Corrigé TD : Séries

Solution 1

Comme $\alpha > 0$, on a

$$\cos(1/n^{\alpha}) = 1 - \frac{1}{2n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right)$$

ainsi, pour n au voisinage de $+\infty$:

$$n\ln(\cos(1/n^{\alpha})) = n\ln\left(1 - \frac{1}{2n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right)\right)$$
$$= -\frac{n^{1-2\alpha}}{2} + o(n^{1-2\alpha})$$

• Si $1 - 2\alpha < 0$, par continuité de l'exponentielle au point 0, on a

$$\lim_{n\to+\infty}u_n=1\neq 0$$

donc Σu_n diverge banalement.

• Si $1 - 2\alpha = 0$, par continuité de l'exponentielle en -1/2, on a

$$\lim_{n\to+\infty}u_n=\frac{1}{\sqrt{e}}\neq 0$$

donc Σu_n diverge.

• Si $1 - 2\alpha > 0$, on a par croissances comparées au voisinage de $+\infty$,

$$u_n = e^{-n^{1-2\alpha}/2 + o(n^{1-2\alpha})} = o(1/n^2)$$

donc Σu_n converge par comparaison à la série de Riemann $\sum \frac{1}{n^2}$.

 $En\ conclusion: \Sigma u_n\ converge\ si\ et\ seulement\ si$

$$0 < \alpha < 1/2$$
.

Solution 2

On a clairement

$$u_n \sim \frac{1}{n^{3/2}}$$

donc Σu_n converge par comparaison à la série de Riemann $\sum \frac{1}{n^{3/2}}$.

Solution 3

Pöur tout $n \ge 0$, notons $u_n = 1/\binom{2n}{n}$. On a

$$\frac{u_{n+1}}{u_n} = \frac{(2n)!}{n!^2} / \frac{(2n+2)!}{(n+1)!^2}$$
$$= \frac{(n+1)^2}{(2n+2)(2n+1)}$$

d'où

$$\lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| = \frac{1}{4} < 1$$

la série $\sum u_n$ est donc convergente d'après le critère de D'Alembert.

On a, pour tout $n \ge 1$:

$$u_n = 1 + \frac{\ln(a)}{n} - \frac{2 + \ln(bc)/n}{2} + \mathcal{O}\left(\frac{1}{n^2}\right)$$
$$= \frac{\ln(a/\sqrt{bc})}{n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

Puisque toute série dont le terme général est en $\mathcal{O}(1/n^2)$ converge, on déduit du théorème sur les séries de Riemann que $\sum u_n$ converge si et seulement si

$$\ln(a/\sqrt{bc}) = 0,$$

i.e. $a = \sqrt{bc}$.

Solution 5

Comme

$$u_n = e^{-(1+1/n)\ln(n)} = \frac{1}{n}e^{-\ln(n)/n} \, \sim \, \frac{1}{n},$$

car

$$\lim_{n \to +\infty} \frac{\ln(n)}{n} = 0.$$

Ainsi la série $\sum u_n$ diverge.

Solution 6

Comme

$$n^2 u_n = e^{2\ln(n) - \sqrt{n}},$$

on a

$$\lim_{n\to+\infty}n^2u_n=0,$$

la série $\sum u_n$ converge par comparaison à la série de Riemann $\sum \frac{1}{n^2}$.

Solution 7

On a:

$$n^2 u_n = e^{2\ln(n) - \ln(n)\ln(\ln(n))}.$$

Or

$$2\ln(n) = o(\ln(n)\ln(\ln(n))).$$

Ainsi

$$\lim_{n\to+\infty}n^2u_n=0$$

et donc, par comparaison aux séries de Riemann, $\sum u_n$ converge.

Solution 8

Pour tout entier n, notons

$$\alpha_n = (7 + 4\sqrt{3})^n + (7 - 4\sqrt{3})^n.$$

D'après la formule du binôme, on a pour tout n dans \mathbb{N} :

$$\alpha_n = \sum_{0 \le 2k \le n} 2 \binom{n}{2k} 7^{n-2k} 4^{2k} 3^k$$

ainsi $\alpha_n \in \mathbb{Z}$ et donc, par π -périodicité et imparité de la tangente :

$$u_n = -\tan(\pi(7 - 4\sqrt{3})^n).$$

Comme $0 < 7 - 4\sqrt{3} < 1$, on a

$$u_n \sim -\pi (7 - 4\sqrt{3})^n$$

et puisque la série géométrique $\sum (7-4\sqrt{3})^n$ converge, la série $\sum u_n$ est convergente.

Comme

$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} = \ln(n) + \gamma + o(1)$$

où γ désigne la constante d'Euler, on a :

$$\begin{split} u_n &= a^{\mathrm{H}_n} = a^{\ln(n) + \gamma + o(1)} = e^{(\ln(n) + \gamma + o(1))\ln(a)} \\ &= e^{\ln(n^{\ln(a)})} e^{\gamma + o(1)} = \frac{1}{n^{-\ln(a)}} e^{\gamma + o(1)} \end{split}$$

Ainsi:

$$u_n \sim \frac{e^{\gamma}}{n^{-\ln(a)}}.$$

Comme $e^{\gamma} \neq 0$, on déduit du théorème sur les séries de Riemman que $\sum u_n$ converge si et seulement si $-\ln(a) > 1$, c'est-à-dire

$$a < \frac{1}{e}$$
.

Remarque. Sans être aussi savant sur la série harmonique, on peut déduire d'une comparaison série-intégrale que

$$ln(n) \le H_n \le ln(n) + 1$$

ce qui permet de conclure avec des encadrements au lieu d'équivalents.

Solution 10

On a clairement

$$u_n = (1+a+b)\ln(n) + \frac{a+2b}{n} + \mathcal{O}\left(\frac{1}{n^2}\right).$$

On a donc que $\sum u_n$ converge si et seulement si

$$a + b + 1 = a + 2b = 0$$
,

ie (a, b) = (-2, 1).

Solution 11

Pour tout entier n, notons

$$\alpha_n = (2 + \sqrt{3})^n + (2 - \sqrt{3})^n.$$

D'après lma formule du binôme, on a pour tout n dans \mathbb{N} :

$$\alpha_n = \sum_{0 \le 2k \le n} 2 \binom{n}{2k} 2^{n-2k} 3^k$$

ainsi $\alpha_n \in \mathbb{Z}$ et donc, par π -antipériodicité du sinus :

$$|u_n| = |\sin(\pi(2-\sqrt{3})^n|.$$

Comme $0 < 2 - \sqrt{3} < 1$, on a

$$|u_n| \sim (2 - \sqrt{3})^n$$

et puisque la série géométrique $\sum (2-\sqrt{3})^n$ converge, la série $\sum u_n$ est absolumment convergente donc convergente.

Solution 12

• On suppose 0 < b < 1. Dans ce cas, $b^n \xrightarrow[n \to +\infty]{} 0$. Or $2^{\sqrt{n}} \xrightarrow[n \to +\infty]{} +\infty$ donc $b^n = o\left(2^{\sqrt{n}}\right)$ puis $2^{\sqrt{n}} + b^n \sim 2^{\sqrt{n}}$. Finalement $u_n \sim a^n$. On en déduit que $\sum_{n \in \mathbb{N}} u_n$ converge pour 0 < a < 1 et diverge vers $+\infty$ sinon.

• On suppose b > 1. Dans ce cas, $2^{\sqrt{n}} = o(b^n)$ et donc $2^{\sqrt{n}} + b^n \sim b^n$. Finalement, $u_n \sim \left(\frac{a}{b}\right)^n 2^{\sqrt{n}}$. Si a < b, il existe $\varepsilon > 0$ tel que $\frac{a}{b} + \varepsilon < 1$. On montre alors que $u_n = o\left(\left(\frac{a}{b} + \varepsilon\right)^n\right)$ donc $\sum_{n \in \mathbb{N}} u_n$ converge. Si $a \ge b$, $u_n \xrightarrow[n \to +\infty]{} + \infty$ donc $\sum_{n \in \mathbb{N}} u_n$ diverge grossièrement.

Solution 13

Première méthode:

• Supposons p = 0. Pour tout $n \in \mathbb{N}^*$,

$$u_n = \frac{1! + 2! + \dots + n!}{n!} \ge \frac{n!}{n!} = 1$$

La série $\sum_{n\in\mathbb{N}^*} u_n$ diverge grossièrement.

• Supposons p = 1. Pour tout $n \in \mathbb{N}^*$.

$$u_n = \frac{1! + 2! + \dots + n!}{(n+1)n!} = \frac{1}{n+1} \frac{1! + 2! + \dots + n!}{n!} \ge \frac{1}{n+1}$$

Or la série $\sum_{n\in\mathbb{N}}\frac{1}{n+1}$ diverge vers $+\infty$. Par minoration, la série $\sum_{n\in\mathbb{N}^*}u_n$ diverge.

• Supposons $p \ge 2$. Pour $n \ge 2$,

$$1! + 2! + \dots + n! \le (n-1)(n-1)! + n! \le n(n-1)! + n! = 2n!$$

Ainsi

$$u_n \le \frac{2n!}{(n+p)!} \le \frac{2n!}{(n+2)!} = \frac{2}{(n+1)(n+2)} \sim \frac{2}{n^2}$$

Or la série $\sum_{n\in\mathbb{N}^*} \frac{1}{n^2}$ converge donc la série $\sum_{n\in\mathbb{N}^*} u_n$ également.

Seconde méthode : On peut également montrer que $1! + 2! + \cdots + n! \sim n!$. En effet, on a pour $n \in \mathbb{N}^*$

$$\frac{1!+2!+\cdots+n!}{n!} \ge 1$$

et pour $n \ge 3$,

$$\frac{1! + 2! + \dots + n!}{n!} \le 1 + \frac{1}{n} + \sum_{k=1}^{n-2} \frac{k!}{n!}$$

$$\le 1 + \frac{1}{n} + (n-2) \frac{(n-2)!}{n!}$$

$$\le 1 + \frac{1}{n} + \frac{(n-2)}{n(n-1)}$$

Par encadrement, $\frac{1!+2!+\cdots+n!}{n!} \xrightarrow[n \to +\infty]{} 1$ i.e. $1!+2!+\cdots+n! \sim n!$. On en déduit que

$$u_n \underset{n \to +\infty}{\sim} \frac{1}{(n+p)(n+p-1)\dots(n+1)} \underset{n \to +\infty}{\sim} \frac{1}{n^p}$$

La série de terme général u_n est donc de même nature que celle de terme général $\frac{1}{n^p}$: elle converge donc si et seulement si $p \ge 2$.

Solution 14

Supposons que la série $\sum_{n\in\mathbb{N}}u_n$ converge. Alors (S_n) converge vers la somme S>0 de cette série. On a donc $\frac{u_n}{S_n}\sim \frac{u_n}{S}$. La série $\sum_{n\in\mathbb{N}}\frac{u_n}{S_n}$ converge donc.

Supposons que la série $\sum_{n\in\mathbb{N}}u_n$ diverge. Puisque cette série est à termes positifs, elle diverge donc vers $+\infty$. Si $\frac{u_n}{S_n}$ ne tend pas vers 0 lorsque n

tend vers $+\infty$, $\sum_{n\in\mathbb{N}}\frac{u_n}{S_n}$ diverge grossièrement. Sinon, $\ln\left(1-\frac{u_n}{S_n}\right)\sim -\frac{u_n}{S_n}$ donc les séries de terme général $\frac{u_n}{S_n}$ et $\ln\left(1-\frac{u_n}{S_n}\right)$ sont de même nature. Or

$$\begin{split} \sum_{n=1}^{N} \ln \left(1 - \frac{u_n}{S_n} \right) &= \sum_{n=1}^{N} \ln \frac{S_{n-1}}{S_n} \\ &= \sum_{n=1}^{N} \left(\ln S_{n-1} - \ln S_n \right) = \ln S_0 - \ln S_N \end{split}$$

Or $S_N \xrightarrow[N \to +\infty]{} + \infty$ puisque $\sum_{n \in \mathbb{N}} u_n$ diverge vers $+\infty$. Ainsi $\sum_{n \in \mathbb{N}^*} \ln\left(1 - \frac{u_n}{S_n}\right)$ diverge de même que $\sum_{n \in \mathbb{N}} \frac{u_n}{S_n}$. Les deux séries $\sum_{n \in \mathbb{N}} u_n$ et $\sum_{n \in \mathbb{N}} \frac{u_n}{S_n}$ sont donc toujours de même nature.

Solution 15

On prouve par récurrence que pour tout $n \in \mathbb{N}$, $\frac{u_{2n}}{u_0} \le \frac{v_{2n}}{v_0}$ et $\frac{u_{2n+1}}{u_1} \le \frac{v_{2n+1}}{v_1}$. En posant $K = \max\left(\frac{u_0}{v_0}, \frac{u_1}{v_1}\right)$, on a donc $u_n \le Kv_n$ pour tout $n \in \mathbb{N}$. La série $\sum_{n \ge 0} u_n$ est à termes positifs et son terme général est majoré par celui d'une série convergente : elle converge également.

