0.1 Homología Singular

En esta sección introduzco otro tipo de homología que resultará ser la más manejable que la homología simplicial y que nos dará más resultados topológicos.

0.1.1 Complejos de cadena y sus homologías

Primera considera un complejo simplicial K y $C_n^<(K)$, las n-cadenas ordenadas. Si $v \in V_K$ es un vértice, entonces por definición $\{v\} \in K$. A este vértice le corresponde de manera canónica un $\tilde{v} \in |K|$ definido por:

$$\tilde{v}: V_k \longrightarrow I \quad \text{con} \quad \tilde{v}(u) = \begin{cases} 1 & \text{si } u = v \\ 0 & \text{si } u \neq v \end{cases}.$$

Esto es muy similar a las funciones características de los módulos libres. Esta observación nos lleva a definir una función $\Delta^n \to |K|$ de la siguiente manera:

Definición 1. Sea $\Delta^n \subset \mathbb{R}^{n+1}$ el *n*-simplejo geométrico estándar y $s = \{v_0, \dots, v_n\} \in K$ un *n*-simplejo de K, entonces define

$$\sigma_s: \Delta^n \longrightarrow |K| \quad \text{con} \quad \sigma_s(t_0, \dots, t_n) := \sum_{i=0}^n t_i \tilde{v}_i$$

La función σ_s está bien definido, ie. $\sigma_s(t_0,\ldots,t_n)\in |s|\subseteq |K|$, gracias al siguiente lema:

Lema 1. Sean K un complejo simplicial y $s = \{v_0, \ldots, v_n\} \in K$ un n-simplejo. Entonces cualquier combinación lineal convexa de elementos de |s| es un elemento de |s|, es decir: si $\alpha_1, \ldots, \alpha_m \in |s|$ y $\lambda_0, \ldots, \lambda_m \in \mathbb{R}_{\geq 0}$ son tales que $\sum \lambda_i = 1$ entonces $\sum \lambda_i \alpha_i \in |s|$.

Proof. Observa que la suma $\gamma := \sum \lambda_i \alpha_i$ tiene sentido porque $|k| \subset \mathbb{R}^{V_K}$ que es un \mathbb{R} -espacio vectorial. Como cada α_i es una función con valores no-negativos y cada escalar λ_i es no-negativo, entonces $\gamma(v) = 0$ si y sólo si $\alpha_i(v) = 0$ para toda i, es decir $\operatorname{Sop}(\gamma) = \cap \operatorname{Sop}(\alpha_i) \subseteq s$ porque por hipótesis $\operatorname{Sop}(\alpha_i) \subseteq s$.

Además tenemos que:

$$\sum_{v \in V_K} \gamma(v) = \sum_{i=0}^n \gamma(v_i) = \sum_{i=0}^n \sum_{j=0}^n \lambda_j \alpha_j(v_i) = \sum_{j=0}^n \left(\lambda_j \sum_{i=0}^n \alpha_j(v_i) \right) = \sum_{j=0}^n \lambda_j = 1$$

porque $\sum_i \alpha_i(v_i) = 1$ porque $\alpha_i \in |s|$. Por lo tanto $\gamma \in |s|$.

Nota. Si $(v_0, \ldots, v_n) \in C_n^{\leq}(K)$ entonces $\sigma_{(v_0, \ldots, v_n)} : \Delta^n \to |K|$ es un encaje, pero si $[v_0, \ldots, v_n] \in C_n(K)$ entonces $\sigma_{[v_0, \ldots, v_n]}$ no necesariamente es un encaje.

Como vamos a estar trabajando con funciones continuas $\Delta^n \to |K|$, introduzco una notación más concisa:

Definición 2. Sea X un espacio topológico, denotamos

$$S_n(X) := \operatorname{Map}(\Delta^n, X) = \{f : \Delta^n \to X \mid f \text{ es continua}\}.$$

Con esta notación, tenemos que $(v_0, \ldots, v_n) \mapsto \sigma_{(v_0, \ldots, v_n)}$ es una función y por la propiedad universal de los módulos libres se extiende a $C_n^{\leq}(K)$, entonces tenemos:

$$C_{n}^{<}(K) \xrightarrow{\partial_{n}} C_{n-1}^{<}(K)$$

$$\downarrow \qquad \qquad \downarrow$$

$$S_{n}|K| \xrightarrow{-\cdot?} S_{n-1}|K|.$$

El siguiente paso es definir es definir un análogo de las funciones frontera para $\mathcal{S}_n |K|$. Para esto requerimos las funciones cara:

$$F_n^i: \Delta^{n-1} \to \Delta^n$$
 definido por $F_n^i(t_0, \dots, t_{n-1}) = (t_0, \dots, t_{i-1}, 0, t_i, \dots, t_{n-1}).$

En palabras, F_n^i manda Δ^{n-1} a la (n-1)-cara opuesto al vértice e_i de Δ^n . En general, las funciones F_n^i se pueden definir afinmente:

$$F_n^i(e_j) = \begin{cases} e_j & \text{si } j < i \\ e_{j+1} & \text{si } j \ge i \end{cases}.$$

El siguiente dibujo ilustra el caso de n=2:

Observa que para un (n-1)-simplejo $(v_0,\ldots,\widehat{v_i},\ldots,v_n)$ de K, entonces

$$\sigma_{(v_0,\dots,\widehat{v_i},\dots,v_n)} = \sigma_{(v_0,\dots,v_n)} \circ F_n^i. \tag{1}$$

En efecto:

$$\begin{split} \sigma_{(v_0,\dots,\widehat{v_i},\dots,v_n)}(t_0,\dots,t_{n-1}) &= t_0 \widetilde{v}_0 + \dots + t_{i-1} \widetilde{v}_{i-1} + t_i \widetilde{v}_{i+1} + \dots + t_{n-1} \widetilde{v}_n \\ &= t_0 \widetilde{v}_0 + \dots + t_{i-1} \widetilde{v}_{i-1} + 0 \widetilde{v}_i + t_i \widetilde{v}_{i+1} + \dots + t_{n-1} \widetilde{v}_n \\ &= \sigma_{(v_0,\dots,v_n)}((t_0,\dots,t_{i-1},0,t_i,\dots,t_{n-1})) \\ &= \sigma_{(v_0,\dots,v_n)}(F_n^i(t_0,\dots,t_{n-1})). \end{split}$$

La fórmula (1) sugiere de manera inmediata cómo definir una función frontera para $S_n |K|$:

$$\partial_n(\sigma) = \sum_{i=0}^n (-1)^i (\sigma \circ F_n^i).$$

De hecho es muy fácil generalizarlo a cualquier espacio topológico.

Definición 3. Sea X un espacio topológico y $n \geq 0$. Los elementos de $S_n(X)$ se llaman n-simplejos singulares. Definimos $S_n(X;R) := R \langle S_n(X) \rangle$ y

$$\partial_n: S_n(X;R) \longrightarrow S_{n-1}(X;R) \quad \text{con} \quad \partial_n(f) = \sum_{i=0}^n (-1)^i (f \circ F_n^i).$$

Si n < 0 escribimos $S_n(X; R) = 0$.

