Riccardo FINOTELLO

Personal Data

Place of birth: Torino, Italy Date of birth: July, 13th 1993 Citizenship: Italian

Work address: Commissariat à l'Energie Atomique et aux énergies alternatives,

DES/ISAS/DPC/SEARS/LANIE, Bât. 467 p. 104,

91191 Gif sur Yvette CEDEX,

France

Research interests: machine learning, artificial intelligence, data science, algebraic geometry, string theory, con-

formal field theory, spectroscopy, chemometrics

Description: I am involved in applications of AI methods for the resolution of mathematical problems, where

I introduced models inspired by advancement in computer vision. I am also interested in the application of AI to experimental data, such as in spectroscopy and chemometrics, where the possibility of applying data-driven machine learning models may lead to improvements over state-of-the-art analyses. I studied viable methods for the computation of phenomenological amplitudes in string theory to which I contributed with the analysis of particle physics scenarios

and to the study of cosmological backgrounds.

Personal website: https://thesfinox.github.io

Work Experience

02/2021 – present: **Post-doctoral Researcher**

Commissariat à l'Energie Atomique et aux énergies alternatives, Saclay, France

Description: joint post-doc with the *Direction des énergies* (DES/ISAS/DPC/SEARS/LANIE) and the *Direction de la recherche technologique* (DRT/LIST/DIASI/SIALV/LVML).

10/2017 - 12/2020: **Ph.D. Graduate Researcher**

Università degli Studi di Torino, Italy

Description: research in theoretical physics (string theory) and Al applications.

10/2017 - 10/2020: Scientific Associate Researcher

I.N.F.N. (National Institute for Nuclear Physics), Torino, Italy

Description: scientific association as Ph.D. student.

10/2018 - 07/2020: **Teaching Assistant**

Università degli Studi di Torino, Italy

Description: tutorship and exercise sessions for students of the B.Sc. in Physics.

Education

10/2017 – 12/2020 Ph.D. Fellow in Physics and Astrophysics

Università degli Studi di Torino, Italy

Advisor: Igor Pesando

Thesis: D-branes and Deep Learning: Theoretical and Computational Aspects In String

Theory

Defended: December, 18th 2020

10/2015 - 10/2017: M.Sc. in Physics

Università degli Studi di Torino, Italy Curriculum: theoretical physics

Dissertation: Standard Model–like Scenarios in String Theory: Non Abelian D-brane Rota-

tions and the Classical Bosonic String

Final grade: 110/110 cum laude

10/2012 - 07/2015: **B.Sc. in Physics**

Università degli Studi di Torino, Italy

Dissertation: Perturbative Analysis: Resurgent Transeries and Hyperasymptotics

Final grade: 110/110 cum laude

Visits, Training and Internships

12/2018 Winter school and research visit

Location: Galileo Galilei Institute for Theoretical Physics (Arcetri, Firenze, Italy)

Description: Attendance to the winter school and field training in string theory for three

weeks. I trained with several students and experts on topics over mathematical

and phenomenological aspects of particle physics.

12/2017 - 01/2018 Winter schools and research visit

Location: Galileo Galilei Institute for Theoretical Physics (Arcetri, Firenze, Italy)

Description: Participation to winter schools and field training in physics for six weeks. I

focused my activity on theoretical and mathematical aspects of string theory and their applications to phenomenology of particle physics, astrophysics and

cosmology.

01/2017 - 10/2017: I.N.F.N. training for the M.Sc. degree

Location: National Institute for Nuclear Physics (I.N.F.N., Torino, Italy)

Description: Study, training and preparation of the thesis and dissertation for the B.Sc. in

Physics. I studied the construction of viable formulations of phenomenological models in string theory. This training period led to the dissertation held to obtain

the M.Sc. degree in physics.

04/2015 - 06/2015: I.N.F.N. training for the B.Sc. degree

Location: National Institute for Nuclear Physics (I.N.F.N., Torino, Italy)

Description: Study, training and preparation of the thesis and dissertation for the B.Sc. in

Physics. I studied methods for analytical resummation of asymptotic series using resurgence and hyperasymptotic series. The training led to the discussion of the

work valid to get the B.Sc. degree in physics.

