Particle spectrograph

Wave operator and propagator

	$\Delta_{1}^{\#1}{}_{+}{}_{\alpha\beta}$	$\Delta_{1^{+}lphaeta}^{ ext{#2}}$	$\Delta_{1}^{\#3}_{+ \ lphaeta}$	$\Delta_{1^{-}\alpha}^{\#1}$	$\Delta_{1}^{\#2}{}_{lpha}$	$\Delta_{1}^{\#3}{}_{lpha}$	$\Delta_{1^{-}\alpha}^{\#4}$	$\Delta_{1^{-}\alpha}^{\#5}$	$\Delta_{1^{-}\alpha}^{\#6}$	$\mathcal{T}_1^{\sharp 1}{}_{lpha}$
$\Delta_{1}^{#1} \dagger^{\alpha\beta}$	$\frac{4}{3} \left(-\frac{1}{a_0 + 4a_1 - 4a_2} + \frac{2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9}{2(2a_1 + a_2)(a_5 + 3a_7) + a_9^2 + a_0(2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9)} \right)$	$\frac{2}{3}\sqrt{2}\left(-\frac{1}{a_0+4a_1-4a_2}-\frac{2(2a_1+a_2-2a_5-6a_7+2a_9)}{2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9)}\right)$	$-\frac{4(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0	0	0	0	0	0	0
$\Delta_{1}^{#2} + \alpha \beta$	$\frac{1}{a_0+4a_1-4a_2} - \frac{2(2a_1+a_2-2a_5-6a_7+2a_9)}{2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9)})$	$-\frac{2}{+}$ $+\frac{8(2a_1+a_2-2a_5-6a_7+2a_9)}{}$	$4\sqrt{2}(2a_1+a_2+a_9)$	0	0	0	0	0	0	0
$\Delta_{1}^{#3} \dagger^{\alpha\beta}$	$-\frac{4 (2 a_1+a_2+a_9)}{3 (2 (2 a_1+a_2) (a_5+3 a_7)+a_9^2+a_0 (2 a_1+a_2-2 a_5-6 a_7+2 a_9))}$	$\frac{4\sqrt{2}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$-\frac{4 \left(a_{0}-2 a_{1}-a_{2}\right)}{3 \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$	0	0	0	0	0	0	0
$\Delta_{1}^{#1} \dagger^{lpha}$	0	0	0	$\frac{4(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{4\sqrt{2}(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0	0	$-\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{4(2a_1+a_2+a_9)}{3\sqrt{3}(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0
$\Delta_1^{#2} \dagger^{\alpha}$	0	0	0	$\frac{4\sqrt{2}(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{8(2a_1+a_2-2a_5-6a_7+2a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0	0	$-\frac{8(2a_1+a_2+a_9)}{3\sqrt{3}(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0
$\Delta_1^{#3} \dagger^{\alpha}$	0	0	0	0	0	$-\frac{10}{9(a_0+2a_5-6a_7)}-\frac{1}{6(3a_0-2(a_5-8a_6+5a_7-4a_{13}k^2))}$	$\frac{1}{18} \sqrt{5} \left(\frac{4}{a_0 + 2a_5 - 6a_7} - \frac{3}{3a_0 - 2a_5 + 16a_6 - 10a_7 + 8a_{13}k^2} \right)$	$-\frac{1}{\sqrt{2} (9 a_0 - 6 (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2))}$	$-\frac{1}{9a_0-6(a_5-8a_6+5a_7-4a_{13}k^2)}$	0
