Inhaltsverzeichnis

1	\mathbf{Log}	ik und Unterlagen	1			
	1.1	Prinzip des Indirekten Beweises	2			
	1.2	Zwei Prinzipen	3			
	1.3	Mengenoperationen	6			
	1.4	Abbildungen	8			
	1.5	Dedekind Schubladen Prinzip	11			
	1.6	Die inverse Abbildung (Umkehrfunktion)	12			
2	Reelle Zahlen, Euklidische Räume und Komplexe Zahlen					
	2.1	Elementare Zahlen	15			
	2.2	Die Reellen Zahlen	16			
	2.3	Infimum und Supremum	19			
	2.4	Euklidische Räume	24			
	2.5	Die Komplexen Zahlen	26			
3	Folgen und Reihen (Der Limes Begriff)					
	3.1	Folgen, allgemeines	31			
	3.2	Grenzwert oder Limes eine Folge. Ein zentraler Begriff	32			
	3.3	Konvergenzkriterien	35			
4	Ste	Stetigkeit				
5	Differential rechnung auf $\mathbb R$					
6	Inte	egration	41			
	6.1	Riemann Integral: Definition, elementare Eigenschaften	43			
	6.2	Differentiation und Integration	56			
	6.3	Partielle Integration	60			
	6.4	Methode der Substitution	66			
	6.5	Integration rationaler Funktionen (Partialbruchzerlegung)	70			
	6.6	Das Uneigentliche Integral	73			
7	Gewöhnliche Differenzialgleichungen					
	7.1	Lineare DGL mit konstante Koeffizienten	80			
	7.2	Inhomogene DGL	83			
	7.3	Lineare DGL erster Ordnung (mit allgemeinen koeffizienten)	90			
	7.4	Separierbare DGL	93			

INHALTSVERZEICHNIS

8	Diff	ferentialrechnung in \mathbb{R}^n	95
	8.1	Partielle Ableitungen und Differential	95
	8.2	Differentiationsregeln	106
	8.3	Differentialformen und Vektorfelder	114
	8.4	Wegintegrale	120
	8.5	Höhere Ableitungen	131
	8.6	Vektorwertige Funktionen	140
9	Inte	egration in \mathbb{R}^n	143
	9.1	Der Satz von Fubini	146

Kapitel 1

Logik und Unterlagen

Im Laufenden Semester werden wir viele mathematische Beweise einführen. Heute werden wir uns mit der Mathematische Logik beschäftigen.

In der Mathematik stossen wir auf gewisse Grundannahmen, "Axiome", die wir als gegeben ansehen. Eine dieser Annahmen ist der

Satz vom ausgeschlossenen Dritten

Eine zulässige mathematische Aussage ist entweder wahr oder falsch, jedoch nie beides zugleich.

Beispiel

- $1. \ 5 < 7 \ \mathrm{Wahr}$
- 2. 4 < 2 Falsch

In der wirklichen Welt ist es anders. Ist z.B. "Mathematik ist schön" wahr oder falsch?

Mit Aussagen kann man "rechnen". Wir führen nun ein paar geläufige Notationen der Logik ein:

Seien A, B Aussagen

- A und B wird mit $A \wedge B$ bezeichnet
- A oder B wird mit $A \vee B$ bezeichnet

Folgerung (eine wahre Implikation)

- Aus A folgt B wird mit \rightarrow bezeichnet
- \bullet Wenn A, dann auch B
- \bullet Die Negation der Aussage A wird mit $\neg A$ bezeichnet
- \bullet Aist äquivalent zu B wird mit $A \Leftrightarrow B$ bezeichnet
- $(A \to B) \land (B \to A)$ A wahr genau dann, wenn B wahr ist.

Bemerkung

Die Folgerung ist transitiv. Wenn wir wissen, dass $A \to B$ und $B \to C$, dann wissen wir dass $A \to C$.

Prinzip des Mathematischen Beweises

Wir können aus eine Kette von Folgerungen

$$A \to B \to C \cdots \to S$$

einen mathematischen "Satz" S aus einen Annahme A herleiten. (Ein Beweis ist eine Folge von Implikationen von Aussagen).

Kontraposition (Umkehrschluss)

 $A \to B$ ist gleichbedeutend mit $\neg B \to \neg A$.

Falls $A \to B$, so kann A nicht wahr sein wenn B falsch ist (weil wenn A wahr ist, würde B auch wahr sein).

1.1 Prinzip des Indirekten Beweises

Zum Beweis der Aussage $A \to B$ genügt es die Aussage $\neg B \to \neg A$ zu zeigen, oder die Annahme $A \land \neg B$ zum Wiederspruch zu führen.

Indirekter Beweis

Man fügt $\neg B$ als Annahme hinzu und kommt nach einer Kette von erlaubten Schlüssen zu einer falschen Aussage.

Daraus schliesst man, dass die Zusatzannahme $\neg B$ nicht wahr ist.

Beispiel 1.1

- A = "jede natürliche Zahl n hat einen Nachfolger n + 1"
- \bullet B = "es gibt keine grösste natürliche Zahl"

Wir beweisen dass B aus A folgt . Nehmen wir an, dass A wahr und B falsch ist.

 $\neg B = \text{es gibt eine grösste natürliche zahl } N_0'', \text{ d.h } N_0 > l \text{ für jedes } l \in \mathbb{N}.$

Mittels der Aussage A wissen wir, dass N_0 einen Nachfolger $N_0 + 1$ hat. Für diesen gilt $N_0 + 1 > N_0$. Dies ist aber ein Wiederspruch.

Definition 1.1

Eine Menge ist eine Zusammenfassung verschiedener Objekte zu einem Ganzen.

Die Objekte werden Elemente der Menge genannt.

KAPITEL 1. LOGIK UND UNTERLAGEN

Sei A eine Menge, dann wird "a ist element von A" mit " $a \in A$ " bezeichnet. Seien A, B Mengen, dann wird "jedes Element von A ist ein Element von B" mit " $A \subset B$ " bezeichnet, und man sagt "A ist in B enthalten" (oder A ist eine Teilmenge von B).

Falls zugleich $A\subset B$ und $B\subset A$ gilt, so sind A und B gleich und man schreibt A=B.

Beispiele 1.2

- 1. Die Menge $\mathbb{N} = \{0, 1, 2, \dots\}$ der natürlichen Zahlen.
- 2. Die leere Menge mit "Ø" bezeichnet. Sie ist in jeder Menge enthalten.
- 3. Die Menge $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ aller ganze Zahlen.
- 4. Meistens werden Mengen nicht durch die Liste ihre Elemente gegeben, sondern durch bestimmte Eigenschaften ihrer Elemente definiert

$$\mathbb{P} = \{2, 3, 4, 5, 7, 11, 13, \dots\}$$

die Menge aller Primzahlen $\mathbb{P}: \{p \in \mathbb{N} \mid p \text{ primzahl}\}$

1.2 Zwei Prinzipen

Wir werden die folgenden zwei Beweismethoden häufig benutzen.

1. Prinzip des Indirekten Beweises

Zum Beweis der Aussage $A \to B$ genügt es, die Aussage $\neg B \to \neg A$ zu zeigen oder die Annahme $A \land \neg B$ zum Wiederspruch zu führen.

2. Prinzip der Vollständigen Induktion

Sei für jedes $n \in \mathbb{N}$ eine Behauptung A(n) gegeben. Soll die Behauptung für alle natürlichen Zahlen $n \in \mathbb{N}$ bewiesen werden, so genügen dazu zwei Beweisschritte:

- i) Der Beweis von A(0)
- ii) Für jedes $n \in \mathbb{N}$, der Beweis von A(n+1) unter der Voraussetzung, dass A(n) gilt.

Oft gelten aber Behauptungen nicht von n = 0.

Soll die Gültigkeit von A(n) für alle $n \geq m$ bewiesen werden so genügen wieder zwei Schritte:

- i) Beweis von A(m)
- ii) Für jedes $n \geq m$ impliziert A(n) die Behauptung A(n+1)

Das Prinzip der vollständigen Induktion ist genau wie ein Dominoeffekt.

Sie stellen alle Dominosteine auf, einen nach dem anderen. Falls der erste Dominostein fällt (A(1)) wahr) und falls wir die Dominosteine genug nah nebeneinander gestellt haben, so dass ein fallender Dominostein den nächsten trifft $(A(k)) \to A(k+1)$, dann wissen wir, dass alle Dominosteine fallen.

Beispiel 1.3 (Induktion)

1. Für alle $n \ge 1$ gilt:

$$A(n): 1+3+5+\dots(2n-1)=n^2$$

Beweis mittels vollständiger Induktion

- i) A(i) lautet $1 = 1^2$ und gilt.
- ii) Sei $n \geq 1.$ Annahme: A(n) gilt. Die linke Seite der Identität A(n+1) ist

$$1+3+\cdots+(2n-1)+(2n+1)=n^2+(2n+1)=(n+1)^2$$

womit A(n+1) bewiesen ist.

 Als zweites Beispiel der vollständigen Induktion beweisen wir den Fundamentalsatz von Euklid:

Satz 1.4

Jede natürliche Zahl $n \geq 2$ ist ein Produkt von Primzahlen, welches bis auf die Reihenfolge der Faktoren eindeutig ist. Wir werden uns hier aber nicht mit der Eindeutigkeit befassen.

Beweis

Sei A(n) die Aussage: Jede natürliche Zahl m mit $2 \leq m \leq n$ ist ein Produkt von Primzahlen

- i) A(2) gilt, denn 2 ist eine Primzahl.
- ii) Sei $n \geq 2$. Wir nehmen an, dass A(n) gilt. Für n+1 gibt es zwei Möglichkeiten
 - a) n+1 ist eine Primzahl und somit gilt A(n+1)
 - b) n+1 ist keine Primzahl d.h. es gibt ein $2 \le a \le n$ welches n+1 teilt. Dann ist $b:=\frac{n+1}{a}$ auch ganzzahlig und zudem ist $2 \le b \le n$ erfüllt. Aus A(n) folgt, dass sowohl a wie b ein Produkt von Primzahlen sind. Somit ist auch n+1=ab ein Produkt von Primzahlen.

Satz 1.5

Die Menge \mathbb{P} der Primzahlen ist unendlich.

Beweis

Nehmen wir das Gegenteil "P ist endlich" an, d.h. $\mathbb{P} = \{p_1, p_2, \dots, p_m\}$ in aufsteigender Folge; also $p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7, \dots$ Wir betrachten die Zahl $k = p_1 p_2 \dots p_i \dots p_m + 1$. Aus Satz 1.4 folgt, dass eine Primzahl p_i (aus der Liste $\{p_1, \dots, p_m\}$) existiert, mit p_i teilt k. Da p_i offensichtlich $p_1 p_2 \dots p_i \dots p_m$ teilt, folgt dass p_i die Restzahl $k - p_1 \dots p_m = 1$ teilt. Das ist ein Widerspruch.

Teilbarkeit

Formale Definition

Eine ganze Zahl a teilt eine ganze Zahl b genau dann, wenn es eine ganze Zahl n gibt, für die an=b ist.

Man sagt dann (Synonyme)	Man schreibt
a teilt b	$a \mid b$
a ist Teiler von b	
b ist teilbar durch a	
b ist Vielfaches von a	

Eigenschaften der Teilbarkeit

- Gilt $a \mid b$ und $b \mid c$, so folgt $a \mid c$
- Für $k \in \mathbb{Z} \setminus \{0\}$ gilt: $a \mid b \iff ka \mid kc$
- $a \mid b \text{ und } c \mid d \rightarrow ac \mid bd$
- $a \mid b \text{ und } a \mid c \to a \mid kb + lc$, für alle $l, k \in \mathbb{Z}$

Formaler Beweis von Satz 1.5

- 1. $k = (p_1 p_2 \dots p_i \dots p_m) + 1$ Es gibt eine Primzahl p_i die k teilt. $p_i \mid k$ mittels Satz 1.4.
- 2. Sei $b=p_1p_2...p_i...p_m$ = Produkt aller Primzahlen. Sei $a=p_i, n=p_1p_2p_{i-1}p_{i+1}...p_m$. Dann b=an. Das bedeuted, dass a ein Teiler von b ist, d.h. $p_i \mid (p_1...p_m)$
- 3. $p_i \mid k \text{ und } p_i \mid (p_1 \dots p_m) \to p_i \mid k (p_1 \dots p_m) = 1$. So erhalten wir einen Widerspruch.

Bemerkung

Letztes mal haben wir gesagt, dass "jedes Element von A ist auch Element von B" ($\forall x,x\in A\to x\in B$) mit $A\subset B$ bezeichnet wird. Wir sagen auch "A ist in B enthalten" oder "A ist Teilmenge von B". Falls $A\subset B$ und eine Element $b\in B$ existiert mit $b\not\in A$, so sagen wir "A ist eine "eigentliche Teilmenge" von B". Manchmal schreiben wir $A\subseteq B$ in diesem Fall.

Es gibt viele Bücher mit der folgenden Notation: "jedes Element von A ist ein Element von B" wird mit $A \subseteq B$ bezeichnet. Und wenn $A \subseteq B$ und $A \neq B$ dann wird $A \subset B$ statt $A \subseteq B$ benutzt. A = B falls $x \in A \Leftrightarrow x \in B$.

Satz

$$A = B \Leftrightarrow A \subset B \text{ und } B \subset A$$

Beweis

Annahme: A = B. Falls $x \in A$, dann gilt, mittels A = B, $x \in B$ und damit gilt auch $A \subset B$. Falls $x \in B$, dann gilt $x \in A$ (mittels A = B), und damit gilt $B \subset A$.

Wir haben bewiesen, dass $A=B\to A\subset B$ und $B\subset A$. Nun nehmen wir $A\subset B$ und $B\subset A$ an. Damit möchten wir A=B zeigen.

Sei
$$x \in A$$
. Mittels $A \subset B$ erhalten wir $x \in B$ und somit $x \in A \to x \in B$. (*)

Sei
$$x \in B$$
. Mittels $B \subset A$ erhalten wir $x \in A$ und somit $x \in B \to x \in A$. (**)

(*) und (**)
$$\rightarrow A = B$$
 per Definition.

1.3 Mengenoperationen

Zunächst erinnern wir kurz an die Definitionen der elementaren Operationen auf Mengen.

Seien A und B Mengen. Wir können dann daraus folgende Mengen bilden:

- Die Vereinigung: $A \cup B = \{x \mid x \in A \lor x \in B\}$
- Der Durchschnitt: $A \cap B = \{x \mid x \in A \land x \in B\}$
- Die Differenz: $A \setminus B = \{x \mid x \in A \land x \notin B\}$
- Symmetrische Differenz: $A \triangle B = (A \backslash B) \cap (B \backslash A) = (A \cup B) \backslash (A \cap B)$

Wir haben dann folgende Eignschaften

Satz 1.6

Seien A, B, C Mengen.

