PCI 扩展 ROM 控制芯片 CH364

版本: 1A http://wch.cn

1、概述

CH364 是 PCI 总线的扩展 ROM 控制卡的专用芯片。CH364 提供容量为 64KB 的可电擦写只读存储器 Flash-ROM,支持软件模拟兼容 I²C 的两线串口进行数据和 I/O 扩展,专用于各种带有扩展 ROM 的 PCI 控制卡,包括系统还原卡、数据保护卡、网络隔离卡、安全控制卡等,由于无需额外 ROM 芯片,所以更专业、更美观、更方便、更便宜、更省心。下图为其一般应用框图。

2、特点

- 标准的 32 位 PCI 总线的设备接口。
- 支持窗口容量为 32KB 的扩展 ROM (Boot ROM), 支持 BIOS 无硬盘引导。
- 提供可电擦写的只读存储器 Flash-ROM, 容量为 64KB, 支持客户端随时在线升级。
- 由 Flash-ROM 定义 PCI 板卡的识别信息 (Vendor ID, Device ID, Class Code)。
- 部分内部寄存器和外部引脚 SO 和 S1 受到保护,支持状态锁定功能。
- 提供可锁定的通用输出引脚 SO 和 S1,支持 PCI 复位自动加载功能。
- 提供非锁定的通用双向输入输出引脚 SDA,提供通用输入引脚 DIN。
- 可以由软件控制 SCL 引脚和 SDA 引脚模拟兼容 I²C 的两线串口,用于数据和 I/0 扩展。
- 提供不受 PCI 复位影响的内部寄存器位,用于应用程序传递标志给扩展 ROM 程序。
- 采用 QFP-64 封装,引脚中心间距为 0.8mm,加工方便。

3、封装

封装形式	塑体宽度		引脚	间距	封装说明	订货型号
QFP-64	14mm x 14mm		0. 8mm	31.5mil	标准的 QFP64 贴片	CH364P
S0P-8	3.9mm 150mil		1.27mm 50mil		标准的 S0P8 贴片	CH364F

注: CH364 芯片组由 CH364P 和 CH364F 两个芯片组成,应该成套订购、成套使用。

4、引脚

4.1. CH364P 的电源线

引脚号	引脚名称	类型	引脚说明
2、15、30、48	VCC	电源	+5V 电源
1、16、31、50、64	GND	电源	接地

4. 2. CH364P 的 PCI 信号线

1. 2. 01100	II HJI OI IH J						
引脚号	引脚名称	类型	引脚说明				
47	PCI_RST	输入	系统复位信号线,低电平有效				
49	PC1_CLK	输入	系统时钟信号线,上升沿有效				
52~59							
62~63							
3∼8	PCI_AD31	三态输出	地址和亚克勒提有用信品线				
17~24	\sim PCI_ADO	及输入	地址和双向数据复用信号线 				
26~27							
33~38							
60、9	PCI_CBE3	输入	总线命令和字节使能复用信号线				
14、25	\sim PCI_CBEO	刊八	ぶ				

13	PCI_PAR	双向三态	奇偶校验信号线
61	PCI_IDSEL	输入	初始化设备选择信号线,高电平有效
10	PCI_FRAME	输入	帧周期开始信号线,低电平有效
11	PCI_TRDY	三态输出	目标设备准备好信号线,低电平有效
12	PCI_DEVSEL	三态输出	目标设备选中信号线,低电平有效
39	PCI_STOP	三态输出	目标设备停止信号线,低电平有效

4.3. CH364P 的本地信号线

引脚号	引脚名称	类型	引脚说明			
51	DIN	输入	通用输入引脚,带弱上拉电阻			
41	SDA	开漏输出	非锁定的通用双向输入输出引脚,带上拉电阻			
41	SDA	及输入	开漏输出,默认是不输出,所以上拉为高电平			
44	SCL	输出	非锁定的通用 TTL 电平输出引脚,默认是低电平			
28	S0	输出	可锁定的通用输出引脚,默认是低电平			
29	S 1	输出	可锁定的通用输出引脚,默认是高电平			
40、42	NC.	空脚	禁止连接,必须悬空			
46	INO.	ᅩ胸	宗正迁按,必须态 <u>至</u> 			

