Ana Clara Brusamarello Barbosa – 2121101054

Jonathan Gotz Correa - 2121101052

Professores: Adriano Padilha e Luciano Caimi

- 1.1 Listar os CIs utilizados e a respectiva função lógica:R: Dois CI's 7404 (porta NOT), um CI 7432 (porta OR) e um CI 7408 (porta AND).
- 1.2 Apresentar o desenho do circuito lógico efetivamente montado identificando o CI e as entradas e saídas utilizadas de cada CI:

1.3 - Apresentadas fotos identificando entradas e saídas (led); as fotos devem retratar 2 condições de entrada em que o led está ligado e 1 condição em que o led desligado:

1.4 - A tabela-verdade do circuito:

1.5 - Apresente o tempo de atraso máximo de cada porta lógica;

```
R: porta AND = 20 nseg;
porta OR = 20 nseg;
porta NOT = 18 nseg.
```

- Apresente o trecho do datasheet com a informação acima;

Porta AND =

Switching Characteristics

 $(V_{CC} = 5 \text{ V}, \text{Ta} = 25^{\circ}\text{C})$

Item	Symbol	min.	typ.	max.	Unit	Condition
Propagation delay time	t PLH	1	8	15	ns	C 15 πE P 21 Ω
	t PHL	_	10	20	ns	$C_L = 15 \text{ pF}, R_L = 2 \text{ k}$

Note: Refer to Test Circuit and Waveform of the Common Item "TTL Common Matter (Document No.: REJ27D0005-0100)".

Porta OR =

Switching Characteristics (CL = 50 pF, Input tr = tr = 6 ns)

			Ta = 25 ° C		Ta = -40 to +85 °C				
Item	Symbol VCC	(V)	Min	Тур	Max	Min	Max	Unit	Test Conditions
Propagation delay	t PLH	2.0	-	_	100	_	125	ns	
time		4.5	_	10	20	_	25]	
		6.0	_	_	17	_	21		
	t PHL	2.0	_	-	100	_	125	ns	
		4.5	-	10	20	_	25]	
		6.0	_	_	17	_	21		

Porta NOT =

Switching Characteristics (CL = 50 pF, Input tr = tr = 6 ns)

			Ta = 25 ° C		Ta = -40 to +85 °C				
Item	Symbol VC	(V)	Min	Тур	Max	Min	Max	Unit	Test Conditions
Propagation delay	t PLH	2.0	_	_	90	_	115	ns	
time		4.5	_	7	18	_	23		
		6.0	_	_	15	_	20		
	TPHL.	2.0	_		90	_	115	ns	
		4.5	_	8	18	_	23		
		6.0	_	- '	15	_	20		

- Informe qual é o caminho crítico do sistema; (caminho de maior atraso entre uma entrada e a saída)

R: 76 nseg.

- Apresente o tempo de atraso total do caminho critico;

R: 18 (NOT) + 20 (AND) + 20 (AND) +20 (OR)

- 2 Implemente o circuito no TinkerCad como montado na protoboard:
- Apresente o circuito do TinkerCad:

- Informe o link para acesso ao projeto do Tinkercad:

https://www.tinkercad.com/things/88ot3ITC7QN-fantabulous-snicket/editel?sharecode=wulrELVwmAvmJr5vWAfXWPSzV9Do3-8MoaG5Z4ftC1I

3) Faça o circuito CMOS que implementa o circuito lógico (redes Pull-Up e Pull- Down):

- Apresente o circuito CMOS completo identificando cada uma das portas lógicas em cada uma das redes (Pull-Up) e (Pull-Down).

