Pontifícia Universidade Católica de Minas Gerais (PUC Minas) Rua Walter Ianni, 255 - São Gabriel, Belo Horizonte - MG

Modelos Neurais para a Representação de Variáveis Climáticas

Leandro M. Ferreira, Luís E. Zárate leandromferreira.eng@gmail.com

30 de outubro de 2019

Conteúdo

- 1 Introdução
- 2 Proposta de Trabalho
 - Objetivo
 - Objetivos Específicos
- 3 Redes Neurais
 - Meteorologia
- 4 Metodologia
 - Pré-Processamento da Base de dados
 - Ferramenta
- 5 Resultados
 - Modelos Neurais
- 6 Conclusão

Introdução

Figura: Tipos de climas do Brasil e sua previsibilidade climática sazonal

Fonte: Elaborado pelo autor

Introdução

- ► Dificuldade no planejamento de atividades;
- 552 Estações Climáticas Automáticas e 255 Estações Climáticas Convencionais;
- Ohio tem 295 e Florida tem 596 EM, com 116 mil km² e 170 mil Km² respectivamente [?];
- Redes neurais tem a capacidade de aprender o comportamento climático por localização.

Modelar as regiões climáticas de todo o Brasil para a estimar as principais variáveis climáticas.

- a) Temperatura Mínima e Máxima;
- b) Umidade Relativa Mínima e Máxima;
- c) Precipitação Acumulada Mensal.

- ▶ Coleta e Pré-Processamento de Dados:
- Determinar as médias mensais para as variáveis utilizadas;
- Construção de modelos neurais, um para cada mês do ano;
- Desenvolvimento de uma ferramenta.

Redes Neurais

- Modelos computacionais inspirados na estrutura neural de organismos racionais;
- ▶ Não lineares;
- Processamento paralelo e distribuído
- Capacidade de generalização;
- Baixo custo computacional após serem treinados;
- Obtém conhecimento através de aprendizado;

- Base de dados fornecida pelo INMET com os seguintes dados coletados pelas EMA;
 - a) Temperatura do Ar;
 - b) Umidade Relativa do Ar;
 - c) Pressão Atmosférica do Ar;
 - d) Valores Eólicos:
 - e) Radiação Solar;
 - f) Precipitação Acumulada;
 - g) Temperatura do Ponto de Orvalho.
- Foram unidos todos os arquivos referente a cada estação e separados em meses.

- Primeiramente foi identificado possíveis inconsistências.
 - 1. $Temp_{min} > Temp_{max}$
 - 2. Temp < 0 ou Temp > 45
 - 3. $Temp_{po\ min} > Temp_{po\ max}$
 - 4. UR < 0 ou UR > 100
 - 5. $UR_{min} > UR_{max}$

Figura: Mapa da Temperatura Mínima no Mês de Junho.

Fonte: Elaborado pelo Autor

nα

0.6

0.3

-0.3

-0.6

Figura: Mapa de calor da correlação entre as variáveis.

	Original	Após a Limpeza	Qto Retirados	Qto Medias
Janeiro	3.240.144	2.642.977	597.167	458
Fevereiro	2.975.448	2.364.897	610.551	458
Março	3.289.008	2.643.226	645.782	458
Abril	3.209.232	2.580.326	628.906	461
Maio	3.344.568	2.708.611	635.957	461
Junho	3.279.264	2.665.045	614.219	467
Julho	3.426.504	2.819.525	606.979	467
Agosto	3.457.894	2.860.449	597.445	468
Setembro	3.383.952	2.856.281	527.671	470
Outubro	3.147.984	2.651.813	496.171	458
Novembro	3.079.104	2.576.991	502.113	459
Dezembro	3.219.504	2.694.807	524.697	459

Figura: Diagrama dos Modelos Neurais

Fonte: Elaborado pelo Autor

Desenvolvimento da Ferramenta Metodologia

Figura: Diagrama do Funcionamento da Ferramenta

Fonte: Elaborado pelo Autor

Modelos Neurais Temperatura Resultados

Figura: Regressão da Temperatura Máxima no Mês de Outubro

Modelos Neurais Temperatura Resultados

Figura: Regressão da Temperatura Mínima no Mês de Julho

Modelos Neurais Umidade Relativa Resultados

Figura: Regressão da Umidade Relativa Máxima no Mês de Novembro

Modelos Neurais Umidade Relativa Resultados

Figura: Regressão da Umidade Relativa Mínima no Mês de Março

Figura: Regressão da Precipitação no Mês de Maio

Conclusão

- Os modelos neurais apresentaram resultado satisfatórios para as variáveis de temperatura e umidade relativa do ar;
- Para a precipitação acumulada os resultados demonstraram erros maiores, impossibilitando a confiança nos valores preditos;
- A ferramenta desenvolvida demonstra que podemos utilizar a estrategia implementada para estimar valores em locais não atendidos por estações climáticas.

- Modelos preditivos para as demais variáveis climáticas;
- Adicionadas novas entradas para o melhoramento da predição da precipitação acumulada;
- Utilizar e avaliar outras arquiteturas de rede neurais;
- Desenvolvimento do front-end da aplicação.