$\Delta_1^{\#4} \uparrow^{\alpha}$	0	0	0	0	0	$\frac{1}{18} \sqrt{5} \left(\frac{4}{a_0 + 2a_5 - 6a_7} - \frac{3}{3a_0 - 2a_5 + 16a_6 - 10a_7 + 8a_{13}k^2} \right)$	$-\frac{2}{9(a_0+2a_5-6a_7)}-\frac{5}{6(3a_0-2(a_5-8a_6+5a_7-4a_{13}k^2))}$	$-\frac{\sqrt{\frac{5}{2}}}{9 a_0 - 6 (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2)}$	$-\frac{\sqrt{5}}{9a_0-6(a_5-8a_6+5a_7-4a_{13}k^2)}$	0
$\Delta_1^{\#5} \dagger^{lpha}$	0	0	0	$-\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$-\frac{8 (2 a_1 + a_2 + a_9)}{3 \sqrt{3} (2 (2 a_1 + a_2) (a_5 + 3 a_7) + a_9^2 + a_0 (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9))}$	$-\frac{1}{\sqrt{2} (9 a_0 - 6 (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2))}$	$-\frac{\sqrt{\frac{5}{2}}}{9a_0-6(a_5-8a_6+5a_7-4a_{13}k^2)}$	$\frac{8 \left(-a_0+2 a_1+a_2\right)}{9 \left(2 \left(2 a_1+a_2\right) \left(a_5+3 a_7\right)+a_9^2+a_0 \left(2 a_1+a_2-2 a_5-6 a_7+2 a_9\right)\right)} -$	$ \sqrt{2} (12a_0^2 - 3a_9^2 - a_0 (30a_1 + 15a_2 + 2a_5 - 64a_6 + 22a_7 + 6a_9 - 32a_{13}k + 2(2a_1 + a_2) (a_5 - 32a_6 + 11a_7 - 16a_{13}k^2)))/ $ $ (9 (2 (2a_1 + a_2) (a_5 + 3a_7) + a_9^2 + a_0 (2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9)) $ $ (3a_0 - 2 (a_5 - 8a_6 + 5a_7 - 4a_{13}k^2))) $	2)+
$\Delta_{1}^{\#6} \dagger^{lpha}$	0	0	0	$\frac{4(2a_1+a_2+a_9)}{3\sqrt{3}(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	$\frac{4\sqrt{\frac{2}{3}}(2a_1+a_2+a_9)}{3(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	- 1 9 a ₀ -6 (a ₅ -8 a ₆ +5 a ₇ -4 a ₁₃ k ²)	$-\frac{\sqrt{5}}{9 a_0-6 (a_5-8 a_6+5 a_7-4 a_{13} k^2)}$	$(\sqrt{2} (12a_0^2 - 3a_9^2 - a_0 (30a_1 + 15a_2 + 2a_5 - 64a_6 + 22a_7 + 6a_9 - 32a_{13}k^2) + 2(2a_1 + a_2) (a_5 - 32a_6 + 11a_7 - 16a_{13}k^2)))/$ $(9(2(2a_1 + a_2) (a_5 + 3a_7) + a_9^2 + a_0 (2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9))$ $(3a_0 - 2(a_5 - 8a_6 + 5a_7 - 4a_{13}k^2)))$	$\frac{-4a_0 + 8a_1 + 4a_2}{9(2(2a_1 + a_2)(a_5 + 3a_7) + a_9^2 + a_0(2a_1 + a_2 - 2a_5 - 6a_7 + 2a_9))}$ $\frac{2}{9a_0 - 6(a_5 - 8a_6 + 5a_7 - 4a_{13}k^2)}$	0
${\mathcal T}_1^{\sharp 1} {\dagger}^{lpha}$	0	0	0	0	0	0	0	0	0	0

	$\Gamma_{1}^{\#1}{}_{lphaeta}$	$\Gamma_{1}^{\#2}{}_{lphaeta}$	$\Gamma^{\#3}_{1}{}^{+}_{lphaeta}$	$\Gamma_{1}^{\#1}{}_{lpha}$	Γ ₁ - α	Γ#3 ₁ α	$\Gamma_{1}^{#4}{}_{\alpha}$	$\Gamma_{1}^{\#5}{}_{\alpha}$	$\Gamma_{1}^{\#6}$ α	$h_{1}^{\#1}{}_{\alpha}$
