Graph Convolution

A: Adjacency Matrix

U: Feature Matrix

W: Weight Matrix/ Filter

Graph Convolution

A: Adjacency Matrix

U: Feature Matrix

W: Weight Matrix/ Filter

	N_1	N_2	N_3	N_4	N_5	N_6
N_1	0	1	1	1	1	1
N_2	1	0	1	0	0	0
N_3	1	1	0	0	1	0
N_4	1	0	0	0	0	1
N_5	1	0	1	0	0	0
N_6	1	0	0	1	0	0
Α						

Graph Convolution

A: Adjacency Matrix

U: Feature Matrix

W: Weight Matrix/ Filter

Graph Convolution

A: Adjacency Matrix

U: Feature Matrix

W: Weight Matrix/ Filter

	N_1	N_2	N_3	N_4	N_5	N_6
N_1	0	1	1	1	1	1
N_2	1	0	1	0	0	0
N_3	1	1	0	0	1	0
N_4	1	0	0	0	0	1
N_5	1	0	1	0	0	0
N_6	1	0	0	1	0	0
Α						

N_1	x_1	y_1	z_1		
N_2	x_2	y_2	z_2		
N_3	x_3	y_3	z_3		
N_4	x_4	y_4	z_4		
N_5	x_5	y_5	z_5		
N_6	x_6	y_6	z_6		
U					

$A_{N imes N}$	×	$U_{N imes F^i}$
----------------	---	------------------

	N_1	N_2	N_3	N_4	N_5	N_6
N_1	0	1	1	1	1	1
N_2	1	0	1	0	0	0
N_3	1	1	0	0	1	0
N_4	1	0	0	0	0	1
N_5	1	0	1	0	0	0
N_6	1	0	0	1	0	0

1	, ,, ,		
N_1	x_1	y_1	z_1
N_2	x_2	y_2	z_2
N_3	x_3	y₂y₃y₄	z_3
N_4	x_4	y_4	z_4
N_5	x_5	y_5	z_5
N_6	x_6	y_6	z_6

$$U_{N imes F^i}^{'} imes W_{F^i imes F^{i+1}}$$

Graph Convolution

 $N \times F^i$

Graph Convolution

$$F^{i+1} = \sigma(A_{N imes N} U_{N imes F^i} W^i_{F^i imes F^{i+1}})$$

Here σ is non-linearity in the network. It can be relu, leaky-relu, sigmoid e.t.c. For our work we have considered leaky-relu function.

- It measures the distance between two point set
- o In our case point set contains distinct tuple values which represent (x, y, z) coordinates of 3D point cloud shape. Ex: S1 = $\{(xi, yi, zi)\}$ and S2 = $\{(x'j, y'j, z'j)\}$

- It measures the distance between two point set.
- o In our case point set contains distinct tuple values which represent (x, y, z) coordinates of 3D point cloud shape. Ex: S1 = $\{(xi, yi, zi)\}$ and S2 = $\{(x'j, y'j, z'j)\}$

- It measures the distance between two point set.
- o In our case point set contains distinct tuple values which represent (x, y, z) coordinates of 3D point cloud shape. Ex: S1 = $\{(xi, yi, zi)\}$ and S2 = $\{(x'j, y'j, z'j)\}$

- It measures the distance between two point set.
- o In our case point set contains distinct tuple values which represent (x, y, z) coordinates of 3D point cloud shape. Ex: S1 = $\{(xi, yi, zi)\}$ and S2 = $\{(x'j, y'j, z'j)\}$

$$\mathcal{L}_{chamfer}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

- It measures the distance between two point set.
- In our case point set contains distinct tuple values which represent (x, y, z) coordinates of 3D point cloud shape. Ex: S1 = $\{(xi, yi, zi)\}\$ and S2 = $\{(x'j, y'j, z'j)\}\$

$$\mathcal{L}_{chamfer}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

Ex:
$$S1 = \{1, 2, 3, 4\}$$
 and $S2 = \{3, 4, 1, 6\}$

$$\mathcal{L}_{chamfer}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

$$\mathcal{L}_{chamfer}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

$$\mathcal{L}_{chamfer}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

$$\mathcal{L}_{chamfer}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

Chamfer Distance

$$\mathcal{L}_{chamfer}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

In case of 3D coordinates

Chamfer Distance

$$\mathcal{L}_{chamfer}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

In case of 3D coordinates

Chamfer Distance

$$\mathcal{L}_{chamfer}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

In case of 3D coordinates

- Frechet Inception Distance [3] and Frechet Point Cloud [1]
 - FID is use to evaluate the quality of target image with respect to reference image.
 - FPD is use to evaluate the quality of target point cloud with respect to reference point cloud.
 - These both are the metrics for evaluation and comparison of the deep learning models.
 - We use FID in image generation GAN to evaluate the quality of image generated by the GAN model.
 - Idea of FPD is first proposed is TreeGCN-GAN [1] paper.

