EXEMPLO 4 Determine o volume do sólido que está sob o paraboloide $z = x^2 + y^2$, acima do plano xy e dentro do cilindro $x^2 + y^2 = 2x$.

SOLUÇÃO O sólido está acima do disco D cujo limite tem equação $x^2 + y^2 = 2x$ ou, após completar os quadrados,

$$(x-1)^2 + y^2 = 1$$

(Veja as Figuras 9 e 10.)

x y

FIGURA 9

FIGURA 10

Em coordenadas polares, temos $x^2 + y^2 = r^2$ e $x = r \cos \theta$, assim, o limite circular fica $r^2 = 2r \cos \theta$ ou $r = 2 \cos \theta$. Portanto, o disco D é dado por

$$D = \{(r, \theta) \mid -\pi/2 \le \theta \le \pi/2, \ 0 \le r \le 2 \cos \theta\}$$

e, da Fórmula 3, temos

$$V = \iint_{D} (x^{2} + y^{2}) dA = \int_{-\pi/2}^{\pi/2} \int_{0}^{2\cos\theta} r^{2} r \, dr \, d\theta = \int_{-\pi/2}^{\pi/2} \left[\frac{r^{4}}{4} \right]_{0}^{2\cos\theta} d\theta$$

$$= 4 \int_{-\pi/2}^{\pi/2} \cos^{4}\theta \, d\theta = 8 \int_{0}^{\pi/2} \cos^{4}\theta \, d\theta = 8 \int_{0}^{\pi/2} \left(\frac{1 + \cos 2\theta}{2} \right)^{2} d\theta$$

$$= 2 \int_{0}^{\pi/2} \left[1 + 2\cos 2\theta + \frac{1}{2}(1 + \cos 4\theta) \right] d\theta$$

$$= 2 \left[\frac{3}{2}\theta + \sin 2\theta + \frac{1}{8}\sin 4\theta \right]_{0}^{\pi/2} = 2 \left(\frac{3}{2} \right) \left(\frac{\pi}{2} \right) = \frac{3\pi}{2}$$

15.4 Exercícios

1–4 Uma região R é mostrada. Decida se você deve usar coordenadas polares ou retangulares, e escreva $\iint_R f(x, y) dA$ como uma integral iterada, onde f é uma função qualquer contínua em R.

3.

5-6 Esboce a região cuja área é dada pela integral e calcule-a.

