Al19542 - DATA SCIENCE USING R

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

AI1954 2 - DATA SCIENCE USING R

THIRDYEAR

FIFTH SEMESTER

2024 - 2025

ODD SEMESTER

Ex No:1	Basics of R – data types, vectors, factors, list and data
Da te:	fram es

To implement and understand the basics of R programming with its data types, vectors, factors, list and data frames.

AL GO RIT HM:

- 1. Start
- 2.Assign values in logical, numerical, character, complex and character in raw form to a variable v.
- 3. Print the class of v.
- 4.Assign a vector for subject Names, temperature and flu_status for three patients using c() function and access the elements.
- 5. Create a factor using factor() with duplicate values and assign level with distinct values.
- 6.Display the specific element and check for certain values in factor.
- 7.Create a list using list() from the patient details and access the multiple elements.
- 8.Create enter using data.frame() with multiple vectors as features. Access the
- 9.Create a matrix using matrix() with different allocations and access the elements.
- 10. Stop.

PROGRAM:

```
#Data Types
v<-TRUE
print(class(v))
v<-23.5
print(class(v))
v<-2L
print (class(v))
v<-2+5i
print(class(v))
v <-"T R UE " print (class(v))
v<-charT oRaw ("H ello" ) print (class( v) )
#Vect ors
subject_name<-c("John Doe","Jane Doe","Steven
tem perature <- c(98.1, 98.6, 101.4)
flu_status<-c(FALSE,FALSE,TRUE)
tem perature[2]
tem perature[ 2: 3]
temperature[-2] #Factors
```

```
blood[1:2]
symptom (color file for the fil
symptoms rd # OPERAJE"
#L ists
flu status=flu status[1],
                           gender=gender[1],
subject1blood=blood[1].
subject1[2]mp to m s= sym p to ms[1])
subject1[[2]
subject 1$t emperat ur e
subject 1[ c("t emperatur e","fl u_st atus") ]
#Data Frames
pt_data<-detadex;be(odbjeotptome), temperature, flu_status,
pt_data
pt data$subject name
pt_data[c("temperature","flu_status")]
pt_data[c(1,2),c(2,4)]
pt data[,1]
pt data[,]
#Matri ces
m < -matrix(c(1,2,3,4),ncol=2)
print (m)
m < -matrix(c(1,2,3,4,5,6),nrow=3)
print (m)
print (m[1,])
print (m[1,])
thismatrix <- matrix(c("apple", "banana", "cherry", "orange"), nrow = 2, ncol = 2)
for (rows in 1:nrow(thismatrix)) {
    for (columns in 1:ncol(thismatrix)) {
        print(thismatrix[rows, columns])
    }
}
```

```
File Edit Selection View Go Run Terminal Help
                   PROBLEMS 73 OUTPUT DEBUG CONSOLE TERMINAL
 9
                   [1] "logical"
[1] "numeric"
[1] "integer"
[1] "complex"
[1] "character"
[1] "raw"
[1] 98.6
[1] 98.6 101.4
                 [1] 98.6

[1] 98.6 101.4

[1] 98.1 101.4

[1] MALE FEMALE MALE

Levels: FEMALE MALE

[1] 0 AB

Levels: A B AB 0

[1] TRUE FALSE FALSE

$fullname

[1] "John Doe"
 R
                   $temperature
[1] 98.1
                   $flu_status
[1] FALSE
                    [1] MALE
Levels: FEMALE MALE
                    [1] O
Levels: A B AB O
                   $symptoms
[1] SEVERE
Levels: MILD < MODERATE < SEVERE
                    $temperature
[1] 98.1
                   [1] 98.1
[1] 98.1
$temperature
[1] 98.1
                   $flu_status
[1] FALSE
                   subject_name temperature flu_status gender blood symptoms

1 John Doe 98.1 FALSE MALE O SEVERE

2 Jane Doe 98.6 FALSE FEMALE AB MILD

3 Steven Grant 101.4 TRUE MALE A MODERATE

[1] "John Doe" "Jane Doe" "Steven Grant"

temperature flu_status
                 [1]
                                     98.1 FALSE
98.6 FALSE
101.4 TRUE
```


Re su lt:

Thus the R Script program to implement various data types, vectors, factors, lists and data frames is executed successfully and the output is verified.

