HOST-VIRUS COPHYLOGENY TRAJECTORIES: INVESTIGATING MOLECULAR RELATIONSHIPS BETWEEN CORONAVIRUSES AND BAT HOSTS

Wanlin Li and Nadia Tahiri

Department of Computer Science, University of Sherbrooke, 2500 Bd University, Sherbrooke, Quebec, Canada
Correspondence: Nadia.Tahiri@USherbrooke.ca

The dataset includes sequences from 69 distinct CoV genotypes, which have their origins in 17 different bat species. These genetic sequences have been obtained from GenBank and encompass the complete genome, polyprotein 1ab (ORF1ab), spike sequences of the CoVs, and the cytb gene sequences from the bat specimens.

The 17 bat hosts include individuals in the Aselliscus stoliczkanus, Chaerephon plicatus, Hipposideros pratti, Miniopterus fuliginosus, Miniopterus magnate, Miniopterus pusillus, Myotis ricketti, Pipistrellus abramus, Rhinolophus affinis, Rhinolophus blasii, Rhinolophus ferrumequinum, Rhinolophus macrotis, Rhinolophus pearsoni, Rhinolophus pusillus, Rhinolophus sinicus, Tylonycteris pachypus, and Vespertilio superans. For molecular characterization, cytochrome b (cytb) gene sequences from all sampled bats were sourced from GenBank. This mitochondrial gene has proven instrumental in achieving species-level resolution for mammalian phylogenies within the Order [1, 2, 3].

Table 1: Coronaviruses and bats sequences used for cophylogenetic analyses

Virus	Virus ORF1ab	Virus spike	Host	Host cytb	Reference
${ m complete} \ { m genome}$		ı		,	
KY417142	ATO98106	ATO98108	Aselliscus stoliczkanus	DQ888677	[4, 5]
JX993988	AGC74171(1a);	AGC74176	Chaerephon plicatus	ON640662	[6, 7]
	AGC74177(1b)				
$\rm KF636752$	AIL94214	AIL94216	$Hipposideros\ pratti$	OP894116	[8]
KJ473795	AIA62199	AIA62200	$Miniopterus\ fuliginosus$	AB085735	[9, 10]
KJ473796	AIA62205	AIA62206	$Miniopterus\ fuliginosus$	AB085735	[9, 10]
KJ473797	AIA62211	AIA62212	$Miniopterus\ fuliginosus$	AB085735	[9, 10]
KJ473798	AIA62219	AIA62220	$Miniopterus\ fuliginosus$	AB085735	[9, 10]
KJ473799	AIA62226	AIA62227	$Miniopterus\ full ginosus$	AB085735	[9, 10]
KJ473800	AIA62233	AIA62234	$Miniopterus\ full ginosus$	AB085735	[9, 10]
EU420138	ACA52163	ACA52164	$Miniopterus\ magnater$	ON640726	[7, 11]
EU420137	ACA52156	ACA52157	$Miniopterus\ pusillus$	MN366288	[11]
EU420139	ACA52170	ACA52171	$Miniopterus\ pusillus$	MN366288	[11]
KJ473806	AIA62245	AIA62246	$Myotis\ ricketti$	AB106608	[12, 13]
KJ473820	AIA62342	AIA62343	$Pipistrellus\ abramus$	AB085739	[8, 10]
$\mathrm{EF065509}$	ABN10874	ABN10875	Pipistrellus abramus	AB085739	[10, 14]
$\rm KF569996$	AHX37556(1a);	AHX37558	$Rhinolophus\ affinis$	KP972690	[14]
	AHX37557(1b)				,
$\rm MK211376$	QDF43824	QDF43825	$Rhinolophus\ affinis$	KP972690	[14, 15]
$\rm MK211377$	$\mathrm{QDF}43829$	QDF43830	$Rhinolophus\ affinis$	KP972690	[14, 15]
MN996532	$\mathrm{QHR}63299$	QHR63300	$Rhinolophus\ affinis$	KP972690	[14, 16]
$\mathrm{GU190215}$	ADK66840	ADK66841	$Rhinolophus\ blasii$	MZ936290	[17, 18]
NC014470	$\mathrm{YP003858583}$	$\mathrm{YP003858584}$	$Rhinolophus\ blasii$	MZ936290	[17, 18]
KJ473807	AIA62251	AIA62252	$Rhinolophus\ ferrumequinum$	AB085731	
KJ473808	AIA62258	AIA62259	$Rhinolophus\ ferrumequinum$	AB085731	[10, 12]
KJ473811	AIA62276	AIA62277	$Rhinolophus\ ferrumequinum$	AB085731	
KJ473812	AIA62289	AIA62290	$Rhinolophus\ ferrumequinum$	AB085731	[10, 12]
KJ473813	AIA62299	AIA62300	$Rhinolophus\ ferrum equinum$	AB085731	[10, 12]
Continued on next page	next page				