Para probar que:

$$\cdots \longrightarrow S_{n+1}(X;R) \xrightarrow{\partial_{n+1}} S_n(X;R) \xrightarrow{\partial_n} S_{n-1}(X;R) \longrightarrow \cdots$$

es un complejos de cadenas necesitamos

Ejercicio 1. Para toda j < i se cumple $F_n^i \circ F_{n-1}^j = F_n^j \circ F_{n-1}^i$.

De este ejercicio se sigue que

Ejercicio 2. Para toda $n \ge 1$ se cumple $\partial_{n+1} \circ \partial_n$, en particular $\operatorname{Im}(\partial_{n+1}) \subseteq \ker \partial_n$.

Por lo tanto $S_{\bullet}(X;R)$ es un complejo de cadenas. Gracias a esto podemos definir:

Definición 4. Sea X un espacio topológico y $S_{\bullet}(X;R)$ su complejo singular. Definimos $Z_n(X;R) := \ker(\partial_n)$, cuyos elementos se llaman n-ciclos, definimos $B_n(X;R) := \operatorname{Im}(\partial_{n+1})$, cuyos elementos se laman n-fronteras y definimos la homología singular de X como:

$$H_n(X;R) := \frac{Z_n(X;R)}{B_n(X;R)}$$

La asignación $X \mapsto S_{\bullet}(X; R)$ es un funtor entre espacios topológicos y complejos de cadenas de R-módulos:

Definición 5. Sea $f: X \to Y$ una función continua. Entonces f induce un morfismo de complejos de cadenas $f_{\#}: S_{\bullet}(X; R) \to S_{\bullet}(Y; R)$ definido de la siguiente manera: para cada n define $(f_{\#})_n: S_n(X; R) \to S_n(Y; R)$ como $(f_{\#})_n(\sigma) = f \circ \sigma$ donde $\sigma: \Delta^n \to X$ y extiende por linealidad.

Nota. En general voy a suprimir el subíndice n, es decir voy a escribir $f_{\#} = (f_{\#})_n$. Esto es porque la regla de correspondencia no depende de n, simplemente es una composición.

Para probar que $f_{\#}$ es efectivamente un morfismo de complejos de cadena, hay que probar que el siguiente diagrama conmuta:

$$S_{n}(X;R) \xrightarrow{\partial_{n}} S_{n-1}(X;R)$$

$$f \not= \downarrow \qquad \qquad \downarrow f \not= \qquad \downarrow f \not= \qquad \downarrow f \not= \qquad \downarrow f \not= \qquad \qquad$$

Pero esto se verifica inmediatamente:

$$f_{\#}(\partial_n(\sigma)) = f_{\#}\left(\sum_{i=0}^n (-1)^i (\sigma \circ F_n^i)\right) = \sum_{i=0}^n (-1)^i f \circ (\sigma \circ F_n^i) = \sum_{i=0}^n (-1)^i (f_{\#}(\sigma) \circ F_n^i) = \partial_n (f_{\#}(\sigma)).$$

Ahora, el ejercicio ?? nos dice que $f_{\#}$ induce un morfismo de R-módulos $H_n(f_{\#}): H_n(X;R) \to H_n(Y;R)$. Por lo tanto:

$$X \mapsto H_n(X; R)$$
 con $\left(X \xrightarrow{f} Y\right) \mapsto H_n(f_\#)$

es un funtor. Esto significa que la homología es un invariante topológico:

Proposición 1.

$$X \approx Y \implies H_n(X;R) \cong H_n(Y;R) \quad \forall n \ge 0.$$

La homología singular generaliza la homología simplicial:

Teorema 2. Sea K un complejo simplicial. Entonces $H_n(K;R) \cong H_n(|K|;R)$, donde la primera homología es la simplicial y la segunda es la singular aplicado al espacio |K|. Este isomorfismo está inducido por

$$C_n^{\leq}(K) \longrightarrow S_n(|K|;R)$$
 definido por $(v_0,\ldots,v_n) \mapsto \sigma(v_0,\ldots,v_n)$.

Para porbar este teorema tendríamos que probar que los complejos $C^{<}_{\bullet}(K)$ y $S_{\bullet}(|K|)$ son homotópicos (cf. definición ??).

Ahora calculamos las homologías en ciertos casos particulares para ilustrar lo manejable que es está definición a diferencia de la homología simplicial.

Proposición 2.

$$H_n({p}; R) \cong \begin{cases} R & \text{si } n = 0 \\ 0 & \text{si } n > 0 \end{cases}$$

Proof. Consideramos $S_{\bullet}(\{p\}; R)$, el complejo singular del espacio $\{p\}$:

$$\cdots \longrightarrow S_n(\{p\};R) \xrightarrow{\partial_n} S_{n-1}(\{p\};R) \longrightarrow \cdots \longrightarrow S_0(\{p\};R) \longrightarrow 0$$

Como $S_n(\{p\}) = \{\text{cte}\}\ \text{para toda } n, \text{ entonces}$

$$S_n(\{p\}; R) = R\langle \text{cte} \rangle \cong R \quad \forall n \geq 0$$

bajo el isomorfismo rcte $\mapsto r$.

Por otro lado, para n > 0 claramente tenemos que cte = cte $\circ F_n^i$, entonces:

$$\partial_n(\text{cte}) = \sum_{i=0}^n (-1)^i (\text{cte} \circ F_n^i) = \sum_{i=0}^n (-1)^i \text{cte} = \begin{cases} \text{cte } & \text{si } n \text{ es par} \\ 0 & \text{si } n \text{ es impar} \end{cases}$$

porque la suma anterior es una suma alternada con n+1 términos. Por lo tanto $\partial_n : R\langle \text{cte} \rangle \to R\langle \text{cte} \rangle$ es un isomorfismo si n es par (ya que hace $\text{cte} \mapsto \text{cte}$) y $\partial_n = 0$ para n impar. De aquí podemos concluir que para n > 0:

$$Z_n(\{p\};R) = \begin{cases} 0 & \text{si } n \text{ es par} \\ S_n(\{p\};R) & \text{si } n \text{ es impar} \end{cases} \quad \mathbf{y} \quad B_n(\{p\};R) = \begin{cases} S_n(\{p\};R) & \text{si } n \text{ es par} \\ 0 & \text{si } n \text{ es impar} \end{cases},$$

la última igualdad se da porque n+1 es par cuando n es impar y n+1 es impar cuando n es par. Tomando cocientes concluimos que

$$H_n(\lbrace p \rbrace; R) = \begin{cases} 0/0 & \text{si } n \text{ es par} \\ S_n(\lbrace p \rbrace; R)/S_n(\lbrace p \rbrace; R) & \text{si } n \text{ es impar} \end{cases} = 0 \quad (\forall n > 0)$$

Para n=0, simplemente sustituimos $S_1(\{p\};R)\cong S_0(\{p\};R)\cong R$ en el complejo singular $S_{\bullet}(\{p\};R)$:

$$\cdots \longrightarrow R \xrightarrow{\partial_1} R \xrightarrow{0} 0$$

y así $Z_0(\{p\};R) = \ker 0 = R$. Ya teníamos que $B_0(\{p\};R) = \operatorname{Im}(\partial_1) = 0$ entonces $H_0(\{p\};R) = R/0 \cong R$.

