Defenses against Adversarial Examples

Keller Jordan¹, Rene Gutierrez², Brett Gohre³

¹Department of Computer Science UCSC

²Department of Applied Mathematics & Statistics UCSC

³Department of Physical & Biological Sciences UCSC

CMPS290, Winter 2018

Optimizer Robustness

We studied:

- Vanilla gradient descent
- EG plus/minus

Procedure

- Train same model with GD and EG± on MNIST
- Model is fully-connected 784-100-10
- Run non-targeted adversarial attack until fooled on subset
- Attacks were gradient ascent (GA) and fast gradient sign method (FGS)
- Average added noise for each class
- Compare results between models

Attack Difficulty

Number of iterations to fool network

Method / Optimizer	SGD	EG
Gradient Ascent	60.9(±32.3)	85.1(±40.5)
Fast Gradient Sign	52.0(±26.1)	91.0(±43.5)

A network is "fooled" when its prediction changes (untargeted attack)

Average Perturbation

Transferability Results

Transferability of attacks between optimizers

	SGD→EG	EG→SGD
Gradient Ascent	67.4%	99.0%
Fast Gradient Sign	88.2%	99.8%

Iterations held constant at 200

Notes

- FGS looks better to humans, worse for MSE
- GA better at revealing structure of model since cares about strength of change
- Next step: should try L1 norm weights to see difference

Reconstruction as a Defense

How to get recon err?

Need some way to reconstruct image Could use encoder/decoder I went with capsule network

Capsule Network Refresher

details about reconstruction network and capsnet

Results

CIFAR10

Capsules are not there yet.

ROC Curve

