Latent Trajectory Inference with Drift Prior

Anming Gu Supervised by: Ed Chien, Kristjan Greenewald In preparation for NeurIPS 2024

May 3rd, 2024

Table of Contents

- Introduction
- 2 Min-Entropy Estimator
- Reduced Formulation
- 4 Mean-Field Langevin Dynamics & Exponential Convergence
- **(5)** Experimental Results
- 6 Conclusion

Motivation: computational biology applications

Goal: understand biological processes

Issue: we cannot observe full cell development process

Data consists of population snapshots at different time points

Figure from Schiebinger et al., 2019

What is trajectory inference?

Let $\mathcal X$ be the ambient space and $\Omega=\mathcal C([0,1]:\mathcal X)$ be the path space Goal: estimate the ground truth stochastic process $\mathbf P\in\mathcal P(\Omega)$

Figure from Lavenant et al., 2021

Mathematical model of trajectory inference

Let $X_t \in \mathcal{X}$ be an unobserved state vector evolving according to the following SDE for $t \in [0,1]$:

$$dX_t = -\Xi(t, X_t)dt - \nabla \Psi(t, X_t)dt + \sqrt{\tau}dB_t$$
 (1)

- initial condition $X_0 \sim \mu_0$
- ullet divergence-free velocity prior $\Xi\in \mathcal{C}([0,1] imes\mathcal{X}:\mathcal{X})$ is known
- ullet potential $\Psi \in \mathcal{C}^2([0,1] imes \mathcal{X})$ is unknown
- $\tau > 0$ is the variance, $\{B_t\}$ is a standard Brownian motion

Mathematical model of trajectory inference

Let $X_t \in \mathcal{X}$ be an unobserved state vector evolving according to the following SDE for $t \in [0,1]$:

$$dX_t = -\Xi(t, X_t)dt - \nabla \Psi(t, X_t)dt + \sqrt{\tau}dB_t$$
 (1)

- initial condition $X_0 \sim \mu_0$
- ullet divergence-free velocity prior $\Xi\in \mathcal{C}([0,1] imes\mathcal{X}:\mathcal{X})$ is known
- ullet potential $\Psi \in \mathcal{C}^2([0,1] imes \mathcal{X})$ is unknown
- ullet au > 0 is the variance, $\{B_t\}$ is a standard Brownian motion

This is our ground truth $\mathbf{P} \in \mathcal{P}(\Omega)$

Smooth function $g:\mathcal{X} o \mathcal{Y}$ transforming X_t into the observation space \mathcal{Y} :

$$Y_t = g(X_t)$$

Smooth function $g: \mathcal{X} \to \mathcal{Y}$ transforming X_t into the observation space \mathcal{Y} :

$$Y_t = g(X_t)$$

T observation times with $0 \le t_1^T < \cdots < t_T^T \le 1$, and we observe N_i^T i.i.d. samples from the marginal distribution of $Y_{t,:}$

$$\{Y_{i,j}^T\}_{j=1}^{N_i^T} \overset{\text{i.i.d.}}{\sim} g_{\sharp} \mathbf{P}_{t_i^T} := \mathbf{Q}_{t_i^T}.$$

Smooth function $g: \mathcal{X} \to \mathcal{Y}$ transforming X_t into the observation space \mathcal{Y} :

$$Y_t = g(X_t)$$

T observation times with $0 \le t_1^T < \cdots < t_T^T \le 1$, and we observe N_i^T i.i.d. samples from the marginal distribution of $Y_{t,:}$

$$\{Y_{i,j}^T\}_{j=1}^{N_i^T} \overset{\text{i.i.d.}}{\sim} g_{\sharp} \mathbf{P}_{t_i^T} := \mathbf{Q}_{t_i^T}.$$

Smooth empirical distribution by h-wide heat kernel Φ_h :

$$\hat{\rho}_{i}^{T} = \Phi_{h} \left(\frac{1}{N_{i}^{T}} \sum_{i=1}^{N_{i}^{T}} \delta_{Y_{i,j}^{T}} \right)$$

Smooth function $g: \mathcal{X} \to \mathcal{Y}$ transforming X_t into the observation space \mathcal{Y} :

$$Y_t = g(X_t)$$

T observation times with $0 \le t_1^T < \dots < t_T^T \le 1$, and we observe N_i^T i.i.d. samples from the marginal distribution of $Y_{t,:}$

$$\{Y_{i,j}^T\}_{j=1}^{N_i^T} \overset{\text{i.i.d.}}{\sim} g_{\sharp} \mathbf{P}_{t_i^T} := \mathbf{Q}_{t_i^T}.$$

