CPE301 – SPRING 2018

Midterm 1

DO NOT REMOVE THIS PAGE DURING SUBMISSION:

The student understands that all required components should be submitted in complete for grading of this assignment.

NO	SUBMISSION ITEM	COMPLETED (Y/N)	MARKS (/MAX)
1	COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS		
2.	INITIAL CODE OF TASK 1/A		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 2/B		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 3/C		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 4/D		
3.	INCREMENTAL / DIFFERENTIAL CODE OF TASK 5/E		
4.	SCHEMATICS		
5.	SCREENSHOTS OF EACH TASK OUTPUT		
5.	SCREENSHOT OF EACH DEMO		
6.	VIDEO LINKS OF EACH DEMO		
7.	GOOGLECODE LINK OF THE DA		

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

Atmega328P FTDI Chip LM34 Temp Sensor ESP 8266 Attempted to use NodeMCU Chip - It started smoking

2. INITIAL/DEVELOPED CODE OF TASK 1/A

Transmit data using USART with the ESP chip – display results on Thingspeak (unsuccessful).

```
#define F CPU 1600000UL
#include <stdlib.h>
#include <avr/io.h>
#include <stdint.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#define FOSC 16000000
                                                // Clock speed 16Mhz
#define BAUD 9600
                                                // BAUD Rate Defined
#define MYUBRR FOSC/8/BAUD-1
volatile unsigned char AT[] = "AT\r\n";
volatile unsigned char CIPMUX[] = "AT+CIPMUX=0\r\n";
volatile unsigned char CIPSTART[] = "AT+CIPSTART=\"TCP\",\"184.106.153.149\",80\r\n";
//ip of thingspeak
volatile unsigned char SEND_DATA[] = "GET /update?key=RLJISPGVOR00D77R&field1="; //update
thingspeak
volatile unsigned char CIPSIZE[] = "AT+CIPSEND=45\r\n"; //send data
volatile unsigned char CWMODE[] = "AT+CWMODE=3\r\n"; //wifi mode
volatile unsigned char CONNECTWIFI[] = "AT+CWJAP=\"Liz\",\"*******\"\r\n"; //connect to
volatile unsigned char FIRMWARE[] = "AT+GMR\r\n";
volatile unsigned char BREAK[] = "\r\n\r\n";
//global variables
volatile uint8_t adc_val; // Value read from Temperature Sensor in ADC
volatile unsigned char temp[5];
//prototypes
void init_USART(); // Initialize USART function
void send_AT(volatile unsigned char AT[]);// Send commands
int main(void)
      ADMUX = 0; // read from ADC 0
      ADMUX |= (1 << REFS0); // use AVcc as the reference
      ADMUX |= (1 << ADLAR); // Right adjust for 8 bit resolution
      ADCSRA |= (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0); // 128 as prescalar
      ADCSRA |= (1 << ADATE); // Set ADC Auto Trigger Enable
      ADCSRB = 0;
      ADCSRA |= (1 << ADEN); // Enable ADC
      ADCSRA |= (1 << ADIE); // Enable Interrupts
      ADCSRA |= (1 << ADSC); // ADC Conversion
      init USART();
      _delay_ms(1500);
      send_AT(AT); //at
```

```
_delay_ms(1500);
       send AT(FIRMWARE); //firmware
       _delay_ms(1500);
       send_AT(CWMODE); //wifi mode
      _delay_ms(1500);
       send AT(CONNECTWIFI); //connect with WiFi
       delay ms(5000);
       send AT(CIPMUX); //enable
       sei();
       while (1)
              _delay_ms(500);
              send_AT(CIPSTART); // start connection
              _delay_ms(500);
              send_AT(CIPSIZE); // size
              delay ms(500);
              send_AT(SEND_DATA);
              send_AT(temp); //temperature
              send_AT(BREAK);
       return 0;
}
void init_USART() {
       // Setting BAUD rate
       UBRROH = ((MYUBRR) >> 8);
       UBRRØL = MYUBRR;
       UCSR0A |= (1<< U2X0);
       UCSR0B |= (1 << TXEN0); // Enable transmitter</pre>
       UCSROC |= (1 << UCSZO1) | (1 << UCSZO0); // Set frame: 8data, 1 stp
}
// Interrupt subroutine for ADC value
ISR(ADC_vect) {
       unsigned char i;
       char tmptemp[5];
       adc_val = (ADCH << 1);</pre>
       itoa(adc_val, tmptemp, 10);
       for(i = 0; i < 5; i++)</pre>
       temp[i] = tmptemp[i];
}
void send_AT(volatile unsigned char AT[]) {
       volatile unsigned char a;
       volatile unsigned char length = 0;
       while(AT[length] != 0)
       length++; // find length
       for(a = 0 ; a < length ; a++)</pre>
       {
              while(!(UCSR0A & (1<<UDRE0)));</pre>
              UDR0 = AT[a];
       }
}
```

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work". Elizabeth Heider