Ranks and Parity of Ranks of Curves and Abelian Surfaces

MA842 at BU Spring 2019

Céline Maistret

February 21, 2019

1 Mordell-Weil groups

These are notes for Céline Maistret's course MA842 at BU Spring 2019.

The course webpage is https://sites.google.com/view/cmaistret/teaching#h.p_BYGoPzU848FJ.

Course overview:

Main references that we will be following:

- 1. Vladimir Dokchitser Notes?
- 2. Silverman Arithmetic of Elliptic Curves
- 3. Milne Abelian Varieties?

1.1 Mordell-Weil

Lecture 4 5/2/2018

Remark 1.1 A homomorphism ϕ : $Gal(\overline{K}/K) \to G$ for a finite group G is continuous if it comes from a finite Galois extension, i.e.

$$\exists F/K$$
 finite Galois , $\tilde{\phi} \colon \operatorname{Gal}(F/K) \to G$

s.t. ϕ is the composition $\operatorname{Gal}(\overline{K}/K) \to \operatorname{Gal}(F/K) \xrightarrow{\tilde{\phi}} G$. So $\phi(g)$ only cares about what g does to F.

Proposition 1.2 *Let E*/*K be an elliptic curve*

$$y^2 = (x - \alpha)(x - \beta)(x - \gamma)$$

for $P \in E(K)$ have $\frac{1}{2}P \in E(\overline{K})$ s.t. $\frac{1}{2}P \oplus \frac{1}{2}P = P$.

1. $K(\frac{1}{2}P)/K$ is a Galois extension and $Gal(K(\frac{1}{2}P)/K) = C_2 \times C_2$ from Lemma 1.

2.

$$\phi_P \colon \operatorname{Gal}(\overline{K}/K) \to E(K)[2]$$

$$g\mapsto Q^\sigma-Q=g(\frac{1}{2}P)-\frac{1}{2}P$$

is well defined and has kernel $Gal(K/K(\frac{1}{2}P))$.

3.

$$\phi \colon E(K)/2E(K) \to \operatorname{Hom}_{cts}(\operatorname{Gal}(\overline{K}/K), E(K)[2])$$

$$P \mapsto \phi_P$$

is well defined and injective. Now ϕ_P is continuous by 2. and so

$$\phi_{P \oplus Q}(g) = g(\frac{1}{2}(P \oplus Q)) - (\frac{1}{2}P \oplus \frac{1}{2}Q)$$
$$= g(\frac{1}{2}P) \oplus g(\frac{1}{2}Q) - \frac{1}{2}P \ominus \frac{1}{2}Q$$
$$= \phi_P(g) \oplus \phi_Q(g)$$

a homomorphism.

$$\phi_{2Q}(g) = g(\frac{1}{2}2Q)) - \frac{1}{2}2(Q) = g(Q) - Q = 0$$

for all $g \in Gal(\overline{K}/K)$ if $Q \in E(K)$ so this is well defined. For injectivity:

$$\phi_P(g) = 0 \implies g(\frac{1}{2}P) = \frac{1}{2}P \forall g \in \operatorname{Gal}(\overline{K}/K)$$

$$\implies \frac{1}{2}P \in E(K) \implies P \in 2E(K)$$

which gives injectivity.

4.

$$\eta \colon \operatorname{Hom}_{cts}(\operatorname{Gal}(\overline{K}/K), E(K)[2]) \to K^{\times}/K^{\times 2} \times K^{\times}/K^{\times 2} \times K^{\times}/K^{\times 2}$$

$$\psi \mapsto \psi_{\alpha}, \psi_{\beta}, \psi_{\gamma}$$

$$\psi(g) \in \{0, (\alpha, 0)\} \subseteq E(K) \iff g \in \operatorname{Gal}(\overline{K}/K(\sqrt{\psi_{\alpha}}))$$

then η is an injective homomorphism. It is an isomorphism to the subgroup of triples a, b, c s.t. $abc \in K^{\times 2}$. Proof:

$$\operatorname{Hom}_{cts}(\operatorname{Gal}(\overline{K}/K), C_2) \simeq K^{\times}/K^{\times 2}$$

with ψ s.t. $\ker \psi = \operatorname{Gal}(\overline{K}/K\sqrt{d}) \leftrightarrow d$. It is an isomorphism:

$$\ker \psi_i = \operatorname{Gal}(\overline{K}/K(\sqrt{d_i})), i = 1, 2$$

$$\ker \psi_1 \psi_2 = \operatorname{Gal}(\overline{K}/K(\sqrt{d_1 d_2}))$$

Now apply this to $E(K)[2] = C_2 \times C_2$ to get an isomorphism to $K^{\times}/K^{\times 2} \times K^{\times}/K^{\times 2}$. Record this third homomorphism to get η .

