Entrega 1: Grups

Arnau Mas

24 d'Abril 2018

Problema 1

Considerem dos grups H i K amb e_H i e_K els respectius elements neutres. Aleshores el producte $G := H \times K$ té per neutre $e = (e_H, e_K)$. Hem de veure que H és isomorf a $H' := H \times \langle e_K \rangle \leq G$ i que H' és normal a G. Definim la següent aplicació

$$\psi \colon H \longrightarrow H \times \langle e_K \rangle$$

 $h \longmapsto (h, e_K).$

Tenim que ψ és morfisme, ja que per tot $h_1, h_2 \in H$ es verifica

$$\psi(h_1h_2) = (h_1h_2, e_K) = (h_1, e_K)(h_2, e_K) = \psi(h_1)\psi(h_2).$$

És cert que ψ és un monomorfisme, ja que $(h_1, e_K) = (h_2, e_K)$ si i només si $h_1 = h_2$. I ψ també és epimorfisme ja que per tot $g \in H'$ existeix $h \in H$ tal que $g = (h, e_K)$. Per tant ψ és isomorfisme. Això ens dóna $H \cong H'$. Per veure que és normal considerem $(x, e_K) \in H'$. Aleshores, per tot $(h, k) \in G$ tenim

$$(h,k)^{-1}(x,e_K)(h,k) = (h^{-1}xh,k^{-1}k) = (h^{-1}xh,e_K).$$

I com que $h^{-1}xh \in H$ tenim que $(h^{-1}xh, e_K) \in H'$ i per tant concloem $H' \subseteq G$.

Tenim exactament el mateix resultat si considerem l'altre factor del producte, és a dir $K' := \langle e_H \rangle \times K$. Observem que tenim un isomorfisme natural de $H \times K$ a $K \times H$

$$\varphi \colon H \times K \longrightarrow K \times H$$
$$(h,k) \longmapsto (k,h).$$

Es clar que φ és bijectiva. I també és morfisme per com es defineix l'operació del producte de grups:

$$\varphi((h_1, k_1)(h_2, k_2)) = \varphi((h_1h_2, k_1k_2)) = (k_1k_2, h_1h_2) = (k_1, h_1)(k_2, h_2) = \varphi((h_1, k_1))\varphi((h_2, k_2)).$$

Així doncs tenim en particular que $\langle e_H \rangle \times K \cong K \times \langle e_H \rangle$. Apliquem el resultat anterior a $K \times \langle e_H \rangle$ dins de $K \times H$ i tenim que és isomorf a K i normal a $K \times H$. I per tant K' és isomorf a K i normal a K.

Finalment, comprovem que $H' \cap K' = \langle e \rangle$. Efectivament, considerem $(h, k) \in H' \cap K'$. Aleshores, com que $(h, k) \in H'$ ha de ser $k = e_K$. I com que $(h, k) \in K'$ ha de ser $h = e_H$. I per tant $(g, h) = (e_H, e_K) = e$.

Hem de veure ara el recíproc al resultat previ. És a dir, si $H, K \subseteq G$ i G = HK amb $H \cap K = \langle e \rangle$ aleshores $G \cong H \times K$. Com que G = HK tenim que per tot $g \in G$ existeixen $h \in H$ i $k \in K$ tals que g = hk. De fet, com que $H \cap K = \langle e \rangle$, h i k són únics. Efectivament, si $g = h_1k_1 = h_2k_2$ amb $h_1, h_2 \in H$ i $k_1, k_2 \in K$ aleshores tenim

$$h_2^{-1}h_1 = k_2k_1^{-1}.$$

Com que $h_2^{-1}h_1 \in H$ i $k_2k_1^{-1} \in K$ això vol dir que $h_2^{-1}h_1 = k_2k_1^{-1} \in H \cap K = \langle e \rangle$. Per tant $h_1 = h_2$ i $k_1 = k_2$. Això ens dóna que tot element de G s'escriu de manera única com el producte d'un element de G i un element de G. Gràcies a això podem definir una aplicació