Ex no: 2	Diagnosis of Breast Cancer using KNN.
Date:	

Aim:

To implement a R program to predict and diagnose Breast Cancer using KNN algorithm.

Al gori thm:

- 1. Start
- 2. Read the csv file from the directory and store it in bcd variable.
- 3.Drop the first column id.
- 4. Change the diagnosis feature with categorical values B and M in a factor
- 5. Normalize the dataset.
- 6. Split the dataset for training and testing, with diagnosis as the response variable and
- 7. Inhort the library edictor variables assification.
- 8. Predict the knn model using knn() with 5 clusters with the corresponding training and testing data.
- 9. Display the confusion matrix and accuracy of the knn model.
- 10. Stop

PROGRAM:

```
bcd<-read.csv("../input/breast-cancer-dataset/Breast_Cancer.csv", stringsAsFactors=FALSE)
bcd<-bcd[-1]
bcd$diagnosis<-factor(bcd$diagnosis, levels=c("B","M"), labels=c("Benign","Malignant"))
normal ize<-functi on( x) {
    return (x-min(x)) / (max(x)-min(x))
}
bcd_n <- as.data.frame(lapply(bcd[2:31], normalize))
x_train <- bcd_n[1:469,]
x_test <- bcd_n[470:569,]
y_train <- bcd[1:469,1]
y_test <- bcd[470:569,1]
li brary(cla ss)
y_pred<-knn(train=x_train,test=x_test,cl=y_train,k=5)
tbl=table(x=y_test,y=y_pred)
tbl
accuracy = sum(diag(tbl))
```

OUTPUT:

```
| Table | Control | Contro
```

Re sult:

Thus the R Script program to implement diagnosis of Breast Cancer using K-Nearest Neighbour algorithm is executed successfully and the output is verified.

Ex No: 3	Filtering Mobile phone spam using Naïve Bayes
Date:	

To implement a R program to Filter Mobile phone spam using Naïve Bayes.

AL GO RIT HM:

- 1 Start
- . Import the csv file and store the dataframe in "Sms". Have a glimpse at the structure
- 2 of the data frame.
- 3 Remove the unneccesary columns which is from column 3 to 5.
- . Convert the labels as factors.
- 4 Remove special characters from the dataset and retain only alpha numeric characters
- . using alnum in str_replace_all() from "stringr" package.
- 8.Create a volatile corpus VCorpus() for text mining from the source object of "v2"
- · which is extracted using VectorSource().
- 7. Create a DocumentTermMatrix() to split the SMS message into individual Components.
- 8. Create training and testing dataset with the split ratio 0.75.
- 9. Find the frequent terms which appear for atleast 5 times in DocumentTermMatrix in training and testing dataset respectively.
- 10. Train the model using naiveBayes() from e1071 library.
- 11. Evaluate the model Performance.
- 12. Print the confusion matrix and Accuracy of the model.
- 13. Stop.

PROGRAM:

```
sms <- read.csv("../input/spam-ham-dataset/spam.csv", stringsAsFactors=FALSE)
str(sms)
sms <-sms[-3:-5]
sms$v1 <- factor(sms$v1)
library(stringr)
sms$v2 = str_replace_all(sms$v2, "[^[:alnum:]]", " ") %>% str_replace_all(.,"[
]+", " ")
l ib ra ry (t m)
sms_corpus <- VCorpus(VectorSource(sms$v2))</pre>
```

```
print(s ms c or pu s)
print(as.character(sms_corpus[[6]]))
sms_dtm <- DocumentTermMatrix(sms_corpus, control = list</pre>
(to lower = TRUE, remove Numbers = TRUE, stopwords = TRUE, remove Punctuations = TRUE, stemming = TRUE, stopwords = TRUE, remove Punctuations = TRUE, remove Punctuation
ng=TRUE))
x_train <- sms_dtm[1:4169, ]</pre>
x_test <- sms_dtm[4170:5572, ]</pre>
y_train <- sms[1:4169, ]$v1</pre>
y_test <- sms[4170:5572, ]$v1</pre>
sms_freq_word_train <- findFreqTerms(x_train, 5)</pre>
sms_freq_word_test <- findFreqTerms(x_test, 5)</pre>
x_train<- x_train[ , sms_freq_word_train]</pre>
x_test <- x_test[ , sms_freq_word_test]</pre>
convert_counts <- function(x) \{x \leftarrow ifelse(x > 0, "Yes", "No")\}
x_train <- apply(x_train, MARGIN = 2,convert_counts)</pre>
x_test <- apply(x_test, MARGIN = 2,convert_counts)</pre>
library(e1071)
model <- naiveBayes(x_train, y_train,laplace=1)</pre>
y_pred <- predict(model, x_test)</pre>
cm = table(y_pred, y_test)
print(cm)
acc = sum(diag(cm))/sum(cm)
print(paste("Accuracy: ",acc*100,"%"))
```

