АНАЛИТИЧЕСКИЙ ОТЧЕТ ПРЕДМЕТНОЙ КОМИССИИ О РЕЗУЛЬТАТАХ ЕГЭ ПО ХИМИИ

Отчет подготовил A.H.Левкин, заместитель председателя предметной комиссии по химии

1. ПОДГОТОВКА К ПРОВЕДЕНИЮ ЕДИНОГО ГОСУДАРСТВЕННОГО ЭКЗАМЕНА (ДАЛЕЕ ЕГЭ) ПО ХИМИИ В 2010 ГОДУ

Основные сведения о составе предметной по химии приведены в табл. 1.

Таблица 1 Состав предметной комиссии по химии. $E\Gamma 3-2010$

		Обучено экспертов				
			из ОУ		из вузов	
Предмет	Год		% от общего		% от общего	
предмет	тод	чел.	количества	чел.	количества	всего
			подготовленных	чсл.	подготовленных	
			экспертов		экспертов	
Химия	2010	112	71,3%	45	28,7%	157

В 2010 году новых экспертов не обучали, так как число экспертов в предметной комиссии по химии оказалось достаточным для проверки работ экзаменуемых. С экспертами, которые уже имели опыт проверки работ в 2009 году, были проведены групповые и индивидуальные консультации (6 групп экспертов).

Состав предметной комиссии остался практически прежним. В 2010 г. зарегистрировано 157 экспертов. На проверку работ 5 июня (суббота, следующий день после основного дня экзамена) явился 141 эксперт (90% от числа зарегистрированных экспертов).

В 2009/2010 учебном году были обучены 2 группы учителей по курсу «ЕГЭ: технология подготовки учащихся к экзамену».

Координация деятельности по повышению квалификации учителей осуществлялась Региональным центром оценки качества образования и информационных технологий (далее РЦОКОиИТ) и кафедрой естественно-научного образования Академии постдипломного педагогического образования (далее АППО).

2. ХАРАКТЕРИСТИКА КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫХ МАТЕРИАЛОВ (ДАЛЕЕ КИМ) ЕГЭ. СРАВНЕНИЕ С КИМами ПРЕДЫДУЩЕГО ГОДА

2.1. Структура экзаменационной работы (табл. 2)

Структура и содержание проверяемых знаний, умений и навыков остались такими же, как и в экзаменационной работе 2009 года, изменений не произошло.

Каждый вариант экзаменационной работы состоит из трех частей и включает 45 заданий.

Одинаковые по форме представления и уровню сложности задания сгруппированы в определенной части работы.

Tаблица 2 Распределение заданий по частям экзаменационной работы

Часть работы	Количе- ство заданий	Макси- мальный первич- ный балл	% максимального первичного балла за задания данной части от максимального первичного балла за всю работу	Тип зада- ний	Рекомендо- ванное время на выполнение
A	30	30	45,4%	Задания с выбором ответа	2-3 мин
В	10	18	27,3%	Задания с кратким ответом	До 5 мин
C	5	18	27,3%	Задание с разверну- тым отве- том	До 10 мин
Итого	45	66			

2.2. Содержательные блоки экзаменационной работы

При определении количества заданий экзаменационной работы, ориентированных на проверку усвоения учебного материала отдельных блоков, учитывалось прежде всего, какой объем каждый из них занимает в курсе химии. Принято во внимание, что в системе знаний, определяющих уровень подготовки выпускников по химии, важное место занимают элементы содержания 3-х содержательных блоков — «Химическая связь и строение вещества», «Неорганическая химия», «Органическая

химия». По этой причине суммарная доля заданий, проверяющих усвоение содержания данных блоков, составила в экзаменационной работе 44% от общего числа всех заданий (45). Информацию о распределении заданий по содержательным разделам дает табл. 3.

