Reinforcement Learning

 $\begin{array}{ll} \mbox{Michèle Sebag ; TP : Diviyan Kalainathan} \\ \mbox{TAO, CNRS} - \mbox{INRIA} - \mbox{Universit\'e Paris-Sud} \end{array}$

Dec. 11th, 2017

Where we are

MDP Main Building block

General settings

	Model-based	Model-free		
Finite	Dynamic Programming	Discrete RL		
Infinite	(optimal control)	Continuous RL		

More about the Exploration vs Exploitation Dilemma

This course: Multi-Armed Bandits; Monte-Carlo Tree Search

Overview

Multi-Armed Bandit Regret

Multi-Armed Bandit MAB algorithms Around MABs

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectatio

Conclusion and perspectives

Action selection as a Multi-Armed Bandit problem

Lai, Robbins 85

In a casino, one wants to maximize one's gains while playing.

Lifelong learning

Exploration vs **Exploitation** Dilemma

- ▶ Play the best arm so far ?
- ▶ But there might exist better arms...

Exploitation Exploration

Formalization

- ▶ K options a.k.a. arms
- ► Arms are independent
- The *i*-th arm yields a reward r drawn iid along distribution ν_i In the following, $\nu_i = \text{Bernoulli}(\mu_i)$ (return 1 with proba μ_i , 0 otherwise).

Goals

Find the best arm:

$$i^* = \arg \max_i \mathbb{E}[\nu_i]$$

Find a policy $\pi:t \to i_t$, gets reward r_t s.t. the sum of rewards is maximal in expectation

$$\pi = \arg\max \mathbb{E}[r_0 + r_1 + \dots$$

Applications

- ► Find the best cure/drug for a disease. r = 1 if patient is cured, 0 otherwise
- Find the best ad for a Web site/user
 r = 1 if user clicks on the ad, 0 otherwise
- ► Find the best action for a robot r = 1 if the robot grasps the banana, 0 otherwise (What is different here ?)

The multi-armed bandit (MAB) problem

Algorithmic setting

Unknown parameters: K unknown probability distributions on [0,1] Known parameters: the set of arms 1...K, the number of rounds T

For each round t = 1, 2, ..., T

- (1) the learner chooses $i_t \in 1...K$ according to its own strategy.
- (2) the learner incurs and observes the reward $r_t \sim \nu_{i_t}$ independently from the past given rewards.

T: time horizon

When T unknown, algorithm is anytime

The multi-armed bandit (MAB) problem

- ► K arms
- ▶ Each arm gives reward 1 with probability μ_i , 0 otherwise
- ▶ Let $\mu^* = argmax\{\mu_1, \dots \mu_K\}$, with $\Delta_i = \mu^* \mu_i$
- ▶ In each time t, one selects an arm i_t and gets a reward r_t

$$n_{i,t} = \sum_{u=1}^{t} \mathbbm{1}_{I_u^*=i}$$
 number of times i has been selected $\hat{\mu}_{i,t} = \frac{1}{n_{i,t}} \sum_{I_u^*=i}^{t_*} r_u$ average reward of arm i

Goal: Maximize $\sum_{u=1}^{t} r_u$

 \Leftrightarrow

$$\textbf{Minimize Regret } (t) = \sum_{u=1}^t (\mu^* - r_u) = t \mu^* - \sum_{i=1}^K \textit{n}_{i,t} \, \hat{\mu}_{i,t} \approx \sum_{i=1}^K \textit{n}_{i,t} \Delta_i$$

Objective

Goal: Maximize $\sum_{u=1}^{t} r_u$

 \Leftrightarrow

$$\textbf{Minimize Regret } (t) = \sum_{u=1}^t (r \sim \nu^* - r_u)$$

Regret: extra-loss incurred w.r.t. the oracle (who knows i^*).

Why using the regret?

"Kind of" normalization w.r.t. problem difficulty: the more difficult the problem, the lower the oracle's gain; what matters is how well one fares compared to the expert. (Additive normalization).

