(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 4 January 2001 (04.01.2001)

PCT

(10) International Publication Number WO 01/00843 A2

(51)	International Pate		:12N 1			199 33 004.2	14 July 1999 (14.07.1999)	DE
	15/61, 1/21, 9/90, C	07K 14/34, C12P 13/08, C	C12Q 1	/68		199 33 005.0	14 July 1999 (14.07.1999)	DE
	_					199 33 006.9	14 July 1999 (14.07.1999)	DE
(21)	International Appl	ication Number: PCT	/IB00/(0923		60/148,613	12 August 1999 (12.08.1999)	US
						199 40 764.9	27 August 1999 (27.08.1999)	DE
(22)	International Filin	g Date: 23 June 2000 ((23.06.2	2000)		199 40 765.7	27 August 1999 (27.08.1999)	DE
	-		_			199 40 766.5	27 August 1999 (27.08.1999)	DE
(25)	Filing Language:	\	Er	iglish		199 40 832.7	27 August 1999 (27.08.1999)	DE
<i>(</i> 2.0)	75.1.11		_			199 41 378.9	31 August 1999 (31.08.1999)	DE
(26)	Publication Langu	age:	Er	ıglish		199 41 379.7	31 August 1999 (31.08.1999)	DE
(30)	Duianita, Data					199 41 394.0	31 August 1999 (31.08.1999)	DE
(30)	Priority Data:	05 1 1000 (05 07	1000	***		199 41 396.7	31 August 1999 (31.08.1999)	DE
	60/141,031	25 June 1999 (25.06.		US		199 41 380.0	31 August 1999 (31.08.1999)	DE
	199 30 476.9	1 July 1999 (01.07.		DE		199 42 077.7	3 September 1999 (03.09.1999)	DE
	60/142,101	2 July 1999 (02.07.	•	US		199 42 129.3	3 September 1999 (03.09.1999)	DE
	199 31 415.2	8 July 1999 (08.07.		DE		199 42 076.9	3 September 1999 (03.09.1999)	DE
	199 31 418.7	8 July 1999 (08.07.	•	DE		199 42 079.3	3 September 1999 (03.09.1999)	DE
	199 31 419.5 199 31 420.9	8 July 1999 (08.07.	•	DE	•	199 42 086.6	3 September 1999 (03.09.1999)	DE
	199 31 424.1	8 July 1999 (08.07.)	-	DE		199 42 087.4	3 September 1999 (03.09.1999)	DE
	199 31 424.1	8 July 1999 (08.07.	•	DE		199 42 088.2	3 September 1999 (03.09.1999)	DE
	199 31 426.4	8 July 1999 (08.07.	•	DE		199 42 095.5	3 September 1999 (03.09.1999)	DE
	199 31 435.7	8 July 1999 (08.07.)	-	DE		199 42 124.2	3 September 1999 (03.09.1999)	DE
	199 31 443.8	8 July 1999 (08.07. 8 July 1999 (08.07.)	•	DE DE		60/187,970	9 March 2000 (09.03.2000)	US
	199 31 453.5	8 July 1999 (08.07.)		DE	(71)	A	Dice immediately	
	199 31 457.8	8 July 1999 (08.07.)	-	DE	(/1)	Applicant:	BASF AKTIENGESELLSCH	AFT
	199 31 465.9	8 July 1999 (08.07.)	•	DE		[DBDE]; D-6/0	56 Ludwigshafen (DE).	
	199 31 478.0	8 July 1999 (08.07.1		DE	(72)	Inventore DC	MPEJUS, Markus; Wenjenstr.	21
	199 31 510.8	8 July 1999 (08.07.)	-	DE	(12)		heim (DE). KRÖGER, Burkhard	21,
	199 31 541.8	8 July 1999 (08.07.)		DE		Woldhof 1 D 6	7117 Limburgerhof (DE). SCHRÖI	; IM
	199 31 573.6	8 July 1999 (08.07.)		DE		Hartwig; Goet		_
	199 31 592.2	8 July 1999 (08.07.1		DE			ar; Rossmarktstr. 27, D-67346 Sj	
	199 31 632.5	8 July 1999 (08.07.1		DE			IAUER, Gregor; Moselstr. 42, D-6	
	199 31 634.1	8 July 1999 (08.07.1		DE		Limburgerhof (D		,,,,,,
	199 31 636.8	8 July 1999 (08.07.1		DE		Dimonigerior (D	<i></i>	
	199 32 125.6	9 July 1999 (09.07.)	•	DÉ	/81 \	Designated Stat	es (national): AE, AG, AL, AM, AT,	ATT
	199 32 126,4	9 July 1999 (09.07.1		DE	(0.)		BR, BY, BZ, CA, CH, CN, CR, CU,	
	199 32 130.2	9 July 1999 (09.07.1	-	DE			Z, EE, ES, FI, GB, GD, GE, GH, GM,	
	199 32 186.8	9 July 1999 (09.07.1	-	DE			S, JP, KE, KG, KP, KR, KZ, LC, LK	
	199 32 206.6	9 July 1999 (09.07.1	-	DE			MA, MD, MG, MK, MN, MW, MX,	
	199 32 227.9	9 July 1999 (09.07.1	-	DE			RO, RU, SD, SE, SG, SI, SK, SL, TJ,	
	199 32 228.7	9 July 1999 (09.07.1		DE		TR. TT. TZ. 11A	UG, UZ, VN, YU, ZA, ZW.	. 4 1724
	199 32 229.5	9 July 1999 (09.07.1		DE		,, 10, 0/1	,,, +11, 10, Llh, L11.	
	199 32 230.9	9 July 1999 (09.07.1		DE	(84)	Designated Stat	es (regional): ARIPO patent (GH,	GM.
	199 32 922.2	14 July 1999 (14.07.1		DE	(3.7)		Z, SD, SL, SZ, TZ, UG, ZW), Eura	
	199 32 926.5	14 July 1999 (14.07.1		DE			BY, KG, KZ, MD, RU, TJ, TM), Euro	
	100 32 028 1	14 5-1 1000 (14 07)	1000					

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,

[Continued on next page]

(54) Title: CORYNEBACTERIUM GLUTAMICUM GENES ENCODING METABOLIC PATHWAY PROTEINS

14 July 1999 (14.07.1999)

(57) Abstract: Isolated nucleic acid molecules, designated MP nucleic acid molecules, which encode novel MP proteins from Corynebacterium glutamicum are described. The invention also provides antisense nucleic acid molecules, recombinant expression vectors containing MP nucleic acid molecules, and host cells into which the expression vectors have been introduced. The invention still further provides isolated MP proteins, mutated MP proteins, fusion proteins, antigenic peptides and methods for the improvement of production of a desired compound from C. glutamicum based on genetic engineering of MP genes in this organism.

3 =

/0 01/00843

199 32 928.1

IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

 Without international search report and to be republished upon receipt of that report.

CORYNEBACTERIUM GLUTAMICUM GENES ENCODING METABOLIC PATHWAY PROTEINS

Related Applications

The present application claims priority to prior filed U.S. Provisional Patent Application Serial No. 60/141031, filed June 25, 1999, U.S. Provisional Patent Application Serial No. 60/142101, filed July 2, 1999, U.S. Provisional Patent Application Serial No. 60/148613, filed August 12, 1999, and also to U.S. Provisional Patent Application Serial No. 60/187970, filed March 9, 2000. The present application also claims priority to prior filed German Patent Application No. 19930476.9, filed July 10 1, 1999, German Patent Application No. 19931415.2, filed July 8, 1999, German Patent Application No. 19931418.7, filed July 8, 1999, German Patent Application No. 19931419.5, filed July 8, 1999, German Patent Application No. 19931420.9, filed July 8, 1999, German Patent Application No. 19931424.1, filed July 8, 1999, German Patent Application No. 19931428.4, filed July 8, 1999, German Patent Application No. 15 19931434.9, filed July 8, 1999, German Patent Application No. 19931435.7, filed July 8, 1999, German Patent Application No. 19931443.8, filed July 8, 1999, German Patent Application No. 19931453.5, filed July 8, 1999, German Patent Application No. 19931457.8, filed July 8, 1999, German Patent Application No. 19931465.9, filed July 8, 1999, German Patent Application No. 19931478.0, filed July 8, 1999, German Patent 20 Application No. 19931510.8, filed July 8, 1999, German Patent Application No. 19931541.8, filed July 8, 1999, German Patent Application No. 19931573.6, filed July 8, 1999, German Patent Application No. 19931592.2, filed July 8, 1999, German Patent Application No. 19931632.5, filed July 8, 1999, German Patent Application No. 19931634.1, filed July 8, 1999, German Patent Application No. 19931636.8, filed July 25 8, 1999, German Patent Application No. 19932125.6, filed July 9, 1999, German Patent Application No. 19932126.4, filed July 9, 1999, German Patent Application No. 19932130.2, filed July 9, 1999, German Patent Application No. 19932186.8, filed July 9, 1999, German Patent Application No. 19932206.6, filed July 9, 1999, German Patent Application No. 19932227.9, filed July 9, 1999, German Patent Application No.

30 19932228.7, filed July 9, 1999, German Patent Application No. 19932229.5, filed July 9, 1999, German Patent Application No. 19932230.9, filed July 9, 1999, German Patent Application No. 19932922.2, filed July 14, 1999, German Patent Application No.

19932926.5, filed July 14, 1999, German Patent Application No. 19932928.1, filed July 14, 1999, German Patent Application No. 19933004.2, filed July 14, 1999, German Patent Application No. 19933005.0, filed July 14, 1999, German Patent Application No. 19933006.9, filed July 14, 1999, German Patent Application No. 19940764.9, filed August 27, 1999, German Patent Application No. 19940765.7, filed August 27, 1999, German Patent Application No. 19940766.5, filed August 27, 1999, German Patent Application No. 19940832.7, filed August 27, 1999, German Patent Application No. 19941378.9, filed August 31, 1999, German Patent Application No. 19941379.7, filed August 31, 1999, German Patent Application No. 19941380.0, filed August 31, 1999, German Patent Application No. 19941394.0, filed August 31, 1999, German Patent 10 Application No. 19941396.7, filed August 31, 1999, German Patent Application No. 19942076.9, filed September 3, 1999, German Patent Application No. 19942077.7, filed September 3, 1999, German Patent Application No. 19942079.3, filed September 3, 1999, German Patent Application No. 19942086.6, filed September 3, 1999, German Patent Application No. 19942087.4, filed September 3, 1999, German Patent 15 Application No. 19942088.2, filed September 3, 1999, German Patent Application No. 19942095.5, filed September 3, 1999, German Patent Application No. 19942124.2, filed September 3, 1999, and German Patent Application No. 19942129.3, filed September 3, 1999. The entire contents of all of the aforementioned applications are hereby expressly incorporated herein by this reference. 20

Background of the Invention

Certain products and by-products of naturally-occurring metabolic processes in cells have utility in a wide array of industries, including the food, feed, cosmetics, and pharmaceutical industries. These molecules, collectively termed 'fine chemicals', include organic acids, both proteinogenic and non-proteinogenic amino acids, nucleotides and nucleosides, lipids and fatty acids, diols, carbohydrates, aromatic compounds, vitamins and cofactors, and enzymes. Their production is most conveniently performed through large-scale culture of bacteria developed to produce and secrete large quantities of a particular desired molecule. One particularly useful organism for this purpose is *Corynebacterium glutamicum*, a gram positive, nonpathogenic bacterium. Through strain selection, a number of mutant strains have

15

20

been developed which produce an array of desirable compounds. However, selection of strains improved for the production of a particular molecule is a time-consuming and difficult process.

5 Summary of the Invention

The invention provides novel bacterial nucleic acid molecules which have a variety of uses. These uses include the identification of microorganisms which can be used to produce fine chemicals, the modulation of fine chemical production in C. glutamicum or related bacteria, the typing or identification of C. glutamicum or related bacteria, as reference points for mapping the C. glutamicum genome, and as markers for transformation. These novel nucleic acid molecules encode proteins, referred to herein as metabolic pathway (MP) proteins.

C. glutamicum is a gram positive, aerobic bacterium which is commonly used in industry for the large-scale production of a variety of fine chemicals, and also for the degradation of hydrocarbons (such as in petroleum spills) and for the oxidation of terpenoids. The MP nucleic acid molecules of the invention, therefore, can be used to identify microorganisms which can be used to produce fine chemicals, e.g., by fermentation processes. Modulation of the expression of the MP nucleic acids of the invention, or modification of the sequence of the MP nucleic acid molecules of the invention, can be used to modulate the production of one or more fine chemicals from a microorganism (e.g., to improve the yield or production of one or more fine chemicals from a Corynebacterium or Brevibacterium species).

The MP nucleic acids of the invention may also be used to identify an organism as being Corynebacterium glutamicum or a close relative thereof, or to identify the

25 presence of C. glutamicum or a relative thereof in a mixed population of microorganisms. The invention provides the nucleic acid sequences of a number of C. glutamicum genes; by probing the extracted genomic DNA of a culture of a unique or mixed population of microorganisms under stringent conditions with a probe spanning a region of a C. glutamicum gene which is unique to this organism, one can ascertain whether this organism is present. Although Corynebacterium glutamicum itself is nonpathogenic, it is related to species pathogenic in humans, such as Corynebacterium

25

30

diphtheriae (the causative agent of diphtheria); the detection of such organisms is of significant clinical relevance.

The MP nucleic acid molecules of the invention may also serve as reference points for mapping of the C. glutamicum genome, or of genomes of related organisms. 5 Similarly, these molecules, or variants or portions thereof, may serve as markers for genetically engineered Corynebacterium or Brevibacterium species. The MP proteins encoded by the novel nucleic acid molecules of the invention are capable of, for example, performing an enzymatic step involved in the metabolism of certain fine chemicals, including amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, and trehalose. Given the availability of cloning vectors for use 10 in Corynebacterium glutamicum, such as those disclosed in Sinskey et al., U.S. Patent No. 4,649,119, and techniques for genetic manipulation of C. glutamicum and the related Brevibacterium species (e.g., lactofermentum) (Yoshihama et al, J. Bacteriol. 162: 591-597 (1985); Katsumata et al., J. Bacteriol. 159: 306-311 (1984); and Santamaria et al., J. Gen. Microbiol. 130: 2237-2246 (1984)), the nucleic acid molecules 15 of the invention may be utilized in the genetic engineering of this organism to make it a better or more efficient producer of one or more fine chemicals.

This improved production or efficiency of production of a fine chemical may be due to a direct effect of manipulation of a gene of the invention, or it may be due to an indirect effect of such manipulation. Specifically, alterations in *C. glutamicum* metabolic pathways for amino acids, vitamins, cofactors, nucleotides, and trehalose may have a direct impact on the overall production of one or more of these desired compounds from this organism. For example, optimizing the activity of a lysine biosynthetic pathway protein or decreasing the activity of a lysine degradative pathway protein may result in an increase in the yield or efficiency of production of lysine from such an engineered organism. Alterations in the proteins involved in these metabolic pathways may also have an indirect impact on the production or efficiency of production of a desired fine chemical. For example, a reaction which is in competition for an intermediate necessary for the production of a desired molecule may be eliminated, or a pathway necessary for the production of a particular intermediate for a desired compound may be optimized. Further, modulations in the biosynthesis or degradation of, for example, an amino acid, a vitamin, or a nucleotide may increase the overall

10

15

20

25

30

ability of the microorganism to rapidly grow and divide, thus increasing the number and/or production capacities of the microorganism in culture and thereby increasing the possible yield of the desired fine chemical.

The nucleic acid and protein molecules of the invention may be utilized to directly improve the production or efficiency of production of one or more desired fine chemicals from *Corynebacterium glutamicum*. Using recombinant genetic techniques well known in the art, one or more of the biosynthetic or degradative enzymes of the invention for amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, or trehalose may be manipulated such that its function is modulated. For example, a biosynthetic enzyme may be improved in efficiency, or its allosteric control region destroyed such that feedback inhibition of production of the compound is prevented. Similarly, a degradative enzyme may be deleted or modified by substitution, deletion, or addition such that its degradative activity is lessened for the desired compound without impairing the viability of the cell. In each case, the overall yield or rate of production of the desired fine chemical may be increased.

It is also possible that such alterations in the protein and nucleotide molecules of the invention may improve the production of other fine chemicals besides the amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, and trehalose through indirect mechanisms. Metabolism of any one compound is necessarily intertwined with other biosynthetic and degradative pathways within the cell, and necessary cofactors, intermediates, or substrates in one pathway are likely supplied or limited by another such pathway. Therefore, by modulating the activity of one or more of the proteins of the invention, the production or efficiency of activity of another fine chemical biosynthetic or degradative pathway may be impacted. For example, amino acids serve as the structural units of all proteins, yet may be present intracellularly in levels which are limiting for protein synthesis; therefore, by increasing the efficiency of production or the yields of one or more amino acids within the cell, proteins, such as biosynthetic or degradative proteins, may be more readily synthesized. Likewise, an alteration in a metabolic pathway enzyme such that a particular side reaction becomes more or less favored may result in the over- or under-production of one or more compounds which are utilized as intermediates or substrates for the production of a desired fine chemical.

10

15

20

25

30

1.

This invention provides novel nucleic acid molecules which encode proteins, referred to herein as metabolic pathway proteins (MP), which are capable of, for example, performing an enzymatic step involved in the metabolism of molecules important for the normal functioning of cells, such as amino acids, vitamins, cofactors, nucleotides and nucleosides, or trehalose. Nucleic acid molecules encoding an MP protein are referred to herein as MP nucleic acid molecules. In a preferred embodiment, the MP protein performs an enzymatic step related to the metabolism of one or more of the following: amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, and trehalose. Examples of such proteins include those encoded by the genes set forth in Table 1.

Accordingly, one aspect of the invention pertains to isolated nucleic acid molecules (e.g., cDNAs, DNAs, or RNAs) comprising a nucleotide sequence encoding an MP protein or biologically active portions thereof, as well as nucleic acid fragments suitable as primers or hybridization probes for the detection or amplification of MPencoding nucleic acid (e.g., DNA or mRNA). In particularly preferred embodiments, the isolated nucleic acid molecule comprises one of the nucleotide sequences set forth as the odd-numbered SEQ ID NOs in the Sequence Listing (e.g., SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7....), or the coding region or a complement thereof of one of these nucleotide sequences. In other particularly preferred embodiments, the isolated nucleic acid molecule of the invention comprises a nucleotide sequence which hybridizes to or is at least about 50%, preferably at least about 60%, more preferably at least about 70%, 80% or 90%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to a nucleotide sequence set forth as an odd-numbered SEQ ID NO in the Sequence Listing (e.g., SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7....), or a portion thereof. In other preferred embodiments, the isolated nucleic acid molecule encodes one of the amino acid sequences set forth as an evennumbered SEQ ID NO in the Sequence Listing (e.g., SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8...). The preferred MP proteins of the present invention also preferably possess at least one of the MP activities described herein.

In another embodiment, the isolated nucleic acid molecule encodes a protein or portion thereof wherein the protein or portion thereof includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of the invention (e.g., a

15

20

sequence having an even-numbered SEQ ID NO: in the Sequence Listing), e.g., sufficiently homologous to an amino acid sequence of the invention such that the protein or portion thereof maintains an MP activity. Preferably, the protein or portion thereof encoded by the nucleic acid molecule maintains the ability to perform an enzymatic reaction in a amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway. In one embodiment, the protein encoded by the nucleic acid molecule is at least about 50%, preferably at least about 60%, and more preferably at least about 70%, 80%, or 90% and most preferably at least about 95%, 96%, 97%, 98%, or 99% or more homologous to an amino acid sequence of the invention (e.g., an entire amino acid sequence selected from those having an even-numbered SEQ ID NO in the Sequence Listing). In another preferred embodiment, the protein is a full length C. glutamicum protein which is substantially homologous to an entire amino acid sequence of the invention (encoded by an open reading frame shown in the corresponding odd-numbered SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7....).

In another preferred embodiment, the isolated nucleic acid molecule is derived from *C. glutamicum* and encodes a protein (*e.g.*, an MP fusion protein) which includes a biologically active domain which is at least about 50% or more homologous to one of the amino acid sequences of the invention (*e.g.*, a sequence of one of the even-numbered SEQ ID NOs in the Sequence Listing) and is able to catalyze a reaction in a metabolic pathway for an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose, or one or more of the activities set forth in Table 1, and which also includes heterologous nucleic acid sequences encoding a heterologous polypeptide or regulatory regions.

In another embodiment, the isolated nucleic acid molecule is at least 15 nucleotides in length and hybridizes under stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the invention (e.g., a sequence of an odd-numbered SEQ ID NO in the Sequence Listing). Preferably, the isolated nucleic acid molecule corresponds to a naturally-occurring nucleic acid molecule. More preferably, the isolated nucleic acid encodes a naturally-occurring C. glutamicum MP protein, or a biologically active portion thereof.

10

15

20

25

Another aspect of the invention pertains to vectors, e.g., recombinant expression vectors, containing the nucleic acid molecules of the invention, and host cells into which such vectors have been introduced. In one embodiment, such a host cell is used to produce an MP protein by culturing the host cell in a suitable medium. The MP protein can be then isolated from the medium or the host cell.

Yet another aspect of the invention pertains to a genetically altered microorganism in which an MP gene has been introduced or altered. In one embodiment, the genome of the microorganism has been altered by introduction of a nucleic acid molecule of the invention encoding wild-type or mutated MP sequence as a transgene. In another embodiment, an endogenous MP gene within the genome of the microorganism has been altered, e.g., functionally disrupted, by homologous recombination with an altered MP gene. In another embodiment, an endogenous or introduced MP gene in a microorganism has been altered by one or more point mutations, deletions, or inversions, but still encodes a functional MP protein. In still another embodiment, one or more of the regulatory regions (e.g., a promoter, repressor, or inducer) of an MP gene in a microorganism has been altered (e.g., by deletion, truncation, inversion, or point mutation) such that the expression of the MP gene is modulated. In a preferred embodiment, the microorganism belongs to the genus Corynebacterium or Brevibacterium, with Corynebacterium glutamicum being particularly preferred. In a preferred embodiment, the microorganism is also utilized for the production of a desired compound, such as an amino acid, with lysine being particularly preferred.

In another aspect, the invention provides a method of identifying the presence or activity of Cornyebacterium diphtheriae in a subject. This method includes detection of one or more of the nucleic acid or amino acid sequences of the invention (e.g., the sequences set forth in the Sequence Listing as SEQ ID NOs 1 through 1156) in a subject, thereby detecting the presence or activity of Corynebacterium diphtheriae in the subject.

Still another aspect of the invention pertains to an isolated MP protein or a portion, e.g., a biologically active portion, thereof. In a preferred embodiment, the isolated MP protein or portion thereof can catalyze an enzymatic reaction involved in one or more pathways for the metabolism of an amino acid, a vitamin, a cofactor, a

20

25

30

nutraceutical, a nucleotide, a nucleoside, or trehalose. In another preferred embodiment, the isolated MP protein or portion thereof is sufficiently homologous to an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: in the Sequence Listing) such that the protein or portion thereof maintains the ability to catalyze an enzymatic reaction involved in one or more pathways for the metabolism of an amino acid, a vitamin, a cofactor, a nutraceutical, a nucleotide, a nucleoside, or trehalose.

The invention also provides an isolated preparation of an MP protein. In preferred embodiments, the MP protein comprises an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing). In another preferred embodiment, the invention pertains to an isolated full length protein which is substantially homologous to an entire amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) (encoded by an open reading frame set forth in a corresponding odd-numbered SEQ ID NO: of the Sequence Listing). In yet another embodiment, the protein is at least about 50%, preferably at least about 60%, and more preferably at least about 70%, 80%, or 90%, and most preferably at least about 95%, 96%, 97%, 98%, or 99% or more homologous to an entire amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing). In other embodiments, the isolated MP protein comprises an amino acid sequence which is at least about 50% or more homologous to one of the amino acid sequences of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) and is able to catalyze an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway, or has one or more of the activities set forth in Table 1.

Alternatively, the isolated MP protein can comprise an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, or is at least about 50%, preferably at least about 60%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 96%, 97%, 98,%, or 99% or more homologous to a nucleotide sequence of one of the even-numbered SEQ ID NOs set forth in the Sequence Listing. It is also preferred that the preferred forms of MP proteins also have one or more of the MP bioactivities described herein.

WO 01/00843 PCT/IB00/00923

- 10 -

The MP polypeptide, or a biologically active portion thereof, can be operatively linked to a non-MP polypeptide to form a fusion protein. In preferred embodiments, this fusion protein has an activity which differs from that of the MP protein alone. In other preferred embodiments, this fusion protein, when introduced into a *C. glutamicum* pathway for the metabolism of an amino acid, vitamin, cofactor, nutraceutical, results in increased yields and/or efficiency of production of a desired fine chemical from *C. glutamicum*. In particularly preferred embodiments, integration of this fusion protein into an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway of a host cell modulates production of a desired compound from the cell.

In another aspect, the invention provides methods for screening molecules which modulate the activity of an MP protein, either by interacting with the protein itself or a substrate or binding partner of the MP protein, or by modulating the transcription or translation of an MP nucleic acid molecule of the invention.

10

15

20

25

30

Another aspect of the invention pertains to a method for producing a fine chemical. This method involves the culturing of a cell containing a vector directing the expression of an MP nucleic acid molecule of the invention, such that a fine chemical is produced. In a preferred embodiment, this method further includes the step of obtaining a cell containing such a vector, in which a cell is transfected with a vector directing the expression of an MP nucleic acid. In another preferred embodiment, this method further includes the step of recovering the fine chemical from the culture. In a particularly preferred embodiment, the cell is from the genus *Corynebacterium* or *Brevibacterium*, or is selected from those strains set forth in Table 3.

Another aspect of the invention pertains to methods for modulating production of a molecule from a microorganism. Such methods include contacting the cell with an agent which modulates MP protein activity or MP nucleic acid expression such that a cell associated activity is altered relative to this same activity in the absence of the agent. In a preferred embodiment, the cell is modulated for one or more *C. glutamicum* amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathways, such that the yields or rate of production of a desired fine chemical by this microorganism is improved. The agent which modulates MP protein activity can be an agent which stimulates MP protein activity or MP nucleic acid expression.

Examples of agents which stimulate MP protein activity or MP nucleic acid expression include small molecules, active MP proteins, and nucleic acids encoding MP proteins that have been introduced into the cell. Examples of agents which inhibit MP activity or expression include small molecules, and antisense MP nucleic acid molecules.

Another aspect of the invention pertains to methods for modulating yields of a desired compound from a cell, involving the introduction of a wild-type or mutant MP gene into a cell, either maintained on a separate plasmid or integrated into the genome of the host cell. If integrated into the genome, such integration can be random, or it can take place by homologous recombination such that the native gene is replaced by the introduced copy, causing the production of the desired compound from the cell to be modulated. In a preferred embodiment, said yields are increased. In another preferred embodiment, said chemical is a fine chemical. In a particularly preferred embodiment, said fine chemical is an amino acid. In especially preferred embodiments, said amino acid is L-lysine.

15

20

25

10

5

Detailed Description of the Invention

The present invention provides MP nucleic acid and protein molecules which are involved in the metabolism of certain fine chemicals in *Corynebacterium glutamicum*, including amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, and trehalose. The molecules of the invention may be utilized in the modulation of production of fine chemicals from microorganisms, such as *C. glutamicum*, either directly (e.g., where modulation of the activity of a lysine biosynthesis protein has a direct impact on the production or efficiency of production of lysine from that organism), or may have an indirect impact which nonetheless results in an increase of yield or efficiency of production of the desired compound (e.g., where modulation of the activity of a nucleotide biosynthesis protein has an impact on the production of an organic acid or a fatty acid from the bacterium, perhaps due to improved growth or an increased supply of necessary co-factors, energy compounds, or precursor molecules). Aspects of the invention are further explicated below.

I. Fine Chemicals

The term 'fine chemical' is art-recognized and includes molecules produced by an organism which have applications in various industries, such as, but not limited to. the pharmaceutical, agriculture, and cosmetics industries. Such compounds include organic acids, such as tartaric acid, itaconic acid, and diaminopimelic acid, both 5 proteinogenic and non-proteinogenic amino acids, purine and pyrimidine bases, nucleosides, and nucleotides (as described e.g. in Kuninaka, A. (1996) Nucleotides and related compounds, p. 561-612, in Biotechnology vol. 6, Rehm et al., eds. VCH: Weinheim, and references contained therein), lipids, both saturated and unsaturated fatty acids (e.g., arachidonic acid), diols (e.g., propane diol, and butane diol), carbohydrates 10 (e.g., hyaluronic acid and trehalose), aromatic compounds (e.g., aromatic amines, vanillin, and indigo), vitamins and cofactors (as described in Ullmann's Encyclopedia of Industrial Chemistry, vol. A27, "Vitamins", p. 443-613 (1996) VCH: Weinheim and references therein; and Ong, A.S., Niki, E. & Packer, L. (1995) "Nutrition, Lipids, Health, and Disease" Proceedings of the UNESCO/Confederation of Scientific and 15 Technological Associations in Malaysia, and the Society for Free Radical Research -Asia, held Sept. 1-3, 1994 at Penang, Malaysia, AOCS Press, (1995)), enzymes, polyketides (Cane et al. (1998) Science 282: 63-68), and all other chemicals described in Gutcho (1983) Chemicals by Fermentation, Noyes Data Corporation, ISBN: 0818805086 and references therein. The metabolism and uses of certain of these fine 20 chemicals are further explicated below.

A. Amino Acid Metabolism and Uses

Amino acids comprise the basic structural units of all proteins, and as such are
essential for normal cellular functioning in all organisms. The term "amino acid" is artrecognized. The proteinogenic amino acids, of which there are 20 species, serve as
structural units for proteins, in which they are linked by peptide bonds, while the
nonproteinogenic amino acids (hundreds of which are known) are not normally found in
proteins (see Ulmann's Encyclopedia of Industrial Chemistry, vol. A2, p. 57-97 VCH:
Weinheim (1985)). Amino acids may be in the D- or L- optical configuration, though Lamino acids are generally the only type found in naturally-occurring proteins.
Biosynthetic and degradative pathways of each of the 20 proteinogenic amino acids

10

15

20

25

30

have been well characterized in both prokaryotic and eukaryotic cells (see, for example, Stryer, L. Biochemistry, 3rd edition, pages 578-590 (1988)). The 'essential' amino acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine), so named because they are generally a nutritional requirement due to the complexity of their biosyntheses, are readily converted by simple biosynthetic pathways to the remaining 11 'nonessential' amino acids (alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, proline, serine, and tyrosine). Higher animals do retain the ability to synthesize some of these amino acids, but the essential amino acids must be supplied from the diet in order for normal protein synthesis to occur.

Aside from their function in protein biosynthesis, these amino acids are interesting chemicals in their own right, and many have been found to have various applications in the food, feed, chemical, cosmetics, agriculture, and pharmaceutical industries. Lysine is an important amino acid in the nutrition not only of humans, but also of monogastric animals such as poultry and swine. Glutamate is most commonly used as a flavor additive (mono-sodium glutamate, MSG) and is widely used throughout the food industry, as are aspartate, phenylalanine, glycine, and cysteine. Glycine, Lmethionine and tryptophan are all utilized in the pharmaceutical industry. Glutamine, valine, leucine, isoleucine, histidine, arginine, proline, serine and alanine are of use in both the pharmaceutical and cosmetics industries. Threonine, tryptophan, and D/Lmethionine are common feed additives. (Leuchtenberger, W. (1996) Amino aids technical production and use, p. 466-502 in Rehm et al. (eds.) Biotechnology vol. 6, chapter 14a, VCH: Weinheim). Additionally, these amino acids have been found to be useful as precursors for the synthesis of synthetic amino acids and proteins, such as Nacetylcysteine, S-carboxymethyl-L-cysteine, (S)-5-hydroxytryptophan, and others described in Ulmann's Encyclopedia of Industrial Chemistry, vol. A2, p. 57-97, VCH: Weinheim, 1985.

The biosynthesis of these natural amino acids in organisms capable of producing them, such as bacteria, has been well characterized (for review of bacterial amino acid biosynthesis and regulation thereof, see Umbarger, H.E.(1978) *Ann. Rev. Biochem.* 47: 533-606). Glutamate is synthesized by the reductive amination of α-ketoglutarate, an intermediate in the citric acid cycle. Glutamine, proline, and arginine are each subsequently produced from glutamate. The biosynthesis of serine is a three-

25

step process beginning with 3-phosphoglycerate (an intermediate in glycolysis), and resulting in this amino acid after oxidation, transamination, and hydrolysis steps. Both cysteine and glycine are produced from serine; the former by the condensation of homocysteine with serine, and the latter by the transferal of the side-chain B-carbon atom to tetrahydrofolate, in a reaction catalyzed by serine transhydroxymethylase. 5 Phenylalanine, and tyrosine are synthesized from the glycolytic and pentose phosphate pathway precursors erythrose 4-phosphate and phosphoenolpyruvate in a 9-step biosynthetic pathway that differ only at the final two steps after synthesis of prephenate. Tryptophan is also produced from these two initial molecules, but its synthesis is an 11-10 step pathway. Tyrosine may also be synthesized from phenylalanine, in a reaction catalyzed by phenylalanine hydroxylase. Alanine, valine, and leucine are all biosynthetic products of pyruvate, the final product of glycolysis. Aspartate is formed from oxaloacetate, an intermediate of the citric acid cycle. Asparagine, methionine, threonine, and lysine are each produced by the conversion of aspartate. Isoleucine is 15 formed from threonine. A complex 9-step pathway results in the production of histidine from 5-phosphoribosyl-1-pyrophosphate, an activated sugar.

Amino acids in excess of the protein synthesis needs of the cell cannot be stored, and are instead degraded to provide intermediates for the major metabolic pathways of the cell (for review see Stryer, L. Biochemistry 3rd ed. Ch. 21 "Amino Acid Degradation and the Urea Cycle" p. 495-516 (1988)). Although the cell is able to convert unwanted amino acids into useful metabolic intermediates, amino acid production is costly in terms of energy, precursor molecules, and the enzymes necessary to synthesize them. Thus it is not surprising that amino acid biosynthesis is regulated by feedback inhibition, in which the presence of a particular amino acid serves to slow or entirely stop its own production (for overview of feedback mechanisms in amino acid biosynthetic pathways, see Stryer, L. Biochemistry, 3rd ed. Ch. 24: "Biosynthesis of Amino Acids and Heme" p. 575-600 (1988)). Thus, the output of any particular amino acid is limited by the amount of that amino acid present in the cell.

30 B. Vitamin, Cofactor, and Nutraceutical Metabolism and Uses

Vitamins, cofactors, and nutraceuticals comprise another group of molecules which the higher animals have lost the ability to synthesize and so must ingest, although

15

20

30

they are readily synthesized by other organisms, such as bacteria. These molecules are either bioactive substances themselves, or are precursors of biologically active substances which may serve as electron carriers or intermediates in a variety of metabolic pathways. Aside from their nutritive value, these compounds also have significant industrial value as coloring agents, antioxidants, and catalysts or other processing aids. (For an overview of the structure, activity, and industrial applications of these compounds, see, for example, Ullman's Encyclopedia of Industrial Chemistry, "Vitamins" vol. A27, p. 443-613, VCH: Weinheim, 1996.) The term "vitamin" is artrecognized, and includes nutrients which are required by an organism for normal functioning, but which that organism cannot synthesize by itself. The group of vitamins may encompass cofactors and nutraceutical compounds. The language "cofactor" includes nonproteinaceous compounds required for a normal enzymatic activity to occur. Such compounds may be organic or inorganic; the cofactor molecules of the invention are preferably organic. The term "nutraceutical" includes dietary supplements having health benefits in plants and animals, particularly humans. Examples of such molecules are vitamins, antioxidants, and also certain lipids (e.g., polyunsaturated fatty acids).

The biosynthesis of these molecules in organisms capable of producing them, such as bacteria, has been largely characterized (Ullman's Encyclopedia of Industrial Chemistry, "Vitamins" vol. A27, p. 443-613, VCH: Weinheim, 1996; Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley & Sons; Ong, A.S., Niki, E. & Packer, L. (1995) "Nutrition, Lipids, Health, and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia, and the Society for Free Radical Research - Asia, held Sept. 1-3, 1994 at Penang, Malaysia, AOCS Press: Champaign, IL X, 374 S). 25

Thiamin (vitamin B₁) is produced by the chemical coupling of pyrimidine and thiazole moieties. Riboflavin (vitamin B₂) is synthesized from guanosine-5'-triphosphate (GTP) and ribose-5'-phosphate. Riboflavin, in turn, is utilized for the synthesis of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). The family of compounds collectively termed 'vitamin B6' (e.g., pyridoxine, pyridoxamine, pyridoxa-5'-phosphate, and the commercially used pyridoxin hydrochloride) are all derivatives of the common structural unit, 5-hydroxy-6-methylpyridine. Pantothenate (pantothenic

15

20

25

30

acid, (R)-(+)-N-(2,4-dihydroxy-3,3-dimethyl-1-oxobutyl)- β -alanine) can be produced either by chemical synthesis or by fermentation. The final steps in pantothenate biosynthesis consist of the ATP-driven condensation of β -alanine and pantoic acid. The enzymes responsible for the biosynthesis steps for the conversion to pantoic acid, to β -alanine and for the condensation to panthotenic acid are known. The metabolically active form of pantothenate is Coenzyme A, for which the biosynthesis proceeds in 5 enzymatic steps. Pantothenate, pyridoxal-5'-phosphate, cysteine and ATP are the precursors of Coenzyme A. These enzymes not only catalyze the formation of panthothante, but also the production of (R)-pantoic acid, (R)-pantolacton, (R)-panthenol (provitamin B₅), pantetheine (and its derivatives) and coenzyme A.

Biotin biosynthesis from the precursor molecule pimeloyl-CoA in microorganisms has been studied in detail and several of the genes involved have been identified. Many of the corresponding proteins have been found to also be involved in Fe-cluster synthesis and are members of the nifS class of proteins. Lipoic acid is derived from octanoic acid, and serves as a coenzyme in energy metabolism, where it becomes part of the pyruvate dehydrogenase complex and the α-ketoglutarate dehydrogenase complex. The folates are a group of substances which are all derivatives of folic acid, which is turn is derived from L-glutamic acid, p-amino-benzoic acid and 6-methylpterin. The biosynthesis of folic acid and its derivatives, starting from the metabolism intermediates guanosine-5'-triphosphate (GTP), L-glutamic acid and p-amino-benzoic acid has been studied in detail in certain microorganisms.

Corrinoids (such as the cobalamines and particularly vitamin B₁₂) and porphyrines belong to a group of chemicals characterized by a tetrapyrole ring system. The biosynthesis of vitamin B₁₂ is sufficiently complex that it has not yet been completely characterized, but many of the enzymes and substrates involved are now known. Nicotinic acid (nicotinate), and nicotinamide are pyridine derivatives which are also termed 'niacin'. Niacin is the precursor of the important coenzymes NAD (nicotinamide adenine dinucleotide) and NADP (nicotinamide adenine dinucleotide phosphate) and their reduced forms.

The large-scale production of these compounds has largely relied on cell-free chemical syntheses, though some of these chemicals have also been produced by large-scale culture of microorganisms, such as riboflavin, Vitamin B₆, pantothenate, and

15

biotin. Only Vitamin B₁₂ is produced solely by fermentation, due to the complexity of its synthesis. *In vitro* methodologies require significant inputs of materials and time, often at great cost.

5 C. Purine, Pyrimidine, Nucleoside and Nucleotide Metabolism and Uses

Purine and pyrimidine metabolism genes and their corresponding proteins are important targets for the therapy of tumor diseases and viral infections. The language "purine" or "pyrimidine" includes the nitrogenous bases which are constituents of nucleic acids, co-enzymes, and nucleotides. The term "nucleotide" includes the basic structural units of nucleic acid molecules, which are comprised of a nitrogenous base, a pentose sugar (in the case of RNA, the sugar is ribose; in the case of DNA, the sugar is D-deoxyribose), and phosphoric acid. The language "nucleoside" includes molecules which serve as precursors to nucleotides, but which are lacking the phosphoric acid moiety that nucleotides possess. By inhibiting the biosynthesis of these molecules, or their mobilization to form nucleic acid molecules, it is possible to inhibit RNA and DNA synthesis; by inhibiting this activity in a fashion targeted to cancerous cells, the ability of tumor cells to divide and replicate may be inhibited. Additionally, there are nucleotides which do not form nucleic acid molecules, but rather serve as energy stores (i.e., AMP) or as coenzymes (i.e., FAD and NAD).

20 Several publications have described the use of these chemicals for these medical indications, by influencing purine and/or pyrimidine metabolism (e.g. Christopherson, R.I. and Lyons, S.D. (1990) "Potent inhibitors of de novo pyrimidine and purine biosynthesis as chemotherapeutic agents." Med. Res. Reviews 10: 505-548). Studies of enzymes involved in purine and pyrimidine metabolism have been focused on the 25 development of new drugs which can be used, for example, as immunosuppressants or anti-proliferants (Smith, J.L., (1995) "Enzymes in nucleotide synthesis." Curr. Opin. Struct. Biol. 5: 752-757; (1995) Biochem Soc. Transact. 23: 877-902). However, purine and pyrimidine bases, nucleosides and nucleotides have other utilities: as intermediates in the biosynthesis of several fine chemicals (e.g., thiamine, S-adenosyl-methionine, folates, or riboflavin), as energy carriers for the cell (e.g., ATP or GTP), and for 30 chemicals themselves, commonly used as flavor enhancers (e.g., IMP or GMP) or for several medicinal applications (see, for example, Kuninaka, A. (1996) Nucleotides and

15

20

30

Related Compounds in Biotechnology vol. 6, Rehm et al., eds. VCH: Weinheim, p. 561-612). Also, enzymes involved in purine, pyrimidine, nucleoside, or nucleotide metabolism are increasingly serving as targets against which chemicals for crop protection, including fungicides, herbicides and insecticides, are developed.

5 The metabolism of these compounds in bacteria has been characterized (for reviews see, for example, Zalkin, H. and Dixon, J.E. (1992) "de novo purine nucleotide biosynthesis", in: Progress in Nucleic Acid Research and Molecular Biology, vol. 42, Academic Press:, p. 259-287; and Michal, G. (1999) "Nucleotides and Nucleosides", Chapter 8 in: Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology. Wiley: New York). Purine metabolism has been the subject of intensive research, and is essential to the normal functioning of the cell. Impaired purine metabolism in higher animals can cause severe disease, such as gout. Purine nucleotides are synthesized from ribose-5-phosphate, in a series of steps through the intermediate compound inosine-5'phosphate (IMP), resulting in the production of guanosine-5'-monophosphate (GMP) or adenosine-5'-monophosphate (AMP), from which the triphosphate forms utilized as nucleotides are readily formed. These compounds are also utilized as energy stores, so their degradation provides energy for many different biochemical processes in the cell. Pyrimidine biosynthesis proceeds by the formation of uridine-5'-monophosphate (UMP) from ribose-5-phosphate. UMP, in turn, is converted to cytidine-5'-triphosphate (CTP). The deoxy- forms of all of these nucleotides are produced in a one step reduction reaction from the diphosphate ribose form of the nucleotide to the diphosphate deoxyribose form of the nucleotide. Upon phosphorylation, these molecules are able to participate in DNA synthesis.

25 D. Trehalose Metabolism and Uses

Trehalose consists of two glucose molecules, bound in α , α -1,1 linkage. It is commonly used in the food industry as a sweetener, an additive for dried or frozen foods, and in beverages. However, it also has applications in the pharmaceutical. cosmetics and biotechnology industries (see, for example, Nishimoto et al., (1998) U.S. Patent No. 5,759,610; Singer, M.A. and Lindquist, S. (1998) Trends Biotech. 16: 460-467; Paiva, C.L.A. and Panek, A.D. (1996) Biotech. Ann. Rev. 2: 293-314; and Shiosaka, M. (1997) J. Japan 172: 97-102). Trehalose is produced by enzymes from

20

25

30

many microorganisms and is naturally released into the surrounding medium, from which it can be collected using methods known in the art.

II. Elements and Methods of the Invention

The present invention is based, at least in part, on the discovery of novel molecules, referred to herein as MP nucleic acid and protein molecules, which play a role in or function in one or more cellular metabolic pathways. In one embodiment, the MP molecules catalyze an enzymatic reaction involving one or more amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathways. In a preferred embodiment, the activity of the MP molecules of the present invention in one or more *C. glutamicum* metabolic pathways for amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides or trehalose has an impact on the production of a desired fine chemical by this organism. In a particularly preferred embodiment, the MP molecules of the invention are modulated in activity, such that the *C. glutamicum* metabolic pathways in which the MP proteins of the invention are involved are modulated in efficiency or output, which either directly or indirectly modulates the production or efficiency of production of a desired fine chemical by *C. glutamicum*.

The language, "MP protein" or "MP polypeptide" includes proteins which play a role in, e.g., catalyze an enzymatic reaction, in one or more amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside or trehalose metabolic pathways.

Examples of MP proteins include those encoded by the MP genes set forth in Table 1 and by the odd-numbered SEQ ID NOs. The terms "MP gene" or "MP nucleic acid sequence" include nucleic acid sequences encoding an MP protein, which consist of a coding region and also corresponding untranslated 5' and 3' sequence regions.

Examples of MP genes include those set forth in Table 1. The terms "production" or "productivity" are art-recognized and include the concentration of the fermentation product (for example, the desired fine chemical) formed within a given time and a given fermentation volume (e.g., kg product per hour per liter). The term "efficiency of production" includes the time required for a particular level of production to be achieved (for example, how long it takes for the cell to attain a particular rate of output of a fine chemical). The term "yield" or "product/carbon yield" is art-recognized and includes

10

15

20

25

the efficiency of the conversion of the carbon source into the product (i.e., fine chemical). This is generally written as, for example, kg product per kg carbon source. By increasing the yield or production of the compound, the quantity of recovered molecules, or of useful recovered molecules of that compound in a given amount of culture over a given amount of time is increased. The terms "biosynthesis" or a "biosynthetic pathway" are art-recognized and include the synthesis of a compound, preferably an organic compound, by a cell from intermediate compounds in what may be a multistep and highly regulated process. The terms "degradation" or a "degradation pathway" are art-recognized and include the breakdown of a compound, preferably an organic compound, by a cell to degradation products (generally speaking, smaller or less complex molecules) in what may be a multistep and highly regulated process. The language "metabolism" is art-recognized and includes the totality of the biochemical reactions that take place in an organism. The metabolism of a particular compound. then, (e.g., the metabolism of an amino acid such as glycine) comprises the overall biosynthetic, modification, and degradation pathways in the cell related to this compound.

In another embodiment, the MP molecules of the invention are capable of modulating the production of a desired molecule, such as a fine chemical, in a microorganism such as *C. glutamicum*. Using recombinant genetic techniques, one or more of the biosynthetic or degradative enzymes of the invention for amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, or trehalose may be manipulated such that its function is modulated. For example, a biosynthetic enzyme may be improved in efficiency, or its allosteric control region destroyed such that feedback inhibition of production of the compound is prevented. Similarly, a degradative enzyme may be deleted or modified by substitution, deletion, or addition such that its degradative activity is lessened for the desired compound without impairing the viability of the cell. In each case, the overall yield or rate of production of one of these desired fine chemicals may be increased.

It is also possible that such alterations in the protein and nucleotide molecules of the invention may improve the production of other fine chemicals besides the amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, and trehalose.

Metabolism of any one compound is necessarily intertwined with other biosynthetic and

20

25

30

degradative pathways within the cell, and necessary cofactors, intermediates, or substrates in one pathway are likely supplied or limited by another such pathway. Therefore, by modulating the activity of one or more of the proteins of the invention, the production or efficiency of activity of another fine chemical biosynthetic or degradative pathway may be impacted. For example, amino acids serve as the structural units of all proteins, yet may be present intracellularly in levels which are limiting for protein synthesis; therefore, by increasing the efficiency of production or the yields of one or more amino acids within the cell, proteins, such as biosynthetic or degradative proteins, may be more readily synthesized. Likewise, an alteration in a metabolic pathway enzyme such that a particular side reaction becomes more or less favored may result in the over- or under-production of one or more compounds which are utilized as intermediates or substrates for the production of a desired fine chemical.

The isolated nucleic acid sequences of the invention are contained within the genome of a Corynebacterium glutamicum strain available through the American Type 15 Culture Collection, given designation ATCC 13032. The nucleotide sequence of the isolated C. glutamicum MP DNAs and the predicted amino acid sequences of the C. glutamicum MP proteins are shown in the Sequence Listing as odd-numbered SEQ ID NOs and even-numbered SEQ ID NOs, respectively. Computational analyses were performed which classified and/or identified these nucleotide sequences as sequences which encode metabolic pathway proteins.

The present invention also pertains to proteins which have an amino acid sequence which is substantially homologous to an amino acid sequence of the invention (e.g., the sequence of an even-numbered SEQ ID NO of the Sequence Listing). As used herein, a protein which has an amino acid sequence which is substantially homologous to a selected amino acid sequence is least about 50% homologous to the selected amino acid sequence, e.g., the entire selected amino acid sequence. A protein which has an amino acid sequence which is substantially homologous to a selected amino acid sequence can also be least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80%, 80-90%, or 90-95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to the selected amino acid sequence.

The MP protein or a biologically active portion or fragment thereof of the invention can catalyze an enzymatic reaction in one or more amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathways, or have one or more of the activities set forth in Table 1.

Various aspects of the invention are described in further detail in the following subsections:

5

10

15

20

25

A. Isolated Nucleic Acid Molecules

One aspect of the invention pertains to isolated nucleic acid molecules that encode MP polypeptides or biologically active portions thereof, as well as nucleic acid fragments sufficient for use as hybridization probes or primers for the identification or amplification of MP-encoding nucleic acid (e.g., MP DNA). As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. This term also encompasses untranslated sequence located at both the 3' and 5' ends of the coding region of the gene: at least about 100 nucleotides of sequence upstream from the 5' end of the coding region and at least about 20 nucleotides of sequence downstream from the 3'end of the coding region of the gene. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA. An "isolated" nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated MP nucleic acid molecule can contain less than about 5 kb, 4kb, 3kb, 2kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived (e.g, a C. glutamicum cell). Moreover, an "isolated" nucleic acid molecule, such as a DNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized.

A nucleic acid molecule of the present invention, e.g., a nucleic acid molecule having a nucleotide sequence of an odd-numbered SEQ ID NO of the Sequence Listing, or a portion thereof, can be isolated using standard molecular biology techniques and the

sequence information provided herein. For example, a C. glutamicum MP DNA can be isolated from a C. glutamicum library using all or portion of one of the odd-numbered SEQ ID NO sequences of the Sequence Listing as a hybridization probe and standard hybridization techniques (e.g., as described in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989). Moreover, a nucleic acid molecule encompassing all or a portion of one of the nucleic acid sequences of the invention (e.g., an odd-numbered SEQ ID NO:) can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this sequence (e.g., a nucleic acid molecule encompassing all or a portion of one of the 10 nucleic acid sequences of the invention (e.g., an odd-numbered SEQ ID NO of the Sequence Listing) can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this same sequence). For example, mRNA can be isolated from normal endothelial cells (e.g., by the guanidinium-thiocyanate extraction procedure of Chirgwin et al. (1979) Biochemistry 18: 5294-5299) and DNA 15 can be prepared using reverse transcriptase (e.g., Moloney MLV reverse transcriptase, available from Gibco/BRL, Bethesda, MD; or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Petersburg, FL). Synthetic oligonucleotide primers for polymerase chain reaction amplification can be designed based upon one of the nucleotide sequences shown in the Sequence Listing. A nucleic acid of the invention 20 can be amplified using cDNA or, alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to an MP nucleotide sequence can be prepared by standard synthetic techniques, e.g., 25 using an automated DNA synthesizer.

In a preferred embodiment, an isolated nucleic acid molecule of the invention comprises one of the nucleotide sequences shown in the Sequence Listing. The nucleic acid sequences of the invention, as set forth in the Sequence Listing, correspond to the Corynebacterium glutamicum MP DNAs of the invention. This DNA comprises sequences encoding MP proteins (i.e., the "coding region", indicated in each odd-numbered SEQ ID NO: sequence in the Sequence Listing), as well as 5' untranslated

15

20

25

30

sequences and 3' untranslated sequences, also indicated in each odd-numbered SEO ID NO: in the Sequence Listing. Alternatively, the nucleic acid molecule can comprise only the coding region of any of the nucleic acid sequences of the Sequence Listing.

For the purposes of this application, it will be understood that each of the nucleic acid and amino acid sequences set forth in the Sequence Listing has an identifying RXA. RXN, RXS, or RXC number having the designation "RXA", "RXN", "RXS", or "RXC" followed by 5 digits (i.e., RXA00007, RXN00023, RXS00116, or RXC00128). Each of the nucleic acid sequences comprises up to three parts: a 5' upstream region, a coding region, and a downstream region. Each of these three regions is identified by the same 10 RXA, RXN, RXS, or RXC designation to eliminate confusion. The recitation "one of the odd-numbered sequences of the Sequence Listing", then, refers to any of the nucleic acid sequences in the Sequence Listing, which may also be distinguished by their differing RXA, RXN, RXS, or RXC designations. The coding region of each of these sequences is translated into a corresponding amino acid sequence, which is also set forth in the Sequence Listing, as an even-numbered SEQ ID NO: immediately following the corresponding nucleic acid sequence. For example, the coding region for RXA02229 is set forth in SEQ ID NO:1, while the amino acid sequence which it encodes is set forth as SEQ ID NO:2. The sequences of the nucleic acid molecules of the invention are identified by the same RXA, RXN, RXS, or RXC designations as the amino acid molecules which they encode, such that they can be readily correlated. For example, the amino acid sequences designated RXA02229, RX00351, RXS02970, and RXC02390 are translations of the coding regions of the nucleotide sequences of nucleic acid molecules RXA02229, RX00351, RXS02970, and RXC02390, respectively. The correspondence between the RXA, RXN, RXS, and RXC nucleotide and amino acid sequences of the invention and their assigned SEQ ID NOs is set forth in Table 1.

Several of the genes of the invention are "F-designated genes". An F-designated gene includes those genes set forth in Table 1 which have an 'F' in front of the RXA, RXN, RXS, or RXC designation. For example, SEQ ID NO:5, designated, as indicated on Table 1, as "F RXA01009", is an F-designated gene, as are SEQ ID NOs: 73, 75, and 77 (designated on Table 1 as "F RXA00007", "F RXA00364", and "F RXA00367", respectively).

15

20

25

30

In one embodiment, the nucleic acid molecules of the present invention are not intended to include *C. glutamicum* those compiled in Table 2. In the case of the dapD gene, a sequence for this gene was published in Wehrmann, A., et al. (1998) *J. Bacteriol.* 180(12): 3159-3165. However, the sequence obtained by the inventors of the present application is significantly longer than the published version. It is believed that the published version relied on an incorrect start codon, and thus represents only a fragment of the actual coding region.

In another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of one of the nucleotide sequences of the invention (e.g., a sequence of an odd-numbered SEQ ID NO: of the Sequence Listing), or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences of the invention is one which is sufficiently complementary to one of the nucleotide sequences shown in the Sequence Listing (e.g., the sequence of an odd-numbered SEQ ID NO:) such that it can hybridize to one of the nucleotide sequences of the invention, thereby forming a stable duplex.

In still another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleotide sequence which is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to a nucleotide sequence of the invention (e.g., a sequence of an odd-numbered SEQ ID NO: of the Sequence Listing), or a portion thereof. Ranges and identity values intermediate to the above-recited ranges, (e.g., 70-90% identical or 80-95% identical) are also intended to be encompassed by the present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intended to be included. In an additional preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to one of the nucleotide sequences of the invention, or a portion thereof.

Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of the sequence of one of the odd-numbered SEQ ID NOs

15

20

25

30

of the Sequence Listing, for example a fragment which can be used as a probe or primer or a fragment encoding a biologically active portion of an MP protein. The nucleotide sequences determined from the cloning of the MP genes from C. glutamicum allows for the generation of probes and primers designed for use in identifying and/or cloning MP homologues in other cell types and organisms, as well as MP homologues from other Corynebacteria or related species. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably about 25, more preferably about 40, 50 or 75 consecutive nucleotides of a sense strand of one of the nucleotide sequences of the invention (e.g., a sequence of one of the oddnumbered SEQ ID NOs of the Sequence Listing), an anti-sense sequence of one of these sequences, or naturally occurring mutants thereof. Primers based on a nucleotide sequence of the invention can be used in PCR reactions to clone MP homologues. Probes based on the MP nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In preferred embodiments, the probe further comprises a label group attached thereto, e.g. the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme cofactor. Such probes can be used as a part of a diagnostic test kit for identifying cells which misexpress an MP protein, such as by measuring a level of an MP-encoding nucleic acid in a sample of cells from a subject e.g., detecting MP mRNA levels or determining whether a genomic MP gene has been mutated or deleted.

In one embodiment, the nucleic acid molecule of the invention encodes a protein or portion thereof which includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO of the Sequence Listing) such that the protein or portion thereof maintains the ability to catalyze an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway. As used herein, the language "sufficiently homologous" refers to proteins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent (e.g., an amino acid residue which has a similar side chain as an amino acid residue in a sequence of one of the even-numbered SEQ ID NOs of the Sequence Listing) amino acid residues to an amino acid sequence of the invention such that the

20

25

protein or portion thereof is able to catalyze an enzymatic reaction in a C. glutamicum amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside or trehalose metabolic pathway. Protein members of such metabolic pathways, as described herein, function to catalyze the biosynthesis or degradation of one or more of: amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, or trehalose. Examples of such activities are also described herein. Thus, "the function of an MP protein" contributes to the overall functioning of one or more such metabolic pathway and contributes, either directly or indirectly, to the yield, production, and/or efficiency of production of one or more fine chemicals. Examples of MP protein activities are set forth in Table 1.

In another embodiment, the protein is at least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80%, 80-90%, 90-95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing).

Portions of proteins encoded by the MP nucleic acid molecules of the invention are preferably biologically active portions of one of the MP proteins. As used herein, the term "biologically active portion of an MP protein" is intended to include a portion, e.g., a domain/motif, of an MP protein that catalyzes an enzymatic reaction in one or more C. glutamicum amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathways, or has an activity as set forth in Table 1. To determine whether an MP protein or a biologically active portion thereof can catalyze an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway, an assay of enzymatic activity may be performed. Such assay methods are well known to those of ordinary skill in the art, as detailed in Example 8 of the Exemplification.

Additional nucleic acid fragments encoding biologically active portions of an MP protein can be prepared by isolating a portion of one of the amino acid sequences of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence

Listing), expressing the encoded portion of the MP protein or peptide (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of the MP protein or peptide.

20

25

30

The invention further encompasses nucleic acid molecules that differ from one of the nucleotide sequences of the invention (e.g., a sequence of an odd-numbered SEQ ID NO: of the Sequence Listing) (and portions thereof) due to degeneracy of the genetic code and thus encode the same MP protein as that encoded by the nucleotide sequences of the invention. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence shown in the Sequence Listing (e.g., an even-numbered SEQ ID NO:). In a still further embodiment, the nucleic acid molecule of the invention encodes a full length C. glutamicum protein which is substantially homologous to an amino acid sequence of the invention (encoded by an open reading frame shown in an odd-numbered SEQ ID NO: of the Sequence Listing).

It will be understood by one of ordinary skill in the art that in one embodiment the sequences of the invention are not meant to include the sequences of the prior art, such as those Genbank sequences set forth in Tables 2 or 4 which were available prior to the present invention. In one embodiment, the invention includes nucleotide and amino acid sequences having a percent identity to a nucleotide or amino acid sequence of the invention which is greater than that of a sequence of the prior art (e.g., a Genbank sequence (or the protein encoded by such a sequence) set forth in Tables 2 or 4). For example, the invention includes a nucleotide sequence which is greater than and/or at least 40% identical to the nucleotide sequence designated RXA00115 (SEO ID NO:185), a nucleotide sequence which is greater than and/or at least % identical to the nucleotide sequence designated RXA00131 (SEQ ID NO:991), and a nucleotide sequence which is greater than and/or at least 39% identical to the nucleotide sequence designated RXA00219 (SEQ ID NO:345). One of ordinary skill in the art would be able to calculate the lower threshold of percent identity for any given sequence of the invention by examining the GAP-calculated percent identity scores set forth in Table 4 for each of the three top hits for the given sequence, and by subtracting the highest GAP-calculated percent identity from 100 percent. One of ordinary skill in the art will also appreciate that nucleic acid and amino acid sequences having percent identities greater than the lower threshold so calculated (e.g., at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%,

20

25

30

74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more identical) are also encompassed by the invention.

In addition to the *C. glutamicum* MP nucleotide sequences set forth in the Sequence Listing as odd-numbered SEQ ID NOs, it will be appreciated by one of ordinary skill in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of MP proteins may exist within a population (*e.g.*, the *C. glutamicum* population). Such genetic polymorphism in the MP gene may exist among individuals within a population due to natural variation. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding an MP protein, preferably a *C. glutamicum* MP protein. Such natural variations can typically result in 1-5% variance in the nucleotide sequence of the MP gene. Any and all such nucleotide variations and resulting amino acid polymorphisms in MP that are the result of natural variation and that do not alter the functional activity of MP proteins are intended to be within the scope of the invention.

Nucleic acid molecules corresponding to natural variants and non-C. glutamicum homologues of the C. glutamicum MP DNA of the invention can be isolated based on their homology to the C. glutamicum MP nucleic acid disclosed herein using the C. glutamicum DNA, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions. Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 15 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising a nucleotide sequence of an odd-numbered SEQ ID NO: of the Sequence Listing. In other embodiments, the nucleic acid is at least 30, 50, 100, 250 or more nucleotides in length. As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% homologous to each other typically remain hybridized to each other. Preferably, the conditions are such that sequences at least about 65%, more preferably at least about 70%, and even more preferably at least about 75% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to one of ordinary skill in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6.

15

20

25

30

A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2 X SSC, 0.1% SDS at 50-65°C. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to a nucleotide sequence of the invention corresponds to a naturally-occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). In one embodiment, the nucleic acid encodes a natural C. glutamicum MP protein.

10 In addition to naturally-occurring variants of the MP sequence that may exist in the population, one of ordinary skill in the art will further appreciate that changes can be introduced by mutation into a nucleotide sequence of the invention, thereby leading to changes in the amino acid sequence of the encoded MP protein, without altering the functional ability of the MP protein. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a nucleotide sequence of the invention. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of one of the MP proteins (e.g., an evennumbered SEQ ID NO: of the Sequence Listing) without altering the activity of said MP protein, whereas an "essential" amino acid residue is required for MP protein activity. Other amino acid residues, however, (e.g., those that are not conserved or only semiconserved in the domain having MP activity) may not be essential for activity and thus are likely to be amenable to alteration without altering MP activity.

Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding MP proteins that contain changes in amino acid residues that are not essential for MP activity. Such MP proteins differ in amino acid sequence from a sequence of an even-numbered SEQ ID NO: of the Sequence Listing yet retain at least one of the MP activities described herein. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 50% homologous to an amino acid sequence of the invention and is capable of catalyzing an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway, or has one or more activities set forth in Table 1. Preferably, the protein encoded by the nucleic

10

15

20

25

30

acid molecule is at least about 50-60% homologous to the amino acid sequence of one of the odd-numbered SEQ ID NOs of the Sequence Listing, more preferably at least about 60-70% homologous to one of these sequences, even more preferably at least about 70-80%, 80-90%, 90-95% homologous to one of these sequences, and most preferably at least about 96%, 97%, 98%, or 99% homologous to one of the amino acid sequences of the invention.

To determine the percent homology of two amino acid sequences (e.g., one of the amino acid sequences of the invention and a mutant form thereof) or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of one protein or nucleic acid for optimal alignment with the other protein or nucleic acid). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in one sequence (e.g., one of the amino acid sequences of the invention) is occupied by the same amino acid residue or nucleotide as the corresponding position in the other sequence (e.g., a mutant form of the amino acid sequence), then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity"). The percent homology between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % homology = # of identical positions/total # of positions x 100).

An isolated nucleic acid molecule encoding an MP protein homologous to a protein sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the invention such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into one of the nucleotide sequences of the invention by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic

20

25

30

acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in an MP protein is preferably replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of an MP coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for an MP activity described herein to identify mutants that retain MP activity. Following mutagenesis of the nucleotide sequence of one of the odd-numbered SEQ ID NOs of the Sequence Listing, the encoded protein can be expressed recombinantly and the activity of the protein can be determined using, for example, assays described herein (see Example 8 of the Exemplification).

In addition to the nucleic acid molecules encoding MP proteins described above. another aspect of the invention pertains to isolated nucleic acid molecules which are antisense thereto. An "antisense" nucleic acid comprises a nucleotide sequence which is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded DNA molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid. The antisense nucleic acid can be complementary to an entire MP coding strand, or to only a portion thereof. In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding an MP protein. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues (e.g., the entire coding region of SEQ ID NO. 1 (RXA02229) comprises nucleotides 1 to 825). In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding MP. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).

Given the coding strand sequences encoding MP disclosed herein (e.g., the sequences set forth as odd-numbered SEQ ID NOs in the Sequence Listing), antisense

nucleic acids of the invention can be designed according to the rules of Watson and Crick base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of MP mRNA, but more preferably is an oligonucleotide which is antisense to only a portion of the coding or noncoding region of MP mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of MP mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized 10 using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified 15 nucleotides which can be used to generate the antisense nucleic acid include 5fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-Dgalactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 20 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-25 methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5- oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from 30 the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

10

15

20

25

30

The antisense nucleic acid molecules of the invention are typically administered to a cell or generated *in situ* such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding an MCT protein to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense molecule can be modified such that it specifically binds to a receptor or an antigen expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecule to a peptide or an antibody which binds to a cell surface receptor or antigen. The antisense nucleic acid molecule can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong prokaryotic, viral, or eukaryotic promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gaultier et al. (1987) Nucleic Acids. Res. 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Lett. 215:327-330).

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used to catalytically cleave MP mRNA transcripts to thereby inhibit translation of MP mRNA. A ribozyme having specificity for an MP-encoding nucleic acid can be designed based upon the nucleotide sequence of an MP DNA disclosed herein (i.e., SEQ ID NO: 1 (RXA02229). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in an MP-encoding mRNA. See, e.g., Cech et al.

10

15

20

25

30

U.S. Patent No. 4,987,071 and Cech et al. U.S. Patent No. 5,116,742. Alternatively, MP mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel, D. and Szostak, J.W. (1993) Science 261:1411-1418.

Alternatively, MP gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of an MP nucleotide sequence (e.g., an MP promoter and/or enhancers) to form triple helical structures that prevent transcription of an MP gene in target cells. See generally, Helene, C. (1991) Anticancer Drug Des. 6(6):569-84; Helene, C. et al. (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher, L.J. (1992) Bioassays 14(12):807-15.

B. Recombinant Expression Vectors and Host Cells

Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding an MP protein (or a portion thereof). As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adenoassociated viruses), which serve equivalent functions.

The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid sequence to be expressed. Within a recombinant 5 expression vector, "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory 10 sequence" is intended to include promoters, repressor binding sites, activator binding sites, enhancers and other expression control elements (e.g., terminators, polyadenylation signals, or other elements of mRNA secondary structure). Such regulatory sequences are described, for example, in Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide 15 sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells. Preferred regulatory sequences are, for example, promoters such as cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, lacIq-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, arny, SPO2, λ-P_R- or λ P_L, which are used preferably in bacteria. 20 Additional regulatory sequences are, for example, promoters from yeasts and fungi, such as ADC1, MFa, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH, promoters from plants such as CaMV/35S, SSU, OCS, lib4, usp, STLS1, B33, nos or ubiquitin- or phaseolinpromoters. It is also possible to use artificial promoters. It will be appreciated by one of ordinary skill in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein 25 desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., MP proteins, mutant forms of MP proteins, fusion proteins, etc.).

The recombinant expression vectors of the invention can be designed for expression of MP proteins in prokaryotic or eukaryotic cells. For example, MP genes can be expressed in bacterial cells such as C. glutamicum, insect cells (using baculovirus

20

25

30

expression vectors), yeast and other fungal cells (see Romanos, M.A. et al. (1992)
"Foreign gene expression in yeast: a review", Yeast 8: 423-488; van den Hondel,
C.A.M.J.J. et al. (1991) "Heterologous gene expression in filamentous fungi" in: More
Gene Manipulations in Fungi, J.W. Bennet & L.L. Lasure, eds., p. 396-428: Academic
Press: San Diego; and van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer
systems and vector development for filamentous fungi, in: Applied Molecular Genetics
of Fungi, Peberdy, J.F. et al., eds., p. 1-28, Cambridge University Press: Cambridge),
algae and multicellular plant cells (see Schmidt, R. and Willmitzer, L. (1988) High
efficiency Agrobacterium tumefaciens - mediated transformation of Arabidopsis
thaliana leaf and cotyledon explants" Plant Cell Rep.: 583-586), or mammalian cells.
Suitable host cells are discussed further in Goeddel, Gene Expression Technology:
Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Alternatively, the
recombinant expression vector can be transcribed and translated in vitro, for example
using T7 promoter regulatory sequences and T7 polymerase.

Expression of proteins in prokaryotes is most often carried out with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein but also to the C-terminus or fused within suitable regions in the proteins. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase.

Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith, D.B. and Johnson, K.S. (1988) *Gene* 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. In one embodiment, the coding sequence of the MP protein is cloned into a pGEX expression vector to create a vector encoding a fusion protein comprising, from

30

the N-terminus to the C-terminus, GST-thrombin cleavage site-X protein. The fusion protein can be purified by affinity chromatography using glutathione-agarose resin. Recombinant MP protein unfused to GST can be recovered by cleavage of the fusion protein with thrombin.

5 Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al., (1988) Gene 69:301-315) pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III113-B1, Agt11, pBdCl, and pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89; and Pouwels et al., eds. (1985) Cloning Vectors. Elsevier: New York IBSN 0 444 904018). 10 Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by 15 host strains BL21(DE3) or HMS174(DE3) from a resident λ prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter. For transformation of other varieties of bacteria, appropriate vectors may be selected. For example, the plasmids pIJ101, pIJ364, pIJ702 and pIJ361 are known to be useful in transforming Streptomyces, while plasmids pUB110, pC194, or pBD214 are suited for transformation 20 of Bacillus species. Several plasmids of use in the transfer of genetic information into Corynebacterium include pHM1519, pBL1, pSA77, or pAJ667 (Pouwels et al., eds. (1985) Cloning Vectors. Elsevier: New York IBSN 0 444 904018).

One strategy to maximize recombinant protein expression is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128). Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in the bacterium chosen for expression, such as C. glutamicum (Wada et al. (1992) Nucleic Acids Res. 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.

20

25

30

In another embodiment, the MP protein expression vector is a yeast expression vector. Examples of vectors for expression in yeast S. cerevisiae include pYepSec1 (Baldari, et al., (1987) Embo J. 6:229-234), , 2 μ, pAG-1, Yep6, Yep13, pEMBLYe23, pMFa (Kurjan and Herskowitz, (1982) Cell 30:933-943), pJRY88 (Schultz et al., (1987) Gene 54:113-123), and pYES2 (Invitrogen Corporation, San Diego, CA). Vectors and methods for the construction of vectors appropriate for use in other fungi, such as the filamentous fungi, include those detailed in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy, et al., eds., p. 1-28, Cambridge University Press: Cambridge, and Pouwels et al., eds. (1985) Cloning Vectors. Elsevier: New York (IBSN 0 444 904018).

Alternatively, the MP proteins of the invention can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al. (1983) Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39).

In another embodiment, the MP proteins of the invention may be expressed in unicellular plant cells (such as algae) or in plant cells from higher plants (e.g., the spermatophytes, such as crop plants). Examples of plant expression vectors include those detailed in: Becker, D., Kemper, E., Schell, J. and Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", *Plant Mol. Biol.* 20: 1195-1197; and Bevan, M.W. (1984) "Binary *Agrobacterium* vectors for plant transformation", *Nucl. Acid. Res.* 12: 8711-8721, and include pLGV23, pGHlac+, pBIN19, pAK2004, and pDH51 (Pouwels et al., eds. (1985) Cloning Vectors. Elsevier: New York IBSN 0 444 904018).

In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, B. (1987) *Nature* 329:840) and pMT2PC (Kaufman *et al.* (1987) *EMBO J.* 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both

10

15

20

prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989.

In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissuespecific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev. 1:268-277), lymphoid-specific promoters (Calame and Eaton (1988) Adv. Immunol. 43:235-275), in particular promoters of T cell receptors (Winoto and Baltimore (1989) EMBO J. 8:729-733) and immunoglobulins (Banerji et al. (1983) Cell 33:729-740; Queen and Baltimore (1983) Cell 33:741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle (1989) PNAS 86:5473-5477), pancreas-specific promoters (Edlund et al. (1985) Science 230:912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Patent No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, for example the murine hox promoters (Kessel and Gruss (1990) Science 249:374-379) and the α-fetoprotein promoter (Campes and Tilghman (1989) Genes Dev. 3:537-546).

The invention further provides a recombinant expression vector comprising a
DNA molecule of the invention cloned into the expression vector in an antisense
orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in
a manner which allows for expression (by transcription of the DNA molecule) of an
RNA molecule which is antisense to MP mRNA. Regulatory sequences operatively
linked to a nucleic acid cloned in the antisense orientation can be chosen which direct
the continuous expression of the antisense RNA molecule in a variety of cell types, for
instance viral promoters and/or enhancers, or regulatory sequences can be chosen which
direct constitutive, tissue specific or cell type specific expression of antisense RNA.

The antisense expression vector can be in the form of a recombinant plasmid, phagemid
or attenuated virus in which antisense nucleic acids are produced under the control of a

high efficiency regulatory region, the activity of which can be determined by the cell

10

15

20

25

30

type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see Weintraub, H. et al., Antisense RNA as a molecular tool for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) 1986.

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

A host cell can be any prokaryotic or eukaryotic cell. For example, an MP protein can be expressed in bacterial cells such as *C. glutamicum*, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those of ordinary skill in the art. Microorganisms related to *Corynebacterium glutamicum* which may be conveniently used as host cells for the nucleic acid and protein molecules of the invention are set forth in Table 3.

Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection", "conjugation" and "transduction" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., linear DNA or RNA (e.g., a linearized vector or a gene construct alone without a vector) or nucleic acid in the form of a vector (e.g., a plasmid, phage, phasmid, phagemid, transposon or other DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, natural competence, chemical-mediated transfer, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989), and other laboratory manuals.

For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these

integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those which confer resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding an MP protein or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).

To create a homologous recombinant microorganism, a vector is prepared which contains at least a portion of an MP gene into which a deletion, addition or substitution 10 has been introduced to thereby alter, e.g., functionally disrupt, the MP gene. Preferably, this MP gene is a Corynebacterium glutamicum MP gene, but it can be a homologue from a related bacterium or even from a mammalian, yeast, or insect source. In a preferred embodiment, the vector is designed such that, upon homologous 15 recombination, the endogenous MP gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector). Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous MP gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the 20 endogenous MP protein). In the homologous recombination vector, the altered portion of the MP gene is flanked at its 5' and 3' ends by additional nucleic acid of the MP gene to allow for homologous recombination to occur between the exogenous MP gene carried by the vector and an endogenous MP gene in a microorganism. The additional flanking MP nucleic acid is of sufficient length for successful homologous 25 recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5' and 3' ends) are included in the vector (see e.g., Thomas, K.R., and Capecchi, M.R. (1987) Cell 51: 503 for a description of homologous recombination vectors). The vector is introduced into a microorganism (e.g., by electroporation) and cells in which the introduced MP gene has homologously recombined with the 30 endogenous MP gene are selected, using art-known techniques.

In another embodiment, recombinant microorganisms can be produced which contain selected systems which allow for regulated expression of the introduced gene.

10

15

20

For example, inclusion of an MP gene on a vector placing it under control of the lac operon permits expression of the MP gene only in the presence of IPTG. Such regulatory systems are well known in the art.

In another embodiment, an endogenous MP gene in a host cell is disrupted (e.g., by homologous recombination or other genetic means known in the art) such that expression of its protein product does not occur. In another embodiment, an endogenous or introduced MP gene in a host cell has been altered by one or more point mutations, deletions, or inversions, but still encodes a functional MP protein. In still another embodiment, one or more of the regulatory regions (e.g., a promoter, repressor, or inducer) of an MP gene in a microorganism has been altered (e.g., by deletion, truncation, inversion, or point mutation) such that the expression of the MP gene is modulated. One of ordinary skill in the art will appreciate that host cells containing more than one of the described MP gene and protein modifications may be readily produced using the methods of the invention, and are meant to be included in the present invention.

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) an MP protein. Accordingly, the invention further provides methods for producing MP proteins using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding an MP protein has been introduced, or into which genome has been introduced a gene encoding a wild-type or altered MP protein) in a suitable medium until MP protein is produced. In another embodiment, the method further comprises isolating MP proteins from the medium or the host cell.

25

30

C. Isolated MP Proteins

Another aspect of the invention pertains to isolated MP proteins, and biologically active portions thereof. An "isolated" or "purified" protein or biologically active portion thereof is substantially free of cellular material when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of MP protein in which the protein is separated from cellular components of the cells in which

30

it is naturally or recombinantly produced. In one embodiment, the language "substantially free of cellular material" includes preparations of MP protein having less than about 30% (by dry weight) of non-MP protein (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-MP protein, still more preferably less than about 10% of non-MP protein, and most preferably less than about 5% non-MP protein. When the MP protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e. culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation. The language "substantially free of chemical precursors or other chemicals" includes 10 preparations of MP protein in which the protein is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of MP protein having less than about 30% (by dry weight) of chemical 15 precursors or non-MP chemicals, more preferably less than about 20% chemical precursors or non-MP chemicals, still more preferably less than about 10% chemical precursors or non-MP chemicals, and most preferably less than about 5% chemical precursors or non-MP chemicals. In preferred embodiments, isolated proteins or biologically active portions thereof lack contaminating proteins from the same organism 20 from which the MP protein is derived. Typically, such proteins are produced by recombinant expression of, for example, a C. glutamicum MP protein in a microorganism such as C. glutamicum.

An isolated MP protein or a portion thereof of the invention can catalyze an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway, or has one or more of the activities set forth in Table 1. In preferred embodiments, the protein or portion thereof comprises an amino acid sequence which is sufficiently homologous to an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) such that the protein or portion thereof maintains the ability to catalyze an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway. The portion of the protein is preferably a biologically active portion as described herein. In another preferred embodiment, an MP protein of

30

the invention has an amino acid sequence set forth as an even-numbered SEQ ID NO: of the Sequence Listing. In yet another preferred embodiment, the MP protein has an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to a nucleotide sequence of the invention (e.g., a sequence of an odd-numbered SEQ ID NO: of the Sequence Listing). In still another 5 preferred embodiment, the MP protein has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 10 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%. 98%, 99% or more homologous to one of the nucleic acid sequences of the invention, or a portion thereof. Ranges and identity values intermediate to the above-recited values, (e.g., 70-90% identical or 80-95% identical) are also intended to be encompassed by the 15 present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intended to be included. The preferred MP proteins of the present invention also preferably possess at least one of the MP activities described herein. For example, a preferred MP protein of the present invention includes an amino acid sequence encoded by a nucleotide sequence which 20 hybridizes, e.g., hybridizes under stringent conditions, to a nucleotide sequence of the invention, and which can catalyze an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway, or which has one or more of the activities set forth in Table 1.

In other embodiments, the MP protein is substantially homologous to an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) and retains the functional activity of the protein of one of the amino acid sequences of the invention yet differs in amino acid sequence due to natural variation or mutagenesis, as described in detail in subsection I above. Accordingly, in another embodiment, the MP protein is a protein which comprises an amino acid sequence which is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%,

PCT/IB00/00923 WO 01/00843

78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of the invention and which has at least one of the MP activities described herein. Ranges and identity values intermediate to the above-recited values, (e.g., 70-90% identical or 80-95% identical) are also intended to be encompassed by the present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intended to be included. In another embodiment, the invention pertains to a full length C. glutamicum protein which is substantially homologous to an entire amino acid sequence of the invention.

10

15

20

30

Biologically active portions of an MP protein include peptides comprising amino acid sequences derived from the amino acid sequence of an MP protein, e.g., an amino acid sequence of an even-numbered SEQ ID NO: of the Sequence Listing or the amino acid sequence of a protein homologous to an MP protein, which include fewer amino acids than a full length MP protein or the full length protein which is homologous to an MP protein, and exhibit at least one activity of an MP protein. Typically, biologically active portions (peptides, e.g., peptides which are, for example, 5, 10, 15, 20, 30, 35, 36, 37, 38, 39, 40, 50, 100 or more amino acids in length) comprise a domain or motif with at least one activity of an MP protein. Moreover, other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the activities described herein. Preferably, the biologically active portions of an MP protein include one or more selected domains/motifs or portions thereof having biological activity.

MP proteins are preferably produced by recombinant DNA techniques. For 25 example, a nucleic acid molecule encoding the protein is cloned into an expression vector (as described above), the expression vector is introduced into a host cell (as described above) and the MP protein is expressed in the host cell. The MP protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Alternative to recombinant expression, an MP protein, polypeptide, or peptide can be synthesized chemically using standard peptide synthesis techniques. Moreover, native MP protein can be isolated from cells (e.g., endothelial

WO 01/00843 PCT/IB00/00923

5

10

15

20

25

30

- 47 -

cells), for example using an anti-MP antibody, which can be produced by standard techniques utilizing an MP protein or fragment thereof of this invention.

The invention also provides MP chimeric or fusion proteins. As used herein, an MP "chimeric protein" or "fusion protein" comprises an MP polypeptide operatively linked to a non-MP polypeptide. An "MP polypeptide" refers to a polypeptide having an amino acid sequence corresponding to MP, whereas a "non-MP polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to the MP protein, e.g., a protein which is different from the MP protein and which is derived from the same or a different organism. Within the fusion protein, the term "operatively linked" is intended to indicate that the MP polypeptide and the non-MP polypeptide are fused in-frame to each other. The non-MP polypeptide can be fused to the N-terminus or C-terminus of the MP polypeptide. For example, in one embodiment the fusion protein is a GST-MP fusion protein in which the MP sequences are fused to the C-terminus of the GST sequences. Such fusion proteins can facilitate the purification of recombinant MP proteins. In another embodiment, the fusion protein is an MP protein containing a heterologous signal sequence at its Nterminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of an MP protein can be increased through use of a heterologous signal sequence.

Preferably, an MP chimeric or fusion protein of the invention is produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, for example by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, *Current Protocols in Molecular Biology*, eds. Ausubel et al. John Wiley & Sons: 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). An MP-

encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the MP protein.

Homologues of the MP protein can be generated by mutagenesis, e.g., discrete point mutation or truncation of the MP protein. As used herein, the term "homologue" refers to a variant form of the MP protein which acts as an agonist or antagonist of the activity of the MP protein. An agonist of the MP protein can retain substantially the same, or a subset, of the biological activities of the MP protein. An antagonist of the MP protein can inhibit one or more of the activities of the naturally occurring form of the MP protein, by, for example, competitively binding to a downstream or upstream member of the MP cascade which includes the MP protein. Thus, the C. glutamicum MP protein and homologues thereof of the present invention may modulate the activity of one or more metabolic pathways in which MP proteins play a role in this microorganism.

In an alternative embodiment, homologues of the MP protein can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the MP 15 protein for MP protein agonist or antagonist activity. In one embodiment, a variegated library of MP variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of MP variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential MP 20 sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of MP sequences therein. There are a variety of methods which can be used to produce libraries of potential MP homologues from a degenerate oligonucleotide sequence. Chemical synthesis of a 25 degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential MP sequences. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang, S.A. (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al. (1984) Science 198:1056; Ike et al. (1983) Nucleic Acid Res. 11:477.

20

In addition, libraries of fragments of the MP protein coding can be used to generate a variegated population of MP fragments for screening and subsequent selection of homologues of an MP protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of an MP coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, an expression library can be derived which encodes N-terminal, C-terminal and internal fragments of various sizes of the MP protein.

Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of MP homologues. The most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify MP homologues (Arkin and Yourvan (1992) *PNAS* 89:7811-7815; Delgrave *et al.* (1993) *Protein Engineering* 6(3):327-331).

In another embodiment, cell based assays can be exploited to analyze a variegated MP library, using methods well known in the art.

D. Uses and Methods of the Invention

The nucleic acid molecules, proteins, protein homologues, fusion proteins,

primers, vectors, and host cells described herein can be used in one or more of the
following methods: identification of C. glutamicum and related organisms; mapping of
genomes of organisms related to C. glutamicum; identification and localization of C.

glutamicum sequences of interest; evolutionary studies; determination of MP protein regions required for function; modulation of an MP protein activity; modulation of the activity of an MP pathway; and modulation of cellular production of a desired compound, such as a fine chemical.

The MP nucleic acid molecules of the invention have a variety of uses. First, 5 they may be used to identify an organism as being Corynebacterium glutamicum or a close relative thereof. Also, they may be used to identify the presence of C. glutamicum or a relative thereof in a mixed population of microorganisms. The invention provides the nucleic acid sequences of a number of C. glutamicum genes; by probing the extracted genomic DNA of a culture of a unique or mixed population of microorganisms 10 under stringent conditions with a probe spanning a region of a C. glutamicum gene which is unique to this organism, one can ascertain whether this organism is present. Although Corynebacterium glutamicum itself is not pathogenic to humans, it is related to species which are human pathogens, such as Corynebacterium diphtheriae. Corynebacterium diphtheriae is the causative agent of diphtheria, a rapidly developing, 15 acute, febrile infection which involves both local and systemic pathology. In this disease, a local lesion develops in the upper respiratory tract and involves necrotic injury to epithelial cells; the bacilli secrete toxin which is disseminated through this lesion to distal susceptible tissues of the body. Degenerative changes brought about by the inhibition of protein synthesis in these tissues, which include heart, muscle, peripheral 20 nerves, adrenals, kidneys, liver and spleen, result in the systemic pathology of the disease. Diphtheria continues to have high incidence in many parts of the world, including Africa, Asia, Eastern Europe and the independent states of the former Soviet Union. An ongoing epidemic of diphtheria in the latter two regions has resulted in at 25 least 5,000 deaths since 1990.

In one embodiment, the invention provides a method of identifying the presence or activity of Cornyebacterium diphtheriae in a subject. This method includes detection of one or more of the nucleic acid or amino acid sequences of the invention (e.g., the sequences set forth as odd-numbered or even-numbered SEQ ID NOs, respectively, in the Sequence Listing) in a subject, thereby detecting the presence or activity of Corynebacterium diphtheriae in the subject. C. glutamicum and C. diphtheriae are related bacteria, and many of the nucleic acid and protein molecules in C. glutamicum

WO 01/00843 PCT/IB00/00923

5

10

15

20

25

30

- 51 -

are homologous to *C. diphtheriae* nucleic acid and protein molecules, and can therefore be used to detect *C. diphtheriae* in a subject.

The nucleic acid and protein molecules of the invention may also serve as markers for specific regions of the genome. This has utility not only in the mapping of the genome, but also for functional studies of *C. glutamicum* proteins. For example, to identify the region of the genome to which a particular *C. glutamicum* DNA-binding protein binds, the *C. glutamicum* genome could be digested, and the fragments incubated with the DNA-binding protein. Those which bind the protein may be additionally probed with the nucleic acid molecules of the invention, preferably with readily detectable labels; binding of such a nucleic acid molecule to the genome fragment enables the localization of the fragment to the genome map of *C. glutamicum*, and, when performed multiple times with different enzymes, facilitates a rapid determination of the nucleic acid sequence to which the protein binds. Further, the nucleic acid molecules of the invention may be sufficiently homologous to the sequences of related species such that these nucleic acid molecules may serve as markers for the construction of a genomic map in related bacteria, such as *Brevibacterium lactofermentum*.

The MP nucleic acid molecules of the invention are also useful for evolutionary and protein structural studies. The metabolic processes in which the molecules of the invention participate are utilized by a wide variety of prokaryotic and eukaryotic cells; by comparing the sequences of the nucleic acid molecules of the present invention to those encoding similar enzymes from other organisms, the evolutionary relatedness of the organisms can be assessed. Similarly, such a comparison permits an assessment of which regions of the sequence are conserved and which are not, which may aid in determining those regions of the protein which are essential for the functioning of the enzyme. This type of determination is of value for protein engineering studies and may give an indication of what the protein can tolerate in terms of mutagenesis without losing function.

Manipulation of the MP nucleic acid molecules of the invention may result in the production of MP proteins having functional differences from the wild-type MP proteins. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity.

10

15

20

25

30

The invention also provides methods for screening molecules which modulate the activity of an MP protein, either by interacting with the protein itself or a substrate or binding partner of the MP protein, or by modulating the transcription or translation of an MP nucleic acid molecule of the invention. In such methods, a microorganism expressing one or more MP proteins of the invention is contacted with one or more test compounds, and the effect of each test compound on the activity or level of expression of the MP protein is assessed.

When the desired fine chemical to be isolated from large-scale fermentative culture of C. glutamicum is an amino acid, a vitamin, a cofactor, a nutraceutical, a nucleotide, a nucleoside, or trehalose, modulation of the activity or efficiency of activity of one or more of the proteins of the invention by recombinant genetic mechanisms may directly impact the production of one of these fine chemicals. For example, in the case of an enzyme in a biosynthetic pathway for a desired amino acid, improvement in efficiency or activity of the enzyme (including the presence of multiple copies of the gene) should lead to an increased production or efficiency of production of that desired amino acid. In the case of an enzyme in a biosynthetic pathway for an amino acid whose synthesis is in competition with the synthesis of a desired amino acid, any decrease in the efficiency or activity of this enzyme (including deletion of the gene) should result in an increase in production or efficiency of production of the desired amino acid, due to decreased competition for intermediate compounds and/or energy. In the case of an enzyme in a degradation pathway for a desired amino acid, any decrease in efficiency or activity of the enzyme should result in a greater yield or efficiency of production of the desired product due to a decrease in its degradation. Lastly, mutagenesis of an enzyme involved in the biosynthesis of a desired amino acid such that this enzyme is no longer is capable of feedback inhibition should result in increased yields or efficiency of production of the desired amino acid. The same should apply to the biosynthetic and degradative enzymes of the invention involved in the metabolism of vitamins, cofactors, nutraceuticals, nucleotides, nucleosides and trehalose.

Similarly, when the desired fine chemical is not one of the aforementioned compounds, the modulation of activity of one of the proteins of the invention may still impact the yield and/or efficiency of production of the compound from large-scale culture of C. glutamicum. The metabolic pathways of any organism are closely

15

20

25

30

interconnected; the intermediate used by one pathway is often supplied by a different pathway. Enzyme expression and function may be regulated based on the cellular levels of a compound from a different metabolic process, and the cellular levels of molecules necessary for basic growth, such as amino acids and nucleotides, may critically affect the viability of the microorganism in large-scale culture. Thus, modulation of an amino acid biosynthesis enzyme, for example, such that it is no longer responsive to feedback inhibition or such that it is improved in efficiency or turnover may result in increased cellular levels of one or more amino acids. In turn, this increased pool of amino acids provides not only an increased supply of molecules necessary for protein synthesis, but also of molecules which are utilized as intermediates and precursors in a number of other biosynthetic pathways. If a particular amino acid had been limiting in the cell, its increased production might increase the ability of the cell to perform numerous other metabolic reactions, as well as enabling the cell to more efficiently produce proteins of all kinds, possibly increasing the overall growth rate or survival ability of the cell in large scale culture. Increased viability improves the number of cells capable of producing the desired fine chemical in fermentative culture, thereby increasing the yieldof this compound. Similar processes are possible by the modulation of activity of a degradative enzyme of the invention such that the enzyme no longer catalyzes, or catalyzes less efficiently, the degradation of a cellular compound which is important for the biosynthesis of a desired compound, or which will enable the cell to grow and reproduce more efficiently in large-scale culture. It should be emphasized that optimizing the degradative activity or decreasing the biosynthetic activity of certain molecules of the invention may also have a beneficial effect on the production of certain fine chemicals from C. glutamicum. For example, by decreasing the efficiency of activity of a biosynthetic enzyme in a pathway which competes with the biosynthetic pathway of a desired compound for one or more intermediates, more of those intermediates should be available for conversion to the desired product. A similar situation may call for the improvement of degradative ability or efficiency of one or more proteins of the invention.

This aforementioned list of mutagenesis strategies for MP proteins to result in increased yields of a desired compound is not meant to be limiting; variations on these mutagenesis strategies will be readily apparent to one of ordinary skill in the art. By

these mechanisms, the nucleic acid and protein molecules of the invention may be utilized to generate *C. glutamicum* or related strains of bacteria expressing mutated MP nucleic acid and protein molecules such that the yield, production, and/or efficiency of production of a desired compound is improved. This desired compound may be any natural product of *C. glutamicum*, which includes the final products of biosynthesis pathways and intermediates of naturally-occurring metabolic pathways, as well as molecules which do not naturally occur in the metabolism of *C. glutamicum*, but which are produced by a *C. glutamicum* strain of the invention.

This invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references, patent applications, patents, published patent applications, Tables, and the sequence listing cited throughout this application are hereby incorporated by reference.

TABLE 1: Included Genes

Lysine biosynthesis

Nucleic Acid	Amino Acid	Identification Code	Contig.	NT Start	NT Stop	Function
- e	2 2 2 2 3 3 3	RXA02229	GR00653	2793	3617	DIAMINOPIMELATE EPIMERASE (EC 5.1.1.7)
o ~ o ~	- 9 8 0	F RXA01009 RXC02390 RXC01796	GR00287	4714	5943	ACE I YLOKNI HINE AMINOTRANSFERASE (EC 2.6.1.11) ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11) MEMBRANE SPANNING PROTEIN INVOLVED IN LYSINE METABOLISM MEMBRANF ASSOCIATED PROTEIN INVOLVED IN LYSINE METABOLISM
=	2	RXC01207				CYTOSOLIC PROTEIN INVOLVED IN METABOLISM OF LYSINE AND
13 15	41 16	RXC00657 RXC00552				THREONINE TRANSCRIPTIONAL REGULATOR INVOLVED IN LYSINE METABOLISM CYTOSOLIC PROTEIN INVOLVED IN LYSINE METABOLISM
Trehalose	0					
Nucleic Acid	Amino Acid	Identification Code	Contig.	NT Start	NT Stop	Function
17	18	RXN00351	VV0135	37078	38532	ALPHA, ALPHA-TREHALOSE-PHOSPHATE SYNTHASE (UDP-FORMING) 56 KD
19	20	F RXA00351	GR00066	1486	2931	SUBUNIT (EC 2.4.1.15) ALPHA ALPHA-TREHALOSE-PHOSPHATE SYNTHASE (UDP-FORMING) 56 KD
23	27.5	RXA00873 RXA00891	GR00241 GR00243	3 1005	758 4	SUBUNIT (EC 2.4.1.15) Trehalose synthase (EC 2.4.1) trehalose synthase (EC 2.4.1)
Lysine bi	Lysine biosynthesis	· <u>s</u>				
Nucleic Acid	Amino Acid	Identification Code	Contig.	NT Start	NT Stop	Function
25 25	26 26	RXA00534	GR00137	4758	3496	ASPARTOKINASE ALPHA AND BETA SUBUNITS (EC 2.7.2.4)
.29	308	KXA00533 RXA02843	GR00137 GR00842	3469 543	2438 4	ASPARTATE-SEMIALDEHYDE DEHYDROGENASE (EC 1.2.1.11) 2,3,4,5-TETRAHYDROPYRIDINE-2-CARBOXYLATE N-SUCCINYLTRANSFERASE
31	32	RXA02022	GR00613	2063	3169	(EC 2.3.1.117) SUCCINYI-DIAMINOPIMEI ATE DESI ICCINYI ASE (EC 2 £ 4 48)
ಜೀ	34 34	RXA00044	GR00007	3458	4393	DIHYDRODIPICOLINATE SYNTHASE (EC 4.2.1.52)
37	38	RXA00864	GR00236 GR00236	1694 1694	1639 2443	DINYURODIPICOLINATE REDUCTASE (EC 1.3.1.26) probable 2,3-dihydrodipicolinate N-C6-lyase (cyclizing) (EC 4.3.3).
39	40	RXA02843	GR00842	543	4	Corynebacterium glutamicum 2.3.4.5-TETRAHYDROPYRIDINE-2-CARBOXYI ATF N.SI ICCINYI TBANSEEDASE
;	•					(EC 2.3.1.117)
43	4	RXN00355 F RXA00352	VV0135 GR00068	31980 861	30961	MESO-DIAMINOPIMELATE D-DEHYDROGENASE MESO-DIAMINOPIMELATE D-DEHYDROGENASE (EC 1.4.1.16)

lable 1 (continued)	Contig. NT Start NT Stop Function	GR00274 3 1379 DIAMINOPIMELATE DECARBOXYLASE (EC 4.1.1.20)			GR00036 5443 6945 L-LYSINE TRANSPORT PROTEIN		GR00236 2647 3549 DIHYDRODIPICOLINATE SYNTHASE (EC 4.2.1,52)	2,3,4,5-TETRAHYDROPYRIDINE-2-CARBOXYLATE N-SUCCINYLTRANSFERASE	(EC 2.3.1.117)	ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)	ABC TRANSPORTER ATP-BINDING PROTEIN INVOLVED IN LYSINE	METABOLISM	PROTEIN INVOLVED IN LYSINE METABOLISM	ZN-DEPENDENT HYDROLASE INVOLVED IN LYSINE METABOLISM	ABC TRANSPORTER ATP-BINDING PROTEIN INVOLVED IN LYSINE	METABOLISM	PROTEIN INVOLVED IN LYSINE METABOLISM
	Identification Code	RXA00972	RXA02653	RXA01393	RXA00241	RXA01394	RXA00865	RXS02021		RXS02157	RXC00733		RXC00861	RXC00866	RXC02095		RXC03185
	Amino Acid SEQ ID NO	46	84	20	25	ጃ	26	58		8	62		2	99	89		20
	Nucleic Acid	45	47	49	5	53	55	22		29	61		63	65	29		69

Glutamate and glutamine metabolism

Function	GLUTAMATE SYNTHASE (NADH) PRECURSOR (EC 1.4.1.14)	GLUTAMATE SYNTHASE (NADPH) LARGE CHAIN PRECURSOR (EC 1.4.1.13)	GLUTAMATE SYNTHASE (NADPH) LARGE CHAIN PRECURSOR (EC 1.4.1.13)	GLUTAMATE SYNTHASE (NADPH) LARGE CHAIN PRECURSOR (EC 1,4.1.13)	GLUTAMATE SYNTHASE (NADPH) SMALL CHAIN (EC 1.4.1.13)	GLUTAMATE SYNTHASE INADPHI SMALL CHAIN (EC 1.4.1.13)	GLUTAMATE SYNTHASE (NADPH) SMALL CHAIN (EC 1.4.1.13)	GLUTAMATE SYNTHASE (NADPH) SMALL CHAIN (EC 1.4.1.13)	NADP-SPECIFIC GLUTAMATE DEHYDROGENASE (EC 1.4.1.4)	GLUTAMINE SYNTHETASE (EC 6.3.1.2)	GLUTAMINE SYNTHETASE (EC 6.3.1.2)	GLUTAMATE-AMMONIA-LIGASE ADENYLYLTRANSFERASE (EC 2.7.7.42)	GLUTAMINASE (EC 3.5.1.2)	GLUTAMINASE (EC 3.5.1.2)	GLUTAMINE-BINDING PROTEIN PRECURSOR	GLUTAMINE-BINDING PERIPLASMIC PROTEIN PRECURSOR			
NT Stop	14273	8912	4	964	4122	3419	7368	283	15233	4	605	2599	5192	17750	8396	862	862	1581	1525
NT Start	9744	7107	1296	1806	2752	2757	7916	2	14607	630	961	1259	3855	19180	5262	7	2	2612	614
Contig.	W0196	GR00001	GR00074	GR00075	W0154	GR00012	W0181	GR00031	W0196	GR00075	GR00075	GR00628	GR00057	GR00057	GR00057	W0332	GR10017	GR00043	GR00193
Identification Code	RXN00367	F RXA00007	F RXA00364	F RXA00367	RXN00076	F RXA00075	RXN00198	F RXA00198	RXN00365	F RXA00365	RXA00366	RXA02072	RXA00323	RXA00335	RXA00324	RXN03176	F RXA02879	RXA00278	RXA00727
Amino Acid SEQ ID NO	72	74	76	78	80	82	\$	98	88	8	35	3 6	%	86	90	102	\$	106	108
Nucleic Acid SEQ ID NO	77	23	75	11	79	81	83	85	87	88	91	93	92	97	8	5	103	501	107

Alanine and Aspartate and Asparagine metabolism

Function	ASPARAGINE SYNTHETASE (GLUTAMINE-HYDROLYZING) (EC 6.3.5.4)	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)	ASPARTATE AMMONIA-LYASE (EC 4.3.1.1)	L-ASPARAGINASE (EC 3.5.1.1)	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)	ALANINE RACEMASE (EC 5.1.1.1)	ALANINE RACEMASE, BIOSYNTHETIC (EC 5.1.1.1)					
NT Stop	4901	25814	4	9182	746	1138	275	365	1695	9	5783	19944
NT Start	6739	26974	510	10288	213	854	1585	1942	2669	680	4701	20972
Contig.	GR00639	VV0100	GR00018	W0135	GR00163	GR00164	GR00729	GR00645	GR00708	W0138	W0086	W0135
Identification Code	RXA02139	RXN00116	F RXA00116	RXN00618	F RXA00618	F RXA00627	RXA02550	RXA02193	RXA02432	RXN03003	RXN00508	RXN00636
Amino Acid	5	112	114	116	118	120	122	124	126	128	130	132
Nucleic Acid	109	==	113	115	117	119	121	123	125	127	129	131

beta-Alanine metabolism

Function	BETA-UREIDOPROPIONASE (EC 3.5.1.6) METHYLMALONATE-SEMIALDEHYDE DEHYDROGENASE (ACYLATING) (EC 1.2.1.27) ASPARTATE 1-DECARBOXYLASE PRECURSOR (EC 4.1.1.11)
NT Stop	7826
NT Start NT Stop	8581
Contig.	GR00726 8581
Identification Code	RXA02536 RXS00870 RXS02299
Amino Acid	134 136 138
Nucleic Acid	133 135 137

Glycine and serine metabolism

Function	L-SERINE DEHYDRATASE (EC 4.2.1.13)	L-SERINE DEHYDRATASE (EC 4.2.1.13)	SERINE HYDROXYMETHYLTRANSFERASE (EC 2.1.2.1)	SARCOSINE OXIDASE (EC 1.5.3.1)	SARCOSINE OXIDASE (EC 1.5.3.1)	SARCOSINE OXIDASE (EC 1.5.3.1)	PHOSPHOSERINE AMINOTRANSFERASE (EC 2.6.1.52)	PHOSPHOSERINE PHOSPHATASE (EC 3.1.3.3)	SARCOSINE OXIDASE (EC 1.5.3.1)	D-3-PHOSPHOGLYCERATE DEHYDROGENASE (EC 1.1.1.95)	D-3-PHOSPHOGLYCERATE DEHYDROGENASE (EC 1.1.1.95)				
NT Stop	2042	1827	6042	9876	12160	33813	12581	4648	4	4648	5220	13977	15423		
NT Start	1113	481	7343	10253	11783	33454	11454	5082	393	5082	5330	15041	15857		
Contig.	GR00435	GR00525	GR00156	GR00515	W0202	GR00654	GR00641	GR00766	GR00717	GR00766	GR00768	GR00720	W0074		
Identification Code	RXA01561	RXA01850	RXA00580	RXA01821	RXN02263	F RXA02263	RXA02176	RXN02758	F RXA02479	F RXA02758	F RXA02759	RXA02501	RXN03105	RXS01130	RXS03112
Amino Acid SEQ ID NO	140	142	144	146	148	150	152	15	156	158	9	162	₹	166	168
Nucleic Acid SEQ ID NO	139	141	143	145	147	149	151	153	155	157	159	161	163	165	167

Table 1 (continued)

Threonine metabolism

Function	HOMOSERINE DEHYDROGENASE (EC 1.1.1.3)	HOMOSERINE DEHYDROGENASE (EC 1.1.1.3)	HOMOSERINE KINASE (EC 2.7.1.39)	THREONINE SYNTHASE (EC 4.2.99.2)	HOMOSERINE O-ACETYLTRANSFERASE	HOMOSERINE O-ACETYLTRANSFERASE (EC 2.3.1.11)	CYTOSOLIC PROTEIN INVOLVED IN METABOLISM OF LYSINE AND	THREONINE	MEMBRANE ASSOCIATED PROTEIN INVOLVED IN THREONINE METABOLISM
NT Stop	13387	3015	1087	14410	68911	1832			
NT Start	12053	2623	161	12968	70041	23			
Contig.	W0149	GR00274	GR00273	GR00057	7,0086	GR00088			
identification Code	RXN00969	F RXA00974	RXA00970	RXA00330	RXN00403	F RXA00403	RXC01207		RXC00152
Amino Acid SEQ ID NO	170	172	174	176	178	180	182		184
Nucleic Acid SEQ ID NO	169	171	173	175	177	179	181		183

Metabolism of methionine and S-adenosyl methionine

Function	HOMOSERINE O-ACETYLTRANSFERASE (EC 2.3.1.31)	HOMOSERINE O-ACETYLTRANSFERASE (EC 2.3.1.11)	CYSTATHIONINE GAMMA-SYNTHASE (EC 4.2.99.9)	5-methyltetrahydrofolate-homocysteine methyltransferase (methionine synthetase)	O-ACETYLHOMOSERINE SULFHYDRYLASE (EC 4.2.99.10) / O-ACETYLSERINE	SULFHYDRYLASE (EC 4.2.99.8)	O-ACETYLHOMOSERINE SULFHYDRYLASE (EC 4.2.99.10) / O-ACETYLSERINE	SULFHYDRYLASE (EC 4.2.99.8)	O-ACETYLHOMOSERINE SULFHYDRYLASE (EC 4.2.99.10) / O-ACETYLSERINE	SULFHYDRYLASE (EC 4.2.99.8)	S-METHYLTETRAHYDROFOLATE-HOMOCYSTEINE METHYLTRANSFERASE	(EC 2.1.1.13)	5-METHYLTETRAHYDROFOLATE-HOMOCYSTEINE METHYLTRANSFERASE	(EC 2.1.1.13)	5-METHYLTETRAHYDROFOLATE-HOMOCYSTEINE METHYLTRANSFERASE	(EC 2.1.1.13)	S-ADENOSYLMETHIONINE:2-DEMETHYLMENAQUINONE	METHYLTRANSFERASE (EC 2.1)	S-ADENOSYLMETHIONINE:2-DEMETHYLMENAQUINONE	METHYLTRANSFERASE (EC 2.1)	ADENOSYLHOMOCYSTEINASE (EC 3.3.1.1)	ADENOSTLHOMOCYSTEINASE (EC 3.3.1.1)				
NT Stop	4313	1832		1811	2039		2521	15297	70188		576		3801		4025		11726		ဖ	;	1741		645		5045	1624
NT Start	5359	723		2404	3085		1919	16286	70787		_		3289		4552		9228		2483		2238		1142		3612	97.1
Contig.	GR00017	GR00088		GR00038	GR00726		GR00770	GR00032	7,0086		GR00088		GR00089		GR00645		VV0302		GR00646		V0042		GR10044		VV0124	GR00020
Identification Code	RXA00115	F RXA00403	RXS03158	F RXA00254	RXA02532	RXS03159	F RXA02768	RXA00216	RXN00402		F RXA00402		RXA00405		RXA02197		RXN02198		F RXA02198		RXN03074		F RXA02906		RXN00132	F KXA00132
Amino Acid	186	190	192	194	196	198	200	202	204		206		208		210		212		214	:	216		218		220	777
Nucleic Acid	185	681	191	193	195	197	199	201	203		205		207		509		211		213	!	215		217		219	221

ntinued)	Function	ADENOSYLHOMOCYSTEINASE (EC 3.3.1.1) 5-METHYI TETRAHYDROPTEROYI TRIGII ITAMATEHOMOCYSTEINE	METHYLTRANSFERASE (EC 2.1.1.14)	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE	METHYLTRANSFERASE (EC 2.1.1.14)	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATEHOMOCYSTEINE	METHYLTRANSFERASE (EC 2.1.1.14)	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE	METHYLTRANSFERASE (EC 2.1.1.14)	S-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE	METHYLTRANSFERASE (EC 2.1.1.14)	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE	METHYLTRANSFERASE (EC 2.1.1.14)	PROTEIN INVOLVED IN METABOLISM OF S-ADENOSYLMETHIONINE, PURINES	AND PANTOTHENATE	EXPORTED PROTEIN INVOLVED IN METABOLISM OF PYRIDIMES AND	ADENOSYLHOMOCYSTEINE
Table 1 (continued)	NT Start NT Stop	3634		5295		5731				4730		15447					
ï	NT Start	2339		3496		5252				5254		14764					
	Contig.	GR00398		GR00629		GR00629				GR00751		GR00752					
	Identification Code	F RXA01371 RXN02085		F RXA02085		F RXA02086		RXN02648		F RXA02648		F RXA02658		RXC02238		RXC00128	
	Amino Acid SEQ ID NO	224	ì	228		230		232		234		236		238		240	
	Nucleic Acid SEQ ID NO	223	ì	227		229		231		233		235		237		239	

S-adenosyl methionine (SAM) Biosynthesis

Function	-ADENOSYLMETHIONINE SYNTHETASE (EC 2.5.1.6)
	S-A
NT Stop	8380
NT Start	7160
Contig.	GR00654
Identification Code	RXA02240
Amino Acid	242
Nucleic Acid	241

Cysteine metabolism

Function	SERINE ACETYLTRANSFERASE (EC 2.3.1.30)	CYSTEINE SYNTHASE (EC 4.2.99.8)	O-ACETYLHOMOSERINE SULFHYDRYLASE (EC 4.2.99.10) / O-ACETYLSERINE	SULFHYDRYLASE (EC 4.2.99.8)	O-ACETYLHOMOSERINE SULFHYDRYLASE (EC 4.2.99.10) / O-ACETYLSERINE	SULFHYDRYLASE (EC 4.2.99.8)	O-ACETYLHOMOSERINE SULFHYDRYLASE (EC 4.2.99.10) / O-ACETYLSERINE	SULFHYDRYLASE (EC 4.2.99.8)	ABC TRANSPORTER ATP-BINDING PROTEIN INVOLVED IN CYSTEINE	METABOLISM	ABC TRANSPORTER ATP-BINDING PROTEIN INVOLVED IN CYSTEINE	METABOLISM
NT Stop	2234	1482	70188		576							
NT Start	1689	550	70787		-							
Contig.	GR00206	GR00206	W0086		GR00088							
Identification Code	RXA00780	RXA00779	RXN00402		F RXA00402		RXS00405		RXC00164		RXC01191	
Amino Acid	244	246	248		250		252		254		256	
Nucleic Acid	243	245	247		249		251		253		255	

Valine, leucine and isoleucine

Table 1 (continued)

Function	THREONINE DEHYDRATASE BIOSYNTHETIC (EC 4.2.1.16)	BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE (EC 2.6.1.42)	BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE (EC 2.6.1.42)	BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE (EC 2.6.1.42)	3-ISOPROPYLMALATE DEHYDRATASE LARGE SUBUNIT (EC 4.2.1.33)	3-ISOPROPYLMALATE DEHYDRATASE LARGE SUBUNIT (EC 4.2.1.33)	3-ISOPROPYLMALATE DEHYDROGENASE (EC 1.1.1.85)	3-ISOPROPYLMALATE DEHYDROGENASE (EC 1.1.1.85)	2-ISOPROPYLMALATE SYNTHASE (EC 4.1.3.12)	2-ISOPROPYLMALATE SYNTHASE (EC 4.1.3.1)	3-ISOPROPYLMALATE DEHYDRATÀSE SMALL SUBUNIT (EC 4.2.1.33)	3-METHYL-2-OXOBUTANOATE HYDROXYMETHYLTRANSFERASE (EC 2.1.2.11)	/DECARBOXYLASE (EC 4.1.1.44)	3-METHYL-2-OXOBUTANOATE HYDROXYMETHYLTRANSFERASE (EC 2.1.2.11)	4"-MYCAROSYL ISOVALERYL-COA TRANSFERASE (EC 2)	KETOL-ACID REDUCTOISOMERASE (EC 1.1.1.86)	KETOL-ACID REDUCTOISOMERASE (EC 1.1.1.86)	
NT Stop	2588	4249	196	196	7513	1602	3472	1651	7498	7360	7121	48402		1960	14643		1530	
NT Start	3856	5091	1296	1248	9171	-	4491	1349	6128	6128	1117	47590		2766	15584		1075	
Contig.	GR00751	GR00204	VV0246	GR00473	W0143	GR00294	VV0157	GR00315	W0219	GR00137	W0143	W0127		GR00555	VV0122		GR00321	
Identification Code	RXA02646	RXA00766	RXN01690	F RXA01690	RXN01026	F RXA01026	RXN01127	F RXA01132	RXN00536	F RXA00536	RXN02965	RXN01929		F RXA01929	RXN01420	RXS01145	F RXA01145	
Amino Acid	258	260	262	264	266	268	270	272	274	276	278	280		282	284	286	288	
Nucleic Acid	257	259	261	263	265	267	569	271	273	275	277	279		281	283	285	287	

Arginine and proline metabolism

Enzymes of proline biosynthesis:

	KINASE (EC 2.7.2.11)	GAMMA-GLUTAMYI, PHOSPHATE REDUCTASE (GPR) (EC 1.2.1.41)	MYL PHOSPHATE REDUCTASE (GPR) (EC 1.2.1.41)	MYL PHOSPHATE REDUCTASE (GPR) (EC 1.2.1.41)	PYRROLINE-5-CARBOXYLATE REDUCTASE (EC 1.5.1.2)	ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)	ORNITHINE CYCLODEAMINASE (EC 4.3.1.12)	ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)	ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)
Function	GLUTAMATE 5-	GAMMA-GLUTA	GAMMA-GLUTA	GAMMA-GLUTA	PYRROLINE-5-(ACETYLORNITI	ORNITHINE CY	ACETYLORNITI	ACETYLORNITI
NT Stop	223	3867	16	1894	12692				5943
NT Start	1449	5162	624	2493	11883		٠		4714
Contig	GR00689	W0213	GR00690	GR00691	GR00720				GR00287
Identification Code	RXA02375	RXN02382	F RXA02378	F RXA02382	RXA02499	RXS02157	RXS02262	RXS02970	F RXA01009
Amino Acid SEO ID NO	290	292	294	296	298	300	302	304	306
Nucleic Acid	289	291	293	295	297	299	301	303	305

Table 1 (continued)

Enzymes of proline degradation:

<u>Function</u>	PROLINE DEHYDROGENASE (EC 1.5.99.8) / DELTA-1- PYRROLINE-5-	CARBOATCH DENTURGENASE (EC. 15.9) (1.1.12) PROLINE DEHYDROGENASE (EC. 15.99.8) / DELTA-1- PYRROLINE-5-	CARBOATUME DEHTURGENASE (EC 1.5.19.12) PROLINE DEHTURGGENASE (EC 1.5.99.8) / DELTA-1- PYRROLINE-5-	CARBOAT LATE DENT DE COENASE (EC. 1.3.1.1.2) PROTEIN INVOLVED IN PROLINE METABOLISM
NT Stop	64703	454	ĸ	
NT Start	68158	8	3028	
Contig.	W0127	GR00003	GR00660	
Identification Code Contig.	RXN00023	F RXA00023	F RXA02284	RXC02498
Amino Acid	308	310	312	314
Nucleic Acid	307	303	311	313

Synthesis of 3-Hydoxy-proline:

	DNA FOR L-PROLINE 3-HYDROXYLASE, COMPLETE CDS
Function	DNA FC
NT Stop	4687
NT Start	5337
Contig.	GR00423
Identification Code	RXA01491
Amino Acid	316
Nucleic Acid	315

Enzymes of ornithine, arginine and spermidine metabolism:

Function	GLUTAMATE N-ACETYLTRANSFERASE (EC 2.3.1.35) / AMINO-ACID ACETYLTRANSFERASE (EC 2.3.1.1)	ACETYLGLUTAMATE KINASE (EC 2,7.2.8)	N-ACETYL-GAMMA-GLUTAMYL-PHOSPHATE REDUCTASE (EC 1.2.1.38)	N-ACETYLGLUTAMATE-5-SEMIALDEHYDE DEHYDROGENASE	N-ACETYLGLUTAMATE-5-SEMIALDEHYDE DEHYDROGENASE	ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)	ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)	ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)	ORNITHINE CARBAMOYLTRANSFERASE (EC 2.1.3.3)	ARGININOSUCCINATE SYNTHASE (EC 6.3.4.5)	ARGININOSUCCINATE LYASE (EC 4.3.2.1)	ARGININOSUCCINATE LYASE (EC 4.3.2.1)	ARGININOSUCCINATE LYASE (EC 4.3.2.1)	ORNITHINE CYCLODEAMINASE (EC 4.3.1.12)	SPERMIDINE SYNTHASE (EC 2.5.1.16)	SPERMIDINE SYNTHASE (EC 2.5.1.16)	PUTRESCINE OXIDASE (EC 1.4.3.10)	ARGININE HYDROXIMATE RESISTANCE PROTEIN	N-ACETYL-GAMMA-GLUTAMYL-PHOSPHATE REDUCTASE (EC 1.2.1.38)	CARBAMOYL-PHOSPHATE SYNTHASE SMALL CHAIN (EC 6.3.5.5)	N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14)	N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14)
NT Stop	3076	4075	13327	1536	1826	5251		5943	6224	8116	5253	8962	9611	33436	20230	14190	2142	6743	13037			
NT Start	1913	3125	14106	757	1536	4079		4714	5268	6914	6683	8180	8949	32291	19289	12652	2942	6231	13327			
Contig.	GR00640	GR00640	VV0122	GR00640	GR00640	GR00640		GR00287	GR00640	GR00640	VV0122	GR00640	GR00640	GR00654	GR00032	GR00424	GR00498	GR00640	W0122			
Identification Code	RXA02155	RXA02156	RXN02153	F RXA02153	RXA02154	RXA02157	RXS02970	F RXA01009	RXA02158	RXA02160	RXN02162	F RXA02161	F RXA02162	RXA02262	RXA00219	RXA01508	RXA01757	RXA02159	RXN02154	RXS00147	RXS00905	RXS00906
Amino Acid SEQ ID NO	318	320	322	324	326	328	330	332	334	336	338	38	342	344	346	348	350	352	354	356	358	360
Nucleic Acid SEQ ID NO	317	319	321	323	325	327	329	331	333	335	337	339	341	343	345	347	349	351	353	355	357	359

inued)	unction	N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14)	N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14)	N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14)	CARBAMOYL-PHOSPHATE SYNTHASE LARGE CHAIN (EC 6.3.5.5)	CARBAMOYL-PHOSPHATE SYNTHASE LARGE CHAIN (EC 6.3.5.5)	4-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14)	N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14)
1 (con	NT Start NT Stop Function	~	_		J	3198 (_	~
ap	Z Z					ઌ		
	NT NT					-		
	Contig.					GR00654		
	Identification Code	RXS00907	RXS02001	RXS02101	RXS02234	F RXA02234	RXS02565	RXS02937
	Amino Acid SEQ ID NO	1						
	Aucleic Acid		6	Z.	7	<u>ത</u>	371	e

Histidine metabolism

Function	ATP PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.17)	PHOSPHORIBOSYL-ATP PYROPHOSPHOHYDROLAŚE (EC 3.6.1.31)	PHOSPHORIBOSYL-AMP CYCLOHYDROLASE (EC 3.5.4.19)	PHOSPHORIBOSYLFORMIMINO-5-AMINOIMIDAZOLE CARBOXAMIDE	RIBOTIDE ISOMERASE (EC 5.3.1.16)	AMIDOTRANSFERASE HISH (EC 2.4.2)	AMIDOTRANSFERASE HISH (EC 2.4.2)	AMIDOTRANSFERASE HISH (EC 2.4.2)	HISF PROTEIN	IMIDAZOLEGLYCEROL-PHOSPHATE DEHYDRATASE (EC 4.2.1.19)	IMIDAZOLEGLYCEROL-PHOSPHATE DEHYDRATASE (EC 4.2.1.19) /	HISTIDINOL-PHOSPHATASE (EC 3.1.3.15)	HISTIDINOL-PHOSPHATE AMINOTRANSFERASE (EC 2.6.1.9)	HISTIDINOL-PHOSPHATE AMINOTRANSFERASE (EC 2.6.1.9)	HISTIDINOL-PHOSPHATE AMINOTRANSFERASE (EC 2.6.1.9)	HISTIDINOL DEHYDROGENASE (EC 1.1.1.23)	PROTEIN INVOLVED IN HISTIDINE METABOLISM	PROTEIN INVOLVED IN HISTIDINE METABOLISM	PROTEIN INVOLVED IN HISTIDINE METABOLISM	MEMBRANE SPANNING PROTEIN INVOLVED IN HISTIDINE METABOLISM
NT Stop	2055	2917	4373	6335		7094	39351	2944	4726	6432	10322		23318	525	10947	12053				
NT Start	2897	3186	4726	7072		7726	39950	2444	5499	7037	10927		24181	4	12044	13378				
Contig.	GR00645	GR00645	GR00306	GR00306		GR00306	VV0010	GR00460	GR00306	VV0059	GR00306		W0112	GR00108	GR00306	GR00306				
Identification Code	RXA02194	RXA02195	RXA01097	RXA01100		RXA01101	RXN01657	F RXA01657	RXA01098	RXN01104	F RXA01104		RXN00446	F RXA00446	RXA01105	RXA01106	RXC00930	RXC01096	RXC01656	RXC01158
Amino Acid SEQ ID NO	376	378	380	382		384	386	388	390	392	394		396	398	400	402	25	406	408	410
Peic Acid	375					383	385	387	389	391	393		395	397	333	401	403	405	407	409

Metabolism of aromatic amino acids

Function .	3-PHOSPHOSHIKIMATE 1-CARBOXYVINYLTRANSFERASE (EC 2.5.1.19)	4-AMINO-4-DEOXYCHORISMATE LYASE (EC 4)	ANTHRANILATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.18)	ANTHRANILATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.18)	ANTHRANILATE SYNTHASE COMPONENT! (EC 4.1.3.27)	ANTHRANILATE SYNTHASE COMPONENT I (EC 4.1.3.27)
NT Stop	4345	6948	2577	280	2764	1130
NT Start	3056	5806	3197	က	1211	೮
Contig.	GR00712	GR00777	W0247	GR00263	VV0208	GR00264
Identification Code	RXA02458	RXA02790	RXN00954	F RXA00954	RXN00957	F RXA00957
Amino Acid	412	414	416	418	420	422
Nucleic Acid						

