(1.) Find the Cofficient of Correlation Joseph the following data.

Cost	3 a	65	69	90	82	75	25	98	36	78
Sales	47	23	56	86	69	68	6 0	91	51	84

Cast (X)	Solexy	dx	dy	d42	dy2	dre dy
39	47	- 96	-19	676	361	494
65	53	0	-13	0	169	0
62	56	-3	- 8	9	64	24
90	86	95	90	625	400	500
82	6 9	17	- 4	989	16	-68
Že.	68	10	2 2	100	4	20
75	60	-40	-6	1600	36	240
25		33	95	1089	695	895
98	91,	-29	- 15	841	225	435
36	51	13	8	169	324	234
650	660	0 1	0	5398	2224	2704
100	-					

$$\overline{X} = \frac{EX}{N} = \frac{65\%}{1\%} = 65$$

$$\overline{X} = \frac{EV}{N}$$

$$= \frac{66\%}{1\%} = 66$$

$$= \frac{66\%}{1\%} = 66$$

With the following data in 6 cities calculate Person's coefficient of -

City	A	В	С	0	E	F
Area in KM	150	180	100	60	180	80
Population in	30	90	40	48	72	24
No of Roathy		1440	56.	840	1224	312

Asea	Pobulation	No od doalh	X-	X-U dA	d42	d y 2	d4.19
150	30	300	-10	-260	100	67600	2600
180	90	1440	20	88 0	2500	774400	440,00
100	40 Â	560 0	0	0	0	0	Ö
60	42	840	2	280	Ч	78400	56.
18.	72	1224	32	664	1024	440896	21248
80	24	318	-16	-248	256	61504	3968
)	58	1316	3884	1422800	72376

1 , a students in accordance with their performance in two

The or Subject of = 7020

$$f = 793\% - 58 (1316)$$

$$= 59654.67$$

$$= 59654.67$$

$$= 59654.67$$

$$= 59654.67$$

$$= 61.65 \times 1179.47$$

$$= 59654.67$$

$$= 79177.25$$

Find the coefficient of carrelation between age and sum assured (in INR)

Agu	Guorp	Sum Assured	lin R)			
(X)		10	20	30	40	50
20	-30	. 4	6	3	7	- 1
30	-40	2	8 2	12	7	1
40.	-50	3	9	12	6	9
50 -	- 60	8	4	2		

nk		_													
ļ	Age	10							1						
_		\perp	20	30	40	50	H	d4	duli	total	114	Tix	1 /12	1 fax.	
	20-3	1 . 1	6	3	17	9 1	25	-Lo	-1	(-I)	21	-21	1	21	5
	30-40	1 1	86	15	17 /	71	(35)	0		0	33	0	0	0	0
	450	1 1	9 હિ	12 6	- 1	9	45	10		,	39	32	1	39	-5
7	50-60	8 13	4 4	१ वि	0 0	0	55	20	2	2	14	28	4	50	-40
-	dy	-20	-10	0 1	0 9			20		1	N=100	39	6	1.9	- Yo
	dy)i	-9	-1		2		, l								
		-	27 3	2 2	1		V=100								
	fly .		27 0				-33								
1	dya	4			4		10						_		_
- 1		58 / -8	7 0	2.	>	6 1	31								
	fduly.	-30 -1	0	-1	9		40						_		

$$Y = \frac{\text{Efdudy} - \left(\frac{\text{Edu}}{\text{V}}\right)\left(\frac{\text{Edy}}{\text{V}}\right)}{\text{Edu}^2 - \left(\frac{\text{Efdu}^2}{\text{N}}\right)\left(\frac{\text{Edy}^2}{\text{V}} - \left(\frac{\text{Edy}^2}{\text{V}}\right)\right)}$$

$$= \frac{\left(-40\right) - \left(\frac{39}{100}\right)^2}{100} = \frac{131 - \left(-\frac{33}{100}\right)^2}{100 - 0.1521} = \frac{131 - 0.1959}{130.8911}$$

$$= \frac{100}{100} = \frac{100}{100} =$$

The stanking of Lo students in accordance with their performance in two Subject A and B are as follows:

A	6	5	3	lo	9	У	9	7	8	1	1-
В	3	8	Ч	9	7	6	10	7	5	2	en4

	A	В	d = 31-312	98
	6 (5)	3 (8)	-3	9
	5 (6)	8 (3)	3	9
[M]	3 (8)	4 (7)		
1	10 (1)	9 (2)	-1	,
	2 (9)	1 (10)	-1	i
	4 (7)	6 (5)	9	U
	9 (2)	10 (1)	1	1
	7(4)	7 (4)	0	O
	8 (3)	5 (6)	- 3	9
	1 (10)	2 (9)	1	1
				36

$$R_{3} = 1 - \frac{6}{5} \frac{1}{2}$$

$$= 1 - \frac{6 \times 36}{1000 - 10}$$

$$= 1 - \frac{216}{990}$$

$$= 1 - 0.218$$

men bimoring af wrol may's for oring

by Judges x and y Cartain competitive test as shown below.

