This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

THIS PAGE BLANG

Method of ch cking the functioning of a driving wheel slip control system								
Patent Number:	□ US5058423							
Publication date:	1991-10-22							
Inventor(s):	OZAKI MASAAKI (JP); KOJIMA YOH (JP)							
Applicant(s)::	HONDA MOTOR CO LTD (JP)							
Requested Patent:	□ <u>DE4021985</u>							
Application Number:	US19900551240 19900710							
Priority Number(s):	JP19890178393 19890711							
IPC Classification:	G01M15/00							
EC Classification:	n: <u>G01L5/28B</u> , <u>G01M17/06B</u>							
Equivalents:	uivalents: CA2020749, GB2236407, JP1896543C, JP3042544, JP6016004B,							
	□ <u>US5115678</u>							
Abstract								
A method of checking the functioning of a driving wheel slip control system installed in a vehicle. Driving wheels are placed on support rollers and rotatably supported thereby. The driving wheels are driven by the engine. False signals indicative of tentative rotational speeds of trailing wheels are supplied to an ECU which in turn outputs a control signal for controlling the engine. Predetermined monitoring signals including at least the control signal output from the ECU are taken out from the driving wheel slip control system. It is determined whether the predetermined monitoring signals show values falling within respective predetermined allowable ranges. Further, a steering handle of the vehicle may be turned at the same time of rotation of the driving wheels, the steering angle of which is detected by a steering angle sensor. Further, instead of using the false signals, the trailing wheels may be placed on second support rollers for rotatably supporting the trailing wheels thereby. The second support rollers are capable of rotatively driving the trailing wheels.								
Data supplied from the esp@cenet database - I2								

THIS PAGE BLANK (198710)

® BUNDESREPUBLIK DEUTSCHLAND

© Offenl gungsschrift DE 4021985 A1

⑤ Int. Cl. 5; **G 01 M 17/00**

> B 60 K 28/16 G 05 D 13/64

DEUTSCHES PATENTAMT

 (2) Aktenzeichen:
 P 40 21 985.2

 (2) Anmeldetag:
 11. 7. 90

 (3) Offenlegungstag:
 24. 1. 91

30 Unionsprioritāt: 22 (33 (3) 11.07.89 JP 1-178393

Anmelder:
 Honda Giken Kogyo K.K., Tokio/Tokyo, JP

Weickmann, H., Dipl.-Ing.; Fincke, K., Dipl.-Phys. Dr.; Weickmann, F., Dipl.-Ing.; Huber, B., Dipl.-Chem.; Liska, H., Dipl.-Ing. Dr.-Ing.; Prechtel, J., Dipl.-Phys. Dr.rer.nat., Pat.-Anwālte, 8000

② Erfinder:

Ozaki, Masaaki, Sayama, Saitama, JP; Kojima, Yoh, Fujimi, Saitama, JP

Prüfungsantrag gem. § 44 PatG ist gestellt

(A) Verfahren zum Prüfen der Funktion eines Antriebsrad-Schlupfsteuersystems

Es wird ein Verfahren zum Prüfen der Funktion eines Antriebsrad-Schlupfsteuersystems angegeben, das in einem Fahrzeug vorgesehen ist. Die Antriebsräder werden auf Tragwaizen bzw. Tragrollen gesetzt und auf diesen drehbar gelagert. Die Antriebsräder werden durch die Brennkraftmaschine angetrieben. Fehlersignale, die beabsichtigte Drehgeschwindigkeiten der nachlaufenden Räder wiedergeben, werden einer elektronischen Verarbeitungseinheit (ECU) zugeführt, die ihrerseits ein Steuersignal zum Steuern der Brennkraftmaschine ausgibt. Vorbestimmte Überwachungssignale einschließlich wenigstens des Steuersignals, das von der ECU ausgegeben wurde, werden von dem Antriebsrad-Schlupfsteuersystem abgenommen. Es wird bestimmt, ob die vorbestimmten Überwachungssignale Werte haben, die innerhalb zugeordneten, vorbestimmten, zulässigen Bereichen liegen. Ferner kann ein Lenkrad des Fahrzeuges gleichzeitig mit der Drehbewegung der Antriebsräder gedreht werden, und der Lenkwinkel desselben wird mit Hilfe eines Lenkwinkelsensors erfaßt. Ferner können anstelle der Verwendung von Fehlersignalen die Antriebsräder auf zweite Tragwalzen gesetzt werden, welche die Antriebsräder drehbar machen. Die zweiten Tragwalzen können die nachlaufenden Räder drehantreiben.

Beschreibung

Die Erfindung bezieht sich auf ein Verfahren zum Prüfen der Funktion bzw. der Funktionsfähigkeit eines in ein Kraftfahrzeug eingebautes Steuersystem, und insbesondere auf ein Verfahren zum Prüfen der Funktion bzw. Funktionsfähigkeit eines Antriebsrad-Schlupfsteuersystems.

Wie allgemein bekannt, tritt bei einem Antriebsrad eines Fahrzeugs ein Schlupf auf, wenn das Fahrzeug anfährt oder wenn es beschleunigt wird, falls die Antriebskraft des Antriebsrades eine Reibungskraft übersteigt, die zwischen dem Reifen des Antriebsrades und der Fahrbahnoberfläche auftritt (= der Reibungskoeffizient zwischen dem Reifen und der Fahrbahnoberfläche × Belastung durch das Fahrzeuggewicht auf das Antriebsrad (Radbelastung)).

Antriebsradschlupf-Schlupfsteuersysteme zum Steuern des Schlupfs der Antriebsräder wurden bereits von der Anmelderin beispielsweise in den japanischen veröffentlichten Patentanmeldungen (Kokai) No. 2-1 57 439 und 2-1 57 440 vorgeschlagen. Gemäß diesen Systemen wird eine Antriebsrad-Schlupfsteuerung mit den folgenden Schritten durchgeführt:

1) Detektieren der Drehgeschwindigkeiten der rechten und linken Antriebsräder, der Drehgeschwindigkeiten der rechten und linken nachlaufenden Räder und des Lenkwinkels eines Lenkrads.

2) Ermitteln eines Parameters (der nachstehend als 30 "Schlupfwert" bezeichnet wird), welcher die Größe eines Schlupfes der Antriebsräder, basierend auf den detektierten Drehgeschwindigkeiten der Räder und des Lenkwinkels wiedergibt, und

3) Erhöhen der Anzahl der Zylinder einer Brennkraftmaschine im Fahrzeug, zu welchem die Kraftstoffzufuhr unterbrochen wird, um hierdurch das Abtriebsmoment der Brennkraftmaschine herabzusetzen, wenn der Schlupfwert größer ist (das Ausmaß des Schlupfes größer ist).

Die Erfassung des Lenkwinkels gemäß dem vorstehend genannten Schritt 1) dient zur Steuerung der Gierbewegung des Fahrzeugs, basierend auf den detektierten Werten für den Lenkwinkel und die Drehgeschwindigkeiten der rechten und linken nachlaufenden Räder. Diese Steuerung der Gierbewegung wird dadurch vorgenommen, daß das Abtriebsdrehmoment der Brennkraftmaschine herabgesetzt wird, um beispielsweise die Tendenz bei einem Vorderradantriebsfahrzeug zu verringern, daß dieses während der Gierbewegung zur Untersteuerung neigt. Die Gierbewegungssteuerung ist eine Art einer Antriebsrad-Schlupfsteuerung in einem allgemeinen Sinne.

Zum anderen wurde ein System zum Prüfen der 55 Funktionsfähigkeit oder des Arbeitens derartiger Antriebsrad-Schlupfsteuersysteme gemäß der veröffentlichten japanischen Gebrauchsmusteranmeldung (Kokai) No. 63-84 544 vorgeschlagen, bei dem alle vier Räder eines Fahrzeuges auf zugeordnete Trommelwalzen 60 gesetzt werden, die sich unabhängig voneinander drehen können (diese Trommelwalzen, deren äquivalentes Trägheitsgewicht relativ klein ist, übernehmen die Funktion einer vereisten Fahrbahn o.dgl.). Dabei wird bestimmt, daß das Antriebsrad-Schlupfsteuersystem des 65 Fahrzeuges nicht normal arbeitet, wenn die Drehgeschwindigkeiten der rechten und linken Antriebsräder einen vorbestimmten oberen Grenzwert innerhalb ei-

ner vorbestimmten Zeitperiode überschreiten, nachdem das Gaspedal bzw. Fahrpedal des Fahrzeugs niedergedrückt wurde.

Gemäß dem vorstehend beschriebenen System er-5 folgt die Überprüfung derart grob, daß man nur feststellen kann, ob das Antriebsrad-Schlupfsteuersystem angesprochen hat oder nicht. Es ist jedoch nicht möglich zu bestimmen, ob die Antriebsrad-Schlupfsteuersysteme gemäß dem voranstehend beispielsweise von der Anmelderin vorgeschlagenen Ausbildungsformen zuverlässig arbeiten oder nicht, welche das Vermögen haben, empfindlich und feinfühlig zu steuern bzw. zu arbeiten, wobei man auch nicht die verschiedenen hierbei vorgesehenen Steuerweisen hinsichtlich ihrer Durchführungsform überprüfen kann. Insbesondere kann das vorstehend angegebene Prüfsystem nicht bestimmen, ob der Schlupfwert in geeigneter Weise, basierend auf den Drehgeschwindigkeiten der rechten und linken Antriebsräder, jener der rechten und linken nachlaufenden Räder und auf der Basis des Lenkwinkels des Lenkrades in geeigneter Weise ermittelt wird, und ob die Kraftstoffunterbrechung und/oder weitere Steuerfunktionen, basierend auf dem ermittelten Schlupfwert, in zuverlässiger Weise erfolgen.

Da ferner das übliche Prüfsystem Daten nutzt, die ausschließlich auf die Drehgeschwindigkeiten der Räder basieren, ist es unmöglich zu bestimmen welcher Teil des Steuersystems fehlerhaft bzw. gestört ist, wenn man' feststellt, daß es abnormal arbeitet.

Die Erfindung zielt darauf ab, ein Verfahren zum Prüfen der Funktion eines Antriebsrad-Schlupfsteuersystems bereitzustellen, welches zwangsläufig bestimmen kann, ob das Antriebsrad-Steuersystem, das komplizierte und empfindliche Steuerungen ausführen kann, in der ausgelegten Form zuverlässig arbeitet oder nicht.