		CHORISMATE MUTASE (EC 5.4.99.5) / PREPHENATE DEHYDRATASE (EC 4.2.1.51)	CHORISMATE SYNTHASE (EC 4.6.1.4)	ASE (EC 4.5.1.4) DUINDUIATE SYNTUAGE (EC 4.4.48)	PHOSPHATE SYNTHASE (EC 4.1.1.48) / N-(5'-PHOSPHO-	RIBOSYL)ANTHRANILATE ISOMERASE (EC 5.3.1.24)	TASE	SHIKIMATE 5-DEHYDROGENASE (EC 1.1.1.25)	ROGENASE (EC 1.1.1.25)	ROGENASE (EC 1.1.1.25)	:C 2.7.1.71)	ASE ALPHA CHAIN (EC 4.2.1.20)	TRYPTOPHAN SYNTHASE BETA CHAIN (EC 4.2.1.20)	ASE BETA CHAIN (EC 4.2.1.20)	TYROSINE AMINOTRANSFERASE (EC 2.6.1.5)	PROGENASE (EC 1.3.1.12)	PROGENASE (EC 1.3.1.12)	PROGENASE (EC 1.3.1.12)	O-3-DEOXYHEPTONATE ALDOLASE (EC 4.1.2.15)	TE SYNTHASE COMPONENT I (EC 4.1.3)	TE SYNTHASE GLUTAMINE AMIDOTRANSFERASE	COMPONENT II (EC 4.1.3) / ANTHRANILATE SYNTHASE COMPONENT II (EC 4.1.3.27)	ANTHRANILATE SYNTHASE COMPONENT II (EC 4.1.3.27)	ASE BETA CHAIN (EC 4.2.1.20)	TRANSFERASE SUBUNIT B (EC 2.8.3.6)	-LACTONE HYDROLASE (EC 3.1.1.24) / 4-	COLONE SANGEEDASE VEC 26.4.4.	ACTARIA MININGINA DI MANORI DI MANOR		C-SUCCINTLEEN/COL ACIDCOA LICASE (EC 6.2.1.20)		THE COLONIA COLONIA TO THE CANONIA TO A STATE CANON	SIGNOCITION DE ANTIONES DE ANTIONES DE PARTICION DE LA COLOR DE ANTIONES DE ANTIONES DE LA COLOR DEL COLOR DE LA C	SANSFERASE (FC. 2 & 1.1)	ASPARTATE AMINOTRANSFERASE (EC.2.6.1.1)	RANSHERASE (FC 2 6 4 1)	ATE AMINOTRANSFERASE (FC 2 & 1 9)	2-SUCCINYL-6-HYDROXY-2-4-CYCLOHEXADIENE-1-CARBOXYLATE	SYNTHASE / 2-OXOGLUTARATE DECARBOXYLASE (EC 4.1.1.71)	ASPARTATE AMINOTRANSFERASE (EC 2.8.1.1)	ASE (EC 4.1.3.36)	O-SUCCINYLBENZOIC ACID-COA LIGASE (EC 6.2.1.26)	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)	DEHYDRATASE (EC 4.2.1.10)
Table 1 (continued)	Function	CHORISMATE MUTASI	CHORISMATE SYNTH	CHORISMAIR SYNIA	INDOLE-3-GLYCEROL	RIBOSYL)ANTHRANIU	ISOCHORISMATE MUTASE	SHIKIMATE 5-DEHYDR	SHIKIMATE 5-DEHYDR	SHIKIMATE 5-DEHYDF	SHIKIMATE KINASE (E	TRYPTOPHAN SYNTH	TRYPTOPHAN SYNTH	TRYPTOPHAN SYNTH	TYROSINE AMINOTRA	PREPHENATE DEHYD	PREPHENATE DEHYD	PREPHENATE DEHYD	PHOSPHO-2-DEHYDR	PARA-AMINOBENZOA	PARA-AMINOBENZOA	COMPONENT II (EC 4.	ANTHRANILATE SYNT	TRYPTOPHAN SYNTH	3-OXOADIPATE COA-1	3-OXOADIPATE ENOL	CARBOXYMUCONOLACTONE	TIONING SITUATIONS		4 A DILVOBOXY 2 MAS	IAN-6-YYOOOXUICAA	AND CHARLES	THOUGH CNIGHTSH	ASPARTATE AMINOTE	ASPARTATE AMINOTE	ASPARTATE AMINOTE	HISTORIOTE HISTORIAN	2-SUCCINYL-6-HYDRC	SYNTHASE / 2-0X0GI	ASPARTATE AMINOTE	NAPHTHOATE SYNTHASE (EC 4.1.3.36)	O-SUCCINYLBENZOIC	ASPARTATE AMINOTE	3-DEHYDROGUINALE
Table 1 (NT Stop	12250	12736	98	2007		128	936	13247	7795	1553	936 936	4	3157	3776	32940	999	1099	10260	4087	1753		3778	25887	6886	11099		•	;		4011	- 0	425	}	746	1138	3							
•	NT Start	11306	11507	7803	286 586		298	1715	12444	8969	984	97	1140	2027	2499	33959	က	854	11384	5946	1130		3410	25447	7497	10347		4	2		4030	200	7	•	213	25.4	}							
	Contig.	GR00754	W0134	GK00477	GR00263		GR00795	GR00033	GR00629	GR00777	GR00477	GR00262	W0247	GR00263	GR00010	W0112	GR00109	GR00110	GR00156	GR00156	GR00264		VV0208	2003	VV0182	W0182		9400000	010000		agoodag	200000	GR00108		GR00163	GR00164								
	Identification Code	RXA02687	RXN01698	P KANIBSS BYAN1095	RXA00955		RXA02814	RXA00229	RXA02093	RXA02791	RXA01699	RXA00952	RXN00956	F RXA00956	RXA00064	RXN00448	F RXA00448	F RXA00452	RXA00584	RXA00579	RXA00958		RXN03007	RXN02918	RXN01116	RXN01115	00000116	E DV A00146	0 100000	PX 200397	E DYADORDS	DVC00446	F RYADDAAR	RXS00618	F RXA00618	F RXA00627	RXS01105	RXS02315		RXS02550	RXS02319	RXS02908	RXS03003	RXS03026
	Amino Acid		426	\$ 54.00 \$ 50.00	432		434	436	438	440	442	444	446	448	450	452	454	456	458	460	462		464	466	468	470	133	7/5	* * *	0/4	0 6	5 6	484	486	488	700	492	494		496	498	200	502	504
	Nucleic Acid	423	425	427	431		433	435	437	439	441	443	445	447	449	451	453	455	457	459	461		463	465	467	469	727	- 47	413	4/0 77	470	D + 5	483	485	487	489	491	493	 	495	497	499	501	503

lable 1 (continued)	NT Start NT Stop Function		S-ADENOSYLMETHIONINE:2-DEMETHYLMENAQUINONE	METHYLTRANSFERASE (EC 2.1)	MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF AROMATIC	AMINO ACIDS AND RIBOFLAVIN	MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF AROMATIC	AMINO ACIDS	CYTOSOLIC PROTEIN INVOLVED IN METABOLISM OF AROMATIC AMINO	ACIDS	MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF AROMATIC	AMINO ACIDS	
	Contig.												
	Identification Code		RXS03074		RXC01434		RXC02080		RXC02789		RXC02295		
	Amino Acid	SEO ID NO	200		508		510		512		514		
	Nucleic Acid	SEO ID NO	202	!	202	,	609		511		513		

Aminobutyrate metabolism

Function	4-aminobutyrate aminotransferase (EC 2,6.1,19)	ACETYLORNITHINE AMINOTRANSFERASE (ÉC 2.6.1.11)	ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)
NT Stop	1697	6081	5943
NT Start	999	4714	4714
Contig.	VV0035	W0021	GR00287
Identification Code	RXN03063	RXN02970	F RXA01009
Amino Acid SEQ ID NO	516	518	520
Nucleic Acid SEQ ID NO	515	517	519

Vitamins, vitamin-like substances (cofactors), nutraceuticals

Thiamine metabolism

Nucleic Acid	Amino Acid SEO ID NO	Identification Code	Contig.	NT Start	NT Stop	Function ·
521	522	RXA01551	GR00431	2945	4819	THIAMIN BIOSYNTHESIS PROTEIN THIC
523	524	RXA01019	_	9	986	THIAMIN-MONOPHOSPHATE KINASE (EC 2.7.4.16)
525	526	RXA01352	_	609	4	THIAMIN-PHOSPHATE PYROPHOSPHORYLASE (EC 2.5.1.3)
527	528	RXA01381	_	3206	2286	THIF PROTEIN
529	530	RXA01360	~	162	4	THIG PROTEIN
531	532	RXA01361	_	983	378	THIG PROTEIN
533	534	RXA01208	_	229	1032	HYDROXYETHYLTHIAZOLE KINASE (EC 2.7.1.50)
535	536	RXA00838	_	1532	633	APBA PROTEIN
537	538	RXA02400	_	1988	2557	THIAMIN BIOSYNTHESIS PROTEIN X
539	540	RXN01209	VV0270	1019	2446	PHOSPHOMETHY LPYRIMIDINE KINASE (EC 2.7.4.7)
54.	542	F RXA01209	-	1019	2446	PHOSPHOMETHYLPYRIMIDINE KINASE (EC 2.7.4.7)
543	54	RXN01413		27306	27905	PHOSPHOMETHYLPYRIMIDINE KINASE (EC 2.7.4.7)
545	548	RXN01617	W0050	22187	22858	PHOSPHOMETHYLPYRIMIDINE KINASE (EC 2.7.4.7)
547	548	F RXA01617	_	8	616	PHOSPHOMETHYLPYRIMIDINE KINASE (EC 2.7.4.7)
549	550	RXS01807				PYRIDOXINE KINASE (EC 2.7.1.35)
551	552	RXC01021				CYTOSOLIC KINASE INVOLVED IN METABOLISM OF SUGARS AND THIAN

PYRIDOXINE KINASE (EC 2.7.1.35), pyridoxal/pyridoxine/pyridoxamine kinase

Function

NT Stop 7077

NT Start 7868

Identification Code

Vitamin B6 metabolism

Contig. GR00509

RXA01807

Amino Acid SEQ ID NO 596

_
73
~
~
_
2
-
=
=
0
Ö
=
~
-
_
7
-
·40
\vdash
•

Riboflavin metabolism

Function	diaminohydroxyphosphoribosylaminopyrimidine deaminase (EC 3.5.4.26) / 5-amino-	o-cyprospriotosylarinito) dracti educase (EC 1.1.1.1.9.) RESO PROFIEIN tibodavin-specific dearminase [EC, 3.5.4]	KIOOFLAVIN 3 TN I MASE ALPHA CHAIN (EC. 2.3.1.9) GTP CYCLOHYDROLASE II (EC.3.5.4.25) / 3.4-DIHYDROXY-2-BUTANONE 4-	PHOSPHATE SYNTHASE	RIBA PROTEIN - GTP cyclohydrolase II [EC:3.5.4.25]	6,7-DIMETHYL-8-RIBITYLLUMAZINE SYNTHASE (EC 2.5.1.9)	RIBH PROTEIN - 6,7-dimethyl-8-ribityllumazine synthase (dmd synthase, lumazine	synthase, riboffavin synthase beta chain) [EC:2.5.1.9]	RIBX PROTEIN	RIBOFLAVIN KINASE (EC 2.7.1.26) / FMN ADENYLYLTRANSFERASE (EC	7.2)	NICOTINATE-NUCLEOTIDE-DIMETHYLBENZIMIDAZOLE	PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.21)	RIBOFLAVIN KINASE (EC 2.7.1.26) / FMN ADENYLYLTRANSFERASE (EC	2.7.7.2)	RIBOFLAVIN-SPECIFIC DEAMINASE (EC 3.5.4)	RIBOFLAVIN-SPECIFIC DEAMINASE (EC 3.5.4)	ALPHA-RIBAZOLE-5'-PHOSPHATE PHOSPHATASE (EC 3.1.3)	RIBOFLAVIN-SPECIFIC DEAMINASE (EC 3.5.4)	DRAP DEAMINASE	MEMBRANE SPANNING PROTEIN INVOLVED IN RIBOFLAVIN METABOLISM	PROTEIN INVOLVED IN RIBOFLAVIN METABOLISM	Predicted nucleotidytransferases	CYTOSOLIC PROTEIN INVOLVED IN METABOLISM OF RIBOFLAVIN AND	SQIdi	MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF AROMATIC AMINO ACIDS AND RIBOFLAVIN	
	# Z										2.	Ź	古	~	~	~	₹	₹	霳	5	≅	폷	ፈ	ວ :	3	₹ ₹	
NT Stop	5371	15282	7286		17197	7777	17688		18356	2388		1736		2388		8298	2152	629	438	320			ሄ				
NT Start	4388	14299	6021	}	15932	7301	17212		17778	3410		2809		345		8993	2652	1386	792	1363			709				
Contig.	VV0130	GR00654	W0130		GR00654	VV0130	GR00654		GR00654	GR00423		GR00639		GR00423		W0191	GR00484	W0213	W0319	W0109			GR00691				
Identification Code	RXN02246	F RXA02246	RXN02248		F RXA02248	RXN02249	F RXA02249		RXA02250	RXA01489		RXA02135		RXA01489		RXN01712	F RXA01712	RXN02384	RXN01560	RXN00667	RXC01711	RXC02380	F RXA02380	RXC02921		RXC01434	
Amino Acid	554	556	280	}	562	564	566		568	570		572		574		576	578	580	582	584	586	588	290	265		594	
Nucleic Acid	553	555	559 559		561	563	565		267	2 69		571		573		575	577	579	581	583	585	587	589	591		593	

Table 1 (continued) and NADP	
NAD	
, nicotinamide, l	
cid),	
(nicotinic a	
Nicotinate	

Function	NICOTINATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.11)	NICOTINATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.11)	NICOTINATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.11)	NICOTINATE-NUCLEOTIDE PYROPHOSPHORYLASE (CARBOXYLATING) (EC	C.4.2.19) QUINOLINATE SYNTHETASE A
NT Start NT Stop	23901	4	488	6436	5593
NT Start	22564	774	ო	2600	4310
Contig.	W0084	GR00701	GR00766	GR00632	GR00632
Identification Code	RXN02754	F RXA02405	F RXA02754	RXA02112	RXA02111
Amino Acid	598	009	602	804	909
Nucleic Acid	597	599	601	603	605

NAD Biosynthesis

Function	NH(3)-DEPENDENT NAD(+) SYNTHETASE (EC 8.3.5.1) NICOTINATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.11)
NT Stop	2104 23901
NT Start	1274 22564
Contig.	GR00300 VV0084
Identification Code	RXA01073 RXN02754
Amino Acid	608 610
Nucleic Acid	609 609

Pantothenate and Coenzyme A (CoA) biosynthesis

Function	ASPARTATE 1-DECARBOXYLASE PRECURSOR (EC 4.1.1.11)	PANTOATE-BETA-ALANINE LIGASE (EC 6.3.2.1)	3-METHYL-2-OXOBUTANOATE HYDROXYMETHYLTRANSFERASE (EC 2.1.2.11)	/ DECARBOXYLASE (EC 4.1.1.44)	3-METHYL-2-OXOBUTANOATE HYDROXYMETHYLTRANSFERASE (EC 2.1.2.11)	PANTOATE-BETA-ALANINE LIGASE (EC 6.3.2.1)	KETOL-ACID REDUCTOISOMERASE (EC 1.1.1.86)	KETOL-ACID REDUCTOISOMERASE (EC 1.1.1.86)	DNA/PANTOTHENATE METABOLISM FLAVOPROTEIN	PANTOTHENATE KINASE (EC 2.7.1.33)	2-DEHYDROPANTOATE 2-REDUCTASE (EC 1.1.1.169)	PROTEIN INVOLVED IN METABOLISM OF S-ADENOSYLMETHIONINE, PURINES	AND PANTOTHENATE
NT Stop	10859	1121	48402		1960	25964		1530	7049	8540			
NT Start	10452	1957	47590		2766	25167		1075	5784	7572			
Contig.	GR00662	GR00555	VV0127		GR00555	GR00424		GR00321	GR00654	GR00156			
Identification Code	RXA02299	RXA01928	RXN01929		F RXA01929	RXA01521	RXS01145	F RXA01145	RXA02239	RXA00581	RXS00838	RXC02238	
Amino Acid	612	614	616		618	620	622	624	626	628	630	632	
Nucleic Acid													

Biotin metabolism

	Function .	BIOTIN SYNTHESIS PROTEIN BIOC
	NT Stop	8754
	NT Start	8272
•	Contig.	VV0028
	Identification Code	RXN03058
	Amino Acid	534
	Nucleic Acid	633

tinued) Function BIOTIN SYNTHESIS PROTEIN BIOC	BIOTIN SYNTHESIS PROTEIN BIOC ADENOSYLMETHIONINE-8-AMINO-7-OXONONANOATE AMINOTRANSFERASE (FC 2 6 1 62)	(C.C. I.C.) (C.C.	NIFS PROTEIN	NIFS PROTEIN	NIFS PROTEIN MISS BROTEIN	NIFO PROTEIN	NIFS PROTEIN NIFU PROTEIN	•	Function		LIPUIC ACID STNINE I ASE LIPOATE-PROTEIN LIGASE B (EC 6)	LIPOATE-PROTEIN LIGASE A (EC 6)	DITTURIORI CAMIDE SOCCIA (LINGUSE ENASE COMPONENT (EZ) OF 2: OXOGLUTARATE DEHYDROGENASE COMPLEX (EC 2.3.1.61)	LIPOAMIDE DEHYDROGENASE COMPONENT (E3) OF BRANCHED-CHAIN AI PHA-KETO ACID DEHYDROGENASE COMPLEX (EC. 1.8.1.4)	LIPOAMIDE DEHYDROGENASE COMPONENT (E3) OF BRANCHED-CHAIN ALPHA-KETO ACID DEHYDROGENASE COMPLEX (EC 1.8.1.4)		Function		5,10-METHYLENETETRAHYDROFOLATE REDUCTASE (EC 1,7.99.5) 5-FORMYLTETRAHYDROFOLATE CYCLO-LIGASE (EC 6,3,3,2)	5-FORMYLTETRAHYDROFOLATE CYCLO-LIGASE (EC 6.3.3.2)	DIHYDROFOLATE REDUCTASE (EC 1.5.1.3) FORMYI YETRAHYDROFOI ATF DFFORMYI ASF (FC 3 5 1 10)	FORMYLTETRAHYDROFOLATE DEFORMYLASE (EC 3.5.1.10)	METHYLENETETRAHYDROFOLATE DEHYDROGENASE (EC 1.5.1.5) / METHENYLTETRAHYDROFOLATE CYCLOHYDROLASE (EC 3.5.4.9)	GTP CYCLOHYDROLASE I (EC 3.5.4.16) DIHYDRONEOPTERIN ALDOLASE (EC 4.1.2.25)
able 1 (continued) NT Stop Function 12014 BIOTIN S	4309 2288	1610 4408	22879	897	11209	2 4 2 4	2986 3435		NT Stop	67.46	2366 2366	1527					NT Stop	77700	1003	မှ	17924 9788	559	1279	21509 22749
L F	3650 3556	2281 3407	23967	79	10037	438 438	1724 2989		NT Start	0000	2506 1614	472					NT Start	1000	18281 503	200	17469 8868	R	428	20922 22360
Contig. GR10040	GR00025 GR00166	GR000166 GR00047	GR00032	GR00040	W0112	GR00782	GR00723 GR00723		Contig.	3070000	GR00495 GR00495	GR00632					Contig.	000000	GK00/38 VV0296	GR00616	GR00014 VV0082	GR00384	GR00116	GR00424 GR00424
Identification Code F RXA02903	RXA00166 RXA00633	RXA00632 RXA00295	RXA00223	F RXA00262	FXN00435 F PXA00436	F RXA02801	RXA02516 RXA02517		Identification Code	17770774	RXA01746	RXA02106		RXS01260	RXS01261	Ø	Identification Code	27.4007.4	EXN02027	F RXA02027	RXA00106 RXN01321	F RXA01321	KXA00461	RXA01514 RXA01516
Amino Acid SEQ ID NO 636	638 640	642 644	646	650	652 854	656	658 660	pic	Amino Acid	2000	664 664	666 68	8	070	672	Folate biosynthesis	Amino Acid	SEO ID NO	676	678	680 682	684	989	688 690
Nucleic Acid SEQ ID NO 635	639 639	643	35 2	649	651 653	655	657 659	Lipoic Acid	Nucleic Acid	SEC 10 10	88 83 83	665 667	ŝ	699	671	Folate bi	Nucleic Acid	SEC ID NO	675	212	679 681	683	685	687 689

		(EC 2.5.1.15)	(EC 2.5.1.15)	EC 1.5.1.3)	ASE (EC 6.3.2.17)	2-AMINO-4-HYDROXY-6-HYDROXYMETHYLDIHYDROPTERIDINE	6.3)	ASE COMPONENT (EC 4.1.3)	PARA-AMINOBENZOATE STN THASE GLUTAMINE, AMIDOTRANSFERASE COMPONENT II (EC 4.1.3) / ANTHRANILATE SYNTHASE COMPONENT II (EC		E170F (F0 4:22)	S. METHYLTETRAHYDROFOLATE-HOMOCYSTEINE METHYLTRANSFERASE		5-METHYLTETRAHYDROFOLATE-HOMOCYSTEINE METHYLTRANSFERASE		5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE METHYI TRANSFERASE	S-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE	1.14)	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE	METHYLTRANSFERASE (EC. 2.1.1.14) 8. METHYLTETO ALYDDOLEDOYLTDIALLTAMATE HOMOCYSTEINE	1.14)	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE	1.14)	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE	MEINTLIKANOTERAGE (EC. 2.1.1.14) BIRTUS HETDAUSDONOLAHE UDMOOSATEINE METUS TRANSFERA		METABOLISM	MEMBRANE SPANNING PROTEIN INVOLVED IN FOLATE METABOLISM	ED IN FOLATE METABOLISM
5	Function	DIHYDROPTEROATE SYNTHASE (EC 2.5.1.15)	DIHYDROPTEROATE SYNTHAS	DIHYDROFOLATE REDUCTASE (EC 1.5.1.3)	FOLYLPOLYGLUTAMATE SYNTHASE (EC 6.3.2.17)	2-AMINO-4-HYDROXY-6-HYDRO	PYROPHOSPHOKINASE (EC 2.7.6.3)	PARA-AMINOBENZOATE SYNTHASE COMPONENT I (EC 4.1.3)	COMPONENT II (EC 4.1.3) / AN	4.1.3.27)	DIHYDDOED ATE BEDINGRAFIE ELDER (CA	5-METHYLTETRAHYDROFOLAT	(EC 2.1.1.13)	5-METHYLTETRAHYDROFOLAT	(EC 2.1.1.13)	5-METHYLTETRAHYDROPTER(METHYLTRANSFERASE	5-METHYLTETRAHYDROPTER(METHYLTRANSFERASE (EC 2.1.1.14)	5-METHYLTETRAHYDROPTERC	METHYLIRANSFERASE (EC 2.1.1.14)	METHYLTRANSFERASE (EC 2.1.1.14)	5-METHYLTETRAHYDROPTER(METHYLTRANSFERASE (EC 2.1.1.14)	5-METHYLTETRAHYDROPTER	MEINTLIKANSFERASE (EC. 2.1.1.14)	(EC 2.1.1.13)	PROTEIN INVOLVED IN FOLATE METABOLISM	MEMBRANE SPANNING PROTE	ATP-BINDING PROTEIN INVOLVED IN FOLATE METABOLISM
able 1 (c	NT Stop	22364	4784	17924	1371	23228	1	4087	20	6048	17024	11726	}	9		10717	5295		5731			4730		15447					
 -	NT Start	21513	4026	17469	2903	22752	9	5946	DS [1	KBOB	17469	9228		2483		8483	3496		5252			5254		14764					
	Contig.	GR00424	GR00613	GR00014	GR00280	GR00424		GR00156	GK00264	CD00777	20000	W0302		GR00646		W0126	GR00629		GR00629			GR00751		GR00752					
	Identification Code	RXA01515	RXA02024	RXA00106	RXA00989	RXA01517		KXA00579	KKAUUSOB	DY 402790	PY A00108	RXN02198		F RXA02198		RXN02085	F RXA02085		F RXA02086	DYNOSAB	0102010	F RXA02648		F RXA02658	0.000000	16170670	RXC00988	RXC01518	RXC01942
			694	969	869	700		707	ξ	206	200	750	•	712		714	716)	718	720	3	722	į	724	776	3	728	730	732
	Nucleic Acid SEQ ID NO	691	693	695	269	669	į	10,5	3	202	202	502	}	711		713	715	!	212	710	2	721	•	723	706	3	727	729	Ę.

Molybdopterin Metabolism

Function	MOLYBDOPTERIN BIOSYNTHESIS MOEB PROTEIN MOLYBDOPTERIN BIOSYNTHESIS MOEB PROTEIN MOLYBDOPTERIN BIOSYNTHESIS MOEB PROTEIN MOLYBDOPTERIN (MPT) CONVERTING FACTOR, SUBUNIT 2 MOLYBDOPTERIN (MPT) CONVERTING FACTOR, SUBUNIT 2	MOLYBDOPTERIN CO-FACTOR SYNTHESIS PROTEIN MOLYBDOPTERIN CO-FACTOR SYNTHESIS PROTEIN MOLYBDOPTERIN CO-FACTOR SYNTHESIS PROTEIN
NT Stop	16299 474 796 17369 362	18275 196 1087
NT Start	17369 7 362 17824	18742 2 830
Contig.	VV0112 GR00783 GR00103 VV0112 GR00103	W0112 GR00104 GR00105
Identification Code	RXN02802 F RXA02802 F RXA00438 RXN00437 F RXA00437	RXN00439 F RXA00439 F RXA00442
Amino Acid	736 736 736 740 742	744 746 748
Nucleic Acid	733 735 741 741	743 745 747

			•																												
intinued)	Function	MOLYBDENUM COFACTOR BIOSYNTHESIS PROTEIN CB	MOLYBDOPTERIN CO-FACTOR SYNTHESIS PROTEIN	MOLYBDOPTERIN CO-FACTOR SYNTHESIS PROTEIN	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE	METHYLTRANSFERASE (EC 2.1.1.14)	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE	METHYLTRANSFERASE (EC 2.1.1.14)	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATEHOMOCYSTEINE	METHYLTRANSFERASE (EC 2.1.1.14)	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATE-HOMOCYSTEINE	METHYLTRANSFERASE (EC 2.1.1.14)	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATEHOMOCYSTEINE	METHYLTRANSFERASE (EC 2.1.1.14)	5-METHYLTETRAHYDROPTEROYLTRIGLUTAMATEHOMOCYSTEINE	METHYLTRANSFERASE (EC 2.1.1.14)	DIHYDRONEOPTERIN ALDOLASE (EC 4.1.2.25)	DIHYDROPTEROATE SYNTHASE (EC 2.5.1.15)	DIHYDROPTEROATE SYNTHASE (EC 2.5.1.15)	MOLYBDOPTERIN-GUANINE DINUCLEOTIDE BIOSYNTHESIS PROTEIN A	MOLYBDOPTERIN BIOSYNTHESIS MOEA PROTEIN	MOLYBDOPTERIN BIOSYNTHESIS MOEA PROTEIN	MOLYBDOPTERIN BIOSYNTHESIS MOEA PROTEIN	MOLYBDOPTERIN BIOSYNTHESIS CNX1 PROTEIN	(D90909) pterin-4a-carbinolamine dehydratase [Synechocystis sp.]	2-AMINO-4-HYDROXY-6-HYDROXYMETHYLDIHYDROPTERIDINE	PYROPHOSPHOKINASE (EC 2.7.6.3)	MOLYBOOPTERIN BIOSYNTHESIS MOG PROTEIN	FLAVOHEMOPROTEIN / DIHYDROPTERIDINE REDUCTASE (EC 1.6.99.7)	OXYGEN-INSENSITIVE NAD(P)H NITROREDUCTASE (EC 1)	CONTRACTOR RECOCCION (FCT. 6.88.7)
able 1 (continued)	NT Stop	654	18779	793			5295		5731				4730		15447		22749	22364	4784	26	1268		1207	069	8962	23228		4934			
=	NT Start	196	19942	7			3496		5252				5254		14764		22360	21513	4026	1264	2476		~	1274	9684	22752		4449			
	Contig.	GR00104	W0112	GR00105			GR00629		GR00629				GR00751		GR00752		GR00424	GR00424	GR00613	GR00488	GR00488		GR00568	GR00748	GR00665	GR00424		VV0148			
	Identification Code	RXA00440	RXN00441	F RXA00441	RXN02085		F RXA02085		F RXA02086		RXN02648		F RXA02648		F RXA02658		RXA01516	RXA01515	RXA02024	RXA01719	RXA01720	RXS03223	F RXA01970	RXA02629	RXA02318	RXA01517		RXN01304	RXS02556	RXS02560	
	Amino Acid SEQ ID NO	750	752	754	256		758		760		762		764		766		768	077	772	774	776	778	780	782	784	786		788	290	792	
	Nucleic Acid SEO ID NO	749	751	753	755		757		759		761		763		765		797	692	77	73	775	777	779	781	783	785		787	789	791	

Vitamin B₁₂, porphyrins and heme metabolism

Function	GLUTAMATE-1-SEMIALDEHYDE 2,1-AMINOMUTASE (EC 5,4.3.8) FERROCHELATASE (EC 4,99.1.1) FERROCHELATASE (EC 4,99.1.1) HEMK PROTEIN OXYGEN-INDEPENDENT COPROPORPHYRINOGEN III OXIDASE (EC 1,-,-,-) PORPHOBILINOGEN DEAMINASE (EC 4.3.1.8) PORPHOBILINOGEN DEAMINASE (EC 4.3.1.8) UROPORPHYRINOGEN DEAMINASE (EC 4.3.1.8) PORPHOBILINOGEN DEAMINASE (EC 4.3.1.8)	PORPHOBILINGGEN DEAMINASE (EC 4.3.1.8)
NT Stop	1451 9400 8596 1274 11276 22854 17340 306	17816
NT Start	2752 10509 7910 2206 10137 22456 16908 1427	17379
Contig.	GR00082 GR00023 GR00163 GR00051 GR00242 VV0007 GR00720 GR00720	GR00/20
Identification Code	RXA00382 RXA00156 RXA00624 RXA00306 RXA00884 RXN02503 F RXA02503 RXA00377	F KXA02504
Amino Acid	794 796 800 802 808 808 810	812
Nucleic Acid	793 797 797 801 803 805	811

ned)	Function	ECORRIN-6Y METHYLASE (EC 2.1.1)	PRECORRIN-6Y METHYLASE (EC 2.1.1)	(OPORPHYRIN-III C-METHYLTRANSFERASE (EC 2.1.1.107)	UROPORPHYRIN-III C-METHYLTRANSFERASE (EC 2.1.1.107) / IIROPORPHYRINOGEN-III SYNTHARE (EC 4.3.4.75)	UROPORPHYRIN-III C-METHYL TRANSFERASE (FC. 2-1-1-1-2)	UROPORPHYRINOGEN-III SYNTHASE (EC 4.2.1.75)	UROPORPHYRIN-III C-METHYLTRANSFERASE (EC 2.1.1.107) / IIROPORPHYRINOGEN III SYNTHASE (EC 4.3.4.28)	(C) CATT TAIN (C) THE CATT TABLE (C)	PROTOPORPHYRINGGEN OXIDAGE (EC. 1.3.3.4)	OTOPOBRIVATION ON THE PROPERTY OF THE PROPERTY	CORVEIC ACID SYNTHAME	COBALAMIN (5-PHOSPHATE) SYNTHASE	NICOTINATE-NUCLEOTIDE-DIMETHYLBENZIMIDAZOLE	PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.21)	COBINAMIDE KINASE / COBINAMIDE PHOSPHATE GUANYLYLTRANSFERASE	SOURCE OF THE STATE OF THE STAT	HEMK DROTEIN	HEMK PROTEIN	CYTOSOLIC PROTEIN INVOLVED IN PORPHYRIN METABOLISM		Function		INCONOLACTONE OXIDASE (EC 1.1.3.8)	L-GULONOLACTONE OXIDASE (EC 1.1.3.8)		2.5-DIKETO-D-GLUCONIC ACID REDUCTASE (FC 1.1.1.)	2,5-DIKETO-D-GLUCONIC ACID REDUCTASE (EC 1.1.1)	oxoglutarate semialdehyde dehydrogenase (EC 1.2.1)	ACETOACETYL-COA REDUCTASE (EC 1.1.1.36)	MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF VITAMIN C PRECURSORS OXIDOREDICTASE INVOLVED IN METABOLISM OF VITAMIN C PRECURSORS	ECCLEGO CASE INVOLVED IN METABOLISM OF VITAMIN C PRECURSORS		Function		S-ADENOSYLMETHIONINE:2-DEMETHYLMENAQUINONE METHYLTRANSFERASE (EC 2.1)	
Table 1 (continued)	NT Stop F	524 P			5973 U	9		371 U	2862			1787 C		1736 N		2841 553			I	:0		NT Stop F		~		2230 L-			8	∢ ;	2 0	S		NT Stop Fi	-	ώΣ	
- Ta	NT Start	1849	1248		4180	929		1102	4004		•			2809		3302	1730	807				NT Start		2511		4678		1540						NT Start			
	Contig.	VV0088	GR00330	GR00474	W0226	GR00078		GR00079	10000	GR00081	GR00082	GR00365	GR00639	GR00639	000000	GK00839	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	******				Contig.		VV0112	GK00096	VV0005	GR00185	GR00688						Contig.			
	Identification Code	RXN01162	F RXA01162	RXA01692	RXN00371	F RXA00371		F RXA00374	RXNO0383	F RXA00376	F RXA00383	RXA01253	RXA02134	RXA02135	DYA02436	RXN03114	RXNO1810	RXS03205	F RXA00306	RXC01715	SIG	Identification Code	00700120	KXN00420	F KXAUWAZU E DYANNA?e	RXN00708	F RXA00708	RXA02373	RXS00389	KXS00419	RXC02206			Identification Code		RXS03074	
	Amino Acid SEQ ID NO	814	816	818	820	822	;	824	826	828	830	832	834	836	838	840	842	4	846	848	Vitamin C precursors	Amino Acid		830	854	856	858	860	862	854 804	868 868		8	Amino Acid	SEQ ID NO	870	
	Nucleic Acid SEQ ID NO	813	815	817	ers ers	821		823	825	827	829	831	833	835	837	839	74	843	845	847	Vitamin C	Nucleic Acid	STO IN STORY	0 4 0 4 4 0	25.2	8 55 55 55	857	859	861	200	867 867		Vitamin K2	Nucleic Acid		869	

tinued)	Function	S-ADENOSYLMETHIONINE:2-DEMETHYLMENAQUINONE METHYL TPANSEEDASE (FC 2.4.)	MICTURY OF THE STATE (E.C. Z.1.7.7) SOUCCINITY OF THE STATE OF THE STA	NAPHTHOATE SYNTHASE (EC.4.1.3.36) 14-DIHYDROXY-2-NAPHTHOATE OCTABRENYI TRANSFERASE (EC.4.1.3.1)	1,4-DIHYDROXY-2-NAPHTHOATE OCTAPRENYLTRANSFERASE (EC 2.5)	O-SUCCINYLBENZOIC ACID-COA LIGASE (EC 6.2.1.26)	O-SUCCINYLBENZOIC ACIDCOA LIGASE (EC 6.2.1.26)		Function	3-DEMETHYLUBIQUINONE-9 3-METHYLTRANSFERASE (EC 2.1.1.64) 3-DEMETHYLUBIQUINONE-9 3-METHYLTRANSFERASF (FC 2.1.1.64)	3-DEMETHYLUBIQUINONE-9 3-METHYLTRANSFERASE (EC 2.1.1.64)	UBIQUINONE/MENAQUINONE BIOSYNTHESIS METHLYTRANSFERASE UBIE	(EC.2.1.1) COMA OPERON PROTEIN 2
Table 1 (continued)	NT Stop	645	6383	10933	4911	2750			NT Stop	1808 249	2384	12547	
<u> </u>	NT Start NT Stop	1142	8011	7166	4030	2031			NT Start	2389 986	3073	13299	
	Contig.	GR10044	GR00665	GR00665	GR00086	GR00086			Contig.	GR00283 GR00642	GR00665	VV0135	e.
	Identification Code	F RXA02906	PXA02315	RXA02319 RXS00393	F RXA00393	RXA00391	RXS02908	thesis	Identification Code	PXA00997 PXA02189	RXA02311	RXN02912	RXS00998
	Amino Acid SEQ ID NO	872	874	876 878	880	882	88	Jbiquinone biosynthesis	Amino Acid SEQ ID NO	886 888	890	892	894
	Nucleic Acid	871	873	875 877	879	88.	883	Ubiquino	Nucleic Acid SEQ ID NO	885 887	889	891	893

Purines and Pyrimidines and other Nucleotides

Regulation of purine and pyrimidine biosynthesis pathways

Purine metabolism

Purine Biosynthesis

32.7.6.1) 3.1)/	7-7-
Function RIBOSE-PHOSPHATE PYROPHOSPHOKINASE, PRPP synthetase (EC 2.7.6.1) AMIDOPHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.14) AMIDOPHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.14) PHOSPHORIBOSYLAMINE—GLYCINE LIGASE (EC 6.3.4.13) PHOSPHORIBOSYLAMINE—GLYCINE LIGASE (EC 6.3.4.13) PHOSPHORIBOSYLAMINE—GLYCINE LIGASE (EC 6.3.4.13) PHOSPHORIBOSYLAMINE—GLYCINE LIGASE (EC 6.3.4.13) PHOSPHORIBOSYLOMINE—GLYCINE LIGASE (EC 6.3.4.13) PHOSPHORIBOSYLOMINE—GLYCINE LIGASE (EC 6.3.4.13)	PHOSPHORIBOSYLGLYCINAMIDE FORMYLTRANSFERASE 2 (EC 2.1.2)
NT Start NT Stop 1187 213 8235 9581 61 501 11624 10362 11450 1713 1 780 4875 4285	9054
NT Start 1187 8235 61 11624 1450 1 4875	10277
Contig. GR00352 VV0103 GR00148 VV0135 GR00165 GR00164 GR00164	GR00418 10277
identification Code RXA01215 RXN00558 F RXA00556 F RXA00626 F RXA00629 F RXA00628	RXA01442
Amino Acid 85EQ ID NO 896 898 898 902 904 906	910
Nucleic Acid SEQ ID NO 895 897 899 901 905	606

intinued)	Function	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE SYNTHASE (EC 6.3.5.3)	PHOSPHORIBOSYLAMIDOIMIDAZOLE-SUCCINOCARBOXAMIDE SYNTHASE	(EC 6.3.2.6)	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE CYCLO-LIGASE (EC 6.3.3.1)	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE CYCLO-LIGASE (EC 6.3.3.1)	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE CYCLO-LIGASE (EC 6.3.3.1)	PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE ATPASE SUBUNIT (EC	4.1.1.21)	PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE ATPASE SUBUNIT (EC	4.1.1.21)	PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE CATALYTIC SUBUNIT	(EC 4.1.1.21)	PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE CATALYTIC SUBUNIT	(EC 4.1.1.21)	PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE CATALYTIC SUBUNIT	(EC 4.1.1.21)	PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE (EC 4.1.1.21)	ADENYLOSUCCINATE LYASE (EC 4.3.2.2)	PHOSPHORIBOSYLAMINOIMIDAZOLECARBOXAMIDE FORMYLTRANSFERASE	(EC 2.1.2.3) / IMP CYCLOHYDROLASE (EC 3.5.4.10)				
able 1 (continued)	NT Stop	5636	638	697	280	2937	3939		10783	818	7495	5984		725		8863		വ		911		1373	2220	2715	
-	NT Start	3351	\$	23	2	2269	3049		9614	15	7809	4788		1534		8369		127		1120		498	. 793	4274	
	Contig.	VV0103	GR00786	GR00138	GR00150	GR00139	GR00163		VV0103	GR00147	GR00204	VV0078		GR00676		W0078		GR00677		GR00678		GR00304	GR00163	GR00746	
	Identification Code	RXN00537	F RXA02805	F RXA00537	F RXA00561	RXA00541	RXA00620		RXN00770	F RXA00557	F RXA00770	RXN02345		F RXA02345		RXN02350		F RXA02346		F RXA02350		RXA01087	RXA00619	RXA02622	
	Amino Acid SEQ ID NO	912	914	916	918	920	822		924	926	928	930		932		934		936		938		940	942	944	
	Nucleic Acid	911	913	915	917	919	921		923	925	927	929		931		933		935		937		939	<u>\$</u>	943	

GMP, GDP, AMP and ADP synthesis, from inosine-5'-monophosphate (IMP)

Function		INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE (EC 1.1.1,205)	INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE (EC 1.1.1.205)	INOSINE-5-MONOPHOSPHATE, DEHYDROGENASE (EC 1.1.1.205)	INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE (EC 1.1.1.205)	GMP SYNTHASE [GLUTAMINE-HYDROLYZING] (EC 6.3.5.2)	GMP SYNTHASE (EC 6.3.4.1)	GUANYLATE KINASE (EC 2.7.4.8)	ADENYLOSUCCINATE SYNTHETASE (EC 6.3.4.4)	ADENYLOSUCCINATE LYASE (EC 4.3.2.2)	ADENYLATE KINASE (EC 2.7.4.3)	NUCLEOSIDE DIPHOSPHATE KINASE (EC 2.7.4.6)
NT Stop		20583	1644	534	497	25302	2097	5146	16476	2220	10985	3362
NT Start		19066	1171	.	1927	23734	712	4577	17765	793	10443	3769
Contig.		W0086	GR00122	GR00121	GR00715	2000	GR00120	GR00654	GR00418	GR00163	GR00179	GR00040
Identification Code		RXN00488	F RXA00492	F RXA00488	RXA02469	RXN00487	F RXA00487	RXA02237	RXA01446	RXA00619	RXA00688	RXA00266
Amino Acid	SEQ ID NO	946	948	950	952	954	926	958	096	362	964	996
Nucleic Acid	SEQ ID NO	945	947	949	951	953	955	857	929	961	963	996

GMP/AMP degrading activities

Table 1 (continued)

Function	GMP REDUCTASE (EC 1.6.6.8)	AMP NUCLEOSIDASE (EC 3.2.2.4)	AMP NUCLEOSIDASE (EC 3.2.2.4)
NT Stop	1775	3323	*
NT Start	654	1893	1101
Contig.	GR00121	VV0152	GR00659
Identification Code	RXA00489	RXN02281	F RXA02281
Amino Acid SEO ID NO	896	970	972
Nucleic Acid	296	696	971

Pyrimidine metabolism

Pyrimidine biosynthesis de novo:

Function	CARBAMOYL-PHOSPHATE SYNTHASE SMALL CHAIN (EC 6.3.5.5)	ASPARTATE CARBAMOYLTRANSFERASE CATALYTIC CHAIN (EC 2.1.3.2)	DIHYDROOROTASE (EC 3.5.2.3)	DIHYDROOROTATE DEHYDROGENASE (EC 1.3.3.1)	OROTATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.10)	OROTIDINE 5'-PHOSPHATE DECARBOXYLASE (EC 4.1.1.23)	URIDYLATE KINASE (EC 2.7.4)	URIDYLATE KINASE (EC 2.7.4)	THYMIDYLATE SYNTHASE (EC 2.1.1.45)	THYMIDYLATE KINASE (EC 2.7.4.9)	NUCLEOSIDE DIPHOSPHATE KINASE (EC 2.7.4.6)	CYTIDYLATE KINASE (EC 2.7.4.14)	CTP SYNTHASE (EC 6.3.4.2)	CARBAMOYL-PHOSPHATE SYNTHASE LARGE CHAIN (EC 6.3.5.5)	CARBAMOYL-PHOSPHATE SYNTHASE LARGE CHAIN (EC 6.3.5.5)	CYTOSINE DEAMINASE (EC 3.5.4.1)	CYTOSINE DEAMINASE (EC 3.5.4.1)	CYTOSINE DEAMINASE (EC 3.5.4.1)	CREATININE DEAMINASE (EC 3.5.4.21)	DEOXYCYTIDINE TRIPHOSPHATE DEAMINASE (EC 3.5.4.13)	THYMIDYLATE SYNTHASE (EC 2.1.1.45)	URACIL PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.9)	URACIL PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.9)
NT Stop	10900	8193	9589	1003	1142	4040	3748	775	17346	7013	3362	5283	10441	28046	3198	34814	ĸO,	16810	7935	2341	9579	1080	1082
NT Start	9722	7258	8249	7	591	3207	3020	47	16672	7621	3769	4576	8780	24708	-	34491	322	15566	6691	1862	9680	568	920
Contig.	GR00022	GR00022	GR00022	GR00647	GR00462	GR00654	VV0150	GR00542	GR00014	GR00020	GR00040	GR00188	GR00447	W0134	GR00654	W0112	GR00110	VV0020	GR00655	W0237	W0129	W0328	GR10003
Identification Code	RXA00147	RXA00145	RXA00146	RXA02208	RXA01660	RXA02235	RXN01892	F RXA01892	RXA00105	RXA00131	RXA00266	RXA00718	RXA01599	RXN02234	F RXA02234	RXN00450	F RXA00450	RXN02272	F RXA02272	RXN03004	RXN03137	RXN03171	F RXA02857
Amino Acid SEQ ID NO	974	976	978	980	982	984	986	988	066	992	994	966	866	1000	1002	1004	1006	1008	1010	1012	1014	1016	1018
Nucleic Acid SEQ ID NO	973	975	27.6	979	981	983	985	286	686	991	993	395	266	666	1001	1003	1005	1001	1009	1011	1013	1015	1017

Table 1 (continued)
Purine and pyrimidine base, nucleoside and nucleotide salvage, interconversion, reduction and degradation:
Purines:

Function	ADENINE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.7) HYPOXANTHINE-GUANINE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.8)	KANTHINE-GUANINE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.22)	GTP PYROPHOSPHOKINASE (EC 2.7.6.5)	GUANOSINE-3', 5'-BIS(DIPHOSPHATE) 3'-PYROPHOSPHOHYDROLASE (EC	3.1.7.2)	GUANOSINE-3',5'-BIS(DIPHOSPHATE) 3'-PYROPHOSPHOHYDROLASE (EC	3.1.7.2)	GUANÓSINE-3',5'-BIS(DIPHOSPHATE) 3'-PYROPHOSPHOHYDROLASE (EC	3.1.7.2)	GUANOSINE-3',5'-BIS(DIPHOSPHATE) 3'-PYROPHOSPHOHYDROLASE (EC	3.1.7.2)	DEOXYGUANOSINETRIPHOSPHATE TRIPHOSPHOHYDROLASE (EC 3.1.5.1)	DIADENOSINE 5',5"-P1,P4-TETRAPHOSPHATE HYDROLASE (EC 3.6.1.17)	DIADENOSINE 5',5"-P1,P4-TETRAPHOSPHATE HYDROLASE (EC 3.6.1.17)	DIADENOSINE 5',5"-P1, P4-TETRAPHOSPHATE HYDROLASE (EC 3.6.1.17)	DIADENOSINE 5',5"-P1,P4-TETRAPHOSPHATE HYDROLASE (EC 3.6.1.17)	PHOSPHOADENOSINE PHOSPHOSULFATE REDUCTASE (EC 1.8.99.4)	DIMETHYLADENOSINE TRANSFERASE (EC 2.1.1)	AMP NUCLEOSIDASE (EC 3.2.2.4)	AMP NUCLEOSIDASE (EC 3.2.2.4)	GTP PYROPHOSPHOKINASE (EC 2.7.6.5)	GUANOSINE-3',5'-BIS(DIPHOSPHATE) 3'-PYROPHOSPHOHYDROLASE (EC	3.1.7.2)	
	ĀĒ	X	E	ภู	ю	20	ب. م	ਤੋਂ ਹ	ب. ب	J D	3.1	Ö	۵	ă	ă	₫	Ŧ	흅	A	¥	<u>F</u> 5	S	3.1	
NT Stop	1883	3347	4017	101		2741		2902		3677		18240	89/9	zc.	2347	5126	စ္	2117	3323	¥	29420	ro.		
NT Start	1329	3820	3388	2045		1962		2741		3147		19511	5761	661	2580	5653	446	1239	1893	1101	30442	1138		
Contig.	GR00772 GR00424	GR00618	GR00276	W0171	,	GR00772		GR00772		GR00517		GR00422	W0143	GR00293	GR00294	GR00425	GR00012	GR00537	VV0152	GR00659	0600/	W0171		
Identification Code	RXA02771 RXA01512	RXA02031	RXA00981	RXN02772	;	F RXA02772		F RXA02773		RXA01835		RXA01483	RXN01027	F RXA01024	F RXA01027	RXA01528	RXA00072	RXA01878	RXN02281	F RXA02281	RXN01240	RXN02008		: .
Amino Acid	1020	1024	1026	1028		1030		1032		1034		1036	1038	1040	1042	1044	1046	1048	1050	1052	1054	1056		
Nucleic Acid	1019	1023	1025	1027		1029		1031		1033		1035	1037	1039	<u>1</u>	1043	1045	1047	1049	1051	1053	1055		:

Pyrimdine and purine metabolism:

Function	INOSINE-URIDINE PREFERRING NUCLEOSIDE HYDROLASE (EC 3.2.2.1)	INOSINE-URIDINE PREFERRING NUCLEOSIDE HYDROLASE (EC 3.2.2.1)	INOSINE-URIDINE PREFERRING NUCLEOSIDE HYDROLASE (EC 3.2.2.1)	EXOPOLYPHOSPHATASE (EC 3.6.1.11)	RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE ALPHA CHAIN (EC 1.17.4.1)	RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE ALPHA CHAIN (EC 1.17.4.1)	RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE ALPHA CHAIN (EC 1.17.4.1)	RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE 2 BETA CHAIN (EC 1.17.4.1)	RIBONUCLEOTIDE REDUCTASE SUBUNIT RZF	NRDI PROTEIN	POLYRIBONUCLEOTIDE NUCLEOTIDYLTRANSFERASE (EC 2.7.7.8)	POLYRIBONUCLEOTIDE NUCLEOTIDYLTRANSFERASE (EC 2.7.7.8)	POLYRIBONUCLEOTIDE NUCLEOTIDYLTRANSFERASE (EC 2.7.7.8)
NT Stop	9333	581	6320	10985	35982	4	2062	31842	908	797	627	631	4
NT Start	10268	က	5418	10059	38084	693	3402	32843	1321	1240	_	2	099
Contig.	W0120	GR00557	GR00731	GR00720	V0084	GR00301	GR00302	V0084	GR00550	GR00301	GR00237	GR00413	GR00423
Identification Code	RXN01940	F RXA01940	RXA02559	RXA02497	RXN01079	F RXA01079	F RXA01084	RXN01920	F RXA01920	RXA01080	RXA00867	RXA01416	RXA01486
Amino Acid	1058	1060	1062	1064	1066	1068	1070	1072	1074	1076	1078	1080	1082
Nucleic Acid													

Table 1 (continued)	Identification Code Contig. NT Start NT Stop Function	GR00467 7162 7689	RXA01679 GR00467 7729 8964 2'3-CYCLIC-NUCLEOTIDE 2'-PHOSPHODIESTERASE (EC 3.1.4.16)	VV0139 39842 40789	RXC00540 CYTOSOLIC PROTEIN INVOLVED IN PURINE METABOLISM	RXC00560 PROTEIN INVOLVED IN PURINE METABOLISM	RXC01088 CYTOSOLIC PROTEIN INVOLVED IN PURINE METABOLISM	RXC02624 MEMBRANE SPANNING PROTEIN INVOLVED IN PURINE METABOLISM	RXC02665 PROTEIN INVOLVED IN PURINE METABOLISM	RXC02770 LIPOPROTEIN INVOLVED IN PURINE METABOLISM	RXC02238 RXC02238 RXC02238	RXC01946 ABC TRANSPORTER ATP-BINDING PROTEIN INVOLVED IN PURINE	METABOLISM		
	⊇ (_	_	1088 PXN	_	_		_	_	_	_	104 RXC		••	
											101	1103		Pyrimdines	

Function	URACIL PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.9)	URACIL PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.9)	CYTOSINE DEAMINASE (EC 3.5.4.1)	CYTOSINE DEAMINASE (EC 3.5.4.1)	CYTOSINE DEAMINASE (EC 3.5.4.1)	RIBOSOMAL LARGE SUBUNIT PSEUDOURIDINE SYNTHASE B (EC 4.2.1.70)	PHOSPHATIDATE CYTIDYLYLTRANSFERASE (EC 2.7.7.41)	BETA-UREIDOPROPIONASE (EC 3.5.1.6)	PHOSPHOMETHYLPYRIMIDINE KINASE (EC 2.7.4.7)	CYTOSOLIC PROTEIN INVOLVED IN PYRIMIDINE METABOLISM	CYTOSOLIC PROTEIN INVOLVED IN PYRIMIDINE METABOLISM	EXPORTED PROTEIN INVOLVED IN METABOLISM OF PYRIDIMES AND	ADENOSYLHOMOCYSTEINE	CYTOSOLIC PROTEIN INVOLVED IN PYRIMIDINE METABOLISM	EXPORTED PROTEIN INVOLVED IN PTRIMIDINE METABOLISM			
NT Stop	1080	1082	34814	2	828	4576	2476	7826	2446	2446	22858	616						
NT Start	568	570	34491	322	337	3617	1622	8581	1019	1019	22187	7						
Contig.	VV0328	GR10003	W0112	GR00110	GR00117	GR00188	GR00542	GR00726	VV0270	GR00348	VV0050	GR00451						
Identification Code	RXN03171	F RXA02857	RXN00450	F RXA00450	RXA00465	RXA00717	RXA01894	RXA02536	RXN01209	F RXA01209	RXN01617	F RXA01617	RXC01600	RXC01622	RXC00128		RXC01709	KXC02207
Amino Acid	1106	1108	1110	1112	1114	1116	1118	1120	1122	1124	1126	1128	1130	1132	134		1136	1138
Nucleic Acid																	1135	1137

Table 1 (continued)

Sugars Trehalose

Function	TREHALOSE-PHOSPHATASE (EC 3.1.3.12) maltooligosyltrehalose synthase maltooligosyltrehalose synthase maltooligosyltrehalose trehalohydrolase TREHALOSE/MALTOSE BINDING PROTEIN Hypothetical Trehalose-Binding Protein Hypothetical Trehalose Transport Protein TREHALOSE/MALTOSE BINDING PROTEIN TREHALOSE/MALTOSE BINDING PROTEIN TREHALOSE/MALTOSE BINDING PROTEIN
NT Stop	1013 30489 7579 2543 4 39017
NT Start	246 32921 5147 714 735 38532
Contig.	GR00065 VV0090 GR00358 GR00751 VV0051 VV0135
Identification Code	RXA00347 RXN01239 F RXA01239 RXA02645 RXN02355 RXN02309 RXS00349 RXS03183 RXC00874
Amino Acid	146 148 148 148 148 152 152 153
Nucleic Acid	1139 1143 1145 1149 1153 1153

		TABLE 2 – Excluded Genes	ded Genes
GenBank TM Accession No.	Gene Name	Gene Function	Reference
A09073	Bdd	Phosphoenol pyruvate carboxylase	Bachmann, B. et al. "DNA fragment coding for phosphoenolpyruvat corboxylase, recombinant DNA carrying said fragment, strains carrying the recombinant DNA and method for producing L-aminino acids using said strains," Patent: EP 0358940-A 3 03/21/90
A45579, A45581, A45583, A45585 A45587		Threonine dehydratase	Moeckel, B. et al. "Production of L-isoleucine by means of recombinant micro-organisms with deregulated threonine dehydratase," Patent: WO 9519442-A 5 07/20/95
AB003132	murC; ftsQ; ftsZ		Kobayashi, M. et al. "Cloning, sequencing, and characterization of the fisZ gene from coryneform bacteria," Biochem, Biophys. Res. Commun., 236(2):383-388 (1997)
AB015023	murC; fisQ		Wachi, M. et al. "A murC gene from Coryneform bacteria," Appl. Microbiol. Biotechnol., 51(2):223-228 (1999)
AB018530	dtsR		Kimura, E. et al. "Molecular cloning of a novel gene, dtsR, which rescues the detergent sensitivity of a mutant derived from Brevibacterium lactofermentum," Biosci. Biotechnol. Biochem., 60(10):1565-1570 (1996)
AB018531	dtsR1; dtsR2		
AB020624	muri	D-glutamate racemase	
AB023377	tkt	transketolase	
AB024708	gltB; gltD	Glutamine 2-oxoglutarate aminotransferase large and small subunits	
AB025424	acn	aconitase	
AB027714	rep	Replication protein	
AB027715	rep; aad	Replication protein; aminoglycoside adenyltransferase	
AF005242	argC	N-acetylglutamate-5-semialdehyde dehydrogenase	
AF005635	ginA	Glutamine synthetase	
AF030405	hisF	cyclase	
AF030520	argG	Argininosuccinate synthetase	
AF031518	argF	Ornithine carbamolytransferase	
AF036932	aroD	3-dehydroquinate dehydratase	
AF038548	pyc	Pyruvate carboxylase	

		Table 2 (continued	(penu
AF038651	dciAE; apt; rel	Dipeptide-binding protein; adenine phosphoribosyltransferase; GTP pyrophosphokinase	Wehmeier, L. et al. "The role of the Corynebacterium glutamicum rel gene in (p)ppGpp metabolism," Microbiology, 144:1853-1862 (1998)
AF041436	argR	Arginine repressor	
AF045998	impA	Inositol monophosphate phosphatase	
AF048764	argH	Argininosuccinate lyase	
AF049897	argC; argJ; argB;	N-acetylglutamylphosphate reductase;	
	argG; argH	acety/glutamate kinase: acety/omithine	
,		transminase; ornithine	
		carbamoyltransferase; arginine repressor;	
		argininosuccinate synthase; argininosuccinate lyase	
AF050109	inhA	Enoyl-acyl carrier protein reductase	
AF050166	hisG	ATP phosphoribosyltransferase	
AF051846	hisA	Phosphoribosylformimino-5-amino-1-	
		phosphoribosyl-4-imidazolecarboxamide isomerase	
AF052652	metA	Homoserine O-acetyltransferase	Park, S. et al. "Isolation and analysis of metA, a methionine biosynthetic gene encoding homoserine acetyltransferase in Corynebacterium glutamicum," Mol. Cells 8(3):286-204 (1998)
AF053071	aroB	Dehydroquinate synthetase	
AF060558	hisH	Glutamine amidotransferase	
AF086704	hisE	Phosphoribosyl-ATP- pyrophosphohydrolase	
AF114233	aroA	5-enolpyruvylshikimate 3-phosphate synthase	
AF116184	panD	L-aspartate-alpha-decarboxylase precursor	Dusch, N. et al. "Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli," <i>Appl. Environ. Microbiol.</i> , 65(4)1530-1539 (1999)
AF124518	aroD; aroE	3-dehydroquinase; shikimate dehydrogenase	
AF124600	aroC; aroK; aroB; pepQ	Chorismate synthase; shikimate kinase; 3-dehydroquinate synthase; putative cytoplasmic peptidase	
AF145897	inhA		
AF145898	inhA		

		Table 2 (continued)	ned)
AJ001436	ectP	Transport of ectoine, glycine betaine, proline	Peter, H. et al. "Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: Identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP," J. Bacteriol., 180(22):6005-6012 (1998)
AJ004934	dapD	Tetrahydrodipicolinate succinylase (incomplete)	Wehrmann, A. et al. "Different modes of diaminopimelate synthesis and their role in cell wall integrity: A study with Corynebacterium glutamicum," J. Bacteriol., 180(12):3159-3165 (1998)
AJ007732	ppc; secG; amt; ocd; soxA	Phosphoenolpyruvate-carboxylase; ?; high affinity ammonium uptake protein; putative omithine-cyclodecarboxylase; sarcosine oxidase	
AJ010319	ftsY, glnB, glnD; srp; amtP	Involved in cell division; PII protein; uridylyltransferase (uridylyl-removing enzmye); signal recognition particle; low affinity ammonium uptake protein	Jakoby, M. et al. "Nitrogen regulation in Corynebacterium glutamicum; Isolation of genes involved in biochemical characterization of corresponding proteins," FEMS Microbiol., 173(2):303-310 (1999)
AJ132968	cat	Chloramphenicol aceteyl transferase	
AJ224946	obur	L-malate: quinone oxidoreductase	Molenaar, D. et al. "Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum," Eur. J. Biochem., 254(2):395-403 (1998)
AJ238250	ndh	NADH dehydrogenase	
AJ238703	porA	Porin	Lichtinger, T. et al. "Biochemical and biophysical characterization of the cell wall porin of Corynebacterium glutamicum: The channel is formed by a low molecular mass polypeptide," <i>Biochemistry</i> , 37(43):15024-15032 (1998)
D17429		Transposable element 1831831	Vertes et al. 'Isolation and characterization of IS31831, a transposable element from Corynebacterium glutamicum," Mol. Microbiol., 11(4):739-746 (1994)
D84102	odhA	2-oxoglutarate dehydrogenase	Usuda, Y. et al. "Molecular cloning of the Corynebacterium glutamicum (Brevibacterium lactofermentum AJ12036) odhA gene encoding a novel type of 2-oxoglutarate dehydrogenase," Microbiology, 142:3347-3354 (1996)
E01358	hdh; hk	Homoserine dehydrogenase; homoserine kinase	Katsumata, R. et al. "Production of L-thereonine and L-isoleucine," Patent: JP 1987232392-A 1 10/12/87
E01359		Upstream of the start codon of homoserine kinase gene	Katsumata, R. et al. "Production of L-thereonine and L-isoleucine," Patent: JP 1987232392-A 2 10/12/87
E01375			
E01376	फिटि; फिटि	Leader peptide; anthranilate synthase	Matsui, K. et al. "Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan," Patent: JP 1987244382-A 1 10/24/87

	Table 2 (continued	linued)
E01377	Promoter and operator regions of tryptophan operon	Matsui, K. et al. "Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan," Patent: JP 1987244382-A 1 10/24/87
E03937	Biotin-synthase	Hatakeyama, K. et al. "DNA fragment containing gene capable of coding biotin synthetase and its utilization," Patent: JP 1992278088-A 1 10/02/92
E04040	Diamino pelargonic acid aminotransferase	Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and desthiobiotin synthetase and its utilization," Patent: JP 1992330284-A 1 11/18/92
E04041	Desthiobiotinsynthetase	Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and desthiobiotin synthetase and its utilization," Patent: JP 1992330284-A 1 11/18/92
E04307	Flavum aspartase	Kurusu, Y. et al. "Gene DNA coding aspartase and utilization thereof," Patent: JP 1993030977-A 1 02/09/93
E04376	Isocitric acid lyase	Katsumata, R. et al. "Gene manifestation controlling DNA," Patent: JP 1993056782-A 3 03/09/93
E04377	Isocitric acid Iyase N-terminal fragment	Katsumata, R. et al. "Gene manifestation controlling DNA," Patent: JP 1993056782-A 3 03/09/93
E04484	Prephenate dehydratase	Sotouchi, N. et al. "Production of L-phenylalanine by fermentation," Patent: JP 1993076352-A 2 03/30/93
E05108	Aspartokinase	Fugono, N. et al. "Gene DNA coding Aspartokinase and its use," Patent: JP 1993184366-A 1 07/27/93
E05112	Dihydro-dipichorinate synthetase	Hatakeyama, K. et al. "Gene DNA coding dihydrodipicolinic acid synthetase and its use," Patent: JP 1993184371-A 1 07/27/93
E05776	Diaminopimelic acid dehydrogenase	Kobayashi, M. et al. "Gene DNA coding Diaminopimelic acid dehydrogenase and its use," Patent: JP 1993284970-A 1 11/02/93
E05779	Threonine synthase	Kohama, K. et al. "Gene DNA coding threonine synthase and its use," Patent: JP 1993284972-A 1 11/02/93
E06110	Prephenate dehydratase	Kikuchi, T. et al. "Production of L-phenylalanine by fermentation method," Patent: JP 1993344881-A 1 12/27/93
E06111	Mutated Prephenate dehydratase	Kikuchi, T. et al. "Production of L-phenylalanine by fermentation method," Patent: JP 1993344881-A 1 12/27/93
E06146	Acetohydroxy acid synthetase	Inui, M. et al. "Gene capable of coding Acetohydroxy acid synthetase and its use," Patent: JP 1993344893-A 1 12/27/93
E06825	Aspartokinase	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A 1 03/08/94
E06826	Mutated aspartokinase alpha subunit	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A 1 03/08/94

									81 -								
nued)	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A I 03/08/94	Honno, N. et al. "Gene DNA participating in integration of membraneous protein to membrane," Patent: JP 1994169780-A 1 06/21/94	Sato, Y. et al. "Genetic DNA capable of coding Aspartokinase released from feedback inhibition and its utilization," Patent: JP 1994261766-A 1 09/20/94	Sato, Y. et al. "Genetic DNA capable of coding Aspartokinase released from feedback inhibition and its utilization," Patent: JP 1994261766-A 1 09/20/94	Inui, M. et al. "Gene DNA coding acetohydroxy acid isomeroreductase," Patent: JP 1994277067-A 1 10/04/94	Asai, Y. et al. "Gene DNA coding for translocation machinery of protein," Patent: JP 1994277073-A 1 10/04/94	Hatakeyama, K. et al. "DNA fragment having promoter function in coryneform bacterium," Patent: JP 1995031476-A 1 02/03/95	Hatakeyama, K. et al. "DNA fragment having promoter function in coryneform bacterium," Patent: JP 1995031476-A 1 02/03/95	Kohama, K. et al "DNA fragment having promoter function in coryneform bacterium," Patent: JP 1995031478-A 1 02/03/95	Madori, M. et al. "DNA fragment containing gene coding Dihydrodipicolinate acid reductase and utilization thereof," Patent: JP 1995075578-A 1 03/20/95	Madori, M. et al. "DNA fragment containing gene coding Diaminopimelic acid decarboxylase and utilization thereof," Patent: JP 1995075579-A 1 03/20/95	Hatakeyama, K. et al. "Production of L-trypophan," Patent: JP 1997028391-A 1 02/04/97	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97
Table 2 (continued)	Mutated aspartokinase alpha subunit		Aspartokinase	Feedback inhibition-released Aspartokinase	Acetohydroxy-acid isomeroreductase		FT aminotransferase and desthiobiotin synthetase promoter region	Biotin synthetase	Aspartase	Dihydrodipicolinate reductase	Diaminopimelic acid decarboxylase	Serine hydroxymethyltransferase	transposase	Arginyl-tRNA synthetase; diaminopimelic acid decarboxylase	Dihydrodipicolinic acid synthetase	aspartokinase	Dihydrodipicolinic acid reductase
		secY				secE											
	E06827	E07701	E08177	E08178, E08179, E08180, E08181, E08182	E08232	E08234	E08643	E08646	E08649	E08900	E08901	E12594	E12760, E12759, E12758	E12764	E12767	E12770	E12773

		Table 2 (continued)	(penu
M25819		Phosphoenolpyruvate carboxylase	O'Regan, M. et al. "Cloning and nucleotide sequence of the Phosphoenolpyruvate carboxylase-coding gene of Corynebacterium glutamicum ATCC13032," Gene, 77(2):237-251 (1989)
M85106		23S rRNA gene insertion sequence	Roller, C. et al. "Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes," J. Gen. Microbiol., 138:1167-1175 (1992)
M85107, M85108		23S rRNA gene insertion sequence	Roller, C. et al. "Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes," J. Gen. Microbiol., 138:1167-1175 (1992)
M89931	aecD; bmQ; yhbw	Beta C-S lyase; branched-chain amino acid uptake carrier; hypothetical protein yhbw	Rossol, I. et al. "The Corynebacterium glutamicum aecD gene encodes a C-S lyase with alpha, beta-elimination activity that degrades aminoethylcysteine," J. Bacteriol., 174(9):2968-2977 (1992); Tauch, A. et al. "Isoleucine uptake in Corynebacterium glutamicum ATCC 13032 is directed by the brnQ gene product," Arch. Microbiol., 169(4):303-312 (1998)
859299	цъ	Leader gene (promoter)	Herry, D.M. et al. "Cloning of the trp gene cluster from a tryptophan-hyperproducing strain of Corynebacterium glutamicum: identification of a mutation in the trp leader sequence," Appl. Environ. Microbiol., 59(3):791-799 (1993)
U11545	Пр	Anthranilate phosphoribosyltransferase	O'Gara, J.P. and Dunican, L.K. (1994) Complete nucleotide sequence of the Corynebacterium glutamicum ATCC 21850 tpD gene." Thesis, Microbiology Department, University College Galway, Ireland.
U13922	cgiiM; cgiiR; cigiiR	Putative type II 5-cytosoine methyltransferase; putative type II restriction endonuclease; putative type I or type III restriction endonuclease	Schafer, A. et al. "Cloning and characterization of a DNA region encoding a stress-sensitive restriction system from Corynebacterium glutamicum ATCC. 13032 and analysis of its role in intergeneric conjugation with Escherichia coli," J. Bacteriol., 176(23):7309-7319 (1994); Schafer, A. et al. "The Corynebacterium glutamicum cgllM gene encoding a 5-cytosine in an McrBC-deficient Escherichia coli strain," Gene, 203(2):95-101 (1997)
U14965	recA		
U31224	ррх	•	Ankri, S. et al. "Mutations in the Corynebacterium glutamicumproline biosynthetic pathway: A natural bypass of the proA step," J. Bacteriol., 178(15):4412-4419 (1996)
U31225	proC	L-proline: NADP+ 5-oxidoreductase	Ankri, S. et al. "Mutations in the Corynebacterium glutamicumproline biosynthetic pathway: A natural bypass of the proA step," J. Bacteriol., 178(15):4412-4419 (1996)
U31230	obg; proB; unkdh	?;gamma glutamyl kinase;similar to D- isomer specific 2-hydroxyacid dehydrogenases	Ankri, S. et al. "Mutations in the Corynebacterium glutamicumproline biosynthetic pathway: A natural bypass of the proA step," J. Bacteriol., 178(15):4412-4419 (1996)

U31281 U35023 U43535 U43536 U53587 U89648	bioB thtR; accBC cmr cmr clpB aphA-3	Biotin synthase Biotin synthase Table 2 (continued) Sereb seque Corya Arch. Multidrug resistance protein Heat shock ATP-binding protein 3'5''-aminoglycoside phosphotransferase Coryalage, IT9(7 Heat shock ATP-binding protein S'5''-aminoglycoside phosphotransferase Corynebacterium glutamicum unidentified sequence involved in histidine biosynthesis,	Serebriiskii, I.G., "Two new members of the bio B superfamily: Cloning, sequencing and expression of bio B genes of Methylobacillus flagellatum and Corynebacterium glutamicum," Gene, 175:15-22 (1996) Jager, W. et al. "A Corynebacterium glutamicum gene encoding a two-domain protein similar to biotin carboxylases and biotin-carboxyl-carrier proteins," Arch. Microbiol,, 166(2);76-82 (1996) Jager, W. et al. "A Corynebacterium glutamicum gene conferring multidrug resistance in the heterologous host Escherichia coli," J. Bacteriol, 179(7):2449-2451 (1997)
X04960 X07563	trpE; trpG; trpL; trpE; trpG; trpL	Tryptophan operon DAP decarboxvlase (meso-diaminonimelate	Matsui, K. et al. "Complete nucleotide and deduced amino acid sequences of the Brevibacterium lactofermentum tryptophan operon," <i>Nucleic Acids Res.</i> , 14(24):10113-10114 (1986)
X14234	55.C	DAT decarboxylase (meso-diaminopimeiate decarboxylase, EC 4.1.1.20) Phosphoenolpyruvate carboxylase	Yen, P. et al. "Nucleic sequence of the lysA gene of Corynebacterium glutamicum and possible mechanisms for modulation of its expression," Mol. Gen. Genet., 212(1):112-119 (1988) Eikmanns, B.J. et al. "The Phosphoenolpyruvate carboxylase gene of Corynebacterium glutamicum: Molecular cloning, nucleotide sequence, and expression," Mol. Gen. Genet., 218(2):330-339 (1989); Lepiniec, L. et al. "Sorghum Phosphoenolpyruvate carboxylase gene family: structure, function and molecular evolution," Plant. Mol. Biol., 21 (3):487-502 (1993)
X17313 X53993	fda dapA	Fructose-bisphosphate aldolase L-2, 3-dihydrodipicolinate synthetase (EC	Von der Osten, C.H. et al. "Molecular cloning, nucleotide sequence and finestructural analysis of the Corynebacterium glutamicum fda gene: structural comparison of C. glutamicum fructose-1, 6-biphosphate aldolase to class I and class II aldolases," Mol. Microbiol., Bonnassie, S. et al. "Nucleic sequence of the dapA gene from
X54223		AttB-related site	Cianciotto, N. et al. "DNA sequence homology between att B-related sites of Cianciotto, N. et al. "DNA sequence homology between att B-related sites of Corynebacterium diphtheriae, Corynebacterium ulcerans, Corynebacterium glutamicum, and the attP site of lambdacorynephage," FEMS. Microbiol, Lett., 66:299-302 (1990)
X34740	argS; lysA	Arginyl-tRNA synthetase; Diaminopimelate decarboxylase	Marcel, T. et al. "Nucleotide sequence and organization of the upstream region of the Corynebacterium glutamicum lysA gene," Mol. Microbiol., 4(11):1819-1830 (1990)

_						- 85 -		g		П		<u></u>
nued)	Heery, D.M. et al. "Nucleotide sequence of the Corynebacterium glutamicum trpE gene," Nucleic Acids Res., 18(23):7138 (1990)	Han, K.S. et al. "The molecular structure of the Corynebacterium glutamicum threonine synthase gene," Mol. Microbiol., 4(10):1693-1702 (1990)	Cianciotto, N. et al. "DNA sequence homology between att B-related sites of Corynebacterium diphtheriae, Corynebacterium ulcerans, Corynebacterium glutamicum, and the att site of lambdacorynephage," FEMS. Microbiol, Lett., 66:299-302 (1990)	Kalinowski, J. et al. "Genetic and biochemical analysis of the Aspartokinase from Corynebacterium glutamicum," <i>Mol. Microbiol.</i> , 5(5):1197-1204 (1991); Kalinowski, J. et al. "Aspartokinase genes lysC alpha and lysC beta overlap and are adjacent to the aspertate beta-semialdehyde dehydrogenase gene asd in Corynebacterium glutamicum," <i>Mol. Gen. Genet.</i> , 224(3):317-324 (1990)	Eikmanns, B.J. "Identification, sequence analysis, and expression of a Corynebacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomeras," J. Bacteriol., 174(19):6076-6086 (1992)	Bormann, E.R. et al. "Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase," Mol. Microbiol., 6(3):317-326 (1992)	Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium glutamicum lysl gene involved in lysine uptake," Mol. Microbiol., 5(12):2995-3005 (1991)	Joliff, G. et al. "Cloning and nucleotide sequence of the csp1 gene encoding PS1, one of the two major secreted proteins of Corynebacterium glutamicum: The deduced N-terminal region of PS1 is similar to the Mycobacterium antigen 85 complex," Mol. Microbiol., 6(16):2349-2362 (1992)	Eikmanns, B.J. et al. "Cloning sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase," Microbiol., 140:1817-1828 (1994)		Peyret, J.L. et al. "Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum," Mol. Microbiol., 9(1):97-109 (1993)	Bonamy, C. et al. "Identification of IS1206, a Corynebacterium glutamicum IS3-related insertion sequence and phylogenetic analysis," Mol. Microbiol., 14(3):571-581 (1994)
Table 2 (continued)	Putative leader peptide; anthranilate synthase component 1	Threonine synthase	Attachment site	Aspartokinase-alpha subunit; Aspartokinase-beta subunit; aspartate beta semialdehyde dehydrogenase	Glyceraldehyde-3-phosphate; phosphoglycerate kinase; triosephosphate isomerase	Glutamate dehydrogenase	L-lysine permease	Psł protein	Citrate synthase	Dihydrodipicolinate reductase	Surface layer protein PS2	IS3 related insertion element
	տ ի .; տբ	thrC	attB-related site	lysC-alpha; lysC-beta; asd	gap;pgk; tpi	qp8	lysi	cop1	118	dapB	csp2	
	XS5994	X56037	X56075	X57226	X59403	XS9404	X60312	X66078	X66112	X67737	X69103	X69104

_	me	ation .riol.,		 	rains ppl.	γ.		t - 9		E .	1 a 528		
	Patek, M. et al. "Leucine synthesis in Corynebacterium glutamicum: enzyme activities, structure of leuA, and effect of leuA inactivation on lysine synthesis," Appl. Environ. Microbiol., 60(1):133-140 (1994)	Eikmanns, B.J. et al. "Cloning sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme," J. Bacteriol., 177(3):774-782 (1995)		Heery, D.M. et al. "A sequence from a tryptophan-hyperproducing strain of Corynebacterium glutamicum encoding resistance to 5-methyltryptophan," Biochem. Biophys. Res. Commun., 201(3):1255-1262 (1994)	Fitzpatrick, R. et al. "Construction and characterization of recA mutant strain of Corynebacterium glutamicum and Brevibacterium lactofermentum," Appl. Microbiol. Biotechnol., 42(4):575-580 (1994)	Reinscheid, D.J. et al. "Characterization of the isocitrate lyase gene from Corynebacterium glutamicum and biochemical analysis of the enzyme," J. Bacteriol., 176(12):3474-3483 (1994)	Ludwig, W. et al. "Phylogenetic relationships of bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase beta-subunit genes," Antonie Van Leeuwenhoek, 64:285-305 (1993)	Ludwig, W. et al. "Phylogenetic relationships of bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase beta-subunit genes," <i>Antonie Van Leeuwenhoek</i> , 64:285-305 (1993)	Billman-Jacobe, H. "Nucleotide sequence of a recA gene from Corynebacterium glutamicum," DNA Seq., 4(6):403-404 (1994)	Reinscheid, D.J. et al. "Malate synthase from Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase: sequence analysis," <i>Microbiology</i> , 140:3099-3108 (1994)	Rainey, F.A. et al. "Phylogenetic analysis of the genera Rhodococcus and Norcardia and evidence for the evolutionary origin of the genus Norcardia from within the radiation of Rhodococcus species," Microbiol, 141:523-528 (1995)	Kronemeyer, W. et al. "Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum," J. Bacteriol., 177(5):1152-1158 (1995)	Wehrmann, A. et al. "Analysis of different DNA fragments of Corynebacterium glutamicum complementing dapE of Escherichia coli," <i>Microbiology</i> , 40:3349-56 (1994)
Table 2 (continued)		Isocitrate dehydrogenase (NADP+)	Glutamate dehydrogenase (NADP+)			Partial Isocitrate lyase; ?		Elongation factor Tu		٠	lA		Succinyldiaminopimelate desuccinylase
!	leuA	icd	GDHA	mtA	recA	aceA; thiX		tuf	recA	aceB	16S rDNA	gluA; gluB; gluC; gluD	дарЕ
	X70959	X71489	X72855	X75083, X70584	X75085	X75504	X76875	X77034	X77384	X78491	X80629	16118X	X81379

Table 2 (contin	A 16S ribosomal RNA	Aspartate-semialdehyde dehydrogenase; ?		16S ribosomal RNA	Aromatic amino acid permease; ?	stargD; Acetylglutamate kinase; N-acetyl-gamma- Sakanyan, V. et al. "Genes and enzymes of the acetyl cycle of arginine glutamyl-phosphate reductase; biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early acetyloransferase; omithine aminotransferase; omithine arginine pathway," <i>Microbiology</i> , 142:99-108 (1996) acetyltransferase	ackA Phosphate acetyltransferase; acetate kinase of the Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase and acetate kinase," <i>Microbiology</i> , 145:503-513 (1999)	Attachment site		Promoter fragment F2 Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Promoter fragment F10 Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	
	A	asd; lysC	proA	16S rDNA	aroP; dapE	argB; argC; argD; argF; argJ	pta; ackA	attB					
	X82061	X82928	X82929	X84257	X85965	X861 <i>57</i>	X89084	X89850	X90356	X90357	X90358	X90359	

19xG	Table 2 (contin	ent F22 Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)			ent F64 Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	ent. F75 Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	ant PF101 Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	ent PF109 . Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)	Isport system Siewe, R.M. et al. "Functional and genetic characterization of the (methyl) ammonium uptake carrier of Corynebacterium glutamicum," J. Biol. Chem., 271(10):5398-5403 (1996)		Patek, M. et al. "Identification and transcriptional analysis of the dapB-ORF2-dapA-ORF4 operon of Corynebacterium glutamicum, encoding two enzymes involved in L-lysine synthesis," <i>Biotechnol. Lett.</i> , 19:1113-1117 (1997)	
orf4 betp amt		Promoter fragment F22	Promoter fragment F34	Promoter fragment F37	Promoter fragment F45	Promoter fragment F64	Promoter fragment F75	Promoter fragment PF101	Promoter fragment PF104	Promoter fragment PF109	Ammonium transport system	betP Glycine betaine transport system	orf4	lysE; lysG Lysine exporter protein; Lysine export

lable 2 (contin
3-methyl-2-oxobutanoate Sahm, H. et al. "D-pantothenate synthesis in Corynebacterium glutamicum and hydroxymethyltransferase; pantoate-beta-alanine ligase; xylulokinase overproduction," Appl. Environ. Microbiol., 65(5):1973-1979 (1999)
IS1207 and transposase
Elongation factor P Ramos, A. et al. "Cloning, sequencing and expression of the gene encoding elongation factor P in the amino-acid producer Brevibacterium lactofermentum (Corynebacterium glutamicum ATCC 13869)," Gene, 198:217-222 (1997)
Meso-diaminopimelate D-dehydrogenase Ishino, S. et al. "Nucleotide sequence of the meso-diaminopimelate D-dehydrogenase gene from Corynebacterium glutamicum," Nucleic Acids Res., 15(9):3917 (1987)
Homoserine dehydrogenase Mateos, L.M. et al. "Nucleotide sequence of the homoserine dehydrogenase (thrA) gene of the Brevibacterium lactofermentum," Nucleic Acids Res., 15(24):10598 (1987)
a
e; ion
High affinity proline transport system Peter, H. et al. "Isolation of the putP gene of Corynebacterium glutamicumproline and characterization of a low-affinity uptake system for compatible solutes," Arch. Microbiol., 168(2):143-151 (1997)
3-isopropylmalate dehydrogenase Patek, M. et al. "Analysis of the leuB gene from Corynebacterium glutamicum," Appl. Microbiol. Biotechnol., 50(1):42-47 (1998)
Attachment site bacteriophage Phi-16 Moreau, S. et al. "Site-specific integration of corynephage Phi-16: The construction of an integration vector," Microbiol., 145:539-548 (1999)
Proline/ectoine uptake system protein Peter, H. et al. "Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: Identification, sequencing, and characterization
of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP," J. Bacteriol., 180(22):6005-6012 (1998)

_									- 90 - 			
nued)	Jakoby, M. et al. "Isolation of Corynebacterium glutamicum glnA gene encoding glutamine synthetase I." FFMS Microbiol Lett. 154(1):81-88 (1997)		Moreau, S. et al. "Analysis of the integration functions of φ304L: An integrase module among corvnephages." Virology, 255(1):150-159 (1999)	Oguiza, J.A. et al. "A gene encoding arginyl-tRNA synthetase is located in the upstream region of the lysA gene in Brevibacterium lactofermentum: Regulation of argS-lysA cluster expression by arginine," J. Bacteriol., 175(22):7356-7362 (1993)	Pisabarro, A. et al. "A cluster of three genes (dapA, orf2, and dapB) of Brevibacterium lactofermentum encodes dihydrodipicolinate reductase, and a third polypeptide of unknown function," J. Bacteriol., 175(9):2743-2749 (1993)	Malumbres, M. et al. "Analysis and expression of the thrC gene of the encoded threonine synthase," Appl. Environ. Microbiol., 60(7)2209-2219 (1994)		Oguiza, J.A. et al "Multiple sigma factor genes in Brevibacterium lactofermentum: Characterization of sigA and sigB," J. Bacteriol., 178(2):550-553 (1996)	Oguiza, J.A. et al "The galE gene encoding the UDP-galactose 4-epimerase of Brevibacterium lactofermentum is coupled transcriptionally to the dmdR gene," <i>Gene</i> , 177:103-107 (1996)	Oguiza, J.A. et al "Multiple sigma factor genes in Brevibacterium lactofermentum: Characterization of sigA and sigB," J. Bacteriol., 178(2):550-553 (1996)	Correia, A. et al. "Cloning and characterization of an IS-like element present in the genome of Brevibacterium lactofermentum ATCC 13869," Gene, 170(1):91-94 (1996)	A sequence for this gene was published in the indicated reference. However, the sequence obtained by the inventors of the present application is significantly longer than the published version. It is believed that the published version relied on an incorrect start codon, and thus represents only a fragment of the actual coding region.
Table 2 (continued)	Glutamine synthetase I	Dihydrolipoamide dehydrogenase	Attachment site Corynephage 304L	Arginyl-tRNA synthetase; diaminopimelate decarboxylase (partial)	Dihydrodipicolinate synthase; dihydrodipicolinate reductase	Threonine synthase	Gene for 16S ribosomal RNA	SigA sigma factor	Catalytic activity UDP-galactose 4- epimerase; diphtheria toxin regulatory protein	?; SigB sigma factor	Transposase	I in the indicated reference. However, the sequence the published version relied on an incorrect start or
	glnA	lpd		argS; lysA	dapA; dapB	thrC	16S rDNA	sigA	galE; dtxR	orfl; sigB		his gene was published sion. It is believed that
	Y13221	Y16642	Y18059	Z21501	Z 21502	Z29563	Z46753	Z49822	Z49823	Z 49824	Z66534	A sequence for the published vers

TABLE 3: Corynebacterium and Brevibacterium Strains Which May be Used in the Practice of the Invention

Centro A	species - Au	ATCC.	DERM	ENRRIE	CECT	NCIMB	E CBS	NOTEC	DSMZ
Brevibacterium	ammoniagenes	21054	34-127-		· and in the control	The Taxable	(A.)		
Brevibacterium	ammoniagenes	19350	-	 	 			<u> </u>	
Brevibacterium	ammoniagenes	19351							
Brevibacterium	ammoniagenes	19352							
Brevibacterium	ammoniagenes	19353							
Brevibacterium	ammoniagenes	19354							
Brevibacterium	ammoniagenes	19355							
Brevibacterium	ammoniagenes	19356							
Brevibacterium	ammoniagenes	21055							
Brevibacterium	ammoniagenes	21077							
Brevibacterium	ammoniagenes	21553		·					
Brevibacterium	ammoniagenes	21580							
Brevibacterium	ammoniagenes	39101							
Brevibacterium	butanicum	21196							
Brevibacterium	divaricatum	21792	P928						
Brevibacterium	flavum	21474							
Brevibacterium	flavum	21129							······································
Brevibacterium	flavum	21518							
Brevibacterium	flavum		•	B11474					
Brevibacterium	flavum			B11472					
Brevibacterium	flavum	21127							
Brevibacterium	flavum	21128							
Brevibacterium	flavum	21427							
Brevibacterium	flavum	21475							
Brevibacterium	flavum	21517							
	flavum	21528							
Brevibacterium	flavum	21529							
Brevibacterium	flavum			B11477					
	flavum			B11478					
	flavum	21127							
	flavum			B11474					
	healii	15527							
	ketoglutamicum	21004							
	ketoglutamicum	21089							
	ketosoreductum	21914							
	lactofermentum				70				
	lactofermentum				74				
	lactofermentum				77				
	lactofermentum	21798							
	lactofermentum	21799		i		···			
Brevibacterium	lactofermentum	21800							
Brevibacterium	lactofermentum	21801							
Brevibacterium	lactofermentum			B11470					
Brevibacterium	lactofermentum			B11471					

species a	#ATCC	FERM	NRRL	CEGT	NEIMB	CBSt	NCTO	DSMZ
	21086					10	V74.12 39	
	21420			-			-	
	21086	 				<u> </u>		
	31269	 		l			-	
	I	 					<u> </u>	
						 		
					11160			
<u> </u>						717.73		
				 				
<u> </u>	14604							
								
	21866							
	19240	· · · · · · · · · · · · · · · · · · ·		:				
	21476							
	13870							
			B11473					
			B11475					
, –	15806							
	21491							
	31270							•
			B3671					
	6872						2399	
ammoniagenes	15511							
fujiokense	21496							
glutamicum	14067							
glutamicum	39137							
glutamicum	21254							
glutamicum	21255							
glutamicum	31830							
glutamicum	13032							***************************************
glutamicum	14305							
glutamicum	15455							
glutamicum	13058							
glutamicum	13059							
glutamicum	13060							
glutamicum	21492							
glutamicum	21513							
glutamicum	21526							
glutamicum	21543							
glutamicum	13287							
glutamicum	21851							
-								
glutamicum	21253	į	1	I.		4	•	
glutamicum glutamicum	21253							
	lactofermentum lactofermentum lactofermentum lactofermentum linens linens linens linens paraffinolyticum spec. spec. spec. spec. spec. spec. spec. spec. spec. acetoacidophilum acetoglutamicum glutamicum	lactofermentum 21420 lactofermentum 21420 lactofermentum 21086 lactofermentum 31269 linens 9174 linens 19391 linens 19391 linens 8377 paraffinolyticum sec. spec. 21860 spec. 21864 spec. 21865 spec. 21866 spec. 21866 spec. 21866 spec. 19240 acetoacidophilum 13870 acetoglutamicum 15806 acetoglutamicum 15806 acetoglutamicum 31270 acetoglutamicum 31270 acetophilum 31270 acetophilum 31270 acetophilum 31270 acetophilum 39137 glutamicum 21254 glutamicum 31330 glutamicum 31330 glutamicum 13032	lactofermentum	Iactofermentum	Iactofermentum	lactofermentum	lactofermentum	lactofermentum

Genus :	species :	ATCC*	FERM	NRRL	CECT	NCIMB	CBS	NETO	DSMZ
Corynebacterium	glutamicum	21300							
Corynebacterium	glutamicum	39684							
Corynebacterium	glutamicum	21488			1				
Corynebacterium	glutamicum	21649			1				
Corynebacterium	glutamicum	21650							
Corynebacterium	glutamicum	19223							
Corynebacterium	glutamicum	13869			1				
Corynebacterium	glutamicum	21157							
Corynebacterium	glutamicum	21158							
Corynebacterium	glutamicum	21159							
Corynebacterium	glutamicum	21355							
Corynebacterium	glutamicum	31808							
Corynebacterium	glutamicum	21674							
Corynebacterium	glutamicum	21562							
Corynebacterium	glutamicum	21563							
Corynebacterium	glutamicum	21564							
Corynebacterium	glutamicum	21565							
Corynebacterium	glutamicum	21566							
Corynebacterium	glutamicum	21567							
Corynebacterium	glutamicum	21568							
Corynebacterium	glutamicum	21569		· <u>· </u>					
Corynebacterium	glutamicum	21570							
Corynebacterium	glutamicum	21571							
Corynebacterium	glutamicum	21572						t	
Corynebacterium	glutamicum	21573							
Corynebacterium	glutamicum	21579						t	
Corynebacterium	glutamicum	19049							
Corynebacterium	glutamicum	19050							
Corynebacterium	glutamicum	19051							
Corynebacterium	glutamicum	19052						i	
Corynebacterium	glutamicum	19053							
Corynebacterium	glutamicum	19054							
Corynebacterium	glutamicum	19055				i			
Corynebacterium	glutamicum	19056							
Corynebacterium	glutamicum	19057							
Corynebacterium	glutamicum	19058							
Corynebacterium	glutamicum	19059							$\neg \neg$
Corynebacterium	glutamicum	19060						•	$\neg \neg$
Corynebacterium	glutamicum	19185							
Corynebacterium	glutamicum	13286							
Corynebacterium	glutamicum	21515	- 1						
Corynebacterium	glutamicum	21527							
Corynebacterium	glutamicum	21544							
Corynebacterium	glutarnicum	21492				 †			
	glutamicum			B8183					—
	glutamicum			B8182					
	glutamicum			B12416			 +		
	glutamicum			B12417			 -		——
-									

Genus	species.	ATCC	FERM	NRRL	CECT	NCIMB	∴CBS#	NETE	DSMZ
Corynebacterium	glutamicum			B12418					
Corynebacterium	glutamicum			B11476					
Corynebacterium	glutamicum	21608							
Corynebacterium	lilium		P973						
Corynebacterium	nitrilophilus	21419				11594			
Corynebacterium	spec.		P4445						
Corynebacterium	spec.		P4446						
Corynebacterium	spec.	31088						-	
Corynebacterium	spec.	31089							
Corynebacterium	spec.	31090							
Corynebacterium	spec.	31090						-	
Corynebacterium	spec.	31090							
Corynebacterium	spec.	15954							20145
Corynebacterium	spec.	21857							
Corynebacterium	spec.	21862							
Corynebacterium	spec.	21863							

ATCC: American Type Culture Collection, Rockville, MD, USA

FERM: Fermentation Research Institute, Chiba, Japan

NRRL: ARS Culture Collection, Northern Regional Research Laboratory, Peoria, IL, USA

CECT: Coleccion Espanola de Cultivos Tipo, Valencia, Spain

NCIMB: National Collection of Industrial and Marine Bacteria Ltd., Aberdeen, UK

CBS: Centraalbureau voor Schimmelcultures, Baarn, NL

NCTC: National Collection of Type Cultures, London, UK

DSMZ: Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany

For reference see Sugawara, H. et al. (1993) World directory of collections of cultures of microorganisms: Bacteria, fungi and yeasts (4th edn), World federation for culture collections world data center on microorganisms, Saimata, Japen.

	· 성뛻	n-99	-88 -U	CH.	52, Created) 07-OCT-	点	66-	95 6	6 <u>-</u>		п-98	n-97	76-80 19-97	8	8	3	6	8
	ov. Date of Deposit	29-Jun-99	29-Jun-99	08-OCT- 1997 (Rel.	52, Creat 07-OCT-	1998 17-DEC-	1993 28-Jul-99	2-Aug-99	2-Aug-99		17-Jun-98	14-Jan-97	20-Aug-97	9-Sep-99	29-Sep-99	30-MAR-	1999 2-Sep-99	2-Sep-99
	% homology Date of (GAP)	40,956	40,956	42,979	42,979	39,097	95,429	31,111	31,111		37,753	35,869	42,896	40,210	41.178	36,783	40,296	40,296
	Source of Genbank Hit	Lycopersicon esculentum	Lycopersicon esculentum	Corynebacterium glutamicum	Unknown.	Escherichia coli	Corynebacterium	glutamicum Drosophila melanogaster	Drosophila melanogaster		Mycobacterium	Escherichia coli Fecherichia coli	Homo sapiens	Corynebacterium	diphtheriae Unknown.	Homo sapiens	Ното sapiens	
Table 4: Alignment Results	Length Accession Name of Genbank Hit	EST257217 tomato resistant, Cornell Lycopersicon esculentum cDNA clone cLER17D3. mRNA sequence.	EST257217 tomato resistant, Cornell Lycopersicon esculentum cDNA clone cLER17D3, mRNA sequence.	Base sequence of sucrase gene.	Sequence 4 from patent US 5556776.	E. coll chromosomal region from 89.2 to 92.8 minutes.	gDNA encoding aspartate transferase (AAT).	Drosophila melanogaster chromosome 3 clone BACR02O03 (D797) RPCI-98 02.O.3 map 998-99B strain y; cn bw sp, *** SEQUENCING IN PROGRESS *** 113 unordered pieces.	Drosophila melanogaster chromosome 3 clone BACR02003 (D797) RPCI-98 Drosophila melanogaster 02.0.3 map 99B-99B strain y; cn bw sp, *** SEQUENCING IN PROGRESS***, 113 unordered pieces.		Mycobacterium tuberculosis H37Rv complete genome; segment 122/162,	Escherichia coli K-12 genome; approximately 63 to 64 minutes. Escherichia coli K-12 MG1655 section 256 of 400 of the complete genome	ng83f04.s1 NCI_CGAP_Pr6 Homo sapiens cDNA clone IMAGE:941407 similar to SW:DYR_LACCA P00381 DIHYDROFOLATE REDUCTASE;	mRNA sequence. Corynebacterium diphtheriae histidine kinase ChrS (chrS) and response		Homo sapiens chromosome 17, clone hRPK.472_J_18, complete sequence.	Homo sapiens chromosome 19 clone CIT-HSPC_490E21, *** SEQUENCING Homo sapiens	IN PROGRESS ***, 93 unordered pieces. Homo sapiens chromosome 19 clone CIT-HSPC_490E21, *** SEQUENCING Homo sapiens IN DESCRESS *** 62
	Accession	AI776129	AI776129	E11760	126124	90000n	E16763	AC007892	AC007892		AL008967	U29581 AE000366	AA494237	AF161327	AR041189	AC007110	AC008537	AC008537
	Length	483	. 483	6911	6911	176195 U00006	2517	134257	134257		56414	71128 10405	367	2021	654	148336	170030	170030
;	Genbank Hit	GB_EST33:AI776129 483	GB_EST33:AI776129	EM_PAT:E11760	GB_PAT:126124	GB_BA2:ECOUW89	GB_PAT:E16763	GB_HTG2:AC007892 134257 AC007892	GB_HTG2:AC007892 134257 AC007892	·		GB_BA1:ECU29581 GB_BA2:AE000366	37	GB_BA2:AF161327	GB_PAT:AR041189	GB_PR4:AC007110	GB_HTG3:AC008537 170030 AC008537	GB_HTG3:AC008537 170030 AC008537
;	length (NT)	3579		1059			1401				798		626		. !	1170		
:	*	rxa00023		rxa00044			xa00064			rxa00072	rxa00105		rxa00106			rxa00115		

	1990 1999	07-OCT- 1996	8-Apr-99	17~Jun-98	15-Jun-99 17-Jun-98	17-Jun-98	31-OCT-	1996 22-Nov-99	18-Jun-98	26-Jul-93	29-Apr-97	18-Jun-98	17-Jun-98	03-DEC-	1996 18-Jun-98	15-Jun-96	23-DEC- 1996	10-Feb-99
	36,235	36,821	38,124	43,571	41,116 39,726	36,788	61,914	51,325	63,365	56,080	47,514	60,714	39,229	36,618	61,527	59,538	55,386	52,666
	Caulobacter crescentus	Unknown.	Oryza sativa	Mycobacterium	Streptomyces argillaceus Mycobacterium	tuberculosis Mycobacterium	tuberculosis Trichomonas vaginalis	Drosophila melanogaster	Mycobacterium	rucercurosis Pseudomonas aeruginosa	Lactobacilius leichmannii	Mycobacterium	tuberculosis Mycobacterium	Mycobacterium	tuberculosis Mycobacterium	Mycobacterium leprae	Pseudomonas aeruginosa	Streptomyces coelicolor
Table 4 (continued)	Caulobacter crescentus Sst1 (sst1), S-layer protein subunit (rsaA), ABC transporter (rsaD), membrane forming unit (rsaE), putative GDP-mannose-4,6-dehydratase (lpsA), putative acetyltransferase (lpsB), putative perosamine synthetase (lpsC), putative mannosyltransferase (lpsD), putative mannosyltransferase (lpsD), and putative perosamine transferase (lpsE), outer membrane protein (rsaF), and putative	Sequence 6 from patent US 5500353.	nbxb0062D16r CUGI Rice BAC Library Oryza sativa genomic clone	Mycobacterium tuberculosis H37Rv complete genome; segment 139/162.	Streptomyces argillaceus mithramycin biosynthetic genes. Mycobacterium tuberculosis H37Rv complete genome; segment 139/162.	Mycobacterium tuberculosis H37Rv complete genome; segment 139/162.	Trichomonas vaginalis S-adenosyl-L-homocysteine hydrolase gene, complete	Drosophila melanogaster chromosome X clone BACR36D15 (D887) RPCI-98 36.D.15 map 13C-13E strain y; cn bw sp, *** SEQUENCING IN PROGRESS	***, 74 unordered pieces. Mycobacterium tuberculosis H37Rv complete genome; segment 61/162.	Pseudomonas aeruginosa aspartate transcarbamoylase (pyrB) and dihydroorotase-like (pyrX) genes, complete cds's.	L. leichmannii pyrB gene.	Mycobacterium tuberculosis H37Rv complete genome; segment 61/162.	Mycobacterium tuberculosis H37Rv complete genome; segment 121/162.	Mycobacterium tuberculosis sequence from clone y154.	Mycobacterium tuberculosis H37Rv complete genome; segment 61/162.	Mycobacterium leprae cosmid B937 DNA sequence.	Pseudomonas aeruginosa dihydrodipicolinate reductase (dapB) gene, partial cds, carbamoylphosphate synthetase small subunit (carA) and carbamoylphosphate synthetase large subunit (carB) genes, complete cds,	and FtsJ homolog (ftsJ) gene, partial cds. Streptomyces coelicolor cosmid 9B10.
	AF062345	118647	AQ446197	295121	AJ007932 Z95121	295121	U40872	AC010706	281011	L19649	X84262	281011	298209	AD000002	281011	L78820	U81259	AL009204
	16458 8	3300	751	36330	15176 36330	36330	1882	169265	20431	2273	1468	20431	13935	40221	20431	38914	7285	33320
	GB_BA2:AF062345	GB_PAT:118647	GB_GSS13:AQ44619 751 7	GB_BA1:MTY20B11	GB_BA1:SAR7932 GB_BA1:MTY20B11	GB_BA1:MTY20B11	GB_IN2:TVU40872	GB_HTG6:AC010706 169265 AC010706	GB_BA1:MTCY2B12	GB_BA1:PSEPYRBX	GB_BA1:LLPYRBDNA 1468	GB_BA1:MTCY2B12	GB_BA1:MTCY154	GB_BA1:MSGY154	GB_BA1:MTCY2B12	GB_BA1:MSGB937C S	GB_BA1:PAU81259	GB_BA1:SC9B10
	1284			732		1557			1059			1464			1302			1233
	xa00116			rxa00131		rxa00132			rxa00145			rxa00146			rxa00147			rxa00156

					Table 4 (continued)			
		GB_BA2:AF002133	15437	AF002133	Mycobacterium avium strain GIR10 transcriptional regulator (mav81) gene,	Mycobacterium avium	54,191	26-MAR-
					partial cds, aconitase (acn), invasin 1 (inv1), invasin 2 (inv2), transcriptional regulator (moxR), ketoacyl-reductase (fabG), enoyl-reductase (inhA) and			1998
					ferrochelatase (mav272) genes, complete cds.			
		GB_BA1:D85417	7984	D85417	Propionibacterium freudenreichii hemY, hemH, hemB, hemX, hemR and	Propionibacterium	46,667	6-Feb-99
ra00166	783	GB HTG3-ACON8167 174223	174223	AC008167	hemL genes, complete cds. Homo capiens clone NH0122013 *** SEOLIENCING IN PROGRESS *** 7	freudenreichii Homo saniens	37 451	21.Airc-99
	3	100000 A COTU	77,	790000	unordered pieces.		27 46.4	
		GE_TIGS.ACUU810/ 1/4223	C774/I	701 0000 V	north sapiens cone typo (2013), SEQUENCING IN TROGRESS (1) unordered pieces.	Simple September		66-Kov-17
		GB_HTG4:AC010118 80605	80605	AC010118	Drosophila melanogaster chromosome 3L/62B1 clone RPC(98-10D15, *** e.c.) iENCING IN DDAGDES *** 61 incidend plane.	Drosophila melanogaster	38,627	16-OCT-
Ag LUU ax	673	GR BA1.AB024708	8734	AB024708	Opportunity of the Production of the Control of the	Connahadarium	02 113	12-MAR.
00000	•		5	001100	oxoglutarate aminotransferase large and small subunits, complete cds.		2	1999
		GB_BA1:AB024708	8734	AB024708	Corynebacterium glutamicum gltB and gltD genes for glutamine 2-	Corynebacterium	93,702	13-MAR-
					oxoglutarate aminotransferase large and small subunits, complete cds.	glutamicum		1999
		GB_EST24:AI232702	528	AI232702	EST229390 Normalized rat kidney, Bento Soares Rattus sp. cDNA clone	Rattus sp.	34,221	31-Jan-99
					RKICF35 3' end, mRNA sequence.			
rxa00216	1113	GB_HTG2:HSDJ850E 117353	117353	AL121758	Homo sapiens chromosome 20 clone RP5-850E9, *** SEQUENCING IN	Homo sapiens	37,965	03-DEC-
		ത			PROGRESS ***, in unordered pieces.			1999
		GB_HTG2:HSDJ850E 117353	117353	AL121758	Homo sapiens chromosome 20 clone RP5-850E9, *** SEQUENCING IN	Homo sapiens	37,965	03-DEC-
		o			PROGRESS ***, in unordered pieces.			1999
		GB_PR2:CNS01DSA 159400 AL121766	159400	AL121766	Human chromosome 14 DNA sequence *** IN PROGRESS *** BAC R-412H8 Homo sapiens	Homo sapiens	38,796	11-Nov-99
					of RPCI-11 library from chromosome 14 of Homo sapiens (Human), complete			
rxa00219	1065	GB_HTG2:AC005079 110000 AC005079	110000	AC005079	Homo sapiens clone RG252P22, *** SEQUENCING IN PROGRESS ***, 3	Homo sapiens	38,227	22-Nov-98
		0			unordered pieces.			;
		GB_HTG2:AC005079 110000 AC005079	110000	AC005079	Homo sapiens clone RG252P22, "" SEQUENCING IN PROGRESS "", 3	Homo sapiens	38,227	22-Nov-98
		_1 GB HTG2:AC005079 110000 AC005079	110000	AC005079	unordered pieces. Homo sapiens clone RG252P22, *** SEQUENCING IN PROGRESS ***, 3	Homo sapiens	38,227	22-Nov-98
		' - ,			unordered piaces.	•		
rxa00223	1212	GB_BA1:PPEA3NIF	19771	X99694	Plasmid pEA3 nitrogen fixation genes.	Enterobacter agglomerans	48,826	2-Aug-96
		GB_BA2:AF128444	2477	AF128444	Rhodobacter capsulatus molybdenum cofactor biosynthetic gene cluster,	Rhodobacter capsulatus	40,135	22-MAR-
					partial sequence.	;		1999
		GB_HTG4:AC010111	138938	AC010111	Drosophila melanogaster chromosome 3L/70C1 clone RPCI98-9B18, *** SEQUENCING IN PROGRESS ***, 64 unordered pieces.	Drosophila melanogaster	39,527	16-OCT- 1999
rxa00229	803	GB_BA2:AF124518	1758	AF124518	Corynebacterium glutamicum 3-dehydroquinase (aroD) and shikimate	Corynebacterium	98,237	18-MAY-
					dehydrogenase (aroE) genes, complete cds.	glutamicum		1999
		GB_PR3:AC004593	150221		Homo sapiens PAC clone DJ0964C11 from 7p14-p15, complete sequence.	Homo sapiens	36,616	18-Apr-98
		GB_HTG2:AC006907	188972	AC006907	inorhabditis elegans clone Y76B12, *** SEQUENCING IN PROGRESS ***	, Caenorhabditis elegans	37,095	26-Feb-99
rs000241	1626	GR RAT-CGI YSI	4232	X60312	zo unordered preces. C olintamicum lyst gene for I -lystine permease	Covnehacterium	100 000	30. lan.07
TABOOK4:	020	יי ייייייייייייייייייייייייייייייייייי	46.24	31.700	כיפונופווועכשון ולפו קפוום וכו באלפווים לפוווים מפני	Colynecascondin	33,3	101187-55

47 11-Aug-99		.96 23-MAY- 1997	44 23-MAY- 1997	356 9-Feb-99		1997 (Rei. 52, Created			358 9-Apr-97	190 20-Aug-96	111 21-Nov-96		489 3-Feb-99	207 29-Sep-97		86-UN-47 C10	917 15-Jun-96	506 24-Jun-99	516 15-Jun-96	079 24-Jun-99		808 17-Jun-97	317 02-DEC- 1994	170 20-Sep-95	100,000 28-Aug-97
m 34,947	m 34,947	36,496	37,544	41,856	34,741				36,658	38,190	99,111		98,489	98,207	9 30		60,917	44,606	6 52,516	38,079	39,351	808'66	99,617	99,170	6
Plasmodium falciparum	Plasmodium falciparum	Entamoeba histolytica	Entamoeba histolytica	Mus musculus	Bacillus sp.		Bacillus sp.	Caenorhabditis elegans	Corynebacterium qlutamicum	Rattus norvegicus	Corynebacterium	glutamicum	Corynebacterium glutamicum	Corynebacterium	glutamicum	inycopacienum tuberculosis	Mycobacterium leprae	Mycobacterium tuberculosis	Mycobacterium leprae	Mycobacterium tuberculosis	Bos taurus	 Corynebacterium glutamicum 	Unknown.	Corynebacterium dlutamicum	Corynebacterium glutamicum
Plasmodium falciparum chromosome 13 strain 3D7, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Plasmodium falciparum chromosome 13 strain 3D7, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Entamoeba histolytica unconventional myosin IB mRNA, complete cds.	Entamoeba histolytica unconventional myosin IB mRNA, complete cds.	Mus musculus connexin-36 (Cx36) gene, complete cds.					Corynebacterium glutamicum multidrug resistance protein (cmr) gene, complete cds.	Rattus norvegicus clone N27 mRNA.	Corynebacterium glutamicum biotin synthase (bioB) gene, complete cds.		Brevibacterium flavum gene for biotin synthetase, complete cds.	DNA sequence encoding Brevibacterium flavum biotin-synthase.	M. sock o destries to be sentituded to 1975, accordate accordance of secure of 1995	Mycooactenum tuberculosis no / ny compiete genome, segment ser 102.	Mycobacterium leprae cosmid B32 DNA sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 99/162.	Mycobacterium leprae cosmid B32 DNA sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 99/162.	Bovine elastin a mRNA, complete cds.	Corynebacterium glutamicum thrC gene for threonine synthase (EC 4.2.99.2).	Sequence 4 from Patent WO 8809819.	Brevibacterium lactofermentum; ATCC 13869;; DNA (genomic);.	Corynebacterium glutamicum glnA gene.
AL049180	AL049180	U89655	U89655	AF016190	E09719		E02133	AF040653	043535	U30789	U31281		D14084	E03937	730603	760017	L78818	270692	L78818	270692	J02717	X56037	109078	Z29563	Y13221
192581	192581	3219	3219	2939	3505		3494	36912	2531	3510	1614		1647	1005	0,100	2000	36404	38110	36404	38110	3242	3120	3146	1892	3686
GB_HTG1:PFMAL13P 192581 AL049180 1	GB_HTG1:PFMAL13P 192581 AL049180	GB_IN2:EHU89655	GB_IN2:EHU89655	GB_RO:AF016190	EM_PAT:E09719		GB_PAT:E02133	GB_IN1:CELK05F6	GB_BA1:CGU43535	GB_RO:RNU30789	GB_BA2:CGU31281	· ,	GB_BA1:BRLBIOBA	GB_PAT:E03937	707X0TH-140	GB_BAI:MICT427	GB_BA1:MSGB32CS 36404	GB_BA1:MTCY427	GB_BA1:MSGB32CS	GB_BA1:MTCY427	GB_OM:BOVELA	GB_BA1:CGTHRC	GB_PAT:109078	GB_BA1:BLTHRESY N	GB_BA1:CGGLNA
		1197		531				1155			1125				7077	<u> </u>			3258			1566			1554
		rxa00262		xa00266				rxa00278			rxa00295				0000	xa00323			rxa00324			rxa00330			rxa00335

14-Jun-99 15-Jun-96	09-MAR- 1999 29-OCT- 1999	21-Apr-98 09-MAR-	17-Jul-98 14-Jun-99	13-MAR- 1999 17-Jun-98	16-Aug-99 13-MAR- 1999 17-Jun-98	16-Aug-99 13-MAR- 1999 17-Jun-98	16-Aug-99 12-Jun-93 24-Aug-99 22-Jan-98
98,906 66,345	34,510	37,500	46,341	96,556 39,496	37,946 99,374 41,333	37,554 99,312 36,971	37,805 35,843 42,593 34,295
Corynebacterium glutamicum Mycobacterium leprae	Drosophila melanogaster Synechococcus PCC7942	Homo sapiens Mycobacterium leprae	Drosophila melanogaster Drosophila melanogaster	Corynebacterium glutamicum Mycobacterium tuberculosis	Streptomyces coelicolor A3(2) Corynebacterium glutamicum Mycobacterium tuberculosis	Streptomyces coelicolor A3(2) Corynebacterium glutamicum Mycobacterium tuberculosis	Sureptomycas coelicolor 37,905 A3(2) Sugarcane baciliform virus 35,843 Lotus japonicus 42,593 Caenomabditis elegans 34,295
Table 4 (continued) Corynebacterium glutamicum glutamine synthetase (glnA) gene, complete cds. Mycobacterium leprae cosmid B27 DNA sequence.	LD21828.3prime LD Drosophila melanogaster embryo pOT2 Drosophila melanogaster cDNA clone LD21828 3prime, mRNA sequence. Synechococcus PCC7942 nucleoside diphosphate kinase and ORF2 protein genes, complete cds, ORF1 protein gene, partial cds, and neutral site I for vector use.	oe75a02.s1 NCI_CGAP_Lu5 Homo sapiens cDNA clone IMAGE:1417418 3' similar to gb:A18757 UROKINASE PLASMINOGEN ACTIVATOR SURFACE RECEPTOR, GPI-ANCHORED (HUMAN);, mRNA sequence. Mycobacterium leprae cosmid L296.	Drosophila melanogaster DNA sequence (P1 DS05273 (D80)), complete sequence. Brosophila melanogaster clone GH08860 BcDNA,GH08860 (BcDNA,GH08860) mRNA, complete cds.	Corynebackerium gutamicum gitb and gitb genes for glutamine 2- oxoglutarate aminotransferase large and small subunits, complete cds. Mycobacterium tuberculosis H37Rv complete genome; segment 159/162.	Streptomyces coelicolor cosmid 3A3. Corynebacterium glutamicum gitB and gitD genes for glutamine 2- oxoglutarate aminotransferase large and small subunits, complete cds. Mycobacterium tuberculosis H37Rv complete genome; segment 159/162.	Corynebacterium glutamicum gltB and gltD genes for glutamine 2- oxoglutarate aminotransferase large and small subunits, complete cds. Mycobacterium tuberculosis H37Rv complete genome; segment 159/162.	Sugarcane baciliform virus ORF 1,2,and 3 DNA, complete cds. Ljimpest03-215-c10 Ljimp Lambda HybriZap two-hybrid library Lotus japonicus cDNA clone LP215-03-c10 5' similar to 60S ribosomal protein L39, mRNA sequence. Caenorhabditis elegans cosmid K09H9.
AF005635 L78817	Al455217 U30252	AA911262 U15187	AC004373 AF145653	Z83864	AL109849 AB024708 Z83864	AB024708 Z83864 AL109849	M89923 AI967505 AF043700
1690 38793	624	36138	3197	37751	15901 8734 37751	37751	
GB_BA2:AF005635 GB_BA1:MSGB27CS	GB_EST27:Al455217 GB_BA2:SSU30252	GB_EST21:AA911262 581 GB_BA1:MLU15187 361;	GB_IN2:AF145653 GB_IN2:AF145653 GB_RA1:AR024708	GB_BA1:MTCY1A6	GB_BA1:MTCY1A6	GB_BA1:AB024708 GB_BA1:MTCY1A6 GB_BA1:SC3A3	GB_VI:SBVORFS GB_EST37:AI967505 GB_IN1:CELK09H9
	891	1578	727	i	480	4653	1917
	ra00347	xa00351	rxa00365		rxa00366	гха00367	жа00371

24-MAR.	1995	17-OCT-	1996	15-Jul-99	0	1995	17-Jun-98	03-DEC-	27_Aug-99	10-Jun-99	,	22-MAY. 1999	10-Sep-99		29-Sep-99	2-Aug-99				17~Jun-98	03-DEC-	1996	24~Jun-97	19-MAR-	1998	8-Jun-88	06-DEC-	1998	19-MAR-	1998	23~Jun-99		31-Aug-88
36,832		39,603		36,728	£4 47£	5	61,143	61,143	42 081	35,444		34,821	40,472		38,586	38,509				36,308	39,282		39,228	99,672		40,830	50,161		99,920		52,898	1	37,365
Cautobarter creecentrie		Emericella nidulans		Homo sapiens	Coorist noo and complete of		Mycobacterium tuberculosis	Mycobacterium	Macoboderic m learse	Homo sapiens		Homo sapiens	Schistosoma mansoni		Unknown.	F Kaposi's sarcoma-	associated herpesvirus			Mycobacterium tuberculosis	Mycobacterium	tuberculosis	Mycobacterium leprae	Corynebacterium	glutamicum	Corynebacterium diphtheriae	Pseudomonas alcaligenes	•	Corynebacterium	glutamicum	Mycobacterium	(uperculosis	V-Onchocerce Volvulus
Caulpharter presentite incommunicate desertavalese homolog (heme)	dene partial cds.	A.nidulans sD gene.		HS_5505_B1_C04_T7A RPCI-11 Human Male BAC Library Homo sapiens	genomic clone Plate≖1081 Col≖7 Row≂F, genomic survey sequence. Benomictore town	r. aci ugirosa nem gene.	Mycobacterium tuberculosis H37Rv complete genome; segment 28/162.	Mycobacterium tuberculosis sequence from clone y224.	Muscharterium learse poemid 81000	Homo sapiens chromosome 17 clone hRPK.515_E_23 map 17, ***	SEQUENCING IN PROGRESS ***, 2 ordered pieces.	Homo sapiens chromosome 17 clone hRPK.515_O_17 map 17, *** SEQUENCING IN PROGRESS ***, 8 unordered pieces.		Schistosoma mansoni cDNA clone SMMAS14 5' end, mRNA sequence.	Sequence 20 from patent US 5849564.	Kaposi's sarcoma-associated herpesvirus ORF 68 gene, partial cds; and ORF Kaposi's sarcoma-	69, kaposin, v-FLIP, v-cyclin, latent nuclear antigen, ORF K14, v-GPCR,	putative phosphoribosyfformylglycinamidine synthase, and LAMP	(LAMP) genes, complete cds.	Mycobacterium tuberculosis H37Rv complete genome; segment 28/162.	Mycobacterium tuberculosis sequence from clone y224.		Mycobacterium leprae cosmid B1306 DNA.	Corynebacterium glutamicum homoserine O-acetyltransferase (metA) gene,	complete cds.	Corynebacterium diphtheriae heme uptake locus, complete sequence.	Pseudomonas alcaligenes outer membrane Xcp-secretion system gene	cluster,	Corynebacterium glutamicum homoserine O-acetyltransferase (metA) gene,	complete cds.	Mycobacterium tuberculosis H37Rv complete genome; segment 143/162.		SWOVAMICACUZAUSSK Unchocerca volvulus adult male CLINA (SAWS6MLW-Unchocerca Volvulus OvAM) Onchocerca volvulus cDNA clone SWOVAMCAQ02A05 5', mRNA sequence.
113664		Y08866		AQ730303	V82073	7/0764	Z 95558	AD000004	A1 040404			AC007638	AW017053		AR065852	AF148805				Z 95558	AD000004		Y13803	AF052652		AF109162	AF092918		AF052652		AL021841		All 11288
1678	5	1299		483	****	ŧ	40838	40051	24744	167171		178053	613		32207	28559				40838	40051		7762	2096		4514	20758		2096		53662		2
AB 841.00113664		GB_PL1:ANSDGENE 1299		GB_GSS4:AQ730303	20.004.004.00	ספ_מאן:ראחבישר	GB_BA1:MTY25D10	GB_BA1:MSGY224	CE BA1:MI CB1000	GB_HTG2:AC006269		GB_HTG2:AC007638 178053 AC007638	GB_EST38:AW01705	r	GB_PAT:AR065852	GB_VI:AF148805	1			GB_BA1:MTY25D10	GB_BA1:MSGY224	•	GB_BA1:MLB1306	GB_BA2:AF052652		GB_BA2:AF109162	GB BA2:AF092918	1	GB_BA2:AF052652		GB_BA1:MTV016		GB_ES123.AI111288
1245	?				2011	674			1467	È			843							1017				623					1254				
77500522					00000	12900302			58500500	2000			rxa00391							xa00393				rxa00402					rxa00403				

