실험 6 WiFi 무선 통신

2024. 10. 09. (Wed)

실험 전 공지사항

- 모듈 수령 확인
 - WiFi Shield
- 교재 변경
 - 모듈 변경으로 인해 교재에 있는실험 관련 자료는 사용하지 않음
 - □ 이 발표자료를 기준으로 실험
 - 코드 관련 문제는 먼저 구글링 후 질문

실험 목표

■ WiFi shield를 이용한 무선 통신 이해

■ 서버를 이용하여 간단한 IoT 시스템 구축

WiFi 기술

■ 무선으로 전자기기들을 연결할 수 있도록 한 표준 기술. IEE E에서 제정하여 전세계적으로 널리 사용되며, 이 표준 기술 규격의 브랜드명인 'Wireless Fidelity'를 줄여서 Wi-Fi라고 부른다.

■ WiFi 연결 방식

- Infrastructure 모드: 하나의 Access Point(AP)에 다수의 기기가
 연결하여 상호 소통. WiFi 신호를 송신하는 AP (E.g 무선 공유기) 가 필요하며, AP에 연결된 기기 간 데이터 송수신이 가능
- Ad hoc 모드: 단말기끼리 직접 접속 (E.g WiFi 기반 무선 스피커)

관련 용어

■ IP (Internet Protocol) Address

인터넷에 연결된 모든 기기들에게 할당된 고유 주소. 인터넷
 상에서 존재하는 많은 기기들 중 필요한 기기를 찾기 위해
 IP 주소를 사용한다. 32bit가 할당되며, 8bit씩 나누어 표시된다.

■ Port (포트)

- 하나의 IP 주소를 가지는 기기를 공유하여 다양한 어플리케이션을 동시에 실행시키기 위해서 사용하는 가상 주소.
- 자주 사용되는 어플리케이션들은 포트 번호가 지정되어 있다. (e.g. HTT P: 80번, FTP: 21번, POP3 메일 수신: 110번, telnet: 23번)
 - 이번 실험은 HTTP를 이용하여 진행하므로, 각 실험에서 port가 80번으로 제대로 설정되었는지 확인

관련 용어

- DHCP (Dynamic Host Configuration Protocol)
 - 인터넷을 사용하기 위한 IP 주소를 동적으로 할당 받기 위한 프로토콜.
 DHCP 서버는 단말기가 일정기간 동안 IP 주소를 사용할 수 있도록 임대를 해주고, 임대기간이 지나면 IP 주소를 반납한다.
 - 본 실험에서는 WiFi의 AP 기능을 수행하는 스마트폰이 DHCP를 처리 한다. 즉, 스마트폰이 DHCP를 요청하는 Arduino 보드에 대응하여 IP 주소를 생성하고 Arduino 보드에 알려준다.
- HTTP (HyperText Transfer Protocol)
 - 인터넷상에서 주로 웹서비스를 위한 데이터 전송을 하는 프로토콜. 주로 웹페이지를 표현하기 위한 언어인 HTML (Hyper Text Markup Language)로 표현된 문서를 주고받는다.

관련 용어

Telnet

인터넷을 통하여 원격 컴퓨터를 접속하여 자신의 컴퓨터처럼 사용할수 있는 원격 접속 서비스. 인터넷이 사용되던 초창기에서 쓰이던 네트워크 서비스로서 인터넷이 보급화 된 90년대 이후보안이 중요해지면서 현재는 보안에 좀더 강인한 ssh 접속으로 많이 대체되었다.

WiFi Shield

- 아두이노 보드의 기능을 확장하기 위해서 'Shield' 라는 별 도의 보드를 장착한다.
- WiFi 기술을 이용한 무선 통신을 위해 WiFi Shield를 사용한다. 우측 사진처럼 기존에 사용하던 Arduino 보드 위에 장착하여 사용한다.

