Regla de resolución y Algoritmo de Davis-Putnam

Sesión 13

Edgar Andrade, PhD

Abril de 2019

Departmento de Matemáticas Aplicadas y Ciencias de la Computación

Presentación

En esta sesión estudiaremos:

- 1. Regla de resolución
- 2. Proposiciones equisatisfacibles
- 3. Unit propagation para eliminar cláusulas unitarias.
- 4. Regla para eliminar literales puros.
- 5. Algoritmo de Davis-Putnam.

Contenido

- 1 Regla de Resolución
- 2 Unit propagation
- 3 Literales puros

4 Algoritmo de Davis-Putnam

Sea C una cláusula e I una interpretación. Decimos que I es un modelo de C sii existe un literal $\ell \in C$ tal que $I(\ell) = 1$.

Sea C una cláusula e I una interpretación. Decimos que I es un modelo de C sii existe un literal $\ell \in C$ tal que $I(\ell) = 1$. Sea S un conjunto de cláusulas e I una interpretación. Decimos que I es un modelo de S sii para todo $C \in S$, I es un modelo de C.

Sea C una cláusula e I una interpretación. Decimos que I es un modelo de C sii existe un literal $\ell \in C$ tal que $I(\ell) = 1$. Sea S un conjunto de cláusulas e I una interpretación. Decimos que I es un modelo de S sii para todo $C \in S$, I es un modelo de C.

La cláusula vacía □ no tiene modelo.

Sea C una cláusula e I una interpretación. Decimos que I es un modelo de C sii existe un literal $\ell \in C$ tal que $I(\ell) = 1$. Sea S un conjunto de cláusulas e I una interpretación. Decimos que I es un modelo de S sii para todo $C \in S$, I es un modelo de G.

□ La cláusula vacía □ no tiene modelo.

Cualquier interpretación I es un modelo de \emptyset (el conjunto vacío de cláusulas).

Sea
$$\ell$$
 un literal. Se define $\ell^c = \begin{cases} \overline{p}, & \text{si } \ell = p \text{ para algún } p \\ p, & \text{si } \ell = \overline{p} \text{ para algún } p \end{cases}$

Sea
$$\ell$$
 un literal. Se define $\ell^c = \begin{cases} \overline{p}, & \text{si } \ell = p \text{ para algún } p \\ p, & \text{si } \ell = \overline{p} \text{ para algún } p \end{cases}$

Una cláusula C se dice trivial sii existe un literal ℓ tal que C contiene a ℓ y ℓ^c .

Sea
$$\ell$$
 un literal. Se define $\ell^c = \begin{cases} \overline{p}, & \text{si } \ell = p \text{ para algún } p \\ p, & \text{si } \ell = \overline{p} \text{ para algún } p \end{cases}$

Una cláusula C se dice trivial sii existe un literal ℓ tal que C contiene a ℓ y ℓ^c .

Ejemplo: La cláusula $pq\overline{r}r$ es una cláusula trivial.

Sea
$$\ell$$
 un literal. Se define $\ell^c = \begin{cases} \overline{p}, & \text{si } \ell = p \text{ para algún } p \\ p, & \text{si } \ell = \overline{p} \text{ para algún } p \end{cases}$

Una cláusula C se dice trivial sii existe un literal ℓ tal que C contiene a ℓ y ℓ^c .

Ejemplo: La cláusula $pq\overline{r}r$ es una cláusula trivial.

Lema: Si S es un conjunto de cláusulas y $C \in S$ es una cláusula trivial, entonces $S \equiv S - \{C\}$.

Sea
$$\ell$$
 un literal. Se define $\ell^c = \begin{cases} \overline{p}, & \text{si } \ell = p \text{ para algún } p \\ p, & \text{si } \ell = \overline{p} \text{ para algún } p \end{cases}$

Una cláusula C se dice trivial sii existe un literal ℓ tal que C contiene a ℓ y ℓ^c .

Ejemplo: La cláusula $pq\overline{r}r$ es una cláusula trivial.

