

IMECC/Unicamp Exame de Qualificação ao Mestrado

MM720 - Análise no \mathbb{R}^n 01 de agosto de 2022

RA:	Nome:	

Instruções:

- Esta prova tem 3h de duração e vale 10 pontos.
- Você deve escolher no máximo 5 questões dentre as abaixo para fazer. Cada questão vale 2 pontos.

Q1. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ definida por f(0,0) = 0 e

$$f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}$$
, se $(x,y) \neq (0,0)$.

- (a) Mostre que esta função é de classe C^1 em \mathbb{R}^2 .
- (b) A função f é de classe C^2 ? Justifique sua resposta.
- **Q2.** Prove que não existe um difeomorfismo de classe C^1 de um aberto de \mathbb{R}^n num aberto de \mathbb{R}^m se m < n.
- Q3. (a) Mostre que o conjunto das matrizes invertíveis $GL_n(\mathbb{R})$ é um subconjunto aberto de $M_n(\mathbb{R})$.
 - (b) Considere a função $\phi: GL_n(\mathbb{R}) \to M_n(\mathbb{R})$ dada por $\phi(A) = A^{-1}$. Mostre que ϕ é diferenciável e, para n = 2, calcule $\phi'(A)(B)$, onde

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \ \mathbf{e} \ B = \begin{pmatrix} 0 & 3 \\ -3 & 0 \end{pmatrix}.$$

Q4. Considere o sistema de equações

$$\begin{cases} xy + z^2 = 3, \\ x^2 + y^2 + z^2 = 6. \end{cases}$$

- (a) Esboce o lugar geométrico dos pontos que satisfazem a cada uma das equações do sistema. Se quiser, pode fazer isto restrito a um dos planos coordenados. Use seu esboço para estudar se o sistema tem solução. (Justifique!)
- (b) Use o Teorema da Função Implícita para mostrar que o sistema pode ser resolvido, digamos com $x = \phi(z)$ e $y = \psi(z)$, na vizinhança de (1,2,1).
- (c) Encontre dx/dz no ponto (1, 2, 1).
- **Q5.** Dados $a \in \mathbb{R}^{n+1}$ e $k \in \mathbb{R}$, seja H o hiperplano afim em \mathbb{R}^{n+1} definido por $H = \{x \in \mathbb{R}^{n+1}, \langle x, a \rangle = k\}$. Para $p \in \mathbb{R}^{n+1}$ arbitrário, encontre o ponto $q \in H$ que está mais próximo de p.
- **Q6.** O que é uma partição da unidade em \mathbb{R}^n de classe C^{∞} ? Dê um exemplo (pode ser numa subvariedade).
- **Q7.** (a) Enuncie o Teorema de Stokes para uma variedade suave k-dimensional orientada e compacta $M \subset \mathbb{R}^n$ com bordo ∂M e uma (k-1)-forma ω definida num conjunto aberto U de \mathbb{R}^n com $M \subset U$, e dê um exemplo de como utilizá-lo com n=3 e k=2 (escolha M e ω).
 - (b) É verdade que toda forma fechada é exata? Justifique.

1	2	3	4	5	6	\sum

ATENÇÃO: Não é permitido destacar as folhas

Exame Qualificação - Topologia Geral.

NOME:	RA:

- 1^a Questão. Enuncie e demonstre o Teorema de Tychonoff.
- 2^a Questão. Mostre que um espaço X é Hausdorff se, e só se, a diagonal

$$\Delta = \{(x, x) \in X \times X, x \in X\}$$

é um conjunto fechado de $X \times X$.

- 3^a Questão. Se X é um espaço topológico compacto e Y é um espaço topológico de Hausdorff então toda função $f: X \to Y$ contínua e bijetora é um homeomorfismo.
- 4^a Questão. Seja $A\subset X$ e um mapa contínuo $r:X\to A$ tal que r(a)=a para todo $a\in A$ (isto é, r é uma retração). Mostrar que r é um mapa quociente.
- 5^a Questão. Considere em $\mathbb R$ a topologia euclidiana usual $\mathcal T_E$ e a famlia de conjuntos

$$\mathcal{B} = \{(a, b] \subset \mathbb{R}, \ a < b\}.$$

Mostrar que \mathcal{B} é a base de uma topologia \mathcal{T} sobre \mathbb{R} e que a identidade I(x) = x como mapa $I: (\mathbb{R}, \mathcal{T}) \to (\mathbb{R}, \mathcal{T}_E)$ é contínua e mas não é homeomorfismo.

- 6^a Questão. Determine se é verdadeiro ou falso. Justifique.
 - a) Sejam X e Y dois espaços topológicos não vazios com Y sendo Hausdorff e $f:X\to Y$ contínua. Se X é conexo então f(X) é conexo.
 - b) $\pi_1(S^n)$ é trivial para todo $n \ge 1$.
 - c) S^1 é homeomorfo a [0, 1).
 - d) Para todo espaço métrico o fecho da bola aberta é igual ao fecho da bola fechada.

Incluir na prova todas as contas feitas nas resoluções. Respostas não acompanhadas de argumentos que as justifiquem não serão consideradas.

Bom Trabalho!