100

WO 01/00843

PCT/IB00/00923

	GB_BA1:MTV016	53662	AL021841	Mycobacterium tuberculosis H37Rv complete genome; segment 143/162.	Mycobacterium fuberculosis	57,259	23-Jun-99
GB_PR4	GB_PR4:AC005145	143678	AC005145	Homo sapiens Xp22-166-169 GSHB-523A23 (Genome Systems Human BAC		34,179	08-DEC-
GB_BA	GB_BA1:MTV016	53662	AL021841	indary) curiprete sequerice. Mycobacterium tuberculosis H37Rv complete genome; segment 143/162.	Mycobacterium tuberculosis	40,169	23-Jun-99
GB_B/	GB_BA1:MTY13D12	37085	Z80343	Mycobacterium tuberculosis H37Rv complete genome; segment 156/162.	Mycobacterium Inberculosis	62,031	17-Jun-98
GB_B	GB_BA1:MSGY126	37164	AD000012	Mycobacterium tuberculosis sequence from clone y126.	Mycobacterium tuberculosis	61,902	10-DEC- 1996
GB_B	GB_BA1:MSGB971C	37566	L78821	Mycobacterium leprae cosmid B971 DNA sequence.	Mycobacterium leprae	39,651	15-Jun-96
GB.	GB_BA1:AFACBBTZ	2760	M68904	Alcaligenes eutrophus chromsomal transketolase (cbbTc) and	Ralstonia eutropha	38,677	27-Jul-94
8	GB_HTG4:AC009541 169583 AC009541	169583	AC009541	phosphoglycolate phosphatase (cbbZc) genes, complete cds. Homo sapiens chromosome 7, *** SEQUENCING IN PROGRESS ***, 25	Homo saplens	36,335	12-OCT-
8	GB_HTG4:AC009541 169583	169583	AC009541	unordered preces. Homo sapiens chromosome 7, *** SEQUENCING IN PROGRESS ***, 25	Homo sapiens	36,335	12-OCT-
8 9	GB_PR4:AC005951	155450	AC005951	unoudered preces. Home some 17, clone hRPK.372_K_20, complete sequence.	Homo sapiens	31,738	18-Nov-98
8 8 8	GB_BA1:SC2A11 GB_PR4:AC005951	22789 155450	AL031184 AC005951	Streptomyces coelicolor cosmid 2A11. Homo sapiens chromosome 17, clone hRPK.372_K_20, complete sequence.	Streptomyces coelicolor Homo sapiens	43,262 37,647	5-Aug-98 18-Nov-98
8 8	GB_BA1:MTV016	53662	AL021841	Mycobacterium tuberculosis H37Rv complete genome; segment 143/162,	Mycobacterium tuberculosis	37,088	23-Jun-99
සු' සු' ප	GB_PL2:AF167358 GB_HTG3:AC009120	1022 269445	AF167358 AC009120	Rumex acetosa expansin (EXP3) gene, partial cds. Homo sapiens chromosome 16 clone RPCI-11_484E3, *** SEQUENCING IN		46,538 43,276	17-Aug-99 3-Aug-99
89	GB_BA2:SKZ86111	7860	286111	Streptomyces lividans rpsP, trmD, rplS, sipW, sipX, sipY, sipZ, mutT genes	Streptomyces lividans	43,080	27-OCT-
SB	GB_BA1:SC2E1	38962	AL023797	and 4 open regulary names. Streptomyces coelicolor cosmid 2E1.	Streptomyces coelicolor	42,931	4-Jun-98
GB	GB_BA1:SC2E1	38962	AL023797	Streptomyces coelicolor cosmid 2E1.	Streptomyces coelicolor	36,702	4-Jun-98
GB.	GB_PR2:HS173D1	117338	AL031984	Human DNA sequence from clone 173D1 on chromosome 1p36.21- 36.33 Contains ESTs. STSs and GSSs. complete sequence	Homo sapiens	38,027	23-Nov-99
8	GB_HTG2:HSDJ719K 267114	267114	AL109931	Homo saplens chromosome X clone RP4-719K3 map q21.1-21.31, ***	Homo sapiens	34,521	03-DEC-
ა ე. წ.	3 GB_HTG2:HSDJ719K 267114 3	. 267114	AL109931	SECUENCING IN TROORESS , in unbrushed proces. Homo sapiens chromosome X clone RP4-719K3 map q21.1-21.31, *** SEQUENCING IN PROGRESS *** in unordered bisces.	Homo sapiens	34,521	03-DEC-
, සු ස	GB_BA1:SCD78 GB_HTG4:AC009367	36224 226055	AL034355 AC009367	Streptomyces coelicolor cosmid D78. Drosophila melanogaster chromosome 3L/76A2 clone RPC198-48B15, ***	Streptomyces coelicolor Drosophila melanogaster	56,410 34,959	26-Nov-98 16-OCT-
- 189	GB_HTG4:AC009367	226055	226055 AC009367	SEQUENCING IN PROGRESS ***, 44 unordered pieces. Drosophila melanogaster chromosome 3L/76A2 clone RPCI98-48B15, *** SEQUENCING IN PROGRESS ***, 44 unordered pieces.	Drosophila melanogaster	34,959	1999 16-OCT- 1999

Z77165 Z77165 U00015 AJ010601 U00015	33818 Z77165 42325 U00015 4692 AJ010601 42325 U00015
AL031772	AL031772
AJ0	4692
5 U00	42325
64 AL0	126464
	3381 4235 01 4692 4235 :12 1264
GB_BAT:MTCY78 33818 GB_BA2:U00015 42325 GB_BA1:SCAJ10601 4692 GB_BA2:U00015 42325 GB_HTG2:HS225E12 126464 GB_HTG2:HS225E12 126464	

								_		_			œ		•		03			~	œ					c				<u>.</u> . 2	` _		~	
	17-Feb-97	30-Jul-93	17-Feb-97		11-Jun-93		28-Jul-99	10-Feb-99		24-Jun-99	26-Feb-97		21-Sep-99	47 fun 08	76-157 L	28-Jan-97		01-DEC-	1998	24~Jun-97	17-Jun-98	5-Jun-97		09-MAR	1995	17-Jun-98	05-DEC-	1998	08-OCT-	1997 (Ref. 52 Created)	24~Jun-98	:	24-Jun-98	
	99,221	99,391	99,856		98,701		98,773	100,000	,	68,003	68,185		63,187	g2 404	104,20	62,205		98,359		62,468	60,814	66,095		64,315		64,863	98,810		98,810		98.810	, ,	89,368	
	Corynebacterium	synthetic construct	Corynebacterium	glutamicum	Corynebacterium	flavescens	Corynebacterium	Corynebacterium	glutamicum	Mycobacterium tuberculosis	Mycobacterium	tuberculosis	Streptomyces coelicolor	A3(2)	tuberculosis	Mycobacterium	tuberculosis	Unknown.		Mycobacterium leprae	Mycobacterium tuberculosis	Conynebacterium	ammoniagenes	Mycobacterium leprae		Mycobacterium tuberculosis	Unknown.		Corynebacterium	glutamicum	Corynebacterium	glutamicum	Corynebacterium	glutamicum
Table 4 (continued)	C.glutamicum aspartate-semialdehyde dehydrogenase gene.	Recombinant DNA fragment (Pstl-Xhot).	C. glutamicum lysC-alpha, lysC-beta and asd genes for aspartokinase-alpha	and -beta subunits, and aspartate beta semialdehyde dehydrogenase, respectively (EC 2.7.2.4; EC 1.2.1.11).	Corynebacterium flavum aspartokinase (ask), and aspartate-semialdehyde	dehydrogenase (asd) genes, complete cds.	DNA encoding Brevibacterium aspartokinase.	C.glutamicum gene leuA for isopropylmalate synthase.		Mycobacterium tuberculosis H37Rv complete genome; segment 155/162.	Mycobacterium tuberculosis putative alpha-isopropyl malate synthase (leuA)	gene, complete cds.	Streptomyces coelicolor cosmid D25.	Meson be adoptions to the considering 1975, accomplished accompany of the constant of the cons	Mycobacterium tuderculosis no ray complete genome, segment 5s/102.	Mycobacterium tuberculosis phosphoribosylformylglycinamidine synthase	(purl.) gene, complete cds.	Sequence 19 from patent US 5726299.		Mycobacterium leprae cosmid B5.	Mycobacterium tuberculosis H37Rv complete genome; segment 36/162.	B.ammoniagenes purF gene.	•	Mycobacterium leprae cosmid B2266.		Mycobacterium tuberculosis H37Rv complete genome; segment 39/162.	Sequence 1 from patent US 5776740.		DNA encoding serine hydroxymethyl transferase.		DNA encoding serine hydroxymethyltransferase from Brevibacterium flavum.		DNA encoding serine hydroxymethyltransferase from Brevibacterium flavum.	
	X82928	A07546	X57226		L16848		E14514	X70959		AL022121	U88526		AL118514	705610	732010	U34956		192052		Z95151	280226	X91252		U15182		295618	AR016483		E11273		E12594	; ; !	E12594	
	1591	2112	2803		2957		1643	3492		121125	2412		41622	10161	5	2462		2115		38109	36850	1885		40123		10451	2104		27 28		2104	? !	2104	
	GB_BA1:CGCYSCAS 1591	GB PAT:A07546	GB_BA1.CGLYS	ı	GB_BA1:CORASKD		GB_PAT:E14514	GB_BA1:CGLEUA		GB_BA1:MTV025	GB_BA1:MTU88526		GB_BA2:SCD25	ATUENOTIA: PAGE 60	A/U/101W::W0_00	GB_BA1:MTU34956		GB_PAT:192052		GB_BA1:MLCB5	GB_BA1:MTCY369	GB_BA1:BAPURF		GB_BA1:MLU15182		GB_BA1:MTCY7H7A 10451	GB_PAT:AR016483	!	EM_PAT:E11273		GR PAT-E12594		GB_PAT:E12594	
			1386					1494					2409					792				1470					1983						1425	
			rxa00534					rxa00536					rxa00537					rxa00541				rxa00558					rxa00579						rxa00580	

		GB_PAT:AR016483	2104	AR016483	Sequence 1 from patent US 5776740.	Unknown.	99,368	05-DEC-
								1998
		EM_PAI:E11273	2104	E11273	DNA encoding serine hydroxymethyl transferase.	Corynebacterium	99,368	08-OCT-
						glutamicum		1997 (Rel.
100000	200	100001	,	1				52, Created)
1XBUUDO {	7801	GB_FAI:E12384	2	E12594	DNA encoding serine hydroxymethyltransferase from Brevibacterium flavum.	Corynebacterium	37,071	24~Jun-98
						glutamicum		
		EM_PAT.E11273	2104	E11273	DNA encoding serine hydroxymethyl transferase.	Corynebacterium	37,071	08-OCT-
						glutamicum		1997 (Rel.
		CD DAT.ADO16402	2404	00707000			:	oz, Cleated)
	!	20 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	4 017	ARC10403		Unknown.	37,071	05-DEC- 1998
rxa00584	1248	GB_BA1:CORAHPS	2570	L07603	Corynebacterium glutamicum 3-deoxy-D-arabinoheptulosonate-7-phosphate	Corynebacterium	98,236	26-Apr-93
					synthase gene, complete cds.	glutamicum	•	•
		68_8A1:AOPCZA361 3/941	3/941	AJ223998	Amycolatopsis orientalis cosmid PCZA361.	Amycolatopsis orientalis	54,553	29-MAR- 1999
		GB_BA1:D90714	14358	D90714	Escherichia coli genomic DNA, (16.8 - 17.1 min),	Escherichia coli	53.312	7-Feb-99
rxa00618	1230	GB EST19:AA802737 280	, 280	AA802737	wary BlueScript Drosonbile	Organhila melanogastar	30 00	OF Mary Do
					melanogaster cDNA clone GM06236 Sprime, mRNA sequence.		39,940	96-AON-C7
		GB_EST28:AI534381	581	AI534381	SD07186.5prime SD Drosophila melanogaster Schneider L2 cell culture pOT2 Drosophila melanogaster	Drosophila melanogaster	41,136	18-MAR-
					Drosophila melanogaster cDNA clone SD07186 5prime similar to X89858: Ani FBgn0011558 PID:g927407 SPTREMBL:Q24240, mRNA sequence.			1999
	;	GB_IN1:DMANILLIN	4029	X89858	D.melanogaster mRNA for anillin protein.	Drosophila melanogaster	34,398	8-Nov-95
raccos 19	1551	GB_BA1:MTCY369	36850	Z80226	Mycobacterium tuberculosis H37Rv complete genome; segment 36/162.	Mycobacterium	62,776	17-Jun-98
		GB_BA1:MLCB5	38109	Z95151	Mycobacterium leprae cosmid B5.	um leorae	61,831	24-Jun-97
		GB_PAT:A60305	1845	A60305	Sequence 5 from Patent WO9708323.		61,785	06-MAR-
	,		,					1998
nzannexi	4.0	GB_PLZ:AF06324/	1450	AF063247	Pneumocystis carinii f. sp. ratti enolase mRNA, complete cds.	Pneumocystis carinii f. sp.	41,060	5-Jan-99
		000000000000000000000000000000000000000		0,1,0,1		ratti		
		GB_BATISTIMAPP			Streptomyces lividans aminopeptidase P (PepP) gene, complete cds.	Streptomyces lividans	37,126	12-Jun-93
		20/8000A:501A-200			nomo sapens chromosome 19 clone Ci I B-E1_3214H19, *** SEQUENCING IN PROGRESS ***, 21 unordered pieces.	Homo sapiens	40,020	3-Aug-99
rxa00624	810	GB_IN1:CEY41E3	150641		Caenorhabditis elegans cosmid Y41E3, complete sequence.	Caenorhabditis elegans	36.986	2-Sep-99
		GB_EST13:AA362167 372	, 372	AA362167	EST71561 Macrophage I Homo sapiens cDNA 5' end, mRNA sequence.	Homo sapiens	38,378	21-Apr-97
		GB IN1:CEY41E3	150641	Z95559	Caenorhabditis elegans cosmid Y41E3, complete seguence	Coencribohditie elegene	37 604	6
rxa00626	1386	GB_BA1:MTCY369	36850	Z80226	Mycobacterium tuberculosis H37Ry complete genome: segment 36/162		57,034	47 his 08
							1 /8' /0	08-UNC-71
		GB_BA1:MLCB5	38109	295151	Mycobacterium leprae cosmid B5.	Mycobacterium leprae	58,806	24-Jun-97
		GB_BA1:MLU15187	36138	U15187	Mycobacterium leprae cosmid L296.		38,007	09-MAR-

	3-Feb-99	29-Sep-97	29-Sep-97	3-Feb-99	29-Sep-97	4-Nov-96	17-Jun-98	3-Feb-99	27-Jan-99	6-1nF-99	21-MAY-	1993	29-Sep-97	86-194-5 01-01-01-01-01-01-01-01-01-01-01-01-01-0	1008	17-Jun-98	17~Jun-98		17-Jun-98	23-MAR-	6-Aug-99	6-Aug-99
	c,	8	Ñ	n	7	4	-	e	7	Ś	7	- (~ (r) c	→		•		V-	2, 5	ψ	ф
	97,358	98,074	93,814	95,690	95.755	55,564	60,030	99,563	00'030	39,116	47,419	;	47,419	37,614	6.70	50,647	55.228		40,300	35,750	40,634	40,634
	Corynebacterium	Corynebacterium	glutamicum Corynebacterium	giutamicum Corynebacterium	glutamicum Corynebacterium	glutamicum Erwinia herbicola	Mycobacterium	Corynebacterium	grudernicum Mycobacterium bovis	Zymomonas mobilis	Unknown.			Unknown.		Mycobacterium	tuberculosis Mycobacterium	tuberculosis	Mycobacterium tuberculosis	Homo sapiens	Drosophila melanogaster	Drosophila melanogaster
Table 4 (continued)	Brevibacterium flavum genes for 7,8-diaminopelargonic acid aminotransferase Corynebacterium and dethiobiotin synthetase complete cds.	DNA sequence coding for desthiobiotinsynthetase.	DNA sequence coding for diamino pelargonic acid aminotransferase.	Brevibacterium flavum genes for 7,8-diaminopelargonic acid aminotransferase	and dethioblotin synthetase, complete cds. DNA sequence coding for diamino pelargonic acid aminotransferase.	glutamicum Envinia herbicola adenosylmethionine-8-amino-7-oxononanoate transaminase Erwinia herbicola	(bioA) gene, complete cds. Mycobacterium tuberculosis H37Rv complete genome; segment 35/162.	Brevibacterium flavum gene for SecY protein (complete cds) and gene or adenylate kinase (partial cds)	Mycobacterium bovis MBE50a gene, partial cds, and MBE50b, MBE50c, preprotein translocase SecY subunit (secY), adenylate kinase (adk), methionine aminopeptidase (map), RNA polymerase ECF sigma factor (sigE50), MBE50d, and MBE50e genes, complete cds.	Zymomonas mobilis ZM4 fosmid clone 42D7, complete sequence.	Sequence 1 from Patent US 4758514.	DNA coding of 2 fudication and reductions	Sequence 9 from patent 115 5693781	Sequence 9 from patent US 5726299		Mycobacterium tuberculosis H37Rv complete genome; segment 76/162.	Mycobacterium tuberculosis H37Rv complete genome; segment 76/162.			RPCI-11-168G18.TJ RPCI-11 Homo sapiens genomic clone RPCI-11-168G18, genomic survey sequence.	Drosophila melanogaster chromosome 2 clone BACR48D10 (D867) RPCI-98 48.D.10 map 34A-34A strain y; cn bw sp. *** SEQUENCING IN PROGRESS *** 78 unordered bieces.	Drosophila melanogaster chromosome 2 clone BACR48D10 (D867) RPCI-98 Drosophila melanogaster 48.D.10 map 34A-34A strain y; cn bw sp, *** SEQUENCING IN PROGRESS***, 78 unordered pieces.
	D14083	E04041	E04040	D14083	E04040	U38519	AL021958	D14162	U77912	AF157493	100836	F00311	178753	192042		Z98268	298268	0000	897967	AQ420755	AC008332	AC008332
	2272	675	1272	2272	1272	1290	28826	1516	7163	25454	1853	1853	1187	1187		37432	37432	7	3,432	671	118545	118545
	GB_BA1:BRLBIOAD	GB_PAT:E04041	GB_PAT:E04040	GB_BA1:BRLBIOAD	GB_PAT:E04040	GB_BA2:EHU38519	GB_BA1:MTV041	GB_BA1:BRLSECY	GB_BA2:MBU77912	GB_BA2:AF157493		GB PAT:E00311				GB_BA1:MTCI125	GB_BA1:MTCI125		, cziiolwicha-ao	GB_GSS12:AQ42075 (GB_HTG3:AC008332 118545 AC008332	GB_HTG3:AC008332 118545 AC008332
1	c P			1392			999			930			1083				831				1035	
	xanne32			rxa00633			rxa00688			rxa00708			xa00717				rxa00718				rxa00727	

		GB_HTG3:AC008332 118545 AC008332	118545	AC008332	Table 4 (continued) Drosophila melanogaster chromosome 2 clone BACR48D10 (D867) RPCI-98 Drosophila melanogaster 48.D.10 map 34A-34A strain y; cn bw sp, *** SEQUENCING IN	•	33,886	6-Aug-99
rxa00766	996	GB_HTG2:AC006789 83823	83823	AC006789	unordered pleces. ans clone Y49F6, *** SEQUENCING IN PROGRESS ***,	Caenorhabditis elegans	36,737	25-Feb-99
		GB_HTG2:AC006789	83823	AC006789	z unordered preces. Caenorhabditis elegans clone Y49F6, *** SEQUENCING IN PROGRESS ***, C 2 unordered pieces.	Caenorhabditis elegans	36,737	25-Feb-99
		GB_BA1:D90810	20476	D90810	i, Kohara clone #319(37.4-37.8 min.).	Escherichia coli	36,526	29-MAY-
ma00770	1293	GB_BA1:MTV043	68848	AL022004	Mycobacterium tuberculosis H37Rv complete genome; segment 40/162.	Mycobacterium tuberculosis	66,193	24-Jun-99
		GB_BA1:MLU15182	40123	U15182	Mycobacterium leprae cosmid B2266.	Mycobacterium leprae	61,443	09-MAR- 1995
		GB_BA2:SCD25	41622	AL118514	Streptomyces coelicolor cosmid D25.	Streptomyces coelicolor A3(2)	59,938	21-Sep-99
ma00779	1056	GB_HTG1:CER08A5	51920	282281	Caenorhabditis elegans chromosome V clone R08A5, *** SEQUENCING IN CPROGRESS *** in unordered places	Caenorhabditis elegans	64,896	14-OCT-
		GB_HTG1:CER08A5	51920	282281	V clone R08A5, *** SEQUENCING IN	Caenorhabditis elegans	64,896	14-0CT-
		GB_PL2:AF078693	1492	AF078693	3-acetylserine(thiol)lyase precursor	Chlamydomonas reinhardtii 57,970	57,970	3-Nov-99
xa00780	699	GB_BA1:MTCY98	31225	Z83860	(Crcys-1A) mRNA, nuclear gene encoding organellar protein, complete cds. Mycobacterium tuberculosis H37Rv complete genome; segment 103/162.	Mycobacterium	54,410	17-Jun-98
		GB_BA1:AVINIFREG	2099	M60090	Azotobacter chroococcum nifU, nifS, nifV, nifP, nifW, nifZ and nifM genes,	Azotobacter chroccoccum	51,729	26-Apr-93
		GB_BA2:AF001780	6701	AF001780	S (nifS)	yanothece PCC8801	36,309	08-MAR-
xa00838	1023	GB_EST1:Z30506	329	Z30506	nifU) genes, complete cds, and NifH (nifH) gene, partial cds. AC16H Arabidopsis thaliana cDNA clone TAI306 3', mRNA	Arabidopsis thallana	44,308	1999 11-MAR-
		GB_PL2:AC006258	110469	AC006258	sequence. Arabidopsis thaliana BAC F18G18 from chromosome V near 60.5 cM,	Arabidopsis thaliana	35,571	1994 28-DEC-
		GB_EST37:A1998439	455	A1998439	Compress sequences. 701545695 A. thaliana, Columbia Col-0, rosette-2 Arabidopsis thaliana cDNA. Arabidopsis thaliana. clone 701545695. mRNA semilance	vabidopsis thaliana	36,044	8-Sep-88
xa00863	867	GB_BA1:BLDAPAB	3572	221502	anes for dihydrodipicolinate synthase and	Corynebacterium	99,539	16-Aug-93
		GB_PAT:E16749	2001	E16749	unyoroupicolinate reductase. gDNA encoding dihydrodipicolinate synthase (DDPS).	giutamicum Corynebacterium	99,539	28-Jul-99
		GB_PAT:E14520	2001	E14520	2 DNA encoding Brevibacterium dihydrodipicolinic acid synthase. (glutamicum Corynebacterium glutamicum	66,539	28-Jul-99
xa00864	873	GB_BA1:BLDAPAB	3572	221502	B. lactofermentum dapA and dapB genes for dihydrodipicolinate synthase and dibudandipinate synthase and	Sovnebacterium clutomicum	99,885	16-Aug-93
· <u> </u>		GB_BA1:CGDAPB	1902	X67737	ithydrodipicolinate reductase.	glotamicum glutamicum	100,000	1-Apr-93

		GB_PAT:E14520	2001	E14520	Table 4 (continued) DNA encoding Brevibacterium dihydrodipicolinic acid synthase.	Corynebacterium	100,000	28-Jul-99
rxa00865	1026	GB_BA1:BLDAPAB	3572	221502	9. B. lactofermentum dapA and dapB genes for dihydrodipicolinate synthase and	glutamicum Corynebacterium	100,000	16-Aug-93
			1411	E16752	dihydrodipicolinate reductase. gDNA encoding dihydrodipicolinate reductase (DDPR).	glutamicum Corynebacterium	99,805	28-Jul-99
		GB_PAT:AR038113	1411	AR038113	Sequence 18 from patent US 5804414.	giudamicum Unknown.	99,805	29-Sep-99
rxa00867	650		56414	AL008967	nplete genome; segment 122/162.	Mycobacterium	39,179	17-Jun-98
		2000	7000	17001		tuberculosis	30.403	22 Aug 07
		GB_BAT.MLCB22	4020	14/067	Inycopacient leplate costing bee.	My Conscionant applied	20,406	10.00 se
		GB_BA1:SAU19858	2838	U19858	Streptomyces antibioticus guanosine pentaphosphate synthetase (gpst) gene, Streptomyces antibioticus complete cds.	Streptomyces antibioticus	69,706	25-OCT- 1996
rxa00873	677	GB_BA1:SCO001206	9184	AJ001206	Streptomyces coelicolor A3(2), glycogen metabolism cluster II.	Streptomyces coelicolor	63,415	29-MAR- 1999
		GB_BA1:SCO001205	9589	AJ001205	Streptomyces coelicolor A3(2) glycogen metabolism clusterl.	Streptomyces coelicolor	61,617	29-MAR-
								1999
		GB_BA1:D78198	2304	D78198	Pimelobacter sp. DNA for trehalose synthase, complete cds.	Pimelobacter sp.	60,594	5-Feb-99
xa00884	1263	GB_BA1:MTCY253	41230	Z81368	Mycobacterium tuberculosis H37Rv complete genome; segment 106/162.	Mycobacterium tuberculosis	37,785	17-Jun-98
		GB_BA1:MSGY222	41156	AD000010	Mycobacterium tuberculosis sequence from clone y222.	Mycobacterium	38,006	03-DEC-
						tuberculosis		1996
		GB_GSS15:AQ65460 468 0	468	AQ654600	Sheared DNA-1014. TF Sheared DNA Trypanosoma brucei genomic clone Sheared DNA-1014, genomic survey sequence.	Trypanosoma brucei	33,974	22-Jun-99
rxa00891	1102	GB_BA1:MTCI418B	11700	Z96071	Mycobacterium tuberculosis H37Rv complete genome; segment 7/162.	Mycobacterium	63,297	18-Jun-98
						tuberculosis		
		GB_BA1:SCO001206	9184	AJ001206	Streptomyces coelicolor A3(2), glycogen metabolism cluster II.	Streptomyces coelicolor	61,965	29-MAR- 1999
		GB_BA1:SCO001205	9589	AJ001205	Streptomyces coelicolor A3(2) glycogen metabolism clustert.	Streptomyces coelicolor	61,727	29-MAR-
								1999
rxa00952	963	EM_PAT:E10963	3118	E10963	gDNA encoding tryptophan synthase.	Conynebacterium	99,688	08-OCT-
						glutamicum		1997 (Ref. 52, Created)
		GB_BA1:BLTRP	7725	X04960	Brevibacterium lactofermentum tryptophan operon.	Corynebacterium	98,847	10-Feb-99
		CB DAT-EN1688	77.25	E01688	Genomic DNA of tra coerco of prepipanterium latochelmentamo	grudentified	98 428	29.Sen.97
rxa00954	4	GB_PAT:E01375	7726	E01375	DNA sequence of tryptophan operon.	Corynebacterium	98,758	29-Sep-97
		١.				glutamicum		
		GB_PAT:E01688	7725	E01688	Genomic DNA of trp operon of prepibacterium latophelmentamn.	unidentified	98,758	29-Sep-97
		GB_BA1:BLTRP	7725	X04960	Brevibacterium lactofermentum tryptophan operon.	Corynebacterium glutamicum	98,758	10-Feb-99
rxa00955	1545	GB_PAT:E01375	7726	E01375	DNA sequence of tryptophan operon.	Corynebacterium	98,372	29-Sep-97

					Table 4 (continued)				
		GB_BA1:BLTRP	7725	X04960	Brevibacterium lactofermentum tryptophan operon.	erium	98,372	10-Feb-99	
					acterium latophelmentamn.	unidentified	98,242	29-Sep-97	
rxa00956	1237	EM_PAT:E10963	3118	E10963	gDNA encoding tryptophan synthase.	Corynebacterium	98,949	08-OCT-	
		-				glutamicum		1997 (Rel.	
								52, Created)	
		GB_BA1:BLTRP	7725	X04960.	Brevibacterium lactofermentum tryptophan operon.	Corynebacterium	99,107	10-Feb-99	
	•					glutamicum			
		GB_PAT:E01375	7726	E01375	DNA sequence of tryptophan operon.	Corynebacterium	98,945	29-Sep-97	
xa00957	1677	GR RA1-RI TRP	7725	XOAGEN	Bravibartarium lartofarmantum frontonban onerco	giutamicum Connebacterium	291 00	40 Eak 00	•
	È					outamicum	69, 168		
		GB_PAT:E01375	7726	E01375	DNA sequence of tryptophan operon.	Corynebacterium	98,927	29-Sep-97	
						glutamicum			
		_			phelmentamn.	unidentified	98,867	29-Sep-97	
rxa00958	747	GB_BA1:BLTRP	7725	X04960	Brevibacterium lactofermentum tryptophan operon.	Corynebacterium	98,792	10-Feb-99	
						glutamicum			
_		GB_PAT:E01375	7726	E01375	DNA sequence of tryptophan operon.	Corynebacterium	98,792	29-Sep-97	
				;		glutamicum			
	,	GB_PAT:E01688		E01688	Genomic DNA of trp operon of prepibacterium latophelmentamn.	unidentified	98,658		1
rxa00970	1050	GB_BA1:CGHOMTHR 3685		Y00546	icum hom-thrB genes for homoserine dehydrogenase	Corynebacterium	99,905	12-Sep-93 C	80
					rine kinase.	glutamicum			1
		GB_PAT:109077	3685	109077	Sequence 1 from Patent WO 8809819.	Unknown.	99,810	02-DEC-	
								1994	
		GB_PAT:E01358	2615	E01358	ng for homoserine dehydroganasa(HDH)and homoserine	Corynebacterium	97,524	29-Sep-97	
			į			giutamicum			
xa00972	1458	GB_PAT:E16755	3579	E16755	gDNA encoding diaminopimelate decarboxylase (DDC) and arginyl-tRNA synthase	Corynebacterium	99,931	28-Jul-99	
		CB DAT.ABO38110	2570	AD038110	15 from soitest IIS EBOLALL		,	00 110 00	
				7703010	Sequence to non-parent do societatis.	Offeriown.	200,000	88-den-87	
		00 FAT E 14500	8/CC	E 14500	UNA encoding brevibacterium diaminopimelic acid decarboxylase and arginyl- Corynebacterium tRNA synthase.	Corynebacterium alutamicum	99,931	28-Jul-99	
xa00981	753		512	AJ245664	rtial mRNA for ATP-citrate lyase (ACL gene).	Gallus gallus	37,538	28-Sep-99	
		GB_PL2:AC007887	옾	AC007887	uence for Arabidopsis thaliana BAC F1504 from chromosome I.	Arabidopsis thaliana	37,600	94-0CT-	
		ľ				•		1999	
		GSS1:CNS00RN	545	AL087338	7 of IGF	Arabidopsis thaliana	41,264	28-Jun-99	
		*			library from strain Columbia of Arabidopsis thaliana, genomic survey				
	;						,		
×a00989	1644		_	AL021246	v complete genome; segment 108/152.	Mycobacterium tuberculosis	40,773	17-Jun-98	
		GB_BA1:SCVALSFP	3619	Y13070		Straptomyces coelicolor	58,119	03-MAR- 1998	
		GB_BA1:MTV008	63033	AL021246	Mycobacterium tuberculosis H37Rv complete genome; segment 108/162.	Mycobacterium	38,167	17-Jun-98	

	i				Table 4 (continued)			;
rxa00997	202	GB_BAZ:CGU31225 1	1817	U31225	Corynebacterium glutamicum L-proline:NADP+ 5-oxidoreductase (proc.) gene, Corynebacterium	Corynebacterium	40,841	2-Aug-96
		2 21008270.1011	0000	900000	complete cds.	glutamicum	977 00	100
		GB_HIGT:CET39C1Z Z8Z638 ALUU9UZ6	95979	ALUUSUZB	Caenomacdris elegans chromosome IV Gone 1390-12, SELUENCING IN Caenomacdius elegans DDOCOECE *** in mondand alocat	Caenomaodins elegans	50.410 0	-120-021 1800 1800
				,			;	666
		GB_IN1:CEB0001 3			Caenomabditis elegans cosmid B0001, complete sequence.	Caenorhabditis elegans	36,416	2-Sep-99
rxa01019	110	GB_HTG2:AC005052 144734		AC005052	Homo sapiens clone RG038K21, *** SEQUENCING IN PROGRESS ***, 3	Homo sapiens	39,172	12~Jun-98
					unordered pieces.		:	
		GB_HTG2:AC005052 144734 AC005052	44734	AC005052	Homo sapiens clone RG038K21, *** SEQUENCING IN PROGRESS ***, 3	Homo sapiens	39,172	12-Jun-98
			9		unordered pleces.			
		GB_GSS9:AQ171808 512	12	AQ171808	HS_3179_A1_G03_T7 CIT Approved Human Genomic Sperm Library D	Homo sapiens	34,661	17-OCT-
					Homo sapiens genomic clone Plate≖3179 Col≃5 Row≖M, genomic survey			1998
					sequence.			
rxa01026	1782		42210	AL031124	Streptomyces coelicolor cosmid 1C2.	Streptomyces coelicolor	68,275	15-Jan-99
		GB_BA1:ATLEUCD 2	2982	X84647	A.teichomyceticus leuC and leuD genes.	Actinoplanes	65,935	\$-0CT
						teichomyceticus		1995
		GB_BA1:MTV012 7	70287	AL021287	Mycobacterium tuberculosis H37Rv complete genome; segment 132/162.	Mycobacterium	40,454	23-Jun-99
						tuberculosis		
rxa01027	1131		44882	Z99263	Mycobacterium leprae cosmid B637.	Mycobacterium leprae	38,636	17-Sep-97
		GB_BA1:MTCY349 4	43523	Z83018	Mycobacterium tuberculosis H37Rv complete genome; segment 131/162.	Mycobacterium	51,989	17-Jun-98
						tuberculosis		
		GB_BA1:SPUNGMUT 1172	172	Z 21702	S.pneumoniae ung gene and mutX genes encoding uracil-DNA glycosylase	Streptococcus pneumoniae 38,088	38,088	15-Jun-94
		×			and 8-oxodGTP nucleoside triphosphatase.			
rxa01073	954		100 4	M15811	Bacilius subtilis outB gene encoding a sporulation protein, complete cds.	Bacillus subtilis	53,723	26-Apr-93
		GB_PR4:AC007938 1	167237	AC007938	Homo sapiens clone UWGC:djs201 from 7q31, complete sequence.	Homo sapiens	34,322	1-Jul-89
		GB_PL2:ATAC006282 92577	32577	AC006282	Arabidopsis thaliana chromosome II BAC F13K3 genomic sequence,	Arabidopsis thaliana	36,181	13-MAR-
					complete sequence.			1999
rxa01079	2228	GB_BA2:AF112535 4	4363	AF112535	Corynebacterium glutamicum putative glutaredoxin NrdH (nrdH), NrdI (nrdI),	Corynebacterium	99,820	5-Aug-99
					and ribonucleotide reductase alpha-chain (nrdE) genes, complete cds.	glutamicum		,
		GB_BA1:CANRDFGE 6054	3054	Y09572	Corynebacterium ammoniagenes nrdH, nrdI, nrdE, nrdF genes.	Corynebacterium	75,966	18-Apr-98
		Z				ammoniagenes		
		GB_BA1:MTV012	70287	AL021287	Mycobacterium tuberculosis H37Rv complete genome; segment 132/162.	Mycobacterium	38,296	23-Jun-99
						tuberculosis		
rxa01080	. 567	GB_BA2:AF112535 4	4363	AF112535	Corynebacterium glutamicum putativę glutaredoxin NrdH (nrdH), NrdI (nrdI),	Corynebacterium	100,000	5-Aug-99
					and ribonucleotide reductase alpha-chain (nrdE) genes, complete cds.	glutamicum		
		GB_BA1:CANRDFGE 6054	3054	Y09572	Corynebacterium ammoniagenes nrdH, nrdf, nrdE, nrdF genes.	Corynebacterium	65,511	18-Apr-98
		z				ammoniagenes		
		GB_BA1:STNRD 4	4894	X73226	S.typhimurium nrdEF operon.	Salmonella typhimurium	52,477	03-MAR- 1997
rxa01087	666	GB_IN2:AF063412 1	1093	AF063412	Limnadia lenticularis elongation factor 1-alpha mRNA, partial cds.	Limnadia fenticularis	43,750	29-MAR-
								1999.
		GB_PR3:HS24M15 1	134539	134539 Z94055	Human DNA sequence from PAC 24M15 on chromosome 1. Contains	Homo sapiens	37,475	23-Nov-99
		GB IN2:ARU85702	1240	U85702	Anathix raffa elongation factor-1 alpha (EF-1a) gene, partial cds.	Anathix ralla	37,319	16-Jul-97

rxa01095	857	GB_BA1:MTCY01B2	35938	295554	Mycobacterium tuberculosis H37Rv complete genome: segment 72/162	Mycobarterien	43 243	17, fun 08
		GB_HTG5:AC011632 175917 AC011632	175917	AC011632	Homo sapiens clone RP11-3N13, WORKING DRAFT SEQUENCE: 9	tuberculosis Homo sapiens	36.471	O NOW OF
		GB_HTG5:AC011632 175917 AC011632	175917	AC011632		Homo sapiens	36,836	19-Nov-91
477	_	GB_BA2:AF030405	774	AF030405	unordered pieces. Corynebacterium glutamicum cyclase (hisF) gene, complete cds.	Corynebacterium	100,000	13-Nov-97
		GB_BA2:AF030405	774	AF030405	Corynebacterium glutamicum cyclase (hisF) gene, complete cds.	glutamicum Corynebacterium glutamicum	41,206	13-Nov-97
897	7	GB_BA2:AF030405	477	AF030405	Corynebacterium glutamicum cyclase (hisF) gene, complete cds.	Corynebacterium	97,933	13-Nov-97
		GB_BA1:MSGY223	42061	AD000019	Mycobacterium tuberculosis sequence from clone y223.	glutamicum Mycobacterium	40,972	10-DEC
		GB_BA1:MLCB1610	40055	AL049913	Mycobacterium leprae cosmid B1610.	Mycobarterium lense	24 366	1998
æ	861		738	AF051846	Corynebacterium glutamicum phosphoribosylformimino-5-amino-1-phosphoribosyl-4-imidazolecarboxamide isomerase (hisA) gene,	Corynebacterium glutamicum	97,154	12-MAR- 12-MAR- 1998
		GB_BA2:AF060558	636	AF060558	Connebacterium glutamicum glutamine amidotransferase (hisH) gene, complete cds.	Corynebacterium	95,455	29-Apr-98
		GB_HTG1:HSDJ140A 221755 AL109917 9	221755	AL109917	Homo sapiens chromosome 1 clone RP1-140A9, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Homo sapiens	30,523	23-Nov-99
756	φ	GB_BA2:AF060558	636	AF060558	Corynebacterium glutamicum glutamine amidotransferase (hisH) gene, complete cds.	Corynebacterium	94,462	29-Apr-98
		GB_BA1:SC4G6	36917	AL096884	Streptomyces coelicolor cosmid 4G6.	Streptomyces coelicolor A3(2)	38,378	23-Jul-89
		GB_BA1:STMHISOPA 3981	3981	M31628	S.coelicolor histidine biosynthesis operon encoding hisD, partial cds., and hisC, hisB, hisH, and hisA genes, complete cds.	Streptomyces coelicolor	60,053	26-Apr-93
~	729	GB_BA1:STMHISOPA 3981	3981	M31628	S.coelicolor histidine blosynthesis operon encoding hisD, partial cds., and hisC, hisB, hisH, and hisA genes, complete cds.	Streptomyces coelicolor	58,333	26-Apr-93
		GB_BA1:SC4G6	36917	AL096884	Streptomyces coelicolor cosmid 4G6.	Streptomyces coelicolor	39,045	23-Jul-99
		GB_BA1:MTCY336	32437	Z95586	Mycobacterium tuberculosis H37Rv complete genome; segment 70/162.	Mycobacterium tuberculosis	60,364	24~Jun-99
=======================================	1221		32437	295586	Mycobacterium tuberculosis H37Rv complete genome; segment 70/162.	Mycobacterium tuberculosis	60,931	24-Jun-99
	•	GB_BA1:MSGY223	42061	AD000019	Mycobacterium tuberculosis sequence from cione y223.	Mycobacterium	36,851	10-DEC-
			40055	AI 040013	Microhadarium James assemble 04240	tuberculosis		1996
4	1449	GB_BA1:MSGY223	42061	AD000019	Mycobacterium tuberculosis sequence from clone y223.	Mycobacterium leprae Mycobacterium	60,902 37,233	27-Aug-99 10-DEC-
							} !	

30~Jun-93		RA-UNC-47	23-Feb-95	3-Feb-99		/8-des-82	06-MAR-	23-Nov-99	R. halon	12-Jun-98	90	98-UN-21	1-Feb-99 1	11 -100-20	1999	07-0CT-	20-Nov-99		17-Jun-98	7-Jun-93	29-Nov-89		98-UN- / 1	4-Aug-99	28-Aug-98		23-DEC-	1998 23-DFC	1998	30-Nov-95
\$ 60.111		024,00	100,000	99,560		508'86	38,675	36,204	28 363	36,058	020.00	90,00	37,269	40,000		40,000	36,803		37,047	50,738	38,135	007.00	80 - '00 '00	39,394	41,408		36,118	35.574	· •	38,560
. Mycobacterium smecmati		mycobacienum tuberculosis	Corynebacterium	Corynebacterium	giutamicum	Corynebacterum glutamicum	Aspergillus niger	Homo sapiens	Homo saniens	Homo sapiens			Triticum aestivum	Homo sapiens		Homo sapiens	Arabidopsis thaliana		Mycobacterium tuberculosis	Leishmania donovani	Homo sapiens	Minahanhan	tubercutosis	Homo sapiens	Homo sapiens		Arabidopsis thaliana	Arabidopsis thaliana	•	Caenorhabditis elegans
Table 4 (continued) M.smegmatis genes hisD and hisC for histidinol dehydrogenase and histidinol-Mycobacterium smegmatis 60.111	phosphate aminotransferase, respectively.	mycooccentain tuter tailor is complete genome, segment 10/102.	Corynebacterium glutamicum acetohydroxy acid synthase (ilvB) and (ilvN) oenes, and acetohydroxy acid isomeroreductase (ilvC) oene complete cris	Brevibacterium flavum ilvC gene for acetohydroxy acid isomeroreductase,	COMpiete Cas. DNA emodina emotohydrowy anid termonared unteres	טיער פורטטווין מכפנטון טועץ-שניט ופטוופן טופטעניפפר.	Sequence 18 from Patent WO9706261.	Human DNA sequence from Fosmid 24E5 on chromosome 22q11.2-qter	Contains parvaisonmin, E318, 313. Home sapiens chromosome 19 cosmid F19750 complete sequence	Homo sapiens clone DJ1106H14, *** SEQUENCING IN PROGRESS ***, 42	unordered pleces. Homo capiane close D 11108H14 *** SECI IENCING IN BOOGBESS *** 43	unordered pieces.	Triticum aestivum heat shock protein 80 mRNA, complete cds.	mo sap	IN PROCRESS ", 31 unordered pieces.	Homo sapiens chromosome 19 clone CIT-HSPC_475D23, *** SEQUENCING Homo sapiens IN PROGRESS ***; 31 unordered bieces.	Arabidopsis thaliana genomic DNA, chromosome 5, P1 clone: MYH19,	complete sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 47/162.	Leishmania donovani phosphoribosylpyrophosphate synthetase gene, complete cds.	Homo sapiens chromosome 1 clone RP4-799D16 map p34.3-36.1, *** SECHENCING IN PROCEECE *** In June Appendix of the content of t	Michael Marchine State (1970) 11 Michael Micha		Homo sapiens mRNA for KIAA1109 protein, partial cds.	HS_3098_A1_C03_T7 CIT Approved Human Genomic Sperm Library D Homo sapiens genomic done Plate≠3098 Col=5 Row≖E, genomic survey	sedneuce.	Arabidopsis thaliana chromosome 1 BAC F508 sequence, complete	sequence. Arabidopsis thaliana chromosome 1 BAC F5O8 sequence, complete	sequence.	Caenorhabditis elegans cosmid C06G1.
X65542	705586		L09232	D14551	ECROSS	E00234	A60299	Z82185	AC005285		ACONGGE		U55859	AC011469		AC011469	AB010077		292539	M76553	AL050344	774020		AB029032	AQ107201		AC005990	AC005990		U41014
2298	72427		4705	1364	1017	2	2869	35506	43900	323792	323792			113436		2 2 3	77380		38970	1887	130149	35377	}		355	•	99923	99923	;	31205
· GB_BA1:MSHISCD	GR RAT-MTCY338		GB_BA1:CORAIA	GB_BA1:BRLILVCA	GR DAT-ED8232	70707.1007	GB_PAT:A60299	GB_PR3:HS24E5	GB PR3:AC005265	GB_HTG2:AC004965	GR HTG2-AC004965		GB_PL2:TAU55859	GB_HTG3:AC011469		GB_H1G3:AC011469 113436	GB_PL1:AB010077		GB_BA1:MTCY10G2	GB_IN1:LEIPRPP	GB_HTG2:HSJ799D1 130149 AL050344	GR RA1-MTCY48		GB_PR2:AB029032	GB_GSS9:AQ107201		GB_PL2:F508	GB_PL2:F508		GB_IN1:CELC06G1
		!	1137				1449			846				1528				;	1098			2556				į	873			
	-		rxa01145				rxa01162			rxa01208				rxa01209				•	rxa01215			Cx801239				•	rxa01253			

111

	05-MAY- 1999	2-Aug-99	26-OCT- 1999	15-OCT- 1998	12-Apr-99	01-OCT- 1999	11-Jun-99	23-Nov-99	6-Jul-9	28-Sep-99	9-Jnr-6	;	78-NON-87	26-101-07	28-Jul-99		24-Jun-99	24-Feb-97	27~Jul-98	9-701-88	24-Feb-97	28~Jul-99
	41,121	40,634	38,290	34,311	34,311	37,722	38,492	39,738	46,237	45,574	44,097	,	36,316	30,	37,916		37,419	34,831	35.138	37,277	100,000	38,400
	Homo sapiens	Drosophila melanogaster	Drosophila melanogaster	Arabidopsis thallana	Arabidopsis thaliana	Homo sapiens	Gossypium hirsutum	Homo sapiens	Mus musculus	Mus musculus	Mus musculus		Mus musculus Arahidonele thallana		Homo sapiens		Mycobacterium tuberculosis	Corynebacterium	Streptomyces coelicolor	Homo sapiens	Corynebacterium glutamicum	Homo sapiens
Table 4 (continued)	HS_5106_A1_D10_SP6E RPCI-11 Human Male BAC Library Homo sapiens	Sensitive deficiency and a sense of the sens	Drosophila melanogaster chromosome 2 clone BACR35F01 (D1156) RPCI-98 Drosophila melanogaster 35.F.1 map 48A-48C strain y; cn bw sp, *** SEQUENCING IN PROGRESS	Arabidopsis thaliana chromosome II BAC F12A24 genomic sequence, complete sequence.	Arabidopsis thaliana chromosome II BAC T24I21 genomic sequence,	Winprets sequence. Homo sapiens clone 4_K_17, LOW-PASS SEQUENCE SAMPLING.	BNLGHi12371 Six-day Cotton fiber Gossypium hirsutum cDNA 5' similar to (U86081) root hair defective 3 (Arabidopsis thaliana), mRNA sequence.	Human DNA sequence from PAC 227P17, between markers DXS6791 andDXS8038 on chromosome X contains CpG island, EST.	AV171099 Mus musculus head C57BL/6J 14, 17 day embryo Mus musculus cDNA clone 3200002M11, mRNA sequence.	Mus musculus mGpi1 gene, exon 1.	uc83d10.y1 Sugano mouse kidney mkla Mus musculus cDNA clone IMAGE:1432243 5' similar to TR:035120 035120 MGPI1P. ;, mRNA	sednence.	Mus musculus mKNA for mcipitp, complete cos. Assidonste thellers canomic DNA chromosome 5, D1 clone: M113 complete Arabidonste thellens	Principula de la maria de l'origina de la company de la co	HS_2026_A2_C09_T7C CIT Approved Human Genomic Sperm Library D Homo sapiens genomic clone Plate=2026 Col=18 Row≖E, genomic survey	sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 40/162.	C.glutamicum lysE and lysG genes.	Streptomyces coelicolor cosmid 5A7.	Homo sapiens chromosome 4 clone B220G8 map 4q21, complete sequence.	C.glutamicum lysE and lysG genes.	AQ769223 HS_3155_B2_G10_T7C CIT Approved Human Genomic Sperm Library D Homo sapiens genomic clone Plate≖3155 Col≒20 Row≖N, genomic survey
	AQ518843	AC007473	AC011696	AC005167	AC005825	AC011150	AI725583	Z81007	AV171099	AB008915	A1050532		AB008895	757000	AQ766840		AL022004	X96471	AL031107		X96471	AQ769223
	1	194859	115847	83260	97380	127222	728	82951	173	530	293		3062	6	1 91		68848	2374	40337	112184	2374	200
	GB_GSS14:AQ51884 441	GB_HTG2:AC007473 194859 AC007473	GB_HTG4:AC011696 115847 AC011696	GB_PL2:ATAC005167 83260	GB_PL2:ATAC005825 97380	GB_HTG3:AC011150 127222 AC011150	GB_EST32:AI725583 728	GB_PR2:HS227P17	GB_EST34:AV171099 173	GB_RO:AB008915S1	GB_EST22:AI050532		GB_RO:AB008895	GB_TLT.AB003237	GB_GSS5:AQ766840 491		GB_BA1:MTV043	GB_BA1:CGLYSEG	GR BA1:SC5A7	GB_PR3:AC004054	GB_BA1:CGLYSEG	GB_GSS5:AQ769223 500
	1044			706			259			629			3	t t				993			822	
	rxa01321			rxa01352			rxa01360			rxa01361			10000	1001000				ra01393			rxa01394	

				,
	Corynebacterium	33,665	24-Feb-97	wo
	giutamicum			0
	Streptomyces coelicolor	62,726	10-Aug-98	1/0
	Mycobacterium leprae	39,159	22-Aug-97	00
nt 122/162.	Mycobacterium	37,340	17~Jun-98	843
	tuberculosis			3
	Escherichia coli	58,517	21-MAR-	
			1997	
	Escherichia coli	56,151	21-MAR-	
			1997	
lete genome.	Escherichia coli	56,021	12-Nov-98	
	Streptomyces coelicolor	39,037	04-MAY-	
			1999	
nt 18/162.	Mycobacterium	40,130	17~Jun-98	
	tribactionie			

Table 4 (continued)
C.glutamicum lysE and lysG genes.

X96471

2374

GB_BA1:CGLYSEG

AL031231 Z98741 AL008967

31382 40281 56414

GB_BA1:SC3C3 GB_BA1:MLCB22 GB_BA1:MTV002

rxa01416 630

Streptomyces coelicolor cosmid 3C3.	Streptomyces coelicolor	62,728
Mycobacterium leprae cosmid B22,	Mycobacterium leprae	39,159
Mycobacterium tuberculosis H37Rv complete genome; segment 122/162.	Mycobacterium	37,340
E.coil genomic DNA, Kohara clone #336(41.2-41.6 min.).	tuberculosis Escherichia coli	58,517
E.coil genomic DNA, Kohara clone #336gap(41.6-41.9 min.).	Escherichia coli	56,151
Escherichia coli K-12 MG1655 section 169 of 400 of the complete genome. Streptomyces coelicolor cosmid H10.	Escherichia coli Streptomyces coelicolor	56,021 39,037
Mycobacterium tuberculosis H37Rv complete genome; segment 18/162.	Mycobacterium	40,130
Mycobacterium teprae cosmid B4. Mycobacterium tuberculosis H37Rv complete genome; segment 103/162.	Mycobacterium leprae	37,752 39,057
Mycobacterium leprae cosmid B1229 DNA sequence.	tuberculosis Mycobacterium lennae	54 387

AE000279 AL049754

10855 39524

GB_BA2:AE000279 GB_BA1:SCH10

rxa01446 1413

D90828

14590

GB_BA1:D90828

D90827

18886

GB_BA1:D90827

rxa01442 1347

AL023514 Z83860

36310 31225

GB_BA1:MLCB4 GB_BA1:MTCY98

rxa01483 1395

Z95324

35019

GB_BA1:MTY13E10

27-Aug-99 17-Jun-98

		GB_BA1:MSGB1229C 30670 L78812	0670		Mycobacterium leprae cosmid B1229 DNA sequence.	Mycobacterium leprae	54,382	15-Jun-98
		GB_BA2:AF027507 51	5168 /	AF027507	AF027507 Mycobacterium smegmatis dGTPase (dgt), and primase (dnaG) genes,	Mycobacterium smegmatis 52,941	s 52,941	16-Jan-98
xa01486	757	GB_BA1:MTV002 56	6414 /	56414 AL008967	complete cds; trans-asn gene, complete sequence. Mycobacterium tuberculosis H37Rv complete genome; segment 122/162.	Mycobacterium	40,941	113 86-457-24
		7	40281 2	298741	Mycobacterium leprae cosmid B22.	tuberculosis Mycobacterium leprae	38,451	22-Aug-97
	!			Ξ	Streptomyces coelicolor cosmid 3C3.	Streptomyces coelicolor	61,194	10-Aug-98
rxa01489 1146	1146	GB_BA1:CORFADS 15	1547	D37967	Corynebacterium ammoniagenes gene for FAD synthetase, complete cds.	Corynebacterium	58,021	8-Feb-99
		GB_BA1:MLCB22 40	40281 2	298741	Mycobacterium leprae cosmid 822.	ammoniagenes Mycobacterium leprae	38.414	22-Aug-97
			39739 /		Streptomyces coelicolor cosmid 10A7.	Streptomyces coelicolor	36,930	8-un-8
rxa01491 774	774	GB_BA1:MTV002 56		AL008967	Mycobacterium tuberculosis H37Rv complete genome; segment 122/162.	Mycobacterium	37,062	17~Jun-98
		GB_EST13:AA356956 255		AA356956	AA356956 EST65614 Jurkat T-cells III Homo sapiens cDNA 5' end, mRNA sequence.	tuberculosis Homo sapiens	37.647	21-Apr-97

			}		recessed to controlled in the september of the september		740'75	71-Apr-97
		GB_OV:OMDNAPROI 7327	7327	X92380	O.mossambicus prolactin I gene.	Tilapia mossambica	38,289	19-OCT-
rxa01508	1662	GB_IN1:CEF28C12 14653 GB_IN1:CEF28C12 14653	14653 14653	Z93380 Z93380	Caenorhabditis elegans cosmid F28C12, complete sequence. Caenorhabditis elegans cosmid F28C12, complete sequence.	Caenorhabditis elegans Caenorhabditis elegans	37,984 38,469	1995 23-Nov-98 23-Nov-98
xa01512	723	GB_BA1:SCE9	37730	37730 AL049841	Streptomyces coelicolor cosmid E9.	Streptomyces coelicolor	39,021	19-MAY-
		GB_BA1:MAU88875	940	U88875	Mycobacterium avium hypoxanthine-guanine phosphoribosyi transferase gene, complete cds.	Mycobacterium avium	57,521	1999 05-MAR- 1997

PCT/IB00/00923

					Table 4 (continued)			
		GB_BA1:MTY15C10	33050	Z95436	Mycobacterium tuberculosis H37Rv complete genome; segment 154/162.	Mycobacterium	40,086	17-Jun-98
xa01514	711	GB BA1:MTCY7H7B	24244	795557		tuberculosis	676	90 111
			: !			tuberculosis	25.72	
			38916	AL023093	Mycobacterium leprae cosmid B2548.	Mycobacterium leprae	38,177	27-Aug-99
		_	242	249757	E.gracilis mRNA for GTP cyclohydrolase I (core region).	Euglena gracilis	64,876	20-OCT- 1995
rxa01515	975		338534	U14003	Escherichia coli K-12 chromosomal region from 92.8 to 00.1 minutes.	Escherichia coli	38.943	17-Apr-96
		8	338534	U14003	Escherichia coli K-12 chromosomal region from 92.8 to 00.1 minutes.	Escherichia coli	37,500	17-Apr-96
			39430	Z7 3966	Mycobacterium tuberculosis H37Rv complete genome; segment 93/162.	Mycobacterium	38,010	24-Jun-99
гха01516	513	GB_IN1:DME238847	5419	AJ238847	Drosophila melanogaster mRNA for drosophila dodeca-satellite protein 1 (DDP-1).	Orosophila melanogaster	36,346	13-Aug-99
		GB_HTG3:AC009210 103814 AC009210	103814	AC009210	ila melanogaster chromosome 2 clone BACR01106 (D1054) RPCI-98 ao 550-550 strain v: cn hw en *** SEOLIENCING IN DROGRESS	Drosophila melanogaster	37,897	20-Aug-99
					**, 86 unordered pieces.			
		179	4842	AF132179	Drosophila melanogaster clone LD21677 unknown mRNA.	Drosophila melanogaster	36.149	3-Jun-99
rxa01517	009		82596	AF178045	Arabidopsis thaliana BAC F6H8.	Arabidopsis thaliana	35,846	19-Aug-99
		3831	647	AF038831	Sorosporium saponariae internal transcribed spacer 1, 5.8S ribosomal RNA	Sorosporium saponariae	40.566	13-Anr-99
					gene; and internal transcribed spacer 2, complete sequence.		<u>}</u>	
		GB_PL2:ATAC005957 108355	108355	AC005957	Arabidopsis thaliana chromosome II BAC T15J14 genomic sequence,	Arabidopsis thaliana	38,095	7-Jan-99
rxa01521	921	GB BA1:ANANIFBH	5936	J05111	complete sequence. Anabaena sp. (clone AnH20.1) nitrogen fixation operon nif8, fdxN nif8, nif1.	Anabada caecae	300 86.	28. 62. 63
							20,400	Se-14V-93
		GB_PR2:AC002461	197273	AC002461	Human BAC clone RG204116 from 7q31, complete sequence.	Homo sapiens	36.623	20-Aug-97
		GB_PR2:AC002461	197273	AC002461	Human BAC done RG204116 from 7q31, complete sequence.	Homo sapiens	34,719	20-Aug-97
rxa01528	651		165901	AL049866	Mus musculus chromosome X, clone 437P9.	Mus musculus	37,500	29-Jun-89
		GB_PR3:AC005740	186780	AC005740	Homo sapiens chromosome 5p, BAC clone 50g21 (LBNL H154), complete	Homo sapiens	37,031	01-OCT-
					sequence.	-	•	1998
		GB_PR3:AC005740	186780	186780 AC005740	Homo sapiens chromosome 5p, BAC clone 50g21 (LBNL H154), complete	Homo sapiens	38,035	01-OCT-
74470	000			1	sednence.			1998
(XaC100)	888 888	GB_BAT:MICTZZG10 35420		784174	Mycobacterium tuberculosis H3/Ry complete genome; segment 21/162.	Mycobacterium	38,371	17~Jun-98
						tuberculosis		
		GB_BAZ:ECOUW89	176195	900000	E. coli chromosomal region from 89.2 to 92.8 minutes.	Escherichia coli	38,064	17-DEC-
			******	41 0000				1993
			4	AL096823	Streptomyces coelicolor cosmid Q11.	Streptornyces coelicolor	60,775	8-Jul-8
13610ex	1053		47396	AL032630	Caenomabditis elegans cosmid Y62H9A, complete sequence.	Caenorhabditis elegans	38,514	2-Sep-99
		GB_PR4:HSU51003	3202	U51003	Homo sapiens DLX-2 (DLX-2) gene, complete cds.	Homo sapiens	37,730	07-DEC-
			į			-		1999
000			365	M18444	Pig D-amino acid oxidase (DAO) gene, exon 1.	Sus scrofa	39,340	27-Apr-93
Nacioss Sectos	1/85	GB_BAT:MICINZS	3/432	897867	Mycobacterium tuberculosis H3/RV complete genome; segment 76/162.	Mycobacterium	63,300	17-Jun-98
		GB_BA1:U00021	39193	U00021	Mycobacterium leprae cosmid L247.	Mycobacterium leprae	36.758	29-Sep-94

GB_BA1:MLCB1351 GB_PR2:HSMTM0 GB_PR2:HS13D10 GB_PR2:HSMTM0 723 GB_BA1:MTCY1A10 GB_EST6:D79278	GB_BA1:MLCB13 GB_PR2:HSMTM GB_PR2:HS13D1 GB_BR2:HSMTM GB_BA1:MTCY1/	- 0	38936 217657 153147 217657 217657 392	38936 Z95117 217657 AL034384 153147 AL021407 217657 AL034384 25949 Z95387 392 D79278	, 11E7, F1096, 7, me 6p22.3-23. 1, 11E7, F1096, 7, 2, 2, 2, 2, 2, 2, 3nt 117/162. 1s cDNA clone	Mycobacterium leprae Homo sapiens Homo sapiens Mycobacterium tuberculosis Homo sapiens	36,756 40,811 38,768 39,018 40,656	24-Jun-97 5-Jul-99 23-Nov-99 5-Jul-99 17-Jun-98
GB_RA1:MTV013 11364 AL021309 GB_RO:MMFV1 6480 X97719 GB_PAT:A67508 6480 A67508	11364 AL021309 6480 X97719 6480 A67508	AL021309 X97719 A67508		Mycobacteriu M.musculus r Sequence 1 fi	; segment 134/162.	Mycobacterium tuberculosis Mus musculus Mus musculus	40,703 40,986 35,364 35,364	17-MAT- 1999 17-Jun-98 29-Aug-96 05-MAY- 1999
651 GB_VI:TVU95309 600 U95309 Tula virus O6 GB_VI:TVU95303 600 U95303 Tula virus O5 GB_VI:TVU95302 600 U95302 Tula virus O2 1359 GB_EST5:H91843 362 H91843 ys81e01.s1 S	600 U95309 600 U95303 600 U95302 362 H91843	U95309 U95303 U95302 H91843	. ,	Tula virus O6 Tula virus O5 Tula virus O2 ys81e01.s1 S	TIDE.	Tula virus Tula virus Tula virus Homo sapiens	41,894 41,712 39,576 39,157	28-OCT- 1997 28-OCT- 1997 28-OCT- 1997 29-Nov-95
GB_STS:G26925 362 G26925 human STS: GB_PL2:AF139451 1202 AF139451 Gossypium n 1224 GB_BA1:SC1C2 42210 AL031124 Streptomyce: GB_EST22:Al064232 493 Al064232 GH04563.5p melanogaste GB_IN2:AF117896 1020 AF117896 Drosophila m 6B_RA2:AF067123 1034 AF067123 Lactobacillus and uroporph	362 G26925 1202 AF139451 42210 AL031124 32 493 Al064232 1020 AF117896 1 1034 AF067123 EP 3085 M37227	G26925 AF139451) AL031124 AI064232 AF117896 AF067123 M37227		BINDING PR human STS: Gossypium n Streptomyce: GH04563.5p melanogaste Drosophila m Lactobacillus and uroporph Rat heavy ne	BINDING PROTEIN G(T), ALPHA-1 (HUMAN);, mRNA sequence. human STS SHGC-30023, sequence tagged site. Gossypium robinsonil CelA2 pseudogene, partial sequence. Streptomyces coelicolor cosmid 1C2. GH04563.5prime GH Drosophila melanogaster head pOT2 Drosophila melanogaster cDNA clone GH04563 5prime, mRNA sequence. Drosophila melanogaster neuropeptide F (npf) gene, complete cds. Lactobacillus reuteri cobalamin biosynthesis protein J (cbl.) gene, partial cds; Lactobacillus reuteri and uroporphyrin-III C-methyltransferase (sumT) gene, complete cds. Rat heavy neurofilament (NF-H) polypeptide, partial cds. Rattus norvegicus	Homo sapiens Gossypium robinsonii Streptomyces coelicolor Drosophila melanogaster Drosophila melanogaster Lactobacilius reuteri Rattus norvegicus	39,157 38,910 60,644 38,037 36,122 48,079 37,093	14-Jun-96 1-Jun-99 15-Jan-99 24-Nov-98 2-Jul-99 3-Jun-98
GB_RO:RSNFH 3085 X13804 Rat mRNA for 1353 GB_BA2:AF124600 4115 AF124600 Corynebacteric (aroK), and 3-4 putative cytopl GB_BA1:MTCY159 33818 Z83863 Mycobacteriun	3085 X13804 500 4115 AF124600 159 33818 Z83863	X13804 AF124600 Z83863	8	Rat mRNA for Corynebacteric (aroK), and 3-c putative cytopl Mycobacterium	Rat mRNA for heavy neurofilament polypeptide NF-H C-terminus. Corynebacterium glutamicum chorismate synthase (aroC), shikimate kinase C (aroK), and 3-dehydroquinate synthase (aroB) genes, complete cds; and g putative cytoplasmic peptidase (pepQ) gene, partial cds. Mycobacterium tuberculosis H37Rv complete genome; segment 111/162. In	Rattus sp. Corynebacterium glutamicum Mycobacterium tuberculosis	37,093 100,000 36,323	14-Jul-95 04-MAY- 1999

					Table 4 (continued)			
		GB_BA1:MSGB937C S	38914	L78820	Mycobacterium leprae cosmid B937 DNA sequence.	Mycobacterium leprae	62,780	15-Jun-96
1699	. 693	B_BA2:AF124600	4115	AF124600	Corynebacterium glutamicum chorismate synthase (aroC), shikimate kinase (aroK), and 3-dehydroquinate synthase (aroB) genes, complete cds; and putative cytoplasmic peptidase (pepQ) gene, partial cds.	Corynebacterium glutamicum	100,000	04-MAY- 1999
		GB_BA2:AF016585	41097	AF016585	Streptomyces caelestis cytochrome P-450 hydroxylase homolog (nidi) gene, partial cds; polyketide synthase modules 1 through 7 (nidA) genes, complete cds; and N-methyltransferase homolog gene, partial cds.	Streptomyces caelestis	40,260	07-DEC- 1997
		GB_EST9:C19712	399	C19712	Rice panicle at ripening stage Oryza sativa cDNA clone E10821_1A, equence.	Oryza sativa	45,425	24-OCT-
1712	805	GB_EST21:AA952466 278	278	AA952466	TENS1404 T. cruzi epimastigote normalized cDNA Library Trypanosoma cruzi Trypanosoma cruzi cDNA clone 1404 5', mRNA sequence.	Trypanosoma cruzi	40,876	29-OCT- 1998
		GB_EST21:AA952466 278	278	AA952466	TENS1404 T. cruzi epimastigote normalized cDNA Library Trypanosoma cruzi Trypanosoma cruzi cDNA clone 1404 5', mRNA sequence.	Trypanosoma cruzi	41,367	29-OCT- 1998
1719	684	GB_HTG1:HSDJ534K 154416 AL109925 7	154416	AL109925	Homo sapiens chromosome 1 clone RP4-534K7, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Homo sapiens	35,651	23-Nov-99
		GB_HTG1:HSDJ534K 154416 AL109925 7	154416	AL109925	Homo sapiens chromosome 1 clone RP4-534K7, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Họmo sapiens	35,651	23-Nov-99
		GB_EST27:AI447108 431	431	AI447108	mq91e08.x1 Stratagene mouse heart (#937316) Mus musculus.cDNA clone IMAGE:586118 3', mRNA sequence.	Mus musculus	39,671	09-MAR-
1720	1332	GB_PR4:AC006322	179640	179640 AC006322	Homo sapiens PAC clone DJ1060B11 from 7q11.23-q21.1, complete sequence.	Homo sapiens	35,817	18-MAR-
		GB_PL2:TM018A10 GB_PR4:AC006322	106184 179640	106184 AF013294 179640 AC006322	Arabidopsis thaliana BAC TM018A10. Homo sapiens PAC clone DJ1060B11 from 7q11.23-q21.1, complete	Arabidopsis thaliana Homo sapiens	35,698 37,243	12-Jul-97 18-MAR-
11746	876	GB_EST3:R46227	643	R46227	sequence. yg52a03.s1 Soares infant brain 1NIB Homo sapiens cDNA clone IMAGE:36000 3', mRNA sequence.	Homo sapiens	42,812	1999 22-MAY- 1995
		GB_EST3:R46227	£43	R46227	yg52a03.s1 Soares infant brain 1NIB Homo sapiens cDNA clone IMAGE:36000 3', mRNA sequence.	Homo sapiens	42,655	22-MAY- 1995
1747	1167	0	34150	Z70283	Mycobacterium tuberculosis H37Rv complete genome; segment 98/162.	Mycobacterium tuberculosis	59,294	17~Jun-98
		GB_BA1:MLCB22 GB_BA1:SC5F7	40281 40024	Z98741 AL096872	Mycobacterium leprae cosmid B22. Streptomyces coelicolor cosmid 5F7.	Mycobacterium leprae Streptomyces coelicolor A3(2)	57,58 4 61,810	. 22-Aug-97 22-Jul-99
1757	924	GB_EST21:AA918454 416	416	AA918454	om38c02.s1 Soares_NFL_T_GBC_S1 Homo sapiens cDNA clone IMAGE:1543298 3' similar to WP:F28F8.3 CE09757 SMALL NUCLEAR RIBONIUCI EOPROTEIN E : mRNA sequence.	Homo sapiens	39,655	23-Jun-98
		GB_EST4:H34042	345	H34042	EST110563 Rat PC-12 cells, NGF-treated (9 days) Rattus sp. cDNA clone RPNBI81 5' end, mRNA sequence.	Rattus sp.	35,942	2-Apr-98
		GB_EST20:AA899038 450	1 450	AA899038	NCP6G8T7 Perithecial Neurospora crassa cDNA clone NP6G8 3' end, mRNA Neurospora crassa sequence.	Neurospora crassa	40,000	12-Apr-98

					Table 4 (continued)			
rxa01807	915	GB_BA1:AP000063	185300	AP000063		Aeropyrum pernix	40,067	22-Jun-99
		GB_HTG4:AC010694 1	115857	AC010694	Drosophila melanogaster clone RPCI98-6H2, *** SEQUENCING IN DPOCES *** 75 monday films	Drosophila meianogaster	35,450	16-OCT-
		GB HTG4:AC010694 115857	115857	AC010694	Proceeding majorographs gloss DDC109 cm *** CECUENCING IN		007.00	388
			3	1000	PROGRESS ***, 75 unordered pieces.	Diosopniia meianogaster	004,00	1995 -
rxa01821	401	GB_BA1:CGL007732 4	4460	AJ007732	Corynebacterium glutamicum 3' ppc gene, secG gene, amt gene, ocd gene and 5' soxA gene.	Corynebacterium glutamicum	100,000	7-Jan-99
		GB_RO:RATALGL 7	7601	M24108	Rattus norvegicus (clone A2U42) alpha2u globulin gene, exons 1-7.	Rattus norvegicus	38,692	15-DEC-
								1994
		GB_OV:APIGY2	1381	X78272		Anas platyrhynchos	36,962	15-Feb-99
rxa01835	95 4		353	AI629479		Zea mays	38,109	26-Apr-99
		GB_STS:G48245	515	G48245	SHGC-62915 Human Homo sapiens STS genomic, sequence tagged site.	Homo sapiens	37,021	26-MAR-
				0.007.0				1888
		GB_GSS3:B48052	c Lc	B49052	RPCI11-4112.1V RPCI-11 Homo sapiens genomic clone RPCI-11-4112,	Homo sapiens	37,021	8-Apr-99
rxa01850	1470	GB_BA2:ECOUW67_ 110000 0	110000	U18997	genomic survey sequence. Escherichia coli K-12 chromosomal region from 67.4 to 76.0 minutes.	Escherichia coli	37,196	U18997
		35	10345	AE000392	Escherichia coli K-12 MG1655 section 282 of 400 of the complete genome.	Escherichia coli	38,021	12-Nov-98
		GB_BA2:U32715 1	13136	U32715	Haemophilus influenzae Rd section 30 of 163 of the complete genome.	Haemophilus influenzae	39,860	29-MAY.
	,	;				Rd		1998
rxa01878	1002	GB_HTG1:CEY64F11 177748	177748	299776	Gaenorhabditis elegans chromosome IV clone Y64F11, *** SEQUENCING IN	Caenorhabditis elegans	37,564	14-OCT-
								1998
		GB_HTG1:CEY64F11 177748 Z99776	177748	299776	IV clone Y64F11, *** SEQUENCING IN	Caenorhabditis elegans	37,564	14-OCT-
					PROGRESS In unordered pieces.			1998
		GB_HIG1:CET64F11 1///48 299//6	1///48	9//667	Caenomabditis elegans chromosome IV clone Y64F11, *** SEQUENCING IN Caenomabditis elegans PROGRESS ***, in unordered pieces.	Caenorhabditis elegans	37,576	14-OCT.
rxa01892	852	GB_BA1:MTCY274	39991	274024	Mycobacterium tuberculosis H37Rv complete genome; segment 126/162.	Mycobacterium	35,910	19-Jun-98
			6000	00000		tuberculosis		,
		GB_BAT:MLCB230	2000	597.309	Mycobacterium leprae cosmid 6250.	Mycobacterium leprae	64,260	27-Aug-99
		GB_BA1:MSGB1529C 36985 S	36985	L78824	Mycobacterium leprae cosmid B1529 DNA sequence.	Mycobacterium leprae	64,260	15-Jun-96
rxa01894	978	GB_BA1:MTCY274	39991	274024	Mycobacterium tuberculosis H37Rv complete genome; segment 126/162.	Mycobacterium	37,229	19-Jun-98
			0000	07.4		tuberculosis		
			38886	041343			38,525	29-Nov-96
		1078000V:00 IU-00	2	10000V	03.E.19 map 36E-37C strain y, on bw sp. *** SEQUENCING IN PROGRESS	ocoopina naranogaster	8/c'LS	18-Aug-99
					***, 94 unordered pieces.			
rxa01920	1125	GB_BA2:AF112536 1	1798	AF112536	utamicum ribonucleotide reductase beta-chain (nrdF)	Corynebacterium	99,733	5-Aug-99
						glutamicum		
		GB_BA1:CANRDFGE 6054 N	6054	Y09572	Corynebacterium ammoniagenes nrdH, nrdI, nrdE, nrdF genes.	Corynebacterium ammonlagenes	70,321	18-Apr-98

	23-Apr-98		11-MAY.	1999	15-Sep-99	15-Sep-99		11-MAY- 1999	19-Sep-96		14-Sep-93	18-Jun-96	į	20~Jan-89	26-Sep-99	8-Aug-95		30-Nov-87	17-Feb-96	}	17-Jun-98		14-Jun-96	09-MAR-	1995		24-MAY-	30-Jul-99	6-Feb-99
	72,082		100,000	!	35,917	33,925		100,000	38,749		39,305	61,417	,	38,560	40,275	100,000	000	38,889	36.647	:	59,415		57,093	57,210			99,317	94,387	62,247
	Corynebacterium	ammoniagenes	Corynebacterium	glutamicum	Chloroplast Arabidopsis	Chloroplast Arabidopsis	thaliana	Corynebacterium clutamicum	Xanthomonas campestris pv. vesicatoria		Xanthomonas campestris	Crithidia fasciculata	•	Helicobacter pylon 199	Mus musculus	Corynebacterium	giulaniicum	Corynebacterium glutamicum	Anabaena PCC7120		Mycobacterium	tuberculosis	Mycobacterium leprae	Mycobacterium leprae			Corynebacterium	Corynebacterium	Pseudomonas aeruginosa
Table 4 (continued)	Corynebacterium ammoniagenes ribonucleoside diphosphate reductase small Corynebacterium	subunit (nrdF) gene, complete cds.	C.glutamicum panB, panC & xylB genes.		Arabidopsis thaliana chloroplast genomic DNA, complete sequence, etrain: Columbia	Arabidopsis thaliana chloroplast genomic DNA, complete sequence,	strain:Columbia.	C.glutamicum panB, panC & xylB genes.	Xanthomonas campestris hrpB pathogenicity locus proteins HrpB1, HrpB2, HrpB3, HrpB4, HrpB6, HrpB7, HrpB8, HrpB4, and ORF62	genes, complete cds.	Xanthomonas campestris hrpB6 gene, complete cds.	Crithidia fasciculata inosine-uridine preferring nucleoside hydrolase (IUNH)	gene, complete cds.	Helicobacter pylori, strain J99 section 28 of 132 of the complete genome.	Homo sapiens Leman coiled-coil protein (LCCP) mRNA, complete cds.	C.glutamicum dapE gene and orf2.		C.gludamicum OKr.s and arold gene.	Anabaena PCC7120 nitrogen fixation proteins (nifE. nifN. nifX. nifM) genes.	complete cds, and nitrogenase (nifK) and hesA genes, partial cds.	Mycobacterium tuberculosis H37Rv complete genome; segment 52/162.		M. leprae genomic dna sequence, cosmid b1912.	Mycobacterium leprae cosmid B1756.			C.glutamicum GDHA gene.	Corynebacterium glutamicum, gdh gen for glutamate dehydrogenase.	Pseudomonas aeruginosa gdhA gene, strain PAC1.
	AF050168		X96580		154478 AP000423	154478 AP000423		X96580	U33548		M99174	U43371 ·		AE001467	AF175967	X81379	-	X85905	U47055		293777		L01536	U15180			X72855	X59404	Y18494
	1228		2164		154478	154478		2164	8429		1329	1060		11601	3492	1966		7107	6469		29540		38503	38675			2037	2037	1628
	GB_BA2:AF050168		GB_BA1:CGPAN		GB_PL1:AP0004Z3	GB_PL1:AP000423		GB_BA1:CGPAN	GB_BA1:XCU33548		GB_BA1:XANHRPB6 A	GB_IN2:CFU43371		GB_BA2:AE001467	GB_RO:AF175967	GB_BA1:CGDAPE		GB_BA1:CGDNAARO 2612 P	GB BA1:APU47055	•	GB_BA1:MTCI364		GB_BA1:MSGB1912C 38503 S	GB_BA1:MLU15180			GB_BA1:CGGDHA	GB_BA1:CGGDH	GB_BA1:PAE18494
			960	•				936				1059				1230					828						1464		
			rxa01928					rxa01929			-	xa01940				rxa02022					rxa02024				rxa02027	xa02031	rxa02072		

2 17-Jun-98	24. lin 07		3 4-Jun-97	16 27-OCT- 1997	7 6-Nov-97	8 13-Jan-99	4 31-DEC- 1998			11 24-MAR- 1999	3 01-MAR- 1994	74 24-Jun-99	24-Sep-99	13 14-MAY- 1997	39 24-Sep-99	33 02-MAR- 1998	51 11Jun-99	56 02-MAR- 1998	35 23-Nov-99	66-unr-6 5	74 26-Jun-98
38,442	KG 486	52,127	34,163	35,586	31,917	35,818	34,274	41,162		50,791	37,563	39,504	37,909	37,843	37,909	36,533	33,451	36,756	34,365	34,325	33,874
Mycobacterium	tuberculosis	Escherichia coli	Homo sapiens	Homo sapiens	Homo sapiens	Streptomyces coelicolor	Homo sapiens	Homo sapiens		Streptomyces coelicolor	Mycobacterium leprae	Mycobacterium tuberculosis	8 Orosophila melanogaster	Arabidopsis thallana	8 Orosophiia melanogaster	Streptomyces coelicolor	Gossypium hirautum	Streptomyces coelicolor	Homo sapiens	. Arabidopsis thallana	Arabidopsis thallana
Table 4 (continued) Mycobacterium tuberculosis H37Rv complete genome; segment 49/162.	Month of the farmer and page 1000	E. coli genomic sequence of the region from 84.5 to 86.5 minutes.	zw82h01.r1 Soares_testis_NHT Homo sapiens cDNA clone IMAGE:782737 5', mRNA sequence.	ns18b10.r1 NCI_CGAP_GCB1 Homo sapiens cDNA clone IMAGE:1183963 5', mRNA sequence.	Human PAC clone DJ0596009 from 7p15, complete sequence.	Streptomyces coelicolor cosmid 1A6.	Homo sapiens chromosome 17, clone hRPK.112_J_9, complete sequence.	yg71g10.r1 Soares infant brain 1NIB Homo sapiens cDNA clone	IMAGE:38768 5' similar to gb:V00567 BETA-2-MICROGLOBULIN PRECURSOR (HUMAN);, mRNA sequence.	Streptomyces coelicolor cosmid 6G10.	Mycobacterium leprae cosmid B1170.	Mycobacterium tuberculosis H37Rv complete genome; segment 70/162.	Drosophila melanogaster chromosome 3 clone BACR09D08 (D1101) RPCI-98 Drosophila melanogaster 09.D.8 map 96F-96F strain y; on bw sp, *** SEQUENCING IN PROGRESS	T12A12-Sp6 TAMU Arabidopsis thaliana genomic clone T12A12, genomic survey sequence.	Drosophila melanogaster chromosome 3 clone BACR09D08 (D1101) RPCI-98 Drosophila melanogaster 09.D.8 map 96F-96F strain y; on bw sp, *** SEQUENCING IN PROGRESS ***, 121 unordered pieces.	S.coelicolor sec' locus DNA.	BNLGHi10185 Six-day Cotton fiber Gossypium hirsutum cDNA 5' similar to (AC004005) putative ribosomal protein L7 [Arabidopsis thaliana], mRNA sequence.	S.coelicolor secY locus DNA.	Human DNA sequence from clone RP3-525L8 on chromosome 6p22.3-23 Contains CA repeat. STSs. GSSs and a CoG Island, complete sequence.	Arabidopsis thallana DNA chromosome 4, BAC clone F21P8 (ESSA project).	Arabidopsis thaliana BAC T7123, complete sequence.
295585	70.4733	M87049	AA448146	AA641937	AC003074	AL023496	AC005553	R49746		AL049497	000010	Z95586	AC010579	809839	AC010579	X83011	AI731596	X83011	AL023807	AL022347	106973 U89959
22550		91414	452	444	143029	37620	179651	397		36734	41171	32437	157658	1191	157658	6154	268	6154	168111	85785	106973
GB BA1:MTCY22G8 22550		GB_BA1:ECOUW85	GB_EST14:AA448146 452	GB_EST17:AA641937 444	GB_PR3:AC003074	GB_BA1:SC1A6	GB_PR4:AC005553	GB_EST3:R49746		GB_BA1:SC6G10	GB_BA1:U00010	GB_BA1:MTCY336	GB_HTG3.AC010579 157658 AC010579	GB_GSS3:B09839	GB_HTG3:AC010579 157658	GB_BA1:SCSECYDN 6154	GB_EST32:AI731596	GB_BA1:SCSECYDN 6154 A	GB_PR3:HS525L6	GB_PL2:ATF21P8	GB_PL2:U89959
2358			927			1179				1407			096			1044			1197		
rxa02085			rxa02093			rxa02106			,	rxa02111			xa02112			ma02134			xa02135		

3-Nov-98	7-Nov-98	26-Jun-98	08±107	15-Jun-96	15-Jun-96	1-Jul-98	2-Jul-97	25-Jul-96	1-Jul-98	2~JuF97	25~Jul-96	25-Jul-96	1-Jul-98	15~Jun-96	12uF98
34,123	31,260	34,281	40e'30	36,648	36,648	99,104	99,224	100,000	98,551	98,477	100,000	99,767	99,378	55,504	100,000
Arabidopsis thaliana	Arabidopsis thaliana	Arabidopsis thaliana	tuberculosis	Mycobacterium leprae	Mycobacterium leprae	Corynebacterium glutamicum	Corynebacterium glutamicum	Corynebacterium glutamicum	Corynebacterium glutamicum	Corynebacterium glutamicum	Corynebacterium glutamicum	Corynebacterium glutamicum	Corynebacterium glutamicum	Mycobacterium leprae	Corynebacterium glutamicum
Table 4 (continued) Arabidopsis thaliana chromosome il BAC T3A4 genomic sequence, complete Arabidopsis thaliana	sequence. Arabidopsis thaliana chromosome 1 BAÇ F15K9 sequence, complete	Sequence. Arabidopsis thatiana BAC T7123, complete sequence.	Mycobacterium tuberculosis novrav complete genome, segmen socios.	Mycobacterium leprae cosmid B1554 DNA sequence.	Mycobacterium leprae cosmid B1551 DNA sequence.	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), omithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylomithine transaminase (argD), omithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Corynebacterium glutamicum N-acetylglutamate-5-semialdehyde dehydrogenase (argC) gene, complete cds.	C.glutamicum argC, argJ, argB, argD, and argF genes.	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), omithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Corynebacterium glutamicum N-acety/glutamate-5-semialdehyde dehydrogenase (argC) gene, complete cds.	C.glutamicum argC, argJ, argB, argD, and argF genes.	C.glutamicum argC, argJ, argB, argD, and argF genes.	Corynebacterium glutamicum N-acetyiglutamylphosphate reductase (argC), ornithine acetyttransferase (argJ), N-acetyiglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), argininosuccinate synthase (argG), and argininosuccinate yase (argG), and argininosuccinate iyase (argH) genes, complete cds.	Mycobacterium leprae cosmid B1133 DNA sequence.	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), omithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), omithine carbamoyttransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.
AC005819	AC005278	U89959	710203	L78814	L78813	AF049897	AF005242	X86157	AF049897	AF005242	X86157	X86157	AF049897	L78811	AF049897
19 57752	71097	106973	06146	IC 36548	C 36548	9196	1044	B 4355	9196	104 4	B 4355	B 4355	9196	3C 42106	9196
GB_PL2:ATAC005819 57752	GB_PL2:F15K9	GB_PL2:U89959	US: 10 IM: 180_d5	GB_BA1:MSGB1554C 36548 S	GB_BA1:MSGB1551C 36548 S	GB_BA2:AF049897	GB_BA1:AF005242	GB_BA1:CGARGCJB 4355 D	GB_BA2:AF049897	GB_BA1:AF005242	GB_BA1:CGARGCJB 4355 D	GB_BA1:CGARGCJB 4355 D	GB_BA2:AF049897	GB_BA1:MSGB1133C 42106 S	GB_BA2:AF049897
645		1063	7061	•		903			414			1287			1074
rxa02136		00,700	EC 708Y			ка02153			xa02154			rxa02155			жа02156

					Table 4 (continued)			
		GB_BA1:CGARGCJB 4355 D	4355	X86157	C.glutamicum argC, argJ, argB, argD, and argF genes.	Corynebacterium glutamicum	100,000	25-Jul-96
		GB_BA2:AE001816	10001	AE001816	Thermotoga maritima section 128 of 136 of the complete genome.	Thermotoga maritima	50,238	2-Jun-99
ка02157	1296	GB_BA2;AF049897	9196	AF049897	Corynebacterium glutamicum N-acetyiglutamylphosphate reductase (argC), ornithine acetyitransferase (argJ), N-acetyiglutamate kinase (argB), acetyiornithine transaminase (argD), ornithine carbamoyitransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Corynebacterium glutamicum	99,612	1√ul-98
		GB_BA1:CGARGCJB 4355 D	4355	X86157	C.glutamicum argC, argJ, argB, argD, and argF genes.	Corynebacterium glutamicum	99,612	25-Jul-96
		GB_BA1:MTCY06H11 38000	38000	Z85982	Mycobacterium tuberculosis H37Rv complete genome; segment 73/162.	en .	57,278	17-Jun-98
rxa02158	1080	GB_BA2:AF049897	9196	AF049897	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), omithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Corynebacterium glutamicum	100,000	1√luF98
		GB_BA2:AF031518	2045	AF031518	Corynebacterium glutamicum ornithine carbamolytransferase (argF) gene, complete cds.	Çorynebacterlum glutamicum	868'66	5-Jan-99
		GB_BA1:CGARGCJB 4355 D	4355	X86157	C.glutamicum argC, argJ, argB, argD, and argF genes.	Corynebacterium glutamicum	100,000	25-Jul-96 -
rxa02159	636	GB_BA2:AF049897	9196	AF049897	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ); N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Corynebacterium glutamicum	99,843	86-Ja
		GB_BA2:AF031518	2045	AF031518	Corynebacterium glutamicum omithine carbamolytransferase (argF) gene, complete cds.	Corynebacterium glutamicum	88,679	5-Jan-99
		GB_BA2:AF041436	516	AF041436	Corynebacterium glutamicum arginine repressor (argR) gene, complete cds.	Corynebacterium glutamicum	100,000	5-Jan-99
rxa02160	1326	GB_BA2:AF049897	9196	AF049897	Corynebacterium glutamicum N-acety/glutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acety/glutamate kinase (argB), acetylomithine transaminase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Corynebacterium glutamicum	99,774	96-In?-
		GB_BA2:AF030520	1206	AF030520	Corynebacterium glutamicum argininosuccinate synthetase (argG) gene, complete cds.	Corynebacterium glutamicum	99,834	19-Nov-97
гха02162	1554	GB_BA1:SCARGGH GB_BA2:AF049897	1909 9196	Z49111 AF049897	S.clavuligerus argG gene and argH gene (partial). Corynebacterium glutamicum N-acetylglutamylphosphate reductase (ergC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), omithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Streptomyces clavuligerus Corynebacterium glutamicum	65,913 88,524 .:	22-Apr-96 1-Jul-98

WO	01/0	0843						400						PC	T/IB	00/0092	3	
1-Jul-98	17-Jun-98	17-Jun-98	17-Feb-95	19-Jul-97	16-Sep-98 15-Jun-96	16-Sep-98 6-Feb-99	29-Sep-97	17-Apr-96 5-Jan-99	6-Feb-99	29-Sep-97	8-Feb-99	5-Aug-98	28-Feb-95 17-Jun-98	27-Aug-99 01-MAR-	1994 01-MAR-	. 1994 27-Aug-99 17-Jun-98	· O1-MAR-	1994 22-Jun-99
87,561	. 64,732	36,998	39,910	38,474	35,941 40,286	33,689 99,353	99,367	37,651 98,214	93,805	100,000	100,000	39,075	35,542 33,938	65,517 36,770	38,674	65,465 37,577	59,823	39,442
Corynebacterium	glutamicum Mycobacterium	tuberculosis Mycobacterium	tuberculosis Corynebacterium	glutamicum basidiomycete CECT	2019/ Homo sapiens Mycobacterium leprae	Homo sapiens Corynebacterium	glutamicum Corynebacterium	glytamicum Escherichia coli Corynebacterium	glutamicum Corynebacterium	glutamicum Corynebacterium	glutamicum Corynebacterium	glutamicum Eubacterium	acidaminophilum Drosophila melanogaster Mycobacterium	tuberculosis Mycobacterium leprae Mycobacterium leprae	Mycobacterium leprae	Mycobacterium leprae Mycobacterium	tuberculosis Mycobacterium leprae	Aeropyrum pernix
Table 4 (continued) Corynebacterium glutamicum argininosuccinate lyase (argH) gene, complete	cos. Mycobacterium tuberculosis H37Rv complete genome; segment 73/162.	Mycobacterium tuberculosis H37Rv complete genome; segment 41/162.	C.glutamicum git gene for citrate synthase and ORF.	Basidiomycete CECT 20197 phenoloxidase (pox1) gene, complete cds.	Human Chromosome 15q26.1 PAC clone pDJ417d7, complete sequence. Mycobacterium leprae cosmid B1970 DNA sequence.	Human Chromosome 15q26.1 PAC clone pDJ417d7, complete sequence. Brevibacterium flavum aspA gene for aspartase, complete cds.	DNA encoding Brevibacterium flavum aspartase.	Escherichia coli K-12 chromosomal region from 92.8 to 00.1 minutes. Corynebacterium glutamicum ATP phosphoribosyltransferase (hisG) gene,	complete cos. Brevibacterium flavum aspA gene for aspartase, complete cds.	DNA encoding part of aspartase from coryneform bacteria.	Corynebacterium glutamicum phosphoribosyl-ATP-pyrophosphohydrolase	(nisc.) gene, compiete cos. Eubacterium acidaminophilum grdR, grdl, grdH genes and partial Idc, grdT	genes. fruit fly STS Dm1930 clone DS06959 T7. Mycobacterium tuberculosis H37Rv complete genome; segment 95/162.	Mycobacterium leprae cosmid B2533. Mycobacterium leprae cosmid B2128.	Mycobacterium leprae cosmid B2126.	Mycobacterium leprae cosmid B2533. Mycobacterium tuberculosis H37Rv complete genome; segment 95/162.	Mycobacterium leprae cosmid B2126.	Aeropyrum pernix genomic DNA, section 6/7.
AF048764	Z85982	Z73101	X66112	U65399	AC002468 L78815	AC002468 D25316	E04307	U14003 AF050166	D25316	E08649	AF086704	Y17145	G01195 Z97559	AL035310 U00017	U00017	AL035310 297559	U00017	185300 AP000063
1437	1 38000	37630	3013	2700	115888 C 39399	115888 1987	1581	338534 840	1987	188	564	6019	332 27322	40245	42157	40245	42157	185300
GB_BA2:AF048764	GB_BA1:MTCY06H11 38000	GB_BA1:MTCY31	GB_BA1:CGGLTG	GB_PL2:PGU65399	GB_PR3:AC002468 11588 GB_BA1:MSGB1970C 39399	GB_PR3:AC002468 GB_BA1:BRLASPA	GB_PAT:E04307	GB_BA1:ECOUW93 GB_BA2:AF050166	GB_BA1:BRLASPA	GB_PAT:E08649	GB_BA2:AF086704	GB_BA1:EAY17145	GB_STS:G01195 GB_BA1:MTCY261	GB_BA1:MLCB2533 GB_BA1:U00017	GB_BA1:U00017	GB_BA1:MLCB2533 GB_BA1:MTCY261	GB_BA1:U00017	GB_BA1:AP000063
		1251			861	1701		996			393		551	•	2599		1025	
		rxa02176			rxa02189	rxa02193		rxa02194			rxa02195		rxa02197		rxa02198		rxa02208	

WO 01/00843

WOO	1/00	843						1:	23							PCI	ATR00	//0092	23	
29-DEC- 1998	03-DEC-	1390 17-Jun-98	01-MAR- 1994	15~Jun-96	18-Jun-98	22-DEC- 1993	22-MAR- 1997	1-Sep-99	1-Sep-99	23-Jun-98	5-Nov-98 19-OCT-	1998	23-Jun-98	21-Sep-99	21-Sep-99	07-OCT- 1997 (Rel.	52, Created) 05-MAR- 1997	31-MAR-	03-OCT	52 Created
37,191	53,541	40,407	40,541	66,027	71,723	67,101	\$ 60,870	37,994	37,994	55,844	41,185 38,616	-	56,282	36,772	38,772	99,515	63,568	000'59	52,909	
Homo sapiens	Mycobacterium	tuperculosis Mycobacterium tuberculosis	Mycobacterium leprae	Mycobacterium leprae	Mycobacterium tuberculosis	Mycobacterium bovis	Mycobacterium smegmatis 60,870	Homo sapiens	Homo sapiens	Mycobacterium tuberculosis	Rhodococcus equi Mus musculus		Mycobacterium tuberculosis	Homo sapiens	Homo sapiens	Corynebacterium glutamicum	Streptomyces pristingespiralis	Streptomyces spectabilis	Corynebacterium	
Table 4 (continued) 127593 AC006236 Homo sapiens chromosome 17, clone hClT.162_E_12, complete sequence.	Mycobacterium tuberculosis sequence from clone y154.	Mycobacterium tuberculosis H37Rv complete genome; segment 121/162.	Mycobacterium leprae cosmid B2235.	Mycobacterium leprae cosmid B937 DNA sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 61/162.	Mycobacterium bovis BCG orotidine-5'-monophosphate decarboxylase (uraA) Mycobacterium bovis gene.	Mycobacterium smegmatis carbamoyl phosphate synthetase (pyrAB) gene, partial cds and orotidine 5'-monophosphate decarboxylase (pyrF) gene, complete cds.	Homo sapiens chromosome 7, *** SEQUENCING IN PROGRESS ***, 57 unordered pieces.	Homo sapiens chromosome 7, *** SEQUENCING IN PROGRESS ***, 57 unordered pieces.	Mycobacterium tuberculosis H37Rv complete genome; segment 62/162.	Rhodocccus equi strain 103 plasmid RE-VP1 fragment f. AU017763 Mouse two-cell stage embryo cDNA Mus musculus cDNA clone		Mycobactenum tuberculosis H3/Rv complete genome; segment 62/162.			gDNA encoding S-adenosylmethionine synthetase.	Sequence 1 from Patent WO9408014.	Streptomyces spectabilis flavoprotein homolog Dfp (dfp) gene, partial cds; and Streptomyces spectabilis S-adenosylmethionine synthetase (metK) gene, complete cds.	Corynebacterium ammoniagenes DNA for rib operon, complete cds.	
AC006236	AD000002	298209	U00019	L78820	Z81011	U01072	U91572	AC009364	AC009364	280108	AF077324 AU017763		280108	AC010745	AC010745	E09855	A37831	AF117274	AB003693	
127593	40221	13935	36033	38914	20431	4393	096	192791	192791	39150	5228 586		39150	193862	193862	1239	5392	2303	5589	
GB_PR4:AC006236	GB_BA1:MSGY154	GB_BA1:MTCY154	GB_BA1:U00019	GB_BA1:MSGB937C S	GB_BA1:MTCY2B12	GB_BA2:U01072	GB_BA1:MSU91572	GB_HTG3:AC009364 192791 AC009364	GB_HTG3:AC009364 192791 AC009364	GB_BA1:MTCY2184	GB_BA2:AF077324 5228 GB_EST22:AU017763 586		GB_BA1;MTCY21B4 39150	GB_HTG3:AC010745 193862 AC010745	GB_HTG3:AC010745 193862	EM_PAT:E09855	GB_PAT:A37831	GB_BA2:AF117274	EM_BA1:AB003693	
	948			3462			727			693			1389			1344			1107	
	rxa02229			rxa02234			rxa02235			rxa02237			rxa02239			rxa02240			xa02246	

PCT/IB00/00923

-	50 Con 07	/a-dac-az	PO 1-12	76-0a-1-0	/8-08-0	03-OCI-	1997 (Rel.	52, Created)	6-Feb-97	6-Feb-97	03-OCT-	1997 (Rel.	52. Created)	29-Sep-97	•	29-Sep-97	•	6-Feb-97	6-Feb-97	29-Sen-97		A-Feh-07	03-0CT	1007 /Pal	52 Created	7-1an-99		29-MAY.	1996	10-Feb-99	7~Jan-99	,	7~Jan-99	,	08-OCT-	1997 (Rel.	52, Created)	7-Aug-98	20-Feb-99	17-MAR-	1999	١.
	62 000	25,803	2000	52,303	108'10	756,76			57,937	61.843	61.843			61,843		64,346		64,346	64.346	56.318		56.318	56.318			100,000		100,000		38,651	100,000		37,526		96,928		100	95,781	36,264	36,197		
	Connehacterium		Throngones	Latage:	Olivinowii.	Corynepacterum	amagenes		Unknown.	Unknown.	Corynebacterium	ammoniagenes	•	Corynebacterium	ammoniagenes	Corynebacterium	ammoniagenes	Unknown,	Unknown.			Unknown.	Corynebacterium	ammonlagenes		Corynebacterium	glutamicum	Corynebacterium	glutamicum	human herpesvirus 5	Corynebacterium	giutamicum	Corynebactenum glutamicum		Bacillus sp.		Bacillia es	Daciius sp.	SUBJES OFFICE	Homo sapiens		
Table 4 (bountinued)	gDNA encoding at least quanosine triphosophate cyclohydrolase and riboflavin. Cownebacterium	synthase.	Sequence 1 from patent US 5589355	Sequence 2 from patent US 5589355	Connehacterium ammoniscense DNA for six operator and late and	contraction will be a property of the opening that the opening the			Sequence 1 from patent US 5589355.	Sequence 1 from patent US 5589355.	Corynebacterium ammoniagenes DNA for rib operon, complete cds.			gDNA encoding at least guanosine triphosphate cyclohydrolase and riboflavin Corynebacterium	synthase.	gDNA encoding at least guanosine triphosphate cyclohydrolase and riboflavin	synthase.	Sequence 1 from patent US 5589355.	Sequence 2 from patent US 5589355.	gDNA encoding at least guanosine triphosphate cyclohydrolase and riboflavin	synthase.	Sequence 1 from patent US 5589355.	Corynebacterium ammoniagenes DNA for rib operon, complete cds.			Corynebacterium glutamicum 3' ppc gene, secG gene, amt gene, ocd gene	and 5' soxA gene.	C.glutamicum amt gene.		Human cytomegalovirus strain AD169 complete genome.	corynebaccenum giutamicum 3 ppc gene, secti gene, amt gene, ocd gene and 5' eovă nene	Converbacterium of the price of the second o	and 5' sox A gene.	Creatinine deiminase nane		•	Bacillus sp. gene for creatinine deaminase, complete cds	Home sapiens. *** SEQUENCING IN PROGRESS *** A unameral pione	IN 2057 BY LIND AND OUT ABROAGED CHARACTER TO THE WINDOWS TO THE WAY OF ABROAGED CHARACTER TO THE WAY OF THE W	Home engine contact of the Diff-2027 O.L. 2	Form Septems genomic Gold margazzon Colas Rowar, genomic survey	sednerice:
	E07957		132742	132743	AB003693			6,	132/42	132742	AB003693			E07957		E07957	!	132742	132743	E07957		132742	AB003693			AJ007732	!	X93513			7611000	A.1007732		E09373			D38505	AC006595	A0411010			
	5589		5589	2689	5589			0	000	5589	2289			5589		5283		5589	2689	5589		5589	5589			4460		2028	, 10000	4460	£	4460		1591	3		1591	146070	554	3		
	GB_PAT:E07957		. GB_PAT:132742	GB_PAT:132743	EM BA1:AB003693			00 004	00 PAT-100142	GB_PA1:132742	EM_BA1:AB003693			GB_PAT:E07957		GB_PAI:E0/95/		GB_PAT:132/42	GB_PA1:132/43	GB_PAT:E07957		GB_PAT:132742	EM_BA1:AB003693			GB_BA1:CGL007732		GB_BA1;CGAMTGEN 2028		GB_VI: HEMCMIVUS	30.100mm.	GB BA1:CGL007732		EM PAT:E09373			GB_BA1:D38505	GB_HTG2:AC006595	GR GSS12-A041101		•	
			•	756					200	388					ç	200			1	643						1269				887	3			1368					1545	?		
				rxa02247					0700000	1X802248						1X802249				rxa02250					1	xa02262				r302083	201000			rxa02272					rxa02281		•	

					Table 4 (continued)			
		GB_EST23:AI128623 363	363	A1128623	qa62c01.s1 Soares_fetal_heart_NbHH19W Homo sapiens cDNA clone IMAGE:1691328 31, mRNA sequence.	Homo sapiens	37,017	05-OCT- 1998
		GB_PL2:ATAC007019 102335 AC007019	102335	AC007019	Arabidopsis thaliana chromosome II BAC F7D8 genomic sequence, complete Arabidopsis thaliana	Arabidopsis thaliana	33,988	16-MAR-
rxa02299	531	GB_BA2:AF116184	240	AF116184	sequence. Corynebacterium glutamicum L-aspartate-alpha-decarboxylase precursor (nanti) nana completa cris	Corynebacterium	100,000	1999 02-MAY-
	·	GB_GSS9:AQ164310 507	507	AQ164310	HS_2171_A2_E01_MR CIT Approved Human Genomic Sperm Library D Homo sapiens genomic clone Plate=2171 Col=2 Row=I, genomic survey	Homo sapiens	37,278	16-OCT- 1998
		GB_VI:MH68TKH		X93468	sequence. Murine herpesvirus type 68 thymidine kinase and glycoprotein H genes.	murine herpesvirus 68	40,288	3-Sep-96
rxa02311	813	GB_HTG4:AC006091	176878	AC006091	86-IO	Drosophila melanogaster	36,454	27-OCT. 1999
		GB_HTG4:AC006091 176878 AC006091	176878	AC006091	Processive 1, 4 unordered proces. Drosophila melanogaster chromosome 3 clone BACR48G05 (D475) RPCI-98 Drosophila melanogaster 48.G.5 map 91F1-91F13 strain y; on bw sp, *** SEQUENCING IN PROGRESS ***, 4 unordered pieces.	Drosophila melanogaster	36,454	27-OCT- 1999
		GB_BA2:RRU65510	16259	U65510	Rhodospirilum rubrum CO-induced hydrogenase operon (cooM, cooK, cocl, cooX, cooU, cooH) genes, iron sulfur protein (cooF) gene, carbon monoxide dehydrogenase (cooS) gene, carbon monoxide dehydrogenase accessory proteins (cooC, cooT, cooJ) genes, putative transcriptional activator (cooA) gene, nicotinate-nucleotide pyrophosphorylase (nadC) gene, complete cds, L-aspartate oxidase (nadB) gene, and alkyl hydroperoxide reductase (ahpC) gene, partial cds.	Rhodospirillum rubrum	37,828	9-Apr-97
rxa02315	1752	GB_BA1:MSGY224	40051	AD000004	Mycobacterium tuberculosis sequence from clone y224.	Mycobacterium tuberculosis	49,418	03-DEC-
		GB_BA1:MTY25D10 40838	40838	295558	Mycobacterium tuberculosis H37Rv complete genome; segment 28/162.	Mycobacterium	49,360	17~Jun-98
		GB_BA1:MSGY224	40051	AD000004	AD000004 Mycobacterium tuberculosis sequence from clone y224.	Mycobacterium	38,150	03-DEC-
rxa02318	402	GB_HTG3:AC011348 111083 AC011348	111083	AC011348	Homo sapiens chromosome 5 clone CIT-HSPC_303E13, *** SEQUENCING	tuberculosis Homo sapiens	35,821	1996 06-OCT-
		GB_HTG3:AC011348 111083 AC011348	111083	AC011348	IN PROGRESS ***, 3 ordered pleces. Homo sapiens chromosome 5 done CIT-HSPC_303E13, *** SEQUENCING IN PROGRESS *** 3 ordered risese.	Homo sapiens	35,821	1999 06-0CT-
		GB_HTG3:AC011412 89234		AC011412	Homo sapiens chromosome 5 clone CIT978SKB_81K21, *** SEQUENCING IN PROGRESS ***, 3 ordered pieces.	Homo sapiens	36,181	08-OCT-
rxa02319	1080	GB_BA1:MSGY224	40051	AD000004	Mycobacterium tuberculosis sequence from clone y224.	Mycobacterium	37,792	03-DEC-
		GB_BA1:MTY25D10	40838	295558	Mycobacterium tuberculosis H37Rv complete genome; segment 28/162.	ruperculosis Mycobacterium	37,792	1996 17-Jun-98
		GB_EST23:Al117213 476	476	AI117213	ub83h02.r1 Soares 2NbMT Mus musculus cDNA clone IMAGE:1395123 5'mRNA sequence.	tuberculosis Mus musculus	35,084	. 2-Sep-98

	14-Jan-97	10-Feb-99	40	20 PL-01	14-Jan-97	15-Jul-97	1-Nov-95	29-Sep-97 02-DEC-	1994 21-MAY-	1993 2-Aug-96	8-Sep-99	8-Sep-99	17~Jun-98	16-OCT-	16-OCT-	23-Jan-97	17-Jun-98	2-Aug-96	9-Sep-94	10-Jun-98 26-Sep-95 10-Jun-99
	61,731	39,624	17000	40,60	64,286	36,617	36,617	56,123 56,220	56,220	99,332	36,115	36,115	38,088	35,817	35,817	98,802	38,054	98,529	100,000	100,000 100,000 39,716
	Corynebacterium	ammoniagenes Mycobacterium	tuberculosis	inycopackenum tuberculosis	Corynebacterium	Saccharomyces cerevisiae 36,617	Saccharomyces cerevisiae 36,617	unidentified Unknown,	Unknown.	Corynebacterium glutamicum	Homo sapiens	Homo sapiens	Mycobacterium tuberculosis	Drosophila melanogaster	Drosophila melanogaster	Corynebacterium	glutamicum Mycobacterium	tuberculosis Corynebacterium glutamicum	Corynebacterium	Unknown. Unknown. Homo sapiens
Table 4 (continued)	B.ammonlagenes purK and purE genes.	Mycobacterium tuberculosis H37Rv complete genome; segment 141/162.	Wychładeri im tubernijosie H37By zomolsta genome: sament 444/452	"Josephan table delega 10178 Complete gamene, segment 1417 102.	B.ammoniagenes purK and purE genes.	S.cerevisiae 130kb DNA fragment from chromosome XV.	S.cerevisiae DNA of 51 Kb from chromosome XV right arm.	DNA coding of 2,5-diketogluconic acid reductase. Sequence 4 from Patent EP 0305608.	Sequence 1 from Patent US 4758514.	Corynebacterium glutamicum Obg protein homolog gene, partial cds, gamma glutamyl kinase (proB) gene, complete cds, and (unkdh) gene, complete cds.	Homo sapiens clone NH0012C17, *** SEQUENCING IN PROGRESS ***, 1 unordered pieces.	Homo sapiens clone NH0012C17, *** SEQUENCING IN PROGRESS ***, 1 unordered pieces.	Mycobacterium tuberculosis H37Rv complete genome; segment 106/162.	Drosophila melanogaster chromosome 3L/75C1 clone RPCI98-3B20, *** SEQUENCING IN PROGRESS *** 78 unordered nieces	Drosophila melanogaster chromosome 3L/75C1 clone RPCl98-3B20, *** SEQUENCING IN PROGRESS ***, 78 unordered pleces.	C.glutamicum proA gene.	Mycobacterium tuberculosis H37Rv complete genome; segment 107/162.	Corynebacterium glutamicum Obg protein homolog gene, partial cds, gamma glutamyl kinase (proB) gene, complete cds, and (unkdh) gene, complete cds.	C.glutamicum aceA gene and thiX genes (partial).	Sequence 3 from patent US 5700661. Sequence 3 from patent US 5439822. HS_5404_B2_E07_T7A RPCI-11 Human Male BAC Library Homo sapiens genomic clone Plate=980 Col=14 Row≈J, genomic survey sequence.
	X91189	292771	722774		X91189	X94335	X90518	E00311 106030	100836	U31230	AC009946	AC009946	Z81368	AC010658	AC010658	X82929	281451	U31230	X75504	186191 113693 AQ606842
	2582	42729	42729		2582	129528	50984	1853 1853	1853	3005	169072	169072	41230	120754	120754	1783	26914	3005	2427	2135 2135 574
	GB_BA1:BAPURKE	GB_BA1:MTCY71	GB BA1:MTCY71	•	GB_BA1:BAPURKE	GB_PL1:SC130KBXV 129528 X94335	GB_PL1:SCXVORFS	GB_PAT:E00311 GB_PAT:106030	GB_PAT:100836	GB_BA2:CGU31230	GB_HTG3:AC009946 169072 AC009946	GB_HTG3:AC009946 169072 AC009946	GB_BA1:MTCY253	GB_HTG4:AC010658 120754 AC010658	GB_HTG4:AC010658 120754 AC010658	GB_BA1:CGPROAGE 1783	GB_BA1:MTCY428	GB_BA2:CGU31230	GB_BA1:CGACEA	GB_PAT:186191 GB_PAT:113693 GB_GSS15:AQ60684 2
	1320				618			1038		1350			777			1419			693	1098
	rxa02345				rxa02350			ка02373		rxa02375			гха02380			rxa02382			rxa02400	rxa02432

	GB_EST1:T05804	406	T05804	Table 4 (continued) EST03693 Fetal brain. Stratagene (cat#936206) Homo saciens cDNA clone	Homo sapiens	37.915	30-100-93
GB PL1:	GB PL1:AB006699	77363	AB006699		ecile	35,526	SO-Nov-99
CB BA2	_ GB_BA2:AF114233	1852	AF114233	thase		100 000	7-Feb.99
, ;					glutamicum		
GB_ES	GB_EST37:AWD1306 1	2/8	AW013061	ODT-0033 Winter flounder ovary Pleuronectes americanus cDNA clone ODT- if 0033 5' similar to FRUCTOSE-BISPHOSPHATE ALDOLASE B (LIVER), mRNA sequence.	Pleuronectes americanus	39,175	10-Sep-99
68 7	GB_GSS15:AQ65002 728	728	AQ650027	Sheared DNA-5L2.TF Sheared DNA Trypanosoma brucei genomic clone Sheared DNA-5i.2 cenomic survey sequence	Trypanosoma brucei	39,281	22~Jun-99
GB .	GB_BA1:MTCY359	36021	Z83859	penome; segment 84/162.	Mycobacterium tuberculosis	39,634	17-Jun-98
GB_B	GB_BA1:MLCB1788	39228	AL008609		Mycobacterium leprae	59,343	27-Aug-99
85 88 88	GB_BA1:SCAJ10601 GB_BA2:CGU31224	4692 422	AJ010601 U31224	Streptomyces coelicolor A3(2) DNA for whiD and whit loci. Corynebacterium glutamicum (ppx) gene, partial cds.	Streptomyces coelicolor Corynebacterium	48,899 96,445	17-Sep-98 2-Aug-96
85	GB_BA1:MTCY20G9	37218	<i>Z77</i> 162	le; segment 25/162.	glutamicum Mycobacterium	59,429	17-Jun-98
GB_E	GB_BA1:SCE7	16911	AL049819	Streptomyces coelicolor cosmid E7.	Streptomyces coelicolor	39,510	10-MAY-
GB.	GB_BA2:CGU31225	1817	U31225	Corynebacterium glutamicum L-proline:NADP+ 5-oxidoreductase (proC) gene. Corynebacterium	Corvnebacterium	97.749	1999 2-Aug-96
8		9		complete cds.	glutamicum		•
9 8	GB_BAT:NG1/PILA	1920	X13905		Neisseria gonormoeae	43,249	30-Sep-93
) 8	#8/0004.391H_89			ESS ESS	Drosophila melanogaster	33,406	2-Aug-99
89	GB_BA1:MTCY20G9	37218	277162	Mycobacterium tuberculosis H37Rv complete genome; segment 25/162.	Mycobacterium tuberculosis	39,357	17~Jun-98
GB	GB_BA1:U00018	42991	U00018	Mycobacterium leprae cosmid B2168.	Mycobacterium leprae	51,768	01-MAR-
89	GB_VI:HE1CG	152261	X14112	Herpes simplex virus (HSV) type 1 complete genome.	human hemesvins 1	39.378	1994 17-Anr-97
GB	GB_PR3:AC005328	35414	AC005328		Homo sapiens	39,922	28-Jul-98
GB	GB_PR3:AC005545	43514	AC005545		Homo sapiens	39,922	3-Sep-98
89	PR3:AC005328	35414	AC005328		Homo sapiens	34,911	28~Jul-98
8 5	GB_BA1:MICY20G9	37218	277162	ĸį	Mycobacterium tuberculosis	54,940	17~Jun-98
8	GB_PR3:AC005328	35414	AC005328		Homo sapiens	41,265	28-Jul-98
GB P	GB_PR3:AC005545	43514	AC005545	mid R26634, complete sequence.	Homo sapiens	41,265	3-Sep-98
85	GB_BA1:MLCL536	36224	299125	Mycobacterium leprae cosmid L536.	Mycobacterium leprae	37,723	· 488
1	GB_BA1:U00013	35881	U00013	Mycobacterium leprae cosmid B1496.	Mycobacterium leprae	37,723	01-MAR-
							.