5. If $P = (x_0, y_0) \in E(K)$ then

$$\eta(\phi_P) = (x_0 - \alpha, x_0 - \beta, x_0 - \gamma).$$

Proof sketch: If

$$E\colon y^2=x^3+Ax^2+Bx$$

then for $Q = (x_0, y_0) \in E(K)$.

$$2Q = \left(\left(\frac{x_0 - B}{2y_0} \right)^2, \dots \right)$$

Hence if $2Q = P = (x_1, y_1)$ then $\sqrt{x_1} \in K(\frac{1}{2}P)$. So if

$$E \colon y^2 = (x - \alpha)(x - \beta)(x - \gamma)$$

then

$$P = (x_2, y_2)$$

then

$$\sqrt{x_2 - \alpha}, \sqrt{x_2 - \beta}, \sqrt{x_2 - \gamma} \in K(\frac{1}{2}P)$$

$$K(\sqrt{x_2 - \alpha}), K(\sqrt{x_2 - \beta}), K(\sqrt{x_2 - \gamma}) \subseteq K(\frac{1}{2}P)$$

$$\implies K(\frac{1}{2}P) = K(\sqrt{x_2 - \alpha}, \sqrt{x_2 - \beta}, \sqrt{x_2 - \gamma})$$

Example 1.3 Let

$$E: y^2 = x(x-1)(x+1)$$

for $P \in E(\mathbf{Q})$, $\mathbf{Q}(\frac{1}{2}P)/\mathbf{Q}$ can only ramify at 2.

$$\mathbf{Q}(\frac{1}{2}P) \subseteq \mathbf{Q}(i,\sqrt{2})$$

$$P = (x_0, y_0) \mapsto x_0, x_0 - 1, x_0 + 1 \in \mathbf{Q}^{\times}/\mathbf{Q}^{\times 2}$$

is a homomorphism so x_0 , $x_0 - 1$, $x_0 + 1$ are ± 1 , ± 2 up to square.

x_0	$x_0 - 1$	$x_0 + 1$	rat?
1	1	1	1) rat
1	-1	-1	2) non-rat
1	2	2	1) rat
1	-2	-2	2) non-rat
-1	1	-1	2) non-rat
-1	-1	1	1) rat
-1	2	-1	2) non-rat
-1	-2	2	1) rat
2	1	2	3) non-rat
2	-1	-2	2) non-rat
2	2	1	4) rat
2	-2	-1	2) non-rat
-2	1	-2	?
-2	-1	2	?
-2	2	-1	?
-2	-2	1	?

Table 1.4: Images

1) The 2-torsion points P = 0, (0,0), (1,0), $(-1,0) \in E(\mathbf{Q})$ give us some rows. 2) As we have $x_0 > -1$ we get $x_0 + 1 > 0$ so $x_0(x_0 - 1) > 0$ for the product to be a square (and hence > 0). 3) $x_0 = 2A^2$, $x_0 - 1 = B^2$, $x_0 + 1 = 2C^2$ with $A, B, C \in \mathbf{Q} \setminus \{0\}$. Let A = m/n so $2m^2/n^2 - 1 = B^2$

$$2m^2 - n^2 = (Bn)^2$$

and

$$2m^2 + n^2 = 2(Cn)^2$$

if $m \equiv 0(2) \implies -1 = \square \pmod{8}$ a contradiction.

$$m \equiv 1 \pmod{2} \implies m^2 \equiv 1 \pmod{8}$$
.

So
$$2 - n^2 = \square \pmod{8} \implies n^2 \equiv 1 \pmod{8}$$

$$2 + n^2 = 2\square \pmod{8} \implies n^2 \equiv 0 \pmod{8}$$

$$|E(\mathbf{Q})/2E(\mathbf{Q})| = 4$$

$$|E(\mathbf{Q})[2]| = 4 \implies \mathrm{rk} = 0$$

$$E(\mathbf{Q}) \cong E(\mathbf{Q})[2].$$

4) Use the group structure!

