Midterm 2B

MATH 20E, LECTURE A00, SPRING 2019

NAME: Key

PID:

- Print your NAME on every page and write your PID in the space provided above.
- Show all of your work in the spaces provided. No credit will be given for unsupported answers, even if correct.
- Supporting work for a problem must be on the page containing that problem. No scratch paper will be accepted.
- No calculators, tables, phones, or other electronic devices are allowed during this exam. You may use your double-sided handwritten notes, but no books or other assistance.

DO NOT TURN PAGE UNTIL INSTRUCTED TO DO SO

(This exam is worth 40 points)

Problem 0.(1 points.) Follows the instructions on this exam and any additional instructions given during the exam.

Problem 1.(9 points.) Use Green's theorem to evaluate $\int_C -xy \, dx + y \, dy$, where C is the boundary of the region between the curves y = x and $y = x^3$, $0 \le x \le 1$, and is oriented in the counterclockwise direction.

$$\int_{0}^{\infty} \frac{1}{x^{2}} dx + y dy = \int_{0}^{\infty} \frac{1}{x^{2}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dy dx$$

$$= \int_{0}^{\infty} \frac{1}{x^{2}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dy dx$$

$$= \int_{0}^{\infty} \frac{1}{x^{2}} dy dx$$

$$= \int_{0}^{\infty} \frac{1}{x^{2}} dx dx$$

$$= \int_{0}^{\infty} \frac{1}{x^{2}} - \frac{1}{x^{2}} dx$$

$$= \frac{1}{3} - \frac{1}{5}$$

$$= \frac{2}{15}$$

See Example 4, p. 397

Problem 2. (10 points.) Let S be the triangle with vertices (0,0,1),(2,0,0), and (0,1,0). Compute

First, find the equation of S: (0,0,1)-(2,0,0)=(-2,0,1)

and (0,0,1) - (0,40) = (0,-1,1)are vectors on S. The normal vector to S is: $(-2,0,1) \times (0,-1,1) = \begin{vmatrix} i & j & k \\ -2 & 0 & 1 \\ 0 & -1 & 1 \end{vmatrix} = (1,2,0)$

Therefore,
$$\vec{n} = \frac{1}{3}(1,2,2)$$
.

Therefore, $\vec{n} = \frac{1}{3}(1,2,2)$.

Therefore, $\vec{n} = \frac{1}{3}(1,2,2)$.

 $y = -\frac{1}{2}(x-0)+1$. $\Rightarrow \vec{n} \cdot \vec{k} = \frac{1}{3}(1,2,2) \cdot (0,0,1) = \frac{2}{3} \Rightarrow \cos\theta = \frac{2}{3}$.

 $y = 1-\frac{2}{3}$
 $y = 1-\frac{2}{3}$
 $x \cos\theta = \frac{2}{3}$
 $x \cos\theta = \frac{2}{3}$

$$= \frac{3}{3} \frac{2}{3} x \left(1 - \frac{x^{2}}{3}\right) dx$$

$$= \frac{3}{3} \frac{2}{3} x - \frac{x^{2}}{3} \frac{2}{3} dx$$

$$= \frac{3}{3} \frac{2}{3} \left(\frac{x^{2}}{3} - \frac{x^{3}}{3}\right) = \frac{3}{3} \frac{2}{3} \left(\frac{4}{3} - \frac{2}{3}\right) = \frac{4}{3} \frac{2}{3} = \frac{4}{3} = \frac{4}{3$$

Note that the another approach is to think of S as a graph: $\frac{1}{3}(x-0) + \frac{2}{3}(x-0) + \frac{2}{3}(z-1) = 0.$ $z = -\frac{1}{2}(x,y) + \frac{1}{2}(x,y) = (x,y) - \frac{2}{3}(x,y) + \frac{1}{2}(x,y) = (x,y) + \frac{1}{2}(x,y) + \frac{1}{2}(x,y) = (x,y) + \frac{1}{2}(x,y) + \frac{$

