The Evolution of U.S. Wages: Skill Prices versus Human Capital

Lutz Hendricks

April 26, 2014

Motivation

Long-term goal:

 An integrated, quantitative theory of the evolution of the U.S. wage distribution.

Why?

- Well known facts:
 rising college premium, changing returns to experience, rising variance of log (residual) wages, ...
- Several candidate explanations:
 SBTC, rising return to "ability," unionization, minimum wage, ...

Open questions:

- Quantitative importance of the various explanations
- ullet Their "indirect" effects. E.g., SBTC o variance of log wages
- Policy analyis

Approach

How far can we go in a "standard" human capital model?

Basic ideas:

- ② Kambourov & Manovskii changing returns to experience need to model experience → Ben-Porath
- Hendricks & Schoellman changing cohort qualities as schooling expands need to model discrete school choice
- Heckman, Lochner, Taber (1998); Bowlus & Robinson (2012) with human capital, wages are not skill prices one main objective: measure skill prices by schooling and year

Approach

Develop a model with

- 4 imperfectly substitutable skill types: HSD, HSG, CD, CG
- discrete school choice
- Ben-Porath on-the-job learning
- no shocks can only talk about conditional means, not variances

Driving forces:

- expansion of schooling → cohort quality
- constant SBTC + fluctuations in cohort sizes (Katz & Murphy)

Calibrate to CPS wage data

• age wage profiles of cohorts born since 1920

Result Preview

- The model fits changing age wage profiles "well."
- ② It replicates:
 - changing returns to experience (Kambourov & Manovskii)
 - different evolution of college premium by age (Card & Lemieux)
- Skill prices look like smoothed versions of observed median wages
- Human capital does not lead to significant revisions of average wage growth rates

Literature

Quantitative models of the evolution of the U.S. wage distribution:

• Heckman, Lochner, Taber (1998); Guvenen & Kuruscu (2010)

Recovering skill prices from wages

- a long-standing issue in labor economics: Juhn et al. (1993, 2005); ...
- Bowlus & Robinson (2012)

Model Outline

- Small open economy (fixed interest rate)
- Overlapping generations
- 4 school groups: HSD, HS, CD, CG
- Exogenous aggregate schooling
- Ben-Porath on-the-job learning
- Constant skill-biased technical change (Katz & Murphy)
- No shocks

Demographics

In period c, N_c households are born.

Each lives for *T* periods.

Life stages:

- Draw endowments
- ② Choose schooling $s \in \{HSD, HS, CD, CG\}$
- **3** Study in school for T_s periods
- Learn and earn on the job until retirement at age T.

Households maximize lifetime earnings.

Endowments

$$\begin{bmatrix} a \\ \ln(h_1) \end{bmatrix} \sim N \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho_{a,h1} \\ \rho_{a,h1} & \sigma_{h1}^2 \end{bmatrix}$$
 (1)

a: learning ability in school and on the job

 h_1 : human capital endowment

Human Capital Technologies

On the job:

$$h_{t+1} = (1 - \delta_s)h_t + A(a, s)(h_t l_t)^{\alpha_s}$$
 (2)

with $A(a,s) = e^{A_s + \theta a}$.

In school: the same with $l_t = 1$:

$$h_{T_s+1} = F(h_1, a, s)$$
 (3)

Goods Production

Output is produced from skilled and unskilled (no college degree) labor:

$$Q_{\tau} = \left[G_{\tau}^{\rho_{CG}} + (\omega_{CG,\tau}L_{CG,\tau})^{\rho_{CG}}\right]^{1/\rho_{CG}} \tag{4}$$

G aggregates "unskilled" labor:

$$G_{\tau} = \left[\sum_{s=HSD}^{CD} (\omega_{s,\tau} L_{s,\tau})^{\rho_{HS}}\right]^{1/\rho_{HS}} \tag{5}$$

L: labor supplies in efficiency units.

Skill prices equal marginal products: $w_{s,\tau} = \partial Q_{\tau}/\partial L_{s,\tau}$.

Labor Aggregation

Each individual supplies

$$e_{i,s,c,t} = h_{i,s,c,t}(\ell_{s,c,t} - l_{i,s,c,t})$$
(6)

efficiency units of labor.

Aggregate labor inputs:

$$L_{s,\tau} = \sum_{t=T_s+1}^{T} \sum_{i=1}^{N_{c(t,\tau)}} p_{i,s,c} e_{i,s,c,t}$$
 (7)

where $p_{i,s,c}$ is the (endogenous) probability that agent i chooses schooling level s.

Household: Work Phase

$$V(h_{T_s+1}, a, s, c) = \max_{\{l_t\}} \sum_{t=T_s+1}^{T} R^{-t} y(l_t, h_t, t, s, c)$$
 (8)

subject to

$$y(l,h,t,s,c) = w_{s,\tau(c,t)}h(\ell_{t,s,c} - l) h_{t+1} = (1 - \delta_s)h_t + A(a,s)(h_t l_t)^{\alpha_s} 0 \le l_t \le \ell_{t,s,c}.$$

This problem has an analytical solution.

Household: School Phase

The agent chooses schooling to maximize

$$W_s(p_s, h_1, a, s, c) = \underbrace{\ln V(F[h_1, a, s], a, s, c)}_{\text{lifetime earnings}} + \mu_{s,c} + \underbrace{\pi p_s + \pi_a T_s(a - \underline{a})}_{\text{"psychic cost"}}$$
(9)

 $\mu_{s,c}$: school costs, common to all agents

allow the model to match each cohort's schooling exactly

$$\pi p_s + \pi_a T_s (a - \underline{a})$$
: "psychic cost"

- generates imperfect school sorting by ability
- π_a governs ability gaps between school groups
- p_s: type I extreme value shocks

This problem has an analytical solution.

