BAYESIAN ANALYSIS OF VARS, STATE-SPACE MODELS AND DSGES PART III - ESTIMATION BY SIMULATION

Mattias Villani

Division of Statistics and Machine Learning Department of Computer and Information Science Linköping University

LECTURE OVERVIEW

- ► Monte Carlo
- ► Gibbs sampling
- ► Markov Chain Monte Carlo (MCMC) simulation

MONTE CARLO SAMPLING

▶ If $\theta^{(1)}$, $\theta^{(2)}$,, $\theta^{(N)}$ is an *iid* sequence from a distribution $p(\theta)$, then

$$\frac{1}{N} \sum_{t=1}^{N} \theta^{(t)} \rightarrow E(\theta)$$

$$\frac{1}{N} \sum_{t=1}^{N} g(\theta^{(t)}) \rightarrow E[g(\theta)]$$

where $g(\theta)$ is some well-behaved function.

▶ Easy to compute **tail probabilities** $Pr(\theta \le c)$ by letting

$$g(\theta) = I(\theta \le c)$$

and

$$\frac{1}{N} \sum_{t=1}^{N} g(\theta^{(t)}) = \frac{\# \theta \text{-draws smaller than } c}{N}.$$

GIBBS SAMPLING

- Easily implemented methods for sampling from multivariate distributions, $p(\theta_1, ..., \theta_k)$.
- Requirements: Easily sampled full conditional posteriors:
 - $\triangleright p(\theta_1 | \theta_2, \theta_3..., \theta_k)$

 - \triangleright $p(\theta_k|\theta_1,\theta_2,...,\theta_{k-1})$
- Started out in the early 80's in the image analysis literature.
- ► Gibbs sampling is a special case of Metropolis-Hastings (MCMC)

THE GIBBS SAMPLING ALGORITHM

```
A: Choose initial values \theta_2^{(0)}, \theta_3^{(0)}, ..., \theta_n^{(0)}.

B: B_1 Draw \theta_1^{(1)} from p(\theta_1|\theta_2^{(0)},\theta_3^{(0)},...,\theta_n^{(0)})

B_2 Draw \theta_2^{(1)} from p(\theta_2|\theta_1^{(1)},\theta_3^{(0)},...,\theta_n^{(0)})

: B_n Draw \theta_n^{(1)} from p(\theta_n|\theta_1^{(1)},\theta_2^{(1)},...,\theta_{n-1}^{(1)})

C: Repeat Step B N times.
```

GIBBS SAMPLING, CONT.

► The Gibbs draws $\theta^{(1)}$, $\theta^{(2)}$,, $\theta^{(N)}$ are dependent (autocorrelated), but arithmetic means converge to expected values

$$\frac{1}{N} \sum_{t=1}^{N} \theta_{j}^{(t)} \rightarrow E(\theta_{j})$$

$$\frac{1}{N} \sum_{t=1}^{N} g(\theta^{(t)}) \rightarrow E[g(\theta)]$$

- \bullet $\theta^{(1)}, ..., \theta^{(N)}$ converges in distribution to the target $p(\theta)$.
- $m{ heta}_j^{(1)},..., heta_j^{(N)}$ converge to the marginal distribution of $heta_j,\ p(heta_j).$
- ▶ Dependent draws → less efficient than iid sampling.
- ► Compare sampling from:
 - $\triangleright x_t \stackrel{iid}{\sim} N(0, \sigma^2)$
 - $x_t = 0.9x_{t-1} + \varepsilon_t$ with $\varepsilon_t \stackrel{iid}{\sim} N(0, \sigma^2)$.

