14.1

Kết quả: $S_1 > S_2$ Đáp án b

14.2

Ta có:
$$[Ag^+] = 2S_1 > [CrO_4^-] = S_1 > [Cu^+] = [I^-] = S_2$$
 ($S_1 > S_2$)

Đáp án a

14.3

Ta có:
$$Pb(IO_3)_2 \downarrow (r \acute{a}n) \rightleftharpoons Pb^{2+}(dd) + 2IO_3 \cdot (dd)$$

 $\Delta G_T = 0$ $S(\mathring{d}\^{o} tan)$ S $2S$ [mol/lit]

Tích số tan của Pb(IO₃)₂:

$$T_{Pb(IO3)2} = [Pb^{2+}] \cdot [IO_3^{-1}]^2 = 4S^3 = 4 \cdot (4 \cdot 10^{-5})^3 = 6 \cdot 4 \cdot 10^{-14}$$
 $\mathring{\sigma} 25^{0}C$

Đáp án c

14.4

Ta có:
$$PbI_2$$
 (rắn) $\rightleftarrows Pb^{2+}$ (dd) + $2I$ -(dd)

Dd KI 0,1M S(độ tan) S $2S + 0,1 \approx 0,1$ [M]

 $T_{PbI2} = [Pb^{2+}].[I^-]^2 = S.(0,1)^2 = 1,4.10^{-8} \rightarrow [Pb^{2+}] = S = 1,4.10^{-6} M$

Đáp án d

14.5

1. Ý 1 đúng, vì thêm ion lạ \rightarrow lực ion trong dd $\uparrow \rightarrow$ hệ số hoạt độ f $\downarrow \rightarrow$ hoạt độ của các ion chất điện ly khó tan a $\downarrow = f \downarrow$.c \rightarrow cân bằng chuyển dịch theo chiều thuận \rightarrow độ tan S \uparrow

Khi ion lạ tương tác hóa học với ion chất điện ly khó tan:

$$AB (r dot a) \longrightarrow A^+ \downarrow (dd) + B^- (dd)$$
 $S_{AB} \uparrow + X^ \downarrow$

AX (kết tủa, kém điện ly, bay hơi)

2.3.4 Các ý 2,3,4 đều đúng, vì nồng độ [A $^+$] giảm nên cân bằng chuyển dịch theo chiều thuận dẫn đến độ tan của chất ít tan AB tăng.

Đáp án c

14.6

14.7

Ta có:
$$AgI \downarrow (rắn) \rightleftarrows Ag^+(dd) + I^-(dd)$$
; $T_{AgI} = 10^{-16} \mathring{o} 25^0 C$

Trong nước $S_1[mol/l]$ S_1 $S_1 \to T_{AgI} = [Ag^+].[I^-] = S_1^2 \to S_1 = 10^{-8} [mol/l]$
 $dd KI 0,1M$ $S_2[mol/l]$ S_2 $S_2 + 0,1 \approx 0,1 \to T_{AgI} = S_2.0,1 \to S_2 = 10^{-15} [mol/l]$
 $\to S_1 / S_2 = 10^7 l \mathring{a} n$

- 1.2. Các ý 1,2 đều đúng.
- 3. Ý 3 sai, vì độ tan của AgI trong nước sẽ nhỏ hơn trong dd NaCl do Cl $^-$ tạo kết tủa với Ag $^+$: AgI (rắn) \rightarrow Ag $^+$ \downarrow (dd) + I $^-$ (dd)

$$\begin{array}{ccc} S_{AgI} \uparrow & & + & \\ & Cl^{\text{-}} \rightarrow AgCl \downarrow & \end{array}$$

4. Ý 4 sai, vì benzen là chất không cực nên độ tan AgI trong nước lớn hơn trong benzen.

Đáp án d

14.8

Đáp án a

14.9

$$Ca(NO_3)_2 \rightarrow Ca^{2+} + 2NO_3^{-}$$
; $SbF_3 \rightarrow Sb^{3+} + 3F^{-}$
 $10^{-4}M \quad 10^{-4}M \quad 2.10^{-4}M \quad 2.10^{-4}M \quad 2.10^{-4}M \quad 6.10^{-4}$

Khi trộn 50ml dd $\text{Ca}(\text{NO}_3)_2$ với 50 ml dd SbF_3 thì thể tích của $2\text{ dd }\text{Ca}(\text{NO}_3)_2$ và dd SbF_3 đều tăng gấp đôi so với ban đầu nên nồng độ các ion giảm một nửa.

