Mobile Communications

Wireless Personal Area Networks

Manuel P. Ricardo

Faculdade de Engenharia da Universidade do Porto

IEEE Standards

IEEE 802.15.4

Low Rate Wireless PAN (Sensor Networks)

Information

Standard

- » IEEE 802.15.4 Low-Rate Wireless Networks
- » Read: <u>Section General Description</u>

Introduction

- ◆ Low Rate WPAN (LR-WPAN)
 - » Simple, low-cost communications network
 - » Wireless connectivity
 - » For applications with limited power and low throughput requirements
- Characteristics of an LR-WPAN
 - » Data rates: 250 kbit/s, 100kbit/s, 40 kbit/s, 20 kbit/s
 - » MAC addresses: 64-bit or allocated 16-bit short addresses
 - » Carrier sense multiple access with collision avoidance (CSMA-CA)
 - » Low power consumption
 - » Energy Detection (ED); Link quality indication (LQI)
 - » Radio channels
 - 16 channels in the 2450 MHz band
 - 30 channels in the 915 MHz band
 - 3 channels in the 868 MHz band

Types of Devices

- Two types
 - » FFD Full-Function Device
 - Can operate in 3 modes: PAN coordinator, coordinator, device
 - FFD can talk to RFDs or other FFDs
 - » RFD Reduced-Function Device
 - intended for applications that are very simple (light switch, passive infrared sensor)
 - RFD can communicate only to an FFD

 WPAN must include at least one FFD operating as the PAN coordinator

Topologies, Identifiers

- Topologies
 - » Star topology → communication between devices and PAN coordinator
 - » Peer-to-peer topology → devices may communicate directly; needs PAN coordinator

- Identifiers
 - » Each device has a unique 64-bit address; short 16-bit addresses may be allocated
 - » Each PAN has an identifier

Architecture

Physical layer (PHY)

- » Activation/deactivation of the radio transceiver
- » ED, LQI, channel selection, clear channel assessment
- » Transmitting and receiving data

MAC sublayer

- » Beacon management
- » Channel access
- » Frame validation, frame acknowledgement
- » Association, disassociation

NOTE—For MCPS-SAP, see 7.1; for MLME-SAP, see 5.4.2; for PD-SAP, see 6.2; and for PLME-SAP, see 5.4.1.

Superframe Structure Frame Beacons Superframe format Contention Access Period defined by the PAN coordinator bounded by beacons — Frame Beacons can have active and inactive portions Beacons used to Active Period Inactive Period synchronize attached devices identify the PAN describe superframe structure Frame Beacons Superframe may have 2 periods Contention access period Devices use slotted CSMA/CA mechanism Contention Contention Access Period Free Period Contention-free period (CFP) Guaranteed timeslots (GTS) for devices

- If coordinator desires no superframe it turns off beacon transmissions
 - » Unslotted CSMA/CA is used in this situation

Slotted MAC

CW – contention window
BE – backoff exponent
macBatLifeExt – device using battery
Backoff period – 20 symbols

NB – number of backoffs

Data Transfer to a Coordinator

Figure 6—Communication to a coordinator in a beacon-enabled PAN

Figure 7—Communication to a coordinator in a nonbeacon-enabled PAN

Data Transfer from a Coordinator

Figure 8—Communication from a coordinator a beacon-enabled PAN

Figure 9—Communication from a coordinator in a nonbeacon-enabled PAN

Data Frame

Subfield	Bits	Allowed values and their meaning	
Frame Type	0-2	000	Beacon
		001	Data
		010	Acknowledgment
		011	MAC command
Security Enabled	3	1	frame is protected
Frame Pending	4	1	more data is pending
Acknowledgment Request	5	1	acknowledgment is requested
PAN ID Compression	6	1	destination and source PAN identifiers equal – the latter can be omitted
Destination Addressing Mode	10-11	00	PAN ID and address not present
_		10	16-bit short addresses used
		11	64-bit extended addresses used
Frame Version	12-13	00	frame compliant with 2003 standard
		01	frame compliant with 2006 standard
Source Addressing Mode	14-15	00	PAN ID and address not present
		10	16-bit short addresses used
		11	64-bit extended addresses used

