Machine Learning from Data – IDC – 2022

HW5 - Theory + SVM

- 1. Kernels and mapping functions (25 pts)
 - a. (20 pts) Let $K(x,y) = (x \cdot y + 1)^3$ be a function over $\mathbb{R}^2 \times \mathbb{R}^2$ (i.e., $x,y \in \mathbb{R}^2$).

Find ψ for which K is a kernel. (It may help to first expand the above term on the right-hand side).

- b. (2 pts) What did we call the function ψ in class if we remove all coefficients?
- c. (3 pts) How many multiplication operations do we save by using K(x, y) versus $\psi(x) \cdot \psi(y)$?
- 2. <u>Lagrange multipliers (25 pts)</u>

Let f(x,y) = 2x - y. Find the minimum and the maximum points for f under the constraint $g(x,y) = \frac{x^2}{4} + y^2 = 1$.

3. PAC Learning (25 pts)

Let
$$X = \mathbb{R}^2$$
. Let vectors $u = (\frac{\sqrt{3}}{2}, \frac{1}{2}), w = (\frac{\sqrt{3}}{2}, -\frac{1}{2}), v = (0, -1)$

and
$$C = H = \left\{ h(r) = \left\{ (x_1, x_2) \middle| \begin{array}{l} (x, y) \cdot u \le r, \\ (x, y) \cdot v \le r, \\ (x, y) \cdot w \le r \end{array} \right\} \right\}, \text{ for } r > 0,$$

the set of all origin-centered upright equilateral triangles.

Describe a polynomial sample complexity algorithm L that learns C using H. State the time complexity and the sample complexity of your suggested algorithm. Prove all your steps.

4. (15 pts) A business manager at your ecommerce company asked you to make a model to predict whether a user is going to proceed to checkout or abandon their cart. You created the model using, and reported 20% error on your test set of size 1000 samples. In the business manager's presentation to upper management, he presented your

model and stated that the company can expect 20% error when deploying the model live on the website.

Luckily, you realize that this is a mistaken assumption, and you correct the statement to say that with 95% confidence, the true error they can expect is up to what percentage? (Just state the error percentage).

5. SVM (10 pts)

See the notebook in the homework files and follow the instructions there.

Take a **screenshot** of your resulting graph near the bottom of the notebook (titled "My Graph") and paste into your submission PDF along with your answers to the theoretical questions. Do **NOT** submit your code.

Omer Wachman – 312332372 Adam Vinestock - 209795624 HW No.5

Question 1:

Let $K(x, y) = (x \cdot y + 1)^3$ be a function over $\mathbb{R}^2 \times \mathbb{R}^2$ (i.e., $x, y \in \mathbb{R}^2$).

a. Find ψ for which K is a kernel:

$$(x \cdot y + 1)^{3} =$$

$$= (x \cdot y)^{3} + (x \cdot y)^{2} + (x \cdot y) + 1 = (x_{1}y_{1} + x_{2}y_{2})^{3} + (x_{1}y_{1} + x_{2}y_{2})^{2} + (x_{1}y_{1} + x_{2}y_{2}) + 1$$

$$= x_{1}^{3}y_{1}^{3} + 3x_{1}^{2}y_{1}^{2}x_{2}y_{2} + 3x_{1}y_{1}x_{2}^{2}y_{2}^{2} + x_{2}^{3}y_{2}^{3} + 3x_{1}^{2}y_{1}^{2} + 6x_{1}y_{1}x_{2}y_{2} + 3x_{2}^{2}y_{2}^{2} + 3x_{1}y_{1} + 3x_{2}y_{2} + 1$$

$$\Rightarrow \psi(x_{1}, x_{2}) = \langle x_{1}^{3}, \sqrt{3}x_{1}^{2}x_{2}, \sqrt{3}x_{1}x_{2}^{2}, x_{2}^{3}, \sqrt{3}x_{1}^{2}, \sqrt{6}x_{1}x_{2}, \sqrt{3}x_{2}^{2}, \sqrt{3}x_{1}, \sqrt{3}x_{2}, 1 \rangle$$

 $\rightarrow \varphi(x_1, x_2) = \langle x_1, y_3x_1, x_2, y_3x_1x_2, x_2, y_3x_1, y_3x_2, y_3x_2, y_3x_1, y_3x_2, y_3x_2, y_3x_1, y_3x_2, y_3x_2, y_3x_1, y_3x_2, y_3x_2,$

b. What did we call the function ψ in class if we remove all coefficients?