17-Jun-98	04-DEC-	1998 01-MAR-	1994 12-Jul-99	7-Sep-99	29-Apr-99	17-Feb-98	21-MAR-	21-MAR-	24-Feb-99	17~Jun-98	15-Jun-96	19-OCT-	18-Jun-98	6-Feb-97 26-Sep-95	2-Jun-99 17-Aug-99	17-Aug-99	26-Aug-99	19-Nov-99	27-Aug:99
61,335	37,018	37,018	37,071	36,853	41,860	42,353	40,754	40,754	35,063	37,773	39,024	37,906	47,358	39,138 39,138	44,914 39,732	36,703	38,801	35,714	39,146
Mycobacterium	tuberculosis Mycobacterium leprae	Mycobacterium leprae	Streptomyces coelicolor	Amia calva	Mus musculus	Mus musculus	Homo sapiens	Homo sapiens	Arabidopsis thaliana	Mycobacterium tuberculosis	Mycobacterium leprae	Streptomyces coelicolor	Mycobacterium tuberculosis	Unknown. Mycobacterium tuberculosis	Thermotoga maritima Fugu rubripes	Fugu rubripes	Homo sapiens	Homo sapiens	Homo sapiens
Table 4 (continued) Mycobacterium tuberculosis H37Rv complete genome; segment 64/162.	Mycobacterium leprae cosmid L536.	Mycobacterium leprae cosmid B1496.	Streptomyces coelicolor cosmid C22.	Amia calva mixed lineage leukemia-like protein (Mil) gene, partial cds.	vs5za10.y1 Stratagene mouse Tcell 937311 Mus musculus cDNA clone IMAGE:1149882 5: mRNA semience	vs52a10.r1 Stratagene mouse Tcell 937311 Mus musculus cDNA clone IMAGE:1149882 5' mRNA sequence.	Homo sapiens chromosome 8 clone PAC 172N13 map 8q24, *** SEQUENCING IN PROCRESS *** in unordered places.	Homo sapiens chromosome 8 clone PAC 172N13 map 8q24, *** SEQUENCING IN PROGRESS *** in unordered pieces	Arabidopsis thaliana DNA chromosome 4, BAC clone T12J5 (ESSAII project). Arabidopsis thaliana	Mycobacterium tuberculosis H37Rv complete genome; segment 17/162.	Mycobacterium leprae cosmid B1970 DNA sequence.	Streptomyces coelicolor cosmid 2H4.	Mycobacterium tuberculosis H37Rv complete genome; segment 144/162.	Sequence 1 from patent US 5573915. Mycobacterium tuberculosis cyclopropane mycolic acid synthase (cma1) gene, complete cds.	Thermotoga maritima section 92 of 136 of the complete genome. Fugu rubripes neurofibromatosis type 1 (NF1), A-kinase anchor protein (AKAP84), BAW protein (BAW), and WSB1 protein (WSB1) genes, complete cds.	Fugu rubripes neurofibromatosis type 1 (NF1), A-kinase anchor protein (AKAP84), BAW protein (BAW), and WSB1 protein (WSB1) genes, complete cds.	i268_A1_G09_SP6E RPCI-11 Human Male BAC Library Homo sapiens mic done Plate=844 Col≈17 Row=M, genomic survey sequence.	Homo sapiens chromosome 9 clone RP11-111M7 map 9, WORKING DRAFT Homo sapiens SEQUENCE, 51 unordered pieces.	HS_5014_A2_C12_T7A RPCI-11 Human Male BAC Library Homo sapiens genomic clone Plate≖590 Col≃24 Row≖E, genomic survey sequence.
AL021184	Z99125	U00013	AL096839	AF137219	AI645057	AA822595	AF130866	AF130866	AL035522	Z97991	L78815	AL031514	AL009198	128684 U27357	AE001780 AF064564	AF064564	AQ818728	198586 AC011083	AQ826948
32806	36224	35881	22115		S S	429	118874	118874	84499	9150	39399	25970	69350	5100 5100	11997 49254	49254	44	198586	244
GB_BA1:MTV007	GB_BA1:MLCL536	GB_BA1:U00013	GB_BA1:SCC22	GB_OV:AF137219	GB_ES130:A1645057	GB_EST20:AA822595 429	GB_HTG2:AF130866	GB_HTG2:AF130866 118874 AF130866	GB_PL1:ATT12J5	GB_BA1:MTCY279	GB_BA1:MSGB1970C 39399 S	GB_BA2:SC2H4	GB_BA1:MTV004	GB_PAT:128684 GB_BA1:MTU27357	GB_BA2:AE001780 GB_OV:AF064564	GB_OV:AF064564	GB_GSS5:AQ818728 444	GB_HTG5:AC011083	GB_GSS6:AQ826948 544
	570		į	1170			879			1434			1026		1683		714		
	rxa02517			rxa02532			rxa02536			rxa02550			rxa02559		rxa02622		rxa02623		

rxa02629	708	GB_VI:BRSIMGP	462	M86652	Bovine respiratory syncytial virus membrane glycoprotein mRNA, complete cds.	Bovine respiratory syncytial 37,013 virus	37,013	28-Apr-93
		GB_VI:BRSMGP	462	M86652	ne respiratory syncytial virus membrane glycoprotein mRNA, complete	Bovine respiratory syncytial 37,013 virus	37,013	28-Apr-93
rxa02645	1953	GB_PAT:A45577	1925	A45577	Sequence 1 from Patent WO9519442.	Corynebacterium glutamicum	39,130	07-MAR- 1997
		GB_PAT:A45581	1925	A45581	Sequence 5 from Patent WO9519442.	Corynebacterium glutamicum	39,130	07-MAR-
		GB_BA1:CORILVA	1925	L01508	Corynebacterium glutamicum threonine dehydratase (ilvA) gene, complete	Corynebacterium	39,130	26-Apr-93
rxa02646	1392	GB_BA1:CORILVA	1925	L01508	nebacterium glutamicum threonine dehydratase (ilvA) gene, complete	Corynebacterium	99,138	26-Apr-93
		GB_PAT:A45585	1925	A45585	cos. Sequence 9 from Patent WO9519442.	giutamicum Corynebacterium	990'66	07-MAR-
		GB_PAT.A45583	1925	A45583	Sequence 7 from Patent WO9519442.	glutamicum Corynebacterium olintamicum	990'66	1997 07-MAR- 1997
rxa02648	1326	GB_OV:ICTCNC	2049	M83111	Ictalurus punctatus cyclic nucleotide-gated channel RNA sequence.	idalurus pundatus	38,402	24-MAY-
-		GB_EST11:AA265464 345	345	AA265464	mx91c06.r1 Soares mouse NML Mus musculus cDNA clone IMAGE:693706	Mus musculus	38,655	20-MAR-
		GB_GSS8:AQ006950 480	480	AQ006950	CIT-HSP-2294E14.TR CIT-HSP Homo sapiens genomic clone 2294E14, genomic survey sequence.	Homo sapiens	36,074	27-Jun-98
ma02653								•
rxa02687	1068	GB_BA1:CORPHEA	1088	M13774	C.glutamicum pheA gene encoding prephenate dehydratase, complete cds.	Corynebacterium ohtamicum	99,715	26-Apr-93
		GB_PAT:E04483	948	E04483	DNA encoding prephenate dehydratase.	Corynebacterium clutamicum	98,523	29-Sep-97
		GB_PAT:E06110	948	E06110	DNA encoding prephenate dehydratase.	Corynebacterium glutamicum	98,523	29-Sep-97
rxa02717	1005	GB_PL1:HVCH4H	59748	Y14573	Hordeum vulgare DNA for chromosome 4H.	Hordeum vulgare	36,593	25-MAR- 1999
		GB_PR2:HS310H5	29718	269705	Human DNA sequence from cosmid 310H5 from a contig from the tip of the short arm of chromosome 16, spanning 2Mb of 16p13.3. Contains EST and CoG island.	Homo sapiens	36,089	22-Nov-99
		GB_PR3:AC004754	39188	AC004754	ens chromosome 16, cosmid clone RT286 (LANL), complete	Homo sapiens	36,089	28-MAY- 1998
rxa02754	1461	GB_HTG2:AC008223 130212 AC008223	130212	AC008223	i melanogaster chromosome 3 clone BACR16118 (D815) RPCI-98 p 95A-95A strain y; cn bw sp, *** SEQUENCING IN SS***, 101 unordered pleces.	Drosophila melanogaster	32,757	2-Aug-99

GB_HTG22	GB_HTG2:	GB_HTG2:AC008223 130212 AC008223	Table 4 (continued) Drosophila melanogaster chromosome 3 clone BACR16118 (D815) RPCI-98 16.1.18 map 954-954 strain y; cn bw sp, *** SEQUENCING IN PROGRESS	Drosophila melanogaster	32,757	2-Aug-99
GB_BA1:MTCY71 42729 292771 M	42729 292771	: ≥	***, 101 unordered pieces. Mycobacterium tuberculosis H37Rv complete genome; segment 141/162.	Mycobacterium	37,838	10-Feb-99
1422 GB_HTG5:AC011678 171967 AC011678 Hound	AC011678		Homo sapiens clone 14_B_7, *** SEQUENCING IN PROGRESS ***, 20 unordered pieces.	Homo sapiens	35,331	5-Nov-99
8 171967 AC011678	8 171967 AC011678		Homo sapiens clone 14_B_7, *** SEQUENCING IN PROGRESS ***, 20 unordered pieces.	Homo sapiens	33,807	6-vov-6
GB_BA2:AF064070 23183 AF064070 Burkholder putative 1-4 diadenosin biosynthes phosphate epimerase partial cds.	23183 AF064070		Burkholderia pseudomallei putative dihydroorotase (pyrC) gene, partial cds; putative 1-acyl-sn-glycerol-3-phosphate acyltransferase (pisC), putative diadenosine tetraphosphatase (apaH), complete cds; type II O-antigen biosynthesis gene cluster, complete sequence; putative undecaprenyl phosphate N-acetyiglucosaminyltransferase, and putative UDP-glucose 4-epimerase genes, complete cds; and putative galactosyl transferase gene, partial cds.	Burkholderia pseudomailei 36,929	36,929	20-Jan-99
4077 AF038651	4077 AF038651	် ရှိ (နှ	Corynebacterium glutamicum dipeptide-binding protein (dciAE) gene, partial cds; adenine phosphoribosyltransferase (apt) and GTP pyrophosphokinase (rel) genes, complete cds; and unknown gene.	Corynebacterium glutamicum	99,852	14-Sep-98
21 U80438	21 U80438	Sae .	Caenorhabditis elegans cosmid T19B4.	Caenorhabditis elegans	43,836	04-DEC- 1996
GB_EST36:AV193572 360 AV193572	72 360 AV193572		AV193572 Yuji Kohara unpublished cDNA:Strain N2 hermaphrodite embryo Caenorhabditis elegans cDNA clone yk618h8 5', mRNA sequence.	Caenorhabditis elegans	48,588	22~Jul-99
4077 AF038651	4077 AF038651	Coryne cds; ac (rel) ge	Corynebacterium glutamicum dipeptide-binding protein (dcIAE) gene, partial cds; adenine phosphoribosyltransferase (apt) and GTP pyrophosphokinase (rel) genes, complete cds; and unknown gene.	Corynebacterium glutamicum	99,914	14-Sep-98
27 35946 277724	27 35946 277724	My89	Mycobacterium tuberculosis H37Rv complete genome; segment 114/162.	Mycobacterium tuberculosis	38,339	17-Jun-98
GB_BA1:U00011 40429 U00011 Mycol	40429 U00011	Myco	Mycobacterium leprae cosmid B1177.	Mycobacterium leprae	38,996	01-MAR- 1994
1266 GB_BA1:MTCY159 33818 Z83863 Mycob	33818 Z83863	Mycob	Mycobacterium tuberculosis H37Rv complete genome; segment 111/162.	Mycobacterium tuberculosis	37,640	17-Jun-98
GB_PR4:AC006581 172931 AC006581 Homi	172931 AC006581	E I	Homo sapiens 12p21 BAC RPCI11-259018 (Roswell Park Cancer Institute	Homo sapiens	37,906	3-Jun-99
GB_PR4:AC006581 172931 AC006581 Homo Huma	172931 AC006581	Homo Fuma	Homo sapiens 12p21 BAC RPC111-259018 (Roswell Park Cancer Institute Homa BAC Library) complete sequence.	Homo sapiens	35,280	3~Jun-99
33818 Z83863	33818 Z83863	Mycot	Mycobacterium tuberculosis H37Rv complete genome; segment 111/162.	Mycobacterium tuberculosis	39,765	17-Jun-98
GB_OV:CHKCEK2 3694 M35195 Chick	3694 M35195	한 <u>1</u>	Chicken tyrosine kinase (cek2) mRNA, complete cds.	Gallus gallus	38,937	28-Apr-93
202	2/5/17 7506	M.SI	legmaus aso, ask-aipna, and ask-bela genes.	Mycobacterium smegmatis	38,495	9-40-94
1194 GB_EST24:Al223401 169 Al223401 qg48ç 3'sim	A1223401	9948ç 3. sim	qg48g01.x1 Soares_testis_NHT Homo sapiens cDNA clone IMAGE:1838448 Homo sapiens 3' similar to WP:C25D7.8 CE08394;, mRNA sequence.	Homo sapiens	40,828	27-OCT- 1998

27-OCT- 1998	17-Jun-98	17-Jun-98	8-Jan-98	17-Jun-98	17~Jun-98	09-MAR- 1995	25-Apr-96	27-MAY-	1998	30-Sep-98	15-DEC- 1999	17-DEC-	1999	17-DEC- 1999
40,828	58,418	40,496	39,826	100,000	37,710	39,626	cur88,854	41,489		38,005	39,869	34,930		34,634
Homo sapiens	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Homo sapiens	Corynebacterium glutamicum	Mycobacterium tuberculosis	Mycobacterium leprae	Corynebacterium glutamicum88,854	Mus musculus		. Mus musculus	Leishmania major	Homo sapiens		Homo sapiens
Table 4 (continued) qg48g01.x1 Soares_testis_NHT Homo sapiens CDNA clone IMAGE:1838448 Homo sapiens 3' similar to WP:C25D7.8 CE08394; mRNA sequence.	Mycobacterium tuberculosis H37Rv complete genome; segment 138/162.	Mycobacterium tuberculosis H37Rv complete genome; segment 138/162.	Homo sapiens mRNA for hB-FABP.	Corynebacterium glutamicum dapD gene, complete CDS.	Mycobacterium tuberculosis H37Rv complete genome; segment 52/162.	Mycobacterium leprae cosmid B1756.	B.lactofermentum orf1 gene and sigB gene.	ua32a12.r1 Soares_mammary_gland_NbMMG Mus musculus cDNA clone	IMAGE:1348414 5' similar to TR:Q61025 Q61025 HYPOTHETICAL 15.2 KD PROTEIN: ,, mRNA sequence.	VbMT Mus musculus cDNA clone	Leishmania major Friedlin chromosome 4 cosmid L2743.	Human DNA sequence from clone RP1-61B2 on chromosome 6p11.2-12.3	Contains isoforms 1 and 3 of BPAG1 (bullous pemphigoid antigen 1 (230/240kD), an exon of a gene similar to murine MACF cytoskeletal protein, STSs and GSSs, complete sequence.	Human DNA sequence from clone RP1-61B2 on chromosome 6p11.2-12.3 Contains isoforms 1 and 3 of BPAG1 (bullous pemphigoid antigen 1 (230/240kD), an exon of a gene similar to murine MACF cytoskeletal protein, STSs and GSSs, complete sequence.
AI223401	295120	Z95120 ·	AJ002962	AJ004934	293777	U15180	Z49824	AA980237		AI158316	AL031910	119666 AL096710		119666 AL096710
169	22070	22070	877	1160	29540	38675	2906	, 377		371	38368	119666		119666
GB_EST24;Al223401 169	GB_BA1:MTCY7D11 22070	GB_BA1:MTCY7D11	GB_PR1:HSAJ2962	GB_BA1:CGAJ4934	GB_BA1:MTCI364	GB_BA1:MLU15180 38675	GB_BA1:BLSIGBGN	GB_EST21:AA980237 377		GB_EST23:AI158316 371	GB_IN1:LMFL2743	GB_PR3:HSDJ61B2		GB_PR3:HSDJ61B2
	494			809			933				1237			
	xa02814			rxa02843			rxs03205				rs03223			

Exemplification

Example 1: Preparation of total genomic DNA of Corynebacterium glutamicum ATCC 13032

5 A culture of Corynebacterium glutamicum (ATCC 13032) was grown overnight at 30°C with vigorous shaking in BHI medium (Difco). The cells were harvested by centrifugation, the supernatant was discarded and the cells were resuspended in 5 ml buffer-I (5% of the original volume of the culture — all indicated volumes have been calculated for 100 ml of culture volume). Composition of buffer-I: 140.34 g/l sucrose, 10 .2.46 g/l MgSO₄ x 7H₂O, 10 ml/l KH₂PO₄ solution (100 g/l, adjusted to pH 6.7 with KOH), 50 ml/l M12 concentrate (10 g/l (NH₄)₂SO₄, 1 g/l NaCl, 2 g/l MgSO₄ x 7H₂O₅ 0.2 g/l CaCl₂, 0.5 g/l yeast extract (Difco), 10 ml/l trace-elements-mix (200 mg/l FeSO₄ x H₂O, 10 mg/l ZnSO₄ x 7 H₂O, 3 mg/l MnCl₂ x 4 H₂O, 30 mg/l H₃BO₃ 20 mg/l CoCl₂ x 6 H₂O, 1 mg/l NiCl₂ x 6 H₂O, 3 mg/l Na₂MoO₄ x 2 H₂O, 500 mg/l complexing agent 15 (EDTA or critic acid), 100 ml/l vitamins-mix (0.2 mg/l biotin, 0.2 mg/l folic acid, 20 mg/l p-amino benzoic acid, 20 mg/l riboflavin, 40 mg/l ca-panthothenate, 140 mg/l nicotinic acid, 40 mg/l pyridoxole hydrochloride, 200 mg/l myo-inositol). Lysozyme was added to the suspension to a final concentration of 2.5 mg/ml. After an approximately 4 h incubation at 37°C, the cell wall was degraded and the resulting 20 protoplasts are harvested by centrifugation. The pellet was washed once with 5 ml buffer-I and once with 5 ml TE-buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8). The pellet was resuspended in 4 ml TE-buffer and 0.5 ml SDS solution (10%) and 0.5 ml NaCl solution (5 M) are added. After adding of proteinase K to a final concentration of 200 μg/ml, the suspension is incubated for ca.18 h at 37°C. The DNA was purified by 25 extraction with phenol, phenol-chloroform-isoamylalcohol and chloroformisoamylalcohol using standard procedures. Then, the DNA was precipitated by adding 1/50 volume of 3 M sodium acetate and 2 volumes of ethanol, followed by a 30 min incubation at -20°C and a 30 min centrifugation at 12,000 rpm in a high speed centrifuge using a SS34 rotor (Sorvall). The DNA was dissolved in 1 ml TE-buffer containing 20 30 μg/ml RNaseA and dialysed at 4°C against 1000 ml TE-buffer for at least 3 hours. During this time, the buffer was exchanged 3 times. To aliquots of 0.4 ml of the dialysed DNA solution, 0.4 ml of 2 M LiCl and 0.8 ml of ethanol are added. After a 30

min incubation at -20°C, the DNA was collected by centrifugation (13,000 rpm, Biofuge Fresco, Heraeus, Hanau, Germany). The DNA pellet was dissolved in TE-buffer. DNA prepared by this procedure could be used for all purposes, including southern blotting or construction of genomic libraries.

5

Example 2: Construction of genomic libraries in *Escherichia coli* of *Corynebacterium glutamicum* ATCC13032.

Using DNA prepared as described in Example 1, cosmid and plasmid libraries were constructed according to known and well established methods (see e.g., Sambrook, J. et al. (1989) "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press, or Ausubel, F.M. et al. (1994) "Current Protocols in Molecular Biology", John Wiley & Sons.)

Any plasmid or cosmid could be used. Of particular use were the plasmids pBR322 (Sutcliffe, J.G. (1979) *Proc. Natl. Acad. Sci. USA*, 75:3737-3741); pACYC177 (Change & Cohen (1978) *J. Bacteriol* 134:1141-1156), plasmids of the pBS series (pBSSK+, pBSSK- and others; Stratagene, LaJolla, USA), or cosmids as SuperCos1 (Stratagene, LaJolla, USA) or Lorist6 (Gibson, T.J., Rosenthal A. and Waterson, R.H. (1987) *Gene* 53:283-286. Gene libraries specifically for use in *C. glutamicum* may be constructed using plasmid pSL109 (Lee, H.-S. and A. J. Sinskey (1994) *J. Microbiol. Biotechnol.* 4: 256-263).

20

15

Example 3: DNA Sequencing and Computational Functional Analysis

Genomic libraries as described in Example 2 were used for DNA sequencing according to standard methods, in particular by the chain termination method using ABI377 sequencing machines (see e.g., Fleischman, R.D. et al. (1995) "Whole-genome Random Sequencing and Assembly of Haemophilus Influenzae Rd., <u>Science</u>, 269:496-512). Sequencing primers with the following nucleotide sequences were used: 5'-GGAAACAGTATGACCATG-3' or 5'-GTAAAACGACGGCCAGT-3'.

Example 4: In vivo Mutagenesis

30

In vivo mutagenesis of Corynebacterium glutamicum can be performed by passage of plasmid (or other vector) DNA through E. coli or other microorganisms (e.g. Bacillus spp. or yeasts such as Saccharomyces cerevisiae) which are impaired in their capabilities to maintain

the integrity of their genetic information. Typical mutator strains have mutations in the genes for the DNA repair system (e.g., mutHLS, mutD, mutT, etc.; for reference, see Rupp, W.D. (1996) DNA repair mechanisms, in: *Escherichia col*i and *Salmonella*, p. 2277-2294, ASM: Washington.) Such strains are well known to those of ordinary skill in the art. The use of such strains is illustrated, for example, in Greener, A. and Callahan, M. (1994) <u>Strategies</u> 7: 32-34.

Example 5: DNA Transfer Between *Escherichia coli* and *Corynebacterium* glutamicum

Several Corynebacterium and Brevibacterium species contain endogenous 10 plasmids (as e.g., pHM1519 or pBL1) which replicate autonomously (for review see, e.g., Martin, J.F. et al. (1987) Biotechnology, 5:137-146). Shuttle vectors for Escherichia coli and Corynebacterium glutamicum can be readily constructed by using standard vectors for E. coli (Sambrook, J. et al. (1989), "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press or Ausubel, F.M. et al. (1994) "Current Protocols in Molecular Biology", John Wiley & Sons) to which a origin or replication for and a 15 suitable marker from Corynebacterium glutamicum is added. Such origins of replication are preferably taken from endogenous plasmids isolated from Corynebacterium and Brevibacterium species. Of particular use as transformation markers for these species are genes for kanamycin resistance (such as those derived from the Tn5 or Tn903 20 transposons) or chloramphenicol (Winnacker, E.L. (1987) "From Genes to Clones — Introduction to Gene Technology, VCH, Weinheim). There are numerous examples in the literature of the construction of a wide variety of shuttle vectors which replicate in both E. coli and C. glutamicum, and which can be used for several purposes, including gene overexpression (for reference, see e.g., Yoshihama, M. et al. (1985) J. Bacteriol. 162:591-597, 25 Martin J.F. et al. (1987) Biotechnology, 5:137-146 and Eikmanns, B.J. et al. (1991) Gene, 102:93-98).

Using standard methods, it is possible to clone a gene of interest into one of the shuttle vectors described above and to introduce such a hybrid vectors into strains of Corynebacterium glutamicum. Transformation of C. glutamicum can be achieved by protoplast transformation (Kastsumata, R. et al. (1984) J. Bacteriol. 159306-311), electroporation (Liebl, E. et al. (1989) FEMS Microbiol. Letters, 53:399-303) and in cases where special vectors are used, also by conjugation (as described e.g. in Schäfer, A et al.

15

20

25

30

(1990) J. Bacteriol. 172:1663-1666). It is also possible to transfer the shuttle vectors for C. glutamicum to E. coli by preparing plasmid DNA from C. glutamicum (using standard methods well-known in the art) and transforming it into E. coli. This transformation step can be performed using standard methods, but it is advantageous to use an Mcr-deficient E. coli strain, such as NM522 (Gough & Murray (1983) J. Mol. Biol. 166:1-19).

Genes may be overexpressed in *C. glutamicum* strains using plasmids which comprise pCG1 (U.S. Patent No. 4,617,267) or fragments thereof, and optionally the gene for kanamycin resistance from TN903 (Grindley, N.D. and Joyce, C.M. (1980) *Proc. Natl. Acad. Sci. USA* 77(12): 7176-7180). In addition, genes may be overexpressed in *C. glutamicum* strains using plasmid pSL109 (Lee, H.-S. and A. J. Sinskey (1994) *J. Microbiol. Biotechnol.* 4: 256-263).

Aside from the use of replicative plasmids, gene overexpression can also be achieved by integration into the genome. Genomic integration in *C. glutamicum* or other Corynebacterium or Brevibacterium species may be accomplished by well-known methods, such as homologous recombination with genomic region(s), restriction endonuclease mediated integration (REMI) (see, e.g., DE Patent 19823834), or through the use of transposons. It is also possible to modulate the activity of a gene of interest by modifying the regulatory regions (e.g., a promoter, a repressor, and/or an enhancer) by sequence modification, insertion, or deletion using site-directed methods (such as homologous recombination) or methods based on random events (such as transposon mutagenesis or REMI). Nucleic acid sequences which function as transcriptional terminators may also be inserted 3' to the coding region of one or more genes of the invention; such terminators are well-known in the art and are described, for example, in Winnacker, E.L. (1987) From Genes to Clones – Introduction to Gene Technology. VCH: Weinheim.

Example 6: Assessment of the Expression of the Mutant Protein

Observations of the activity of a mutated protein in a transformed host cell rely on the fact that the mutant protein is expressed in a similar fashion and in a similar quantity to that of the wild-type protein. A useful method to ascertain the level of transcription of the mutant gene (an indicator of the amount of mRNA available for translation to the gene product) is to perform a Northern blot (for reference see, for example, Ausubel *et al.*

(1988) Current Protocols in Molecular Biology, Wiley: New York), in which a primer designed to bind to the gene of interest is labeled with a detectable tag (usually radioactive or chemiluminescent), such that when the total RNA of a culture of the organism is extracted, run on gel, transferred to a stable matrix and incubated with this probe, the binding and quantity of binding of the probe indicates the presence and also the quantity of mRNA for this gene. This information is evidence of the degree of transcription of the mutant gene. Total cellular RNA can be prepared from Corynebacterium glutamicum by several methods, all well-known in the art, such as that described in Bormann, E.R. et al. (1992) Mol. Microbiol. 6: 317-326.

To assess the presence or relative quantity of protein translated from this mRNA, standard techniques, such as a Western blot, may be employed (see, for example, Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York). In this process, total cellular proteins are extracted, separated by gel electrophoresis, transferred to a matrix such as nitrocellulose, and incubated with a probe, such as an antibody, which specifically binds to the desired protein. This probe is generally tagged with a chemiluminescent or colorimetric label which may be readily detected. The presence and quantity of label observed indicates the presence and quantity of the desired mutant protein present in the cell.

20 Example 7: Growth of Genetically Modified Corynebacterium glutamicum — Media and Culture Conditions

Genetically modified *Corynebacteria* are cultured in synthetic or natural growth media. A number of different growth media for Corynebacteria are both well-known and readily available (Lieb et al. (1989) *Appl. Microbiol. Biotechnol.*, 32:205-210; von der

25 Osten et al. (1998) Biotechnology Letters, 11:11-16; Patent DE 4,120,867; Liebl (1992) "The Genus *Corynebacterium*, in: The Procaryotes, Volume II, Balows, A. et al., eds. Springer-Verlag). These media consist of one or more carbon sources, nitrogen sources, inorganic salts, vitamins and trace elements. Preferred carbon sources are sugars, such as mono-, di-, or polysaccharides. For example, glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose serve as very good carbon sources. It is also possible to supply sugar to the media via complex compounds such as molasses or other by-products from sugar refinement. It can also be

20

25

30

advantageous to supply mixtures of different carbon sources. Other possible carbon sources are alcohols and organic acids, such as methanol, ethanol, acetic acid or lactic acid. Nitrogen sources are usually organic or inorganic nitrogen compounds, or materials which contain these compounds. Exemplary nitrogen sources include ammonia gas or ammonia salts, such as NH₄Cl or (NH₄)₂SO₄, NH₄OH, nitrates, urea, amino acids or complex nitrogen sources like corn steep liquor, soy bean flour, soy bean protein, yeast extract, meat extract and others.

Inorganic salt compounds which may be included in the media include the chloride-, phosphorous- or sulfate- salts of calcium, magnesium, sodium, cobalt, molybdenum, potassium, manganese, zinc, copper and iron. Chelating compounds can be added to the medium to keep the metal ions in solution. Particularly useful chelating compounds include dihydroxyphenols, like catechol or protocatechuate, or organic acids, such as citric acid. It is typical for the media to also contain other growth factors, such as vitamins or growth promoters, examples of which include biotin, riboflavin, thiamin, folic acid, nicotinic acid, pantothenate and pyridoxin. Growth factors and salts frequently originate from complex media components such as yeast extract, molasses, corn steep liquor and others. The exact composition of the media compounds depends strongly on the immediate experiment and is individually decided for each specific case. Information about media optimization is available in the textbook "Applied Microbiol. Physiology, A Practical Approach (eds. P.M. Rhodes, P.F. Stanbury, IRL Press (1997) pp. 53-73, ISBN 0 19 963577 3). It is also possible to select growth media from commercial suppliers, like standard 1 (Merck) or BHI (grain heart infusion, DIFCO) or others.

All medium components are sterilized, either by heat (20 minutes at 1.5 bar and 121°C) or by sterile filtration. The components can either be sterilized together or, if necessary, separately. All media components can be present at the beginning of growth, or they can optionally be added continuously or batchwise.

Culture conditions are defined separately for each experiment. The temperature should be in a range between 15°C and 45°C. The temperature can be kept constant or can be altered during the experiment. The pH of the medium should be in the range of 5 to 8.5, preferably around 7.0, and can be maintained by the addition of buffers to the media. An exemplary buffer for this purpose is a potassium phosphate buffer. Synthetic buffers such as MOPS, HEPES, ACES and others can alternatively or simultaneously be used. It

10

15

is also possible to maintain a constant culture pH through the addition of NaOH or NH₄OH during growth. If complex medium components such as yeast extract are utilized, the necessity for additional buffers may be reduced, due to the fact that many complex compounds have high buffer capacities. If a fermentor is utilized for culturing the microorganisms, the pH can also be controlled using gaseous ammonia.

The incubation time is usually in a range from several hours to several days. This time is selected in order to permit the maximal amount of product to accumulate in the broth. The disclosed growth experiments can be carried out in a variety of vessels, such as microtiter plates, glass tubes, glass flasks or glass or metal fermentors of different sizes. For screening a large number of clones, the microorganisms should be cultured in microtiter plates, glass tubes or shake flasks, either with or without baffles. Preferably 100 ml shake flasks are used, filled with 10% (by volume) of the required growth medium. The flasks should be shaken on a rotary shaker (amplitude 25 mm) using a speed-range of 100 – 300 rpm. Evaporation losses can be diminished by the maintenance of a humid atmosphere; alternatively, a mathematical correction for evaporation losses should be performed.

If genetically modified clones are tested, an unmodified control clone or a control clone containing the basic plasmid without any insert should also be tested. The medium is inoculated to an OD₆₀₀ of O.5 – 1.5 using cells grown on agar plates, such as CM plates (10 g/l glucose, 2,5 g/l NaCl, 2 g/l urea, 10 g/l polypeptone, 5 g/l yeast extract, 5 g/l meat extract, 22 g/l NaCl, 2 g/l urea, 10 g/l polypeptone, 5 g/l yeast extract, 5 g/l meat extract, 22 g/l agar, pH 6.8 with 2M NaOH) that had been incubated at 30°C. Inoculation of the media is accomplished by either introduction of a saline suspension of *C. glutamicum* cells from CM plates or addition of a liquid preculture of this bacterium.

25

30

20

Example 8 - In vitro Analysis of the Function of Mutant Proteins

The determination of activities and kinetic parameters of enzymes is well established in the art. Experiments to determine the activity of any given altered enzyme must be tailored to the specific activity of the wild-type enzyme, which is well within the ability of one of ordinary skill in the art. Overviews about enzymes in general, as well as specific details concerning structure, kinetics, principles, methods, applications and examples for the determination of many enzyme activities may be

found, for example, in the following references: Dixon, M., and Webb, E.C., (1979)
Enzymes. Longmans: London; Fersht, (1985) Enzyme Structure and Mechanism.
Freeman: New York; Walsh, (1979) Enzymatic Reaction Mechanisms. Freeman: San Francisco; Price, N.C., Stevens, L. (1982) Fundamentals of Enzymology. Oxford Univ.

5 Press: Oxford; Boyer, P.D., ed. (1983) The Enzymes, 3rd ed. Academic Press: New York; Bisswanger, H., (1994) Enzymkinetik, 2nd ed. VCH: Weinheim (ISBN 3527300325); Bergmeyer, H.U., Bergmeyer, J., Graßl, M., eds. (1983-1986) Methods of Enzymatic Analysis, 3rd ed., vol. I-XII, Verlag Chemie: Weinheim; and Ullmann's Encyclopedia of Industrial Chemistry (1987) vol. A9, "Enzymes". VCH: Weinheim, p. 352-363.

The activity of proteins which bind to DNA can be measured by several well-established methods, such as DNA band-shift assays (also called gel retardation assays). The effect of such proteins on the expression of other molecules can be measured using reporter gene assays (such as that described in Kolmar, H. et al. (1995) <u>EMBO J.</u> 14: 3895-3904 and references cited therein). Reporter gene test systems are well known and established for applications in both pro- and eukaryotic cells, using enzymes such as beta-galactosidase, green fluorescent protein, and several others.

The determination of activity of membrane-transport proteins can be performed according to techniques such as those described in Gennis, R.B. (1989) "Pores,

Channels and Transporters", in Biomembranes, Molecular Structure and Function,

Springer: Heidelberg, p. 85-137; 199-234; and 270-322.

Example 9: Analysis of Impact of Mutant Protein on the Production of the Desired Product

The effect of the genetic modification in *C. glutamicum* on production of a desired compound (such as an amino acid) can be assessed by growing the modified microorganism under suitable conditions (such as those described above) and analyzing the medium and/or the cellular component for increased production of the desired product (*i.e.*, an amino acid). Such analysis techniques are well known to one of ordinary skill in the art, and include spectroscopy, thin layer chromatography, staining methods of various kinds, enzymatic and microbiological methods, and analytical chromatography such as high performance liquid chromatography (see, for example,

20

Ullman, Encyclopedia of Industrial Chemistry, vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A. et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17; Rehm et al. (1993) Biotechnology, vol. 3, Chapter III: "Product recovery and purification", page 469-714, VCH: Weinheim; Belter, P.A. et al. (1988) Bioseparations: downstream processing for biotechnology, John Wiley and Sons; Kennedy, J.F. and Cabral, J.M.S. (1992) Recovery processes for biological materials, John Wiley and Sons; Shaeiwitz, J.A. and Henry, J.D. (1988) Biochemical separations, in: Ulmann's Encyclopedia of Industrial Chemistry, vol. B3, Chapter 11, page 1-27, VCH: Weinheim; and Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications.)

In addition to the measurement of the final product of fermentation, it is also possible to analyze other components of the metabolic pathways utilized for the production of the desired compound, such as intermediates and side-products, to determine the overall efficiency of production of the compound. Analysis methods include measurements of nutrient levels in the medium (e.g., sugars, hydrocarbons, nitrogen sources, phosphate, and other ions), measurements of biomass composition and growth, analysis of the production of common metabolites of biosynthetic pathways, and measurement of gasses produced during fermentation. Standard methods for these measurements are outlined in Applied Microbial Physiology, A Practical Approach, P.M. Rhodes and P.F. Stanbury, eds., IRL Press, p. 103-129; 131-163; and 165-192 (ISBN: 0199635773) and references cited therein.

Example 10: Purification of the Desired Product from C. glutamicum Culture

Recovery of the desired product from the C. glutamicum cells or supernatant of the above-described culture can be performed by various methods well known in the art. If the desired product is not secreted from the cells, the cells can be harvested from the culture by low-speed centrifugation, the cells can be lysed by standard techniques, such as mechanical force or sonication. The cellular debris is removed by centrifugation, and the supernatant fraction containing the soluble proteins is retained for further purification of the desired compound. If the product is secreted from the C. glutamicum

15

20

25

cells, then the cells are removed from the culture by low-speed centrifugation, and the supernate fraction is retained for further purification.

The supernatant fraction from either purification method is subjected to chromatography with a suitable resin, in which the desired molecule is either retained on 5 a chromatography resin while many of the impurities in the sample are not, or where the impurities are retained by the resin while the sample is not. Such chromatography steps may be repeated as necessary, using the same or different chromatography resins. One of ordinary skill in the art would be well-versed in the selection of appropriate chromatography resins and in their most efficacious application for a particular molecule to be purified. The purified product may be concentrated by filtration or ultrafiltration, and stored at a temperature at which the stability of the product is maximized.

There are a wide array of purification methods known to the art and the preceding method of purification is not meant to be limiting. Such purification techniques are described, for example, in Bailey, J.E. & Ollis, D.F. Biochemical Engineering Fundamentals, McGraw-Hill: New York (1986).

The identity and purity of the isolated compounds may be assessed by techniques standard in the art. These include high-performance liquid chromatography (HPLC), spectroscopic methods, staining methods, thin layer chromatography, NIRS, enzymatic assay, or microbiologically. Such analysis methods are reviewed in: Patek et al. (1994) Appl. Environ. Microbiol. 60: 133-140; Malakhova et al. (1996) Biotekhnologiya 11: 27-32; and Schmidt et al. (1998) Bioprocess Engineer. 19: 67-70. Ulmann's Encyclopedia of Industrial Chemistry, (1996) vol. A27, VCH: Weinheim, p. 89-90, p. 521-540, p. 540-547, p. 559-566, 575-581 and p. 581-587; Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17.

Example 11: Analysis of the Gene Sequences of the Invention

The comparison of sequences and determination of percent homology between 30 two sequences are art-known techniques, and can be accomplished using a mathematical algorithm, such as the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-68, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA

15

20

25

90:5873-77. Such an algorithm is incorporated into the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (1990) J. Mol. Biol. 215:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to MP nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to MP protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., (1997) Nucleic Acids Res. 25(17):3389-3402. When utilizing BLAST and Gapped BLAST programs, one of ordinary skill in the art will know how to optimize the parameters of the program (e.g., XBLAST and NBLAST) for the specific sequence being analyzed.

Another example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Meyers and Miller ((1988) Comput. Appl. Biosci. 4: 11-17). Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Additional algorithms for sequence analysis are known in the art, and include ADVANCE and ADAM. described in Torelli and Robotti (1994) Comput. Appl. Biosci. 10:3-5; and FASTA, described in Pearson and Lipman (1988) P.N.A.S. 85:2444-8.

The percent homology between two amino acid sequences can also be accomplished using the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blosum 62 matrix or a PAM250 matrix, and a gap weight of 12, 10, 8, 6, or 4 and a length weight of 2, 3, or 4. The percent homology between two nucleic acid sequences can be accomplished using the GAP program in the GCG software package, using standard parameters, such as a gap weight of 50 and a length weight of 3.

A comparative analysis of the gene sequences of the invention with those present in Genbank has been performed using techniques known in the art (see, e.g., Bexevanis and Ouellette, eds. (1998) Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. John Wiley and Sons: New York). The gene sequences of the invention

15

20

25

were compared to genes present in Genbank in a three-step process. In a first step, a BLASTN analysis (e.g., a local alignment analysis) was performed for each of the sequences of the invention against the nucleotide sequences present in Genbank, and the top 500 hits were retained for further analysis. A subsequent FASTA search (e.g., a combined local and global alignment analysis, in which limited regions of the sequences are aligned) was performed on these 500 hits. Each gene sequence of the invention was subsequently globally aligned to each of the top three FASTA hits, using the GAP program in the GCG software package (using standard parameters). In order to obtain correct results, the length of the sequences extracted from Genbank were adjusted to the length of the query sequences by methods well-known in the art. The results of this analysis are set forth in Table 4. The resulting data is identical to that which would have been obtained had a GAP (global) analysis alone been performed on each of the genes of the invention in comparison with each of the references in Genbank, but required significantly reduced computational time as compared to such a database-wide GAP (global) analysis. Sequences of the invention for which no alignments above the cutoff values were obtained are indicated on Table 4 by the absence of alignment information. It will further be understood by one of ordinary skill in the art that the GAP alignment homology percentages set forth in Table 4 under the heading "% homology (GAP)" are listed in the European numerical format, wherein a ',' represents a decimal point. For example, a value of "40,345" in this column represents "40.345%".

Example 12: Construction and Operation of DNA Microarrays

The sequences of the invention may additionally be used in the construction and application of DNA microarrays (the design, methodology, and uses of DNA arrays are well known in the art, and are described, for example, in Schena, M. et al. (1995)

Science 270: 467-470; Wodicka, L. et al. (1997) Nature Biotechnology 15: 1359-1367;

DeSaizieu, A. et al. (1998) Nature Biotechnology 16: 45-48; and DeRisi, J.L. et al. (1997) Science 278: 680-686).

DNA microarrays are solid or flexible supports consisting of nitrocellulose,

nylon, glass, silicone, or other materials. Nucleic acid molecules may be attached to the
surface in an ordered manner. After appropriate labeling, other nucleic acids or nucleic
acid mixtures can be hybridized to the immobilized nucleic acid molecules, and the label

10

15

20

25

30

may be used to monitor and measure the individual signal intensities of the hybridized molecules at defined regions. This methodology allows the simultaneous quantification of the relative or absolute amount of all or selected nucleic acids in the applied nucleic acid sample or mixture. DNA microarrays, therefore, permit an analysis of the expression of multiple (as many as 6800 or more) nucleic acids in parallel (see, e.g., Schena, M. (1996) BioEssays 18(5): 427-431).

The sequences of the invention may be used to design oligonucleotide primers which are able to amplify defined regions of one or more *C. glutamicum* genes by a nucleic acid amplification reaction such as the polymerase chain reaction. The choice and design of the 5' or 3' oligonucleotide primers or of appropriate linkers allows the covalent attachment of the resulting PCR products to the surface of a support medium described above (and also described, for example, Schena, M. *et al.* (1995) *Science* 270: 467-470).

Nucleic acid microarrays may also be constructed by *in situ* oligonucleotide synthesis as described by Wodicka, L. *et al.* (1997) *Nature Biotechnology* 15: 1359-1367. By photolithographic methods, precisely defined regions of the matrix are exposed to light. Protective groups which are photolabile are thereby activated and undergo nucleotide addition, whereas regions that are masked from light do not undergo any modification. Subsequent cycles of protection and light activation permit the synthesis of different oligonucleotides at defined positions. Small, defined regions of the genes of the invention may be synthesized on microarrays by solid phase oligonucleotide synthesis.

The nucleic acid molecules of the invention present in a sample or mixture of nucleotides may be hybridized to the microarrays. These nucleic acid molecules can be labeled according to standard methods. In brief, nucleic acid molecules (e.g., mRNA molecules or DNA molecules) are labeled by the incorporation of isotopically or fluorescently labeled nucleotides, e.g., during reverse transcription or DNA synthesis. Hybridization of labeled nucleic acids to microarrays is described (e.g., in Schena, M. et al. (1995) supra; Wodicka, L. et al. (1997), supra; and DeSaizieu A. et al. (1998), supra). The detection and quantification of the hybridized molecule are tailored to the specific incorporated label. Radioactive labels can be detected, for example, as

15

20

25

30

described in Schena, M. et al. (1995) supra) and fluorescent labels may be detected, for example, by the method of Shalon et al. (1996) Genome Research 6: 639-645).

The application of the sequences of the invention to DNA microarray technology, as described above, permits comparative analyses of different strains of C. glutamicum or other Corynebacteria. For example, studies of inter-strain variations based on individual transcript profiles and the identification of genes that are important for specific and/or desired strain properties such as pathogenicity, productivity and stress tolerance are facilitated by nucleic acid array methodologies. Also, comparisons of the profile of expression of genes of the invention during the course of a fermentation reaction are possible using nucleic acid array technology.

Example 13: Analysis of the Dynamics of Cellular Protein Populations (Proteomics)

The genes, compositions, and methods of the invention may be applied to study the interactions and dynamics of populations of proteins, termed 'proteomics'. Protein populations of interest include, but are not limited to, the total protein population of C. glutamicum (e.g., in comparison with the protein populations of other organisms), those proteins which are active under specific environmental or metabolic conditions (e.g., during fermentation, at high or low temperature, or at high or low pH), or those proteins which are active during specific phases of growth and development.

Protein populations can be analyzed by various well-known techniques, such as gel electrophoresis. Cellular proteins may be obtained, for example, by lysis or extraction, and may be separated from one another using a variety of electrophoretic techniques. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) separates proteins largely on the basis of their molecular weight. Isoelectric focusing polyacrylamide gel electrophoresis (IEF-PAGE) separates proteins by their isoelectric point (which reflects not only the amino acid sequence but also posttranslational modifications of the protein). Another, more preferred method of protein analysis is the consecutive combination of both IEF-PAGE and SDS-PAGE, known as 2-D-gel electrophoresis (described, for example, in Hermann et al. (1998) Electrophoresis 19: 3217-3221; Fountoulakis et al. (1998) Electrophoresis 19: 1193-1202; Langen et al. (1997) Electrophoresis 18: 1184-1192; Antelmann et al. (1997) Electrophoresis 18:

- 146 -

1451-1463). Other separation techniques may also be utilized for protein separation, such as capillary gel electrophoresis; such techniques are well known in the art.

Proteins separated by these methodologies can be visualized by standard techniques, such as by staining or labeling. Suitable stains are known in the art, and include Coomassie Brilliant Blue, silver stain, or fluorescent dyes such as Sypro Ruby (Molecular Probes). The inclusion of radioactively labeled amino acids or other protein precursors (e.g., ³⁵S-methionine, ³⁵S-cysteine, ¹⁴C-labelled amino acids, ¹⁵N-amino acids, ¹⁵NO₃ or ¹⁵NH₄⁺ or ¹³C-labelled amino acids) in the medium of C. glutamicum permits the labeling of proteins from these cells prior to their separation. Similarly, fluorescent labels may be employed. These labeled proteins can be extracted, isolated and separated according to the previously described techniques.

10

15

20

25

30

Proteins visualized by these techniques can be further analyzed by measuring the amount of dye or label used. The amount of a given protein can be determined quantitatively using, for example, optical methods and can be compared to the amount of other proteins in the same gel or in other gels. Comparisons of proteins on gels can be made, for example, by optical comparison, by spectroscopy, by image scanning and analysis of gels, or through the use of photographic films and screens. Such techniques are well-known in the art.

To determine the identity of any given protein, direct sequencing or other standard techniques may be employed. For example, N- and/or C-terminal amino acid sequencing (such as Edman degradation) may be used, as may mass spectrometry (in particular MALDI or ESI techniques (see, e.g., Langen et al. (1997) Electrophoresis 18: 1184-1192)). The protein sequences provided herein can be used for the identification of C. glutamicum proteins by these techniques.

The information obtained by these methods can be used to compare patterns of protein presence, activity, or modification between different samples from various biological conditions (e.g., different organisms, time points of fermentation, media conditions, or different biotopes, among others). Data obtained from such experiments alone, or in combination with other techniques, can be used for various applications, such as to compare the behavior of various organisms in a given (e.g., metabolic) situation, to increase the productivity of strains which produce fine chemicals or to increase the efficiency of the production of fine chemicals.

Equivalents

Those of ordinary skill in the art will recognize, or will be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

10

25

What is claimed:

- 1. An isolated nucleic acid molecule from Corynebacterium glutamicum encoding a metabolic pathway protein, or a portion thereof, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- 2. The isolated nucleic acid molecule of claim 1, wherein said metabolic pathway protein is selected from the group consisting of proteins involved in the metabolism of an amino acid, a vitamin, a cofactor, a nutraceutical, a nucleotide, a nucleoside, or trehalose.
- An isolated Corynebacterium glutamicum nucleic acid molecule selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOs of the
 Sequence Listing, or a portion thereof, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- 4. An isolated nucleic acid molecule which encodes a polypeptide sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID
 NOs of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
 - 5. An isolated nucleic acid molecule which encodes a naturally occurring allelic variant of a polypeptide selected from the group of amino acid sequences consisting of those sequences set forth as even-numbered SEQ ID NOs of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- An isolated nucleic acid molecule comprising a nucleotide sequence which is at least
 50% homologous to a nucleotide sequence selected from the group consisting of
 those sequences set forth as odd-numbered SEQ ID NOs of the Sequence Listing, or

- a portion thereof, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- 7. An isolated nucleic acid molecule comprising a fragment of at least 15 nucleotides of a nucleic acid comprising a nucleotide sequence selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOs of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- 10 8. An isolated nucleic acid molecule which hybridizes to the nucleic acid molecule of any one of claims 1-7 under stringent conditions.
 - 9. An isolated nucleic acid molecule comprising the nucleic acid molecule of any one of claims 1-8 or a portion thereof and a nucleotide sequence encoding a heterologous polypeptide.
 - 10. A vector comprising the nucleic acid molecule of any one of claims 1-9.
 - 11. The vector of claim 10, which is an expression vector.
- 20

- 12. A host cell transfected with the expression vector of claim 11.
- 13. The host cell of claim 12, wherein said cell is a microorganism.
- 25 14. The host cell of claim 13, wherein said cell belongs to the genus Corynebacterium or Brevibacterium.
 - 15. The host cell of claim 12, wherein the expression of said nucleic acid molecule results in the modulation in production of a fine chemical from said cell.
- 30
- 16. The host cell of claim 15, wherein said fine chemical is selected from the group consisting of: organic acids, nonproteinogenic amino acids, purine and pyrimidine

- 150 -

bases, nucleosides, nucleotides, lipids, saturated and unsaturated fatty acids, diols, carbohydrates, aromatic compounds, vitamins, cofactors, polyketides, and enzymes.

- 17. A method of producing a polypeptide comprising culturing the host cell of claim 12
 in an appropriate culture medium to, thereby, produce the polypeptide.
 - 18. An isolated metabolic pathway polypeptide from *Corynebacterium glutamicum*, or a portion thereof.
- 10 19. The protein of claim 18, wherein said polypeptide is selected from the group of metabolic pathway proteins which participate in the metabolism of an amino acid, a vitamin, a cofactor, a nutraceutical, a nucleotide, a nucleoside, or trehalose.
- 20. An isolated polypeptide comprising an amino acid sequence selected from the group
 consisting of those sequences set forth as even-numbered SEQ ID NOs of the
 Sequence Listing, provided that the amino acid sequence is not encoded by any of
 the F-designated genes set forth in Table 1.
- 21. An isolated polypeptide comprising a naturally occurring allelic variant of a polypeptide comprising an amino acid sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID NOs of the Sequence Listing, or a portion thereof, provided that the amino acid sequence is not encoded by any of the F-designated genes set forth in Table 1.
- 25 22. The isolated polypeptide of any of claims 18-21, further comprising heterologous amino acid sequences.
- 23. An isolated polypeptide which is encoded by a nucleic acid molecule comprising a nucleotide sequence which is at least 50% homologous to a nucleic acid selected
 30 from the group consisting of those sequences set forth as odd-numbered SEQ ID
 NOs of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated nucleic acid molecules set forth in Table 1.

10

20

- 24. An isolated polypeptide comprising an amino acid sequence which is at least 50% homologous to an amino acid sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID NOs of the Sequence Listing, provided that the amino acid sequence is not encoded by any of the F-designated genes set forth in Table 1.
- 25. A method for producing a fine chemical, comprising culturing a cell containing a vector of claim 12 such that the fine chemical is produced.
- 26. The method of claim 25, wherein said method further comprises the step of recovering the fine chemical from said culture.
- 27. The method of claim 25, wherein said method further comprises the step of
 transfecting said cell with the vector of claim 11 to result in a cell containing said vector.
 - 28. The method of claim 25, wherein said cell belongs to the genus Corynebacterium or Brevibacterium.
 - 29. The method of claim 25, wherein said cell is selected from the group consisting of:

 Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium, lilium,

 Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum,

 Corynebacterium acetophilum, Corynebacterium ammoniagenes, Corynebacterium fujiokense, Corynebacterium nitrilophilus, Brevibacterium ammoniagenes,
- fujiokense, Corynebacterium nitrilophilus, Brevibacterium ammoniagenes,
 Brevibacterium butanicum, Brevibacterium divaricatum, Brevibacterium flavum,
 Brevibacterium healii, Brevibacterium ketoglutamicum, Brevibacterium
 ketosoreductum, Brevibacterium lactofermentum, Brevibacterium linens,
 Brevibacterium paraffinolyticum, and those strains set forth in Table 3.
 - 30. The method of claim 25, wherein expression of the nucleic acid molecule from said vector results in modulation of production of said fine chemical.

- 31. The method of claim 25, wherein said fine chemical is selected from the group consisting of: organic acids, nonproteinogenic amino acids, purine and pyrimidine bases, nucleosides, nucleotides, lipids, saturated and unsaturated fatty acids, diols, carbohydrates, aromatic compounds, vitamins, cofactors, polyketides, and enzymes.
- 32. The method of claim 25, wherein said fine chemical is an amino acid.
- 33. The method of claim 32, wherein said amino acid is drawn from the group consisting of: lysine, glutamate, glutamine, alanine, aspartate, glycine, serine, threonine, methionine, cysteine, valine, leucine, isoleucine, arginine, proline, histidine, tyrosine, phenylalanine, and tryptophan.
- 34. A method for producing a fine chemical, comprising culturing a cell whose genomic
 DNA has been altered by the inclusion of a nucleic acid molecule of any one of claims 1-9.
- 35. A method for diagnosing the presence or activity of Corynebacterium diphtheriae in a subject, comprising detecting the presence of one or more of SEQ ID NOs 1
 20 through 1156 of the Sequence Listing in the subject, provided that the sequences are not or are not encoded by any of the F-designated sequences set forth in Table 1, thereby diagnosing the presence or activity of Corynebacterium diphtheriae in the subject.
- 25 36. A host cell comprising a nucleic acid molecule selected from the group consisting of the nucleic acid molecules set forth as odd-numbered SEQ ID NOs of the Sequence Listing, wherein the nucleic acid molecule is disrupted.
- 37. A host cell comprising a nucleic acid molecule selected from the group consisting of
 the nucleic acid molecules set forth as odd-numbered SEQ ID NOs in the Sequence
 Listing, wherein the nucleic acid molecule comprises one or more nucleic acid

modifications from the sequence set forth as odd-numbered SEQ ID NOs of the Sequence Listing s.

38. A host cell comprising a nucleic acid molecule selected from the group consisting of the nucleic acid molecules set forth as odd-numbered SEQ ID NOs of the Sequence Listing, wherein the regulatory region of the nucleic acid molecule is modified relative to the wild-type regulatory region of the molecule.

SEQUENCE LISTING

<110> BASF Aktiengesellschaft <120> CORYNEBACTERIUM GLUTAMICUM GENES ENCODING METABOLIC PATHWAY PROTEINS <130> BGI-121CPPC <140> <141> <160> 1156 <210> 1 <211> 948 <212> DNA <213> Corynebacterium glutamicum <220> : <221> CDS <222> (101)..(925) <223> RXA02229 <400> 1 getggttcaa cagagaccac cgcgtgtcct gggtcgacgc ctctggcgat cccaccgcac 60 aagcettgga gattttgggt etacaatage gagggtgaat ttg ace ate eee ttt Leu Thr Ile Pro Phe gcc aaa ggc cac gcc acc gaa aac gac ttc atc atc ccc gat gag 163 Ala Lys Gly His Ala Thr Glu Asn Asp Phe Ile Ile Pro Asp Glu 15 gat gcg cgc cta gat tta act cca gaa atg gtg gtc acg ctg tgt gac Asp Ala Arg Leu Asp Leu Thr Pro Glu Met Val Val Thr Leu Cys Asp 25 30 ege ege gee ggg ate ggt get gat ggt ate ete ege gtg gtt aaa get Arg Arg Ala Gly Ile Gly Ala Asp Gly Ile Leu Arg Val Val Lys Ala 40 gca gac gta gaa ggc tcc acg gtc gac cca tcg ctg tgg ttc atg gat Ala Asp Val Glu Gly Ser Thr Val Asp Pro Ser Leu Trp Phe Met Asp 55 tac cgc aac gcc gat gga tct ttg gct gaa atg tgc ggc aat ggt gtg Tyr Arg Asn Ala Asp Gly Ser Leu Ala Glu Met Cys Gly Asn Gly Val 70 75 403 ege etg tte geg cae tgg etg tae tee ege ggt ett gtt gat aat aeg Arg Leu Phe Ala His Trp Leu Tyr Ser Arg Gly Leu Val Asp Asn Thr 90 - 95 451 age ttt gat ate ggt ace ege gee ggt gte ege cae gtt gat att ttg Ser Phe Asp Ile Gly Thr Arg Ala Gly Val Arg His Val Asp Ile Leu 110 cag gca gat caa cat tot gcg cag gto cgc gtt gat atg ggc atc cot 499 Gln Ala Asp Gln His Ser Ala Gln Val Arg Val Asp Met Gly Ile Pro 120 125 gac gtc acg gga tta tcc acc tgc gac atc aac ggc caa gta ttc gct 547 Asp Val Thr Gly Leu Ser Thr Cys Asp Ile Asn Gly Gln Val Phe Ala

	135	i				140					145	;				
ggc Gly 150	Leu	Gly ggd	gtt Val	gat Asp	atg Met 155	Gly	aac Asn	cca Pro	cac His	cta Lev 160	ı Ala	tgc Cys	gtt Val	gtg Val	ccg Pro 165	595
ggc	tta Leu	agt Ser	gcg Ala	tcg Ser 170	Ala	ctt Leu	gcc Ala	gat Asp	atg Met 175	Glu	ctg Leu	cgc Arg	gca Ala	cct Pro 180		643
ttt Phe	gat Asp	cag Gln	gaa Glu 185	Phe	ttc Phe	Pro	cac His	ggt Gly 190	Val	aac Asn	gta Val	gaa Glu	ato Ile 195	gtc Val	aca Thr	691
gaa Glu	tta Leu	gaa Glu 200	Asp	gac Asp	gca Ala	gta Val	tcg Ser 205	Met	cgc Arg	gtg Val	tgg Trp	gaa Glu 210	Arg	gga Gly	gtg Val	739
ggc	gaa Glu 215	acc Thr	cgc	tcc	tgt Cys	ggc Gly 220	acg Thr	gga Gly	acc Thr	gtt Val	gct Ala 225	gca Ala	gcg Ala	tgt Cys	gct Ala	787
gct Ala 230	tta Leu	gct Ala	gat Asp	gct Ala	gga Gly 235	ttg Leu	gga Gly	gaa Glu	ggc	aca Thr 240	gct Ala	aaa Lys	gtg Val	tgc Cys	gtt Val 245	835
cca Pro	cgt Arg	GJÀ	gaa Glu	gta Val 250	gaa Glu	gtc Val	cag Gln	atc Ile	ttt Phe 255	gac Asp	gac Asp	ggc Gly	tcc Ser	aca Thr 260	ctc Leu	883
acc Thr	ggc	cca Pro	agc Ser 265	gcc Ala	atc Ile	atc Ile	gca Ala	ctc Leu 270	ggt Gly	gag Glu	ġtg Val	cag Gln	atc Ile 275			925
taa	gatto	cgc	gatt	gtagt	t c	gg										948
<213 <213	0> 2 L> 2: 2> PI B> Co	RT	ebact	teriu	um g]	lutar	nicum	n								
<400	15 2							•								
		Ile	Pro	Phe 5	Ala	Lys	Gly	His	Ala 10	Thr	Glu	Asn	Asp •	Phe 15	Ile	
Ile	Ile	Pro	Asp 20	Glu	Asp	Ala	Arg	Leu 25	Asp	Leu	Thr	Pro	Glu 30	Met	Val	
Val	Thr	Leu 35	Cys	Asp	Arg	Arg	Ala 40	Gly	Ile	Gly	Ala	Asp 45	Gly	Ile	Leu	
Arg	Val 50	Val	Lys	Ala	Ala	Asp 55	Val	Glu	Gly	Ser	Thr 60	Val	Asp	Pro	Ser	
Leu 65	Trp	Phe	Met	Asp	Tyr 70	Arg	Asn	Ala	Asp	Gly 75	Ser	Leu	Ala	Glu	Met 80	
Cys	Gly	Asn	Gly	Val 85	Arg	Leu	Phe	Ala	His 90	Trp	Leu	Tyr	Ser	Arg	Gly	

Leu	Val	Asp	Asn 100	Thr	Ser	Phe	Asp	Ile 105	Gly	Thr	Arg	Ala	Gly 110		Arg	
His	Val	Asp 115	Ile	Leu	Gln	Ala	Asp 120	Gln	His	Ser	Ala	Gln 125		Arg	Val	
Asp	Met 130	Gly	Ile	Pro	Asp	Val 135	Thr	Gly	Leu	Ser	Thr 140	Cys	Asp	Ile	Asn	
Gly 145	Gln	Val	Phe	Ala	Gly 150	Leu	Gly	Val	Asp	Met 155	Gly	Asn	Pro	His	Leu 160	
Ala	Cys	Val	Val	Pro 165	Gly	Leu	Ser	Ala	Ser 170	Ala	Leu	Ala	Asp	Met 175	Glu	
Leu	Arg	Ala	Pro 180	Thr	Phe	Asp	Gln	Glu 185	Phe	Phe	Pro	His	Gly 190	Val	Asn	
Val	Glu	Ile 195	Val	Thr	Glu	Leu	Glu 200	Asp	Asp	Ala	Val	Ser 205	Met	Arg	Val	
Trp	Glu 210	Arg	Gly	Val	Gly	Glu 215	Thr	Arg	Ser	Cys	Gly 220	Thr	Gly	Thr	Val	
Ala 225	Ala	Ala	Суз	Ala	Ala 230	Leu	Ala	Asp	Ala	Gly 235	Leu	Gly	Glu	Gly	Thr 240	
Ala	Lys	Val	Суз	Val 245	Pro	Arg	Gly	Glu	Val 250	Glu	Val	Gln	Ile	Phe 255	Asp	
Asp	Gly	Ser	Thr 260	Leu	Thr	Gly	Pro	Ser 265	Ala	Ile	Ile	Ala	Leu 270	Gly	Glu	
Val	Gln	Ile 275														
<210	> 3															
<211	> 14															
	> DN > Co	IA oryne	bact	eriu	m gl	utam	icum	l								
<220	>							•								
	> CD														•	
		01). S029		68)												
<400	> 3															
aacc	gaca	aa a	cagc	cgtt	c ac	gtgc	taaa	gca	gctc	ggc	ttga	tcta	aa a	tgag	gtgag	60
ttat	ttaa	ag a	cttc	ataa	t at	tttg	ggga	gtg	aact				ttg Leu			115
ac (acc Thr	aac Asn 1	ttt (Phe	gac Asp 10	ggt (Gly (gaa Glu	ttc Phe	atc (gaa Glu : 15	ttc Phe	gga Gly	tct Ser	gtg Val	caa Gln 20	gca Ala	163
aaa (ys (gaa Glu	gag (Glu (gaa a Glu 1 25	aaa (Lys 1	cgg (Arg)	gca (Ala 1	ttc (Phe <i>i</i>	gac a Asp 1	aac (Asn 1	gat (Asp)	cgc (Arg)	gcg Ala	cac His '	gtt Val	ttc Phe	211

								Ile		ccc Pro						259
										ggc						307
atg Met 70	Gly	tcc Ser	caa Gln	ctt Leu	gtc Val 75	tcg Ser	gca Ala	aac Asn	tta Leu	ggc ggc	cac His	aac Asn	aac Asn	cct Pro	cga Arg 85	355
										cgg Arg						403
										gtt Val						451
										ttt Phe						499
										gct Ala						547
										tac Tyr 160						595
										ege Arg						643
										cca Pro						691
tca Ser	ttc Phe	ttt Phe 200	gcc Ala	acc Thr	acc Thr	caa Gln	gaa Glu 205	gaa. Glu	gaa Glu	tgc Cys	gaa Glu	cgc Arg 210	gca Ala	ctc Leu	aag Lys	739
										gct Ala						787
										gga Gly 240						835
			Leu					Glu		tgc Cys			His			883
ctc Leu	ttc Phe	atc Ile	gcc Ala 265	gac Asp	gaa Glu	gtc Val	Met	gtc Val 270	gga Gly	ttc Phe	gga Gly	Arg	acc Thr 275	gga Gly	aaa Lys	931

ctg ttt gct tac gag cat gct ggc gac gat ttc cag cca gac atg atc 979
Leu Phe Ala Tyr Glu His Ala Gly Asp Asp Phe Gln Pro Asp Met Ile
280 285 290

ace the gee aag ggt gtt aac gea ggt tae gee eea cte ggt gge ate 1027

Thr Phe Ala Lys Gly Val Asn Ala Gly Tyr Ala Pro Leu Gly Gly Ile 295 300 305

gtg atg acc caa tca atc cgc gat acc ttc gga tca gag gca tac tcc 1075

Val Met Thr Gln Ser Ile Arg Asp Thr Phe Gly Ser Glu Ala Tyr Ser 310 315 320 325

gge gga etc ace tac tec gga cac eca ett gea gta gea ece gee aag 1123

Gly Gly Leu Thr Tyr Ser Gly His Pro Leu Ala Val Ala Pro Ala Lys 330 335 340

gca gcg ctg gag att tac gcg gaa gga gag atc att cca cgc gta gct 1171

Ala Ala Leu Glu Ile Tyr Ala Glu Gly Glu Ile Ile Pro Arg Val Ala 345 350 355

cga ctt ggc gct gaa ctg atc gaa cct cgc ctt cgt gaa cta gcg gaa 1219

Arg Leu Gly Ala Glu Leu Ile Glu Pro Arg Leu Arg Glu Leu Ala Glu 360 365 370

gaa aac gta gcg atc gct gac gtg cgg ggc atc gga ttc ttc tgg gca 1267

Glu Asn Val Ala Ile Ala Asp Val Arg Gly Ile Gly Phe Phe Trp Ala 375 380 385

gtg gag ttc aat gca gac gcc act gcc atg gct gcc ggt gct gca gaa 1315

Val Glu Phe Asn Ala Asp Ala Thr Ala Met Ala Ala Gly Ala Ala Glu 390 395 400 405

ttc aag gaa cgc ggc gtg tgg ccg atg atc tcc ggc aac cga ttc cac 1363

Phe Lys Glu Arg Gly Val Trp Pro Met'lle Ser Gly Asn Arg Phe His 410 415 420

atc gcg ccg ccg ctg acc acc act gat gac gaa ttg gta gca ctg ctg 1411

Ile Ala Pro Pro Leu Thr Thr Thr Asp Asp Glu Leu Val Ala Leu Leu
425
430
435

gac gcg gtg gaa gct gca gcc caa gct gtc gag ctg acc ttc gct ggg 1459

Asp Ala Val Glu Ala Ala Ala Gln Ala Val Glu Leu Thr Phe Ala Gly
440 445 450

gcg ttg ttc taagttttct agataacaag gcc 1491

Ala Leu Phe 455

<210> 4

.

<211> 456

<212> PRT

<213> Corynebacterium glutamicum

<400> 4

Leu Ala Leu Lys Gly Tyr Thr Asn Phe Asp Gly Glu Phe Ile Glu Phe 1 5 10 15

Gly Ser Val Gln Ala Lys Glu Glu Glu Lys Arg Ala Phe Asp Asn Asp 20 25 30

Arg Ala His Val Phe His Ser Trp Ser Ala Gln Asp Lys Ile Ser Pro 35 40 45

Lys Val Trp Ala Ala Ala Glu Gly Ser Thr Leu Tyr Asp Phe Asp Gly 50 55 60

Asn Ala Phe Ile Asp Met Gly Ser Gln Leu Val Ser Ala Asn Leu Gly 65 70 75 80

His Asn Asn Pro Arg Leu Val Glu Ala Ile Gln Arg Gln Ala Ala Arg 85 90 95

Leu Thr Asn Ile Asn Pro Ala Phe Gly Asn Asp Val Arg Ser Asp Val 100 105 110

Ala Ala Lys Ile Val Ser Met Ala Arg Gly Glu Phe Ser His Val Phe
115 120 125

Phe Thr Asn Gly Gly Ala Asp Ala Ile Glu His Ser Ile Arg Met Ala 130 135 140

Arg Leu His Thr Gly Arg Asn Lys Ile Leu Ser Ala Tyr Arg Ser Tyr 145 150 155 160

His Gly Ala Thr Gly Ser Ala Met Met Leu Thr Gly Glu His Arg Arg 165 170 175

Leu Gly Asn Pro Thr Thr Asp Pro Asp Ile Tyr His Phe Trp Ala Pro 180 185 190

Phe Leu His His Ser Ser Phe Phe Ala Thr Thr Gln Glu Glu Glu Cys 195 200 205

Glu Arg Ala Leu Lys His Leu Glu Asp Val Ile Ala Phe Glu Gly Ala 210 215 220

Gly Met Ile Ala Ala Ile Val Leu Glu Pro Val Val Gly Ser Ser Gly 225 230 235 240

Ile Ile Leu Pro Pro Ala Gly Tyr Leu Asn Gly Val Arg Glu Leu Cys 245 250 255

Asn Lys His Gly Ile Leu Phe Ile Ala Asp Glu Val Met Val Gly Phe 260 265 270

Gly Arg Thr Gly Lys Leu Phe Ala Tyr Glu His Ala Gly Asp Asp Phe 275 280 285

Gln Pro Asp Met Ile Thr Phe Ala Lys Gly Val Asn Ala Gly Tyr Ala 290 295 300

Pro 305	Leu	Gly	Gly	Ile	Val 310	Met	Thr	Gln	Ser	Ile 315		Asp	Thr	Phe	Gly 320	
Ser	Glu	Ala	Tyr	Ser 325		Gly	Leu	Thr	Tyr 330	Ser	Gly	His	Pro	Leu 335	Ala	
Val	Ala	Pro	Ala 340		Ala	Ala	Leu	Glu 345	Ile	Tyr	Ala	Glu	Gly 350		Ile	
Ile	Pro	Arg 355	Val	Ala	Arg	Leu	Gly 360	Ala	Glu	Leu	Ile	Glu 365		Arg	Leu	
Arg	Glu 370	Leu	Ala	Glu	Glu	Asn 375	Val	Ala	Ile	Ala	Asp 380	Val	Arg	Gly	Ile	
Gly 385	Phe	Phe	Trp	Ala	Val 390	Glu	Phe	Asn	Ala	Asp 395	Ala	Thr	Ala	Met	Ala 400	
Ala	Gly	Ala	Ala	Glu 405	Phe	Lys	Glu	Arg	Gly 410	Val	Trp	Pro	Met	Ile 415	Ser	
Gly	Asn	Arg	Phe 420	His	Ile	Ala	Pro	Pro 425	Leu	Thr	Thr	Thr	Asp 430	Asp	Glu	
Leu	Val	Ala 435	Leu	Leu	Asp	Ala	Val 440	Glu	Ala	Ala	Ala	Gln 445	Ala	Val	Glu	
Leu	Thr 450	Phe	Ala	Gly	Ala	Leu 455	Phe						•			
<212 <213 <220 <221	!> 13 !> DN !> Co !> CD	IA Pryne OS			ım gl	.utan	nicum	ı								
<223	:> (1 :> FR			330)				,								
<400 aacc	-	aa a	cago	egtt	c ac	gtgc	taaa	gca	gctc	ggc	ttga	tcta	igg c	gtgag	ggtgag	60
ttat	ttaa	ag a	ctto	ataa	it at	tttg	ggga	gtg	raact		ttg Leu 1					115
tac Tyr	acc Thr	aac Asn	ttt Phe	gac Asp 10	ggt Gly	gaa Glu	ttc Phe	atc Ile	gaa Glu 15	ttc Phe	gga Gly	tct Ser	gtg Val	caa Gln 20	gca Ala	163
aaa Lys	gaa Glu	gag Glu	gaa Glu 25	aaa Lys	cgg Arg	gca Ala	ttc Phe	gac Asp 30	aac Asn	gat Asp	cgc Arg	gcg Ala	cac His 35	gtt Val	ttc Phe	211
cac	tcc Ser	tgg Trp 40	tcc Ser	gcg Ala	cag Gln	gac Asp	aaa Lys 45	atc Ile	agc Ser	ccc Pro	aaa Lys	gta Val 50	tgg Trp	gca Ala	gct Ala	259

gcc Ala	gaa Glu 55	Gly	tcc Ser	acg Thr	ctg Leu	tac Tyr 60	Asp	ttc Phe	gac Asp	ggc Gly	aac Asn 65	Ala	ttc Phe	ato Ile	gac Asp	307
atg Met 70	ggt Gly	tcc Ser	caa Gln	ctt Leu	gtc Val 75	Ser	gca Ala	aac Asn	tta Leu	ggc Gly 80	His	aac Asn	aac Asn	cct Pro	cga Arg 85	355
tta Leu	gtt Val	gag Glu	gcg Ala	atc Ile 90	cag Gln	cgc Arg	caa Gln	gca Ala	gcc Ala 95	Arg	ttg Leu	acc Thr	aac Asn	atc Ile 100	Asn	403
ccg Pro	gcc Ala	ttc Phe	ggc Gly 105	aat Asn	gat Asp	gtg Val	cgc Arg	tct Ser 110	gat Asp	gtt Val	gct Ala	gca Ala	aag Lys 115	atc Ile	gtg Val	451
tcg Ser	atg Met	gcc Ala 120	cgt	ggc Gly	gaa Glu	ttc Phe	tcc Ser 125	cac His	gtg Val	ttt Phe	ttc Phe	acc Thr 130	aac Asn	ggc Gly	Gly	499
gcc Ala	gac Asp 135	gcc Ala	atc Ile	gag Glu	cac His	tcc Ser 140	atc Ile	cgc Arg	atg Met	gct Ala	cgc Arg 145	ctg Leu	cac His	acc Thr	gga Gly	547
cgc Arg 150	aac Asn	aaa Lys	att Ile	ctg Leu	tcc Ser 155	gca Ala	tac Tyr	cgc Arg	agc Ser	tac Tyr 160	cac His	ggc Gly	gca Ala	acc Thr	gga Gly 165	595
tcc Ser	gcg Ala	atg Met	atg Met	ctc Leu 170	acc Thr	ggc Gly	gaa Glu	cac His	cgc Arg 175	cgc Arg	ctg Leu	ggc Gly	aac Asn	ccc Pro 180	acc Thr	643
acc Thr	gac Asp	cca Pro	gat Asp 185	atc Ile	tac Tyr	cac His	ttc Phe	tgg Trp 190	gca Ala	cca Pro	ttc Phe	ctg Leu	cac His 195	cac His	tcc Ser	691
tca Ser	ttc Phe	ttt Phe 200	gcc Ala	acc Thr	acc Thr	caa Gln	gaa Glu 205	gaa Glu	gaa Glu	tgc Cys	gaa Glu	cgc Arg 210	gca Ala	ctc Leu	aag Lys	739
His	ttg Leu 215	gaa Glu	gat Asp	gtc Val	atc Ile	gcg Ala 220	ttt Phe	gaa Glu	ggt Gly	gct Ala	ggc Gly 225	atg Met	atc Ile	gca Ala	gcg Ala	787
atc Ile 230	gtc Val	ctg Leu	gag Glu	cca Pro	gtg Val 235	gtg Val	gga Gly	tca Ser	tca Ser	gga Gly 240	atc Ile	atc Ile	ctg Leu	cca Pro	cca Pro 245	835
gca Ala	ggt Gly	tac Tyr	tta Leu	aat Asn 250	ggc Gly	gtg Val	cgc Arg	gaa Glu	ctt Leu 255	tgc Cys	aac Asn	aag Lys	cac His	ggc Gly 260	atc Ile	883
ctc Leu	ttc Phe	Ile	gcc Ala 265	gac Asp	gaa Glu	gtc Val	Met	gtc Val 270	gga Gly	ttc Phe	gga Gly	Arg	acc Thr 275	gga Gly	aaa Lys	931
ctg Leu	Phe	gct Ala 280	tac Tyr	gag Glu	cat His	Ala	ggc Gly 285	gac Asp	gat Asp	ttc Phe	Gln	cca Pro 290	gac Asp	atg Met	atc Ile	979

acc ttc gcc aag ggt gtt aac gca ggt tac gcc cca ctc ggt ggc atc 1027

Thr Phe Ala Lys Gly Val Asn Ala Gly Tyr Ala Pro Leu Gly Gly Ile
295 300 305

gtg atg acc caa tca atc cgc gat acc ttc gga tca gag gca tac tcc 1075

Val Met Thr Gln Ser Ile Arg Asp Thr Phe Gly Ser Glu Ala Tyr Ser 310 315 320 325

ggc gga ctc acc tac tcc gga cac cca ctt gca gta gca ccc gcc aag 1123

Gly Gly Leu Thr Tyr Ser Gly His Pro Leu Ala Val Ala Pro Ala Lys 330 335 340

gca gcg ctg gag att tac gcg gaa gga gag atc att cca cgc gta gct 1171

Ala Ala Leu Glu Ile Tyr Ala Glu Gly Glu Ile Ile Pro Arg Val Ala 345 350 355

cga ctt ggc gct gaa ctg atc gaa cct cgc ctt cgt gaa cta gcg gaa 1219

Arg Leu Gly Ala Glu Leu Ile Glu Pro Arg Leu Arg Glu Leu Ala Glu 360 365 370

gaa aac gta gcg atc gct gac gtg cgg ggc atc gga ttc ttc tgg gca 1267

Glu Asn Val Ala Ile Ala Asp Val Arg Gly Ile Gly Phe Phe Trp Ala 375 380 385

gtg gag ttc aat gca gac gcc act gcc atg gct gcc ggt gct gca gaa 1315

Val Glu Phe Asn Ala Asp Ala Thr Ala Met Ala Ala Gly Ala Ala Glu 390 395 400 405

ttc aag gaa cgc ggc 1330

Phe Lys Glu Arg Gly

410

<210> 6

<211> 410

<212> PRT

<213> Corynebacterium glutamicum

<400> 6

Leu Ala Leu Lys Gly Tyr Thr Asn Phe Asp Gly Glu Phe Ile Glu Phe 1 5 10 15

Gly Ser Val Gln Ala Lys Glu Glu Lys Arg Ala Phe Asp Asn Asp 20 25 30

Arg Ala His Val Phe His Ser Trp Ser Ala Gln Asp Lys Ile Ser Pro 35 40 45

Lys Val Trp Ala Ala Ala Glu Gly Ser Thr Leu Tyr Asp Phe Asp Gly 50 55 60

Asn Ala Phe Ile Asp Met Gly Ser Gln Leu Val Ser Ala Asn Leu Gly 65 70 75 80

His Asn Asn Pro Arg Leu Val Glu Ala Ile Gln Arg Gln Ala Ala Arg Leu Thr Asn Ile Asn Pro Ala Phe Gly Asn Asp Val Arg Ser Asp Val Ala Ala Lys Ile Val Ser Met Ala Arg Gly Glu Phe Ser His Val Phe 115 120 Phe Thr Asn Gly Gly Ala Asp Ala Ile Glu His Ser Ile Arg Met Ala Arg Leu His Thr Gly Arg Asn Lys Ile Leu Ser Ala Tyr Arg Ser Tyr 150 155 His Gly Ala Thr Gly Ser Ala Met Met Leu Thr Gly Glu His Arg Arg 170 Leu Gly Asn Pro Thr Thr Asp Pro Asp Ile Tyr His Phe Trp Ala Pro Phe Leu His His Ser Ser Phe Phe Ala Thr Thr Gln Glu Glu Cys 195 200 Glu Arg Ala Leu Lys His Leu Glu Asp Val Ile Ala Phe Glu Gly Ala 215 Gly Met Ile Ala Ala Ile Val Leu Glu Pro Val Val Gly Ser Ser Gly 230 235 Ile Ile Leu Pro Pro Ala Gly Tyr Leu Asn Gly Val Arg Glu Leu Cys 245 Asn Lys His Gly Ile Leu Phe Ile Ala Asp Glu Val Met Val Gly Phe 265 Gly Arg Thr Gly Lys Leu Phe Ala Tyr Glu His Ala Gly Asp Asp Phe 285 Gln Pro Asp Met Ile Thr Phe Ala Lys Gly Val Asn Ala Gly Tyr Ala 295 Pro Leu Gly Gly Ile Val Met Thr Gln Ser Ile Arg Asp Thr Phe Gly 310 Ser Glu Ala Tyr Ser Gly Gly Leu Thr Tyr Ser Gly His Pro Leu Ala 325 330 Val Ala Pro Ala Lys Ala Ala Leu Glu Ile Tyr Ala Glu Gly Glu Ile 345 Ile Pro Arg Val Ala Arg Leu Gly Ala Glu Leu Ile Glu Pro Arg Leu 360 365 Arg Glu Leu Ala Glu Glu Asn Val Ala Ile Ala Asp Val Arg Gly Ile Gly Phe Phe Trp Ala Val Glu Phe Asn Ala Asp Ala Thr Ala Met Ala 390 395

Ala Gly Ala Ala Glu Phe Lys Glu Arg Gly
405 410

<21 <21	.0> 7 .1> 7 .2> E .3> C	92 NA	ıebac	teri	um g	luta	micu	ım								
<22	1> C	101)	(7 390	69)												
	0> 7 ggtg		ctga	ccca	ta c	gctg	gaac	t cc	aact	gctg	ttg	atac	cgc	caag	atgttt	60
ggc	egeg	agg	atct	cgta	gc t	cgct	tcga	g tc	atag	gccg	_	Glu			gct Ala 5	115
ttt Phe	ggc	acc Thr	ctg Leu	att Ile 10	ctg Leu	ctc Leu	aat Asn	ttg Leu	gtg Val 15	Gly	agt Ser	tta Leu	tcc Ser	ccg Pro 20	GJÀ āāā	163
cct Pro	gat Asp	acc Thr	ttt Phe 25	ttc Phe	ctc Leu	ctc Leu	cgc Arg	tta Leu 30	gcc Ala	acc Thr	cgc Arg	tcc Ser	aga Arg 35	gcg Ala	cac His	211
gcg Ala	atc Ile	gct Ala 40	ggc	gtc Val	gcc Ala	ggc	atc Ile 45	gtc Val	acc Thr	gga Gly	ctc Leu	acg Thr 50	gtg Val	tgg Trp	gtg Val	259
acg Thr	ctg Leu 55	acg Thr	gtc Val	gtg Val	gga Gly	gca Ala 60	gcg Ala	gcg Ala	ctg Leu	ctc Leu	acc Thr 65	act Thr	tat Tyr	ccg Pro	tcg Ser	307
att Ile 70	ctc Leu	gga Gly	atc Ile	atc Ile	cag Gln 75	ctc Leu	gtc Val	ggc	ggc	acg Thr 80	tac Tyr	cta Leu	agc Ser	ttc Phe	att Ile 85	355
Gly aaa	tac Tyr	aag Lys	ttg Leu	ctg Leu 90	cgc Arg	tcg Ser	gcg Ala	tcg Ser	aga Arg 95	gag Glu	ctt Leu	atc Ile	gac Asp	gcc Ala 100	cgc Arg	403
cag Gln	ttc Phe	cgt Arg	ttc Phe 105	aac Asn	gcc Ala	gat Asp	gcc Ala	cga Arg 110	cct Pro	atc Ile	ccg Pro	gat Asp	gcg Ala 115	gta Val	gaa Glu	451
gca Ala	ctg Leu	gga Gly 120	acc Thr	cgc Arg	act Thr	cag Gln	gta Val 125	tat Tyr	cga Arg	caa Gln	ggt Gly	ttg Leu 130	gcc Ala	acc Thr	aac Asn	499
ctg Leu	tca Ser 135	aac Asn	cct Pro	aaa Lys	gtt Val	gtc Val 140	atg Met	tac Tyr	ttc Phe	gcg Ala	gca Ala 145	att Ile	ctg Leu	gct Ala	ccg Pro	547
ttg Leu 150	atg Met	cca Pro	gcg Ala	cac His	cca Pro 155	tca Ser	ccg Pro	gtg Val	ctg Leu	gcg Ala 160	ttc Phe	tct Ser	atc Ile	atc Ile	gtg Val 165	595

PCT/IB00/00923 WO 01/00843

gcg a Ala I																643
gtc t Val S																691
ttt g Phe A																739
ctg t Leu T 2		_		_							aggca	ata a	aaaa	atggo	et	789
tcc																792
<210><211><211><212><213>	22 PF	T	ebacı	teri	ım g]	lutar	nicu	n								
<400> Val G		Trans.	መb ×	פות	Pho	Clv	™h ∽	T.ou	Tla	Leu	T.011	Nen.	Len	17=3	Clv	
1	, Lu	пр	IIII	5	File	GIĀ	1111	neu	10	Dea	nea	ASII	Deu	15	GIY	
Ser L	eu	Ser	Pro 20	Gly	Pro	Asp	Thr	Phe 25	Phe	Leu	Leu	Arg	Leu 30	Ala	Thr	
Arg S	Ser	Arg 35	Ala	His	Ala	Ile	Ala 40	Gly	Val	Ala	Gly	Ile 45	Val	Thr	G1y	
Leu T	hr 50	Val	Trp	Val	Thr	Leu 55	Thr	Val	Val	Gly	Ala 60	Ala	Ala	Leu	Leu	
Thr T 65	hr	Tyr	Pro	Ser	Ile 70	Leu	Gly	Ile	Ile	Gln 75	Leu	Val	Gly	Gly	Thr 80	
Tyr L	eu	Ser	Phe	Ile 85	Gly	Tyr	Lys	Leu	Leu 90	Arg	Ser	Ala	Ser	Arg 95	Glu	
Leu I	le	Asp	Ala 100	Arg	Gln	Phe	Arg	Phe 105	Asn	Ala	Asp	Ala	Arg 110	Pro	Ile	
Pro A	sp	Ala 115	Val	Glu	Ala	Leu	Gly 120	Thr	Arg	Thr	Gln	Val 125	Tyr	Arg	Gln	
Gly L 1	eu .30	Ala	Thr	Asn	Leu	Ser 135	Asn	Pro	Lys	Val	Val 140	Met	Tyr	Phe	Ala	
Ala I 145	le	Leu	Ala	Pro	Leu 150	Met	Pro	Ala	His	Pro 155	Ser	Pro	Va1	Leu	Ala 160	
Phe S	er	Ile	Ile	Val 165	Ala	Ile	Leu	Val	Gln 170	Thr	Phe	Val	Thr	Phe 175	Ser	
Ala V	al	Cys	Leu 180	Ile	Val	Ser	Thr	Glu 185	Arg	Val	Arg	Lys	Ala 190	Met	Leu	

Arg Ala Gly Pro Trp Phe Asp Leu Leu Ala Gly Val Val Phe Leu Val 200 195 Val Gly Val Thr Leu Leu Tyr Glu Gly Leu Thr Gly Leu Leu Gly 215 <210> 9 <211> 897 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(874) <223> RXC01796 <400> 9 atgtaactcg atcaggtgga aatgcccgca aaagtggcgg cggtggccga gggatggccg 60 ttggtgcggc atcggtggcc tgctactagt cgggctcttc ttg ctc ctt ggc ggt 115 Leu Leu Leu Gly Gly aac cct gcc gag atc gac cag gtt tta ggt ggc gat caa acc cag atc 163 Asn Pro Ala Glu Ile Asp Gln Val Leu Gly Gly Asp Gln Thr Gln Ile gag tot gga gag too acc gga gcc ggc gac ttt gat cac tgc caa acc 211 Glu Ser Gly Glu Ser Thr Gly Ala Gly Asp Phe Asp His Cys Gln Thr 30 gge gea gat gee aac gee agt gat gat tgt ege ett tae tae aec tea 259 Gly Ala Asp Ala Asn Ala Ser Asp Asp Cys Arg Leu Tyr Tyr Thr Ser 45 ttc tcc gtc aat gaa atg tgg cag act ttg ctt cca gct cag gct ggt 307 Phe Ser Val Asn Glu Met Trp Gln Thr Leu Leu Pro Ala Gln Ala Gly 60 ate gaa tac ace gag eeg aca ttg act ett tte aaa aac tee ace caa 355 Ile Glu Tyr Thr Glu Pro Thr Leu Thr Leu Phe Lys Asn Ser Thr Gln 70 75 80 acc ggc tgc ggt ttc gct tct gcg tcc act ggg ccg ttt tac tgt ccg 403 Thr Gly Cys Gly Phe Ala Ser Ala Ser Thr Gly Pro Phe Tyr Cys Pro 90 95 100 tca gac caa gat gct tat ttt gac ttg act ttc ttc gat cag atg cgt 451 Ser Asp Gln Asp Ala Tyr Phe Asp Leu Thr Phe Phe Asp Gln Met Arg 105 cag ttc ggt gca gaa aac gcc ccg ctt gcc cag atg tac atc gtg gcg 499 Gln Phe Gly Ala Glu Asn Ala Pro Leu Ala Gln Met Tyr Ile Val Ala 120 125 cac gag tac ggc cac cac gtc caa aac ctc gag ggc aca ctc gga ctg. 547 His Glu Tyr Gly His His Val Gln Asn Leu Glu Gly Thr Leu Gly Leu 135 140 145

595

tee aat tae aac gat eeg gge get gat tee aac gee gte aag ate gag

Ser 150	Asn	Tyr	Asn	Asp	Pro 155	Gly	Ala	Asp	Ser	Asn 160	Ala	Val	Lys	Ile	Glu 165	
													tcc Ser			643
													cta Leu 195			691
													cag Gln			739
													tca Ser			787
													cag Gln			835
_	_	_		ctc Leu 250									taaa	agcat	tg:	884
cttt	tega	acg t	ct													897
<211 <212)> 10 l> 25 ?> PF 3> Co	58 RT	ebacı	teri	ım g]	lutar	nicum	n						•		
	> 10															
Leu 1	Leu	Leu	Gly	Gly 5	Asn	Pro	Ala	Glu	Ile 10	Asp	Gln	Val	Leu	Gly 15	Gly	
Asp	Gln	Thr	Gln 20	Ile	Glu	Ser	Gly	Glu 25	Ser	Thr	Gly	Ala	Gly 30	Asp	Phe	
Ąsp	His	Cys 35	Gln	Thr	Gly	Ala	Asp 40	Ala	Asn	Ala	Ser	Asp 45	Asp	Суѕ	Arg	
Leu	Tyr 50	Tyr	Thr	Ser	Phe	Ser 55	Val	Asn	Glu	Met	Trp 60	Gln	Thr	Leu	Leu	
Pro 65	Ala	Gln	Ala	Gly	Ile 70	Glu	Tyr	Thr	Glu	Pro 75	Thr	Leu	Thr	Leu	Phe 80	
Lys	Asn	Ser	Thr	Gln 85	Thr	Gly	Cys	Gly	Phe 90	Ala	Ser	Ala	Ser	Thr 95	Gly	
Pro	Phe	Tyr	Cys 100	Pro	Ser	Asp	Gln	Asp 105	Ala	Tyr	Phe	Asp	Leu 110	Thr	Phe	
Phe	Asp	Gln 115	Met	Arg	Gln	Phe	Gly 120	Ala	Glu	Asn	Ala	Pro 125	Leu	Ala	Gln	
Met	Tyr	Ile	Val	Ala	His	Glu	Tyr	Gly	His	His	Val	Gln	Asn	Leu	Glu	

130 135 140 Gly Thr Leu Gly Leu Ser Asn Tyr Asn Asp Pro Gly Ala Asp Ser Asn 145 155 150 Ala Val Lys Ile Glu Leu Gln Ala Asp Cys Tyr Ala Gly Ile Trp Ala 165 170 Asn His Ser Ser Glu Gly Pro Asp Pro Leu Leu Gln Pro Ile Thr Glu 185 Ser Glu Leu Asp Ser Ala Leu Leu Ala Ala Ser Ala Val Gly Asp Asp 195 200 Asn Ile Gln Gln Arg Ser Gly Gly Asp Val Asn Pro Glu Ser Trp Thr 215 His Gly Ser Ser Gln Gln Arg Lys Asp Ala Phe Leu Ala Gly Tyr Asn 225 230 235 240 Thr Gly Gln Met Ser Ala Cys Asp Phe Leu Gly Arg Gly Val Tyr Asn 245 250 Asp Ala <210> 11 <211> 771 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101) .. (748) <223> RXC01207 <400> 11 cttcatgatc tcaccggcag agcgcgtttt gttacagcgc gtaaactgtg actttgaaaa 60 atttttgaac aatccgtaca ccaacttcag gagaaaaaca gtg agc aga atc tat Val Ser Arg Ile Tyr 1 gac tgt gcc gac caa gac tcc cgt gca gca ggc cta aag gcg gct gtc 163 Asp Cys Ala Asp Gln Asp Ser Arg Ala Ala Gly Leu Lys Ala Ala Val 10 gat gca gtc aaa gcc ggt cag ctc gtt gtc ctt ccc acg gat acc ctt 211 Asp Ala Val Lys Ala Gly Gln Leu Val Val Leu Pro Thr Asp Thr Leu 25 30 35 tat gga ctc ggc tgc gac gct ttc aac aac gag gca gta gcc aac ctt 259 Tyr Gly Leu Gly Cys Asp Ala Phe Asn Asn Glu Ala Val Ala Asn Leu 40 45 307 ctg gcc acc aaa cac cgt ggc ccc gat atg ccc gtt cca gtg ctc gtc Leu Ala Thr Lys His Arg Gly Pro Asp Met Pro Val Pro Val Leu Val 60 355 ggc agc tgg gac acc att caa gga ctt gtg cac tcc tat tct gcg cag

Gly 70		Trp	Asp	Thr	lle 75		Gly	Leu	Val	His 80		Tyr	Ser	Ala	Gln 85	
gca Ala	aaa Lys	gcg Ala	ctt Leu	gtg Val 90	Glu	gcg Ala	ttc Phe	tgg Trp	cct Pro 95	Gly	gga Gly	ctg Leu	tcc Ser	Ile 100	atc lle	403
gtt Val	ccg Pro	cag Gln	gca Ala 105	Pro	agc Ser	ctt Leu	ccg Pro	tgg Trp 110	Asn	ctt Leu	ggc Gly	gat Asp	acc Thr 115	Arg	ggc	451
acc Thr	gta Val	atg Met 120	ctg Leu	cgc Arg	atg Met	cca Pro	ctg Leu 125	His	cca Pro	gtt Val	gcc Ala	att Ile 130	gaa Glu	ttg Leu	ctg Leu	499
cgc Arg	caa Gln 135	acc Thr	gga Gly	cca Pro	atg Met	gct Ala 140	gtc Val	tcc Ser	tcc Ser	gcc Ala	aac Asn 145	atc Ile	tcc Ser	gga Gly	cat His	547
act Thr 150	cct Pro	cca Pro	acc Thr	acc Thr	gtg Val 155	ctg Leu	gag Glu	gct Ala	cgt Arg	cag Gln 160	cag Gln	ctc Leu	aac Asn	caa Gln	aat Asn 165	595
gtc Val	gct Ala	gtc Val	tac Tyr	ctc Leu 170	gat Asp	ggt Gly	ggc Gly	gaa Glu	tgc Cys 175	gcg Ala	ctg Leu	gcc Ala	acc Thr	Pro 180	tca Ser	643
acc Thr	atc Ile	gtg Val	gat Asp 185	att Ile	tca Ser	ggc Gly	ccc Pro	gca Ala 190	cca Pro	aag Lys	att Ile	ttg Leu	cgt Arg 195	gag Glu	ggt Gly	691
gcc Ala	atc Ile	agc Ser 200	gca Ala	gaa Glu	cgc Arg	gtt Val	ggc Gly 205	gaa Glu	gta Val	ctt Leu	gga Gly	gtg Val 210	tcg Ser	gca Ala	gaa Glu	739
	ctg Leu 215	cgc Arg	taaa	atgg	gag t	cggt	ttc	gc gg	aa							771
<211 <212)> 12 l> 21 ?> PF B> Co	L 6	ebact	eri	ım gl	.utan	nicum	a.								
)> 12 Ser	? Arg	Ile	Tyr 5	Asp	Cys	Ala	Asp	Gln 10	Asp	Ser	Arg	Ala	Ala 15	Gly	
Leu	Lys	Ala	Ala 20	Val	Asp	Ala	Val	Lys 25	Ala	Gly	Gln	Leu	Val 30	Val	Leu	
Pro	Thr	Asp 35	Thr	Leu	Tyr	Gly	Leu 40	Gly	Суѕ	Asp	Ala	Phe 45	Asn	Asn	Glu	
Ala	Val 50	Ala	Asn	Leu	Leu	Ala 55	Thr	Lys	His	Arg	Gly 60	Pro	Asp	Met	Pro	
Val 65	Pro	Val	Leu	Val	Gly 70	Ser	Trp	Asp	Thr	Ile 75	Gln	Gly	Leu	Val	His 80	

Ser	Tyr _.	Ser	Ala	Gln 85	Ala	Lys _.	Ala	Leu	Val 90	Glu	Ala	Phe	Trp	Pro 95	Gly	
Gly	Leu	Ser	Ile 100	Ile	Val	Pro	Gln	Ala 105	Pro	Ser	Leu	Pro	Trp 110	Asn	Leu	
Gly	Asp	Thr 115	Arg	Gly	Thr	Val	Met 120	Leu	Arg	Met	Pro	Leu 125	His	Pro	Val	
Ala	Ile 130	Glu	Leu	Leu	Arg	Gln 135	Thr	Gly	Pro	Met	Ala 140	Val	Ser	Ser	Ala	
Asn 145	Ile	Ser	Gly	His	Thr 150	Pro	Pro	Thr	Thr	Val 155	Leu	Glu	Ala	Arg	Gln 160	
Gln	Leu	Asn	Gln	Asn 165	Val	Ala	Val	Tyr	Leu 170	Asp	Gly	Gly	Glu	Cys 175	Ala	
Leu	Ala	Thr	Pro 180	Ser	Thr	Ile	Val	Asp 185	Ile	Ser	Gly	Pro	Ala 190	Pro	Lys	
Ile	Leu	Arg 195	Glu	Gly	Ala	Ile	Ser 200	Ala	Glu	Arg	Val	Gly 205	Glu	Val	Leu	
Gly	Val 210	Ser	Ala	Glu	Ser	Leu 215	Arg									
<211 <212 <213 <220 <221 <222 <223)> 13 !> 1(!> DN !> Cd !> Cl !> (1 !> (1	D26 NA Dryne DS L01).	(10		um g]	lutan	nicum	n								
gtgc	ggat	cg c	gtat	ccg	g ct	acac	ttag	g ago	gtgtt	aga	gato	atga	agt (tcca	acgaac	60
tgta	acgo	ag g	gatto	acca	a to	aatg	raaa <u>c</u>	g gto	gaco	gac	_	_	act Thr	-	_	115
	gtc Val															163
	tgg Trp															211
	tcc Ser															259
	cca Pro															307

	aac Asn															355
atc Ile	ggg Gly	cac His	acc Thr	atc Ile 90	gct Ala	gaa Glu	ggc Gly	agt Ser	ccc Pro 95	atc Ile	gac Asp	atg Met	ctg Leu	ttg Leu 100	gaa Glu	403
	tct Ser															451
gga Gly	ctc Leu	tcc Ser 120	gga Gly	atg Met	gt <i>c</i> Val	atg Met	ggc Gly 125	tcc Ser	gtc Val	tcc Ser	ggt Gly	gca Ala 130	gtg Val	gtc Val	agc Ser	499
	gca Ala 135															547
	gac Asp															595
	tcc Ser															643
	gcc Ala															691
	tca Ser															739
	cgt Arg 215															787
	aag Lys															835
	gtt Val															883
	ggt Gly															931
	tcc Ser															979
102				_				tagt	ttct	tt 1	aagt	tteg	ga t <u>g</u>	jc		
Arg	Pro 295	rro	GIU	гуѕ	TIE	300	ьуѕ									

<210> 14

<211> 301

<212> PRT

<213> Corynebacterium glutamicum

<400> 14

Met Ser Thr Glu Asp Ile Val Val Val Ala Val Asp Gly Ser Asp Ala 1 5 10 15

Ser Lys Gln Ala Val Arg Trp Ala Ala Asn Thr Ala Asn Lys Arg Gly
20 25 30

Ile Pro Leu Arg Leu Ala Ser Ser Tyr Thr Met Pro Gln Phe Leu Tyr 35 40 45

Ala Glu Gly Met Val Pro Pro Gln Glu Leu Phe Asp Asp Leu Gln Ala
50 55 60

Glu Ala Leu Glu Lys Ile Asn Glu Ala Arg Asp Ile Ala His Glu Val 65 70 75 80

Ala Pro Glu Ile Lys Ile Gly His Thr Ile Ala Glu Gly Ser Pro Ile 85 90 95

Asp Met Leu Leu Glu Met Ser Pro Asp Ala Thr Met Ile Val Met Gly
100 105 110

Ser Arg Gly Leu Gly Gly Leu Ser Gly Met Val Met Gly Ser Val Ser 115 120 125

Gly Ala Val Val Ser His Ala Lys Cys Pro Val Val Val Arg Glu 130 135 140

Asp Ser Ala Val Asn Glu Asp Ser Lys Tyr Gly Pro Val Val Gly
145 150 155 160

Val Asp Gly Ser Glu Val Ser Gln Gln Ala Thr Glu Tyr Ala Phe Ala 165 170 175

Glu Ala Glu Ala Arg Gly Ala Glu Leu Val Ala Val His Thr Trp Met
180 185 190

Asp Met Gln Val Gln Ala Ser Leu Ala Gly Leu Ala Ala Ala Gln Gln
195 200 205

Gln Trp Asp Glu Val Glu Arg Gln Gln Thr Asp Met Leu Ile Glu Arg 210 215 220

Leu Ala Pro Leu Val Glu Lys Tyr Pro Ser Val Thr Val Lys Lys Ile 225 230 235 240

Ile Thr Arg Asp Arg Pro Val Arg Ala Leu Ala Glu Ala Ser Glu Asn 245 250 255

Ala Gln Leu Leu Val Val Gly Ser His Gly Arg Gly Gly Phe Lys Gly 260 265 270

Met Leu Gly Ser Thr Ser Arg Ala Leu Leu Gln Ser Ala Pro Cys 275 280 285

Pro Met Met Val Val Arg Pro Pro Glu Lys Ile Lys Lys 290 295 300

<2: <2:	10> : 11> : 12> : 13> (1059 DNA	nebad	cter:	ium g	gluta	amic	ım								
<22	21> ((101)) (1)552	L036))											
)0> 1 jccaa		ggca	ıgcaa	ag c	:tcga	itcca	ıa tt	gacç	jcctt	: gcg	ıttat	gag	taaa	agcct	c 60
gtt	:ttta	agg	tago	caca	ica t	cgca	ctag	ga ct	gaag	gaact		Ala			aaa Lys 5	115
att Ile	ctt Leu	ctt Leu	tatı Tyr	tac Tyr 10	Ala	tto Phe	acc Thr	ccg Pro	cto Leu 15	Ser	gac Asp	cct Pro	aaa Lys	gcg Ala 20	gtt Val	163
cag Gln	ctg Leu	tgg Trp	cag Gln 25	Arg	gag Glu	ctc Leu	tgc Cys	gag Glu 30	Ser	ctg Leu	aat Asn	ctt Leu	cgt Arg 35	Gly	cgc	211
atc Ile	ctg Leu	atc Ile 40	Ser	act Thr	cac His	ggc	atc Ile 45	Asn	gga Gly	acc Thr	gtg Val	ggc Gly 50	gga Gly	gat Asp	att Ile	259
gat Asp	gat Asp 55	Cys	aag Lys	gcg Ala	tac Tyr	att Ile 60	aaa Lys	aag Lys	acc Thr	cgc Arg	gag Glu 65	tac Tyr	cca Pro	ggt Gly	ttc Phe	307
aac Asn 70	cgc Arg	atg Met	cag Gln	ttt Phe	aag Lys 75	tgg Trp	tcc Ser	gag Glu	ggt Gly	ggc Gly 80	gct Ala	gag Glu	gat Asp	ttc Phe	cca Pro 85	355
aag Lys	ctc Leu	agt Ser	gtc Val	aaa Lys 90	gtc Val	cgc Arg	gat Asp	gag, Glu	atc Ile 95	gtt Val	gcc Ala	ttc Phe	ggc Gly	gct Ala 100	cca Pro	403
gat Asp	gag Glu	ctc Leu	aaa Lys 105	gtg Val	gat Asp	gaa Glu	aac Asn	ggc Gly 110	gtc Val	gtc Val	ggt Gly	ggc	ggc Gly 115	gtt Val	cac His	451
ctg Leu	aaa Lys	cca Pro 120	cag Gln	cag Gln	gtc Val	aat Asn	gag Glu 125	ctt Leu	gtg Val	gaa Glu	gcc Ala	cgt Arg 130	ggc Gly	gat Asp	gaa Glu	499
gtt Val	gtg Val 135	ttc Phe	ttt Phe	gac Asp	ggc Gly	cgc Arg 140	aac Asn	gca Ala	atg Met	gaa Glu	gcc Ala 145	cag Gln	atc Ile	ggc Gly	aag Lys	547
ttc Phe 150	aag Lys	gac Asp	gct Ala	gtt Val	gtc Val 155	cct Pro	gac Asp	gta Val	gaa Glu	acc Thr 160	act Thr	cat His	gat Asp	ttc Phe	atc Ile 165	595

gca (gaa Glu	att Ile	gag Glu	tct Ser 170	gga Gly	aaa Lys	tac Tyr	gac Asp	gat Asp 175	ctc Leu	aaa Lys	gac Asp	aag Lys	cct Pro 180	gtg Val	643
gtc a	acc Thr	tac Tyr	tgc Cys 185	acc Thr	G1A aac	gga Gly	att Ile	cgt Arg 190	tgt Cys	gag Glu	atc Ile	ctg Leu	agt Ser 195	tca Ser	ctc Leu	691
atg a Met I																739
gtt o Val 1																787
ctc t Leu 7 230																835
aaa (883
gag o Glu I																931
ect o																979
tgt (1027 Cys 1		_		-												
gtt a		tct	taaa	aaag	rat e		aget	a go	at.							
1059 Val 3						- 33										
<210: <211: <212: <213:	> 31 > PF	l2 RT	ebact	eri	ım g]	lutar	nicur	n								
<400 Val 1			Ser	Lys 5	Ile	Leu	Leu	Tyr	туг 10	Ala	Phe	Thr	Pro	Leu 15	Ser	
Asp I	Pro	Lys	Ala 20	Val	Gln	Leu	Trp	Gln 25	Arg	Glu	Leu	Cys	Glu 30	Ser	Leu	
Asn I	Leu	Arg 35	Gly	Arg	Ile	Leu	Ile 40	Ser	Thr	His	Gly	Ile 45	Asn	Gly	Thr	
Val (Gly 50	Gly	Asp	Ile	Asp	Asp 55	Cys	Lys	Ala	Tyr	Ile 60	Lys	Lys	Thr	Arg	

Glu Tyr Pro Gly Phe Asn Arg Met Gln Phe Lys Trp Ser Glu Gly Gly 65 70 75 80

Ala Glu Asp Phe Pro Lys Leu Ser Val Lys Val Arg Asp Glu Ile Val 85 90 95

Ala Phe Gly Ala Pro Asp Glu Leu Lys Val Asp Glu Asn Gly Val Val 100 105 110

Gly Gly Val His Leu Lys Pro Gln Gln Val Asn Glu Leu Val Glu 115 120 125

Ala Arg Gly Asp Glu Val Val Phe Phe Asp Gly Arg Asn Ala Met Glu 130 135 140

Ala Gln Ile Gly Lys Phe Lys Asp Ala Val Val Pro Asp Val Glu Thr 145 150 155 160

Thr His Asp Phe Ile Ala Glu Ile Glu Ser Gly Lys Tyr Asp Asp Leu 165 170 175

Lys Asp Lys Pro Val Val Thr Tyr Cys Thr Gly Gly Ile Arg Cys Glu 180 185 190

Ile Leu Ser Ser Leu Met Ile Asn Arg Gly Phe Lys Glu Val Tyr Gln
195 200 205

Ile Asp Gly Gly Ile Val Arg Tyr Gly Glu Gln Phe Gly Asn Lys Gly 210 215 220

Leu Trp Glu Gly Ser Leu Tyr Val Phe Asp Lys Arg Met His Met Glu 225 230 235 240

Phe Gly Glu Asp Tyr Lys Glu Val Gly His Cys Ile His Cys Asp Thr 245 250 255

Pro Thr Asn Lys Phe Glu His Cys Leu Asn Glu Asp Asp Cys Arg Glu 260 265 270

Leu Val Leu Met Cys Pro Asp Cys Phe Ala Asn Val Glu Thr Arg His 275 280 285

Cys Lys Arg Glu Arg Cys Ala Ala Ile Ala Ala Asp Phe Ala Glu Gln 290 295 300

Gly Ile Asp Pro Leu Val Thr Ser 305 310

<210> 17

<211> 1578

<212> DNA

<213> Corynebacterium glutamicum

<220>

4

<221> CDS

<222> (101)..(1555)

<223> RXN00351

<400> 17

gaaggetget getaagaaaa egaccaagaa gaccactaag aaaactacta aaaagaccae 60

cgcaa	aaga	ag a	ccac	caaag	ga ag	gtett	aago	e egg	gatet	tat		gat Asp				115
agc t Ser E	ttt Phe	gta Val	gtt Val	gtt Val 10	gct Ala	aac Asn	cgt Arg	ctg Leu	cca Pro 15	gtg Val	gat Asp	atg Met	act Thr	gtc Val 20	cac His	163
cca ç Pro A	gat Asp	ggt Gly	agc Ser 25	tat Tyr	agc Ser	atc Ile	tcc Ser	ccc Pro 30	agc Ser	ccc Pro	ggt Gly	ggc Gly	ctt Leu 35	gtc Val	acg Thr	211
Gly I																259
cct (307
gtt t Val I 70																355
tac (403
att g Ile V	gtt Val	act Thr	ccg Pro 105	gtg Val	tac Tyr	aac Asn	acc Thr	gat Asp 110	tgg Trp	tgg Trp	cat His	gcg Ala	ttt Phe 115	cgg Arg	gag Glu	451
gta a Val A																499
gcc a Ala 1	act Thr 135	gtg Val	tgg Trp	gtg Val	cag Gln	gac Asp 140	tat Tyr	cag Gln	ctg Leu	ttg Leu	ctg Leu 145	gtt Val	cct Pro	ggc Gly	att Ile	547
ttg d Leu 1 150	cgc Arg	cag Gln	atg Met	cgc Arg	cct Pro 155	gat Asp	ttg Leu	aag Lys	atc Ile	ggt Gly 160	ttc Phe	ttc Phe	ctc Leu	cac His	att Ile 165	595
ccc t																643
att (691
caa a Gln <i>l</i>																739
gcc g Ala (ggg Gly 215	tct Ser	cat His	gtg Val	ggt Gly	cag Gln 220	ccg Pro	gac Asp	acc Thr	ttg Leu	cag Gln 225	gtc Val	agt Ser	ggt Gly	gaa Glu	787

gca ttg gt Ala Leu Va 230												835
cga gtt ag Arg Val Se		Ala Phe										883
ggg gag gc Gly Glu Al			_		_				_		-	931
gag ccg ga Glu Pro Gl 28	u Thr Val											979
ggc att tt 1027	g cag cgc	ctg ctt	gcg	ttt	gag	gaa	ctg	ctg	gaa	tcc	ggc	
Gly Ile Le 295	u Gln Arg	Leu Leu 300		Phe	Glu	Glu	Leu 305	Leu	Glu	Ser	Gly	
gcg ttg ga 1075	g gcc gac	aaa gct	gtg	ttg	ctg	cag	gtc	gcg	acg	cct	tcg	
Ala Leu Gl 310	u Ala Asp	Lys Ala 315	Val	Leu	Leu	Gln 320	Val	Ala	Thr	Pro	Ser 325	
cgt gag cg 1123	c att gat	cac tat	: cgt	gtg	tcg	cgt	tcg	cag	gtc	gag	gaa	
Arg Glu Ar	g Ile Asp 330	_	Arg		Ser 335	Arg	Ser	Gln	Val	Glu 340	Glu	
gcc gtc gg 1171	c cgt atc	aat ggt	. cgt	ttc	ggt	cgc	atg	ggg	cgt	ccc	gtg	
Ala Val Gl	y Arg Ile 345	Asn Gly		Phe 350	Gly	Arg	Met	Gly	Arg 355	Pro	Val	
gtg cat ta 1219	t cta cac	agg tca	ttg	agc	aaa	aat	gat	ctc	cag	gtg	ctg	
Val His Ty 36		Arg Ser	365	Ser	Lys	Asn	Asp	Leu 370	Gln	Val	Leu	
tat acc gc	a gcc gat	gtc ato	ctg	gtt	acg	cct	ttt	aaa	gac	ggt	atg	
Tyr Thr Al.	a Ala Asp	Val Met		Val	Thr	Pro	Phe 385	Lys	Asp	Gly	Met	
aac ttg gt	g gct aaa	gaa tto	gtg	gcc	aac	cac	cgc	gac	ggc	act	ggt	
Asn Leu Va	l Ala Lys	Glu Phe 395	val	Ala	Asn	His 400	Arg	Asp	Gly	Thr	Gly 405	
gct ttg gt	g ctg tcc	gaa ttt	gcc	ggc	gcg	gcc	act	gag	ctg	acc	ggt	
Ala Leu Va	l Leu Ser 410		Ala		Ala 415	Ala	Thr	Glu	Leu	Thr 420	Gly	
gcg tat tt	a tgc aac	cca ttt	gat	gtg	gaa	tcc	atc	aaa	cgg	caa	atg	
Ala Tyr Le	u Cys Asn 425	Pro Phe		Val 430	Glu	Ser	Ile	Lys	Arg 435	Gln	Met	

gtg gca gct gtc cat gat ttg aag cac aat ccg gaa tct gcg gca acg 1459

Val Ala Ala Val His Asp Leu Lys His Asn Pro Glu Ser Ala Ala Thr 440 445 450

cga atg aaa acg aac agc gag cag gtc tat acc cac gac gtc aac gtg 1507

Arg Met Lys Thr Asn Ser Glu Gln Val Tyr Thr His Asp Val Asn Val 455 460 465

tgg gct aat agt ttc ctg gat tgt ttg gca cag tcg gga gaa aac tca . 1555

Trp Ala Asn Ser Phe Leu Asp Cys Leu Ala Gln Ser Gly Glu Asn Ser 470 480 485

tgaaccgcgc acgaatcgcg acc 1578

<210> 18

<211> 485

<212> PRT

<213> Corynebacterium glutamicum

<400> 18

Met Asp Asp Ser Asn Ser Phe Val Val Val Ala Asn Arg Leu Pro Val 1 5 10 15

Asp Met Thr Val His Pro Asp Gly Ser Tyr Ser Ile Ser Pro Ser Pro 20 25 30

Glý Glý Leu Val Thr Gly Leu Ser Pro Val Leu Glu Gln His Arg Gly 35 40 45

Cys Trp Val Gly Trp Pro Gly Thr Val Asp Val Ala Pro Glu Pro Phe

Arg Thr Asp Thr Gly Val Leu Leu His Pro Val Val Leu Thr Ala Ser 65 70 75 80

Asp Tyr Glu Gly Phe Tyr Glu Gly Phe Ser Asn Ala Thr Leu Trp Pro 85 90 95

Leu Phe His Asp Leu Ile Val Thr Pro Val Tyr Asn Thr Asp Trp Trp 100 105 110

His Ala Phe Arg Glu Val Asn Leu Lys Phe Ala Glu Ala Val Ser Gln 115 120 125

Val Ala Ala His Gly Ala Thr Val Trp Val Gln Asp Tyr Gln Leu Leu 130 135 140

Leu Val Pro Gly Ile Leu Arg Gln Met Arg Pro Asp Leu Lys Ile Gly 145 150 155 160

Phe Phe Leu His Ile Pro Phe Pro Ser Pro Asp Leu Phe Arg Gln Leu 165 170 175

Pro Trp Arg Glu Glu Ile Val Arg Gly Met Leu Gly Ala Asp Leu Val

Gly Phe His Leu Val Gln Asn Ala Glu Asn Phe Leu Ala Leu Thr Gln 195 200 205

Gln Val Ala Glý Thr Ala Gly Ser His Val Gly Gln Pro Asp Thr Leu 210 215 220

Gln Val Ser Glý Glu Alá Leu Val Arg Glu Ile Glý Ala His Val Glu 225 230 235 240

Thr Ala Asp Glý Arg Arg Val Ser Val Glý Ala Phé Pro Ile Ser Ile 245 250 255

Asp Val Glu Met Phe Gly Glu Ala Ser Lys Ser Ala Val Leu Asp Leu 260 265 270

Leu Lys Thr Leu Asp Glu Pro Glu Thr Val Phe Leu Gly Val Asp Arg 275 280 285

Leu Asp Tyr Thr Lys Gly Ile Leu Gln Arg Leu Leu Ala Phe Glu Glu 290 295 300

Leu Leu Glu Ser Gly Ala Leu Glu Ala Asp Lys Ala Val Leu Leu Gln 305 310 315 320

Val Ala Thr Pro Ser Arg Glu Arg Ile Asp His Tyr Arg Val Ser Arg
325 330 335

Ser Gln Val Glu Glu Ala Val Gly Arg Ile Asn Gly Arg Phe Gly Arg 340 345 350

Met Gly Arg Pro Val Val His Tyr Leu His Arg Ser Leu Ser Lys Asn 355 360 365

Asp Leu Gln Val Leu Tyr Thr Ala Ala Asp Val Met Leu Val Thr Pro

Phe Lys Asp Gly Met Asn Leu Val Ala Lys Glu Phe Val Ala Asn His / 385 390 395 400

Arg Asp Gly Thr Gly Ala Leu Val Leu Ser Glu Phe Ala Gly Ala Ala / 405 410 415

Thr Glu Leu Thr Gly Ala Tyr Leu Cys Asn Pro Phe Asp Val Glu Ser / 420 425 430

Ile Lys Arg Gln Met Val Ala Ala Val His Asp Leu Lys His Asm Pro
435 440 445

Glu Ser Ala Ala Thr Arg Met Lys Thr Asn Ser Glu Gln Val Tyr Thr 450 455 460

His Asp Val Asn Val Trp Ala Asn Ser Phe Leu Asp Cys Leu Ala Gln 465 470 475 480

Ser Gly Glu Asn Ser 485

<210> 19 <211> 1546 <212> DNA

<213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1546) <223> FRXA00351 <400> 19 gaaggctgct gctaagaaaa cgaccaagaa gaccactaag aaaactacta aaaagaccac 60 cgcaaagaag accacaaaga agtcttaagc cggatcttat atg gat gat tcc aat Met Asp Asp Ser Asn age ttt gta gtt gtt gct aac cgt ctg cca gtg gat atg act gtc cac 163 Ser Phe Val Val Val Ala Asn Arg Leu Pro Val Asp Met Thr Val His 10 cca gat ggt agc tat agc atc tcc ccc agc ccc ggt ggc ctt gtc acg 211 Pro Asp Gly Ser Tyr Ser Ile Ser Pro Ser Pro Gly Gly Leu Val Thr 25 ggg ctt tcc ccc gtt ctg gaa caa cat cgt gga tgt tgg gtc gga tgg 259 Gly Leu Ser Pro Val Leu Glu Gln His Arg Gly Cys Trp Val Gly Trp cet gga act gta gat gtt gca eec gaa eea ttt ega aca gat aeg ggt 307 Pro Gly Thr Val Asp Val Ala Pro Glu Pro Phe Arg Thr Asp Thr Gly 55 gtt ttg ctg cac cct gtt gtc ctc act gca agt gac tat gaa ggc ttc 355 Val Leu Leu His Pro Val Val Leu Thr Ala Ser Asp Tyr Glu Gly Phe 75 tac gag ggc ttt tca aac gca acg ctg tgg cct ctt ttc cac gat ctg 403 Tyr Glu Gly Phe Ser Asn Ala Thr Leu Trp Pro Leu Phe His Asp Leu 95 att gtt act ccg gtg tac aac acc gat tgg tgg cat gcg ttt cgg gag 451 Ile Val Thr Pro Val Tyr Asn Thr Asp Trp Trp His Ala Phe Arg Glu 110 gta aac ctc aag ttc gct gaa gcc gtg agc caa gtg gcg gca cac ggt 499 Val Asn Leu Lys Phe Ala Glu Ala Val Ser Gln Val Ala Ala His Gly 120 gcc act gtg tgg gtg cag gac tat cag ctg ttg ctg gtt cct ggc att 547 Ala Thr Val Trp Val Gln Asp Tyr Gln Leu Leu Val Pro Gly Ile 135 140 ttg cgc cag atg cgc cct gat ttg aag atc ggt ttc ttc ctc cac att Leu Arg Gln Met Arg Pro Asp Leu Lys Ile Gly Phe Phe Leu His Ile 150 155 ccc ttc cct tcc cct gat ctg ttc cgt cag ctg ccg tgg cgt gaa gag Pro Phe Pro Ser Pro Asp Leu Phe Arg Gln Leu Pro Trp Arg Glu Glu 170 att gtt cga ggc atg ctg ggc gca gat ttg gtg gga ttc cat ttg gtt Ile Val Arg Gly Met Leu Gly Ala Asp Leu Val Gly Phe His Leu Val 190 185

													Ala		act Thr	739
															gaa Glu	787
	ttg Leu															835
	gtt Val															883
	gag Glu															931
	ccg Pro															979
ggc 1027	att	ttg	cag	cgc	ctg	ctt	gcg	ttt	gag	gaa	ctg	ctg	gaa	tcc	ggc	
	Ile 295	Leu	Gln	Arg	Leu	Leu 300	Ala	Phe	Glu	Glu	Leu 305	Leu	Glu	Ser	Gly	
gcg 1075	ttg	gag	gcc	gac	aaa	gct	gtg	ttg	ctg	cag	gtc	gcg	acg	cct	tcg	
	Leu	Glu	Ala	ýsb	Lys 315	Ala	Val	Leu	Leu	Gln 320	Val	Ala	Thr	Pro	Ser 325	
cgt 1123	gag	cgc	att	gat	cac	tat	cgt	gtg	tcg	cgt	tcg	cag	gtc	gag	gaa	
	Glu	Arg	Ile	Asp 330	His	Tyr	Arg	Val	Ser 335	Arg	Ser	Gln	Val	Glu 340	Glu	
gcc 1171	gtc	ggc	cgt	atc	aat	ggt	cgt	ttc	ggt	cgc	atg	ggg	cgt	ccc	gtg	
Ala	Val	Gly	Arg 345	Ile	Asn	Gly	Arg	Phe 350	Gly	Arg	Met	Gly	Arg 355	Pro	Val	
gtg 1219		tat	cta	cac	agg	tca	ttg	agc	aaa	aat	gat	ctc	cag	gtg	ctg	
Va1	His	Туr 360	Leu	His	Arg	Ser	Leu 365	Ser	Lys	Asn	Asp	Leu 370	Gln	Val	Leu	
tat 1267		gca	gcc	gat	gtc	atg	ctg	gtt	acg	cct	ttt	aaa	gac	ggt	atg	
	Thr 375	Ala	Ala	Asp	Val	Met 380	Leu	Val	Thr	Pro	Phe 385	Lys	qaA	Gly	Met	
aac 1315		gtg	gct	aaa	gaa	ttc	gtg	gcc	aac	cac	cgc	gac	ggc	act	ggt	
Asn 390		Val	Ala	Lys	Glu 395	Phe	Val	Ala	Asn	His 400	Arg	Asp	Gly		Gly 405	

gct ttg gtg ctg tcc gaa ttt gcc ggc gcg gcc act gag ctg acc ggt 1363

Ala Leu Val Leu Ser Glu Phe Ala Gly Ala Ala Thr Glu Leu Thr Gly 410 415 420

gcg tat tta tgc aac cca ttt gat gtg gaa tcc atc aaa cgg caa atg 1411

Ala Tyr Leu Cys Asn Pro Phe Asp Val Glu Ser Ile Lys Arg Gln Met
425 430 435

gtg gca gct gtc cat gat ttg aag cac aat ccg gaa tct gcg gca acg 1459

Val Ala Ala Val His Asp Leu Lys His Asn Pro Glu Ser Ala Ala Thr 440 445 450

cga atg aaa acg aac agc gag cag gtc tat acc cac gac gtc aac gtg 1507

Arg Met Lys Thr Asn Ser Glu Gln Val Tyr Thr His Asp Val Asn Val 455 460 465

tgg gct aat agt ttc ctg gat tgt ttg gca cag tcg gga 1546

Trp Ala Asn Ser Phe Leu Asp Cys Leu Ala Gln Ser Gly
470 475 480

<210> 20

<211> 482

<212> PRT

<213> Corynebacterium glutamicum

<400> 20

Met Asp Asp Ser Asn Ser Phe Val Val Val Ala Asn Arg Leu Pro Val 1 5 10 15

Asp Met Thr Val His Pro Asp Gly Ser Tyr Ser Ile Ser Pro Ser Pro 20 25 30

Gly Gly Leu Val Thr Gly Leu Ser Pro Val Leu Glu Gln His Arg Gly 35 40 45

Cys Trp Val Gly Trp Pro Gly Thr Val Asp Val Ala Pro Glu Pro Phe 50 60

Arg Thr Asp Thr Gly Val Leu Leu His Pro Val Val Leu Thr Ala Ser 65 70 75 80

Asp Tyr Glu Gly Phe Tyr Glu Gly Phe Ser Asn Ala Thr Leu Trp Pro 85 90 95

Leu Phe His Asp Leu Ile Val Thr Pro Val Tyr Asn Thr Asp Trp Trp
100 105 110

His Ala Phe Arg Glu Val Asn Leu Lys Phe Ala Glu Ala Val Ser Gln
115 120 125

Val Ala Ala His Gly Ala Thr Val Trp Val Gln Asp Tyr Gln Leu Leu 130 135 140

Leu Val Pro Gly Ile Leu Arg Gln Met Arg Pro Asp Leu Lys Ile Gly
145 150 155 160

Phe Phe Leu His Ile Pro Phe Pro Ser Pro Asp Leu Phe Arg Gln Leu 165 170 175

- Pro Trp Arg Glu Glu Ile Val Arg Gly Met Leu Gly Ala Asp Leu Val 180 185 190
- Gly Phe His Leu Val Gln Asn Ala Glu Asn Phe Leu Ala Leu Thr Gln 195 200 205
- Gln Val Ala Gly Thr Ala Gly Ser His Val Gly Gln Pro Asp Thr Leu 210 215 220
- Gln Val Ser Gly Glu Ala Leu Val Arg Glu Ile Gly Ala His Val Glu 225 230 235 240
- Thr Ala Asp Gly Arg Arg Val Ser Val Gly Ala Phe Pro Ile Ser Ile 245 250 255
- Asp Val Glu Met Phe Gly Glu Ala Ser Lys Ser Ala Val Leu Asp Leu 260 265 270
- Leu Lys Thr Leu Asp Glu Pro Glu Thr Val Phe Leu Gly Val Asp Arg 275 280 285
- Leu Asp Tyr Thr Lys Gly Ile Leu Gln Arg Leu Leu Ala Phe Glu Glu 290 295 300
- Leu Leu Glu Ser Gly Ala Leu Glu Ala Asp Lys Ala Val Leu Leu Gln 305 310 315 320
- Val Ala Thr Pro Ser Arg Glu Arg Ile Asp His Tyr Arg Val Ser Arg 325 330 335
- Ser Gln Val Glu Glu Ala Val Gly Arg Ile Asn Gly Arg Phe Gly Arg 340 345 350
- Met Gly Arg Pro Val Val His Tyr Leu His Arg Ser Leu Ser Lys Asn 355 360 365
- Asp Leu Gln Val Leu Tyr Thr Ala Ala Asp Val Met Leu Val Thr Pro 370 380
- Phe Lys Asp Gly Met Asn Leu Val Ala Lys Glu Phe Val Ala Asn His 385 390 395 400
- Arg Asp Gly Thr Gly Ala Leu Val Leu Ser Glu Phe Ala Gly Ala Ala 405 410 415
- Thr Glu Leu Thr Gly Ala Tyr Leu Cys Asn Pro Phe Asp Val Glu Ser 420 425 430
- Ile Lys Arg Gln Met Val Ala Ala Val His Asp Leu Lys His Asn Pro
 435 440 445
- Glu Ser Ala Ala Thr Arg Met Lys Thr Asn Ser Glu Gln Val Tyr Thr 450 455 460
- His Asp Val Asn Val Trp Ala Asn Ser Phe Leu Asp Cys Leu Ala Gln 465 470 475 480

Ser Gly

<213 <213	0> 21 l> 77 2> Di 3> Co	79 NA	ebac	teri	um gi	luta	micu	m						
<222	0> l> CI 2> (1 3> RI	1))										
<400)> 21	1												
act	gcc	caa									gag Glu			48
											tcc Ser			96
											agg Arg 45			144
											ctt Leu			192
											ggt Gly			240
											gga Gly			288
		-									tcc Ser		_	336
											caa Gln 125			384
_		-			_	-			_	_	aac Asn	_	_	432
											tac Tyr			480
											gag Glu			528
											tgt Cys			576

185 190 180 atg agc aaa tat cct cag gca gtc tcg ctt gat ttg cgt gaa ttt gca 624 Met Ser Lys Tyr Pro Gln Ala Val Ser Leu Asp Leu Arg Glu Phe Ala 200 195 205 gga cac acc cct cga gag atg tcg ggc ggg cag ctg ttc cct acc att 672 Gly His Thr Pro Arg Glu Met Ser Gly Gly Gln Leu Phe Pro Thr Ile 210 gct gaa cgg gag tgg att gtc act tta gcc cct cac gga ttc ttc tgg 720 Ala Glu Arg Glu Trp Ile Val Thr Leu Ala Pro His Gly Phe Phe Trp 230 ttt gat ctc acc gcc gat gaa aag gac gat atg gaa tgagcattgg 766 Phe Asp Leu Thr Ala Asp Glu Lys Asp Asp Met Glu 779 ccaacacatc atc <210> 22 <211> 252 <212> PRT <213> Corynebacterium glutamicum Thr Ala Gln Trp Gly Ile Phe Leu Arg Asn His Asp Glu Leu Thr Leu Glu Met Val Ser Asp Glu Glu Arg Ser Tyr Met Tyr Ser Gln Phe Ala 25 Ser Glu Pro Arg Met Arg Ala Asn Val Gly Ile Arg Arg Arg Leu Ser Pro Leu Leu Glu Gly Asp Arg Asn Gln Leu Glu Leu His Gly Leu Leu Leu Ser Leu Pro Gly Ser Pro Val Leu Tyr Tyr Gly Asp Glu Ile 70 75 65 Gly Met Gly Asp Asn Ile Trp Leu His Asp Arg Asp Gly Val Arg Thr Pro Met Gln Trp Ser Asn Asp Arg Asn Gly Gly Phe Ser Lys Ala Asp 105 Pro Glu Arg Leu Tyr Leu Pro Ala Ile Gln Asn Asp Gln Tyr Gly Tyr 115 120 125 Ala Gln Val Asn Val Glu Ser Gln Leu Asn Arg Glu Asn Ser Leu Leu 135 Arg Trp Leu Arg Asn Gln Ile Leu Ile Arg Lys Gln Tyr Arg Ala Phe 145 150 Gly Ala Gly Thr Tyr Arg Glu Val Ser Ser Thr Asn Glu Ser Val Leu 165 170