실험 내용

■ 실험 1: HTTP server

■ 실험 2: HTML코딩

■ 실험 3: HTML코딩을 통한 링크 생성

■ 실험 4: 광센서(analog)를 이용한 LED 제어

■ 실험 5: HTTP 서버를 활용한 원격 LED 제어

■ 본실험에서는 스마트폰 하나로 , AP 역할과 클라이언트 역할을 모두 수행하도록 한다.

- 1. Cytron ESPWiFi Shield library를 설치한다.
 - 스케치 라이브러리 포함하기 라이브러리 관리 "cytron wifi" 검색 후
 "Cytron ESPWiFi Shield" 3.0.2 버전 설치
- 2. 접속할 WiFi를 스마트폰 테더링을 통해 생성한다.
 - □ WPA2 방식으로 암호 설정. (iPhone의 경우 WPA2로 자동 설정됨)
 - □ 네트워크 이름/암호는 이후 실험에 사용되므로 반드시 기억
 - 네트워크 이름에 한글, 공백, 작은 따옴표 등이 포함되는 경우 Connection er ror가 발생할 수 있으므로 이에 유의하여 생성.

- 3. Cytron ESPWiFi Shield의 예제 "CytronWiFiDemo"를 실행한다. (파일-예제- Cytron ESPWiFi Shield –CytronWiFiDemo)
 - □ 해당 파일 맨 윗 부분의 ssid, pass에 앞서 설정한 테더링 network ID와 Pa ssword 정보를 입력한다.
 - □ 이때 통신 port가 80으로 되어있는지 확인한다.

```
const char *ssid = "...";
const char *pass = "...";
//IPAddress ip(192, 168, 1 ,242);
ESP8266Server server(80);
```

본 실험의 경우 아두이노 보드는 스마트폰이 생성한 IP주소를 사용하므로 밑줄 코드는 필요X 오류 발생시 해당 코드 주석처리 후 실행

```
if(!wifi.begin(2, 3))
{
    Serial.println(F("Error talking to shield"
    while(1);
}
Serial.println(wifi.firmwareVersion());
Serial.print(F("Mode: "));Serial.println(wi
Serial.println(F("Setup wifi config"));
//wifi.config(ip);
Serial.println(F("Start wifi connection"));
```


■ 4. void setup() 내부를 살펴본다.

```
void setup() {
  // put your setup code here, to run once:
  Serial.begin(9600);
  white (!Serial) {
   ; // wait for serial port to connect. Needed for Leonardo only
  if(!wifi.begin(2, 3))
   Serial.println(F("Error talking to shield"));
   white(1);
  Serial.println(wifi.firmwareVersion());
  Serial.print(F("Mode: "));Serial.println(wifi.getMode());// 1-
  // Uncomment these 2 lines if you are using static IP Address
  // Serial.println(F("Setup wifi config"));
  // wifi.config(ip);
  Serial.println(F("Start wifi connection"));
  if(!wifi.connectAP(ssid, pass))
   Serial.println(F("Error connecting to WiFi"));
   white(1);
  Serial.print(F("Connected to "));Serial.println(wifi.SSID());
  Serial.println(F("IP address: "));
  Serial.println(wifi.localIP());
  wifi.updateStatus();
  Serial.println(wifi.status()); //2- wifi connected with ip. 3- s
                                 //4- disconnect with clients or s
 clientTest();
  espblink(100);
  server.begin();
```

- Begin → firmware version print
 - → wifi mode print → connect to AP
 - → IP address print → client test
 - → server begin 순으로 initialize 진행.
 - 시리얼 모니터를 통해 위와 같은 순서 로 출력되며 시리얼 모니터에 출력된 IP 주소(IP address)를 기록해두고, 다 음 실험에서 사용.

```
AT version:0.52.0.0(Jan 7 2016 18:44:24)

SDK version:1.5.1(e67da894)

compile time:Jan 7 2016 19:03:11

Mode: 1

Start wifi connection

Connected to

IP address:

172.20.
```


