MoleCom-gpu: A GPU-based Parallel Simulation Framework for Molecular Communications

Prof. Tuna Tugcu tugcu@boun.edu.tr

Content

Introduction

Motivation
Why GPU programming

Basic Design

Test Setup

Configuration Software

Results

Verification Speedup

Future Work

Github

Introduction

- ► A customizable simulation tool for molecular communication
- Utilizes GPU for parallel processing
- An open-source project for the use and contribution of all nanonetworking society
- Encourage the nanonetworking research community to freely use and improve the simulator

- Re-designing the simulator for each paper/project is waste of researchers' valuable time
- Reproducibility of the results required for comparison of alternative approaches
- Need for a shared platform that will serve as a benchmark environment for fair and meaningful testing
- ► Large number of molecules, all exhibiting similar movement behaviour, hints parallel processing

Why GPU programming

- GPU-accelerated computing is the use of a graphics processing unit (GPU) together with a CPU to accelerate deep learning, analytics, and engineering applications¹
- GPUs have highly parallel architecture, accompanied by thousands of processing cores
- On the other hand, CPUs utilize a few cores for (almost) sequential serial processing of data

¹http://www.nvidia.com/object/what-is-gpu-computing.html.

Why GPU programming

- The structure of molecular communication simulation consists of huge number of molecules moving around
- Every molecule is doing computationally simple action, and these actions are repeated for a very large number of molecules in the environment
- This nature of the problem makes it suitable for parallel GPU computation
- x10s average performance gain, compared to traditional CPU programs

Basic Design Workflow

- ▶ Generate simulation environment
- Run and collect simulation data with generated environment

- Generated separately via configGenerate.lua script
- ► The parameters for the simulation and properties of the simulation entities are provided here
- configGenerate.lua outputs the environment as a separate file
- This file is then used as the input for main simulator script

The following variables are configurable in environment generation

- Numbers of the transmitters and the receivers
- Coordinates of the transmitters and the receivers
- Radii of the transmitters and receivers
- ► Radius of carrier molecules
- Diffusion coefficient

The following simulation related variables are configurable in environment generation

- ► Simulation step size
- Simulation duration
- Symbol size
- Symbol duration

Basic Design Simulation Output

Simulation is run via generated environment file

- ► Time vs. number of received molecules
- ▶ User can fit his/her own modulation scheme to raw results

Setup Configuration

► CPU: Intel Core i5 6500

► GPU: NVidia GeForce GTX 1080

► RAM : Kingston HyperX 8 GB 2133 MHz

► Storage : Samsung 850 EVO SSD 256GB

► OS: Ubuntu 16.04 LTS

Total cost: 1500 \$

Setup Software

- ► NVidia CUDA
- ▶ torch7 Scientific computation library in LUA scripting language
- CUtorch 1.0.0 CUDA backend for torch7

- We verify our simulation model with the analytical model for a point transmitter and a spherical receiver described in Yilmaz et al.²
- We compare the speed-up of our simulator with MUCIN³, a molecular communication simulator written in MATLAB and runs on CPU

²H. Birkan Yilmaz; Akif Cem Heren; T. Tugcu; and Chan-Byoung Chae;

[&]quot;Three-Dimensional Channel Characteristics for Molecular Communications With an Absorbing Receiver" IEEE Communications Letters; vol. 18; iss. 6; pp. 929 - 932; 2014.

³ https://www.mathworks.com/matlabcentral/fileexchange/46066-molecular-communication-mucin-simulator.

Verification

- We run the simulation with two different transfer models with six different scenarios
- Scenarios have different:
 - ► Receiver radius (*R_r*)
 - ▶ Distance (r₀)
 - ▶ Diffusion coefficients (D)

- ► Point transmitter Spherical receiver
- ► This transmission is analytically modeled in the paper⁴
- Point transmission on a spherical transmitter Spherical receiver
- This model is compared with the analytical case without spherical transmitter
- As will be seen in the results, if the transmission point is between transmitter and receiver, the number of received molecules are higher than the analytical model
- Otherwise, the number of received molecules are lower than the analytical model

⁴H. Birkan Yilmaz; Akif Cem Heren; Tuna Tugcu; and Chan-Byoung Chae; "Three-Dimensional Channel Characteristics for Molecular Communications With an\leC Vol 18; No 6; pp. 929 - 932; 2014..

Verification Scenarios

Scenario	R_r	r_0	D
Scenario 1	5.0 µm	17.32 μm	$79.40 \mu m^2 / sec$
Scenario 2	10.0 μm	34.64 μm	$79.40 \mu m^2 / sec$
Scenario 3	5.00 µm	8.66 µm	$79.40 \mu m^2 / sec$
Scenario 4	5.00 µm	34.64 μm	$79.40 \mu m^2 / sec$
Scenario 5	10.00 μm	34.64 μm	$39.70 \mu m^2 / sec$
Scenario 6	5.00 µm	34.64 μm	$39.70 \mu m^2/sec$

Results

Verification (Spherical Receiver - Point Transmitter)

Results

Verification (Spherical Receiver - Point Transmission on a Spherical Transmitter)

- ▶ The speed of simulation depends on
 - 1. Simulation duration
 - 2. Step time
 - 3. Number of molecules in the environment
- ▶ Diffusion coefficient, distance between transmitters, and molecule size do not significantly affect the execution time
- The dependence on simulation duration and step time is linear
- What about the number of molecules?

- $\Delta t = 10^{-5}$ seconds, $t_s = 1$ second
- ► Hence, *numberOfOperations* = 10⁵

Speedup - Scenario 2

- $ightharpoonup \Delta t = 10^{-4}$ seconds, $t_s = 1$ second
- ► Hence, *numberOfOperations* = 10⁴

- Observe that the execution time linearly depends on the number of operations
- The number of molecules in the environment exponentially increases the execution time of the CPU Simulator
- As we utilize parallel processing in our simulator, its effect is also nearly linear for us
- ➤ The speed-up factor depends on the number of messenger molecules, ranging from 1 to 200 in Scenario 2

Future Work

- ► Different molecule types for receiving
- ► Absorbing/Reflecting boundaries
- ► Multiple transmitters/receivers

Github

- ► http://github.com/MoleCom-gpu/MoleCom-gpu
- ► Communication through
 mailto:MoleCom-gpu@listeci.cmpe.boun.edu.tr

Thanks for listening
You are all welcome to use and contribute