ANALISI MATEMATICA 1 A.A. 2021-22 - II prova in itinere 13-1-2022- Prof. Cipriani

Cognome-nome:

Codice Persona

Quiz: una e una sola delle risposte è corretta. Indicarla con una croce. Per annullare una risposta cerchiarla.

4. (1 punto) Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione 2 volte derivabile e convessa su \mathbb{R} . Allora

- (a) f' è crescente;
- (b) $\lim_{x\to+\infty} f(x) = +\infty;$
- (c) esiste min f;
- (d) $f''(x) > 0, \forall x \in \mathbb{R};$
- (e) Nessuna delle altre risposte è corretta.

2. (1 punto) Sia $I = \int_0^1 f(x) dx$. Allora l'integrale $\int_0^{\frac{1}{3}} f(3x) dx$ e' uguale a

- (a) 3I;
- (b) $\frac{1}{9}I$;
- (c) I;
- (d) 9I;
- (e) Nessuna delle altre risposte è corretta.

3. (1 punti) Sia f la funzione definita su \mathbb{R} da $f(x) = (x - \sinh x)^7$. Allora $\exists K \in \mathbb{R}$ tale che

- (a) $f(x) \sim Kx^{21} \text{ per } x \to 0;$
- (b) $f(x) \sim Kx^7 \text{ per } x \to 0$;
- (c) $f(x) \sim Kx^{10} \text{ per } x \to 0;$
- (d) $f(x) \sim x^7 \text{ per } x \to +\infty$;
- (e) Nessuna delle altre risposte è corretta.

4. (2 punti) Sia $f \in C(\mathbb{R})$. Se $\int_0^2 f(x) \, dx = 2$, si può dedurre che

- (a) $f(x) \ge 0$ su [0, 2];
- (b) $\int_0^2 (f(x))^2 dx = 4$
- (c) $\int_{-2}^{0} f(-x) dx = -2$
- (d) l'equazione f(x) = 1 ha almeno una soluzione in [0, 2].
- (e) Nessuna delle altre risposte è corretta.

5. (2 punti) L'integrale $\int_0^2 \frac{2x+3}{(x^2+x)^\alpha} \, dx$ esiste finito

- (a) $\forall \alpha$;
- (b) $\iff \alpha < \frac{1}{2};$
- (c) $\iff \alpha > \frac{1}{2};$
- $(\mathrm{d}) \iff \alpha < 1;$
- (e) $\iff \alpha < 2$.

6. TEORIA (II Itinere)

1. (1 punto) Enunciare il (Primo) Teorema Fondamentale del Calcolo Integrale.

2. (2 punti) Enunciare e dimostrare il Teorema di Lagrange (se nella dimostrazione si fa uso del Teorema

di Rolle allora dimostrare anche quello).

7. ESERCIZI (II Itinere)

1. (2 punti) Data

$$f(x) = 1 + (\log(1+x))^2 - e^{x^2},$$

determinare
$$K>0, n\in\mathbb{N}$$
 tali che

$$f(x) \sim Kx^n$$
 per $x \to 0$.

- **2.** (4 punti) Sia f la funzione definita da $f(x) = (x^3 |x|)^{\frac{1}{3}}$
 - Determinare il dominio di f e studiarne la continuità. Calcolare i limiti di f al bordo del dominio. Trovare eventuali asintoti. Determinare gli zeri di f e il segno di f.
 - ullet Studiare la derivabilità di f, calcolare la derivata dove possibile, e classificare i punti di non derivabilità.
 - $\bullet\,$ Studiare la monotonia di f, discutendo la presenza di estremi locali e globali.
 - \bullet Tracciare un grafico qualitativo della funzione f (non è richiesto lo studio della derivata seconda).