МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра Математического обеспечения и применения ЭВМ

ОТЧЕТ

по лабораторной работе №6 по дисциплине «Искусственные нейронные сети»

Тема: Прогноз успеха фильмов по обзорам

Студент гр. 7382	Глазунов С.А.
Преподаватель	 Жукова Н.А.

Санкт-Петербург 2020

Цель работы.

Прогноз успеха фильмов по обзорам (Predict Sentiment From Movie Reviews).

Порядок выполнения работы.

- 1. Ознакомиться с задачей регрессии.
- 2. Изучить способы представления текста для передачи в ИНС.
- 3. Достигнуть точность прогноза не менее 95%.

Требования к выполнению задания.

- 1. Построить и обучить нейронную сеть для обработки текста.
- 2. Исследовать результаты при различном размере вектора представления текста.
- 3. Написать функцию, которая позволяет ввести пользовательский текст (в отчете привести пример работы сети на пользовательском тексте).

Основные теоретические положения.

Датасет IMDb состоит из 50 000 обзоров фильмов от пользователей, помеченных как положительные (1) и отрицательные (0). Это пример бинарной или двуклассовой классификации, важный и широко применяющийся тип задач машинного обучения.

- Рецензии предварительно обрабатываются, и каждая из них кодируется последовательностью индексов слов в виде целых чисел.
- Слова в обзорах индексируются по их общей частоте появления в датасете. Например, целое число «2» кодирует второе наиболее частое используемое слово.
- 50 000 обзоров разделены на два набора: 25 000 для обучения и 25 000 для тестирования.

Ход работы.

1. Была построена и обучена нейронная сеть для обработки текста. Код предоставлен в приложении A, Б, B, Г.

Архитектура:

- Оптимизатор adam, скорость обучения = 0.001.
- Epochs = 2, batch_size = 500, loss = binary_crossentropy
- Мах кол. слов в обзоре 500, тах. размер словаря слов 10000.
- Модель:

Данная архитектура дает точность: на тренировочных \sim 89,1%, на валидационных \sim 89%. Графики точности и ошибки предоставлены на рис. 1 и рис. 2 соответственно.

Рисунок 1 – График точности при размере словаря 10 тыс. обзоров

Рисунок 2 – График потерь при размере словаря 10 тыс. обзоров

2. Исследуем результаты при различном размере вектора представлении текста.

При изменении максимального размера словаря с 10 тыс. до 1 тыс.. Точность: на тренировочных упала ~ 86,8%, на валидационных также уменьшилась ~ 86%. Графики точности и ошибки предоставлены на рис. 3 и рис. 4 соответственно.

Рисунок 3 – График точности при размере словаря 1 тыс. обзоров

Рисунок 4 – График потерь при размере словаря 1 тыс. обзоров

При изменении максимального размера словаря до 500 тыс.. Точность: на тренировочных упала ~ 83,3%, на валидационных также уменьшилась до ~ 82,2%. Графики точности и ошибки предоставлены на рис. 5 и рис. 6 соответственно.

Рисунок 5 – График точности при размере словаря 500 тыс. обзоров

Рисунок 6 – График потерь при размере словаря 500 тыс. обзоров Из графиков на рис. 1 - 5, можно сделать вывод, что точность падает с уменьшением размера словаря, так как мы убираем часть слов из обзоров. Из-за этого оценка некоторых обзоров меняется, поэтому сеть не может их

3. Напишем функцию, которая позволяет ввести пользовательский текст.

точно классифицировать.

```
def gen_custom_x(custom_x, word_index):
    def get_index(a, index):
        new_list = a.split()
        for i, v in enumerate(new_list):
            new_list[i] = index.get(v)
        return new_list
        for i in range(len(custom_x)):
            custom_x[i] = get_index(custom_x[i], word_index)
        return custom_x
```

При помощи данной функции можно получить из массива строк (обзоров) массив представлений в виде индексов слов в imdb датасете и подготовленные для прогона через модель. График точности оценки фильма, при прогоне через написанный датасет из 5 обзоров (см. рис. 7), предоставлена на рис. 8.

```
"It is very interesting film",
    "it's fantastic",
    "it's good",
    "very very bad",
    "it was boring"

custom_y = [1., 1., 1., 0., 0.]
```

Рисунок 7 – Пользовательский текст

Рисунок 8 – График точности оценки фильма

Из графика на рис. 8 видно, что точность оценки фильма ~ 62%, т.е. 3/5.

Выводы.

В ходе работы была изучена задача классификация обзоров из датасета IMDB. Подобрана архитектура, дающая точность 89,1%. Проведя исследование, было выяснено, что при уменьшении максимального размера словаря было точность уменьшается, что логично, так как мы убираем часть «словарного запаса». Функция для подготовки вручную введенных обзоров, продемонстрировала точность в ~62%.

