AI 中的数学

邓小铁 李翰禹

2024年9月28日

目录

第零章	引言	1
第一部	分 AI 的逻辑	2
第一章	合情推理	3
§1.1	命题逻辑的演绎推理	4
§1.2	合情推理的数学模型	12
	§1.2.1 合情推理的基本假设,似然	14
	§1.2.2 似然与概率	19
	§1.2.3 先验与基率谬误	21
§1.3	合情推理的归纳强论证	23
	§1.3.1 归纳强论证	23
	§1.3.2 有效论证和归纳强论证的比较	28
§1.4	先验模型的存在性	33
§1.5	章末注记	35
§1.6	习题	36

目录 iii

第二章	Markov 链与模型	37
§2.1	Markov 链	38
§2.2	Markov 奖励过程(MRP)	49
§2.3	Markov 决策过程(MDP)	55
	隐 Markov 模型(HMM)	64
	§2.4.1 评估问题	67
	§2.4.2 解释问题	69
§2.5	扩散模型	72
5=10	§2.5.1 采样逆向过程	77
	§2.5.2 训练逆向过程	78
82.6	章末注记	81
	习题	81
82.7		01
<i>~~</i> — ÷0		00
第二部	分 信息与数据	82
	分 信息与数据 熵与 Kullback-Leibler 散度	82
	熵与 Kullback-Leibler 散度	
第三章	熵与 Kullback-Leibler 散度 熵	83
第三章	熵与 Kullback-Leibler 散度 嫡	83 84
第三章 §3.1	熵与 Kullback-Leibler 散度 熵	83 84 84 89
第三章 §3.1	熵与 Kullback-Leibler 散度 熵 §3.1.1 概念的导出 §3.1.2 概念与性质 Kullback-Leibler 散度	83 84 84 89 98
第三章 §3.1	熵与 Kullback-Leibler 散度 熵 §3.1.1 概念的导出 §3.1.2 概念与性质 Kullback-Leibler 散度 §3.2.1 定义	83 84 84 89 98
第三章 §3.1 §3.2	熵与 Kullback-Leibler 散度 熵 §3.1.1 概念的导出 §3.1.2 概念与性质 Kullback-Leibler 散度 §3.2.1 定义 §3.2.2 两个关于信息的不等式	83 84 84 89 98 98
第三章 §3.1 §3.2	熵与 Kullback-Leibler 散度 熵 §3.1.1 概念的导出 §3.1.2 概念与性质 Kullback-Leibler 散度 §3.2.1 定义 §3.2.2 两个关于信息的不等式 编码理论	83 84 84 89 98 101 102
第三章 §3.1 §3.2	熵与 Kullback-Leibler 散度 熵 §3.1.1 概念的导出 §3.1.2 概念与性质 Kullback-Leibler 散度 §3.2.1 定义 §3.2.2 两个关于信息的不等式 编码理论 §3.3.1 熵与编码	83 84 84 89 98 101 102

目录 iv

§3 . 4	在机器学习中的应用:语言生成模型	108
§3.5	附录: Shannon 定理的证明	110
§3. 6	习题	113
§3 . 7	章末注记	115
第四章	高维几何,Johnson-Lindenstrauss 引理	117
§4.1	高维几何	119
	§4.1.1 高维球体	119
	§4.1.2 Stein 悖论	123
	§4.1.3 为什么我们要正则化?远有潜龙,勿用	130
§4 . 2	集中不等式	131
§4. 3	J-L 引理的陈述与证明	138
§4 . 4	J-L 引理的应用	143
§4. 5	习题	146
§4. 6	章末注记	147
第五章	差分隐私	149
§5 . 1	数据隐私问题	150
§5 . 2	差分隐私的定义与性质	154
§5. 3	差分隐私的应用	162
	§5.3.1 随机反应算法	162
	§5.3.2 全局灵敏度与 Laplace 机制	165
	§5.3.3 DP 版本 Llyod 算法	169
§5 . 4	习题	172
85.5	音末注记	172

目录 v

第三部	分 决策与优化	173
第六章	凸分析	174
§6 . 1	决策与优化的基本原理	175
	§6.1.1 统计决策理论	175
	§6.1.2 优化问题	178
	§6.1.3 例子: 网格搜索算法	185
§6 . 2	凸函数	189
§6. 3	凸集	195
	§6.3.1 基本定义和性质	196
	§6.3.2 分离超平面定理	200
§6.4	习题	203
§6. 5	章末注记	203
第七章	对偶理论	204
§7 . 1	约束的几何意义	207
§7 . 2	条件极值与 Lagrange 乘子法	215
§7. 3	Karush-Kuhn-Tucker 条件	219
§7 . 4	Lagrange 对偶	224
	§7.4.1 原始规划与对偶规划	224
	§7.4.2 对偶的几何意义	229
	§7.4.3 弱对偶定理	231
	§7.4.4 Slater 条件,强对偶定理	232
§7 . 5	应用: 支持向量机 (SVM)	237
§7 . 6	习题	240
§7 . 7	章末注记	240

目录 vi

第八章	不动点理论	24 1
§8 . 1	Banach 不动点定理	242
§8 . 2	Brouwer 不动点定理	253
§8. 3	习题	260
§8.4	章末注记	260
第四部	分 博弈与逻辑	261
第九章	逻辑与博弈	262
§9 . 1	博弈的基本语言: 以井字棋为例	264
§9 . 2	输赢博弈	266
	§9.2.1 博弈的不同维度	266
	§9.2.2 Zermelo 定理与 AlphaGo Zero	268
§9. 3	正则形式博弈	275
	§9.3.1 定义	276
	§9.3.2 理性与均衡	278
	§9.3.3 生成对抗网络	281
	§9.3.4 混合策略	284
§9 . 4	随机博弈(Markov 博弈)	290
§9 . 5	习题	301
§9. 6	章末注记	301
第五部	3分 认知与逻辑	302
第十章	共同知识,Bayes 博弈,Aumann 知识算子	303
§10.1	1"泥泞的孩童"谜题	306

目录 vii

§10.2 不完全信息博弈(Bayes 博弈) 3	311
§10.3 电子邮件博弈	321
§10.4 Aumann 知识算子	326
§10.5 习题	35
§10.6 章末注记3	35
第十一章 模态逻辑,知识的逻辑 3	36
§11.1 知识逻辑的形式语言	38
§11.2 Kripke 语义	343
§11.3 模态可定义性	350
§11.4 知识逻辑的基本模型与性质3	353
§11.4.1 知识逻辑的 Kripke 模型与公理 3	353
§11.4.2 Kripke 模型与 Aumann 结构 3	60
§11.4.3 "泥泞的孩童"再回顾:形式化解法 3	62
§11.5 对不一致达成一致 3	64
§11.5.1 模型	65
§11.5.2 定理及其证明	168
§11.6 习题	370
§11.7 章末注记 3	;7 0
第六部分 附录: 预备知识 33	71
附录 A 线性代数基础 3	72
§A.1 线性空间3	372
§A.2 线性映射3	179
§A.3 矩阵	885

目录 viii

§A.4	双线性型与二次型	394
§A.5	带内积的线性空间	400
§A.6	行列式	409
§A.7	算子范数与谱理论	413
附录R	微分学基础	422
	点集拓扑	
8D.1		
	§B.1.1 度量空间, 范数	
	§B.1.2 开集与闭集	427
	§B.1.3 紧致性,收敛性,完备性	431
	§B.1.4 连续映射	435
	§B.1.5 与实数序有关的性质	440
§B.2	一元函数的微分学	443
	§B.2.1 导数与微分的定义	444
	§B.2.2 微分学基本定理	449
§B.3	多元函数的微分学	
	§B.3.1 微分、偏导数与导数的定义	
	§B.3.2 微分学基本定理	
	\$B.3.3 隐函数定理	
	Janes Millian Maria	
附录C	概率论基础	470
§C.1	从朴素概率论到公理化概率论	470
	§C.1.1 Kolmogorov 概率论	470
	§C.1.2 条件概率,独立性	476
§C.2	随机变量,分布函数	482
	§C.2.1 基本定义	
	, , _= *	

