SPECTRUM CAREER INSTITUTE

AOD-1

1. Application in Mechanics and dy/dx as a Rate Measure

1	Velocity:	and Acce	laration i	n Dectili	near Motion
1.	verocity a	ana Acce	ieration i	n keciii	near wollon

Question: 1		(in metre) by a partic	le in t second is given by	$y = t^3 + 2t^2 + t$. The speed of the
	(a) 8 cm/sec.	(b) 6 cm/sec.	(c) 2 cm/sec	(d) None of these
Question: 2	A particle moves in a st where <i>x</i> is measured fro			any point is given by $v^2 = 2 - 3x$,
	(a) Zero	(b) Uniform	(c) Non-uniform	(d) Indeterminate
Question: 3	The position of a point in	n time ' t ' is given by x	$y = a + bt - ct^2$, $y = at + bt^2$.	Its acceleration at time 't' is
	(a) <i>b-c</i>	(b) (b+c)	(c) 2b-2c	$(d) (2\sqrt{)^2 + c^2}$
Question: 4	If the path of a moving p	ooint is the curve	t y = bsinat, then its acce	eleration at any instant [SCRA 1996]
	(a) Is constant		(b) Varies as the disc	ance from the axis of <i>x</i>
	(c) Varies as the distance	ce from the axis of y	(d) Varies as the of t	he point from the origin
Question: 5	A stone thrown vertical	ly upwards from the	surface of the moon at	velocity of 24 <i>m/sec</i> . reaches a
	height of $s = 24t - 0.8t^2m$ moon is	after t sec. The acce	leration due to gravity	in m/sec^2 at the surface of the
	(a) 0.8	(b) 16	(c) 2.4	(d) 4.9

2. Derivative as the Rate of Change

Question: 6 ere of radius r when the radius is increasing at the rate of 2cm/sec is proport

(b)
$$\frac{1}{1}$$

(d)
$$r^2$$

spherical balloon is increasing at the rate of 900 cm²/sec. then the rate of change of Question: 7 instant when radius is 15 cm [in cm/sec]

(a)
$$\frac{22}{7}$$

(d) None of these

A man of height 1.8 m is moving away from a lamp post at the rate of 1.2 m/sec. If the height of the Question: 8 lamp post be 4.5 meter, then the rate at which the shadow of the man is lengthening

(a) 0.4 m/sec

(b) $0.8 \, m/sec.$

(c) 1.2 m/sec.

(d) None of these

A 10 cm long rod AB moves with its ends on two mutually perpendicular straight lines OX and OY. If Question: 9 the end A be moving at the rate of 2 cm/sec. then when the distance of A from O is 8 cm, the rate at which the end B is moving, is [SCRA 1996]

(a) $\frac{8}{3}$ cm/sec (b) $\frac{4}{3}$ cm/sec (c) $\frac{2}{9}$ cm/sec. (d) None of these

SPECTRUM CAREER INSTITUTE

AOD-1

		H	ssignme	ent	
			-	Application in Mechanics	
		Ba	asic Level		
1.	The displacement of	a particle in time <i>t</i> is given	by $s = 2t^2 - 3t + 1$. The acceler		
	(a) 1	(p) 3	(c) 4	(d) 5	
2.	A stone is falling fre	eely and describes a distance	$e s ext{ in } t ext{ seconds given by equ}$	vation $s = \frac{1}{2}gt^2$. The acceleration of	
	the stone is				
	(a) Uniform	(b) Zero	(c) Non-uniform	(d) Indeterminate	
3.	The velocity of a pa	rticle at time t is given by t	he relation $v=6(-\frac{t^2}{6})$. The d	istance travelled in 3 seconds is, if	
	s=0 at $t=0$				
	(a) $\frac{39}{2}$	(b) $\frac{57}{2}$	(c) 51	(d) $\frac{33}{3}$	
4	2	2	where t is massured in he	urs and s in kilometers. when the	
4.		The car is 15 km , the velocity		ars and s in knometers, when the	
	(a) 2km/h	(b) 4km/h	(c) 6km/h	(d) 8km/h	
5.	A particle is moving	in a straight line according a	as $s = 45t + 11t^2 + t^3$, then the	time when it will come to rest, is	
	(a) - 9 seconds	(b) $\frac{5}{3}$ seconds	(c) 9 seconds	(d) $-\frac{5}{3}$ seconds	
6.	If $t = \frac{v^2}{2}$, then $\left(-\frac{df}{dt}\right)$	is equal to (where f is accel	eration)	[MP PET 1991]	
	(a) f^2	(b) *	(c) - f	(d) $-f^2$	
7.		in a straight line according nds then the average velocity		2. If s be measured in <i>meters</i> and t and is	
	(a) 14 m/sec	(b) 13 m/sec	(c) 15 m/sec	(d) None of these	
8.	If $2t = v^2$, then dv/dt	is equal to			
	(a) o	(b) $\frac{1}{4}$	(c) $\frac{1}{2}$	(d) $\frac{1}{v}$	
9.	The equation of motion of a particle moving along a straight line is $s = 2t^3 - 9t^2 + 12t$, where the units of s and t are cm and sec . The acceleration of the particle will be zero after				
	(a) $\frac{3}{2}$ sec	(b) $\frac{2}{3}$ sec	(c) $\frac{1}{2}$ sec	(d) Never	
10.	A body moves according will be (v in cm/sec)	_	, where v is the velocity at	time t. The acceleration after 3 sec	
	(a) 24 cm/sec ²	(b) 12 cm/sec ²	(c) 6 cm/sec ²	[MP PET 1988] (d) None of these	
11.	·	,	, ,	en by $v^2 = a + bx$, where $a, b \ne 0$ are	

