1. Simplify and find a function g such that f(x) = O(g(x)).

Given:

$$f(x) = (x^{2.3} + x \ln(x^5)) (1.1x + 1 + 1.2x) + (x^2 + 1.2x) (x^3 + 0.92x).$$

Step 1:

$$x^{2.3} + x \ln(x^5) = O(x^{2.3}), \quad 1.1x + 1 + 1.2x = O(x).$$

Their product is $O(x^{3.3})$.

Step 2:

$$x^{2} + 1.2x = O(x^{2}), \quad x^{3} + 0.92x = O(x^{3}).$$

Their product is $O(x^5)$.

Step 3: Add the two results:

$$f(x) = O(x^{3.3}) + O(x^5).$$

Step 4: Since x^5 dominates $x^{3.3}$ for large x,

$$f(x) = O(x^5).$$

Answer:
$$g(x) = x^5$$
.

- 2. Is there a smallest real number a such that $x^2 6^x$ is $O(a^x)$?
 - (a) If $x^2 6^x \le C a^x$ for large x, then $\left(\frac{6}{a}\right)^x$ must eventually shrink faster than x^{-2} .
 - (b) This requires $\frac{6}{a} < 1$, or a > 6.
 - (c) No real number $a \le 6$ can work, and there is no minimum real > 6.

Answer:

No. We must have a > 6, but there is no smallest real number.

3. Hex addition CA10 + 4F57.

CA10

(a) Add the rightmost digits:

$$0 + 7 = 7$$
.

(b) Next digits:

$$1 + 5 = 6$$
.

(c) Next, add:

$$A_{16} + F_{16} = 10_{10} + 15_{10} = 25_{10}.$$

In hexadecimal, $25_{10} = 19_{16}$; write down 9 and carry 1.

(d) Finally, add the leftmost digits with the carry:

$$C_{16} + 4_{16} + 1(\text{carry}) = 12_{10} + 4_{10} + 1_{10} = 17_{10}.$$

Since $17_{10} = 11_{16}$, write down 1 and carry 1 (which becomes a new digit at the front).

Answer: 11967₁₆

In hexadecimal addition, when the sum of digits (and any carry) exceeds F_{16} , convert the total sum to hexadecimal. For example, 1+1+1 in binary yields 1 with a carry of 1 because the result exceeds the single-digit value in that base.

4. Binary multiplication 11011×1001 .

$$\begin{array}{r}
 11011 \\
 \times 1001 \\
\hline
 11011 \\
 000000 \\
 0000000 \\
 +11011000 \\
\hline
 11110011
\end{array}$$

In binary addition, when adding three 1's together, 1 + 1 + 1, the result is 1 with a carry of 1 since binary digits are only 0 and 1.

Answer: 11110011₂

- 5. Use the Euclidean Algorithm to show gcd(621, 82) = 1. Steps:
 - (a) $621 = 82 \cdot 7 + 47$; gcd(621, 82) = gcd(82, 47).
 - (b) $82 = 47 \cdot 1 + 35$; gcd(82, 47) = gcd(47, 35).
 - (c) $47 = 35 \cdot 1 + 12$; gcd(47, 35) = gcd(35, 12).
 - (d) $35 = 12 \cdot 2 + 11$; gcd(35, 12) = gcd(12, 11).
 - (e) $12 = 11 \cdot 1 + 1$; gcd(12, 11) = gcd(11, 1).

(f) $11 = 1 \cdot 11 + 0$; gcd(11, 1) = 1.

Answer: gcd(621, 82) = 1.

- 6. Show that you can multiply n by 35 using only five multiplications by 2 and two additions

 Steps:
 - (a) $35_{10} = 32 + 2 + 1 = 2^5 + 2^1 + 2^0$.
 - (b) Double n five times to get 32n.
 - (c) Then add (32n) + (2n) + n = 35n.

Answer: $35n = (2^5n) + (2n) + n$.

7. Multiply an octal number n by $(10)_8$. Illustrate with $(741)_8$.

Multiplying any number by its base shifts the digits one place to the left. In octal:

$$(10)_8 = 8$$
 (in decimal).

Thus, multiplying $(741)_8$ by $(10)_8$ shifts every digit one place to the left:

$$(741)_8 \times (10)_8 = (7410)_8.$$

Answer: 7410₈.

- 8. Divide an octal number n by $(10)_8$. Illustrate with $(741)_8$. Steps:
 - (a) In octal, dividing by (10)₈ is the same as removing the last digit as remainder.
 - (b) Example: $(741)_8 \div (10)_8$ equals $(74)_8$ and remainder $(1)_8$.

Answer: $(74)_8$, remainder $(1)_8$.

9. Fast exponentiation for $32^n \mod 13$.

Step 1: Reduce the Base

$$32 \div 13 = 2$$
 with remainder $32 - 2 \cdot 13 = 32 - 26 = 6$,

$$32 \equiv 6 \pmod{13}$$
.

Thus, for any exponent n,

$$32^n \equiv 6^n \pmod{13}.$$

Step 2: Verify for Small Exponents

• For n = 0:

 $6^0 = 1.$

• For n = 1:

 $6^1 = 6.$

• For n=2:

$$6^2 = 36.$$

Dividing 36 by 13:

$$36 \div 13 = 2$$
 (since $13 \times 2 = 26$), $36 - 26 = 10$,

so

$$6^2 \equiv 10 \pmod{13}.$$

Step 3: Apply Euler's Theorem

Because 13 is prime, its Euler totient is

$$\varphi(13) = 13 - 1 = 12.$$

Since 6 and 13 share no common factors other than 1 (coprime), Euler's theorem tells us:

$$6^{12} \equiv 1 \pmod{13}.$$

This means the powers of 6 modulo 13 are periodic with period 12.

Step 4: Reduce the Exponent

For any exponent n, we can reduce it modulo 12:

$$6^n \equiv 6^{n \bmod 12} \pmod{13}.$$

Answer:
$$6^{n \mod 12} \pmod{13}$$
.

10. Closed-form for the hex number of n copies of 'A'.

Step 1: Express the Number as a Sum

An n-digit number where each digit is A can be written as

$$\underbrace{AA\cdots A}_{n \text{ digits}} = \sum_{k=0}^{n-1} A \cdot 16^k.$$

Since A = 10, this becomes

$$\sum_{k=0}^{n-1} 10 \cdot 16^k = 10 \sum_{k=0}^{n-1} 16^k.$$

Step 2: Sum the Geometric Series

The sum of the geometric series with n terms and common ratio 16 is given by:

$$\sum_{k=0}^{n-1} 16^k = \frac{16^n - 1}{16 - 1} = \frac{16^n - 1}{15}.$$

This becomes:

$$10 \cdot \frac{16^n - 1}{15}.$$

Step 3: Simplify the Expression

$$10 \cdot \frac{16^n - 1}{15} = \frac{10(16^n - 1)}{15} = \frac{2(16^n - 1)}{3}.$$

Answer:
$$\frac{2(16^n - 1)}{3}$$
.

11. Extra Credit