Università degli Studi di Padova

DIPARTIMENTO DI MATEMATICA

Corso di Laurea in Informatica

Realtà virtuale per colmare il divario tra e-commerce e negozio fisico

Tesi di laurea triennale

Relatore

Prof. Tullio Vardanega

 $\begin{array}{c} Laure and o \\ Simone \ Magagna \\ 1009467 \end{array}$

Annya Aggappygga 2015 2016

Sommario

Questo documento rappresenta la relazione finale di stage tenuta presso l'azienda The White Dog s.r.l. della durata complessiva pari a 308 ore.

Il primo capitolo tratta dell'azienda ospitante, dei prodotti e dei servizi che offre, in particolare all'azienda Diana Corp. della quale rappresenta il reparto ricerca e sviluppo. Il secondo capitolo descrive le strategie aziendali riguardanti l'attività di stage, di come il mio progetto si integri in esse, del piano di lavoro propostomi e degli obiettivi aziendali e personali.

Il terzo capitolo parla dell'effettivo sviluppo del progetto, descrivendo le fasi di pianificazione e ricerca effettuate con il mio tutor aziendale e il team di sviluppo, per arrivare a trattare dell'analisi dei requisiti, dei principi di progettazione perseguiti, dello sviluppo di alcune delle parti più peculiari e interessanti del progetto e della verifica e validazione.

Il quarto ed ultimo capitolo analizza i risultati ottenuti confrontandoli con gli obiettivi prefissati, valuta le conoscenze acquisite e discute quali tra queste debbano essere integrate nel corso di studi. Il capitolo si conclude con alcune considerazioni di carattere personale.

Ringraziamenti

In questa sezione ci saranno i ringraziamenti.

Indice

1	The	Whit	e Dog s.r.l.					
	1.1	Chi è	The White Dog s.r.l					
	1.2	Prodo	tti e servizi					
		1.2.1	Servizio di supporto tecnologico					
		1.2.2	Il prodotto Live Story					
	1.3	Proces	ssi interni					
	1.4	Strum	enti e tecnologie					
		1.4.1	Ambienti di sviluppo					
		1.4.2	Gestione dei progetti					
		1.4.3	Versionamento					
		1.4.4	Strumenti di automazione					
		1.4.5	Tecnologie di sviluppo					
	1.5	Ricerc	a e innovazione					
2	$\mathbf{Il} \; \mathbf{q}$	uadro	strategico 13					
	2.1	Strate	gie aziendali di stage					
	2.2	Il prog	getto di stage proposto					
		2.2.1	Piano di lavoro proposto					
		2.2.2	Obiettivi aziendali					
		2.2.3	Obiettivi personali					
3	Il p	rogette	o di e-commerce VR					
	3.1	Pianif	icazione del lavoro					
	3.2	Ricerca e sperimentazione						
	3.3	Tecno	logie adottate					
	3.4		i dei requisiti					
		3.4.1	Caratteristiche degli utenti					
		3.4.2	Casi d'uso					
		3.4.3	Requisiti					
	3.5	Proget	tazione					
		3.5.1	Portabilità dell'applicazione					
		3.5.2	Usabilità dell'applicazione					
		3.5.3	Costruzione della scena 3D					
		3.5.4	Interazione con gli oggetti all'interno della scena					
		3.5.5	Progettazione e integrazione con AWS API Gateway 28					
	3.6	Svilup	po					
		3.6.1	Sviluppo degli oggetti interattivi					
		3.6.2	Creazione a runtime di oggetti interattivi					

		3.6.3 Dati persistenti attraverso le scene	28
		3.6.4 Unity e il protocollo HTTP	29
		3.6.5 Creazione e parsing di oggetti JSON in Unity	29
	3.7	Verifica e validazione	29
4	Ana	ilisi retrospettiva	31
	4.1	Bilancio dei risultati rispetto agli obiettivi prefissati	31
	4.2	Bilancio formativo	31
	4.3	Analisi critica del rapporto formativo tra stage e corso di laurea	31
	4.4	Valutazioni personali	31
\mathbf{G}	lossa	rio	33
Bi	bliog	grafia	37

Elenco delle figure

$1.1 \\ 1.2$	Logo dell'azienda The White Dog s.r.l	1
1.2	dell'azienda LEVERPLAN: http://www.leverplan.com/it/agenzia_	
	web_agency/ecommerce.aspx	2
1.3	Ambiti aziendali gestiti dal sistema ERP. Immagine tratta dal sito della	
	compagnia di sviluppo software KNOWART: http://www.knowarth.	
	com/enterprise-resource-planning/	4
1.4	Wall mood creato tramite Live Story per l'e-commerce di una nota	
	marca di occhiali: http://www.ray-ban.com/italy	5
1.5	Ciclo di sviluppo della Metodologia Agile. Immagine tratta dal sito	
	informativo Quora: https://www.quora.com/	6
1.6	Competenze necessarie alla metodologia di sviluppo DevOps. Immagine	
	tratta dal sito dell'organizzazione RTTS: http://www.rttsweb.com/	
	services/strategy/software-process-assessment	7
1.7	Ciclo di sviluppo software Extreme Programming. Immagine tratta	
	dalla pagina Wikipedia dedicata all'extreme programming: https://en.	
	wikipedia.org/wiki/Extreme_programming	8
1.8	Esempio di scrum board all'interno del servizio Jira	9
1.9	Visore per la realtà virtuale Google Cardboard	11
2.1	Schema rappresentativo della differenze tra single-channel, multi-channel,	
	cross-channel e omni-channel. Immagine tratta dal sito dell'azienda ON	
	THE MARK: http://on-the-mark.com/omnichannel-organization-	designs-biggest-test/ 14
2.2	Samsung Gear VR	17
2.3	Stack tecnologico di sviluppo per Samsung Gear VR. Immagine tratta dal	
	sito SAMSUNG GEAR VR DEVELOPERS US: http://www.samsung.	
	com/us/samsungdeveloperconnection/developer-resources/gear-v	vr.
	html	19
3.1	Gerarchia degli utenti	22
3.2	UC1: Autenticazione	23
3.3	UC2: Interazione con l'ambiente virtuale	24
3.4	UC2.1: Interazione con un oggetto	25
2 5	IIC2 2. Interagione con il corrello	26

Elenco delle tabelle

3.1~ Tabella dei requisiti funzionali che l'applicazione deve soddisfare $\,$. . . $\,$ $\,$ 27

Capitolo 1

The White Dog s.r.l.

1.1 Chi è The White Dog s.r.l.

The White Dog s.r.l. è una realtà aziendale nata nel 2008 con sede a Torreglia, in provincia di Padova. Essa è stata fondata dal signor Stefano Mocellini, fondatore e CEO di Diana Corp.¹, con la volontà di creare un *team* di lavoro focalizzato sulla ricerca e sviluppo per quest'ultima.

The White Dog s.r.l. coordina e gestisce società tutte affini al settore *e-commerce*, come Diana Corp. e LiveStory². L'azienda possiede un reparto di ricerca e sviluppo denominato R&D, il quale esplora nuove tecnologie da applicare poi alle società figlie nel caso di esito positivo o facendo nascere nuovi progetti separati.

figura 1.1: Logo dell'azienda The White Dog s.r.l.

1.2 Prodotti e servizi

L'azienda svolge principalmente due attività: la prima legata al servizio di supporto tecnologico offerto a Diana Corp., la seconda legata alla gestione e sviluppo del prodotto Live Story.

1.2.1 Servizio di supporto tecnologico

Il principale servizio che l'azienda offre a Diana Corp. è la ricerca e lo sviluppo di nuove tecnologie da applicare nell'ambito del *fashion e-commerce*.

