Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research

Article in European Journal of Operational Research May 2015

DOI: 10.1016/j.ejor.2015.05.030

See discussions, stats, and author profiles for this publication at:

https://www.researchgate.net/publication/276280838

Stefan Lessmann Humboldt-Universität zu Berlin

91 PUBLICATIONS 1,346 CITATIONS

SEE PROFILE

Hsin-Vonn Seow

University of Nottingham, Malaysia Campus

28 PUBLICATIONS 217 CITATIONS

SEE PROFILE

Bart Baesens

University of Southampton

370 PUBLICATIONS 8,389 CITATIONS

SEE PROFILE

DS Workshop, 23.05.2019 Афанасьев Сергей

TABLE 1: ANALYSIS OF CLASSIFIER COMPARISONS IN RETAIL CREDIT SCORING

		Data*			Clas	sifier	s**]	Evalu	ation*	***
Retail credit scoring study (in chronological order)	No. of data sets	Observat ariables data s	ions/v per et	No. of classifier	ANN	SVM	ENS	S-ENS	TM	AUC	Н	ST
(Baesens, et al., 2003)	8	4,875	21	17	Х	Х			Х	X		P
(Malhotra & Malhotra, 2003)	1	1,078	6	2	Х				X			P
(Atish & Jerrold, 2004)	2	610	16	5	X				X	X		P
(He, et al., 2004)	1	5,000	65	4	X				X			
(Lee & Chen, 2005)	1	510	18	5	X				X			
(Hand, et al., 2005)	1	1,000	20	4	X		X					
(Ong, et al., 2005)	2	845	17	6	X				X			
(West, et al., 2005)	2	845	19	4	X		X		X			P
(YM. Huang, et al., 2006)	1	10,000	n.a.	10	X				X			
(Lee, et al., 2006)	1	8,000	9	5	X				X			
(ST. Li, et al., 2006)	1	600	17	2	X	X			X			P
(Xiao, et al., 2006)	3	972	17	13	X	X	X		X			P
(CL. Huang, et al., 2007)	2	845	19	4		X			X			F
(Yang, 2007)	2	16,817	85	3		X			X			
(H. Abdou, et al., 2008)	1	581	20	6	X				X			Α
(Sinha & Zhao, 2008)	1	220	13	7	X	X			X	X		Α
(CF. Tsai & Wu, 2008)	3	793	16	3	X		X		X			P
(Xu, et al., 2009)	1	690	15	4		X			X			
(Yu, et al., 2008)	1	653	13	7			X	X	X			
(H. A. Abdou, 2009)	1	1,262	25	3					Х			
(Bellotti & Crook, 2009)	1	25,000	34	4		X				X		
(Chen, et al., 2009)	1	2,000	15	5		X			X			
(Nanni & Lumini, 2009)	3	793	16	16	X	X	X		X	X		
(Šušteršič, et al., 2009)	1	581	84	2	X				X			
(MC. Tsai, et al., 2009)	1	1,877	14	4	X				X			Q

