

B38EM Introduction to Electricity and Magnetism Lecture 6

Magnetostatics

Dr. Yuan Ding (Heriot-Watt University)
yuan.ding@hw.ac.uk
yding04.wordpress.com

Outline & Outcome

- Revision on Electrostatics
- Lorentz force
- Biot-Savart law
- Ampere's law
- Exercises

References & Resources

 Elements of Electromagnetics (7th Edition), by Sadiku, Oxford University Press

Fundamentals of Applied Electromagnetics (7th Edition), by Ulaby and Ravaioli

 Field and Wave Electromagnetics (2nd Edition), by David K. Cheng

•

Electrostatics (1)

Coulomb's Law

$$F_{e21} = \hat{R}_{12} \frac{q_1 q_2}{4\pi \varepsilon_0 R_{12}^2}$$
 (N) in free space

$$1/4\pi\varepsilon_0$$
 = electric constant (AKA k_e) = $9 \cdot 10^9$ N·m²/C² in free-space.
 ε_0 = dielectric permittivity of free space = $8.85 \cdot 10^{-12}$ F/m (a constant)

• Electric Field Intensity (E)

$$E = \hat{R} \frac{q}{4\pi\varepsilon_0 R^2}$$
 (V/m) in free space

force on a unit charge

Electrostatics (2)

Electric flux density (D)

$$E = \hat{R} \frac{q}{4\pi\varepsilon_0 R^2}$$
 (V/m) in free space

We define q/S as **D**

Electric displacement

$$\boldsymbol{D} = \varepsilon_0 \boldsymbol{E} \qquad (C / m^2)$$

Rules for electric field

- Field lines: point from (+) charge towards (-) charge.
- Field lines are perpendicular (\perp) to conducting surfaces.
- Field lines represent the **force vector** experienced by a test charge.
- Field lines never intersect. (Force has only one direction!)

Electrostatics (3)

Gauss' law

The total electric flux is independent of the surface area and equal to the net charge enclosed.

$$\psi = DS = Q \tag{C}$$

Electric potential

$$V_{AB} = -\int_{A}^{B} \mathbf{E} \cdot d\mathbf{l} \qquad (volts)$$

$$\boldsymbol{E} = -\nabla V$$
 The gradient of a scalar V

Electrostatics

Stationary or slow moving ELECTRIC CHARGES.

Magnetostatics

CURRENTS are steady.

Steady electric current

Current consists of charges in motion.

The unit of current is the ampere (A), corresponding to a flow of one coulomb per second (1 C/s).

Types of current:

- conduction
- polarization

Charge motion – no electric field

conductor

There is no *net* motion of charge.

Charge motion – electric field applied

There is a small *net* motion of charge in the direction of the field.

Generalised Ohm's Law

The electric field imparts a small net *drift velocity* to free electrons. The resulting movement of positive charge in the direction of the field is described by Ohm's Law:

$$E = \rho J$$

$$\rho = \text{resistivity } (\Omega \cdot \text{m})$$

$$J = \text{current density } (A / m^2)$$

Properties of conductors

Temperature dependence:

$$R(T) = R_1 [1 + \alpha (T - T_1)]$$

 R_1 = resistance at temperature T_1

 α = temperature coefficient of resistance

element	ho ($arOlemarrow$ m)	lpha at 0°C
copper	1.76×10 ⁻⁸	0.0043
iron	9.4×10 ⁻⁸	0.0055
aluminium	2.83×10 ⁻⁸	0.0043

History

Ancient Greeks (~ 500BC)

Invention of compass China (~ 1000AD) Europe (~1300AD)

Willian Gilbert (16th Century): Earth is a giant magnet

History

1820: Hans Christian Orsted

This experiment united electricity and magnetism

One week later: Andre-Marie Ampere

Electrostatics cannot explain this effect

→ magnetic fields

(Revision) What is Electric Field Vector E?

The electric force experienced at that point by a unit charge (1 Coulomb).

