

Adaptability Reveals the Healthcare Resilience to **Pandemics**

By: **Dimitri Lopez**, Lu Zhong, Sen Pei, and Jianxi Gao

Unprecedented Burdens on the US Healthcare System

Unprecedented Burdens on the US Healthcare System

Why is this a problem?

Why is this a problem?

Some services can not be delayed or missed.

Measles Outbreak in Europe

96%

Vaccination Rate in 2019

93%

Vaccination Rate in 2022

42x

Increase in Measles Cases 2022 to 2023

Missed Cancer Screenings

Chronic Disease Treatment Suffered Major Disruptions

40% of treatments were delayed or missed

What can we do about this?

Goal: Figure out what makes some healthcare systems resilient to these disruptions.

Methodology

We take the largest Electronic Medical Records (EMR) dataset

in the United States

Methodology

We take the largest Electronic Medical Records (EMR) dataset

in the United States

Measure healthcare system performance using our quantification framework.

$$O(t) = P(t) - \alpha \frac{(\theta + \vartheta)^{\theta + \vartheta}}{\theta^{\theta} \vartheta^{\vartheta}} (\frac{t}{T})^{\theta} (1 - \frac{t}{T})^{\vartheta}$$

Methodology

We take the largest Electronic Medical Records (EMR) dataset

in the United States

Measure healthcare system performance using our quantification framework.

$$O(t) = P(t) - \alpha \frac{(\theta + \vartheta)^{\theta + \vartheta}}{\theta^{\theta} \vartheta^{\vartheta}} (\frac{t}{T})^{\theta} (1 - \frac{t}{T})^{\vartheta}$$

Find out why some healthcare systems perform better by analyzing different populations.

Expected patient visits if no crisis occurs P(t)

$$O(t) = P(t) - \alpha \frac{(\theta + \theta)^{\theta + \theta}}{(\theta + \theta)^{\theta + \theta}} (\frac{t}{a})^{\theta} (1)$$

$$D(t) = (\theta + \theta)^{\theta + \theta} (t) \theta (t)$$

 $O(t) = P(t) - \alpha \frac{(\theta + \vartheta)^{\theta + \vartheta}}{\theta^{\theta} \vartheta^{\vartheta}} (\frac{t}{T})^{\theta} (1 - \frac{t}{T})^{\vartheta}$ Disruption Amplitude: α Disruption Rate: ϑ

Disruption Duration: T

Disruption Rate: ϑ

Disruption Duration: T

Disruption Rate: ϑ

Disruption Amplitude: α

Disruption Duration: T

Disruption Rate: ϑ

Recovery Rate: Θ

$$O(t) = P(t) - \alpha \frac{(\theta + \vartheta)^{\theta + \vartheta}}{\theta^{\theta} \vartheta^{\vartheta}} (\frac{t}{T})^{\theta} (1 - \frac{t}{T})^{\vartheta}$$

Disruption Amplitude: α

Disruption Duration: T

Disruption Rate: 8

Recovery Rate: Θ

Metrics

Disruption Rate Recovery Rate

Resilience

Proportion of patient visits that were able to be kept

Adaptability

Chronic Diseases

Cancer, heart disease, asthma, prenatal care...

Chronic Diseases

Cancer, heart disease, asthma, prenatal care...

Geographic Areas

48 / 50 of the US states

Chronic Diseases

Cancer, heart disease, asthma, prenatal care...

Geographic Areas

48 / 50 of the US states

Racial Groups

Asian, Black, Hispanic, White, ...

What are characteristics of healthcare systems that were resilient?

Physician Abundance

We **must** invest in our physicians going forward.

Physician Abundance

We **must** invest in our physicians going forward.

Social Vulnerability Measures

Coincides heavily with poverty rates and rates of uninsurance.

Physician Abundance

We **must** invest in our physicians going forward.

Social Vulnerability Measures

Coincides heavily with poverty rates and rates of uninsurance.

NOT: Number of COVID-19 Cases

Regardless of severity, systemic issues matter more.

Main Results

Northern US

Had higher resilience rates than the southern part of the US.

Asian Populations

Had the highest levels fo resilience.

90% of States

Faced two consecutive disruptions.

Chronic Diseases

Prenatal care and chronic health diseases really suffered.

Conclusion

Acknowledgments

- Coauthors and advisor: Lu Zhong and Jianxi Gao
- Paper got accepted in Nature Medicine
- Funded by the C-19 Research Accelerator

Q & A

Q & A

Adaptability

Methodology

Table 2. Pearson correlation coefficients assessing the relationships between system adaptivity/resilience and pandemic severity, physician shortages, and socioeconomic factors in U.S. states. Significant correlations, indicated by a P-value less than the threshold of 0.05, are highlighted.

	COVID-19	Physician per	Poverty	Unemployment	Uninsurance	Age≥ 65	Age≤ 17	Minority
	cases	100,000	percentile	percentile	percentile	percentile	percentile	percentile
Adaptivity	0.24	0.24	-0.325	-0.176	-0.327	0.039	-0.132	-0.057
index	(p=0.092)	(p=0.018)	(p=0.022)	(p=0.224)	(p=0.021)	(p=0.785)	(p=0.365)	(p=0.697)
Resilience	0.75	0.34	-0.32	-0.17	-0.42	0.13	-0.38	-0.18
index	(p=0.60)	(p=0.012)	(p=0.019)	(p=0.220)	(p=0.002)	(p=0.378)	(p=0.086)	(p=0.21)
Amplitude α	0.17	-0.35	-0.013	-0.28	0.28	-0.090	0.32	-0.131
(1st disruption)	(p=0.255)	(p=0.013)	(p=0.96)	(p=0.076)	(p=0.046)	(p=0.536)	(p=0.028)	(p=0.369)

Recovery Rate

$$u_i = \frac{1}{\theta_i T_i} \quad v_i = \frac{1}{\vartheta_i T_i}$$

Disruption Rate

$$\rho = \frac{-[u_{i+1} - u_i]}{\max(u_{i+1}, u_i)}$$

Resilience

