

Sample-Conditioned Hypothesis Stability Sharpens Information-Theoretic Generalization Bounds

Ziqiao Wang ¹ Yongyi Mao ¹

¹University of Ottawa

Background

- Learning algorithm $\mathcal{A}: S \to W$ i.e. mapping a training sample to a hypothesis.
- Gen. Err. = \mathbb{E} [Test Err. Train Err.] \leq Gen. Bound.
- Information-theoretic (IT) bounds belong to the class of Gen. Bound.

Limitations of IT Generalization bounds

- Original input-output mutual information (IOMI) (e.g., I(W; S) in [5]) based bound can $\to \infty$ $\stackrel{\triangleright}{\simeq}$.
- \implies solved by conditional mutual information (CMI) $I(W; U | \widetilde{Z})$ in [4] $\ensuremath{\mathbb{E}}$.
- Slow convergence rate, e.g., $\mathcal{O}(1/\sqrt{n})$ \cong \Longrightarrow mitigated by [3, 6] and so on \cong .
- Non-vanishing in Stochastic Convex Optimization (SCO) problems [2] •!

Contributions

Our contribution: Incorporating stability-based analysis into IT framework which improves both stability-based bounds and IT bounds.

Key Observation from Algorithmic Stability

• Given $S = \{Z_i\}_{i=1}^n$ and Z_i' :

$$Z_1, \ldots, |Z_i|, |Z_i|, |Z_i| \Rightarrow \text{Loss of } (W, Z)$$
 $Z_1, \ldots, |Z_i|, |Z_i|, |Z_i| \Rightarrow |W^{-i}| \Rightarrow \text{Loss of } (W^{-i}, Z)$

- \mathcal{A} is Stable \iff Loss of (W^{-i}, Z) is close to Loss of (W, Z).
- Uniform Stability [1]:
- $\sup_{W,W^{-i},Z} \left| \text{Loss of } (W,Z) \text{Loss of } (W^{-i},Z) \right| \leq \text{Unif. Stability Param.}$
- Sample-Conditioned Hypothesis (SCH) Stability in this paper $\mathbb{E}_{W,W^{-i}}\left[\sup_{Z}\left|\operatorname{Loss of }(W,Z)-\operatorname{Loss of }(W^{-i},Z)\right|\right] \leq \operatorname{SCH}$ Stability Param., where Z can be either Z_i or Z_i' .
- Some terminologies
- Evaluated Data $Z \in (Z_i, Z_i')$;
- (Neighboring) Hypothesis pair: (W, W^{-i})
- Membership: e.g. $\mathbb{1}\{\text{Evaluated Data} = Z_i\}$

Main Theorem (informal.)

If \mathcal{A} is stable, then

Gen. Err. \preceq Stability Param.× \sqrt{I} (Evaluated Data; Membership|Hypothesis Pair)

Generalization, in this context, pertains to the ability to infer, given (W, W^{-i}) and Evaluated Data, whether the Evaluated Data corresponds to Z_i or Z'_i .

Novel Construction: "Neighboring-Hypothesis" Matrix

• Original "supersample" matrix construction in CMI [4]:

 $\stackrel{\text{CMI}}{\Longrightarrow} I(W; U | \text{Supersample})$: membership inference of train. set.

n new neighboring hypotheses

More Technical? All about Bounding CGF

Recall Donsker-Varadhan (DV) lemma:

Gen. Err.
$$\leq \inf_{t>0} \frac{IOMI \text{ or } CMI + CGF}{t}$$
.

Let $f_{\rm DV}$ be so-called DV auxiliary function, then

 $CGF = \log \mathbb{E} \left[\exp \left(t \cdot f_{DV} \right) \right] \leq Some Concentration Bound.$

• Typical choices of f_{DV} in previous works:

$$f_{\text{DV}} = \begin{cases} \text{Single Loss of } (w, z') \\ \text{Loss of } (w, z') - \text{Expected Loss of } (w, Z') \\ \text{Loss of Data } 1 - \text{Loss of Data 2 for the same } w \end{cases},$$

where in the last choose, Data 1 is chosen uniformly from a data pair, e.g., (Z^0, Z^1) , decided by a $U \sim \text{Bern}(1/2) \Longrightarrow \text{Data } 1 = Z^U$, Data $2 = Z^{1-U}$.

