EREIGNISDISKRETE SYSTEME

Praktikum Blatt 2 - Simulink

Jan Kristel, Alexandra Moritz

Aufsicht von Frau Rembold

Inhaltsverzeichnis

L	Grundlagen	
	1.1	Welcher Übertragungstyp?
		a)
		b)
		c)
		d)
	1.2	Relevante Parameter
		a)
		b)
		c)
		d)
	1.3	Überprüfung durch Simulink
		a)
		b)
		c)
		$\mathrm{d}) \qquad \qquad \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
2	Opt	imierung eines einfachen Regelkreises

1 Grundlagen

1.1 Welcher Übertragungstyp?

a)

$$h_1(t) = \frac{\frac{1}{4}}{s}$$

Es handelt sich um die Sprungfunktion eines I-Glied

b)

$$h_2(t) = \frac{s}{s+1}$$

Die Sprungfunktion ist von einem DT_1 -Glied.

c)

$$h_3(t) = \frac{2}{0,95s^2 + 0,19s + 1}$$

Das Bild zeigt die Sprungfunktion eines PT_2 -Glieds an.

d)

$$h_4(t) = \frac{1}{s+1}$$

Hierbei sieht man den Graphen der Sprungfunktion eines verzögerten PT_1 -Glieds.

1.2 Relevante Parameter

a)

 $\bullet~K_I=\frac{1}{4}\to {\rm dient~der~Steigung}.$ Dies lässt sich aus dem Bild/Graph ablesen.

b)

- $K_D = \frac{1}{1} = 1$. Dies sorgt für ein bestehendes s im Zähler.
- $T_1 = 1$, was für ein vorhandenes s im Nenner sorgt.

c)

- $K_P = 2$, durch ablesen bestimmt.
- \bullet T_2 und T_1 müssen berechnet werden:

$$\vartheta = ln\left(\frac{\Delta_1}{\Delta_2}\right) = ln\left(\frac{1,5}{1}\right) = 0,3$$

 $\to \Delta_1 und\Delta_2$ sind die ersten beiden Schwingungen der Sprungfunktion, nachdem diese den $K_P=2$ gekreuzt haben.

$$d = \frac{\vartheta}{\sqrt{\pi^2 + \vartheta^2}} = \frac{0.3}{\sqrt{\pi^2 + 2}} = 0.098$$

$$\omega_e = \frac{2 \cdot \pi}{T_e} = \frac{2 \cdot \pi}{6} = 1,047$$

 $\to T_e$ lässt sich aus dem Graphen abschätzen. Das ist die Dauer für die ersten vollständige Schwingung nachdem K_P erreicht wurde.

$$\omega_0 = \frac{\omega_e}{\sqrt{1 - d^2}} = \frac{1,047}{\sqrt{1 - 0,098^2}} = 1,052$$

$$T_2 = \frac{1}{\omega_0} = \frac{1}{1,052} = 0,95$$

$$T_1 = 2 \cdot d \cdot T_2 = 2 \cdot 0,098 \cdot 0,95 = 0,19$$

d)

- $K_P = \frac{1}{1} = 1$ Dies lässt sich wieder aus dem Graph ablesen.
- $T_1 = 1$
- $t=1 \to \text{die Verzögerung}\ t$ lässt sich ablesen und in Simulink durch ein extra Verzögerungsglied einstellen.

1.3 Überprüfung durch Simulink

a)

Abbildung 1: Graph einer Sprungfunktion eines I-Glieds.

b)

Abbildung 2: Graph einer Sprungfunktion eines DT_1 -Glieds.

 $\mathbf{c})$

Abbildung 3: Graph einer Sprungfunktion eines PT_2 -Glieds.

d)

Abbildung 4: Graph einer Sprungfunktion eines um 1 Zeiteinheit verzögertes $PT_1\text{-}\mathrm{Glieds}.$

2 Optimierung eines einfachen Regelkreises