Lezione 15 – classi complemento

Lezione del 24/04/2024

- Torniamo un attimo al paragrafo 6.6: accanto alle classi introdotte all'inizio di questo paragrafo, possiamo considerare i corrispondenti complementi:
- ightharpoonup coP = {L ⊆ {0,1}* : L^c ∈ P },
- Arr coNP = {L ⊆ {0,1}* : L^C ∈ NP },
- E, allo stesso modo, le classi
 - COEXPTIME, CONEXPTIME,
 - coPSPACE
- E, in generale: $CODTIME[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in DTIME[f(n)]\}, \\ CODSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in DSPACE[f(n)]\}, \\ CONTIME[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NTIME[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\}, \\ CONSPACE[f(n)] = \{L \subseteq \{0,1\}^* : L^c \in NSPACE[f(n)]\},$
- Osserviamo che nella definizione delle classi di complessità complemento non viene specificato come vengono decisi (o accettati) i linguaggi che vi appartengono ma, invece, viene specificato come vengono decisi (o accettati) i complementi dei linguaggi che vi appartengono
- Tuttavia, questa differenza è irrilevante quando si parla di classi deterministiche

- Osserviamo che nella definizione delle classi di complessità complemento non viene specificato come vengono decisi (o accettati) i linguaggi che vi appartengono ma, invece, viene specificato come vengono decisi (o accettati) i complementi dei linguaggi che vi appartengono
- Tuttavia, questa differenza è irrilevante quando si parla di classi deterministiche: infatti, sappiamo che
- **Description Jeorema 6.11**: Per ogni funzione totale calcolabile $f: \mathbb{N} \to \mathbb{N}$,

```
DTIME[f(n)] = coDTIME[f(n)] e DSPACE[f(n)] = coDSPACE[f(n)].
```

- E come viene dimostrato, in breve, questo teorema?
 - Si prende una macchina T che decide L tale che, per ogni x, dtime(T,x) ∈ O(f(|x|)) [o dspace(T,x) ∈ O(f(|x|))]
 - si costruisce una nuova macchina T' complementando gli stati di accettazione e di rigetto di T ossia, si aggiungono le quintuple $\langle q_A, s, s, q'_R, F \rangle$ e $\langle q_R, s, s, q'_A, F \rangle$ per ogni $s \in \{0,1, \square\}$, dove q'_A e q'_R sono gli stati di accettazione e di rigetto di T'
 - T' decide L^c e dtime(T',x) \in O(f(|x|)) [o dspace(T',x) \in O(f(|x|))]

- Osserviamo che nella definizione delle classi di complessità complemento non viene specificato come vengono decisi (o accettati) i linguaggi che vi appartengono ma, invece, viene specificato come vengono decisi (o accettati) i complementi dei linguaggi che vi appartengono
- Tuttavia, questa differenza è irrilevante quando si parla di classi deterministiche: infatti, dal Teorema 6.11 possiamo derivare
- Corollario 6.3: P = COP
- Ma anche che coPSPACE = PSPACE
- Possiamo arrivare alla stessa conclusione per le classi non deterministiche?
 - Cioè: possiamo utilizzare la stessa tecnica utilizzata nella dimostrazione del Teorema 6.11 nel caso non deterministico?
 - Possiamo complementare gli stati di accettazione e di rigetto di una macchina NT che accetta un linguaggio L al fine di accettare il complemento di L?

- Possiamo complementare gli stati di accettazione e di rigetto di una macchina NT che accetta un linguaggio L al fine di accettare il complemento di L?
 - Perché la questione è proprio questa: le classi non deterministiche sono definite come classi di linguaggi accettati da macchine non deterministiche entro quantità limitate di istruzioni o celle di nastro
 - "Ma, come?!" state sicuramente pensando, dopo le scatole che ci ha fatto per dimostrarci che, sì, vabbé, sono definite sulla base dell'accettazione ma, in effetti, siccome le funzioni limite sono time- e space-constructible, allora quei linguaggi sono anche decisi entro le stesse quantità di risorse?! ...
- Allora: è vero, anche se NP è definita come la classe dei linguaggi accettati in tempo non deterministico polinomiale, i linguaggi in NP sono, in effetti, linguaggi decisi da macchine non deterministiche in tempo polinomiale
- Tuttavia, ricordiamo che una macchina di Turing non deterministica NT
 - accetta un input x se esiste una computazione deterministica in NT(x) che termina in q_A
 - rigetta un input x se **ogni** computazione deterministica in NT(x) termina in q_R
- Ecco: il problema è proprio in questa (dannata) asimmetria nelle definizioni di accettazione e di rigetto