	§C.2.2	离散型	随机	变量								488
	§C.2.3	连续型	随机	变量								489
	§C.2.4	随机向	量,纟	条件分	}布,	独立	2性					494
	§C.2.5	随机变	量(I	句量)	的函	数						501
§C.3	随机变	量的数	字特征	正,条	、件数	学期	月望					505
	§C.3.1	数学期	望,I	Lebes	gue 🛭	 积分						505
	§C.3.2	数学期	望的怕	生质								512
	§C.3.3	随机变	量的區	内积空	区间							516
	§C.3.4	特征函	数.									519
	§C.3.5	条件数	学期望	望 .								521
§C.4	多元正	态分布	(Gai	uss 向]量)							528
§C.5	大数定	往								 		530

第一部分

AI 的逻辑

第二部分

信息与数据

第四章 高维几何,

Johnson-Lindenstrauss 引

理

作为生活在三维空间中的人,一个令我们倍感着迷的问题是:如果我们的世界是四维、五维甚至更高维的,我们会看到什么样的景象? Christopher Nolan 导演的电影《星际穿越》(Interstellar)给出了一个美妙的想象.

在近未来的地球上,资源匮乏和环境恶化使人类濒临灭绝. 为了寻找新的生存空间,一群科学家和宇航员开始了一次前所未有的宇宙冒险. 他们的目标是穿越一个神秘的虫洞,探索另一片星系中的适居行星.

然而,当主人公 Cooper 和他的团队成功穿越虫洞时,他们发现自己面对的并不仅仅是遥远的星系,还有更加不可思议的挑战. 在探索的过程中,Cooper 最终进入了一个被称为 tesseract 的空间——一个超越我们三维世界的五维空间. 在这个空间中,时间变得像空间一样可以自由导航,过去和未来不再是固定不变的线性进程,而是可以被观察和影

响的维度.

通过操控时间维度,库珀能够在这个超立方体般的结构中,跨越时间的界限,影响他女儿 Murph 的命运,从而拯救全人类.这一情节不仅带给我们震撼的视觉体验,也揭示了一个深刻的物理与几何真理:在高维空间中,我们的直觉常常失效,必须依赖数学工具来理解和探索这些新维度的性质.

高维空间不仅是科学幻想中的概念,也是现实中的客观存在:当我们描述一个人的时候,我们会考虑他的年龄、身高、体重、学历、职业等多个属性,这些属性构成了一个多维的空间.在这个空间中,每个人都是一个点,而这些点之间的距离和关系,构成了我们对这个人的认知和理解.

在计算机的世界中,世界的一切都被表示为了数据,而且往往是高维数据.因此,如何理解和处理高维数据已经成为人工智能领域的一个重要问题.

本章将说明,高维空间有着令人着迷却看似矛盾的两种性质.首先,与我们生活的三维空间相比,高维空间是极其反直觉的,这带来了望而生畏的复杂性,似乎"维数灾难"难以逾越.然而,硬币的另一面是,高维空间中的随机数据几乎都是高度集中,因而他们其实可以被压缩到更低维度的空间中进行处理.这一原理被广泛应用在机器学习中.

从技术上看,我们要证明 Johnson-Lindenstrauss 引理,它表明了高维随机变量的集中性.证明这一引理所用到的概率论技术是矩法,这是机器学习理论中最为核心的几个技术之一.因此本章也可以看做机器学习理论的一个引论.

§4.1 高维几何

§4.1.1 高维球体

首先,我们探讨高维空间中"球体"的特殊性.按照微积分的方式(见附录C.1.1),我们可以定义n维空间中的体积和表面积.定义

$$B_n = \{ x \in \mathbb{R}^n : ||x|| \le 1 \}.$$

这是一个 n 维空间中的单位球体.

第一个反直觉的事实是,随着 n 趋于无穷, B_n 的体积和表面积都会趋于零! 首先,我们给出 n 维单位球体的体积和表面积的计算公式:

定理 4.1 记 V_n 为 n 维单位球体的体积, S_n 为 n 维单位球体的表面积. 那么,

$$V_n = \frac{\pi^{n/2}}{\Gamma(1+n/2)},$$

$$S_n = \frac{2\pi^{n/2}}{\Gamma(n/2)}.$$

其中 Γ 是Gamma函数,对自然数n,它定义为

$$\Gamma\left(\frac{n}{2}\right) = \begin{cases} (m-1)!, & n = 2m, \\ \frac{(2m)!}{4^m m!} \sqrt{\pi}, & n = 2m+1. \end{cases}$$

这一定理的证明对积分的技巧要求较高,我们这里不给出,感兴趣的读者见习题[lhy: 出一下].

这一定理的推论是,随着n的增大, V_n 和 S_n 都会趋于零:

推论 4.1

$$\lim_{n\to\infty} V_n = 0,$$

$$\lim_{n\to\infty} S_n = 0.$$

证明. 当 n 趋于无穷时, 由 Stirling 公式, 我们有

$$\Gamma(n) \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$

因此, 当 $n \to \infty$,

$$V_n \sim \frac{\pi^{n/2}}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n} = \frac{1}{\sqrt{2\pi n}} \left(\frac{e}{n\sqrt{\pi}}\right)^n \to 0.$$

同理, S_n 的极限也为 0.

接下来,我们说明,高维空间中的球体质量分布是极其不均匀的, 大部分质量都集中在球体的边界上. 定义一个半径为 *r* 的 *n* 维球为

$$B_n(r) = \{x \in \mathbb{R}^n : ||x|| \le r\}.$$

那么我们有:

命题 4.1 对任意 ϵ ∈ (0,1),

$$\frac{\lambda(B_n(1-\epsilon))}{\lambda(B_n(1))} = (1-\epsilon)^n.$$

其中 λ 是 \mathbb{R}^n 上的Lebesgue 测度(体积).

因此, 当 n 趋于无穷时, 这一比值以指数速度趋于零.

证明. 利用体积(Lebesgue 测度)的性质(见附录 C.1.1),

$$\lambda(B_n(r)) = r^n \lambda(B_n(1)).$$

代入 $r = 1 - \epsilon$,即可得证.

接下来,我们再说明,如果把 n 维球和 n 维超立方体放在一起看,他们的质量分布也是非常反直觉的. 对于 $n \in \mathbb{N}$, $\epsilon > 0$,定义我们定义一个 n 维的"球壳" $A_{n,\epsilon}$:

$$A_{n,\epsilon} = \{ x \in \mathbb{R}^n : (1 - \epsilon)\sqrt{n/3} < ||x|| < (1 + \epsilon)\sqrt{n/3} \}.$$

这是一个半径为 $\sqrt{n/3}$ 的 n 维"球壳", 厚度为 2ϵ .

我们有如下定理:

定理 4.2

$$\lim_{n\to\infty}\frac{\lambda(A_{n,\varepsilon}\cap(-1,1)^n)}{\lambda((-1,1)^n)}=1,$$

其中 λ 是 \mathbb{R}^n 上的 Lebesgue 测度 (体积).

我们来解释这一定理反直觉的地方.