Ferner soll nach der Erfindung es ermöglicht werden, daß ein gestörtes bzw. fehlerhaftes Teil des Steuersystems leicht geortet werden kann, wenn man bestimmt hat, daß es gestört ist.

Nach der Erfindung wird hierzu gemäß einer ersten bevorzugten Ausführungsform ein Verfahren zum Prüfen der Funktion eines Antriebsrad-Schlupfsteuersystems angegeben, das in einem Fahrzeug eingebaut ist, das Antriebsräder und nachlaufende Räder hat, wobei das Antriebsrad-Schlupfsteuersystem einen Hauptantrieb zum Antreiben der Antriebsräder, wenigstens einen Antriebsrad-Geschwindigkeitssensor zum Erfassen der Drehgeschwindigkeit wenigstens eines Antriebsrades, welcher wenigstens ein die Drehgeschwindigkeit des wenigstens einen Antriebsrades wiedergebendes Signal erzeugt, wenigstens einen Geschwindigkeitssensor für das nachlaufende Rad zum Erfassen der Drehgeschwindigkeit wenigstens eines nachlaufenden Rades, welcher wenigstens ein die Drehgeschwindigkeit wenigstens eines nachlaufenden Rades wiedergebendes Signal erzeugt, und eine Steuereinrichtung hat, die auf die die Drehgeschwindigkeiten des wenigstens einen Antriebsrades und des wenigstens einen nachlaufenden Rades wiedergebenden Signale anspricht, um ein Steuersignal zum Steuern des Ausgangs bzw. der Abtriebsseite des Hauptantriebs ausgibt.

Gemäß einer ersten bevorzugten Ausführungsform nach der Erfindung zeichnet sich das Verfahren durch folgende Schritte aus:

1) Die Antriebsräder werden auf eine Trageinrichtung gesetzt, welche die Antriebsräder mit Hilfe der Trageinrichtung drehbar lagert,

2) der Hauptantrieb wird in Betrieb gesetzt, um die Antriebsräder drehanzutreiben,

3) wenigstens ein Fehlersignal, das die Drehgeschwindigkeit wenigstens eines nachlaufenden Rades wiedergibt, wird an die Steuereinrichtung anstelle des wenigstens einen, die Drehgeschwindigkeit des wenigstens einen nachlaufenden Rades wiedergebenden Signals angelegt,

4) vorbestimmte Überwachungssignale einschließlich wenigstens des Steuersignals, das von der 10 Steuereinrichtung ausgegeben wird, wird von dem Antriebsrad-Schlupfsteuersystem ausgegeben bzw. abgegeben, und

5) es wird bestimmt, ob die vorbestimmten Überwachungssignale Werte haben, die innerhalb der 15 zugeordneten, vorbestimmten zulässigen Bereiche liegen.

Gemäß einer zweiten Auslegungsform nach der Erfindung zeichnet sich das Verfahren durch die folgenden 20 Schritte aus:

1) Setzen der Antriebsräder auf eine erste Trageinrichtung zum drehbaren Lagern der Antriebsräder mittels der ersten Trageinrichtung,

2) Setzen der nachlaufenden Räder auf eine zweite Trageinrichtung zum drehbaren Lagern der nachlaufenden Räder mit Hilfe der zweiten Trageinrichtung, wobei die zweite Trageinrichtung die nachlaufenden Räder drehantreiben kann,

3) Bewirken, daß der Hauptantrieb die Antriebsräder drehantreibt,

4) Bewirken, daß die zweite Trageinrichtung die nachlaufenden Räder drehantreibt,

5) Ausgabe von vorbestimmten Überwachungssi- 35 gnalen einschließlich wenigstens des von der Steuereinrichtung abgegebenen Steuersignales aus dem Antriebsrad-Schlupfsteuersystem, und

6) Bestimmen; ob die vorbestimmten Überwachungssignale Werte haben, die innerhalb der zu- 40 geordneten, vorbestimmten und zulässigen Bereiche liegen.

Gemäß einer dritten Ausführungsform nach der Erfindung wird ein Verfahren zum Prüfen der Funktion 45 eines Antriebsrad-Schlupfsteuersystems angegeben, das in einem Fahrzeug vorgesehen ist, das Antriebsräder, nachlaufende Räder und ein Lenkrad hat, wobei das Antriebsrad-Schlupfsteuersystem einen Hauptantrieb zum Antreiben der Antriebsräder, wenigstens einen An- 50 chungssignale wenigstens ein die Drehgeschwindigkeit triebsrad-Geschwindigkeitssensor zum Erfassen der Drehgeschwindigkeit wenigstens eines Antriebsrades, welcher wenigstens ein die Drehgeschwindigkeit des wenigstens einen Antriebsrades wiedergebendes Signal erzeugt, wenigstens einen Geschwindigkeitssensor für 55 gibt. das nachlaufende Rad zum Erfassen der Drehgeschwindigkeit wenigstens eines nachlaufenden Rades, welcher wenigstens ein die Drehgeschwindigkeit des wenigstens einen nachlaufenden Rades wiedergebendes Signal erzeugt, einen Lenkwinkelsensor zum Erfassen eines 60 Lenkwinkels des Lenkrades und zum Erzeugen eines den Lenkwinkel wiedergebenden Signales, und eine Steuereinrichtung hat, die auf Signale anspricht, die die Drehgeschwindigkeiten des wenigstens einen Antriebsrades des wenigstens einen Nachlaufrades und den 65 bung einer bevorzugten Ausführungsform unter Bezug-Lenkwinkel zur Ausgabe eines Steuersignales zum Steuern des Ausganges des Hauptantriebs wiederge-

Das Verfahren nach der dritten bevorzugten Ausführungsform zeichnet sich durch folgende Schritte aus.

1) Setzen der Antriebsräder auf eine Trageinrichtung zum drehbaren Lagern der Antriebsräder mittels der Radeinrichtung,

2) Bewirken, daß der Hauptantrieb die Antriebsräder drehantreibt,

3) Zuführen wenigstens eines Fehlersignales, das die Drehgeschwindigkeit wenigstens eines nachlaufenden Rades wiedergibt, zu der Steuereinrichtung anstelle des wenigstens einen, die Drehgeschwindigkeit des wenigstens einen nachlaufenden Rades wiedergebenden Signals,

4) Drehen des Lenkrads,

5) Ausgabe vorbestimmter Überwachungssignale einschließlich wenigstens des von der Steuereinrichtung ausgegebenen Steuersignales aus dem Antriebsrad-Schlupfsteuersystem und

6) Bestimmen, ob die vorbestimmten Überwachungssignale Werte haben, die innerhalb zugeordneter, vorbestimmter, zulässiger Bereiche liegen.

Gemäß einer vierten Ausführungsform nach der Er-25 findung zeichnet sich das Verfahren durch die folgenden Schritte aus:

> 1) Setzen der Antriebsräder auf eine erste Trageinrichtung zum drehbaren Lagern der Antriebsräder mittels der ersten Trageinrichtung,

> 2) Setzen der nachlaufenden Räder auf eine zweite Trageinrichtung zum drehbaren Lagern der nachlaufenden Räder mittels der zweiten Trageinrichtung, wobei die zweite Trageinrichtung die nachlaufenden Räder drehantreiben kann,

3) Bewirken, daß der Hauptantrieb die Antriebsräder drehantreibt,

4) Bewirken, daß die zweite Trageinrichtung die nachlaufenden Räder drehantreibt,

Drehen des Lenkrades,

6) Ausgeben von vorbestimmten Überwachungssignalen einschließlich wenigstens des von der Steuereinrichtung ausgegebenen Steuersignales aus dem Antriebsrad-Schlupfsteuersystem, und

7) Bestimmen, ob die vorbestimmten Überwachungssignale Werte haben, die innerhalb zugeordneter, vorbestimmter, zulässiger Bereiche liegen.

Vorzugsweise umfassen die vorbestimmten Überwades wenigstens einen nachlaufenden Rades wiedergebendes Signal.

Vorzugsweise umfassen die vorbestimmten Überwachungssignale das Şignal, das den Lenkwinkel wieder-

Vorzugsweise umfassen die vorbestimmten Überwachungssignale das wenigstens eine Signal, das die Drehgeschwindigkeit des wenigstens eines Antriebsrads wiedergibt.

Ebenfalls vorzugsweise umfassen die vorbestimmten Überwachungssignale wenigstens ein Signal, das die Betriebsbedingungen des Hauptantriebs wiedergibt.

Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachstehenden Beschreinahme auf die beigefügte Zeichnung. Darin zeigt:

Fig. 1 ein Blockdiagramm einer Gesamtauslegungsform eines Fahrzeugprüfsystems, bei dem das Verfahren gemäß einer ersten bevorzugten Ausführungsform nach der Erfindung zur Anwendung kommt, und das sich auf Teile eines in der Wartung befindlichen Fahrzeuges bezieht,

Fig. 2 eine Ansicht zur Verdeutlichung einer Art und Weise zum Fixieren des zu inspizierenden Fahrzeugs.

Fig. 3 eine teilweise auseinandergezogene, perspektivische Darstellung einer Tragrollen- bzw. Tragwalzenanordnung,

Fig. 4 eine perspektivische auseinandergezogene 10 Darstellung zur Verdeutlichung der Innenauslegung der Tragrolle bzw. der Tragwalze,

Fig. 5 ein schematisches Diagramm zur Verdeutlichung der Gesamtauslegungsform von Brennkraftmaschine und Antriebsrad-Schlupfsteuersystems des zu untersuchenden Fahrzeugs,

Fig. 6 ein Diagramm zur Verdeutlichung der Arbeitsbereiche der Brennkraftmaschine, die durch den Ansaugleitungsabsolutdruck (PBA) und die Brennkraftmaschinendrehzahl (Ne) bestimmt sind.

Fig. 7 ein Diagramm zur Verdeutlichung einer Tabelle, die den Zusammenhang zwischen einem Schlupswert DUTY und Traktionssteuergrößen (LVL N — LVL 6) zeigt,

Fig. 8 ein Diagramm zur Verdeutlichung einer Tabelle zur Bestimmung eines Zylinders oder der Zylinder, bei denen eine Abmagerung des Luft/Kraftstoffgemisches oder eine Kraftstoffzufuhrunterbrechung nach Maßgabe der Traktionssteuergröße zu bewirken ist.

