Homework 2: (EM for old faithful data)

(1) Dataset:

272 obs. of 2 variables:

"Eruptions" and "Waiting"

We can find that they are roughly divided into two groups from the figure $\,^{,}$ K=2 $\,^{,}$

(2) EM for GMM

Let $X = (X_1, ..., X_{272}) = ((E_1, W_1), ..., (E_{272}, W_{272}))$, E_i : Eruption, W_i : Waiting $Z = (Z_1, ..., Z_{272})$, Z: latent variable

And then

$$X_i|Z_i = 1 \sim BN(\mu_{11}, \mu_{12}, \sigma_{11}^2, \sigma_{12}^2, \rho_1) \equiv BN(\mu_1, \sum_1)$$

Where $\mu_1 = (\mu_{11}, \mu_{12}), \Sigma_1 = covariance matrix$

$$X_i | Z_i = 2 \sim BN(\mu_{21}, \mu_{22}, \sigma_{21}^2, \sigma_{22}^2, \rho_2) \equiv BN(\mu_2, \sum_2)$$

Where $\mu_2 = (\mu_{21}, \mu_{22}), \Sigma_2 = covariance \ matrix$

$$\theta=(\mu_1,\sum_1$$
 , μ_2,\sum_2 , $\alpha)$,where $~\alpha=(\alpha_1,\alpha_2)$, $\alpha_1+\alpha_2=1$

(i)E-step: Calculates conditional probabilities given latent

variables

Let ϕ means pdf of bivariate normal

$$Q(\theta|\theta^{(t)}) = E_z(log p(x, z|\theta)|x, \theta^{(t)})$$

$$= \sum_{i=1}^{272} \sum_{j=1}^{2} [log(\alpha_j \phi(x_i|\mu_j, \sigma_j^2)) p(z_i = j|x_i, \theta^{(t)})]$$

where
$$p(z_i = j | x_i, \theta^{(t)}) = \frac{\alpha_j^{(t)} \phi(x_i, \mu_j^{(t)}, (\sigma_j^2)^{(t)})}{\sum_{j=1}^2 \alpha_j^{(t)} \phi(x_i, \mu_j^{(t)}, (\sigma_j^2)^{(t)})}$$

(ii)M-step:Calculates θ to maximize $Q(\theta|\theta^{(t)})$

$$\alpha_{j}^{(t+1)} = \frac{1}{272} \sum_{i=1}^{272} p(z_{i} = j | x_{i}, \theta^{(t)})$$

$$u_{j}^{(t+1)} = \frac{\sum_{i=1}^{272} x_{i} p(z_{i} = j | x_{i}, \theta^{(t)})}{\sum_{i=1}^{272} p(z_{i} = j | x_{i}, \theta^{(t)})}$$

$$\sum_{j}^{(t+1)} = \frac{\sum_{i=1}^{272} (x_{i} - u_{j}^{(t)}) (x_{i} - u_{j}^{(t)})^{T} p(z_{i} = j | x_{i}, \theta^{(t)})}{\sum_{i=1}^{272} p(z_{i} = j | x_{i}, \theta^{(t)})}$$

We can find that we only need $p(z_i=j|x_i,\theta^{(t)})$ to calculate M-step. Therefor we just need to calculate $p(z_i=j|x_i,\theta^{(t)})$ in the E-step. (iii)

Take the value that we get in the M-step returns into E-step and repeat (i),(ii),(iii) until convergence.

Iteration:11

Convergence criteria:
$$|Q(\theta^{(t)}|\theta^{(t+1)}) - Q(\theta^{(t-1)}|\theta^{(t)})| \le 10^{-6}$$

Finally parameters we got:

α	[0.356, 0.644]
μ_1	[2.036,54.48]
μ_2	[4.289,79.969]
\sum_{1}	$\begin{bmatrix} 0.07 & 0.44 \\ 0.44 & 34.06 \end{bmatrix}$
\sum_{2}	$\begin{bmatrix} 0.17 & 0.94 \\ 0.94 & 36.23 \end{bmatrix}$

