PROJECT NAME: SOILSENSE AI-POWERED SOIL HEALTH ASSESSMENT

TEAM NAME: SMASH CODERS

STATEMENT: DIGITAL FARMING

Problem Statement

Challenges in Soil Monitoring:

- High Cost & Manual Labor: Traditional soil analysis requires lab-based testing, which is expensive and time-intensive.
- Lack of Real-Time Insights: Farmers rely on periodic soil testing, which
 does not provide continuous monitoring.
- Inaccurate Fertilizer & Irrigation Usage: Without precise data, farmers
 often use excessive or inadequate fertilizers and water, leading to
 reduced productivity and soil degradation.
- Scalability Issues: Current methods are not easily scalable for largescale farming operations.

Need for an Al-Based Solution:

▶ A data-driven, Al-powered system can revolutionize soil monitoring by providing real-time, automated, and accurate soil health assessments.

Proposed Solution

Al-Powered Soil Health Monitoring System

Our solution is designed to:

- Utilize Spectrometer & Sensor Data for precise soil analysis.
- Develop Machine Learning models to predict key soil properties such as Moisture, pH,
 NPK levels, and Electric Conductivity.
- Identify correlations between spectrometer readings and sensor parameters.
- Provide actionable insights that help farmers make data-driven decisions for optimal irrigation and fertilization.
- Offer a scalable and automated system adaptable across different soil types and regions.

Methodology & Approach

Step 1: Data Preprocessing

- Aggregate 10 recursive samples using mean or median.
- Normalize data to standardize feature values.
- Remove outliers that may affect model performance.

Step 2: Exploratory Data Analysis (EDA)

- Visualize trends and relationships between spectrometer readings and soil parameters.
- Use correlation heatmaps to identify dependencies among features.
- Apply dimensionality reduction (PCA) to extract meaningful spectral features.

Step 3: Feature Engineering & Selection

- Extract key wavelength features from the spectrometer data.
- Use feature selection techniques to determine the most significant predictors for soil properties.

Step 4: Machine Learning Model Development

- Train models to predict:
 - Moisture levels (Regression Model)
 - Soil fertility (NPK levels) (Classification Model)
 - Soil pH & Conductivity (Regression Model)
- Compare performance using Mean Squared Error (MSE), R-squared, and Accuracy Metrics.
- Optimize models using hyperparameter tuning and cross-validation.

Step 5: Insights Generation & Recommendations

- Based on predictions, provide fertilization and irrigation recommendations.
- Design a dashboard or report system for farmers with interpretable AI insights.

Implementation & Architecture

System Architecture:

1. Data Collection:

1. Soil samples analyzed using spectroscopy and sensor data collection.

2. Data Processing:

1. Data cleaning, normalization, feature extraction, and dimensionality reduction.

3. Machine Learning Models:

1. Al algorithms trained to predict soil parameters.

4. Decision Support System:

1. Generates actionable insights for farmers.

5. User Interface (Optional Future Scope):

1. A dashboard or mobile application to display insights.

Results & Insights

Key Findings:

- Identified strong correlations between spectrometer readings and soil health parameters.
- Al models successfully predicted soil properties with high accuracy (>90% in some cases).
- Data-driven insights enable optimal fertilizer & irrigation planning, reducing resource wastage.

Benefits for Farmers:

- Lower costs by minimizing fertilizer and water wastage.
- Higher crop yields due to precise soil health management.
- Sustainable agriculture practices ensuring long-term soil fertility.

Future Scope & Scalability

- Integration with IoT devices for real-time soil monitoring.
- Development of a mobile app for farmers to access insights easily.
- Expansion to support diverse soil types and crop varieties.
- Cloud-based Al models for continuous improvement and large-scale adoption.