Autómatas y Lenguajes formales Ejercicio Semanal 5

Sandra del Mar Soto Corderi Edgar Quiroz Castañeda

7 de marzo del 2019

1. Para cada lenguajes responda los incisos

- (a) Diseña un AFN ($\sin \epsilon transiciones$) que acepte a L
- (b) Muestra el procesamiento formal de las cadenas aabbbb y abaab usando la función δ^* .
- (c) Transforma M a un AFD mediante la construcción de subconjuntos.
- $L = (a+b)^*(aaa+bbb)(a+b)^*$
 - (a) El autómata sería

$$M = \langle Q, \Sigma, \delta, q_0, F \rangle \ con$$

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

$$\Sigma = \{a, b\}$$

$$q_0 = q_0$$

$$F = \{q_5\}$$

Y con función de transición δ

	δ	q_0	q_1	q_2	q_3	q_4	q_5
	a	$\{q_0,q_1\}$	$\{q_2\}$	$\{q_5\}$	Ø	Ø	$\{q_5\}$
ĺ	b	$\{q_0,q_3\}$	Ø	Ø	$\{q_4\}$	$\{q_5\}$	$\{q_5\}$

Con representación gráfica.

Figure 1: M que reconoce a L

(b) Procesamiento de las cadenas

- aabbbb

$$\begin{split} \delta^*(\{q_0\}, aabbbb) &= \delta^*(\delta(q_0, a), abbbb) \\ &= \delta^*(\{q_0, q_1\}, abbbb) = \delta^*(\delta(q_0, a) \cup \delta(q_1, a), bbbb) \\ &= \delta^*(\{q_0, q_1, q_2\}, bbbb) = \delta^*(\delta(q_0, b) \cup \delta(q_1, b) \cup \delta(q_2, b), bbb) \\ &= \delta^*(\{q_0, q_3\}, bb) = \delta^*(\delta(q_0, b) \cup \delta(q_3, b), bb) \\ &= \delta^*(\{q_0, q_3, q_4\}, bb) = \delta^*(\delta(q_0, b) \cup \delta(q_3, b) \cup \delta(q_4, b), b) \\ &= \delta^*(\{q_0, q_3, q_4, q_5\}, b) = \delta^*(\delta(q_0, b) \cup \delta(q_3, b) \cup \delta(q_4, b) \cup \delta(q_5, b), \epsilon) \\ &= \delta^*(\{q_0, q_3, q_4, q_5\}, \epsilon) = \{q_0, q_3, q_4, q_5\} \end{split}$$

Luego

$$\delta^*(\{q_0\}, aabbbb) \cap F = \{q_0, q_3, q_4, q_5\} \cap \{q_5\} = \{q_5\} \neq \emptyset$$

Por lo que aabbbb sí es aceptado por el autómata.

 $-\ abaab$

$$\begin{split} \delta^*(\{q_0\}, abaab) &= \delta^*(\delta(q_0, a), baab) \\ &= \delta^*(\{q_0, q_1\}, baab) = \delta^*(\delta(q_0, b) \cup \delta(q_1, b), aab) \\ &= \delta^*(\{q_0, q_3\}, aab) = \delta^*(\delta(q_0, a) \cup \delta(q_3, a), ab) \\ &= \delta^*(\{q_0, q_1\}, ab) = \delta^*(\delta(q_0, a) \cup \delta(q_1, a), b) \\ &= \delta^*(\{q_0, q_1, q_2\}, b) = \delta^*(\delta(q_0, b) \cup \delta(q_1, b) \cup \delta(q_2, b), \epsilon) \\ &= \delta^*(\{q_0, q_3\}, \epsilon) = \{q_0, q_3\} \end{split}$$

Luego

$$\delta^*(\{q_0\}, abaab) \cap F = \{q_0, q_3\} \cap \{q_5\} = \emptyset$$

Por lo que abaab no es aceptado por el autómata.