$\Gamma_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{1}{4} \left(-a_0 - 6 a_1 + 5 a_2 \right)$	$-\frac{a_0+2a_1-3a_2}{2\sqrt{2}}$	$\frac{1}{4} \left(-2 a_1 - a_2 - a_9 \right)$	0	0	0	0	0	0	0
$\Gamma_{1}^{#2} \dagger^{\alpha\beta}$	$-\frac{a_0+2a_1-3a_2}{2\sqrt{2}}$	$\frac{1}{2} \left(-2 a_1 + a_2 \right)$	$\frac{2a_1 + a_2 + a_9}{2\sqrt{2}}$	0	0	0	0	0	0	0
$\Gamma_{1}^{#3} \dagger^{\alpha\beta}$	$\frac{1}{4} \left(-2 a_1 - a_2 - a_9 \right)$	$\frac{2a_1+a_2+a_9}{2\sqrt{2}}$	$-\frac{3}{4} (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)$	0	0	0	0	0	0	0
$\Gamma_1^{#1} \uparrow^{\alpha}$	0	0	0	$\frac{1}{12}$ (a ₀ - 2 a ₁ - a ₂)	$\frac{a_0 - 2a_1 - a_2}{6\sqrt{2}}$	0	0	$-\frac{2a_1 + a_2 + a_9}{2\sqrt{6}}$	$\frac{2a_1 + a_2 + a_9}{4\sqrt{3}}$	0
$\Gamma_1^{\#2} \uparrow^{\alpha}$	0	0	0	$\frac{a_0 - 2a_1 - a_2}{6\sqrt{2}}$	$\frac{1}{6}(a_0-2a_1-a_2)$	0	0	$-\frac{2a_1+a_2+a_9}{2\sqrt{3}}$	$\frac{2 a_1 + a_2 + a_9}{2 \sqrt{6}}$	0
$\Gamma_{1}^{#3} + \alpha$	0	0	0	0	0	$\frac{1}{12} \left(-9 a_0 - 14 a_5 - 8 a_6 + 50 a_7 - 4 a_{13} k^2 \right)$	$\frac{1}{3} \sqrt{5} (a_5 - 2 a_6 - a_7 - a_{13} k^2)$	$\frac{-3 a_0 + 2 (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2)}{12 \sqrt{2}}$	$-\frac{a_0}{4} + \frac{1}{6} (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2)$	0
$\Gamma_{1}^{\#4} \uparrow^{\alpha}$	0	0	0	0	0	$\frac{1}{3} \sqrt{5} (a_5 - 2 a_6 - a_7 - a_{13} k^2)$	$\frac{1}{12} \left(-9 a_0 + 2 a_5 - 40 a_6 + 34 a_7 - 20 a_{13} k^2 \right)$	$\frac{1}{12} \sqrt{\frac{5}{2}} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2 \right) \right)$	$\frac{1}{12} \sqrt{5} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2 \right) \right)$	0
$\Gamma_1^{\#5} \uparrow^{\alpha}$	0	0	0	$-\frac{2a_1+a_2+a_9}{2\sqrt{6}}$	$-\frac{2a_1+a_2+a_9}{2\sqrt{3}}$	$\frac{-3 a_0 + 2 (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2)}{12 \sqrt{2}}$	$\frac{1}{12} \sqrt{\frac{5}{2}} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2 \right) \right)$	$\frac{1}{12} \left(-3 a_0 - 2 \left(6 a_1 + 3 a_2 - 7 a_5 + 8 a_6 - 23 a_7 + 6 a_9 + 4 a_{13} k^2 \right) \right)$	$-\frac{3 a_0 - 6 a_1 - 3 a_2 + 4 a_5 + 16 a_6 + 8 a_7 - 6 a_9 + 8 a_{13} k^2}{6 \sqrt{2}}$	0
