Development, validation, and sensitivity analysis of circumglobal CO₂ air-sea gas transfer velocity and its parameterisations with a spectral wave model

Andrew W. Smith¹, Adrian H. Callaghan¹ and Jean-Raymond Bidlot²

¹Imperial College London ²European Centre for Medium-Range Weather Forecasts

Postdoctoral Fellow Interview, April 19, 2024 | University of Rhode Island, Narragansett, RI

THE UNIVERSITY OF RHODE ISLAND

Air-Sea Fluxes

Momentum, heat, material and gas exchanged between atmosphere, waves, and ocean through dynamic and thermodynamic processes

Diffusion • Wave growth and breaking → gas flux

Bubbles, sea spray, spume facilitate exchange and impact up-scale budgets Air-sea gas fluxes — global climate

Notable Gases and their Importance

N₂ (62.6 %)

 O_2 (34.3 %)

 CO_2 (1.4%)

 CH_4 (0.0004 %)

Fixation by marine bacteria

Aerobic respiration

Aerobic respiration Benthic bacterial decomposition

 NH_4^+

 NO_2^{2-} NO_3^{-}

Photosynthesis (byproduct)

Photosynthesis (reactant)

Hydrothermal release

Carbon cycle/ loading

Methanogenesis

 $CO_2 + H_2O \longrightarrow H_2CO_3 \longrightarrow H^+ + HCO_3^- \longrightarrow 2H^+ + CO_3^{2-}$ (dissolved) 1 % (bicarbonate) 92 % (carbonic acid) (carbonate)

Scientific Objectives

Develop a hybrid gas transfer velocity parameterization with bubblemediated gas exchange linked explicitly to breaking wave energy dissipation

Diffusive gas flux Bubble-mediated gas flux

Evaluate our and other extant parameterisations using outputs from a windforced spectral wave model, and compare with field measurements

9 global cruises (2007-2019)

3 Identify sources of parameterisation success, uncertainty and error considering physical and chemical processes

Wind-wave momentum flux Wave-ocean energy dissipation (wave breaking) Bubbles and surfactants

Field Data: Global Cruises

Measurements / Methods

4 June 2007 - 29 August 2019: 9 cruises, hourly data in various ocean basins, water depths, time of year, fetch, and wind-wave conditions

High-quality eddy covariance CO₂ fluxes and air-sea CO₂ concentration gradients via closed-path infrared gas analyzers (LI-COR Li-7200, Li-7500) or cavity-ring down mass spectrometers (Picarro G1301-f, G2311-f)

Field Data: Global Cruises

3

Measurements / Methods

Gas transfer velocity of CO_2 via CO_2 fluxes and concentration gradients; met-ocean state variables also measured in each cruise (u_* , U_{10N} , SST, solubility, Schmidt number)

$$k = \frac{F_{CO_2}}{\Delta C_{CO_2}} = \frac{F_{CO_2}}{S(\Delta f_{CO_2})}$$

Spectral Wave Model: ECMWF ERA-5H ecWAM

Model Details

- Global wave model forced by hourly **ERA-5** wind (U_{10N}) , surface air density, gustiness, and sea ice cover
- 14 km × 14 km (0.125° x 0.125°) spatial resolution 36 frequencies ($f_{min} = 0.035$ Hz) x 36 directions

Spectral Wave Model: ECMWF ERA-5H ecWAM

Model Details

4 June 2007 - 29 August 2019: 1-hour outputs Interpolated in space and time to all cruise coordinates

3

2-D wave spectrum $F(f, \theta)$ and total atmospheric stress τ_a calculated at each model grid-point

Results: Parameterising Gas Transfer Velocity

Operational (Full) and Hybrid Forms

$$k = \frac{F_{CO_2}}{S(\Delta f_{CO_2})} = k_s + k_b$$

Diffusive Gas Transfer Velocity

$$k_s = \frac{D}{\delta_Z} \propto \left[(\varepsilon \nu)^m \cdot (\frac{\nu}{D})^n \right] \simeq \left[(\varepsilon \nu)^m \cdot Sc^n \right]$$

Bubble-Mediated Gas Transfer Velocity

$$k_b = \frac{\int_0^\infty V(r)Q(r)E(r)dr}{\alpha} = \frac{V_b}{\alpha}$$

Results: Parameterising Gas Transfer Velocity

Operational (Full) and Hybrid Forms

$$k = \frac{F_{CO_2}}{S(\Delta f_{CO_2})} = k_s + k_b$$

Diffusive Gas Transfer Velocity

$$k_s = \frac{D}{\delta_Z} \propto \left[(\varepsilon \nu)^m \cdot (\frac{\nu}{D})^n \right] \simeq \left[(\varepsilon \nu)^m \cdot Sc^n \right]$$