Overview

Multi-Armed Bandit

Regret

Multi-Armed Bandit MAB algorithms Around MABs

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectat

Conclusion and perspectives

Notations

- \triangleright $n_{i,t}$: number of times i has been selected up to t
- $ightharpoonup \hat{\mu}_{i,t}$ empirical reward of *i*-th arm as of t

$$\hat{\mu}_{i,t} = \frac{1}{n_{i,t}} \sum_{u=1}^{t} r_u. \mathbb{1}_{i_u=i}$$

with $\mathbb{I}_e = 1$ iff e holds true

- $\mu_i = \mathbb{E}[\nu_i]$
- \triangleright Δ_i : margin of *i*-th arm

$$\Delta_i = \mu^* - \mu_i$$

Scientific questions

- ▶ How does the regret increase with *T* (linear ? quadratic ? logarithmic ?)
- What are the factors of difficulty of the MAB problem ?

Greedy algorithm

Draw once each arm

$$\hat{\mu}_i = r \sim \nu_i$$

▶ At time u, select arm i_t s.t.

$$i_t = argmax\{\hat{\mu}_{i,t-1}, i = 1 \dots K\}$$

Example

- ▶ 2 arms:
 - arm 1, $\mu_1 = .8$;
 - arm 2, $\mu_2 = .2$.
- Assume the first two drawings yield:
 - ▶ arm 1, $r_1 = 0$;
 - ▶ arm 2, $r_2 = 1$.
- ▶ What happens ?

The ϵ -greedy algorithm

At each time t,

• With probability $1-\varepsilon$ select the arm with best empirical reward

$$i_t = argmax\{\hat{\mu}_{1,t}, \dots \hat{\mu}_{K,t}\}$$

▶ Otherwise, select i_t uniformly in $\{1...K\}$

What is the regret ?

The ϵ -greedy algorithm

At each time t,

• With probability $1-\varepsilon$ select the arm with best empirical reward

$$i_t = argmax\{\hat{\mu}_{1,t}, \dots \hat{\mu}_{K,t}\}$$

▶ Otherwise, select i_t uniformly in $\{1...K\}$

What is the regret ?

Regret
$$(t) > \varepsilon t \frac{1}{K} \sum_{i} \Delta_{i}$$

But: Optimal regret rate: log(t)

Lai Robbins 85

Auer et al. 2002

Select
$$i_t = \operatorname{argmax} \left\{ \hat{\mu}_{i,t} + \sqrt{2 \frac{log(t)}{n_{i,t}}} \right\}$$

Decision: Optimism in front of unknown!

Thm: UCB achieves the optimal regret rate log(t)

If
$$i_t = \operatorname{argmax} \left\{ \hat{\mu}_{i,t} + \sqrt{c_e \frac{log(\sum n_{j,t})}{n_{i,t}}} \right\}$$

Then

$$Regret(t) \leq 8 \sum_{i \neq i^*} \frac{1}{\Delta_i} log(t) + \left(1 + \frac{\pi^2}{3}\right) \sum_i \Delta_i$$

Proof

$$Regret(t) = \sum_{i \neq i^*} n_{i,t} \Delta_i$$

The very useful Hoeffding inequality

Given $r_1, \ldots r_n$ iid in [0,1] drawn after p, with expectation μ , Define empirical mean $\hat{\mu}_n = 1/n \sum_{u=1}^n r_u$, then

$$\mathbb{P}(\hat{\mu}_n - \mu \ge \varepsilon) \le \exp(-2\varepsilon^2 n),$$

$$\mathbb{P}\left(\mu - \hat{\mu}_n \geq \varepsilon\right) \leq \exp\left(-2\,\varepsilon^2 n\right),$$

$$\mathbb{P}\left(|\hat{\mu}_n - \mu| \ge \varepsilon\right) \le 2 \exp\left(-2\,\varepsilon^2 n\right)$$

Sketch of the proof

Bound the number of times i is selected instead of i^* . This happens at step u iff

$$\hat{\mu}_{i,u} + \sqrt{\frac{2log(t)}{n_{i,u}}} > \hat{\mu}_{*,u} + \sqrt{\frac{2log(t)}{n_{*,u}}}$$