Calibration

Calibration: Overview

- Simulate 1,000 individuals in each of 18 birth cohorts born between 1920 and 1971.
- Set school costs $(\mu_{s,c})$ to exactly match each cohort's attainment.
- For aggregation: assume that non-modeled cohorts are identical to the nearest model cohort.
- Restrict relative skill weights to grow at a constant rate (constant SBTC, Katz & Murphy)
- Restrict average skill price growth "out of sample" to equal average "in sample" growth

Calibration Targets

- Median age wage profiles for all model cohorts CPS, men, 1964 – 2010
- **2** Cognitive test scores moments In the model: IQ = a + noise

Cognitive Test Scores

Mean cognitive test scores of college educated and high school educated workers.

From Hendricks & Schoellman (2014).

They help identify:

- school sorting by ability (and how it changes over time)
- contribution of ability selection to the level of the college premium

Cognitive Test Scores

Coefficients of regressing log wage on IQ, IQ*experience, school dummies.
NLSY79, men
They help identify:

- ability dispersion θ
- correlation between a and h_1

Fixed Parameters

Parameter	Description	Value
T	Lifespan	65
c	Birth cohorts	1920, 1923, 1926,, 1965, 1968, 1971
T_{s}	School duration	2, 3, 5, 7
$\ell_{t,s,c}$ n/a	Market hours	CPS data
n/a	Nodes of skill price spline	1935, 1941, 1947,, 2023, 2029, 2035
R	Gross interest rate	1.04

Calibrated Parameters

- 24 parameters are calibrated. They govern:
 - endowment distributions
 - Ben-Porath technologies
 - aggregate technology: skill weights, elasticities of substitution
- Curvature of the Ben-Porath technology: $\alpha_s \approx 0.3 0.5$
 - recent estimates are much higher (Heckman et al. 1998: $\alpha \approx 0.9$)
 - intuition: when α is high, h investment is extremely volatile
 - this matters for: flat spot method, gains from training, tax effects, ...

Fit: Wage Profiles, HSG

Fit: Wage Profiles, CG

Lesson

- Good fit of age wage profiles supports Ben-Porath as a credible model wage determination.
- Can account for changing returns to experience without occupation specific human capital (Kambourov & Manovskii).
- Can account for different behavior of college premium for young and old (Card & Lemieux)

Fit: Returns to Experience

Fit: College Premium

Skill Prices vs Wages

Skill Prices vs Wages

Skill prices are essentially **smoothed** (observed) wages Why so smooth?

human capital investment amplifies variation in skill price growth

Skills must be highly substitutable

- Katz/Murphy (1992) Details
 - labor supply = hours worked
 - ullet elasticity of substitution between college / non-college labor pprox 1.5
- Ben-Porath: ≈ 6

Skill Prices vs Wages

Aggregate labor supplies \approx aggregate hours worked.

Labor efficiency for all school groups is roughly constant.

Reasons:

- Smooth wages

 roughly constant human capital investment.
- Small ability dispersion (θ = 0.09)
 ⇒ small changes in cohort qualities as schooling expands.

Selection and the College Premium

Experiment:

- Shut off school sorting
- Recompute aggregate (constant composition) college wage premium

Result:

15 log points of the college premium are due to selection constant over time

The Flat Spot Method

- Heckman, Lochner, Taber (1998)
 - if α is high enough and $\delta = 0$, then h investment stops some time before retirement.
 - for older workers, wage growth = skill price growth
- Bowlus & Robinson (2012)
 - apply this method to CPS data
 - main result: on average, all skill prices grow at the same rate
- What happens if we apply the flat spot method to the wage data generated by this model?
 - using the Bowlus & Robinson flat spot age ranges
 - 44-52 for HSD, ..., 50-58 for CG

The Flat Spot Method

The Flat Spot Method

Results:

- Skill prices are smoother than flat spot wages.
- For HSG, the flat spot method overstates the skill price growth rate.

Intuition:

• With low α and $\delta > 0$, h investment continues until retirement • Details

- Study time at age 50 is between 0.1 0.15
- Efficiency is not constant during the flat spot period It rises by 10-15 log points after age 50 b/c of falling study time This is counteracted by depreciation

Conclusion

- The Ben-Porath model is a credible model of wages over the life-cycle.
- A simple human capital model replicates
 - age wage profiles for most cohorts in CPS data
 - returns to experience
 - college premium by age
- Average human capital (conditional on schooling) is roughly constant over time
 - caveat: do not have time-varying school sorting yet
- Future work:
 - wage shocks / implications for variances

Calibrated Parameters

Parameter	Description	Value	
On-the-job training			
A_{s}	Productivity	0.13, 0.14, 0.13, 0.12	
$lpha_{\scriptscriptstyle S}$	Curvature	0.15, 0.15, 0.54, 0.54	
δ_{s}	Depreciation rate	0.048, 0.048, 0.045, 0.045	
Endowments			
σ_{h1}	Dispersion of h ₁	0.401	
heta	Ability scale factor	0.092	
π_1	Psychic cost scale factor	0.312	
γ_{ap}	Ability weight in psychic cost	0.076	
γ_{ah}	Governs correlation of $\ln h_1$ and a	0.302	
σ_{IQ}	Noise in IQ	0.283	
Other			
Δw_s	Skill price growth rate, 1964-2010 [pct]	-0.92, -0.66, -0.73, 0.13	
$(1+\rho_{HS})^{-1}$, $(1+\rho_{CG})^{-1}$	Substitution elasticities	7.43, 3.64	

Katz & Murphy (1992)

Inverse relationship between

- detrended hours worked college / high school workers
- detrended college wage premium

Study Time Profiles