2

Table $1 - cc$	 continued from previous page 	ious page			
Virus	m Virus~ORF1ab	$ m Virus\ spike$	Host	Host cytb	Reference
$\operatorname{complete}$					
genome					
DQ412043	$ABD75330(1a); \\ ABD75331(1b)$	ABD75332	$\it Rhinolophus\ macrotis$	KX261916	[19]
DQ648857		ABG47069	Rhinolophus macrotis	KX261916	[19]
DQ071615	AAZ67050(1a);	AAZ67052	$Rhinoloar{p}hus\ pearsoni$	JX502551	[20]
	AAZ67051(1b)				
JX993987	AGC74164(1a);	AGC74165	$Rhinolophus\ pusillus$	ON012504	[6, 21]
	AGC74170(1b)				
$\mathrm{KU}973692$	ARO76381(1a)	ARO76382	$Rhinolophus\ pusillus$	ON012504	[6, 21]
DQ022305	AAY88865	AAY88866	$Rhinolophus\ sinicus$	HM134917	[22]
DQ084199	AAZ41328	AAZ41329	$Rhinolophus\ sinicus$	HM134917	[23]
DQ084200	AAZ41339	AAZ41340	$Rhinolophus\ sinicus$	HM134917	[22]
FJ588686	ACU31044	ACU31032	$Rhinolophus\ sinicus$	HM134917	[22, 23]
GQ153539	ADE34721	ADE34722	$Rhinolophus\ sinicus$	HM134917	[22, 23]
GQ153540	ADE34732	ADE34733	$Rhinolophus\ sinicus$	HM134917	[22, 23]
GQ153541	ADE34743	ADE34744	$Rhinolophus\ sinicus$	HM134917	[22, 23]
GQ153542	ADE34754	ADE34755	$Rhinolophus\ sinicus$	HM134917	[22, 23]
GQ153543	ADE34765	ADE34766	$Rhinolophus\ sinicus$	HM134917	
GQ153544	ADE34778	ADE34779	$Rhinolophus\ sinicus$	HM134917	[22, 23]
GQ153545	ADE34789	ADE34790	$Rhinolophus\ sinicus$	HM134917	[22, 23]
GQ153546	ADE34800	ADE34801	$Rhinolophus\ sinicus$	HM134917	[22, 23]
GQ153547	ADE34811	ADE34812	$Rhinolophus\ sinicus$	HM134917	[22, 23]
GQ153548	ADE34822	ADE34823	$Rhinolophus\ sinicus$	HM134917	[22, 24]
KC881005	AGZ48805	AGZ48806	$Rhinolophus\ sinicus$	HM134917	[25, 22]
KC881006	KC881006	AGZ48818	$Rhinolophus\ sinicus$	HM134917	[25, 22]
$\rm KF367457$	AGZ48830	AGZ48831	$Rhinolophus\ sinicus$	HM134917	[25, 22]
KJ473814	AIA62309	AIA62310	$Rhinolophus\ sinicus$	HM134917	[8, 22]
KJ473815	AIA62319	AIA62320	$Rhinolophus\ sinicus$	HM134917	[8, 22]
KJ473816	AIA62329	AIA62330	$Rhinolophus\ sinicus$	HM134917	[8, 22]
$\mathrm{KT}444582$	ALK02468	ALK02457	$Rhinolophus\ sinicus$	HM134917	[26, 22]
KY417143	ATO98118	ATO98120	$Rhinolophus\ sinicus$	HM134917	[4, 22]
KY417144	ATO98130	ATO98132	Rhinolophus sinicus	HM134917	[4, 22]
Continued on next page	next page				