constant. The acceleration is

(a) Zero

(b) Uniform

(c) Non-uniform (d) Indeterminate

SPECTRUM INTERACTIVE LIVE CLASSES

(b) Proportional to s

The distance in seconds, described by a particle in t seconds is given by $s = ae^t + \frac{b}{e^t}$. The acceleration of the

(c) s

SPECTRUM CAREER INSTITUTE

particle at time *t* is (a) Proportional to t

velocity is

24.

12.

AOD-1

[MP PET 1992]

(d) Constant

13.	13. A stone thrown vertically upwards rises 's' metre in t seconds, where $s = 80t - 16t^2$, then velocity after 2 se is [SCRA 1996]				
	(a) 8 m per sec.	(b) 16 m per sec.	(c) 32 m per sec.	(d) 64 m per sec.	
14.	_	velled by a particle in time t i	=		
	(a) <i>a</i>	(b) - a	(c) 4b	(d) - 4b	
15.	If the distance travel	led by a point in time t is $s=1$	$180t-16t^2$, then the rate of ch	ange in velocity is	
	(a) – 16 <i>t unit</i>	(b) 48 unit	(c) - 32 unit	(d) None of these	
16.	The motion of stone Then its velocity at t		n by $s = 13.8t - 4.9t^2$, where	is in $metres$ and t is in seconds.	
	(a) 3 <i>m/s</i>	(b) 5 <i>m/s</i>	(c) 4 m/s	(d) None of these	
17.	A particle is moving	in a straight line. Its displace	ement at time t is given by	$s = -4t^2 + 2t$, then its velocity and	
	acceleration at time	4		S/A	
	(a) -2, -8	(b) 2, 6	(c) -2, 8	(d) 2, 8	
18.				. Assuming that the equation of	
		$s = ut - 4.9t^2$, where s is in me			
	(a) 0 <i>m/s</i>	(b) 1 m/s	(c) $29.4 n/s$	(d) None of these	
19.	A particle is moving in velocity (v) is	in a straight line according as	$s = \sqrt{1 + t}$ then the relation	between its acceleration (a) and	
	(a) $a \propto v^2$	(b) a∞1 ³	(c) /a x 1/V	(d) a∝ <i>v</i>	
20.	The distance travelle particle is	ed by a particle moving in a	straight line in time t is s	$=\sqrt{at^2+bt+c}$. Acceleration of the	
	(a) Proportional to t	(b) Proportional to s	(c) Proportional to s	[Kerala (Engg.) 2002] (d) None of these	
		Adva	ance Level		
21.	A particle is moving (a) Rotation	along the curve $x = at^2 + bt + c$. (b) Velocity	If $ac = b^2$, then the particle (c) Acceleration	would be moving with uniform[Oris (d) Retardation	
22.	The equations of mo	otion of two stones thrown	vertically upwards simult	aneously are $s=19.6t-4.9t^2$ and	
	$s = 9.8t - 4.9t^2$ respectively and the maximum height attained by the first one is h . When the height of the first stone is maximum, the height of the second stone will be				
	(a) h/3	(b) 2h	(c) h	(d) o	
23.				ction of time t (in $seconds$) given	
	by $s = at^2 + bt + 6$, $t \ge 0$. If it is known that the particle comes to rest after 4 seconds at a distance of 16 metres from the starting position $(t = 0)$, then the retardation in its motion is				
	(a) $-1m/\sec^2$	(b) $\frac{5}{4}$ m/sec ²	(c) $-\frac{1}{2}m/\sec^2$	(d) $-\frac{5}{4}m/\sec^2$	