- Proviamo ad applicare la stessa tecnica usata nel teorema 6.11 ad un macchina non deterministica NT
 - costruiamo una nuova macchina NT' invertendo gli stati di accettazione e di rigetto di NT
 - e vediamo se NT' accetta (oppure no) il complemento del linguaggio accettato da NT
- Cominciamo scegliendo un linguaggio L ⊆ {0,1}* accettato da una macchina di Turing non deterministica NT
- E ricordiamo che il linguaggio complemento di L è $L^{C} = \{0,1\}^*$ L
 - ossia, per ogni $x \in \{0,1\}^*$
 - se x ∈ L allora x ∉ L^c
 - se x ∉ L allora x ∈ L^c

- Cominciamo scegliendo un linguaggio L ⊆ {0,1}* accettato da una macchina di Turing non deterministica NT
- Ericordiamo che il linguaggio complemento di L è L^c = {0,1}*- L
 - ossia, per ogni $x \in \{0,1\}^*$
 - se x ∈ L allora x ∉ L^c
 - se x ∉ L allora x ∈ L^c
- \neq Allora, una macchina non deterministica NT^c accetta L^c se, per ogni x \in {0,1}*,
 - ▶ se x ∈ L allora NT^C(x) non accetta
 - se x ∉ L allora NT^C(x) accetta
- e, quindi,
 - se x ∈ L allora ogni computazione deterministica in $NT^{C}(x)$ non termina in q_{A}
 - **■** se x \notin L allora **esiste** una computazione deterministica in NT^C(x) che termina in q_A

- Cominciamo scegliendo un linguaggio L ⊆ {0,1}* accettato da una macchina di Turing non deterministica NT
 - e proviamo ad applicare la stessa tecnica usata nel teorema 6.11 ad un macchina non deterministica NT, costruendo una nuova macchina NT' invertendo gli stati di accettazione e di rigetto di NT
- Un attimo, però: prima di invertire gli stati di accettazione e di rigetto di NT, costruiamo una nuova macchina NT₁ che, ancora, accetta L
- Prendiamo NT ed aggiungiamo all'insieme delle sue quintuple le quintuple $\langle q_0, s, s, q_R, F \rangle$ per ogni $s \in \{0,1, \square\}$
 - E questa è NT₁
 - ATTENZIONE: per ogni $x \in \{0,1\}^*$ esiste sempre una computazione deterministica di $NT_1(x)$ che termina in q_R

- Prendiamo NT, che accetta L \subseteq {0,1}*, ed aggiungiamo all'insieme delle sue quintuple le quintuple $\langle q_0, s, s, q_R, F \rangle$ per ogni $x \in \{0,1, \square\}$
 - E questa è NT₁
 - per ogni $x \in \{0,1\}^*$ esiste una computazione deterministica di $NT_1(x)$ che termina in q_R

- Prendiamo NT, che accetta L \subseteq {0,1}*, ed aggiungiamo all'insieme delle sue quintuple le quintuple $\langle q_0, s, s, q_R, F \rangle$ per ogni $x \in \{0,1, \square\}$
 - E questa è NT₁
 - per ogni $x \in \{0,1\}^*$ esiste una computazione deterministica di $NT_1(x)$ che termina in q_R
- NT₁ accetta L
- infatti: per ogni x ∈ L
 - poiché NT accetta L, allora NT(x) accetta
 - allora, esiste una computazione deterministica di NT(x) che termina in q_A
 - ma quella stessa computazione deterministica compare anche in NT₁(x)