• What is Magnetic Field Vector \mathbf{H} ? ($\mathbf{B} = \mu \mathbf{H}$)

B: The magnetic force experienced at that point by a unit charge (1 Coulomb) moving with v = 1m/s.

B: the number of field lines passing per unit area through a surface

$$F_{\mathbf{m}} = q(\mathbf{v} \times \mathbf{B}) = q \cdot \mathbf{v} \cdot \mathbf{B} \cdot \sin \theta$$
 (N) " $\mathbf{B} = \text{magnetic flux density}$ "
$$\theta = \text{angle } (\mathbf{v}, \mathbf{B})$$

Units of B: $(N\cdot s)/(C\cdot m) = 1 N/(A\cdot m) = 1 \text{ Wb/m}^2 = 1 \text{ (T)esla}$ or <u>Gauss</u>: 1 Gauss = 10^{-4} T Earth B-field ≈ 0.5 Gauss

Lorentz Force

A particle of charge q moving with a velocity v in an electric field E and a magnetic field H experiences a force.

$$\boldsymbol{F} = \boldsymbol{F}_e + \boldsymbol{F}_m = q\boldsymbol{E} + q\left(\boldsymbol{v} \times \boldsymbol{B}\right)$$

Magnetic Flux Density

$$B = \mu H$$

$$\mu = \mu_r \mu_0$$

Permeability is the degree of magnetization of a material in response to a magnetic field.

$$\mu_o = 4\pi \times 10^{-7} \,\mathrm{H/m}$$

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 3 \times 10^8 \qquad (m/s)$$

Motion of charged particles in a magnetic field

Graphical convention:

vector goes into the screen:

vector comes out of the screen:

$$F_{mag} = QvB = \frac{mv^2}{R}$$

Lorentz force always radial

Charged particle accelerator

$$F_{mag} = QvB = \frac{mv^2}{R}$$

Biot-Savart's Law

Jean-Baptiste Biot 1774 - 1862

Félix Savart 1791 - 1841

Biot-Savart's Law

The differential magnetic field intensity dH produced at a point P by the differential current element, $I \cdot dl$, is proportional to the product $I \cdot dl$ and the sine of the angle θ between the element and the line joining P to the element and is inversely proportional to the square of the distance, R, between P and the element.

$$dH \propto \frac{I \, dl \sin \theta}{R^2}$$

$$dH = \frac{kI \, dl \sin \theta}{R^2}$$

$$dH = \frac{I \, dl \sin \theta}{4\pi R^2}$$

$$d\vec{H} = \frac{I \, d\vec{l} \times \hat{a}_R}{4\pi R^2} = \frac{I \, d\vec{l}}{4\pi R^2} \times \hat{a}_R$$

$$d\vec{H} = \frac{I \, d\vec{l}}{4\pi R^2} \times \frac{\vec{R}}{|\vec{R}|} = \frac{I \, d\vec{l}}{4\pi R^2} \times \frac{\vec{R}}{R}$$

$$d\vec{H} = \frac{I \, d\vec{l} \times \vec{R}}{4\pi R^3}$$

$$k$$
 is proportionality constant: $k = \frac{1}{4\pi}$

Biot-Savart's Law

$$\vec{H} = \int_{L} \frac{I \ d\vec{l} \times \hat{a}_{R}}{4\pi R^{2}}$$

$$\vec{H} = \int_{S} \frac{\vec{K} \, d\vec{S} \times \hat{a}_{R}}{4\pi R^{2}}$$

$$\vec{H} = \int_{V} \frac{\vec{J} \, dv \times \hat{a}_{R}}{4\pi R^{2}}$$

$$\vec{H} = \int_{v} \frac{J \, dv \times \hat{a}_{R}}{4\pi R^{2}}$$

(line current)

(surface current)

(volume current)

Biot-Savart's Law (example)

$$H = \int_{l} \frac{Id\mathbf{l} \times \hat{\mathbf{r}}}{4\pi r^2}$$

Find the magnetic field at distance *a* from a long straight wire carrying a steady current *I*.

