ii	. Mention the advantages of fiber optic communication.	2	1	1	1		F	Reg. No.	i de que	imli s				
	(OR)													
b.i	. Describe the following fibre structure in detail. (1) Step index fiber (2) Graded index fiber	8	2	1	1		В.Т	Г есh. DE C F			NATION Semester		2022	
ii	. A graded index fiber has a core with a parabolic refractive index profil which has a diameter of 50 μm. The fiber has a numerical aperture of 0.209. Estimate the total number of guided modes propagating in the fiber	of	3	1	1	Note: (i) Pa	(For the candidart - A should be a	nswered in	ted from to	he acad	lemic year .	2018-201	9 to 201	19-202
	when it is operating at a wavelength of $0.84 \mu m$.						er to hall invigilato ort - B should be an							
27. a.i	. What are macro bending and micro bending losses? Explain with a suitable diagrams and expressions.		2	2	1	Time: 2½ Ho	ours	23	Wil en					
ii	. Two polarization maintaining fibers operating at a wavelength of 1.3 μm have beat length of 0.7 mm and 0.9 mm. Determine the modal birefringence in each case.			2	1	mul	e refractive inde ltimode optical fi		ALL Que	estions	clado		a step i	index
b.i.	(OR) Explain in detail about the polarization mode dispersion with neat diagram	. 8	2	2	1) Smaller than Equal to	Ol 14	`	,	reater than oportiona			
ii.	Compare intermodal and intramodel dispersion.	2	· 2	2	1"-	2. (A)	Step index	aving V-n		less th B) Pla				
28. a.i.	Describe the construction and working of surface emitting LED.	8	3	3	2	(C)	Single mode		(.	D) Mı	ulti mode			
ii.	Determine the total carrier recombination life time of a double heterojunction LED, where the radiative and non radiative life time of minority carriers in active regions are 30 ns and 100 ns respectively.	У		3	2		l cladding are 1.4 60°	is the criti 8 and 1.00). (]	B) 42.	.5°	active in	dex of	core
	(OR)					(0)	90		(1	0) 63.	.8			
b.i	Explain the construction and operation of Avalanche photodiode.	7	I	3	1		ridonal rays are The rays pas	ss around	d the (1	3) Th	e rays goe	es out of	core	2
11.	A GaAs PIN photodiode has the following parameters at a wavelength of 1200 nm, $ID = 4nA$, $\eta = 0.80$, $R_L = 1000\Omega$, and the surface leakage current is negligible. The incident power is 300 AW, and the receiver bandwidth is 20 MHZ. Find the quantum noise of the receiver.	t	4	3	1	(C)	optical axis The rays are ne core	ver guided		O) The	e guided tical axis			
29. a.	With neat diagram, explain acousto optic modulator in detail.	10	2	4	}		core RI is 1.48 arture?	and claddii	ng RI is 1	.46. W	hat is the	value o	f nume	rical
b.	(OR) Describe the amplification mechanism of Erbium dopes fiber amplifier with energy level diagram.	10	3	4	2		0.354 1.550		,	3) 0.4				
30. a.	Explain the fabrication steps involved in PIN-HBT photo receiver.	10			1	mate	ttering loss in gerial density.	glass arise				variati	ons in	the
b.	(OR) Explain the following in detail. (i) Mach Zennder interferometer	5	3	5	1	(C)	Macroscopic Refractive		1)	D) Der			41 0	C a 1.1
*	(ii) Active coupler *****					stren (A)	amount of ngth at critical dis Optical radiation Dispersion	,	and the	e distar Abs	fiber dence of cur sorption ical atten	vature R		1eld

		T T T T T T T T T T T T T T T T T T T	T
Reg. No.			

B.Tech. DEGREE EXAMINATION, MAY 2022

				Fourt	h and S	ixth S	emester						
			18ECO10' (For the candida				D OPTOELE		20)		h#)		
ote:			(2 0. 1.10 00.1101010	ies deminica ji		caucii	ne year 2010 2	017 10 2017-202	0)				
(i) (ii)		ove	rt - A should be ans r to hall invigilator a rt - B should be answ	at the end of 40	th minut	e.	first 40 minute	s and OMR she	et s	hould	be l	han	de
				3)									
ime	: 21/	⁄ ₂ Ho	ours	763					M	Iax. I	Mar!	ks:	7:
			PAR	$T - A (25 \times 1)$	1 = 25	Mark	s)	in .	M	arks I	3L	СО	P
				Answer ALL			í in	Life manner					
	1.		refractive index	of core is			_ cladding in	n a step index	1	1 1	1	1	1
			timode optical fib	er.	(D)								
			Smaller than				iter than						
		(C)	Equal to		(D)	Prop	ortional						
	2.		fiber has	ving V-numb	er is les	e than	2 405		1	1	1		1
	۷.	(A)		ring v-numb		Plast			1.0		•		•
		(C)	Single mode		\ /		i mode						
		(C)	Single mode		(D)	IVIUII	I mode						
	3.		is	the critical a	ngle w	here t	the refractive	index of core	1	2	1		1
		and	cladding are 1.48	and 1.00.									
		(A)	60°		(B)	42.59	0						
		(C)	90°		(D)	65.89							
4	4.	Mer	idonal rays are						1	1	1		1
			The rays pass					of core					
			41 1 1				, ,						

