Projet 8Compétition Kaggle

Ubiquant Market Prediction

INTRODUCTION

Contexte

· Ubiquant Investment Co.

- · Fond spéculatif d'investissements quantitatifs
- · Basé à Pékin

· But compétition

- · Prédire valeur de la target
 - → Taux de retour d'un investissement
 - → Modèle de régression

Evaluation

- Coefficient de corrélation de Pearson
- · Utilisation d'une API spécifique pour soumission

· Timing

· 18 janvier au 18 avril 2022

Données

· Accès

https://www.kaggle.com/competitions/ubiquant-market-prediction/data

- · Dataset lourd (17. 2Go)
 - · Version allégée utilisée (3.6 Go, format parquet)
- Description
 - 3,141,410 lignes
 - · 304 colonnes
 - → row_id
 - → time_id
 - → investment_id
 - → target
 - → features f_0 à f_299

Objectif

Influence preprocessing

- Réduction dimension
- Scaling

· Evaluation modèles Machine Learning

- LinearRegression
- ElasticNet
- XGBRegressor
- · Réseaux de neurones convolutionnels ID (ConvID)

ANALYSE DES DONNÉES

Time_id et investment_id

- Time_id
 - 1211 valeurs différentes
- Investment_id
 - 3579 valeurs différentes

+ d'investment_id pour time_id élevés

Features et target

Features

- Moyennes globalement proches de zéro
- Présence d'outliers

Target

- · Globalement centrée en zéro
- Présence d'outliers

Corrélation target-features

- · Echantillon du dataset 157070 x 304
 - 5% des données gardées
 - · Choix aléatoire
 - · Trié par time_id puis investment_id

· Histogramme corrélations target-

features

→ Peu de corrélations

Corrélation entre features

Matrice corrélations

- Majoritairement faibles corrélations
- Quelques fortes corrélations

PREPROCESSING

Split des données

Scaling et PCA

· Scaling

- RobustScaler
 - → Amoindrit influence outliers

· PCA (Principal Analysis Component)

- 85% variance expliquée
 - → Réduction entre 55 et 97% du nombre de features

· X_data utilisées en modélisation

X_data	Nb features	Scaling	PCA	% Réduction de dimension via PCA
X_train	300	NON	NON	/
X_scaled	300	OUI	NON	/
X_pca85	125	NON	OUI	58 %
X_scal_pca85	10	OUI	OUI	96.7%
X_up_pca85	126	NON	OUI	55 %
X_up_scal_pca85	9	OUI	OUI	96.8%
X_low_pca85	125	NON	OUI	55.4%
X_low_scal_pca85	9	OUI	OUI	96.8%

MODÉLISATION

Entrainement des modèles

· Modèles testés

- LinearRegression
- ElasticNet
- XGBRegressor
- ConvID

· Validation croisée

- Utilisation de TimeSeriesSplit
 - → 5 folds
 - → Validationset = 20 000 lignes
- Pas avec ConvID
 - → Validationset = 20 derniers% trainset initial

Métriques utilisées

- RMSE (Root Mean Squared Error)
- Coefficient corrélation Pearson
- MAE (Mean Absolute Error)
- MSE (Mean Squared Error)

Optimisation des modèles

· GridSearchCV - Hyperparamètres

- ElasticNet
 - → Scikit-Learn
- XGBRegressor
 - → Manuellement

· Conv I D

- Entrainement 30 ou 50 epochs maximum
- Utilisation Earlystopping
 - → Patience 5 ou 10 sur val rmse
- Utilisation Checkpoint
 - → Enregistre poids des paramètres correspondant meilleure valeur val_rmse
- Optimizer Adam
 - → Learning_rate 0.00 I
- Batch_Size 4096
- · Différentes architecture testées
 - → Empilement couches
 - **→** Fonction activation
 - → Kernel_regularizer

Récapitulatif des modèles testés

· Combinaisons X_data/modèle

X_data	X_train	X_scaled	X_pca85	X_scal_pca85
Modèles	LinearRegression Conv1D_1 à 7 Conv1D_1_1	LinearRegression ElasticNet Conv1D_1 et 6 Conv1D_6_1	LinearRegression XGBRegressor Conv1D_1	LinearRegression ElasticNet XGBRegressor

