Révision: 11242

Date: 05/08/2013 Page: 1/8

Clé: V6.04.187

Titre: SSNV187 - Validation de la loi ELAS_HYPER sur un c[...]

Responsable : Mickael ABBAS

SSNV187 - Validation de la loi ELAS_HYPER sur un cube

Résumé:

Ce test permet de valider le comportement hyper-élastique de type Signorini (matériau ELAS_HYPER). On s'appuie sur un test élémentaire en déformations planes et en 3D, par rapport à une référence analytique.

Date: 05/08/2013 Page: 2/8

Titre: SSNV187 - Validation de la loi ELAS_HYPER sur un c[...]

Responsable : Mickael ABBAS Clé : V6.04.187 Révision : 11242

1 Problème de référence

1.1 Géométrie

On considère un cube de coté $1\mathrm{m}$ qui repose sur un plan ($x_2=0$ sur la face inférieure), soumis à une pression F sur la face supérieure et en situation de déformation plane suivant x_3 ($x_3=0$ sur les faces droite et gauche). Le cube ne peut donc que s'étirer suivant l'axe x_1).

1.2 Propriétés des matériaux

On teste sur trois matériaux différents, correspondant à trois modèles courants en hyper-élasticité.

Comportement ELAS_HYPER	Mooney-Rivlin	Néo-Hookéen	Signorini
C10	0.709	1.2345	0.1234
C01	2.3456	0	1.2345
C20	0	0	0.456
NU	0.499	0.499	0.499

1.3 Conditions aux limites et chargements

•Face inférieure : DY = 0•Face supérieure : F = 0.876 Pa

• Face gauche et droite : DZ = 0 en 3D, rien en D PLAN

Le chargement est croissant de F=0 à $F=0.876 \mathrm{Pa}$, en 20 incréments.

Date: 05/08/2013 Page: 3/8

Titre: SSNV187 - Validation de la loi ELAS_HYPER sur un c[...]

Responsable : Mickael ABBAS Clé : V6.04.187 Révision : 11242

2 Solution de référence

2.1 Méthode de calcul

On se repose sur le résultat de [bib1]. L'état de déformations planes permet d'écrire le champ de déplacement uniforme dans le cube très facilement :

$$\begin{cases} u_1 = a_1 \cdot x_1 \\ u_2 = w \cdot x_2 \\ u_3 = 0 \end{cases}$$
 (1)

avec w le déplacement vertical (négatif) de la face supérieure et a_1 une constante arbitraire. La condition d'incompressibilité permet d'écrire :

$$a_1 = \frac{-w}{1+w} \tag{2}$$

Et on trouve la relation entre la force appliquée F et le déplacement w de la face supérieure :

$$F = 2S. \frac{w.(2+w).(1+(1+w)^2)}{(1+w)^3} \cdot \left(\frac{\partial \Psi}{\partial J_1} + \frac{\partial \Psi}{\partial J_2}\right)$$
(3)

S est la surface, Ψ est le potentiel de déformation et J_1 , J_2 sont les invariants du tenseur de Green-Lagrange. Le potentiel de déformation utilisé par <code>ELAS_HYPER</code> est le suivant :

$$\Psi = C_{10} \cdot (J_1 - 3) + C_{01} \cdot (J_2 - 3) + C_{20} \cdot (J_1 - 3)^2 + \Psi_{vol}$$
(4)

 Ψ_{vol} est le potentiel correspondant à l'incompressibilité. Il dépend des invariants J_1 et J_2 et de C_{10} , C_{01} et C_{20} qui sont les caractéristiques matériaux. Comme de plus S=1 on obtient :

$$F = 2. \frac{w \cdot (2+w) \cdot (1+(1+w)^2)}{(1+w)^3} \cdot \left[\left(C_{10} + \frac{C_{01}}{1+w} \right) + 2. C_{20} \cdot \frac{w^3 \cdot (3+w)}{1+w} \right]$$
 (5)

La résolution de cette équation non linéaire en w se fait simplement par dichotomie pour les w < 0.

3 Références bibliographiques

G. A. HOLZAPFEL: Nonlinear solid mechanics, 2001, Wiley.

Titre: SSNV187 - Validation de la loi ELAS HYPER sur un c[...]

Date: 05/08/2013 Page: 4/8 Responsable: Mickael ABBAS Clé: V6.04.187 Révision: 11242

Modélisation A 4

Caractéristiques de la modélisation 4.1

C'est une modélisation en 2D avec déformations planes D PLAN, en utilisant des mailles linéaires.

