Optimization for the information and data sciences

Mahdi Soltanolkotabi

Convex Sets

Ming Hsieh Department of Electrical Engineering

Convex sets

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplanes
- dual cones and generalized inequalities

Affine sets

line through x_1 , x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2 \qquad (\theta \in \mathbb{R})$$

$$\theta = 1.2 \quad x_1$$

$$\theta = 0.6$$

$$\theta = 0.2$$

Affine sets

line through x_1 , x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2 \qquad (\theta \in \mathbb{R})$$

$$\theta = 1.2 \quad x_1$$

$$\theta = 1$$

$$\theta = 0.6$$

$$\theta = 0$$

$$\theta = -0.2$$

affine set: contains the line through any two distinct points in the set

Affine sets

line through x_1 , x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2 \qquad (\theta \in \mathbb{R})$$

$$\theta = 1.2 \quad x_1$$

$$\theta = 0.6$$

$$\theta = 0.2$$

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations $\{x \mid Ax = b\}$ (conversely, every affine set can be expressed as solution set of system of linear equations)

Convex set

line segment between x_1 and x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2$$

with $0 \le \theta \le 1$

Convex set

line segment between x_1 and x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2$$

with $0 \le \theta \le 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C$$

Convex set

line segment between x_1 and x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2$$

with $0 \le \theta \le 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

examples (one convex, two nonconvex sets)

Convex combination and convex hull

convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with
$$\theta_1 + \cdots + \theta_k = 1$$
, $\theta_i \ge 0$

Convex combination and convex hull

convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with
$$\theta_1 + \cdots + \theta_k = 1$$
, $\theta_i \ge 0$

convex hull conv S: set of all convex combinations of points in S

Convex cone

conic (nonnegative) combination of x_1 and x_2 : any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2$$

with $\theta_1 \geq 0$, $\theta_2 \geq 0$

convex cone: set that contains all conic combinations of points in the set

Hyperplanes and halfspaces

hyperplane: set of the form $\{x \mid a^T x = b\}$ $(a \neq 0)$

halfspace: set of the form $\{x \mid a^T x \leq b\}$ $(a \neq 0)$

- a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

Euclidean balls and ellipsoids

(Euclidean) ball with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid: set of the form

$${x \mid (x - x_c)^T P^{-1}(x - x_c) \le 1}$$

with $P \in \mathcal{S}^n_{++}$ (i.e., P symmetric positive definite)

other representation: $\{x_c + Au \mid \|u\|_2 \leq 1\}$ with A square and nonsingular

Norm balls and norm cones

norm: a function $\|\cdot\|$ that satisfies

- $||x|| \ge 0$; ||x|| = 0 if and only if x = 0
- ||tx|| = |t| ||x|| for $t \in \mathbb{R}$
- $\|x + y\| \le \|x\| + \|y\|$

notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{\text{symb}}$ is particular norm **norm ball** with center x_c and radius r: $\{x\mid \|x-x_c\|\leq r\}$

norm cone: $\{(x,t) \mid ||x|| \le t\}$

Euclidean norm cone is called second-order cone

norm balls and cones are convex

Polyhedra

solution set of finitely many linear inequalities and equalities

$$Ax \leq b$$
, $Cx = d$

 $(A \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{p \times n}$, \leq is componentwise inequality)

polyhedron is intersection of finite number of halfspaces and hyperplanes

Positive semidefinite cone

notation:

- S^n is set of symmetric $n \times n$ matrices
- $S^n_+ = \{X \in S^n \mid X \succeq 0\}$: positive semidefinite $n \times n$ matrices

$$X \in \mathcal{S}^n_+ \iff z^T X z \ge 0 \text{ for all } z$$

 \mathcal{S}^n_{+} is a convex cone

• $\mathcal{S}_{++}^n = \{X \in \mathcal{S}^n \mid X \succ 0\}$: positive definite $n \times n$ matrices

example:
$$\left[\begin{array}{cc} x & y \\ y & z \end{array} \right] \in \mathcal{S}^2_+$$

