CHAPITRE 5

LA COUCHE ACCÈS RÉSEAU

Introduction (1)

Illustration

Plan:

- Intro
- Délimitat.& erreurs
- Accès

Introduction (2)

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

- Services fournis
 - Entre 2 couches « accès réseaux », des trames sont échangées
 - Les trames sont dépendantes de la technologie utilisée
 - Trame ethernet
 - Trame PPP
 - Cette couche concerne l'échange d'information entre 2 machines directement connectées
 - Uniquement pour des hôtes dans le même (sous-) réseau!

Introduction (3)

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

- Service de base
 - Propagation des informations sur la ligne
 - Le format de l'information dépend de la technologie sous-jacente
- Services possibles (pas tous disponibles)
 - Framing: Encapsulation des paquets à l'intérieur d'une trame (ie. frame en anglais)
 - Délimitation de l'information
 - Identification de la source et de la destination (indépendant des couches supérieures)
 - Link Access: Le protocole MAC (Medium Access Control) contrôle l'accès au réseau (Qui ? Quand ?)

Introduction (4)

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

- Reliable delivery: transfert fiable des données (avec acquits, ...). Peut être utile pour des médias où le taux de perte est important
- Flow control: Contrôle de flux pour éviter de dépasser les capacités de traitement d'un nœud
- *Error detection*: Permet la détection (et parfois la correction) d'erreurs
- Half / Full duplex : Possibilité d'un dialogue bidirectionnel (envoi et réception d'information en même temps).

Introduction (5)

Comparaison avec la couche transport

Plan:

- Intro
- Délimitat. & erreurs
- Accès

- Similitudes
- Différences

Délimitation et erreurs (1)

Plan:

- Intro
- Délimitat& erreurs
- Accès

- Délimitation de l'information
 - Une fonction importante de cette couche est de délimiter l'information
 - Connaître la taille des informations transmises
 - Pouvoir déterminer où commence une trame et où elle se termine
 - Délimitation
 - Comment délimiter la trame ?
 - En utilisant un champ longueur qui indique la taille (en octets par exemple) de l'information transmise.

Délimitation et erreurs (2)

Délimitation et erreurs (3)

Character stuffing

Plan:

- Intro
- Délimitat.& erreurs
- Accès

 Utilisation d'une séquence de caractères de contrôles, déterminée pour signaler le début/fin de la trame

- Bit stuffing
 - Utilisation d'un marqueur binaire (séquence de bits) au début et à la fin de la trame :
 - **>>**
 - **>>>**

Délimitation et erreurs (4)

Illustration

Plan:

- Intro
- Délimitat& erreurs
- Accès

Données à transmettre :

Données adaptées :

Information transmise:

Le destinataire:

© Louis SWINNEN, tous droits réservés 2020

Délimitation et erreurs (5)

Plan:

- Intro
- Délimitat& erreurs
- Accès

- Détection des erreurs
 - En plus de l'information à transmettre, une donnée supplémentaire est ajoutée pour permettre de déterminer si l'information n'a pas été modifiée
 - D + EDC
 - Sur base de l'information reçue, le destinataire sait si elle est correcte :
 - D' + EDC'
 - La qualité de la détection d'erreur dépend de la méthode utilisée.

Délimitation et erreurs (6)

Plan:

- Intro
- Délimitat& erreurs
- Accès

Principes

- La distance de Hamming est le numbre de bits qui diffère entre 2 séquences (de bits) valides:
 - Soit m bits dans le message initial
 - Soit r bits ajoutés pour réaliser la détection. m+r
 bits sont transmis
 - Seul 2^m séquences de bits sont valides sur 2^{m+r} séquences de bits possibles
- Pour **détecter** *d* erreurs simples, le code doit avoir une distance de Hamming de *d+1*
- Pour **corriger** *d* erreurs simples, le code doit avoir une distance de Hamming de *2d+1*

Délimitation et erreurs (7)

Plan:

- Intro
- Délimitat& erreurs
- Accès

- La parité (1 bit)
 - A chaque bloc de donnée transmis, un bit de parité est ajouté
 - Suivant que l'on travaille en parité paire ou impaire, le bit ajouté est positionné à 0 ou à 1 pour que le bloc contiennent un nombre pair ou impair de bits à 1.
 - Que se passe-t-il s'il y a plus d'une erreur ?
 - Les erreurs pourraient ne pas être détectées.
 - Il arrive très souvent que les erreurs se produisent en rafale. Le mécanisme de la parité est peu adapté à la vérification des informations envoyées.

