INTRODUCTION TO BAYESIAN STATISTICS

CARSON JAMES

Contents

1.	Introduction	1
2.	Sampling	1
2.1.	. Inverse CDF Sampling	1
2.2.	. Conditional Chain Sampling	1
2.3.	. Importance Sampling	2
2.4.	. Rejection Sampling	2

1. Introduction

Definition 1.0.1. We define

$$\mathcal{D}(\mathbb{R}^n) = \{ f \in L^1(\mathbb{R}^d) : f \ge 0 \text{ and } ||f||_1 = 1 \}$$

2. Sampling

2.1. Inverse CDF Sampling.

2.2. Conditional Chain Sampling.

Definition 2.2.1. Let $A \subset \mathbb{R}$ be open, $a = (a_1, \ldots, a_n) \in A$. Define

$$A_1 = \{x_1 \in \mathbb{R} : (x_1, a_2, \dots, a_n) \in A\}$$

Let $f_1 \in \mathcal{D}(A_1)$ and $a'_1 \sim f_1$. For $j \in \{2, \dots, n\}$, define $\tau_j : \mathbb{R} \to \mathbb{R}^n$, A_j , choose f_j and sample a'_j inductively by

$$\tau_j(x) = (a'_1, \dots, a'_{j-1}, x_j, a_{j+1}, \dots, a_n)$$
$$A_j = \tau_j^{-1}(A)$$
$$f_j \in \mathcal{D}(A_j)$$

and

$$a_j' \sim f_j$$

Note that τ_j is continuous which implies that $A_j = \tau_j^{-1}(A)$ is open.

Exercise 2.2.2. Let $A \subset \mathbb{R}$ be open and $a = (a_1, \ldots, a_n) \in A$. Define A_j , f_j and a'_j as above and define $a' \in A$ and $f : A \to \mathbb{R}$ by

$$a' = (a'_1, \dots, a'_n)$$

and

$$f(x_1,\ldots,x_n) = \prod_{j=1}^n f_j(x_j)$$

Then $f \in \mathcal{D}(A)$ and $a' \sim f$.

Proof. Fubini's theorem implies that

$$\int_{A} f dm^{n} = \int_{A} f_{1}(x_{1}) \left(\int_{A} f_{2}(x_{2}) \left(\cdots \int_{A} f_{n}(x_{n}) dm(x_{n}) \cdots \right) dm(x_{2}) \right) dm(x_{1})$$

$$= 1$$

2.3. Importance Sampling.

2.4. Rejection Sampling.

Exercise 2.4.1. Let $f, g \in \mathcal{D}(\mathbb{R}^d)$ and $A \in \mathcal{B}(\mathbb{R}^d)$. Suppose that $m^d(A) > 0$. If $X \sim f$, then $X|X \in A \sim ||fI_A||_1^{-1}fI_A$.

Proof. Let $C \in \mathcal{B}(\mathbb{R}^d)$. Then

$$P(X \in C | X \in A) = P(X \in C \cap A)P(X \in A)^{-1}$$
$$= ||fI_A||_1^{-1} \int_C fI_A dm^d$$

So
$$f_{X|X\in A} = ||fI_A||_1^{-1} fI_A$$
.

Exercise 2.4.2. Let $A, B \in \mathcal{B}(\mathbb{R}^d)$. Suppose that $A \subset B$ and $0 < m^d(A)$ and $m^d(B) < \infty$. If $X \sim \mathrm{Uni}(B)$, then $X | X \in A \sim \mathrm{Uni}(A)$.

Proof. Clear using the previous exercise with $f = I_B$.

Exercise 2.4.3. (Fundamental Theorem of Simulation):

Let $f \in \mathcal{D}(\mathbb{R}^d)$ and c > 0. Define

$$G_c = \{(x, v) \in \mathbb{R}^{d+1} : 0 < v < cf(x)\}$$

- (1) If $X \sim f$ and $U \sim \text{Uni}(0,1)$ are independent, then $(X, cUf(X)) \sim \text{Uni}(G_c)$.
- (2) If $(X, V) \sim \text{Uni}(G_c)$, then $X \sim f$.

