

Máster Universitario en Ingeniería Informática

Sistemas Inteligentes

Unit 6. Maximum Entropy Models - Exercises

2022/2023

1. Exercises

2. Solutions

1. Exercises

Solutions

$$f(x,y) = \begin{cases} 1 & \text{if } y = c_i \text{ and it has the word } x = w_j \\ 0 & \text{otherwise} \end{cases}$$

- 1. Suppose that all λ_i are initialized to 0, then compute the increasing δ_0 for the feature $f_0 = f(w_0, c_0)$ with the IIS algorithm
- 2. Suppose that a ME model has been learned and the following values have been obtained:

$$\lambda_0 = 0.3$$
 associated to the feature $f_0 = f(w_0, c_0)$

$$\lambda_1 = 3.0$$
 associated to the feature $f_1 = f(w_1, c_0)$

$$\lambda_2 = -0.4$$
 associated to the feature $f_2 = f(w_0, c_1)$

$$\lambda_3 = 3.0$$
 associated to the feature $f_3 = f(w_2, c_1)$

Compute in which class is classified a text that includes the word w_0 .

The gender of a bird species can be known from three features a_0 , a_1 and a_2 . We have the following set of samples:

$$C = \{((a_0, a_1), M), ((a_0, a_1), M), ((a_1, a_2), M), ((a_0, a_2), F), ((a_0, a_2), F), ((a_0, a_2), F)\}$$

where M indicates that the bird is a male and F indicates that it is a female. To obtain a ME model for classifying the birds, the following features have been defined:

$$f(x,y) = \begin{cases} 1 & \text{if } y = S \text{ and the feature } a_j \text{ is in } x \\ 0 & \text{otherwise} \end{cases}$$
 where $S \in \{M, F\}$.

- 1. Suppose that all λ_i are initialized to 0, then compute the increasing δ for the feature $f = f(a_0, F)$ with the IIS algorithm.
- 2. Suppose that a ME model has been learned and the following values have been obtained:

Compute the most probable class of a bird if the features a_1 and a_2 have been observed.

Let be a classification problem into three classes A, B and C, where the classification is carried out with a Maximum Entropy classifier. The classification of each sample is performed according to 3 features out of 5, noted as $(a_0, a_1, a_2, a_3, a_4)$. The features of the Maximum Entropy classifier are defined as:

$$f(x,y) = \begin{cases} 1 & \text{if } y = S \text{ and the feature } a_j \text{ is active in } x \\ 0 & \text{otherwise} \end{cases}$$

where $S \in \{A, B, C\}$

Supose that a model has been trained and the obtained parameters λ_{fc} (where $f \in \{a_0, \ldots, a_4\}, c \in \{A, B, C\}$) are:

	Feature					
Class	a ₀	a ₁	a 2	a 3	a ₄	
Α	0.37	0.0	-0.04	0.08	0.0	
В	0.0	0.0	-0.04	-0.05	-0.28	
С	0.0	0.23	0.06	-0.05	0.32	

Compute the class of a sample if the features a_0 , a_2 and a_3 have been observed.

We have a classification problem with classes c_0 and c_1 . Each sample is a string with three symbols, $s = s_0 s_1 s_2$, such that $s_i \in \{a, b\}$. A Maximum Entropy model is defined for the problem, with features:

$$f(x,y) = \begin{cases} 1 & \text{if } y = C \text{ and } x = t_i \text{ means that symbol } t \text{ is in position } i \text{ of string } s \\ 0 & \text{otherwise} \end{cases}$$

Where $C = \{c_0, c_1\}$ and $t \in \{a, b\}$.

The model has been estimated with the following parameters:

Class 0					
	Position				
Symbol	0	1	2		
а	0.0	0.096	-0.074		
b	0.170	-0.051	0.061		

Class 1							
	Position						
Symbol	0	1	2				
а	0.231	-0.135	0.061				
b	-0.366	0.045	-0.074				

Classify the string "abb" according the model.

Exercises

2. Solutions

1. The posterior probability is:

$$p(y|x) = \frac{1}{Z(x)} \exp \left(\sum_{i} \lambda_{i} f_{i}(x, y) \right)$$
 $Z(x) = \sum_{y} \exp \left(\sum_{i} \lambda_{i} f_{i}(x, y) \right)$

We have to calculate $\delta_0 = \frac{1}{M} \log \frac{\tilde{p}(f_0)}{p_0(f_0)}$, where $\tilde{p}(f_0) = \sum_{x,y} \tilde{p}(x,y) f_0(x,y)$ and $p_{\lambda}(f_0) = \sum_{x,y} \tilde{p}(x) p_{\lambda}(y|x) f_0(x,y)$ Thus:

$$\delta_0 = \frac{1}{M} \log \frac{\sum_{x,y} \tilde{p}(x,y) f_0(x,y)}{\sum_{x,y} \tilde{p}(x) p_{\lambda}(y|x) f_0(x,y)} = \frac{1}{M} \log \frac{\sum_{x,y} \tilde{p}(x,y)}{\sum_{x,y} \tilde{p}(x) p_{\lambda}(y|x)}$$