Problem 3.(10 points.) Let $\vec{c}(t) = (1, -t^2, \cos t), 0 \le t \le \pi$. Evaluate

$$\int_{\varepsilon}^{\infty} \cos z \, dx - y^{2} \, dy + xz \, dz.$$

$$= \int_{0}^{\infty} (\cos(\cot) \cdot 0) - (-t^{2})^{2} (-2t) + 1 \cdot \cos((-\sin t)) dt.$$

$$= \int_{0}^{\infty} 2t^{5} - (\cos((\sin t)) + \cot((-\sin t))) dt.$$

$$= 2\frac{t^{6}}{6} + \frac{\cos^{2}t}{2} \Big|_{t=0}^{\infty}$$

$$= \frac{\pi^6}{3} + \frac{\cos^2(\pi)}{2} - 0 - \frac{\cos^2(0)}{2}$$

$$=\frac{\pi^6}{3}$$

Problem 4.(10 points.) Consider the solid hemisphere formed by taking the portion of the unit ball with $y \ge 0$. Let S be the surface of this region and be oriented by the outward-pointing normal (so that S is a hemisphere, together with a flat base in the xz-plane). Find the flux of the vector field $\vec{F}(x,y,z) = (z,1,-x)$ out of the surface S. That is, compute $\iint_S \vec{F} \cdot d\vec{S}$.

(You might find the following identity useful: $\sin^2(\alpha) = \frac{1-\cos(2\alpha)}{2}$.)

Note that S has two parts: S, the hemisphere So the flat base in xz-plane

SSF.dS = SSF.dS + SSF.dS. outward pointing normal.

For Si: we take the parametrization we take the parametrization $\Phi(\theta, \phi) = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)$ $0 \le \theta \le \pi$ $0 \le \phi \le \pi$

 $T_{\Theta} = (-\sin\Theta\sin\phi, \cos\Theta\sin\phi, \cos\phi)$ $T_{\phi} = (\cos\theta\cos\phi, \sin\theta\cos\phi, -\sin\phi)$

 $T_{ex}T_{\phi} = -\sin\phi(\cos\theta\sin\phi, \sin\theta\sin\phi, \cos\phi)$ points

-> consider ToxTo.

 $\iint \vec{F} \cdot d\vec{S} = \iint + \sin(\Theta) \sin^2 \phi \ d\phi \ d\Theta$ $= \int_{0}^{\pi} \sin \phi \, d\phi \int_{0}^{\pi} \sin \theta \, d\theta.$

$$=\left(\int_{0}^{\pi}\frac{1-\cos(2\phi)}{2}d\phi\right)\cdot\left(-\cos(2\phi)\right)$$

$$= \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)$$

$$= \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1$$

can parametrize it as $\Phi(r, \theta) = (r\cos\theta, 0, r\sin\theta)$

2 pts $T_r = (\cos \theta, 0, \sin \theta) \quad T_{\theta} = (-r\sin \theta, 0, r\cos \theta).$ $T_{r} \times T_{\theta} = (0, -r, 0) \notin \text{ point outward.}$ $\int_{S_2}^{2\pi} dS_1 = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) \cdot (0, -r, 0) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) \cdot (0, -r, 0) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) \cdot (0, -r, 0) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) \cdot (0, -r, 0) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) \cdot (0, -r, 0) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) \cdot (0, -r, 0) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) \cdot (0, -r, 0) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) \cdot (0, -r, 0) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) \cdot (0, -r, 0) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) \cdot (0, -r, 0) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) \cdot (0, -r, 0) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) \cdot (0, -r, 0) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) \cdot (0, -r, 0) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) \cdot (0, -r, 0) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) \cdot (0, -r, 0) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) \cdot (0, -r, 0) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) \cdot (0, -r, 0) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) \cdot (0, -r, 0) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) \cdot (0, -r, 0) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) \cdot (0, -r, 0) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) \cdot (0, -r, 0) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) \cdot (0, -r, 0) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) \cdot (0, -r, 0) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) d\theta dr = \int_{0}^{2\pi} (r\sin \theta, 1, -r\cos \theta) d\theta dr = \int_{0}^{2\pi} (r\cos \theta, 1, -r\cos \theta) d\theta dr = \int_{0}^{2\pi} (r\cos \theta, 1, -r\cos \theta) d\theta dr = \int_{0}^{2\pi} (r\cos \theta, 1, -r\cos \theta) d\theta dr = \int_{0}^{2\pi} (r\cos \theta, 1, -r\cos \theta)$

