6. Контрольная работа №1

Контрольная работа №1 Примерный вариант.

- 1. В коробке находится 20 маркеров: 10 синих, 6 красных и 4 чёрных. Наугад взяли 5 маркеров. Найти вероятность того, что среди взятых маркеров: а) два красные и два синие; б) хотя бы один чёрный.
- 2. В область D ограниченную двумя линиями: $D: \{y=x^2, y=4\}$ брошена точка. Найти вероятность того, что она попадёт в область B ограниченную также двумя линиями $B: \{y=x^2, y=x\}$.
- 3. Рабочий обслуживает три станка. Вероятность брака для первого станка равна 0,03, для второго 0,02, для третьего 0,04. Производительность второго станка вдвое больше чем первого, а третьего вдвое меньше чем первого. Изготовленные детали попадают на общий конвейер. Определить вероятность, что а) наудачу взятая деталь будет годной; б) наудачу взятая деталь оказалась бракованной, какова вероятность, что она изготовлена на третьем станке.
- 4. Найти вероятность отказа схемы, рис. 20, если надёжности элементов $p(A_1)=0.5,\ p(A_2)=0.7,\ p(A_3)=0.9.$
- 5. Найти вероятность того, что при 12 бросках кости шестёрка выпадет: а) ровно 2 раза, б) не менее 3 раз.
- 6. Из урны, в которой 15 белых и 5 чёрных шара, вынимают подряд все находящиеся в нём шары. Найти вероятность того, что третьим по порядку будет вынут белый шар.
- 7. В урне 2 белых и 4 черных шара. Два игрока поочередно извлекают шар (без возвращения). Выигрывает тот, кто первым вынет белый шар.
- ПРИМЕР 6.1. В коробке находится 20 маркеров: 10 синих, 6 красных и 4 чёрных. Наугад взяли 5 маркеров. Найти вероятность того, что среди взятых маркеров: а) два красные и два синие; б) хотя бы один чёрный.
- ▶а) Пусть A событие состоящее в том, что из коробки взяли 5 маркеров: два красные, два синие и дин оставшийся чёрный. Применяем формулу классического определения вероятностей $P(A) = \frac{m}{n}$. Число всевозможных исходов события A равно

Число всевозможных исходов события
$$A$$
 равно
$$n=C_{20}^5=\frac{20!}{5!\cdot 15!}=\frac{20\cdot 19\cdot 18\cdot 17\cdot 16}{2\cdot 3\cdot 4\cdot 5}=19\cdot 17\cdot 16\cdot 3=15504.$$

Число исходов благоприятствующих событию A равно

$$m = C_{10}^2 \cdot C_6^2 \cdot C_4^1 = \frac{10! \cdot 6! \cdot 4}{2! \cdot 8! \cdot 2! \cdot 4!} = 10 \cdot 9 \cdot 6 \cdot 5 = 2700.$$
 Следовательно, $P(A) = \frac{10 \cdot 9 \cdot 6 \cdot 5}{19 \cdot 17 \cdot 16 \cdot 3} = \frac{10 \cdot 9 \cdot 5}{19 \cdot 17 \cdot 8} = \frac{225}{1292} \approx 0,174.$

б) Пусть B — искомое событие состоящее в том, что из коробки взяли 5 маркеров и среди них оказался хотя бы один чёрный маркер. Тогда $B = B_1 + B_2 + B_3 + B_4$. Где B_i события состоящие в том, что выбрали i чёрных маркеров. События несовместны, поэтому можно применить теорему о сумме $P(B) = P(B_1) + P(B_2) + P(B_3) + P(B_4)$. Однако, быстрее найти вероятность противоположного события

$$P(\overline{B}) = P(B_0) = \frac{C_{16}^5}{C_{20}^5} = \frac{16! \cdot 5! \cdot 15!}{5! \cdot 11! \cdot 20!} = \frac{16 \cdot 15 \cdot 14 \cdot 13 \cdot 12}{20 \cdot 19 \cdot 18 \cdot 17 \cdot 17} = \frac{7 \cdot 13}{19 \cdot 17} = \frac{91}{323}.$$

$$P(B) = 1 - P(\overline{B}) = 1 - \frac{91}{323} = \frac{232}{323} \approx 9,718.$$

$$Other: a) \quad \frac{225}{1292} \approx 0,174; 6) \quad \frac{232}{323} \approx 9,718.$$

ПРИМЕР 6.2. B область D ограниченную двумя линиями: D: $\{y=x^2, y=4\}$ брошена точка. Найти вероятность того, что она попадёт в область B ограниченную также двумя линиями B: $\{y=x^2, y=x\}$.