Since it is specifically for
$$(w_0, c_0)$$
, $\tilde{p}(x, y) = \tilde{p}(w_0, c_0) = \frac{2}{10} = \frac{1}{5}$, $\tilde{p}(x) = \tilde{p}(w_0) = \frac{3}{10}$, $p_{\lambda}(y|x) = \frac{\exp 0}{\sum_{y \in \{c_0, c_1\}} \exp 0} = \frac{1}{2}$, and

$$M = f^{\#}(x, y) = f^{\#}(w_0, c_0) = 1$$
. Then:

$$\delta_0 = \frac{1}{1} \log \frac{\frac{1}{5}}{\frac{3}{3} \frac{1}{1}} = \log \frac{4}{3} \approx 0.2877$$

2. Since $x = w_0$ and $y \in \{c_0, c_1\}$, we have to calculate $p(c_0|w_0)$ and $p(c_1|w_0)$; in general:

$$p(y|x) = \frac{1}{Z(x)} \exp \left(\sum_{i} \lambda_{i} f_{i}(x, y) \right) \qquad Z(x) = \sum_{y} \exp \left(\sum_{i} \lambda_{i} f_{i}(x, y) \right)$$

Thus, we must calculate $Z(x) = Z(w_0)$:

$$\begin{split} Z(w_0) &= \sum_{\{c_0, c_1\}} \exp\left(\sum_i \lambda_i f_i(w_0, y)\right) = \exp\left(\sum_i \lambda_i f_i(w_0, c_0)\right) + \\ \exp\left(\sum_i \lambda_i f_i(w_0, c_1)\right) &= \exp\lambda_0 f_0(w_0, c_0) + \exp\lambda_2 f_2(w_0, c_1) = \exp 0.3 + \exp -0.4 \end{split}$$

Consequently,
$$p(c_0|w_0) = \frac{1}{Z(w_0)} \exp\left(\sum_i \lambda_i f_i(w_0, c_0)\right) = \frac{1}{Z(w_0)} \exp \lambda_0 f_0(w_0, c_0) = \frac{\exp 0.3}{\exp 0.3 + \exp -0.4} \approx 0.668$$
, and

$$p(c_1|w_0) = \frac{1}{Z(w_0)} \exp\left(\sum_i \lambda_i f_i(w_0, c_1)\right) =$$

$$\frac{1}{Z(w_0)} \exp \lambda_2 f_2(w_0, c_1) = \frac{\exp - 0.4}{\exp 0.3 + \exp - 0.4} \approx 0.3318, \text{ and } c(w_0) = c_0.$$

1. Taking into account that $\lambda_i = 0$ and $f = f(F, c_0)$, the increment δ corresponds to $\delta = \frac{1}{M} \log \frac{\tilde{p}(f)}{p_{\lambda}(f)}$. Since:

$$\tilde{p}(f) = \sum_{x,y} \tilde{p}(x,y) f(x,y) = \tilde{p}(a_0,F) f(a_0,F)$$

$$p_{\lambda}(f) = \sum_{x,y} \tilde{p}(x)p_{\lambda}(y|x)f(x,y) = \tilde{p}(a_0)p_{\lambda}(F|a_0)f(a_0,F)$$

Thus,
$$\delta = \frac{1}{M} \log \frac{\tilde{p}(a_0, F)}{\tilde{p}(a_0) p_{\lambda}(F|a_0)}$$

Since a_0 is present in the sample for (a_0, a_1) and (a_0, a_2) , $M = f^{\#}(x, y) = f^{\#}(a_0, F) = 2$. Now, as $\tilde{p}(a_0, F) = \frac{3}{6} = \frac{1}{2}$ and $\tilde{p}(a_0) = \frac{5}{6}$,

 $p_{\lambda}(F|a_0)$ must be calculated:

$$p_{\lambda}(F|a_0) = \frac{1}{Z(a_0)} \exp\left(\sum_i \lambda_i f(a_0, F)\right) \quad Z(a_0) = \sum_{y \in \{M, F\}} \exp\left(\sum_i \lambda_i f(a_0, F)\right)$$

Since
$$Z(a_0)=2$$
, $p_{\lambda}(F|a_0)=\frac{1}{2}$, and finally $\delta=\frac{1}{2}\log\frac{\frac{1}{2}}{\frac{1}{2}1}=\frac{1}{2}\log\frac{\frac{5}{6}}{\approx0.091}$