Bubble-Mediated Gas Transfer Velocity

$$k_b = \frac{\int_0^\infty V(r)Q(r)E(r)dr}{\alpha} = \frac{V_b}{\alpha}$$

Results: Diffusive Gas Transfer Velocity

$$k_{s,param} = c_1 u_{*\nu}$$

 $c_1 = 2.034 \times 10^{-4}$, optimised constant [-] • $u_{*\nu}$, viscous friction velocity [m s⁻¹]

Atmospheric Stress Decomposition

$$\tau = \tau_{\nu} + \tau_{f}$$

$$\tau_f = \tau - \tau_{\nu} = \rho_a (u_*^2 - u_{*\nu}^2)$$

Viscous Friction Velocity via Mueller & Veron (2009)

$$u_{*\nu} = c_{d\nu}^{1/2} U_{10N} = \frac{\kappa}{\log(10/z_{o\nu})} U_{10N}$$
$$z_{o\nu} = \frac{0.11\nu_a}{\nu_{a\nu}}$$

Results: Diffusive Gas Transfer Velocity

$$k_{s,param} = c_1 u_{*\nu}$$

 $c_1 = 2.034 \times 10^{-4}$, optimised constant [-] • $u_{*\nu}$, viscous friction velocity [m s⁻¹]

- Diffusive flux dominates gas transfer at wind speeds $U_{10N} < 13.5 \text{ ms}^{-1}$
- $k_{s,param}$ approximately linear with U_{10N} via use of u_{*v} (Fairall, et al. 2011)
- Diffusive flux alone insufficient at wind speeds $U_{10N} > 8 \text{ ms}^{-1}$
- Across all wave-ages, PDFs show under-estimation of k_{660} by about 41 percent.

Results: Bubble-Mediated Gas Transfer Velocity

$$k_{b,param} = c_2 \frac{1}{\alpha} \overline{a_{eff}} \overline{w}_{ent} W_{growth} \xi$$

 $c_2 = 5.902$,optimised constant $[-] \bullet a_{eff}$,effective void fraction $[-] \bullet \overline{w}_{ent}$,average entrainment velocity $[m \ s^{-1}]$ W_{growth} , growth-phase whitecap fraction $[-] \bullet \xi$, volume-weighted efficiency factor [-]

Growth-Phase Whitecap Fraction

$$W_{growth} = \frac{S_{wcap}}{\rho_w \Omega \hat{z}_p^*} = \frac{\tau_f c_{eff} \times (c_p U_{10N}^{-1})}{\rho_w \Omega \hat{z}_p^*}$$

Entrainment Velocity

$$\overline{w}_{ent} = \frac{\hat{z}_p^*}{T_{ww}}$$

Effective Air (Void) Fraction

$$a_{eff} = \frac{\int_0^{t_{A_0}} \alpha(t) V(t) \ dt}{\int_0^{t_{A_0}} V(t) \ dt}$$

Whitecap Foam Area Evolution Decay (Degassing) Growth Phase Universal Surfactant-Influenced Decay Decay 3.5 Whitecap Data $-A_{GD}(t)$ 2.5 ${\rm Area} \ [{\rm m}^2]$ $^{1}A_{0}$ 1.5 Surfactant Effect 0.5 10 t_{A_0} Time [s]

Results: Bubble-Mediated Gas Transfer Velocity

$$k_{b,param} = c_{2\frac{1}{\alpha}} a_{eff} \overline{w}_{ent} W_{growth} \xi$$

 $c_2 = 5.902$,optimised constant $[-] \bullet a_{eff}$,effective void fraction $[-] \bullet \overline{w}_{ent}$,average entrainment velocity $[m \ s^{-1}]$ W_{growth} , growth-phase whitecap fraction $[-] \bullet \xi$, volume-weighted efficiency factor [-]

- $a_{eff} = 0.2$ choice within reported values from literature (0.012 0.37)
- $w_{ent} = 0.069$ from PDFs, 0.065 from MVCO, we use 0.066 m s⁻¹
- W_{growth} follows shape of observed $W(U_{10N})$ seen in literature
- Larger wave-ocean energy flux at higher winds and slope transition near $U_{10N} = 7 \text{ m s}^{-1}$

Results: Bubble-Mediated Gas Transfer Velocity

$$k_{b,param} = c_2 \frac{1}{\alpha} a_{eff} \overline{w}_{ent} W_{growth} \xi \longrightarrow \xi = \frac{\int_0^\infty V(r) E(r) dr}{\int_0^\infty V(r) dr}$$

 $c_2 = 5.902$,optimised constant $[-] \bullet a_{eff}$,effective void fraction $[-] \bullet \overline{w}_{ent}$,average entrainment velocity $[m \ s^{-1}]$ W_{growth} , growth-phase whitecap fraction $[-] \bullet \xi$, volume-weighted efficiency factor [-]

- N(r), V(r) from Deane & Stokes (2002): large bubbles near Hinze scale contribute most
- Bubble efficiency most sensitive to r at small z; bubbles at depth fully dissolve, efficient!
- Large bubbles fewer in number, but contribute more gas volume
- Most efficient bubbles r = 1-4.5 mm, at $z \ge 0.25$ m; but occupy just 27.1% of r-z space

Results: Total Gas Transfer Velocity

$$k_{param} = \overline{c_1} u_{*\nu} + \overline{c_2} \frac{1}{\alpha} a_{eff} \overline{w}_{ent} \left(\frac{\tau_f c_{eff} \times (c_p U_{10N}^{-1})}{\rho_w \Omega \hat{z}_p^*} \right) \xi$$

*optimized via $\epsilon = \overline{|k_{660,meas} - (c_1 k_{s,param} + c_2 k_{b,param})|}$ such that $c_1, c_2 = \text{fminsearch}(\epsilon)$

- Agreement between $k_{660,\,\mathrm{meas}}$ and k_{param} good, median error 8.25%, $R^2=0.818$
- Largest errors: $U_{10N} < 3 \text{ m/s}^{-1}$ and $U_{10N} \ge 19 \text{ m/s}^{-1}$
- Outliers comprise 13.49% of the data (outside 0.5x-2x solid black lines)
- PDFs narrower for wind sea (•, •) vs swell (•), although peak for all wave ages is 1

Results: Comparing Total Gas Transfer Velocity from Literature

$$1 \qquad k_{SC23} = c_1 u_{*\nu} + c_2 \frac{1}{\alpha} a_{eff} \overline{w}_{ent} \left(\frac{\tau_f c_{eff} \times (c_p U_{10N}^{-1})}{\rho_w \Omega \hat{z}_p^*} \right) \xi$$

2
$$k_{F11} = 37.5A\psi u_{*\nu} + \frac{BV_o(T)}{\alpha(20)} f_{wh}(u_{*f})$$

$$3 k_{DM18} = A_{NB}u_* + A_B \frac{1}{\alpha} \left[u_*^{5/3} \sqrt{gH_s}^{4/3} \right]$$

Smith, et al. (2023; in prep.) Fairall, et al. (2011)

Deike and Melville (2018)

- $\varphi = R^2/RMSE$: SC23 outperforms F11 (by 9.7%) and DM18 (by 3.3%)
- Ensemble range larger at $U_{10N} \le 4 \text{ ms}^{-1}$, swell PDF shows low-wind over-estimation
- Additional spread emerges at $U_{10N} > 12 \text{ ms}^{-1} \dots \text{swell underestimation by F11}$
- All parameterisations perform well where wave spectrum peak is wind-sea

Results: Sensitivity to Diffusive Gas Flux Parameterisation

- Only 1.3% difference between worst-performing, best-performing via φ
- Greatest improvement: using $(\varepsilon_{\rm w} v_{\rm w})^{1/4}$ vs. u_{\star} , but dependent on which $k_{\rm b}$ you use
- Largest spread in ensemble at very low winds
- Ensemble convergence around $U_{10N} = 12 \text{ ms}^{-1}$

Results: Sensitivity to Entrainment Velocity Choice

- ullet Entrainment velocity either way almost visually identical and according to $oldsymbol{arphi}$
- Using constant value reduces low-wind swell over-estimation somewhat
- Don't have to worry about the variability of z_p or T_{ww} by using constant

Results: Sensitivity to Growth-Phase Whitecap Fraction Parameterisation

- Choice of W_{growth} : 17.4% difference between worst-performing, best-performing via ϕ
- Over-estimation of k at low winds using full ϕ_{diss} or omitting wave-age scaling in W_{growth}
- All similar for $U_{10N} = 7-12$ ms⁻¹; sample-size issue very large spread at $U_{10N} \ge 18$ ms⁻¹
- Most impactful choice

Results: Sensitivity to Initial Bubble Injection Depth in Bubble Efficiency

- z_0 in E(r): 6% difference between worst-performing, best-performing via φ
- H_s over-estimates at low winds and under-estimates at high winds
- Bubble injection depth critically tied to wind-wave spectrum, higher-frequency waves
- Here, the choice is easy

Results: Sensitivity to Bubble Rise Velocity Parameterisation

- Only 0.2% difference between worst-performing, best-performing via φ
- Bubble of constant radius, terminal velocity, quiescent liquid, clean or dirty (W93)
- Bubble of constant radius, terminal velocity, turbulent liquid, dirty (D13, DM18)
- · Least numerically impactful choice, but considering surfactants physically important