$$f: G \longrightarrow H \times K$$

 $q = hk \longmapsto (h, k).$

Que f està ben definida ens ho dóna la unicitat de h i k que acabem de provar. Per veure que f és un morfisme ens caldrà fer servir que H i K són normals a G. Considerem $g_1 = h_1k_1$ i $g_2 = h_2k_2$ amb $h_1, h_2 \in H$ i $k_1, k_2 \in K$. Per veure que f és morfisme hem de provar que $g_1g_2 = h_1h_2k_1k_2$ ja que $f(g_1)f(g_2) = (h_1,k_1)(h_2,k_2) = (h_1h_2,k_1k_2)$. Tenim que $g_1g_2 = h_1k_1h_2k_2$. Com que H és normal, existeix $h_3 \in H$ tal que $k_1h_2 = h_3k_1$. Similarment, per la normalitat de K existeix $k_3 \in K$ tal que $k_1h_2 = h_2k_3$. Això ens dóna $g_1g_2 = h_1h_2k_3k_2 = h_1h_3k_1k_2$. Però pel que hem provat prèviament ha de ser $h_1h_2 = h_1h_3$ i $k_1k_2 = k_3k_2$. Per tant $f(g_1g_2) = f(h_1h_2k_1k_2) = (h_1h_2, k_1k_2) = f(g_1)f(g_2)$ i f és morfisme. f és epimorfisme ja que per tot $(h,k) \in H \times K$ tenim f(hk) = (h,k). I també és monomorfisme ja que ee = e. Així doncs tenim $G = HK \cong H \times K$ quan H i K són subgrups normals amb intersecció trivial.

A continuació generalitzem el resultat anterior per a qualsevol nombre de subgrups. És a dir, considerem un grup G amb $H_1 \dots H_n$ subrups normals a G i

$$H_i \cap (H_1 \dots H_{i-1} H_{i+1} \dots H_n)$$

per tot $i \in \{1, \dots, n\}$ (podem definir $H_0 = H_{n+1} = \langle e \rangle$ per evitar problemes amb el rang de i). Aleshores si $G = H_1 \cdots H_n$ es té $G \cong H_1 \times \cdots \times H_n$.

Procedim per inducció sobre n. El cas n=2 és l'apartat anterior. Considerem, per tot $n \in \mathbb{N}$, $G=H_1\cdots H_{n+1}$ amb H_1,\cdots,H_{n+1} subgrups en les condicions anteriors. Com que el producte de sugrups normals és normal, $H_1\cdots H_n$ és normal a G. A més $(H_1\cdots H_n)\cap H_{n+1}=\langle e\rangle$, per tant podem aplicar l'apartat anterior per obtenir $G\cong (H_1\cdots H_n)\times H_{n+1}$. I si apliquem la hipòtesi d'inducció a $H_1\cdots H_n$ trobem

$$G \cong (H_1 \times \cdots \times H_n) \times H_{n+1} \cong H_1 \times \cdots \times H_{n+1}.$$

Problema 2

Direm que un grup G és resoluble si hi ha una cadena de subgrups

$$\langle e \rangle = H_0 \leq H_1 \leq \cdots \leq H_n = G,$$

tals que H_{i+1}/H_i és abelià per a tot $i \in \{0, \dots, n-1\}$.

Tenim que \mathfrak{S}_3 és resoluble. Efectivament, tenim la cadena

$$\langle \mathrm{id} \rangle \supseteq \mathfrak{A}_3 \supseteq \mathfrak{S}_3.$$

Tenim que $\mathfrak{S}_3/\mathfrak{A}_3 \cong \mathbb{Z}/2\mathbb{Z}$ per tant és abelià. A més $|\mathfrak{A}_3| = 3$, per tant $\mathfrak{A}_3/\langle e \rangle \cong \mathfrak{A}_3 \cong \mathbb{Z}/3\mathbb{Z}$ i també és abelià.

També és resoluble \mathfrak{S}_4 . Com abans tenim la cadena

$$\langle \mathrm{id} \rangle \leq \mathfrak{A}_4 \leq \mathfrak{S}_4.$$

Igualment $\mathfrak{S}_4/\mathfrak{A}_4\cong \mathbb{Z}/2\mathbb{Z}$, que és abelià. Ara bé, \mathfrak{A}_4 no és abelià. A \mathfrak{A}_4 hi ha 8 3-cicles i 3 productes de transposicions disjuntes. Si τ_1 i τ_2 són dos productes de transposicions disjuntes diferents aleshores $T:=\langle \tau_1,\tau_2\rangle$ és un subgrup normal de \mathfrak{A}_4 . Efectivament, com que el producte de dues transposicions disjuntes té ordre 2 tenim $T=\{\mathrm{id},\tau_1,\tau_2,\tau_1\tau_2\}$ i $\tau_1\tau_2$ és el tercer producte de transposicions disjuntes. És normal perquè la conjugació de permutacions conserva el tipus cíclic. Tenim que $T\cong V_4$, on V_4 és el 4-grup de Klein. A més $|\mathfrak{A}_4/T|=3$ per tant $\mathfrak{A}_4/T\cong \mathbb{Z}/3\mathbb{Z}$ i és abelià. Per tant la cadena

