Procesos estocásticos (86.09)

Análisis de componentes principales (PCA)

Transformación Afín

Si **X** es un VeA de media μ_X y covarianza C_X . Podemos aplicar una transformación Afín para obtener otro VeA **Y** de media μ_Y y covarianza C_Y . Esto implica una traslación, escalamiento y rotación. Por ejemplo (**X** $\in \mathbb{R}^2$):

Transformación Afín - Descorrelación y centrado

Buscamos generar un VeA Y, centrado (media nula) y descorrelacionado (covarianza diagonal) a partir de otro VeA X arbitrario mediante una transformación afín.

$$\mathbf{Y} = A \, \mathbf{X} + \mathbf{b}$$
 $A \in \mathbb{R}^{\mathrm{mxn}} \, \mathbf{y} \, \mathbf{b} \in \mathbb{R}^{\mathrm{m}}$ tal que $C_{\mathbf{X}} = P_{X} \wedge_{\mathbf{X}} P_{X}^{\mathrm{T}}$

Centrado

Si se define: $\mathbf{b} = -A \mu_{\mathbf{X}}$

Descorrelación

Si se define: $A = P_X^T$

Análisis de componentes principales (PCA)

Dado un VeA $\mathbf{X} = [X_1, X_2, X_3, ..., X_N]^T \sim N(\boldsymbol{\mu}_{\mathbf{X}}, C_{\mathbf{X}})$ tal que $C_{\mathbf{X}} = P \wedge P^T$, con autovectores $\{\boldsymbol{p}_1, \boldsymbol{p}_2, ..., \boldsymbol{p}_N\}$ y autovalores $\{\lambda_1, \lambda_2,, \lambda_N\}$ (asumiendo $\lambda_1 \geq \lambda_2 \geq \geq \lambda_N$).

Si suponemos que hay un conjunto de autovalores $\{\lambda_{r+1}, \ldots, \lambda_N\}$ mucho más pequeños que el resto, tal que $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_r >> \lambda_{r+1} \geq \ldots \geq \lambda_N$.

Podemos aproximar cualquier realización de X descartando las direcciones de principales de menor peso $\{\mathbf{p}_{r+1}, ..., \mathbf{p}_{N}\}$ y conservando las direcciones principales $\{\mathbf{p}_{1}, \mathbf{p}_{2}, ..., \mathbf{p}_{r}\}$ asociadas a los r autovalores más grandes (comprimir información)

Dado
$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_r >> \lambda_{r+1} \ge \dots \ge \lambda_N$$
.

$$Y_1 = \mathbf{p}_1^T \mathbf{X}$$

$$Y_1 = \mathbf{p}_1^{\mathsf{T}} \mathbf{X}$$
$$Y_2 = \mathbf{p}_2^{\mathsf{T}} \mathbf{X}$$

$$Y_r = \mathbf{p}_r^T \mathbf{X}$$

$$Y_N = \mathbf{p}_N^T \mathbf{X}$$

Componentes con la mayor parte de la información

Componentes con menor variación (proyecciones sobre direcciones principales de menor peso)

$$Y_i = \mathbf{p}_i^{\mathsf{T}} \mathbf{X} \quad / \quad Y_i \perp Y_i$$

Reconstrucción aproximada

$$\mathbf{X}_R = \sum_{i=1}^r \mathbf{Y}_i \mathbf{p}_i$$

Reconstrucción exacta

$$\mathbf{X} = \sum_{i=1}^{r} \mathbf{Y}_{i} \mathbf{p}_{i} + \sum_{i=r+1}^{N} \mathbf{Y}_{i} \mathbf{p}_{i}$$

Dado
$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_r >> \lambda_{r+1} \ge \dots \ge \lambda_N$$
.

Reconstrucción
$$\mathbf{X} = \sum_{i=1}^{N} \mathbf{Y}_i \mathbf{p}_i$$
 $\begin{cases} \mathbf{Y} = \mathsf{P}^\mathsf{T} \mathbf{X} \\ \mathbf{X} = \mathsf{P} \mathbf{Y} \end{cases}$

Reconstrucción aproximada
$$\mathbf{X}_R = \sum_{i=1}^r \mathbf{Y}_i \mathbf{p}_i \ \begin{cases} & \mathbf{Y}_{\mathrm{R}} = \mathsf{V}^{\mathsf{T}} \mathbf{X} \\ & \mathbf{X}_{\mathrm{R}} = \mathsf{V} \mathbf{Y}_{\mathrm{R}} \end{cases}$$

$$\mathsf{P} = \left(\begin{array}{c|ccc} & & & & & & \\ \mathbf{p}_1 & \mathbf{p}_2 & \dots & \mathbf{p}_r & \mathbf{p}_{r+1} & \dots & \mathbf{p}_N \\ \downarrow & \downarrow & & & \downarrow & & \\ \end{array} \right)$$

$$\wedge = \left(\begin{array}{cccc} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & \lambda_N \end{array} \right)$$

$$V = \begin{bmatrix} | & | & | \\ \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_r \\ | & | & | \end{bmatrix}$$