Đáp án a

14.10

$$AgCl \downarrow (r\acute{a}n) \rightleftharpoons Ag^+(dd) + Cl^-(dd)$$
; $T_{AgCl} = 10^{-9.6} \mathring{o} 25^0C$

- 1. $[Ag^+] = 0.5.10^{-4} \text{ M}$; $[Cl^-] = 0.5.10^{-5} \text{ M}$
- \rightarrow [Ag⁺].[Cl⁻] = (0,5.10⁻⁴).(0,5.10⁻⁵) = 10^{-9,6} = T_{AgCl}
- → Không có kết tủa AgCl.
- 2. $[Ag^+] = 0.5.10^{-4} \text{ M}$; $[Cl^-] = 0.5.10^{-4} \text{ M}$
- \rightarrow [Ag⁺].[Cl⁻] = (0,5.10⁻⁴).(0,5.10⁻⁴) = 10^{-8,6} > T_{AgCl}
- → Có kết tủa AgCl.
- 3. $[Ag^+] = 0.5.10^{-4} M$; $[Cl^-] = 0.5.10^{-6} M$
- $\rightarrow [Ag^+].[C1^-] = (0,5.10^{-4}).(0,5.10^{-6}) = 10^{-10,6} < T_{AgCl}$
- → Không có kết tủa AgCl.

Đáp án c

14.11

$$pT = -lgT$$
;

Xem nồng độ [Ba²⁺] và [Sr²⁺] không thay đổi khi nhỏ dd (NH₄)₂SO₄.

*Nồng độ $[SO_4^{2-}]$ để xuất hiện kết tủa $BaSO_4$: $[Ba^{2+}]$. $[SO_4^{2-}]$ > T_{BaSO_4}

$$[Ba^{2+}] = 10^{-4}M$$
; $T_{BaSO4} = 10^{-9,97} \rightarrow [SO_4^{2-}] > 10^{-5,97} M$

*Nồng độ $[SO_4^{2-}]$ để xuất hiện kết tủa $SrSO_4$: $[Sr^+]$. $[SO_4^{2-}]$ > T_{SrSO_4}

$$[Sr^{2+}] = 1M ; T_{SrSO4} = 10^{-6,49} \rightarrow [SO_4^{2-}] > 10^{-6,49} M$$

Khi nhỏ dd $(NH_4)_2SO_4$ vào dd chứa 2 ion kim loại $Ba^{2+}và$ Sr^{2+} thì nồng độ $[SO_4^{2-}]$ sẽ tăng từ thấp đến cao nên kết tủa nào ứng với nồng độ $[SO_4^{2-}]$ thấp nhất sẽ xuất hiện trước. Cho nên kết tủa $SrSO_4$ sẽ xuất hiện trước.

Đáp án b.

14.12

Nồng độ các ion kim loại $M^{2+}(dd)$: $[Ba^{2+}] = [Ca^{2+}] = [Pb^{2+}] = [Sr^{2+}] = 0.01M$

Để xuất hiện kết tủa MSO₄ thì: $[M^{2+}]$. $[SO_4^{2-}] > T_{MSO_4}$

$$\rightarrow$$
 [SO₄²⁻] > 100. T_{MSO4}

Vậy kết tủa MSO₄ nào có giá trị tích số tan nhỏ nhất sẽ xuất hiện đầu tiên. Ngược lại, kết tủa MSO₄ nào có giá trị tích số tan lớn nhất sẽ xuất hiện sau cùng.

Ta có:
$$T_{BaSO4} = 10^{-9,97}$$
 < $T_{PbSO4} = 10^{-7,8}$ < $T_{SrSO4} = 10^{-6,49}$ < $T_{CaSO4} = 10^{-5,7}$

Trật tự xuất hiện kết tủa lần lượt là: BaSO₄, PbSO₄, SrSO₄, CaSO₄

Đáp án d.

14.13

$$pH = -lg[H^+]$$

Để xuất hiện kết tủa $Cu(OH)_2 \downarrow : [Cu^{2+}].[OH^-]^2 > T_{Cu(OH)^2} = 2.10^{-20}$

Xem $[Cu^{2+}] = 0.02M$ không thay đổi khi nhỏ dd NaOH.

$$0.02.[OH^{-1}]^{2} > 2.10^{-20}$$

$$\rightarrow [OH^{\text{-}}] > 10^{\text{-}9} \rightarrow 10^{\text{-}14}/[H^{\text{+}}] > 10^{\text{-}9} \rightarrow [H^{\text{+}}] < 10^{\text{-}5} \rightarrow \text{-}1g[H^{\text{+}}] = pH > 5 \ .$$

Đáp án c

14.14

Để xuất hiện kết tủa $Fe(OH)_3$: $[Fe^{3+}].[OH^-]^3 > T_{Fe(OH)3} = 10^{-37.6}$ Xem $[Fe^{3+}] = 0,1M$ không thay đổi khi nhỏ dd NaOH . $0,1.[OH^-]^3 > 10^{-37.6}$ $\rightarrow [OH^-] > 10^{-12.2} \rightarrow 10^{-14}/[H^+] > 10^{-12.2} \rightarrow [H^+] < 10^{-1.8} \rightarrow -lg[H^+] = pH > 1.8$ Đáp án b