

A seguir, enumeramos uma lista de provas erradas ou impróprias para este teorema.

(a)
$$n = 2k + 1 \Rightarrow n^2 = 2(2k^2 + 2k) + 1$$
. Logo n^2 é impar.

Esta prova peca por ser muito concisa. Por mais que esteja claro que o autor sabe como provar o enunciado original, esta prova pula muitos passos e introduz a variável k sem especificar a qual domínio pertence. De fato, caso k seja somente racional, esta prova estaria errada. Uma prova como esta receberia uma nota de 7/10.

(b) Se n é ímpar, então existe k inteiro tal que n=2k+1. Se n^2 é ímpar, então existe m inteiro tal que $n^2=2m+1$. Como $(2k+1)^2=2(2k^2+2k)+1$, basta escolhermos $m=2k^2+2k$, e vemos que n^2 é ímpar.

Esta prova cometeu o grave erro de supor como premissa a conclusão que se deseja mostrar. Por mais que as idéias estejam ok, na organização da prova a conclusão jamais poderá ser escrita como uma hipótese. Uma prova como esta receberia uma nota de 2/10.

(c)

$$n = 2k + 1$$

 $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$
 n^2 é ímpar \square

Tente ler esta prova em voz alta. Não está claro o que é definição, o que é hipótese, o que são variáveis, o que é a conclusão. Falta preposições e pontuação nesta prova. Uma prova como esta receberia uma nota de 4/10.

(d) Ímpar vezes ímpar é ímpar, e como $n^2 = n \times n$, então n^2 é ímpar. \square

Claramente a pessoa escrevendo esta prova não sabe usar a definição matemática de número ímpar, e acaba quase que supondo a conclusão e fazendo um raciocínio circular. Aqui a nota é 0.

Exercício 19. Prove matematicamente que impar vezes impar é impar. (note que você está multiplicando dois números impares que não são necessariamente iguais).

Exercício 20. Prove que se n^2 é impar, então n é impar.

Exercício 21. Um número inteiro n é um quadrado perfeito se existe um número inteiro k tal que $n = k^2$. Prove que o produto de quadrados perfeitos é um quadrado perfeito.

Prove que a soma de quadrados perfeitos não é necessariamente um quadrado perfeito.

Exercício 22. Um número real x é racional se existem números inteiros p e q tais que x = p/q. Prove que a soma e o produto de dois números racionais é sempre racional.

14 Prova por contrapositiva

A prova por contrapositiva se aplica a situações onde a proposição a ser provada é uma implicação, muitas vezes quantificada, na forma

$$\forall x, P(x) \Rightarrow Q(x). \tag{*}$$

Como vimos, $p \Rightarrow q$ e sua contrapositiva $\neg q \Rightarrow \neg p$ são equivalente, portanto uma alternativa para mostrar (*) é mostrar que

$$\forall x, \neg Q(x) \Rightarrow \neg P(x).$$

Por exemplo, considere a seguinte proposição.

Proposição. Para todo n inteiro, se 3n + 2 é impar, então n é impar.

Note que começar com 3n+2=2k+1 e tentar terminar com n=2m+1 para algum m pode ser um pouco complicado. Entretanto, a contrapositiva desta afirmação é uma proposição fácil de lidar:

Para todo n inteiro, se n é par, então 3n + 2 é par.

Demonstração. Vamos fazer a demonstração por contrapositiva. Se n é par, então existe k inteiro tal que n=2k. Logo 3n+2=6k+2=2(3k+1). Logo, se m=3k+1, segue que 3n+2=2m. Portanto 3n+2 é par.

Exercício 23. Mostre que se n=ab, então $n \leq \sqrt{a}$ ou $n \leq \sqrt{b}$. Faça a demonstração pelo método de mostrar a contrapositva.

15 Prova por contradição

A prova por contradição é um dos métodos de demonstração mais úteis em matemática. Basicamente consiste em supor a negação da conclusão, e mostrar que isso leva a uma contradição lógica. Ou seja, se a negação da proposição é uma premissa que, com o uso correto de regras de inferência, leva a uma conclusão falsa, então a premissa deve ser falsa, ou seja, a negação da proposição deve ser falsa, e portanto a proposição deve ser verdadeira.

Numa prova por contradição, a primeira frase da prova sempre deve ser "Suponha com o intuito de chegar a uma contradição que...", e o que se segue é a negação da proposição que se deseja mostrar.

O exemplo clássico de uma prova por contradição é a prova de que $\sqrt{2}$ não é um número racional. Lembre-se que um número é racional se ele pode ser expresso como uma fração p/q onde p e q são inteiros, e que é sempre possível simplificar esta fração de modo que p e q sejam coprimos.

Teorema. $\sqrt{2}$ não é um número racional.

Demonstração. Suponha para efeito de chegar a uma contradição que $\sqrt{2}$ é racional. Ou seja, existem inteiros a e b tais que $\sqrt{2} = a/b$. Supomos que esta fração já esteja simplificada, ou seja, que a e b são coprimos. Segue que

$$2 = a^2/b^2,$$

e portanto

$$2b^2 = a^2$$

. Logo a^2 é par, e portanto a é par. Daí, existe um inteiro k tal que a=2k, e portanto $a^2=4k^2$. Segue que

$$b^2 = 2k^2$$
.

logo b^2 é par, e portanto b é par. Portanto a e b são pares, uma contradição ao fato de que são coprimos. Logo $\sqrt{2}$ não pode ser racional.

Exercício 24. Prove os seguintes fatos por contradição.

- (1) Se p é um número primo, então \sqrt{p} é irracional.
- (2) Não existem inteiros p e q tais que $p^2 q^2 = 10$.
- (3) Se $x^3 + x + 1 = 0$, então x não é racional.

