Gone with the Wind:

David Murakami

13th July 2021

Monetary and Financial Policies During Global Financial Cycles

Research Question	
Can we reconcile macro DSGE models with empirical facts of global financial cycles?	

Evidence of Global Financial Cycles

- ► Work by Helene Rey
- ► Post-GFC "taper tantrum"
- ► "Fragile Five" and sudden stop shocks

Related Literature

Most relevant papers are: Aoki, Benigno and Kiyotaki (2016) (ABK), Christiano, Trabandt and Walentin (2011), Gertler and Karadi (2011), and Gertler and Kiyotaki (2010).

Framework of Aoki, Benigno, and Kiyotaki (2016)

- ► Small open economy NK model with financial markets.
- ▶ Banks receive domestic deposits and borrow from foreigners (in foreign currency).
 - ► "The Original Sin" by Eichengreen, Hausmann and Panizza (2007).
 - ▶ Bruno and Shin (2015): EMEs non-financial corporations' balance sheets are exposed to global monetary and financial conditions.

ABK Framework

- ▶ Banking sector of the model creates propagation mechanism.
- ▶ Policy problem for the central bank intensifies.

Model Overview

Figure 1: Flow of Funds in the ABK Model

Households

- Representative household consists of a continuum of workers and bankers.
- ightharpoonup Each banker manages a bank until she retires w.p. $1-\sigma$, and then brings back the net worth as dividend.
- \blacktriangleright Workers become new bankers, starting with γ assets from household.
- ▶ Household saves in home deposits and owns capital (with cost).

Household Problem

$$\max \ \mathbb{E}_t \left[\sum_{s=0}^{\infty} \beta^s \xi_{t+s}^h \ln \left(\xi_{t+s}^C C_{t+s} - \frac{\zeta_0}{1+\zeta} \xi_{t+s}^L L_{t+s}^{1+\zeta} \right) \right],$$

subject to:

$$C_t + Q_t K_t^h + \chi_t^h + D_t = w_t L_t + \text{Profits}_t + (z_t + \lambda Q_t) K_{t-1}^h + \frac{R_{t-1} D_{t-1}}{\Pi_t}.$$

Bankers' Problem

▶ Each banker chooses capital, k_t , home real deposits, d_t , and foreign debt, d_t^* to maximise franchise value

$$V_t = \mathbb{E}_t \left\{ \Lambda_{t,t+i} \left[(1-\sigma) n_{t+1} + \sigma V_{t+1} \right] \right\},\,$$

subject to a balance sheet constraint and incentive constraint:

$$egin{aligned} \left[1+ au_t^K+rac{arkappa^b}{2} au_t^2
ight]Q_tk_t &= (1+ au_t^N)n_t+d_t+(1- au_t^{D^*})\epsilon_td_t^*,\ V_t &\geq \Theta(x_t)Q_tk_t. \end{aligned}$$

Note the banker's flow of funds constraint:

$$n_t = (Z_t + \lambda Q_t) k_{t-1} - \frac{R_{t-1}}{\Pi_t} d_{t-1} - \epsilon_t \frac{R_{t-1}^*}{\Pi_t^*} d_{t-1}^*.$$

Timing of the Banker

Figure 2: Timing of Banks' Choice

Bankers and Moral Hazard

- ► Absconding takes time.
- ▶ Banker can abscond with fraction $\Theta(x_t)$ of assets, where

$$\Theta(x_t) = \frac{\theta_0}{\exp(\theta x_t)},$$

and where x_t is the fraction of assets financed by foreign borrowing.

Rewriting the Bankers' Problem I

► Since the bankers' problem and constraints are all constant returns to scale, we can write

$$\psi_t \equiv \frac{V_t}{n_t} = \mathbb{E}_t \left[\Lambda_{t,t+1} (1 - \sigma + \sigma \psi_{t+1}) \frac{n_{t+1}}{n_t} \right]$$

where ψ_t is akin to Tobin's Q ratio for the bank.

