SMART INDIA HACKATHON 2025

Autonomous Hybrid-Control Drone Swarm for Threat Detection and Defense

- Problem Statement ID 25164
- Problem Statement Title Designing an Efficient Algorithm for Coordinated Swarm Engagement among Autonomous Drones aiming to neutralize an adversarial drone swarm.
- Theme- Robotics and Drones
- PS Category- Software
- Team ID 86511
- Team Name CODEX.PY

Autonomous Hybrid-Control Drone Swarm for Threat Detection and Defense [HDTD]

PROPOSED SOLUTION:

Autonomous Hybrid-Control Drone Swarm algorithm for Threat Detection and Defense compatible with all drone types and makes

- Hybrid Control Centralized mission planning with autonomous decision-making for each drone.
- Swarm Coordination Selecting a leader, controlling formations, and task allocation based on Coordination.
- Autonomous Threat Handling Avoiding obstacles, tracking targets, and simulating neutralization.
- Scalable Attack Mechanisms by Jamming models coordinated movements, and simulations using Faraday methods.
- Setting up a **circle of defence** to form a threat layer to **indicate other drones in swarm** for attacking maneuvers and capabilities

Our prototype for testing:

Uniqueness:

- 1. **Dual Command Mode** Central & Distributed Control
- 2.**hybrid handoff** ensures the swarm never freezes even if the operator link fails- drones act intelligently using stored mission logic
- 3. **Operational Modes** (Mission-Level Control)-search mode, patrol-mode, defence mode
- 4.. Threat Recognition + Decision Layer + Emergency Override & Safe-Recovery Mode
- 5. Adding both air-air attacks by jamming and air-ground attacks in needed situations

TECHNICAL APPROACH

FRONT-END STACK

值

Ę,

袋~

BACK-END STACK

(IS

Responsive Design

Ensures compatibility across various devices.

User **Authentication**

A simple login system ensures secure user access.

Real-time Communication

WebSocket facilitates real-time data exchange for control.

Core UI **Technologies**

HTML5, CSS3, and JavaScript form the foundation of the user interface.

Interactive **Mapping**

Leaflet.js enables interactive map displays for drone data.

Camera Access

WebRTC and MediaDevices API provide access to device cameras.

Communication Laver

Not described.

Node.js Runtime

JavaScript runtime environment for backend operations.

Mission Control Logic

Manages missions, roles, and command broadcasting.

180 2822

Simulated Drone **Engine**

Generates periodic telemetry data like battery and position.

Express.js Framework

Web framework serving frontend files and managing routes.

Fnables real-time data exchange between frontend and backend.

NebSocket

Library

FEASIBILITY AND VIABILITY

Analysis of the feasibility of the idea

Components of Swarm Control Software

- Legally safe: Fully compliant if it avoids jamming or weapons, with geofencing, fail-safes, secure comms, and regulatory approvals for drone operations.
- ➤ Operationally scalable: Phase-1 software MVP → SITL/HIL testing → small swarm demo (3–5 drones) → gradual scaling; Phase-2 minidrone demo showcases software capabilities effectively.

Technical viabilities in implementation

Strategies to Overcome Challenges

- ➤ **Robust networking & fail-safes** LAN-first design, redundant Wi-Fi/mesh, heartbeat monitoring, and automatic hover/RTB on loss.
- Collision avoidance & geofencing Software geofencing, safe altitude separation, and reactive collision avoidance (ORCA/RVO2).
- ➤ Incremental testing & validation SITL → single-drone HIL → small swarm demo → scale; mission simulation and automated test scripts.

IMPACT AND BENEFITS

BENEFITS

IMPACT OVER OPERATIONS

RESEARCH AND REFERENCES

Details / Links of the reference and research work

USA fleet forces command"s project on swarm drones

[1] https://www.usff.navy.mil/Press-Room/News-Stories/Article/4225896/navy-successfully-demonstrates-swarm-mission-planning-tech

Mavlink protocols for information security in drone swarm

[2] https://dl.acm.org/doi/pdf/10.1145/3634737.3637672

Drone swarm coordination and characterization with radio frequency signals

[3] https://www.mdpi.com/1424-8220/23/3/1589

JTIR development of the surveillance drone setup

[4] https://www.jetir.org/papers/JETIR2504147.pdf

IoT drones for industrial security and adversaries

[5] https://iopscience.iop.org/article/10.1088/1742-6596/2107/1/012018/pdf

Current drone design in industry standard by ijraset

[6] https://www.ijraset.com/research-paper/design-and-development-of-surveillance-drone

SWARM DRONE management

[7] https://www.sciencedirect.com/science/article/pii/S2452414X18300086?via%3Dihub

Aerial unmanned vehicles -horizon and health

[8] https://pmc.ncbi.nlm.nih.gov/articles/PMC11116996/

Collaborative drones in surveillance in indian conditions

[9] https://www.iadb.in/2024/12/31/swarm-intelligence-collaborative-unmanned-drone-systems-for-maritime-surveillance/

Types of drones in Indian Air Force in modern warfare

[10] https://www.insightsonindia.com/2025/06/10/drone-the-new-face-of-warfare/

MavSdk applications on drone development and building

[11] https://circuitcellar.com/research-design-hub/design-solutions/writing-mavsdk-px4-drone-applications/

Our Prototype Short Video

https://youtu.be/XBf8pqd_HZo