Theorem 1.5 Complete 2-decent. *Let K be a field of characteristic 0 and*

E:
$$y^2 = (x - \alpha)(x - \beta)(x - \gamma)$$
, α , β , γ distinct.

The map

$$P \mapsto (x_0 - \alpha, x_0 - \beta, x_0 - \gamma)$$

replacing $x_0 - \alpha$ with $(x_0 - \beta)(x_0 - \gamma)$ if 0.

$$E(K)/2E(K) \rightarrow (K^{\times}/K^{\times^2})^3$$

Triples (a, b, c) *that lie in the image satisfy abc* $\in K^{\times 2}$. A triple a, b, c with $abc \in K^{\times 2}$ *lies in the image iff it is in the image of* E(K)[2] *or*

$$cz_3^2 - \alpha + \gamma = az_1^2$$

$$cz_3^2 - \beta + \gamma = bz_1^2$$

is soluble with $z_i \in K^{\times}$. In which case

$$P=(az_1^2+\alpha,\sqrt{abc},z_1z_2z_3)\mapsto(a,b,c)$$

iii) If K is a number field and (a, b, c) is in the image then

$$K(\sqrt{a}, \sqrt{b}, \sqrt{c})/K$$

only ramifies at primes dividing $2(\alpha - \beta)(\alpha - \gamma)(\beta - \gamma)$.

Exercise 1.6

$$E \colon y^2 = x(x-5)(x+5).$$

Lecture 5 7/2/2018

Recall:

$$\phi \colon E(K)/2E(K) \to \operatorname{Hom}_{cts}(G_K, E(K)[2])$$
$$P \mapsto \phi_P$$

where $\phi_P \colon \sigma \mapsto Q^{\sigma} - Q$ where Q = 2P. Which is well-defined and injective. Elements of

$$\operatorname{Hom}_{cts}(G_K, E[2]) \leftrightarrow a, b, c \in (K^{\times}/K^{\times 2}) \text{ s.t. } abc \in K^{\times 2}$$
$$(x_0, y_0) \mapsto (x_0 - \alpha, x_0 - \beta, x_0 - \gamma).$$

Lemma 1.7 *Let* $n \ge 1$

1.

$$\psi \colon E(K)/nE(K) \to \{K \subseteq F \subseteq \overline{K}\}$$
$$P \mapsto K(\frac{1}{n}P, E[n])$$

is well defined.

2. $K(\frac{1}{n}P, E[n])/K$ only ramifies at $\mathfrak{p}|n\Delta_E$.

3.

$$Gal(K(\frac{1}{n}P, E[n])/K) \le \mathbf{Z}/n \times \mathbf{Z}/n$$

4. There are only finitely many fields satisfying 2. and 3. so im ψ is finite.

To do descent, need more than ψ (i.e. injection).

Definition 1.8 Let *G* be a group and *M* a *G*-module then let

$$H^0(G,M)=M^G=\{m\in M:gm=m\forall g\in G\}$$

 $H^1(G, M) = \{\text{skew homs } G \to M\}/\{\text{skew homs } G \to M \text{ of the form } g \mapsto g(t) - t, \ t \in M\}.$

 \Diamond

Remark 1.9 If *G* acts trivially on *M* then

$$H^0(G,M)=M$$

$$H^1(G, M) = \text{Hom}(G, M).$$

When *G* is profinite then we want that the skew homomorphisms factor through finite Galois groups. We will prove that

$$E(K)/nE(K) \hookrightarrow H^1(G_K, E[n]).$$

Theorem 1.10 *If*

$$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$$

is an exact sequence of G-modules then

$$0 \to H^0(G,A) \to H^0(G,B) \to H^0(G,C) \to H^1(G,A) \to H^1(G,B) \to H^1(G,C).$$

Lemma 1.11

- 1. ψ is finite-to-one (gives Mordell-Weil)
- 2. Let

$$\phi_P \colon G_K \to E[n]$$

$$\phi_P(gh) = \phi_P(g) + g\phi_P(h)$$

is a skew (or crossed) homomorphism. If $(\frac{1}{n}P)'$ is another choice of $\frac{1}{n}P$ and φ_P' is the corresponding skew homomorphism, then

$$\phi_P - \phi_P'$$

is of the form

$$g \mapsto T \ominus gT$$

where $T \in E[n]$.