Proposición 3. Si X es un espacio conectable por trayectorias, entonces $H_0(X;R) \cong R$.

Proof. Observa que $S_0(X) = \text{Map}[\Delta^0, X] = X$ porque $\Delta^0 = \{e_0\}$ y toda función $\{e_0\} \to X$ está completamente determinado por su imagen. Por lo tanto

$$S_0(X;R) = R\langle X \rangle = \left\{ \sum_{x \in X} r_x x \mid r_x \in R, r_x \neq 0 \text{ para solamente una cantidad finita de } x \in X \right\}$$

Ahora considera el siguiente morfismo de R-módulos:

$$\varepsilon: S_0(X; R) \longrightarrow R$$
 definido por $\sum_{x \in X} r_x x \mapsto \sum_{x \in X} r_x$,

que es claramente sobreyectiva. Observa que si $\sum_{\sigma} r_{\sigma} \sigma \in S_1(X; R)$, donde $\sigma : \Delta^1 \to X$, entonces:

$$\partial_{1} \left(\sum_{\sigma \in \mathcal{S}_{1}(X)} r_{\sigma} \sigma \right) = \sum_{\sigma} r_{\sigma} \partial_{1}(\sigma)$$

$$= \sum_{\sigma} r_{\sigma}(\sigma(e_{1}) - \sigma(e_{0}))$$

$$= \sum_{\sigma} r_{\sigma} \sigma(e_{1}) - \sum_{\sigma} r_{\sigma} \sigma(e_{0})$$

$$\therefore (\varepsilon \circ \partial_{1}) \left(\sum_{\sigma} r_{\sigma} \sigma \right) = \varepsilon \left(\sum_{\sigma} r_{\sigma} \sigma(e_{1}) \right) - \varepsilon \left(\sum_{\sigma} r_{\sigma} \sigma(e_{0}) \right)$$

$$= \sum_{\sigma} r_{\sigma} - \sum_{\sigma} r_{\sigma} = 0.$$

Por lo tanto $\operatorname{Im}(\partial_1) \subseteq \ker(\varepsilon)$ y así podemos "aumentar" el complejo $S_{\bullet}(X;R)$ al complejo:

$$\cdots \longrightarrow S_1(X;R) \xrightarrow{\partial_1} S_0(X;R) \xrightarrow{\varepsilon} R \longrightarrow 0$$

Observa que si $\operatorname{Im}(\partial_1) = \ker(\varepsilon)$ entonces tendremos que:

$$R = \operatorname{Im}(\varepsilon) \cong \frac{S_0(X;R)}{\ker(\varepsilon)} \cong \frac{S_0(X;R)}{\operatorname{Im}(\partial_1)} \stackrel{\text{def}}{=} H_0(X;R)$$

ya que $\partial_0 = 0$ y así $\ker(\partial_0) = S_0(X; R)$. Por lo tanto solamente hace falta probar que $\ker(\varepsilon) \subseteq \operatorname{Im}(\partial_1)$ para terminar la demostración.

Sea $\sum r_x x \in \ker(\varepsilon) \subseteq S_0(X;R)$, es decir $\sum r_x = 0$, y sea $x_0 \in X$. Observa que una trayectoria $\alpha: I \to X$ que empieza en x_0 y termina en un $x \in X$ arbitrario lo podemos ver como un elemento de $S_1(X;R)$. Más precisamente: para toda $x \in X$ define $\alpha_x : \Delta^1 \to X$ la composición $I \approx \Delta^1 \xrightarrow{\alpha} X$. Por lo tanto para cada $x \in X$ y para cada trayectoria α que empieza en x_0 y termina en x, tenemos que

Ahora define $\sigma = \sum_{x \in X} r_x \alpha_x$ (que está bien definida porque $r_x \neq 0$ para solamente una cantidad finita de $x \in X$). Calculo:

$$\partial_1(\sigma) = \sum_{x \in X} r_x \partial_1(\alpha_x) = \sum_{x \in X} r_x (\alpha_x(e_1) - \alpha_x(e_0)) = \sum_{x \in X} r_x (x - x_0) = \sum_{x \in X} r_x x - x_0 \sum_{x \in X} r_x x$$

$$= \sum_{x \in X} r_x x.$$

Por lo tanto $\sum r_x x \in \text{Im}(\partial_1)$, concluimos que $\text{Im}(\partial_1) = \text{ker}(\varepsilon)$ y terminamos.

Una propiedad importante de la homología es que abre sumas directas. Más precisamente, si $\{C^{\lambda}_{\bullet}\}_{\lambda \in \Lambda}$ es una familia de complejos de cadenas, entonces $C_{\bullet} := \bigoplus_{\lambda \in \Lambda} C_{\bullet}^{\lambda}$ es un complejo de cadena con diferenciales $\bigoplus_{\lambda \in \Lambda} \partial_n^{\lambda}$. Este diferencial es canónico porque para toda $\lambda \in \Lambda$ tenemos morfismos d_n^{λ} definidos por la composición

$$\begin{array}{c|c} C_n^{\lambda} & & \bigoplus_{\lambda \in \Lambda} C_n^{\lambda} \\ \partial_n & & \downarrow \oplus \partial_n^{\lambda} \\ C_{n-1}^{\lambda} & & \bigoplus_{\lambda \in \Lambda} C_{n-1}^{\lambda} \end{array}$$

que por la propiedad universal de la suma directa se factorizan a través de $\bigoplus_{\lambda \in \Lambda} \partial_n^{\lambda}$. Por lo tanto hay una manaera canónica de definir la suma directa de una familia $\{C^{\lambda}_{\bullet}\}_{\lambda\in\Lambda}$ complejos de cadena con diferenciales $\partial_n^{\lambda}: C_n^{\lambda} \to C_{n-1}^{\lambda}$:

$$\cdots \longrightarrow \bigoplus_{\lambda \in \Lambda} C_{n+1}^{\lambda} \xrightarrow{\oplus_{\lambda} \partial_{n+1}^{\lambda}} \bigoplus_{\lambda \in \Lambda} C_{n}^{\lambda} \xrightarrow{\oplus_{\lambda} \partial_{n}^{\lambda}} \bigoplus_{\lambda \in \Lambda} C_{n-1}^{\lambda} \longrightarrow \cdots$$

Ejercicio 3. Sea $C_{\bullet} = \bigoplus_{\lambda \in \Lambda} C_{\bullet}^{\lambda}$ la suma directa de los complejos de cadena C_{\bullet} . Entonces la homología abre sumas:

$$H_n(C_{\bullet}; R) = H_n\left(\oplus C_n^{\lambda}; R\right) = \bigoplus_{\lambda \in \Lambda} H_n(C_{\bullet}^{\lambda}; R)$$