And we know that

$$\mu_* = \mu_i + \Delta_i$$

- (a) Either $\hat{\mu}_{i,u}$ is close to μ_i
- (b) Or $\hat{\mu}_{*,u}$ is close to μ_*
- (c) Or, (a) and (b) are false, but this happens rarely (logarithmically...)

$$\hat{\mu}_{i,u} + \sqrt{2 \frac{log(t)}{n_{i,t}}} > \hat{\mu}_{*,u} + \sqrt{2 \frac{log(t)}{n_{*,t}}}$$

One of the three equations below holds wrong

(a)
$$\hat{\mu}_{i,u} > \mu_i + \sqrt{2 \frac{\log(t)}{n_{i,t}}}$$

(b)
$$\hat{\mu}_{*,u} < \mu_* - \sqrt{2 \frac{\log(t)}{n_{*,t}}}$$

(c)
$$\sqrt{2\frac{log(t)}{n_{i,t}}} + \sqrt{2\frac{log(t)}{n_{*,t}}} > \Delta_i \Rightarrow$$

$$n_{i,t}, n_{*,t} < \frac{8log(t)}{\Delta_i^2}$$

Decompose time: before and after step ℓ

With

$$\ell = \frac{8\log(t)}{\Delta_i^2}$$

After ℓ , (c) is true; hence either (a) or (b) is wrong.

$$n_{i,t} < \ell + \sum_{u=\ell}^{t} \mathbb{I} \left\{ i_u = i \right\}$$

As $\ell = \frac{8log(t)}{\Delta_i^2}$, either $\hat{\mu}_{i,u}$ or $\hat{\mu}_{*,u}$ is outside its confidence interval. Hoeffding inequality yields (event (a)):

$$\mathsf{Pr}\left(\hat{\mu}_{i,t} - \mu_i \geq \sqrt{2\frac{\mathsf{log}(t)}{\mathsf{n}_{i,t}}}\right) \leq t^{-4}$$

Therefore (union bound)

$$\sum_{u=\ell}^{\infty} 1\!\!1_{(a)} \leq \sum_{u=\ell}^{\infty} u^{-4}$$

Known

$$\sum_{k=1}^{\infty} \frac{1}{k^{-4}} = \left(1 + \frac{\pi^2}{3}\right)$$

Finally

$$\mathbb{E}[n_{i,t}\Delta_i] \leq \frac{8log(t)}{\Delta_i^2} \times \Delta_i + (1 + \frac{\pi^2}{3})\Delta_i$$

QED: UCB regret is logarithmic

$$Regret(t) \leq 8 \sum_{i \neq i^*} \frac{1}{\Delta_i} log(t) + \left(1 + \frac{\pi^2}{3}\right) \sum_i \Delta_i$$

Overview

Multi-Armed Bandit

Regret

Multi-Armed Bandit

MAB algorithms Around MABs

Monte-Carlo Tree Search

Go as an example
Evaluations

Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games

MCTS and CP
Optimization in expectation

Conclusion and perspectives

Around MAB algorithms

▶ UCB is great, but not optimal. See KL-UCB

- Garivier et al. 2012
- ▶ In practice, play with *C*. control the exploration/exploitation trade-off
- ▶ Take into account the standard deviation of $\hat{\mu}_i$: Select $i_t = \operatorname{argmax}$

$$\left\{\hat{\mu}_{i,t} + \sqrt{c_e \frac{log(\sum n_{j,t})}{n_{i,t}} + min\left(\frac{1}{4}, \hat{\sigma}_{i,t}^2 + \sqrt{c_e \frac{log(\sum n_{j,t})}{n_{i,t}}}\right)}\right\}$$

▶ When there are **many** arms: tendency to over-explore...

Extensions

- ▶ When there is some side information: contextual bandits
- When arm distributions are not stationary: restless bandits

A particular algorithm: BESA

Best Empirical Sampled Average Intuition

Baransi Maillard 2014

- Case 1: you compare two arms with same number of reward samples. Easy: take the one with best average.
- Case 2: there is an arm A with many samples, and an arm B with few samples (say k).
 Easy: subsample k rewards for arm A and get back to Case 1.

Nota-bene

Same results with one hyper-parameter less == much better.