Os próximos dois teoremas são muito importantes em matemática, e em geral suas demonstrações são por contradição.

Teorema. Todo número inteiro maior que 1 ou é primo ou é um produto de números primos.

Demonstração. Suponha com o intuito de chegar a uma contradição que o enunciado é falso, e portanto existem números maiores que 1 que nem são primos e nem são o produto de números primos. Dentre todos eles, seja N o menor deles. Como N não é primo, ele é composto, e portanto existem inteiros a e b, menores que N, tais que N=ab. Mas como a e b são menores que N, ou eles são primos ou são o produto de números primos. Logo N é um produto de números primos. Uma contradição lógica, portanto o enunciado do teorema precisa ser verdadeiro.

Teorema. Existem infinitos números primos.

Demonstração. Suponha para chegar a uma contradição que a quantidade de números primos é finita. Seja $\{p_1,...,p_n\}$ o conjunto de todos eles, e considere o número

$$N = (p_1 \times p_2 \times \dots \times p_n) + 1.$$

Em particular N é maior que todos os primos que existem, e nenhum dos números primos $p_1,...,p_n$ pode dividir N. Logo N não pode ser escrito como o produto de números primos. Mas, pelo teorema anterior, segue que N é primo. Uma contradição ao fato que N é maior que todos os primos que existem. Portanto existem infinitos números primos.

16 Outros exemplos interessantes

Listamos abaixo algumas outras estratégias típicas em matemática para demonstrar fatos.

Proposição. Existe um número inteiro que pode ser escrito como a soma de dois cubos de inteiros positivos de duas maneiras distintas.

Prova por exibição de exemplo. Para que esta proposição seja verdadeira, basta acharmos um número inteiro que satisfaça a propriedade.

Demonstração. Note que

$$1729 = 10^3 + 9^3 = 12^3 + 1^3.$$

Exercício 25. Mostre por exibição de exemplo que nem todo número inteiro pode ser escrito como a soma de dois quadrados.

Proposição. Mostre que, dados dois números reais x e y, teremos que

$$\min\{x, y\} + \max\{x, y\} = x + y.$$

Para demonstrar esta proposição, dividimos em casos.

Demonstração. Se x < y, então min $\{x, y\} = x$ e max $\{x, y\} = y$, daí

$$\min\{x, y\} + \max\{x, y\} = x + y.$$

Se x > y, então $\min\{x, y\} = y$ e $\max\{x, y\} = x$, daí

$$\min\{x,y\} + \max\{x,y\} = x + y.$$

Se x=y,então $\min\{x,y\}=x$ e $\max\{x,y\}=x,$ daí

$$\min\{x, y\} + \max\{x, y\} = 2x = x + y.$$

Como todos os casos possíveis foram contemplados, a proposição segue.

Exercício 26. Mostre por divisão em casos que |xy| = |x||y|.

Podemos misturar divisão de casos e prova existencial.

Proposição. Existem números irracionais x e y tais que x^y é racional.

Aqui novamente somos tentados a acharmos um exemplo. Mas as vezes é possível mostrar que algo existe sem precisamente exibi-lo.

Demonstração. Considere $a = \sqrt{2}$ e $b = \sqrt{2}^{\sqrt{2}}$. Sabemos que a é irracional. Ou b é racional, ou é irracional. Se for racional, note que $b = a^a$, e fazendo x = y = a, teremos que x^y é racional. Se b for irracional, então fazemos x = b, y = a, e teremos

$$x^y = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{(\sqrt{2}\sqrt{2})} = \sqrt{2}^2 = 2,$$

que é racional.

Note que no exemplo acima, nós não sabemos se $\sqrt{2}^{\sqrt{2}}$ é racional, mas isso não impediu a demonstração da proposição.

Aulas 5 e 6

17 Notação de soma e produto

Como expressar a seguinte soma de uma maneira mais concisa?

$$1^2 + 2^2 + 3^3 + \dots + 10^2$$
 ?

Note que as parcelas são semelhantes, e que a única coisa que varia é base do expoente. Quando temos uma soma em que a variação de uma parcela para outra depende de uma única variável, que cresce uma unidade a cada parcela, podemos usar a notação de somatório:

$$\sum_{j=1}^{10} j^2$$
.

A variável que aparece abaixo de σ indica o que mudará de parcela em parcela. O valor que ela começa é o que aparece ao lado dela, com o sinal de igual. E o valor acima σ é o último que ela atinge.

Exercício 27. Escreva por extenso os seguintes somatórios:

$$\sum_{k=1}^{4} k! \qquad \sum_{n=2}^{6} \sin(n\pi) \qquad \sum_{n=-2}^{0} 4.$$

Muitas vezes a variável não se altera de 1 em 1. Para generalizar, se S é um conjunto, o símbolo

$$\sum_{x \in S} f(x)$$

significa a soma de todos os valores f(x) obtidos quando $x \in S$.

Exercício 28. Seja $S = \{1, 3, 10\}$. Calcule

$$\sum_{x \in S} x^2.$$

Note que é possível fazer alterações na disposição dos índices, ou acrescentar ou remover termos, ou ter restrições explicitadas em outras notações. Considere os exemplos:

(i)
$$\sum_{k=1}^{n} (k+1) = n + \sum_{k=1}^{n} k = 2n + \sum_{k=1}^{n-1} k$$
.

(ii)
$$\sum_{i=1}^{n} i^2 = \sum_{i=2}^{n+1} (i-1)^2.$$

(iii)
$$\sum_{j=2}^{10} j^3 - \sum_{k=1}^8 k^2 = 10^3 + \sum_{j=1}^8 (j+1)^3 - \sum_{k=1}^8 k^2 = 10^3 + \sum_{j=1}^8 \left[(j+1)^3 - j^2 \right]$$

Igualmente, se desejarmos representar o produto de vários elementos, poderemos utilizar a notação de produtório:

$$\prod_{k=1}^{3} k^2 = 1^2 \cdot 2^2 \cdot 3^2 = 36.$$

Exercício 29. Expresse o fatorial de n como um produtório.