We have called this function – cubic mapping.

c. How many multiplication operations do we save by using K(x, y) versus $\psi(x) \cdot \psi(y)$?

When using the mapping function of ψ we map from R² to R¹⁰, therefore when applying the operation ψ (x1,x2)· ψ (y1,y2) we use 10 multiplications.

When applying the kernel $K(x, y) = (x1\cdot y1+x2\cdot y2+1)3$ we use 4 multiplications.

Therefore, in total we save 6 multiplication operations.

Question 2:

Let f(x, y) = 2x - y. Find the minimum and the maximum points for f under the constraint $g(x,y) = x^2 + y^2 = 1$.

Solution:

Lagrange equation:

$$\exists \lambda \text{ s. t.}, L(x, y) = f(x, y) + \lambda g(x, y)$$

Find the partial derivates and equal to zero

$$\frac{\partial}{\partial x}L(x,y) = 2 + \frac{1}{2}\lambda x = 0 \implies x = -\frac{4}{\lambda}$$

$$\frac{\partial}{\partial y}L(x,y) = -1 + 2\lambda y = 0 \implies y = \frac{1}{2\lambda}$$

$$\frac{\partial}{\partial \lambda}L(x,y) = \frac{x^2}{4} + y^2 - 1 = 0 \implies \frac{\left(\frac{-4}{\lambda}\right)^2}{4} + \left(\frac{1}{2\lambda}\right)^2 - 1 = \frac{16}{4\lambda^2} + \frac{1}{4\lambda^2} - 1 = \frac{17}{4\lambda^2} - 1 \implies \frac{1}{4\lambda^2} + \frac{1}{4\lambda^2$$

$$\Rightarrow \frac{17}{4\lambda^2} - 1 = 0 \Rightarrow (\lambda_1, \lambda_2) = (+\frac{\sqrt{17}}{4}, -\frac{\sqrt{17}}{4})$$

Because we squared λ after the substitution, we must consider that the resulted value of λ can be also negative. Hence, we got two different λ .

Substitute(λ_1, λ_2) into X and Y values:

$$x = -\frac{4}{\lambda} \Longrightarrow (x_1, x_2) = (-\frac{8}{\sqrt{17}}, +\frac{8}{\sqrt{17}})$$

$$y = \frac{1}{2\lambda} \Longrightarrow (y_1, y_2) = (+\frac{1}{\sqrt{17}}, -\frac{1}{\sqrt{17}})$$

Now we have to different point to substitute in f(x,y):

1.
$$f(x_1, y_1) = f\left(-\frac{8}{\sqrt{17}}, +\frac{8}{\sqrt{17}}\right) = -\frac{16}{\sqrt{17}} - \frac{1}{\sqrt{17}} = -\frac{17}{\sqrt{17}} = -\sqrt{17} \Longrightarrow \textbf{Minimum point}$$

$$2.f(x_2,y_2) = f\left(+\frac{1}{\sqrt{17}},-\frac{1}{\sqrt{17}}\right) = \frac{16}{\sqrt{17}} - \left(-\frac{1}{\sqrt{17}}\right) = \frac{17}{\sqrt{17}} = \sqrt{17} \implies \textit{Maximum point}$$

Question 3:

PAC Learning

Let
$$X = \mathbb{R}^2$$
. Let vectors $u = (v3, 1)$, $w = (v3, -1)$, $v = (0, -1)$

and
$$C = H = \{h(r) = \{(x_1, x_2) | (x, y) \cdot v \le r, (x, y) \cdot w \le r, (x, y) \cdot u \le r\} \}$$
, for $r > 0\}$

the set of all origin-centered upright equilateral triangles.

