Deep Learning

Hung-yi Lee

李宏毅

Deep learning attracts lots of attention.

 I believe you have seen lots of exciting results before.

Deep learning trends at Google. Source: SIGMOD 2016/Jeff Dean

Ups and downs of Deep Learning

- 1958: Perceptron (linear model)
- 1969: Perceptron has limitation
- 1980s: Multi-layer perceptron
 - Do not have significant difference from DNN today
- 1986: Backpropagation
 - Usually more than 3 hidden layers is not helpful
- 1989: 1 hidden layer is "good enough", why deep?
- 2006: RBM initialization
- 2009: GPU
- 2011: Start to be popular in speech recognition
- 2012: win ILSVRC image competition
- 2015.2: Image recognition surpassing human-level performance
- 2016.3: Alpha GO beats Lee Sedol
- 2016.10: Speech recognition system as good as humans

Three Steps for Deep Learning

Deep Learning is so simple

Different connection leads to different network structures 不一样的链接方式就形成了不一样的结构,就是一个不一样的model (fs), 然后进行训练,得到每个neural 的w和b

Network parameter θ : all the weights and biases in the "neurons"

Fully Connect Feedforward

Network

全连接前向反馈网络是指:在这个网络中每两层的neural 之间凉凉相连, 且因为数据是从前先后传播的,所以叫前向反馈。

前一层的输入乘以w再加上bias 0 得到的并不就是下一层的输出, 而是要经过activation function的计算。 如果af取sigmoid函数,wx+b就相当于z。

Sigmoid Function $\sigma(z)^{1}$ $\sigma(z) = \frac{1}{1 + e^{-z}}$

Fully Connect Feedforward Network

Fully Connect Feedforward Network

This is a function.

Input vector, output vector

$$f\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}0.62\\0.83\end{bmatrix} \quad f\left(\begin{bmatrix}0\\0\end{bmatrix}\right) = \begin{bmatrix}0.51\\0.85\end{bmatrix}$$

Given network structure, define *a function set*

Fully Connect Feedforward Network

把输入的向量佳作输入层(并不是神经元层),最后一层神经元叫做输出层,中间所有的都叫做隐藏层。

Matrix Operation

Neural Network

Neural Network

$$y = f(x)$$

Using parallel computing techniques to speed up matrix operation

Output Layer as Multi-Class Classifier

Feature extractor replacing feature engineering

将输出层看作一个multi-class classfier,经过softmax的作用,得到了第一营每一个数字的概率,那个数字的概率最大,便认为是那个数字

Example Application

Input

Output

Each dimension represents the confidence of a digit.

Example Application

Handwriting Digit Recognition

Example Application

You need to decide the network structure to let a good function in your function set.

FAQ

Q: How many layers? How many neurons for each layer?

Trial and Error

+

Intuition

- Q: Can the structure be automatically determined?
 - E.g. Evolutionary Artificial Neural Networks
- Q: Can we design the network structure?

Convolutional Neural Network (CNN)

Three Steps for Deep Learning

Deep Learning is so simple

Loss for an Example

在回归问题中,常用均方差来衡量预测值与 实际值之间的距离。通常用cross entropy 来描述两个概率分布(预测的概率与实际的 概率)之间的距离。

Total Loss

For all training data ...

Total Loss:

$$L = \sum_{n=1}^{N} l^n$$

Find *a function in function set* that
minimizes total loss L

Find <u>the network</u> <u>parameters</u> θ^* that minimize total loss L

Three Steps for Deep Learning

Deep Learning is so simple

Gradient Descent

Gradient Descent

Gradient Descent

This is the "learning" of machines in deep learning

Even alpha go using this approach.

People image

Actually

I hope you are not too disappointed :p

Backpropagation

• Backpropagation: an efficient way to compute $\partial L/\partial w$ in neural network

Ref:

http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/DNN%20b ackprop.ecm.mp4/index.html

Three Steps for Deep Learning

Deep Learning is so simple

Acknowledgment

• 感謝 Victor Chen 發現投影片上的打字錯誤