1.
$$A \cap B = B \cap A$$
; $A \cup B = B \cup A$
 $A \cap \emptyset = \emptyset$; $A \cup \emptyset = A$

Bemerkung

- ∪ verhält sich wie +
- $\bullet \ \cap$ verhält sich wie die Multiplikation
- $\bullet~\emptyset$ verhält sich wie das Nullelement

2.
$$(A \cup B) \cup C = A \cup (B \cup C)$$

 $(A \cap B) \cap C = A \cap (B \cap C)$

3.
$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

KAPITEL 1. LOGIK UND UNTERLAGEN

Beweis

Einerseits gilt

$$(A \cup B) \cap C = \{x \in X : x \in A \cup B\} \land \{x \in X : x \in C\}$$

Andererseits $(A \cap C) \cup (B \cap C) = \{x \in X : x \in A \cap C\} \vee \{x \in X : x \in B \cap C\}$. Daraus folgt

$$(A \cup B) \cap C \subseteq (A \cap C) \cup (B \cap C)$$
$$(A \cap C) \cup (B \cap C) \subseteq (A \cup B) \cap C$$

und somit sind die zwei Mengen gleich.

Definition 1.7

Das Kartesische Produkt $A\times B$ der Mengen A,B ist die Menge der geordneten Paare (a,b) wobei $a\in A,b\in B$

Beispiel

 $\mathbb{Z} \times \mathbb{Z} = \{(a,b) : a \in \mathbb{Z}, b \in \mathbb{Z}\}$. Falls \mathbb{Z} als "eindimensionales" Gebilde dargestellt wird

-3 -2 -1 0 1 2 3

So wird $\mathbb{Z} \times \mathbb{Z}$ als "zweidimensionales" Gebilde dargestellt

Um die Operationen auf mehrere Mengen zu verallgemeinern, sind die folgenden Quantoren nützlich (\ast)

- 1. \forall "Für alle" (Allquantor)
- 2. ∃ "Es gibt" (Existenzquantor)
- 3. \exists ! "Es gibt genau ein"

Sei nun Ieine beliebige Menge ($I{=}{\rm Indexmenge})$ und sei für alle $i\in I$ eine Menge A_i gegeben. Dann:

- $\bigcup_{i \in I} A_i = \{x \mid \exists i \in I, x \in A_i\}$. Vereinigung besteht aus den Elementen x, für welche es ein $i \in I$ gibt, so dass x zu A_i gehört.
- $\bigcap_{i \in I} A_i = \{x \mid \forall i \in I, x \in A_i\}$. Durchschnitt.

Wir definieren das Kartesische Produkt endlich vieler Mengen $A_1 \dots A_n$:

$$A_1 \times A_n = \prod_{i=1}^n A_i = \{(x_1, \dots, x_n) \mid x_i \in A_i\}$$

Satz 1.8

Seien $A_1 \dots A_k \subset X$, $k \in \mathbb{N}$. Es gilt

1.

$$\left(\bigcap_{i=1}^{k} A_i\right)^c = \bigcup_{i=1}^{k} A_i^c$$

2.

$$\left(\bigcup_{i=1}^{k} A_i\right)^c = \bigcap_{i=1}^{k} A_i^c$$

Beweis

$$\left(\bigcap_{i=1}^{k} A_i\right)^c = \left\{x \mid x \in X \land x \notin \bigcap_{i=1}^{k} A_i\right\} = \left\{x \mid x \in X, \exists i \in \{1, \dots, k\} : x \notin A_i\right\}$$
$$= \bigcup_{i=1}^{k} \left\{x \mid x \in X \land x \notin A_i\right\} = \bigcup_{i=1}^{k} A_i^c$$

und

$$\left(\bigcup_{i=1}^{k} A_{i}\right)^{c} = \left\{x \mid x \in X \land x \notin \bigcup_{i=1}^{k} A_{i}\right\} = \left\{x \mid x \in X, \forall i \in \{1, \dots, k\} : x \notin A_{i}\right\}$$
$$= \bigcap_{i=1}^{k} \left\{x \mid x \in X \land x \notin A_{i}\right\} = \bigcap_{i=1}^{k} A_{i}^{c}$$

(Siehe Analysis Serie 1, 1. Semester, Aufgabe 2.e)

(*) Wir haben gesehen, dass wir manchmal eine Aussage verneinen müssen. Deshalb müssen wir lernen wie man Aussagen mit Quantoren verneinen kann.

$$\neg (\forall n : A(n)) \Leftrightarrow (\exists n : \neg A(n))$$
$$\neg (\exists n : A(n)) \Leftrightarrow (\forall n : \neg A(n))$$
$$\neg (\forall x \in \mathbb{R} : x^2 \ge 0) \Leftrightarrow \exists x \in \mathbb{R} : x^2 < 0$$

1.4 Abbildungen

Seien X, Y Mengen.

KAPITEL 1. LOGIK UND UNTERLAGEN

Definition 1.9

Eine Funktion oder Abbildung $f: X \to Y$ der Menge X in die Menge Y ist eine Vorschrift (ein Gesetz) die (das) jedem Element $x \in A$ genau ein Element $y = f(x) \in Y$ zuordnet.

Es gibt verschiedene wichtige Objekte die in Zusammenhang mit einer Abbildung auftreten

X = Definitions bereich oder Definitions menge (domain)

Y = Wertebereich oder Zielmenge (range)

 $f(X) = \{f(x) \mid x \in X\}$ ist das sog. Bild oder die Bildmenge

 $f^{-1}(y) = x$ heisst *Urbild* von y.

Der Graph einer Funktion f ist die Menge aller Paare (x, f(x)) wobei x alle Elemente der Menge X durchläuft. Er ist eine Teilmenge von $X \times Y$.

$$Gr(f) := \{(x, f(x)) \mid x \in X\}$$

Beispiel 1.10

1. (Identität) Für jede Menge X, ist $id_X: X \to X$ definiert durch $id_{\overline{X}}(x) = x, \forall x \in X$

2. (Konstante) Sei X Menge und $c \in X$. Die konstante Abbildung mit Wert c ist $f(x) = c, \forall x \in X$

3. Seien X, Y Mengen. Dann sind

 $pr_x: X \times Y \to X$

 $pr_y: X \times Y \to Y$

 $(x,y) \mapsto x$

 $(x,y)\mapsto y$

die Projektionen auf den ersten bzw. zweiten Faktor.

4. Sinus

$$f: \mathbb{R} \to [-1, 1]$$
$$x \mapsto \sin x$$

5.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^2 + x$$

Definition 1.11

Sei $f: X \to Y$ eine Abbildung

- 1. f heisst injektiv falls aus $f(x_1) = f(x_2)$ stets $x_1 = x_2$ folgt, also falls jedes $y \in Y$ höchstens ein Urbild hat.
- 2. f heisst surjektiv falls es für jedes $y \in Y$ ein $x \in X$ gibt mit f(x) = y

$$\forall y \in Y, \exists x \in X : f(x) = y$$

Also wenn jedes Element $y \in Y$ mindestens ein Urbild hat.

3. f heisst bijektiv falls f injektiv und surjektiv ist, d.h. falls jedes $y \in Y$ genau ein Urbild hat.

Beispiel 1.12

- 1. $id_X: X \to X$ bijektiv.
- 2. Eine konstante Abbildung $f: X \to X, x \mapsto c$ ist
 - injektiv $\Leftrightarrow X = \{c\}$
 - surjektiv $\Leftrightarrow X = \{c\}$
- 3. Die Projektionen
 - $pr_x: X \times Y \to X$
 - $pr_{y}: X \times Y \to Y$

sind stets surjektiv.

4.
$$f: \mathbb{R} \to [-1, 1]$$

 $x \mapsto \sin x$
Surjektiv, nicht injektiv

- 5. $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^2$ Nicht surjektiv Nicht injektiv
- 6. $f: \mathbb{N} \to \mathbb{N}$ $n \mapsto 2n$ ist injektiv. $f(\mathbb{N})$ ist die Menge aller geraden Zahlen
- 7. Eine Menge A hat n Elemente falls es eine bijektive $f:\{1,\ldots,n\}\to A$ gibt. Die Zahl n wird dann die Kardinalität von A genannt und mit |A|, gelegentlich auch mit #A bezeichnet.

Definition Kardinalität

Wir sagen zwei Mengen X und Y sind gleichmächtig falls eine bijektive Abbildung $f:X\to Y$ existiert.

KAPITEL 1. LOGIK UND UNTERLAGEN

Mit dem ersten Cantorschen Diagonalverfahren kann man die rationalen Zahlen abzählen, d.h. $\mathbb Q$ und $\mathbb N$ sind gleichmächtig

1.5 Dedekind Schubladen Prinzip

Sei $f:A\to B$ eine beliebige Abbildung zwischen endlichen Mengen. Falls |B|<|A| dann ist f nicht injektiv, d.h. es gibt $b\in B$ und $a_1,a_2\in A$ mit

i)
$$a_1 \neq a_2$$

ii)
$$f(a_1) = f(a_2) = b$$

$$3 = |B| < 5 = |A|$$

Mit Abbildungen kann man "operieren". Die wichstige Operation ist die Verkettung (oder Komposition) zweier Abbildungen.

Definition

Abbildungen $f:X\to Y,\,g:Y\to Z$ kann man miteinander ausführen. Dies ergibt eine neue Abbildung

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

$$F := g \circ f : X \to Z, x \mapsto g(f(x))$$

$$\text{Man sagt} \begin{cases} g \text{ nach } f \\ g \text{ komponiert mit } f \\ g \circ f \end{cases}$$

Zwei Funktionen f und g können verkettet werden wenn der Wertebereich der ersten Funktion mit dem Definitionsbereich der zweiten Funktion übereinstimmt.

<u>Zu Beachten:</u> In dieser Notation steht die zuerst angewandte Abbildung rechts. Das bedeutet bei $g \circ f$ wird zuerst die Funktion f angewandt und dann die Funktion g.

• Die Identische Abbildung verhält sich bei der Komposition neutral, für eine Funktion

$$f: X \to Y$$
 gilt also
$$f \circ id_X = f = id_Y \circ f$$

wobei

$$id_X: \mathbb{X} \to \mathbb{X}$$

$$x \mapsto x$$

$$id_Y: Y \to Y$$

$$y \mapsto y$$

 $\bullet\,$ Die Komposition von Funktionen ist assoziativ, d.h. für Funktionen f,g,h gilt

$$(h \circ g) \circ f = h \circ (g \circ f)$$

• Aber die Komposition von Funktionen ist im Allgemeinen nicht kommutativ!

$$f\circ g\neq g\circ f$$

Zum Beispiel:

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^{2}$$
$$g: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x + 1$$

$$f \circ g = f(g(x)) = f(x+1) = (x+1)^2 = x^2 + 2x + 1$$

 $g \circ f = g(f(x)) = g(x^2) = x^2 + 1$

1.6 Die inverse Abbildung (Umkehrfunktion)

Sei $f: X \to Y$ eine bijektive Funktion.

Die inverse Funktion $g:Y\to X$ einer bijektiven Funktion $f:X\to Y$ ist die Funktion, die jedem Element y der Zielmenge dessen eindeutig bestimmtes Urbildelement zuweist. (bei bijektiven Funktionen hat die Urbildmenge jedes Elements y genau ein Element).

g(y):=x, eindeutig definiertes $x\in X$, mit f(x)=y. Dann ist definitionsgemäss $(g\circ f)(x)=x$, d.h. $g\circ f:id_{X}$. Die eindeutig definierte Abbildung g

KAPITEL 1. LOGIK UND UNTERLAGEN

wird (auch) mit f^{-1} bezeichnet und Umkehrfunktion von f genannt.

Für
$$f\circ f^{-1}$$
: Sei $y\in Y$ und x erfülle $f(x)=y$. Dann ist $\left(f\circ f^{-1}\right)(y)=f\left(f^{-1}(y)\right)=f(x)=y$
$$f\circ f^{-1}=id_Y$$

Beispiel

1.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto 2x + 3$$

Die Funktion is bijektiv.

Die Umkehrfunktion ist gegeben durch

$$f^{-1}: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \frac{x-3}{2}$$

2. Sei $\mathbb{R}^+ = [0, \infty]$ die Menge der nichtnegativen reellen Zahlen und

$$f: \mathbb{R}^+ \to \mathbb{R}^+$$
$$x \mapsto x^2$$

Dann ist f bijektiv und die Umkehrfunktion ist gegeben durch

$$f^{-1}: \mathbb{R}^+ \to \mathbb{R}^+$$

 $x \mapsto \sqrt{x}$

Verallgemeinerungen Falls $f:X\to Y$ injektiv ist, kann man die Umkehrabbildung $f^{-1}:f(\mathbb{X})\to\mathbb{X}$ definieren. Das heisst, die Funktion f^{-1} erfüllt: wenn f(x)=y, dann $f^{-1}(y)=x$.

Vorsicht: $f^{-1} \circ f = id_{\mathbb{X}}$ aber $f \circ f^{-1} = id_{f(\mathbb{X})}$ und $f \circ f^{-1} = id_Y$ nur genau dann wenn f(X) = Y, d.h. f bijektiv ist.

KAPITEL 1. LOGIK UND UNTERLAGEN

Kapitel 2

Reelle Zahlen, Euklidische Räume und Komplexe Zahlen

2.1 Elementare Zahlen

Natürliche Zahlen $\mathbb{N}=\{0,1,2,\dots\}$ addieren und multiplizieren Ganze Zahlen $\mathbb{Z}=\{\dots,-2,-1,0,1,2,\dots\}$ subtrahieren Rationale Zahlen $\mathbb{Q}=\left\{\frac{p}{q} \middle| p,q\in\mathbb{Z},q\neq0\right\}$ dividieren

Viele Gleichungen haben keine Lösung in Q.

Before set Z, can't read, page 22

Satz 2.1

Sei $p \in \mathbb{N}$ eine Primzahl. Dann hat $x^2 = p$ keine Lösung in \mathbb{Q} .

Beweis

Zum Erinnerung zwei Natürlichen Zahlen a und b sind teilfremd (oder relativ prim) wenn es keine natürliche Zahl ausser der Eins gibt, die beiden Zahlen teilt.

$$((a,b)=1) \rightarrow \text{grösster gemeinsamer Teiler}$$

Indirekter Beweis

Wir nehmen an: es gibt $x=\frac{a}{b}\in\mathbb{Q}$ mit $x^2=p,$ wobei a,b teilfremd und ≥ 1 sind. Dann gilt

$$a^2 = pb^2$$

woraus folgt, dass p a teilt, also ist a = pk, $k \in \mathbb{N}$ und somit

$$a^2 = p^2 k^2 = pb^2 \Rightarrow pk^2 = b^2$$

woraus folgt, dass p b teilt.

2.2 Die Reellen Zahlen

Wir werden jetzt das System von Axiomen beschreiben, das die Menge der reellen Zahlen "eindeutig" charakterisiert.