Smooth empirical distribution by h-wide heat kernel Φ_h :

$$\hat{\rho}_i^T = \Phi_h \left(\frac{1}{N_i^T} \sum_{i=1}^{N_i^T} \delta_{Y_{i,j}^T} \right)$$

Goal: recover **P** from $(\hat{\rho}_1^T, \dots, \hat{\rho}_T^T)$ and the known velocity field Ξ

Observability assumption

 Ψ is unknown, but restricted to a class $\mathcal{C}_{\Psi}.$

 $(g, \Xi, \mathcal{C}_{\Psi})$ is \mathcal{C}_{Ψ} -marginal-observable if, given g, Ξ, σ , and all marginals $\mathbf{Q}_t = g_{\sharp} \mathbf{P}_t$ of Y_t for all $t \in [0,1]$, the marginals \mathbf{P}_t of X_t are uniquely determined for all $t \in [0,1]$

With this assumption, we can infer the latent dynamics solely from the marginals \mathbf{Q}_t

Observability assumption

 Ψ is unknown, but restricted to a class $\mathcal{C}_{\Psi}.$

 $(g, \Xi, \mathcal{C}_{\Psi})$ is \mathcal{C}_{Ψ} -marginal-observable if, given g, Ξ, σ , and all marginals $\mathbf{Q}_t = g_{\sharp} \mathbf{P}_t$ of Y_t for all $t \in [0,1]$, the marginals \mathbf{P}_t of X_t are uniquely determined for all $t \in [0,1]$

With this assumption, we can infer the latent dynamics solely from the marginals \mathbf{Q}_t

Setting for synthetic experiments:

- ullet Ξ is linear, time-invariant and Ψ is time-invariant
- g is of the form $(x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_k)$ for some k < n
- "classical observability" holds

Why is our setting important?

Goal: recover **P** from $(\hat{
ho}_1^T,\dots,\hat{
ho}_T^T)$ and the known velocity field Ξ

Our contributions:

- Trajectory inference without observing whole particles
- Entropy minimization using reference measure with drift

Why is our setting important?

Goal: recover **P** from $(\hat{\rho}_1^T, \dots, \hat{\rho}_T^T)$ and the known velocity field Ξ

Our contributions:

- Trajectory inference without observing whole particles
- Entropy minimization using reference measure with drift

Applications:

- More robust optimization using drift prior
- Smoother trajectories and more accurate prediction of final particle positions
- Privacy: don't need to release full data
- Study diffusion models
- Interpretability: biology datasets are very high dimensional

Outline of algorithm

Algorithm Framework for latent trajectory inference

Require: Collection of observations $(\hat{\rho}_1,\ldots,\hat{\rho}_t)$, velocity prior Ξ , number of iterations for MFL dynamics N, number of particles m Initialize m particles for each t: $(\hat{m}_1,\ldots,\hat{m}_t) \in \mathcal{X}^{m \times t}$

for N iterations do

for
$$i \in [t-1]$$
 do $\Rightarrow \Delta t_i := t_{i+1} - t_i$ $\{C_{j,k}\}_{j,k=1}^m \leftarrow \frac{1}{2} \|\hat{m}_{i,j} - \frac{\Delta t_i}{2} \Xi(t_i, \hat{m}_{i,j}) - \hat{m}_{i,k} + \frac{\Delta t_i}{2} \Xi(t_{i+1}, \hat{m}_{i,k})\|^2$ $T_t \leftarrow \operatorname{Sinkhorn}(\hat{m}_i, \hat{m}_{i+1}, C_i, \lambda \cdot \Delta t_i) \Rightarrow T_t \in \Pi(\hat{m}_i, \hat{m}_{i+1})$

end for

$$\hat{\mathbf{m}} \leftarrow \mathrm{MFL}(\hat{\mathbf{m}}, \mathsf{T}, \hat{\boldsymbol{\rho}})$$
 $\triangleright \mathbf{m} := (\hat{m}_1, \ldots, \hat{m}_t)$, etc.

end for

Output collection of particles $\hat{\mathbf{m}}$, trajectories $T_{t-1} \circ \cdots \circ T_1$

Table of Contents

- Introduction
- 2 Min-Entropy Estimator
- Reduced Formulation
- 4 Mean-Field Langevin Dynamics & Exponential Convergence
- **(5)** Experimental Results
- 6 Conclusion