Lema: Si S es un conjunto de cláusulas y $C \in S$ es una cláusula trivial, entonces $S \equiv S - \{C\}$.

Demostración: Ejercicio 2

Sean C_1 y C_2 cláusulas. Si ℓ hace parte de C_1 y ℓ^c hace parte de C_2 , entonces decimos que C_1 y C_2 son cláusulas conflictivas, y que conflictúan en el par ℓ, ℓ^c .

Sean C_1 y C_2 cláusulas. Si ℓ hace parte de C_1 y ℓ^c hace parte de C_2 , entonces decimos que C_1 y C_2 son cláusulas conflictivas, y que conflictúan en el par ℓ, ℓ^c .

Ejemplo: Las cláusulas $pq\overline{r}$ y $r\overline{s}$ son conflictivas y conflictúan en el par \overline{r}, r .

Definición: Sean C_1 y C_2 cláusulas que conflictúan en el par ℓ,ℓ^c :

El resolvente de C_1 y C_2 , denotado por Res (C_1, C_2) , se define como la cláusula formada por C_1 quitandole ℓ , unida con C_2 quitándole ℓ^c .

Definición: Sean C_1 y C_2 cláusulas que conflictúan en el par ℓ,ℓ^c :

El resolvente de C_1 y C_2 , denotado por Res (C_1, C_2) , se define como la cláusula formada por C_1 quitandole ℓ , unida con C_2 quitándole ℓ^c .

Ejemplo: El resolvente de $pq\overline{r}$ y $r\overline{s}$ es $pq\overline{s}$.

Definición: Sean C_1 y C_2 cláusulas que conflictúan en el par ℓ,ℓ^c :

El resolvente de C_1 y C_2 , denotado por Res (C_1, C_2) , se define como la cláusula formada por C_1 quitandole ℓ , unida con C_2 quitándole ℓ ^c.

Ejemplo: El resolvente de $pq\overline{r}$ y $r\overline{s}$ es $pq\overline{s}$.

Lema: Si C_1 y C_2 conflictúan en más de dos literales ℓ_1 y ℓ_2 , entonces $\text{Res}(C_1, C_2)$ es una cláusula trivial.

Definición: Sean C_1 y C_2 cláusulas que conflictúan en el par ℓ,ℓ^c :

El resolvente de C_1 y C_2 , denotado por Res (C_1, C_2) , se define como la cláusula formada por C_1 quitandole ℓ , unida con C_2 quitándole ℓ^c .

Ejemplo: El resolvente de $pq\overline{r}$ y $r\overline{s}$ es $pq\overline{s}$.

Lema: Si C_1 y C_2 conflictúan en más de dos literales ℓ_1 y ℓ_2 , entonces $\operatorname{Res}(C_1, C_2)$ es una cláusula trivial.

Demostración: Ejercicio 3

Definición: Sean S_1 y S_2 conjuntos de cláusulas. Decimos que $S_1 \approx S_2$ sii S_1 es satisfacible si, y sólo si, S_2 es satisfacible.

Definición: Sean S_1 y S_2 conjuntos de cláusulas. Decimos que $S_1 \approx S_2$ sii S_1 es satisfacible si, y sólo si, S_2 es satisfacible.

Ejemplo: Sean $S_1=\{pq\overline{r},p\overline{q},\overline{p}q\}$ y $S_2=\{p\overline{q},\overline{p}q\}$. Se tiene que $S_1\approx S_2$, toda vez que ambas son satisfacibles por la interpretación I tal que I(p)=I(q)=1.

Definición: Sean S_1 y S_2 conjuntos de cláusulas. Decimos que $S_1 \approx S_2$ sii S_1 es satisfacible si, y sólo si, S_2 es satisfacible.

Ejemplo: Sean $S_1=\{pq\overline{r},p\overline{q},\overline{p}q\}$ y $S_2=\{p\overline{q},\overline{p}q\}$. Se tiene que $S_1\approx S_2$, toda vez que ambas son satisfacibles por la interpretación I tal que I(p)=I(q)=1.