Fellowships, Grants and Distinctions

2020: grant as teaching assistant of the *Università degli Studi di Torino* (6 months, from 01/2020)

2019: student elected in the Department Council as Ph.D. representative

2018: student elected in the Department Council as Ph.D. representative

2017: Ph.D. scholarship assigned by the *Università degli Studi di Torino* (3 years, from 10/2017)

Teaching Experience and Outreach Activity

01/2020 - 07/2020: Teaching Assistant in Physics

Grant: Università degli Studi di Torino
Course: Physics 1 (1st year B.Sc. in Physics)
Competences: tutorials and exercise sessions

01/2019 - 07/2019: Teaching Assistant in Physics

Course: Waves, Fluids and Thermodynamics (1st year B.Sc. in Physics)

Competences: tutorials and exercise sessions

11/2015: **Teaching Staff**

Course: Physics at LHC (outreach project for high school students)
Funds: Piedmont regional grant for Italian scientific schools
Competences: lectures and exercises on high energy physics (in English)

Coursework and Certifications

12/2020: Reinforcement Learning

University of Alberta (via Coursera.org — credential ID: X6QTKFZDEGB2)

Fundamentals of Reinforcement Learning (credential ID: SA4PFAGGR6B5)

Sample-based Learning Methods (credential ID: KCPZAVVUT98A)

Prediction and Control with Function Approximation

A Complete Reinforcement Learning System (Capstone) (credential ID: C5JFZB5AGF4C)

10/2020: Data Science Specialisation

John Hopkins University (via Coursera.org — credential ID: QDGGFSKG8VVS)

The Data Scientist's Toolbox (credential ID: J6VC2AZMGGUG) R Programming (credential ID: 8D7TP7FHQWK2) Getting and Cleaning Data (credential ID: E3KT2J9HPKGR) Exploratory Data Analysis (credential ID: 3GYQ9UQQS3JX) (credential ID: 84LX7JZYKR9W) Reproducible Research Statistical Inference (credential ID: 2CSSYG79AQ2W) Regression Models (credential ID: YGGYSZZXM46R) (credential ID: J9MXMYRQ47ZD) Practical Machine Learning Developing Data Products (credential ID: 2CEYYPDYG7PB) Data Science Capstone (credential ID: SCJFP5JM34HR)

06/2020: Al for Medicine

deeplearning.ai (via Coursera.org — credential ID: ZXW8Y3UU4UCY)

Al for Medical Diagnosis (credential ID: GPNE8X3862JX)
Al for Medical Prognosis (credential ID: 8NPQDS4UFMJF)
Al for Medical Treatment (credential ID: 52YHADQMZCM8)

05/2020: **Deep Learning**

deeplearning.ai (via Coursera.org — credential ID: N2FWFZ9W42V2)

Neural Networks and Deep Learning (credential ID: XFKPYRXVVEKN)

Improving Deep Neural Networks: Hyperparameter tuning, (credential ID: ED599JTBLVX2)

Regularization and Optimization

Structuring Machine Learning Projects (credential ID: 8KXABGGZWRER)
Convolutional Neural Networks (credential ID: 2ZBR9Q9JLVAL)
Sequence Models (credential ID: LP9WPTVB4KV3)

04/2020: Machine Learning

University of Standford (via Coursera.org — credential ID: SDLSE9NP4XMH)

Graduate Courses

Internal graduate courses with final examination (schools and workshops excluded):

2018 – 2019: Introducing Supersymmetry (20 hours)

Introduction to the Large N Limit (20 hours)

2017 - 2018: Introduction to Lattice Field Theory (20 hours)

Introduction to the Physics of the Quark-Gluon Plasma (20 hours)

Introduction to Flavour Physics (10 hours)

Talks and Posters

2021: Computer Vision and Algebraic Geometry: Al for Theoretical Physics

Poster — IDAI 2021 (video conference)

Intelligenza Artificiale tra Geometria e Fisica (Artificial Intelligence between Geometry and Physics)

Seminar — Escuela Alessandro Manzoni, Buenos Aires, Argentina (online)

An AI Perspective on Phenomenology and Strings

Seminar — Commissariat à l'Energie Atomique et aux énergies alternatives, Saclay, France

2020: Time Dependent Defect CFT and Excited Spin Fields

Poster — Cortona Young (video conference)

2019: Spin Fields as Point-like Defects on the Worldsheet

Short talk and poster — Università Federico II, Napoli, Italy

Exploring Particle Physics in 2D BCFT: D-branes, Twist Fields and Defect CFT

Talk (Ph.D midterm seminar) — Università degli Studi di Torino, Italy

Schools, Workshops and Conferences

Courses and lectures can be found at the corresponding web page

07/2021: INRIA-DFKI European Sumn	er School on	Artificial Intelligence
-----------------------------------	--------------	-------------------------

