



NAVAL Postgraduate School

OS4118
Statistical and Machine Learning

# Inter-point Distances

Prof. Sam Buttrey Fall AY 2020

The Nation's Premiere Defense Research University

Monterey, California WWW.NPS.EDU



## **Inter-point Distances**

- Many statistics techniques (like clustering, to come) rely on a measure of distance (or dissimilarity) between two points, between a point and a cluster, and between two clusters
- Concerns: How do we...
  - 1. Evaluate the contribution of a variable to the clustering (selection, weighting)?
  - 2. Account for correlation (or duplication) among variables?
  - 3. How do we incorporate categorical variables?



#### **Euclidean Distance**



Source: Bing Maps



#### **Euclidean Distance**





#### **Manhattan Distance**





 Most techniques measure distance between two observations x<sub>1</sub>, x<sub>2</sub> with:

$$d(x_1, x_2) = \sqrt{\sum_j (x_{1j} - x_{2j})^2}$$
 (Euclidean) or

$$d(x_1, x_2) = \sqrt{\sum_j w_j (x_{1j} - x_{2j})^2}$$
 (wtd. Euc.)

- Weights  $w_j$  are 1, or sd  $(x_j)$ , or range  $(x_j)$ 
  - But are these good choices? Scale is not the same as "importance"
- Correlation among X's usually ignored
- Still needs modification for categorical data

The weighted Manhattan distance is one alternative:

$$d(x_1, x_2) = \sum_j w_j |x_{1j} - x_{2j}|$$

More generally we could use the Minkowski distance for some value *p*:

$$d(x_1, x_2) = \left[\sum_j w_j |x_{1j} - x_{2j}|^p\right]^{(1/p)}$$

- Again, choice of weights  $w_j$  are 1, or sd  $(x_j)$ , or range  $(x_i)$
- Correlation among X's usually ignored
- Still needs modification for categorical data



#### **Mahalanobis Distance**

- Suppose your data vectors x1, x2 come from a distribution with cov. matrix Σ
- Then a "natural" way to account for correlation among observations is to weight by the inverse of that matrix:

$$d(x_1, x_2) = \sqrt{(x_1 - x_2)^T \sum_{1}^{-1} (x_1 - x_2)}$$

 This Mahalanobis distance generalizes the Euclidean...but the Σ matrix, n × n, is unknown and hard to estimate



#### **Distance Measure**

- R's daisy() {cluster} computes interpoint distances (replaces dist())
- Scale, choice of metric can matter
- If all variables numeric, choose "euclidean" or "manhattan"
- We can scale columns differently, but correlation among columns ignored
- Otherwise daisy uses Gower distance



#### **Gower Distance**

- If some columns are not numeric, the "dissimilarity" between numeric  $X_{ik}$  and  $X_{jk}$  scaled to  $|X_{ik} X_{jk}|$  / range ( $X_{ik}$ )
  - (What happens when one entry in  $X_k$  has an outlier like Age = 999?)
- For binary variables the usual dissimilarity is 0 if  $X_{ii} = X_{ik}$ , 1 if not
  - What if 1's are very rare (e.g. speaks Esperanto, attended Sorbonne)?
  - Asymmetric binary



#### **Gower Distance**

- Our observations are vectors  $x_1, x_2, ..., x_n$
- The dist  $d_{ij,k}$  between  $\mathbf{x}_i$  and  $\mathbf{x}_j$  on var. k is:
  - For categorical k, 0 if  $x_{ik} = x_{jk}$ , otherwise 1
  - For numeric k,  $|x_{ik} x_{jk}|$  / (range of column k)
- The overall distance  $d_{ij}$  is a weighted sum of these:  $d_{ij} = \frac{\sum_{i=1}^{p} \partial_{ij,k} d_{ij,k}}{\sum_{i=1}^{p} \partial_{ii,k}}$
- Weights ∂<sub>ij,k</sub> are 1 except when one x is missing, or both 0 and x asymm.binary
- Case weights are also possible



## **Thoughts on Gower**

- Natural adjustment for missing values
  - Euclidean dist: inflate by √[ncol(X)/#non-NA]
- All these choices can matter!
- daisy() computes all the pairwise distances up front
- There are n(n −1)/2 of these, which causes trouble in really big data
- Things are different in high dimensions our intuition is not very good here
- Dimensionality reduction is always good!

