Algorithms Chapter 16 Greedy Algorithms

Associate Professor: Ching-Chi Lin

林清池 副教授

chingchi.lin@gmail.com

Department of Computer Science and Engineering National Taiwan Ocean University

Outline

- ▶ An activity-selection problem
- Elements of the greedy strategy
- Huffman codes

Greedy Algorithms

- Similar to dynamic programming.
- Used for optimization problems.
- Idea: When we have a choice to make, make the one that looks best right now.
 - Make a locally optimal choice in hope of getting a globally optimal solution.
- Greedy algorithms don't always yield an optimal solution. But sometimes they do.
 - We'll see problems for which they do.
 - Also, we'll look at some general characteristics of when greedy algorithms give optimal solutions.

An activity-selection problem

- ▶ Input: A set $A = \{a_1, a_2, ..., a_n\}$ of n proposed activities.
 - ▶ Each activity a_i has a start time s_i and a finish time f_i , where $0 \le s_i < f_i < \infty$.
- Output: A maximum set of compatible activities.
 - Activities a_i and a_j are **compatible** if the intervals $[s_i, f_i]$ and $[s_i, f_i]$ do not overlap.
- ▶ For example: Consider the following set *A*, sorted by finish time.

i
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

$$s_i$$
 1
 3
 0
 5
 3
 5
 6
 8
 8
 2
 12

 f_i
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14

- \bullet { a_3 , a_9 , a_{11} } is a set of compatible activities.
- $ightharpoonup \{a_1, a_4, a_8, a_{11}\}$ is a maximum set of compatible activities.

Greedy templates

Earliest start time:

 \blacktriangleright Consider jobs in ascending order of s_i .

Earliest finish time:

 \blacktriangleright Consider jobs in ascending order of f_i .

Shortest interval:

▶ Consider jobs in ascending order of $f_i - s_i$.

GREEDY-ACTIVITY-SELECTOR pseudocode

```
GREEDY-ACTIVITY-SELECTOR(s, f)

1. n \leftarrow length[s]

2. A \leftarrow \{a_1\}

3. i \leftarrow 1

4. for m \leftarrow 2 to n

5. do if s_m \geq f_i

6. then A \leftarrow A \cup \{a_m\}

7. i \leftarrow m

8. return A
```

- s: array of start times.
- *f*: array of finish times.
- The input is sorted by f_i .
- Time: $O(n \lg n)$ to sort, O(n) thereafter.

Correctness_{1/3}

- **Lemma 1** There exists an optimal activity selection contains a_1 . **proof.**
 - Consider an optimal activity selection S.
 - If $a_1 \in S$, then S is the desired selection.
 - Otherwise, let a_i be the activity in S with the smallest finish time.
 - Every $a_k \in S \{a_i\}$ has $s_k \ge f_i$.
 - ▶ So, $S \{a_i\} \cup \{a_1\}$ is also a set of compatible activities.
 - ▶ Thus, $S \{a_i\} \cup \{a_1\}$ is an optimal selection.

Correctness_{2/3}

► Theorem 2 Algorithm GREEDY-ACTIVITY-SELECTOR produces solutions of maximum size for the activity-selection problem.

proof.

- Induction on the number of |A|.
- \triangleright S = an activity selection by our algorithm.
- T = an optimal activity selection of A containing a_1 .

▶ The basis:

- ► |*A*| = 1.
- ightharpoonup Clearly, S = T = A.

Correctness_{3/3}

Induction step:

- Suppose our selection algorithm works for all sets of activities with less than |A| activities (strong induction).
- ► $A' = \{a_i \in S \mid s_i \ge f_1\}.$
- \triangleright S' = our algorithm's selection for A'.
- ▶ By inductive hypothesis, S' is an optimal selection of A'.
- ▶ By greedy method, $S = \{a_1\} \cup S'$.
- ▶ Let $T' = T \{a_1\}$. Then $T' \subseteq A'$.
- ▶ Therefore, $|T'| \le |S'|$ by optimality of S'.
- ► Hence, $|T| = |T'| + 1 \le |S'| + 1 = |S|$.
- Thus, S is an optimal selection of A.