$$\langle \mathrm{id} \rangle \lhd T \lhd \mathfrak{A}_4 \lhd \mathfrak{S}_4$$

prova que \mathfrak{S}_4 és resoluble.

Considerem un grup G i $N \leq G$ un subgrup resoluble tal que G/N també és resoluble. Com que N és resoluble, tenim que existeix una cadena

$$\langle e \rangle = H_0 \unlhd \cdots \unlhd H_n = N$$

amb H_{i+1}/H_i abelià. També tenim que hi ha una cadena

$$\langle \bar{e} \rangle = \bar{H}_0 \le \dots \le \bar{H}_m = G/N$$

amb \bar{H}_{i+1}/\bar{H}_i abelians. Sabem que els subgrups de G/N estan en correspondència bijectiva amb els subgrups de G que contenen N. Així, per a cada \bar{H}_i existeix un únic $H_{n+i} \leq G$ tal que $N \leq H_{n+i}$ i $H_{n+i}/N = \bar{H}_i$. Com que cada H_{n+i} és la preimatge de \bar{H}_i per la projecció a $G \twoheadrightarrow G/N$, que és un epimorfisme, tenim que $H_{n+i} \leq H_{n+i+1}$. A més, pel tercer teorema d'isomorfia tenim

$$\bar{H}_{i+1}/\bar{H}_i = (H_{n+i+1}/N)/(H_{n+i}/N) \cong H_{n+i+1}/H_{n+i}.$$

Finalment $\langle \overline{e} \rangle$ es correspon amb N. Tot això ens dóna una cadena

$$N = H_n \triangleleft \cdots \triangleleft H_{n+m} = G$$

amb H_{n+i+1}/H_{n+i} abelià per tot $i \in \{0, \dots, n-1\}$. Per tant, ajuntant-la amb la cadena que ens dóna la resolubilitat de N, concloem que G és resoluble.

Hem de veure ara el recíproc. És a dir, si $N \leq G$ i G és resoluble aleshores tant N com a G/N són resolubles. Com que G és resoluble tenim la cadena

$$\langle e \rangle = H_0 \trianglelefteq \cdots \trianglelefteq H_n = G.$$

Considerem, per $i \in \{0, \dots, n\}$, els subgrups $H_i \cap N$. Tenim que $H_i \cap N \subseteq H_{i+1} \cap N$. Tenim que $H_i \cap N \supseteq H_{i+1} \cap N$. Si $g \in H_{i+1} \cap N$ i $h \in H_i \cap N$ aleshores en particular $h \in N$, per tant $g^{-1}hg \in N$, per la normalitat de N a G. A més, com que $H_i \subseteq H_{i+1}$ i en particular $g \in H_{i+1}$ i $h \in H_i$ també tenim $g^{-1}hg \in H_i$. Per tant $g^{-1}hg \in H_i \cap N$ i concloem $H_i \cap N \subseteq H_{i+1} \cap N$. Així doncs tenim la cadena

$$\langle e \rangle = H_0 \cap N \vartriangleleft \cdots \vartriangleleft H_n \cap N = N.$$

Considerem ara el morfisme

$$\pi: H_{i+1} \cap N \longrightarrow H_{i+1}/H_i$$

$$q \longmapsto \bar{q}$$

que no és res més que la restricció a $H_{i+1} \cap N$ de la projecció $H_{i+1} \twoheadrightarrow H_{i+1}/H_i$. És clar que si $g \in H_i \cap N$ aleshores $g \in \ker \pi$ ja que en particular $g \in H_i$. I si $g \in \ker \pi$ aleshores $g \in H_i$. Però $g \in N$ ja que $\ker \pi \leq H_{i+1} \cap N$. Per tant $\ker \pi = H_i \cap N$. Pel primer teorema d'isomorfia, $(H_{i+1} \cap N)/(H_i \cap N)$ és isomorf a un subgrup de H_{i+1}/H_i . Però H_{i+1}/H_i és per hipòtesi abelià. Per tant $(H_{i+1} \cap N)/(H_i \cap N)$ és abelià per tot $i \in \{0, \dots, n-1\}$. Això ens permet concloure que N és resoluble.