- "Two observations are alike if they tend to fall in the same leaves of trees"
  - But trees require a response variable
- The treeDist distance computes p trees, with each column in turn as response
- Trees are pruned some may be discarded
- The distance between points i and j on tree t is d<sub>1</sub><sup>t</sup>(i,j) = 0 if i and j land in the same leaf, otherwise 1
- $d_2$  is like  $d_1$  but with tree "quality" weights



#### **Enhancements**

- Local quality
- If two obs. are in different leaves, compute the change in deviance associated with the smallest sub-tree containing both
- Scale the (i, j) distance "accordingly" → d<sub>3</sub>
- d<sub>4</sub>: this "local" measure, weighted by tree quality
- The treeDist is unlike other measures in that it's learned from the data





## **Distances in Big Data Sets**

- Instead of computing all (<sup>n</sup><sub>2</sub>) pairwise distances, we can compute the set of pairwise leaf distances for each tree, which is much smaller
- We can also generate a new numeric data matrix whose inter-point distances "mirror" the inter-leaf ones
  - This data can be clustered or visualized in lower-d space via, e.g., multi-dim scaling
  - B. and W., R Journal 7/2, Dec. 2015
  - treeClust library at CRAN respository

# Pigression: High-Dimensional Data

- High-dimensional data is just different
- Here are the pairwise distances among 1,000 points in p dimensions where each component is indep. U(-.5, +.5), scaled to (0, 1)
- In high dimensions, everything is "equally far away"
- Hopefully our data lies in a lower-dimensional subspace







- What proportion of the unit square is occupied by the unit circle?
- A:  $\pi(1)^2 / 2^2 = \pi/4 = 0.79$
- What proportion of the unit cube is occupied by the unit sphere? A:  $(4/3) \pi(1)^3 / 2^3 = \pi/6 = 0.52$



How about in 30 dimensions?
 A: ≈ Zero!



## **Shameless Plug**

- Remember random forests?
- "Proximity" measured by number of times two observations fell in the same leaf
  - But every tree has the same response variable
- The treeClust() dissimilarity of Buttrey and Whitaker (2015) creates (0 or) one tree from each response variable
  - Some trees are pruned to the root, dropped
  - Inherits tree missing value, outlier etc. handling
- Often performs well



## **Dimensionality Reduction**

- How can we reduce dimensionality while preserving as much info as possible?
  - Principal Components, based on variance
  - "Projection Pursuit" is the name of techniques that use other criteria of "interestingness," like "as non-Gaussian as possible"
  - Sammon mapping: preserve the ranking of inter-point distances as much as possible
  - t-SNE seems pretty successful
- Why?
  - For plotting, visualization





NAVAL Postgraduate School

OS4118

Statistical and Machine Learning

Similar Items part 2 (Mostly a Digression)

Prof. Sam Buttrey Spring 2019

The Nation's Premiere Defense Research University

Monterey, California
WWW.NPS.EDU



## Finding Similar Items

- Goal: locate neighbors in scalable way
  - i.e. without computing n(n-1)/2 distances
  - Tasks
    - Find exact duplicates
    - Find nearest neighbor or the *k* nearest
    - Find all, or at least one, neighbors within distance r
    - Find distribution of distances to k<sup>th</sup> nearest
    - Find average number of points within *r*...
- Lescovec, Rajmaran, & Ullman, "Mining Massive Datasets," On-line Textbook (2014)





