

Hand Gesture Recognition Wristband Based on Resistance Sensing

R10921072 Pei-Shin Hwang 黄珮欣 Network and Systems Laboratory Graduate Institute of Electrical Engineering National Taiwan University June 12th, 2023

Outline

- Introduction
- Methodology
- Exploration of Materials
- Experiments
- Results
- Conclusion
- Q&A

Introduction

- Motivation
- Related work–EMG
- Related work–flex sensor
- Related work–CapBand
- Thesis statement
- Contributions

Motivation

Why are current hand gesture recognition systems not suitable for everyday use:

- Vision based:
 - Privacy
 - High compute capacity needed
- Wireless signal based:
 - Low gesture resolution
 - Room-scale recognition
- Wearable devices:
 - Not wearable enough

Related Work-EMG^[1]

- Sense the neural signal produced by our brain
- Need to attach electrodes on users' skin surface

Related Work-Flex Sensor^[2]

- Glove-like system
- Detect the curl and extension of fingers

Related Work-CapBand [3]

Wearable hand gesture recognition wristband

- Capacitance sensing
- Recognize gestures by wrist contour
- Down side:
 - Costly
 - Tight
 - Hard

Figure 11: CapBand prototype

Thesis Statement

Goal: a CapBand-like wristband but with lower cost and more comfortable

How:

- Recognize gestures by wrist contour
- Use soft material to make the wristband
- Make wristband with cheaper and simpler structure
 - Denim fabric
 - Conductive rubber cord

Contributions

- Find a material suitable for sense the length change
- Build a model between the resistance value and length of conductive rubber cord
- Make a wristband using conductive rubber cord

Methodology

- Conductive rubber
- System overview
- Measurement of conductive rubber cord
- Wristband design
- Recognition flow

Conductive Rubber

- Carbon black filled rubber
 - Soft
 - Elastic
 - Conductive
- Resistance becomes higher when stretched
- Non-linear stretch sensor
- Conductive rubber cord
 - Commercial product bought from Adafruit
 - 140-160 ohms per cm

System Overview-Hardware

Measurement of Conductive Rubber Cord

Wristband V4

- Denim fabric
- 4 conductive rubber cord
 - o 2 cm each
 - Wrap around the wrist

Recognition flow

Exploration of Materials

- Adafruit Woven Conductive Fabric
- Adafruit Knit Jersey Conductive Fabric
- Adafruit Conductive Rubber Sheet
- Adafruit Conductive Rubber Cord
- Length-Resistance Model of Rubber Cord

Adafruit Woven Conductive Fabric

- Made of Copper+Nickel-plated polyester
- Non-elastic

Adafruit Knit Jersey Conductive Fabric

- 63% cotton, 35% silver yarn and 2% spandex
- Elastic but with low resistance value

Adafruit Conductive Rubber Sheet

- Made of carbon-black impregnated rubber material
- Take long time to recover after stretched
- Not durable enough

Adafruit Conductive Rubber Cord

- Made of carbon-black impregnated rubber material
- Resistances rise fast when slightly stretched

Length-Resistance Model of Rubber Cord

- Matlab fit with fit type poly23
- Data size: (5 + (2 + 4 + 6 + 8 + 10) * 2) * 10 = 650

Experiments

- Gesture set
- Calibration with gesture
- Calibration with length
- Length-Resistance Model for Calibration
- Random forest classification

Gesture Set

Recognition flow

Calibration with Gesture

Calibration with Length

Length-Resistance Model for Calibration

- Matlab fit with fit type poly23
- Data size: (4 + (1 + 2 + 3 + 4) * 2) * 10 = 240

Random Forest Classification

Dataset:

- Training: (15 + 105) * 2
- Testing: (15 + 35) * 1

sklearn.RandomForestClassifier

Results

- Resistance results
- Recognition results

Resistance Results

Recognition Results

```
calibration with gesture
[0 1 2 3 3 6 6 0 1 2 3 3 5 6 0 1 2 4 4 6 6 0 1 2 3 5 6 6 0 1 2 3 3 6 6]
train: 0.7936507936507936
test: 0.7428571428571429
calibration with length
[0 1 2 3 3 6 6 0 1 2 3 3 5 6 0 1 6 4 4 6 6 0 1 2 3 5 6 6 0 1 2 3 3 6 6]
train: 0.80952380955
test: 0.7142857142857143
calibration with raw data
[6 1 4 2 4 6 6 0 1 6 4 5 5 6 3 1 5 5 5 6 6 3 1 5 5 5 6 5 0 1 5 5 5 5 6]
train: 0.6825396825396826
test: 0.4
```


Discussion

- Certain gestures are hard to recognize
- Decreasing resistance value
- Unstable calibration values between rounds

Conclusions

- Resistance Sensing gesture recognition wristband
 - Using conductive rubber cord to build the wristband
 - Dealing with non-linearity of conductive rubber cord
- Hand gesture recognition wristband
 - Privacy
 - For everyday use
 - Cheap

Q&A

References

- [1] Seong-Og Shin, Donghan Kim, and Yong-Ho Seo "Controlling Mobile Robot Using IMU and EMG Sensor-based Gesture Recognition"
- [2] Wei-Chieh Chung, Wen-Jyi Hwang, Tsung-Ming Tai, De-Rong Huang, and Yun-Jie Jhang "Continuous Finger Gesture Recognition Based on Flex Sensors"
- [3] Hoang Truong, Phuc Nguyen, Qin Lv, Shuo Zhang, Nam Bui, Kaushik Chowdhury, Tam Vu, Ufuk Muncuk, Anh Nguyen, Thang Dinh "CapBand: Battery-free Successive Capacitance Sensing Wristband for Hand Gesture Recognition"