Per provar que G/N també és resoluble farem ús de la projecció

$$\pi \colon G \to G/N$$
$$g \mapsto gN,$$

que és un epimorfisme. En particular, si H_i són els subgrups de la cadena de resolubilitat de G aleshores $\pi(H_i)$ són tots subgrups de G/N. No només això sino que també tenim $\pi(H_i) \leq \pi(H_{i+1})$. A més, si H_{i+1}/H_i aleshores també ho és $K_i := \pi(H_{i+1})/\pi(H_i)$. Observem primer que els elements de K_i són precisament $\pi(hH_i)$, amb $h \in H_{i+1}$. Efectivament, considerem $\bar{g} = g\pi(H_i) \in K_i$. Aleshores, com que $g \in \pi(H_{i+1})$, existeix $h \in H_{i+1}$ tal que $\pi(h) = g$. Aleshores tenim que $\bar{g} = \pi(h)\pi(H_i)$. Considerem $x \in \pi(h)\pi(H_i)$. És a dir, $x = \pi(h)\pi(h')$ per a cert $h' \in H_i$. Aleshores $x = \pi(hh') \in \pi(hH_i)$. De la mateixa manera, si $y \in \pi(hH)$ vol dir que $y = \pi(hh')$ per a cert $h' \in H_i$. Per tant $y \in \pi(h)\pi(h') \in \pi(h)\pi(H_i)$ i concloem que $\bar{g} = \pi(h)\pi(H_i) = \pi(hH_i)$. Així doncs, si prenem $g_1 = \pi(h_1) \in \pi(H_{i+1})$ i $g_2 = \pi(h_2) \in \pi(H_{i+1})$ tenim

$$\bar{g}_1\bar{g}_2 = \overline{g_1g_2} = \pi(h_1h_2H_i) = \pi(h_2h_1H_i) = \overline{g_2g_1} = \bar{g}_1\bar{g}_2,$$

on hem fet servir que H_{i+1}/H_i és abelià. Per tant tenim la cadena

$$\langle \bar{e} \rangle = \pi(H_0) \leq \cdots \leq \pi(H_n) = G/N$$

amb $\pi(H_{i+1})/\pi(H_i)$ abelià per tot $i \in \{0, \dots, n-1\}$ i concloem que G/N és abelià.

A continuació demostrem que tot p-grup és resoluble. Sabem que un grup G és un p-grup quan $|G|=p^n$ amb p un primer. A més tot p-grup té centre no trivial. Procedim per inducció sobre n. Considerem el cas n=1, és a dir, d'un grup G amb |G|=p. Aleshores G és cíclic i en particular abelià. I per tant és trivialment resoluble amb la cadena $\langle e \rangle \leq G$. Veiem ara que, per tot $n \in \mathbb{N}$, la resolubilitat de tot p-grup d'ordre p^r amb $r \leq n$ implica la resolubilitat de tot p-grup d'ordre p^{n+1} . Efectivament, si $|G|=p^{n+1}$ aleshores $Z(G) > \langle e \rangle$. Per tant $|Z(G)|=p^s$ amb $s \leq n$. Tenim que Z(G) és abelià i per tant resoluble. El quocient G/Z(G) té ordre p^{n-r} i per tant podem aplicar la hipòtesi d'inducció per concloure que és resoluble. Per l'anterior resultat tenim que G també és resoluble i hem acabat.

Podem, però, dir més sobre la cadena de subgrups d'un p-grup: tot p-grup té una cadena

$$\langle e \rangle = H_0 \unlhd \cdots \unlhd H_n = G,$$

amb $H_{i+1}/H_i \cong \mathbb{Z}/p\mathbb{Z}$ per tot $i \in \{0, \dots, n-1\}$. Com abans procedirem per inducció. El cas d'un grup d'ordre p és immediat ja que aleshores és cíclic i isomorf a $\mathbb{Z}/p\mathbb{Z}$. Ara veurem que si la condició es compleix per tot p-grup d'ordre p^n per tot $n \in \mathbb{N}$ aleshores és certa també per tot p-grup d'ordre p^{n+1} . Prenem, doncs, un grup G d'ordre p^{n+1} . Com que G és un p-grup té centre no trivial, i pel teorema de Cauchy existeix un element $x \in Z(G)$ d'ordre p. En particulat $\langle x \rangle \leq G$. Tenim que $G/\langle x \rangle$ és un p-grup d'ordre p^n . Si apliquem la hipòtesi d'inducció obtenim la següent cadena