■ 5. void loop()에서 serverTest를 call하고 있으므로 void serverTe st() 내부를 살펴본다.

```
void serverTest()
 ESP8266Client client = server.available();
 if(client.available()>0)
   String req = client.readStringUntil('#r');
   // First line of HTTP request looks like "GET /path HTTP/1.1"
   // Retrieve the "/path" part by finding the spaces
   int addr_start = req.indexOf(' ');
   int addr_end = req.indexOf(' ', addr_start + 1);
   if (addr_start == -1 || addr_end == -1) {
     Serial.print(F("Invalid request: "));
     Serial.println(reg);
      return:
   req = req.substring(addr_start + 1, addr_end);
   Serial.print(F("Request: "));
                                 client.readString();
   Serial.println(req);
                         수정!!
   if(req.equals("/"))
      IPAddress ip = wifi.localIP();
     String ipStr = String(ip[0]) + '.' + String(ip[1]) + '.' + :
     client.print(htmlHeader);
     String htmlBody = "Hello from ESP8266 at ";
     htmlBody += ipStr;
     htmlBody += "</html>\mathfrak{#r\mathfrak{#n}};
      client.print(htmlBody);
```

 웹서버에 접근하기 위해 브라우저 주소 창에 앞 슬라이드의 IP 주소를 적고 enter를 입력한다.

시리얼 모니터 화면

- ▲ 접속오류가 뜨는 경우 IP 주소 앞에 "http://" 추가.
- Client에서 enter키를 입력하면, IP주소 이후 ("/"부터)의 string을 request로 보내고, request string 값에 따라 해당 정보를 출력 해준다.

- 🗅 serverTest 함수 내 analog, info가 예제로 제공되어 있다.

172.20.xx.x/info

- 6. path "/"에서 "htmlBody" 변수를 변경하여, 아래 예시와 같이 조 번호와 조원 이름이 출력되도록 한다.
 - □ "
"을 이용하여 줄 바꿈 수행.

```
htmlBody += "<br>";
```

```
if (req.equals("/"))
{
    IPAddress ip = wifi.localIP();
    String ipStr = String(ip[0]) + '.' +
    client.print(htmlHeader);
    String htmlBody = "Hello from MWFL";
    htmlBody += "<br/>htmlBody += "<br/>htmlBody += "write_your_initial";
    htmlBody += "</html>\r\n\r\n";
    client.print(htmlBody);
}
```


Request: /

Request: /info

Hello from MWFL KJH YSK

실험 2: HTML코딩

- HTML 형식으로 Client에 다양한 정보를 전달해본다.
- 1. 실험 1의 코드를 바탕으로 IP 주소 뒤에 "/team_info"를 입력하면 새로운 Path로 이동하도록 else if 추가, 아래 코드를 적는다.
 - HTML에서 사용하는 명령어의 집합을 '태그'라고 하며, 여는 태그 < >로 시작하여
 닫는 태그 </ >
 - HTML은 head와 body로 구성되며, head
 안에 title이 존재한다.

```
const char htmlHeader[] = "HTTP/1.1 200 OK₩r₩n"

"Content-Type: text/html₩r₩n"

"Connection: close₩r₩n₩r₩n"

"<!DOCTYPE HTML>₩r₩n"

"<html>₩r₩n";

□ 정의되어 있으며, 이 정보

로 HTML 형식임을 명시함.
```

```
else if(req.equals("/team_info"))
{
   client.print(htmlHeader);
   client.print("<head>");
   client.print("</title>");

   client.print("</title>");
   client.print("</head>");
   client.print("<body>");

   client.print("</body>");

   client.print("</html>");
```


실험 2: HTML코딩

- 2. Title 태그 사이에 페이지의 제목으로 "HTML example page"을 추가한다.
 - 페이지의 제목은 브라우저 상단 혹은 열린 탭의 목록에서 확인.

```
client.print("<title>");
client.print("HTML example page"); // 페이지 제목 추가
client.print("</title>");
client.print("</head>");
```