Outline

- An activity-selection problem
- **▶** Elements of the greedy strategy
- Huffman codes

Elements of the greedy strategy

Greedy-choice property

- A globally optimal solution can be arrived at by making a locally optimal (greedy) choice.
- Typically show the greedy-choice property by what we did for activity selection.
 - Look at a globally optimal solution.
 - ▶ If it includes the greedy choice, done.
 - Else, modify it to include the greedy choice, yielding another solution that's just as good.

Optimal substructure

An optimal solution to the problem contains within it optimal solutions to subproblems.

Greedy versus dynamic programming

Dynamic programming:

- Make a choice at each step.
- Choice depends on knowing optimal solutions to subproblems.
- Solve subproblems first.
- Solve bottom-up.

Greedy:

- Make a choice at each step.
- ▶ Make the choice **before** solving the subproblems.
- Solve top-down.

0-1 knapsack problem-- using DP

- ▶ **Input:** A set $A = \{a_1, a_2, ..., a_n\}$ of n items and a knapsack of capacity C.
 - ▶ Each item a_i is worth v_i dollars and weighs w_i pounds.
- Output: A subset of items whose total size is bounded by C and whose profit is maximized.
 - Each item must either be taken or left behind.
- For example:

Fractional knapsack problem-- using greedy

- ▶ **Input:** A set $A = \{a_1, a_2, ..., a_n\}$ of n items and a knapsack of capacity C.
 - ▶ Each item a_i is worth v_i dollars and weighs w_i pounds.
- Output: A subset of items whose total size is bounded by C and whose profit is maximized.
 - ▶ The thief can take fractions of items.
- ▶ For example:

FRACTIONAL-KNAPSACK pseudocode

```
Fractional-Knapsack(v, w, C)
    load \leftarrow 0
i \leftarrow 1
3. while load < C and i < n
         do if w_i \leq C - load
               then take all of item i
               else take (C - load)/w_i of item i
          add what was taken to load
8. i \leftarrow i + 1
▶ v: array of values.
w: array of weights.
• C: capacity
▶ The input is sorted by v_i/w_i.
```

Time: $O(n \lg n)$ to sort, O(n) thereafter.

Does greedy algorithm work for 0-1knapsack?

- Greedy doesn't work for the 0-1 knapsack problem.
- For example:

Outline

- An activity-selection problem
- Elements of the greedy strategy
- **▶** Huffman codes

Huffman codes

- ▶ A very effective technique for compressing data.
- ▶ A **prefix code** in which no codeword is also a prefix of some other codeword.
- An optimal prefix binary code.
- Huffman coding problem
 - ▶ **Input:** A alphabet $C = \{c_1, c_2, ..., c_n\}$ of n characters.
 - ▶ Each character c_i has a frequency $f_i > 0$.
 - ▶ Output: A prefix binary code for *C* with minimum cost.
 - ▶ The code is represented by a full binary tree.
 - ▶ The leaves of the code tree represent the given characters.
 - $d_{\tau}(c)$ is the length of the codeword for character c.
 - The number of bits required to encode a file is $B(T) = \sum_{c \in C} f(c)d_T(c)$.

An example

The tree corresponding to the fixedlength code a = 000, ..., f = 101. The code is not optimal

The tree corresponding to the optimal prefix code a = 0, b = 101, ..., f = 1100.

HUFFMAN pseudocode

```
HUFFMAN(C)

1. n \leftarrow |C| \geqslant O(1)

2. Q \leftarrow C \geqslant O(n)

3. for i \leftarrow 1 to n - 1

4. do allocate a new node z

5. left[z] \leftarrow x \leftarrow \text{Extract-Min}(Q)

6. right[z] \leftarrow y \leftarrow \text{Extract-Min}(Q)

7. f[z] \leftarrow f[x] + f[y]

8. lnsert(Q, z)

9. return EXTRACT-MIN(Q) /* Return the root of the tree. */ \geqslant O(1)
```

- ▶ Line 2 initializes the min-priority queue Q with the characters in C.
- ightharpoonup Time: $O(n \lg n)$.
- Correctness: omitted.