Délimitation et erreurs (8)

Plan:

- Intro
- Délimitat& erreurs
- Accès

- Que peut détecter la parité ?
 - Revenons à la distance de Hamming.
 - 8 bits de données + 1 bit de parité
 - m = 8 ; r = 1
 - 256 (28) combinaisons valides sur 512 (28+1) combinaisons possibles
 - Distance minimale entre 2 combinaisons valides: 2
 (le bit dans la donnée + le bit de parité)
 - Suivant la relation précédente, d + 1 (avec d = 1)
 - » Donc, ce mécanisme permet de détecter 1 erreur simple

Délimitation et erreurs (9)

Plan:

- Intro
- Délimitat & erreurs

Addisson Wesley, 2002

Exemple:

Accès

La parité (2 dimensions)

Détection et correction d'erreurs

$$d_{1,1}$$
 ... $d_{1,j}$ $d_{1,j+1}$ $d_{2,1}$... $d_{2,j}$ $d_{2,j+1}$... $d_{i,1}$... $d_{i,j}$ $d_{i,j+1}$ $d_{i,j+1}$

0	1	0	0	1	0
1	0	1	1	1	0
0	0	1	1	1	1
1	0	1	0	0	0
0	1	1	0	1	1
0	1	0	0	1	0
1	0	1	1	1	0
0	0	<u>0</u>	1	1	1
1	0	1	0	0	0
0	1	1	0	1	

Délimitation et erreurs (10)

Plan:

- Intro
- Délimitat& erreurs
- Accès

- Que peut détecter la parité à 2 dimensions ?
 - Revenons à la distance de Hamming
 - 8 bits de données + 2 bits de parité
 - m = 8 ; r = 2
 - 256 (28) combinaisons valides sur 1024 (28+2) combinaisons possibles
 - Distance minimale entre 2 combinaisons valides : 3 (le bit dans la donnée, la parité de la ligne et la parité de la colonne)
 - Suivant la relation précédente, d + 1 (avec d = 2)
 - » Peut détecter 2 erreurs simples
 - Suivant la relation précédente, 2d + 1 (avec d = 1)
 - » Peut corriger 1 erreur simple

Délimitation et erreurs (11)

Plan:

- Intro
- Délimitat& erreurs
- Accès

- Le CRC (Cyclic Redudancy Check)
 - Code polynomial
 - Il faut transformer une séquence de bits en polynômes

$$-1001110 \rightarrow 1*x^6 + 0*x^5 + 0*x^4 + 1*x^3 + 1*x^2 + 1*x + 0*x^0$$

- Toutes les opérations sont effectuées en arithmétique modulo-2 sans report
 - Addition et soustraction sont alors équivalentes à une opération XOR bit à bit
 - Ex:

Délimitation et erreurs (12)

Plan:

- Intro
- Délimitat
 & erreurs
- Accès

© Louis SWINNEN, tous droits réservés 2020

Fonctionnement

- L'émetteur et le destinataire se mettent d'accord sur un polynôme, le polynôme générateur G(x)
- La donnée à une taille de m bits \rightarrow polynôme M(x)
- Idée:
 - » On colle à M(x) une valeur de sorte que M(x) modifié soit exactement divisible par G(x)
 - » Le reste de la division de M(x) modifié par G(x) vaut alors 0.
- Le destinataire vérifie facilement si l'information est reçue correctement en effectuant l'opération de division par le polynôme générateur
 - » Si le reste de la division vaut 0, c'est que la donnée a été transmise correctement.