■ 3. 같은 방법으로 Body 태그 사이에 본문 내용(조 번호와 조 원 이름)을 추가한다. Client.print("<body>"); Client.print("Team MWFL");

```
client.print("<body>");
client.print("Team MWFL");
client.print("<br>");
client.print("put_your_inital");
client.print("</body>");
```

■ 4. 작성한 코드를 업로드한 후 브라우저 주소창에 "IP 주소/team_info"를 입력하여 아래와 같이 출력되는 것을 확인한다.

페이지 제목 <u></u> 테하어 본문(Body) —

실험 2: HTML코딩

- 5. HTML의 다양한 태그를 통해서 페이지를 꾸민다.
 - □ 배경 색: <body> 태그 속에 bgcolor 속성을 넣는다.
 - 색상표는 인터넷에 'HTML 색상표'를 검색
 - □ 글씨: 태그를 이용하여, 태그 속에 size 속성을 넣으면 글씨 크기를, color 속성을 넣으면 글씨 색을 변경할 수 있다.
 - client.print("<body>");
 client.print("<body bgcolor=#008B8B>");
 client.print("");
 client.print("Team MWFL");
 client.print("
");
 client.print("put_your_inital");
 client.print("</body>");
- 6. 추가된 코드 업로드 후 페이지에 접속하면 다음과 같은 출력 화면을 확인할 수 있다.

실험 3: HTML코딩을 통한 링크 생성

- 실험 2 코드를 응용하여, HTML을 이용해 링크를 생성한 뒤 링크를 통해 Path 이동을 해본다.
- 1. 먼저 링크를 만들어 다른 path로 이동이 가능한지 확인한다. "team_info" 페이지 본문 아래에 "move to top"을 프린트하게 하고, <a> 태그를 통해 추가된 문자에 링크를 건다.

client.print("This is Team info page");
client.print("
");
client.print("Team #99");
client.print("
");
client.print("LHJ LJH");
client.print("
");
client.print("
");
client.print("");
client.print("move to top");
client.print("");
client.print("");
client.print("");

This is Team info page
Team #99
LHJ LJH

move to top

- □ : IP/으로 이동하는 링크 생성
- : IP/team_info로 이 동하는 링크 생성

실험 3: HTML코딩을 통한 링크 생성

- 2. 새로운 Path인 "/test"를 만들고, "/team_info" 페이지와 "/tes t" 페이지가 서로 링크를 이용해서 이동할 수 있게 한다.
 - 이때 페이지마다 서로 다른 내용, 배경색 등을 display하도록작성해본다.

```
else if(req.equals("/team_info"))
else if(req.equals("/test"))
```

```
This is Team info page
Team #{조번호}
{조원1} {조원2}
move to Test
```

This is Test page

move to Team info

실험 4: 조도 센서를 이용한 LED 제어

- 조도 센서로 입력 받은 값을 바탕으로 LED 조명을 제어
- 1. 아래와 같이 회로를 구성한다. (WiFi shield를 장착한 상태에 서 진행)
 - □ LED는 긴 쪽이 (+). 조도센서는 극성이 없음
 - 」 그림과 다르게 LED pin → D2 대신 **D5 연결필요!**

Arduino (WiFi Shield 장착한 상태)	
D5	LED (+)
GND	LED (-), 저항R4
5V	조도센서
Α0	조도센서, 저항R4

실험 4: 조도 센서를 이용한 LED 제어

■ 2. 조도 센서를 이용한 LED 제어 프로그램을 작성한다.

```
const int LED_PIN = 5;
const int LED_ON_THRESHOLD = 500; // should be modified according to surrounding
각 수강생의 실험 환경에 따라
void setup() {
    Serial.begin(9600); //Begin serial communication
    pinMode( LED_PIN, OUTPUT ); LED_ON_THRESHOLD 값 수정
}

void loop() {
    int sensed_light = analogRead(AO);
    if( sensed_light > LED_ON_THRESHOLD)
        digitalWrite(LED_PIN, HIGH);
    else
        digitalWrite(LED_PIN, LOW);

Serial.println(sensed_light);
    delay(500);
}
```

