Математически анализ 2

Exonaut

 $10\ {
m март}\ 2021\, {
m г}.$

Съдържание

L	Лен	кция 1: Пространството R^m	2
	1.1	Няколко важни неравенства	2
	1.2	Видове крайно мерни пространства	2
		1.2.1 Линейно(Векторно) пространство	2
		1.2.2 Евклидово пространство	3
		1.2.3 Метрично пространство	3
		1.2.4 Нормирано пространство	3
	1.3	Пространството \mathbb{R}^m - дефиниция и основни свойства	3
		1.3.1 Скаларно произведение	4
		1.3.2 Норма и метрика	4
		1.3.3 Скаларен квадрат	4
		1.3.4 Неравенство на Коши-Шварц, чрез скаларен квадрат .	4
		1.3.5 Неравенство на Минковски, чрез скаларен квадрат	4
	1.4	Точки и множества в R^m	4
		1.4.1 Паралелепипед	4
		1.4.2 Сфера и кълбо	5
	1.5	Редици от точки в R^m	7
2	Лекция 2: Функция на няколко променливи. Граница и неп-		
	рек	ъснатост	8
	2.1	Дефниция на функция на няколко променливи	8
	2.2	Граница на функция на няколко променливи	8
	2.3	Непрекъснатост на функция на няколко променливи	9
	2.4	Равномерна непрекъснатост на функция на няколко промен-	
		ливи	10
3	Лен	кция 3: Частни производни. Диференцируемост на фун-	
		ия на две и повече променливи	10
	3.1	Дефиниция на частна производна	10
	3.2	Частни производни от по-висок ред	11
	33	Лиференцируемост на функция	19

1 Лекция 1: Пространството R^m

1.1 Няколко важни неравенства

Нека a_k и $b_k(k=1,2,...,m)$ са реални числа и $m \in N$

Теорема 1.1.1 (**Неравенство на Коши-Шварц**) В сила е следното неравенство:

$$\left(\sum_{k=1}^{m} a_k b_k\right)^2 \le \left(\sum_{k=1}^{m} a_k\right) \left(\sum_{k=1}^{m} b_k\right)$$

Равенство се достига само когато a_k и b_k са пропорционални:

 $(\exists \lambda_0 : b_k = \lambda_0 a_k)$

Равенството може да се запише:

$$\left| \sum_{k=1}^{m} a_k b_k \right| \le \sqrt{\left(\sum_{k=1}^{m} a_k\right)} \sqrt{\left(\sum_{k=1}^{m} b_k\right)}$$

Теорема 1.1.2 (**Неравенство на Минковски**) В сила е следното неравенство:

$$\sqrt{\sum_{k=1}^{m} (a_k + b_k)^2} \le \sqrt{\sum_{k=1}^{m} a_k^2} + \sqrt{\sum_{k=1}^{m} b_k^2}$$

Равенство се достига само когато a_k и b_k са пропорционални. Общ случай на неравенството на Минковски:

$$\left(\sum_{k=1}^{m} |a_k + b_k|^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{m} |a_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{m} |b_k|^p\right)^{\frac{1}{p}} (p \ge 1)$$

Теорема 1.1.3 В сила е следното неравенство:

$$|a_k + b_k| \le \sqrt{\sum_{k=1}^m (a_k + b_k)^2} \le \sum_{k=1}^m |a_k - b_k|$$

1.2 Видове крайно мерни пространства

1.2.1 Линейно(Векторно) пространство

Дефиниция 1.2.1 Нека L е линейно (векторно) пространство над полето R. B него има въведени две операции: събиране и умножение на вектор c число.

1.
$$x, y \in L \implies z = x + y \in L$$

2.
$$x \in L, \lambda \in R \implies z = \lambda x \in L$$

1.2.2 Евклидово пространство

Дефиниция 1.2.2 Крайномерното пространство L се нарича евклидово, ако в него е въведено скаларно произведение, т.е за всеки два елемента $x,y \in L$ може да се съпостави реално число (x,y), удовлетворяващо свойствата за линейност, симетричност и положителна определеност.

