

Trabalho prático máquina de café

Feito por:

Rúben Peixoto nº 37514 Tiago Colaço nº 38277 Pedro Mendes nº 37770

<u>Moedeiro</u>

Legenda:

m1 = 10 cêntimos

m2 = 20 cêntimos

1,2,3 = Quantidade que o cliente já introduziu (10, 20 e 30 cêntimos respetivamente)

 $l=1^a$ lâmpada

> Tabela de transição de estados e saídas do moedeiro

M2	M1	Estado	Estado	Estado atual	Estado seguinte	S
IVIZ	IVII	atual	seguinte	Y2 Y1 Y0	X2 X1 X0	S2 S1 S0
0	0	0	0	0 0 0	0 0 0	0 0 0
0	1	0	2	0 0 0	0 1 0	0 0 0
1	0	0	1	0 0 0	0 0 1	0 0 0
1	1	0	3	0 0 0	0 1 1	0 0 0
0	0	1	1	0 0 1	0 0 1	0 0 1
0	1	1	3	0 0 1	0 1 1	0 0 1
1	0	1	2	0 0 1	0 1 0	0 0 1
1	1	1	3	0 0 1	0 1 1	0 0 1
0	0	2	2	0 1 0	0 1 0	0 1 0
0	1	2	3	0 1 0	0 1 1	0 1 0
1	0	2	3	0 1 0	0 1 1	0 1 0
1	1	2	3	0 1 0	0 1 1	0 1 0
X	X	3	1	0 1 1	1 0 0	1 0 0

> Flip-flops para o moedeiro (Entradas)

Para o moedeiro vamos inserir flip-flops D uma vez que este representa uma maior facilidade para trabalhar com os mapas de karnaugh.

o Flip-flop D2

X2	Y2	D2
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	1	1

M2 = 0

M1X2\ X1X0	00	01	11	10
00	0	0	1	0
01	X	X	X	X
11	Y	X	X	X
10	0	0	1	0

t1 = X2t2 = X1X0

M2 = 1

M1X2\ X1X0	00	01	11	10
00	0	0	1	0
01	X	X	X	X
11	X	X	X	X
10	0	0	1	0

t1 = X2t2 = X1X0

D2 = X2 + X1X0

o Flip-flop D1

X1	Y1	D1
0	0	0
0	1	1
0	0	0
0	1	1
0	0	0
0	1	1
0	1	1
0	1	1
1	1	1
1	1	1
1	1	1
1	1	1
1	0	0

M2:	= 0
-----	-----

M1X2\ X1X0	00	01	11	10
00	0	0	0	1
01	X	X	X	X
11	X	X	X	X
10	0	1	0	1

 $t1 = M1X0 \\ \hline X1$

t2 = X1X0

M2 = 1

M1X2\ X1X0	00	-01	11	10
00	1	1	0	1
01	X	X	X	X
11	X	X	X	X
10	1	1	0	1/

 $t1 = \frac{X1}{}$

 $t2 = X1\frac{X0}{}$

 $D2 = \underline{M1}M1X0\underline{X1} + X1\underline{X0} + M2\underline{X1}$

o Flip-flop D0

X0	Y0	D0
0	0	0
0	0	0
0	1	1
0	1	1
1	1	1
1	1	1
1	0	0
1	1	1
0	0	0
0	1	1
0	1	1
0	1	1
1	0	0

M2 = 0

M1X2\ X1X0	00	01	11	10
00	0	1	0	0
01	X	X	X	X
11	X	X	X	X
10	1	0	0	1

 $t1 = M1\frac{X0}{}$

 $t2 = \textcolor{red}{M1X1}X0$

M2 = 1

M1X2\ X1X0	00	01	11	10
00	0	1	0	1
01	X	X	X	X
11	X	X	X	X
10	1	1	0	1

 $t1 = M1\frac{\mathbf{X0}}{\mathbf{X}\mathbf{0}}$

 $t2 = X1\frac{X0}{}$

 $t3 = \frac{X1}{X0}$

D2 = M1X0 + M2M1X1X0 + M2X1X0 + M2X1X0

> Saídas do moedeiro

O moedeiro irá ter 3 saídas. Estas saídas representam os valores de 10 cêntimos, 20 cêntimos e 30 cêntimos.

