Einführung in die Funktionalanalysis

31. Oktober 2013

Organisatorisches

Vorlesung Di 12.15 - 13.45 HS4; Mi 14.15 - 15.45 HS4

15.10.13

Übung Do 16.00 - 17.30 HS4

Dozent Christian Lageman christian.lageman@mathematik.uni-wuerzburg.de Sprechstunde: Mi 10.00 - 11.30 Übungsblätter: Abgabe Vorlesung Dienstag

Wuecampus

Klausur 5.4.2014, 14:00 HS4

Literatur D. Werner, Funktionalanalysis, Springer-Verlag 2011 F. Hirzebruch, W. Scharlau, Einführung in die Funktionalanalysis, Sprektrum Akademischer Verlage, 1991 E. Kreyzig, Introduction Functional Analysis with Applications, John Wiley & Songs, 1989 R. Meise, D. Vogt, Einführung in die Funktionalanalysis, Vieweg + Teubner Verlag, 2011

Voraussetzungen Lineare Algebra I und II; Analysis I und II; Veriefung Analysis; insbesondere metrische Räume, Folgen in metrischen Räumen, offene und abgeschlossene Mengen, Integration im \mathbb{R}^n

1 Normierte Räume

Sprechen wir von einem \mathbb{K} -Vektorraum, so meinen wir einen \mathbb{R} - oder \mathbb{C} -Vektorraum, d.h. die entsprechenden Definitionen und Sätze gelten sowohl für reelle als auch für komplexe Vektorräume. Wir verwenden \mathbb{K} als Platzhalter für \mathbb{R} bzw. \mathbb{C} in den Sätzen und Definitionen.

Definition 1. Sei X ein \mathbb{K} -Vektorraum. Wir nennen eine Funktion $\|\cdot\|: X \to [0,\infty)$ eine $Halbnorm\ auf\ X$, falls gilt:

- 1. $\forall_{v \in X, \lambda \in \mathbb{K}} : ||\lambda v|| = |\lambda| \cdot ||v||$
- 2. $\forall v, w \in X : ||v + w|| \le ||v|| + ||w||$ (Dreiecksungleichung)

Gilt zusätzlich noch $\forall v \in X : ||v|| = 0 \implies v = 0$, so nennen wir $||\cdot||$ eine Norm auf X. Ist $||\cdot||$ eine Norm auf X, so bezeichnen wir $(X, ||\cdot||)$ als normierten Raum.

Eine Norm $\|\cdot\|$ auf einem \mathbb{K} -Vektorraum X induziert durch $d(v,w) = \|v-w\|$ eine Metrik $d: X \times X \to [0,\infty)$ auf X, die wir als kanonische Metrik auf $(X,\|\cdot\|)$ bezeichnen.

Ein normierter Raum ist damit auch ein metrischer Raum. Die Begriffe von offenen und abgeschlossenen Mengen, Konvergenz von Folgen, Cauchy-Folgen, Vollständigkeit, Stetigkeit von Abbildungen ergeben sich für normierte Räume aus den entsprechenden Begriffen für metrische Räume.

Example 1. Sei $(X, \|\cdot\|)$ ein normierter Raum. Eine Folge (v_n) in X heißt konvergent gegen $v^* \in X$ falls gilt:

$$\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}: ||v_n-v^*||<\varepsilon$$

wobei $||v_n - v^*|| = d(v_n, v^*)$ mit der kanonischen Metrik d ist. \triangle

Für einen normierten Raum $(X, \|\cdot\|)$ notieren wir:

- 1. den Abschluss einer Menge $M \subset X$ mit \overline{M} ,
- 2. den Rand einer Menge $M \subset X$ mit ∂M ,
- 3. das Innere einer Menge $M \subset X$ mit int M,

Aus der entsprechenden Definitionen für metrische Räume ergibt sich: eine Folge (v_n) in einem normierten Raum $(X, \|\cdot\|)$ heißt Cauchy-Folge, falls gilt

$$\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{n,m>N}: ||v_n-v_m||<\varepsilon.$$

Ein metrischer Raum und entsprechend auch ein normierter Raum, in dem jede Cauchy-Folge konvergiert, nennt man *vollständig*.

1. die offene Kugel um $v \in X$ mit Radius r mit $U_r(v) = \{w \in X : ||v - w|| < r\}$.

Definition 2. Einen vollständigen normierten Raum bezeichnet man als Ba-nachraum.

Example 2. 1. Versehen wir \mathbb{R}^n bzw \mathbb{C}^n mit einer Norm $\|\cdot\|$, so ist der normierte Raum $(\mathbb{R}^n, \|\cdot\|)$ bzw. $(\mathbb{C}^n, \|\cdot\|)$ ein Banachraum. Es sei daran erinnert, dass auf einem endlich-dimensionalen Vektorraum alle Normen äquivalent sind, d.h. sind $\|\cdot\|_*$, $\|\cdot\|_+$ Normen auf einem endlichendimensionalen \mathbb{K} -Vektorraum X, so gibt es Konstanten m, M > 0 mit $\forall_{v \in X} : m\|v\|_* \leq \|v\|_+ \leq M\|v\|_*$. Die Vollständigkeit im \mathbb{R}^n bzw. \mathbb{C}^n ist damit nur für eine Norm nachzuweisen und aus der Analysis bekannt.

- 2. Sei M eine nicht-leere Menge. Wir bezeichnen mit $l^{\infty}(M)$ den \mathbb{K} -Vektorraum der beschränkten Funktionen $M \to \mathbb{K}$. Wir definieren auf $l^{\infty}(M)$ die Norm $\|\cdot\|_{\infty}$ durch $\|f\|_{\infty} = \sup_{x \in M} |f(x)|$ für $f \in l^{\infty}(M)$. Die Norm ist wohldefiniert, da f beschränkt ist. Man bezeichnet $\|\cdot\|_{\infty}$ auch als die sogenannte Supremumsnorm. $\|\cdot\|_{\infty}$ ist eine Norm, denn:
 - (a) für $f \in l^{\infty}(M)$, $\lambda \in \mathbb{K}$ gilt: $\|\lambda f\|_{\infty} = \sup_{x \in M} |\lambda f(x)| = \sup_{x \in M} |\lambda| |f(x)| = |\lambda| \sup_{x \in M} |f(x)| = |\lambda| \|f\|_{\infty}$.
 - (b) für $f, g \in l^{\infty}(M)$ gilt: $||f+g||_{\infty} = \sup_{x \in M} |(f+g)(x)| = \sup_{x \in M} |f(x)+g(x)| \le \sup_{x \in M} |f(x)| + |g(x)| \le \sup_{x \in M} |f(x)| + \sup_{x \in M} |g(x)| = ||f||_{\infty} + ||g||_{\infty}.$
 - (c) für $f \in l^{\infty}(M)$ gilt: $||f||_{\infty} = 0 \implies \sup_{x \in M} |f(x)| = 0 \implies \forall_{x \in M} : |f(x)| = 0 \implies f \equiv 0.$

