UNIT -1

NUMBER SYSTEMS AND CODES

(covers 20 marks)

Difference between Analog and Digital Signal

SI. No.	Analog Signals	Digital Signals
1	Continuous signals	Discrete signals
2	Represented by sine waves	Represented by square waves
3	Human voice, natural sound, analog	Computers, optical drives, and other
	electronic devices are a few examples	electronic devices
4	Continuous range of values	Discontinuous values
5	Records sound waves as they are	Converts into a binary waveform
6	Only used in analog devices	Suited for digital electronics like
		computers, mobiles and more

Types of number system. (List the types of number system)

In general, there are four different number system they are:

- 1) Decimal Number System
- 2) Binary Number System
- 3) Octal Number System
- 4) Hexadecimal Number System

DECIMAL NUMBER SYSTEM: (Explain the Decimal number system with example)

- Decimal number system has 10 different digits/ symbols 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.
- Base of decimal number system is 10.
- Example: 193₍₁₀₎, 1256.78₍₁₀₎, 3.142₍₁₀₎ etc.

The weights of digits in decimal number is as shown below:

Weight:	103	102	10 ¹	10°		10-1	10-2	
Digits:	1	2	5	6	-	7	8	
Value:	1 X 10 ³	2×10^{2}	5 X 10 ¹	6 X 10 ⁰		7 X 10 ⁻¹	8 X 10 ⁻²	
MSD								LSD

BINARY NUMBER SYSTEM: (Explain the Binary number system with example)

- Binary number system has 2 different digits/ symbols 0 and 1.
- Base of binary number system is 2.
- Each digit in binary number system is known as "bit".
- $\bullet \quad \text{Example: } 101_{(2)} \text{ , } 11011_{(2)} \text{ , } 110.101_{(2)} \text{ etc.} \\$

The weights of digits in binary number is as shown below:

Weight:	23	22	21	20		2-1	2-2
Digits:	1	0	1	1	•	0	1
Value:	1 X 2 ³	0 X 2 ²	1 X 2 ¹	1 X 2º	•	0 X 2 ⁻¹	1 X 2-2

LSB

OCTAL NUMBER SYSTEM: (Explain the Octal number system with example)

- Octal number system has 8 different digits/ symbols 0, 1, 2, 3, 4, 5, 6 and 7.
- Base of octal number system is 8.
- Example: 256₍₈₎, 432.35₍₈₎, 250.06₍₈₎, 125.56₍₈₎ etc.

The weights of digits in octal number is as shown below:

Weight:	82	81	80	8-1	8-2
Digits:	4	3	2	3	5
Value:	4 X 8 ²	3 X 8 ¹	2 X 8 ⁰	3 X 8-1	5 X 8-2
MSD					L

HEXADECIMAL NUMBER SYSTEM: (Explain the Hexadecimal number system with example)

- Hexadecimal number system has 16 different digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F.
- Base of hexadecimal number system is 16.
- Each digit in hexadecimal number system is known as "nibble".
- Example: 256₍₁₆₎, 432.35₍₁₆₎, AB50.06₍₁₆₎ etc.

The weights of digits in hexadecimal number is as shown below:

Value: 40 V 162 0 V 161 2 V 160 2 V 161 5 V 162	Weight: 1	62 161	160		16-1	16-2
Value: 10 X 16 ² 9 X 16 ¹ 3 X 16 ⁰ . 2 X 16 ⁻¹ 5 X 16 ⁻²	Digits:	A 9	3	-	2	5
	Value: 10 2	X 16 ² 9 X 16 ¹	3 X 16 ⁰		2 X 16 ⁻¹	5 X 16-2

Write steps to convert binary number to decimal number with example:

Each digit must be multiplied by its weight and the resulting products are added.

