

BİL 103 -BİLGİSAYAR MÜHENDİSLİĞİNE GİRİŞ

DERS 2

Temel Kavramlar ve

Tarihçe

Araş. Gör. Dr. Pelin CANBAY pelincanbay@ksu.edu.tr

*Ders sunumları ticari herhangi bir amaç içermez

- Bilgisayar tasarımı
- Bilgisayar programlama
- Bilgi işleme
- Problemlerin algoritmik çözümleri

konularında bilimsel kaynak oluşturmaya çalışan bir disiplindir.

- Bilgisayar bilimlerinin en temel konusu algoritmalardır.
- Algoritmalar; bir görevin gerçekleştirilmesi için oluşturulan adımlar (komutlar) bütünüdür.
 - Yemek yapmak
 - Yabancı bir yerde yol bulma
 - Çamaşır makinesini çalıştırma
- Böl ve Yönet (Divide and Conquer)

While (1<>nul) and 1< 11, Mass[andr,y]; 1 = integer; d=d+S); end; [= [next; write (mass[i], '); Mass[andx,y]:=Temp; d,xna,t/ an (item[j-1], item[j]), it r <> nul then r pet, else r = rel then p=p^next; Write (massci], '); I function i= 1+1; more_than = a > b; Begin ent inte v, peres integer;) k = k+1; I Mass : . mass [1, L], ubble (var leart mas; e=e+11; V := mass[k]; T = T+1; proc else j'next'.vol = T; function here stream (a, 8: integer, r <> nel then r^prev, e=(e+t)2 if j = rul then first prev; into i do inc (t+1 draw), then first prev; x:=0; Writeln; (Begin) r-p.next; Begin Mass [1, y]:= i=i+1 else first = p*next; For i=1 to 10 do V := mass[k]: if r <> rel then p-p next, x = 0; Expression. Temp:= mass [x,1], Begin a > 6, Mass Janto N Vrite (Mass [i], else first = p'next; For 1 = 0 to 2 do r - pinext; For i = 1 to 10 do 1-27; Writeln, e -- nd ory := r tondo if r <> rel then else last: p^*prev ; $i=5^*+X$; For 1 = 0 to 2 do dispose (p); p:= rul; e ent; For i = 1 to 10 do If mass[i] =): then. r=p1.prev, begin a Realy INC/Small

Algoritmalar - Akış Şemaları

- Algoritma, belli bir problemi çözmek veya belirli bir amaca ulaşmak için tasarlanan yol.
- Matematikte ve bilgisayar biliminde bir işi yapmak için tanımlanan, bir başlangıç durumundan başladığında, açıkça belirlenmiş bir son durumunda sonlanan, sonlu işlemler kümesidir.

Algoritmaları daha anlaşılır bir yapıda sunmak için akış şemaları kullanılır.

Öklid Algoritması (EBOB)

- Adım 1: M ve N değişkenlerine büyükten küçüğe sırasıyla pozitif tamsayı değerler atanır.
- Adım 2: M, N'e bölünür. Kalan R'ye atanır.
- Adım 3:
 - ► Eğer kalan 0 değilse; M değişkenine N'in değeri (M=N), N değişkenine R'nin değeri (N=R) atanır ve Adım 2'ye gidilir.
 - Diğer durumlarda; EBOB değeri N'in şu anki değeridir.

Program

- Bir görevin gerçekleştirilmesi için geliştirilen algoritmanın, bilgisayarla uyumlu hale getirilmiş şekline program denir.
- Insanlarla uyumu için bilgisayar programları genellikle bilgisayar ekranında veya kağıt üzerinde yazılı olur. Makinelerle uyumlu olması için ise programlar makinelerin teknolojisiyle uyumlu bir şekilde kodlanır.
- Programın geliştirilmesi, makineye uyumlu şekle kodlanması, ve makineye aktarılmasına programlama denir.
- Programlar ve algoritmaların bütününe yazılım, çalıştırıldığı makinelere de donanım denir.

Hesaplama Tarihi

▶ İlk hesaplama araçlarından biri antik Çin döneminde kullanılan abaküstür. Hesaplamalar insan tarafından yapılırken abaküs yalnızca «veri saklama sistemi» olarak kullanılmaktadır.