Délimitation et erreurs (13)

Plan:

- Intro
- Délimitat& erreurs
- Accès

Algorithme

Soit r le degré du polynôme générateur G(x)

$$x^6 + x^3 + x^2 + x + 1$$
 est de degré 6

- On décale M(x) de r bits vers la gauche
 - » Cela revient à ajouter r 0 après M(x)
 - » Cela donne M(x) modifié, noté : x^r M(x)
- Division modulo-2 sans report de $x^r M(x)$ par G(x)
- Calcul de la donnée à transmettre : T(x)

$$T(x) = x^r M(x) - reste trouvé$$

- Ex:
$$G(x) = x^3 + 1$$
 avec la donnée: $M(x) = x^5 + x^3 + x^2 + x$

Délimitation et erreurs (14)

© Louis SWINNEN, tous droits réservés

2020

Exercice: $M(x) = x^7 + x^5 + x^4 + x^3 + x + 1$ et $G(x) = x^3 + 1$

Délimitation et erreurs (15)

Plan:

- Intro
- Délimitat& erreurs
- Accès

- Si G(x) est bien choisi, on peut
 - Détecter toutes les erreurs simples, doubles
 - Détecter toutes les erreurs en rafale de longueur <= r
- Des polynômes générateurs standardisés:
 - CCITT-CRC: $x^{16} + x^{12} + x^5 + 1$
 - IEEE CRC-32: 100000100110000010001110110110111
- Les CRC sont utilisés également ailleurs:
 - Disques durs, programmes de compression, ...
- Un CRC peut être vu comme une fonction de hachage à sens unique
 - Pourquoi?

Accès au média (1)

Intro

Plan:

- Délimitat.
 & erreurs
- Accès

- Introduction
 - L'élément physique qui interconnecte les hôtes peut être
 - Partagé: tous les hôtes partagent le même média. Il convient alors d'établir des règles précises pour accéder à ce média
 - Ex: réseau sans-fil, réseau en bus (câble coaxial)
 - Dédié: Chaque hôte est relié séparément au réseau
 - Ex: réseau en étoile (câble RJ-45)

Accès au média (2)

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

- On distingue généralement 2 types de liaison:
 - Lignes point-à-point
 - Il y a 2 entités : l'émetteur et le destinataire
 - Technologie: PPP (ou variante de celle-ci), …
 - Exemple: xDSL, VPN, communication série, ...
 - Lignes broadcast
 - Il y a plusieurs émetteurs / destinataires
 - Chaque entité connectée reçoit (ou peut recevoir) tout le trafic réseau
 - Utilisé dans les réseaux locaux

Accès au média (3)

- 3 familles pour l'accès au média

- Les protocoles de partitionnement du canal
 - Chaque nœud reçoit exactement une part équitable
 - _
- Les protocoles à accès aléatoire
 - Possibilité d'envoyer de l'information n'importe quand
 - Possibilité de collisions entre deux hôtes qui émettent en même temps
- Les protocoles taking-turns
 - Chaque hôte peut émettre à un moment déterminé et pendant un temps déterminé
 - Un système de permission est mis en place

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

Accès au média (4)

Plan:

- Intro
- Délimitat.& erreurs
- Accès

- Quel serait le protocole idéal ?
 - Soit un débit de R bit/s (bps)
 - Lorsqu'1 seul nœud souhaite transmettre
 - Lorsque M nœuds souhaitent transmettre
 - Protocole décentralisé
 - •
 - Protocole simple et performant

Accès au média (5)

Protocoles de partitionnement du canal

- 2 techniques:

- TDM (Time Division Multiplexing)
- FDM (Frequency Division Multiplexing)
- Si N nœuds et un débit de R bps
 - TDM
 - Division en périodes de temps. Pendant ce temps,
 le nœud considéré dispose de R bps
 - Une fois le temps écoule, le nœud suivant peut transmettre
 - En moyenne, chaque nœud reçoit R/N bps

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

Accès au média (6)

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

FDM

- Le canal de R bps est divisé en fréquences, une fréquence particulière pour chaque nœud
- Chaque nœud utilise continuellement le canal avec un débit de R/N bps
- Avantages et inconvénients ?
 - Partage équitable du média (TDM et FDM)
 - Il n'y a pas de collisions
 - Si un nœud n'a rien à transmettre, sa bande passante est perdue
 - Dans tous les cas, un nœud transmet avec un débit moyen de R/N bps (même s'il est seul à transmettre).

Accès au média (7)

Protocoles à accès aléatoire

- Comment gérer l'accès au média ?
 - Supposons une ligne broadcast
 - Comment gérer l'accès ?
 - Faire comme les humains: <u>apprendre la politesse</u>
 - » Donner à chacun l'occasion de parler
 - » Ne pas parler sans y être invité
 - » Ne pas monopoliser la conversation
 - » Demander avant d'agir
 - » Ne pas interrompre quelqu'un qui parle
 - Si des nœuds parlent en même temps, on dit qu'il y a collision. En cas de collision, l'information est perdue.

