How to Al (Almost) Anything Lecture 2 – Data, structure, learning

Paul Liang

Assistant Professor
MIT Media Lab & MIT EECS

https://pliang279.github.io ppliang@mit.edu ppliang279

Lecture Outline

- 1) Vision, language, audio, sensing, set, graph modalities
- 2 Modality profile
- Types of data and labels
- Common learning objectives and generalization

Piazza

Calendar

What is a Sensory Modality?

Sensory modality

Modality refers to the way in which something expressed or perceived.

Most of Al is about learning abstractions, or representations, from data.

Visual Modality

Each pixel is represented in \mathcal{R}^d , d is the number of colors (d=3 for RGB)

1										
	88	82	84	88	85	83	80	93	102	
	88	80	78	80	80	78	73	94	100	
	85	79	80	78	77	74	65	91	99	
	38	35	40	35	39	74	77	70	65	
	20	25	23	28	37	69	64	60	57	
	22	26	22	28	40	65	64	59	34	
	24	28	24	30	37	60	58	56	66	
N	21	22	23	27	38	60	67	65	67	
1	23	22	22	25	38	59	64	67	66	

Input observation x_i

Binary classification problem

Dog?

label $y_i \in \mathcal{Y} = \{0,1\}$

Visual Modality

Multi-class classification problem

label
$$y_i \in \mathcal{Y} = \{0,1,2,3,...\}$$

Language Modality

ritten language

Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in disguises who likes to see the subject tackled in a humourous manner.

0 of 4 people found this review helpful

oken language

MARTHA (CON'T)

Look around you. Look at all the great things you've done and the people you've helped.

CLARK

But you've only put up the good things they say about me.

MARTHA

Clark, honey. If I were to use the bad things they say I could cover the barn, the house and the outhouse.

Word-level classification

Part-of-speech? (noun, verb,...)

Sentiment?

(positive or negative)

Named entity?

(names of person,...)

"one-hot" vector

 $|x_i|$ = number of words in dictionary

Language Modality

Written language

Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in disguises who likes to see the subject tackled in a humourous manner.

0 of 4 people found this review helpful

oken language

MARTHA (CON'T)

Look around you. Look at all the great things you've done and the people you've helped.

CLARK

But you've only put up the good things they say about me.

MARTHA

Clark, honey. If I were to use the bad things they say I could cover the barn, the house and the outhouse.

Input observation

Document-level classification

Response?

"bag-of-word" vector

 $|x_i|$ = number of words in dictionary

What happens with word ordering?

Acoustic Modality

Digitalized acoustic signal

• Sampling rates: 8~96kHz

• Bit depth: 8, 16 or 24 bits

• Time window size: 20ms

• Offset: 10ms

Spectrogram

 χ 0.21 0.14 0.56 0.45 0.9 0.98 0.75 0.34 0.24 0.11 0.02

Spoken word?

Acoustic Modality

Digitalized acoustic signal

• Sampling rates: 8~96kHz

• Bit depth: 8, 16 or 24 bits

• Time window size: 20ms

• Offset: 10ms

Spectrogram

Emotion?

Spoken word?

Voice quality?

Sensor Modality

Time series data across sixaxis Force-Torque sensor: T × 6 signal.

Force-Torque Sensor

Proprioception

Measure values internal to the system (robot); e.g. motor speed, wheel load, **robot arm joint angles**, battery voltage.

Time series data across current position and velocity of the end-effector: T × 2 signal.

Object property
Next action

Tabular Modality

Graph Modality

Tasks on graphs:

Node classification Link prediction

• •

Using graphs:

Knowledge graphs for QA Social network for sentiment analysis

...

Set Modality

Set anomaly detection
Set expansion
Set completion
Point cloud classification
Point cloud generation

The qualities and structures that are unique to a data modality.

A teacup on the right of a laptop in a clean room.

The distribution of individual elements within that modality.

A **teacup** on the **right** of a **laptop** in a **clean room**.

Distribution: discrete or continuous, support

{teacup, right, laptop, clean, room}

The frequency at which elements appear or are sampled.

A teacup on the right of a laptop in a clean room.

Granularity: sampling rate and frequency

objects per image

words per minute

The way elements compose with each other to form entire data.

Structure: static, temporal, spatial, hierarchical

The total information contained in the elements and their composition.

A teacup on the right of a laptop in a clean room.

The natural imperfections in the data modality.