¹http://www.dianacorp.com/

²http://www.livestory.nyc/

E-commerce è l'acronimo di *Electronic Commerce* e consiste nella presentazione, vendita e gestione di prodotti utilizzando strumenti elettronici, in particolare siti internet dedicati. Avere un sito *e-commerce*, o implementare il pagamento degli acquisti sul proprio sito web, offre la possibilità ad una azienda di estendere a livello globale i propri potenziali clienti, espandendo così il proprio *business*. La sicurezza delle operazioni di acquisto viene garantita tramite l'utilizzo di server sicuri, caratterizzati dall'indirizzo HTTPS, un apposito protocollo che crittografa i dati sensibili dei clienti contenuti nell'ordine di acquisto allo scopo di tutelare il consumatore.

figura 1.2: Processo d'acquisto tramite e-commerce. Immagine tratta dal sito dell'azienda LE-VERPLAN: http://www.leverplan.com/it/agenzia_web_agency/ecommerce. aspx

Diana Corp., principale cliente di The White Dog s.r.l. e sua azienda d'origine, propone ai sui clienti un portale *e-commerce* che comprende la gestione dei prodotti, del design, dell'infrastruttura e della manutenzione. Inoltre, il pacchetto può essere arricchito sia con soluzioni di marketing, come *newsletter* o campagne, sia con la gestione delle spedizioni, ospitando i prodotti nel magazzino dell'azienda. Alcune delle

principali piattaforme sviluppate da Diana Corp. sono ad esempio The Blonde Salad³ e Pryma⁴.

The White Dog s.r.l. svolge un'attività di $testing_{\mathbb{G}}$ dei nuovi strumenti presenti nel mercato da applicare agli e-commerce di Diana Corp., li valuta attentamente in termini di prestazioni e costi, per poi renderli disponibili agli sviluppatori di quest'ultima attraverso consulenze.

The White Dog s.r.l., inoltre, interviene direttamente nel codice dei servizi Diana Corp. se a quest'ultima vengono commissionate nuove *features* o applicazioni che, per tempistiche o competenze, non è in grado da sola di sviluppare.

Infine, offre consulenza a Diana Corp. per l'utilizzo delle seguenti piattaforme di management:

* SAP: sistema informativo per la gestione di tutti i processi aziendali. SAP supporta il sistema di gestione ERP, acronimo di Enterprise Resource Planning, il quale, come è visibile nella figura 1.3, integra e gestisce tutti i processi di business rilevanti di un'azienda: vendite, acquisti, gestione magazzino, contabilità, produzione e salvataggio dei dati. ERP fornisce una visione dei processi di business, spesso in tempo reale, utilizzando database comunemente gestiti da un database management system. Esso traccia risorse come contanti, materie prime, capacità di produzione e lo stato degli impegni lavorativi come ordini, ordini d'acquisto e libro paga. Facilita il flusso di informazioni tra tutte le funzioni aziendali e gestisce le connessioni agli stakeholder e seterni.

Nel caso dell'azienda Diana Corp. il sistema ERP contiene le informazioni riguardanti i prodotti e lo stato del magazzino. Alcune delle informazioni, come la descrizione e la disponibilità del prodotto, vengono sincronizzate con la piattaforma di vendita.

Al termine di ogni ordine, il portale *e-commerce* notifica il sistema ERP le seguenti operazioni:

- Contabilizzazione del pagamento;
- Aggiornamento dello stato del magazzino, decrementando la quantità disponibile della merce appena ordinata;
- Generazione della fattura.
- * Magento: è una piattaforma e-commerce open source che offre la possibilità di avviare una attività online di commercio elettronico con ampia flessibilità sia nella grafica, sia nelle funzionalità che nei contenuti.
 - L'interfaccia di amministrazione fornisce strumenti di marketing, SEO e gestione del catalogo, in modo da offrire ai commercianti la possibilità di creare siti a misura delle proprie esigenze di business. Progettato per essere completamente scalabile e per essere ripristinato facilmente.
- * WordPress: è una piattaforma software di personal publishing e content management system_G, ovvero un programma che consente la creazione e distribuzione di un sito internet formato da contenuti testuali o multimediali, facilmente gestibili ed aggiornabili in maniera dinamica.

³http://www.theblondesalad.com/it/

⁴http://www.pryma.com/it_it/

figura 1.3: Ambiti aziendali gestiti dal sistema ERP. Immagine tratta dal sito della compagnia di sviluppo software KNOWART: http://www.knowarth.com/ enterprise-resource-planning/

1.2.2 Il prodotto Live Story

Live Story è un $social\ management\ system_G$ che gestisce contenuti $social\ e$ li rende acquistabili. Il concept di Live Story è nato nel reparto R&D di The White Dog s.r.l., concept che è diventato poi azienda nel 2015 con sede a New York.

Live Story è una piattaforma, resa disponibile alle aziende di moda, che colleziona foto degli utenti dei social network, come Facebook, Instagram e Twitter, marcate da particolari hashtag. Tali hashtag rappresentano i vari prodotti dell'azienda che utilizza il servizio Live Story, la quale invita i propri clienti ad utilizzarli all'interno dei social media. Il sistema accoppia la foto marcata ad un particolare prodotto presente nel catalogo aziendale e genera automaticamente le richieste di permesso di sfruttamento della foto, inviandola all'utente interessato. Se l'utente approva e il moderatore aziendale ritiene conforme la foto, l'azienda può utilizzare il contenuto nel proprio sito o e-commerce.

Una volta approvati, i contenuti possono comporre un wall, ovvero un pannello dei prodotti visibile in una pagina web. Vi sono due tipi di wall che Live Story permette di comporre:

- * **Mood:** wall creati con contenuti e foto scelti dall'azienda. In questo caso non vi è nessuna interazione con gli utenti dei social network, ma solo una creazione più rapida dei contenuti visualizzabili nell'e-commerce;
- * Feed: wall creati automaticamente tramite i contenuti marcati dagli hashtag aziendali presenti nei social network.

Ogni wallè personalizzabile e ogni brand può definire il proprio stile tramite fogli CSS.

figura 1.4: Wall mood creato tramite Live Story per l'e-commerce di una nota marca di occhiali: http://www.ray-ban.com/italy

1.3 Processi interni

Lo sviluppo del software a The White Dog s.r.l. segue una metodologia tipicamente ${\rm Agile}^5.$

La Metodologia Agile si riferisce ad un insieme di metodi di sviluppo software fondati su principi comuni, direttamente o indirettamente derivati dai principi del *Manifesto per lo Sviluppo Agile di Software*:

- * Gli individui e le interazioni più che i processi e gli strumenti;
- * Il software funzionante più che la documentazione esaustiva;
- * La collaborazione col cliente più che la negoziazione dei contratti;
- * Rispondere al cambiamento più che seguire un piano.

I metodi agili si contrappongono al modello a cascata e ad altri processi software tradizionali, proponendo un approccio meno strutturato e focalizzato sull'obbiettivo di consegnare al cliente, in tempi brevi e frequentemente, software funzionante e di qualità. Fra le pratiche promosse dai metodi agili ci sono la formazione di team di sviluppo piccoli, cross-funzionali e auto-organizzati, lo sviluppo iterativo e incrementale, la pianificazione adattiva e il coinvolgimento diretto e continuo del cliente nel processo di sviluppo.

 $^{^5}$ http://agilemanifesto.org/

figura 1.5: Ciclo di sviluppo della Metodologia Agile. Immagine tratta dal sito informativo Quora: https://www.quora.com/

L'azienda The White Dog s.r.l. è composta da un *team* di sviluppo formato da sole tre persone, le quali possiedono competenze sia software, sia decisionali che di controllo della qualità. Questo permette all'azienda di essere molto agile sia nello sviluppo che nel rilascio del software.

