THE SINGULAR VALUE DECOMPOSITION

- The SVD existence properties.
- Pseudo-inverses and the SVD
- Use of SVD for least-squares problems
- Applications of the SVD
- Text: mainly sect. 2.4

The Singular Value Decomposition (SVD)

Theorem For any matrix $A\in\mathbb{R}^{m imes n}$ there exist unitary matrices $U\in\mathbb{R}^{m imes m}$ and $V\in\mathbb{R}^{n imes n}$ such that

$$A = U \Sigma V^T$$

where Σ is a diagonal matrix with entries $\sigma_{ii} \geq 0$.

$$\sigma_{11} \geq \sigma_{22} \geq \cdots \sigma_{pp} \geq 0$$
 with $p = \min(n,m)$

- ightharpoonup The σ_{ii} are the singular values of A.
- $ightharpoonup \sigma_{ii}$ is denoted simply by σ_i

Proof: Let $\sigma_1=\|A\|_2=\max_{x,\|x\|_2=1}\|Ax\|_2$. There exists a pair of unit vectors v_1,u_1 such that

$$Av_1 = \sigma_1 u_1$$

ightharpoonup Complete v_1 into an orthonormal basis of \mathbb{R}^n

$$V \equiv [v_1, V_2] = n imes n$$
 unitary

Complete u_1 into an orthonormal basis of \mathbb{R}^m

$$U \equiv [u_1, U_2] = m imes m$$
 unitary

➤ Then, it is easy to show that

$$egin{aligned} oldsymbol{AV} = oldsymbol{U} imes egin{pmatrix} oldsymbol{\sigma}_1 & oldsymbol{w}^T \ 0 & oldsymbol{B} \end{pmatrix} &
ightarrow oldsymbol{U}^T oldsymbol{AV} = egin{pmatrix} oldsymbol{\sigma}_1 & oldsymbol{w}^T \ 0 & oldsymbol{B} \end{pmatrix} \equiv oldsymbol{A}_1 \end{aligned}$$

Observe that

$$\left\|A_1 \left(egin{array}{c} \sigma_1 \ w \end{array}
ight)
ight\|_2 \geq \sigma_1^2 + \|w\|^2 = \sqrt{\sigma_1^2 + \|w\|^2} \left\| \left(egin{array}{c} \sigma_1 \ w \end{array}
ight)
ight\|_2$$

- ➤ This shows that w must be zero [why?]
- Complete the proof by an induction argument.

Case 1:

A

=

U

 \boldsymbol{v}^{T}

Case 2:

A

=

U

 $\boldsymbol{V}^{\boldsymbol{T}}$

The "thin" SVD

➤ Consider the Case-1. It can be rewritten as

$$A = \left[U_1 U_2
ight] \left(egin{array}{c} \Sigma_1 \ 0 \end{array}
ight) \; V^T$$

Which gives:

$$A=U_1\Sigma_1\;V^T$$

where U_1 is m imes n (same shape as A), and Σ_1 and V are n imes n

- > referred to as the "thin" SVD. Important in practice.
- ightharpoonup How can you obtain the thin SVD from the QR factorization of <math>A and the SVD of an $n \times n$ matrix?

A few properties. | Assume that

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$
 and $\sigma_{r+1} = \cdots = \sigma_p = 0$

Then:

- rank(A) = r = number of nonzero singular values.
- $\operatorname{Ran}(A) = \operatorname{span}\{u_1, u_2, \dots, u_r\}$
- $Null(A) = span\{v_{r+1}, v_{r+2}, \dots, v_n\}$
- ullet The matrix $oldsymbol{A}$ admits the SVD expansion:

$$A = \sum_{i=1}^r \sigma_i u_i v_i^T$$

Properties of the SVD (continued)

- $||A||_2 = \sigma_1 =$ largest singular value
- ullet $\|A\|_F = \left(\sum_{i=1}^r \sigma_i^2
 ight)^{1/2}$
- When A is an $n \times n$ nonsingular matrix then $\|A^{-1}\|_2 = 1/\sigma_n = \text{inverse of smallest s.v.}$

Let k < r and

$$A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$$

then

$$\min_{rank(B)=k} \|A-B\|_2 = \|A-A_k\|_2 = \sigma_{k+1}$$

Right and Left Singular vectors:

$$egin{aligned} Av_i &= oldsymbol{\sigma}_i u_i \ A^T u_j &= oldsymbol{\sigma}_j v_j \end{aligned}$$

- lacksquare Consequence $A^TAv_i=\sigma_i^2v_i$ and $AA^Tu_i=\sigma_i^2u_i$
- ightharpoonup Right singular vectors (v_i 's) are eigenvectors of A^TA
- ightharpoonup Left singular vectors (u_i 's) are eigenvectors of AA^T
- ightharpoonup Possible to get the SVD from eigenvectors of AA^T and A^TA but: difficulties due to non-uniqueness of the SVD

