Instituto Federal de Educação Ciência e Tecnologia de São Paulo Curso de Graduação em Engenharia Eletrônica

Geradores de Tensão

Relatório da disciplina Laboratório de Eletrônica 1 com o Prof^o. Gilberto Cuarelli e o Prof^o. Haroldo Guibu.

Gustavo Senzaki Lucente Luís Otávio Lopes Amorim SP303724X SP3034178

SUMÁRIO

1	INTRODUÇÃO TEÓRICA 5
2 2.1	PROCEDIMENTOS EXPERIMENTAIS
3 3.1	QUESTÕES 8 Questões 8
4	CONCLUSÃO 11
	REFERÊNCIAS

LISTA DE FIGURAS

Figura 1 -	Circuito 1	6
$Figura\ 2\ -$	Curva 1	8
Figura 3 –	Curva 2	9

LISTA DE TABELAS

Tabela 1 –	Resistor de 100Ω		 									7
Tabela 2 –	Resistor de 560 Ω		 									7
Tabela 3 –	Resistor de 1K Ω		 									7
Tabela 4 –	Curva 3		 									9
Tabela 5 –	Curva Sem Resistores											10

1 INTRODUÇÃO TEÓRICA

Geradores de Tensão são dispositivos construídos para fazer aparecer entre dois terminais chamados de pólos uma ddp ou tensão elétrica.

A função do gerador é a mesma que a de uma bomba hidraúlica, a bomba aumenta a pressão de água para que a água possa vencer o desnível. No caso do gerador de tensão é a mesma coisa, porém com energia.

O gerador fornece energia para os elétrons percorrerem o circuito e assim a energia desses elétrons será convertida em outras coisas, como luz, calor etc. (??)

2 PROCEDIMENTOS EXPERIMENTAIS

2.1 Circuito 1

O circuito 1 é composto por uma cadeia de resistores em paralelo, alimentados por uma fonte com uma resistência em sua saída, como demonstrado na figura 1

Esse resistor varia 2 vezes; seu valor inicial é de 100Ω e depois varia para 560Ω e $1\mathrm{K}\Omega.$

Com esse resistor variando 2 vezes, foram solicitadas 3 tabelas, cada uma após utilizar um valor no resistor da saída do gerador.

Figura 1 – Circuito 1

Fonte: Elaborada pelos autores

Como podemos observar nas tabelas 1, 2 e 3, as tensões mudam, porém como os resistores estão em paralelo, o que é realmente diferente entre todos é a corrente.

Tabela 1 – Resistor de 100Ω

R(Ω) Década (carga)	1000	900	800	700	600	500	400	300	200	100
V(V)	2,55	2,55	2,55	2,55	2,55	2,55	2,55	2,55	2,55	2,55
I(mA)	2,55	2,83	3,18	3,64	4,24	5,09	6,36	8,48	12,7	25,5

Fonte: Elaborada pelos autores

Tabela 2 – Resistor de 560Ω

R(Ω) Década (carga)	1000	900	800	700	600	500	400	300	200	100
V(V)	0,575	0,575	0,575	0,575	0,575	0,575	0,575	0,575	0,575	0,575
I(mA)	0,575	0,638	0,718	0,821	0,958	1,15	1,44	1,92	2,87	5,75

Fonte: Elaborada pelos autores

Tabela 3 – Resistor de 1K Ω

R(Ω) Década (carga)	1000	900	800	700	600	500	400	300	200	100
V(V)	0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,33
I(mA)	0,33	0,367	0,413	0,472	0,55	0,66	0,825	1,1	1,65	3,3

Fonte: Elaborada pelos autores

3 QUESTÕES

3.1 Questões

Após a medição de todas as correntes e tensões, foi solicitado a construção das curvas características do gerador para cada uma das três montagens.

Como estamos fazendo o experimento em um software, não existe resistência interna neste caso. Portanto na primeira situação a única resistência existente é a resistência de $100,\,560$ ou $1\mathrm{K}\Omega.$

Abaixo na figura 2 vemos a curva característica da primeira montagem com o resistor de 100Ω .

Figura 2 – Curva 1

Fonte: Elaborada pelos autores

A resistência interna é nula por conta de o experimento ser efetuado em um software. Já a corrente de curto-circuito é de 0,1A como demonstrado na curva, pois a corrente de curot-circuito é o valor da corrente quando a tensão é igual a 0V, ou seja, nesse caso é igual á 0,1A.

A equação que constrói essa curva é: U = 10 - 100I.

A segunda curva da segunda montagem é demonstrada pela figura 3.

Capítulo 3. Questões 9

Figura 3 – Curva 2

Fonte: Elaborada pelos autores

A resistência interna é nula por conta de o experimento ser efetuado em um software. Já a corrente de curto-circuito é de aproximadamente 0,017A pois não conseguimos ver com tanta precisão o valor quando criamos o gráfico.

A equação que constrói essa curva é: U = 10 - 560I.

Abaixo na figura 4 vemos a terceira curva da terceira montagem, com o resistor de 1000Ω .

Tabela 4 – Curva 3

Fonte: Elaborada pelos autores

A resistência interna é nula por conta de o experimento ser efetuado em um software.

Capítulo 3. Questões 10

Já a corrente de curto-circuito é de aproximadamente 0,01A de acordo com o gráfico.

A equação que constrói essa curva é: U = 10 - 1000I

No caso de excluírmos os resistores, a curva de cada montagem será uma constante com o valor no eixo da tensão em 10V. Por que como estamos fazendo os experimentos em software, não existem ocasiões não ideais. Portanto o gerador de tensão é ideal, abaixo na figura 5 podemos observar essa questão que comentamos anteriormente.

Tabela 5 – Curva Sem Resistores

Fonte: Elaborada pelos autores

Já a resistência interna e a corrente de curto-circuito não existem, pois estamos em uma situação ideal, logo não possui resistência interna e corrente de curto-circuito.

E a equação deste gerador seria: U = 10.

4 CONCLUSÃO

Ao término deste experimento, o grupo pode entender o funcionamento de geradores de tensão; suas aplicações e o comportamento de suas curvas.

Se os experimentos tivessem efetuados na vida real e não através de software, temos certeza que os resultados seriam totalmente diferentes, pois existem variações e tolerâncias com os componentes na vida real; algo que não ocorre no software utilizado.

REFERÊNCIAS

ETELG. **Geradores de Tensão**. 2015. Disponível em: http://www.etelg.com.br/downloads/eletronica/cursos/Aulas/geradores.html. Acesso em: 16 de janeiro de 2021. Citado na página 5.