Virus	Virus ORF1ab	Virus spike	Host	Host cytb	$\operatorname{Reference}$
complete					
genome					
KY417146	ATO98155	ATO98157	Rhinolophus sinicus	HM134917	[4, 22]
KY417147	ATO98167	ATO98169	$Rhinolophus\ sinicus$	HM134917	[4, 22]
KY417148	ATO98179	ATO98181	$Rhinolophus\ sinicus$	HM134917	[4, 22]
KY417149	ATO98191	ATO98193	$Rhinolophus\ sinicus$	HM134917	[4, 22]
KY417150	ATO98203	ATO98205	Rhinolophus sinicus	HM134917	[4, 22]
KY417151	ATO98216	ATO98218	$Rhinolophus\ sinicus$	HM134917	[4, 22]
KY417152	ATO98229	ATO98231	$Rhinolophus\ sinicus$	HM134917	[4, 22]
KY770858	ARI44798	ARI44799	$Rhinolophus\ sinicus$	HM134917	[22]
KY770859	ARI44803	ARI44804	$Rhinolophus\ sinicus$	HM134917	[22]
MG772933	AVP78030	AVP78031	$Rhinolophus\ sinicus$	HM134917	[22]
MG772934	AVP78041	AVP78042	$Rhinolophus\ sinicus$	HM134917	[22]
EF203065	ABQ57215	ABQ57216	$Rhinolophus\ sinicus$	HM134917	[22]
KJ473822	AIA62351	AIA62352	$Tylonycteris\ pachypus$	ON640722	[12]
${ m EF065505}$	ABN10838	ABN10839	$Tylonycteris\ pachypus$	ON640722	[14]
KJ473821	AHY61336	AHY61337	Vespertilio superans	AB085738	[8, 10]

References

- [1] Agnarsson, I., Zambrana-Torrelio, C., Flores-Saldana, N. & May-Collado, L. A time-calibrated species-level phylogeny of bats (Chiroptera, Mammalia). *PLoS Currents.* **3** (2011)
- [2] Bradley, R. & Baker, R. A test of the genetic species concept: cytochrome-b sequences and mammals. *Journal Of Mammalogy.* **82**, 960-973 (2001)
- [3] Kocher, T., Thomas, W., Meyer, A., Edwards, S., Pääbo, S., Villablanca, F. & Wilson, A. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings Of The National Academy Of Sciences. 86, 6196-6200 (1989)
- [4] Hu, B., Zeng, L., Yang, X., Ge, X., Zhang, W., Li, B., Xie, J., Shen, X., Zhang, Y., Wang, N. & Others Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. *PLoS Pathogens.* 13, e1006698 (2017)
- [5] Li, G., Liang, B., Wang, Y., Zhao, H., Helgen, K., Lin, L., Jones, G. & Zhang, S. Echolocation calls, diet, and phylogenetic relationships of Stoliczka's trident bat, Aselliscus stoliczkanus (Hipposideridae). *Journal Of Mammalogy.* 88, 736-744 (2007)
- [6] Yang, L., Wu, Z., Ren, X., Yang, F., He, G., Zhang, J., Dong, J., Sun, L., Zhu, Y., Du, J. & Others Novel SARS-like betacoronaviruses in bats, China, 2011. Emerging Infectious Diseases. 19, 989 (2013)
- [7] Wu, Z., Han, Y., Wang, Y., Liu, B., Zhao, L., Zhang, J., Su, H., Zhao, W., Liu, L., Bai, S. & Others A comprehensive survey of bat sarbecoviruses across China in relation to the origins of SARS-CoV and SARS-CoV-2. *National Science Review.* pp. nwac213 (2022)
- [8] Wu, Z., Yang, L., Ren, X., Zhang, J., Yang, F., Zhang, S. & Jin, Q. ORF8-related genetic evidence for Chinese horseshoe bats as the source of human severe acute respiratory syndrome coronavirus. The Journal Of Infectious Diseases. 213, 579-583 (2016)
- [9] Du, J., Yang, L., Ren, X., Zhang, J., Dong, J., Sun, L., Zhu, Y., Yang, F., Zhang, S., Wu, Z. & Others Genetic diversity of coronaviruses in Miniopterus fuliginosus bats. Science China Life Sciences. 59 pp. 604-614 (2016)
- [10] Sakai, T., Kikkawa, Y., Tsuchiya, K., Harada, M., Kanoe, M., Yoshiyuki, M. & Yonekawa, H. Molecular phylogeny of Japanese Rhinolophidae based on variations in the complete sequence of the mitochondrial cytochrome b gene. Genes & Genetic Systems. 78, 179-189 (2003)
- [11] Chu, D., Peiris, J., Chen, H., Guan, Y. & Poon, L. Genomic characterizations of bat coron-aviruses (1A, 1B and HKU8) and evidence for co-infections in Miniopterus bats. *Journal Of General Virology.* 89, 1282-1287 (2008)
- [12] Wu, Z., Yang, L., Ren, X., He, G., Zhang, J., Yang, J., Qian, Z., Dong, J., Sun, L., Zhu, Y. & Others Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. The ISME Journal. 10, 609-620 (2016)
- [13] Kawai, K., Nikaido, M., Harada, M., Matsumura, S., Lin, L., Wu, Y., Hasegawa, M. & Okada, N. The status of the Japanese and East Asian bats of the genus Myotis (Vespertilionidae) based on mitochondrial sequences. *Molecular Phylogenetics And Evolution*. 28, 297-307 (2003)