- Blaise Pascal (1623-1662) (Toplama Makinesi)
- Gottfried Wilhelm Leibniz (1646-1716) (Seçmeli işlem gömülü algoritma)
 - ► Bu makineler dişli konumlandırma aracılığıyla verileri sunarlar. Dişlilerin başlangıç konumları ile de veri girişi yapılmış olur.
- Charles Babbage (1792-1871).
 - Joseph Jacquard'ın geliştirdiği yün örme makinelerinden esinlenmiştir.
 - Delikli kartlarla programlanabilir makineler üretmiştir.

- Atanasoff-Berry makinesi(1937-1941), Iowa State College
- Colossus, Tommy Flowers, (1943-1945), 2. dünya savaşında Alman mesajlarını çözmek için kullanılmıştır.
- ENIAC (electronic numerical integrator and calculator)

- Steve Jobs and Stephen Wozniak tarafından 1976 yılında kurulan Apple Computer'ı Commodore, Heathkit, ve Radio Shack gibi markalar takip etmiştir.
- ► 1981 yılında IBM ilk masaüstü bilgisayarını «Personel Computer» (PC) olarak tanıtmıştır. İşletim sistemi ise Microsoft'a aittir.
- Bilgisayarı tanımak için önce tarihini ve gelişimini tanımanız gerekir.

Bilgisayar

Bilgisayar

- Basitçe, bir işlemci içeren her şeyin bir bilgisayar olduğunu söyleyebiliriz (genellikle mikroişlemciler).
- Günümüzde bir çok şeyin bilgisayar veya içerisinde bilgisayar bulunan araçlar olduğunu söyleyebiliriz, örneğin;
 - Cep telefonları
 - ▶ Otomobiller
 - Buzdolapları
 - ▶ Televizyonlar
 - Akıllı saatler
 - ...
 - Bir vazo bilgisayar olabilir mi ya da içindeki bilgisayarı verimli bir şekilde kullanabilir mi?

Bilgisayar

- Günümüzde bilgisayarlar farklı gruplar olarak sınıflandırılmıştır;
 - Sunucular (Servers)
 - ► Masa üstü bilgisayarlar (Desktops)
 - ► Diz üstü bilgisayarlar (Laptops)
 - ► Tabletler
 - ► Akıllı Telefonlar (Smart Phones)
 - ► Giyilebilir akıllı cihazlar (Wearables)
 - ► Televizyonlar
 - Oyun konsolları (Game Consoles)
 - ...

Internet ve WWW

- 20. yy'ın sonlarında kişisel bilgisayarların dünya çapında haberleştirilmesi için kurulan sistem olan Internet, iletişimde devrim gerçekleştirmiştir.
- Tim Berners-Lee tarafından önerilen sistem olan World Wide Web İnternet üzerinde yayınlanan birbirleriyle bağlantılı hiper-metin dokümanlarından oluşan bir bilgi sistemidir.
 - ► HTML, PHP, XML, Javascript ...

- Webde bulunan bilgileri kullanıcının isteğine göre webi tarayarak kategorize eden yazılım sistemine arama motorları denir.
- ► En bilinen arama motorları Google, Yahoo ve yandex.

- Bilgisayar küçültme devriminin genel kullanıma uygun en güzel örnekleri akıllı telefonlardır.
- Kendinden önceki dönemlerin süper bilgisayarlarından daha güçlü olan ve cebe siğabilen bu cihazlar birçok sensörler, kameralar ve kablosuz teknolojilerle donatılmıştır.

- Veri temsili ve saklanması.
- Veri tipleri: Metin, sayısal değerler, görüntüler, ses ve video.
- Veri depolama aygıtları.
- Veri sıkıştırma.

Bit'ler (binary digits)

0 veya 1

Veri saklama birimleri

Birim	Kısaltma	Kapasite	
Byte	В	8 bit	
Kilobyte	Kb	1024 byte	
Magabyte	Mb	1024 Kilobyte	
Gigabyte	Gb	1024 Megabyte	
Terabyte	Tb	1024 Gigabyte	
Petabyte	Pb	1024 Terabyte	
Exabyte	Eb	1024 Petabyte	

- 0 «false», 1 «true» değerlerine karşılık gelir.
- George Boole (1815-1864), tarafından matematiğin bir alanı olan «logic» (mantık) 3 temel boolean işleminden oluşur.
- ► AND (VE), OR (VEYA), and XOR

The AND operation

The OR operation

The XOR operation

NOT (DEĞİL)

- NOT (DEĞİL) bir boolean işlemidir.
- Diğerlerinden farklı olarak diğer işlemler 2 girişe ihtiyaç duyarken NOT işlemi için tek giriş vardır.
- ► Eğer giriş «true» ise NOT işleminin çıkışı «false», giriş «false» ise çıkış «true»dır.