Fig. 9 ein Diagramm zur Verdeutlichung eines Beispiels zur Korrektur des Zündzeitpunktes, wenn eine Abmagerung des Luft/Kraftstoffverhältnisses vorgenommen wird.

Fig. 10 eine Ansicht zur Verdeutlichung einer Ausführungsvariante der Tragrollen bzw. Tragwalzen, und

Fig. 11 ein Blockdiagramm zur Verdeutlichung einer Gesamtauslegungsform eines Fahrzeugwartungssystems, bei dem ein Verfahren nach der Erfindung gemäß einer zweiten bevorzugten Ausführungsform zur Anwendung kommt sowie die entsprechend zugeordneten 40 Teile des zu wartenden bzw. zu untersuchenden Fahrzeugs.

Die Erfindung wird nachstehend unter Bezugnahme auf die Zeichnungen näher erläutert.

Fig. 1 zeigt eine Gesamtauslegung eines Fahrzeugun- 45 tersuchungssystems, bei dem ein Verfahren nach der Erfindung gemäß einer ersten bevorzugten Ausführungsform zur Anwendung kommt, und es sind zugeordnete Teile eines zu untersuchenden Fahrzeuges gezeigt. Das zu untersuchende Fahrzeug ist vorderradan- 50 getrieben, wobei die rechten und linken Vorderräder 2FR, 2FL durch eine Brennkraftmaschine (Hauptantrieb) 5 angetrieben sind. Das Fahrzeug hat ein automatisches Getriebe 4. Antriebsrad-Geschwindigkeitssensoren 9FR, 9FL sind für die zugeordneten rechten und linken An- 55 triebsräder 2FR, 2FL vorgesehen, während Geschwindigkeitssensoren 9RR, 9RL für die nachlaufenden Räder für die zugeordneten rechten und linken nachlaufenden (Hinter)-Räder 2RR, 2RL vorgesehen sind. Die Sensoren für die Antriebsräder und die nachlaufenden Räder erfassen die Drehgeschwindigkeiten der zugeordneten Räder und liefern die die ermittelten Drehgeschwindigkeiten der Räder wiedergebenden Signale an eine elektronische Steuereinheit (die nachstehend als "TCS-ECU" bezeichnet wird) 8, mittels welcher die Schlupfzu- 65 stände der Antriebsräder erfaßt und ermittelt werden. Mit dieser TCS-ECU 8 ist auch ein Lenkwinkelsensor 10 zum Erfassen des Lenkwinkels eines Lenkrades 3 ver-

bunden, und dieser liefert ein den detektierten Lenkwinkel wiedergebendes Signal an die TCS-ECU 8. Der Lenkwinkelsensor 10 erzeugt ein einen Absolutwinkel der Lenkung wiedergebendes Signal, derart, daß der nach rechts gerichtete Lenkwinkel durch einen positiven Wert (beispielsweise $+1^{\circ}$, $+2^{\circ}$, ...) dargestellt wird, und daß der nach links gerichtete Lenkwinkel durch einen negativen Wert (beispielsweise $1-1^{\circ}$, -2° , ...) dargestellt wird, wobei die Neutralstellung des Lenkrades durch die Winkelangabe von Null Grad gegeben ist.

Das Fahrzeug 1 umfaßt ferner eine elektronische Steuereinheit (die nachstehend als "die ENG-ECU" bezeichnet wird) 7, welche das Arbeiten der Brennkraftmaschine 5 durch die Kraftstoffzufuhrsteuerung und die Zündzeitpunktsteuerung steuert, und es ist eine elektronische Steuereinheit (die nachstehend als "die EAT-ECU" bezeichnet wird) 6 vorgesehen, welche das Arbeiten des Automatikgetriebes 4 durch eine Gangwahlsteuerung, eine Begrenzungssteuerung, usw. steuert. Die ENG-ECU 7, die EAT-ECU 6 und die TCS-ECU 8 sind miteinander verbunden. Die ECU-Einheiten 6 bis 8 haben auch Signalausgangsanschlüsse, welche vorgesehen sind, um die nachstehend näher beschriebene Funktionsüberprüfung durchzuführen.

Fig. 5 zeigt ein Beispiel einer Anordnung der Teile eines Fahrzeuges 1, welche einem Antriebsrad-Schlupfsteuersystem zugeordnet sind. Gleiche oder ähnliche Teile wie bei der Ausführungsform nach Fig. 1 sind dort mit denselben Bezugszeichen wie in Fig. 1 versehen.

Mit dem Zylinderblock der Brennkraftmaschine 5 ist eine Ansaugleitung 12 verbunden, in der ein Drosselkörper 13 angeordnet ist, welcher ein Drosselventil 13' enthält. Ein Drosselventilöffnungs (OTH) 14 ist mit dem Drosselventil 13' zur Erzeugung eines elektrischen Signals verbunden, das die erfaßte Drosselklappenöffnung wiedergibt, und dieses Signal wird der ENG-ECU 7 zugeleitet.

Kraftstoffeinspritzventile 16, von denen nur eines gezeigt ist, sind in der Ansaugleitung an Stellen zwischen dem Zylinderblock der Brennkraftmaschine 5 und dem Drosselventil 13' und geringfügig stromauf der zugeordneten Einlaßventile (nicht gezeigt) angeordnet. Die Kraftstoffeinspritzventile 16 sind mit einer Kraftstoffpumpe (nicht gezeigt) verbunden und elektrisch mit der ENG-ECU 7 verbunden, um die Ventilöffnungsperioden mittels von dieser Einheit gelieferten Signalen zu steuern

Zündkerzen 26 für die jeweiligen Zylinder (nicht gezeigt) der Brennkraftmaschine 5 sind elektrisch mit der ENG-ECU 7 verbunden, um die Zündzeitpunkte Θ_{IG} mittels Signalen zu steuern, die von dieser geliefert werden.

Ein Ansaugleitungsabsolutdruck (PBA)-Sensor 18 ist in kommunizierender Verbindung mit dem Inneren der Ansaugleitung 12 über eine Leitung 17 an einer Stelle unmittelbar stromab des Drosselventils 13' vorgesehen, welcher ein elektrisches Signal, das den in der Ansaugleitung 17 ermittelten Absolutdruck wiedergibt, der ENG-ECU 7 zuführt. Ein Ansaugleitung 12 an einer Stelle stromab des Ansaugleitungs-Absolutdrucksensors 18 angeordnet, welcher ein elektrisches Signal, das die erfaßte Ansauglufttemperatur TA wiedergibt, liefert und dieses der ENG-ECU 5 zuleitet.

Ein Brennkraftmaschinenkühlmitteltemperatur(Tw)-Sensor 20, der von einem Thermistor o.dgl. gebildet werden kann, ist am Zylinderblock der Brennkraftmaschine 5 vorgesehen, welcher ein elektrisches

Signal liefert, das die erfaßte Kühlmitteltemperatur Tw wiedergibt und dieses Signal wird der ENG-ECU 7 zugeleitet. Ein Brennkraftmaschinendrehzahl(Ne)-Sensor 21 und ein Zylinderunterscheidungs(CYL)-Sensor 22 sind einer Nockenwelle (nicht gezeigt) oder einer Kurbelwelle (nicht gezeigt) der Brennkraftmaschine 5 zugewandt angeordnet. Der Brennkraftmaschinendrehzahlsensor 21 erzeugt einen Impuls als ein TDC-Signal beim jeweiligen Erreichen von vorbestimmten Kurbelwinkeln, und zwar jedesmal dann, wenn die Kurbelwelle 10 sich um einen vorbestimmten Winkel gedreht hat. Der Zylinderunterscheidungssensor 22 erzeugt einen Impuls mit einem vorbestimmten Kurbelwinkel eines jeweils zugeordneten Zylinders der Brennkraftmaschine. Die beiden durch die Sensoren 21 und 22 erzeugten Impulse 15 werden an die ENG-ECU 5 angelegt.

Ein Dreiweg-Katalysator 24 ist in einer Abgasleitung 23 angeordnet, die mit dem Zylinderblock der Brennkraftmaschine 5 verbunden ist. Dieser Dreiweg-Katalysator 24 dient zur Reinigung der Abgase von schädlichen Bestandteilen, wie HC, CO und NOx. Ein O2-Sensor 25 als ein Abgasbestandteilskonzentrationssensor ist in der Abgasleitung 13 an einer Stelle stromauf des Dreiweg-Katalysators 24 vorgesehen, welcher die Konzentration des Sauerstoffs der von der Brennkraftmaschine 5 abgegebenen Abgase erfaßt und ein elektrisches Signal der ENG-ECU 7 zuleitet, welches die erfaßte Sauerstoffkonzentration wiedergibt.

Die ENG-ECU 7 weist eine Eingangsschaltung 7a, die die Aufgabe hat, die Wellenformen der Eingangssignale von den verschiedenen Sensoren und der TCS-ECU 8-Einheit zu formen, die Spannungswerte der Sensorausgangssignale auf einen vorbestimmten Pegel zu verschieben, die Analogsignale von einem Analogausgang der Sensoren in digitale Signale umzuwandeln, usw., eistelt.

ne zentrale Verarbeitungseinheit (die nachstehend als "die CPU" bezeichnet wird) 7b, eine Speichereinrichtung 7c, welche verschiedene Betriebsprogramme speichert, die in der CPU 7b ausgeführt werden, und welche die bei den Ermittlungen erhaltenen Ergebnisse usw. speichert, und eine Ausgangsschaltung 7d auf, welche die Treibersignale an die Kraftstoffeinspritzventile 16 und die Zündkerzen 26 abgibt.

wert DUTY we gilt folgendes:

1) Ein Mit 2) Ein Mit 2) Ein Mit 35 in 20 in 35 in

Die CPU 7b arbeitet in Abhängigkeit von den vorstehend angegebenen Signalen von den Sensoren, um die Betriebsbedingungen zu bestimmen, unter denen die Brennkraftmaschinen arbeiten, wie einen Luft/Kraftstoff-Verhältnisrückführungsregelbereich zum Regeln des Luft/Kraftstoff-Verhältnisses in Abhängigkeit von dem Ausgang von dem O2-Sensor 25 auf ein stöchiometrisches Luft/Kraftstoff-Verhältnis, und Steuerungsbereiche, und sie ermittelt, basierend auf diesen ermittelten Betriebsbedingungen, die Ventilöffnungsperiode oder die Kraftstoffeinspritzperiode TOUT, während der die Kraftstoffeinspritzventile 16 offen sind, unter Nutzung der folgenden Gleichung (1) synchron zu der Eingabe der TDC-Signalimpulse zu der ENG-ECU 7.

