Sistema decimal

Sistema binario

Tabla resumen con los números binario/decimales/hexadecimales más importantes

Pasar de binario(base 2) a decimal (base 10)

Pasar de decimal(base 10) a binario (base 2)

Sistema octal

Pasar de octal(base 8) a decimal (base 10)

Pasar de decimal (base 10) a octal(base 9)

Sistema hexadecimal

Pasar de hexadecimal (base 16) a decimal(base 10)

Pasar de decimal(base 10) a hexadecimal(base 16)

Pasar de binario a octal

Pasar de binario a hexadecimal

Otros sistemas usados

Sistema BCD(decimal codificado en binario)

Sistema AIKEN, GRAY, EXC 3, Johnson

En informática vamos a usar 4 Sistemas de numeración

- Decimal
- Binario
- Octal
- Hexadecimal

Sistema decimal

- Tenemos disponibles los siguiente dígitos: 0 1 2 3 4 5 6 7 8 9

Base 10

$$1456_{10} = 6 * 10^{0} + 5 * 10^{1} + 4 * 10^{2} + 1 * 10^{3} =$$

$$= 6 * 1 + 5 * 10 + 4 * 100 + 1*1000 = 6 + 50 + 400 + 1000 = 1456$$

Sistema binario

- Tenemos los siguiente dígitos: 0 1

Base 2

Tabla resumen con los números binario/decimales/hexadecimales más importantes

BINARIO	DECIMAL	HEXADECIMAL
00000	0	0
00001	1	1
00010	2	2
00011	3	3
00100	4	4
00101	5	5
00110	6	6
00111	7	7
01000	8	8
01001	9	9
01010	10	A
01011	11	В
01100	12	С
01101	13	D
01110	14	Е
01111	15	F

... ...

Pasar de binario(base 2) a decimal (base 10)

$$1001_2 = 1*2^0 + 0*2^1 + 0*2^2 + 1*2^3 = 1*1 + 0*2 + 0*4 + 1*8 =$$

$$= 1 + 0 + 0 + 8 = 9_{10}$$

Pasar de decimal(base 10) a binario (base 2)

$$123_{10} = ??_2$$

1 1

Resultado: 1111011₂

Sistema octal

Tenemos los siguiente dígitos: 0 1 2 3 4 5 6 7

Base 8

Pasar de octal(base 8) a decimal (base 10)

$$576_8 = 6*8^0 + 7*8^1 + 5*8^2 = 6 + 56 + 320 = 382_{10}$$

Ñ

Pasar de decimal (base 10) a octal(base 8)

$$123_{10} = ??_{8}$$

7 1

Resultado = 173_8

Sistema hexadecimal

Tenemos disponibles los siguiente dígitos: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Base 16

Pasar de hexadecimal (base 16) a decimal(base 10)

$$12F_{16} = ??_{10} = F(15)*16^{0} + 2*16^{1} + 1*16^{2} = 15 + 32 + 256 = 303_{10}$$

Pasar de decimal(base 10) a hexadecimal(base 16)

$$123_{10} = ??_{16}$$

Resultado: $7(11) = 7B_{16}$

Pasar de binario a octal

$$010011_2 = 010 \mid 011 = 2 \mid 3 = 23_8$$

Pasar de binario a hexadecimal

$$11110011_2 = 1111 \mid 0011 = 15(F) \mid 3 = F3_{16}$$

Otros sistemas usados

Sistema BCD(decimal codificado en binario)

$$1254_{10} = ??(BCD)$$
 $1 2 5 4$
 $0001 0010 0101 0100$

 $1254_{10}\!=0001001001010100_{\rm \ BCD}$

Sistema AIKEN, GRAY, EXC 3, Johnson

https://www.youtube.com/watch?v=xUutfmJJdG8