TP de Probabilités discrètes Version 2.2

Michaël Guedj

TP de Probabilités discrètes de Michaël Guedj est mis à disposition selon les termes de la licence Creative Commons Attribution 4.0 International.

Table des Matières

1	TP 1 – Le paradoxe des anniversaires		3
	1.1 Problème des anniversaires	•	3
	1.2 Intuition	•	3
	1.3 Considérations préalables		4
	1.4 Résolution du problème des anniversaires		4
	1.5 Côté individu	٠	4
	1.6 Simulation		5
2	TP 1 – Le paradoxe des anniversaires – Correction		7
	2.1 Problème des anniversaires		7
	2.2 Intuition	•	7
	2.3 Considérations préalables	•	7
	2.4 Résolution du problème des anniversaires	•	7
	2.5 Côté individu	•	9
	2.6 Simulation	. 1	.0
3	TP 2 – Paradoxe des deux enfants	1	2
	3.1 Enoncé du problème	. 1	2
	3.2 Résolution	. 1	2
	3.3 Exercice	. 1	2
4	TP3 – Espérance	1	3
	4.1 Espérance et lancers de pièces	. 1	3
	4.2 Espérance et boîte magique		4
5	TP4 – Le paradoxe de Monty Hall	1	5

1 TP 1 – Le paradoxe des anniversaires

1.1 Problème des anniversaires

Dans une classe de 25 élèves, quelle est la probabilité p, que deux élèves (au moins), fêtent leurs anniversaires le même jour ?

1.2 Intuition

En vous basant sur votre intuition, estimer la probabilité en question.

1.3 Considérations préalables

On suppose:

- Que les années comportent 365 jours par an (années bissextiles non considérées) ;
- La distribution des naissances est uniforme ; i.e. quelque soit le jour $i \in \{1,...,365\}$, quelque soit l'élève x, la probabilité que x fête son anniversaire le jour i est de $\frac{1}{165}$.

1.4 Résolution du problème des anniversaires

On considère une classe de n élèves.

- 1. Soit n=2. Donner la probabilité \bar{p} que les deux élèves de la classe ne fêtent pas leurs anniversaires le même jour.
- 2. Idem pour n=3.
- 3. Idem pour n = k.
- 4. Résoudre le problème des anniversaires (utiliser la relation : $p = 1 \bar{p}$).
- 5. Considérer les cas : n = 30 ; n = 50 et n = 80.

1.5 Côté individu

Soit un individu : Toto, dans une classe de n=25 élèves. Quelle est la probabilité qu'un (autre) élève soit né le même jour que Toto ?

1. Si n=2, quelle est la probabilité \bar{p} pour que l'autre élève soit né un autre jour que Toto ?

- 2. Idem pour n=3.
- 3. Idem pour n = k.
- 4. Trouver la probabilité p qu'un (autre) élève soit né le même jour que Toto (utiliser la relation $p = 1 \bar{p}$).
- 5. Que donne p pour n = 30? n = 50? n = 80?

1.6 Simulation

On modélise une classe de n élèves par une liste de n éléments compris entre 1 et 365. (On suppose que la liste est indexée de 0 à n-1).

(A) L'algorithme, ci-après, permet de tester si deux personnes, dans la classe, sont nés le même jour.

```
test_anniversaire(classe : liste de taille n)
begin
  for i = 0, ..., n-1 do
    for j = i+1, ..., n-1 do
    if classe[i] = classe[j] then
       return True
    end if
  end for; end for
  return False
end
```

Lemme. Au i-ième tour de la première boucle, en supposant que l'algorithme ne s'est pas arrêté,

$$\forall x \in \{0, ..., i-1\}, \forall j \in \{x+1, ..., n-1\}, classe[i] \neq classe[j]$$

Proof. Par l'absurde,

$$\exists x \in \{0, ..., i-1\}, \exists j \in \{x+1, ..., n-1\}, classe[x] = classe[j]$$

Donc au tour de boucle x, l'algorithme s'est arrêté, ce qui contredit notre hypothèse. \Box

Théorème. Au i-ième tour de la première boucle, en supposant que l'algorithme ne s'est pas arrêté,

$$\forall j \in \{0, ..., i-1\}, classe[i] \neq classe[j]$$

Preuve. Par le lemme précédant,

$$\forall x \in \{0,...,i-1\}, \forall j \in \{x+1,...,n-1\}, classe[i] \neq classe[j]$$

