

Dependency Structure Misspecification in Multi-Source Weak Supervision Models

Salva Rühling Cachay^{1,2}, Benedikt Boecking², Artur Dubrawski²

¹Auton Lab, Carnegie Mellon University ²Technical University of Darmstadt

Successful Machine Learning methods require large amounts of labeled data

https://medium.com/syncedreview/sensetime-trains-imagenet-alexnet-in-record-1-5-minutes-e944ab049b2c

Hand labeling, however, is expensive both in terms of time and cost

https://medium.com/syncedreview/sensetime-trains-imagenet-alexnet-in-record-1-5-minutes-e944ab049b2c

Alternative: Weak supervision and, more specifically, Data Programming [1]

Background

In Data Programming, the user encodes domain knowledge into *labeling functions (LF)*

```
def labeling_function1 (text_sample):
    return POSITIVE if "recommend" in text_sample else ABSTAIN
```

```
def labeling_function2(text_sample):
    return NEGATIVE if "wouldn't recommend" in text_sample else ABSTAIN
```

LFs can cheaply but imperfectly label subsets of data

In the Data Programming framework, the set of noisy LFs is denoised by a generative model (**) (a factor graph), ...

def labeling_function1(text_sample):
 return POSITIVE if "recommend" in text_sample else ABSTAIN

def labeling_function2(text_sample):

return NEGATIVE if "wouldn't recommend" in text_sample else ABSTAIN

... to produce *probabilistic labels* that can be then used to train a *downstream model*

def labeling_function1 (text_sample):
 return POSITIVE if "recommend" in text_sample else ABSTAIN

def labeling_function2(text_sample):

return NEGATIVE if "wouldn't recommend" in text_sample else ABSTAIN

Modeling the labeling accuracy of the LFs

def labeling_function1 (text_sample):
 return POSITIVE if "recommend" in text_sample else ABSTAIN

def labeling_function2(text_sample):
 return NEGATIVE if "wouldn't recommend" in text_sample else ABSTAIN

LFs often exhibit statistical dependencies,

```
def labeling_function1(text_sample):
    return POSITIVE if "recommend" in text_sample else ABSTAIN
```

def labeling_function2(text_sample):
 return NEGATIVE if "wouldn't recommend" in text_sample else ABSTAIN

such as LF2 fixing the vote of LF1 when both label

These are modeled as factors too

def labeling_function2(text_sample):

return NEGATIVE if "wouldn't recommend" in text_sample else ABSTAIN

Examples of dependencies

$\overline{ ext{LF}_{j}}$	LF_k	factor type	New dependency types we introduce in this work
best	great	bolstering	
original	bad	priority	
bad	don't waste	bolstering	
worth	not worth	fixing	
great	nothing great	fixing	
worth	not worth	negated	
special	not special	negated	
recommend	terrible	priority	
recommend	highly recommend	reinforcing	
bad	absolutely horrible	reinforcing	

Motivation

But...

Specifying the correct dependency structure is hard!

- → What happens if we choose to model an *incorrect structure*?
 - → Does it help to have a fairly simple model that only models accuracy factors/ignores dependencies?

Our work & contributions

 Theoretically bound the downstream generalization risk under misspecification of dependencies

 Empirically show that specifying too many dependencies can significantly deteriorate downstream performance, even when the structure appears sensible

Theory first...

- We study two different models:
 - a) Only accuracy factors are modeled

- b) Arbitrary higher-order dependencies are modeled too
- A priori, we do not fix any model to be the "true" one

Empirical risk minimization error (unspecific to our problem)

Generalization risk $\leq \gamma + ||\Delta accuracy_parameters||_1 + ||dependency_parameters||_1$

Accuracy parameter estimation error

w.r.t. to the true model

If we assume model a) to be the "true" one:

Generalization risk $\leq \gamma + ||\Delta accuracy_parameters||_1 + ||dependency_parameters||_1$

If we assume model b) to be the "true" one:

Generalization risk $\leq \gamma + ||\Delta accuracy_parameters||_1 + ||dependency_parameters||_1$

Accuracy parameter estimation error
w.r.t. to the true model

Magnitude of the dependencies that a) failed to model

Experiments¹

i) select 135 real *LFs* for the

Movie Review Sentiment dataset (*Positive* or *Negative*), that we expect to have helpful dependencies

ii) select 85 real *LFs* for the Bias in Bios dataset, where we aim to differentiate between occupations (teacher vs professor)

we report the test set performance of a simple 3-layer neural network trained on the probabilistic labels, averaged out over 100 runs

We use ground truth labels to obtain evidence of true dependencies

LF_{j}	LF_k	factor type l	factor value $v_{j,k}^l$
best	great	bolstering	801
original	bad	priority	327
bad	don't waste	bolstering	110
worth	not worth	fixing	238
great	nothing great	fixing	15
worth	not worth	negated	219
special	not special	negated	8
recommend	terrible	priority	53
recommend	highly recommend	reinforcing	226
bad	absolutely horrible	reinforcing	7

IMDB: Modeling more than a few dependencies worsens performance by up to 4 AUC points!

B&N - We only model *bolstering* and *negated* dependencies/factors

F&P - We only model *fixing* and *priority* dependencies/factors

Again, even the weakest dependencies, semantically, make sense

LF_j	LF_k	factor type l	factor value $v_{j,k}^l$
best	great	bolstering	801
original	bad	priority	327
bad	don't waste	bolstering	110
worth	not worth	fixing	238
great	nothing great	fixing	15
worth	not worth	negated	219
special	not special	negated	8
recommend	terrible	priority	53
recommend	highly recommend	reinforcing	226
bad	absolutely horrible	reinforcing	7

Similar behavior observed in our Bias in Bios[3] experiment

Discussion & Conclusion

- Do the observed performance losses occur
 - o due to the true model being (close to) the independent model?
 - due to higher sample complexity of learning additional parameters?
- In any case, our results and insights are highly relevant for practitioners
 - The behaviors we observed and studied have not been yet broadly recognized nor researched
- We conclude that
 - o Ignoring potential dependencies often is a reasonable baseline for practitioners
 - Use dependencies/structure learning carefully

Thank you

Salva Rühling Cachay

Benedikt Boecking

Artur Dubrawski

This work was made possible by the CMU Robotics Institute Summer Scholars (RISS) program and the German Academic Exchange Service (DAAD)