 Таблица 3

 Распределение заданий по основным содержательным разделам

	Число заданий*				
Содержательный раздел	Вся рабо- та	Часть А	Часть В	Часть С	
Химический элемент	3 (6,7%)	2 (6,7%)	1 (10%)	_	
Неорганическая химия	4 (8,9%)	3 (10%)	1 (10%)	_	
Химическая связь и строение вещества	9 (20%)	7 (23,4%)	2 (20%)	_	
Органическая химия	7 (15,6%)	5 (16,7%)	2 (20%)	_	
Химическая реакция	15 (33,3%)	10 (33,3%)	2 (20%)	3 (60%)	
Экспериментальные основы химии	1 (2,2%)	1 (3,3%)	_	-	
Общие способы получения веществ	1 (2,2%)	1 (3,3%)	_	_	
Расчеты по химическим форму- лам и уравнениям	5 (11,1%)	1 (3,3%)	2 (20%)	2 (40%)	
Итого	45 (100%)	30 (100%)	10 (100%)	5 (100%)	

^{*} В скобках – доля содержательного раздела среди заданий в данной части работы.

Таким образом, произошло более четкое разделение заданий по содержательным блокам по сравнению с 2009 годом. В работе 2009 года задания распределялись на 4 содержательных блока: «Химический элемент», «Вещество», «Химическая реакция», «Познание и применение веществ и химических реакций».

2.3. Распределение заданий по уровню сложности

В экзаменационную работу включаются задания различного уровня сложности: базового, повышенного, высокого (табл. 4). Распределение заданий по уровню сложности не отличается от версии 2009 года.

 Таблица 4

 Распределение заданий по уровню сложности

Уровень	Число	Максималь-	% максимального первичного балла за зада-
сложности	зада-	ный первич-	ния данного уровня сложности от макси-
СЛОЖНОСТИ	ний	ный балл	мального первичного балла за всю работу
Базовый	30	30	45,4%
Повышенный	10	18	27,3%
Высокий	5	18	27,3%
Итого	45	66	100%

3. РЕЗУЛЬТАТЫ ЕГЭ ПО ХИМИИ В 2010 ГОДУ И ИХ АНАЛИЗ

3.1. Основные результаты ЕГЭ

Сведения об участниках основного этапа ЕГЭ 2010 г. представлены в табл. 5.

Таблица 5 Основные результаты ЕГЭ по химии 2010 года

Зарегист- рировано	Явил на экз		Получили 100 баллов,	Число экзаменуе- мых, не сдавших	Доля экзаменуе-
на экзамен, чел.	чел.	%	чел.	экзамен в Санкт- Петербурге	мых, не сдавших экзамен в РФ
3664	2671	72,8%	8	152 (5,7%)	6,2%

Минимальное количество баллов единого государственного экзамена по химии, подтверждающее освоение выпускником основных общеобразовательных программ среднего (полного) общего образования в 2010 году — **33** (так же, как и в 2009 г.). Средний балл в Санкт-Петербурге — 56,44 (по $P\Phi-55,1$).

Сравнение результатов основного этапа ЕГЭ по предмету в 2010 г. с результатами 2009 г. приведено в табл. 6.

Таблица 6 Сравнительные результаты ЕГЭ по химии в 2009-2010 годах

Vnymanyi ananyayya	2010 г.		2009 г.		
Критерий сравнения	Санкт-Петербург	РΦ	Санкт-Петербург	РΦ	
Средний балл	56,44	55,1	50,7	54,3	
Доля участников,	5,7%	6,2%	10,3%	9,46%	
не сдавших экзамен	5,770	0,270	10,570	7,7070	

3.2. Анализ результатов выполнения заданий ЕГЭ по частям А, В, С

3.2.1. Анализ результатов выполнения заданий части А

3.2.1. 1. Результаты выполнения заданий части А (табл. 7)

Таблица 7

Содержание заданий части А и результаты их выполнения

Поряд-	Обозна-		Процент
ковый	чение	Содержание задания	правильных
номер	задания	Содержание задания	*
задания	в работе		ответов
1	A1	Современные представления о строении атомов. Изотопы. Строение электронных оболочек атомов элементов первых четырех	82,5%