Observe que si $S_1 \equiv S_2$, entonces $S_1 \approx S_2$. No obstante, la recíproca no es cierta (ver ejemplo anterior).

Teorema: Sean C_1 y C_2 que conflictúan en el par ℓ,ℓ^c . Se tiene $\{C_1,C_2\}\approx {\rm Res}(C_1,C_2)$.

Teorema: Sean C_1 y C_2 que conflictúan en el par ℓ,ℓ^c . Se tiene $\{C_1,C_2\}\approx {\sf Res}(C_1,C_2)$.

Demostración:

 \Rightarrow) Sea I un modelo de $\{C_1, C_2\}$. Es decir. $V_I(C_1) = 1$ y $V_I(C_2) = 1$. Observe que o bien $V_I(\ell) = 1$ o bien $V_I(\ell^c) = 1$.

Teorema: Sean C_1 y C_2 que conflictúan en el par ℓ, ℓ^c . Se tiene $\{C_1, C_2\} \approx \text{Res}(C_1, C_2)$.

Demostración:

- \Rightarrow) Sea I un modelo de $\{C_1, C_2\}$. Es decir. $V_I(C_1) = 1$ y $V_I(C_2) = 1$. Observe que o bien $V_I(\ell) = 1$ o bien $V_I(\ell^c) = 1$.
 - Supongamos que $V_I(\ell)=1$. Entonces $V_I(\ell^c)=0$, pero como I es un modelo de C_2 , debe existir un literal $\ell'\neq\ell^c$ en C_2 tal que $V_I(\ell')=1$.

Teorema: Sean C_1 y C_2 que conflictúan en el par ℓ, ℓ^c . Se tiene $\{C_1, C_2\} \approx \text{Res}(C_1, C_2)$.

Demostración:

- \Rightarrow) Sea I un modelo de $\{C_1, C_2\}$. Es decir. $V_I(C_1) = 1$ y $V_I(C_2) = 1$. Observe que o bien $V_I(\ell) = 1$ o bien $V_I(\ell^c) = 1$.
 - Supongamos que $V_I(\ell)=1$. Entonces $V_I(\ell^c)=0$, pero como I es un modelo de C_2 , debe existir un literal $\ell'\neq\ell^c$ en C_2 tal que $V_I(\ell')=1$. Como ℓ' está en $\mathrm{Res}(C_1,C_2)$, entonces I es un modelo para $\mathrm{Res}(C_1,C_2)$.

Teorema: Sean C_1 y C_2 que conflictúan en el par ℓ, ℓ^c . Se tiene $\{C_1, C_2\} \approx \text{Res}(C_1, C_2)$.

Demostración:

- \Rightarrow) Sea I un modelo de $\{C_1, C_2\}$. Es decir. $V_I(C_1) = 1$ y $V_I(C_2) = 1$. Observe que o bien $V_I(\ell) = 1$ o bien $V_I(\ell^c) = 1$.
 - Supongamos que $V_I(\ell)=1$. Entonces $V_I(\ell^c)=0$, pero como I es un modelo de C_2 , debe existir un literal $\ell'\neq\ell^c$ en C_2 tal que $V_I(\ell')=1$. Como ℓ' está en $\mathrm{Res}(C_1,C_2)$, entonces I es un modelo para $\mathrm{Res}(C_1,C_2)$.
 - Si $V_I(\ell^c) = 1$, la demostración es similar.

Teorema: Sean C_1 y C_2 que conflictúan en el par ℓ, ℓ^c . Se tiene $\{C_1, C_2\} \approx \text{Res}(C_1, C_2)$.

Demostración:

- \Rightarrow) Sea I un modelo de $\{C_1, C_2\}$. Es decir. $V_I(C_1) = 1$ y $V_I(C_2) = 1$. Observe que o bien $V_I(\ell) = 1$ o bien $V_I(\ell^c) = 1$.
 - Supongamos que $V_I(\ell)=1$. Entonces $V_I(\ell^c)=0$, pero como I es un modelo de C_2 , debe existir un literal $\ell'\neq\ell^c$ en C_2 tal que $V_I(\ell')=1$. Como ℓ' está en $\mathrm{Res}(C_1,C_2)$, entonces I es un modelo para $\mathrm{Res}(C_1,C_2)$.
 - Si $V_I(\ell^c) = 1$, la demostración es similar.

