

ENG 346 Data Structures and Algorithms for Artificial Intelligence Runtime Complexity of the Algorithms

Dr. Mehmet PEKMEZCİ

mpekmezci@gtu.edu.tr

https://github.com/mehmetpekmezci/GTU-ENG-346

ENG-346-FALL-2025 Teams code is Ouv7jlm

Definitions: Big O

- Worst Case Scenario
- Upper-bound of a function f(n)
- Let f(n) and g(n) be functions mapping positive integers to positive real numbers. We say that f(n) is O(g(n)) if
 - there is a real constant c > 0 and
 - an integer constant $n0 \ge 1$ such that $f(n) \le c g(n)$, for $n \ge n0$.

• f(n) is O(g(n))

Big O Rules

• Simplifications:

- If is f(n) a polynomial of degree d, then f(n) is O(n^d), i.e.,
 - Drop lower-order terms
 - Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is O(n^2)"
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Basics

Name	Function	Relation	Example
Constant Time	f(n) = c	Does not depend on input size.	Accessing array elements.
Logarithmic Time	f(n) = log n	Running time increases logarithmically with the input size.	Binary search.
Linear Time	f(n) = n	Running time increases linearly with the input size.	Iterating through an array or list.
Linearithmic Time	f(n) = n log n	The running time grows slower than O(n^2) but faster than O(n).	Efficient sorting algorithms like quicksort and mergesort.
Quadratic Time	f(n) = n^2	Running time grows proportionally to the square of the input size.	Algorithms with nested loops, such as selection sor tor bubble sort.
Polynomial Time	f(n) = n^k	Running time is a polynomial function of the input size.	Algorithms with "k" nested loops.
Exponential Time	f(n) = 2^n	Running times that grow very rapidly with the input size.	N-P complete problems, such as traveling salesman.

Growth Rates

ENG 346 - Data Structures and Algorithms for Artificial Intelligence

Examples:

•
$$3n^3 + 20n^2 + 5$$
 is $O(n^3)$

• $3 \log n + 5 \text{ is } O(\log n)$

Exercises

• Book: R-3.1