Rewriting the Bankers' Problem II

▶ Use the flow of funds constraint of the banker to write:

$$\frac{n_{t+1}}{n_t} = (Z_{t+1} + \lambda Q_{t+1}) k_t \frac{Q_t}{Q_t n_t} - \frac{R_t}{\Pi_{t+1}} \frac{d_t}{n_t} - \frac{\epsilon_{t+1}}{\epsilon_t} \frac{R_t^*}{\Pi_{t+1}^*} \frac{\epsilon_t d_t^*}{n_t}.$$

▶ Then use the balance sheet constraint to substitute in the value for $\frac{d_t}{n_t}$ to write:

$$\frac{n_{t+1}}{n_t} = \left[\frac{Z_{t+1} + \lambda Q_{t+1}}{Q_t} - (1 + \tau_t^K) \frac{R_t}{\Pi_{t+1}} \right] \phi_t
+ \left[(1 - \tau_t^{D^*}) \frac{R_t}{\Pi_{t+1}} - \frac{\epsilon_{t+1}}{\epsilon_t} \frac{R_t^*}{\Pi_{t+1}^*} \right] x_t \phi_t + \left(1 + \tau_t^N - \frac{\varkappa^b}{2} x_t^2 \phi_t \right) \frac{R_t}{\Pi_{t+1}}.$$

Rewriting the Bankers' Problem III

► Thus, the bankers' problem is to maximise the Tobin's Q ratio,

$$\psi_t = \max_{\phi_t, \mathbf{x}_t} \left[\mu_t \phi_t + \mu_t^* \phi_t \mathbf{x}_t + \left(1 + \tau_t^N - \frac{\varkappa^b}{2} \mathbf{x}_t^2 \phi_t \right) \upsilon_t \right],$$

subject to the incentive constraint,

$$\psi_t \ge \Theta(x_t)\phi_t = \frac{\theta_0}{\exp(\theta x_t)}\phi_t.$$

Rewriting the Bankers' Problem IV

► This gives a theory for why UIP fails.

$$\mu_{t} = \mathbb{E}_{t} \left[\Omega_{t,t+1} \left\{ \frac{z_{t+1}^{k} + \lambda Q_{t+1}}{Q_{t}} - (1 + \tau_{t}^{K}) \frac{R_{t}}{\Pi_{t+1}} \right\} \right], \tag{1}$$

$$\mu_{t}^{*} = \mathbb{E}_{t} \left[\Omega_{t,t+1} \left\{ (1 - \tau_{t}^{D^{*}}) \frac{R_{t}}{\Pi_{t+1}} - \frac{\epsilon_{t+1}}{\epsilon_{t}} \frac{R_{t}^{*}}{\Pi_{t+1}^{*}} \right\} \right] \tag{2}$$

$$v_{t} = \mathbb{E}_{t} \left[\Omega_{t,t+1} \frac{R_{t}}{\Pi_{t+1}} \right] \tag{3}$$

$$\Omega_{t,t+1} = \Lambda_{t,t+1} (1 - \sigma + \sigma \psi_{t+1}). \tag{4}$$

$$\Omega_{t,t+1} = \Lambda_{t,t+1} (1 - \sigma + \sigma \psi_{t+1}). \tag{4}$$

Production I

- Standard with final goods and intermediate goods producers.
- From intermediate producer's problem (FOC wrt $P_t(i)$), under the symmetric equilibrium $P_t(i) = P_t$

$$\left(\Pi_{t}-1
ight)\Pi_{t}=rac{1}{\kappa}\left(\eta \emph{m}\emph{c}_{t}+1-\eta
ight)+\mathbb{E}_{t}\left[\Lambda_{t,t+1}rac{Y_{t+1}}{Y_{t}}\Pi_{t+1}\left(\Pi_{t+1}-1
ight)
ight],$$

where
$$\Pi_t = 1 + \pi_t = \frac{P_t}{P_{t-1}}$$
.

► Also, under the symmetric equilibrium:

$$Y_t = A_t \left(\frac{K_t}{\alpha_K}\right)^{\alpha_K} \left(\frac{M_t}{\alpha_M}\right)^{\alpha_M} \left(\frac{L_t}{1 - \alpha_K - \alpha_M}\right)^{1 - \alpha_K - \alpha_M}.$$

Production II

► Law of motion for capital is

$$K_t = \lambda K_{t-1} + I_t \xi_t^K,$$

where $\lambda \in (0,1)$ is one minus a constant depreciation rate and ξ_t^K is akin to a marginal efficiency of investment shock.

Total investment cost equals:

$$\left[1+\Phi\left(rac{I_t}{\overline{I}}
ight)
ight]I_t,$$

where $\Phi\left(\frac{I_t}{I}\right)$ is the additional production cost of supplying investment goods that is different from the non-stochastic steady state level \bar{I} , and $\Phi(1) = \Phi'(1) = 0$ and $\Phi''\left(\frac{I_t}{I}\right) > 0$.