- [14] Woo, P., Wang, M., Lau, S., Xu, H., Poon, R., Guo, R., Wong, B., Gao, K., Tsoi, H., Huang, Y. & Others Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features. *Journal Of Virology.* 81, 1574-1585 (2007)
- [15] He, B., Zhang, Y., Xu, L., Yang, W., Yang, F., Feng, Y., Xia, L., Zhou, J., Zhen, W., Feng, Y. & Others Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China. *Journal Of Virology*. 88, 7070-7082 (2014)
- [16] Zhou, P., Yang, X., Wang, X., Hu, B., Zhang, L., Zhang, W., Si, H., Zhu, Y., Li, B., Huang, C. & Others A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 579, 270-273 (2020)
- [17] Curran, M., Kopp, M., Ruedi, M. & Bayliss, J. A new species of horseshoe bat (Chiroptera: Rhinolophidae) from Mount Namuli, Mozambique. *Acta Chiropterologica*. **24**, 19-40 (2022)
- [18] Drexler, J., Gloza-Rausch, F., Glende, J., Corman, V., Muth, D., Goettsche, M., Seebens, A., Niedrig, M., Pfefferle, S., Yordanov, S. & Others Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. *Journal Of Virology.* 84, 11336-11349 (2010)
- [19] Sun, K., Kimball, R., Liu, T., Wei, X., Jin, L., Jiang, T., Lin, A. & Feng, J. The complex evolutionary history of big-eared horseshoe bats (Rhinolophus macrotis complex): insights from genetic, morphological and acoustic data. *Scientific Reports.* **6**, 35417 (2016)
- [20] Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J., Wang, H., Crameri, G., Hu, Z., Zhang, H. & Others Bats are natural reservoirs of SARS-like coronaviruses. *Science*. 310, 676-679 (2005)
- [21] Wang, W., Tian, J., Chen, X., Hu, R., Lin, X., Pei, Y., Lv, J., Zheng, J., Dai, F., Song, Z. & Others Coronaviruses in wild animals sampled in and around Wuhan at the beginning of COVID-19 emergence. Virus Evolution. 8, veac046 (2022)
- [22] Lau, S., Woo, P., Li, K., Huang, Y., Tsoi, H., Wong, B., Wong, S., Leung, S., Chan, K. & Yuen, K. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. *Proceedings Of The National Academy Of Sciences.* **102**, 14040-14045 (2005)
- [23] Yuan, J., Hon, C., Li, Y., Wang, D., Xu, G., Zhang, H., Zhou, P., Poon, L., Lam, T., Leung, F. & Others Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans. *Journal Of General Virology*. 91, 1058-1062 (2010)
- [24] Lau, S., Li, K., Huang, Y., Shek, C., Tse, H., Wang, M., Choi, G., Xu, H., Lam, C., Guo, R. & Others Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events. *Journal Of Virology.* 84, 2808-2819 (2010)
- [25] Ge, X., Li, J., Yang, X., Chmura, A., Zhu, G., Epstein, J., Mazet, J., Hu, B., Zhang, W., Peng, C. & Others Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. *Nature*. **503**, 535-538 (2013)

[26] Yang, X., Hu, B., Wang, B., Wang, M., Zhang, Q., Zhang, W., Wu, L., Ge, X., Zhang, Y., Daszak, P. & Others Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus. *Journal Of Virology*. 90, 3253-3256 (2016)