1. Let function f be defined by the polynomial below:

$$f(x) = 4x^5 + 6x^4 + 7x^3 - 3x^2 + 2x - 8$$

Draw lines that match each function reflection with its polynomial:

Reflections $f(-x) \bullet \qquad -4x^{5} + 6x^{4} - 7x^{3} - 3x^{2} - 2x - 8$ $-f(-x) \bullet \qquad -4x^{5} - 6x^{4} - 7x^{3} + 3x^{2} - 2x + 8$ $-f(x) \bullet \qquad 4x^{5} - 6x^{4} + 7x^{3} + 3x^{2} + 2x + 8$

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

x	$\frac{f(x)}{3}$	g(x)	h(x)	
1	3	9	4	
2	4	5	7	
3	7	3	8	
4	6	7	3	
5	8	1	5	
6	9	2	1	
7	1	8	6	
8	2	6	9	
9	5	4	2	

3. Evaluate g(1).

4. Evaluate $f^{-1}(4)$.

5. By filling more rows of the table, it is possible to make function h even. If that were done, what would be the value of h(-7)?

6. By filling more rows of the table, it is possible to make function f **odd**. If that were done, what would be the value of f(-3)?

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = x^3 + x$$

a. Express p(-x) as a polynomial in standard form.

b. Express -p(-x) as a polynomial in standard form.

c. Is polynomial p even, odd, or neither?

d. Explain how you know the answer to part c.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = 5(x-3)$$

a. Evaluate f(19).

b. Evaluate $f^{-1}(45)$.

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(2).

b. Evaluate $b^{-1}(5)$.

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

x	f(x)	-f(x)	f(-x)	-f(-x)
-2	-9			
-1	-6			
0	0			
1	6			
2	-9			

b. Is function f even, odd, or neither?

c. How do you know the answer to part b?