<u>Plan:</u>

- Intro
- Délimitat.
 & erreurs
- Accès

Accès au média (8)

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

© Louis SWINNEN, tous droits réservés 2020

ALOHA

- Hawaï est un ensemble d'îles. L'idée est de permettre à chaque île de dialoguer avec l'île principale
- Pour ce faire, un satellite géostationnaire est utilisé
 - » Ce satellite peut recevoir des informations des îles et les transmettre à l'île principale
 - » Il retransmet tout ce qu'il reçoit : si 2 îles émettent en même temps → superposition des signaux
 - » Avec cette technologie, pas moyen de savoir si une autre île transmet

– Résultats:

- » Beaucoup de collisions
- » Si un bit d'une trame est mélangé avec un bit d'une autre → collision et perte d'information
- » Performance mauvaise: utilisation < 20 %</p>

Accès au média (9)

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

© Louis SWINNEN, tous droits réservés 2020

Slotted-ALOHA

- Le temps est découpé en période: le slot. Durant cette période, il est permis de transmettre.
- La satellite transmet un signal informant le début d'un slot de temps
- Les trames ont une taille maximale déterminée
- Un slot peut être : vide, contenir 1 trame, ou être en collision
- On réduit ainsi la possibilité d'avoir des collution car toute la trame est en collision ou il n'y a pas de collisions!
- Résultats
 - » 37% des slots sont vides
 - » 37% des slots contiennent 1 trame
 - » 26% des slots sont « en collision »

Accès au média (10)

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

- CSMA/CD (Carrier Sense Multiple Access with Collision Detection)
 - Dans d'autres technologies, il est possible de savoir si une entité est en train d'émettre ou non
 - Amélioration ?
 - » Ecouter avant de transmettre. Si un nœud transmet une information, attendre que celui-ci ait terminé
 - » Si quelqu'un d'autre commence à transmettre en même temps, arrêter. Si la réaction est rapide, la retransmission reprendra plus vite
 - Qui peut détecter une collision ?
 - » Le nœud qui transmet une information écoute le média pour s'assurer que ce qu'il entend est identique à ce qu'il transmet (→ pas de collision).

Accès au média (11)

Plan:

- Intro
- Délimitat.& erreurs
- Accès

- Protocoles taking-turns
 - Un nœud est désigné comme nœud maître
 - Ce nœud offre à chacun la possibilité de dialoguer (sur base d'un tourniquet)
 - Si un nœud n'a rien à transmettre, on passe au suivant
 - Si un nœud souhaite émettre, il dispose de toute la bande passante (R bps)
 - Il n'y a pas de collisions (pourquoi ?)
 - Il faut tenir compte du temps nécessaire pour interroger les machines

Accès au média (12)

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

- Implémentation alternative: le jeton
 - La permission de transmettre est associée à la détention d'une trame spéciale: le jeton
 - Les nœuds se passent le jeton : s'il souhaite transmettre, il envoie l'information et puis le jeton
 - Si un nœud n'a rien à transmettre, il propage le jeton
 - Problème
 - Il faut veiller à ne pas perdre le jeton (en cas de problème, il pourrait ne pas être retransmis)
 - » Le nœud *maître* est responsable de cela
 - Un nœud maître backup est nécessaire en cas de défaillance du nœud maître principal.

Accès au média (13)

Technologies

<u>Plan :</u>

- Intro
- Délimitat.& erreurs
- Accès

- Les réseaux locaux (Local Area Network)
 - Un réseau local interconnecte tous les équipements d'un campus, d'une entreprise, ...
 - Certains réseaux comportent 1 ou plusieurs routeurs et sont connectés à Internet
 - Les vitesses de transmission sont très variables:
 - 10, 100, 1000, 10000 Mbps pour Ethernet RJ-45
 - 11, 54, 125, 300, 900, 1500 Mbps en Wi-Fi
 - 1000, 10000 Mbps en fibre optique

Accès au média (14)

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

- Standards et normes
 - IEEE 802.3 → Ethernet
 - IEEE 802.5 → Tokenring (jeton, anneau)
 - IEEE 802.11a/b/g/n/ac → réseau Wifi
- Ethernet est la technologie la plus répandue dans les réseaux locaux
- Adresse physique (ou adresse MAC)
 - Adresse liée au matériel et se trouvant à l'intérieur d'une trame Ethernet
 - Une trame Ethernet reçue est lue par toutes les machines du même segment réseau