4.4. CH364F 的信号线

引脚号	引脚名称	类型	引脚说明				
4	GND	电源	接地				
3	WP#	输入	硬件写保护输入引脚,低电平有效,高电平须接 V3 引脚				

4.5. 芯片组互连信号线

CH364P 引脚号	引脚名称	CH364F 引脚号	引脚说明				
43	V3	7、8	+3. 3V 电源,必须外接容量为 0. 1uF 的退耦电容				
32	CS#	1	片选				
44	SCL	6	时钟				
45	DX	2、5	数据				

5、寄存器

5.1. 基本约定

- 5.1.1. 属性简写: R=完全只读, W=可读可写, S=只读并且由 Flash-ROM 设定, =省略号。
- 5.1.2. 数据的数制:如果以 H 结尾则为十六进制数,否则为二进制数。
- 5.1.3. 数值的通配符以及属性: r=保留(禁止使用,须保持原值不变),x=任意值, =省略号。

5.2. 配置空间

类别	地址	寄存器名称	寄存器属性	系统复位后默认值
标准	01H-00H	厂商标识: Vendor ID	SSSS	由 Flash-ROM 定义
PCI	03H-02H	设备标识: Device ID	SSSS	由 Flash-ROM 定义
设备	05H-04H	命令寄存器: Command	RRRRRRRRRRRRWW	0000000000000000
配置	07H-06H	状态寄存器: Status	RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	0000010000000000

空间	08H	芯片版本: Revision ID	SS	由 Flash-ROM 定义	
	0BH-09H	设备类代码: Class Code	SSSSSS	由 Flash-ROM 定义	
	OFH-OCH		RRRR	0000Н	
	13H-10H	I/0 端口基址:	RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	0000000000000000	
	130-100	I/O Base Address	WWWWWWWRRRRRRRR	000000000000001	
	2FH-14H		RRRR RRRR	0000 0000Н	
	33H-30H	扩展 ROM 基址:	wwwwwwwwwww	0000000000000000	
	3311 3011	ROM Base Address	WRRRRRRRRRRRW	0000000000000000	
	3FH-34H		RRRR RRRR	0000 0000Н	
	40H	输出寄存器 CH364_CFG_DOUT	RRRWWRWW	rrr00r01	
本地	41H	控制寄存器 CH364_CFG_CTRL	RRWWWWW	rr001010	
寄存	42H	输入寄存器 CH364_CFG_DIN	RRRRRRR	rrrrrxx	
器等	43H	设置寄存器 CH364_CFG_SET	RRRRRWRW	1rrrr011	
	其它	4FH-44H 是 43H-40H	的别名地址,7FH-50H 係	R留,只读 00H	

5.3. I/O 端口空间

CH364 芯片的 I/O 端口空间与配置空间完全重叠,I/O 空间的偏移地址 00H-7FH 对应于配置空间的 00H-7FH,通过 I/O 空间访问内部寄存器比通过配置空间访问内部寄存器的速度更快。

5.4. 寄存器的位说明

属性中有"*"的位是受保护位,支持状态锁定功能,由输出寄存器的位 3 设置锁定。 属性中有"#"的位是受保护位,支持状态锁定功能,由输出寄存器的位 4 设置锁定。