Essa dà molta importanza agli individui presenti e all'interazione tra di loro, eliminando completamente la gerarchia lavorativa classica e impegnandosi molto per mantenere un ambiente lavorativo di reciproco rispetto paritario.

La collaborazione col cliente avviene in maniera assidua e giornaliera tramite riunioni nell'ufficio R&D o con trasferte. Se entrambe le soluzioni non sono attuabili, vengono optate sessioni di video conferenze. Questa pratica è agevolata dal fatto che per volontà del fondatore, The White Dog s.r.l. ha sede all'interno dello stesso stabilimento di Diana Corp., suo principale cliente.

Infine la natura dell'azienda la obbliga a rispondere al cambiamento in maniera molto veloce e repentina, dovendo pianificare così molti cicli di $refactoring_G$ per lo sviluppo software.

Le tre principali metodologie di sviluppo, derivanti da quella Agile, che l'azienda adotta sono:

DevOps

Metodologia di sviluppo software che punta alla comunicazione, collaborazione e integrazione tra gli sviluppatori e addetti alle $operations_G$ dell'information technology. DevOps vuole rispondere all'interdipendenza tra sviluppo software e IT $operations_G$,

puntando ad aiutare un'organizzazione a sviluppare in modo più rapido ed efficiente prodotti e servizi.

L'integrazione *DevOps* ha come obiettivo il rilascio del prodotto, il collaudo del software, l'evoluzione e il mantenimento in modo tale da aumentare affidabilità e sicurezza e rendere più veloci i cicli di sviluppo e rilascio.

figura 1.6: Competenze necessarie alla metodologia di sviluppo DevOps. Immagine tratta dal sito dell'organizzazione RTTS: http://www.rttsweb.com/services/strategy/software-process-assessment

In The White Dog s.r.l. questo principio è concretizzato dal fatto che ogni membro possiede sia le competenze di sviluppo, sia amministrative che di controllo della qualità, migliorando così di molto l'efficienza e l'agilità nello sviluppo del software.

Questa metodologia aiuta e migliora anche i continui rilasci che l'azienda giornalmente è costretta a fare per migliorare i servizi di Diana Corp. o per aumentarne le potenzialità con nuove tecnologie.

Extreme Programming

Metodologia di sviluppo software che enfatizza la scrittura di codice di qualità e la rapidità di risposta ai cambiamenti di requisiti. Prescrive lo sviluppo iterativo e incrementale, soprattutto in brevi cicli di sviluppo. Suggerisce inoltre l'uso sistematico di $unit\ testing_G$ e $refactoring_G$, vietando ai programmatori di sviluppare codice non strettamente necessario. Sostiene la chiarezza e la semplicità del codice, preferisce strutture gestionali non gerarchiche e dà molta importanza alla comunicazione diretta e frequente fra sviluppatori e cliente e fra gli sviluppatori stessi.

Planning/Feedback Loops Release Plan Iteration Plan Weeks Acceptance Test Days Stand Up Meeting One day Pair Negotiation Hours Pair Programming Seconds Seconds Code

figura 1.7: Ciclo di sviluppo software Extreme Programming. Immagine tratta dalla pagina Wikipedia dedicata all'extreme programming: https://en.wikipedia.org/wiki/Extreme_programming

Il team di sviluppo di The White Dog s.r.l. fa ampio utilizzo di questa metodologia, spingendo molto sulla semplicità del codice prodotto, che andrà a migliorare e ampliare i servizi e-commerce di Diana Corp. e Live Story e che quindi dovrà poi essere compreso dai loro sviluppatori.

Prevede continui cicli di $refactoring_G$ per adattarsi alla volubilità del cliente finale e di $unit\ testing_G$ per garantirgli codice funzionante e di qualità.

Scrum

 $Framework_{\rm G}$ agile di sviluppo software, iterativo ed incrementale, concepito per gestire progetti e prodotti software. Esso enfatizza tutti gli aspetti di gestione di progetto legati a contesti in cui è difficile pianificare in anticipo. Vengono utilizzati meccanismi propri di un processo di controllo empirico, in cui i cicli di feedback, che ne costituiscono le tecniche di management fondamentali, risultano in opposizione alla gestione basata sul concetto tradizionale di $command-and-control_{\rm G}$. Il suo approccio alla pianificazione e gestione dei progetti è quello di portare l'autorità decisionale al livello di proprietà e certezze operative.

figura 1.8: Esempio di scrum board all'interno del servizio Jira

Data la forte difficoltà aziendale a pianificare in anticipo lo sviluppo software, causata dalla continua richiesta di modifiche e nuove funzionalità dei servizi e-commerce che ha in gestione, l'azienda fa ampio utilizzo di questa metodologia di pianificazione del lavoro utilizzando strumenti di project management come Wrike⁶ e Jira⁷. I due software supportano il principio Scrum fornendo all'utente una Scrum board: tavola virtuale nella quale è possibile visualizzare il flusso di lavoro suddiviso in sezioni. Ad ogni sezione sono assegnati uno o più sviluppatori che annotano l'avanzamento del lavoro, i bug e i problemi riscontrati.

1.4 Strumenti e tecnologie

1.4.1 Ambienti di sviluppo

Il sistema operativo adottato dall'azienda è Mac OS X installato su macchine iMac. L'ambiente di sviluppo predefinito è Eclipse⁸, ma, data la natura aziendale, varia molto spesso in base al prodotto in fase di sviluppo, che può cambiare in maniera repentina.

1.4.2 Gestione dei progetti

I due principali strumenti utilizzati da The White Dog s.r.l. per il project management e l'issue $tracking_G$ sono rispettivamente Wrike e Jira.

⁶https://www.wrike.com/it/it/

⁷https://www.atlassian.com/software/jira

⁸https://eclipse.org/

Wrike, sviluppato dall'omonima casa, è uno strumento per la collaborazione e il *project management*. Permette ai suoi utenti di modificare progetti, classificare le attività per importanza, tenere traccia dei programmi e collaborare con altri utenti dello stesso gruppo.

Jira, prodotto dall'azienda Atlassian, è un software di bug tracking $_{\rm G}$, issue tracking $_{\rm G}$ e project management. Esso permette di tenere traccia delle azioni e dei problemi degli utenti, di distribuire i compiti all'interno del team, discutere del lavoro in atto con una visibilità completa e migliorare le prestazioni della squadra visualizzando dati in tempo reale.

1.4.3 Versionamento

Il principale software di controllo di versione distribuito utilizzato dall'azienda è Git⁹. Git supporta lo sviluppo non lineare con diramazione e fusioni rapide e continue e comprende strumenti specifici per visualizzare e navigare una cronologia di sviluppo. Permette ad ogni sviluppatore una copia locale dell'intera cronologia di sviluppo e le modifiche vengono importate da un $repository_G$ ad un altro. I $repository_G$ possono essere pubblicati facilmente tramite protocolli HTTP, FTP, SSH, RSYNC o uno speciale protocollo git.

1.4.4 Strumenti di automazione

The White Dog s.r.l. fa ampio utilizzo di strumenti si automazione per facilitare il $deployment_G$ del software prodotto.

Il principale strumento utilizzato dall'azienda è Docker 10 . Docker è un progetto open-source che automatizza il $deployment_{\rm G}$ delle applicazioni all'interno di container $software_{\rm G}$, fornendo un'astrazione addizionale grazie alla virtualizzazione a livello di sistema operativo Linux. Docker utilizza le funzionalità di isolamento delle risorse del kernel Linux, come ad esempio cgroups e namespaces per consentire a container indipendenti di coesistere sulla stessa istanza di Linux, evitando l'installazione e la manutenzione di una macchina virtuale.