A teacup on the right of a laptop in a clean room.

teacup \rightarrow teacip right \rightarrow rihjt

- 1 Element representations:
 Discrete, continuous, granularity
- 2 Element distributions:
 Density, frequency
- 3 Structure: Temporal, spatial, latent, explicit
- 4 Information:
 Abstraction, entropy
- 5 Noise:
 Uncertainty, noise, missing data
- 6 Relevance:
 Task, context dependence

Types of Learning Paradigms

(the categorization can be refined, e.g. there are active learning, semi-supervised, selective, contrastive, few-shot, inverse reinforcement learning...)

Supervised Learning

Goal: correctly classify so far unseen test images

Goal: predict to what degree a drug candidate binds to the intended target protein (based on a dataset of already-screened molecules against the target)

· Learning a machine translation system from pairs of sentences

Spanish (input)

Aquí tienes un bolígrafo

Las conferencias de ML son divertidas

Todo el mundo debería estudiar AI

English (output)

Here's a pen

ML conferences are fun

Everyone should study AI

[Slides adapted from 6.790]

Unsupervised Learning

dimensionality reduction, embedding

Over 3D protein structures, etc.

+Self-Supervised paradigm

de-noising diffusion models over images

[image from Rissanen et al 2022]

[Slides adapted from 6.790]

Reinforcement Learning

Step 1 Collect demonstration data and train a supervised policy. A prompt is sampled from our Explain reinforcement prompt dataset. learning to a 6 year old. A labeler demonstrates the desired output We give treats and behavior. punishments to teach... This data is used to fine-tune GPT-3.5 with supervised learning.

More Learning Paradigms

Supervised learning

Multimodal (supervised) learning

$$X1 \rightarrow y$$

Multitask learning

$$x \rightarrow \boxed{} < \frac{y^1}{y^2}$$

Transfer learning

Cross-modal learning

$$\begin{array}{c|c}
X1 \longrightarrow & \downarrow \\
\downarrow \\
X2 \longrightarrow & \downarrow \\
\end{array}$$

Unsupervised/self-supervised pre-training

More Interactive Learning Paradigms

Reinforcement learning

LLM adaptation

$$\begin{array}{c|c}
X & \longrightarrow & \longrightarrow & y \\
X & \longrightarrow & \longrightarrow & y + language
\end{array}$$

Curriculum/active learning

$$\begin{array}{c} X \longrightarrow \boxed{} \longrightarrow y \text{ (easy)} \\ X \longrightarrow \boxed{} \longrightarrow y \text{ (hard)} \end{array}$$

Human-in-the-loop learning

$$X \longrightarrow \longrightarrow y$$
 (human eval) $X \longrightarrow \longrightarrow y...$

Learning Process

We want a "good" way to label our data

- How to label? Learn a model
- We typically consider a class of possible models

Input: Data

how well our model labels new data depends largely on how good the chosen model class is

Overfitting vs Generalization

What we really want is to generalize to future data!

What we don't want:

- Model does not capture the input-output relationship → Underfitting
- Model too specialized to training data → Overfitting

Split collected data into training, validation, and testing. Critical to make sure test data conditions match real-time deployment conditions.

Summary: How To Data

- 1. Decide how much data to collect, and how much to label (costs and time)
- 2. Clean data: normalize/standardize, find noisy data, anomaly/outlier detection
- 3. Visualize data: plot, dimensionality reduction (PCA, t-sne), cluster analysis
- 4. Decide on evaluation metric (proxy + real, quantitative and qualitative)
- 5. Choose model class and learning algorithm (more next lecture)

Lecture Summary

- 1) Vision, language, audio, sensing, set, graph modalities
- 2 Modality profile
- 3 Types of data and labels
- Common learning objectives and generalization

Assignments for This Coming Week

No reading assignment this week.

For project:

- Project preference form (Due tonight 2/11 at 9pm ET)
- If not team yet, mingle and find teams now!
- Project proposal presentations next Thursday (2/20) in class
 - Instructions will be sent out via piazza, roughly 5 mins/5 slides per team motivating problem (broad impact + intellectual merit), existing work, datasets used, rough research ideas.
- Today and Thursday 2-3pm meet with me at E15-392 so I can give feedback on ideas.

This Thursday: (optional) tutorial on **ML tools – Pytorch, Huggingface, GPUs, Wandb** Before Thursday, register for huggingface and Wandb account