3. ϕ_P factors through

$$Gal(K(\frac{1}{n}P, E[n])/K).$$

4.

$$\phi \colon E(K)/nE(K) \to Z/B$$
$$P \mapsto \phi_P$$

is an injective homomorphism. Where

$$Z = \{skew \ homs \ G_K \rightarrow E[n]\}$$

 $B = \{skew\ homs\ G_K \to E[n]\ of\ the\ form\ g \mapsto T\ominus gT,\ T\in E[n]\}.$

Proof.

1. There are finitely many skew homomorphisms

$$Gal(K(\frac{1}{n}P, E[n])/K) \rightarrow E[n]$$

and by 4.

$$P \mapsto \{\phi_P, K(\frac{1}{n}P, E[n])\}$$

is injective. So $\psi \colon P \mapsto K(\frac{1}{n}P, E[n])$ is finite to one by 3.

2.

$$\phi_P(gh) = \frac{1}{n}P \ominus gh\frac{1}{n}P$$

$$= \left((\frac{1}{n}P) \ominus g(\frac{1}{n}P) \right) \oplus \left(g(\frac{1}{n}P) \ominus g(h(\frac{1}{n}P)) \right)$$

$$= \phi_P \oplus g(\phi_P(h)).$$

Remark: If $E[n] \subseteq E(K)$ then ϕ_P is a homomorphism. Recall for n=2

$$\phi_P(gh) = \frac{1}{2}P \ominus gh(\frac{1}{2}P)$$

$$= \frac{1}{2}P \ominus h(\frac{1}{2}P) \oplus h(\frac{1}{2}P) \ominus g(h(\frac{1}{2}P))$$

$$= \phi_P(h) \oplus \phi_P(g)$$

since $2h(\frac{1}{2}P) = h(P) = P$. Consider now

$$\frac{1}{n}P = \frac{1}{n}P' \oplus T$$

for some $T \in E[n]$

$$(\phi_P \ominus \phi_P')(g) = \phi_P(g) - \phi_P'(g) = \frac{1}{n}P \ominus g(\frac{1}{n}P) - [(\frac{1}{n}P) \oplus T \ominus g(\frac{1}{n}P) \oplus gT]$$
$$= T \ominus gT.$$

Take $G = G_K$

$$B = E(\overline{K}), A = E[n], C = E(\overline{K})$$

to get

$$0 \to E[n] \to E(\overline{K}) \xrightarrow{\cdot n} E(\overline{K}) \to 0$$

which gives the long exact sequence

$$0 \to E(K)[n] \to E(K) \xrightarrow{\cdot n} E(K) \xrightarrow{\delta} H^1(G_K, E[n]) \to H^1(G_K, E(\overline{K})) \to$$
$$\Longrightarrow E(K)/nE(K) \hookrightarrow H^1(G_K, E[n]).$$

Problem:

$$H^1(G_K, E[n])$$

is infinite. What subgroup of

$$H^1(G_K, E[n])$$

do we land in?

Notation: When v is a place of K we have $G_{K_v} \subseteq G_K$, for any module M have $M^{G_K} \leq M^{G_{K_v}}$ and

Res:
$$H^1(G_K, E[n]) \rightarrow H^1(G_{K_v}, E[n])$$
.

We have from the theorem

$$0 \longrightarrow E(K)/nE(K) \xrightarrow{\delta} H^{1}(G_{K}, E[n]) \longrightarrow H^{1}(G_{K}, E(\overline{K}))[m] \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow_{\text{Res}} \qquad \qquad \downarrow_{\text{Res}}$$

$$0 \longrightarrow \prod_{v} E(K_{v})/nE(K_{v}) \xrightarrow{\delta} \prod_{v} H^{1}(G_{K_{v}}, E[n]) \longrightarrow \prod_{v} H^{1}(G_{K_{v}}, E(\overline{K}))[m] \longrightarrow 0$$

we want to understand im δ i.e. the subgroup

$$\ker\{H^1(G_K, E[n]) \to H^1(G_K, E(\overline{K}))\}$$

this is as hard as finding E(K), here is why:

Claim 1.12

$$H^1(G_K, E(\overline{K}))$$

corresponding to principal homogeneous spaces for E (genus 1 curves whose jacobian is E)

Finding

$$\ker\{H^1(G_K, E[n]) \to H^1(G_K, E(\overline{K}))\}$$

is equivalent to finding which PHS coming from H^1 have a rational point. ??? Hensel's lemma.

