Zomato Data Analysis Project

Step 1 - Importing Libraries

```
In []: Pandas is used for data manipulation and analysis.
Numpy is used for numerical operation.
Matplotlib.pyplot and seaborn are used for data visualization.

In [1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings("ignore")
```

Step 2 - Create a Dataframe

```
In [9]: dataframe = pd.read_csv(r"C:\Users\Itians\downloads\Zomato data .csv")
    dataframe
```

_		F '	7
Ωı	11		
v	u u		

	name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)
0	Jalsa	Yes	Yes	4.1/5	775	800	Buffet
1	Spice Elephant	Yes	No	4.1/5	787	800	Buffet
2	San Churro Cafe	Yes	No	3.8/5	918	800	Buffet
3	Addhuri Udupi Bhojana	No	No	3.7/5	88	300	Buffet
4	Grand Village	No	No	3.8/5	166	600	Buffet
•••	•••	•••	•••	•••			
143	Melting Melodies	No	No	3.3/5	0	100	Dining
144	New Indraprasta	No	No	3.3/5	0	150	Dining
145	Anna Kuteera	Yes	No	4.0/5	771	450	Dining
146	Darbar	No	No	3.0/5	98	800	Dining
147	Vijayalakshmi	Yes	No	3.9/5	47	200	Dining

148 rows × 7 columns

Convert the data type of column - rate

```
In [27]: def handlerate (value):
             value = str(value).split('/')
             value = value[0];
             return float (value)
         dataframe['rate'] = dataframe['rate'].apply(handlerate)
         print(dataframe.head())
                            name online_order book_table rate votes \
        0
                                                     Yes
                                                          4.1
                                                                  775
                           Jalsa
                                         Yes
                  Spice Elephant
                                          Yes
                                                         4.1
        1
                                                     No
                                                                  787
                 San Churro Cafe
                                          Yes
                                                      No
                                                         3.8
                                                                  918
                                                          3.7
        3 Addhuri Udupi Bhojana
                                          No
                                                                  88
                   Grand Village
                                          No
                                                          3.8
                                                                  166
           approx_cost(for two people) listed_in(type)
        0
                                   800
                                                Buffet
        1
                                   800
                                                Buffet
        2
                                   800
                                                Buffet
        3
                                   300
                                                Buffet
        4
                                   600
                                                Buffet
```

```
In [29]: dataframe .info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 148 entries, 0 to 147
       Data columns (total 7 columns):
            Column
                                        Non-Null Count Dtype
            ____
                                        _____
                                        148 non-null
                                                       object
        0
           name
                                        148 non-null
        1
           online_order
                                                       object
           book_table
                                        148 non-null
                                                       object
                                        148 non-null
            rate
                                                       float64
           votes
                                        148 non-null
                                                       int64
            approx_cost(for two people) 148 non-null
                                                       int64
            listed_in(type)
                                        148 non-null
                                                       object
```

dtypes: float64(1), int64(2), object(4)

memory usage: 8.2+ KB

Type of Restaurant

In [32]:	dataframe.head()	
Out[32]:		approx cost(for

	name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)
0	Jalsa	Yes	Yes	4.1	775	800	Buffet
1	Spice Elephant	Yes	No	4.1	787	800	Buffet
2	San Churro Cafe	Yes	No	3.8	918	800	Buffet
3	Addhuri Udupi Bhojana	No	No	3.7	88	300	Buffet
4	Grand Village	No	No	3.8	166	600	Buffet

Q.1) What type of restaurant do the majority of customers orders from?

```
In [104... sns.countplot(x = dataframe['listed_in(type)'])
   plt.xlabel("type of restaurant")
```

Out[104... Text(0.5, 0, 'type of restaurant')

conclusion - majority of the restaurant falls in dining category

In []:

Q.2) How many votes has each type of restaurant received from customers?