- 如果我们只看方向 $(1,0,\ldots,0)$ (或者其他"正方向"), 半径为 $\sqrt{n/3}$ 的球壳应该远远超出了 (-1,1) 的范围. 然而,这一定理告诉我们,球壳在超立方体内占据了几乎全部的体积,这说明在其他的方向,球体以不可思议的方式被"压扁"了.
- 当 n 很大时,超立方体 $(-1,1)^n$ 的绝大部分体积都是由一个厚度 为 ϵ , 半径为 $\sqrt{n/3}$ 的 n 维球壳提供的,当 ϵ 很小时,这个球壳

非常薄. 一层薄球壳占据了一个实心立方体的绝大部分体积, 这个在二维和三维空间中也是难以想象的.

接下来,我们证明这一定理.

证明. 为了证明这一定理,我们可以考虑n维随机变量的分布.

设 X_1, X_2, \ldots, X_n 是独立同分布(i.i.d.)的随机变量,且服从均匀分布 U(-1,1). $Z_n = (X_1, X_2, \ldots, X_n)$ 服从均匀分布 $U((-1,1)^n)$. 对任意集合 $A \subseteq \mathbb{R}^n$,有

$$\Pr(Z_n \in A) = \frac{\lambda(A \cap (-1,1)^n)}{\lambda((-1,1)^n)}.$$

我们来计算 $\Pr(Z_n \in A_{n,\epsilon})$.

 $Y_i = X_i^2$ 也是 i.i.d. 的,并且有

$$\mathbb{E}[Y_i] = \int_{-1}^{1} \frac{1}{2} \cdot x^2 dx = \frac{1}{3}.$$

由弱大数定律(定理 C.29), $\sum_{i=1}^{n} X_i^2/n$ 偏离期望 1/3 某个值的概率会随着 n 趋于无穷而趋于零. 更精确来说,当 $n \to \infty$ 时,

$$\Pr\left[\left|\frac{\sum_{i=1}^n X_i^2}{n} - \frac{1}{3}\right| > \epsilon\right] \to 0.$$

变形得

$$\underbrace{\Pr\left[(1-\epsilon)\sqrt{\frac{n}{3}} \leq \sqrt{\sum_{i=1}^{n} X_{i}^{2}} \leq (1+\epsilon)\sqrt{\frac{n}{3}}\right]}_{=\Pr\left[Z_{n} \in A_{n,\epsilon}\right]} \to 1.$$

123

于是,

$$\frac{\lambda(A_{n,\epsilon}\cap(-1,1)^n)}{\lambda((-1,1)^n)}=\Pr\left[Z_n\in A_{n,\epsilon}\right]\to 1.$$

这就完成了证明.

§4.1.2 Stein 悖论

接下来,我们转向更加抽象的高维空间,先考虑一维空间。假设 $X_1 \sim \mathcal{N}(\mu, 1)$,但我们并不知道 μ 是什么。通过随机采样得到了一个样 本 $x_1 = 7$,怎样合理地估计 μ ? 既然没有多余的信息,我们不妨就猜 $\hat{\mu} = 7$,这是一个符合直觉的估计。

然后转向二维空间,假设 $(X_1,X_2)\sim \mathcal{N}(\mu,\mathbf{1}_2)$, $\mu=(\mu_1,\mu_2)$,我们还是不知道 μ 是什么. 同样,随机采样得到样本 $x_1=7,x_2=6$,怎样合理地估计 μ ? 我们似乎依然没有多余的选择, $\hat{\mu}_1=7,\hat{\mu}_2=6$ 看起来也是一个"好的"估计.

现在,转向一般的n维空间,n > 3.假设

$$(X_1, X_2, \ldots, X_n) \sim \mathcal{N}(\mu, \mathbf{1}_n), \quad \mu = (\mu_1, \mu_2, \ldots, \mu_n),$$

 μ 未知. 随机采样得到样本 $x_1, x_2, ..., x_n$,怎样对 μ 进行估计?

直观上看,这似乎与一维、二维空间的情况并无区别. 我们除了直接取

$$\hat{\mu} = (x_1, x_2, \dots, x_n),$$
 (4.1)

似乎没有更好的选择,我们把这种估计称为朴素估计.然而,在这部分我们将看到,在高维空间中,存在比朴素估计更好的估计方法!这就是

Stein 悖论.

为了衡量一个估计量方法的优劣程度,可以定义损失函数(均方误差):

$$\ell = \mathbb{E}\left[\|\hat{\mu} - \mu\|^2\right].$$

均方误差越小,我们认为估计量越好.

然而,好坏这件事情似乎并没有那么简单,在一维的情况下,考虑如下估计量:

1. 一个估计量 \hat{u}_1 是令 u 等于得到的样本点,那么

$$\mathbb{E}\left[\left\|\hat{\mu}_{1}-\mu\right\|^{2}\right]=\mathbb{E}\left[(x-\mu)^{2}\right]=\mathsf{Var}[x]=1.$$

2. 另一个估计量 $\hat{\mu}_2$ 是令 μ 等于一个固定的值, 比如 $\mu = 7$, 那么

$$\mathbb{E}\left[\|\hat{\mu}_2 - \mu\|^2\right] = \mathbb{E}\left[(7 - \mu)^2\right] = (7 - \mu)^2.$$

我们不能明确说明哪一种估计量更好,因为如果 μ 在 7 附近,第二种方法会更好;但是如果 μ 在 0 附近,第一种方法会更好.

上面的例子表明,如果一个模型的参数 μ ,我们很可能无法判断哪一种方法更好. 但有一种情况,我们是可以明确说明一个方法 A 一定不好: 有另外一个估计量在任何 μ 下都比它好. 这就是如下定义:

定义 **4.1** (可接受性) 考虑对参数 μ 的估计量方法 A, 如果存在估计量方法 B, 在任意的 μ 下都成立

$$\ell_B > \ell_A$$

我们就称 A 方法是不可接受的. 否则,我们称 A 方法是可接受的. \Box

有了评判估计量好坏的标准,我们就可以引入 James-Stein 估计量了.

定义 **4.2 (James-Stein 估计量)** 假设采样得到的数据点是 x_1, x_2, \ldots, x_n , 对参数

$$\mu = (\mu_1, \mu_2, \dots, \mu_n)^\mathsf{T},$$

定义 James-Stein 估计量为:

$$\hat{\mu} = \left(1 - \frac{n-2}{x_1^2 + x_2^2 + \dots + x_n^2}\right) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}. \tag{4.2}$$

定理 4.3 (Stein 悖论) 对于 $n \ge 3$,朴素估计 (4.1) 是不可接受的,具体来说,James-Stein 估计量 (4.2) 在任意 u 下都比朴素估计更好.

这一定理的证明十分具有技巧性,我们这里不给出证明,感兴趣的 读者见习题[lhy: 出一下].

比起证明这个定理, 更重要的问题是, 为什么 James-Stein 估计量会比朴素估计更好? 答案正是在于高维空间的反直觉性.

如图 4.1 所示,坐标轴上有一个圆心为 c 的单位圆,圆内随机选取一个点 x,那么

$$\Pr(\|x\| > \|c\|) > \frac{1}{2}.$$

如果不是二维的圆而是高维的球,这一不等式依然成立,并且这种效应

随维数的增加而变强(见习题[lhy: 出一下]). 另一方面,圆心 c 离中心越远,这一概率越接近 1/2.

图 4.1: 高维空间中的采样点

现在,我们回到最早的估计问题,我们把 μ 看作是圆心 c,而随机 采样的点就看作是样本点. 上面的概率不等式意味着,随着维数变高, 朴素估计量 x 与真正的 μ 之间的的差距会越来越大. 不仅如此,朴素估计量对 μ 的估计会偏大.