5.
$$\int_{\pi}^{3\pi/4} \int_{1}^{2} r \, dr \, d\theta$$

6.
$$\int_{\pi/2}^{\pi} \int_{0}^{2 \sin \theta} r \, dr \, d\theta$$

- 7-14 Calcule a integral dada, colocando-a em coordenadas polares.
- 7. $\iint_D x^2 y \, dA$, onde D é a metade superior do disco com centro na
- **8.** $\iint_{R} (2x y) dA$, onde R é a região do primeiro quadrante limitada pelo círculo $x^2 + y^2 = 4$ e as retas x = 0 e y = x
- **9.** $\iint_{R} \operatorname{sen}(x^{2} + y^{2}) dA$, onde R é a região do primeiro quadrante entre os círculos com centro na origem e raios 1 e 3
- **10.** $\iint_R \frac{y^2}{x^2 + y^2} dA$, onde R é a região que fica entre os círculos $x^{2} + y^{2} = a^{2} e x^{2} + y^{2} = b^{2} com 0 < a < b$
- 11. $\iint_D e^{-x^2-y^2} dA$, onde D é a região limitada pelo semicírculo $x = \sqrt{4 - y^2}$ e o eixo y
- **12.** $\iint_D \cos \sqrt{x^2 + y^2} dA$, onde D é o disco com centro na origem e
- **13.** $\iint_R \operatorname{arctg}(y/x) dA$, onde $R = \{(x, y) \mid 1 \le x^2 + y^2 \le 4, \ 0 \le y \le x\}$
- **14.** $\iint_D x \, dA$, onde D é a região no primeiro quadrante que se encontra entre os círculos $x^2 + y^2 = 4 e x^2 + y^2 = 2x$
- 15-18 Utilize a integral dupla para determinar a área da região.
- **15.** Um laço da rosácea $r = \cos 3\theta$
- **16.** A região limitada por ambos os cardioides $r = 1 + \cos \theta$ e $r = 1 - \cos \theta$
- 17. A região dentro do círculo $(x-1)^2 + y^2 = 1$ e fora do círculo $x^2 + y^2 = 1$
- **18.** A região dentro do círculo $r = 1 + \cos \theta$ e fora do círculo $r = 3\cos\theta$
- 19-27 Utilize coordenadas polares para determinar o volume do sólido dado.
- **19.** Abaixo do cone $z = \sqrt{x^2 + y^2}$ e acima do disco $x^2 + y^2 \le 4$
- **20.** Abaixo do paraboloide $z = 18 2x^2 2y^2$ e acima do plano xy
- **21.** Limitado pelo hiperboloide $-x^2 y^2 + z^2 = 1$ e pelo plano
- **22.** Dentro da esfera $x^2 + y^2 + z^2 = 16$ e fora do cilindro $x^2 + y^2 = 4$
- **23**. Uma esfera de raio a
- **24.** Limitado pelo paraboloide $z = 1 + zx^2 + zy^2$ e pelo plano z = 7no primeiro octante
- **25.** Acima do cone $z = \sqrt{x^2 + y^2}$ e abaixo da esfera $x^2 + y^2 + z^2 = 1$
- **26.** Limitado pelos paraboloides $z = 3x^2 + 3y^2$ e $z = 4 x^2 y^2$
- 27. Dentro tanto do cilindro $x^2 + y^2 = 4$ quanto do elipsoide $4x^2 + 4y^2 + z^2 = 64$
- **28.** (a) Uma broca cilíndrica de raio r_1 é usada para fazer um furo que passa pelo centro de uma esfera de raio r_2 . Determine o volume do sólido em formato de anel resultante.
 - (b) Expresse o volume da parte (a) em termos da altura h do anel. Observe que o volume depende somente de h e não de r_1 ou r_2 .
- 29-32 Calcule a integral iterada, convertendo-a antes para coordena-
- **29.** $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \operatorname{sen}(x^2 + y^2) \, dy \, dx$ **30.** $\int_{0}^{a} \int_{-\sqrt{a^2 y^2}}^{0} x^2 y \, dx \, dy$
- **31.** $\int_{0}^{1} \int_{0}^{\sqrt{2-y^2}} (x+y) \, dx \, dy$ **32.** $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} \sqrt{x^2+y^2} \, dy \, dx$
- 33-34 Expresse a integral dupla em termos de uma integral unidimensional com relação a r. Em seguida, use a calculadora para ava-

liar a integral correta com quatro casas decimais.

- **33.** $\iint_D e^{(x^2+y^2)^2} dA$, *D* onde está o disco com centro na origem e raio 1
- **34.** $\iint_D xy\sqrt{1+x^2+y^2} dA$, onde D é a porção do disco $x^2 + y^2 \le 1$ que fica no primeiro quadrante
- **35.** Uma piscina circular tem diâmetro de 10 metros. A profundidade é constante ao longo das retas de leste para oeste e cresce linearmente de 1 metro na extremidade sul para dois metros na extremidade norte. Encontre o volume de água da piscina.
- 36. Um pulverizador agrícola distribui água em um padrão circular de 50 m de raio. Ele fornece água até uma profundidade de e^{-r} metros por hora a uma distância de r metros do pulverizador.
 - (a) Se $0 < R \le 50$, qual a quantidade total de água fornecida por hora para a região dentro do círculo de raio R centrada no pulverizador?
 - (b) Determine uma expressão para a quantidade média de água por hora por metro quadrado fornecida à região dentro do círculo de raio R.
- **37.** Encontre o valor médio da função $f(x, y) = 1/\sqrt{x^2 + y^2}$ na região anular $a^2 \le x^2 + y^2 \le b^2$, onde 0 < a < b.
- **38.** Seja D o disco com centro na origem e raio a. Qual é a distância média dos pontos em D em relação à origem?
- 39. Utilize coordenadas polares para combinar a soma

$$\int_{1/\sqrt{2}}^{1} \int_{\sqrt{1-x^2}}^{x} xy \, dy \, dx + \int_{1}^{\sqrt{2}} \int_{0}^{x} xy \, dy \, dx + \int_{\sqrt{2}}^{2} \int_{0}^{\sqrt{4-x^2}} xy \, dy \, dx$$
 em uma única integral dupla. Em seguida calcule essa integral dupla.