 $d\mathbf{l} \times \hat{\mathbf{r}}$: points out of the screen, and has the magnitude of $dl\sin\alpha = dl\cos\theta$

$$l = a \tan \theta,$$
 $a = r \cos \theta$

$$dl = \frac{a}{\cos^2 \theta} d\theta \qquad \frac{1}{r^2} = \frac{\cos^2 \theta}{a^2}$$

$$H = \frac{I}{4\pi} \int_{\theta_1}^{\theta_2} \frac{\cos^2 \theta}{a^2} \frac{a}{\cos^2 \theta} \cos \theta d\theta = \frac{I}{4\pi a} \int_{\theta_1}^{\theta_2} \cos \theta d\theta = \frac{I}{4\pi a} \left(\sin \theta_2 - \sin \theta_1 \right)$$

Biot-Savart's Law (example)

Find the magnetic field at distance a from a long straight wire carrying a steady current *I*.

$$H = \frac{I}{4\pi a} \left(\sin \theta_2 - \sin \theta_1 \right)$$

For **infinitely long wire**: $\theta_1 = -90^{\circ}$ and $\theta_2 = +90^{\circ}$, then

$$H = \frac{I}{2\pi a} \qquad B = \frac{\mu_0 I}{2\pi a}$$

$$B = \frac{\mu_0 I}{2\pi a}$$

$$m{H} = \hat{\phi} rac{I}{2\pi a}$$
 $m{B} = \hat{\phi} rac{\mu_0 I}{2\pi a}$

$$\mathbf{B} = \hat{\phi} \frac{\mu_0 I}{2\pi a}$$

Two parallel wires

Determine the force of attraction between two long parallel wires, at distance d apart and carrying currents I_1 and I_2 .

$$B = \frac{\mu_0 I_1}{2\pi d}$$

$$\sum \boldsymbol{F}_{mag} = \int \Delta Q_2(\boldsymbol{v} \times \boldsymbol{B})$$

$$\boldsymbol{F}_{mag} = \int I_2(\boldsymbol{v} \times \boldsymbol{B}) dt$$

$$\boldsymbol{F}_{mag} = I_2 \int (d\boldsymbol{l} \times \boldsymbol{B})$$

$$F_{mag} = \frac{\mu_0 I_1 I_2}{2\pi d} \int dl$$

$$I_2 = \Delta Q_2 / \Delta t$$

$$v\Delta t = \Delta l$$

$$\frac{F_{mag}}{l} = \frac{\mu_0 I_1 I_2}{2\pi d}$$

Magnetic field of a loop

$$dH = \frac{I}{4\pi R^2} |d\mathbf{l} \times \hat{\mathbf{R}}| = \frac{I dl}{4\pi (a^2 + z^2)}$$

 $d\mathbf{H}$ is in the r–z plane, therefore it has components dH_r and dH_z .

The dH_r -components due to dl and dl' cancel.

The dH_z -components due to dl and dl' add (same direction)

$$d\mathbf{H} = \hat{\mathbf{z}} dH_z = \hat{\mathbf{z}} dH \cos \theta = \hat{\mathbf{z}} \frac{I \cos \theta}{4\pi (a^2 + z^2)} dl$$

$$\mathbf{H} = \hat{\mathbf{z}} \, \frac{I \cos \theta}{4\pi (a^2 + z^2)} \oint dl = \hat{\mathbf{z}} \, \frac{I \cos \theta}{4\pi (a^2 + z^2)} \, (2\pi a).$$

at center of loop (z=0) =>
$$\mathbf{H} = \hat{\mathbf{z}} \frac{I}{2a} \qquad \text{(at } z = 0\text{)}$$
far from loop (z² >> a²) =>
$$\mathbf{H} = \hat{\mathbf{z}} \frac{Ia^2}{2|z|^3} \qquad \text{(at } |z| \gg a\theta$$

Biot-Savart's Law (example)