RESULT:

Thus the R program to implement filtering of Mobile phone spam using Naïve Bayes is executed successfully and the output is verified.

Ex No:4	Risky Bank Loans using Decision Trees
Date:	

To implement a R program to find Risky Bank loans using Decision Tree.

AL GO RIT HM:

- 1. Start
- 2.Import the dataset credit.csv and display the structure of the dataset.
- 3.DS:pliayItaelatabsetofirtdathene anget terstange in a hel fartiotolie (1) a swirte vale less lt" as the response variable, and the rest as predictor variables.
- 4. Facortsberlibrary Q5 Official Representation of the control of
- 7. Train the decision tree model using C5.0 function for the training dataset.
- 8. Test the model to predict using predict(). Print the confusion matrix.
- 9. Print the accuracy of the decision tree model.
- 10. Stop

PROGRAM:

```
credit <- read.csv("credit.csv")</pre>
str(credit)
table(credit$savings_balance)
summary(credit$amount)
credit$default <- factor(credit$default)</pre>
set.seed(123)
train sample <- sample(1000, 800)
str (train sample)
x_train <- credit[train_sample, -17]
x test <- credit[-train sample, -17]
y train <- credit[train sample,
17]
                      credit[-
       y test
                  <-
trainarsempole, 17]
model <- C5.0(x_train,y_train)
```

```
summary(model)
y_pred <- predict(model,x_test)
cm = table(y_pred,y_test)
print(cm)
acc=sum(di ag(cm)) /sum(cm)
print(paste("Accuaracy: ",acc*100,"%"))</pre>
```

```
Checking balance in (unknown,> 200 CM): no (412/54)
checking balance in (+ 0 CM,1 - 200 CM):
checking balance in (+ 0 CM,1 - 200 CM):
checking balance in (+ 0 CM,1 - 200 CM):
checking balance in (+ 0 CM,1 - 200 CM):
checking balance in (+ 0 CM,1 - 200 CM,500 - 1000 CM,
checking balance in (+ 0 CM,1 - 200 CM,500 - 1000 CM,
checking balance in (unknown, 200 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500 CM,500 - 1000 CM,
checking balance in (- 1 CM,500 CM,500
```

```
: : ....checking balance = < 0 DPt yes (4)
: : ...checking balance = 1 - 200 DPt no (3/1)
: : purpose = furniture/appliances:
: : ...savings balance in (100 - 300 DPt,
: : savings balance = (100 DPt;
: : ...months | 100 D
```

```
Evaluation on training data (900 cases):

Decision Tree

Size Errors

09 99(11.0%) <<

(a) (b) <-classified as

625 10 (a): class no
89 176 (b): class yes

Attribute usage:

100.00% checking balance
54.22% credit history
48.22% months loan duration
42.22% savings balance
31.89% purpose
22.33% cmployment duration
9.27% years, at residence
8.70% housing
8.40%; job
6.1% other_credit
```

```
5.78% amount
4.80% existing_loans_count
4.20% plans_count
4.20% plans_count
4.20% plans_count
4.20% plans_count
4.20% plans_count
4.20% plans_count
1.56% dependents
0.78% age

Time: 0.9 secs
> y.pred <- predict(model,x_test)
> y.m <- table(y.pred,y_test)
> print(cim)

y.m (table(y.pred,y_test)
y.m (tabl
```

RESULT:

Thus the R program to find Risky Bank loans using Decision Tree is executed successfully and the output is verified.