40. (a) Definimos a integral imprópria (sobre todo o plano \mathbb{R}^2)

$$I = \iint_{\mathbb{R}^2} e^{-(x^2 + y^2)} dA = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2 + y^2)} dy dx$$
$$= \lim_{a \to \infty} \iint_{\mathbb{R}} e^{-(x^2 + y^2)} dA$$

onde D_a é o disco com raio a e centro na origem. Mostre que

$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dA = \pi$$

(b) Uma definição equivalente da integral imprópria da parte (a) é

$$\iint_{\mathbb{R}^2} e^{-(x^2+y^2)} dA = \lim_{a \to \infty} \iint_{S_a} e^{-(x^2+y^2)} dA$$

onde S_a é o quadrado com vértices $(\pm a, \pm a)$. Use isto para mostrar que

$$\int_{-\infty}^{\infty} e^{-x^2} dx \int_{-\infty}^{\infty} e^{-y^2} dy = \pi$$

(c) Deduza que

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$$

(d) Fazendo a mudança de variável $t = \sqrt{2} x$, mostre que

$$\int_{-\infty}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi}$$

(Esse é um resultado fundamental em probabilidade e esta-

41. Utilize o resultado do Exercício 40, parte (c), para calcular as seguintes integrais.

$$(a) \int_0^\infty x^2 e^{-x^2} dx$$

(b)
$$\int_0^\infty \sqrt{x} e^{-x} dx$$

29. $\frac{128}{15}$ **31.** $\frac{1}{3}$ **33.** 0, 1,213; 0,713 **35.** $\frac{64}{3}$ **27**. 6

37.

39. 13 984 735 616/14 549 535

41.
$$\pi/2$$

43.
$$\int_{0}^{1} \int_{0}^{1} f(x, y) dy dx$$

45.
$$\int_{0}^{1} \int_{0}^{\cos^{-1}y} f(x, y) dx dy$$

47. $\int_0^{\ln 2} \int_{e^y}^2 f(x, y) dx dy$

49. $\frac{1}{6}(e^9-1)$ **51.** $\frac{1}{3}\ln 9$ **53.** $\frac{1}{3}(2\sqrt{2}-1)$ **55.** 1

57. $(\pi/16)e^{-1/16} \le \iint_{\mathcal{Q}} e^{-(x^2+y^2)^2} dA \le \pi/16$ **59.** $\frac{3}{4}$ **63.** 9π

65. $a^2b + \frac{3}{2}ab^2$ **67.** πa^2b

EXERCÍCIOS 15.4

1. $\int_0^{3\pi/2} \int_0^4 f(r\cos\theta, r\sin\theta) r \, dr \, d\theta$ **3.** $\int_{-1}^1 \int_0^{(x+1)/2} f(x, y) \, dy \, dx$ **5.**

7. $\frac{1250}{3}$ 9. $(\pi/4)(\cos 1 - \cos 9)$

11. $(\pi/2)(1-e^{-4})$ **13.** $\frac{3}{64} \pi^2$ **15.** $\pi/12$

17. $\frac{\pi}{3} + \frac{\sqrt{3}}{2}$ **19.** $\frac{16}{3}\pi$ **21.** $\frac{4}{3}\pi$ **23.** $\frac{4}{3}\pi a^3$

25. $(2\pi/3)[1-(1/\sqrt{2})]$ **27.** $(8\pi/3)(64-24\sqrt{3})$

29. $\frac{1}{2}\pi (1 - \cos 9)$ **31.** $2\sqrt{2}/3$ **33.** 4,5951

35. 37.5π m³ **37.** 2/(a+b) **39.** $\frac{15}{16}$

41. (a) $\sqrt{\pi}/4$ $(b)\sqrt{\pi/2}$

EXERCÍCIOS 15.5

3. 42k, $(2, \frac{85}{28})$ **5.** $6, (\frac{3}{4}, \frac{3}{2})$ **7.** $\frac{8}{15}k$, $(0, \frac{4}{7})$ **1**. 285 C

9. L/4, $(L/2, 16/(9\pi))$ **11.** $(\frac{3}{8}, 3\pi/16)$ **13.** $(0, 45/14\pi))$

15. (2a/5, 2a/5) se o vértice é (0, 0) e os lados estão ao longo dos eixos positivos

17. $\frac{64}{315}k$, $\frac{8}{105}k$, $\frac{88}{315}k$

19. $7ka^6/180$, $7ka^6/180$, $7ka^6/90$ se o vértice é (0, 0) e os lados estão ao longo dos eixos positivos

21. $\rho bh^3/3$, $\rho b^3h/3$; $b/\sqrt{3}$, $h/\sqrt{3}$

23. $\rho a^4 \pi / 16$, $\rho a^4 \pi / 16$; a/2, a/2

25. $m = 3\pi/64, (\overline{x}, \overline{y}) = \left(\frac{16384\sqrt{2}}{10305\pi}, 0\right),$

$$I_x = \frac{5\pi}{384} - \frac{4}{105}, I_y = \frac{5\pi}{384} + \frac{4}{105}, I_0 = \frac{5\pi}{192}$$