 $\iint_{\mathbb{R}^{2}} \vec{F} \cdot d\vec{S} = \pi - \pi = 0.$

and the second of the second o Some and the state of the state

Midterm 2A

MATH 20E, LECTURE A00, SPRING 2019

NAME: Key.

PID:

- Print your NAME on every page and write your PID in the space provided above.
- Show all of your work in the spaces provided. No credit will be given for unsupported answers, even if correct.
- Supporting work for a problem must be on the page containing that problem. No scratch paper will be accepted.
- No calculators, tables, phones, or other electronic devices are allowed during this exam. You may use your double-sided handwritten notes, but no books or other assistance.

DO NOT TURN PAGE UNTIL INSTRUCTED TO DO SO

(This exam is worth 40 points)

Problem 0.(1 points.) Follows the instructions on this exam and any additional instructions given during the exam.

Problem 1.(9 points.) Use Green's theorem to evaluate $\int_C xy \, dx + y \, dy$, where C is the boundary of the region between the curves y = x and $y = x^3$, $0 \le x \le 1$, and is oriented in the counterclockwise direction.

$$P = xy, Q = y.$$

$$\int_{C}^{\infty} xy dx + ydy = \int_{C}^{\infty} \int_{x^{3}}^{\infty} (0 - \alpha) dy d\alpha.$$

$$= \frac{1}{15}$$

Problem 2.(10 points.) Let S be the triangle with vertices (0,0,1),(1,0,0), and (0,2,0). Compute $\iint_S x \, dS$.

$$= \frac{3}{2} \int_{0}^{1} xy \Big|_{y=0}^{-2x+2} dx$$

$$= \frac{3}{2} \int_{0}^{1} xy \Big|_{y=0}^{-2x+2} dx$$

$$= \frac{3}{2} \left(-\frac{2}{3}x^{3} + x^{2} \right)_{0}^{1}$$

$$= \frac{3}{2} \left(-\frac{2}{3}x^{3} + 1 \right)$$

$$= \frac{1}{2} \int_{0}^{1} xy \Big|_{y=0}^{-2x+2} dx$$

$$= \frac{3}{2} \left(-\frac{2}{3}x^{3} + 1 \right)$$

$$= \frac{1}{2} \int_{0}^{1} xy \Big|_{y=0}^{-2x+2} dx$$

Problem 3.(10 points.) Let $\vec{c}(t) = (1, -t^2, \cos t), 0 \le t \le \pi$. Evaluate

$$\int_{\vec{c}} \sin z \, dx - y^2 \, dy + 3xz \, dz.$$

$$= \int_{0}^{\pi} \sin(\cos t) \cdot 0 - (-t^{2})^{2} (-2t) + 3\cos t (-\sin t) dt.$$

$$= \int_{0}^{\pi} 2t^{5} - 3\cos t \sinh t dt.$$

$$= \frac{\pi^{6}}{2}.$$

Problem 4.(10 points.) Consider the solid hemisphere formed by taking the portion of the unit ball with $y \ge 0$. Let S be the surface of this region and be oriented by the outward-pointing normal (so that S is a hemisphere, together with a flat base in the xz-plane). Find the flux of the vector field $\vec{F}(x,y,z)=(-z,1,x)$ out of the surface S. That is, compute $\int\int_S \vec{F}\cdot d\vec{S}$. (You might find the following identity useful: $\sin^2(\alpha)=\frac{1-\cos(2\alpha)}{2}$.)

Similar approach and result as version B.