▶На рис. 19 изображены области D и B. Согласно геометрическому определению вероятности, вероятность искомого события A будет равна отношению площадей области B и D, обозначим их S_B и S_D . $P(A) = \frac{S_B}{S_D}$. Найдём их значения. Для этого от площади квадрата (или прямоугольного треугольника) вычитаем площадь криволинейной трапеции, сверху ограниченной параболой $y = x^2$, а снизу осью абсцисс.

$$S_D = 4 \cdot 4 - \int_{-2} 2x^2 dx = 16 - x^3/3 \Big|_{-2}^2 = \frac{32}{3}.$$

$$S_B = \frac{1}{2} \cdot 1 \cdot 1 - \int_{0} 1x^2 dx = \frac{1}{2} - x^3/3 \Big|_{1}^0 = \frac{1}{6}.$$

$$P(A) = \frac{1/6}{1/32} = \frac{1}{64}.$$

Ответ:
$$P(A) = \frac{1}{64}$$
.

ПРИМЕР 6.3. Рабочий обслуживает три станка. Вероятность брака для первого станка равна — 0,03, для второго — 0,02, для третьего — 0,04. Производительность второго станка вдвое больше чем первого, а третьего вдвое меньше чем первого. Изготовленные детали попадают на общий конвейер. Определить вероятность, что а) наудачу взятая деталь оказалась бракованной, какова вероятность, что она изготовлена на третьем станке.

а) \blacktriangleright Это классическая задача на формулу полной вероятности. Обозначим буквой A событие состоящее в том, что наудачу взятая деталь будет годной, а H_i — несовместные и образующие полную группу события состоящие в том, что наудачу взятая с конвейера деталь изготовлена на i-том станке. Обозначим за x количество деталей выпущенных за определённое время третьим станком. Тогда первый и второй станки за это же время выпустят 2x и 4x, соответственно. Следовательно, $P(H_1) = \frac{2x}{2x+4x+x} = \frac{2}{7}$. Аналогично $P(H_2) = \frac{4}{7}$ и $P(H_3) = \frac{1}{7}$.

Вероятность того, что деталь будет стандартная, при условии что она изготовлена на первом станке будет равна 1-0.03=0.97. Это запишем в виде: $P(A/H_1)=0.97$. Аналогично $P(A/H_2)=0.98$ и $P(A/H_3)=0.96$.

Применяя формулу полной вероятности для случая трёх гипотез, получаем// $P(A)=P(H_1)P(A/H_1)+P(H_2)P(A/H_2)+P(H_3)P(A/H_3)=\frac{1}{7}(2\cdot 0.97+4\cdot 0.98+\cdot 0.96)\approx 0.974$.

б) ▶Это классическая задача на формулу Байеса.

Пусть событие B будет событие состоящее в том, что наудачу взятая деталь будет бракованной. Это событие будет противоположным событию A. Поэтому $P(B) = 1 - P(A) \approx 0.026$.

Применяем формулу Байеса для определения условной вероятности происхождения гипотезы H_3 , при условии, что событие B произошло.

$$P(H_3/B) = \frac{P(H_3)P(B/H_3)}{P(B)} = \frac{1/7 \cdot 0.04}{0.026} \approx 0.219.$$
Other: a) ≈ 0.974 ; 6) ≈ 0.219 .

ПРИМЕР 6.4. Найти вероятность отказа схемы, рис. 20, если надёжности элементов p(A1) = 0.5, p(A2) = 0.7, p(A3) = 0.9.