		периодов: <i>s</i> -, <i>p</i> - и <i>d</i> -элементы. Электронная конфигурация атома. Основное и возбуж-	
		денное состояние атомов	
2	A2	Периодический закон и Периодическая система химических элементов Д.И. Менделеева. Радиусы атомов, их периодические изменения в системе химических элементов. Закономер-	80,4%
		ности изменения химических свойств элементов и их соединений по периодам и группам	
3	A3	Химическая связь: ковалентная (полярная и неполярная), ионная, металлическая, водородная. Способы образования ковалентной связи. Характеристики ковалентной связи: длина и энергия связи. Образование ионной связи	64,9%
4	A4	Электроотрицательность. Степень окисления и валентность химических элементов	73,5%
5	A5	Вещества молекулярного и немолекулярного строения. Зависимость свойств веществ от особенностей их кристаллической решетки	67,2%
6	A6	Классификация неорганических веществ. Классификация и номенклатура органиче- ских соединений	81,1%
7	A7	Общая характеристика металлов главных подгрупп I - III групп в связи с их положением в Периодической системе химических элементов Д.И. Менделеева и особенностями строения их атомов. Характеристика переходных элементов - меди, цинка, хрома, железа - по их положению в Периодической системе химических элементов Д.И. Менделеева и особенностям строения их атомов	67,1%
8	A8	Общая характеристика неметаллов главных подгрупп IV-VII групп в связи с их положением в Периодической системе химических элементов Д.И. Менделеева и особенностями строения их атомов	74,2%
9	A9	Характерные химические свойства простых веществ-металлов: щелочных, щелочноземельных, алюминия, переходных металлов - меди, цинка, хрома, железа. Характерные химические свойства простых веществ-неметаллов: водорода, галогенов, кислорода, серы, азота, фосфора, углерода, кремния	57,7%
10	A10	Характерные химические свойства оксидов: основных, амфотерных, кислотных	55,1%

11	A11	Характерные химические свойства оснований и амфотерных гидроксидов. Характерные химические свойства кислот	56,1%
12	A12	Характерные химические свойства солей: средних, кислых, основных; комплексных (на примере соединений алюминия и цинка).	61,8%
13	A13	Взаимосвязь неорганических веществ	68,4%
14	A14	Теория строения органических соединений. Изомерия — структурная и пространственная. Гомология	57,6%
15	A15	Типы связей в молекулах органических веществ. Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа. Характерные химические свойства углеводородов: алканов, алкенов, диенов, алкинов. Характерные химические свойства ароматических углеводородов: бензола и толуола	63,3%
16	A16	Характерные химические свойства предельных одноатомных и многоатомных спиртов; фенола	54,1%
17	A17	Характерные химические свойства альдегидов, предельных карбоновых кислот, сложных эфиров. Биологически важные вещества: жиры, углеводы (моносахариды, дисахариды, полисахариды), белки	64,3%
18	A18	Взаимосвязь органических веществ	67,4%
19	A19	Классификация химических реакций в неорганической и органической химии	70,8%
20	A20	Скорость реакции, ее зависимость от различных факторов	56,4%
21	A21	Обратимые и необратимые химические реакции. Химическое равновесие. Смещение равновесия под действием различных факторов	46,1%
22	A22	Диссоциация электролитов в водных растворах. Слабые и сильные электролиты	60,2%
23	A23	Реакции ионного обмена	76,8%
24	A24	Реакции окислительно-восстановительные. Коррозия металлов и способы защиты от нее	76,4%
25	A25	Гидролиз солей. Среда водных растворов: кислая, нейтральная, щелочная	61,4%
26	A26	Реакции, характеризующие основные свойства и способы получения углеводородов	41,6%
27	A27	Реакции, характеризующие основные свойства и способы получения кислородсодержащих соединений	59,2%

28	A28	Правила работы в лаборатории. Лабораторная посуда и оборудование. Правила безопасности при работе с едкими, горючими и токсичными веществами, средствами бытовой химии. Методы исследования объектов, изучаемых в химии. Определение характера среды водных растворов веществ. Индикаторы. Качественные реакции на неорганические вещества и ионы, отдельные классы органических соединений	56,8%
29	A29	Общие способы получения металлов. Общие научные принципы химического производства (на примере промышленного получения аммиака, серной и азотной кислот, чугуна и стали, метанола). Промышленное получение веществ и охрана окружающей среды. Природные источники углеводородов, их переработка. Основные методы синтеза высокомолекулярных соединений (пластмасс, синтетических каучуков, волокон)	73,4%
30	A30	Расчеты объемных отношений газов при химических реакциях Тепловой эффект химической реакции. Термохимические уравнения. Расчеты теплового эффекта реакции	65,7%

Графически соотношения доли правильных ответов на вопросы части A представлены на рис. 1.

3.2.1.2. Анализ неуспешных заданий части А

Самый низкий результат был при выполнении следующих заданий:

- А26 Реакции, характеризующие основные свойства и способы получения углеводородов.
- А21 Обратимые и необратимые химические реакции. Химическое равновесие. Смещение равновесия под действием различных факторов.
 - А16 Свойства спиртов и фенолов.
- А10 Характерные химические свойства оксидов: основных, амфотерных, кислотных.

