CLASIFICACIÓN DEL DATASET IRIS USANDO REGRESIÓN LINEAL

Análisis Completo con Visualizaciones

□ DATASET: 150 muestras, 4 características, 3 clases
□ MÉTODO: Regresión Lineal con estrategia One-vs-Rest
□ OBJETIVO: Clasificar especies de iris (setosa, versicolor, virginica)
☐ HERRAMIENTAS: Python, scikit-learn, matplotlib, seaborn

Autor: Juan Esteban Moya Riaño Fecha: 2025

RESUMEN DEL DATASET IRIS

Setosa Versicolor Virginica

Estadísticas Descriptivas

Característica	Media	Desv. Est.	Mín	Máx
sepal_length	5.84	0.83	4.30	7.90
sepal_width	3.05	0.43	2.00	4.40
petal_length	3.76	1.76	1.00	6.90
petal_width	1.20	0.76	0.10	2.50

Distribución de Características (Boxplot)

Especies de Iris

ANÁLISIS DE RELACIONES ENTRE CARACTERÍSTICAS (Pairplot del Dataset Iris) Distribución de sepal_length 8.0 8.0 8.0 10 Versicolor 7.5 7.5 7.5 Virginica 7.0 7.0 7.0 sepal_length sepal_length sepal_length 5.5 5.5 5.5 5.0 5.0 5.0 4.5 4.5 Virginica 5.0 5.5 7.0 7.5 2.0 4.0 0.0 0.5 2.0 sepal_width petal_length petal_width Distribución de sepal_width 4.5 4.5 12 Setosa Versicolor Virginica 4.0 10 8 sepal_width 0.8 sepal_width 0.8 6 2.5 2.5 2.5 2 2.0 2.0 2.0 7.0 2.5 3.0 3.5 4.0 4.5 0.5 1.0 1.5 2.0 2.5 4.5 6.0 6.5 7.5 8.0 2.0 0.0 sepal_length petal_length petal_width Distribución de petal_length 14 Setosa Versicolor Virginica 12 10 petal_length petal_length petal_length 8 6 4 2 0 4.5 7.0 2.0 0.0 1.5 6.0 6.5 7.5 sepal_length sepal_width petal_width Distribución de petal_width 2.5 2.5 2.5 Setosa Versicolor 25 Virginica 2.0 2.0 2.0 20 petal_width 0.1 petal_width 0.1 petal_width 0.1 15 10 0.5 0.5 0.0 0.0 0.0 2.0 2.5 3.0 3.5 4.0 4.5 0.0 0.5 2.0 2.5 1.0 1.5 sepal_width sepal_length petal_length

ANÁLISIS DE LOS MODELOS DE REGRESIÓN LINEAL

Fronteras de Decisión del Modelo (Proyección 2D usando Sépalo)

RESULTADOS DE EVALUACIÓN DEL MODELO

ANÁLISIS DE SOBREAJUSTE

Diferencia: 0.0159

BALANCE ADECUADO

CONCLUSIONES Y RECOMENDACIONES

☐ RESULTADOS PRINCIPALES:

- El modelo de regresión lineal logró una precisión del 35.24% en entrenamiento y 33.33% en prueba, mostrando un balance adecuado sin sobreajuste significativo.
- Iris-setosa se clasifica perfectamente (100% precisión) debido a su separabilidad lineal con respecto a las otras dos especies.
- Iris-versicolor y virginica presentan mayor dificultad para ser distinguidas usando regresión lineal, ya que no son linealmente separables entre sí.

□ ANÁLISIS TÉCNICO:

- La estrategia One-vs-Rest funcionó correctamente, entrenando 3 modelos independientes para cada clase.
- Los coeficientes de los modelos muestran que las características del pétalo (longitud y ancho) son más discriminativas que las del sépalo.
- La matriz de correlación revela alta correlación entre longitud y ancho del pétalo (0.96), lo que explica parte de la dificultad de clasificación.

☐ RECOMENDACIONES:

- Para mejorar el rendimiento, considerar regresión logística en lugar de regresión lineal para problemas de clasificación.
- Implementar técnicas de regularización (Ridge, Lasso) para evitar sobreajuste en datasets más grandes.
- Explorar algoritmos no lineales como SVM con kernel RBF o Random Forest para capturar relaciones más complejas entre características.
- Considerar reducción de dimensionalidad (PCA) para manejar la alta correlación entre características.

□ VALOR EDUCATIVO:

- Este experimento demuestra efectivamente cómo la regresión lineal puede adaptarse para clasificación multi-clase.
- Muestra las limitaciones de los métodos lineales en problemas donde las clases no son linealmente separables.
- Proporciona una base sólida para entender conceptos fundamentales de machine learning como preprocesamiento, evaluación y visualización.

□ PRÓXIMOS PASOS:

- Implementar regresión logística para comparación directa
- Experimentar con diferentes estrategias de división train/test
- Aplicar técnicas de validación cruzada para evaluación más robusta
- Explorar ensemble methods para mejorar la precisión general