Ex No: 5	
	Medical Expense with Linear Regression.
Date:	·

To implement a R program to predict Medical Expense using Linear Regression

AL GO RIT HM:

- 1. Start
- 2. Load the Insurance dataset and analyse the structure of the dataset.
- 3.Get the summary statistics. Check whether the distribution is right-skewed or left skewed by comapring the mean and median. Verify the same using histogram.
- 4. Check the distribution of "region" using table.
- 5.Create a correlation matrix of "age", "bmi", "children", "expenses".
- 6.To determine the pattern of the dataset, use scatterplot using pairs() for "age", "bmi", "children", "expenses".
- 7. To display a more informative scatterplot use pairs.panel() from "psych" library.
- 8. Fit the linear regression model using lm() with expenses as the dependent variable.
- 9. Evaluate the model performance using summary().
- 10.To improve the model performance, square the age variable as age2 and bmi30 is 1 if bmi>=30 else 0.
- 11. Train the model with age + age2+bmi30 as also as the independent variables.
- 12. Evaluate the model performance for model 2 using summary ().
- 13. Stop.

PROGRAM:

```
insurance<-read.csv("insurance.csv",stringsAsFactors = TRUE)
str (insurance)
summary(insurance$expenses)
hist (insurance$expenses)
table(insurance$region)
cor(i nsur ance[c("age" ,"bmi" ,"chil dren","expenses")])
pairs( insurance[c(" age","bmi ","chi ldren"," expenses")])
library(psych)
pairs.panels(insurance[c("age","bmi","children","expenses")])8
ins_model <- lm(expenses ~ age + children + bmi + sex + smoker + region, data = insurance)
ins_model</pre>
```

summary(ins_model)

insurance\$age2 <- insurance\$age^2

insurance\$bmi30 <- ifelse(insurance\$bmi >= 30,1,0)

expenses ~ bmi30*smoker

expenses ~ bmi30+smokeryes+bmi30:smokeryes

ins_model2 <- lm(expenses ~ age+age2+children+bmi+sex+bmi30*smoker+region,

data=insurance)

summ ary(ins_model 2)

OU TP UT:

RESULT:

Thus the R program to predict medical expenses using linear regression is executed successfully and the output is verified.

Ex No: 6	
	Modeling strength of concrete.
Date:	

To build a predictive model for the compressive strength of concrete based on its composition and age using linear regression in R.

AL GO RIT HM:

- 1. Start
- 2.Load the Insurance dataset and check its structure.
- 3.Get summary statistics and check skewness using mean, median, and histogram.
- 4. Check the distribution of "region" using a table.
- 5.Create a correlation matrix for "age," "bmi," "children," and "expenses."
- 6.Use scatterplots to examine relationships among "age," "bmi," "children," and "expenses."
- 7. Fit an initial linear model with "expenses" as the target, then improve by adding `age2` (age squared) and `bmi30` (1 if bmi >= 30) and re-evaluate.
- 8. Stop

PROGRAM:

library(caret)

li brary(ggplot2)

data <- read.csv("concrete.csv")

head(data)

sum(i s.na(data))

set.seed(123)

trainIndex <- createDataPartition(data\$CompressiveStrength, p =

0.8, list = FALSE)

trainData <- data[trainIndex,]</pre>

testData <- data[-trainIndex,]

```
model <- lm(CompressiveStrength ~ ., data = trainData)
summary(model)
predictions <- predict(model, newdata = testData)</pre>
mae <- mean(abs(predictions - testData$CompressiveStrength))
print(paste("Mean Absolute Error:", round(mae, 2)))
ggplot() +
 geom_point(aes(x = testData$CompressiveStrength, y = predictions), color = 'blue') +
 geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "red") +
 labs(title = "Predicted vs Actual Compressive Strength",
   x = "Actual Strength",
   y = "Predicted Strength") +
 them e_minim al()
```

```
> str(concrete)
'data.frame': 1030 obs. of 10 variables:
                : num 540 540 332 332 199 ...
 $ cement
 $ slag
               : num 0 0 142 142 132 .
             : num 0000000000.
               : num 162 162 228 228 192 228 228 228 228 228 ...
 $ water
 $ superplastic : num 2.5 2.5 0 0 0 0 0 0 0 0 ...
$ coarseagg : num 1040 1055 525

$ fineagg : num 676 676 594 594 826

200 265 360 90 36
                  : num 1040 1055 932 932 978 ...
              : int 28 28 270 365 360 90 365 28 28 28 ...
 $ strength
                : num 80 61.9 40.3 41 44.3
 $ Predicted_Strength: num 55.1 54.7 57.6 68 59.4 ...
> summary(model)
Im(formula = strength ~ cement + slag + water + superplastic +
  coarseagg + fineagg + age, data = concrete)
Residuals:
  Min 1Q Median
                        3Q Max
-30.901 -7.239 0.441 6.899 34.408
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
(Intercept) 121.611036 17.015934 7.147 1.69e-12 ***
             0.067636  0.004135  16.357  < 2e-16 ***
          0.042550 0.005192 8.196 7.39e-16 ***
          -0.323265 0.032336 -9.997 < 2e-16 ***
water
superplastic 0.371641 0.094876 3.917 9.56e-05 ***
coarseagg -0.027502 0.006913 -3.978 7.44e-05 ***
fineagg -0.038549 0.006777 -5.688 1.68e-08 ***
```