Determining the direction of dH using the right-hand rule

(a) Electric dipole

(b) Magnetic dipole

(c) Bar magnet

Gauss' Law of Magnetostatics

We know from Biot-Savart Law that:

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}') \times \hat{\mathbf{z}}}{|\mathbf{z}|^2} d\tau'$$

-- What is $\nabla \cdot \mathbf{B}$? The divergence of a vector

$$\nabla \cdot \mathbf{B} = \frac{\mu_0}{4\pi} \int \nabla \cdot \left(\mathbf{J}(\mathbf{r}') \times \frac{\hat{\mathbf{r}}}{|\mathbf{r}|^2} \right) d\tau'$$

with:
$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$$
 (product rule)

follows..
$$\nabla \cdot \left(\mathbf{J}(\mathbf{r}') \times \frac{\hat{\boldsymbol{r}}}{|\boldsymbol{r}|^2} \right) = \frac{\hat{\boldsymbol{r}}}{|\boldsymbol{r}|^2} \cdot \left(\nabla \times \mathbf{J}(\mathbf{r}') \right) - \mathbf{J} \cdot \left(\nabla \times \frac{\hat{\boldsymbol{r}}}{|\boldsymbol{r}|^2} \right)$$

with $\nabla \times \mathbf{J}(\mathbf{r}') = 0$ (J depends on \mathbf{r}' but not on \mathbf{r})

$$\nabla \times \frac{\hat{\mathbf{z}}}{|\mathbf{z}|^2} = 0$$
 (we know that from Electrostatics..)

follows

$$abla \cdot {f B} = 0 \quad \Leftrightarrow \quad \oint {f B} \cdot d{f a} = 0$$

Gauss' Law of Magnetostatics on magnetic monopoles!

Ampere's law of magnetostatics

We know from Biot-Savart Law that:

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int \frac{\mathbf{J}(\mathbf{r}') \times \hat{\mathbf{r}}}{|\mathbf{r}|^2} d\tau'$$

-- What is
$$\nabla \times \mathbf{B}$$
? The curl of a vector
$$\nabla \times \mathbf{B} = \frac{\mu_0}{4\pi} \int \nabla \times \left(\mathbf{J}(\mathbf{r}') \times \frac{\hat{\mathbf{z}}}{|\mathbf{z}|^2} \right) d\tau'$$

with
$$\nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla) \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B} + \mathbf{A} (\nabla \cdot \mathbf{B}) - \mathbf{B} (\nabla \cdot \mathbf{A})$$
 (another product rule)

follows
$$\nabla \times \left(\mathbf{J}(\mathbf{r}') \times \frac{\hat{\mathbf{r}}}{|\mathbf{r}|^2} \right) = \mathbf{J} \left(\nabla \cdot \frac{\hat{\mathbf{r}}}{|\mathbf{r}|^2} \right) - \left(\mathbf{J} \cdot \nabla \right) \frac{\hat{\mathbf{r}}}{|\mathbf{r}|^2}$$
 deriv. of \mathbf{J} are zero

with
$$\nabla \cdot \frac{\hat{\mathbf{r}}}{|\mathbf{r}|^2} = 4\pi \delta^3(\mathbf{r})$$
 and $\int -(\mathbf{J} \cdot \nabla) \frac{\hat{\mathbf{r}}}{|\mathbf{r}|^2} d\tau' = 0$ (using yet another product rule..)

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$$

 $abla imes \mathbf{B} = \mu_0 \mathbf{J}$ Ampère's Law of Magnetostatics

integral form?

Ampere's law of magnetostatics

Using Stokes' theorem:

$$\nabla \times \mathbf{H} = \mathbf{J} \quad \longleftrightarrow \quad \oint_C \mathbf{H} \cdot d\boldsymbol{\ell} = I$$

Ampere's Law states that the line integral of B (or H) around a closed contour C is equal to the current traversing the surface bounded by the contour.

Ampere's Law equation offers an efficient way to calculate magnetic fields given appropriate current symmetries.