Solution 16

- **1.** Soit $N \in \mathbb{N}$ tel que $\frac{u_{n+1}}{u_n} \le \frac{v_{n+1}}{v_n}$ pour $n \ge N$. Par télescopage, on obtient, $\frac{u_n}{u_N} \le \frac{v_n}{v_N}$ i.e. $u_n \le \frac{u_N}{v_N} v_n$ pour tout $n \ge N$. On a donc $u_n = \mathcal{O}(v_n)$.
- **2.** a. Soit β tel que $1 < \beta < \alpha$ et posons $v_n = \frac{1}{n^{\beta}}$ pour $n \in \mathbb{N}^*$. On a alors

$$\frac{v_{n+1}}{v_n} = \frac{n^{\beta}}{(n+1)^{\beta}}$$
$$= \left(1 + \frac{1}{n}\right)^{-\beta}$$
$$= 1 - \frac{\beta}{n} + o\left(\frac{1}{n}\right)$$

Ainsi $\frac{v_{n+1}}{v_n} - \frac{u_{n+1}}{u_n} \sim \frac{\alpha - \beta}{n}$. Puisque $\alpha - \beta > 0$, on a donc $\frac{u_{n+1}}{u_n} \leq \frac{v_{n+1}}{v_n}$ à partir d'un certain rang. D'après la première question, $u_n = \mathcal{O}(v_n)$. La série $\sum_{n \in \mathbb{N}} v_n$ converge car $\beta > 1$ et, comme elle est à termes positifs, sa convergence entraı̂ne celle de $\sum_{n \in \mathbb{N}} u_n$.

- **b.** Cette fois-ci, on se donne β tel que $\alpha < \beta < 1$ et on pose à nouveau $v_n = \frac{1}{n^\beta}$ pour $n \in \mathbb{N}^*$. On montre comme précédemment que $v_n = \mathcal{O}(u_n)$. La divergence de $\sum_{n \in \mathbb{N}} v_n$ entraı̂ne la divergence de $\sum_{n \in \mathbb{N}} u_n$.
- **c.** Si on pose $u_n = \frac{1}{n}$ pour $n \in \mathbb{N}^*$, on a $\frac{u_{n+1}}{u_n} = 1 \frac{1}{n} + o\left(\frac{1}{n}\right)$ et $\sum_{n \in \mathbb{N}^*} u_n$ diverge. Si on pose maintenant $u_n = \frac{1}{n \ln^2 n}$ pour $n \ge 2$, on a à nouveau $u_n = 1 \frac{1}{n} + o\left(\frac{1}{n}\right)$. Mais la fonction $x \mapsto \frac{1}{x \ln^2 x}$ étant décroissante, la série $\sum_{n \in \mathbb{N}} u_n$ et l'intégrale $\int_2^{+\infty} \frac{dt}{t \ln^2 t}$ sont de même nature. Or une primitive de $t \mapsto \frac{1}{t \ln^2 t}$ est $t \mapsto -\frac{1}{\ln t}$, ce qui prouve la convergence de l'intégrale précédente et par conséquent celle de la série $\sum_{n \in \mathbb{N}} u_n$.
- **3.** On a

$$\frac{u_{n+1}}{u_n} = \frac{2n+2}{2n+3} = \frac{1+\frac{1}{n}}{1+\frac{3}{2n}}$$
$$= 1 - \frac{1}{2n} + o\left(\frac{1}{n}\right)$$

Autrement dit, $\alpha = \frac{1}{2} < 1$ avec les notations précédentes. La série de terme général u_n diverge.

Remarque. Le critère de Raabe-Duhamel permet de conclure (sauf si $\alpha=1$) dans les cas où le critère de d'Alembert ne le permet pas $(\frac{u_{n+1}}{u_n} \underset{n \to +\infty}{\longrightarrow} 1)$.

Solution 17

- 1. Comme $\sum_{n\in\mathbb{N}}a_n$ converge, $a_n=o(1)$ et donc $a_n^2=o(a_n)$. La série $\sum_{n\in\mathbb{N}}a_n$ étant convergente à termes positifs, la série $\sum_{n\in\mathbb{N}}a_n^2$ converge également.
- 2. Comme $\sum_{n\in\mathbb{N}} a_n$ converge, $a_n=o(1)$ et donc $\frac{a_n}{1+a_n}\sim a_n$. La série $\sum_{n\in\mathbb{N}} a_n$ étant convergente à termes positifs, la série $\sum_{n\in\mathbb{N}} \frac{a_n}{1+a_n}$ converge également.
- 3. Comme $\sum_{n\in\mathbb{N}} a_n$ converge, $a_n=o(1)$. Ainsi $a_{2n}=o(1)$ et donc $a_na_{2n}=o(a_n)$. La série $\sum_{n\in\mathbb{N}} a_n$ étant convergente à termes positifs, la série $\sum_{n\in\mathbb{N}} a_na_{2n}$ converge également.
- **4.** On démontre facilement que pour $x, y \in \mathbb{R}$, $xy \le \frac{1}{2}(x^2 + y^2)$. Ainsi pour tout $n \in \mathbb{N}^*$, $\frac{\sqrt{a_n}}{n} \le \frac{1}{2}\left(a_n + \frac{1}{n^2}\right)$. On sait que les séries de terme général a_n et $\frac{1}{n^2}$ convergent donc celle de terme général $\frac{1}{2}\left(a_n + \frac{1}{n^2}\right)$. La série $\sum_{n \in \mathbb{N}^*} \frac{\sqrt{a_n}}{n}$ est à termes positifs et son terme général est majoré par celui d'une série convergente : elle converge donc également.

Solution 18

1. En convenant que $A_{n_0-1} = 0$:

$$\sum_{k=n_0}^{n} a_k B_k = \sum_{k=n_0}^{n} (A_k - A_{k-1}) B_k$$

$$= \sum_{k=n_0}^{n} A_k B_k - \sum_{k=n_0}^{n} A_{k-1} B_k$$

$$= \sum_{k=n_0}^{n} A_k B_k - \sum_{k=n_0-1}^{n-1} A_k B_{k+1}$$

$$= A_n B_n + \sum_{k=n_0}^{n-1} A_k (B_k - B_{k+1})$$

$$= A_n B_n - \sum_{k=n_0}^{n-1} A_k b_k$$

2. Il suffit de poser $a_n = \sin n$ et $B_n = \frac{1}{n}$ pour tout $n \ge 1$. Avec les notations précédentes, pour tout $n \ge 1$

$$A_n = \sum_{k=1}^n \sin k$$

$$= \operatorname{Im} \left(\sum_{k=1}^n e^{ik} \right)$$

$$= \operatorname{Im} \left(e^i \frac{e^{in} - 1}{e^i - 1} \right)$$

$$= \operatorname{Im} \left(e^{\frac{i(n+1)}{2}} \frac{\sin \frac{n}{2}}{\sin \frac{1}{2}} \right)$$

$$= \frac{\sin \frac{n+1}{2} \sin \frac{n}{2}}{\sin \frac{1}{2}}$$

$$b_n = \frac{1}{n+1} - \frac{1}{n}$$

D'après la question précédente, pour tout $n \ge 1$,

$$\sum_{k=1}^{n} \frac{\sin k}{k} = A_n b_n - \sum_{k=1}^{n-1} A_k b_k$$

Or (A_n) est bornée et (b_n) converge vers 0 donc (A_nb_n) converge vers 0. De plus pour tout $k \ge 1$,

$$|A_k b_k| \le \frac{1}{\sin \frac{1}{2}} |b_k| = \frac{1}{\sin \frac{1}{2}} \left(\frac{1}{k} - \frac{1}{k+1} \right)$$

Or la série $\sum_{n>1} \frac{1}{n} - \frac{1}{n+1}$ converge (série télescopique) donc la série $\sum_{n>1} A_n b_n$ est absolument convergente donc convergente. On en déduite la convergence de la série $\sum_{n=1}^{\infty} \frac{\sin n}{n}$.

3. Rappelons que pour tout $n \ge n_0$

$$\sum_{k=n_0}^{n} a_k B_k = A_n B_n - \sum_{k=n_0}^{n-1} A_k b_k$$

La suite (B_n) converge vers 0 et (A_n) est bornée donc $\lim_{n\to +\infty}A_nB_n=0$. Puisque (A_n) est bornée, $A_nb_n=\mathcal{O}(|b_n|)$. Or la série $\sum_{n\geq n_0}|b_n|$ converge car $\sum_{n\geq n_0}b_n$ est absolument convergente et est à termes positifs

donc $\sum_{n\geq n_0} A_n b_n$ converge (absolument). Ainsi $\sum_{k=n_0}^{n-1} A_k b_k$ admet une limite quand n tend vers $+\infty$.

Il s'ensuit que $\sum_{k=n_0} a_k B_k$ admet également une limite lorsque n tend vers $+\infty$ i.e. que la série $\sum_{n>n_0} a_n B_n$ converge.

Solution 19

- 1. Supposons que $\sum_{n\geq 0} v_n$ converge. On a pour tout $n\in\mathbb{N}$, $\frac{u_{n+1}}{v_{n+1}}\leq \frac{u_n}{v_n}$. Par une récurrence évidente, $\frac{u_n}{v_n}\leq \frac{u_0}{v_0}$. Posons $\lambda=\frac{u_0}{v_0}$. On a alors $0< u_n\leq \lambda v_n$ pour tout $n\in\mathbb{N}$ et donc $u_n=\sum_{n\to+\infty}\mathcal{O}(v_n)$. Comme la série $\sum_{n\geq 0}v_n$ est à termes positifs et converge, la série $\sum_{n\geq 0}u_n$ converge également.
- 2. C'est tout simplement la contraposée de la proposition montrée à la question précédente.

- 1. On remarque tout d'abord que $\sum \max(u_n, v_n)$ est à termes positifs. De plus, $\max(u_n, v_n) \le u_n + v_n$ car u_n et v_n sont positifs. Enfin, $\sum u_n + v_n$ converge, ce qui permet de conclure à la convergence de $\sum \max(u_n, v_n)$.
- 2. On remarque tout d'abord que $\sum \sqrt{u_n v_n}$ est à termes positifs. De plus, $\sqrt{u_n v_n} \le \frac{1}{2}(u_n + v_n)$. Enfin, $\sum \frac{1}{2}(u_n + v_n)$ converge, ce qui permet de conclure à la convergence de $\sum \max(u_n, v_n)$.
- 3. On remarque tout d'abord que $\sum \frac{u_n v_n}{u_n + v_n}$ est à termes positifs.

 De plus, $\frac{u_n v_n}{u_n + v_n} \le v_n$ car $u_n + v_n$ est positif.

 Enfin, $\sum v_n$ converge, ce qui permet de conclure à la convergence de $\sum \frac{u_n v_n}{u_n + v_n}$

- 1. Soit $k \in]l,1[$. Puisque $\lim \frac{u_{n+1}}{u_n} = l,$ il existe un rang $N \in \mathbb{N}$ tel que $\frac{u_{n+1}}{u_n} \le k$ pour tout $n \ge N$. Une récurrence montre que $u_n \le k^{n-N}u_N$ pour tout $n \ge N$. Ainsi $u_n = \mathcal{O}(k^n)$. Puisque la série $\sum_{n \in \mathbb{N}} k^n$ est un série à termes positifs convergente donc $\sum_{n \in \mathbb{N}} u_n$ converge.
- 2. Soit $k \in]1, l[$. Puisque $\lim \frac{u_{n+1}}{u_n} = l$, il existe un rang $N \in \mathbb{N}$ tel que $\frac{u_{n+1}}{u_n} \ge k$ pour tout $n \ge N$. Une récurrence montre que $u_n \ge k^{n-N}u_N$ pour tout $n \ge N$. En particulier, la suite (u_n) diverge vers $+\infty$ et a fortiori ne converge pas vers 0. Ainsi $\sum_{n \in \mathbb{N}} u_n$ diverge.
- 3. Posons $u_n = n+1$ pour tout $n \in \mathbb{N}$. Alors $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 1$ et $\sum_{n \in \mathbb{N}} u_n$ diverge. Posons $u_n = \frac{1}{(n+1)^2}$ pour tout $n \in \mathbb{N}$. Alors $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 1$ et $\sum_{n \in \mathbb{N}} u_n$ converge.
- **4.** Posons $u_n = \frac{n!}{n^n}$ pour $n \in \mathbb{N}^*$. La série $\sum_{n \in \mathbb{N}^*} u_n$ est à termes strictement positifs et pour tout $n \in \mathbb{N}^*$, $\frac{u_{n+1}}{u_n} = \left(\frac{n}{n+1}\right)^n$. On prouve alors classiquement que $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \frac{1}{e}$ et la série $\sum_{n \in \mathbb{N}^*} u_n$ converge.

