

STUDENT ID NO										

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2019/2020

PPH0135 – ELECTRICITY AND MAGNETISM

(Foundation in Engineering)

29 FEBRUARY 2020 9.00 a.m – 11.00 a.m (2 Hours)

INSTRUCTIONS TO STUDENT

- 1. This question paper consists of 7 pages excluding the cover page with 5 questions and appendices.
- 2. Attempt ALL questions. Distribution of the marks for each question is given.
- 3. Please write all your answers in the answer booklet provided.

QUESTION 1 [10 MARKS]

(a) In Figure Q1(a) below, the net electrostatic force acting on point charge B is zero.

- (i) What is the sign of point charge C? Explain your answer. [1 mark]
- (ii) Find the magnitude of point charge C. [3 marks]
- (iii) If the distance between point charges B and C is reduced to 5 cm, in which direction will point charge B accelerate? Explain your answer.

 [1 mark]
- (b) Figure Q1(b) shows a combination of capacitors in a circuit. Each capacitor has a capacitance of $4.0 \mu F$.

(i) Determine the equivalent capacitance of the circuit.

[1½ marks]

(ii) Calculate the amount of charge stored in C_2 .

[1 mark]

(iii) Determine the voltage across C_3 .

 $[1\frac{1}{2} \text{ marks}]$

(c) What are the two factors that can increase the capacitance value of a parallel-plate capacitor?

[1 mark]

Continued...

QUESTION 2 [10 MARKS]

(a) Calculate the diameter of a 2.0 cm length of tungsten filament in a small light bulb if its resistance is 0.05Ω .

[Given: resistivity of tungsten is $5.6 \times 10^{-8} \Omega.m$]

[2 marks]

(b) By using Kirchhoff's rule, find each of the currents I_1 , I_2 , and I_3 for the circuit in Figure Q2(b).

Figure Q2(b)

[5 marks]

(c) Find the equivalent Thevenin's resistance (R_{TH}) and the equivalent Thevenin's Voltage (V_{TH}) across resistor R_I for the circuit shown in Figure Q2(c) below.

Figure Q2(c)

[3 marks]

QUESTION 3 [10 MARKS]

(a) A straight wire has a length of 130 m. This wire carries 50 A current and makes an angle of 70° to the Earth's magnetic field of 0.5×10^{-4} T. What magnitude of force is exerted on this wire?

[2 marks]

- (b) An electron is traveling horizontally to the east in a vertically upward magnetic field. The strength of the magnetic field is 0.48 T and the speed of the electron is 2.8×10^4 m/s.
 - (i) Find the magnitude of the force on this electron.

[2 marks]

(ii) Determine the direction of the force on this electron.

[1 mark]

(c) (i) Discuss the effect on the compass due to the magnetic field caused by de current in the wires.

[2 marks]

(ii) Discuss the effect on the compass due to the magnetic field caused by ac current in the wires.

[1 mark]

(d) A 15.0 cm long solenoid, 1.55 cm in diameter is to produce a field of 0.4 T at its center. If the maximum current is 5.0 A, how many turns of wire must the solenoid have?

[2 marks]

QUESTION 4 [10 MARKS]

(a) Consider a basic AC circuit with the maximum voltage $V_{max} = 250$ V. This source is connected to a 125 Ω resistor. Calculate the rms voltage and rms current in the resistor.

[2 marks]

- (b) A series RLC AC circuit has frequency f = 75.0 Hz, inductance L = 0.750 H, resistance $R = 350 \Omega$, capacitance $C = 2.85 \mu$ F and maximum voltage $V_{max} = 160$ V.
 - (i) Determine the impedance of the circuit.

[3 marks]

(ii) Find the maximum current in the circuit.

[1 mark]

(iii) Calculate the phase angle.

[1 mark]

(iv) Find the maximum voltage across the resistor, inductor and capacitor.

[3 marks]

QUESTION 5 [10 MARKS]

(a) Discuss the differences between *n*-type and *p*-type semiconductors in terms of their impurity, majority carrier and minority carrier.

[4 marks]

(b) Calculate the average value of a full-wave rectified voltage with a peak value of 175 V.

[1 mark]

(c) Figure Q5(c) shows a silicon transistor circuit. Find I_B , I_E , and I_C in Figure Q5(c), given that $V_{BB} = 3V$, $R_E = 2.0 \text{ k}\Omega$ and $V_{CC} = 20 \text{ V}$. Assume that $\alpha_{DC} = 0.96$ and $\beta_{DC} = 24$.

Figure Q5(c)

[5 marks]