直觉上,要想更加精确估计 μ ,我们需要比样本点 x 更接近圆心 c. 仔细观察 (4.2),James-Stein 估计量的确是这样做的. 下面,我们详细介绍这一估计量的几何推导.

由于坐标系的选取是随意的,可以设一条坐标轴和 μ 的方向相同, 其他 n-2 根坐标轴方向随意,但正交. 在新坐标系下, $\mu=(\|\mu\|,0,\dots,0)^{\mathsf{T}}$.

设样本是 $x = (x_1, x_2, ..., x_n)^\mathsf{T}$. 损失函数可以被分解成两个部分的和:

$$\ell = (x_1 - \|\mu\|)^2 + \sum_{i=2}^n x_i^2. \tag{4.3}$$

令

$$\rho = \sqrt{\sum_{i=2}^{n} x_i^2}.$$

因为 x 是分量相互独立的 Gauss 向量,坐标轴旋转不改变分量之间的 独立性,因此 ρ 服从自由度为 n-1 的 χ 分布(可参见附录 C.4).

假设样本点恰好满足 $x_1 = \|\mu\|$, 而 x_i 以概率 1 都不为 0, 可以画出图 4.2.

图 4.2: x 与 µ 形成的直角三角形

如果我们直接用样本点 x 作为估计量 $\hat{\mu}$,那么我们产生的偏差在于直边上,因此会有 ρ^2 的损失. 现在,我们尝试移动 $\hat{\mu}$,来减少损失.

我们除了样本点 x 和原点 O 之外,其他任何信息都没有. 因此,盲目的移动反而会带来更大的损失. 结合前面的讨论,我们想要将 $\hat{\mu}$ 靠近原点,因此,一个合理的办法就是沿着斜边 Ox 向原点移动.

根据直角三角形的性质, 当 $\hat{\mu} - \mu$ 与斜边垂直的时候, 损失最小. 我们来推导 $\hat{\mu}$ 的表达式. 设 $\hat{\mu} = \alpha x$. 根据三角形相似的原理, 我们有

$$\frac{|O\hat{\mu}|}{|O\mu|} = \frac{|O\mu|}{|Ox|},$$

$$\iff \frac{\alpha \|x\|}{\|\mu\|} = \frac{\|\mu\|}{\|x\|}$$

$$\iff \alpha = \frac{\|\mu\|^2}{\|x\|^2} = 1 - \frac{\rho^2}{\|x\|^2}.$$

因此,新的估计量是

$$\hat{\mu} = \left(1 - \frac{\rho^2}{\|x\|^2}\right) x = \left(1 - \frac{\rho^2}{x_1^2 + x_2^2 + \dots + x_n^2}\right) x.$$

然而,这一新估计量是不可计算的: 因为我们只知道 O 和旋转之前的 x,所以我们没有办法计算 ρ .为了得到 James-Stein 估计量,我们用一些数字特征来代替 ρ .对于自由度为 k>1 的 χ 分布,其众数是 $\sqrt{k-1}$ (见习题[lhy: 出一下]).用众数来代替 ρ ,就得到了 James-Stein 估计量.

最后,我们给出一些关于 Stein 悖论的讨论.

 存在比 James-Stein 估计量更好的估计量. 直观上,当样本 x 过于 靠近原点的时候, ||x||接近零,因此 James-Stein 估计量会穿过原 点,往反方向跑到很远地方. 这自然会带来很大的损失. 因此,修 正这一行为可以得到更好的估计量,比如

$$\hat{\mu} = \mathsf{ReLU}\left(1 - \frac{n-2}{x_1^2 + x_2^2 + \dots + x_n^2}\right) x,$$

其中

$$\mathsf{ReLU}(x) = \begin{cases} x, & x > 0, \\ 0, & x \le 0. \end{cases}$$

• 我们也可以从偏差-方差权衡的角度来理解 James-Stein 估计量. "距离"这一概念,在代数上,可以做如下分解:

$$\begin{split} \mathbb{E}\left[(\hat{\mu}-\mu)^2\right] &= \mathsf{Var}\left[\hat{\mu}-\mu\right] + (\mathbb{E}\left[\hat{\mu}-\mu\right])^2 \\ &= \mathsf{Var}[\hat{\mu}] + (\mathbb{E}\left[\hat{\mu}-\mu\right])^2. \end{split}$$

前半部分是方差(距离差的平方的期望),后半部分是偏差(距离差的期望的平方). 朴素估计是无偏差估计,但会引入很大的方差. 通过适当引入偏差可能会减小方差,从而减小总体的预测误差, 这就是 James-Stein 估计量的原理.

不过,如果你仔细观察会发现,实际上(4.3)的第一项就是方差, 第二项是偏差.因而,偏差-方差权衡(代数直观)和几何直观其 实在说同一件事情.

- 为什么 James-Stein 估计量在一维和二维空间中不起效? Lawrence Brown 证明了如下的定理: n 维空间中的朴素估计量是可接受的 当且仅当 n 维空间中的简单对称随机游走以概率 1 无限次返回原 点. 这一惊人的联系揭示了这一问题的答案.
 - 一维和二维空间中的随机游走都会以概率1无限次返回原点,因此朴素估计量是可接受的,所以我们不可能找到更好的估计量. 而更高维的空间中,随机游走以概率1无限次返回原点的概率是0,因此朴素估计量是不可接受的,所以James-Stein估计量就起效了!
- Stein 悖论不意味着"中国茶叶的价格可以帮助预测墨尔本的降雨概率"。尽管我们总是可以把毫不相关的随机事件捆绑在一起,然

后利用 James-Stein 估计量减少总体的预测误差,但是这不意味着对其中任何一个事件的预测会更准确.

§4.1.3 为什么我们要正则化?远有潜龙,勿用

在前两节中,我们用了一些简单、理想化的模型说明了高维空间的一些奇异性质.尽管真实的机器学习问题远比这些讨论要复杂,但他们所带来的启示不容忽视.

在机器学习中,我们可以把问题都归结为参数估计问题. 虽然参数空间的"原点"看起来并没有什么不同,但原点这一概念本身确实带着人类先验的知识. 例如,如果一个神经网络的所有参数都是零,无论输入是什么,它都会输出全零. 同样,在 Stein 悖论中,靠近原点就是会产生更好的估计量.

在机器学习中,我们同样有偏好"原点"的倾向,例如使用 L² 正则 化这样的技术可以使模型变得更简单,因此不太可能过拟合. 本节的内 容通过极端的例子展示了正则化背后的原理: 在高维空间中,离原点较 远的地方体积远大于靠近原点的地方. 因此,在高维空间中,向原点收 缩一点就能减少大量的参数空间.

换句话说,对于一个大型机器学习模型来说,过拟合的方式远多于 欠拟合的方式,所以我们倾向于让模型更偏向于欠拟合:欠拟合只会带 来少部分问题,而过拟合带来的是数不胜数、千奇百怪的问题.

模型越远离原点,它的行为就越难以控制和解释.高维几何与 Stein 悖论给我们的启示是,远离原点就会有危险,而在高维空间中,稍微远离原点就会引入大量危险.化用《周易》的一句话:

"远有潜龙, 勿用."1

¹原句出自《周易·乾卦》,"初九:潜龙勿用."孔子对这句话的解释是如果身居下位,

§4.2 集中不等式

我们在前一节中阐述了高维空间中怪诞反直觉的性质. 从本节开始,我们将阐述高维空间中随机变量的另一重属性:集中不等式. 集中不等式说明的是,尽管整个空间非常庞大、难以理解,但如果随机变量具有某些性质,那么它们的取值就会集中在某个非常小的区域内,因而并没有我们所设想的那么复杂. 利用这一原理,我们可以将非常高维的数据压缩到一个较为低维的空间中,从而可以驾驭他们.

