Linear Programming

Chongnan Li 16271221@bjtu.edu.cn

Lecture 3 Geometry of LP

Outline:

1. Terminologies

2.Background Knowledge

3. Graphic Method

4. Fundamental Theorem of LP

Terminologies

Baseline model:

$$\begin{array}{ll}
\min & c^T x \\
\text{(LP)} & \text{s.t.} & Ax = b \\
& x \ge 0
\end{array}$$

• Feasible domain

$$P = \{x \in R^n | Ax = b, x \ge 0\}$$

• Feasible solution

x is a feasible solution if $x \in P$.

Consistency

When $P \neq \phi$, LP is <u>consistent</u>.

Bounded feasible domain

P is bounded if $\exists M > 0$ such that $||x|| \le M$, $\forall x \in P$. In this case, we say "LP has bounded feasible domain."

Bounded LP

LP is bounded if $\exists M \in R$ such that $c^T x \ge M$, $\forall x \in P$.

Bounded feasible domain \Rightarrow Bounded LP. ($\sqrt{\ }$)

(Explanation: the objective function is a linear function which is continuous, thus the objective value must be bounded!)

Bounded LP. \Rightarrow Bounded feasible domain(\times , not necessarily correct!) Counter-example:

min
$$\mathbf{0}^T x \ (\equiv \mathbf{0})$$

s.t. $\mathbf{0}x = \mathbf{0}$ Its feasible domain is R_+^n , which is a cone and not bounded!
 $x \geq \mathbf{0}$

Optimal solution

$$x^*$$
 is an optimal solution if $x^* \in P$ and $c^T x^* = \min_{x \in P} c^T x$.

Optimal solution set

$$P^* = \{x^* | x^* \text{ is optimal}\}$$

• We say x^* solves LP, if $x^* \in P$.

Background knowledge

Each equality constraint in the standard form LP is a "hyperplane" in the solution space.

• Definition:

For a vector $\mathbf{a} \in \mathbb{R}^n$, $\mathbf{a} \neq \mathbf{0}$, and a scalar $\beta \in \mathbb{R}$, define

$$H = \{ x \in R^n | a^T x = \beta \}.$$

$$\begin{aligned} H_U &= \{ \boldsymbol{x} \in R^n | \boldsymbol{a}^T \boldsymbol{x} \geq \beta \} \\ H_U^i &= H_U - H = \{ \boldsymbol{x} \in R^n | \boldsymbol{a}^T \boldsymbol{x} > \beta \} \\ H_L &= \{ \boldsymbol{x} \in R^n | \boldsymbol{a}^T \boldsymbol{x} \leq \beta \} \quad \text{closed half space} \\ H_L^i &= \{ \boldsymbol{x} \in R^n | \boldsymbol{a}^T \boldsymbol{x} < \beta \} \quad \text{open half space} \end{aligned}$$

Properties of hyperplanes

Property 1: The normal vector \boldsymbol{a} is orthogonal to all vectors in the hyperplane H.

Property 2: The normal vector is directed toward the upper half space.

Properties of feasible solution set.

Definition: A <u>polyhedral set</u> or <u>polyhedron</u> is a set formed by the intersection of a finite number of closed half spaces. If it is nonempty and bounded, it is a <u>polytope</u>.

Property 3: The feasible domain of a standard LP, namely

$$P = \{x \in R^n | Ax = b, x \geq 0\}$$

is a polyhedral set.

Property 4: If $P \neq \phi$ and $\beta \in R$ such that $P \subset H_L := \{x \in R^n | -c^T x \leq \beta\}$, then $\min_{x \in P} c^T x \geq -\beta$.

(A little abstract, the following figure shows the Property 4 more directly. It also indicates the mechanism of graphic method for solving LP!)

• Definition of convex, affine and cone combination/set

Let $x^1, x^2, \dots, x^p \in R^n$, $\lambda_1, \lambda_2, \dots, \lambda_p \in R$. And $x = \sum_{i=1}^p \lambda_i x^i$. We say x is a linear combination of $\{x^1, x^2, \dots, x^p\}$.

$$\begin{cases} \sum_{i=1}^{p} \lambda_i = 1 & \text{affine combination} \\ \sum_{i=1}^{p} \lambda_i = 1, \lambda_i \geq 0, \ \forall i & \text{convex combination} \\ \lambda_i \geq 0, \ \forall i & \text{conic combination} \end{cases}$$

Set S is an affine set $\iff \forall x_1, x_2 \in S, \ \forall \lambda_1, \lambda_2 \in R, \ \lambda_1 + \lambda_2 = 1,$ we have $\lambda_1 x_1 + \lambda_2 x_2 \in S$.

Set S is a convex set $\iff \forall x_1, x_2 \in S, \lambda_1, \lambda_2 \in [0,1], \lambda_1 + \lambda_2 = 1,$ we have $\lambda_1 x_1 + \lambda_2 x_2 \in S$.

Set S is a cone $\iff \forall x \in S, \forall \lambda \geq 0$, we have $\lambda x \in S$.

