Computational Type Theory

Bob Harper Carnegie Mellon University

July 19, 2018

1 Recap

1.1 Example: Last Time

Suppose $a,b:A,c: \operatorname{Eq}_A(a,b) >> C$ type If $a:A>> Q \in C[a,a,*/a,b,c]$ and $P \in \operatorname{Eq}_A(M,N)$ then $A[M/a] \in C[M,N,P/a,b,c]$

1.2 Proof

$$P=*\in \operatorname{Eq}_A(M,N) \text{ and } M\doteq N\in A$$

$$C[M,N,P] \doteq C[M,N,*], \, P[M]\in M$$

1.3 Examining Formalism ("abstract implementations") for type theory

Inductively defined by rules for deriving judgments of the forms:

$$\begin{split} \Gamma \vdash A \ \ \mathsf{type} \\ \Gamma \vdash A \equiv A' \\ \Gamma \vdash M : A \\ \Gamma \vdash M \equiv M' : A \\ \hline \overline{\Gamma, x : A, \Gamma' \vdash x : A} \\ \hline \frac{\Gamma \vdash A_1 \ \mathsf{type} \ \Gamma \vdash A_2 \ \mathsf{type}}{\Gamma \vdash A_1 \times A_2 \ \mathsf{type}} \\ \hline \frac{\Gamma \vdash M : A \ \Gamma \vdash A \equiv A'}{\Gamma \vdash M : A'} \\ \hline \frac{\Gamma \vdash M : A_1 \ \Gamma \vdash M_2 : A_2}{\Gamma \vdash < M_1 : M_1 \ \Gamma \vdash M_2 : A_2} \\ \hline \Gamma \vdash < M_1 : M_1 \ > : A_1 \times A_2 \end{split}$$

$$\begin{split} \frac{\Gamma \vdash M : A_1 \times A_2}{\Gamma \vdash M \cdot i : A_i} (i = 1, 2) \\ \frac{\Gamma \vdash M_1 : A_1 \ \Gamma \vdash M_2 : A_2}{\Gamma \vdash < M_1 ; M_2 > \cdot i \equiv M_i : A_i} \checkmark \\ \frac{\Gamma \vdash M : A_1 \times A_2}{\Gamma \vdash < M \cdot 1 ; M \cdot 2 = M : A_1 \times A_2} ? \end{split}$$

2 Idea

Formalism is just a means of deriving truths (about computations) Props as types / proofs as programs extraction

- 1. Define erasure of formal terms types |M|, |A| (more or less trivial)
- 2. Soundness w.r.t. erasure

$$\begin{array}{l} \Gamma \vdash M : A \implies |\Gamma| >> |M| \in |A| \\ \Gamma \vdash M_1 \equiv M_2 : A \implies |\Gamma| >> |M_1| \doteq |M_2| \in |A| \\ \Gamma \vdash A \text{ type } \implies |\Gamma| >> |A| \text{ type} \\ \Gamma \vdash A_1 \equiv A_2 \implies |\Gamma| >> |A_1| \doteq |A_2| \end{array}$$

2.1 Corollary

- 1. If M: Bool then $M \downarrow$ true or $M \downarrow$ false
- 2. Consistency

2.2 Soundness

Soundness tells us that proofs have a computational context. Would like to internalize computation as definitional equivalence.

2.2.1 Cononicity

If M: Bool, then $M \equiv \texttt{true} : \texttt{Bool}$ or $M \equiv \texttt{false} : \texttt{Bool}$ "Internal Completeness"

2.3 How to formalize equality?

2.3.1 Example

$$a: \mathtt{Nat} >> a+a \doteq 2 \times a \in \mathtt{Nat}$$

$$\lambda a.a+a = \lambda a.2 \times a \in \mathtt{Nat} \to \mathtt{Nat}$$

1. ETT - Equality reflection uniqueness expressive - not decidable

2. ITT - M-L

Formalizes Id_A as the least reflexive relation.

$$\frac{\Gamma \vdash A \text{ type } \Gamma \vdash M_1 : A \ \Gamma \vdash M_1 : A}{\Gamma \vdash \operatorname{Id}_A(M_1, M_2)}$$

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash \operatorname{refl}_A(M) : \operatorname{Id}_A(M, M)}$$

$$\frac{\Gamma, a, b: A, c: \mathtt{Id}_A(a,b) \vdash C \ \mathtt{type} \ \Gamma \vdash P: \mathtt{Id}_A(M,N) \ \Gamma, a: A \vdash Q: C[a,a,\mathtt{refl}_A(M)]}{\Gamma \vdash J(a,b,c.C)(a.Q)(P): C[M,N,P] \ J(a,b,c.C)(a.Q)(\mathtt{refl}_A(M)) \equiv Q[M/a]}$$

2.3.2 Idea of Soundness

$$\begin{split} |\mathrm{Id}_A(M,N)| &\stackrel{\triangle}{=} \mathrm{Eq}_{|A|}(|M|,|N|) \\ |\mathrm{refl}_A(M)| &\stackrel{\triangle}{=} * \\ |J\dots| &\stackrel{\triangle}{=} |Q|[|M|/a] \\ \mathrm{But \ a \ theorem \ of \ M-L} \end{split}$$

2.3.3 What to do about this?

A common approach is to add an axiom (??) $FunExt: a: A_1 \to \operatorname{Id}_{A_2}(ap(M,a),ap(N,a)) \to \operatorname{Id}_{a:A_1\to A_2}(M,N)$ $FunExt(H): \operatorname{Id}_{a:A_1\to A_2}(M,N)$ Okay mathematically - but it ruins cononicity! $J(a,b,c.C)(a.Q)(FunExt(H)) \equiv ???$

2.3.4 Strength in Weakness

ITT cannot prove (internally) that there is only one identification!

• "groupoid model"

Yet it's valid under erasure: $|FE(H)| \stackrel{\triangle}{=} *$

3 Univalence

Motivation: It is common to informally "identify structures up to isomorphism"

3.1 Example

 $A \times B \simeq B \times A$ by swap is a bijection.

Add an axiom: $UA("swap"): Id_{\mathcal{U}}(A \times B, B \times A)$ where \mathcal{U} is the "universe". For specific choices of A and B, then there can be many isomorphisms!

 $\mathrm{I.e.:}\ \mathtt{Bool} \simeq \mathtt{Bool}$

1. Identity is a mesh for interchangability

- 2. Stipulate that equivalent types are identical
- 1. $J_{-}(FunExt(H)) \equiv ?$
- 2. $J_{-}(\mathrm{UA}(E)) \equiv ?$

ruins canonicity

 ${\it Cases:}$

- 1. Has a computational interprection
- 2. ??? what would be a computational of univalence ??? "ought to exist"