CS 215 Data Analysis and Interpretation

Transformation of Random Variables

Suyash P. Awate

- Let X be a (continuous) random variable (RV) with probability density function (PDF) p(X)
- Let function g(.) be strictly monotonically increasing
 - If a < b, then g(a) < g(b)

 We will generalize/extend the class of functions later

- Consider the transformed variable Y := g(X)
- What is the PDF q(Y) of RV Y?

- Example
 - If X has a Normal PDF, then what is the PDF for $Y := X^2$?

- If
 - RVs U,V are independent Gaussian
 - X1 = aU + bV
 - X2 = cU + dV
- Then
 - What is P(X1,X2)?

Example

- Principle of probability mass conservation
 - Consider the events $\{x : x \in (a, b)\}$ and $\{y : y \in (g(a), g(b))\}$
 - Because we assumed that g(.) was increasing, P(g(a) < Y < g(b)) = P(a < X < b)
 - So, the probability "mass" of X in interval (a, b) gets mapped to the mass of Y in interval (g(a), g(b))

Now,
$$P(g(a) < Y < g(b)) := \int_{g(a)}^{g(b)} q(y) dy$$

Also,
$$P(a < X < b) := \int_a^b p(x) dx$$

• Write the second integral in terms of y, using the known relationship y = g(x)

 We found that these probabilities → are equal

$$P(g(a) < Y < g(b)) := \int_{g(a)}^{g(b)} q(y)dy$$

$$P(a < X < b) := \int_a^b p(x) dx$$

• We have, $x = g^{-1}(y)$

$$dx = \left(\frac{d}{dy}g^{-1}(y)\right)dy$$

Then,
$$P(a < X < b) = \int_{g(a)}^{g(b)} p(g^{-1}(y)) \left(\frac{d}{dy}g^{-1}(y)\right) dy$$

• This mass conservation holds for **every** interval (a,b), however small Thus, $q(y)=p(g^{-1}(y))\frac{d}{dy}g^{-1}(y)$, for all y

https://www.researchgate.net/figure/Single-variable-probability-density-function-transformation-p-y-y-is-the-Gaussian_fig5_271212951

• We found the relationship between PDF q(.) of Y and PDF p(.) of X, in terms of the strictly-increasing transformation function g(.)

$$q(y) = p(g^{-1}(y)) \frac{d}{dy} g^{-1}(y)$$
, for all y

- If $g(\cdot)$ is strictly increasing, then:
 - $a < b \Rightarrow g(a) < g(b)$
 - Derivative of g-inverse(.) is positive
 - So, the above formula holds good
- If $g(\cdot)$ is strictly decreasing, then:
 - a < b \Rightarrow g(a) > g(b)
 - Derivative of g-inverse(.) is negative
 - What to do then?

- For convenience, to handle both cases above, we:
 - Write $q(y) = p(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|$
 - Taking the absolute value ensures that PDF q(.) is always non-negative
 - Take the integral limits to go from a smaller number to a larger number

We have,
$$x = g^{-1}(y)$$

$$dx = \left(\frac{d}{dy}g^{-1}(y)\right)dy$$

Then,
$$P(a < X < b) = \int_{g(a)}^{g(b)} p(g^{-1}(y)) \left(\frac{d}{dy}g^{-1}(y)\right) dy$$

- Consider a RV X \sim U(0,1) (generated by the C/C++ rand() function)
- Consider the transformation $Y := (-1/\lambda) \log(X)$, where $\lambda > 0$
- What is q(Y)?

- Consider a RV X \sim U(0,1) (generated by the C/C++ rand() function)
- Consider the transformation $Y := (-1/\lambda) \log(X)$, where $\lambda > 0$
- What is q(Y)?

$$y = -(1/\lambda)\log(x) \implies x = \exp(-\lambda y)$$
. This is the $g^{-1}(\cdot)$ function.

$$\left| \frac{d}{dy} g^{-1}(y) \right| = \lambda \exp(-\lambda y)$$

So,
$$q(y) = p(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right| = \lambda \exp(-\lambda y)$$

• Thus, Y has the exponential PDF with parameter λ (with mean = $1/\lambda$)

- Consider a RV X \sim U(-a/2, +a/2)
- Consider Y := exp(X)
- What is q(Y) ?