Overview

Multi-Armed Bandit

Regret

Multi-Armed Bandit

MAB algorithms

Monte-Carlo Tree Search

Go as an example Evaluations

Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games

MCTS and CP
Optimization in expectation

Conclusion and perspectives

MCTS: computer-Go as explanatory example

Not just a game: same approaches apply to optimal energy policy

MCTS for computer-Go and MineSweeper

Go: deterministic transitions

MineSweeper: probabilistic transitions

							1	•
		1	1	2	1	1	1	1
		2	<u></u>	3	<u></u>	3	2	1
		2	-	3	2	-	-	2
		1	1	2	2	3	3	•
				1	•	1	1	1
				1	1	1		
1	1	1				1	1	1
1	-	1				1	-	1

The game of Go in one slide

Rules

- ▶ Each player puts a stone on the goban, black first
- ▶ Each stone remains on the goban, except:

group w/o degree freedom is killed

a group with two eyes can't be killed

▶ The goal is to control the max. territory

Go as a sequential decision problem

Features

- ► Size of the state space 2.10¹⁷⁰
- ▶ Size of the action space 200
- ▶ No good evaluation function
- Local and global features (symmetries, freedom, ...)
- A move might make a difference some dozen plies later

Setting

- ightharpoonup State space ${\cal S}$
- ightharpoonup Action space $\mathcal A$
- ▶ Known transition model: p(s, a, s')
- ▶ Reward on final states: win or lose

Baseline strategies do not apply:

- ► Cannot grow the full tree
- Cannot safely cut branches
- ► Cannot be greedy

Monte-Carlo Tree Search

- ► An any-time algorithm
- ▶ Iteratively and asymmetrically growing a search tree

most promising subtrees are more explored and developed

Overview

Multi-Armed Bandit

Regret

Multi-Armed Bandit

MAB algorithms

Monte-Carlo Tree Search

Go as an example

Evaluations

Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games

MCTS and CP

Optimization in expectation

Conclusion and perspectives

Monte-Carlo Tree Search. Random phase

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action
 - Add a node

Bandit phase

- Grow a leaf of the search tree
- Select next action bis

Random phase, roll-out

Compute instant reward

Evaluate

Update information in visited nodes

Propagate

- Returned solution:
 - Path visited most often

Random phase - Roll-out policy

Monte-Carlo-based

- Until the goban is filled, add a stone (black or white in turn) at a uniformly selected empty position
- 2. Compute r = Win(black)
- 3. The outcome of the tree-walk is r

Brügman 93

Random phase — Roll-out policy

Monte-Carlo-based

- Until the goban is filled, add a stone (black or white in turn) at a uniformly selected empty position
- 2. Compute r = Win(black)
- 3. The outcome of the tree-walk is r

Improvements?

Put stones randomly in the neighborhood of a previous stone

Brügman 93

Put stones matching patterns

prior knowledge

Put stones optimizing a value function

Silver et al. 07

Evaluation and Propagation

The tree-walk returns an evaluation r

win(black)

Propagate

▶ For each node (s, a) in the tree-walk

$$\begin{array}{ll} \textit{n}_{\textit{s},\textit{a}} & \leftarrow \textit{n}_{\textit{s},\textit{a}} + 1 \\ \hat{\mu}_{\textit{s},\textit{a}} & \leftarrow \hat{\mu}_{\textit{s},\textit{a}} + \frac{1}{\textit{n}_{\textit{s},\textit{a}}} (r - \mu_{\textit{s},\textit{a}}) \end{array}$$

Evaluation and Propagation

The tree-walk returns an evaluation r

win(black)

Propagate

▶ For each node (s, a) in the tree-walk

$$\begin{array}{ll} \textit{n}_{\textit{s,a}} & \leftarrow \textit{n}_{\textit{s,a}} + 1 \\ \hat{\mu}_{\textit{s,a}} & \leftarrow \hat{\mu}_{\textit{s,a}} + \frac{1}{\textit{n}_{\textit{s,a}}} (r - \mu_{\textit{s,a}}) \end{array}$$