Kapılar

AND

Inputs	Output				
0 0	0				
0 1	0				
1 0	0				
1 1	1				

XOR

Inputs	Output
0 0	0
0 1	1
1 0	1
1 1	0

OR

Inputs	Output
0 0	0
0 1	1
1 0	1
1 1	1

NOT

Inputs	Output
0	1
1	0

- Bilgisayarlarda kapılar genellikle küçük elektronik devreler olarak bulunurlar.
- 0 ve 1 değerlerini voltaj seviyeleriyle temsil ederler.

- Ana bellek, flip-floplar gibi her biri bir bit saklayabilen devrelerin geniş bir toplamından oluşur.
- ▶ Bilgisayar ana belleğinin yönetilebilir en küçük birimleri cell (hücre) olarak adlandırılır. Tipik cell boyutu 8 bittir yani 1 byte'tır.

Bellek organizasyonu

- Cell'de bulunan bitler bir sıra halinde bulunur.
- ► En soldaki bit most significant bit.
- ► En sağdaki bit least significant bit.

```
High-order end 0 1 0 1 0 1 0 Low-order end

Most Least significant bit
```


► Hücreleri (cells) tanımlayabilmek için kullanılan tekil isimlere, adres denir.

Hücrelerin tekil ve adreslenebilir olmasıyla erişilmek istenilen hücrelere anında ulaşılabilir. Hücrelere istenilen sırada erişilebilme kabiliyeti sayesinde bilgisayarların ana bellekleri random access memory (RAM) adını almıştır.

Hız Birimleri

Hertz-Hz: saniyedeki döngü sayısı

-Kilohertz-kHz:1000 Hz

-Megahertz-MHz: 1000 kHz

-Gigahertz-GHz:1000 MHz

 Bu bir frekans birimile
 ve genellikle CPU nur hızını belirtmek için kullanılır.

örn: yeni cpu saati 3.2 GHz'e yükselmiş

bps: saniyedeki bit sayısı.

-Bps: saniyedeki byte

sayısı

→ Veri iletim hızını gösterir

rpm: dakikadaki devir sayısı

Rpm genellikle hard disk sürücüsüne erişim süresini belirlemede kullanılır.

örn: Ali'nin yeni bilgisayarının hard disk sürücüsü 7200 RPM

Ölçü birimleri

1 inch=2.54 cm inch genellikle ekran boyutu ölçülerinde kulörn. 15 inch veya 15" ekran.

Pixel: ekrandaki en küçük nokta

dpi: dots per inch – inch başına düşen pixel sayısı

Çözünürlük: yazıcıdaki dpi (örn. 600 dpi); veya ekrandaki yatay ve dikey eksende bulunan toplam pixel sayısı (örn. 640x480).

20 dpi

10 dpi

- 2'nin üslerinden 1024 sayısı 1000'e en yakın olan sayı olduğundan kilo ön eki bu eke karşılık gelmektedir.
- Normalde kilo, mega, giga... 1000'in katları şeklinde gitmektedir.
- ▶ 1 kilometre=1000 metre gibi
- ▶ 1 megahertz=1.000.000 hertz gibi
- ► 1024'ün katları için 1990 da ISO (international standards organizations) kibi-, mebi-, gibi-,

İkincil Bellekler (Yığın Depolama)

- Manyetik Sistemler
 - ► HDD (Hard Disk Drive)
 - Disket (Floppy Disk)
- Optik Sistemler
 - ► CD (Compact Disk)
 - DVD (Digital Versatile Disk)
 - ► BD (Blu-ray Disk)
- ► Flash Bellek
 - SSD(Solid State Disk),
 - ► SD (Secure Digital) Kart

- Metin gösterimi
- Sayısal değer gösterimi
- Görüntü gösterimi
- Ses gösterimi

Decimal - Binary - Octal - Hex - ASCII Conversion Chart

- Metindeki her sembol tek bir bit desenine atanır.
- American National Standards Institute (ANSI)
- American Standard
 Code for Information
 Interchange (ASCII)
- ▶ 7bit

Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII
0	00000000	000	00	NUL	l 32	00100000	040	20	SP	64	01000000	100	40	@	96	01100000	140	60	
1	00000001	001	01	SOH	33	00100001	041	21	1	65	01000001	101	41	A	97	01100001	141	61	а
2	00000010	002	02	STX	34	00100010	042	22		66	01000010	102	42	В	98	01100010	142	62	b
3	00000011	003	03	ETX	35	00100011	043	23	#	67	01000011	103	43	C	99	01100011	143	63	c
4	00000100	004	04	EOT	36	00100100	044	24	\$	68	01000100	104	44	D	100	01100100	144	64	d
5	00000101	005	05	ENQ	37	00100101	045	25	%	69	01000101	105	45	E	101	01100101	145	65	е
6	00000110	006	06	ACK	38	00100110	046	26	&	70	01000110	106	46	F	102	01100110	146	66	f
7	00000111	007	07	BEL	39	00100111	047	27	4	71	01000111	107	47	G	103	01100111	147	67	g
8	00001000	010	08	BS	40	00101000	050	28	(72	01001000	110	48	Н	104	01101000	150	68	h
9	00001001	011	09	HT	41	00101001	051	29)	73	01001001	111	49	1	105	01101001	151	69	i
10	00001010	012	0A	LF	42	00101010	052	2A	*	74	01001010	112	4A	J	106	01101010	152	6A	j
11	00001011	013	0B	VT	43	00101011	053	2B	+	75	01001011	113	4B	K	107	01101011	153	6B	k
12	00001100	014	0C	FF	44	00101100	054	2C		76	01001100	114	4C	L	108	01101100	154	6C	1
13	00001101	015	0D	CR	45	00101101	055	2D	-	77	01001101	115	4D	M	109	01101101	155	6D	m
14	00001110	016	0E	SO	46	00101110	056	2E		78	01001110	116	4E	N	110	01101110	156	6E	n
15	00001111	017	0F	SI	47	00101111	057	2F	1	79	01001111	117	4F	0	111	01101111	157	6F	0
16	00010000	020	10	DLE	48	00110000	060	30	0	80	01010000	120	50	Р	112	01110000	160	70	р
17	00010001	021	11	DC1	49	00110001	061	31	1	81	01010001	121	51	Q	113	01110001	161	71	q
18	00010010	022	12	DC2	50	00110010	062	32	2	82	01010010	122	52	R	114	01110010	162	72	r
19	00010011	023	13	DC3	51	00110011	063	33	3	83	01010011	123	53	S	115	01110011	163	73	s
20	00010100	024	14	DC4	52	00110100	064	34	4	84	01010100	124	54	T	116	01110100	164	74	t
21	00010101	025	15	NAK	53	00110101	065	35	5	85	01010101	125	55	U	117	01110101	165	75	u
22	00010110	026	16	SYN	54	00110110	066	36	6	86	01010110	126	56	V	118	01110110	166	76	٧
23	00010111	027	17	ETB	55	00110111	067	37	7	87	01010111	127	57	W	119	01110111	167	77	W
24	00011000	030	18	CAN	56	00111000	070	38	8	88	01011000	130	58	X	120	01111000	170	78	X
25	00011001	031	19	EM	57	00111001	071	39	9	89	01011001	131	59	Υ	121	01111001	171	79	у
26	00011010	032	1A	SUB	58	00111010	072	3A	1	90	01011010	132	5A	Z	122	01111010	172	7A	Z
27	00011011	033	1B	ESC	59	00111011	073	3B	1	91	01011011	133	5B	[123	01111011	173	7B	{
28	00011100	034	1C	FS	60	00111100	074	3C	<	92	01011100	134	5C	1	124	01111100	174	7C	1
29	00011101	035	1D	GS	61	00111101	075	3D	=	93	01011101	135	5D	1	125	01111101	175	7D	}
30	00011110	036	1E	RS	62	00111110	076	3E	>	94	01011110	136	5E	Α.	126	01111110	176	7E	~
31	00011111	037	1F	US	63	00111111	077	3F	?	95	01011111	137	5F	-	127	01111111	177	7F	DEL

This work is licensed under the Creative Commons Attribution-ShareAl&e License. To view a copy of this license, visit http://creativecommons.org/licenses/by-ea/3.0/