Data-fitting term

Let $\Delta t_i := t_{i+1}^T - t_i^T$. Fit function: $\operatorname{Fit}^{\lambda,\sigma} : \mathcal{P}(\mathcal{Y})^T \to \mathbb{R}$:

$$\mathrm{Fit}^{\lambda,\sigma}(\mathbf{Q}_{t_1^T},\ldots,\mathbf{Q}_{t_T^T}) := rac{1}{\lambda} \sum_{i=1}^T \Delta t_i \mathrm{DF}^\sigma(g_\sharp \mathbf{R}_{t_i^T},\hat{
ho}_i^{T,h}),$$

$$\mathrm{DF}^{\sigma}(g_{\sharp}\mathbf{R}_{t_{i}^{T}},\hat{\rho}_{i}^{T,h}) := \int_{\mathcal{Y}} -\log\left[\int_{\mathcal{X}} \exp\left(-\frac{\|g(x)-y\|^{2}}{2\sigma^{2}}\right) d\mathbf{R}_{t_{i}^{T}}(x)\right] d\hat{\rho}_{i}^{T,h}(y)$$

Data-fitting term

Let $\Delta t_i := t_{i+1}^T - t_i^T$. Fit function: $\operatorname{Fit}^{\lambda,\sigma} : \mathcal{P}(\mathcal{Y})^T \to \mathbb{R}$:

$$\mathrm{Fit}^{\lambda,\sigma}(\mathbf{Q}_{t_1^T},\ldots,\mathbf{Q}_{t_T^T}) := \frac{1}{\lambda} \sum_{i=1}^T \Delta t_i \mathrm{DF}^{\sigma}(g_{\sharp}\mathbf{R}_{t_i^T},\hat{\rho}_i^{T,h}),$$

$$\mathrm{DF}^{\sigma}(g_{\sharp}\mathbf{R}_{t_{i}^{T}},\hat{\rho}_{i}^{T,h}) := \int_{\mathcal{Y}} -\log\left[\int_{\mathcal{X}} \exp\left(-\frac{\|g(x)-y\|^{2}}{2\sigma^{2}}\right) d\mathbf{R}_{t_{i}^{T}}(x)\right] d\hat{\rho}_{i}^{T,h}(y)$$

- Negative log-likelihood under the noisy observation model $\hat{Y}_{i,j}^T = g(X_{i,j}^T) + \sigma Z_{i,j}$, where $\hat{Y}_{i,j}^T$ is the observation and $Z_{i,j} \overset{i.i.d.}{\sim} \mathcal{N}(0,I)$.
- DF^{σ} is jointly convex in $(\mathbf{R}_{t_i^T}, \hat{\rho}_i^{T,h})$ and linear in $\hat{\rho}_i^{T,h}$.

Chizat et al., 2022

Min-entropy estimator

Functional $\mathcal{F}:\mathcal{P}(\Omega)\to\mathbb{R}$

$$\mathcal{F}(\mathbf{R}) := \mathrm{Fit}^{\lambda,\sigma}(\mathbf{Q}_{t_1^T}, \dots, \mathbf{Q}_{t_T^T}) + \tau \mathit{H}(\mathbf{R}|\mathbf{W}^{\Xi,\tau}), \quad \mathbf{R}^{T,\lambda,h} := \arg\min \, \mathcal{F}(\mathbf{R})$$

- $\mathbf{W}^{\Xi, au}\in\mathcal{P}(\Omega)$ is the law of the SDE $dZ_t=-\Xi(t,Z_t)\,dt+\sqrt{ au}\,dB_t$
- $H(\mu|
 u) = \int \log(d\mu/d
 u) \, d\mu$ is relative entropy
- Fit term on previous slide

Min-entropy estimator

Functional $\mathcal{F}:\mathcal{P}(\Omega)\to\mathbb{R}$

$$\mathcal{F}(\mathbf{R}) := \mathrm{Fit}^{\lambda,\sigma}(\mathbf{Q}_{t_1^T}, \dots, \mathbf{Q}_{t_T^T}) + \tau \mathit{H}(\mathbf{R}|\mathbf{W}^{\Xi,\tau}), \quad \mathbf{R}^{T,\lambda,h} := \mathrm{arg} \ \mathrm{min} \ \mathcal{F}(\mathbf{R})$$

- $\mathbf{W}^{\Xi, au}\in\mathcal{P}(\Omega)$ is the law of the SDE $dZ_t=-\Xi(t,Z_t)\,dt+\sqrt{ au}\,dB_t$
- $H(\mu|
 u) = \int \log(d\mu/d
 u) \, d\mu$ is relative entropy
- Fit term on previous slide

Theorem (Consistency, Lavenant et al., 2021, Thm. 2.3)

If $\{t_i^T\}_{i\in[T]}$ becomes dense in [0,1] as $T\to\infty$,

$$\lim_{\lambda,h\to 0}\lim_{T\to \infty}\mathbf{R}^{T,\lambda,h}=\mathbf{P}$$

weakly, almost surely.