Proof. Probaré que $H_n(C_{\bullet}; R)$ cumple la propiedad universal de la suma directa. Primero observa que para toda $n \in \mathbb{Z}$, la inclusión canónica $i_n^{\mu}: C_n^{\mu} \to \bigoplus_{\lambda} C_n^{\lambda}$ forma parte de un morfismo de cadenas $i^{\mu}: C_{\bullet}^{\mu} \to C_{\bullet}$. En efecto, el diagrama

$$C_n^{\mu} \xrightarrow{\partial_n^{\mu}} C_{n-1}^{\mu}$$

$$\iota_n^{\mu} \int \qquad \qquad \int_{\iota_{n-1}^{\mu}} \iota_{n-1}^{\mu}$$

$$\oplus_{\lambda} C_n^{\lambda} \xrightarrow{\oplus_{\lambda} \partial_{\lambda}^{\lambda}} \oplus_{\lambda} C_{n-1}^{\lambda}$$

conmuta porque el morfismo $\oplus_{\lambda} \partial_n^{\lambda}$ es el dado por la propiedad universal de la suma directa; está inducido por la familia $\{i_{n-1}^{\lambda} \circ \partial_{n}^{\lambda}\}_{\lambda \in \Lambda}$ (esto ya lo argumenté antes de empezar el ejercicio). Por el ejercicio ?? el morfismo $i^{\mu}: C_{\bullet}^{\mu} \to C_{\bullet}$ induce un morfismo

$$H_n(i^{\mu}): H_n(C^{\mu}_{\bullet}; R) \longrightarrow H_n(C_{\bullet}; R)$$
 definido por $H_n(i^{\mu})[x] = [i^{\mu}_n(x)].$

Por lo tanto $H_n(C_{\bullet}; R)$ viene equipado con la familia de morfismos $\{H_n(i^{\lambda}): H_n(C_{\bullet}^{\lambda}; R) \to H_n(C_{\bullet}; R)\}_{\lambda \in \Lambda}$. Ahora falta probar que esta familia cumple la propiedad universal de la suma directa:

Sea M un R-módulo equipado con una familia de morfismos $\{f_{\lambda}: H_n(C^{\lambda}_{\bullet}; R) \to M\}_{{\lambda} \in \Lambda}$ Para cada ${\lambda} \in {\Lambda}$ defino el morfismo:

$$H_n(C_{\bullet}^{\lambda}) \xrightarrow{f_{\lambda}} M$$

$$H_n(\iota^{\lambda}) \xrightarrow{H_n(C_{\bullet}; R)} M$$

$$(2)$$

de la siguiente manera: si $[x] \in H_n(C_{\bullet}; R)$ entonces

$$x = \sum_{\lambda \in \Lambda} x_{\lambda} \in ker(\oplus_{\lambda} \partial_{n}^{\lambda}) = \bigoplus \ker(\partial_{n}^{\lambda}) \subseteq \bigoplus_{\lambda} C_{n}^{\lambda}$$

donde las $x_{\lambda} \in \ker(\partial_n^{\lambda}) \subseteq C_n^{\lambda}$ y $x_{\lambda} \neq 0$ para solamente una cantidad finita de índices $\lambda \in \Lambda$. Por lo tanto $\sum_{\lambda \in \Lambda} f_{\lambda}[x_{\lambda}] \in M$ porque la suma es finita y porque $[x_{\lambda}] \in H_n(C_{\bullet}^{\lambda}; R)$. De esta manera podemos definir:

$$\Phi[x] = \Phi\left[\sum_{\lambda \in \Lambda} x_{\lambda}\right] := \sum_{\lambda \in \Lambda} f_{\lambda}[x_{\lambda}].$$

Claramente hace conmutar el diagrama (2) porque si $[x] \in H_n(C_{\bullet}^{\lambda}; R)$ entonces $x \in \ker(\partial_n^{\lambda} \subseteq C_n^{\lambda})$ y así $i_n^{\lambda}(x) \in \oplus C_n^{\lambda}$ es la suma $\sum_{\mu \in \Lambda} x_{\mu}$ donde $x_{\mu} = 0$ para toda $\mu \neq \lambda$ y donde $x_{\lambda} = x$. Esto quiere decir que $\sum_{\mu \in \Lambda} f_{\mu}[x_{\mu}] = f_{\lambda}[x_{\lambda}] = f_{\lambda}[x]$ y así

$$\Phi[H_n(i^{\lambda})[x]] = \Phi\left[\sum_{\mu \in \Lambda} x_{\mu}\right] = f_{\lambda}[x]$$

También es claro que es un morfismo de R-módulos porque está definido como la suma de morfismos de R-módulos:

$$\Phi[x] + \Phi[y] = \Phi\left[\sum_{\lambda \in \Lambda} x_{\lambda}\right] + \Phi\left[\sum_{\lambda \in \Lambda} y_{\lambda}\right] = \sum_{\lambda \in \Lambda} f_{\lambda}[x_{\lambda}] + \sum_{\lambda \in \Lambda} f_{\lambda}[y_{\lambda}] = \sum_{\lambda \in \Lambda} f_{\lambda}[x_{\lambda} + y_{\lambda}] = \Phi\left[\sum_{\lambda \in \Lambda} x_{\lambda} + y_{\lambda}\right]$$
$$= \Phi([x] + [y]),$$

porque $x_{\lambda}, y_{\lambda}, x_{\lambda} + y_{\lambda} \in \ker(\partial_{n}^{\lambda})$ y f_{λ} es un morfismo de R-módulos. También:

$$\Phi(r[x]) = \Phi[rx] = \Phi\left[\sum_{\lambda \in \Lambda} rx_{\lambda}\right] = \sum_{\lambda \in \Lambda} f_{\lambda}[rx_{\lambda}] = \sum_{\lambda \in \Lambda} rf_{\lambda}[x_{\lambda}] = r\sum_{\lambda \in \Lambda} f_{\lambda}[x_{\lambda}] = r\Phi[x].$$

Lo único que hace falta probar es que Φ está bien definida. Sean $[x] = [x'] \in H_n(C_{\bullet}; R)$, es decir $x, x' \in \ker(\oplus_{\lambda} \partial_n^{\lambda}) = \oplus \ker(\partial_n^{\lambda})$ y $x - x' \in \operatorname{Im}(\oplus_{\lambda} \partial_{n+1}^{\lambda}) = \oplus_{\lambda} \operatorname{Im} \partial_{n+1}^{\lambda}$. Por lo tanto

$$x - x' = \sum_{\lambda \in \Lambda} x_{\lambda} - \sum_{\lambda \in \Lambda} x'_{\lambda} = \sum_{\lambda \in \Lambda} (x_{\lambda} - x'_{\lambda}) = \sum_{\lambda \in \Lambda} \partial_{n+1}^{\lambda}(y_{\lambda})$$

para algunas $y_{\lambda} \in C_{n+1}^{\lambda}$. Por lo tanto, para toda $\lambda \in \Lambda$, $x_{\lambda} - x_{\lambda}' = \partial_{n+1}^{\lambda}(y_{\lambda})$ porque las representaciones en las sumas directas son únicas. En homología esto significa que $[x_{\lambda}] = [x_{\lambda}']$ en $H_n(C_{\bullet}^{\lambda}; R)$ y así $f_{\lambda}[x_{\lambda}] = f_{\lambda}[x_{\lambda}']$ para toda λ . Por lo tanto:

$$\Phi[x] = \sum_{\lambda \in \Lambda} f_{\lambda}[x_{\lambda}] = \sum_{\lambda \in \Lambda} f_{\lambda}[x'_{\lambda}] = \Phi[x']$$

y Φ está biend definida.