#### Numeric vectors:

- Clustering
- Multidimensional Scaling (more to follow)
  - These often require numeric variables like most of the examples we've looked at
  - Need to handle mixed variables (e.g. Gower)
- Text documents
  - Plagiarism, mirror pages, same source articles
- Sets
  - Recommender systems

#### Numeric vectors

- Euclidean and Manhattan distances...
- We know how to incorporate categoricals, asymmetric binaries...
- ...though scaling/weighting still needs to be considered...
- ...as does correlation perhaps a simple sum of column distances is insufficient
- -dist() and daisy() in R



## Distances (cont'd)

- Numeric vectors (cont'd)
  - Cosine similarity
    - $C(\mathbf{x}_1, \mathbf{x}_2) = \mathbf{x}_1^T \mathbf{x}_2 / [||\mathbf{x}_1|| ||\mathbf{x}_2||]$
    - Often we take distance as 1 similarity
  - Proportional to the "dot product" between the two vectors, but insensitive to scale
  - Recall  $\mathbf{x_1}^T \mathbf{x_2} = ||\mathbf{x_1}|| \, ||\mathbf{x_2}|| \cos{(\theta)}$ , so the similarity is the cosine of the angle between the two vectors
  - Cos  $(\theta) = 0 \Rightarrow \mathbf{x_1}, \mathbf{x_2}$  are parallel; cos  $(\theta) = 1 \Rightarrow \mathbf{x_1}, \mathbf{x_2}$  are perpendicular
  - E.g. in text mining, to compare two docs



## **Cosine Similarity Example**

Example: documents counts by word

| -         | Doc 1 | Doc 2 | Doc 3 |
|-----------|-------|-------|-------|
| Gambia    | 15    | 0     | 0     |
| baseball  | 0     | 23    | 12    |
| Senegal   | 8     | 0     | 0     |
| cotton    | 5     | 2     | 0     |
| Oakland   | 0     | 0     | 9     |
| peanuts   | 11    | 2     | 7     |
| exports   | 0     | 0     | 1     |
| shortstop | 0     | 8     | 6     |
| market    | 3     | 2     | 3     |

• 
$$c(d_1, d_2) = 0.07$$
;  $c(d_1, d_3) = 0.23$ ;  $c(d_2, d_3) = 0.78$ 



# Distances (cont'd)

- Numeric (usually binary) vectors
  - Hamming distance: the number of components on which the two differ
- E.g. h(001011, 010011) = 2
- Extended to character sequences, possibly of different lengths:
  - Levenshtein (or "edit") distance: the number of one-character inserts, deletions, or changes necessary to turn one string into another
- E.g. *L*("button", "builtin") = 3

## Distances (cont'd)

#### Sets:

- Jaccard distance,  $d(A, B) = 1 |A \cap B| / |A \cup B|$
- The part on the right of the minus sign is "the fraction of all the items in both sets that appear in the intersection" – that is, set similarity
- -d(A, B) measures how dissimilar two sets are
- Probability Distributions:
  - The distance from a dist'n p(x) to q(x) is often measured by the Kullback-Leibler divergence

$$\int_{x} p(x) \log \frac{p(x)}{q(x)} dx$$



## **Multidimensional Scaling**

- Multidimensional scaling (MDS) is the general term for "compressing" a set of high-dimensional inter-point distances into a lower dimension (usually, 2 or 3)
- Find the low-d configuration whose interpoint distances are as similar as possible to the originals
  - So not the same as PCA, where we try to find new coordinates to capture the variance
  - Minimze stress between old and new



• If the original distances are  $d_{ij}$ , and the lower-d ones are  $d_{ij}^*$ , then we might take

Stress = 
$$\sqrt{\frac{\sum (d_{ij}^* - d_{ij})^2}{\sum d_{ij}^2}} \operatorname{or} \left(\frac{\sum |d_{ij}^* - d_{ij}|^p}{\sum d_{ij}^p}\right)$$