Die Menge \mathbb{R} der reellen Zahlen ist mit zwei Verknüpfungen "+" (Addition) und "·" (Multiplikation) versehen, sowie mit einer Ordnungsrelation \leq . Die axiome werden wie folgt gruppiert:

1. $(\mathbb{R}, +, \cdot)$ ist ein Koerper

Es gibt zwei Operationen (zweistellige Verknüpfungen)

- $\bullet +: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ $(a,b) \mapsto a+b$
- $\bullet \times : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ $(a,b) \mapsto a \cdot b$

und zwei ausgezeichnete Elemente 0 und 1 in \mathbb{R} , die folgenden Eigenschaften haben:

Kommutativität A1) x + y = y + x

Assoziativität A2) (x + y) + z = x + (y + z)

Neutrales Element A3) x + 0 = x = 0 + x

Inverses Element A4) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ mit } x + y = 0 = y + x$

Komutivität M1) $x \cdot y = y \cdot x$ Assoziativität M2) (xy)z = x(yz)

Neutrales Element M3) $x \cdot 1 = x = 1 \cdot x$

Inverse Element M4) $\forall x \in \mathbb{R}, x \neq 0 \ \exists y \in \mathbb{R} \ \text{mit} \ xy = 1 = yx$

und die Multiplikation ist verträglich mit der Addition im Sinne des Distributivitätsgesetz (D)

$$\forall x, y, z \in \mathbb{R} : x(y+z) = xy + xz$$

- $(\mathbb{R}, +)$ mit A1 \rightarrow A4 ist eine Abelsche Gruppe bezüglich der Addition
- $(\mathbb{R}, +, \cdot)$ mit A1 \rightarrow A4, M1 \rightarrow M4 und D ist ein Zahlkörper.

Bemerkung 2.2

Eine Menge G, versetzt mit Verknüpfung + und dem neutralen Element 0, die den obigen Eigenschaften A2 \rightarrow A4 genügt, heisst Gruppe.

Eine Menge K versetzt mit Verknüpfung $+,\cdot$ und Elementen $0\neq 1$, die den obigen Eigenschaften A1 \to A4, M1 \to M4, D genügt heisst Körper.

Folgerung 2.3

Seien $a, b, c, d \in \mathbb{R}$

$KAPITEL\ 2.$ REELLE ZAHLEN, EUKLIDISCHE RÄUME UND KOMPLEXE ZAHLEN

- i) $a+b=a+c \Rightarrow b=c$ und 0 ist eindeutig, d.h. falls $z\in\mathbb{R}$ der Eigenschaften a+z=a $\forall a\in\mathbb{R}$ genügt, so folgt z=0
- ii) $\forall a, b\mathbb{R}, \exists !$ (eindeutig bestimmtes) $x \in \mathbb{R} : a + x = b$. Wir schreiben x = b a und 0 a = -a ist das additive Inverse zu
- iii) b a = b + (-a)
- iv) -(-a) = a
- v) Falls ab = ac und $a \neq 0 \Rightarrow b = c$ und 1 ist eindeutig, d.h. falls $x \in \mathbb{R}$ der Eigenschaften $ax = a \ \forall a \in \mathbb{R}$ genügt, so folgt x = 1
- vi) $\forall a, b \in \mathbb{R}, a \neq 0, \exists ! x \in \mathbb{R} : ax = b$. Wir schreiben $x = \frac{b}{a}$ und $\frac{1}{a} = a^{-1}$ ist das multiplikativ Inverse zu a.
- vii) Falls $a \neq 0 \Rightarrow (a^{-1})^{-1} = a$
- viii) $\forall a \in \mathbb{R}, \ a \cdot 0 = 0$
- ix) Falls ab = 0, dann folgt a = 0 oder b = 0

Beweis 2.3

(a) Sei a + b = a + c $A4 \Rightarrow \exists y \in \mathbb{R} : a + y = 0$ $a + b = a + c \Rightarrow y + (a + b) = y + (a + c)$

$$\stackrel{A2}{\Rightarrow} (y+a) + b = (y+a) + c$$

$$\Rightarrow 0 + b = 0 + c \stackrel{A3}{\Rightarrow} b = c$$

Nehmen wir an, dass es $0' \in \mathbb{R}$ gibt, so dass x + 0' = x, $\forall x \in \mathbb{R}$, d.h. es gibt ein zweites neutrale Element für +.

Dann 0 + 0' = 0 aber auch A3 $\Rightarrow 0 + 0 = 0 \Rightarrow 0 + 0' = 0 + 0 \Rightarrow 0 = 0'$

- (b) Seien $a, b \in \mathbb{R}$, und sei $y \in \mathbb{R}$ mit a + y = 0. Definieren wir $x := y + b \Rightarrow a + x = a + (y + b) = (a + y) + b = 0 + b = b$ \Rightarrow es gibt mindestens eine Lösung der Gleichung a + x = b. Von i) folgt, dass x eindeutig bestimmt ist $a + x = b = a + x' \Rightarrow x = x'$
- (c) Seien x = b a, y = b + (-a). Wir wollen beweisen, dass x = y.

Aus i) wissen wir, dass b - a eine Lösung von a + x = b

$$y + a = (b + (-a)) + a = b + ((-a) + a) = b + 0 = 0$$

ist $\Rightarrow y$ ist auch eine Lösung.

Weil die Lösung von a + x = b ist eindeutig bestimmt, ist y = x

- (d)
- (e)
- (f)
- (g)

ASK FOR BEWEISE; PAGE 27 TOP

(h)
$$\forall a \in \mathbb{R}, \ a \cdot 0 = 0$$

 $a \cdot 0 = a(0+0) = a \cdot 0 + a \cdot 0 \Rightarrow a \cdot 0 = 0$

- (i) $ab = 0 \Rightarrow a = 0$ oder b = 0Wir nehmen an: $a \neq 0$ mit Inversen a^{-1} , (a^{-1} existiert mittels M4). So folgt $b = 1 \cdot b = (a^{-1} \cdot a)$ $b = a^{-1}(a \cdot b) = a^{-1} \cdot 0 = 0$
- 2. Ordnungsaxiome ≤

Auf $\mathbb R$ gibt es eine Relation, $\leq,$ genante Ordnung, die folgenden Eigenschaften genügt

- (a) Reflexivität: $\forall x \in \mathbb{R}, x \leq x$
- (b) Transitivität: $\forall x,y,z \in \mathbb{R} : x \leq y \land y \leq z \Rightarrow x \leq z$
- (c) Identität: $\forall x, y \in \mathbb{R}, (x \leq y) \text{ und } (y \leq x) \Rightarrow x = y$
- (d) Die Ordnung ist total: $\forall x, y \in \mathbb{R}$ gilt entweder $x \leq y$ oder $y \leq x$

Die Ordnung ist konsistent mit +, und \cdot

(a)
$$x \le y \Rightarrow x + z \le y + z$$
 $\forall x, y, z \in \mathbb{R}$

(b)
$$x, y \ge 0 \Rightarrow xy \ge 0$$

Mit \leq hat man auch \geq , <, >. Wir verzichten auf eine Auflistung aller Folgerungen und beschränken uns auf einige wichtigen Folgerungen.

Folgerungen 2.4

i)
$$x \le 0$$
 und $y \le 0 \Rightarrow xy \ge 0$

ii)
$$x \le 0$$
 und $y \ge 0 \Rightarrow xy \le 0$

iii)
$$x \le y$$
 und $z \ge 0 \Rightarrow xz \le yz$

iv)
$$1 > 0$$

v)
$$\forall x \in \mathbb{R}$$
 $x^2 \ge 0$

vi)
$$0 < 1 < 2 < 3 < \dots$$

vii)
$$\forall x > 0 : x^{-1} > 0$$

{Annahme: $x^{-1} \leq 0$. Nach Multiplikation mit x>0 folgt (mittels ii) $1=x^{-1}\cdot x \leq 0\cdot x=0$ }

Bemerkung 2.5

What? page 28 bottom \leq auf genügt den obigen Eigenschaften. Die entscheidende weitere Eigenschaft von \mathbb{R} ist das.

3. Ordnungsvollständigkeit Vollständigkeitsaxiom:

Seien $A,B\subset\mathbb{R}$ nicht leere Teilmengen von \mathbb{R} , so dass $a\leq b$ für alle $a\in A,b\in B$. Dann gibt es $c\in\mathbb{R}$ mit $a\leq c\leq b$ $\forall a\in A,b\in B$

Check for layout issues

with title

?multipli? page 27

middle to top

KAPITEL 2. REELLE ZAHLEN, EUKLIDISCHE RÄUME UND KOMPLEXE ZAHLEN

Bemerkung 2.6

at? page 29 bottom

erfüllt dieses Eigenschaft nicht!

Seien

$$A = \{x \in \mathbb{Q} \mid x \ge 0, x^2 \le 2\}$$
$$B = \{y \in Q \mid y \ge 0, y^2 \ge 2\}$$

Dann gilt $a \leq b \ \forall a \in A \ b \in B$. Aber ein $c \in \mathbb{Q}$, mit $a \leq c \leq b$ würde dann $c^2 = 2$ erfüllen! In Satz 2.1 haben wir gesehen dass $x^2 = p$ keine Lösung in \mathbb{Q} hat.

Wir definieren jetzt für $x, y \in \mathbb{R}$

$$\max\{x,y\} = \left\{ \begin{array}{l} x \text{ falls } y \leq x \\ y \text{ falls } x \leq y \end{array} \right.$$

Insbesondere ist der Absolutbetrag einer Zahl $x \in \mathbb{R}, |x|$

$$|x| : \max\{x, -x\}$$

Für diesen gilt folgender wichtiger Satz

Satz 2.7

- i) $|x + y| \le |x| + |y|$ (Dreiecksungleichung)
- ii) |xy| = |x| |y|

Beweis 2.7

- $\begin{array}{l} \mathrm{i)} \ \ x \leq |x| \, , -x \leq |x| \\ y \leq |y| \, , -y \leq |y| \\ \mathrm{und} \ x + y \leq |x| + |y| \, , -(x+y) \leq |x| + |y| \\ \mathrm{woraus} \ |x+y| \leq |x| + |y| \ \mathrm{folgt} \end{array}$
- ii) ASK FOR BEWEIS

ASK FOR BEWEIS

Satz (Young)

Für alle
$$a, b \in \mathbb{R}, \ \delta > 0$$
 gilt $2|ab| \le \delta a^2 + \frac{b^2}{\delta}$

2.3 Infimum und Supremum

Im Zusammenhang mit der Ordnung führen wir einige wichtige Definitionen ein:

Definition 2.8

Sei $\mathbb{X} \subset \mathbb{R}$ eine Teilmenge

KAPITEL 2. REELLE ZAHLEN, EUKLIDISCHE RÄUME UND KOMPLEXE ZAHLEN

- a) X ist nach oben beschränkt, falls es $c \in \mathbb{R}$ gibt $x \leq c, \forall x \in X$. Jedes derartige c heisst eine obere Schranke für X.
- b) X ist nach unten beschränkt, falls es $c \in \mathbb{R}$ gibt, mit $x \geq c$, $\forall x \in X$. Jedes derartige c heisst untere Schranke für X.
- c) X ist beschränkt falls es nach oben und unten beschränkt ist.
- d) Ein Element $a \in X$ ist ein maximales Element (oder Maximum) von X falls $x \leq a$, $\forall x \in X$. Falls ein Maximum (bzw. Minimum) existiert, wird es mit max X (min X) bezeichnet. Falls X keine obere Schranke hat, ist X nach oben unbeschränkt (analog für obere Schranke).

Beispiel 2.9

WHAT? Page 32 top

- 1. $A = \{x \in \mathbb{R} \mid x > 0\}$ ist nach oben unbeschränkt. A ist nach unten beschränkt. Jedes ≤ 0 ist eine untere Schranke.
- 2. B = [0, 1] ist nach oben und nach unten beschränkt.
 - 0 ist ein Minimum von B
 - 1 ist ein Maximum von B
- 3. C = [0,1) ist nach oben und nach unten beschränkt, $0 = \min(A)$. C hat kein Maximum.

Folgender Satz ist von zentraler Bedeutung und eine Folgerung des Ordnungsvollständigkeitsaxioms.

Satz 2.10

- i) Jede nicht leere, nach oben beschränkte Teilmenge $A \subset B$ besitzt eine kleinste obere Schranke c. Die kleinste obere Schranke c ist eindeutig bestimmt und heisst Supremum von A und wird mit sup A bezeichnet.
- ii) Jede nicht leere, nach unten beschränkt Teilmenge $A \subset \mathbb{R}$ besitzt eine grösste untere Schranke d und heisst Infimum von A und wird mit inf A bezeichnet.

Beweis

i) Sei $\emptyset \neq A \subset B$ nach oben beschränkt. Sei $B := \{b \in \mathbb{R} \mid b \text{ ist obere Schranke für } A\}$. Dann $B \neq \emptyset$ und $a \leq b, \forall a \in A \ b \in B$

Mit dem Ordnungsvollständigkeitsaxiom folgt die Existens einer Zahl $c \in \mathbb{R}$ mit $a \le c \le b \ \forall a \in A, b \in B$.

Es ist klar, dass c eine obere Schranke für A ist. Also $c \in B$. Da $c \le b$ $\forall b \in B$, ist c die kleinste obere Schranke für A. Hiermit c ist eindeutig

$KAPITEL\ 2.$ REELLE ZAHLEN, EUKLIDISCHE RÄUME UND KOMPLEXE ZAHLEN

bestimmt.

(Seien c und c' zwei Suprema von A, c ist die kleinste obere Schranke und c' ist eine obere Schranke $\Rightarrow c \leq c'$. Das gleiche Argument mit c,c' vertauscht liefert $c' \leq c$)

ii) Sei A eine nach unten beschränkte, nicht leere Menge. Sei $-A := \{-x \mid x \in A\}$ die Menge der additive Inversen von A. Dann $-A \neq \emptyset$ und nach oben beschränkt. i) $\Rightarrow \exists s = \sup(-A) \Rightarrow -s$ ist das Infimum von A

limenet: Why enumerate for only one item??

Korollar 2.11

- 1. Falls $E \subset F$ und F nach oben beschränkt ist, gilt sup $E \leq \sup F$
- 2. Falls $E \subset F$ und F nach unten beschränkt ist, gilt inf $F \leq \inf E$
- 3. Falls $\forall x \in E, \, \forall y \in F$ gilt $x \leq y,$ dann folgt $\sup E \leq \inf F$
- 4. Seien $E, F \neq \emptyset, E, F, \subset \mathbb{R}, h \in \mathbb{R}, h > 0$

page is clipped, page 34 bottom

- (i) Falls E ein Supremum besitzt $\Rightarrow \exists x \in E \text{ mit } x > \sup E$
- (ii) Falls E ein Infimum besitzt $\Rightarrow \exists y \in : y < \inf E + h$. Das Supremum, $\sup \mathsf{X} = \sigma$ der Menge X ist folgendermassen charakterisiert: Es gibt in X keine Zahlen $> \sigma$; aber für jede Toleranz h > 0 gibt es in X Zahlen $> \sigma h$

can't read, is it E-h? page 34 bottom

Es gibt in X keine Zahlen $< \inf X = \underline{\text{aber für jede Toleranz } h > 0}$ gibt es in X Zahlen $< \inf X + h$

faded color, can't read, page 34.1 middle to bottom

(iii) Sei $E+F=\{e+f:e\in E,f\in F\}$. Falls E und F ein Supremum besitzen $\Rightarrow E+F$ besitzt ein Supremum und $\sup(E+F)=\sup(E)+\sup(F)$. (Analog mit Infimum)

Beweis

Ask for full Beweis!!

