

NE-3102: Electronics-II Laboratory

Roll	Date	Experiment No.	
------	------	----------------	--

Name of the experiment

Design an Ex-OR gate using NAND gates.

Contents

1	Objective	2
2	Theory	2
3	Components and apparatus	2
4	Data collection and analysis	4
5	Result	5
6	Discussion	6
7	References	7

1 Objective

1. To design an Ex-OR using only NAND gates.

2 Theory

The full form of Ex-OR gate is Exclusive-OR gate. Its function is the same as that of OR gate except for the case when the inputs have an even number of ones. The logic circuit of Ex-OR gate is given in Figure 1 (a). The accompanying truth table shows that x = 1 for two cases: A = 0, B = 1 (the $\bar{A}B$ term) and A = 1, B = 0 (the $A\bar{B}$ term).

This particular combination of logic gates occurs quite often and is very useful in certain applications. In fact, the Ex-OR circuit has been given a symbol of its own, shown in Figure 1 (b). This symbol is assumed to contain all of the logic contained in the Ex-OR circuit and therefore has the same logic expression and truth table. This Ex-OR circuit is commonly referred to as an Ex-OR gate, and we consider it as another type of logic gate. The IEEE/ANSI symbol for an Ex-OR gate is shown in Figure Figure 1 (c). The dependency notation (=1) inside the block indicates that the output will be active-HIGH only when a single input is HIGH.

An Ex-OR gate has only two inputs; there are no three-input or four-input Ex-OR gates. The two inputs are combined so that $x = \bar{A}B + A\bar{B}$. A shorthand way that is sometimes used to indicate the Ex-OR output expression is

$$x = A \oplus B$$

where the symbol \oplus represents the XOR gate operation. The characteristics of an Ex-OR gate are summarized as follows:

1. It has only two inputs and its output is

$$x = \bar{A}B + A\bar{B} = A \oplus B$$

2. Its output is HIGH only when the two inputs are at different levels.

3 Components and apparatus

- 1. 74LS00 TTL integrated circuit (quad NAND)
- 2. Passive components
- 3. Breadboard and connecting wires
- 4. Bench power supply

Figure 1: (a) Ex-OR circuit and truth table; (b) traditional Ex-OR gate symbol; (c) IEEE/ANSI symbol or Ex-OR gate.

4 Data collection and analysis

	Input		Output	
	A	B	$Y = A \oplus B$	Voltage, $V_0(v)$
	0	0	0	0
	0	1	1	4.90
ſ	1	0	1	4.91
ĺ	1	1	0	0

Table 1: Truth table for Ex-OR gate.

5 Result

6 Discussion

7 References

1. Tocci Ronald J, Neal W, Greg M. Digital Systems Principles and Applications.

Appendix