71-31-21 13 11 1131-	- X X //\	,, I—, Z	5. 17 17 17 17 17 17 17 17 17 17 17 17 17			
寄存器名称	位址	属性	位的使用说明	位值=0	位值=1	
输出寄存器	位 0	W	设置 SDA 引脚的输出	低电平	不输出/上拉	
制山市行品 (配置空间 40H)	位 1	W	设置 SCL 引脚的输出	低电平	高电平	
(1/0 偏移 40H)	位 3	W*	设置锁定状态	解除锁定	进入锁定	
(1/0 pm/13/4011/	位 4	W#	设置 80 和 81 引脚的锁定状态	解除锁定	进入锁定	
	位 0	W#	设置 S0 引脚的输出	低电平	高电平	
	位 1	W#	设置 S1 引脚的输出	低电平	高电平	
上 控制寄存器	位 2	W	预置复位后 SO 引脚的输出	PCI 复位时	自动加载到位0	
在制可存储 (配置空间 41H)	位 3	W	预置复位后 S1 引脚的输出	自动加载到位1		
(1/0 偏移 41H)	位 4	W	软件可以读写的位变量	由应用程序定义		
(१७० भूमा १३० मा ११)			不受 PCI 复位的影响	7往72人		
	位 5	W	软件可以读写的位变量	由应用程序定义		
			不受 PCI 复位的影响	田四月	17年77年入	
输入寄存器	位 0	R	SDA 引脚的输入状态	低电平	高电平	
(配置空间 42H)	位 1	R	DIN 引脚的输入状态	低电平	高电平	
(I/0 偏移 42H)	177 1		ローロ コーロットロントロントロントロン	IM PETT	问记了	
	位 0	W*	软件可以读写的位变量	由应月	用程序定义	
设置寄存器 (配置空间 43H)			PCI 板卡的识别信息		VID=0000H	
	位 2	W*	│	由Flash	DID=8000H	
(I/0 偏移 43H)	JA 5	VVT		ROM 定义	RID=00H	
			版本 RID、类代码 CLS		CLS=018000H	

6、功能说明

6.1. 扩展 ROM

CH364 专用于 PCI 扩展 ROM 控制卡,其提供了容量为 64KB 的 Flash-ROM,支持电擦写,便于应用程序保存重要数据,和在客户端进行在线下载及升级扩展 ROM 程序。

CH364 的扩展 ROM 窗口容量为 32KB,所以 64K 的 Flash-ROM 的前 32KB 通常用于 BIOS 引导代码和主程序,并且包含 PCI 扩展 ROM 头标区,由主板 BIOS 自动加载。Flash-ROM 的后 32K 可以用于程序或者数据,由已经加载的前 32KB 的主程序在需要时进行存取。CH364 提供子程序库,支持 Flash-ROM的读取、擦除、写入以及写保护锁定操作。

PCI 扩展 ROM 头标区要求: 0000H 地址是 55H, 0001H 地址是 0AAH, 0002H 地址是长度指示,数值 40H 代表 32KB 扩展 ROM, 以及 "PCIR"结构, 在 PCIR 结构中还包括 PCI 扩展 ROM 的厂商 Vendor-ID (VID)、设备 Device-ID (DID)、版本 Revision-ID (RID) 和设备分类码 Class-Code (CLS) 等。

CH364 的 PCI 板卡识别信息,包括 VID、DID、RID 和 CLS 等由 Flash-ROM 中的数据定义。厂商标识 VID、设备标识 DID、芯片版本 RID 和设备分类码 CLS 分别由 Flash-ROM 的 20H-21H、22H-23H、28H和 29H-2BH 地址提供。

下图是 Flash-ROM 的实际头部数据。按图中数据,CH364 的厂商 ID 是 8899H,设备 ID 是 1234H,设备类是 018000H,扩展 ROM 的大小为 32KB。

地址	00	01	02	03	04	05	06	07	08	09	OA	0B	00	OD	0E	0F
0000Н	55	AA	40	租	程序跳转											
0010H									1C	00			50	43	49	52
0020H	99	88	34	12	00	00	18	00	00	00	80	01	40	00	00	00
0030H	00	80	00	00												
0040H		·														

