HW: Custom Problem, Section 5A #19, 21

Sam Fleischer

March 17, 2015

Custom Problem

Let $T \in \mathcal{L}(\mathbb{C}^2)$ by T(z, w) = (2w, -8z).

(a) Find a basis for \mathbb{C}^2 consisting of eigenvectors of T.

To find the eigenvalues, set $T(z, w) = \lambda(z, w)$.

$$T(z, w) = \lambda(z, w)$$

$$\implies (2w, -8z) = (\lambda z, \lambda w)$$

$$\implies 2w = \lambda z, \text{ and } -8z = \lambda w$$

$$\implies -8z = \frac{\lambda^2}{2}z$$

If z=0, then w=0. Then λ would not be an eigenvalue. So we suppose $z\neq 0$, and thus

$$-8 = \frac{\lambda^2}{2}$$

$$\implies -16 = \lambda^2$$

$$\implies \lambda = \pm 4i$$

Thus the two eigenvalues for T are 4i and -4i. To find their eigenspaces, set T(z, w) = 4i(z, w) and T(z, w) = -4i(z, w), respectively. So,

$$T(z, w) = 4i(z, w)$$

$$\implies (2w, -8z) = (4iz, 4iw)$$

$$\implies w = 2iz$$

Thus (1, 2i) is an eigenvector corresponding to 4i. Furthermore, (1, 2i) is a basis for E(T, 4i). Also,

$$T(z, w) = -4i(z, w)$$

$$\implies (2w, -8z) = (-4iz, -4iw)$$

$$\implies w = -2iz$$

Thus (1, -2i) is an eigenvector corresponding to -4i. Furthermore, (1, -2i) is a basis for E(T, -4i). Then $\pi = ((1, 2i), (1, -2i))$ is a linearly independent set since eigenvectors corresponding to different eigenvalues are linearly independent. Since $\dim(\mathbb{C}^2) = 2$ and $\operatorname{len}(\pi) = 2$, π is a basis for \mathbb{C}^2 consisting of eigenvectors of T.

(b) Find $\mathcal{M}(T)$ with respect to this basis.

Since

$$T(1,2i) = (2(2i), -8(1))$$

$$= (4i, -8)$$

$$= 4i(1,2i) + 0(1, -2i)$$

and

$$T(1,-2i) = (2(-2i), -8(1))$$

$$= (-4i, -8)$$

$$= 0(1, 2i) - 4i(1, -2i)$$

then

$$\mathcal{M}(T,\pi) = \left(\begin{array}{cc} 4i & 0\\ 0 & -4i \end{array}\right)$$

5A

#19

Suppose n is a positive integer and $T \in \mathcal{L}(\mathbb{F}^n)$ is defined by

$$T(x_1,\ldots,x_n)=(x_1+\ldots x_n,\ldots,x_1+\ldots,x_n)$$

in other words, T is the operator whose matrix (with respect to the standard basis) consists of all 1's. Find the eigenvalues and eigenvectors of T.

To find the eigenvalues, set $T(x_1, \ldots, x_n) = \lambda(x_1, \ldots, x_n)$.

$$T(x_1, \dots, x_n) = \lambda(x_1, \dots, x_n)$$

$$\implies (x_1 + \dots + x_n, \dots, x_1 + \dots + x_n) = (\lambda x_1, \dots, \lambda x_n)$$

$$\implies x_1 + \dots + x_n = \lambda x_1 = \dots = \lambda x_n$$

$$\implies \lambda = \frac{x_1 + \dots + x_n}{x_1} = \dots = \frac{x_1 + \dots + x_n}{x_n}$$

If $\lambda \neq 0$, then $x_1 = \cdots = x_n$, and thus $(1, \ldots, 1)$ is a basis for $E(T, \lambda)$. However, if $\lambda = 0$, then $x_1 + \cdots + x_n = 0$. Then $E(T, 0) = \{(x_1, \ldots, x_n) \in \mathbb{F}^n \mid x_1 + \cdots + x_n = 0\}$. Note $\dim(E(T, 0)) = n - 1$ and a basis for E(T, 0) is

$$\pi = ((1, -1, 0, \dots, 0), (1, 0, -1, 0, \dots, 0), \dots, (1, 0, \dots, 0, -1))$$

#21

Suppose $T \in \mathcal{L}(V)$ is invertible.

(a) Suppose $\lambda \in \mathbb{F}$ with $\lambda \neq 0$. Prove that λ is an eigenvalue of T if and only if $\frac{1}{\lambda}$ is an eigenvalue of T^{-1} .

$$\lambda \text{ is an eigenvalue of } T$$

$$\iff \exists v \in V \text{ such that } T(v) = \lambda v$$

$$\iff T^{-1}(T(v)) = T^{-1}(\lambda v)$$

$$\iff v = \lambda T^{-1}(v)$$

$$\iff T^{-1}(v) = \frac{1}{\lambda} v \text{ for some } v \in V$$

$$\iff \frac{1}{\lambda} \text{ is an eigenvalue of } T^{-1}$$

(b) Prove that T and T^{-1} have the same eigenvectors.

Let \hat{v} be an eigenvector of T corresponding to an arbitrary eigenvalue of T's, say $\hat{\lambda}$. Then

$$T(\hat{v}) = \hat{\lambda}\hat{v}$$

$$\implies T^{-1}(T(\hat{v})) = T^{-1}(\hat{\lambda}\hat{v})$$

$$\implies \hat{v} = \hat{\lambda}T^{-1}(\hat{v})$$

$$\implies T^{-1}(\hat{v}) = \frac{1}{\hat{\lambda}}\hat{v}$$

Thus \hat{v} is an eigenvector of T^{-1} corresponding to $\frac{1}{\hat{\lambda}}$. Thus any eigenvector of T is an eigenvector of T^{-1} . However, the same argument and $(T^{-1})^{-1} = T$ implies any eigenvector of T^{-1} is an eigenvector of T. Thus T and T^{-1} have the same eigenvectors. \Box