3 Kohomologie von Garben

§9 \mathcal{O}_X -Modulgarben

Definition 3.9.1

Sei (X, \mathcal{O}_X) ein lokal geringter Raum, \mathcal{F} eine Garbe von abelschen Gruppen auf X. \mathcal{F} heißt \mathcal{O}_X
Modulgarbe, wenn gilt:

- (i) Für jedes offene $U \subseteq X$ ist $\mathcal{F}(U)$ ein \mathcal{O}_X -Modul
- (ii) Für $U' \subseteq U \subseteq X$ offen ist $\mathcal{F}(U) \to \mathcal{F}(U')$ ein $\mathcal{O}_X(U)$ -Modulhomomorphismus, wobei $\mathcal{F}(U')$ durch den Ringhomomorphismus $\mathcal{O}_X(U) \to \mathcal{O}_X(U')$ zum $\mathcal{O}_X(U)$ -Modul wird.

Bemerkung 3.9.2

Die \mathcal{O}_X -Modulgarben bilden mit den \mathcal{O}_X -linearen Abbildungen eine Kategorie \mathcal{O}_X – Mod.

Beispiele

Sei X eine nichtsinguläre Kurve über einem algebraisch abgeschlossenen Körper k und $D = \sum_{P \in X} n_P P$ ein Divisor auf X.

Für offenes $U \subseteq X$ sei

$$\mathcal{L}(D)(U) := \{ f \in k(X) : \text{div } f | U + D | U \ge 0 \}$$

= \{ f \in k(X) : \forall P \in U : \text{ord}_P(f) + n_P \ge 0 \}

 $\mathcal{L}(D)$ ist eine \mathcal{O}_X -Modulgarbe, denn $\operatorname{div}(f \cdot g) = \operatorname{div}(f) + \operatorname{div}(g)$.

Definition + Bemerkung 3.9.3

Seien $\mathcal{F}, \mathcal{G} \mathcal{O}_X$ -Modulgarben.

- (a) $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}$ sei die zu $U \mapsto \mathcal{F}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{G}(U)$ assoziierte Garbe.
- (b) Für offenes $U \subseteq X$ sei

$$\mathcal{H}om(\mathcal{F},\mathcal{G})(U) := \operatorname{Hom}_{\mathcal{O}_{Y}|U}(\mathcal{F}|U,\mathcal{G}|U)$$

 $\mathcal{F} \otimes \mathcal{G}$ und $\mathcal{H}om(\mathcal{F}, \mathcal{G})$ sind \mathcal{O}_X -Modulgarben.

Definition + Bemerkung 3.9.4

Sei $f: X \to Y$ ein Morphismus von lokalgeringten Räumen.

- (a) Für jede \mathcal{O}_X -Modulgarbe \mathcal{F} ist $f_*\mathcal{F}$ eine \mathcal{O}_Y -Modulgarbe auf Y.
- (b) Für jede \mathcal{O}_Y -Modulgarbe \mathcal{G} ist $f^{-1}\mathcal{G}$ eine $f^{-1}\mathcal{O}_Y$ -Modulgarbe und

$$f^*\mathcal{G} := f^{-1}\mathcal{G} \otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X$$

eine \mathcal{O}_X -Modulgarbe.

Beweis (a) Für offenes $U \subseteq Y$ ist $f_*\mathcal{F}(U) = \mathcal{F}(f^{-1}(U))$ ein $\mathcal{O}_X(f^{-1}(U))$ -Modul. f_U^{\sharp} ist ein Ringhomomorphismus $\mathcal{O}_Y(U) \to \mathcal{O}_X(f^{-1}(U))$. Dadurch wird $f_*\mathcal{F}(U)$ zu einem $\mathcal{O}_Y(U)$ -Modul.

(b) Den Garbenhomomorphismus $f^{-1}\mathcal{O}_Y \to \mathcal{O}_X$ erhält man aus $f^{\sharp}: \mathcal{O}_Y \to f_*\mathcal{O}_X$

$$f^{-1}(f^{\sharp}): f^{-1}\mathcal{O}_Y \to f^{-1}f_*\mathcal{O}_X \to \mathcal{O}_X$$

den hinteren Morphismus liefert 1.1.16 (d).

