1. If f_n and g_n are sequences of continuous functions converging uniformly to f and g respectively, prove that $f_n g_n$ converges uniformly to fg.

First we note that functions like $f_n(x) = g_n(x) = x + \frac{1}{n}$ are problematic. I only have "continuous" added to the homework problem, but I am going to assume that these functions have a bounded domain S.

We know that there exists some M such that $\sup f \leq M-1$ and $\sup g \leq M-1$. Now lets choose some $\varepsilon > 0$. Then we can find some $N \in \mathbb{N}$ such that $||f_n - f||_{\infty} < \frac{\varepsilon}{2M}$ and $||g_n - g||_{\infty} < \frac{\varepsilon}{2M}$ and $\sup ||f_n|| \leq M$ and $\sup ||g_n|| \leq M$.

Now then we make the following calculations for all $n \geq N$:

$$||f_n g_n - fg||_{\infty} = ||f_n g_n - fg_n - fg + fg_n||_{\infty}$$

$$= ||g_n (f_n - f) + f(g_n - g)||_{\infty}$$

$$\leq ||g_n||_{\infty} ||f_n - f||_{\infty} + ||f||_{\infty} ||g_n - g||_{\infty}$$

$$< M \frac{\varepsilon}{2M} + M \frac{\varepsilon}{2M} = \varepsilon$$

Well it looks like $\lim_{n\to\infty} ||f_n g_n - fg||_{\infty} = 0$ and so the product is uniformly convergent.

- - (a) Show that $f_{n+1}(x) \ge f_n(x)$ for all $n \ge 1$. First we note that $x \ge 1$ and so $x^x \ge x$. In other words $f_2 \ge f_1$. Next we assume that $x^{f_n} \ge f_n \ge f_1 \ge 1$. It follows then that $x^{x^{f_n}} \ge x^{f_n}$. And so $f_{n+1}(x) \ge f_n(x)$
 - (b) When $L(x) = \lim_{n \to \infty} f_n(x)$ exists, find optimal upper bounds for x and L.

If the limit exists, then raising x to the limit will give us the limit again. That is $L=x^L$. Now we are looking for optimal values, so lets solve and find the derivative:

$$L = x^{L}$$

$$x = L^{1/L}$$

$$\ln x = \ln L^{1/L}$$

$$\frac{\mathrm{d}x}{\mathrm{d}L} \frac{1}{x} = \frac{1}{L^{2}} + \left(-\frac{1}{L^{2}}\right) \ln L$$

$$\frac{\mathrm{d}x}{\mathrm{d}L} = x \frac{1}{L^{2}} (1 - \ln L)$$

$$= \frac{L^{1/L}}{L^{2}} (1 - \ln L)$$

$$0 = L^{1/L - 2}(1 - \ln L)$$

Now because $L \ge f_n \ge f_1 \ge 1$ we know $L^{1/L-2} > 0$ and so $1 - \ln L = 0$ or L = e and $x = e^{1/e}$.

- (c) For these values of x, show by induction that $f_n(x)$ is bounded above by e for all $n \ge 1$.
 - So obviously $e^{1/e} < e$ and so if $x \le e^{1/e}$ then $f_1 < e$. Now then if we assume that $f_n < e$ and $x \le e^{1/e}$ then $f_{n+1} = x^{f_n} < (e^{1/e})^e = e$
- (d) What happens for larger x?

We found that $\frac{\mathrm{d}x}{\mathrm{d}L}=0$ when $x=e^{1/e}$. This means that L(x) goes vertical at this point (it's inverse goes horizontal). And so when $x>e^{1/e}$ then L(x) is not finite and f_n diverges.

References

- 1. http://en.wikipedia.org/wiki/Tetration
- $2. \ https://www.khanacademy.org/math/differential-calculus/taking-derivatives/derivatives-inverse-functions/v/calculus-derivative-of-x-x-x$