$T_{OUT} = T_i \times K_1 \times K_{TCS} + K_2$ (1)

wobei Ti eine Grundkraftstoffeinspritzperiode der Kraftstoffeinspritzventile 16 darstellt, die basierend auf der Brennkraftmaschinendrehzahl Ne und des Ansaugleitungsabsolutdrucks PBA bestimmt ist;

KTCS stellt einen Abmagerungskoeffizienten der als ein 65 Wert kleiner als 1,0 vorgegeben wird, wie dies nachstehend noch näher beschrieben wird, wenn ein übergroßer Schlupfzustand der Antriebsräder festgestellt wird,

und der auf 1,0 gesetzt wird, wenn kein übermäßiger Schlupfzustand festgestellt wird;

K₁ und K₂ stellen Korrekturkoeffizienten und Korrekturvariable jeweils dar, die basierend auf den verschiedenen Brennkraftmaschinenbetriebsparametersignalen mit solchen Werten ermittelt werden, daß die Betriebscharakteristika der Brennkraftmaschine optimiert sind, bei denen es sich um den Kraftstoffverbrauch, das Beschleunigungsverhalten usw. handeln kann. Diese Optimierung erfolgt in Abhängigkeit von den Betriebsbedingungen der Brennkraftmaschine.

Die CPU 5b bestimmt den Zündzeitpunkt OIG in Abhängigkeit von der Brennkraftmaschinendrehzahl Ne und des Ansaugleitungsabsolutdrucks PBA.

Die CPU 5b führt über die Ausgangsschaltung 7d zum Betreiben der Kraftstoffeinspritzventile 16 und der Zündkerzen 26 diesen Treibersignale zu, und zwar basierend auf den Ergebnissen der vorstehend angegebenen Bestimmungen und Ermittlungen.

Die TCS-ECU 8 ermittelt einen Schlupfwert DUTY als ein Parameter, der einen Schlupfzustand der Antriebsräder wiedergibt, und zwar basierend auf den erfaßten Antriebsradgeschwindigkeiten WFR, WFL der rechten und linken Antriebsräder 2FR, 2FL, ermittelt die Geschwindigkeiten WRR, WRL der nachlaufenden Räder der rechten und linken nachlaufenden Räder 2RR, 2RL sowie basierend auf dem Lenkwinkel δ auf die nachstehend beschriebene Weise, und dieser ermittelte Schlupfwert DUTY wird der ENG-ECU 7 zugeleitet. Hierbei gilt folgendes:

- 1) Ein Mittelwert (nachstehend einfach als "die Antriebsradgeschwindigkeit" bezeichnet) Vw der Antriebsradgeschwindigkeiten WFR, WFL wird ermittelt.
- 2) Ein Mittelwert, (der nachstehend einfach als "die Fahrzeuggeschwindigkeit" bezeichnet wird) Vv der Geschwindigkeiten WRR. WRL der nachlaufenden Räder wird ermittelt.
- 3) Eine Bezugsantriebsradgeschwindigkeit Vref wird basierend auf der Fahrzeuggeschwindigkeit Vv ermittelt. Die Bezugsantriebsradgeschwindigkeit Vref wird basierend auf dem Zusammenhang zwischen der Nachlaufradgeschwindigkeit und der Antriebsradgeschwindigkeit ermittelt, wobei ein Zustand eingehalten wird, bei dem nahezu kein Schlupf an den Antriebsrädern auftritt und das Fahrzeug 1 zugleich geradeaus fährt.
- 4) Eine Giergröße (Giergeschwindigkeit des Fahrzeuges 1) Y wird basierend auf einer Differenz Δ Vr zwischen den Nachlaufradgeschwindigkeiten W_{RR} , W_{RL} ermittelt.
- 5) Eine Bezugsgiergröße (eine Giergröße, die sich ergibt, wenn der Fahrer das Lenkrad in vorbestimmter Weise dreht) Yb wird basierend auf der Fahrzeuggeschwindigkeit Vv und dem Lenkwinkel bermittelt.
- 6) Eine Korrekturgröße KB wird basierend auf der Giergröße Y, der Bezugsgiergröße Yb, der Fahrzeuggeschwindigkeit Vv und dem Lenkwinkel δ ermittelt, und die Bezugsantriebsradgeschwindigkeit Vref wird mittels dieser Korrekturgröße KB korrigiert.
- 7) Ein Schlupfwert DUTY wird basierend auf der korrigierten Bezugsantriebsradgeschwindigkeit V'ref und der Antriebsradgeschwindigkeit Vw ermittelt. Der Schlupfwert DUTY nimmt einen größeren Wert ein, wenn die Schlupfgröße der An-

triebsräder größer wird.

Der so ermittelte Schlupfwert DUTY stellt im wesentlichen einen Schlupfzustand der Antriebsräder in dem Zustand dar, bei dem das Lenkrad sich in der Neutralstellung befindet, d.h. die Korrekturgröße KB = 0. Der Schlupfzustand wird basierend auf dem Zusammenhang zwischen der Antriebsradgeschwindigkeit Vw und der Bezugsantriebsradgeschwindigkeit Vref erfaßt. Ferner stellt der Schlupfwert DUTY, den man durch Kor- 10 rektur der Bezugsantriebsradgeschwindigkeit Vref durch die Korrekturgröße KB erhält, einen Schlupfzustand des Fahrzeuges 1 für den Fall dar, daß das Lenkrad gedreht wird (der Fahrer beabsichtigt dem Fahrzeug 1 eine Gierbewegung zu erteilen). Nachstehend 15 wird als ein Beispiel angenommen, daß das Lenkrad um einen gewissen Winkel 80 nach links gedreht wird, und daß die zu erwartenden Nachlaufradgeschwindigkeiten WRR, WRL der rechten und linken nachlaufenden Räder 30 km/h und 20 km/h sind. Wenn beide ermittelten 20 Nachlaufradgeschwindigkeiten WRR, WRL sich auf 25 km/h belaufen, bedeutet dies, daß das Fahrzeug geradeaus fährt, obgleich der Fahrer das Lenkrad verdreht hat Somit wird erkannt, daß das Fahrzeug 1 einen Schlupf- oder Durchrutschzustand einnimmt. Wenn ein 25 solcher Schlupf- oder Durchrutschzustand des Fahrzeuges 1 erfaßt wird, wird die Korrekturgröße KB von der Bezugsantriebsradgeschwindigkeit Vref abgezogen, und daher wird die Differenz (Vw - V'ref) zwischen der Antriebsradgeschwindigkeit Vw und der korrigierten 30 Bezugsantriebsradgeschwindigkeit V'ref (= Vref - KB) größer als die Differenz (Vw-Vref) zwischen der Antriebsradgeschwindigkeit. Vw und der Bezugsantriebsradgeschwindigkeit Vref, so daß der Schlupfwert DUTY einen größeren Wert annimmt.

Die vorstehend angegebenen numerischen Werte sind nur als Beispiele zu Erläuterungszwecken erwähnt. und daher ist es nicht notwendigerweise erforderlich, daß der vorstehend angegebene Zustand in Wirklichkeit

Die ENG-ECU 7 führt eine Brennkraftmaschinenabgabeleistungssteuerung (die nachstehend als "Traktionssteuerung" bezeichnet wird) mittels Brennstoffzufuhrunterbrechung oder Verarmung des Luft/Brennstoffgemisches durch, das der Brennkraftmaschine 5 zugeführt 45 wird, und zwar auf der Basis des Schlupfwertes DUTY. Die Traktionssteuerung erfolgt beispielsweise auf die folgende Weise:

1) Vorbestimmte Schwellwerte TCFCLVL 0 bis 50 TCFCLVL 6 werden für die jeweiligen Brennkraftmaschinenbetriebsbereiche (beispielsweise für die jeweiligen Bereiche bzw. Zonen ZONE 1 bis ZONE 4 in Fig. 6) vorgegeben, die nach Maßgabe der Brennkraftmaschinendrehzahl Ne und des Ansaugleitungsabsolutdruckes PBA vorgegeben sind.

2) Traktionssteuerwerte (die nachstehend einfach als "TC-Werte" bezeichnet werden) LVL N bis LVL 6 werden beispielsweise nach Fig. 7 nach Maßgabe des Zusammenhangs zwischen dem Schlupfwert 60 rückgehen. DUTY und den vorbestimmten Schwellwerten TCFCLVL 0 bis TCFCLVL 6 bestimmt. Wenn beispielsweise der Schlupfwert DUTY einen Wert zwischen TCFCLVL 2 und TCFCLVL 3 annimmt, stellen · TCFCLVLMIN und · TCFCLVLMAX in Fig. 7 die minimalen und die maximalen Werte des Schlupfwertes DUTY jeweils dar.

3) Nach Maßgabe des bestimmten TC-Wertes erfolgt eine Kraftstoffzufuhrunterbrechung oder eine Abmagerung des dem jeweiligen Zylinder zugeführten Gemisches, und zwar Zylinder um Zylinder, wie dies beispielsweise in der Tabelle in Fig. 8 gezeigt ist. Fig. 8 zeigt ein Steuerungsmodell der Kraftstoffzufuhr, die für eine 6-Zylinder-Brennkraftmaschine bestimmt ist. In der Tabelle stellen das Symbol L und das Symbol F/C eine Abmagerung des Gemisches und eine Kraftstoffzufuhrunterbrechung jeweils dar, und die Werte 1 bis 6, die der Zylinderanzahl M zugeordnet ist, bezeichnen eine Folge von zu steuernden Zylindern. Wenn beispielsweise der TC-Wert LVL 3 ist, erfolgt für die Zylinder entsprechend jeweils M = 1, 3, 5 eine Kraftstoffzufuhrunterbrechung, während die Zylinder, die M = 2, 4, 6 zugeordnet sind, eine Abmagerung des Gemisches erfahren. Die Abmagerung des Gemisches wird dadurch bewirkt, daß der Korrekturkoeffizient KTCs der vorstehend angegebenen Gleichung (1) auf einen Wert von kleiner als 1,0 gesetzt wird.