GIBBS SAMPLING MULTIVARIATE NORMAL

- Bivariate normal:
 - Joint distribution

$$\left(\begin{array}{c}\theta_1\\\theta_2\end{array}\right) \sim N_2 \left[\left(\begin{array}{c}\mu_1\\\mu_2\end{array}\right), \left(\begin{array}{cc}1&\rho\\\rho&1\end{array}\right)\right]$$

► Full conditional posteriors:

$$\begin{array}{lll} \theta_{1}|\theta_{2} & \sim & \textit{N}[\mu_{1} + \rho(\theta_{2} - \mu_{2}), 1 - \rho^{2}] \\ \theta_{2}|\theta_{1} & \sim & \textit{N}[\mu_{2} + \rho(\theta_{1} - \mu_{1}), 1 - \rho^{2}] \end{array}$$

GIBBS SAMPLING - BIVARIATE NORMAL

GIBBS SAMPLING - BIVARIATE NORMAL

GIBBS SAMPLING - BIVARIATE NORMAL

DIRECT SAMPLING VS GIBBS SAMPLING

Computing the density of functions of θ

▶ Given draws from the posterior $p(\theta_1, \theta_2 | Data)$ we can just compute the posterior of any function of θ_1 and θ_2 . Example **impulse** response functions.

COMPUTING COMPLICATED JOINT PROBABILITIES

▶ We can estimate a joint probability by counting:

$$Pr(\theta_1 > 0, \theta_2 > 0) \approx N^{-1} \sum_{i=1}^{N} 1(\theta_1^{(i)} > 0, \theta_2^{(i)} > 0)$$

We can for example easily compute Pr(inflation > 3% and repo < 0 | Data). At any horizons.

GIBBS SAMPLING FOR AR PROCESSES

▶ AR(p) process

$$x_t = \mu + \phi_1(x_{t-1} - \mu) + \dots + \phi_p(x_{t-p} - \mu) + \varepsilon_t, \quad \varepsilon_t \stackrel{iid}{\sim} N(0, \sigma^2).$$

- ▶ Let $\phi = (\phi_1, ..., \phi_p)'$.
- ▶ Prior:
 - μ ~Normal
 - $\phi \sim$ Multivariate Normal
 - $\sigma^2 \sim \text{Scaled Inverse } \chi^2$.
- ► The posterior can be simulated by Gibbs sampling:
 - $\mu | \phi, \sigma^2, x \sim \text{Normal}$

 - $\phi | \mu, \sigma^2, x \sim \text{Multivariate Normal}$ $\sigma^2 | \mu, \phi, x \sim \text{Scaled Inverse } \chi^2$

MARKOV CHAINS

- ▶ Let $S = \{s_1, s_2, ..., s_k\}$ be a finite set of **states**.
 - Weather: $S = \{\text{sunny, rain}\}.$
 - ▶ Journal rankings: $S = \{A+, A, B, C, D, E\}$
- Markov chain is a stochastic process $\{X_t\}_{t=1}^T$ with random state transitions

$$p_{ij} = \Pr(X_{t+1} = s_j | X_t = s_i)$$

► Example realization journal ranking:

$$X_1 = C$$
, $X_2 = C$, $X_3 = B$, $X_4 = A+$, $X_5 = B$.

► Transition matrix for weather example

$$P = \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} = \begin{pmatrix} 0.9 & 0.1 \\ 0.7 & 0.3 \end{pmatrix}$$

STATIONARY DISTRIBUTION

► *h*-step transition probabilities

$$P_{ij}^{(h)} = \Pr(X_{t+h} = s_j | X_t = s_i)$$

► h-step transition matrix

$$P^{(h)} = P^h$$

- ► The chain has a unique equilibrium stationary distribution $\pi = (\pi_1, ..., \pi_k)$ if it is
 - irreducible (possible to get from any state from any state)
 - ► aperiodic (does not get stuck in predictable cycles)
 - positive recurrent (expected time of returning to any state is finite)
- ► Limiting (long-run) distribution

$$P^{t} \rightarrow \begin{pmatrix} \pi \\ \pi \\ \vdots \\ \pi \end{pmatrix} = \begin{pmatrix} \pi_{1} & \pi_{2} & \cdots & \pi_{k} \\ \pi_{1} & \pi_{2} & \cdots & \pi_{k} \\ \vdots & \vdots & & \vdots \\ \pi_{1} & \pi_{2} & \cdots & \pi_{k} \end{pmatrix} \text{ as } t \rightarrow \infty$$

$$\boxed{VOID}$$

STATIONARY DISTRIBUTION, CONT.