18 Recorrência

Uma relação de recorrência é uma maneira de definir uma sequência de valores, cada um dos quais definidos a partir de alguns de seus antecessores. Por exemplo

- (i) $x_1 = 2$.
- (ii) $x_n = 2x_{n-1} + 3$.

Quando n=2, teremos que $x_2=2x_1+3=7$. Agora podemos fazer n=3, e teremos $x_3=17$.

Exercício 30. Ache o x_5 acima.

Exercício 31. Expresse

$$x_n = \sum_{k=1}^n k^2 + 1$$

como uma relação de recorrência.

Exercício 32. Expresse $x_n = n!$ como uma relação de recorrência.

Exemplo 9. A sequência de Fibonacci é definida como uma relação de recorrência

$$f_n = f_{n-1} + f_{n-2}$$
.

Como a definição envolve dois termos anteriores, é preciso dar pelo menos os dois primeiros valores da sequência para podermos definir os demais:

$$f_1 = 1$$
 $f_2 = 1$.

Mais para frente, voltaremos a falar mais em detalhes de certos tipos de recorrência.

19 Indução

Indução matemática é uma técnica muito poderosa para demonstrar propriedades expressas em termos de números inteiros positivos n. Basicamente, uma prova por indução funciona da seguinte forma:

(i) Primeiro mostra-se que a propriedade é verdadeira para alguns valores pequenos de n.

(ii) E então mostramos que se a propriedade é verdadeira para um valor arbitrário de n, então ela tem que ser verdadeira para n+1.

Em outras palavras, imagine que existe uma propriedade P que depende de valores $n \in \mathbb{Z}^+$, e que desejamos mostrar que

$$\forall n \geq 1, \ P(n) = T.$$

Para tal, o caminho é:

- (i) Mostrar que P(1) = T.
- (ii) Mostrar que $P(n) = T \Rightarrow P(n+1) = T$.

Por exemplo, se n=1 no ponto (ii), saberemos que $P(1)\Rightarrow P(2)$. Como P(1)=T pelo ponto (i), segue que P(2)=T. Agora que sabemos que P(2)=T, olhamos para o ponto (ii) com n=2. Sabemos por (ii) que $P(2)=T\Rightarrow P(3)=T$. Como, de fato, P(2)=T, segue que P(3)=T. E assim sucessivamente. O relevante de tudo isso é que basta mostrar (i) e (ii) e todos os casos seguirão automaticamente.

A maneira de escrever uma prova por indução é a seguinte:

- Sentença: $\forall n \geq 1, P(n)$ é verdadeira.
- Prova:
 - (i) "Caso base": demonstra o caso específico que P(1) é verdadeira.
 - (ii) "Hipótese indutiva": declare, para um dado k, P(k) é verdadeira.
 - (iii) "Conclusão indutiva": Mostra que P(k+1) é verdadeira. Para tal, você pode usar todas as propriedades matemáticas que você está acostumado, mas principalmente, você deve usar a sentença P(k) escrita em (ii) como hipótese.

Sem mais delongas, vamos começar a ver exemplos.

Proposição 1. Para todo inteiro $n \ge 1$,

$$\sum_{j=1}^{n} j = \frac{n(n+1)}{2}.$$

Neste exemplo,

$$P(n)$$
: " $\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$."

Demonstração. Por indução.

(i) Caso base: Se n=1, temos que $\sum_{j=1}^{1} j=1$, e que $\frac{1(1+1)}{2}=1$, portanto P(1)=T.

(ii) Hipótese indutiva: para um $k \in \mathbb{Z}$ arbitrário, temos que

$$\sum_{j=1}^{k} j = \frac{k(k+1)}{2}.$$

(ou seja, substituimos k por n na expressão que queremos mostrar. Note que o quantificador não é "para todo", e sim "para um".

(iii) Conclusão indutiva: Teremos que

$$\sum_{j=1}^{k+1} j = 1+2+3+\ldots+k+(k+1) \qquad \text{por definição}$$

$$= (1+2+3+\ldots+k)+(k+1) \qquad \text{propriedades da soma}$$

$$= \sum_{j=1}^{k} j+(k+1) \qquad \text{definição de somatório}$$

$$= \frac{k(k+1)}{2}+(k+1) \qquad \text{POR HIPÓTESE INDUTIVA}$$

$$= \frac{k^2+k+2k+2}{2} \qquad \text{manipulação algébrica}$$

$$= \frac{(k+1)(k+2)}{2} \qquad \text{manipulação algébrica}.$$

Isso encerra a prova.

Proposição 2. Para todo inteiro $n \ge 1$,

$$\sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}.$$

Demonstração. Por indução.

- (i) Caso base: Se n = 1, ambos os lados são iguais a 1.
- (ii) Hipótese indutiva:

$$\sum_{j=1}^{k} j^2 = \frac{k(k+1)(2k+1)}{6}.$$

(iii) Conclusão: Teremos que

$$\sum_{j=1}^{k+1} j^2 = 1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2$$

$$= (1^2 + 2^2 + 3^2 + \dots + k^2) + (k+1)^2$$

$$= \sum_{j=1}^{k} j^2 + (k+1)^2$$

$$= \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \qquad \text{POR HIPÓTESE INDUTIVA}$$

$$= \frac{2k^3 + 3k^2 + k + 6k^2 + 12k + 6}{6}$$

$$= \frac{(k+1)(k+2)(2(k+1)+1)}{6}$$

Exercício 33. Mostre que para todo $n \ge 0$,

$$\sum_{j=0}^{n} 2^j = 2^{n+1} - 1.$$

Troque 2 por r, r > 2. Como a fórmula precisa ser ajustada? Demonstre a nova fórmula por indução.