En cualquier caso, I es un modelo para $Res(C_1, C_2)$.

Teorema: Sean C_1 y C_2 que conflictúan en el par ℓ,ℓ^c . Se tiene $\{C_1,C_2\}\approx \text{Res}(C_1,C_2)$.

Demostración:

←) Ejercicio 5

Input: S, un conjunto de cláusulas (sin cláusulas triviales)

Output: S es satisfacible S es insatisfacible

Input: *S*, un conjunto de cláusulas (sin cláusulas triviales)

Output: S es satisfacible S es insatisfacible

Mientras S tenga un par de cláusulas conflictuadas no marcadas:

1. Escoger un par C_1 , C_2 no marcado de cláusulas conflictuadas.

Input: *S*, un conjunto de cláusulas (sin cláusulas triviales)

Output: S es satisfacible S es insatisfacible

- 1. Escoger un par C_1 , C_2 no marcado de cláusulas conflictuadas.
- 2. Computar $C = \text{Res}(C_1, C_2)$.

Input: *S*, un conjunto de cláusulas (sin cláusulas triviales)

Output: S es satisfacible S es insatisfacible

- 1. Escoger un par C_1 , C_2 no marcado de cláusulas conflictuadas.
- 2. Computar $C = \text{Res}(C_1, C_2)$.
- 3. Si $C = \square$: Retornar "S no es satisfacible".

Input: *S*, un conjunto de cláusulas (sin cláusulas triviales)

Output: S es satisfacible S es insatisfacible

- 1. Escoger un par C_1 , C_2 no marcado de cláusulas conflictuadas.
- 2. Computar $C = \text{Res}(C_1, C_2)$.
- 3. Si $C = \square$: Retornar "S no es satisfacible".
- 4. Si no:
 - a. Marque el par C_1 , C_2 .
 - b. Si C no es trivial, incluya C en S.

Input: *S*, un conjunto de cláusulas (sin cláusulas triviales)

Output: S es satisfacible S es insatisfacible

Mientras S tenga un par de cláusulas conflictuadas no marcadas:

- 1. Escoger un par $C_1,\,C_2$ no marcado de cláusulas conflictuadas.
- 2. Computar $C = \text{Res}(C_1, C_2)$.
- 3. Si $C = \square$: Retornar "S no es satisfacible".
- 4. Si no:
 - a. Marque el par C_1 , C_2 .
 - b. Si C no es trivial, incluya C en S.

Retornar "S es satisfacible".

Algoritmo de resolución — Ejemplo

Sea
$$S = \{p, \overline{p}q, \overline{r}, \overline{pq}r\}.$$

Algoritmo de resolución — Ejemplo

Sea
$$S = \{p, \overline{p}q, \overline{r}, \overline{pq}r\}.$$

Se toma el par no marcado \overline{r} , $\overline{pq}r$ y se obtiene \overline{pq} .

Sea
$$S = \{p, \overline{p}q, \overline{r}, \overline{pq}r\}.$$

Se toma el par no marcado \overline{r} , $\overline{pq}r$ y se obtiene \overline{pq} .

Se marca el par \overline{r} , $\overline{pq}r$.

Sea
$$S = \{p, \overline{p}q, \overline{r}, \overline{pq}r\}.$$

Se toma el par no marcado \overline{r} , $\overline{pq}r$ y se obtiene \overline{pq} .

Se marca el par \overline{r} , $\overline{pq}r$.

Se incluye \overline{pq} en S

Sea
$$S = \{p, \overline{p}q, \overline{r}, \overline{pq}r\}.$$

Se toma el par no marcado \overline{r} , $\overline{pq}r$ y se obtiene \overline{pq} .

Se marca el par \overline{r} , $\overline{pq}r$.

