Application No.: 10/019,407

Docket No.: 520.41003X00

## **AMENDMENTS TO THE CLAIMS**

This listing of claims will replace all prior versions, and listings, of claims in the application:

## Listing of Claims:

- 1. (Currently Amended) A polycrystalline semiconductor thin film substrate comprising an insulative substrate and a polycrystalline semiconductor thin film formed on one surface of the insulative substrate, wherein in which the number of crystal grains with the number of closest crystal grains of 6 is greatest among plural crystal grains that form the polycrystalline semiconductor thin film.
- 2. (Original) A polycrystalline semiconductor thin film substrate as defined in claim 1, wherein the roughness of the grain boundaries on the surface of the polycrystalline semiconductor thin film is 5 nm or less.
- 3. (Original) A semiconductor device comprising plural transistors formed in a polycrystalline semiconductor thin film, wherein the number of crystal grains with the number of closest crystal grains of 6 is greatest among plural crystal grains that form the polycrystalline semiconductor thin film.
- 4. (Original) A semiconductor device as defined in claim 3, wherein the roughness of the grain boundaries on the surface of the polycrystalline semiconductor thin film is 5 nm or less.

Application No.: 10/019,407

Docket No.: 520,41003X00

5. (Currently Amended) semiconductor device comprising transistors formed in a polycrystalline semiconductor thin film, wherein, within a square region with a 10 µ side, and in which 50 to 100% of the crystal grains have the number of closest crystalline grains of 6 isand are present so as to include in an area including the center of the polycrystalline semiconductor thin film in the polycrystalline-semiconductor thin film.

A semiconductor device as defined in claim 5, wherein the 6. (Original) roughness of the grain boundaries on the surface of the polycrystalline semiconductor thin film is 5 nm or less.

## 7. (Canceled)

- 8. (Currently Amended) An electronic apparatus as defined in claim Zcomprising a semiconductor device in which plural transistors are formed in a polycrystalline semiconductor thin film, wherein variation in the threshold voltage of the plural transistors is 0.1 V or less, wherein the number of crystal grains with the number of closest crystal grain of 6 is greatest among plural crystal grains that form the polycrystalline semiconductor thin film.
- 9. (Original) An electronic apparatus as defined in claim 8, wherein the roughness of the grain boundaries on the surface of the polycrystalline semiconductor thin film is 5 nm or less.

ATSK

Application No.: 10/019,407

Docket No.: 520.41003X00

10. (Currently Amended) An electronic apparatus comprising a semiconductor device in which plural translators are formed in a polycrystalline semiconductor thin film, wherein, within a square region with a 10 μm side, and 50 to 100% of the crystal grains have the number of closest crystalline grains of 6 is present so as to include and are present in an area which includes the center of the polycrystalline semiconductor thin film in the polycrystalline semiconductor thin film.

- 11. (Original) An electronic apparatus as defined in claim 10, wherein the roughness of the grain boundaries on the surface of the polycrystalline semiconductor thin film is 5 nm or less.
- 12. (Currently Amended) An electronic apparatus as defined in claim 78, wherein the electronic apparatus is a liquid crystal display, the semiconductor device has transistors for operating each of pixels of a liquid crystal display panel and transistors constituting peripheral driver eircuitries circuits and is stacked and attached on the liquid crystal display panel of the liquid crystal display.
- 13. (Currently Amended) An electronic apparatus as defined in claim 78, wherein the electronic device is a data processor, and at least one of a central processing unit, a eash circuitrycache circuit, a memory circuitrycircuit, a peripheral eircuitrycircuit, an input/output eircuitrycircuit and a bus circuitry are formed with each ef the transistors of the semiconductor device.

ATSK

Application No.: 10/019,407

Docket No.: 520.41003X00

14. (Currently Amended) A method of manufacturing a polycrystalline semiconductor thin film substrate by forming an amorphous semiconductor thin film on the surface of an insulative substrate, then irradiating the amorphous semiconductor film with a laser beam thereby to crystallize the amorphous semiconductor film and forming a polycrystalline semiconductor thin film, wherein the method comprises irradiating the rear face of the insulative substrate or the amorphous semiconductor film with a UV-ray thereby to heat the amorphous semiconductor film to a melting temperature or lower, and repeatedly irradiating the surface of the amorphous semiconductor film with a laser beam at a suitable shape selection laser energy density Ec to form the greatest number of crystal grains with the number of closest crystal grains of 6 within the polycrystalline semiconductor thin film, synchronizing the period of the laser beam irradiation and the period of the UVray heating, and dividing, by an optical component, the laser beam into two optical channels with the optical length of one of them being made longer such that it reaches the laser beam irradiation position with a delay, thereby forming the polycrystalline semiconductor thin film.

15. (Original) A method of manufacturing a polycrystalline semiconductor thin film substrate as defined in claim 14, wherein one of the laser beams divided into two optical channels that passes through a channel of a shorter optical wavelength is attenuated by being passed through an optical attenuator and caused to reach the laser beam irradiation position, thereby forming the polycrystalline semiconductor thin film.

Application No.: 10/019,407

Docket No.: 520.41003X00

16. (Original) A semiconductor device in which a transistor is formed in a polycrystalline semiconductor thin film wherein the number of crystal grains with the number of closest crystal grains of 6 is greatest among plural crystal grains forming the channel region of the transistor.

- 17. (Currently Amended) A semiconductor device in which plural transistors are formed in the polycrystalline semiconductor thin film wherein, within a square region with a 10 μm side, and in which 50 to 100% of the crystal grains have the number of closest crystalline grains of 6 is present so as to include and are present in an area which includes the center of the polycrystalline semiconductor thin film in the polycrystalline semiconductor thin film.
- 18. (Original) A semiconductor device as defined in claim 17, wherein the roughness of the grain boundaries on the surface of the polycrystalline semiconductor thin film is 5 nm or less.
- 19. (Original) An electronic apparatus having plural transistors formed in a polycrystalline semiconductor thin film, wherein the number of crystal grains with the number of closest crystal grains of 6 is greatest among plural crystal grains forming the polycrystalline semiconductor thin film.
- 20. (Original) An electronic apparatus as defined in claim 19, wherein the roughness of the grain boundaries on the surface of the polycrystalline semiconductor thin film is 5 nm or less.