Variants

Kocsis & Szepesvári, 06

$$\hat{\mu}_{s,a} \leftarrow \left\{ \begin{array}{ll} \min\{\hat{\mu}_x, x \text{ child of } (s,a)\} & \text{ if } (s,a) \text{ is a black node} \\ \max\{\hat{\mu}_x, x \text{ child of } (s,a)\} & \text{ if } (s,a) \text{ is a white node} \end{array} \right.$$

Dilemma

- ightharpoonup smarter roll-out policy ightharpoonup more computationally expensive ightharpoonup less tree-walks on a budget
- ▶ frugal roll-out \rightarrow more tree-walks \rightarrow more confident evaluations

Overview

Multi-Armed Bandit Regret

Multi-Armed Bandit MAB algorithms Around MABs

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

Action selection revisited

$$\mathsf{Select}\ a^* = \ \mathsf{argmax}\ \left\{\hat{\mu}_{s,\mathsf{a}} + \sqrt{c_e \frac{log(\mathit{n}_s)}{\mathit{n}_{s,\mathsf{a}}}}\right\}$$

- Asymptotically optimal
- ▶ But visits the tree infinitely often!

Being greedy is excluded

not consistent

Frugal and consistent

Select
$$a^* = \operatorname{argmax} \frac{\operatorname{Nb} \operatorname{win}(s, a) + 1}{\operatorname{Nb} \operatorname{loss}(s, a) + 2}$$

Berthier et al. 2010

Further directions

▶ Optimizing the action selection rule

Maes et al., 11

Controlling the branching factor

What if many arms?

degenerates into exploration

- Continuous heuristics
 Use a small exploration constant ce
- ► Discrete heuristics

Progressive Widening Coulom 06; Rolet et al. 09

Limit the number of considered actions to $\lfloor \sqrt[b]{n(s)} \rfloor$ (usually b = 2 or 4)

Introduce a new action when $\lfloor \sqrt[b]{n(s)+1} \rfloor > \lfloor \sqrt[b]{n(s)} \rfloor$ (which one ? See RAVE, below).

Gelly Silver 07

Motivation

- ▶ It needs some time to decrease the variance of $\hat{\mu}_{s,a}$
- ▶ Generalizing across the tree ?

RAVE(s, a) = average $\{\hat{\mu}(s', a), s \text{ parent of } s'\}$

global RAVE

Rapid Action Value Estimate, 2

Using RAVE for action selection

In the action selection rule, replace $\hat{\mu}_{s,a}$ by

$$\alpha \hat{\mu}_{s,a} + (1 - \alpha) \left(\beta RAVE_{\ell}(s,a) + (1 - \beta) RAVE_{g}(s,a) \right)$$

$$\alpha = \frac{n_{s,a}}{n_{s,a} + c_{1}}$$

$$\beta = \frac{n_{parent(s)}}{n_{parent(s)} + c_{2}}$$

Using RAVE with Progressive Widening

- ▶ PW: introduce a new action if $|\sqrt[b]{n(s)+1}| > |\sqrt[b]{n(s)}|$
- Select promising actions: it takes time to recover from bad ones
- ▶ Select argmax $RAVE_{\ell}(parent(s))$.

A limit of RAVE

- ▶ Brings information from bottom to top of tree
- Sometimes harmful:

B2 is the only good move for white

B2 only makes sense as first move (not in subtrees)

⇒ RAVE rejects B2.

Improving the roll-out policy π

 π_0 Put stones uniformly in empty positions

 π_{random} Put stones uniformly in the neighborhood of a previous stone

 π_{MoGo} Put stones matching patterns prior knowledge

 π_{RLGO} Put stones optimizing a value function Silver et al. 07

Beware!

Gelly Silver 07

$$\pi$$
 better π' \Rightarrow $MCTS(\pi)$ better $MCTS(\pi')$

Improving the roll-out policy π , followed

Evaluation error on 200 test cases

Interpretation

What matters:

- ▶ Being **biased** is more harmful than being weak...
- ▶ Introducing a stronger but biased rollout policy π is detrimental.

if there exist situations where you (wrongly) think you are in good shape then you go there and you are in bad shape...