On pose:

$$E(x) := \{x + 1, ..., n - 1\}$$

On a ainsi:

$$\forall x \in \{0, ..., i-1\}, \forall j \in E(x), classe[i] \neq classe[j]$$

On remarque que :

$$E(0) \supset E(1) \supset \dots \supset E(i-1)$$

(En effet:

$$E(0) = \{1, ..., n-1\}$$

$$E(1) = \{2, ..., n-1\}$$

...

$$E(i-1) = \{i, ..., n-1\}$$

)

De plus,

$$i \in E(i-1)$$

Donc,

$$\forall x \in \{0, ..., i-1\}, i \in E(x)$$

On rappelle que :

$$\forall x \in \{0, ..., i-1\}, \forall j \in E(x), classe[i] \neq classe[j]$$

D'où,

$$\forall x \in \{0,...,i-1\}, classe[x] \neq classe[i]$$

(B) L'algorithme, ci-après, permet de tester si une personne, dans la classe, est né le même jour que Toto.

```
test_anniversaire_toto(classe : liste de taille n)
begin
  // Toto est supposé en position 0 (sans perte de généralité)
for i = 1, ..., n-1 do
  if classe[0] = classe[i] then
    return True
  end if
end for
return False
end
```

(C) Via implémentation, évaluer "pratiquement" la justesse des résultats des sections précédentes.

2 TP 1 – Le paradoxe des anniversaires – Correction

2.1 Problème des anniversaires

Dans une classe de 25 élèves, quelle est la probabilité p, que deux élèves (au moins), fêtent leurs anniversaires le même jour ?

2.2 Intuition

En vous basant sur votre intuition, estimer la probabilité en question.

2.3 Considérations préalables

On suppose:

- Que les années comportent 365 jours par an (années bissextiles non considérées) ;
- La distribution des naissances est uniforme ; i.e. quelque soit le jour $i \in \{1, ..., 365\}$, quelque soit l'élève x, la probabilité que x fête son anniversaire le jour i est de $\frac{1}{165}$.

2.4 Résolution du problème des anniversaires

On considère une classe de n élèves.

1. Soit n=2. Donner la probabilité \bar{p} que les deux élèves de la classe ne fêtent pas leurs anniversaires le même jour.

$$\bar{p} = \frac{365 \times 364}{365^2}$$

- (a) Nombre de possibilités satisfaisant la contrainte : 365×364 .
- (b) Nombre total de possibilités : 365².
- 2. Idem pour n=3.

$$\bar{p} = \frac{365 \times 364 \times 363}{365^3}$$
$$\left(\bar{p} = \frac{365 \times (365 - 2 + 1) \times (365 - 3 + 1)}{365^3}\right)$$

(a) Nombre de possibilités satisfaisant la contrainte : $365 \times 364 \times 363$.

- (b) Nombre total de possibilités : 365^3 .
- 3. Idem pour n = k.

$$\bar{p} = \frac{365 \times 364 \times \dots \times (365 - k + 1)}{365^k}$$

$$\bar{p} = \prod_{i=1}^{k} \frac{(365 - i + 1)}{365^k}$$

(a) Nombre de possibilités satisfaisant la contrainte :

$$365 \times 364 \times ... \times (365 - k + 1)$$

- (b) Nombre total de possibilités : 365^k .
- 4. Résoudre le problème des anniversaires (utiliser la relation : $p=1-\bar{p}$). On a, pour n=k:

$$p = 1 - \prod_{i=1}^{k} \frac{(365 - i + 1)}{365^k}$$

Soit, pour n = 25:

$$p = 1 - \prod_{i=1}^{25} \frac{(365 - i + 1)}{365^k}$$

Soit:

$$0.56$$

5. Considérer les cas : n = 30 ; n = 50 et n = 80.

Pour n = 30,

$$0.70$$

Pour n = 50,

$$0.970$$

Pour n = 80,

$$p \approx 0.99991$$

2.5 Côté individu

Soit un individu : Toto, dans une classe de n=25 élèves. Quelle est la probabilité qu'un (autre) élève soit né le même jour que Toto ?