$\Gamma_{1}^{\#6} \uparrow^{\alpha}$	0	0	0	$\frac{2a_1 + a_2 + a_9}{4\sqrt{3}}$	$\frac{2a_1+a_2+a_9}{2\sqrt{6}}$	$-\frac{a_0}{4} + \frac{1}{6} (a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2)$	$\frac{1}{12} \sqrt{5} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 - 4 a_{13} k^2 \right) \right)$	$-\frac{3 a_0 - 6 a_1 - 3 a_2 + 4 a_5 + 16 a_6 + 8 a_7 - 6 a_9 + 8 a_{13} k^2}{6 \sqrt{2}}$	$\frac{1}{12}$ (-6 a_0 - 6 a_1 - 3 a_2 + 10 a_5 - 32 a_6 + 38 a_7 - 6 a_9 - 16 a_{13}	k^2) 0
$h_1^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0	0	0	0

	O		$\frac{1}{2}a$	$\frac{1}{2}a$	ιβμ	7	-a	a_5	٦	L ₂	a_5	<i>a</i> ₇	a_9	2
	0		$\iota_0 h^{\alpha\beta}$ $0 h_{\beta\mu}$	$\begin{bmatrix} a_0 h^{\mu} \partial_{\beta} \Gamma^{\alpha\beta} \\ a_0 \Gamma^{\alpha}{}_{\alpha} \partial_{\mu} h_{\beta} \end{bmatrix}$	$\frac{1}{2} \frac{1}{\alpha} \frac{1}{\alpha} \frac{1}{\mu}$ $\frac{1}{2} \frac{1}{\alpha} \frac{1}{\alpha} \frac{1}{\alpha}$	$\beta \Gamma^{\alpha \beta} \Gamma^{\mu}_{\beta}$	$\Gamma^{\alpha\beta\mu}$ $\Gamma_{\mu\beta}$	$\Gamma^{\alpha}_{\alpha}^{\beta}$	Γ_{μ}	-αβμ Γ	$\Gamma_{\alpha\mu\beta}$	$\Gamma_{\alpha\beta\mu}$	$a_9 \Gamma_{\alpha}^{\mu} \Gamma^{\alpha\beta}_{\beta}$	$\frac{\alpha}{\alpha}$ $\frac{\alpha}{\alpha}$ $\frac{\alpha}{\mu}$
	0		$\partial_{\mu}\partial^{\mu}h$	$\partial_{\beta}\Gamma^{\alpha\beta}_{\alpha}$	$-\frac{1}{4}a_0$	$\beta\mu = \frac{1}{2}$	$\Gamma_{\beta \mu}^{\mu}$ $\alpha + \frac{1}{2}$	$\Gamma_{\beta}^{\mu}_{\mu}$ +	$3\mu\alpha + \frac{1}{1}$	βαμ - <u>1</u>	Γ ^{αβμ} +	$\Gamma^{\alpha\beta\mu}$	$\lceil \alpha \beta \rceil_R = \lceil \alpha \beta \rceil_R$	B
	0		$\alpha\beta^{-\frac{1}{4}}$	$-\frac{1}{2}a_{0}$ $+\frac{1}{4}a$	$\begin{bmatrix} \alpha & \beta \\ 6 & \alpha \end{bmatrix}$	$^{\prime\prime}_{\beta\mu}$ $^{-\frac{1}{2}}$ a_7 $\Gamma^{\alpha\beta}_{\alpha}$ $\Gamma^{\mu}_{}$	$a \Gamma^{\mu}_{\alpha} + \frac{1}{2} a_7 \Gamma^{\alpha \beta}_{\alpha \beta}$ $a \Gamma^{\mu}_{\mu} + \frac{1}{2} a_9 \Gamma^{\alpha \beta \mu} \Gamma_{\mu \mu}$	$-\frac{1}{2}a_{7}$	$\frac{1}{2}a_0\Gamma$	α ₀ Γα	$\frac{2}{9}a_{7}$	1 1 a ₉ Γ	, a ₀ ∟	T = 42
)	0		$\partial_{\alpha}\Gamma_{\mu}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$h_{\alpha\mu} \partial_{\mu}$	$\frac{\alpha}{\alpha}$	α β β β β β	$\Gamma^{\alpha\beta}_{\alpha}$	$\Gamma^{\alpha}_{\alpha}^{\beta}\Gamma$	$\alpha \beta \Gamma_{\mu}$	_{,βμ} Γ _β ,	$\Gamma_{\alpha\mu\beta}$ Γ	$^{\alpha\beta^{\prime\prime}}$ $^{\perp}$	αR ₁₁ Γα	αu