2. Taking into account λ values and that $x = (a_1, a_2)$:

$$p(y|(a_1, a_2)) = \frac{1}{Z((a_1, a_2))} \exp \sum_i \lambda_i f(x, y)$$

Then, we calculate initially $Z((a_1, a_2))$ taking into account that $f(a_0, y) = 0$ and $f(a_1, y) = f(a_2, y) = 1$:

$$Z((a_1, a_2)) = \sum_{y \in \{M, F\}} \exp \left(\sum_i \lambda_i f_i(x, y) \right) = \sum_{y \in \{M, F\}} \exp(\lambda_{a_1, y} + \lambda_{a_2, y}) =$$

$$\exp(\lambda_{a_1,M} + \lambda_{a_2,M}) + \exp(\lambda_{a_1,F} + \lambda_{a_2,F}) = \exp 0.617 + \exp 0.385$$

Thus,
$$p(M|(a_1,a_2)) = \frac{\exp 0.617}{\exp 0.617 + \exp 0.385} \approx 0.55$$
, and $p(F|(a_1,a_2)) = \frac{\exp 0.385}{\exp 0.617 + \exp 0.385} \approx 0.44$; consequently, $c(x) = M$

$$p(y|x) = \frac{1}{Z(x)} \exp\left(\sum_{i} \lambda_{i} f_{i}(x, y)\right) \qquad Z(x) = \sum_{y} \exp\left(\sum_{i} \lambda_{i} f_{i}(x, y)\right)$$

Since $x = (a_0, a_2, a_3)$, we calculate Z(x) taking into account that $f(a_0, y) = f(a_2, y) = f(a_3, y) = 1$ and $f(a_1, y) = f(a_4, y) = 0$. That is:

$$Z((a_0, a_2, a_3)) = \sum_{y \in \{A, B, C\}} exp\left(\sum_i \lambda_i f_i(x, y)\right) = \sum_{y \in \{A, B, C\}} exp(\lambda_{a_0, y} + \lambda_{a_2, y} + \lambda_{a_3, y}) =$$

$$\exp(\lambda_{a_0,A} + \lambda_{a_2,A} + \lambda_{a_3,A}) + \exp(\lambda_{a_0,B} + \lambda_{a_2,B} + \lambda_{a_3,B}) + \exp(\lambda_{a_0,C} + \lambda_{a_2,C} + \lambda_{a_3,C}) = \exp(0.41) + \exp(-0.09) + \exp(0.01)$$

Then,
$$p(A|x) = \frac{\exp(0.41)}{\exp(0.41) + \exp(-0.09) + \exp(0.01)} \approx 0.44$$
,

$$p(B|X) = \frac{\exp(-0.09)}{\exp(0.41) + \exp(-0.09) + \exp(0.01)} \approx 0.27$$
, and

$$p(B|x) = \frac{\exp(-0.09)}{\exp(0.41) + \exp(-0.09) + \exp(0.01)} \approx 0.27, \text{ and}$$

$$p(C|x) = \frac{\exp(0.01)}{\exp(0.41) + \exp(-0.09) + \exp(0.01)} \approx 0.29. \text{ Consequently, } c(x) = A.$$

As usual:

$$p(y|x) = \frac{1}{Z(x)} \exp \left(\sum_{i} \lambda_{i} f_{i}(x, y) \right)$$
 $Z(x) = \sum_{y} \exp \left(\sum_{i} \lambda_{i} f_{i}(x, y) \right)$

Since s="abb", $f(a_0, y) = f(b_1, y) = f(b_2, y) = 1$, and the rest are 0. Thus:

$$Z(x) = \sum_{y \in \{c_0, c_1\}} \exp(\lambda_{a_0, y} + \lambda_{b_1, y} + \lambda_{b_2, y}) =$$

$$\exp(\lambda_{a_0,c_0} + \lambda_{b_1,c_0} + \lambda_{b_2,c_0}) + \exp(\lambda_{a_0,c_1} + \lambda_{b_1,c_1} + \lambda_{b_2,c_1}) = \exp(0.01) + \exp(0.202)$$

Then:

$$p(c_0|x) = \frac{\exp(\lambda_{a_0,c_0} + \lambda_{b_1,c_0} + \lambda_{b_2,c_0})}{Z(x)} = \frac{\exp(0.01)}{\exp(0.01) + \exp(0.202)} \approx 0.452$$

$$p(c_1|x) = \frac{\exp(\lambda_{a_0,c_1} + \lambda_{b_1,c_1} + \lambda_{b_2,c_1})}{Z(x)} = \frac{\exp(0.202)}{\exp(0.01) + \exp(0.202)} \approx 0.548$$

Then, $c(x) = c_1$.

