CALCULO I, 1º MATEMÁTICAS, Grupo A

Curso 2015-16

Soluciones de la Prueba 1

1. (3 puntos)

Define el supremo y el ínfimo de un subconjunto (no vacío) de números reales. ¿Qué subconjuntos de \mathbb{R} tienen supremo? ¿Cuál es la relación que existe entre el supremo y el máximo de un conjunto de números reales?

Si A es un subconjunto no vacío de \mathbb{R} , un número real x es mayorante de A si se verifica que

$$a \le x, \forall a \in A.$$

El supremo de A es el mínimo del conjunto de los mayorantes de A. Un número real x es minorante de A si se verifica que

$$x < a, \forall a \in A.$$

El ínfimo de A es el máximo del conjunto de los minorantes de A.

La propiedad de supremo afirma que todo subconjunto de \mathbb{R} no vacío y mayorado tiene supremo. La afirmación anterior es una consecuencia inmediata del axioma de Dedekind. De hecho, los subconjuntos que \mathbb{R} que tienen supremo son exactamente aquellos que son no vacíos y están mayorados.

Un conjunto no vacío A de números reales tiene máximo si, y sólo si está mayorado, y su supremo pertenece al conjunto A.

2. (2 puntos)

Justifica si las siguientes afirmaciones son verdaderas o falsas:

a) Todo subconjunto no vacío de \mathbb{N} tiene mínimo.

Cierta. El conjunto \mathbb{N} está bien ordenado. Es consecuencia de la propiedad de ínfimo y del hecho de que la distancia entre dos naturales distintos es mayor o igual que 1.

- **b)** Todo subconjunto de un conjunto no numerable es no numerable. Falsa. El conjunto \mathbb{R} no es numerable, y \mathbb{N} es un subconjunto suyo que es numerable.
- c) Toda sucesión de números reales monótona está acotada. Falsa. La sucesión $\{n\}$ es monótona y no está acotada.
- d) Toda sucesión de números reales convergente está mayorada. Cierta. Toda sucesión convergente está acotada, luego mayorada.

3. (2 puntos)

Prueba que $2^n \le n! + 2$ para cada número natural n.

Usaremos inducción (sobre n).

Para $n=1, 2^1=2 \le 3=1!+2$, luego la afirmación es cierta.

Nótese que para n=2 y n=3 también es cierta la afirmación, ya que $2^2=4=2!+2$ y $2^3=8=3!+2$.

Supongamos entonces que la propiedad es cierta para un natural $n \geq 3$. Usando la hipótesis de inducción obtenemos que

$$2^{n+1} = 22^n \le 2(n!+2).$$

Para obtener la desigualdad para n+1 bastaría que fuese cierta la desigualdad $2(n!+2) \le (n+1)!+2$.

Dado que se verifica la siguiente cadena de equivalencias

$$2(n!+2) \le (n+1)!+2 \Leftrightarrow 2n!+2 \le (n+1)! = (n+1)n! \Leftrightarrow$$

 $\Leftrightarrow n!+2 \le n!(n+1)-n! = n!n \Leftrightarrow 2 \le n!(n-1).$

Ahora bien, como $n \geq 3$, entonces $n-1 \geq 2$ y, por ser $n! \geq n \geq 1$, entonces $(n-1)n! \geq 2$. Esto es, la última desigualdad de la cadena de desigualdades anteriores es cierta. Como consecuencia, también se verifica la primera, esto es, $2(n!+2) \leq (n+1)! + 2$. Esto concluye la prueba de la desigualdad para n+1.

Nótese que el argumento usado para probar la desigualdad para n+1 justifica también el que se haya comprobado antes la desigualdad de forma separada en los casos n=2 y n=3.

4. (3 puntos)

Sea $\{x_n\}$ la sucesión de números reales dada por

$$x_1 = 0,$$
 $x_{n+1} = \frac{1}{4}(x_n^2 + 1), \forall n \in \mathbb{N}.$

Prueba que $\{x_n\}$ converge y calcula el límite.

Dado que $x_2 = \frac{1}{4} > 0 = x_1$, si $\{x_n\}$ es monótona, ha de ser creciente.

Por inducción probaremos que $0 \le x_n \le x_{n+1}$, para cada natural n. Para n = 1 ya hemos comprobado antes la desigualdad.

Supuesto que $0 \le x_n \le x_{n+1}$ para un natural n, entonces es claro que $x_n^2 \le x_{n+1}^2$, esto es, $x_n^2 + 1 \le x_{n+1}^2 + 1$, luego

$$0 \le x_{n+1} = \frac{1}{4} (x_n^2 + 1) \le \frac{1}{4} (x_{n+1}^2 + 1) = x_{n+2}.$$

Hemos comprobado que $x_{n+1} \leq x_{n+2}$, lo que concluye la inducción.

Como la sucesión es creciente, si además está mayorada, será convergente.

Probaremos que $x_n \leq 1$, para cada natural n, designaldad que es trivialmente cierta para n=1 por ser $x_1=0$. Si suponemos que $x_n \leq 1$, entonces, dado que $0 \leq x_n$, tendremos $x_n^2 \leq 1$, luego $x_n^2+1 \leq 2$, equivalentemente, $x_{n+1}=\frac{1}{4}(x_n^2+1)\leq \frac{2}{4}\leq 1$. Hemos probado por inducción que $x_n \leq 1$ para cada natural n.

Por ser $\{x_n\}$ una sucesión creciente y mayorada de números reales, entonces converge. Llamamos $L = \lim\{x_n\}$. Usando las propiedades de estabilidad de las sucesiones convergentes, de la igualdad

$$\{x_{n+1}\} = \left\{\frac{1}{4}(x_n^2 + 1)\right\},\,$$

obtenemos que

$$L = \frac{1}{4} \left(L^2 + 1 \right),$$

esto es, L es solución de la ecuación $x^2 - 4x + 1 = 0$. Las soluciones de la ecuación anterior son $2 - \sqrt{3}$ y $L = 2 + \sqrt{3}$.

Dado que se verifica $x_n \leq 1$ para cada natural n, entonces $L \leq 1$. Luego $L \neq 2 + \sqrt{3}$. Por tanto, $L = 2 - \sqrt{3}$.