Online event — https://idessai.inria.fr

05/2020: Cortona Young

Online event — https://www.ggi.infn.it/showevent.pl?id=377

12/2019: XV Avogadro Meeting on Strings, Supergravity and Gauge Theories

Napoli, Italy — https://agenda.infn.it/event/19816/overview

10/2019: TFI 2019: Theories of Fundamental Interactions

Torino, Italy — https://agenda.infn.it/event/20096/overview

03/2019: String Theory from a Worldsheet Perspective

Firenze, Italy — https://www.ggi.infn.it/showevent.pl?id=289

12/2018: LACES 2018 – Lezioni Avanzate di Campi e Stringhe

Firenze, Italy — http://laces.web.cern.ch/laces/LACES18/index18.html

05/2018: XXXVI Convegno Nazionale di Fisica Teorica – New Frontiers in Theoretical Physics

Cortona, Italy — https://agenda.infn.it/event/14362/

01/2018: GGI Lectures on the Theory of Fundamental Interactions

Fireze, Italy — http://webtheory.sns.it/ggilectures2018/

12/2017: LACES 2017 – Lezioni Avanzate di Campi e Stringhe

Firenze, Italy — http://laces.web.cern.ch/laces/LACES17/index17.html

Language Skills

Italian: native speaker
English: proficient user

Certifications: Cambridge First Certificate in English (pass with A),

EFCELT at European level C2

French: beginner level

IT Skills

Programming languages: Python, R, C++, PHP, Javascript, SQL, bash, ROOT, Mat-

lab/Octave, Maxima, Wolfram Mathematica, Java

Markup languages: HTML, Markdown, RMarkdown

Operating Systems and Distributions: Arch Linux (main distribution), Ubuntu, Debian, CentOS, Microsoft

Windows

Shell: bash, zsh, PowerShell

Modules and libraries: Scipy ecosystem, Scikit-learn, Scikit-optimize, Tensorflow (Keras),

PyTorch, LightGBM, XGBoost, Tidyr, Caret, Leaflet, Plotly, GMP,

MPFR

Frameworks: Jupyter Lab and Notebook, RStudio, wxMaxima, Mathematica for

scientific programming; VIM (with plugins), Eclipse for software developments; Git for version control; GitBook for documentation

System Administration: personal instance of Nextcloud on a Raspberry Pi server (Rasp-

bian OS), administration and web design of the journal club webpage (https://torinophd.ddns.net/) on a Raspberry Pi

Apache+PHP+MariaDB installation (GitHub)

Other certifications: ECDL Core Full (European Computer Driving Licence, 04/2012)

Personal Interests

- Diploma in musical theory and melodic dictation (*Diploma di Solfeggio e Teoria Musicale*), and diploma in complementary piano studies (*Diploma di Pianoforte Complementare*) for violin
- 10 years experience as basketball player and 2 years experience as basketball coach for youth teams
- Blood donor for the AVIS (Italian Association of Volunteer Blood Donors)

Publications

Author profiles:

ArXiv ID: finotello_r_1 InSpireHEP: R.Finotello.1

OrcID: 0000-0002-8472-9004 ResearchGate: Riccardo Finotello2

List of publications (authors are in alphabetical order):

Preprints: H. Erbin, R. Finotello, R. Schneider, M. Tamaazousti, Deep multi-task mining Calabi-Yau four-

folds, arXiv:2008.XXXXX9.

Published: H. Erbin, R. Finotello, Inception neural network for complete intersection Calabi-Yau 3-folds,

Mach. Learn. Sci. Tech. 2 (2021) 2, 02LT03.

H. Erbin, R. Finotello, Machine learning for complete intersection Calabi-Yau: a methodological

study, Phys. Rev. D 103 (2021) 12, 126014.

R. Finotello, I. Pesando, 2D fermion on the strip with boundary defects as a CFT with excited

spin fields, Nucl. Phys. B 969 (2021) 115464.

A. Arduino, R. Finotello, I. Pesando, On the origin of divergences in time-dependent orbifolds,

Eur. Phys. J. C 80 (2020) 5, 476.

R. Finotello, I. Pesando, The classical solution for the bosonic string in the presence of three

D-branes rotated by arbitrary SO(4) elements, Nucl. Phys. B 941 (2019), 158–194.

Personal notes on various subjects (mostly hand written) available at https://github.com/thesfinox/personal-notes.