Результаты показывают некоторые пробелы в знаниях учащихся по органической химии. Если в прошлом году выявлялись недостаточные знания по теме «Кислородсодержащие органические вещества», то в 2010 году пробелы появились в теме «Углеводороды». Особо следует обратить внимание на освоение учащимися способов получения углеводородов.

В контрольно-измерительных материалах 2010 г. впервые вопрос по теме «Химическое равновесие» был сформулирован в виде оценки двух суждений («Верно ли высказывание...»). Именно это вызывало затруднения учащихся при ответах на данный вопрос, и доля верных ответов существенно снизилась по сравнению с экзаменом 2009 года.

В прошлом году также доля верных ответов была невысока по заданию A16. Результаты этого года вновь показывают недостаточное освоение учащимися темы «Спирты и фенолы», на что следует обратить внимание учителей и методистов.

Так же как и в прошлом году, много ошибок учащиеся делали при ответах на вопросы по теме «Классы неорганических веществ», о чем свидетельствует невысокая доля верных ответов на вопросы A10 и A11. Так как свойства классов неорганических веществ изучались в 8 классе, многие учащиеся к 11 классу забывают особенности в свойствах оксидов, кислот и оснований, на что также следует обратить внимание учителей и методистов.

3.2.2. Анализ результатов выполнения заданий части В

3.2.2.1. Результаты выполнения заданий части В (табл. 8)

 Таблица 8

 Содержание заданий части В и результаты их выполнения

Поряд-	Обозна-		Доля отв	етов, %
ковый	чение	Содержание задания	Не	Отрот
номер	задания в	содержиние задания	справи-	Ответ
задания	работе		лись	зачтен
		Классификация неорганических веществ.		
1	B1	Классификация и номенклатура орга-	42,32%	57,68%
		нических соединений		
		Электроотрицательность. Степень окисле-		
2	B2	ния и валентность химических элементов.	34,31%	65,69%
		Реакции окислительно-восстановительные		

<u> </u>	1	†	1	
3	В3	Электролиз расплавов и растворов (солей, щелочей, кислот)	39,59%	60,41%
4	B4	Гидролиз солей	55,99%	44,01%
5	B5	Характерные химические свойства неорганических веществ	45,92%	54,08%
6	В6	Характерные химические свойства углеводородов: алканов, алкенов, диенов, алкинов. Механизмы реакций замещения и присоединения в органической химии. Правило В.В. Марковникова	28,16%	71,84%
7	В7	Характерные химические свойства предельных одноатомных и многоатомных спиртов; фенола; альдегидов, предельных карбоновых кислот, сложных эфиров	27,57%	72,43%
8	В8	Характерные химические свойства азотсодержащих органических соединений: аминов и аминокислот. Биологически важные вещества: жиры, углеводы (моносахариды, дисахариды, полисахариды), белки	31,24%	68,76%
9	В9	Вычисление массы растворенного вещества, содержащегося в определенной массе раствора с известной массовой долей	51,65%	48,35%
10	B10	Расчеты: массы вещества или объема газов по известному количеству вещества, массе или объёму одного из участвующих в реакции веществ	53,93%	46,07%

Рис. 2. Доля абсолютно* верных ответов на вопросы части В

* В ответах на вопросы В1-В8 абсолютно верным считается ответ, оцененный в 2 первичных балла, в ответах на вопросы В9-В10 – оцененный в 1 первичный балл.

3.2.2.2. Анализ неуспешных заданий части В

Результаты ответов на вопросы части В показали, что попрежнему, как и в 2009 г., имеются существенные пробелы в знаниях учащихся по органической химии. В большей мере усвоены химические свойства углеводородов (В6), хуже - свойства кислородсодержащих веществ (В7), самые большие пробелы - в знаниях свойств азотсодержащих органических соединений (В8).

В 2010 г. учащиеся плохо ответили на вопрос, связанный с гидролизом солей (В4). Если раньше в таких вопросах надо было просто установить реакцию среды в растворах солей или определить тип гидролиза, то для ответов на вопрос В4 в 2010 г. надо было вспомнить окраску индикаторов в разных средах. По-видимому, эту подробность участники экзамена повторить забыли.

