CS4423: Problem Set 2 ₹ with solutions

These exercises should help you prepare for the class test, which will be somewhat similar in structure:

- Q1 will have 10 "true/false" based on material covered up to, and including Week 7.
- Three other questions, again on any material up to and including Week 7.

.....

- Q1. For each of the following, state whether it is **true** or **false**. Explanations are not required. In all cases G represents a graph: G = (X, E) with node set X, and edge set E.
 - (i) The **order** of G is |E|. False
 - (ii) The **degree** of a node is the number of times it occurs in X False (each node occurs in X exactly once).
 - (iii) A bipartite graph is two-colourable. True

 - (v) Let G_1 be the graph on the set of nodes $\{0, 1, 2, 3, 4\}$ with edges 0-1, 0-2, 0-3, 1-4, 2-3. G_1 is isomorphic to its complement. False
 - (vi) G_1 , the graph in the previous question, has the same order as its line graph. $\frak{2}$ True
 - (vii) The adjacency matrix of a digraph cannot be symmetric. False
 - (viii) There exists a 5×5 adjacency matrix with Perron Root $\lambda=2$, and corresponding eigenvalue $\nu=(1,-1,1,-1,1)$. False
 - (ix) a = (4, 3, 2, 1, 4) is a valid Prüfer code for a tree with nodes $\{0, 1, 2, 3, 4, 5, 6\}$.

Answer: True (a has length n-2, and all entires correspond to node labels)

- (x) The cycle graph on n nodes, C_n , has diameter $\lceil n/2 \rceil$, where $\lceil \cdot \rceil$ is the *ceiling* function. False
- Q2. Consider the following matrix:

$$A_2 = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \tag{1}$$

(a) Give a sketch of the graph, G_2 , on the nodes $X = \{0, 1, 2, 3, 4\}$ with the that has A_2 as its adjacency matrix.

(b) Is this graph bipartite? If so, indicate a two-colouring in your sketch.

Answer: Yes: it is bipartite. Let Node 0 be red, and all others blue (for example).

(c) Give the relative degree centrality of the nodes in G_2 .

Answer: They are (in order) $\{1, 1/4, 1/4, 1/4, 1/4\}$

(d) A_2 has as an eigenvector $v=(2,1,\alpha,b,c)$. Compute α , b and c, as well as the eigenvalue that corresponds to this eigenvector.

Answer: a = b = c = 1; the corresponding eigenvalue is $\lambda = 2$.

(e) Compute A_2^2 (Note: this can be done either by matrix multiplication, or just looking at the graph. Either approach is fine). Verify that $A_2 + A_2^2 > 0$. What is the implication of that for the diameter of G_2 ?

diameter is 2, since every node is at a distance of at most 2 from every other.

Q3. (a) Sketch the tree, G_3 , on the nodes $\{0, 1, 2, 3, 4, 5, 6\}$ with edges 0-1, 1-2, 1-3, 1-4, 3-5, 3-6.

- (b) Compute the Pruefer code for G_3 . (1,1,1,3,3)
- (c) Determine the tree on the nodes $\{0, 1, 2, 3, 4, 5\}$ which has Pruefer code (1, 2, 1, 3).

- Q4. Consider the graph T_4 and G_4 shown in Figure 1a.
 - (a) List the nodes of T_4 in the order they would be traversed by the **depth-first search** (DFS) algorithm, starting at node A. A, E, D, H, G, J, I, K, C, B, F (corrected 5 Mar)
 - (b) List the nodes of T_4 in the order they would be traversed by the **breadth-first search** (BFS) algorithm, starting at node A. \P A, B, C, D, E, F, G, H, I, J, K
 - (c) For the graph G_4 , apply the BFS algorithm to determine the distances from node A to all other nodes in the graph.

Answer: This is probably an overly detailed solution... The algorithm is

Step 1 [Initialize.] Suppose that $X = \{x_0, x_1, \dots, x_{n-1}\}$ and that $x = x_j$. Set $d_i \leftarrow \bot$ (undefined) for $i = 0, \dots, n-1$. Set $d_j \leftarrow 0$ and initialize a queue $Q \leftarrow (x_j)$.

Step 2 [Loop.] While $Q \neq \emptyset$:

- pop node x_k off Q
- for each neighbor x_l of x_k with $d_l = \perp$: push x_l onto Q and set $d_l \leftarrow d_k + 1$.

Step 3 [Stop.] Return the array (d_0, \ldots, d_{n-1}) .

χ_k	Q	A	В	C	D	Ε	F	G	Н	1	J	K
	[A]	0	T	T		T	\perp	T	T	\perp		\perp
Α	[B,Č,Ď,E]	0	1	1	1	1	\perp	\perp	\perp	\perp	\perp	1
В	C,D,E,F	0	1	1	1	1	2	\perp	\perp	\perp	\perp	\perp
C	[D,E,F]	0	1	1	1	1	2	\perp	\perp	\perp	\perp	\perp
D	[È,F,G,Ĥ]	0	1	1	1	1	2	2	2	\perp	\perp	\perp
Ε	[F,G,H]	0	1	1	1	1	2	2	2	\perp	\perp	\perp
F	[G,H,I]	0	1	1	1	1	2	2	2	3	\perp	\perp
G	[H,I,J]	0	1	1	1	1	2	2	2	3	3	\perp
Н	[[,J]]	0	1	1	1	1	2	2	2	3	3	\perp
I	[Ĵ,K]	0	1	1	1	1	2	2	2	3	3	4
J	[K]	0	1	1	1	1	2	2	2	3	3	4
K		0	1	1	1	1	2	2	2	3	3	4

(b) G_4 : for Q4(c)

Figure 1: Graphs for Q4