Demand Estimation with Complementarity and Variety Effect

Heng Ju, Yifu Shao

College of Business, Shanghai University of Finance and Economics

November 16, 2024, at ***

Complex cross-market strategy

- Merger/acquisition: GE and Honeywell, KE Holdings and iKongjian, Qualcomm and Intel
- Business practice: bundling (e.g., 88VIP, Apple One, App Store + iPhone)
- Platform: cross-market externalities (e.g., Armstrong and Wright, 2007)

Concerns arising from demand correlations

- (Countering) public policy (e.g. antitrust scrutiny)
- Business strategy
- Industrial policy
 - Digital/platform economy
 - Broader policies, e.g., FDA "Healthy" label redefinition

Suppose a new product enters the choice set, $\{A\} \Rightarrow \{A,\,B\}$

- Share of A
 - Decrease due to substitution
- A higher share?
 - Complement consumption (A + B); "quality" increase (A-alone)
- The demand correlations of A and B are fundamental to address many antitrust inquiries
 - E.g., bundling, platform pricing, cross-market mergers, spillover in digital platform, . . .

Demand correlations

- Complementarity: "interaction" from consuming B on top of A
- Variety effect: introduction of a B on A-alone
- Structural error: one likes A may like/dislike B
- Under-studied in antitrust research but important in practices

Empirical challenges

- Proper modeling for both concepts
 - Model suitability; dimensionality
- Identification
 - Lack of moment; endogeneity; heterogeneity
- Data requirement
 - Aggregated data (market share) fails. Consumer-level data is scarce.
- Computationally feasible tool for merger prediction
 - Internalizing externality; bundling incentive

Empirical challenges

- Proper modeling for both concepts
 - Model suitability; dimensionality
- Identification
 - Lack of moment; endogeneity; heterogeneity
- Data requirement
 - Aggregated data (market share) fails. Consumer-level data is scarce.
- Computationally feasible tool for merger prediction
 - Internalizing externality; bundling incentive

Roadmap

- Empirical framework to model a hypothetical demand system
- Misidentification when using order-level data
- Monte-Carlo experiment
- Bundle incentives in a stylized merger

II. Related Literature

Complementarity:

- Superadditivity framework (Gentzkow, 2007; Berry et al., 2017)
- Recent works using market share data (laria and Wang, 2019; Wang, 2021)
 - Supply-side assumptions
 - Demand inverse techniques

Variety effect:

- Taste for diversity or diversity in taste (Lancaster, 1990)
- System competition (Katz and Shapiro, 1994)
- Uncertainty, or preference for flexibility (Kreps, 1979)
- Brand perception (Berger et al., 2007)

III. Empirical Framework: Model Setup

- t = 1: $j \in \{A_1, A_2\}$
- t = 2: introduce $B, j \in \{A_1, A_2, B\}$
- Quasilinear utility for single product j: $U_{ij} = \delta_j + \alpha(y_i p_j) + v_{ij}$ - Outside option: $U_{i0} = \alpha y_i$
- Normalization: $u_{ij} = \delta_i \alpha p_j + v_{ij}$
- Free covariate matrix in unobervable utility $\mathbf{v}_i \sim N(0, \Sigma)$

$$\begin{bmatrix} v_{iA_1} \\ v_{iA_2} \\ v_{iB} \end{bmatrix} \sim N \begin{pmatrix} 0, \begin{bmatrix} 1 & \sigma_{A_1A_2} & \sigma_{A_1B} \\ \sigma_{A_1A_2} & 1 & \sigma_{A_2B} \\ \sigma_{A_1B} & \sigma_{A_2B} & 1 \end{bmatrix} \end{pmatrix}$$

III. Empirical Framework: Model Setup

Consumer make bundle-level choice r

- At t = 1, $r \in \{0, A_1, A_2\}$
- At t = 2, $r \in \{0, A_1, A_2, B, A_1B, A_2B\}$

VE as demand shifter:

- $\Phi_{A_j} := u_{A_j}^{t=2} u_{A_j}^{t=1}$
- Utility difference of A_j resulting from introducing B, ceteris paribus.

