PGMAT0061/MATG17 -Técnicas Computacionais em Estatística "Simulação Estocástica"

Professor responsável: Paulo Henrique Ferreira da Silva

Universidade Federal da Bahia Instituto de Matemática e Estatística Departamento de Estatística

21 de Novembro de 2024

- Cálculo de probabilidades acumuladas e monta-se uma tabela;
 busca em tabela
- Graficamente é fácil, mas computacionalmente pode ser complicado!

X é v.a. discreta com f.m.p.:

$$p_i = \mathbb{P}(X = \mathsf{x}_i), \quad \mathsf{para} \ i = 0, 1, \dots, \ \mathsf{e} \ \sum_{i=0}^\infty p_i = 1$$

Seja
$$P_k = F(x_k) = \sum_{i=0}^k p_i$$
.

Algoritmo: (busca em tabela)

- 1) Gerar $U \sim U(0,1)$;
- 2) Identificar o índice/posição *j* correspondente:

$$j = \arg\max_{i} (P_i < U) + 1$$

3) Retornar X(j).

OBS.: O tempo necessário para a geração é proporcional ao número de intervalos que precisamos buscar.

Exemplo:

i	Xi	p_i	P_i
1	5	0,2	0,2
2	6	0,1	0,3
3	7	0,3	0,6
4	8	0,4	1,0

Para u = 0.5, tem-se:

$$\max_{i}(P_{i} < 0.5) = 0.3$$

$$\implies \arg\max_{i}(P_{i} < 0.5) = 2$$

$$\implies j = 2 + 1 = 3$$

Logo, o valor a ser gerado é: $x_3 = 7$.

Exercício: Identificar métodos para gerar valores com distribuição:

- a) Bernoulli(π)
- b) Uniforme Discreta $(\{1, 2, ..., N\})$
- c) Binomial(n,π)
- d) Poisson(λ)