► Limiting (long-run) distribution

$$P^{t} \to \begin{pmatrix} \pi \\ \pi \\ \vdots \\ \pi \end{pmatrix} = \begin{pmatrix} \pi_{1} & \pi_{2} & \cdots & \pi_{k} \\ \pi_{1} & \pi_{2} & \cdots & \pi_{k} \\ \vdots & \vdots & & \vdots \\ \pi_{1} & \pi_{2} & \cdots & \pi_{k} \end{pmatrix} \text{ as } t \to \infty$$

Stationary distribution

$$\pi = \pi P$$

Example:

$$P = \left(\begin{array}{ccc} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{array}\right)$$

$$\pi = (0.545, 0.272, 0.181)$$

THE BASIC MCMC IDEA

- Aim: to simulate from a discrete distribution p(x) when $x \in \{s_1, s_2, ..., s_k\}$.
- ► MCMC: simulate a Markov Chain with a stationary distribution that is exactly p(x).
- ▶ How to set up the transition matrix P? Metropolis-Hastings!

REJECTION SAMPLING

RANDOM WALK METROPOLIS ALGORITHM

- ▶ Initialize $\theta^{(0)}$ and iterate for i = 1, 2, ...
 - 1. Sample $\theta_{
 ho}| heta^{(i-1)}\sim extstyle N\left(heta^{(i-1)},c\cdot\Sigma
 ight)$ (the proposal distribution)
 - 2. Compute the acceptance probability

$$lpha = \min\left(1, rac{p(heta_p|\mathbf{y})}{p(heta^{(i-1)}|\mathbf{y})}
ight)$$

3. With probability α set $\theta^{(i)} = \theta_p$ and $\theta^{(i)} = \theta^{(i-1)}$ otherwise.

RANDOM WALK METROPOLIS, CONT.

- ▶ Assumption: we can compute $p(\theta_p|\mathbf{y})$ for any θ .
- ▶ Proportionality constant in $p(\theta_p|\mathbf{y})$ will cancel in α :

$$\alpha = \min \left(1, \frac{p(\mathbf{y}|\theta_p) p(\theta_p)}{p(\mathbf{y}|\theta^{(i-1)}) p(\theta^{(i-1)})} \right)$$

▶ Just need to code up the loglikelihood $p(\mathbf{y}|\theta)$ and the log prior $p(\theta)$.

RANDOM WALK METROPOLIS, CONT.

- ► Common choices of Σ in proposal $N\left(\theta^{(i-1)}, c \cdot \Sigma\right)$:
 - $ightharpoonup \Sigma = I$ (warning: may propose 'off the cigar'. Inefficient.)
 - $\Sigma = -H^{-1}$ (Hessian of the log posterior evaluated at $\hat{\theta}_{mode}$) (propose 'along the cigar')
 - Adaptive. Start with $\Sigma = I$ and then recompute Σ from an initial simulation run.
- ► Get $\hat{\theta}_{mode}$ and H from numerical optimization (e.g. fminunc in Matlab).
- ▶ c is set so that average acceptance probability is roughly 25-35%.
- A good proposal:
 - should take reasonably **large steps** in θ -space
 - should not be rejected too often.

RANDOM WALK METROPOLIS FOR A DSGE [1]

RANDOM WALK METROPOLIS FOR A DSGE [1]

0.15

Prior Posterior

0.25

THE METROPOLIS-HASTINGS ALGORITHM

- ▶ Generalization when the proposal density is not symmetric.
- ▶ Initialize $\theta^{(0)}$ and iterate for i = 1, 2, ...
 - 1. Sample $heta_p \sim q\left(\cdot | heta^{(i-1)}
 ight)$ (the proposal distribution)
 - 2. Compute the acceptance probability

$$\alpha = \min \left(1, \frac{p(\mathbf{y}|\theta_p)p(\theta_p)}{p(\mathbf{y}|\theta^{(i-1)})p(\theta^{(i-1)})} \frac{q\left(\theta^{(i-1)}|\theta_p\right)}{q\left(\theta_p|\theta^{(i-1)}\right)}\right)$$

3. With probability α set $\theta^{(i)} = \theta_p$ and $\theta^{(i)} = \theta^{(i-1)}$ otherwise.

THE INDEPENDENCE SAMPLER

- ▶ Independence sampler: $q\left(\theta_p|\theta^{(i-1)}\right) = q\left(\theta_p\right)$.
- Proposal is independent of previous draw.
- Example:

$$heta_{
m p} \sim t_{
m v} \left(\hat{ heta}_{
m i} - H^{-1}
ight)$$
 ,

where $\hat{\theta}$ and H^{-1} are computed by numerical optimization.