Ampèrian loop

Revisited: Magnetic Field of a Linear Conductor

$$\oint \mathbf{H} \cdot d\mathbf{l} = H \oint dl = H \int_0^{2\pi} r \cdot d\theta = H 2\pi r = I$$

$$H = \frac{I}{2\pi r}$$

 \mathbf{J}_0 \mathbf{B}

Much much easier!

Example: Ampere's law

Consider a straight non-magnetic conductor of circular cross-section and radius a carrying a current with uniform current density J (A/m²) in the vertical direction. Using Ampere's law find the magnetic field inside and outside the conductor.

Example: Magnetic flux

Find the magnetic flux Φ_B that passes through a wire frame placed next to a wire of current I.

Solution:

$$\Phi_{B} = \iint_{S} \mathbf{B} \cdot dS$$

$$\boldsymbol{B} = \frac{\mu_0 I}{2\pi r} \hat{\boldsymbol{n}}$$

$$d\mathbf{S} = Ldr \cdot \hat{\mathbf{n}}$$

$$\Phi_{B} = \int_{r_{1}}^{r_{2}} \frac{\mu_{0}I}{2\pi r} L \cdot dr \hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{n}} = \frac{\mu_{0}I}{2\pi} L \int_{r_{1}}^{r_{2}} \frac{1}{r} dr = \frac{\mu_{0}I}{2\pi} L \ln\left(\frac{r_{2}}{r_{1}}\right)$$

Example:

In a Cartesian coordinate, z-axis carry currents of 20A along z-axis. Calculate \vec{H} at point (6, 8, -6).

Solution:

$$I = 20A$$
 at $z - axis = (6,8,-6)$

$$\vec{H} = \frac{I}{2\pi\rho} \hat{a}_{\phi}$$

$$\hat{a}_{\phi} = \hat{a}_{l} \times \hat{a}_{\rho}$$

$$\hat{a}_{\phi} = \hat{a}_z \times \frac{(6 - 0.8 - 0.-6 - (-6))}{|6 - 0.8 - 0.-6 - (-6)|}$$

$$\hat{a}_{\phi} = \hat{a}_z \times \frac{(6,8,0)}{\sqrt{6^2 + 8^2}}$$

$$\hat{a}_{\phi} = \hat{a}_z \times \frac{(6,8,0)}{\sqrt{100}}$$

$$\hat{a}_{\phi} = \hat{a}_z \times \frac{(6,8,0)}{10}$$

Solution:

$$\hat{a}_{\phi} = \hat{a}_{z} \times \frac{(6,8,0)}{10}$$

$$\hat{a}_{\phi} = \begin{vmatrix} \hat{a}_{x} & \hat{a}_{y} & \hat{a}_{z} \\ 0 & 0 & 1 \\ 6/10 & 8/10 & 0 \end{vmatrix}$$

$$\hat{a}_{\phi} = \hat{a}_{x} [(0)(0) - (1)(8/10)] - \hat{a}_{y} [(0)(0) - (1)(6/10)] + \hat{a}_{z} [0)(8/10) - (0)(6/10)]$$

$$\hat{a}_{\phi} = \frac{-8\hat{a}_{x} + 6\hat{a}_{y}}{10}$$

$$\bar{H} = \frac{I}{2\pi\rho} \hat{a}_{\phi}$$

$$\bar{H} = \frac{20}{2\pi\sqrt{(8)^{2} + 6^{2}}} \left(\frac{-8\hat{a}_{x} + 6\hat{a}_{y}}{10} \right)$$

$$\bar{H} = \frac{20}{2\pi\sqrt{100}} \left(\frac{-8\hat{a}_{x} + 6\hat{a}_{y}}{10} \right)$$

$$\bar{H} = \frac{20}{2\pi10} \left(\frac{-8\hat{a}_{x} + 6\hat{a}_{y}}{10} \right)$$

$$\bar{H} = -0.255\hat{a}_{x} + 0.191\hat{a}_{y} \text{ A/m}$$
36

Example:

In a conducting medium,

$$\vec{H} = y^2 z \hat{a}_x + 2(x+1)yz \hat{a}_y - (x+1)z^2 \hat{a}_z$$
 A/m.