CMP as superadditivity:

- $\Gamma_{A_iB} := (u_{A_iB} u_B) (u_{A_i} u_0)$
- "incremental utility from consuming A_j on top of B" minus "utility from consuming A_j alone when B is available"
- From Gentzkow (2007), A_j and B are complements iff $\Gamma > 0$

Bundle-level utility: $u_{i,A_iB} = u_{i,A_i} + u_{i,B} + \Phi_{A_i} + \Gamma_{A_iB}$

III. Empirical Framework

Aggregated share fails in identification

III. Empirical Framework

Aggregated share fails in identification

When t=2:

- 5 order-level demands: $P_{A_1}^2$, $P_{A_2}^2$, P_B^2 , $P_{A_1B}^2$, $P_{A_2B}^2$
- 8 parameters: $\underline{\delta_{A_1}+\Phi}$, $\underline{\delta_{A_2}+\Phi}$, δ_B , α , Γ , $\sigma_{A_1A_2}$, σ_{A_1B} , σ_{A_2B}
- $Q_j^2 = \sum_{j \in r} P_r^2$ identifies the mean utility
- P_{A_iB} only identifies a mixture $f(\Gamma, \sigma)$
 - "Exclusive variable": $\frac{\partial Q_j}{\partial x_i} \cdot \frac{\partial Q_k}{\partial x_i} > 0$
 - Consumer panel: $y_i^1 \perp y_i^2$
- The "nest" share $(Q_{A_1}^2 + Q_{A_2}^2)/Q_B^2$ identifies $\sigma_{A_1A_2}$
- (Exogenous) price changes identifies α

When t=2:

- 5 order-level demands: $P_{A_1}^2$, $P_{A_2}^2$, P_B^2 , $P_{A_1B}^2$, $P_{A_2B}^2$
- 8 parameters: $\delta_{A_1}+\Phi$, $\delta_{A_2}+\Phi$, δ_B , α , Γ , $\sigma_{A_1A_2}$, σ_{A_1B} , σ_{A_2B}
- $Q_j^2 = \sum_{j \in r} P_r^2$ identifies the mean utility
- P_{A_jB} only identifies a mixture $f(\Gamma, \sigma)$
 - "Exclusive variable": $\frac{\partial Q_j}{\partial x_j} \cdot \frac{\partial Q_k}{\partial x_j} > 0$
 - Consumer panel: $y_i^1 \perp y_i^2$
- The "nest" share $(Q_{A_1}^2 + Q_{A_2}^2)/Q_B^2$ identifies $\sigma_{A_1A_2}$
- (Exogenous) price changes identifies α

When t = 1:

- 2 product-level demands: $P_{A_1}^1$, $P_{A_2}^1$
- 4 parameters: δ_{A_1} , δ_{A_2} , α , $\sigma_{A_1A_2}$
- $P^1_{A_i}$ identifies δ_{A_j} ; mean utility difference identifies Φ

Either consumer- or order-level data identifies the model

Misidentification occurs when firm endogenously set price

- At t=2, firms know (Φ,Γ) and set price $p_j^2(\Phi,\Gamma\mid\cdot)$
- Consumer-level data still identifies the model (Villas-Boas and Winer, 1999)
- Order-level data fails: $Q_{A_j}^2 Q_{A_j}^1 \propto \Phi + lpha(p_{A_j}^1 p_{A_j}^2)$

Misidentification occurs when firm endogenously set price

- At t=2, firms know (Φ,Γ) and set price $p_j^2(\Phi,\Gamma\mid\cdot)$
- Consumer-level data still identifies the model (Villas-Boas and Winer, 1999)
- Order-level data fails: $Q_{A_j}^2 Q_{A_j}^1 \propto \Phi + \alpha (p_{A_j}^1 p_{A_j}^2)$