Proof. First we note that $m^{d+1}(G_c) = c$.

(1) Suppose that $X \sim f$ and $U \sim \text{Uni}(0,1)$ are independent and put Y = cUf(X). Then $Y|X = x \sim cUf(x) \sim \text{Uni}(0,cf(x))$ and we have that for each $x \in \text{supp } X$ and $y \in (0,cf(x))$,

$$f_{X,Y}(x,y) = f_{Y|X}(y|x)f(x)$$
$$= \frac{1}{cf(x)}f(x)$$
$$= \frac{1}{c}$$

So
$$(X,Y) \sim \mathrm{Uni}(G_c)$$

(2) Suppose that $(X, V) \sim \text{Uni}(G_c)$. Then $f_{X,V}(x, v) = \frac{1}{c}I_{G_c}(x, v)$. So

$$f_X(x) = \int_{\mathbb{R}} \frac{1}{c} I_{G_c}(x, v) dm(v)$$
$$= \int_0^{cf(x)} \frac{1}{c} dv$$
$$= f(x)$$

So $X \sim f$.

Exercise 2.4.4. Let $f, g \in \mathcal{D}(\mathbb{R}^d)$, $c_f, c_g > 0$ and M > 0. Put $\tilde{f} = c_f f$ and $\tilde{g} = c_g g$. Suppose that $\tilde{f} \leq M\tilde{g}$. If $Y \sim g$ and $U \sim \mathrm{Uni}(0,1)$ are independent, then $Y|U \leq \frac{\tilde{f}(Y)}{M\tilde{g}(Y)} \sim f$ and $P(U \leq \frac{\tilde{f}(Y)}{M\tilde{g}(Y)}) = \frac{c_f}{c_o M}$

Proof. Put

$$G_q = \{(y, v) \in \mathbb{R}^{d+1} : 0 < v < M\tilde{g}(y)\}$$

and

$$G_f = \{(y, v) \in \mathbb{R}^{d+1} : 0 < v < \tilde{f}(y)\}$$

Then $G_f \subset G_g$, $m^d(G_g) = c_g M$ and $m^d(G_f) = c_f$. By the first part of the fundamental theorem of simulation, we know that

$$(Y, MUc_gg(Y)) \sim \text{Uni}(G_g)$$

Since $\{(Y, MUc_gg(Y)) \in G_f\} = \{U \leq \frac{c_ff(Y)}{Mc_gg(Y)}\}$, a previous exercise tells us that

$$(Y, MUc_gg(Y))|U \le \frac{c_ff(Y)}{Mc_gg(Y)} \sim \text{Uni}(G_f)$$

Then the second part of the fundamental theorem of simulation tells us that

$$Y|U \le \frac{c_f f(Y)}{M c_g g(Y)} \sim f$$

Finally we have that

$$P\left(U \le \frac{c_f f(Y)}{M c_g g(Y)}\right) = P[(Y, M U c_g g(Y)) \in G_f]$$
$$= \frac{c_f}{c_g M}$$

Definition 2.4.5. (Rejection Sampling Algorithm):

Let $f, g \in \mathcal{D}(\mathbb{R}^d)$, $c_f, c_g > 0$ and M > 0. Put $\tilde{f} = c_f f$ and $\tilde{g} = c_g g$. Suppose that $\tilde{f} \leq M\tilde{g}$. We define the **rejection sampling algorithm** as follows:

- (1) sample $Y \sim g$ and $U \sim \text{Uni}(0,1)$ independently
- (2) if $U \leq \frac{f(Y)}{M\tilde{q}(Y)}$, accept Y, else return to (1).

If we sample $(X_n)_{n\in\mathbb{N}}$ independently using the rejection sampler, then the previous exercises imply that $(X_n)_{n\in\mathbb{N}} \stackrel{iid}{\sim} f$ and the acceptance rate is $\frac{c_f}{c_o M}$.

Note 2.4.1. Phrasing the rejection sampler in terms of \tilde{f} and \tilde{g} instead of f and g is usefule because we may not always be able to solve for the normalizing constants.