X_data	X_up_pca85	X_up_scal_pca85	X_low_pca85	X_low_scal_pca85
Modèles	LinearRegression	LinearRegression ElasticNet	LinearRegression	LinearRegression ElasticNet

RÉSULTATS

Jeu de validation

·LinearRegression

- Même top3 avec les 3 métriques
- PCA améliore score
- Scaling dégrade score

X_data	RMSE	MAE	Pearson_coef
X_up_pca85	0.906208	0.618814	0.105118
X_low_pca85	0.906225	0.618842	0.10491
X_pca85	0.906316	0.618908	0.104369
X_low_scal_pca85	0.908127	0.620206	0.07334
X_up_scal_pca85	0.908131	0.620209	0.07328
X_scal_pca85	0.9082	0.620276	0.072287
X_scaled	0.908742	0.621333	0.09949
X_train	0.908742	0.621333	0.09949

ElasticNet

Réduction dimension dégrade score

X_data	RMSE	Pearson_coef
X_scaled	0.90662	0.10346
X_low_scal_pca85	0.90799	0.07408
X_up_scal_pca85	0.90802	0.07402
X_scal_pca85	0.90802	0.07346

XGBRegressor

Scaling dégrade score

X_data	RMSE	Pearson_coef
X_pca85	0.906451	0.091055
X_scal_pca85	0.907621	0.075637

Jeu de validation

· Conv ID

- Pas même meilleur modèle selon RMSE /MSE et MAE
- Plus de couches de convolution améliorent score RMSE
- Faible learning rate améliore
 MAE
- Architecture meilleur modèle
 - → Activation ReLU
 - → Dropout 0.5

Modèle	X_data	RMSE	Loss = MSE	MAE
Conv1D_6	X_train	0.9041	0.81741	0.61136
Conv1D_6_sc_1	X_scaled	0.90418	0.81755	0.61078
Conv1D_5	X_train	0.90451	0.82206	0.61128
Conv1D_4	X_train	0.90456	0.82366	0.61056
Conv1D_3	X_train	0.9049	0.81885	0.61167
Conv1D_1_1	X_train	0.90516	0.81931	0.61157
Conv1D_2	X_train	0.90526	0.8195	0.6135
Conv1D_1	X_train	0.90528	0.81954	0.61126
Conv1D_scal_1	X_scaled	0.90531	0.8196	0.60981
Conv1D_pca_1	X_pca85	0.90548	0.81989	0.61169
Conv1D_7	X_train	0.90569	0.82028	0.61073
Conv1D_6_sc	X_scaled	0.90599	0.82081	0.611

Layer (type)	Output Shape	Param #
Conv1D 1 /Conv1D)	(None 200 64)	320
Conv1D_1 (Conv1D)	(None, 300, 64)	320
dropout_63 (Dropout)	(None, 300, 64)	0
Conv1D_2 (Conv1D)	(None, 98, 16)	8208
Conv1D_3 (Conv1D)	(None, 96, 16)	784
Conv1D_4 (Conv1D)	(None, 32, 32)	2080
Conv1D_5 (Conv1D)	(None, 8, 64)	8256
flatten_38 (Flatten)	(None, 512)	0
Dense_2 (Dense)	(None, 64)	32832
Dense_3 (Dense)	(None, 32)	2080
Dense_4 (Dense)	(None, 1)	33

Total params: 54,593
Trainable params: 54,593
Non-trainable params: 0

Jeu de test

RMSE

- Valeurs très proches
- Scores meilleurs que sur validationset

Pearson coefficient

· Plus grande variabilité

→ ConvID_6 meilleur modèle

CONCLUSION

Conclusion

Influence preprocessing

- Réduction dimension Utile pour LinearRegression
- Scaling → Utile pour ElasticNet

· Evaluation modèles Machine Learning

- LinearRegression → Pas si mauvais pour modèle basique
- ElasticNet
- XGBRegressor
- Conv D → Meilleur modèle

Conclusion

· Pistes d'amélioration

- · Autres architectures de réseaux ConvID
- · Réduction du learning_rate
 - → Via callback
- · Considérer time_id ou investment_id
 - → Introduire nouvelle dimension Conv2D

Dataset non trivial

MERCI

QUESTIONS