## **Aluminum alloys**

The material. Aluminum was once so rare and precious that the Emperor Napoleon III of France had a set of cutlery made from it that cost him more than silver. But that was 1860; today, nearly 150 years later, aluminum spoons are things you throw away—a testament to our ability to be both technically creative and wasteful. Aluminum, the first of the "light alloys" (with magnesium and titanium), is the third most abundant metal in the earth's crust (after iron and silicon), but extracting it costs much energy. It has grown to be the second most important metal in the economy (steel comes first), and the mainstay of the aerospace industry.

## Composition

Al+ alloying elements, e.g., Mg, Mn, Cr, Cu, Zn, Zr, Li

## General properties

Electrical resistivity

| Concini properties                         |                |   |       |                              |  |
|--------------------------------------------|----------------|---|-------|------------------------------|--|
| Density                                    | ,              |   | 2,900 | 0                            |  |
| Price                                      | 2.4            | _ | 2.7   | USD/kg                       |  |
|                                            |                |   |       |                              |  |
| Mechanical properties                      |                |   |       |                              |  |
| Young's modulus                            | 68             | _ | 82    | GPa                          |  |
| Yield strength (elastic limit)             | 30             | _ | 550   | MPa                          |  |
| Tensile strength                           | 58             | _ | 550   | MPa                          |  |
| Elongation                                 | 1              | _ | 44    | %                            |  |
| Hardness—Vickers                           | 12             | _ | 150   | HV                           |  |
| Fatigue strength at 10 <sup>7</sup> cycles | 22             | _ | 160   | MPa                          |  |
| Fracture toughness                         | 22             | _ | 35    | MPa $\cdot$ m <sup>1/2</sup> |  |
|                                            |                |   |       |                              |  |
| Thermal properties                         |                |   |       |                              |  |
| Melting point                              | 495            | _ | 640   | °C                           |  |
| Maximum service temperature                | 120            | _ | 200   | °C                           |  |
| Thermal conductor or insulator?            | Good conductor |   |       |                              |  |
| Thermal conductivity                       | 76             | _ | 240   | $W/m \cdot K$                |  |
| Specific heat capacity                     | 860            | _ | 990   | J/kg · K                     |  |
| Thermal expansion coefficient              | 21             | _ | 24    | μstrain/°C                   |  |
|                                            |                |   |       |                              |  |
| Electrical properties                      |                |   |       |                              |  |
| Electrical conductor or insulator?         | Good conductor |   |       |                              |  |

μohm · cm





Cast and wrought aluminum alloys, examples of the wide range of properties of this, the most widely used light alloy

## Eco properties: material

| Global production, main component                | $37 \times 10^{6}$ |   |         | metric ton/yr  |
|--------------------------------------------------|--------------------|---|---------|----------------|
| Reserves                                         | $2.0 \times 10^9$  |   |         | metric ton     |
| Embodied energy, primary production              | 200                | _ | 220     | MJ/kg          |
| CO <sub>2</sub> footprint, primary production    | 11                 | _ | 13      | kg/kg          |
| Water usage                                      | 495                | _ | 1,490   | 0 0            |
| Eco-indicator                                    | 710                |   | _, ., . | millipoints/kg |
| Eco properties: processing                       |                    |   |         |                |
| Casting energy                                   | 11                 | _ | 12.2    | MJ/kg          |
| Casting CO <sub>2</sub> footprint                | 0.82               |   | 0.91    | kg/kg          |
| Deformation processing energy                    | 3.3                | _ |         |                |
| Deformation processing CO <sub>2</sub> footprint | 0.19               | _ | 0.23    | kg/kg          |
| End of life                                      |                    |   |         |                |
| Embodied energy, recycling                       | 22                 | _ | 30      | MJ/kg          |
| CO <sub>2</sub> footprint, recycling             | 1.9                | _ | 2.3     | kg/kg          |
| Recycle fraction in current supply               | 41                 | _ | 45      | %              |

Typical uses. Aerospace engineering; automotive engineering—pistons, clutch housings, exhaust manifolds; sports equipment such as golf clubs and bicycles; die cast chassis for household and electronic products; siding for buildings; reflecting coatings for mirrors, foil for containers and packaging; beverage cans; electrical and thermal conductors.