Você consegue resolver este exercício de um jeito diferente?

Exercício 34. (Desafio) Tente usar uma generalização dos exemplos acima e a idéia da indução pra achar uma fórmula para

$$\sum_{j=1}^{n} j^3.$$

Proposição 3. Se n é um inteiro positivo, então 5 divide $n^5 - n$.

Demonstração. Por indução.

- 1. Caso base: com n = 1, $n^5 n = 0$, e 5 divide 0.
- 2. Hipótese indutiva: para um $k \in \mathbb{Z}$,

5 divide
$$k^5 - k$$
.

3. Conclusão: Note que

$$(k+1)^5 - (k+1) = k^5 + 5k^4 + 10k^3 + 10k^2 + 4k.$$

Nosso objetivo é usar a hipótese indutiva, e para isso, precisamos fazer k^5-k aparecer. Manipulamos então para obter

$$(k+1)^5 - (k+1) = (k^5 - k) + 5k^4 + 10k^3 + 10k^2 + 4k + k.$$

Por hipótese indutiva, 5 divide k^5-k . Os demais termos possuem coeficientes múltiplos de 5, portanto 5 divide todos os termos da soma, e logo 5 divide tudo.

Equivalentemente, e de forma mais precisa, por indução, existe ℓ tal que $5\ell=k^5-k$. Logo

$$(k+1)^5 - (k+1) = 5(\ell + k^4 + 2k^3 + 2k^2 + k).$$

Exercício 35. Mostre que para todo $n \ge 0$, 4 divide $5^n - 1$.

Exercício 36. Vamos mostrar que 8 sempre divide 3^{2n} . Nossa hipótese indutiva é $8|3^{2n}$. Para a conclusão, faremos

$$3^{2(n+1)} = 3^{2n+2} = 9 \cdot 3^{2n} = 3^{2n} + 8 \cdot 3^{2n}$$

Como 8 divide 3^{2n} por hipótese indutiva, e 8 divide $8 \cdot 3^{2n}$, segue que 8 divide $3^{2(n+1)}$. Fim da demonstração.

Tá certo isso aí?

Proposição 4. Para todo $n \ge 4$, segue que $2^n < n!$.

Demonstração. 1. Caso base: Se n=4, então $2^n=16$ e n!=24. Logo $2^n< n!$ para n=4.

- 2. Hipótese indutiva: para um $k \in \mathbb{Z}$, $2^k < k!$.
- 3. Conclusão:

$$\begin{aligned} 2^{k+1} &= 2^k \cdot 2 \\ &< k! \cdot 2 \\ &< k! \cdot (k+1) \end{aligned} \qquad \text{por hipótese indutiva,} \\ &= (k+1)! \end{aligned}$$

Exercício 37. Prove que 13 sempre divide $3^{n+2} + 4^{2n+1}$, para qualquer $n \ge 0$.

Exercício 38. Ache um inteiro N_0 tal que para todo $n \ge N_0, n^2 > 2n+1$. Prove por indução.

Faça o mesmo para a propriedade $2^n > n^2$.

Exercício 39. Prove que um quadrado perfeito é sempre a soma de números ímpares consecutivos.

 \Box .

Aulas 7 e 8

Exercício 40. Torres de Hanoi é um jogo em que três peças de tamanhos diferentes são empilhadas em uma das três torres. A maior embaixo, a menor no topo. O objetivo é mover as três peças para a última torre. Para tal, só é permitido mover uma peça por vez, e uma peça nunca pode ficar sobre uma peça menor. Veja o exemplo abaixo de como resolver o jogo:

E se ao invés de 8 peças existirem n peças? É possível? Quantas jogadas serão necessárias para resolver? Faça um chute e depois prove por indução.

Exercício 41. Um triominó é um peça da forma

Prove que um tabuleiro quadricular de $2^n \times 2^n$, n > 0, sempre pode ser cobertos por triominós, desde que removamos um único quadrado.

Dica: um tabuleiro de tamanho $2^{n+1} \times 2^{n+1}$ é obtido juntando 4 tabuleiros de tamanho $2^n \times 2^n$.

Exercício 42. Prove que, para todo $n \ge 1$,

$$\sum_{j=1}^{n} \frac{j}{2^j} = 2 - \frac{n+2}{2^n}.$$

Exercício 43. Considere o produto

$$\prod_{j=2}^{n} \left(1 - \frac{1}{j^2} \right).$$

Teste alguns valores, conjecture uma fórmula, e prove esta fórmula por indução.

Exercício 44. Mostre que para todo n > 1,

$$1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n}.$$

Exercício 45. Considere a seguinte proposição

• Todos os carros de Belo Horizonte tem a mesma cor.

Vamos provar este fato por indução.

- 1. Caso base: Se só houvesse um carro em Belo Horizonte, certamente todos os carros teriam a mesma cor.
- 2. Hipótese indutiva: Todo conjunto de n carros em Belo Horizonte tem a mesma cor.
- 3. Conclusão: Considere um conjunto com n+1 carros em Belo Horizonte. Digamos que eles sejam

Os primeiros n carros, do C_1 ao C_n , tem a mesma cor por hipótese indutiva. Os últimos n carros, do C_2 ao C_{n+1} , também possuem a mesma cor, por hipótese indutiva. Como C_2 , por exemplo, está em ambos os conjuntos, segue que C_{n+1} é da mesma cor que os n primeiros, e portanto todos eles tem a mesma cor.

