第二次答疑课

助教: 黄瑞轩

1. 数列极限的定义

给定数列 $\{a_n\}$ 和实数 a, 若对 $\forall \varepsilon > 0$, 总是存在 $N = N(\varepsilon) \in \mathbb{N}$, 使得 n > N 时, $|a_n - a| < \varepsilon$ 成立, 则记 $\lim_{n \to \infty} a_n = a$;

- 1, $[x] \le x < [x] + 1$, $x 1 < [x] \le x$
- 2、(三角形不等式) $|a| |b| \le |a \pm b| \le |a| + |b|$
- 3、(平均值不等式) $\frac{n}{\sum_{i=1}^{n} \frac{1}{a_i}} \leq \sqrt[n]{\prod_{i=1}^{n} a_i} \leq \frac{\sum_{i=1}^{n} a_i}{n} \leq \sqrt{\frac{\sum_{i=1}^{n} a_i^2}{n}}$
- 4、(伯努利不等式)设 $x > -1, x \neq 0$,则当
 - 1° $\alpha > 1 \| \alpha < 0$ 时有 $(1+x)^{\alpha} > 1 + \alpha x$
 - 2° 0 < α < 1 时有 $(1+x)^{\alpha}$ < $1+\alpha x$
- 5、(Cauchy-Schwarz 不等式) 若 $a_1, a_2, ..., a_n$ 和 $b_1, b_2, ..., b_n$ 是任意实数,则有

$$\left(\sum_{k=1}^n a_k \cdot b_k\right)^2 \le \left(\sum_{k=1}^n a_k^2\right) \left(\sum_{k=1}^n b_k^2\right)$$

此外,如果有某个 $a_i \neq 0$,则上式中的等号当且仅当存在一个实数 X 使得对于每一个 $k=1,2,\ldots,n$ 都有 $a_k X + b_k = 0$ 成立。

2. 极限的四则运算和一些可以直接用的推论

数列 $\{a_n\}$ $\{b_n\}$ 分别收敛到 a,b ,则

- (1) 数列 $\{a_n \pm b_n\}$ 收敛,且 $\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n = a \pm b$
- (2) 数列 $\{a_nb_n\}$ 收敛,且有

$$\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \lim_{n \to \infty} b_n = ab$$

(3) 若 $b \neq 0$, 则数列 $\left\{\frac{a_n}{b_n}\right\}$ 收敛,且有

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim a_n}{\lim b_n} = \frac{a}{b}$$

【特别强调】无限项的和不能使用四则运算规则!!! 例子: $\lim \sum \frac{1}{n}$

【推论 1】若 a_n 收敛到 a ,则对任意 m 次多项式 $p(x) = c_0 + c_1 x + \cdots + c_m x^m$ 有

$$\lim_{n \to \infty} p\left(a_n\right) = p(a)$$

【推论 2】对于常见的函数可用。事实上这部分学了函数的连续性之后就不用管了。

【性质】(收敛数列有界)如果 $\{a_n\}$ 是收敛的,则 $\{a_n\}$ 一定是有界数列。即 $\exists M>0$,使得 $|a_n|< M, \forall n$ 。

3. 无穷大量和无穷小量

定义:请参阅教科书。

主要要说的是 Stoltz 定理 (如无特殊要求可以直接使用)。

(1) 数列 $\{x_n\}$ $\{y_n\}$ 的极限均为 0 $\{y_n\}$ 严格单调,且

$$\lim_{n \to \infty} \frac{x_{n+1} - x_n}{y_{n+1} - y_n} = l$$

则有

$$\lim_{n \to \infty} \frac{x_n}{y_n} = l$$

(2) 数列 $\{y_n\}$ 的极限均为 ∞ $\{y_n\}$ 严格单调,且

$$\lim_{n \to \infty} \frac{x_{n+1} - x_n}{y_{n+1} - y_n} = l$$

则有

$$\lim_{n \to \infty} \frac{x_n}{y_n} = l$$

【推论】设 $x_n>0$,且 $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=r$,则 $\lim_{n\to\infty}\sqrt[n]{x_n}=r$

4. 应用及习题

(1) 证明数列 $\{a_n\}$ 收敛, 并求其极限, 其中 $a_0 = 1, a_n = 1 + \frac{a_{n-1}}{a_{n-1}+1}$ 。

解: (单调有界定理) 显然 $a_n \ge 1$, n > 1 时 $a_n = 2 - \frac{1}{1 + a_{n-1}}$, 所以 $1 \le a_n < 2$. 又 $a_n = 1 + \frac{1}{1 + \frac{1}{a_{n-1}}}$, 计算 $a_1 = \frac{3}{2}$, $a_2 = \frac{8}{5} > a_1$, 由数学归纳法易证 $a_{n+1} > a_n$.

(数学归纳法: 假设 $a_n > a_{n-1}$, 则 $2 - \frac{1}{1+a_n} > 2 - \frac{1}{1+a_{n-1}}$, 即 $a_{n+1} > a_n$.)

由上可知 $\{a_n\}$ 单调递增有上界, 故由单调有界定理知 $\{a_n\}$ 收敛.

设 $\lim_{n\to\infty}a_n=a$,对已知递推式两边求极限,解得 $a=\frac{1+\sqrt{5}}{2}$ 或 $a=\frac{1-\sqrt{5}}{2}$,因 $1\leqslant a_n<2$,所以

$$a = \lim_{n \to \infty} a_n = \frac{1 + \sqrt{5}}{2}$$

- (2) 若 $a_n > 0$, 且 $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} > 1$, 求证 $\lim_{n \to \infty} a_n = 0$ 。
- (3) 设 $\{a_n\}$, $\{b_n\}$ 均为正数列, 满足 $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$, $n=1,2,\ldots$, 求证: 若 $\{b_n\}$ 收敛, 则 $\{a_n\}$ 收敛。
- (4) 若 $a_n > 0$, 且 $\lim_{n \to \infty} a_n = a$, 求证 $\lim_{n \to \infty} \sqrt[n]{\prod_{i=1}^n a_i} = a$.
- (5) 若 $a_n > 0$, 且 $\lim_{n \to \infty} \frac{a_n}{a_{n-1}} = a$, 求证 $\lim_{n \to \infty} \sqrt[n]{a_n} = a$ 。
- (6) 求证数列 $\{a_n\}$ 收敛, 其中 $a_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n} \ln n$ 。
- (7) 证明若 $\lim_{n\to\infty} a_n = a > 0$,则 $\lim_{n\to\infty} \sqrt[k]{a_n} = \sqrt[k]{a}$ 。

(8) 求
$$\{a_n\}$$
 的极限: $1^{\circ} a_n = \sqrt[n]{\cos 1 + \cos^2 2 + \dots + \cos^2 n}$ $2^{\circ} a_n = n \left(1 - \sqrt[5]{1 - \frac{1}{n}}\right)$

 2