- Frechet Inception Distance [3] and Frechet Point Cloud [1]
 - FID is use to evaluate the quality of target image with respect to reference image.
 - FPD is use to evaluate the quality of target point cloud with respect to reference point cloud.
 - These both are the metrics for evaluation and comparison of the deep learning models.
 - We use FID in image generation GAN to evaluate the quality of image generated by the GAN model.
 - Idea of FPD is first proposed is TreeGCN-GAN [1] paper.

- Frechet Inception Distance [3] and Frechet Point Cloud [1]
 - FID is use to evaluate the quality of target image with respect to reference image.
 - FPD is use to evaluate the quality of target point cloud with respect to reference point cloud.
 - These both are the metrics for evaluation and comparison of the deep learning models.
 - We use FID in image generation GAN to evaluate the quality of image generated by the GAN model.
 - Idea of FPD is first proposed is TreeGCN-GAN [1] paper.

- Frechet Inception Distance [3] and Frechet Point Cloud [1]
 - FID is use to evaluate the quality of target image with respect to reference image.
 - FPD is use to evaluate the quality of target point cloud with respect to reference point cloud.
 - These both are the metrics for evaluation and comparison of the deep learning models.
 - We use FID in image generation GAN to evaluate the quality of image generated by the GAN model.
 - Idea of FPD is first proposed is TreeGCN-GAN [1] paper.

- Frechet Inception Distance [3] and Frechet Point Cloud [1]
 - FID is use to evaluate the quality of target image with respect to reference image.
 - FPD is use to evaluate the quality of target point cloud with respect to reference point cloud.
 - These both are the metrics for evaluation and comparison of the deep learning models.
 - We use FID in image generation GAN to evaluate the quality of image generated by the GAN model.
 - Idea of FPD is first proposed is TreeGCN-GAN [1] paper.

- Frechet Inception Distance [3] and Frechet Point Cloud [1]
 - FID is use to evaluate the quality of target image with respect to reference image.
 - FPD is use to evaluate the quality of target point cloud with respect to reference point cloud.
 - These both are the metrics for evaluation and comparison of the deep learning models.
 - We use FID in image generation GAN to evaluate the quality of image generated by the GAN model.
 - Idea of FPD is first proposed is TreeGCN-GAN [1] paper.

- Frechet Inception Distance [3] and Frechet Point Cloud [1]
 - General Idea is

- Frechet Inception Distance [3] and Frechet Point Cloud [1]
 - General Idea is

- Frechet Inception Distance [3] and Frechet Point Cloud [1]
 - General Idea is

- Frechet Inception Distance [3] and Frechet Point Cloud [1]
 - General Idea is

$$|FD = \left|\left|\mu_X - \mu_Y
ight|
ight|^2 - Tr(\Sigma_X + \Sigma_Y - 2\sqrt{\Sigma_X\Sigma_Y})$$

Lower the Frechet Distance better the generated result is.

- Frechet Inception Distance [3] and Frechet Point Cloud [1]
 - General Idea is

$$|FD = \left|\left|\mu_X - \mu_Y
ight|
ight|^2 - Tr(\Sigma_X + \Sigma_Y - 2\sqrt{\Sigma_X\Sigma_Y})$$

Lower the Frechet Distance better the generated result is.

Proposed TreeGCN-ED Model

- Proposed TreeGCN-ED Model
 - Down Branching

- Proposed TreeGCN-ED Model
 - Up Branching

- Loss Function
 - Chamfer distance function is used to train complete TreeGCN-ED model.

- Dataset
 - ShapenetBenchmarkV0 [5]
 - Specifically we trained our model on 2 classes [chair and table]

- Loss Function
 - Chamfer distance function is used to train complete TreeGCN-ED model.

$$\mathcal{L}_{chamfer}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

- Dataset
 - ShapenetBenchmarkV0 [5]
 - Specifically we trained our model on 2 classes [chair and table]

- Loss Function
 - Chamfer distance function is used to train complete TreeGCN-ED model.

$$\mathcal{L}_{chamfer}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

- Dataset
 - ShapenetBenchmarkV0 [5]
 - Specifically we trained our model on 2 classes [chair and table]

- Loss Function
 - Chamfer distance function is used to train complete TreeGCN-ED model.

$$\mathcal{L}_{chamfer}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

- Dataset
 - ShapenetBenchmarkV0 [5]
 - Specifically we trained our model on 2 classes [chair and table]

- **Result and Comparison**
 - **Quantitative Results**

Class	Models	CD	FPD
Table	PointNet-ED [6]	20.89	11849.31
	FoldingNet [7]	0.93	26.04
	TreeGCN-ED	0.70	11.77
Chair	PointNet-ED [6]	12.25	3810.69
	FoldingNet [7]	0.99	17.64
	TreeGCN-ED	0.76	7.60

- Result and Comparison
 - Qualitative Results

- Result and Comparison
 - Qualitative Results