		Data*			Clas	sifier	s**		I	Evalu	ation*	**
Retail credit scoring study (in chronological order)	No. of data sets	Observati ariables data s	ons/v per et	No. of classifier	ANN	SVM	ENS	S-ENS	TM	AUC	H	ST
(Yu, et al., 2009)	3	959	16	10	x	X	X		x	Х		P
(J. Zhang, et al., 2009)	1	1,000	102	4					X			
(Hsieh & Hung, 2010)	1	1,000	20	4	X	X	X			X		
(Martens, et al., 2010)	1	1,000	20	4		X			X			
(Twala, 2010)	2	845	18	5			X		X			
(Yu, et al., 2010)	1	1,225	14	8	X	X	X		X			P
(D. Zhang, et al., 2010)	2	845	17	11	X	X	X		X			
(Zhou, et al., 2010)	2	1,113	17	25	X	X	X	X	X			
(J. Li, et al., 2011)	2	845	17	11		X			X			
(Finlay, 2011)	2	104,649	47	18	X		X		X			P
(Ping & Yongheng, 2011)	2	845	17	4	X	X			X			
(Wang, et al., 2011)	3	643	17	13	X	X	X		X			
(Yap, et al., 2011)	1	2,765	4	3					X			
(Yu, et al., 2011)	2	845	17	23	X	X			X			
(Akkoc, 2012)	1	2,000	11	4	X				X	X		
(Brown & Mues, 2012)	5	2,582	30	9	X	X	X			X		F/P
(Hens & Tiwari, 2012)	2	845	19	4		X			X			
(S. Li, et al., 2012)	2	672	15	5		X	X		X			
(Marqués, et al., 2012a)	4	836	20	35	Х	X	X		X			F/P
(Marqués, et al., 2012b)	4	836	20	17	X	X	X		X	X		F/P
(Kruppa, et al., 2013)	1	65,524	17	5			X			X		
(Abellán & Mantas, 2014)	3	793	16	5	X		X			X		A
(CF. Tsai, 2014)	3	793	16	21	X		X		X			F/P
Mean / counts	1.9	6,167	24	7.8	30	24	18	3	40	10	0	17

We report the mean of observations and independent variables for studies that employ multiple data sets. Eight studies mix retail and corporate credit data. Table 1 considers the retail data sets only.
 ** Abbreviations have the following meaning: ANN=Artificial neural network, SVM=Support vector machine,

ENS=Ensemble classifier, S-ENS=Selective Ensemble (e.g., Partalas, et al., 2010).

^{***} Abbreviations have the following meaning: TM=Threshold metric (e.g., classification error, true positive rate, costs, etc.), AUC=Area under receiver operating characteristics curve, H=H-measure (Hand, 2009), ST=Statistical hypothesis testing. We use the following codes to report the type of statistical test used for classifier comparisons: P=Pairwise comparison (e.g., paired t-test), A=Analysis of variance, F=Friedman test, F/P=Friedman test together with post-hoc test (e.g., Demšar, 2006), Q=Press's Q statistic.