4.2 Caractéristiques du maillage

Nombre d'éléments linéaires : 207 dont 132 triangles et 47 quadrangles (le reste étant les mailles de

bord).

Nombre de nœuds : 132

4.3 Grandeurs testées et résultats

Premier calcul (MOONEY-RIVLIN)

Valeur testée	Instant	Référence	Type	Tolérance
Déplacement w	1,0	-3,40091E-2	Analytique	0,20%

Deuxième calcul (NEO-HOOKEAN)

Valeur testée	Instant	Référence	Type	Tolérance
Déplacement w	1,0	-7,8175E-2	Analytique	0,20%

Valeur testée	Instant	Référence	Type	Tolérance
Déplacement w	1,0	-6,62E-2	Analytique	7,5%

Date: 05/08/2013 Page: 5/8

Titre: SSNV187 - Validation de la loi ELAS HYPER sur un c[...]

Responsable : Mickael ABBAS Clé : V6.04.187 Révision : 11242

5 Modélisation B

5.1 Caractéristiques de la modélisation

C'est une modélisation en 2D avec déformations planes <code>D_PLAN</code>, en utilisant des mailles quadratiques.

5.2 Caractéristiques du maillage.

Nombre d'éléments quadratiques : 207 dont 132 triangles et 47 quadrangles (le reste étant les mailles

de bord).

Nombre de nœuds : 132

5.3 Grandeurs testées et résultats

Premier calcul (MOONEY-RIVLIN)

Valeur testée	Instant	Référence	Type	Tolérance
Déplacement w	1,0	-3,40091E-2	Analytique	0,20%

Deuxième calcul (NEO-HOOKEAN)

Valeur testée	Instant	Référence	Type	Tolérance
Déplacement w	1,0	-7,8175E-2	Analytique	0,20%

Valeur testée	Instant	Référence	Type	Tolérance
Déplacement w	1,0	-6,62E-2	Analytique	7,5%

Version default

Titre: SSNV187 - Validation de la loi ELAS HYPER sur un c[...]

Date: 05/08/2013 Page: 6/8 Responsable: Mickael ABBAS Clé: V6.04.187 Révision: 11242

Modélisation C 6

6.1 Caractéristiques de la modélisation

C'est une modélisation 3D.

6.2 Caractéristiques du maillage

Nombre d'éléments : 8734 tétraèdres et 1728 nœuds.

6.3 Grandeurs testées et résultats

Premier calcul (MOONEY-RIVLIN)

Valeur testée	Instant	Référence	Type	Tolérance
Déplacement w	1,0	-3,40091E-2	Analytique	0,20%

Deuxième calcul (NEO-HOOKEAN)

Valeur testée	Instant	Référence	Type	Tolérance
Déplacement w	1,0	-7,8175E-2	Analytique	0,20%

Valeur testée	Instant	Référence	Type	Tolérance
Déplacement w	1,0	-6,62E-2	Analytique	7,5%

Version default

Date: 05/08/2013 Page: 7/8

Titre: SSNV187 - Validation de la loi ELAS_HYPER sur un c[...]

Responsable : Mickael ABBAS Clé : V6.04.187 Révision : 11242

7 Modélisation D

7.1 Caractéristiques de la modélisation

C'est une modélisation 3D SI (éléments TETRA10 sous-intégrés).

7.2 Caractéristiques du maillage

Nombre d'éléments : 271 tétraèdres et 514 nœuds.

7.3 Grandeurs testées et résultats

Premier calcul (MOONEY-RIVLIN)

Valeur testée	Instant	Référence	Type	Tolérance
Déplacement w	1,0	-3,40091E-2	Analytique	0,20%

Deuxième calcul (NEO-HOOKEAN)

Valeur testée	Instant	Référence	Type	Tolérance
Déplacement w	1,0	-7,8175E-2	Analytique	0,20%

Valeur testée	Instant	Référence	Туре	Tolérance
Déplacement w	1,0	-6,62E-2	Analytique	7,5%

Version default

Titre: SSNV187 - Validation de la loi ELAS_HYPER sur un c[...]

Date: 05/08/2013 Page: 8/8 Responsable: Mickael ABBAS Clé: V6.04.187 Révision: 11242

Synthèse des résultats 8

Les résultats obtenus sont en bon accord avec la solution de référence, sauf pour le cas de Signorini. Cette différence de l'ordre de 7,5 % par rapport à la solution analytique peut s'expliquer par le traitement de l'incompressibilité en pénalisation dans la loi ELAS_HYPER mais aussi par l'utilisation d'éléments linéaires qui ne permettent pas de bien tenir compte de la condition d'incompressibilité.