1.
$$x, y, z \in L, \lambda \in R \implies (x + y, z) = (x, z) + (y, z); (\lambda x, y) = \lambda(x, y)$$

$$2. \ x, y \in L \implies (x, y) = (y, x)$$

3.
$$x \in L, x \neq 0 \implies (x, x) > 0$$

1.2.3 Метрично пространство

Дефиниция 1.2.3 Крайномерното пространство L се нарича метрично, ако в него е въведено разстояние (метрика) ρ , т.е за два елемента $x,y\in L$ може да се съпостави неотрицателно число $\rho\geq 0$ със следните свойства

1.
$$\rho(x,x) = 0; \rho(x,y) > 0, x \neq y$$

2.
$$\rho(x, y) = \rho(y, x)$$

3.
$$\rho(x,z) \le \rho(x,y) + \rho(y,z) \forall x,y,z \in L$$

Метрично пространство L с метрика ρ се означава (L, ρ)

1.2.4 Нормирано пространство

Дефиниция 1.2.4 Пространството се нарича нормирано, ако в него е въведена норма $||.||,\ m.e\ ||.||:L\to R_0^+$ със свойства

1.
$$x = 0 \implies ||x|| = 0, x \neq 0 \implies ||x|| > 0$$

2.
$$x \in L, \lambda \in R \implies ||\lambda x|| = |\lambda|||x||$$

$$3. \ x,y \in L \implies ||x+y|| \le |x|+|y|$$

Теорема 1.2.1 Ако L е нормирано пространство c дадена норма ||.||, то L е метрично пространство, т.е равенството $\rho(x,y) = ||x-y||$ дефинира разстоянието в L

1.3 Пространството R^m - дефиниция и основни свойства

Дефиниция 1.3.1 Множесството от наредени т-торки $a=(a_1,a_2,...,a_m)$ от реални числа. Числата $a_1,a_2,...,a_m$ се наричат съответно първа, втора, ..., т-та кордината на a.

Ако имаме
$$a = (a_1, a_2, ..., a_m), b = (b_1, b_2, ..., b_m), ; \lambda \in R$$
 то

1.
$$a+b=(a_1,a_2,...,a_m)+(b_1,b_2,...,b_m)=(a_1+b_1,a_2+b_2,...,a_m+b_m)\in R^m$$

2.
$$\lambda a = (\lambda a_1, \lambda a_2, ..., \lambda a_m) \in \mathbb{R}^m$$

1.3.1 Скаларно произведение

Скаларно произведение се дефинира:

$$(a,b) = \left(\sum_{k=1}^{m} a_k b_k\right)$$

С така въведено скаларно произведение пространството \mathbb{R}^m се превръща в евклидово.

1.3.2 Норма и метрика

С равенството:

$$||a|| := \sqrt{\sum_{k=1}^{m} (a_k)^2}$$

се въвежда норма в \mathbb{R}^m .

Нормата генерира метрика в R^m с формула:

$$\rho(a,b) := ||a - b|| = \sqrt{\sum_{k=1}^{m} (a_k - b_k)^2}$$

1.3.3 Скаларен квадрат

Скаларен квадрат: $a^2 = (a, a) = \sum_{k=1}^m a_k^2$

1.3.4 Неравенство на Коши-Шварц, чрез скаларен квадрат

Коши-Шварц чрез скаларен квадрат: $(a,b)^2 \leq a^2b^2$ и $|(a,b)| \leq ||a||||b||$

1.3.5 Неравенство на Минковски, чрез скаларен квадрат

Неравенство на Минковски чрез скаларен квадрат: $||a+b|| \le ||a|| + ||b||$

1.4 Точки и множества в R^m

1.4.1 Паралелепипед

Дефиниция 1.4.1 Множеството

$$\Pi(a; \delta_1, \delta_2, ..., \delta_m) = \{x \in R^m : -\delta_k < x_k - a_k < \delta_k\}$$

ce нарича отворен паралелепипед в R^m c център точката a.