Una consecuencia de esta propiedad de la homología es que siempre podemos reducir el cálculo de la homología de un espacio a calcular las homologías de sus componentes conectables por trayectorias:

Proposición 4. Sea X un espacio y $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$ la familia de sus componentes conectables por trayectorias. Entonces la familia de inclusiones $i^{\lambda}: X_{\lambda} \to X$ inducen un isomorfismo:

$$H_n(X;R) \cong \bigoplus_{\lambda \in \Lambda} H_n(X_\lambda;R).$$

Proof. Sabemos que para toda $\lambda \in \Lambda$ la inclusión $\iota^{\lambda}: X_{\lambda} \to X$ induce un morfismo de complejos de cadena $\iota^{\lambda}_{\#}: S_{\bullet}(X_{\lambda}; R) \to S_{\bullet}(X; R)$. Por lo la propiedad universal de la suma directa, existe un (único) morfismo $\Phi := \oplus \iota^{\lambda}_{\#}$ tal que

$$S_{\bullet}(X_{\lambda};R) \xrightarrow{} \oplus_{\lambda} S_{\bullet}(X_{\lambda};R)$$

$$\downarrow^{\Phi}$$

$$S_{\bullet}(X;R)$$

es un diagrama conmutativo. Como $\bigoplus_{\lambda} S_n(X_{\lambda}; R)$ es una suma directa de R-módulos libres, cada uno con base $S_n(X_{\lambda})$, entonces él mismo es un R-módulo libre con base $\sqcup_{\lambda} S_n(X_{\lambda})$. Por lo tanto

$$S_n(X;R) \cong \bigoplus_{\lambda \in \Lambda} S_n(X_\lambda;R) \quad \forall n \in \mathbb{Z}$$
 (3)

si hay una biyección $\sqcup_{\lambda} \mathcal{S}_n(X_{\lambda}) \leftrightarrow \mathcal{S}_n(X)$. Resulta que esta biyección está inducida por Φ .

Sabemos que $i_{\#}^{\lambda}$ se puede restringir a $i_{\#}^{\lambda}: \mathcal{S}_n(X_{\lambda}) \to \mathcal{S}_n(X)$, entonces podemos considerar la unión disjunta de estas funciones:

$$f: \bigsqcup_{\lambda \in \Lambda} \mathcal{S}_n(X_\lambda) \longrightarrow \mathcal{S}_n(X)$$
 definido por $\sigma \mapsto \iota_\#^\lambda(\sigma) = \iota^\lambda \circ \sigma$ si $\sigma \in \mathcal{S}_n(X_\lambda)$.

1. (f es inyectiva) Sean $\sigma, \tau \in \sqcup_{\lambda} \mathcal{S}_n(X_{\lambda})$. Si ambos están en la misma componente, ie. $\sigma, \tau \in \mathcal{S}_n(X_{\lambda})$ entonces

$$f(\sigma) = f(\tau) \implies i^{\lambda} \circ \sigma = i^{\lambda} \circ \tau \implies \sigma = \tau$$

porque i^{λ} es cancelable por la izquierda.

Ahora, supongamos que σ y τ están en componentes distintas y $(\imath^{\lambda} \circ \sigma) = (\imath^{\mu} \circ \tau)$. Como $\operatorname{Im}(\imath^{\lambda} \circ \sigma) \subseteq X_{\lambda}$ y $\operatorname{Im}(\imath^{\mu} \circ \tau) \subseteq X_{\mu}$ tenemos que

$$\operatorname{Im}(i^{\lambda} \circ \sigma) \subset X_{\lambda} \cap X_{\mu} = \emptyset!$$

lo cual es una contradicción. Por lo tanto sólo puede suceder el primer caso donde ya probamos que se cumple la inyectividad.

2. (f es sobreyectiva) Sea $\sigma \in \mathcal{S}_n(X)$. Como σ es continua y Δ^n es conectable por trayectorias, entonces $\sigma[\Delta^n] = \text{Im}(\sigma)$ es conectable por trayectorias. Por lo tanto existe una $\lambda \in \Lambda$ tal que $\text{Im}(\sigma) \subseteq X_\lambda$ y σ se factoriza a través de la inclusión i^λ , ie. $\sigma = i^\lambda \circ \sigma'$ donde σ' es la corestricción de σ al contradominio X_λ . Así $f(\sigma') = i^\lambda \circ \sigma' = \sigma$ y f es sobre.

De esto concluimos que f es biyectiva y verificamos la fórmula (3).

Tomando homología y aplicando el ejercicio 3 concluimos que:

$$H_n((X;R) \cong H_n(\bigoplus_{\lambda} S_n(X_{\lambda};R)) \cong \bigoplus_{\lambda \in \Lambda} H_n(S_{\bullet}(X_{\lambda};R)) \stackrel{\text{def}}{=} \bigoplus_{\lambda \in \Lambda} H_n(X_{\lambda};R).$$

Con este resultado y la proposición 3 podemos calcular la 0-homología de cualquier espacio:

Proposición 5. Sea X un espacio y $\{X_{\lambda}\}_{{\lambda}\in\Lambda}$ la familia de sus componentes conectables por trayectorias. Entonces:

$$H_0(X;R) \cong \bigoplus_{\lambda \in \Lambda} H_0(X_\lambda;R) \cong \bigoplus_{\lambda \in \Lambda} R.$$

En palabras esto quiere decir que H_0 cuenta las componentes de X.

0.1.2 Homología singular relativa

Como con los grupos fundamentales, se puede definir una homología relativa. Hay dos maneras de hacerlo. Si $A \subseteq X$ es un subespacio, entonces la inclusión $i:A \to X$ induce un morfismo $i_{\#}:S_{\bullet}(A;R) \to S_{\bullet}(X;R)$ y así podemos pensar que $S_{\bullet}(A;R)$ es un subcomplejo de $S_{\bullet}(X;R)$. Más precisamente, para cada $n, S_n(A;R)$ es un submódulo de $S_n(X;R)$, entonces podemos tomar cocientes para obtener:

$$S_{n}(A;R) \xrightarrow{\partial_{n}} S_{n-1}(A;R)$$

$$\downarrow^{\imath_{\#}} \qquad \qquad \downarrow^{\imath_{\#}}$$

$$S_{n}(X;R) \xrightarrow{\partial_{n}} S_{n-1}(X;R)$$

$$\downarrow \qquad \qquad \downarrow$$

$$S_{n}(X;R)/S_{n}(A;R) \xrightarrow{\bar{\partial}_{n}} S_{n-1}(X;R)/S_{n-1}(A;R)$$

donde $\bar{\partial}_n$ es el morfismo inducido por ∂_n . Esto nos lleva a definir:

Definición 6. Para cada subespacio $A \subseteq X$, define el complejo $S_{\bullet}(X,A;R)$ con:

$$S_n(X,A;R) := \frac{S_n(X;R)}{S_n(A;R)} \quad \text{y} \quad \bar{\partial}_n : S_n(X,A;R) \longrightarrow S_{n-1}(X,A;R).$$