1. Si n=2, quelle est la probabilité \bar{p} pour que l'autre élève soit né un autre jour que Toto ?

$$\bar{p} = \frac{364}{365}$$

2. Idem pour n = 3.

$$\bar{p} = \left(\frac{364}{365}\right)^2$$

3. Idem pour n = k.

$$\bar{p} = \left(\frac{364}{365}\right)^{k-1}$$

4. Trouver la probabilité p qu'un (autre) élève soit né le même jour que Toto (utiliser la relation $p=1-\bar{p}$).

Pour
$$n = k$$
,

$$p = 1 - \bar{p} = 1 - \left(\frac{364}{365}\right)^{k-1}$$

Pour
$$n = 25$$

$$p \approx 0.06$$

5. Que donne p pour n = 30? n = 50? n = 80? Pour n = 30,

$$p \approx 0.08$$

Pour
$$n = 50$$
,

$$p \approx 0.13$$

Pour
$$n = 80$$
,

$$p \approx 0.2$$

2.6 Simulation

On modélise une classe de n élèves par une liste de n éléments compris entre 1 et 365. (On suppose que la liste est indexée de 0 à n-1).

(A) L'algorithme, ci-après, permet de tester si deux personnes, dans la classe, sont nés le même jour.

```
test_anniversaire(classe : liste de taille n)
begin
  for i = 0, ..., n-1 do
    for j = i+1, ..., n-1 do
    if classe[i] = classe[j] then
       return True
    end if
  end for; end for
  return False
end
```

Lemme. Au i-ième tour de la première boucle, en supposant que l'algorithme ne s'est pas arrêté,

$$\forall x \in \{0, ..., i-1\}, \forall j \in \{x+1, ..., n-1\}, classe[i] \neq classe[j]$$

Proof. Par l'absurde,

$$\exists x \in \{0, ..., i-1\}, \exists j \in \{x+1, ..., n-1\}, classe[x] = classe[j]$$

Donc au tour de boucle x, l'algorithme s'est arrêté, ce qui contredit notre hypothèse.

Théorème. Au i-ième tour de la première boucle, en supposant que l'algorithme ne s'est pas arrêté,

$$\forall j \in \{0, ..., i-1\}, classe[i] \neq classe[j]$$

Preuve. Par le lemme précédant,

$$\forall x \in \{0, ..., i-1\}, \forall j \in \{x+1, ..., n-1\}, classe[i] \neq classe[j]$$

On pose:

$$E(x) := \{x + 1, ..., n - 1\}$$

On a ainsi:

$$\forall x \in \{0, ..., i-1\}, \forall j \in E(x), classe[i] \neq classe[j]$$

On remarque que :

$$E(0)\supset E(1)\supset\ldots\supset E(i-1)$$
 (En effet :
$$E(0)=\{1,\ldots,n-1\}$$

$$E(1)=\{2,\ldots,n-1\}$$

$$E(i-1) = \{i, ..., n-1\}$$

)

De plus,

$$i \in E(i-1)$$

Donc,

$$\forall x \in \{0, ..., i - 1\}, i \in E(x)$$

On rappelle que :

$$\forall x \in \{0, ..., i-1\}, \forall j \in E(x), classe[i] \neq classe[j]$$

D'où,

$$\forall x \in \{0, ..., i-1\}, classe[x] \neq classe[i]$$

(B) L'algorithme, ci-après, permet de tester si une personne, dans la classe, est né le même jour que Toto.

```
test_anniversaire_toto(classe : liste de taille n)
begin
  // Toto est supposé en position 0 (sans perte de généralité)
for i = 1, ..., n-1 do
  if classe[0] = classe[i] then
    return True
  end if
  end for
  return False
end
```

(C) Via implémentation, évaluer "pratiquement" la justesse des résultats des sections précédentes.

3 TP 2 - Paradoxe des deux enfants

3.1 Enoncé du problème

Toto a exactement deux enfants. Étant donné que l'un de ces deux enfants est un garçon, et que la probabilité d'avoir un garçon est de $\frac{1}{2}$, quelle est la probabilité que l'autre enfant soit aussi un garçon ?