Множеството

$$\widetilde{\Pi}(a; \delta_1, \delta_2, ..., \delta_m) = \{x \in \mathbb{R}^m : -\delta_k \le x_k - a_k \le \delta_k\}$$

ce нарича затворен паралелепипед в R^m c център точката a.

Ако $\delta_1 = \delta_2 = ... = \delta_m = \delta$, получените множества $\Pi(a; \delta)$ и $\widetilde{\Pi}(a; \delta)$ се наричат съответно отворен и затворен куб в R^m с център a.

1.4.2 Сфера и кълбо

Дефиниция 1.4.2 *Нека числото* r > 0. *Множеството*

$$B(a;r) = \{x | x \in \mathbb{R}^m, \rho(x,a) < r\} = \{x | x \in \mathbb{R}^m, ||x - a|| < r\}$$

се нарича отворено кълбо в R^m с център а и радиус r, множеството

$$\widetilde{B}(a;r) = \{x | x \in \mathbb{R}^m, \rho(x,a) \le r\} = \{x | x \in \mathbb{R}^m, ||x-a|| \le r\}$$

се нарича затворено кълбо в R^m с център а и радиус r, а множеството

$$S(a;r) = \{x | x \in \mathbb{R}^m, \rho(x,a) = r\} = \{x | x \in \mathbb{R}^m, ||x - a|| = r\}$$

се нарича сфера в R^m с център а и радиус r, а множеството

Дефиниция 1.4.3 Точката а се нарича

- $\bullet\,$ вътрешна за множеството A, ако съществува отворено кълбо $B(a,\varepsilon):$ $B(a,\varepsilon)\subset A$
- външна за A, ако съществува $B(a,\varepsilon):B(a,\varepsilon)\subset R^m\setminus A$
- контурна за A, ако за всяко $\varepsilon > 0: B(a,\varepsilon) \cap A \neq \emptyset$ и $B(a,\varepsilon) \cap (R^m \setminus A) \neq \emptyset$
- изолирана ако съществува $\varepsilon > 0$: $B(a, \varepsilon) \cap A = \{a\}$

Дефиниция 1.4.4 Множеството $A \subset R^m$ се нарича

- отворено, ако всяка негова точка е вътрешна
- затворено, ако неговото допълнение $R^m \setminus A$ е отворено

Дефиниция 1.4.5 Околност на дадена точка $a \in R^m$ се нарича всяко отворено множество, което я съдържа. Означава се с U_a .

Дефиниция 1.4.6 Точка а се нарича точка на сетстяване на множеството $A \subset R^m$, ако всяка нейна околност U_a съдържа поне една точка на A, различна от a, $m.e\ U_a \cap (A \setminus \{a\} \neq \emptyset)$

Дефиниция 1.4.7 Величината

$$d = d(A) = \sup_{a', a'' \in A} \rho(a'; a'')$$

се нарича диаметър на множеството $A \subset \mathbb{R}^m$.

Дефиниция 1.4.8 Множеството $A \subset R^m$ се нарича ограничено, ако съшествува кълбо(с краен радиус), което го съдържа.

Дефиниция 1.4.9 Множеството $A \subset R^m$ се нарича компактно, ако A е затворено и ограничено.

Дефиниция 1.4.10 Множесството $x=(x_1,x_2,...,x_m)\in R^m$, чийто кординати са непрекъснати функции $x_k=x_k(t)(k=1,2,...,m)$, дефинирани върху даден интервал [a,b] се нарича непрекъсната крива в R^m . t се нарича параметър на кривата.

Точките $x(a)=(x_1(a),x_2(a),...,x_m(a))$ и $x(b)=(x_1(b),x_2(b),...,x_m(b))$ се наричат начало и край на дадената крива. Ако x(a)=x(b) кривата е затворена

Дефиниция 1.4.11 $He \kappa a \ x^0 = (x_1^0, x_2^0, ..., x_m^0) \in R^m \ u \ \alpha_1, \alpha_2, ..., \alpha_m \ ca фиксирани числа за които <math>\sum_{k=1}^m \alpha_k > 0$. Множеството от точки $x = (x_1, x_2, ..., x_m)$ чисто кординати се представят във вида

$$x_k = x_k^0 + \alpha_k t, k = 1, 2, ..., m, -\infty < t < \infty$$

се нарича права линия в пространството R^m , минаваща през точка x^0 по направление $(\alpha_1, \alpha_2, ..., \alpha_m)$.

