Homework 2 quantum mechanics applications, scattering, spin

March 7, 2023

• Problem 1: The Hamiltonian of a spin 3/2 particle is given by:

$$\hat{H} = \frac{\alpha}{\hbar^2} (\hat{S}_x^2 + \hat{S}_y^2 - 2\hat{S}_z^2) - \frac{\beta}{\hbar} \hat{S}_z \tag{1}$$

Find the energy levels for this particle. Consider α and β to be constant.

- Problem 2: consider an electron with angular momentum l=1 and spin 1/2, find:
 - a The allowed eigenstates.
 - b The eigenstates in terms of the uncoupled basis. (Use a table of the Clebsch-Gordan coefficients to double-check your results).
 - d Consider that the electron is in a central potential, thus the eigenfunctions of orbital angular momentum are the spherical harmonics. Write **only one** of the states found in part b in terms of the spherical harmonics. (Do this for a state different than the ones I did in class).
- Problem 3: The Hamiltonian of two particles with angular momentum 1 is given by:

$$\hat{H} = \frac{\epsilon_1}{\hbar^2} (\hat{\vec{L}}_1 + \hat{\vec{L}}_2) \cdot \hat{\vec{L}}_2 + \frac{\epsilon_2}{\hbar^2} (L_{1z} + \hat{L}_{2z})^2$$
 (2)

Find the energy levels and degeneracies for the states whose total angular momentum is the maximum.

- Problem 4: Consider a rotation $U(\beta, \hat{y})$ of an angle β with respect to the \hat{y} axis. Show that the matrix elements $\langle j, m | | U(\beta, \hat{y}) | j, m \rangle$ are polynomials of degree 2j with respect to $\sin(\beta/2)$ and $\cos(\beta/2)$. Do this for the case j=1/2.
- Problem 5: An electron is in a state of S_z with eigenvalue $+\hbar/2$. Consider the operator $\hat{n}\cdot\overrightarrow{S}$. Find the eigenvalues, eigenstates, and the probability of finding the electron in each of the eigenstates. Consider the unitary vector \hat{n} in spherical coordinates.