Accès au média (15)

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

- L'adresse physique destinataire permet de savoir qui doit recevoir l'information
- Fonctionnement
 - Lorsqu'un nœud reçoit une information, il vérifie si l'adresse physique dans la trame correspond à son adresse à lui
 - » Si l'adresse correspond, l'information est transmise à la couche réseau
 - » Sinon, l'information est ignorée
 - L'adresse MAC est codée sur 48 bits et est unique
 - » IEEE alloue les 24 premiers bits suivant le vendeur
 - » Le vendeur fixe les 24 derniers bits

Accès au média (16)

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

- Exemple
 - 58:82:A8:BC:8D:3A (linux) 58-82-A8-BC-8D-3A (win)
- Adresse multi-diffusion (ou broadcast):
 FF:FF:FF:FF:FF
- L'adresse est codée dans le matériel
- Fonctionnement

Accès au média (17)

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

Comment connaître l'adresse physique destinataire?

- Etape 1:
 - ___

• Etape 2:

Accès au média (18)

Plan:

- Intro
- Délimitat.& erreurs
- Accès

Comment connaître l'adresse physique destinataire?

- Etape 3:
 - _

• Etape 4:

Accès au média (19)

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

Observations

- Ce système s'appelle ARP (Address Resolution Protocol)
- Il est utilisé exclusivement au sein d'un sous-réseau
- Pour des raisons de performances, chaque nœud maintient une table ARP de correspondance
 - » arp -a (sous Windows / Linux) affiche la table
- Pour des raisons de sécurité, il est possible d'imposer une correspondance MAC ⇔ IP (contre l'IP spoofing)
- Fonctionnement entre 2 réseaux :

1A:23:F9:CD:06:9B 192.168.13.2 00:C0:E1:3D:4C:34 192.168.13.1 1A:23:F9:CD:06:9D 192.168.13.4 00:C0:E1:3D:4C:35 192.168.18.1 00:80:C8:EB:87:21 192.168.18.3

Accès au média (20)

© Louis SWINNEN, tous droits réservés 2020

Plan:

Intro

Accès

Délimitat.

& erreurs

Accès au média (21)

tous droits réservés 2020

© Louis SWINNEN,

Accès au média (22)

Pour une définition d'ARP, voir RFC 826

Accès au média (23)

Plan:

- Intro
- Délimitat. & erreurs
- Accès

- Adresse physique en IPv6
 - En IPv6, une autre solution a été imaginée
 - Eviter les messages broadcast, très consommateur
 - Envoyer la demande à un groupe particulier contenant la machine cible (en multicast)
 - Avantage: plus efficace et moins intrusif
 - Comment identifier le groupe:
 - » L'adresse multicast : ff02::1:ff00:0/104
 - » Les 24 derniers bits sont copiés de l'adresse IPv6
 - » Ex: Si on veut trouver l'adresse physique de la machine 2002:d970:bed2:fffa:20c:29ff:fef9:2973, on envoie un message à l'adresse multicast ff02::1:fff9:2973 qui est écoutée par la machine.
 - » Elle répond en fournissant son adresse MAC 322

Accès au média (24)

- Description d'Ethernet (IEEE 802.3)
 - Très courant car:
 - Technologie éprouvée (milieu 1970) et simple
 - Evolutive (s'adapte à toutes les vitesses)
 - Matériel bon marché
 - Connectique
 - En étoile (avec un relai: switch)
 - » Utilise 2 paires torsadées (et connecteur RJ45)
 - » Câble UTP (Unshield Twisted Pair)
 - » Vitesse: 100 Mbps − 1 Gbps − 10 Gbps

© Louis SWINNEN, tous droits réservés 2020

Plan:

Intro

Accès

Délimitat.