• In this paper:

 $f_{\text{DV}} = \begin{cases} \text{Loss of } (w, z') - \text{Conditional Expected Loss of } (W^{-i}, z') \\ \text{Loss of Hypothesis } 1 - \text{Loss of Hypothesis 2 for the same } z \end{cases}$ where in the last choose, Hypothesis 1 is chosen uniformly from a neighboring $\frac{\text{hypothesis pair}, \text{ e.g., } (W^0, W^1), \text{ decided by a } U \sim \text{Bern}(1/2)$ $\Longrightarrow \text{Hypothesis } 1 = W^U, \text{ Hypothesis } 2 = W^{1-U}.$

Application: Stochastic Covex Optimization Problems

SCO setting: Hypothesis set is convex; Objective function is convex.

• In convex-Lipschitz-bounded (CLB) counterexamples (which is a subset of SCO problems) given by [2]:

Gen. Err.
$$\leq \mathcal{O}(1/\sqrt{n})$$
.

• Previous IOMI or CMI bound: $\mathcal{O}\left(\alpha\sqrt{\frac{\text{IOMI or CMI}}{n}}\right)$, where α usually satisfies

that CGF $\leq \frac{t^2\alpha^2}{2}$. e.g., α can be a SubGaussian variance proxy or

$$\alpha = \sup_{\text{Hypothesis, Data Pair}} |\text{Loss of Data 1} - \text{Loss of Data 2}|.$$

• [2] shows that

 $\alpha = \mathcal{O}(1)$ (=Lip. Param.×Diam. of Hypothesis Domain) and Previous IOMI \geq Previous CMI= $\mathcal{O}(n)$.

$$\Longrightarrow \mathcal{O}\left(\alpha\sqrt{\frac{\text{IOMI or CMI}}{n}}\right) \in \mathcal{O}(1) \Longrightarrow \underline{\text{Fail to explain the learnability } \mathfrak{L}}.$$

• Our new CMI bound:

Stability Param. = $\mathcal{O}(1/\sqrt{n})$

and New CMI= $\mathcal{O}(1)$.

 \Longrightarrow New CMI Bound $\in \mathcal{O}(1/\sqrt{n}) \Longrightarrow$ Can explain the learnability $\mathfrak{S}!$ • Wait, Stability Param. itself can serve as a generalization bound, why do we need

• Wait, Stability Param. itself can serve as a generalization bound, why do we need IOMI or CMI ??

There is another CLB example in our paper where Stability Param. = $\mathcal{O}(1/\sqrt{n})$ but Gen. Err. \leq New CMI Bound = $\mathcal{O}(1/n)$ \mathfrak{S} Check it!

Concluding Remarks

- Take Home Messages: Selecting the Suitable DV Auxiliary Function for Varied Problem Contexts.
- 2. There are additional choices for SCH stability, allowing us to establish connections with the Bernstein condition or achieve faster-rate bounds in certain cases.
- 3. Our new CMI maintains the same expressiveness as the original CMI and preserves its boundedness property. The comparison between the new CMI and the original CMI in a broader context remains an open question.

References

- [1] Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine Learning Research, 2: 499–526, 2002.
- [2] Mahdi Haghifam, Borja Rodríguez-Gálvez, Ragnar Thobaben, Mikael Skoglund, Daniel M Roy, and Gintare Karolina Dziugaite. Limitations of information-theoretic generalization bounds for gradient descent methods in stochastic convex optimization. In International Conference on Algorithmic Learning Theory, pages 663–706. PMLR, 2023.
- [3] Fredrik Hellström and Giuseppe Durisi. Fast-rate loss bounds via conditional information measures with applications to neural networks. In 2021 IEEE International Symposium on Information Theory (ISIT), 2021.
- [4] Thomas Steinke and Lydia Zakynthinou. Reasoning about generalization via conditional mutual information. In Conference on Learning Theory. PMLR, 2020.
- [5] Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization capability of learning algorithms. Advances in Neural Information Processing Systems, 2017.
- [6] Ruida Zhou, Chao Tian, and Tie Liu. Exactly tight information-theoretic generalization error bound for the quadratic gaussian problem. 2023 IEEE International Symposium on Information Theory (ISIT), 2023.