Elektrotechnika

III. Feszültségosztó

3.1. Feszültségosztó

Akkor alkalmazzuk, ha áramkörön belül kisebb feszültségre van szükség

3.2. Feszültségosztó

Persze nem csak 2db ellenállás lehet sorban, hanem bármennyi

3.3. Feszültségosztó

Persze nem csak 2db ellenállás lehet sorban, hanem bármennyi

3.4. Feszültségosztó

És persze nem csak egy ellenállás lehet a kimeneti pontok között

1. mintafeladat

Megoldás:

R₁₂ =R₁ + R₂ =
$$60 \Omega$$

Uki = Ube * R₃ / (R₁₂ + R₃)
Uki = $12V$ * (30Ω / 90Ω) = $4 V$

2. mintafeladat

3. mintafeladat

4. mintafeladat

Megoldás:

R₂₃ =R₂ x R₃ = 16*16 / (16+16) = 8
$$\Omega$$

Uki = Ube * R₂₃ / (R₁ + R₂₃)
Uki = 30V * 8 Ω / 48 Ω = 5 V

5. mintafeladat

Megoldás:

Uki = Ube * R₂ / (R₁ + R₂ + R₃)
Uki =
$$20V * 6 k\Omega / 12 k\Omega = 10 V$$

6. mintafeladat

7. mintafeladat

3.6. Terhelt feszültségosztó

Terhelt feszültségosztó

Van a kimenetre kötve valami

→ ilyenkor azt is bele kell számolni !! párhuzamosan kapcsolódik R2-vel, De amúgy minden ugyanaz

<u>Megoldás:</u>

$$R_{2t} = R_2 \times R_t = 3*6 / (3+6) = 2 k\Omega$$

$$U_{ki} = U_{be} * R_{2t} / (R_1 + R_{2t})$$

$$U_{ki} = 12V * 2 k\Omega / (1+2) k\Omega = 8 V$$

Uki = Ube *
$$\frac{R2t}{R1 + R2t}$$

3.7. Terhelt feszültségosztó

1. mintafeladat

Megoldás:

R₁₂ =R₁ x R₂ = 15*30 / (15 + 30) = 10
$$\Omega$$

R₃₄ = R₃ x R₄ = 40*40 / (40+40) = 20 Ω
Uki = Ube * R₃₄ / (R₁₂ + R₃₄)
Uki = 6V * 20 Ω / 30 Ω = 4 V

1. feladat

3. feladat

5. feladat

3.9. Potenciométer

Potenciométer mint feszültségosztó

A potméter két szélső kivezetése között mindig állandó az ellenállás, de a középső kivezetés mindig két részre osztja ezt → hogy milyen arányban osztja szét, ez attól függ milyen "állásban" van (mennyire forgattuk el).

Tehát változtatható feszültségosztót valósít meg R_p1 felső állás $0 k\Omega$ Ube Rp Ube 10 Rp2 kΩ Uki Uki = Ube 10 kΩ középső állás alsó állás R_p1 R_p1 10 $5 k\Omega$ Ube kΩ Ube Rp2 Uki = 0Rp2 $0 k\Omega$ $U_{ki} = U_{be} / 2$ $5 k\Omega$

3.10. Potenciométer

Minta feladat

Megoldás:

3.11. Potenciométer

Minta feladat

Megoldás:

3.12. Előtét ellenállás

Akkor alkalmazzuk, ha egy fogyasztót nagyobb feszültségről kell üzemeltetni, mint amennyit "bír"

Egy ellenállást kötünk sorba a fogyasztóval (ez az előtét ellenállás) és ennek olyan értékűnek kell lennie, hogy a többlet feszültség ezen essen!

PI.

Van egy izzónk, amely 4V-os, és az ellenállása 50 Ω . De 12V-os tápfeszültségről kell üzemeltetni !

Megoldás 1.

Hurok törvény miatt:

$$U_e + U_f - U_g = 0$$

$$U_e = U_g - U_f = 12V - 4V = 8V$$

Ohm törvények:

$$I = U_f / R_f = 4 V / 50 Ω = 0.08 A$$

Re = Ue / I = 8 V /
$$0.08 A = 100 \Omega$$

Megoldás 2: Feszültségosztással

$$U_g / U_f = (R_e + R_f) / R_f \rightarrow U_g / U_f = R_e / R_f + 1$$

$$Re = (U_g / U_f - 1) * Rf$$

Re =
$$(12/4 - 1)^* 50 \Omega = 2^*50 = 100 \Omega$$

3.13. Feszültségmérő méréshatár kiterjesztése

Akkor alkalmazzuk, ha egy feszültségmérő műszerrel nagyobb feszültséget akarunk mérni, mint amennyit maximálisan tud

50-szeresére kell növelnünk a feszültséget, tehát 50-szeresére kell növelnünk az ellenállást is → tehát az eredeti ellenállással annak 49szeresét kell sorba kötni! Egy ellenállást kötünk sorba vele (ez az előtét ellenállás) és ennek olyan értékűnek kell lennie, hogy a többlet feszültség ezen essen!

Pl.

Van egy alap műszerünk, amely maximum 1V-ot tud mérni, és az ellenállása 100 k Ω .

De mi maximum 50V-ig akarunk mérni vele!

Megoldás:

Feszültségosztással

$$U / Um = (Re + Rm) / Rm \rightarrow$$

$$Re = (U / Um - 1) * Rm$$

Re =(50/1 -1)* 100 kΩ = 49*100 kΩ = 4900 kΩ

3.14. Feladatok

1. feladat

3.14. Feladatok

3. feladat

Van egy műszerünk, amely maximum 0,4V-ot tud mérni, és az ellenállása 20 kΩ. De mi maximum 24V-ig akarunk mérni vele! Mekkora értékű előtét ellenállást kell sorba kötni?

4. feladat

Van egy izzónk, amely 3V-os, és az ellenállása 10 Ω. 9V-os tápfeszültségről kell üzemeltetni! Mekkora értékű előtét ellenállást kell vele sorba kötni?

3.14. Feladatok

5. feladat

Van egy izzónk, amely 10V-os, és a teljesítménye 2W. De 50V-os tápfeszültségről kell üzemeltetni! Mekkora értékű előtét ellenállást kell sorba kötni?