MTH1102D Calcul II

Chapitre 10, section 4: Le théorème de Stokes

Exemple 3: Utilisation du théorème de Stokes

Exemple 3 : Utilisation du théorème de Stokes

Soit le champ vectoriel $\vec{F}(x,y,z) = (e^x + z)\vec{i} + (e^y + 2x)\vec{j} + (e^z + xy)\vec{k}$ et C une courbe fermée située dans le plan z=1. Montrez que la circulation de \vec{F} autour de C ne dépend que de l'aire de la partie du plan délimitée par C, et non de la courbe elle-même.

• La circulation d'un champ \vec{F} autour d'une courbe fermée C est simplement

$$\oint_C \vec{F} \cdot \vec{dr}$$

- Choisissons d'orienter C dans le sens antihoraire lorsque vue du dessus.
- Soit S la partie du plan délimitée par C, orientée vers le haut $(\vec{n} = \vec{k})$.

Exemple 3 : Utilisation du théorème de Stokes

Soit le champ vectoriel $\vec{F}(x,y,z) = (e^x + z)\vec{i} + (e^y + 2x)\vec{j} + (e^z + xy)\vec{k}$ et C une courbe fermée située dans le plan z=1. Montrez que la circulation de \vec{F} autour de C ne dépend que de l'aire de la partie du plan délimitée par C, et non de la courbe elle-même.

On calcule : rot
$$\vec{F} = x\vec{i} + (1 - y)\vec{j} + 2\vec{k}$$

Selon le théorème de Stokes.

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_S \cot \vec{F} \cdot d\vec{S} = \iint_S \cot \vec{F} \cdot \vec{n} \, dS$$

$$= \iint_S (x\vec{i} + (1 - y)\vec{j} + 2\vec{k}) \cdot \vec{k} \, dS$$

$$= \iint_S 2 \, dS = 2 \text{ aire}(S).$$

La circulation dépend seulement de l'aire délimitée par C.

Résumé

- Utilisation du théorème de Stokes pour démontrer une propriété d'un champ vectoriel donné.
- Calcul de l'intégrale de surface sans passer par une paramétrisation.