Beispiel

1. $E=(+\infty,2)\subset F(-\infty,4]$ $\sup E=2, \sup F=4=\max F$ $E \text{ hat kein Maximum: }\sup E\leq\sup F$

KAPITEL 2. REELLE ZAHLEN, EUKLIDISCHE RÄUME UND KOMPLEXE ZAHLEN

- 2. $G: [4,5) \subset H = (3,6)$ $\min E = \inf G = 4 \ge \inf H = 3$
- 3. $K = (3, \infty), E = (-\infty, 2)$ $\forall x \in E, y \in K \text{ gilt } x \leq y$ $2 = \sup E \leq 3 = \inf K$
- 4. $A\{\sin x \mid x \in \mathbb{R}\}\$ $\inf S = -1 = \min A$ $\sup A = 1 = \max A$
- 5. $A = \{(1 + \frac{1}{n})^n \mid n \in \mathbb{N}\}$. Wir werden sehen, dass A nach unten und nach oben beschränkt ist.

 $\inf A = \min A = 2$, $\sup A = e = 2.718...$ Vereinbarung Für nach oben unbeschränkte Mengen $\overline{A} \neq \emptyset$ setzen wir $\sup A = \infty$. Analog für nach unten unbeschränkte Menge $\emptyset \neq A$ setzen wir $\inf A = -\infty$

Der folgende Satz zeigt, wie die Ordnungsvollständigkeit von \mathbb{R} die Lösbarkeit gewisser Gleichungen in \mathbb{R} garantiert.

Satz 2.12

Für jedes x>0 gibt es genau ein y>0 mit $y^2=x$. Diese Lösung wird mit \sqrt{x} bezeichnet.

(Im Allgemeinen: Für jedes x>0 und $n\geq 1,\ n\in\mathbb{R}$ gibt es genau ein y>0 mit $y^2=0$. Diese Lösung wird mit $\sqrt[n]{x}$ bezeichnet)

Beweis

Sei x > 1, und $A := \{z \in \mathbb{R} \mid z > 0 \text{ mit } z^2 \leq x\}$. Dann ist A nach oben beschränkt und $A \neq \emptyset(1 \in A)$. $\Rightarrow A$ besitzt ein Supremum. Sei $y := \sup A$. Wir zeigen, dass $y^2 = x$

Not sure, page 35 bottom

Check for better layout

• Schnitt 1: Annahme $y^2 < x$. Sei $0 \le h \le 1$. Wir nehmen an:

$$(y+h)^{2} = y^{2} + 2hy + h^{2}$$

$$= y^{2} + h(2y+h)$$

$$\leq y^{2} + h(2y+1)$$

$$= y^{2} + h((y+1)^{2} - y^{2})$$

Weil $y^2 < x$ ist, $\frac{x-y^2}{(y+1)^2-y^2} > 0$ und daher gibt es $h \in \mathbb{R}, h > 0$, $h \le \frac{x-y^2}{(y+1)^2-y^2}$ (sei $h = \min\{1, \frac{x-y^2}{2x+1}\}$)

Für solche h gilt

$$(y+h)^2 \le y^2 + \left(\frac{x-y^2}{(y+1)^2 - y^2}\right) \left((y+1)^2 - y^2\right) =$$

Also $y + h \in A$ und y + h > y. Ein Widerspruch: y ist eine obere Schranke für A, d.h., z < y $\Rightarrow y^2 \ge x$ Analog beweist man $y^2 \le x$

$KAPITEL\ 2.$ REELLE ZAHLEN, EUKLIDISCHE RÄUME UND KOMPLEXE ZAHLEN

• Schnitt 2: Annahme $y^2 > x$ Sei $h = \frac{y^2 - x}{2y} \neq 0$

$$(y-h)^2 = y^2 - 2hy + h^2 > y^2 - 2hy = y^2 - (y^2 - 2hy)$$

 $\Rightarrow y-h$ ist eine obere Schranke für A

Chopped, page 35.2 top

$$(\forall z \in A, z^2 \le x. \text{ Da } (y-h)^2 > x \text{ ist, } (y-h)^2 > x \ge z^2. \text{ Damit } y-h > z, \forall z \in A)$$

Aber y - h < y, Widerspruch zur Minimalität von y.

Falls 0 < x < 1, dann $\frac{1}{x} > 1$ $\Rightarrow \exists u \in \mathbb{R}$, mit $u^2 = \frac{1}{x}$ Somit $\left(\frac{1}{u}\right)^2 = x$ und $y = \frac{1}{u}$ ist eine Lösung von $y^2 = x$.

Zum Abschluss dieses Themas erwähnen wir noch eine wichtige Eigenschaft der reellen Zahlen

Satz 2.13 (Archimedische Eigenschaft)

Zu jeder Zahl $0 < b \in \mathbb{R}$ gibt es ein $n \in \mathbb{N}$ mit b < n.

Beweis (Indirekt)

Andernfalls gibt es $b \in \mathbb{R}$ mit $n \leq b, \forall n \in \mathbb{N}$

$$(\neg (\exists n \in \mathbb{N} : b < n) = (\forall n \in \mathbb{N} : b \ge n))$$

Dann ist b eine obere Schranke für \mathbb{N} und es existiert $c = \sup \mathbb{N} \in \mathbb{R}$. Mit $n \in \mathbb{R}$ ist jedoch auch $n + 1 \in \mathbb{N}$.

Also: $n+1 \leq c, \ \forall n \in \mathbb{N}.$ Somit folgt $n \leq c-1, \ \forall n \in \mathbb{N}$ ein Widerspruch zur Minimalität von .

Chopped content, page 36 bottom

Korollar 2.14

- 1. Seien x > 0 und $y \in \mathbb{R}$ gegeben. Dann gibt es $n \in \mathbb{Z}$ mit y < nx
- 2. Falls $x,y,a\in\mathbb{R}$ die Ungleichheiten $a\leq x\leq a+\frac{y}{n},\, \forall n\in\mathbb{N}$ erfüllen, ist x=a.

Beweis

1. ASK FOR BEWEIS

Ask for beweis

2. $a < x \Rightarrow x - a > 0 \Rightarrow \exists n \in \mathbb{N}$ $\Rightarrow x > a + \frac{y}{n}$ Widerspruch

Wir wissen, dass gewisse Gleichungen in $\mathbb R$ lösbar sind: z.B. $y^2=a, \forall a>0$. Aber man kann nicht alle Gleichugen in $\mathbb R$ lösen, z.B. $x^2+1=0$. Da für alle $x\in\mathbb R$, $x^2>0$, ist $x^2=-1$ nicht lösbar. Um eine Lösung für diese Gleichung zu finden, müssen wir die komplexen Zahlen betrachten.

Zuerst, werden wir die Euklidischen Räume \mathbb{R}^n einführen

2.4 Euklidische Räume

Mit der Mengentheorie können wir das kartesische Produkt zweier Mengen bilden; es lässt sich ohne Schwierigkeiten zu endlichen Familien A_1, \ldots, A_n verallgemeinen; nämlich

$$A_1 \times \cdots \times A_n := \{(x_1, \dots, x_n) : x_i \in A_i\}$$

ist die Menge der geordneten n-Tupel von Elementen aus A_1, \ldots, A_n .

Für beliebige $n\geq 1$ betrachten wir $\mathbb{R}^n:=\underbrace{\mathbb{R}\times\ldots\times\mathbb{R}}_{n-\mathrm{mal}}$ und untersuchen dessen Struktur. Auf \mathbb{R}^n haben wir zwei Verknüpfungen

1. $+: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ Addition.

$$\underbrace{\left(\underbrace{x_1,\ldots,x_n}_{x}\right)}_{x},\underbrace{\left(y_1,\ldots,y_n\right)}_{y}\right) \to \underbrace{\left(x_1+y_1,\ldots,x_n+y_n\right)}_{\text{Komponentenweise Addition}}. \text{ Dann ist } (\mathbb{R}^n,+)$$
eine Abelsche Gruppe, mit $0:=(0,\ldots,0)$ aln neutrales Element

2. $\cdot: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ Skalarmultiplikation. $(\lambda, x) \to \lambda \cdot x := (\lambda x_1, \dots, \lambda x_n)$. Dann gelten die folgende Eigenschaft

 $(\lambda, x) \to \lambda \cdot x := (\lambda x_1, \dots, \lambda x_n)$. Dann gelten die folgende Eigenschaften: $\forall x, y \in \mathbb{R}^n, \forall \alpha, \beta \in \mathbb{R}$

- (a) Distributivität: $(\alpha + \beta) x = \alpha x + \beta x$
- (b) Distributivität: $\alpha(x+y) = \alpha x + \alpha y$
- (c) Assoziativität: $(\alpha \beta) x = \alpha(\beta) x$
- (d) Einzelelement: $1 \cdot x = x$

Definition 2.15

Eine Menge \mathbb{V} mit $+,\cdot$ und $0\in\mathbb{V}$, so dass $(\mathbb{V},+)$ eine Abelsche Gruppe mit neutralem Element 0 ist und zudem (a)-(d) gelten, nennt sich ein Vektorraum über den Körper \mathbb{R} und seine Elemente heissen Vektoren

Also ist \mathbb{R}^n ein Vektorraum. In der linearen Algebra führt man dann Begriffe wie Basis usw. ein. Die Standardbasis von \mathbb{R}^n ist die Menge $\{e_1, e_2, \dots, e_n\}$ wobei $e_i := \{0, \dots, 0, 1, \dots, 0\}$

Jeder Vektor $x=(x_1,\ldots,x_n)\in\mathbb{R}$ besitzt eine eindeutige Darstellung $x=\sum x_ie_i$ bezüglich der Standardbasis.

Definition 2.16

1. Das Skalarprodukt zweier Vektoren $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n)$ ist die durch

$$\langle x, y \rangle := \sum_{i=1}^{n} x_i y_i$$

$KAPITEL\ 2.$ REELLE ZAHLEN, EUKLIDISCHE RÄUME UND KOMPLEXE ZAHLEN

definierte reelle Zahl $<\cdot,\cdot>=\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}$ (orthogonal)

- 2. Falls < x,y >= 0 heissen x und y senkrecht aufeinander. < \cdot, · > besitzt folgende Eigenschaften
 - (a) Symmetrie: $\langle x, y \rangle = \langle y, x \rangle$
 - (b) Linearität: $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle$
 - (c) Positivität: $\langle x, x \rangle \geq 0$ mit Gleicheit genau dann, wenn x = 0

Definition 2.17

Die Norm ||x|| eines Vektors ist:

$$||x|| := \sqrt{\langle x, x \rangle} = \sqrt{\sum_{i=1}^{n} x_i}$$

und wird oft als Länge interpretiert.

Beispiel 2.18

•
$$||(1,2)|| = \sqrt{1+4}$$

• $||(1,1,1)|| = \sqrt{3}$

• $||e_i|| = 1, \langle e_i, e_j \rangle = 0$. $e_i \perp e_j \{e_1, e_2, \ldots, e_n\}$ ist eine orthonormale Basis. Die Vektoren einer einer orthogonalen Basis sind orthogonal zueinander und normiert (die Länge ist gleich 1).

Die erste wichtige Eigenschaft eines Skalaprodukts ist

Satz 2.19 (Cauchy-Schwarz)

 $\forall x, y \in \mathbb{R}^n \text{ gilt } |\langle x, y \rangle| \le ||x|| ||y|| \text{ und}$

$$|\langle x, y \rangle| = ||x|| \, ||y|| \Leftrightarrow \exists \lambda \in \mathbb{R} : x = \lambda y$$

Die Euklidische Norm hat die Eigenschaften

Satz 2.20

- $||\alpha x|| = |\alpha| ||x||$ (Homogenität)
- $||x+y|| \le ||x|| + ||y||$ (Dreiecksungleichung)

Beweis

ASK FOR BEWEIS

Chopped content, page

42 middle

• ASK FOR BEWEIS

•

$$||x + y||^{2} = \langle x + y, x + y \rangle$$

$$= \langle x, x + y \rangle + \langle y, x + y \rangle$$

$$\langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$\langle x, x \rangle + 2 \langle x, y \rangle + \langle y, y \rangle$$

$$\leq ||x||^{2} + 2(\langle x, y \rangle) + ||y||^{2}$$

$$\leq ||x||^{2} + 2||y||||x|| + ||x||^{2}$$

2.5 Die Komplexen Zahlen

Da für alle $x \in \mathbb{R}$ $x^2 \ge 0$, gibt es $\sqrt{-1}$ nicht als reelle Zahl. Seit dem 18. Jahrhundert haben Mathematiker mit Ausdrücken wie $a+b\sqrt{-1}$, $a,b\in\mathbb{R}$ gerechnet und auf sie die in \mathbb{R} geltenden Rechnenregel angewendt, z.B.

$$(1+2\sqrt{-1})(1-2\sqrt{-1})=1^2+2^2(\sqrt{-1})^2$$

Allgemein:

$$(a+b\sqrt{-1})(c+d\sqrt{-1}) = ac + ad\sqrt{-1} + bc\sqrt{-1} + bd\sqrt{-1}$$
$$= (ac - bd) + (ad + bc)\sqrt{-1}$$

Das Problem ist hier, dass $\sqrt{-1}$ keinen präzisen mathematisches Sinn hat und dass deshalb auch nicht klar ist, was "+" in " $a + b\sqrt{-1}$ " heissen soll.

Das Problem ist wie folgt gelöst:

Als Modell von " $a+b\sqrt{-1}$ ", \mathbb{C} , nehmen wir \mathbb{R}^2 . Wir haben schon die Addition von Vektoren und das neutrale Element . Wir definieren dann die Multiplikation

$$\mathbb{R}^2\times\mathbb{R}^2\to\mathbb{R}^2$$

$$(x,y) \to x \cdot y$$

wobei $x \cdot y = (ac - bd, ad + bc), x = (a, b), y = (c, d)$. Dann erfüllen "+" und "·" folgende Eigenschaften:

$KAPITEL\ 2.$ REELLE ZAHLEN, EUKLIDISCHE RÄUME UND KOMPLEXE ZAHLEN

- Assoziativität: ((a,b)(c,d))(e,f) = (a,b)((c,d)(e,f))
- Neutrales Element: (1,0)(a,b) = (a,b)
- Kommutativ: (a,b)(c,d) = (c,d)(a,b)
- Inverses Element $\forall (a,b) \neq (0,0)$ in $\mathbb{R}^2 \exists (x,y) \in \mathbb{R}^2$ mit (a,b)(x,y) = (1,0)
- Distributivität: $((a,b)+(c,d))\cdot(e,f)=(a,b)(e,f)+(c,d)(e,f)$

Definition 2.21

Der Körper der komplexen Zahlen $\mathbb C$ ist $\mathbb R^2$ versehen mit "+","·", 0=(0,0) und (1,0)=1

Bemerkung 2.22

 $z^2+1=0$ hat in $\mathbb C$ eine Lösung. Nämlich ist (0,1)(0,1)=(-1,0)=-(1,0)=1. Wir führen für (0,1) die Bezeichnung "i" ein, welches imaginäre Einheit heisst.