	0		$\frac{1}{4} a_0 h^{\alpha\beta} \partial_{\mu} \partial^{\mu} h_{\alpha\beta} - \frac{1}{4} a_0 h^{\alpha}_{\alpha} \partial_{\mu} \partial^{\mu} h^{\beta}$ $\frac{1}{2} a_0 h_{\beta\mu} \partial^{\mu} \Gamma^{\alpha}_{\alpha}{}^{\beta} + a_{13} \partial_{\alpha} \Gamma_{\mu}{}^{\nu}_{\nu} \partial^{\mu} \Gamma^{\alpha\beta}_{\beta}$	$_{\alpha}^{\alpha\beta\mu}$	$(\beta\mu \partial_{\beta}h_{\alpha\mu} - \frac{1}{4}a_0 \Gamma_{\alpha}^{\alpha\beta} \partial_{\beta}h_{\mu}^{\mu} + \frac{1}{4}a_0 \Gamma_{\alpha}^{\alpha\beta})$	+ 1 2	$\Gamma_{\beta \mu}^{\mu} = \frac{1}{6} a$	$\beta \mu - \frac{1}{2}$	$\mu = \frac{2}{3} \ell$	$a_5 \Gamma^{lphaeta\mu} \Gamma_{etalpha\mu}^{} - rac{1}{2} a_0 \Gamma^{lphaeta\mu} \Gamma_{eta\mulpha}^{} + a_2 \Gamma^{lphaeta\mu}$	ο .αβμ _ <u>1</u> 2	$\kappa \beta \mu = \frac{1}{2} \ell$	βμ-a ₁	β $\pm \frac{1}{6}$ μ 2 1 α μ 1 β
$16 a_{13} k^2)$	0		$\beta - \frac{1}{4}a$ $\beta - a_{13}$	$\frac{1}{4}a_{0}$, $\frac{1}{2}a_{0}$	$\frac{1}{4}a_0 \Gamma_{\alpha}^{\alpha\beta} \partial_{\beta}h^{\mu} + \frac{1}{4}a_0 \Gamma_{\alpha}^{\alpha\beta} \partial_{\beta}h^{\mu}_{\mu}$	$a_{\mu} + \frac{1}{3} a_1 \Gamma^{\alpha}_{\alpha} \beta \Gamma^{\mu}_{\alpha}$	$\lceil \alpha^{\beta \mu} \mid \Gamma_{\mu \beta \alpha} + \frac{1}{2} a_{9} \mid \Gamma^{\alpha \beta \mu} \mid \Gamma_{\mu \beta \alpha} + \frac{1}{6} a_{9} \mid \Gamma^{\alpha \beta} \mid \Gamma^{\mu} \mid \Gamma^{\alpha \beta \mu} \mid \Gamma^$	$a_9 \Gamma^{\alpha}$	$_{\vartheta} \; \Gamma^{\alpha\beta\mu} \; \Gamma_{\beta\mu\alpha} + \frac{1}{12} \; a_0 \; \Gamma^{\alpha}_{\;\;\alpha} \; \Gamma_{\beta\;\;\mu}^{\;\;\mu} - \frac{2}{3} \; a_1 \; \Gamma^{\alpha}_{\;\;\alpha} \; \beta$	$\Gamma^{\alpha\beta\mu}$	$a_9 \Gamma_{\alpha_l}$	$\iota_0 \Gamma_{\alpha u}$	$rac{1}{8}-rac{1}{2}a_0$ $\Gamma_{lphaeta\mu}$ $\Gamma^{lphaeta\mu}-a_1$ $\Gamma_{lphaeta\mu}$ $\Gamma^{lphaeta\mu}+a_1$	
	0		$\frac{1}{4} a_0 h^{\alpha \beta} \partial_{\mu} \partial^{\mu} h_{\alpha \beta} - \frac{1}{4} a_0 h^{\alpha}_{\alpha} \partial_{\mu} \partial^{\mu} h^{\beta}_{\beta} - \frac{1}{4} a_0 \partial_{\beta} h_{\alpha \mu} \partial^{\mu} h^{\alpha \beta} + \frac{1}{2} a_0 h_{\beta \mu} \partial^{\mu} h^{\alpha \beta} + a_{13} \partial_{\alpha} \Gamma_{\mu}^{\ \nu} \partial^{\mu} \Gamma^{\alpha \beta}_{\ \beta} - a_{13} \partial_{\mu} \Gamma_{\alpha}^{\ \nu} \partial^{\mu} \Gamma^{\alpha \beta}_{\ \beta}$	