

2023, 08, 21

FACENET을 이용한 닮은꼴 찾기

2023 TGTHON 최종발표

보고 팀

KYUNGHEE FACENET(박지후, 이정우, 이강훈)

m

01 Team Introduction

팀 소개

02 Project Goal & Topic

프로젝트 목표 및 주제

프로젝트 결과 시연

프로젝트 세부 설명

주요 흐름도

- 1. 사진 입력
- 2. mtcnn을 통해 얼굴을 찾고 이에대한 embedding vector 생성
- 3. 교수진 embedding vector와 cosine similarity 측정
- 4. 유사도가 가장 높은 교수님 탐색
- 5. ((1+cosine similarity)/2) *100을 계산하여 유사도를 백분율로 환산

FACENET paper summary

얼굴의 feature를 의미하는 embedding vector 반환

장점

embedding vector를 직접 optimize 적은 차원의 embedding vector를 가지고 효과적으로 이미지 표현 vector간 distance를 통해 유사도를 측정할 수 있음

Loss

triplet loss

Figure 3. The **Triplet Loss** minimizes the distance between an *an-chor* and a *positive*, both of which have the same identity, and maximizes the distance between the *anchor* and a *negative* of a different identity.

FACENET pretrained model

Loss: softmax loss

Dataset: VGGFace2 dataset

Embedding Size: 512D

Distance Metrix: cosine

기존의 Facenet Model에서 변경한 이유:

- 1. pytorch로 구현된 라이브러리가 있어서 속도와 사용하는데 있어서 훨씬 수월함
- 2. 이전 model보다 accuracy가 조금 높음

성능 변화

Keras facenet model load: 37.32s (81.86%)

MTCNN instance 생성 : 4.92s (10.79%)

MTCNN detect face: 2.08s (2.54%)

Input image -> embedding vector: 1.6s (3.50%)

Input과 가장 가까운 embedding vector 찾기: 0.002s (0.00%)

MTCNN detect face: 0.04s (26.66%)

Input image -> embedding vector: 0.06s (40%)

Input과 가장 가까운 embedding vector 찾기: 0.002s (1.33%)

전체 소요 시간

45.59s

Dataset

후마니타스칼리지, 생체의공학과, 컴퓨터공학부, 소프트웨어융합학과, 전자공학과 교수 (총 75명)

embeddings.py에서 faculty_emb.json 생성

THANK YOU FOR ATTENTION