Open and Closed Sets

Definition: Ball

Let E be a normed space, $\vec{x} \in E$, and r > 0:

1). $B(\vec{x},r) = \{\vec{y} \in E \mid \|\vec{x} - \vec{y}\| < r \text{ is called an open ball.}$

2). $\overline{B}(\vec{x},r) = \{\vec{y} \in E \mid \|\vec{x} - \vec{y}\| \le r \text{ is called a } \textit{closed ball.}$

3). $S(\vec{x},r) = \{\vec{y} \in E \mid ||\vec{x} - \vec{y}|| = r \text{ is called a } \textit{sphere.}$

In all cases, \vec{x} is called the *center* and r is called the *radius*.

Example

Let $E=R^2$ and let $B_k(0,1)$ be the unit ball for $\|\cdot\|_k$ for $1\leq k\leq\infty$:

Definition: Open

Let E be a normed vector space and $S \subset E$. To say that S is *open* means:

$$\forall \vec{x} \in S, \exists \epsilon > 0, B(\vec{x}, \epsilon) \subset S$$

To say that S is closed means $E \setminus S$ is open.

To say that S is ${\it clopen}$ means it is both open and closed.

Theorem

Let E be a non-trivial normed vector space:

- 1). The union of any collection of open subsets of E is open.
- 2). The empty set and E are clopen.
- 3). The intersection of a finite number of open subsets of E is open.
- 4). The union of a finite number of closed subsets of E is closed.
- 5). The intersection of any collection of closed subsets of E is closed.

Proof

1). Assume $\{U_i \mid i \in I\}$ is a collection of open subsets of E and let $U = \bigcup U_i$.

Assume $\vec{x} \in U$.

 $\exists i \in I, \vec{x} \in U_i$

But U_i is open, so $\exists \epsilon > 0, B(\vec{x}, \epsilon) \subset U_i \subset U$.

Thus $B(\vec{x}, \epsilon) \subset U$.

Therefore, U is open.

- 2). By definition, the empty set is vacuously open, and since $E \setminus \emptyset = E$, E is closed by definition. Conversely, since E is the union of all possible open subsets of E, E must also be open. And since $\emptyset = E \setminus E, \emptyset$ must also be closed. Therefore, \emptyset and E are clopen.
- 3). Proof by induction on the number of open sets n.

Base case: n=2

Assume $U, V \subset E$ are open sets and let $W = U \cap V$.

If $W = \emptyset$ then W is open, so AWLOG that $W \neq \emptyset$.

Assume $\vec{x} \in W$.

 $\vec{x} \in U$ and $\vec{x} \in V$.

But U and V are open, so $\exists \epsilon_u, \epsilon_v > 0$ such that $B(\vec{x}, \epsilon_u) \subset U$ and $B(\vec{x}, \epsilon_v) \subset V$.

Let $\epsilon = \min\{\epsilon_u, \epsilon_b\}$.

 $B(\vec{x}, \epsilon) \subseteq B(\vec{x}, \epsilon_u) \subset U$ and $B(\vec{x}, \epsilon) \subseteq B(\vec{x}, \epsilon_v) \subset V$.

And so $B(\vec{x}, \epsilon) \subset U \cap V = W$.

Therefore, $W = U \cap V$ is open.

Assume that an intersection of n open subsets of E is open.

Assume U_1, \ldots, U_{n+1} are n+1 open subsets of E.

Let
$$U = \bigcap_{k=1}^{n+1} U_k = \left(\bigcap_{k=1}^n U_k\right) \cap U_{n+1}.$$

But by the inductive assumption, $\bigcap_{k=1}^n U_k$ is an open set.

Therefore, by the base case, U is an open set.

4). Assume V_1, V_2, \dots, V_n is a finite number of closed subsets of E.

Let
$$V = \bigcup_{k=1}^{n} V_k$$

Let
$$V=\bigcup_{k=1}^n V_k$$
.
By DeMorgan: $\overline{V}=\overline{\bigcup_{k=1}^n V_k}=\bigcap_{k=1}^n \overline{V_k}$.
But V_k is closed, so $\overline{V_k}$ is open.

And so \overline{V} is an intersection of a finite number of open subsets of E and is thus open.

Therefore
$$V = \bigcup_{k=1}^{n} V_k$$
 is closed.

5). Assume $\{V_i \mid i \in I\}$ is a collection of closed subsets of E.

Let
$$V = \bigcap_{i \in I}^n V_i$$
.

By DeMorgan:
$$\overline{V} = \bigcap_{i \in I} \overline{V_i} = \bigcup_{i \in I} \overline{V_i}.$$

But V_i is closed, so $\overline{V_i}$ is open.

And so \overline{V} is a union of a collection of open subsets of E and is thus open.

Therefore
$$V = \bigcap_{i \in I} V_i$$
 is closed.

Examples

Let
$$U_n = (-\frac{1}{n}, \frac{1}{n}).$$

$$\bigcap_{n=1}^{\infty} U_n = \{0\}, \text{ which is closed.}$$

Therefore, an intersection of an infinite collection of open sets is not necessarily open.

Let
$$V_n = [-1 + \frac{1}{n}, 1 - \frac{1}{n}].$$

$$\bigcup_{n=0}^{\infty} V_n = (-1,1)$$
, which is open.

Therefore, a union of an infinite collection of closed sets is not necessarily closed.

Theorem

Let E be a normed space and let $S \subseteq E$:

$$S \text{ is closed} \iff \forall \left(\vec{x}_{n} \right) \text{ in } S, \vec{x}_{n} \to \vec{x} \implies \vec{x} \in S$$

Thus, S contains all of its limit points.

Proof

 \implies Assume S is closed.

Assume (\vec{x}_n) is in S and $\vec{x}_n \to \vec{x}$.

ABC: $\vec{x} \notin S$.

Since S is closed, $E \setminus S$ is open.

So, $\exists \epsilon > 0$ such that $B(\vec{x}, \epsilon) \in E \setminus S$.

And so $\forall n \in \mathbb{N}, \|\vec{x}_n - \vec{x}\| > \epsilon$.

But, by assumption, $\vec{x}_n \to \vec{x}$ and so $\|\vec{x}_n - \vec{x}\| < \epsilon$ for n sufficiently large.

CONTRADICTION!

Therefore, $\vec{x} \in S$.

 \longleftarrow Assume S contains all of its limit points.

 $\mathsf{ABC} \mathpunct{:} S \mathsf{ is open}.$

Thus, $E \setminus S$ is closed, and so $\exists \vec{x} \in E \setminus S$ such that $\forall \epsilon > 0, B(\vec{x}, \epsilon) \cap S \neq \emptyset$.

Construct a sequence $(\vec{x}_n) \in S$ such that $\vec{x}_n \in B(\vec{x}, \frac{1}{n})$. Clearly, $\vec{x}_n \to \vec{x} \notin S$, so \vec{x} is a limit point for S that is not in S.

CONTRADICTION!

Therefore, S is closed.