6.2. 寄存器和引脚

CH364 支持状态锁定,具有两种工作状态:解锁状态和锁定状态。

解锁状态是 PCI 总线复位后的默认工作状态。这种状态下可以对 CH364 的所有内部寄存器和外部引脚的状态进行任意修改,没有任何限制。

锁定状态是由软件设置使 CH364 进入一种局部保护的工作状态。在锁定状态下,部分内部寄存器和外部引脚受到保护,其状态不能被修改,始终保持锁定之前的数值,直到退出锁定状态。只有 PCI 总线复位(也就是计算机重启)能使 CH364 退出锁定状态,同时使这些内部寄存器和外部引脚恢复为默认值,在复位完成后可以被任意修改。

在 PCI 总线复位时, CH364 会自动解锁。在复位完成后,可以由软件随时设置成锁定状态。在 CH364 进入锁定状态后,不能再由软件设置恢复成解锁状态,所以 CH364 将一直保持锁定状态,直到 PCI 总线复位。

CH364 的锁定结构分为两组,两组之间完全独立:一组由输出寄存器 CH364_CFG_DOUT 的位 4 控制是否锁定,仅用于控制输出引脚 S0 和 S1 的锁定;另一组由输出寄存器的位 3 控制是否锁定,用于控制除输出引脚 S0 和 S1 之外的其余引脚和寄存器位,包括控制 Flash-ROM,锁定后禁止读写。

控制寄存器 CH364_CFG_CTRL 中的数据位 2、位 3、位 4、位 5 不受 PCI 总线复位(计算机重启)的影响,位 0 和位 1 在 PCI 总线复位时自动分别从位 2 和位 3 中加载数据,控制寄存器只是在 CH364 电源上电时(刚开启电源时)恢复到默认值,在 PCI 总线复位时,控制寄存器中的数据除位 0 和位 1 自动加载之外均保持不变。除控制寄存器外,其它寄存器中的数据在每次 PCI 总线复位时都将恢复到默认值。控制寄存器中提供的位变量位 4 和位 5,通常用于操作系统中的界面应用程序向重启后的用户 ROM 程序提供标志。

CH364 的 S0 引脚和 S1 引脚都是可锁定的通用功能的输出引脚。在 CH364 电源上电时,S0 输出低电平,S1 输出高电平。在上电完成后,可以由软件随时将其设置成输出低电平或者高电平。在 CH364 的输出寄存器的位 4 置 1 进入锁定状态后,S0 和 S1 引脚受到保护,其状态无法被修改。在 PCI 总线复位时,控制寄存器的位 0 和位 1 分别从位 2 和位 3 加载数据,并控制 S0 和 S1 引脚的输出状态。

CH364 的 SCL 引脚是非锁定的通用功能的 TTL 电平的输出引脚。在 PCI 总线复位时,SCL 输出低电平。在复位完成后,可以由软件随时将其设置成输出低电平或者高电平。该引脚是非保护引脚,所以在 CH364 进入锁定状态后其状态仍然可以被修改。

CH364 的 SDA 引脚是非锁定的通用功能的双向输入输出引脚,开漏输出,芯片内部带上拉电阻。在 PCI 总线复位时,SDA 引脚的开漏输出被禁止,从而由其上拉电阻保持在高电平。在复位完成后,可以由软件随时将其设置成输出低电平或者不输出。在 SDA 引脚输出低电平时,输入也总是 0; 在 SDA 引脚不输出时,输入状态可以由外部电路提供,外部电路提供低电平时输入为 0,否则输入为 1。