Thr Phe Leu Arg Glu His Lys Gly Gln Thr Ile Leu Cys Val Asn Asn

Met Ser Lys Tyr Pro Gln Ala Val Ser Leu Asp Leu Arg Glu Phe Ala

		195					200					205				
Gly	His 210	Thr	Pro	Arg	Glu	Met 215	Ser	Gly	Gly	Gln	Leu 220	Phe	Pro	Thr	Ile	
Ala 225	Glu	Arg	Glu	Trp	Ile 230	Val	Thr	Leu	Ala	Pro 235	His	Gly	Phe	Phe	Trp 240	
Phe	Asp	Leu	Thr	Alá 245	Asp	Glu	Lys	Asp	Asp 250	Met	Glu					
<213 <213	0> 23 l> 11 2> Di 3> Co	LO2 VA	ebact	teri	um g]	Lutar	nicu	m								
<222	L> CI	L01)	(1: 891	102)												
)> 23 atatt	-	gaaga	aaaa	ec go	gcag	gete	t ct	cacta	agtc	tcag	ggtga	agg d	gaaa	agtggt	60
gaaa	agaco	ecg (ctac	gcat	gg tç	geged	etgg	e tti	tttaq	gaat		ctg Leu				115
					ctg Leu											163
					gat Asp											211
					ttg Leu											259
				-	ccc Pro		-	-				_			-	307
					gcc Ala 75											355
					aac Asn					-		-	_		-	403
					cag Gln											451
ccg	ttt	tat	gat	tcc	cca	ctg	cgc	gac	ggc	ggt	tac	gat	atc	cgc	aac	499

Pro	Phe	Tyr 120	Asp	Ser	Pro	Leu	Arg 125	Asp	Gly	Gly	Tyr	Asp 130	Ile	Arg	Asn	
ttc Phe	cgt Arg 135	gaa Glu	atc Ile	ctg Leu	ccc Pro	gaa Glu 140	ttc Phe	ggc Gly	acc Thr	gtc Val	gat Asp 145	gac Asp	ttc Phe	gtg Val	gaa Glu	547
					cac His 155											595
					tcc Ser											643
					ccc Pro											691
					gaa Glu											739
					gat Asp											787
					cca Pro 235											835
					gtc Val											883
					gcc Ala											931
					aaa Lys											979
tct 1027		att	gag	aag	gaa	tac	ccc	ggc	cga	atç	ctg	ctc	gca	gaa	gcc	
		Ile	Glu	Lys	Glu	Tyr 300	Pro	Gly	Arg	Ile	Leu 305	Leu	Ala	Glu	Ala	
aac 1075		tgg	ccc	caa	gat	gtg	gtc	gaa	tac	ttc	ggt	gaa	aaa	gac	aaa	
		Trp	Pro	Gln	Asp 315	Val	Val	Glu	Tyr	Phe 320	Gly	Glu	Lys	Asp	Lys 325	
ggc 1102	_	gaa	tgc	cac	atg	gcc	ttc	cac								
		Glu	Cys	His 330	Met	Ala	Phe	His								

<210> 24 <211> 334

<212> PRT

<213> Corynebacterium glutamicum

<400> 24

Val Leu Gln Thr Ser Trp His Phe Ser Ile Leu Ala Gly Met Thr Asp 1 5 10 15

Thr Ser Pro Leu Asn Ser Gln Pro Ser Ala Asp His His Pro Asp His 20 25 30

Ala Ala Arg Pro Val Leu Asp Ala His Gly Leu Ile Val Glu His Glu
35 40 45

Ser Glu Glu Phe Pro Val Pro Ala Pro Ala Pro Gly Glu Gln Pro Trp 50 55 60

Glu Lys Lys Asn Arg Glu Trp Tyr Lys Asp Ala Val Phe Tyr Glu Val 65 70 75 80

Leu Val Arg Ala Phe Tyr Asp Pro Glu Gly Asn Gly Val Gly Ser Leu 85 90 95

Lys Gly Leu Thr Glu Lys Leu Asp Tyr Ile Gln Trp Leu Gly Val Asp 100 105 110

Cys Ile Trp Ile Pro Pro Phe Tyr Asp Ser Pro Leu Arg Asp Gly Gly
115 120 125

Tyr Asp Ile Arg Asn Phe Arg Glu Ile Leu Pro Glu Phe Gly Thr Val 130 135 140

Asp Asp Phe Val Glu Leu Val Asp His Ala His Arg Arg Gly Leu Arg 145 150 155 160

Val Ile Thr Asp Leu Val Met Asn His Thr Ser Asp Gln His Ala Trp
165 170 175

Phe Gln Glu Ser Arg Arg Asp Pro Thr Gly Pro Tyr Gly Asp Phe Tyr 180 185 190

Val Trp Ser Asp Asp Pro Thr Leu Tyr Asn Glu Ala Arg Ile Ile Phe 195 200 205

Val Asp Thr Glu Glu Ser Asn Trp Thr Tyr Asp Pro Val Arg Gly Gln 210 215 220

Tyr Phe Trp His Arg Phe Phe Ser His Gln Pro Asp Leu Asn Tyr Asp 225 230 235 240

Asn Pro Ala Val Gln Glu Ala Met Leu Asp Val Leu Arg Phe Trp Leu 245 250 255

Asp Leu Gly Leu Asp Gly Phe Arg Leu Asp Ala Val Pro Tyr Leu Phe 260 265 270

Glu Arg Glu Gly Thr Asn Gly Glu Asn Leu Lys Glu Thr His Asp Phe 275 280 285

Leu Lys Leu Cys Arg Ser Val Ile Glu Lys Glu Tyr Pro Gly Arg Ile 290 295 300

Leu Leu Ala Glu Ala Asn Gln Trp Pro Gln Asp Val Val Glu Tyr Phe

305 310 315 Gly Glu Lys Asp Lys Gly Asp Glu Cys His Met Ala Phe His 325 <210> 25 <211> 1386 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS · <222> (101)..(1363) <223> RXA00534 <400> 25 ctgtgcagaa agaaaacact cctctggcta ggtagacaca gtttataaag gtagagttga 60 gcgggtaact gtcagcacgt agatcgaaag gtgcacaaag gtg gcc ctg gtc gta 115 Val Ala Leu Val Val cag aaa tat ggc ggt tcc tcg ctt gag agt gcg gaa cgc att aga aac 163 Gln Lys Tyr Gly Gly Ser Ser Leu Glu Ser Ala Glu Arg Ile Arg Asn 10 15 gtc gct gaa cgg atc gtt gcc acc aag aag gct gga aat gat gtc gtg 211 Val Ala Glu Arg Ile Val Ala Thr Lys Lys Ala Gly Asn Asp Val Val 25 30 gtt gtc tgc tcc gca atg gga gac acc acg gat gaa ctt cta gaa ctt 259 Val Val Cys Ser Ala Met Gly Asp Thr Thr Asp Glu Leu Leu Glu Leu 40 gca gcg gca gtg aat ccc gtt ccg cca gct cgt gaa atg gat atg ctc 307 Ala Ala Val Asn Pro Val Pro Pro Ala Arg Glu Met Asp Met Leu 55 60 ctg act gct ggt gag cgt att tct aac gct ctc gtc gcc atg gct att 355 Leu Thr Ala Gly Glu Arg Ile Ser Asn Ala Leu Val Ala Met Ala Ile 70 75 gag tee ett gge gea gaa gee eaa tet tte aeg gge tet eag get ggt 403 Glu Ser Leu Gly Ala Glu Ala Gln Ser Phe Thr Gly Ser Gln Ala Gly 90 gtg ctc acc acc gag cgc cac gga aac gca cgc att gtt gat gtc act 451 Val Leu Thr Thr Glu Arg His Gly Asn Ala Arg Ile Val Asp Val Thr cca ggt cgt gtg cgt gaa gca ctc gat gag ggc aag atc tgc att gtt 499 Pro Gly Arg Val Arg Glu Ala Leu Asp Glu Gly Lys Ile Cys Ile Val 120 125 130 gct ggt ttc cag ggt gtt aat aaa gaa acc cgc gat gtc acc acg ttg 547 Ala Gly Phe Gln Gly Val Asn Lys Glu Thr Arg Asp Val Thr Thr Leu 135 140 145

595

ggt cgt ggt ggt tct gac acc act gca gtt gcg ttg gca gct gct ttg

Gly 150	Arg	Gly	Gly	Ser	Asp 155	Thr	Thr	Ala	Val	Ala 160	Leu	Ala	Ala	Ala	Leu 165	
	gct Ala															643
	gac Asp															691
	gaa Glu	_	-	_	_			_	-			_		-		739
	cgc Arg 215	_	_	-		_					-				-	787
	tcg Ser															835
	gat Asp															883
	tcc Ser															931
	gct Ala															979
gac 1027	atg 7	gtt	ctg	cag	aac	gtc	tct	tct	gta	gaa	gac	ggc	acc	acc	gac	
Asp	Met 295	Val	Leu	Gln	Asn	Val 300	Ser	Ser	Val	Glu	Asp 305	Gly	Thr	Thr	Asp	
atc 1075	acc	ttc	acc	tgc	cct	cgt	tcc	gac	ggc	cgc	cgc	gcg	atg	gag	atc	
Ile 310	Thr	Phe	Thr	Cys	Pro 315	Arg	Ser	Asp	Gly	Arg 320	Arg	Ala	Met	Glu	Ile 325	
ttg 1123	aag	aag	ctt	cag	gtt	cag	ggc	aac	tgg	acc	aat	gtg	ctt	tac	gac	
Leu	Lys	Lys	Leu	Gln 330	Val	Gln	Gly	Asn	Trp 335	Thr	Asn	Val	Leu	Tyr 340	Asp	
gac 1171	cag	gtc	ggc	aaa	gtc	tcc	ctc	gtg	ggt	gct	ggc	atg	aag	tct	cac	
	Gln	Val	Gly 345	Lys	Val	Ser	Leu	Val 350	Gly	Ala	Gly	Met	Lys 355	Ser	His	
cca 1219	ggt	gtt	acc	gca	gag	ttc	atg	gaa	gct	ctg	cgc	gat	gtc	aac	gtg	
	Gly	Val 360	Thr	Ala	Glų	Phe	Met 365	Glu	Ala	Leu	Arg	Asp 370	Val	Asn	Val	

aac atc gaa ttg att tcc acc tct gag att cgt att tcc gtg ctg atc 1267

Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg Ile Ser Val Leu Ile 375 380 385

cgt gaa gat gat ctg gat gct gca cgt gca ttg cat gag cag ttc 1315

Arg Glu Asp Asp Leu Asp Ala Ala Ala Arg Ala Leu His Glu Gln Phe 390 395 400 405

cag ctg. ggc ggc gaa gac gaa gcc gtc gtt tat gca ggc acc gga cgc 1363

Gln Leu Gly Gly Glu Asp Glu Ala Val Val Tyr Ala Gly Thr Gly Arg
410 415 420

taaagtttta aaggagtagt ttt 1386

<210> 26

<211> 421

<212> PRT

<213> Corynebacterium glutamicum

<400> 26

Val Ala Leu Val Val Gln Lys Tyr Gly Gly Ser Ser Leu Glu Ser Ala 1 5 10 15

Glu Arg Ile Arg Asn Val Ala Glu Arg Ile Val Ala Thr Lys Lys Ala
20 25 30

Gly Asn Asp Val Val Val Cys Ser Ala Met Gly Asp Thr Thr Asp 35 40 45

Glu Leu Leu Glu Leu Ala Ala Ala Val Asn Pro Val Pro Pro Ala Arg 50 55 60

Glu Met Asp Met Leu Leu Thr Ala Gly Glu Arg Ile Ser Asn Ala Leu 65 70 75 80

Val Ala Met Ala Ile Glu Ser Leu Gly Ala Glu Ala Gln Ser Phe Thr 85 90 95

Gly Ser Gln Ala Gly Val Leu Thr Thr Glu Arg His Gly Asn Ala Arg 100 105 110

Ile Val Asp Val Thr Pro Gly Arg Val Arg Glu Ala Leu Asp Glu Gly
115 120 125

Lys Ile Cys Ile Val Ala Gly Phe Gln Gly Val Asn Lys Glu Thr Arg 130 135 140

Asp Val Thr Thr Leu Gly Arg Gly Gly Ser Asp Thr Thr Ala Val Ala 145 150 155 160

Leu Ala Ala Leu Asn Ala Asp Val Cys Glu Ile Tyr Ser Asp Val
165 170 175

Asp Gly Val Tyr Thr Ala Asp Pro Arg Ile Val Pro Asn Ala Gln Lys 180 185 190

Leu Glu Lys Leu Ser Phe Glu Glu Met Leu Glu Leu Ala Ala Val Gly
195 200 205

Ser Lys Ile Leu Val Leu Arg Ser Val Glu Tyr Ala Arg Ala Phe Asn

210 215 220

Val Pro Leu Arg Val Arg Ser Ser Tyr Ser Asn Asp Pro Gly Thr Leu 225 230 235 240

Ile Ala Gly Ser Met Glu Asp Ile Pro Val Glu Glu Ala Val Leu Thr 245 250 255

Gly Val Ala Thr Asp Lys Ser Glu Ala Lys Val Thr Val Leu Gly Ile 260 265 270

Ser Asp Lys Pro Gly Glu Ala Ala Lys Val Phe Arg Ala Leu Ala Asp 275 280 285

Ala Glu Ile Asn Ile Asp Met Val Leu Gln Asn Val Ser Ser Val Glu 290 295 300

Asp Gly Thr Thr Asp Ile Thr Phe Thr Cys Pro Arg Ser Asp Gly Arg 305 310 315 320

Arg Ala Met Glu Ile Leu Lys Lys Leu Gln Val Gln Gly Asn Trp Thr 325 330 335

Asn Val Leu Tyr Asp Asp Gln Val Gly Lys Val Ser Leu Val Gly Ala 340 345 350

Gly Met Lys Ser His Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu 355 360 365

Arg Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg 370 375 380

Ile Ser Val Leu Ile Arg Glu Asp Asp Leu Asp Ala Ala Ala Arg Ala 385 390 395 400

Leu His Glu Gln Phe Gln Leu Gly Gly Glu Asp Glu Ala Val Val Tyr 405 410 415

Ala Gly Thr Gly Arg
420

<210> 27

<211> 1155

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1132)

<223> RXA00533

<400> 27

ctgcacgtgc attgcatgag cagttccagc tgggcggcga agacgaagcc gtcgtttatg 60

caggcaccgg acgctaaagt tttaaaggag tagttttaca atg acc acc atc gca 115
Met Thr Thr Ile Ala

39

								1				5	
									cgc Arg				163
									ttt Phe				211
									gaa Glu 50				259
									gac Asp				307
	_					-		_	tac Tyr	_		_	355
									tct Ser				403
								_	aac Asn			-	451
	_		_						aac Asn 130				499
									gcc Ala				547
									ggt Gly				595
									gtt Val				. 643
									gca Ala				691
		_			_		_	_	cca Pro 210		_		739
									gag Glu				787
									ctc Leu				835

ggc Gly	acc Thr	tgo Cys	gto Val	cgc Arg 250	, Val	Pro	gtt Val	tto Phe	acc Thr 255	Gly	cac His	acg Thr	ctg Leu	Thr 260	Ile
cac	gcc Ala	gaa Glu	tto Phe 265	: Asp	aag Lys	gca Ala	atc lle	acc Thr 270	· Val	gac Asp	cag Gln	gcg Ala	cag Gln 275	Glu	atc Ile
ttg Leu	ggt Gly	gcc Ala 280	. Ala	tca Ser	ggc Gly	gto Val	aag Lys 285	Leu	gtc Val	gac Asp	gtc Val	cca Pro 290	Thr	cca Pro	ctt Leu
gca 102	gct	gcc	ggc	att	gac	gaa	tcc	ctc	gtt	gga	cgc	atc	cgt	cag	gac
			Gly	Ile	Asp	Glu 300	Ser	Leu	Val	Gly	Arg 305	Ile	Arg	Gln	Asp
tcc 107	act 5	gto	gac	gat	aac	cgc	ggt	ctg	gtt	ctc	gtc	gta	tct	ggc	gac
Ser 310	Thr	Val	Asp	Asp	Asn 315	Arg	Gly	Leu	Val	Leu 320	Val	Val	Ser	Gly	Asp 325
aac 112	ctc 3	cgc	aag	ggt	gct	gcg	cta	aac	acc	atc	cag	atc	gct	gag	ctg
Asn	Leu	Arg	Lys	Gly 330		Ala	Leu	Asn	Thr 335	Ile	Gln	Ile	Ala	Glu 340	Leu
<21 <21 <21:	5 Val 0> 2: 1> 3: 2> Pl	Lys 8 44 RT					taaa: micur		tc						
	0> 28 Thr	-	Ile	Ala 5	Val	Val	Gly	Ala		Gly	Gln	Val	Gly	Gln 15	Val
Met	Arg	Thr	Leu 20	Leu	Glu	Glu	Arg	Asn 25	Phe	Pro	Ala	Asp	Thr 30	Val	Arg
Phe	Phe	Ala 35	Ser	Pro	Arg	Ser	Ala 40	Gly	Arg	Lys	Ile	Glu 45	Phe	Arg	Gly
Thr	Glu 50	Ile	Glu	Val	Glu	Asp 55	Ile	Thr	Gln	Ala	Thr 60	Glu	Glu	Ser	Leu
Lys 65	Asp	Ile	Asp	Val	Ala 70	Leu	Phe	Ser	Ala	Gly 75	Gly	Thr	Ala	Ser	Lys 80
Gln	Tyr	Ala	Pro	Leu 85	Phe	Ala	Ala	Ala	Gly 90	Ala	Thr	Val	Val	Asp 95	Asn
Ser	Ser	Ala	Trp 100	Arg	Lys	Asp	Asp	Glu 105	Val	Pro	Leu	Ile	Val 110	Ser	Glu

Val Asn Pro Ser Asp Lys Asp Ser Leu Val Lys Gly Ile Ile Ala Asn 115 120 125

Pro Asn Cys Thr Thr Met Ala Ala Met Pro Val Leu Lys Pro Leu His 130 135 140

Asp Ala Ala Gly Leu Val Lys Leu His Val Ser Ser Tyr Gln Ala Val 145 150 155 160

Ser Gly Ser Gly Leu Ala Gly Val Glu Thr Leu Ala Lys Gln Val Ala 165 170 175

Ala Val Gly Asp His Asn Val Glu Phe Val His Asp Gly Gln Ala Ala 180 185 190

Asp Ala Gly Asp Val Gly Pro Tyr Val Ser Pro Ile Ala Tyr Asn Val 195 200 205

Leu Pro Phe Ala Gly Asn Leu Val Asp Asp Gly Thr Phe Glu Thr Asp 210 215 220

Glu Glu Gln Lys Leu Arg Asn Glu Ser Arg Lys Ile Leu Gly Leu Pro 225 230 235 240

Asp Leu Lys Val Ser Gly Thr Cys Val Arg Val Pro Val Phe Thr Gly 245 250 255

His Thr Leu Thr Ile His Ala Glu Phe Asp Lys Ala Ile Thr Val Asp 260 265 270

Gln Ala Gln Glu Ile Leu Gly Ala Ala Ser Gly Val Lys Leu Val Asp 275 280 285

Val Pro Thr Pro Leu Ala Ala Gly Ile Asp Glu Ser Leu Val Gly 290 295 300

Arg Ile Arg Gln Asp Ser Thr Val Asp Asp Asn Arg Gly Leu Val Leu 305 310 315 320

Val Val Ser Gly Asp Asn Leu Arg Lys Gly Ala Ala Leu Asn Thr Ile 325 330 335

Gln Ile Ala Glu Leu Leu Val Lys 340

<210> 29

<211> 608

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (69)..(608)

<223> RXA02843

<400> 29

cccattgcgc ggaggtcgca ccccttccga cttgaactga taggccgata gaaattattc 60

tggacgtcatg act act gct tcc gca acc gga att gca aca ctg acc tcc 110
Met Thr Thr Ala Ser Ala Thr Gly Ile Ala Thr Leu Thr Ser

		1				5				-	10					
								tat Tyr								158
								ggc								206
								atc Ile 55								254
_			-	_				ctt Leu						_	_	302
								gac Asp								350
	_							ccg Pro	_	-	_	_			_	398
		-		_	_			cga Arg					_		_	446
								gac Asp 135								494
								cga Arg			-					542
								ttc Phe								590
	ggc Gly															608
<211 <212	0> 30 l> 18 2> PF B> Co	30 RT	ebact	teriu	ım g]	lutar	nicur	n								
)> 30		λ1s	Co~	λls	ጥኮሎ	Glv	T1=	21 =	ጥኮ፦	T.em	ጥኮኍ	Se~	ምb ×	Gly	
net 1	TUL	TUL	WIG	Ser 5	WTG	THE	стλ	Ile	10	TUL	rea	THE	ser	15	GTÅ	
Asp	Val	Leu	Asp 20	Val	Trp	Tyr	Pro	Glu 25	Ile	Gly	Ser	Thr	Asp 30	Gln	Ser	
Ala	Leu	Thr 35	Pro	Leu	Glu	Gly	Val 40	Asp	Glu	Asp	Arg	Asn 45	Val	Thr	Arg	

35

Lys	Ile 50	Val	Thr	Thr	Thr	Ile 55	Asp	Thr	Asp	Ala	Ala 60	Pro	Thr	Asp	Thr	
Tyr 65	Asp	Ala	Trp	Leu	Arg 70	Leu	His	Leu	Leu	Ser 75	His	Arg	Val	Phe	Arg 80	
Pro	His	Thr	Ile	Asn 85	Leu	Asp	Gly	Ile	Phe 90	Gly	Leu	Leu	Asn	Asn 95	Val	
Val	Trp	Thr	Asn 100	Phe	Gly	Pro	Сув	Ala 105	Val	Asp	Gly	Phe	Ala 110	Leu	Thr	
Arg	Ala	Arg 115	Leu	Ser	Arg	Arg	Gly 120	Gln	Val	Thr	Val	Tyr 125	Ser	Val	Asp	
Lys	Phe 130	Pro	Arg	Met	Val	Asp 135	Tyr	Val	Val	Pro	Ser 140	Gly	Val	Arg	Ile	
Gly 145	Asp	Ala	Asp	Arg	Val 150	Arg	Leu	Gly	Ala	Tyr 155	Leu	Ala	Asp	Gly	Thr 160	
Thr	Val	Met	His	Glu 165	Gly	Phe	Val	Asn	Phe 170	Asn	Ala	Gly	Thr	Leu 175	Gly	
Ala	Ser	Met	Val 180													
<211 <212 <213 <221 <221 <221 <222 <223)> L> CI 2> (1 3> R)	230 NA pryne DS L01).	(12		ım gl	lutan	nicum	n								
)> 31 tgcg		ccaa	ctgo	et tg	ggct	ccgc	gaa	tgtt	ttc	acto	attt	tt t	caato	gaccg	60
ctto	cato	at g	jt ttt	aact	a ag	gttt	gtag	g gct	taaa	acct		aac Asn		_		115
					ctc Leu											163
					agt Ser											211
					ctt Leu											259
					aac Asn											307

												ccg Pro				355
												ggc Gly				403
_	-	_				_				_		act Thr		_		451
												ctg Leu 130				499
												Gly ggc				547
												ttg Leu				595
									-			aat Asn	_	-		643
												aga Arg				691
												tcg Ser 210				739
												acc Thr				787
												aac Asn				835
	_		-		_					_		gcg Ala	_		_	883
			Glu									ctt Leu				931
												gca Ala 290				979
ctt 1027		ggc	ttg	ggg	cag	cag	gtg	aca	agc	ggg	ctt	atc	gac	gcc	gtc	
		Gly	Leu	Gly	Gln	Gln 300	Val	Thr	Ser	Gly	Leu 305	Ile	Asp	Ala	Val	

			180					185					190			
Ile	Leu	Thr 195	Gly	Ser	Glu	Thr	Thr 200	Val	Asp	Phe	Ala	Tyr 205	Leu	Ala	Gly	
Ala	Asp 210	Gly	Val	Val	Pro	Gly 215	Leu	Gly	Asn	Val	Asp 220	Pro	Ala	Ala	Tyr	
Ala 225	Ala	Leu	Ala	Lys	Leu 230	Cys	Leu	Asp	Gly	Lys 235	Trp	Ala	Glu	Ala	Ala 240	
Ala	Leu	Gln	Lys	Arg 245	Ile	Asn	His	Leu	Phe 250	His	Ile	Val	Phe	Val 255	Gly	
Asp	Thr	Ser	His 260	Met	Ser	Gly	Ser	Ser 265	Ala	Gly	Leu	Gly	Gly 270	Phe	Lys	
Thr	Ala	Leu 275	Ala	His	Leu	Gly	Ile 280	Ile	Glu	Ser	Asn	Ala 285	Met	Ala	Val	
	His 290	Gln	Ser	Leu	Ser	Asp 295	Glu	Glu	Thr	Ala	Arg 300	Ile	His	Ala	Ile	
Val 305	Asp	Glu	Phe	Leu	Туг 310	Thr	Ala									
<210 <211 <212 <213	> 86 > DN	57 VA	ebact	teri	ım g]	lutar	nicur	n								
<220 <221 <222 <223	> CI > (1	101).		14)												
<400 aacg			:aggt	tatg	ga ta	atcaç	gcaco	c tto	etgaa	acgg	gtad	egtet	ag a	actgo	gtgggc	60
gttt	gaaa	aa c	etett	cgc	ec ca	acgaa	aatg	y aag	ggago	cata	_	gga Gly		_		115
ggc																163
gtc Val																211
gat Asp																259
ttc Phe																307
aac	ggc	att	tct	gcg	gtt	gtt	gga	acc	acg	ggc	ttc	gat	gat	gct	cgt	355

Asn 70	Gly	Ile	Ser	Ala	Val 75	Val	Gly	Thr	Thr	80 Bly	Phe	Asp	Asp	Ala	Arg 85	
-		_	_	_	_			_			_	aat Asn	_		-	403
												acc Thr				451
												gtt Val 130				499
				-	_	_	_					gcg Ala				547
												atg Met				595
												ggc Gly				643
												atg Met				691
												acc Thr 210				739
Asp	Ser 215	Tyr	Asp	Arg	Asn	Ser 220	Phe	Ala	Pro	Gly	Val 225	ttg Leu	Val	Gly	Val	787
												ctt Leu				835
	Gly	ctg Leu	taaa	ıggct	ca t	ttca	igcag	ic gg	ıg							867
<211 <212	> 36 > 24 > PR > Co	8	bact	eriu	m gl	utaņ	nicum	ı								
	> 36 Gly		Lys	Val 5	Gly	Val	Leu	Gly	Ala 10	Lys	Gly	Arg	Val	Gly 15	Gln	
Thr	Ile	Val	Ala 20	Ala	Va1	Asn	Glu	Ser 25	Asp	Asp	Leu	Glu	Leu 30	Val	Ala	

Glu Ile Gly Val Asp Asp Asp Leu Ser Leu Leu Val Asp Asn Gly Ala

	Phe	Thr	Gly	Val	Ile 10	Pro	Pro	Val	Met	Thr 15		Leu	His	Ala	Asp 20	_	
													cac His				211
				Asp									ggc Gly 50				259
								Lys					acc Thr				307
													att Ile				355
													gag Glu				403
													acc Thr				451
													gct Ala 130				499
													tcc Ser				547
													ctt Leu				595
1	aag Lys	gat Asp	tcc Ser	agt Ser	ggc Gly 170	aat Asn	gat Asp	ggc Gly	gca Ala	atc Ile 175	cgc Arg	tca Ser	ctg Leu	atc Ile	gaa Glu 180	gct Ala	643
													ctc Leu				691
													gat Asp 210				739
													gct Ala				787
]													ttg Leu				835
										_		_	acc Thr			_	883

250 255 260

tcc gga tcc agc gct ggt ttg ggc ggt ttc aag aca gca ctc gca cac 931 Ser Gly Ser Ser Ala Gly Leu Gly Gly Phe Lys Thr Ala Leu Ala His 265 270 275

ctt ggc att att gaa tcc aat gcg atg gca gtt cct cac cag agc ctc 979 Leu Gly Ile Ile Glu Ser Asn Ala Met Ala Val Pro His Gln Ser Leu 280 285 290

age gae gaa gaa act get ege att eac gee att gtt gat gaa tte etg 1027

Ser Asp Glu Glu Thr Ala Arg Ile His Ala Ile Val Asp Glu Phe Leu 295 300 305

tac acc gct taaggcccac acctcatgac tga 1059 Tyr Thr Ala 310

<210> 34

<211> 312

<212> PRT

<213> Corynebacterium glutamicum

<400> 34

Met Ala Ser Ala Thr Phe Thr Gly Val Ile Pro Pro Val Met Thr Pro

1 5 10 15

Leu His Ala Asp Gly Ser Val Asp Val Glu Ser Leu Arg Lys Leu Val
20 25 30

Asp His Leu Ile Asn Gly Gly Val Asp Gly Leu Phe Ala Leu Gly Ser 35 40 45

Ser Gly Glu Ala Ala Phe Leu Thr Arg Ala Gln Arg Lys Leu Ala Leu 50 55 60

Thr Thr Ile Ile Glu His Thr Ala Gly Arg Val Pro Val Thr Ala Gly 65 70 75 80

Val Ile Glu Thr Thr Ala Arg Val Ile Glu Leu Val Glu Asp Ala 85 90 95

Leu Glu Ala Gly Ala Glu Gly Leu Val Ala Thr Ala Pro Phe Tyr Thr
100 105 110

Arg Thr His Asp Val Glu Ile Glu Glu His Phe Arg Lys Ile His Ala 115 120 125

Ala Ala Pro Glu Leu Pro Leu Phe Ala Tyr Asn Ile Pro Val Ser Val 130 135 140

His Ser Asn Leu Asn Pro Val Met Leu Leu Thr Leu Ala Lys Asp Gly 145 150 155 160

Val Leu Ala Gly Thr Lys Asp Ser Ser Gly Asn Asp Gly Ala Ile Arg 165 170 175

Ser Leu Ile Glu Ala Arg Asp Asp Ala Gly Leu Thr Glu Gln Phe Lys

ggc cgc gaa aaa atc cgc gca aaa ttc ggc tgg acc gat gtc tca cgt 1075

Gly Arg Glu Lys Ile Arg Ala Lys Phe Gly Trp Thr Asp Val Ser Arg 310 320 325

ttt tca gcc atg gga att cca gcc cta aac ttt ggc gct ggt gat cca 1123

Phe Ser Ala Met Gly Ile Pro Ala Leu Asn Phe Gly Ala Gly Asp Pro 330 335 340

agt ttc gcg cat aaa cgc gac gag cag tgc cca gtg gag caa atc acg 1171

Ser Phe Ala His Lys Arg Asp Glu Gln Cys Pro Val Glu Gln Ile Thr 345 350 355

gat gtg gca gca att ttg aag cag tac ctg agc gag taaccgcatt 1217

Asp Val Ala Ala Ile Leu Lys Gln Tyr Leu Ser Glu 360 365

cggggttatc gtg 1230

<210> 32

<211> 369

<212> PRT

<213> Corynebacterium glutamicum

<400> 32

Val Asn Ser Glu Leu Lys Pro Gly Leu Asp Leu Leu Gly Asp Pro Ile 1 5 10 15

Val Leu Thr Gln Arg Leu Val Asp Ile Pro Ser Pro Ser Gly Gln Glu 20 25 30

Lys Gln Ile Ala Asp Glu Ile Glu Asp Ala Leu Arg Asn Leu Asn Leu 35 40 45

Pro Gly Val Glu Val Phe Arg Phe Asn Asn Asn Val Leu Ala Arg Thr 50 55 60

Asn Arg Gly Leu Ala Ser Arg Val Met Leu Ala Gly His Ile Asp Thr 65 70 75 80

Val Pro Ile Ala Asp Asn Leu Pro Ser Arg Val Glu Asp Gly Ile Met
85 90 95

Tyr Gly Cys Gly Thr Val Asp Met Lys Ser Gly Leu Ala Val Tyr Leu 100 105 110

His Thr Phe Ala Thr Leu Ala Thr Ser Thr Glu Leu Lys His Asp Leu 115 120 125

Thr Leu Ile Ala Tyr Glu Cys Glu Glu Val Ala Asp His Leu Asn Gly
130 135 140

Leu Gly His Ile Arg Asp Glu His Pro Glu Trp Leu Ala Ala Asp Leu 145 150 155 160

Ala Leu Leu Gly Glu Pro Thr Gly Gly Trp Ile Glu Ala Gly Cys Gln 165 170 Gly Asn Leu Arg Ile Lys Val Thr Ala His Gly Val Arg Ala His Ser Ala Arg Ser Trp Leu Gly Asp Asn Ala Met His Lys Leu Ser Pro Ile Ile Ser Lys Val Ala Ala Tyr Lys Ala Ala Glu Val Asn Ile Asp Gly 215 Leu Thr Tyr Arg Glu Gly Leu Asn Ile Val Phe Cys Glu Ser Gly Val 230 235 Ala Asn Asn Val Ile Pro Asp Leu Ala Trp Met Asn Leu Asn Phe Arg 245 250 Phe Ala Pro Asn Arg Asp Leu Asn Glu Ala Ile Glu His Val Val Glu 265 Thr Leu Glu Leu Asp Gly Gln Asp Gly Ile Glu Trp Ala Val Glu Asp 275 Gly Ala Gly Gly Ala Leu Pro Gly Leu Gly Gln Gln Val Thr Ser Gly 295 Leu Ile Asp Ala Val Gly Arg Glu Lys Ile Arg Ala Lys Phe Gly Trp 310 315 Thr Asp Val Ser Arg Phe Ser Ala Met Gly Ile Pro Ala Leu Asn Phe 325 330 Gly Ala Gly Asp Pro Ser Phe Ala His Lys Arg Asp Glu Gln Cys Pro 345 Val Glu Gln Ile Thr Asp Val Ala Ala Ile Leu Lys Gln Tyr Leu Ser 360 Glu <210> 33 <211> 1059 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1036) <223> RXA00044 <400> 33 attacctcag ccttccaagc tgatgatgca ttacttaaaa actgcagaca cttgaaaaac 60 ttctcacccg cactcgttcc ctcaacccac aaggagcacc atg gct tcc gca act Met Ala Ser Ala Thr 1

ttc acc ggc gtg atc cca ccc gta atg acc cca ctc cac gcc gac ggc

		35					40					45				
Glu	Val 50	Val	Val	Asp	Phe	Thr 55	Thr	Pro	Asn	Ala	Val 60	Met	Gly	Asn	Leu	
Glu 65	Phe	Суз	Ile	Asn	Asn 70	Gly	Ile	Ser	Ala	Val 75	Val	Gly	Thr	Thr	Gly 80	
Phe	Asp	Asp	Ala	Arg 85	Leu	Glu	Gln	Val	Arg 90	Asp	Trp	Leu	Glu	Gly 95	Lys	
Asp	Asn	Val	Gly 100	Val	Leu	Ile	Ala	Pro 105	Asn	Phe	Ala	Ile	Ser 110	Ala	Val	
Leu	Thr	Met 115	Val	Phe	Ser	Lys	Gln 120	Ala	Ala	Arg	Phe	Phe 125	Glu	Ser	Ala	
Glu	Val 130	Ile	Glu	Leu	His	His 135	Pro	Asn	Lys	Leu	Asp 140	Ala	Pro	Ser	Gly	
Thr 145	Ala	Ile	His	Thr	Ala 150	Gln	Gly	Ile	Ala	Ala 155	Ala	Arg	Lys	Glu	Ala 160	
Gly	Met	Asp	Ala	Gln 165	Pro	Asp	Ala	Thr	Glu 170	Gln	Ala	Leu	Glu	Gly 175	Ser	4
Arg	Gly	Ala	Ser 180	Val	Asp	Gly	Ile	Pro 185	Val	His	Ala	Val	Arg 190	Met	Ser	
Gly	Met	Val 195	Ala	His	Glu	Gln	Val 200	Ile	Phe	Gly	Thr	Gln 205	Gly	Gln	Thr	
Leu	Thr 210	Ile	Lys	Gln	Asp	Ser 215	Tyr	Asp	Arg	Asn	Ser 220	Phe	Ala	Pro	Gly	
Val 225	Leu	Val	Gly	Val	Arg 230	Asn	Ile	Ala	Gln	His 235	Pro	Gly	Leu	Val	Val 240	
Gly	Leu	Glu	His	Tyr 245	Leu	Gly	Leu									
<211 <212	0> 37 l> 87 2> DI 3> Co	73 NA	ebact	eriu	ım gl	utan	nicum	n								
<222	l> CI 2> (1		(85 3 64	50)												
)> 37															C 0
			_	_	_			_						-	atttc	
agca	agcgg	igt g	ggaat	tttt	t aa	aagg	ageç	, ttt	:aaag	gct		gcc Ala				115
			gtg Val													163

215

				10					15					20		•
												gca Ala				211
												ccg Pro 50				259
												gaa Glu				307
												atc Ile				355
												cat His				403
												tcg Ser				451
gtg Val	ccc Pro	act Thr 120	ctc Leu	atc Ile	gat Asp	gaa Glu	gat Asp 125	ccg Pro	cag Gln	ttg Leu	cgt Arg	gaa Glu 130	ctt Leu	ttc Phe	atg Met	499
												ctg Leu				547
												tta Leu				595
												gct Ala				643
aga Arg	atc Ile	gtg Val	gtg Val 185	tct Ser	gga Gly	aac Asn	ttc Phe	cgc Arg 190	acc Thr	tgg Trp	agg Arg	cat His	ttc Phe 195	att Ile	ggc Gly	691
												gaa Glu 210				739
gaa Glu	tgt Cys	tta Leu	aga Arg	aag Lys	ctg Leu	cag Gln	gta Val	gca Ala	gcg Ala	cca Pro	act Thr	gtt Val	ttc Phe	ggt Gly	gat Asp	787

ttt gag att gaa act ttg gca gac gga tcg caa atg gca aca agc ccg 835 Phe Glu Ile Glu Thr Leu Ala Asp Gly Ser Gln Met Ala Thr Ser Pro 235 245 tat gtc atg gac ttt taacgcaaag ctcacaccca cga 873 Tyr Val Met Asp Phe 250 **53**

220

<210> 38

<211> 250

<212> PRT

<213> Corynebacterium glutamicum

<400> 38

Val Ala Glu Gln Val Lys Leu Ser Val Glu Leu Ile Ala Cys Ser Ser 1 5 10 15

Phe Thr Pro Pro Ala Asp Val Glu Trp Ser Thr Asp Val Glu Gly Ala
20 25 30

Glu Ala Leu Val Glu Phe Ala Gly Arg Ala Cys Tyr Glu Thr Phe Asp $35 \hspace{1cm} 40 \hspace{1cm} 45$

Lys Pro Asn Pro Arg Thr Ala Ser Asn Ala Ala Tyr Leu Arg His Ile 50 55 60

Met Glu Val Gly His Thr Ala Leu Leu Glu His Ala Asn Ala Thr Met 65 70 75 80

Tyr Ile Arg Gly Ile Ser Arg Ser Ala Thr His Glu Leu Val Arg His
85 90 95

Arg His Phe Ser Phe Ser Gln Leu Ser Gln Arg Phe Val His Ser Gly
100 105 110

Glu Ser Glu Val Val Pro Thr Leu Ile Asp Glu Asp Pro Gln Leu 115 120 125

Arg Glu Leu Phe Met His Ala Met Asp Glu Ser Arg Phe Ala Phe Asn 130 135 140

Glu Leu Leu Asn Ala Leu Glu Glu Lys Leu Gly Asp Glu Pro Asn Ala 145 150 155 160

Leu Leu Arg Lys Gln Ala Arg Gln Ala Ala Arg Ala Val Leu Pro 165 170 175

Asn Ala Thr Glu Ser Arg Ile Val Val Ser Gly Asn Phe Arg Thr Trp 180 185 190

Arg His Phe Ile Gly Met Arg Ala Ser Glu His Ala Asp Val Glu Ile 195 200 205

Arg Glu Val Ala Val Glu Cys Leu Arg Lys Leu Gln Val Ala Ala Pro 210 215 220

Thr Val Phe Gly Asp Phe Glu Ile Glu Thr Leu Ala Asp Gly Ser Gln 225 230 235 240

Met Ala Thr Ser Pro Tyr Val Met Asp Phe 245 250

<210> 39

<211> 608

<212> DNA

<213> Corynebacterium glutamicum

<220> <221> CDS <222> (69)..(608) <223> RXA02843 <400> 39 cccattgcgc ggaggtcgca ccccttccga cttgaactga taggccgata gaaattattc 60 tggacgtcatg act act gct tcc gca acc gga att gca aca ctg acc tcc 110 Met Thr Thr Ala Ser Ala Thr Gly Ile Ala Thr Leu Thr Ser acc ggc gac gtc ctg gac gtg tgg tat cca gaa atc ggg tcc acc qac 158 Thr Gly Asp Val Leu Asp Val Trp Tyr Pro Glu Ile Gly Ser Thr Asp cag tcc gcg ctc aca cct cta gaa ggc gtc gat gaa gat cga aac gtc 206 Gln Ser Ala Leu Thr Pro Leu Glu Gly Val Asp Glu Asp Arg Asn Val acc cgc aaa atc gtg acg aca act atc gac acc gac gca gcc ccc acc 254 Thr Arg Lys Ile Val Thr Thr Thr Ile Asp Thr Asp Ala Ala Pro Thr 55 gac acc tac gat gca tgg ctg cgc ctt cac ctc ctc tcc cac cgc gtt 302 Asp Thr Tyr Asp Ala Trp Leu Arg Leu His Leu Leu Ser His Arg Val 65 70 ttc cgc cct cac acc atc aac cta gac ggc att ttc ggc ctc ctc aac Phe Arg Pro His Thr Ile Asn Leu Asp Gly Ile Phe Gly Leu Leu Asn 80 aat gtc gtg tgg acc aac ttc gga ccg tgc gca gtt gac ggt ttc gca Asn Val Val Trp Thr Asn Phe Gly Pro Cys Ala Val Asp Gly Phe Ala 95 ctc acc cgc gcg cgc ctg tca cgc cga ggc caa gtt acg gtt tat agc Leu Thr Arg Ala Arg Leu Ser Arg Arg Gly Gln Val Thr Val Tyr Ser. 115 gtc gac aag ttc cca cgc atg gtc gac tat gtg gtt ccc tcg ggc gtg 494 Val Asp Lys Phe Pro Arg Met Val Asp Tyr Val Val Pro Ser Gly Val 130 cgc atc ggt gac gcc gac cgc gtc cga ctt ggc gcg tac ctg gca gat 542 Arg Ile Gly Asp Ala Asp Arg Val Arg Leu Gly Ala Tyr Leu Ala Asp 150 ggc acc acc gtg atg cat gag ggc ttc gtg aac ttc aac gct ggc acg 590 Gly Thr Thr Val Met His Glu Gly Phe Val Asn Phe Asn Ala Gly Thr 160 170 ctc ggc gct tcc atg gtt 608 Leu Gly Ala Ser Met Val 175 180

<210> 40 <211> 180

<212> PRT

<213> Corynebacterium glutamicum

<400> 40

Met Thr Thr Ala Ser Ala Thr Gly Ile Ala Thr Leu Thr Ser Thr Gly
1 5 10 15

Asp Val Leu Asp Val Trp Tyr Pro Glu Ile Gly Ser Thr Asp Gln Ser 20 25 30

Ala Leu Thr Pro Leu Glu Gly Val Asp Glu Asp Arg Asn Val Thr Arg
35 40 45

Lys Ile Val Thr Thr Thr Ile Asp Thr Asp Ala Ala Pro Thr Asp Thr 50 55 60

Tyr Asp Ala Trp Leu Arg Leu His Leu Leu Ser His Arg Val Phe Arg 65 70 75 80

Pro His Thr Ile Asn Leu Asp Gly Ile Phe Gly Leu Leu Asn Asn Val 85 90 95

Val Trp Thr Asn Phe Gly Pro Cys Ala Val Asp Gly Phe Ala Leu Thr 100 105 110

Arg Ala Arg Leu Ser Arg Arg Gly Gln Val Thr Val Tyr Ser Val Asp 115 120 125

Lys Phe Pro Arg Met Val Asp Tyr Val Val Pro Ser Gly Val Arg Ile 130 135 140

Gly Asp Ala Asp Arg Val Arg Leu Gly Ala Tyr Leu Ala Asp Gly Thr
145 150 155 160

Thr Val Met His Glu Gly Phe Val Asn Phe Asn Ala Gly Thr Leu Gly 165 170 175

Ala Ser Met Val 180

<210> 41

<211> 1143

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1120)

<223> RXN00355

<400> 41

aatagatcag cgcatccgtg gtggaaccaa aaggctcaac aatacgaaac gttcgctttc 60

ggtcctgatg aaagagatgt ccctgaatca tcatctaagt atg cat ctc ggt aag 115

Met His Leu Gly Lys

1 5

ctc gac cag gac agt gcc acc aca att ttg gag gat tac aag aac atg
Leu Asp Gln Asp Ser Ala Thr Thr Ile Leu Glu Asp Tyr Lys Asn Met

10 15 20

acc Thr	aac Asn	atc Ile	cgc Arg 25	gta Val	gct Ala	atc Ile	gtg Val	30 ggc	Tyr	gga Gly	aac Asn	ctg Leu	gga Gly 35	Arg	agc Ser	211
gtc Val	gaa Glu	aag Lys 40	ctt Leu	att Ile	gcc Ala	aag Lys	cag Gln 45	ccc Pro	gac Asp	atg Met	gac Asp	ctt Leu 50	gta Val	gga Gly	atc Ile	259
															gtc Val	307
gcc Ala 70	gac Asp	gtg Val	gac Asp	aag Lys	cac His 75	Ala	gac Asp	gac Asp	gtg Val	gac Asp 80	Val	ctg Leu	ttc Phe	ctg Leu	tgc Cys 85	355
atg Met	ggc	tcc Ser	gcc Ala	acc Thr 90	gac Asp	atc Ile	cct Pro	gag Glu	cag Gln 95	gca Ala	cca Pro	aag Lys	ttc Phe	gcg Ala 100	cag Gln	403
ttc Phe	gcc Ala	tgc Cys	acc Thr 105	gta Val	gac Asp	acc Thr	tac Tyr	gac Asp 110	aac Asn	cac His	cgc Arg	gac Asp	atc Ile 115	cca Pro	cgc Arg	451
cac His	cgc Arg	cag Gln 120	gtc Val	atg Met	aac Asn	gaa Glu	gcc Ala 125	gcc Ala	acc Thr	gca Ala	gcc Ala	ggc Gly 130	aac Asn	gtt Val	gca Ala	499
ctg Leu	gtc Val 135	tct Ser	acc Thr	ggc Gly	tgg Trp	gat Asp 140	cca Pro	gga Gly	atg Met	ttc Phe	tcc Ser 145	atc Ile	aac Asn	cgc Arg	gtc Val	547
tac Tyr 150	gca Ala	gcg Ala	gca Ala	gtc Val	tta Leu 155	gcc Ala	gag Glu	cac His	cag Gln	cag Gln 160	cac His	acc Thr	ttc Phe	tgg Trp	ggc Gly 165	595
cca Pro	ggt Gly	ttg Leu	tca Ser	cag Gln 170	ggc Gly	cac His	tcc Ser	gat Asp	gct Ala 175	ttg Leu	cga Arg	cgc Arg	atc Ile	cct Pro 180	Gly ggc	643
gtt Val	caa Gln	aag Lys	gca Ala 185	gtc Val	cag Gln	tac Tyr	acc Thr	ctc Leu 190	cca Pro	tcc Ser	gaa Glu	gac Asp	gcc Ala 195	ctg Leu	gaa Glu	691
aag Lys	gcc Ala	cgc Arg 200	cgc Arg	ggc Gly	gaa Glu	gcc Ala	ggc Gly 205	gac Asp	ctt Leu	acc Thr	gga Gly	aag Lys 210	caa Gln	acc Thr	cac His	739
aag Lys	cgc Arg 215	caa Gln	tgc Cys	ttc Phe	gtg Val	gtt Val 220	gcc Ala	gac Asp	gcg Ala	gcc Ala	gat Asp 225	cac His	gag Glu	cgc Arg	atc Ile	787
gaa Glu 230	aac Asn	gac Asp	atc Ile	cgc Arg	acc Thr 235	atg Met	cct Pro	gat Asp	tac Tyr	ttc Phe 240	gtt Val	ggc	tac Tyr	Glu	gtc Val 245	835
gaa Glu	gtc Val	aac Asn	ttc Phe	atc Ile 250	gac Asp	gaa Glu	gca Ala	Thr	ttc Phe 255	gac Asp	tcc Ser	gag Glu	His	acc Thr 260	Gly ggc	883
atg	cca	cac	gat	aac	cac	ata	att	acc	acc	ggc	gac	acc	aat	aac	ttc	931

Met Pro His Gly Gly His Val Ile Thr Thr Gly Asp Thr Gly Gly Phe 265 270 275

aac cac acc gtg gaa tac atc ctc aag ctg gac cga aac cca gat ttc 979
Asn His Thr Val Glu Tyr Ile Leu Lys Leu Asp Arg Asn Pro Asp Phe
280 285 290

acc gct tcc tca cag atc gct ttc ggt cgc gca gct cac cgc atg aag 1027

Thr Ala Ser Ser Gln Ile Ala Phe Gly Arg Ala Ala His Arg Met Lys 295 300 305

cag cag ggc caa agc gga gct ttc acc gtc ctc gaa gtt gct cca tac 1075

Gln Gln Gly Gln Ser Gly Ala Phe Thr Val Leu Glu Val Ala Pro Tyr 310 325

ctg etc tcc cca gag aac ttg gac gat ctg atc gca cgc gac gtc 1120

Leu Leu Ser Pro Glu Asn Leu Asp Asp Leu Ile Ala Arg Asp Val
330 335 340

taatttagct cgaggggcaa gga 1143

<210> 42

<211> 340

<212> PRT

<213> Corynebacterium glutamicum

<400> 42

Met His Leu Gly Lys Leu Asp Gln Asp Ser Ala Thr Thr Ile Leu Glu
1 5 10 15

Asp Tyr Lys Asn Met Thr Asn Ile Arg Val Ala Ile Val Gly Tyr Gly
20 25 30

Asn Leu Gly Arg Ser Val Glu Lys Leu Ile Ala Lys Gln Pro Asp Met 35 40 45

Asp Leu Val Gly Ile Phe Ser Arg Arg Ala Thr Leu Asp Thr Lys Thr 50 55 60

Pro Val Phe Asp Val Ala Asp Val Asp Lys His Ala Asp Asp Val Asp 65 70 75 80

Val Leu Phe Leu Cys Met Gly Ser Ala Thr Asp Ile Pro Glu Gln Ala 85 90 95

Pro Lys Phe Ala Gin Phe Ala Cys Thr Val Asp Thr Tyr Asp Asn His
100 105 110

Arg Asp Ile Pro Arg His Arg Gln Val Met Asn Glu Ala Ala Thr Ala 115 120 125

Ala Gly Asn Val Ala Leu Val Ser Thr Gly Trp Asp Pro Gly Met Phe 130 135 140

Ser Ile Asn Arg Val Tyr Ala Ala Ala Val Leu Ala Glu His Gln Gln 145 150 155 160

His	Thr	Phe	Trp	Gly 165	Pro	Gly	Leu	Ser	Gln 170	Gly	His	Ser	Asp	Ala 175	Leu	
Arg	Arg	Ile	Pro 180	Gly	Val	Gln	Lys	Ala 185	Val	Gln	Tyr	Thr	Leu 190		Ser	
Glu	Asp	Ala 195	Leu	Glu	Lys	Ala	Arg 200	Arg	Gly	Glu	Ala	Gly 205	Asp	Leu	Thr	
Gly	Lys 210	Gln	Thr	His	Lys	Arg 215	Gln	Cys	Phe	Val	Val 220	Ala	Asp	Ala	Ala	
Asp 225	His	Glu	Arg	Ile	Glu 230	Asn	Asp	Ile	Arg	Thr 235	Met	Pro	Asp	Tyr	Phe 240	
Val	Gly	Tyr	Glu	Val 245	Glu	Val	Asn	Phe	Ile 250	Asp	Glu	Ala	Thr	Phe 255	Asp	
Ser	Glu	His	Thr 260	Gly	Met	Pro	His	Gly 265	Gly	His	Val	Ile	Thr 270	Thr	Gly	
Asp	Thr	Gly 275	Gly	Phe	Asn	His	Thr 280	Val	Glu	Tyr	Ile	Leu 285	Lys	Leu	Asp	
Arg	Asn 290	Pro	Asp	Phe	Thr	Ala 295	Ser	Ser	Gln	Ile	Ala 300	Phe	Gly	Arg	Ala	
Ala 305	His	Arg	Met	Lys	Gln 310	Gln	Gly	Gln	Ser	Gly 315	Ala	Phe	Thr	Val	Leu 320	
Glu	Val	Ala	Pro	Tyr 325	Leu	Leu	Ser	Pro	Glu 330	Asn	Leu	Asp	Asp	Leu 335	Ile	
Ala	Arg	Asp	Val 340													
<211 <212	<210> 43 <211> 958 <212> DNA <213> Corynebacterium glutamicum															
<222)> l> CE !> (1 B> FR	01).		i8)												
)> 43 ugato		gcat	ccgt	g gt	ggaa	ccaa	aag	gctc	aac	aata	cgaa	ac ç	gttcg	ctttc	60
ggto	ctga	itg a	aaga	gatg	jt cc	ctga	atca	. tca	tcta			cat His				115
												tac Tyr				163
												ctg				211

			25				30					35			
_	-	_			_	 _		_	_	gac Asp		_			259
	_	-		_		_		_	_	cca Pro 65	_		_	_	307
										gtg Val					355
_			_						_	cca Pro	_			_	403
										cgc Arg	-			-	451
										gcc Ala					499
										tcc Ser 145				_	547
	-		-	_		 		_	_	cac His					595
		_		_			-	_	_	cga Arg	_				643
							_		_	gaa Glu	_	•	_	-	691
										gga Gly					739
										gat Asp 225					787
										gtt Val					835
										tcc Ser					883
										gac Asp					931

aac cac acc gtg gaa tac atc ctc aag Asn His Thr Val Glu Tyr Ile Leu Lys 280 285 958

<210> 44

<211> 286

<212> PRT

<213> Corynebacterium glutamicum

<400> 44

Met His Leu Gly Lys Leu Asp Gln Asp Ser Ala Thr Thr Ile Leu Glu
1 5 10 15

Asp Tyr Lys Asn Met Thr Asn Ile Arg Val Ala Ile Val Gly Tyr Gly
20 25 30

Asn Leu Gly Arg Ser Val Glu Lys Leu Ile Ala Lys Gln Pro Asp Met 35 40 45

Asp Leu Val Gly Ile Phe Ser Arg Arg Ala Thr Leu Asp Thr Lys Thr 50 55 60

Pro Val Phe Asp Val Ala Asp Val Asp Lys His Ala Asp Asp Val Asp 65 70 75 80

Val Leu Phe Leu Cys Met Gly Ser Ala Thr Asp Ile Pro Glu Gln Ala 85 90 95

Pro Lys Phe Ala Gln Phe Ala Cys Thr Val Asp Thr Tyr Asp Asn His
100 105 110

Arg Asp Ile Pro Arg His Arg Gln Val Met Asn Glu Ala Ala Thr Ala 115 120 125

Ala Gly Asn Val Ala Leu Val Ser Thr Gly Trp Asp Pro Gly Met Phe 130 135 140

Ser Ile Asn Arg Val Tyr Ala Ala Ala Val Leu Ala Glu His Gln Gln 145 150 155 160

His Thr Phe Trp Gly Pro Gly Leu Ser Gln Gly His Ser Asp Ala Leu 165 170 175

Arg Arg Ile Pro Gly Val Gln Lys Ala Val Gln Tyr Thr Leu Pro Ser 180 185 190

Glu Asp Ala Leu Glu Lys Ala Arg Arg Gly Glu Ala Gly Asp Leu Thr
195 200 205

Gly Lys Gln Thr His Lys Arg Gln Cys Phe Val Val Ala Asp Ala Ala 210 215 220

Asp His Glu Arg Ile Glu Asn Asp Ile Arg Thr Met Pro Asp Tyr Phe 225 230 235 240

Val Gly Tyr Glu Val Glu Val Asn Phe Ile Asp Glu Ala Thr Phe Asp 245 250 255

Ser Glu His Thr Gly Met Pro His Gly Gly His Val Ile Thr Thr Gly

260 265 270

Asp Thr Gly Gly Phe Asn His Thr Val Glu Tyr Ile Leu Lys 275 280 285

<210> 45 <211> 1400 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(1377) <223> RXA00972 <400> 45 cct gca cct ggt tgg cgt ttc cgc acc gga gaa gat gta aca atg gct Pro Ala Pro Gly Trp Arg Phe Arg Thr Gly Glu Asp Val Thr Met Ala 1 aca gtt gaa aat ttc aat gaa ctt ccc gca cac gta tgg cca cgc aat 96 Thr Val Glu Asn Phe Asn Glu Leu Pro Ala His Val Trp Pro Arg Asn 20 gcc gtg cgc caa gaa gac ggc gtt gtc acc gtc gct ggt gtg cct ctg 144 Ala Val Arg Gln Glu Asp Gly Val Val Thr Val Ala Gly Val Pro Leu cct gac ctc gct gaa gaa tac gga acc cca ctg ttc gta gtc gac gag 192 Pro Asp Leu Ala Glu Glu Tyr Gly Thr Pro Leu Phe Val Val Asp Glu gac gat ttc cgt tcc cgc tgt cgc gac atg gct acc gca ttc ggt gga 240 Asp Asp Phe Arg Ser Arg Cys Arg Asp Met Ala Thr Ala Phe Gly Gly 75 cca ggc aat gtg cac tac gca tct aaa gcg ttc ctg acc aag acc att Pro Gly Asn Val His Tyr Ala Ser Lys Ala Phe Leu Thr Lys Thr Ile gca cgt tgg gtt gat gaa gag ggg ctg gca ctg gac att gca tcc atc 336 Ala Arg Trp Val Asp Glu Glu Gly Leu Ala Leu Asp Ile Ala Ser Ile 100 105 aac gaa ctg ggc att gcc ctg gcc gct ggt ttc ccc gcc agc cgt atc 384 Asn Glu Leu Gly Ile Ala Leu Ala Ala Gly Phe Pro Ala Ser Arg Ile 115 acc gcg cac ggc aac aac aaa ggc gta gag ttc ctg cgc gcg ttg gtt Thr Ala His Gly Asn Asn Lys Gly Val Glu Phe Leu Arg Ala Leu Val 130 135 caa aac ggt gtg gga cac gtg gtg ctg gac tcc gca cag gaa cta gaa 480 Gln Asn Gly Val Gly His Val Val Leu Asp Ser Ala Gln Glu Leu Glu 150 155 ctg ttg gat tac gtt gcc gct ggt gaa ggc aag att cag gac gtg ttg 528 Leu Leu Asp Tyr Val Ala Ala Gly Glu Gly Lys Ile Gln Asp Val Leu 165 170

									•							
										acc Thr						576
										tcc Ser						624
										gca Ala						672
										gtg Val 235						720
										ctg Leu						768
										gat Asp						816
		_			_	_	_			ctc Leu		-	-	-	_	864
										atg Met						912
										ggc Gly 315						960
		acc	gtg	acc	atc	tac	gaa	gtc	ggc	acc	acc	aaa	gac	gtc	cac	
Pro		Thr	Val	Thr 325	Ile	Tyr	Glu	Val	Gly 330	Thr	Thr	Lys	Asp	Val 335	His	
gta 1056	_	gac	gac	aaa	acc	cgc	cgt	tac	atc	gcc	gtg	gac	gga	ggc	atg	
		Asp	Asp 340	Lys	Thr	Arg	Arg	Tyr 345	Ile	Ala	Val	Asp	Gly 350	Gly	Met	
tcc 1104		aac	atc	cgc	cca	gca	ctc	tac	ggg	tcc	gaa	tac	gac	gcc	cgc	
		Asn 355	Ile	Arg	Pro	Ala	Leu 360	Tyr	Gly	Ser	Glu	Tyr 365	Asp	Ala	Arg	
gta 1152		tcc	cgc	ttc	gcc	gaa	gga	gac	cca	gta	agc	acc	cgc	atc	gtg	
		Ser	Arg	Phe	Ala	Glu 375	Gly	Asp	Pro	Val	Ser 380	Thr	Arg	Ile	Val	
ggc 1200		cac	tgc	gaa	tcc	ggc	gat	atc	ctg	atc	aac	gat	gaa	atc	tac	
		His	Суз	Glu	Ser 390	Gly	Asp	Ile	Leu	Ile 395	Asn	Asp	Glu	Ile	Туг 400	

cca tct gac atc acc agc ggc gac ttc ctt gca ctc gca gcc acc ggc 1248
Pro Ser Asp Ile Thr Ser Gly Asp Phe Leu Ala Leu Ala Ala Thr Gly 405

gca tac tgc tac gcc atg agc tcc cgc tac aac gcc ttc aca cgg ccc 1296

Ala Tyr Cys Tyr Ala Met Ser Ser Arg Tyr Asn Ala Phe Thr Arg Pro
420 425 430

gcc gtc gtg tcc gtc cgc gct ggc agc tcc cgc ctc atg ctg cgc cgc 1344

Ala Val Val Ser Val Arg Ala Gly Ser Ser Arg Leu Met Leu Arg Arg 435 440 445

gaa acg ctc gac gac atc ctc tca cta gag gca taacgctttt cgacgcctga 1397

Glu Thr Leu Asp Asp Ile Leu Ser Leu Glu Ala 450 455

CCC 1400

<210> 46

<211> 459

<212> PRT

<213> Corynebacterium glutamicum

<400> 46

Pro Ala Pro Gly Trp Arg Phe Arg Thr Gly Glu Asp Val Thr Met Ala 1 5 10 15

Thr Val Glu Asn Phe Asn Glu Leu Pro Ala His Val Trp Pro Arg Asn 20 25 30

Ala Val Arg Gln Glu Asp Gly Val Val Thr Val Ala Gly Val Pro Leu
35 40 45

Pro Asp Leu Ala Glu Glu Tyr Gly Thr Pro Leu Phe Val Val Asp Glu 50 55 60

Asp Asp Phe Arg Ser Arg Cys Arg Asp Met Ala Thr Ala Phe Gly Gly 65 70 75 80

Pro Gly Asn Val His Tyr Ala Ser Lys Ala Phe Leu Thr Lys Thr Ile 85 90 95

Ala Arg Trp Val Asp Glu Glu Gly Leu Ala Leu Asp Ile Ala Ser Ile 100 105 110

Asn Glu Leu Gly Ile Ala Leu Ala Ala Gly Phe Pro Ala Ser Arg Ile
115 120 125

Thr Ala His Gly Asn Asn Lys Gly Val Glu Phe Leu Arg Ala Leu Val 130 135 140

Gln Asn Gly Val Gly His Val Val Leu Asp Ser Ala Gln Glu Leu Glu 145 150 155 160

Leu Leu Asp Tyr Val Ala Ala Gly Glu Gly Lys Ile Gln Asp Val Leu

165 170 175

Ile Arg Val Lys Pro Gly Ile Glu Ala His Thr His Glu Phe Ile Ala 180 185 190

Thr Ser His Glu Asp Gln Lys Phe Gly Phe Ser Leu Ala Ser Gly Ser 195 200 205

Ala Phe Glu Ala Ala Lys Ala Ala Asn Asn Ala Glu Asn Leu Asn Leu 210 215 220

Val Gly Leu His Cys His Val Gly Ser Gln Val Phe Asp Ala Glu Gly 225 230 235 240

Phe Lys Leu Ala Ala Glu Arg Val Leu Gly Leu Tyr Ser Gln Ile His 245 250 255

Ser Glu Leu Gly Val Ala Leu Pro Glu Leu Asp Leu Gly Gly Gly Tyr 260 265 270

Gly Ile Ala Tyr Thr Ala Ala Glu Glu Pro Leu Asn Val Ala Glu Val 275 280 285

Ala Ser Asp Leu Leu Thr Ala Val Gly Lys Met Ala Ala Glu Leu Gly 290 295 300

Ile Asp Ala Pro Thr Val Leu Val Glu Pro Gly Arg Ala Ile Ala Gly 305 310 315 320

Pro Ser Thr Val Thr Ile Tyr Glu Val Gly Thr Thr Lys Asp Val His 325 330 335

Val Asp Asp Lys Thr Arg Arg Tyr Ile Ala Val Asp Gly Gly Met 340 . 345 350

Ser Asp Asn Ile Arg Pro Ala Leu Tyr Gly Ser Glu Tyr Asp Ala Arg 355 360 365

Val Val Ser Arg Phe Ala Glu Gly Asp Pro Val Ser Thr Arg Ile Val 370 375 380

Gly Ser His Cys Glu Ser Gly Asp Ile Leu Ile Asn Asp Glu Ile Tyr 385 390 395 400

Pro Ser Asp Ile Thr Ser Gly Asp Phe Leu Ala Leu Ala Ala Thr Gly 405 410 415

Ala Tyr Cys Tyr Ala Met Ser Ser Arg Tyr Asn Ala Phe Thr Arg Pro 420 425 430

Ala Val Val Ser Val Arg Ala Gly Ser Ser Arg Leu Met Leu Arg Arg 435 440 445

Glu Thr Leu Asp Asp Ile Leu Ser Leu Glu Ala 450 455

<210> 47

<211> 2121

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS <222> (101)..(2098) <223> RXA02653 <400> 47 agacagagtg ttagtgcgtg gggcagctct cactttcatc gacatcactc gagtatgctc 60 accggccgta ttcattccaa taacccgcac agggaaacta atg ata ccg aag ccc Met Ile Pro Lys Pro gac gtg acc gac tta tat tta gag gac ctc tta aat gag ggt tcg gaa Asp Val Thr Asp Leu Tyr Leu Glu Asp Leu Leu Asn Glu Gly Ser Glu aag att cgg tcc gcc aag gat ctt tcc gaa ctt agg aca gtt cta aaa Lys Ile Arg Ser Ala Lys Asp Leu Ser Glu Leu Arg Thr Val Leu Lys 25 gag gtt tcc tcc caa att cag gaa cga gct ggg aaa aaa gat gaa gaa 259 Glu Val Ser Ser Gln Ile Gln Glu Arg Ala Gly Lys Lys Asp Glu Glu 40 tgg gga atg ggg gcc act tgg cgg gag ctg tac ccc agc atc gtg gaa 307 Trp Gly Met Gly Ala Thr Trp Arg Glu Leu Tyr Pro Ser Ile Val Glu 60 cgc gct tcc tac gaa ggg cgt gac agc cta atc gga ttt gat cac tta 355 Arg Ala Ser Tyr Glu Gly Arg Asp Ser Leu Ile Gly Phe Asp His Leu gcc cgg gaa atg gaa aga tta gcc ttc ggc cca cca tcc gaa agt ttt 403 Ala Arg Glu Met Glu Arg Leu Ala Phe Gly Pro Pro Ser Glu Ser Phe 95 gaa tac ctc caa gaa ctc gta aaa tcc gga gtg gta gac atc act cac 451 Glu Tyr Leu Gln Glu Leu Val Lys Ser Gly Val Val Asp Ile Thr His 105 110 499 ctg cat cgt ggc cgg gaa cca ctg aca gat tta gtt cgt gaa ctt gaa Leu His Arg Gly Arg Glu Pro Leu Thr Asp Leu Val Arg Glu Leu Glu 120 125 130 ata act gtg gtg ata gac gct gtt ctt ccc ccg ccg gga gta gtg cca 547 Ile Thr Val Val Ile Asp Ala Val Leu Pro Pro Pro Gly Val Val Pro 135 140 ggc aca ttg gtg cac aat ttg gta aaa gag gga tat gcc aga atg cgt 595 Gly Thr Leu Val His Asn Leu Val Lys Glu Gly Tyr Ala Arg Met Arg 150 cct ggg act cgg ggg tta gat gta gcg gct gac ggc acc gtt caa ggg 643 Pro Gly Thr Arg Gly Leu Asp Val Ala Ala Asp Gly Thr Val Gln Gly 170 175 caa cga cat ttg gct gca gtc gga cgg atg acg gaa gat gtg gtt ttg 691 Gln Arg His Leu Ala Ala Val Gly Arg Met Thr Glu Asp Val Val Leu 185 190 195

															tgg Trp	739
															cat His	787
											tgg Trp				ctc Leu 245	835
											gaa Glu					883
											cgt Arg					931
											act Thr					979
gcc 1027	_	aaa	gcg	aat	aag	ggt	ctt	acc	ttc	gtt	gat	gcc	gtt	aaa	gac	
		Lys	Ala	Asn	Lys	Gly 300	Leu	Thr	Phe	Val	Asp 305	Ala	Val	Lys	Asp	
acc 1075		cat	ggt	gta	gat	gta	gcc	agt	gaa	cga	gag	tta	tct	cag	gtg	
		His	Gly	Val	Asp 315	Val	Ala	Ser	Glu	Arg 320	Glu	Leu	Ser	Gln	Val 325	
ctt 1123		cgt	gga	gtc	cca	gga	gag	cgg	atc	att	cta	tcc	gca	gct	atc	
		Arg	Gly	Val 330	Pro	Gly	Glu	Arg	Ile 335	Ile	Leu	Ser	Ala	Ala 340	Ile	
aaa 1171		gac	aga	cta	ttg	gca	tta	gcg	atc	gaa	aat	ggc	gtg	atc	atc	
		Asp	Arg 345	Leu	Leu	Ala	Leu	Ala ⁻ 350	Ile	Glu	Asn	Gly	Val 355	Ile	Ile	
tct 1219		gat	tcg	cgt	gat	gaa	tta	gat	cgc	att	tcg	gct	ttg	gtt	ggt	
		Asp 360	Ser	Arg	Asp	Glu	Leu 365	Asp	Arg	Ile	Ser	Ala 370	Leu	Val	Gly	
gac 1267		gtt	gca	cga	gtt	gcg	cct	aga	gta	gct	cca	gat	cct	gca	gtc	
Asp		Val	Ala	Arg	Val	Ala 380	Pro	Arg	Val	Ala	Pro 385	Asp	Pro	Ala	Val	
tta 1315		cca	act	aga	ttt	ggt	gag	cgt	gct	gca	gac	tgg	ggt	aat	cgg	
		Pro	Thr	Arg	Phe 395	Gly	Glu	Arg	Ala	Ala 400	Asp	Trp	Gly	Asn	Arg 405	
ctt 1363		gag	gtg	ata	ccc	ggc	gtg	gat	att	gtg	ggt	ctt	cac	gtt	cac	

Leu Thr Glu Val Ile Pro Gly Val Asp Ile Val Gly Leu His Val His 410 ctc cat ggc tat gct gca aaa gac cgt gct ctg gct ctg cag gaa tgt 1411 Leu His Gly Tyr Ala Ala Lys Asp Arg Ala Leu Ala Leu Gln Glu Cys 430 435 425 tgc caa ctc gtc gat tct ctc aga gaa tgc ggg cat tcc cca cag ttt 1459 Cys Gln Leu Val Asp Ser Leu Arg Glu Cys Gly His Ser Pro Gln Phe att gac ctt gga gga ggg gtg cct atg agc tac att gaa tct gag gaa 1507 Ile Asp Leu Gly Gly Gly Val Pro Met Ser Tyr Ile Glu Ser Glu Glu gat tgg atc cgt tat caa tcc gct aaa tct gcg act tca gcc ggg tat 1555 Asp Trp Ile Arg Tyr Gln Ser Ala Lys Ser Ala Thr Ser Ala Gly Tyr 485 470 480 gcc gaa tcc ttt acg tgg aaa gac gat ccg tta tct aat acg tac ccg Ala Glu Ser Phe Thr Trp Lys Asp Asp Pro Leu Ser Asn Thr Tyr Pro 490 ttc tat cag acc cca gtg cgc ggt aat tgg ttg aaa gac gtg ctt tct Phe Tyr Gln Thr Pro Val Arg Gly Asn Trp Leu Lys Asp Val Leu Ser aag ggg gta gct cag atg ctc att gac cgg gga ttg cgg tta cac ata 1699 Lys Gly Val Ala Gln Met Leu Ile Asp Arg Gly Leu Arg Leu His Ile 520 gag cct ggt cga agt tta cta gat ggg tgt ggc gtc act ctt gcc gaa 1747 Glu Pro Gly Arg Ser Leu Leu Asp Gly Cys Gly Val Thr Leu Ala Glu 540 535 gtt gct ttt gtg aaa acc cga agt gac ggg ttg cct cta gtg gga ctg 1795 Val Ala Phe Val Lys Thr Arg Ser Asp Gly Leu Pro Leu Val Gly Leu gct atg aac cga acg cag tgc cgg act aca tcc gat gat ttt ctc att 1843 Ala Met Asn Arg Thr Gln Cys Arg Thr Thr Ser Asp Asp Phe Leu Ile 570 580 gat ecc etg cat ate act gae ggt gat gta gge gag gaa ate gaa gea 1891 Asp Pro Leu His Ile Thr Asp Gly Asp Val Gly Glu Glu Ile Glu Ala 590 595 585 tat cta gtg ggt gcc tac tgc atc gaa gat gag ctg att tta cgc cgg Tyr Leu Val Gly Ala Tyr Cys Ile Glu Asp Glu Leu Ile Leu Arg Arg

600 605 610

cga atc cgc ttc ccg aga gga gtc aaa cca gga gat atc atc gga att 1987

Arg Ile Arg Phe Pro Arg Gly Val Lys Pro Gly Asp Ile Ile Gly Ile 615 620 625

cct aac acc gca gga tac ttc atg cat atc ttg gaa agt gca tcg cac 2035

Pro Asn Thr Ala Gly Tyr Phe Met His Ile Leu Glu Ser Ala Ser His 630 645

caa atc ccg ttg gcg aaa aat gta gtg tgg ccg gag ggg cag tta gac 2083

Gln Ile Pro Leu Ala Lys Asn Val Val Trp Pro Glu Gly Gln Leu Asp 650 655 660

gat atc gat gcg gat taagacataa ccattcgcta atc 2121

Asp Ile Asp Ala Asp 665

<210> 48

<211> 666

<212> PRT

<213> Corynebacterium glutamicum

<400> 48

Met Ile Pro Lys Pro Asp Val Thr Asp Leu Tyr Leu Glu Asp Leu Leu 1 5 10 15

Asn Glu Gly Ser Glu Lys Ile Arg Ser Ala Lys Asp Leu Ser Glu Leu 20 25 30

Arg Thr Val Leu Lys Glu Val Ser Ser Gln Ile Gln Glu Arg Ala Gly 35 40 45

Lys Lys Asp Glu Glu Trp Gly Met Gly Ala Thr Trp Arg Glu Leu Tyr
50 55 60

Pro Ser Ile Val Glu Arg Ala Ser Tyr Glu Gly Arg Asp Ser Leu Ile 65 70 75 80

Gly Phe Asp His Leu Ala Arg Glu Met Glu Arg Leu Ala Phe Gly Pro 85 90 95

Pro Ser Glu Ser Phe Glu Tyr Leu Gln Glu Leu Val Lys Ser Gly Val 100 105 110

Val Asp Ile Thr His Leu His Arg Gly Arg Glu Pro Leu Thr Asp Leu 115 120 125

Val Arg Glu Leu Glu Ile Thr Val Val Ile Asp Ala Val Leu Pro Pro 130 135 140

Pro Gly Val Val Pro Gly Thr Leu Val His Asn Leu Val Lys Glu Gly 145 150 155 160

Tyr Ala Arg Met Arg Pro Gly Thr Arg Gly Leu Asp Val Ala Ala Asp 165 170 175

Gly Thr Val Gln Gly Gln Arg His Leu Ala Ala Val Gly Arg Met Thr 185 Glu Asp Val Val Leu Gly Asn Asp Thr Leu Ser Arg Ser Leu His Asp 200 Ile Ile Pro Lys Trp Ala Arg Arg Val Ile Arg Asp Ala Ser Thr Tyr 215 Pro Asp Arg Val His Gly Thr Pro Pro Leu Pro Ala Arg Leu Glu Pro 235 230 Trp Ala Glu Lys Leu Thr Ser Asp Pro Ala Thr Cys Arg His Leu Ile 250 Glu Glu Phe Gly Ser Pro Val Asn Val Leu His Ser Gly Ser Met Pro 260 265 Arg Asn Ile Asn Glu Leu Val Asp Ala Gly Ile Gln Met Gly Val Asp Thr Arg Ile Phe Phe Ala Arg Lys Ala Asn Lys Gly Leu Thr Phe Val Asp Ala Val Lys Asp Thr Gly His Gly Val Asp Val Ala Ser Glu Arg 310 Glu Leu Ser Gln Val Leu Asn Arg Gly Val Pro Gly Glu Arg Ile Ile 325 330 Leu Ser Ala Ala Ile Lys Pro Asp Arg Leu Leu Ala Leu Ala Ile Glu Asn Gly Val Ile Ile Ser Val Asp Ser Arg Asp Glu Leu Asp Arg Ile 360 Ser Ala Leu Val Gly Asp Arg Val Ala Arg Val Ala Pro Arg Val Ala 375 Pro Asp Pro Ala Val Leu Pro Pro Thr Arg Phe Gly Glu Arg Ala Ala 390 395 385 Asp Trp Gly Asn Arg Leu Thr Glu Val Ile Pro Gly Val Asp Ile Val 410 Gly Leu His Val His Leu His Gly Tyr Ala Ala Lys Asp Arg Ala Leu 420 Ala Leu Gln Glu Cys Cys Gln Leu Val Asp Ser Leu Arg Glu Cys Gly His Ser Pro Gln Phe Ile Asp Leu Gly Gly Val Pro Met Ser Tyr Ile Glu Ser Glu Glu Asp Trp Ile Arg Tyr Gln Ser Ala Lys Ser Ala 470 465 Thr Ser Ala Gly Tyr Ala Glu Ser Phe Thr Trp Lys Asp Asp Pro Leu 490 485

Ser	Asn	Thr	Tyr 500	Pro	Phe	Tyr	Gln	Thr 505	Pro	Val	Arg	Gly	Asn 510	Trp	Leu	
Lys	Asp	Val 515	Leu	Ser	Lys	Gly	Val 520	Ala	Gln	Met	Leu	Ile 525	Asp	Arg	Gly	
Leu	Arg 530	Leu	His	Ile	Glu	Pro 535	Gly	Arg	Ser	Leu	Leu 540	Asp	Gly	Сув	Gly	
Val 545	Thr	Leu	Ala	Glu	Val 550	Ala	Phe	Val	Lys	Thr 555	Arg	Ser	Asp	Gly	Leu 560	
Pro	Leu	Val	Gly	Leu 565	Ala	Met	Asn	Arg	Thr 570	Gln	Суз	Arg	Thr	Thr 575	Ser	
Asp	Asp	Phe	Leu 580	Ile	Asp	Pro	Leu	His 585	Ile	Thr	qeA	Gly	Asp 590	Val	Gly	
Glu	Glu	Ile 595	Glu	Ala	Tyr	Leu	Val 600	Gly	Ala	Tyr	Cys	Ile 605	Glu	Asp	Glu	
Leu	Ile 610	Leu	Arg	Arg	Arg	Ile 615	Arg	Phe	Pro	Arg	Gly 620	Val	Lys	Pro	Gly	
Asp 625	Ile	Ile	Gly	Ile	Pro 630	Asn	Thr	Ala	Gly	Tyr 635	Phe	Met	His	Ile	Leu 640	
Glu	Ser	Ala	Ser	His 645	Gln	Ile	Pro	Leu	Ala 650	Lys	Asn	Val	Val	Trp 655	Pro	
Glu	Gly	Gln	Leu 660	Asp	Asp	Ile	Asp	Ala 665	Asp							
<213	0> 49 L> 99 2> Di 3> Co	93 NA	ebact	ceriu	um gl	lutar	nicur	n								
<222	L> CI 2> (1		(97 393	70)												
)> 49 aagca		ectat	aato	ra aç	gatti	ccat	c gat	caco	catc	gtga	accta	atg g	gaagt	actta	60
			_			catgo					atg	aac		att	caa	115
						atc Ile										163
						tcc Ser									aaa Lys	211
gct Ala	ctc Leu	gag Glu	cat His	cac His	gtg Val	ggt Gly	cga Arg	gtg Val	ttg Leu	gta Val	tcg Ser	cgc Arg	acc Thr	caa Gl'n	ccg Pro	259

50 45 40 gcc aaa gca acc gaa gcg ggt gaa gtc ctt gtg caa gca gcg cgg aaa 307 Ala Lys Ala Thr Glu Ala Gly Glu Val Leu Val Gln Ala Ala Arg Lys atg gtg ttg ctg caa gca gaa act aaa gcg caa cta tct gga cgc ctt 355 Met Val Leu Gln Ala Glu Thr Lys Ala Gln Leu Ser Gly Arg Leu 70 gct gaa atc ccg tta acc atc gcc atc aac gca gat tcg cta tcc aca 403 Ala Glu Ile Pro Leu Thr Ile Ala Ile Asn Ala Asp Ser Leu Ser Thr 90 tgg ttt cct ccc gtg ttc aac gag gta gct tct tgg ggt gga gca acg 451 Trp Phe Pro Pro Val Phe Asn Glu Val Ala Ser Trp Gly Gly Ala Thr ctc acg ctg cgc ttg gaa gat gaa gcg cac aca tta tcc ttg ctg cgg 499 Leu Thr Leu Arg Leu Glu Asp Glu Ala His Thr Leu Ser Leu Leu Arg cqt gga gat gtt tta gga gcg gta acc cgt gaa gct aat ccc gtg gcg 547 Arg Gly Asp Val Leu Gly Ala Val Thr Arg Glu Ala Asn Pro Val Ala 135 140 gga tgt gaa gta gta gaa ctt gga acc atg cgc cac ttg gcc att gca 595 Gly Cys Glu Val Val Glu Leu Gly Thr Met Arg His Leu Ala Ile Ala 150 155 160 acc ccc tca ttg cgg gat gcc tac atg gtt gat ggg aaa cta gat tgg 643 Thr Pro Ser Leu Arg Asp Ala Tyr Met Val Asp Gly Lys Leu Asp Trp 170 gct gcg atg ccc gtc tta cgc ttc ggt ccc aaa gat gtg ctt caa gac 691 Ala Ala Met Pro Val Leu Arg Phe Gly Pro Lys Asp Val Leu Gln Asp 185 cgt gac ctg gac ggg cgc gtc gat ggt cct gtg ggg cgc agg cgc gta 739 Arg Asp Leu Asp Gly Arg Val Asp Gly Pro Val Gly Arg Arg Arg Val 200 787 tee att gte eeg teg geg gaa ggt ttt ggt gag gea att ege ega gge Ser Ile Val Pro Ser Ala Glu Gly Phe Gly Glu Ala Ile Arg Arg Gly 215 220 ctt ggt tgg gga ctt ctt ccc gaa acc caa gct gct ccc atg cta aaa 835

Leu Gly Trp Gly Leu Leu Pro Glu Thr Gln Ala Ala Pro Met Leu Lys 235 gca gga gaa gtg atc ctc ctc gat gag ata ccc att gac aca ccg atg 883 Ala Gly Glu Val Ile Leu Leu Asp Glu Ile Pro Ile Asp Thr Pro Met 250 255 tat tgg caa cga tgg cgc ctg gaa tct aga tct cta gct aga ctc aca 931 Tyr Trp Gln Arg Trp Arg Leu Glu Ser Arg Ser Leu Ala Arg Leu Thr 265 270 gac gcc gtc gtt gat gca gca atc gag gga ttg cgg cct tagttacttc 980 Asp Ala Val Val Asp Ala Ala Ile Glu Gly Leu Arg Pro 280 72

tgaaaaggtt cag 993

<21	0>	50
-----	----	----

<211> 290

<212> PRT

<213> Corynebacterium glutamicum

<400> 50

Met Asn Pro Ile Gln Leu Asp Thr Leu Leu Ser Ile Ile Asp Glu Gly
1 5 10 15

Ser Phe Glu Gly Ala Ser Leu Ala Leu Ser Ile Ser Pro Ser Ala Val 20 25 30

Ser Gln Arg Val Lys Ala Leu Glu His His Val Gly Arg Val Leu Val
35 40 45

Ser Arg Thr Gln Pro Ala Lys Ala Thr Glu Ala Gly Glu Val Leu Val
50 55 60

Gln Ala Ala Arg Lys Met Val Leu Leu Gln Ala Glu Thr Lys Ala Gln 65 70 75 80

Leu Ser Gly Arg Leu Ala Glu Ile Pro Leu Thr Ile Ala Ile Asn Ala 85 90 95

Asp Ser Leu Ser Thr Trp Phe Pro Pro Val Phe Asn Glu Val Ala Ser 100 105 110

Trp Gly Gly Ala Thr Leu Thr Leu Arg Leu Glu Asp Glu Ala His Thr
115 120 125

Leu Ser Leu Leu Arg Arg Gly Asp Val Leu Gly Ala Val Thr Arg Glu 130 135 140

Ala Asn Pro Val Ala Gly Cys Glu Val Val Glu Leu Gly Thr Met Arg 145 150 155 160

His Leu Ala Ile Ala Thr Pro Ser Leu Arg Asp Ala Tyr Met Val Asp 165 170 175

Gly Lys Leu Asp Trp Ala Ala Met Pro Val Leu Arg Phe Gly Pro Lys 180 185 190

Asp Val Leu Gln Asp Arg Asp Leu Asp Gly Arg Val Asp Gly Pro Val 195 200 205

Gly Arg Arg Val Ser Ile Val Pro Ser Ala Glu Gly Phe Gly Glu 210 215 220

Ala Ile Arg Arg Gly Leu Gly Trp Gly Leu Leu Pro Glu Thr Gln Ala 225 230 235 240

Ala Pro Met Leu Lys Ala Gly Glu Val Ile Leu Leu Asp Glu Ile Pro 245 250 255

Ile Asp Thr Pro Met Tyr Trp Gln Arg Trp Arg Leu Glu Ser Arg Ser 260 265 270

Leu Ala Arg Leu Thr Asp Ala Val Val Asp Ala Ala Ile Glu Gly Leu 275 280 285

Arg Pro 290

135

<210> 51 <211> 1626 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1603) <223> RXA00241 <400> 51 ggtctccagc ctttctaaac aattcatctg cacttgatta attggcccca agattacgcg 60 aagtttageg acttegeegt aegteaacta egttaaatga gtg aat aet eaa tea Val Asn Thr Gln Ser gat tot geg ggg tot caa ggt gca geg gec aca agt egt act gta tot 163 Asp Ser Ala Gly Ser Gln Gly Ala Ala Ala Thr Ser Arg Thr Val Ser 10 15 att aga acc ctc atc gcg ctg atc atc gga tcg acc gtc ggc gcg gga 211 Ile Arg Thr Leu Ile Ala Leu Ile Ile Gly Ser Thr Val Gly Ala Gly 25 att ttc tcc atc cct caa aac atc ggc tca gtc gca ggt ccc ggc gcg 259 Ile Phe Ser Ile Pro Gln Asn Ile Gly Ser Val Ala Gly Pro Gly Ala 40 atg ctc atc ggc tgg ctg atc gcc ggt gtg ggc atg ttg tcc gta gcg 307 Met Leu Ile Gly Trp Leu Ile Ala Gly Val Gly Met Leu Ser Val Ala 55 60 tte gtg tte cat gtt ctt gcc cgc cgt aaa cct cac ctc gat tct ggc 355 Phe Val Phe His Val Leu Ala Arg Arg Lys Pro His Leu Asp Ser Gly 70 75 gtc tac gca tat gcg cgt gtt gga ttg ggc gat tat gta ggt ttc tcc 403 Val Tyr Ala Tyr Ala Arg Val Gly Leu Gly Asp Tyr Val Gly Phe Ser 95 tee get tgg ggt tat tgg etg ggt tea gte ate gee caa gtt gge tae Ser Ala Trp Gly Tyr Trp Leu Gly Ser Val Ile Ala Gln Val Gly Tyr 105 110 gca acg tta ttt ttc tcc acg ttg ggc cac tac gta ccg ctg ttt tcc 499 Ala Thr Leu Phe Phe Ser Thr Leu Gly His Tyr Val Pro Leu Phe Ser 120 125 130 547 caa gat cat cca ttt gtg tca gcg ttg gca gtt agc gct ttg acc tgg

145

Gln Asp His Pro Phe Val Ser Ala Leu Ala Val Ser Ala Leu Thr Trp

ctg gtg ttt gga gtt gtt tcc cga gga att agc caa gct gct ttc ttg

140

Leu 150	Val	Phe	Gly	Val	Val 155	Ser	Arg	Gly	Ile	Ser 160	Gln	Ala	Ala	Phe	Leu 165	
										cct Pro						643
										ga g Glu						691
										att Ile						739
										atc Ile						787
										agt Ser 240						835
										ttg Leu						883
-	_	_				-				gag Glu		_				931
										gtt Val						979
gcc 1027	_	ttg	att	tcg	ttg	ggt	ctg	tgt	ctt	tcg	gtt	ctt	ggg	gcc	tat	
		Leu	Ile	Ser	Leu	Gly 300	Leu	Cys	Leu	Ser	Val 305	Leu	Gly	Ala	Tyr	
gtg 1079		tgg	cag	atg	ctc	tgc	gca	gaa	cca	ctg	gcg	ttg	atg	gca	atg	
		Trp	Gln	Met	Leu 315	Суз	Ala	Glu	Pro	Leu 320	Ala	Leu	Met	Ala	Met 325	
gat 1123		ctc	att	cca	agc	aaa	atc	ggg	gcc	atc	aac	agc	cgc	ggt	gct	
		Leu	Ile	Pro 330	Ser	Lys	Ile	Gly	Ala 335	Ile	Asn	Ser	Arg	Gly 340	Ala	
gcc 1171		atg	gct	cag	ctg	atc	tcc	acc	atc	gtg	att	cag	att	ttc	atc	
		Met	Ala 345	Gln	Leu	Ile	Ser	Thr 350	Ile	Val	Ile	Gln	Ile 355	Phe	Ile	
atc 1219		ttc	ttc	ctc	aac	gag	acc	acc	tac	gtc	tcc	atg	gtg	caa	ttg	
		Phe 360	Phe	Leu	Asn	Glu	Thr 365	Thr	Tyr	Val	Ser	Met 370	Val	Gln	Leu	

get acc aac cta tac ttg gtg cet tac etg tte tet gee ttt tat etg 1267

Ala Thr Asn Leu Tyr Leu Val Pro Tyr Leu Phe Ser Ala Phe Tyr Leu 375 380 385

gtc atg ctg gca aca cgt gga aaa gga atc acc cac cca cat gcc ggc 1315

Val Met Leu Ala Thr Arg Gly Lys Gly Ile Thr His Pro His Ala Gly 390 395 400 405

aca cgt ttt gat gat tcc ggt cca gag ata tcc cgc cga gaa aac cgc 1363

Thr Arg Phe Asp Asp Ser Gly Pro Glu Ile Ser Arg Arg Glu Asn Arg
410 415 420

aaa cac ctc atc gtc ggt tta gta gca acg gtg tat tca gtg tgg ctg 1411

Lys His Leu Ile Val Gly Leu Val Ala Thr Val Tyr Ser Val Trp Leu 425 430 435

ttt tac gct gca gaa ccg cag ttt gtc ctc ttc gga gcc atg gcg atg 1459

Phe Tyr Ala Ala Glu Pro Gln Phe Val Leu Phe Gly Ala Met Ala Met 440 445 450

ctt ccc ggc tta atc ccc tat gtg tgg aca agg att tat cgt ggc gaa 1507

Leu Pro Gly Leu Ile Pro Tyr Val Trp Thr Arg Ile Tyr Arg Gly Glu 455 460 . 465

cag gtg ttt aac cgc ttt gaa atc ggc gtg gtt gtt gtc ctg gtc gtt 1555

Gln Val Phe Asn Arg Phe Glu Ile Gly Val Val Val Val Leu Val Val 470 480 485

gct gcc agc gcg ggc gtt att ggt ttg gtc aac gga tca cta tcg ctt 1603

Ala Ala Ser Ala Gly Val Ile Gly Leu Val Asn Gly Ser Leu Ser Leu 490 495 500

taaacaccga aaccttcctg cta 1626

<210> 52

<211> 501

<212> PRT

<213> Corynebacterium glutamicum

<400> 52

Val Asn Thr Gln Ser Asp Ser Ala Gly Ser Gln Gly Ala Ala Ala Thr
1 5 10 15

Ser Arg Thr Val Ser Ile Arg Thr Leu Ile Ala Leu Ile Ile Gly Ser 20 25 30

Thr Val Gly Ala Gly Ile Phe Ser Ile Pro Gln Asn Ile Gly Ser Val 35 40 45

Ala Gly Pro Gly Ala Met Leu Ile Gly Trp Leu Ile Ala Gly Val Gly 50 55 60

Met 65	Leu	Ser	Val	Ala	Phe 70	Val	Phe	His	Val	Leu 75	Ala	Arg	Arg	Lys	Pro 80
His	Leu	Asp	Ser	Gly 85	Val	Tyr	Ala	Tyr	Ala 90	Arg	Val	Gly	Leu	Gly 95	Asp
Tyr	Val	Gly	Phe 100	Ser	Ser	Ala	Trp	Gly 105	Tyr	Trp	Leu	Gly	Ser 110	Val	Ile
Ala	Gln	Val 115	Gly	Tyr	Ala	Thr	Leu 120	Phe	Phe	Ser	Thr	Leu 125	Gly	His	Tyr
Val	Pro 130	Leu	Phe	Ser	Gln	Asp 135	His	Pro	Phe	Val	Ser 140	Ala	Leu	Ala	Val
Ser 145	Ala	Leu	Thr	Trp	Leu 150	Val	Phe	Gly	Val	Val 155	Ser	Arg	Gly	Ile	Ser 160
Gln	Ala	Ala	Phe	Leu 165	Thr	Thr	Val	Thr	Thr 170	Val	Ala	Lys	Ile	Leu 175	Pro
Leu	Leu	Cys	Phe 180	Ile	Ile	Leu	Val	Ala 185		Leu	Gly	Phe	Ser 190	Trp	Glu
Lys	Phe	Thr 195	Val	Asp	Leu	Trp	Ala 200	Arg	Asp	Gly	Gly	Val 205	Gly	Ser	Ile
Phe	Asp 210	Gln	Val	Arg	Gly	Ile 215	Met	Val	Tyr	Thr	Val 220	Trp	Val	Phe	Ile
Gly 225	Ile	Glu	Gly	Ala	Ser 230	Val	Туr	Ser	Arg	Gln 235	Ala	Arg	Ser	Arg	Ser 240
Asp	Val	Ser	Arg	Ala 245	Thr	Val	Ile	Gly	Phe 250	Val	Ala	Val	Leu	Leu 255	Leu
Leu	Val	Ser	Ile 260	Ser	Ser	Leu	Ser	Phe 265	Gly	Val	Leu	Thr	G1n 270	Gln	Glu
Leu	Ala	Ala 275	Leu	Pro	Asp	Asn	Ser 280	Met	Ala	Ser	Val	Leu 285	Glu	Ala	Val
Val	Gly 290	Pro	Trp	Gly	Ala	Ala 295	Leu	Ile	Ser	Leu	300 Gly	Leu	Суз	Leu	Ser
Val 305	Leu	Gly	Ala	Tyr	Val 310	Ser	Trp	Gln	Met	Leu 315	Суз	Ala	Glu	Pro	Leu 320
Ala	Leu	Met	Ala	Met 325	Asp	Gly	Leu	Ile	Pro 330	Ser	Lys	Ile	Gly	Ala 335	Ile
Asn	Ser	Arg	Gly 340	Ala	Ala	Trp	Met	Ala 345	Gln	Leu	Ile	Ser	Thr 350	Ile	Val
Ile	Gln	Ile 355	Phe	Ile	Ile	Ile	Phe 360	Phe	Leu	Asn	Glu	Thr 365	Thr	Tyr	Val
Ser	Met	Val	Gln	Leu	Ala	Thr	Asn	Leu	Tyr	Leu	Val 380	Pro	Tyr	Leu	Phe

Ser 385	Ala	Phe	Tyr	Leu	Val 390	Met	Leu	Ala	Thr	Arg 395	Gly	Lys	Gly	Ile	Thr 400	
His	Pro	His	Ala	Gly 405	Thr	Arg	Phe	Asp	Asp 410	Ser	Gly	Pro	Glu	Ile 415	Ser	
Arg	Arg	Glu	Asn 420	Arg	Lys	His	Leu	Ile 425	Val	Gly	Leu	Val	Ala 430	Thr	Val	
Tyr	Ser	Val 435	Trp	Leu	Phe	Tyr	Ala 440	Ala	Glu	Pro	Gln	Phe 445	Val	Leu	Phe	
Gly	Ala 450	Met	Ala	Met	Leu	Pro 455	Gly	Leu	Ile	Pro	Tyr 460	Val	Trp	Thr	Arg	
Ile 465	Tyr	Arg	Gly	Glu	Gln 470	Val	Phe	Asn	Arg	Phe 475	Glu	Ile	Gly	Val	Val 480	
Val	Val	Leu	Val	Val 485	Ala	Ala	Ser	Ala	Gly 490	Val	Ile	Gly	Leu	Val 495	Asn	
Gly	Ser	Leu	Ser 500	Leu												
<21:	0> 5: 1> 8: 2> DI 3> Co	22 NA	ebac	teri	um gl	lutar	nicur	n								
<22 <22	0> 1> CI	os														
	2> (3 3> R2			99)												
)> 53 caaag		cca	gttga	aa to	gggt	tcat	gaa	agcta	atat	taaa	accat	gt t	aaga	accaa	60
tcai	tttt	act t	taag	tacti	tc ca	atagg	gtcad	c gat	ggtg			gaa Glu				115
	ggt Gly															163
	gta Val															211
gtt Val	ctt Leu	ctc Leu 40	gtg Val	tgt Cys	tta Leu	att Ile	tct Ser 45	gac Asp	gtc Val	ttt Phe	ttg Leu	ttc Phe 50	atc Ile	gcc Ala	ggc Gly	259
	ttg Leu 55															307
att Ile 70	atg Met	cgc Arg	tgg Trp	ggt Gly	ggc Gly 75	atc Ile	gct Ala	tac Tyr	ctg Leu	tta Leu 80	tgg Trp	ttt Phe	gcc Ala	gtc Val	atg Met 85	355

gca Ala	gcg Ala	aaa Lys	gac Asp	gcc Ala 90	atg Met	aca Thr	aac Asn	aag Lys	gtg Val 95	gaa Glu	gcg Ala	cca Pro	cag Gln	atc Ile 100	att Ile	403
gaa Glu	gaa Glu	aca Thr	gaa Glu 105	cca Pro	acc Thr	gtg Val	ccc Pro	gat Asp 110	gac Asp	acg Thr	cct Pro	ttg Leu	ggc Gly 115	ggt Gly	tcg Ser	451
gcg Ala	gtg Val	gcc Ala 120	act Thr	gac Asp	acg Thr	cgc Arg	aac Asn 125	cgg Arg	gtg Val	cgg Arg	gtg Val	gag Glu 130	gtg Val	agc Ser	gtc Val	499
gat Asp	aag Lys 135	cag Gln	cgg Arg	gtt Val	tgg Trp	gta Val 140	aag Lys	ccc Pro	atg Met	ttg Leu	atg Met 145	gca Ala	atc Ile	gtg Val	ctg Leu	547
	tgg Trp															595
	gtc Val															643
ggc Gly	gcg Ala	ttc Phe	gcg Ala 185	gca Ala	agc Ser	ctg Leu	atc Ile	tgg Trp 190	ttc Phe	ccg Pro	ctg Leu	gtg Val	ggt Gly 195	ttc Phe	Gly ggc	691
	gca Ala															739
atc Ile	aac Asn 215	gtc Val	gtc Val	gtg Val	gca Ala	gtt Val 220	gtg Val	atg Met	acc Thr	gca Ala	ttg Leu 225	gcc Ala	atc Ile	aaa Lys	ctg Leu	78 7
_	ttg Leu	_		tagt	tttc	gc g	gggtt	ttg	ga at	c						822
<213 <213	0> 54 1> 23 2> PI 3> Co	33 RT	ebact	eri	ım g]	lutar	nicum	n	·							
	0> 54 Glu		Phe	Ile 5	Thr	Gly	Leu	Leu	Leu 10	Gly	Ala	Ser	Leu	Leu 15	Leu	
Ser	Ile	Gly	Pro 20	Gln	Asn	Val	Leu	Val 25	Ile	Lys	Gln	Gly	Ile 30	Lys	Arg	
Glu	Gly	Leu 35	Ile	Ala	Val	Leu	Leu 40	Val	Cys	Leu	Ile	Ser 45	Asp	Val	Phe	
Leu	Phe 50	Ile	Ala	Gly	Thr	Leu 55	Gly	Val	Asp	Leu	Leu 60	Ser	Asn	Ala	Ala	
Pro	Ile	Val	Leu	Asp	Ile	Met	Arg	Trp	Gly	Gly	Ile	Ala	Tyr	Leu	Leu	

65					70					75					80	
Trp	Phe	Ala	Val	Met 85	Ala	Ala	Lys	Asp	Ala 90	Met	Thr	Asn	Lys	Val 95	Glu	
Ala	Pro	Gln	Ile 100	Ile	Glu	Glu	Thr	Glu 105	Pro	Thr	Val	Pro	Asp 110	Asp	Thr	
Pro	Leu	Gly 115	Gly	Ser	Ala	Val	Ala 120	Thr	Asp	Thr	Arg	Asn 125	Arg	Val	Arg	
Val	Glu 130	Val	Ser	Val	Asp	Lys 135	Gln	Arg	Val	Trp	Val 140	Lys	Pro	Met	Leu	
Met 145	Ala	Ile	Val	Leu	Thr 150	Trp	Leu	Asn	Pro	Asn 155	Ala	Tyr	Leu	Asp	Ala 160	
Phe	Val	Phe	Ile	Gly 165	Gly	Val	Gly	Ala	Gln 170	Tyr	Gly	Asp	Thr	Gly 175	Arg	
Trp	Ile	Phe	Ala 180	Ala	Gly	Ala	Phe	Ala 185	Ala	Ser	Leu		Trp 190	Phe	Pro	
Leu	Val	Gly 195	Phe	Gly	Ala	Ala	Ala 200	Leu	Ser	Arg	Pro	Leu 205	Ser	Ser	Pro	
Lys	Val 210	Trp	Arg	Trp	Ile	Asn 215	Val	Val	Val	Ala	Val 220	Val	Met	Thr	Ala	
Leu 225	Ala	Ile	Lys	Leu	Met 230	Leu	Met	Gly								,
<211 <212	0> 55 l> 10 2> Di 3> Co)26 NA	ebact	eri	ım gi	lutar	nicur	n								
<222)> L> CI 2> (1 3> R)	101))03)			·									
)> 55 .cgga		gtggd	ettgg	gg cg	gatto	gttat	gca	aaag	gttg	ttag	ggttt	ctt t	gegg	ggttg	60
ttta	acco	cc a	aato	gaggg	ga aç	gaagg	gtaad	e ett	gaad	ctct	atg Met 1	agc Ser				115
											gtt Val					163
											atc Ile					211
											gat Asp					259

gcg Ala	ggc Gly 55	acc Thr	act Thr	ggt Gly	gaa Glu	tcc Ser 60	cca Pro	acg Thr	aca Thr	acc Thr	gcc Ala 65	gct Ala	gaa Glu	aaa Lys	cta Leu	307
gaa Glu 70	ctg Leu	ctc Leu	aag Lys	gcc Ala	gtt Val 75	cgt Arg	gag Glu	gaa Glu	gtt Val	80 GJA āā ā	gat Asp	cgg Arg	gcg Ala	aag Lys	ctc Leu 85	355
atc Ile	gcc Ala	ggt Gly	gtc Val	gga Gly 90	acc Thr	aac Asn	aac Asn	acg Thr	cgg Arg 95	aca Thr	tct Ser	gtg Val	gaa Glu	ctt Leu 100	gcg Ala	403
gaa Glu	gct Ala	gct Ala	gct Ala 105	tct Ser	gct Ala	ggc Gly	gca Ala	gac Asp 110	ggc Gly	ctt Leu	tta Leu	gtt Val	gta Val 115	act Thr	cct Pro	451
tat Tyr	tac Tyr	tcc Ser 120	aag Lys	ccg Pro	agc Ser	caa Gln	gag Glu 125	gga Gly	ttg Leu	ctg Leu	gcg Ala	cac His 130	ttc Phe	ggt Gly	gca Ala	499
att Ile	gct Ala 135	gca Ala	gca Ala	aca Thr	gag Glu	gtt Val 140	cca Pro	att Ile	tgt Cys	ctc Leu	tat Tyr 145	gac Asp	att Ile	cct Pro	ggt Gly	547
cgg Arg 150	tca Ser	ggt Gly	att Ile	cca Pro	att Ile 155	gag Glu	tct Ser	gat Asp	acc Thr	atg Met 160	aga Arg	cgc Arg	ctg Leu	agt Ser	gaa Glu 165	595
tta Leu	cct Pro	acg Thr	att Ile	ttg Leu 170	gcg Ala	gtc Val	aag Lys	gac Asp	gcç Ala 175	aag Lys	ggt Gly	gac Asp	ctc Leu	gtt Val 180	gca Ala	643
gcc Ala	acg Thr	tca Ser	ttg Leu 185	atc Ile	aaa Lys	gaa Glu	acg Thr	gga Gly 190	ctt Leu	gcc Ala	tgg Trp	tat Tyr	tca Ser 195	ggc Gly	gat Asp	691
											gga Gly					739
tcc Ser	gta Val 215	att Ile	gga Gly	cat His	gca Ala	gcc Ala 220	ccc Pro	aca Thr	gça Ala	tta Leu	cgt Arg 225	gag Glu	ttg Leu	tac Tyr	aca Thr	7 87
agc Ser 230	ttc Phe	gag Glu	gaa Glu	ggc Gly	gac Asp 235	ctc Leu	gtc Val	cgt Arg	gcg Ala	cgg Arg 240	gaa Glu	atc Ile	aac Asn	gcc Ala	aaa Lys 245	835
											ggt Gly					883
gca Ala	aaa Lys	gct Ala	gct Ala 265	ctg Leu	cgt Arg	ctg Leu	cag Gln	ggc Gly 270	atc Ile	aac Asn	gta Val	gga Gly	gat Asp 275	cct Pro	cga Arg	931
ctt Leu	cca Pro	att Ile 280	atg Met	gct Ala	cca Pro	aat Asn	gag Glu 285	cag Gln	gaa Glu	ctt Leu	gag Glu	gct Ala 290	ctc Leu	cga Arg	gaa Glu	979

gac atg aaa aaa gct gga gtt cta taaatatgaa tgattcccga aat 1026 Asp Met Lys Lys Ala Gly Val Leu 295 300

<210> 56

<211> 301

<212> PRT

<213> Corynebacterium glutamicum

<400> 56

Met Ser Thr Gly Leu Thr Ala Lys Thr Gly Val Glu His Phe Gly Thr 1 5 10 15

Val Gly Val Ala Met Val Thr Pro Phe Thr Glu Ser Gly Asp Ile Asp 20 25 30

Ile Ala Ala Gly Arg Glu Val Ala Ala Tyr Leu Val Asp Lys Gly Leu 35 40 45

Asp Ser Leu Val Leu Ala Gly Thr Thr Gly Glu Ser Pro Thr Thr Thr 50 55 60

Ala Ala Glu Lys Leu Glu Leu Leu Lys Ala Val Arg Glu Glu Val Gly 65 70 75 80

Asp Arg Ala Lys Leu Ile Ala Gly Val Gly Thr Asn Asn Thr Arg Thr 85 90 95

Ser Val Glu Leu Ala Glu Ala Ala Ala Ser Ala Gly Ala Asp Gly Leu 100 105 110

Leu Val Val Thr Pro Tyr Tyr Ser Lys Pro Ser Gln Glu Gly Leu Leu 115 120 125

Ala His Phe Gly Ala Ile Ala Ala Thr Glu Val Pro Ile Cys Leu 130 135 140

Tyr Asp Ile Pro Gly Arg Ser Gly Ile Pro Ile Glu Ser Asp Thr Met 145 150 155 160

Arg Arg Leu Ser Glu Leu Pro Thr Ile Leu Ala Val Lys Asp Ala Lys 165 170 175

Gly Asp Leu Val Ala Ala Thr Ser Leu Ile Lys Glu Thr Gly Leu Ala 180 185 190

Trp Tyr Ser Gly Asp Asp Pro Leu Asn Leu Val Trp Leu Ala Leu Gly
195 200 205

Gly Ser Gly Phe Ile Ser Val Ile Gly His Ala Ala Pro Thr Ala Leu 210 215 220

Arg Glu Leu Tyr Thr Ser Phe Glu Glu Gly Asp Leu Val Arg Ala Arg 225 230 235 240

Glu Ile Asn Ala Lys Leu Ser Pro Leu Val Ala Ala Gln Gly Arg Leu 245 250 255

Gly Gly Val Ser Leu Ala Lys Ala Ala Leu Arg Leu Gln Gly Ile Asn

270

265

260

Val Gly Asp Pro Arg Leu Pro Ile Met Ala Pro Asn Glu Gln Glu Leu 285 275 280 Glu Ala Leu Arg Glu Asp Met Lys Lys Ala Gly Val Leu 295 <210> 57 <211> 1071 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1048) <223> RXS02021 <400> 57 ttgggtcgcc gaggagatct aatcctggtt tgagttcaga gttcacaggt ttaagcctac 60 aaaccttagt taaaacatga tggaagcggt cgattaaaaa atg agt gaa aac att Met Ser Glu Asn Ile 1 cgc gga gcc caa gca gtt gga atc gca aat atc gcc atg gac ggg acc Arg Gly Ala Gln Ala Val Gly Ile Ala Asn Ile Ala Met Asp Gly Thr 15 atc ctg gac acg tgg tac cca gaa ccc caa att ttc aac ccg gat cag 211 Ile Leu Asp Thr Trp Tyr Pro Glu Pro Gln Ile Phe Asn Pro Asp Gln 30 tgg gct gaa cgc tac cca ttg gaa gtg ggc acc aca cgc ctc gga gca 259 Trp Ala Glu Arg Tyr Pro Leu Glu Val Gly Thr Thr Arg Leu Gly Ala 45 40 aac gaa ctc acc cca cgg atg ctg cag ttg gta aaa ctg gac caa gat 307 Asn Glu Leu Thr Pro Arg Met Leu Gln Leu Val Lys Leu Asp Gln Asp 55 60 cgc ctc gtc gaa cag gta gca gtc cgc acc gtt atc ccc gat ctg tct Arg Leu Val Glu Gln Val Ala Val Arg Thr Val Ile Pro Asp Leu Ser 70 75 80 caa cct cca gta gac gcg cac gat gtt tac ctg cgc ctc cac ctg ctt 403 Gln Pro Pro Val Asp Ala His Asp Val Tyr Leu Arg Leu His Leu Leu 95 451 tcc cac egg etg gtc ege eec cac gaa atg cac atg caa aac acc ttg Ser His Arg Leu Val Arg Pro His Glu Met His Met Gln Asn Thr Leu 105 110 gag ctg ctg tcc gac gtg gtg tgg aca aac aag ggc cct tgc ctt cct 499 Glu Leu Leu Ser Asp Val Val Trp Thr Asn Lys Gly Pro Cys Leu Pro 125 gaa aac ttt gag tgg gtg cgt ggt gct ctg cgg tcc cgc gga ctc atc Glu Asn Phe Glu Trp Val Arg Gly Ala Leu Arg Ser Arg Gly Leu Ile 140 145

	Val					Arg									gtt Val 165	595
		gga Gly			Ile										gca Ala	643
tac Tyr	ctt Leu	gct Ala	ccg Pro 185	ggt Gly	acc Thr	tct Ser	gtg Val	ctg Leu 190	cgt Arg	gaa Glu	ggt Gly	ttc Phe	gtg Val 195	tct Ser	ttc Phe	691
aac Asn	tcc Ser	ggc Gly 200	acc Thr	ttg Leu	ggt Gly	gcc Ala	gca Ala 205	aag Lys	gtg Val	gaa Glu	ggc	cgc Arg 210	ctg Leu	agt Ser	tcc Ser	739
ggt Gly	gtg Val 215	gtc Val	atc Ile	ggt Gly	gaa Glu	ggt Gly 220	tcc Ser	gag Glu	att Ile	gga Gly	ctg Leu 225	tct Ser	tct Ser	act Thr	att Ile	787
cag Gln 230	tcc Ser	ccg Pro	aga Arg	gat Asp	gaa Glu 235	cag Gln	cgc Arg	cgc Arg	cgt Arg	ttg Leu 240	ccg Pro	ttg Leu	agc Ser	atc Ile	ggc Gly 245	835
caa Gln	aac Asn	tgc Cys	aac Asn	ttt Phe 250	ggt Gly	gtc Val	agc Ser	tcc Ser	gga Gly 255	atc Ile	atc Ile	gga Gly	gtc Val	agt Ser 260	ctg Leu	883
		aat Asn														931
ccc Pro	att Ile	tgg Trp 280	ttc Phe	gca Ala	gcc Ala	gat Asp	gag Glu 285	gag Glu	tta Leu	cgc Arg	act Thr	atc Ile 290	gac Asp	tcc Ser	atc Ile	979
gaa 1027	ggc	caa	gca	aat	tgg	tca	atç	aag	cgt	gaa	tcc	ggc	ttc	cat	gag	
Glu		Gln				Ser 300		Lys	Arg	Glu	Ser 305	Gly	Phe	His	Glu	
сса 1071		gcc	cgc	ctc	aaa	gct	tgac	ccat	tt t	cata	acca	g tg	C			
Pro 310		Ala	Arg	Leu	Lys 315	Ala										
<210 <211 <212 <213	> 31 > PR	6 T	bact	eriu	m gl	utam	icum									
<400 Met :			Asn	Ile 5	Arg	Gly .	Ala (Gln .	Ala 10	Val	Gly	Ile :	Ala .	Asn 15	Ile	

Phe Asn Pro Asp Gln Trp Ala Glu Arg Tyr Pro Leu Glu Val Gly Thr

Ala Met Asp Gly Thr Ile Leu Asp Thr Trp Tyr Pro Glu Pro Gln Ile

20

25

30

35 40 45

Thr Arg Leu Gly Ala Asn Glu Leu Thr Pro Arg Met Leu Gln Leu Val 50 55 60

Lys Leu Asp Gln Asp Arg Leu Val Glu Gln Val Ala Val Arg Thr Val 65 70 75 80

Ile Pro Asp Leu Ser Gln Pro Pro Val Asp Ala His Asp Val Tyr Leu 85 90 95

Arg Leu His Leu Leu Ser His Arg Leu Val Arg Pro His Glu Met His 100 105 110

Met Gln Asn Thr Leu Glu Leu Leu Ser Asp Val Val Trp Thr Asn Lys 115 120 125

Gly Pro Cys Leu Pro Glu Asn Phe Glu Trp Val Arg Gly Ala Leu Arg 130 · 135 140

Ser Arg Gly Leu Ile His Val Tyr Cys Val Asp Arg Leu Pro Arg Met 145 150 155 160

Val Asp Tyr Val Val Pro Pro Gly Val Arg Ile Ser Glu Ala Glu Arg 165 170 175

Val Arg Leu Gly Ala Tyr Leu Ala Pro Gly Thr Ser Val Leu Arg Glu 180 185 190

Gly Phe Val Ser Phe Asn Ser Gly Thr Leu Gly Ala Ala Lys Val Glu
195 200 205

Gly Arg Leu Ser Ser Gly Val Val Ile Gly Glu Gly Ser Glu Ile Gly 210 215 220

Leu Ser Ser Thr Ile Gln Ser Pro Arg Asp Glu Gln Arg Arg Arg Leu 225 230 235 240

Pro Leu Ser Ile Gly Gln Asn Cys Asn Phe Gly Val Ser Ser Gly Ile 245 250 255

Ile Gly Val Ser Leu Gly Asp Asn Cys Asp Ile Gly Asn Asn Ile Val 260 265 270

Leu Asp Gly Asp Thr Pro Ile Trp Phe Ala Ala Asp Glu Glu Leu Arg 275 280 285

Thr Ile Asp Ser Ile Glu Gly Gln Ala Asn Trp Ser Ile Lys Arg Glu 290 295 300

Ser Gly Phe His Glu Pro Val Ala Arg Leu Lys Ala 305 310 315

<210> 59

<211> 1296

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1273) <223> RXS02157

<22	23> 1	RXS02	2157													
)0> 5 gtgga		ggca	ıcgat	gg t	gctg	JCCGG	ra to	jttt	tgat	cgg	ıgaga	att	atco	tgaagg:	60
cac	cgtt	ttt	agaa	aaga	icg a	ıcaag	gatg	ia ac	jaact	gtaa		Ser			gaa Glu 5	115
act Thr	tgg Trp	g cca Pro	cag Gln	gto Val 10	Ile	att Ile	aat Asn	acg Thr	Tyr 15	Gly	acc Thr	cca Pro	cca Pro	gtt Val 20	Glu	163
ctg Lev	gtg Val	g tcc Ser	ggc Gly 25	Lys	ggc	gca Ala	acc Thr	gtc Val 30	Thr	gat Asp	gac Asp	cag Gln	ggc Gly 35	aat Asn	gtc Val	211
tac Tyr	ato Ile	gac Asp 40	Leu	ctc Leu	gcg Ala	ggc	atc Ile 45	gca Ala	gtc Val	aac Asn	gcg Ala	ttg Leu 50	ggc	cac His	gcc Ala	259
cac	ccg Pro 55	gcg Ala	atc Ile	atc Ile	gag Glu	gcg Ala 60	gtc Val	acc Thr	aac Asn	cag Gln	atc Ile 65	ggc	caa Gln	ctt Leu	ggt Gly	307
cac His 70	Val	tca Ser	aac Asn	ttg Leu	ttc Phe 75	gca Ala	tcc Ser	agg Arg	ccc Pro	gtc Val 80	gtc Val	gag Glu	gtc Val	gcc Ala	gag Glu 85	355
gag Glu	ctc Leu	atc Ile	aag Lys	cgt Arg 90	ttt Phe	tcg Ser	ctt Leu	gac Asp	gac Asp 95	gcc Ala	acc Thr	ctc Leu	gcc Ala	gcg Ala 100	caa Gln	403
acc Thr	cgg Arg	gtt Val	ttc Phe 105	ttc Phe	tgc Cys	aac Asn	tcg Ser	ggc Gly 110	gcc Ala	gaa Glu	gca Ala	aac Asn	gag Glu 115	gct Ala	gct Ala	451
ttc Phe	aag Lys	att Ile 120	gca Ala	cgc Arg	ttg Leu	act Thr	ggt Gly 125	cgt Arg	tcc Ser	cgg Arg	att Ile	ctg Leu 130	gct Ala	gca Ala	gtt Val	499
cat His	ggt Gly 135	ttc Phe	cac His	ggc Gly	cgc Arg	acc Thr 140	atg Met	ggt Gly	tcc Ser	ctc Leu	gcg Ala 145	ctg Leu	act Thr	ggc Gly	cag Gln	547
cca Pro 150	gac Asp	aag Lys	cgt Arg	gaa Glu	gcg Ala 155	ttc Phe	ctg Leu	cca Pro	atg Met	cca Pro 160	agc Ser	ggt Gly	gtg Val	gag Glu	ttc Phe 165	595
tac Tyr	cct Pro	tac Tyr	ggc Gly	gac Asp 170	acc Thr	gat Asp	tac Tyr	ttg Leu	cgc Arg 175	aaa Lys	atg Met	gta Val	gaa Glu	acc Thr 180	aac Asn	643
cca Pro	acg Thr	gat Asp	gtg Val 185	gct Ala	gct Ala	atc Ile	Phe	ctc Leu 190	gag Glu	cca Pro	atc Ile	cag Gln	ggt Gly 195	gaa Glu	acg Thr	691
ggc Gly	gtt Val	gtt Val 200	cca Pro	gca Ala	cct Pro	gaa Glu	gga Gly 205	ttc Phe	ctc Leu	aag Lys	Ala	gtg Val 210	cgc Arg	gag Glu	ctg Leu	739

tgc Cys	gat Asp 215	gag Glu	tac Tyr	ggc Gly	atc Ile	ttg Leu 220	atg Met	atc Ile	acc Thr	gat Asp	gaa Glu 225	gtc Val	cag Gln	act Thr	ggc	787
gtt Val 230	ggc Gly	cgt Arg	acc Thr	ggc Gly	gat Asp 235	ttc Phe	ttt Phe	gca Ala	cat His	cag Gln 240	cac His	gat Asp	Gly	gtt Val	gtt Val 245	835
Pro	gat Asp	gtg Val	gtg Val	acc Thr 250	atg Met	gcc Ala	aag Lys	gga Gly	ctt Leu 255	ggc Gly	ggc Gly	ggt Gly	ctt Leu	ccc Pro 260	atc Ile	883
ggt Gly	gct Ala	tgt Cys	ttg Leu 265	gcc Ala	act Thr	ggc Gly	cgt Arg	gca Ala 270	gct Ala	gaa Glu	ttg Leu	atg Met	acc Thr 275	cca Pro	ggc Gly	931
aag Lys	cac His	ggc Gly 280	acc Thr	act Thr	ttc Phe	ggt Gly	ggc Gly 285	aac Asn	cca Pro	gtt Val	gct Ala	tgt Cys 290	gca Ala	gct Ala	gcc Ala	979
_	gca	gtg	ctg	tċt	gtt	gtc	gat	gac	gct	ttc	tgc	gca	gaa	gtt	gcc	
102 Lys	295	Val	Leu	Ser	Va1	Val 300	Asp	Asp	Ala	Phe	Cys 305	Ala	Glu	Val	Ala	
cgc	aag	ggc	gag	ctg	ttc	aag	gaa	ctt	ctt	gcc	aag	gtt	gac	ggc	gtt	
	Lys	Gly	Glu	Leu	Phe 315	Lys	Glu	Leu	Leu	Ala 320	Lys	Val	Asp	Gly	Val 325	
gta 112	gac	gtc	cgt	ggc	agg	ggc	ttg	atg	ttg	ggc	gtg	gtg	ctg	gag	cgc	
Val	.s L Asp	Val	Arg	Gly 330	Arg	Gly	Leu	Met	Leu 335	Gly	Val	Val	Leu	Glu 340	Arg	
gad 117	gtc	gca	aag	caa	gct	gtt	ctt	gat	ggt	ttt	aag	cac	ggc	gtt	att	
	Val	Ala	Lys 345	Gln	Ala	Val	Leu	Asp 350	Gly	Phe	Lys	His	Gly 355	Val	Ile	
ttg 121	g aat	gca	ccg	gcg	gac	aac	att	atc	cgt	ttg	acc	ccg	ccg	ctg	gtg	
	. Asn	Ala 360	Pro	Ala	Asp	Asn	Ile 365	Ile	Arg	Leu	Thr	Pro 370	Pro	Leu	Val	
ato 126	acc	gac	gaa	gaa	atc	gca	gac	gca	gtc	aag	gct	att	gcc	gag	aca	
	Thr 375	_	Glu	Glu	Ile	Ala 380	Asp	Ala	Val	Lys	Ala 385		Ala	Glu	Thr	
129	Ala		agga	ctc (aaact	ttat	ga ci	tt								
<210> 60 <211> 391																

