UD3. ADMINISTRACIÓN DE SERVIDORES DE APLICACIONES

Despliegue de aplicaciones web 2º DAW

0. ÍNDICE

- INTRODUCCIÓN
- ARQUITECTURA SERVIDORES APLICACIONES
- ARQUITECTURA APLICACIONES WEB. STACK
- HTTP: PROTOCOLO SIN ESTADO (stateless)
- SESIONES APLICACIÓN WEB

1. INTRODUCCIÓN

- El concepto de servidor de aplicaciones es posterior al de servidor web.
- Cuando aparecen las primeras tecnologías de generación de contenido web dinámico (CGI, PHP, ASP, JSP,...) aparece el concepto de servidor de aplicaciones.

1. INTRODUCCIÓN

- Actualmente es difícil distinguir la frontera entre servidor web y servidor de aplicaciones. Podemos destacar las siguientes características de un servidor de aplicaciones:
 - Sistemas de autenticación (seguridad)
 - Gestión de sesiones de usuario
 - Acceso a los componentes o librerías de la plataforma utilizada (PHP, Java, .NET,...)
 - Gestión de las conexiones con servidores de bases de datos
 - En algunos casos implementan servicios como clustering, loadbalancing o fail-over
 - Monitoriazación del servicio, gestión de procesos, estadísticas,...

1. INTRODUCCIÓN

Evolución

- Los servidores de aplicaciones están muy ligados a la tecnología utilizada para el desarrollo de la aplicación.
 - ASP.Net: Esta tecnología (.NET Framework), utiliza ASP.NET core junto al servidor Internet Information Server (IIS).

- JSP/Servlets: La tecnología Java cuenta con diferentes servidores de aplicaciones que no necesitan la interacción con servidores web, como son:
 - JBoss: también llamado WildFly, se trata de un servidor de aplicaciones de código abierto basado en la especificación Java EE (Java Enterprise Edition) y escrito completamente en Java.
 - Oracle (BEA) Weblogic: Servidor de aplicaciones basado en Java EE y también servidor web http. (licencia propietaria de Oracle)
 - Websphere application server: Servidor de aplicaciones de IBM basado en Java EE.

 Apache tomcat: integrado con el servidor web Apache, funcioan como un contenedor de servlets. Implementa las especificaiones de los Servlets y de Java Server Pages (JSP).

- La tecnología php hace uso de un servidor web, generalmente apache o Ngnix, y de un intérprete de php.
 Podemos encontrar principalmente dos tipos de ejecución de las aplicaciones:
 - 4 **Apache** con la activación de un módulo interno (mod_php) que se encargará de la interpretación de las páginas PHP.
 - 5 Apache / Ngnix + servidor de aplicaciones (phpFPM): El servidor web se encargará de atender todas las peticiones y confiará en un tercer servidor para la interpretación de las aplicacioens escritas en PHP.

- Apache con módulo interno: Se trata de un método más antiguo y rápido, siempre y cuando nuestro servidor no atienda muchas peticiones concurrentes.
 - El módulo de PHP ha de cargarse en cada petición
 - No podemos limitar ni restringir recursos para cada aplicación
 - No podemos aplicar diferentes configuraciones para cada aplicación
 - La seguridad de las diferentes aplicaciones se puede ver comprometida por las otras aplicaciones, ya que todas las aplicaciones se ejecutarán bajo el mismo usuario

- PHP
 - Apache amb mòdul intern

- PHP
 - Servidor web (Apache/nginx) + PHP-FPM
 - El Servidor web y de aplicaciones son procesos independientes que pueden estar en el mismo host o en hosts diferentes (Comunicación a través de la red)

- Servidor web (Apache/nginx) + PHP-FPM
 - El servidor web se comunica con el servidor de aplicaciones mediante una versión mejorada de la tecnología Fast CGI (Fast Common Gateway Interface).
 - Se trata de un protocolo estándar que habilita la comunicación entre dos procesos.
 - Independencia del lenguaje utilizado
 - Se utiliza un proceso separado
 - Es posible la ejecución en host separado

- Servidor web (Apache/nginx) + PHP-FPM
 - ✓ El servicio de PHP-FPM permite establecer uno o más procesos persistentes, con cantidades específicas de recursos, que se mantienen a la espera de atender peticiones mediante un socket.
 - Permite establecer diferentes configuraciones
 - Puertos de escucha
 - Tipos de socket Unix/TCP.
 - Usuarios de ejecución
 - Módulos/Librerías de PHP a cargar.
 - Diferentes dominios de seguridad.