- 1. Si $\beta \geq 0$, alors $0 \leq u_n \leq \frac{1}{n^{\alpha}}$ pour $n \geq 3$. Or la série de Riemann $\sum_{n \geq 1} \frac{1}{n^{\alpha}}$ converge puisque $\alpha > 1$. On en déduit que $\sum_{n \geq 2} u_n$ converge. Si $\beta < 0$, donnons-nous $\gamma \in]1, \alpha[$. Alors $(\ln n)^{-\beta} = o(n^{\alpha \gamma})$ par croissances comparées. Ceci signifie que $u_n = o(\frac{1}{n^{\gamma}})$. Or la série de Riemann $\sum_{n \geq 1} \frac{1}{n^{\gamma}}$ est à termes positifs et converge puisque $\gamma > 1$. On en déduit que $\sum_{n \geq 2} u_n$ converge.
- 2. Si $\beta \leq 0$, alors $0 \leq \frac{1}{n^{\alpha}} \leq u_n$ pour $n \geq 3$. Or $\sum_{n \geq 1} \frac{1}{n^{\alpha}}$ diverge donc $\sum_{n \geq 2} u_n$ diverge. Si $\beta > 0$, donnons-nous $\gamma \in]\alpha, 1[$. Alors $(\ln n)^{\beta} = o(n^{\gamma - \alpha})$ par croissances comparées. Ceci signifie que $\frac{1}{n^{\gamma}} = o(u_n)$. Or la série $\sum_{n \geq 2} u_n$ est à termes positifs et la série de Riemann $\sum_{n \geq 1} \frac{1}{n^{\gamma}}$ diverge puisque $\gamma < 1$. On en déduit que $\sum_{n \geq 2} u_n$ diverge.
- 3. On a alors $0 \le \frac{1}{n} \le u_n$ pour $n \ge 3$. Or la série harmonique $\sum_{n \ge 1} \frac{1}{n}$ diverge. On en déduit que $\sum_{n \ge 2} u_n$ diverge.
- **4.** Posons $f(x) = \frac{1}{x(\ln x)^{\beta}}$ pour x > 1. f est décroissante sur]1, $+\infty$ [de sorte que

$$\int_{2}^{n+1} f(x) \, \mathrm{d}x \le \sum_{k=2}^{n} u_k \le \frac{1}{(\ln 2)^{\beta}} + \int_{2}^{n} f(x) \, \mathrm{d}x$$

Si $\beta \neq 1$, alors $x \mapsto \frac{(\ln x)^{1-\beta}}{1-\beta}$ est une primitive de f de sorte que

$$\frac{(\ln(n+1))^{1-\beta}}{1-\beta} - \frac{(\ln 2)^{1-\beta}}{1-\beta} \leq \sum_{k=2}^n u_k \leq \frac{1}{(\ln 2)^\beta} + \frac{(\ln n)^{1-\beta}}{1-\beta} - \frac{(\ln 2)^{1-\beta}}{1-\beta}$$

Le théorème de minoration nous permet d'affirmer que la série $\sum u_n$ diverge si $\beta < 1$. Par contre, si $\beta > 1$, la suite des sommes partielles de la série $\sum_{n \geq 2} u_n$ est croissante (puisque la série est à termes positifs) et majorée par une suite convergente donc elle converge en vertu

du théorème de la limite monotone. On peut donc affirmer que $\sum_{n>2} u_n$ converge.

Si $\beta = 1$, alors $x \mapsto \ln(\ln x)$ est une primitive de f de sorte que

$$\ln(\ln(n+1)) - \ln(\ln 2) \le \sum_{k=2}^{n} u_k$$

On conclut à la divergence de $\sum_{n\geq 2}u_n$ via le théorème de minoration.

Solution 23

- 1. Soit $q \in]\ell, 1[$. Par définition de la limite, il existe $N \in \mathbb{N}$ tel que $0 \le \sqrt[n]{u_n} \le q$ pour $n \ge N$. Ainsi $0 \le u_n \le q^n$ pour $n \ge N$. Puisque la série $\sum q^n$ converge, il en est de même de la série $\sum u_n$.
- 2. Soit $q \in]1, \ell[$. Par définition de la limite, il existe $N \in \mathbb{N}$ tel que $0 \le q \le \sqrt[n]{u_n}$ pour $n \ge N$. Ainsi $0 \le q^n \le u_n$ pour $n \ge N$. Puisque la série $\sum q^n$ diverge, il en est de même de la série $\sum u_n$.
- 3. Posons $u_n = 1$ pour tout $n \in \mathbb{N}$. Alors $\lim_{n \to +\infty} \sqrt[n]{u_n} = 1$ et $\sum u_n$ diverge. Posons $u_n = \frac{1}{n^2}$. Alors $\sqrt[n]{u_n} = \exp\left(-\frac{2\ln n}{n}\right)$ d'où $\lim_{n \to +\infty} \sqrt[n]{u_n} = 1$ et $\sum u_n$ converge.

Solution 24

Pour tout $n \in \mathbb{N}^*$,

$$S_{2n+1} - S_{2n-1} = -\frac{1}{\sqrt{2n+1}} + \frac{1}{\sqrt{2n}} \ge 0$$

et

$$S_{2n+2} - S_{2n} = \frac{1}{\sqrt{2n+2}} - \frac{1}{\sqrt{2n+1}} \le 0$$

Ainsi la suite (S_{2n-1}) est croissante et la suite (S_{2n}) est décroissante. De plus, pour tout $n \in \mathbb{N}^*$

$$S_{2n} - S_{2n-1} = \frac{1}{\sqrt{2n}}$$

donc $\lim_{n\to+\infty} S_{2n} - S_{2n-1} = 0$. Les suites (S_{2n-1}) et (S_{2n}) sont donc adjacentes. Elles convergent vers la même limite, ce qui assure la convergence de la suite (S_n) et donc de la série $\sum_{n\in\mathbb{N}^*} \frac{(-1)^n}{\sqrt{n}}$.

- 1. Supposons que $\sum u_n$ converge. Alors $\lim_{n\to+\infty}u_n=0$. Il s'ensuit que $u_n=o(1)$ et donc $u_n^2=o(u_n)$. Puisque $\sum u_n$ est à termes positifs et converge, $\sum u_n^2$ converge également.
 - La réciproque est fausse puisque $\sum \frac{1}{n^2}$ converge mais pas $\sum \frac{1}{n}$.
- **2.** Il suffit de poser $u_n = \frac{(-1)^n}{\sqrt{n}}$.

(S_{2n}) est décroissante car

$$S_{2n+2} - S_{2n} = u_{2n+2} - u_{2n+1} \le 0$$

 (S_{2n+1}) est croissante car

$$S_{2n+3} - S_{2n+1} = -u_{2n+3} + u_{2n+2} \ge 0$$

De plus

$$S_{2n+1} - S_{2n} = -u_{2n+1} \xrightarrow[n \to +\infty]{} 0$$

Aussi les suites (S_{2n}) et (S_{2n+1}) sont-elles adjacentes. Elles convergent donc vers la même limite, ce qui entraı̂ne la convergence de la suite (S_n) , c'est-à-dire de la série $\sum_{n=0}^{\infty} (-1)^n u_n$.

Solution 27

- 1. On sait que $\tan x = x + \mathcal{O}(x^2)$ donc $\tan\left(\frac{1}{n}\right) \frac{1}{n} = \mathcal{O}\left(\frac{1}{n^2}\right)$. Puisque $\sum_{n \in \mathbb{N}^*} \frac{1}{n^2}$ converge et est à termes positifs, il en est de même de la série $\sum_{n \in \mathbb{N}^*} \left(\tan\left(\frac{1}{n}\right) \frac{1}{n}\right)$.
- **2.** Puisque $e^x = 1 + x + o(x)$,

$$\sqrt[n]{3} = e^{\frac{\ln 3}{n}} = 1 + \frac{\ln 3}{n} + o\left(\frac{1}{n}\right)$$

et

$$\sqrt[n]{2} = e^{\frac{\ln 2}{n}} = 1 + \frac{\ln 2}{n} + o\left(\frac{1}{n}\right)$$

On en déduit que

$$\sqrt[n]{3} - \sqrt[n]{2} \sim \frac{\ln\left(\frac{3}{2}\right)}{n}$$

Puisque $\sum_{n\in\mathbb{N}^*} \frac{1}{n}$ diverge, il en est de même de la série $\sum_{n\in\mathbb{N}^*} {n\choose 3} - {n\choose 2}$.

3. Puisque $\cos x = 1 - \frac{x^2}{2} + o(x^2)$

$$\cos\left(\frac{1}{\sqrt{n}}\right) = 1 - \frac{1}{2n} + o\left(\frac{1}{n}\right)$$

De plus, $\ln(1+u) \sim u$ donc

$$\ln\left(\cos\left(\frac{1}{\sqrt{n}}\right)\right) \sim -\frac{1}{2n}$$

Puisque $\sum_{n\in\mathbb{N}^*}\frac{1}{n}$ diverge, il en est de même de la série $\sum_{n\in\mathbb{N}^*}\ln\left(\cos\left(\frac{1}{\sqrt{n}}\right)\right)$.

4. Puisque ch $x = 1 + \frac{x^2}{2} + \mathcal{O}(x^4)$

$$\operatorname{ch}\left(\frac{1}{\sqrt{3n}}\right) = 1 + \frac{1}{6n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

Puisque sh $x = x + \frac{x^3}{6} + \mathcal{O}(x^5)$

$$\operatorname{sh}\left(\frac{1}{\sqrt{n}}\right)\sqrt{n} = 1 + \frac{1}{6n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

Ainsi

$$\operatorname{ch}\left(\frac{1}{\sqrt{3n}}\right) - \operatorname{sh}\left(\frac{1}{\sqrt{n}}\right)\sqrt{n} = \mathcal{O}\left(\frac{1}{n^2}\right)$$

Puisque $\sum_{n \in \mathbb{N}^*} \frac{1}{n^2}$ converge et est à termes positifs, il en est de même de la série $\sum_{n \in \mathbb{N}^*} \left(\operatorname{ch}\left(\frac{1}{\sqrt{3n}}\right) - \operatorname{sh}\left(\frac{1}{\sqrt{n}}\right) \sqrt{n} \right)$.

1. Remarquons que pour tout $n \in \mathbb{N}^*$,

$$u_n = \frac{1}{n} - \ln\left(1 + \frac{1}{n}\right)$$

Or

$$\ln\left(1+\frac{1}{n}\right) = \frac{1}{n\to+\infty} \frac{1}{n} + \mathcal{O}\left(\frac{1}{n^2}\right)$$

donc

$$u_n = \mathcal{O}\left(\frac{1}{n^2}\right)$$

Or la série $\sum_{n\in\mathbb{N}^*}\frac{1}{n^2}$ converge et est à termes positifs donc la série $\sum_{n\in\mathbb{N}^*}u_n$ converge.

2. Notons γ la somme de la série $\sum_{n\in\mathbb{N}^*}u_n$. On a donc

$$\lim_{n \to +\infty} \sum_{k=1}^{n-1} \left(\frac{1}{k} - \ln(k+1) + \ln(k) \right) = \gamma$$

puis, par télescopage

$$\lim_{n \to +\infty} \sum_{k=1}^{n-1} \frac{1}{k} - \ln(n) = \gamma$$

c'est-à-dire

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k} - \frac{1}{n} - \ln(n) = \gamma$$

Puisque $\lim_{n\to+\infty}\frac{1}{n}=0$,

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k} - \ln(n) = \gamma$$

ce qui peut encore s'écrire

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + o(1)$$

Solution 29

Remarquons tout d'abord que la suite (v_n) est également à termes positifs. Soit $n \in \mathbb{N}^*$. Alors

$$\sum_{k=1}^{n} v_k = \sum_{k=1}^{n} \frac{1}{k(k+1)} \sum_{p=1}^{k} p u_p$$

$$= \sum_{1 \le p \le k \le n} \frac{p u_p}{k(k+1)}$$

$$= \sum_{p=1}^{n} \sum_{k=p}^{n} \frac{p u_p}{k(k+1)}$$

$$= \sum_{p=1}^{n} p u_p \sum_{k=p}^{n} \frac{1}{k} - \frac{1}{k+1}$$

$$= \sum_{p=1}^{n} p u_p \left(\frac{1}{p} - \frac{1}{n+1}\right)$$

$$= \sum_{p=1}^{n} u_p - \frac{1}{n+1} \sum_{p=1}^{n} p u_p$$

$$= \sum_{p=1}^{n} u_p - n v_n$$

Supposons que la série $\sum v_n$ diverge. Alors elle diverge vers $+\infty$ puisqu'elle est à termes positifs. Ainsi la suite de terme général $\sum_{k=1}^n v_k$ diverge vers $+\infty$. Mais

$$\sum_{p=1}^n u_p = \sum_{k=1}^n v_k + nv_n \ge \sum_{k=1}^n v_k$$

donc la suite de terme général $\sum_{p=1}^n u_p$ diverge également vers $+\infty$. Ainsi la série $\sum u_n$ diverge (vers $+\infty$).

Supposons que la série $\sum v_n$ converge. Alors la suite de terme général $\sum_{k=1}^n v_k$ converge. Si jamais la série $\sum u_n$ divergeait, ce serait forcément vers $+\infty$ puisqu'elle est à termes positifs et on aurait alors

$$nv_n = \sum_{p=1}^n u_p - \sum_{k=1}^{+\infty} v_k \xrightarrow[n \to +\infty]{} + \infty$$

autrement dit $\frac{1}{n} = o(v_n)$. Mais puisque $\sum v_n$ est une série convergente à termes positifs, cela signifierait que $\sum \frac{1}{n}$ converge également, ce qui est faux. Ainsi la série $\sum u_n$ converge.

