```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import csv
   import math
   import random
   from matplotlib import collections as mc
   import scipy.stats as st
   from scipy import stats
   import statsmodels.api as sm
   from collections import defaultdict
   from scipy.constants import golden
   import gc
   from io import StringIO
# gc.collect()
```

Esiti Biologia

```
In [2]: df = pd.read_csv("Risultati EBPP 24 GENNAIO 2025.csv", sep=";", decimal=".")
    df.describe()
```

ut[2]:		primo_voto_nov	primo_errate	primo_vuote	primo_corrette	primo_vegetale	pri
	count	100.000000	52.000000	52.000000	52.000000	51.000000	
	mean	15.915000	22.153846	20.750000	37.096154	19.916667	
	std	5.682925	9.738512	11.189762	9.618731	5.474867	
	min	1.400000	4.000000	0.000000	10.000000	5.750000	
	25%	12.200000	14.750000	13.750000	30.000000	16.125000	
	50%	16.300000	22.000000	18.000000	37.000000	20.750000	
	75%	20.050000	27.250000	30.000000	42.250000	23.500000	
	max	27.300000	46.000000	47.000000	60.000000	30.750000	
	4						•

Numero e percentuale di studenti che è stata complessivamente sufficiente nell'esame:

```
In [3]: print(str(df["voto_medio"].count()) + " - " + str(round((df["voto_medio"].count())));
```

Numero e percentuale di studenti che è stata sufficiente nel primo esame (sia Novembre, che Gennaio):

```
In [4]: print(str(df[(df["primo_voto_nov"] >= 18) | (df["primo_voto_gen"] >= 18)]["matri
53 - 44.54%
```

Numero e percentuale di studenti che è stata sufficiente nel primo esame a Novembre:

```
In [5]: print(str(df[(df["primo_voto_nov"] >= 18)]["matricola"].count()) + " - " + str(r
37 - 31.09%
```

Numero e percentuale di studenti che è stata sufficiente nel il primo esame a Gennaio:

Numero e percentuale di studenti che è stata sufficiente nel secondo esame:

```
In [7]: print(str(df[(df["secondo_voto"] >= 18)]["matricola"].count()) + " - " + str(rou
18 - 15.13%
```

Medie di risposte nel primo esame:

```
In [8]: print("Errate: " + str(round(df["primo_errate"].mean(), 2)) + " - " + str(round(
    print("Vuote: " + str(round(df["primo_vuote"].mean(), 2)) + " - " + str(round((d
    print("Corrette: " + str(round(df["primo_corrette"].mean(), 2)) + " - " + str(round((d
    print("Errate: 22.15 - 27.69%
    Vuote: 22.15 - 27.69%
    Vuote: 20.75 - 25.94%
    Corrette: 37.1 - 46.37%
```

Medie di risposte nel secondo esame:

```
In [9]: print("Errate: " + str(round(df["secondo_errate"].mean(), 2)) + " - " + str(round print("Vuote: " + str(round(df["secondo_vuote"].mean(), 2)) + " - " + str(round( print("Corrette: " + str(round(df["secondo_corrette"].mean(), 2)) + " - " + str(
Errate: 20.63 - 25.79%
Vuote: 18.03 - 22.54%
Corrette: 41.34 - 51.68%
```

Punteggio medio in Biologia Vegetale per il primo esame:

```
In [10]: print(str(round(df["primo_vegetale"].mean() , 2)))
19.92
```

Punteggio medio in Biologia Animale per il primo esame:

```
print(str(round(df["primo_animale"].mean() , 2)))
In [11]:
```

12.03

Punteggio medio in Biologia Vegetale per il secondo esame:

```
In [12]:
         print(str(round(df["secondo_vegetale"].mean() , 2)))
        20.11
```

Punteggio medio in Biologia Animale per il secondo esame:

```
In [13]: print(str(round(df["secondo_animale"].mean() , 2)))
        16.56
```

Distribuzione dei voti di Biologia Vegetale del primo esame:

```
In [14]:
         plt.hist(df["primo_vegetale"], bins=30)
         plt.xlabel("Voto")
         plt.ylabel("Numero di occorrenze")
         plt.show()
```


Distribuzione dei voti di Biologia Animale del primo esame:

```
In [15]: plt.hist(df["primo_animale"], bins=30)
    plt.xlabel("Voto")
    plt.ylabel("Numero di occorrenze")
    plt.show()
```


Distribuzione dei voti di Biologia Vegetale del secondo esame:

```
In [16]: plt.hist(df["secondo_vegetale"], bins=30)
    plt.xlabel("Voto")
    plt.ylabel("Numero di occorrenze")
    plt.show()
```


Distribuzione dei voti di Biologia Animale del secondo esame:

```
In [17]: # df["primo_animale"].value_counts(bins=np.arange(0, 31, 1)).sort_index()
    plt.hist(df["secondo_animale"], bins=30)
    plt.xlabel("Voto")
    plt.ylabel("Numero di occorrenze")
    plt.show()
```


Distribuzione dei voti finali:

```
In [18]: plt.hist(df["voto_medio"], bins=30)
    plt.xlabel("Voto")
    plt.ylabel("Numero di occorrenze")
    plt.show()
```