Figure 1: Classifier development and evaluation process

TABLE 2: CLASSIFICATION ALGORITHMS CONSIDERED IN THE BENCHMARKING STUDY

В	M selection	Classification algorithm	Acronym	Models
		Bayesian Network	B-Net	4
_		CART	CART	10
Ē		Extreme learning machine	ELM	120
\$	CART Extreme learning machine Kernalized ELM k-nearest neighbor J4.8 Linear discriminant analysis¹ Linear support vector machine Logistic regression¹ Multilayer perceptron artificial new Naive Bayes Quadratic discriminant analysis¹ Radial basis function neural network Regularized logistic regression SVM with radial basis kernel funct Voted perceptron Classification models from individual classifiers	Kernalized ELM	ELM-K	200
.E		k-nearest neighbor	kNN	22
iër del		ayesian Network ART CAR ART CAR ART CAR ART CAR ART ELM- ernalized ELM nearest neighbor AS inear discriminant analysis¹ inear support vector machine ogistic regression¹ LR fultilayer perceptron artificial neural network aive Bayes uadratic discriminant analysis¹ adial basis function neural network regularized logistic regression VM with radial basis kernel function oted perceptron VP dels from individual classifiers lternating decision tree agged MLP oosted decision trees agged MLP oosted decision trees origistic model tree andom forest RF		36
ssif mo		ART CART treme learning machine ELM ELM-K malized ELM ELM-K hearest neighbor kNN B J4.8 LDA shear discriminant analysis LDA shear support vector machine gistic regression LR hadratic discriminant analysis QDA dial basis function neural network RbfNN gularized logistic regression LR-R M with radial basis kernel function SVM-Rbf bed perceptron VP des from individual classifiers L6 ternating decision tree giged MLP BagNN bosted decision trees gistic model tree LMT andom forest RF		1
		Linear support vector machine	29	
d 9	II.a.	rmalized ELM tearest neighbor 8 J4.8 LDA sear discriminant analysis¹ LDA sear support vector machine gistic regression¹ LR altilayer perceptron artificial neural network ive Bayes adratic discriminant analysis¹ QDA dial basis function neural network gularized logistic regression LR-R M with radial basis kernel function sels from individual classifiers ted perceptron els from individual classifiers gged decision tree gged decision trees gged MLP osted decision trees gistic model tree ndom forest ELM-K kNN ANN LDA SVM-L LR ANN ive Bayes NB QDA RbfNN LR-R SVM-Rbf VP els from individual classifiers 16 Bag Bag Bag NB Boost LMT RF		1
id i		Extreme learning machine Kernalized ELM Kenearest neighbor J4.8 Linear discriminant analysis¹ LDA Linear support vector machine Logistic regression¹ Multilayer perceptron artificial neural network Naive Bayes Quadratic discriminant analysis¹ QDA Radial basis function neural network Regularized logistic regression LR-R SVM with radial basis kernel function Voted perceptron VP Odels from individual classifiers Alternating decision tree Bagged MLP Boosted decision trees Logistic model tree Random forest Ref Rotation forest RotFor		171
diy m			NB	1
Individual classifier Igorithms and 933 model			QDA	1
20 L		Radial basis function neural network	RbfNN	5
18		Regularized logistic regression	LR-R	27
19		SVM with radial basis kernel function	SVM- Rbf	300
_		Voted perceptron	VP	5
C	lassification :	models from individual classifiers	16	933
		Alternating decision tree	ADT	5
		Bagged decision trees	Bag	9
S a		Bagged MLP	BagNN	4
on p			Boost	48
em l	n.a.	Logistic model tree	LMT	1
Homogenous ensembles		Random forest	RF	30
H		Rotation forest	RotFor	25
		Stochastic gradient boosting	SGB	9
C	lassification :	models from homogeneous ensembles	8	131

	BM selection	Classification algorithm	Acronym	Models			
		Simple average ensemble	AvgS	1			
	n.a.	Weighted average ensemble	AvgW	1			
		Stacking	Stack	6			
		Complementary measure	CompM	4			
90		Ensemble pruning via reinforcement learning	EPVRL	4			
ğ		GASEN	GASEN	4			
em	Static direct	Hill-climbing ensemble selection	HCES	12			
SII S		HCES with bootstrap sampling	HCES-Bag	16			
eterogeneous ensembles		Matching pursuit optimization ensemble	MPOE	1			
eo.		Top-T ensemble	Top-T	12			
en		Clustering using compound error	CuCE	1			
ro		k-Means clustering	k-Means	1			
ete	Static indirect	Kappa pruning	KaPru	4			
Ξ		Margin distance minimization	MDM	4			
		Uncertainty weighted accuracy	UWA	4			
	Dynamic	Probabilistic model for classifier competence	PMCC	1			
	Dynamic	k-nearest oracle	kNORA	1			
Classification models from heterogeneous ensembles 17							
Overall number of classification algorithms and models 41							

¹ To overcome problems associated with multicollinearity in high-dimensional data sets, we use correlation-based feature selection (Hall, 2000) to reduce the variable set prior to building a classification model.

Обычные классификаторы

BM selection	Classification algorithm	Acronym	Models
	Bayesian Network	B-Net	4
_	CART	CART	10
[a]	Extreme learning machine	ELM	120
in total)	Kernalized ELM	ELM-K	200
	k-nearest neighbor	kNN	22
ssifier models	J4.8	J4.8	36
ndividual classifie hms and 933 mode	Linear discriminant analysis ¹	LDA	1
n.a.	Linear support vector machine	SVM-L	29
la d	Logistic regression ¹	LR	1
idua and	Multilayer perceptron artificial neural network	ANN	171
div ms	Naive Bayes	NB	1
ri ji	Quadratic discriminant analysis ¹	QDA	1
<u> </u>	Radial basis function neural network	RbfNN	5
als	Regularized logistic regression	LR-R	27
Indiv (16 algorithms	SVM with radial basis kernel function	SVM- Rbf	300
	Voted perceptron	VP	5
Classification	models from individual classifiers	16	933

¹ To overcome problems associated with multicollinearity in high-dimensional data sets, we use correlation-based feature selection (Hall, 2000) to reduce the variable set prior to building a classification model.