接下来,我们先做一些准备工作,更详细的讨论参见附录 C. 我们先引入示性函数的概念.

定义 **4.3 (示性函数)** 对事件 A,定义 A 的示性函数为一个从样本空间 Ω 到 \mathbb{R} 的随机变量:

$$I(A)(\omega) := \begin{cases} 1, & \omega \in A. \\ 0, & \omega \notin A. \end{cases}$$

从定义就可以得到如下基本性质:

命题 4.2 设 A,B 是两个事件,则

- 1. I(AB) = I(A)I(B).
- 2. $I(A)^2 = I(A)$.
- 3. $I(A \cup B) = I(A) + I(B) I(AB)$.

时机还没有成熟,应当像潜藏的龙一样不要施展你的才干. 这里,复杂的、远离原点模型就像是潜龙,隐藏着巨大的力量,但是现在人类对他们的理解还远远不够,因此我们应当保持谨慎,不要轻易使用.

证明. 这里只作为一个示意,证明第三点,其他都类似. 我们需要证明,对任意样本点 $\omega \in \Omega$,我们有

$$I(A \cup B)(\omega) = I(A)(\omega) + I(B)(\omega) - I(AB)(\omega).$$

假设 $\omega \in A \cup B$, 那么左边等于 1. 我们分类讨论:

- 如果 $\omega \in A$, 那么右边第一项为 1.
 - 如果 $\omega \in B$,那么右边第二项为 1. 此时自然也有 $\omega \in AB$, 所以右边第三项为 1、因此右边等于 1、等于左边.
 - 如果 ω ∉ B, 那么右边第二项为 0. 此时自然也有 ω ∉ AB,
 所以右边第三项为 0, 因此右边等于 1, 等于左边.
- 如果 ω ∉ A, 那么右边第一项为 0. 此时必须有 ω ∈ B, 所以右 边第二项为 1. 但是此时自然也有 ω ∉ AB, 所以右边第三项为 0, 因此右边等于 1,等于左边.

如果 $\omega \notin A \cup B$, 讨论类似, 这里不再赘述.

示性函数之所以重要,是因为它联系了期望与概率.我们先来看一个显然的命题:

命题 4.3 设 A 是一个事件,则

$$\mathbb{E}[I(A)] = \Pr(A).$$

示性函数可以把对概率的计算变成对期望的计算. 回忆期望的线性

性 (见命题 C.10): 设 $a,b \in \mathbb{R}$, X,Y 是有期望的随机变量, 那么成立

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y).$$

利用期望的线性性,示性函数可以导出很多概率恒等式与不等式.例如: 容斥公式

$$Pr(A \cup B) = \mathbb{E}[I(A \cup B)] = \mathbb{E}[I(A) + I(B) - I(AB)]$$
$$= \mathbb{E}[I(A)] + \mathbb{E}[I(B)] - \mathbb{E}[I(AB)]$$
$$= Pr(A) + Pr(B) - Pr(AB).$$

对于概率论以及机器学习理论来说,下面的这个不等式非常重要:

定理 4.4 (Markov 不等式) 如果 X 是非负有期望的随机变量, a > 0, 那

$$\Pr(X \ge a) \le \frac{\mathbb{E}[X]}{a}.$$

证明. 直接利用示性函数, 我们有:

$$\mathbb{E}[X] = \mathbb{E}[XI(X \ge a) + XI(X < a)]$$

$$= \mathbb{E}[\underbrace{XI(X \ge a)}_{\ge aI(X \ge a)}] + \mathbb{E}[\underbrace{XI(X < a)}_{\ge 0}]$$

$$\ge a\mathbb{E}[I(X \ge a)] = a\Pr(X \ge a).$$

注意,为了使得证明有效,我们必须要假设上面的推导中出现的期望都是存在的,当然这实际上很容易验证.为了避免不必要的技术细节,在后面的所有证明以及推导中,我们都会默认写出来的期望是存在的,

不再赘述.

我们利用 Markov 不等式可以直接得到以下结果.

推论 4.2 (Chebyshev 不等式) 设 X 是任意有方差的随机变量,那么对任意 a > 0,成立

$$\Pr(|X - \mathbb{E}[X]| \ge a) \le \frac{\mathsf{Var}(X)}{a^2}.$$

证明. 设 $Y = (X - \mathbb{E}[X])^2$, $t = a^2$, 那么 Y 是非负随机变量,且 $\mathbb{E}[Y] = \mathsf{Var}(X)$, 于是由 Markov 不等式,我们有

$$\Pr(|X - \mathbb{E}[X]| \ge a) = \Pr(|X - \mathbb{E}[X]|^2 \ge a^2)$$

$$= \Pr(Y \ge t)$$

$$\le \frac{\mathbb{E}[Y]}{t} = \frac{\operatorname{Var}(X)}{a^2}.$$

Chebyshev 不等式告诉我们采样到偏离其期望的概率有一个上界. 像这样利用矩(即 $\mathbb{E}[f(X)]$)来估计概率上界的方法被称为矩法.

实际上,很多情况下,偏离期望是非常小概率的事件,远小于上面的估计值.为了得到更精确的上界,我们需要一些技巧.考虑任意随机变量 X,对 $\lambda > 0$,

$$X \ge a \iff \lambda X \ge \lambda a \iff e^{\lambda X} \ge e^{\lambda a}$$
.

由 Markov 不等式(如何得到?),

$$\Pr(X \geq a) = \Pr\left(e^{\lambda X} \geq e^{\lambda a}\right) \leq e^{-\lambda a} \cdot \mathbb{E}\left[e^{\lambda X}\right].$$

注意到这个不等式应该对任意 $\lambda > 0$ 成立,所以

$$\Pr(X \ge a) \le \inf_{\lambda > 0} e^{-\lambda a} \cdot \mathbb{E}\left[e^{\lambda X}\right].$$

以上方法可以得到概率更精确的上界. 这样用指数进行推导的方法 称为指数矩或 Cramér-Chernoff 方法.

利用指数矩,我们可以更加精确地研究 Chebyshev 不等式中随机变量所表现出来的性质,这种性质被称为概率的集中性. 我们可以用集中不等式来刻画这样的性质. 这样的不等式描述随机变量 X 有多大概率偏离某个值 μ 多少值 (t),它表现为

$$\Pr(|X - \mu| \ge t) \le 小量$$
.

通常来说, μ 是随机变量的期望或者中位数,在这本书中,只会讨论关于期望的集中性。我们可以看到 Chebyshev 不等式就是一种特殊的集中不等式,但是它的界太松。利用指数矩,我们将证明界更紧的 Hoeffding 不等式和 Chernoff 不等式。

定理 **4.5 (Hoeffding 不等式)** 设 X_1, \ldots, X_n 相互独立且服从对称 Bernoulli 分布,即 X_i 满足 $\Pr(X_i = 1) = 1 - \Pr(X_i = -1) = 1/2$. 考虑向量 $a = (a_1, \ldots, a_n) \in \mathbb{R}^n$,对任意 $t \geq 0$,我们有

$$\Pr\left(\sum_{i=1}^{n} a_i X_i \ge t\right) \le \exp\left(-\frac{t^2}{2\|a\|_2^2}\right).$$

证明. 由指数矩, 我们有

$$\Pr\left(\sum_{i=1}^{n} a_{i} X_{i} \geq t\right) = \Pr\left(\exp\left(\lambda \sum_{i=1}^{n} a_{i} X_{i}\right) \geq \exp\left(\lambda t\right)\right)$$

$$\leq e^{-\lambda t} \mathbb{E}\left[\exp\left(\lambda \sum_{i=1}^{n} a_{i} X_{i}\right)\right]$$

$$= e^{-\lambda t} \prod_{i=1}^{n} \mathbb{E}\left[\exp\left(\lambda a_{i} X_{i}\right)\right].$$

