Fachbereich Mathematik & Informatik

Freie Universität Berlin

Prof. Dr. Ralf Kornhuber, Prof. Dr. Christof Schütte, Lasse Hinrichsen

5. Übung zur Vorlesung

Computerorientierte Mathematik I

WS 2020/2021

http://numerik.mi.fu-berlin.de/wiki/WS_2020/CoMaI.php

Abgabe: Do., 7. Januar 2021, 12:15 Uhr

1. Aufgabe (4 Bonus TP)

Finden Sie eine stetige Funktion $f: \mathbb{R} \to \mathbb{R}$ und vier verschiedene Werte $x_1, x_2, x_3, x_4 \in \mathbb{R}$ in der Weise, dass hinsichtlich der Kondition der Funktionsauswertung an der jeweiligen Stelle jede der folgenden vier Möglichkeiten einmal auftritt:

- a) $\kappa_{\rm abs}$ groß, $\kappa_{\rm rel}$ klein
- b) $\kappa_{\rm abs}$ klein, $\kappa_{\rm rel}$ groß
- c) $\kappa_{\rm abs}$ groß, $\kappa_{\rm rel}$ groß
- d) $\kappa_{\rm abs}$ klein, $\kappa_{\rm rel}$ klein

Geben Sie $\kappa_{\rm rel}$ und $\kappa_{\rm abs}$ Ihrer Funktion an den vier Stellen explizit an.

Die volle Punktzahl erhalten Sie nur, wenn Sie eine Funktion finden, die nicht abschnittsweise definiert werden muss.

2. Aufgabe (4 TP)

Seien $b, c \in \mathbb{R}$ und $m \in \mathbb{R} \setminus \{0\}$ sowie

$$f_1(x) = x^3 - c$$
 $f_2(x) = mx + b.$

- a) Berechnen Sie zu f_i jeweils die absolute Kondition $\kappa_{\rm abs}$ des Problems der Nullstellenbestimmung von f_i bei Störung von c beziehungsweise m.
- b) Für welche c bzw. m ist $\kappa_{\rm abs}$ klein? Veranschaulichen Sie Ihr Ergebnis anhand zweier Grafiken.

Hinweis: Machen Sie sich zunächst klar, welche der beteiligten Unbekannten x, c, m, b die Eingabegröße für die jeweilige Konditionsberechnung ist.

3. Aufgabe (4 TP)

a) Seien $g, h \colon \mathbb{R} \to \mathbb{R}$ gegebene Funktionen und sei f := g + h. Zeigen Sie, dass für die absolute Kondition der Auswertung der Funktion f in einem Punkt $x \in \mathbb{R}$ die Abschätzung

$$\kappa_{\rm abs}(f, x) \le \kappa_{\rm abs}(h, x) + \kappa_{\rm abs}(g, x)$$

gilt.

- b) Verwenden Sie dieses Resultat, um die absolute und die relative Kondition der Auswertung von $f(x) = x^5 + |x^3|$ abzuschätzen.
- c) Berechnen Sie unter Verwendung von a) die absolute und die relative Kondition der Auswertung von f(x) = g(x) + h(x) in x = 0, wobei $g(x) = \sin^2(x)$ und $h(x) = \cos^2(x)$ sei. Finden Sie außerdem ein x für das die Abschätzung aus a) nicht scharf ist.

4. Bonusaufgabe (Quiz) (1 Bonus TP/PP)

Formulieren Sie eine Frage zur Vorlesung. Falls Sie die Antwort wissen, geben Sie die richtige Antwort und 3 falsche Antwortmöglichkeiten an.

Allgemeine Hinweise

Die Punkte unterteilen sich in Theoriepunkte (TP) und Programmierpunkte (PP). Bitte beachten Sie die auf der Vorlesungshomepage angegebenen Hinweise zur Bearbeitung und Abgabe der Übungszettel, insbesondere der Programmieraufgaben.

2. Aufgabe (4 TP)

Seien $b, c \in \mathbb{R}$ und $m \in \mathbb{R} \setminus \{0\}$ sowie

$$f_1(x) = x^3 - c$$
 $f_2(x) = mx + b$.

- a) Berechnen Sie zu f_i jeweils die absolute Kondition $\kappa_{\rm abs}$ des Problems der Nullstellenbestimmung von f_i bei Störung von c beziehungsweise m.
- b) Für welche c bzw. m ist $\kappa_{\rm abs}$ klein? Veranschaulichen Sie Ihr Ergebnis anhand zweier Grafiken.

Hinweis: Machen Sie sich zunächst klar, welche der beteiligten Unbekannten x, c, m, b die Eingabegröße für die jeweilige Konditionsberechnung ist.

1. Aufgabe (4 Bonus TP)

Finden Sie eine stetige Funktion $f: \mathbb{R} \to \mathbb{R}$ und vier verschiedene Werte $x_1, x_2, x_3, x_4 \in \mathbb{R}$ in der Weise, dass hinsichtlich der Kondition der Funktionsauswertung an der jeweiligen Stelle jede der folgenden vier Möglichkeiten einmal auftritt:

- a) $\kappa_{\rm abs}$ groß, $\kappa_{\rm rel}$ klein
- b) $\kappa_{\rm abs}$ klein, $\kappa_{\rm rel}$ groß
- c) $\kappa_{\rm abs}$ groß, $\kappa_{\rm rel}$ groß

d) $\kappa_{\rm abs}$ klein, $\kappa_{\rm rel}$ klein

Geben Sie $\kappa_{\rm rel}$ und $\kappa_{\rm abs}$ Ihrer Funktion an den vier Stellen explizit an. Die volle Punktzahl erhalten Sie nur, wenn Sie eine Funktion finden, die nicht abschnittsweise definiert werden muss.

3. Aufgabe (4 TP)

a) Seien $g, h \colon \mathbb{R} \to \mathbb{R}$ gegebene Funktionen und sei f := g + h. Zeigen Sie, dass für die absolute Kondition der Auswertung der Funktion f in einem Punkt $x \in \mathbb{R}$ die Abschätzung

$$\kappa_{\rm abs}(f, x) \le \kappa_{\rm abs}(h, x) + \kappa_{\rm abs}(g, x)$$

gilt.

b) Verwenden Sie dieses Resultat, um die absolute und die relative Kondition der Auswertung von $f(x) = x^5 + |x^3|$ abzuschätzen.

$$\frac{1}{1+\frac{1}{1$$