Results: Total *k* Performance Matrix

0.042		0.044			0.046			0.048			$=R^2/\text{RMSE}(-)$ 0.05			0.052		0.054		0.056			0.05	
 	1,10	1,20	1,3	1,9	9,4	9,7	9,6	9,5	9,12	9,1	1,2	1,16	1,19	9,21	8,15	7,18	9,11	8,13	9,8	9,22	9,14	7,17
Improving k_s	9,10	9,20	9,3	9,9	8,4	8,7	8,6	8,5	8,12	8,1	9,2	9,16	9,19	8,21	9,15	9,18	8,11	9,13	8,8	8,22	8,14	1,17
	8,10	8,20	8,3	8,9	1,4	1,5	1,6	1,7	1,12	8,2	8,16	1,1	8,19	1,21	7,15	8,18	7,11	7,13	7,8	7,14	7,22	2,17
	2,10	2,20	2,3	2,9	2,4	2,6	2,5	2,7	2,12	2,16	2,19	7,1	6,21	2,15	2,18	2,2	2,11	2,13	1,8	6,14	1,22	4,17
	6,20	6,10	6,3	6,9	6,4	6,7	7,6	7,5	7,12	4,1	7,16	7,19	1,15	5,21	1,18	6,2	4,11	4,13	1,14	4,22	4,8	8,17
	5,20	5,10	5,3	5,4	5,9	7,7	6,6	6,5	6,12	2,1	4,16	4,19	3,21	4,15	4,18	7,2	1,11	4,14	1,13	2,8	6,22	9,17
	3,20	3,10	7,4	7,9	3,3	5,7	4,12	4,6	5,5	6,1	6,16	6,19	6,15	6,18	5,2	2,14	7,21	6,11	6,8	2,22	6,13	6,17
	7,10	7,20	7,3	3,4	4,9	4,7	5,6	4,5	5,12	5,1	5,16	5,19	3,15	3,18	5,14	4,2	2,21	5,11	5,22	5,8	5,13	3,17
	4,10	4,20	4,4	3,9	4,3	3,7	3,6	3,5	3,12	3,1	3,16	3,19	5,15	5,18	3,2	3,14	4,21	3,22	3,11	3,8	3,13	5,17
¥										– – – Iı	nprov	- $ -$	$ c_b$									$ \rightarrow$

• Worst-performing overall:
$$k = 37.5 A \psi u_{\nu} + c_2 \frac{1}{6} a_{eff} [\overline{w}_{ent} = 0.066] [W_{growth} = \frac{\phi_{diss} \times (\frac{\overline{H}_{s,ww}}{H_{s,tot}})^2}{\rho_{\omega} \Omega_p^{2s}}]$$

• Best-performing overall: $k = c_1 u_{\star\nu} + c_2 \frac{1}{\alpha} a_{eff} [\overline{w}_{ent} = 0.066] [W_{growth} = \frac{\tau_f c_{eff} \times (c_p U_{10N}^{-1})}{\rho_{\star} \Omega z_p^2}] \chi^{-1}$

Conclusions

- 1 Diffusive gas transfer velocity inadequate by itself to parameterise k
- Constant effective void fraction & entrainment velocity are reasonable to implement in bubble-mediated gas transfer velocity parameterisations
- |3| W_{qrowth} is the most important physical quantity to get correct
- 4 Bubble rise velocity least impactful choice to parameterisation performance
- Optimised comparison of 198 parameterisations shows partition of stress in hybrid k parameterisations performs very well

Additional Links

Presentations

1

Investigating gas exchange processes using noble gases in very high winds: observations of bubbles and turbulence beneath breaking waves

2

The role of atmosphere-ocean coupling in the structure and intensity evolution of Hurricane Ophelia (2005)

Associated Publications and Manuscripts

Smith, A. W., Haus, B. K., & Stanley, R. H. R. (2022). Bubble-turbulence dynamics and dissipation beneath laboratory breaking waves. *Journal of Physical Oceanography*, 1, 2159–2181. https://doi.org/10.1175/JPO-D-21-0209.1

Stanley, R. H. R., Kinjo, L., Smith, A. W., Aldrett, D., Alt, H., Kopp, E., Krevanko, C., Cahill, K., & Haus, B. K. (2022). Gas fluxes and steady state saturation anomalies at very high wind speeds. *Journal of Geophysical Research: Oceans*, 1–19. https://doi.org/10.1029/2021jc018387

Smith, A. W. (2016). The role of air-sea interaction in structure and intensity change in Hurricane Ophelia (2005): Coupled modeling and RAINEX observations. https://scholarship.miami.edu/esploro/outputs/ graduate/The-Role-of-Air-Sea-Interaction-in/991031447708902976?institution=01UOML INST