Biweekly MSc Thesis Progress Presentation – Lukas Strebel

30 May 2018

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Completed Steps

- 'Hello World' example (on Greina)
 - 2 MPI4Py processors computing GT4Py stencils and sharing boundary with Send/Recv
- First test case runs serial (on Greina)
 - Burger's equation with 2 different setups (different initial and boundary condition)
- Stencil extend from GT4Py
 - Added get_extent() to ngcompiler.py
 - Added get_extent() to user_interface/ngstencil.py
 - Stencil extent / minimum halo available after instantiation of the stencil

Worked on

- Source graph generation / PyMetis graph partitioning
 - Subdivisions based on number of splits in each dimension
 - Compute boundary area for communication cost
 - Compute subdivision size for computational cost
 - Build adjacency list for graph partitioning
 - Internal or output to File (metis and scotch format for testing)
 - Code needs some clean up but seems to work

Domain decomposition of 16x8 subdivisions into 5 partitions

Thesis text progress

- Case study section for Burger's equation
 - Numerical backgrounds (equation, etc)
 - Initial and boundary condition details
 - Description for stencils
 - Not yet: Domain decomposition implementation details and experiment details
- Domain decomposition model for source graph partitioning
 - Worked on, but not finished

Additional remarks

- Upcoming milestone:
 - Finish source graph generation model including thesis chapter
 - Run first test case scaled for Greina on single node and take measurements.