Market Equilibrium I

► Output is either consumed, invested, exported, or used to pay the cost of changing prices and managing households' capital as:

$$Y_t = C_t + \left[1 + \Phi\left(\frac{I_t}{\overline{I}}\right)\right]I_t + EX_t + \frac{\kappa}{2}(\pi_t - 1)^2Y_t + \chi^h(K_t^h, K_t) + \chi^b(\epsilon_t D_t^*, Q_t K_t^b).$$

▶ Net output which corresponds to final expenditure is:

$$Y_t^{Net} = Y_t - \epsilon_t M_t - \frac{\kappa}{2} (\pi_t - 1)^2 Y_t - \chi^h(K_t^h, K_t) - \chi^b(\epsilon_t D_t^*, Q_t K_t^b).$$

Market Equilibrium II

► Net foreign debt, which is equal to the foreign debt of home banks, evolves through net imports and the repayment of foreign debt from the previous period as:

$$D_t^* = R_{t-1}^* D_{t-1}^* + M_t - \frac{1}{\epsilon_t} EX_t.$$

► The aggregate net worth of banks evolves according to:

$$N_{t} = \sigma \left[(Z_{t} + \lambda Q_{t}) K_{t-1}^{b} - \frac{R_{t-1}}{\Pi_{t}} D_{t-1} - \epsilon_{t} R_{t-1}^{*} D_{t-1}^{*} \right] + \gamma (Z_{t} + \lambda Q_{t}) K_{t-1}.$$

Market Equilibrium III

► The aggregate balance sheet of the bank is given by:

$$Q_t K_t^b \left(1 + \frac{\varkappa^b}{2} x_t^2 \right) = \left(1 + \frac{\varkappa^b}{2} x_t^2 \right) \phi_t N_t,$$

$$= N_t + D_t + \epsilon_t D_t^*,$$

$$x_t = \frac{\epsilon_t D_t^*}{Q_t K_b^b}.$$

► The market equilibrium for capital ownership (equity) implies:

$$K_t = K_t^b + K_t^h.$$

Foreign Exchange I

► Foreign output is

$$\ln Y_t^* = \ln y_t^* + \ln A_t.$$

► Assume the following structure for foreign variables:

$$\begin{bmatrix} \log \left(\frac{y_t^*}{\bar{y}^*} \right) \\ \Pi_t^* - \bar{\Pi}^* \\ R_t^* - \bar{R}^* \\ \log \left(\frac{A_t}{\bar{A}} \right) \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ 0 & 0 & 0 & \rho_A \end{bmatrix} \begin{bmatrix} \log \left(\frac{y_{t-1}^*}{\bar{y}^*} \right) \\ \Pi_{t-1}^* - \bar{\Pi}^* \\ R_{t-1}^* - \bar{R}^* \\ \log \left(\frac{A_{t-1}}{\bar{A}} \right) \end{bmatrix} + \begin{bmatrix} \sigma_{Y^*} & 0 & 0 & 0 \\ c_{21} & \sigma_{\Pi^*} & 0 & c_{24} \\ c_{31} & c_{32} & \sigma_{R^*} & c_{34} \\ 0 & 0 & 0 & \sigma_A \end{bmatrix} \begin{bmatrix} \varepsilon_t^{Y^*} \\ \varepsilon_t^{R^*} \\ \varepsilon_t^{R^*} \\ \varepsilon_t^{A} \end{bmatrix},$$

or in compact form:

$$X_t^* = AX_{t-1}^* + C\varepsilon_t.$$

Foreign Exchange II

► Exports are determined by a simple demand curve:

$$EX_{t} = \left(\frac{P_{t}}{e_{t}P_{t}^{*}}\right)^{-\varphi} Y_{t}^{*}$$
$$= \epsilon_{t}^{\varphi} Y_{t}^{*}.$$

▶ Pin down the nominal exchange rate:

$$\Delta \ln \epsilon_t = \Delta \ln E_t + \hat{\pi}_t^* - \hat{\pi}_t.$$

Government

► Taxes and subsidies are balanced in aggregate:

$$\tau_t^N N_t = \tau_t^K Q_t K_t^b + \tau_t^{D^*} \epsilon_t D_t^*.$$

► Central bank operates an inertial Taylor Rule:

$$\frac{R_t}{\bar{R}} = \left(\frac{R_{t-1}}{\bar{R}}\right)^{\rho_i} \left[\left(\frac{\Pi_t}{\bar{\Pi}}\right)^{\frac{1-\omega_E}{\omega_E}} \left(\frac{E_t}{\bar{E}}\right)^{\frac{\omega_E}{1-\omega_E}} \right]^{1-\rho_i} \exp(\varepsilon_t^R),$$

