${\bf Mini\text{-}Test}\ 1$

Name:	ben giftakis	Email: benjamin.giftakis001@umb.edu
1 (50	points) Check the correct answer.	
`	(10 points) You can conclude proposition 2 True False	4 using reflexivity .
(b	 (10 points) The proof of an implication P → Q P to produce a proof of the proposition Q. True False 	is a function that uses a proof of the proposition
(c) (10 points) If E has type Nat.eqb m n = tru True False	e, then E can be applied to a goal m = n .
(d) (10 points) If X is an inductively defined type or then destruct foo will finish any proof or sub True False	
(е) (10 points) The type Inductive foo := b in Coq. True False	par: foo \rightarrow foo. is an invalid type definition
doe	points) Give the type of each of the following Coes not have a type.	
(a	(5 points) forall (x : nat) (y : Prop),	$x \rightarrow y$
ill type	ed	
(b) (5 points) forall (X Y : Prop), X \rightarrow Y	
prop		
cor	points) For each of the following propositions, che logic, without additional axioms), "induction" if provable without using induction and without additional axioms.	it is provable only using induction, or "easy" if it
(a) (4 points) exists s, In 3 (s ++ [1;2;3])
	O Not Provable	
(b) (4 points) forall s, In 3 (s ↔ [1;2;3] ○ Easy ■ Induction)

O Not Provable				
(c) (4 points) forall n, n = S n				
Easy				
○ Induction				
O Not Provable				
(d) (4 points) forall n, n + $0 = n$				
Easy Label 1				
○ Induction○ Not Provable				
(e) (4 points) forall {A: Type } (l:list A), l = [] \/ exists x l', l = x :: l'				
(e) (4 points) Toract (A. Type) (1.11st A), 1 - [] (7 exists X 1 , 1 - X 1				
○ Induction				
Not Provable				
4. (20 points) Complete each proof. Your proof cannot use auto nor intuition .				
(a) P, Q: Prop				
H : P \/ Q				
H0: ~ Q				
(1/1) P				
·				
(b) forall (A:Type) (l:list A), l = [] \rightarrow l = []				
(c) forall (A: Type) (x:A), [x] = [x].				

(d) $H : P \rightarrow Q$ $H0 : P \setminus / \sim P$ $\sim P \setminus / Q$	(1/1)	