

Mini curso: Modelagem de corredores ecológicos para a conservação da biodiversidade

Instrutoras: Juliana Silveira dos Santos

Taís Moreira

Monitora: Mileide Formigoni

Dados de entrada do LSCorridors

O LSCorridors precisa de 3 informações básicas para rodar as simulações de corredores

- Superfície de resistência
- Áreas fonte e destino Source (S) e Target (T)
- Dados das espécies alvo

Essas duas informações são representadas no LSCorridors a partir de dois mapas no formato raster, extensão .tif ou .img

Superfícies de resistência são frequentemente usadas para preencher as lacunas de conhecimento sobre movimento animal e como base para modelar a conectividade associada a iniciativas de conservação.

Por que prever o movimento é tão importante?

Está relacionado com iniciativas de conservação, uma vez que, movimentos bem sucedidos de indivíduos na paisagem permitem que processos ecológicos essenciais ocorram: migração sazonal, dispersão, fluxo gênico, ajuste das populações as mudanças ambientais e etc.

Mas ... o movimento dos animais é um dos comportamentos mais difíceis de se observar e quantificar.

- O número de indivíduos em estudo é muitas vezes pequeno, e/ou podem ter grandes lacunas de tempo entre locais de pontos sucessivos ao longo de um caminho de movimento.
- É um processo que exige vários campos, equipamentos específicos e um longo período de avaliação, o que deixa o processo com um custo alto

Neste contexto, a superfície de resistência pode representar...

- A vontade de um organismo de atravessar um ambiente particular;
- O custo fisiológico de se mover através de um determinado ambiente;
- A redução da sobrevivência de um organismo movendo-se através de um ambiente particular;
- Integração de todos esses fatores

 As superfícies de resistência são usadas para parametrizar variáveis ambientais, através de uma resistência ou custo ao movimento contínuo

Superfície de resistência

Superfície de movimento

- Opinião de especialistas (seleção de habitat)
- Dados de detecção
- Dados de realocação
- Dados de movimento
- Dados genéticos (distância genética entre localizações fluxo gênico)

- Mapas de uso e cobertura da terra
- Índices de vegetação
- Modelos de nicho ecológico

 No curso a superfície será baseada em um mapa de uso e cobertura da terra que foi reclassificado com base na preferencia de habitat e movimento de uma espécie, a partir da opinião de especialistas.

30	70	60	5	5	
70	70	60	5	5	
70	70	60	5	5	
2	1000	60	60	5	
2	1000	70	70	70	
2	2	1000	100	100	

- Savana
- Floresta sazonal
- Eucalipto e Pinus
 - Culturas intensivas temporárias
- Pastagem
- Área urbana
- Água

Áreas fonte e destino (Source e Target – ST)

- Áreas de origem e destino, onde esperasse que os indivíduos emigrem
- Áreas de alta qualidade
- Se for calcular a conectividade da paisagem, essas áreas indicam onde a conectividade será calculada
- Podem ser um único par de manchas ou diversos pares de manchas
- Essas áreas não precisam ser apenas "habitat"

SR e ST no LSCorridors

Superfície de Resistência	ST
 Mapa raster (matriz) com a extensão .tif ou .img A unidade do sistema de projeção deve ser metros Os valores dos pixels devem ser maior que 0 e positivos Inteiros ou float Os valores podem ter diferentes ranges, i.e., 1 a 10; 1 a 1000, 100 a 10000 e etc; Valores maiores representam alta resistência (custo) e vice-versa 	 Mapa raster (matriz) com a extensão .tif ou .img A unidade do sistema de projeção deve ser metros Cada ST deve ter uma identificação única Números inteiros ou float Os valores podem ter qualquer range Os valores precisam ser positivos Cada ST deve ter um valor único de identificação Os valores que não correspondem a STs devem corresponder a Nodata É necessário pelo menos 1 par de ST

- Os mapas da superfície de resistência e STs devem ter o mesmo número de linhas e colunas
- O mesmo tamanho de pixel
- A mesma projeção cartográfica

Variabilidade

Variabilidade

Variabilidade

Número de simulações também incluem variabilidade

Requerimento das espécies

Está relacionado aos parâmetros Scale, MLmin, MLavg, MLmax,

Requerimento das espécies

Está relacionado aos parâmetros Scale, MLmin, MLavg, MLmax,

Os organismos podem assumir um risco no movimento pela paisagem

15	15	15	
30		15	
30	30	20	

Valores

Mlmin (mínimo) = 15 Mlmax (máximo) = 30 Mlavg (médio) = 21,25

Scale: 100/30m = 3x3 pixels

Requerimento das espécies

Como usar os diferentes métodos?

