

MF-Net: A Novel Few-shot Stylized Multilingual Font Generation Method

Yufan Zhang, Junkai Man, Peng Sun Duke Kunshan University

Agenda

Introduction

• The proposed method

Performance evaluation

Conclusion

Existing methods for font style transfer

- Some models need a large number of input reference images of the target style.
- Some models need to fine-tune the pre-trained model with the style reference images to get the generated stylized font images.
- Some models only focus on the font style transfer within the same language or between two different languages that the model is trained on (dual-lingual).

MF-Net

- In a few-shot learning fashion
- Support font style transfer between untrained languages (multilingual)
- Generate target images by direct inference

Main contributions of our work

- We propose the challenging task of few-shot stylized multilingual font generation and build a validation dataset for it.
- We propose a novel GAN-based model, MF-Net, which first presents a deep learning solution to font style transfer to characters of unseen languages.
- We design a novel language complexity-aware skip connection to adaptively adjust the structural information of the content to be preserved.
- We introduce a novel loss function, namely encoder consistent loss, to better disentangle the content and style features.

Agenda

Introduction

• The proposed method

- Network overview
- Style encoder
- Language complexity-aware skip connections.
- Loss function
- Performance evaluation
- Conclusion

Network Overview

Style Encoder

Language Complexity-aware Skip Connection

10

Loss Function

$$\mathcal{L} = \lambda_{adv} \mathcal{L}_{adv} + \lambda_{L1} \mathcal{L}_{L1} + \lambda_{enc} \mathcal{L}_{enc} + \lambda_{rec} \mathcal{L}_{rec} + \lambda_{lcc} \mathcal{L}_{lcc}$$

Adversarial loss

$$\begin{split} \mathcal{L}_{adv} &= \mathcal{L}_{advc} + \mathcal{L}_{advs}, \\ \mathcal{L}_{advc} &= \max_{D_c} \min_{G} \mathbb{E}_{I_c \in P_c, I_s \in P_s} \left[\log D_c(I_c) + \log(1 - D_c(\hat{x})) \right], \\ \mathcal{L}_{advs} &= \max_{D_c} \min_{G} \mathbb{E}_{I_c \in P_c, I_s \in P_s} \left[\log D_s(I_s) + \log(1 - D_s(\hat{x})) \right], \end{split}$$

L1 loss

$$\mathcal{L}_{L1} = \mathbb{E}_{x,\hat{x} \in P_{(x,\hat{x})}} ||x - \hat{x}||_1.$$

Encoder consistent loss

Using two separate encoders: decouple the content and style information of a given font image

$$f_c(I_{c_1}) = f_c(I_{c_2}), \quad f_s(I_{s_1}) = f_s(I_{s_2}),$$

$$\mathcal{L}_{enc} = \mathcal{L}_{enc_c} + \mathcal{L}_{enc_s},$$

$$\mathcal{L}_{enc_c} = \mathbb{E}_{I_c} || f_c(I_c) - f_c(x) ||_1,$$

$$\mathcal{L}_{enc_s} = \mathbb{E}_{I_s} || f_s(I_s) - f_s(x) ||_1.$$

Loss Function

Domain reconstruction loss

To perpetuate the information from the content and style domain

$$\mathcal{L}_{rec_c} = \mathbb{E}_{I_c} ||Ic - G(Ic, Ic)||_1,$$

$$\mathcal{L}_{rec_s} = \mathbb{E}_{I_s} ||Is - G(Is, Is)||_1,$$

$$\mathcal{L}_{rec} = \mathcal{L}_{rec_c} + \mathcal{L}_{rec_s}$$

Language complexity classification loss

The binary cross-entropy to make the indicator learn the language complexity

$$\begin{split} \mathcal{L}_{lcc_1} &= \mathbb{E}_{I_c^{ch}}[log(1-\gamma(I_c^{ch})] + \mathbb{E}_{I_c^{en}}[log(\gamma(I_c^{en})],\\ \mathcal{L}_{lcc_2} &= \mathbb{E}_{I_c^{ch}}[log(\gamma(I_c^{cn})] + \mathbb{E}_{I_c^{en}}[log(1-\gamma(I_c^{en})],\\ \mathcal{L}_{lcc} &= \mathcal{L}_{lcc_1} + \mathcal{L}_{lcc_2} \end{split}$$

