Lecture 11: Knowledge Distillation and Generative Adversarial Networks for texts

Radoslav Neychev

MADE, Moscow 15.06.2022

Outline

- 1. Knowledge Distillation
- 2. Bonus: generative models overview
- 3. Outro

Cerura Vinula in caterpillar and butterfly forms

Do they have the same "life purpose" and solve the same problems?

Denote **teacher** and **student** models.

Student model has logits z_i and corresponding probabilities q_i , derived with the softmax operation:

$$q_i = \frac{exp(z_i/T)}{\sum_j exp(z_j/T)}$$

where *T* stays for the temperature.

Teacher model has logits v_i and corresponding probabilities p_i .

Let's derive the cross-entropy gradient on **student** logits using the **teacher** predictions as targets:

$$\frac{\partial C}{\partial z_i} = \frac{1}{T} (q_i - p_i) = \frac{1}{T} \left(\frac{e^{z_i/T}}{\sum_j e^{z_j/T}} - \frac{e^{v_i/T}}{\sum_j e^{v_j/T}} \right)$$

If the temperature is high, the following equation takes place:

$$\frac{\partial C}{\partial z_i} pprox \frac{1}{T} \left(\frac{1 + z_i/T}{N + \sum_j z_j/T} - \frac{1 + v_i/T}{N + \sum_j v_j/T} \right)$$

Logits can be centered, so

$$\sum_{j} z_j = \sum_{j} v_j = 0$$

Then the gradient takes form:

$$\frac{\partial C}{\partial z_i} \approx \frac{1}{T} \left(\frac{1 + z_i/T}{N + \sum_j z_j/T} - \frac{1 + v_i/T}{N + \sum_j v_j/T} \right) \approx \frac{1}{NT^2} \left(z_i - v_i \right)$$

$$\frac{dC}{dz_i} = \frac{1}{NT^2}(z_i - v_i) \sim (z_i - v_i) = M \frac{d(z_i - v_i)^2}{dz_i}$$

Image source: Smaller, faster, cheaper, lighter: Introducing DistilBERT, a distilled version of BERT

Main ideas

- DistilBERT is initialized from its teacher, BERT, by taking one layer out of two, leveraging the common hidden size.
 - Comment: Training a sub-network is not only about the architecture. It is also about finding the right initialization for the sub-network to converge.
- DistilBERT is trained on very large batches leveraging gradient accumulation (up to 4000 examples per batch), with dynamic masking and removed the next sentence prediction objective.
 - o Comment: the way BERT is trained is crucial for its final performance.
- DistilBERT was trained on eight 16GB V100 GPUs for approximately three and a half days using the concatenation of Toronto Book Corpus and English Wikipedia (same data as original BERT).

Generative Models

Generative models taxonomy

Generative models taxonomy

Autoencoders

Denote **z** as encoded with encoder E input **x**

$$\mathbf{z} = E(\mathbf{x}, \boldsymbol{\theta}_E)$$

Decoder D recovers **x** from latent representation

$$\hat{\mathbf{x}} = D(\mathbf{z}, \boldsymbol{\theta}_D)$$

Optimal parameters learned w.r.t. loss function L

$$[\boldsymbol{\theta}_E, \boldsymbol{\theta}_D] = \arg\min L(\hat{\mathbf{x}}, \mathbf{x})$$

Autoencoders

Denote **z** as encoded with encoder E input **x**

$$\mathbf{z} = E(\mathbf{x}, \boldsymbol{\theta}_E)$$

Decoder D recovers **x** from latent representation

$$\hat{\mathbf{x}} = D(\mathbf{z}, \boldsymbol{\theta}_D)$$

Simple example: PCA

Optimal parameters learned w.r.t. loss function L

$$[\boldsymbol{\theta}_E, \boldsymbol{\theta}_D] = \arg\min L(\hat{\mathbf{x}}, \mathbf{x})$$

PCA performance on MNIST

16 components

Convolutional performance on MNIST

7 x 7 latent space

Homotopy between samples

10 steps between samples

In original feature space (28 x 28):

• In latent space (7 x 7):

Latent space structure

VAE intuition

Denote distributions $\,Q(z)\,$ and $\,P(z|X)$.

Kullback-Leibler divergence is defined as

$$\mathcal{D}\left[Q(z)\|P(z|X)\right] = E_{z\sim Q}\left[\log Q(z) - \log P(z|X)\right]$$

$$\mathcal{D}\left[Q(z)\|P(z|X)\right] = E_{z\sim Q}\left[\log Q(z) - \log P(z|X)\right]$$

Applying the Bayes rule:

$$\mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log Q(z) - \log P(X|z) - \log P(z)] + \log P(X)$$

$$\mathcal{D}\left[Q(z)\|P(z|X)\right] = E_{z\sim Q}\left[\log Q(z) - \log P(z|X)\right]$$

Applying the Bayes rule:

$$\mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log Q(z) - \log P(X|z) - \log P(z)] + \log P(X)$$

$$\log P(X) - \mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log P(X|z)] - \mathcal{D}[Q(z)||P(z)]$$

$$\mathcal{D}\left[Q(z)\|P(z|X)\right] = E_{z\sim Q}\left[\log Q(z) - \log P(z|X)\right]$$

Applying the Bayes rule:

$$\mathcal{D}[Q(z) || P(z|X)] = E_{z \sim Q} [\log Q(z) - \log P(X|z) - \log P(z)] + \log P(X)$$

 $\log P(X) - \mathcal{D}[Q(z)||P(z|X)] = E_{z \sim Q}[\log P(X|z)] - \mathcal{D}[Q(z)||P(z)]$

$$\log P(X) - \mathcal{D}\left[Q(z|X)\|P(z|X)\right] = E_{z \sim Q}\left[\log P(X|z)\right] - \mathcal{D}\left[Q(z|X)\|P(z)\right]$$

Structure of the latent space

VAE latent space distribution

VAE so far

VAE so far

VAE so far

Reparametrization trick

Reparametrization trick

VAE manifold

Epoch: 0

Structure of the latent space

Conditional VAE intuition

Conditional VAE

cVAE manifold

cVAE manifold

Transferring style with cVAE

Once again

cVAE latent space distribution

GAN

Training GAN

Training GAN

Gradient flows to **Gen** with **Dis** weights freezed to fool the Discriminator

Image source: Habr post on autoencoders and GANs

Optimization process in GAN

GAN manifold

Label: all Batch: 0

Conditional GAN

cGAN manifolds

```
555555555555
55555555555
5555555555
5555555555
5555555555
555555555555
ょくらくらくらちちちちちち
ょくくくくくくくちちちちち
ょくくくくくくちちちちちちち
ょくくくくくく5555555
५५५५५५५५5555555
444445
ょくよくよくよく 5 5 5 5 5 5 5
555555555555555
```

```
ククククフフフフフフフ
77777777777
7777777777
```

Some more combinations

Simple GAN

VAE/GAN

VAE/GAN original illustration

Generalized GAN scheme

source: Practical RL week07

Generalized GAN scheme

source: Practical RL week07

Standard scheme fails if G(z) is discrete

- generating text
- generating music notes

- generating molecules
- binary image masks

source: Practical RL week07

We can train generator with Reinforcement Learning methods!

$$\nabla J = \mathop{E}_{\substack{z \sim p(z) \\ x \sim P(x|G_{\theta}(z))}} \nabla \log P(x|G_{\theta}(z)) D(x)$$