 $(l^{\infty}(M), \|\cdot\|_{\infty})$ ist also ein normierter Raum. Wir zeigen nun, dass der Raum vollständig ist. Sei dazu (f_n) eine Cauchy-Folge in $l^{\infty}(M)$. Es gilt also $\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{n,m>N}:\|f_n-f_m\|<\varepsilon$. Es gilt außerdem $\|f_n-f_m\|=\sup_{x\in M}|f_n(x)-f_m(x)|$. Dies impliziert, dass $\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{n,m>N}\forall_{x\in M}:|f_n(x)-f_m(x)|<\varepsilon$. Insbesondere gilt für alle $x\in M$ daher $\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{n,m>N}:|f_n(x)-f_m(x)|<\varepsilon$, und also ist $(f_n(x))$ eine Cauchy-Folge für jedes $x\in M$. Da \mathbb{R} und \mathbb{C} vollständig sind, ist für jedes $x\in M$ die Folge $(f_n(x))$ konvergent. Wir erhalten die Funktion $f^*:M\to\mathbb{K}$ durch 16.10.13 $\forall_{x\in M}:f^*(x)=\lim_{n\to\infty}f_n(x)$. Wir erhalten eine Funktion $f^*:M\to\mathbb{K}$ mit $\forall_{x\in M}:f^*(x)=\lim_{n\to\infty}f_n(x)$. Wir hatten uns überlegt, dass

$$\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{n,m>N}\forall_{x\in M}:|f_n(x)-f_m(x)|<\varepsilon.$$

Damit gibt es ein $N \in \mathbb{N}$ mit $\forall_{n,m>N} \forall_{x \in M} : |f_n(x) - f_m(x)| < 1$. (Dies ist äquivalent zu $f_m(x) \in U_1(f_n(x))$.) Also $\forall_{m>N} \forall_{x \in M} : f_m(x) \in U_1(f_{N+1}(x))$. Somit $\forall_{x \in M} : f^*(x) \in U_1(f_{N+1}(x))$. Damit $\forall_{x \in M} : |f_{N+1}(x) - f^*(x)| \leq 1$. Da $f_{N+1} \in l^{\infty}(M)$, also beschränkt ist, muss auch f^* beschränkt sein. Wir erhalten $f^* \in l^{\infty}(M)$. Wir zeigen nun die Konvergenz von (f_n) gegen f^* . Sei $\varepsilon > 0$ gegeben. Dann gibt es sein $N \in \mathbb{N}$, so dass $\forall_{n,m>N} \forall_{x \in M} : |f_n(x) - f_m(x)| < \frac{\varepsilon}{3}$. Also $\forall_{x \in M} \forall_{n>N} \forall_{m>N} : |f_n(x) - f_m(x)| < \frac{\varepsilon}{3}$. Da es zu jedem $x \in M$ und n > N ein $m(x,n) \in \mathbb{N}$, m(x,n) > N gibt mit

$$|f_{m(x,n)}(x) - f^*(x)| < \underbrace{\frac{\varepsilon}{2} - |f_n(x) - f_{m(x,n)}(x)|}_{> \frac{\varepsilon}{2} - \frac{\varepsilon}{4} = \frac{1}{6}\varepsilon}.$$

folgt

$$\forall_{x \in M} \forall_{n > N} : \underbrace{|f_n(x) - f_{m(x,n)}(x)| + |f_{m(x,n)}(x) - f^*(x)|}_{|f_n(x) - f^*(x)| \le} < \frac{\varepsilon}{2} - |f_n(x) - f_{m(x,n)}(x)| + |f_n(x) - f_{m(x,n)}(x)| < \frac{\varepsilon}{2}$$

Also $\forall_{n>N}\forall_{x\in M}: |f_n(x)-f^*(x)|<\frac{\varepsilon}{2}.$ Damit $\forall_{n>N}: \|f_n-f^*\|_{\infty}\leq \frac{\varepsilon}{2}\leq \varepsilon.$ Damit konvergiert (f_n) gegen f^* . Somit ist $(l^{\infty}(M),\|\cdot\|_{\infty})$ ein Banachraum.

Δ

Theorem 1. Sei $(X, \|\cdot\|)$ ein normierter Raum und $U \subset X$ ein Unterraum von X.

- 1. Ist $(X, \|\cdot\|)$ ein Banachraum und U eine abgeschlossene Teilmenge von X, so ist $(U, \|\cdot\|)$ ein Banachraum.
- 2. Ist U vollständig, so ist U eine abgeschlossene Teilmenge von X.

0

- Beweis. 1. Sei (u_n) eine Cauchy-Folge in $(U, \|\cdot\|)$. Dann ist (u_n) eine Cauchy-Folge in $(X, \|\cdot\|)$. Also konvergiert (u_n) gegen ein $u^* \in X$. Damit ist $u^* \in \overline{U}$, also $u^* \in U$. Somit ist U vollständig.
 - 2. Sei U vollständig. Ist $u^* \in \overline{U} \setminus U$, so gibt es Folge (u_n) in U die gegen u^* konvergiert. Diese Folge ist eine Cauchy-Folge in U und konvergiert somit gegen einen Grenzwert $u^{**} \in U$. Wegen der Eindeutigkeit von Grenzwerten folgt $u^* = u^{**} \in U$. Also $\overline{U} \setminus U = \emptyset$ und U abgeschlossen.

Example 3. Wir verwenden die Notation $l^{\infty} = l^{\infty}(\mathbb{N})$. Da eine Folge in \mathbb{K} eine Funktion $\mathbb{N} \to \mathbb{K}$ ist, ist l^{∞} also der Raum aller beschränkten Folgen in \mathbb{K} . Wir definieren die folgenden Unterräume von l^{∞} : $c = \{(x_n)|x_n \in \mathbb{K}, (x_n) \text{ konvergent } \}$, $c_0 = \{(x_n)|x_n \in \mathbb{K}, \lim_{n\to\infty} x_n = 0\}$, $d = \{(x_n)|x_n \in \mathbb{K}, x_n \text{ bis auf endlich viele Folgenglieder gleich } 0\}$. Da die konvergente Folge in \mathbb{K} in \mathbb{R} bzw. \mathbb{C} beschränkt ist, folgt $d \subset c_0 \subset c \subset l^{\infty}$. Sei $\|\cdot\|_{\infty}$ die Supremumsnorm auf l^{∞} . Es sind $(d, \|\cdot\|_{\infty})$, $(c_0, \|\cdot\|_{\infty})$, $(c, \|\cdot\|_{\infty})$ normierte Räume. Welche dieser Räume sind Banachräume? Mit Satz 1 reicht es zu zeigen, dass der entsprechende Raum abgeschlossen in l^{∞} ist.