Operations that preserve convexity

practical methods for establishing convexity of a set ${\cal C}$

apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

- ② show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, \dots) by operations that preserve convexity
 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions

the intersection of (any number of) convex sets is convex

• If S_1 and S_2 are convex then $S_1 \cap S_2$ is convex.

the intersection of (any number of) convex sets is convex

- If S_1 and S_2 are convex then $S_1 \cap S_2$ is convex.
- If S_{α} is convex for every $\alpha \in \mathcal{A}$ then $\bigcap_{\alpha \in \mathcal{A}} S_{\alpha}$ is convex

the intersection of (any number of) convex sets is convex

- If S_1 and S_2 are convex then $S_1 \cap S_2$ is convex.
- If S_{α} is convex for every $\alpha \in \mathcal{A}$ then $\bigcap_{\alpha \in \mathcal{A}} S_{\alpha}$ is convex
- ullet Example: PSD cone \mathcal{S}^n_+ can be expressed as

$$\bigcap_{z \neq 0} \left\{ X \in \mathcal{S}^n \mid z^T X z \ge 0 \right\}$$

the intersection of (any number of) convex sets is convex

example:

$$S = \{x \in \mathbb{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3\}$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \cdots + x_m \cos mt$ for m = 2:

Affine function

suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m)$

ullet the image of a convex set under f is convex

$$S \subseteq \mathbb{R}^n \text{ convex} \quad \Longrightarrow \quad f(S) = \{f(x) \mid x \in S\} \text{ convex}$$

ullet the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbb{R}^m \text{ convex} \implies f^{-1}(C) = \{x \in \mathbb{R}^n \mid f(x) \in C\} \text{ convex}$$

examples

- scaling, translation, projection
- solution set of linear matrix inequality $\{x \mid x_1A_1 + \cdots + x_mA_m \leq B\}$ (with $A_i, B \in \mathcal{S}^p$)
- hyperbolic cone $\{x \mid x^T P x \leq (c^T x)^2, \ c^T x \geq 0\}$ (with $P \in \mathcal{S}^n_+$)

Perspective and linear-fractional function

perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$:

$$P(x,t) = x/t,$$
 dom $P = \{(x,t) \mid t > 0\}$

images and inverse images of convex sets under perspective are convex

linear-fractional function $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d},$$
 dom $f = \{x \mid c^T x + d > 0\}$

images and inverse images of convex sets under linear-fractional functions are convex

example of a linear-fractional function

$$f(x) = \frac{1}{x_1 + x_2 + 1}x$$

Generalized inequalities

a convex cone $K \subseteq \mathbb{R}^n$ is a **proper cone** if

- K is closed (contains its boundary)
- \bullet K is solid (has nonempty interior)
- ullet K is pointed (contains no line)

examples

- nonnegative orthant $K = \mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid x_i \geq 0, i = 1, \dots, n\}$
- ullet positive semidefinite cone $K=\mathcal{S}^n_+$
- \bullet coefficients of nonnegative polynomials on $[0,1]\colon$

$$K = \{x \in \mathbb{R}^n \mid x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0 \text{ for } t \in [0, 1]\}$$

generalized inequality defined by a proper cone K:

$$x \preceq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \mathbf{int}K$$

examples

• componentwise inequality $(K = \mathbb{R}^n_+)$

$$x \leq_{\mathbf{R}_{+}^{n}} y \iff x_{i} \leq y_{i}, \quad i = 1, \dots, n$$

• matrix inequality $(K = \mathcal{S}^n_+)$

$$X \leq_{\mathbf{S}_{+}^{n}} Y \iff Y - X$$
 positive semidefinite

these two types are so common that we drop the subscript in \preceq_K

properties: many properties of \leq_K are similar to \leq on \mathbb{R} , e.g.,

$$x \preceq_K y$$
, $u \preceq_K v \implies x + u \preceq_K y + v$

Minimum and minimal elements

 \preceq_K is not in general a *linear ordering*: we can have $x \npreceq_K y$ and $y \npreceq_K x$