Determine \vec{J} at (1,0,-3) and the current, I passing through $y = 1,0 \le x \le 1,0 \le z \le 1$.

Solution:

$$\begin{split} \vec{H} &= y^2 z \hat{a}_x + 2(x+1) y z \hat{a}_y - (x+1) z^2 \hat{a}_z \quad \text{A/m.} \\ \nabla \times \vec{H} &= \vec{J} \\ \vec{J} &= \nabla \times \vec{H} = \hat{a}_x \left(\frac{\partial}{\partial y} H_z - \frac{\partial}{\partial z} H_y \right) + \hat{a}_y \left(\frac{\partial}{\partial z} H_x - \frac{\partial}{\partial x} H_z \right) + \hat{a}_z \left(\frac{\partial}{\partial x} H_y - \frac{\partial}{\partial y} H_x \right) \\ \vec{J} &= \hat{a}_x \left(\frac{\partial}{\partial y} \left(-(x+1) z^2 \right) - \frac{\partial}{\partial z} 2(x+1) y z \right) + \hat{a}_y \left(\frac{\partial}{\partial z} \left(y^2 z \right) - \frac{\partial}{\partial x} \left(-(x+1) z^2 \right) \right) + \hat{a}_z \left(\frac{\partial}{\partial x} 2(x+1) y z - \frac{\partial}{\partial y} \left(y^2 z \right) \right) \\ \vec{J} &= \hat{a}_x \left(0 - 2 x y - 2 y \right) + \hat{a}_y \left(y^2 + z^2 \right) + \hat{a}_z \left(2 y z - 2 y z \right) \\ \vec{J} &= \hat{a}_x \left(-2 x y - 2 y \right) + \hat{a}_y \left(y^2 + z^2 \right) \\ \vec{J} &= \hat{a}_x \left(-2 (1)(0) - 2(0) \right) + \hat{a}_y \left(0^2 + (-3)^2 \right) \\ \vec{J} &= 9 \hat{a}_y \text{ A/m}^2 \end{split}$$

Solution:

$$\begin{split} \vec{H} &= y^2 z \hat{a}_x + 2 \big(x + 1 \big) y z \hat{a}_y - \big(x + 1 \big) z^2 \hat{a}_z \quad \text{A/m.} \\ \nabla \times \vec{H} &= \vec{J} \\ \vec{J} &= \nabla \times \vec{H} = \hat{a}_x \big(-2 x y - 2 y \big) + \hat{a}_y \big(y^2 + z^2 \big) \\ \vec{J} &= \hat{a}_x \big(-2 x y - 2 y \big) + \hat{a}_y \big(y^2 + z^2 \big) \\ I &= \int_S \vec{J} \cdot d\vec{S} \\ y &= 1, 0 \le x \le 1, 0 \le z \le 1. \end{split}$$

$$I = \int_{S} \vec{J} \cdot d\vec{S}$$

$$I = \int_{0}^{1} \vec{J} \cdot \hat{a}_{y} \Big|_{y=1} dxdz$$

$$I = \int_{0}^{1} \int_{0}^{1} \left[\hat{a}_{x} (-2xy - 2y) + \hat{a}_{y} (y^{2} + z^{2}) \right] \cdot \hat{a}_{y} \Big|_{y=1} dxdz$$

$$I = \int_{0}^{1} \int_{0}^{1} \hat{a}_{y} (y^{2} + z^{2}) \cdot \hat{a}_{y} \Big|_{y=1} dxdz; \quad \hat{a}_{y} \cdot \hat{a}_{y} = 1$$

$$I = \int_{0}^{1} \int_{0}^{1} (y^{2} + z^{2}) \Big|_{y=1} dxdz$$

$$I = \int_{0}^{1} \left(1 + z^{2} \right) dxdz$$

$$I = \int_{0}^{1} \left(1 + \frac{1}{3} \right) dx$$

$$I = \int_{0}^{1} \left(1 + \frac{1}{3} \right) dx$$

$$I = \left[\frac{4}{3} x \right]_{0}^{1}$$

$$I = \frac{4}{3} (1 - 0)$$

$$I = \frac{4}{3} A = 1.33333A$$

Electric and magnetic forces

Electric Force

- acts in the direction of the electric field
- acts on a charged particle regardless of whether the particle is moving
- does work in displacing the particle