1.4.5 Tecnologie di sviluppo

Vista la varietà delle ricerche e dei prodotti sviluppati dall'azienda The White Dog s.r.l., le tecnologie di sviluppo sono sempre in continua evoluzione e cambiamento. I servizi di mantenimento e sviluppo di nuove funzionalità offerti agli *e-commerce* di Diana Corp. la portano comunque a lavorare giornalmente con le seguenti tecnologie web come: Java, JavaScript, Node.js, MongoDB, PHP, HTML e CSS.

1.5 Ricerca e innovazione

R&D rappresenta il reparto di ricerca e sviluppo dell'azienda The White Dog s.r.l.. Ha a disposizione diversi dispositivi per la ricerca come *smartphone* di ultima generazione, *smart TV*, *smartwatch* e numerosi dispositivi per lo sviluppo $AR_{\rm G}$ e

⁹https://git-scm.com/

¹⁰https://www.docker.com/

 $VR_{\rm G}$ come Google Glass¹¹, Oculus Rift Development Kit 2¹², Gear VR^{13} , Google Cardboard¹⁴ e Leap Motion¹⁵. Attraverso questi dispositivi l'azienda studia e sviluppa nuove modalità di interazione che l'utente finale può utilizzare nell'acquisto nei propri stores digitali.

Un esempio di progetto R&D è rappresentato proprio dal mio progetto di stage. Attraverso le tecnologie $VR_{\rm G}$ sopracitate, il reparto R&D mira a creare un ambiente virtuale dove sia possibile la visualizzazione e l'acquisto di alcuni prodotti. L'utente che indosserà il visore si ritroverà ad ammirare l'interno di un negozio fisico, creato con una foto a 360 gradi o tramite modellazione 3D. Girando la testa, potrà comprendere l'esperienza $VR_{\rm G}$ accorgendosi di visualizzare diversi angoli del negozio. Verrà data la possibilità di interagire, attraverso i dispositivi fisici del visore, con alcuni prodotti esposti nel negozio che, alla selezione, attiveranno un pannello informativo 3D. Il pannello stesso sarà interattivo, permettendo la consultazione delle informazioni e delle foto relative al prodotto. Infine, ogni prodotto sarà acquistabile aggiungendolo ad un carrello virtuale.

Questo progetto rientra completamente nelle competenze di R&D in quanto le tecnologie che dovranno essere utilizzate sono in larga parte embrionali e incomplete, perciò molto dovrà essere sviluppato "in casa".

figura 1.9: Visore per la realtà virtuale $Google\ Cardboard$

¹¹https://www.google.com/glass/start/

¹²https://www3.oculus.com/en-us/rift/

¹³https://www3.oculus.com/en-us/gear-vr/

¹⁴https://vr.google.com/cardboard/

¹⁵https://www.leapmotion.com/

Capitolo 2

Il quadro strategico

2.1 Strategie aziendali di stage

L'azienda The White Dog s.r.l. accoglie e offre l'attività di stage per due principali motivi:

- * Sperimentazione su progetti innovativi: data la forte propensione alla ricerca dell'azienda, esistono numerosi campi che essa vorrebbe esplorare ma che a causa di altri progetti più prioritari e scarsità di tempo non può studiare. Offre quindi allo studente universitario un progetto di ricerca e sviluppo su tecnologie innovative ed interessanti, non pretendendo alcun risultato da subito inseribile nel mercato. Questo permette allo studente di vivere l'esperienza dello stage in piena libertà e serenità, riuscendo così a portare un notevole valore aggiunto personale che l'azienda è ben felice di accogliere;
- * Valutazione dello stagista: l'azienda è in continua crescita e necessita di nuovo personale preparato e soprattutto capace di lavorare in costante sintonia col gruppo. Lo stage universitario permette all'azienda di scoprire persone che soddisfano questi due importanti requisiti per una futura assunzione.

Da parte sua The White Dog s.r.l. offre molto agli stagisti. I tutor aziendali supportano lo studente per tutto il periodo lavorativo, consigliandolo sia per quanto riguarda il piano di lavoro, sia sulle tecnologie da utilizzare sia effettuando proficue discussioni in vista della relazione finale. Allo studente viene offerto un ambiente di lavoro accogliente e strumenti aggiornati e all'avanguardia, supportandolo anche economicamente prevedendo un rimborso spese.

2.2 Il progetto di stage proposto

Il progetto propostomi nasce dalla costante volontà aziendale di ricercare nuove metodologie di interazione da proporre agli utenti dei suoi e-commerce in ottica omni-channel. Il modello omni-channel si sta lentamente ma inesorabilmente affermando come principale modello di $retailinq_G$ a livello globale e si basa sulle seguenti caratteristiche:

- * Concezione e management unitario della distribuzione;
- * Processi basati sull'interazione, comunicazione e interdipendenza tra i team dedicati ai singoli canali;

- * Approccio dinamico al consumatore, che richiede un monitoraggio in tempo reale delle evoluzioni dei comportamenti di acquisto e delle risposte alle iniziative promosse;
- * Predisposizione di adeguati strumenti IT e marketing in grado di sfruttare ed assecondare il fenomeno della cross-canalità dei processi di acquisto;
- * Impatto competitivo decisivo delle scelte organizzative e di investimento nell'IT e nel marketing digitale;
- \ast Impiego di indicatori di prestazioni e di sistemi di monitoring adeguati al nuovo contesto.

Questo significa, da parte delle aziende, offrire un'unica customer experience capace di rispondere in modo adeguato alle aspettative del consumatore omnicanale che si informa sui prodotti in mobilità, li prova e li sperimenta in negozio per poi acquistarli in loco o online. In termini pratici, questo si implementa costruendo un unico profilo del consumatore, immagazzinandovi dati sulle ricerche da lui effettuate, sulle scelte e sui dati personali immessi per poi sfruttarli in ogni tipologia di store, sia digitale che fisico.

La realtà virtuale si pone nella strategia omni-channel come punto di connessione tra store digitale e fisico, permettendo all'utente di esplorare il negozio nella sua totalità e di osservarne i prodotti esposti da più angolazioni o indossati da modelli o manichini, nel caso dei capi di abbigliamento, il tutto con un alto livello di definizione. Nasce così l'idea di un e-commerce VR, progetto in grado di colmare, in parte, quel divario che da sempre ha distanziato store virtuale e negozio fisico.

figura 2.1: Schema rappresentativo della differenze ${\rm tra}$ single-channel, multi-Immagine tratta channel, cross-channel \mathbf{e} omni-channel.ON THE MARK: http://on-the-mark.com/ sito dell'azienda omnichannel-organization-designs-biggest-test/

L'obbiettivo di stage è, dunque, un'esplorazione tecnologica nel campo della virtual $reality_G$. Il progetto mira ad arrivare ad un prototipo di virtual showroom dove poter esplorare ed interagire con i prodotti e permetterne l'acquisto.

Il progetto era stato inizialmente diviso in due parti, per due differenti studenti:

* La prima parte riguardava la progettazione e realizzazione del movimento in uno spazio 3D ed interazione con gli oggetti;

* La seconda parte trattava, invece, la progettazione e realizzazione di un'interfaccia di presentazione del prodotto, con integrazione al processo di acquisto mediante l'uso di sistemi *cloud* esterni.

Purtroppo, nessun altro studente oltre a me ha aderito al progetto, dunque abbiamo ritenuto opportuno rivisitare l'obbiettivo di stage. Dopo una riunione effettuata prima dell'inizio dello stage con il mio tutor aziendale, abbiamo deciso di mantenere intatti tutti gli obiettivi di ricerca, abbassando il livello qualitativo richiesto. Questo perché lo scopo ultimo di questo stage non era sviluppare un'applicazione o un servizio immediatamente vendibile, ma di studiare le potenzialità e i limiti di questa nuova tecnologia. Questa volontà è stata dettata anche dal fatto che il team aziendale inizialmente non aveva alcuna certezza che la tecnologia $VR_{\rm G}$ fosse applicabile al mondo e-commerce.

