MATH-505A: Homework # 2

Due on Friday, September 5, 2014

Saket Choudhary 2170058637

Contents

Exercise # 1.5	3
(1)	
$(2) \ldots \ldots$;
$(3) \ldots \ldots$	4
(4)	4
$(5) \ldots \ldots$	Ę
(7)	ļ

Exercise # 1.5

(1)

Given: A, B are independent

To Prove: (A^C, B) ; (A^C, B^C) are independent

Since A, B are independent:

$$P(A \cap B) = P(A)(B) \tag{1}$$

Thus,

$$P(A \cap B) = (1 - P(A^C))P(B) = P(B) - P(B)P(A^C)$$
(2)

Rearranging 2:

$$P(B)P(A^C) = P(B) - P(A \cap B)$$
(3)

 $P(B) - P(A \cap B)$ signifies 'in B but not in A AND B'. Thus, it should belong to A^C AND B

$$P(B) - P(A \cap B) = P(A^C \cap B) = P(A^C)P(B)$$

$$\tag{4}$$

From 3 and $4:A^C.B$ are independent.

Similary to prove A^C, B^C are independent, we perform substitute B^C in $P(B \cap A^C)$

(2)

 $A_{ij} = i^{th}$ and j^{th} rolls produce the same number.

For any $i \neq j$, total outcome are 6 * 6 = 36 and number of favourable outcomes are $\binom{6}{1} * 1 = 6$, thus $p(A_{ij}) = \frac{6}{36} = \frac{1}{6}$

Consider $P(A_{ij} \cap A_{kj})$, such that $i \neq j \neq k$, then:

 $P(A_i j \cap A_j k)$ refers to the probability when i^{th}, j^{th} and k^{th} rolls show the same number, which can be calculated as: $P(A_{ij} \cap A_{kj}) = \frac{\binom{6}{1}*1*1}{6*6*6} = \frac{1}{36} = P(A_{ij})P(A_{kj})$ Thus, A_{ij} are pairwise independent as it is true for any choice of i, j, k as long as $i \neq j \neq k$

$$P(A_{i}j \cap A_{j}k \cap A_{k}l) = \frac{\binom{6}{1}*1*1*1}{6*6*6} = \frac{1}{36} \neq P(A_{ij})P(A_{jk})P(A_{kl})$$
 Since $P(A_{i}j \cap A_{j}k \cap A_{k}l) \neq P(A_{ij})P(A_{jk})P(A_{kl})$, it will not be true in general.

And since the independence criterion is not satisfied for the above case, it will not be true for a case for all A_{ij} are considered together for all values of i, j.

(3)

To Prove:

- (a) outcomes of coin tosses are independent
- (b) Given a sequence of length m of heads and tails the chance of it occurring in first m tosses i s $2^{-}m$.

In order to prove (a) and (b) are equivalent it is sufficient to prove that if $a \implies b$ and $b \implies a$.

If the outcomes are independent, probability of a head or tail in a sequence is $\frac{1}{2}$. Consider m tosses, since they are independent the probability of seeing any string of H and T is given by $\frac{1}{2} * \frac{1}{2} * ... * (m) times = \frac{1}{2^m} = 2^{-m}$. Hence $\implies b$.

Now consider if b is true, then: $P(m) = 2^{-m} \implies P(m+1) = 2^{-(m+1)}$, . The P(m+1) case is similar to P(m) with an extra toss. $P(m+1) = 2^{-m} * \frac{1}{2}$. The extra half factor is accounted by the extra toss that is performed which must be independent wit respect to the m tosses for yielding such a relation for $P(m+1) \implies a$ is true

and hence $a \iff b$ and $a \implies b$

(4)

Given: $\Omega = \{1, 2, 3, ...p\}$ where p is prime. F is set of all subsets of ω ; $P(A) = \frac{|A|}{p}$ To Prove: A 'or' B is a null set or is the set Omega

$$P(A) = \frac{|A|}{2}$$

$$P(A) = \frac{P(A)}{p}$$
$$P(B) = \frac{|B|}{p}$$

Now, by definition:

$$P(A \cap B) = \frac{|A \cap B|}{p} \tag{5}$$

Since A, B are independent:

$$P(A \cap B) = P(A)P(B) = \frac{|A \cap B|}{p} = \frac{|A|}{p} \frac{|B|}{p}$$
 (6)

Thus:

$$p|A \cap B| = |A||B| \implies |A||B| \mod p = 0 \tag{7}$$

where *mod* operator gives the remainder.

and

$$0 \le |A|, |B| \le p \implies |A|or|B| = pOR|A|, |B| = 0 \implies A, B$$
 are either null or complet sets(with $|A|, |B| = |\Omega|$).

(5)

Given:

$$P(A, B|C) = P(A|C)P(B|C)$$
(8)

for all A,B. For which event C, are A and B(for all A,B) independent iff they are conditionally independent given C: ?

If A, B are independent:

$$P(A|B) = P(A) \tag{9}$$

$$P(A, B|C) = \frac{P(A, B, C)}{P(C)} = P(A|B, C) * \frac{P(B, C)}{P(C)} = P(A|B, C) * P(B|C)$$
(10)

Comparing 8 and 10, we need to prove that P(A|C) = P(A|B,C) given that P(A|B) = P(A) For P(A|B) = P(A) can be made true if we set P(C)P(A,B|C) = P(A|C)P(B|C)

Thus
$$P(C) = 1$$

(7)

 $A = \{ \text{all children of same sex } \}$

 $B = \{ \text{ there is at most one boy } \}$

 $C = \{ \text{ one boy and one girl included } \}$

$$P(A) = P(\text{ all boys }) + P(\text{all girls}) = \frac{1}{2} * \frac{1}{2} * \frac{1}{2} * 2 = \frac{1}{4}$$

$$P(B) = P(0 \text{ boys}) + P(+1boy) = \frac{1}{8} + 3 * \frac{1}{8} = \frac{1}{2}$$

$$P(C) = P(1 \text{ boy } + 1 \text{ girl }) = 2 * \frac{1}{2} *] frac 12 * \frac{1}{2} * 3 = \frac{3}{4}$$

Part a): A is independent of B and B is independent of C

 $P(A \cap B) = \text{all children are of same sex AND there is at most one boy} \implies \text{all children are boys} \implies P(A \cap B) = \frac{1}{2} * \frac{1}{2} * \frac{1}{2} = \frac{1}{8} = P(A) * P(B).$

Hence A,B are independent

 $P(B \cap C)$ = there is at most one boy AND there is one boy and a girl \implies there is one boy and two girls.

 $P(B \cap C) = \frac{1}{2} * \frac{1}{2} * \frac{1}{2} * 3 = \frac{3}{8} = P(B) * P(C)$

Hence B,C are independent

Part b): Is A independednt of C?

 $P(A \cap C)$ = the family includes boy and girl AND all children are of same sex

Clearky $P(A \cap B) = \phi$ and hence A,B are not necessarily independent!

Part c): Do the results hold if boys and girls are not equally likely?

NO. Since

Part d): Do these results hold if there are 4 children?

Yes, the calculations are independent of the number of children since independence relations are not dependent on the number.