Problem1: Convert 10111.110₍₂₎ into decimal

Answer:
$$10111.110_{(2)} = (1X2^4) + (0X2^3) + (1X2^2) + (1X2^1) + (1X2^0) + (1X2^{-1}) + (1X2^{-2}) + 0$$

= $(1 \times 16) + (0 \times 8) + (1 \times 4) + (1 \times 2) + (1 \times 1) + (1 \times 0.5) + (1 \times 0.25)$
= $16 + 0 + 4 + 2 + 1 + 0.5 + 0.25$
10111.110₍₂₎ = **23.75**₍₁₀₎

Problem2: Convert 110111.11₍₂₎ into decimal

Answer:
$$110111.110_{(2)} = (1X2^5) + (1X2^4) + (0X2^3) + (1X2^2) + (1X2^1) + (1X2^0) + (1X2^{-1}) + (1X2^{-2})$$

= $(1 \times 32) + (1 \times 16) + 0 + (1 \times 4) + (1 \times 2) + (1 \times 1) + (1 \times 0.5) + (1 \times 0.25)$
= $32 + 16 + 0 + 4 + 2 + 1 + 0.5 + 0.25$
10111.110₍₂₎ = **55.75**₍₁₀₎

<u>Table showing relationship between decimal, binary, octal and hexadecimal number system:</u>

Decimal	Binary	Octal	Hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F
16	10000	20	10

Write steps to convert octal number to decimal number:

Each digit must be multiplied by its weight and the resulting products are added.

Problem1: Convert 1523(8) into decimal

Answer:
$$1523_{(8)} = (1X8^3) + (5X8^2) + (2X8^1) + (3X8^0)$$

= $(1 \times 512) + (5 \times 64) + (2 \times 8) + (3 \times 1)$
= $512+320+16+3$
1523₍₈₎ = **851**₍₁₀₎

Problem2: Convert 237.56(8) into decimal

Answer:
$$237.56_{(8)} = (2X8^2) + (3X8^1) + (7X8^0) + (5X8^{-1}) + (6X8^{-2})$$

= $(2 \times 64) + (3 \times 8) + (7 \times 1) + (5 \times 0.125) + (6 \times 0.0156)$
= $128 + 24 + 7 + 0.625 + 0.0936$
237.56₍₈₎ = **159.7186₍₁₀₎**

Write steps to convert Hexadecimal number to decimal number:

Each digit must be multiplied by its weight and the resulting products are added.

Problem1: Convert 256₍₁₆₎ into decimal

Answer:
$$256_{(16)} = (2X16^2) + (5X16^1) + (6X16^0)$$

= $(2 \times 256) + (5 \times 16) + (6 \times 1)$
= $512 + 80 + 6$
256₍₁₆₎ =**598₍₁₀₎**

Problem 2: Convert 7AC. 5₍₁₆₎ into decimal

Answer:
$$7AC.5_{(16)} = (7 \times 16^2) + (10 \times 16^1) + (12 \times 16^0) + (5 \times 16^{-1})$$

= $(7 \times 256) + (10 \times 16) + (12 \times 1) + (5 \times .0625)$
= $1792 + 160 + 12 + .03125$
7AC.5 (16) = 1964.3125(10)

Write steps to convert binary number to octal number:

- 1) Make a group of 3-bits starting from LSB for integer part and from MSB for fractional part.
- 2) Add zeroes at the end to make group f 3-bits, if required.
- 3) Write octal equivalent for each group of 3-bits.

Problem1: Convert 11011011.01101₍₂₎ into octal

Answer:

Octal equivalent for each group of 3-bit to get octal equivalent of given binary number

$$11011011.01101_{(2)} = 333.32_{(8)}$$

Problem 2: Convert 101110.0111₍₂₎ into octal

Answer:

By witting octal equivalent for each group of 3-bit to get octal equivalent of given binary number $101110.0111_{(2)} = 56.34_{(8)}$

Write steps to convert binary number to hexadecimal number:

- 1) Make a group of 4-bits starting from LSB for integer part and from MSB for fractional part.
- 2) Add zeroes at the end to make group of 4-bits, if required.
- 3) Write hexadecimal equivalent for each group of 4-bits.

Problem1: Convert 11011011.01101₍₂₎ into hexadecimal

Answer:

equivalent for each group of 4-bit to get required hexadecimal number

$$11011011.01101_{(2)} = DB.68_{(16)}$$

Problem 2: Convert 1101011011011 (2) into hexadecimal

By witting hexadecimal equivalent for each group of 4-bit to get required hexadecimal number

$$1101011011011_{(2)} = 1ADB_{(16)}$$

Write steps to convert hexadecimal number to binary number:

- 1) Write 4-bit binary equivalent for each hexadecimal digit.
- 2) Remove zeroes at the end.

