

Blockers: N/A

Requirements: N/A

Last week:

- Dataset:
 - **Pipeline**
 - X image (GSD 30 meters, 7000 x 7000 pixels)
 - Investigated classical CV, preprocessing 0
- Pipeline:
 - Add visualization demo
 - Improve models

Next step:

- Finalize dataset requirement and construct dataset 0
- Setup 1 camera and software Documentation
- Add visualized demo
- Improve models 0
- Run "hello world" on Jetson Orin

<u>Interfaces</u> Avionics:

Determine power usage of Orin, coordinate this usage with power budget

GNC:

- Discuss about partitioning Orin CPU/GPU usage
- Determine GNC estimation software that needs to be run on Orin/how that interacts with duty cycling the Orin

Camera Choice: <u>TEVI-AR1335-C-S85-IR-EVK</u>

Camera & Lenses:

Active Pixels: 4208 (H) x 3120 (V)

Pixel Size: 1.1 μm x 1.1 μm Telephoto 16mm M12 Lens

Known:

Altitude: 450km

Focal Length: **16**, 20, 22 mm

Focal Length (mm)	GSD (m/px)	Image Size (H)	Image Size (V)	swath (H) (km)	swath (V) (km)
16	30.9375	4208	3120	130.185	96.525
20	24.75	4208	3120	104.148	77.22
22	22.5	4208	3120	94.68	70.2

LandSat GSD: 30m

Target Field, Minneapolis, Minnesota, Home of 2014 MLB All-Star Game, Landsat image (left), aerial photograph (right). A single Landsat pixel is roughly the size of a baseball diamond.

https://landsat.gsfc.nasa.gov/article/picturing-a-pixel/

H I height in meters

ImW | image width in pixels

GSD | ground sampling distance

in centimeters/pixels

F | focal length in millimeters

SW | sensor width in millimeters

LandSat frame vs Camera frame

16 mm focal length

20 mm focal length

22 mm focal length

LandSat Image

~ 6510 x 6656

Training data that matches the camera frame

~ 4128 x 3147

- MaxPooling Landsat image to reduce the size without losing landmark features
- **Cropping** to maintain the aspect ratio

Reason why Cropping works: LandSat images overlap

Pipeline:

Stage 1 - Region Classifier

Stage 2 -

- Landmark Detection
 - a. Detect landmarks -> Given landmarks' positions -> Calculate our position
- 2. End-to-end:
 - a. Image + Region -> Neural Network -> Our position

Pros & Cons for Landmark Detection:

- 1. more accurate if we can precisely locate the landmarks
- 2. more obvious and makes more "human" sense
- 3. may not be able to find landmarks in certain pictures
- 4. need lots of manually-labelled pictures & landmark data (position etc.)
- 5. more overhead in terms of post-processing network output

Pipeline: Stage 1 - Region Classifier

Pipeline:

Stage 1 - Region Classifier

Stage 2 -

- 1. Landmark Detection
 - a. Detect landmarks -> Given landmarks' positions -> Calculate our position