Numerical Experiments I

Figure 3: Response to 1% Annual Foreign Interest Rate Shock

Numerical Experiments II

Assets	Liabilities + Equity
Loans $Q_t k_t^b$	Deposits d_t
Management costs χ^b_t	Foreign debt $\epsilon_t d_t^*$
	Net worth n_t

Estimation

Estimation II

Parameter	Prior dist.	Prior mean	Prior SD	Post. mean	Post. SD	5%	95%
ρ_A	β	0.850	0.0750	0.7954	0.0049	0.7910	0.8035
$ ho_{h}$	β	0.850	0.0750	0.9947	0.0203	0.9936	0.9958
$ ho_{\mathcal{C}}$	β	0.850	0.0750	0.9997	0.0286	0.9995	0.9999
$ ho_{L}$	β	0.850	0.0750	0.8774	0.0055	0.8715	0.8833
$ ho_{\mathcal{K}}$	β	0.850	0.0750	0.8200	0.0029	0.8118	0.8285
ζ	Γ	0.333	0.1000	0.4702	0.0319	0.4612	0.4795
ζ_0	Γ	7.883	2.0000	3.3836	0.4077	3.1420	3.5974
heta	Γ	0.100	0.0750	0.0925	0.0252	0.0861	0.0990
η	Γ	9.000	1.0000	8.4972	0.1736	8.3358	8.6552
ω	β	0.667	0.1000	0.9043	0.0176	0.8934	0.9157
κ_I	β	0.667	0.1000	0.2986	0.0733	0.2873	0.3082
arphi	Γ	1.000	0.2500	1.0110	0.0012	1.0031	1.0158
$ ho_{R}$	β	0.800	0.1000	0.8866	0.0247	0.8690	0.9012
ω_{E}	β	0.250	0.0500	0.1313	0.0227	0.1260	0.1366

Estimation III

Parameter	Prior dist.	Prior mean	Prior SD	Post. mean	Post. SD	5%	95%
a ₁₁	\mathcal{N}	0.800	0.1000	0.8220	0.0057	0.8140	0.8289
a ₂₂	$\mathcal N$	0.000	0.5000	-0.2947	0.0886	-0.3664	-0.2262
a ₃₃	$\mathcal N$	0.800	0.1000	0.8574	0.0142	0.8489	0.8642
a_{12}	$\mathcal N$	0.000	0.5000	0.0594	0.0659	0.0135	0.1213
a ₁₃	$\mathcal N$	0.000	0.5000	0.1808	0.0545	0.1126	0.2427
a ₂₁	$\mathcal N$	0.000	0.5000	0.1964	0.0312	0.1782	0.2167
a ₂₃	$\mathcal N$	0.000	0.5000	-0.7289	0.1399	-0.7578	-0.6931
a ₂₄	$\mathcal N$	0.000	0.5000	0.0568	0.0241	0.0419	0.0745
a ₃₁	$\mathcal N$	0.000	0.5000	-0.0075	0.0077	-0.0137	-0.0011
a ₃₂	$\mathcal N$	0.000	0.5000	-0.1160	0.0337	-0.1379	-0.0927
a ₃₄	$\mathcal N$	0.000	0.5000	0.0374	0.0114	0.0320	0.0433
c ₂₁	$\mathcal N$	0.000	0.5000	0.1612	0.0996	0.1391	0.1825
c ₃₁	$\mathcal N$	0.000	0.5000	0.1131	0.1015	0.0947	0.1337
<i>c</i> ₃₂	$\mathcal N$	0.000	0.5000	0.2781	0.0476	0.2473	0.3189
C ₂₄	$\mathcal N$	0.000	0.5000	0.0532	0.0337	0.0203	0.0813
C ₃₄	\mathcal{N}	0.000	0.5000	0.0647	0.0908	0.0411	0.0911

