

kaggle

Project Outline

 Brick-and-mortar grocery stores are always in a delicate dance with purchasing and sales forecasting.

 Corporación Favorita is a large Ecuadorian-based grocery retailer that operate hundreds of supermarkets, with over 200,000 different products on their shelves.

 Corporación Favorita has challenged the Kaggle community to build a model that more accurately forecasts product sales.

Data Complexity...

- Training Set (4.88 GB) About 125 million rows
- Lots of categorical errors which will yield LOTS of dummies (ie, 4096 items)
- Leveraged cloud computing for data wrangling
- 10% sample for models

"Here's a list of 100,000 warehouses full of data. I'd like you to condense them down to one meaningful warehouse."

Data Explained

Oil.csv

date oil_price

Project Goals

- Identify key factors
- Select an appropriate model minimizing loss metric
 - Loss metric: Normalized Weighted Root Mean Squared Logarithmic Error

$$NWRMSLE = \sqrt{\frac{\sum_{i=1}^{n} w_i (\ln(\hat{y_i} + 1) - \ln(\hat{y_i} + 1))^2}{\sum_{i=1}^{n} w_i}}$$

 Optimize inventory of individual products at each location to maximize profit

Exploratory Data Analysis

Economic Influences

Corporacion Favorita in Ecuador

Oil's impact on the Ecuadorian economy

Stores and Products

Do store clusters provide transaction information?

Stores and SKUs

Transactional Trends

Transactional Contents

Transactions by Group/Item (Log scale)

CORPORACIÓN FAVORITA

Feature Selection and Engineering

- Separated Full Date into day, month and year
- Dropped Store ID and Cluster focused on store type (which grouped similar stores together)
- Holiday Importance
- Store Transactions Created daily transactions per store

Model Fitting

Kaggle Scoring System

Normalized Weighted Root Mean Squared Logarithmic Error

$$NWRMSLE = \sqrt{\frac{\sum_{i=1}^{n} w_i (\ln(y_i^2 + 1) - \ln(y_i + 1))^2}{\sum_{i=1}^{n} w_i}}$$

For reference, the naive forecast = 0.911 (Kaggle's benchmark score)

PCA

- Implemented to determine importance of variables
- Ultimately showed no potential
 - Limited variance explained even at high dimensions of PC's

Variance Explained with Dimension Addition in PCA

Feature Reduction – LASSO

Effect of factorization categorical variables

Best lambda value: No (regular linear regres

Experimental Results – Multilayered Perceptron

- Parameters
 - hidden layers
 - activation function
 - learn rate
 - batch size

Hidden Layers	Activation Function	Learning Rate	Batch Size	Score
2	tanh	0.005	500	0.916
4	relu	adaptive	200	0.903
5	relu	adaptive	1000	0.909

• Error Metric = 0.903

Experimental Results – Gradient Boosted Machine

- Parameters
 - number of trees
 - max depth
 - learn rate
 - min rows
- Predictors
 - 5 predictor variable subsets
- Error Metric = 0.881

# trees		max depth	learn rate	min_row	S	nwrmsle
	5	5	0.	1 1	0	0.906
	5	5	0.	2 1	0	0.881
	5	15	0.	2	2	0.882
	5	20	0.	2	2	0.883
	5	5	0.	2	5	0.933

Experimental Results – XG Boost

- Number of Trees had a significant impact as did learn rate and max depth
- Time fitting was excessive for computing resources
- Error Metric = 0.793

Experimental Results – Random Forest

- Output our Best Score
- Number of Trees did not impact much - depth was more important
- Again, time fitting was high for computing resources

Error Metric = 0.728

Discussion of Models

Method	Scoring Metric (NWRMSLE)
Naive Forecast	0.911
MLP Regressor	0.903
GBM	0.881
XGBoost	0.793
Random Forest	0.728

Mean Item Sales Forecast	0.726

Modified Approach

- Came to the realization that our models were overwhelmed by the training set's size and complexity
 - Item Number was #1 on variable importance plots
- Models needed to focus on a more granular level

Revised Experimental Results

Random Forest

50 Trees

Max Depth of 10

Error Metric = 0.542

XGBoost

100 Estimators Max Depth of 15 Learn Rate is 0.1

Error Metric = 0.639**

Revised Experimental Results

GBM

0.1 Learning RateMax Depth of 2540 Estimators

Error Metric = 0.542

MLP

2 hidden layers tanh activation function learning rate of 0.005

Error Metric = 0.831

Method	Initial Approach Score	Revised Approach Score	With Log Sales
Naive Forecast	0.911		
Mean Item Sales Forecast	0.726		
Random Forest	0.728	0.542	0.513
XGBoost	0.793	0.553	n/a
GBM	0.881	0.542	0.507
MLP Regressor	0.903	0.831	0.795
Tree-Based Ensemble	n/a	n/a	0.511

Revised Experimental Results

- Computational efficiency of revised approach
- What's next for our models?
 - By Store
 - Log Sales
 - Incorporate effects of oil

Key Takeaways

Business Value

- Why are we solving this problem?
 - Perishables
 - Struggling growing economy
 - Profitability

Next Steps

- Account further for the weight of perishable items due to a more limited shelf life
- Incorporate oil forecast to determine prediction impact
- Complexity and overfitting is still a challenge that we must account for

Any Questions?

Appendix

Set 1: onpromotion, year, month, day, quarter, type, cluster, item_nbr, family, class, perishable, store_nbr, transactions, holiday, day_of_week

Set 2: on promotion, year, month, store_nbr, transactions, holiday, day_of_week, avg. unit sales

Set 3: keep onpromotion, year, month, holiday, day_of_week, avg. unit sales

Set 4: keep onpromotion, year, holiday, day_of_week, avg. unit sales

Set 5: all basic predictors+average, using log(sales+1)

