

ECE 8823 A / CS 8803 - ICN Interconnection Networks Spring 2017

http://tusharkrishna.ece.gatech.edu/teaching/icn_s17/

Lecture 9: Flow Control - III

Tushar Krishna

Assistant Professor School of Electrical and Computer Engineering Georgia Institute of Technology

tushar@ece.gatech.edu

Acknowledgment: Slides adapted from Univ of Toronto ECE 1749 H (N Jerger)

Designing a Flow Control Protocol: Managing Buffers and Contention

Flow Control Protocol: Arbitration

Flow Control Protocol: Backpressure

2. What to do with the other flit (from ring/core)

3. What should a flit do if its output is blocked?

Backpressure Signaling Mechanisms

On/Off Flow Control

downstream router signals if it can receive or not

Credit-based Flow Control

upstream router tracks the number of free buffers available at the downstream router

On/Off Flow Control

- Downstream router sends a 1-bit on/off if it can receive or not
 - Upstream router sends only when it sees on
- Any potential challenge?
 - Delay of on/off signal
 - By the time the on/off signal reaches upstream, there might already be flits in flight
 - Need to send the off signal once the number of buffers reaches a threshold such that all potential in-flight flits have a free buffer

On/Off Timeline with N buffers

Backpressure Signaling Mechanisms

On/Off Flow Control

Pros

Low overhead: one-bit signal from downstream to upstream node, only switches when threshold crossed

Cons

■ Inefficient buffer utilization — have to design assuming worst case of N_{threshold} flights in flight

Credit-based Flow Control

- Upstream router tracks the number of free buffers available at the downstream router
 - Upstream router sends only if credits > 0
- When should credit be decremented at upstream router?
 - When a flit is sent to the downstream router
- When should credit be incremented at upstream router?
 - When a flit leaves the downstream router

Credit Timeline

Backpressure Signaling Mechanisms

On/Off Flow Control

- Pros
 - Low overhead: one-bit signal
- Cons
 - Inefficient buffer utilization have to design assuming worst case of N_{threshold} flights in flight

Credit Flow Control

- Pros
 - Each buffer fully utilized an keep sending till credits are zero (unlike on/off)
- Cons
 - More signaling need to signal upstream for every flit

Backpressure and Buffer Sizing

No flit can be sent into this buffer during this delay

To prevent backpressure from limiting throughput, number of buffers >= turnaround time

Buffer Turnaround Delay

But this is inefficient

Flit Reservation Flow Control (Peh et al., HPCA 2000)

What is the key idea (and benefit)?

Why can't we just do static scheduling?

Conventional Virtual Channel Router

Router Microarchitecture

- Components
 - Virtual Channel Buffers
 - Routing Logic
 - Allocation
 - Switch Allocation
 - VC Allocation
 - Crossbar Switch
 - Link

Flit Reservation Router

Key Unit: I/O Reservation Tables

Output Reservation Table

output channe	time	8	9	10	11	12	13	14	15	16	17
East Channel	Channel busy			\times							
	Free buffers on next node	2	1	1	0	1	2	3	4	4	4

(a)

Input Reservation Table

input channel	time	8	9	10	11	12	13	14	15	16	17
West Channel	Flit Arriving?			\times							
	Buffer in			5							
	Departure Time			+2							
	Buffer out					5					
	Output Channel					Е					

Credit Flow?

Design Details

- How is the crossbar switch driven?
- When is buffer ID allocated? Why?
- What if data arrives before output allocated?
 - Why could this happen?

- What if 2 control flits for the same output port?
 - Not discussed in paper. They probably allocate serially, but this would require buffering
- Buffer organization shared pool vs. per VC
 - Head-of-line blocking?
- Scheduling horizon?

Overheads

	Virtual-Chan	nel Flow (Control		Flit-Reservation Flow Control						
		VC8	VC16	VC32		FR6	FR13				
	General				General	b _d =6	b _d =13				
		$b_d = 8$	b _d =16	$b_d=32$	General	$v_c=2$	$v_c=4$				
		$v_d=2$	v _d =4	$v_d=8$		$b_c=6$	$b_c=12$				
Data buffers	$(f + \log_2 v_d + t) \times b_d \times 5$	10360	20800	41760	f x b _d x 5	7680	16640				
Control buffers	-	-	-	-	$(\log_2 v_c + t + (d \times \log_2 s)) \times b_c \times 5$	240	540				
Queue pointers	$2 \times \log_2 b_d \times v_d \times 5$	60	160	400	$2 \times \log_2 b_c \times v_c \times 5$	60	160				
Output reservation table	$(1 + \log_2 b_d) \times 4 \times v_d$	32	80	192	$(1 + \log_2 b_d) \times \times \times 4$	512	640				
(Status bits and buffer counts)											
Input reservation table	-	-	-	-	$[(1 + \log_2 s + 2 + 2 \times \log_2 b_d) \times s + b_c] \times 5$	2270	1980				
Bits per node		10452	21040	42352		10762	19960				
Flits per input channel		8.17	16.44	33.09		8.40	15.59				

Evaluations

What is the key benefit of the scheme?

FR6 has same throughput as FR16

Evaluation Methodology

- What if only single-flit packets
- How representative is random traffic for real life applications
 - Does that take away from the merits of the paper?