Assignment 3

Question 1. Firing Time Maps

For this question, you are advised to look at Section 8.2.3.1 in the book by Ermentrout and Terman.

Q2.1: Equation 8.22 is derived for two identical oscillators. Derive an analogue of equation 8.22 for 2 nonidentical oscillators, with slightly different periods, say T_0 and $T_0 + \epsilon$, and phase-resetting curves given by Δ_1 and Δ_2 , respectively.

Q2.2: Consider the oscillators as in Q2.1. Let $a \in (-1,0)$ and $\Delta_1(\phi) = \Delta_2(\phi) = a \sin(2\pi\phi)$. Study the existence of fixed points as ϵ varies, while a remains fixed. Use a computer to find the fixed points and determine the magnitude of ϵ such that there exists a stable fixed point.

Question 2. Neural field analysis

Consider the following neural field model

$$\partial_t u(x,t) = -u(x,t) + \int_{\mathbb{R}} w(x-y) f(u(y,t) - h) dy, \qquad (x,t) \in \mathbb{R} \times \mathbb{R}_{>0},$$

$$u(x,0) = u_0(x), \qquad x \in \mathbb{R},$$
(1)

under the following hypotheses:

H1: The homogeneous synaptic kernel is given by $w(z) = (1 - |z|)e^{-|z|}$ **H2:** The firing rate is of Heaviside type, f(u) = H(u).

Q2.1: Let U(x) be a steady state of (1) that crosses h twice, at distinct points $x_1, x_2 \in \mathbb{R}$ with $x_1 < x_2$. So, U(x) has a nontrivial spatial profile. Show that U(x) satisfies

$$U(x) = \int_{x_1}^{x_2} w(x - y) dy.$$
 (2)

Q2.2: Show that U is given by

$$U(x) = \operatorname{sgn}(x - x_1)\phi(|x - x_1|) + \operatorname{sgn}(x_2 - x)\phi(|x_2 - x|), \qquad \phi(x) = xe^{-x}.$$

[Hint] Use (2), write $\int_{x_1}^{x_2} = \int_{x_1}^x + \int_x^{x_2}$ for a generic $x \in \mathbb{R}$, show that $\int_a^x w(x-y)dy = (x-a)e^{-|x-a|}$.

Q2.3: Verify that $\lim_{x\to\pm\infty}U(x)=0$, and that $U\in C^1(\mathbb{R})$. In addition, by plotting U(x) for $x_1=0$, $x_2 = 1$, convince yourself that U(x) is a "localised bump". Note that x_1 and x_2 , as specified above, are arbitrary values, because this is a preliminary step for the next question, where you will determine x_1 and x_2 . [Hint] You want to visualize your solution for some choice of h. When plotting, distinguish the cases $x \leq 0$,

 $x \in (0, \Delta)$ and $x \geq \Delta$.

 $h = \phi(\Delta)$ (3)

Q2.4: Let $x_2 - x_1 = \Delta > 0$, which is a measure of the bump width. Prove that

and hence conclude that there exist no bump if h > 1/e, and two bump solutions if h < 1/e. Use (3) to plot a bifurcation diagram for bump solutions, in the parameter h with solution measure Δ . [Hint: you can use MatCont or Matlab's fimplicit to draw the diagram.] You should see a branch of bump solutions, and a turning point at $h_*=1/e$. Identify a branch with $\Delta<1$ (a narrow bump) and a branch with $\Delta>1$ (a wide branch). We have not yet computed stability of bump solutions, and in the next questions we will show that there is a saddle-node bifurcation at $h=h_{st}$.