CH364 的 DIN 引脚是通用功能的输入引脚,芯片内部带弱上拉电阻,输入状态可以由外部电路提供,外部电路提供低电平时输入为 0,否则输入为 1。

设置寄存器 CH364_CFG_SET 中的位 2 用于选择 PCI 板卡的识别信息,包括厂商 VID、设备 DID、版本 RID 和类代码 CLS。在 PCI 总线复位时,该寄存器位恢复为 0,所以 VID、DID、RID 和 CLS 等由 Flash-ROM 定义。在复位完成后,可以由软件随时将其设置为 0 或者 1,当该寄存器位设置为 1 时,PCI 板卡的厂商标识 VID 为 0000H,设备标识 DID 为 8000H,版本 RID 为 00H,类代码 CLS 为 018000H,完全与 Flash-ROM 无关。对于扩展 ROM 卡的应用,可以在 Flash-ROM 中定义 VID 为非 0 值,从而增强与主板 BIOS 之间的兼容性,在扩展 ROM 初始化完毕,准备进入 Windows 之前,将该寄存器位设置为 1,强制 CH364 的 VID 为 0,从而使 Windows 等操作系统不会提示"找到新硬件"。

7、参数

7.1. 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-20	80	$^{\circ}\!\mathbb{C}$
TS	储存时的环境温度	-55	125	$^{\circ}\!\mathbb{C}$
VCC	电源电压(VCC 接电源,GND 接地)	-0. 5	5. 5	V
VIO	输入或者输出引脚上的电压	-0. 5	VCC+0. 5	V

7. 2. 工作参数 (测试条件: TA=25℃, VCC=5V, 不包括连接 PCI 总线的引脚)

名称	参数说明	最小值	典型值	最大值	单位
VCC	电源电压	3. 3	5	5. 3	٧
ICC	工作时的电源电流	3	15	50	mA
VIL	低电平输入电压	-0. 5		0.8	٧
VIH	高电平输入电压	2. 0		VCC+0. 5	٧
VOL	低电平输出电压(4mA 吸入电流)			0. 5	٧
VOH	高电平输出电压(4mA 输出电流)	4. 5			٧
V0Hscl	SCL 引脚高电平输出电压(1mA 输出电流)	2. 8	3. 1		٧
IIN	无上拉的输入端的输入电流			20	uA
IUPsda	SDA 引脚的 5V 上拉电阻的上拉电流	150	250	400	uA
IUPdin	DIN 引脚的 5V 上拉电阻的上拉电流	3	6	20	uA
FCLK	CLK 输入频率(PCI 总线的主频)	0	33. 3	36	MHz

8、应用

8.1. 硬件电路

这是 CH364 的典型应用电路。U1 和 U2 分别是 CH364P 和 CH364F,两者应该成套使用。电容都是容量为 0. 1uF 的独石或者高频瓷片电容,用于电源退耦,分别就近并联在 CH364P 和 CH364F 的电源引脚上。连接 PCI 总线的电源线引脚可以自由选择,但数量不宜少于 3 对。

图中的跳线 J1 是可选的,可以用于输入状态供扩展 ROM 程序进行判断。

CH364 的 S1 引脚通过电阻 R1 连接到三极管 T1, 用于通过 K1 控制外部设备。

CH364 属于高频数字电路,应该考虑信号阻抗匹配,在设计 PCB 板时需要参考 PCI 总线规范。建议 CH364 的 PCI 信号线的长度都小于 35mm,尽量走弧线或者 45 度线,避免直角或者锐角走线,并且尽量将信号走线布在元件面,而在 PCB 背面保留大面积的接地覆铜。CH364 的 PCI 时钟线 CLK 的长度尽量保持在 50mm~65mm 之间,并且不宜靠近其它信号线,建议在 CLK 两侧及 PCB 背面布置接地线或者覆铜,以减少周边信号线的干扰。

8.2. 软件流程

建议在扩展 ROM 头标区中,厂商标识和设备标识都采用 0001H 至 FFFEH 之间的值,尤其是厂商标识,不能采用 FFFFH,不建议采用 0000H,否则个别主板不支持。在主程序执行之后,再通过写设置寄存器选择 CH364 的厂商 VID 为 0000H,这样进入 Windows 后不会提示找到新硬件。

CH364 支持扩展 ROM 子程序库 BRM V3.7 及以上版本,基于 BRM 可以支持仿 Windows 图形界面和中英文显示,支持硬盘文件读写,支持 Flash-ROM 读写等等。