La homología de X relativa a A se define de la misma manera:

$$H_n(X, A; R) := H_n(S_{\bullet}(X, A; R)) \stackrel{\text{def}}{=} \frac{\ker(\bar{\partial}_n)}{\operatorname{Im}(\bar{\partial}_{n+1})}.$$

Otra manera de definir la homología relativa es de manera análoga al grupo fundamental relativo:

Definición 7. Sea $A \subseteq X$ y escribe:

$$Z_n(X,A;R) = \{ \sigma \in S_n(X;R) \mid \partial_n(\sigma) \in S_{n-1}(A;R) \}$$

$$B_n(X,A;R) = \{ \sigma \in S_n(X;R) \mid \sigma = \partial_{n+1}(\tau) + \iota_{\#}(\delta), \text{ donde } \tau \in S_{n+1}(X;R), \delta \in S_n(A;R) \}$$

Entonces la homología de X relativa a A se define como el cociente

$$H_n(X, A; R) := \frac{Z_n(X, A; R)}{B_n(X, A; R)}$$

Observa que si $\sigma = \partial_{n+1}(\tau) + \iota_{\#}(\delta) \in B_n(X, A; R)$ entonces

$$\partial_n(\sigma) = \underbrace{\partial_n(\partial_{n+1}(\tau))}_{0} + \partial_n(\imath_{\#}(\delta)) \in S_{n-1}(A; R)$$

y por lo tanto $\sigma \in Z_n(X,A;R)$. Esto significa que el cociente $Z_n(X,A;R)/B_n(X,A;R)$ está bien definido.

Ejercicio 4. Ambas definiciones de la homología relativa son equivalentes.

Proof. Observa que $Z_n(X,A;R)$ es un submódulo de $S_n(X,R)$ porque si $\sigma,\tau\in Z_n(X,A;R)$ entonces

$$\partial_n(\sigma - \tau) = \partial_n(\sigma) - \partial_n(\tau) \in S_{n-1}(A; R) \implies \sigma - \tau \in Z_n(X, A; R)$$
$$\partial_n(r\sigma) = r\partial_n(\sigma) \in S_{n-1}(A; R) \quad \forall r \in R \implies r\sigma \in Z_n(X, A; R).$$

Ahora defino $\Phi: Z_n(X,A;R) \to S_n(X;R)/S_n(A;R)$ como la restricción de la proyección $S_n(X;R) \twoheadrightarrow S_n(X;R)/S_n(A;R)$. Claramente es un morfismo de R-módulos.

Primero pruebo que Φ es sobre. Sea $[\sigma] \in S_n(X;R)/S_n(A;R)$ y tomo la clase lateral $\Sigma := \sigma + S_n(A;R) \subseteq S_n(X;R)$. Todo elemento de $\sigma' \in \Sigma$ es de la forma $\sigma' = \sigma + \tau$ donde $\tau \in S_n(A;R)$. Entonces

$$\partial_n(\sigma') = \partial_n(\sigma + \tau) = \partial_n(\sigma) + \partial_n(\tau) \implies \partial_n(\sigma' - \sigma) \in S_n(A; R).$$

Ahora observa que $[\sigma] = [\sigma' - \sigma]$ porque

Como en el caso de **Top**, los morfismos $f:(X,A)\to (Y,B)$ inducen morfismos en homología: como $f[A]\subseteq B$, entonces $f_\#[S_\bullet(A;R)]\subseteq S_\bullet(B;R)$ y así f pasa al cociente, ie. tenemos

$$\bar{f}_{\#}: \frac{S_{\bullet}(X;R)}{S_{\bullet}(A;R)} \longrightarrow \frac{S_{\bullet}(Y;R)}{S_{\bullet}(B;R)}.$$

Esto claramente es un morfismo de complejos de cadena, entonces $\bar{f}_{\#}$ induce un morfismo $H_n(\bar{f}_{\#})$ en homologías. Podemos concluir lo mismo ahora usando la definición 7:

Sea $\sigma \in Z_n(X, A; R)$, ie. $\partial_n(\sigma) \in S_{n-1}(A'R)$. Entonces $f_{\#}(\sigma) \in S_n(Y; R)$ y

$$\partial_n(f_\#(\sigma)) = f_\#(\partial_n(\sigma)) \in S_{n-1}(B;R) \implies f_\#(\sigma) \in Z_n(Y,B;R)$$

En particular si $\sigma \in B_n(X, A; R)$ entonces $\sigma = \partial_N(\tau) + \delta$ para alguna $\delta \in S_n(A)$ y alguna $\tau \in S_{n+1}(X)$. De esta manera:

$$f_{\#}(\sigma) = f_{\#}(\partial_{n+1}(\tau)) + f_{\#}(\delta) = \partial_{n+1}(f_{\#}(\tau)) + f_{\#}(\delta) \in B_n(Y, B; R).$$

Por lo tanto $f_{\#}[B_n(X,A;R)] \subseteq B_n(Y,B;R)$ y pasa al cociente:

$$\bar{f}_{\#}: \frac{Z_n(X,A;R)}{B_n(X,A;R)} \longrightarrow \frac{Z_n(Y,B;R)}{B_n(Y,B;R)}.$$

La homología relativa también abre sumas directas:

Proposición 6. Sean $A \subseteq X$ y $\{X_{\lambda}\}_{{\lambda} \in \Lambda}$ la familia de componentes (conectables por trayectorias) de X; escribo $A_{\lambda} := X_{\lambda} \cap A$. La familia de inclusiones $\{i_{\lambda} : (X_{\lambda}, A_{\lambda}) \to (X, A)\}_{{\lambda} \in \Lambda}$ inducen un isomorfismo

$$H_n(X, A; R) \cong \bigoplus_{\lambda \in \Lambda} H_n(X_\lambda, A_\lambda; R).$$

Proof. Las inclusiones \imath^λ inducen morfismos $\imath^\lambda_\#$ que hacen conmutar el siguiente diagrama:

$$X_{\lambda} \xrightarrow{i_{\lambda}} X \qquad S_{n}(X_{\lambda}; R) \xrightarrow{i_{\#}^{\lambda}} S_{n}(X; R)$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$A_{\lambda} \longleftrightarrow A \qquad S_{n}(A_{\lambda}; R) \longleftrightarrow S_{n}(A; R)$$

Como el segundo diagrama es conmutativo, $i_{\#}^{\lambda}$ pasa al cociente, ie.

$$j^{\lambda} := \overline{\imath_{\#}^{\lambda}} : \frac{S_n(X_{\lambda}; R)}{S_n(A_{\lambda}; R)} \longrightarrow \frac{S_n(X; R)}{S_n(A; R)}.$$

Por lo tanto tenemos una familia de morfismos

$$\left\{j^{\lambda}: S_n(X_{\lambda}, A_{\lambda}; R) \longrightarrow S_n(X, A; R)\right\}_{\lambda \in \Lambda}$$
.