o Saída S2

M2 = 0

M1X2\ X1X0	00	01	11	10
00	0	0	1	0
01	X	X	X	X
11	X	X	X	X
10	0	0	1	0

t1 = X2

t2 = X1X0

M2 = 1

M1X2\ X1X0	00	01	11	10
00	0	0	1	0
01	X	X	X	X
11	X	X	X	X
10	0	0	1	0

t1 = X2

t2 = X1X0

S2 = X2 + X1X0

o Saída S1

M2 = 0

M1X2\ X1X0	00	01	11	10
00	0	0	0	1
01	X	X	X	X
11	X	X	X	X
10	0	0	U	1

t1 = X2

 $t2 = X1\frac{X0}{}$

M2 = 1

M1X2\ X1X0	00	01	11	10
00	0	0	0	1
01	Χ	X	X	Λ
11	X	X	X	X
10	0	U	U	1

t1 = X2

 $t2 = X1\frac{X0}{}$

o Saída S0

7. /	$\Gamma \cap$		\mathbf{n}
IVI	17.	=	U

M1X2\ X1X0	00	01	11	10
00	0	1	0	0
01	Λ	X	X	Λ
11	X	X	X	X
10	0	I	U	0

$$t1 = X2$$

 $t2 = \frac{X1}{X0}$

M2 = 1

M1X2\ X1X0	00	01	11	10
00	0	1	0	0
01	X	X	X	X
11	X	X	X	Y
10	0	1/	0	0

$$t1 = X2$$

 $t2 = \frac{X1}{X0}$

 $S0 = X2 + \frac{X1}{X0}$

> Display de 7 segmentos

Irá ser introduzido um display de 7 segmentos para contar a quantidade de dinheiro introduzida.

S2	S1	S0	a	b	С	d	e	f	g
0	0	0	1	1	1	1	1	1	0
0	0	1	0	1	1	0	0	0	0
0	1	0	1	1	0	1	1	0	1
1	0	0	1	1	1	1	0	0	1

Saídas do display:

 $a = \frac{\text{S2S1SO}}{\text{S2S1SO}} + \frac{\text{S2S1SO}}{\text{S2S1SO}} + \frac{\text{S2S1SO}}{\text{S2S1SO}}$

 $b = \frac{\text{S2S1S0}}{\text{S2S1S0}} + \frac{\text{S2S1S0}}{\text{S2S1S0}} + \frac{\text{S2S1S0}}{\text{S2S1S0}}$

 $c = \frac{\text{S2S1SO}}{\text{S2S1SO}} + \frac{\text{S2S1SO}}{\text{S2S1SO}}$

 $d = \frac{S2S1SO}{S2S1SO} + \frac{S2S1SO}{S2S1SO} + \frac{S2S1SO}{S2S1SO}$

 $e = \frac{S2S1SO}{S2S1SO} + \frac{S2}{S2S1SO}$

 $f = \frac{S2S1SO}{}$

 $g = \frac{S2S1SO}{} + S2\frac{S1SO}{}$

Módulo para a máquina do café

Legenda:

dc = doseador de café ba = bomba de água

da = doseador de açúcar

 $1 = 2^a$ lâmpada

0 = representa a entrada do moedeiro

> Tabela de transição de estados e saídas do módulo do café

L	В	Estado	Estado	Est	tado at	ual	Esta	do segi	uinte		Saí	das	
		atual	seguinte	x2	x 1	x0	x2	x1	x0	Т3	T2	T1	T0
X	0	1	1	0	0	0	0	0	0	0	0	0	0
X	1	1	dc	0	0	0	0	0	1	0	0	0	0
X	X	dc	ba	0	0	1	0	1	0	0	0	0	1
X	X	ba	ba	0	1	0	0	1	1	0	0	1	0
X	X	ba	da	0	1	1	1	0	0	0	1	0	0
0	X	da	1	1	0	0	0	0	0	1	0	0	0
1	X	da	0	1	0	0	1	0	1	1	0	0	0

Saídas do módulo para o café

Para o módulo da máquina de café vai ser necessário, tal como, o moedeiro, de 4 saídas. Estas saídas são relativas à bomba de água, doseador de açúcar e doseador de café.

o Saída T3

L = 0							
$Bx2\x1x0$	00	01	11	10			
00	0	0	0	0			
01	1	X	X	X			
11	f	X	X	X			
10	0	0	0	0			

L = 1									
$Bx2\x1x0$	00	01	11	10					
00	0	0	0	0					
0.1	1		V	Z					
01	I	Λ	Λ	Λ					
11	4	X	X	X					

T3 = x2

o Saída T2

L = 0									
Bx2\x1x0	00	01	11	10					
00	0	0	1	0					
01	0	X	X	X					
11	0	X	X	X					
10	0	0	V	0					

