Nom:	Prénom :	Groupe :
ECOLE POLYTE	CHNIQUE UNIVERSITAIRE DE N	NICE SOPHIA-ANTIPOLIS
Université Nice Sophia Antipolis	Cycle Initial Polytech Première Année Année scolaire 2015/2016	Note / 20
École d'ingénieurs POLYTECH' NICE-SOPHIA	Epreuve de circuit N°3	7 20

Durée: 1h30

Jeudi 17 Décembre 2015

- Cours et documents non autorisés.
- □ Calculatrice collège autorisée.
- □ Vous répondrez directement sur cette feuille.
- □ Tout échange entre étudiants (gomme, stylo, réponses...) est interdit
- □ Vous êtes prié :
 - d'indiquer votre nom, prénom et groupe.
 - d'éteindre votre téléphone portable et de le mettre dans votre sac.

N'OUBLIEZ PAS LES UNITES.

RENDEZ UNE COPIE PROPRE S'IL VOUS PLAIT.

Conseils:

- Faites des schémas propres.
- Organisez vos schémas et votre rédaction, cela sera ensuite plus simple pour vous (et pour moi).

Rappel:

- $pico = 10^{-12}$
- nano = 10^{-9}
- $micro = 10^{-6}$

On donne :
$$e^{-1} = 0.37$$

 $e^{-2} = 0.135$
 $e^{-3} = 0.05$
 $e^{-4} = 0.018$
 $e^{-5} = 0$

Questions de cours sur les impédances et dimension (2 pts)

0,25pt	Expression de l'impédance d'une résistance :
0,25pt	Expression de l'impédance d'une bobine :
0,25pt	Expression de l'impédance d'un condensateur :
0,25pt	Expression et définition de la fonction de transfert d'un circuit :
0,25pt	Expression du gain :
0,25pt	Expression du gain en décibel :
0,25pt	Comment est définie la pulsation de coupure $oldsymbol{\omega}_{\mathbb{C}}$?
0,25pt	Que représente l'argument de la fonction de transfert ?

EXERCICE I : Savoir reconnaitre un filtre passe-bas/passe-haut (2,5 pts)

Soit un circuit RC ou RL : en notation complexe, on écrit $\underline{u_E}$ la tension d'alimentation du circuit et $\underline{u_S}$ la tension de sortie, prise sur l'un des éléments.

La mesure du gain en décibel et de la phase en degré, donnent lieu aux graphes ci-dessous.

1.1. Quel est ce type de filtre ? Justifiez votre réponse.	ıpı	
	1	

I.2. A partir du graphique, déterminez la pulsation de coupure $\omega_{\rm C}$.

I.3. En déduire la fréquence de coupure fc.

0,5pt

EXERCICE II : Régime permanent (3 pts)

Le régime permanent est atteint.

Calculez les tensions U_1 et U_2 ainsi que les courants I_1 et I_2 .

Faites (entre autre) un schéma explicatif.

EXERCICE III: Détermination d'un élément inconnu (3 pts)

Soit les graphes ci-dessous, donnant l'évolution de la tension et du courant dans un élément inconnu.

Tension

Courant

III.1. Déduire du graphe les réponses aux questions suivantes :

	Tension	Courant	1 r
Amplitude			
T_0			
ω_0			
Expression*			

pour l'expression des signaux en fonction du temps, utilisez les fonctions sinus ou cosinus (n'introduisez pas de déphasage).

TTT A	\sim 1 $^{\prime}$	12/1/	•	0	T)		1	, .	
111 7	(.)1101 Act	Lalamant	inconnii	•	Donnez sa	779	LOIL	numaria	110
111.4.	wuci cou.	i eiemem	incomia		Dunnez sa	va.	ıcuı	пишсти	uc

- 1	5	n	+

III.3. Quelle est la valeur maximale de l'énergie dans l'élément ?

0,5pt

EXERCICE IV : Régime transitoire (5 pts)

Soit le schéma ci-contre.

L'interrupteur S_1 est fermé à t=0. L'interrupteur S_2 est ouvert à t=4ms.

 S_1 est fermé ; S_2 est fermé. On donne l'expression de $i_1(t):i_1(t)=2-2e^{-500t}$

IV.1. Donnez la valeur numérique de i₁ en t=4ms.

0,5pt

0,5pt

IV.2. On ouvre S_2 . On appelle à présent le courant $i_2(t)$. Que vaut $i_2(0)$? Expliquez brièvement.

IV.3. Donnez l'expression de i₂(t) (dessinez le circuit, écrivez la loi des mailles, déduisez-en l'équation différentielle puis donnez-en la solution en détaillant un minimum).

	<u>Remarque</u> : de façon à rendre la suite indépendante de la première partie, vous prendrez
	$R = 10 \Omega$.
	V.2. Expression du courant :
	V.2.a. Donnez l'expression numérique complexe de Z (avec $R=10\Omega$ et les données de l'énoncé).
	v.2.a. Donnez l'expression numerique complexe de 2 (avec 11-1022 et les données de l'enonce).
0.25	
0.20	
	V 2 h Dannaz l'avarassion et la valour de l'argument de 7
	V.2.b. Donnez l'expression et la valeur de l'argument de Z.
0.5 pt	
0.5 pt	V.2.b. Donnez l'expression et la valeur de l'argument de Z.
0.5 pt	
0.5 pt	
0.5 pt	
0.5 pt 0.75	
	V.2.c. Donnez l'expression de l'argument du courant <u>i</u> .
	V.2.c. Donnez l'expression de l'argument du courant <u>i</u> .
	V.2.c. Donnez l'expression de l'argument du courant <u>i</u> .
	V.2.c. Donnez l'expression de l'argument du courant <u>i</u> .
	V.2.c. Donnez l'expression de l'argument du courant <u>i</u> .
	V.2.c. Donnez l'expression de l'argument du courant <u>i</u> .
	V.2.c. Donnez l'expression de l'argument du courant <u>i</u> .
	V.2.c. Donnez l'expression de l'argument du courant <u>i</u> .
	V.2.c. Donnez l'expression de l'argument du courant <u>i</u> .