- 3. 코드를 업로드 하고 조도 센서로의 입력에 따른 LED의 결과 가 올바른지 확인한다.
 - 센서에 입력되는 빛이 (**밝은**/어두운) 상태에서는 serial monitor에 (**높은** /낮은) 값을 출력하고, LED에는 빛이 (**꺼진다**/ 켜진다).

- HTTP 서버를 활용하여 원격으로 조도 센서의 상태를 확인하고, HTML 링크를 응용하여 LED를 제어
- 실험 3의 코드+실험 4의 회로 사용 실험 3에서 사용했던 HTML 링크 페이지코드에서 시작
- 1. 사용될 변수들을 추가로 선언하고, void setup(void) 내부에 도 LED의 pinMode설정을 위한 코드를 추가한다.

기존 코드를 지우지 않도록 주의!

Serial.begin(9600);

- 2. void serverTest()내부에도 조도 센서와 LED 관련 코드를 추가한다.
 - Client가 valid request를 요청한 경우에 해당 값을 사용하므로,
 "if (addr_start == -1 || addr_end == -1) ~"
 이후 코드를 추가 \
 - □ 값을 확인하기 위해 시리얼 모 \ 니터로 intensity 값을 print한다.

```
void serverTest()
 ESP8266Client client = server.available();
  if(client.available()>0)
   String req = client.readStringUntil('\m');
   // First line of HTTP request looks like "GET /path HTTP/1.1"
   // Retrieve the "/path" part by finding the spaces
    int addr_start = req.indexOf(' ');
   int addr_end = req.indexOf(' ', addr_start + 1);
    if (addr_start == -1 || addr_end == -1) {
     Serial.print(F("Invalid request: "));
     Serial.println(req);
     return;
   int sensed_light = analogRead(AO);
   Serial.print("Current intensity: ");
   Serial.println(sensed_light);
    reg = reg.substring(addr_start + 1, addr_end);
    Serial.print(F("Request: "));
    Serial.println(req);
                                 client.readString();
    client.flush();
```


■ 3. LED 조명 제어를 위해 HTML Link를 응용한다.

 home(/), /on, /off 총 세 개의 path를 만들고, 각 페이지에서 REFRESH,
 ON, OFF Link를 통해 각각 home(/), /on, /off path로 이동할 수 있도록 링크를 설정한다.

□ 이때, /on path로 들어가면 LED를 켜고, /off path로 들어가면 LED를 끄고, Home이나 다른 path에서는 LED 상태는 변화하지 않는다.


```
client.print(htmlHeader);
client.print("<a href=./>"); // home
client.print("REFRESH");
client.print("</a>");
client.print("<br>");
client.print("<a href=./on>"); // on
client.print("ON");
client.print("</a>");
client.print("<br>");
client.print("<br/>client.print("<a href=./off>"); // off
client.print("<a href=./off>"); // off
client.print("<a href=./off>"); // off
client.print("</a>");
client.print("</a>");
client.print("<br>");
client.print("<br>");
```

```
if (req.equals("/"))
  client.print("controlled nothing");
  client.print("</html>");
else if (req.equals("/on"))
  client.print("LED is ON");
  digitalWrite(LED PIN, HIGH);
  client.print("</html>");
else if (req.equals("/off"))
  client.print("LED is OFF");
  digitalWrite(LED PIN, LOW);
  client.print("</html>");
```