$\frac{1}{2}a_{0}h_{\mu}^{\mu}\partial_{\beta}\Gamma^{\alpha\beta}_{\alpha} - \frac{1}{2}a_{0}h_{\alpha\mu}\partial_{\beta}\Gamma^{\alpha\beta\mu} + \frac{1}{4}a_{0}h^{\alpha\beta}\partial_{\beta}\partial_{\alpha}h_{\mu}^{\mu} - \frac{1}{2}a_{0}\Gamma^{\alpha}_{\alpha}^{\beta}\partial_{\mu}h_{\beta}^{\mu} + \frac{1}{4}a_{0}\partial^{\beta}h_{\alpha}^{\alpha}\partial_{\mu}h_{\beta}^{\mu} - \frac{1}{2}a_{0}h^{\alpha\beta}\partial_{\mu}\partial_{\beta}h_{\alpha}^{\mu} + \frac{1}{2}a_{0}h^{\alpha\beta}\partial_{\mu}h_{\beta}^{\mu} + \frac{1}{2}a_{0}h^{\alpha\beta}\partial_{\mu}h_{\alpha}^{\mu} + \frac{1}{2}a_{0}h^{\alpha\beta}\partial_{\mu}h_{\beta}^{\mu} + \frac{1}{2}a_{0}h^{\alpha\beta}\partial_{\mu}h_{\alpha}^{\mu} + \frac{1}{2}a_{0}h^{\alpha\beta}\partial_{\mu}h_{\beta}^{\mu} + \frac{1}{2}a_{0}h^{\alpha\beta}\partial_{\mu}h_{\beta}^{\mu} + \frac{1}{2}a_{0}h^{\alpha\beta}\partial_{\mu}h_{\alpha}^{\mu} + \frac{1}{2}a_{0}h^{\alpha\beta}\partial_{\mu}h_{\beta}^{\mu} + \frac{1}{2}a_{0}h^{\alpha\beta}\partial_{\mu}h_{\beta}^{\mu} + \frac{1}{2}a_{0}h^{\alpha\beta}\partial_{\mu}h_{\beta}^{\mu} + \frac{1}{2}a_{0}h^{\alpha\beta}\partial_{\mu}h_{\alpha}^{\mu} + \frac{1}{2}a_{0}h^{\alpha\beta}\partial_{\mu}h_{\beta}^{\mu} + \frac{1}{2}a_{0}h^{\alpha\beta}\partial_{\mu}h_{\alpha}^{\mu} + \frac{1}{2}a_{0}h^{\alpha\beta}\partial_{\mu}h_{\beta}^{\mu} + \frac{1}{2}a_{0}h^{\alpha\beta}\partial_{\mu}h_{\alpha}^{\mu} + \frac{1}{2}a_{0}h^{\alpha\beta}\partial_{\mu}h_{\alpha}^{\mu} + \frac{1}{2}a_{0}h^{\alpha\beta}\partial_{\mu}h_{\beta}^{\mu} + \frac{1}{2}a_{0}h^{\alpha\beta}\partial_{\mu}h_{\alpha}^{\mu} + \frac{1}{2}a_{0}h^{\alpha\beta}\partial_{\mu$	$^{\beta}$	$\Gamma^{\mu}_{\mu\beta}$ +	$\Gamma^{\mu}_{\beta\mu}$ -	$a_5 \Gamma^{\alpha \beta}_{\alpha} \Gamma^{\mu}_{\beta \mu} + \frac{1}{2} a_7 \Gamma^{\alpha \beta}_{\alpha} \Gamma^{\mu}_{\beta \mu} - \frac{1}{2} a_9 \Gamma^{\alpha \beta}_{\alpha} \Gamma^{\mu}_{\beta \mu} +$	$^{\beta}\Gamma_{\beta}^{\mu}_{\mu}$ -	$\Gamma_{eta\mulpha}$ -	$a_5 \Gamma_{\alpha\mu\beta} \Gamma^{\alpha\beta\mu} + \frac{9}{4} a_7 \Gamma_{\alpha\mu\beta} \Gamma^{\alpha\beta\mu} - \frac{1}{2} a_9 \Gamma_{\alpha\mu\beta} \Gamma^{\alpha\beta\mu} -$	$a_7 \Gamma_{\alpha\beta\mu} \Gamma^{\alpha\beta\mu} - \frac{1}{2} a_9 \Gamma_{\alpha\beta\mu} \Gamma^{\alpha\beta\mu} - \frac{1}{2} a_0 \Gamma_{\alpha\mu\beta} \Gamma^{\alpha\beta\mu} - \frac{1}{2} a_0 \Gamma_{\alpha\mu\beta} \Gamma^{\alpha\beta\mu}$	-αβμ +	
			J_{rC}	ah^{μ}_{l}			+	+			'			