Also ist $i^2 = -1$. Jede komplexe Zahl z = (x, y) lässt sich dann wie folgt darstellen:

$$z = (x, y) = (x, 0) + (0, y) = x(1, 0) + y(0, 1) = x \cdot 1 + y \cdot i$$

In den Rechnungen lässt man oft das 1 in $x \cdot 1$ fallen und schreibt z = x + yi

Definition 2.22

- 1. Sei $z = x + iy \in \mathbb{C}$
 - \bullet Re z := x heisst der Realteil
 - $\bullet \ \mbox{Im} \ z := y$ heisst der Imaginärteil
- 2. Die zu: z = x + iy konjugierte Zahl ist $\overline{z} = x iy$
- 3. Wir definieren die Norm von z als $||z|| = \sqrt{x^2 + y^2}$

Satz 2.23

- (i) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- (ii) $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$
- (iii) $z \cdot \overline{z} = ||z||^2 \cdot 1$
- (iv) $||z_1 \cdot z_2|| = ||z_1|| \cdot ||z_2||$

Beweis

ASK FOR BEWEIS

ASK FOR BEWEIS

Abkürzung

$$|z| := ||z||$$

Bemerkung 2.24

Wir können \mathbb{R} in \mathbb{C} "einbetten" mittels $\mathbb{R} \ni x \to (x,0) \in \mathbb{C}$. Sei $\mathbb{C}_0 = \{(x,y) \in \mathbb{C} \mid y=0\} = \{(x,0) \mid x \in \mathbb{R}\}$. Die Abbildung $f: \mathbb{R} \to \mathbb{C}_0, x \to (x,0)$ ist eine Bijektion.

Diese Identifikation von $\mathbb R$ und $\mathbb C_0$ ist verträglich mit den Operationen in $\mathbb R$ und in $\mathbb C$, d.h.

$$f(x+y) = f(x) + f(y)$$

$$f(xy) = f(x)f(y)$$

Polarform

Not sure if this should be a title

Als Polarkoordinaten in der Ebene führen wir (r,ϕ) ein

$$x = r \cos \phi \qquad y = r \sin \phi$$
$$z = r (\cos \phi + i \sin \phi)$$
$$r = |z|$$

Definition

Wir definieren (nach Euler)

$$e^{i\phi} := \cos \phi + i \sin \phi$$

$$z = re^{i\phi} = |z| e^{i\phi}$$

Where does the definition end??

Aus die

??Additions?? page 45 bottom

- $\cos(\phi + \psi) = \cos\phi\cos\psi \sin\psi\sin\phi$
- $\sin(\phi + \psi) = \sin\phi\cos\psi + \cos\phi\sin\psi$

In der Ebene \mathbb{R}^2 stehen uns neben den kartesischen Koordinaten x,y noch die Polarkoordinaten r,ϕ zur Verfügung. Für beliebiges $z=x+iy\neq 0$

$KAPITEL\ 2.$ REELLE ZAHLEN, EUKLIDISCHE RÄUME UND KOMPLEXE ZAHLEN

$$e^{i\phi} = 1 \Leftrightarrow \phi = 2k\pi$$

$$\cos \phi + i \sin \phi = 1 \Leftrightarrow \cos \phi = 1 \text{ und } \sin \phi = 0$$

$$\Leftrightarrow \phi = 2k\pi, k \in \mathbb{Z}$$

$$e^{i\theta} \cdot e^{i\phi} = (\cos \theta + i \sin \theta) (\cos \phi + i \sin \phi)$$

$$= \underbrace{\cos \theta \cos \phi - \sin \theta \sin \phi}_{\cos(\theta + \phi)} + i \underbrace{(\cos \theta \sin \phi + \sin \theta \cos \phi)}_{\sin(\theta + \phi)}$$

$$= e^{i(\theta + \phi)}$$

folgt $e^{i\phi}e^{i\psi} = e^{i(\phi+\psi)}$

Somit folgt für $z=re^{i\theta},\,\omega=se^{i\phi}\in\mathbb{C}$ die einfache Darstellung $z\omega=rse^{i(\theta+\phi)},$

$$\frac{z}{\omega} = \left(\frac{r}{s}\right)e^{i(\theta - \phi)}$$

Die polare Darstellung ist in Berechnungen sehr nützlich, insbesondere um das Produkt und den Quotienten zu berechnen

Beispiel

1.

$$z = 1 + i = \sqrt{2}e^{i\frac{\pi}{4}}$$

$$\omega = \sqrt{3} - i = 2e^{-i\frac{\pi}{6}}$$

$$\frac{\left(\sqrt{3} - i\right)^3}{(1+i)^2} = \frac{\omega^3}{z^4} = \frac{8e^{-i\frac{\pi}{2}}}{4e^{i\pi}} = 2e^{-\frac{3\pi}{2}i} = 2e^{\frac{\pi}{2}i} = 2i$$

2. Die Polarform ist auch sehr nützlich um die Wurzel einer komplexen Zahl zu berechnen. Sei $\omega \in \mathbb{C}, n \in \mathbb{N}$. Wir möchten die Gleichung $z^n = \omega$ lösen.

$$\begin{split} \omega &= |\omega| \, e^{i\phi} \\ z^n &= \omega = |\omega| \, e^{i\theta} \Rightarrow z = |\omega|^{\frac{1}{n}} \, e^{i\frac{(\theta + 2k\pi)}{n}} \\ &= |\omega| \, e^{i(\theta + 2k\pi)} \end{split}$$

$KAPITEL~2.~REELLE~ZAHLEN,~EUKLIDISCHE~R\"{A}UME~UND\\KOMPLEXE~ZAHLEN$

Beispiel

is this inside the other Beispiel or out??

$$z^3 = 1 \Rightarrow z^3 = \left(e^{2\pi i k}\right)^{\frac{1}{3}} \in \left\{e^{i\pi \frac{2k}{3}} : k = 0, 1, 2\right\} = \left\{1, e^{2i\frac{\pi}{3}}, e^{4i\frac{\pi}{3}}\right\}$$

Allgemeine Formel der Einheitswurzel $z=\{e^{i\frac{2\pi k}{n}}: k=0,1,\ldots,n-1\}$

Bemerkung

- (a) Es gibt keine mit den Körperoperationen verträgliche Ordnung in $\mathbb C$
- (b) Hingegen ist $\mathbb C$ im Untershied zu $\mathbb R$ algebraisch vollständig. Nicht nur die Gleichung $x^2+1=0$ hat in $\mathbb C$ eine Lösung, sondern es gilt der fundamentale Satz der Algebra. Es sagt, dass jedes Polynom $p(z)=z^n+a_{n-1}z^{n-1}+\cdots+a_0$ vom Grad $n\geq 1$ hat in $\mathbb C$ genau n Nullstellen.

Kapitel 3

Folgen und Reihen (Der Limes Begriff)

3.1 Folgen, allgemeines

Definition 3.1

Eine Folge reeler zahlen ist eine Abbildung $a: \mathbb{N} \setminus \{0\} \to \mathbb{R}$ wobei wir das Bild con $n \ge 1$ mit a_n (statt a(n)) bezeichen.

Eine Folge wird dann meistens mit $(a_n)_{n\geq 1}$, daher mit der geordneten Bildmenge bezeichnet.

Folgen können auf verschiedene Arten gegeben sein.

Beispiel 3.2

- 1. $a_n = \frac{1}{n}, n \ge 1$
- 2. $a_1 = 0.9, a_2 = 0.99, \dots, a_n = 0.\underbrace{99\dots9}_{n-\text{mal}}$
- 3. $a_n = \left(1 + \frac{1}{n}\right)^n, n \ge 1$
- 4. (Rekursiv) Sei d > 0 eine reelle Zahl $a_1, \ldots, a_{n+1} := \frac{1}{2} \left(a_n + \frac{d}{a_n} \right), n \ge 1$ z.B. $d = 2, a_1 = 1, a_2 = \frac{3}{2}, a_3 = \frac{17}{12}, a_4 = \ldots$
- 5. Fibonacci Zahlen. $a_1=1, a_2=2, a_{n+1}=a_n+a_{n-1} \quad \ \forall n \geq 2$

Definition 3.3

Eine Folge $(a_n)_{n\geq 1}$ heisst beschränkt falls die Teilmenge $\{a_n:n\geq 1\}\subseteq \mathbb{R}$ beschränkt ist. d.h. Es gibt $c\in \mathbb{R}(c\geq 0)$ so dass $|a_n|\leq c, \forall n\geq 1$

3.2 Grenzwert oder Limes eine Folge. Ein zentraler Begriff

Definition 3.4

Eine Folge $(a_n) \ge 1$ konvergiert gegen a wann für jedes $\varepsilon > 0$ ein Index $N(\varepsilon) \ge 1$ gilt so dass

$$|a_n - a| < \varepsilon, \forall n > N(\varepsilon)$$

Definition 3.4 (Version 2)

Eine Folge $(a_n)_{n\geq 1}$ konvergiert gegen $a\in\mathbb{R}$ falls für jedes $\varepsilon>0$ die Menge der Indizen $n\geq 1$ für welcher $a_n\notin(a-\varepsilon,a+\varepsilon)$ endlich ist.

$$(\forall \varepsilon > 0, \#\{n \in \mathbb{N} \mid a_n \notin (a - \varepsilon, a + \varepsilon)\} < \infty)$$

Equivalenz beider Definitionen

Is this supposed to be a title?

(2)
$$\Rightarrow$$
 (1)
Sei für $\varepsilon > 0$

$$M(\varepsilon) := \{ n \in \mathbb{N} \mid a_n \notin (a - \varepsilon, a + \varepsilon) \} = \{ n \in \mathbb{N} \mid |a_n - a| \ge \varepsilon \}$$

Da $M(\varepsilon)$ endlich ist, ist es nach oben beschränkt. Es gibt also $N(\varepsilon) \in \mathbb{N}$ so dass $\forall n \in M(\varepsilon), n \leq N(\varepsilon) - 1$. Insbesondere gilt $\forall n \geq N(\varepsilon), n \notin M(\varepsilon)$ und daher $|a_n - a| < \varepsilon$.

$$(1) \Rightarrow (2)$$

$$M(\varepsilon) = \{n : |a_n - a| \ge \varepsilon\} \subset [0, N(\varepsilon) - 1]$$

Also endlich.

Falls die Eigenschaften in Definition 3.4 zutrifft, dann schreibt man

$$a = \lim_{n \to \infty} a_n \text{ oder } a_n \xrightarrow[n \to \infty]{} a$$

Die Zahl a nennt sich Grenzwert oder Limes der Folge $(a_n)_{n\geq 1}$. Eine Folge heisst konvergent falls sie einen Limes besitzt, andernfalls heisst sie divergent.

Bemerkung 3.5

1. Falls $(a_n)_{n\geq 1}$ konvergent ist der Limes eindeutig bestimmt

Beweis

Seien a und b Grenzwerte von $(a_n)_{n\geq 1}$. Sei $\varepsilon=\left|\frac{b-a}{3}\right|>0$, dann gibt es N_1,N_2 so dass

$$|a_n - a| < \varepsilon \qquad \forall n > N_1$$

KAPITEL 3. FOLGEN UND REIHEN (DER LIMES BEGRIFF)

$$|a_n - b| < \varepsilon \qquad \forall n > N_2$$

Also $\forall n \geq \max\{N_1, N_2\}$

$$(a-b) \cong |(a-a_n) + (a_n-b)| < 2\varepsilon = \frac{2}{3}|b-a|$$

Binomischen Lehrsatz

Für beliebige Zahlen a, b und $n \in \mathbb{N}$ ist

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

2. Falls $(a_n)_{n\geq 1}$ konvergent ist, $\{a_n:n\geq 1\}$ beschränkt: Sei $\varepsilon=1$, $\lim a_n=1$ a und N_0 mit

$$|a_n - a| \le 1 \qquad \forall n > N_0$$

Dann ist $\forall n \ |a_n| \ge \max\{|a|+1, |a_i|, 1 \le j \le N_0\}$

Beispiel 3.6

- 1. Sei $a_n = \frac{1}{n}, n \ge 1$. Dann gilt $\lim a_n = 0$
 - Sei $\varepsilon>0$. Dann $\frac{1}{\varepsilon}>0$. Sei $n_0\in\mathbb{N},\ n_0\geq 1$ mit $n_0>\frac{1}{\varepsilon}$ (Archimedische Eigenschaft, Satz 2.13)

Dann gilt für alle $n \ge n_0$, $\frac{1}{\varepsilon} < n_0 \le n \Rightarrow \left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \varepsilon, \forall n \ge n_0$

2. Sei 0 < q < 1 und $a_n := q^n$, n1. Dann gilt $\lim a_n = 0$ (a_n konvergiert Cannot read, page 54 gegen 0)

top

Beweis

Zu beweisen

$$\forall \varepsilon > 0, \exists N_0 = N_0(\varepsilon) \in N$$

Should it be $\in \mathbb{R}$??

$$\forall n \ge N_0 : q^n < \varepsilon$$

Die Idee ist zu zeigen dass $\frac{1}{q^n}$ sehr Gross wird und deswegen q^n sehr klein wird. Setzen wir $\frac{1}{q} = 1 + \delta$ mit $\delta > 0$ $\left(1 < 1 \Rightarrow \frac{1}{q} > 1\right)$

$$\frac{1}{q^n} = \left(\frac{1}{q}\right)^n = (1+\delta)^n = 1 + n\delta + \binom{n}{2}\delta^2 + \dots + \delta^n \ge 1 + n\delta > n\delta, \forall n \in \mathbb{N}$$

also

$$0 < q^n < \frac{1}{n\delta}, \forall n \in \mathbb{N}$$

Sei jetzt $\varepsilon>0,$ wähle $N_0=N_0(\varepsilon)$ mit $\frac{1}{\varepsilon\delta}< N_0 \Rightarrow \frac{1}{N_0\delta}<\varepsilon$

$$\forall n > N_0 \quad 0 < q^n \le \frac{1}{n\delta} < \frac{1}{N_0 \delta} < \varepsilon$$

3. $\sqrt[n]{n}$, $\lim a_n = 1$. Klar: $n \ge 1$ also $\sqrt[n]{n} \ge 1$ Gegeben ein $\varepsilon > 0$, wollen wir n so gross wählen, dass

$$\sqrt[n]{n} - 1 < \varepsilon$$

das heisst, $n < (1 + \varepsilon)^n$. Wir entwickeln

$$(1+\varepsilon)^n = 1 + n\varepsilon + \binom{n}{2}\varepsilon^2 + \dots + \varepsilon^n$$

can't read last element of the expansion

 ε ist klein aber fixiert.

Für nsehr gross wird $1+n\varepsilon$ nie grösser als nsein. Wir versuchen unsere Glück mit

$$\binom{n}{2} \varepsilon^2 \text{ term}$$

$$\left(\begin{array}{c} n \\ 2 \end{array}\right)\varepsilon^2 = \frac{n(n-1)}{2}\varepsilon$$

Wir benutzen also $(1+\varepsilon)^n \geq \frac{n(n-1)}{2}\varepsilon^2$. Wir wollen n so wählen dass

$$\frac{n(n-1)}{2}\varepsilon^2 > n$$

d.h. $n-1>\frac{2}{\varepsilon^2}$ oder $n>1+\frac{2}{\varepsilon^2}$

Setzen wir $N_0 := \left(1 + \frac{2}{\varepsilon^2}\right) + 1.$ Dann gilt für $\forall n > N_0$

$$(1+\varepsilon)^n > n \ge 1$$

$$\Rightarrow 1 \le \sqrt[n]{n} \le 1 + \varepsilon$$

$$\Rightarrow -\varepsilon < 0 \leq \sqrt[n]{n} - 1 \leq \varepsilon \Rightarrow \left \lfloor \sqrt[n]{n} - 1 \right \rfloor < \varepsilon, \forall n > N_0$$

4. Nicht alle Folgen sind konvergent. Es gibt zwei verschiedene Verhältnissen einer divergenten Folge

$$a_n = (-1)^n \Rightarrow \{1, -1, \dots\}$$
 beschränkt aber nicht konvergent

5. $a_n = n$ unbeschränkt, divergent.