<213> Corynebacterium glutamicum

<211> 391 <212> PRT

<400> 60 Met Ser Thr Leu Glu Thr Trp Pro Gln Val Ile Ile Asn Thr Tyr Gly Thr Pro Pro Val Glu Leu Val Ser Gly Lys Gly Ala Thr Val Thr Asp Asp Gln Gly Asn Val Tyr Ile Asp Leu Leu Ala Gly Ile Ala Val Asn Ala Leu Gly His Ala His Pro Ala Ile Ile Glu Ala Val Thr Asn Gln Ile Gly Gln Leu Gly His Val Ser Asn Leu Phe Ala Ser Arg Pro Val 70 Val Glu Val Ala Glu Glu Leu Ile Lys Arg Phe Ser Leu Asp Asp Ala Thr Leu Ala Ala Gln Thr Arg Val Phe Phe Cys Asn Ser Gly Ala Glu 100 105 110 Ala Asn Glu Ala Ala Phe Lys Ile Ala Arg Leu Thr Gly Arg Ser Arg 120 Ile Leu Ala Ala Val His Gly Phe His Gly Arg Thr Met Gly Ser Leu 140 Ala Leu Thr Gly Gln Pro Asp Lys Arg Glu Ala Phe Leu Pro Met Pro 145 Ser Gly Val Glu Phe Tyr Pro Tyr Gly Asp Thr Asp Tyr Leu Arg Lys 165 170 Met Val Glu Thr Asn Pro Thr Asp Val Ala Ala Ile Phe Leu Glu Pro 190 Ile Gln Gly Glu Thr Gly Val Val Pro Ala Pro Glu Gly Phe Leu Lys Ala Val Arg Glu Leu Cys Asp Glu Tyr Gly Ile Leu Met Ile Thr Asp 215 220 Glu Val Gln Thr Gly Val Gly Arg Thr Gly Asp Phe Phe Ala His Gln 225 230 240 His Asp Gly Val Val Pro Asp Val Val Thr Met Ala Lys Gly Leu Gly 250 Gly Gly Leu Pro Ile Gly Ala Cys Leu Ala Thr Gly Arg Ala Ala Glu 260 265 270 Leu Met Thr Pro Gly Lys His Gly Thr Thr Phe Gly Gly Asn Pro Val 275 Ala Cys Ala Ala Ala Lys Ala Val Leu Ser Val Val Asp Asp Ala Phe 295 300 Cys Ala Glu Val Ala Arg Lys Gly Glu Leu Phe Lys Glu Leu Leu Ala 305 310 315 320

Lys Val Asp Gly Val Val Asp Val Arg Gly Arg Gly Leu Met Leu Gly 330 325 Val Val Leu Glu Arg Asp Val Ala Lys Gln Ala Val Leu Asp Gly Phe 345 340 Lys His Gly Val Ile Leu Asn Ala Pro Ala Asp Asn Ile Ile Arg Leu 360 Thr Pro Pro Leu Val Ile Thr Asp Glu Glu Ile Ala Asp Ala Val Lys 370 375 Ala Ile Ala Glu Thr Ile Ala 390 385 <210> 61 <211> 1008 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(985) <223> RXC00733 <400> 61 acggcgaggt tgtcggtatt ggaacgcaca cgaatttgct gaacacgtgc ggtacctacc 60 gtgaaattgt tgaatcccaa gagactgcgc aggcgcaatc atg agt aat act gca Met Ser Asn Thr Ala 163 ggc ccc cgc ggg cgt tcc cat cag gca gac gcc gcg ccg aat caa aag Gly Pro Arg Gly Arg Ser His Gln Ala Asp Ala Ala Pro Asn Gln Lys 211 gca cag aat ttc gga cca tct gcc aaa agg ctt ttc gga att cta ggc Ala Gln Asn Phe Gly Pro Ser Ala Lys Arg Leu Phe Gly Ile Leu Gly 25 259 cat gac cgt aac acc tta att ttt gtt atc ttc cta gcc gtc ctg agc His Asp Arg Asn Thr Leu Ile Phe Val Ile Phe Leu Ala Val Leu Ser 45 40 307 gtt gga ctt acc gtc ttg ggc cca tgg ttg ctg ggt aaa gcc acc aac Val Gly Leu Thr Val Leu Gly Pro Trp Leu Leu Gly Lys Ala Thr Asn 55 60 gtg gtg ttt gaa gga ttc cta tct aag cgc atg ccg gct ggt gcg tca 355 Val Val Phe Glu Gly Phe Leu Ser Lys Arg Met Pro Ala Gly Ala Ser 70 75 403 aag gaa gat atc atc gcg cag ttg cag gct gca ggt aaa cat aat cag Lys Glu Asp Ile Ile Ala Gln Leu Gln Ala Ala Gly Lys His Asn Gln 90 95 451 get tee atg atg gaa gae atg aac ett gtt eea gge tea gge att gat Ala Ser Met Met Glu Asp Met Asn Leu Val Pro Gly Ser Gly Ile Asp

110

105

115

		atc ctc gga : Ile Leu Gly 125									
		ttg ttc cag Leu Phe Gln 140									
		cgg ctg cgc Arg Leu Arg									
		tat ttc gat Tyr Phe Asp									
		gat gtg gat Asp Val Asp 190									
		atc act tcc Ile Thr Ser 205	-								
	•	atc tcc cca Ile Ser Pro 220									
		atc gtg gtc Ile Val Val									
		gaa cag tgg Glu Gln Trp									
		tac tct ggc Tyr Ser Gly 270									
		caa gaa gca Gln Glu Ala 285	Phe Glu Glu	-	_						
tgt gta taaggccage tttggtgccc agt 1008 Cys Val 295											
<210> 62 <211> 295 <212> PRT <213> Corynebacterium glutamicum											
<400> 62 Met Ser Asn 1	Thr Ala Gly 5	Pro Arg Gly	Arg Ser His	Gln Ala Asp 15	Ala						

Ala Pro Asn Gln Lys Ala Gln Asn Phe Gly Pro Ser Ala Lys Arg Leu

20 25 30

Phe Gly Ile Leu Gly His Asp Arg Asn Thr Leu Ile Phe Val Ile Phe 35 40 45

Leu Ala Val Leu Ser Val Gly Leu Thr Val Leu Gly Pro Trp Leu Leu 50 55 60

Gly Lys Ala Thr Asn Val Val Phe Glu Gly Phe Leu Ser Lys Arg Met 65 70 75 80

Pro Ala Gly Ala Ser Lys Glu Asp Ile Ile Ala Gln Leu Gln Ala Ala 85 90 95

Gly Lys His Asn Gln Ala Ser Met Met Glu Asp Met Asn Leu Val Pro 100 105 110

Gly Ser Gly Ile Asp Phe Glu Lys Leu Ala Met Ile Leu Gly Leu Val 115 120 125

Ile Gly Ala Tyr Leu Ile Gly Ser Leu Leu Ser Leu Phe Gln Ala Arg 130 135 140

Met Leu Asn Arg Ile Val Gln Ser Ala Met His Arg Leu Arg Met Glu 145 150 155 160

Val Glu Glu Lys Ile His Arg Leu Pro Leu Ser Tyr Phe Asp Ser Ile 165 170 175

Lys Arg Gly Asp Leu Leu Ser Arg Val Thr Asn Asp Val Asp Asn Ile 180 185 190

Gly Gln Ser Leu Gln Gln Thr Leu Ser Gln Ala Ile Thr Ser Leu Leu 195 200 205

Thr Val Ile Gly Val Leu Val Met Met Phe Ile Ile Ser Pro Leu Leu 210 215 220

Ala Leu Val Ala Leu Val Ser Ile Pro Val Thr Ile Val Val Thr Val 225 230 235 240

Val Val Ala Ser Arg Ser Gln Lys Leu Phe Ala Glu Gln Trp Lys Gln 245 250 255

Thr Gly Ile Leu Asn Ala Arg Leu Glu Glu Thr Tyr Ser Gly His Ala 260 265 270

Val Val Lys Val Phe Gly His Gln Lys Asp Val Gln Glu Ala Phe Glu 275 280 285

Glu Glu Asn Gln Ala Cys Val 290 295

<210> 63

<211> 426

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (1)..(426) <223> RXC00861 <400> 63 atg gct cct cac aag gtc atg ctg att acc act ggt act cag ggt gag 48 Met Ala Pro His Lys Val Met Leu Ile Thr Thr Gly Thr Gln Gly Glu cct atg gct gcg ctg tct cgc atg gcg cgt cgt gag cac cga cag atc 96 Pro Met Ala Ala Leu Ser Arg Met Ala Arg Arg Glu His Arg Gln Ile 20 act gtc cgt gat gga gac ttg att atc ctt tct tcc tcc ctg gtt cca 144 Thr Val Arg Asp Gly Asp Leu Ile Ile Leu Ser Ser Leu Val Pro ggt aac gaa gca gtg ttc ggt gtc atc aac atg ctg gct cag atc 192 Gly Asn Glu Glu Ala Val Phe Gly Val Ile Asn Met Leu Ala Gln Ile ggt gca act gtt gtt acc ggt cgc gac gcc aag gtg cac acc tcq ggc 240 Gly Ala Thr Val Val Thr Gly Arg Asp Ala Lys Val His Thr Ser Gly 75. cac ggc tac tcc gga gag ctg ttg ttc ttg tac aac gcc gct cgt ccq 288 His Gly Tyr Ser Gly Glu Leu Leu Phe Leu Tyr Asn Ala Ala Arg Pro 85 90 aag aac get atg eet gte eac gge gag tgg ege eac etg ege gee aac 336 Lys Asn Ala Met Pro Val His Gly Glu Trp Arg His Leu Arg Ala Asn 100 105 aag gaa ctg gct atc tcc act ggt gtt aac cgc gac aac gtt gtg ctt Lys Glu Leu Ala Ile Ser Thr Gly Val Asn Arg Asp Asn Val Val Leu 115 120 gca caa aac ggt gtt gtg gtt gat atg gtc aac ggt cgc gca 426 Ala Gln Asn Gly Val Val Val Asp Met Val Asn Gly Arg Ala 130 <210> 64 <211> 142 <212> PRT <213> Corynebacterium glutamicum <400> 64 Met Ala Pro His Lys Val Met Leu Ile Thr Thr Gly Thr Gln Gly Glu

Pro Met Ala Ala Leu Ser Arg Met Ala Arg Arg Glu His Arg Gln Ile
20 25 30

Thr Val Arg Asp Gly Asp Leu Ile Ile Leu Ser Ser Ser Leu Val Pro
35 40 45

Gly Asn Glu Glu Ala Val Phe Gly Val Ile Asn Met Leu Ala Gln Ile 50 55 60

Gly Ala Thr Val Val Thr Gly Arg Asp Ala Lys Val His Thr Ser Gly 65 70 75 80

90

His Gly Tyr Ser Gly Glu Leu Leu Phe Leu Tyr Asn Ala Ala Arg Pro

85

Lys Asn Ala Met Pro Val His Gly Glu Trp Arg His Leu Arg Ala Asn 105 100 Lys Glu Leu Ala Ile Ser Thr Gly Val Asn Arg Asp Asn Val Val Leu 120 Ala Gln Asn Gly Val Val Val Asp Met Val Asn Gly Arg Ala 135 <210> 65 <211> 1066 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1066) <223> RXC00866 <400> 65 gcatcaacgt aggagatect egactteeaa ttatggetee aaatgageag gaacttgagg 60 ctctccgaga agacatgaaa aaagctggag ttctataaat atg aat gat tcc cga Met Asn Asp Ser Arg 163 aat cgc ggc cgg aag gtt acc cgc aag gcg ggc cca cca gaa gct ggt Asn Arg Gly Arg Lys Val Thr Arg Lys Ala Gly Pro Pro Glu Ala Gly 10 cag gaa aac cat ctg gat acc cct gtc ttt cag gca cca gat gct tcc Gln Glu Asn His Leu Asp Thr Pro Val Phe Gln Ala Pro Asp Ala Ser 25 30 tct aac cag agc gct gta aaa gct gag acc gcc gga aac gac aat cgg Ser Asn Gln Ser Ala Val Lys Ala Glu Thr Ala Gly Asn Asp Asn Arg 40 gat gct gcg caa ggt gct caa gga tcc caa gat tct cag ggt tcc cag 307 Asp Ala Ala Gln Gly Ala Gln Gly Ser Gln Asp Ser Gln Gly Ser Gln 55 60 aac gct caa ggt tcc cag aac cgc gag tcc gga aac aac aac cgc aac Asn Ala Gln Gly Ser Gln Asn Arg Glu Ser Gly Asn Asn Asn Arg Asn 75 80 403 cgt tcc aac aac cgt cgc ggt ggt cgt gga cgt cgt gga tcc gga Arg Ser Asn Asn Asn Arg Gly Gly Arg Gly Arg Gly Ser Gly 451 aac gcc aat gag ggc gcg aac aac agc ggt aac cag aac cgt cag Asn Ala Asn Glu Gly Ala Asn Asn Asn Ser Gly Asn Gln Asn Arg Gln 105 110 qqc qqa aac cgt ggc aac cgc ggt ggc gga cgc cga aac gtt gtt aag

Gly Gly Asn Arg Gly Asn Arg Gly Gly Gly Arg Arg Asn Val Lys

120 125 130 tcg atg cag ggt gcg gat ctg acc cag cgc ctg cca gag cca cca aag Ser Met Gln Gly Ala Asp Leu Thr Gln Arg Leu Pro Glu Pro Pro Lys 135 gca ccg gca aac ggt ctg cgt att tac gca ctt ggt ggc att tcc gaa Ala Pro Ala Asn Gly Leu Arg Ile Tyr Ala Leu Gly Gly Ile Ser Glu 150 155 160 atc ggt cgc aac atg acc gtg ttt gag tac aac aac cgt ctg ctc atc 643 Ile Gly Arg Asn Met Thr Val Phe Glu Tyr Asn Asn Arg Leu Leu Ile gtg gac tgt ggt gtg ctc ttc cca tct tca ggt gag cca ggc gtt gac 691 Val Asp Cys Gly Val Leu Phe Pro Ser Ser Gly Glu Pro Gly Val Asp ctg att ctt cct gac ttc ggc cca att gag gat cac ctg cac cgc gtc 739 Leu Ile Leu Pro Asp Phe Gly Pro Ile Glu Asp His Leu His Arg Val 787 gat gca ttg gtg gtt act cac gga cac gaa gac cac att ggt gct att Asp Ala Leu Val Val Thr His Gly His Glu Asp His Ile Gly Ala Ile 215 220 ccc tgg ctg ctg aag ctg cgc aac gat atc cca atc ttg gca tcc cgt 835 Pro Trp Leu Leu Lys Leu Arg Asn Asp Ile Pro Ile Leu Ala Ser Arg 230 235 240 ttc acc ttg gct ctg att gca gct aag tgt aag gaa cac cgt cag cgt 883 Phe Thr Leu Ala Leu Ile Ala Ala Lys Cys Lys Glu His Arg Gln Arg 250 255 ccg aag ctg atc gag gtc aac gag cag tcc aat gag gac cgc gga ccg 931 Pro Lys Leu Ile Glu Val Asn Glu Gln Ser Asn Glu Asp Arg Gly Pro 265 270 ttc aac att cgc ttc tgg gct gtt aac cac tcc atc cca gac tgc ctt Phe Asn Ile Arg Phe Trp Ala Val Asn His Ser Ile Pro Asp Cys Leu 285 280 ggt ctt gct atc aag act cct gct ggt ttg gtc atc cac acc ggt gac Gly Leu Ala Ile Lys Thr Pro Ala Gly Leu Val Ile His Thr Gly Asp 300 295 atc aag ctg gat cag act cct cct gat gga cgc cca act Ile Lys Leu Asp Gln Thr Pro Pro Asp Gly Arg Pro Thr 315

<210> 66

<211> 322

<212> PRT

<213> Corynebacterium glutamicum

<400> 66

Met Asn Asp Ser Arg Asn Arg Gly Arg Lys Val Thr Arg Lys Ala Gly

1 5 10 15

Pro Pro Glu Ala Gly Gln Glu Asn His Leu Asp Thr Pro Val Phe Gln Ala Pro Asp Ala Ser Ser Asn Gln Ser Ala Val Lys Ala Glu Thr Ala 40 Gly Asn Asp Asn Arg Asp Ala Ala Gln Gly Ala Gln Gly Ser Gln Asp Ser Gln Gly Ser Gln Asn Ala Gln Gly Ser Gln Asn Arg Glu Ser Gly Asn Asn Asn Arg Asn Arg Ser Asn Asn Asn Arg Arg Gly Gly Arg Gly Arg Arg Gly Ser Gly Asn Ala Asn Glu Gly Ala Asn Asn Asn Ser Gly Asn Gln Asn Arg Gln Gly Gly Asn Arg Gly Asn Arg Gly Gly Gly Arg 120 Arg Asn Val Val Lys Ser Met Gln Gly Ala Asp Leu Thr Gln Arg Leu 135 Pro Glu Pro Pro Lys Ala Pro Ala Asn Gly Leu Arg Ile Tyr Ala Leu 145 Gly Gly Ile Ser Glu Ile Gly Arg Asn Met Thr Val Phe Glu Tyr Asn 170 Asn Arg Leu Leu Ile Val Asp Cys Gly Val Leu Phe Pro Ser Ser Gly 185 Glu Pro Gly Val Asp Leu Ile Leu Pro Asp Phe Gly Pro Ile Glu Asp His Leu His Arg Val Asp Ala Leu Val Val Thr His Gly His Glu Asp 215 His Ile Gly Ala Ile Pro Trp Leu Leu Lys Leu Arg Asn Asp Ile Pro 225 230 Ile Leu Ala Ser Arg Phe Thr Leu Ala Leu Ile Ala Ala Lys Cys Lys Glu His Arg Gln Arg Pro Lys Leu Ile Glu Val Asn Glu Gln Ser Asn 265 Glu Asp Arg Gly Pro Phe Asn Ile Arg Phe Trp Ala Val Asn His Ser 275 280 Ile Pro Asp Cys Leu Gly Leu Ala Ile Lys Thr Pro Ala Gly Leu Val 295 300 Ile His Thr Gly Asp Ile Lys Leu Asp Gln Thr Pro Pro Asp Gly Arg 315 310 Pro Thr

<210> 67 <211> 1527 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1504) <223> RXC02095 <400> 67 ctctcttggt cctctcccca cccattttta agtactcaag acccttccaa cagaaaggat 60 tactccccca acaggctcaa aaatactgaa aggctcacgc atg aaa act gag caa Met Lys Thr Glu Gln tcc caa aaa gca caa tta gcc cct aag aaa gca cct gaa aag cca caa 163 Ser Gln Lys Ala Gln Leu Ala Pro Lys Lys Ala Pro Glu Lys Pro Gln cgc atc cgc caa ctt att tcc gtg gcg tgg cag cga cct tgg ctc acc 211 Arg Ile Arg Gln Leu Ile Ser Val Ala Trp Gln Arg Pro Trp Leu Thr tca ttc acc gta atc agc gct tta gct gca acg ttg ttt gaa ctt aca 259 Ser Phe Thr Val Ile Ser Ala Leu Ala Ala Thr Leu Phe Glu Leu Thr 307 ctt cct ctt ttg acc ggt ggc gcc atc gat atc gcg ctc gga aat acc Leu Pro Leu Leu Thr Gly Gly Ala Ile Asp Ile Ala Leu Gly Asn Thr 55 gga gat act tta acc act gac ctg ctg gac cgg ttc act ccg agt gga 355 Gly Asp Thr Leu Thr Thr Asp Leu Leu Asp Arg Phe Thr Pro Ser Gly 75 tta age gtg ttg acc age gtc att gcc ctt atc gtg ctt ctc gcg ttg 403 Leu Ser Val Leu Thr Ser Val Ile Ala Leu Ile Val Leu Leu Ala Leu ctt cgc tat gcc agt caa ttt gga cgg cga tac acc gca ggc aag ctc 451 Leu Arg Tyr Ala Ser Gln Phe Gly Arg Arg Tyr Thr Ala Gly Lys Leu 105 age atg ggg gta cag cat gat gtc cgg ctt aaa acg atg cgc tca ttg 499 Ser Met Gly Val Gln His Asp Val Arg Leu Lys Thr Met Arg Ser Leu 120 125 cag aac ctc gat ggg cca ggt cag gac tct att cgc aca ggc caa gta 547 Gln Asn Leu Asp Gly Pro Gly Gln Asp Ser Ile Arg Thr Gly Gln Val 140 595 gtc agt cgg tcc att tcg gat atc aac atg gtg caa agc ctt gtg gcg Val Ser Arg Ser Ile Ser Asp Ile Asn Met Val Gln Ser Leu Val Ala 150 155 160 atg ttg ccg atg ttg atc gga aat gtg gtc aag ctt gtg ctc act ttg Met Leu Pro Met Leu Ile Gly Asn Val Val Lys Leu Val Leu Thr Leu 170 175 180

gtç Val	ato Ile	e atç e Met	t Cto Lev 185	ı Ala	att a Ile	tco Ser	c ccg	Pro 190	Let	g acc	ato Ile	ato Ile	gct Ala 195	a Ala	gtg Val	691
ttg Lev	gtg Val	Pro 200) Lev	g ctg 1 Lev	r ttg . Lev	tgg Trp	g geo Ala 205	Val	gcc	tat Tyr	tcg Ser	cga Arg 210	Lys	gcg Ala	ctt Leu	739
ttt Phe	gcg Ala 215	Ser	acg Thr	tgg Trp	tcg Ser	gco Ala 220	Gln	caa Gln	aag Lys	gct Ala	gcg Ala 225	Asp	ctg Leu	acc Thr	act Thr	787
cat His 230	Val	gaa Glu	gaa Glu	act Thr	gtc Val 235	Thr	ggt Gly	atc Ile	cgc Arg	gtg Val 240	gtc Val	aag Lys	gca Ala	ttt Phe	gcg Ala 245	835
cag Gln	gaa Glu	gac Asp	cgc Arg	gag Glu 250	Thr	gac Asp	aaa Lys	ttg Leu	gat Asp 255	Leu	acc Thr	gca Ala	cgt Arg	gag Glu 260	tta Leu	883
ttt Phe	gcc Ala	cag Gln	cgc Arg 265	Met	cgc Arg	act Thr	gca Ala	cgt Arg 270	ctg Leu	acg Thr	gca Ala	aag Lys	ttc Phe 275	atc Ile	ccc Pro	931
atg Met	gtt Val	gag Glu 280	Gln	ctt Leu	ccg Pro	cag Gln	ctt Leu 285	gct Ala	ttg Leu	gtg Val	gtc Val	aac Asn 290	att Ile	gtt Val	ggc	979
ggt 102		tat	ttg	gcc	atg	act	ggt	cac	atc	acg	gtg	ggc	acg	ttt	gtg	
Gly	Gly 295	Tyr	Leu	Ala	Met	Thr 300	Gly	His	Ile	Thr	Val 305	Gly	Thr	Phe	Val	
gcg 107	ttt 5	tct	tcc	tat	ctc	act	agc	ttg	tcg	gcg	gtg	gct	agg	tcc	ctg	
Ala 310	Phe	Ser	Ser	Tyr	Leu 315	Thr	Ser	Leu	Ser	Ala 320	Val	Ala	Arg	Ser	Leu 325	
tcg 1123	ggc 3	atg	ctc	atg	cgc	gtg	cag	ttg	gcg	ctg	tct	tct	gtg	gag	cgc	
Ser	Gly	Met	Leu	Met 330	Arg	Val	Gln	Leu	Ala 335	Leu	Ser	Ser	Val	Glu 340	Arg	
atc 1171	ttt	gaa	gtc	att	gat	ctt	cag	cct	gaa	cgc	acc	gat	cct	gca	cac	
Ile	Phe	Glu	Val 345	Ile	Asp	Leu		Pro 350	Glu	Arg	Thr		Pro 355	Ala	His	
ccc 1219	ctg	tca	ctt	ວວວ	gac	act	ccc	ctg	ggt	ctg	tcg	ttc	aac	aac	gta	
		Ser 360	Leu	Pro	Asp	Thr	Pro 365	Leu	Gly	Leu	Ser	Phe 370	Asn	Asn	Val	
gat 1267	ttc	cgt	ggg	att	ctc	aac	ggt	ttt	gag	ctg	ggt	gtt	cag	gcc	ggt	
Asp		Arg	Gly	Ile		Asn 380	Gly	Phe	Glu		G1y 385	Val (Gln	Ala	Gly	
gaa 1315	acc	gtt	gtg	ttg	gtg	ggc	cct	cca	ggt	tca	ggc .	aag	acc	atg (gct	

Glu Thr Val Val Leu Val Gly Pro Pro Gly Ser Gly Lys Thr Met Ala 390 395 400 405

gtg cag ctt gct gga aac ttt tat caa cca gac agc ggc cac atc gcc 1363

Val Gln Leu Ala Gly Asn Phe Tyr Gln Pro Asp Ser Gly His Ile Ala 410 415 420

ttt gat agc aac ggc cat cgc act cgc ttc gac gac ctc acc cac agc 1411

Phe Asp Ser Asn Gly His Arg Thr Arg Phe Asp Asp Leu Thr His Ser 425 430 435

gat atc cgc agg aat ctc atc gcg gtt ttt gat gag ccg ttc ttg tac 1459

Asp Ile Arg Arg Asn Leu Ile Ala Val Phe Asp Glu Pro Phe Leu Tyr 440 455 450

tcc tcc tcc ata ccg cga gaa cat ctc gat ggg ttt gga tgt cag 1504

Ser Ser Ser Ile Pro Arg Glu His Leu Asp Gly Phe Gly Cys Gln 455 460 465

tgatgagcag atcgaacacg cag 1527

<210> 68

<211> 468

<212> PRT

<213> Corynebacterium glutamicum

<400> 68

Met Lys Thr Glu Gln Ser Gln Lys Ala Gln Leu Ala Pro Lys Lys Ala
1 5 10 15

Pro Glu Lys Pro Gln Arg Ile Arg Gln Leu Ile Ser Val Ala Trp Gln
20 25 30

Arg Pro Trp Leu Thr Ser Phe Thr Val Ile Ser Ala Leu Ala Ala Thr 35 40 45

Leu Phe Glu Leu Thr Leu Pro Leu Leu Thr Gly Gly Ala Ile Asp Ile 50 55 60

Ala Leu Gly Asn Thr Gly Asp Thr Leu Thr Thr Asp Leu Leu Asp Arg 65 70 75 80

Phe Thr Pro Ser Gly Leu Ser Val Leu Thr Ser Val Ile Ala Leu Ile 85 90 95

Val Leu Leu Ala Leu Leu Arg Tyr Ala Ser Gln Phe Gly Arg Tyr
100 105 110

Thr Ala Gly Lys Leu Ser Met Gly Val Gln His Asp Val Arg Leu Lys
115 120 125

Thr Met Arg Ser Leu Gln Asn Leu Asp Gly Pro Gly Gln Asp Ser Ile 130 135 140

Arg Thr Gly Gln Val Val Ser Arg Ser Ile Ser Asp Ile Asn Met Val

145 150 155 160 Gin Ser Leu Val Ala Met Leu Pro Met Leu Ile Gly Asn Val Val Lys 170 Leu Val Leu Thr Leu Val Ile Met Leu Ala Ile Ser Pro Pro Leu Thr 185 Ile Ile Ala Ala Val Leu Val Pro Leu Leu Trp Ala Val Ala Tyr 195 Ser Arg Lys Ala Leu Phe Ala Ser Thr Trp Ser Ala Gln Gln Lys Ala Ala Asp Leu Thr Thr His Val Glu Glu Thr Val Thr Gly Ile Arg Val 225 230 235 Val Lys Ala Phe Ala Gln Glu Asp Arg Glu Thr Asp Lys Leu Asp Leu 245 250 Thr Ala Arg Glu Leu Phe Ala Gln Arg Met Arg Thr Ala Arg Leu Thr 260 Ala Lys Phe Ile Pro Met Val Glu Gln Leu Pro Gln Leu Ala Leu Val 275 280 Val Asn Ile Val Gly Gly Gly Tyr Leu Ala Met Thr Gly His Ile Thr 295 Val Gly Thr Phe Val Ala Phe Ser Ser Tyr Leu Thr Ser Leu Ser Ala 305 310 315 Val Ala Arg Ser Leu Ser Gly Met Leu Met Arg Val Gln Leu Ala Leu 325 330 Ser Ser Val Glu Arg Ile Phe Glu Val Ile Asp Leu Gln Pro Glu Arg 345 Thr Asp Pro Ala His Pro Leu Ser Leu Pro Asp Thr Pro Leu Gly Leu Ser Phe Asn Asn Val Asp Phe Arg Gly Ile Leu Asn Gly Phe Glu Leu Gly Val Gln Ala Gly Glu Thr Val Val Leu Val Gly Pro Pro Gly Ser 385 390 395 Gly Lys Thr Met Ala Val Gln Leu Ala Gly Asn Phe Tyr Gln Pro Asp 410 Ser Gly His Ile Ala Phe Asp Ser Asn Gly His Arg Thr Arg Phe Asp 425 Asp Leu Thr His Ser Asp Ile Arg Arg Asn Leu Ile Ala Val Phe Asp 435 Glu Pro Phe Leu Tyr Ser Ser Ser Ile Pro Arg Glu His Leu Asp Gly 450 455 Phe Gly Cys Gln

465

```
<210> 69
<211> 295
<212> DNA
<213> Corynebacterium glutamicum
<220>
<221> CDS
<222> (84)..(272)
<223> RXC03185
<400> 69
agegeceaac egiteagace ageggittet etgaggatge aaagteeatg atggginagg 60
tcactgaget gtccgaaacc accatg aat gat ett gca get gaa ggt gaa aac
                         Met Asn Asp Leu Ala Ala Glu Gly Glu Asn
gat cct tac cgc atg gtt cag cag ctg cgc cgc aag ctc tct cgc ttc
                                                                   161
Asp Pro Tyr Arg Met Val Gln Gln Leu Arg Arg Lys Leu Ser Arg Phe
gtc gag cag aag tgg aag cgc cag ccg gtc atc atg cca acc gtc att
                                                                   209
Val Glu Gln Lys Trp Lys Arg Gln Pro Val Ile Met Pro Thr Val Ile
             30
                                 35
ccg atg act gcg gaa acc acg cac atc ggt gac gat gag gtt cgc gct
                                                                   257
Pro Met Thr Ala Glu Thr Thr His Ile Gly Asp Asp Glu Val Arg Ala
         45
                             50
tca cgc gag tcc ctg taaaagcatt tcgcttttcg acg
                                                                   295
Ser Arg Glu Ser Leu
     60
<210> 70
<211> 63
<212> PRT
<213> Corynebacterium glutamicum
Met Asn Asp Leu Ala Ala Glu Gly Glu Asn Asp Pro Tyr Arg Met Val
                                     10
Gln Gln Leu Arg Arg Lys Leu Ser Arg Phe Val Glu Gln Lys Trp Lys
                                 25
Arg Gln Pro Val Ile Met Pro Thr Val Ile Pro Met Thr Ala Glu Thr
         35
                             40
Thr His Ile Gly Asp Asp Glu Val Arg Ala Ser Arg Glu Ser Leu
<210> 71
<211> 4653
<212> DNA
<213> Corynebacterium glutamicum
```

<220>

<221> CDS <222> (101)..(4630) <223> RXN00367

<400> 71

atcgaaagta accettttgt tacttgcgtt gcaggtagtg tccctgattt tcttattatc 60

atcgaaagta acc	ettttgt tac	ggtagtg tcc	igtg tecetgattt tettattate				
gaacgattga taga	aaacagg att	aaagtga ggt		aaa cca ca Lys Pro Gl			
ctc tac aac cc Leu Tyr Asn Pro				Val Ala Ph			
gcg gat atc cac Ala Asp Ile His 25	Gly Arg P						
gag gcg ctt cgc Glu Ala Leu Arc 40							
aac act ggc gat Asn Thr Gly Asp 55	Gly Ala G	ly Ile Leu 1 60	Met Gln Ile 65	Pro Asp Gl	y Phe		
tat cgt gaa gta Tyr Arg Glu Val 70	Ser Gly II	le Glu Leu	Pro Glu Ala 80	Gly Glu Ty	r Ala 85		
act ggt att gcg Thr Gly Ile Ala	Phe Leu Pr 90	ro Arg Gly i	Arg Met Ala 95	Met Met As	p Ala 0		
cag aag gaa att Gln Lys Glu Ile 105	Glu Arg I	le Ala Lys (110	Gln Glu Gly	Ala Asp Va 115	l Leu		
ggt tgg cgc atg Gly Trp Arg Met 120	Val Pro Pl	ne Asp Ser A	Arg Asp Leu	Gly Ser Me 130	t Ala		
	Pro Ser Pl	ne Ala Gln 1	Ile Phe Leu 145	Thr Val Pr	o Gly		
aaa tot ggt gaa Lys Ser Gly Glu 150	Asp Leu As 155	sp Arg Val M	Met Phe Phe 160	Ile Arg Ly	s Arg 165		
tgt gag cgt gag Cys Glu Arg Glu	Leu Gly Th	or Thr Asn (Gly Arg Asp 175	Thr Val Ty	r Phe O		
ccg tcg cta tct Pro Ser Leu Ser 185	Ser Arg Th	nr Ile Ile 1 190	Tyr Lys Gly	Met Leu Th 195	r Thr		
ctg cag ctt gag Leu Gln Leu Glu							

205 210 200 tog goe att got att gtg cac tog ogt tto toe acg aac act tto coa 787 Ser Ala Ile Ala Ile Val His Ser Arg Phe Ser Thr Asn Thr Phe Pro 220 215 age tgg eeg etg geg eac eeg tac egt tte gtt gee eac aac ggt gag 835 Ser Trp Pro Leu Ala His Pro Tyr Arg Phe Val Ala His Asn Gly Glu atc aac act gtg cgt ggc aat gaa aac tgg atg cgc gcc cgc gag gcg 883 Ile Asn Thr Val Arg Gly Asn Glu Asn Trp Met Arg Ala Arg Glu Ala 250 ctt atc aaa aac gac aag ctg ggc aat ttg agc agc gtg ctg cct atc 931 Leu Ile Lys Asn Asp Lys Leu Gly Asn Leu Ser Ser Val Leu Pro Ile 270 265 tgc acc ccg gag ggc tcg gat acc gcg cgt ttc gac gag gct ttg gag 979 Cys Thr Pro Glu Gly Ser Asp Thr Ala Arg Phe Asp Glu Ala Leu Glu 285 280 ctt ttg cac ctg ggc gga tac tca ctt ccg cat gct gtt gcg atg atg Leu Leu His Leu Gly Gly Tyr Ser Leu Pro His Ala Val Ala Met Met 300 atc cct cag gcg tgg gaa cac aac aag acg ctg agc cct gag ctg cgt Ile Pro Gln Ala Trp Glu His Asn Lys Thr Leu Ser Pro Glu Leu Arg 315 320 325 310 • • gat ttc tac gaa tac cac tct tgt ctg atg gag cca tgg gat ggt cct Asp Phe Tyr Glu Tyr His Ser Cys Leu Met Glu Pro Trp Asp Gly Pro 335 330 gca gcg ctg gca ttt act gac ggt cgt ttt gtg ggt gcc gtg ctg gac 1171 Ala Ala Leu Ala Phe Thr Asp Gly Arg Phe Val Gly Ala Val Leu Asp 350 345 cgt aat ggc ctg cga cct ggg cga atc acc att act gat tcg ggt ttg 1219 Arg Asn Gly Leu Arg Pro Gly Arg Ile Thr Ile Thr Asp Ser Gly Leu 360 365 gtt gtg atg gct tct gaa tcg gga gtg ttg gac ttg agg gag gag agc Val Val Met Ala Ser Glu Ser Gly Val Leu Asp Leu Arg Glu Glu Ser 380 gtc gta aag cgt act cgc gta cag cct gga cgc atg ttc ctt gtt gac Val Val Lys Arg Thr Arg Val Gln Pro Gly Arg Met Phe Leu Val Asp 400 405 395 390 act gcc gag ggc cgc atc gtt gaa gac gag gaa atc aag cag aaa tta Thr Ala Glu Gly Arg Ile Val Glu Asp Glu Glu Ile Lys Gln Lys Leu

410

415

420

age gaa geg cag eea tat ggt gag tgg att ege gat aat ttt gtg cat 1411 Ser Glu Ala Gln Pro Tyr Gly Glu Trp Ile Arg Asp Asn Phe Val His ctg gat cgt ctg cct cag aca cgc tac aac tac atg gcg cac tct cgt 1459 Leu Asp Arg Leu Pro Gln Thr Arg Tyr Asn Tyr Met Ala His Ser Arg 440 445 gct gtg ttg cgt cag cgt gtt ttc gga atc act gaa gaa gat gtg gat 1507 Ala Val Leu Arg Gln Arg Val Phe Gly Ile Thr Glu Glu Asp Val Asp 455 ttg ttg ctg ctg ccg atg gcc cgc cag ggt gct gag gcg att ggt tcc Leu Leu Leu Pro Met Ala Arg Gln Gly Ala Glu Ala Ile Gly Ser atg ggt tcg gat acg cca att gcg gcg cta tcc cag cga cca cgc atg 1603 Met Gly Ser Asp Thr Pro Ile Ala Ala Leu Ser Gln Arg Pro Arg Met 490 500 ctt tat gat ttc ttc gcg cag cgc ttt gct cag gtg aca aac cca ccg 1651 Leu Tyr Asp Phe Phe Ala Gln Arg Phe Ala Gln Val Thr Asn Pro Pro 505 510 ttg gac tct atc cgc gaa aag cct gtg acc agc atg ttc act ttg ttg 1699 Leu Asp Ser Ile Arg Glu Lys Pro Val Thr Ser Met Phe Thr Leu Leu 520 ggt gcg cag tet gac gtg etc aat eeg ggt eet gat geg geg ega egt 1747 Gly Ala Gln Ser Asp Val Leu Asn Pro Gly Pro Asp Ala Ala Arg Arg 535 540 545 ate egt ttg gaa teg eeg ate att gat aac eat gag etg gee ace ttg 1795 Ile Arg Leu Glu Ser Pro Ile Ile Asp Asn His Glu Leu Ala Thr Leu 550 atc aat gcc aac gcg cat ggt gag tgg gat tcc ttt ggt gct gct gta 1843 Ile Asn Ala Asn Ala His Gly Glu Trp Asp Ser Phe Gly Ala Ala Val 570 575 att tet ggt ttg tac eca gtg get cac cat ggt gee gge atg aag get Ile Ser Gly Leu Tyr Pro Val Ala His His Gly Ala Gly Met Lys Ala 585 595 gcg att gct cgt gtg cgc cgc gag gtt tct gaa gca atc cgc aat ggc Ala Ile Ala Arg Val Arg Arg Glu Val Ser Glu Ala Ile Arg Asn Gly 600 605 610

aag acg ttg atc gtg ctg tcg gat cgt gaa tct gat gag cgc atg gca 1987 Lys Thr Leu Ile Val Leu Ser Asp Arg Glu Ser Asp Glu Arg Met Ala 615 cct atc cct gcg ctg ctg ctg act tcc gct gtg cat cag tac ttg gtg Pro Ile Pro Ala Leu Leu Thr Ser Ala Val His Gln Tyr Leu Val 630 635 640 645 cag caa cgt acc cgt acc cag tgc tcc ctg gtg gtg gaa tcc qqc qat 2083 Gln Gln Arg Thr Arg Thr Gln Cys Ser Leu Val Val Glu Ser Gly Asp 650 655 gcc cgc gag gtt cat cac ctg gcg atg ctc att ggt ttt ggt gcc gat 2131 Ala Arg Glu Val His His Leu Ala Met Leu Ile Gly Phe Gly Ala Asp 665 gcg atc aac ccg tac atg gca ttt gaa acc atc gat gag ctg cgc atg 2179 Ala Ile Asn Pro Tyr Met Ala Phe Glu Thr Ile Asp Glu Leu Arg Met 680 690 aag ggt cag ttg ggt gat ctt tct ttg gat gag gca tcc cga aac tac 2227 Lys Gly Gln Leu Gly Asp Leu Ser Leu Asp Glu Ala Ser Arg Asn Tyr 700 atc aag gca gcc acc act ggt gtg ctg aag gtg atg tcc aag atg ggc 2275 Ile Lys Ala Ala Thr Thr Gly Val Leu Lys Val Met Ser Lys Met Gly 715 att gca acg gtg tet teg tac egt gge geg cag ett gee gat gte act 2323 Ile Ala Thr Val Ser Ser Tyr Arg Gly Ala Gln Leu Ala Asp Val Thr 730 735 740 ggt ctg cac cag gat ctc ctg gac aac tac ttc ggt ggt att gct tca Gly Leu His Gln Asp Leu Leu Asp Asn Tyr Phe Gly Gly Ile Ala Ser 745 750 cca att tct ggc atc ggt ctg gat gaa gtt gca gct gac gta gaa gct 2419 Pro Ile Ser Gly Ile Gly Leu Asp Glu Val Ala Ala Asp Val Glu Ala 765 cgt cac cgc agc gca ttt ttg cca cgc cct gaa gag cac gct cac cgt 2467 Arg His Arg Ser Ala Phe Leu Pro Arg Pro Glu Glu His Ala His Arg 775 780 785 gaa ttg gat ttg ggt ggt gaa tac aag tgg cgc cgc gaa ggt gaa tac 2515 Glu Leu Asp Leu Gly Gly Glu Tyr Lys Trp Arg Arg Glu Gly Glu Tyr 790 -795 800 805

cac ctg ttc aac cca gaa acc atc ttc aag ctg cag cat gca acg cgt 2563 His Leu Phe Asn Pro Glu Thr Ile Phe Lys Leu Gln His Ala Thr Arg 815 810 tot ggc agc tac gag att ttc aag gat tac acc cgc aag gtt gat gat Ser Gly Ser Tyr Glu Ile Phe Lys Asp Tyr Thr Arg Lys Val Asp Asp 825 caa too act ogo ttg ggt act att ogt gga otg ttt gag tto ago acg 2659 Gln Ser Thr Arg Leu Gly Thr Ile Arg Gly Leu Phe Glu Phe Ser Thr 840 gac cgc aag cca att tcg gtg tct gag gtg gag ccg gtc agt gag atc 2707 Asp Arg Lys Pro Ile Ser Val Ser Glu Val Glu Pro Val Ser Glu Ile 860 855 gtg aag cgt ttc tcc act ggt gcg atg tct tat ggc tcg att tct gct 2755 Val Lys Arg Phe Ser Thr Gly Ala Met Ser Tyr Gly Ser Ile Ser Ala 880 870 gaa gcc cat gag gtc ttg gcc atc gcc atg aac cga ctg ggc ggt atg 2803 Glu Ala His Glu Val Leu Ala Ile Ala Met Asn Arg Leu Gly Gly Met 890 900 tcc aac tcc ggc gaa ggt ggc gag gac gcc cgc cga ttt gat gtg gaa Ser Asn Ser Gly Glu Gly Glu Asp Ala Arg Arg Phe Asp Val Glu 905 910 ccc aac ggt gac tgg aag cgc tct gcc att aag cag gtg gcc tcg gga 2899 Pro Asn Gly Asp Trp Lys Arg Ser Ala Ile Lys Gln Val Ala Ser Gly cgt ttc ggc gtg acc agc cac tac ttg aac aac tgc acc gat att cag Arg Phe Gly Val Thr Ser His Tyr Leu Asn Asn Cys Thr Asp Ile Gln 945 940 935 atc aag atg gca cag ggc gca aag ccc ggt gaa ggt ggc cag ctg cca 2995 Ile Lys Met Ala Gln Gly Ala Lys Pro Gly Glu Gly Gln Leu Pro 960 955 cca aac aag gtg tac cca tgg gtt gca gaa gtc cgc atc acc cca 3043 Pro Asn Lys Val Tyr Pro Trp Val Ala Glu Val Arg Ile Thr Thr Pro 970 ggc gtt ggt ctg att tcc cct cca cac cac gat att tac tcc att 3091 Gly Val Gly Leu Ile Ser Pro Pro Pro His His Asp Ile Tyr Ser Ile 995 985 990

gag gat ctg gct cag ctg atc cac gac ctg aag aac gct aac cca cgc 3139

Glu Asp Leu Ala Gln Leu Ile His Asp Leu Lys Asn Ala Asn Pro Arg 1000 1005 1010

gca cga atc cac gtg aag cta gtg gca gaa caa ggc gtg ggc acc gtt 3187

Ala Arg Ile His Val Lys Leu Val Ala Glu Gln Gly Val Gly Thr Val 1015 1020 1025

gec gea ggt gtg tee aaa gea cae get gat gtg gtg ett att tee gge 3235

Ala Ala Gly Val Ser Lys Ala His Ala Asp Val Val Leu Ile Ser Gly 1030 1035 1040 1045

cac gat ggc gga act ggc gca tct cct ttg acc tcc ctg aag cat gcc 3283

His Asp Gly Gly Thr Gly Ala Ser Pro Leu Thr Ser Leu Lys His Ala 1050 1055 1060

ggt ggt cca tgg gag ttg ggc ttg gct gaa acc cag caa acg ttg ctg 3331

Gly Gly Pro Trp Glu Leu Gly Leu Ala Glu Thr Gln Gln Thr Leu Leu 1065 1070 1075

ctc aac ggc ctg cgc gat cgt att cgc gtg cag tgc gat ggt cag ctg 3379

Leu Asn Gly Leu Arg Asp Arg Ile Arg Val Gln Cys Asp Gly Gln Leu 1080 1085 1090

aaa act ggc cga gac gtg gtt atc gca gct ctt ctc ggt gcc gaa gaa 3427

Lys Thr Gly Arg Asp Val Val Ile Ala Ala Leu Leu Gly Ala Glu Glu 1095 1100 1105

ttc ggt ttt gcc acc gca ccg ctg gtg gtt gaa ggc tgc atc atg atg 3475

Phe Gly Phe Ala Thr Ala Pro Leu Val Val Glu Gly Cys Ile Met Met 1110 1115 1120 1125

cgc gtc tgc cac ctg gac acc tgc ccg gtg ggt atc gct acc cag aac 3523

Arg Val Cys His Leu Asp Thr Cys Pro Val Gly Ile Ala Thr Gln Asn 1130 1135 1140

ccg gat ttg cgt tcc aag ttc acc ggc aag gct gaa cac gtg gtc aac 3571

Pro Asp Leu Arg Ser Lys Phe Thr Gly Lys Ala Glu His Val Val Asn 1145 1150 1155

ttc ttc acc ttc atc gcc cag gaa gtc cgt gag tac ttg gca cag ctt 3619

Phe Phe Thr Phe Ile Ala Gln Glu Val Arg Glu Tyr Leu Ala Gln Leu 1160 1165 1170

ggt ttc cgc tct att gat gaa gcc gtc gga caa gcc cag gtg ctg cgc 3667

Gly Phe Arg Ser Ile Asp Glu Ala Val Gly Gln Ala Gln Val Leu Arg. 1175 1180 1185 aag cgt tcc gga atc cca gct gat tcc cgc gca gca cac ctg gat ttg 3715

Lys Arg Ser Gly Ile Pro Ala Asp Ser Arg Ala Ala His Leu Asp Leu 1190 1200 1205

age cca att tte cat ege cca gaa act cca cae tte cca act cag gat 3763

Ser Pro Ile Phe His Arg Pro Glu Thr Pro His Phe Pro Thr Gln Asp 1210 1215 1220

gtg cgt tgc acc aag acc cag gaa cac agc cta gaa aaa gcc ctg gac 3811

Val Arg Cys Thr Lys Thr Gln Glu His Ser Leu Glu Lys Ala Leu Asp 1225 1230 1235

aac gca ttt att gat aag gct tcg gac acg atc acc cgt gcc gca gcg 3859

Asn Ala Phe Ile Asp Lys Ala Ser Asp Thr Ile Thr Arg Ala Ala 1240 1245 1250

ggt gtg gaa acc agc att gtt att gat agc tcc atc agc aac gtc aac 3907

Gly Val Glu Thr Ser Ile Val Ile Asp Ser Ser Ile Ser Asn Val Asn 1255 1260 1265

cgt tca gtt ggc acg atg ctg ggt tct gca gtc agc cgc gtg gct ggt 3955

Arg Ser Val Gly Thr Met Leu Gly Ser Ala Val Ser Arg Val Ala Gly 1270 1280 1285

gcc caa ggt ttg cca gac ggc acc atc acc ttg aat ctt caa ggc tgc 4003

Ala Gln Gly Leu Pro Asp Gly Thr Ile Thr Leu Asn Leu Gln Gly Cys 1290 1295 1300

gcc ggt aac tee ttt ggc gcg tte ate eea ega ggc ate aee aac 4051

Ala Gly Asn Ser Phe Gly Ala Phe Ile Pro Arg Gly Ile Thr Ile Asn 1305 1310 1315

ctc acc ggc gat gcc aat gac ttt gtg ggc aag gga tta tct ggc gga 4099

Leu Thr Gly Asp Ala Asn Asp Phe Val Gly Lys Gly Leu Ser Gly Gly 1320 1325 1330

aag att gtg atc aag cct tcc gct cag gct ccg aag cag ctg aag aac 4147

Lys Ile Val Ile Lys Pro Ser Ala Gln Ala Pro Lys Gln Leu Lys Asn 1335 1340 1345

aat cca aat atc att gcc gga aac gtg ctt gga tac ggc gca acc agt 4195

Asn Pro Asn Ile Ile Ala Gly Asn Val Leu Gly Tyr Gly Ala Thr Ser 1350 1355 1360 1365

ggt gaa ttg ttc att cgt ggc cag gtc ggc gaa cgt ttc tgc gtc cgt 4243

Gly Glu Leu Phe Ile Arg Gly Gln Val Gly Glu Arg Phe Cys Val Arg 1370 1375 1380

aac tct ggc gcc acc gca gtg gtt gaa ggt atc gga aac cac ggt tgt 4291 Asn Ser Gly Ala Thr Ala Val Val Glu Gly Ile Gly Asn His Gly Cys 1385

gag tac atg act ggc ggc cga gtc ctg gtt ttg ggc ccg gtt ggt gag 4339

Glu Tyr Met Thr Gly Gly Arg Val Leu Val Leu Gly Pro Val Gly Glu 1400 1405 1410

aac ttt ggt gcc ggc atg tct ggt ggc att gca tac ctg gct aat tcc 4387

Asn Phe Gly Ala Gly Met Ser Gly Gly Ile Ala Tyr Leu Ala Asn Ser 1415 1420 1425

ccg gac cta aac cag aag atc aat ggc gaa ttg gtg gat gtt gtt cca 4435

Pro Asp Leu Asn Gln Lys Ile Asn Gly Glu Leu Val Asp Val Val Pro 1430 1435 1440 1445

ctg agc gct gac gat ctg acg tgg gct gat gag ctc att gct cgc cac 4483

Leu Ser Ala Asp Asp Leu Thr Trp Ala Asp Glu Leu Ile Ala Arg His 1450 1455 1460

cgc gaa ctc acc gga tcc gag acc aag ctg cgt gca caa gat ttg gtg 4531

Arg Glu Leu Thr Gly Ser Glu Thr Lys Leu Arg Ala Gln Asp Leu Val 1465 1470 1475

aaa atc atg ccg cgc gat ttc caa aaa gta ctc aac atc atc gaa acg 4579

Lys Ile Met Pro Arg Asp Phe Gln Lys Val Leu Asn Ile Ile Glu Thr 1480 1485 1490

gcc cac gct gag ggc caa gac cca gca atc aag atc atg gag gca gtg 4627

Ala His Ala Glu Gly Gln Asp Pro Ala Ile Lys Ile Met Glu Ala Val 1495 1500 1505

agc taatggccga cccacaagga ttc

4653

Ser

1510

<210> 72

<211> 1510

<212> PRT

<213> Corynebacterium glutamicum

<400> 72

Met Lys Pro Gln Gly Leu Tyr Asn Pro Ala His Glu His Asp Ala Cys

1 5 10 15

Gly Val Ala Phe Ile Ala Asp Ile His Gly Arg Pro Ser Arg Ser Ile 20 25 30

Val Asp Arg Ala Leu Glu Ala Leu Arg Asn Ile Asp His Arg Gly Ala 35 40 45

Ala Gly Ala Glu Lys Asn Thr Gly Asp Gly Ala Gly Ile Leu Met Gln 50 55 60

- Ile Pro Asp Gly Phe Tyr Arg Glu Val Ser Gly Ile Glu Leu Pro Glu 65 70 75 80
- Ala Gly Glu Tyr Ala Thr Gly Ile Ala Phe Leu Pro Arg Gly Arg Met 85 90 95
- Ala Met Met Asp Ala Gln Lys Glu Ile Glu Arg Ile Ala Lys Gln Glu 100 105 110
- Gly Ala Asp Val Leu Gly Trp Arg Met Val Pro Phe Asp Ser Arg Asp 115 120 125
- Leu Gly Ser Met Ala Glu Glu Ala Met Pro Ser Phe Ala Gln Ile Phe 130 135 140
- Leu Thr Val Pro Gly Lys Ser Gly Glu Asp Leu Asp Arg Val Met Phe 145 150 155 160
- Phe Ile Arg Lys Arg Cys Glu Arg Glu Leu Gly Thr Thr Asn Gly Arg 165 170 175
- Asp Thr Val Tyr Phe Pro Ser Leu Ser Ser Arg Thr Ile Ile Tyr Lys 180 185 190
- Gly Met Leu Thr Thr Leu Gln Leu Glu Gly Phe Phe Glu Asp Leu Gly
 195 200 205
- Asp Ala Arg Leu Glu Ser Ala Ile Ala Ile Val His Ser Arg Phe Ser 210 215 220
- Thr Asn Thr Phe Pro Ser Trp Pro Leu Ala His Pro Tyr Arg Phe Val 225 230 235 240
- Ala His Asn Gly Glu Ile Asn Thr Val Arg Gly Asn Glu Asn Trp Met 245 250 255
- Arg Ala Arg Glu Ala Leu Ile Lys Asn Asp Lys Leu Gly Asn Leu Ser 260 265 270
- Ser Val Leu Pro Ile Cys Thr Pro Glu Gly Ser Asp Thr Ala Arg Phe 275 280 285
- Asp Glu Ala Leu Glu Leu Leu His Leu Gly Gly Tyr Ser Leu Pro His 290 295 300
- Ala Val Ala Met Met Ile Pro Gln Ala Trp Glu His Asn Lys Thr Leu 305 310 315 320
- Ser Pro Glu Leu Arg Asp Phe Tyr Glu Tyr His Ser Cys Leu Met Glu 325 330 335
- Pro Trp Asp Gly Pro Ala Ala Leu Ala Phe Thr Asp Gly Arg Phe Val 340 345 350
- Gly Ala Val Leu Asp Arg Asn Gly Leu Arg Pro Gly Arg Ile Thr Ile 355 360 365
- Thr Asp Ser Gly Leu Val Val Met Ala Ser Glu Ser Gly Val Leu Asp

	370					375					380				
Leu 385	Arg	Glu	Glu	Ser	Val 390	Val	Lys	Arg	Thr	Arg 395	Val	Gln	Pro	Gly	Arg 400
Met	Phe	Leu	Val	Asp 405	Thr	Ala	Glu	Gly	Arg 410	Ile	Va1	Glu	Asp	Glu 415	Glu
Ile	Lys	Gln	Lys 420	Leu	Ser	Glu	Ala	Gln 425	Pro	Туг	Gly	Glu	Trp 430	Ile	Arg
Asp	Asn	Phe 435	Val	His	Leu	Asp	Arg 440	Leu	Pro	Gln	Thr	Arg 445	Tyr	Asn	Tyr
Met	Ala 450	His	Ser	Arg	Ala	Val 455	Leu	Arg	Gln	Arg	Val 460	Phe	Gly	Ile	Thr
Glu 465	Glu	Asp	Val	Asp	Leu 470	Leu	Leu	Leu	Pro	Met 475	Ala	Arg	Gln	Gly	Ala 480
Glu	Ala	Ile	Gly	Ser 485	Met	Gly	Ser	Asp	Thr 490	Pro	Ile	Ala	Ala	Leu 495	Ser
Gln	Arg	Pro	Arg 500	Met	Leu	Tyr	Asp	Phe 505	Phe	Ala	Gln	Arg	Phe 510	Ala	Gln
		515					520		_	G1u		525			
	530					535				Val	540				
545					550	_				Pro 555					560
				565					570	His				575	
			580					585		Pro			590		
		595					600			Arg		605			
	610					615				Leu	620				
Asp 625	Glu	Arg	Met	Ala	Pro 630	Ile	Pro	Ala	Leu	Leu 635	Leu	Thr	Ser	Ala	Val 640
His	Gln	Tyr	Leu	Val 645	Gln	Gln	Arg	Thr	Arg 650	Thr	Gln	Суз	Ser	Leu 655	Val
Va1	Glu	Ser	Gly 660	Asp	Ala	Arg	Glu	Val 665	His	His	Leu	Ala	Met 670	Leu	Ile
Gly	Phe	Gly 675	Ala	Asp	Ala	Ile	Asn 680	Pro	Tyr	Met	Ala	Phe 685	Glu	Thr	Ile
Asp	Glu 690	Leu	Arg	Met	Lys	Gly 695	Gln	Leu	Gly	Asp	Leu 700	Ser	Leu	Asp	Glu

Ala Ser Arg Asn Tyr Ile Lys Ala Ala Thr Thr Gly Val Leu Lys Val 705 710 715 720

- Met Ser Lys Met Gly Ile Ala Thr Val Ser Ser Tyr Arg Gly Ala Gln
 725 730 735
- Leu Ala Asp Val Thr Gly Leu His Gln Asp Leu Leu Asp Asn Tyr Phe 740 745 750
- Gly Gly Ile Ala Ser Pro Ile Ser Gly Ile Gly Leu Asp Glu Val Ala 755 760 765
- Ala Asp Val Glu Ala Arg His Arg Ser Ala Phe Leu Pro Arg Pro Glu 770 780
- Glu His Ala His Arg Glu Leu Asp Leu Gly Gly Glu Tyr Lys Trp Arg
 785 790 795 800
- Arg Glu Gly Glu Tyr His Leu Phe Asn Pro Glu Thr Ile Phe Lys Leu 805 810 815
- Gln His Ala Thr Arg Ser Gly Ser Tyr Glu Ile Phe Lys Asp Tyr Thr 820 825 830
- Arg Lys Val Asp Asp Gln Ser Thr Arg Leu Gly Thr Ile Arg Gly Leu 835 840 845
- Phe Glu Phe Ser Thr Asp Arg Lys Pro Ile Ser Val Ser Glu Val Glu 850 855 860
- Pro Val Ser Glu Ile Val Lys Arg Phe Ser Thr Gly Ala Met Ser Tyr 865 870 875 880
- Gly Ser Ile Ser Ala Glu Ala His Glu Val Leu Ala Ile Ala Met Asn 885 890 895
- Arg Leu Gly Gly Met Ser Asn Ser Gly Glu Gly Glu Asp Ala Arg 900 905 910
- Arg Phe Asp Val Glu Pro Asn Gly Asp Trp Lys Arg Ser Ala Ile Lys 915 920 925
- Gln Val Ala Ser Gly Arg Phe Gly Val Thr Ser His Tyr Leu Asn Asn 930 935 940
- Cys Thr Asp Ile Gln Ile Lys Met Ala Gln Gly Ala Lys Pro Gly Glu 945 950 955 960
- Gly Gly Gln Leu Pro Pro Asn Lys Val Tyr Pro Trp Val Ala Glu Val 965 970 975
- Arg Ile Thr Thr Pro Gly Val Gly Leu Ile Ser Pro Pro Pro His His 980 985 990
- Asp Ile Tyr Ser Ile Glu Asp Leu Ala Gln Leu Ile His Asp Leu Lys 995 1000 1005
- Asn Ala Asn Pro Arg Ala Arg Ile His Val Lys Leu Val Ala Glu Gln 1010 1015 1020

Gly Val Gly Thr Val Ala Ala Gly Val Ser Lys Ala His Ala Asp Val 1025 1030 1035 1040

- Val Leu Ile Ser Gly His Asp Gly Gly Thr Gly Ala Ser Pro Leu Thr 1045 1050 1055
- Ser Leu Lys His Ala Gly Gly Pro Trp Glu Leu Gly Leu Ala Glu Thr 1060 1065 1070
- Gln Gln Thr Leu Leu Leu Asn Gly Leu Arg Asp Arg Ile Arg Val Gln
 1075 1080 1085
- Cys Asp Gly Gln Leu Lys Thr Gly Arg Asp Val Val Ile Ala Ala Leu 1090 1095 1100
- Leu Gly Ala Glu Glu Phe Gly Phe Ala Thr Ala Pro Leu Val Val Glu
 1105 1110 1115 1120
- Gly Cys Ile Met Met Arg Val Cys His Leu Asp Thr Cys Pro Val Gly 1125 1130 1135
- Ile Ala Thr Gln Asn Pro Asp Leu Arg Ser Lys Phe Thr Gly Lys Ala 1140 1145 1150
- Glu His Val Val Asn Phe Phe Thr Phe Ile Ala Gln Glu Val Arg Glu 1155 1160 1165
- Tyr Leu Ala Gln Leu Gly Phe Arg Ser Ile Asp Glu Ala Val Gly Gln 1170 1175 1180
- Ala Gln Val Leu Arg Lys Arg Ser Gly Ile Pro Ala Asp Ser Arg Ala 1185 1190 1195 1200
- Ala His Leu Asp Leu Ser Pro Ile Phe His Arg Pro Glu Thr Pro His 1205 1210 1215
- Phe Pro Thr Gln Asp Val Arg Cys Thr Lys Thr Gln Glu His Ser Leu 1220 1225 1230
- Glu Lys Ala Leu Asp Asn Ala Phe Ile Asp Lys Ala Ser Asp Thr Ile 1235 1240 1245
- Thr Arg Ala Ala Gly Val Glu Thr Ser Ile Val Ile Asp Ser Ser 1250 1255 1260
- Ile Ser Asn Val Asn Arg Ser Val Gly Thr Met Leu Gly Ser Ala Val 1265 1270 1280
- Ser Arg Val Ala Gly Ala Gln Gly Leu Pro Asp Gly Thr Ile Thr Leu 1285 1290 1295
- Asn Leu Gln Gly Cys Ala Gly Asn Ser Phe Gly Ala Phe Ile Pro Arg 1300 1305 1310
- Gly Ile Thr Ile Asn Leu Thr Gly Asp Ala Asn Asp Phe Val Gly Lys
 1315 1320 1325
- Gly Leu Ser Gly Gly Lys Ile Val Ile Lys Pro Ser Ala Gln Ala Pro 1330 1335 1340
- Lys Gln Leu Lys Asn Asn Pro Asn Ile Ile Ala Gly Asn Val Leu Gly

1350 1345 1355 1360 Tyr Gly Ala Thr Ser Gly Glu Leu Phe Ile Arg Gly Gln Val Gly Glu 1365 1370 Arg Phe Cys Val Arg Asn Ser Gly Ala Thr Ala Val Val Glu Gly Ile 1380 1385 Gly Asn His Gly Cys Glu Tyr Met Thr Gly Gly Arg Val Leu Val Leu 1395 1400 Gly Pro Val Gly Glu Asn Phe Gly Ala Gly Met Ser Gly Gly Ile Ala 1415 Tyr Leu Ala Asn Ser Pro Asp Leu Asn Gln Lys Ile Asn Gly Glu Leu 1425 1430 1440 Val Asp Val Val Pro Leu Ser Ala Asp Asp Leu Thr Trp Ala Asp Glu 1445 1450 Leu Ile Ala Arg His Arg Glu Leu Thr Gly Ser Glu Thr Lys Leu Arg 1465 Ala Gln Asp Leu Val Lys Ile Met Pro Arg Asp Phe Gln Lys Val Leu 1475 1480 Asn Ile Ile Glu Thr Ala His Ala Glu Gly Gln Asp Pro Ala Ile Lys 1495 Ile Met Glu Ala Val Ser 1505 1510 <210> 73 <211> 1906 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1906) <223> FRXA00007 <400> 73 ategaaagta accettttgt tacttgegtt geaggtagtg teeetgattt tettattate 60 gaacgattga tagaaacagg attaaagtga ggtatcccgc atg aaa cca caa gga Met Lys Pro Gln Gly ctc tac aac cct gcg cat gaa cat gac gcc tgc ggt gtg gcg ttt att Leu Tyr Asn Pro Ala His Glu His Asp Ala Cys Gly Val Ala Phe Ile 10 gcg gat atc cac ggt cga ccc agc cgc agc att gtt gat cgt gca ctt 211 Ala Asp Ile His Gly Arg Pro Ser Arg Ser Ile Val Asp Arg Ala Leu gag gcg ctt cgc aac att gac cac cga ggt gcc gcc ggt gca gag aag Glu Ala Leu Arg Asn Ile Asp His Arg Gly Ala Ala Gly Ala Glu Lys

50

40

		Gly					Ile			cag Gln		Pro			ttt Phe	307
	Arg									gag Glu 80	Ala					355
										atg Met						403
										gaa Glu						451
										gat Asp						499
										ttc Phe						547
										ttc Phe 160						595
										cgc Arg						643
										aaa Lys						691
										ggt Gly						739
										tcc Ser						787
										gtt Val 240						835
										atg Met			Arg			883
ctt Leu	atc Ile	Lys	aac Asn 265	gac Asp	aag Lys	ctg Leu	ggc Gly	aat Asn 270	ttg Leu	agc Ser	agc Ser	Val	ctg Leu 275	cct Pro	atc Ile	931
						Asp				ttc Phe	Asp					979

ctt ttg cac ctg ggc gga tac tca ctt ccg cat gct gtt gcg atg atg 1027

Leu Leu His Leu Gly Gly Tyr Ser Leu Pro His Ala Val Ala Met Met 295 300 305

atc cct cag gcg tgg gaa cac aac aag acg ctg agc cct gag ctg cgt 1075

Ile Pro Gln Ala Trp Glu His Asn Lys Thr Leu Ser Pro Glu Leu Arg 310 315 320 325

gat the tae gaa tae cae tet tgt etg atg gag eea tgg gat ggt eet 1123

Asp Phe Tyr Glu Tyr His Ser Cys Leu Met Glu Pro Trp Asp Gly Pro 330 335 340

gca gcg ctg gca ttt act gac ggt cgt ttt gtg ggt gcc gtg ctg gac 1171

Ala Ala Leu Ala Phe Thr Asp Gly Arg Phe Val Gly Ala Val Leu Asp 345 350 355

cgt aat ggc ctg cga cct ggg cga atc acc att act gat tcg ggt ttg 1219

Arg Asn Gly Leu Arg Pro Gly Arg Ile Thr Ile Thr Asp Ser Gly Leu 360 365 370

gtt gtg atg gct tct gaa tcg gga gtg ttg gac ttg agg gag gag agc 1267

Val Val Met Ala Ser Glu Ser Gly Val Leu Asp Leu Arg Glu Glu Ser 375 380 385

gtc gta aag cgt act cgc gta cag cct gga cgc atg ttc ctt gtt gac 1315

Val Val Lys Arg Thr Arg Val Gln Pro Gly Arg Met Phe Leu Val Asp 390 395 400 405

act gcc gag ggc cgc atc gtt gaa gac gag gaa atc aag cag aaa tta 1363

Thr Ala Glu Gly Arg Ile Val Glu Asp Glu Glu Ile Lys Gln Lys Leu
410 415 420

age gaa geg eag eea tat ggt gag tgg att ege gat aat ttt gtg eat 1411

Ser Glu Ala Gln Pro Tyr Gly Glu Trp Ile Arg Asp Asn Phe Val His 425 430 435

ctg gat cgt ctg cct cag aca cgc tac aac tac atg gcg cac tct cgt 1459

Leu Asp Arg Leu Pro Gln Thr Arg Tyr Asn Tyr Met Ala His Ser Arg
440 445 450

gct gtg ttg cgt cag cgt gtt ttc gga atc act gaa gaa gat gtg gat 1507

Ala Val Leu Arg Gln Arg Val Phe Gly Ile Thr Glu Glu Asp Val Asp 455 460 465

ttg ttg ctg ctg ccg atg gcc cgc cag ggt gct gag gcg att ggt tcc 1555

Leu Leu Leu Pro Met Ala Arg Gln Gly Ala Glu Ala Ile Gly Ser 470 480 485

atg ggt tcg gat acg cca att gcg gcg cta tcc cag cga cca cgc atg 1603

Met Gly Ser Asp Thr Pro Ile Ala Ala Leu Ser Gln Arg Pro Arg Met 490 495 500

ctt tat gat ttc ttc gcg cag cgc ttt gct cag gtg aca aac cca ccg 1651

Leu Tyr Asp Phe Phe Ala Gln Arg Phe Ala Gln Val Thr Asn Pro Pro 505 510 515

ttg gac tct atc cgc gaa aag cct gtg acc agc atg ttc act ttg ttg 1699

Leu Asp Ser Ile Arg Glu Lys Pro Val Thr Ser Met Phe Thr Leu Leu 520 525 530

ggt gcg cag tct gac gtg ctc aat ccg ggt cct gat gcg gcg cga cgt 1747

Gly Ala Gln Ser Asp Val Leu Asn Pro Gly Pro Asp Ala Ala Arg Arg 535 540 545

att cgt ttg gaa tcg ccg atc att gat aac cat gag ctg gcc acc ttg 1795

Ile Arg Leu Glu Ser Pro Ile Ile Asp Asn His Glu Leu Ala Thr Leu 550 565

atc aat gcc aac gcg cat ggt gag tgg gat tcc ttt ggt gct gct gta 1843

Ile Asn Ala Asn Ala His Gly Glu Trp Asp Ser Phe Gly Ala Ala Val 570 575 580

att tot ggt ttg tac oca gtg gct cac cat ggt gcc ggc atg aag gct 1891

Ile Ser Gly Leu Tyr Pro Val Ala His His Gly Ala Gly Met Lys Ala
585 590 595

gcg att gct cgt gtg 1906

Ala Ile Ala Arg Val 600

<210> 74

<211> 602

<212> PRT

<213> Corynebacterium glutamicum

<400> 74

Met Lys Pro Gln Gly Leu Tyr Asn Pro Ala His Glu His Asp Ala Cys
1 5 10 15

Gly Val Ala Phe Ile Ala Asp Ile His Gly Arg Pro Ser Arg Ser Ile 20 25 30

Val Asp Arg Ala Leu Glu Ala Leu Arg Asn Ile Asp His Arg Gly Ala 35 40 45

Ala Gly Ala Glu Lys Asn Thr Gly Asp Gly Ala Gly Ile Leu Met Gln 50 55 60

Ile Pro Asp Gly Phe Tyr Arg Glu Val Ser Gly Ile Glu Leu Pro Glu 65 70 75 80

Ala Gly Glu Tyr Ala Thr Gly Ile Ala Phe Leu Pro Arg Gly Arg Met
85 90 95

Ala Met Met Asp Ala Gln Lys Glu Ile Glu Arg Ile Ala Lys Gln Glu 100 105 110

Gly Ala Asp Val Leu Gly Trp Arg Met Val Pro Phe Asp Ser Arg Asp 115 120 125

Leu Gly Ser Met Ala Glu Glu Ala Met Pro Ser Phe Ala Gln Ile Phe 130 135 140

Leu Thr Val Pro Gly Lys Ser Gly Glu Asp Leu Asp Arg Val Met Phe 145 150 155 160

Phe Ile Arg Lys Arg Cys Glu Arg Glu Leu Gly Thr Thr Asn Gly Arg 165 170 175

Asp Thr Val Tyr Phe Pro Ser Leu Ser Ser Arg Thr Ile Ile Tyr Lys 180 185 190

Gly Met Leu Thr Thr Leu Gln Leu Glu Gly Phe Phe Glu Asp Leu Gly 195 200 205

Asp Ala Arg Leu Glu Ser Ala Ile Ala Ile Val His Ser Arg Phe Ser 210 225 220

Thr Asn Thr Phe Pro Ser Trp Pro Leu Ala His Pro Tyr Arg Phe Val 225 230 235 240

Ala His Asn Gly Glu Ile Asn Thr Val Arg Gly Asn Glu Asn Trp Met 245 250 255

Arg Ala Arg Glu Ala Leu Ile Lys Asn Asp Lys Leu Gly Asn Leu Ser 260 265 270

Ser Val Leu Pro Ile Cys Thr Pro Glu Gly Ser Asp Thr Ala Arg Phe 275 280 285

Asp Glu Ala Leu Glu Leu Leu His Leu Gly Gly Tyr Ser Leu Pro His 290 295 300

Ala Val Ala Met Met Ile Pro Gln Ala Trp Glu His Asn Lys Thr Leu 305 310 315 320

Ser Pro Glu Leu Arg Asp Phe Tyr Glu Tyr His Ser Cys Leu Met Glu 325 330 335

Pro Trp Asp Gly Pro Ala Ala Leu Ala Phe Thr Asp Gly Arg Phe Val 340 345 350

Gly Ala Val Leu Asp Arg Asn Gly Leu Arg Pro Gly Arg Ile Thr Ile 355 360 365

Thr Asp Ser Gly Leu Val Val Met Ala Ser Glu Ser Gly Val Leu Asp 370 380

Leu Arg Glu Glu Ser Val Val Lys Arg Thr Arg Val Gln Pro Gly Arg 385 390 395 400

Met Phe Leu Val Asp Thr Ala Glu Gly Arg Ile Val Glu Asp Glu Glu 405 410 Ile Lys Gln Lys Leu Ser Glu Ala Gln Pro Tyr Gly Glu Trp Ile Arg 425 420 Asp Asn Phe Val His Leu Asp Arg Leu Pro Gln Thr Arg Tyr Asn Tyr 440 Met Ala His Ser Arg Ala Val Leu Arg Gln Arg Val Phe Gly Ile Thr 450 455 Glu Glu Asp Val Asp Leu Leu Leu Pro Met Ala Arg Gln Gly Ala 470 Glu Ala Ile Gly Ser Met Gly Ser Asp Thr Pro Ile Ala Ala Leu Ser 490 Gln Arg Pro Arg Met Leu Tyr Asp Phe Phe Ala Gln Arg Phe Ala Gln 500 505 Val Thr Asn Pro Pro Leu Asp Ser Ile Arg Glu Lys Pro Val Thr Ser 520 Met Phe Thr Leu Leu Gly Ala Gln Ser Asp Val Leu Asn Pro Gly Pro 535 530 Asp Ala Ala Arg Arg Ile Arg Leu Glu Ser Pro Ile Ile Asp Asn His 550 555 Glu Leu Ala Thr Leu Ile Asn Ala Asn Ala His Gly Glu Trp Asp Ser 565 570 Phe Gly Ala Ala Val Ile Ser Gly Leu Tyr Pro Val Ala His His Gly 580 585 590 Ala Gly Met Lys Ala Ala Ile Ala Arg Val 595 <210> 75 <211> 1362 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (70)..(1362) <223> FRXA00364 <400> 75 accaatttct ggcatcggtc tggatgaagt tgcagctgac gtagaaagct cgtcaccgca 60 gegeattttttg eea ege eet gaa gag eae get eae egt gaa ttg gat ttg Leu Pro Arg Pro Glu Glu His Ala His Arg Glu Leu Asp Leu 1 5 10 ggt ggt gaa tac aag tgg cgc cgc gaa ggt gaa tac cac ctg ttc aac 159 Gly Gly Glu Tyr Lys Trp Arg Glu Gly Glu Tyr His Leu Phe Asn 15 20

cca gaa acc atc ttc aag ctg cag cat gca acg cgt tct ggc agc tac 207 Pro Glu Thr Ile Phe Lys Leu Gln His Ala Thr Arg Ser Gly Ser Tyr gag att ttc aag gat tac acc cgc aag gtt gat gat caa tcc act cgc Glu Ile Phe Lys Asp Tyr Thr Arg Lys Val Asp Asp Gln Ser Thr Arg 50 ttg ggt act att cgt gga ctg ttt gag ttc agc acg gac cgc aag cca Leu Gly Thr Ile Arg Gly Leu Phe Glu Phe Ser Thr Asp Arg Lys Pro att tog gtg tot gag gtg gag cog gtc agt gag atc gtg aag cgt ttc 351 Ile Ser Val Ser Glu Val Glu Pro Val Ser Glu Ile Val Lys Arg Phe 90 tcc act ggt gcg atg tct tat ggc tcg att tct gct gaa gcc cat gag 399 Ser Thr Gly Ala Met Ser Tyr Gly Ser Ile Ser Ala Glu Ala His Glu 95 100 105 gtc ttg gcc atc gcc atg aac cga ctg ggc ggt atg tcc aac tcc ggc Val Leu Ala Ile Ala Met Asn Arg Leu Gly Gly Met Ser Asn Ser Gly 115 120 gaa ggt ggc gag gac gcc cgc cga ttt gat gtg gaa ccc aac ggt gac Glu Gly Glu Asp Ala Arg Arg Phe Asp Val Glu Pro Asn Gly Asp 130 tgg aag cgc tct gcc att aag cag gtg gcc tcg gga cgt ttc ggc gtg 543 Trp Lys Arg Ser Ala Ile Lys Gln Val Ala Ser Gly Arg Phe Gly Val 145 150 acc agc cac tac ttg aac aac tgc acc gat att cag atc aag atg gca 591 Thr Ser His Tyr Leu Asn Asn Cys Thr Asp Ile Gln Ile Lys Met Ala 160 165 cag ggc gca aag ccc ggt gaa ggt ggc cag ctg cca cca aac aag gtg 639 Gln Gly Ala Lys Pro Gly Glu Gly Gln Leu Pro Pro Asn Lys Val 180 tac cca tgg gtt gca gaa gtc cgc atc acc acc cca ggc gtt ggt ctg 687 Tyr Pro Trp Val Ala Glu Val Arg Ile Thr Thr Pro Gly Val Gly Leu 195 att tcc cct cca cca cac cac gat att tac tcc att gag gat ctg gct 735 Ile Ser Pro Pro Pro His His Asp Ile Tyr Ser Ile Glu Asp Leu Ala 210 215 220 cag ctg atc cac gac ctg aag aac gct aac cca cgc gca cqa atc cac 783 Gln Leu Ile His Asp Leu Lys Asn Ala Asn Pro Arg Ala Arg Ile His 225 230 gtg aag cta gtg gca gaa caa ggc gtg ggc acc gtt gcc gca ggt gtg 831 Val Lys Leu Val Ala Glu Gln Gly Val Gly Thr Val Ala Ala Gly Val 240 245 tcc aaa gca cac gct gat gtg gtg ctt att tcc ggc cac gat ggc gga 879 Ser Lys Ala His Ala Asp Val Val Leu Ile Ser Gly His Asp Gly Gly 255 265 act ggc gca tct cct ttg acc tcc ctg aag cat gcc ggt ggt cca tgg 927

Thr Gly Ala Ser Pro Leu Thr Ser Leu Lys His Ala Gly Gly Pro Trp 275 gag ttg ggc ttg gct gaa acc cag caa acg ttg ctg ctc aac ggc ctg 975 Glu Leu Gly Leu Ala Glu Thr Gln Gln Thr Leu Leu Leu Asn Gly Leu cgc gat cgt att cgc gtg cag tgc gat ggt cag ctg aaa act ggc cga 1023 Arg Asp Arg Ile Arg Val Gln Cys Asp Gly Gln Leu Lys Thr Gly Arg 305 310 gac gtg gtt atc gca gct ctt ctc ggt gcc gaa gaa ttc ggt ttt qcc 1071 Asp Val Val Ile Ala Ala Leu Leu Gly Ala Glu Glu Phe Gly Phe Ala 320 325 acc gca ccg ctg gtg gtt gaa ggc tgc atc atg atg cgc gtc tgc cac Thr Ala Pro Leu Val Val Glu Gly Cys Ile Met Met Arg Val Cys His 335 ctg gac acc tgc ccg gtg ggt atc gct acc cag aac ccg gat ttg cgt 1167 Leu Asp Thr Cys Pro Val Gly Ile Ala Thr Gln Asn Pro Asp Leu Arg 355 360 365 tcc aag ttc acc ggc aag gct gaa cac gtg gtc aac ttc ttc acc ttc 1215 Ser Lys Phe Thr Gly Lys Ala Glu His Val Val Asn Phe Phe Thr Phe 375 ate gee eag gaa gte egt gag tae ttg gea eag ett ggt tte ege tet 1263 Ile Ala Gln Glu Val Arg Glu Tyr Leu Ala Gln Leu Gly Phe Arg Ser att gat gaa gcc gtc gga caa gcc cag gtg ctg cgc aag cgt tcc gga 1311 Ile Asp Glu Ala Val Gly Gln Ala Gln Val Leu Arg Lys Arg Ser Gly 400 405 410 atc cca gct gat tcc cgc gca gca cac ctg gat ttg agc cca att ttc Ile Pro Ala Asp Ser Arg Ala Ala His Leu Asp Leu Ser Pro Ile Phe 415 420 425 430 atc 1362 Ile

<210> 76

<211> 431

<212> PRT

<213> Corynebacterium glutamicum

<400> 76

Leu Pro Arg Pro Glu Glu His Ala His Arg Glu Leu Asp Leu Gly Gly
1 5 10 15

Glu Tyr Lys Trp Arg Arg Glu Gly Glu Tyr His Leu Phe Asn Pro Glu 20 Thr Ile Phe Lys Leu Gln His Ala Thr Arg Ser Gly Ser Tyr Glu Ile Phe Lys Asp Tyr Thr Arg Lys Val Asp Asp Gln Ser Thr Arg Leu Gly Thr Ile Arg Gly Leu Phe Glu Phe Ser Thr Asp Arg Lys Pro Ile Ser Val Ser Glu Val Glu Pro Val Ser Glu Ile Val Lys Arg Phe Ser Thr Gly Ala Met Ser Tyr Gly Ser Ile Ser Ala Glu Ala His Glu Val Leu 105 Ala Ile Ala Met Asn Arg Leu Gly Gly Met Ser Asn Ser Gly Glu Gly 115 120 Gly Glu Asp Ala Arg Arg Phe Asp Val Glu Pro Asn Gly Asp Trp Lys 135 140 Arg Ser Ala Ile Lys Gln Val Ala Ser Gly Arg Phe Gly Val Thr Ser 145 160 His Tyr Leu Asn Asn Cys Thr Asp Ile Gln Ile Lys Met Ala Gln Gly Ala Lys Pro Gly Glu Gly Gln Leu Pro Pro Asn Lys Val Tyr Pro 180 185 Trp Val Ala Glu Val Arg Ile Thr Thr Pro Gly Val Gly Leu Ile Ser 195 200 Pro Pro Pro His His Asp Ile Tyr Ser Ile Glu Asp Leu Ala Gln Leu 215 Ile His Asp Leu Lys Asn Ala Asn Pro Arg Ala Arg Ile His Val Lys 225 240 Leu Val Ala Glu Gln Gly Val Gly Thr Val Ala Ala Gly Val Ser Lys 250 Ala His Ala Asp Val Val Leu Ile Ser Gly His Asp Gly Gly Thr Gly 260 265 Ala Ser Pro Leu Thr Ser Leu Lys His Ala Gly Gly Pro Trp Glu Leu 275 280 Gly Leu Ala Glu Thr Gln Gln Thr Leu Leu Leu Asn Gly Leu Arg Asp 295 Arg Ile Arg Val Gln Cys Asp Gly Gln Leu Lys Thr Gly Arg Asp Val 305 310 315 Val Ile Ala Ala Leu Leu Gly Ala Glu Glu Phe Gly Phe Ala Thr Ala

330

325

Pro Leu Val Val Glu Gly Cys Ile Met Met Arg Val Cys His Leu Asp 340 345 Thr Cys Pro Val Gly Ile Ala Thr Gln Asn Pro Asp Leu Arg Ser Lys 360 Phe Thr Gly Lys Ala Glu His Val Val Asn Phe Phe Thr Phe Ile Ala Gln Glu Val Arg Glu Tyr Leu Ala Gln Leu Gly Phe Arg Ser Ile Asp 385 390 395 Glu Ala Val Gly Gln Ala Gln Val Leu Arg Lys Arg Ser Gly Ile Pro 410 Ala Asp Ser Arg Ala Ala His Leu Asp Leu Ser Pro Ile Phe Ile <210> 77 <211> 866 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(843) <223> FRXA00367 <400> 77 cac age cta gaa aaa gee etg gae aae gea ttt att gat aag get teg 48 His Ser Leu Glu Lys Ala Leu Asp Asn Ala Phe Ile Asp Lys Ala Ser 10 gac acg atc acc cgt gcc gca gcg ggt gtg gaa acc agc att gtt att 96 Asp Thr Ile Thr Arg Ala Ala Ala Gly Val Glu Thr Ser Ile Val Ile 20 gat agc tcc atc agc aac gtc aac cgt tca gtt ggc acg atg ctg ggt Asp Ser Ser Ile Ser Asn Val Asn Arg Ser Val Gly Thr Met Leu Gly 35 tet gea gte age ege gtg get ggt gee caa ggt ttg eea gae gge ace 192 Ser Ala Val Ser Arg Val Ala Gly Ala Gln Gly Leu Pro Asp Gly Thr 50 atc acc ttg aat ctt caa ggc tgc gcc ggt aac tcc ttt ggc gcg ttc 240 Ile Thr Leu Asn Leu Gln Gly Cys Ala Gly Asn Ser Phe Gly Ala Phe 65 70 atc cca cga ggc atc acc atc aac ctc acc ggc gat gcc aat gac ttt 288 Ile Pro Arg Gly Ile Thr Ile Asn Leu Thr Gly Asp Ala Asn Asp Phe 90 gtg ggc aag gga tta tct ggc gga aag att gtg atc aag cct tcc gct Val Gly Lys Gly Leu Ser Gly Gly Lys Ile Val Ile Lys Pro Ser Ala 100 105 110 cag gct ccg aag cag ctg aag aac aat cca aat atc att gcc gga aac Gln Ala Pro Lys Gln Leu Lys Asn Asn Pro Asn Ile Ile Ala Gly Asn 115 120 125

gtg Val	ctt Leu 130	Gly	tac Tyr	ggc	gca Ala	acc Thr 135	Ser	ggt	gaa Glu	ttg Leu	ttc Phe 140	Ile	cgt Arg	Gly	cag Gln	432
					tgc Cys 150						Ala					480
					cac His					Met					Val	528
					gtt Val											576
					gct Ala											624
ggc Gly	gaa Glu 210	ttg Leu	gtg Val	gat Asp	gtt Val	gtt Val 215	cca Pro	ctg Leu	agc Ser	gct Ala	gac Asp 220	gat Asp	ctg Leu	acg Thr	tgg Trp	672
gct Ala 225	gat Asp	gag Glu	ctc Leu	att	gct Ala 230	cgc Arg	cac His	cgc Arg	gaa Glu	ctc Leu 235	acc Thr	gga Gly	tcc Ser	gag Glu	acc Thr 240	720
aag Lys	ctg Leu	cgt Arg	gca Ala	caa Gln 245	gat Asp	ttg Leu	gtg Val	aaa Lys	atc Ile 250	atg Met	ccg Pro	cgc Arg	gat Asp	ttc Phe 255	caa Gln	768
aaa Lys	gta Val	ctc Leu	aac Asn 260	atc Ile	atc Ile	gaa Glu	acg Thr	gcc Ala 265	cac His	gct Ala	gag Glu	ggc Gly	caa Gln 270	gac Asp	cca Pro	816
					gag Glu				taai	ggcd	ega d	ccac	aagg	_{ra}		863
ttc																866
<210 <211 <212 <213	> 28 > PR	11 T	bact	eriu	um gl	utam	nicum	ı								
<400			03.	v		•	•	•		_,		_	_		_	
1	ser	ren	GIU	ъўs	Ala	Leu	Asp	ASN	10	Pne	IIe	Asp	Lys	15	Ser	
			20		Ala :			25					30			
Asp	Ser	Ser 35	Ile	Ser	Asn '	Val	Asn 40	Arg	Ser	Val	Gly	Thr 45	Met	Leu	Gly	
Ser /	Ala 50	Val	Ser	Arg	Val 2	Ala 55	Gly	Ala	Gln	Gly	Leu 60	Pro .	Asp	Gly	Thr	

Ile 65	Thr	Leu	Asn	Leu	Gln 70	GTĀ	Суз	Ala	Gly	Asn 75	Ser	Phe	Gly	Ala	Phe 80	
Ile	Pro	Arg	Gly	Ile 85	Thr	Ile	Asn	Leu	Thr 90	Gly	Asp	Ala	Asn	Asp 95	Phe	
Val	Gly	Lys	Gly 100	Leu	Ser	Gly	Gly	Lys 105	Ile	Val	Ile	Lys	Pro 110	Ser	Ala	
Gln	Ala	Pro 115	Lys	Gln	Leu	Lys	Asn 120	Asn	Pro	Asn	Ile	Ile 125	Ala	Gly	Asn	
Val	Leu 130	Gly	Tyr	Gly	Ala	Thr. 135		Gly	Glu	Leu	Phe 140	Ile	Arg	Gly	Gln	
Val 145	Gly	Glu	Arg	Phe	Сув 150	Val	Arg	Asn	Ser	Gly 155	Ala	Thr	Ala	Val	Val 160	
Glu	Gly	Ile	Gly	Asn 165	His	Gly	Cys	Glu	Tyr 170	Met	Thr	Gly	Gly	Arg 175	Val	
Leu	Val	Leu	Gly 180	Pro	Va1	Gly	Glu	Asn 185	Phe	Gly	Ala	Gly	Met 190	Ser	Gly	
Gly	Ile	Ala 195	Tyr	Leu	Ala		Ser 200	Pro	Asp	Leu	Asn	Gln 205	Lys	Ile	Asn	
Gly	Glu 210	Leu	Val	Asp	Val	Val 215	Pro	Leu	Ser	Ala	Asp 220	Asp	Leu	Thr	Trp	
Ala 225	Asp	Glu	Leu	Ile	Ala 230	Arg	His	Arg	Glu	Leu 235	Thr	Gly	Ser	Glu	Thr 240	
Lys	Leu	Arg	Ala	Gln 245	Asp	Leu	Val	Lys	Ile 250	Met	Pro	Arg	Asp	Phe 255	Gln	
Lys	Val	Leu	Asn 260	Ile	Ile	Glu	Thr	Ala 265	His	Ala	Glu	Gly	Gln 270	Asp	Pro	
Ala	Ile	Lys 275		Met	Glu	Ala	Val 280	Ser								
<211 <212)> 79 .> 14 ?> DN i> Co	94 IA	ebact	eriu	ım gl	.utan	nicum	 . .								
<222)> .> CD !> (1 !> RX	01).		71)		,										
-)> 79 lggag		taaa	cago	c tg	gact	tgaa	aca	cctt	taa	ctac	ttga:	itt t	tcac	accct	60
tgtt	tcca	ta a	aagg	gctc	a cg	aaag	gcaa	ctt	caaa		atg Met 1					115

					Gly					Gly					gac Asp	163
				Asn										Phe	gag Glu	211
			Ala					Ile							gac Asp	259
		Arg										Asn			gac Asp	307
			ctg Leu													355
			gaa Glu													403
			gca Ala 105													451
			ggt Gly													499
			cgc Arg													547
			aac Asn													595
			ctc Leu													643
ctc Leu	aaa Lys	gaa Glu	aac Asn 185	aag Lys	gcc Ala	act Thr	gaa Glu	gtg Val 190	cac His	gtt Val	ttc Phe	gga Gly	cgt Arg 195	cgt Arg	Gly	691
			gtc Val													739
			atc Ile		Val											787
			gaa Glu	Glu					Ser							835
- ~ ~	C2.7	2+0	a+a	~~~					-~-	~~~	~~-					002

, t

Cys Gln Ile Leu Glu Gln Tyr Ala Ile Arg Glu Pro Lys Asp Ala Pro 255 cac acc ctg cag atc cac ctc ttt gaa aac cca gtt gag gtt ctt caa 931 His Thr Leu Gln Ile His Leu Phe Glu Asn Pro Val Glu Val Leu Gln 265 aag gac ggc aag gtt gtt ggc ctg cgc acc gaa cgc acc tca ctt gat 979 Lys Asp Gly Lys Val Val Gly Leu Arg Thr Glu Arg Thr Ser Leu Asp 280 285 ggc aac ggc ggc gta aac gga acc ggc gaa ttc aag gac tgg cca gtc 1027 Gly Asn Gly Gly Val Asn Gly Thr Gly Glu Phe Lys Asp Trp Pro Val 295 cag gct gtc tac cgc gca gtc ggc tac aag tcc gac ccc atc gac ggc Gln Ala Val Tyr Arg Ala Val Gly Tyr Lys Ser Asp Pro Ile Asp Gly 315 320 310 gtc cca ttc gat gag aac aag cac gtc atc cct aat gac ggc gga cat Val Pro Phe Asp Glu Asn Lys His Val Ile Pro Asn Asp Gly Gly His 330 gtc ctc acc gct cca ggc gca gaa cca gta cca ggc ctc tat gca acc 1171 Val Leu Thr Ala Pro Gly Ala Glu Pro Val Pro Gly Leu Tyr Ala Thr 350 355 345 gge tgg ate aag egt gga eea ate ggt eta ate gge aac aec aag tee Gly Trp Ile Lys Arg Gly Pro Ile Gly Leu Ile Gly Asn Thr Lys Ser 360 365 gac gcc aag gaa acc acc gac atc ctc atc aag gat gcc gtc gcc ggt Asp Ala Lys Glu Thr Thr Asp Ile Leu Ile Lys Asp Ala Val Ala Gly gta ctt gaa gct cca aag cac cag ggc gaa gaa gcc atc atc gag ctt Val Leu Glu Ala Pro Lys His Gln Gly Glu Glu Ala Ile Ile Glu Leu 395 400 405 390 ctc gat tcc cgc aac atc cca ttc acc acc tgg gaa ggc tgg tac aaa Leu Asp Ser Arg Asn Ile Pro Phe Thr Thr Trp Glu Gly Trp Tyr Lys 410 415 ctc gac gca gca gag cgc gca ctc ggt gaa gcc gaa ggc cgc gag cgc 1411 Leu Asp Ala Ala Glu Arg Ala Leu Gly Glu Ala Glu Gly Arg Glu Arg 425 430 aag aag att gtt gat tgg gaa gaa atg gtc cgc cag gcc cgc gaa gct Lys Lys Ile Val Asp Trp Glu Glu Met Val Arg Gln Ala Arg Glu Ala 445 440

cca gca att gtc taaattgttt taacgcgtga agc 1494 Pro Ala Ile Val 455

<210> 80

<211> 457

<212> PRT

<213> Corynebacterium glutamicum

<400> 80

Met Thr Thr Pro Leu Arg Val Ala Val Ile Gly Ala Gly Pro Ala Gly
1 5 10 15

Ile Tyr Ala Ser Asp Leu Leu Ile Arg Asn Glu Glu Arg Glu Val Phe
20 25 30

Val Asp Leu Phe Glu Gln Met Pro Ala Pro Phe Gly Leu Ile Arg Tyr 35 40 45

Gly Val Ala Pro Asp His Pro Arg Ile Lys Gly Ile Val Lys Ser Leu 50 55 60

His Asn Val Leu Asp Lys Pro Arg Leu Arg Leu Leu Gly Asn Ile Glu 65 70 75 80

Ile Gly Lys Asp Ile Thr Val Glu Glu Leu Arg Asp Tyr Tyr Asp Ala 85 90 95

Val Val Phe Ser Thr Gly Ala Val Ala Asp Arg Asp Leu Asn Ile Pro 100 105 110

Gly Ile Glu Ala Glu Gly Ser Phe Gly Ala Gly Glu Phe Val Gly Phe 115 120 125

Tyr Asp Gly Asn Pro Arg Phe Glu Arg Ser Trp Asp Leu Ser Ala Gln 130 135 140

Ser Val Ala Val Ile Gly Val Gly Asn Val Gly Leu Asp Val Ala Arg 145 150 155 160

Ile Leu Ala Lys Thr Gly Asp Glu Leu Lys Val Thr Glu Ile Ser Asp 165 170 175

Asn Val Tyr Asp Ser Leu Lys Glu Asn Lys Ala Thr Glu Val His Val 180 185 190

Phe Gly Arg Arg Gly Pro Ala Gln Val Lys Phe Thr Pro Gln Glu Leu 195 200 205

Lys Glu Leu Asp His Ser Pro Thr Ile Asn Val Val Asp Pro Glu 210 215 220

Asp Ile Asp Tyr Asp Gly Ala Ser Glu Glu Ala Arg Arg Ala Ser Lys 225 230 235 240

Ser Gln Asp Leu Val Cys Gln Ile Leu Glu Gln Tyr Ala Ile Arg Glu 245 250 255

Pro Lys Asp Ala Pro His Thr Leu Gln Ile His Leu Phe Glu Asn Pro

260 265 270

Val Glu Val Leu Gln Lys Asp Gly Lys Val Val Gly Leu Arg Thr Glu 275 280 285

Arg Thr Ser Leu Asp Gly Asn Gly Gly Val Asn Gly Thr Gly Glu Phe 290 295 300

Lys Asp Trp Pro Val Gln Ala Val Tyr Arg Ala Val Gly Tyr Lys Ser 305 310 315 320

Asp Pro Ile Asp Gly Val Pro Phe Asp Glu Asn Lys His Val Ile Pro 325 330 335

Asn Asp Gly Gly His Val Leu Thr Ala Pro Gly Ala Glu Pro Val Pro 340 345 350

Gly Leu Tyr Ala Thr Gly Trp Ile Lys Arg Gly Pro Ile Gly Leu Ile 355 360 365

Gly Asn Thr Lys Ser Asp Ala Lys Glu Thr Thr Asp Ile Leu Ile Lys 370 375 380

Asp Ala Val Ala Gly Val Leu Glu Ala Pro Lys His Gln Gly Glu Glu 385 390 395 400

Ala Ile Ile Glu Leu Leu Asp Ser Arg Asn Ile Pro Phe Thr Trp
405 410 415

Glu Gly Trp Tyr Lys Leu Asp Ala Ala Glu Arg Ala Leu Gly Glu Ala
420
425
430

Glu Gly Arg Glu Arg Lys Lys Ile Val Asp Trp Glu Glu Met Val Arg
435
440
445

Gln Ala Arg Glu Ala Pro Ala Ile Val 450 455

<210> 81

<211> 786

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(763)

<223> FRXA00075

<400> 81

tctaggagtg ttaaacagcc tggacttgaa acacctttaa ctacttgatt ttcacaccct 60

tgtttccata aaagggctca cgaaaggcaa cttcaaacac atg aca act ccc ctg 115

Met Thr Thr Pro Leu

1 5

cgc gta gcc gtc atc gga gct ggc cct gct ggc att tac gca tcc gac
Arg Val Ala Val Ile Gly Ala Gly Pro Ala Gly Ile Tyr Ala Ser Asp
10 15 20

ctc ctc atc cgc aat gaa gag cgc gaa gtg ttc gtt gac ctt ttc gag 211

Leu	Leu	Ile	Arg 25	Asn	Glu	G1u	Arg	Glu 30	Val	Phe	Val	Asp	Leu 35	Phe	Glu	
		cct Pro 40														259
		cgc Arg														307
		cgc Arg														355
		gaa Glu														403
		gtt Val														451
		ttc Phe 120														499
		gag Glu														547
		ggt Gly														595
		gag Glu	Leu													643
		gaa Glu														691
	Ser	aca Thr 200														739
Leu		cac His			Arg			tgat	ccag	aa g	acat	cgac	t ac	g		786
<211 <212	> 82 > 22 > PR > Co	1	bact	eriu	m gl	utam	icum	ı								
	> 82															
let '	Thr	Thr	Pro :	Leu 5	Arg	Val	Ala	Val	lle 10	Gly	Ala	Gly	Pro	Ala 15	Gly	

Ile Tyr Ala Ser Asp Leu Leu Ile Arg Asn Glu Glu Arg Glu Val Phe Val Asp Leu Phe Glu Gln Met Pro Ala Pro Phe Gly Leu Ile Arg Tyr 40 Gly Val Ala Pro Asp His Pro Arg Ile Lys Gly Ile Val Lys Ser Leu His Asn Val Leu Asp Lys Pro Arg Leu Arg Leu Gly Asn Ile Glu Ile Gly Lys Asp Ile Thr Val Glu Glu Leu Arg Asp Tyr Tyr Asp Ala Val Val Phe Ser Thr Gly Ala Val Ala Asp Arg Asp Leu Asn Ile Pro 105 Gly Ile Glu Ala Glu Gly Ser Phe Gly Ala Gly Glu Phe Val Gly Phe 115 120 Tyr Asp Gly Asn Pro Arg Phe Glu Arg Ser Trp Asp Leu Ser Ala Gln Ser Val Ala Val Ile Gly Val Gly Asn Val Gly Leu Asp Val Ala Arg 150 155 Ile Leu Ala Lys Thr Gly Asp Glu Leu Lys Val Thr Glu Ile Ser Asp 170 165 Asn Val Tyr Asp Ser Leu Lys Glu Asn Lys Xaa Xaa Glu Val His Val Phe Gly Arg Arg Trp Pro Ser Thr Gly Gln Val His Pro Thr Gly Thr 195 200 Xaa Arg Thr Xaa Pro Leu Pro His His Gln Arg Gly Cys 210 215 <210> 83 <211> 672 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(649) <223> RXN00198 <400> 83 atgcaggatt agagcagcag caacggagcc agaatcagtc tcccaatttg atatccagcc 60 cegegeteet ttecagegeg eegatteeae tecategeeg atg tae eee aac etc Met Tyr Pro Asn Leu 1 ttc cgc acc gca acg gct cac gaa gaa ggc gaa tac atc act ggc 163 Phe Arg Thr Ala Thr Ala His Glu Glu Gly Glu Tyr Ile Ile Thr Gly

							gcc Ala 30				21:
							aaa Lys				259
							acc Thr				307
							cca Pro				355
							gca Ala				403
							ggc Gly 110				451
							cgc Arg				499
							ggc Gly				547
							gca Ala				595
							gtt Val				643
gct Ala	tago	ttgg	ıgt a	ıgaaa	atgo	t ag	ia				672

<210> 84

<211> 183

<212> PRT

<213> Corynebacterium glutamicum

<400> 84

Met Tyr Pro Asn Leu Phe Arg Thr Ala Thr Ala His Glu Glu Glu Glu 1 5 15

Tyr Ile Ile Thr Gly Asp Glu Ser Ala Asp Glu Ile Ala Ala Leu Gly
20 25 30

Leu Ala Glu Arg Ala Ala Gly Ser Thr Leu Gly Glu Arg Lys Phe Ala 35 40 45

Val Asn Thr Val Glu Phe His Gly Asn Asn Gly His Val Thr Gly Leu

	50					22					60					
Thr 65	Gly	Asn	Gln	Ile	Arg 70	Val	Val	Asn	Gly	Lys 75	Arg	Glu	Pro	Ile	Glu 80	
Gly	Thr	Glu	Phe	Pro 85	Phe	Glu	Ala	Asp	Leu 90	Val	Leu	Val	Ala	Leu 95	Gly	
Phe	Thr	Gly	Ala 100	Glu	Gln	Gly	GŢĀ	Leu 105	Ala	His	Glu	Leu	Gly 110	Val	Gly	
Phe	Asp	Asp 115	Arg	Gly	Arg	Ile	Leu 120	Arg	Asp	Ser	Glu	Tyr 125	Arg	Ser	Pro	
Thr	Asn 130	Ser	Arg	Val	Tyr	Ile 135	Ala	Gly	Asp	Asn	Gly 140	Arg	Gly	Gln	Ser	
Leu 1 4 5	Ile	Val	Trp	Ala	Ile 150	Ala	Glu	Gly	Arg	Ala 155	Сув	Ala	Ala	Ala	Ile 160	
Asp	Ala	Asp	Leu	Met 165	Gly	Glu	Thr	Ala	Leu 170	Pro	Val	Ala	Val	Ala 175	Pro	
Gln	Asp	Val	Pro 180	Leu	Ala	Val										
<213 <213	0> 85 L> 30 2> Di 3> Co	35	ebact	teriv	ım gi	lutar	nicur	n								
<222	L> CI 2> (3	OS L)(RXA0(•												
ctc Leu	Val	ctt	Val	Ala	Leu	Gly		Thr	Gly	Ala		Gln	Gly	gga Gly 15		48
														ctc Leu		96
														gca Ala		144
														gaa Glu		192
cgc Arg 65	gca Ala	tgc Cys	gcc Ala	gca Ala	gct Ala 70	atc Ile	gac Asp	gcc Ala	gat Asp	ctc Leu 75	atg Met	ggt Gly	gaa Glu	act Thr	gca Ala 80	240
									gtg Val 90						•	282

tagcttgggt agaaaatgct aga 305 <210> 86 <211> 94 <212> PRT <213> Corynebacterium glutamicum <400> 86 Leu Val Leu Val Ala Leu Gly Phe Thr Gly Ala Glu Gln Gly Gly Leu 15 Ala His Glu Leu Gly Val Gly Phe Asp Asp Arg Gly Arg Ile Leu Arg Asp Ser Glu Tyr Arg Ser Pro Thr Asn Ser Arg Val Tyr Ile Ala Gly 40 Asp Asn Gly Arg Gly Gln Ser Leu Ile Val Trp Ala Ile Ala Glu Gly 55 Arg Ala Cys Ala Ala Ala Ile Asp Ala Asp Leu Met Gly Glu Thr Ala Leu Pro Val Ala Val Ala Pro Gln Asp Val Pro Leu Ala Val 85 <210> 87 <211> 727 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(727) <223> RXN00365 <400> 87 gaagectacg ategettgea egegaceaac aattteeeeg agtteaeegg eegtttgtge 60 cccgcaccct gcgaaggcgc ctgcgtgctc ggtatcaacg atg att ctg tca cca Met Ile Leu Ser Pro tca aaa acg ttt gag ctg gaa atc gtc gaa aaa gca ttc cgc gaa ggc 163 Ser Lys Thr Phe Glu Leu Glu Ile Val Glu Lys Ala Phe Arg Glu Gly tgg gtg caa cca gta atc cca tcc atg tct acc ggg ctg tca gtc gcc 211 Trp Val Gln Pro Val Ile Pro Ser Met Ser Thr Gly Leu Ser Val Ala 259 Val Val Gly Ser Gly Pro Ala Gly Leu Ala Ala Ala Gln Gln Leu Thr 40 45 ege gea gge cae age gtt ace gte ttt gaa ege gae gae ege ete gge Arg Ala Gly His Ser Val Thr Val Phe Glu Arg Asp Asp Arg Leu Gly 55 60

		_	_					_		aaa Lys 80	_			_		355
										gag Glu						403
										gcg Ala						451
										gaa Glu						499
										gat Asp						547
										tct Ser 160						595
										gac Asp						643
										tca Ser						691
										gat Asp						727
<211 <212)> 88 .> 20 !> PF !> Co)9 RT	ebact	eriu	ım gl	.utan	nicum	ı								
	> 88 Ile		Ser	Pro 5	Ser	Lys	Thr	Phe	Glu 10	Leu	Glu	Ile	Val	Glu 15	Lys	
Ala	Phe	Arg	Glu 20	Gly	Trp	Val	Gln	Pro 25	Val	Ile	Pro	Ser	Met 30	Ser	Thr	
Gly	Leu	Ser 35	Val	Ala	Val	Val	Gly 40	Ser	Gly	Pro	Ala	Gly 45	Leu	Ala	Ala	
Ala	Gln 50	Gln	Leu	Thr	Arg	Ala 55	Gly	His	Ser	Val	Thr 60	Val	Phe	Glu	Arg	
Asp 65	Asp	Arg	Leu	Gly	Gly 70	Leu	Met	Arg	Tyr	G1y 75	Val	Pro	Glu	Tyr	80 FÀ3	
Met	Glu	Asn	Arg	Trp 85	Ile	Asp	Arg	Arg	Ile 90	G1u	Gln	Met	Glu	Ala 95	Glu	

Gly Thr Thr Phe Gln Val Gly Thr Ser Pro Arg Ala Ala Glu Leu Ala 100 Leu Phe Asp Ala Ile Leu Leu Ala Thr Gly Thr Pro Val Ala Arg Glu 115 120 · . . -Leu Ser Val Pro Gly His Asp Leu Asn Gly Ile His Ala Ala Met Asp 135 Tyr Leu Thr Ala Gln Asn Arg Ile Asn Glu Gly Asp Gly Glu Val Ser 150 155 Pro Ile Asn Ala Lys Gly Lys Lys Val Val Ile Ile Gly Gly Gly Asp 165 170 Thr Gly Thr Asp Cys Phe Gly Thr Ala Leu Arg Gln Gly Ala Glu Ser Val Thr Gln Phe Asp Ile Arg Pro Arg Ala Pro Phe Gln Arg Ala Asp 200 Ser <210> 89 <211> 727 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(727) <223> FRXA00365 <400> 89 gaagectacg ategettgca egegaceaac aattteeeeg agtteacegg eegtttgtge 60 cccgcaccct gcgaaggcgc ctgcgtgctc ggtatcaacg atg att ctg tca cca Met Ile Leu Ser Pro tca aaa acg ttt gag ctg gaa atc gtc gaa aaa gca ttc cgc gaa ggc 163 Ser Lys Thr Phe Glu Leu Glu Ile Val Glu Lys Ala Phe Arg Glu Gly tgg gtg caa cca gta atc cca tcc atg tct acc ggg ctg tca gtc gcc 211 Trp Val Gln Pro Val Ile Pro Ser Met Ser Thr Gly Leu Ser Val Ala 259 Val Val Gly Ser Gly Pro Ala Gly Leu Ala Ala Gln Gln Leu Thr 45 ege gea gge cae age gtt ace gte ttt gaa ege gae ege ete gge 307 Arg Ala Gly His Ser Val Thr Val Phe Glu Arg Asp Asp Arg Leu Gly 55 60 ggc ctc atg cgc tac ggc gtg cca gaa tac aaa atg gag aac cgc tgg 355

Gly Leu Met Arg Tyr Gly Val Pro Glu Tyr Lys Met Glu Asn Arg Trp

70					75					80					85	
															cag Gln	40:
-				_	_		-	-		-				Ala	atc Ile	451
							gtg Val 125								Gly	499
															caa Gln	547
							ggt Gly								aaa Lys 165	595
							ggt Gly									643
							gga Gly									691
							cag Gln 205									727
<211 <212)> 9(L> 2(2> PI 3> Co)9 RT	ebact	eriv	nw gj	lutan	nicum	a								
)e <(Sor	Dro	Ser	Tare	Thr	Dhe	Glu	Leu	Glu	Tla	17=1	Gl ₁₁	Tue	
1	++C	Tieu	Der	5	Del	D,S		FIIC	10	Deu	Glu	116	Vai	15	цуs	
Ala	Phe	Arg	Glu 20	Gly	Trp	Val	Gln	Pro 25	Val	Ile	Pro	Ser	Met 30	Ser	Thr	
Gly	Leu	Ser 35	Val	Ala	Val	Val	Gly 40	Ser	Gly	Pro	Ala	G1y 45	Leu	Ala	Ala	
Ala	Gln 50	Gln	Leu	Thr	Arg	Ala 55	Gly	His	Ser	Val	Thr 60	Val	Phe	Glu	Arg	
Asp 65	Asp	Arg	Leu	Gly	Gly 70	Leu	Met	Arg	Tyr	Gly 75	Val	Pro	Glu	Tyr	Lys 80	
Met	Glu	Asn	Arg	Trp 85	Ile	Asp	Arg	Arg	Ile 90	Glu	Gln	Met	Glu	Ala 95	Glu	
Gly	Thr	Thr	Phe 100	Gln	Val	Gly	Thr	Ser 105	Pro	Arg	Ala	Ala	Glu 110	Leu	Ala	

Leu Phe Asp Ala Ile Leu Leu Ala Thr Gly Thr Pro Val Ala Arg Glu 115 Leu Ser Val Pro Gly His Asp Leu Asn Gly Ile His Ala Ala Met Asp 135 130 Tyr Leu Thr Ala Gln Asn Arg Ile Asn Glu Gly Asp Gly Glu Val Ser Pro Ile Asn Ala Lys Gly Lys Lys Val Val Ile Ile Gly Gly Asp 165 170 175 Thr Gly Thr Asp Cys Phe Gly Thr Ala Leu Arg Gln Gly Ala Glu Ser 180 185 Val Thr Gln Phe Asp Ile Arg Pro Arg Ala Pro Phe Gln Arg Ala Asp 195 200 Ser <210> 91 <211> 480 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(457) <223> RXA00366 <400> 91 aaatcatgcc gcgcgatttc caaaaagtac tcaacatcat cgaaacggcc cacgctgagg 60 gccaagaccc agcaatcaag atcatggagg cagtgagcta atg gcc gac cca caa Met Ala Asp Pro Gln gga ttc atc aaa tac tcc cga cgc gag cct gca cac cgc ccg gtc ccg Gly Phe Ile Lys Tyr Ser Arg Arg Glu Pro Ala His Arg Pro Val Pro 10 15 ctg cgc ctc atg gac cac tcc gag gtc tac gaa aag gca ccg gca ggt Leu Arg Leu Met Asp His Ser Glu Val Tyr Glu Lys Ala Pro Ala Gly 25 259 cag atc gag gaa cag gct gcc cgc tgc atg gat tgc ggt gtc ccg ttc Gln Ile Glu Glu Gln Ala Ala Arg Cys Met Asp Cys Gly Val Pro Phe 40 50 tgc cac gaa ggc tgc cca ctg ggc aac atc atc cct gag tgg aat gat 307 Cys His Glu Gly Cys Pro Leu Gly Asn Ile Ile Pro Glu Trp Asn Asp 55 60 ctg gta cgc caa ggt cgg tgg aag gaa gcc tac gat cgc ttg cac gcg Leu Val Arg Gln Gly Arg Trp Lys Glu Ala Tyr Asp Arg Leu His Ala 75 80

acc aac aat ttc ccc gag ttc acc ggc cgt ttg tgc ccc gca ccc tgc

403

Thr Asn Asn Phe Pro Glu Phe Thr Gly Arg Leu Cys Pro Ala Pro Cys gaa ggc gcc tgc gtg ctc ggt atc aac gat gat tct gtc acc atc aaa Glu Gly Ala Cys Val Leu Gly Ile Asn Asp Asp Ser Val Thr Ile Lys aac gtt tgagctggaa atcgtcgaaa aag 480 Asn Val <210> 92 <211> 119 <212> PRT <213> Corynebacterium glutamicum <400> 92 Met Ala Asp Pro Gln Gly Phe Ile Lys Tyr Ser Arg Arg Glu Pro Ala His Arg Pro Val Pro Leu Arg Leu Met Asp His Ser Glu Val Tyr Glu Lys Ala Pro Ala Gly Gln Ile Glu Glu Gln Ala Ala Arg Cys Met Asp 40 Cys Gly Val Pro Phe Cys His Glu Gly Cys Pro Leu Gly Asn Ile Ile Pro Glu Trp Asn Asp Leu Val Arg Gln Gly Arg Trp Lys Glu Ala Tyr Asp Arg Leu His Ala Thr Asn Asn Phe Pro Glu Phe Thr Gly Arg Leu 85 90 Cys Pro Ala Pro Cys Glu Gly Ala Cys Val Leu Gly Ile Asn Asp Asp Ser Val Thr Ile Lys Asn Val 115 <210> 93 <211> 1464 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1441) <223> RXA02072 <400> 93 tacatggtgc cctcaatggg aaccaccaac atcactaaat ggcccaggta cacactttaa 60 aatcgtgcgc gcatgcagcc gagatgggaa cgaggaaatc atg aca gtt gat gag

Met Thr Val Asp Glu

163

cag gtc tct aac tat tac gac atg ctt ctg aag cgc aat gct ggc gag

Gln	Val	Ser	Asn	Tyr 10	Tyr	Asp	Met	Leu	Leu 15	Lys	Arg	Asn	Ala	Gly 20	Glu	
	_			_	gca Ala				_		-		_	_		211
					cct Pro											259
					cgt Arg											307
					cac His 75											355
					tac Tyr											403
					aag Lys											451
					cca Pro											499
					tcc Ser											547
					cac His 155											595
					gtt Val											643
					gct Ala											691
					ggt Gly											739
					ttc Phe											787
					aag Lys 235											835
					aag Lys											883

ttc tcc gat tcc agc ggt tgg gtt cat acc cct aac ggc gtt gac gtg Phe Ser Asp Ser Ser Gly Trp Val His Thr Pro Asn Gly Val Asp Val get aag etc ege gaa atc aag gaa gtt egt ege gea ege gta tee gtg Ala Lys Leu Arg Glu Ile Lys Glu Val Arg Arg Ala Arg Val Ser Val tac gcc gac gaa gtt gaa ggc gca acc tac cac acc gac ggt tcc atc Tyr Ala Asp Glu Val Glu Gly Ala Thr Tyr His Thr Asp Gly Ser Ile tgg gat ctc aag tgc gat atc gct ctt cct tgt gca act caq aac gag Trp Asp Leu Lys Cys Asp Ile Ala Leu Pro Cys Ala Thr Gln Asn Glu ctc aac ggc gag aac gct aag act ctt gca gac aac ggc tgc cgt ttc Leu Asn Gly Glu Asn Ala Lys Thr Leu Ala Asp Asn Gly Cys Arg Phe gtt gct gaa ggc gcg aac atg cct tcc acc cct gag gct gtt gag gtc Val Ala Glu Gly Ala Asn Met Pro Ser Thr Pro Glu Ala Val Glu Val ttc cgt gag cgc gac atc cgc ttc gga cca ggc aag gca gct aac gct Phe Arg Glu Arg Asp Ile Arg Phe Gly Pro Gly Lys Ala Ala Asn Ala ggt ggc gtt gca acc tcc gct ctg gag atg cag cag aac gct tcg cgc Gly Gly Val Ala Thr Ser Ala Leu Glu Met Gln Gln Asn Ala Ser Arg gat tee tgg age tte gag tae ace gae gag ege ete eag gtg ate atg Asp Ser Trp Ser Phe Glu Tyr Thr Asp Glu Arg Leu Gln Val Ile Met aag aac atc ttc aag acc tgt gca gag acc gca gca gag tat gga cac Lys Asn Ile Phe Lys Thr Cys Ala Glu Thr Ala Ala Glu Tyr Gly His gag aac gat tac gtt gtc ggc gct aac att gct ggc ttc aag aaq gta Glu Asn Asp Tyr Val Val Gly Ala Asn Ile Ala Gly Phe Lys Lys Val gct gac gcg atg ctg gca cag ggc gtc atc taagacccct gcgctttact Ala Asp Ala Met Leu Ala Gln Gly Val Ile

taa 1464

<210> 94

<211> 447

<212> PRT

<213> Corynebacterium glutamicum

<400> 94

Met Thr Val Asp Glu Gln Val Ser Asn Tyr Tyr Asp Met Leu Leu Lys
1 5 10 15

Arg Asn Ala Gly Glu Pro Glu Phe His Gln Ala Val Ala Glu Val Leu 20 25 30

Glu Ser Leu Lys Ile Val Leu Glu Lys Asp Pro His Tyr Ala Asp Tyr 35 40 45

Gly Leu Ile Gln Arg Leu Cys Glu Pro Glu Arg Gln Leu Ile Phe Arg
50 55 60

Val Pro Trp Val Asp Asp Gln Gly Gln Val His Val Asn Arg Gly Phe 65 70 75 80

Arg Val Gln Phe Asn Ser Ala Leu Gly Pro Tyr Lys Gly Gly Leu Arg 85 90 95

Phe His Pro Ser Val Asn Leu Gly Ile Val Lys Phe Leu Gly Phe Glu
100 105 110

Gln Ile Phe Lys Asn Ser Leu Thr Gly Leu Pro Ile Gly Gly Gly Lys 115 120 125

Gly Gly Ser Asp Phe Asp Pro Lys Gly Lys Ser Asp Leu Glu Ile Met 130 135 140

Arg Phe Cys Gln Ser Phe Met Thr Glu Leu His Arg His Ile Gly Glu 145 150 155 160

Tyr Arg Asp Val Pro Ala Gly Asn Ile Gly Val Gly Gly His Glu Ile 165 170 175

Gly Tyr Leu Phe Gly His Tyr Arg Arg Met Ala Asn Gln His Glu Ser 180 185 190

Gly Val Leu Thr Gly Lys Gly Leu Thr Trp Gly Gly Ser Leu Val Arg 195 200 205

Thr Glu Ala Thr Gly Tyr Gly Cys Val Tyr Phe Val Ser Glu Met Ile 210 215 220

Lys Ala Lys Gly Glu Ser Ile Ser Gly Gln Lys Ile Ile Val Ser Gly 225 230 235 240

Ser Gly Asn Val Ala Thr Tyr Ala Ile Glu Lys Ala Gln Glu Leu Gly
245 250 255

Ala Thr Val Ile Gly Phe Ser Asp Ser Ser Gly Trp Val His Thr Pro 260 265 270

Asn Gly Val Asp Val Ala Lys Leu Arg Glu Ile Lys Glu Val Arg Arg Ala Arg Val Ser Val Tyr Ala Asp Glu Val Glu Gly Ala Thr Tyr His 295 290 Thr Asp Gly Ser Ile Trp Asp Leu Lys Cys Asp Ile Ala Leu Pro Cys 310 Ala Thr Gln Asn Glu Leu Asn Gly Glu Asn Ala Lys Thr Leu Ala Asp Asn Gly Cys Arg Phe Val Ala Glu Gly Ala Asn Met Pro Ser Thr Pro 340 Glu Ala Val Glu Val Phe Arg Glu Arg Asp Ile Arg Phe Gly Pro Gly 360 Lys Ala Ala Asn Ala Gly Gly Val Ala Thr Ser Ala Leu Glu Met Gln 370 375 380 Gln Asn Ala Ser Arg Asp Ser Trp Ser Phe Glu Tyr Thr Asp Glu Arg 390 Leu Gln Val Ile Met Lys Asn Ile Phe Lys Thr Cys Ala Glu Thr Ala 405 410 Ala Glu Tyr Gly His Glu Asn Asp Tyr Val Val Gly Ala Asn Ile Ala 425 420 Gly Phe Lys Lys Val Ala Asp Ala Met Leu Ala Gln Gly Val Ile 440 <210> 95 <211> 1461 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1438) <223> RXA00323 <400> 95 cgcgacatcc ttgagtaact ctgagaaaaa ctaccccga tgggagtata aaagtggcaa 60 atgcgcagtc gatgtcccat cgctgcgtag attagttttc atg aac agc gaa cag Met Asn Ser Glu Gln 1 gaa ttt gta ctc agc gcc att gaa gaa Cgc gac att aag ttt gtg cgt Glu Phe Val Leu Ser Ala Ile Glu Glu Arg Asp Ile Lys Phe Val Arg 10 cta tgg ttc act gac att ctt ggc cac ttg aag tca gtg gtt gtg gct Leu Trp Phe Thr Asp Ile Leu Gly His Leu Lys Ser Val Val Val Ala 259 cct gca gaa cta gag tct gcg ttg gaa gaa ggc atc gga ttc gat ggc Pro Ala Glu Leu Glu Ser Ala Leu Glu Glu Gly Ile Gly Phe Asp Gly