2.2.1 Piano di lavoro proposto

Piano temporale

In accordo col tutor aziendale, la durata massima dello stage è stata fissata a 320 ore, divise in 8 settimane lavorative di 5 giorni, 8 ore al giorno.

Il piano lavorativo è stato dunque pianificato per settimana nel seguente modo:

- * Settimana 1: settimana dedicata completamente alla ricerca, per colmare il deficit culturale personale e aziendale sulle tecnologie $VR_{\rm G}$. Le attività principali previste sono: analisi dei requisiti funzionali del sistema da sviluppare e studio delle tecnologie e linguaggi disponibili riguardanti la realtà virtuale;
- * Settimana 2: in base ai risultati ottenuti nella prima settimana, viene richiesta una scelta dell'hardware da utilizzare e un $framework_{\mathbb{G}}$ di sviluppo, testandoli con un primo prototipo di scena 3D;
- * **Settimana 3:** previste attività di raffinamento della scena 3D, progettazione e sviluppo degli oggetti e loro comportamento nello spazio 3D. Viene creato così un primo prototipo di *user interaction*;
- * Settimana 4: previste attività di progettazione e sviluppo integrazione tra sistema $VR_{\rm G}$ e e-commerce. Progettazione di user interaction per la fruizione dei contenuti provenienti dall'e-commerce;
- * **Settimana 5:** settimana dedicata all'approfondimento di *user interaction* e del comportamento degli oggetti nell'ambiente virtuale;
- * **Settimana 6:** previste attività di studio e prototipazione del possibile processo d'acquisto all'interno dell'ambiente virtuale;
- * **Settimana 7:** la settima settima rappresenta una *milestone* importate per il progetto: conclusione del prototipo e relativa documentazione, raggiungendo così gli obbiettivi minimi;
- * Settimana 8: l'ultima settimana viene dedicata completamente allo studio del modello emergente omni-channel $_{\rm G}$ e come la realtà virtuale possa estendere questo modello. Vengono così raggiunti gli obbiettivi massimi.

Piano metodologico

Assieme al tutor aziendale, abbiamo fin da subito concordato la mia presenza durante l'orario d'ufficio, permettendo così un interazione intensa e costante.

Il lavoro di ricerca e sviluppo che ho effettuato è stato totalmente autonomo, con giornaliere interazioni con il personale solo per raccogliere e analizzare la documentazione, requisiti e feedback sull'andamento del progetto.

Le revisioni di progetto sono avvenute secondo la seguente metodologia:

- * Riunione breve di 15 minuti ogni mattina;
- * Riunione di 1 ora alla fine di ogni settimana come analisi retrospettiva.

Alle revisioni, oltre a me, hanno partecipato:

- * Valentino Baraldo, cloud engineer e tutor aziendale. Oltre a svolgere il compito di tutor aziendale, mi ha supportato sulla progettazione architetturale del progetto e sull'utilizzo del servizio API Gateway di Amazon Web Services¹;
- * Francesco Paggin, front-end developer. Ha supervisionato il mio lavoro grafico nell'ambiente di sviluppo Unity².

Piano tecnologico

Inizialmente lo stack tecnologico propostomi riguardava solamente l'hardware che l'azienda aveva acquistato per questo progetto, senza alcun vincolo software. I dispositivi che permettevano la sperimentazione $VR_{\rm G}$ erano:

- * Oculus Rift Development kit 2: visore per la realtà virtuale per uso desktop. Possiede uno schermo Samsung OLED 2160x1200 pixel (1080x1200 per occhio), con un refresh rate a 90 Hz e un ampio angolo di visione a 110 gradi. Dotato di accelerometro, giroscopio, magnetometro e tracking posizionale a 360 gradi. Viene accoppiato ad una telecamera infrarossi per il rilevamento di profondità, assieme a 40 emettitori infrarossi all'interno dell'headset. Monta due lenti in alta definizione possedendo 6 gradi di libertà di rotazione;
- * Samsung Gear VR: visore per la realtà virtuale per uso mobile. Possiede: accelerometro, giroscopio e sensore di prossimità, permettendo un campo visivo di 96 gradi. Il visore incorpora inoltre un'interfaccia utente fisica: touch pad, tasto indietro e tasto per il volume. Necessita l'inserimento di uno smartphone Samsung a partire dalla versione Galaxy S6;
- * Google Cardboard: con il termine Google Cardboard non si intende specificare un particolare visore per la realtà virtuale prodotto fisicamente da Google, ma un insieme di linee guida suggerite da questa per costruire un dispositivo a basso costo per l'uso mobile. Non possiede accelerometro, giroscopio o sensore di prossimità, è solo un semplice "occhiale" che permette la visione stereoscopica. Ogni visore Cardboard, dunque, necessita l'inserimento di uno smartphone che supporti applicazioni $VR_{\rm G}$.

In azienda erano presenti due visori che implementavano tali linee guida: *Unofficial Cardboard* e *Tera VR Box*;

¹https://aws.amazon.com/it/

²https://unity3d.com/

* Leap Motion: piccola periferica USB progettata per essere posta su una scrivania reale rivolta verso l'alto. Usando 2 telecamere e 3 LED infrarossi essa osserva un'area approssimativamente a forma di semisfera di circa un metro. E' progettata per identificare dita o oggetti simili come una penna, con una precisione di 0,01 mm.

figura 2.2: Samsung Gear VR

Dopo un periodo di ricerca e *testing* su queste tecnologie, abbiamo deciso di intraprendere la strada *mobile* a discapito di quella desktop. Questa decisione è stata dettata principalmente da due fattori:

* Requisiti hardware elevati: per poter offrire un esperienza fluida e piacevole, Oculus Rift Development kit 2 abbisogna di un PC dall'hardware elevato, non accessibile all'utenza media:

- **GPU:** NVIDIA GTX 970 / AMD R9 290;

- **CPU:** Intel i5-4590:

- **RAM:** 8GB;

- Video output: HDMI 1.3;

USB Ports: 3 porte 3.0 più una porta 2.0;

- **OS:** Windows 7 SP1 64 bit o superiore.

* Obiettivi aziendali: nonostante fin da subito mi sia stato chiarito che non veniva preteso alcun prodotto finale utilizzabile, l'azienda sperava però di riuscire, con questo stage, a sviluppare un primo prototipo di virtual showroom da poter mostrare alle fiere tecnologiche alle quali partecipa. In quest'ottica, l'utilizzo di Oculus Rift Development kit 2 sarebbe risultato troppo scomodo sia per il trasporto e l'installazione, che per l'utilizzatore finale.

Abbiamo deciso, dunque, di sviluppare sia per $Samsung\ Gear\ VR$ che per $Google\ Cardboard$, entrambi dispositivi mobile a costo contenuto. La progettazione iniziale prevedeva di sviluppare codice che fosse il più possibile indipendente dalla specifica piattaforma, così da creare un unico progetto sia per $Samsung\ Gear\ VR$ che per $Google\ Cardboard$. Purtroppo, dopo uno studio più approfondito, questo non fu pienamente possibile poiché gli SDK_G forniti rispettivamente da Smasung e Google sono

profondamente differenti, le metodologie di implementazione degli oggetti interattivi cambiano da una piattaforma all'altra e l'interfaccia per interazione offerta dai due dispositivi è diversa:

- * Samsung Gear VR fornisce all'utilizzatore un touch pad per selezionare oggetti interattivi e scorrere del testo e un tasto indietro per tornare alla scena o pagina precedente;
- * Google Cardboard permette all'utilizzatore solamente di selezionare un oggetto attraverso lo spostamento di un magnete come è visibile in figura figura 1.9.