- Consider a RV X \sim U(-a/2, +a/2)
- Consider Y := exp(X)
- What is q(Y)?

$$y = \exp(x) \implies x = \log(y)$$
. This is the $g^{-1}(\cdot)$ function.

$$\left| \frac{d}{dy} g^{-1}(y) \right| = 1/y$$

So,
$$q(y) = p(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right| = (1/a)(1/y)$$

• Thus, Y has PDF q(y) = 1/(ay) for $y \in (exp(-a/2), exp(a/2))$

- Consider a RV X \sim G(0,1) (standard Normal PDF)
- Consider Y := aX, with 'a' non-zero
- What is q(Y)?

$$y := ax \implies x = y/a \implies g^{-1}(y) = y/a$$

$$\left| \frac{d}{dy} g^{-1}(y) \right| = 1/a$$

$$q(y) := p(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right| = p\left(\frac{y}{a}\right) \frac{1}{a} = \frac{1}{a\sqrt{2\pi}} \exp\left(-\frac{y^2}{2a^2}\right)$$

• Thus, p(Y) is also a Gaussian with variance σ^2 scaled by a factor of a^2

- Consider a RV X \sim G(0,a²)
- Consider Y := X + b
- What is q(Y)?

$$y := b + x \implies x = y - b \implies g^{-1}(y) = y - b$$

$$\left| \frac{d}{dy} g^{-1}(y) \right| = 1$$

$$q(y) := p(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right| = p(y - b) \cdot 1 = \frac{1}{a\sqrt{2\pi}} \exp\left(-\frac{(y - b)^2}{2a^2}\right)$$

• Thus, p(Y) is also a Gaussian with μ translated by b

General non-monotonic functions

• Consider a PDF P(X) as follows: $P(x):=0 \text{ for } x \leq -1$ $P(x):=0.5 \text{ for } x \in (-1,0)$ $P(x):=0.5 \exp(-x) \text{ for } x \geq 0$

- Consider a transformation function Y := g(X) := X²
- What is PDF q(y) of Y?

• Consider a PDF P(X) as follows: $P(x):=0 \text{ for } x \leq -1$ $P(x):=0.5 \text{ for } x \in (-1,0)$ $P(x):=0.5 \exp(-x) \text{ for } x \geq 0$

- Consider a transformation function Y := g(X) := X²
- What is PDF q(y) of Y?

$$y := x^2 \implies x = \pm \sqrt{y} \implies g^{-1}(y) = \pm \sqrt{y}$$

$$\left| \frac{d}{dy} g^{-1}(y) \right| = \frac{1}{2\sqrt{y}}$$

• Consider a PDF P(X) as follows: P(x) := 0 for $x \le -1$ $P(x) := 0.5 \text{ for } x \in (-1,0)$

$$P(x) := 0.5 \exp(-x)$$
 for $x \ge 0$

- Consider a transformation function $Y := g(X) := X^2$
- What is PDF q(y) of Y?

Case 1: $x \in (-1,0)$. In this case, $g(\cdot)$ is a *decreasing* function. Mass conservation applies.

For
$$y \in (0,1)$$
: $q_1(y) := p(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right| = (0.5) \frac{1}{2\sqrt{y}} = \frac{1}{4\sqrt{y}}$

Case 2: $x \ge 0$. In this case, $g(\cdot)$ is a *increasing* function. Mass conservation applies.

For
$$y \ge 0$$
: $q_2(y) := p(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right| = (0.5 \exp(-\sqrt{y})) \frac{1}{2\sqrt{y}} = \frac{\exp(-\sqrt{y})}{4\sqrt{y}}$

• Consider a PDF P(X) as follows: $P(x):=0 \text{ for } x \leq -1$ $P(x):=0.5 \text{ for } x \in (-1,0)$ $P(x):=0.5 \exp(-x) \text{ for } x \geq 0$

- Consider a transformation function Y := g(X) := X²
- What is PDF q(y) of Y?
- Desired PDF $q(y) = q_1(y) + q_2(y)$
- In the region $y \in (0,1)$, probability mass comes from Case 1 & Case 2

• Consider a PDF P(X) as follows: $P(x):=0 \text{ for } x \leq -1$ $P(x):=0.5 \text{ for } x \in (-1,0)$ $P(x):=0.5 \exp(-x) \text{ for } x \geq 0$

- Consider a transformation function Y := g(X) := X²
- What is PDF q(y) of Y?