Finalement, les séries $\sum u_n$ et $\sum v_n$ sont de même nature.

Plaçons-nous dans le cas de convergence et notons S et S' les sommes respectives des séries $\sum u_n$ et $\sum v_n$. Alors

$$nv_n = \sum_{p=1}^n u_p - \sum_{k=1}^{+\infty} v_k \xrightarrow[n \to +\infty]{} S - S'$$

Supposons S \neq S'. Alors $v_n \underset{n \to +\infty}{\sim} \frac{\mathbf{S} - \mathbf{S}'}{n}$, ce qui contredit la convergence de $\sum v_n$. Ainsi S = S'.

Solution 30

On posera $S_n = \sum_{k=1}^n \frac{1}{k^{\alpha}}$ et $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}}$ lorsque $\alpha > 1$.

• Supposons $\alpha \le 0$. Par comparaison à une intégrale

$$\int_0^n \frac{dt}{t^{\alpha}} \le S_n \le \int_1^{n+1} \frac{dt}{t^{\alpha}}$$

ou encore

$$\frac{n^{1-\alpha}}{1-\alpha} \le S_n \le \frac{(n+1)^{1-\alpha}}{1-\alpha} - \frac{1}{1-\alpha}$$

On en déduit $S_n \sim \frac{n^{1-\alpha}}{1-\alpha}$.

• Supposons $0 < \alpha \le 1$. Par comparaison à une intégrale

$$\int_{1}^{n+1} \frac{dt}{t^{\alpha}} \le S_n \le 1 + \int_{1}^{n} \frac{dt}{t^{\alpha}}$$

Si $0 < \alpha < 1$, on en déduit

$$\frac{(n+1)^{1-\alpha}}{1-\alpha} - \frac{1}{1-\alpha} \le S_n \le 1 + \frac{n^{1-\alpha}}{1-\alpha} - \frac{1}{1-\alpha}$$

On en déduit à nouveau $S_n \sim \frac{n^{1-\alpha}}{1-\alpha}$. Si $\alpha = 1$,

$$\ln(n+1) \le S_n \le 1 + \ln n$$

et donc $S_n \sim \ln n$.

• Supposons $\alpha > 1$. On compare à nouveau à une intégrale. Pour des entiers n et N tels que $1 \le n < N$

$$\int_{n+1}^{N+1} \frac{dt}{t^{\alpha}} \le \sum_{k=n+1}^{N} \frac{1}{k^{\alpha}} \le \int_{n}^{N} \frac{dt}{t^{\alpha}}$$

ou encore

$$\frac{1}{\alpha - 1} \left(\frac{1}{(n+1)^{\alpha - 1}} - \frac{1}{(N+1)^{\alpha - 1}} \right) \le \sum_{k=n+1}^{N} \frac{1}{k^{\alpha}} \le \frac{1}{\alpha - 1} \left(\frac{1}{n^{\alpha - 1}} - \frac{1}{N^{\alpha - 1}} \right)$$

En faisant tendre N vers $+\infty$, on obtient

$$\frac{1}{\alpha-1}\frac{1}{(n+1)^{\alpha-1}} \le R_n \le \frac{1}{\alpha-1}\frac{1}{n^{\alpha-1}}$$

On en déduit que $R_n \sim \frac{1}{\alpha - 1} \frac{1}{n^{\alpha - 1}}$.

Solution 31

Remarquons que S_n est la somme partielle de rang n de la série $\sum_{n\geq 1}\frac{1}{n^2+\sqrt{n}}$. Puisque $\frac{1}{n^2+\sqrt{n}}\sim\frac{1}{n^2}$ et que $\sum_{n\geq 1}\frac{1}{n^2}$ est une série à termes positifs convergente, la série $\sum_{n\geq 1}\frac{1}{n^2+\sqrt{n}}$ converge vers un réel C. En notant R_n le reste de rang n de la série $\sum_{n\geq 1}\frac{1}{n^2+\sqrt{n}}$, on a $S_n=C-R_n$ pour tout $n\in\mathbb{N}^*$. Puisque $\frac{1}{k^2+\sqrt{k}}\sim\frac{1}{k^2}$, $R_n\sim\sum_{k=n+1}^{+\infty}\frac{1}{k^2}$. Une comparaison à une intégrale montre que $R_n\sim\frac{1}{n}$ d'où le résultat annoncé.

Solution 32

1. Soit $n \in \mathbb{N}^*$. On a évidemment $u_n = \sum_{k=1}^n \ln k$. La fonction \ln étant croissante sur \mathbb{R}_+^* ,

$$\int_{1}^{n} \ln(t) dt \le u_n \le \int_{1}^{n+1} \ln(t) dt$$

ou encore

$$n \ln(n) - n + 1 \le u_n \le (n+1) \ln(n+1) - n$$

On a clairement $1 = o(n \ln n)$, $n = o(n \ln n)$ donc $n \ln n - n + 1 \sim n \ln n$.

De plus,

$$(n+1)\ln(n+1) - n = n\ln n + n\ln\left(1 + \frac{1}{n}\right) + \ln n + \ln\left(1 + \frac{1}{n}\right) - n$$

On a clairement $n = o(n \ln n)$ et $\ln n = o(n \ln n)$.

Par ailleurs, $\ln\left(1+\frac{1}{n}\right) \underset{n \to +\infty}{\longrightarrow} 0$ donc $\ln\left(1+\frac{1}{n}\right) = o(n \ln n)$.

On en déduit également que $n \ln \left(1 + \frac{1}{n}\right) = o(n)$ et a fortiori $n \ln \left(1 + \frac{1}{n}\right) = o(n \ln n)$.

Finalement, $(n + 1) \ln(n + 1) - n \sim n \ln n$.

Le théorème des gendarmes assure alors que $u_n \sim n \ln n$.

- 2. D'après la question précédente, $\frac{1}{u_n^2} \sim \frac{1}{n^2(\ln n)^2}$. On en déduit par exemple que $\frac{1}{u_n^2} = \mathcal{O}\left(\frac{1}{n^2}\right)$, ce qui assure la convergence de la série $\sum_{n\geq 2}\frac{1}{u_n^2}$.
- 3. Soit $(x,y) \in]1, +\infty[$ tel que $x \le y$. Alors $0 \le \ln x \le \ln y$ donc $0 \frac{1}{\ln y} \le \frac{1}{\ln x}$. Puisque $0 < \frac{1}{y} \le \frac{1}{x}$, on en déduit que $0 \le f(y) \le f(x)$. Ainsi f est décroissante sur $[1, +\infty[$.
- **4.** Soit $n \ge 2$. Puisque la fonction f est décroissante sur $]1, +\infty[$

$$\int_{2}^{n+1} f(t) dt \le \sum_{k=2}^{n} f(k)$$

ou encore

$$\ln(\ln(n+1)) - \ln(\ln 2) \le \sum_{k=2}^{n} \frac{1}{u_k}$$

Par théorème de minoration, la série $\sum_{n\geq 2} \frac{1}{u_n}$ diverge (vers $+\infty$).

Posons $f: t \mapsto \ln(1+t)$. f est de classe \mathcal{C}^{∞} sur $]-1, +\infty$ et pour tout $n \in \mathbb{N}^*$, $f^{(n)}$ est l'application $t \mapsto \frac{(-1)^{n-1}(n-1)!}{(1+t)^n}$. Soient $x \in \mathbb{R}_+$ et $m \in \mathbb{N}^*$. D'après l'inégalité de Taylor-Lagrange appliquée à f entre 0 et x à l'ordre m,

$$\left| f(x) - \sum_{p=1}^{m} \frac{(-1)^{p-1} x^p}{p} \right| \le \frac{M x^{m+1}}{(m+1)!}$$

avec $M = \sup_{[0,x]} |f^{(m+1)}|$. Or on a clairement M = m! donc

$$\left| f(x) - \sum_{k=1}^{m} \frac{(-1)^{k-1} x^k}{k} \right| \le \frac{x^{m+1}}{m+1}$$

Soit $n \in \mathbb{N}^*$. Remarquons que $\ln(n+2^k) = \ln n + f\left(\frac{2^k}{n}\right)$. Ainsi pour tout $k \in \mathbb{N}$

$$\frac{\ln(n+2^k)}{k!} = \frac{\ln n}{k!} + \frac{1}{k!} \left(f\left(\frac{2^k}{n}\right) - u_k \right) + \frac{u_k}{k!}$$

en posant

$$u_k = \sum_{p=1}^{m} \frac{(-1)^{p-1} 2^{kp}}{pn^p}$$

- La série $\sum_{k \in \mathbb{N}} \frac{\ln n}{k!}$ converge puisque c'est une série exponentielle à un facteur multiplicatif près et sa somme vaut $e \ln n$.
- La série $\sum_{k \in \mathbb{N}} \frac{u_k}{k!}$ converge puisque c'est une combinaison linéaire de séries exponentielles et sa somme vaut $\sum_{p=1}^{m-1} \frac{(-1)^{p+1}e^{2^p}}{pn^p}$.
- D'après l'inégalité de Taylor-Lagrange écrite plus haut appliquée avec $x = \frac{2^k}{n}$,

$$\left|\frac{1}{k!}\left(f\left(\frac{2^k}{n}\right) - u_k\right)\right| \le \frac{2^{k(m+1)}}{k!(m+1)n^{m+1}}$$

Or la série $\sum_{k\in\mathbb{N}}\frac{2^{k(m+1)}}{k!(m+1)n^{m+1}}$ converge puisque c'est une série exponentielle à un facteur multiplicatif près. On en déduit que la série $\sum_{k\in\mathbb{N}}\frac{1}{k!}\left(f\left(\frac{2^k}{n}\right)-u_k\right)$ converge (absolument) et que sa somme est majorée en valeur absolue par $\sum_{k=0}^{+\infty}\frac{2^{k(m+1)}}{k!(m+1)n^{m+1}}=\frac{e^{2^{m+1}}}{(m+1)n^{m+1}}$.

On déduit de ces trois points que la série $\sum_{k \in \mathbb{N}} \frac{\ln(n+2^k)}{k!}$ converge et que

$$\sum_{k=0}^{+\infty} \frac{\ln(n+2^k)}{k!} \underset{n \to +\infty}{=} = e \ln n + \sum_{p=1}^{m-1} \frac{(-1)^{p+1} e^{2^p}}{p n^p} + \sum_{k=0}^{+\infty} \frac{1}{k!} \left(f\left(\frac{2^k}{n}\right) - u_k \right)$$

Or on a vu que

$$\left| \sum_{k=0}^{+\infty} \frac{1}{k!} \left(f\left(\frac{2^k}{n}\right) - u_k \right) \right| \le \frac{e^{2^{m+1}}}{(m+1)n^{m+1}}$$

et
$$\frac{e^{2^{m+1}}}{(m+1)n^{m+1}} = \mathcal{O}\left(\frac{1}{n^{m+1}}\right)$$
 donc

$$\sum_{k=0}^{+\infty} \frac{\ln(n+2^k)}{k!} \underset{n \to +\infty}{=} = e \ln n + \sum_{n=1}^{m-1} \frac{(-1)^{p+1} e^{2^p}}{p n^p} + \mathcal{O}\left(\frac{1}{n^m}\right)$$

Solution 34

Posons $S_n = \sum_{k=1}^n \ln(k)$ pour $n \in \mathbb{N}^*$. La fonction ln étant croissante

$$\int_{1}^{n} \ln t \, dt \le S_n \le \int_{1}^{n+1} \ln t \, dt$$

ou encore

$$n \ln n - n + 1 \le S_n \le (n+1) \ln(n+1) - n$$

Donc pour $n \ge 2$

$$1 - \frac{1}{\ln n} + \frac{1}{n \ln n} \le \frac{S_n}{n \ln n} \le \frac{n+1}{n} \cdot \frac{\ln(n+1)}{\ln n} - \frac{1}{\ln n}$$

Puisque $\frac{\ln(n+1)}{\ln(n)} = 1 + \frac{\ln(1+1/n)}{\ln n}$, on prouve que les membres extrêmes tendent vers 1. Le théorème des gendarmes permet alors d'affirmer que $\lim_{n\to+\infty}\frac{S_n}{n\ln n}=1$ i.e. $S_n \sim n\ln n$.

Solution 35

Comme $\cos x = \frac{\sin 2x}{2\sin x}$, on a pour $k \in \mathbb{N}$ et pour $x = \frac{\alpha}{2^k}$:

$$\cos\frac{\alpha}{2^k} = \frac{\sin\frac{\alpha}{2^{k-1}}}{2\sin\frac{\alpha}{2^k}} = \frac{u_{k-1}}{u_k}$$

avec $u_k = 2^k \sin \frac{\alpha}{2^k}$.

Notons S_n la somme partielle de la série de l'énoncé. On a donc par télescopage :

$$S_n = \ln u_{-1} - \ln u_n$$

Or $\ln u_{-1} = \ln \frac{\sin 2\alpha}{2}$. De plus, comme $\sin \frac{\alpha}{2^n} \sim \frac{\alpha}{2^n}$,

$$\lim_{n\to+\infty} \ln u_n = \ln \alpha$$

On en déduit que la série $\sum_{n\in\mathbb{N}}\ln\left(\cos\frac{\alpha}{2^n}\right)$ converge et que sa somme vaut $\ln\left(\frac{\sin 2\alpha}{2\alpha}\right)$.

Solution 36

On a

$$\sum_{\omega \in \mathbb{U}_p} \sum_{n \ge 0} \frac{\omega^n}{n!} = \sum_{n \ge 0} \frac{\sum_{\omega \in \mathbb{U}_p} \omega^n}{n!}$$

puisque les séries intervenant dans cette égalité convergent. Soit $n \in \mathbb{N}$. L'endomorphisme de groupes $\begin{cases} \mathbb{U}_p & \longrightarrow \mathbb{U}_p \\ \omega & \longmapsto \omega^n \end{cases}$ est un automorphisme si et seulement si n est premier avec p autrement dit si et seulement si p ne divise pas n (puisque p est premier). De plus, on sait que la somme des racines $p^{\text{èmes}}$ de l'unité est nulle. Donc pour n non multiple de p, $\sum_{\omega \in \mathbb{U}_p} \omega^n = 0$ et pour n multiple de p, $\sum_{\omega \in \mathbb{U}_p} \omega^n = p$.

Finalement,

$$\sum_{\omega \in \mathbb{U}_n} \sum_{n \ge 0} \frac{\omega^n}{n!} = p \sum_{n \ge 0} \frac{1}{(pn)!}$$

Or
$$\sum_{n\geq 0} \frac{\omega^n}{n!} = e^{\omega}$$
. Donc $\sum_{n\geq 0} \frac{1}{(pn)!} = \frac{1}{p} \sum_{\omega \in \mathbb{U}_n} e^{\omega}$.

Solution 37

Considérons la fraction rationnelle $F = \frac{X}{X^4 + X^2 + 1}$. Elle admet une décomposition en éléments simples sur \mathbb{R} du type

$$F = \frac{aX + b}{X^2 - X + 1} + \frac{cX + d}{X^2 + X + 1}$$

L'imparité de F donne a=c et b=-d. En considérant la limite de xF(x) lorsque x tend vers $\pm \infty$, on trouve a+c=0 et donc a=c=0. On trouve alors facilement $b=\frac{1}{2}$ et $d=-\frac{1}{2}$ d'où

$$F = \frac{1}{2(X^2 - X + 1)} - \frac{1}{2(X^2 + X + 1)}$$

On remarque alors que $X^2 - X + 1 = X^2 - (X - 1)$ et que $X^2 + X + 1 = (X + 1)^2 - X$. Ainsi pour $p \in \mathbb{N}$

$$\sum_{n=0}^{p} \frac{n}{n^4 + n^2 + 1} = \frac{1}{2} \sum_{n=0}^{p} \frac{1}{n^2 - (n-1)} - \frac{1}{(n+1)^2 - n}$$

$$= \frac{1}{2} \left(1 - \frac{1}{(p+1)^2 - p} \right) \text{ par t\'elescopage}$$

$$\xrightarrow[p \to +\infty]{} \frac{1}{2}$$

Ainsi la série de l'énoncé converge bien et sa somme vaut $\frac{1}{2}$.

Solution 38

La fraction rationnelle $F = \frac{2X - 1}{X^3 - 4X}$ admet une décomposition en éléments simples du type

$$F = \frac{a}{X - 2} + \frac{b}{X} + \frac{c}{X + 2}$$

En posant P = 2X - 1 et $Q = X^3 - 4X$, on a

$$a = \frac{P(2)}{Q'(2)} = \frac{3}{8}$$

$$b = \frac{P(0)}{Q'(0)} = \frac{1}{4}$$

$$c = \frac{P(-2)}{Q'(-2)} = -\frac{5}{8}$$

Pour $p \ge 3$, on a en remarquant que $\frac{1}{4} = \frac{5}{8} - \frac{3}{8}$

$$\sum_{n=3}^{p} \frac{2n-1}{n^3 - 4n} = \frac{3}{8} \sum_{n=3}^{p} \left(\frac{1}{n-2} - \frac{1}{n} \right) + \frac{5}{8} \sum_{n=3}^{p} \left(\frac{1}{n} - \frac{1}{n+2} \right)$$

$$= \frac{3}{8} \left(1 + \frac{1}{2} - \frac{1}{p-1} - \frac{1}{p} \right) + \frac{5}{8} \left(\frac{1}{3} + \frac{1}{4} - \frac{1}{p+1} - \frac{1}{p+2} \right) \text{ par t\'elescopage}$$

$$\xrightarrow{p \to +\infty} \frac{89}{96}$$

Ainsi la série de l'énoncé converge et sa somme vaut $\frac{89}{96}$.

Solution 39

Pour tout $n \in \mathbb{N}$,

$$\begin{split} \frac{1}{\binom{n+p}{n}} &= \frac{p!}{(n+p)(n+p-1)\dots(n+1)} \\ &= \frac{p!}{p-1} \frac{(n+p)-(n+1)}{(n+p)(n+p-1)\dots(n+1)} \\ &= \frac{p!}{p-1} \left(\frac{1}{(n+p-1)\dots(n+1)} - \frac{1}{(n+p)\dots(n+2)} \right) \end{split}$$

Donc pour tout $N \in \mathbb{N}$, on a par télescopage

$$\begin{split} \sum_{n=0}^{N} \frac{1}{\binom{n+p}{n}} &= \frac{p!}{p-1} \sum_{n=0}^{N} \left(\frac{1}{(n+p-1)\dots(n+1)} - \frac{1}{(n+p)\dots(n+2)} \right) \\ &= \frac{p!}{p-1} \left(\frac{1}{(p-1)\dots 1} - \frac{1}{(N+p)\dots(N+2)} \right) \underset{N \to +\infty}{\longrightarrow} \frac{p!}{(p-1)(p-1)!} = \frac{p}{p-1} \end{split}$$

Ainsi la série $\sum_{n\in\mathbb{N}} \frac{1}{\binom{n+p}{n}}$ converge et sa somme vaut $\frac{p}{p-1}$.

1. On reconnaît le développement de Taylor en 0 de exp.

Soient $x \in \mathbb{R}$ et $n \in \mathbb{N}$. exp est de classe C^{∞} sur \mathbb{R} donc, a fortiori, de classe C^{n+1} sur le segment d'extrémités 0 et x. De plus, la dérivée d'ordre n+1 de exp est encore exp pour tout t compris entre 0 et x, $|e^t|=e^t \leq M$ avec $M=\max(e^x,1)$ (pour éviter de distinguer suivant le signe de x). En appliquant l'inégalité de Taylor-Lagrange entre 0 et x à l'ordre n, on a

$$\left| e^x - \sum_{k=0}^n \frac{x^k}{k!} \right| \le \frac{M|x|^{n+1}}{(n+1)!}$$

Remarquons que M est indépendant de n donc l'inégalité précédente est valable pour tout $n \in \mathbb{N}$. Par comparaison des suites de référence, $\lim_{n \to +\infty} \frac{|x|^{n+1}}{(n+1)!} = 0$ et donc $\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{x^k}{k!} = e^x$ par encadrement. La série $\sum_{n \ge 0} \frac{x^n}{n!}$ converge donc et sa somme est e^x .

2. On reconnaît les développements de Taylor en 0 de cos et sin.

Soient $x \in \mathbb{R}$ et $n \in \mathbb{N}$. cos et sin sont de classe \mathcal{C}^{∞} sur \mathbb{R} donc, a fortiori, de classe \mathcal{C}^{n+1} sur le segment d'extrémités 0 et x. Une récurrence évidente montre que $\cos^{(2n+1)} = (-1)^{n+1}$ sin et $\sin^{(2n+2)} = (-1)^{n+1}$ sin. Il est alors évident que $\cos^{(2n+1)}$ et $\sin^{(2n+2)}$ sont majorées en valeur absolue par 1 sur \mathbb{R} . En appliquant l'inégalité de Taylor-Lagrange à cos entre 0 et x à l'ordre 2n, on a

$$\left|\cos x - \sum_{k=0}^{n} \frac{(-1)^k x^{2k}}{(2k)!}\right| \le \frac{|x|^{2n+1}}{(2n+1)!}$$

En appliquant l'inégalité de Taylor-Lagrange à sin entre 0 et x à l'ordre 2n + 1, on a

$$\left| \sin x - \sum_{k=0}^{n} \frac{(-1)^k x^{2k+1}}{(2k+1)!} \right| \le \frac{|x|^{2n+2}}{(2n+2)!}$$

Par comparaison des suites de référence,

$$\lim_{n \to \infty} \frac{|x|^{2n+1}}{(2n+1)!} = \lim_{n \to \infty} \frac{|x|^{2n+2}}{(2n+2)!} = 0$$

Ceci permet de conclure que les séries $\sum_{n \in \mathbb{N}} \frac{(-1)^n x^{2n}}{(2n)!}$ et $\sum_{n \in \mathbb{N}} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$ convergent et ont respectivement pour sommes $\cos x$ et $\sin x$.

Remarque. On peut, en reprenant la preuve de la première question, montrer que la série $\sum_{n=0}^{+\infty} \frac{(ix)^n}{n!}$ converge et a pour somme e^{ix} .

On obtient la convergence et la somme des séries $\sum_{n \in \mathbb{N}} \frac{(-1)^n x^{2n}}{(2n)!}$ et $\sum_{n \in \mathbb{N}} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$ en passant à la partie réelle et imaginaire.

3. On reconnaît le développement de Taylor en 0 de $x \mapsto \ln(1+x)$.

Soient $x \in [0,1]$ et $n \in \mathbb{N}^*$. $f: t \mapsto \ln(1+t)$ est de classe \mathcal{C}^{∞} sur $]-1,+\infty[$ donc, a fortiori, de classe \mathcal{C}^{n+1} sur [0,x]. Une récurrence évidente montre que $f^{(n+1)}(t) = \frac{(-1)^n n!}{(1+t)^{n+1}}$ pour tout $t \in]-1,+\infty[$. Ainsi pour tout $t \in [0,x]$,

$$|f^{(n+1)}(t)| \le n!$$

En appliquant l'inégalité de Taylor-Lagrange entre 0 et x à l'ordre n, on a

$$\left| \ln(1+x) - \sum_{k=1}^{n} \frac{(-1)^{k-1} x^k}{k} \right| \le \frac{x^{n+1} n!}{(n+1)!} = \frac{x^{n+1}}{n+1} \le \frac{1}{n+1}$$

car $x \in [0,1]$. Par encadrement, $\lim_{n \to +\infty} \sum_{k=0}^n \frac{(-1)^{k+1} x^k}{k} = \ln(1+x)$. La série $\sum_{n \ge 1} \frac{(-1)^{n+1} x^n}{n}$ converge donc et sa somme vaut $\ln(1+x)$.

Soit $n \in \mathbb{N}^*$.

$$\begin{split} \sum_{k=1}^{n} \frac{(-1)^{k-1} x^k}{k} &= \sum_{k=1}^{n} (-1)^{k-1} \int_{0}^{x} t^{k-1} \, \mathrm{d}t \\ &= \int_{0}^{x} \sum_{k=0}^{n-1} (-t)^k \, \mathrm{d}t \\ &= \int_{0}^{x} \frac{1 - (-t)^n}{1 + t} \, \mathrm{d}t \\ &= \int_{0}^{x} \frac{dt}{1 + t} + (-1)^{n+1} \int_{0}^{x} \frac{t^n}{1 + t} \, \mathrm{d}t \\ &= \ln(1 + x) + (-1)^{n+1} \int_{0}^{x} \frac{t^n}{1 + t} \, \mathrm{d}t \end{split}$$

Si x est positif, on a pour tout $t \in [0, x]$

$$0 \le \frac{t^n}{1+t} \le t^n$$

et par croissance de l'intégrale

$$0 \le \int_0^x \frac{t^n}{1+t} dt \le \frac{x^{n+1}}{n+1}$$

Ainsi $\lim_{n\to+\infty} \int_0^x \frac{t^n}{1+t} dt = 0$ puis

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{(-1)^{k-1} x^k}{k} = \ln(1+x)$$

On en déduit que $\sum_{n\in\mathbb{N}^*} \frac{(-1)^{n-1}x^n}{n}$ converge et que sa somme est $\ln(1+x)$. Supposons maintenant $x\leq 0$. Remarquons que

$$\sum_{k=1}^{n} \frac{(-1)^{k-1} x^k}{k} = \ln(1+x) - \int_0^x \frac{(-t)^n}{1+t} dt$$

Puis en effectuant le changement de variables u = -t (pour se ramener à une variable d'intégration positive et s'éviter des maux de tête)

$$\sum_{k=1}^{n} \frac{(-1)^{k-1} x^k}{k} = \ln(1+x) + \int_0^{-x} \frac{u^n}{1-u} \, \mathrm{d}u$$

Pour tout $u \in [0, -x]$

$$1 \le \frac{1}{1-u} \le \frac{1}{1+x}$$

Par croissance de l'intégrale

$$\int_0^{-x} u^n \, \mathrm{d}u \le \int_0^{-x} \frac{u^n}{1-u} \, \mathrm{d}u \le \frac{1}{1+x} \int_0^{-x} u^n \, \mathrm{d}u$$

ou encore

$$\frac{(-x)^{n+1}}{n+1} \le \int_0^{-x} \frac{u^n}{1-u} \, \mathrm{d}u \le \frac{1}{1+x} \frac{(-x)^{n+1}}{n+1}$$

Ainsi $\lim_{n\to+\infty} \int_0^{-x} \frac{u^n}{1-u} dt = 0$ puis

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{(-1)^{k-1} x^k}{k} = \ln(1+x)$$

On en déduit que $\sum_{n\in\mathbb{N}^*} \frac{(-1)^{n-1}x^n}{n}$ converge et que sa somme est $\ln(1+x)$.