Suponiendo el caso más general, donde X posee una media $\pmb{\mu}_{\mathsf{X}}$

Proyección en las direcciones principales con reconstrucción exacta

$$\mathbf{Y} = \mathsf{P}^\mathsf{T}(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})$$
 $\mathbf{X} = \mathsf{P} \, \mathbf{Y} + \boldsymbol{\mu}_{\mathbf{X}}$

Proyección en las direcciones principales con reconstrucción aproximada

$$\mathbf{Y}_{\mathsf{R}} = \mathbf{V}^{\mathsf{T}}(\mathbf{X} - \boldsymbol{\mu}_{\mathsf{X}})$$
 $\mathbf{X}_{\mathsf{R}} = \mathbf{V} \mathbf{Y}_{\mathsf{R}} + \boldsymbol{\mu}_{\mathsf{X}}$

Resumen del método PCA:

- 1. Obtenemos realizaciones de $\mathbf{X} = [X_1, X_2, ..., X_N]^T$,
- 2. Estimamos media μ_{x} y matriz de covarianza C_{x}
- 3. Obtener matrices de autovectores P y autovalores \land .
- 4. Ordenar autovectores en orden decreciente de autovalores.
- 5. Definir cantidad r de componentes a conservar y definir matriz truncada V.
- 6. Calcular las componentes proyectadas y reducidas $\mathbf{Y}_{R} = V^{T}(\mathbf{X} \boldsymbol{\mu}_{\mathbf{x}})$.
- 7. Guardar las componentes \mathbf{Y}_{R} para más tarde.
- 8. Reconstruir X a partir de las componentes desacopladas $X_R = V Y_R + \mu_X$

Representación de una imagen

Blanco & Negro

 0
 0
 0
 1
 0
 0
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Escala de grises

128	128	160	128	128	96	128	128	128	128
128	160	128	64	32	0	0	192	160	128
160	160	32	32	0	0	32	64	128	160
192	64	128	255	255	255	192	96	64	192
160	96	192	255	192	192	255	96	64	192
160	64	160	160	192	192	128	64	0	160
160	64	160	0	160	128	0	32	0	128
192	160	128	255	192	128	160	64	64	255
160	192	96	255	160	64	128	32	192	255
160	192	128	192	192	96	96	64	255	192
160	192	160	64	128	64	32	96	255	192
160	192	255	0	0	0	96	128	255	255

Ayudas

Abrir una imagen: img = imread('img_01.jpg'); Convertir a escala de grises img_gris = rgb2gray(img); Convertir a tipo de dato double data = double(img_gris); Aplanar una matriz tira = data(:); Rearmar imagen img_out = reshape(XR, [fil, col]); mostrar imagen imshow(uint8(img_out))

Generar observaciones de vectores (2x1) a partir de cada par de píxeles contiguos de una imagen

Para la imagen **img_01.png** provista en el campus, defina realizaciones de un vector $\mathbf{X} = [X_1, X_2]^T$ seleccionando cada par de píxeles contiguos en la imagen (ver esquema en siguiente filmina)

- 1. Haga un gráfico de dispersión del vector X.
- Estime la matriz de covarianza de X y compute las proyecciones Y en las direcciones principales. Haga un gráfico de dispersión de Y. Determine cuál de las componentes puede ser descartada.
- 3. Defina la matriz de proyección V que descarta el autovector asociado al menor autovalor. Obtenga la proyección \mathbf{Y}_{R} de \mathbf{X} en ese espacio reducido.
- 4. Reconstruya el conjunto de vectores X_p con la transformación inversa.
- 5. Rearme la imagen a partir de los vectores reconstruidos y grafíquela

Trabajo práctico 1: Ej 4

Trabajo práctico 1: Ej 4

Trabajo práctico 1: Ej 4

Actividad 2

Actividad 2

Sea un vector aleatorio **X**, con C_x =[1 -0.25 0.1; -0.25 2 -0.25; 0.1 -0.25 3] con media μ_x = **0**.

- 1. Genere M=200 realizaciones de X y estime las varianzas de X_1 , X_2 y X_3 .
- 2. Aplique la proyección en las componentes principales, definiendo la matriz de proyección V para retener sólo las componentes asociadas a los r autovalores de mayor peso. Considere los casos r=1 y r=2. Compare el MSE (valor promedio de $||\mathbf{X}_R \mathbf{X}||^2$ para todas las realizaciones) para ambos valores de r. Nota: $\mathbf{X}_R = \mathbf{V} \, \mathbf{Y}_R$.