Sei (f_n) eine Folge in c, die konvergent gegen ein $f^* \in l^{\infty}$ ist. Um Doppelindizes zu vermeiden, verwenden wir die Darstellung von Folgen als Funktionen $\mathbb{N} \to \mathbb{K}$. Da (f_n) eine Folge in c ist, können wir durch $x_n = \lim_{m \to \infty} f_n(m)$ eine Folge (x_n) in \mathbb{K} definieren. Es gilt $|x_n - x_l| \leq \sup_{m \in \mathbb{N}} |f_n(m) - f_l(m)| = \|f_n - f_l\|_{\infty}$. Da (f_n) eine Cauchy-Folge ist, ist durch diese Abschätzung die Folge (x_n) eine Cauchy-Folge in \mathbb{K} . Also konvergiert (x_n) gegen ein $x^* \in \mathbb{K}$. Wir wollen nun zeigen, dass f^* gegen x^* konvergiert. Sei $\varepsilon > 0$. Wähle $N \in \mathbb{N}$, so dass $\|f^* - f_N\| < \frac{\varepsilon}{3}$ und $|x_N - x^*| < \frac{\varepsilon}{3}$. Wähle $M \in \mathbb{N}$, so dass für alle m > M gilt $|f_N(m) - x_N| < \frac{\varepsilon}{3}$. Dann gilt für alle m > M

$$|f^*(m)-x^*| \leq \underbrace{|f^*(m)-f_N(m)|}_{\leq ||f^*-f_N||_{\infty}} + |\underbrace{f_N(m)-x_N}_{<\frac{\varepsilon}{3}}| + |\underbrace{x_N-x^*}_{<\frac{\varepsilon}{3}}| < \underbrace{||f^*-f_N||_{\infty}}_{<\frac{\varepsilon}{3}} + \frac{2}{3}\varepsilon < \varepsilon.$$

Also ist f^* konvergente Folge und $f^* \in c$. Damit ist c abgeschlossen und nach Satz 1 ein Banachraum.

Sei (f_n) eine Folge in c_0 die konvergent gegen ein $f^* \in l^{\infty}$ ist. Wiederholen wir das obige Argument, so erhalten wir zusätzlich dass (x_n) kontant 0 ist. Damit ist $x^* = 0$ und $f^* \in c_0$. Somit ist c_0 abgeschlossen und nach Satz 1 ein Banachraum. Der Raum $(d, \|\cdot\|_{\infty})$ ist kein Banachraum.

Δ

Wir definieren nun weitere Folgenräume.

Definition 3. Für $p \in \mathbb{R}$ mit $1 \leq p < \infty$ setzen wir $l^p = \{(x_n)|x_n \in \mathbb{K}, \sum_{n=1}^{\infty}|x_n|^p < \infty\}$ und $\|(x_n)\|_p = (\sum_{n=1}^{\infty}|x_n|^p)^{\frac{1}{p}}$ für $(x_n) \in l^p$. Wir wollen im Folgenden zeigen, dass $(l^p, \|\cdot\|_p)$ Banachräume sind.

22.10.13

Theorem 2. Für $1 \le p < \infty$ ist l^p versehen mit der Addition und Skalarmultiplikation von Folgen ein \mathbb{K} -Vektorraum.

0

Beweis. Offensichtlich ist die konstante Folge (a_n) für alle $n \in \mathbb{N}$ $a_n = 0$ in l^p enthalten. Desweiteren ist für $\lambda \in \mathbb{K}$ und $(x_n) \in l^p$ auch $(\lambda x_n) \in l^p$, da $\sum_{n=1}^{\infty} |\lambda x_n|^p = |\lambda|^p \sum_{n=1}^{\infty} |x_n|^p \text{ konvergiert. Schließlich, sind } (x_n), (y_n) \in l^p,$ so gilt $\sum_{n=1}^{\infty} |x_n + y_n|^p \leq \sum_{n=1}^{\infty} (|x_n| + |y_n|)^p \leq \sum_{n=1}^{\infty} (2 \max\{|x_n|, |y_n|\})^p = 2^p \sum_{n=1}^{\infty} (\max\{|x_n|, |y_n|\})^p \leq 2^p \sum_{n=1}^{\infty} |x_n|^p + |y_n|^p = 2^p (\sum_{n=1}^{\infty} |x_n|^p + \sum_{n=1}^{\infty} |y_n|^p) < \infty.$ Also $(x_n + y_n) \in l^p$.

Theorem 3. Holdesche Ungleichung

- 1. Sind $(x_n) \in l'$ und $(y_n) \in l^{\infty}$, so ist $(x_n y_n) \in l'$ und $\|(x_n y_n)\|_{\infty} \leq \|(x_n)\|_{1}\|(y_n)\|_{\infty}$.
- 2. Sei $1 und <math>q = \frac{p}{p-1}$. Sind $(x_n) \in l^p$ und $(y_n) \in l^q$, so ist $(x_n y_n) \in l'$ und $\|(x_n y_n)\|_{l'} \leq \|(x_n)\|_{p} \|(y_n)\|_{q}$.

0

Beweis. 1. Es gilt $\sum_{n=1}^{\infty} |x_n y_n| \le \sum_{n=1}^{\infty} |x_n| ||(y_n)||_{\infty} = ||(y_n)||_{\infty} \sum_{n=1}^{\infty} |x_n| = ||(y_n)||_{\infty} ||(y_n)||_{\infty} ||(x_n)||_{\varepsilon} < \infty.$

2. Wir haben $\frac{1}{p} + \frac{1}{q} = 1$. Sei a, b > 0 und $A = p \log a$ sowie $B = q \log b$. Die Funktion $t \mapsto \exp(t)$ ist konvenx, also $\exp(\frac{1}{p}A + \frac{1}{q}B) \le \frac{1}{p}\exp(A) + \frac{1}{q}\exp(B)$. Somit

$$ab = \exp(\underbrace{\log a}_{=\frac{1}{p}A} + \underbrace{\log b}_{=\frac{1}{q}B}) \le \frac{1}{p} \exp(\underbrace{p \log a}_{A}) + \frac{1}{q} \exp(\underbrace{q \log b}_{B}) = \frac{1}{p}a^{p} + \frac{1}{q}b^{q}.$$