High level ideas for proof of consistency

Tools: stochastic calculus, Γ-convergence, analysis, heat flow on manifolds

- Stochastic arguments
 - **P** follows the SDE $dX_t = -\Xi(t, X_t)dt \nabla \Psi(t, X_t)dt + \sqrt{\tau}dB_t$ and $\mathbf{W}^{\Xi, \tau}$ follows the SDE $dZ_t = -\Xi(t, Z_t)dt + \sqrt{\tau}dB_t$
 - Drift term in Z_t cancels out drift term of X_t , e.g. check via Girsanov

High level ideas for proof of consistency

Tools: stochastic calculus, Γ-convergence, analysis, heat flow on manifolds

- Stochastic arguments
 - **P** follows the SDE $dX_t = -\Xi(t, X_t)dt \nabla \Psi(t, X_t)dt + \sqrt{\tau}dB_t$ and $\mathbf{W}^{\Xi, \tau}$ follows the SDE $dZ_t = -\Xi(t, Z_t)dt + \sqrt{\tau}dB_t$
 - Drift term in Z_t cancels out drift term of X_t , e.g. check via Girsanov
- ② Take $T \to \infty$
 - Show that sequence of minimizers (for discrete measurements) converges to minimizer for continuous curve
 - Contraction for minimization problem under heat flow (path-space counterpart for contraction of entropy under heat flow)

High level ideas for proof of consistency

Tools: stochastic calculus, Γ-convergence, analysis, heat flow on manifolds

- Stochastic arguments
 - **P** follows the SDE $dX_t = -\Xi(t, X_t)dt \nabla \Psi(t, X_t)dt + \sqrt{\tau}dB_t$ and $\mathbf{W}^{\Xi,\tau}$ follows the SDE $dZ_t = -\Xi(t, Z_t)dt + \sqrt{\tau}dB_t$
 - Drift term in Z_t cancels out drift term of X_t , e.g. check via Girsanov
- ② Take $T \to \infty$
 - Show that sequence of minimizers (for discrete measurements) converges to minimizer for continuous curve
 - Contraction for minimization problem under heat flow (path-space counterpart for contraction of entropy under heat flow)
- **3** Take $\lambda, h \rightarrow 0$
 - Use same contraction results and Fatou's lemma

Table of Contents

- Introduction
- 2 Min-Entropy Estimator
- Reduced Formulation
- Mean-Field Langevin Dynamics & Exponential Convergence
- **(5)** Experimental Results
- 6 Conclusion

Our entropic optimal transport problem

Goal: reduce the problem over the space $\mathcal{P}(\mathcal{X}^T)$ to use the mean-field Langevin (MFL) dynamics

Our entropic optimal transport problem

Goal: reduce the problem over the space $\mathcal{P}(\mathcal{X}^T)$ to use the mean-field Langevin (MFL) dynamics

Let $\tau_i := \Delta t_i \cdot \tau$ and consider the entropic OT problem:

$$T_{\tau_{i},\Xi}(\mu,\nu) := \min_{\gamma \in \Pi(\mu,\nu)} \int c_{\tau_{i}}^{\Xi}(x,y) \, d\gamma(x,y) + \tau_{i} H(\gamma | \mu \otimes \nu)$$
$$= \min_{\gamma \in \Pi(\mu,\nu)} \tau_{i} H(\gamma | p_{\tau_{i}}^{\Xi} \mu \otimes \nu)$$

Our entropic optimal transport problem

Goal: reduce the problem over the space $\mathcal{P}(\mathcal{X}^T)$ to use the mean-field Langevin (MFL) dynamics

Let $\tau_i := \Delta t_i \cdot \tau$ and consider the entropic OT problem:

$$T_{\tau_{i},\Xi}(\mu,\nu) := \min_{\gamma \in \Pi(\mu,\nu)} \int c_{\tau_{i}}^{\Xi}(x,y) \, d\gamma(x,y) + \tau_{i} H(\gamma | \mu \otimes \nu)$$
$$= \min_{\gamma \in \Pi(\mu,\nu)} \tau_{i} H(\gamma | p_{\tau_{i}}^{\Xi} \mu \otimes \nu)$$