- 4. home(/), /on, /off path의 각 페이지에서 조도 센서의 상태 가 나타나도록 코드를 수정한다.
 - □ HTML 태그를 이용해 배경색과 글씨 색을 변경하고, 본문에는 조번호 와 함께 "Room is currently (BRIGHT/DARK)"라는 메시지 출력.
 - 밝은 상태 : 밝은 배경 / 어두운 글씨 / "Room is currently BRIGHT"
 - 어두운 상태 : 어두운 배경 / 밝은 글씨 / "Room is currently DARK"

```
client.print(htmlHeader);

if(sensed_light > LED_ON_THRESHOLD){
    client.print("<body bgcolor=#F0FFFF>");
    client.print("<font size=5 color=000000>");
    client.print("Room is currently BRIGHT");
    client.print("<br/>
    client.print("<br/>");
}
else {
    client.print("<br/>
    client.print("<font size=5 color=F0F8FF>");
    client.print("Room is currently DARK");
    client.print("<br/>
    client.print("<br/>
    client.print("<a href=./>"); // home
    client.print("<a href=./>"); // home
    client.print("</a>");
client.print("</a>");
client.print("</a>");
client.print("</a>");
client.print("</a>");
```



```
if(req.equals("/"))
 //client.print(htmlHeader);
 client.print(F("controlled nothing"));
 client.print("</font>");
                           추가
 client.print("</body>"
 client.print("</html>");
 else if(reg.equals("/on"))
 //client.print(htmlHeader);
 client.print(F("LED is ON"));
 digitalWrite(LED_PIN, HIGH);
 client.print("</font>");
                            추가
 client.print("</body>"
 client.print("</html>");
 else if(req.equals("/off"))
 //client.print(htmlHeader);
 client.print(F("LED is OFF"));
 digitalWrite(LED_PIN, LOW);
 client.print("</font>");
                           추가
 client.print("</body>"
 client.print("</html>");
```

조도센서의 intensity를 조절하며 링크를 눌렀을 때 LED의 반응을 확인한다.

/on path에서 LED가 켜짐

192.168.43.180/on

Light is on

/off path에서 LED가 꺼짐

192.168.43.180/off

Light is off

주의사항: 오래 걸림!

- (참고 favicon)
 - □ Favicon은 website의 icon으로 web browser에서 볼 수 있다.
 - HTTP 웹을 print하면 자동으로 favicon을 요청하고 받는 경우가 있으므로, path가 favicon.ico일 때의 조건을 삽입하여 이를 생략할 수 있다.

실험 검사 항목

- 실험 1: HTTP server
 - Internet browser에서 조 번호와 조원 이름 출력
- 실험 2: HTML코딩
 - □ Internet browser에 HTML 형식으로 디자인된 페이지를 출력
- 실험 3: HTML코딩을 통한 링크 생성
 - □ internet browser에서 path간 이동이 원활하게 되고, path에 따른 페이지를 올바르게 출력
- 실험 4: 조도 센서(analog)를 이용한 LED 제어
 - LED가 조도 센서로 제어가 되는지 확인
 - □ 실험 5번과 같이 검사
- 실험 5: HTTP 서버를 활용한 원격 LED 제어
 - □ 5번 항목의 모든 경우가 올바르게 구현되었는지 확인

결과보고서 및 추가 실험

- 실험시간 내에 검사 받지 못한 항목도 보고서에 포함.
- 배경지식 & 실험에 대한 고찰
- 추가 실험 A, B
 - ㅁ 교재 내의 추가 실험 2개 수행
 - 추가 실험 A: HTML 코드를 이미지 삽입
 - □ client.print("");
 - □ 위 코드 '이미지 주소' 란에 원하는 이미지의 주소를 입력하여 body에 삽입
 - 추가 실험 B: HTTP 서버를 활용하여 서로 다른 LED 제어
- 각실험 항목에 대해서 간단한 실험 설명, 코드 설명, 회로 사진, 결과를 보여줄 수 있는 사진 첨부할 것.