Wir haben für $(x_n) \in l^p$, $(y_n) \in l^q$ mit $||(x_n)||_p = 1 = ||(y_n)||_q$. Es gilt

$$\sum_{n=1}^{\infty} |x_n| |y_n| \leq \sum_{n=1}^{\infty} (\frac{1}{p} |x_n|^p + \frac{1}{q} |y_n|^q) = \frac{1}{p} \underbrace{\sum_{n=1}^{\infty} |x_n|^p}_{=1} + \frac{1}{q} \underbrace{\sum_{n=1}^{\infty} |y_n|^q}_{=1} = \frac{1}{p} + \frac{1}{q} = 1.$$

Sind $(x_n) \in l^p$, $(y_n) \in l^q$ mit $||(x_n)||_p \neq 0$ und $||(y_n)||_q \neq 0$, so ist mit (1)

$$\underbrace{\sum_{n=1}^{\infty} |x_n y_n|}_{=\|(x_n)\|_p} = \|(x_n)\|_p \|(y_n)\|_q \sum_{m=1}^{\infty} \frac{|x_m|}{\|(x_n)\|_p} \cdot \frac{|y_m|}{\|(y_n)\|_q} \le \|(x_n)\|_p \|(y_n)\|_q \cdot 1.$$

Sind $(x_n) \in l^p$ und $(y_n) \in l^q$ mit $||(x_n)||_p = 0$ oder $||(y_n)||_q = 0$, so ist $(x_n y_n) \in l^1$ und $||(x_n y_n)||_{\ell} = 0$.

Theorem 4. Minkowskische Ungleichung. Sei $1 \le p < \infty$. Für $(x_n), (y_n) \in l^p$ gilt $\|(x_n + y_n)\|_p \le \|(x_n)\|_p + \|(y_n)\|_p$.

Beweis. Für p=1 erhalten wir die Ungleichung direkt. Sei p>1 und $q=\frac{p}{q-1}$. Weiterhin seien $(x_n), (y_n) \in l^p$. Nach Satz 2 ist $(x_n+y_n) \in l^p$ und $\sum_{n=1}^{\infty} |x_n+y_n|^p = \sum_{n=1}^{\infty} (|x_n+y_n|^{p-1})^q$ konvergent¹. Somit ist $(|x_n+y_n|^{p-1}) \in l^q$. Nach Satz 3 ist damit $(|x_n||x_n+y_n|^{p-1}) \in l^1$ und $(|y_n||x_n+y_n|^{p-1}) \in l^1$ und wir erhalten $\sum_{n=1}^{\infty} |x_n||x_n+y_n|^{p-1} = \|(|x_n||x_n+y_n|^{p-1})\|_1 \leq \|(x_n)\|_p \|(|x_n+y_n|^{p-1})\|_q = (\sum_{n=1}^{\infty} |x_n|^p)^{\frac{1}{p}} \left(\sum_{n=1}^{\infty} (|x_n+y_n|^{p-1})^q\right)^{\frac{1}{q}} = \|(x_n)\|_p (\|(x_n+y_n)\|_p)^{p-1}$. Also $\sum_{n=1}^{\infty} |y_n||x_n+y_n|^{p-1} \leq \|(x_y)\|_p (\|(x_n+y_n)\|_p)^{p-1}$. Somit $\|(x_n+y_n)\|_p = \sum_{n=1}^{\infty} |x_n+y_n|^p \leq \sum_{n=1}^{\infty} (|x_n|+|y_n|) \cdot |x_n+y_n|^{p-1} \leq \sum_{n=1}^{\infty} |x_n||x_n+y_n|^{p-1}$

 $= |x_n + y_n| \cdot |x_n + y_n|^{p-1}$ $y_n|^{p-1} + \sum_{n=1}^{\infty} |y_n| |x_n + y_n|^{p-1} \le \|(x_n)\|_p (\|(x_n + y_n)\|_p)^{p-1} + \|(y_n)\|_p (\|(x_n + y_n)\|_p)^{p-1}$ $= (\|(x_n)\|_p + \|(y_n)\|_p) \|(x_n + y_n)\|_p^{p-1}.$ Für $\|(x_n + y_n)\|_p \ne 0$ liefert Divion die Minkowski-Ungleichung. Für $\|(x_n + y_n)\|_p = 0$ ist die Minkowski-Ungleichung trivial.

Theorem 5. Für $1 \le p < \infty$ ist $(l^p, \|\cdot\|_p)$ ein Banachraum. Ebenso ist $(l^\infty, \|\cdot\|_\infty)$ ein Banachraum.

Beweis. Die Behauptung für l^{∞} wurde bereits in Beispiel 1 gezeigt. Sei $1 \leq p < \infty$. Nach Satz 2 ist l^p ein \mathbb{K} -Vektorraum. Für all $(x_n) \in l^p$, $\lambda \in \mathbb{K}$ ist $\|(\lambda x_n)\|_p = (\sum_{n=1}^{\infty} |\lambda x_n|^p)^{\frac{1}{p}} = |\lambda| (\sum_{n=1}^{\infty} |x_n|^p)^{\frac{1}{p}} = |\lambda| \|(x_n)\|_p$. Die Dreiecksungleichung gilt für $\|\cdot\|_p$ nach Satz 4. Ist für $(x_n) \in l^p$, $\|(x_n)\|_p = 0$, so ist $\sum_{n=1}^{\infty} |x_n|^p = 0$, also $x_n = 0$ für alle $n \in \mathbb{N}$. Insgesamt ist $\|\cdot\|_p$ also eine Norm auf l^p .

¹Nebenrechnung: (p-1)q = p.

Sei (f_n) eine Cauchy-Folge in l^p . Wir verwenden für den Rest des Beweises die Schreibweise von Elementen aus l^p als Funktionen $\mathbb{N} \mapsto \mathbb{K}$. Für $m, n, k \in \mathbb{N}$ gilt

$$|f_n(m) - f_k(m)| = (|f_n(m) - f_k(m)|^p)^{\frac{1}{p}} \le \left(\sum_{l=1}^{\infty} |f_n(l) - f_k(l)|^p\right)^{\frac{1}{p}} = ||f_n - f_k||_p.$$

Wie schon für l^{∞} folgt, dass für jedes $m \in \mathbb{N}$ die Folge $(f_n(m))_n$ eine Cauchy-Folge in \mathbb{K} ist. Somit konvergiert für jedes $m \in \mathbb{N}$ die Folge $(f_n(m))_n$ und wir erhalten eine Funktion $f^* : \mathbb{N} \to \mathbb{K}$ mit $f^*(m) = \lim_{n \to \infty} f_n(m)$. Sei $\varepsilon > 0$ gegeben. Wähle $N \in \mathbb{N}$ so dass $\forall_{n,k>N} : ||f_n - f_k|| < \frac{\varepsilon}{2}$. Somit gilt $\forall_{n,k>N}$ und alle $M \in \mathbb{N}$

$$\left(\sum_{m=1}^{M} |f_n(m) - f_k(m)|^p\right)^{\frac{1}{p}} \le ||f_n - f_k||_p < \frac{\varepsilon}{2}.$$

