Expression Logique et Fonctionnelle ... Évidemment

TD no 4 : λ -calcul

Exercice 1 Syntaxe des λ -termes

Pour chacun des λ -termes M qui suivent, indiquez

- s'il est conforme à la syntaxe décrite en cours ou s'il est simplifié;
- les ensembles FV(M) et BV(M);
- l'ensemble Sub(M).
- 1. $M \equiv (\lambda xyz.z \ y \ x) \ a \ a \ (\lambda pq.q)$.
- 2. $M \equiv y \ (\lambda x.x \ y \ (\lambda zw.y \ z)).$
- 3. $M \equiv (\lambda x.(\lambda y.((((\lambda t.t) x)y) ((y (\lambda z.(x z))) y))).$

Exercice 2 Preuves d'égalité

Montrez que

- 1. $\lambda \vdash \mathbf{K} \mathbf{I} = \mathbf{K}_*$
- 2. $\lambda \vdash \mathbf{S} \mathbf{K} \mathbf{K} = \mathbf{I}$.

Exercice 3 Simplifications

Question 1 Soit $\mathbf{B} \equiv \lambda xyz.x$ $(y\ z)$. Trouvez un terme M « simple » tel que $\lambda \vdash \mathbf{B}\ X\ Y\ Z = M$.

Question 2 Idem avec S K S K S K = M.

Question 3 Idem avec (K I S S) (K I S S).

Exercice 4

Trouvez des termes clos F tel que

- 1. F x = x I.
- 2. $F x y = x \mathbf{I} y$.
- 3. F x = F
- 4. F x = x F.
- 5. $F \ \mathbf{I} \ \mathbf{K} \ \mathbf{K} = F \ \mathbf{K}$.

Exercice 5 Une théorie inconsistente

Montrez que si dans la théorie λ on ajoute l'axiome

S = K

alors tous les termes sont équivalents pour la relation =.

Pour cela comparez les termes $\mathbf{S} \ M \ N \ P$ et $\mathbf{K} \ M \ N \ P$, en prenant $M \equiv P \equiv \mathbf{I}$ et $N \equiv \mathbf{K} \ Q$.