Soit $n \in \mathbb{N}^*$.

$$\begin{split} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} &= \sum_{k=1}^{n} (-1)^{k-1} \int_{0}^{1} t^{k-1} \, \mathrm{d}t \\ &= \int_{0}^{1} \sum_{k=0}^{n-1} (-t)^{k} \, \mathrm{d}t \\ &= \int_{0}^{1} \frac{1 - (-t)^{n}}{1 + t} \, \mathrm{d}t \\ &= \int_{0}^{1} \frac{dt}{1 + t} + (-1)^{n+1} \int_{0}^{1} \frac{t^{n}}{1 + t} \, \mathrm{d}t \\ &= \ln(2) + (-1)^{n+1} \int_{0}^{1} \frac{t^{n}}{1 + t} \, \mathrm{d}t \end{split}$$

On a pour tout $t \in [0, 1]$

$$0 \le \frac{t^n}{1+t} \le t^n$$

et par croissance de l'intégrale

$$0 \le \int_0^1 \frac{t^n}{1+t} \, \mathrm{d}t \le \frac{1}{n+1}$$

Ainsi $\lim_{n\to+\infty} \int_0^1 \frac{t^n}{1+t} dt = 0$ puis

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} = \ln(2)$$

On en déduit que $\sum_{n \in \mathbb{N}^*} \frac{(-1)^{n-1}}{n}$ converge et que sa somme est $\ln(2)$.

Solution 43

 Il s'agit bien évidemment du lemme de Riemann-Lebesgue. Le plus simple est de passer en complexes afin de faire d'une pierre deux coups. Par intégration par parties, pour tout λ ≠ 0

$$\int_{a}^{b} f(t)e^{i\lambda t} dt = \frac{1}{\lambda} \left(f(b)e^{i\lambda b} - f(a)e^{i\lambda a} \right) - \frac{1}{\lambda} \int_{a}^{b} f'(t)e^{i\lambda t} dt$$

Pour tout $\lambda > 0$

$$\left| \frac{f(a)e^{i\lambda a}}{\lambda} \right| = \frac{|f(a)|}{\lambda} \qquad \left| \frac{f(b)e^{i\lambda b}}{\lambda} \right| = \frac{|f(b)|}{\lambda}$$

On en déduit que

$$\lim_{\lambda \to +\infty} \frac{f(a)e^{i\lambda a}}{\lambda} = \lim_{\lambda \to +\infty} \frac{f(b)e^{i\lambda b}}{\lambda} = 0$$

Enfin par inégalité triangulaire, pour tout $\lambda > 0$,

$$\left|\frac{1}{\lambda} \int_a^b f'(t) e^{i\lambda t} \ \mathrm{d}t \right| \leq \frac{1}{\lambda} \int_a^b |f'(t)| \ \mathrm{d}t$$

On en déduit que

$$\lim_{\lambda \to +\infty} \frac{1}{\lambda} \int_{a}^{b} f'(t)e^{i\lambda t} dt = 0$$

Par suite

$$\lim_{\lambda \to +\infty} \int_{a}^{b} f(t)e^{i\lambda t} dt = 0$$

Puisque f est à valeurs réelles, pour tout $\lambda \in \mathbb{R}$,

$$\operatorname{Re}\left(\int_a^b f(t)e^{i\lambda t} \ \mathrm{d}t\right) = \operatorname{I}(\lambda) \qquad \qquad \operatorname{Im}\left(\int_a^b f(t)e^{i\lambda t} \ \mathrm{d}t\right) = \operatorname{J}(\lambda)$$

On en déduit les limites demandées.

2. Soit $n \in \mathbb{N}^*$. On obtient par intégration par parties

$$\int_0^{\pi} x \cos(nx) \, dx = \frac{-1 + (-1)^n}{n^2}$$

puis

$$\int_0^{\pi} x^2 \cos(nx) \, dx = \frac{2(-1)^n \pi}{n^2}$$

Il suffit donc de choisir u = -1 et $v = \frac{1}{2\pi}$ pour avoir

$$\int_0^{\pi} (ux + vx^2) \cos(nx) \, dx = \frac{1}{n^2}$$

pour tout $n \in \mathbb{N}^*$.

3. Soit $x \in]0,\pi]$. Puisqu'alors $e^{ix} \neq 1$,

$$\sum_{k=1}^{n} e^{ikx} = e^{ix} \frac{e^{inx} - 1}{e^{ix} - 1} = e^{\frac{i(n+1)x}{2}} \frac{e^{\frac{inx}{2}} - e^{-\frac{inx}{2}}}{e^{\frac{ix}{2}} - e^{-\frac{ix}{2}}} = e^{\frac{i(n+1)x}{2}} \frac{\sin\left(\frac{nx}{2}\right)}{\left(\sin\frac{x}{2}\right)}$$

En passant à la partie réelle, on obtient

$$\sum_{k=1}^{n} \cos(kx) = \frac{\cos\left(\frac{(n+1)x}{2}\right)\sin\left(\frac{nx}{2}\right)}{\left(\sin\frac{x}{2}\right)}$$

Puisque

$$2\cos\left(\frac{(n+1)x}{2}\right)\sin\left(\frac{nx}{2}\right) = \sin\left(\frac{(n+1)x}{2} + \frac{nx}{2}\right) - \sin\left(\frac{(n+1)x}{2} - \frac{nx}{2}\right) = \sin\left(\left(n + \frac{1}{2}\right)x\right) - \sin\left(\frac{x}{2}\right)$$

on obtient bien la relation demandée.

4. φ est de classe \mathcal{C}^1 sur $]0,\pi]$ en tant que quotient de fonctions de classe \mathcal{C}^1 dont le dénominateur ne s'annule pas. De plus, $\lim_{x\to 0} \varphi(x) = 2$ car $\sin\frac{x}{2} \sim \frac{x}{2}$. Par ailleurs, pour tout $x\in]0,\pi]$,

$$\varphi'(x) = \frac{\sin\frac{x}{2} - \frac{x}{2}\cos\frac{x}{2}}{\sin^2\frac{x}{2}}$$

Or $\sin \frac{x}{2} = \frac{x}{2} + o(x^2)$ et $\cos \frac{x}{2} = 1 + o(x)$ donc

$$\sin \frac{x}{2} - \frac{x}{2} \cos \frac{x}{2} = o(x^2)$$

Puisque $\sin^2 \frac{x}{2} \sim \frac{x^2}{4}$, $\varphi'(x) = o(1)$ et donc $\lim_{x \to 0} \varphi'(x) = 0$.

D'après le théorème de prolongement \mathcal{C}^1 , φ admet un prolongement de classe \mathcal{C}^1 sur $[0,\pi]$.

5. Pour $n \in \mathbb{N}^*$, notons $S_n = \sum_{k=1}^n \frac{1}{k^2}$. Soit $n \in \mathbb{N}^*$. En notant u et v les réels déterminés à la question 2, on a d'après cette même question

$$S_n = \sum_{k=1}^n \int_0^\pi (ux + vx^2) \cos(kx) \, dx = \int_0^\pi (u + vx) x \sum_{k=1}^n \cos(kx) \, dx$$

On notera encore φ le prolongement de classe \mathcal{C}^1 de φ déterminé à la question **4**. Remarquons que les fonctions $x \mapsto x \sum_{k=1}^n \cos(kx)$ et $x \mapsto \frac{1}{2}\varphi(x)\sin\left(\left(n+\frac{1}{2}\right)x\right) - \frac{x}{2}$ coïncident sur $]0,\pi]$ d'après la question **3**. Puisqu'elles sont toutes les deux continues sur $[0,\pi]$ et donc en 0, elles coïncident sur $[0,\pi]$ en considérant leurs limites en 0. Ainsi

$$\begin{split} \mathbf{S}_n &= \int_0^\pi (u+vx) \left(\frac{1}{2} \varphi(x) \sin \left(\left(n+\frac{1}{2}\right)x\right) - \frac{x}{2}\right) \, \mathrm{d}x \\ &= \frac{1}{2} \int_0^\pi (u+vx) \varphi(x) \sin \left(\left(n+\frac{1}{2}\right)x\right) \, \mathrm{d}x - \frac{1}{2} \int_0^\pi (ux+vx^2) \, \mathrm{d}x \end{split}$$

La fonction $x \mapsto (u + vx)\varphi(x)$ étant de classe \mathcal{C}^1 sur $[0, \pi]$, on peut appliquer la question 1 pour affirmer que

$$\lim_{n \to +\infty} \int_0^{\pi} (u + vx) \varphi(x) \sin\left(\left(n + \frac{1}{2}\right)x\right) dx = 0$$

On en déduit que

$$\lim_{n \to +\infty} S_n = -\frac{1}{2} \int_0^{\pi} (ux + vx^2) \, dx = -\frac{u\pi^2}{4} - \frac{v\pi^3}{6} = \frac{\pi^2}{6}$$

Ainsi
$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
.

6. On constate qu'en prenant u = 0 et $v = -\frac{1}{2\pi}$, on a

$$\int_0^{\pi} (ux + vx^2) \cos(nx) \, dx = \frac{(-1)^n}{n^2}$$

pour tout $n \in \mathbb{N}^*$. Le même raisonnement que précédemment montre que la série $\sum_{n \in \mathbb{N}^*} \frac{(-1)^n}{n^2}$ converge et que sa somme vaut

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2} = -\frac{u\pi^2}{4} - \frac{v\pi^3}{6} = \frac{\pi^2}{12}$$

On constate qu'en prenant $u = -\frac{1}{2}$ et v = 0, on a

$$\int_0^{\pi} (ux + vx^2) \cos(nx) \, dx = \frac{1 - (-1)^n}{n^2}$$

En particulier,

$$\int_0^{\pi} (ux + vx^2) \cos((2n-1)x) dx = \frac{1}{(2n-1)^2} \qquad \int_0^{\pi} (ux + vx^2) \cos(2nx) dx = 0$$

pour tout $n \in \mathbb{N}^*$. Le même raisonnement que précédemment montre que la série $\sum_{n \in \mathbb{N}^*} \frac{1}{(2n-1)^2}$ converge et que sa somme vaut

$$\sum_{n=1}^{+\infty} \frac{1}{(2n-1)^2} = -\frac{u\pi^2}{4} - \frac{v\pi^3}{6} = \frac{\pi^2}{8}$$

Solution 44

Notons u_n le terme général de la série étudiée. Puisque $u_n \sim 1/n^2$, la série $\sum u_n$ est clairement convergente. On remarque que, pour tout réel x > 0:

$$\frac{1}{x^2 + 3x} = \frac{1}{3x} - \frac{1}{3(x+3)}$$

Il y a donc télescopage dans les sommes partielles de $\sum u_n$ qui converge et dont la somme vaut :

$$\sum_{n=1}^{+\infty} u_n = \frac{1}{3} \left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} \right) = \frac{11}{18}.$$

Pour tout $n \ge 0$, on a par croissance sur \mathbb{R}_+ de la fonction arctangente de 0 à $\pi/2$:

$$\alpha_n = \arctan(n+1) - \arctan(n) \in [0, \pi/2[.$$

De plus,

$$\tan(\alpha_n) = \frac{n+n-n}{1+n(n+1)} = \frac{1}{n^2+n+1}$$

et ainsi

$$\alpha_n = \arctan\left(\frac{1}{n^2 + n + 1}\right).$$

Il y donc télescopage dans les sommes partielles de $\sum u_n$ qui converge et dont la somme vaut

$$\sum_{n=0}^{+\infty} u_n = \frac{\pi}{2}.$$

Solution 46

Puisque $0 \le p(n) \le \log_{10} n + 1$ pour tout $n \ge 1$, on a

$$\frac{p(n)}{n(n+1)} = \mathcal{O}\left(\frac{9}{n^{\frac{3}{2}}}\right)$$

et la série de l'énoncé est convergente. On remarque que, pour tout m dans \mathbb{N}^* , on a p(n) = m si et seulement si $10^{m-1} \le n < 10^m$. Notons $(S_n)_{n \ge 1}$ la suite de sommes partielles de la série de l'énoncé. On sait que $(S_{10^m-1})_{m \ge 1}$ converge vers la même limite que $(S_n)_{n \ge 1}$ en tant que suite extraite. Ainsi :

$$\sum_{n=1}^{+\infty} \frac{p(n)}{n(n+1)} = \lim_{m \to +\infty} S_{10^m - 1}.$$