Однородные ансамбли

	BM selection	Classification algorithm	Acronym	Models
		Alternating decision tree	ADT	5
		Bagged decision trees	Bag	9
SII .		Bagged MLP	BagNN	4
no Jes		Boosted decision trees	Boost	48
oge ml	11.a.	Logistic model tree	LMT	1
Homogenous ensembles		Random forest	RF	30
H	•	Rotation forest	RotFor	25
		Stochastic gradient boosting	SGB	9
	Classification	models from homogeneous ensembles	8	131

Разнородные ансамбли

	BM selection	Classification algorithm	Acronym	Models
		Simple average ensemble	AvgS	1
	n.a.	Weighted average ensemble	AvgW	1
		Stacking	Stack	6
		Complementary measure	CompM	4
S		Ensemble pruning via reinforcement learning	EPVRL	4
ple		GASEN	GASEN	4
em	Static direct	Hill-climbing ensemble selection	HCES	12
sue		HCES with bootstrap sampling	HCES-Bag	16
IS (Matching pursuit optimization ensemble	MPOE	1
Heterogeneous ensembles		Top-T ensemble	Top-T	12
gen		Clustering using compound error	CuCE	1
Z.		k-Means clustering	k-Means	1
ete	Static indirect	Kappa pruning	KaPru	4
H		Margin distance minimization	MDM	4
		Uncertainty weighted accuracy	UWA	4
	Dynamic	Probabilistic model for classifier competence	PMCC	1
		k-nearest oracle	kNORA	1
	Classification	models from heterogeneous ensembles	17	77
Over	all number of cl	assification algorithms and models	41	1141

Name	Cases	Independent variables	Prior default rate	Nx2 cross- validation	Source
AC	690	14	.445	10	(Lichman, 2013)
GC	1,000	20	.300	10	(Lichman, 2013)
Th02	1,225	17	.264	10	(Thomas, et al., $2002)^6$
Bene 1	3,123	27	.667	10	(Baesens, et al., 2003)
Bene 2	7,190	28	.300	5	(Baesens, et al., 2003)
UK	30,000	14	.040	5	(Baesens, et al., 2003)
PAK	50,000	37	.261	5	http://sede.neurotech.com.br/PAKDD2010/
GMC	150,000	12	.067	3	http://www.kaggle.com/c/GiveMeSomeCredit

- 1. AC Australian credit
- 2. GC German credit
- 3. Th02 data set from Thomas, et al. (2002)
- 4. Bene-1 used in Baesens, et al. (2003), were collected from major financial institution in the Benelux
- 5. Bene-2 used in Baesens, et al. (2003), were collected from major financial institution in the Benelux
- 6. UK used in Baesens, et al. (2003), were collected from major financial institution in the UK
- 7. PAK have been provided by financial institution for the 2010 PAKDD data mining challenge
- 8. GMC have been provided by financial institution for the "Give me some credit" Kaggle competition.

