- (unsider 2^{hd} circler home geneous linear diff eq: $\frac{d^2y}{dx^2} + \frac{2}{dx} \frac{dy}{dx} 3y = 0$
- a) $y = e^{x}$, $y = e^{y}$, $y = e^{-yx}$, $y = e^{-yx}$

Independencies tes, it shows that:

$$\frac{e^{x}}{e^{2x}} = \frac{1}{e^{2x}}, \quad \frac{e^{x}}{e^{-1x}} = e^{x}; \quad \frac{e^{x}}{e^{-4x}} = e^{x};$$

$$\frac{e^{2x}}{e^{-3x}} = e^{x}; \quad \frac{e^{x}}{e^{-4x}} = e^{x}; \quad \frac{e^{x}}{e^{-4x}} = e^{x};$$

$$\frac{e^{2x}}{e^{-3x}} = e^{x}; \quad \frac{e^{x}}{e^{-4x}} = e^{x}; \quad \frac{e^{x}}{e^{-4x}} = e^{x};$$

all of the rapid is non-constant. We can continue for inserting the possible answer into the equation. The only solutions.

$$\frac{d^2y}{dx^2} + 2 \frac{dy}{dx} - 3y = e^x + 2(e^x) - 3e^x = 0$$
 proved

So y = ex is one of two solution's.

Let me take
$$y = e^{-3x}$$

 $y = e^{-3x}$; $dy = -3e$; $d^2y = 9e^{-3x}$
 dx

Let's substitute into the equation:

$$\frac{d^{2}y}{dx^{2}} + 2\frac{dy}{dx} - 3y = 9e^{-3x} + 2(-3e^{-3x}) - 3e^{-3x}$$

$$= 9e^{-3x} - 6e^{-3x} - 3e^{-3x}$$

$$= 0, \quad \text{proved}$$

So, y = e is also proved to be the last possible solutions.

b) Write down the general solution in the form of
$$y_{cx}$$
) = $c_1y_1(x) + (2y_2(x))$
= $c_1e^x + (2e^{-3x})$

- c) Find the value of C_1 and C_2 is the condition of the initial values is: y(0) = 0 $\frac{dy(0)}{dx}$
 - o) y (r) = C1 + c2 = 0

44

o)
$$\frac{dy}{dx} = \frac{c}{c} = \frac{x}{2} - 3 \cdot c_2 = 8$$

Using elimination(.)

 $\frac{dy}{dx} = \frac{c}{c} = \frac{x}{2} - 3 \cdot c_2 = 8$

$$C_1 + C_2 = 0$$
 ---(i)
 $C_1 - 3C_2 = 8$ --- (ii)

$$3C(+3Cz = 0)$$
 $C(1 - 3Cz = 8) +$
 $C(1 = 2)$

$$C_1 - 3C_2 = 8 = 2 - 3C_2$$
 $6 = -3C_2$
 $-2 = C_2$

The value of
$$C_1$$
 and C_2 is $C_1 = 2$ & $C_2 = -2$

$$C_1 = 2$$
 & $C_2 = -2$