4) Gleichzeitig mit der Abmagerung des Gemisches im Schritt (3) wird der Zündzeitpunkt gesteuert, wie dies in Fig. 9 gezeigt ist, und zwar nach Maßgabe der Brennkraftmaschinendrehzahl Ne. Insbesondere wird der Zündzeitpunkt im Sinne einer Frühzündung verstellt, wenn die Brennkraftmaschinendrehzahl Ne in einem Bereich von 1500 l/min - 2000 l/min liegt, um einen dielektrischen Durchschlag bei dem Zündsystem zu verhindern, während der Zündzeitpunkt im Sinne einer Spätzündung verstellt wird, wenn die Brennkraftmaschinendrehzahl Ne in einem Bereich von 2000 l/min bis 7000 l/min liegt, um ein Klopfen zu verhindern.

5) Die vorstehend angegebene Traktionssteuerung wird unterdrückt, wenn irgendeine der Größen, die die Brennkraftmaschinendrehzahl Ne, die Brennkraftmaschinenkühlmitteltemperatur Tw, die Ansauglufttemperatur TA, die Drosselklappenöffnung 87H, usw. umfaßt, nicht innerhalb eines vorbestimmten zugeordneten Bereiches liegt. Wenn ferner ein übergroßer Schlupfzustand bei den Antriebsrädern auftritt, wird diesem durch Ausführen der Traktionssteuerung entgegengewirkt, und die Kraftstoffzufuhr zu dem jeweiligen Zylinder der Brennkraftmaschine wird nicht sofort wieder aufgenommen, sondern die Steuerung erfolgt derart, daß die Brennkraftmaschinenabgabeleistung allmählich ansteigt.

Antriebsrad-Schlupfsteuersysteme ähnlich des voranstehend beschriebenen für ein Fahrzeug, das mit ECU-Einheiten ähnlich den TCS-ECU 8 und der ENG-ECU 7 ausgestattet ist, sind detailliert in den vorstehend angegebenen, veröffentlichten japanischen Patentanmeldungen (Kokai) Nos. 2-1 57 439 und 2-1 57 440 beschrieben, die auf die Anmelderin der vorliegenden Erfindung zu-

Wiederum bezugnehmend auf Fig. 1 gibt die EAT-ECU 6 zur Steuerung des Automatikgetriebes 4 ein Zündzeitpunktverstellungssignal im Sinne einer Spätzündung zum Verstellen des Zündzeitpunktes OIG im wird der TC-Wert mit LVL 2 bestimmt. Zusätzlich 65 Sinne einer Spätzündung an die ENG-ECU 7 ab, wenn das Übersetzungsverhältnis beziehungsweise die Gangstellung des Automatikgetriebes 4 verändert wird, um einen Schaltruck herabzusetzen, der sich aus der Gangschaltung ergeben kann. Wenn das Zündzeitpunktverstellsignal im Sinne einer Spätzündung, abgegeben von EAT-ECU gleichzeitig mit dem Signal zur Verstellung des Zündzeitpunkts OlG im Sinne einer Spätzündung abgegeben von der Traktionssteuerung auftritt, wird der Zündzeitpunkt OlG unter der Priorität des Signals von der Traktionssteuerung gesteuert.

Das zu untersuchende Fahrzeug 1, das die vorstehend angegebene Funktion für die Antriebsrad-Schlupfsteuerung hat, wird mit Hilfe von Fixiereinrichtungen 46 festgehalten, wie dies in Fig. 2 gezeigt ist, und zwar auf eine solche Weise, daß die rechten und linken Antriebsräder 2FR, 2FL auf einem Paar von drehbaren Tragrollen bzw. Tragwalzen 30aR, 30bR und einem Paar von drehbaren Tragrollen bzw. Tragwalzen 30aL, 30bL jeweils sitzen.

Fig. 3 zeigt die wesentlichen Teile einer Tragrollenbzw. Tragwalzenanordnung, welche die Tragwalzen 30₄, 30_b umfaßt. Ein schwimmender Tisch 52 ist auf einem Paar von Führungsschienen 51_a, 51_b angeordnet, welcher längs diesen in den mit dem Pfeil Y bezeichneten 20 Richtungen gleitbeweglich ist. Die Führungsschienen 51_a, 51_b sind fest mit einem Zwischentragteil (nicht gezeigt) verbunden, das auf den Führungsschienen (nicht gezeigt) angeordnet ist und längs diesen gleitbeweglich ist. Die Führungsschienen verlaufen in die mit dem Pfeil 25 X bezeichneten Richtungen (d.h. senkrecht zu den mit dem Pfeil Y bezeichneten Richtungen). Somit kann sich der schwimmend bewegliche Tisch 52 in die beiden Richtungen bewegen, die mit den Pfeilen X und Y bezeichnet sind.

Eine Drehwelle 54 geht passend durch die Mitte des schwimmenden Tisches 52 über ein Lager 53. Die Drehwelle 54 ist an einer nach oben und unten gerichteten Bewegung gehindert, sie kann sich aber über das Lager 53 relativ zu dem schwimmenden Tisch 52 drehen. Das 35 obere Ende der Drehwelle 54 ist starr mit einer Tragwalzenanordnung 55 verbunden, die einen im aligemeinen U-förmigen Querschnitt hat. Die Tragwalzenanordnung 55 hat eine Bodenwand und ein Paar von gegenüberliegenden Seitenwänden, die nach oben verlaufend 40 einteilig an den jeweiligen Enden der Bodenwand angebracht sind. Das vorstehend angegebene Paar von Tragwalzen 30a, 30b sind parallel drehbeweglich zwischen den gegenüberliegenden Seitenwänden und in einem vorbestimmten Abstand voneinander gelagert. Die 45 Tragwalzen 30a, 30b sind derart beschaffen und ausgelegt, daß sie ein zugeordnetes Rad 2 des Fahrzeugs 1 tragen, das zu überprüfen ist.

Die Tragwalze 30_a enthält einen Motor und wird durch den Motor drehangetrieben. Somit wird das Rad 2, das auf den Tragwalzen 30_a, 30_b aufliegt, durch den Reibschluß mit den Tragwalzen 30_a, 30_b drehangetrieben. Fig. 4 zeigt die Innenauslegung der Tragwalze 30_a, die den Motor enthält. Die Tragwalze 30_a weist ein zylindrisches Gehäuse 301, eine Spule 302, die eng sitzend und fest mit dem Gehäuse 301 über einen Tragrahmen 304 verbunden ist, und einen Anker 303 auf, der in der Spule 302 in einem Abstand zu dieser angeordnet ist. Der Anker 303, der in der Tragwalze 30_a angeordnet ist, ist auch in Fig. 2 gezeigt. Bei diesem Ausführungsbeispiel der Konstruktion wird der Anker 303 stationär gehalten, während sich die Spule 302 und somit das zylindrische Gehäuse drehen können.

Eine Einrichtung zum Drehantreiben der Tragwalze kann gesondert von der Tragwalze vorgesehen sein. 65 Auch kann es sich bei der Tragwalze, die drehangetrieben werden kann, nicht nur um jene mit 30₂ bezeichnete handeln, sondern es kann die Tragwalze 30₆ oder es

k"nnen beide Tragwalzen 30a, 30b zur Ausführung einer Drehbewegung angetrieben werden.

Wiederum bezugnehmend auf Fig. 1 sind Gruppen 31a, 31b von Sensoren an dem Automatikgetriebe 4 und der Brennkraftmaschine 5 des Fahrzeuges 1 jeweils vorgesehen, um die jeweiligen Betriebsparameter zu erfassen. Die Sensorgruppe 31a für das Automatikgetriebe 4 umfaßt einen Oldrucksensor zur Erfassung des Drucks des Betriebsöls, und einen Öltemperatursensor zur Erfassung der Temperatur des Betriebsöls. Die Sensorgruppe 31b für die Brennkraftmaschine 5 umfaßt beispielsweise einen Brennkraftmaschinendrehzahlsensor, einen Ansaugdrucksensor, einen Brennkraftmaschinenkühlmitteltemperatursensor, einen Ansauglufttempera-15 tursensor, einen Sensor zur Erfassung der Temperatur des Katalysators der Abgasreinigungseinrichtung (des Dreiwegkatalysators 24), einen Brennkraftmaschinenöltemperatursensor und Luft/Kraftstoff-Verhältnissensoren zum Erfassen der Luft/Kraftstoff-Verhältnisse der Gemische, die den jeweiligen Zylindern zugeführt werden. Diese Sensoren sind an Teilen des Automatikgetriebes 4 und der Brennkraftmaschine 5 angebracht, an denen diese Sensoren leicht angebracht und wieder abgenommen werden können (der Brennkraftmaschinendrehzahlsensor ist beispielsweise an einer Leitung angebracht, welche ein Signal zum Betreiben der Zündkerze überträgt, und der Brennkraftmaschinenöltemperatursensor ist an einer Ölstandsmeßeinrichtung angebracht) oder es sind abzweigende Teile speziell für die Sensoren vorgesehen.

Die Signale von den Sensorgruppen 31a, 31b werden über einen Vorverstärker 32 einer Analysieraufzeichnungseinrichtung 36 zugeleitet.

Prüfsignal-Ausgangsanschlüsse der EAT-ECU 6, der ENG-ECU 7 und der TCS-ECU 8 sind über Monitore 33, 34, 35 mit einer Analysierungsaufzeichnungseinrichtung 36 verbunden. Die EAT-ECU 6 führt ein Steuersignal zum Steuern des Automatikgetriebes 4 der Analysieraufzeichnungseinrichtung 36 zu, die TCS-ECU 8 führt ein den Schlupfwert DUTY wiedergebendes Signal derselben zu, und die ENG-ECU 7 führt Ausgangssignale von den verschiedenen Sensoren (siehe Fig. 5) derselben zu, welche die Betriebsbedingungen der Brennkraftmaschine 5 erfassen und die Treibersignale der Kraftstoffeinspritzventile 16 und die Zündkerzen 26 der Brennkraftmaschine 5 liefern.

