The Framework of Quantum Mechanics A C*-Algebraic Approach

Colin Roberts

December 15, 2017

Table of Contents

- Introduction to Algebras
 - Banach Algebras
 - C*-Algebras
- 2 Some Necessary C*-Algebra Theory
 - *-Isomorphisms
 - States
 - Gelfand-Naimark (GN) Theorems
- Applications to Quantum Mechanics
 - The Algebras of Classical Observables
 - The Algebras of Quantum Observables

Algebras

Definition

An algebra \mathcal{A} over a field \mathbb{F} is a vector space \mathcal{A} over \mathbb{F} with an binary operation such that if $\alpha \in \mathbb{F}$ and $A, B \in \mathcal{A}$ then $\alpha(AB) = (\alpha A)B = A(\alpha A)$.

Example

Consider an *n*-dimensional vector space V over any \mathbb{F} . Then the elements in $\mathcal{L}(V)$ form an algebra.

Then $\mathbb C$ is a matrix algebra over $\mathbb R$, and the quaternions $\mathcal Q$ are a matrix algebra over $\mathbb C$.

Banach Algebras

Definition

A Banach algebra is an algebra $\mathcal A$ over $\mathbb F$ that has a norm $\|\cdot\|$ relative to which $\mathcal A$ is a Banach space and such that for all $A,B\in\mathcal A$ we have

$$||AB|| \le ||A|| ||B||.$$

Example

If X is a compact Hausdorff space, then $\mathcal{A}=\mathcal{C}_0(X,\mathbb{C})$ form a Banach algebra if we define multiplication for $f,g\in\mathcal{A}$ by (fg)(x)=f(x)g(x) for $x\in X$. This is a commutative unital algebra.

Banach Algebras

We can safely assume that the algebras we look at are unital by the following.

Proposition

If $\mathcal A$ is a Banach algebra without identity, then $\tilde{\mathcal A}=\mathcal A\times\mathbb F$ with operations

- $\bullet (A, \alpha) + (B + \beta) = (A + B, \alpha + \beta);$
- $\beta(A, \alpha) = (\beta A, \beta \alpha);$
- $(A, \alpha)(B, \beta) = (AB + \alpha B + \beta A, \alpha \beta)$
- $||(A, \alpha)|| = ||A|| + |\alpha|$

give us that \tilde{A} is a Banach algebra with identity (0,1) and $A \mapsto (A,0)$ is an isometric isomorphism (linear bijective isometry) of A into \tilde{A} .

Definition

A *-algebra $\mathcal A$ is an algebra together with an *involution* that for $A,B\in\mathcal A$ and $\lambda\in\mathbb C$, satisfies

- $A^{**} = A$,
- $(A+B)^* = A^* + B^*$ and $(AB)^* = B^*A^*$,
- $\bullet \ (\lambda A)^* = \overline{\lambda} A^*.$

C^* -Algebras

Definition

A C^* -algebra $\mathcal A$ is a Banach algebra over $\mathbb C$ with an involution * so that $\mathcal A$ is also a *-algebra and $\forall a \in \mathcal A$

$$||A^*A|| = ||A|| ||A^*||.$$

The extra requirement is called the C^* -condition, and shows $||AA^*|| = ||A||^2$.

Examples

Example

 $\mathbb C$ itself is a C^* -algebra with * being the complex conjugate.

Example

If H is a Hilbert space, $A = \mathcal{B}(H)$ is a C^* -algebra where * denotes the adjoint.

Table of Contents

- Introduction to Algebras
 - Banach Algebras
 - C*-Algebras
- 2 Some Necessary C*-Algebra Theory
 - *-Isomorphisms
 - States
 - Gelfand-Naimark (GN) Theorems
- 3 Applications to Quantum Mechanics
 - The Algebras of Classical Observables
 - The Algebras of Quantum Observables

*-Isomorphisms

Definition

If $\mathcal A$ and $\mathcal B$ are C^* -algebras, then a bounded linear map $\pi\colon \mathcal A\to \mathcal B$ is a *-homomorphism if

- For $A, B \in \mathcal{A}$, we have $\pi(AB) = \pi(A)\pi(B)$.
- For $A \in \mathcal{A}$, we have $\pi(A^*) = \pi(A)^*$.

For C^* -algebras, any *-homomorphism is bounded with norm ≤ 1 . We also have that injective *-homomorphisms are isometries. A bijective *-homomorphism is a C^* -isomorphism and we say $\mathcal A$ and $\mathcal B$ are isomorphic.

Definition

Let \mathcal{A} be a C^* -algebra. Then a *state* is a positive linear functional $S: \mathcal{A} \to \mathbb{R}$ with norm 1.

Specifically, we will care about the following.

Definition

Let \mathcal{A} be a C^* -algebra of bounded operators on a corresponding Hilbert space H, then the linear functional $S_x \colon \mathcal{A} \to \mathbb{R}$ is given by

$$S_x(A) := \langle Ax, x \rangle$$

for $A \in A$. Note $S_x(1) = ||x||^2$ thus S_x is a state if ||x|| = 1. Specifically S_x is a *vector state*.

GN Theorems

Theorem (GN Theorem for Commutative C^* -Algebras)

A commutative (unital) C^* -algebra \mathcal{A} is isomorphic to the C^* -algebra of bounded continuous functions on a compact Hausdorff space X.

Theorem (GN Theorem for Non-Commutative C^* -Algebras)

An arbitrary C^* -Algebra \mathcal{A} is isomorphic to a C^* -algebra of bounded operators on a Hilbert space H.