Let C be a curve

$$\operatorname{Isom}(C) \leftrightarrow C(\overline{K}) \times \operatorname{Aut}(C)$$

$$\tau_p \circ \alpha \leftrightarrow (P, \sigma)$$

$$\operatorname{Twist}(E/K) \leftrightarrow H^1(G_K, \operatorname{Isom}(C))$$

$$C \simeq_{\overline{K}} E$$

$$PHS \leftrightarrow H^1(G_K, E(\overline{K}))$$

C is a PHS for *E* iff *E* is the jacobian of *C*.

Lecture 6 14/2/2018

$$0 \longrightarrow E(K)/nE(K) \xrightarrow{\delta} H^{1}(G_{K}, E[n]) \longrightarrow H^{1}(G_{K}, E(\overline{K}))[m] \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \text{Res} \qquad \qquad \downarrow \text{Res}$$

$$0 \longrightarrow \prod_{v} E(K_{v})/nE(K_{v}) \xrightarrow{\delta} \prod_{v} H^{1}(G_{K_{v}}, E[n]) \longrightarrow \prod_{v} H^{1}(G_{K_{v}}, E(\overline{K}))[m] \longrightarrow 0$$

Definition 1.13 Twists of curves. A **twist** of C/K is a smooth curve C'/K that is isomorphic to C over \overline{K} .

If C_1 , C_2 are twists of C/K and $C_1 \simeq_K C_2$ then we say that C_1 and C_2 are equivalent modulo K-isomorphism.

We denote Twist(C/K) - the set of twists of C/K modulo K-isomorphism.

Theorem 1.14 The twists of C/K up to K-isomorphism are in 1-1 correspondence with elements of

$$H^1(G_K, \text{Isom}(C))$$

where

$$Isom(C) = \{\overline{K}-isomorphisms C \to C\}.$$

Proof. Let C'/K be a twist of C/K then there exists an isomorphism $/\overline{K}$

$$\phi \colon C' \to C$$

associate the following map

$$\xi: G_K \to \mathrm{Isom}(C)$$

$$\sigma \mapsto \phi^{\sigma} \phi^{-1}$$
.

Check that ξ is a cocycle

$$\xi_{\sigma\tau} = (\xi_{\sigma})^{\tau} \xi_{\tau}$$

for all $\sigma, \tau \in G_K$. Denote $\{\xi\}$ the associated class in H^1 . $\{\xi\}$ is determined by the K-isomorphism class of C' independent of the choice ϕ .

The map

$$Twist(C/K) \leftrightarrow H^1(G_K, Isom(C))$$

$$C' \mapsto \{\xi\}$$

is a bijection.

Injective, trace through.

Surjectivity, define the function field using the curve.

Remark 1.15 If *C* is an elliptic curve then Isom(*C*) is generated by

$$Aut(C)$$
(fixing 0)

and translations

$$\tau_P \colon C \to C$$

$$Q \mapsto Q + P$$
.

Example 1.16 E/K elliptic, consider

$$K(\sqrt{d})$$

a quadratic extension and χ the associated character

$$\chi: G_K \to \{\pm 1\}$$

$$\sigma \mapsto \sigma(\sqrt{d})/\sqrt{d}$$
.