Se incluye \overline{pq} en $S \bowtie S = \{p, \overline{pq}, \overline{r}, \overline{pqr}, \overline{pq}\}.$

Sea
$$S = \{p, \overline{p}q, \overline{r}, \overline{pq}r\}.$$

Se toma el par no marcado \overline{r} , $\overline{pq}r$ y se obtiene \overline{pq} .

Se marca el par \overline{r} , $\overline{pq}r$.

Se incluye \overline{pq} en $S \bowtie S = \{p, \overline{pq}, \overline{r}, \overline{pqr}, \overline{pq}\}.$

Se toma el par no marcado $\overline{p}q$, \overline{pq} y se obtiene \overline{p} .

Sea
$$S = \{p, \overline{p}q, \overline{r}, \overline{pq}r\}.$$

Se toma el par no marcado \overline{r} , $\overline{pq}r$ y se obtiene \overline{pq} .

Se marca el par \overline{r} , $\overline{pq}r$.

Se incluye \overline{pq} en $S \bowtie S = \{p, \overline{pq}, \overline{r}, \overline{pq}r, \overline{pq}\}.$

Se toma el par no marcado $\overline{p}q$, \overline{pq} y se obtiene \overline{p} .

Se marca el par $\overline{p}q$, \overline{pq} .

Sea
$$S = \{p, \overline{p}q, \overline{r}, \overline{pq}r\}.$$

Se toma el par no marcado \overline{r} , $\overline{pq}r$ y se obtiene \overline{pq} .

Se marca el par \overline{r} , $\overline{pq}r$.

Se incluye \overline{pq} en $S \bowtie S = \{p, \overline{pq}, \overline{r}, \overline{pqr}, \overline{pq}\}.$

Se toma el par no marcado $\overline{p}q$, \overline{pq} y se obtiene \overline{p} .

Se marca el par $\overline{p}q$, \overline{pq} .

Se incluye \overline{p} en S

Sea
$$S = \{p, \overline{p}q, \overline{r}, \overline{pq}r\}.$$

Se toma el par no marcado \overline{r} , $\overline{pq}r$ y se obtiene \overline{pq} .

Se marca el par \overline{r} , $\overline{pq}r$.

Se incluye \overline{pq} en $S \bowtie S = \{p, \overline{pq}, \overline{r}, \overline{pq}r, \overline{pq}\}.$

Se toma el par no marcado $\overline{p}q$, \overline{pq} y se obtiene \overline{p} .

Se marca el par $\overline{p}q$, \overline{pq} .

Se incluye \overline{p} en $S \cong S = \{p, \overline{p}q, \overline{r}, \overline{pq}r, \overline{pq}, \overline{p}\}.$

Sea
$$S = \{p, \overline{p}q, \overline{r}, \overline{pq}r\}.$$

Se toma el par no marcado \overline{r} , $\overline{pq}r$ y se obtiene \overline{pq} .

Se marca el par \overline{r} , $\overline{pq}r$.

Se incluye \overline{pq} en $S \bowtie S = \{p, \overline{pq}, \overline{r}, \overline{pq}r, \overline{pq}\}.$

Se toma el par no marcado $\overline{p}q$, \overline{pq} y se obtiene \overline{p} .

Se marca el par $\overline{p}q$, \overline{pq} .

Se incluye \overline{p} en $S \cong S = \{p, \overline{p}q, \overline{r}, \overline{pq}r, \overline{pq}, \overline{p}\}.$

Se toma el par no marcado p, \overline{p} y se obtiene \square .

Sea
$$S = \{p, \overline{p}q, \overline{r}, \overline{pq}r\}.$$

Se toma el par no marcado \overline{r} , $\overline{pq}r$ y se obtiene \overline{pq} .

Se marca el par \overline{r} , $\overline{pq}r$.

Se incluye \overline{pq} en $S \bowtie S = \{p, \overline{pq}, \overline{r}, \overline{pq}r, \overline{pq}\}.$

Se toma el par no marcado $\overline{p}q$, \overline{pq} y se obtiene \overline{p} .

Se marca el par $\overline{p}q$, \overline{pq} .

Se incluye \overline{p} en $S \cong S = \{p, \overline{p}q, \overline{r}, \overline{pq}r, \overline{pq}, \overline{p}\}.$

Se toma el par no marcado p, \overline{p} y se obtiene \square .

Se devuelve "S no es satisfacible".

Contenido

- 1 Regla de Resolución
- 2 Unit propagation
- 3 Literales puros

4 Algoritmo de Davis-Putnam

Unit propagation (1/4)

Definición

Una cláusula unitaria es una cláusula que sólo contiene un literal.

Unit propagation (1/4)

Definición

Una cláusula unitaria es una cláusula que sólo contiene un literal.

Ejemplo

La fórmula S, en forma clausal,

$$S = \{p\overline{q}, \overline{r}, \overline{r}p, \overline{p}r\}$$

contiene la cláusula unitaria \overline{r} .

Unit propagation (2/4)

Supongamos:

S es un conjunto de cláusulas, $\ell \text{ es un literal/una cláusula unitaria,}$ $\ell \in S$.

Unit propagation (2/4)

Supongamos:

S es un conjunto de cláusulas, ℓ es un literal/una cláusula unitaria, $\ell \in S$.

Definamos S':

Eliminando $C \in S$ si $\ell \in C$,

Eliminando ℓ^c de las demás cláusulas.

Sea
$$S = \{p\overline{q}, \overline{r}, \overline{r}p, \overline{p}r\}$$

Eliminamos \overline{r} :

Sea
$$S = \{p\overline{q}, \overline{r}, \overline{r}p, \overline{p}r\}$$

Eliminamos \overline{r} :

Eliminando $C \in S$ si $\ell \in C...$

Sea
$$S = \{p\overline{q}, \overline{r}, \overline{r}p, \overline{p}r\}$$

Eliminamos \bar{r} :

$$S'=\{p\overline{q},\overline{p}r\}$$

Sea
$$S = \{p\overline{q}, \overline{r}, \overline{r}p, \overline{p}r\}$$

Eliminamos \overline{r} :

$$S' = \{p\overline{q}, \overline{p}r\}$$

Eliminando ℓ^c de las demás cláusulas...

Sea
$$S = \{p\overline{q}, \overline{r}, \overline{r}p, \overline{p}r\}$$

Eliminamos \overline{r} :

$$S' = \{p\overline{q}, \overline{p}\}$$

Obtenemos una cláusula unitaria en el resultado:

$$S'=\{p\overline{q},\overline{p}\}$$

Aplicamos de nuevo la regla.

Eliminamos \overline{p} :

Obtenemos una cláusula unitaria en el resultado:

$$S' = \{p\overline{q}, \overline{p}\}$$

Aplicamos de nuevo la regla.

Eliminamos
$$\overline{p}$$
:

Eliminando
$$C \in S$$
 si $\ell \in C...$

Obtenemos una cláusula unitaria en el resultado:

$$S' = \{p\overline{q}, \overline{p}\}$$

Aplicamos de nuevo la regla.

Eliminamos \overline{p} :

$$S'' = \{p\overline{q}\}$$

Obtenemos una cláusula unitaria en el resultado:

$$S' = \{p\overline{q}, \overline{p}\}$$

Aplicamos de nuevo la regla.

Eliminamos \overline{p} :

$$S'' = \{ p\overline{q} \}$$

Eliminando ℓ^c de las demás cláusulas...

Obtenemos una cláusula unitaria en el resultado:

$$S' = \{p\overline{q}, \overline{p}\}$$

Aplicamos de nuevo la regla.

Eliminamos \overline{p} :

$$S'' = \{\overline{q}\}$$

Unit propagation (4/4)

Teorema

Si S es un conjunto de cláusulas y S' es el resultado de Unit propagation aplicado a S, entonces $S \approx S'$.

Unit propagation (4/4)

Teorema

Si S es un conjunto de cláusulas y S' es el resultado de Unit propagation aplicado a S, entonces $S \approx S'$.

Demostración: Ejercicio 6

Contenido

- 1 Regla de Resolución
- 2 Unit propagation
- 3 Literales puros
- 4 Algoritmo de Davis-Putnam

Eliminación de literales puros (1/3)

Definición

Sea S un conjunto de cláusulas y ℓ un literal. Decimos que ℓ es un literal puro en S sii se cumplen las dos condiciones siguientes:

- 1. $\ell \in C$ para algún $C \in S$,
- 2. $\ell^c \notin C$ para todo $C \in S$.

Eliminación de literales puros (1/3)

Definición

Sea S un conjunto de cláusulas y ℓ un literal. Decimos que ℓ es un literal puro en S sii se cumplen las dos condiciones siguientes:

- 1. $\ell \in C$ para algún $C \in S$,
- 2. $\ell^c \not\in C$ para todo $C \in S$.

Ejemplo

La fórmula S, en forma clausal,

$$S = \{p\overline{q}, \overline{r}, \overline{r}p, \overline{q}r, \overline{p}r\}$$

contiene el literal puro \overline{q} .

Eliminación de literales puros (2/3)

Teorema

Supongamos que S es un conjunto de cláusulas y ℓ es un literal puro en S. Sea S' el resultado de eliminar todas las $C \in S$ tales que $\ell \in C$. Entonces $S \approx S'$.

Eliminación de literales puros (2/3)

Teorema

Supongamos que S es un conjunto de cláusulas y ℓ es un literal puro en S. Sea S' el resultado de eliminar todas las $C \in S$ tales que $\ell \in C$. Entonces $S \approx S'$.

Demostración: Ejercicio 7

Eliminación de literales puros (3/3) — Ejemplo—

Sea
$$S = \{p\overline{q}, \overline{r}, \overline{r}p, \overline{q}r, \overline{p}r\}$$

Eliminamos el literal puro \overline{q} :

Eliminación de literales puros (3/3) —Ejemplo—

Sea
$$S = \{ p\overline{q}, \overline{r}, \overline{r}p, \overline{q}r, \overline{p}r \}$$

Eliminamos el literal puro \overline{q} :

$$S' = \{\overline{r}, \overline{r}p, \overline{p}r\}$$

Contenido

- 1 Regla de Resolución
- 2 Unit propagation
- 3 Literales puros
- 4 Algoritmo de Davis-Putnam

Input: Fórmula S en forma clausal sin cláusulas triviales

Output: Satisfacible/Insatisfacible

- 1. Ejecutar pasos (a) y (b) mientras sea posible:
 - a) Unit propagation
 - b) Eliminación de literales puros

Input: Fórmula S en forma clausal sin cláusulas triviales

Output: Satisfacible/Insatisfacible

- 1. Ejecutar pasos (a) y (b) mientras sea posible:
 - a) Unit propagation
 - b) Eliminación de literales puros
- 2. Si no se puede ejecutar ni (a) ni (b):

Escoger un literal ℓ .

Encontrar los resolventes de todos los páres de cláusulas que conflictúen en ℓ y ℓ^c .

Añadir a S los resolventes (no triviales).

Borrar de S todas las cláusulas que contengan ℓ o ℓ^c .

Input: Fórmula S en forma clausal sin cláusulas triviales

Output: Satisfacible/Insatisfacible

- 1. Ejecutar pasos (a) y (b) mientras sea posible:
 - a) Unit propagation
 - b) Eliminación de literales puros
- 2. Si no se puede ejecutar ni (a) ni (b):
 - Escoger un literal ℓ .
 - Encontrar los resolventes de todos los páres de cláusulas que conflictúen en ℓ y ℓ^c .
 - Añadir a S los resolventes (no triviales).
 - Borrar de S todas las cláusulas que contengan ℓ o ℓ^c .
- 3. Si durante la ejecución de 1 o 2 aparece la cláusula vacía, retornar "Insatisfacible".