- set of transport plans $\Pi(\mu, \nu)$, e.g. probability measures in $\mathcal{P}(\mathcal{X} \times \mathcal{X})$ with marginals μ, ν
- cost function $c_{\tau_i}^{\Xi}(x,y) := -\Delta t_i \log(p_{\tau_i}^{\Xi}(x,y))$
- $p_{\tau_i}^{\Xi}$ transition probability density of \mathbf{W}^{Ξ}

Chizat et al., 2022

Representer theorem

Optimization over $\mathcal{P}(\Omega)$:

$$\mathcal{F}(\mathbf{R}) := \mathrm{Fit}^{\lambda,\sigma}(\mathbf{Q}_{\mathbf{t}_1^T}, \dots, \mathbf{Q}_{\mathbf{t}_T^T}) + \tau \mathit{H}(\mathbf{R}|\mathbf{W}^{\Xi,\tau})$$

Reduced optimization over $\mathcal{P}(\mathcal{X})^T$:

$$\textit{F}(\boldsymbol{\mu}) := \underbrace{\operatorname{Fit}^{\lambda,\sigma}(g_{\sharp}\boldsymbol{\mu}) + \sum_{i=1}^{T-1} \frac{1}{\Delta t_i} T_{\tau_i,\Xi}(\boldsymbol{\mu}^{(i)},\boldsymbol{\mu}^{(i+1)})}_{\textit{G}(\boldsymbol{\mu})} + \tau \underbrace{\sum_{i=1}^{T} \textit{H}(\boldsymbol{\mu}^{(i)})}_{\textit{H}(\boldsymbol{\mu})}.$$

Representer theorem

Optimization over $\mathcal{P}(\Omega)$:

$$\mathcal{F}(\mathbf{R}) := \mathrm{Fit}^{\lambda,\sigma}(\mathbf{Q}_{\mathbf{t}_1^T}, \dots, \mathbf{Q}_{\mathbf{t}_T^T}) + \tau \mathit{H}(\mathbf{R}|\mathbf{W}^{\Xi,\tau})$$

Reduced optimization over $\mathcal{P}(\mathcal{X})^T$:

$$\textit{F}(\boldsymbol{\mu}) := \underbrace{\operatorname{Fit}^{\lambda,\sigma}(g_{\sharp}\boldsymbol{\mu}) + \sum_{i=1}^{T-1} \frac{1}{\Delta t_{i}} \textit{T}_{\tau_{i},\Xi}(\boldsymbol{\mu}^{(i)},\boldsymbol{\mu}^{(i+1)})}_{\textit{G}(\boldsymbol{\mu})} + \tau \underbrace{\sum_{i=1}^{T} \textit{H}(\boldsymbol{\mu}^{(i)})}_{\textit{H}(\boldsymbol{\mu})}.$$

Theorem (Chizat et al., 2022)

A minimizer for \mathcal{F} can be built from a minimizer for \mathcal{F} .

Composition of optimal transport plans:

$$\mathbf{R}_{t_i,...,t_T}(dx_1,...,dx_T) = \gamma_{1,2}(dx_1,dx_2)\gamma_{2,3}(dx_3|x_2)\cdots\gamma_{T-1,T}(dx_T|x_{T-1})$$

Outline of algorithm (review)

Algorithm Framework for latent trajectory inference

Require:
$$(\hat{\rho}_1, \dots, \hat{\rho}_t)$$
, Ξ , N , m

- 1: Initialize m particles for each t: $(\hat{m}_1,\ldots,\hat{m}_t)\in\mathcal{X}^{m\times t}$
- 2: **for** *N* iterations **do**
- 3: **for** $i \in [t-1]$ **do**
- 4: $\{C_{j,k}\}_{j,k=1}^m \leftarrow \frac{1}{2} \|\hat{m}_{i,j} \frac{\Delta t_i}{2} \Xi(t_i, \hat{m}_{i,j}) \hat{m}_{i,k} + \frac{\Delta t_i}{2} \Xi(t_{i+1}, \hat{m}_{i,k}) \|^2$
- 5: $T_t \leftarrow \text{Sinkhorn}(\hat{m}_i, \hat{m}_{i+1}, C_i, \lambda \cdot \Delta t_i)$
- 6: **end for**
- 7: $\hat{\mathbf{m}} \leftarrow \mathrm{MFL}(\hat{\mathbf{m}}, \mathbf{T}, \hat{\boldsymbol{\rho}})$
- 8: end for
- 9: Output collection of particles $\hat{\mathbf{m}}$, trajectories $T_{t-1} \circ \cdots \circ T_1$