& erreurs

Accès au média (25)

Accès au média (26)

CSMA/CD

- Ethernet utilise une ligne broadcast (tout élément envoyé est reçu par toutes les machines connectées sur le même média)
- CSMA/CD est utilisé pour contrôler l'accès
- Principes
 - » Avant de transmettre une information, écoute du canal
 - Si une transmission est en cours, attente
 - Sinon, début de la transmission de la trame avec écoute du canal pour détecter les collisions
 - Si une collision survient, signal de collision émis et exponential back-off (l'attente avant la retransmission dépend du nombre de collisions)

<u>Plan :</u>

- Intro
- Délimitat.
 & erreurs
- Accès

Accès au média (27)

Plan:

- Intro
- Délimitat.
 & erreurs

yourownlinux.com,

(C)

lmage:

Accès

• Topologie

- Paires torsadées et relai
- Connexion point à point entre le relai et les hôtes

- Connecteurs RJ-45, 100 m entre 2 points
- Vitesses: 10 Mbps 100 Mbps (fast ethernet) –
 1000 Mbps (1 GbE) 10000 Mbps (10 GbE)
- Le relai
 - » Dispose de 4,8, 16, 24, 32 ou 48 ports
 - » Le switch permet de monitorer le réseau
 - » Il peut être « intelligent », c'est-à-dire manageable
 - » Il peut être compatible SDN (Software Defined Network)

Accès au média (28)

Plan:

- Intro
- Délimitat.& erreurs
- Accès

SDN (Software Defined Network)

- Découplage entre l'équipement (les switchs) et la configuration
- L'équipement (Switch & routeur)
 est connecté au contrôleur SDN
 qui « gère » et optimise
 l'utilisation du réseau
 - » Equilibrage de charge,
 - » Optimisation
 - » Qualité de service
 - » Routage intelligent
- Indépendance par rapport au fabricant
- Exemple de protocole utilisé: OpenFlow

Accès au média (29)

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

© Louis SWINNEN, tous droits réservés 2020

Multicast Ethernet avec IPv4

- Adresse IP multicast: entre 224.0.0.0 et 239.255.255.255
- Construction d'une adresse MAC multicast
 - » Les 23 derniers bits de l'adresse IP sont copiés
 - » Un identificateur (fixe) est placé dans les 24 premiers bits
 - » Le bit restant est fixé à 0
- Problème ?
 - » Une adresse MAC multicast correspond à plusieurs adresses IP multicast
 - » 5 bits de l'adresse IP sont perdus
 - Une adresse MAC multicast correspond à 2⁵ adresses IP multicast, soit 32 adresses.

Accès au média (30)

Exemple: 224.43.1.162 (adresse IP multicast)

Plan:

- Intro
- Délimitat.& erreurs
- Accès

IP en binaire: 11100000 00101011 00000001 10100010

Adresse MAC multicast

Accès au média (31)

Exercices

Plan:

- Intro
- Délimitat.& erreurs
- Accès

226.235.15.125

11100010 11101011 00001111 01111101

```
00000001 00000000 01011110 (0)1101011 0001111 01111101
01 : 00 : 5E : 6B : 0F : 7D
```

Adresses IP ? 2xx.107.15.125 et 2xx.235.15.125 (xx = 24 => 39)

01:00:5E:3D:E5:18

Adresses IP?

0011 1101 1110 0101 0001 1000 61 229 24

© Louis SWINNEN, tous droits réservés 2020

224.61.229.24 jusque 239.61.229.24

224.189.229.24 jusque 239.189.229.24

Accès au média (32)

2002:d970:bed2:fffa:20c:29ff:fffp:2973

- Multicast Ethernet avec IPv6
 - Mécanisme semblable à IPv4
 - L'adresse multicast IPv6 est construite comme suit:

<u>Plan:</u>

- Intro
- Délimitat.
 & erreurs
- Accès

<u> 128 bits</u>

Adr. IPv6: ff02:0:0:1:fff9:2973

(ff00::/8)

La machine intéressée par ce trafic multicast doit écouter sur cette adresse physique également

Les 32 derniers bits sont recopiés

© Louis SWINNEN, tous droits réservés 2020 Adr. ethernet: 33-33-ff-f9-29-73
48 bits

Accès au média (33)

Interconnexion: les switchs

- Hub = relai au niveau physique (rare!)
 - Reproduit sur tous ses ports un signal reçu sans vérification → collisions possibles
- Switch = relai au niveau accès internet
 - Le switch voit et peut analyser une trame
 - Lorsqu'une trame est reçue, elle est propagée sur le port connecté à la destination
 - » Il maintient, par port, une table listant les hôtes (adresses MAC) accessibles par ce port
 - Il implémente CSMA/CD, contre les collisions
 - Il peut interconnecter des technologies différentes
 - La table de forwarding se remplit automatiquement
 - Manageable (peut être configuré)

<u>Plan:</u>

- Intro
- Délimitat.
 & erreurs
- Accès

© Louis SWINNEN, tous droits réservés 2020 Comment

fait-il?