- ► Can be very **efficient**, but has a tendency to **get stuck**. Parallelizable!.
- ▶ Make sure that $q(\theta_p)$ has heavier tails than $p(\theta|\mathbf{y})$.

RWM AND INDEP METROPOLIS FOR A DSGE [2]

FIGURE 2. Sampling paths for the domestic sticky price parameter for three different posterior sampling algorithms.

THE (IN)EFFICIENCY OF MCMC

- \bullet $\theta^{(1)}, \theta^{(2)}, ..., \theta^{(N)}$ are dependent (autocorrelated).
- ▶ How efficient is my MCMC compared to iid sampling?
- ▶ If $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(N)}$ are iid with variance σ^2 , then

$$\operatorname{Var}(\bar{\theta}) = \frac{\sigma^2}{N}.$$

▶ If $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(N)}$ are generated by MCMC

$$\operatorname{Var}(\bar{\theta}) = \frac{\sigma^2}{N} \left(1 + 2 \sum_{k=1}^{\infty} \rho_k \right)$$

where $\rho_k = Corr(\theta^{(i)}, \theta^{(i+k)})$ is the autocorrelation at lag k.

► Inefficiency factor

$$IF = 1 + 2\sum_{k=1}^{\infty} \rho_k$$

► Effective sample size from MCMC

$$ESS = N/IF$$

BURN-IN AND CONVERGENCE

- ► How long burn-in?
- ► How long to sample after burn-in?
- ➤ To thin of not to thin? Only keeping every h draw reduces autocorrelation.
- ► Convergence diagnostics
 - Raw plots of simulated sequences (trajectories)
 - ► CUSUM plots + Local means
 - ▶ Potential scale reduction factor, R.

RANDOM WALK METROPOLIS FOR A DSGE [1]

RANDOM WALK METROPOLIS FOR A DSGE [1]

POTENTIAL SCALE REDUCTION FACTOR - DSGE [1]

TRANSFORMING PARAMETERS

- ▶ Many models have parameters with **restricted parameter spaces**:
 - ▶ Stationary AR(1) process: $y_t = \rho y_{t-1} + \varepsilon_t$: $\rho \in [-1, 1]$ or $\rho \in [0, 1]$.
 - ▶ Variances: $\sigma^2 \in (0, \infty)$.
- ▶ MCMC and optimization is typically easier if we transform parameters to $(-\infty, \infty)$.
- Other advantages: often improves normality of the posterior. Laplace approx better.
- Standard transformations:
 - Parameters in [0,1]: $\phi = \log\left(\frac{\rho}{1-\rho}\right)$
 - ▶ Parameters in $(0, \infty)$: $\phi = \log \sigma^2$.
- ▶ Don't forget the **Jacobian** of the transformation when computing the posterior density!

TRANSFORMING PARAMETERS - POSTERIOR NORMALITY

TRANSFORMING PARAMETERS - MARGINAL LIKELIHOOD

FIGURE 4. Sequential marginal likelihood estimates from the large-scale DSGE model for a subset of marginal likelihood estimators.

- M. Adolfson, S. Laséen, J. Lindé, and M. Villani, "Bayesian estimation of an open economy dsge model with incomplete pass-through," *Journal of International Economics*, vol. 72, no. 2, pp. 481–511, 2007.

M. Adolfson, J. Lindé, and M. Villani, "Bayesian analysis of dsge models - some comments," *Econometric Reviews*, vol. 26, no. 2-4, pp. 173–185, 2007.