AI19542 221501106

RESULT:

Thus the R Script program to implement Modeling strength of concrete is executed successfully and the output is verified.

Ex No: 7	
	Identification of frequently Purchased groceries with
Date:	Apriori algorithm.

To identify frequent itemsets of grocery items that are commonly purchased together using the Apriori algorithm. This will help in understanding customer buying patterns and optimizing store layout or inventory.

AL GO RIT HM:

- 1. Start
- 2.Load Data: Load the transaction dataset (assume each transaction is a list of items purchased).
- 3.Data Preprocessing: Convert the data into a transactional format suitable for association rule mining.
- 4.Set Parameters: Define minimum support and confidence levels for the Apriori algorithm.
- 5. Apply Apriori Algorithm: Use the Apriori algorithm to find frequent itemsets.
- 6.Generate Association Rules: Extract association rules from the frequent itemsets based on support and confidence thresholds.
- 7. Analyze Results: Sort and filter rules to identify the most frequently purchased item combinations.
- 8. Stop

PROGRAM:

```
if(!require(arules)) install.packages("arules", dependencies=TRUE) li brary(arul es) data(" Grocer ies") summ ary(Grocer ies) min_support <- 0.01 # Example: at least 1% of transactions min_confidence <- 0.5 # Example: at least 50% confidence frequent_itemsets <- apriori(Groceries, parameter = list(supp = min_support, conf = mi n_confi dence)) summ ary(frequent_i temset s) inspect (frequent_it emset s[1:10]) rules <- apriori(Groceries, parameter = list(supp = min_support, conf = min_confidence, target = "rules")) summary(rules) inspect(sort(rules, by = "confidence")[1:10]) # Display top 10 rules by confidence if(!require(arulesViz)) install.packages("arulesViz", dependencies=TRUE) li brary(arul esViz) plot(rules, method = "graph", control = list(type = "items"))
```

Summary of the Groceries Dataset

transactions as itemMatrix in sparse format with 9835 rows (elements/itemsets/transactions) and 169 columns (items) and a density of 0.02609146

```
most frequent items:
```

```
whole milk other vegetables rolls/buns soda yogurt (Other) 2513 1903 1809 1715 1372 34055
```

Frequent Itemsets

set of 50 itemsets

example of first 10 itemsets (sorted by support):

```
items support
```

- 1 {whole milk} 0.25551601 2 {other vegetables} 0.19349263 0.18393493
- 3 {rolls/buns} 0.17437722 4 {soda} 0.13950178
- 5 **(whole**)milk, other vegetables} 0.0751
- 6 {whole milk, yogurt} 0.0561

Association Rules (Top 10 by Confidence):

set of 10 rules

example of first 10 rules (sorted by confidence):

```
lhs rhs support confidence lift
```

- [1] $\{yogurt\} => \{whole milk\} 0.0561 0.4032 1.57$
- [2] {rolls/buns} => {whole milk} 0.0567 0.30841.21
- [3] $\{\text{soda}\} => \{\text{whole milk}\} = 0.0569 \ 0.3058 = 1.20$
- [4] {tropical fruit} => {whole milk} 0.0519 0.26741.03
- [5] {other vegetables} => {whole milk} 0.0751 0.3926 1.53

RESULT:

Thus the R program to Identification of frequently Purchased groceries with Apriori algorithm is executed successfully and the output is verified.

Ex No: 8	
	Finding Teen Segments of Market.
Date:	

The aim of this process is to identify and segment the teen demographic in a market based on behavior, preferences, or other relevant characteristics for targeted marketing or product development.

