Probabilistic Graphical Models

Atif Khan

October 21, 2012

Bayesian Networks

Tree Structure CPDs

Table CPDs are problematic when there are many many parents for a conditional variable. Tree structure CPDs can handle a large set of parents given that there is certain <u>context</u> provided.

We start from the root and traverse the branches. Each branch represents a CPD for a given set of conditions. For example if a student does not apply for a job ($A = a^0$), then the probability of the student getting a job ($J = j^1$) is

- $P(j^1|A, S, L) = 0.2$
- the probability is independent of *S*, *L*

Independence of Causal Influence

Tree CPS (§- ??) are good for adding context with many parents. But when the number of the parents is quite large and most of the parents contribute (see Figure ??), then the Tree CPD is not a good representation. For example, *Cough* can be caused by an array of diseases. We utilize a noisy OR CPD for this purpose.

Noisy OR CPD

For each parent variable X, we introduce an intermediate variable Z (filter). Z represents the event of a parent X being true, causing Y to be true by itself. Ultimately Y is true if any Z succeeded in making it true. Therefore, Y is a deterministic OR based of its parents Z.

$$P(Z_0 = 1) = \lambda_0$$
 Leak

$$P(Z_i = 1|X_i) = \left\{ egin{array}{ll} 0 & X_i = 0 \ \lambda_i & X_i = 1 \end{array}
ight. Penetrance$$

Now consider, what is the probability that Y = 0 given all the parents X:

$$P(Y = 0|X_1, X_2..., X_k) = (1 - \lambda_0) \prod_{i:X_i=1} (1 - \lambda_i)$$

Figure 1: A simple CPD with four parents

Figure 2: Tree based CPD for Figure ??

Figure 3: Multiple parents contributing towards a single variable. This does not lead it self into a Tree CPD.

Figure 4: Noisy OR CPD *Penetrance* defines how good is X_i in turning Z_i , where as *Leak* defines Y turning on by itself.

where, $\prod_{i \in X} (1 - \lambda_i)$ represents the parents that are on.

For the probability that Y = 1, we have

$$P(Y = 1|X_1, X_2..., X_k) = 1 - P(Y = 0|X_1, X_2..., X_k)$$

GENERALIZATION OF THE NOISY OR CPD: Figure ?? represents the generalization of the noisy OR CPD. The variable Z is a deterministic variable that can represent different functions such as and AND operation, MAX operation etc.

Sigmoid CPD

Given
$$Z = w_0 + \sum_{i=1}^k w_i X_i$$
, where $Z_i = w_i X_i$., a sigmoid CPD is

$$P(y^1|X_1, X_2, \dots, X_k) = sigmoid(Z)$$

Where $sigmoid(z) = \frac{e^z}{1+e^z}$, z is a continuous variable. The result of the *sigmoid* function is to reduce the value of z to [0,1].

Continuous Variables

Imagine that the temperature is a continuous variable and the sensor provides an approximation of the temperature. That is *sensor S* is a normal distribution defined using linear Gaussian as:

$$S \sim \mathcal{N}(T; \sigma_s^2)$$

No imagine that the temperature soon Temperature' depends on current temperature, outside temperature and the conditionally on the door being opened or closed (as shown in Figure ??). We have the following conditional linear Gaussian distributions:

$$T' \sim \mathcal{N}(\alpha_0 T + (1 - \alpha_0)O; \sigma_{0T}^2)$$
 when D^0
 $T' \sim \mathcal{N}(\alpha_1 T + (1 - \alpha_1)O; \sigma_{1T}^2)$ when D^1

Linear Gaussian

For the given graph in Figure ??, we have a variable *Y* with parents X, then we have a *linear Gaussian* defined as follows:

$$Y \sim \mathcal{N}(w_0 + \sum w_i X_i; \sigma^2)$$

where, the mean of the Gaussian distribution $(w_0 + \sum w_i X_i)$ is a linear function (of the parents X_i , and the variance σ^2 does not depend on the parents.

Figure 5: Generalization of the noisy

Figure 6: Example of continuous variables

Figure 7: Example of continuous variables with condition

Figure 8: Model for linear Gaussian.

X1 X2 ... Xk

We can now define a *conditional linear Gaussian* (see Figure $\ref{eq:conditional}$) with a discrete parent variable A as follows:

 $Y \sim \mathcal{N}(w_{a0} + \sum w_i X_i; \sigma_a^2)$

Conditional Linear Gaussian

Note that the variance σ_a^2 depends on the discrete parent A but not X.

Figure 9: Model for conditional linear Gaussian. Variable A is a discrete parent. There can be more than one discrete parents.

Undirected Graphical Models

Factors

The characteristics of factors are defined as follows:

- Factors can not be directed in an undirected graphical model.
- Factors subsumes both joint distribution and conditional probability distribution.
- A joint distribution over *D* is a factor over *D*. It specifies a real number for every assignment of values of *D*.
- A conditional distribution P(X|U) is a factor over $\{X\} \cup U$.
- There are no constraints on a parameters in a factor.
- A factor represents *compatibility/affinity* between the joining nodes.
- A factor is only one contribution to the overall joint distribution.

Example: Consider a fully connected graph over \mathcal{X} . Let all the variables be binary. The we have:

- Each factor over an edge will have four parameters.
- total number of parameters in the graph would be $4\binom{n}{2}$.

