Introduction to Big Data

Welcome to the World of Big Data

Data- What Makes it Big??? How big is big?

No Single Definition

The term 'big data' is self-explanatory – a collection of huge data sets that normal computing techniques cannot process.

"Big Data" is data whose scale, diversity, and complexity require new architecture, techniques, algorithms, and analytics to manage it and extract value and hidden knowledge from it...

What is Big Data?

BIG DATA: is the term for a collection of data sets so large and complex that it becomes difficult to process using traditional data processing applications.

Real world examples of Big Data

Facebook: has 40 PB of data and captures 100 TB / day

❖ Yahoo: 60 PB of data

❖Twitter : 8 TB / day

EBay: 40 PB of data, captures 50TB/ day

Three attributes stand out as defining Big Data characteristics

Huge volume of data: Rather than thousands or millions of rows, Big Data can be billions of rows and millions of columns.

Complexity of data types and structures: Big Data reflects the variety of new data sources, formats, and structures, including digital traces being left on the web and other digital repositories for subsequent analysis.

Speed of new data creation and growth: Big Data can describe high velocity data, with rapid data ingestion and near real time analysis.

Attributes Defining Big Data Characteristics

Volume

Big Data observes and tracks what happens from various sources which include business transactions, social media and information from machine-to-machine or sensor data. This creates large volumes of data.

Variety

Data comes in all formats that may be structured, numeric in the traditional database or the unstructured text documents, video, audio, email, stock ticker data.

Velocity

The data streams in high speed and must be dealt with timely.

The processing of data that is, analysis of streamed data to produce near

Big Facts About Big Data

As of 2013, experts believed that 90% of the world's data was generated from 2011 to 2012.

In 2018, more than 2.5 quintillion bytes of data were created every day.

The amount of data in the world was estimated to be 44 zettabytes at the dawn of 2020.

Google handles a staggering 1.2 trillion searches every year.

Unit of Data size	Exact size	Approximate Size	Examples
KB (kilobyte)	2 ¹⁰ or 1024 bytes	(10 ³ or one thousand) bytes	A typical joke =1KB
MB(megabyte)	2 ²⁰ bytes	(10 ⁶ or one million) bytes	Complete work of Shakespeare =5MB
GB (gigabyte)	2 ³⁰ bytes	(10° or one billion) bytes	Ten yards of books on a shelf = 1GB
TB (terabyte)	2 ⁴⁰ bytes	(10 ¹² or one trillion) bytes	All the X-rays for a large hospital =1TB Tweets; created daily =121TB;
PB (peta byte)	2 ⁵⁰ bytes	(10 ¹⁵ or one quadrillion) bytes	All U.S. academic research libraries = 2PB Data processed in a day by Google = 24PB
EB (exa byte)	2 ⁶⁰ bytes	(10 ¹⁸ or one Quintillion) bytes	Total global data created in 2006 = 161EB
ZB (zetta byte)	2 ⁷⁰ bytes	(10 ²¹ or one Sextillion) bytes	Total amount of global data created in 2012 = 2.7 ZB and expected 44 ZB by 2020
YB (yotta byte)	2 80 bytes	(10 ²⁴ or one Septillion) bytes	

The Evolution Big Data

Big Data = Transactions + Interactions + Observations

Source: Contents of above graphic created in partnership with Teradata, Inc.

Evolution of Big Data by technology

Evolution of Big Data by Internet Of

IOT: 50 Billion devices by 2020

Evolution of Big Data by Social Media

Evolution of Big Data by other factors

Best practices for Big Data Analytics

Three attributes stand out as defining Big Data characteristics

Huge volume of data: Rather than thousands or millions of rows, Big Data can be billions of rows and millions of columns.

Complexity of data types and structures: Big Data reflects the variety of new data sources, formats, and structures, including digital traces being left on the web and other digital repositories for subsequent analysis.

Speed of new data creation and growth: Big Data can describe high velocity data, with rapid data ingestion and near real time analysis.

Attributes Defining Big Data Characteristics

Volume

Big Data observes and tracks what happens from various sources which include business transactions, social media and information from machine-to-machine or sensor data. This creates large volumes of data.

Variety

Data comes in all formats that may be structured, numeric in the traditional database or the unstructured text documents, video, audio, email, stock ticker data.

Velocity

The data streams in high speed and must be dealt with timely.

The processing of data that is, analysis of streamed data to produce near

Big Data- the

The FOUR V's of Big **Data**

Velocity, Variety and Veracity

4.4 MILLION IT JOBS

As of 2011, the global size of data in healthcare was estimated to be

150 EXABYTES

[161 BILLION GIGABYTES]

Variety DIFFERENT

FORMS OF DATA

30 BILLION PIECES OF CONTENT

are shared on Facebook every month

there will be 420 MILLION WEARABLE, WIRELESS **HEALTH MONITORS**

By 2014, it's anticipated

4 BILLION+ **HOURS OF VIDEO**

are watched on YouTube each month

400 MILLION TWEETS

are sent per day by about 200 million monthly active users

1 IN 3 BUSINESS

don't trust the information they use to make decisions

Poor data quality costs the US economy around

\$3.1 TRILLION A YEAR

27% OF RESPONDENTS

in one survey were unsure of how much of their data was inaccurate

Veracity UNCERTAINTY

OF DATA

18.9 BILLION **NETWORK** CONNECTIONS - almost 2.5 connections per person on earth

Characteristics of Big Data: 1-Scale (Volume)

- Data Volume
 - 44x increase from 2009 2020
- Data volume is increasing exponentially

Characteristics of Big Data:2-Complexity (Variety)

- Various formats, types, and structures
- Text, numerical, images, audio, video, sequences, time series, social media data, multi-dim arrays, etc...
- Static data vs. streaming data
- A single application can be generating/collecting many types of data

To extract knowledge

all these types of data need to linked together

Characteristics of Big Data: 3-Speed (Velocity)

- Data is begin generated fast and need to be processed fast
- Online Data Analytics
- Late decisions → missing opportunities

- Examples
 - E-Promotions: Based on your current location, your purchase history, what you like send promotions right now for store next to you
 - Healthcare monitoring: sensors monitoring your activities and body → any abnormal measurements require immediate reaction.