AL GO RIT HM:

- 1 START: Collect raw data from sources relevant to the teen market (e.g., social media data, survey responses).
- PREPROCESSING: Clean the data (e.g., remove missing values, correct errors). 3.SELECT FEATURES: Choose features that help in segmentation (e.g., age, purchase patterns, interests).
- 4.APPLY CLUSTERING ALGORITHM: Run clustering algorithms (e.g., K-Means or DBSCAN) to create market segments.
- 5.EVALUATE MODEL: Evaluate the clustering performance using a scoring metric (e.g., silhouette score).
- 6.VISUALIZE DATA: Visualize the segmented data to understand different groups.
- 7. EXTRACT INSIGHTS: Identify unique patterns and preferences within each segment.
- 8.STOP: Develop targeted marketing strategies based on the insights from the segmentation.
- 9. This approach allows businesses to better understand the teen market and tailor their products or marketing campaigns accordingly.

PROGRAM:

```
library(dplyr)
library(ggplot2)
li brary(corrpl ot )
load_data <- function(file_path) {
    df <- read.csv(file_path)
    ret ur n(df)
}
preprocess_data <- function(df) {
    # Check for missing values
    print (colSums(i s.na( df )))
    df[is.na(df)] <- 0 # Fill missing values with 0
    ret ur n(df)
}</pre>
```

```
analyze segments <- function(df) {
 # Example: Segment by gender
 gender_counts <- table(df$gender)</pre>
 print("Gender Distribution:")
 print (gende r_count s)
 interest_features <- c('basketball', 'football', 'soccer', 'softball', 'volleyball',
              'swimming', 'cheerleading', 'baseball', 'tennis',
               'cute', 'sexy', 'hot', 'kissed', 'dance',
               'band', 'marching', 'music', 'rock',
               'god', 'church', 'jesus', 'bible', 'hair',
               'dress', 'blonde', 'mall', 'shopping',
               'clothes', 'hollister', 'abercrombie',
               'die', 'death', 'drunk', 'drugs')
 corr_matrix <- cor(df[interest_features])</pre>
 corrplot(corr_matrix, method = "color", tl.col = "black", tl.srt = 45)
}
main <- function(file_path) {</pre>
 df <- load_data(file_path)</pre>
 df <- preprocess_data(df)</pre>
 analyze_segments(df)
mai n('pat h_to_your_fi le.csv')
```

OUT PU T:

RESULT:

Thus the R program to Finding Teen Segments of Market is executed successfully and the output is verified.

Ex No: 9	
	Tuning stock models for better performance.
Date:	

The aim is to enhance the predictive performance of stock market models by optimizing hyperparameters, improving data features, and using techniques like cross-validation and model selection to better forecast stock prices or trends.

AL GO RIT HM:

- 1. Start
- 2.Data Collection: Gather historical stock data (e.g., price, volume, market sentiment, technical indicators).
- 3.Data Preprocessing: Clean the data by handling missing values, normalizing features, and creating relevant indicators (e.g., moving averages, RSI).
- 4. Feature Engineering: Create new features based on existing data to improve model predictions (e.g., lagged values, percentage changes, or volatility).
- 5.Model Selection: Choose an appropriate model (e.g., Linear Regression, Decision Trees, Random Forest, LSTM for time series).
- 6. Hyperparameter Tuning: Tune the hyperparameters of the model using techniques like Grid Search or Random Search to optimize performance.
- 7.Cross-Validation: Implement cross-validation (e.g., k-fold) to ensure that the model generalizes well on unseen data.
- 8.Model Evaluation: Evaluate the model's performance using metrics like RMSE, MAE, or accuracy, and compare the results with different models.
- 9.Model Refinement: Refine the model by adjusting hyperparameters further, adding/removing features, or testing different algorithms to achieve better results 10. End.

PROGRAM:

```
library(randomForest)
li brary(Met rics)
data <- read.csv("C:/Users/AI_LAB/Desktop/77/stock.csv")
if (is.null(data)) {
    stop("Data not loaded. Please check the file path.")
}
str(data)
data$Closing.Volume <- as.numeric(as.character(data$Closing.Volume)) # Update based on your target variable
data <- na.omit(data)
```


RESULT:

Thus the R program to Tuning stock models for better performance is executed successfully and the output is verified.