Geant4 Evaluation and Optimization of Portable Faraday Cup

Overview

- Evaluation (% charge defect [%cd])
 - HIT, Geant4
- Optimization
 - MCNP6: Height, Radius
 - Geant4: film thickness, %cd minimization
- Validation
 - G4 Energy Spectra, go99 branching ratios
- Discussion
 - Dosimetric quiver plot, Deposition Histogram

Evaluation

Charge defect = ([q_in - q_out] - q_beam)/q_beam

•Assumption:

Deposition/Removal of charge in Kapton produces mirror charge in Copper with magnitude linearly proportional to depth in Kapton between Copper and Silver interfaces

Evaluation

Experimental vs. Simulated Beam Stop % charge defect

Fig 1: Comparison of Geant4 and HIT Experimental charge defect measurements

Optimization

Fig 2: Charge defect measurement for coarse device dimension optimization

Optimization

•Goal: Minimize |%cd| by fine-tuning dimensions

- •Thus:
 - Obtain functional Kapton thickness of energy such that [%cd](E=X, t_KA=Y) = 0
 - Preliminary results show Y=36 microns when X=160 MeV

Validation

Fig 3: a) Beta spectra and b) gamma spectra in Copper via Geant4

Discussion

Fig 4: Energy deposition gradient for electrons via Geant4; note both spray and halo/aura presence

Discussion

p Cu distribution at 250 MeV

Fig 5: Proton deposition count in Copper via Geant4

Discussion

n Cu distribution at 250 MeV

Fig 5: Neutron deposition count in Copper via Geant4