Causality, Regression, and Fixed Effects

Sam Frederick ¹

¹sdf2128@columbia.edu

In randomized experiments, we observe:

$$\begin{aligned} Outcome_i(Treatment_i = 1) &= y_i \\ Outcome_j(Treatment_j = 0) &= y_j \end{aligned}$$

In randomized experiments, we observe:

$$\begin{aligned} Outcome_i(Treatment_i = 1) &= y_i \\ Outcome_j(Treatment_j = 0) &= y_j \end{aligned}$$

Randomization \implies treatment is *only* difference between i and j

Estimate treatment effect by subtraction:

$$\begin{aligned} Outcome_i(Treatment_i = 1) - Outcome_j(Treatment_j = 0) \\ &= y_i - y_j \\ &= \tau \end{aligned}$$

Example: Estimating Treatment Effects in R

```
experiment <- read.csv("fakeexperiment.csv")</pre>
mean(experiment$y[experiment$treatment ==
    1]) - mean(experiment$y[experiment$treatment ==
    01)
[1] 2.946722
experiment <- read.csv("fakeexperiment.csv")</pre>
lm(y ~ treatment, data = experiment)
Call:
lm(formula = y ~ treatment, data = experiment)
Coefficients:
(Intercept) treatment
      2.037
                    2.947
```

Causality in Observational Data

Causality in Observational Data

In observational data, we observe:

$$\begin{aligned} Outcome_i(Treatment_i = 1, Confounder_i) &= y_i \\ Outcome_j(Treatment_j = 0, Confounder_j) &= y_j \end{aligned}$$

Treatment is not only difference between i and j

Estimating Causal Effects with Observational Data

True relationship: $y_i = 3 + 5*treatment_i + 10*confound_i + \varepsilon_i$

```
obs <- read.csv("fakeobservational.csv")
lm(y ~ treatment, data = obs)</pre>
```

```
Call:
lm(formula = y ~ treatment, data = obs)
Coefficients:
(Intercept) treatment
    -58.18 179.05
```

- Think clearly about potential confounders
- Adjust/control for potential confounders identified

- Think clearly about potential confounders
- Adjust/control for potential confounders identified
- Remember true equation is:

$$y_i = 3 + 5 * treatment_i + 10 * confound_i + \varepsilon_i$$

```
lm(y ~ treatment + confound, data = obs)
```

Call:

```
lm(formula = y ~ treatment + confound, data = obs)
```

Coefficients:

```
(Intercept) treatment confound 3.254 5.042 9.985
```


$$\begin{aligned} outcome_i &= \alpha + \tau * treatment_i + \beta * confounder_i + \varepsilon_i \\ confounder_i &= \eta + \gamma * treatment_i \\ outcome_i &= \nu + \lambda * treatment_i \\ \lambda &= \tau + \gamma * \beta \end{aligned}$$

Making Sense of Regression Results

In experiments, treatment *causes* (leads to, generates, etc.) an effect of about τ

Making Sense of Regression Results

- In experiments, treatment causes (leads to, generates, etc.) an effect of about τ
- Not so in observational studies...
- Should be careful about interpretation of regression coefficients
- ▶ Generally, not "treatment" variable causes (leads to, generates, increases) the outcome

What Can We Say Instead?

- A one unit increase in the "treatment" variable is associated with a change in the outcome of about τ
- If the "treatment" variable were higher by Z, we would expect our outcome to be higher by about $Z * \tau$ on average
- ► The outcome variable is predicted to be about Z higher/lower for each increase/decrease of the "treatment" variable

A Note about \mathbb{R}^2

$$R^2 = 1 - \frac{\sum_i^n (\hat{y}_i - y_i)^2}{\sum_i^n (y_i - \bar{y})^2}$$

- How much of variation in outcome "explained" by model
- ▶ Better description might be variation "captured" by model
- Not really helpful in evaluating causality
 - \blacktriangleright Experiments often have very low R^2
- Mostly helpful for prediction

A Note about \mathbb{R}^2

```
fit <- lm(y ~ treatment, data = obs)
ssr <- sum((fit$fitted.values - obs$y)^2)
sst <- sum((obs$y - mean(obs$y))^2)
1 - ssr/sst</pre>
```

[1] 0.2289192

```
summary(fit)$r.squared
```

[1] 0.2289192

A Note about R^2

- $ightharpoonup R^2$ will always increase if you add more variables
 - Even if those variables are unrelated to the outcome

```
summary(lm(y ~ treatment, data = experiment))$r.squared
```

[1] 0.08032865

```
summary(lm(y ~ treatment + unobserved, data = experiment));
```

[1] 0.0804521

[1] 0.08063636

Causality vs. R^2

- Should we worry about causality in regression if we have data like this?
- \blacktriangleright What might we expect the R^2 of this regression to look like?