Define the $r \times r$ matrix

$$\Sigma_1 = \mathrm{diag}(\sigma_1, \ldots, \sigma_r)$$

ightharpoonup Let $A \in \mathbb{R}^{m \times n}$ and consider $A^T A \ (\in \mathbb{R}^{n \times n})$:

$$A^TA = V\Sigma^T\Sigma V^T
ightarrow A^TA = V \underbrace{\begin{pmatrix} \Sigma_1^2 & 0 \ 0 & 0 \end{pmatrix}}_{n imes n} V^T$$

▶ This gives the spectral decomposition of A^TA .

ightharpoonup Similarly, U gives the eigenvectors of AA^T .

$$AA^T = U \ \underbrace{ egin{pmatrix} \Sigma_1^2 & 0 \ 0 & 0 \end{pmatrix}}_{m imes m} U^T$$

Important:

 $A^TA = VD_1V^T$ and $AA^T = UD_2U^T$ give the SVD factors U,V up to signs!

Pseudo-inverse of an arbitrary matrix

The pseudo-inverse of A is given by

$$A^\dagger = V egin{pmatrix} \Sigma_1^{-1} & 0 \ 0 & 0 \end{pmatrix} U^T = \sum_{i=1}^r rac{v_i u_i^T}{\sigma_i}$$

Moore-Penrose conditions:

The pseudo inverse of a matrix is uniquely determined by these four conditions:

$$(1) \ AXA = A$$

$$(2) XAX = X$$

(1)
$$AXA = A$$
 (2) $XAX = X$ (3) $(AX)^H = AX$ (4) $(XA)^H = XA$

(4)
$$(XA)^H = XA$$

 \blacktriangleright In the full-rank overdetermined case, $A^{\dagger}=(A^TA)^{-1}A^T$

Least-squares problems and the SVD

➤ SVD can give much information about solving overdetermined and underdetermined linear systems.

Let A be an m imes n matrix and $A = U\Sigma V^T$ its SVD with $r = \mathrm{rank}(A)$, $V = [v_1, \ldots, v_n]$ $U = [u_1, \ldots, u_m]$. Then $x_{LS} = \sum_{i=1}^r \frac{u_i^T b}{\sigma_i} \ v_i$

minimizes $||b-Ax||_2$ and has the smallest 2-norm among all possible minimizers. In addition,

$$ho_{LS} \equiv \|b - Ax_{LS}\|_2 = \|z\|_2$$
 with $z = [u_{r+1}, \ldots, u_m]^T b$

Least-squares problems and pseudo-inverses

▶ A restatement of the first part of the previous result:

Consider the general linear least-squares problem

$$\min_{x \in S} \|x\|_2, \quad S = \{x \in \ \mathbb{R}^n \mid \|b - Ax\|_2 \min\}.$$

This problem always has a unique solution given by

$$x=A^\dagger b$$

Consider the matrix:

$$A = \left(egin{array}{cccc} 1 & 0 & 2 & 0 \ 0 & 0 & -2 & 1 \end{array}
ight)$$

- ullet Compute the singular value decomposition of A
- Find the matrix B of rank 1 which is the closest to the above matrix in the 2-norm sense.
- What is the pseudo-inverse of A?
- What is the pseudo-inverse of B?
- ullet Find the vector x of smallest norm which minimizes $\|b-Ax\|_2$ with $b=(1,1)^T$
- ullet Find the vector x of smallest norm which minimizes $\|b-Bx\|_2$ with $b=(1,1)^T$

Ill-conditioned systems and the SVD

- lacksquare Let A be m imes m and $A = U \Sigma V^T$ its SVD
- lacksquare Solution of Ax=b is $x=A^{-1}b=\sum_{i=1}^m rac{u_i^Tb}{\sigma_i}\;v_i$
- ▶ When A is very ill-conditioned, it has many small singular values. The division by these small σ_i 's will amplify any noise in the data. If $\tilde{b}=b+\epsilon$ then

$$A^{-1} ilde{b} = \sum_{i=1}^m rac{u_i^T b}{\sigma_i} \; v_i + \sum_{i=1}^m rac{u_i^T \epsilon}{\sigma_i} \; v_i$$

Result: solution could be completely meaningless.

Remedy: | SVD regularization

Truncate the SVD by only keeping the $\sigma_i's$ that $\geq \tau$, where τ is a threshold

➤ Gives the Truncated SVD solution (TSVD solution:)

$$x_{TSVD} = \sum_{oldsymbol{\sigma}_i \geq au} \; rac{oldsymbol{u}_i^T b}{oldsymbol{\sigma}_i} \; v_i$$

➤ Many applications [e.g., Image processing,..]

Numerical rank and the SVD

- ightharpoonup Assume that the original matrix A is exactly of rank k.
- The computed SVD of A will be the SVD of a nearby matrix A+E.
- **Easy to show that** $|\hat{\sigma}_i \sigma_i| \leq \alpha \sigma_1 \underline{\mathbf{u}}$
- ➤ Result: zero singular values will yield small computed singular values
- ▶ Determining the "numerical rank:" treat singular values below a certain threshold δ as zero.
- \blacktriangleright Practical problem : need to set δ .