Tutorial 10

1. Suppose we have data for five objects on two features:

object	x_1	x_2
A	1	1
В	1.5	2
С	3	4
D	3.5	5
E	4.5	5

We set k=2 to cluster the six data points into two clusters, \mathcal{P} and \mathcal{Q} , and initialize the algorithm with the centroids $(x_{1,\mathcal{P}}, x_{2,\mathcal{P}}) = (2,2)$ and $(x_{1,\mathcal{Q}}, x_{2,\mathcal{Q}}) = (4,4)$.

(a) Fill up the following table to identify the objects in each cluster during the first iteration of the k-means algorithm:

cluster	object(s)
\mathcal{P}	
Q	

- (b) Compute the new centroids for the two clusters based on cluster assignment in (a).
- (c) Based on the centroids computed in (b), identify the objects in each cluster during the second iteration of the k-means algorithm.
- (d) Calculate the Within Sum of Squares (WSS) for the clustering assignment in (c).
- 2. (K-Means) Consider data set hdb-2012-to-2014.csv which was extracted from the published data ¹. The file has information on the HDB resale flats from Jan 2012 to Dec 2014.
 - (a) Load data into R. Use k means algorithm to pick an optimal value for k in term of WSS, based on two variables, resale_price and floor_area_sqm.
 - (b) With the optimal k in part (a), plot the data points in the k clusters determined.

 $^{^{1} \}verb|https://data.gov.sg/dataset/resale-flat-prices|$