

Introduction to Machine Learning

Manoj Kumar Chinnakotla

Senior Applied Scientist

Al and Research

Microsoft, India

Welcome to the field of Machine Learning! ©

"A breakthrough in Machine Learning would be worth ten Microsofts"

- Bill Gates

"I think Machine Learning may be the single most important technology for the next generation of innovation"

- SteveB (MS Company Meeting, 2013)

What is Machine Learning (ML)?

- Automating automation
- Getting computers to program themselves
- Whenever writing software is the bottleneck
 - Let the data do the work instead!

Traditional Programming

Machine Learning

Handwritten Digit Recognition

Training examples

1	1	5	4	3
7	5	3	5	3
5	5	9	0	6
3	5	2	0	0

Training labels

When to use ML?

- 1. Learn it when you can't code it (e.g. Recognizing Speech/Image/Gestures)
- 2. Learn it when you can't scale it (e.g. Recommendations, Spam & Fraud detection)
- 3. Learn it when you have to adapt/personalize (e.g. Predictive Typing)
- 4. Learn it when you can't track it (e.g. Al Gaming, Robot Control)

Sounds like Magic?

Not really!, it's more like gardening

- Seeds = Algorithms
- Nutrients = Data
- Gardener = You
- Plants = Programs

Where is ML applied today?

• Information search, extraction on the web

Where is ML applied today?

- Speech Recognition
- Natural Language Understanding/Processing

Internet of Things (IOT)

THE VALUE FROM INTELLIGENT APPS IS HUGE

AVIATION

POWER GEN

HEALTH CARE

RAIL: FREIGHT

\$30B

\$66B

\$63B

\$27B

1% fuel savings

1% fuel savings

1% reduction inefficiency

1% reduction inefficiency

The Power of 1 %

Overview of ML Paradigms

Classification Task

categorical continuous

Tid	Home Owner	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Given historical data on loan payments, learn a model to predict a likely "defaulter"?

$$Y = \mathbf{f}(A_1, A_2, \dots A_n)$$

Learn function f where $A_1, A_2, \dots A_n$ are attributes

The label to be predicted is "Discrete" In the above case, $Y \in \{\text{"Yes"}, \text{"}No"\}$

Test Data

Home	Marital	Taxable	Cheat
Owner	Status	Income	
No	Married	80K	?

 $= \mathbf{f}(A_1, A_2, \dots A_n)$

Regression Task

	S	alary (in	
Age	Galleons)		
	20	15416	
	22	17140	
	24	18292	
	26	12723	
	28	18698	
	30	18164	
	32	23577	
	34	20154	
	36	21957	
	38	22244	
	40	23300	
	42	20765	
	44	22106	
	46	25414	
	48	22295	
	56	23494	
	58	32170	
	60	30461	

- In general, salary increases with age.
- Can we quantify this relationship? How strong is this dependence of salary in age?
- Given an age (say 31.5), can we predict the salary?

Clustering

Market Segmentation Problem – Carpet Fiber

Strength

(Importance)

A,B,C,D:

Location of segment centers.

Typical Members:

A: Schools

B: Light commercial

C: Indoor/outdoor Carpeting

D: Health clubs

The Task

Automatically Discover the underlying structure in the data

The Challenge

No Training Data available

Water Resistance

(Importance)

Dimensionality Reduction

- If data x lies in high dimensional space, then an enormous amount of data is required to learn distributions or decision rules.
- Example: 50 dimensions. Each dimension has 2 levels. This gives a total of 2^{50} cells. But the no. of data samples will be far less.
- The Main Idea
 - Reduce the dimensionality of the space
 - Project the d-dimensional points in a k-dim space
 - k << d
 - distances are preserved as well as possible
- Solve the problem in low dimensions

Sequence Learning

Parts of Speech Tagging

DT NN VBDIN DT NN . ← States (S)
The cat sat on the mat . ← Observations (O)

NN=noun, VBD=verb (past tense),
DT=determiner, IN=preposition or subordinating conjunction

Basic Classification of ML Problems

Its Generalization That COUNTS

Generalize beyond examples in training set

Insufficient

flexibility/power in the

model

Over-fitting!
Too much specialization on training data

Better!

Is this the best or can we do better?

The Model Building Process

The test data shouldn't be used for any parameter tuning!

The Model Building Process

Measurement

- Why?
 - To check the quality of Model
- Each task will have it's own measurement story
- For Classification
 - Precision
 - Recall
 - F Measure

Confusion Matrix and Precision/Recall

Predicted

Actual

	Positive	Negative
Positive	A	В
Negative	С	D

- Total Positive Instances =
 - A + B
- Total Positive Predicted Instances by Model =
 - A + C
- Precision =
 - A / (A + C)
- Recall =
 - A / (A + B)

Some Practical Aspects of ML

- Feature Engineering is the key step
- Data visualization and representation is crucial in coming up with features
- More data usually beats a clever algorithm

Thanks!

