GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA	
	Cálculo diferencial

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Primer Semestre	110101	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Otorgar al alumno el conocimiento y habilidad para relacionar el álgebra y la geometría analítica con el cálculo diferencial para resolver problemas que se presentan en el campo de la ingeniería.

TEMAS Y SUBTEMAS

1. Funciones.

- 1.1. Concepto de función.
- 1.2. Dominio y contradominio e imagen de una función.
- 1.3. Gráfica de una función.
- 1.4. Tipos de funciones: inyectivas, suprayectivas y bicyectivas.
- 1.5. Suma, recta, multiplicación y división de funciones.
- 1.6. Funciones compuestas.
- 1.7. Inversa de una función.
- 1.8. Funciones exponenciales.
- 1.9. Funciones logarítmicas.
- 1.10. Funciones trigonométricas.

2. Límites.

- 2.1. Concepto de límite de una función.
- 2.2. Teoremas sobre límites.
- 2.3. Límites unilaterales.
- 2.4. Límites de funciones trigonométricas.
- 2.5. Límites infinitos.
- 2.6. Límites en el infinito.
- 2.7. Funciones continuas.
- 2.8. Propiedades de funciones continuas.

3. Derivadas.

- 3.1 Concepto de derivada y su interpretación geométrica.
- 3.2 Reglas para derivadas.
- 3.3 Incrementos y diferenciales.
- 3.4 Regla de la cadena.
- 3.5 Derivación implícita.
- 3.6 Derivadas de orden superior.
- 3.7 Valores extremos, máximos y mínimos locales.
- 3.8 Teorema de Rolle y teorema del valor medio.
- 3.9 Criterio de la primera derivada.
- 3.10 Concavidad y criterio de la segunda derivada.
- 3.11 Aplicación de máximos y mínimos.
- 3.12 Series de Taylor y Maclaurin.

4 Derivadas parciales.

- 4.1. Función de varias variables.
- 4.2. Ecuaciones de la recta y el plano.
- 4.3. Derivadas parciales.
- 4.4 Funciones vectoriales.
- 4.5 Derivadas direccionales y aplicaciones.

5 Operaciones diferenciales.

- 5.1. Gradiante.
- 5.2. Divergencia.
- 5.3 Rotacional.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora, los retroproyectores y la videograbadora. Asimismo se desarrollarán programas de cómputo sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final equivalente al 50%, la suma de estos dos porcentajes dará la calificación final.

BIBLIOGRAFÍA

Libros Básicos

- 1. Cálculo, Larson, Hosteller, Edwards, Editorial McGraw Hill. 8va. edición.
- 2. Cálculo con geometría analítica, Earl W. Swokoski, segunda ed.
- 3. Cálculo con geometría analítica, Zill Dennis, Editorial Iberoamericana.
- 4. Cálculo diferencial, Smith, Robert T. Minton, Roland B., Méx, McGraw-Hill, interamericana, 2003.

Libros de Consulta

- 1. Álgebra Lineal con Aplicaciones y Matlab. Bernard Kolman, Editorial Prentice Hall. 6ª edición.
- 2. Álgebra Lineal con Aplicaciones. George Nakos David Joyner. Editorial Thompson.
- 3. Álgebra Lineal y sus Aplicaciones. Gilbert Strang. Editorial Thomson. 4ª edición.
- 4. Álgebra Lineal Aplicada. Ben Noble James W. Daniel. Editorial Prentice Hall. 3ª edición.

PERFIL PROFESIONAL DEL DOCENTE

Licenciado en Matemáticas, Maestría en Matemáticas y Doctorado en Matemáticas con especialidad en cálculo.

