Signals and systems End Sem (30M), Time: 1.5hrs

- 1. Let x(t) be a continuous time signal sampled by an impulse train $p(t) = \sum_{n=-\infty}^{\infty} \delta(t-nT)$ such that $x_p(t) = x(t)p(t) = \sum_{n=-\infty}^{\infty} x(nT)\delta(t-nT)$. Let T = 1.
 - (a) Suppose the discrete samples $x_p(t)$ are delayed by n_0 and the impulse response of the ideal low pass filter is delayed by t_0 . Find the reconstructed signal from the discrete samples using the low pass filter with delay mentioned above. (2M)
 - (b) Construct a system with an impulse response g such that the reconstructed signal $x_r(t) = x_p(t) * g(t)$ is $x_r(t) = \frac{d}{dt}(x(t-t_0))$. (3M)
 - (c) Suppose x(t) and y(t) are two band limited signals such that $X(j\omega)$ and $Y(j\omega)$ are both zero for $|\omega| > \omega_M$. Suppose both x(t) and y(t) are sampled with a sampling frequency ω_s such that the condition for sampling theorem is satisfied to obtain discrete samples $x_p(t) = \sum_{n=-\infty}^{\infty} x(nT)\delta(t-nT)$ and $y_p(t) = \sum_{n=-\infty}^{\infty} y(nT)\delta(t-nT)$ where $T = \frac{2\pi}{\omega_s}$. Explain how to obtain x(t) * y(t) from the discrete samples x(nT), y(nT). (2M)
- 2. Consider a real and causal system with impulse response h with no singularity at t=0. Let $H(j\omega)=H_R(j\omega)+jH_I(j\omega)$ be its continuous time Fourier transform. Show that

$$H(j\omega) = \frac{1}{j\pi} \int_{-\infty}^{\infty} \frac{H(j\eta)}{\omega - \eta} d\eta.$$

Find an expression for $H_R(j\omega)$ in terms of $H_I(j\omega)$ and one for $H_I(j\omega)$ in terms of $H_R(j\omega)$. (6+3=9M)

- 3. Find the Laplace transform with the ROC of $x(t) = \frac{e^{t/2}}{n!} \frac{d^n}{dt^n} (t^n e^{-t}) u(t)$. (6M)
- 4. Show that

$$\sum_{n=-\infty}^{\infty} e^{-inT\omega} = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - \frac{2\pi k}{T}).$$

(8M)