Using prior knowledge

Assume a value function $Q_{prior}(s, a)$

▶ Then when action a is first considered in state s, initialize

$$n_{s,a} = n_{prior}(s,a)$$
 equivalent experience / confidence of priors $\mu_{s,a} = Q_{prior}(s,a)$

The best of both worlds

- Speed-up discovery of good moves
- Does not prevent from identifying their weaknesses

Overview

Multi-Armed Bandit Regret

Multi-Armed Bandit MAB algorithms Around MABs

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

Parallelization. 1 Distributing the roll-outs

Distributing roll-outs on different computational nodes does not work.

Parallelization. 2 With shared memory

comp.

comp node k

- ► Launch tree-walks in parallel on the same MCTS
- (micro) lock the indicators during each tree-walk update.

Use virtual updates to enforce the diversity of tree walks.

Parallelization. 3. Without shared memory

- Launch one MCTS per computational node
- k times per second

k = 3

- ▶ Select nodes with sufficient number of simulations
 - $> .05 \times \#$ total simulations

Aggregate indicators

Good news

Parallelization with and without shared memory can be combined.

It works!

32 cores against	Winning rate on 9×9	Winning rate on $19 imes 19$
1	75.8 ± 2.5	95.1 ± 1.4
2	66.3 ± 2.8	82.4 ± 2.7
4	62.6± 2.9	73.5 ± 3.4
8	59.6± 2.9	63.1 ± 4.2
16	52± 3.	63 ± 5.6
32	48.9± 3.	48 ± 10

Then:

- ▶ Try with a bigger machine! and win against top professional players!
- ▶ Not so simple... there are diminishing returns.

Increasing the number ${\it N}$ of tree-walks

N	2N against N		
	Winning rate on 9×9	Winning rate on $19 imes 19$	
1,000	71.1 ± 0.1	90.5 ± 0.3	
4,000	68.7 ± 0.2	84.5 ± 0.3	
16,000	66.5 ± 0.9	80.2 ± 0.4	
256,000	61± 0,2	58.5 ± 1.7	

The limits of parallelization

R. Coulom

Improvement in terms of performance against humans

 \ll

Improvement in terms of performance against computers

«

Improvements in terms of self-play

Overview

Multi-Armed Bandit

Multi-Armed Bandit

MAB algorithms

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectatio

Conclusion and perspectives

Why does it fail

- ► First simulation gives 50%
- ► Following simulations give 100% or 0%
- But MCTS tries other moves: doesn't see all moves on the black side are equivalent.

Implication 1

MCTS does not detect invariance \rightarrow too short-sighted and parallelization does not help.

Implication 2

MCTS does not build abstractions \rightarrow too short-sighted and parallelization does not help.

Overview

Multi-Armed Bandit Regret

Multi-Armed Bandit MAB algorithms

Monto Carlo Tros Soarch

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

MCTS for one-player game

- ► The MineSweeper problem
- ► Combining CSP and MCTS

Motivation

- All locations have same probability of death
- ► Are then all moves equivalent ?

1/3

Motivation

- ▶ All locations have same probability of death
- Are then all moves equivalent ?

1/3

NO!

Motivation

- ▶ All locations have same probability of death
- Are then all moves equivalent?
- ▶ Top, Bottom: Win with probability 2/3

1/3

NO!

Motivation

- ▶ All locations have same probability of death
- ► Are then all moves equivalent ?
- ▶ Top, Bottom: Win with probability 2/3
- MYOPIC approaches LOSE.

1/3

NO!

MineSweeper, State of the art

Markov Decision Process

Very expensive; 4 × 4 is solved

Single Point Strategy (SPS)

local solver

CSP

- ▶ Each unknown location j, a variable x[j]
- ightharpoonup Each visible location, a constraint, e.g. loc(15)=4
 ightarrow

$$x[04] + x[05] + x[06] + x[14] + x[16] + x[24] + x[25] + x[26] = 4$$

- Find all N solutions
- ▶ P(mine in j) = $\frac{\text{number of solutions with mine in } j}{N}$
- ▶ Play j with minimal P(mine in j)

Constraint Satisfaction for MineSweeper

State of the art

- ▶ 80% success *beginner* (9x9, 10 mines)
- ▶ 45% success *intermediate* (16×16, 40 mines)
- ▶ 34% success *expert* (30×40, 99 mines)