Problem 1: Convert 13AF₍₁₆₎ into binary.

Remove extra Zeroes

 $13AF_{(16)} = 1001110101111_{(2)}$

Problem 2: Convert 7AC.59(16) into binary.

Answer: 7 A C. 5 9

0111 1010 1100.0101 1001

7AC.59₍₁₆₎ = 11110101100.0101001₍₂₎

Write steps to convert octal number to binary number:

- 1) Write 3-bit binary equivalent for each octal digit.
- 2) Remove zeroes at the end.

Problem 1: Convert 1367₍₈₎ into binary.

 $1367_{(8)} = 1011110111_{(2)}$

Problem 2: Convert 256.2₍₈₎ into binary.

 $256.12_{(8)} = 10101110.01101_{(2)}$

Write steps to convert octal number to hexadecimal number:

- 1) Write binary equivalent for each octal digit.
- 2) Convert binary number obtained in step 1 to hexadecimal number.

Problem 1: Convert 256.2(8) into hexadecimal.

Write steps to convert hexadecimal number to octal number:

- 1) Write binary equivalent for each hexadecimal digit.
- 2) Convert binary number obtained in step 1 to octal number.

Problem 1: Convert AE . 38 (16) into octal.

By witting octal equivalent for each group of 3-bit to get required octal number

$$AE.38_{(16)} = 256.16_{(8)}$$

Write steps to convert decimal number to any other number system:

For integer part (Successive division method)

- 1) Divide the integer part by base of the required number system. Record the Quotient and remainder.
- 2) Consider Quotient as new integer part and repeat step 1 until Quotient becomes 0.
- 3) List the remainders in upward direction.

For fractional part (Successive multiplication method)

- 1) Multiply the fractional part by base of the required number system. Record integer part as carry.
- 2) Consider fractional part as new fractional part and repeat step 1 until required number of digits are obtained.
- 3) List the carry in downward direction.

Problem 1: Convert 12.125 decimal number to binary

Answer: Integer part conversion

$$12 = 1100_{(2)}$$

Therefore,

$$12.125 = 1100.001_{(2)}$$

Fractional part conversion

$$0.125 = 0.001_{(2)}$$

Problem 2: Convert 12.125 decimal number to octal.

Answer: Integer part conversion

$$12 = 14_{(8)}$$

Therefore, $12.125 = 14.1_{(8)}$

Fractional part conversion

$$0.125 \times 8 = 1.0$$
 $0.125 = 0.1_{(8)}$

Problem 3: Convert 125.125 decimal number to hexadecimal.

Answer: Integer part conversion

$$125 = 7D_{(16)}$$

Therefore,
$$125.125 = 7D.2_{(16)}$$

Fractional part conversion

$$0.125 \times 16 = 2.0$$

$$0.125 = 0.2_{(16)}$$

<u>Problem 4: Convert 267.25 decimal number to (i) binary, (ii) octal and (iii) hexadecimal.</u> Answer:

(i) BINARY CONVERSION

Integer part conversion

Fractional part conversion

Therefore, $267.25 = 11001011.01_{(2)}$

(ii) OCTAL CONVERSION

$$267.25 = 11001011.01_{(2)} = 011 001 011.010_{(2)}$$

$$267.25 = 613.2_{(8)}$$

(ii) HEXADECIMAL CONVERSION

$$267.25 = 11001011.01(2) = 1100 1011.0100(2)$$

$$267.25 = CB.6(16)$$

BINARY ADDITION

The binary number system uses only two digits 0 and 1. The four basic rules for binary addition are

- 1) 0+0=0
- 2) 0+1=1
- 3) 1+0=1
- 4) 1+1=10

Perform addition for following numbers:

1) 11101 and 11011.

Solution:

1	1	1	1		← carry
1	1	1	0	1	
1	1	0	1	1	
11	1	0	0	0	

2) 10101 and 110110.