La sezione 3.5.1 parla in maniera approfondita della progettazione, delle scelte e dei compromessi che abbiamo dovuto adottare per rendere il progetto il più possibile indipendente dalla piattaforma.

Riguardo allo stack software, alla fine della prima settimana di ricerca è andato delineandosi dome segue:

- * Per lo sviluppo dell'ambiente tridimensionale e del comportamento degli oggetti presenti in esso ho scelto di utilizzare il framework_G Unity. Unity è uno strumento di authoring_G integrato e multi-piattaforma per la creazione di videogiochi 3D o altri contenuti interattivi, quali visualizzazioni architettoniche o animazioni in tempo reale. Permette di modellare ambienti e oggetti 3D tramite un editor, fornendo strumenti per modificarne la forma, il colore, posizione e l'interazione con gli altri oggetti e l'ambiente come la forza di gravità, la collisione e molto altro. Per ogni oggetto, offre la possibilità di definirne anche un comportamento attraverso script che andranno agganciati allo stesso. I linguaggi offerti da Unity per la composizione degli script sono JavaScritp e C#. Entrambi i linguaggi offrono le stesse potenzialità e sul piano prestazionale sono allo stesso livello. Ho deciso però di scegliere C# poiché è risultato essere il più utilizzato all'interno della community Unity;
- * Per interfacciarsi con il visore, Samsung e Google mettono a disposizione degli $SDK_{\rm G}$ dedicati e particolari oggetti Unity per l'esperienza $VR_{\rm G}$. Gli $SDK_{\rm G}$ permettono, negli script, di utilizzare alcuni metodi per catturare l'interazione con l'interfaccia fisica del visore, come la selezione e lo scorrimento del testo. La sezione 3.5.4 parla in maniera approfondita dell'utilizzo di questi metodi e di come sia possibile rendere interattivo un oggetto. Per quanto riguarda gli oggetti $VR_{\rm G}$ forniti, il più importante e fondamentale tra questi è la $Camera\ VR$. In Unity ogni scena possiede una o più camere che definiscono il punto di vista dell'utente. Una normale camera creata all'interno dell'ambiente non permette l'esperienza $VR_{\rm G}$, non essendo collegata ai sensori di inclinazione e spostamento del visore, nel caso di $Samasung\ Gear\ VR$, o del telefono, nel caso di $Google\ Cardboard$. Una volta inserita nella scena la $Camera\ VR$ specifica per ogni piattaforma, essa permette fin da subito la visualizzazione a 360 gradi. Gli $SDK_{\rm G}$ e gli oggetti vengono forniti tramite un particolare pacchetto dall'estensione .unity da importare nel proprio progetto;
- * Per sperimentare l'interazione dell'applicazione con sistemi *cloud* esterni, dove recuperare e inviare informazioni, il mio tutor aziendale mi ha consigliato l'utilizzo di **API Gateway** di **Amazon Web Service**. *API Gateway* è un servizio che permette di definire *endpoint* per le operazioni HTTP, come GET, POST, PUT eccetera, dove la parte *front-end* e la parte *back-end* di un'applicazione possono

collegarsi e dialogare fra loro. Dato che lo sviluppo di un back-end non faceva parte degli obbiettivi di stage, l'API creata è stata di tipo mock. Ciò significa che ogni operazione HTTP effettuata dall'applicazione verso l'API, riceve risposte statiche create all'interno di API Gateway.

figura 2.3: Stack tecnologico di sviluppo per Samsung Gear VR. Immagine tratta dal sito SAMSUNG GEAR VR DEVELOPERS US: http://www.samsung.com/us/samsungdeveloperconnection/developer-resources/gear-vr.html

2.2.2 Obiettivi aziendali

Nel *Piano di Lavoro* presentatomi, l'azienda espone gli obbiettivi minimi e massimi che si aspetta di veder raggiunti alla fine delle 320 ore si stage:

* Obbiettivi minimi:

- 1. Studio delle tecnologie disponibili in ambito $VR_{\rm G}$ e stesura di un documento riassuntivo che offra un *overview* dello stato attuale della realtà aumentata;
- 2. Progettazione e sviluppo di un ambiente virtuale con: una scena e oggetti definiti, un comportamento associato agli oggetti, un prototipo di user interaction e scambio di informazioni di base con un sistema di e-commerce.

* Obbiettivi massimi:

- 1. Studio e prototipazione di diversi modelli di user interaction con l'ambiente e con gli oggetti finalizzati alla presentazione di un bene vendibile;
- 2. Studio e implementazione di possibili nuovi processi di acquisto in ambito $VR_{\rm G}$.

2.2.3 Obiettivi personali

Sono venuto a conoscenza di questo progetto durante l'evento di Stage IT 2016, organizzato da Confindustria Padova in collaborazione con l'Università di Padova e Venezia. Mi ha fin da subito colpito e appassionato per le tecnologie che mi avrebbe permesso di studiare, come ad esempio *Unity*. La computer grafica è da sempre un mio personale interesse e la realtà aumentata è un ambito per me molto affascinante e ricco di opportunità.

Le tecnologie proposte dall'azienda purtroppo non rientrano nel percorso di studi, dunque gli obbiettivi formativi personali che mi sono posto riguardano lo studio e la sperimentazione delle tecnologie, senza pretendere di arrivare ad un risultato non prototipale:

* Obiettivi minimi:

- 1. Conoscenza ad alto livello delle tecnologie (hardware e software) attualmente disponibili nel mercato atte a creare ambienti virtuali;
- 2. Conoscenza ad alto livello dei concetti principali di *e-commerce* e relative tecnologie di riferimento usate per la vendita online.

* Obiettivi massimi:

- Capacità di identificare, progettare e sviluppare ambienti virtuali, selezionando le tecnologie attualmente disponibili più appropriate per il caso d'uso;
- 2. Presa di coscienza dei concetti multi-channel e omni-channel e come le nuove modalità di vendita si integrino con questi modelli emergenti.

Capitolo 3

Il progetto di e-commerce VR

3.1 Pianificazione del lavoro

In questa sezione tratterò della pianificazione del lavoro effettuata assieme al mio tutor, delle fasi che l'hanno caratterizzata e del ciclo di vita adottato.

3.2 Ricerca e sperimentazione

In questa sezione descriverò la fase di ricerca e sperimentazione delle tecnologie utilizzate, inizialmente a me sconosciute. Ho deciso di dedicare una sezione a questa fase perché ha avuto una rilevante importanza all'interno del mio stage e rappresenta uno dei principali obbiettivi aziendali.

3.3 Tecnologie adottate

In questa sezione descriverò come le ricerche e le sperimentazioni effettuate mi hanno portato a scegliere un particolare stack tecnologico.

3.4 Analisi dei requisiti

Questa sezione tratta dei casi d'uso e dei requisiti che il *team* ha ricavato durante la discussione nella prima riunione di stage. Tale analisi ha subito un sostanzioso cambiamento durante la settimana 6, settimana dedicata alla prototipazione del possibile processo d'acquisto all'interno dell'ambiente virtuale.

La fase di acquisto inizialmente prevista comprendeva l'immissione dei propri dati di pagamento all'interno dell'ambiente $VR_{\rm G}$ tramite una tastiera tridimensionale posta davanti all'utente, dove ogni tasto era selezionabile attraverso l'interfaccia fisica del visore. Dopo la sperimentazione di tale tastiera, abbiamo constatato la sua scarsa usabilità, causando un processo d'acquisto lungo e tedioso. Abbiamo dunque optato per una soluzione più semplice: l'utente prima di entrare nella scena $VR_{\rm G}$ viene invitato a immettere i propri dati di login, così da accedere al proprio account personale. Tale account deve essere precedentemente creato nel sito/e-commerce dedicato, dove possono essere immessi anche i dati di pagamento. Una volta autenticato, lo smartphone passa in modalità $VR_{\rm G}$, invitando l'utente ad indossare il visore. All'interno dell'ambiente,

all'utente non viene più richiesto di immettere dati, così da poter sperimentare in tutta serenità l'esperienza $VR_{\rm G}$.