Für $k \to \infty$ erhalten wir $\forall_{n>N}, \forall_{M \in \mathbb{N}}$

$$\left(\sum_{m=1}^{M} |f_n(m) - f^*(m)|^p\right)^{\frac{1}{p}} \le \frac{\varepsilon}{2}.$$

Also $\forall_{n>N}$

$$\left(\sum_{m=1}^{\infty} |f_n(m) - f^*(m)|^p\right)^{\frac{1}{p}} \le \frac{\varepsilon}{2}.$$

Somit $f_n - f^* \in l^p$ für n > N, also wegen $f^* = f_n - (f_n - f^*)$ auch $f^* \in l^p$. Desweiteren $\forall_{n > N} : ||f_n - f^*||_p < \varepsilon$. Also konvergiert (f_n) gegen f^* . Damit ist $(l^p, ||\cdot||_p)$ ein Banachraum.

Example 4. 1. Sei X ein metrischer Raum mit Metrik $d: X \times X \to [0, \infty)$. Wir bezeichnen $C^b(X)$ den Vektorraum der stetigen, beschränkten Funktionen $X \to \mathbb{K}$. $C^b(X)$ ist ein Unterraum von $l^\infty(X)$, also ist $C^b(X)$ versehen mit der Supremumsnorm $\|\cdot\|_{\infty}$ ein normierter Raum.

Die Konvergenz in $C^b(X)$ bezüglich $\|\cdot\|_{\infty}$ entspricht der gleichmäßigen Konvergenz wie wir sie aus der Analysis kennen.

Sei (f_n) eine Folge in $C^b(X)$, die gegen ein $f^* \in l^{\infty}(X)$ konvergiert. Aus der Analysis wissen wir, dass dann f^* stetig, also $f^* \in C^b(X)$ ist. Also ist $C^b(X)$ abgeschlossener Unterraum von $l^{\infty}(X)$ und $(C^b(X), \|\cdot\|_{\infty})$ ist ein Banachraum.

Ist der Raum X kompakt, z.B. eine kompakte Teilmenge des \mathbb{R}^n mit der euklidschen Metrik, so sind alle stetigen Funktionen $X \to \mathbb{K}$ beschränkt, also $C^b(X) = C(X) = \{f: X \to \mathbb{K} | f \text{ stetig} \}.$

2. Sei $a, b \in \mathbb{R}$, a < b. Wir bezeichnen mit $C^1([a, b])$ den Vektorraum der stetig differenzierbaren Funktionen $[a, b] \to \mathbb{K}$. Es ist $C^1([a, b]) \subset l^{\infty}([a, b])$.

Der Raum $(C^1([a,b]),\|\cdot\|_{\infty})$ ist kein Banachraum (siehe 3. Übungsblatt). Wir können auf $C^1([a,b])$ jedoch eine andere Norm definieren und zwar $\|f\|:=\|f\|_{\infty}+\|f'\|_{\infty}$. Mit dieser Norm versehen ist $C^1([a,b])$ ein Banachraum. Dies folgt aus dem nächsten Beispiel.

3. Sei $\Omega \subset \mathbb{R}^n$ eine offene Menge. Ist $f:\Omega \to \mathbb{K}$ eine r-mal stetig differenzierbare Funktion so verwenden wir die Multiindexschreibweise $D^{\alpha}f$ mit $\alpha \in \mathbb{N}_0^n$ für die partielle Ableitung

$$\frac{\partial^{\alpha_1}\partial^{\alpha_2}\cdots\partial^{\alpha_n}}{\partial x_1^{\alpha_1}\partial x_2^{\alpha_2}\cdots\partial x_n^{\alpha_n}}f(x_1,...,x_n)$$

der Ordnung $|\alpha| = \alpha_1 + ... + \alpha_n \le r$, $\alpha = (\alpha_1, ..., \alpha_n)$. Ist $\Omega \subset \mathbb{R}^n$ offen und beschränkt, so können wir durch

 $C^r(\overline{\Omega}) = \{f: \Omega \to \mathbb{K}: f \text{ ist } r\text{-mal stetig differenzierbar, für alle Multiindizes } \alpha \in \mathbb{N}_0^n \text{mit } 0 \leq |\alpha| \leq r \text{ist } L^n(\overline{\Omega}) = \{f: \Omega \to \mathbb{K}: f \text{ ist } r\text{-mal stetig differenzierbar, für alle Multiindizes } \alpha \in \mathbb{N}_0^n \text{mit } 0 \leq |\alpha| \leq r \text{ist } L^n(\overline{\Omega}) = \{f: \Omega \to \mathbb{K}: f \text{ ist } r\text{-mal stetig differenzierbar, für alle Multiindizes } \alpha \in \mathbb{N}_0^n \text{mit } 0 \leq |\alpha| \leq r \text{ist } L^n(\overline{\Omega}) = \{f: \Omega \to \mathbb{K}: f \text{ ist } r\text{-mal stetig differenzierbar, für alle Multiindizes } \alpha \in \mathbb{N}_0^n \text{mit } 0 \leq |\alpha| \leq r \text{ist } L^n(\overline{\Omega}) = \{f: \Omega \to \mathbb{K}: f \text{ ist } r\text{-mal stetig differenzierbar, für alle Multiindizes } \alpha \in \mathbb{N}_0^n \text{mit } 0 \leq |\alpha| \leq r \text{ist } L^n(\overline{\Omega}) = \{f: \Omega \to \mathbb{K}: f \text{ ist } r\text{-mal stetig differenzierbar, für alle Multiindizes } \alpha \in \mathbb{N}_0^n \text{mit } 0 \leq |\alpha| \leq r \text{ist } L^n(\overline{\Omega}) = r \text{ist } L^n(\overline{\Omega}$

einen Unterraum von $l^{\infty}(\Omega)$ definieren. Durch

$$||f|| := \sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} ||D^{\alpha} f||_{\infty}$$

für $f \in C^r(\overline{\Omega})$ definieren wir eine Norm auf $C^r(\overline{\Omega})$ (siehe 2. Übungsblatt). Der normierte Raum $(C^r(\overline{\Omega}), \|\cdot\|)$ ist ein Banachraum.

 \triangle

1.1 Eigenschaften normierter Räume

Lemma 1. Sei $(X, \|\cdot\|)$ ein normierter Raum. Es gilt

- 1. $\forall_{v,w\in X}: ||v|| ||w||| \le ||v w||$.
- 2. Die Abbildung $\|\cdot\|: x \mapsto [0, \infty)$ ist stetig.
- 3. Eine Folge (x_n) in X konvergiert genau dann gegen $x \in X$ wenn $\lim_{n\to\infty} ||x_n x|| = 0$.