- MDS solutions will normally be insensitive to shift, rotation and reflection
- As with PCA we might need to scale data
- Classical MDA: minimize stress
  - There's a closed form solution for this



 In Metric MDS, we minimize the stress based on a non-linear transformation of the distances

Stress = 
$$\left( \frac{\sum \left| d_{ij}^* - d_{ij} \right|^p}{\sum d_{ij}^p} \right)$$

with, e.g.,  $d_{ij}^* = a + b \log (d_{ij})$ 

- Some applications in, e.g. psychology
- Lots of alternate formulations of  $d_{ii}^*$  available

### **Non-Metric MDS**



- In Non-metric MDS we try to respect the ordering of distances rather than their numeric values
- In "stochastic neighbor embedding" (SNE)
  we model the probabilities that observation
  i would pick j as a neighbor, and try to
  match those in the lower-d space...
  - Cost function from Kullback-Leibler
- ...Leading to the widely used modification called t-SNE

#### MDS in R



- R has cmdscale() for classical MDS built in
- Metric MDS comes from packages, among them smacof
- Non-metric MDS from (among others)
   ismMDS and sammon in MASS library
- t-SNE from Rtsne
  - Best with smaller sample sizes
  - Remove duplicates

## **MDS Example**



### Splice data

- Primate spice-junction gene sequences
- Each observation has a class EI, IE or n
- Each observation has 60 A, C, T, G values
  - Except, inevitably, data prep required
- Goal: Compute inter-point distances (excluding classes), map in 2 or 3 dimensions...
- ...with colors given by "real" class to try to see if the classes look different





NAVAL Postgraduate School

OS4118
Statistical and Machine Learning

# Hashing (A Digression)

Prof. Sam Buttrey Spring 2019

The Nation's Premiere Defense Research University

Monterey, California
WWW.NPS.EDU





- We need algorithms to operate without computing all n(n-1)/2 distances
- For some applications it will be enough to identify a small number of candidate pairs, distances for which can then be computed explicitly

- A hash is a function (or verb, or noun) that describes converting the contents of an item (vector, document, video, set...) to one of a much smaller number of possibilities (e.g. an integer, a 32-byte string)
- The "hash table" is a related storage and look-up scheme
- Example: Dewey Decimal System



- Goals of hashing:
- 1. Hash value should be easy to compute
- 2. The same source should produce the same hash value, but sources different by even a little should produce different values (\*)
- 3. The hash should be **one-way**; that is, given a hash value, you should not be able to construct a string that also produces that hash value



- The set of items with a particular hash value is called a bucket
  - So we hope each bucket has 0 or 1 items
  - A "collision" is when two different items end up in the same bucket
  - If we can't have a unique hash output from each item, we at least want a uniform distribution of items over buckets



### **Hashing for Duplicates**

- Imagine searching for duplicate documents
- Each doc has an ID and some contents
- 1.) Hash every document's contents;
   build list of (bucket, ID)
- 2.) If no bucket has two members, there are no duplicates
  - And we never had to compare two docs!
- 3.) Otherwise, examine all buckets with
  - > 1 members for collisions/duplicates



# **Hashing for Data Integrity**

- R packages carry MD5 signatures
- If your downloaded package produces the same signature as the one reported, you can be pretty sure you got the exact set of bits they sent
  - Or a collision of really tiny probability
  - If your MD5 value differs, your download is wrong, but you have no idea how





- echo "The quick brown fox" | md5sum
- echo "The quick brown f0x" | md5sum
- Other algorithms (sha1sum, sha256sum) available
- For data integrity, these are all fine
- For crypto-strength, use SHA-2 or SHA-3 algorithms; md5 and sha1 have been "broken"

- A good hash is one-way: non-invertible
- A code or cipher needs to be reversible to recover the message
  - The "key" might be symmetric same key encrypts and decrypts – in which case it must be protected
  - Asymmetric keys let recipient make the encoding key public while keeping the decoding key private: public key encryption
  - Asymmetric encryption is slow (by a factor of 1,000 compared to conventional?)