Magnetic Force

- acts perpendicular to the magnetic field
- acts on a charged particle only when the particle is moving
- does no work in displacing the particle
- Electrical and magnetic fields are very different in electrostatics and magnetostatics!
 - electrical charges can come individually with different charges (monopoles)
 - magnetic fields are always dipole fields (no magnetic monopoles!)

Table 5-1: Attributes of electrostatics and magnetostatics.

Attribute	Electrostatics	Magnetostatics
Sources	Stationary charges $\rho_{\rm v}$	Steady currents J
Fields and Fluxes	${f E}$ and ${f D}$	H and B
Constitutive parameter(s)	$arepsilon$ and σ	μ
Governing equations		
• Differential form	$\nabla \cdot \mathbf{D} = \rho_{\mathbf{v}}$	$\nabla \cdot \mathbf{B} = 0$
	$\nabla \times \mathbf{E} = 0$	$\nabla \times \mathbf{H} = \mathbf{J}$
• Integral form	$\oint_{S} \mathbf{D} \cdot d\mathbf{s} = Q$	$\oint_{S} \mathbf{B} \cdot d\mathbf{s} = 0$
	$\oint_C \mathbf{E} \cdot d\mathbf{l} = 0$	$\oint_C \mathbf{H} \cdot d\mathbf{l} = I$
Potential	Scalar V , with $\mathbf{E} = -\nabla V$	Vector A , with $\mathbf{B} = \nabla \times \mathbf{A}$
Energy density	$w_{\rm e} = \frac{1}{2} \varepsilon E^2$	$w_{\rm m} = \frac{1}{2}\mu H^2$
Force on charge q	$\mathbf{F}_{\mathbf{e}} = q\mathbf{E}$	$\mathbf{F}_{\mathbf{m}} = q\mathbf{u} \times \mathbf{B}$
Circuit element(s)	C and R	L

Name	Integral equations	Differential equations
Gauss's law	$\iint_{\partial\Omega}\mathbf{E}\cdot\mathrm{d}\mathbf{S}=rac{1}{arepsilon_0}\iint_{\Omega} ho\mathrm{d}V$	$ abla \cdot \mathbf{E} = rac{ ho}{arepsilon_0}$
Gauss's law for magnetism	$\iint_{\partial\Omega}\mathbf{B}\cdot\mathrm{d}\mathbf{S}=0$	$ abla \cdot {f B} = 0$
Maxwell–Faraday equation (Faraday's law of induction)	$\oint_{\partial \Sigma} \mathbf{E} \cdot \mathrm{d}m{\ell} = -rac{\mathrm{d}}{\mathrm{d}t} \iint_{\Sigma} \mathbf{B} \cdot \mathrm{d}\mathbf{S}$	$ abla imes \mathbf{E} = -rac{\partial \mathbf{B}}{\partial t}$
Ampère's circuital law (with Maxwell's addition)	$\int_{\partial \Sigma} \mathbf{B} \cdot \mathrm{d}m{\ell} = \mu_0 \iint_{\Sigma} \mathbf{J} \cdot \mathrm{d}\mathbf{S} + \mu_0 arepsilon_0 rac{\mathrm{d}}{\mathrm{d}t} \iint_{\Sigma} \mathbf{E} \cdot \mathrm{d}\mathbf{S}$	$ abla extbf{X} extbf{B} = \mu_0 \left(extbf{J} + arepsilon_0 rac{\partial extbf{E}}{\partial t} ight)$