Рэнкинг обычных классификаторов

TABLE 4: AVERAGE CLASSIFIER RANKS ACROSS DATA SETS FOR DIFFERENT PERFORMANCE MEASURES

Classifier family	BM selection	Classifier	AUC	PCC	BS	Н	PG	KS	AvgR	High score
		ANN	16.2 (.000)	18.6 (.000)	27.5 (.000)	17.9 (.000)	14.9 (.020)	17.6 (.000)	18.8	14
		B-Net	27.8 (.000)	26.8 (.000)	20.4 (.000)	28.3 (.000)	23.7 (.000)	26.2 (.000)	25.5	30
		CART	36.5 (.000)	32.8 (.000)	35.9 <u>(.000)</u>	36.3 (.000)	25.7 (.000)	34.1 (.000)	33.6	38
		ELM	30.1 (.000)	29.8 (.000)	35.9 <u>(.000)</u>	30.6 (.000)	27.0 (.000)	27.9 (.000)	30.2	36
		ELM-K	20.6 (.000)	19.9 (.000)	36.8 <u>(.000)</u>	19.0 (.000)	23.0 (.000)	20.6 (.000)	23.3	26
e.		J4.8	36.9 (.000)	34.2 (.000)	34.3 (.000)	35.4 (.000)	35.7 (.000)	32.5 (.000)	34.8	39
ssifi		k-NN	29.3 (.000)	30.1 (.000)	27.2 (.000)	30.0 (.000)	26.6 (.000)	30.5 (.000)	29.0	34
cla	ૡ૽	LDA	21.8 (.000)	20.9 (.000)	16.7 <u>(.000</u>)	20.5 (.000)	24.8 (.000)	21.9 (.000)	21.1	20
Individual classifier	ij.	LR	20.1 (.000)	19.9 (.000)	13.3 (.000)	19.0 (.000)	23.1 (.000)	20.4 (.000)	19.3	16
divi		LR-R	22.5 (.000)	22.0 (.000)	34.6 (.000)	22.5 (.000)	21.4 (.000)	21.4 (.000)	24.1	28
ū		NB	30.1 (.000)	29.9 (.000)	23.8 (.000)	29.3 (.000)	22.2 (.000)	29.1 (.000)	27.4	33
		RbfNN	31.4 (.000)	31.7 (.000)	28.0 (.000)	31.9 (.000)	24.1 (.000)	31.7 (.000)	29.8	35
		QDA	27.0 (.000)	26.4 (.000)	22.6 (.000)	26.4 (.000)	23.6 (.000)	27.3 (.000)	25.5	31
		SVM-L	21.7 (.000)	23.0 (.000)	31.8 (.000)	22.6 (.000)	19.7 (.000)	21.7 (.000)	23.4	27
		SVM-Rbf	20.5 (.000)	22.2 (.000)	31.8 (.000)	22.0 (.000)	21.7 (.000)	21.3 (.000)	23.2	25
		VP	37.8 (.000)	36.4 (.000)	31.4 (.000)	37.8 <u>(.000)</u>	34.6 (.000)	37.6 <u>(.000)</u>	35.9	40

Рэнкинг однородных ансамблей

Classifier family	BM selection	Classifier	AUC	PCC	BS	Н	PG	KS	AvgR	High score
		ADT	22.0 (.000)	18.8 (.000)	19.0 <u>(.000)</u>	21.7 (.000)	19.4 (.000)	20.0 (.000)	20.2	17
nble		Bag	25.1 (.000)	22.6 (.000)	18.3 (.000)	23.5 (.000)	25.2 (.000)	24.7 (.000)	23.2	24
ensemble		BagNN	15.4 (.000)	17.3 (.000)	12.6 (.000)	16.5 (.000)	15.0 (.020)	16.6 (.000)	15.6	13
	n.a.	Boost	16.9 (.000)	16.7 (.000)	25.2 (.000)	18.2 (.000)	19.2 (.000)	18.1 (.000)	19.0	15
Sueo	Ė	LMT	22.9 (.000)	23.4 (.000)	15.6 <u>(.000</u>)	25.1 (.000)	20.1 (.000)	22.9 (.000)	21.7	22
Homogeneous		RF	14.7 (.000)	14.3 (.039)	12.6 (.000)	12.8 (.004)	19.4 (.000)	15.3 (.000)	14.8	12
Hon		RotFor	22.8 (.000)	21.9 (.000)	23.0 (.000)	21.1 (.000)	21.6 (.000)	22.9 (.000)	22.2	23
		SGB	21.0 (.000)	19.9 (.000)	20.8 (.000)	21.2 (.000)	22.5 (.000)	20.8 (.000)	21.0	19