40 45 50

		40					43					50				
tca Ser	gcc Ala 55	att Ile	gag Glu	ggc Gly	tac Tyr	gcg Ala 60	cgt Arg	atc Ile	tcg Ser	gaa Glu	gcg Ala 65	gac Asp	acc Thr	att Ile	gcc Ala	307
cgc Arg 70	cca Pro	gat Asp	cca Pro	tcg Ser	aca Thr 75	ttc Phe	cag Gln	gtc Val	ctc Leu	cca Pro 80	cta Leu	gaa Glu	gcg Ala	ggc Gly	atc Ile 85	355
tca Ser	aaa Lys	ctg Leu	cag Gln	gca Ala 90	gca Ala	cgc Arg	ctg Leu	ttt Phe	tgc Cys 95	gat Asp	gtc Val	acg Thr	atg Met	cca Pro 100	gac Asp	403
					tct Ser											451
caa Gln	cta Leu	gct Ala 120	gca Ala	gat Asp	gaa Glu	ggc Gly	ttg Leu 125	acc Thr	tgc Cys	atg Met	atc Ile	tca Ser 130	cca Pro	gag Glu	att Ile	499
gag Glu	ttc Phe 135	tat Tyr	ttg Leu	gtg Val	caa Gln	agc Ser 140	ctt Leu	cgc Arg	acc Thr	aac Asn	gga Gly 145	ctg Leu	cca Pro	cct Pro	gtg Val	547
ccc Pro 150	act Thr	gac Asp	aac Asn	ggc Gly	gga Gly 155	tat Tyr	ttc Phe	gac Asp	caa Gln	gcc Ala 160	aca Thr	ttc Phe	aat Asn	gag Glu	gcg Ala 165	595
ccg	aat Asn	ttc Phe	cgt Arg	cga Arg 170	aac Asn	gcg Ala	atg Met	gta Val	gcg Ala 175	ctg Leu	gag Glu	gaa Glu	ctc Leu	ggc Gly 180	atc Ile	643
cct Pro	gtc Val	gag Glu	ttc Phe 185	tcc Ser	cac His	cat His	gaa Glu	act Thr 190	gca Ala	cct Pro	ggc Gly	cag Gln	caa Gln 195	gaa Glu	atc Ile	691
gat Asp	tta Leu	Arg	His	Ala	gat Asp	Ala	Leu	Thr	Met	Ala	Asp	aac Asn 210	atc Ile	atg Met	acc Thr	739
ttc Phe	cgc Arg 215	tac Tyr	atc Ile	atg Met	aaa Lys	cag Gln 220	gtg Val	gca Ala	agg Arg	gac Asp	caa Gln 225	ggc Gly	gtc Val	ggg ggg	gca Ala	787
tca Ser 230	ttt Phe	atg Met	ccc Pro	aag Lys	cca Pro 235	ttc Phe	caa Gln	gaa Glu	cat His	gca Ala 240	ggc Gly	tcc Ser	gcc Ala	atg Met	cac His 245	835
					ttt Phe											883
gac Asp	gat Asp	tct Ser	tac Tyr 265	atg Met	ctg Leu	tcc Ser	aaa Lys	acc Thr 270	gca Ala	aaa Lys	cag Gln	ttc Phe	atc Ile 275	gct Ala	gga Gly	931
atc Ile	ttg Leu	cat His 280	cac His	gct Ala	cca Pro	gaa Glu	ttc Phe 285	acc Thr	gct Ala	gtg Val	acc Thr	aac Asn 290	cag Gln	tgg Trp	gtc Val	979

aat too tac aaa cgc atc gtg tac gga aac gaa gct cca act gcg gca 1027

Asn Ser Tyr Lys Arg Ile Val Tyr Gly Asn Glu Ala Pro Thr Ala Ala 295 300 305

acc tgg ggt gta tct aat cgt tct gcg ctg gtt cgt gtt cct acc tac 1075

Thr Trp Gly Val Ser Asn Arg Ser Ala Leu Val Arg Val Pro Thr Tyr 310 315 320 325

cgt ttg aat aag gag gag tcg cgc cgg gtg gag gtg cgt ctt cct gat 1123

Arg Leu Asn Lys Glu Glu Ser Arg Arg Val Glu Val Arg Leu Pro Asp 330 335 340

acc gct tgt aac cca tat ttg gcg ttt tca gtg atg ctc ggc gct ggt 1171

Thr Ala Cys Asn Pro Tyr Leu Ala Phe Ser Val Met Leu Gly Ala Gly 345 350 355

ttg aaa ggc att aaa gaa ggt tat gag ctc gac gag cca gct gag gac 1219

Leu Lys Gly Ile Lys Glu Gly Tyr Glu Leu Asp Glu Pro Ala Glu Asp 360 365 370

gat atc tcc aac ttg agc ttc cgg gaa cgt cgc gcc atg ggc tac aac 1267

Asp Ile Ser Asn Leu Ser Phe Arg Glu Arg Arg Ala Met Gly Tyr Asn 375 380 385

gat ctg cca agc agc ctt gat cag gca ctg cgc caa atg gaa aag tca 1315

Asp Leu Pro Ser Ser Leu Asp Gln Ala Leu Arg Gln Met Glu Lys Ser 390 395 400 400

gag ctt gtt gct gac atc ctc ggt gag cac gtt ttt gag ttt ttc ttg 1363

Glu Leu Val Ala Asp Ile Leu Gly Glu His Val Phe Glu Phe Phe Leu
410 415 420

cgc aat aag tgg cgt gaa tgg cgt gac tac caa gag cag atc act ccg 1411

Arg Asn Lys Trp Arg Glu Trp Arg Asp Tyr Gln Glu Gln Ile Thr Pro
425 430 435

tgg gag ctc cga aac aat ctt gat tac tagacttttg cactccaatg 1458

Trp Glu Leu Arg Asn Asn Leu Asp Tyr
440
445

gaa 1461

<210> 96

<211> 446

<212> PRT

<213> Corynebacterium glutamicum

<400> 96

Met Asn Ser Glu Gln Glu Phe Val Leu Ser Ala Ile Glu Glu Arg Asp Ile Lys Phe Val Arg Leu Trp Phe Thr Asp Ile Leu Gly His Leu Lys 25 Ser Val Val Val Ala Pro Ala Glu Leu Glu Ser Ala Leu Glu Gly Ile Gly Phe Asp Gly Ser Ala Ile Glu Gly Tyr Ala Arg Ile Ser Glu Ala Asp Thr Ile Ala Arg Pro Asp Pro Ser Thr Phe Gln Val Leu Pro 70 Leu Glu Ala Gly Ile Ser Lys Leu Gln Ala Ala Arg Leu Phe Cys Asp Val Thr Met Pro Asp Gly Gln Pro Ser Phe Ser Asp Pro Arg Gln Val 105 Leu Arg Arg Gln Val Gln Leu Ala Ala Asp Glu Gly Leu Thr Cys Met Ile Ser Pro Glu Ile Glu Phe Tyr Leu Val Gln Ser Leu Arg Thr Asn 135 Gly Leu Pro Pro Val Pro Thr Asp Asn Gly Gly Tyr Phe Asp Gln Ala 145 Thr Phe Asn Glu Ala Pro Asn Phe Arg Arg Asn Ala Met Val Ala Leu Glu Glu Leu Gly Ile Pro Val Glu Phe Ser His His Glu Thr Ala Pro Gly Gln Gln Glu Ile Asp Leu Arg His Ala Asp Ala Leu Thr Met Ala Asp Asn Ile Met Thr Phe Arg Tyr Ile Met Lys Gln Val Ala Arg Asp 215 Gln Gly Val Gly Ala Ser Phe Met Pro Lys Pro Phe Gln Glu His Ala 225 Gly Ser Ala Met His Thr His Met Ser Leu Phe Glu Gly Asp Thr Asn 250 Ala Phe His Asp Pro Asp Asp Ser Tyr Met Leu Ser Lys Thr Ala Lys 260 Gln Phe Ile Ala Gly Ile Leu His His Ala Pro Glu Phe Thr Ala Val Thr Asn Gln Trp Val Asn Ser Tyr Lys Arg Ile Val Tyr Gly Asn Glu 295 Ala Pro Thr Ala Ala Thr Trp Gly Val Ser Asn Arg Ser Ala Leu Val 320 315 305 Arg Val Pro Thr Tyr Arg Leu Asn Lys Glu Glu Ser Arg Arg Val Glu

325 330 335 Val Arg Leu Pro Asp Thr Ala Cys Asn Pro Tyr Leu Ala Phe Ser Val 345 Met Leu Gly Ala Gly Leu Lys Gly Ile Lys Glu Gly Tyr Glu Leu Asp 360 Glu Pro Ala Glu Asp Asp Ile Ser Asn Leu Ser Phe Arg Glu Arg Arg Ala Met Gly Tyr Asn Asp Leu Pro Ser Ser Leu Asp Gln Ala Leu Arg 390 395 Gln Met Glu Lys Ser Glu Leu Val Ala Asp Ile Leu Gly Glu His Val 405 Phe Glu Phe Phe Leu Arg Asn Lys Trp Arg Glu Trp Arg Asp Tyr Gln 425 Glu Gln Ile Thr Pro Trp Glu Leu Arg Asn Asn Leu Asp Tyr 440 <210> 97 <211> 1554 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1531) <223> RXA00335 <400> 97 actacatttg cagccaagtc tactacttga tcttcaaagg tcagcaattg tgaacaaagc 60 115 tacaaataaa ccgttccgcc catgtcaatg aggagtcacc gtg gcg ttt gaa acc Val Ala Phe Glu Thr ccg gaa gaa att gtc aag ttc atc aag gat gaa aac gtc gag ttc gtt 163 Pro Glu Glu Ile Val Lys Phe Ile Lys Asp Glu Asn Val Glu Phe Val 10 gae gtt ega tte ace gae ett ece gge ace gag eag eac tte age ate 211 Asp Val Arg Phe Thr Asp Leu Pro Gly Thr Glu Gln His Phe Ser Ile 25 30 259 cca gct gcc agc ttc gat gca gat aca atc gaa gat gct ctc gca ttc Pro Ala Ala Ser Phe Asp Ala Asp Thr Ile Glu Glu Gly Leu Ala Phe 40 50 gac gga tee teg ate egt gge tte ace acg ate gac gaa tet gac atg 307 Asp Gly Ser Ser Ile Arg Gly Phe Thr Thr Ile Asp Glu Ser Asp Met 55 aat ctc ctg cca gac ctc gga acg gcc acc ctt gat cca ttc cgc aag Asn Leu Leu Pro Asp Leu Gly Thr Ala Thr Leu Asp Pro Phe Arg Lys 70

gca Ala	aag Lys	acc Thr	ctg Leu	aac Asn 90	gtt Val	aag Lys	ttc Phe	ttc Phe	gtt Val 95	cac His	gat Asp	cct Pro	ttc Phe	acc Thr 100	cgc Arg	403
gag Glu	gca Ala	ttc Phe	tcc Ser 105	cgc Arg	gac Asp	cca Pro	cgc Arg	aac Asn 110	gtg Val	gca Ala	cgc Arg	aag Lys	gca Ala 115	gag Glu	cag Gln	451
tac Tyr	ctg Leu	gca Ala 120	tcc Ser	acc Thr	ggc Gly	att Ile	gca Ala 125	gac Asp	acc Thr	tgc Cys	aac Asn	ttc Phe 130	ggc Gly	gcc Ala	gag Glu	499
gct Ala	gag Glu 135	ttc Phe	tac Tyr	ctc Leu	ttc Phe	gac Asp 140	tcc Ser	gtt Val	cgc Arg	tac Tyr	tcc Ser 145	acc Thr	gag Glu	atg Met	aac Asn	547
tcc Ser 150	ggc Gly	ttc Phe	tac Tyr	gaa Glu	gta Val 155	gat Asp	acc Thr	gaa Glu	gaa Glu	ggc Gly 160	tgg Trp	tgg Trp	aac Asn	cgt Arg	ggc Gly 165	595
aag Lys	gaa Glu	acc Thr	aac Asn	ctc Leu 170	gac Asp	ggc Gly	acc Thr	cca Pro	aac Asn 175	ctg Leu	ggc	gca Ala	aag Lys	aac Asn 180	cgc Arg	643
gtc Val	aag Lys	ggt Gly	ggc Gly 185	tac Tyr	ttc Phe	cca Pro	gta Val	gca Ala 190	cca Pro	tac Tyr	gac Asp	caa Gln	acc Thr 195	gtt Val	gac Asp	691
gtg Val	cgc Arg	gat Asp 200	gac Asp	atg Met	gtt Val	cgc Arg	aac Asn 205	ctc Leu	gca Ala	gct Ala	tcc Ser	ggc Gly 210	ttc Phe	gct Ala	ctt Leu	739
gag Glu	cgt Arg 215	ttc Phe	cac His	cac His	gaa Glu	gtc Val 220	ggt Gly	ggc	gga Gly	cag Gln	cag Gln 225	gaa Glu	atc Ile	aac Asn	tac Tyr	787
cgc Arg 230	ttc Phe	aac Asn	acc Thr	atg Met	ctc Leu 235	cac His	gcg Ala	gca Ala	gat Asp	gat Asp 240	atc Ile	cag Gln	acc Thr	ttc Phe	aag Lys 245	835
tac Tyr	atc Ile	atc Ile	aag Lys	aac Asn 250	acc Thr	gct Ala	cgc Arg	ctc Leu	cac His 255	ggc Gly	aag Lys	gct Ala	gca Ala	acc Thr 260	ttc Phe	883
atg Met	cct Pro	aag Lys	cca Pro 265	ctg Leu	gct Ala	ggc Gly	gac Asp	aac Asn 270	ggt Gly	tcc Ser	ggc Gly	atg Met	cac His 275	gct Ala	cac His	931
cag Gln	tcc Ser	ctc Leu 280	tgg Trp	aag Lys	gac Asp	ggc Gly	aag Lys 285	cca Pro	ctc Leu	ttc Phe	cac His	gat Asp 290	gag Glu	tcc Ser	Gly	979
tac 102		ggc	ctg	tcc	gac	atc	gcc	cgc	tac	tac	atc	ggc	ggc	atc	ctg	
Tyr	Ala 295					300			Tyr		305					
1075	5								acc							
His 310	His	Ala	Gly	Ala	Val 315	Leu	Ala	Phe	Thr	Asn 320	Ala	Thr	Leu	Asn	Ser 325	

tac cac cgt ctg gtt cca ggc ttc gag gct cca atc aac ctg gtg tac 1123 Tyr His Arg Leu Val Pro Gly Phe Glu Ala Pro Ile Asn Leu Val Tyr 330 335 tca cag cgc aac cgt tcc gct gct gtc cgt atc cca atc acc gga tcc 1171 Ser Gln Arg Asn Arg Ser Ala Ala Val Arg Ile Pro Ile Thr Gly Ser 350 aac ccg aag gca aag cgc atc gaa ttc cgc gct cca gac cca tca ggc Asn Pro Lys Ala Lys Arg Ile Glu Phe Arg Ala Pro Asp Pro Ser Gly 360 aac cca tac ctg ggc ttt gca gcg atg atg gcc ggc ctc gac ggc 1267 Asn Pro Tyr Leu Gly Phe Ala Ala Met Met Ala Gly Leu Asp Gly 375 380 atc aag aac cgc atc gag cca cac gct cca gtg gac aag gac ctc tac Ile Lys Asn Arg Ile Glu Pro His Ala Pro Val Asp Lys Asp Leu Tyr 395 390 gaa cta cca cca gag gaa gct gca tcc att cca cag gca cca acc tcc 1363 Glu Leu Pro Pro Glu Glu Ala Ala Ser Ile Pro Gln Ala Pro Thr Ser 410 420 ctg gaa gca tcc ctg aag gca ctg cag gaa gac acc gac ttc ctc acc 1411 Leu Glu Ala Ser Leu Lys Ala Leu Gln Glu Asp Thr Asp Phe Leu Thr 425 gag tot gac gto tto acc gag gat oto atc gag gog tac atc cag tac 1459 Glu Ser Asp Val Phe Thr Glu Asp Leu Ile Glu Ala Tyr Ile Gln Tyr aag tac gac aac gag atc tcc cca gtt cgc ctg cgc cca acc ccg Cag 1507 Lys Tyr Asp Asn Glu Ile Ser Pro Val Arg Leu Arg Pro Thr Pro Gln 455 460 465 gaa ttc gaa ttg tac ttc gac tgc taattcactt agctageega tag 1554 Glu Phe Glu Leu Tyr Phe Asp Cys 470 475 <210> 98 <211> 477 <212> PRT <213> Corynebacterium glutamicum <400> 98

10

Val Ala Phe Glu Thr Pro Glu Glu Ile Val Lys Phe Ile Lys Asp Glu

5

1

Asn Val Glu Phe Val Asp Val Arg Phe Thr Asp Leu Pro Gly Thr Glu 25 Gln His Phe Ser Ile Pro Ala Ala Ser Phe Asp Ala Asp Thr Ile Glu Glu Gly Leu Ala Phe Asp Gly Ser Ser Ile Arg Gly Phe Thr Thr Ile 50 Asp Glu Ser Asp Met Asn Leu Leu Pro Asp Leu Gly Thr Ala Thr Leu Asp Pro Phe Arg Lys Ala Lys Thr Leu Asn Val Lys Phe Phe Val His Asp Pro Phe Thr Arg Glu Ala Phe Ser Arg Asp Pro Arg Asn Val Ala 105 100 Arg Lys Ala Glu Gln Tyr Leu Ala Ser Thr Gly Ile Ala Asp Thr Cys Asn Phe Gly Ala Glu Ala Glu Phe Tyr Leu Phe Asp Ser Val Arg Tyr Ser Thr Glu Met Asn Ser Gly Phe Tyr Glu Val Asp Thr Glu Glu Gly 155 Trp Trp Asn Arg Gly Lys Glu Thr Asn Leu Asp Gly Thr Pro Asn Leu Gly Ala Lys Asn Arg Val Lys Gly Gly Tyr Phe Pro Val Ala Pro Tyr Asp Gln Thr Val Asp Val Arg Asp Met Val Arg Asn Leu Ala Ala Ser Gly Phe Ala Leu Glu Arg Phe His His Glu Val Gly Gly Gln Gln 210 Gln Glu Ile Asn Tyr Arg Phe Asn Thr Met Leu His Ala Ala Asp Asp Ile Gln Thr Phe Lys Tyr Ile Ile Lys Asn Thr Ala Arg Leu His Gly Lys Ala Ala Thr Phe Met Pro Lys Pro Leu Ala Gly Asp Asn Gly Ser 265 Gly Met His Ala His Gln Ser Leu Trp Lys Asp Gly Lys Pro Leu Phe His Asp Glu Ser Gly Tyr Ala Gly Leu Ser Asp Ile Ala Arg Tyr Tyr 290 Ile Gly Gly Ile Leu His His Ala Gly Ala Val Leu Ala Phe Thr Asn 315 Ala Thr Leu Asn Ser Tyr His Arg Leu Val Pro Gly Phe Glu Ala Pro Ile Asn Leu Val Tyr Ser Gln Arg Asn Arg Ser Ala Ala Val Arg Ile

350 340 345 Pro Ile Thr Gly Ser Asn Pro Lys Ala Lys Arg Ile Glu Phe Arg Ala 360 Pro Asp Pro Ser Gly Asn Pro Tyr Leu Gly Phe Ala Ala Met Met Met 370 Ala Gly Leu Asp Gly Ile Lys Asn Arg Ile Glu Pro His Ala Pro Val 390 395 Asp Lys Asp Leu Tyr Glu Leu Pro Pro Glu Glu Ala Ala Ser Ile Pro 410 405 Gln Ala Pro Thr Ser Leu Glu Ala Ser Leu Lys Ala Leu Gln Glu Asp 420 425 Thr Asp Phe Leu Thr Glu Ser Asp Val Phe Thr Glu Asp Leu Ile Glu 440 Ala Tyr Ile Gln Tyr Lys Tyr Asp Asn Glu Ile Ser Pro Val Arg Leu 450 Arg Pro Thr Pro Gln Glu Phe Glu Leu Tyr Phe Asp Cys 465 470 <210> 99 <211> 3258 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(3235) <223> RXA00324 <400> 99 tccgtgggag ctccgaaaca atcttgatta ctagactttt gcactccaat ggaaacccta 60 eggegaceca attgegacec gatgaaggag gggagaaget atg tea gga eeg tta 115 Met Ser Gly Pro Leu aga agt gaa cgt aaa gtc gtt ggc ttt gtc aga gac cca ctg cca aaa 163 Arg Ser Glu Arg Lys Val Val Gly Phe Val Arg Asp Pro Leu Pro Lys 10 gtt ggt tct tta tcg ctg aaa tct gag cat gcc caa gca gat cta gag 211 Val Gly Ser Leu Ser Leu Lys Ser Glu His Ala Gln Ala Asp Leu Glu 259 cat ttg ggt tgg cgc aat gtt gag tct ttg gat ttg ttg tgg ggc ttg His Leu Gly Trp Arg Asn Val Glu Ser Leu Asp Leu Leu Trp Gly Leu 307 tea ggt gea ggc gat ecc gat gtc geg etg aac ett ett att egg etg Ser Gly Ala Gly Asp Pro Asp Val Ala Leu Asn Leu Leu Ile Arg Leu 55

tat cag gca ctt gaa gca atc ggc gag gat gct cga aac gag ctt gat

355

Tyr 70		Ala	Leu	Glu	Ala 75	Ile	Gly	Glu	Asp	Ala 80	Arg	Asn	Glu	Leu	Asp 85	
											cgc Arg					403
											gtc Val					451
											agg Arg					499
											gct Ala 145					547
											gac Asp					595
											gaa Glu					643
											att Ile				-	691
											aaa Lys					739
-	_		-		-		_	_		_	gac Asp 225		_	_	-	787
											aat Asn					835
								Val			atg Met					883
											gtg Val					931
											gca Ala					979
atc 1027		agc	aac	tcg	ttc	ttt	gag	gtg	gat	gca	gca	ctt	cgc	cca	gaa	
		Ser	Asn	Ser		Phe 300	Glu	Val	Asp	Ala	Ala 305	Leu	Arg	Pro	Glu	

ggt aaa agt ggc gct ctt gtg cgc tct ttg gat tcc cat atg gcg tat 1075 Gly Lys Ser Gly Ala Leu Val Arg Ser Leu Asp Ser His Met Ala Tyr 310 tac aag cgc tgg gcg gaa acc tgg gag ttt cag gca ctg ctg aaa gct 1123 Tyr Lys Arg Trp Ala Glu Thr Trp Glu Phe Gln Ala Leu Leu Lys Ala cgt ccc atg acg ggt gat att aac ctt ggg cag tcc tat gtg gat gct 1171 Arg Pro Met Thr Gly Asp Ile Asn Leu Gly Gln Ser Tyr Val Asp Ala 350 345 ctt tca ccg ttg att tgg acg gct agc cag cgg gaa tca ttt gtc aca Leu Ser Pro Leu Ile Trp Thr Ala Ser Gln Arg Glu Ser Phe Val Thr 360 gat gtc caa gct atg cgc cgt cga gtg ttg gac aat gtt ccg gaa gac Asp Val Gln Ala Met Arg Arg Arg Val Leu Asp Asn Val Pro Glu Asp 375 380 ttg cgt gat cgt gag ctg aag ctt ggt cgc ggt ggt ttg agg gat gtg Leu Arg Asp Arg Glu Leu Lys Leu Gly Arg Gly Gly Leu Arg Asp Val 395 390 gag ttt gct gtc cag ctc ctt cag atg gtg cat ggt cgc att gat gag 1363 Glu Phe Ala Val Gln Leu Leu Gln Met Val His Gly Arg Ile Asp Glu 410 acg ttg cgg gtt cgg tca acg gta aat gct ttg cat gtg ttg gtt gat 1411 Thr Leu Arg Val Arg Ser Thr Val Asn Ala Leu His Val Leu Val Asp 430 425 cag gga tat gtg ggt cgt gaa gac ggg cat aat ctc att gag tcg tat 1459 Gln Gly Tyr Val Gly Arg Glu Asp Gly His Asn Leu Ile Glu Ser Tyr 445 440 gag ttt ttg cgt ctg ttg gag cat cgc ctt caa ttg gag cgg atc aag Glu Phe Leu Arg Leu Leu Glu His Arg Leu Gln Leu Glu Arg Ile Lys 460 455 cgc act cac ttg tta ccg aaa cct gat gac cga atg aat atg cgc tgg 1555 Arg Thr His Leu Leu Pro Lys Pro Asp Asp Arg Met Asn Met Arg Trp 480 485 470 475 ttg gcg cgc gct tct ggg ttt act ggt tcg atg gag caa agt tcg gcc Leu Ala Arg Ala Ser Gly Phe Thr Gly Ser Met Glu Gln Ser Ser Ala 495 490

aaa gct atg gaa cgg cat ttg cgt aag gtt cgt ttg cag att cag tcg 1651

Lys Ala Met Glu Arg His Leu Arg Lys Val Arg Leu Gln Ile Gln Ser 505 510 515

ttg cat agt cag ctg ttt tat cgg cca ctg ctg aac tct gtg gtc aac 1699

Leu His Ser Gln Leu Phe Tyr Arg Pro Leu Leu Asn Ser Val Val Asn 520 525 530

ttg age geg gat gee ate agg ttg tet eeg gat get gea aag eta caa 1747

Leu Ser Ala Asp Ala Ile Arg Leu Ser Pro Asp Ala Ala Lys Leu Gln 535 540 545

ttg gcg gca ttg gga tac ctg cat cca tca cgt gct tat gaa cac ctg 1795

Leu Ala Ala Leu Gly Tyr Leu His Pro Ser Arg Ala Tyr Glu His Leu 550 565

act gct ctt gca tca gga gct agc cgt aaa gcc aag att cag gcg atg 1843

Thr Ala Leu Ala Ser Gly Ala Ser Arg Lys Ala Lys Ile Gln Ala Met 570 575 580

ttg ctg ccc acg ttg atg gag tgg ctg tct caa aca gct gaa cca gat 1891

Leu Leu Pro Thr Leu Met Glu Trp Leu Ser Gln Thr Ala Glu Pro Asp 585 590 595

gcg gga ttg ctg aat tac cgc aag ctt tct gat gct tcc tat gat cgc 1939

Ala Gly Leu Leu Asn Tyr Arg Lys Leu Ser Asp Ala Ser Tyr Asp Arg 600 605 610

age tgg ttt ttg ege atg etg egt gat gag gge gta gtg ggg eag egg 1987

Ser Trp Phe Leu Arg Met Leu Arg Asp Glu Gly Val Val Gly Gln Arg 615 620 625

ttg atg cgt att ttg gga aat tct ccc tat att tct gaa ctg att atc 2035

Leu Met Arg Ile Leu Gly Asn Ser Pro Tyr Ile Ser Glu Leu Ile Ile 630 635 640 645

tcc act ccg gac ttt atg aaa cag ctg ggt gat gcg gcg tct ggt cct 2083

Ser Thr Pro Asp Phe Met Lys Gln Leu Gly Asp Ala Ala Ser Gly Pro 650 655 660

aaa ttg ctt gct act gca ccg act cag gtt gtg aaa gca atc aag gca 2131

Lys Leu Leu Ala Thr Ala Pro Thr Gln Val Val Lys Ala Ile Lys Ala 665 670 675

acg gtg tcg cgt cat gag tca cct gat cgg gcg atc cag gct gca cga 2179

Thr Val Ser Arg His Glu Ser Pro Asp Arg Ala Ile Gln Ala Arg 680 685 690

tcg ctg agg agg cag gag ctg gca cgc att gcc tct gct gat ttg ctc 2227 Ser Leu Arg Arg Gln Glu Leu Ala Arg Ile Ala Ser Ala Asp Leu Leu aac atg ctc act gtt cag gaa gta tgc caa agc ttg tca cta gtc tgg 2275 Asn Met Leu Thr Val Gln Glu Val Cys Gln Ser Leu Ser Leu Val Trp 710 715 720 725 gat gcg gtg ttg gat gct gcc ttg gat gcg gaa atc cgt gct gca ctt Asp Ala Val Leu Asp Ala Ala Leu Asp Ala Glu Ile Arg Ala Ala Leu 730 735 aac gat cca cag aaa cca gat cag cct ctg gcc aat att tct gtg atc 2371 Asn Asp Pro Gln Lys Pro Asp Gln Pro Leu Ala Asn Ile Ser Val Ile ggc atg ggc cgt ttg ggt gga gca gaa ctt gga tac ggt tct gat gcc 2419 Gly Met Gly Arg Leu Gly Gly Ala Glu Leu Gly Tyr Gly Ser Asp Ala 760 765 gat gtg atg ttt gta tgc gag ccg gta gcc ggt gtg gaa gag cat gag 2467 Asp Val Met Phe Val Cys Glu Pro Val Ala Gly Val Glu Glu His Glu 775 780 785 gee gtc aca tgg tct att gct atc tgt gat tcc atg cgg tcg agg ctt Ala Val Thr Trp Ser Ile Ala Ile Cys Asp Ser Met Arg Ser Arg Leu 790 gcg cag cct tcc ggt gat cca cct ttg gag gtg gat ctg ggg ctg cgt 2563 Ala Gln Pro Ser Gly Asp Pro Pro Leu Glu Val Asp Leu Gly Leu Arg 810 815 820 cct gaa ggg aga tct ggt gcg att gtg cgc acc gtt gat tcc tat gtg 2611 Pro Glu Gly Arg Ser Gly Ala Ile Val Arg Thr Val Asp Ser Tyr Val 825 830 aag tac tac gaa aag tgg ggt gaa act tgg gag att cag gcg ctg ctg 2659 Lys Tyr Tyr Glu Lys Trp Gly Glu Thr Trp Glu Ile Gln Ala Leu Leu 840 845 agg gct gcg tgg gtt gct ggt gat cgt gag ctg ggt att aag ttc ttg 2707 Arg Ala Ala Trp Val Ala Gly Asp Arg Glu Leu Gly Ile Lys Phe Leu 855 865 gag tog att gat ogt tto ogc tac oca gtt gac ggg gca acg cag gcg Glu Ser Ile Asp Arg Phe Arg Tyr Pro Val Asp Gly Ala Thr Gln Ala 870 875 880 885

cag ctt cgt gaa gtt cgt cga att aag gcg agg gtg gat aat gag agg 2803

Gln Leu Arg Glu Val Arg Arg Ile Lys Ala Arg Val Asp Asn Glu Arg 890 895 900

ctt ccg cgc ggg gct gat cga aat acc cat acc aag ctg ggt cgg gga 2851

Leu Pro Arg Gly Ala Asp Arg Asn Thr His Thr Lys Leu Gly Arg Gly 905 910 915

gcg tta act gac atc gag tgg act gtg cag ttg ttg acc atg atg cat 2899

Ala Leu Thr Asp Ile Glu Trp Thr Val Gln Leu Leu Thr Met Met His 920 925 930

gct cat gag att ccg gag ctg cac aat acg tcg acg ttg gaa gtt ctt 2947

Ala His Glu Ile Pro Glu Leu His Asn Thr Ser Thr Leu Glu Val Leu 935 940 945

gaa gtg ctg gaa aag cat cag att att aac cct gtg cag gtg cag acg 2995

Glu Val Leu Glu Lys His Gln Ile Ile Asn Pro Val Gln Val Gln Thr 950 960 965

ctt cgg gaa gcg tgg ctg acg gca acg gct gct agg aat gcg ctt gtg 3043

Leu Arg Glu Ala Trp Leu Thr Ala Thr Ala Ala Arg Asn Ala Leu Val 970 975 980

ctg gtc agg ggt aag aga tta gat cag tta cct act cct ggt ccg cac 3091

Leu Val Arg Gly Lys Arg Leu Asp Gln Leu Pro Thr Pro Gly Pro*His 985 990 995

ctt gcg cag gtg gct ggt gcg tct ggt tgg gat cca aat gag tac cag 3139

Leu Ala Gln Val Ala Gly Ala Ser Gly Trp Asp Pro Asn Glu Tyr Gln
1000 1005 1010

gag tat ttg gaa aac tat ctg aaa gtg acc agg aag agt cgt cag gtt 3187

Glu Tyr Leu Glu Asn Tyr Leu Lys Val Thr Arg Lys Ser Arg Gln Val 1015 1020 1025

gtt gat gaa gtc ttc tgg ggt gtg gac tct atg gag caa cgt gag ttt 3235

Val Asp Glu Val Phe Trp Gly Val Asp Ser Met Glu Gln Arg Glu Phe 1030 1045

taggtaggtg gtgggagccc caa 3258

<210> 100

<211> 1045

<212> PRT

<213> Corynebacterium glutamicum

<400> 100

Met Ser Gly Pro Leu Arg Ser Glu Arg Lys Val Val Gly Phe Val Arg

1				5					10					15	
Asp	Pro	Leu	Pro 20	Lys	Val	Gly	Ser	Leu 25	Ser	Leu	Lys	Ser	Glu 30	His	Ala
Gln	Ala	Asp 35	Leu	Glu	His	Leu	Gly 40	Trp	Arg	Asn	Val	G1u 45	Ser	Leu	Asp
Leu	Leu 50	Trp	Gly	Leu	Ser	Gly 55	Ala	Gly	Asp	Pro	Asp 60	Val	Ala	Leu	Asn
Leu 65	Leu	Ile	Arg	Leu	Тут 70	Gln	Ala	Leu	Glu	Ala 75	Ile	Gly	Glu	Asp	Ala 80
Arg	Asn	Glu	Leu	Asp 85	Gln	Glu	Ile	Arg	Gln 90	Asp	Glu	Lys	Leu	Arg 95	Val
			100					105					110	His	
		115					120					125		Pro	
	130					135					140			Gln	
145					150					155				Ala	160
-				165					170					Gly 175	
			180					185					190	Thr	
		195					200					205		Arg	
	210		_			215					220			Leu	
225					230					235				Ile	240
				245					250					11e 255	
			260					265					270	Val	
Val	Val	Phe 275	Val	Ala	Glu	Pro	Ala 280	Asn	Ser	Lys	Ser	Thr 285	Arg	Thr	Ala
Ala	Glu 290	Leu	Ile	Arg	Ile	Gly 295	Ser	Asn	Ser	Phe	Phe 300	Glu	Val	Asp	Ala
305					310					315				Leu	320
Ser	His	Met	Ala	Tyr 325	Tyr	Lys	Arg	Trp	Ala 330	Glu	Thr	Trp	Glu	Phe 335	Gln

Ala Leu Leu Lys Ala Arg Pro Met Thr Gly Asp Ile Asn Leu Gly Gln Ser Tyr Val Asp Ala Leu Ser Pro Leu Ile Trp Thr Ala Ser Gln Arg Glu Ser Phe Val Thr Asp Val Gln Ala Met Arg Arg Arg Val Leu Asp Asn Val Pro Glu Asp Leu Arg Asp Arg Glu Leu Lys Leu Gly Arg Gly Gly Leu Arg Asp Val Glu Phe Ala Val Gln Leu Leu Gln Met Val His Gly Arg Ile Asp Glu Thr Leu Arg Val Arg Ser Thr Val Asn Ala Leu His Val Leu Val Asp Gln Gly Tyr Val Gly Arg Glu Asp Gly His Asn Leu Ile Glu Ser Tyr Glu Phe Leu Arg Leu Leu Glu His Arg Leu Gln Leu Glu Arg Ile Lys Arg Thr His Leu Leu Pro Lys Pro Asp Asp Arg Met Asn Met Arg Trp Leu Ala Arg Ala Ser Gly Phe Thr Gly Ser Met Glu Gln Ser Ser Ala Lys Ala Met Glu Arg His Leu Arg Lys Val Arg Leu Gln Ile Gln Ser Leu His Ser Gln Leu Phe Tyr Arg Pro Leu Leu Asn Ser Val Val Asn Leu Ser Ala Asp Ala Ile Arg Leu Ser Pro Asp Ala Ala Lys Leu Gln Leu Ala Ala Leu Gly Tyr Leu His Pro Ser Arg Ala Tyr Glu His Leu Thr Ala Leu Ala Ser Gly Ala Ser Arg Lys Ala Lys Ile Gln Ala Met Leu Leu Pro Thr Leu Met Glu Trp Leu Ser Gln Thr Ala Glu Pro Asp Ala Gly Leu Leu Asn Tyr Arg Lys Leu Ser Asp Ala Ser Tyr Asp Arg Ser Trp Phe Leu Arg Met Leu Arg Asp Glu Gly Val Val Gly Gln Arg Leu Met Arg Ile Leu Gly Asn Ser Pro Tyr Ile Ser Glu Leu Ile Ile Ser Thr Pro Asp Phe Met Lys Gln Leu Gly Asp

Ala Ala Ser Gly Pro Lys Leu Leu Ala Thr Ala Pro Thr Gln Val Val Lys Ala Ile Lys Ala Thr Val Ser Arg His Glu Ser Pro Asp Arg Ala 680 Ile Gln Ala Ala Arg Ser Leu Arg Arg Gln Glu Leu Ala Arg Ile Ala 695 Ser Ala Asp Leu Leu Asn Met Leu Thr Val Gln Glu Val Cys Gln Ser 715 710 Leu Ser Leu Val Trp Asp Ala Val Leu Asp Ala Ala Leu Asp Ala Glu 730 Ile Arg Ala Ala Leu Asn Asp Pro Gln Lys Pro Asp Gln Pro Leu Ala Asn Ile Ser Val Ile Gly Met Gly Arg Leu Gly Gly Ala Glu Leu Gly Tyr Gly Ser Asp Ala Asp Val Met Phe Val Cys Glu Pro Val Ala Gly Val Glu Glu His Glu Ala Val Thr Trp Ser Ile Ala Ile Cys Asp Ser 795 800 Met Arg Ser Arg Leu Ala Gln Pro Ser Gly Asp Pro Pro Leu Glu Val 810 805 Asp Leu Gly Leu Arg Pro Glu Gly Arg Ser Gly Ala Ile Val Arg Thr 825 Val Asp Ser Tyr Val Lys Tyr Tyr Glu Lys Trp Gly Glu Thr Trp Glu 840 Ile Gln Ala Leu Leu Arg Ala Ala Trp Val Ala Gly Asp Arg Glu Leu 855 Gly Ile Lys Phe Leu Glu Ser Ile Asp Arg Phe Arg Tyr Pro Val Asp 865 Gly Ala Thr Gln Ala Gln Leu Arg Glu Val Arg Arg Ile Lys Ala Arg 885 890 Val Asp Asn Glu Arg Leu Pro Arg Gly Ala Asp Arg Asn Thr His Thr 905 Lys Leu Gly Arg Gly Ala Leu Thr Asp Ile Glu Trp Thr Val Gln Leu 915 920 Leu Thr Met Met His Ala His Glu Ile Pro Glu Leu His Asn Thr Ser 935 Thr Leu Glu Val Leu Glu Val Leu Glu Lys His Gln Ile Ile Asn Pro 950 Val Gln Val Gln Thr Leu Arg Glu Ala Trp Leu Thr Ala Thr Ala Ala 970 965 Arg Asn Ala Leu Val Leu Val Arg Gly Lys Arg Leu Asp Gln Leu Pro

980 985 990

Thr Pro Gly Pro His Leu Ala Gln Val Ala Gly Ala Ser Gly Trp Asp
995 1000 1005

Pro Asn Glu Tyr Gln Glu Tyr Leu Glu Asn Tyr Leu Lys Val Thr Arg 1010 1015 1020

Lys Ser Arg Gln Val Val Asp Glu Val Phe Trp Gly Val Asp Ser Met 1025 1030 1035 1040

Glu Gln Arg Glu Phe 1045

<210> 101 <211> 861 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(861)

<400> 101

<223> RXN03176

gag ttg gcc gat tac atc ccg gaa cta aaa tct gcg gac cca aac ccg 48 Glu Leu Ala Asp Tyr Ile Pro Glu Leu Lys Ser Ala Asp Pro Asn Pro 1 5 10 15

ctg gca gta gcc ctg tgc acc gtt aac gga cac atc tac agc gca ggc 96 Leu Ala Val Ala Leu Cys Thr Val Asn Gly His Ile Tyr Ser Ala Gly 20 25 30

gat gac gac atc gaa ttc acc atg caa agt att tcc aag cca ttt gcc 144
Asp Asp Asp Ile Glu Phe Thr Met Gln Ser Ile Ser Lys Pro Phe Ala
35 40 45

tac gca ctc gca ctc caa gaa tgc ggc ttt gat gag gtc tct gca tcc 192
Tyr Ala Leu Ala Leu Gln Glu Cys Gly Phe Asp Glu Val Ser Ala Ser
50 55 60

gtg gcc ttg gag ccc tcc ggt gag gcc ttc aac gaa ctt tcc ctc gac 240
Val Ala Leu Glu Pro Ser Gly Glu Ala Phe Asn Glu Leu Ser Leu Asp
65 70 75 80

ggc gaa aac cgc ccc atg aac ccc atg atc aac gcc ggc gcg atc gcc 288 Gly Glu Asn Arg Pro Met Asn Pro Met Ile Asn Ala Gly Ala Ile Ala 85 90 95

atc aac cag ctg atc aac ggc tcc gat tcc acc gtg gaa gac cgc gtg 336

Ile Asn Gln Leu Ile Asn Gly Ser Asp Ser Thr Val Glu Asp Arg Val

100 105 110

gaa aaa atc cga cac tac ttc tct gaa ctt gct gga cgc gaa ctc acc 384
Glu Lys Ile Arg His Tyr Phe Ser Glu Leu Ala Gly Arg Glu Leu Thr
115 120 125

atc gac cgc gtg ctt gcc gaa tcc gaa ctc gcc ggc gcc gac cgc aac 432
Ile Asp Arg Val Leu Ala Glu Ser Glu Leu Ala Gly Ala Asp Arg Asn
130 135 140

ctc tcc atc Leu Ser Ile 145	gcc cac Ala His	atg ctg Met Let 150	g cgc	aat Asn	tac Tyr	ggc Gly 155	gtc Val	atc Ile	gaa Glu	gac Asp	gaa Glu 160	480
gcc cac gac Ala His Asp	gcc gtc Ala Val 165	ctc ago Leu Sei	tac Tyr	acg Thr	ctg Leu 170	caa Gln	tgc Cys	gcc Ala	atc Ile	aaa Lys 175	gta Val	528
acc acg cgc Thr Thr Arg	gac ctc Asp Leu 180	gca gto Ala Val	atg Met	acc Thr 185	gcc Ala	acg Thr	ctc Leu	gcc Ala	gcc Ala 190	ggc Gly	ggc Gly	576
aca cac cca Thr His Pro 195	att acc Ile Thr	ggc aag Gly Lys	aag Lys 200	ctt Leu	ctc Leu	gac Asp	gcc Ala	cgc Arg 205	gtc Val	tgc Cys	cgc Arg	624
ctc acc ctc Leu Thr Leu 210			Ser									672
cag tgg ctc Gln Trp Leu 225	tcc acc Ser Thr	gta ggo Val Gly 230	atc Ile	ccc Pro	gcg Ala	aaa Lys 235	tca Ser	gga Gly	gtc Val	gcc Ala	ggc Gly 240	720
gga ctc atc Gly Leu Ile	ggc att Gly Ile 245	ctg cca Leu Pro	ggt Gly	cag Gln	ctg Leu 250	ggc Gly	atc Ile	gcc Ala	aca Thr	ttt Phe 255	tcc Ser	768
cca cgc ctg Pro Arg Leu	aac ccc Asn Pro 260	aaa ggo Lys Gly	aac Asn	agc Ser 265	gtg Val	cgc Arg	ggc Gly	gta Val	aaa Lys 270	ata Ile	ttc Phe	816
aaa cag ctt Lys Gln Leu 275	tcc gac Ser Asp	gac ato Asp Met	ggc Gly 280	ctc Leu	cac His	ctc Leu	atg Met	tcc Ser 285	acc Thr	gag Glu		861
<210> 102 <211> 287 <212> PRT <213> Coryne	ebacteri	um gluta	micun	n								
<400> 102 Glu Leu Ala	Aen Tur	Tle Pro	. Glu	T.e.11	Iva	Ser	Δla	Asp	Pro	Asn	Pro	
1	5	110 110	, 014	Lou	10	502				15		
Leu Ala Val	Ala Leu 20	Cys Thi	· Val	Asn 25	Gly	His	Ile	Tyr	Ser 30	Ala	Gly	
Asp Asp Asp 35	Ile Glu	Phe Thi	Met 40	Gln	Ser	Ile	Ser	Lys 45	Pro	Phe	Ala	
Tyr Ala Leu 50	Ala Leu	Gln Glu 55		Gly	Phe	Asp	Glu 60	Va1	Ser	Ala	Ser	
Val Ala Leu 65	Glu Pro	Ser Gly	r Glu	Ala	Phe	Asn 75	Glu	Leu	Ser	Leu	Asp 80	
Gly Glu Asn	Arg Pro	Met Ası	Pro	Met	Ile 90	Asn	Ala	Gly	Ala	Ile 95	Ala	

Ile Asn Gln Leu Ile Asn Gly Ser Asp Ser Thr Val Glu Asp Arg Val 105 Glu Lys Ile Arg His Tyr Phe Ser Glu Leu Ala Gly Arg Glu Leu Thr 120 Ile Asp Arg Val Leu Ala Glu Ser Glu Leu Ala Gly Ala Asp Arg Asn 135 Leu Ser Ile Ala His Met Leu Arg Asn Tyr Gly Val Ile Glu Asp Glu 150 Ala His Asp Ala Val Leu Ser Tyr Thr Leu Gln Cys Ala Ile Lys Val 165 Thr Thr Arg Asp Leu Ala Val Met Thr Ala Thr Leu Ala Ala Gly Gly 185 Thr His Pro Ile Thr Gly Lys Lys Leu Leu Asp Ala Arg Val Cys Arg Leu Thr Leu Ser Val Met Ala Ser Ala Gly Met Tyr Asp Glu Ala Gly 215 Gln Trp Leu Ser Thr Val Gly Ile Pro Ala Lys Ser Gly Val Ala Gly 235 Gly Leu Ile Gly Ile Leu Pro Gly Gln Leu Gly Ile Ala Thr Phe Ser Pro Arg Leu Asn Pro Lys Gly Asn Ser Val Arg Gly Val Lys Ile Phe Lys Gln Leu Ser Asp Asp Met Gly Leu His Leu Met Ser Thr Glu 280 <210> 103 <211> 861 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(861) <223> FRXA02879 <400> 103 gag ttg gcc gat tac atc ccg gaa cta aaa tct gcg gac cca aac ccg 48 Glu Leu Ala Asp Tyr Ile Pro Glu Leu Lys Ser Ala Asp Pro Asn Pro 10 ctg gca gta gcc ctg tgc acc gtt aac gga cac atc tac agc gca ggc 96 Leu Ala Val Ala Leu Cys Thr Val Asn Gly His Ile Tyr Ser Ala Gly gat gac gac atc gaa ttc acc atg caa agt att tcc aag cca ttt gcc Asp Asp Asp Ile Glu Phe Thr Met Gln Ser Ile Ser Lys Pro Phe Ala 35 40 45

tac Tyr	gca Ala 50	Leu	gca Ala	cto Lev	caa Glr	gaa Glu 55	Cys	ggo Gly	tti Phe	t gat e Ası	t gag Glu 60	ı Val	tc: L Se:	t gca c Ala	a tcc a Ser	192
gtg Val 65	gcc Ala	ttg Leu	gag Glu	r ccc	tcc Ser 70	Gly	gag Glu	gco Ala	tto Phe	aac Asr 75	ı Glı	a ctt ı Lev	tco Sei	c Cto	gac Asp 80	240
Gly	gaa Glu	aac Asn	cgc Arg	Pro 85	Met	aac Asn	e ccc	atg Met	ato Ile 90	: Asr	gco Ala	ggc Gly	gcg Ala	ato 11e 95	gcc Ala	288
atc Ile	aac Asn	cag Gln	ctg Leu 100	Ile	aac Asn	ggc Gly	tcc Ser	gat Asp 105	Ser	acc Thr	gtg Val	gaa Glu	gac Asp 110	Arg	gtg Val	336
gaa Glu	aaa Lys	atc Ile 115	cga Arg	cac His	tac Tyr	ttc Phe	tct Ser 120	Glu	ctt Leu	gct Ala	gga Gly	cgc Arg 125	gaa Glu	ctc Leu	acc	384
atc Ile	gac Asp 130	cgc Arg	gtg Val	ctt Leu	gcc Ala	gaa Glu 135	tcc Ser	gaa Glu	ctc Leu	gcc Ala	ggc Gly 1 4 0	Ala	gac Asp	cgc Arg	aac Asn	432
ctc Leu 145	tcc Ser	atc Ile	gcc Ala	cac His	atg Met 150	ctg Leu	cgc Arg	aat Asn	tac Tyr	ggc Gly 155	gtc Val	atc Ile	gaa Glu	gac Asp	gaa Glu 160	480
gcc Ala	cac His	gac Asp	gcc Ala	gtc Val 165	ctc Leu	agc Ser	tac Tyr	acg Thr	ctg Leu 170	caa Gln	tgc Cys	gcc Ala	atc Ile	aaa Lys 175	gta Val	528
acc Thr	acg Thr	cgc Arg	gac Asp 180	ctc Leu	gca Ala	gtc Val	atg Met	acc Thr 185	gcc Ala	acg Thr	ctc Leu	gcc Ala	gcc Ala 190	ggc Gly	Gly	576
aca Thr	cac His	cca Pro 195	att Ile	acc Thr	ggc Gly	aag Lys	aag Lys 200	ctt Leu	ctc Leu	gac Asp	gcc Ala	cgc Arg 205	gtc Val	tgc Cys	cgc Arg	624
ctc Leu	acc Thr 210	ctc Leu	tcc Ser	gtc Val	atg Met	gct Ala 215	tca Ser	gca Ala	ggc Gly	atg Met	tac Tyr 220	gac Asp	gag Glu	gca Ala	Gly ggg	672
cag Gln 225	tgg Trp	ctc Leu	tcc Ser	acc Thr	gta Val 230	ggc Gly	atc Ile	ccc Pro	gcg Ala	aaa Lys 235	tca Ser	gga Gly	gtc Val	gcc Ala	ggc Gly 240	720
gga (Gly)	ctc Leu	atc Ile	Gly	att Ile 245	ctg Leu	cca Pro	ggt Gly	cag Gln	ctg Leu 250	ggc Gly	atc Ile	gcc Ala	aca Thr	ttt Phe 255	tcc Ser	768
cca d Pro 1	ege Arg	Leu .	aac Asn 260	ccc Pro	aaa Lys	ggc Gly	Asn	agc Ser 265	gtg Val	cgc Arg	Gly ggc	gta Val	aaa Lys 270	ata Ile	ttc Phe	816
aaa (Lys (Gln	ctt Leu : 275	tcc Ser	gac Asp	gac Asp	Met	ggc Gly 280	ctc Leu	cac His	ctc Leu	Met	tcc Ser 285	acc Thr	gag Glu		861

<210> 104

<211> 287

<212> PRT

<213> Corynebacterium glutamicum

<400> 104

Glu Leu Ala Asp Tyr Ile Pro Glu Leu Lys Ser Ala Asp Pro Asn Pro 1 5 10 15

Leu Ala Val Ala Leu Cys Thr Val Asn Gly His Ile Tyr Ser Ala Gly
20 25 30

Asp Asp Ile Glu Phe Thr Met Gln Ser Ile Ser Lys Pro Phe Ala 35 40 45

Tyr Ala Leu Ala Leu Gln Glu Cys Gly Phe Asp Glu Val Ser Ala Ser 50 55 60

Val Ala Leu Glu Pro Ser Gly Glu Ala Phe Asn Glu Leu Ser Leu Asp
65 70 75 80

Gly Glu Asn Arg Pro Met Asn Pro Met Ile Asn Ala Gly Ala Ile Ala 85 90 95

Ile Asn Gln Leu Ile Asn Gly Ser Asp Ser Thr Val Glu Asp Arg Val
100 105 110

Glu Lys Ile Arg His Tyr Phe Ser Glu Leu Ala Gly Arg Glu Leu Thr 115 120 125

Ile Asp Arg Val Leu Ala Glu Ser Glu Leu Ala Gly Ala Asp Arg Asn 130 135 140

Leu Ser Ile Ala His Met Leu Arg Asn Tyr Gly Val Ile Glu Asp Glu 145 150 155 160

Ala His Asp Ala Val Leu Ser Tyr Thr Leu Gln Cys Ala Ile Lys Val 165 170 175

Thr Thr Arg Asp Leu Ala Val Met Thr Ala Thr Leu Ala Ala Gly Gly
180 185 190

Thr His Pro Ile Thr Gly Lys Lys Leu Leu Asp Ala Arg Val Cys Arg 195 200 205

Leu Thr Leu Ser Val Met Ala Ser Ala Gly Met Tyr Asp Glu Ala Gly 210 215 220

Gln Trp Leu Ser Thr Val Gly Ile Pro Ala Lys Ser Gly Val Ala Gly 225 230 235 240

Gly Leu Ile Gly Ile Leu Pro Gly Gln Leu Gly Ile Ala Thr Phe Ser 245 250 255

Pro Arg Leu Asn Pro Lys Gly Asn Ser Val Arg Gly Val Lys Ile Phe 260 265 270

Lys Gln Leu Ser Asp Asp Met Gly Leu His Leu Met Ser Thr Glu 275 280 285

<21 <21	0> 1 1> 1 2> E 3> C	155 NA	iehac	teri	ijm c	, 1 1 1 + 2	mia	מזנ								
<22 <22 <22	0> 1> C 2> (DS	(1	.132)		jiuce		411								
	0> 1 cacg		ttgg	tgtc	cg t	catg	gtga	ıt ga	ttct	gtct	gtc	gttt	ctg	tgtt	ggcttt	60
gtg	ggtc	ggc	atco	gccc	ecc g	tttg	cago	ga gt	actt	ataa		His			cga Arg 5	115
cgc Arg	ccc Pro	cct Pro	cca Pro	ctc Leu 10	Thr	acg Thr	cga Arg	gtc Val	ggc Gly 15	gct Ala	gca Ala	ttg Leu	ctg Leu	gcc Ala 20	Ala	163
acg Thr	ctg Leu	ctt Leu	gct Ala 25	Ser	tgc Cys	act Thr	cca Pro	aca Thr 30	Pro	gtg Val	gaa Glu	ccg Pro	gca Ala 35	Glu	acc Thr	211
ttg Leu	act Thr	gct Ala 40	ttg Leu	gat Asp	ccc Pro	gat Asp	gcc Ala 45	Gly	cca Pro	cca Pro	ctg Leu	cca Pro 50	ccg Pro	gat Asp	tct Ser	259
tcg Ser	att Ile 55	gaa Glu	gct Ala	ccc Pro	ggt Gly	gaa Glu 60	aaa Lys	g ag Glu	ccc Pro	att Ile	gtg Val 65	gaa Glu	gta Val	ata Ile	gag Glu	307
aat Asn 70	tgg Trp	cca Pro	ggt Gly	tct Ser	tta Leu 75	cgc Arg	ccg Pro	gat Asp	gat Asp	ctg Leu 80	acc Thr	cct Pro	gag Glu	gag Glu	cgg Arg 85	355
										att Ile						403
tcg Ser	caa Gln	aac Asn	ttg Leu 105	ctc Leu	agt Ser	ttc Phe	cgt Arg	gat Asp 110	ccg Pro	gtg Val	act Thr	ggt Gly	gag Glu 115	ctg Leu	cgc Arg	451
ggt Gly	ttt Phe	gaa Glu 120	gtg Val	gaa Glu	tta Leu	gcg Ala	agg Arg 125	gaa Glu	att Ile	tcc Ser	cgc Arg	gac Asp 130	att Ile	ttc Phe	ggt Gly	499
gac Asp	ccc Pro 135	aat Asn	aag Lys	gtg Val	gat Asp	ttc Phe 140	cga Arg	ttc Phe	gtc Val	ggc Gly	tcg Ser 145	tcc Ser	gac Asp	cgt Arg	ctg Leu	547
cgt Arg 150	tcc Ser	ctt Leu	gac Asp	caa Gln	ggt Gly 155	gat Asp	gta Val	gat Asp	att Ile	gtg Val 160	att Ile	cgt Arg	tcc Ser	gtc Val	acg Thr 165	595
atc Ile	acc Thr	gac Asp	gaa Glu	cgc Arg 170	gcc Ala	aaa Lys	ttg Leu	gtg Val	gaa Glu 175	ttt Phe	tcc Ser	aca Thr	ccg Pro	tac Tyr 180	ctg Leu	643

cgc Arg	acc Thr	caa Gln	acc Thr 185	Arg	atg Met	ttg Leu	acc Thr	atg Met 190	Glu	tct Ser	tca Ser	gga Gly	atc Ile 195	Thr	tcc Ser	691
atc Ile	gca Ala	gat Asp 200	Leu	ccc Pro	Gly	cac His	acc Thr 205	att Ile	tgt Cys	gtc Val	acc Thr	gat Asp 210	GJA	tcc Ser	act Thr	739
tca Ser	ttg Leu 215	cag Gln	cga Arg	gcc Ala	cgc Arg	acc Thr 220	att Ile	gcg Ala	ccg Pro	gag Glu	gcc Ala 225	tca Ser	atc Ile	tta Leu	aaa Lys	787
act Thr 230	cgc Arg	aat Asn	tgg Trp	tcc Ser	gat Asp 235	tgt Cys	ctc Leu	atg Met	gcg Ala	ttg Leu 240	cag Gln	cag Gln	cat His	cag Gln	gct Ala 245	835
cag Gln	gtc Val	att Ile	ttg Leu	ggc Gly 250	gat Asp	gat Asp	gtc Val	att Ile	ttg Leu 255	tcc Ser	ggc Gly	atc Ile	gca Ala	gca Ala 260	cag Gln	883
gat Asp	ccc Pro	tac Tyr	acc Thr 265	gag Glu	att Ile	ctt Leu	gat Asp	acc Thr 270	tcc Ser	ctc Leu	gat Asp	tcc Ser	cat His 275	tcc Ser	tat Tyr	931
gga Gly	gtg Val	gca Ala 280	gcg Ala	gca Ala	tcg Ser	acc Thr	act Thr 285	gct Ala	gaa Glu	aca Thr	gac Asp	tct Ser 290	tcg Ser	ggg ggg	ttg Leu	979
att 1027		cag	gta	aac	tac	aca	att	gaa	cgg	atc	cgc	aca	gac	cgc	atg	
Ile		Gln	Val	Asn	Tyr	Thr 300	Ile	Glu	Arg	Ile	Arg 305	Thr	Asp	Arg	Met	
tgg 1075		aca	atg	ttc	gac	gat	tgg	ttc	gga	cct	tat	ctc	tgg	tcc	tac	
		Thr	Met	Phe	Asp 315	Asp	Trp	Phe	Gly	Pro 320	Tyr	Leu	Trp	Ser	Tyr 325	
ggt 1123	cca	cca	cag	ctg	cag	tac	atg	cca	gag	gaa	gaa	ggg	aca	gaa	aac	
		Pro		Leu 330	Gln	Tyr	Met		G1u 335	Glu	Glu	Gly		Glu 340	Asn	
gat 1155		gga	taat	gaag	rat t	tcga	tcca	g at	t							
Asp		Gly														
<210:	> 10	6														
<211:	> 34	4														
<212			_													
<213	> Co	ryne	bact	eriu	m gl	utam	icum									

Glu Pro Ala Glu Thr Leu Thr Ala Leu Asp Pro Asp Ala Gly Pro Pro Leu Pro Pro Asp Ser Ser Ile Glu Ala Pro Gly Glu Lys Glu Pro Ile Val Glu Val Ile Glu Asn Trp Pro Gly Ser Leu Arg Pro Asp Asp Leu Thr Pro Glu Glu Arg Val Pro Gly Ile Val Asn Arg Gly Arg Ile Ile Val Gly Val Asp Gln Ser Gln Asn Leu Leu Ser Phe Arg Asp Pro Val Thr Gly Glu Leu Arg Gly Phe Glu Val Glu Leu Ala Arg Glu Ile Ser 120 Arg Asp Ile Phe Gly Asp Pro Asn Lys Val Asp Phe Arg Phe Val Gly 130 Ser Ser Asp Arg Leu Arg Ser Leu Asp Gln Gly Asp Val Asp Ile Val 150 Ile Arg Ser Val Thr Ile Thr Asp Glu Arg Ala Lys Leu Val Glu Phe 165 170 Ser Thr Pro Tyr Leu Arg Thr Gln Thr Arg Met Leu Thr Met Glu Ser 185 Ser Gly Ile Thr Ser Ile Ala Asp Leu Pro Gly His Thr Ile Cys Val Thr Asp Gly Ser Thr Ser Leu Gln Arg Ala Arg Thr Ile Ala Pro Glu 210 215 Ala Ser Ile Leu Lys Thr Arg Asn Trp Ser Asp Cys Leu Met Ala Leu 230 Gln Gln His Gln Ala Gln Val Ile Leu Gly Asp Asp Val Ile Leu Ser 250 Gly Ile Ala Ala Gln Asp Pro Tyr Thr Glu Ile Leu Asp Thr Ser Leu Asp Ser His Ser Tyr Gly Val Ala Ala Ala Ser Thr Thr Ala Glu Thr Asp Ser Ser Gly Leu Ile Arg Gln Val Asn Tyr Thr Ile Glu Arg Ile Arg Thr Asp Arg Met Trp Trp Thr Met Phe Asp Asp Trp Phe Gly Pro 310 315 Tyr Leu Trp Ser Tyr Gly Pro Pro Gln Leu Gln Tyr Met Pro Glu Glu 325 330 Glu Gly Thr Glu Asn Asp Glu Gly

340

<2: <2:	10> 1 11> 1 12> 1 13> (1035 DNA	nebad	cter:	ium (gluta	mici	am.								·
<22 <22	20> 21> (22> (23> 1	(101)		L012)	•											
	00> 1 attgo		atgg	gcagg	gta g	gtatt	ttgc	c ca	ıtgat	tgag	, agt	ttca	ıccc	gatt	gcgaal	= 60
tto	gcag	jaca	ccg	ectet	ga a	acgg	ctac	t go	atag	gcact		Arg			aaa Lys 5	115
ato Ile	e ccc	aag Lys	g cgc Arg	gct Ala 10	ı Val	gcg Ala	gcg Ala	acc Thr	gto Val	. Gly	ato Ile	gtg Val	gca Ala	acc Thr 20	tca Ser	163
ttc Phe	acc Thr	ttg Lev	gct Ala 25	Ser	tgt Cys	gtc Val	acc Thr	aat Asn 30	Glu	gag Glu	cag Gln	ggc	aac Asn 35	Pro	gat Asp	211
ggc	tgg Trp	gag Glu 40	Gln	atc Ile	gtt Val	cca Pro	gat Asp 45	Pro	gta Val	ccg Pro	gag Glu	att Ile 50	cag Gln	gcg Ala	atg Met	259
gtt Val	Pro 55	Glu	gct Ala	ctg Leu	gct Ala	cag Gln 60	cgc Arg	ggt Gly	gtg Val	ctc Leu	acc Thr 65	gcc Ala	ggt Gly	gcc Ala	aac Asn	307
cca Pro 70	Pro	ttc Phe	cca Pro	ccg Pro	ttt Phe 75	gag Glu	ttt Phe	aaa Lys	gat Asp	tcc Ser 80	gat Asp	ggt Gly	cag Gln	att Ile	atc Ile 85	355
ggt Gly	gtg Val	gaa Glu	atg Met	gac Asp 90	Leu	Val	cgt Arg	Ala	atg Met 95	Ala	Gly	gtg Val	atg Met	ggc Gly 100	Leu	403
gag Glu	ttc Phe	agc Ser	cct Pro 105	cag Gln	gag Glu	cag Gln	gat Asp	ttc Phe 110	tcc Ser	ctc Leu	atc Ile	ctt Leu	cca Pro 115	tcg Ser	gtt Val	451
caa Gln	gct Ala	ggc Gly 120	acc Thr	ctt Leu	gat Asp	atc Ile	gga Gly 125	gcc Ala	tct Ser	ggc Gly	ttc Phe	act Thr 130	gac Asp	aac Asn	gag Glu	499
gaa Glu	cgc Arg 135	cgc Arg	gag Glu	aac Asn	ttt Phe	gat Asp 140	ttc Phe	atc Ile	gat Asp	ttc Phe	ctc Leu 145	ttc Phe	gca Ala	ggt Gly	gtg Val	547
cag Gln 150	tgg Trp	gcg Ala	cag Gln	gca Ala	act Thr 155	gat Asp	cgt Arg	gaa Glu	acc Thr	cca Pro 160	atc Ile	gat Asp	ccg Pro	gaa Glu	aac Asn 165	595
gcc Ala	tgt Cys	ggt Gly	Leu	acc Thr 170	gtt Val	gct Ala	gta Val	Gln	cgc Arg	aca Thr	acc Thr	gtg Val	Ala	gag Glu	acc Thr	643

gac gat gtc Asp Asp Val												691
ccg atc acc Pro Ile Thr 200												739
ttg atc ctg Leu Ile Leu . 215) Ala									787
gct tgg gct Ala Trp Ala 230												835
atg tac ttg Met Tyr Leu												883
ctc acc cca Leu Thr Pro												931
gat tac cag Asp Tyr Gln 280												979
gat gag gcc 1032	ctg atc	aac ga	a cag	cca	ctc	aac	taga	agcct	tc c	cagca	actaa	
Asp Glu Ala 295	Leu Ile	Asn Gli		Pro	Leu	Asn						
aaa 1035												
<210> 108 <211> 304 <212> PRT <213> Corynebacterium glutamicum												
<400> 108												
Leu Arg Phe 1	Pro Lys 5	Ile Pro	Lys	Arg	Ala 10	Val	Ala	Ala	Thr	Val 15	Gly	
Ile Val Ala	Thr Ser 20	Phe Th	Leu	Ala 25	Ser	Cys	Val	Thr	Asn 30	Glu	Glu	
Gln Gly Asn 35	Pro Asp	Gly Tr	Glu 40	Gln	Ile	Val	Pro	Asp 45	Pro	Val	Pro	
Glu Ile Gln 50	Ala Met	Val Pro		Ala	Leu	Ala	Gln 60	Arg	Gly	Val	Leu	
Thr Ala Gly 65	Ala Asn	Pro Pro 70) Phe	Pro	Pro	Phe 75	Glu	Phe	Lys	Asp	Ser 80	
Asp Gly Gln	Ile Ile 85	Gly Va	Glu	Met	Asp 90	Leu	Val	Arg	Ala	Met 95	Ala	

Gly Val Met Gly Leu Glu Phe Ser Pro Gln Glu Gln Asp Phe Ser Leu 105 Ile Leu Pro Ser Val Gln Ala Gly Thr Leu Asp Ile Gly Ala Ser Gly 120 Phe Thr Asp Asn Glu Glu Arg Arg Glu Asn Phe Asp Phe Ile Asp Phe 135 Leu Phe Ala Gly Val Gln Trp Ala Gln Ala Thr Asp Arg Glu Thr Pro 155 Ile Asp Pro Glu Asn Ala Cys Gly Leu Thr Val Ala Val Gln Arg Thr 170 165 Thr Val Ala Glu Thr Asp Asp Val Arg Pro Arg Ser Ala Gln Cys Glu 185 Ala Glu Gly Lys Glu Pro Ile Thr Ile Leu Ser Tyr Glu Thr Ala Asp 200 Thr Ala Ala Thr Ala Leu Ile Leu Gly Arg Ala Asp Ala Leu Ala Ala 210 215 Asp Ser Pro Val Ser Ala Trp Ala Ala Glu Arg Ser Glu Gly Arg Ile 235 Glu Val Val Gly Asp Met Tyr Leu Ala Ala Pro Phe Gly Phe Ala Phe 245 Pro Leu Glu Ser Asp Leu Thr Pro Ala Ala Ala Ala Ala Phe Gln His 260 265

Leu Ile Asp Thr Gly Asp Tyr Gln Arg Ile Met Ala Gln Trp Gly Ile 275 280 285

Glu Glu Gly Leu Leu Asp Glu Ala Leu Ile Asn Glu Gln Pro Leu Asn 290 295 300

<210> 109
<211> 1962
<212> DNA
<213> Corynebacterium glutamicum
<220>
<221> CDS
<222> (101)..(1939)
<223> RXA02139

<400> 109
tcaggaggat ttttcaatca tgtgcggcct tcttggcata ttgactgcaa atgggaacgc 60

tgaagcattc gttcctgcac tcgagcgggc cttgccatgc atg cgc cac cgt ggt

Met Arg His Arg Gly

1 5

cct gac gat gcc ggc act tgg cat gac gcc gat gca gcg ttt gga ttc 163

Pro	Asp	qaA	Ala	Gly 10		Trp	His	Asp	Ala 15		Ala	Ala	Phe	Gly 20		
									His			caa Gln				211
												act Thr 50				259
												tcg Ser				307
												gtt Val				355
												gga Gly				403
												ctt Leu				451
												gag Glu 130				499
_					-				-			gcc Ala			_	547
												cac His				595
												cag Gln				643
												ggc Gly				691
												aag Lys 210				739
					Leu							gtg Val				787
agc Ser 230	gtc Val	gaa Glu	aag Lys	cat His	atg Met 235	cgt Arg	gcc Ala	gac Asp	Val	acc Thr 240	gta Val	ggc Gly	tcg Ser	ttc Phe	ctt Leu 245	835
												gca Ala				883

25	50	255	260
	eu Thr Phe Thr	acc ggt ttc gag cgt g Thr Gly Phe Glu Arg (270	
		tcc gcc gct gcg att g Ser Ala Ala Ala Ile G 290	
cac atc gtg aag at	t gtc tcg cct	gag gaa tac gcc aac g	gcg att cct
	e Val Ser Pro (300	Glu Glu Tyr Ala Asn A 305	Ala Ile Pro
aag atc atg tgg ta 1075	c ttg gat gat	cct gta gct gac cca t	ca ttg gtc
Lys Ile Met Trp Ty 310	r Leu Asp Asp 3 315	Pro Val Ala Asp Pro S 320	Ser Leu Val 325
ccg ctg tac ttc gt	g gca gcg gaa g	gca cgt aag cac gtc a	ag gtt gtg
Pro Leu Tyr Phe Va		Ala Arg Lys His Val I 335	ys Val Val 340
ctg tct ggc gag gg	gc gca gat gag	ctg ttc ggt gga tac a	acc att tac
Leu Ser Gly Glu Gl 345		Leu Phe Gly Gly Tyr T 350 3	Thr Ile Tyr 155
1219		ttt gag aag atc cct t	
Lys Glu Pro Leu Se 360	er Leu Ala Pro 1 365	Phe Glu Lys Ile Pro S 370	er Pro Leu
1267		aag gtt ctg cca gac g	
Arg Lys Gly Leu Gl 375	y Lys Leu Ser 1 380	Lys Val Leu Pro Asp G 385	ly Met Lys
ggc aag tcc ctt ct 1315	t gag cgt ggc	tcc atg acc atg gaa g	ag cgc tac
Gly Lys Ser Leu Le 390	u Glu Arg Gly 9 395	Ser Met Thr Met Glu G 400	lu Arg Tyr 405
1363		ttc gag cag atg caa c	
Tyr Gly Asn Ala Ar 41		Phe Glu Gln Met Gln A 415	arg Val Ile 420
cca tgg gca aag cg 1411	c gaa tgg gac o	cac cgc gaa gtc act g	rcg ccg atc
Pro Trp Ala Lys Ar 425		His Arg Glu Val Thr A 430 4	la Pro Ile 35
tac gca cag tcc cg 1459	c aac ttt gat o	cca gta gcc cgc atg c	aa cac ctg
Tyr Ala Gln Ser Ar 440	g Asn Phe Asp 1 445	Pro Val Ala Arg Met G 450	In His Leu

gat ctg ttc acc tgg atg cgc ggc gac atc ctg gtc aag gct gac aag 1507 Asp Leu Phe Thr Trp Met Arg Gly Asp Ile Leu Val Lys Ala Asp Lys atc aac atg gcg aac tcc ctt gag ctg cga gtt cca ttc ttg gat aaq Ile Asn Met Ala Asn Ser Leu Glu Leu Arg Val Pro Phe Leu Asp Lys 470 475 480 485 gaa gtt ttc aag gtt gca gag acc att cct tac gac ctg aag att gcc 1603 Glu Val Phe Lys Val Ala Glu Thr Ile Pro Tyr Asp Leu Lys Ile Ala 490 495 aac ggt acc acc aag tac gcg ctg cgc agg gca ctc gag cag att gtt 1651 Asn Gly Thr Thr Lys Tyr Ala Leu Arg Arg Ala Leu Glu Gln Ile Val 505 ccg cct cac gtt ttg cac cgc aag aag ctg ggc ttc cct gtt ccc atg 1699 Pro Pro His Val Leu His Arg Lys Leu Gly Phe Pro Val Pro Met 520 525 530 cgc cac tgg ctt gcc ggc gat gag ctg ttc ggt tgg gcg cag gac acc 1747 Arg His Trp Leu Ala Gly Asp Glu Leu Phe Gly Trp Ala Gln Asp Thr 540 atc aag gaa too ggt act gaa gat atc tto aac aag cag got gtg otg Ile Lys Glu Ser Gly Thr Glu Asp Ile Phe Asn Lys Gln Ala Val Leu 555 560 gat atg ctg aac gag cac cgc gat ggc gtg tca gat cat tcc cgt cga 1843 Asp Met Leu Asn Glu His Arg Asp Gly Val Ser Asp His Ser Arg Arg 570 575 580 ctg tgg act gtt ctg tca ttt atg gtg tgg cac ggc att ttt gtg gaa 1891 Leu Trp Thr Val Leu Ser Phe Met Val Trp His Gly Ile Phe Val Glu 585 590 aac ege att gat eea cag att gag gac ege tee tae eea gte gag ett 1939 Asn Arg Ile Asp Pro Gln Ile Glu Asp Arg Ser Tyr Pro Val Glu Leu 600 610

taagtettaa ageetaaace eee 1962

<210> 110 <211> 613 <212> PRT

<213> Corynebacterium glutamicum

<400> 110
Met Arg His Arg Gly Pro Asp Asp Ala Gly Thr Trp His Asp Ala Asp

1				5					10					15	
Ala	Ala	Phe	Gly 20	Phe	Asn	Arg	Leu	Ser 25	Ile	Ile	Asp	Ile	Ala 30	His	Ser
His	Gln	Pro 35	Leu	Arg	Trp	Gly	Pro 40	Ala	Asp	Glu	Pro	Asp 45	Arg	Туг	Ala
Met	Thr 50	Phe	Asn	Gly	Glu	Ile 55	Tyr	Asn	Tyr	Val	Glu 60	Leu	Arg	ГЛЗ	Glu
Leu 65	Ser	Asp	Leu	Gly	Tyr 70	Ala	Phe	Asn	Thr	Ser 75	Gly	Asp	Gly	Glu	Pro 80
Ile	Val	Val	Gly	Phe 85	His	His	Trp	Gly	Glu 90	Ser	Val	Val	Glu	His 95	Leu
Arg	Gly	Met	Phe 100	Gly	Ile	Ala	Ile	Trp 105	Asp	Thr	Lys	Glu	Lys 110	Ser	Leu
Phe	Leu	Ala 115	Arg	Asp	Gln	Phe	Gly 120	Ile	Lys	Pro	Leu	Phe 125	Tyr	Ala	Thr
Thr	Glu 130	His	Gly	Thr	Val	Phe 135	Ser	Ser	Glu	Lys	Lys 140	Thr	Ile	Leu	Glu
Met 145	Ala	Glu	Glu	Met	Asn 150	Leu	Asp	Leu	Gly	Leu 155	Asp	Lys	Arg	Thr	11e 160
Glu	His	Tyr	Val	Asp 165	Leu	Gln	Tyr	Val	Pro 170	Glu	Pro	Asp	Thr	Leu 175	His
			180		Leu			185					190		
	_	195			Gln		200					205			
	210				Gly	215					220				
Gln 225	Val	Leu	Glu	Asp	Ser 230	Val	Glu	Lys	His	Met 235	Arg	Ala	Asp	Val	Thr 240
Val	Gly	Ser	Phe	Leu 245	Phe	Gly	Gly	Ile	Asp 250	Ser	Thr	Ala	Ile	Ala 255	Ala
Leu	Ala	Lys	Arg 260	His	Asn	Pro	Asp	Leu 265	Leu	Thr	Phe	Thr	Thr 270	Gly	Phe
Glu	Arg	Glu 275	Gly	Tyr	Ser	Gļu	Val 280	Asp	Val	Ala	Ala	Glu 285	Ser	Ala	Ala
Ala	11e 290	Gly	Ala	Glu	His	Ile 295	Val	Lys	Ile	Val	Ser 300	Pro	Glu	Glu	Tyr
Ala 305		Ala	Ile	Pro	Lys 310	Ile	Met	Trp	Tyr	Leu 315	Asp	Asp	Pro	Va1	Ala 320
Asp	Pro	Ser	Leu	Val	Pro	Leu	Tyr	Phe	Val	Ala	Ala	Glu	Ala	Arg	Lys

His Val Lys Val Val Leu Ser Gly Glu Gly Ala Asp Glu Leu Phe Gly 340 345 350

Gly Tyr Thr Ile Tyr Lys Glu Pro Leu Ser Leu Ala Pro Phe Glu Lys 355 360 365

Ile Pro Ser Pro Leu Arg Lys Gly Leu Gly Lys Leu Ser Lys Val Leu 370 375 380

Pro Asp Gly Met Lys Gly Lys Ser Leu Leu Glu Arg Gly Ser Met Thr 385 390 395

Met Glu Glu Arg Tyr Tyr Gly Asn Ala Arg Ser Phe Asn Phe Glu Gln 405 410 415

Met Gln Arg Val Ile Pro Trp Ala Lys Arg Glu Trp Asp His Arg Glu
420 425 430

Val Thr Ala Pro Ile Tyr Ala Gln Ser Arg Asn Phe Asp Pro Val Ala 435 440 445

Arg Met Gln His Leu Asp Leu Phe Thr Trp Met Arg Gly Asp Ile Leu 450 455 460

Val Lys Ala Asp Lys Ile Asn Met Ala Asn Ser Leu Glu Leu Arg Val 465 470 475 480

Pro Phe Leu Asp Lys Glu Val Phe Lys Val Ala Glu Thr Ile Pro Tyr 485. 490 495

Asp Leu Lys Ile Ala Asn Gly Thr Thr Lys Tyr Ala Leu Arg Arg Ala 500 505 510

Leu Glu Gln Ile Val Pro Pro His Val Leu His Arg Lys Lys Leu Gly 515 520 525

Phe Pro Val Pro Met Arg His Trp Leu Ala Gly Asp Glu Leu Phe Gly 530 535 540

Trp Ala Gln Asp Thr Ile Lys Glu Ser Gly Thr Glu Asp Ile Phe Asn 545 550 555 560

Lys Gln Ala Val Leu Asp Met Leu Asn Glu His Arg Asp Gly Val Ser 565 570 575

Asp His Ser Arg Arg Leu Trp Thr Val Leu Ser Phe Met Val Trp His 580 585 590

Gly Ile Phe Val Glu Asn Arg Ile Asp Pro Gln Ile Glu Asp Arg Ser 595 600 605

Tyr Pro Val Glu Leu 610

<210> 111

<211> 1284 ·

<212> DNA

<213> Corynebacterium glutamicum

<220> <221> CDS <222> (101)..(1261) <223> RXN00116 <400> 111 cgcggcacgc acgctggggg caagcgtcga caagcacaaa ctttttgctt aattgaatcc 60 tttgcgcacc aatcaatggg ggatcaaata tagtagctgc atg agt aat gac ttc Met Ser Asn Asp Phe gtc gtt tct agg ctt aga ccc ttt ggt gaa acg att ttt gca acc atg Val Val Ser Arg Leu Arg Pro Phe Gly Glu Thr Ile Phe Ala Thr Met acc cag cga gct gtt gag gcg ggt gca atc aat ctt ggt cag ggc ttt Thr Gln Arg Ala Val Glu Ala Gly Ala Ile Asn Leu Gly Gln Gly Phe 25 cct gat gag gat ggt cct cgt cgg atg tta gag atc gcg tcg gag cag 259 Pro Asp Glu Asp Gly Pro Arg Met Leu Glu Ile Ala Ser Glu Gln 40 att ctc ggg gga aat aat cag tat tcg gcg ggg cgt ggg gat gct tcg 307 Ile Leu Gly Gly Asn Asn Gln Tyr Ser Ala Gly Arg Gly Asp Ala Ser 55 ttg agg gca gct gtg gct cgt gat cat ttg gag agg ttt gat ctg gag 355 Leu Arg Ala Ala Val Ala Arg Asp His Leu Glu Arg Phe Asp Leu Glu 70 75 tac aac cct gat tcg gag gtg ttg atc acg gtg ggg gcc act gag gcg 403 Tyr Asn Pro Asp Ser Glu Val Leu Ile Thr Val Gly Ala Thr Glu Ala 90 95 att acg gcg act gtg ttg ggt ttg gtg gag cct ggg gat gaa gtg atc 451 Ile Thr Ala Thr Val Leu Gly Leu Val Glu Pro Gly Asp Glu Val Ile 110 gtt ttg gaa ccg tat tac gat gcg tat gcg gcg gct att gcg ttg gcg 499 Val Leu Glu Pro Tyr Tyr Asp Ala Tyr Ala Ala Ala Ile Ala Leu Ala 120 125 ggg gcg acg cgg gtg gcg gtt cct ttg cag gag gtg gag aac tcg tgg 547 Gly Ala Thr Arg Val Ala Val Pro Leu Gln Glu Val Glu Asn Ser Trp 135 140 gat gtg gat gtc gat aag ttg cat gcg gcg gtg act aag aag acg cgg 595 Asp Val Asp Val Asp Lys Leu His Ala Ala Val Thr Lys Lys Thr Arg 150 155 165 atg att atc gtt aat tcg ccg cat aat ccg acg ggt tcg gtg ttt tct 643 Met Ile Ile Val Asn Ser Pro His Asn Pro Thr Gly Ser Val Phe Ser 170 180 aag aag gcg ttg aag cag ttg gcg ggt gtt gct cgt gcg tat gac ttg 691 Lys Lys Ala Leu Lys Gln Leu Ala Gly Val Ala Arg Ala Tyr Asp Leu 185 190 ttg gtg ttg tca gat gag gtg tat gag cat ctt gtt ttt gat gat cag 739

Leu Val Leu Ser Asp Glu Val Tyr Glu His Leu Val Phe Asp Asp Gln 200 205 aag cat gtg agt gtc gcg aag ctg ccc ggt atg tgg gat cgc acg gtg 787 Lys His Val Ser Val Ala Lys Leu Pro Gly Met Trp Asp Arg Thr Val 215 220 acg gtg tcg tcg gcg gcg aaa acg ttc aat gtg act ggt tgg aag acg 835 Thr Val Ser Ser Ala Ala Lys Thr Phe Asn Val Thr Gly Trp Lys Thr 235 ggg tgg gcg ttg gca ccg gag ccg ttg ttg gag gcg gtg ttg aag gcg 883 Gly Trp Ala Leu Ala Pro Glu Pro Leu Leu Glu Ala Val Leu Lys Ala 250 255 aag cag ttt atg tct tat gtg ggg gct aca cct ttt cag ccg gct gtg 931 Lys Gln Phe Met Ser Tyr Val Gly Ala Thr Pro Phe Gln Pro Ala Val 265 270 gcg cat gcg att gaa cat gag cag aag tgg gtg tca aag atg tct aag 979 Ala His Ala Ile Glu His Glu Gln Lys Trp Val Ser Lys Met Ser Lys 280 285 ggg ctt gag ctc aag cgg gat att ttg cgt act gcg tta gat aag gcg Gly Leu Glu Leu Lys Arg Asp Ile Leu Arg Thr Ala Leu Asp Lys Ala 300 305 ggg ctg aag act cat gac agt atg ggc acg tat ttc atc gtt gcg gat 1075 Gly Leu Lys Thr His Asp Ser Met Gly Thr Tyr Phe Ile Val Ala Asp 310 att ggg gat cgt gat ggt gcg gag ttc tgt ttt gag ttg att gag aag 1123 Ile Gly Asp Arg Asp Gly Ala Glu Phe Cys Phe Glu Leu Ile Glu Lys 330 340 gtt ggg gtg gcg gcg att ccg gtg cag gcg ttt gtg gat cat ccg aag 1171 Val Gly Val Ala Ala Ile Pro Val Gln Ala Phe Val Asp His Pro Lys 345 350 355 aag tgg tcg tcg aag gtt cgt ttt gcg ttt tgc aaa aaa gaa gag acg 1219 Lys Trp Ser Ser Lys Val Arg Phe Ala Phe Cys Lys Lys Glu Glu Thr 360 365 370 ctc cgc gaa gct gcg gag cgt ctc aag ggg att aag aaa cta Leu Arg Glu Ala Ala Glu Arg Leu Lys Gly Ile Lys Lys Leu 375 380 385

tagtttgaac aggttgttgg ggg 1284

<210> 112 <211> 387

<212> PRT

<213> Corynebacterium glutamicum

<400> 112

Met Ser Asn Asp Phe Val Val Ser Arg Leu Arg Pro Phe Gly Glu Thr
1 5 10 15

Ile Phe Ala Thr Met Thr Gln Arg Ala Val Glu Ala Gly Ala Ile Asn
20 25 30

Leu Gly Gln Gly Phe Pro Asp Glu Asp Gly Pro Arg Arg Met Leu Glu 35 40 45

Ile Ala Ser Glu Gln Ile Leu Gly Gly Asn Asn Gln Tyr Ser Ala Gly 50 55 60

Arg Gly Asp Ala Ser Leu Arg Ala Ala Val Ala Arg Asp His Leu Glu 65 70 75 80

Arg Phe Asp Leu Glu Tyr Asn Pro Asp Ser Glu Val Leu Ile Thr Val 85 90 95

Gly Ala Thr Glu Ala Ile Thr Ala Thr Val Leu Gly Leu Val Glu Pro 100 105 110

Gly Asp Glu Val Ile Val Leu Glu Pro Tyr Tyr Asp Ala Tyr Ala Ala 115 120 125

Ala Ile Ala Leu Ala Gly Ala Thr Arg Val Ala Val Pro Leu Gln Glu 130 135 140

Val Glu Asn Ser Trp Asp Val Asp Val Asp Lys Leu His Ala Ala Val
145 150 155 160

Thr Lys Lys Thr Arg Met Ile Ile Val Asn Ser Pro His Asn Pro Thr 165 170 175

Gly Ser Val Phe Ser Lys Lys Ala Leu Lys Gln Leu Ala Gly Val Ala 180 185 190

Arg Ala Tyr Asp Leu Leu Val Leu Ser Asp Glu Val Tyr Glu His Leu 195 200 205

Val Phe Asp Asp Gln Lys His Val Ser Val Ala Lys Leu Pro Gly Met 210 215 220

Trp Asp Arg Thr Val Thr Val Ser Ser Ala Ala Lys Thr Phe Asn Val 225 230 235 240

Thr Gly Trp Lys Thr Gly Trp Ala Leu Ala Pro Glu Pro Leu Leu Glu 245 250 255

Ala Val Leu Lys Ala Lys Gln Phe Met Ser Tyr Val Gly Ala Thr Pro 260 265 270

Phe Gln Pro Ala Val Ala His Ala Ile Glu His Glu Gln Lys Trp Val 275 280 285

Ser Lys Met Ser Lys Gly Leu Glu Leu Lys Arg Asp Ile Leu Arg Thr 290 295 300

Ala Leu Asp Lys Ala Gly Leu Lys Thr His Asp Ser Met Gly Thr Tyr 305 310 315 320

Phe Ile Val Ala Asp Ile Gly Asp Arg Asp Gly Ala Glu Phe Cys Phe 330 Glu Leu Ile Glu Lys Val Gly Val Ala Ala Ile Pro Val Gln Ala Phe 345 Val Asp His Pro Lys Lys Trp Ser Ser Lys Val Arg Phe Ala Phe Cys 360 365 Lys Lys Glu Glu Thr Leu Arg Glu Ala Ala Glu Arg Leu Lys Gly Ile 375 Lys Lys Leu 385 <210> 113 <211> 607 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(607) <223> FRXA00116 <400> 113 tttgcgcacc aatcaatggg ggatcaaata tagtagctgc atgagtaatg acttcgtcgt 60 ttctaggctt agaccctttg gtgaaacgat ttttgcaacc atg acc cag cga gct Met Thr Gln Arg Ala 1 gtt gag gcg ggt gca atc aat ctt ggt cag ggc ttt cct gat gag gat 163 Val Glu Ala Gly Ala Ile Asn Leu Gly Gln Gly Phe Pro Asp Glu Asp 10 ggt cct cgt cgg atg tta gag atc gcg tcg gag cag att ctc ggg gga 211 Gly Pro Arg Arg Met Leu Glu Ile Ala Ser Glu Gln Ile Leu Gly Gly 25 aat aat cag tat tcg gcg ggg cgt ggg gat gct tcg ttg agg gca gct 259 Asn Asn Gln Tyr Ser Ala Gly Arg Gly Asp Ala Ser Leu Arg Ala Ala 40 45 gtg gct cgt gat cat ttg gag agg ttt gat ctg gag tac aac cct gat 307 Val Ala Arg Asp His Leu Glu Arg Phe Asp Leu Glu Tyr Asn Pro Asp 60 tcg gag gtg ttg atc acg gtg ggg gcc act gag gcg att acg gcg act 355 Ser Glu Val Leu Ile Thr Val Gly Ala Thr Glu Ala Ile Thr Ala Thr 75 gtg ttg ggt ttg gtg gag cct ggg gat gaa gtg atc gtt ttg gaa ccg 403 Val Leu Gly Leu Val Glu Pro Gly Asp Glu Val Ile Val Leu Glu Pro 90 95 100 tat tac gat gcg tat gcg gcg gct att gcg ttg gcg gcg gcg acg cgg Tyr Tyr Asp Ala Tyr Ala Ala Ala Ile Ala Leu Ala Gly Ala Thr Arg 105

110

						gat Asp 130		499
						atg Met		547
						aag Lys		595
_	 ttg Leu							607

<210> 114

<211> 169

<212> PRT

<213> Corynebacterium glutamicum

<400> 114

Met Thr Gln Arg Ala Val Glu Ala Gly Ala Ile Asn Leu Gly Gln Gly
1 5 10 15

Phe Pro Asp Glu Asp Gly Pro Arg Arg Met Leu Glu Ile Ala Ser Glu 20 25 30

Gln Ile Leu Gly Gly Asn Asn Gln Tyr Ser Ala Gly Arg Gly Asp Ala
35 40 45

Ser Leu Arg Ala Ala Val Ala Arg Asp His Leu Glu Arg Phe Asp Leu 50 55 60

Glu Tyr Asn Pro Asp Ser Glu Val Leu Ile Thr Val Gly Ala Thr Glu 65 70 75 80

Ala Ile Thr Ala Thr Val Leu Gly Leu Val Glu Pro Gly Asp Glu Val 85 90 95

Ile Val Leu Glu Pro Tyr Tyr Asp Ala Tyr Ala Ala Ala Ile Ala Leu 100 105 110

Ala Gly Ala Thr Arg Val Ala Val Pro Leu Gln Glu Val Glu Asn Ser 115 120 125

Trp Asp Val Asp Val Asp Lys Leu His Ala Ala Val Thr Lys Lys Thr 130 135 140

Arg Met Ile Ile Val Asn Ser Pro His Asn Pro Thr Gly Ser Val Phe 145 150 155 160

Ser Lys Lys Ala Leu Lys Gln Leu Ala 165

<210> 115 <211> 1230 <212> DNA

<213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1207) <223> RXN00618 <400> 115 gctgcattag agggtcgtat ctcgatctaa aagcagtacg cagataggct tgtctcttat 60 gaagccaagc actagaagca atgttcagcc gtttcgcgtc atg cag atg ttg gac 115 Met Gln Met Leu Asp 1 cga gtc cac cgt cgc agg cgc gaa ggc aaa gac acc tta atg ttc tgc 163 Arg Val His Arg Arg Arg Glu Gly Lys Asp Thr Leu Met Phe Cys 10 gct ggc cag ccg tca act ggt gcg cca gaa gca gtc atc gaa gaa gca 211 Ala Gly Gln Pro Ser Thr Gly Ala Pro Glu Ala Val Ile Glu Glu Ala 30 gag atc gct ctt cgc tcg ggt cct ttg gga tac acc gag gtg att ggt 259 Glu Ile Ala Leu Arg Ser Gly Pro Leu Gly Tyr Thr Glu Val Ile Gly 45 gat cgt gag ttc cgt gaa cgc atc gcc gat tgg cac tct gct act tat 307 Asp Arg Glu Phe Arg Glu Arg Ile Ala Asp Trp His Ser Ala Thr Tyr 60 gac gta gac acc aac cct gac aat gtt att gtc acc acc ggt tct tca 355 Asp Val Asp Thr Asn Pro Asp Asn Val Ile Val Thr Thr Gly Ser Ser 75 80 ggt gga ttc gtg gca tcg ttt atc gcc acc ttg gat cac ggg gat tat 403 Gly Gly Phe Val Ala Ser Phe Ile Ala Thr Leu Asp His Gly Asp Tyr 90 95 gtg gca atg cct acc ccg ggg tac ccg gca tat cgc aat att ctg gaa 451 Val Ala Met Pro Thr Pro Gly Tyr Pro Ala Tyr Arg Asn Ile Leu Glu 105 tct ttg ggg gcg aag gtt ctg aac ctg cgc tgt act gca gag act cgt 499 Ser Leu Gly Ala Lys Val Leu Asn Leu Arg Cys Thr Ala Glu Thr Arg 120 125 ttc cag cca acc gct caa atg ttg gag gaa ctg cca cac aag ccg aag 547 Phe Gln Pro Thr Ala Gln Met Leu Glu Glu Leu Pro His Lys Pro Lys 135 140 gct gtt att gtc acc agc cca gga aac cca acg ggc acc atc att gat 595 Ala Val Ile Val Thr Ser Pro Gly Asn Pro Thr Gly Thr Ile Ile Asp ccg gaa gag cta gag cgc atc gcc aag tgg tgc gat gac aat gat gct Pro Glu Glu Leu Glu Arg Ile Ala Lys Trp Cys Asp Asp Asn Asp Ala 170 175 gtt ctt atc tct gat gag gac tac cac ggc atg agc ttt ggt cgt ccg 691 Val Leu Ile Ser Asp Glu Asp Tyr His Gly Met Ser Phe Gly Arg Pro 185 190 195

ctg Leu	gca Ala	a act a Thi 200	c Ala	cat His	cag Glr	ttt Phe	Ser 205	Lys	g aad S Asi	c gco n Ala	ato lle	gtg Val 210	. Val	ggt Gly	acc Thr	739
ttg Leu	Ser 215	: Lys	g tac 3 Tyr	ttc Phe	tcc Ser	atg Met 220	Thr	ggt Gly	tgg Tr	g cgc Arg	gtg Val 225	Gly	tgg Trp	ato Ile	atc lle	787
gtt Val 230	Pro	gat Asp	gag Glu	ctg Leu	gtc Val 235	Thr	ccg Pro	att	gaa Glu	a aac a Asn 240	Leu	cag Gln	gct Ala	tct Ser	ctt Leu 245	835
tcc Ser	ttg Leu	tgt Cys	gct Ala	cct Pro 250	Ala	atc Ile	Gly	cag Gln	gct Ala 255	Ala	gga Gly	cgc Arg	gca Ala	gcc Ala 260	ttc	883
act Thr	ttg Leu	gag Glu	gct Ala 265	Gly	gcc Ala	gaa Glu	ctt Leu	gat Asp 270	gcc Ala	cac His	gtt Val	gaa Glu	gcg Ala 275	tat Tyr	cgc Arg	931
gag Glu	gcc Ala	cgg Arg 280	Glu	gtg Val	ttc Phe	gtc Val	gat Asp 285	aag Lys	ctc Leu	cct Pro	gaa Glu	atc Ile 290	ggg	ctt Leu	Gly	979
act 1027	ttc 7	gcc	gac	ccg	gat	ggc	ggc	ctg	tat	ttg	tgg	gtc	gat	gtt	tct	
		Ala	Asp	Pro	Asp	Gly 300	Gly	Leu	Tyr	Leu	Trp 305	Val	Asp	Val	Ser	
gca 1075	tac	acc	gat	gat	tca	gag	gaa	tgg	gca	ttg	cgt	ttg	ctc	gat	gaa	
Ala 310	Tyr	Thr	Asp	Asp	Ser 315	Glu	Glu	Trp	Ala	Leu 320	Arg	Leu	Leu	qaA	Glu 325	
gcg 1123	ggc	gtg	gcc	gtc	gcg	ccg	ggt	gtt	gat	ttt	gat	cct	gag	gaa	ggc	
Ala	Gly	Val	Ala	Val 330	Ala	Pro	Gly	Val	Asp 335	Phe	Asp	Pro	Glu	Glu 340	Gly	
cac 1171	aag	tgg	att	cgt	ttg	agc	ctg	tgc	gcg	tca	aag	gaa	gac	acc	att	
His	Lys	Trp	Ile 345	Arg	Leu	Ser		Cys 350	Ala	Ser	Lys		Asp 355	Thr	Ile	
gaa 1217	ggt	gtg	cgc	aaa	atc	gga	gaa	ttc	atc	aaa	aaa	tagc	agcg	ac		
Glu	Gly	Val 360	Arg	Lys	Ile		Glu 365	Phe	Ile	Lys	Lys					
tagg 1230	ttag	tt t	cg								• .					
<210: <211: <212: <213:	> 36 > PR	9 T	bacto	ari	m ~1·	, -	i a									
				J. LUI	" AT	u call.	- Culil									

Met Gln Met Leu Asp Arg Val His Arg Arg Arg Glu Gly Lys Asp

<400> 116

1				5					10					15	
Thr	Leu	Met	Phe 20	Суз	Ala	Gly	Gln	Pro 25	Ser	Thr	Gly	Ala	Pro 30	Glu	Ala
Val	Ile	Glu 35	Glu	Ala	Glu	Ile	Ala 40	Leu	Arg	Ser	Gly	Pro 45	Leu	Gly	Тут
Thr	Glu 50	Val	Ile	Gly	Asp	Arg 55	Glu	Phe	Arg	Glu	Arg 60	Ile	Ala	Asp	Trp
His 65	Ser	Ala	Thr	Tyr	Asp 70	Val	Asp	Thr	Asn	Pro 75	Asp	Asn	Val	Ile	Va1
Thr	Thr	G1y	Ser	Ser 85	Gly	Gly	Phe	Val	Ala 90	Ser	Phe	Ile	Ala	Thr 95	Leu
_			100	_				105					110	Ala	
-		115					120					125		Arg	
	130					135		٠			140			Glu	
145		_			150					155				Pro	160
				165					170					Trp 175	
			180					185			•		190	Gly	
		195					200					205		Asn	
	210					215					220			Trp	
225					230					235				Glu	240
				245					250					Ala 255	
			260					265					270	Ala	
		275	•				280					285	_	Leu	
	290			-		295					300			Tyr	
305					310					315				Ala	320
Arg	Leu	Leu	ASP	G1u 325	Ala	GIY	Val	Ala	330	Ala	Pro	GΙΆ	vaı	Asp 335	rne

547

340 350 Lys Glu Asp Thr Ile Glu Gly Val Arg Lys Ile Gly Glu Phe Ile Lys 360 Lys <210> 117 <211> 657 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(634) <223> FRXA00618 <400> 117 cccaacgggc accatcattg atccggaaga gctagagcgc atcgccaagt ggtgcgatga 60 caatgatgct gttcttatct ctgatgagga ctaccacggc atg agc ttt ggt cgt Met Ser Phe Gly Arg 1 ccg ctg gca act gcg cat cag ttt tcc aag aac gcc atc gtg gtg ggt 163 Pro Leu Ala Thr Ala His Gln Phe Ser Lys Asn Ala Ile Val Val Gly acc ttg tcc aag tac ttc tcc atg acg ggt tgg cgc gtg ggt tgg atc 211 Thr Leu Ser Lys Tyr Phe Ser Met Thr Gly Trp Arg Val Gly Trp Ile 25 atc gtt cca gat gag ctg gtc aca ccg att gaa aac ctg cag gct tct 259 Ile Val Pro Asp Glu Leu Val Thr Pro Ile Glu Asn Leu Gln Ala Ser 45 ctt tee ttg tgt get eet gee ate ggg cag get geg gga ege gea gee 307 Leu Ser Leu Cys Ala Pro Ala Ile Gly Gln Ala Ala Gly Arg Ala Ala 55 60 ttc act ttg gag gct ggg gcc gaa ctt gat gcc cac gtt gaa gcg tat 355 Phe Thr Leu Glu Ala Gly Ala Glu Leu Asp Ala His Val Glu Ala Tyr 70 75 80 cgc gag gcc cgg gag gtg ttc gtc gat aag ctc cct gaa atc ggg ctt 403 Arg Glu Ala Arg Glu Val Phe Val Asp Lys Leu Pro Glu Ile Gly Leu 90 100 ggc act ttc gcc gac ccg gat ggc ggc ctg tat ttg tgg gtc gat gtt 451 Gly Thr Phe Ala Asp Pro Asp Gly Gly Leu Tyr Leu Trp Val Asp Val 105 110 tct gca tac acc gat gat tca gag gaa tgg gca ttg cgt ttg ctc gat 499 Ser Ala Tyr Thr Asp Asp Ser Glu Glu Trp Ala Leu Arg Leu Leu Asp 120 125 gaa gcg ggc gtg gcc gtc gcg ccg ggt gtt gat ttt gat cct gag gaa

Asp Pro Glu Glu Gly His Lys Trp Ile Arg Leu Ser Leu Cys Ala Ser

595

644

657

Glu Ala Gly Val Ala Val Ala Pro Gly Val Asp Phe Asp Pro Glu Glu 135 ggc cac aag tgg att cgt ttg agc ctg tgc gcg tca aag gaa gac acc Gly His Lys Trp Ile Arg Leu Ser Leu Cys Ala Ser Lys Glu Asp Thr att gaa ggt gtg cgc aaa atc gga gaa ttc atc aaa aaa tagcagcgac Ile Glu Gly Val Arg Lys Ile Gly Glu Phe Ile Lys Lys taggttagtt tcg <210> 118 <211> 178 <212> PRT <213> Corynebacterium glutamicum <400> 118 Met Ser Phe Gly Arg Pro Leu Ala Thr Ala His Gln Phe Ser Lys Asn Ala Ile Val Val Gly Thr Leu Ser Lys Tyr Phe Ser Met Thr Gly Trp 25 Arg Val Gly Trp Ile Ile Val Pro Asp Glu Leu Val Thr Pro Ile Glu 35 Asn Leu Gln Ala Ser Leu Ser Leu Cys Ala Pro Ala Ile Gly Gln Ala Ala Gly Arg Ala Ala Phe Thr Leu Glu Ala Gly Ala Glu Leu Asp Ala 70 His Val Glu Ala Tyr Arg Glu Ala Arg Glu Val Phe Val Asp Lys Leu Pro Glu Ile Gly Leu Gly Thr Phe Ala Asp Pro Asp Gly Gly Leu Tyr 105 Leu Trp Val Asp Val Ser Ala Tyr Thr Asp Asp Ser Glu Glu Trp Ala 115 Leu Arg Leu Leu Asp Glu Ala Gly Val Ala Val Ala Pro Gly Val Asp Phe Asp Pro Glu Glu Gly His Lys Trp Ile Arg Leu Ser Leu Cys Ala 145 150 Ser Lys Glu Asp Thr Ile Glu Gly Val Arg Lys Ile Gly Glu Phe Ile 170 165 Lys Lys

<210> 119

<211> 385

<212> DNA

<213> Corynebacterium glutamicum

<22	1> C 2> (DS 101) RXA0														
	0> 1 gcat		aggg	tcgt	at c	tcga	tcta	a aa	gcag	tacg	cag	atag	gct	tgtc	tcttat	60
gaa	gcca	agc	acta	gaag	ca a	tgtt	cagc	c gt	ttcg	cgtc	atg Met 1			ttg Leu		115
			-			-	-			-	acc Thr		_		_	163
											gtc Val					211
											acc Thr					259
											cac His 65					307
-	_					_		_		_	acc Thr					355
				_	_		atc Ile	_								385
<211 <212)> 12 L> 95 PP PP	5 ?T	ebacı	teri	um gl	lutar	nicum	n								
<400)> 12	5 D														
			Leu	Asp 5	Arg	Va1	His	Arg	Arg 10	Arg	Arg	Glu	Gly	Lys 15	Asp	
Thr	Leu	Met	Phe 20	Cys	Ala	Gly	Gln	Pro 25	Ser	Thr	Gly	Ala	Pro 30	Glu	Ala	
Val	Ile	Glu 35	Glu	Ala	Glu	Ile	Ala 40	Leu	Arg	Ser	Gly	Pro 45	Leu	Gly	Tyr	
Thr	Glu 50	Val	Ile	Gly	Asp	Arg 55	Glu	Phe	Arg	Glu	Arg 60	Ile	Ala	Asp	Trp	
His 65	Ser	Ala	Thr	Tyr	Asp 70	Val	Asp	Thr	Asn	Pro 75	Asp	Asn	Val	Ile	Val 80	
Thr	Thr	Gly	Ser	Ser 85	Gly	Gly	Phe	Val	Ala 90	Ser	Phe	Ile	Ala	Thr 95		

<21 <21	0> 1 1> 1 2> D 3> C	434 NA	ebac	teri	um g	luta	micu	ım								
<22	1> C 2> (411)												
	0> 1 ctta		agcc	gtgg	ga t	taca	.ccct	t tt	agag	ctag	aac	agta	aaa	attc	acccaa	60
tag	cttt	caa	ctac	gcac	ac a	aagt	ggca	a ca	ttga	gcgg		Thr			_	115
cgc Arg	aaa Lys	acc Thr	tct Ser	aag Lys 10	acc Thr	acc Thr	gac Asp	acc Thr	gcc Ala 15	Asn	aag Lys	gct Ala	gtg Val	ggc Gly 20	gcg Ala	163
				cgt Arg												211
			Lys	atg Met												259
		Glu		gaa Glu												307
				aat Asn												355
				atg Met 90						Thr			Gly			403
acc Thr	tcc Ser	aaa Lys	ggc Gly 105	att Ile	att Ile	ccg Pro	gcc Ala	cgg Arg 110	cga Arg	gca Ala	gtg Val	gtc Val	acc Thr 115	cgc Arg	tac Tyr	451
				gga Gly												499
				tca Ser												547
aac Asn 150	gac Asp	ggc Gly	gat Asp	gaa Glu	gtt Val 155	ctt Leu	atc Ile	ccc Pro	gca Ala	ccg Pro 160	gac Asp	tac Tyr	cca Pro	ctg Leu	tgg Trp 165	595
				tcc Ser												643

				170					175	i				180)	
				Asp					Ile					Ser	aaa Lys	
								Val					Asn		ccc Pro	739
												Ile			att Ile	787
												atc Ile				835
												acc Thr			cca Pro	883
												gca Ala				931
gca Ala	gga Gly	tac Tyr 280	cga Arg	gct Ala	ggc Gly	tgg Trp	atg Met 285	gta Val	ttg Leu	act Thr	gga Gly	cca Pro 290	aag Lys	caa Gln	tac Tyr	979
gca 1027		gga	ttt	att	gag	ggc	ctc	gaa	ctc	ctc	gca	ggc	act	cga	ctc	
Ala		Gly	Phe	Ile	Glu	Gly 300	Leu	Glu	Leu	Leu	Ala 305	Gly	Thr	Arg	Leu	
tgc 1075		aat	gtc	сса	gct	cag	cac	gct	att	cag	gta	gct	ctg	ggt	gga	
Cys 310	Pro	Asn	Val	Pro	Ala 315	Gln	His	Ala	Ile	Gln 320	Val	Ala	Leu	Gly	Gly 325	
cgc 1123		tcc	atc	tac	gac	ctc	act	ggc	gaa	cac	ggc	cga	ctc	ctg	gaa	
Arg	Gln	Ser	Ile	Tyr 330	Asp	Leu	Thr	Gly	Glu 335	His	Gly	Arg	Leu	Leu 340	Glu	
cag 1171		aac	atg	gca	tgg	acg	aaa	ctc	aac	gaa	atc	cca	ggt	gtc	agc	
Sln .	Arg	Asn	Met 345	Ala	Trp	Thr	Lys	Leu 350	Asn	Glu	Ile	Pro	Gly 355	Val	Ser	
gt (aaa	cca	atg	gga	gct	cta	tac	gcg	ttc	ccc	aag	ctc	gac	ccc	
	Val	Lys 360	Pro	Met	Gly	Ala	Leu 365	Tyr	Ala	Phe	Pro	Lys 370	Leu	Asp	Pro	
ac (tac	gaa	atc	cac	gac	gac	acc	caa	ctc	atg	ctg	gat	ctt	ctc	
lsn '		Tyr	Glu	Ile		Asp 380	Asp	Thr	Gln		Met 385	Leu	Asp	Leu	Leu	

cgt gcc gag aaa atc ctc atg gtt cag ggc act ggc ttc aac tgg cca Arg Ala Glu Lys Ile Leu Met Val Gln Gly Thr Gly Phe Asn Trp Pro cat cac gat cac ttc cga gtg gtc acc ctg cca tgg gca tcc cag ttg His His Asp His Phe Arg Val Val Thr Leu Pro Trp Ala Ser Gln Leu 410 415

gaa aac gca att gag cgc ctg ggt aac ttc ctg tcc act tac aag cag

420

Glu Asn Ala Ile Glu Arg Leu Gly Asn Phe Leu Ser Thr Tyr Lys Gln 425 430

tagtagttgt taggattcac cac 1434

<210> 122

<211> 437

<212> PRT

<213> Corynebacterium glutamicum

<400> 122

Val Thr Thr Asp Lys Arg Lys Thr Ser Lys Thr Thr Asp Thr Ala Asn 10

Lys Ala Val Gly Ala Asp Gln Ala Ala Arg Pro Thr Arg Arg Thr Thr

Arg Arg Ile Phe Asp Gln Ser Glu Lys Met Lys Asp Val Leu Tyr Glu 40

Ile Arg Gly Pro Val Ala Ala Glu Ala Glu Arg Met Glu Leu Asp Gly

His Asn Ile Leu Lys Leu Asn Thr Gly Asn Pro Ala Val Phe Gly Phe 65 70 75

Asp Ala Pro Asp Val Ile Met Arg Asp Met Ile Ala Asn Leu Pro Thr

Ser Gln Gly Tyr Ser Thr Ser Lys Gly Ile Ile Pro Ala Arg Arg Ala

Val Val Thr Arg Tyr Glu Val Val Pro Gly Phe Pro His Phe Asp Val 115 120

Asp Asp Val Phe Leu Gly Asn Gly Val Ser Glu Leu Ile Thr Met Thr 135

Thr Gln Ala Leu Leu Asn Asp Gly Asp Glu Val Leu Ile Pro Ala Pro 145 150 155 160

Asp Tyr Pro Leu Trp Thr Ala Ala Thr Ser Leu Ala Gly Gly Lys Pro 165

Val His Tyr Leu Cys Asp Glu Glu Asp Asp Trp Asn Pro Ser Ile Glu 180 185 190

Asp Ile Lys Ser Lys Ile Ser Glu Lys Thr Lys Ala Ile Val Val Ile 195 200 205

Asn Pro Asn Asn Pro Thr Gly Ala Val Tyr Pro Arg Arg Val Leu Glu 210 215 220

Gln Ile Val Glu Ile Ala Arg Glu His Asp Leu Leu Ile Leu Ala Asp 225 230 235 240

Glu Ile Tyr Asp Arg Ile Leu Tyr Asp Asp Ala Glu His Ile Ser Leu 245 250 255

Ala Thr Leu Ala Pro Asp Leu Leu Cys Ile Thr Tyr Asn Gly Leu Ser 260 265 270

Lys Ala Tyr Arg Val Ala Gly Tyr Arg Ala Gly Trp Met Val Leu Thr 275 280 285

Gly Pro Lys Gln Tyr Ala Arg Gly Phe Ile Glu Gly Leu Glu Leu Leu 290 295 300

Ala Gly Thr Arg Leu Cys Pro Asn Val Pro Ala Gln His Ala Ile Gln 305 310 315 320

Val Ala Leu Gly Gly Arg Gln Ser Ile Tyr Asp Leu Thr Gly Glu His 325 330 335

Gly Arg Leu Leu Glu Gln Arg Asn Met Ala Trp Thr Lys Leu Asn Glu 340 345 350

Ile Pro Gly Val Ser Cys Val Lys Pro Met Gly Ala Leu Tyr Ala Phe 355 360 365

Pro Lys Leu Asp Pro Asn Val Tyr Glu Ile His Asp Asp Thr Gln Leu 370 375 380

Met Leu Asp Leu Leu Arg Ala Glu Lys Ile Leu Met Val Gln Gly Thr 385 390 395 400

Gly Phe Asn Trp Pro His His Asp His Phe Arg Val Val Thr Leu Pro 405 410 415

Trp Ala Ser Gln Leu Glu Asn Ala Ile Glu Arg Leu Gly Asn Phe Leu
420 425 430

Ser Thr Tyr Lys Gln 435

<210> 123

<211> 1701

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1678)

<223> RXA02193

<400> 123

cccccgaaaa tgtagtgggt agttccacac tgcctcttac aagtacgtag gataatccac 60

ago	acca	ıttg	tgat	ttec	tt c	aact	tgtg	ga ga	aggca	gtac					agc Ser 5	115
					Asp) Ala		gcc Ala				163
				Asn					Asn			cag Gln		Ser		211
			Val					Val				acc Thr 50	Thr			259
aaa Lys	aag Lys 55	Phe	cga Arg	atc Ile	gaa Glu	tcg Ser 60	gat Asp	ctg Leu	ctt Leu	ggt Gly	gaa Glu 65	ctt Leu	cag Gln	atc Ile	cca Pro	307
tcc Ser 70	His	gca Ala	tat Tyr	tac Tyr	ggg Gly 75	gtg Val	cac His	acc Thr	ctt Leu	cgt Arg 80	Ala	gtg Val	gac Asp	aac Asn	ttc Phe 85	355
caa Gln	atc Ile	tca Ser	cga Arg	acc Thr 90	acc Thr	atc Ile	aac Asn	cac His	gtc Val 95	cca	gat Asp	ttc Phe	att Ile	cgc Arg 100	ggc Gly	403
												cgc Arg				451
aca Thr	ctt Leu	cca Pro 120	gca Ala	caa Gln	aaa Lys	gca Ala	gaa Glu 125	gca Ala	att Ile	gtc Val	tgg Trp	gct Ala 130	tgt Cys	gat Asp	cag Gln	499
												atc Ile				547
cag Gln 150	ggt Gly	ggc Gly	gca Ala	ggt Gly	acc Thr 155	tca Ser	ctg Leu	aac Asn	atg Met	aac Asn 160	acc Thr	aac Asn	gag Glu	gtt Val	gtt Val 165	595
gcc Ala	aac Asn	ctt Leu	gca Ala	ctt Leu 170	gag Glu	ttc Phe	tta Leu	ggc Gly	cat His 175	gaa Glu	aag Lys	ggc Gly	gag Glu	tac Tyr 180	cac His	643
atc Ile	ctg Leu	cac His	ccc Pro 185	atg Met	gat Asp	gat Asp	gtg Val	aac Asn 190	atg Met	tcc Ser	cag Gln	tcc Ser	acc Thr 195	aac Asn	gat Asp	691
tcc Ser	tac Tyr	cca Pro 200	act Thr	ggt Gly	ttc Phe	cgc Arg	ctg Leu 205	ggc Gly	att Ile	tac Tyr	Ala	gga Gly 210	ctg Leu	cag Gln	acc Thr	739
Leu	atc Ile 215	gct Ala	gaa Glu	att Ile	Asp	gag Glu 220	ctt Leu	cag Gln	gtt Val	gcg Ala	ttc Phe	cgc Arg	cac His	aag Lys	ggc Gly	787

			_													
aat Asn 230	Glu	ttt. Phe	gtc Val	gac Asp	Ile 235	Ile	aag Lys	atg Met	Gly	Arg 240	Thr	Gln	ttg Leu	cag Gln	gat Asp 245	835
					Leu					Arg					aac Asn	883
				Gln										Leu	ctc Leu	931
gag Glu	gtc Val	aat Asn 280	Leu	ggt Gly	gca Ala	acc Thr	gca Ala 285	atc Ile	ggt Gly	act Thr	ggt Gly	gtg Val 290	aac Asn	act Thr	cca Pro	979
gca 102		tac	cgc	cac	cag	gtt	gtc	gct	gct	ctg	tct	gag	gtc	acc	gga	
Ala	Gly 295		Arg	His	Gln	Val 300	Val	Ala	Ala	Leu	Ser 305	Glu	Val	Thr	Gly	
ctg 107		cta	aag	tcc	gca	cgt	gat	ctc	atc	gag	gct	acc	tct	gac	acc	
Leu 310		Leu	Lys	Ser	Ala 315	Arg	Asp	Leu	Ile	Glu 320	Ala	Thr	Ser	Asp	Thr 325	
ggt 112		tat	gtt	cat	gcg	cac	tcc	gca	atc	aag	cgt	gca	gcc	atg	aaa	
Gly	Ala	Tyr	Val	His 330	Ala	His	Ser	Ala	11e 335	Lys	Arg	Ala	Ala	Met 340	Lys	
ctg 117		aag	atc	tgt	aac	gat	cta	cgt	ctg	ctg	tct	tct	ggt	cct	cgt	
		Lys	Ile 345	Cys	Asn	Asp	Leu	Arg 350	Leu	Leu	Ser	Ser	Gly 355	Pro	Arg	
gct 121		ttg	aac	gaa	atc	aac	ctg	cca	cca	cgc	cag	gct	ggt	tcc	tcc	
Ala	Gly	Leu 360	Asn	Glu	Ile	Asn	Leu 365	Pro	Pro	Arg	Gln	Ala 370	Gly	Ser	Ser	
atc 1267		cca	gcc	aag	gtc	aac	cca	gtg	atc	cca	gaa	gtg	gtc	aac	cag	
Ile	Met 375	Pro	Ala	Lys	Val	Asn 380	Pro	Val	Ile	Pro	Glu 385	Val	Val	Asn	Gln	
gtc 1315		ttc	aag	gtc	ttc	ggt	aac	gat	ctc	acc	gtc	acc	atg	gct	gcg	
Val 390	Суз	Phe	Lys	Val	Phe 395	Gly	Asn	Asp	Leu	Thr 400	Val	Thr	Met	Ala	Ala 405	
gaa 1363		ggc	cag	ttg	cag	ctc	aac	gtc	atg	gag	cca	gtc	att	ggc	gaa	
		Gly	Gln	Leu 410	Gln	Leu	Asn		Met 415	Glu	Pro	Val	Ile	Gly 420	Glu	
tcc 1411		ttc	cag	tca	ctg	cgc	atc	ctg	ggc	aat	gca	gcc	aag	act	ttg	
Ser	Leu	Phe	Gln 425	Ser	Leu	Arg		Leu 430	Gly	Asn	Ala	Ala	Lys 435	Thr	Leu	

cgt gag aag tgc gtc gta gga atc acc gcc aac gct gat gtt tgc cgt 1459

Arg Glu Lys Cys Val Val Gly Ile Thr Ala Asn Ala Asp Val Cys Arg
440 445 450

gct tac gtt gat aac tcc atc ggg att atc act tac ctg aac cca ttc 1507

Ala Tyr Val Asp Asn Ser Ile Gly Ile Ile Thr Tyr Leu Asn Pro Phe 455 460 465

ctg ggc cac gac att gga gat cag atc ggt aag gaa gca gcc gaa act 1555

Leu Gly His Asp Ile Gly Asp Gln Ile Gly Lys Glu Ala Ala Glu Thr 470 485

ggt cga cca gtg cgt gaa ctc atc ctg gaa aag aag ctc atg gat gaa 1603

Gly Arg Pro Val Arg Glu Leu Ile Leu Glu Lys Lys Leu Met Asp Glu
490 495 500

aag acg ctc gag gca gtc ctg tcc aag gag aac ctc atg cac cca atg 1651

Lys Thr Leu Glu Ala Val Leu Ser Lys Glu Asn Leu Met His Pro Met 505 510 515

ttc cgc gga agg ctc tac ttg gag aac taatccaaga tctcgtctga 1698

Phe Arg Gly Arg Leu Tyr Leu Glu Asn 520 525

tac 1701

<210> 124

<211> 526

<212> PRT

<213> Corynebacterium glutamicum

<400> 124

Met Ser Lys Thr Ser Asn Lys Ser Ser Ala Asp Ser Lys Asn Asp Ala 1 5 10 15

Lys Ala Glu Asp Ile Val Asn Gly Glu Asn Gln Ile Ala Thr Asn Glu 20 25 30

Ser Gln Ser Ser Asp Ser Ala Ala Val Ser Glu Arg Val Val Glu Pro 35 40 45

Lys Thr Thr Val Gln Lys Lys Phe Arg Ile Glu Ser Asp Leu Leu Gly 50 55 60

Glu Leu Gln Ile Pro Ser His Ala Tyr Tyr Gly Val His Thr Leu Arg 65 70 75 80

Ala Val Asp Asn Phe Gln Ile Ser Arg Thr Thr Ile Asn His Val Pro 85 90 95

Asp Phe Ile Arg Gly Met Val Gln Val Lys Lys Ala Ala Ala Leu Ala 100 105 110

Asn Arg Arg Leu His Thr Leu Pro Ala Gln Lys Ala Glu Ala Ile Val 115 120 125

- Trp Ala Cys Asp Gln Ile Leu Ile Glu Glu Arg Cys Met Asp Gln Phe 130 135 140
- Pro Ile Asp Val Phe Gln Gly Gly Ala Gly Thr Ser Leu Asn Met Asn 145 150 155 160
- Thr Asn Glu Val Val Ala Asn Leu Ala Leu Glu Phe Leu Gly His Glu 165 170 175
- Lys Gly Glu Tyr His Ile Leu His Pro Met Asp Asp Val Asn Met Ser 180 185 190
- Gln Ser Thr Asn Asp Ser Tyr Pro Thr Gly Phe Arg Leu Gly Ile Tyr 195 200 205
- Ala Gly Leu Gln Thr Leu Ile Ala Glu Ile Asp Glu Leu Gln Val Ala 210 215 220
- Phe Arg His Lys Gly Asn Glu Phe Val Asp Ile Ile Lys Met Gly Arg 225 230 235 240
- Thr Gln Leu Gln Asp Ala Val Pro Met Ser Leu Gly Glu Glu Phe Arg 245 250 255
- Ala Phe Ala His Asn Leu Ala Glu Glu Gln Thr Val Leu Arg Glu Ala 260 265 270
- Ala Asn Arg Leu Leu Glu Val Asn Leu Gly Ala Thr Ala Ile Gly Thr 275 280 285
- Gly Val Asn Thr Pro Ala Gly Tyr Arg His Gln Val Val Ala Ala Leu 290 295 300
- Ser Glu Val Thr Gly Leu Glu Leu Lys Ser Ala Arg Asp Leu Ile Glu 305 310 315 320
- Ala Thr Ser Asp Thr Gly Ala Tyr Val His Ala His Ser Ala Ile Lys 325 330 335
- Arg Ala Ala Met Lys Leu Ser Lys Ile Cys Asn Asp Leu Arg Leu Leu 340 345 350
- Ser Ser Gly Pro Arg Ala Gly Leu Asn Glu Ile Asn Leu Pro Pro Arg 355 360 365
- Gln Ala Gly Ser Ser Ile Met Pro Ala Lys Val Asn Pro Val Ile Pro 370 375 380
- Glu Val Val Asn Gln Val Cys Phe Lys Val Phe Gly Asn Asp Leu Thr 385 390 395 400
- Val Thr Met Ala Ala Glu Ala Gly Gln Leu Gln Leu Asn Val Met Glu 405 410 415
- Pro Val Ile Gly Glu Ser Leu Phe Gln Ser Leu Arg Ile Leu Gly Asn 420 425 430
- Ala Ala Lys Thr Leu Arg Glu Lys Cys Val Val Gly Ile Thr Ala Asn

