

UFFS - Universidade Federal da Fronteira Sul Curso de Ciência da Computação

Disciplina: Organização de Computadores

Professor: Luciano L. Caimi Data: 14/05/2025

Aluno: Giden G. Willer Nota: 828,9

1. **(1.0)** Existem 2 modelos de acesso à memória, conhecidos como modelo de acesso tipo Von Neumann e modelo de acesso tipo Harward. a) Descreva cada um dos modelos de acesso a memória. b) Considerando o ciclo de instrução de máquina, explique porque o modelo de acesso tipo Von Neumann representa um gargalo.

2. Utilizando o conjunto de instruções do RISC-V, faça o que se pede:

a (2.0) - Implemente a <u>função mul_with_sum</u> que recebe em a0 e em a1 <u>dois valores</u> dos inteiros. A função deve <u>retornar em a0 o</u> valor da multiplicação dos valores enviados para a função. A multiplicação deve utilizar o algoritmo das somas sucessivas, por exemplo: $-5 \times 3 = -5 + -5 + -5 = -15$. A função deve tratar números positivos e negativos tanto em a0 quanto em a1.

b (1.0) - Implemente um programa que apresente as mensagens no console, leia dois valores inteiros no teclado, chame a função mul_with_sum e mostre o resultado da função no console.

3. **(1.5)** Sabendo que S é um endereço de memória e considerando o conjunto de instruções, o programa apresentado e os valores presentes na pilha. Apresente os valores presentes na pilha ao final da execução das linhas 5, 9, 11 e 12.

Conjunto de Instruções	linha	Programa		Pilha
POP op; (op) ← topo	1 2	PUSHI 4 POW		
PUSHI op ; topo ← op	3	ADD		Ù, ,
PUSH op; topo ← (op)	4	MUL	topo →	-10
POW ; topo ← topo ^ topo_1	6	PUSHI 4		2
ADD ; topo ← topo + topo ₋₁	7 8	ADD DIV		6 2 6
SUB ; topo ← topo - topo ₋₁	9	ADD		5 9
MUL ; topo ← topo * topo ₋₁	10 11	POW ADD		2 q -1 8
DIV ; topo \leftarrow topo / topo ₋₁	12	POP S	l»	-4

4. **(1.5)** Para cada uma das instruções do RISC-V codificadas em hexadecimal mostradas abaixo, apresente a instrução Assembly completa (exemplo: add s0, s1, s2) e classifique a instrução quanto ao formato (R, I, B, etc), classe de instrução (aritmética, lógica, desvio condicional, etc) e o modo de endereçamento (registrador, imediato, relativo ao PC, etc).

	(10)					
Código	Instrução	Formato	Classe	Modo de endereçamento		
0x00B50313	addi +1,00,11	IC	Aritmetice	Imediato		
0x0122A023	5W 52,0(10)	9	LOADIGERE	Base + Desboom		
0x0240006F	JAL zero (130	U.T	Bron thing	Base + Pas bramen		

PA 3000/26

2,2

5. **(3.0)** Considere o programa usando o ISA RISC-V e o valor atual dos registradores conforme mostrado abaixo. Sabendo que o valor atual de PC = 0x00004008, apresente os valores presentes nas posições de A até K nos dois próximos ciclos de instrução, do processador RISC-V monociclo (figura abaixo):

laco:

lw a3, 4 (a2)

beq t0, a3, out_laco
addi a0, a0, -4 4 4

addi a1, a1, 1 8 8
addi a2, a2, 4 6 12
j laco

out_laco:

mv a0, a1
ret

Cricken G. Miller

Aarquitetura de Von Neumann introduziu o concerto de Programa armazenado, Sua unidade de memória armazena tanto dados quento instruçãos e se comunica com a CPU e os disposicios de entada e saida por moio de um barramento únito, daí que se visualiza o sargala de Von Neumann, nesse modob de acosso à memoria, o ciclo de instruções so conseque pazer um acosso à memoria por vez, bosando ou um dado or uma instrução. Para administrar esse problema de desempenho, a arquitetura faz uso de memoria essa memoria em memoria de dedos a memoria de memoria em

2-1	a) mol-with_som:
·	Alls at my Brown & ; MV aD, a2 of
	Mual 1-5 Jones mx jo MV al. a3
	Envis bot a Pero po primeiro a positivo o man
	= cobstal, zero pas esundo positivo
	200 of Jampenhum _ positivo obios & Long
	Primeivo Dostavo à savo la psilate va va va la
	Misto, allong a lossos de delan secon
	er of est conserve parent in cela plant of the NM a so we
	- into small parametrasion in deal raules densered
4	Segundo_positivo àb a baldong sies vousen
	MNoto, allowed memoline, Otalin
	Action receive Orlayord Lee QD (Let Nelmoria en
Va.	In Parametros on a cold ob priomon
	penhon positivo:
	SUB TO/zero, al
	SUB TO / zero, al Não TMOU SUB TA Zero, al Não TMOU J Paragaetros Mos os mos
/	
	Parametros.
	e ionem 1 go, O Tomom 1 x; Resultado
1/50	puselis [] t2,0 Lember &; contador 27
	LOOPS
	BER TRADIO, EIM 1000
	AUQ a0, 10, T1
	A OO TO TO I DA SULTADO TEVE
	J LOOP GIAN EN 11
	FIM: FRONTE de questan B 1550 sovensubstitutido
	Lla7, 1/9 *; RET
	CHARLET L; X (Von Nermann) 1809

2/b) data LATA: . sering "Pigite un nomero: " main: * as alteragnès da punção poram comenta das X em vermelho na punça letra a. JAL Print-Com 1 a7, 5 MV a2, a0 L print_com 1-1 a7,5 chamacain PARAMETROS DEVEN ESTAN EN ADE AT JAL mula:th_Sum ecall x; Imprime rosultado a7,10 & evelue print-coming > Pa não Funciona ? 0.7 e call.