Die Ausgangssignale von den ECU-Einheiten 6 bis 8 und die Sensorausgangssignale können von Zusatzeinrichtungen abgenommen werden, die über Kopplungsstücke mit den Kabelbäumen verbunden sind, die zur Übertragung dieser Signale dienen.

Die elektrischen Verbindungsleitungen der rechten und linken Antriebsradgeschwindigkeitssensoren 9_{FR}, 9_{FL} und des Lenkwinkelsensors 10 des Lenkrades 3, die jeweils zu der TCS-ECU 8 führen, sind an den entsprechenden Stellen 43, 43 gegabelt, von denen aus die Signale von den Sensoren 9_{FR}, 9_{FL}, 10 über einen Vorverstärker 39 an eine Datenaufzeichnungseinrichtung 40 abgegeben werden. Die Datenaufzeichnungseinrichtung 40 zeichnet die Signale von den Sensoren 9_{FR}, 9_{FL}, 10 auf und leitet diese Daten als Aufzeichnungssignale an einen Rechner 38 gegebenenfalls weiter.

Auch ist mit der TCS-ECU 8 ein Impulsgenerator 41 verbunden, der der TCS-ECU 8 Impulssignale als Fehlersignale für die Signale von den rechten und linken Antriebsradgeschwindigkeitssensoren 9RR, 9RL zuführt. Somit lassen sich die Drehgeschwindigkeiten der rechten und linken, nachlaufenden Räder auf falsche Werte

und auf jeweils gewünschte Werte dadurch einstellen, daß die Frequenzen der Impulssignale von dem Impulsgenerator 41 verändert werden. Ferner ist eine Motorantriebseinrichtung 42 mit den Tragwalzen 30_{aR}, 30_{aL} verbunden, um Laufwiderstandskräfte auf die Antriebsräder 2FR, 2FL des Fahrzeuges 1 aufzubringen.

Der Monitor 35 und die Analysierungsaufzeichnungseinrichtung 36, die beide mit der TCS-ECU 8 verbunden sind, sind mit Datenspeichereinrichtungen (beispielsweise Floppy-Disk-Einrichtungen) zum Speichern der Da- 10 ten als Prüfergebnisse auf jeweiligen Floppy-Disks 37 ausgestattet. Die auf den Floppy-Disks 37 gespeicherten Daten werden mit Hilfe des Rechners 38 zusammen mit den in der Datenaufzeichnungseinrichtung 40 gespeicherten Daten analysiert. Die Datenspeichereinrichtung 15 des Monitors 35 wird genutzt, wenn nur das Ausgangssignal von der TCS-ECU 8 analysiert wird, und normaler-weise erfolgt die Analysierung auf der Basis der Daten, die mittels der Analysierungsaufzeichnungseinrichtung 36 gespeichert sind. Wenn es ferner erforderlich ist, daß 20 die mit Hilfe der Analysierungsaufzeichnungseinrichtung 36 gespeicherten Daten synchron mit den Daten der Aufzeichnungseinrichtung 40 verarbeitet werden sollen, wird eines der entsprechenden Analysierungsaufzeichnungseinrichtung 36 zugeführten Signale auch der 25 Datenaufzeichnungseinrichtung 40 zugeleitet.

Das Prüfsystem mit dem vorstehend beschriebenen Aufbau führt im wesentlichen folgendes aus: 1) Eine fehlerhafte Verwirklichung von verschiedenen Laufbeund 2) eine Prüfung des Arbeitens der verschiedenen Teile des Fahrzeuges, die der Antriebsradschlupfsteuerung zugeordnet sind, wenn die Brennkraftmaschine sich in den jeweiligen Laufzuständen befindet.

Die Fehlerrealisierung für die Laufbetriebszustände 35 des Fahrzeuges 1 wird beispielsweise auf die folgende Weise vorgenommen:

- 1) Das Gaspedal bzw. Fahrpedal wird durch eine Bedienungsperson oder eine Beaufschlagungsein- 40 richtung betätigt, um zu bewirken, daß sich die Antriebsräder 2FR, 2FL drehen, wobei der Lenkwinkel 6 des Lenkrades 3 auf einen Wert von 0 gehalten wird (dies bedeutet, daß das Fahrzeug geradeaus
- 2) Die Fehlersignale für die Ausgangssignale von den Nachlaufradgeschwindigkeitssensoren werden der TCS-ECU 8 von dem Impulsgenerator 41 zuge-
- 3) Verschiedene Schlupfzustände der Antriebsrä- 50 der werden dadurch erzeugt, daß der Zusammenhang zwischen den Antriebsradgeschwindigkeiten WFR, WFL, den man in dem vorstehend genannten Schritt (1) erhalten hat, und die Frequenzen der Fehlersignale, die die beabsichtigten Nachlaufrad- 55 geschwindigkeiten WRR, WRL, die man in dem Schritt (2) erhalten hat, verändert.
- 4) Laufwiderstandskräfte werden auf die Antriebsräder dadurch ausgeübt, daß die in den Tragwalzen 30aR, 30aL enthaltenen Motore betrieben werden, 60 um hierdurch verschiedene Schlupfzustände der Antriebsräder zu erzeugen, die zu erwarten sind. wenn das Fahrzeug 1 auf einer schiefen Ebene nach oben oder wenn das Fahrzeug 1 auf einer schiefen Ebene nach unten fährt, usw.
- 5) Das Lenkrad 3 wird durch die Bedienungsperson oder eine Beaufschlagungseinrichtung betätigt, um den Lenkwinkel zu verändern, und zugleich werden

die vorstehend genannten Schritte (1) bis (4) ausgeführt, um hierdurch verschiedene Schlupfzustände des Fahrzeuges 1 zu realisieren, die auftreten können, wenn das Fahrzeug eine Kurve fährt.

Die Überprüfung der Arbeitsweisen der Teile des Fahrzeuges 1, die der Antriebsrad-Schlupfsteuerung zugeordnet sind, erfolgt dann, wenn das Fahrzeug 1 den jeweils zuvor angegebenen Laufzustand einnimmt, indem bestimmt wird, ob die Prüfdaten, die man in den Rechner 38 als Überwachungssignale eingegeben hat, Werte haben, die in zugeordneten, vorbestimmten Bereichen liegen, welche für die jeweilige Betriebsart des Fahrzeuges als zulässig angesehen werden. Insbesondere werden die Ausgangssignale von der EAT-ECU 6, der ENG-ECU 7, und der TCS-ECU 8, die Signale von den Sensorgruppen 31_a, 31_b und die Signale von den rechten und linken Antriebsradgeschwindigkeitssensoren 9FR. 9FL und des Lenkwinkelsensors 10 als Überwachungssignale genutzt. Basierend auf diesen Überwachungssignalen erfolgt eine Überprüfung dahingehend (1), ob jeder Sensor normal arbeitet, (2) ob jede ECU normal arbeitet, und (3) ob das Automatikgetriebe 4 und die Brennkraftmaschine 5 entsprechend der Weise arbeiten, die durch die Steuersignale von den ECU-Teilen vorgegeben werden.

Durch die Prüfung des Antriebsrad-Schlupfsteuersystems der vorstehend beschriebenen Art, das bei dem Fahrzeug 1 vorgesehen ist, ist es möglich, für die jeweilitriebszuständen des zu untersuchenden Fahrzeuges 1 30 gen Betriebsarten des Fahrzeuges 1 Nachstehendes zu bestimmen:

- 1) Ob die verschiedenen Sensoren, insbesondere die rechten und linken Antriebsradgeschwindigkeitssensoren 9FR, 9FL und der Lenkwinkelsensor 10 normal arbeiten.
- 2) ob der Wert der Schlupfgröße DUTY geeignet ist, der mit Hilfe der TCS-ECU 8 basierend auf den detektierten Drehgeschwindigkeiten WFR, WFL der zugeordneten rechten und linken Antriebsräder, der detektierten Drehgeschwindigkeiten WRR, WRL der zugeordneten rechten und linken nachlaufenden Räder und des detektierten Lenkwinkels δ ermittelt wurde,
- 3) ob die Entscheidung der Abmagerung oder der Kraftstoffzufuhrunterbrechung des dem jeweiligen Zylinder der Brennkraftmaschine 5 zuzuführenden Gemisches, basierend auf dem Schlupfwert DUTY (siehe Fig. 8) und die Entscheidung der Zündzeitpunktverstellung in geeigneter Weise durch die ENC-ECU 7 vorgenommen wurden, und
- 4) ob die Brennkraftmaschine 5 in geeigneter Weise in Abhängigkeit von den Steuersignalen von der ENG-ECU 7 arbeitet...

Falls das Antriebsrad-Schlupfsteuersystem nicht normal arbeitet, kann man sofort bestimmen, ob dies auf einen Sensor oder eine ECU oder die Brennkraftmaschine 5 (oder eine Leitungsverbindung der Brennkraftmaschine 5 mit einer ECU) zurückzuführen ist.

Obgleich bei der voranstehend angegebenen bevorzugten Ausführungsform die Tragwalzen 30a, 30b wie in Fig. 3 gezeigt ausgelegt sind, können sie sich auch um die Drehwelle 54 als eine Einheit mit dieser in horizontalen Richtungen drehen, um einen Falschlaufzustand des Fahrzeuges 1 zu realisieren bzw. zu simulieren, bei dem das Fahrzeug unter Durchfahren einer Kurve läuft. Jedoch kann die Funktion der Drehbewegung der Tragwalzen in den horizontalen Richtungen weggelassen werden, um einen Falschlaufzustand des Fahrzeuges zu realisieren bzw. zu simulieren, wenn dieses nur geradeaus fährt. Bei einer solchen alternativen Auslegungsform kann ein Paar von rechten und linken Tragwalzen 30_{aR} , 30_{aL} einteilig in Form einer einstückigen Auslegung vorgesehen sein, und es kann ein weiteres Paar 30_{bR} , 30_{bL} ebenfalls als eine einstückige Auslegung vorgesehen sein, wie dies in Fig. 10 gezeigt ist.

Fig. 11 zeigt eine Gesamtauslegung eines Fahrzeugprüfsystems, bei dem das Verfahren gemäß einer zweiten bevorzugten Ausführungsform nach der Erfindung

zur Anwendung kommt.