Bold face indicates the best classifier (lowest average rank) per performance measure. Italic script highlights classifiers that perform best in their family (e.g., best individual classifier, best homogeneous ensemble, etc.). Values in brackets give the adjusted p-value corresponding to a pairwise comparison of the row classifier to the best classifier (per performance measure). An underscore indicates that p-values are significant at the 5% level. To account for the total number of pairwise comparisons, we adjust p-values using the Rom-procedure (García, et al., 2010). Prior to conducting multiple comparisons, we employ the Friedman test to verify that at least two classifiers perform significantly different (e.g., Demšar, 2006). The last row shows the corresponding χ^2 and p-values.

Рэнкинг разнородных ансамблей

Classifier family	BM selection	Classifier	A	UC	PC	C	В	s	Н	I	PO	÷	K	S	AvgR	High score
	6)	AvgS	8.7	(.795)	10.8	(.812)	6.6	(.628)	9.2	(.556)	12.0	(.420)	9.2	(.513)	9.4	4
	none	AvgW	7.3	(/)	12.6	(.578)	7.9	(.628)	7.3	(/)	10.2	(/)	7.9	(/)	8.9	2
_		Stack	30.6	(.000)	26.6	(.000)	37.4	(.000)	29.6	(.000)	30.7	(.000)	29.5	(.000)	30.7	37
		CompM	18.3	(.000)	15.3	<u>(.004)</u>	36.5	(.000)	17.2	(.000)	20.0	(.000)	18.2	(.000)	20.9	18
		EPVRL	8.2	(.795)	10.8	(.812)	6.8	(.628)	9.3	(.556)	13.7	(.125)	11.0	(.226)	10.0	5
ble	Static direct	GASEN	8.6	(.795)	10.6	(.812)	6.5	(.628)	9.0	(.556)	11.4	(.420)	9.0	(.513)	9.2	3
sem	ic d	HCES	10.9	(.191)	11.7	(.812)	7.5	(.628)	10.2	(.449)	14.8	(.020)	13.1	(.010)	11.4	9
Heterogeneous ensemble	Stat	HCES-Bag	7.7	(.795)	9.7	(/)	5.8	(/)	8.2	(.559)	12.5	(.420)	9.2	(.513)	8.8	1
eon		MPOE	9.9	(.637)	10.1	(.812)	9.4	(.126)	9.9	(.524)	15.1	(.018)	10.9	(.226)	10.9	6
_ _		Top-T	8.7	(.795)	11.3	(.812)	10.0	(.055)	9.8	(.524)	14.8	(.020)	12.3	(.048)	11.2	8
stero	5	CuCE	10.0	(.637)	12.0	(.812)	10.1	(.050)	10.8	(.220)	12.1	(.420)	11.2	(.226)	11.0	7
He	Static indirect	k-Means	12.6	(.008)	13.6	(.118)	9.8	(.073)	11.2	(.109)	14.9	(.020)	12.0	(.077)	12.4	10
	c in	KaPru	27.7	(.000)	25.3	(.000)	15.7	(.000)	28.1	(.000)	25.1	(.000)	25.4	(.000)	24.5	29
	stati	MDM	24.4	(.000)	24.0	(.000)	11.6	(.002)	23.7	(.000)	21.7	(.000)	23.7	(.000)	21.5	21
_	V 1	UWA	9.3	(.795)	11.8	(.812)	19.5	(.000)	10.1	(.453)	14.3	(.049)	10.9	(.226)	12.7	11
	Dyna- mic	kNORA	27.1	(.000)	2 6 .7	(.000)	28.I	(.000)	28. <i>1</i>	(.000)	23.4	(.000)	25.9	(.000)	26.6	32
	Dy III	PMCC	40.1	(.000)	38.6	(.000)	32.9	(.000)	39.5	(.000)	39.9	(.000)	38.8	(.000)	38.3	41
Fried	man χ^2_{40}		2775.1	(.000)	2076.3	(.000)	3514.4	(.000)	2671.7	(.000)	1462.3	(.000)	2202.6	(.000)		

Почему стекинг улучшает результаты?