APPENDIX 1

Physical Constants

Quantity	Symbol	Value
Electron mass	m_{e}	$9.11 \times 10^{-31} \mathrm{kg}$
Proton mass,	$m_{ m p}$	$1.67 \times 10^{-27} \mathrm{kg}$
Elementary charge	_р	$1.602 \times 10^{-19} \mathrm{C}$
Gravitational constant	G	$6.67 \times 10^{-11} \mathrm{N \cdot m^2 / kg^2}$
Gas constant	R	8.314 J/K·mol
Hydrogen ground state	E_{o}	-13.6 eV
Boltzmann's constant	k_{B}	$1.38 \times 10^{-23} \text{ J/K}$
Compton wavelength	$\lambda_{\rm c}$	$2.426 \times 10^{-12} \mathrm{m}$
Planck's constant	h	$6.626 \times 10^{-34} \mathrm{J\cdot s}$
Speed of light in vacuum	c	$3.0 \times 10^8 \mathrm{m/s}$
Rydberg constant	$R_{ m H}$	$1.097 \times 10^7 \mathrm{m}^{-1}$
Acceleration due to gravity,	g	9.81 m/s^2
Atomic mass unit (1u)	u	1.66×10 ⁻²⁷ kg
Avogadro's number	N_{A}	$6.023 \times 10^{23} \text{ mol}^{-1}$
Threshold of intensity of hearing	I_{o}	$1.0 \times 10^{-12} \mathrm{W/m^2}$
Coulomb constant	k	$8.988 \times 10^9 \mathrm{N m^2/C^2}$
Permittivity of free space	$arepsilon_{ m o}/\kappa_{ m o}$	$8.85 \times 10^{-12} \mathrm{C}^2/\mathrm{N} \cdot \mathrm{m}^2$
Permeability of free space	μ_{o}	$4\pi \times 10^{-7} \mathrm{H/m}$

Energy equivalent of atomic mass unit:

One atomic mass unit (1.0 u) is equivalent to 931.5 MeV

APPENDIX II

List of formulas

$A_{\rm v} = \frac{V_c}{V_{\rm c}}$		$r = \frac{mv}{Bq}$
V_b	$I = I_{\max} \sin \omega t$	Bq
$\alpha_{\rm dc} = \frac{\beta_{\rm dc}}{\beta_{\rm c} + 1}$	$I_{\rm rms} = \frac{I_{\rm max}}{\sqrt{2}}$	$\tau = NBIA \sin \theta$
A de · -	V Z	$U = \frac{1}{2}LI^2$
$\beta_{\rm dc} = \frac{\alpha_{\rm dc}}{1 - \alpha_{\rm dc}}$	$I_{x} = \left(\frac{R_{T}}{R_{x}}\right)I_{T}$	$U = \frac{1}{2}B^2 A \frac{l}{\mu_o}$
$\mu_0 I$	\	$U = \frac{1}{2}B A \frac{\Pi}{\mu_{\perp}}$
$B = \frac{\mu_0 I}{2\pi r}$	$L = \frac{N\Phi_{\rm B}}{I}$	$V_{\rm H} = Bvd$
$B = \mu_0 nI$	$L = \frac{\mu_0 N^2 A}{I}$	$V = V_{\text{max}} \sin \omega t$
$\xi = V + Ir$	$L = \frac{l}{l}$	$V_{\rm rms} = \frac{V_{\rm max}}{\sqrt{2}}$
$\xi = blv$	$M = \frac{N\Phi_{\rm B}}{I}$	$r_{\rm rms} = \sqrt{2}$
$\xi = -N \frac{\Delta \Phi}{\Delta t}$	$M = \frac{I}{I}$	$(R_{\cdot\cdot})_{-\cdot}$
	$M = \frac{\mu_o N_1 N_2 A}{I}$	$V_{\rm x} = \left(\frac{R_{\rm x}}{R_{\rm T}}\right)V_{\rm S}$
$\xi = -L \frac{dI}{dt}$	$M = \frac{l}{l}$	1
ai	$P = IV = I^2 R = \frac{V^2}{P}$	$X_{\rm C} = \frac{1}{2\pi fC}$
$\xi = -M \frac{dI}{dt}$	$P = IV = I^-R = \frac{R}{R}$	$X_{L} = 2\pi f L$
***	$P_{\rm t} = I_{\rm rms} V_{\rm rms} \cos \phi$	$A_{L} = 2ig L$
$F = BIL \sin \theta$	$P_{\rm r} = V_{\rm rms} I_{\rm rms} \sin \phi$	<u> </u>
$F = qvB\sin\theta$		$Z = \sqrt{R^2 + (X_L - X_C)^2}$
$\frac{F}{\ell} = \frac{\mu_0 I_1 I_2}{2\pi d}$	$P_{\rm a} = I_{\rm rms}^2 Z$	$ \oint B.dl = \mu_o I $
$\ell = 2\pi d$	$R = \frac{\rho L}{L}$	$\psi_D.u_i - \mu_o I$
f - <u>1</u>	A	$d\mathbf{B} = \frac{\mu_O I}{4\pi} \frac{d\ell \times \hat{\mathbf{r}}}{r^2}$
$f_{\rm r} = \frac{1}{2\pi\sqrt{\rm LC}}$	$R = R_0 \left[1 + \alpha \left(T - T_0 \right) \right]$	$4\pi r$
$I_{\text{tot}} = \sqrt{I_{\text{R}}^2 + (I_{\text{L}} - I_{\text{C}})^2}$		$\Phi_{\rm B} = BA\cos\theta$
$I = neA(v_n + v_n)$	$R_{\rm T} = R_1 + R_2 + R_3 + \dots$	$\cos \phi = \frac{R}{Z}$
· P·		L
$I = nev_d A$	$\frac{1}{R_{r}} = \frac{1}{R_{s}} + \frac{1}{R_{s}} + \frac{1}{R_{s}} + \dots$	$\tan \phi = \frac{X_{\rm L} - X_{\rm C}}{R}$
	$R_T R_1 R_2 R_3 \cdots$	' R