2-step estimation: time-invariant Θ_1

- When t=1, get estimated $\hat{\Theta}_1=(\hat{\delta}_{A_1},\hat{\delta}_{A_2},\hat{\alpha},\hat{\sigma}_{A_1A_2})$
- When t=2, given $\hat{\Theta}_1$, estimate $\Theta_2=(\delta_B,\Phi,\Gamma,\sigma_{A_1B},\sigma_{A_2B})$

Any other potential endogeneity caused by ${\bf v}$

 Mean utility with instruments (Berry et al., 1995; Goolsbee and Petrin, 2004)

Or, add supply side moments

- Prices contain information about the demand
- From FOC of j, $Q_{jt}+\frac{\partial Q_{jt}}{\partial p_{jt}}\left(p_{jt}-c_{jt}\right)=0$:

$$\mathbb{E}\left[p_{A_j,t} - c_{A_j} + Q_{A_j,t} \left(\frac{\partial Q_{A_j,t}}{\partial p_{A_j,t}}\right)^{-1}\right] = \mathbb{E}\left[\epsilon_{A_j,t}\right] = 0$$

where $\epsilon_{A_i,t}$ is a iid cost shock

- ullet Pro: one-step estimation by assuming FOC and constant c_{A_i}
- Con: wrong assumptions; optimal instruments and weight in GMM
- Our 2-step process can be estimated by ML, and avoid supply assumptions.

Bundle-level utility

$$u_{irt} = \sum_{j \in r} (\delta_j + \Phi_{jt} - \alpha p_{jt} + v_{ij}) + \Gamma_r + \varepsilon_{irt}$$

- ullet B is introduced at T
- $r \in \{0,A_1,A_2\}$ when t < T and $r \in \{0,A_1,A_2,B,A_1B,A_2B\}$ when $t \geq T$
- $\varepsilon_{irt} \sim \text{Gumbel}(0,1)$. $u_{i0t} = \varepsilon_{i0t}$.
- Assume $\Phi_{A_i,t>T} = \Phi$ and $\Phi_{jt} = 0$ otherwise
- Assume $\Gamma_{A_1B} = \Gamma_{A_2B}$. $\Gamma_r = 0$ for all single good

Conditional choice probability:

$$P_{irt}(\mathbf{v}_{i};\Theta) = \frac{\exp\left\{\sum_{j \in r} \left(\delta_{j} + \Phi_{jt} - \alpha p_{jt} + v_{ij}\right) + \Gamma_{r}\right\}}{1 + \sum_{k \in R_{t}/0} \exp\left\{\sum_{j \in k} \left(\delta_{j} + \Phi_{jt} - \alpha p_{jt} + v_{ij}\right) + \Gamma_{k}\right\}}$$

Estimation strategy: Simulated Maximum Likelihood

• Order-level market share $S_{rt}(\Theta) = \int P_{irt}\left(\mathbf{v}_{i};\Theta\right) dF\left(\mathbf{v}_{i};\Theta\right)$

$$\ln L(\mathbf{q}, \Theta) = \sum_{t} \sum_{r} q_{rt} \ln S_{rt}(\Theta)$$

• Consumer-level choice sequence $y_{it} \in \mathbf{y}_i$ with unconditional probability $\tilde{P}(\mathbf{y}_i, \mathbf{v}_i; \Theta) = \prod_t P_{it, r = y_{it}}(\mathbf{v}_i; \Theta)$

$$\ln L(\mathbf{y}, \Theta) = \sum_{i} \ln \int \tilde{P}(\mathbf{y}_{i}, \mathbf{v}_{i}; \Theta) dF(\mathbf{v}_{i}; \Theta)$$

Data structure example

- Consumer-level: tracked sequence of choices (e.g. Nielsen Homescan)
- Order/Transaction-level: anonymous consumer panel (e.g., store scanner, online retail)

cust_id	tran_id	$prod_{-}id$	tran_t	qty	price	prod_chr_1	
cust 1	tran 1	prod 1	day 1	1	0.5		
cust 1	tran 1	prod 2	day 1	2	1.5		
cust 2	tran 2	prod 1	day 1	1	0.5		
		prod 2			2		