(c) El equivalente determinista M^d de M sería

$$\begin{split} M^d &= \langle Q^d, \Sigma, \delta^d, p_0, F^d \rangle \ con \\ Q^d &= \mathcal{P}(Q) \\ \Sigma &= \{a, b\} \\ p_0 &= \{q_0\} \\ F^d &= \{S \in Q^d | S \cap F \neq \varnothing\} \end{split}$$

En cuanto a δ^d , se construye a continuación usando subconjuntos.

$$\delta^{d}(\{q_{0}\}, a) = \{q_{0}, q_{1}\}$$

$$\delta^{d}(\{q_{0}\}, b) = \{q_{0}, q_{3}\}$$

$$\delta^{d}(\{q_{0}, q_{1}\}, a) = \{q_{0}, q_{1}, q_{2}\}$$

$$\delta^{d}(\{q_{0}, q_{1}\}, b) = \{q_{0}, q_{3}\}$$

$$\delta^{d}(\{q_{0}, q_{3}\}, a) = \{q_{0}, q_{1}\}$$

$$\delta^{d}(\{q_{0}, q_{3}\}, b) = \{q_{0}, q_{3}, q_{4}\}$$

$$\delta^{d}(\{q_{0}, q_{1}, q_{2}\}, a) = \{q_{0}, q_{1}, q_{2}, q_{5}\}$$

$$\delta^{d}(\{q_{0}, q_{3}, q_{4}\}, a) = \{q_{0}, q_{3}\}$$

$$\delta^{d}(\{q_{0}, q_{3}, q_{4}\}, a) = \{q_{0}, q_{3}, q_{4}, q_{5}\}$$

$$\delta^{d}(\{q_{0}, q_{3}, q_{4}\}, b) = \{q_{0}, q_{3}, q_{4}, q_{5}\}$$

$$\delta^{d}(\{q_{0}, q_{1}, q_{2}, q_{5}\}, a) = \{q_{0}, q_{1}, q_{2}, q_{5}\}$$

$$\delta^{d}(\{q_{0}, q_{3}, q_{4}, q_{5}\}, a) = \{q_{0}, q_{1}, q_{5}\}$$

$$\delta^{d}(\{q_{0}, q_{3}, q_{4}, q_{5}\}, b) = \{q_{0}, q_{3}, q_{4}, q_{5}\}$$

$$\delta^{d}(\{q_{0}, q_{3}, q_{5}\}, a) = \{q_{0}, q_{3}, q_{4}, q_{5}\}$$

$$\delta^{d}(\{q_{0}, q_{3}, q_{5}\}, b) = \{q_{0}, q_{3}, q_{4}, q_{5}\}$$

$$\delta^{d}(\{q_{0}, q_{1}, q_{5}\}, a) = \{q_{0}, q_{1}, q_{2}, q_{5}\}$$

$$\delta^{d}(\{q_{0}, q_{1}, q_{5}\}, b) = \{q_{0}, q_{3}, q_{5}\}$$

$$\delta^{d}(\{q_{0}, q_{1}, q_{5}\}, b) = \{q_{0}, q_{3}, q_{5}\}$$

Luego, renombrando los estados

$$p_0 = \{q_0\}, p_1 = \{q_0, q_1\}, p_2 = \{q_0, q_3\}, p_3 = \{q_0, q_1, q_2\}, p_4 = \{q_0, q_3, q_4\},$$

$$p_5 = \{q_0, q_1, q_2, q_5\}, p_6 = \{q_0, q_3, q_4, q_5\}, p_7 = \{q_0, q_3, q_5\}, p_8 = \{q_0, q_1, q_5\}$$

Se puede describir δ^d de la siguiente manera

δ^d	p_0	p_1	p_2	p_3	p_4	p_5	p_6	p_7	p_8
					p_1				
b	p_2	p_2	p_4	p_2	p_6	p_7	p_6	p_6	p_8

Con representación gráfica.

Figure 2: M^d que reconoce a L

- $L = \{a^n b^m | n + m \ es \ par \}$
 - (a) El autómata sería

$$\begin{split} M &= \langle Q, \Sigma, \delta, q_0, F \rangle \ con \\ Q &= \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\} \\ \Sigma &= \{a, b\} \\ q_0 &= q_0 \\ F &= \{q_0, q_5\} \end{split}$$

Y con función de transición δ

δ	q_0	q_1	q_2	q_3	q_4	q_5	q_6
a	$\{q_1,q_3\}$	$\{q_0\}$	Ø	$\{q_4\}$	$\{q_3\}$	Ø	Ø
b	$\{q_2\}$	Ø	$\{q_0\}$	$\{q_5\}$	Ø	$\{q_6\}$	$\{q_5\}$

Con representación gráfica.

