Problem Set 1

Alien Cipher

2025, 02, 22

Problem 1

If a and b are two even integers, then a + b is even. Solution:

Direct proof: Since a and b are two even integers, there exist two integers x and y such that a = 2x and b = 2y.

Then, a + b = 2x + 2y = 2(x + y),

Since (x + y) is an integer, a + b must be an even integer.

Problem 2

Prove that $\sqrt{2}$ is irrational.

Solution:

Prove by contradiction: Assume $\sqrt{2}$ is rational, there exists $\frac{p}{q} = \sqrt{2}$ such that p and q are integers, p and q have no common divisor.

Calculation steps:

$$\frac{p}{q} = \sqrt{2}$$

$$\Leftrightarrow \frac{p^2}{q^2} = 2$$

$$\Leftrightarrow p^2 = 2q^2$$

Since $p^2=2q^2$, p^2 must be even, so p must be even as well, there exist an integer k such that p=2k. So, $p^2=(2k)^2$

$$\Leftrightarrow (2k)^2 = 2q^2$$

$$\Leftrightarrow 2k^2 = q^2$$

(This implies that both p^2 and q^2 contain a common divisor 2, leads to a contradiction)

Therefore, $\sqrt{2}$ must be irrational.

Problem 3

Prove that if n^2 is even, then n is even. Solution:

Prove by contrapositve: Rewrite the predicate as "if n is odd, then n^2 is odd." Since n is odd, there exists an integer k such that n = 2k + 1.

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

Since $2k^2 + 2k$ is an integer, n^2 must be odd, proving the predicate. Therefore, the original predicate is proven.

Problem 4