Data Science Course Understading swarm behaviour

Felicia Burtscher, Frederik Eistrup, José Senart

Freie Universität Berlin August 2, 2017

Presentation Overview

- All models: sim300.py
- Paper 1: Effective leadership and decision-making in animal groups on the move (Couzin et al)
- Paper 2: Double milling in self-probelled swarms from kinetic theory (Carrillo et al)
- Quantification

All models: sim300.py

Models	available:	
'Simple	speed coupling	smpl'
'Couzin	model	czn'
'Viscek	model	vsck'
'Couzin-	-2 model	czn2'
'Mill mo	odel	mill'

Paper 1: Effective leadership and decision-making in animal groups on the move (Couzin et al): czn2

same as Couzin 1 model but without orientation phase

Paper 2: Double milling in self-probelled swarms from kinetic theory (Carrillo et al): mill

A kinetic theory based approach for swarming systems of self-propelled discrete particles.

Individuals driven by self-propelling forces and pairwise attractive and repulsive interactions lead to various morphologies, e.f. flocks, rotating mills, rings and clumps.

We can

- average in direction or velocity
- consider different zones of interaction and averaging (see Couzin et al)

Paper 2: Double milling in self-probelled swarms from kinetic theory (Carrillo et al): mill

But: As N=particles grows, it becomes increasingly difficult to follows the dynamics of each individual agent. Therefore, we choose a continuous approach where particles are represented by a density field.

Consider N interacting, self-propelled particles governed by the following equations of motion

$$\frac{\partial \vec{x_i}}{\partial t} = \vec{v_i}
m \frac{\partial \vec{v_i}}{\partial t} = (\alpha - \beta |\vec{v_i}|^2) \vec{v_i} - \vec{\nabla_i} U(\vec{x_i})$$
(1)

where U is a pairwise interaction potential and $\alpha, \beta > 0$ are values for propulsion and friction forces.

Paper 2: Double milling in self-probelled swarms from kinetic theory (Carrillo et al): mill

For U we choose the *Morse potential* which is a common choice for interacting swarming systems

$$U(\vec{x_i}) = \sum_{j \neq i} \left[-C_a e^{-|\vec{x_i} - \vec{x_j}|/l_a} + \underbrace{C_r e^{-|\vec{x_i} - \vec{x_j}|/l_r}}_{\text{repulsion}} \right]$$
(2)

where C_a , C_r denote attractive and repulsive strengths and I_a , I_r their respective length scales.

Quantification

Quantification czn2

Figure 1: Accuracy

Quantification czn2

Figure 2: Group elongation

Quantification czn2

Figure 3: Two groups

Figure: H-stability phase diagram of the Morse potential

Region I

Region II

Region III

 $\mathsf{Region}\ \mathsf{IV}$

Region V

Region VI

Figure: Catastrophic geometry.
(a) Clumps. (b) Ring Clumping. (c) Rings.

FIG. 3 (color online). Snapshots of swarms for different values of N in the catastrophic regime defined by region VII of Fig. 1. From left to right N=100, 200, 300. The chosen parameters are $C_a=0.5$, $C_r=1$, $\ell_a=2$, $\ell_r=0.5$, and $\alpha=1.6$, $\beta=0.5$.

Figure: Vortex scaling for the catastrophic Morse potential.