§10 Quasikohärente \mathcal{O}_X -Modulgarben

Definition + Bemerkung 3.10.1

Sei $X = \operatorname{Spec} R$ ein affines Schema, M ein R-Modul. Für offenes $U \subseteq X$ sei

 $\widetilde{M}(U):=\{s:U\to\bigcup_{\mathfrak{p}\in U}M_{\mathfrak{p}}: \text{für jedes }\mathfrak{p}\in U \text{ gibt es eine Umgebung }U_{\mathfrak{p}}$

und Elemente $m_{\mathfrak{p}} \in M, f_{\mathfrak{p}} \in R - \mathfrak{q}, \text{ sodass}$

für alle
$$\mathfrak{q} \in U_{\mathfrak{p}}$$
 gilt: $s(\mathfrak{q}) = \frac{m_{\mathfrak{p}}}{f_{\mathfrak{p}}} \in M_{\mathfrak{p}}$ }

wobei $M_{\mathfrak{p}} = M \otimes_R R_{\mathfrak{p}}$ ist.

Proposition 3.10.2

Seien $X = \operatorname{Spec} R, M, \widetilde{M}$ wie in 10.1.

- (a) Für jedes $\mathfrak{p} \in X$ ist $\widetilde{M}_{\mathfrak{p}} \cong M_{\mathfrak{p}}$.
- (b) Für jedes $f \in R$ ist $\widetilde{M}(D(f)) \cong M_f$ (insbesondere $\widetilde{M}(X) \cong M$).

Beweis Wie für \mathcal{O}_X .

Bemerkung 3.10.3

 $M \mapsto \widetilde{M}$ ist ein exakter, volltreuer Funktor $\underline{R - Mod} \to \underline{\mathcal{O}_X - Mod}$, denn: Lokalisieren ist exakt, da $R_{\mathfrak{p}}$ flacher R-Modul ist (was Tensorieren exakt macht).

Bemerkung 3.10.4

- (a) $\widetilde{M \otimes_R N} \cong \widetilde{M} \otimes_{\mathcal{O}_X} \widetilde{N}$
- (b) $\widetilde{\bigotimes M_i} \cong \bigotimes \widetilde{M_i}$

Beweis (a) $(M \otimes_R N) \otimes_R R_{\mathfrak{p}} \cong (M \otimes_R R_{\mathfrak{p}}) \otimes_{R_{\mathfrak{p}}} (N \otimes_R R_{\mathfrak{p}})$

Bemerkung 3.10.5

Sei $f:X\to Y$ ein Morphismus, $X=\operatorname{Spec} R,Y=\operatorname{Spec} R',\alpha:R'\to R$ der zugehörige Ringhomomorphismus.

- (a) Für jeden R-Modul M ist $f_*\widetilde{M}\cong \widetilde{_{\alpha}M}$ ($_{\alpha}M$ sei M aufgefasst als R'-Modul über α).
- (b) Für jeden R'-Modul N ist $f^*\widetilde{N} = N \otimes_{R'} R$

Beweis (a)

$$f_*\widetilde{M}(U) = \widetilde{M}(f^{-1}(U))$$
 als $\mathcal{O}_Y(U)$ -Modul
$$=_{\alpha}\widetilde{M}(U)$$

(b)
$$f^*\widetilde{N}(X) = (f^{-1}\widetilde{N} \otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X)(X) = N \otimes_{R'} R$$

Definition 3.10.6

Sei (X, \mathcal{O}_X) ein Schema, \mathcal{F} eine \mathcal{O}_X -Modulgarbe.

(a) \mathcal{F} heißt **quasi-kohärent**, wenn es eine offene affine Überdeckung $(U_i = \operatorname{Spec} R_i)_{i \in I}$ von X und R_i -Moduln M_i gibt, sodass

$$\mathcal{F}|U_i \cong \widetilde{M}_i$$

für alle $i \in I$ gilt.

(b) \mathcal{F} heißt **kohärent**, wenn in (a) jedes M_i endlich erzeugbarer R_i -Modul ist.

Proposition 3.10.7

Eine \mathcal{O}_X -Modulgarbe \mathcal{F} auf einem Schema X ist genau dann quasi-kohärent, wenn für jedes offene affine $U = \operatorname{Spec} R \subseteq X$ ein R-Modul M existiert mit $\mathcal{F}|U \cong \widetilde{M}$.

Beweis 1. Schritt: Sei $X \times A$ affin, denn:

Sei $U = \operatorname{Spec} R \subseteq X$ offen und affin, $(U_i = \operatorname{Spec} R_i)$ die gegebene Überdeckung von X. $(U \cap U_i)$ ist eine offene Überdeckung von U. Überdecke $U \cap U_i$ durch $D(f_{ij}), f_{ij} \in R_i$. Dann gilt:

$$\mathcal{F}|D(f_{ij}) = (\mathcal{F}|U)|D(f_{ij}) = \widetilde{M}_i|D(f_{ij}) = (\widetilde{M}_i)_{f_{ij}}$$

2. Schritt: FEHLT NOCH □