Учителям и методистам следует порекомендовать еще раз обратить внимание на изучение химических свойств азотсодержащих и кислородсодержащих органических соединений и потренировать учащихся находить 3 (из 6) верных высказывания про данные вещества, так как в вопросах B6-B8 и предлагается выбор верных высказываний из приведенного перечня.

3.2.3. Анализ результатов выполнения заданий части С

3.2.3.1. Результаты выполнения задания части С (табл. 9)

Таблица 9 Результаты выполнения заданий части С

Обозначение задания	Голиг	Доля выпускников, %		
в работе	Баллы	2010 г.	2009 г.	
C1	0	32,3 %	50,9%	
	1	13,9 %	10,7%	
	2	23,2 %	16,7%	
	3	30,6 %	21,5%	
C2	0	34,5%	48,1%	
	1	32,2%	27,5%	
	2	17,8%	15,8%	
	3	9,6%	5,9%	
	4	5,5%	2,4%	
C3	0	61,3%	57,9%	
	1	13,0%	9,7%	
	2	6,9%	13,1%	
	3	5,8%	9,0%	
	4	5,5%	4,3%	
	5	7,5%	5,7%	

C4	0	60,0 %	70,0%
	1	15,7 %	10,6%
	2	10,6 %	6,0%
	3	4,7 %	6,0%
	4	9,0 %	7,2%
C5	0	68,7%	68,8%
	1	7,3 %	5,2%
	2	24,0 %	25,8%

3.2.3.2. Анализ типичных ошибок по части С

Результаты экзамена показывают, что уровень подготовки выпускников в 2010 г. оказался значительно выше, чем в 2009 году. Это сразу почувствовали эксперты в ходе проверки заданий части С; по отзывам экспертов, «было что проверять, а ошибки были вполне объяснимы».

В заданиях C1 учащиеся иногда забывали указать окислитель и восстановитель, некоторые учащиеся не смогли правильно подобрать вещества, необходимые для осуществления окислительно-восстановительных реакций.

Показательным является выполнение заданий высокого уровня сложности (С2), которые ориентированы на проверку знаний о свойствах каждого из предложенных веществ как представителя своего класса, а также знания его специфических свойств, в том числе окислительновосстановительных. При составлении развернутого ответа экзаменуемые должны были продемонстрировать умения составлять уравнения реакций различных типов, учитывать сущность окислительно-восстановительных процессов и реакций ионного обмена. Результаты показали, что большинство выпускников с хорошим уровнем подготовки успешно выполнили эти задания. Не справились с такими заданиями в среднем около 34,5% экзаменуемых. Вместе с тем часть выпускников со слабым уровнем подготовки выполнили 1-2 элемента решения задания этого типа. Этот факт говорит о том, что подобная форма заданий является знакомой для выпускников, и они приступают к их выполнению, но полностью выполнить задание под силу только учащимся, изучавшим химию на профильном уровне.

В задании С3 некоторые участники экзамена подбирали, как им казалось, верное уравнение реакции, и они продолжали решать цепочку превращений веществ в выбранном направлении, и теряли на этом не 1 балл, а 2-3 и более.

К решению задания С4 более половины участников экзамена не приступали или не получили значимых результатов. К сожалению, реакции, на которых основывались задания С4 некоторых вариантов контрольно-измерительных материалов 2010 г., не изучаются в курсе 11

класса, материал выходил за рамки школьного уровня. Тем не менее часть учащихся выполнили эти довольно сложные задания.

По-прежнему, как и в 2009 г., учащиеся не уделяли достаточного внимания решению заданий С5. Действительно, решение задания С5 требует творческого подхода, типология заданий достаточно разнообразна. Здесь требуется тщательный разбор учителями и методистами типов задач на вывод формул и достаточная проработка этих задач с учащимися, планирующими сдавать ЕГЭ по химии в 2011 году.

4. СВЕДЕНИЯ О РАБОТЕ ЧЛЕНОВ ПРЕДМЕТНОЙ КОМИССИИ НА ОСНОВНОМ ЕГЭ

Сведения о количестве подготовленных экспертов и количестве экспертов, принявших участие в проведении ЕГЭ, даны в табл. 10.