3.2 Résolution

$$\begin{split} \Pr(2 \text{ garçons} \mid 1 \text{ garçon au moins}) &= \frac{\Pr(2 \text{ garçons} \ \land \ 1 \text{ garçon au moins})}{\Pr(1 \text{ garçon au moins})} \\ \Pr(2 \text{ garçons} \mid 1 \text{ garçon au moins}) &= \frac{\Pr(2 \text{ garçons})}{\Pr(1 \text{ garçon au moins})} \\ \Pr(2 \text{ garçons} \mid 1 \text{ garçon au moins}) &= \frac{1/4}{3/4} \\ \Pr(2 \text{ garçons} \mid 1 \text{ garçon au moins}) &= \frac{1}{3} \end{split}$$

3.3 Exercice

L'objectif est d'effectuer des simulations informatiques, assurant (ou non), la fiabilité du résultat théorique.

4 TP3 – Espérance

4.1 Espérance et lancers de pièces

Enoncé du problème

On demande à 100 personnes de lancer (chacun) deux pièces de monnaie. On comptabilise ensuite le nombre de piles.

Quel et le nombre de piles ("environ") obtenu?

De même mais avec 1 000 personnes; puis 10 000 personnes.

Explication théorique

L'univers des événements pour un lancer est : $\Omega = \{PP, PF, FP, FF\}$ avec, en supposant $\Pr(P) = \Pr(F) = \frac{1}{2}$:

$$Pr(PP) = Pr(PF) = Pr(FP) = Pr(FF) = \frac{1}{4}$$

La variable aléatoire X quantifie le nombre de piles pour un lancer.

$$X(\Omega) = \{0, 1, 2\}$$

La loi de probabilité de X est :

$$\mathcal{L}_X = \{ 0 \to \frac{1}{4}; 1 \to \frac{1}{2}; 2 \to \frac{1}{4} \}$$

L'espérance de X est ainsi :

$$E(X) = 0. \Pr(X = 0) + 1. \Pr(X = 1) + 2. \Pr(X = 2)$$

$$E(X) = 0 + \frac{1}{2} + 2. \frac{1}{4}$$

$$E(X) = 1$$

Autrement dit, pour chaque lancer de 2 pièces, on peut "espérer" avoir 1 pile.

En pratique, cela signifie que si on effectue n lancés, alors : si n est "grand", le nombre de piles sera "proche" de n.

Exercice

L'objectif est d'effectuer des simulations informatiques, assurant (ou non), la fiabilité du résultat théorique.

4.2 Espérance et boîte magique

Enoncé du problème

Soit une boîte magique agissant comme suit :

- La boîte "génère" : 3, avec probabilité : $\frac{1}{3}$;
- La boîte "génère" : -1, avec probabilité : $\frac{2}{3}$.

Quelle est la somme des valeurs générées par la boîte, pour n générations de valeur ?

Explication théorique

L'univers des événements pour une génération est :

$$\Omega = \{-1, 3\}$$

Ici la variable aléatoire X prend ses valeurs dans $X(\Omega) = \Omega$. La loi de probabilité de X est :

$$\mathcal{L}_X = \{ -1 \to \frac{2}{3}; 3 \to \frac{1}{3} \}$$

L'espérance de X est ainsi :

$$E(X) = -1. \Pr(X = -1) + 3. \Pr(X = 3)$$

$$E(X) = -1.\frac{2}{3} + 3.\frac{1}{3}$$

$$E(X) = \frac{1}{3}$$

Autrement dit, pour chaque valeur générée, on peut "espérer" avoir $\frac{1}{3}$. En pratique, cela signifie que si on effectue n générations de valeur, alors : si n est "grand", la somme des valeurs générees sera "proche" de :

$$n. E(X) = \frac{n}{3}$$

Exercice

L'objectif est d'effectuer des simulations informatiques, assurant (ou non), la fiabilité du résultat théorique.

5 TP4 – Le paradoxe de Monty Hall

- Soient trois portes : l'une cache une voiture, chacune des deux autres cachant une chèvre.
- Le présentateur sait où se cache la voiture.
- Le joueur, qui souhaite trouver la voiture, choisit une des portes (sans que celle-ci ne soit ouverte).
- Le présentateur ouvre une autre porte (que celle choisie par le joueur), qui révèle alors une chèvre.
- Le présentateur demande au candidat si celui-ci souhaite modifier son choix, avant que soit effectué l'ouverture des portes.

Exercice

Que doit faire le joueur?