445 435 440 Ala Asp Val Cys Arg Ala Tyr Val Asp Asn Ser Ile Gly Ile Ile Thr 455 Tyr Leu Asn Pro Phe Leu Gly His Asp Ile Gly Asp Gln Ile Gly Lys 465 470 Glu Ala Ala Glu Thr Gly Arg Pro Val Arg Glu Leu Ile Leu Glu Lys 490 Lys Leu Met Asp Glu Lys Thr Leu Glu Ala Val Leu Ser Lys Glu Asn 505 Leu Met His Pro Met Phe Arg Gly Arg Leu Tyr Leu Glu Asn 515 520 <210> 125 <211> 1098 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1075) <223> RXA02432 <400> 125 cacgtgattc atttgtgacc aacaaccgaa actgagccag aagactgtca atcccctgct 60 gtgcacataa caactgcagc tagttgatac gctagagcgc atg tcg aag cag cac Met Ser Lys Gln His 1 163 tcc aca cca tta aac aat gat gaa gaa cac act tcc gct cct caa aag Ser Thr Pro Leu Asn Asn Asp Glu Glu His Thr Ser Ala Pro Gln Lys 211 gtt gcg gta atc acc acg ggc gga acc atc gcc tgt act tcc gac gca Val Ala Val Ile Thr Thr Gly Gly Thr Ile Ala Cys Thr Ser Asp Ala 25 aat ggg cat ctg ctt ccc acc gtc agc ggt gca gac ctg ctt gcg cca 259 Asn Gly His Leu Leu Pro Thr Val Ser Gly Ala Asp Leu Leu Ala Pro 40 307 atc gca cca cgg ttc aat gga gcg cag atc gct ttc gaa atc cac gaa Ile Ala Pro Arg Phe Asn Gly Ala Gln Ile Ala Phe Glu Ile His Glu 60 65 55 355 ate aac ege ett gat tee tee tee atg aeg ttt gag gat ete gat tee Ile Asn Arg Leu Asp Ser Ser Ser Met Thr Phe Glu Asp Leu Asp Ser 70 75 403 atc atc gcc acg gtt cat aag gtg ttg gag gat ccg gat gtt gtt ggc Ile Ile Ala Thr Val His Lys Val Leu Glu Asp Pro Asp Val Val Gly 95 451 gta gta gtt acc cac ggc acc gat tcc atg gaa gag tcc gcc atc gcc

Val Val Thr His Gly Thr Asp Ser Met Glu Glu Ser Ala Ile Ala

	105	1.1	10	115
			ge eca gte att tte rg Pro Val Ile Phe 130	Thr Gly Ala
caa aaa ccc Gln Lys Pro 135	ttc gat ca Phe Asp Hi	t ccc gaa go s Pro Glu Al 140	cc gac ggc cca aac la Asp Gly Pro Asn 1 4 5	aac ctt ttc 547 Asn Leu Phe
gaa gcc tgc Glu Ala Cys 150	ctc atc gc Leu Ile Al 15	a Ser Asp Pr	cc tcc gct cgc gga co Ser Ala Arg Gly 160	att ggt gca 595 Ile Gly Ala 165
ctc att gtc Leu Ile Val	ttc ggt ca Phe Gly Hi 170	c gcc gtc at s Ala Val Il	c cct gct cgc ggc e Pro Ala Arg Gly 175	tgc gtt aaa 643 Cys Val Lys 180
			t gca acc aac ggc e Ala Thr Asn Gly	
cca gag cgc Pro Glu Arg 200	ccc gat gc Pro Asp Al	g ctg ccc gt a Leu Pro Va 205	a gct aaa ttg gcg l Ala Lys Leu Ala 210	gat gtc tct 739 Asp Val Ser
gtc gaa atc Val Glu Ile 215	atc ccc gc: Ile Pro Ala	a tac cct gg a Tyr Pro Gl 220	t gcc acc ggc gca y Ala Thr Gly Ala 225	atg gtg gaa 787 Met Val Glu
gct gcc atc Ala Ala Ile 230	gct gcc gg Ala Ala Gl 23	Ala Gln Gl	a ctt gta gtg gaa y Leu Val Val Glu 240	gca atg gga 835 Ala Met Gly 245
tca ggc aat Ser Gly Asn	gtt ggt tcc Val Gly Ser 250	c cgc atg gg Arg Met Gl	t gat gcc cta ggt y Asp Ala Leu Gly 255	aaa gca ctt 883 Lys Ala Leu 260
Asp Ala Gly	att ccc gtg Ile Pro Val 265	ggtg atg ag Val Met Se: 27	c act agg gtt cct r Thr Arg Val Pro 0	cgt ggt gaa 931 Arg Gly Glu 275
gta tcc gga Val Ser Gly 280	gtg tat ggd Val Tyr Gly	ggt gca gg Gly Ala Gly 285	t gga ggt gcg act y Gly Gly Ala Thr 290	ttg gct gcg 979 Leu Ala Ala
aag ggc gct 1027	gtg gga tct	ege tac tto	c aga gct ggt cag	gca cgt att
	Val Gly Ser	Arg Tyr Phe	e Arg Ala Gly Gln 305	Ala Arg Ile
ttg ctc gcg . 1075	att gcc att	gcg acg ggd	gca cat ccg gtg	acg ctt tac
Leu Leu Ala 310	Ile Ala Ile 315		y Ala His Pro Val 320	Thr Leu Tyr 325
taatttcgcc c	ttggtcttg c	at		

<210> 126

<211> 325

<212> PRT

<213> Corynebacterium glutamicum

<400> 126

Met Ser Lys Gln His Ser Thr Pro Leu Asn Asn Asp Glu Glu His Thr 1 5 10 15

Ser Ala Pro Gln Lys Val Ala Val Ile Thr Thr Gly Gly Thr Ile Ala 20 25 30

Cys Thr Ser Asp Ala Asn Gly His Leu Leu Pro Thr Val Ser Gly Ala 35 40 45

Asp Leu Leu Ala Pro Ile Ala Pro Arg Phe Asn Gly Ala Gln Ile Ala 50 55 60

Phe Glu Ile His Glu Ile Asn Arg Leu Asp Ser Ser Ser Met Thr Phe 65 70 75 80

Glu Asp Leu Asp Ser Ile Ile Ala Thr Val His Lys Val Leu Glu Asp 85 90 95

Pro Asp Val Val Gly Val Val Val Thr His Gly Thr Asp Ser Met Glu 100 105 110

Glu Ser Ala Ile Ala Val Asp Thr Phe Leu Asp Asp Pro Arg Pro Val 115 120 125

Ile Phe Thr Gly Ala Gln Lys Pro Phe Asp His Pro Glu Ala Asp Gly 130 135 140

Pro Asn Asn Leu Phe Glu Ala Cys Leu Ile Ala Ser Asp Pro Ser Ala 145 150 155 160

Arg Gly Ile Gly Ala Leu Ile Val Phe Gly His Ala Val Ile Pro Ala 165 170 175

Arg Gly Cys Val Lys Trp His Thr Ser Asp Glu Leu Ala Phe Ala Thr 180 185 190

Asn Gly Pro Glu Glu Pro Glu Arg Pro Asp Ala Leu Pro Val Ala Lys 195 200 205

Leu Ala Asp Val Ser Val Glu Ile Ile Pro Ala Tyr Pro Gly Ala Thr 210 215 220

Gly Ala Met Val Glu Ala Ala Ile Ala Ala Gly Ala Gln Gly Leu Val 225 230 235 240

Val Glu Ala Met Gly Ser Gly Asn Val Gly Ser Arg Met Gly Asp Ala 245 250 255

Leu Gly Lys Ala Leu Asp Ala Gly Ile Pro Val Val Met Ser Thr Arg
260 265 270

Val Pro Arg Gly Glu Val Ser Gly Val Tyr Gly Gly Ala Gly Gly Gly 275 280 285

Ala Thr Leu Ala Ala Lys Gly Ala Val Gly Ser Arg Tyr Phe Arg Ala 290 295 300 Gly Gln Ala Arg Ile Leu Leu Ala Ile Ala Ile Ala Thr Gly Ala His

305 Pro Val Thr Leu Tyr 325 <210> 127 <211> 775 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(775) <223> RXN03003 <400> 127 tcgatgatct gggctcccca ggtggtgcgg ctaagcttgg accacaagat tttgatcacc 60 caatgatege tgegetgeeg ceteaggeat aatetaaege atg ace tet ege ace 115 Met Thr Ser Arg Thr ccg ctt gtt tct gtt ctt cct gat ttt ccg tgg gat tcg ctc gct tcc 163 Pro Leu Val Ser Val Leu Pro Asp Phe Pro Trp Asp Ser Leu Ala Ser 10 15 gca aaa gcc aaa gct gcg tct cac ccg gat ggg atc gtg aat ctt tct 211 Ala Lys Ala Lys Ala Ala Ser His Pro Asp Gly Ile Val Asn Leu Ser 25 30 35 gtt ggc act ccg gtt gat ccg gtc gcg ccc agc att cag atc gcg ttg 259 Val Gly Thr Pro Val Asp Pro Val Ala Pro Ser Ile Gln Ile Ala Leu 40 gca gaa gca gcg ggg ttt tcg ggt tac cct caa acc atc ggc acc ccg 307 Ala Glu Ala Ala Gly Phe Ser Gly Tyr Pro Gln Thr Ile Gly Thr Pro 55 60 gaa ctc cgc gca gcc atc agg ggc gcg ctt gag cgg cgc tac aac atg 355 Glu Leu Arg Ala Ala Ile Arg Gly Ala Leu Glu Arg Arg Tyr Asn Met 70 75 aca aag ctt gtc gac gcc tcc ctc ctc ccc gtc gtg ggt acc aag gag 403 Thr Lys Leu Val Asp Ala Ser Leu Leu Pro Val Val Gly Thr Lys Glu 90 95 gca att gcc ctt ctt cca ttc gcg ttg ggt att tcc ggc acc gtt gtc 451 Ala Ile Ala Leu Leu Pro Phe Ala Leu Gly Ile Ser Gly Thr Val Val 105 atc cca gag att gcg tac cca acc tac gaa gtc gct gtc gtg gcc gca 499 Ile Pro Glu Ile Ala Tyr Pro Thr Tyr Glu Val Ala Val Val Ala Ala 120 125 130 gga tgc acc gtg ttg cgt tct gat tcg ctg ttt aag ctc ggc ccg cag 547 Gly Cys Thr Val Leu Arg Ser Asp Ser Leu Phe Lys Leu Gly Pro Gln 135 140 145

atc Ile 150	ccg Pro	tcg Ser	atg Met	atg Met	ttt Phe 155	atc Ile	aac Asn	tca Ser	cca Pro	tcc Ser 160	aac Asn	ccc	aca Thr	ggc Gly	aag Lys 165	595
gtt Val	ctg Leu	ggc Gly	atc Ile	cca Pro 170	cac His	ttg Leu	cgc Arg	aag Lys	gtt Val 175	gtg Val	aag Lys	tgg Trp	gcg Ala	cag Gln 180	gaa Glu	643
aac Asn	aac Asn	gtg Val	atc Ile 185	ctc Leu	gca Ala	gct Ala	gat Asp	gaa Glu 190	tgc Cys	tac Tyr	ttg Leu	ggt Gly	ctt Leu 195	ggc Gly	tgg Trp	691
	gat Asp															739
	gac Asp 215															775
<210> 128 <211> 225 <212> PRT <213> Corynebacterium glutamicum																
	0> 12 Thr		Arg	Thr 5	Pro	Leu	Val	Ser	Val 10	Leu	Pro	Asp	Phe	Pro 15	Trp	
Asp	Ser	Leu	Ala 20	Ser	Ala	Lys	Ala	Lys 25	Ala	Ala	Ser	His	Pro 30	Asp	Gly	
Ile	Val	Asn 35	Leu	Ser	Val	Gly	Thr 40	Pro	Val	Asp	Pro	Val 45	Ala	Pro	Ser	
Ile	Gln 50	Ile	Ala	Leu	Ala	Glu 55	Ala	Ala	Gly	Phe	Ser 60	Gly	Tyr	Pro	Gln	
Thr 65	Ile	Gly	Thr	Pro	Glu 70	Leu	Arg	Ala	Ala	Ile 75	Arg	Gly	Ala	Leu	Glu 80	
Arg	Arg	Tyr	Asn	Met 85	Thr	Lys	Leu	Val	Asp 90	Ala	Ser	Leu	Leu	Pro 95	Val	
Val	Gly	Thr	Lys 100	Glu	Ala	Ile	Ala	Leu 105	Leu	Pro	Phe	Ala	Leu 110	Gly	Ile	
Ser	Gly	Thr 115	Val	Val	Ile	Pro	Glu 120	Ile	Ala	Tyr	Pro	Thr 125	Tyr	Glu	Val	
Ala	Val 130	Val	Ala	Ala	Gly	Cys 135	Thr	Val	Leu	Arg	Ser 140	Asp	Ser	Leu	Phe	
Lys 145	Leu	Gly	Pro	Gln	Ile 150	Pro	Ser	Met	Met	Phe 155	Ile	Asn	Ser	Pro	Ser 160	
Asn	Pro	Thr	Gly	Lys 165	Val	Leu	Gly	Ile	Pro 170	His	Leu	Arg	Lys	Val 175	Va1	
Lys	Trp	Ala	Gln	Glu	Asn	Asn	Val	Ile	Leu	Ala	Ala	Asp	Glu	Суз	Tyr	

180 185 190 Leu Gly Leu Gly Trp Asp Asp Glu Asn Pro Pro Ile Ser Ile Leu Asp 200 Pro Arg Val Cys Asp Gly Asp His Thr Asn Leu Ile Ala Ile His Ser Leu 225 <210> 129 <211> 1206 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1183) <223> RXN00508 <400> 129 agccacgtgt ttaaggatag ttgaaagcgt ggggcaatac tggcactaac cccggcacca 60 atogtattic tgtccgcggt tggtggcaca atagttcaac atg aac ttg ctg acc Met Asn Leu Leu Thr acc aaa att gac ctg gat gcc atc gcc cat aac acg agg gtg ctt aaa 163 Thr Lys Ile Asp Leu Asp Ala Ile Ala His Asn Thr Arg Val Leu Lys 15 caa atg gcg ggt ccg gcg aag ctg atg gcg gtg gtg aag gcg aat gca Gln Met Ala Gly Pro Ala Lys Leu Met Ala Val Val Lys Ala Asn Ala 25 30 tat aac cat ggc gta gag aag gtc gct ccg gtt att gct gct cat ggt 259 Tyr Asn His Gly Val Glu Lys Val Ala Pro Val Ile Ala Ala His Gly 40 gcg gat gcg ttt ggt gtg gca act ctt gcg gag gct atg cag ttg cgt 307 Ala Asp Ala Phe Gly Val Ala Thr Leu Ala Glu Ala Met Gln Leu Arg 55 60 gat atc ggc atc agc caa gag gtt ttg tgt tgg att tgg aca ccg gag 355 Asp Ile Gly Ile Ser Gln Glu Val Leu Cys Trp Ile Trp Thr Pro Glu 70 75 80 cag gat ttc cgc gcc gcc att gat cgc aat att gat ttg gct gtt att 403 Gln Asp Phe Arg Ala Ala Ile Asp Arg Asn Ile Asp Leu Ala Val Ile 90 tet ecc geg cat gec aaa gee ttg ate gaa act gat geg gag cat att 451 Ser Pro Ala His Ala Lys Ala Leu Ile Glu Thr Asp Ala Glu His Ile 105 110 cgg gtg tcc atc aag att gat tct ggg ttg cat cgt tcg ggt gtg gat 499 Arg Val Ser Ile Lys Ile Asp Ser Gly Leu His Arg Ser Gly Val Asp

130

125

120

		gag Glu														547
		gtc Val														595
		ccg Pro														643
		gcc Ala														691
		cct Pro 200														739
		ggt Gly														787
		ttg Leu														835
		att Ile														883
		gat Asp														931
		ccg Pro 280														979
ctg 1027		tat	ccg	cag	gtt	ggg	cgc	gta	tgc	atg	gat	cag	ttc	gtt	att	
		Tyr	Pro	Gln	Val	Gly 300	Arg	Val	Cys	Met	Asp 305	Gln	Phe	Val	Ile	
tct 1075	_	ggc	gac	aat	cca _.	cac	ggc	gtg	gaa	gct	ggg	gcg	aag	gcc	gtg	
Ser 310	Leu	Gly	Asp	Asn	Pro 315	His	Gly	Val	Glu	Ala 320	Gly	Ala	Lys		Val 325	
ata 1123		ggt	gag	aat	ggg	cat	gac	gca	act	gat	ttt	gcg	gag	cgt	tta	
		Gly	Glu	Asn 330	Gly	His	Asp	Ala	Thr 335	Asp	Phe	Ala	Glu	Arg 340	Leu	
gac 1171		att	aac	tat	gag	gta	gtg	tgc	cga	cca	acc	ggc	cga	act	gtc	
Asp			Asn 345	Tyr	Glu	Val	Val	Суs 350	Arg	Pro	Thr	Gly	Arg 355	Thr	Val	

cgc gca tat gtt taagtgaata cgtttaagga gca 1206 Arg Ala Tyr Val 360

<210> 130

<211> 361

<212> PRT

<213> Corynebacterium glutamicum

<400> 130

Met Asn Leu Leu Thr Thr Lys Ile Asp Leu Asp Ala Ile Ala His Asn 1 5 10 15

Thr Arg Val Leu Lys Gln Met Ala Gly Pro Ala Lys Leu Met Ala Val 20 25 30

Val Lys Ala Asn Ala Tyr Asn His Gly Val Glu Lys Val Ala Pro Val 35 40 45

Ile Ala Ala His Gly Ala Asp Ala Phe Gly Val Ala Thr Leu Ala Glu 50 55 60

Ala Met Gln Leu Arg Asp Ile Gly Ile Ser Gln Glu Val Leu Cys Trp
65 70 75 80

Ile Trp Thr Pro Glu Gln Asp Phe Arg Ala Ala Ile Asp Arg Asn Ile 85 90 95

Asp Leu Ala Val Ile Ser Pro Ala His Ala Lys Ala Leu Ile Glu Thr 100 105 110

Asp Ala Glu His Ile Arg Val Ser Ile Lys Ile Asp Ser Gly Leu His
115 120 125

Arg Ser Gly Val Asp Glu Gln Glu Trp Glu Gly Val Phe Ser Ala Leu 130 135 140

Ala Ala Ala Pro His Ile Glu Val Thr Gly Met Phe Thr His Leu Ala 145 150 155 160

Cys Ala Asp Glu Pro Glu Asn Pro Glu Thr Asp Arg Gln Ile Ile Ala 165 170 175

Phe Arg Arg Ala Leu Ala Leu Ala Arg Lys His Gly Leu Glu Cys Pro 180 185 190

Val Asn His Val Cys Asn Ser Pro Ala Phe Leu Thr Arg Ser Asp Leu 195 200 205

His Met Glu Met Val Arg Pro Gly Leu Ala Phe Tyr Gly Leu Glu Pro 210 215 220

Val Ala Gly Leu Glu His Gly Leu Lys Pro Ala Met Thr Trp Glu Ala 225 230 235 240

Lys Val Ser Val Val Lys Gln Ile Glu Ala Gly Gln Gly Thr Ser Tyr 245 250 255

Gly Leu Thr Trp Arg Ala Glu Asp Arg Gly Phe Val Ala Val Val Pro

			260					265					270	1		
Ala	Gly	Tyr 275		Asp	Gly	Met	Pro 280	-	His	Ala	Gln	Gly 285	_	Phe	Ser	
Val	Thr 290		Asp	Gly	Leu	Asp 295		Pro	Gln	Val	Gly 300		Val	Cys	Met	
Asp 305	Gln	Phe	Val	Ile	Ser 310	Leu	Gly	Asp	Asn	Pro 315		Gly	Val	Glu	Ala 320	
Gly	Ala	Lys	Ala	Val 325	Ile	Phe	Gly	Glu	Asn 330		His	Asp	Ala	Thr 335	Asp	
Phe	Ala	Glu	Arg 340	Leu	Asp	Thr	Ile	Asn 345	Tyr	Glu	Val	Val	Cys 350	_	Pro	
Thr	Gly	Arg 355	Thr	Val	Arg	Ala	Tyr 360	Val								
<21:	0> 1: l> 1: 2> DI 3> Co	152 NA	ebac:	teri	um gi	lutaı	micu	m ·								
<222	L> CI 2> (:	DS 101) KN006		129)				·								
)> 13	-	cagca	aagge	eg ge	ccac	ccgaa	a ccg	tati	ttgg	tgga	aggag	gta g	ggagg	gatga	60
										ctcc	atg		att	gat	aca	115
										act Thr						163
										gcc Ala						211
										atg Met						259
gcc Ala	cga Arg 55	ggg Gly	atc Ile	acc Thr	tgc Cys	gca Ala 60	acc Thr	att Ile	ggc Gly	gag Glu	gcg Ala 65	gaa Glu	att Ile	ttt Phe	gcc Ala	307
										tat Tyr 80						355
										ccc Pro						403

														Arg	gaa Glu	451
gat Asp	atc Ile	aag Lys 120	Ala	ctg Leu	att	gaa Glu	gtg Val 125	gat Asp	tcg Ser	gga Gly	cat His	cgt Arg 130	aga Arg	agt Ser	gga Gly	499
gtc Val	acg Thr 135	Ala	act Thr	gct Ala	tca Ser	gaa Glu 140	ttg Leu	agt Ser	cag Gln	atc	cgc Arg 145	gag Glu	gcg Ala	ctg Leu	ggc Gly	547
											His				ccg Pro 165	595
gga Gly	aat Asn	ggt Gly	gag Glu	cag Gln 170	gca Ala	gca Ala	gct Ala	gat Asp	gag Glu 175	ctt Leu	cag Gln	gct Ala	cta Leu	aac Asn 180	aac Asn	643
agc Ser	gtc Val	cag Gln	cga Arg 185	ctt Leu	gct Ala	ggc Gly	ggc Gly	ctg Leu 190	act Thr	tct Ser	ggc Gly	ggt Gly	tcc Ser 195	tcg Ser	ccg Pro	691
											cga Arg					739
Val	ttt Phe 215	aac Asn	gat Asp	tcc Ser	cag Gln	cag Gln 220	atc Ile	acc Thr	tcg Ser	gga Gly	gca Ala 225	tgc Cys	act Thr	gag Glu	aag Lys	787
											agc Ser					835
gat Asp	cgt Arg	cgg Arg	atc Ile	att Ile 250	ttg Leu	gat Asp	gcg Ala	gga Gly	tcc Ser 255	aaa Lys	atc Ile	ctc Leu	agc Ser	act Thr 260	gat Asp	883
aaa Lys	cca Pro	gca Ala	tgg Trp 265	att Ile	gat Asp	ggc Gly	aat Asn	ggt Gly 270	ttt Phe	gtt Val	ctg Leu	Gly	aat Asn 275	cct Pro	gaa Glu	931
gcc (Ala)	cga Arg	atc Ile 280	tct Ser	gct Ala	ttg Leu	tcg Ser	gag Glu 285	cat His	cac His	gca Ala	acc Thr	att Ile 290	ttc Phe	tgg Trp	cca Pro	979
gat a	aaa	gtg	cta	ctt	cca	gta	atc	ggg	gag	cag	ctc	aac	atc	gtg	ccc	
sp 1	Lys 295	Val	Leu	Leu		Val 300	Ile	Gly	Glu	Gln	Leu 305	Asn	Ile	Val	Pro	
ac (cat	gcc	tgc	aac	gtg	att	aat	ttg	gtg	gat	gag	gtc	tac	gtt	cgg	
sn I	His	Ala	Cys .		Val 315	Ile	Asn	Leu		Asp 320	Glu	Val	Tyr		Arg 325	
aa (gcc	gat	ggc	act	ttc	cgt	acc	tgg	aag	gta	gtt	gcc	cgc	ggc	aga	

Glu Ala Asp Gly Thr Phe Arg Thr Trp Lys Val Val Ala Arg Gly Arg 330 335 340

aac aat tagggaaacc tettgacett cac 1152 Asn Asn

<210> 132

<211> 343

<212> PRT

<213> Corynebacterium glutamicum

<400> 132

Met Met Ile Asp Thr Pro Ala Val Leu Ile Asp Arg Glu Arg Leu Thr 1 5 10 15

Ala Asn Ile Ser Arg Met Ala Ala His Ala Gly Ala His Glu Ile Ala 20 25 30

Leu Arg Pro His Val Lys Thr His Lys Ile Ile Glu Ile Ala Gln Met 35 40 45

Gln Val Asp Ala Gly Ala Arg Gly Ile Thr Cys Ala Thr Ile Gly Glu
50 55 60

Ala Glu Ile Phe Ala Gly Ala Gly Phe Thr Asp Ile Phe Ile Ala Tyr 65 70 75 80

Pro Leu Tyr Leu Thr Asp His Ala Val Gln Arg Leu Asn Ala Ile Pro 85 90 95

Gly Glu Ile Ser Ile Gly Val Asp Ser Val Glu Met Ala Gln Ala Thr 100 105 110

Ala Gly Leu Arg Glu Asp Ile Lys Ala Leu Ile Glu Val Asp Ser Gly
115 120 125

His Arg Arg Ser Gly Val Thr Ala Thr Ala Ser Glu Leu Ser Gln Ile 130 135 140

Arg Glu Ala Leu Gly Ser Arg Tyr Ala Gly Val Phe Thr Phe Pro Gly 145 150 155 160

His Ser Tyr Gly Pro Gly Asn Gly Glu Gln Ala Ala Ala Asp Glu Leu 165 170 175

Gln Ala Leu Asn Asn Ser Val Gln Arg Leu Ala Gly Gly Leu Thr Ser 180 185 190

Gly Gly Ser Ser Pro Ser Ala Gln Phe Thr Asp Ala Ile Asp Glu Met
195 200 205

Arg Pro Gly Val Tyr Val Phe Asn Asp Ser Gln Gln Ile Thr Ser Gly 210 215 220

Ala Cys Thr Glu Lys Gln Val Ala Met Thr Val Leu Ser Thr Val Val 225 230 235 240

Ser Arg Asn Val Ser Asp Arg Arg Ile Ile Leu Asp Ala Gly Ser Lys

Ile				245					250					255		
	Leu	Ser	Thr 260	Asp	Lys	Pro	Ala	Trp 265	Ile	Asp	Gly	Asn	Gly 270	Fhe	Val	
Leu	Gly	Asn 275	Pro	Glu	Ala	Arg	Ile 280		Ala	Leu	Ser	Glu 285	His	His	Ala	•
Thr	Ile 290	Phe	Trp	Pro	Asp	Lys 295	Val	Leu	Leu	Pro	Val 300	Ile	Gly	Glu	Gln	
Leu 305	Asn	Ile	Val	Pro	Asn 310	His	Ala	Суѕ	Asn	Val 315	Ile	Asn	Leu	Val	Asp 320	
Glu	Val	Tyr	Val	Arg 325	Glu	Ala	Asp	Gly	Thr 330	Phe	Arg	Thr	Trp	Lys 335	Val	
Val	Ala	Arg	Gly 340	Arg	Asn	Asn										
<212	0> 13 l> 87 2> DM 3> Co	79 VA	ebact	eri	ım g]	lutar	nicu	m								
<221 <222	<213> Corynebacterium glutamicum <220> <221> CDS <222> (101)(856) <223> RXA02536															
)> 13 aagtg		cacgo	gaac	ec to	ıtgta	ıtaad	c tto	gccto	caaa	gcgc	ectaç	ıgc t	gtgg	gattat	60
gcgt	atto	gee t	tgct	tcag	ga to	tega	acgaa	a tto	ecgat	aag	atg Met 1	gac Asp				115
											cag Gln					163
Leu ttg	Leu gtg	Arg ttt	Asp	Ala 10 gag	Ala gcg	Glu act	Lys tcg	Ala	Ala 15 agc	Glu ttt		Gly acg	Ala gga	Arg 20 agg	Val ctt	163 211
Leu ttg Leu gat	Leu gtg Val	Arg ttt Phe	Asp ccg Pro 25	Ala 10 gag Glu gag	Ala gcg Ala gag	Glu act Thr	tcg Ser gat	Ala caa Gln 30 ggc	Ala 15 agc Ser	Glu ttt Phe ttc	Gln ggt	Gly acg Thr	gga Gly 35	Arg 20 agg Arg	Val ctt Leu cga	
ttg Leu gat Asp	Leu gtg Val act Thr	ttt Phe cag Gln 40	Ccg Pro 25 gcg Ala	Ala 10 gag Glu gag Glu	Ala gcg Ala gag Glu	Glu act Thr ctc Leu	tcg Ser gat Asp 45	Ala caa Gln 30 ggc Gly	Ala 15 agc Ser gaa Glu	Glu ttt Phe ttc Phe	Gln ggt Gly tcc	acg Thr acc Thr 50	gga Gly 35 gcg Ala	Arg 20 agg Arg gta Val	Ctt Leu cga Arg	211
ttg Leu gat Asp aaa Lys	gtg Val act Thr tta Leu 55	ttt Phe cag Gln 40 gcc Ala	Ccg Pro 25 gcg Ala gat Asp	Ala 10 gag Glu gag Glu gag Glu	Ala gcg Ala gag Glu ctg Leu cag	Glu act Thr ctc Leu gac Asp 60	tcg Ser gat Asp 45 gtt Val	Ala caa Gln 30 ggc Gly gtc Val	Ala 15 agc Ser gaa Glu atc Ile	Glu ttt Phe ttc Phe gtt Val	ggt Gly tcc Ser gcg Ala	acg Thr acc Thr 50 ggc Gly	gga Gly 35 gcg Ala atg Met	Arg 20 agg Arg gta Val ttc Phe gtc	Ctt Leu Cga Arg acc Thr	211 259

att Ile	cac His	aca Thr	tat Tyr 105	gac Asp	gcg Ala	ttc Phe	ggt Gly	tat Tyr 110	agg Arg	gaa Glu	tcc Ser	gac Asp	act Thr 115	gtg Val	aaa Lys	451
ccg Pro	ggc Gly	gat Asp 120	gag Glu	ctg Leu	gtt Val	gta Val	ttc Phe 125	gag Glu	gtc Val	gac Asp	gat Asp	att Ile 130	aaa Lys	ttt Phe	ggt Gly	499
gtg Val	gcg Ala 135	aca Thr	tgc Cys	tac Tyr	gat Asp	att Ile 140	cga Arg	ttc Phe	cca Pro	gaa Glu	cag Gln 145	ttc Phe	aaa Lys	gac Asp	ctc Leu	547
											acg Thr					595
ggt Gly	cct Pro	gga Gly	aaa Lys	tta Leu 170	gaa Glu	caa Gln	tgg Trp	gaa Glu	gtc Val 175	ctc Leu	cct Pro	cgc Arg	gcg Ala	cgt Arg 180	gca Ala	643
											caa Gln					691
											GJÀ âââ					739
atg Met	gtg Val 215	aca Thr	aac Asn	cca Pro	cac His	ggt Gly 220	gaa Glu	gta Val	att Ile	gct Ala	agc Ser 225	gcg Ala	ggt Gly	tat Tyr	gag Glu	787
											ggt Gly					835
					gtt Val		taac	cact	gt d	taag	ggaat	c ac	:t			879
)> 13															
-211	2	(7)														

<211> 252

<212> PRT

<213> Corynebacterium glutamicum

<400> 134

Met Asp Asn Phe Ala Leu Leu Arg Asp Ala Ala Glu Lys Ala Ala Glu 1 5 10 15

Gln Gly Ala Arg Val Leu Val Phe Pro Glu Ala Thr Ser Gln Ser Phe 20 25 30

Gly Thr Gly Arg Leu Asp Thr Gln Ala Glu Glu Leu Asp Gly Glu Phe 35 40 45

Ser Thr Ala Val Arg Lys Leu Ala Asp Glu Leu Asp Val Val Ile Val 50 55 60

Ala Gly Met Phe Thr Pro Ala Asp Thr Val Gln Arg Gly Glu Lys Thr

Ile	. Ser	Arg	Val	Asn 85	Asn	Thr	Val	Leu	Ile 90	Ser	Gly	Ala	Gly	Leu 95		
Gln	Gly	Tyr	Asn 100	Lys	Ile	His	Thr	Tyr 105	Asp	Ala	Phe	Gly	Tyr 110	-	Glu	
Ser	Asp	Thr 115	Val	Lys	Pro	Gly	Asp 120	Glu	Leu	Val	Val	Phe 125	Glu	Val	Asp	
Asp	11e 130	Lys	Phe	Gly	Val	Ala 135	Thr	Суз	Tyr	Asp	Ile 140	Arg	Phe	Pro	Glu	
Gln 145	Phe	Lys	Asp	Leu	Ala 150	Arg	Asn	Gly	Ala	Gln 155	Ile	Ile	Vaľ	Val	Pro 160	
Thr	Ser	Trp	Gln	Asp 165	Gly	Pro	Gly	Lys	Leu 170	Glu	Gln	Trp	Glu	Val 175	Leu	
Pro	Arg	Ala	Arg 180	Ala	Leu	Asp	Ser	Thr 185	Cys	Trp	Ile	Val	Ala 190	Cys	Gly	
Gln	Ala	Arg 195	Leu	Pro	Glu	Glu	Leu 200	Arg	Asp	Glu	Arg	Lys 205	Gly	Pro	Thr	
Gly	Ile 210	Gly	His	Ser		Val 215	Thr	Asn	Pro	His	Gly 220	Glu	Val	Ile	Ala	
Ser 225	Ala	Gly	Tyr		Pro 230	Glu	Met	Leu	Ile	Ala 235	Asp	Ile	Asp	Val	Ser 240	
Gly	Leu	Ala	Lys	Ile 245	Arg	Glu	Ala		Pro 250	Val	Leu					
<211 <212	0> 13 L> 16 P> DN B> Co	35 IA	bact	eriu	m gl	utam	icum									
<222)> .> CD !> (1 !> RX	01).		12)												
	> 13 acgg		tgtc	gccg	c cg	ctgt	tgat	acc	gcag	cgc	gact	tgtt	ca c	acag	atatt	60
caac	aatt	ca c	ttcg	cagaç	g cai	tttaa	agga	att	tacad		atg (Met (115
acc Thr	atc Ile ,	tcg (Ser)	cac (His :	rgg a	att g [le /	gac (Asp (ggc (Sly <i>l</i>	gcg a	att t Ile S 15	cc (Ser)	cca (Pro S	er '	act :	ser (ggc 31y	163
aag Lys	acc (gct d Ala 1	ect g Pro N 25	gtc t /al T	ac a	aat d Asn I	ect o	gca a Ala 7 30	act o	gc (cag g Gln V	gtc a /al '	acc of Thr 1 35	gcc a Ala <i>l</i>	aat Asn	211

									gat Asp							259
	_	_	-	_	_				ctg Leu			-	_	_		307
									ctg Leu							355
									ggc Gly 95							403
									gtc Val							451
									aac Asn							499
							Gln		ctg Leu							547
									ccg Pro							595
									ttg Leu 175							643
									atc Ile							691
									ggc Gly							739
									gcg Ala							787
									act Thr							835
								Lys	aac Asn 255							883
							Ala		cag Gln			Asn				931
ggc	gct	gcc	ggt	gag	cgt	tgc	atg	gct	gtt	tct	gtg	gtc	ttg	gct	att	979

Gly Ala Ala Gly Glu Arg Cys Met Ala Val Ser Val Val Leu Ala Ile 280 285 290

gaa tot gtt gcc gac gag ctc att gag aag atc aag gag cgc atc gac 1027

Glu Ser Val Ala Asp Glu Leu Ile Glu Lys Ile Lys Glu Arg Ile Asp 295 300 305

acc ctg cgc atc ggc aac ggt gcc ggc gag cag ggc gag ccg cac 1075

Thr Leu Arg Ile Gly Asn Gly Ala Gly Asp Glu Gln Gly Glu Pro His 310 325

ctg ggc cca cta atc acc gac gtc cac cgc gac aag gtc gct tct tat 1123

Leu Gly Pro Leu Ile Thr Asp Val His Arg Asp Lys Val Ala Ser Tyr 330 335 340

gtc gac atc gct gag gcc gac ggc gcc aag atc atc gtg gac ggg cgt 1171

Val Asp Ile Ala Glu Ala Asp Gly Ala Lys Ile Ile Val Asp Gly Arg 345 350 355

aac tgc gcc gta gac ggg cac gag gag ggc ttc ttc ttc ggc cct acg 1219

Asn Cys Ala Val Asp Gly His Glu Glu Gly Phe Phe Gly Pro Thr 360 365 370

ctt atc gac gac atc cca ctc acg ttc cgc gcc tac acc gaa gaa atc 1267

Leu Ile Asp Asp Ile Pro Leu Thr Phe Arg Ala Tyr Thr Glu Glu Ile 375 380 385

ttc ggc ccg gtc ctc tct gtc gtt cgt gtc gca tcc ttc gac gag gca 1315

Phe Gly Pro Val Leu Ser Val Val Arg Val Ala Ser Phe Asp Glu Ala 390 400 405

att gag ctg atc aac tcc ggt gaa ttc ggc aac gga acc gca atc ttc 1363

Ile Glu Leu Ile Asn Ser Gly Glu Phe Gly Asn Gly Thr Ala Ile Phe
410 415 420

ace aac gat ggt gga geg gea ege ege tte eag eat gag ate gaa gtg 1411

Thr Asn Asp Gly Gly Ala Ala Arg Arg Phe Gln His Glu Ile Glu Val 425 430 435

ggc atg atc ggc atc aac gta cca atc cca gtg cct gtt gcg tac cac 1459

Gly Met Ile Gly Ile Asn Val Pro Ile Pro Val Pro Val Ala Tyr His
440 445 450

tcc ttc ggt ggt tgg aag aac tcc ctc ttc ggt gac gcc aag gca tat 1507

Ser Phe Gly Gly Trp Lys Asn Ser Leu Phe Gly Asp Ala Lys Ala Tyr 455 460 465

ggc act caa ggt ttt gat ttc ttc acc agg gaa aag gcg atc acc agc 1555

Gly Thr Gln Gly Phe Asp Phe Phe Thr Arg Glu Lys Ala Ile Thr Ser

470

475

480

485

cgt tgg ctc gac cca gca acc cac ggt ggc att aac ctc ggt ttc cca 1603 Arg Trp Leu Asp Pro Ala Thr His Gly Gly Ile Asn Leu Gly Phe Pro

cag aac gat taattgaagg agagcacagg act 1635 Gln Asn Asp

<210> 136

<211> 504

<212> PRT

<213> Corynebacterium glutamicum

<400> 136

Met Ser Glu Pro Gln Thr Ile Ser His Trp Ile Asp Gly Ala Ile Ser 1 5 10 15

Pro Ser Thr Ser Gly Lys Thr Ala Pro Val Tyr Asn Pro Ala Thr Gly
20 25 30

Gln Val Thr Ala Asn Val Ala Leu Ala Ser Gln Glu Glu Ile Asp Ala 35 40 45

Thr Ile Ala Ser Ala Thr Lys Ala Ala Lys Thr Trp Gly Asn Leu Ser 50 55 60

Ile Ala Lys Arg Gln Ala Val Leu Phe Asn Phe Arg Glu Leu Leu Asn 65 70 75 80

Ala Arg Lys Gly Glu Leu Ala Glu Ile Ile Thr Ala Glu His Gly Lys 85 90 95

Val Leu Ser Asp Ala Met Gly Glu Ile Leu Arg Gly Gln Glu Val Val 100 105 110

Glu Leu Ala Thr Gly Phe Pro His Leu Leu Lys Gly Ala Phe Asn Glu 115 120 125

Asn Val Ser Thr Gly Ile Asp Val Tyr Ser Leu Lys Gln Pro Leu Gly 130 135 140

Val Val Gly Ile Ile Ser Pro Phe Asn Phe Pro Ala Met Val Pro Met 145 150 155 160

Trp Phe Phe Pro Ile Ala Ile Ala Ala Gly Asn Ala Val Ile Leu Lys 165 170 175

Pro Ser Glu Lys Asp Pro Ser Ala Ala Leu Trp Met Ala Gln Ile Trp 180 185 190

Lys Glu Ala Gly Leu Pro Asp Gly Val Phe Asn Val Leu Gln Gly Asp
195 200 205

Lys Leu Ala Val Asp Gly Leu Leu Asn Ser Pro Asp Val Ser Ala Ile 210 215 220

Ser Phe Val Gly Ser Thr Pro Ile Ala Lys Tyr Ile Tyr Glu Thr Ser 225 230 235 240

Ala Lys Asn Gly Lys Arg Val Gln Ala Leu Gly Gly Ala Lys Asn His 245 250 255

Met Leu Val Leu Pro Asp Ala Asp Leu Asp Leu Val Ala Asp Gln Ala 260 265 270

Ile Asn Ala Gly Tyr Gly Ala Ala Gly Glu Arg Cys Met Ala Val Ser 275 280 285

Val Val Leu Ala Ile Glu Ser Val Ala Asp Glu Leu Ile Glu Lys Ile 290 295 300

Lys Glu Arg Ile Asp Thr Leu Arg Ile Gly Asn Gly Ala Gly Asp Glu 305 310 315 320

Gln Gly Glu Pro His Leu Gly Pro Leu Ile Thr Asp Val His Arg Asp 325 330 335

Lys Val Ala Ser Tyr Val Asp Ile Ala Glu Ala Asp Gly Ala Lys Ile 340 345 350

Ile Val Asp Gly Arg Asn Cys Ala Val Asp Gly His Glu Glu Gly Phe 355 360 365

Phe Phe Gly Pro Thr Leu Ile Asp Asp Ile Pro Leu Thr Phe Arg Ala 370 375 380

Tyr Thr Glu Glu Ile Phe Gly Pro Val Leu Ser Val Val Arg Val Ala 385 390 395 400

Ser Phe Asp Glu Ala Ile Glu Leu Ile Asn Ser Gly Glu Phe Gly Asn 405 410 415

Gly Thr Ala Ile Phe Thr Asn Asp Gly Gly Ala Ala Arg Arg Phe Gln 420 425 430

His Glu Ile Glu Val Gly Met Ile Gly Ile Asn Val Pro Ile Pro Val
435
440
445

Pro Val Ala Tyr His Ser Phe Gly Gly Trp Lys Asn Ser Leu Phe Gly 450 455 460

Asp Ala Lys Ala Tyr Gly Thr Gln Gly Phe Asp Phe Phe Thr Arg Glu 465 470 475 480

Lys Ala Ile Thr Ser Arg Trp Leu Asp Pro Ala Thr His Gly Gly Ile 485 490 495

Asn Leu Gly Phe Pro Gln Asn Asp 500

<210> 137

<211> 531

<212> DNA

<213> Corynebacterium glutamicum

<220>

<22	1> C 2> (3> R	101)	-	08)												,
	0> 1		tgtt	gccg	ga t	cgaa	atat	t cc	tttc	cttg	tca	tctc	acg	ctat	gatttc	60
taa	aact	tgc	agga	caac	cc c	cata	agga	c ac	caca	ggac	-	_	-	acc Thr		11
	gga Gly				His											163
	gtt Val															211
	atc Ile												Asn			259
-	ctg Leu 55				-					-		_				307
	atc Ile															355
	atc Ile															403
	cca Pro															451
ggc Gly	aac Asn	gat Asp 120	ctt Leu	gcg Ala	gaa Glu	gca Ala	cta Leu 125	cct Pro	gga Gly	tcc Ser	ggg Gly	ctt Leu 130	ttg Leu	acg Thr	tcg Ser	499
	agc Ser 135		tago	egtt	tta q	gctc	gccaa	at at	:t							531
<21 <21	0> 13 1> 13 2> PF 3> Co	36 RT	ebact	eriu	ım g]	lutan	nicun	a								
	0> 13															
Met 1	Leu	Arg	Thr	Ile 5	Leu	Gly	Ser	Lys	Ile 10	His	Arg	Ala	Thr	Val 15	Thr	
Gln	Ala	Asp	Leu 20	Asp	Tyr	Val	Gly	Ser 25	Val	Thr	Ile	Asp	Ala 30	Asp	Leu ·	
Val	His	Ala	Ala	Gly	Leu	Ile	Glu	Gly	Glu	Lys	Val	Ala	Ile	Val	Asp	

		35					40					45				
Ile	Thr 50	Asn	Gly	Ala	Arg	Leu 55	Glu	Thr	Tyr	Val	Ile 60	Val	Gly	Asp	Ala	
Gly 65	Thr	Gly	Asn	Ile	Cys 70	Ile	Asn	Gly	Ala	Ala 75	Ala	His	Leu	Ile	Asn 80	
Pro	Gly	Asp	Leu	Val 85	Ile	Ile	Met	Ser	Tyr 90	Leu	Gln	Ala	Thr	Asp 95	Ala	
Glu	Ala	Lys	Ala 100	Tyr	Glu	Pro	Lys	Ile 105	Val	His	Val	Asp	Ala 110	Asp	Asn	
Arg	Ile	Val 115	Ala	Leu	Gly	Asn	Asp 120	Leu	Ala	Glu	Ala	Leu 125	Pro	Gly	Ser	
Gly	Leu 130	Leu	Thr	Ser	Arg	Ser 135	Ile									
<211 <212	0> 13 l> 10 2> DI 3> Co)53 NA	ebact	eri	ım g]	lutar	nicum	n								
<222)> l> CI 2> (1 3> R)	LO1).		30)												
)> 13 ccca		atto	gctt	g ca	actca	accca	a ago	cgtt	tag	caaa	attga	ac o	tcac	gttca	60
gtg	ccaç	gaa a					accca				atg	ctc	acc		aac	60 115
gtgd	ccaç	gaa agtt o	catti	ctcat gcc	caa	agtto caa		a aaa	gcc	aggc cct	atg Met 1	ctc Leu gtt	acc Thr	ctc Leu cga	aac Asn 5 acg	
gtgd taat gat Asp	gtc Val	gaa a gtt o atc Ile ttc	acc Thr	gcc Ala 10	caa Gln gac	caa Gln	ctaga cga	a aaa acc Thr	gcc Ala 15	cct Pro	atg Met 1 cat His	ctc Leu gtt Val	acc Thr cga Arg	ctc Leu cga Arg 20	aac Asn 5 acg Thr	115
gtgd taat gat Asp cca Pro	gtc Val ctt Leu	atc Ile ttc Phe	acc Thr gaa Glu 25	gcc Ala 10 gca Ala	caa Gln gac Asp	caa Gln ccc Pro	cga Arg	acc Thr gac Asp 30	gcc Ala 15 ggc Gly	cct Pro aca Thr	atg Met 1 cat His caa Gln	ctc Leu gtt Val atc Ile	acc Thr cga Arg tgg Trp 35	ctc Leu cga Arg 20 atc Ile	aac Asn 5 acg Thr aaa Lys	115 163
gat gat Asp cca Pro gca Ala	gtc Val ctt Leu gag Glu	atc Ile ttc Phe ttc Phe 40 cag	acc Thr gaa Glu 25 ctc Leu	gcc Ala 10 gca Ala caa Gln	caa Gln gac Asp aag Lys	caa Gln ccc Pro tgc Cys	cga Arg atc Ile	acc Thr gac Asp 30 gtg Val	gcc Ala 15 ggc Gly ttc Phe	cct Pro aca Thr aaa Lys	atg Met 1 cat His caa Gln acg Thr	ctc Leu gtt Val atc 11e cgt Arg 50	acc Thr cga Arg tgg Trp 35 gga Gly	ctc Leu cga Arg 20 atc Ile gca Ala	aac Asn 5 acg Thr aaa Lys ttc Phe	115 163 211
gat gat Asp cca Pro gca Ala aac Asn	gtc Val ctt Leu gag Glu cgc Arg 55	atc Ile ttc Phe ttc Phe 40 cag Gln gtc	acc Thr gaa Glu 25 ctc Leu ctc Leu	gcc Ala 10 gca Ala caa Gln gca Ala	caa Gln gac Asp aag Lys gct Ala	caa Gln ccc Pro tgc Cys tcg Ser 60	cga Arg atc Ile ggc Gly 45	a aac acc Thr gac Asp 30 gtg Val aac Asn	gcc Ala 15 ggc Gly ttc Phe gga Gly	cct Pro aca Thr aaa Lys cta Leu	atg Met 1 cat His caa Gln acg Thr ctc Leu 65	ctc Leu gtt Val atc Ile cgt Arg 50 gac Asp	acc Thr cga Arg tgg Trp 35 gga Gly cca Pro	ctc Leu cga Arg 20 atc Ile gca Ala acg Thr	aac Asn 5 acg Thr aaa Lys ttc Phe gtt Val	115163211259

														Thr	gtg Val	451
															acc Thr	499
ttt Phe	gag Glu 135	tcg Ser	gaa Glu	act Thr	ggt Gly	gct Ala 140	ctg Leu	ttt Phe	tgc Cys	cac His	gcc Ala 145	tac Tyr	gac Asp	cag Gln	ccc Pro	547
	atc Ile															595
	ccc															643
	gca Ala															691
	gtt Val															739
	caa Gln 215															787
	gct Ala															835
	cca Pro															883
cgc Arg	cac His	ctc Leu	tgg Trp 265	gac Asp	aac Asn	tac Tyr	cgc Arg	atc Ile 270	cct Pro	gcc Ala	gag Glu	cat His	ggc Gly 275	gct Ala	gcc Ala	931
	gca Ala					Thr										979
gaa 1027	aaa	gtg	gca	gtc	att	gtg	tgc	gga	gcg	aac	act	gac	ctc	aca	aca	
Glu	Lys 295	Val	Ala	Val		Val 300	Cys	Gly	Ala		Thr 305	Asp	Leu	Thr	Thr	
ctg 1053 Leu 310		gtga	tt t	caaa	cgat	c ac	a ·									

<210> 140

- <211> 310
- <212> PRT
- <213> Corynebacterium glutamicum

<400> 140

- Met Leu Thr Leu Asn Asp Val Ile Thr Ala Gln Gln Arg Thr Ala Pro

 1 5 10 15
- His Val Arg Arg Thr Pro Leu Phe Glu Ala Asp Pro Ile Asp Gly Thr 20 25 30
- Gln Ile Trp Ile Lys Ala Glu Phe Leu Gln Lys Cys Gly Val Phe Lys
 35 40 45
- Thr Arg Gly Ala Phe Asn Arg Gln Leu Ala Ala Ser Glu Asn Gly Leu 50 55 60
- Leu Asp Pro Thr Val Gly Ile Val Ala Ala Ser Gly Gly Asn Ala Gly 65 70 75 80
- Leu Ala Asn Ala Phe Ala Ala Ala Ser Leu Ser Val Pro Ala Thr Val 85 90 95
- Leu Val Pro Glu Thr Ala Pro Gln Val Lys Val Asp Arg Leu Lys Gln 100 105 110
- Tyr Gly Ala Thr Val Gln Gln Ile Gly Ser Glu Tyr Ala Glu Ala Phe 115 120 125
- Glu Ala Ala Gln Thr Phe Glu Ser Glu Thr Gly Ala Leu Phe Cys His 130 135 140
- Ala Tyr Asp Gln Pro Asp Ile Ala Ala Gly Ala Gly Val Ile Gly Leu 145 150 155 160
- Glu Ile Val Glu Asp Leu Pro Asp Val Asp Thr Ile Val Val Ala Val 165 170 175
- Gly Gly Gly Leu Tyr Ala Gly Ile Ala Ala Val Val Ala Ala His 180 185 190
- Asp Ile Lys Val Val Ala Val Glu Pro Ser Lys Ile Pro Thr Leu His 195 200 205
- Asn Ser Leu Ile Ala Gly Gln Pro Val Asp Val Asn Val Ser Gly Ile 210 215 220
- Ala Ala Asp Ser Leu Gly Ala Arg Gln Ile Gly Arg Glu Ala Phe Asp 225 230 235 240
- Ile Ala Thr Ala His Pro Pro Ile Gly Val Leu Val Asp Asp Glu Ala 245 250 255
- Ile Ile Ala Arg Arg His Leu Trp Asp Asn Tyr Arg Ile Pro Ala 260 265 270
- Glu His Gly Ala Ala Ala Leu Ala Ser Leu Thr Ser Gly Ala Tyr 275 280 285
- Lys Pro Ala Ala Asp Glu Lys Val Ala Val Ile Val Cys Gly Ala Asn 290 295 300

Thr Asp Leu Thr Thr Leu 305 <210> 141 <211> 1470 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1447) <223> RXA01850 <400> 141 ttcgtgcaac ttcagactct tacggaggcg atggaccaaa aacaactaca atcaagcaga 60 tcaccttgta caccaccaga gaaaaggccc accctcagcc atg gct atc agt gtt Met Ala Ile Ser Val gtt gat cta ttt agc atc ggt atc gga cca tca tcc tca cat acc gtc 163 Val Asp Leu Phe Ser Ile Gly Ile Gly Pro Ser Ser His Thr Val ggc ccc atg aga gcc gcc ctc acg tat atc tct gaa ttt ccc agc tcg 211 Gly Pro Met Arg Ala Ala Leu Thr Tyr Ile Ser Glu Phe Pro Ser Ser cat gtc gat atc acg ttg cac gga tcc ctt gcc gcc acc ggt aaa ggc His Val Asp Ile Thr Leu His Gly Ser Leu Ala Ala Thr Gly Lys Gly 45 cac tgc act gac cgg gcg gta tta ctg ggt ctg gtg gga tgg gaa cca 307 His Cys Thr Asp Arg Ala Val Leu Leu Gly Leu Val Gly Trp Glu Pro 55 60 acg ata gtt ccc att gat gct gca ccc tca ccc ggc gcg ccg att cct Thr Ile Val Pro Ile Asp Ala Ala Pro Ser Pro Gly Ala Pro Ile Pro 70 75 gcg aaa ggt tot gtg aac ggg cca aag gga acg gtg tog tat too ctg Ala Lys Gly Ser Val Asn Gly Pro Lys Gly Thr Val Ser Tyr Ser Leu 95 acg ttt gat cct cat cct ctt cca gaa cac ccc aat gcc gtt acc ttt Thr Phe Asp Pro His Pro Leu Pro Glu His Pro Asn Ala Val Thr Phe 105 110 aaa gga tca acc aca agg act tat ttg tcg gtg ggt ggt ggg ttc att 499 Lys Gly Ser Thr Thr Arg Thr Tyr Leu Ser Val Gly Gly Phe Ile 120 125 atg acg ttg gag gat ttc cgg aag ctg gac gat atc gga tca ggt gtg 547 Met Thr Leu Glu Asp Phe Arg Lys Leu Asp Asp Ile Gly Ser Gly Val tca acc att cat cca gag gca gag gtg cct tgt cct ttt cag aag agt Ser Thr Ile His Pro Glu Ala Glu Val Pro Cys Pro Phe Gln Lys Ser 150 155 160 165

tcc caa Ser Gln															643
aat gag Asn Glu															691
gat cga Asp Arg															739
acg ccg Thr Pro 215															787
cag gta Gln Val 230															835
gat ctt Asp Leu															883
gaa gaa Glu Glu															931
gct gcg Ala Ala															979
aca ggt	ttt	ggg	gcg	gag	cag	gcg	cgg	acg	ttt	ttg	tat	acc	gcg	ggt	
1027 Thr Gly 295	Phe	Gly	Ala	Glu	Gln 300	Ala	Arg	Thr	Phe	Leu 305	Tyr	Thr	Ala	Gly	
gcg gtg 1075	ggc	atc	atc	att	aag	gaa	aat	gcc	tcg	atc	tct	ggc	gcg	gag	
Ala Val 310	Gly	Ile	Ile	Ile 315	Lys	Glu	Asn	Ala	Ser 320	Ile	Ser	Gly	Ala	Glu 325	
gtg ggg 1123	tgt	cag	ggt	gag	gtt	ggt	tca	gcg	tcc	gcg	atg	gcg	gct	gcc	
Val Gly	Cys	Gln	Gly 330	Glu	Val	Gly	Ser	Ala 335	Ser	Ala	Met	Ala	Ala 340	Ala	
ggg ttg 1171	tgt	gca	gtc	tta	ggt	ggt	tct	ccg	caa	cag	gtg	gaa	aac	gcc	
Gly Leu	Суз	Ala 345	Val	Leu	Gly	Gly	Ser 350	Pro	Gln	Gln	Val	Glu 355	Asn	Ala	
gcg gag 1219	att	gcg	ttg	gag	cac	aat	ttg	gga	ttg	acg	tgc	gat	ccg	gtg	
Ala Glu	Ile 360	Ala	Leu	Glu	His	Asn 365	Leu	Gly	Leu	Thr	Cys 370	Asp	Pro	Val	
ggc ggg 1267	tta	gtg	cag	att	ccg	tgt	att	gaa	cgc	aac	gct	att	gct	gcc	
Gly Gly	Leu	Val	Gln	Ile	Pro	Cys	Ile	Glu	Arg	Asn	Ala	Ile	Ala	Ala	

375 380 385

atg aag too atc aat gog goa agg ott goo ogg att ggt gat ggo aac 1315

Met Lys Ser Ile Asn Ala Ala Arg Leu Ala Arg Ile Gly Asp Gly Asn 390 395 400 405

aat cgc gtg agt ttg gat gtg gtg gtc acg atg gct gcc acc ggc 1363

Asn Arg Val Ser Leu Asp Asp Val Val Val Thr Met Ala Ala Thr Gly
410 415 420

cgg gac atg ctg acc aaa tat aag gaa acg tcc ctt ggt ggt ttg gca 1411

Arg Asp Met Leu Thr Lys Tyr Lys Glu Thr Ser Leu Gly Gly Leu Ala 425 430 435

acc acc ttg ggc ttc ccg gtg tcg atg acg gag tgt tagcggtacg 1457

Thr Thr Leu Gly Phe Pro Val Ser Met Thr Glu Cys
440
445

gctttaacac ggc 1470

<210> 142

<211> 449

<212> PRT

<213> Corynebacterium glutamicum

<400> 142

Met Ala Ile Ser Val Val Asp Leu Phe Ser Ile Gly Ile Gly Pro Ser 1 5 10 15

Ser Ser His Thr Val Gly Pro Met Arg Ala Ala Leu Thr Tyr Ile Ser 20 25 30

Glu Phe Pro Ser Ser His Val Asp Ile Thr Leu His Gly Ser Leu Ala 35 40 45

Ala Thr Gly Lys Gly His Cys Thr Asp Arg Ala Val Leu Leu Gly Leu 50 55 60

Val Gly Trp Glu Pro Thr Ile Val Pro Ile Asp Ala Ala Pro Ser Pro 65 70 75 80

Gly Ala Pro Ile Pro Ala Lys Gly Ser Val Asn Gly Pro Lys Gly Thr 85 90 95

Val Ser Tyr Ser Leu Thr Phe Asp Pro His Pro Leu Pro Glu His Pro 100 105 110

Asn Ala Val Thr Phe Lys Gly Ser Thr Thr Arg Thr Tyr Leu Ser Val 115 120 125

Gly Gly Gly Phe Ile Met Thr Leu Glu Asp Phe Arg Lys Leu Asp Asp 130 135 140

Ile Gly Ser Gly Val Ser Thr Ile His Pro Glu Ala Glu Val Pro Cys 145 150 155 160

Pro Phe Gln Lys Ser Ser Gln Leu Leu Ala Tyr Gly Arg Asp Phe Ala 165 170 175

Glu Val Met Lys Asp Asn Glu Arg Leu Ile His Gly Asp Leu Gly Thr 180 185 190

Val Asp Ala His Leu Asp Arg Val Trp Gln Ile Met Gln Glu Cys Val 195 200 205

Ala Gln Gly Ile Ala Thr Pro Gly Ile Leu Pro Gly Gly Leu Asn Val 210 215 220

Gln Arg Arg Ala Pro Gln Val His Ala Leu Ile Ser Asn Gly Asp Thr 225 230 235 240

Cys Glu Leu Gly Ala Asp Leu Asp Ala Val Glu Trp Val Asn Leu Tyr 245 250 255

Ala Leu Ala Val Asn Glu Glu Asn Ala Ala Gly Gly Arg Val Val Thr 260 265 270

Ala Pro Thr Asn Gly Ala Ala Gly Ile Ile Pro Ala Val Met His Tyr 275 280 285

Ala Arg Asp Phe Leu Thr Gly Phe Gly Ala Glu Gln Ala Arg Thr Phe 290 295 300

Leu Tyr Thr Ala Gly Ala Val Gly Ile Ile Ile Lys Glu Asn Ala Ser 305 310 315 320

Ile Ser Gly Ala Glu Val Gly Cys Gln Gly Glu Val Gly Ser Ala Ser 325 330 335

Ala Met Ala Ala Gly Leu Cys Ala Val Leu Gly Gly Ser Pro Gln 340 345 350

Gln Val Glu Asn Ala Ala Glu Ile Ala Leu Glu His Asn Leu Gly Leu 355 360 365

Thr Cys Asp Pro Val Gly Gly Leu Val Gln Ile Pro Cys Ile Glu Arg 370 375 380

Asn Ala Ile Ala Ala Met Lys Ser Ile Asn Ala Ala Arg Leu Ala Arg 385 390 395 400

Ile Gly Asp Gly Asn Asn Arg Val Ser Leu Asp Asp Val Val Thr
405 410 415

Met Ala Ala Thr Gly Arg Asp Met Leu Thr Lys Tyr Lys Glu Thr Ser 420 425 430

Leu Gly Gly Leu Ala Thr Thr Leu Gly Phe Pro Val Ser Met Thr Glu 435 440 445

Cys

<210> 143 <211> 1425 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1402) <223> RXA00580 <400> 143 ttttatatat gggtatcggc ggtctatgct tgtgggcgta cctgtcccgc gagtgaggtc 60 ttacgcgcgg gattcgtctt gtgaaaggtt agctgacctg atg acc gat gcc cac Met Thr Asp Ala His caa gcg gac gat gtc cgt tac cag cca ctg aac gag ctt gat cct gag 163 Gln Ala Asp Asp Val Arg Tyr Gln Pro Leu Asn Glu Leu Asp Pro Glu 10 gtg gct gct gcc atc gct ggg gaa ctt gcc cgt caa cgc gat aca tta 211 Val Ala Ala Ala Ile Ala Gly Glu Leu Ala Arg Gln Arg Asp Thr Leu 25 gag atg atc gcg tct gag aac ttc gtt ccc cgt tct gtt ttg cag gcg 259 Glu Met Ile Ala Ser Glu Asn Phe Val Pro Arg Ser Val Leu Gln Ala 40 cag ggt tct gtt ctt acc aat aag tat gcc gag ggt tac cct ggc cgc 307 Gln Gly Ser Val Leu Thr Asn Lys Tyr Ala Glu Gly Tyr Pro Gly Arg 55 cgt tac tac ggt ggt tgc gaa caa gtt gac atc att gag gat ctt gca 355 Arg Tyr Tyr Gly Gly Cys Glu Gln Val Asp Ile Ile Glu Asp Leu Ala 75 cgt gat cgt gcg aag gct ctc ttc ggt gca gag ttc gcc aat gtt cag 403 Arg Asp Arg Ala Lys Ala Leu Phe Gly Ala Glu Phe Ala Asn Val Gln cct cac tct ggc gca cag gct aat gct gtg ctg atg act ttg gct 451 Pro His Ser Gly Ala Gln Ala Asn Ala Val Leu Met Thr Leu Ala 105 499 gag cca ggc gac aag atc atg ggt ctg tct ttg gct cat ggt ggt cac Glu Pro Gly Asp Lys Ile Met Gly Leu Ser Leu Ala His Gly Gly His 120 125 547 ttg acc cac gga atg aag ttg aac ttc tcc gga aag ctg tac gag gtt Leu Thr His Gly Met Lys Leu Asn Phe Ser Gly Lys Leu Tyr Glu Val 140 135 595 gtt gcg tac ggt gtt gat cct gag acc atg cgt gtt gat atg gat cag Val Ala Tyr Gly Val Asp Pro Glu Thr Met Arg Val Asp Met Asp Gln 150 155 gtt cgt gag att gct ctg aag gag cag cca aag gta att atc gct ggc Val Arg Glu Ile Ala Leu Lys Glu Gln Pro Lys Val Ile Ile Ala Gly 180 170 tgg tct gca tac cct cgc cac ctt gat ttc gag gct ttc cag tct att 691 Trp Ser Ala Tyr Pro Arg His Leu Asp Phe Glu Ala Phe Gln Ser Ile

> 185 190 195

gct gcg gaa gtt ggc gcg aag ctg tgg gtc gat atg gct cac ttc gct 739 Ala Ala Glu Val Gly Ala Lys Leu Trp Val Asp Met Ala His Phe Ala 200 205 ggt ctt gtt gct gct ggt ttg cac cca agc cca gtt cct tac tct gat 787 Gly Leu Val Ala Ala Gly Leu His Pro Ser Pro Val Pro Tyr Ser Asp 215 gtt gtt tet tee act gte cae aag act ttg ggt gga eet egt tee gge 835 Val Val Ser Ser Thr Val His Lys Thr Leu Gly Gly Pro Arg Ser Gly atc att ctg gct aag cag gag tac gcg aag aag ctg aac tct tcc gta 883 Ile Ile Leu Ala Lys Gln Glu Tyr Ala Lys Lys Leu Asn Ser Ser Val 250 255 ttc cca ggt cag cag ggt ggt cct ttg atg cac gca gtt gct gcg aag 931 Phe Pro Gly Gln Gly Gly Pro Leu Met His Ala Val Ala Ala Lys 265 270 275 gct act tct ttg aag att gct ggc act gag cag ttc cgt gac cgt cag 979 Ala Thr Ser Leu Lys Ile Ala Gly Thr Glu Gln Phe Arg Asp Arg Gln 280 285 get ege acg ttg gag ggt get ege att ett get gag egt etg act get 1027 Ala Arg Thr Leu Glu Gly Ala Arg Ile Leu Ala Glu Arg Leu Thr Ala tet gat geg aag gee get gge gtg gat gte ttg ace ggt gge act gat 1075 Ser Asp Ala Lys Ala Ala Gly Val Asp Val Leu Thr Gly Gly Thr Asp 310 gtg cac ttg gtt ttg gct gat ctg cgt aac tcc cag atg gat ggc cag 1123 Val His Leu Val Leu Ala Asp Leu Arg Asn Ser Gln Met Asp Gly Gln 330 335 340 cag gcg gaa gat ctg ctg cac gag gtt ggt atc act gtg aac cgt aac 1171 Gln Ala Glu Asp Leu Leu His Glu Val Gly Ile Thr Val Asn Arg Asn 345 gcg gtt cct ttc gat cct cgt cca cca atg gtt act tct ggt ctg cgt 1219 Ala Val Pro Phe Asp Pro Arg Pro Pro Met Val Thr Ser Gly Leu Arg 360 365 370 att ggt act cct gcg ctg gct acc cgt ggt ttc gat att cct gca ttc Ile Gly Thr Pro Ala Leu Ala Thr Arg Gly Phe Asp Ile Pro Ala Phe 375 380 act gag gtt gca gac atc att ggt act gct ttg gct aat ggt aag tcc Thr Glu Val Ala Asp Ile Ile Gly Thr Ala Leu Ala Asn Gly Lys Ser 390

400

405

395

gca gac att gag tot otg ogt ggc ogt gta gca aag ott gct gca gat 1363

Ala Asp Ile Glu Ser Leu Arg Gly Arg Val Ala Lys Leu Ala Ala Asp 410 415 420

tac cca ctg tat gag ggc ttg gaa gac tgg acc atc gtc taagtttttc 1412

Tyr Pro Leu Tyr Glu Gly Leu Glu Asp Trp Thr Ile Val 425 430

tttgagtttt cat 1425

<210> 144

<211> 434

<212> PRT

<213> Corynebacterium glutamicum

<400> 144

Met Thr Asp Ala His Gln Ala Asp Asp Val Arg Tyr Gln Pro Leu Asn 1 5 10 15

Glu Leu Asp Pro Glu Val Ala Ala Ala Ile Ala Gly Glu Leu Ala Arg 20 25 30

Gln Arg Asp Thr Leu Glu Met Ile Ala Ser Glu Asn Phe Val Pro Arg 35 40 45

Ser Val Leu Gln Ala Gln Gly Ser Val Leu Thr Asn Lys Tyr Ala Glu 50 55 60

Gly Tyr Pro Gly Arg Arg Tyr Tyr Gly Gly Cys Glu Gln Val Asp Ile 65 70 75 80

Ile Glu Asp Leu Ala Arg Asp Arg Ala Lys Ala Leu Phe Gly Ala Glu 85 90 95

Phe Ala Asn Val Gln Pro His Ser Gly Ala Gln Ala Asn Ala Val 100 105 110

Leu Met Thr Leu Ala Glu Pro Gly Asp Lys Ile Met Gly Leu Ser Leu 115 120 125

Ala His Gly Gly His Leu Thr His Gly Met Lys Leu Asn Phe Ser Gly 130 135 140

Lys Leu Tyr Glu Val Val Ala Tyr Gly Val Asp Pro Glu Thr Met Arg 145 150 155 160

Val Asp Met Asp Gln Val Arg Glu Ile Ala Leu Lys Glu Gln Pro Lys 165 170 175

Val Ile Ile Ala Gly Trp Ser Ala Tyr Pro Arg His Leu Asp Phe Glu 180 185 190

Ala Phe Gln Ser Ile Ala Ala Glu Val Gly Ala Lys Leu Trp Val Asp 195 200 205

Met Ala His Phe Ala Gly Leu Val Ala Ala Gly Leu His Pro Ser Pro 210 215 220

Val 225	Pro	Tyr	Ser	Asp	Val 230	Val	Ser	Ser	Thr	Val 235		Lys	Thr	Leu	Gly 240	
Gly	Pro	Arg	Ser	Gly 245	Ile	Ile	Leu	Ala	Lys 250	Gln	Glu	Tyr	Ala	Lys 255	Lys	
Leu	Asn	Ser	Ser 260	Val	Phe	Pro	Gly	Gln 265	Gln	Gly	Gly	Pro	Leu 270		His	
Ala	Val	Ala 275	Ala	Lys	Ala	Thr	Ser 280	Leu	Lys	Ile	Ala	Gly 285	Thr	Glu	Gln	
Phe	Arg 290	Asp	Arg	Gln	Ala	Arg 295	Thr	Leu	Glu	Gly	Ala 300	Arg	Ile	Leu	Ala	
Glu 305	Arg	Leu	Thr	Ala	Ser 310	Asp	Ala	Lys	Ala	Ala 315	Gly	Val	Asp	Val	Leu 320	
Thr	Gly	Gly	Thr	Asp 325	Val	His	Leu	Val	Leu 330	Ala	Asp	Leu	Arg	Asn 335	Ser	
Gln	Met	Asp	Gly 340	Gln	Gln	Ala	Glu	Asp 345	Leu	Leu	His	Glu	Val 350	Gly	Ile	
Thr	Val	Asn 355	Arg	Asn	Ala	Val	Pro 360	Phe	Asp	Pro	Arg	Pro 365	Pro	Met	Val	
Thr	Ser 370	Gly	Leu	Arg	Ile	Gly 375	Thr	Pro	Ala	Leu	Ala 380	Thr	Arg	Gly	Phe	
Asp 385	Ile	Pro	Ala	Phe	Thr 390	Glu	Val	Ala	Asp	Ile 395	Ile	Gly	Thr	Ala	Leu 400	
Ala	Asn	Gly	Lys	Ser 405	Ala	Asp	Ile	Glu	Ser 410	Leu	Arg	Gly	Arg	Val 415	Ala	
Lys	Leu	Ala	Ala 420	Asp	Tyr	Pro	Leu	Tyr 425	Glu	Gly	Leu	Glu	Asp 430	Trp	Thr	
Ile	Val															
<211 <212	> 14 > 40 > DN > Co	1 A	bact	eriu	ım gl	.utam	nicum	1								
<222	> CD > (1 > RX) (
<400	> 14	5														
cga Arg	aac	agc							agt Ser 10							48
									gta Val							96

20

25

30

			Ile					Ile					Ser		aca Thr	144
		Leu										Val			cta Leu	192
											Asp				gaa Glu 80	240
										Gly	ttc Phe					288
											gcc Ala					336
											tgc Cys					378
tgai	tgtc	ctg a	atcc	ggti	tc c	gg										401
<212	0> 14 l> 12 2> PF 3> Co	26 RT	ebact	eri	um g]	iutan	nicur	n								
<400)> 14	16														
Arg 1	Asn	Ser	Gln	Gly 5	Lys	Trp	Суз	Pro	Ser 10	Thr	Arg	Ser	Pro	Lys 15	Asn	
Thr	Ser	Ile	G1u 20	Asp	Asn	Gly	Asp	His 25	Val	Val	Ile	Gln	Ala 30	Gly	Glu	
Glu	Thr	Thr 35	Ile	Val	Asp	Arg	Val 40	Ile	Val	Thr	Thr	Gly 45	Ser	Trp	Thr	
Ser	Glu 50	Leu	Val	Pro	Ser	Ile 55	Ala	Pro	Leu	Leu	Glu 60	Val	Arg	Arg	Leu	
Val 65	Leu	Thr	Trp	Phe	Leu 70	Pro	Asn	Asn	Pro	Val 75	Asp	Phe	Gln	Pro	Glu 80	
Asn	Leu	Pro	Cys	Phe 85	Ile	Arg	Asp	Arg	Asp 90	Gly	Phe	His	Val	Phe 95	Gly	
Ala	Pro	Суѕ	Val 100	Asp	Gly	Tyr	Ser	Ile 105	Lys	Ile	Ala	Gly	Leu 110	Asp	Glu	

<210> 147

Trp Gly Val Pro Leu Ser Leu Asp Pro Pro Met Cys Pro Arg 115 120 120

<21	2> E	NA	.			-7										
		oryn	ebac	teri	.um g	Jluta	micu	ım								
	1> C															
		101) XN02	(4 263	(78)												
	0> 1															
															tgaacc	60
tgt	ggga	atc	accc	gcac	tg g	cttg	agag	a ag	aaac	aaca		Lys			gta Val 5	115
atc Ile	ggc Gly	ctt Leu	gga Gly	tca Ser 10	Thr	ggc	tcc Ser	atg Met	gca Ala 15	Leu	tgg Trp	cac His	tta Leu	agt Ser 20	aac	163
atc Ile	cca Pro	ggt Gly	gta Val 25	gag Glu	gcc Ala	atc Ile	ggc Gly	ttt Phe 30	gaa Glu	caa Gln	ttc Phe	ggc Gly	atc Ile 35	Ser	cat	211
ggc Gly	tac Tyr	ggc Gly 40	Ala	ttc Phe	aca Thr	ggg	gag Glu 45	tcc Ser	cga Arg	ctg Leu	ttt Phe	cgc Arg 50	atg Met	gcc Ala	tac Tyr	259
cac His	gaa Glu 55	ggc Gly	agc Ser	acc Thr	tac Tyr	gtt Val 60	ccg Pro	ttg Leu	ctc Leu	aaa Lys	cgc Arg 65	gca Ala	cga Arg	gca Ala	cta Leu	307
tgg Trp 70	tca Ser	tca Ser	ctg Leu	agc Ser	gag Glu 75	att Ile	tcc Ser	gga Gly	cgc Arg	gaa Glu 80	ctc Leu	ttc Phe	cac His	aac Asn	ttc Phe 85	355
ggt Gly	gtc Val	tta Leu	agc Ser	acc Thr 90	ggc Gly	aag Lys	gaa Glu	gac Asp	gaa Glu 95	gca Ala	ccc Pro	ttc Phe	caa Gln	cgc Arg 100	ctg Leu	403
gtg Val	gaa Glu	tca Ser	gtg Val 105	gaa Glu	cgt Arg	tat Tyr	gag Glu	ctg Leu 110	cca Pro	cat His	gaa Glu	cga Arg	ctt Leu 115	acc Thr	gcc Ala	451
gcg Ala	cag Gln	atg Met 120	cgc Arg	agc Ser	gtt Val	acc Thr	cag Gln 125	gtc Val	taga	actto	ccg					488
<210 <211 <212 <213	> 12 > PR	6 T	bact	eriu	m gl	utan	nicum	1								
<400 Met 1			Ala	Val 5	Ile	Gly	Leu	Gly	Ser 10	Thr	Gly	Ser	Met	Ala 15	Leu	
Trp	His	Leu	Ser 20	Asn	Ile	Pro	Gly	Val 25	Glu	Ala	Ile	Gly	Phe 30	Glu	Gln	

Phe Gly Ile Ser His Gly Tyr Gly Ala Phe Thr Gly Glu Ser Arg Leu Phe Arg Met Ala Tyr His Glu Gly Ser Thr Tyr Val Pro Leu Leu Lys Arg Ala Arg Ala Leu Trp Ser Ser Leu Ser Glu Ile Ser Gly Arg Glu Leu Phe His Asn Phe Gly Val Leu Ser Thr Gly Lys Glu Asp Glu Ala 90 Pro Phe Gln Arg Leu Val Glu Ser Val Glu Arg Tyr Glu Leu Pro His 105 100 Glu Arg Leu Thr Ala Ala Gln Met Arg Ser Val Thr Gln Val 120 <210> 149 <211> 460 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(460) <223> FRXA02263 <400> 149 cctgggcaac ccaagtgtat gaaaacgccc tggaaaaagg cgtcggcacc acattgaacc 60 tgtgggaatc accegcactg gcttgagaga agaaacaaca atg aaa att gcg gta Met Lys Ile Ala Val atc ggc ctt gga tca acc ggc tcc atg gca ctg tgg cac tta agt aac 163 Ile Gly Leu Gly Ser Thr Gly Ser Met Ala Leu Trp His Leu Ser Asn 10 atc cca ggt gta gag gcc atc ggc ttt gaa caa ttc ggc atc tcc cat 211 Ile Pro Gly Val Glu Ala Ile Gly Phe Glu Gln Phe Gly Ile Ser His 25 ggc tac ggc gca ttc aca ggg gag tcc cga ctg ttt cgc atg gcc tac Gly Tyr Gly Ala Phe Thr Gly Glu Ser Arg Leu Phe Arg Met Ala Tyr 40 45 cac gaa ggc agc acc tac gtt ccg ttg ctc aaa cgc gca cga gca cta 307 His Glu Gly Ser Thr Tyr Val Pro Leu Leu Lys Arg Ala Arg Ala Leu 55 tgg tca tca ctg agc gag att tcc gga cgc gaa ctc ttc cac aac ttc Trp Ser Ser Leu Ser Glu Ile Ser Gly Arg Glu Leu Phe His Asn Phe 75 ggt gtc tta agc acc ggc aag gaa gac gaa gca ccc ttc caa cgc ctg Gly Val Leu Ser Thr Gly Lys Glu Asp Glu Ala Pro Phe Gln Arg Leu 90 95 gtg gaa tca gtg gaa cgt tat gag ctg cca cat gaa cga ctt acc gcc

Val Glu Ser Val Glu Arg Tyr Glu Leu Pro His Glu Arg Leu Thr Ala 110 460 gcg cag atg Ala Gln Met <210> 150 <211> 120 <212> PRT <213> Corynebacterium glutamicum <400> 150 Met Lys Ile Ala Val Ile Gly Leu Gly Ser Thr Gly Ser Met Ala Leu 5 Trp His Leu Ser Asn Ile Pro Gly Val Glu Ala Ile Gly Phe Glu Gln Phe Gly Ile Ser His Gly Tyr Gly Ala Phe Thr Gly Glu Ser Arg Leu Phe Arg Met Ala Tyr His Glu Gly Ser Thr Tyr Val Pro Leu Leu Lys Arg Ala Arg Ala Leu Trp Ser Ser Leu Ser Glu Ile Ser Gly Arg Glu Leu Phe His Asn Phe Gly Val Leu Ser Thr Gly Lys Glu Asp Glu Ala Pro Phe Gln Arg Leu Val Glu Ser Val Glu Arg Tyr Glu Leu Pro His 100 105 Glu Arg Leu Thr Ala Ala Gln Met 115 <210> 151 <211> 1251 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1228) <223> RXA02176 <400> 151 gggtgctagg aactgacagc ttcagggtta tagttgttgg gtcagatcgt taacgatccc 60 tggccctttt acttccaagc gcagaaagtt gcccgaagac atg acc gac ttc ccc Met Thr Asp Phe Pro 1 acc ctg ccc tct gag ttc atc cct ggc gac ggc cgt ttc ggc tgc gga Thr Leu Pro Ser Glu Phe Ile Pro Gly Asp Gly Arg Phe Gly Cys Gly 10 20 15

cct tcc aag gtt cga cca gaa cag att cag gct att gtc gac gga tcc

Pro Ser Lys Val Arg Pro Glu Gln Ile Gln Ala Ile Val Asp Gly Ser gca tcc gtc atc ggt acc tca cac cgt cag ccg gca gta aaa aac gtc 259 Ala Ser Val Ile Gly Thr Ser His Arg Gln Pro Ala Val Lys Asn Val gtg ggt tca atc cgc gag gga ctc tcc gac ctc ttc tcc ctt cca gaa Val Gly Ser Ile Arg Glu Gly Leu Ser Asp Leu Phe Ser Leu Pro Glu 60 ggc tac gag atc atc ctt tec eta ggt ggt gcg acc gca ttc tgg gat Gly Tyr Glu Ile Ile Leu Ser Leu Gly Gly Ala Thr Ala Phe Trp Asp gca gca acc ttc gga ctc att gaa aag aag tcc ggt cac ctt tct ttc Ala Ala Thr Phe Gly Leu Ile Glu Lys Lys Ser Gly His Leu Ser Phe 90 ggt gag ttc tcc tcc aag ttc gca aag gct tct aag ctt gct cct tgg 451 Gly Glu Phe Ser Ser Lys Phe Ala Lys Ala Ser Lys Leu Ala Pro Trp 105 110 ctc gac gag cca gag atc gtc acc gca gaa acc ggt gac tct ccg gcc 499 Leu Asp Glu Pro Glu Ile Val Thr Ala Glu Thr Gly Asp Ser Pro Ala 120 125 cca cag gca ttc gaa ggc gcc gat gtt att gca tgg gca cac aac gaa 547 Pro Gln Ala Phe Glu Gly Ala Asp Val Ile Ala Trp Ala His Asn Glu 135 acc tcc act ggc gcc atg gtt cca gtt ctt cgc ccc gaa ggc tct gaa 595 Thr Ser Thr Gly Ala Met Val Pro Val Leu Arg Pro Glu Gly Ser Glu gge tee etg gtt gee att gae gea ace tee gge get ggt gga etg cea 643 Gly Ser Leu Val Ala Ile Asp Ala Thr Ser Gly Ala Gly Gly Leu Pro 170 gta gac atc aag aac tee gat gtt tac tac tte tee cea eag aag tge 691 Val Asp Ile Lys Asn Ser Asp Val Tyr Tyr Phe Ser Pro Gln Lys Cys tte gea tee gae ggt gge etg tgg ett gea geg atg age eea gea get 739 Phe Ala Ser Asp Gly Gly Leu Trp Leu Ala Ala Met Ser Pro Ala Ala 205 ctc gag ege atc gag aag atc aac get tee gat ege tte atc eet gag 787 Leu Glu Arg Ile Glu Lys Ile Asn Ala Ser Asp Arg Phe Ile Pro Glu 215 220 tte etc aac etg cag acc gca gtg gat aac tec etg aag aac eag acc 835 Phe Leu Asn Leu Gln Thr Ala Val Asp Asn Ser Leu Lys Asn Gln Thr 230 235 245 tac aac acc cca gct gtt gct acc ttg ctg atg ctg gac aac cag gtc Tyr Asn Thr Pro Ala Val Ala Thr Leu Leu Met Leu Asp Asn Gln Val 250 260 aag tgg atg aac tee aac gge gge etg gat gga atg gtt get ege acc Lys Trp Met Asn Ser Asn Gly Gly Leu Asp Gly Met Val Ala Arg Thr

265 270 275

aca gca agc tcc tcc gcc ctg tac aac tgg gct gag gct cgc gag gag 979
Thr Ala Ser Ser Ser Ala Leu Tyr Asn Trp Ala Glu Ala Arg Glu Glu
280 285 290

gca tee eea tae gtg gca gat gca get aag ege tee ete gtt gte gge 1027

Ala Ser Pro Tyr Val Ala Asp Ala Ala Lys Arg Ser Leu Val Val Gly
295 300 305

acc atc gac ttc gat gac tcc atc gac gca gca gtg atc gct aag ata 1075

Thr Ile Asp Phe Asp Asp Ser Ile Asp Ala Ala Val Ile Ala Lys Ile 310 315 320 325

ctg cgc gca aac ggc atc ctg gac acc gag cct tac cgc aag ctg gga 1123

Leu Arg Ala Asn Gly Ile Leu Asp Thr Glu Pro Tyr Arg Lys Leu Gly 330 335 340

 $\ensuremath{\mathsf{cgc}}$ aac $\ensuremath{\mathsf{cag}}$ ctg $\ensuremath{\mathsf{cgc}}$ atc $\ensuremath{\mathsf{ggt}}$ atc $\ensuremath{\mathsf{gat}}$ tcc acc $\ensuremath{\mathsf{gat}}$ 1171

Arg Asn Gln Leu Arg Ile Gly Met Phe Pro Ala Ile Asp Ser Thr Asp 345 350 355

gtg gaa aag ctc acc gga gca atc gac ttc atc ctc gat ggc ggt ttt 1219

Val Glu Lys Leu Thr Gly Ala Ile Asp Phe Ile Leu Asp Gly Gly Phe 360 365 370

gca agg aag taatacccc actttgaaaa aca 1251

Ala Arg Lys 375

<210> 152

<211> 376

<212> PRT

<213> Corynebacterium glutamicum

<400> 152

Met Thr Asp Phe Pro Thr Leu Pro Ser Glu Phe Ile Pro Gly Asp Gly
1 5 10 15

Arg Phe Gly Cys Gly Pro Ser Lys Val Arg Pro Glu Gln Ile Gln Ala 20 25 30

Ile Val Asp Gly Ser Ala Ser Val Ile Gly Thr Ser His Arg Gln Pro
35 40 45

Ala Val Lys Asn Val Val Gly Ser Ile Arg Glu Gly Leu Ser Asp Leu 50 55 60

Phe Ser Leu Pro Glu Gly Tyr Glu Ile Ile Leu Ser Leu Gly Gly Ala 65 70 75 80

Thr Ala Phe Trp Asp Ala Ala Thr Phe Gly Leu Ile Glu Lys Lys Ser 85 90 95

Gly His Leu Ser Phe Gly Glu Phe Ser Ser Lys Phe Ala Lys Ala Ser 100 105 110

Lys Leu Ala Pro Trp Leu Asp Glu Pro Glu Ile Val Thr Ala Glu Thr 115 120 125

Gly Asp Ser Pro Ala Pro Gln Ala Phe Glu Gly Ala Asp Val Ile Ala 130 135 140

Trp Ala His Asn Glu Thr Ser Thr Gly Ala Met Val Pro Val Leu Arg 145 150 155 160

Pro Glu Gly Ser Glu Gly Ser Leu Val Ala Ile Asp Ala Thr Ser Gly
165 170 175

Ala Gly Gly Leu Pro Val Asp Ile Lys Asn Ser Asp Val Tyr Tyr Phe
180 185 190

Ser Pro Gln Lys Cys Phe Ala Ser Asp Gly Gly Leu Trp Leu Ala Ala 195 200 205

Met Ser Pro Ala Ala Leu Glu Arg Ile Glu Lys Ile Asn Ala Ser Asp 210 215 220

Arg Phe Ile Pro Glu Phe Leu Asn Leu Gln Thr Ala Val Asp Asn Ser 225 230 235 240

Leu Lys Asn Gln Thr Tyr Asn Thr Pro Ala Val Ala Thr Leu Leu Met 245 250 255

Leu Asp Asn Gln Val Lys Trp Met Asn Ser Asn Gly Gly Leu Asp Gly 260 265 270

Met Val Ala Arg Thr Thr Ala Ser Ser Ser Ala Leu Tyr Asn Trp Ala 275 280 285

Glu Ala Arg Glu Glu Ala Ser Pro Tyr Val Ala Asp Ala Ala Lys Arg 290 295 300

Ser Leu Val Val Gly Thr Ile Asp Phe Asp Asp Ser Ile Asp Ala Ala 305 310 315 320

Val Ile Ala Lys Ile Leu Arg Ala Asn Gly Ile Leu Asp Thr Glu Pro 325 330 335

Tyr Arg Lys Leu Gly Arg Asn Gln Leu Arg Ile Gly Met Phe Pro Ala 340 345 350

Ile Asp Ser Thr Asp Val Glu Lys Leu Thr Gly Ala Ile Asp Phe Ile 355 360 365

Leu Asp Gly Gly Phe Ala Arg Lys 370 375

<210> 153

<211> 1422

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

	2> () 3> R	101) XN02		399)												
	0> 1: catc		ccca	attc	cc c	ataa	ctag	a ca	attg	ccca	gca	acga	ctg	ataa	gtctcc	60
aat	gtcg	tgt '	tccg	cgct	ca g	acat	gaga	c aa	ttgt	tgcc				ctc Leu		115
										gaa Glu						163
										atc Ile						211
										agg Arg						259
										atg Met						307
										gag Glu 80						355
										cat His						403
										cgt Arg						451
										gcg Ala						499
		_		_		_		_		aac Asn		_			_	547
										gag Glu 160						595
										atg Met					3	643
										gcg Ala					ggt Gly	691

ttg ctg cgt cgt tct aag cgt ctg gtg tgc ttc gat tgt gat tcc acg
Leu Leu Arg Arg Ser Lys Arg Leu Val Cys Phe Asp Cys Asp Ser Thr

200 205 210

																•
ttg Leu	Ile 215	Thr	ggt Gly	gaq Glu	g gto u Val	220	e Glu	atg Met	r cto : Leu	g gcg	g gct a Ala 225	a His	gcg Ala	a Gly	c aag / Lys	787
gaa Glu 230	Ala	gaa Glu	gtt Val	gcg Ala	g gca Ala 235	ı Val	act Thr	gag Glu	cgt Arg	gcg JAla 240	Met	g cgc : Arg	ggt Gly	gag Glu	ctc Leu 245	835
gat Asp	ttc Phe	gag Glu	gag Glu	Ser 250	Leu	g cgt L Arg	gag Glu	cgt Arg	gtg Val 255	. Lys	gcg Ala	ttg Leu	gct Ala	ggt Gly 260	ttg Leu	883
gat Asp	gcg Ala	tcg Ser	gtg Val 265	Ile	gat Asp	gag Glu	gtc Val	gct Ala 270	Ala	gct Ala	att Ile	gag Glu	ctg Leu 275	Thr	cct Pro	931
ggt Gly	gcg Ala	cgc Arg 280	acc Thr	acg Thr	atc	cgt Arg	acg Thr 285	ctg Leu	aac Asn	cgc Arg	atg Met	ggt Gly 290	tac Tyr	cag Gln	acc	979
gct 1027	gtt	gtt	tcc	ggt	ggt	ttc	atc	cag	gtg	ttg	gaa	ggt	ttg	gct	gag	
		Val	Ser	Gly	Gly	Phe 300	Ile	Gln.	Val	Leu	Glu 305	Gly	Leu	Ala	Glu	
gag 1075	ttg	gag	ttg	gat	tat	gtc	cgc	gcc	aac	act	ttg	gaa	atc	gtt	gat	
		Glu	Leu	Asp	Tyr 315	Val	Arg	Ala	Asn	Thr 320	Leu	Glu	Ile	Val	Asp 325	
ggc 1123	aag	ctg	acc	ggc	aac	gtc	acc	gga	aag	atc	gtt	gac	cgc	gct	gcg	
		Leu	Thr	Gly 330	Asn	Val	Thr	Gly	Lys 335	Ile	Val	Asp	Arg	Ala 340	Ala	
aag 1171	gct	gag	ttc	ctc	cgt	gag	ttc	gct	gcg	gat	tct	ggc	ctg	aag	atg	
		Glu	Phe 345	Leu	Arg	Glu	Phe	Ala 350	Ala	Asp	Ser	Gly	Leu 355	Lys	Met	
tac 1219	cag	act	gtc	gct	gtc	ggt	gat	ggc	gct	aat	gac	atc	gat	atg	ctc	
Tyr	Gln	Thr 360	Val	Ala	Val	Gly	Asp 365	Gly	Ala	Asn	Asp	Ile 370	Asp	Met	Leu	
tcc (gct	gcg	ggt	ctg	ggt	gtt	gct	ttc	aac	gcg	aag	cct	gcg	ctg	aag	
Ser	Ala 375	Ala	Gly	Leu	Gly	Val 380	Ala	Phe	Asn		Lys 385	Pro	Ala	Leu	Lys	
gag a	att	gcg	gat	act	tcc	gtg	aac (cac	cca	ttc	ctc	gac	gag	gtt	ttg	
Glu : 390	Ile	Ala .	Asp	Thr	Ser 395	Val .	Asn 1	His :		Phe 400	Leu .	Asp	Glu		Leu 405	
cac a	atc .	atg (ggc	att	tcc	cgc	gac (gag a	atc	gat	ctg	gcg	gat	cag	gaa ·	
His I	Ile i	Met (Gly	Ile 410	Ser	Arg :	Asp (Ile . 415	Asp :	Leu :	Ala i		Gln 420	Glu	

gac ggc act ttc cac cgc gtt cca ttg acc aat gcc taaagattcg 1409
Asp Gly Thr Phe His Arg Val Pro Leu Thr Asn Ala

tttctcgacg ccc 1422

<210> 154

<211> 433

<212> PRT

<213> Corynebacterium glutamicum

<400> 154

Val Thr Glu Leu Ile Gln Asn Glu Ser Gln Glu Ile Ala Glu Leu Glu
1 5 10 15

Ala Gly Gln Gln Val Ala Leu Arg Glu Gly Tyr Leu Pro Ala Val Ile 20 25 30

Thr Val Ser Gly Lys Asp Arg Pro Gly Val Thr Ala Ala Phe Phe Arg 35 40 45

Val Leu Ser Ala Asn Gln Val Gln Val Leu Asp Val Glu Gln Ser Met 50 55 60

Phe Arg Gly Phe Leu Asn Leu Ala Ala Phe Val Gly Ile Ala Pro Glu 65 70 75 80

Arg Val Glu Thr Val Thr Thr Gly Leu Thr Asp Thr Leu Lys Val His
85 90 95

Gly Gln Ser Val Val Val Glu Leu Gln Glu Thr Val Gln Ser Ser Arg 100 105 110

Pro Arg Ser Ser His Val Val Val Leu Gly Asp Pro Val Asp Ala 115 120 125

Leu Asp Ile Ser Arg Ile Gly Gln Thr Leu Ala Asp Tyr Asp Ala Asn 130 135 140

Ile Asp Thr Ile Arg Gly Ile Ser Asp Tyr Pro Val Thr Gly Leu Glu 145 150 155 160

Leu Lys Val Thr Val Pro Asp Val Ser Pro Gly Gly Glu Ala Met 165 170 175

Arg Lys Ala Leu Ala Ala Leu Thr Ser Glu Leu Asn Val Asp Ile Ala 180 185 190

Ile Glu Arg Ser Gly Leu Leu Arg Arg Ser Lys Arg Leu Val Cys Phe 195 200 205

Asp Cys Asp Ser Thr Leu Ile Thr Gly Glu Val Ile Glu Met Leu Ala 210 215 220

Ala His Ala Gly Lys Glu Ala Glu Val Ala Ala Val Thr Glu Arg Ala 225 230 235 240

Met Arg Gly Glu Leu Asp Phe Glu Glu Ser Leu Arg Glu Arg Val Lys 245 Ala Leu Ala Gly Leu Asp Ala Ser Val Ile Asp Glu Val Ala Ala Ala 260 265 Ile Glu Leu Thr Pro Gly Ala Arg Thr Thr Ile Arg Thr Leu Asn Arg 280 Met Gly Tyr Gln Thr Ala Val Val Ser Gly Gly Phe Ile Gln Val Leu 295 Glu Gly Leu Ala Glu Glu Leu Glu Leu Asp Tyr Val Arg Ala Asn Thr 310 315 Leu Glu Ile Val Asp Gly Lys Leu Thr Gly Asn Val Thr Gly Lys Ile 330 Val Asp Arg Ala Ala Lys Ala Glu Phe Leu Arg Glu Phe Ala Ala Asp 350 Ser Gly Leu Lys Met Tyr Gln Thr Val Ala Val Gly Asp Gly Ala Asn 360 Asp Ile Asp Met Leu Ser Ala Ala Gly Leu Gly Val Ala Phe Asn Ala 375 Lys Pro Ala Leu Lys Glu Ile Ala Asp Thr Ser Val Asn His Pro Phe 390 395 400 Leu Asp Glu Val Leu His Ile Met Gly Ile Ser Arg Asp Glu Ile Asp 410 Leu Ala Asp Gln Glu Asp Gly Thr Phe His Arg Val Pro Leu Thr Asn 420 425 Ala <210> 155 <211> 490 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(490) <223> FRXA02479 <400> 155 atacatctca cccaattccc cataactaga caattgccca gcaacgactg ataagtctcc 60 aatgtcgtgt tccgcgctca gacatgagac aattgttgcc gtg act gaa ctc atc 115 Val Thr Glu Leu Ile cag aat gaa tcc caa gaa atc gct gag ctg gaa gcc ggc cag cag gtt Gln Asn Glu Ser Gln Glu Ile Ala Glu Leu Glu Ala Gly Gln Gln Val 10 15

Ala Leu Arg	gaa ggt Glu Gly 25	tat ctt Tyr Leu	cct Pro	gcg gi Ala Va 30	tg atc al Ile	aca Thr	gtg Val	agc Ser 35	ggt Gly	aaa Lys	211
gac cgc cca Asp Arg Pro 40	ggt gtg Gly Val	act gcc Thr Ala	gcg Ala 45	ttc to	tt agg he Arg	gtc Val	ttg Leu 50	tcc Ser	gct Ala	aat Asn	259
cag gtt cag Gln Val Gln 55											307
aac ttg gcg Asn Leu Ala 70	gcg ttt Ala Phe	gtg ggt Val Gly 75	atc Ile	gca co Ala Pi	ct gag ro Glu 80	cgt Arg	gtc Val	gag Glu	acc Thr	gtc Val 85	355
acc aca ggc Thr Thr Gly				Lys Va							403
gtg gag ctg Val Glu Leu	cag gaa Gln Glu 105	act gtg Thr Val	Gln	tcg to Ser Se 110	cc cgt er Arg	cct Pro	cgt Arg	tct Ser 115	tcc Ser	cat His	451
gtt gtt gtg Val Val Val 120											490
<210> 156 <211> 130 <212> PRT <213> Corynebacterium glutamicum											
<211> 130 <212> PRT	bacteri	um gluta	micum	i .							
<211> 130 <212> PRT				Ser G	ln Glu 10	Ile	Ala	Glu	Leu 15	Glu	
<211> 130 <212> PRT <213> Coryne <400> 156 Val Thr Glu	Leu Ile 5	Gln Asn	Glu	Ser G	10				15		
<211> 130 <212> PRT <213> Coryne <400> 156 Val Thr Glu 1	Leu Ile 5 Gln Val 20	Gln Asn Ala Leu	Glu Arg	Ser G : Glu G: 25	10 ly Tyr	Leu	Pro	Ala 30	15 Val	Ile	
<211> 130 <212> PRT <213> Coryne <400> 156 Val Thr Glu 1 Ala Gly Gln Thr Val Ser	Leu Ile 5 Gln Val 20 Gly Lys	Gln Asn Ala Leu Asp Arg	Glu Arg Pro 40	Ser G Glu G 25 Gly Va	10 ly Tyr al Thr	Leu Ala	Pro Ala 45	Ala 30 Phe	15 Val Phe	Ile Arg	
<211> 130 <212> PRT <213> Coryne <400> 156 Val Thr Glu 1 Ala Gly Gln Thr Val Ser 35 Val Leu Ser	Leu Ile 5 Gln Val 20 Gly Lys Ala Asn	Gln Asn Ala Leu Asp Arg Gln Val	Glu Arg Pro 40 Gln	Ser Gi Glu Gi 25 Gly Va Val Le	10 ly Tyr al Thr eu Asp	Leu Ala Val 60	Pro Ala 45 Glu	Ala 30 Phe Gln	15 Val Phe Ser	Ile Arg Met	
<211> 130 <212> PRT <213> Coryne <400> 156 Val Thr Glu 1 Ala Gly Gln Thr Val Ser 35 Val Leu Ser 50 Phe Arg Gly	Leu Ile 5 Gln Val 20 Gly Lys Ala Asn Phe Leu	Gln Asn Ala Leu Asp Arg Gln Val 55 Asn Leu 70	Glu Arg Pro 40 Gln	Ser G. Glu G. 25 Gly Va Val Le Ala Pl	ly Tyr al Thr eu Asp he Val 75	Leu Ala Val 60 Gly	Pro Ala 45 Glu Ile	Ala 30 Phe Gln Ala	15 Val Phe Ser	Ile Arg Met Glu 80	
<211> 130 <212> PRT <213> Coryne <400> 156 Val Thr Glu 1 Ala Gly Gln Thr Val Ser 35 Val Leu Ser 50 Phe Arg Gly 65 Arg Val Glu Gly Gln Ser	Leu Ile 5 Gln Val 20 Gly Lys Ala Asn Phe Leu Thr Val 85	Gln Asn Ala Leu Asp Arg Gln Val 55 Asn Leu 70 Thr Thr	Glu Arg Pro 40 Gln Ala Gly Leu	Ser G. Glu G. 25 Gly Va Val Le Ala Pl	ly Tyr al Thr eu Asp he Val 75 hr Asp	Leu Ala Val 60 Gly	Pro Ala 45 Glu Ile Leu	Ala 30 Phe Gln Ala Lys	15 Val Phe Ser Pro Val 95	Ile Arg Met Glu 80 His	
<211> 130 <212> PRT <213> Coryne <400> 156 Val Thr Glu 1 Ala Gly Gln Thr Val Ser 35 Val Leu Ser 50 Phe Arg Gly 65 Arg Val Glu Gly Gln Ser	Leu Ile 5 Gln Val 20 Gly Lys Ala Asn Phe Leu Thr Val 85 Val Val	Gln Asn Ala Leu Asp Arg Gln Val 55 Asn Leu 70 Thr Thr	Glu Arg Pro 40 Gln Ala Gly Leu	Ser G: Glu G: 25 Gly Va Val Le Ala Pl Leu Tl Gln G: 105	ly Tyr al Thr eu Asp he Val 75 hr Asp 90	Leu Ala Val 60 Gly Thr	Pro Ala 45 Glu Ile Leu Gln	Ala 30 Phe Gln Ala Lys Ser 110	15 Val Phe Ser Pro Val 95 Ser	Ile Arg Met Glu 80 His	

235

<210> 157 <211> 558 <212> DNA <213> Corynebacterium glutamicum																				
<220> <221> CDS <222> (101)(535) <223> FRXA02758																				
	<400> 157 aaggcgttgg ctggtttgga tgcgtcggtg atcgatgagg tcgctgccgc tattgagctg													60						
accettggtg cgcgcaccac gatccgtacg gttgaaccgc													cag Gln		115					
														gct Ala 20		163				
														gtt Val		211				
														gct Ala		259				
-	-				-			_					_	aag Lys	_	307				
														atg Met		355				
														ctg Leu 100		403				
														gtt Val		451				
														cag Gln		499				
									acc Thr			taaa	ıgatt	.cg		545				
tttc	tcga	cg c	cc						tttctcgacg ccc											

<210> 158 <211> 145 <212> PRT

<213> Corynebacterium glutamicum <400> 158

Met Gly Tyr Gln Thr Ala Val Val Ser Gly Gly Phe Ile Gln Val Leu 1 5 10 15

Glu Gly Leu Ala Glu Glu Leu Glu Leu Asp Tyr Val Arg Ala Asn Thr 20 25 30

Leu Glu Ile Val Asp Gly Lys Leu Thr Gly Asn Val Thr Gly Lys Ile 35 40 45

Val Asp Arg Ala Ala Lys Ala Glu Phe Leu Arg Glu Phe Ala Ala Asp 50 55 60

Ser Gly Leu Lys Met Tyr Gln Thr Val Ala Val Gly Asp Gly Ala Asn 65 70 75 80

Asp Ile Asp Met Leu Ser Ala Ala Gly Leu Gly Val Ala Phe Asn Ala 85 90 95

Lys Pro Ala Leu Lys Glu Ile Ala Asp Thr Ser Val Asn His Pro Phe 100 105 110

Leu Asp Glu Val Leu His Ile Met Gly Ile Ser Arg Asp Glu Ile Asp 115 120 125

Leu Ala Asp Gln Glu Asp Gly Thr Phe His Arg Val Pro Leu Thr Asn 130 135 140

Ala 145

<210> 159

<211> 205

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (72)..(182)

<223> FRXA02759

<400> 159

tettaettet aagetgaatg tgatattgeg attaagegtt etggtttget gegtegttet 60

aagcgtctgg tgtg ctt cga ttg tat ccc acg ttg atc act ggt gag gtc 110

Val Leu Arg Leu Tyr Pro Thr Leu Ile Thr Gly Glu Val

1 5 10

att gag atg ctg gcg gct cac gcg ggc aag gaa gct aaa gtt gcg gca 158

Ile Glu Met Leu Ala Ala His Ala Gly Lys Glu Ala Lys Val Ala Ala

15 20 25

gtt act gag cgt gcg atg cgc ggg tgagctcgat ttcgaggagt ctc 205
Val Thr Glu Arg Ala Met Arg Gly
30 35

<210> 160

<211> 37 <212> PRT

<213> Corynebacterium glutamicum Val Leu Arg Leu Tyr Pro Thr Leu Ile Thr Gly Glu Val Ile Glu Met Leu Ala Ala His Ala Gly Lys Glu Ala Lys Val Ala Ala Val Thr Glu 25 Arg Ala Met Arg Gly 35 <210> 161 <211> 1188 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1165) <223> RXA02501 <400> 161 cgccccgaaa gctttaccat ggatacgata ctcaatggag atatccatta tcggtttggc 60 gtctgtgcgc tcatgaacca ggaaggtttt tgtttgtctc atg agc tct gaa gga Met Ser Ser Glu Gly aga aac cac aac tgg gac tac gcc gcc atc ggc acc cca gag gat ttc Arg Asn His Asn Trp Asp Tyr Ala Ala Ile Gly Thr Pro Glu Asp Phe 10 ctc gcc agc tgg agc gca tcc cgc gga aat cta cga cgc ttt ttc gaa 211 Leu Ala Ser Trp Ser Ala Ser Arg Gly Asn Leu Arg Arg Phe Phe Glu 25 gac cac gca gcc gcc ccc ata aac gat gcc gcc cag cgc caa gca ggt 259 Asp His Ala Ala Pro Ile Asn Asp Ala Ala Gln Arg Gln Ala Gly 40 gaa gcc gca gca acc caa gcc gtc gca gcg atc tac ggc atg gag ctc 307 Glu Ala Ala Ala Thr Gln Ala Val Ala Ala Ile Tyr Gly Met Glu Leu 55 aac gaa tte aac gea ggt gte gae gee gte gee gge gee ate gaa tet Asn Glu Phe Asn Ala Gly Val Asp Ala Val Ala Gly Ala Ile Glu Ser gcc ggc gcc atc cac gtc agc atc ccc gat ccc gat gtc ccc caa gat Ala Gly Ala Ile His Val Ser Ile Pro Asp Pro Asp Val Pro Gln Asp 90 95 100 gtc gga gcc gca gca ttt ttc gac gtc gac aac acc ctc atc caa ggc 451 Val Gly Ala Ala Ala Phe Phe Asp Val Asp Asn Thr Leu Ile Gln Gly 105 110 tcc tcc ctc atc gtt ttc gcc caa gga ctc ttc cgg aag aaa ttc ttc 499

																•
Ser	Ser	Leu 120	Ile	Val	Phe	Ala	Gln 125	Gly	Leu	Phe	Arg	Lys 130	Lys	Phe	Phe	
														ttc Phe		547
														gaa Glu		595
														gac Asp 180		643
														ccc Pro		691
														gtc Val		739
	_		_			_			_			_	-	caa Gln		787
														gat Asp		835
														ggc Gly 260		883
														ctc Leu		931
														ctc Leu		979
_	_	ggc	acc	gcc	gtc	gca	gta	aac	ccc	gac	tcc	aaa	ctc	cgc	aaa	
1027 Met		Gly	Thr	Ala	Val	Ala 300	Val	Asn	Pro	Asp	Ser 305	Lys	Leu	Arg	Lys	
gaa 1075		gaa	acc	cga	ggc	tgg	gac	gtc	cgc	gat	ttc	cga	agc	atc	cgc	
		Glu	Thr	Arg	Gly 315	Trp	Asp	Val	Arg	Asp 320	Phe	Arg	Ser	Ile	Arg 325	
aaa 1123	_	acc	cgc	gaa	tac	gga	atc	CCC	gcc	ctg	gtc	acc	gcc	gca	ttc	
		Thr	Arg	Glu 330	Tyr	Gly	Ile	Pro	Ala 335	Leu	Val	Thr	Ala	Ala 340	Phe	
agt 1165		gcc	ggc	tgg	agt	cta	cgc	cgc	cga	tgg	aga	aaa	caa			
		Ala	Gly	Trp	Ser	Leu	Arg	Arg	Arg	Trp	Arg	Lys	Gln			

345

350

355

taacgcacag gagccgtttt aag 1188

<210> 162

<211> 355

<212> PRT

<213> Corynebacterium glutamicum

<400> 162

Met Ser Ser Glu Gly Arg Asn His Asn Trp Asp Tyr Ala Ala Ile Gly
1 5 10 15

Thr Pro Glu Asp Phe Leu Ala Ser Trp Ser Ala Ser Arg Gly Asn Leu 20 25 30

Arg Arg Phe Phe Glu Asp His Ala Ala Pro Ile Asn Asp Ala Ala 35 40 45

Gln Arg Gln Ala Gly Glu Ala Ala Ala Thr Gln Ala Val Ala Ile 50 55 60

Tyr Gly Met Glu Leu Asn Glu Phe Asn Ala Gly Val Asp Ala Val Ala 65 70 75 80

Gly Ala Ile Glu Ser Ala Gly Ala Ile His Val Ser Ile Pro Asp Pro 85 90 95

Asp Val Pro Gln Asp Val Gly Ala Ala Ala Phe Phe Asp Val Asp Asn 100 105 110

Thr Leu Ile Gln Gly Ser Ser Leu Ile Val Phe Ala Gln Gly Leu Phe 115 120 125

Arg Lys Lys Phe Phe Thr Ile Lys Glu Ile Leu Pro Val Val Trp Lys 130 135 140

Gln Val Lys Phe Lys Leu Thr Gly Ser Glu Asn Ala Asp Asp Val Ser 145 150 155 160

Arg Gly Arg Glu Gln Ala Leu Glu Phe Ile Lys Gly Arg Pro Val Gln
165 170 175

Glu Leu Val Asp Leu Cys Glu Glu Ile Val Asp Gln Arg Met Ala Asp 180 185 190

Lys Met Trp Pro Gly Thr Lys Gln Leu Ala Asp Met His Ile Ala Ala 195 200 205

Gly His Gln Val Trp Leu Val Ser Ala Thr Pro Val Gln Leu Ala Gln 210 215 220

Ile Leu Ala Gln Arg Leu Gly Phe Thr Gly Ala Ile Gly Thr Val Ala 225 230 235 240

Glu Ala Lys Asp Gly Val Phe Thr Gly Arg Leu Val Gly Asp Ile Leu 245 250 255

His Gly Pro Gly Lys Arg His Ala Val Ala Ala Leu Ala Ser Ile Glu

260 265 270 Gln Leu Asp Leu Thr Arg Cys Thr Ala Tyr Ser Asp Ser Ile Asn Asp 280 Leu Pro Met Leu Ser Met Val Gly Thr Ala Val Ala Val Asn Pro Asp Ser Lys Leu Arg Lys Glu Ala Glu Thr Arg Gly Trp Asp Val Arg Asp 320 Phe Arg Ser Ile Arg Lys Ala Thr Arg Glu Tyr Gly Ile Pro Ala Leu 330 Val Thr Ala Ala Phe Ser Val Ala Gly Trp Ser Leu Arg Arg Trp 345 Arg Lys Gln 355 <210> 163 <211> 558 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(535) <223> RXN03105 <400> 163 ggttggggtc atcaaaggat gcggacatcg ctgtggggtt gtgtaataat tgcacctgtg 60 aggtgccttt ctggcaggtg aatcaggact ctaagcaagc ttg att ctt cca gtt Leu Ile Leu Pro Val cag gag ggc att tcc tat ttt ccc acg ccg tta cac ctg aat cac atc Gln Glu Gly Ile Ser Tyr Phe Pro Thr Pro Leu His Leu Asn His Ile 10 15 ggt gga tcc agg tta agc gca cat gta gaa gat gaa gat ctc cgc ctc Gly Gly Ser Arg Leu Ser Ala His Val Glu Asp Glu Asp Leu Arg Leu 25 30 gac cgg gac gca gtc tct gaa ttt ggt cgg aaa acc cac gaa ctc ttc 259 Asp Arg Asp Ala Val Ser Glu Phe Gly Arg Lys Thr His Glu Leu Phe 40 ccc ggg gtc aac cca gag ccc aac cgt ttc agc gtc cac tat gac acc 307 Pro Gly Val Asn Pro Glu Pro Asn Arg Phe Ser Val His Tyr Asp Thr 55 tac act gca gac aaa tct cca att atc gac gcg gtt gac aat gtc att Tyr Thr Ala Asp Lys Ser Pro Ile Ile Asp Ala Val Asp Asn Val Ile 75 gtg ctc acc gga gga tcc gga cac gcc ttc aag ctc tct cca gct tat Val Leu Thr Gly Gly Ser Gly His Ala Phe Lys Leu Ser Pro Ala Tyr

95

90

ggc gaa ctc gca gca caa cga gcg gtc gga aac acc tcg ccg ctg tac Gly Glu Leu Ala Ala Gln Arg Ala Val Gly Asn Thr Ser Pro Leu Tyr 105 110 115	451													
agc gaa gac ttt cgg atc gcc tcg cat gaa cca atc aaa gag cgg tgc Ser Glu Asp Phe Arg Ile Ala Ser His Glu Pro Ile Lys Glu Arg Cys 120 125 130	499													
acg tat aga aag cta acc ttt tta agt gcg cgg ttt tagggtgaga Thr Tyr Arg Lys Leu Thr Phe Leu Ser Ala Arg Phe 135 140 145	545													
atctaacgct gag														
<210> 164 <211> 145 <212> PRT <213> Corynebacterium glutamicum														
<pre><400> 164 Leu Ile Leu Pro Val Gln Glu Gly Ile Ser Tyr Phe Pro Thr Pro Leu 1 5 10 15</pre>														
His Leu Asn His Ile Gly Gly Ser Arg Leu Ser Ala His Val Glu Asp 20 25 30														
Glu Asp Leu Arg Leu Asp Arg Asp Ala Val Ser Glu Phe Gly Arg Lys 35 40 45														
Thr His Glu Leu Phe Pro Gly Val Asn Pro Glu Pro Asn Arg Phe Ser 50 55 60														
Val His Tyr Asp Thr Tyr Thr Ala Asp Lys Ser Pro Ile Ile Asp Ala 65 70 75 80														
Val Asp Asn Val Ile Val Leu Thr Gly Gly Ser Gly His Ala Phe Lys 85 90 95														
Leu Ser Pro Ala Tyr Gly Glu Leu Ala Ala Gln Arg Ala Val Gly Asn 100 105 110														
Thr Ser Pro Leu Tyr Ser Glu Asp Phe Arg Ile Ala Ser His Glu Pro 115 120 125														
Ile Lys Glu Arg Cys Thr Tyr Arg Lys Leu Thr Phe Leu Ser Ala Arg 130 135 140														
Phe 145														
<210> 165 <211> 687 <212> DNA <213> Corynebacterium glutamicum														
<220> <221> CDS <222> (62)(664)														

<223> RXS01130

<400> 165 agttcgtggc ggatgctgtg aacgtttccg gtggtcgcgt gggcgaagag gttctgtgtg													60			
Me	g gat t Asj 1	t ctq p Le	g gci	t cg	c aaq g Ly: 5	g cti s Lei	t ggi u Gl	t cti y Lei	t cti u Lei 10	u Ala	t gg a Gl	c aaq y Ly:	g cti s Lei	t gte u Vai	c gac l Asp 5	109
										cga Arg						157
										gtt Val						205
										aac Asn						253
										acc Thr 75						301
										att Ile						349
										ctt Leu						397
										ctg Leu						445
			_	_			-	_		ggt Gly	-					493
										atc Ile 155						541
										ctg Leu						589
										atc Ile						637
-	act Thr			_	-				taat	taga	aga 1	ccat	ttgo	et		684
tga																687

<210> 166

<211> 201 <212> PRT <213> Corynebacterium glutamicum <400> 166 Met Asp Leu Ala Arg Lys Leu Gly Leu Leu Ala Gly Lys Leu Val Asp Ala Ala Pro Val Ser Ile Glu Val Glu Ala Arg Gly Glu Leu Ser Ser 25 Glu Gln Val Asn Ala Leu Gly Leu Ser Ala Val Arg Gly Leu Phe Ser 45 Gly Ile Ile Glu Glu Ser Val Thr Phe Val Asn Ala Pro Arg Ile Ala Glu Glu Arg Gly Leu Asp Ile Ser Val Lys Thr Asn Ser Glu Ser Val 70 75 Thr His Arg Ser Val Leu Gln Val Lys Val Ile Thr Gly Ser Gly Ala Ser Ala Thr Val Val Gly Ala Leu Thr Gly Leu Glu Arg Val Glu Lys Ile Thr Arg Ile Asn Gly Arg Gly Leu Asp Leu Arg Ala Glu Gly Leu 115 120 155

Asn Leu Phe Leu Gln Tyr Thr Asp Ala Pro Gly Ala Leu Gly Thr Val

Gly Thr Lys Leu Gly Ala Ala Gly Ile Asn Ile Glu Ala Ala Ala Leu

Thr Gln Ala Glu Lys Gly Asp Gly Ala Val Leu Ile Leu Arg Val Glu 165

Ser Ala Val Ser Glu Glu Leu Glu Ala Glu Ile Asn Ala Glu Leu Gly 185

Ala Thr Ser Phe Gln Val Asp Leu Asp 195

<210> 167 <211> 604

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(604)

<223> RXS03112

<400> 167

gtgagcacgc aatttetttg etgetgteta etgetegeea gateetgetg etgatgegae 60

gctgcgtgag ggcgagtgga agcggtcttc tttcaacggt gtg gaa att ttc gga Val Glu Ile Phe Gly 1

					gtc Val											163
					ttt Phe											211
					gcg Ala											259
			_	_	cgt Arg		-		-						-	307
					ggc Gly 75											355
					atc Ile											403
					gat Asp		Ile									451
					tcc Ser											499
	-		_		gtt Val	_				-		-			_	547
				_	gcg Ala 155			_		-					-	595
	ctg Leu	_														604
<211 <212	> 16 > 16 > PR > Co	8 T	ebact	eri:	um gl	utam	icum	ı								
	> 16 Glu		Phe	Gly 5	Lys	Thr	Val	Gly	Ile 10	Val	Gly	Phe	Gly	His 15	Ile	
Gly	Gln	Leu	Phe 20	Ala	Gln	Arg	Leu	Ala 25	Ala	Phe	Glu	Thr	Thr 30	Ile	Val	
Ala	Tyr	Asp 35	Pro	Tyr	Ala	Asn	Pro 40	Ala	Arg	Ala	Ala	Gln 45	Leu	Asn	Val	