PROS

► Very fast

CONS

- ▶ Not optimal
- Beware of first move (opening book)

Upper Confidence Tree for MineSweeper

Couetoux Teytaud 11

- Cannot compete with CSP in terms of speed
- ▶ But consistent (find the optimal solution if given enough time)

Lesson learned

- Initial move matters
- ▶ UCT improves on CSP

- ▶ 3x3, 7 mines
- ▶ Optimal winning rate: 25%
- Optimal winning rate if uniform initial move: 17/72
- ▶ UCT improves on CSP by 1/72

UCT for MineSweeper

Another example

- ▶ 5x5, 15 mines
- ► GnoMine rule (first move gets 0)
- ▶ if 1st move is center, optimal winning rate is 100 %
- ▶ UCT finds it; CSP does not.

The best of both worlds

CSP

- ► Fast
- Suboptimal (myopic)

UCT

- ▶ Needs a generative model
- ► Asymptotic optimal

Hybrid

▶ UCT with generative model based on CSP

UCT needs a generative model

Given

- A state, an action
- ► Simulate possible transitions

Initial state, play top left

probabilistic transitions

Simulating transitions

- Using rejection (draw mines and check if consistent)
- ▶ Using CSP

SLOW

FAST

The algorithm: Belief State Sampler UCT

- One node created per simulation/tree-walk
- ► Progressive widening
- Evaluation by Monte-Carlo simulation
- ► Action selection: UCB tuned (with variance)
- Monte-Carlo moves
 - ▶ If possible, Single Point Strategy (can propose riskless moves if any)
 - Otherwise, move with null probability of mines (CSP-based)
 - Otherwise, with probability .7, move with minimal probability of mines (CSP-based)
 - Otherwise, draw a hidden state compatible with current observation (CSP-based) and play a safe move.

The results

▶ BSSUCT: Belief State Sampler UCT

► CSP-PGMS: CSP + initial moves in the corners

Format	CSP-PGMS	BSSUCT
4 mines on 4x4	64.7 %	$70.0\%\pm0.6\%$
1 mine on 1x3	100 %	100% (2000 games)
3 mines on 2x5	22.6%	$25.4~\%~\pm~1.0\%$
10 mines on 5x5	8.20%	9% (p-value: 0.14)
5 mines on 1x10	12.93%	$18.9\%\pm0.2\%$
10 mines on 3x7	4.50%	$\mathbf{5.96\%}\pm\mathbf{0.16\%}$
15 mines on 5x5	0.63%	$0.9\%\pm0.1\%$

Partial conclusion

Given a myopic solver

- ▶ It can be combined with MCTS / UCT:
- Significant (costly) improvements

Overview

Multi-Armed Bandit Regret

Multi-Armed Bandit MAB algorithms

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

Active Learning, position of the problem

Supervised learning, the setting

- ► Target hypothesis *h**
- ▶ Training set $\mathcal{E} = \{(x_i, y_i), i = 1 \dots n\}$
- ▶ Learn h_n from \mathcal{E}

Criteria

- ▶ Consistency: $h_n \to h^*$ when $n \to \infty$.
- \blacktriangleright Sample complexity: number of examples needed to reach the target with precision ϵ

$$\epsilon
ightarrow n_{\epsilon} \ s.t. \ ||h_n - h^*|| < \epsilon$$

Active Learning, definition

Passive learning

iid examples

$$\mathcal{E} = \{(x_i, y_i), i = 1 \dots n\}$$

Active learning

 x_{n+1} selected depending on $\{(x_i, y_i), i = 1 \dots n\}$

In the best case, exponential improvement:

A motivating application

Numerical Engineering

- ► Large codes
- ▶ Computationally heavy ~ days
- not fool-proof

Inertial Confinement Fusion, ICF

Goal

Simplified models

- Approximate answer
- ... for a fraction of the computational cost
- ► Speed-up the design cycle
- Optimal design

More is Different

Active Learning as a Game

Ph. Rolet, 2010

Optimization problem

Find
$$F^* = argmin$$

 $\mathbb{E}_{h \sim \mathcal{A}(\mathcal{E}, \sigma, T)} \mathbf{Err}(h, \sigma, T)$

 $\mathcal{E} \colon \mathsf{Training} \ \mathsf{data} \ \mathsf{set}$

A: Machine Learning algorithm

 \mathcal{Z} : Set of instances

 $\sigma: \mathcal{E} \mapsto \mathcal{Z}$ sampling strategy

T: Time horizon

Err: Generalization error

Bottlenecks

- Combinatorial optimization problem
- ► Generalization error unknown

Where is the game?