▶Событие состоящее в том, что схема работает безотказно в течении времени T обозначим A. Вероятность такого события A называется надёжностью схемы. Обозначим надёжности элементов $P(A_1) = p_1 = 0.5, P(A_2) = p_2 = 0.7, P(A_3) = p_3 = 0.9.$

Тогда вероятности отказа элементов
$$q_i=1-p_i$$
 будут равны $P(\overline{A_1})=q_1=0.5, P(\overline{A_2})=q_2=0.3, P(\overline{A_3})=q_3=0.1.$

Выделим из исследуемой схемы три участка, состоящие из двух последовательно соединённых элементов. Это блоки B_1 рис. 21,а), B_2 , рис. 21,б) и B_3 , рис. 21,в). Найдём их надёжность . Последовательный блок работоспособен, если все элементы исправны. Так как элементы выходят из строя независимо, получаем:

$$P(B_1)=P(A_1)\cdot P(A_2)=p_1\cdot p2=0.5\cdot 0.7=0.35.$$
 Аналогично, $P(B_2)=P(A_1)\cdot P(A_3)=p_1\cdot p_3=0.5\cdot 0.9=0.45.$ $P(B_3)=P(A_2)\cdot P(A_3)=p_2\cdot p_3=0.7\cdot 0.9=0.63.$

Найдём надёжность двух параллельных блоков C_1 и C_2 , рис. 21,г) и д). При параллельном соединении элементов схема работоспособна, когда работает хотя бы один элемент. Для определения надёжности параллельного блока находим сначала вероятность противоположного события — вероятность того, что блок вышел из строя, т.е. что все элементы неработоспособны, а затем применяем формулу для противоположного события.

$$P(C_1) = 1 - P(\overline{B_1}) \cdot P(\overline{B_2}) = 1 - (1 - P(B_1)) \cdot (1 - P(B_2)) = 1 - 0.65 \cdot 0.55 = 0.6425.$$

$$P(C_2) = 1 - P(\overline{A_1}) \cdot P(\overline{A_2}) \cdot P(\overline{B_3}) = 1 - q_1 \cdot q_2 \cdot (1 - P(B_3)) = 1 - 0.5 \cdot 0.3 \cdot 0.37 = 0.9445.$$

Наконец, вычисляем надёжность схемы состоящей из двух последовательно соединённых подсхем D_1 и D_2 , рис. (21,e). Используя теорему о произведении вероятностей для несовместных событий, получаем надёжность исследуемой схемы

$$P(A) = P(C_1) \cdot P(C_2) = 0.6425 \cdot 0.9445 = 0.60684125.$$

Находим вероятность отказа схемы: $P(\overline{A}) = 1 - P(\overline{A}) = 0.39315875.$ ◀

Рис. 21. К примеру 6.4

Ответ: 0,39315875.

ПРИМЕР 6.5. Найти вероятность того, что при 12 бросках кости шестёрка выпадет: а) ровно 2 раза, б) не менее 3 раз.

- \blacktriangleright В данном задании выполняются 12 повторных испытаний, т.е. независимых испытаний в каждом из которых вероятность выпадения шестёрки постоянна и равна p=1/6. Вероятность не выпадения шестёрки равна q=5/6.
 - а) Применяем формулу Бернулли $P_n(m) = C_n^m p^m q^{n-m}$. $P_{12}(2) = C_{12}^2 \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^{10} = \frac{12!}{2! \cdot 10!} \cdot \frac{5^{10}}{6^{12}} = \frac{66 \cdot 5^{10}}{6^{12}} \approx 0,29609.$
- б) Искомое A событие можно представить в виде суммы 9 независимых событий: $A = A_3 + A_4 + \cdots + A_{12}$, где A_i события состоящие в том, что шестёрка выпадает i раз. Очевидно, что проще найти вероятность противоположного события $\overline{A} = A_0 + A_1 + A_2$, а затем

использовать формулу $P(A) = 1 - P(\overline{A}) = P(A_0) + P(A_1) + P(A_2)$. Последнюю вероятность мы уже нашли, $P(A_2) = P_{12}(2) \approx 0.29609$.

$$P_{12}(0) = C_{12}^{0} \left(\frac{1}{6}\right)^{0} \left(\frac{5}{6}\right)^{12} \approx 0,11216.$$

$$P_{12}(1) = C_{12}^{1} \left(\frac{1}{6}\right)^{1} \left(\frac{5}{6}\right)^{11} \approx 0,26918.$$

$$P(A) \approx 1 - (0,11216 + 0,26918 + 0,29609) \approx 0,322.$$
Other: a) $\approx 0,296$; b) $\approx 0,322$.

