

Al4NetMon tool: A Web app to Analyze bias in Internet Measurements

Pavlos Sermpezis & Sofia Kostoglou

joint work with: Lars Prehn, Marcel Flores, Athena Vakali, Emile Aben

Data & Web Science Laboratory (Datalab), https://datalab.csd.auth.gr/
Computer Science Dept., Aristotle University of Thessaloniki

Bias in data: a motivational example

- Assume an entire population of 100 people
 - 50 men, 50 women
 - 70 from country A, 30 from country B
- We do a survey with 10 participants
 - o 8 men, 2 women
 - o 8 from country A, 2 from country B

100	Men	Women	Country A	Country B
Entire population	50%	50%	70%	30%
Survey sample	80%	20%	80%	20%

- Is there bias? → Yes! difference in the gender/country distributions between population & sample
- Is bias the same along gender/country? → No! sample is more biased wrt. the gender dimension
- Is bias a problem? → It depends!
 - Goal: estimate the average population height (gender bias is a problem, country bias may be a problem)
 - Goal: calculate % of native spoken languages (gender bias is not a problem, country bias is a problem)

Internet measurement platforms

https://atlas.ripe.net/

- data plane measurements
- > 11,000 probes & anchors
- in > 3000 ASNs

http://www.routeviews.org

https://ris-live.ripe.net/

- BGP RIBs & updates
- 27 route collectors
- peering with > 500 ASNs

- BGP RIBs & updates
- 36 route collectors
- peering with > 300 ASNs

Measurement platforms: a window to the Internet

... but, in practice: a stained glass window

The "stained glass" view == Bias

not all network types can be equally seen by the platforms

→ our view of the Internet is **biased**

Example 1 (location bias)

• RIPE Atlas & RIPE RIS have more probes/peers in Europe

RIPE Atlas probes

https://atlas.ripe.net/results/maps/network-coverage/

RIPE RIS route collectors

https://observablehq.com/@emileaben/ris-route-collectors-and-peer-locations

Example 2 (network-type bias)

Peers of RIPE RIS and RouteViews do not equally represent all network types

Quantifying bias

- Many dimensions of bias
 - location, network size, topology, IXP connectivity, network type, etc.
- Bias score per dimension
 - Bias == Difference between two distributions
 (all networks vs. networks with vantage points)
 - **Bias score**: Kullback-Leibler divergence metric
 - o i.e, a value between 0 (low bias) and 1 (high bias)
- Radar plot of bias
 - each radius → a bias dimension
 - colored lines/areas → bias score
 - \circ high bias \rightarrow far from center

Dataset, code, API, Web app

- Al4NetMon project https://ai4netmon.csd.auth.gr/
 - You can find all the information about the project!

- Code & Data @ GitHub https://github.com/sermpezis/ai4netmon/
- API https://ai4netmon.csd.auth.gr/api/
 - Documentation @ GitHub
- Web app https://app-ai4netmon.csd.auth.gr/

Find bias at a glance...

- Give a set of vantage points (ASNs)
- See if the set is representative through visualizations

• Available at https://app-ai4netmon.csd.auth.gr/

• Available at https://app-ai4netmon.csd.auth.gr/

Available at https://app-ai4netmon.csd.auth.gr/

...up to 3 custom sets of vantage points

• Available at https://app-ai4netmon.csd.auth.gr/

Available at https://app-ai4netmon.csd.auth.gr/

But...why does this bias exist??

- See in more detail through distribution plots
- Understand why sets are not representative in each one of the different bias dimensions
- Check the bias causes through relative distribution differences

• Available at https://app-ai4netmon.csd.auth.gr/

Bias = difference in "population" (All ASes) and "sample" distributions (monitors sets).

• Available at https://app-ai4netmon.csd.auth.gr/

Dive deeper into bias "causes": for all different values of each dimension, shed light into the relative change of distributions

• Available at https://app-ai4netmon.csd.auth.gr/

Check the largest and smallest percentage difference in the bias causes

Top Recommendation - Largest Difference %

The characteristic **Traffic ratio (PeeringDB)** with value **Not Disclosed** is the most **overrepresented** in the selected set, by a percentage of **30.31** %

Top Recommendation - Smallest Difference %

The characteristic **#neighbors** (peers) with value **1.0-3.0** is the most **underrepresented** in the selected set, by a percentage of **-81.2564** %

Detailed page: Route Collector Measurements

 Check all the bias analysis and tools, especially for route collectors

Web app: Route collectors measurements

Available at https://app-ai4netmon.csd.auth.gr/

Web app: Route collectors measurements

Available at https://app-ai4netmon.csd.auth.gr/

Detailed page: RIPE Atlas Measurements

 Check all the bias analysis and tools, especially for RIPE Atlas probes

Web app: RIPE Atlas

Available at https://app-ai4netmon.csd.auth.gr/

Web app: RIPE Atlas

Available at https://app-ai4netmon.csd.auth.gr/

Monitor Set RIPE Atlas

Filter by: Bias Dimension, Value or Difference

Search

Search

199 results

Bias Dimension	Value	Difference %
Customer cone (#ASNs)	1.0-3.0	-34.258
Customer cone (#ASNs)	3.0-9.0	13.518

Network Information per ASN or Atlas probe id

- Find a big variety of network information
- Select an individual network by ASN or probe id

Web app: Network Information

• Available at https://app-ai4netmon.csd.auth.gr/

check in which percentile each feature belong

Type ASN

1299

Property	Value	Percentile
AS_rank_continent	Europe	29.37%
is_personal_AS		98.96%
peeringDB_info_ratio	Balanced	24.68%
peeringDB_info_traffic	100000000.0	0.1%
peeringDB_info_scope	Global	9.01%
peeringDB_info_type	NSP	12.62%
peeringDB_info_prefixes4	600000.0	
peeringDB_info_prefixes6	130000.0	
peeringDB_policy_general	Restrictive	2.02%
peeringDB_ix_count	0.0	0.0%

A use case: Usage patterns in RIPE Atlas measurements

- How do users use RIPE Atlas in practice?
- Do they select biased sets of vantage points?
- Analyze common patterns using the Al4NetMon web app

Analysis of most frequent ASNs (results)

Top 10 Most Frequent ASes in our sample, have:

- 1) **Location:** Bias towards the RIPE region (same for the rest of the sample).
- 2) **Network size:** Significantly larger reach (in terms of the customer cone).
- 3) **Topology:** Significantly larger number of neighbors (peers and customers).
- 4) **Interconnection:** Larger number of connections to IXPs. They also have mostly "restrictive" and "selective" peering policies.
- 5) **Network Type:** The highest levels of traffic.

<u>Users tend to use in their measurements</u> <u>ASes corresponding to large ISPs!</u>

Summarizing...

- Our contributions
 - A framework (data, definitions, etc.) to quantify bias
 - Analysis of bias in Internet measurement platforms
 - Code & tools
 - Website https://ai4netmon.csd.auth.gr/
 - Web app https://app-ai4netmon.csd.auth.gr/

- Next steps
 - Unbias Internet measurements [ongoing work] :
 - (a) extend platforms (add extra vantage points)
 - (b) carefully select vantage points (subsampling)
 - Use cases: When the bias really hurts our findings?
 - Bias in ML models based on data from measurements

