

Pontificia Universidad Católica de Chile Departamento de Estadística Facultad de Matemática

Profesor: Jorge Gonzalez Ayudante: Daniel Acuña León

1. Demuestre que si a es un vector de constantes con la misma dimensión que el vector aleatorio X, entonces

$$E[(\boldsymbol{X} - \boldsymbol{a})(\boldsymbol{X} - \boldsymbol{a})^t] = Var[\boldsymbol{X}] + (E[\boldsymbol{X}] - \boldsymbol{a})(E[\boldsymbol{X}] - \boldsymbol{a})^t$$

Si $Var[X] = \Sigma = (\sigma_{ij})$, deduzca que

$$E[||X - a||^2] = \sum_{i} \sigma_{ii} + ||E[X] - a||^2$$

- 2. Sean X_1, X_2, \ldots, X_n variables aleatorias independientes con varianza común σ^2 . Defina $Y_k = X_1 + X_2 + \ldots + X_k$ para $k = 1, \ldots, k$. Encuentre $Var[\mathbf{Y}]$ para $\mathbf{Y}^t = (Y_1, \ldots, Y_n)$. Encuentre también $Corr[\mathbf{Y}]$.
- 3. Sean

$$Y_1 = \theta + \epsilon_1$$

$$Y_2 = 2\theta - \phi + \epsilon_2$$

$$Y_3 = \theta + 2\phi + \epsilon_3$$

donde $E[\epsilon_i] = 0$. Encuentre los estimadores de mínimos cuadrados de θ y ϕ .

4. Si $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, donde \mathbf{X} es una matriz de dimensión $n \times (k+1)$ con rango k+1 < n, encuentre el valor de $\boldsymbol{\beta}$ que minimiza $\boldsymbol{\epsilon}^t \boldsymbol{\epsilon}$.