Agenda

Introduction

- The proposed method
- Performance evaluation

Conclusion

Experiments

Dataset

- Chinese and Latin as the training language pair
- Unseen languages: Japanese, Korean, Arabic, Devanagari, Cyrillic, and Thai languages

Models for comparison

- EMD
- FTransGAN

Evaluation Metrics

- Quantitative: Image Distance (MAE, SSIM), Feature Distance (mFID)
- Visual: Survey
- Latency

Model Evaluation

Style Reference	C	E		T	5	Р	0	Z	k	B	E	f	F	k	g	T	D	d	X	Ε	q	b	У	5 C	L	k
GT	구	/날S	} ·	7	살	와	8	[3	O	す	だ	体	س	غ	ي	Ж	Æ	Ä	आ	इ	श	W .	ी ह	ย ก	γ	P
Ours	구	살	21	7	살	와	极	I	9	す	だ	体	w	غ	ي	Ж	Æ	3	आ	इ	श	M	9 8	1	0	(1)
FTransGAN	구	살되	간	7	살	가	内	Œ	Ø	す	12	体	w	ۼ	ې	ӝ	Æ	3	आ	इ	श	W :	?) {	ป ก	O	Ä
EMD	구	잘 9	2	7	실	2}	D	ほ	Ø	す	だ	体	ښ	غ	ي	Ж	Æ	ä	आ	3	श	17	A (า	U	n

Model Evaluation

	Image I	Distance	Content Feature Di	stance	Style Feature Distance					
	↓MAE	†SSIM	↑Top-1 Accuracy(%)	↓mFID	↑Top-1 Accuracy(%)	↓mFID				
	Evaluation on the content images of seen language									
EMD	0.121722	0.484923	88.24	120.5	25.65	589.2				
FTransGAN	0.124902	0.494628	94.85	57.6	41.45	327.2				
Ours	0.132957	0.487623	93.27	78.2	30.24	445.5				
	Evaluation on the content images of unseen languages									
EMD	0.252832	0.312948	81.29	199.2	4.63	659.3				
FTransGAN	0.305828	0.229439	87.18	138.5	10.24	477.5				
Ours	0.293847	0.371291	90.62	100.5	11.46	420.5				

Table 1: Quantitative comparison among EMD [23], FTransGAN [15], and the model we propose. ↓ means the lower the better and ↑ means the higher the better. The best value for each comparison is stylized in bold.

Model Evaluation

MF-Net	35.78% ± 23.4%
FTransGAN	52.51% ± 21.8%
EMD	55.54% ± 25.0%
MF-Net abla1	70.03% ± 20.2%
MF-Net abla2	86.12% ± 22.3%

Ablation Study

	Image I	Distance	Content Feature Di	stance	Style Feature Distance							
	↓MAE	↑SSIM	†Top-1 Accuracy(%)	↓mFID	†Top-1 Accuracy(%)	↓mFID						
	Evaluation on the content images of unseen languages											
FM	0.293847	0.401291	90.62	100.5	11.46	420.5						
FM-P1	0.352293	0.326108	82.57	152.7	5.58	551.6						
FM-P1-P2	0.405719	0.386291	76.29	194.6	4.30	625.2						

Table 2: Ablation Study on the task of stylized font generation on unseen languages. \downarrow means the lower the better and \uparrow means the higher the better. The best value for each comparison is stylized in bold.

P1: Encoder consistent loss

P2: Language complexity-aware skip connections

Conclusion

Novelties

- Few-shot
- Multilingual

Prospects

- Accelerate the professional font design process
- Generate more copyright-free fonts
- Real-time AR translation

Thank You