Input: Fórmula S en forma clausal sin cláusulas triviales

Output: Satisfacible/Insatisfacible

- 1. Ejecutar pasos (a) y (b) mientras sea posible:
 - a) Unit propagation
 - b) Eliminación de literales puros
- 2. Si no se puede ejecutar ni (a) ni (b):
 - Escoger un literal ℓ .
 - Encontrar los resolventes de todos los páres de cláusulas que conflictúen en ℓ y ℓ^c .
 - Añadir a S los resolventes (no triviales).
 - Borrar de S todas las cláusulas que contengan ℓ o ℓ^c .
- 3. Si durante la ejecución de 1 o 2 aparece la cláusula vacía, retornar "Insatisfacible".
- 4. Si no se puede ejecutar ninguna regla, retornar "Satisfacible".

Sea
$$S_0 = \{pq, p\overline{q}, \overline{p}q, \overline{pr}\}$$

Sea
$$S_0 = \{pq, p\overline{q}, \overline{p}q, \overline{pr}\}$$

Eliminamos el literal puro \overline{r} :

Sea
$$S_0 = \{pq, p\overline{q}, \overline{p}q, \overline{pr}\}$$

Eliminamos el literal puro \overline{r} : $S_1 = \{pq, p\overline{q}, \overline{p}q\}$

Sea
$$S_0 = \{pq, p\overline{q}, \overline{p}q, \overline{pr}\}$$

Eliminamos el literal puro \overline{r} :

$$S_1 = \{pq, p\overline{q}, \overline{p}q\}$$

No hay cláusulas unitarias ni literales puros.

Sea
$$S_0 = \{pq, p\overline{q}, \overline{p}q, \overline{pr}\}$$

Eliminamos el literal puro \overline{r} :

$$S_1 = \{pq, p\overline{q}, \overline{p}q\}$$

No hay cláusulas unitarias ni literales puros.

Escogemos el literal q y aplicamos resolución sobre todas las parejas que conflictúen en q, \overline{q}

Sea
$$S_0 = \{pq, p\overline{q}, \overline{p}q, \overline{pr}\}$$

Eliminamos el literal puro \bar{r} :

$$S_1 = \{pq, p\overline{q}, \overline{p}q\}$$

No hay cláusulas unitarias ni literales puros.

Escogemos el literal q y aplicamos resolución sobre todas las parejas que conflictúen en q, $\overline{q} \bowtie pq$ y $p\overline{q}$; $p\overline{q}$ y $\overline{p}q$.

Sea
$$S_0 = \{pq, p\overline{q}, \overline{p}q, \overline{pr}\}$$

Eliminamos el literal puro \bar{r} :

$$S_1 = \{pq, p\overline{q}, \overline{p}q\}$$

No hay cláusulas unitarias ni literales puros.

Escogemos el literal q y aplicamos resolución sobre todas las parejas que conflictúen en q, $\overline{q} \bowtie pq$ y $p\overline{q}$; $p\overline{q}$ y $\overline{p}q$.

Nos quedamos con los resolventes no triviales y eliminamos todas las cláusulas con q o \overline{q} :

$$S_2 = \{p\}$$

Sea
$$S_0 = \{pq, p\overline{q}, \overline{p}q, \overline{pr}\}$$

Eliminamos el literal puro \overline{r} :

$$S_1 = \{pq, p\overline{q}, \overline{p}q\}$$

No hay cláusulas unitarias ni literales puros.

Escogemos el literal q y aplicamos resolución sobre todas las parejas que conflictúen en q, $\overline{q} \bowtie pq$ y $p\overline{q}$; $p\overline{q}$ y $\overline{p}q$.

Nos quedamos con los resolventes no triviales y eliminamos todas las cláusulas con q o \overline{q} :

$$S_2 = \{p\}$$

Hacemos *Unit propagation* sobre *p*:

$$S_3 = \{\}$$
 ¡SATISFACIBLE!

Fin de la sesión 13

En esta sesión usted ha aprendido a:

- 1. Aplicar la regla de resolución.
- 2. Realizar el procedimiento de *Unit propagation*.
- 3. Eliminar literales puros.
- 4. Verificar si una formula es satisfacible mediante el algoritmo de Davis-Putnam.