- Prendiamo NT, che accetta L ⊆ $\{0,1\}^*$, ed aggiungiamo all'insieme delle sue quintuple le quintuple $\langle q_0, s, s, q_R, F \rangle$ per ogni $x \in \{0,1, \square\}$
 - E questa è NT₁
 - per ogni $x \in \{0,1\}^*$ esiste una computazione deterministica di $NT_1(x)$ che termina in q_R
- NT₁ accetta L
 - infatti: per ogni x ∈ L NT₁(x) accetta
- 🗕 e d'altra parte: per ogni x ∉ L
 - poiché NT accetta L, allora NT(x) non accetta (ossia, rigetta oppure non termina)
 - allora, non esiste alcuna computazione deterministica di NT(x) che termina in q_A
 - e allo stesso modo non esiste in NT₁(x) una computazione deterministica che accetta

- Dunque, abbiamo un linguaggio L ⊆ {0,1}* accettato dalla macchina non deterministica NT₁
 - e adesso applichiamo a NT₁ la stessa tecnica usata nel teorema : costruiamo una nuova macchina NT₁^C invertendo gli stati di accettazione e di rigetto di NT₁
- Ci aspetteremmo che NT₁^C accetti L^C... Sarà davvero così?
- ▶ Vediamo: scegliamo $x \in \{0,1\}^*$ e poniamo $x = x_1x_2 ... x_n$
 - ▶ ossia, $x_1 \in \{0,1\}$ è il primo carattere di x, $x_2 \in \{0,1\}$ il secondo e così via

se $x \in L^c$:

- in NT₁(x) esiste la computazione deterministica $\langle q_0, x_1, x_1, q_R, F \rangle$ che termina in q_R
- lacktriangle e quella stessa computazione deterministica compare anche in NT_1^C (x) che, però, in NT_1^C termina in q_A
- allora NT¹(x) accetta Bene!

- Dunque, abbiamo un linguaggio L ⊆ {0,1}* accettato dalla macchina non deterministica NT₁
 - e adesso applichiamo a NT₁ la stessa tecnica usata nel teorema : costruiamo una nuova macchina NT₁^C invertendo gli stati di accettazione e di rigetto di NT₁
- Ci aspetteremmo che NT₁^C accetti L^C... Sarà davvero così?
- ▶ Vediamo: scegliamo $x \in \{0,1\}^*$ e poniamo $x = x_1x_2 ... x_n$
- **Se** $x \in L^c$, $NT_1^c(x)$ accetta Bene!
- Se x ∉ L^c:
 - se fosse vero che NT_1^C decide L^C allora $NT_1^C(x)$ non dovrebbe accettare
 - ma in NT₁(x) esiste la computazione deterministica $\langle q_0, x_1, x_1, q_R, F \rangle$ che termina in q_R
 - lacktriangle e quella stessa computazione deterministica compare anche in $NT_1^{\mathcal{C}}(x)$ che, però, in $NT_1^{\mathcal{C}}$ termina in q_A
 - allora $NT_1^c(x)$ accetta Bene! OPS! Cioè, no: MALE!

 $NT_1^C(x)$ **non** dovrebbe accettare se $x \notin L^C$!

■ Invece, $NT_1^C(x)$ accetta qualunque sia x! Col cavolo che NT_1^C accetta L^C !

- Allora: anche se i linguaggi in NP sono, in effetti, linguaggi decisi da macchine di Turing non deterministiche in tempo polinomiale
- il fatto che una macchina di Turing non deterministica NT
 - accetta un input x se esiste una computazione deterministica in NT(x) che termina in q_A
 - rigetta un input x se **ogni** computazione deterministica in NT(x) termina in q_R
- proprio questa (dannata) asimmetria nelle definizioni di accettazione e di rigetto non permette di derivare una macchina che decide L^c invertendo gli stati di accettazione e di rigetto di una macchina non deterministica che decide L
- E questo significa che non possiamo affermare che coNP = NP
- Ma, tutto questo ragionamento, ci permette forse di affermare che coNP ≠ NP?
- Col cavolo!
 - la dimostrazione che coNP = NP potrebbe seguire una strada completamente diversa da quella dell'inversione degli stati finali di una macchina non deterministica...
- Eallora?