приложение А

ИСХОДНЫЙ КОД LAB6.РУ

```
import numpy as np
from keras.datasets import imdb
from setuptools.dist import sequence
import matplotlib.pyplot as plt
from model import Net
(X train, y train), (X_test, y_test) = imdb.load_data()
(training data,
                       training targets),
                                                   (testing data,
testing targets) = imdb.load data(num words=500)
data = np.concatenate((training data, testing data), axis=0)
targets =
            np.concatenate((training targets, testing targets),
axis=0)
index = imdb.get word index()
reverse index = dict([(value, key) for (key, value)
                                                               in
index.items()])
decoded = " ".join( [reverse index.get(i - 3, "#") for i in
data[0]] )
print(decoded)
def vectorize(sequences, dimension=10000):
    results = np.zeros((len(sequences), dimension))
   for i, sequence in enumerate(sequences):
        results[i, sequence] = 1
    return results
custom x = [
        "It is very interesting film",
        "it's fantastic",
        "it's good",
        "very very bad",
        "it was boring"
custom y = [1., 1., 1., 0., 0.]
```

```
def gen custom x(custom x, word index):
    def get index(a, index):
        new list = a.split()
        for i, v in enumerate(new list):
            new list[i] = index.get(v)
        return new list
    for i in range(len(custom x)):
        custom x[i] = get index(custom x[i], word index)
    return custom x
print('Before: {}'.format(custom x))
custom x = gen custom x(custom x, imdb.get word index())
print('After: {}'.format(custom x))
for index j, i in enumerate(custom x):
    for index, value in enumerate(i):
        if value is None:
            custom x[index j][index] = 0
print('After after: {}'.format(custom x))
data = vectorize(data)
targets = np.array(targets).astype("float32")
custom y = np.asarray(custom y).astype("float32")
test x = data[:10000]
test y = targets[:10000]
train x = data[10000:]
train y = targets[10000:]
net = Net()
net.build net()
net.compile()
net.fit(train x, train y, test x, test y)
, acc = net.evaluate(test x, test y)
print('Test', acc)
net.demonstration()
```

```
custom_x = vectorize(custom_x)
print(custom_x, custom_y)

custom_loss, custom_acc = net.evaluate(custom_x, custom_y)
print('custom_acc:', custom_acc)
preds = net.model.predict(custom_x)
print(preds)
plt.figure(3, figsize=(8,5))
plt.title("Custom dataset predications")
plt.plot(custom_y, 'r', marker='v', label='truth')
plt.plot(preds, 'b', marker='x', label='pred')
plt.legend()
plt.show()
plt.clf()
```

приложение Б

ИСХОДНЫЙ КОД MODEL.PY

```
from keras import Sequential, regularizers
from keras.layers import Dense, Dropout, Embedding, GRU
from keras.losses import BinaryCrossentropy
from keras.optimizers import Adam
from config import *
from plot import plot loss, plot acc
class Net:
    def init (self):
        self.model = None
        self.history = None
    def build net(self):
        self.model = Sequential()
                    self.model.add(Dense(50, activation="relu",
input shape=(10000,)))
                  self.model.add(Dropout(0.2, noise shape=None,
seed=None))
                  self.model.add(Dense(50, activation="linear",
kernel regularizer=regularizers.l2()))
                  self.model.add(Dropout(0.5, noise shape=None,
seed=None))
                   self.model.add(Dense(100, activation="relu",
kernel regularizer=regularizers.l2()))
                  self.model.add(Dropout(0.5, noise shape=None,
seed=None))
        self.model.add(Dense(50, activation="relu"))
        self.model.add(Dense(1, activation="sigmoid"))
        self.model.summary()
    def compile(self):
                             self.model.compile(Adam(lr=ADAM LR),
loss='binary_crossentropy', metrics=['accuracy'])
    def fit(self, x_train, y_train, x_test, y_test):
```

```
self.history = self.model.fit(
            x train,
            y_train,
            batch size=BATCH SIZE,
            epochs=EPOCHS,
            verbose=1,
            #validation_split=0.1
            validation data=(x test, y test)
        )
    def evaluate(self, x, y):
        return self.model.evaluate(x, y)
    def demonstration(self):
        H = self.history
        plot_loss(H.history['loss'], H.history['val_loss'])
                                  plot acc(H.history['accuracy'],
H.history['val_accuracy'])
```

приложение в

ИСХОДНЫЙ КОД PLOT.PY

import matplotlib.pyplot as plt

```
def plot loss(loss, v loss):
    plt.figure(1, figsize=(8, 5))
    plt.plot(loss, 'b', label='train')
    plt.plot(v loss, 'r', label='validation')
    plt.title('Loss')
    plt.ylabel('loss')
    plt.xlabel('epochs')
    plt.legend()
    plt.show()
    plt.clf()
def plot_acc(acc, val_acc):
    plt.plot(acc, 'b', label='train')
    plt.plot(val acc, 'r', label='validation')
    plt.title('accuracy')
    plt.ylabel('accuracy')
    plt.xlabel('epochs')
    plt.legend()
    plt.show()
    plt.clf()
```

ПРИЛОЖЕНИЕ Г ИСХОДНЫЙ КОД CONFIG.PY

BATCH_SIZE = 50 EPOCHS = 2 ADAM_LR = 0.0001