Accès au média (34)

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

© Louis SWINNEN, tous droits réservés 2020

SWILABUS

Les VLANs

- » Les switchs manageables peuvent permettre la création de VLANs
- » Il s'agit de « découper » le switch pour créer des réseaux différents
- » Ainsi, on peut choisir d'allouer 5 ports à un réseau donné et 3 ports à un autre.
 - 5 ports pour le réseau pédagogique
 - 3 ports pour le réseau administratif
 - Chaque VLAN est identifié par un numéro, le VLAN ID
- » Plus économe que de déployer 2 switchs
- » Plus simple à maintenir aussi

Accès au média (35)

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

- Les VLANs et le « trunking »
 - » Un port peut appartenir à plusieurs VLANs
 - » Possible en « étiquetant » les trames
 - Un même lien peut alors transporter plusieurs
 « sous-réseaux » ou plusieurs VLANs

Accès au média (36)

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

Problème

- Pour des raisons de sécurité, les switchs peuvent disposer de plusieurs connexions redondantes entre-eux
 - » Qui empruntent des chemins différents
 - » Qui assurent qu'en cas de rupture, les deux switchs restent interconnectés
- Comment éviter qu'une trame ne boucle entre ces deux switchs ?

Accès au média (37)

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

- Idée: Construire un arbre de recouvrement minimum
 - » Intégrant tous les nœuds du réseau
 - » « Supprimant » les boucles
- Principe: désactiver certains ports des switchs pour éviter qu'une trame boucle
- Algorithme: <u>spanning tree protocol (STP)</u>
 - » Norme: **802.1d**
 - » Messages échangés: appelé BPDU (Bridge Protocol Data Unit) ou message 802.1d
 - Identification de la racine (R)
 - Coût pour atteindre la racine (C)
 - Identification de l'émetteur (T)
 - » Cet algorithme est réparti dans les switchs
 - Uniquement Manageable

Accès au média (38)

- » Si M1 et M2 sont 2 BPDU, on dira que M1 est meilleur que M2 si:
 - R1 < R2 <u>ou</u>
 - R1 = R2 **et** C1 < C2 <u>ou</u>
 - R1 = R2 et C1 = C2 et T1 < T2
- » Fonctionnement

Bonaventure, 2019

Source: © O.

- Au démarrage, le switch se considère comme la racine. Message avec un coût de 0
- Le switch sauvegarde, pour chaque port, le meilleur message BPDU qu'il reçoit
- Si sur un port, le switch reçoit un meilleur message que le sien, il adapte son message
- Le protocole est stabilisé lorsqu'il n'y a plus qu'un seul émetteur de BPDU
- Le **switch racine** est le switch avec le plus petit ID (valeur T, dia précédente)

Accès au média (39)

Plan:

- Intro
- Délimitat.& erreurs
- Accès

Switch 2

Le coût est très souvent lié à la rapidité de la liaison: afin de privilégier les liaisons rapides

- » Sur chaque switch, il y a:
 - <u>Un</u> port racine qui est le port par lequel les BPDU sont reçus. Exactement 1 port racine sur les switchs, sauf sur le switch racine
 - Le coût sera, ici, considéré comme étant 1+distance pour atteindre la racine ou 0 s'il s'agit du switch racine
 - Des ports désignés si le meilleur message reçu sur ce port <u>est moins bon</u> que la message émis par le switch
 - Utilisé pour propager l'information
 - **Des ports bloqués** si le meilleur message reçu sur ce port <u>est meilleur</u> que le message émis par le switch
 - Information ignorée (port désactivé)₃₃₈

Accès au média (40)

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

S2	202
Α	
В	

101

S1

Α

В

© Louis SWINNEN, tous droits réservés 2020

Exemple simple

Switch 2, 1 puis 3

- » Etape 1
 - S2 démarre en pensant être la racine
 - BPDU S2: 2,0,2 (R,C,T)
 - Aucun autre switch n'est actif
- » Etape 2: démarrage switch 1
 - S1 démarre en pensant être la racine
 - BPDU S1: 1,0,1 (R,C,T)