ЗАМЕЧАНИЕ 6.1. В некоторых вариантах контрольной работы число испытаний достаточно велико, поэтому необходимо применять либо формулу Пуассона (5.8), когда пр близко к 0 или 1, либо локальную теорему Лапласа (5.5) для других случаев. Для трениров- κu разберите решения примеров (5.8 - ??).

ПРИМЕР 6.6. Из урны, в которой 15 белых и 5 чёрных шара, вынимают подряд все находящиеся в нём шары. Найти вероятность того, что третьим по порядку будет вынут белый шар.

▶Искомая случайное событие произойдет тогда будут вынуты первые два любых шара, а третий обязательно белый шар. Это событие можно записать в виде четырёх событий:

$$A = A_{\mathbf{q}} A_{\mathbf{q}} A_{\mathbf{6}} + A_{\mathbf{q}} A_{\mathbf{6}} A_{\mathbf{6}} + A_{\mathbf{6}} A_{\mathbf{q}} A_{\mathbf{6}} + A_{\mathbf{6}} A_{\mathbf{6}} A_{\mathbf{6}}.$$

Эти четыре события независимы, поэтому можно применить теорему о сумме несовместных событий, а для каждого из четырёх слагаемых применяем теорему произведения уже совместных событий: P(ABC) = P(A)P(B/A)P(C/AB):

$$\begin{split} &P(A) = ((A_{\mathsf{q}}A_{\mathsf{q}}A_{\mathsf{6}}) + P(A_{\mathsf{q}}A_{\mathsf{6}}A_{\mathsf{6}}) + P(A_{\mathsf{6}}A_{\mathsf{q}}A_{\mathsf{6}}) + P(A_{\mathsf{6}}A_{\mathsf{6}}A_{\mathsf{6}}) = \\ &= \frac{5}{20} \cdot \frac{4}{19} \cdot \frac{15}{18} + \frac{5}{20} \cdot \frac{15}{19} \cdot \frac{14}{18} + \frac{15}{20} \cdot \frac{5}{19} \cdot \frac{14}{18} + \frac{15}{20} \cdot \frac{14}{19} \cdot \frac{13}{18} = \\ &= \frac{15 \cdot (5(4+14+14)+14 \cdot 13)}{20 \cdot 19 \cdot 18} = \frac{15 \cdot 342}{20 \cdot 19 \cdot 18} = \frac{3}{4}. \end{split}$$

Задачу можно было решить проще, используя свойство событий:

$$A = A_{\mathbf{q}} A_{\mathbf{q}} A_{\mathbf{6}} + A_{\mathbf{q}} A_{\mathbf{6}} A_{\mathbf{6}} + A_{\mathbf{6}} A_{\mathbf{q}} A_{\mathbf{6}} + A_{\mathbf{6}} A_{\mathbf{6}} A_{\mathbf{6}} =$$

$$= (A_{\mathbf{q}} A_{\mathbf{q}} + A_{\mathbf{q}} A_{\mathbf{6}} + A_{\mathbf{6}} A_{\mathbf{q}} + A_{\mathbf{6}} A_{\mathbf{6}}) A_{\mathbf{6}} = \Omega A_{\mathbf{6}} = A_{\mathbf{6}}.$$

$$P(A_{\mathbf{6}}) = \frac{15}{20} = \frac{3}{4}. \blacktriangleleft$$
Otbet: $\frac{3}{4}$.

ПРИМЕР 6.7. В урне 2 белых и 4 черных шара. Два игрока поочередно извлекают шар (без возвращения). Выигрывает тот, кто первым вынет белый шар. Найдите вероятность выигрыша каждым игроком.

