Tutorium: Analysis und lineare Algebra

Vorbereitung der Abschlussklausur (Teil 2)

Steven Köhler

mathe@stevenkoehler.de mathe.stevenkoehler.de

- a) Die Funktion f sei gegeben durch $f(x) = \frac{3x+2}{4x}$. T(x) sei die Tangente an den Graphen von f im Punkt (1, f(1)). Welche Steigung besitzt T?
- b) Berechne $\int_{1}^{8} \frac{1}{\sqrt[3]{x}} dx$.
- c) Ist die folgende Reihe konvergent oder divergent? Gib im Falle der Konvergenz den Grenzwert an; gib im Falle der Divergenz eine Begründung, wieso Divergenz vorliegt.

$$\sum_{i=0}^{\infty} \left(\frac{5}{4}\right)^{i}$$

d) Ist die folgende Reihe konvergent oder divergent? Gib im Falle der Konvergenz den Grenzwert an (Ergebnis genügt); gib im Falle der Divergenz eine (kurze) Begründung, wieso Divergenz vorliegt.

$$\sum_{k=1}^{\infty} \frac{1}{k!}$$

e) Zeige die Konvergenz der Reihe $\sum_{k=1}^{\infty} \frac{k^2}{2^k}$ sowohl mit dem Quotienten- als auch mit dem Wurzelkriterium.

a) Differenziere die folgende Funktion:

$$g(x) = \left(x^3 + 4\right)^{\arctan x}$$

b) Berechne die partiellen Ableitungen erster Ordnung:

$$h(x,y) = \cos\left(y \cdot e^{x+y^2}\right)$$

- a) Berechne $\int \ln x \ dx$ auf zwei Arten:
 - (i) mit partieller Integration (Hinweis: $\ln x = 1 \cdot \ln x$)
 - (ii) mit der Substitutionsregel (Hinweis: $t = \ln x$)
- b) Mache die Probe, d.h., überprüfe das Ergebnis durch Ableiten.

a) Berechne
$$\int \cos\left(\sqrt{\frac{x}{2}+3}\right) dx$$
.

b) Berechne
$$\int \frac{1}{x^2 - x - 2} dx$$
.

Bestimme mithilfe einer Untersumme die Fläche, die vom Graphen der Funktion $f(x) = -x^3 + 2x^2 + x$, der x-Achse sowie den beiden Geraden x = 0 und x = 1 eingeschlossen wird.

- a) Berechne eine Stammfunktion von $f(x) = e^{\sqrt[3]{x}}$ und mache die Probe!
- b) Berechne $\int \frac{x^3+2}{x^2-4x+4} dx.$
- c) Berechne $\int_{0}^{\frac{\pi}{4}} \sin x \cdot \cos x \, dx.$
- d) Berechne $\int_{0}^{\frac{\pi}{4}} \frac{\sin x}{\cos x} \ dx.$
- e) Berechne $\int_{1}^{\infty} \frac{1}{x^4} dx$.

Berechne Näherungswerte für $\sqrt{2}$, indem du das Newton-Verfahren auf die Funktion $f(x) = x^2 - 2$ anwendest. Beginne mit dem Startwert $x_0 = 2$ und berechne x_1 und x_2 .

Berechne $\iint_G xy\ d(x,y)$, wobe
iGdas Dreieck mit den Eckpunkten $(0,1),\,(2,1)$ und (2,2) ist.

- a) Berechne $\lim_{x\to 0} \left(\frac{e^x + e^{-2x}}{x^2 + 3x + 1}\right)$.
- b) Berechne $\lim_{x\to 0} \left(\frac{e^x e^{-2x}}{x^2 + 3x}\right)$.
- c) Berechne $\lim_{x \to \infty} \left(\frac{2x^3 + x + 5}{\ln x} \right)$.

Bestimme die stationären Stellen der Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = 3x^2 - y^2$ unter der Nebenbedingung -x + y = -2:

- a) mit Hilfe des Lagrange-Ansatzes;
- b) ohne Lagrangesche Multiplikationsregel.
- c) Entscheide: Minimum, Maximum oder kein lokales Extremum.

Bestimme die stationären Stellen für die folgende Funktion $f: \mathbb{R}^3 \to \mathbb{R}$ und entscheide, ob lokale Minima oder Maxima vorliegen:

$$f(x,y,z) = -2x^2 - 3y^2 - z^2 + 2xz + 2x + 8y$$

- a) Berechne die Taylor-Polynome $T_0(x)$ bis $T_3(x)$ für $f(x) = \frac{1}{(1+x)^2}$ an der Stelle $x_0 = 0$.
- b) Berechne die Taylor-Polynome $T_0(x)$, $T_1(x)$, ..., $T_5(x)$ von $f(x) = \sin(3x)$ and der Stelle $x_0 = 0$.
- c) Gib die Taylorreihe von $f(x) = \sin(7x)$ an. (Ohne Beweis!)

Die folgenden Punkte des \mathbb{R}^2 seien gegeben durch $P_1 = (1,8)$, $P_2 = (2,9)$ und $P_3 = (5,24)$. Bestimme ein Polynom, dass durch die Punkte P_1 , P_2 und P_3 geht:

- a) mit dem Lagrange-Verfahren;
- b) mit dem Newton-Verfahren.
- c) Wie könnte das Polynom ohne Lagrange- oder Newtonverfahren bestimmt werden?

- a) Es seien $z_1 = 5 + i$ und $z_2 = 3 2i$ zwei komplexe Zahlen. Berechne $z_1 + z_2$, $z_1 z_2$, $z_1 \cdot z_2$ sowie $\frac{z_2}{z_1}$.
- b) Gegeben seien die komplexen Zahlen $z_1 = 2 2i$ und $z_2 = 3\left(\cos\left(\frac{\pi}{7}\right) + i\sin\left(\frac{\pi}{7}\right)\right)$.
 - (i) Gib Betrag und Argument von $z = z_1^5 \cdot z_2$ an.
 - (ii) Es sei $z = z_1 z_2$. Gib \overline{z} in der Form a + ib an.
- c) Bestimme das Produkt AB der beiden folgenden beiden Matrizen A und B:

$$A = \begin{bmatrix} i & 1+i \\ 2-i & 5 \end{bmatrix}$$
 und $B = \begin{bmatrix} 3+i & 1 \\ i & 1-i \end{bmatrix}$.

Viel Erfolg bei der Klausur ³