Composition of optimal transport plans:

$$\mathbf{R}_{t_{i},\dots,t_{T}}(dx_{1},\dots,dx_{T}) = \gamma_{1,2}(dx_{1},dx_{2})\gamma_{2,3}(dx_{3}|x_{2})\cdots\gamma_{T-1,T}(dx_{T}|x_{T-1})$$

We still cannot solve F! Why?

 $p_{ au_i}^{\Xi}$ is generally not well-defined

Idea: approximate $T_{\tau_i,\Xi}(\mu,\nu)$ using an Euler-Maruyama discretization

We still cannot solve F! Why?

 $p_{\tau_i}^{\Xi}$ is generally not well-defined

Idea: approximate $T_{\tau_i,\Xi}(\mu,\nu)$ using an Euler-Maruyama discretization

Let $t_1 < t_2, \Delta t = t_2 - t_1, \mu_{t_2}$ follows $dZ_t = -\Xi(t, Z_t)dt + \sqrt{\tau}dB_t$ from μ_{t_1} . Define

$$\Xi_{\sharp}^{\Delta t}\mu_{t_1}:=\mu_{t_1}-\Xi(t_1,\mu_{t_1})\cdot\Delta t$$

We still cannot solve F! Why?

 $p_{ au_i}^{\Xi}$ is generally not well-defined

Idea: approximate $T_{\tau_i,\Xi}(\mu,\nu)$ using an Euler-Maruyama discretization

Let $t_1 < t_2, \Delta t = t_2 - t_1, \mu_{t_2}$ follows $dZ_t = -\Xi(t, Z_t)dt + \sqrt{\tau}dB_t$ from μ_{t_1} . Define

$$\Xi_{\sharp}^{\Delta t}\mu_{t_1}:=\mu_{t_1}-\Xi(t_1,\mu_{t_1})\cdot\Delta t$$

Consider:

$$\min_{\gamma \in \Pi(\mu,\nu)} \tau_i H(\gamma | p_{\tau_i}(\Xi_{\sharp}^{\Delta t} \mu \otimes \nu))$$

 $p_t(x, y)$ is transition density of Brownian motion

We still cannot solve F! Why?

 $p_{\tau_i}^{\Xi}$ is generally not well-defined

Idea: approximate $T_{\tau_i,\Xi}(\mu,\nu)$ using an Euler-Maruyama discretization

Let $t_1 < t_2, \Delta t = t_2 - t_1, \mu_{t_2}$ follows $dZ_t = -\Xi(t, Z_t)dt + \sqrt{\tau}dB_t$ from μ_{t_1} . Define

$$\Xi_{\sharp}^{\Delta t}\mu_{t_1}:=\mu_{t_1}-\Xi(t_1,\mu_{t_1})\cdot\Delta t$$

Consider:

$$\min_{\gamma \in \Pi(\mu,\nu)} \tau_i H(\gamma | p_{\tau_i}(\Xi_{\sharp}^{\Delta t} \mu \otimes \nu))$$

 $p_t(x, y)$ is transition density of Brownian motion

Compare to:

$$T_{ au_i,\Xi}(\mu,
u) = \min_{\gamma \in \Pi(\mu,
u)} au_i H(\gamma|p_{ au_i}^{\Xi}(\mu \otimes
u))$$

Theoretical justification:

Proposition

Assume \mathcal{X} is a bounded domain, e.g. diam $\mathcal{X}<+\infty$. Let $\Delta t:=t_2-t_1$ and $\tau_i:=\tau\Delta t$. Define $\xi^{\Delta t}(x):=x-\Xi(t_1,x)\cdot\Delta t$. We have

$$\lim_{\Delta t \to 0} \int_{\mathcal{X} \times \mathcal{X}} |\log(p_{\tau_i}^{\Xi}(x, y)) - \log(p_{\tau_i}(\xi^{\Delta t}(x), y))| \, dx \, dy = 0.$$

Proof idea: use triangle inequality, Taylor approximation, dominated convergence, and fact that transition kernel is Dirac delta in the limit.