Por lo propiedad universal de la suma directa, existe un (único) morfismo

$$\Phi := \bigoplus_{\lambda} j^{\lambda} : \bigoplus_{\lambda \in \Lambda} S_n(X_{\lambda}, A_{\lambda}; R) \longrightarrow S_n(X, A; R).$$

Para ver que Φ es un isomorfismo basta verificar que induce una biyección entre las bases de $\oplus S_n(X_\lambda, A_\lambda; R)$ y $S_n(X, A; R)$. Esto se sigue inmediatamente del siguiente ejercicio:

Ejercicio 5. La función

$$\Phi: \bigsqcup_{\lambda \in \lambda} \{ \sigma \in \mathbb{S}_n(X_\lambda) \mid \operatorname{Im}(\sigma) \not\subseteq A_\lambda \} \longrightarrow \{ \sigma \in \mathbb{S}_n(X) \mid \operatorname{Im}(\sigma) \not\subseteq A \} \quad \text{definido por} \quad \sigma \mapsto \imath^\lambda \circ \tau$$

es una biyección.

Primero escribo:

$$M_{\lambda} := \{ \sigma \in \mathbb{S}_n(X_{\lambda}) \mid \operatorname{Im}(\sigma) \not\subseteq A_{\lambda} \} \quad \text{y} \quad N := \{ \sigma \in \mathbb{S}_n(X) \mid \operatorname{Im}(\sigma) \not\subseteq A \},$$

entonces $\Phi: \sqcup M_{\lambda} \to N$. Primero veo que está bien definida. Sea $\sigma \in \sqcup M_{\lambda}$, es decir $\sigma \in M_{\lambda}$ para alguna $\lambda \in \Lambda$. Entonces $\operatorname{Im}(\sigma) \not\subseteq A_{\lambda}$, es decir existe un elemento $x \in \operatorname{Im}(\sigma)$ tal que $x \not\in A_{\lambda} = X_{\lambda} \cap A$, ie. $x \in (X_{\lambda})^c \cup A^c$. Hay dos casos:

Si $x \notin A$ entonces $\operatorname{Im}(\sigma) \not\subseteq A$ y bajo la inclusión $\iota^{\lambda}: X_{\lambda} \to X$ tenemos que $\operatorname{Im}(\Phi(\sigma)) = \operatorname{Im}(\iota^{\lambda} \circ \sigma) = \operatorname{Im}(\sigma) \not\subseteq A$ lo cual implica que $\Phi(\sigma) \in N$.

El segundo caso: $x \not X_{\lambda}$ no puede suceder, porque $x \in \text{Im}(\sigma)$ y $\sigma : \Delta^n \to X_{\lambda}$ tiene como contradominio a X_{λ} , ie. $\text{Im}(\sigma) \subseteq X_{\lambda}$. Por lo tanto nada más puede suceder el primer caso donde ya probamos que Φ está bien definida.

La prueba de que Φ es una biyección es exactamente análogo a la prueba de la proposición 4:

1. (Φ es inyectiva) Sean $\sigma, \tau \in \sqcup_{\lambda} M_{\lambda}$. Si ambos están en el mismo uniendo, ie. $\sigma, \tau \in M_{\lambda}$ para alguna $\lambda \in \Lambda$, entonces

$$\Phi(\sigma) = \Phi(\tau) \implies i^{\lambda} \circ \sigma = i^{\lambda} \circ \tau \implies \sigma = \tau$$

porque i^{λ} es cancelable por la izquierda (por ser inyectivo).

Ahora, supongamos que σ y τ están en uniendos distintos y $(\iota^{\lambda} \circ \sigma) = (\iota^{\mu} \circ \tau)$. Como $\operatorname{Im}(\iota^{\lambda} \circ \sigma) \subseteq X_{\lambda}$ y $\operatorname{Im}(\iota^{\mu} \circ \tau) \subseteq X_{\mu}$ tenemos que

$$\operatorname{Im}(\iota^{\lambda} \circ \sigma) \subseteq X_{\lambda} \cap X_{\mu} = \emptyset!$$

lo cual es una contradicción. Por lo tanto sólo puede suceder el primer caso donde ya probamos que se cumple la inyectividad.

2. (Φ es sobreyectiva) Sea $\sigma \in N$. Como σ es continua y Δ^n es conectable por trayectorias, entonces $\sigma[\Delta^n] = \operatorname{Im}(\sigma)$ es conectable por trayectorias. Por lo tanto existe una $\lambda \in \Lambda$ tal que $\operatorname{Im}(\sigma) \subseteq X_\lambda$ y σ se factoriza a través de la inclusión ι^λ , ie. $\sigma = \iota^\lambda \circ \sigma'$ donde σ' es la corestricción de σ al contradominio X_λ . Así $\Phi(\sigma') = \iota^\lambda \circ \sigma' = \sigma$ y f es sobre.

Como en el caso de la homología usual, podemos calcular la 0-homología relativa:

Proposición 7. Sea X un espacio conectable por trayectorias y $A \subseteq X$ un subespacio no vacío, entonces: $H_0(X, A; R) = 0$.

Proof. Como $\partial_0 = 0$ y $S_{-1}(A; R) = 0$, entonces

$$Z_0(X, A; R) = \{ \sigma \in S_0(X; R) \mid \partial_0(\sigma) = 0 \} = S_0(X; R).$$

Por otro lado sea $\tau = \sum_{x \in X} r_x x \in S_0(X; R)$ y $a_0 \in A$ un punto arbitrario (aquí estamos usando que $A \neq \emptyset$). Como X es conectable por trayectorias, para toda $x \in X$ existe una trayectoria $\sigma_x : \Delta^1 \to X$ que empieza en a_0 y termina en x, ie. $\sigma_x(e_0) = a_0$ y $\sigma_x(e_1) = x$. Ahora calculo la frontera de la 1-cadena $\sigma := \sum_{x \in X} r_x \sigma_x$.

$$\partial_1 \left(\sum r_x \sigma_x \right) = \sum r_x \partial_1 (\sigma_x) = \sum r_x (x - a_0) = \sum r_x x - \sum r_x a_0 = \tau - r a_0$$

$$\therefore \tau = \partial_1 \left(\sum r_x \sigma_x \right) + r a_0 \in B_0(X, A; R)$$

porque $r \in R$ y $a_0 \in A$ implican que $ra_0 \in S_0(A; R)$.

Por lo tanto $S_0(X;R) \subseteq B_0(X,A;R)$. Esto junto con $B_0(X,A;R) \subseteq Z_0(X,A;R) = S_0(X;R)$ podemos concluir que $B_0(X,A;R) = Z_0(X,A;R)$ y así:

$$H_0(X, A; R) = \frac{Z_0(X, A; R)}{B_0(X, A; R)} = 0.$$

Nota. Observa que una función continua $f: X \to Y$ es equivalente al morfismo basado $f: (X, \emptyset) \to (Y, \emptyset)$, entonces cuando $A = \emptyset$ tenemos:

$$H_n(X, \emptyset; R) = H_n(X; R),$$

en particular, la homología relativa generaliza la homología usual. En lenguaje más técnico, el funtor $X \mapsto (X, \emptyset)$ es una inclusión.

