```
# MCQ's
# Answers :
# 1) A
# 2) B
# 3) C
# 4) B
# 5) A
# 6) D
# 7) C
#8)B
# 9) D
# 10) A,C and D
# 11) A and D
# 12) B
# 13) B
# 14) A
# 15) C
# 16) C
# 17) C
# 18) B
# 19) C
# 20) C
# Q.1)
import pandas as pd
import seaborn as sns
import plotly.express as \ensuremath{\mathsf{px}}
import plotly
ship=pd.read_csv("/content/ship_fuel_efficiency.csv")
ship.head(5)
```

₹		ship_id	ship_type	route_id	month	distance	fuel_type	fuel_consumption	CO2_emissions	weather_conditions	engine_efficienc
	0	NG001		Warri- Bonny			HFO	3779.77	10625.76	Stormy	92.1
	1	NG001	Oil Service Boat	Port Harcourt- Lagos	February	128.52	HFO	4461.44	12779.73	Moderate	92.9
	Î	NOOO4	Oil Service	Port	N 4 I-	07.00	UEA	4007.70	5050.04	0-1	27.0

ship1=ship.groupby(['ship_type','weather_conditions'])['engine_efficiency'].mean().reset_index()
ship1

∑ ▼		ship type	weather conditions	engine efficiency
	_		-	
	0	Fishing Trawler	Calm	81.936373
	1	Fishing Trawler	Moderate	82.262745
	2	Fishing Trawler	Stormy	82.220625
	3	Oil Service Boat	Calm	83.531635
	4	Oil Service Boat	Moderate	83.858810
	5	Oil Service Boat	Stormy	82.824715
	6	Surfer Boat	Calm	81.435446
	7	Surfer Boat	Moderate	82.098000
	8	Surfer Boat	Stormy	83.684159
	9	Tanker Ship	Calm	82.265195
	10	Tanker Ship	Moderate	82.894597
	11	Tanker Ship	Stormv	81.406923
4				

px.bar(ship1,x='ship_type',y='engine_efficiency',color='weather_conditions')

ship2=ship.groupby(['ship_type','weather_conditions'])['distance'].mean().reset_index()
ship2

0		weather_conditions	distance
U	Fishing Trawler	Calm	124.128627
1	Fishing Trawler	Moderate	133.637549
2	Fishing Trawler	Stormy	125.008229
3	Oil Service Boat	Calm	87.397925
4	Oil Service Boat	Moderate	88.427619
5	Oil Service Boat	Stormy	83.673415
6	Surfer Boat	Calm	107.604455
7	Surfer Boat	Moderate	110.391455
8	Surfer Boat	Stormy	115.502832
9	Tanker Ship	Calm	269.752857
10	Tanker Ship	Moderate	268.255403
11	Tanker Ship	Stormv	261.795154

px.bar(ship2,x='ship_type',y='distance',color='weather_conditions')

or
import pandas as pd
ship3 = ship.groupby(['ship_type', 'weather_conditions'])[['engine_efficiency', 'distance']].mean().reset_index()
pd.DataFrame(ship3)