Or, pour tout $m \ge 1$:

$$S_{10^{m-1}} = \sum_{k=1}^{m} \sum_{\ell=10^{k-1}}^{10^{k-1}} \frac{p(\ell)}{\ell(\ell+1)} = \sum_{k=1}^{m} \sum_{\ell=10^{k-1}}^{10^{k-1}} \frac{k}{\ell(\ell+1)}$$

$$= \sum_{k=1}^{m} k \sum_{\ell=10^{k-1}}^{10^{k-1}} \left(\frac{1}{\ell} - \frac{1}{\ell+1}\right)$$

$$= \sum_{k=1}^{m} k \left(\frac{1}{10^{k-1}} - \frac{1}{10^{k}}\right)$$

$$= \sum_{k=1}^{m} \frac{k}{10^{k-1}} - \sum_{k=1}^{m} \frac{k}{10^{k}}$$

$$= \sum_{k=1}^{m} \frac{k-1+1}{10^{k-1}} - \sum_{k=1}^{m} \frac{k}{10^{k}}$$

$$= \sum_{k=1}^{m} \frac{1}{10^{k-1}} - \frac{m}{10^{m}} = \frac{1-1/10^{m}}{1-1/10} - \frac{m}{10^{m}}$$

$$= \frac{10}{9}(1-10^{-m}) - \frac{m}{10^{m}}$$

Ainsi:

$$\lim_{m \to +\infty} S_{10^m - 1} = \frac{10}{9}$$

et

$$\sum_{n=1}^{+\infty} \frac{p(n)}{n(n+1)} = \frac{10}{9}.$$

- La série est clairement alternée de terme général convergeant vers 0 : elle est donc convergente.
- Soit $n \ge 1$. Notons $(\Sigma_n)_{n \ge 2}$ la suite des sommes partielles de cette série et posons, pour tout entier naturel $n \ge 2$

$$S_n = \sum_{k=2}^n (-1)^k \ln(k).$$

On a, après tout calcul

$$\begin{split} \Sigma_{2n} &= \sum_{k=2}^{2n} (-1)^k [\ln(k+1) + \ln(k-1) - 2\ln(k)] \\ &= -4 \mathrm{S}_{2n} + \ln(2n(2n+1)) \\ &= -4 \ln \left(\frac{2 \times 4 \times \dots \times (2n)}{3 \times 5 \times \dots \times (2n-1)} \right) + \ln(2n(2n+1)) \\ &= \ln \left(\frac{2n(2n+1)(2n)!^4}{2^{8n}n!^8} \right) \end{split}$$

En utilisant l'équivalent de Stirling

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

on trouve que

$$\frac{2n(2n+1)(2n)!^4}{2^{8n}n!^8}\sim \frac{4n^2(2\pi\times 2n)^2(\frac{2n}{e})^{8n}}{2^{8n}(2\pi\times n)^4(\frac{n}{e})^{8n}}\sim \frac{4}{\pi^2}$$

et donc, par continuité du logarithme, on a

$$\lim_{n\to+\infty}\Sigma_{2n}=\ln\left(\frac{4}{\pi^2}\right),\,$$

et, puisque la série converge, on a

$$\sum_{n=2}^{+\infty} (-1)^n \ln\left(1 - \frac{1}{n^2}\right) = \ln\left(\frac{4}{\pi^2}\right).$$

Solution 48

La série

$$\sum_{n\geqslant 1} (-1)^n \ln(1+1/n)$$

est clairement alternée. Comme

$$(\ln(1+1/n))_{n\in\mathbb{N}^*}$$

tend vers 0 en décroissant, on déduit du critère spécial des séries alternées que la série converge. Notons $(S_n)_{n\geqslant 1}$ la suite des sommes partielles de cette série. Pour tout $n\geqslant 1$, on a :

$$\begin{split} \mathbf{S}_{2n} &= \sum_{k=1}^{2n} (-1)^k \ln \left(1 + \frac{1}{k} \right) = -\sum_{k=0}^{n-1} \ln \left(1 + \frac{1}{2k+1} \right) + \sum_{k=1}^{n} \ln \left(1 + \frac{1}{2k} \right) \\ &= -\sum_{k=0}^{n-1} \ln \left(\frac{2k+2}{2k+1} \right) + \sum_{k=1}^{n} \ln \left(\frac{2k+1}{2k} \right) = -\sum_{k=0}^{n-1} \left[\ln(2k+2) - \ln(2k+1) \right] + \sum_{k=1}^{n} \left[\ln(2k+1) - \ln(2k) \right] \\ &= -\sum_{k=0}^{n-1} \ln(2k+2) - \sum_{k=1}^{n} \ln(2k) + \sum_{k=1}^{n} \ln(2k+1) + \sum_{k=0}^{n-1} \ln(2k+1) \\ &= -2 \sum_{k=1}^{n} \ln(2k) + 2 \sum_{k=0}^{n-1} \ln(2k+1) + \ln(2n+1) \\ &= \ln \left(\left[\frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times (2n)} \right]^2 (2n+1) \right) = \ln \left(\left[\frac{(2n)!}{(2^n n!)^2} \right]^2 (2n+1) \right) \\ &= \ln \left(\left[\frac{(2n)!}{(2^n n!)^2} \right]^2 (2n+1) \right) = \ln \left(\frac{(2n)!^2}{2^{4n} n!^4} (2n+1) \right) \end{split}$$

Or, d'après la formule de Stirling, on sait que

 $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

d'où

$$\frac{(2n)!}{2^{2n}n!^2} \sim \frac{\sqrt{4\pi n}2^{2n}(n/e)^{2n}}{2^{2n}2\pi n(n/e)^{2n}} = \frac{1}{\sqrt{n\pi}}$$

et donc

$$\frac{(2n)!^2}{2^{4n}n!^4}(2n+1) \sim \frac{2n}{n\pi} = \frac{2}{\pi}.$$

On déduit alors de la continuité du logarithme que

$$\lim_{n \to +\infty} S_{2n} = \ln\left(\frac{2}{\pi}\right)$$

puis de la convergence de la série que

$$\sum_{n=1}^{+\infty} (-1)^n \ln\left(1 + \frac{1}{n}\right) = \ln\left(\frac{2}{\pi}\right).$$

Solution 49

Posons $v_0 = 1$ et, pour tout $k \ge 1$

$$v_k = \frac{\sqrt{k!}}{(1+\sqrt{1})\cdots(1+\sqrt{k})}.$$

Pour tout $n \ge 1$, on a clairement

$$u_n = v_{n-1} - v_n.$$

Ainsi, en notant $(S_n)_{n \ge 1}$ la suite des sommes partielles de la série $\sum u_n$, on obtient après telescopage

$$S_n = v_0 - v_n = 1 - v_n.$$

De plus, on a

$$v_n = \prod_{k=1}^n \frac{\sqrt{k}}{1 + \sqrt{k}} = \frac{1}{\prod_{k=1}^n \left(1 + \frac{1}{\sqrt{k}}\right)}$$

et donc

$$-\ln(v_n) = \sum_{k=1}^n \ln\left(1 + \frac{1}{\sqrt{k}}\right).$$

Comme

$$\ln\left(1 + \frac{1}{\sqrt{k}}\right) \sim \frac{1}{\sqrt{k}}$$

et que $\sum k^{-1/2}$ diverge vers $+\infty$, on a

$$\lim_{n\to+\infty} -\ln(v_n) = +\infty$$

et, par composition des limites,

$$\lim_{n\to+\infty} v_n = 0.$$

Ainsi

$$\sum_{n=1}^{+\infty} u_n = 1.$$

Solution 50

1. L'ingalité est clairement vraie pour n=0. Supposons la vraie pour un certain $n\in\mathbb{N}$. Alors

$$|x_{n+2}-x_{n+1}|=|f(x_{n+1})-f(x_n)|\leq k|x_{n+1}-x_n|\leq k^{n+1}|x_1-x_0|$$

Par récurrence, l'inégalité est donc vraie pour tout $n \in \mathbb{N}$.

- 2. D'après la question précédente $x_{n+1} x_n = \mathcal{O}(k^n)$ avec $k \in [0, 1[$ donc la série $\sum_{n \in \mathbb{N}} x_{n+1} x_n$ converge (absolument). Ceci signifie que la suite (x_n) converge.
- 3. Notons ℓ la limite de (x_n) . Puisque f est continue (car lipschitzienne), $\ell = f(\ell)$ donc ℓ est un point fixe de f. Soit ℓ' un point fixe de f. Alors

$$|\ell - \ell'| = |f(\ell) - f(\ell')| \le k|\ell - \ell'$$

ou encore

$$(1-k)|\ell-\ell'| \leq 0$$

Puisque 1 - k > 0, $|\ell - \ell'| = 0$ i.e. $\ell = \ell'$. f admet donc un unique point fixe.

Solution 51

1. Soient $x, y \in \mathbb{R}_+^*$. Notons $f_x(t) = \frac{t - [t]}{t(t + x)}$. Comme x > 0, t(t + x) ne s'annule pas sur l'intervalle]0, y]. De plus, pour $0 \le t < 1$, [t] = 0 et donc

$$\lim_{t \to 0^+} \frac{t - [t]}{t(t + x)} = \lim_{t \to 0^+} \frac{1}{t + x} = \frac{1}{x}$$

Enfin, la fonction partie entière est continue par morceaux sur \mathbb{R} . On en déduit que f_x est continue par morceaux sur [0, y] et l'intégrale G(x, y) est bien définie pour tout $(x, y) \in (\mathbb{R}_+^*)^2$.

2. Soit $x \in \mathbb{R}_+^*$. La fonction f_x est positive sur \mathbb{R}_+ . On en déduit que $y \mapsto G(x,y)$ est croissante sur \mathbb{R}_+^* . Il suffit donc maintenant de prouver que cette fonction est majorée. Pour $t \in \mathbb{R}_+^*$, t - [t] < 1 et $t(t + x) \ge t^2$ donc $f_x(t) \le \frac{1}{t^2}$. On peut supposer $y \ge 1$. Séparons l'intégrale définissant G(x,y) en deux parties pour éviter les problèmes en 0:

$$G(x,y) = \int_0^1 f_x(t) dt + \int_1^y f_x(t) dt \le \int_0^1 f_x(t) dt + \int_1^y \frac{dt}{t^2} \le \int_0^1 f_x(t) dt + 1 - \frac{1}{y} \le \int_0^1 f_x(t) dt + 1$$

Ainsi $y \mapsto G(x, y)$ est croissante est majorée, elle admet donc une limite finie en $+\infty$.

3. Soit $n \in \mathbb{N}^*$. On a classiquement $\frac{1}{t(t+n)} = \frac{1}{n} \left(\frac{1}{t} - \frac{1}{t+n} \right)$. On en déduit que

$$G(n, y) = \frac{1}{n} \left(\int_0^y \frac{t - [t]}{t} dt - \int_0^y \frac{t - [t]}{t + n} dt \right)$$

On peut effectuer le changement de variable u = t + n dans la seconde intégrale. Comme n est entier [t] = [u - n] = [u] - n et donc t - [t] = u - [u]. On a donc

$$\int_0^y \frac{t - [t]}{t + n} dt = \int_n^{y+n} \frac{u - [u]}{u} du$$

On a alors

$$G(n,y) = \frac{1}{n} \left(\int_0^y \frac{t - [t]}{t} dt - \int_n^{y+n} \frac{t - [t]}{t} dt \right)$$

On utilise la relation de Chasles:

$$\int_0^y \frac{t - [t]}{t} dt = \int_0^n \frac{t - [t]}{t} dt + \int_n^y \frac{t - [t]}{t} dt \qquad \qquad \int_n^{y+n} \frac{t - [t]}{t} dt = \int_n^y \frac{t - [t]}{t} dt + \int_y^{y+n} \frac{t - [t]}{t} dt$$

Après simplification, on a la relation demandée.

4. Déterminons tout d'abord une expression de G(n). Remarquons que

$$0 \le \int_{y}^{y+n} \frac{t - [t]}{t} dt \le \int_{y} y + n \frac{1}{y} dt = \frac{n}{y}$$

On en déduit que $\lim_{y \to +\infty} \int_{y}^{y+n} \frac{t-[t]}{t} dt = 0$. Ainsi $G(n) = \frac{1}{n} \int_{0}^{n} \frac{t-[t]}{t} dt$ et $H(n) = \int_{0}^{n} \frac{t-[t]}{t} dt$. On a donc

$$H(n) - H(n-1) = \int_{n-1}^{n} \frac{t - [t]}{t} dt$$

On effectue le changement de variables u = t - (n - 1) de sorte que

$$H(n) - H(n-1) = \int_0^1 \frac{u - [u]}{u + n - 1} dt = \int_0^1 \frac{u}{u + n - 1}$$

car[u] = 0 pour $0 \le u < 1$. On obtient alors facilement

$$H(n) - H(n-1) = 1 - (n-1) \ln \frac{n-1}{n} = 1 - (n-1) \ln \left(1 + \frac{1}{n-1}\right)$$

On va maintenant chercher un équivalent de $H(n) - H(n-1) - \frac{1}{2n}$.

$$\ln\left(1+\frac{1}{n-1}\right) = \frac{1}{n-1} - \frac{1}{2(n-1)^2} + \frac{1}{3(n-1)^3} + o\left(\frac{1}{(n-1)^3}\right)$$

On en déduit que

$$H(n) - H(n-1) = \frac{1}{2(n-1)} - \frac{1}{3(n-1)^2} + o\left(\frac{1}{(n-1)^2}\right)$$

Or
$$\frac{1}{2(n-1)} = \frac{1}{2n} + \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$$
 et $\frac{1}{(n-1)^2} \sim \frac{1}{n^2}$. Finalement,

$$H(n) - H(n-1) - \frac{1}{2n} = \frac{1}{6n^2} + o\left(\frac{1}{n^2}\right)$$

Comme la série de terme général $\frac{1}{6n^2}$ converge, on a également convergence de la série de terme général $H(n) - H(n-1) - \frac{1}{2n}$. Notons (S_n) la suite des sommes partielles de cette série i.e.

$$S_n = \sum_{k=2}^n H(k) - H(k-1) - \frac{1}{2k}$$

On a par téléscopage $S_n = H(n) - H(1) - \sum_{k=2}^n \frac{1}{2k}$. Comme (S_n) est bornée et que $\sum_{k=2}^n \frac{1}{2k} \sim \frac{1}{2} \ln n$ tend vers $+\infty$, on en déduit que $H(n) \sim \frac{1}{2} \ln n$. Ainsi $G(n) \sim \frac{1}{n \ln n}$.