Q2.5: Show formally that, if $\tilde{u}(x,t) = e^{\lambda t}V(x)$ is a small perturbation to the steady state U(x), then to leading order we have

$$(\lambda+1)V(x)=\sum_{j=1}^2\frac{w(x-x_i)}{|U'(x_i)|}V(x_j). \tag{4}$$
 To obtain (4), linearise (1) around $U(x)$ for a generic smooth firing rate function $f\in C^\infty$, which involves

the derivative f' of f. You can then use the following results: • R1: The distributional derivative of the Heavisde function H is the Dirac distribution δ : even if H is not

 $\int_{\mathbb{D}} g(x) \frac{d}{dx} H(x) dx = \int_{\mathbb{D}} g(x) \delta(x) dx = g(0)$

differentiable at 0, it is possible to attribute meaning to the following identity

for all functions
$$g$$
 in a suitable function space. To address this question, it is not necessary to delve in distribution theory: we can linearise (4) using f , f' , realise that f' occurs under an integral, and use (5)

derivative of H, which is not defined at 0. • R2: If a function $g \in C^1(\mathbb{R})$ has n distinct roots x_1, \dots, x_n , then $\delta(g(x)) = \sum_{j=1}^{n} \frac{\delta(x - x_j)}{|g'(x_j)|}.$

when f = H. Distribution theory makes the passages above rigorous, without ever writing H'(x), the

Q2.6: In this question, we are going to find two eigenpairs
$$(\lambda_-, v_-(x))$$
 and $(\lambda_+, v_+(x))$ associated with the eigenvalue problem (4). This, in turn will determine the stability of the bump.

Q2.6.1: Let $v_i = V(x_i)$ for $i = 1, 2$. Show that

 $\lambda \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} a & b \\ b & a \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} := M \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$

where

$$a = -1 + \frac{w(0)}{|w(0) - w(\Delta)|}, \qquad b = \frac{w(\Delta)}{|w(0) - w(\Delta)|}$$

 $\lambda_{+} = a + b, \qquad v_{+} = (1, 1),$ $\lambda_{-} = a - b, \qquad v_{-} = (-1, 1).$

[Hint: use (4) in conjunction with (2); the latter is useful to find |U'(x)|, and hence the denominators of (4).]

Q2.6.3: Conclude that this leads to the following eigenpairs for the eigenvalue problem (4)

Q2.6.2: Show that M has eigenpairs

$$\lambda_{+} = 0,$$

$$\lambda_{-} = -1 + \frac{w(0) + w(\Delta)}{|w(0) - w(\Delta)|},$$

$$V_{+}(x) = C[w(x - x_{2}) - w(x - x_{1})],$$

$$V_{-}(x) = C[w(x - x_{2}) + w(x - x_{1})],$$

where C is a constant.

Q2.6.4: Plot $V_+(x)$, $V_-(x)$, when C=1 and discuss their symmetries. Note that $V_+(x)=U^{\prime}(x)$, as

lambda_+&-

should be

swapped

and V_+ &-(x)

expected. **Q2.6.5**: Show that if $w(\Delta) < 0$ then U(x) is linearly stable. For this analysis, you can use the fact that the 0 eigenvalue corresponding to $V_+(x)$ does not contribute stability, so for the stability condition you can

consideration, $w(x) = (1 - |x|)e^{-|x|}$, and for sufficiently low h, there is a branch of stationary bumps with $\Delta > 1$, and one with $\Delta < 1$. Which one of these branches is stable, which one unstable? Justify your answer. The simulation below may guide you.

Q2.6.6: Return to the bifurcation diagram of Q2.4, and recall that, for the particular kernel under

Question 3. Numerical field simulation Perform a numerical simulation of the neural field

simply concentrate on the sign of λ_{-} .

$$\partial_t u(x,t) = -u(x,t) + \int_{\mathbb{R}} w(x-y) f(u(y,t) - h) dy, \qquad (x,t) \in \Omega \times (0,T],$$
$$u(x,0) = u_0(x), \qquad x \in \Omega,$$

where

- The domain Ω is a ring of width 20, that is, the interval [-10, 10), where -10 and 10 are identified. The synaptic kernel is given by $w(x) = (1 - |x|)e^{-|x|}$.

• The firing rate is sigmoidal $f(u) = \frac{1}{1 + \exp(-10u)}$.

provide evidence of the theory found in Question 2.

The code distributed on ELO, in last week's lecture (week-12-neural-fields.zip) performs this task on a generic ring of width L_x , with a kernel different to the one we will use below. You can adapt that code.

Q3.1: Set $u_0(x) = \frac{1}{\cosh^2(0.5x)}$. Plot initial conditions and the solution u(x, t). Produce numerical evidence that a stable localised bump is formed. By varing the initial condition (so as to change its "width" Δ ,