3.4.1 Caratteristiche degli utenti

Obbligare l'utente ad immettere dati sensibili e strettamente personali, come gli estremi di pagamento, prima dell'effettivo utilizzo del servizio non è una buona prassi. L'utente che si appresta per la prima volta ad utilizzare l'applicazione, potrebbe non conoscere l'azienda di produzione e potrebbe non fidarsi. Dunque sono stati delineati due principali tipologie d'utente:

- * Utente registrato visitatore: utente che ha effettuato la registrazione ma che ha deciso di non immettere i propri dati della carta di credito. Ad esso è permesso visualizzare l'ambiente $VR_{\rm G}$, selezionare i prodotti e conoscerne le caratteristiche, aggiungerli al carrello, che sarà reso persistente, ma non di concluderne l'acquisto;
- * Utente registrato acquirente: utente che ha effettuato la registrazione immettendo anche i dati della carta di credito. Ad esso è permessa la totale esperienza incluso l'acquisto dei prodotti presenti nel carrello.

figura 3.1: Gerarchia degli utenti

3.4.2 Casi d'uso

Verranno di seguito elencati tutti i casi d'uso individuati dal *team* per l'applicazione, che spiegano in che modo un utente possa interagire con l'applicazione. Per ogni caso d'uso viene mostrato uno schema UML che ne rappresenta il flusso operativo. Non vengono considerati i casi d'uso relativi alla registrazione al sito/e-commerce poiché tale funzionalità non è stata da me implementata non essendo di mia competenza.

Caso d'uso UC1: Autenticazione

- * Attori: utente registrato visitatore, utente registrato acquirente;
- * **Descrizione:** l'utente viene invitato ad immettere l'username e la passowrd scelti in fase di registrazione;
- * Precondizione: l'applicazione è avviata e mostra la pagina di login;
- * Postcondizione: l'autenticazione è andata a buon fine e l'applicazione passa in modalità $VR_{\rm G}$.
- * Scenario principale:
 - 1. L'utente può inserire l'username (UC1.1);
 - 2. L'utente può inserire la passowrd (UC1.2);
 - 3. L'utente può confermare i dati inseriti premendo sul pulsante di login (UC1.3).
- * Estensioni: L'utente può visualizzare un messaggio di errore se i dati immessi non corrispondono a quelli di registrazione o se il campo *username* e *passowrd* sono vuoti (UC1.4).

figura 3.2: UC1: Autenticazione

Caso d'uso UC2: Interazione con l'ambiente virtuale

- * Attori: utente registrato visitatore, utente registrato acquirente;
- * **Descrizione:** l'utente, collegato il telefono al visore e indossato quest'ultimo, si ritrova ad osservare un ambiente virtuale con il quale può interagire;
- * Precondizione: l'utente ha effettuato con successo l'autenticazione;
- * **Postcondizione:** l'utente interagisce con l'ambiente virtuale e se è acquirente può comprare gli oggetti presenti nel carrello;

* Scenario principale:

- 1. L'utente può interagire con un oggetto, segnalato da un apposito simbolo, presente nell'ambiente virtuale (UC2.1);
- 2. L'utente può interagire con il carrello presente nell'ambiente e segnalato da un'apposita scritta (UC2.2);
- 3. L'utente può uscire dall'applicazione effettuando così il logout (UC2.3).

figura 3.3: UC2: Interazione con l'ambiente virtuale

Caso d'uso UC2.1: Interazione con un oggetto

- * Attori: utente registrato visitatore, utente registrato acquirente;
- * **Descrizione:** l'utente interagisce con un oggetto presente nell'ambiente tramite l'interfaccia fisica del visore, attivando il pannello informativo. All'interno di questo sono riportate tutte le informazioni del prodotto e le sue foto. Da pannello è possibile aggiungere l'oggetto al carrello;

- * **Precondizione:** l'utente ha effettuato con successo l'autenticazione;
- * **Postcondizione:** l'utente interagisce con l'oggetto attivando il pannello informativo.

* Scenario principale:

- 1. Visualizzazione informazioni dell'oggetto sul pannello informativo (UC2.1.1);
- 2. Scorrimento foto dell'oggetto sul pannello informativo (UC2.1.2);
- 3. Aggiunta oggetto al carrello selezionando l'apposito pulsante (UC2.1.3).

figura 3.4: UC2.1: Interazione con un oggetto

Caso d'uso UC2.2: Interazione con il carrello

- * Attori: utente registrato visitatore, utente registrato acquirente;
- * Descrizione: entrambe le tipologie possono interagire con il carrello segnalato nell'ambiente da un'apposita scritta. All'interno di esso sono visibili gli oggetti precedentemente inseriti. E' possibile, attraverso l'interfaccia fisica del visore, eliminarli uno ad uno o svuotare completamente il carrello. Se l'utente registrati è acquirente allora può procedere al pagamento;
- * Precondizione: l'utente ha effettuato l'autenticazione;
- * **Postcondizione:** l'utente visualizza i prodotti presenti nel carrello, potendoli acquistare se è acquirente;

* Scenario principale:

1. L'utente visualizza il pannello tridimensionale che rappresenta il carrello dove sono elencati i prodotti aggiunti precedentemente (UC2.2.1);

- 2. L'utente può eliminare singolarmente un oggetto dal carrello (UC2.2.2);
- 3. L'utente può svuotare completamente il carrello (UC2.2.3);
- 4. Se l'utente è acquirente allora può procedere con l'acquisto dei prodotti (UC2.2.4);

figura 3.5: UC2.2: Interazione con il carrello

3.4.3 Requisiti

Vengono di seguito elencati tutti i requisiti funzionali che l'applicazione deve soddisfare in base ai casi d'uso trovati. Un requisito funzionale rappresenta una feature che l'applicazione deve mettere a disposizione all'utente per garantirgli un'esperienza completa.

Ogni requisito funzionale è rappresentato da un codice identificativo RFx e da una descrizione che ne illustra lo scopo.

Requisito	Descrizione
RF1	L'applicazione deve permettere all'utente di potersi autenticare
	utilizzando username e password specificati in fase di registrazione
RF1.1	L'applicazione deve permettere all'utente di inserire l'username
RF1.2	L'applicazione deve permettere all'utente di inserire la password
RF1.3	L'applicazione deve permettere all'utente di confermare i dati di
DEO	autenticazione ed effettuare così il login
RF2	L'applicazione deve permettere all'utente di visualizzare l'ambiente virtuale una volta indossato il visore e di interagire con esso
RF2.1	L'applicazione deve permettere all'utente di interagire con un
101 2.1	oggetto presente nella scena attraverso l'interfaccia fisica offerta
	dal visore
RF2.1.1	L'applicazione deve visualizzare le informazioni relative all'oggetto
	selezionato all'interno di un panello informativo posto davanti
	all'utente
RF2.1.2	L'applicazione deve permettere la visualizzazione e lo scorri-
	mento delle foto dell'oggetto selezionato all'interno del pannello
	informativo
RF2.1.3	L'applicazione deve permettere l'aggiunta al carrello dell'oggetto
	selezionato
RF2.2	L'applicazione deve permettere l'interazione col carrello segnalato
	da un'apposita scritta all'interno dell'ambiente virtuale
RF2.2.1	L'applicazione deve visualizzare tutti gli oggetti presenti nel carrello
	precedentemente aggiunti
RF2.2.2	L'applicazione deve permettere all'utente di eliminare un singolo
	oggetto dal carrello
RF2.2.3	L'applicazione deve permettere di svuotare completamente il
	carrello
RF2.2.4	L'applicazione deve permettere l'acquisto dei prodotti se l'utente
	è registrato acquirente

tabella 3.1: Tabella dei requisiti funzionali che l'applicazione deve soddisfare

3.5 Progettazione

In questa sezione andrò a descrivere le più importanti fasi di progettazione.