Si juntamos las proposiciones podemos calcular $H_0(X, A; R)$. Solamente dependen de las componentes de X que intersectan a A:

Corolario 3. Sea $A \subseteq X$ y $\{X_{\lambda}\}_{{\lambda} \in {\Lambda}}$ las componentes conectables por trayectorias de X. Si ${\Lambda}'$ es el conjunto de índices donde A intersecta a X_{λ} , ie. ${\Lambda}' := \{{\lambda} \in {\Lambda} \mid A_{\lambda} \neq \emptyset\}$ entonces

$$H_0(X, A; R) \cong \bigoplus_{\lambda \in \Lambda'} \cong \bigoplus_{\lambda \in \Lambda'}$$

Ahora veremos uno de los teoremas más útiles para calcular homologías. Para el siguiente teorema vamos a fijar un anillo R. Más formalmente, fijamos la categoría Mod_R y trabajamos con complejos sobre esa categoría. Por esto voy a omitir la R de la notación; por ejemplo $H_n(X,A) = H_n(X,A;R)$.

Teorema 4. Sean $A \subseteq X$, $i: A \hookrightarrow X$ la inclusión $y j: (X, \emptyset) \hookrightarrow (X, A)$ Existen una sucesión exacta larga:

$$\cdots \longrightarrow H_n(A) \xrightarrow{H_n(i)} H_n(X) \xrightarrow{H_n(j)} H_n(X,A) \xrightarrow{d_n} H_{n-1}(A) \xrightarrow{H_{n-1}(i)} H_{n-1}(X) \longrightarrow \cdots$$
 (4)

donde d_n se define como $d_n[\sigma] = [\partial_n(\sigma)]$. A veces se llaman morfismos de conexión.

Proof. Primero observa que el morfismo de conexión está bien definida: tomamos

$$[\sigma] = [\sigma'] \in \frac{Z_n(X, A)}{B_n(X, A)} \implies \sigma \in Z_n(X, A) \text{ y } \partial_n(\sigma) \in S_{n-1}(A).$$

Como $\sigma - \sigma' \in B_n(X, A)$, entonce existen $\tau \in S_{n+1}(X)$ y $\delta \in S_n(A)$ tales que

$$\sigma - \sigma' = \partial_{n+1}(\tau) + \delta \implies \partial_n(\sigma - \sigma') = \partial_n(\partial_{n+1}(\tau)) + \partial_n(\delta) \in \operatorname{Im}(\partial_n)$$

$$\therefore \partial_n(\sigma) - \partial_n(\sigma') \in B_n(X, A) \implies d_n[\sigma] = [\partial_n(\sigma)] = [\partial_n(\sigma')] = d_n[\sigma']$$

y así d_n está bien definida.

Hay que probar exactitud en tres lugares:

1. (Exactitud en $H_n(X,A)$) Sea $[\sigma] \in H_n(X)$. Como $j_\#: S_{\bullet}(X) \to S_{\bullet}(X,A)$ es un morfismo de complejos de cadena, entonces

$$d_n\big(H_n(j)[\sigma]\big) = d_n\big[j_\#(\sigma)\big] = [(\partial_n \circ j_\#)(\sigma)] = [(j_\# \circ \partial_n(\sigma))] = 0$$

porque $\sigma \in Z_n(X) = \ker \partial_n$. Por lo tanto $\operatorname{Im}(H_n(j_\#)) \subseteq \ker(d_n)$.

Para la otra contención sea $[\sigma] \in \ker(d_n) \subseteq H_n(X, A)$, es decir $d_n[\sigma] = 0$. Por definición, esto significa que $\partial_n(\sigma) \in \operatorname{Im}(\partial_n) \subseteq S_{n-1}(A)$. Por lo tanto existe un $\tau \in S_n(A)$ tal que

$$\partial_n(\sigma) = \partial_n(\tau) \implies \partial_n(\sigma - \tau) = 0 \implies \sigma - \tau \in Z_n(X) \implies [\sigma - \tau] \in H_n(X)$$

Como $\tau \in S_n(A) \subseteq B_n(X, A)$, entonces $[\sigma] = [\sigma - \tau] = [j_\#(\sigma - \tau)] = H_n(j)(\sigma - \tau)$ y así $[\sigma] \in \operatorname{Im}(H_n(j))$.

2. (Exactitud en $H_n(X)$) Sea $[\sigma] \in H_n(A)$, entonces

$$(H_n(j) \circ H_n(i))[\sigma] = [(j_\# \circ i_\#)(\sigma)] = 0$$

ya que $\sigma \in S_n(A) \subseteq B_n(X, A)$. Por lo tanto $\operatorname{Im}((H_n(i))) \subseteq \ker(H_n(j))$. Para la otra contención, sea $[\sigma] \in H_n(X)$ tal que $H_n(j)[\sigma] = [j_\#(\sigma)] = 0$, es decir $j_\#(\sigma) \in B_n(X, A)$. Por lo tanto existe un $\delta \in S_n(A)$ y un $\tau \in S_{n+1}(X)$ tal que $j_\#(\sigma) = \partial_{n+1}(\tau) + i_\#(\delta)$. Despejamos:

$$\sigma - \iota_{\#}(\delta) = \partial_{n+1}(\tau) \implies \sigma - \iota_{\#}(\delta) \in \operatorname{Im}(\partial_{n+1}) = B_n(X) \implies [\sigma] = [\iota_{\#}(\delta)] = H_n(\iota)(\delta).$$

Por lo tanto $[\sigma] \in \text{Im}(H_n(i))$ y concluimos la otra contención.

3. (Exactitud en $H_{n-1}(A)$)

Ejercicio 6. La sucesión larga de homologías (4) es exacta en $H_{n-1}(A)$.

Proof. Para la primera contención, sea $[\sigma] \in H_n(X,A)$, en particular $\partial_n(\sigma) \in S_{n-1}(A)$. Entonces

$$H_{n-1}(\imath)\big(d_n[\sigma]\big)=H_{n-1}(\imath)[\partial_n(\sigma)]=[\imath_\#(\partial_n(\sigma))]=[(\imath\circ\partial_n)(\sigma))]=[\partial_n(\sigma)]=0.$$

Por lo tanto $\operatorname{Im}(d_n) \subseteq \ker(H_{n-1}(i))$.

Para la otra contención, considera $[\sigma] \in \ker(H_{n-1}(i))$, ie. $H_{n-1}(i)[\sigma] = [i_{\#}(\sigma)] = [i \circ \sigma] = [0]$. Esto implica que $i \circ \sigma \in B_{n-1}(X)$, es decir que existe un $\tau \in S_n(X)$ tal que $\partial_n(\tau) = \iota_\#(\sigma)$. Como $j_\#$ es un morfismo de complejos de cadena, entonces:

$$\partial_n(j_\#(\tau)) = j_\#(\partial_n(\tau)) = j_\#(i_\#(\sigma)) = \bar{0} \in \frac{S_n(X)}{S_n(A)}$$

gracias a la exactitud de la sucesión exacta corta

$$0 \longrightarrow S_{n-1}(A) \xrightarrow{\imath_\#} S_{n-1}(X) \xrightarrow{j_\#} \frac{S_{n-1}(X)}{S_{n-1}(A)} = S_{n-1}(X,A) \longrightarrow 0$$

y a que $\sigma \in Z_{n-1}(A) \subseteq S_{n-1}(A)$. Por lo tanto $j_{\#}(\tau) \in Z_n(X,A)$ y así:

$$d_n[j_\#\tau] = [\partial_n(j^\#(\tau))] = [j^\#()]$$