In Fig. 11 sind gleiche oder ähnliche Teile wie in Fig. 1 mit den gleichen Bezugszeichen versehen, und eine nä- 15 here Beschreibung derselben kann entfallen. Diese Ausführungsform unterscheidet sich von der voranstehend beschriebenen im wesentlichen durch folgendes:

Bei dieser Ausführungsform sind Tragwalzen 44_{aR}, 44_{bR} und 44_{aL}, 44_{bL} zum Abstützen der nachlaufenden 20 Räder 2_{RR}, 2_{RL} des Fahrzeuges 1 jeweils vorgesehen. Diese Tragwalzen 44_a, 44_b und eine Tragwalzenauslegung, die diese enthält, haben im wesentlichen den gleichen Aufbau wie der in Fig. 3 gezeigte. Eine Motorantriebseinrichtung 45 ist mit den Tragwalzen 44_{aR}, 44_{aL} 25 verbunden, um die nachlaufenden Räder 2_{RR}, 2_{RL} des Fahrzeuges 1 mit einer gewünschten Drehgeschwindigkeit in Drehung zu versetzen. Daher ist der Pulsgenerator 41 bei der ersten bevorzugten Ausführungsform weggelassen.

Leitungsverbindungen, die die Nachlaufradgeschwindigkeitssensoren 9_{RR}, 9_{RL} mit der TCS-ECU 8 verbinden, sind an einer Stelle 43 gegabelt, um Signale von diesen Sensoren 9_{RR}, 9_{RL} über den Vorverstärker 39 der Datenaufzeichnungseinrichtung 40 zuzuführen.

Bei der ersten vorstehend beschriebenen bevorzugten Ausführungsform werden die nachlaufenden Räder 2RR, 2RL in Wirklichkeit nicht in Drehung versetzt, sondern der Impulsgenerator 41 wird genutzt, um Fehlersignale für die Signale von den Nachlaufradgeschwindig- 40 keitssensoren 9RR, 9RL zu erzeugen. Bei dieser Ausführungsform jedoch sind die nachlaufenden Räder 2RR, 2RL ebenfalls mit Hilfe von Tragwalzen 44a, 44b abgestützt, von denen die Tragwalzen 44aR, 44aL zugeordnete Motore enthalten, die tatsächlich die nachlaufenden 45 Räder 2RR, 2RL jeweils antreiben und in Drehung versetzen. Daher werden die Nachlaufradgeschwindigkeiten WRR, WRL mit Hilfe der zugeordneten Nachlaufradgeschwindigkeitssensoren 9RR, 9RL erfaßt, und die Signale, die die detektierten Nachlaufradgeschwindigkeiten 50 WRR. WRL wiedergeben, werden der Datenaufzeichnungseinrichtung 40 zugeleitet.

Abgesehen von den vorstehend beschriebenen Einzelheiten stimmt diese Ausführungsform mit der ersten, zuvor beschriebenen bevorzugten Ausführungsform 55 überein. Daher werden dieselben Prüfweisen wie bei der ersten bevorzugten Ausführungsform vorgenommen. Ferner kann das Arbeiten der Nachlaufradgeschwindigkeitssensoren 9RR, 9RL gleichzeitig überprüft

werden.

Auch kann bei dieser Ausführungsform die Überprüfung des Antriebsrad-Schlupfsteuersystems bei einem Fahrzeuglaufzustand unter Durchfahren einer Kurve dadurch weggelassen werden, daß man die Funktion der Drehung der jeweiligen Tragrollenanordnung in horizontalen Richtungen wegläßt. Ferner können die linken und rechten Tragwalzen 30a, 30b, die die Vorderräder tragen, und die rechten und linken Tragwalzen 44a, 44b,

die die Hinterräder tragen, jeweils in Form einer einstückigen Auslegung auf ähnliche Art und Weise wie in Fig. 10 gezeigt ausgebildet sein.

Obgleich bei den voranstehend bevorzugten Ausführungsformen die Tragwalzen 30a, die zugeordneten Motore für die Erzeugung der Laufwiderstandskräfte auf
die Antriebsräder enthalten, ist die Erfindung hierauf
nicht beschränkt, sondern die Tragwalzen 30a und 30b
können mit Einrichtungen versehen sein, welche mechanische Widerstandskräfte erzeugen, die auf die Walzen
30a oder 30b wirken und somit die Antriebsräder bremsen

Zusammenfassend gibt die Erfindung ein Verfahren zum Prüfen der Funktion eines Antriebsrad-Schlupfsteuersystems an, das in einem Fahrzeug vorgesehen ist. Die Antriebsräder werden auf Tragwalzen bzw. Tragrollen gesetzt und auf diesen drehbar gelagert. Die Antriebsräder werden durch die Brennkraftmaschine angetrieben. Fehlersignale, die beabsichtigte Drehgeschwindigkeiten der nachlaufenden Räder wiedergeben, werden einer elektronischen Verarbeitungseinheit (ECU) zugeführt, die ihrerseits ein Steuersignal zum Steuern der Brennkraftmaschine ausgibt. Vorbestimmte Überwachungssignale einschließlich wenigstens des Steuersignales, das von der ECU ausgegeben wurde, werden von dem Antriebsrad-Schlupfsteuersystem abgenommen. Es wird bestimmt, ob die vorbestimmten Überwachungssignale Werte haben, die innerhalb zugeordneten, vorbestimmten, zulässigen Bereichen liegen. Ferner kann ein Lenkrad des Fahrzeuges gleichzeitig mit der Drehbewegung der Antriebsräder gedreht werden, und der Lenkwinkel desselben wird mit Hilfe eines Lenkwinkelsensors erfaßt. Ferner können anstelle der Verwendung von Fehlersignalen die Antriebsräder auf zweite 35 Tragwalzen gesetzt werden, welche die Antriebsräder drehbar machen. Die zweiten Tragwalzen können di nachlaufenden Räder drehantreiben.

Patentansprüche

1. Verfahren zum Prüfen der Funktion eines Antriebsrad-Schlupfsteuersystems, das in einem Fahrzeug vorgesehen ist, das Antriebsräder und nachlaufende bzw. getriebene Räder hat, wobei das Antriebsrad-Schlupfsteuersystem einen Hauptantrieb zum Antreiben der Antriebsräder, wenigstens einen Antriebsradgeschwindigkeitssensor zum Erfassen der Drehgeschwindigkeit wenigstens eines der Antriebsräder zum Erzeugen wenigstens eines Signales, das die Drehgeschwindigkeit des wenigstens eines Antriebsrades wiedergibt, wenigstens einen Nachlaufradgeschwindigkeitssensor zum Erfassen der Drehgeschwindigkeit wenigstens eines nachlaufenden Rades und zum Erzeugen wenigstens eines Signales, das die Drehgeschwindigkeit des wenigstens einen nachlaufenden Rades wiedergibt, und eine Steuereinrichtung aufweist, die auf die die Drehgeschwindigkeiten des wenigstens einen Antriebsrades des wenigstens einen nachlaufenden Rades wiedergebende Signale anspricht und ein Steuersignal zum Steuern der Abgabeleistung des Hauptantriebs abgibt, gekennzeichnet durch folgende Schritte:

- 1) Setzen der Antriebsräder auf eine Trageinrichtung zum drehbaren Lagern der Antriebsräder mittels der Trageinrichtung,
- 2) Bewirken, daß der Hauptantrieb die Antriebsräder drehantreibt,

3) Zuführen wenigstens eines Fehlersignales, das die Drehgeschwindigkeit wenigstens eines nachlaufenden Rades wiedergibt, zu der Steuereinrichtung anstelle des wenigstens einen Signales, das die Drehgeschwindigkeit des wenigstens einen nachlaufenden Rades wiedergibt,

4) Ausgeben von vorbestimmten Überwachungssignalen einschließlich wenigstens des von der Steuereinrichtung abgegebenen Steuersignales aus dem Antriebsrad-Schlupfsteu-

ersystem, und

5) Bestimmen, ob die vorbestimmten Überwachungssignale Werte haben, die innerhalb zugeordneter, vorbestimmter, zulässiger Bereitsche liegen.

- 2. Verfahren zum Prüfen der Funktion eines Antriebsrad-Schlupfsteuersystems, das in einem Fahrzeug vorgesehen ist, das Antriebsräder und nachlaufende Räder hat, wobei das Antriebsrad- 20 Schlupfsteuersystem einen Hauptantrieb zum Antreiben der Antriebsräder, wenigstens einen Antriebsradgeschwindigkeitssensor zum Erfassen der Drehgeschwindigkeit wenigstens eines angetriebenen Rades und zum Erzeugen wenigstens eines die 25 Drehgeschwindigkeit des wenigstens einen Antriebsfades wiedergebenden Signales, wenigstens einen Nachlaufradgeschwindigkeitssensor zum Erfassen der Drehgeschwindigkeit wenigstens eines nachlaufenden Rades und zum Erzeugen wenig- 30 stens eines die Drehgeschwindigkeit des wenigstens einen nachlaufenden Rades wiedergebenden Signales, und eine Steuereinrichtung aufweist, die auf Signale anspricht, die die Drehgeschwindigkeiten des wenigstens einen Antriebsrades und des 35 wenigstens einen Nachlaufrades wiedergeben, und die ein Steuersignal zum Steuern der Abgabeleistung des Hauptantriebs abgibt, gekennzeichnet durch folgende Schritte:
 - 1) Setzen der Antriebsräder auf eine erste 40 Trageinrichtung zum drehbaren Lagern der Antriebsräder mittels der ersten Trageinrichtung.
 - 2) Setzen der nachlaufenden Räder auf eine zweite Trageinrichtung zum drehbaren La- 45 gern der nachlaufenden Räder mittels der zweiten Trageinrichtung, wobei die zweite Trageinrichtung die nachlaufenden Räder drehantreiben kann,
 - 3) Bewirken, daß der Hauptantrieb die An- 50 triebsräder drehantreibt,
 - 4) Bewirken, daß die zweite Trageinrichtung die nachlaufenden Räder drehantreibt,
 - 5) Ausgeben von vorbestimmten Überwachungssignalen einschließlich wenigstens des 55 Steuersignals, das von der Steuereinrichtung ausgegeben wird, aus dem Antriebsrad-Schlupfsteuersystem, und
 - 6) Bestimmen, ob die vorbestimmten Überwachungssignale Werte haben, die in zugeordne- 60 ten, vorbestimmten, zulässigen Bereichen liegen.
- 3. Verfahren zum Prüfen der Funktion eines Antriebsrad-Schlupfsteuersystems, das in einem Fahrzeug vorgesehen ist, das Antriebsräder, nachlaufen- 65 de Räder und ein Lenkrad hat, wobei das Antriebsrad-Schlupfsteuersystem einen Hauptantrieb zum Antreiben der Antriebsräder, wenigstens einen An-

triebsradgeschwindigkeitssens r zum Erfassen der Drehgeschwindigkeit wenigstens eines angetriebenen Rades und zum Erzeugen wenigstens eines die Drehgeschwindigkeit des wenigstens eines Antriebsrades wiedergebenden Signals, wenigstens einen Nachlaufradgeschwindigkeitssensor zum Erfassen der Drehgeschwindigkeit wenigstens eines nachlaufenden Rades und zum Erzeugen wenigstens eines die Drehgeschwindigkeit des wenigstens einen nachlaufenden Rades wiedergebenden Signales, einen Lenkwinkelsensor zur Erfassung des Lenkwinkels des Lenkrades und zum Erzeugen eines den Lenkwinkel wiedergebenden Signales, und eine Steuereinrichtung aufweist, die auf die Signale anspricht, die die Drehgeschwindigkeiten des wenigstens einen Antriebsrades und des wenigstens einen nachlaufenden Rades und des Lenkwinkels wiedergeben, um ein Steuersignal zum Steuern der Abgabeleistung des Hauptantriebs auszugeben, gekennzeichnet durch folgende Schritte:

1) Setzen der Antriebsräder auf eine Trageinrichtung zum drehbaren Lagern der Antriebs-

räder mittels der Trageinrichtung,

2) Bewirken, daß der Hauptantrieb die Antriebsräder drehantreibt,

- 3) Zuführen wenigstens eines Fehlersignales, das die Drehgeschwindigkeit des wenigstens einen nachlaufenden Rades wiedergibt, zu der Steuereinrichtung anstelle des wenigstens einen Signales, das die Drehgeschwindigkeit des wenigstens einen nachlaufenden Rades wiedergibt,
- 4) Drehen des Lenkrads,
- 5) Ausgeben von vorbestimmten Überwachungssignalen einschließlich wenigstens des Steuersignals, das von der Steuereinrichtung abgegeben wird, aus dem Antriebsrad-Schlupfsteuersystem, und
- 6) Bestimmen, ob die vorbestimmten Überwachungssignale Werte haben, die innerhalb der zugeordneten, vorbestimmten, zulässigen Be-

reiche liegen.

4. Verfahren zum Prüfen der Funktion eines Antriebsrad-Schlupfsteuersystems, das in einem Fahrzeug vorgesehen ist, das Antriebsräder, nachlaufende Räder und ein Lenkrad hat, wobei das Antriebsrad-Schlupfsteuersystem einen Hauptantrieb zum Antreiben der Antriebsräder, wenigstens einen Antriebsradgeschwindigkeitssensor zum Erfassen der Drehgeschwindigkeit wenigstens eines Antriebsrades und zum Erzeugen wenigstens eines die Drehgeschwindigkeit des wenigstens einen Antriebsrades wiedergebenden Signales, wenigstens einen Nachlaufradgeschwindigkeitssensor zum Erfassen der Drehgeschwindigkeit wenigstens eines nachlaufenden Rades und zum Erzeugen wenigstens des die Drehgeschwindigkeit des wenigstens einen nachlaufenden Rades wiedergebenden Signales, einen Lenkwinkelsensor zum Erfassen eines Lenkwinkels des Lenkrades und zum Erzeugen eines den Lenkwinkel wiedergebenden Signales, und eine Steuereinrichtung aufweist, die auf die Signale anspricht, die die Drehgeschwindigkeit des wenigstens einen Antriebsrades und des wenigstens einen nachlaufenden Rades und den Lenkwinkel angeben und die ein Steuersignal zum Steuern der Abgabeleistung des Hauptantriebs abgibt, gekennzeichnet durch folgende Schritte:

1) Setzen der Antriebsräder auf eine erste Trageinrichtung zum drehbaren Lagern der Antriebsräder mittels der ersten Trageinrichtung.

2) Setzen der nachlaufenden Räder auf eine 5 zweite Trageinrichtung zum drehbaren Lagern der nachlaufenden Räder mittels der zweiten Trageinrichtung, wobei die zweite Trageinrichtung die nachlaufenden Räder drehantreiben kann,

3) Bewirken, daß der Hauptantrieb die Antriebsräder drehantreibt,

4) Bewirken, daß die zweite Trageinrichtung die nachlaufenden Räder drehantreibt,

5) Drehen des Lenkrads,

6) Ausgeben von vorbestimmten Überwachungssignalen einschließlich wenigstens der Steuersignale, die von der Steuereinrichtung ausgegeben werden, aus dem Antriebsrad-Schlupfsteuersystem, und

7) Bestimmen, ob die vorbestimmten Überwachungssignale Werte haben, die innerhalb der zugeordneten, vorbestimmten, zulässigen Be-

reiche liegen.

5. Verfahren nach Anspruch 2 oder 4, dadurch ge- 25 kennzeichnet, daß die vorbestimmten Überwachungssignale wenigstens ein Signal enthalten, das die Drehgeschwindigkeit des wenigstens einen Antriebsrades wiedergibt.

6. Verfahren nach Anspruch 3 oder 4, dadurch ge- 30 kennzeichnet, daß die vorbestimmten Überwachungssignale wenigstens ein Signal enthalten, das

den Lenkwinkel wiedergibt.

7. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die vorbestimmten 35 Überwachungssignale wenigstens ein Signal enthalten, das die Drehgeschwindigkeit des wenigstens einen Antriebsrades wiedergibt.

8. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die vorbestimmten 40 Überwachungssignale wenigstens ein Signal enthalten, das die Betriebsbedingungen des Hauptan-

triebs wiedergibt.

9. Verfahren nach Anspruch 2 oder 4, dadurch gekennzeichnet, daß die vorbestimmten Überwachungssignale wenigstens ein Signal enthalten, das die Drehgeschwindigkeit des wenigstens einen Antriebsrads wiedergibt und wenigstens ein Signal enthalten, das die Drehgeschwindigkeit des wenigstens einen Antriebsrades wiedergibt.

10. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die vorbestimmten Überwachungssignale wenigstens ein Signal enthalten, das die Drehgeschwindigkeit des wenigstens einen nachlaufenden Rades wiedergibt und ein Signal 55 enthalten, das den Lenkwinkel wiedergibt.

11. Verfahren nach Anspruch 2 oder 4, dadurch gekennzeichnet, daß die vorbestimmten Überwachungssignale wenigstens ein Signal enthalten, das die Drehgeschwindigkeit des wenigstens einen 60 nachlaufenden Rades wiedergibt und wenigstens ein Signal enthalten, das die Arbeitsbedingungen des Hauptantriebs wiedergibt.

12. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die vorbestimmten Überwa- 65 chungssignale wenigstens ein Signal enthalten, das den Lenkwinkel wiedergibt und wenigstens ein Signal, das die Betriebsbedingungen des Hauptan-

triebs wiedergibt.

13. Verfahren nach Anspruch 2 oder 4, dadurch gekennzeichnet, daß die vorbestimmten Überwachungssignale wenigstens ein Signal enthalten, das die Drehgeschwindigkeit des wenigstens einen Antriebsrades wiedergibt, wenigstens ein Signal enthalten, das die Drehgeschwindigkeit des wenigstens einen Antriebsrades wiedergibt, und wenigstens ein Signal enthalten, das die Arbeitsbedingungen des Hauptantriebs wiedergibt.

14. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die vorbestimmten Überwachungssignale wenigstens ein Signal enthalten, das die Drehgeschwindigkeit des wenigstens einen nachlaufenden Rades wiedergibt, ein Signal enthalten, das den Lenkwinkel wiedergibt und wenigstens ein Signal enthalten, das die Arbeitsbedingungen

des Hauptantriebs wiedergibt.

15. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die vorbestimmten Überwachungssignale wenigstens ein Signal enthalten, das die Drehgeschwindigkeit des wenigstens einen nachlaufenden Rades wiedergibt, wenigstens ein Signal enthalten, das die Drehgeschwindigkeit des wenigstens einen Antriebsrades wiedergibt, ein Signal enthalten, das den Lenkwinkel wiedergibt und wenigstens ein Signal enthalten, das die Betriebsbedingungen des Hauptantriebs wiedergibt.

Hierzu 8 Seite(n) Zeichnungen

-Leerseite-

Nummer: int. Cl.⁵: Off niegungstag:

DE 40 21 985 A1 G 01 M 17/00 24. Januar 1991

Nummer: Int. Cl.⁵: Offenlegungstag: DE 40 21 985 A1 G 01 M 17/00 24. Januar 1991

FIG.2

F1G.10

Nummer: Int. Cl.⁵:

Offenlegungstag:

DE 40 21 985 A1 G 01 M 17/00

24. Januar 1991

FIG.3

.Nummer: Int. Cl.⁵:

Offenlegungstag:

DE 40 21 985 A1 G 01 M 17/00 24. Januar 1991

Nummer: Int. Cl.⁵; Offenlegungstag:

DE 40 21 985 A1 . **G 01 M 17/00** . 24. Januar 1991

Nummer: Int. Cl.⁵: Offenlegungstag: DE 40 21 985 A1 G 01 M 17/00 24. Januar 1991

FIG.7

Nummer: Int. Cl.⁵: Offenlegungstag:

DE 40 21 985 A G 01 M 17/00 24. Januar 1991

FIG.8

					· · ·			
- 21	LVL6	F/C	F/C	F/C	F/C	F/C	F/C	
	LVL5	F/C	F/C	F/C	F/C	F/C	L	
	LVL4	F/C	_لــ	F/C	F/C	F/C	· L	
	LVL3	F/C	Ŀ	F/C	L	F/C	L	
	LVL2	F/C	L	L	L	F/C	. L	
	LVL1	F/C	L	L	L	L	· L	
	LVLO	L	L	L	L	L	L	
•		1	2	3.	4	5	6	
M : Dem Zylinder zugeordnete Zahl								

FIG.9

Voreilung (Verstellung im Sinne Frühzündung)

Nacheilung(Verstellung im Sinne Spätzündung)