A point moves in a straight line during the time t=0 to t=3 according to the law $s=15t-2t^2$. The average

SPECTRUM INTERACTIVE LIVE CLASSES

SPECTRIM	CAREER	INSTITUTE

AOD-1

(a) 3	(b) 9	(c) 15	(d) 27
(-) 5	(-) 5	() 5	(- /

The equation of motion of a stone, thrown vertically upwards is $s = ut - 6.3t^2$, where the units of s and t are cm 25. and sec. If the stone reaches at maximum height in 3sec. then u =

(a) 18.9 cm/sec

(b) 12.6 cm/sec

(c) 37.8 cm/sec

(d) None of these

Rate Measures

Basic Level

Radius of a circle is increasing uniformly at the rate of 3 cm/sec. The rate of increase of area when radius is 10 26. cm, will be

(a) $\pi cm^2/s$

(b) $2\pi \, cm^2 / s$

(c) $10\pi \text{ cm}^2/\text{s}$

(d) None of these

A 10 cm long rod AB moves with its ends on two mutually perpendicular straight lines OX and OY. If the end A 27. be moving at the rate of 2 cm/sec, then when the distance of A from Ox rate at which the end B is [SCRA 1996]

(a) $\frac{8}{3}$ cm/sec

(b) $\frac{4}{3}$ cm/sec

If $y = x^3 + 5$ and x changes from 3 to 2.99, then the approximate changes 28.

(b) - .27

The volume of a spherical balloon is increasing at the rate of 40 cubic ceptimetre per minute. The rate of 29. change of the surface of the balloon at the instant when its radius is 8 centimetre

(a) $\frac{5}{2}$ sq cm/min.

(b) 5 sq cm/min.

c) 10 sq m/min.

(d) 20 sq cm/min.

A ladder 5 m in length is resting against vertical wall. The bottom of the ladder is pulled along the ground away 30. from the wall at the rate of 1.5 m/sec. The length of the highest point of the ladder when the foot of the ladder is 4.0 m away from the wall decreases at the rate of

(a) 2 m/sec

(b) 3 m/

(d) 1.5 m/sec

of constant but the rate of increase of perimeter is constant, then 31. If the rate of increase of area of a circle the rate of increase of area varies

(a) As the square of the perime

as the perimeter (c) As the radius

Advance Level

or at the rate of 30 ft^3/min . Then the rate at which the radius Gas is being pumped into a spherical ballo 32.

(c) $\frac{1}{20}$ ft/min. (d) $\frac{1}{25}$ ft/min.

On dropping a stone in stationary water circular ripples are observed. Rate of flow of ripples is 6 cm/sec. When 33. radius of the circle is 10 cm, then fluid rate of increase in its area is

120 sqcm/sec (b)

(c) $\pi \operatorname{sqcm/sec}$

(d) $120 \pi sq cm/sec$

If the edge of a cube increases at the rate of 60 cm per second, at what rate the volume is increasing when the 34. edge is 90 cm

(a) 486000 cu cm per sec (b) 1458000 cu cm per sec (c) 43740000 cu cm per sec

(d)

If a spherical balloon has a variable diameter $3x + \frac{9}{2}$, then the rate of change of its volume with respect to x is 35.

(a) $27 \pi (2x+3)^2$

(b) $\frac{27\pi}{42}(2x+3)^2$

(c) $\frac{27\pi}{9}(2x+3)^2$

(d) None of these

Two cyclists start from the junction of two perpendicular roads, their velocities being 3v metres/minute and 4v36. metres/minute. The rate at which the two cyclists are separating is

(a) $\frac{7}{2}$ vm/min

(b) 5 *vm* / min

(c) vm/min

(d) None of these

SPECTRUM CAREER INSTITUTE

AOD-1

- **37.** A stick of length *a cm* rests against a vertical wall and the horizontal floor. If the foot of the stick slides with a constant velocity of *b cm/s* then the magnitude of the velocity of the middle point of the stick when it is equally inclined with the floor and the wall, is
 - (a) $\frac{b}{\sqrt{2}}$ cm/s
- (b) $\frac{b}{2}$ cm/s
- (c) $\frac{ab}{2}$ cm/s
- (d) None of these
- **38.** If $y = \int_0^x \frac{t^2}{\sqrt{t^2 + 1}} dt$ then the rate of change of y with respect to x when x = 1, is
 - (a) $\sqrt{2}$

(b) 1/2

- (c) $1/\sqrt{2}$
- (d) None of these