The group ± 1 can be viewed as automorphisms of C. So use χ to define the cocycle

$$\xi \colon G_K \to \mathrm{Isom}(C)$$

$$\sigma \mapsto [\chi(\sigma)].$$

Let C/K be the corresponding twist of E/K, we find an equation for C/K. Choose

$$y^2 = f(x)$$
 for E/K

and write

$$\overline{K}(E) = \overline{K}(x,y)$$

$$\overline{K}(C) = \overline{K}(x, y)_{\xi}$$

since [-1](x, y) = (x, -y) the action of $\sigma \in G_K$ on

$$\overline{K}(x, y)_{\xi}$$
 is given by $\sqrt{d}^{\sigma} = \chi(\sigma)\sqrt{d}$

$$x^{\sigma} = x$$
, $y = \chi(\sigma)y$

note that the function x' = x and $y' = y/\sqrt{d}$ are in $\overline{K}(x, y)_{\xi}$ and are fixed by G_K . Now x', y' satisfy

$$dy'^2 = f(x')/K$$

is defined over *K* and defines an elliptic curve. Moreover

$$(x, y) \mapsto (x', y'\sqrt{d})$$

is an isomorphism over $K(\sqrt{d})$.

Note C/K is not a principal homogeneous space for E/K.

Definition 1.17 Homogenous spaces. Let E/K be an elliptic curve, a principal homogeneous space for E/K is a smooth curve C/K together with a simply transitive algebraic group action of E on C defined over K.

$$\mu: C \times E \rightarrow C$$

morphism defined over K satisfying

1.

$$\mu(P,0) = P \forall P \in C$$

2.

$$\mu(\mu(p, P), Q) = \mu(p, P + Q) \forall P \in C$$

3.

$$\forall p, q \in C, \exists ! P \in E \text{ s.t.}$$

$$\mu(p, P) = q$$

so we may define a subtraction map

$$\nu: C \times C \to E$$

$$p, q \mapsto P$$

as above.

Proposition 1.18 *Let* E/K *and* C/K *be a principal homogeneous space for* E/K. *Fix a point* $p_0 \in C$ *and define a map*

$$\theta \colon E \to C$$

$$P \mapsto \underbrace{p_0 + P}_{\mu(p_0, P)}$$

- 1. θ is an isomorphism over $K(p_0)$. In particular C/K is a twist of E/K.
- 2. $\forall p, q \in C$

$$q - p = \theta^{-1}(q) - \theta^{-1}(p).$$

3. θ is a morphism over K.

Definition 1.19 Two homogeneous space C/K and C'/K for E/K are equivalent if there is an isomorphism

$$\phi: C \to C'$$

defined over K and is compatible with the action of E on C and C'.

^

The equivalence class of PHS for E/K containing E/K acting on itself via translation is called the trivial class.

The collection of equivalence classes of PHS for E/K is called the Weil-Châtelet group, denoted

$$WC(E/K)$$
.

Proposition 1.20 *Let* C/K *be a PHS for* E/K *then* C/K *is in the trivial class* $\iff C(K) \neq \emptyset$.

Theorem 1.21 *Let* E/K *then there is a natural bijection after fixing* $p_0 \in C$

$$WC(E/K) \to H^1(G_K, \underbrace{E(\overline{K})}_{\subseteq Isom(E)})$$

$$\{C/K\} \mapsto \{\sigma \mapsto p_0^{\sigma} - p_0\}$$

Proof. Well-definedness:

$$\sigma \mapsto p_0^{\sigma} - p_0$$

is a cocycle. Suppose that C'/K and C/K are two equivalent PHS then

$$p_0^{\sigma} - p_0$$

and

$${p_0^{\prime}}^{\sigma}-p_0^{\prime}$$

are cohomologous.

Injective, suppose that $p_0^{\sigma} - p_0$ and $p_0'^{\sigma} - p_0'$ corresponding to C/K and C'/K that are cohomologous and prove that $C \simeq_K C'$.

Surjective: let $\xi: G_K \to E(\overline{K})$ be a cocycle representing an element in

$$H^1(G_K, E)$$
. Embed

$$E(\overline{K}) \hookrightarrow \operatorname{Isom}(E)$$
$$P \mapsto \tau_P$$

and view

$$\xi \in H^1(G_K, \operatorname{Isom} E)$$
.

From the theorem on

$$\operatorname{Twist}(E/K) \leftrightarrow H^1(G_K, \operatorname{Isom}(E))$$

there exists a curve C/K and a \overline{K} -isomorphism

$$\phi \colon C \to E$$

s.t.

$$\forall \sigma \in G_K : \phi^{\sigma} \phi^{-1} = \text{translation by } -\xi_{\sigma}.$$

Define a map $\mu: C \times E \to C$

$$(p,Q) \mapsto \phi^{-1}(\phi(p) + Q).$$

Show that μ is simply transitive.