▶Возможные исходы данного опыта заканчиваются вытаскиванием белого шара – событие A_6 :

 $A_6, A_4A_6, A_4A_4A_6, A_4A_4A_4A_6, A_4A_4A_4A_6.$

Исходы в которых выиграет первый участник (событие A_1):

$$A_1 = A_6 + A_{\rm q} A_{\rm q} A_6 + A_{\rm q} A_{\rm q} A_{\rm q} A_{\rm q} A_6.$$

Исходы в которых выиграет второй участник (событие A_2):

$$A_2 = A_{\mathbf{q}} A_{\mathbf{6}} + A_{\mathbf{q}} A_{\mathbf{q}} A_{\mathbf{q}} A_{\mathbf{6}}.$$

Найдём вероятности этих событий.

$$P(A_1) = \frac{2}{6} + \frac{4}{6} \cdot \frac{3}{5} \cdot \frac{2}{4} + \frac{4}{6} \cdot \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{1}{3} \cdot \frac{2}{2} = \frac{1}{3} + \frac{1}{5} + \frac{1}{15} = \frac{3}{5}.$$

$$P(A_2) = \frac{4}{6} \cdot \frac{2}{5} + \frac{4}{6} \cdot \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{2}{3} \cdot \frac{2}{2} = \frac{4}{15} + \frac{2}{15} = \frac{2}{5}. \blacktriangleleft$$

Otbet: $P(A_1) = \frac{3}{5}$; $P(A_2) = \frac{2}{5}$.

ПРИМЕР 6.8. На окружность радиуса R наугад ставится три точки A,B,C. Какова вероятность, что треугольник ABC остроугольный.

Рис. 22. *К примеру 6.8*

 \blacktriangleright Переименуем эти точки по следующему правилу. Обозначим точку $A-A_1$. Точка которая находится следующей за точкой A при движении против часовой стрелке обозначив — A_2 и третью точку — A_3 . Можно изобразить окружность и точки на рисунке, поместив точку

 A_1 на ось ординат. Чтобы треугольник был остроугольным, необходимо чтобы центр окружности был внутри треугольника, рис. 23 а). Очевидно, что точка A_2 не может находится в третьем или четвертом квадрантах, т.к. в этом случае угол $A_2A_3A_1$ будет тупым, рис. 23 б). Аналогична и точка A_3 не может находиться в верхней полуплоскости, т.к. в этом случае угол $A_1A_2A_3$ будет тупым, рис. 23 в). Чтобы угол $A_3A_1A_2$ был острым, надо чтобы разность полярных углов точек A_2 и A_1 было меньше π , рис. 23 г).

Для наглядности разрежем окружность в точке A_1 и развернём её в отрезок длины $2\pi R$, рис. 23 д). Введем одномерную систему координат с началом в точке A_1 . Обозначим координаты точки A_1 переменной x, а A_2-y . Получаем систему неравенств: $0 < x < \pi R$, $\pi R < y < 2\pi R$, $y-x < \pi R$. Последнее неравенство запишем в виде: $y < \pi x$. Изобразим на плоскости Oxy решение данной системы неравенств, рис. 23 е).

ответ:
$$P(A) = \frac{S_{\triangle}}{S_{\square}} = \frac{0.5 \cdot (\pi r)^2}{(2\pi R)^2} = \frac{1}{8}$$
.
Ответ: $P(A) = \frac{1}{8}$.

Вариант для самостоятельного решения

- 1. В урне из 12 шаров 3 белых. Шар 6 раз вынимают, смотрят цвет и возвращают обратно. Найти вероятность того, что а) белый шар появится хотя бы два раза; в) 3 раза будет извлечён не белый шар.
- 2. В коробке из 18 конфет 6-c ореховой начинкой, 7-c фруктовой, остальные конфеты шоколадные. Найти вероятность того, что из пяти взятых конфет будут а) 3 шоколадные и одна c фруктовой начинкой; в) хотя бы одна шоколадная.
- 3. Найти надёжность схемы, если надежности элементов p(O)=0,85, p(\square)=0,95.

Рис. 23. *К примеру 3*

- 4. Наугад взяты два положительных числа X и У, каждое меньше или равно 1. Найти вероятность того, что их сумма меньше или равна 1, а произведение больше или равно 0,09.
- 5. На заводе производительности первого второго и третьего цехов относятся как 3:4:3. Количество бракованных изделий в 1-м цехе -2%, второго -3%, а третьего -5%. Найти вероятность того, что наугад взятая деталь произведена вторым цехом, если эта деталь оказалась бракованной.
- 6. Два стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого 0,4 второго 0,6. Найти вероятность того, что будет три попадания, если каждый стрелок производит по два выстрела.
- 7. Два игрока поочерёдно бросают монету. Выигрывает тот, у которого первым выпадает герб. Какова вероятность, что выиграет первый игрок.