

ARQUITETURA DE COMPUTADORES – LABORATÓRIO

André Breda Carneiro Sidney José Montebeller Rafael Rodrigues Da Paz

Experiência Nº 2 – Multiplexador, Decodificador e Máquina de Estado.

Objetivos:

- Adquirir conhecimentos em dispositivos de lógica programável;
- Estudo dos circuitos Mux e decodificador;
- Compreensão de uma Máquina de estado.

O multiplexador:

É um circuito que permite a escolha de um canal de entrada entre vários (no exemplo de E_0 até E_4) para que seja transmitido o seu sinal até o elemento S. Este chaveamento para se ler o sinal através do elemento S é chamado mutiplexação.

O multiplexador como bloco funcional:

Abaixo temos o bloco funcional que possui *m* entradas com uma lógica de seleção com *n* seleções.

 E_0

A capacidade é definida como: $M = 2^N$

Exemplos:

 Um mux de duas entradas necessita de um sinal de seleção

$$2 = 2^1$$

 Um mux de quarto entradas necessita de dois sinais de seleção

$$4 = 2^2$$

 Um mux de cinco entradas necessita de três sinais de seleção (Adaptado)

$$5 \le 2^3$$

Este também é conhecido com multiplexador de 4 canas

O multiplexador o circuito:

Exemplo de multiplicação de dois canais:

 $M = 2^N = 2 = 2^1$, portanto para dois canais de entrada é necessário uma seleção.

A Tabela verdade da seleção fica:

Expressão lógica para a tabela fica:

Α	S	
0	E₀	
1	E ₁	

$$S = \overline{A}.E_0 + A.E_1$$

Montado o circuito fica:

O multiplexador o circuito:

Exemplo de multiplicação de quatro canais:

 $M = 2^N = 4 = 2^2$, portanto para quatro canais de entrada é necessário duas seleções.

A Tabela verdade da seleção fica:

Expressão lógica para a tabela fica:

Α	В	S
0	0	E₀
0	1	E ₁
1	0	E ₂
1	1	E ₃

$$S = \overline{A}.\overline{B}.E_0 + \overline{A}.B.E_1 + A.\overline{B}.E_2 + A.B.E_3$$

Montado o circuito fica:

O multiplexador formas de representação:

Multiplexador de duas entradas

Multiplexador de quatro entradas

O decodificador:

Tradicionalmente um decodificador processa as N entradas(o conjunto) e gera um único sinal em uma das M saídas.

O decodificador:

Tradicionalmente um decodificador processa as N entradas(o conjunto) e gera um único sinal em uma da M saídas.

Abaixo temos um exemplos de 3 entradas e 8 saídas.

ENTRADAS			SAÍDAS							
С	В	Α	O ₀	O ₁	02	O ₃	O ₄	O ₅	O ₆	O ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Você como projetista irá determinar suas entradas e saídas

Interpretando a tabela temos:

$$O_0 = \overline{CBA}$$

$$O_1 = \overline{CBA}$$

$$\overline{BA}$$

$$O_5 = CBA$$

$$O_2 = \overline{CBA}$$

$$O_6 = CBA$$

$$O_3 = \overline{CBA}$$

$$O_7 = CBA$$

O decodificador:

Interpretando as expressões lógicas temos, o circuito abaixo:

$$O_1 = \overline{CBA}$$

$$O_2 = \overline{C}B\overline{A}$$

$$O_3 = \overline{CBA}$$

$$O_4 = C\overline{B}\overline{A}$$

$$O_5 = C\overline{B}A$$

$$O_6 = CB\overline{A}$$

$$O_7 = CBA$$

A máquina de estado:

máquina de estado

Máquina de Estado é uma técnica usada na eletrônica digital para a construção de circuitos digitais, inclusive a unidade de controle de um microprocessador é projetada seguindo este modelo.

Existem várias formas de representar máquina de estado. Além de diagrama, também pode-se representar na forma de tabela.

Exemplo de máquina de estado

Os círculos com os números dentro indicam os **estados** (pode-se usar palavras ou letras no lugar dos números), no exemplo acima temos 3 estados numerados de 1 à 3.

As setas são as **transições de estados**, elas são acompanhadas de um rótulo que mostra a **Condição / Ação**. Quando não há ação, está é omitida.

O círculo pintado indica qual é o estado inicial, no exemplo está indicando que o estado inicial é o "1". A transição inicial (seta deste círculo pintado para o primeiro estado) é dito que é instantâneo e não apresenta condição, mas pode conter uma ação.

O círculo pintado com outro círculo em volta indica o encerramento da máquina de estado.

Exemplo de máquina de estado

Imagine uma gaveta de um aparelho de CD, temos um único botão chamado Open/Close, ela estando aberta, apertando o botão ela fecha, estando fechada, apertando o botão ela abre. É exatamente isso que o diagrama representa.

Sistemas de controle baseado em máquina de estado

Muitos sistemas de manufatura em indústrias são baseados em estágios. Muitos processos desses podem ser mapeados usando máquinas de estado como:

- —Autômatos finitos determinísticos (AFD);
- -Redes de Petri;
- —Entre outros processos.

Exemplo de aplicação de uma máquina de estado com flip-flop tipo D:

<u>Semáforo</u> • Definição: – Implementar circuito com FF D

CLK	D	Q	Q
0	0	Q	ā
0	1	Q	ā
1	0	0	1
1	1	1	0

Estado atual		Estado futuro		
Q1	Q0	D1	D0	
0	0	0	1	
0	1	1	0	
1	0	0	0	
1	1	X	X	

Exemplo de aplicação de uma máquina de estado com flip-flop tipo D:

Semáforo

Estado atual		Estado futuro		
Q1	Q0	D1	D0	
0	0	0	$\sqrt{1}$	
0	1	1	0	
1	0	0	0	
1	1	$\langle x \rangle$	\x/	

Exemplo de aplicação de uma máquina de estado com flip-flop tipo D:

Relatório 2

- Introdução;
- Dois projetos a serem desenvolvidos:
 - -Construir um circuito decodificador 3x8 no programa Quartus II;
 - -Construir uma máquina de "estados da água" com FF tipo D:
 - S=sólido, L=líquido e G=gasoso;
 - entrada = temperatura =T, em que 0 diminui e 1 aumenta;
 - Passo 1 Levantamento (número de bits p. repres. Estados, entradas, saídas);
 - Passo 2 Geração de uma tabela verdade;
 - Passo 3 Montagem de um Mapa de Karnaugh;
 - Passo 4 Desenhar o circuito.
- Definição do circuito no software;
- Procedimento experimental executado;
- Demonstração com forma de onda na execução do circuito;
- Usar modelo de simulação funcional;
- Análise da forma de onda;
- Conclusão.

