H T
 W I
 G N
 Hochschule Konstanz Technik, Wirtschaft und Gestaltung (HTWG)
 Fakultät Informatik
 Rechner- und Kommunikationsnetze
 Prof. Dr. Dirk Staehle

Theorieübungen zur Vorlesung Rechnernetze

Ende-zu-Ende-Verzögerung

Prof. Dr. Dirk Staehle Daniel Scherz (M.Sc.)

Die Abgabe erfolgt durch Hochladen der Lösung in Moodle und exemplarisches Vorrechnen in der Laborübung.

Bearbeitung in Zweier-Teams

Team-Mitglied 1: Alexander Schapelt

Team-Mitglied 2: Josef Müller

Team-Mitglied 3: Walter Vötsch Cortés

Betrachten Sie eine Übertragungsstrecke mit 3 Links, die durch folgende Übertragungsraten, Entfernungen und Ausbreitungsgeschwindigkeiten gekennzeichnet sind:

	Übertragungsrate	Physikalische Länge	Physikalische Ausbreitungsgeschwindigkeit
Link 1	60 Mbps	15 m	300 000 km/s
Link 2	25 Mbps	250 m	200 000 km/s
Link 3	20 Gbps	10 km	250 000 km/s

An allen Routern, die die Links verbinden, steht ausreichend Speicherkapazität zur Verfügung, so dass es nicht zu Paketverlusten kommt.

1. Bestimmen Sie die Ausbreitungsverzögerung und die Übertragungsverzögerung der 3 Links für Pakete der Größe 1500 Byte.

L =
$$1500 \text{ Byte} = \frac{1500}{10000000} \text{ MB} = 0,0015 \text{ MB}$$

C1 = $60 \text{ Mbps} = \frac{60}{8} \text{ MBps} = 7,5 \text{ MBps}$

C2 = $25 \text{ Mbps} = \frac{25}{8} \text{ MBps} = 3,125 \text{ MBps}$

C3 = $20 \text{ Gbps} = 20.1000 \text{ Mbps} = 20.000 \text{ Mbps}$

= $\frac{20.000}{8} \text{ MBps}$

= 2500 MBps

Link	Ausbreitungsverzögerung	Übertragungsverzögerung
Link 1	tprop= 0,015km = 0,015km 300000 mm = 0,00000005s	$t_{tx} = \frac{L}{C} = \frac{0.0045 MB}{7.5 MBps}$ = 0.0002S
Link 2	$t_{prop} = \frac{0.25 \text{km}}{200000 \text{km}}$ $= 0.000001255$	t _{tx} = 0,0015 MB 3,125 MBps = 0,000 48S
Link 3	tprop = 10 km 250 000 km = 0,000 48	t _{ex} = 0/0015 MB 2500 MBpS = 0/0000006S

2. Bestimmen sie die logische Buslänge der drei Links. Die logische Buslänge ist die Anzahl von Paketen (oder der Anteil eines Pakets), der sich gleichzeitig auf dem Bus befindet.

Link	Logische Buslänge
Link 1	Bitübertragungsdauer = $\frac{1}{60\text{Mbps}}$ = $\frac{1}{0.06\text{Gbps}}$ = $\frac{50}{3}$ ns = $\frac{50}{3}$ ns = $\frac{50}{3}$ · 10^{-9}s Log. Bublange = Ausbreitungsver segerung Bitübertragungsdauer 0,00000005s
Link 2	= $\frac{50 \cdot 10^{-9} \text{ S}}{3}$ = 3 Bitūbertagungrdauer = $\frac{1}{25 \text{ Nbps}}$
	$= \frac{1}{0.02566005} = \frac{1}{0.0256005} = \frac{1}{0.025} = 1$
Link 3	Bitubertaguaged. = $\frac{1}{200 \text{ bps}}$ = $0,05 \text{ ms} = 0,05 \cdot 10^{-3} \text{s}$ Log. Bull. = $\frac{0,000045}{0,05 \cdot 10^{-9} \text{s}}$ = 800000
	- 800 000

3. Bestimmen Sie die Ende-zu-Ende-Verzögerung für die Übertragung eines Pakets über die 3 Links in der Reihenfolge Link 1-Link 2-Link 3. Hängt die Ende-zu-Ende-Verzögerung von der Reihenfolge der Links ab?

$$T_{E2E}(1) = T_{e1}(1) + T_{e2}(1) + T_{e3}(1)$$

$$= 0,0000000055 + 0,00025$$

$$+ 0,000001255 + 0,000485$$

$$+ 0,000045 + 0,00000065$$

$$= 0,00072135$$

Nein, die Ende-zu-Ende-Verzögerung hängt nicht von der Reihenfolge der Links ab.

4. Betrachten Sie nun einen Packet-Burst aus 20 Paketen, d.h. 20 Pakete werden direkt hintereinander übertragen werden. Was ist die Gesamtübertragungsdauer für diesen Packet-Burst, wenn die Links in der Reihenfolge Link 1-Link 2-Link 3 übertragen werden? Hängt in diesem Fall die Gesamtübertragungsdauer von der Reihenfolge der Links ab?

$$T_{EZE}(20) = T_{EZE}(1) + (20-1) \cdot \frac{L}{\min\{C_e\}}$$

$$= 0,0007219s + 19 \cdot 0,00048s$$

$$= 0,0098419s$$

Nein, die Gesamtübertragungsverzögerung hängt nicht von der Reihenfolge der Links ab.