Let us consider a sample dataset have one input (x;a) and one input (Yia) and number of sample 4. Develop a simple linear regression model wing ADAGRAD optimizer.

Sample (i)	x; ^a	4:
1	0.2	3.4
2	0,4	3.8
3	0.6	4.2
4	0.8	4.6

Do manual calculations for 2 iterations with first two samples.

Step 3: sample = 1
Step 4:
$$g_m = -(3.4 - (1)(0.2) + 1)0.2 = -0.84$$

 $g_c = -(3.4 - (1)(0.2) + 1) = -4.2$

Step - 5:
$$G_m = 0 + (-0.8u)^2 = 0.7056$$

 $G_c = 0 + (-4.2)^2 = 17.64$

$$= \frac{-(0.1)}{\sqrt{0.7056+10^{-3}}} \times -0.84$$

$$AC = \frac{-(0.1)}{\sqrt{17.64+10^{-8}}} \times -4.2 \Rightarrow 0.09$$

Step 7:
$$m + m + \Delta m = 1 + 0.09 = 1.09$$
 $e = c + \Delta c = -1 + 0.09 = -0.91$

Step 9: if (sample = sample + 1)

 $= 1 + 1$
 $= 2$

Step 9: if (sample > ns) goto | Step - 10

 $2 > 2$
 $else$

Step 4: $gm = -(3.8 - (1.09)(0.4) + 0.91) 0.4 = -1.7$
 $ge = -(3.8 - (1.09)(0.4) + 0.91) = -4.27$

Step 5: $Gm = 0.7056 + (-1.7)^2 = 3.59$
 $Ge = 17.64 + (-4.22)^2 = 35.87$

Step 6: $\Delta m = \frac{-0.11}{\sqrt{3.59 + 10.8}} \times (-1.7) = 0.08$
 $\Delta c = \frac{-0.11}{\sqrt{35.97 + 10.8}} \times (-4.27) = 0.07$

Step 7: $m + \Delta m = 1.09 + 0.08 = 1.17$
 $c = C + \Delta c = -0.91 + 0.07 = -0.84$

Step 8: Sample = Sample + 1

 $= 241 = 3$

Step 9: if (sample > ns) goto | Step 10

 $= 3 > 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$

Step 11: if (its >cpcches) goto step-12

2> 2

else
goto step 2

Step 3: Sample = 1

Step 4: gm = -(3·4·(1.17)(0·2)+0·8u)0·2 = -0·80

$$f_c = -((3·4)-(1.17)(0·2)+0·8u)0·2 = -0·80$$
 $f_c = -((3·4)-(1.17)(0·2)+0·8u)0·2 = -0·80$

Step 5: $f_m = 3·5 9 + (·0·80)^2 = 4·23$
 $f_c = 35·89 + (·4·0)^2 = 51·89$

Step 6: $\Delta m = \frac{-0·1}{\sqrt{4.93+10^{-9}}}$
 $\Delta c = \frac{-0·1}{\sqrt{51.89+10^{-9}}}$
 $\Delta c = \frac{-0·1}{\sqrt{51.89+10^{-9}}}$
 $\Delta c = (+\Delta c) = -0·8u + 0·00 = -0·79$

Step 9: Sample = Sample + 1

 $= 1+1 = 2$

Step 9: if (sample > 0·2) foto step 10

 $2>2$

else
goto step -4

Step u: $f_m = -(3·8-(1·20)(0·4)+0·79)^* o·4 = -1·64$
 $f_c = -(3·8·(1·20)(0·4)+0·79) = -4·11$

Step 5: $f_m = 4·23 + (-1·64)^2 = 6·9$
 $f_c = 51·89 + (-4·11)^2 = 68·7$
 $f_c = 51·89 + (-4·11)^2 = 68·7$

Step 6: $\Delta m = \frac{-0·1}{\sqrt{6·9+10^{-9}}}$
 $f_c = -0·1$
 $f_c =$

Step 7:
$$m = m + \Delta m = 1.208 + 0.06 = 1.26$$
 $C = C + \Delta C = -0.79 + 0.04 = -0.75$

Step 8: Sample = sample + 1

= 2+1=3

Step 9: if (Sample > ns)

3>2

Jo to step 4

Step 10: its = its + 1

= 2+1=3

Step 11: if litt > epoches)

3>2

Joto Step 12

Clue

goto Step 3

Step 12: $m = 1.26$