Bem, será que todos os carros de Belo Horizonte tem a mesma cor? Ou será que o princípio da indução matemática está errado? Ou talvez "essas coisas de lógica" não se aplicam ao mundo real?!!

Descubra o que aconteceu.

Exercício 46. Esse é o meu favorito.

Há uma ilha onde mora uma tribo com 1000 pessoas. 100 delas tem olho azul, 900 tem olhos marrons. Entretanto a religião deles proíbe que cada habitante saiba a cor dos seus olhos, ou mesmo que o tema seja discutido. Os portugueses ainda não chegaram nessa ilha, então eles não possuem espelhos, ou qualquer outra superfície refletora. Assim, cada habitante sabe a cor dos olhos de todo mundo, menos a sua.

Se um habitante da tribo descobrir por algum acaso a cor do seus olhos, este habitante precisa cometer suicídio no dia seguinte, ao meio dia, na praça central, para que todos vejam.

Todos os habitante são lógicos, inteligentes, religiosos, e sabem que os outros habitantes também são, e sabem que os outros habitantes sabem que todos são, e assim sucessivamente. É um pessoal bem inteligente mesmo.

Um belo dia um náufrago de olhos azuis foi parar na ilha. A tribo o ajuda, mas ele, sem conhecer os costumes da tribo, comete a gafe de, ao discursar em agradecimento para toda a tribo, fazer o seguinte comentário:

• Que grata surpresa ver outra pessoa de olhos azuis, como eu, nesta ilha tão remota.

O que acontece com a tribo? (após resolver, ou não, este desafio, vá ler na wikipedia sobre "Common Knowledge").

20 Mais casos bases

Muitas vezes, não basta usar o caso anterior para provarmos o próximo. Pode ser necessário usar alguns ou todos os casos anteriores para provarmos o próximo. Considere primeiramente o exemplo abaixo.

Proposição 5. Suponha que a sequência $\{x_n\}$ é definida por $x_1 = 0$, $x_2 = 30$, $x_n = x_{n-1} + 6x_{n-2}$, para $n \ge 3$. Mostre que

$$x_n = 2 \cdot 3^n + 3 \cdot (-2)^n$$
.

Demonstração. Vamos primeiro ir como antes:

- (i) Caso base: $x_1 = 0$ e $x_2 = 30$ ambos satisfazem a fórmula.
- (ii) Hipótese indutiva: para um $k \in \mathbb{Z}$, $x_k = 2 \cdot 3^k + 3 \cdot (-2)^k$.
- (iii) Conclusão: Pela recorrência, temos

$$x_{k+1} = x_k + 6x_{k-1}$$
.

Usando a hipótese indutiva, o melhor que conseguimos é:

$$x_{k+1} = 2 \cdot 3^k + 3 \cdot (-2)^k + 6x_{k-1}.$$

O que fazemos com x_{k-1} ? A idéia aqui é trocar nossa hipótese indutiva, para que ela contemple todos os valores até o k+1:

(ii) Hipótese indutiva: Para todo $j \leq k$, temos $x_j = 2 \cdot 3^j + 3 \cdot (-2)^j$. Agora voltamos. Temos

$$x_{k+1} = x_k + 6x_{k-1}.$$

Aplicando a hipótese indutiva para j = k e j = k - 1, teremos

$$x_{k+1} = x_k + 6x_{k-1}$$
 definição
$$= 2 \cdot 3^k + 3(-2)^k + 6(2 \cdot 3^{k-1} + 3(-2)^{k-1})$$

$$\begin{cases} \text{hipótese indutiva} \\ \text{em ambos os termos!!} \end{cases}$$

$$= 2 \cdot 3^k + 3(-2)^k + (4 \cdot 3^k - 9(-2)^k)$$

$$\begin{cases} \text{manipulação} \\ (\text{atenção à mudança de sinal}) \end{cases}$$

$$= 6 \cdot 3^k - 6(-2)^k$$
 manipulação
$$= 2 \cdot 3^{k+1} + 3(-2)^{k+1}$$
 manipulação

Exercício 47. Definimos $x_1 = 11$, $x_2 = 23$, e $x_n = x_{n-1} + 12x_{n-2}$, para $n \ge 3$. Mostre que, para todo $n \ge 1$, temos

$$x_n = 2 \cdot 4^n - (-3)^n$$
.

É preciso tomar muito cuidado com os casos base necessários!!

Proposição 6. Todo inteiro maior que 7 pode ser escrito como a soma de dois múltiplos não negativos de 3 e 5.

Demonstração. (i) Caso base: de fato, 8 = 5 + 3.

- (ii) Hipótese indutiva: Para todo $8 \le k \le n$, o número k pode ser escrito como 5x + 3y, onde x e y são inteiros não-negativos.
- (iii) Conclusão: Note que n+1=(n-7)+8. Por hipótese indutiva, há inteiros não negativos x e y tais que

$$n - 7 = 5x + 3y.$$

Então

$$n+1 = 5x + 3y + 8 = 5x + 3y + 5 + 3 = 5(x+1) + 3(y+1).$$

Será que esta prova está OK?

Há um erro relevante na prova acima, ainda que a proposição seja verdeira. Vamos consertar o erro. Note que se n=9, então n-7=2. A hipótese indutiva só permite que digamos que números k entre 8 e n podem ser escrito como 5x+3y onde x e y são não-negativos. Então o argumento na conclusão não pode mostrar o caso n=9!!

