

## **ASSIGNMENT 1**

## **SECI1013 – Discrete Structure**

## Semester 2024/2025-1

## **Instructions:**

This is a group assignment. Each group should consist of no more than 4 members.

Please write all your answers by hand using a pen. Ensure that your answers are well-structured and that your handwriting is neat and easy to read. Submissions in printed form will not be accepted.

Please submit your assignment by 17/11/2024, 8:00 AM, in room N28-346-05.

Question 1 [16 marks]

a. To study the ownership of electronic devices among FC students, we surveyed 150 students to determine whether they own a laptop, smartphone, or tablet. Based on their responses, we found that 25 students own only a laptop, 30 own only a smartphone, and 20 own only a tablet. Additionally, 15 students own both a laptop and a smartphone, but not a tablet, and 5 students own all three devices. After conducting the survey, we found that 65 students own a laptop, 55 own a smartphone, and 50 own a tablet.

| 1. | Draw a V | enn diagram | to represent | the problem described | l above. | [2 m] |  |
|----|----------|-------------|--------------|-----------------------|----------|-------|--|
|----|----------|-------------|--------------|-----------------------|----------|-------|--|

ii. How many students do not own any of the devices? [2 m]

iii. How many students own exactly two (2) devices? [2 m]

iv. How many students own devices other than a laptop? [2 m]

b. Suppose  $A = \{n \in N | n \text{ odd}, 1 \le n \le 10\}$ , where  $N = \{\text{natural number}\}$ 

 $B = \{n \in N | n \text{ is prime, } 1 < n < 10\}, C = \{n \in N | n \text{ divisible by } 3, 1 < x < 10\}$ 

i. Find 
$$|A|$$
,  $|B|$  and  $|C|$  [3 m]

ii. Find the number of proper subsets of A [3 m]

iii. Find  $C \times B$  [2 m]

| Que | estion                                                                                          | 2                                                                                                          | [24 marks] |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|
| a.  | Ver                                                                                             | ify $\sim (p \lor q) \lor (\sim p \land q) \equiv \sim p$ , using both truth table and logic property law. | [6 m]      |  |  |  |  |
| b.  | Write the following statement using $p$ and $q$ and logical connective                          |                                                                                                            |            |  |  |  |  |
|     | j: I go camping                                                                                 |                                                                                                            |            |  |  |  |  |
|     | k: it is a sunny day                                                                            |                                                                                                            |            |  |  |  |  |
|     | l: it is Saturday                                                                               |                                                                                                            |            |  |  |  |  |
|     | i.                                                                                              | I go camping whenever it is Saturday and a sunny day.                                                      | [2 m]      |  |  |  |  |
|     | ii.                                                                                             | If it is neither Saturday nor a sunny day, then I do not go camping.                                       | [2 m]      |  |  |  |  |
|     | iii.                                                                                            | If I do not go camping, then it is neither Saturday nor a sunny day.                                       | [2 m]      |  |  |  |  |
| c.  | Write the negation of $\forall x (x^2 + 2x - 3 = 0)$ and determine the resulting proposition is |                                                                                                            |            |  |  |  |  |
|     | TRU                                                                                             | UE or FALSE with the domain of discourse is integer.                                                       | [6 m]      |  |  |  |  |
| d.  | Express the following statement using predicates, quantifier, and logical connective            |                                                                                                            |            |  |  |  |  |
|     | with                                                                                            | the domain of discourse consist of all students at your school                                             |            |  |  |  |  |
|     | i.                                                                                              | There is a student at your school who can speak Russian but does not k                                     | now        |  |  |  |  |
|     |                                                                                                 | C++.                                                                                                       | [2 m]      |  |  |  |  |
|     | ii.                                                                                             | Every student at your school either can speak Russian or knows C++.                                        | [2 m]      |  |  |  |  |
|     | iii.                                                                                            | No student at your school can speak Russian or knows C++.                                                  | [2 m]      |  |  |  |  |
| Que | estion                                                                                          | 3                                                                                                          | [10 marks] |  |  |  |  |
| a.  | Prove the following theorem using indirect proof method:                                        |                                                                                                            |            |  |  |  |  |
|     | For                                                                                             | all integers, if $a^2 - 3b$ is even then a is even and b is even.                                          | [5 m]      |  |  |  |  |
| b.  | Prove the following theorem using proof by contradiction:                                       |                                                                                                            |            |  |  |  |  |
|     | Let                                                                                             | A and B be sets such that $A \subseteq B$ , then $A \cap B = A$                                            | [5 m]      |  |  |  |  |