In [61]: dataframe.head()

Out[61]:		name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)
	0	Jalsa	Yes	Yes	4.1	775	800	Buffet

						two people)	
0	Jalsa	Yes	Yes	4.1	775	800	Buffet
1	Spice Elephant	Yes	No	4.1	787	800	Buffet
2	San Churro Cafe	Yes	No	3.8	918	800	Buffet
3	Addhuri Udupi Bhojana	No	No	3.7	88	300	Buffet
4	Grand Village	No	No	3.8	166	600	Buffet

```
In [109... grouped_data = dataframe.groupby ('listed_in(type)')['votes'].sum()
    result= pd.DataFrame({'votes':grouped_data})
    plt.plot(result,c= "green",marker = "o")
    plt.xlabel("Type of restaurant",c= "blue",size =20 )
    plt.ylabel("Votes",c="red",size=20)
```

Out[109... Text(0, 0.5, 'Votes')

Conclusion - Dinning restaurant has received maximum votes

In []:

Q.3) What are the ratings that the majority of restaurants have received?

In [63]: dataframe.head() Out[63]: approx_cost(for listed_in(type) name online_order book_table rate votes two people) 0 Jalsa Yes 4.1 775 800 **Buffet** Yes Spice Yes 4.1 787 800 Buffet 1 No Elephant San Churro Yes No 3.8 918 800 **Buffet** Cafe Addhuri 3 Udupi No No 3.7 88 300 Buffet Bhojana Grand **Buffet** 4 No No 3.8 166 600 Village In [69]: plt.hist(dataframe['rate'],bins= 5) plt.title("ratings distribution")

plt.show()

Conclusion - the majority restaurants recevied ratings from 3.5 to 4

Q.4)Zomato has observed that most couples orders most of their food online.What is their average spending on each other?

In [72]: dataframe.head()

Out[72]:		name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)
	0	Jalsa	Yes	Yes	4.1	775	800	Buffet
	1	Spice Elephant	Yes	No	4.1	787	800	Buffet
	2	San Churro Cafe	Yes	No	3.8	918	800	Buffet
	3	Addhuri Udupi Bhojana	No	No	3.7	88	300	Buffet
	4	Grand	No	No	3.8	166	600	Buffet

Average order spending by couples

```
In [79]: couple_data = dataframe['approx_cost(for two people)']
sns.countplot(x=couple_data)
```

Out[79]: <Axes: xlabel='approx_cost(for two people)', ylabel='count'>

Village

Conclusion - the majority of couples preferr restaurant with an approximate cost of 300 rupees

In []:

Q.5) Which mode (offline or online) has received the maximum rating?

]: [dataframe .head()									
		name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)		
	0	Jalsa	Yes	Yes	4.1	775	800	Buffet		
	1	Spice Elephant	Yes	No	4.1	787	800	Buffet		
	2	San Churro Cafe	Yes	No	3.8	918	800	Buffet		
	3	Addhuri Udupi Bhojana	No	No	3.7	88	300	Buffet		
	4	Grand Village	No	No	3.8	166	600	Buffet		
	<pre>plt.figure(figsize= (6,6)) sns.boxplot(x="online_order",y="rate", data= dataframe)</pre>									

Out[85]: <Axes: xlabel='online_order', ylabel='rate'>

Conclusion - offline order recevied lower rating in comparsion to online order

In []:

Q.6) Which type of resturant recevied more offline orders, so that Zomato can perferd customer with some good offers?

In [94]: dataframe.head()

0.		$\Gamma \cap$	4 7	١.
() [IT.	14	ZL	١.

	name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)
0	Jalsa	Yes	Yes	4.1	775	800	Buffet
1	Spice Elephant	Yes	No	4.1	787	800	Buffet
2	San Churro Cafe	Yes	No	3.8	918	800	Buffet
3	Addhuri Udupi Bhojana	No	No	3.7	88	300	Buffet
4	Grand Village	No	No	3.8	166	600	Buffet

```
In [92]: pivot_table = dataframe.pivot_table(index='listed_in(type)',columns = 'online_order
sns.heatmap(pivot_table,annot=True,cmap="YlGnBu",fmt = 'd')
plt.title("Heatmap")
plt.xlabel("Online Order")
plt.ylabel("Listied in(Type)")
plt.show()
```


CONCLUSION - Dining Resturants primarily accept offline orders, wheras Cafes primarily receive online orders.

This suggests that client prefer placed order in person at resturants, but prefer online ordering at Cafes.

In []: