§1 Lecture 1

We begin with the definition of probability.

Definition 1.1 (**Probability**). A mathematical model about random experiments.

In this class, we fix the notation $\Omega, \mathcal{F}, \mathbb{P}$. We say that Ω is our "sample space" or the set of all possible outcomes. For example, if our experiment was flipping a coin, then $\Omega = \{H, T\}$. It is also important to note that Ω can be countably or uncountably infinite. For example, our experiment might be picking a positive integer in which $\Omega = \mathbb{N}$. Or our experiment might be throwing a dart at a board in which Ω would be uncountably infinite.

We define \mathcal{F} to be the set of all events, mathematically speaking it's a σ algebra. We can define an event to be a subset of Ω . For example, if our experiment is flipping two coins, then an event could be that the first coin is heads - the precise event would then be $\{HH, HT\}$ (notice that both HH and HT are in Ω).

Another interesting example might be where we roll a die as our experiment. Then we could say an event is rolling an *even* number that's greater than 4. The precise event would be $\{4,6\}$. Notice, however, that we can actually write this event as the intersection of two events. That is

- 1. Rolling an even number : $\{2, 4, 6\}$.
- 2. Rolling a number greater than $4: \{4, 5, 6\}$.

Then the intersection of these two events is exactly our event of rolling an even number greater than 4.

Remark 1.2. When we say one event A happens, it means we get some outcome $\omega \in \Omega$ s.t. $\omega \in A$. If $\omega \notin A$, then A doesn't happen.

Remark 1.3. We can also do set operations on events. That is if A and B are events, then we can say that the event of A or B happening is exactly $A \cup B$.

Definition 1.4. We define the complement of event A to be $A^c = \{\omega \in \Omega : \omega \notin A\}$.

Remark 1.5. If Ω is finite, then one possible choice of \mathcal{F} is $\mathcal{F} = 2^{\Omega}$.

Note that 2^{Ω} is defined to be the *power set* of Ω , or the "set of all subsets of Ω ".

One more thing to note, but not terribly important for this class is that if Ω is infinite, then $\mathcal{F} \neq 2^{\Omega}$.

Finally, we define \mathbb{P} to be a function from \mathcal{F} to the closed interval [0,1]. That is, $\mathbb{P}: \mathcal{F} \to [0,1]$. Notice that this means we can only talk about the probability of one event.

If we want to talk about the probability of some outcome ω , then formally we would define the event $\{\omega\}$ and ask what is $\mathbb{P}(\{\omega\})$.

Recall that we said that \mathcal{F} is a " σ algebra". Here we define it formally.

Definition 1.6. Let Ω be a set. We say that \mathcal{F} is a σ algebra of Ω if it satisfies:

- 1. $\emptyset \in \mathcal{F}$
- 2. If $A_1, A_2, \dots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$
- 3. If $A \in \mathcal{F}$, then $A^c \in F$ (recall that A^c is the *complement* of A)

§2 Lecture 2

Remark 2.1. \mathcal{F} is formulated by our choice but it's usually the set of all events. For example, we might have $\mathcal{F} = \{\emptyset, \Omega\}$ or $\mathcal{F} = \{\emptyset, \Omega, A, A^c\}$.

Proposition 2.2. Let \mathcal{F} be a σ -algebra and $A_1, A_2, \dots \in \mathcal{F}$, then $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$.

Proof. Since $A_1, A_2, \dots \in \mathcal{F}$, then by Definition 1.6 we have that $A_1^c, A_2^c, \dots \in \mathcal{F}$ and again by definition $\bigcup_{i=1}^{\infty} A_i^c \in \mathcal{F}$. So by definition once again, $(\bigcup_{i=1}^{\infty} A_i^c)^c \in \mathcal{F}$ (since the complement of any event is also in \mathcal{F}). But this is equivalent to $\bigcap_{i=1}^{\infty} A_i$.

We now formally define what \mathbb{P} is.

Definition 2.3. We define \mathbb{P} as a probability measure where \mathbb{P} is a function \mathbb{P} : $\mathcal{F} \to [0,1]$ such that:

- 1. $\mathbb{P}(\emptyset) = 0$.
- 2. $\mathbb{P}(\Omega) = 1$.
- 3. If $A_1, A_2, \dots \in \mathcal{F}$ and $A_i \cap A_j = \emptyset, \forall i \neq j$ (or pairwise disjoint), then

$$\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$$

Remark 2.4. The triple $(\Omega, \mathcal{F}, \mathbb{P})$ is called a probability space. This also uniquely characterizes a random experiment and vice versa.