Дефиниция 1.4.12 Множеството $A \subset R^m$ се нарича свързано, ако за всеки две негови точки съществува непрекъсната крива γ , която ги свързва и $\gamma \subset A$.

Дефиниция 1.4.13 Множеството $A \subset R^m$ се нарича област, ако е отворено и свързано. Ако е и затворено, то се нарича затворена област.

Дефиниция 1.4.14 Област, всеки две точки на която могат да се съединят с отсечка, изияло лежаща в нея, се нарича изпъкнала област.

Дефиниция 1.4.15 Областа $A \subset R^m$ се нарича звездообразна област, отностно точката $x^0 \in A$, ако за вскяка точка $x \in A$ отсечката $[x^0, x]$ лежи изияло в A.

1.5 Редици от точки в R^m

Дефиниция 1.5.1 Редицата $\{x^{(n)}\}_{n=1}^{\infty}=\{x_1^{(n)},x_2^{(n)},...,x_m^{(n)}\}$ се нарича редица от точки в R^m , а редицата $\{x_k^{(n)}\}_{n=1}^{\infty}(k=1\div m)$ - к-та кординатна редица. За по кратко редицата $\{x^{(n)}\}_{n=1}^{\infty}$ се означава $\{x^{(n)}\}$

Дефиниция 1.5.2 Редицата $\{y^{(l)}\}_{l=1}^{\infty}$ се нарича поредица на редицата $\{x^{(n)}\}$ и се означава:

 $\{x^{(n_l)}\}, l=1,2,..., \ u$ au $\{x^{(n_l)}\}_{l=1}^{\infty}$ ако за всяко l съществува такова n_l , че $y^{(l)}=x^{(n_l)}$, при това, ако l'< l'', то $n_{l'}< n_{l''}$.

Дефиниция 1.5.3 Редицата $\{x^{(n)}\}$ се нарича сходяща към точка $a \in R^m$ (граница на редицата), ако за всяко $\varepsilon > 0$ съществува такова $N_0 > 0$, че за всяко $n > N_0$ е изпълено неравенството $\rho(x^{(n)};a) = ||x^{(n)} - a|| < \varepsilon$. Ако редицата няма граница, се нарича разходяща.

Дефиниция 1.5.4 Точката $a \in R^m$ се нарича точка на сетстяване на редицата $\{x^{(n)}\}$, ако всяка нейна околност съдържа безброй много членове на редицата.

Теорема 1.5.1 *Нека* $x^{(n)} \in R^m$ за $n \in N$ и точката $a \in R^m$. Тогава

$$(\lbrace x^{(n)}\rbrace \to a) \iff (x_k^{(n)} \to a_k, k = 1 \div m)$$

T.e редицата има граница точката a, тогава и само тогава когато всяка от кординатите на редици $\{x_k^{(n)}\}$ има граница съответната кордината a_k на точката a

Теорема 1.5.2 (Критерий на Коши) Hека $x^{(n)} \in R^m$ за $n \in N$. Pедицата $x^{(n)}$ е сходяща тогава и само тогава когато за всяко $\varepsilon > 0$ съществува такова число $N_0 > 0$, че при всяко $n \in N, n > N_0$ и всяко $p \in N$ е изпълено $\rho(x^{(n+p)}, x^{(n)}) = ||x^{(n+p)} - x^{(n)}|| < \varepsilon$

Дефиниция 1.5.5 Редицата $\{x^{(n)}\}$ се нарича ограничена, ако съществува кълбо (с краен радиус), което съдържа всичките ѝ членове.

Теорема 1.5.3 (Болцано-Вайерщрас) От всяка ограничена редица в пространството R^m може да се избере сходяща подредица.