Monte Carlo experiments use generated data

Exogenous pricing, 20 periods (introduce B at 10), N=2000, S=700

(a)
$$\Gamma = 0$$
 and $\Phi > 0$

(b)
$$\Gamma > 0$$
 and $\Phi = 0$

		Models with Φ & Γ			Models without Γ				Models without Φ			
Parameters	Real	NL	Order	Consumer	Real	NL	Order	Consumer	Real	NL	Order	Consumer
δ_A	1	0.93***	1.013***	0.991***	1	0.94***	1.019***	0.991***	1	0.932***	1.021***	0.994***
		(0.191)	(0.027)	(0.032)		(0.155)	(0.028)	(0.032)		(0.18)	(0.028)	(0.032)
δ_{A_2}	2	1.701***	2.04***	1.974***	2	1.711***	2.053***	1.975***	2	1.703***	2.053***	1.981***
		(0.195)	(0.028)	(0.035)		(0.16)	(0.026)	(0.035)		(0.184)	(0.031)	(0.035)
δ_B	3	4.089***	2.972***	2.923***	3	3.802***	3.017***	2.93***	3	3.755***	3.008***	2.928***
		(0.268)	(0.061)	(0.049)		(0.219)	(0.052)	(0.046)		(0.253)	(0.051)	(0.046)
α	-1	-0.806***	-1.01***	-0.999***	-1	-0.806***	-1.023***	-0.998***	-1	-0.806***	-1.016***	-1.002**
		(0.095)	(0.022)	(0.011)		(0.078)	(0.022)	(0.011)		(0.09)	(0.028)	(0.011)
$\sigma_{A_1A_2}$	0.5	` - ′	0.507***	0.498***	0.5	/	0.474***	0.507***	0.5	` - '	0.514***	0.5***
		(-)	(0.089)	(0.022)		(-)	(0.101)	(0.021)		(-)	(0.095)	(0.021)
σ_{A_1B}	0.7	-	0.633***	0.673***	0.7	-	0.609***	0.685***	0.7	-	0.635***	0.682***
		(-)	(0.11)	(0.027)		(-)	(0.076)	(0.024)		(-)	(0.102)	(0.026)
σ_{A_2B}	0.3	-	0.231	0.351***	0.3	-	0.242**	0.344***	0.3	-	0.247	0.352***
		(-)	(0.13)	(0.032)		(-)	(0.089)	(0.031)		(-)	(0.171)	(0.032)
Φ	0.3	1.629***	0.256***	0.31***	0.5	1.446***	0.456***	0.502***	0	1.257***	-0.033	-0.007
		(0.158)	(0.073)	(0.035)		(0.129)	(0.036)	(0.033)		(0.149)	(0.074)	(0.032)
Γ	0.7	′	0.75***	0.746***	0	′	0.039	0.053	0.5	′	0.528***	0.55***
		(-)	(0.096)	(0.039)		(-)	(0.06)	(0.037)		(-)	(0.115)	(0.035)

Endogenous pricing, 60 periods (introduce A_1 at 21, B at 41)

- $c_{A_1} = c_{A_2} = 1.5$, $c_B = 3$
- Firm knows the dist. of v
- $\epsilon_{jt} \sim N(0, 0.3)$
- $\hat{c}_{A_1} = 1.487$, $\hat{c}_{A_2} = 1.493$

Parameters	Real	NL	Order	Consumer	2-Step
δ_{A_1}	1	0.514***	0.979**	0.881***	1.023***
		(0.118)	(0.409)	(0.114)	(0.057)
δ_{A_2}	2	1.065***	1.872***	1.846***	1.963***
		(0.127)	(0.459)	(0.129)	(0.063)
δ_B	3	2.174***	2.611***	2.778***	3.034***
		(0.222)	(0.911)	(0.203)	(0.086)
α	-1	-0.584***	-0.948***	-0.954***	-1.003***
		(0.047)	(0.168)	(0.043)	(0.021)
$\sigma_{A_1A_2}$	0.5	-	0.99	0.501***	0.445***
		(-)	(1.609)	(0.025)	(0.065)
σ_{A_1B}	0.7	-	0.323	0.67***	0.684***
		(-)	(1.136)	(0.027)	(0.209)
σ_{A_2B}	0.3	-	-0.014	0.33***	0.427**
		(-)	(1.109)	(0.03)	(0.216)
Φ	0.3	0.535***	0.233	0.289***	0.293***
		(0.022)	(0.232)	(0.026)	(0.047)
Γ	0.7	-	1.024	0.755***	0.677***
		(-)	(0.829)	(0.038)	(0.164)

