

IIC2223 - Teoría de Autómatas y Lenguajes Formales

# Ayudantía 4

Franco Bruña y Dante Pinto 10 de Septiembre, 2021

#### Pregunta 1

- 1. Usando el Teorema de Myhill-Nerode, demuestre que el lenguaje  $L = \{ww^r \mid w \in \Sigma^*\}$  no es regular.
- 2. Considere el lenguaje L dado por la expresión regular  $a^*b^* + b^*a^*$ . Construya una expresión regular para cada clase de equivalencia de la relación  $\equiv_L$ .

#### Pregunta 2

Sean L y R dos lenguajes. Decimos que L es un prefijo de R si para cada palabra  $u \in R$  existe una palabra  $v \in L$  tal que v es un prefijo de u.

Escriba un algoritmo que recibe como input dos autómatas A y B y responde TRUE si L(A) es prefijo de L(B) y FALSE en otro caso. Explique la correctitud de su algoritmo.

## Pregunta 3

Sea L un lenguaje regular sobre el alfabeto  $\Sigma$ . Demuestre que el siguiente lenguaje:

$$L^{\exists n} = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N}. \ w^n \in L \}$$

es regular usando autómatas finitos en dos direcciones.

 $\xi$ El autómata encontrado termina su ejecución para todas las palabras?. Si no es el caso, diseñe un algoritmo que reciba el 2DFA y una palabra w como input y retorne TRUE si el autómata acepta la palabra y FALSE en caso contrario.

### Pregunta 4

Sea  $w=a_1a_2\cdots a_n\in \Sigma^*$  (los  $a_i$  son letras) e  $I\subseteq\{1,\ldots,|w|\}$ . Diremos que la  $w_I$  denota a la palabra  $a_{i_1}a_{i_2}\cdots a_{i_k}$  con  $i_1< i_2< \cdots < i_k$  e  $I=\{i_1,i_2,\ldots,i_k\}$ .

Para  $u,v\in\Sigma^*$  definimos el conjunto  $u\uparrow v$  como:

$$u \uparrow v = \{ w \in \Sigma^* \mid \exists I, J \subseteq \{1, \dots, |w|\}. \ I \cup J = \{1, \dots, |w|\}. \ w_I = u \ \text{y} \ w_J = v \}.$$

Así, para dos lenguajes  $L_1, L_2 \subseteq \Sigma^*$ , se define

$$L_1 \uparrow L_2 = \{ w \in \Sigma^* \mid \exists u \in L_1. \ \exists v \in L_2. \ w \in u \uparrow v \}.$$

Demuestre que si  $L_1$  y  $L_2$  son lenguajes regulares, luego  $L_1 \uparrow L_2$  también es regular.