Questioni di congetture

- Abbiamo detto più volte che la maggior parte delle inclusioni fra classi di complessità sono inclusioni deboli
 - nelle quali non si riesce a dimostrare che le due classi sono diverse
 - ma non si riesce nemmeno a dimostrare che le due classi sono uguali!
- Il caso più famoso è quello che riguarda le classi P e NP
 - sappiamo che P ⊆ NP e, quindi, che ogni problema in P è contenuto anche in NP
 - ma non sappiamo se P = NP ossia, se ogni problema in NP è contenuto, in effetti, in P
 - né sappiamo se P ≠ NP ossia, se esiste un problema in NP che non è contenuto in P
- La congettura fondamentale della teoria della complessità computazionale ipotizza che P ≠ NP
 - e sulla dimostrazione (o confutazione) di questa congettura pende una taglia da un milione di dollari!
- Ed ora abbiamo appena scoperto una nuova congettura:
- La seconda congettura della teoria della complessità computazionale ipotizza che coNP ≠ NP

Relazione fra le due congetture

- In effetti, comunque, le due congetture non sono del tutto indipendenti, come descritto nel prossimo teorema
- Teorema 6.23: Se P = NP allora NP = coNP.
- Dimostrazione:
 - per il Corollario 6.3, P = coP
 - per ipotesi: P = NP e quindi coP = coNP
 - \blacksquare allora: NP = P = coP = coNP
- Il teorema afferma che: se è falsa la Congettura Fondamentale della Teoria della Complessità Computazionale allora è falsa anche la Seconda Congettura della Teoria della Complessità Computazionale
- Questo teorema può anche essere letto come: se NP ≠ coNP allora P ≠ NP
 - ossia: se è vera la Seconda Congettura della Teoria della Complessità Computazionale allora è vera anche la Congettura Fondamentale della Teoria della Complessità Computazionale
- L'affermazione inversa "se NP = coNP allora P = NP" non è invece stata dimostrata
- Per questo le due congetture sono, fino ad ora, due congetture distinte

- ▶ Teorema 6.24: La classe coNP è chiusa rispetto alla riducibilità polinomiale.
 - Come detto sulla dispensa, "La dimostrazione è analoga a quella del Teorema 6.21 ed è lasciata per esercizio. "
 - Aggiungo che mi piacerebbe se qualcuno di voi lo facesse questo UTILE esercizio!
 - (E me lo inviasse)
- Come per tutte le classi di complessità, anche per la classe coNP possiamo definire linguaggi completi rispetto alla riducibilità polinomiale
- DEFINIZIONE: un linguaggio L è conpleto se
 - 1) L ∈ CONP
 - 2) per ogni linguaggio L' ∈ coNP, si ha che L' ≼ L

- Come abbiamo visto la scorsa lezione, i linguaggi NP-completi sono i possibili linguaggi separatori fra P e NP
 - ossia, nell'ipotesi P ≠ NP
 - un linguaggio NP-completo non può essere contenuto in P
 - sono i linguaggi "più difficili" all'interno di NP
- La stessa cosa ci proponiamo di fare nella classe coNP
- Vogliamo mostrare che i linguaggi coNP-completi sono i candidati ad essere i linguaggi separatori fra NP e coNP
 - ightharpoonup ossia che, nell'ipotesi coNP \neq NP,
 - un linguaggio coNP-completo non può essere contenuto in NP
 - che i linguaggi coNP-completi sono i linguaggi "più difficili" all'interno di coNP
- Questo è l'obiettivo dei prossimi due teoremi.

- Teorema 6.25: Un linguaggio L è NP-completo se e soltanto se il suo complemento L^c è coNP-completo
- \Rightarrow Sia L un linguaggio NP-completo mostriamo che L^c è coNP-completo
- 1) L ∈ NP e, quindi, L^c ∈ coNP.
- **▶** 2) Dobbiamo mostrare che, per ogni $L_1 \in \text{coNP}$, vale che $L_1 \leq L^c$
 - sia allora L_1 un qualsiasi linguaggio in coNP (ossia, $\forall L_1 \in coNP$): allora, $L_1^c \in NP$
 - poiché L è completo per la classe NP, allora per ogni $L_0 \in NP$, $L_0 \leq L$: allora, in particolare, poiché $L_1^C \in NP$, vale che $L_1^C \leq L$
 - Questo significa che esiste una funzione $f_1:\{0,1\}^* \to \{0,1\}^*$ (ricordiamo che consideriamo linguaggi nell'alfabeto $\{0,1\}$)

tale che $f_1 \in FP$ e, per ogni $x \in \{0,1\}^*$, $x \in L_1^c$ se e soltanto se $f_1(x) \in L$.

