

# **EHB326E – INTRODUCTION TO EMBEDDED SYSTEMS HW4**

Instructor: Prof. Dr. Müştak Erhan Yalçın Assistant: Alp Eren Kıyak

Kamil Eren Ezen 040210021

#### **Call/Return Stack:**

The call/return stack is feature that enables efficient function calls and handling of interrupts. It operates as a Last In, First Out (LIFO) structure, storing return addresses when subroutines or interrupts are called. The Picoblaze stack has a finite depth of 31 levels. Exceeding this depth results in stack overflow, potentially causing loss of return addresses or incorrect program behavior.

#### Interrupt:

Interrupts allow the Picoblaze processor to temporarily pause its current task to handle critical or time-sensitive events, such as external signals or internal conditions.

## **Interrupt Implementation**



For the assembly part I wrote a simple counter code including interrupt. It starts counting then being interrupted after reaching 5.



Address instruction goes to interrupt address while interrupted. Then continues from where it left.

#### **Nested Interrupts**



For nested interrupts I enabled another interrupt in the ISR until it reaches to number of interrupts registered.

Here are the simulation results:



Program counter goes to its initial instruction address after 10 returns. Stack counter pointer to

Ob which is 1+ (#of interrupts)

## Simulation results for 32 interrupts. (Only changed s1 value to 32.)



After interrupt 31 the program overflows before reaching interrupt 32. Because stack pointer reaches its maximum 1f = 1 + 31. Which is why 32 nested interrupts are not possible in PicoBlaze. Program counter does not return to its initial place.