#### **Digression: PGP**

- Pretty Good Privacy (PGP) uses a random, symmetric session key
  - Session key must be kept secret, so...
- The message is encrypted with the session key; the session key is then encrypted with the receiver's public key
  - A hash of the message might be encrypted with the sender's private key, as well, and sent along as authentication



# Digression: PGP (cont'd)

- Recipient decodes session key with receiver's private key, then decodes message using the session key
  - If she decodes the hash with the sender's public key she can compare the sender's hash with one she computes herself
  - If they match, there's a digital signature that can't be repudiated



# **Hashing for Crypto**

- The CS and Crypto communities love hashing
  - They hate collisions
  - Tiny changes in the message need to produce big changes in the hash (\*)
  - It should be difficult to generate a message with a particular hash – since collisions are rare, you would be "inverting" the hash and maybe recovering the original message



# **Locality Sensitive Hashing**

- LSH takes a different approach
- Items that are "close together" should land in the same bucket with high probability
  - We welcome collisions, and want small changes in input to have small changes, or no change, in hash value
  - Anti-spam example: replacing "Rolex" with "R0lex" should have no effect w/high prob.



#### **Families of Hash Functions**

- Consider a family of functions, each function  $f_i$ () producing a different hash
  - Ex: for Hamming distance,  $f_1$  might be "value of bit i"
- We can AND or OR these functions together to try to control error rates
  - For Hamming, pick 40 of these, say
  - False positives: items that hash together but aren't alike (here, match at only 40 points)

- LSH measures have been implemented for Euclidean, Hamming, Jaccard and other distances
- Ex.: fingerprint matching<sup>1</sup> (Hamming)
- Imagine each fingerprint represented in a 1000-pixel image
- Each pixel may have a "minutia"
- 1 Lescovec, Rajmaran, & Ullman, "Mining Massive Datasets," On-line Textbook (2014)





#### Problems:

- 1.) Is this print in our database? ("one-many")
- 2.) Do any pairs in our database come from the same individual? ("many-many")
- Assume that overall Pr (minutia) = .20
- Pr (m<sub>ij·k</sub>) = Prob. of a minutia at pixel ij of image k)
- Assume that, given two different images of the same finger,  $Pr(m_{ij\cdot 2} \mid m_{ij\cdot 1}) = .80$
- For different fingers,  $Pr(m_{ij-2} \mid m_{ij-1}) = .20$



#### **Hash functions**

- Pick three points at random
- Define the function *f*():
  - = 1 if all three have minutia, else = 0
- For two random fingerprints A and B, Pr  $(f(A) = 1, f(B) = 1) = .2^3.2^3 = .000064$
- For two images from the same finger,  $Pr(f(A) = 1, f(B) = 1) = .2^3.8^3 = .004096$
- What if we use lots of f () functions?
  - AND reduces false positives, OR reduces false negatives – usual trade-off

### Combining f()s

- Create 1024 separate f () functions,
   each referring to three random pixels
- What's the prob. that two fingerprints from the same finger match on at least one [this is OR] of the f() functions?
  - $-A: 1 (1 .004096)^{1024} = .985$
- What's that prob. for two random prints?
  - $-A: 1 (1 .000064)^{1024} = .063$
- 1.4% false neg, 6.3% false pos

- The hash is easy to compute, even for a large database of prints, and the "at least one" part is easy to evaluate
- We can do even better than this in the fingerprints example (using AND)
- LSH works best when the overall level of similarity is not too high; different hashing approaches have been proposed for the case of lots of similarity





- This acts much the same way as bagging and other ensemble methods on classification and regression
- Combining lots of simple models (hash functions) can be more effective than creating one complex one
- Readily parallelizable; database can be distributed