Beweis. Für 1 und 2 siehe erstes Übungsblatt. 3 folgt direkt aus der entsprechenden Eigenschaft für metrische Räume.

Theorem 6. Sei $(X, \|\cdot\|)$ ein metrischer Raum.

- 1. Konvergiert die Folge (x_n) in X gegen $x \in X$ und die Folge (y_n) in X gegen $y \in X$, so konvergiert für alle $\lambda, \mu \in \mathbb{K}$ die Folge $(\lambda x_n + \mu y_n)$ gegen $\lambda x + \mu y$.
- 2. Ist U ein Unterraum von X, so ist auch \overline{U} ein Unterraum von X.

- Beweis. 1. Für alle $\lambda, \mu \in \mathbb{R}$ gilt $\|\lambda x_n + \mu y_n (\lambda x + \mu y)\| \le \|\lambda x_n \lambda x + \mu y_n \mu y\| \le |\lambda| \|x_n x\| + |\mu| \|y_n y\|$. Mit Lemma 1 (3) folgt dann die Behauptung.
 - 2. Sei $x,y\in \overline{U}$. Dann gibt es Folgen $(x_n),(y_n)$ in U mit $\lim_{n\to\infty}x_n=x,\lim_{n\to\infty}y_n=y$. Sei $\lambda,\mu\in\mathbb{K}$. Da U linearer Unterraum von X ist, ist $(\lambda x_n+\mu y_n)$ Folge in U. Nach 1 ist $(\lambda x_n+\mu y_n)$ konvergent mit $\lim_{n\to\infty}\lambda x_n+\mu y_n=\lambda x+\mu y$. Also $\lambda x+\mu y\in \overline{U}$. Da $U\neq\emptyset$ und $\underline{U}\subset\overline{U}$ ist $\overline{U}\neq\emptyset$. Damit ist \overline{U} Unterraum von X.

Definition 4. Sei X ein \mathbb{K} -Vektorraum. Zwei Normen $\|\cdot\|_a$, $\|\cdot\|_b$ auf X heißen äquivalent, falls es m, M > 0 gibt, so dass $\forall_{v \in X} m \|v\|_a \leq \|v\|_b \leq M \|v\|_a$.

Lemma 2. Die Äquivalenz von Normen auf einem \mathbb{K} -Vektorraum X definiert eine Äquivalenzrelation auf der Menge der Normen auf X.

Beweis. Siehe 2. Übungsblatt.

Theorem 7. Sei X ein \mathbb{K} -Vektorraum und $\|\cdot\|_a$, $\|\cdot\|_b$ Normen auf X. Die folgenden Aussagen sind äquivalent:

- 1. Die Normen $\|\cdot\|_a$ und $\|\cdot\|_b$ sind äquivalent.
- 2. Eine Folge (x_n) in X konvergiert genau dann gegen $x \in X$ bzgl. $\|\cdot\|_a$, wenn sie gegen x bzgl. $\|\cdot\|_b$ konvergiert.
- 3. Eine Folge (x_n) in X konvergiert genau dann gegen 0 bzgl. $\|\cdot\|_a$, wenn sie gegen 0 bzgl. $\|\cdot\|_b$ konvergiert.

0

- Beweis. $1 \Longrightarrow 2$: Sei $m, M, \widetilde{m}, \widetilde{M} > 0$ mit $\forall_{v \in X} : m \|v\|_a \le \|v\|_b \le M \|v\|_a$ und $\forall_{v \in X} : \widetilde{m} \|v\|_b \le \|v\|_a \le \widetilde{M} \|v\|_b$ (siehe Lemma 2). Dann gilt für Folge (x_n) in X und $x \in X$ stets $\|x_n x\|_a \le \widetilde{M} \|x_n x\|_b$ und $\|x_n x\|_b \le M \|x_n x\|_a$.
- $2 \implies 3$: 3 ist Sonderfall von 2.
- $3 \Longrightarrow 1$: Angenommen $\|\cdot\|_a$ und $\|\cdot\|_b$ sind nicht äquivalent. Dann gibt es kein M > 0 oder kein $\widetilde{M} > 0$ so dass für alle $v \in X$: $\|v\|_b \le M\|v\|_a$ und $\|v\|_a \le \widetilde{M}\|v\|_b$.

2 Übungsblätter

2.1 Übungsblatt 1

2.1.1 Aufgabe 1.1

Zunächst zeigen wir: $\forall_{x,y \in X} : |||x|| - ||y||| \le ||x - y||$:

$$||x|| - ||y|| = ||x - y + y|| - ||y|| \le ||x - y|| + ||y|| - ||y|| = ||x - y||$$

$$||y|| - ||x|| = ||y - x + x|| - ||x|| \le ||y - x|| + ||x|| - ||x|| = ||x - y||$$

Dies impliziert die Ungleichung.

Sei $x \in X$ gegeben und $\varepsilon > 0$. Wähle $\delta = \varepsilon$. Dann gilt für alle $y \in U_{\delta}(x): ||x|| - ||y||| \le ||x - y|| < \delta = \varepsilon$. Damit ist die Abbildung $x \mapsto ||x||$ stetig.

2.1.2 Aufgabe 1.2

Sei $v \in X$ und r > 0. Ist (w_n) Folge in $U_r(v)$, die gegen $w \in X$ konvergiert, so folgt wegen der Stetigkiet von $x \mapsto \|x\|$, dass $\|w-v\| = \lim_{n \to \infty} \|w_n-v\| \le r$. Also $\overline{U_r(v)} \subset \{w \in X : \|w-v\| \le r\}$. Sei $w \in X$ mit $\|w-v\| = r$. Definiere Folge (w_n) durch $w_n = v + (1 - \frac{1}{n})(w-v)$. Da $\|w-w_n\| = \|w-v-(1 - \frac{1}{n})(w-v)\| = \|w-w+\frac{w}{n}-v+v-\frac{v}{n}\| = \|\frac{1}{n}(w-v)\| = \frac{1}{n}\|w-v\| = \frac{1}{n}r \to_{n\to\infty} 0$ konvergiert (w_n) gegen w. Weiterhin ist $\|v-w_n\| = \|v-v-(1 - \frac{1}{n})(w-v)\| = (1 - \frac{1}{n})\|w-v\| = (1 - \frac{1}{n})r < r$ also (w_n) Folge in $U_r(v)$. Damit $\{w \in X | \|w-v\| \le r\} \subset \overline{U_r(v)}$ und es folgt die Gleichheit der Mengen. Gegenbeispiel für metrische Räume: Sei $X = \mathbb{Z}$ und d(v,w) = |v-w|. X ist mit d ein metrischer Raum und es gilt $\{w \in X : d(w,0) < 1\} = \{0\} = \{0\} \neq \{-1,0,1\} = \{w \in X : d(w,0) \le 1\}$.

2.1.3 Aufgabe 1.3

Behauptung: Für $1 gilt: <math>l^1 \subset l^p \subset l^q \subset l^\infty$. Beweis: Sei $(x_n) \in l^p$ für $1 \le p < \infty$. Dann ist die Reihe $\sum_{n=1}^{\infty} |x_n|^p$ konvergent. Damit konvergiert $(|x_n|^p)_{n \in \mathbb{N}}$ und somit (x_n) gegen 0. Also ist (x_n) beschränkt und $(x_n) \in l^\infty$.

Sei $q \in \mathbb{R}$ mit p < q. Da (x_n) gegen 0 konvergiert, gibt es $N \in \mathbb{N}$, so dass für alle n > N: $|x_n| < 1$. Damit ist für alle n > N: $|x_n|^q < |x_n|^p$. Da $\sum_{n=1}^{\infty} |x_n|^p$ konvergiert ist nach dem Majorantenkriterium auch $\sum_{n=1}^{\infty} |x_n|^q$ konvergent und $(x_n) \in l^q$.

Beweis, dass die Inklusionen echt sind: Sei $p \in \mathbb{R}$ mit $1 \leq p < \infty$. Die konstante Folge (a_n) , $\forall_{n \in \mathbb{N}} a_n = 1$, ist beschränkt, also $(a_n) \in l^{\infty}$. Da $\sum_{n=1}^{\infty} |1|^p$ divergent, ist $(a_n) \notin l^p$. Sei $q \in \mathbb{R}$ mit p < q. Wähle $\alpha \in (\frac{1}{q}, \frac{1}{p})$. Dann ist $\alpha p < \frac{1}{p}p = 1$ und $\alpha q > \frac{1}{q}q = 1$. Betrachte die Folge $x = (\frac{1}{n^{\alpha}})_{n \in \mathbb{N}}$. Die Reihe $\sum_{n=1}^{\infty} (\frac{1}{n^{\alpha}})^p = \sum_{n=1}^{\infty} \frac{1}{n^{\alpha p}}$ ist divergent. Die Reihe $\sum_{n=1}^{\infty} (\frac{1}{n^{\alpha}})^p = \sum_{n=1}^{\infty} \frac{1}{n^{\alpha q}}$ ist konvergent. Damit $x \notin l^p$ und $x \in l^q$.

2.1.4 Aufgabe 1.4

Wir verwenden wieder die Schreibweise von Folgen als Funktionen $\mathbb{N} \to \mathbb{K}$. Wir definieren $f_n : \mathbb{N} \to \mathbb{K}$ für $n \in \mathbb{N}$ durch

$$f_n(m) = \begin{cases} \frac{1}{m} & (m < n) \\ 0 & (m \ge n) \end{cases}$$

(also (0,0,0,...), (1,0,0,0,...), $(1,\frac{1}{2},0,0,0,...)$, ...) und $f: \mathbb{N} \to \mathbb{K}$, $f(m) = \frac{1}{m}$. Es ist (f_n) Folge in d und $f \in c_0 \setminus d$. Da

$$(f_n - f)(m) = \begin{cases} 0 & m < n \\ -\frac{1}{m} & m \ge n \end{cases}$$

folgt $||f_n - f||_{\infty} = \frac{1}{n}$. Also konvergiert (f_n) in $(c_0, ||\cdot||_{\infty})$ gegen f. Damit ist d nicht abgeschlossen in $(c_0, ||\cdot||_{\infty})$. Somit ist $(d, ||\cdot||_{\infty})$ nicht vollständig (nach Satz 1).

2.1.5 Aufgabe 2.1

- 1. Wir überprüfen die drei Normaxiome.
 - (a) Sei $\lambda \in \mathbb{K}$, $f \in C^r(\overline{\Omega})$. Es gilt $\|\lambda f\| = \sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} \|D^{\alpha}(\lambda f)\|_{\infty} = \sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} \|\lambda D^{\alpha} f\|_{\infty} = |\lambda| \sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} \|D^{\alpha} f\|_{\infty} = |\lambda| \|f\|.$
 - (b) Seien $f, g \in C^r(\overline{\Omega})$. Es gilt $||f+g|| = \sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} ||D^{\alpha}(f+g)||_{\infty} = \sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} ||(D^{\alpha}f) + (D^{\alpha}g)||_{\infty} \le \sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} (||D^{\alpha}f||_{\infty} + ||D^{\alpha}g||_{\infty}) = ||f|| + ||g||.$
 - (c) Sei $f \in C^r(\overline{\Omega})$. Es sei ||f|| = 0. Also $\sum_{\alpha \in \mathbb{N}_0^n, 0 \le |\alpha| \le r} ||D^{\alpha} f||_{\infty} = 0$. Damit folgt $||D^0 f||_{\infty} = 0$ und somit $||f||_{\infty} = 0$. Da $f \in l^{\infty}(\Omega)$, folgt für alle $x \in \Omega$ dass f(x) = 0.
 - (d) Wir zeigen zuerst, dass f auf Ω stetig fortsetzbar ist. Konvergiere (f_m) auf Ω gleichmäßig gegen f, mit (f_m) Folge wie in Aufgabenstellung und $f:\Omega\to\mathbb{R}$ stetig. Dann ist für alle $x\in\Omega$: $\lim_{n\to\infty}f_n(x)=f(x)$. Die Folge $(f_m|_{\Omega})_{m\in\mathbb{N}}$ ist konvergent in $(l^{\infty}(\Omega),\|\cdot\|_{\infty})$, also Cauchy-Folge in $(l^{\infty}(\Omega),\|\cdot\|_{\infty})$. Da für alle $k,m\in\mathbb{N}$:

$$\underbrace{\sup_{x \in \Omega} |f_k(x) - f_m(x)|}_{\|f_k|_{\Omega} - f_m|_{\Omega}\|_{\infty}} = \underbrace{\sup_{x \in \overline{\Omega}} |f_k(x) - f_m(x)|}_{\|f_k - f_m\|_{\infty}}$$

ist $(f_m)_{m\in\mathbb{N}}$ Cauchy-Folge in $(l^\infty(\overline{\Omega}), \|\cdot\|_\infty)$. Da dieser Raum ein Banachraum ist, gibt es $\widetilde{f}\in l^\infty(\overline{\Omega})$ mit $\lim_{k\to\infty}\|f_k-\widetilde{f}\|_\infty=0$. Also konvergiert (f_m) gleichmäßig gegen \widetilde{f} und damit ist \widetilde{f} stetig. Da für alle $x\in\Omega$ gilt:

$$\widetilde{f}(x) = \lim_{m \to \infty} f_m(x) = f(x).$$

Damit ist f stetig fortsetzbar auf $\overline{\Omega}$. Analog für g_j . Nun zeigen wir die Differenzierbarkeit von f nach x_j : Wir schreiben $f(_, x_j, _)$ für $f(x_1, ..., x_j, ..., x_n)$ und $f(_, x_j + h, _)$ für $f(x_1, ..., x_{j-1}, x_j + h, x_{j+1}, ..., x_n)$. Sei $j \in \{1, ..., n\}, x = (x_1, ..., x_n) \in \Omega$. Wähle r > 0, so dass $U_r(x) \subset \Omega$ mit $U_r(x)$ bezüglich $\|\cdot\|_2$ -Norm auf \mathbb{R}^n . Nach dem Mittelwertsatz gibt es für jedes $h \in (-r, r)$ und $m \in \mathbb{N}$ ein $\zeta_{h,m} \in [-|h|, |h|]$ mit

$$\left| f_m(_, x_j + h, _) - f_m(_, x_j, _) - h \frac{d}{dx_j} f_m(_, x_j + \zeta_{h,m}, _) \right| = 0$$
(2)

 $(\zeta_{h,m})_{m\in\mathbb{N}}$ ist Folge in [-|h|,|h|]. Durch Übergang zu einer Teilfolge von (f_m) können wir o.B.d.A. annehmen, dass $(\zeta_{h,m})_{m\in\mathbb{N}}$ gegen ein $\zeta_h^* \in [-|h|,|h|]$ konvergiert. Mit der Abschätzung

$$\left| \frac{d}{dx_{j}} f_{m}(_, x_{j} + \zeta_{h,m}, _) - g_{j}(_, x_{j} + \zeta_{h}^{*}, _) \right|$$

$$\leq \left| \frac{d}{dx_{j}} f_{m}(_, x_{j} + \zeta_{h,m}, _) - g_{j}(_, x_{j} + \zeta_{h,m}, _) \right|$$

$$+ |g_{j}(_, x_{j} + \zeta_{h,m}, _) - g_{j}(_, x_{j} + \zeta_{h}^{*}, _)|$$

$$\leq \underbrace{\left\| \frac{d}{dx_{j}} f_{m} - g_{j} \right\|_{\infty}}_{\rightarrow 0} + \underbrace{\left[g_{j}(_, x_{j} + \zeta_{h,m}, _) - g_{j}(_, x_{j} + \zeta_{h}^{*}, _) \right]}_{\rightarrow 0}.$$

folgt, dass $\left(\frac{d}{dx_j}f_m(_,x_j+\zeta_{h,m},_)\right)_{m\in\mathbb{N}}$ gegen $g_j(_,x_j+\zeta_h^*,_)$ konvergiert. Für $m\to\infty$ folgt aus (2), dass

$$|f(_, x_j + h, _) - f_j(_, x_j, _) - hg_j(_, x_j + \zeta_h^*, _)| = 0.$$

Sei $(h_k)_{k\in\mathbb{N}}$ Folge in (-r,r) mit $h_k\to 0$ für $k\to\infty$ mit $h_k\neq 0$ für alle $k\in\mathbb{N}$. Dann folgt mit (2)

$$\lim_{k \to \infty} \frac{f(\underline{\ }, x_j + h_k, \underline{\ }) - f(\underline{\ }, x_j, \underline{\ })}{h_k}$$

$$= \lim_{k \to \infty} g_j(\underline{\ }, x_j + \underbrace{\zeta_{h_k}^*}_{\to 0 \ (k \to \infty)}, \underline{\ })$$

$$= g_j(\underline{\ }, x_j, \underline{\ })$$

mit $|\zeta_{h_k}^*| \leq |h_k|$ und g_j stetig. Somit ist f nach x_j partiell differenzierbar und $\frac{d}{dx_j}f(x) = g_j(x)$.

2.1.6 Aufgabe 2.3

1. Seien $p,q \in \mathbb{R}$ mit $1 \leq p < q$. Wähle $\alpha \in (\frac{1}{q},\frac{1}{q})$. Dann gilt $\alpha p < 1$ und $\alpha q > 1$. Wir schreiben Elemente aus l^p als Funktionen $\mathbb{N} \to \mathbb{K}$. Wir

definieren für $n \in \mathbb{N}$ die Funktionen $f_n : \mathbb{N} \to \mathbb{K}$ durch

$$f_n(m) = \begin{cases} \frac{1}{m^{\alpha}} & m \le n, \\ 0 & m > n. \end{cases}$$

Da $f_n \in d$ für alle $n \in \mathbb{N}$ ist $f_n \in l^p$ für alle $n \in \mathbb{N}$. Es ist die Folge $\left(\|f_n\|_p^p\right)_{n \in \mathbb{N}}$ divergent, da $\|f_n\|_p^p = \sum_{m=1}^n \frac{1}{m^{\alpha p}} \min \alpha p < 1$. Die Folge $\left(\|f_n\|_q^q\right)_{n \in \mathbb{N}}$ ist konvergent, da $\|f_n\|_q^q = \sum_{m=1}^n \frac{1}{m^{\alpha q}} \min \alpha q > 1$. Also ist die Folge $(\|f_n\|_p)_{n \in \mathbb{N}}$ divergent und die Folge $(\|f_n\|_q)_{n \in \mathbb{N}}$ ist konvergent. Damit können $\|\cdot\|_p$ und $\|\cdot\|_q$ nicht äquivalent sein, denn sonst gäbe es $M > 0 \ \forall_{n \in \mathbb{N}} : \|f_n\|_p \le M \|f_n\|_q$. (Unter Verwendung von Aufgabe 2.2.) Widerspruch.

2. Sei $p \in \mathbb{R}, 1 \leq p$. Für $n \in \mathbb{N}$ definieren wir $f_n : \mathbb{N} \to \mathbb{K}$ durch

$$f_n(m) = \begin{cases} 1 & m \le n, \\ 0 & m > n. \end{cases}$$

Wieder ist für alle $n \in \mathbb{N}$: $f_n \in d \subset l^p$, also (f_n) Folge in l^p . Es ist $\|f_n\|_{\infty} = 1$ für alle $n \in \mathbb{N}$ und

$$||f_n||_p = \left(\sum_{m=1}^n 1^p\right)^{\frac{1}{p}} = n^{\frac{1}{p}}.$$

Damit ist $(\|f_n\|_{\infty})_{n\in\mathbb{N}}$ konvergent und $(\|f_n\|_p)_{n\in\mathbb{N}}$ divergent. Analog zur obigen Aufgabe folgt, dass $\|\cdot\|_{\infty}$ und $\|\cdot\|_p$ nicht äquivalent sind.