КОГНИТИВНЕ МОДЕЛЮВАННЯ

122 «Комп'ютерні науки» КНм-20 2020 / 2021 навчальний рік

РЕКУРЕНТНІ НЕЙРОННІ МЕРЕЖІ Самоорганізуючі карти Мережа Кохонена

- 1. Самоорганізуючі карти як модель кори головного мозку
- 2. Карти Кохонена.
- 3. Функціонування SOM. Конкуренція, кооперація, адаптація.
- 4. Основні математичні залежності.
- 5. Алгоритм побудови SOM.

Класс искусственных нейронных сетей самоорганизующиеся карты – self – organized maps (SOM)

В некотором смысле аналог коры головного мозга –

нейроны, работающие с близко расположенными областями информации также расположены близко друг к другу, взаимодействуя между собой посредством коротких синаптических связей.

Пространственное расположение выходных нейронов в карте соответствует конкретной области признаков входных данных, выделенных из входного пространства.

Архитектуры нейронных сетей

Одношаровий перцептрон

Богатошаровий перцетрон

Не рекурентні

Нейронні мережі

Рекурентні

Мережі змагання Мережі Кохена Мережі Холфіда

Мережі ART

Двумерный массив постсинаптических нейронов

Слой предсинаптических нейронов (visual cortex)

Модель Уилшоуван дер Мальсбурга

Цель SOM – преобразование **поступающих** векторов (входных) сигналов, имеющих произвольную размерность в двумерную дискретную карту выходных сигналов. Преобразование выполняется адаптивно, в топологический упорядоченной форме.

Конкуренция (соревнование) – для каждого входного вектора вычисляется значение дискриминантной функции. Определяется победитель.

Cooperation

Кооперация — нейрон победитель определят топологическую окрестность — близкие нейроны к победителю.

Adaptation

Синаптическая адаптация – корректировка синаптических весов — увеличение близкими нейронами собственные значения дискриминантной функции (усиление отклика)

Самоорганізуючі карти. Змагання

Competition

S - размерность входного пространства

Входной вектор $\mathbf{x} = [\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_i}, ..., \mathbf{x_s}]$ – выбирается из этого пространства случайным образом.

Сетка нейронов общим количеством С.

У каждого \boldsymbol{j} –го нейрона синапсы с весами

 $w_j = [w_{j\,1}, w_{j\,2}, ..., w_{j\,i}, ..., w_{j\,s}], j = 1, 2, ..., C, -$ номер нейрона.

Дискриминантная функция каждого нейрона – скалярное произведение $< w_i, x >$.

Победитель - нейрон с максимальным скалярным произведением.

Самоорганізуючі карти. Змагання

Competition

Максимум скалярного произведения математически эквивалентен **минимуму** расстояния (Евклидова) между векторами w_j и x_m . **Победитель (winning, best matching unit, BMU)** - нейрон с **индексом**

$$v(x) = \arg\min_{i} ||x - w_{i}||.$$

Результат этапа соревнования – индекс победившего нейрона.

Самоорганізуючі карти. Кооперація

Cooperation

Определение топологической окрестности: возбужденный нейрон пытается возбудить пространственно близкие к нему нейроны (литеральное взаимодействие).

Топологическая окрестность $h_{j,v}$ - центр – победивший нейрон с индексом v , нейроны входящие в окрестность с индексом j. Расстояние между нейронами $d_{i,v}$.

Окрестность $h_{j,v}$

- Симметрична относительно точки максимума расстояние $d_{j,v}$ =0 (при j=v).
- Амплитуда взаимодействия нейронов в окрестности монотонно уменьшается с увеличением расстояния $d_{j,v}$ и достигает нуля при больших $d_{j,v}$.

Самоорганізуючі карти. Кооперація

Cooperation

Типичная функция – функция Гаусса

$$h_{j,v(x)} = exp(-\frac{d_{j,v}^2}{2\sigma^2})$$

 σ – эффективная ширина топологической окрестности

Функция окрестности. Одномерный

случай: $d_{j,v} = |j-v|$.