S2	202
Α	
В	

Accès au média (41)

Plan:

- Intro
- Délimitat.& erreurs
- Accès

S1	101
Α	303
В	112

101

© Louis SWINNEN, tous droits réservés

A 113

B 112

S1

SWILABUS

2020

- » Etape 3 : Démarrage de S3
 - S3 démarre en pensant être la racine

S2	112
Α	101
В	303

» Résultat

S2	112	
Α	101	
В	113	_

S3 303 A 112 B 101

Switch 2, 1 puis 3

S3 113

A 112

B 101

340

Accès au média (42)

Plan:

- Intro
- Délimitat.& erreurs
- Accès

Ordre de mise sous-tension des switchs: 12, 5, 10 puis 3

Accès au média (43)

Le protocole Point-à-point (PPP)

- Utilisé entre <u>un</u> émetteur et <u>un</u> destinataire
 Permet la connexion au réseau internet via un modem (téléphonique ou xDSL)
 - xDSL → comme PPPoE ou PPPoA
 - VPN → comme PPTP
- Décrit dans le RFC 1661
- Fonctions de PPP
 - Encapsulation: Pour transporter des paquets IP, IPX, AppleTalk, ...
 - General: Indépendant des technologies utilisées

<u>Plan:</u>

- Intro
- Délimitat.
 & erreurs
- Accès

Accès au média (44)

Plan:

- Intro
- Délimitat.& erreurs
- Accès

- Détection d'erreur: PPP doit être capable de détecter les erreurs de transmission
- Activité d'une ligne: PPP doit pouvoir détecter si une ligne n'est plus active
- Négociation: PPP doit permettre la négociation de paramètres réseaux
- Contenu d'une trame PPP

Flag Addr Contr Protocol Info Check Flag

- Flag: permet la délimitation de la trame PPP (bit stuffing)
- Addr et Control ont des valeurs fixées:
 11111111 pour l'adresse et 0000011 pour control

Accès au média (45)

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

- *Protocol:* Indique le type de données présentes dans les informations
 - Ex: IP (21h), AppleTalk (29h), PPCP (C021h), IPCP (8021h), ...
 - Standardisé → RFC 1700 & 3232
- Information: Information transmise dans la trame
- Checksum: CRC pour détecter les erreurs
- 3 sous-protocoles:
 - LCP (Link-Control Protocol)
 - Etablissement de la liaison et négociation des options
 - Authentification des utilisateurs (si requis)
 - Maintient de l'activité sur la ligne
 - Fermeture de la connexion PPP

Accès au média (46)

Plan:

- Intro
- Délimitat.
 & erreurs
- Accès

- NCP (Network Control Protocol)
 - Familles de protocoles permettant de configurer les couches réseaux supérieures
 - » IP Configuration Protocol (IPCP) permet d'obtenir des paramètres IP, DNS, ...
- PPP
 - Gère la transmission des informations à la destination
- Authentification
 - Devenue importante si liaison VPN
 - Ex: PAP (dépassé), CHAP (sur base d'un secret partagé)
 - MS-CHAPv1 (dépassé) ou MS-CHAPv2

EXERCICE D'INTEGRATION

Intégration (1)

- Problème
 - L'émetteur souhaite envoyer un mail en utilisant son prestataire Gandi

Intégration (2)

- Il faut peut-être savoir que :
 - L'émetteur est connecté au **Win** en IPv4 avec l'adresse publique 212.166.35.100 (/24). Le routeur dispose de l'adresse 212.166.35.1
 - La requête DNS est déjà faite et a fourni
 l'adresse IPv6 de Gandi => 2001:4b98:c:521::6
 - L'émetteur utilise 6to4 pour se connecter en IPv6 et le routeur relai 192.88.99.1
 - Le protocole SMTP utilise TCP, sur le port 25
 - Les adresses MAC sont précisées sur le schéma du coté de l'émetteur et du destinataire

Intégration (3)

- On vous demande de:
 - Détailler ce qu'il se passe de bout en bout au niveau des couches transport et internet
 - Détailler ce qu'il se passe localement au niveau des couches accès réseau de l'émetteur et du destinataire
 - Supposer qu'aucune erreur de transmission de vient empêcher l'établissement de la connexion
 - Détailler tous les mécanismes utilisés
 - Préciser des valeurs si des données sont manquantes.