L = 1										
Bx2\x1x0	00	01	11	10						
00	0	0	1	0						
01	0	X	X	X						
11	0	X	X	X						
10	0	0	V	0						

$$F1 = x1x0$$

$$F2 = x0x2$$

$$F3 = x1x2$$

$$F1 = x1x0$$

$$F2 = x0x2$$
$$F3 = x1x2$$

$$T3 = x1x0 + x0x2 + x1x2$$

o Saída T1

	I	L = 0		
Bx2\x1x0	00	01	11	10
00	0	0	0	1
01	0	X	X	X
11	0	X	X	X
10	0	0	0	1

F1 = x2x0F2 = x1x0

L = 1					
Bx2\x1x0	00	01	11	10	
00	0	0	0	1	
01	0	X	X	X	
11	0	X	X	X	
10	0	0	0	1	

Saída T1 = x2x0 + x1x0

o Saída T0

L=0					
Bx2\x1x0	00	01	11	10	
00	0	1	0	0	
01	0	X	X	X	
11	0	X	X	X	
10	0	W	0	0	

 $F1 = \frac{x1}{x0}$ F2 = x2x1

L = 1					
Bx2\x1x0	00	01	11	10	
00	0	1	0	0	
01	0	X	X	X	
11	0	X	X	X	
10	0	W	0	0	

 $T0 = \frac{x1}{x0} + x2x1$

> Flip flops para o módulo do café

Para o módulo de café o grupo escolheu trabalhar com o flip-flop D uma vez que este apresenta, na nossa opinião, uma maior facilidade para construir os mapas de karnaugh.

o Flip-flop D2

x2(atual)	x2(seguinte)	D2
0	0	0
0	0	0
0	0	0
0	0	0
0	1	1
1	0	0
1	1	1

L = 0					
Bx2\x1x0	00	01	11	10	
00	0	0	1	0	
01	0	X	X	X	
11	0	X	X	X	
10	0	0	V	0	

L = 1						
Bx2\x1x0	00	01	11	10		
v00	0	0	1	0		
01		X	X	X		
11	7	X	X	X		
10	0	0	1	0		

F1 = x1x0 F2 = x2x0

F3 = x2x1

 $\begin{aligned} F1 &= x1x0 \\ F2 &= x2 \end{aligned}$

 $D2 = L x^2 + x^2 + x^2 + L x$

o Flip-flop D1

x2(atual)	x2(seguinte)	D2
0	0	0
0	0	0
0	1	1
1	1	1
1	0	0
0	0	0
0	0	0

L = 0					
$Bx2\x1x0$	00	01	11	10	
00	0	1	0	1	
01	0	X	X	X	
11	0	X	X	X	
10	0	1	0	1	

L = 1					
$Bx2\x1x0$	00	01	11	10	
00	0	1	0	1	
01	0	X	X	X	
11	0	X	X	X	
10	0	1	0	1	

 $F1 = \frac{x1}{x0}$ $F2 = x1\frac{x0}{x0}$

 $F1 = \frac{x1}{x0}$ $F2 = x1\frac{x0}{x0}$

D1 = x1x0 + x1x0 = x1 XOR x0

$\circ \quad Flip\text{-}flop\ D0$

x2(atual)	x2(seguinte)	D2
0	0	0
0	1	1
1	0	0
0	1	1
1	0	0
0	0	0
0	1	0

L = 0						
$Bx2\x1x0$	00	01	11	10		
00	0	0	0	1		
01	0	X	X	X		
11	0	X	X	X		
10	Ī	0	0	1/		

F1	= x	1 x0	ı
F2.	= F	3 x 2	x0

L = 1						
$Bx2\x1x0$	00	01	11	10		
00	0	0	0	1		
01	1	X	X	X		
11	H	X	X	X		
10	1	0	0	1		

$$F1 = x1$$

$$F2 = B \times 0$$

Observações/Comentários

Este trabalho apresenta alguns erros dentro dos quais foi-nos impossível remendar.

O grupo não consegui juntar o moedeiro com o módulo de café de acordo com as tabelas e mapas de karnaugh que apresentamos. A nossa máquina de café não faz reset tanto na parte do moedeiro como para a parte do módulo por isso as lâmpadas ficam sempre acessas. O outro problema que nos apercebemos também foi que, embora o display de 7 segmentos registe de forma correta a quantidade de dinheiro apresentado pelo cliente, passado um ciclo de relógio, o display não apresenta valores nenhuns.