No rate of convergence

Discussion of approximation

- Computationally, consider: $T_{\tau_i}(\Xi_{\sharp}^{\Delta t/2}\mu_{t_1},\Xi_{\sharp}^{-\Delta t/2}\mu_{t_2}).$
- Varadhan's approximation:

$$\widetilde{c}_{\tau_i}^{\Xi}(x,y) \approx \frac{1}{2} \left\| y + \frac{\Delta t}{2} \Xi(t_2,y) - x + \frac{\Delta t}{2} \Xi(t_1,x) \right\|^2,$$

which holds for τ_i small

- Consistency result: justifies using ≡ in entropic OT problem
- Intuition for robustness: $\mathbb{E}[|\Xi_{\sharp}^{\Delta t/2}\mu_{t_1} \Xi_{\sharp}^{-\Delta t/2}\mu_{t_2})|] \approx 0$ even if the particles move a large distance

Outline of algorithm (review)

Algorithm Framework for latent trajectory inference

```
Require: (\hat{\rho}_1, \dots, \hat{\rho}_t), \Xi, N, m

1: Initialize m particles for each t: (\hat{m}_1, \dots, \hat{m}_t) \in \mathcal{X}^{m \times t}

2: for N iterations do

3: for i \in [t-1] do

4: \{C_{j,k}\}_{j,k=1}^m \leftarrow \frac{1}{2} \|\hat{m}_{i,j} - \frac{\Delta t_i}{2} \Xi(t_i, \hat{m}_{i,j}) - \hat{m}_{i,k} + \frac{\Delta t_i}{2} \Xi(t_{i+1}, \hat{m}_{i,k})\|^2

5: T_t \leftarrow \operatorname{Sinkhorn}(\hat{m}_i, \hat{m}_{i+1}, C_i, \lambda \cdot \Delta t_i)

6: end for

7: \hat{\mathbf{m}} \leftarrow \operatorname{MFL}(\hat{\mathbf{m}}, \mathbf{T}, \hat{\boldsymbol{\rho}})

8: end for

9: Output collection of particles \hat{\mathbf{m}}, trajectories T_{t-1} \circ \cdots \circ T_1
```

Table of Contents

- Introduction
- 2 Min-Entropy Estimator
- Reduced Formulation
- 4 Mean-Field Langevin Dynamics & Exponential Convergence
- **(5)** Experimental Results
- 6 Conclusion

Mean-field Langevin dynamics

For convex $G: \mathcal{P}(\mathcal{X}) \to \mathbb{R}_{\geq 0}$, MFL dynamics solves the following optimization problem:

$$\min_{\mu \in \mathcal{P}_2(\mathcal{X})} F_{\tau}(\mu) := G(\mu) + H(\mu)$$

Solve by discretizing: noisy particle gradient descent

Mean-field Langevin dynamics

For convex $G: \mathcal{P}(\mathcal{X}) \to \mathbb{R}_{\geq 0}$, MFL dynamics solves the following optimization problem:

$$\min_{\mu \in \mathcal{P}_2(\mathcal{X})} F_{\tau}(\mu) := G(\mu) + H(\mu)$$

Solve by discretizing: noisy particle gradient descent

Let $V[\mu] := \frac{\delta G}{\delta \mu}(\mu) \in C^1(\mathcal{X})$ be the first variation of G:

$$\lim_{\epsilon \to 0^+} \frac{1}{\epsilon} [G((1-\epsilon)\mu + \epsilon)) - G(\mu)] = \int_{\mathcal{X}} V[\mu](x) d(\nu - \mu)(x)$$

for all μ, ν .

Chizat et al., 2022

Noisy particle gradient descent

Optimization by running noisy particle gradient descent on $G_m: (\mathcal{X}^m)^{\mathcal{T}} \to \mathbb{R}$ defined as $G_m(\hat{X}) := G(\hat{\mu}_{\hat{X}})$, where

$$\hat{\boldsymbol{\mu}}_{\hat{X}}^{(i)} = rac{1}{m} \sum_{j=1}^{m} \delta_{\hat{X}_{j}^{(i)}}.$$

Optimization procedure is:

$$\begin{cases} \hat{X}_{j}^{(i)}[k+1] = \hat{X}_{j}^{(i)}[k] - \eta \nabla V^{(i)}[\hat{\mu}[k]](\hat{X}_{j}^{(i)}[k]) + \sqrt{2\eta(\tau+\epsilon)}Z_{j,k}^{(i)}, \\ \hat{\mu}^{(i)}[k] = \frac{1}{m}\sum_{j=1}^{m} \delta_{\hat{X}_{j}^{(i)}[k]} \quad i \in [T], \end{cases}$$