6 a ₇)	$\Delta_{3}^{#1} + \alpha \beta \chi$ -	1	$\alpha\beta$ + β	+ +										
6 a ₇)	$\Delta_{3^{-}}^{\#1} + \alpha \beta \chi \left[-\frac{\alpha}{3} \right]$	1	$\alpha\beta$ + β	+										

	$\Gamma_{0}^{#1}$ $\Gamma_{0}^{#2}$		Γ ₀ ^{#3}	Γ ₀ ^{#4}	$h_{0}^{#1}$	$h_{0}^{#2}$	Γ ₀ ^{#1}
-#1 0+ †	0	0	0	0	0	0	0
-#2 0+ †	0	$\frac{1}{4} \left(-3 a_0 - 2 \left(a_5 + 4 a_6 - 7 a_7 \right) \right)$	a ₅ -2a ₆ -a ₇	$\frac{-3 a_0 + 2 (a_5 - 8 a_6 + 5 a_7)}{4 \sqrt{2}}$	0	0	0
-#3 0+ †	0	a ₅ - 2 a ₆ - a ₇	$\frac{1}{4} \left(-3 a_0 - 2 \left(a_5 + 4 a_6 - 7 a_7 \right) \right)$	$\frac{-3 a_0 + 2 (a_5 - 8 a_6 + 5 a_7)}{4 \sqrt{2}}$	0	0	0
-#4 0+ †	0	$\frac{-3 a_0 + 2 (a_5 - 8 a_6 + 5 a_7)}{4 \sqrt{2}}$	$\frac{-3 a_0 + 2 (a_5 - 8 a_6 + 5 a_7)}{4 \sqrt{2}}$	$\frac{1}{4} \left(-3 a_0 + 2 \left(a_5 - 8 a_6 + 5 a_7 \right) \right)$	0	0	0
η ^{#1} †	0	0	0	0	$\frac{a_0 k^2}{4}$	0	0
η ₀ ^{#2} †	0	0	0	0	0	0	0
^{-#1} †	0	0	0	0	0	0	$-\frac{a_0}{2}$ - 2 a_1 + 2 a_1

	$\Delta_0^{\#1}$	$\Delta_0^{\#2}$	$\Delta_{0}^{#3}$	$\Delta_0^{\#4}$	$\mathcal{T}_{0}^{\#1}$	$\mathcal{T}_{0}^{\#2}$	$\Delta_0^{#1}$
# ₁ †	0	0	0	0	0	0	0
#2 0+ †	0	$-\frac{2}{3(a_0+2a_5-6a_7)} - \frac{1}{6a_0-4(a_5-8a_6+5a_7)}$	$\frac{2}{3(a_0+2a_5-6a_7)} - \frac{1}{6a_0-4(a_5-8a_6+5a_7)}$	$-\frac{1}{\sqrt{2} (3 a_0 - 2 (a_5 - 8 a_6 + 5 a_7))}$	0	0	0
#3 0+ †	0	$\frac{2}{3(a_0+2a_5-6a_7)} - \frac{1}{6a_0-4(a_5-8a_6+5a_7)}$	$-\frac{2}{3(a_0+2a_5-6a_7)}-\frac{1}{6a_0-4(a_5-8a_6+5a_7)}$	$-\frac{1}{\sqrt{2} (3 a_0 - 2 (a_5 - 8 a_6 + 5 a_7))}$	0	0	0
#4 0+ †	0	$-\frac{1}{\sqrt{2} (3 a_0 - 2 (a_5 - 8 a_6 + 5 a_7))}$	$-\frac{1}{\sqrt{2} (3 a_0 - 2 (a_5 - 8 a_6 + 5 a_7))}$	$\frac{1}{-3a_0+2(a_5-8a_6+5a_7)}$	0	0	0
^{#1} 0+ †	0	0	0	0	$\frac{4}{a_0 k^2}$	0	0
^{#2} †	0	0	0	0	0	0	0
# ₁ †	0	0	0	0	0	0	$-\frac{2}{a_0+4a_1-4a_2}$

	$\Delta^{\#1}_{2^+lphaeta}$	$\Delta^{\#2}_{2}{}^{+}_{lphaeta}$	$\Delta^{\#3}_{2}{}^{+}{}_{lphaeta}$	${\mathcal T}_{2}^{\sharp 1}{}_{lphaeta}$	$\Delta_{2}^{\#1}{}_{lphaeta\chi}$	$\Delta_{2}^{\#2}{}_{lphaeta\chi}$
$\Delta_{2}^{\#1}\dagger^{lphaeta}$	$\frac{4 (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)}{2 (2 a_1 + a_2) (a_5 + 3 a_7) + a_9^2 + a_0 (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)}$	0	$-\frac{4 \left(2 a_{1}+a_{2}+a_{9}\right)}{\sqrt{3} \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$	0	0	0
$\Delta_2^{\#2} \dagger^{\alpha\beta}$	0	$-\frac{4}{3(a_0+2a_5-6a_7)}$	0	0	0	0