Causality vs. ${\cal R}^2$

Causality vs. R^2

We can see this distinction using our datasets:

```
# Experimental Data
summary(lm(y ~ treatment, data = experiment))$r.squared

[1] 0.08032865

# Observational Data with Omitted
# Confounder
```

summary(lm(y ~ treatment, data = obs))\$r.squared

[1] 0.2289192

Interactions (Heterogeneity in Treatment Effects)

```
inter <- read.csv("fakeinteraction.csv")
plot(inter$treatment, inter$y, xlab = "Treatment",
    ylab = "Y")</pre>
```


Interactions (Heterogeneity in Treatment Effects)

```
inter <- read.csv("fakeinteraction.csv")
plot(inter$treatment, inter$y, xlab = "Treatment",
    ylab = "Y", col = c("red", "blue")[factor(inter$democrate</pre>
```


Estimating Interactions in R

```
fit <- lm(y ~ treatment, data = inter)
plot(inter$treatment, inter$y, xlab = "Treatment",
    ylab = "Y", col = c("red", "blue")[factor(inter$democra
abline(fit, lwd = 3)</pre>
```


Estimating Interactions in R

Estimating Interactions in R

Interactions

$$y_i = \alpha + \beta_1 * treatment_i + \beta_2 * x_i + \beta_3 * treatment_i * x_i + \varepsilon_i$$

term	estimate
(Intercept)	4.903261
treatment	3.011608
democrat	10.035690
treatment:democrat	-3.023368

 $y_i = 4.9 + 3.012*treatment_i + 10.037*democrat_i - 3.023*democrat_i*treatment_i$

Interactions

```
lm(y ~ treatment, data = inter, subset = democrat ==
1)
```

term	estimate
(Intercept)	14.9389500
treatment	-0.0117603

```
lm(y ~ treatment, data = inter, subset = democrat ==
0)
```

term	estimate
(Intercept)	4.903261
treatment	3.011608

Interactions

Full Regression:

 $\begin{aligned} y_i &= 4.9 + 3.012 * treatment_i + 10.037 * democrat_i - 3.023 * \\ democrat_i * treatment_i \end{aligned}$

Democrats:

$$y_i = 14.94 - 0.012 * treatment_i$$

Equivalent to:

$$\begin{aligned} y_i &= 4.9 + 10.037*1 + 3.012*treatment - 3.023*1*treatment_i \\ &= 14.94 - 0.012*treatment_i \end{aligned}$$

Republicans:

$$y_i = 4.9 + 3.012 * treatment_i$$

Equivalent to:

$$y_i = 4.9 + 10.037 * 0 + 3.012 * treatment_i - 3.023 * 0 * treatment_i = 4.9 + 3.012 * treatment_i$$

ind	year	ideology
Individual-1	2020	5
Individual-1	2022	4
Individual-2	2020	6
Individual-2	2022	5
Individual-3	2020	9
Individual-3	2022	8

```
lm(ideology ~ factor(ind) + factor(year),
    data = example)
```

(Intercept)	Individual-2	Individual-3	2022	ideology
1	0	0	0	 5
1	0	0	1	4
1	1	0	0	6
1	1	0	1	5
1	0	1	0	9
1	0	1	1	8

$$y_i = \alpha + \beta_1 * Individual 2 + \beta_2 * Individual 3 + \beta_3 * year_{2022} + \varepsilon_i$$

```
lm(ideology ~ factor(ind) + factor(year),
    data = example)
```

estimate
5
1
4
-1

$$y_i = 5 + 1*Individual2 + 4*Individual3 - 1*year_{2022} + \varepsilon_i$$

ind	year	ideology
Individual-1	2020	5
Individual-1	2022	4
Individual-2	2020	6
Individual-2	2022	5
Individual-3	2020	9
Individual-3	2022	8

What do fixed effects help us accomplish?

- What do fixed effects help us accomplish?
 - Control for unobserved confounders

- What do fixed effects help us accomplish?
 - Control for unobserved confounders
- Confounders of what type?

- What do fixed effects help us accomplish?
 - Control for unobserved confounders
- Confounders of what type?
 - Confounders that do not change within the fixed-effect unit
 - e.g., time-invariant confounders
 - e.g., person-invariant (constant) confounders