- Wanted: a good strategy to find, as accurately as possible, the true target concept.
- ▶ If this is a game, you play it only once !
- ▶ But you can train...

Training game: Iterate

- ▶ Draw a possible goal (fake target concept h^*); use it as oracle
- ▶ Try a policy (sequence of instances $\mathcal{E}_{h^*,T} = \{(x_1,h^*(x_1)),\dots(x_T,h^*(x_T))\}$
- ▶ Evaluate: Learn h from $\mathcal{E}_{h^*,T}$. Reward = $||h h^*||$

Overview

Multi-Armed Bandit

Regret

Multi-Armed Bandit

MAB algorithms

Monte-Carlo Tree Search

Go as an example Evaluations Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games

MCTS and CP
Optimization in expectation

Conclusion and perspectives

Conclusion

Take-home message: MCTS/UCT

- enables any-time smart look-ahead for better sequential decisions in front of uncertainty.
- is an integrated system involving two main ingredients:
 - Exploration vs Exploitation rule

UCB, UCBtuned, others

- Roll-out policy
- can take advantage of prior knowledge

Caveat

- ▶ The UCB rule was not an essential ingredient of MoGo
- Refining the roll-out policy

 refining the system Many tree-walks might be better than smarter (biased) ones.

On-going, future, call to arms

Extensions

- lacktriangle Continuous bandits: action ranges in a ${
 m I\!R}$
- lacktriangle Contextual bandits: state ranges in \mathbb{R}^d
- ▶ Multi-objective sequential optimization

Bubeck et al. 11

Langford et al. 11

Wang Sebag 12

Controlling the size of the search space

- Building abstractions
- ► Considering nested MCTS (partially observable settings, e.g. poker)
- ► Multi-scale reasoning

Bibliography

- Peter Auer, Nicolò Cesa-Bianchi, Paul Fischer: Finite-time Analysis of the Multiarmed Bandit Problem. Machine Learning 47(2-3): 235-256 (2002)
- Vincent Berthier, Hassen Doghmen, Olivier Teytaud: Consistency Modifications for Automatically Tuned Monte-Carlo Tree Search. LION 2010: 111-124
- Sébastien Bubeck, Rémi Munos, Gilles Stoltz, Csaba Szepesvári: X-Armed Bandits. Journal of Machine Learning Research 12: 1655-1695 (2011)
- Pierre-Arnaud Coquelin, Rémi Munos: Bandit Algorithms for Tree Search. UAI 2007: 67-74
- Rémi Coulom: Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. Computers and Games 2006: 72-83
- Romaric Gaudel, Michèle Sebag: Feature Selection as a One-Player Game. ICML 2010: 359-366

- Sylvain Gelly, David Silver: Combining online and offline knowledge in UCT. ICML 2007: 273-280
- Levente Kocsis, Csaba Szepesvári: Bandit Based Monte-Carlo Planning. ECML 2006: 282-293
- Francis Maes, Louis Wehenkel, Damien Ernst: Automatic Discovery of Ranking Formulas for Playing with Multi-armed Bandits. EWRL 2011: 5-17
- Arpad Rimmel, Fabien Teytaud, Olivier Teytaud: Biasing Monte-Carlo Simulations through RAVE Values. Computers and Games 2010: 59-68
- David Silver, Richard S. Sutton, Martin Müller: Reinforcement Learning of Local Shape in the Game of Go. IJCAI 2007: 1053-1058
- Olivier Teytaud, Michèle Sebag: Combining Myopic Optimization and Tree Search: Application to MineSweeper, LION 2012.