Figure 3: M que reconoce a L

(b) Procesamiento de las cadenas

- aabbbb

$$\begin{split} \delta^*(\{q_0\}, aabbbb) &= \delta^*(\{q_1, q_3\}, abbbb) = \delta^*(\delta(q_1, a) \cup \delta(q_3, a), bbbb) \\ &= \delta^*(\{q_0, q_4\}, bbbb) = \delta^*(\delta(q_0, b) \cup \delta(q_4, b), bbb) \\ &= \delta^*(\{q_2\}, bbb) = \delta^*(\delta(q_2, b), bb) \\ &= \delta^*(\{q_0\}, bb) = \delta^*(\delta(q_0, b), b) \\ &= \delta^*(\{q_2\}, b) = \delta^*(\delta(q_2, b), \epsilon) \\ &= \delta^*(\{q_0\}, \epsilon) = \{q_0\} \end{split}$$

Luego

$$\delta^*(\{q_0\}, aabbbb) \cap F = \{q_0\} \cap \{q_0, q_5\} = \{q_0\} \neq \emptyset$$

Por lo que aabbbb sí es aceptado por el autómata.

-abaab

$$\begin{split} \delta^*(\{q_0\},abaab) &= \delta^*(\delta(q_0,a),baab) \\ &= \delta^*(\{q_1,q_3\},baab) = \delta^*(\delta(q_1,b) \cup \delta(q_3,b),aab) \\ &= \delta^*(\{q_5\},aab) = \delta^*(\varnothing,ab) \\ &= \varnothing \end{split}$$

Luego

$$\delta^*(\{q_0\}, abaab) \cap F = \emptyset \cap \{q_0, q_5\} = \emptyset$$

Por lo que abaab no es aceptado por el autómata.

(c) El equivalente determinista M^d de M sería

$$M^{d} = \langle Q^{d}, \Sigma, \delta^{d}, p_{0}, F^{d} \rangle \ con$$

$$Q^{d} = \mathcal{P}(Q)$$

$$\Sigma = \{a, b\}$$

$$p_{0} = \{q_{0}\}$$

$$F^{d} = \{S \in Q^{d} | S \cap F \neq \emptyset\}$$

En cuanto a δ^d , se construye a continuación usando subconjuntos.

$$\delta^{d}(\{q_{0}\}, a) = \{q_{1}, q_{3}\}$$

$$\delta^{d}(\{q_{0}\}, b) = \{q_{2}\}$$

$$\delta^{d}(\{q_{1}, q_{3}\}, a) = \{q_{0}, q_{4}\}$$

$$\delta^{d}(\{q_{1}, q_{3}\}, b) = \{q_{5}\}$$

$$\delta^{d}(\{q_{2}\}, a) = \varnothing$$

$$\delta^{d}(\{q_{2}\}, b) = \{q_{0}\}$$

$$\delta^{d}(\{q_{0}, q_{4}\}, a) = \{q_{1}, q_{3}\}$$

$$\delta^{d}(\{q_{0}, q_{4}\}, b) = \{q_{2}\}$$

$$\delta^{d}(\{q_{5}\}, a) = \varnothing$$

$$\delta^{d}(\{q_{5}\}, b) = \{q_{6}\}$$

$$\delta^{d}(\{q_{6}\}, a) = \varnothing$$

$$\delta^{d}(\{q_{6}\}, b) = \{q_{5}\}$$

Luego, renombrando los estados

$$p_0 = \{q_0\}, \ p_1 = \{q_1, q_3\}, \ p_2 = \{q_2\}, \ p_3 = \{q_0, q_4\}, \ p_4 = \{q_5\}, \ p_5 = \{q_6\}$$

Se puede describir δ^d de la siguiente manera

δ^d	p_0	p_1	p_2	p_3	p_4	p_5
a	p_1	p_3	Ø	p_1	Ø	Ø
b	p_2	p_4	p_0	p_2	p_5	p_4

Con representación gráfica.

Figure 4: M^d que reconoce a L