$$\langle \bar{e} \rangle = H_0 \unlhd \cdots \unlhd H_n = G/\langle x \rangle$$

amb $H_{i+1}/H_i \cong \mathbb{Z}/p\mathbb{Z}$. Ja hem fet servir anteriorment la correspondència bijectiva que hi ha entre els subgrups del quocient d'un grup G per un subgrup normal N i els subgrups de G que contenen N. Si denotem per π la projecció $G \twoheadrightarrow G/N$ aleshores també es verifica que si $H_1 \subseteq H_2 \subseteq G/N$ aleshores $N \subseteq \pi^{-1}(H_1) \subseteq \pi^{-1}(H_2) \subseteq G$ i a més, fent ús del tercer teorema d'isomorfia, $(H_2 : H_2) = (\pi^{-1}(H_2) : \pi^{-1}(H_2))$, ja que un subgrup $H \subseteq G/N$ és precisament de la forma H'/N amb $H' \subseteq G$. Així doncs obtenim la cadena

$$\langle e \rangle \leq \langle x \rangle = \pi^{-1}(H_0) \leq \cdots \leq \pi^{-1}(H_n) = G.$$

A més, per tot $i \in \{0, \dots, n-1\}$ tenim $(H_{i+1} : H_i) = (\pi^{-1}(H_{i+1}) : \pi^{-1}(H_i)) = p$, per tant $\pi^{-1}(H_{i+1})/\pi^{-1}(H_i) \cong \mathbb{Z}/p\mathbb{Z}$ i tenim la condició també per a G.

Hem de provar que per a tot grup G existeix una cadena de subgrups

$$\langle e \rangle = H_0 < \dots < H_n = G$$

tal que els quocients H_{i+1}/H_i són simples. Procedirem per inducció sobre l'ordre de G. El cas |G|=1 és trivial. Així mateix, si |G|=2 aleshores $G\cong \mathbb{Z}/2\mathbb{Z}$ i hem acabat ja que $\mathbb{Z}/2\mathbb{Z}$ és simple. Veiem doncs, que si tot grup d'ordre $r\geq n$ per tot $n\in\mathbb{N}$ aleshores també la compleix tot grup d'ordre n+1. Considerem un grup G d'ordre n+1. Si G és

simple hem acabat. Si G no és simple, hi ha un subgrup normal $N \leq G$. En particular podem aplicar la hipòtesi a N per obtenir la cadena

$$\langle e \rangle = H_0 \le \dots \le H_n = N$$

on els quocients successius són tots simples. Si G/N és simple simplement extenem la cadena amb G i hem acabat. Si no és el cas, apliquem la hipòtesi a G/N i obtenim la cadena

$$\langle \bar{e} \rangle = \bar{H}_0 \le \dots \le \bar{H}_m = N$$

tal que els quocients successius són simples. Tenim que per tot \bar{H}_i existeix un $N \leq H_{n+i} \leq G$ tal que $H_{n+i}/N = \bar{H}_i$ i pel tercer teorema d'isomorfia tenim

$$\bar{H}_{i+1}/\bar{H}_i = (H_{n+i+1}/N)/(H_{n+i}/N) \cong H_{i+1}/H_i.$$

Així, com que $N/N=\bar{H}_0=\langle\bar{e}\rangle,$ podem completar la cadena que ens donava N per obtenir

$$\langle e \rangle = H_0 \le \dots H_n = N \le H_{n+1} \le \dots \le H_{n+m} = G$$

on els quocients successius són simples.

Sigui G un grup d'ordre $2p^n$ amb p un primer diferent de 2. Pel primer teorema de Sylow, hi ha almenys un subgrup $P \leq G$ d'ordre p^n . Com que P té índex 2 a G aleshores és normal, i pel segon teorema de Sylow és únic. Com que P és un p-grup aleshores és resoluble. A més $G/P \cong \mathbb{Z}/2\mathbb{Z}$ per tant és abelià i en particular resoluble. Per un resultat previ concloem que G és resoluble.