Table of Contents

- 1 Introduction to Algebras
 - Banach Algebras
 - C*-Algebras
- Some Necessary C*-Algebra Theory
 - *-Isomorphisms
 - States
 - Gelfand-Naimark (GN) Theorems
- 3 Applications to Quantum Mechanics
 - The Algebras of Classical Observables
 - The Algebras of Quantum Observables

Goal

Now, with some machinery defined (and more to come), we want to relate operator algebras in classical mechanics to those in quantum mechanics.

Goal: Provide a way to realize the axioms for quantum mechanics.

Classically, we think of *phase space* (think position and momentum as coordinates) of a system to be a compact (symplectic) manifold Γ . Then:

Definition (Classical Observables)

The classical observables are the continuous real-valued functions acting on the phase space. Namely, $\mathcal{C}^0(\Gamma,\mathbb{R})$. We will denote all classical observables on Γ as $\mathcal{O}=\mathcal{C}^0(\Gamma,\mathbb{R})$.

Why is it the case that Γ is compact and that the observables are continuous?

First Result

If we let $S = (p, q) \in \Gamma$, $A, B \in \mathcal{O}$, and $\lambda \in \mathbb{R}$, then we define

- (A + B)(S) := A(S) + B(S),
- $\bullet \ (\lambda A)(S) := \lambda A(S),$
- $\bullet \ (AB)(S) := A(S)B(S),$
- $\bullet \ \|A\| \coloneqq \sup\{|A(S)| : \ S \in \Gamma\},\$
- $\bullet \ (A^*)(S) = \overline{A(S)}.$

Notice that A is a real valued function, and thus $\overline{A(S)} = A(S)$. This leads us to believe that elements of \mathcal{O} are self-adjoint.

First Result

What can be stated in the classical case as a theorem will eventually become an axiom for the quantum case. Namely:

Theorem (Properties of Classical Observables)

The set of observables \mathcal{O} of a classical system are the self-adjoint elements of a separable commutative C^* -algebra \mathcal{A} .

Classical States

• It is a result of the Reisz-Markov-Kakutani Representation Theorem that we can write a classical state as a linear functional $S \colon \mathcal{A} \to \mathbb{C}$ by

$$S(A) = \int_{\Gamma} A d\mu_{S}$$

where μ_S is a uniquely defined Borel probability measure.

• We can then think of S(A) as the expected value of the observable A with the particle in the state S.

We can then define variance from this by

$$\Delta_{\mathcal{S}}(A)^2 := \mathcal{S}[(A - \mathcal{S}(A))^2].$$

- Yet we find that for classical states and observables that $\Delta_S(A) = 0$.
- This brings to light that the algebra of observables for quantum systems must not be commutative so that $\Delta_S(P)\Delta_S(Q)\geq \frac{\hbar}{2}.$
- Digression on uncertainty.

- From the earlier theorem for classical systems, we consider just removing commutivity.
- We will see now that this coupled Heisenberg's commutation relation

$$[Q, P] = \alpha \hbar \mathbf{1},$$

with $\alpha\in\mathbb{C}$ and $|\alpha|=1$ forces the Heisenberg uncertainty principle

$$\Delta_{\mathcal{S}}(P)\Delta_{\mathcal{S}}(Q)\geq \frac{\hbar}{2},$$

to hold.

Heisenberg's Uncertainty

Non-Commuting Observables Imply Uncertainty Principle.

Let $A, B \in \mathcal{O}$ and fix a state S. We can assume S(A) = S(B) = 0 since we could take the observables A - S(A) and B - S(B). Then

$$\Delta_{\mathcal{S}}(A)^2\Delta_{\mathcal{S}}(B)^2=S(A^2)S(B^2).$$

Since $(A - i\lambda B)(A + i\lambda B) \ge 0$, $\forall \lambda \in \mathbb{R}$, positivity of *S* implies

$$S(A^2) + |\lambda|^2 S(B^2) + i\lambda S([A, B]) \ge 0,$$

where [A, B] = AB - BA.

Heisenberg's Uncertainty

Continued.

Now, define

$$M = \begin{bmatrix} S(A^2) & \frac{1}{2}S(i[A, B]) \\ \frac{1}{2}S(i[A, B]) & S(B^2) \end{bmatrix} \text{ and } \vec{\alpha} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

and we see that the inequality

$$(A-i\lambda B)(A+i\lambda B)\geq 0$$

becomes

$$\vec{\alpha}^T M \vec{\alpha} \geq 0.$$

This means M is positive semi-definite.

Heisenberg's Uncertainty

Continued.

Hence

$$\det M = S(A^2)S(B^2) - \frac{1}{4}S(i[A, B])^2 \ge 0$$

and thus

$$\Delta_{\mathcal{S}}(A)\Delta_{\mathcal{S}}(B) \geq \frac{1}{2}|\mathcal{S}([A,B])|.$$

We then find that if $[P,Q] = \alpha \hbar \mathbf{1}$ with $\alpha \in \mathbb{C}$ and $|\alpha| = 1$,

$$\Delta_S(P)\Delta_S(Q) \geq \frac{\hbar}{2}$$
.

Conclusions

With what we've shown above, we can conclude the two major axioms for quantum mechanics.

Axiom (Quantum Observables)

The observables of a quantum system are the self adjoint elements of a separable Hilbert space.

Axiom (Quantum States)

The set of states S of a quantum system is the set of all positive linear functionals ψ on A such that $\psi(\mathbf{1})=1$. We think of the functional $\psi(A)$ as $\langle A\psi,\psi\rangle$.

Future

These results start to bleed into other specific areas of research surrounding quantum mechanics. Just to list a few,

- second quantization,
- (local) quantum field theory,
- deformation quantization,
- geometrical quantization.

Main Sources

If you're interested to read more, my main sources were

- The C*-Algebraic Formalism of Quantum Mechanics, Jonathan Gleason,
- An Introduction to the Mathematical Structure of Quantum Mechanics, Franco Strocchi.