	•		3 Suramil P	UoW	,	1 gas 17
Markipax Warpax Strquyz	52 53	13 38 13 60 3 1	5 6 45 41 77 48	37	0.0	10 27 50

Judgey

65(3)

68 (8)

43 (6)

38 (7)

77(1)

48 (5)

35(8)

30(9)

85(10)

50(4)

d=21-20

 \mathcal{O}

 \Diamond

.3

1

0

2

0

5

95

0

0

36

9

0

4

0

25

73

Student

1

9

3

4

8

9

10

Judge X

58 (3)

53 (2)

48 (2)

60(1)

45 (4)

41 (6)

37(8)

38 (7)

62(1°)

27(9)

5000	84.	- 5 (o)	-58-
80	38	53	17
	~		- '

$$\frac{679}{4} = \frac{\text{mail}}{4} \frac{\sqrt{1}}{4}$$

01

$$\frac{3N}{4} \rightarrow 3$$

$$R_{3} = 1 - \frac{6}{6} = \frac{1}{7}$$

Calculate Bowley's measure of skewness form the following data

Paymont of Commission	100123	120-140	14160	160-18	0/180-20	200	22.	-24.	260	25-	1
No Saluman	4	1.	16	89	59	80	24.	-260	-2s- 17	7	

P. Commis	si-n Salesman	7	CF	_
100-120	Ч		CF	
180 -140	10	-	4	
140 -160	١		14	
1	16		3.0	
160 - 180	29		59	
180 - 200	52		11.1	
200 - 220	80		191	70
220 -240	39	+	293	+1
2496.	23	-	246	10
260 - 280	17		263	+6
280 - 300	7		270	†
	Ef=270		-: =\(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1
10/0				

$$= 29 \circ + 0.625 \times 11.5$$

$$03 = 297.1875$$

$$N = 1.01$$

$$V = (N/2) = \frac{270}{2} = 135^{4h}$$

$$= 180 + \frac{20}{52} (135 - 50)$$

$$= 180 + 0.3846 \times 76$$

$$N = 209.2296$$

aley's weakness of skewness

$$= \frac{03+01-2N}{03-01}$$

- 0.18667

A Company that munufactures steels observed the production of steel (111 118412 - tonnes) represented by the time series as given below.

						A	
Your	1996	1997	1998	1999	2000	20001	8008
Paroductional steel	60	7.2	75	65	80	85	95
(in motoric tonnes)		-					

		•			
Year	Production	X-1999	ХУ	Xq	Torond
1996	6 .	-3	-180	9	61.42
1997	72	- 2	-144	4	66.3
1998	75	-1	- 75	1 :	71.15
1999	65	0	O	0	76
2000	80	1	80	1	80.85
2001	85	9	170	Ų	85.7
2002	95	3	285	9	90.55
	ZY=532	£X=0	Ex 1= 136	E42=28	
				-/ \ \.	

$$Q = \frac{EY}{N} = \frac{532}{7} \Rightarrow 76$$

$$b = \frac{EXY}{EX^2} = \frac{136}{28} = 4.85$$

$$Vc = 9+b(X-1999)$$

$$Vc = 9+b(X-1999)$$

```
When X = 1996 = Yc = 76+ 4.85 X(-3) = 61.45
    X = 1997 = Yc = 764 4.85 X(-2) = 66.3
        1998 = Yc = 764 4.85x (-1) = 71.15
       1999 = Yc = 76+4.85 X (a) = 76
       2000 = Yc = 76+4.85 X (1) = 80.85
       2001 = Yc = 76+4.85 X(2) = 85.7
      2009 = Yc = 76+485 x (3) = 90.55
      2003 - (2003 - 1999) = 4
              X = 2003, Yc = 76+4.85 XL4) = 95.4
 100
95
90
85
80
75.
70-
    - 65
   - 60
    55
    50
    45
    40
                      1998 1999 2000 2001 2002 2003
     1996
             1997
```

Little Control State

Using the data given below calculate the price index number for the year 1998 by

(i) Laspeyer's farmula (ii) Paarhe's farmula and (iii) fircher's farmula considering

1989 as the base year.

Commodity	Paice (Rela	Ovanily (inlocks)			
Rico	11989	1 1998	1998	1989	1998
ma	9.3	4.5	100	100	90
Whoat	6.4	3.7		LI.	10
Pales	5.1	2.7		5	3

	. Commodity	1989		19.	1998				
		Paice	Oumity 90	Price Pr	Oumit.	P. 90	P, 90	P191	P. 91
of the second se	Rico	9.3	100	y.5 🔊	90	930	450	405	837
	Wheat	6.4	11	3.7	lo"	70.4	40.7	37	64
	Pules	5.1	5	2.7	3	95.5	13.5	8.1	12.3
	1 (111)					1025.9	504.2	450.1	9163
				1111		r			

Laskeyers' index number =
$$\frac{EP_1P_0}{FP_0P_0}$$
 $\times 100 = \frac{5.4.2}{1025.9} \times 100 = 49.14$
Paracher' index number = $\frac{EP_1P_0}{EP_0P_0}$ $\times 100 = \frac{45.1}{1025.9} \times 100 = 43.87$
Fisher' index number = $\frac{EP_1P_0}{EP_0P_0}$ $\times \frac{EP_1P_1}{EP_0P_0}$ = $\frac{49.14\times43.87}{EP_0P_0}$ = 46.43