 $x \in S$ is the minimum element of S with respect to \leq_K if

$$y \in S \implies x \leq_K y$$

 $x \in S$ is a minimal element of S with respect to \leq_K if

$$y \in S$$
, $y \leq_K x \implies y = x$

example
$$(K = \mathbb{R}^2_+)$$

 x_1 is the minimum element of S_1 x_2 is a minimal element of S_2

Separating hyperplane theorem

if C and D are disjoint convex sets, then there exists $a \neq 0$, b such that

$$a^Tx \leq b \text{ for } x \in C, \qquad a^Tx \geq b \text{ for } x \in D$$

$$a^Tx \geq b \qquad \qquad a^Tx \leq b$$

the hyperplane $\{x \mid a^Tx = b\}$ separates C and D

strict separation requires additional assumptions (e.g., ${\cal C}$ is closed, ${\cal D}$ is a singleton)

Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_0 :

$$\{x \mid a^T x = a^T x_0\}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$

supporting hyperplane theorem: if ${\cal C}$ is convex, then there exists a supporting hyperplane at every boundary point of ${\cal C}$

Dual cones and generalized inequalities

dual cone of a cone K:

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$

examples

- $K = \mathbb{R}^n_+$: $K^* = \mathbb{R}^n_+$
- $\bullet \ K = \mathcal{S}_+^n \colon K^* = \mathcal{S}_+^n$
- $K = \{(x,t) \mid ||x||_2 \le t\}$: $K^* = \{(x,t) \mid ||x||_2 \le t\}$
- $K = \{(x,t) \mid ||x||_1 \le t\}$: $K^* = \{(x,t) \mid ||x||_{\infty} \le t\}$

first three examples are self-dual cones

dual cones of proper cones are proper, hence define generalized inequalities:

$$y \succeq_{K^*} 0 \iff y^T x \ge 0 \text{ for all } x \succeq_K 0$$

Dual cones and generalized inequalities

dual cone of a cone K:

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$

examples

- $K = \mathbb{R}^n_+ : K^* = \mathbb{R}^n_+$
- $\bullet \ K = \mathcal{S}^n_+ \colon K^* = \mathcal{S}^n_+$
- $K = \{(x,t) \mid ||x||_2 \le t\}$: $K^* = \{(x,t) \mid ||x||_2 \le t\}$
- $K = \{(x,t) \mid ||x||_1 \le t\}$: $K^* = \{(x,t) \mid ||x||_{\infty} \le t\}$

first three examples are self-dual cones

dual cones of proper cones are proper, hence define generalized inequalities:

$$y \succeq_{K^*} 0 \iff y^T x \ge 0 \text{ for all } x \succeq_K 0$$

important properties relating a generalized inequality and its dual

- $x \leq_K y$ if and only if $\lambda^T x \leq \lambda^T y$ for all $\lambda \succeq_{K^*} 0$
- $x \prec_K y$ if and only if $\lambda^T x < \lambda^T y$ for all $\lambda \succeq_{K^*} 0$, $\lambda \neq 1$

Minimum and minimal elements via dual inequalities

minimum element w.r.t. \preceq_K

x is minimum element of S iff for all $\lambda \succ_{K^*} 0$, x is the unique minimizer of $\lambda^T z$ over S

minimal element w.r.t. \prec_K

• if x minimizes $\lambda^T z$ over S for some $\lambda \succ_{K^*} 0$, then x is minimal

• if x is a minimal element of a *convex* set S, then there exists a nonzero $\lambda \succ_{K^*} 0$ such that x minimizes $\lambda^T z$ over S

optimal production frontier

- ullet different production methods use different amounts of resources $x \in \mathbb{R}^n$
- ullet production set P: resource vectors x for all possible production methods
- efficient (Pareto optimal) methods correspond to resource vectors x that are minimal w.r.t. \mathbb{R}^n_+

example (n=2)

 x_1 , x_2 , x_3 are efficient; x_4 , x_5 are not