• $\hat{X}_j^{(i)}[0] \overset{i.i.d.}{\sim} \mu_0^{(i)}$, $\eta>0$ is a step-size, $Z_{j,k}^{(i)}$ are i.i.d. standard Gaussian variables

Taking $m \to \infty$ yields the mean-field Langevin dynamics

Chizat et al., 2022

Exponential convergence

Theorem (Chizat, 2022)

Let $\mu_0 \in \mathcal{P}(\mathcal{X})^T$ be such that $F(\mu_0) < \infty$. Then for $\epsilon \geq 0$, there exists a unique solution $(\mu_s)_{s \geq 0}$ to the MFL dynamics. For $\epsilon > 0$, \mathcal{X} the d-torus, and moreover assuming that μ_0 has a bounded absolute log-density, it holds

$$F_{\epsilon}(\mu_s) - \min F_{\epsilon} \leq e^{-Cs}(F_{\epsilon}(\mu_0) - \min F_{\epsilon}),$$

where $C = \beta e^{-\alpha/\epsilon}$ for some $\alpha, \beta > 0$ independently of μ and ϵ .

Taking ϵ_s decaying slowly enough, μ_s converges weakly to the minimizer μ^* .

Chizat et al., 2022; Chizat, 2022

Sketch of proof of exponential convergence

Chizat, 2022 is workhorse: 3 assumptions to check

- Smoothness of G: first-variation V is Lipschitz continuous
- ullet Convexity of F_0 and existence of minimizer for F_ϵ
- uniform log-Sobolev inequality: $\exists \rho_{\tau} > 0$ s.t. $\forall \mu \in \mathcal{P}_2(\mathbb{R}^d)$, we have $\nu \propto e^{-V[\mu]/\tau} \in L^1(\mathbb{R}^d)$ s.t.

$$H(\mu|\nu) \leq \frac{1}{2\rho}I(\mu|\nu)$$

In our setting: still true

Table of Contents

- Introduction
- 2 Min-Entropy Estimator
- Reduced Formulation
- 4 Mean-Field Langevin Dynamics & Exponential Convergence
- **5** Experimental Results
- 6 Conclusion

Velocity model: robustness

- Initial condition is at the origin
- x velocity: 5, y velocity: 7
- MFL fails to converge

Velocity model: exponential convergence

Circular motion model: recovered position

Circular motion model: recovered velocity

Table of Contents

- Introduction
- 2 Min-Entropy Estimator
- Reduced Formulation
- 4 Mean-Field Langevin Dynamics & Exponential Convergence
- **5** Experimental Results
- 6 Conclusion

Future work

Conjecture

For every $t_1 < t_2$, with $\Delta t := t_2 - t_1$ sufficiently small, we have

$$|T_{\tau_i,\Xi}(\mu_{t_1},\mu_{t_2}) - T_{\tau_i}(\Xi_{\sharp}^{\Delta t}\mu_{t_1},\mu_{t_2})| = O(\Delta t),$$

$$|H(\gamma_{\Xi}|\mathbf{W}_{t_1,t_2}^{\Xi, au})-H(\gamma|\mathbf{W}_{t_1,t_2}^{ au})|=\mathit{O}(\Delta t),$$

where γ_{Ξ} and γ are the corresponding optimal transport plan to $T_{\tau_i,\Xi}(\mu_{t_1},\mu_{t_2})$ and $T_{\tau_i}(\Xi_{\sharp}^{\Delta t}\mu_{t_1},\mu_{t_2})$, respectively.

- Statistical properties of the estimator
- Relaxed assumptions on g, Ξ
- Empirical validation of predicting outcomes of individuals

Conclusion

- Trajectory inference without observing whole particles
- Entropy minimization using reference measure with drift
- Approximation to obtain well-posed entropic OT problem
- Experimental validation

Conclusion

- Trajectory inference without observing whole particles
- Entropy minimization using reference measure with drift
- Approximation to obtain well-posed entropic OT problem
- Experimental validation

Questions?

References

- Schiebinger, Shu, Tabaka, Cleary, et al. Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming, 2019.
- Lavenant, Zhang, Kim, Schiebinger, 2021. Towards a mathematical theory of trajectory inference.
- Chizat, Zhang, Heitz, Schiebinger, 2022. Trajectory inference vi mean-field Langevin in path space.
- Chizat, 2022. Mean Field Langevin Dynamics: Exponential convergence and annealing