$\Delta_2^{#3} \dagger^{\alpha\beta}$	$\frac{4(2a_1+a_2+a_9)}{\sqrt{3}(2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9))}$	0	$-\frac{4 \left(a_{0}-2 a_{1}-a_{2}\right)}{3 \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$	0	0	0
$\mathcal{T}_{2}^{\#1}\dagger^{lphaeta}$	0	0	0	$-\frac{8}{a_0 k^2}$	0	0
$\Delta_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	0	0	$\frac{4(2a_1+a_2-2a_5-6a_7+2a_9)}{2(2a_1+a_2)(a_5+3a_7)+a_9^2+a_0(2a_1+a_2-2a_5-6a_7+2a_9)}$	$-\frac{4 \left(2 a_{1}+a_{2}+a_{9}\right)}{\sqrt{3} \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$
$\Delta_2^{#2} \dagger^{\alpha\beta\chi}$	0	0	0	0	$-\frac{4 \left(2 a_{1}+a_{2}+a_{9}\right)}{\sqrt{3} \left(2 \left(2 a_{1}+a_{2}\right) \left(a_{5}+3 a_{7}\right)+a_{9}^{2}+a_{0} \left(2 a_{1}+a_{2}-2 a_{5}-6 a_{7}+2 a_{9}\right)\right)}$	$-\frac{4 (a_0-2 a_1-a_2)}{3 (2 (2 a_1+a_2) (a_5+3 a_7)+a_9^2+a_0 (2 a_1+a_2-2 a_5-6 a_7+2 a_9))}$

Total constraints:	$\Delta_{1}^{\#1\alpha} == \Delta_{1}^{\#2\alpha}$	$2 (\Delta_{1}^{\#6\alpha} + \Delta_{1}^{\#5\alpha}) = \Delta_{1}^{\#4\alpha} + \Delta_{1}^{\#3\alpha}$	$\mathcal{T}_{1}^{\#1\alpha} == 0$	$\Delta_{0+}^{\#1} == 0$	$\Delta_{0+}^{#3} + 3 \Delta_{0+}^{#2} == 2 \Delta_{0+}^{#4}$	$T_{0+}^{#2} == 0$	SO(3) irreps	Source constraints/gauge generators
12	3	3	3	1	1	1	Multiplicities	ators

		$\Gamma_{2}^{\#1}_{\alpha\beta}$	$\Gamma^{\#2}_{2}^{+}{}_{lphaeta}$	Γ ₂ ^{#3} _{αβ}	$h_{2}^{\#1}{}_{\alpha\beta}$	$\Gamma^{\#1}_{2^- lphaeta\chi}$	$\Gamma_{2^{-} \ lpha eta \chi}^{\# 2}$
$\Gamma_{2}^{\#1} \dagger^{\alpha_{i}}$	β	$\frac{1}{4}(a_0 - 2a_1 - a_2)$	0	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	0	0	0
$\Gamma_{2}^{\#2} + \alpha$	β	0	$-\frac{3}{4}(a_0+2a_5-6a_7)$	0	0	0	0
$\Gamma_{2}^{#3} + \alpha_{3}^{\alpha_{3}}$	$\beta = \frac{1}{2}$	$\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	0	$-\frac{3}{4}(2a_1+a_2-2a_5-6a_7+2a_9)$	0	0	0
$h_{2}^{\#1} + \alpha$	β	0	0	0	$-\frac{a_0 k^2}{8}$	0	0
$\Gamma_2^{\#1} + \alpha\beta$	X	0	0	0	0	$\frac{1}{4} (a_0 - 2 a_1 - a_2)$	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$
$\Gamma_2^{\#2} + \alpha \beta_2$	X	0	0	0	0	$-\frac{1}{4}\sqrt{3}(2a_1+a_2+a_9)$	$-\frac{3}{4} (2 a_1 + a_2 - 2 a_5 - 6 a_7 + 2 a_9)$

Massive and massless spectra

Quadratic pole

Pole residue: $-\frac{1}{a_0} > 0$ Polarisations: 2

Unitarity conditions

 $a_0 < 0 \&\& a_7 > \frac{1}{10} (3 a_0 - 2 a_5 + 16 a_6) \&\& a_{13} > 0$