3.5.1 Portabilità dell'applicazione

In questa sottosezione tratterò di come la progettazione del software sia stata ampiamente influenzata dalla volontà di portabilità dell'applicazione su tutti i dispositivi VR Android.

3.5.2 Usabilità dell'applicazione

In questa sottosezione descriverò gli studi effettuati riguardo l'usabilità dell'applicazione VR e delle scelte di progettazione che hanno portato tali studi.

3.5.3 Costruzione della scena 3D

In questa sezione andrò a descrivere le fasi di progettazione della scena 3D presente nell'applicazione e visibile tramite dispositivo VR.

3.5.4 Interazione con gli oggetti all'interno della scena

All'interno di questa sottosezione parlerò della progettazione riguardante le modalità di interazione tra il visore VR e gli oggetti presenti all'interno della scena.

3.5.5 Progettazione e integrazione con AWS API Gateway

All'interno di questa sezione tratterò della progettazione riguardante l'API Mock creata tramite AWS API Gateway e della sua integrazione con l'applicazione.

3.6 Sviluppo

In questa sezione andrò a descrivere in dettaglio lo sviluppo delle più significative e peculiari funzionalità dell'applicazione.

3.6.1 Sviluppo degli oggetti interattivi

In questa sottosezione descriverò come si costruiscono degli oggetti interattivi in Unity per i dispositivi VR.

3.6.2 Creazione a runtime di oggetti interattivi

In questa sottosezione tratterò della creazione a runtime di oggetti interattivi in Unity.

3.6.3 Dati persistenti attraverso le scene

In questa sezione spiegherò come si costruiscono oggetti persistenti che vivono attraverso le scene.

3.6.4 Unity e il protocollo HTTP

In questa sottosezione parlerò di come Unity si integri con il protocollo HTTP.

3.6.5 Creazione e parsing di oggetti JSON in Unity

In questa sottosezione parlerò di come si creino e si manipolino oggetti JSON in Unity.

3.7 Verifica e validazione

All'interno di questa sezione parlerò della fase di verifica e validazione effettuata per questo progetto.

Capitolo 4

Analisi retrospettiva

In questo capitolo analizzerò i risultati ottenuti confrontandoli con gli obiettivi prefissati, le conoscenze acquisite e quali tra queste ritengo debbano essere integrate nel corso di laurea.

4.1 Bilancio dei risultati rispetto agli obiettivi prefissati

In questa sezione analizzerò i risultati ottenuti e li confronterò con gli obiettivi che l'azienda si era prefissata di ottenere.

4.2 Bilancio formativo

In questa sezione analizzerò le conoscenze, le abilità e le competenze apprese durante l'attività di stage.

4.3 Analisi critica del rapporto formativo tra stage e corso di laurea

In questa sezione discuterò quali conoscenze, apprese durante lo stage, ritengo debbano essere integrate nel corso di laurea.

4.4 Valutazioni personali

In questa sezione effettuerò delle valutazioni personali riguardo al progetto e allo stage.

Glossario

\mathbf{A}

- * Authoring: gli applicativi d'autore sono quei software verticali che consentono la realizzazione di una comunicazione multimediale, articolata e riproducibile su personal computer. L'intento è quello di poter produrre e veicolare contenuti (immagini statiche, animazioni grafiche, filmati video, commenti sonori, effetti audio e altro) su supporti come CD-ROM, DVD, via web, ma anche attraverso un circuito, chiuso o aperto, di display distribuiti e connessi tra loro in rete.
- * Augment reality: arricchimento della percezione sensoriale umana mediante informazioni, in genere manipolate e convogliate elettronicamente, che non sarebbero percepibili con i cinque sensi.

\mathbf{B}

* Bug tracking: applicativo software usato generalmente dai programmatori per tenere traccia delle segnalazioni di bug all'interno dei software, in modo che tali errori siano mantenuti sotto controllo, con una descrizione della riproducibilità e dei dettagli ad essi correlati.

\mathbf{C}

- * Command-and-control: principio di management dove si afferma il mantenimento dell'autorità in un processo decisionale distribuito.
- * Content management system: è uno strumento software, installato su un server web, il cui compito è facilitare la gestione dei contenuti di siti web, svincolando il webmaster da conoscenze tecniche specifiche di programmazione web.
- * Container software: soluzione al problema di come ottenere il software eseguibile in modo affidabile quando viene spostato da un ambiente informatico all'altro. Sono costituiti da un intero ambiente di runtime: un'applicazione, oltre a tutte le sue dipendenze, librerie e altri file binari e file di configurazione necessari per eseguirlo, impacchettati in un unico pacchetto.

34 GLOSSARIO

D

* **Deployment:** consegna o rilascio al cliente, con relativa installazione e messa in funzione o esercizio, di una applicazione o di un sistema software tipicamente all'interno di un sistema informatico aziendale.

 \mathbf{E}

 \mathbf{F}

* Framework: architettura logica di supporto (spesso un'implementazione logica di un design pattern) su cui un software può essere progettato e realizzato.

 \mathbf{G}

 \mathbf{H}

Ι

* Issue tracking: pacchetto software che gestisce e mantiene liste di problemi im maniera organizzata.

J

 \mathbf{K}

 ${f L}$

 \mathbf{M}

 \mathbf{N}

O

* **Operations:** funzioni di un'impresa coinvolte nella messa a disposizione per il cliente di un determinato prodotto o servizio.

 \mathbf{P}

 \mathbf{Q}

 \mathbf{R}

* Retailing: o vendita al dettaglio, costituisce l'ultimo anello della catena di distribuzione. Il venditore al dettaglio (negozio, supermercato, eccetera) acquista

quantità, relativamente elevate, di merce dal produttore o da un grossista e rivende quantità più contenute ai consumatori per ottenere un profitto.

- * **Refactoring:** tecnica strutturata per modificare la struttura interna di porzioni di codice senza modificarne il comportamento esterno, applicata per migliorare alcune caratteristiche non funzionati del software.
- * Repository: è un ambiente di un sistema informativo, in cui vengono gestiti i metadati, attraverso tabelle relazionali; l'insieme di tabelle, regole e motori di calcolo tramite cui si gestiscono i metadati prende il nome di metabase.

\mathbf{S}

- * Software development kit: insieme di strumenti per lo sviluppo e la documentazione di software.
- * Social management system: software che permette la gestione dei propri social network, collezionando contenuti presenti in essi o interagendovi automaticamente effettuando operazioni desiderate.
- * Stakeholder: soggetto direttamente o indirettamente coinvolto in un progetto o in un'attività di un'azienda.

\mathbf{T}

* **Testing:** il *software testing* è un'attività di investigazione condotta per fornire alle parti interessate informazioni sulla qualità dal prodotto o del servizio in prova.

U

* Unit testing: per test di unità si intende l'attività di testing di singole unità software. Per unità si intende il minimo componente di un programma dotato di funzionamento autonomo.

V

* Virtual reality: realtà simulata attraverso dispositivi elettronici, come visori, cuffie e sensori di movimento.

 \mathbf{W}

X

 \mathbf{Y}

 \mathbf{Z}

Bibliografia