For example, if we roll a die the experiment may change depending on how we define our probability space. We could define $\Omega = \{1, 2, 3, 4, 5, 6\}$ and let $\mathcal{F} = 2^{\Omega}$ (recall that this is the power set of Ω). This then would simulate simply rolling the die and recording what number we get. However, if we were to define $\mathcal{F} = \{\emptyset, \Omega, \{1, 3, 5\}, \{2, 4, 6\}\}$, then this would simulate rolling the die as a fair coin!

Thus, it is important to always specify what Ω, \mathcal{F} and \mathbb{P} are with any random experiment.

We now prove a few basic properties of probability spaces.

Proposition 2.5. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

- 1. If $A \in \mathcal{F}$, then $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$.
- 2. If $A, B \in \mathcal{F}$ and $A \subseteq B$ then $\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B \setminus A) \ge \mathbb{P}(A)$. Recall that $B \setminus A = \{\omega \in \Omega : \omega \in B \land \omega \notin A\}$.
- 3. If $A_1, A_2, \dots, A_n \in \mathcal{F}$, then

$$\mathbb{P}(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} \mathbb{P}(A_i) - \sum_{i < j} \mathbb{P}(A_i \cap A_j)$$
$$+ \sum_{i < k < j} \mathbb{P}(A_i \cap A_j \cap A_k) - \dots + (-1)^{n-1} \mathbb{P}(A_1 \cap \dots \cap A_n)$$

- 4. If $A_1 \subseteq A_2 \subseteq ...$ then $\lim_{n \to \infty} \mathbb{P}(A_n) = \mathbb{P}(\bigcup_{i=1}^{\infty} A_i)$.
- 5. If $A_1 \subseteq A_2 \subseteq \ldots$ then $\lim_{n \to \infty} \mathbb{P}(A_n) = \mathbb{P}(\bigcap_{i=1}^{\infty} A_i)$.

Proof.

- 1. Notice that A and A^c are disjoint and $A \cup A^c = \Omega$. So $1 = \mathbb{P}(\Omega) = \mathbb{P}(A \cup A^c) = \mathbb{P}(A) + \mathbb{P}(A^c)$.
- 2. Since $A \subseteq B$, then $B = A \cup (B \setminus A)$ and $\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B \setminus A)$. Since $\mathbb{P}(B \setminus A) \ge 0$ by Definition 2.3, then $\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B \setminus A) \ge \mathbb{P}(A)$.
- 3. We will show by induction but we will only show the base case and leave the inductive step as an exercise for the reader.

For the base case or n=2, notice that $A_1 \cup A_2 = A_2 \cup (A_1 \setminus A_2)$ and that $A_1 = (A_1 \cap A_2) \cup (A_1 \setminus A_2)$. So $\mathbb{P}(A_1 \cup A_2) = \mathbb{P}(A_2 + \mathbb{P}(A_1 \setminus A_2))$ and $\mathbb{P}(A_1) = \mathbb{P}(A_1 \cap A_2) \cup \mathbb{P}(A_1 \setminus A_2)$. Combining these two equations gives us our base case.

Hint: For the inductive step, maybe we can treat $\mathbb{P}(A_1 \cup A_2 \cup A_3) = \mathbb{P}((A_1 \cup A_2) \cup A_3)$.

4. Define $B_1 = A_1, B_2 = A_2 \setminus A_1$, and $B_i = A_i \setminus A_{i-1}$. Notice that this means that the B_i 's are pairwise disjoint and $\bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} A_i$. So

$$\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \mathbb{P}(\bigcup_{i=1}^{\infty} B_i) = \sum_{i=1}^{\infty} \mathbb{P}(B_i) = \lim_{n \to \infty} \sum_{i=1}^{n} \mathbb{P}(B_i)$$

But notice that

$$\mathbb{P}(B_1) = \mathbb{P}(A_1)$$

$$\mathbb{P}(B_2) = \mathbb{P}(A_2 \setminus A_1) = \mathbb{P}(A_2) - \mathbb{P}(A_1)$$

$$\vdots$$

$$\mathbb{P}(B_n) = \mathbb{P}(A_n) - \mathbb{P}(A_{n-1})$$

This gives us a telescoping sum and so $\sum_{i=1}^n \mathbb{P}(B_i) = \mathbb{P}(A_n)$ and $\lim_{n\to\infty} \sum_{i=1}^n \mathbb{P}(B_i) = \lim_{n\to\infty} \mathbb{P}(A_n)$.

5. Similar to (4).

We now begin our discussion on conditional probability.

Definition 2.6. Let A and B be two events with $\mathbb{P}(B) > 0$. Then the conditional probability of A given B is

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$