ECON 3535 Math Practice 2

Tradable Permits

1. Two firms can control emissions at the following marginal costs: $MC_x = 80a_x$ and $MC_y = 40a_y$ where a_x and a_y are, respectively, the amount of emissions reduced by firm x and firm y. Assume that with no control at all, each firm would be emitting 50 units of emissions or a total of 100 units for both firms.

- (a) Which firm is better at abating pollution?
- (b) If the goal is to reduce total emissions to 60 units. How many units must be abated? Write out the abatement constraint in mathematical terms
- (c) Consider a uniform standard. How many units must be abated by both firms? How much did each firm have to pay to abate their marginal unit of pollution?
- (d) Consider a cap-and-trade system that aims for a total 60 units of emissions.
 - i. In words, describe why the marginal abatement costs for each firm must be equal to eachother in order to be at equilibrium (the optimality condition).
 - ii. Using the optimality condition and the abatement constraint, solve for the equilibrium allocation of permits to each firm?
 - iii. At what price would these permits sell for at an auction?
- (e) Assume that the control authority wanted to reach its objective by using an emissions charge system instead.
 - i. What tax amount should them impose to reach this equilibrium?
 - ii. How much revenue would the government collect?
- (f) Why is cap-and-trade more cost-effective than a uniform standard where each firm reduces pollution by the same amount?

Solution:

- (a) Firm y has a lower cost of abatement, so it is the 'better' firm at abating.
- (b) Going from 100 units to 60 units of pollution implies an abatement goal of 40 units. In mathematical notation, we have

$$a_x + a_y = 40.$$

- (c) Each firm needs to abate half, so $a_x = a_y = 20$. For the 20th unit, we have $MAC_x = 80 * 20 = 1600$ and $MAC_y = 40 * 20 = 800$. In words, the 20th unit cost firm x \$1600 to abate and firm y \$800 to abate.
- (d) Consider a cap-and-trade system that aims for a total 60 units of emissions.
 - i. The marginal abatement costs must be equal to each other in order to ensure that the total cost of abatement is as cheap as possible. Consider the case where (a_x, a_y) is such that $MAC_x(a_x) > MAC_y(a_y)$ and $a_x + a_y = 40$. We can lower cost by having firm y abate one more unit, spending $MAC_y(a_y)$ dollars and having firm x abate one fewer unit, saving $MAC_x(a_x)$. The abatement goal will still be hit, but costs will be cheaper since savings $MAC_x(a_x)$ are bigger than additional costs $MAC_y(a_y)$. The same will hold with $MAC_y(a_y) > MAC_x(a_x)$. Therefore, we need equality to hold in order for the abatement goal to be achieved at as low of a cost as possible.

ECON 3535 Math Practice 2

ii. Our optimality condition is $80a_x = 40a_y$ which implies $2a_x = a_y$. Plugging into our constraint yields $a_x + 2a_x = 40 \implies a_x^* = 40/3 \approx 13.33$. This implies $a_y^* = 40 - 40/3 = 80/3 \approx 26.67$.

- iii. The permit price is equal to $MAC_x(a_x^*) = MAC_y(a_y^*) = 80 * 40/3 = 3200/3 \approx 1066.67 .
- (e) Assume that the control authority wanted to reach its objective by using an emissions charge system instead.
 - i. The tax amount should be equal to the permit price solved for above, so T = \$1066.67.
 - ii. After the policy, the firms will polute 60 units, so the revenue equals $1066.67 * 60 \approx $64,000$.
- (f) In the uniform standard, the firm with higher abatement costs is abating more than is optimal. The cap-and-trade system balances this trade-off by setting $MAC_x = MAC_y$ as required for efficiency as argued above.
- 2. Two firms can control emissions at the following marginal costs: $MC_x = 200a_x$ and $MC_y = 100a_y$ where a_x and a_y are, respectively, the amount of emissions reduced by firm x and firm y. Assume that with no control at all, each firm would be emitting 20 units of emissions or a total of 40 units for both firms.
 - (a) Consider a cap-and-trade system that aims for a total reduction of 21 units of emissions is necessary.
 - i. What is the equilibrium allocation of permits to each firm?
 - ii. At what price would these permits sell for at an auction
 - (b) Assume that the control authority wanted to reach its objective by using an emissions charge system instead.
 - i. What tax amount should them impose to reach this equilibrium?
 - ii. How much revenue would the government collect?
 - (c) Why is cap-and-trade more cost-effective than a uniform standard where each firm reduces pollution by 10.5 units?

Solution:

- (a) Our constaint is $a_x + a_y = 21$ and our optimality condition is $200a_x = 100a_y \implies 2a_x = a_y$.
 - i. Plugging the optimality condition into the constraint yields $a_x + 2a_x = 21 \implies a_x^* = 7$. Plugging a_x^* back into the budget constraint yields $a_y^* = 14$.
 - ii. Permits would sell for $MC_x(a_x^*) = MC_y(a_y^*) = \1400 .
- (b) Assume that the control authority wanted to reach its objective by using an emissions charge system instead.
 - i. The tax price should equal \$1400 to reach the same outcome.
 - ii. The firms would pollute 19 units generating total government revenue of 19 * 1400 = \$26,600.
- (c) When $a_x = a_y = 10.5$, we have $MAC_x(10.5) = 1050 < MAC_y(10.5) = 2100$. In this case, total costs are not minimized since firm y has a higher marginal abatement cost than firm x.

ECON 3535 Math Practice 2

3. Two firms can control emissions at the following marginal costs: $MC_x = 5 + 10a_x$ and $MC_y = 11a_y$ where a_x and a_y are, respectively, the amount of emissions reduced by firm x and firm y. Assume that with no control at all, each firm would be emitting 10 units of emissions or a total of 20 units for both firms.

- (a) Consider a cap-and-trade system that aims for a total reduction of 10 units of emissions.
 - i. What is the equilibrium allocation of permits to each firm?
 - ii. At what price would these permits sell for at an auction
- (b) Assume that the control authority wanted to reach its objective by using an emissions charge system instead.
 - i. What tax amount should them impose to reach this equilibrium?
 - ii. How much revenue would the government collect?

Solution:

- (a) Our constaint is $a_x + a_y = 10$ and our optimality condition is $5 + 10a_x = 11a_y$.
 - i. Rewriting the constraint as $a_x = 10 a_y$ and plugging it into the optimality condition yields

$$5 + 10 * (10 - a_y) = 11a_y \implies 105 = 21a_y \implies a_y^* = 5.$$

Plugging a_y^* into the budget constraint yields $a_x^* = 5$.

- ii. Permits would sell for $MC_x(a_x^*) = MC_y(a_y^*) = \55 .
- (b) Assume that the control authority wanted to reach its objective by using an emissions charge system instead.
 - i. The tax price should equal \$55 to reach the same outcome.
 - ii. The firms would pollute 10 units generating total government revenue of 10 * 55 = \$550.