27. (a) $\frac{1}{2}$ (b) 0,375 (c) $\frac{5}{48} \approx 0,1042$

29. (b) (i) $e^{-0.2} \approx 0.8187$

(ii) $1 + e^{-1.8} - e^{-0.8} - e^{-1} \approx 0.3481$ (c) 2, 5

31. (a) ≈ 0.500 (b) ≈ 0.632

33. (a) $\iint_D (k/20)[20 - \sqrt{(x-x_0)^2 + (y-y_0)^2}] dA$, onde $D \notin O$ disco com raio de 10 km centralizado no centro da cidade

(b) $200\pi k/3 \approx 209k$, $200(\pi/2 - \frac{8}{9})k \approx 136k$, na borda

EXERCÍCIOS 15.6

1. $15\sqrt{26}$ 3. $3\sqrt{14}$ **5.** $12 \text{ sen}^{-1}(\frac{2}{3})$

7. $(\pi/6)(17\sqrt{17}-5\sqrt{5})$ **9.** $(2\pi/3)(2\sqrt{2}-1)$

11. $a^2(\pi-2)$ **13.** 13,9783 **15.** (a) $\approx 1,83$ (b) $\approx 1,8616$ **17.** $\frac{45}{8}\sqrt{14} + \frac{15}{16}\ln[(11\sqrt{5} + 3\sqrt{70})/(3\sqrt{5} + \sqrt{70})]$

19. 3,3213 **23.** $(\pi/6)(101\sqrt{101}-1)$

EXERCÍCIOS 15.7

1. $\frac{27}{4}$ **3.** $\frac{16}{15}$ **5.** $\frac{5}{3}$ **7.** $-\frac{1}{3}$ **9.** 4 **13.** $\frac{65}{28}$ **15.** $\frac{1}{60}$ **17.** $16\pi/3$ **19.** $\frac{16}{3}$

23. (a) $\int_0^1 \int_0^x \int_0^{\sqrt{1-y^2}} dz \, dy \, dx$ (b) $\frac{1}{4}\pi - \frac{1}{3}$

25. 0,985

27.

29. $\int_{-2}^{2} \int_{0}^{4-x^2} \int_{-\sqrt{4-x^2-y/2}}^{\sqrt{4-x^2-y/2}} f(x, y, z) dz dy dx$ $= \int_0^4 \int_{-\sqrt{4-y}}^{\sqrt{4-y}} \int_{-\sqrt{4-x^2-y/2}}^{\sqrt{4-x^2-y/2}} f(x, y, z) dz dx dy$ $= \int_{-1}^{1} \int_{0}^{4-4z^2} \int_{-\sqrt{4-y-4z^2}}^{\sqrt{4-y-4z^2}} f(x, y, z) dx dy dz$ $= \int_0^4 \int_{-\sqrt{4-y/2}}^{\sqrt{4-y/2}} \int_{-\sqrt{4-y-4z^2}}^{\sqrt{4-y-4z^2}} f(x, y, z) \, dx \, dz \, dy$ $= \int_{-2}^{2} \int_{-\sqrt{4-x^2}/2}^{\sqrt{4-x^2}/2} \int_{0}^{4-x^2-4z^2} f(x, y, z) \, dy \, dz \, dx$ $= \int_{-1}^{1} \int_{-\sqrt{4-4z^2}}^{\sqrt{4-4z^2}} \int_{0}^{4-x^2-4z^2} f(x, y, z) \, dy \, dx \, dz$

31.
$$\int_{-2}^{2} \int_{x^{2}}^{4} \int_{0}^{2-y/2} f(x, y, z) dz dy dx$$

$$= \int_{0}^{4} \int_{-\sqrt{y}}^{\sqrt{y}} \int_{0}^{2-y/2} f(x, y, z) dz dx dy$$

$$= \int_{0}^{2} \int_{0}^{4-2z} \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y, z) dx dy dz$$

$$= \int_{0}^{4} \int_{0}^{2-y/2} \int_{-\sqrt{y}}^{\sqrt{y}} f(x, y, z) dx dz dy$$

$$= \int_{-2}^{2} \int_{0}^{2-x^{2}/2} \int_{x^{2}}^{4-2z} f(x, y, z) dy dz dx$$

$$= \int_{0}^{2} \int_{-\sqrt{4-2z}}^{\sqrt{4-2z}} \int_{x^{2}}^{4-2z} f(x, y, z) dy dx dz$$