De fato, ele só se aplica a número n maiores que 15, para que $n-7 \ge 8$. Então é necessário checar manualmente que o resultado é verdadeiro para todos os número entre 8 e 15. A prova deve ser, portanto, assim:

- (i) Casos base: 8 = 5 + 3, $9 = 0 \cdot 5 + 3 \cdot 3$, $10 = 2 \cdot 5 + 0 \cdot 3$, $11 = 5 + 2 \cdot 3$, $12 = 0 \cdot 5 + 4 \cdot 3$, $13 = 2 \cdot 5 + 3$, $14 = 5 + 3 \cdot 3$, $15 = 3 \cdot 5 + 0 \cdot 3$.
- (ii) Hipótese indutiva: Para todo $8 \le k \le n$, o número k pode ser escrito como 5x + 3y, onde x e y são inteiros não-negativos.
- (iii) Conclusão. Seja $n \ge 16$. Note que n+1=(n-7)+8. Note que $n-7 \ge 8$, então podemos aplicar a hipótese indutiva para n-7. Então existem $x,y \in \mathbb{Z}_{\ge 0}$ tais que

$$n - 7 = 5x + 3y.$$

Então

$$n+1 = 5x + 3y + 8 = 5x + 3y + 5 + 3 = 5(x+1) + 3(y+1).$$

Exercício 48. Mostre que todo inteiro ≥ 13 pode ser escrito como 3x + 4y, com x, y inteiros positivos.

Exercício 49. Considere o jogo em que duas pessoas jogam, uma contra a outra. Há 37 moedas empilhadas. Em cada rodada, uma pessoa remove de 1 a 4 moedas da pilha. Ganha quem remove por último.

Existe uma estratégia sempre vitoriosa? Quem ganha? Quem começa ou quem vai depois?

E se forem n moedas? Qual a estratégia para a vitória? Use indução.

Exercício 50. Relembre a sequência de Fibonacci, dada por $\{f_n\}$ onde $f_1 = 1$, $f_2 = 1$ e $f_n = f_{n-1} + f_{n-2}$ para $n \ge 3$. Use indução para mostrar os resultados abaixo:

- (a) Para todo $n \in \mathbb{N}$, $f_{n+1} < \left(\frac{7}{4}\right)^n$.
- (b) Para $n \geq 2$, $f_1 + f_2 + \dots + f_{n-1} = f_{n+1} 1$.
- (c) Seja $a = \frac{1+\sqrt{5}}{2}$ e $b = \frac{1-\sqrt{5}}{2}$. Para todo $n \in \mathbb{N}$, mostre que $f_n = \frac{a^n b^n}{\sqrt{5}}$.

Dicas:

(a) Use que, para $n \geq 2$,

$$\left(\frac{7}{4}\right)^n = \frac{49}{16} \left(\frac{7}{4}\right)^{n-2} > \left(\frac{7}{4}\right)^{n-1} + \left(\frac{7}{4}\right)^{n-2}.$$

(b) Note que

$$\sum_{i=1}^{n-2} f_i + \sum_{i=1}^{n-3} f_i = f_1 + \sum_{i=1}^{n-3} (f_i + f_{i+1}).$$

(c) Tanto a como b satisfazem $x^2 = x + 1$.

Exercício 51. (Desafio) Considere uma longa rodovia circular que possui alguns postos de gasolina no caminho. Todos juntos, os postos contém exatamente a quantidade de gasolina necessária para dar uma volta na rodovia. Seu tanque está vazio, mas cabe muito mais gasolina do que o necessário para dar a volta completa. Mostre que existe um posto onde você pode começar, encher seu tanque com o total do posto, e será possível dar uma volta completa na rodovia.

Aulas 9 e 10

21 Conjuntos

Um conjunto é uma coleção de objetos. Estes objetos são chamados de elementos do conjunto. A única restrição é que em geral um mesmo elemento não pode contar duas vezes com elemento de um conjunto. Tampouco é relevante a ordem na qual os elementos são apresentados.

Usamos a notação com chaves {...} para denotar um conjunto, separando os elementos por vírgulas. Observe os exemplos:

- (i) $\{1, 5, 3, 4, 8\}$ é um conjunto contendo cinco elementos. Estes elementos são números. Os conjuntos $\{3, 5, 8, 4, 1\}$ e $\{1, 1, 5, 5, 5, 3, 8, 4\}$ representam o mesmo conjunto.
- (ii) $\{\}$ é o conjunto vazio, que não possui qualquer elemento, também denotado por \emptyset .
- (iii) $\{\Box, 4\}$ é um conjunto que contém dois elementos: \Box e 4.

Exercício 52. Quantos conjuntos diferentes você pode construir usando os símbolos "{", "}", "," "1" e "2" ?

O símbolos \in e \notin são usados para indicar se um elemento pertence ou não a um conjunto, respectivamente. Por exemplo, se $A = \{1, 2, 3\}$, então $1 \in A$, mas $4 \notin A$.

Conjuntos podem ser formados especificando um superconjunto onde estão seus elementos e uma propriedade adicional que separa os elementos deste superconjunto. Por exemplo:

- (i) $\{n \in \mathbb{Z} : -11 < n < 11\}$ é o conjunto de todos os inteiros maiores que -11 e menores que 11. Quantos elementos há neste conjunto?
- (ii) $\{n \in \mathbb{R} : n \text{ \'e um inteiro primo}\}$. Este 'e um exemplo de um conjunto com infinitos elementos.
- (iii) Também é possível termos uma definição recursiva:
 - (a) $1 \in A$.
 - (b) Se $x \in A$ e x + 2 < 10, então $x + 2 \in A$.

Descreva os elementos em A.

Conjuntos podem conter outros conjuntos como seus elementos. Por exemplo, se $A = \{1, 2, 3\}$, então $B = \{A, 1, 2, 3\}$ é o conjunto que contém quatro elementos: o conjunto A e os números de 1 a 3.

Exercício 53. Quantos elementos há no conjunto $\{\{\},\{1,2,3\},1\}$?

