

Learning

Incomplete Data

Learning with Latent Variables

Discovering User Clusters

MSNBC Story clusters

Readers of commerce and technology stories (36%):

- E-mail delivery isn't exactly guaranteed
- Should you buy a DVD player?
- Price low, demand high for Nintendo

Sports Readers (19%):

- Umps refusing to work is the right thing
- Cowboys are reborn in win over eagles
- Did Orioles spend money wisely?

Readers of top promoted stories (29%):

- 757 Crashes At Sea
- (Israel, Palestinians Agree To Direct Talks
- · (Fuhrman Pleads Innocent To Perjury

Readers of "Softer" News (12%):

- The truth about what things cost
- Fuhrman Pleads Innocent To Perjury
- · Real Astrology

Speech Recognition HMM

Lexicon phase database

Dan Jurafsky, Stanford

3D Robot Mapping

- Input: Point cloud from laser range finder obtained by moving robot
- Output: 3D planar map of environment
- Parameters: Location & angle of walls (planes)
 - Latent variables: Assignment of points to walls

Thrun, Martin, Liu, Haehnel, Emery-Montemerlo, Chakrabarti, Burgard, IEEE Transactions on Robotics, 2004

Thrun, Martin, Liu, Haehnel, Emery-Montemerlo, Chakrabarti, Burgard, IEEE Transactions on Robotics, 2004

Thrun, Martin, Liu, Haehnel, Emery-Montemerlo, Chakrabarti, Burgard, IEEE Transactions on Robotics, 2004

Body Parts from Point Cloud Scans

Anguelov, Koller, Pang, Srinivasan, Thrun UAI 2004

Collective Clustering Model

Anguelov, Koller, Pang, Srinivasan, Thrun UAI 2004

Anguelov, Koller, Pang, Srinivasan, Thrun UAI 2004

Helicopter Demo Alignment

- Input: Multiple sample trajectories by different pilots flying same sequence
- Output:
 - Aligned trajectories
 - Model of "template" trajectory

Coates, Abbeel, Ng, ICML 2008

Graphical model

Coates, Abbeel, Ng, ICML 2008

All Expert Demos

Coates, Abbeel, Ng, ICML 2008

Picking Latent Variable Cardinality

- If we use likelihood for evaluation, more values is always better
- Can use score that penalizes complexity
 - BIC tends to underfit
 - Extensions of BDe to incomplete data (approximations)
- Can use metrics of cluster coherence to decide whether to add/remove clusters
- Bayesian methods (Dirichlet processes) can average over different cardinalities

 (MCML)

Summary

- Latent variables are perhaps the most common scenario for incomplete data
 - often a critical component in constructing models for richly structured domains
- Latent variables satisfy MAR, so can use EM
- Serious issues with unidentifiability & multiple optima necessitate good initialization
- Picking variable cardinality is a key question