Solution:

←carry

BINARY SUBTRACTION

Rules for binary subtraction are

- 1) 0-0=0
- 2) 1 0 = 1
- 3) 1-1=0
- 4) 0 1 = 1 with barrow 1

Subtract the following numbers:

1) 101 from 1001	2) 111 from 1000	3) 1001 from 1000
Solution:	Solution:	Solution:
1001	1000	1000
<u>1 0 1</u>	111	<u>1001</u>
<u>100</u>	0001	11 1 1 1

BINARY MULPLICATION

1) 10001× 101

10001 × 101 10001

00000

10001

1010101

BINARY DIVISION

11010 ÷ 101 101)11010(**101** <u>101</u> 00110 <u>101</u> **001**

Quotient = 101 Remainder = 001

1's and 2's complement of binary number:

1's and 2's complement of binary numbers are used to represent signed binary numbers.

1's complement of binary number:

The 's complement of binary number is obtained by changing all 1s to 0s and all 0s to 1s as shown below:

01001101

Binary number

1's complement

2's complement of binary number:

The 2's complement of binary number is obtained by adding 1 to the LSB of 1's complement.

2's complement = (1's complement) +1

Problem 1: Find 2's complement of 10110010

Answer: 10110010

Binary number

01001101

1's complement

+ 1

Add 1

01001110

2's complement

Application of 1's complement and 2's complement:

1's and 2's complement of binary number are used to represent signed binary numbers.

Representation of signed binary numbers using 1's and 2's complement:

Binary number	1's complement value	2's complement value
000	0	0
001	1	1
010	2	2
011	3	3
100	-3	-4
101	-2	-3
110	-1	-2
111	-0	-1

Binary Subtraction using 1's complement addition:

Steps to perform (A-B):

- 1. First take 1's complement of B
- 2. Then add 1's complement of B to A.
- 3. If there is a carry, then result is positive add carry to result to get final result.
- 4. If there is no carry, then result is negative and take 1's complement of the result.

1. Perform 110110 – 1011 using 1's complement addition

Answer:

Step 1: Make both the numbers equal in number of bits i.e., 110110 - 010110

Step 2: Take 1's complement of 2^{nd} number 010110 1's complement of 010110 is \rightarrow 101001

Step 3: Add 1st number and 1's complement of 2nd number

110110 101001 1011111 +1

Step 4: Add carry to result _

110110 - 1011 = 100000₍₂₎

2. Perform 1100 – 10110 using 1's complement addition

Answer:

Step 1: Make both the numbers equal in number of bits i.e., 01100 -10110

100000

Step 2: Take 1's complement of subtrahend 10110

1's complement of 10110 is \rightarrow 01001

Step 3: Add 1st number and 1's complement of 2nd number

1 ←carry 0 1 1 0 0 0 1 0 0 1 1 0 1 1 0 1 0 1

Step 4: There is no carry, hence result is negative. Take 1's complement of result

1's complement of $10101 \rightarrow 01010$

1100-10110 = 01010₍₂₎

Binary Subtraction using 2's complement addition:

Steps to perform (A-B):

- 1. First take 2's complement of B
- 2. Then add 2's complement of B to A.
- 3. If there is a carry, then drop the carry and the result is positive.
- 4. If there is no carry, then result is negative and take 2's complement of the sum.

1. Perform 110110 - 10110 using 2's complement addition

Answer:

Step 1: Make both the numbers equal in number of bits i.e., 110110 - 010110

Step 2: Take 2's complement of 2nd number 010110

1's complement of 010110 is \rightarrow 101001

2's complement of 010110 is \rightarrow 101010

Step 3: add 1st number and 2's complement of 2nd number

1 1 1 1 **←**carry

110110

<u>101010</u>

1100000

Step 4: there is carry, hence neglect the carry. **110110-010110=100000**

2. Perform 1100 – 10110 using 2's complement addition

Step 1: Make both the numbers equal in number of bits i.e., 01100 -10110

Step 2: Take 2's complement of subtrahend 10110

1's complement of 10110 is → 01001

+1

2's complement of 010110 is \rightarrow 01010

Step 3: Add minuend and 2's complement of subtrahend

1 ←carry

01100

<u>01010</u>

<u>10110</u>

Step 4: There is no carry, hence result is negative. Take 2's complement of result

1's complement of 10110 \rightarrow 01001

+1

2's complement of 10110 → **01010**

 $1100 - 10110 = 01010_{(2)}$