Element	Field	Length (in bytes)
header	Frame Control	2
	Sequence Number	1
	Destination PAN Identifier	0 or 2
	Destination Address	O, 2, or 8
	Source PAN Identifier	0 or 2
	Source Address	0, 2, or 8
	Auxiliary Security Header	0, 5, 6, 10, or 14
payload	frame payload	variable
footer	Frame Check Sequence	2

Figure 11—Schematic view of the data frame and the PHY packet

Acknowledgment and Comand Frames

MAC commands Association request and response Disassociation notification Data request Orphan notification Beacon request (in non-beacon enabled networks) GTS request (Guaranteed Time Slot) Coordinator realignment PAN ID conflict notification

Beacon Frame

Figure 10—Schematic view of the beacon frame and the PHY packet

RPL-

Routing Protocol for Low-Power and Lossy Networks

- Low-power and Lossy Networks consist of constrained nodes
 - » Processing, memory and energy
- These routers are interconnected by links characterized by
 - » High packet loss ratio and low bitrate
- In common situations nodes aim to send information to sink
- RPL
 - "RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks," IETF RFC 6550

RPL – Terminology

DAG	 Directed Acyclic Graph Directed graph in which all edges are oriented No cycles Edges contained in paths oriented and terminating at a root nodes 	
DAG root	Node within the DAG that has no outgoing edge	
DODAG	 Destination-Oriented DAG DAG rooted at a single DAG root 	
Objective Function	Aims to minimize energy, latency,	
Rank	Distance from root using specified objective	
DODAG ID	IPv6 address of the root	
Parent	Immediate successor towards the root	
Sub-DODAG	Sub-tree rooted at this node	
Storing	Nodes keep routing tables for sub- DODAG	
Non-Storing	Nodes know only parent. Do not keep a routing table	

RPL Control Messages

- DIO: DODAG Information Object
 - » Generated downward to announce an RPL instance
 - » Allows other nodes to discover an RPL instance and join it

- » Link-Local multicast request for DIO (neighbor discovery)
- » Do you know of any DODAGs?

- » From child to parents or to root
- » Can I join you as a child on DODAG #x?
- DAO Ack
 - » Yes, you can

DODAG Formation Example

- A multicasts DIOs
 A is member of DODAG with Rank 0
- 1. B, C, D, E hear and determine that their rank (distance) form A is respectively 1, 1, 3, 4
- 3. B, C, D, E send DAOs to A
- 4. A accepts all
- 5. B and C multicast DIOs
- 5. D hears DIOs and determines that its distance from B and C is 1, 2
- 5. E hears both B, C and determines that its distance from B and C is 2, 1
- 8. D sends a DAO to B; E sends a DAO to C
- B sends a DAO-Ack to D;C sends a DAO-Ack to E

RPL Data Forwarding

- Case 1: To the root (n-to-1)
 - » Packet addressed to root; each node in path delivers packet to its parent
- Case 2: X to Y
 - » 2A: Storing: Every node has a forwarding table
 - Packet forwarded up from X to a parent common to X and Y
 - Then, packet forwarded down from common parent to Y
 - » 2B: Non-storing: no forwarding tables except at root
 - Packet forward up from X to DODAG root
 - Root puts a source route on packet and forwards packet down to Y
- ◆ Case 3: Broadcast from the root (1-to-n)
 - » 3A: Storing: every node know their children
 - Broadcast to children
 - » 3B: Non-Storing: every node knows only parents but not children
 - Root puts a source route for each leaf and forwards

Homework

- Review slides and use them to guide your lectures
- ◆ Read from Jelena Misic, and Vojislav B. Misic, "Wireless Personal Area Networks Performance – Interconnections and Security with IEEE 802.15.4"
 - » Chap. 2
- Read RFC 6550, RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks
- Answer questions at moodle