这个不等式对任意 $\lambda > 0$ 都成立. 利用 X_1, \ldots, X_n 服从对称 Bernoulli 分布,得到(习题)[lhy: 习题]

$$e^{-\lambda t} \prod_{i} \mathbb{E}\left[\exp\left(\lambda a_{i} X_{i}\right)\right] \leq \exp\left(-\lambda t + \frac{\lambda^{2}}{2} \sum_{i} a_{i}^{2}\right).$$
 (4.4)

由于这一不等式对任意 $\lambda > 0$ 都成立,根据二次函数的性质,取 $\lambda = t/\sum_i a_i^2$,可得

$$\inf_{\lambda > 0} \exp\left(-\lambda t + \frac{\lambda^2}{2} \sum_{i} a_i^2\right) = \exp\left(-\frac{t}{\sum_{i} a_i^2} t + \frac{1}{2} \left(\frac{t}{\sum_{i} a_i^2}\right)^2 \sum_{i} a_i^2\right)$$
$$= \exp\left(-\frac{t^2}{2 \|a\|_2^2}\right).$$

利用相同的证明技巧,我们可以证明一般形式的 Hoeffding 不等式 (见习题[lhy: 出一下]).

定理 4.6 (Hoeffding 不等式,一般情形) 设 X_1, \ldots, X_n 是相互独立的随

机变量,对任意 i 都成立 $X_i \in [m_i, M_i]$. 那么对任意 $t \ge 0$, 我们有

$$\Pr\left(\sum_{i=1}^{n} (X_i - \mathbb{E}[X_i]) \ge t\right) \le \exp\left(-\frac{2t^2}{\sum_{i=1}^{n} (M_i - m_i)^2}\right).$$

下面我们介绍 Chernoff 不等式.

定理 4.7 (Chernoff 不等式) 设 X_1, \ldots, X_n 是相互独立的随机变量,分别服从于参数为 p_1, \ldots, p_n 的 Bernoulli 分布. 记 $\sum_{i=1}^n X_i$ 的期望为 $\mu = \sum_{i=1}^n p_i$,对于任意 $t > \mu$,我们有

$$\Pr\left(\sum_{i=1}^{n} X_i \ge t\right) \le e^{-\mu} \left(\frac{e\mu}{t}\right)^t.$$

这里e是自然对数的底数.

证明. 和证明 Hoeffding 不等式的第一步相同,我们先利用指数矩,对任意 $\lambda > 0$ 有

$$\Pr\left(\sum_{i=1}^{n} X_i \ge t\right) \le e^{-\lambda t} \prod_{i=1}^{n} \mathbb{E}\left[\exp(\lambda X_i)\right].$$

然后,将 $\prod_{i=1}^n \mathbb{E}[\exp(\lambda X_i)]$ 进一步放缩:

$$\prod_{i=1}^{n} \mathbb{E}\left[\exp(\lambda X_{i})\right] = \prod_{i=1}^{n} \left(e^{\lambda} p_{i} + (1 - p_{i})\right)$$

$$\leq \prod_{i=1}^{n} \exp\left(\left(e^{\lambda} - 1\right) p_{i}\right).$$

因此

$$\Pr\left(\sum_{i=1}^{n} X_{i} \ge t\right) \le e^{-\lambda t} \prod_{i=1}^{n} \exp\left((e^{\lambda} - 1)p_{i}\right)$$

$$= e^{-\lambda t} \exp\left((e^{\lambda} - 1)\sum_{i=1}^{n} p_{i}\right)$$

$$= \exp\left(\mu e^{\lambda} - t\lambda - \mu\right).$$

右边的最小值在 $\lambda = \log(t/\mu)$ 取得,代入得到:

$$\Pr\left(\sum_{i=1}^{n} X_i \ge t\right) \le e^{-\mu} \left(\frac{e\mu}{t}\right)^t.$$

§4.3 J-L 引理的陈述与证明

有了上面矩法的准备, 我们可以陈述并证明 J-L 引理了.

定理 4.8 (Johnson-Lindenstrauss 引理) 给定N个单位向量 $v_1, ..., v_N \in \mathbb{R}^m$ 和 $n > 24 \log N/\epsilon^2$,随机矩阵 $A \in \mathbb{R}^{n \times m}$ 每个元素独立重复采样 自 $\mathcal{N}(0,1/n)$, $\epsilon \in (0,1)$ 是给定常数,那么至少有 (N-1)/N 的概率,使得对所有的 $i \neq j$,都成立

$$(1-\epsilon) \|v_i - v_j\|_2^2 < \|Av_i - Av_j\|_2^2 < (1+\epsilon) \|v_i - v_j\|_2^2.$$

我们可以把 n 理解成降维后的维度, Av_i 是降维后的向量。这个引理告诉我们只要 $n > 24 \log N/\epsilon^2$,我们就可以用变换 A 把原本 m 维的向量映射到 n 维空间,并且保证它们相对距离的偏离不超过 ϵ .

通常来说,相对距离编码了很多重要的信息.例如,如果两个人的

年龄、身高、体重等属性相差很小,那么他们也应该更相似.在这种观点下,我们可以把 *A* 看成一个损失率很低的压缩变换.不严格地说,

塞下N个向量,只需要 $\mathcal{O}(\log N)$ 维空间.

值得注意的是, J-L 引理中压缩空间的维数并不依赖于原始空间的维数, 而只依赖于数据的数量. 因此, 这对于一些抽象空间中数据的降维是非常有用的, 见第 4.4 节.

下面我们开始证明 J-L 引理. 为了看出来证明的思路,我们第一个任务是算出压缩后 Av_i 的分布. 我们首先回忆一些正态向量的基本性质(参考附录 C.4).

命题 **4.4** 假设 $u \sim \mathcal{N}(\mu, \Sigma)$ 是一个 n 维正态向量, M 是一个 $m \times n$ 矩阵,那么 Mu 是一个 m 维正态向量,并且 $Au \sim \mathcal{N}(M\mu, M\Sigma M^T)$.

利用这一个命题,很容易可以得到 Av_i的分布:

引理 4.1 假设 $u \in \mathbb{R}^m$ 是一个单位向量,那么 $Au \sim \mathcal{N}(0, n^{-1}I_n)$.

证明. 将 A 视作一个 mn 维的正态向量,注意到, $(Au)_i = \sum_{j=1}^m A_{ij}u_j$,所以 Au 是一个从向量 A 线性变换得到的向量. 根据命题 4.4,Au 是一个正态向量,只需计算它的期望和协方差矩阵.

注意到,对不同的 i,向量 $(A_{ij})_j$ 相互是独立的,所以分量 $(Au)_i$ 相互也是独立的,因此只需要计算正态变量 $(Au)_i$ 的期望与方差. 其期望为 $\sum_{i=1}^m 0 \cdot u_i = 0$,方差为

$$\sum_{j=1}^{m} \left(\frac{1}{n} \cdot u_j^2 \right) = \frac{1}{n}.$$

所以 Au 的期望是 0,协方差矩阵是 $n^{-1}I_n$.

然而,我们关心的其实不单单是 Av_i 的分布,更重要的其实是 Av_i – Av_j 的分布,即压缩后的向量之间的相对距离.不过,我们并不需要做额外的什么计算,我们直接有如下结果:

引理 **4.2** 向量
$$u = \frac{v_i - v_j}{\|v_i - v_j\|_2}$$
 是一个单位向量,因此 $Au \sim \mathcal{N}(0, n^{-1}I_n)$.