Exercício 54. Seja $A = \{1, 3, \{4, 5\}\}$. É verdade que $4 \in A$?

Exercício 55. Responda o exercício 1 novamente.

Dado um conjunto A, usamos a notação |A| pare representar a quantidade de elementos de A, também chamada de cardinalidade de A.

Exercício 56. Quanto é $|\emptyset|$?

Note que \emptyset e $\{\emptyset\}$ são conjuntos distintos. O primeiro é o conjunto vazio, que não contém elementos. O segundo é o conjunto que contém um elemento - que é o conjunto vazio.

Exercício 57. Quanto é |{{{}}}| ?

Exercício 58. Construa um conjunto com quatro elementos usando apenas os símbolos "{", "}" e ",".

Considere mais alguns exemplos:

- (i) $\{n: n \in \mathbb{Z}, 2|n\}$ significa "o conjunto dos n tais que n é um inteiro e 2 divide n". É exatamente o mesmo conjunto que $\{n \in \mathbb{Z} : 2|n\}$, que lemos como "o conjunto dos inteiros n tais que 2 divide n".
- (ii) Mesmo que um conjunto seja finito, as vezes a notação indireta é a única possível para expressar os elementos do conjunto:

$$\{x \in \mathbb{C}: x^6 - x^5 + 4x^4 - 2x^2 + 1 = 0\}$$

é um conjunto com 6 elementos, mas que simplesmente não é possível expressá-los de essencialmente outra forma.

Exercício 59. Expresse o conjunto dos números ímpares de 3 formas diferentes usando símbolos. Cada forma deve corresponder a uma frase abaixo.

- 1. O conjunto das coisas da forma 2k + 1 onde k é um inteiro.
- 2. O conjunto dos números naturais n tais que existe um k inteiro tal que n=2k+1.
- 3. O conjunto dos números inteiros n tais que n-1 é par.

Para cada um dos conjuntos a seguir, se o conjunto for infinito, descreva com palavras os seus elementos. Se for finitos, liste os elementos:

Exercício 60.

- (i) $\{x \in \mathbb{Z} : 1 \le x^2 \le 10\}.$
- (ii) $\{x^2 : x \in \mathbb{Z}, 1 \le x^2 \le 10\}.$
- (iii) $\{x \in \mathbb{R} : x^3 x = 0\}.$
- (iv) $\{\frac{p}{q}: p, q \in \mathbb{Z}, q > 0, p < 0\}.$
- (v) $\{x \in \mathbb{R} : \frac{1}{5} < 2^x < 10\}.$
- (vi) $\{x \in \mathbb{Z} : \frac{1}{5} < 2^x < 10\}.$

22 Subconjuntos e conjunto das partes

Dois conjuntos são iguais se eles contém os mesmo elementos. Formalmente, dizemos que A=B se

$$x \in A \iff x \in B.$$

Conforme já vimos acima, há muitas formas de representarmos o mesmo conjunto. As vezes não é óbvio que dois conjuntos são iguais:

$$\{-1, 1, 3, 5\} = \{x \in \mathbb{R} : x^4 - 8x^3 + 14x^2 + 8x - 15 = 0\}.$$

Um subconjunto de um conjunto é o conjunto formado por parte de seus elementos. Note que pode conter nenhum elemento ou todos eles, nada impede. Formalmente, dizemos que $A \subseteq B$ se

$$x \in A \Rightarrow x \in B$$
.

Exercício 61. Encontre todos os subconjuntos de $\{1, 2\}$.

Como exemplo, note que

$$\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$$
.

Atenção: as vezes se usa a notação $A \subset B$ para indicar que A é um subconjunto de B, e a notação $A \subsetneq B$ para indicar que A é subconjunto de B e diferente de B. Nós entretanto usaremos a convenção a seguir:

- 1. $A\subset B$ um subconjunto necessariamente diferente de B.
- 2. $A \subseteq B$ qualquer subconjunto de B.

Como já vimos no exercício acima, é possível trabalharmos com o conjunto de todos os subconjuntos de um dado conjunto A. Este é também chamado de *conjunto potência* ou *conjunto das partes*, e é denotado por $\mathcal{P}(A)$.

Exercício 62. Se $A = \{1, 2, 3\}$, denote $\mathcal{P}(A)$.

Exercício 63. Se |A| = n, então quanto é $|\mathcal{P}(A)|$?

Exercício 64. Quem é $\mathcal{P}(\emptyset)$?

23 Operações em conjuntos

Uma n-tupla ordenada $(a_1, a_2, ..., a_n)$ é uma coleção ordenada de n elementos, em que a_1 é o primeiro, a_2 o segundo, e ... a_n o último ou n-ésimo elemento.

- (i) (1,4) é um par ordenado. Ele é diferente de (4,1).
- (ii) Duas n-tuplas são iguais se os elementos em cada posição são iguais.

O produto cartesiano de dois conjuntos, denotado por $A \times B$, é o conjunto de todos os pares ordenados onde o primeiro elemento está em A, e o segundo em B. Formalmente:

$$A \times B = \{(a, b) : a \in A \in b \in B.\}$$

Exercício 65. Expresse todos os elementos de

$$\{1, 2, 3\} \times \{x, y\}.$$

Exercício 66. Se |A| = n e |B| = m, então quanto é $|A \times B|$?

Exercício 67. Dados conjuntos A e B, é verdade que $A \times B = B \times A$? Se não é, quando isso ocorre?

Produtos cartesianos podem ser generalizados para mais de um conjunto:

$$\{1,2\} \times \{a,b\} \times \{3,4\} = \{(1,a,3), (1,a,4), (1,b,3), (1,b,4), (2,a,3), \ldots\}$$

Exercício 68. Considere $A = \{n \in \mathbb{Z} : n \text{ impar}\} \in B = \{n \in \mathbb{Z} : 4 \text{ não divide } n^3 + n\}$. Mostre que $A \subset B$. É verdade que $B \subset A$?

