基礎 徹底 演習 問題プリント

微分法・積分法②

[47]

3次関数 $y = x^3 + 2x^2 - 4x$ は

$$x=$$
 $\boxed{P1}$ において極大値 \boxed{D} , $x=$ \boxed{I} において極小値 $\boxed{D1}$

をとる。

次に、 θ についての方程式 $\cos^3\theta + \cos 2\theta - 4\cos \theta - k = 0$ ……① を考える。ただし、k は定数とする。 $\cos \theta = t$ とおくと、方程式①は

$$t^3+$$
 サ t^2- シ $t=k+$ ス

となるから、方程式①が $0 \le \theta \le \pi$ の範囲に解をもつとき、kの値の範囲は

である。

ア	1	ウ	エ	オ	カ	+	ク	ケ	П	サ	シ	ス	セ	ソ	タ	チ	ツ	テ

年 組 番 名前

[48]

p>0 とし、放物線 $C_1: y=-x^2+3x$ 上の点 $P(p, -p^2+3p)$ における接線を l とする。

- (2) 放物線 C_1 , 接線 l および y 軸で囲まれた図形の面積を S_1 とすると, $S_1 = \frac{p}{\hbar}$ であり, $S_1 = \frac{8}{3}$ となるとき, $p = \frac{1}{2}$ である。
- (3) p = す のとき、直線 l と接する C_1 以外の放物線を C_2 : $y = -x^2 + ax + 3 a$ とする と, $a = \boxed{27}$ であり、放物線 C_1 、 C_2 の交点の x 座標は \Box である。 また、2 つの放物線 C_1 、 C_2 および直線 l で囲まれた図形の面積を S_2 とすると、 $S_2 = \boxed{\frac{y}{y}}$

である。

ア	1	ウ	I	オ	カ	+	ク	ケ	⊐	サ	シ