a) Construct a truth table associated with the finite-state machine:

This FSM has two states, **A** and **B**, and two inputs, **0** and **1**. We can construct a truth table that describes the transitions between these states based on the input.

Current State	Input	Next State
А	0	В
Α	1	Α
В	0	В
В	1	Α

- From state A:
 - If the input is **0**, the FSM moves to state **B**.
 - If the input is 1, it stays in state A.
- From state B:
 - If the input is **0**, the FSM stays in state **B**.
 - If the input is 1, the FSM moves to state A.

b) Determine the elements required to define the finite-state machine:

To define a finite-state machine (FSM), we need the following elements:

- 1. States: The different states the machine can be in.
 - In this case, the states are A and B.
- 2. Input Alphabet (Σ): The set of possible inputs.
 - Here, the input alphabet is {0, 1}.
- 3. **Transition Function (\delta)**: A function that takes a state and an input and returns the next state.
 - From the truth table, the transition function can be defined as:
 - $\delta(A, 0) = B$
 - $\delta(A, 1) = A$
 - $\delta(B, 0) = B$
 - $\delta(B, 1) = A$
- 4. Start State: The state where the FSM begins.
 - The start state is **A** (as indicated by the arrow).
- 5. Accept States (Final States): The states that signify the successful completion of the machine's operation.
 - The problem does not mention any accept states, so this is likely a regular FSM with no specific accept state for now.

C) Simulation:

The top diagram represents the output q state and lower diagram represents the input sequence.

1:11001100

2:01010101