Describe a polynomial sample complexity algorithm L that learns C using H. State the time complexity and the sample complexity of your suggested algorithm. Prove all your steps.

Answer:

We will define an algorithm that learns the r parameter according to given data.

The learning Algorithm(D): # D is the training data

r = 0 # Initializing r
for every instance
$$\vec{x} = (x_1, x_2) \in D$$
 with "True" label:

if
$$r < max (\vec{x} \cdot u, \vec{x} \cdot v, \vec{x} \cdot w)$$
:
 $r = max (\vec{x} \cdot u, \vec{x} \cdot v, \vec{x} \cdot w)$

return r

the output represents the "r" for which the data will be classified. such that:

$$h = L(D) = \{(x_1, x_2) | (x, y) \cdot v \le r, (x, y) \cdot w \le r, (x, y) \cdot u \le r\} \}$$

the resulted hypothesis L(D) represents the smallest origin-centered upright equilateral triangle that includes all training data labeled "True".

r represents the distance from the origin to each of the triangle vertices.

Sample complexity:

Given some $\delta \in [0,0.5]$, we can bound our sample size, such that our learning algorithm is not epsilon-bad with confidence 1- δ .

Claim – The concept class of origin-centered upright equilateral triangles is efficiently PAC-learnable.

Note that our learning algorithm is a consistent learner and by taking a large number of examples we get closer to the concept.

Proof:

Let $c \in C$ be a concept.

Let r^* be the value that defines the concept c: $\{(x_1, x_2) | (x, y) \cdot v \le r^*, (x, y) \cdot w \le r^*, (x, y) \cdot u \le r^*\}$ Let r be the value that defines the hypothesis from the learning algorithm L(D) shown above. Let $r^{\mathcal{E}}$ be the largest origin-centered upright equilateral triangle such that $P((x_1, x_2) \in A_{\mathcal{E}}) \le \mathcal{E}$ Where $A_{\mathcal{E}}$ is the area between L(D) and the concept.

 $\underline{\mathbf{1}^{\mathrm{st}}\,\mathrm{case}} : r^{\mathcal{E}} \leq r$

Then $\forall x \in X$, the probability that $x \in A_{\varepsilon}$ is less than ε .

$$2^{\text{nd}}$$
 case: $r^{\mathcal{E}} \geq r$

Given m samples to the learning algorithm, the probability of an instance $x \in X$ being misclassified is $(1-\mathcal{E})^m \leq e^{-\mathcal{E}m}$ Now, let's bound it with δ :

$$e^{-\mathcal{E}m} \leq \delta \ \Rightarrow \frac{1}{\delta} \leq e^{\mathcal{E}m} \Rightarrow \ ln\left(\frac{1}{\delta}\right) \leq \ln(e^{\mathcal{E}m}) \Rightarrow m \geq \frac{\ln\left(\frac{1}{\delta}\right)}{\mathcal{E}}$$
 So with confidence δ in order for hypothesis L(D) do be epsilon-bad we need at least $\frac{\ln\left(\frac{1}{\delta}\right)}{\mathcal{E}}$ instances.

Time complexity:

For each sample we perform O(1) calculations. In total the time complexity is linear to the sample size - O(m)

Question 4:

We can say that with 95% confidence, the true error they can expect is in the interval:

$$(\hat{p} - 2se, \hat{p} + 2se)$$

$$\hat{p} = true \; error = 20\% = 0.2$$

n = number of samples in test set = 1000

$$se = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{0.2(1-0.2)}{1000}} = \sqrt{\frac{0.2*0.8}{1000}} = \sqrt{0.00016} \approx 0.01265$$

 \Rightarrow we can say with confidence of 95% that the true error between:

$$(0.2 - 1.96 * 0.01265, 0.2 + 1.96 * 0.01265) = (0.1752, 0.2247) \approx (17.52\%, 22.47\%)$$

Question 5:

