Exercise 7. Prove

Theorem 8.4 (Principle of recursive definition). Let A be a set; let a_0 be an element of A. Suppose ρ is a function that assigns, to each function f mapping a nonempty section of the positive integers into A, an element of A. Then there exists a unique function

$$h: \mathbb{Z}_+ \to A$$

such that

$$h(1) = a_0$$

 $h(i) = \rho(h|\{1, \dots, i-1\})$ for $i > 1$. (1)

Let us follow the schema that was used earlier in the section and prove the following results:

Lemma 1. Given $n \in \mathbb{Z}_+$, there exists a function $h : \{1, ..., n\} \to A$ that verifies (1) for all i in its domain.

Proof. Let B be the subset of \mathbb{Z}_+ such that the lemma is true. If n=1, then (1) gives h(1)=1, which completely defines h, so $1 \in B$. Suppose now that the lemma is true for some $n \geq 1$, and let $h: \{1, \ldots, n\} \to A$ be defined by (1). Let

$$h':\{1,\dots,n+1\}\to A$$

$$x\mapsto \begin{cases} h(x) & \text{if } x\leq n\\ \rho(h) & \text{otherwise} \end{cases}$$

The induction hypothesis allows us to conclude that h' is well-defined for $x \in \{1, ..., n\}$. Since h is defined from $\{1, ..., n\}$ to A, it is in the domain of ρ , so $\rho(h)$ exists and is an element of A. Therefore $h': \{1, ..., n+1\} \to A$ is well-defined by the above formula. Furthermore, we have $h'(1) = h(1) = a_0$, and for $2 \le i \le n$,

$$h'(i) = h(i) = \rho(h|\{1, \dots, i-1\}) = \rho(h'|\{1, \dots, i-1\})$$

since h = h' for $i \le n$. Last, $h'(n+1) = \rho(h) = \rho(h'|\{1, ..., n\})$. From this we deduce that h' verifies (1), so B is inductive, and therefore $B = \mathbb{Z}_+$. \square

Lemma 2. Given $f: \{1, ..., n\} \to A$ and $g: \{1, ..., m\} \to A$ two functions that verify (1) on their domains, f(i) = g(i) for all $i \in \{1, ..., n\} \cap \{1, ..., m\}$.

Proof. Suppose that there exists $i \in \{1, ..., n\} \cap \{1, ..., m\}$ such that $f(i) \neq g(i)$. Then let i_0 be the smallest such i. Note that (1) gives $f(1) = g(1) = a_0$

so $i_0 > 1$. For all $1 \le i < i_0$, we have f(i) = g(i). Since f and g verify (1), we have

$$f(i_0) = \rho(f|\{1,\ldots,i_0-1\}) = \rho(g|\{1,\ldots,i_0-1\}) = g(i_0)$$

This contradicts our hypothesis that $f(i_0) \neq g(i_0)$, so that i_0 does not exist, and therefore for all $i \in \{1, ..., n\} \cap \{1, ..., m\}$, f(i) = g(i)

Let us now show that there exists a unique function $h: \mathbb{Z}_+ \to A$ that satisfies (1).

Proof. From lemma 1, for all $n \in \mathbb{Z}_+$ there is a function $f_n : \{1, \ldots, n\} \to A$ which verifies (1), and from lemma 2, this function is unique. Let us consider $R \subset \mathbb{Z}_+ \times A$ the union of the rules of f_n for all n. Let $i \in \mathbb{Z}_+$, for all $n \geq i$ and $m \geq i$, lemma 2 gives us $f_n(i) = f_m(i)$, so that there is a unique tuple $(i, f_n(i))$ in R with i as its first coordinate. From this we deduce that R is the rule of a function $h : \mathbb{Z}_+ \to A$.

Since for all $n \in \mathbb{Z}_+$, $f_n(1) = a_0$, we deduce that $h(1) = a_0$. Then, for all n > 1, we have

$$h(n+1) = f_{n+1}(n+1)$$
 by definition of R
= $\rho(f_{n+1}|\{1,\ldots,n\})$ since f_{n+1} verifies (1)
= $\rho(h|\{1,\ldots,n\})$ by definition of R

so h verifies (1).

Last, suppose that there exist h and h' that satisfy (1) and are such that $h \neq h'$. Let i_0 be the smallest element of \mathbb{Z}_+ such that $h(i_0) \neq h'(i_0)$. We have $h(1) = h'(1) = a_0$ so that $i_0 > 1$. Also,

$$h'(i_0) = \rho(h'|\{1,\ldots,i_0-1\}) = \rho(h|\{1,\ldots,i_0-1\}) = h(i_0)$$

since h' and h are equal for all $i < i_0$. The above equation contradicts our hypothesis on the existence of i_0 , so h = h'.