- Para cada par de ST o LS irá criar um pasta com todos os caminhos de menor custo em formato vetorial, arquivo tipo shapefile (.shp)
- Para cada par de ST o LS irá criar um arquivo em formato matricial, arquivo tipo raster (.tif) com os caminhos de menor custo
- Para cada método de simulação o LS irá gerar um arquivo em formato matricial, arquivo tipo raster (.tif) com o índice RSFI

RSFI (Route Selection Frequency Index)

- É um output principal
- Contém todos os caminhos simulados e a frequência com a qual cada pixel foi considerado durante as simulações. Ao invés de uma, são obtidas várias rotas de menor custo potenciais
- Pixels com alto valor de RSFI indicam as melhores rotas/áreas potenciais entre os STs considerando os requerimentos das espécies

Frequência: número de vezes que a simulação passou no mesmo lugar. Quanto maior o número de vezes que determinada simulação passar na mesma rota, indica uma rota preferencial de movimento

RSFI (Route Selection Frequency Index)

- Gera um arquivo log no formato .txt descrevendo o tempo das simulações, parâmetros utilizados e etc;
- Gera um arquivo "results" no formato .txt com algumas métricas calculadas que podem ser utilizadas para gerar medidas estruturais e funcionais de conectividade, por exemplo.

Line_MSP_Curso_SIMBIOMA_var_2_0_scale_100_S_00001_T_00002 Log Year - Month 2025 - Day 8 Time 11 13 49 Arquivo log MSP_Curso_SIMBIOMA_var_2_0_scale_100_MLavg_RSFI Mapa RSFI gerado para MSP_Curso_SIMBIOMA_var_2_0_scale_100_MLmax_RSFI cada método MSP_Curso_SIMBIOMA_var_2_0_scale_100_MLmin_RSFI MSP_Curso_SIMBIOMA_var_2_0_scale_100_MP_RSFI MSP_Curso_SIMBIOMA_var_2_0_scale_100_S_00001_T_00002_MLavg MSP_Curso_SIMBIOMA_var_2_0_scale_100_S_00001_T_00002_MLmax MSP_Curso_SIMBIOMA_var_2_0_scale_100_S_00001_T_00002_MLmin MSP_Curso_SIMBIOMA_var_2_0_scale_100_S_00001_T_00002_MP Results_Curso_SIMBIOMA Arquivo com resultados das métricas

Arquivo no formato .txt com as métricas calculadas

- EXPERIMENT
- VARIABILITY SCALE
- SIMULATION METHOD
- SIMULATION NUMBER
- SOURCE TARGET

- CORRIDOR LENGTH
- CORRIDOR COST
- EUCLIDEAN_DISTANCE
- COORD_SOURCE_X
- COORD SOURCE Y

Índice de conectividade

							rargei
7	7	4	. 1	7	9	.1	
7	4	9	4	4	2	7	
2	2	9	9	9	9	9	2
	1	9	7	9	2	1	2
		2	4	2	2	1	1

$$FCI = \frac{ED}{FC}$$

Target

FCI = Functional connectivity index

ED= Euclidean distance

FC= Functional cost

Source

Distância funcional

Distância euclidiana

Custo funcional=23

Quanto maior o valor do índice, maior a conectividade da paisagem ou vice-versa

Informações importantes

- Quanto maior o número de STs maior o tempo de simulação
- Quanto maior o tamanho do pixel e da matriz (número de linhas e colunas) maior o tempo de simulação
- Quanto maior o número de simulações maior o tempo de simulação
- Quanto mais métodos e escalas incluir maior é o tempo de simulação
- Para rodar versão do LSCorridors é necessário editar o arquivo EPSG.

Informações importantes

- EPSG (European Petroleum Survey Group): banco de dados de sistemas de coordenadas usados.
- EPSG code: é um indicador numérico padrão que descreve o sistema de referência espacial do dado (CRS – Coordinate Reference System).

- O QGIS, R mostram o código EPSG dos dados
- Também o EPSG pode ser identificado nesse site:

https://epsg.io/