Beispiel 3.7

Seien $p \in \mathbb{N}$, 0 < q < 1. Dann gilt $\lim_{n \to \infty} n^p q^n = 0$. Dass heisst Exponentialfunktionen wächst schneller als jede Potenz (Wann x genügend Gross ist, $a^x > x^b$)

KAPITEL 3. FOLGEN UND REIHEN (DER LIMES BEGRIFF)

Beweis

Der Trick ist folgender

$$n^pq^n=\left(n^{\frac{p}{n}}\cdot q\right)^n=\left(\left(\sqrt[n]{n}\right)^p\left(q^{\frac{1}{p}}\right)^p\right)^n$$

Da lim $\sqrt[n]{n} = 1, \forall \eta > 0, \exists N_0(\eta)$

$$\sqrt[n]{n} < 1 + \eta, n > N_0(\eta)$$

Wir wählen $\eta > 0$ so dass $q^{\frac{1}{p}} = \frac{1}{(1+\eta)^2}$. Dann

$$\sqrt[n]{n} \cdot q^{\frac{1}{p}} \le \frac{(1+\eta)}{\left(1+\eta\right)^2} = \frac{1}{1+\eta} \qquad \forall n > N_0\left(\eta\right)$$

Wobei

$$\forall n > N_0 (\eta)$$

$$a_n = \left(\sqrt[n]{n}q^{\frac{1}{p}}\right)^{pn} < r^n$$

mit

$$r := \left(\frac{1}{1+\eta}\right)^p, r < 1$$

Sei jetzt $\varepsilon > 0$. Da $\lim r^n = 0$, $\exists N_1 = N_1(\varepsilon), \, \forall n > N_1(\varepsilon), \, r^n < \varepsilon$

Für $n>\max\{N_0\left(\eta\right),N_1(\varepsilon)\},\,a_n< r^n<\varepsilon\Rightarrow\lim a_n=\lim n^pq^n=0$

3.3 Konvergenzkriterien

Mit konvergenten Folgen kann man wie folgender Satz zeigt.

Can't read, page 59 top

Satz 3.8

Seien

KAPITEL 3. FOLGEN UND REIHEN (DER LIMES BEGRIFF)

Kapitel 4

Stetigkeit

KAPITEL 4. STETIGKEIT

Kapitel 5

Differential rechnung auf $\ensuremath{\mathbb{R}}$

KAPITEL 5. DIFFERENTIALRECHNUNG AUF $\mathbb R$

Kapitel 6

Integration

I) a) Gegeben sei eine stetige Funktion $f:[a,b]\to\mathbb{R}$. Gesucht ist eine differenzierbare Funktion $F:[a,b]\to\mathbb{R}$ mit

$$F'(t) = f(t), \forall t \in [a, b]$$

b) Für Naturwissenschaft und Technik ist die folgende Verallgemeinerung von a) wichtig:

Sei $f:[a,b]\times\mathbb{R}\to\mathbb{R}$ gegeben. Gesucht ist eine differenzierbare Funktion $\varphi:[a,b]\to\mathbb{R}$ mit

$$\varphi'(t) = f(t, \varphi(t)), t \in [a, b]$$

Man nennt ein solches φ eine Lösung der Differentialgleichung

$$y' = f(x, y)$$

II) Viele in der Natur und Ingenieurwissenschaften auftretenden Grössen benötigen zu ihrer exakten Definition einen Grenzprozess der Folgenden art:

Wirkt eine konstante Kraft f längs eines Weges der Länge s, und zwar längs der x-Achse vom Punkt a bis zum Punkt b := a + s, so versteht man unter der von der konstanten Kraft f geleisteten Arbeit das Produkt $f \times s = f(b-a)$.

Ist die Kraft f jedoch örtlich variable, d.h. $f:[a,b]\to\mathbb{R}$ eine Funktion des Ortes $x\in[a,b]$, so wird man folgendermasse vorgehen.

Zerlege das Interval [a,b] in kleine Teilintervalle I_1, \ldots, I_n . Wähle in jedem Interval $I_k := [x_{k-1}, x_k]$ einen Punkt ξ aus. Man wird dann die "Riemannsche Summe"

$$A \sim \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1})$$

als Näherung für die gesuchte Arbeit A ansehen. Hierzu wird man insbesondere dann berechtigt sein, wenn man mit jeder genügend feinen Zerlegung des Intervals I, einem festen Wert A beliebig nahe kommt.

III) Sei $f:[a,b]\to [0,\infty]$ eine (stetige) Funktion. Gesucht ist eine vernünftige Definition des Flächeninhalts A des Gebietes zwischen der x-Achse und dem Graphen von f

Dies ist sehr einfach, wenn die Funktion f überall den konstanten Wert f(x)=c hat für eine feste reelle Zahl $c\in\mathbb{R}$. In diesem Fall ist die Fläche unter dem Graphen von f ein Rechteck und wir definieren dessen Flächeninhalt einfach als Breite mal Höhe, also das Produkt A=(b-a)c. Man beachte, dass die Zahl c auch negativ sein darf und dann ist auch A negativ.

Eine einfache Formel ergibt sich auch für eine Funktion, die sich aus konstanten Funktionen auf endlich vielen Teilintervalle von [a,b] zusammensetzen lässt.

Für allgemeine beschränkte Funktionen kann man nun wie in II) vorgehen.

Wir wählen eine Aufteilung (Zerlegung, Einteilung, Partition) des Intervals I = [a, b] in endlich viele Teilintervale.

Aus jedem dieser Teilintervalle I_k ersetzen wir f durch eine Funktion die auf diesem Teilinterval konstant ist und in einem noch zu klärenden Sinn nicht allzu stark von f abweicht. Dann bilden wir die Summe der Flächeninhalte der auf diese Weise erhaltenen Rechtecke. Diese Summe ist als Näherungswert für die gewünschte Fläche zu verstehen.

Um den genauen Wert der Fläche festzulegen bilden wir immer feinere Zerlegungen des Intervalls. Es ist dann das Grenzwertverhalten der diesen Summen zu untersuchen.

6.1 Riemann Integral: Definition, elementare Eigenschaften

1. Sei $f:[a,b]\to\mathbb{R}$ eine beschränkte Funktion.

Definition 6.1

Eine Partition (oder Zerlegung, Einteilung, Unterteilung) eines Intervalls [a,b] ist eine endliche Menge $P=\{a=x_0,x_1,\ldots,x_n=b\}$ $x_0 < x_1 < x_2 < \cdots < x_n$

 $P(I) := \{P \subset I \mid a,b \in P, P \text{ ist endlich}\}$ die Menge alle Partitionen

Die Feinheit der Zerlegung P ist dabei definiert durch

$$\delta(P) := max(x_i - x_{i-1}), 1 \le i \le n$$

d.h. $\delta(P)$ ist die Länge des grössten Teilintervalls $I_i:=[x_i,x_{i-1}], k=i,\dots,n$

2. Wahl ξ_i von Zwischenpunkten $x_{i-1} \leq \xi_i \leq x_i, 1 \leq i \leq n$. Jede Summe der Form

$$S(f, P, \xi) := \sum_{T=i}^{n} f(\xi_i)(x_i - x_{i-1})$$

nennt man eine **Riemannsche Summe** der Zerlegung P und $\xi.$ Die Summe

$$U(f,P) := \sum_{i=1}^{n} \left(\inf_{[x_i, x_{i-1}]} f \right) (x_i - x_{i-1})$$

nennt man die **Untersumme** von f(x) zur Zerlegung P, und

$$O(f, P) := \sum_{i=1}^{n} f(\sup_{[x_{i-1}, x_i]})(x_i - x_{i-1})$$

nennt man die **Obersumme** von f(x) zur Zerlegung P.

Bemerkung 6.2

Aus den Definitionen folgt direkt

- a) Für eine feste Zerlegung P gilt stets $U(f,P) \leq S(f,P,\xi) \leq O(f,P)$
- b) Für zwei Partitionen $P,Q\in P(I)$ gilt die Ungleichung $P\subset Q\Rightarrow U(f,P)\leq U(f,Q)\leq O(f,Q)\leq O(f,P).$

Beweis

Um dies zu verstehen, ist es nützlich, den Fall zu betrachten, dass die Zerlegung Q genau einen Punkt mehr enthält als P.

Sei $P = \{x_0, \ldots, x_N\}$ und $Q = P \cup \{\xi\}$, wobei ξ ein neuer Unterteilungspunkt, also nicht gleich einem der Elemente von P ist. Dann gibt es genau ein $l \in \{1, \ldots, N\}$ so dass $x_{l-1} < \xi < x_l$ ist. Damit erhält man

$$(\sup_{[x_{l-1},\xi]} f)(\xi - x_{l-1}) + (\sup_{[\xi,x_l]} f)(x_l - \xi) \le (\sup_{[x_{l-1},x_l]} f)(x_l - x_{l-1})$$

Addiert man dazu alle Summanden in

$$O(f, P) = \sum_{i} (\sup_{[x_{i-1}, x_i]} f)(x_i - x_{i-1})$$

mit $t \neq l$ so ergibt sich die Ungleichung

Ebenso beweist man $U(f,Q) \geq U(f,P)$. Damit ist b) für den Fall bewiesen, dass Q genau ein Element mehr als P enthält. Der allgemeine Fall lässt sich hierauf leicht durch vollständige Induktion zurückführen.

Lemma 6.3

Sei $f:I:=[a,b]\to\mathbb{R}$ eine beschränkte Funktion. Dann gilt

$$\sup_{P \in P(I)} U(f, P) \le \inf_{P \in P(I)} O(f, P)$$

Beweis

Aus

$$P \subset Q \Rightarrow U(f, P) \leq U(f, Q) \leq O(f, Q) \leq O(f, P)$$

folgt, dass die Zahl O(f,Q) für jede Partition $Q \in P(I)$ eine obere Schranke für die Menge $\{U(f,P) \mid P \in P(I)\}$ ist. Also folgt aus der Definition des Supremums als kleinste obere Schranke, dass sup $U(f,P) \leq O(f,Q)$ ist.

Diese Ungleichung gilt für jede Partition $Q \in P(I)$. Das heisst wiederum, dass die Zahl sup U(f,P) eine untere Schranke für die Menge $\{O(f,Q) \mid Q \in P(I)\}$ ist.

Also folgt aus der Definition der Infimums als grösste untere Schranke, dass die Gleichung $\sup_{P\in P(I)}U(f,P)\leq \inf_{Q\in P(I)}O(f,Q)$ ist. Damit ist Lemma 6.3 bewiesen.

Definition 6.4

1) Für beschränktes $f = [a, b] \to \mathbb{R}$ bezeichnen

$$\int\limits_{\underline{a}}^{b}fdx=\sup\{U(f,P):P\in P(I)\}$$

$$\int\limits_{a}^{\overline{b}}fdx=\inf\{O(f,P):P\in P(I)\}$$

das Untere und Obere Integral von f.

2) Ein solches f heisst über [a, b] Riemann - Integrabel falls

$$\int_{a}^{b} f dx = \int_{a}^{\overline{b}} f dx$$

In diesem Fall heisst $A = \int_a^b f dx$ das Riemann Integral von f über den Interval [a,b]

Beispiel 6.5

1) Sei $c \in \mathbb{R}$, $f: I \to \mathbb{R}$ die konstante Funktion mit dem Wert c, das heisst $f(x) = c, \forall x \in I$. Dann gilt

$$U(f,P) = O(f,P) = (b-a)c, \forall P \in P(I)$$

 $\Rightarrow f$ ist Riemann integrierbar und

$$\int_{a}^{b} f dx = \int_{a}^{b} c dx = c(b - a)$$

In diesem einfachen Fall stimmt unsere Definition mit der Interpretation des Flächeninhalts als Breite mal Höhe überein. Man beachte, dass die Konstante c auch negativ sein darf.

2)
$$f(x) = \begin{cases} 0 & \text{für } x \neq x_0 \\ 1 & \text{für } x = x_0 \end{cases} x_0 \in [a, b]$$

Dann ist f integrierbar mit

$$\int_{a}^{b} f(x)dx = 0$$

denn es gilt U(f, P) = 0 und $0 < O(f, P) \le 2\delta(P), \forall P$.

O(f,P) kann, durch geeignete Wahl der Partition beliebig klein gewählt werden. z.B. $P_n = \{a, a + \frac{(b-a)}{n}, \dots, b\} \Rightarrow \delta(P) = \frac{b-a}{n}, \inf_{P \in P(I)} O(f,P) = 0$

3)
$$f(x) := \begin{cases} 1 \text{ für } x \in [a, b] \setminus Q \\ 0 \text{ für } x \in [a, b] \cap Q \end{cases}$$

Dann gilt U(f, P) = 0 und $O(f, P) = 1, \forall P \in P(I)$ $\Rightarrow f$ ist nicht integrierbar. (f ist beschränkt aber nicht integrierbar)

Satz 6.6 (Riemannsches Kriterium für Integrierbarkeit)

Sei $f:I\to\mathbb{R}$ eine beschränkte Funktion. Dann sind folgende Aussagen äquivalent

- 1. f(x) ist integrierbar über [a, b]
- 2. Für jedes $\varepsilon > 0$ existiert eine Partition $Q \in P(I)$ mit

$$O(f,Q) - U(f,Q) < \varepsilon$$

Beweis

(a) \Rightarrow (b) Sei f Riemann integrierbar, $A := \int_a^b f(x) dx = \sup U(f, P) = \inf O(f, P)$ Nach definition von sup und inf folgt dass zwei Partitionen $P_1, P_2 \in P(I)$ existieren, so dass

(i)
$$A - \frac{\varepsilon}{2} < U(f, P_1)$$

(ii)
$$O(f, P_2) < A + \frac{\varepsilon}{2}$$

(iii)
$$U(f, P_1) \le U(f, Q) < O(f, Q) \le O(f, P_2)$$

Definiere $Q := P_1 \cup P_2$. Dann $P_1 \subset Q$ und $P_2 \subset Q$. Nach Bemerkung 6.2b) folgt

$$(i), (ii), (iii) \Rightarrow A - \frac{\varepsilon}{2} < U(f, Q) \le O(f, Q) < A + \frac{\varepsilon}{2}$$

 $\Rightarrow O(f, Q) - U(f, Q) < \varepsilon$

(b) \Rightarrow (a) Für alle $P \in P(I)$

$$0 \le \int_{\underbrace{\underline{a}}}^{b} f(x)dx - \int_{\underbrace{a}}^{\overline{b}} f(x)dx \le O(f, P) - U(f, P)$$

$$\underbrace{\sup_{\underline{a} \in O(f, P)}}_{\sup U(f, P)}$$

Aus (b) folgt das $\forall \varepsilon > 0$

$$0 < \int_{a}^{\overline{b}} f(x)dx - \int_{\underline{a}}^{b} f(x)dx < \varepsilon \Rightarrow \int_{a}^{\overline{b}} f(x)dx = \int_{\underline{a}}^{b} f(x)dx$$

 $\Rightarrow f$ ist integrierbar.