Самоорганізуючі карти. Кооперація

Cooperation

Функция окрестности. Двумерный случай (двумерная карта).

$$d_{j,v}^2 = \left\| r_j - r_v \right\|^2$$

 r_j, r_v - позиция нейрона в дискретном выходном пространстве.

$$\sigma(n) = \sigma_0 exp(-\frac{n}{\tau_1})$$

n — дискретное время (номер эпохи), n = 0, 1, 2, ...

au – временная константа.

Самоорганізуючі карти. Адаптація

Adaptation

Изменение вектора синаптических весов для каждого нейрона окрестности

Постулат Хэбба: вес синаптической связи увеличивается при одновременном возникновении предсинаптической и постсинаптической активности.

$$\Delta w_j = \eta h_{j,v(x)}(x - w_j)$$

η – параметр скорости обучения (learning rate).

$$w_j(n+1) = w_j(n) + \eta(n)h_{j,v(x)}(n)(x-w_j(n))$$

n – дискретное время (номер эпохи, шаг самоорганизации).

$$\eta(n) = \eta_0 exp(-n * \lambda)$$

 λ — скорость затухания (decay rate).

Самоорганізуючі карти. Алгоритм

- **1. Инициализация.** Для исходных векторов синаптических весов $w_j(0)$ выбираются случайные значения (для каждого j-го нейрона, j=1,2,...,S, в пределах от -1 до +1, !!! Разные, малая амплитуда вариаций).
- **2.** Подвыборка. Выбирается вектор x из входного пространства с определенной вероятностью. Это и есть возбуждение. Размерность вектора S.
- **3. Поиск подобия.** Находится нейрон победитель.

$$v(x) = arg \min_{j} ||x - w_{j}||, j = 1, 2, ... C$$

Самоорганізуючі карти. Алгоритм

4. Коррекция. Изменяются веса

$$w_j(n+1) = w_j(n) + \eta(n)h_{j,v(x)}(n)\left(x - w_j(n)\right)$$

Рекомендации

$$\eta(0) \approx 0.1$$

 σ_0 ≈ радиус решетки

$$\lambda = \frac{\log \sigma_0}{1000}$$

5. Возврат к шагу 2, пока в карте не перестанут происходить заметные изменения

Карты Кохонена используются: для визуализации и первоначального («разведывательного») анализа данных. При этом каждая точка данных отображается соответствующим кодовым вектором из решётки.

3000 случайных векторов три компоненты (R,G,B)

25 классов цветов

Случайные веса

learn_rate = .1
radius_sq = 1
lr_decay = .1
radius_decay = .1

https://stackabuse.com/self-organizing-maps-theory-and-implementation-in-python-with-numpy/

X_test = [250,20,20]

X_test = [20,250,20]

 $X_{test} = [250, 250, 250]$

Модификации карт Кохонена:

- сети векторного квантования сигналов (метод динамических ядер, k-means)
- сети векторного квантования, обучаемые с учителем (Learning Vector Quantization)
- упругие карты. используется в биоинформатике для анализа много мерных данных.

Визуализация набора данных по экспрессии генов в раке молочной железы с использованием упругих карт Классы точек показаны с использованием размера (ER - статус эстроген-рецептора), формы (GROUP риск развития метастаз) и цвета (ТҮРЕ молекулярный тип опухоли). На панели (а) показана конфигурация узлов двумерной упругой карты в проекции на первые три главные компоненты. Сравнивая (b) и (c), можно заметить, что базальный тип опухоли как кластер лучше отделен на нелинейной проекции (b).

Рекомендована ЛІТЕРАТУРА

- Федоров Е.Е. Искусственные нейронные сети. Красноармейск, ДВНЗ «ДонНТУ», 2016. — 338 с.
- Хакин С. Нейронные сети: полный курс, 2-е изд. М.: Издательский дом «Вильямс», 2016. 1104 с.

Посилання

- https://www.youtube.com/watch?v=2UXki95Ujqw
- https://www.youtube.com/watch?v=TOr8_5o1MJk

Контрольні запитання

- 1. Надайте визначення та поясніть основне призначення SOM.
- 2. Визначте основні етапи функціонування SOM, налайте основні математичні залежності.
- 3. Надайте алгоритм налаштування карт Кохонена.

The END Mod 2. Lec 7.