- Servidor web (Apache/nginx) + PHP-FPM
 - Permite mantener diferentes ficheros de log para cada aplicación
 - Monitorización y estadísticas de los procesos lanzados
 - Permite aplicar configuraciones y reiniciar el servicio de forma aislada

- PHP
 - Servidor web (Apache/nginx) + PHP-FPM

Python

- Al igual que en el caso anterior, tenemos diferentes formas de ejecución de un script en python:
 - Mediante un módulo interno de apache:
 - libapache2-mod-wsgi → python 2
 - libapache2-mod-wsgi-py3 → python 3
 - Mediante un servidor wsgi externo:
 - En este caso, el servidor web actúa como un Reverse proxy, que reenvía las peticiones al servidor wsgi (gunicorn)

https://www.digitalocean.com/community/tutorials/a-compariso n-of-web-servers-for-python-based-web-applications

ies severo ochoa

2.1 ENTORNO DE DESARROLLO

- La mayoría de frameworks y/o tecnologías de desarrollo web nos proporcionan un servidor de aplicaciones para el entorno de desarrollo:
 - El intérprete php → php -S localhost:8001
 - Symfony (php) → Symfony Local Web Server
 - Django (python) → Django Web Server

"Estos servidores usan el intérprete del lenguaje disponible de forma global al sistema operativo.

Cualquier configuración sobre el intérprete se hará a nivel global"

3. ARQUITECTURA APLICACIONES WEB. STACK

- Llamamos "Stack" al conjunto de tecnologías escogidas como herramientas para la implementación de la solución de un proyecto.
- Generalmente se utilizan para dar una descripción de la arquitectura de una forma rápida. Se pueden destacar las siguientes:
 - LAMP (Linux Apache MySQL PHP)
 - LEMP (Linux Engine X MySQL PHP)
 - MEAN (Mongo ExpressJS Angular NodeJS)

3. ARQUITECTURA APLICACIONES WEB. STACK

- Podemos encontrar diferentes distribuciones del stack en función del nivel de escalabilidad que necesitemos
 - Servidor de aplicaciones y base de datos en el mismo Host
 - Más rápido
 - No podemos escalar horitzontalmente el servicio.
 - No podemos compartir el SGBD con diferentes aplicaciones. (+ Gestión y mantenimento)
 - No independencia de servicios. (Seguridad / Failover)

3. ARQUITECTURA APLICACIONES WEB. STACK

Servidor de aplicaciones y base de datos en diferentes
Hosts

3. ARQUITECTURA APLICACIONES WEB. STACK

Servidor de aplicaciones y base de datos en diferentes
Hosts

4. HTTP: PROTOCOLO SIN ESTADO

- El protocolo HTTP no mantiene el estado entre peticiones.
- A veces, en el contexto de una aplicación web, se hace necesario mantener el estado entre peticiones HTTP que se producen entre cliente y servidor web. Por ejemplo:
 - Saber si un usuario ha hecho "login".
 - Mantener información sobre acciones realizadas por el usuario.

4.1 GESTIÓN DE SESIONES

- Las sesiones son un mecanismo que utilizan los servidores web para guardar información sobre el usuario y su actividad.
- Una sesión permite establecer una comunicación entre el cliente y el servidor, manteniendo un estado (consistente en un conjungo de variables).
 - Se consigue asignando a cada cliente un ID de sesión al iniciar la comunicación.
 - Este ID ha de circular entre el client y el servidor en todas las peticiones HTTP.
 - Lo más habitual es utilizar una cookie.

ies severo ochoa

4.1 GESTIÓN DE SESIONES

- El servidor de aplicaciones asociará cada ID de sesión con un archivo en el servidor donde almacenará la información.
 - Su lectura penalizará el rendimiento del servidor.

4.1 GESTIÓN DE SESIONES

 Los archivos que guardan la información de las sesiones se han de gestionar (borrar cuando no son necesarios) y tenerlos en cuenta en el momento de escalar un servicio.

4.1 GESTIÓN DE SESIONES

- Se podrían guardar en un sistema de base de datos en memoria (Redis, memcache,...)
 - En el fichero php.ini se pueden configurar diferentes parámetros sobre el comportamiento de nuestro servidor con las sesiones.
 - También se puede hacer a nivel de aplicación.