• What's the geometric meaning of the feasible domain?

$$P = \{x \in R^n | Ax = b, x \ge 0\}$$

- 1. *P* is a polydedral set. (Not necessarily to be a polytope!)
- 2. *P* is a convex set.
- 3. P is the intersection of m hyperplanes and the cone of the first orthant.
- 4. "Ax = b, $x \ge 0$ " means that the rhs vector b falls in the cone generated by the columns of constraint matrix A. (A brilliant proposition!)

$$\mathbf{A}\mathbf{x} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + x_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix} + \cdots + x_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}$$

$$\mathbf{A}\mathbf{x} = \sum_{j=1}^{n} x_{j} \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix}$$

5. Actually, the set

$$A_c = \{ y \in R^m | y = Ax, x \in R^n, x \ge 0 \}$$

is a convex cone genearted by the columns of matrix A.

• Definition of interior and boundary points

Given a set $S \subset R^n$, a point $x \in S$ is an interior point of S, if $\exists \epsilon > 0$ such that the ball $B = \{y \in R^n | ||x - y|| < \epsilon\} \subset S$. Otherwise, x is a boundary point of S.

We denote that

 $int(S) = \{x \text{ is an interior point of } S\}.$

 $bdry(S) = \{x \text{ is an boundary point of } S\}.$

Separation Theorem of convex sets:

 $S \subset R^n$ is convex, then $\forall x \in \text{bdry}(S)$, \exists a hyperplane H such that: (i) $x \in H$; (ii)either $S \subset H_L$ or $S \subset H_U$. (H is called "supporting hyperplane"!)

Two different ways to comprehend *convex set*.

From inner points' perspective

From boundary points' perspective

• Definition of extreme points:

x is an extreme point of a convex set S, if x cannot be expressed as a convex combination of other points in S. Geometrically, the extreme point corresponds to a vertex.

Obervations

Ax = b has n variables in m linear equations. (m hyperplanes geometrically)

When n > m (generally), we only need to consider m variables in m equations for solving a system of linear equations.(Knowledge from LA, such as Cramer's Rule)

An extreme point of P is obtained by setting n - m variables <u>to be zero</u> and solving the remaining m variables in m equations.

The $\underline{columns}$ of A corresponding to the non-zero(positive) variables better be linear independent.

• Theorem of extreme points(more specific verision of the definition of ep!)

A point $x \in P = \{x \in R^n | Ax = b, x \ge 0\}$ is an extreme point(ep) of $P \iff$

The columns of A corresponding to the positive components of x are linear independent.

Let A be an m by n matrix with $m \le n$, we say A has full rank(full row rank) if A has m linear independent columns.

Definition of basic solution and basic feasible solution:

Arrange

$$x = \begin{pmatrix} x_B \\ x_N \end{pmatrix}, A = (B \mid N)$$

If we set $x_N = 0$ and solve x_B for $Ax = Bx_B = b$, then x is a <u>basic solution(bs)</u>. Furthermore, if $x_B \ge 0$, then x is a <u>basic feasible solution(bfs)</u>.

Matrix A must have full rank, if not, then comes the following two cases: case 1: some constraints are redundant. Remove them and everything is OK. case 2: $P = \phi$.

Some corollaries:

A point x in P is an extreme point of $P \iff x$ is a bfs corresponding to some basis B. The polydedral set P has only a finite number of extreme points.

• An strong property of extreme points(ep are core members to express other points) When $P = \{x \in R^n | Ax = b, x \ge 0\}$ is a nonempty polytope(P is bounded!), then any point in P can be represented as a convex combination of the extreme points of P.

5

PS: this property is very good, but does it still work when P is not bounded? Yes! See <u>Resolution Theorem</u> in the following text.

Extremal direction for unboundedness

Definition: A vector $d(\neq 0) \in R^n$ is an extremal direction of P, if $\{x \in R^n | x = x^0 + \lambda d, \lambda \geq 0\} \subset P, \forall x^0 \in P$.

P is unbounded $\iff P$ has an extremal direction. $d(\neq \mathbf{0})$ is an extremal direction of $P \iff Ad = \mathbf{0}$ and $d > \mathbf{0}$. (A more useful way to judge and find extremal direction!)

• Resolution Theorem:

Let $V = \{v^i \in R^n | i \in I\}$ be a set of all extreme points of P, I is a finite index set, then $\forall x \in P$, we have

$$x = \sum_{i \in I} \lambda_i v^i + d$$

where

$$\sum_{i \in I} \lambda_i = 1, \ \lambda_i \ge 0, \ \forall i \in I \text{ (convex combination of eps plus vector } \boldsymbol{d})$$

and either d = 0 or d is an extremal direction of P.

We can also write $x = \sum_{i \in I} \lambda_i v^i + s d$, for some $s \ge 0$.

• Fundamental Theorem of LP:

For a standard LP, if its feasible domain P is nonempty, then the optimal objective value of $z = c^T x$ over P is either unbounded below, or it is attained at(at least) an extreme point of LP.

(Skip the proof.)