⋺						
		ship_type	weather_conditions	engine_efficiency	distance	
	0	Fishing Trawler	Calm	81.936373	124.128627	
	1	Fishing Trawler	Moderate	82.262745	133.637549	
	2	Fishing Trawler	Stormy	82.220625	125.008229	
	3	Oil Service Boat	Calm	83.531635	87.397925	
	4	Oil Service Boat	Moderate	83.858810	88.427619	
	5	Oil Service Boat	Stormy	82.824715	83.673415	
	6	Surfer Boat	Calm	81.435446	107.604455	
	7	Surfer Boat	Moderate	82.098000	110.391455	
	8	Surfer Boat	Stormy	83.684159	115.502832	
	9	Tanker Ship	Calm	82.265195	269.752857	
	10	Tanker Ship	Moderate	82.894597	268.255403	
	11	Tanker Ship	Stormv	81.406923	261.795154	
	4					


```
import matplotlib.pyplot as plt
import seaborn as sns # Don't forget to import seaborn for regplot
import numpy as np
fuel = ship['fuel_consumption']
CO2 = ship['CO2_emissions']
month = ship['month']
distance = ship['distance']
fig, axs = plt.subplots(2, 2, figsize=(10, 8))
# a) Boxplot for fuel consumption
axs[0, 0].boxplot(
    [fuel],
    patch_artist=True, # Enables color fill inside the boxes
    boxprops=dict(facecolor='lightblue', color='blue'), # Box color
    capprops=dict(color='blue'), # Caps color
    whiskerprops=dict(color='blue'),  # Whisker color
    flierprops=dict(markerfacecolor='red', marker='o', markersize=5, linestyle='none'), # Outliers
    medianprops=dict(color='black') # Median line color
axs[0, 0].set_xticklabels(['Fuel'])
axs[0, 0].set_title('Boxplot for Fuel Consumption')
# b) Boxplot for CO2 emissions
axs[0, 1].boxplot(
    [CO2],
    patch_artist=True,
    boxprops=dict(facecolor='lightblue', color='blue'),
    capprops=dict(color='blue'),
    whiskerprops=dict(color='blue'),
    flierprops=dict(markerfacecolor='red', marker='o', markersize=5, linestyle='none'),
    medianprops=dict(color='black')
axs[0, 1].set_xticklabels(['CO2'])
axs[0, 1].set_title('Boxplot for CO2 Emissions')
# c) Bar plot for month-wise CO2 emissions
axs[1, 1].bar(month, CO2, color='orange')
axs[1, 1].set_title('CO2 Emission by Month')
axs[1, 1].set_xlabel('Month')
axs[1, 1].set_ylabel('CO2 Emissions')
axs[1, 1].tick_params(axis='x', rotation=45) # Rotate labels for better visibility
# d) Regression plot for distance vs fuel consumption
sns.regplot(x='distance', y='fuel_consumption', data=ship, scatter_kws={'color': 'blue'}, line_kws={'color': 'red'}, ax=axs[1, 0])
# Set title and labels
axs[1, 0].set_title('Regression Line for Distance vs Fuel Consumption')
axs[1, 0].set_xlabel('Distance')
axs[1, 0].set_ylabel('Fuel Consumption')
# Adjust layout for better spacing
```

plt.tight_layout()

Show the plot
plt.show()

Q.3) a) which is the longest route b) which ship id is done maximum service
ship.head(5)

		ship_id	ship_type	route_id	month	distance	fuel_type	fuel_consumption	CO2_emissions	weather_conditions	engine_efficienc
	0	NG001	Oil Service Boat	Warri- Bonny	January	132.26	HFO	3779.77	10625.76	Stormy	92.1
	1	NG001	Oil Service Boat	Port Harcourt- Lagos	February	128.52	HFO	4461.44	12779.73	Moderate	92.9
	Î	110004	Oil Service	Port	••	07.00	UEA	1007.70	5050.04	^ ·	↑

Find the row with the longest distance (route)

longest_route = ship.loc[ship['distance'].idxmax()]
print(longest_route)

ship_id	NG067
ship_type	Tanker Ship
route_id	Lagos-Apapa
month	February
distance	498.55
fuel_type	Diesel
fuel_consumption	22973.21
CO2_emissions	62936.17
weather_conditions	Stormy
<pre>engine_efficiency</pre>	70.49
Name: 793, dtype: obje	ect
	ship_type route_id month distance fuel_type fuel_consumption CO2_emissions weather_conditions engine_efficiency

 $\overline{2}$

b) b)which ship id is done maximum service

Group by 'ship_id' and sum the 'distance' for each ship

max_service_ship = ship.groupby('ship_id')['distance'].sum().idxmax()

print(f"The ship with the maximum service (total distance traveled) is: {max_service_ship}")

 \longrightarrow The ship with the maximum service (total distance traveled) is: NG048

Q.4) Perform the descriptive statisics and conclude the data

descriptive_statistics=ship.describe()
descriptive_statistics

	distance	${\tt fuel_consumption}$	CO2_emissions	engine_efficiency
count	1440.000000	1440.000000	1440.000000	1440.000000
mean	151.753354	4844.246535	13365.454882	82.582924
std	108.472230	4892.352813	13567.650118	7.158289
min	20.080000	237.880000	615.680000	70.010000