Дефиниция 1.5.6 Всяко множество $A \subset R^m$ се нарича компактно, ако от всяка редица $\{x^{(n)}\}, x^{(n)} \in A$, може да се избере сходяща подредица $\{x_k^{(n)}\}$ с граница принадлежаща на A

2 Лекция 2: Функция на няколко променливи. Граница и непрекъснатост

2.1 Дефниция на функция на няколко променливи

Дефиниция 2.1.1 Казва се че дадена функция с дефиниционна област (дефиниционно множество) D, ако на всяка точка $x=(x_1,x_2,...,x_m)$ от множеството D е съпоставено реално число $f(x)=f(x_1,x_2,...,x_m)$, т.е на всяко $x\in D$ съществува единствено число $y=f(x)\in R$. Понякога за кратко се записва.

$$f:D\to R$$

 $B R^2$ се използва (x,y) за означение, а в R^3 - (x,y,z).

2.2 Граница на функция на няколко променливи

Дефиниция 2.2.1 (Коши) Нека $f:D\to R, a\in R^m$, а е точка на сгъстяване за D. Казва се че f(x) има граница L при $x\to a$ със стойностти $x\neq a$ ако за всяко $\varepsilon>0$ съществува $\delta>0$, че за всяко x от множеството $D\setminus\{a\}$, за което $\rho(x;a)=||x-a||<\delta$ е изпълнено $|f(x)-L|<\varepsilon$. Записва се

$$\lim_{x \to a} f(x) = L$$

Дефиниция 2.2.2 (Хайне) Нека $f: D \to R, a \in R^m$, а е точка на сегствяване за D. Казва се че f(x) има граница L при $x \to a$ със стойностти $x \neq a$ ако за всяка редица $\{x^{(n)}\}, x^{(n)} \in D, x^{(n)} \neq a$ сходяща към a, числовата редица $\{f(x^{(n)})\}$ има граница L.

Теорема 2.2.1 Дефинициите 2.2.1 и 2.2.2 на Коши и Хайне за граница на функция са еквивалентни.

Дефиниция 2.2.3 Нека $f: D \to R, a \in R^m$, а е точка на сгостяване за D. Казва се че f(x) дивергира към ∞ (съответно към $-\infty$) при $x \to a$ със стойностти $x \ne a$, ако за всяко $A \in R$ съществува такова $\delta > 0$, че за всяко x от множеството $D \setminus \{a\}$, за което $\rho(x; a) = ||x-a|| < \delta$ е изпълнено f(x) > A (съответно f(x) < A). Записва се

$$\lim_{x \to a} f(x) = \infty(-\infty)$$

Дефиниция 2.2.4 (Повторна граница) Hека $D \subset R^2, a = (a_1, a_2) \in R^2$ е точка на сгъстяване за D и функция $f: D \to R$. Нека съществува такава околност $U_{a_2} \subset R$ на точката $_2$, че за всички стойностти $y \in U_{a_2}$ да съществува $\lim_{x \to a_1} f(x,y) = \varphi(y)$. Ако освен това съществува $\lim_{y \to a_2} \varphi(y) = A$, A се нарича повторна граница и се означава както следва

$$A = A_{1,2} = \lim_{y \to a_2} (\lim_{x \to a_1} f(x, y))$$

Аналогично се съвежда и другата повторна граница

$$A_{2,1} = \lim_{x \to a_1} (\lim_{y \to a_2} f(x, y))$$

Теорема 2.2.2 *Нека* $D \subset R^2$, $a = (a_1, a_2) \in R^2$ е точка на сгостяване за D и функция $f : D \to R$. Нека

- 1. Нека съществува такава околност $U_{a_2}\subset R$ на точката $_2$, че за всички стойностти $y\in U_{a_2}$ да съществува $\lim_{x\to a_1}f(x,y)=\varphi(y)$.
- 2. Съществува границата $\lim_{(x,y)\to(a_1,a_2)} f(x,y) = L$.

Тогава съществува граница $\lim_{y \to a_2} \varphi(y)$ и освен това е в сила равенствотот $\lim_{y \to a_2} \varphi(y) = L$

2.3 Непрекъснатост на функция на няколко променливи

Дефиниция 2.3.1 Казва се че функцията $f:D\to R$ е непрекъсната в точка $a\in D$ ако $\lim_{x\to a}f(x)=f(a)$.

