Transcriptome $Penaeus\ monodon$

9/22/2021

The samples used for this analysis were:

Group	Sample ID
knockdown_PmSTAT	1_S1
knockdown_PmSTAT	2_S2
knockdown_PmSTAT	3_S3
WSSV_infection	4_S4
WSSV_infection	5_S5
WSSV_infection	6_S6
WSSV_infection	7_S7
WSSV_infection	8_S8
$knockdown_PmSTAT_WSSV_infection$	9_S9
knockdown_PmSTAT_WSSV_infection	10_S10
$knockdown_PmSTAT_WSSV_infection$	11_S11
$\underline{knockdown_PmSTAT_WSSV_infection}$	12_S12

Quality pre-treatment

The raw data were filtered using Trimmomatic with this parameters:

- 1. Remotion of adapters and N's
- 2. Average quality of reads > Q20

In the next table and graph we can observe the number of reads before $(1.Raw_data)$ and after $(2.Qual-ity_filtered)$ the quality pre-treatment.

Sample	Raw data	Quality filtered	% after quality
1_S1	16 202 030	16 097 983	99.35
2_S2	$12\ 890\ 555$	12 788 438	99.20
3_S3	$839\ 588$	830 354	98.90
4_S4	$14\ 467\ 820$	$14\ 371\ 003$	99.33
5_S5	$13\ 316\ 992$	$13\ 245\ 638$	99.46
6_S6	$43\ 615\ 302$	$43\ 404\ 612$	99.51
7_S7	$13\ 142\ 443$	$13\ 070\ 733$	99.45
8_S8	$13\ 871\ 940$	$13\ 791\ 480$	99.41
9_S9	$10\ 403\ 660$	$10\ 335\ 646$	99.34
10_S10	$14\ 615\ 414$	$14\ 500\ 097$	99.21
11_S11	$14\ 428\ 705$	$14\ 355\ 271$	99.49
12_S12	11 557 788	11 479 499	99.32

Figure 1: Read count before and after the quality filtering

$De\ novo$ assembly with Trinity

With the quality filtered data, we made a de novo assembly with Trinity. These are the Trinity.fasta stats:

Counts of transcripts, etc.	
Total trinity 'genes'	586 928
Total trinity transcripts	778 680
Percent GC	37,7
-	-
Stats based on ALL transcript contigs	
Contig N10	$3\ 271$
Contig N20	1 700
Contig N30	799
Contig N40	574
Contig N50	472
Median contig length	331
Average contig	467,55
Total assembled bases	364 068 637
-	-
Stats based on ONLY LONGEST ISOFORM per 'GENE'	
Contig N10	1672
Contig N20	727
Contig N30	565
Contig N40	479
Contig N50	417
Median contig length	325
Average contig	409,1
Total assembled bases	240110795

To determine the representativeness of our samples in the assembly, each of them was realigned using bowtie2.

Sample	% realigned
1_S1	76.34
2_S2	90.59
3_S3	87.12
4_S4	89.03
5_S5	88.54
6_S6	91.74
7_S7	89.92
8_S8	85.38
9_S9	92.13
10_S10	84.76
11_S11	91.25
$12_\mathrm{S}12$	78.82

Figure 2: Percentage of reads realigned to the assembly

Differential expression with ${\bf DESeq2}$

We used the DESeq2 with $Log\ Fold\ Change>2$ and p-value<0.05.

Considering genes

WSSV infection vs knockdown PmSTAT	DE genes
knockdown PmSTAT-UP	56
WSSV infection-UP	813

WSSV infection vs knockdown PmSTAT WSSV infection	DE genes
knockdown PmSTAT WSSV infection-UP	138
WSSV infection-UP	675

knockdown PmSTAT wskv infection	DE genes
knockdown PmSTAT-UP	0
knockdown PmSTAT WSSV infection-UP	0

Figure 3: Correlation between samples considering genes

Figure 4: Hierarchical clustering considering genes

Considering isoforms

WSSV infection vs knockdown PmSTAT	DE isoformsd
knockdown PmSTAT-UP	92
WSSV infection-UP	496

WSSV infection vs knockdown PmSTAT WSSV infection	DE isoforms
knockdown PmSTAT WSSV infection-UP	474
WSSV infection-UP	1242

knockdown PmSTAT vs knockdown PmSTAT WSSV infection	DE isoforms
knockdown PmSTAT-UP	0
knockdown PmSTAT WSSV infection-UP	0

Figure 5: Correlation between samples considering all isoforms

Figure 6: Hierarchical clustering considering all isoforms