Note The number of parameters required to specify a joint distribution over *n* binary variables is $2^n - 1$. The number of parameters available in an undirected graph is $4\binom{n}{2}$.

$$4\binom{n}{2} <<< 2^n - 1$$

Therefore, pairwise factors do not have enough parameters to completely cover the joint distribution space. A more general representation can be obtained by allowing factors over an arbitrary subsets of variables.

Factor Product

Let *X*, *Y*, and *Z* be three disjoint variable sets and let $\phi_1(X,Y)$ and $\phi_2(Y, Z)$ be two factors. Then we define factor product $\psi = \phi_1 \times \phi_2$, where $\psi : Val(X, Y, Z) \rightarrow \mathbb{R}. \ \psi(X, Y, Z) = \phi_1(X, Y) \cdot \phi_2(Y, Z).$ Note that the two factors are multiplied in a way that matches up the common part Y.

for example, in a joint distribution, the numbers must add up to 1.

In a fully connected graph, there are no conditional independence.

Example Let $\phi_1(A, B)$ and $\phi_2(B, C)$ be defined as follows:

$$\begin{bmatrix} a^1 & b^1 & 0.5 \\ a^1 & b^2 & 0.8 \\ a^2 & b^1 & 0.1 \\ a^3 & b^1 & 0.3 \\ a^3 & b^2 & 0.9 \end{bmatrix} \cdot \begin{bmatrix} b^1 & c^1 & 0.5 \\ b^1 & c^2 & 0.7 \\ b^2 & c^1 & 0.1 \\ b^2 & c^2 & 0.2 \end{bmatrix} = \begin{bmatrix} a^1 & b^1 & c^1 & 0.5 \cdot 0.5 = 0.25 \\ a^1 & b^1 & c^2 & 0.5 \cdot 0.7 = 0.35 \\ a^1 & b^2 & c^1 & 0.8 \cdot 0.1 = 0.08 \\ a^1 & b^2 & c^2 & 0.8 \cdot 0.2 = 0.16 \\ a^2 & b^1 & c^1 & 0.05 \\ a^2 & b^1 & c^2 & 0.07 \\ a^2 & b^2 & c^1 & 0 \\ a^3 & b^1 & c^2 & 0.21 \\ a^3 & b^2 & c^1 & 0.09 \\ a^3 & b^2 & c^2 & 0.18 \end{bmatrix}$$

Gibbs Distribution

General notion of factors product to define an undirected parametrization of a distribution.

Definition A distribution P_{ϕ} is a Gibbs distribution, parametrized by a set of factors $\phi = \{\phi_1(D_1), \dots, \phi_k(D_k)\}$, if it is defined as follows:

$$P_{\phi}(X_1,\ldots,X_n)=\frac{1}{Z}\tilde{P}(X_1,\ldots,X_n)$$

where

$$\tilde{P}(X_1,\ldots,X_n)=\phi_1(D_1)\times\phi_2(D_2)\times\ldots\times\phi_k(D_k)$$

and

$$Z = \sum_{X_1,...,X_k} \tilde{P}(X_1,...,X_n) = \text{partition function}$$

To map Gibbs distribution to a graph we inspect the scope of the factors contained in the parametrization. For example if the scope contain both X and Y, then we will introduce an edge between X and Y nodes.

Markov network factorization We say that a distribution P_{ϕ} with $\phi = {\phi_1(D_1), \dots, \phi_k(D_K)}$ factorizes over a markov network \mathcal{H} if each $D_k(k = 1, ..., K)$ is a complete sub-graph of \mathcal{H} .

Clique potentials The factors that parametrize a Markov network are often called clique potentials. Note that

• Every complete sub-graph is a subset of some (maximal) clique. Therefore, we can reduce the number of factors in our parametrization by allowing factors only for maximal cliques. Let C_1, \ldots, C_k be

the cliques in \mathcal{H} , then we can parametrize P using a set of factors $\phi_1(C_1),\ldots,\phi_k(C_l).$

- Any factorization (in terms of complete sub-graph) can be converted into this form simply by assigning each factor to a clique that encompasses its scope.
- Clique potential is then calculated by multiplying all the factors assigned to each clique.

Pairwise Markov Networks

A pairwise Markov network over a graph \mathcal{H} is associated with a set of node potentials $\{\phi(X_i): i=1,\ldots,n\}$ and a set of edge potentials $\{\phi(X_i, X_i) : (X_i, X_i) \in \mathcal{H}\}$. The overall distribution is the normalized product of all of the potentials (both node and edge).

Reduced Markov Networks

Conditioning a distribution on some assignment u to some subset of variablesU.

Let $\phi(Y)$ be a factor, and U = u an assignment for $U \subseteq Y$. We define the reduction of the factor ϕ to the context U = u, denoted by $\phi[U=u]=\phi[u]$, to be a factor over scope Y'=Y-U such that:

$$\phi[u](y',u) = \phi(y',u)$$

Figure 10: A pairwise Markov network (MRF) structured as a grid. A distribution where all of the factors are over single variables or pair of variables.

Conditioning a distribution corresponds to eliminating a ll entries in the joint distribution that are inconsistent with the event U = u, and renormalizing the remaining entries to sum to one.