Show μ defined over K. Compute the cohomology class associated to C/K and show it is ξ .

Remark 1.22 For a given C/K of genus 1 one can define several structures of PHS.

$$\{C/K, \mu\}^{\alpha} = \{C/K, \mu \circ (1 \times \alpha)\}$$
$$\mu^{\alpha}(p, Q) = \mu(p, \alpha Q)$$

for $\alpha \in Aut(E)$.

$$C \xrightarrow{\mu} E$$

$$\downarrow P$$

$$\downarrow C' \xrightarrow{\mu^{\alpha}} E'$$

Lecture 7 21/2/2018

Example 1.23 E/K and $K(\sqrt{d})/K$ a quadratic extension. Let $T \in E(K)$ be a non-trivial point of order 2. Then $\xi \colon G_K \to E$

$$\sigma \mapsto \begin{cases} 0 & \text{if } (\sqrt{d})^{\sigma} = \sqrt{d}, \\ T & \text{if } (\sqrt{d})^{\sigma} = -\sqrt{d}. \end{cases}$$

We construct the PHS corresponding to $\{\xi\} \in H^1(G_K, E(\overline{K}))$. Since $T \in E(K)$ can choose a Weierstraß equation for E/K

$$E: y^2 = x^3 + ax^2 + bx$$
 with $T = (0, 0)$

then the translation by T map is given by

$$\tau_T(P) = (x, y) + (0, 0) = \left(\frac{b}{x}, -\frac{by}{x^2}\right)$$

for

$$P = (x, y).$$

Thus if $\sigma \in G_K$ is non-trivial, σ acts on $\overline{K}(E)_{\xi}$, which is isomorphic to $\overline{K}(E)$ but $\operatorname{Gal}(\overline{K}/K)$ action is twisted by ξ , i.e. $x^{\operatorname{id}} \mapsto (x^{\operatorname{id}})^{\sigma}$.

$$(\sqrt{d})^{\sigma} = -\sqrt{d}$$

$$x^{\sigma} = \frac{b}{x}, \ y^{\sigma} = -\frac{by}{x^2}$$

need to find the subfield of $K(\sqrt{d})(x, y)_{\xi}$ fixed by σ . Note:

$$\frac{\sqrt{d}x}{y}$$
, $\sqrt{d}\left(x-\frac{b}{x}\right)$

are invariant, take

$$z = \frac{\sqrt{d}x}{y}, \ w = \sqrt{d}\left(x - \frac{b}{x}\right)\left(\frac{x}{y}\right)^2$$

and find relations between z and w to get

$$C: dw^2 = d^2 - 2adz^2 + (a^2 - 4b)z^4.$$

Claim: C/K is the PHS of E/K corresponding to $\{\xi\}$. There is a natural map

$$\phi: E \to C$$

$$(x,y) \mapsto (z,w)$$
$$(x,y) \mapsto \left(\frac{\sqrt{d}y}{x^2 + ax + b}, \frac{\sqrt{d}(x^2 - b)}{x^2 + ax + b}\right)$$

so that

$$\phi(0,0)=(0,-\sqrt{d})$$

$$\phi(0)=(0,\sqrt{d})$$

- Prove that ϕ is an isomorphism so C is a twist.
- *C* is the PHS corresponding to $\{\xi\}$. Take $p \in C$ and compute

$$\sigma \mapsto p^{\sigma} - p = \phi^{-1}(p^{\sigma}) - \phi^{-1}(p)$$

for example let $p = (0, \sqrt{d}) \in C$, if $\sigma = \text{id}$ then $p^{\sigma} - p = 0 - 0 = 0$. If $\sigma = -\text{id}$ then $p^{\sigma} - p = T - 0 = T$.

