Лабораторная работа № 3

Метод штрафных функций

Цель работы

Ознакомиться с методами штрафных функций при решении задач нелинейного программирования. Изучить типы штрафных и барьерных функций, их особенности, способы и области применения, влияние штрафных функций на сходимость алгоритмов, зависимость точности решения задачи нелинейного программирования от величины коэффициента штрафа.

Методические указания

С помощью методов штрафных функций и барьеров (их еще называют методы внешней и внутренней штрафной точки) задача нелинейного программирования решается путём исследования последовательности задач без ограничений. Вследствие того, что методы штрафных функций и барьеров не оперируют ограничениями в явном виде, они оказываются эффективными в вычислительном отношении для задач нелинейного программирования.

Методы штрафных функций и барьеров аппроксимируют исходную задачу нелинейного программирования последовательностью связанных с ней задач без ограничений, каждая из которых может быть решена с помощью имеющихся алгоритмов оптимизации.

В методе штрафных функций исходную задачу

$$\min f(\overline{x})$$

при ограничениях

$$h_j(\overline{x}) = 0, \ j = \overline{1, m};$$

 $q_j(\overline{x}) \le 0, \ j = \overline{1, k},$

сводят к задаче без ограничений

$$\min Q(x) = \min \left\{ f(\overline{x}) + r_0 \left[\sum_{j=1}^m r_j \Phi_j(h_j(\overline{x})) + \sum_{l=1}^k r_l S_l(q_l(\overline{x})) \right] \right\}.$$

где $\Phi(\cdot)$, $S(\cdot)$ — функции штрафа, которые накладываются при нарушении ограничений. Обычно функция штрафа выбирается такой, чтобы штраф был равен нулю, если ограничение выполняется, и больше нуля, если нарушено.

Барьерные функции отличаются от штрафных тем, что в допустимой области они всегда не равны нулю и, кроме того, резко возрастают, стремясь к бесконечности, при приближении к границе допустимой области. В отличие от штрафных барьерные функции требуют специальной адаптации алгоритмов оптимизации, так как при случайном нарушении ограничений в

процессе поиска может произойти переполнение разрядной сетки.

Стратегия выбора коэффициентов штрафа. Эффективность применения метода штрафных функций существенно зависит от выбора функции штрафа и правильно подобранной стратегии корректировки коэффициентов штрафа r_j . Как правило, алгоритм подбора коэффициентов штрафа заключается в следующем. На начальном этапе фиксируем точку \overline{x}_0 , а также начальные значения коэффициентов штрафа и находим минимум функции Q(x) в точке \overline{x}_1 . Далее проверяем величину штрафа: если штраф больше заданной точности ε , то изменяем величину штрафа (для штрафных функций коэффициенты штрафа увеличиваются, а для барьерных функций – уменьшаются) и повторяем поиск из точки \overline{x}_1 . Так продолжаем до тех пор, пока величина штрафа не станет меньше ε .

Порядок выполнения работы

$N_{\overline{2}}$	Вид работы	Баллы
1.	Применяя методы поиска минимума 0-го порядка,	
	реализовать программу для решения задачи нелиней-	
	ного программирования с использованием метода	
	штрафных функций.	
2.	Исследовать сходимость метода штрафных функций в	
	зависимости от	45
	– выбора штрафных функций,	43
	 начальной величины коэффициента штрафа, 	
	 стратегии изменения коэффициента штрафа, 	
	– начальной точки,	
	 задаваемой точности є. 	
	Сформулировать выводы.	
3*	Применяя методы поиска минимума 0-го порядка,	
	реализовать программу для решения задачи нелиней-	
	ного программирования с ограничением типа	
	неравенства с использованием метода барьерных	
	функций.	
4*	Исследовать сходимость метода барьерных функций	
	в зависимости от	54
	 выбора барьерных функций, 	
	 начальной величины коэффициента штрафа, 	
	 стратегии изменения коэффициента штрафа, 	
	 начального приближения, 	
	 задаваемой точности є. 	
	Сформулировать выводы.	

^{*)} Выполняется по желанию студентов

Варианты заданий

- 1. $f(x,y) = 5(x-y)^2 + (x-2)^2 \rightarrow \min$ при ограничении:
 - a) $x + y \le 1$
 - δ) x = -v
- 2. $f(x,y) = 10(y-x)^2 + y^2 \to \min$ при ограничении:
 - a) $x + y \ge 1$
 - б) x = 2 y
- 3. $f(x,y) = (x-y)^2 + 10(x+5)^2 \rightarrow \min$ при ограничении:
 - a) $x + y \ge 0$
 - б) x = 1 y
- 4. $f(x,y) = 2(x-y)^2 + 14(y-3)^2 \rightarrow \min$ при ограничении:
 - a) $y-x \ge -1$
 - $\delta) x = -y$
- 5. $f(x,y) = 4(y-x)^2 + 3(x-1)^2 \to \min$ при ограничении:
 - a) $x + y \le -1$
 - б) y = x + 1
- 6. $f(x,y) = 7(x-y)^2 + (y-6)^2 \rightarrow \min$ при ограничении:
 - a) $y x \ge 2$
 - $\delta) x = -y$
- 7. $f(x,y) = (x+y)^2 + 4y^2 \rightarrow \min$ при ограничении:
 - a) $x + y \ge 5$

б)
$$y = x + 2$$

8.
$$f(x,y) = 5(x+y)^2 + (x-2)^2 \rightarrow \min$$
 при ограничении:

a)
$$x + y \ge 1$$

$$\delta$$
) $x = y$

9.
$$f(x,y) = 4(x+y)^2 + x^2 \rightarrow \min$$
 при ограничении:

a)
$$y-x \ge 5$$

б)
$$x = 2 - y$$

10.
$$f(x,y) = (x+y)^2 + 10(y-2)^2 \rightarrow \min$$
 при ограничении:

a)
$$y \le x$$

6)
$$y = x - 1$$

11.
$$f(x,y) = 10(x+y)^2 + (y+2)^2 \to \min$$
 при ограничении:

a)
$$y - x \ge 1$$

$$\delta$$
) $x = y$

12.
$$f(x,y) = 8(x+y)^2 + (x+2)^2 \to \min$$
 при ограничении:

a)
$$x + y \ge 5$$

$$\delta) \ x = y$$

Содержание отчета

Отчет должен содержать:

- титульный лист;
- цель работы;
- задание;
- таблицы с результатами проведенных исследований, где должны быть отражены используемая штрафная / барьерная функция, начальная величина коэффициента штрафа, стратегия изменения коэффициента штрафа, начальное приближение \overline{x}_0 , задаваемая точность, количество

- итераций, число вычислений целевой функции, найденная точка и значение функции в ней.
- выводы об эффективности метода штрафных функций, рекомендации о выборе функций штрафа и стратегии выбора коэффициентов штрафа с указанием преимуществ и недостатков.

В отчет необходимо включить текст разработанной программы поиска, результаты ее тестирования.