Solution 52

1. Définition

On définit deux suites (q_n) et (a_n) par récurrence. On pose $a_0 = x$ et pour $n \in \mathbb{N}$

$$q_n = \left| \frac{1}{a_n} \right| + 1 \qquad \qquad a_{n+1} = q_n a_n - 1$$

Il faut vérifier que ces deux suites sont bien définies. Nous démontrerons en même temps que (q_n) est une suite d'entiers supérieurs ou égaux à 2. Faisons l'hypothèse de récurrence suivante :

HR(n): a_n et q_n sont définis, $q_n a_n > 1$, $0 < a_n \le 1$ et $q_n \ge 2$.

<u>Initialisation</u>: a_0 est bien définie et comme $a_0 = x > 0$, q_0 est bien défini et c'est clairement un entier. De plus, $\frac{1}{a_0} < q_0 \le \frac{1}{a_0} + 1$ donc $a_0q_0 > 1$. D'après l'énoncé $a_0 = x \in]0,1]$. On en déduit également que $\frac{1}{a_0} \ge 1$ et donc, par croissance de la partie entière, $q_0 \ge 2$.

 $q_0 \le 2$.

Hérédité: Supposons HR(n) vraie à un certain rang $n \in \mathbb{N}$. a_{n+1} est bien défini puisque a_n et q_n le sont. De plus, $a_{n+1} = q_n a_n - 1 > 0$ donc q_{n+1} est bien défini et c'est clairement un entier. Par ailleurs, $\frac{1}{a_{n+1}} < q_{n+1} \le \frac{1}{a_{n+1}} + 1$ donc $q_{n+1}a_{n+1} > 1$. On sait également

que $\frac{1}{a_n} < q_n \le \frac{1}{a_n} + 1$ donc $q_n a_n \le a_n + 1$ puis $a_{n+1} = q_n a_n - 1 \le a_n \le 1$.

Conclusion : HR(n) est vraie pour tout $n \in \mathbb{N}$.

En reprenant une partie de la récurrence, on voit que pour tout $n \in \mathbb{N}$, $\frac{1}{a_n} < q_n \le \frac{1}{a_n} + 1$ implique que $q_n a_n \le a_n + 1$ et donc que $a_{n+1} = q_n a_n - 1 \le a_n$. La suite (a_n) est une suite décroissante de réels strictement positifs donc la suite $\left(\frac{1}{a_n}\right)$ est croissante. Par croissance de la partie entière, la suite (q_n) est croissante.

Reste à montrer qu'on a bien $x = \sum_{n=0}^{+\infty} \frac{1}{q_0 q_1 \dots q_n}$. Montrons par récurrence que

$$x = \sum_{k=0}^{n} \frac{1}{q_0 q_1 \dots q_k} + \frac{a_{n+1}}{q_0 q_1 \dots q_n}$$

Puisque $a_1 = q_0 a_0 + 1$, $x = a_0 = \frac{1}{q_0} + \frac{a_1}{q_0}$, ce qui initialise la récurrence. Supposons alors que $x = \sum_{k=0}^{n} \frac{1}{q_0 q_1 \dots q_k} + \frac{a_{n+1}}{q_0 q_1 \dots q_n}$.

Puisque $a_{n+2} = q_{n+1}a_{n+1} - 1$, $a_{n+1} = \frac{1}{q_{n+1}} + \frac{a_{n+2}}{q_{n+1}}$ et donc

$$x = \sum_{k=0}^{n} \frac{1}{q_0 q_1 \dots q_k} + \frac{1}{q_0 q_1 \dots q_n q_{n+1}} + \frac{a_{n+2}}{q_0 q_1 \dots q_n q_{n+1}} = \sum_{k=0}^{n+1} \frac{1}{q_0 q_1 \dots q_k} + \frac{a_{n+2}}{q_0 q_1 \dots q_n q_{n+1}}$$

L'hérédité est donc prouvée.

Puisque pour tout $n \in \mathbb{N}$, $q_n \ge 2$ et $0 \le a_n \le 1$, on a $0 \le \frac{a_{n+1}}{q_0q_1...q_n} \le \frac{1}{2^{n+1}}$. Ceci prouve que $\frac{a_{n+1}}{q_0q_1...q_n} \xrightarrow[n \to +\infty]{} 0$ et donc que $\sum_{n=1}^{\infty} \frac{1}{q_0q_1...q_n} \xrightarrow[n \to +\infty]{} x$.

Unicité

Supposons qu'il existe une suite croissante d'entiers supérieurs ou égaux à $2(q_n)$ telle que $x = \sum_{n=0}^{+\infty} \frac{1}{q_0 q_1 \cdots q_n}$. Pour $n \in \mathbb{N}$, on pose $q_n = \sum_{n=0}^{+\infty} \frac{1}{q_0 q_1 \cdots q_n}$. Cette somme est bien convergente puisque pour $k \ge n$.

 $a_n = \sum_{k=n}^{+\infty} \frac{1}{q_n q_{n+1} \dots q_k}.$ Cette somme est bien convergente puisque pour $k \ge n$, $\frac{1}{q_n q_{n+1} \dots q_k} \le \frac{1}{2^{k-n+1}}$ et que la série $\sum_{k=n}^{+\infty} \frac{1}{2^{k-n+1}}$ converge. On remarque que $a_{n+1} = q_n a_n - 1$ pour tout $n \in \mathbb{N}$. De plus, comme (q_n) est croissante, on a $a_{n+1} \le a_n$ pour tout $n \in \mathbb{N}$. Enfin, $q_n = \frac{1}{a_n} + \frac{a_{n+1}}{a_n}$ et donc $\frac{1}{a_n} < q_n \le \frac{1}{a_n} + 1$ pour tout $n \in \mathbb{N}$. Autrement dit, $q_n = \left\lfloor \frac{1}{a_n} \right\rfloor + 1$ pour tout $n \in \mathbb{N}$. Ainsi les suites (q_n) et (a_n) vérifient $a_0 = x$ et pour tout $n \in \mathbb{N}$

$$q_n = \left\lfloor \frac{1}{a_n} \right\rfloor + 1 \qquad \qquad a_{n+1} = q_n a_n - 1$$

Ceci détermine la suite (q_n) de manière unique.

2. Supposons la suite (q_n) constante égale à C à partir du rang N.

$$x = \sum_{n=0}^{N-1} \frac{1}{q_0 q_1 \dots q_n} + \sum_{n=N}^{+\infty} \frac{1}{q_0 q_1 \dots q_{N-1} C^{n-N}}$$

$$= \sum_{n=0}^{N-1} \frac{1}{q_0 q_1 \dots q_n} + \frac{1}{q_0 q_1 \dots q_{N-1}} \sum_{n=0}^{+\infty} \frac{1}{C^n}$$

$$= \sum_{n=0}^{N-1} \frac{1}{q_0 q_1 \dots q_n} + \frac{1}{q_0 q_1 \dots q_{N-1}} \frac{C}{C-1}$$

Sous cette forme, on voit bien que *x* est rationnel.

Supposons maintenant x rationnel. Il existe donc $(p,q) \in \mathbb{N} \times \mathbb{N}^*$ tel que $x = \frac{p}{q}$. On garde les notations de la question précédente. Montrons par récurrence que pour tout $n \in \mathbb{N}$, il existe un entier p_n tel que $a_n = \frac{p_n}{q}$. L'initialisation est claire puisque $a_0 = x = \frac{p}{q}$: il suffit donc de poser $p_0 = p$. Supposons maintenant que pour un certain $n \in \mathbb{N}$, il existe un entier p_n tel que $a_n = \frac{p_n}{q}$. On a alors $a_{n+1} = q_n a_n - 1 = \frac{p_{n+1}}{q}$ avec $p_{n+1} = q_n p_n - q$, ce qui achève la récurrence. D'après la première question, (a_n) est une suite décroissante de réels strictements positifs : on en déduit que (p_n) est une suite décroissante d'entiers naturels (non nuls). La suite (p_n) est donc stationnaire. Il en est de même de la suite (a_n) puis de la suite (q_n) puisque pour tout $n \in \mathbb{N}$, $q_n = \left|\frac{1}{a_n}\right| + 1$.

3. Posons x = e - 2 de sorte que $x \in]0,1]$. On sait que $x = \sum_{n=0}^{+\infty} \frac{1}{(n+2)!}$. Si on pose $q_n = n+2$ pour tout $n \in \mathbb{N}$, (q_n) est bien croissante et on a bien $x = \sum_{n=0}^{+\infty} \frac{1}{q_0 q_1 \dots q_n}$. La suite (q_n) n'étant pas stationnaire, x n'est pas rationnel d'après la question précédente.

Solution 53

Remarquons tout d'abord que multiplier un réel par une puissance de 10 ou lui ajouter un entier ne change ni son caractère rationnel, ni le caractère périodique à partir d'un certain rang de son développement décimal.

Soit $x \in \mathbb{R}$ dont le développement décimal est périodique à partir d'un certain rang. Pour les raisons exposées plus haut, on peut supposer que $x = \sum_{n=1}^{+\infty} \frac{a_n}{10^n}$ où $(a_n)_{n \ge 1}$ est une suite de chiffres périodique. Notons $p \in \mathbb{N}^*$ la période de (a_n) . Alors $10^p x = \sum_{n=1}^p a_n 10^{p-n} + \sum_{n=1}^{+\infty} \frac{a_{n+p}}{10^n}$. En posant $q = \sum_{n=1}^p a_n 10^{p-n}$ et en utilisant la p-périodicité de (a_n) , on a donc $10^p x = q + x$ i.e. $x = \frac{q}{10^{p-1}}$. Comme q est un entier, x est un rationnel.

Soit maintenant $x \in \mathbb{Q}$. Pour les raisons exprimées en préliminaire, on peut supposer $x \in [0,1[$. Il existe donc des entiers naturels p et q tels que $x = \frac{p}{q}$ avec $0 \le p < q$. Définissons deux suites $(r_n)_{n \ge 0}$ et $(a_n)_{n \ge 1}$ en posant $r_0 = p$ et en définissant a_{n+1} et r_{n+1} comme le reste et le quotient de la division euclidienne de $10r_n$ par q. On montre alors par récurrence que pour tout $n \in \mathbb{N}^*$, $\frac{p}{q} = \sum_{k=1}^n \frac{a_k}{10^k} + \frac{r_n}{10^n q}$. Puisque la suite (r_n) est bornée (car à valeurs dans [0, 9]), $\frac{p}{q} = \sum_{k=1}^n \frac{a_k}{10^k}$. De plus pour tout $n \in \mathbb{N}^*$, $a_n = \frac{10r_{n-1} - r_n}{q}$. Comme r_{n-1} et r_n sont dans [0, q-1], on en déduit $q_n \in [0, 9]$. Ainsi $(a_n)_{n \ge 1}$ est la suite des décimales de x. Comme la suite (r_n) est à valeurs dans un ensmeble fini, à savoir [0, q-1], elle ne peut être injective. Il existe donc des entiers naturels non nuls n_1 et n_2 tels que $n_1 < n_2$ et $r_{n_1} = r_{n_2}$. On montre alors

par récurrence que pour $k \in \mathbb{N}$, $r_{n_1+k} = r_{n_2+k}$ et $a_{n_1+k+1} = a_{n_2+k+1}$ en utilisant au passage l'unicité du quotient et du reste dans la division

euclidienne. Ceci prouve que la suite (a_n) est périodique de période $n_2 - n_1$ à partir du rang $n_1 + 1$.

Solution 54

On prouve aisément par récurrence que $|u_{n+1}-u_n| \le k^n |u_1-u_0|$ et donc que $u_{n+1}-u_n=\mathcal{O}(k^n)$. Puisque $k \in [0,1[$, la série télescopique $\sum_{n\in\mathbb{N}}u_{n+1}-u_n$ converge i.e. la suite u converge.