J-L 引理实际上在说, $\|Au\|_2$ 偏离 1 的一定程度的概率是非常小的. 于是,为了证明 J-L 引理,我们最重要的任务是给出 Au 这样向量模长的集中不等式:

引理 **4.3 (单位模引理)** 设 $u \sim \mathcal{N}(0, n^{-1}I_n)$, $\epsilon \in (0,1)$ 是给定的常数,那么我们有

$$\Pr(|\|u\|_2^2 - 1| \ge \epsilon) \le 2 \exp\left(-\frac{\epsilon^2 n}{8}\right).$$

注意到 $\mathbb{E}[\|u\|_2^2] = n \cdot (1/n) = 1$,所以这个引理在说高维空间中,如果正态向量具有单位模长平方期望,那么它的模长就会集中在单位长度附近,因此称为单位模引理。

证明. $||u||_2^2 - 1| \ge \epsilon$ 发生有两种可能, $||u||_2^2 - 1 \ge \epsilon$ 和 $1 - ||u||_2^2 \ge \epsilon$. 我们先来计算 $||u||_2^2 - 1 \ge \epsilon$ 的概率,根据指数矩,

$$\Pr\left(\left\|u\right\|_{2}^{2}-1\geq\epsilon\right)\leq\inf_{\lambda>0}\left\{\mathrm{e}^{-\lambda(\epsilon+1)}\mathbb{E}\left[\mathrm{e}^{\lambda\left\|u\right\|_{2}^{2}}\right]\right\}.$$

因为u的各个分量是相互独立的,所以我们可以把 $\|u\|_2^2$ 展开

$$\mathbb{E}\left[\mathrm{e}^{\lambda\|u\|_2^2}\right] = \mathbb{E}\left[\mathrm{e}^{\lambda\sum_i u_i^2}\right] = \mathbb{E}\left[\prod_i \mathrm{e}^{\lambda u_i^2}\right] = \prod_i \mathbb{E}\left[\mathrm{e}^{\lambda u_i^2}\right].$$

可以算得 $\mathbb{E}\left[\mathrm{e}^{\lambda u_i^2}\right] = \sqrt{n/(n-2\lambda)}$ (见习题[lhy: 出一下]),所以

$$\Pr\left(\|u\|_2^2 - 1 \ge \epsilon\right) \le \inf_{\lambda > 0} \left\{ e^{-\lambda(\epsilon + 1)} \left(\frac{n}{n - 2\lambda}\right)^{n/2} \right\}.$$

可以验证最小值在 $\lambda = n\epsilon/(2(1+\epsilon))$ 处取到,代入可得

$$\Pr\left(\|u\|_2^2 - 1 \ge \epsilon\right) \le e^{n(\log(1+\epsilon) - \epsilon)/2} \le e^{-n\epsilon^2/8}.$$

这里最后一个不等号使用了不等式 $\log(1+\epsilon) \le \epsilon - \epsilon^2/4$.

计算 $1-\|u\|_2^2 \geq \epsilon$ 的概率的过程和 $\|u\|_2^2-1 \geq \epsilon$ 几乎完全相同的,可以得到

$$\Pr\left(1 - \|u\|_2^2 \ge \epsilon\right) \le e^{n(\log(1-\epsilon)+\epsilon)/2} \le e^{-n\epsilon^2/8}.$$

$$\Pr\left(\left|\left\|u\right\|_{2}^{2}-1\right| \geq \epsilon\right) \leq \Pr\left(\left\|u\right\|_{2}^{2}-1 \geq \epsilon\right) + \Pr\left(1-\left\|u\right\|_{2}^{2} \geq \epsilon\right)$$
$$\leq 2e^{-n\epsilon^{2}/8}.$$

有了单位模引理,我们就可以很容易证明 J-L 引理了. 将引理 4.2 中的 u 带入单位模引理,得到

$$\Pr\left(\left|\left\|\frac{A(v_i-v_j)}{\left\|v_i-v_j\right\|_2}\right\|_2^2-1\right|\geq \epsilon\right)\leq 2\exp\left(-\frac{\epsilon^2n}{8}\right).$$

这个结论对任意 $i \neq j$ 成立,因此遍历所有 i,j 对,可得

$$\begin{split} \Pr\left(\exists (i,j): \left| \left\| \frac{A(v_i - v_j)}{\left\| v_i - v_j \right\|_2} \right\|_2^2 - 1 \right| &\geq \epsilon \right) &\leq 2 \sum_{i \neq j} \exp\left(-\frac{\epsilon^2 n}{8}\right) \\ &= 2 \binom{N}{2} \exp\left(-\frac{\epsilon^2 n}{8}\right). \end{split}$$

换言之,对任意 i,j, $\left|\left\|\frac{A(v_i-v_j)}{\|v_i-v_j\|_2}\right\|_2^2-1\right|<\epsilon$ 都成立的概率不小于

$$1 - 2 \binom{N}{2} \exp\left(-\frac{\epsilon^2 n}{8}\right) = 1 - N(N-1) \exp\left(-\frac{\epsilon^2 n}{8}\right).$$

代入 $n > \frac{24 \log N}{\epsilon^2}$,可得这一概率

$$1 - N(N-1) \exp\left(-\frac{\epsilon^2 n}{8}\right) \ge 1 - N(N-1)N^{-3} \ge 1 - N^{-1} = \frac{N-1}{N}.$$

很多时候,我们关心的并不是向量间的距离,而是向量的内积(比如使用余弦度量的时候),这时候我们可以使用内积版本的 J-L 的引理:

定理 4.9 (J-L 引理,内积形式)给定 N 个单位向量 $v_1,\ldots,v_N\in\mathbb{R}^m$ 和 $n>24\log N/\epsilon^2$,随机矩阵 $A\in\mathbb{R}^{n\times m}$ 每一个元素都独立重复采样自 $\mathcal{N}(0,1/n)$, $\epsilon\in(0,1)$ 是给定常数,那么至少有 (N-1)/N 的概率,使得对所有的 $i\neq j$,都成立

$$|\langle Av_i, Av_j \rangle - \langle v_i, v_j \rangle| < \epsilon.$$

证明. 由原始 J-L 引理可知,至少有 $\frac{N-1}{N}$ 的概率满足对于任意 $i \neq j$ 有:

$$(1 - \epsilon) \|v_i - v_j\|_2^2 < \|Av_i - Av_j\|_2^2 < (1 + \epsilon) \|v_i - v_j\|_2^2,$$

$$(1 - \epsilon) \|v_i + v_j\|_2^2 < \|Av_i + Av_j\|_2^2 < (1 + \epsilon) \|v_i + v_j\|_2^2.$$

我们将第一行乘 -1 加到第二行可以得到

$$4\left\langle v_{i},v_{j}\right\rangle -2\epsilon(\left\Vert v_{i}\right\Vert _{2}^{2}+\left\Vert v_{j}\right\Vert _{2}^{2})<4\left\langle Av_{i},Av_{j}\right\rangle <4\left\langle v_{i},v_{j}\right\rangle +2\epsilon(\left\Vert v_{i}\right\Vert _{2}^{2}+\left\Vert v_{j}\right\Vert _{2}^{2}).$$

因为 v_i, v_i 是单位向量,所以上式等价于 $|\langle Av_i, Av_i \rangle - \langle v_i, v_i \rangle| < \epsilon$. \square

§4.4 J-L 引理的应用

J-L 引理描述的是对于 N 个向量,我们可以将它们降到 $\mathcal{O}(\log N)$ 维空间,并将相对距离(或内积)的误差控制在一定范围内. 它的内容本身就和降维相关,所以最基本的应用就是直接作为降维方法. 下面我们将介绍两个具体的应用案例说明 J-L 引理如何指导我们在深度学习中选择合适的维度.