ASCII Conversion Chart.doc Copyright © 2008, 2012 Donald Weiman 22 March 2012

01001000	01100101	01101100	01101100	01101111	00101110	
Н	е	1	1	o		

ISO

- ISO (The International Standards Organization)
- ▶ 8bit
- Farklı
 dillerden
 kelimeler
 bulunduran
 metinler
 desteklenemez

Variants of ISO-8859

Character set	Description	Covers
ISO-8859-1	Latin alphabet part 1	North America, Western Europe, Latin America, the Caribbean, Canada, Africa
ISO-8859-2	Latin alphabet part 2	Eastern Europe
ISO-8859-3	Latin alphabet part 3	SE Europe, Esperanto, miscellaneous others
ISO-8859-4	Latin alphabet part 4	Scandinavia/Baltics (and others not in ISO-8859-1)
ISO-8859-5	Latin/Cyrillic part 5	The languages that are using a Cyrillic alphabet such as Bulgarian, Belarusian, Russian and Macedonian
ISO-8859-6	Latin/Arabic part 6	The languages that are using the Arabic alphabet
ISO-8859-7	Latin/Greek part 7	The modern Greek language as well as mathematical symbols derived from the Greek
ISO-8859-8	Latin/Hebrew part 8	The languages that are using the Hebrew alphabet
ISO-8859-9	Latin 5 part 9	The Turkish language. Same as ISO-8859-1 except Turkish characters replace Icelandic ones
ISO-8859-10	Latin 6 Lappish, Nordic, Eskimo	The Nordic languages
ISO-8859-15	Latin 9 (aka Latin 0)	Similar to ISO-8859-1 but replaces some less common symbols with the euro sign and some other missing characters $$
ISO-2022-JP	Latin/Japanese part 1	The Japanese language
ISO-2022-JP-2	Latin/Japanese part 2	The Japanese language
ISO-2022-KR	Latin/Korean part 1	The Korean language

- ▶ UTF-8
- Her sembolün karşılığı olan bir desen vardır.
- 21bite kadar semboller vardır
- 32bite kadar destekler

Character codes	Decimal	Hexadecimal
CO Controls and Basic Latin	0-127	0000-007F
C1 Controls and Latin-1 Supplement	128-255	0080-00FF
Latin Extended-A	256-383	0100-017F
Latin Extended-B	384-591	0180-024F
Spacing Modifiers	688-767	02B0-02FF
Diacritical Marks	768-879	0300-036F
Greek and Coptic	880-1023	0370-03FF
Cyrillic Basic	1024-1279	0400-04FF
Cyrillic Supplement	1280-1327	0500-052F
General Punctuation	8192-8303	2000-206F
Currency Symbols	8352-8399	20A0-20CF
Letterlike Symbols	8448-8527	2100-214F
Arrows	8592-8703	2190-21FF
Mathematical Operators	8704-8959	2200-22FF
Box Drawings	9472-9599	2500-257F
Block Elements	9600-9631	2580-259F
Geometric Shapes	9632-9727	25A0-25FF
Miscellaneous Symbols	9728-9983	2600-26FF
Dingbats	9984-10175	2700-27BF

- 25 değerini ascii sombollerle kodlarsak 16 bit gerekir.
- İkilik gösterimi kullanarak 0-65535 arası değerleri saklayabiliriz.
- Negatif sayılarıda gösterebilmek için «ikinin tümleyen gösterimi»
- Kesirli sayılar için «kayan nokta gösterimi»

Görüntü Gösterimi

- Görüntüler piksellerden oluşur.
- Her bir piksel için bit map

- Düzenli aralıklarla ses dalgası örneklenerek elde edilen değerlerdir.
- Uzun mesafe telefon görüşmelerinde saniyede 8000 örnek oranıyla örneklenmiş sesler hala kullanılmaktadır.
- Müzik CD'lerinde örnekleme oranı genellikle 44100'dür. Her bir örnek mono için 16 stereo için 32 bit olarak alınır. Sonuç olarak stereo bir müzik bir saniye için bir milyondan fazla bite ihtiyaç duyar.

Araştırma ödevi

- Analog Bilgisayarlar (Analogue computers)
- ► DNA Bilgisayarlar (DNA computers)
- Kuantum Bilgisayarlar (Quantum computers)

Ders bitti

Erciyes Üniversitesi Selçuk Üniversitesi Sakarya Üniversitesi Kahramanmaraş Sütçü İmam Üniversitesi ders notları kaynak ve içerik olarak kullanılmıştır.