Предположим, что четыре человека бросают разом 187 дротиков в доску для дартса. Для 150 из них мы знаем, кто бросил каждый дротик и куда он попал. По остальным мы только видим, где приземлился дротик.

Задача: угадать, кто бросил каждый из немаркированных дротиков, исходя из места их попадания.

SVM хорошо справляется с классификацией бросков Боба и бросков Сью, но плохо дифференцирует броски Кейт и броски Марка. Модель k-ближайших соседей наоборот — хорошо классифицирует броски Кейт и броски Марка, но плохо справляется с бросками Боба и Сью. Стекинг этих моделей, вероятно, будет плодотворным.

TABLE 5: FULL-PAIRWISE COMPARISON OF SELECTED CLASSIFIERS

	AvgR	Adjusted p-valu	nes of pairwise	comparisons
	111811	ANN	LR	RF
ANN	2.44			
LR	3.02	.000		
RF	2.53	.167	<u>.000</u>	
HCES-Bag	2.01	<u>.000</u>	<u>.000</u>	<u>.000</u>
Friedman χ_3^2	216.2	<u>.000</u>		

- 1. ANN Multilayer Perceptron Artificial Neural Network
- 2. LR Logistic Regression
- 3. **RF** Random Forest
- **4. HCES-Bag** Hill-Climbing Ensemble Selection with Bootstrap Sampling

TABLE 6: CORRELATION OF CLASSIFIER
RANKINGS ACROSS PERFORMANCE MEASURES

	AUC	PCC	BS	Н	PG	KS
AUC	1.00					
PCC	.88	1.00				
BS	.54	.54	1.00			
Н	.93	.91	.56	1.00		
PG	.79	.72	.51	.76	1.00	
KS	.92	.89	.54	.91	.79	1.00

- 1. AUC Area Under Curve ROC
- 2. PCC Percentage Correctly Classified
- 3. BS Brier Score
- 4. H H-measure (Hand)
- 5. PG Partial Gini Index
- 6. KS Kolmogorov-Smirnov statistic

Gini

Error Costs

Figure 2: Expected percentage reduction in error costs compared to LR across different settings for C(-|+) assuming C(+|-) = 1 and using a Bayes optimal threshold.

Logistic Regression – один из лучших алгоритмов по метрике Gini (левый график) Но по бизнес-метрикам разница уже существенная (правый график) – С точки зрения академической науки, когда я начинал заниматься машинным обучением 25 лет назад, тот научный коллектив, в который я пришел еще студентом, в общем-то жил с полной уверенностью, и она была основана на примерно 30-летнем опыте предыдущих исследований, что задачу можно решать любым методом.

Теорема о бесплатных завтраках

В среднем по всем возможным порождающим определениям у любого алгоритма классификации частота ошибок классификации ранее не наблюдавшихся примеров одинакова. Самый изощренный алгоритм, который мы только можем придумать, в среднем (по всем возможным задачам) дает такое же качество, как простейшее предсказание: все точки принадлежат одному классу.

Wolpert, 1996

Бесплатных завтраков не бывает

Средний рэнкинг по всем метрикам

Средний рэнкинг по AUC ROC

Некоторые выводы:

1.

Logistic Regression – один из лучших не ансамблевых алгоритмов.

2.

Ансамбли на неоднородных моделях круто работают не только на Каггле, но и в задачах скоринга. Однако внедрять ансамбли в онлайне очень сложно и дорого.

3.

Теорема «О бесплатных завтраках» работает – не существует одного универсального алгоритма под разные датасеты и разные метрики. Нужно экспериментировать.