Дефиниция 2.3.2 (непрекъснатост по Коши) Казва се, че функцията $f: D \to R$ е непрекъсната в точка $a \in D$, ако за всяко $\varepsilon > 0$ съществува $\delta > 0$, че за всяко x от множеството D, за което $\rho(x;a) = ||x-a|| < \delta$ е изпълнено $|f(x) - f(a)| < \varepsilon$.

Дефиниция 2.3.3 (непрекъснатост по Хайне) Казва се, че функцията $f: D \to R$ е непрекъсната в точка $a \in D$ ако за всяка редица $\{x^{(n)}\}$ (с $x^{(n)} \in D$ за $n \in N$) сходяща към а, числовата редица $\{f(x^{(n)})\}$ има граница f(a).

Дефиниция 2.3.4 (за съставна функция) $Heka\ A\subset R^m$ е отворено множество, $f:\to R\ u\ x_k:(\alpha,\beta)\to R, k=1\div m$. Полагайки $x(t)=(x_1(t),x_2(t),...,x_m(t))\in A$ за всяко $t\in(\alpha,\beta)$ съставната функция $F(t)=f\circ x(t)=f(x(t))$ се дефинира по формулата

$$F(t) = f \circ x(t) = f(x(t)) = f(x_1(t), x_2(t), ..., x_m(t))$$

Теорема 2.3.1 Нека $A\subset R^m$ е отворено множество u $f:\to R$ интервальт $(\alpha,\beta)\subset R$, $x_k:(\alpha,\beta)\to R$ за $k=1\div m$. Нека освен това $x(t)=(x_1(t),x_2(t),...,x_m(t))\in A$ за $\forall t\in (\alpha,\beta)$ и x_k са непрекъснати в точката $t_0\in (\alpha,\beta)$ за $k=1\div m$, а f е непрекъсната в $x^0=x(t_0)$. Тогава функцията $F(t)=f\circ x(t)=f(x(t))=f(x_1(t),x_2(t),...,x_m(t))$ е непрекъсната в точката t_0

2.4 Равномерна непрекъснатост на функция на няколко променливи

Дефиниция 2.4.1 Нека $A \subset R^m$ е отворено множество $u \ f : A \to R$. Функцията се нарича равномерно непрекъсната в A, ако за всяко $\varepsilon > 0$ съществува $\delta = \delta(\epsilon)$, че за всеки две точки $x', x'' \in A$ за които разстоянието $\rho(x';x'') = ||x' - x''|| < \delta$, да следва, че $|f(x') - f(x'')| < \varepsilon$.

Теорема 2.4.1 (на Вайерщрас) Нека множеството $K \subset \mathbb{R}^m$ е компактно и функцията $f: K \to \mathbb{R}$ е непрекъсната върху K. Тогава

- 1. f е ограничена в K, m.е същестуват $m, M \in R$ такива че за всички $x \in K$ е изпълнено неравенството $m \le f(x) \le M$
- 2. f достифа най малката и най-голямата си стойност в K, т.е съществуват точки $x^0, y^0 \in K$, такива че

$$f(x^0) = \inf_{x \in K} f(x); f(y^0) = \sup_{y \in K} f(x)$$

Теорема 2.4.2 (на Кантор) Нека множеството $K \subset \mathbb{R}^m$ е компактно и функцията $f: K \to \mathbb{R}$ е непрекъсната върху K. Тогава f е равномерно непрекъсната върху K.

3 Лекция 3: Частни производни. Диференцируемост на функция на две и повече променливи

3.1 Дефиниция на частна производна

Ще дефинираме елементи които ще се използват.

