```
# Chaitanya mangla AI - DS B1

# Red Wine Quality Regression ML Project

# Use Regression to predict the continuous quality scoe (0-10) of red wine based on chemical attributes like acidity and alcohol

Python

# import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

Python

# importing the dataset in the form of url = "https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv" df = pd.read_csv(url, sep=';') df
```

1	₹	a	П	
d	~	۳	4	

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	5
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	5
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	6
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	- 5
1594	6.2	0.600	80.0	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	6
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0	6

Python

1599 rows × 12 columns

df.head()
Here we

Here we get the top 5 head values from the whole data

Python

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

```
# Now we start seperating the independent and dependent features
```

Python

[#] We select fixed acidity, volatile acidity and the quality columns from the whole dataset

X = df[['fixed acidity', 'volatile acidity', 'alcohol']]

y = df['quality']

[133]

	fixed acidity	volatile acidity	alcohol
0	7.4	0.700	9.4
1	7.8	0.880	9.8
2	7.8	0.760	9.8
3	11.2	0.280	9.8
4	7.4	0.700	9.4
(***)			***
1594	6.2	0.600	10.5
1595	5.9	0.550	11.2
1596	6.3	0.510	11.0
1597	5.9	0.645	10.2
1598	6.0	0.310	11.0

1599 rows × 3 columns

```
y # here its showinf the column of quality only on a scle of 0-10
[134]
            5
            5
            5
            6
    1594
            5
    1595
            6
    1596
            6
    1597
            5
    1598
             6
    Name: quality, Length: 1599, dtype: int64
        # Now we train and test the model
        from sklearn.model_selection import train_test_split
        X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.25, random_state = 42)
[135]
```


X_train # Data on which model is trained

[136]

	fixed acidity	volatile acidity	alcohol
582	11.7	0.490	9.2
626	8.8	0.600	9.1
1030	7.1	0.590	11.5
620	8.3	0.540	9.4
490	9.3	0.775	10.6
(444	***	444)	***
1130	9.1	0.600	10.4
1294	8.2	0.635	10.9
860	7.2	0.620	9.5
1459	7.9	0.200	11.9
1126	5.8	0.290	13.5

1199 rows × 3 columns

X_test # Data on which model is tested

[137]

...

	fixed acidity	volatile acidity	alcohol
803	7.7	0.56	9.6
124	7.8	0.50	9.5
350	10.7	0.67	9.9
682	8.5	0.46	9.8
1326	6.7	0.46	10.6
	(***)	***	200
1565	6.7	0.67	10.9
327	10.3	0.44	11.5
254	7.1	0.60	9.9
322	7.8	0.62	9.3
1160	10.6	0.36	11.1

400 rows × 3 columns

```
DV
        y train # Data on which model is trained
[138]
     582
             5
     626
     1030
             7
     620
             5
     490
             6
     1130
             6
     1294
             6
     860
             5
     1459
             7
     1126
             6
     Name: quality, Length: 1199, dtype: int64
        y_test # Data on which model is tested
[139]
     803
             6
     124
             5
     350
             6
     682
             5
     1326
             6
     1565
             6
     327
             5
     254
             6
     322
             5
     1160
     Name: quality, Length: 400, dtype: int64
```

```
# Importing the Linear Regression to train the model
        from sklearn.linear model import LinearRegression
        model = LinearRegression()
        model.fit(X train, y train)
[140]
         LinearRegression
                            0 0
      ▼ Parameters
           fit intercept
                           True
           copy_X
                           True
           tol
                           1e-06
           n jobs
                           None
           positive
                           False
        # Prediction of the model
        y pred = model.predict(X test)
[141]
        from sklearn.metrics import mean squared error, mean absolute error, r2 score
```

[142]

```
print("Coefficients" , model.coef )
        # it basically shows that how each feature affects the quality
        # Fixed Acidity, Volatile Acidity, Alcohol
[143]
     Coefficients [ 0.02992428 -1.22046516  0.33329814]
D ~
        print("Intercept" , model.intercept )
        # Intercept is the property which shows the value of dependent variables when independent variables are 0
[144]
     Intercept 2.5544507561649823
        print("MAE", mean absolute error(y test, y pred))
        # It shows the mean absolute error which is difference in the given and predicted values
[145]
     MAE 0.5245061411538714
        print("R Squared Error", r2 score(y test, y pred))
        # It shows the r squared error
[146]
     R Squared Error 0.3284501777457012
        print("MSE", mean squared error(y test, y pred))
        # it shows the mean squared error to show difference between the square of actual and predicted values
[147]
     MSE 0.41541652286012015
```


Python

<seaborn.axisgrid.PairGrid at 0x2ab025fb490>


```
sns.displot(y_pred-y_test, kind = 'kde')
# The probability distribution curve is shown and the variation is between -2 and 2
[152]
... <seaborn.axisgrid.FacetGrid at 0x2abbba73110>
```



```
# Prediction on 3 new sample of wines
       new_data = pd.DataFrame({
            'fixed acidity': [12.4, 7.5, 9.65],
            'volatile acidity': [0.70, 0.50, 0.35],
            'alcohol': [9.4, 10.2, 11.0]
        })
       predictions = model.predict(new data)
       print("Predicted Quality:" , predictions)
[]
```

Predicted Quality: [5.20418871 5.56829129 6.08233677]