Thus,

(i) for
$$y\in(0,1)$$
, PDF $q(y)=\frac{1}{4\sqrt{y}}(1+\exp(-\sqrt{y}))$
(ii) for $y\geq 1$, PDF $q(y)=\frac{\exp(-\sqrt{y})}{4\sqrt{y}}$

There will be a jump discontinuity at y = 1,
 where left limit = (1+exp(-1))/4 and right limit = exp(-1)/4

- Let $X \sim G(0,1)$
- Let $Y := X^2$
- What is P(Y), defined as the chi-square PDF?

• Let $X \sim G(0,1)$

 $y := x^2 \implies x = \pm \sqrt{y} \implies g^{-1}(y) = \pm \sqrt{y}$

• Let $Y := X^2$

 $\left| \frac{d}{dy} g^{-1}(y) \right| = \frac{1}{2\sqrt{y}}$

- What is P(Y)?
- Case 1: $x \le 0$. Here, g(.) is a decreasing function

For
$$y \ge 0$$
: $q_1(y) := p(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right| = \frac{\exp(-0.5(\sqrt{y})^2)}{\sqrt{2\pi}} \frac{1}{2\sqrt{y}} = \frac{\exp(-0.5y)}{2\sqrt{y}^2}$

• Case 2: x > 0. Here, $g(\cdot)$ is a increasing function

For
$$y > 0$$
: $q_2(y) := \frac{\exp(-0.5y)}{2\sqrt{y2\pi}}$

• Desired chi-square PDF: $q(y) = q_1(y) + q_2(y) = (1/sqrt(y2\pi)) exp(-0.5y)$

Let X have a Gamma PDF,

$$P(x) = \operatorname{Gamma}(x|\alpha,\beta) = (\beta^{\alpha}/\Gamma(\alpha))x^{\alpha-1}\exp(-\beta x)$$

where α (shape) > 0, β (rate) > 0, x > 0, $\Gamma(\cdot) =$ gamma function defined for all complex numbers with real part positive

$$^ullet \Gamma(z) = \int_0^\infty x^{z-1} e^{-x} \ dx, \qquad \mathfrak{R}(z) > 0.$$

For positive integer n, gamma(n) = factorial(n-1)

- Gamma PDF
 - $k = shape = \alpha$
 - theta = scale = $1/\text{rate} = 1/\beta$
 - <u>Link</u>

Let X have a Gamma PDF,

$$P(x) = \operatorname{Gamma}(x|\alpha,\beta) = (\beta^{\alpha}/\Gamma(\alpha))x^{\alpha-1}\exp(-\beta x)$$

where α (shape) > 0, β (rate) > 0, x > 0, $\Gamma(\cdot)$ = gamma function defined for all complex numbers with real part positive

$$^ullet \Gamma(z) = \int_0^\infty x^{z-1} e^{-x} \ dx, \qquad \mathfrak{R}(z) > 0.$$

- For positive integer n, gamma(n) = factorial(n-1)
- Consider the transformation Y := 1/X
- What is the PDF of Y?

$$y:=1/x \implies x=1/y \implies g^{-1}(y)=1/y$$

$$\left|\frac{d}{dy}g^{-1}(y)\right|=\frac{1}{y^2} \text{for } y>0$$

Let X have a Gamma PDF,

$$P(x) = \operatorname{Gamma}(x|\alpha,\beta) = (\beta^{\alpha}/\Gamma(\alpha))x^{\alpha-1}\exp(-\beta x)$$

where $\alpha > 0$, $\beta > 0$, x > 0, and $\Gamma(\cdot)$ is the well-known gamma function defined for all complex numbers with real part positive.

- Consider the transformation Y := 1/X

• What is the PDF of Y?
$$y:=1/x \implies x=1/y \implies g^{-1}(y)=1/y$$

$$\left|\frac{d}{dy}g^{-1}(y)\right|=\frac{1}{y^2} \text{for } y>0$$

 $q_1(y) := p(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right| = (\beta^{\alpha}/\Gamma(\alpha)) y^{1-\alpha} \exp(-\beta/y) \frac{1}{y^2} = (\beta^{\alpha}/\Gamma(\alpha)) y^{-\alpha-1} \exp(-\beta/y)$

• Inverse-Gamma PDF

