Lecture #3

15 September 2020

Solidification Processing (Casting)

How would you make Engine block?

Engine-block

A simple two-part sand mould with the wooden pattern removed and ready to receive the charge of molten metal

Solidification Processing

Fundamentals

Typical cooling curves for crystalline and amorphous solids. In (ii) there was insufficient molten metal to provide latent heat which would otherwise have caused a return to equilibrium as in (ii)

Development of Equiaxed Microstructure

Equiaxed versus Columnar Microstructure

Vertical Section

Fig. Types of crystal structure in ingots. (i) Columnar crystals—excessive segregation of impurities at the core. (ii) Zones containing chill, columnar and equi-axed crystals—less segregation because the cooling rate was low.

Mixed Microstructures

Solubility of Gas in Metals

Solubility of H₂ in Mg

Solubility of H₂ in Cu at 1 atm

Vertical Gating

Correctly designed sprue

• to prevent Aspiration Effect, the sprue is tapered

Macroscopic Pores

blowhole

wormhole porosity

Fig. The structure of steel ingots. (i) A typical 'big-end-down' ingot mould showing how the 'pipe' can be restricted. (ii) The development of the 'pipe' by successive solidification of elemental 'shells'. (iii) Major segregation of impurities in the central pipe.

Fig. Types of crystal structure in ingots. (i) Columnar crystals—excessive segregation of impurities at the core. (ii) Zones containing chill, columnar and equi-axed crystals. (iii) Large equi-axed crystals—less segregation because the cooling rate was low.

Casting Defects

- Pipe formation
- Macro-segregation
- Micro-segregation
- Blowholes and Wormholes
-and many more

Classification of Casting Defects

Casting Defects

Source:

G.K. Lal, S.K. Choudhury: Fundamentals of Manufacturing Processes, p. 60 A. Ghosh, A.K. Mallik: Manufacturing Science, p. 91

Common Defects in Castings

Common Defects in Sand Castings

