Student

James La Fontaine

Total Points

11 / 13 pts

Question 1

Question 2

11 / 13 pts

- → + 1 pt 2a) M: use derivative substitution
- \checkmark +1 pt 2a) A: $-3\cos(x^2)+c$
- 🗸 + 1 pt 2b) M: Use a valid hyperbolic substitution. Expecting $x=\frac{1}{3}\cosh\theta$.
- 🗸 + 1 pt 2b) J: Stated use of $\sinh \theta > 0$ to remove absolute value signs. ($\sinh \theta \geq 0$) is okay too.
- \checkmark + 1 pt 2b) A: $\int \cosh^2(\theta) d\theta$. correct integrand after substitution up to a constant factor.
- → 1 pt 2b) M: Use a valid method such as a double angle formula to calculate the integral.
 - + 1 pt 2b) A: $\frac{1}{54} \left(3x \sqrt{9x^2 1} + \operatorname{arccosh}(3x) \right) + c$. Must simplify compositions of hyperbolic functions and their inverses.
- \checkmark + 1 pt 2c) M: Use integration by parts twice to obtain an equation for $\int e^{-x}\cos(x) \;\mathrm{d}x$.
- \checkmark + 1 pt 2c) A: $rac{1}{2}e^{-x}\left(\sin(x)-\cos(x)
 ight)+c$
- → + 1 pt 2d) M: Use complex exponential
- 🗸 + 1 pt 2d) A: $rac{1}{2}e^{-x}\left(\sin(x)-\cos(x)
 ight)+c$
- → 1 pt 2e) A: For a reason given that contains no mathematical errors.
 - + 1 pt N: Notation correction throughout question 2 and no +c's missing in non-answer steps.
 - + 0 pts Scored zero or not attempt
- 1 good
- 2 something wrong, missing a factor
- 3 dx
- would be good to put big brackets around it
- 5 refer to solutions
- 6 integrate gives you 1/2 outside?

No questions assigned to the following page.				

No questions assigned to the following page.				

Stationary point Occur when f'(t) = 0 f'(t) = d (20000 sech 2 (2t-30)) = 20000 dt (Sech 2 (2t-30)) = 20000 · 2 sech (2t-30) · dt (sech(2t-30)) = 40000 sech (2t-30) . - sech (2t-30) tanh (2t-30) .2 = -80000 sech 2 (2t-30) tonh (2t-30) >-80000 sech 2 (2t-30) tanh (2t-30) =0 $sech^{2}(2t-3c)+tanh(2t-3c)=0$ tanh(2t-3c)=6 2t-3c=arctanh(c) 2t-3c=0Sub t=15 into f(t) $f(15) = 20000 \operatorname{sech}^2(0)$ = 20000 turning point at (15, 20000)

No questions assigned to the following page.				

No questions assigned to the following page.				

Therefore, the hospital system is first expected to be over capacity 14 days after the start of the disease outbreak. c) T(t) = It f(u) du = 5 20000 sech 2 (24-30) du Let v=24-30 $\frac{dv}{du} = 2$ $\frac{\int dv}{2 du} = 1$ sub u=t => V= 2t -30 sub u=0 ⇒ V= -30 >T(t) = 20000 | sech 2(v) \frac{1}{2} \frac{dv}{du} du = $20000 \cdot \frac{1}{2} \int_{-30}^{2t-30} \operatorname{sech}^{2}(v) \, dv$ = 10000 [tanh (v)] -30 T(t) = 10000 (tanh (2t-30) - tanh (-30)) T(t) = 10000 (tanh (2t-30) - e-30 - e30)

No questions assigned to the following page.				

d) Total number of expected cases = 20,000 1000000 = 0.02 => 2% of the population are expected to be infected This model says that roughly 98% of the population will remain uninfected which is roughly 980,000 people

a) f 6xsin (x^2) dx $\frac{du}{dx} = 2x \Rightarrow 3 \frac{du}{dx} = 6x$ Derivative Substitution S 6xsin (x2) dx = $\int 3 \frac{du}{dx} \sin(ut) dx$ = 3 / sin (10) du $= -3\cos(u) + C$ = -3\cos(\chi^2) + C $=\frac{1}{3}\int \frac{x^2}{\sqrt{x^2-1}} dx$

