Characterization of heating

 $k_B T_{e,out} - k_B T_{e,in}$

 $B^2/(4\pi n)$

 $M_{Te} =$

Characterization of heating

A useful number we can extract from each simulation is the following dimensionless ratio:

This is the ratio of increase in temperature to magnetic energy available for dissipation. It can be thought of as the 'efficiency' of reconnection.

How much are electrons heated during reconnection?

PIC simulations and observations of magnetic reconnection suggest that a constant fraction of inflowing magnetic energy is given to electrons

This fraction M_{Te} is remarkably independent of plasma parameters in the inflowing region