Estimation IV

Parameter	Prior dist.	Prior mean	Post. mean	Post. SD	5%	95%
$100\sigma_A$	Γ^{-1}	0.500	0.7221	0.3989	0.6585	0.7962
$100\sigma_h$	Γ^{-1}	0.150	3.2022	0.2846	2.9535	3.4583
$100\sigma_C$	Γ^{-1}	0.150	2.4582	0.2492	2.3128	2.6238
$100\sigma_L$	Γ^{-1}	0.150	0.9103	0.3841	0.8318	0.9883
$100\sigma_{K}$	Γ^{-1}	0.500	3.6687	0.4192	3.2214	3.9976
$100\sigma_R$	Γ^{-1}	0.250	0.0753	0.0090	0.0661	0.0862
$100\sigma_{y^*}$	Γ^{-1}	0.500	0.9331	0.3853	0.8231	1.0193
$100\sigma_{\Pi^*}$	Γ^{-1}	0.250	0.2305	0.0531	0.1953	0.2573
$100\sigma_{R^*}$	Γ^{-1}	0.250	0.0968	0.0325	0.0851	0.1076

Appendix I

► Baseline calibration

```
Elasticity of leverage wrt foreign borrowing: \theta = 0.1;
Home bias in funding: \theta_0 = 0.401;
Survival probability: \sigma = 0.94;
Fraction of total assets brought by new banks: \xi = 0.0045;
Management cost for foreign borrowing: \chi^b = 0.0197;
Discount rate: \beta = 0.985:
Inverse of Frisch elasticity of labour supply: \zeta = 0.333;
Inverse of labour supply capacity: \zeta_0 = 7.883;
Cost parameter of direct finance: \kappa^h = 0.0197;
Cost share of capital: \alpha_{\kappa} = 0.3:
Cost share of imported intermediate goods: \alpha_M = 0.18;
One minus depreciation rate: \lambda = 0.98;
Elasticity of demand: \eta = 9:
Fraction of non-adjusters (pins down \kappa): \omega = 0.66;
Cost of adjusting investment goods production: \kappa_I = 0.67; and
Price elasticity of export demand: \varphi = 1.
```

Appendix II

► ABK baseline steady state values: Price of capital: $\bar{Q} = 1$; Inflation rate: $\bar{\pi} = 0 \implies \bar{\Pi} = 1$: Foreign gross interest rate: $\bar{R}^* = 1.04$; Gross deposit interest rate: $\bar{R} = 1.06$; Gross rate of return on capital for banks: $\bar{R}_k = 1.08$; Bank leverage multiple: $\bar{\phi} = 4$; Foreign debt-to-bank asset ratio: $\bar{x} = 0.25$; Capital-output ratio: $\frac{K}{\bar{V} - \bar{\epsilon} \bar{M}} = 1.98$; Share of capital financed by banks: $\bar{K}^b/\bar{K} = 0.75$; Foreign debt-to-GDP ratio: $\frac{\bar{e}\bar{D}^*}{\bar{v} - \bar{r}^{\bar{M}}} = 0.372;$ GDP: $\bar{Y} - \bar{\epsilon}\bar{M} = 10.8$: Consumption: $\bar{C} = 8.15$; Investment: $\bar{I} = 1.6$: Exports: $\vec{EX} = 2.07$; Imports: $\bar{\epsilon}M = 1.92$; Cost of direct finance: $\chi(\bar{K}^h) = 0.0123$; and Cost of foreign borrowing: $\chi(\bar{K}^b) = 0.0103$.

Appendix III

Figure 4: Response to 1% Annual Foreign Interest Rate Shock

References I

Aoki, Kosuke, Gianluca Benigno and Nobuhiro Kiyotaki (2016). 'Monetary and Financial Policies in Emerging Markets'. In: working paper.

Bruno, Valentina and Hyun Song Shin (2015). 'Cross-Border Banking and Global Liquidity'. In: Review of Economic Studies 82.2. pp. 535–564.

Christiano, Lawrence J., Mathias Trabandt and Karl Walentin (2011). 'Introducing Financial Frictions and Unemployment into a Small Open Economy Model'. In: *Journal of Economic Dynamics and Control* 35.12, pp. 1999–2041.

Eichengreen, Barry, Ricardo Hausmann and Ugo Panizza (2007). 'Currency Mismatches, Debt Intolerance, and the Original Sin: Why They Are Not the Same and Why It Matters'. In: NBER Chapters (Capital Controls and Capital Flows in Emerging Economies: Policies, Practices, and Consequences), pp. 121–170.

Gertler, Mark and Peter Karadi (2011). 'A Model of Unconventional Monetary Policy'. In: *Journal of Monetary Economics* 58.1, pp. 17–34.

Gertler, Mark and Nobuhiro Kiyotaki (2010). 'Financial Intermediation and Credit Policy in Business Cycle Analysis'. In: *Handbook of Monetary Economics* 3, pp. 547–599.