Relatório Final do Projeto Victor Hugo Rodrigues da Cunha - vhrc@cin.ufpe.br

1. Introdução

O dataset utilizado se encontra disponível no Kaggle através do link https://www.kaggle.com/spscientist/students-performance-in-exams, ele é formado por notas de estudantes com seu desempenho em três áreas: cáuculo, leitura e escrita. Além disso, ele contém também dados sociais dos alunos: grupo étnico, gênero, escolaridade parental e auxílio alimentação (almoço com valor reduzido ou não) e se foi realizada a prova de preparação.

O objetivo foi utilizar modelos de machine learning para avaliar a possibilidade de prever o desempenho dos alunos em sua nota para escrita, considerando as features de nota em cálculo, nota em leitura, realização de curso de preparação para prova, auxílio no almoço e nível de escolaridade parental (etnia e gênero foram desconsiderados), além de entender o quanto cada fator influencia na previsão da nota final.

2. Fundamentos

a. Árvore de Decisão

Vou para praia?

Algoritmo de aprendizagem de máquina que cria uma estrutura com vários pontos de decisão, organizando-os em nós. A construção da árvore de decisão é baseada nos dados de treino, através deles serão determinados o conteúdo e as regras para os nós e os ramos. O caminho de decisão formado na árvore permite que uma previsão seja feita com dados semelhantes.

Vento?

Sim

Não

Não

Vou para praia!

Sim

Não

Não

Vou para praia!

Não vou para praia!

Exemplo de árvore de decisão (fonte:

didatica.tech)

b. K Vizinhos Próximos

Algoritmo que utiliza das proximidades entre dados para estabelecer previsões. O algoritmo calcula a distância entre os dados utilizando uma métrica de distância, a distância euclidiana, por exemplo, e considera os k (valor determinado) vizinhos mais próximos para determinar a que classe pertenceria os dados. Por exemplo, se o valor de k for 7, serão considerados os 7 elementos mais próximos, e a partir de seu valor, será determinado o rótulo do dado buscado.

Representação visual do funcionamento do K Vizinhos Próximos (fonte: computacaointeligente.com.br)

c. Floresta Aleatória

Semelhante à árvore de decisão, só que dessa vez fazendo a criação de diversas árvores diferentes, e utilizando parâmetros aleatórios na composição de seus nós de decisão. Ela atua com subconjuntos aleatórios de suas features e dependendo da quantidade de árvores geradas acaba por necessitar de um poder computacional maior.

Representação de floresta

aleatória com duas árvores (fonte: medium.com/machina-sapiens)

d. Máquinas de Vetor de Suporte

O algoritmo busca a melhor forma de dividir o conjunto de dados através de uma fronteira. A divisão pode ser feita de forma linear ou não-linear. Através dessa divisão será possível realizar previsões.

Representação visual de um algoritmo de máquinas de vetor de suporte (fonte: https://towardsdatascience.com/)

3. Metodologia

A metodologia pode ser organizadas em passos:

- Importação das bibliotecas necessárias.

Dados

- Importação do dataset;
- Exclusão das colunas do dataset com features que não serão usadas (gender e race/ethnicity);
- Ajuste na coluna a ser usada como classe: writing score
 - Originalmente trazia valores numéricos entre 19 e 100;
 - Foi organizado em 4 classes
 - valores < 40 => classe 1
 - valores >= 40 e < 60 **=>** classe 2
 - valores >= 60 e < 80 **=>** classe 3
 - valores >= 80 => classe 4
- As demais features foram convertidas manualmente em valores numéricos;
- Através do train_test_split foi feita a divisão entre dados de teste e dados de treino, onde 30% dos dados disponíveis foram usados para treino.

Algoritmos

Árvore de Decisão

- O primeiro algoritmo utilizado foi a árvore de decisão, gerada sem nenhum parâmetro especificado, juntamente com sua acurácia e importância das features;
- Para uma melhor visualização foi usado o graphviz para renderizar a árvore;
- Com o interactive foi gerada ainda uma árvore de decisão interativa, o que permitia que a árvore fosse visualizada graficamente ao mesmo tempo em que seus parâmetros poderiam ser modificados, contribuindo para a geração de várias árvores.

k-vizinhos mais próximos

- O segundo algoritmo foi o KNN (k-vizinhos mais próximos), gerado com o k = 3;
- Após isso ele foi executado mais vezes, para k = 1, k = 3, k = 5, k = 7 e k = 9
- Em todas as execuções foi exposto o respectivo valor de acurácia;

Florestas Aleatórias

- Primeiramente foi gerada uma floresta aleatória com 100 árvores, com acurácia e importância das features;
- Depois, mais florestas foram geradas, com suas respectivas acurácias e importância das features. as florestas tiveram 100, 200, 500, 800, 1000, 2000 e 3000 árvores.

Máquinas de Vetor de Suporte

- A primeira máquina de vetor de suporte usou o kernel linear, sua acurácia foi exposta;
- Após isso, mais máquinas de vetor de suporte foram executadas, calculando sua acurácia para os seguintes kernels: linear, poly e rbf.

Remoção de Features

- Verificando os resultados ficou claro que algumas features eram muito menos importantes que outras, e que seria interessante executar os algoritmos desconsiderando elas;
- Dentre as menos importantes, as features de lunch e de test preparation course foram as escolhidas para serem descartadas;
- As colunas contendo essas features foram removidas do dataset, os dados foram novamente divididos (seguindo a mesma proporção), e todos os algoritmos foram novamente executados (sem nenhuma modificação neles próprios).

4. Resultados

Árvore de Decisão

 Árvore de Decisão sem parâmetros
 Árvore gerada usando os parâmetros padrões, sem especificar profundidade, largura etc.

A tabela mostra a importância de cada feature no modelo e a acurácia da árvore:

parental level of education	lunch	test preparation course	math score	reading score	acurácia
0.0678905 917862668 6	0.0168894 445130263 68	0.0279417 132532657 66	0.1369942 904584505 7	0.7502839 599889903	0.7433333

A acurácia foi de 74%, e as features que menos contribuíram foram lunch e test preparation course, ambas com menos de 0.03.

ii. Árvores de Decisão com parâmetros especificados

A tabela mostra os parâmetros especificados, a importância de cada feature no modelo e a acurácia final da árvore:

critério	divisor	profund idade	parental level of educatio n	lunch	test preparati on course	math score	reading score	acuráci a
gini	best	5	0.0083 964377 108327 73	0.0053 628227 199826 97	0.0262 991212 074705	0.0495 003329 811317	0.9104 412853 805823	0.8233 333333 333334
entrop Y	best	5	0.0172 896554 276418	0.0030 892753 473188 22	0.0273 025567 587567 3	0.0378 475966 971593 4	0.9144 709157 691233	0.8266 666666 666667
gini	random	5	0.0191 345311 136636 48	0.0014 918155 934595 114	0.0351 704713 631752 35	0.1735 540019 439964 8	0.7706 491799 857051	0.82
entrop Y	random	10	0.0694 240939 808867 7	0.0247 040332 683284 33	0.0428 602789 105062	0.0585 880176 298855 3	0.8044 235762 103932	0.8

Com menor profundidade a acurácia obteve melhores resultados, e o valor de reading score se destacou em nível de importância em todas as execuções.

k-vizinhos mais próximos

A tabela mostra a acurácia conseguida para cada valor de K:

Valor de K	Acurácia
1	0.76
3	0.8
5	0.803333333333333
7	0.81
9	0.81

Florestas Aleatórias

A tabela mostra os resultados obtidos com florestas aleatórias de acordo com a quantidade de árvores:

árvores	parental level of education	lunch	test preparatio n course	math score	reading score	acurácia
100	0.06599	0.02183	0.02724	0.25838	0.62653	0.82666
	3468893	6390438	9792143	8551380	1797143	6666666

	75338	25492	678314	4315	8819	6667
200	0.06905	0.02168	0.02830	0.26023	0.62073	0.80333
	0734818	1059624	0107712	0453092	7644752	3333333
	66016	27665	70565	09886	2588	3333
500	0.06841	0.02127	0.02826	0.26362	0.61842	0.80666
	2892050	0612907	6644827	1061873	8788340	6666666
	66627	770832	462252	93486	1658	6666
800	0.06949	0.02071	0.02864	0.26087	0.62027	0.80333
	0150436	2676789	8668845	3717685	4786242	3333333
	89459	929396	465516	6628	0477	3333
1000	0.06965 9378857 43215	0.02090 5485624 737537	0.02879 9431523 639795	0.26378 9072701 525	0.61684 6631292 6654	0.81
2000	0.06986	0.02082	0.02887	0.26488	0.61555	0.80666
	5479675	2499929	3017657	1241211	7761526	6666666
	7258	430395	358963	40455	0802	6666
3000	0.06930	0.02110	0.02894	0.26324	0.61740	0.80666
	0104102	1681923	9005745	0647167	8561060	6666666
	79687	825347	23716	8833	2573	6666

Máquinas de Vetor de Suporte

A tabela mostra a acurácia das MVS de acordo com seu kernel:

kernel	acurácia
linear	0.86
poly	0.84
rbf	0.833333333333334

5. Resultados Removendo Features

Possuindo menores valores no nível de importância, os algoritmos foram executados novamente, mas dessa vez sem as features de lunch e test preparation course.

Árvore de Decisão

Árvore de Decisão sem parâmetros
 Árvore gerada usando os parâmetros padrões, sem especificar profundidade, largura etc.

A tabela mostra a importância de cada feature no modelo e a acurácia da árvore:

parental level of education	math score	reading score	acurácia
0.081031606979	0.18212214618645	0.73684624683395	0.8066666666666666666666666666666666666
59019	972	01	

ii. Árvores de Decisão com parâmetros especificados

A tabela mostra os parâmetros especificados, a importância de cada feature no modelo e a acurácia final da árvore:

critério	divisor	profundida de	parental level of education	math score	reading score	acurácia
gini	best	5	0.029043 95155707 6075	0.046680 12769064 1234	0.910441 28538058 23	0.823333 33333333 34
entropy	best	5	0.015352 63239179 4708	0.051016 45438218 266	0.933630 91322602 27	0.826666 66666666 67
gini	random	5	0.007808 85787452 2605	0.007938 23207038 2937	0.984252 91005509 44	0.873333 33333333 33
entropy	random	10	0.048492 44835114 6224	0.066822 52407132 151	0.884685 02757753 22	0.826666 66666666 67

k-vizinhos mais próximos

A tabela mostra a acurácia conseguida para cada valor de K:

Valor de K	Acurácia
1	0.803333333333333
3	0.843333333333334
5	0.84
7	0.843333333333334
9	0.856666666666667

Florestas Aleatórias

A tabela mostra os resultados obtidos com florestas aleatórias de acordo com a quantidade de árvores:

árvores	parental level of education	math score	reading score	acurácia
100	0.060785359	0.331979484	0.607235156	0.836666666
	06828809	7981852	1335266	6666667
200	0.063166920 40421984	0.320314862 88127686	0.616518216 7145032	0.83
500	0.062225346	0.325163083	0.612611569	0.83333333
	69952118	6602394	6402393	3333334
800	0.064324806 03005256	0.322328407 6080934	0.613346786 361854	0.83
1000	0.062318561	0.320852379	0.616829058	0.836666666
	636242054	8239583	5397995	6666667
2000	0.062440064 78335014	0.321859156 6039556	0.615700778 6126943	0.8333333333333333333333333333333333333
3000	0.063153890	0.322846041	0.614000067	0.836666666
	659692	87130234	4690057	6666667

Máquinas de Vetor de Suporte

A tabela mostra a acurácia das MVS de acordo com seu kernel:

kernel	acurácia
linear	0.87
poly	0.873333333333333
rbf	0.863333333333333

6. Conclusão

De modo geral os algoritmos obtiveram bons resultados, quase sempre ultrapassando a marca de 80% de acurácia, mesmo com mudanças em seus respectivos parâmetros. Dentre todos, o algoritmo que obteve o pior resultado foi a Árvore de Decisão quando utilizada sem especificação de nenhum critério, ela conseguiu apenas 74% de acurácia. Isso mostra que ela estava tão adaptada aos dados de treino que não conseguiu ter um bom desempenho na hora do teste. A poda acabou por ser essencial para que o seu resultado começasse a ultrapassar os 80% de acurácia.

Outro ponto interessante é com relação às features utilizadas, quando todas as cinco foram usadas em conjunto o nível de importância costumou a mostrar valores mais baixos para as features de lunch e test preparation course. Executando novamente todos os algoritmos, a falta dessas duas features contribuiu para melhores resultados nas acurácias, com, inclusive, o algoritmo de Máquinas de Vetor de Suporte alcançando 87% de acurácia em sua versão com kernel polynomial.

Os resultados finais trouxeram a confirmação de que o desempenho em leitura (reading score) está bem relacionado ao desempenho em escrita (writing score, que foi utilizada como classe), e que o acesso ao almoço e o curso de preparação para a prova são fatores que influenciam menos na nota final de escrita, chegando a atrapalhar a previsão.

A execução dos algoritmos, além de tudo, demonstrou a importância da boa escolha de features, já que o uso de features limitadas às mais importantes trouxe melhores resultados que o uso de todas as features. Por fim, ficou claro também o quão vantajoso diferentes algoritmos para se buscar uma melhor qualidade na previsão. Uma proposta de trabalho futuro seria uma nova remoção de feature menos importante, nesse caso a parental level of education para focar a previsão apenas entre as diferentes notas nas áreas de cálculo, leitura e escrita.