Satz 6.7

- 1. Jede Stetige Funktion $f: I \to \mathbb{R}$ ist R. Integrierbar.
- 2. Jede Monotone Funktion ist R. Integrierbar.

Beweis

1. $f: I \to \mathbb{R}$ stetig, I = [a, b] kompakt, $\Rightarrow f$ gleichmässig stetig. d.h. zu jedem $\varepsilon > 0$. gibt es $\delta > 0$ mit

$$|x - y| < \delta \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{b - a}$$

Für eine $P \in P(I)$ mit Feinheit $\delta(P) < \delta$ gilt dann

$$O(f,P) - U(f,P) = \sum_{i=1}^{n} \left(\sup_{[x_{i-1},x_i]} f - \inf_{[x_{i-1},x_i]} \right) (x_{i-1} - x_i)$$

$$\leq \sum_{i=1}^{n} \frac{\varepsilon}{b-a} (x_i - x_{i-1})$$

$$= \frac{\varepsilon}{b-a} \sum_{i=1}^{n} (x_i - x_{i-1}) = \varepsilon$$

Somit ist f nach Riemannsche Kriterium integrierbar.

2. Sei f monoton wachsend, $P \in P(I)$ eine uniforme Partition mit

$$x_i = a + \left(\frac{b-a}{n}\right)i, 0 \le i \le n$$

$$O(f, P) - U(f, P) = \sum_{i=0}^{n-1} (f(x_{i+1}) - f(x_i))(x_{i+1} - x_i)$$

$$= \frac{b-a}{n} \sum_{i=0}^{n-1} (f(x_{i+1}) - f(x_i))$$

$$= \frac{b-a}{n} (f(b) - f(a)) < \varepsilon$$

Für jede $\varepsilon > 0$, haben wir $\frac{(b-a)(f(b)-f(a))}{n} < \varepsilon$. Nach dem Riemannschem Kriterium ist f Integrierbar. (Monoton fallend ist analog).

Satz 6.8 (Riemannsche Summe)

Sei $f: I \to \mathbb{R}$ eine beschränkte Funktion. Folgende Aussagen sind äquivalent.

- I) f ist Riemann Integrierbar und $A := \int_{a}^{b} f(x)dx$
- II) Für jedes $\varepsilon > 0$, existiert eine Zahl $\xi > 0$, so dass für jede Partition $P_i = \{x_0, x_1, \dots, x_N\}$ von I und alle $\xi_i, \dots, \xi_N \in \mathbb{R}$ gilt

$$\left. \begin{array}{l} \delta(P) < \delta \\ x_{k-1} \le \xi_k \le x_k, \forall k \end{array} \right. \Rightarrow \left| A - \sum_{k=1}^N f(\xi_k)(x_k - x_{k-1}) \right| < \varepsilon$$

Dieser Satz lässt sich auch so formulieren: Eine beschränkte Funktion $f:I\to\mathbb{R}$ ist genau dann Riemann integrierbar wenn der Grenzwert

$$\lim_{\substack{\delta(P) \to 0 \\ \xi_k \in [x_{k-1}, x_k]}} \sum_{k=1}^N f(\xi_k)(x_k - x_{k-1})$$

und dann haben wir

$$A = \int_{a}^{b} f(x)dx = \lim_{\delta(P) \to 0} S(f, P, \delta)$$

Beweis

Siehe D.Salomon: Das Riemannsche Integrale (Satz 3.1).

Korollar 6.8

Seien $f:[a,b]\to\mathbb{R}$ eine beschränkte und integrierbare Funktion. $\{P^{(n)}\}$ eine Folge von Partitionen der Intervals [a,b] mit $\delta(P^{(n)})\to 0$ für $n\to\infty$ und $\{\xi^{(n)}\}$ eine Feste Wahl von Zwischenpunkten zur Partition $P^{(n)}$. Dann ist

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} S(f, P^{(n)}, \xi^{(n)})$$

Beweis

Wegen Satz 6.8 existiert zu jedem $\varepsilon>0$, ein $\delta>0$ derart, das für alle Partitionen $\delta(P)<\delta$ die Ungleichung

$$\left| S(f, P, \xi) - \int_{a}^{b} f(x) dx \right| < \varepsilon$$

gilt und zwar bei beliebiger Wahl der Zwischenpunkten. Wegen $\delta(P^{(n)}) \to 0$ existiert ein $N \in \mathbb{N}$ mit $\delta(P^{(n)}) < \delta$ für alle $n \geq N$. Für jedes $n \geq N$ ist daher

$$\left| S(f, P^{(n)}, \xi) - \int_{a}^{b} f(x) dx \right| < \varepsilon$$

voraus sich die Behauptung unmittelbar ergibt.

Beispiel

$$\int\limits_{0}^{1} (x^2 - x) dx = ?$$

$$f(x) = x^2 - x$$
 stetig $\Rightarrow f$ integrierbar

Wir wenden Korollar 6.8 an. Wir betrachten die Folge $\{P^{(n)}\}$ von äquidistanten Partition des intervals [0,1] mit

$$x_k^{(n)} := \frac{k}{n}, \quad \forall k = 0, 1, \dots, n$$

Dann $\delta(P^{(n)}) = \frac{1}{n} \to 0$ für $n \to \infty$. Wir wählen die Zwischenpunkte

$$\xi_k^{(n)} := \frac{k}{n}, \quad \forall k = 1, \dots, n$$

Die $\xi_k^{(n)}$ sind die rechten Endpunkte der Teilintervale $I_{k-1}:=[\frac{k-1}{n},\frac{k}{n}]$. Hiermit folgt

$$\begin{split} S(f,P^{(n)},\xi^{(n)}) &= \sum_{k=1}^n f(\xi_k^{(n)})(x_k^{(n)} - x_{k-1}^{(n)}) \\ &= \sum_{k=1}^n \left(\frac{k^2}{n^2} - \frac{k}{n}\right) \left(\frac{k}{n} - \frac{k-1}{n}\right) \\ &= \frac{1}{n} \sum_{k=1}^n \left(\frac{k^2}{n^2} - \frac{k}{n}\right) = \frac{1}{n^3} \sum_{k=1}^n k^2 - \frac{1}{n^2} \sum_{k=1}^n k \\ &= \frac{1}{n^3} \left(\frac{n(n+1)(2n+1)}{6}\right) - \frac{1}{n^2} \left(\frac{n(n+1)}{2}\right) \\ &\to \frac{2}{6} - \frac{1}{2} = -\frac{1}{6} \\ &\Rightarrow \int_0^1 (x^2 - x) dx = -\frac{1}{6} \end{split}$$

Eigenschaften des Integrals

Satz 6.9

Seien a < c < b und $\alpha, \beta \in \mathbb{R}$ und $f, g: I = [a, b] \to \mathbb{R}$ zwei Reimann Integrierbare Funktionen. Dann gilt folgendes:

1. Die Funktion $\alpha f + \beta g$ ist integrierbar mit

$$\int_{a}^{b} (\alpha f + \beta g) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

2. Wenn f, g die Ungleichung $f(x) \leq g(x), \forall x \in [a, b]$ erfüllen, dann gilt

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx$$

3. |f| sind R. Integrierbar und

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx$$

4. Das Produkt fg ist Integrierbar.

Bemerkung 6.10

Wir bezeichnen die Menge aller Riemann integrierbaren Funktionen $f:I\to\mathbb{R}$ mit $R(I):=\{f:I\to\mathbb{R}\mid f$ R.Integrierbar $\}$. Nach Satz 6.9 i), ist dies ein reeler Vektorraum. R(I) ist ein Unterraum des Vektorraumes aller reelwertigen Funktion

$$F(I) := \{ f : I \to \mathbb{R} \}$$

$$C(I) := \{ f : I \to \mathbb{R} \mid f \text{ stetig} \}$$

ist ein Unterraum von R(I)

$$C(I) \subset R(I) \subset F(I)$$

Beweis 6.9

1. Setze $h := \alpha f + \beta g$ und sei $\varepsilon > 0$ beliebig gegeben. Da f und g integrierbar sind, existieren wegen Riem. Kriterium (Satz 6.6). Partitionen P_1 und $P_2 \in P(I)$ mit

$$O(f, P_1) - U(f, P_1) < \frac{\varepsilon}{(|\alpha| + |\beta|)}$$

und

$$O(g, P_2) - U(g, P_2) < \frac{\varepsilon}{(|\alpha| + |\beta|)}$$

Aus der Definition von h folgt zunächst

$$|h(x) - h(y)| \le |\alpha| |f(x) - f(y)| + |\beta| |g(x) - g(y)|$$

Mit der verfeinerte Partition $P := P_1 \cup P_2$ ergibt sich unter Verwendung von (*), wobei

$$\sup_{x \in I} h(x) - \inf_{x \in I} h(x) = \sup\{h(x) - h(y) \mid x, y \in I\}$$

Für beschränkte funktion h auf einen intervall I gilt

$$O(h, P) - U(h, P) = \sum_{k=1}^{n} \left(\sup_{[x_{k-1}, x_k]} - \inf_{[x_{k+1}, x_k]} \right) (x_k - x_{k-1})$$

$$\stackrel{*}{=} \sum_{x, y \in I_k} \sup_{|h(x) - h(y)|} (x_k - x_{k-1})$$

$$\leq |\alpha| \sum_{x, y \in I_k} \sup_{|f(x) - f(y)|} |x_k - x_{k-1}|$$

$$+ |\beta| \sum_{x, y \in I_k} \sup_{|g(x) - g(y)|} |x_k - x_{k-1}|$$

$$= |\alpha| \sum_{k=1}^{n} (\sup_{f - \inf_{f} f} f) (x_k - x_{k-1})$$

$$+ |\beta| \sum_{k=1}^{n} (\sup_{f - \inf_{f} f} g) (x_k - x_{k-1})$$

$$= |\alpha| [O(f, P) - U(f, P)] + |\beta| [O(g, P) - U(g, P)]$$

$$< |\alpha| \frac{\varepsilon}{(|\alpha| + |\beta|)} + |\beta| \frac{\varepsilon}{(|\alpha| + |\beta|)} = \varepsilon$$

Nach Bmk. 6.2 $P_1 \subset P$

$$\Rightarrow U(f, P_1) < U(f, P)$$

und

$$O(f, P) < O(f, P_1)$$

Dann

$$-U(f,P) < -U(f,P_1)$$

und

$$O(f,P) - U(f,P) < O(f,P_1) - U(f,P_1) < \frac{\varepsilon}{(|\alpha| + |\beta|)}$$

2. Seien $f,g:I\to\mathbb{R}$ integrierbar mit $f(x)\leq g(x), \forall x\in I$. Die Funktion h:=g-f ist wegen (1.) Integrierbar. Sei nur $P=\{x_0,x_1,\ldots,x_n\}$ eine beliebige Partition von [a,b] folgt dann inf $h(x)\geq 0, \forall k=0,1,\ldots,n$ und daher

$$U(h, P) = \sum_{P} (\inf h)(x_k - x_{k-1}) \ge 0$$

Was wiederum $\int_{\underline{a}}^{b} h(x)dx = \sup U(h, P) \ge 0$ impliziert.

Da h aber integrierbar ist, folgt hieraus

$$0 \le \int_{a}^{b} h(x)dx = \int_{a}^{b} h(x)dx$$

$$= \int_{a}^{b} (g(x) - f(x))dx = \int_{a}^{b} g(x)dx - \int_{a}^{b} f(x)dx \ge 0$$

Dies liefert die Behauptung

3. Nun gilt $-|f(x)| \le f(x) \le |f(x)|, \forall x \in I$ Nach (2) folgt daraus die Ungleichung

$$-\int_{a}^{b} |f(x)| dx \le \int_{a}^{b} f(x) dx \le \int_{a}^{b} |f(x) dx|$$

Diese Ungleichung ist äquivalent zu

$$\left| \int_{a}^{b} f(x) dx \right| < \int_{a}^{b} |f(x)| dx$$

4. Als Integrierbare Funktionen sind f und g beschränkt. Also existieren die Konstanten

$$\alpha := \sup_{x \in [a,b]} |f(x)| \text{ und } \beta := \sup_{x \in [a,b]} |g(x)|$$

Wegen Riem. Kriterium (Satz 6.6) gibt es Partitionen P_1, P_2 mit

$$O(f, P_1) - U(f, P_1) < \frac{\varepsilon}{(\alpha + \beta)}$$

 $O(g, P_2) - U(g, P_2) < \frac{\varepsilon}{(\alpha + \beta)}$

Setzen wir h := fg so gilt

$$|h(x) - h(y)| \le |f(x)| |g(x) - g(y)| + |g(y)| |f(x) - f(y)|$$

$$\le \alpha |g(x) - g(y)| + \beta |f(x) - f(y)|, \forall x, y \in [a, b]$$

Sei $P = P_1 \cup P_2$.

Wie in dem Beweis von (1.) ergibt sich unter verwendung von

$$\sup_{x\in I}h-\inf_{x\in I}h=\sup\left\{\left|h(x)-h(y)\right|x,y\in I\right\}$$

dann

$$O(h, P) - U(h, P) = \sum_{k=1}^{n} (\sup h - \inf h)(x_k - x_{k-1})$$

$$= \sum_{k=1}^{n} \sup_{x,y \in I_k} |h(x) - h(y)| (x_k - x_{k-1})$$

$$\leq |\beta| \sum \sup_{I_k} |f(x) - f(y)| (x_k - x_{k-1})$$

$$+ |\alpha| \sum \sup_{I_k} |g(x) - g(y)| (x_k - x_{k-1})$$

$$= |\beta| \sum (\sup_{I_k} f - \inf_{I_k} f)(x_k - x_{k-1})$$

$$+ |\alpha| \sum (\sup_{I_k} g - \inf_{I_k} g)(x_k - x_{k-1})$$

$$= |\beta| [O(f, P) - U(f, P)] + |\alpha| [O(g, P) - U(g, P)] < \varepsilon$$

Satz 6.10 (Standardabschätzungen)

Sei f integrierbar über [a, b]. Dann gelten die Abschätzungen

$$(b-a)\inf_{[a,b]} f \le \int_{a}^{b} f(x)dx \le (b-a)\sup_{[a,b]} f$$

Beweis

Für die Partition $P = \{a, b\}$ von [a, b] folgt sofort

$$(b-a)\inf_{[a,b]} f = U(f,P) \le \int_a^b f(x)dx < O(f,P) = (b-a)\sup_{[a,b]} f$$

Satz 6.11

Sei $f:[a,b]\to\mathbb{R}$ integrierbar. Dann ist f auch auf jedem Teilinterval $[c,d]\subseteq [a,b]$ integrierbar.

