DEVOIR À LA MAISON N°13

- ▶ Le devoir devra être rédigé sur des copies doubles.
- ▶ Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- ▶ Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 –

Pour toute fonction g continue sur [0,1] et pour tout $n \in \mathbb{N}$, on définit un polynôme $B_n(g)$ tel que :

$$\forall x \in [0,1], B_n(g)(x) = \sum_{k=0}^n \binom{n}{k} g\left(\frac{k}{n}\right) x^k (1-x)^{n-k}$$

Dans tout le problème, f désigne une fonction continue sur [0,1].

- **1.** On note $e_0: x \mapsto 1$, $e_1: x \mapsto x$ et $e_2: x \mapsto x^2$.
 - **a.** Montrer que pour tout $n \in \mathbb{N}^*$ et tout $x \in [0,1]$:

$$B_n(e_0)(x) = e_0(x)$$

b. Montrer que pour tout $n \in \mathbb{N}^*$ et pour tout $k \in [1, n]$:

$$\frac{k}{n} \binom{n}{k} = \binom{n-1}{k-1}$$

En déduire que pour tout $n \in \mathbb{N}^*$ et tout $x \in [0,1]$

$$B_n(e_1)(x) = e_1(x)$$

c. Montrer que pour tout entier $n \ge 2$ et pour tout $k \in [2, n]$

$$\frac{k(k-1)}{n(n-1)} \binom{n}{k} = \binom{n-2}{k-2}$$

En déduire que pour tout $n \in \mathbb{N}^*$ et tout $x \in [0,1]$:

$$B_n(e_2)(x) = e_2(x) + \frac{x(1-x)}{n}$$

- 2. Justifier l'existence d'un réel positif M tel que $\forall x \in [0,1], |f(x)| \leq M$.
- 3. On se donne un réel strictement positif ε . Justifier l'existence d'un réel strictement positif δ tel que :

$$\forall (u, v) \in [0, 1]^2, |u - v| < \delta \Rightarrow |f(u) - f(v)| < \varepsilon$$

4. Montrer que :

$$\forall (u,v) \in [0,1]^2, |f(u)-f(v)| < \varepsilon + 2M \left(\frac{u-v}{\delta}\right)^2$$

On pourra distinguer les cas $|u-v| < \delta$ et $|u-v| \ge \delta$.

5. Montrer que pour tout $n \in \mathbb{N}^*$ et tout $x \in [0,1]$:

$$f(x) - B_n(f)(x) = \sum_{k=0}^{n} {n \choose k} \left[f(x) - f\left(\frac{k}{n}\right) \right] x^k (1-x)^{n-k}$$

6. En déduire que pour tout tout $n \in \mathbb{N}^*$ et $x \in [0,1]$:

$$|f(x) - \mathbf{B}_n(f)(x)| < \varepsilon + \frac{\mathbf{M}}{2n\delta^2}$$

On pourra utiliser les résultats de la question .1.

On pourra également utiliser le fait que pour $x \in [0,1]$, $x(1-x) \le \frac{1}{4}$, après l'avoir démontré.

7. On pose $S_n = \sup_{x \in [0,1]} |f(x) - B_n(f)(x)|$. Montrer que $\lim_{n \to +\infty} S_n = 0$.