SML is asymptotically equivalent to ML only if $S/\sqrt{N}\to\infty$ as N rising (Gourieroux and Monfort, 1993)

Suppose A_1 and B propose to merge

- independent pricing: p_{A_1}, p_B, p_{A_2}
- pure bundling: p_{A_1B}, p_{A_2}
- mixed bundling: $p_{A_1}, p_B, p_{A_1B}, p_{A_2}$
- mixed bundling w/o B: $p_{A_1}, p_{A_1B}, p_{A_2}$
- mixed bundling w/o A_1 : p_B, p_{A_1B}, p_{A_2}

Two-stage game (Whinston, 1990)

- Pricing commitment
- Nash-Bertrand equilibrium

$$p_{rt} = S_{rt}(\mathbf{p}_t) \left[-\frac{\partial S_{rt}}{\partial p_{rt}}(\mathbf{p}_t) \right]^{-1} + c_r + \sum_{k \in \mathbb{R}_t/r} \left(p_{kt} - c_k \right) \frac{\partial S_{kt}}{\partial p_{kt}}(\mathbf{p}_t) \left[-\frac{\partial S_{rt}}{\partial p_{rt}}(\mathbf{p}_t) \right]^{-1}$$

Bundling harms competitors while benefiting the merged firm?

Demand parameters estimated by endogenous DGP

Variable	Pre-Merger	Independent	Pure Bndl	Mxed Bndl		$Mxed\ Bndl$ w.o A_1
p_{A_1}	2.835	2.75	-	3.282	3.112	-
p_{A_2}	3.148	3.13	3.024	3.088	2.995	3.117
p_B	4.621	4.573	-	4.885	-	4.822
p_{A_1B}	-	-	6.302	6.61	6.393	6.536
π_{A_1} or π_m	0.221	0.652	0.416	0.694	0.503	0.626
π_{A_2}	0.492	0.472	0.383	0.441	0.361	0.467
π_B	0.423	-	-	-	-	-

• Independent: 0.221 + 0.423 < 0.652 & all prices drop

ullet Profit incentive: MB > Independent > MB w/o B

• Foreclosure: MB w/o B > PB > MB > Independent

Profit and foreclosure in MB with varying Γ and Φ

- (Positive) Γ and Φ : profit incentive (+), foreclosure (+)
 - − MB: $\Phi \uparrow \Rightarrow p_B \uparrow$, **profit from** A_2 ; Ind: $\Phi \uparrow \Rightarrow p_B$ unchanged
- Limited foreclose effect.

Asymmetric variety effect caused by merger

• Complementary consumptions in the future (Kreps, 1979)

Assumptions for $\Phi_{A_2}=0$

- Incompatible B (Katz and Shapiro, 1994)
- Fully monopolized B (Gentzkow, 2007)

Profit incentive for MB w/o B or PB?

Asymmetric variety effect

- Upper-right region of the Γ, Φ space
- MB w/o B > PB

VI. Concluding Remarks

- A flexible demand model to estimate complementarity and variety effect, using order-level data without supply assumption.
- Monte Carlo results show good accuracy and robustness.
- Our model can be a valuable tool for antitrust authorities handling cross-market strategies, eg., E-comm platform, ecosystem, product line,...
- In cases with tying or complement merger, the motivation and effect of these strategies are important empirical questions (Choi, 2008; Chen and Riordan, 2013; etc.).