Characteristics of Big Data: 4-Accuracy/ Trustworthiness

The 4Vs in a Nutshell

Volume

Data at Rest

Terabytes to exabytes of existing data to process

Velocity

Data in Motion

Streaming data, milliseconds to seconds to respond

Variety

Data in Many Forms

Structured, unstructured, text, multimedia

Veracity*

Data in Doubt

Uncertainty due to data inconsistency & incompleteness, ambiguities, latency, deception, model approximations

Why Big Data Analytics

- Cost Savings: help in identifying more efficient ways of doing business.
- **Time Reductions :**helps businesses analyzing data immediately and make quick decisions based on the learnings.
- New Product Development: By knowing the trends of customer needs and satisfaction through analytics you can create products according to the wants of customers.
- Understand the market conditions: By analyzing big data you can get a better understanding of current market conditions.
- Control online reputation: Big data tools can do

Sources of Big Data Deluge

- Mobile sensors GPS, accelerometer, etc.
- Social media 700 Facebook updates/sec in2012
- Video surveillance street cameras, stores, etc.
- Video rendering processing video for display
- Smart grids gather and act on information
- Geophysical exploration oil, gas, etc.
- Medical imaging reveals internal body structures
- Gene sequencing more prevalent, less expensive, healthcare would like to predict personal illnesses

Sources of Big Data Deluge

Social Networking and Media

- Facebook
 - Twitter
- LinkedIn
- Blogs
- Site Comments

Mobile Devices

- Call
- Text/IM
- Location
- In-App Activity

Big Data Sources

Internet Transactions

- Purchases (automated or manual)
 - Banking Activity
 - Investment Activity

Networked Devices/Sensors

- Internet Connected Hardware
- Sensors (Temperature, Movement, Pressure, Humidity)
 - Beacon Interactions

Sources of Big Data Deluge What's Driving Data Deluge?

Harnessing Big Data

- OLTP: Online Transaction Processing (DBMS)
- OLAP: Online Analytical Processing (Data Warehousing)
- RTAP: Real-Time Analytics Processing (Big Data Architecture & Technology)

What's driving Big Data

Value of Big Data Analytics

 Big data is more real-time in nature than traditional DW applications.

 Traditional DW architectures are not wellsuited for big data apps

Challenges in Handling Big Data

- The Bottleneck is in technology
 - New architecture, algorithms, techniques are needed
- Also in technical skills
 - Experts in using the new technology and dealing with big data

Types of big data

Big Data' could be found in three forms:

- Structured
- Unstructured
- Semi-structured

Big Data Types

Structured

- Any data that can be stored, accessed and processed in the form of fixed format is termed as a 'structured' data.
- The format is well known in advance. Can derive value out of it.
- Currently typical sizes are being in the rage of multiple zettabytes.

Structured Data

Employee_ID	Employee_Name	Gender	Department	Salary_In_lacs
2365	Rajesh Kulkarni	Male	Finance	650000
3398	Pratibha Joshi	Female	Admin	650000
7465	Shushil Roy	Male	Admin	500000
7500	Shubhojit Das	Male	Finance	500000
7699	Priya Sane	Female	Finance	550000

Unstructured Data

Unstructured Data

- Data with unknown form or the structure.
- Apart from being huge it poses multiple challenges in terms of its processing for deriving value out of it.
- A typical example of unstructured data is a heterogeneous data source containing a combination of simple text files, images, videos etc.
- Raw form or unstructured format created complexity.

Semi-structured

- Semi-structured data can contain both the forms of data. We can see semi-structured data as a structured in form but it is actually not defined like a table definition in relational DBMS.
- Example of semi-structured data is a data represented in an XML file.

Semi Structured

```
<rec><name>Prashant
Rao</name><sex>Male</sex><age>35</age></rec>
<rec><name>Seema
R.</name><sex>Female</sex><age>41</age></rec>
<rec><name>Satish
Mane</name><sex>Male</sex><age>29</age></rec>
<rec><name>Subrato
Roy</name><sex>Male</sex><age>26</age></rec>
<rec><name>Jeremiah
J.</name><sex>Male</sex><age>35</age></rec>
```

A Contrast of the Three Types

Unstructured data

The university has 5600 students.
John's ID is number 1, he is 18 years old and already holds a B.Sc. degree.
David's ID is number 2, he is 31 years old and holds a Ph.D. degree. Robert's ID is number 3, he is 51 years old and also holds the same degree as David, a Ph.D. degree.

Semi-structured data

Structured data

ID	Name	Age	Degree
1	John	18	B.Sc.
2	David	31	Ph.D.
3	Robert	51	Ph.D.
4	Rick	26	M.Sc.
5	Michael	19	B.Sc.