- $D \subset \mathbb{R}^m$ отворено множество
- $x^0 = (x_1^0, x_2^0, ..., x_m^0)$ точка, принадлежаща на D
- $U_{x^0} \subset D$ околност на x^0
- $U_{x_i^0} \subset D$ околност на x_i^0 (i = 1, 2, ..., m)
- точката $(x_1^0,x_2^0,...,x_{i-1}^0,x_i^0,x_{i+1}^i,...,x_m^0)\in U_{x^0},$ за всички стойности на $x_i\in U_{x_i^0}$
- f и g функции, дефинирани съответно в D и $U_{x_i^0}$. т.е $f:D\to R,g:U_{x_i^0}\to R$ и $g(x_i)=f(x_1^0,x_2^0,...,x_{i-1}^0,x_i^0,x_{i+1}^i,...,x_m^0)$

Дефиниция 3.1.1 Производната, ако съществува на функцията g в точката x_i^0 се нарича частна производна на функцията f(по променлива $x_i^0)$ в точката x^0 . Използва се означението $\frac{\partial f(x^0)}{\partial x_i}$ или $f'_{x_i}(x^0)$. Частната производна на функцията f отностно променливата x_i е рав-

Частната производна на функцията f отностно променливата x_i е равна на границата на функцията $\varphi(h_i)=\frac{g(x_i^0+h_i)-g(x_i^0)}{h_i}$ при $h_i\to 0$ (ако съществува) m.e

$$\lim_{h_i \to 0} \varphi(h_i) = \lim_{h_i \to 0} \frac{g(x_i^0 + h_i) - g(x_i^0)}{h_i} = \frac{\partial f(x^0)}{\partial x_i}$$

Пример 3.1.1

$$f(x,y) = x^2 + 9xy^2$$

$$f'_x(x,y) = (x^2)'_x + (9xy^2)'_x = 2x + 9y^2$$

$$f'_y(x,y) = (x^2)'_y + (9xy^2)'_y = 0 + 9x \cdot 2 \cdot y = 18xy$$

3.2 Частни производни от по-висок ред

Дефиниция 3.2.1 Частната производна на частната производна от n-1 ред, n=1,2,... (ако съществува), се нарича частична производна от n-ти ред. Частните производни, получени при диференциране по различни променливи се наричат смесени производни, а получените при диференциране само по една и съща променлива се наричат чисти производни.

Пример 3.2.1
$$f(x,y) = x^3 \sin(6y) + x^2 y^3 + 2222, f''_{x,y} = ?, f''_{y,x} = ?$$

1. $f''_{x,y} = (f'_x(x,y))'_y$

(a)
$$f'_x(x,y) = (x^3\sin(6y))'_x + (x^2y^3)'_x + (2222)'_x = 3x^2\sin(6y) + 2xy^3 + 0$$

(6)
$$f_{x,y}'' = (3x^2\sin(6y) + 2xy^3)_y' = (3x^2\sin(6y))_y' + (2xy^3)_y' = 3x^2\cos(6y).6 + 2.3xy^2 = 18x^2\cos(6y) + 6xy^2$$

2.
$$f''_{y,x} = (f'_y(x,y))'_x$$

(a)
$$f'_y(x,y) = (x^3 \sin(6y))'_y + (x^2y^3)'_y + (2222)'_y = x^3 \cos(6y) \cdot 6 + x^2 \cdot 3y^2 + 0 = 6x^3 \cos(6y) + 3x^2y^2$$

(6)
$$f''_{y,x} = (6x^3\cos(6y) + 3x^2y^2)'_y = (6x^3\cos(6y))_y + (3x^2y^2)'_y = 6.3.x^2\cos(6y) + 3.2.xy^2 = 18x^2\cos(6y) + 6xy^2$$

Теорема 3.2.1 (за равенство на смесени производни) Нека точката $(x_0,y_0)\in R^2$ и нека функцията f е дефинирана в отвореното множество $U=U_{(x_0,y_0)}\subset R^2$, което е нейната област т.е $f:U\to R$. Нека освен това съществуват частните производни $f'_x, f'_y, f''_{x,y}, f''_{y,x}$ за всички $(x,y)\in U$ и $f''_{x,y}, f''_{y,x}$ са непрекъснати в точката (x_0,y_0) . Тогава е изпълнено равенството

$$f_{x,y}''(x_0,y_0) = f_{y,x}''(x_0,y_0)$$

3.3 Диференцируемост на функция

Ще дефинираме елементи които ще се използват.