例 4.1 (词向量维度) 在为自然语言建立深度学习模型的时候,我们面对的首要问题就是如何在计算机中表示语言. 我们以中文为例. 如果我们看一句话,中文组成的基本单元是词. 比如,这句话就可以被分解为如下成分:

比如/,/这句话/就/可以/被/分解/为/如下/成分

任何的中文句子都可以被这样分解,变成一个词的序列.这一过程被称为分词.于是,为了表示一段中文,我们只需要能够表示所有的词.

于是,一个基本的任务就是如何表示一个词。词向量就是这样的一个表示方法。它的想法很简单:我们用一个向量空间来表示所有的词,每个词对应一个向量,我们用 v(w) 来表示词 w 对应的向量。

很多时候,这些向量之间的关系可以反映出词之间的语义关系.例如,"男人"和"女人"之间差异应该和"国王"和"女王"之间差异是类似的. 也就是说,我们希望

$$v($$
男人 $) - v($ 女人 $) \approx v($ 国王 $) - v($ 女王 $).$

这里, \approx 表示两个向量之间比较相似. 具体来说,我们通常会用向量的内积来衡量相似度. 也就是说,给定一个词w,我们希望

$$\langle v(w), v($$
男人 $) - v($ 女人 $) \rangle \approx \langle v(w), v($ 国王 $) - v($ 女王 $) \rangle$.

我们可以想象,在真实的世界中,所有的词也构成了一个抽象向量空间,以类似的方式来表示词之间的关系,但这个向量空间的维数我们完全不得而知.对于计算机来说,我们需要选择一个确定的、压缩过的空间来表示词向量.

为了表示这种相似性,在压缩过的词向量空间中,所有词之间的内积应该尽量保持词本身的相似度. 这正是内积形式的 J-L 引理 (定理 4.9) 所描述的情况. 于是,J-L 引理告诉我们, $\mathcal{O}(\log N)$ 维空间足以容纳下 N 个单词,还保持了单词之间的相似性.

到此时,我们要十分警惕"理论指导实践"这一表述的理解. J-L 引理(理论)所指导的结论,成立的前提是"正态随机矩阵",然而我们完全不清楚单词的空间是否符合这一条件. 所以,我们不能说 J-L 引理直接给了我们合适的词向量维度,我们只能说 J-L 引理给了词向量选择的一个

直觉. 具体应该用多少维度的词向量,还需要实验来验证.

例 4.2 (多头注意力) 注意力机制是现代深度学习架构中最核心的模块之一. 注意力机制的一种理解方式是将其看作一个键-值存储. 想象我们把数据都存储到了一个数据库中,它的存储方式是 $\{k_i:v_i\}$, 其中 k_i 是键, v_i 是值,例如"性别:男"就是一种典型的键值对,其中"性别"是键,而"男"是值.

现在,假设数据库中的所有键、值对是 $\{k_i:v_i\}_{i=1}^N$,我们希望从中找到与某个查询 q 最接近的键对应的值. 在深度学习中,键、值、查询都可以按照例 4.1 的方式表示成向量. 类似地,我们可以用内积来衡量键和查询的相似度.

假设这些查询和键的向量都处在 \mathbb{R}^d 中,那么注意力的计算公式为

$$a_j = \frac{\mathrm{e}^{\langle q, k_j \rangle}}{\sum_{i=1}^N \mathrm{e}^{\langle q, k_j \rangle}}.$$

换言之,我们把相似性转化为了概率分布,相似度越高的键,被选中的概率越大。我们把d成为注意力头大小,在很多深度学习框架中,它被记为 head_size.

在很多场景下,一个数据库只能查询一种键-值对的关系,对于一些复杂的问题,我们可能需要查询多种不同的键-值对.例如,对于中文来说,两个词的意思是否相近可以形成一个数据库,而两个词的词性是否相近又可以形成另一个数据库.因此,我们需要多个注意力机制来查询不同的数据库,这就是多头注意力.

在简化的场景下,我们可以假设所有数据库里的 $k_i: v_i$ 对都是一致

§4.5 习题 146

的,只是查询 q_i 不同.那么,多头注意力就是要计算

$$a_{ij} = \frac{\mathrm{e}^{\langle q_i, k_j \rangle}}{\sum_{i=1}^N \mathrm{e}^{\langle q_i, k_j \rangle}}.$$

类似例 **4.1** 的问题,如果真实世界中 a_{ij} 是 p_{ij} ,我们应该如何选择向量维数 d 才能保证 a_{ij} 能够足够好地逼近 p_{ij} 呢?这个问题和例 **4.1** 是一样的.

在这个例子中,词向量的维度变成了 d,词表大小变成了数据库中的键值对数量 N. J-L 引理告诉我们的答案依然是只需要 $\mathcal{O}(\log N)$ 的空间就足以容纳下 N 个键值对,还能保持多组查询与键之间的相似性.

更为重要的是,这个压缩空间的维度 *d* 和查询的数量无关. 这说明,如果有同样多的参数,头很大的单头注意力机制并不如头很小的多头注意力机制. 此外,这也说明无论多少个头,多头注意力的 *d* 并不需要随着头的数量增加而显著增加.

同样地, J-L 引理只是给了我们一个直觉, 具体的维度选择还需要实验来验证.

[lhy: TODO]

§4.5 习题

[lhy: TODO]

§4.6 章末注记 147

§4.6 章末注记

[lhy: TODO]

第三部分

决策与优化

第四部分

博弈与逻辑

第五部分

认知与逻辑

第六部分

附录: 预备知识

参考文献

- [Bre57] Leo Breiman. The Individual Ergodic Theorem of Information Theory. *The Annals of Mathematical Statistics*, 28(3):809–811, 1957.
- [CT12] Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory*. John Wiley & Sons, 2012.
- [Huf52] David A. Huffman. A Method for the Construction of Minimum-Redundancy Codes. *Proceedings of the IRE*, 40(9):1098–1101, September 1952.
- [Inf] Information | Etymology, origin and meaning of information by etymonline. https://www.etymonline.com/ word/information. (accessed 2023-07-10).
- [Jay02] Edwin T. Jaynes. *Probability Theory: The Logic of Science*. Cambridge University Press, 2002.

参考文献 534

[KL51] S. Kullback and R. A. Leibler. On Information and Sufficiency. *The Annals of Mathematical Statistics*, 22(1):79–86, 1951.

- [LLG⁺19] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension, October 2019.
- [McM53] Brockway McMillan. The Basic Theorems of Information Theory. *The Annals of Mathematical Statistics*, 24(2):196–219, June 1953.
- [RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In *Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations*, pages 318–362. MIT Press, Cambridge, MA, USA, January 1986.
- [Rob49] Robert M. Fano. *The Transmission of Information*. March 1949.
- [Sha48] C. E. Shannon. A mathematical theory of communication. *The Bell System Technical Journal*, 27(3):379–423, July 1948.
- [Shi96] A. N. Shiryaev. *Probability*, volume 95 of *Graduate Texts in Mathematics*. Springer, New York, NY, 1996.

*参*考文献 535

[Uff22] Jos Uffink. Boltzmann's Work in Statistical Physics. In Edward N. Zalta, editor, *The Stanford Encyclopedia of Philoso-phy*. Metaphysics Research Lab, Stanford University, summer 2022 edition, 2022.

[李10] 李贤平. 概率论基础. 高等教育出版社, 2010.