Solving Vertex Cover for *G* and *k*

Algorithm 1 (brute force).

 $O(2^n n)$

create the power set pow(V)

while no vertex cover found do

take a new set S from pow(V)

if S is a vertex cover of size at most k then

return yes

return no

Solving Vertex Cover for *G* and *k*

Algorithm 2 (search tree/backtracking approach).

inspect the current vertex cover set S

if S is a valid vertex cover and of size at most k then

return yes

pick a vertex $x \in V \setminus we$ know that x is either in a vertex cover of size k, or it is not

Case 1: include x into S; recursively solve the problem for $G' \leftarrow G - x$ (that is, vertex x and all its incident edges were removed from G) and $k' \leftarrow k-1$

Case 2: recursively solve the problem for $G'' \leftarrow G$ and k without allowing x to be part of vertex cover S

if all vertices are processed and no vertex cover of size at most k is found then

return no

Solving Vertex Cover for *G* and *k*

- Algorithm 3 (bounded search tree/backtracking approach)
- Observation. Given graph G = (V,E) and a vertex cover $V' \subseteq V$ for G
 - For each vertex x in a graph: if $x \notin V'$ then all its a adjacent vertices N(x) must be in V', that is: $N(x) \subseteq V'$
- Justification. if neither x nor one of its adjacent vertices is in V, then the edge is not covered. A contradiction.

Solving Vertex Cover for G and k via technique of bounded search trees: Algorithm VC(G,k)

if $E = \emptyset$ and $k \ge 0$ return **yes**

 $O(2^k n)$

pick a vertex $x \in V$ with $deg(x) \ge 1$

$$G' \leftarrow G - x$$
; $k' \leftarrow k - 1$

$$G'' \leftarrow \text{from } G\text{-N}(x); k'' \leftarrow k - |N(x)|$$

Recursively solve VC(G',k') as long as $k' \ge 0$, and VC(G'',k'') as long as $k'' \ge 0$: If VC(G',k') returns no **then return** VC(G'',k'')

return no