Addition and Subtraction

Philipp Koehn

4 September 2019

addition

• Let's start simple: Adding two 1-Bit numbers

• Let's start simple: Adding two 1-Bit numbers

• Let's start simple: Adding two 1-Bit numbers

• Let's start simple: Adding two 1-Bit numbers

Α	В	A+B
0	0	0
0	1	1
1	0	1

• Let's start simple: Adding two 1-Bit numbers

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	10

• Truth table for "position 0" bit

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	0

• Truth table for "position 0" bit

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	$\mid 1 \mid$	0

xor

• Truth table for "position 0" bit

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	0

xor

• Truth table for carry bit

Α	В	A+B carry
0	0	0
0	1	0
1	0	0
1	1	1

• Truth table for "position 0" bit

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	0

xor

• Truth table for carry bit

Α	В	A+B carry
0	0	0
0	1	0
1	0	0
1	1	1

and

Reminder: Basic Gates

• "Position 0" bit

Α	В	OUT0
0	0	0
0	1	1
1	0	1
1	1	0

• "Position 0" bit

Α	В	OUT0	
0	0	0	
0	1	1	xor
1	0	1	
1	1	0	

• "Position 0" bit

Α	В	OUT0
0	0	0
0	1	1
1	0	1
1	1	0

xor

• Carry bit

Α	В	OUTC
0	0	0
0	1	0
1	0	0
1	1	1

• "Position 0" bit

Α	В	OUT0
0	0	0
0	1	1
1	0	1
1	1	0

xor

• Carry bit

Α	В	OUTC
0	0	0
0	1	0
1	0	0
1	1	

and

Putting them Together

11

+11

1+1 = 0, carry the 1


```
11
+11
---
11
---
10
```

1+1+1 = 1, carry the 1

11

+11

11

110

copy carry bit

Our adder cannot handle carry as input yet

Half 1-Bit Adder

Building a 1-Bit Full Adder

Building a 1-Bit Full Adder

Building a 1-Bit Full Adder

11

+11

```
11
+11
---
1
```

0

11 +11 ---1 ---

11 +11 ---11 ---

and so on

. . .

subtraction

First, a Trick

• Normally, we subtract like this:

```
253
-176
----
11
----
77
```

Computing the Inverse

• Now we use the inverse of the subtrahend

999

-176

823

Subtraction by Addition

• This allows us to carry our subtraction by addition

Subtraction by Addition

• This allows us to carry our subtraction by addition

• Well, with minor corrections

	•			1
() 70 7	$\alpha = m$	1	nrohl	α m
OTT	иш	laı	prob]	Lem
	· • ·		10 - 0 .0 -	

253	11111101
- 176	- 10110000
77	01001101

25	y

Original problem	253	11111101
	- 176	- 10110000
	77	01001101
Inverse of subtrahend	823	01001111

Original problem	253 - 176	11111101 - 10110000
	77	01001101
Inverse of subtrahend	823	01001111
Addition	253 + 823	11111101 + 01001111
	1076	101001100

Original problem	253	11111101
	- 176	- 10110000
	77	01001101
Inverse of subtrahend	823	01001111
Addition	253	11111101
	+ 823	+ 01001111
	1076	101001100
Corrections	+ 1	+ 1
	-1000	-100000000
	77	01001101

Start with N-Bit Adder

Invert Bits of Subtrahend

Add One

Trick: add one as carry in

Invert Overflow --- DONE

unifying addition and subtraction machines

Goal

- Not two machines for addition and subtraction
- ⇒ Combined adder and subtractor
 - Input: A, B, and subtraction flag SUB
 - Output
 - if SUB=0: A+B
 - if SUB=1: A-B

NOT only if SUB

NOT only if SUB

• Truth table

SUB	X	OUT
0	0	0
0	1	1
1	0	1
1	$\mid 1 \mid$	0

NOT only if SUB

• Truth table

SUB	X	OUT
0	0	0
0	1	1
1	0	1
1	1	0

• Looks like XOR

Combined Machine