- Ma questo è equivalente a dire che, per ogni $x \in \{0,1\}^*$, $x \notin L_1^c$ se e soltanto se $f_1(x) \notin L$,
- Ossia, per ogni $x \in \{0,1\}^*$, $x \in L_1$ se e soltanto se $f_1(x) \in L^c$
- ightharpoonup ossia, $L_1 \leq L^c$
- Poiché L₁ è un qualsiasi linguaggio in coNP, questo dimostra che L^C è completo per coNP.

- Teorema 6.25: Un linguaggio L è NP-completo se e soltanto se il suo complemento L^c è coNP-completo
- \blacksquare \Leftarrow Sia L^c un linguaggio coNP-completo \blacksquare mostriamo che L è NP-completo
- 1) L^c ∈ coNP e, quindi, L ∈ NP.
- \blacktriangleright 2) Dobbiamo mostrare che, per ogni $L_1 \in NP$, vale che $L_1 \leq L$
 - sia allora L_1 un **qualsiasi** linguaggio in NP (ossia, $\forall L_1 \in NP$): allora, $L_1^C \in CONP$
 - poiché L^{C} è completo per la classe coNP, allora per ogni $L_{0} \in \text{coNP}$, $L_{0} \leq L^{C}$: allora, in particolare, poiché $L_{1}^{C} \in \text{coNP}$, vale che $L_{1}^{C} \leq L^{C}$
 - Questo significa che esiste una funzione $f_1:\{0,1\}^* \to \{0,1\}^*$ (ricordiamo che consideriamo linguaggi nell'alfabeto $\{0,1\}$)
 - tale che $f_1 \in FP$ e, per ogni $x \in \{0,1\}^*$, $x \in L_1^c$ se e soltanto se $f_1(x) \in L^c$.
 - Ma questo è equivalente a dire che, per ogni $x \in \{0,1\}^*$, $x \notin L_1^c$ se e soltanto se $f_1(x) \notin L^c$, ossia, per ogni $x \in \{0,1\}$, $x \in L_1$ se e soltanto se $f_1(x) \in L$.
 - Poiché L₁ è un qualsiasi linguaggio in NP, questo dimostra che L è completo per NP.

- Teorema 6.26: Se esiste un linguaggio L NP-completo tale che L ∈ coNP, allora NP = coNP.
- Dimostriamo il teorema mostrando prima che (1) coNP ⊆ NP e poi che (2) NP ⊆ coNP
- Sia L un qualunque linguaggio NP-completo tale che che L ∈ coNP
- (1) Poiché L ∈ coNP allora, L^c ∈ NP.
- Poiché L è NP-completo allora, per il Teorema 6.25, L^c è coNP-completo,
 - ightharpoonup quindi, per ogni L' \in coNP, si ha che L' \leq Lc.
- Ma NP è chiusa rispetto alla riducibilità polinomiale (Teorema 6.22) che significa che se accade che $L_1 \le L_2 \in L_2 \in NP$, allora $L_1 \in NP$ e $L' \le L^c \in NP$
- ightharpoonup allora, per ogni linguaggio L' \in coNP, si ha che L' \in NP.
- E questo dimostra che coNP ⊆ NP.

- Teorema 6.26: Se esiste un linguaggio L NP-completo tale che L ∈ coNP, allora NP = coNP.
- Sia L un qualunque linguaggio NP-completo tale che che L ∈ coNP
- (2) Mostriamo ora l'inclusione opposta.
- Poiché L è NP-completo allora, per ogni L'' ∈ NP si ha che L'' ≼ L
- \blacksquare ma $L \in coNP$.
- e inoltre coNP è chiusa rispetto alla riducibilità polinomiale (Teorema 6.24) che significa che se accade che $L_1 \leq L_2$ e $L_2 \in coNP$, allora $L_1 \in coNP$
- Riassumendo: coNP è chiusa rispetto alla riducibilità polinomiale e per ogni L'' ∈ NP si ha che L'' ≤ L e L ∈ coNP
- allora per ogni L" ∈ NP si ha che L" ∈ coNP
- E questo dimostra che NP ⊆ coNP.
- Infine, le due inclusioni coNP ⊆ NP e NP ⊆ coNP dimostrano il teorema.