- $x^0 \in \mathbb{R}^m$
- $U \subset R^m$ отворено множество, което е околност на x^0 . Без ограничение на общността може да се счита че U е δ -околност на x^0 т.е U е отворено кълбо $B(x^0;\delta)$ с център x^0 и радиус δ
- $f: U \to R$ функция дефинирана в $U = B(x^0; \delta)$

Дефиниция 3.3.1 Функцията f се нарича диференцируема в точка x^0 ако съществуват числа $A_1,A_2,...,A_m$ и функция $\varepsilon(x^0,x-x^0)$, дефинирана за всички допустими стойности на $x\in U$ и $x-x^0=(x_1-x_1^0,x_2-x_2^0,...x_m-x_m^0)$, като при това

$$f(x) - f(x^{0}) = \sum_{k=1}^{m} A_{k}(x_{k} + x_{k}^{0}) + \varepsilon(x^{0}, x - x^{0})||x - x^{0}||$$

$$u \lim_{||x-x^0|| \to 0} \varepsilon(x^0, x - x^0) = 0$$

Дефиниция 3.3.2 Функцията f се нарича диференцируема в отвореното множество U, ако тя е диференцируема във всяка негова точка.

Теорема 3.3.1 Ако функцията $f: U \to R$ е диференцируема в точката $x^0 \in U$, то тя е непрекъсната.

Дефиниция 3.3.3 В случай на диференцируемост в точката x^0 на функцията $f: U \to R$, изразът

$$df(x^0) \circ (h) = A_1h_1 + A_2h_2 + \dots + A_mh_m$$

 $(unu\ df, df(x^0))$ се нарича пълен диференциал на f(x) в точката x^0

Теорема 3.3.2 Ако функцията $f:U\to R$ е диференцируема в точката $x^0\in U$, то съществуват частните производни $\frac{\partial f(x^0)}{\partial x_k}$ в точката x^0 и освен това $A_k(x^0)=\frac{\partial f(x^0)}{\partial x_k}, k=1\div m.$

Дефиниция 3.3.4 Ако функцията $f:U\to R$ е диференцируема в точката $x^0\in U$, то със следната формула се изразява нейната производна в точката x^0

$$f'(x^0) = (f'_{x_1}(x^0), f'_{x_2}(x^0), ..., f'_{x_m}(x^0))$$

.

Теорема 3.3.3 Ако функцията $f: U \to R$ притежава частни производни $\frac{\partial f(x^0)}{\partial x_k}, k=1\div m$ в отвореното множество U и освен това са непрекъснати в точката $x^0\in U$, то f е диференцируема в точката x^0 .

Дефиниция 3.3.5 Ако функцията $f: U \to R$ притежава частни производни в U и тези частични производни са непрекъснати в точката $x^0 \in U$, то функцията се нарича непрекъснато диференцируема в точката x^0 . Ако тези производни са непрекъснати в U, то функцията се нарича непрекъснато диференцируема в това множество.

Дефиниция 3.3.6 Диференциалът на диференциала от n-1 ред (n=2, 3, ...) от функцията f(ако съществува) се нарича диференциал от n-ти ред(n-ти диференциал) на тази функция и се бележи $d^n f$

Ако f е два пъти непрекъсната и диференцируема в $x^0 \in U$ тогава втория диференциал получава по следния резултат

$$d^{2}f(x^{0}) = \sum_{i=1}^{m} \sum_{j=1}^{m} f_{x_{i}x_{j}}^{"}(x^{0})dx_{i}dx_{j} = \left(\frac{\partial}{\partial x_{1}}dx_{1} + \dots + \frac{\partial}{\partial x_{m}}dx_{m}\right)^{2} f(x^{0})$$

Аналогично ако f е n пъти непрекъсната и диференцируема в $x^0 \in U$, то $d^n f(x^0)$ съществува и се дава със следната формула

$$d^{n} f(x^{0}) = \left(\frac{\partial}{\partial x_{1}} dx_{1} + \dots + \frac{\partial}{\partial x_{m}} dx_{m}\right)^{n} f(x^{0})$$