Hyperbolic Substitution Let oc = = cosho $\theta = \operatorname{arccosh}(3x)$ This is valid when 3sc Edom (arccosh) and DE range (arccosh) $\Rightarrow 3x \ge 1 \Rightarrow x \ge \frac{1}{3}$ and $\theta \ge 0$ - Also need 19x2-170 >0 as 101=0 $\neq 1/9$ $\neq 1/3$ $\Rightarrow 0 \neq 0$ as $\Theta = 0$ when $\infty = 1/3$ => x>= and 0>0 ·x==cosho doc = 1 sinho = 1/4 Cosh20-1/9 = 1/9 Cosh 20 1/9 (cosh20-1) = 1/9 cosh 20 1/gsinh=0

= 1/9 Cosh20 1/3/sinh01 = 1/9 cosh 20 sinh >0 when 0>0 1/2 Sinho Therefore 1/3 / Tx2-1/2 doc = 1/3 / 4 cosh 20 1 sinho de = /3/9 cosh20 do = = = 1 Cosh 20 do = = 1/2 (coshe)+1) de, Double Angle formula = 54 [0sinh (20)+0]+C = 54 [2sinh Ocosh 0+0]+C, Double Angle Formala = 54[2]cosh20-T cosh0+0]+C = 54 [2 59x2-1 03x + arccosh (3x)]+C $=\frac{3}{9}\sqrt{9x^2-1}+\frac{1}{54}\operatorname{arccosh}(3x)+C$ $=\frac{2}{3}\sqrt{x^2-\frac{1}{9}}+\frac{1}{54}\arctan(3x)+C$

Let
$$u=e^{-x} \frac{dv}{dx} = \cos(x)$$

Let $u=e^{-x} \frac{dv}{dx} = \cos(x)$
 $\frac{du}{dx} = -e^{-x} \quad v = \sin(x)$

Therefore $\int e^{-x} \cos(x) \, dx$
 $= e^{-x} \sin(x) + \int e^{-x} \sin(x) \, dx$

First integrate $\int e^{-x} \sin(x) \, dx$:

Let $u=e^{-x} \frac{dv}{dx} = \sin(x)$, Integration by parts

 $\frac{du}{dx} = -e^{-x} \quad v = -\cos(x)$

Therefore $\int e^{-x} \sin(x) \cdot e^{-x} \cos(x) \, dx$

Putting everything together:

 $\Rightarrow \int e^{-x} \cos(x) \, dx$
 $= e^{-x} \sin(x) + (-e^{-x} \cos(x) - \int e^{-x} \cos(x) \, dx$
 $\Rightarrow \int e^{-x} \cos(x) \, dx = e^{-x} \sin(x) - e^{-x} \cos(x) + C$
 $\Rightarrow \int e^{-x} \cos(x) \, dx = e^{-x} \sin(x) - e^{-x} \cos(x) + d$
 $= e^{-x} \left(\frac{1}{2} \sin(x) - \frac{1}{2} \cos(x)\right) + d$

d) se cos (x) doc complex exponents $e^{-x}\cos(x) = e^{-x}Re(e^{ix})$ = $Re(e^{-x}.e^{ix}), e^{-x} \in \mathbb{R}$ = Re(eix-x) = Re(e(-1+i)x) Therefore Sex cos (x) doc = SRe (e(-1+i)x) doc = Reje (-1+i)x dx = Re[-1+i e(-1+i)x + c + di], c,d EIR = $Re \left[\frac{-1-1}{(-1+i)(-1-i)} e^{-x} e^{ix} + c + di \right]$ = Re[-1-i e-x (cos(x)+isin(x))+c+di] = $\operatorname{Re}\left[\frac{e^{2}}{2}\left(-\cos(x)+\sin(x)-i\cos(x)-i\sin(x)\right)\right]$ +C+di/ $=\frac{e^{-2}}{2}\left(\sin\left(x\right)-\cos\left(x\right)\right)+C$ $=e^{-x}\left(\frac{1}{2}\sin(x)-\frac{1}{2}\cos(x)\right)+C$ e) I found (d) simpler as using the complex exponential involves easier integration and simple algebra with complex numbers