A idéia aqui é mostrar que $x \in A \Rightarrow x \in B$. Se $x \in A$, então existe k tal que x = 2k + 1. Agora queremos mostrar que 4 não divide $x^3 + x$. Então calculamos:

$$x^{3} + x = (2k+1)^{3} + (2k+1) = 4(2k^{3} + 3k^{2} + 2k) + 2.$$

E agora?

Dois ou mais conjuntos podem ser combinados de modo a formar novos conjuntos. Já vimos como fazer isso usando o produto cartesiano acima. Vamos ver outras operações:

(i) Interseção: $A \cap B$ é o conjunto de todos os elementos que pertencem tanto a A como a B, ou seja:

$$A\cap B=\{x:x\in A\ \mathrm{e}\ x\in B\}$$

(ii) União: $A \cup B$ é o conjunto de todos os elementos que pertencem a A ou a B, ou seja:

$$A \cup B = \{x : x \in A \text{ ou } x \in B\}$$

(iii) Diferença: $A \setminus B$ é o conjunto de todos os elementos que pertencem a A mas não pertencem a B, ou seja:

$$A \backslash B = \{x : x \in A \in x \notin B\}$$

Também se denota por A - B.

(iv) Diferença simétrica: $A \oplus B$ é o conjunto de todos os elementos que pertencem a A mas não pertencem a B ou que pertencem a B e não pertencem a A, ou seja:

$$A \oplus B = (A \backslash B) \cup (B \backslash A)$$

(v) Se U é um conjunto contendo A, dizemos que o complemento de A em U são os elementos de U que não estão em A, ou seja

$$\overline{A} = U \backslash A$$
.

(vi) Se há uma família de conjuntos $A_1, A_2,, A_n$, então usamos a notação

$$B = \bigcup_{i=1}^{n} A_i$$

para indicar o conjunto que é a união de todos eles, ou seja, $x \in B$ se, e somente se, existe pelo menos um $i \in \{1, ..., n\}$ tal que $x \in A_i$.

(vii) Analogamente

$$B = \bigcap_{i=1}^{n} A_i$$

indica o conjunto que é a interseção de todos eles, ou seja, $x \in B$ se, e somente se, para todo $i \in \{1, ..., n\}$, temos $x \in A_i$.

Note que $A \cap B = B \cap A$, $A \cup B = B \cup A$, e $A \oplus B = B \oplus A$, mas não necessariamente $A \setminus B = B \setminus A$. Aliás, quando é que isso ocorre?

Exercício 69. Seja U um conjunto contendo A e B. Mostre que:

$$\overline{A \cap B} = \overline{A} \cup \overline{B}.$$

Exercício 70. Construímos uma tabela de pertinência para um elemento $x \in U$, com respeito a A, B, seus complementos, interseções e uniões. Usamos 1 para indicar que pertence, 0 que não pertence. Por exemplo:

A	$\mid B \mid$	$A \cap B$	$A \cup B$	\overline{A}	\overline{B}	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	1	1	0	0	0	0
1	0	0	1	0	1	1	1
0	1	0	1	1	0	1	1
0	0	0	0	1	1	1	1

Com o que isso se parece? Usando uma tabela semelhante, prove que $\overline{A \cup B}$ é igual a $\overline{A} \cap \overline{B}$.

Exercício 71. Faça a tabela de pertinência para $A \oplus B$ e verifique que

$$A \oplus B = (A \cup B) \backslash (A \cap B).$$

Exercício 72. É verdade que

$$A \oplus (B \oplus C) = (A \oplus B) \oplus C$$
?

Dois conjuntos A e B são disjuntos se eles não possuem qualquer elemento em comum, ou seja, se $A \cap B = \emptyset$. Por exemplo, se $A = \{1, 2, 3\}$ e $B = \{4, 5\}$, então A e B são disjuntos. Se $C = \{\{1, 2, 3\}\}$, note que A e C também são disjuntos.

Uma partição de um conjunto A é uma coleção de conjuntos não-vazios $\{A_1,A_2,...,A_n\}$ tais que

- (i) $A = A_1 \cup A_2 \cup ... \cup A_n$, e
- (ii) A_i é disjunto de A_j para todos i e j entre 1 e n.

Por exemplo,

é uma partição do conjunto

$$\{1, 5, 3, 4, 2, 7\}.$$

Exercício 73. Encontre todas as partições possíveis do conjunto

$$\{1, 2, 3, 4\}.$$

Faça o mesmo para $\{1, 2, 3, 4, 5\}$.

Pesquise sobre "Bell Numbers" e "stirling numbers of the second type".

24 Correspondência entre subconjuntos e sequências de 0s e 1s

Assuma que há um conjunto universal U com n elementos. Qualquer subconjunto A de U pode ser representado como uma string de n 0s e 1s. Especificamente, definimos uma ordem para U, colocaremos um 1 se o elemento correspondente àquela posição pertencer a A, e 0 caso contrário.

Por exemplo, se $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$, podemos dizer que o subconjunto $A = \{3, 4, 7\}$ corresponde à string 00110010. Seja $B = \{1, 2, 3, 6, 7\}$. Escreva...

- 1. ... a string correspondente a B.
- 2. ...a string correspondente a $A \cup B$.
- 3. ...a string correspondente a $A \cap B$.
- 4. ...a string correspondente a $A \setminus B$.
- 5. ...a string correspondente a $A \oplus B$.
- 6. ...a string correspondente a \overline{A} .
- 7. ...as strings correspondentes aos subconjuntos de A.