Таблица 10 Явка экспертов в основной день экзамена

2010 г.			2009 г.		
Зарегистрировано	Явилось		Zonaruarnunangua	Явилось	
	чел.	%	Зарегистрировано	чел.	%
157 чел.	141	90,0%	184 чел.	149	81,0%

5. СВЕДЕНИЯ О РАБОТЕ КОНФЛИКТНОЙ КОМИССИИ

Количество поданных и удовлетворенных апелляций по результатам ЕГЭ в 2010 году

Количество участников основного ЕГЭ, чел.	2671
Количество поданных апелляций всего	
из них о несогласии с выставленными баллами	57
Удовлетворено апелляций всего	
из них: с повышением балла	2
без изменения балла	1
Отклонено апелляций	54

Анализ причин удовлетворения апелляций по части С

В двух случаях эксперты слишком строго подошли к оценке заданий С4. Участники экзамена решили расчетную задачу иначе, чем предлагалось в ключе; в ходе решения была допущена несущественная ошибка, вследствие чего окончательный ответ был неверный. Однако если рассмотреть решение задачи поэтапно, то участники экзамена выполнили большее количество действий, чем сочли эксперты, и поэтому оценка могла быть выше.

Во всех остальных случаях (!) эксперты оценили работы правильно, и апелляции были отклонены.

6. ОСНОВНЫЕ ИТОГИ ПРОВЕДЕНИЯ ЕГЭ ПО ХИМИИ В 2010 ГОДУ, ОБЩИЕ ВЫВОДЫ И РЕКОМЕНДАЦИИ

Анализ результатов ЕГЭ 2010 г. показал, что выпускники с различным уровнем подготовки продемонстрировали наиболее высокий уровень овладения учебным материалом в основном при выполнении заданий базового уровня сложности. В первую очередь это относится к заданиям по следующим разделам и темам курса химии средней школы: «Современные представления о строении атома», «Периодический закон и периодическая система химических элементов Д. И. Менделеева», «Классификация и номенклатура неорганических и органических веществ», «Характерные химические свойства неорганических и органических веществ различных классов», «Гидролиз», «Реакции ионного обмена», «Окислительно-восстановительные реакции». Средний процент выполнения таких заданий находится в пределах 60-84%.

Между тем результаты выполнения заданий повышенного и высокого уровней сложности свидетельствует о наличии определенного числа слабо усвоенных элементов содержания. Среди этих элементов такие общие понятия, как «химическое равновесие», «степень окисления и виды химической связи в органических соединениях», «лабораторные и промышленные способы получения отдельных веществ».

На основе анализа полученных данных можно отметить, что одной из актуальных задач должна стать организация целенаправленной работы по формированию умений выделять в условии задания главное, устанавливать причинно-следственные связи между отдельными

элементами содержания, в особенности взаимосвязь состава, строения и свойств веществ.

Повышению эффективности усвоения материала об отдельных химических элементах и их соединениях будет способствовать опора на теоретические знания. Прежде всего следует постоянно обращать внимание учащихся на то, что характерные свойства каждого конкретного вещества и различных классов веществ в полной мере зависят от их состава и строения. Именно поэтому при выполнении заданий о свойствах веществ (классов веществ) в первую очередь необходимо использовать знания о видах химической связи и способах ее образования, об электроотрицательности и степени окисления химических элементов в соединениях, о зависимости свойств веществ от типа кристаллической решетки, о поведении веществ с различным видом связи в растворах.

На основании результатов ЕГЭ 2010 г. следует сделать выводы о совершенствовании отдельных аспектов преподавания химии в школе.

Важным основанием для совершенствования учебного процесса является анализ затруднений выпускников в освоении отдельных элементов содержания курса химии. Анализ этих затруднений позволит в рамках учебного процесса организовать подготовку к ЕГЭ по следующим направлениям:

- 1. Важное значение имеет организация целенаправленной работы по систематизации и обобщению учебного материала, которая должна быть направлена на развитие умений выделять в нем главное, устанавливать причинно-следственные связи между отдельными элементами содержания, обращая особое внимание на взаимосвязь состава, строения и свойств веществ.
- 2. Для успешного формирования важнейших теоретических понятий в учебном процессе целесообразно использовать различные по форме упражнения и задания на применение этих понятий в различных ситуациях. Необходимо также добиваться понимания учащимися того, что успешное выполнение любого задания предполагает тщательный анализ его условия и выбор адекватной последовательности действий.