- optical axis ore RI is 1.48 and cladding RI is 1.46. What is the value of numerical
 - .354

- (D) 0.242
- ing loss in glass arises from _____ variations in the 1 al density. 1acroscopic (B) Microscopic
 - efractive

- (D) Density
- from a bent fiber depends on the field 1 at critical distance (X_C) and the distance of curvature R.
- ptical radiation
- (B) Absorption

2 2 1

8.	dispersion occurs in single mode fiber.	1	1 1	2	17.	Kerr effect occurs when		Ī]	4	Í
	(A) Intramodal (B) Intermodal					(A) Electric field is zero	(B) Magnetic field is zero				
	(C) Singal (D) Transverse						c (D) Quadratic electro optic				
						coefficient is smaller that	n coefficient is larger than linear				
9.	In a 50 km long optical fiber having an attenuation of $0.9dB/km$.	at 1	2 2	1		linear electro optic coefficient	electro optic co-efficient				
	1100nm, $P_i = 400 \mu w$. is the output power from the fiber.								A.		
	(A) 32.44 nw (B) 12.64 nw				18.	In circulator, an optical path of sign	al follows	1	1	4 2	2
	(C) 54.78 nw (D) 30.89 nw					(A) An open loop	(B) An closed loop				
						(C) Forward loop	(D) Reverse loop				
10.	An optical fiber has losses of 0.6dB/km at 1300 nm. If 100 μw of power	r is 1	2 3	1							
	launched into the fiber, how much power will reach at a distance of 20 kg				19.	Fabry-Perot interferometer used for		1	2	4 1	i
	(A) 8.6 μw (B) 6.3 μw					(A) Determine the resonant mode	es (B) Generating electrical signal				
	(C) 5.6 µw (D) 10.3 µw					of a cavity					
	(C) 3.0 µW (D) 10.3 µW					(C) Determine the refractive index	(D) Determine the output pulse				
11	confinement is used to increase the carrier recombination	at 1	1 3	2							
115	the active region of LED.	ı aı			20.	Which of the following is a magnet	o optic effect?	-1	2	4 1	Ĺ
	(A) Carrier (B) Optical					(A) Faraday effect	(B) Skin effect				
	(C) Electrical (D) Signal					(C) Kerr effect	(D) Pockel effect				
	(C) Electrical (D) Signal										
12.	modes are related to the length of the cavity.	1	1 3	1	21.	Circuits fabricated from AlGaAs of	perate in wavelength region of	1	2	5 1	
12.	(A) Lateral (B) Transverse					(A) 0.1 and 0.2 μm	(B) 0.8 and 0.9 μm				
	(C) Longitudinal (D) Elliptical					(C) 0.3 and 0.4 μm	(D) 0.6 and 0.7 μm				
	(C) Longitudinai (D) Empireai										
13	Thermal noise is calculated by the formula	1 :	2 3	1	22.	To minimize the OEIC chip are	a devices are used in	1	1	5 3	,
15.	(A) (AVT) (B) (B)					fabrication.					
	(A) $\langle i_T^2 \rangle = \left(\frac{4K_B T}{R_L} \right) B$ (B) $\langle i_T^2 \rangle = \left(\frac{R_L}{4K_B T} \right) B$					(A) InGa	(B) GaAs				
	(R_L)					(C) InGaAs	(D) InGaAsP				
	(C) $\langle i_T^2 \rangle = \left(\frac{2K_B T}{R} \right) B$ (D) $\langle i_T^2 \rangle = \left(\frac{8K_B T}{R} \right) B$										
	$\langle i_T^2 \rangle = \left \frac{B}{R} \right B$ $\langle i_T^2 \rangle = \left \frac{B}{R} \right B$				23.	The sensitivity of a pin-HBT	photo receiver is proportional to	1	2	5 1	
1.4	is the retic of electron hale nairs concreted to the incide	ont II	1 3	2		(A) B	(B) B^2				
14.		EIII				(C) B^3	(D) B^4				
	photons. (A) Quantum efficiency (B) Power efficiency				8						
	(C) Signal attenuation (D) Carrier efficiency				24.	•	layer is often air and has a refractive	1	2	5 1	
	(c) Signal attendation (b) Carrier efficiency					index					
15	Avalanche multiplication factor (M) is given by	1	2 3]			o (B) Higher than the other two layers				
15.						layers					
	$M = \frac{1}{M}$					(C) Sum of the two layers	(D) Difference of the two layers				
	IM IP							1	,	<i>5</i> 1	
	(C) $M = \left(\frac{IM}{IP}\right)RL$ (D) $M = \frac{IP}{IP}$				25.	Devices operating at transmission	on rates greater than 40 Gb/s are	1	1	5 1	
	(IP)						(T) (C)				
1.0	,	1 3 1	1 4	ī		(A) GaAs and InP	(B) GaAs				
16.	The change in refractive index of a medium due to the presence of sou	nd 1	. 4	1		(C) InGa	(D) In Ga As				
	wave is called										
	(A) Photo emissive effect (B) Acoustic optic effect (C) Fig. (C) (D) Market (C) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D										
	(C) Electro optic effect (D) Mageto optic effect					$PART - B (5 \times 10)$	*	Marks	BL	CO P	0
						Answer ALL	Questions				
								8	2	1 1	
					26. a.i.	Sketch the block diagram of elemen	A .	d	<u> </u>	1 1	
						describe the functions of each block					