Back to Selmer, we want to have the image of our weak Mordell-Weil land in something finite.

$$0 \longrightarrow E(K)/mE(K) \xrightarrow{\delta} H^{1}(G_{K}, E[m]) \longrightarrow WC(E/K)[m] \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow_{\text{Res}} \qquad \qquad \downarrow_{\text{Res}}$$

$$0 \longrightarrow \prod_{v} E(K_{v})/nE(K_{v}) \xrightarrow{\delta} \prod_{v} H^{1}(G_{K_{v}}, E[n]) \longrightarrow \prod_{v} WC(E/K_{v})[m] \longrightarrow 0$$

Definition 1.24 m-**Selmer groups.** The m-Selmer group of E/K is the subgroup of

$$H^1(G_K, E[m])$$

defined by

$$\operatorname{Sel}^{m}(E/K) = \ker \left\{ H^{1}(G_{K}, E[m]) \to \prod_{v} WC(E/K_{v}) \right\}.$$

 \Diamond

Definition 1.25 The Shafarevich-Tate group. The **Shafarevich-Tate** group of E/K is the subgroup of

defined by

$$III(E/K) = \ker \left\{ WC(E/K) \to \prod_{v} WC(E/K_v) \right\}.$$

 \Diamond

Theorem 1.26 *There is an exact sequence*

1.

$$0 \to E(K)/mE(K) \to \mathrm{Sel}^m(E/K) \to \mathrm{III}(E/K)[m] \to 0$$

2. $Sel^m(E/K)$ is finite.

1.2 p^{∞} -Selmer and the structure of III

 $H^1(G_K, E(\overline{K}))$ is torsion for general galois cohomological reasons. So

$$\mathrm{III}(E/K) \subseteq H^1(G_K, E(\overline{K}))$$

is torsion.

So we may write

$$\mathrm{III}(E/K) = \bigoplus_p \mathrm{III}_{p^\infty}(E/K)$$

where for each prime p

$$III_{p^{\infty}}(E/K)$$

denotes the p-primary part of III(E/K). (i.e. the subgroup of elements whose order is a power of p.) By descent

$$\mathrm{III}(E/K)[m]$$
 is finite for all $m \geq 1$.

So

$$\mathrm{III}_{p^\infty}(E/K)\cong (\mathbf{Q}_p/\mathbf{Z}_p)^{\delta_p}\oplus T_p,\,\delta_p\in\mathbf{Z}_{\geq 0}$$

where T_p is a finite abelian p-group.

$$T_p \cong \mathbf{Z}/p^{s_1}\mathbf{Z} \oplus \cdots \oplus \mathbf{Z}/p^{s_l}\mathbf{Z}, s_i \in \mathbf{Z}_{\geq 0}.$$

The group

$$\bigoplus_{p} (\mathbf{Q}_p/\mathbf{Z}_p)^{\delta_p} \subseteq \mathrm{III}(E/K)$$

is called the infinitely divisible subgroup of III denoted III_{div} .

The conjecture that III is finite implies $\delta_p = 0$ for all p. And $T_p \neq 0$ for only finitely many p.

There is a pairing called the Cassels-Tate pairing

$$III(E/K) \times III(E/K) \rightarrow \mathbf{Q}/\mathbf{Z}$$

which is bilinear and alternating, and the kernel on either side is the infinitely divisible group. If III(E/K) is finite then the pairing is non-degenerate and hence

$$|\operatorname{III}(E/K)| = \square \in \mathbf{Z}.$$

Definition 1.27 p^{∞} -**Selmer group.** Consider $Sel_{p^n}(E/K)$ and take the direct limit

$$\varinjlim_{n} \operatorname{Sel}_{p^{n}}(E/K)$$

to define the p^{∞} -Selmer group.

.

One shows that

$$X_p(E/K) = \operatorname{Hom}_{\mathbf{Z}_p}(\varinjlim_n \operatorname{Sel}_{p^n}(E/K), \mathbf{Q}_p/\mathbf{Z}_p)$$

called the Pontyragin dual of the p^{∞} Selmer group is a finitely generated \mathbf{Z}_p -module. The associated \mathbf{Q}_p -vector space, denoted $X_p(E/K) = X_p(E/K) \otimes_{\mathbf{Z}_p} \mathbf{Q}_p$ has dimension rk_p .

Definition 1.28 rk_p is called the p^{∞} -Selmer rank of E/K and satisfies

$$\mathrm{rk}_{p} = \mathrm{rk}(E/K) + \delta_{p}.$$

 \Diamond

 \Diamond

So if III is finite then $\delta_p = 0$ for all p. Use BSD to compute parity of rk_p .