Gautam Buddha University; Greater Noida

School of Engineering (Mechanical Engineering)

Degree	Course Name	Course Code	Marks:100
M. Tech. in	Solar Energy	MET 514	SM+MT+ET
Thermal Engg.			25+25+50
Semester	Credits	L-T-P	Exam
II	3	3-0-0	3 Hours

Unit - I

Introduction: Solar energy option; specialty and potential; Sun - earth - Solar radiation; Beam and diffuse measurement; Estimation of average solar radiation on horizontal and tilted surfaces; Problems; Applications. **(07 Hours)**

Unit - II

Capturing Solar Radiation: Physical principles of collection; Types; Liquid flat plate collectors; Construction details; Performance analysis; Concentrating collection; Flat plate collectors with plane reflectors; Cylindrical parabolic collectors; Orientation and tracking; Performance analysis. **(08 Hours)**

Unit - III

Power Generation: Solar central receiver system; Heliostats and receiver; Heat transport system; Solar distributed receiver system; Power cycles; Working fluids and prime movers. **(07 Hours)**

Unit - IV

Thermal Energy Storage: Introduction; Need; Methods of sensible heat storage using solids and liquids; Packed bed storage; Latent heat storage; Working principle; Construction; Application and limitations; Other solar Devices: stills; Air heaters; Dryers; Solar ponds & solar refrigeration.

(08 Hours)

Unit - V

Direct Energy Conversion: Introduction; Conversion from solid; state principles; semiconductors; Solar cells; Energy Conversion: performance; Factor; Modular construction; Applications. (08 Hours)

Unit - VI

Economics: Principles of Economics Analysis; Discounted cash flow; Solar system; Life cycle costs; Cost benefit analysis and optimization; Cost based analysis of water heating and photo voltaic applications. **(07 Hours)**

Recommended Books:

- 1. Principles of Solar Engineering; Kreith and Keride; Taylor & Francis;
- 2. Solar Engineering of Thermal Processes; Duffie & Beckman; John Wiley and sons; 4th Edition; 2013.
- 3. Solar Energy; S.P. Sukhatme; Tata McGraw Hill; 1st Edition; 2008.
- 4. Solar Energy: Fundamental and Applications; Garg and Prakash; 1st Editions; Tata McGraw Hill; 2006.
- 5. Solar Power Engineering; B. S. Magal; 1st Editions; Tata McGraw Hill; 1990.
- 6. Solar Energy Conversion: The Solar Cell; R.C. Neville; Elsevier; 2nd Edition; 1995.