Beweis

f ist auf [a, b] integrierbar wegen Satz 6.6. Zu jedem $\varepsilon > 0$, existiert eine Partition P' von [a, b]mit

$$O(f, P') - U(f, P') < \varepsilon$$

Wir betrachten dann die Verfeinerung

$$P'' := P' \cup \{c, d\}$$

Wegen Bmk. 6.2 haben wir

$$O(f, P'') - U(f, P'') < \varepsilon$$

Sei nun $P:=P''\cap [c,d]$ die Restriktion der Partition P'' auf [c,d]. Dann gilt mit $g:=f|_{[c,d]}$ die Abschätzung

$$O(g, P) - U(g, P) = \sum_{P} (M_k(g) - m_k(g))(x_k - x_{k-1})$$

$$= \sum_{P} (M_k(f) - m_k(f))(x_k - x_{k-1})$$

$$\leq \sum_{P''} (M''_k(f) - m''_k(f))(x_k - x_{k-1})$$

$$O(f,P'')-U(f,P'')<\varepsilon$$

wobei

$$M_k(f) := \sup_{I_k \subset P} f \quad m_k(f) := \inf_{I_k \subset P} f$$

und, analog

$$M_{k}^{"}\left(f\right) = \sup_{I_{k} \in P''} f$$

Satz 6.12

Seien $a \leq b \leq c$. Die funktion $f:[a,c] \to \mathbb{R}$ ist genau dann integrierbar falls beide Einschrankungen $f|_{[a,b]}$ und $f|_{[b,c]}$ integrierbar sind. In diesem Fall gilt

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$$

Konvention 6.13

1) Sei f integrierbar auf einem interval I. Für $a \leq b$ in I definiert man

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$$

Mit diesem Konvention gelten alle bisherigen Eigenschaften. z.B.

$$\forall a, b, c \in I : \int_{a}^{c} f = \int_{a}^{b} f + \int_{b}^{c} f$$

$$\int_{a}^{a} f(x)dx = 0$$

6.2 Differentiation und Integration

In diesem Kapitel wird dem Zusammenhang zwischen Differentiation und Integration hergestellt. Zu diesem Zweck beginnen wir mit dem folgenden Satz, Mittelwertsatz der Integralrechnung.

Satz 6.14 (Mws. der Integralrechnung)

Sei $f:[a,b]\to\mathbb{R}$ eine stetige Funktion. Dann existiert ein $\xi\in[a,b]$ mit

$$\int_{a}^{b} f(x)dx = f(\xi)(b-a)$$

Geometrisch:

Beweis

Wir setzen

$$\begin{split} m := & \min\{f(x) \mid x \in [a,b]\} = f(x_-) \\ M := & \max\{f(x) \mid x \in [a,b]\} = f(x_+) \end{split}$$

Wegen Satz 6.10

$$m(b-a) \le \int_{a}^{b} f(x)dx \le M(b-a)$$

$$f(x_{-}) = m \le \frac{1}{b-a} \int_{a}^{b} f(x)dx \le M = f(x_{+})$$

Also $\frac{1}{b-a} \int_a^b f(x) dx \le M$ für ein $M \in [m, M]$. Da f stetig ist, wegen Zwischenwertsatz gibt es $\xi \in [a, b]$ mit $f(\xi) = \frac{1}{b-a} \int_a^b f(x) dx$. Nun kommt die erste Hauptsatz der Diff- und Integralrechnung.

Satz 6.15 (Hauptsatz A)

Sei $f:[a,b]\to\mathbb{R}$ eine stetige Funktion. Definiere für jeder $x\in[a,b]$

$$F(x) := \int_{a}^{b} f(t)dt$$

Dann ist $F: I \to \mathbb{R}$ differenzierbar und $F'(x) = f(x), \forall x \in [a, b]$.

Beweis

Für jedes $h \neq 0$ ist

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h} \left[\int_{0}^{x+h} f(t)dt - \int_{0}^{x} f(t)dt \right] \stackrel{6.12}{=} \frac{1}{h} \int_{0}^{x+h} f(t)dt$$

Nach dem Mws der Integralrechnung existiert zu jedem solchen $h \neq 0$ ein Zwischenpunkt $\xi_h \in [x, x+h]$ (bzw. $\xi_h \in [x+h, x]$ falls h < 0) mit

$$\int_{a}^{x+h} f(t)dt = (h)f(\xi_h)$$

Nun ist $\xi_h \to x$ für $h \to 0$. Da f stetig ist

$$f(\xi_h) \to f(x)$$
 für $h \to 0$

Damit erhalten wir

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t)dt = \lim_{h \to 0} \frac{1}{h} (hf(\xi_h)) = f(x)$$

Folgender Begriff ist dann naheliegend.

Definition 6.16

Sei $f:[a,b]\to\mathbb{R}$ eine Funktion. Ein Stammfunktion von f (auf a,b) ist ein differenzierbare Funktion $F:[a,b]\to\mathbb{R}$ mit F'(x)=f(x).

Wegen Satz 6.15, hat jede stetige Funktion mindestens eine Stammfunktion. Mit Ausnahme einer additiven Konstante, die beim Differenzieren ja wegfällt, ist die Stammfunktion auch eindeutig bestimmt. Dies ist der Inhalt des folgendes Satzes.

Satz 6.17

Seien $I \subset \mathbb{R}$ ein beliebiges Interval und $F: I \to \mathbb{R}$ eine Stammfunktion von $f: I \to \mathbb{R}$. Dann gelten:

- (a) Die Funktion F+c ist für jede Konstante $c\in\mathbb{R}$ ebenfalls eine Stammfunktion von f.
- (b) Ist $G:I\to\mathbb{R}$ eine weitere Stammfunktion von f, so gibt es eine Konstante $c\in\mathbb{R}$ mit G=F+c

Beweis

- (a) Offenbar ist mit F auch F+c differenzierbar und es gilt (F+c)'=F'=f
- (b) Da F und G Stammfunktionen von f sind, gilt F' = f, G' = f. Also (F G)' = 0 und F G = konstante Funktion.

Definition 6.18

Eine Stammfunktion von f heisst auch unbestimmtes Integral von f und wird bezeichnet mit $\int f(x)dx$. Mittels einer Stammfunktion lässt sich das Integral einer gegebenen Abbildung sehr leicht berechnen. Dies ist der Inhalt des Hauptsatz B.

Satz 6.19 (Hauptsatz der Diff- und Integralberechnung Version B)

Sei $f:I\to\mathbb{R}$ eine stetige Funktion und F eine beliebige Stammfunktion von f. Dann gilt

$$\int_{a}^{b} f(x)dx = F(b) - F(a) := F(x)|_{a}^{b}, \quad \forall a, b \in I$$

Beweis

Für $x \in I$ definieren wir

$$F_0(x) := \int_a^x f(t)dt$$

Dann ist $F_0:I\to\mathbb{R}$ wegen Satz 6.15 eine (Spezielle) Stammfunktion von fmit

$$F_0(0) = 0$$
 $F_0(b) = \int_{c}^{b} f(t)dt$

Für die beliebige Stammfunktion F gilt somit $F-F_0=c$ für eine Konstante $c\in\mathbb{R}.$ Deshalb ist

$$F(b) - F(a) = F_0(b) - F_0(a) = F_0(b) = \int_a^b f(t)dt$$

womit alles bewiesen ist. Der Satz 6.19 ist das zentrale Ergebnis und zur Berechnung konkreter Integral. Man Benötigt nur eine Stammfunktion uns hat von dieser lediglich die Differenz der Funktionswerte zwischen den beiden Endpunkten des Intervals [a,b] zu bilden. Insbesondere spielt es keine Rolle, welche Werte die Stammfunktion im Inneren des Intervals [a,b] annimmt.

Beispiele von Stammfunktionen

Beispiel 6.20

Definitions Bereich	Funktion f	Stammfunktion F
$(0,\infty)$	$x^{\alpha}, \ \alpha \in \mathbb{R}$	$\frac{x^{\alpha+1}}{\alpha+1} + c, \alpha \neq -1$
		$\log x + c, \alpha = -1$
R	$x^n, n \in \mathbb{N}$	$\frac{x^{n+1}}{n+1} + c, n \in \mathbb{N}$
\mathbb{R}	e^x	$e^x + c$
R	$\sin x$	$-\cos x + c$
R	$\cos x$	$\sin x + c$
(-1,1)	$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x + c$
(-1,1)	$\frac{-1}{\sqrt{1-x^2}}$	$\arccos x + c$
R	$\frac{1}{\sqrt{1+x^2}}$	$\arctan x + c$
$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	$\tan x$	$-\ln \cos x + c$
$(0,\pi)$	$\cot x$	$\ln \sin x + c$
\mathbb{R}	$\sinh x$	$ \cosh x + c $
R	$\cosh x$	$\sinh x + c$
R	$\frac{1}{\sqrt{1+x^2}}$	$\operatorname{arcsinh} x + c$
$(1,\infty)$	$\frac{1}{\sqrt{x^2-1}}$	$\operatorname{arccosh} x + c$
[-1, 1]	$\frac{1}{1-x^2}$	$\operatorname{arctanh} x + c$

Beispiel

$$F(x) = -\ln|\cos x| = -\frac{1}{2}\ln(\cos x)^2$$

und die Ableitung ist (nach Kettenregel):

$$F'(x) = -\frac{1}{2} \frac{1}{\cos(x)^2} (2\cos x)(-\sin x) = \frac{\sin x}{\cos x} = \tan x$$

6.3 Partielle Integration

Da das Integration die Umkehrung von differenzieren ist, liefert jede Ableitungsregel eine für das Integrieren.

Partielle Integration ist eine Umkehrung der Leibnizschen Produktregel und besagt für unbestimmte bzw. das bestimmte Integral:

$$(uv)' = u'v + uv'$$

$$\Rightarrow \int uv' = uv - \int u'v + c$$

Satz 6.21 (Partielle Integration)

Seien $f,g:[a,b]\to\mathbb{R}$ zwei stetig differenzierbare Funktionen. Dann gilt

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

und

$$\int_{a}^{b} f(x)g'(x)dx = f(x)g(x)|_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx$$

Beispiel 6.22

1.
$$\int \underbrace{x}_{u} \underbrace{e^{x}}_{v'} dx = xe^{x} - \int 1e^{x} dx = xe^{x} - e^{x} \begin{cases} f(x) = x & g'(x) = e^{x} \\ f'(x) = 1 & g(x) = e^{x} \end{cases}$$

2.
$$\int \underbrace{x^n}_u \underbrace{e^x}_{v'} dx = x^n e^x - \int nx^{n-1} e^x dx$$

Durch Induktion über $n \in \mathbb{Z}^{\geq 0}$ folgert man daraus das Resultat

$$\int x^n e^x dx = (-1)^n n! \sum_{k=0}^n \frac{(-x)^k}{k!} e^x + c$$

3. Partielle Integration eignet sich gut dazu, Logarithmische terme zu eliminieren.

Manchmal muss man dazu den Integranden erst künstich als Produkt schreiben

$$\int \log x dx = \int \underbrace{(\log x)}_{u} \underbrace{(1)}_{v'} dx$$

$$= (\log x)x - \int \frac{1}{x}xdx = x\log x - x + c$$

4. Manchmal führt wiederholte partielle Integration auf den ursprünglichen Ausdruck zurück. Mit Glück kann man dann noch diesem auflösen

$$\int \sin^2 x dx = \int \underbrace{(\sin x)}_{u} \underbrace{(\sin x)}_{v'} dx$$

$$= -\sin x \cos x + \int \cos^2 x dx$$

$$= -\sin x \cos x + \int (1 - \sin^2 x) dx$$

$$= -\sin x \cos x + x - \int \sin^2 x dx$$

$$\Rightarrow 2 \int \sin^2 x dx = x - \sin x \cos x$$

$$\Rightarrow \int \sin^2 x dx = \frac{1}{2} (x - \sin x \cos x)$$

Andere möglichkeit:

$$\cos 2x = 1 - 2\sin^2 x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1$$
$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

mit

$$\cos 2x = \left(\frac{\sin 2x}{2}\right)'$$

Dann:

$$\int \sin^2 x = \frac{1}{2} \int 1 - \cos 2x dx$$
$$= \frac{1}{2} \left[x - \int \cos 2x dx \right]$$
$$= \frac{1}{2} \left[x - \frac{\sin 2x}{2} \right] + c$$
$$\sin 2x = 2 \sin x \cos x$$

Beispiel 6.23

$$\int_{0}^{\pi/2} (\sin x)^{k+1} dx = \int_{0}^{\pi/2} \underbrace{(\sin x)^{k}}_{u} \underbrace{(\sin x)}_{v'} dx$$

$$= \underbrace{(\sin x)^{k}}_{u} \underbrace{(-\cos x)}_{v} \Big|_{0}^{\pi/2} - \int_{0}^{\pi/2} \underbrace{k(\sin x)^{k-1}(\cos x)}_{u'} \underbrace{(-\cos x)}_{v} dx$$

$$= 0 + k \int_{0}^{\pi/2} (\sin x)^{k-1} \left[1 - \sin^{2} x\right] dx$$

$$= k \int_{0}^{\pi/2} (\sin x)^{k-1} - k \int_{0}^{\pi/2} (\sin x)^{k+1} dx$$

Also:

$$\int_{0}^{\pi/2} (\sin x)^{k+1} dx = \frac{k}{(1+k)} \int_{0}^{\pi/2} (\sin x)^{k-1} dx$$

Falls k + 1 = 2n:

$$\int_{0}^{\pi/2} (\sin x)^{2n} dx = \frac{2n-1}{2n} \int_{0}^{\pi/2} (\sin x)^{2(n-1)} dx$$
$$= \frac{2n-1}{2n} \frac{2n-3}{2n-2} \dots \frac{1}{2} \int_{0}^{\pi/2} 1 dx$$
$$= \frac{(2n)(2n-1)(2n-2) \dots 1}{[(2n)(2n-2) \dots 2]^2} \frac{\pi}{2}$$
$$= \frac{(2n)!}{(2^n n!)^2} \frac{\pi}{2}$$

Analog:

$$\int_{0}^{\pi/2} (\sin x)^{2n+1} dx = \frac{(2^{n} n!)^{2}}{(2n+1)!}$$

Beachte: der π -Term kommt im Zweiten Fall nicht vor!

Dies benutzen wir wie folgt um ein "Formel" für π aufzustellen.

Für $0 \le x \le \pi/2$:

$$(\sin x)^k - (\sin x)^{k+1} = (\sin x)^k [1 - \sin x] \ge 0$$

 $\Rightarrow (\sin x)^k \ge (\sin x)^{k+1}$ $(k \ge 0, 0 \le x \le \pi/2)$

Also:

$$\int_{0}^{\pi/2} (\sin x)^{2n+1} dx \le \int_{0}^{\pi/2} (\sin x)^{2n} dx \le \int_{0}^{\pi/2} (\sin x)^{2n-1} dx$$

d.h.

$$\frac{(2^n n!)^2}{(2n+1)!} \le \frac{(2n)!}{(2^n n!)^2} \cdot \frac{\pi}{2} \le \frac{(2^{n-1}(n-1)!)^2}{(2n-1)!}$$

Also:

$$\frac{(2^{n}n!)^{4}}{(2n+1)!} \cdot \frac{2}{(2n)!} \le \pi \le \frac{(2^{n}n!)^{4}}{(2n!)^{2}} \cdot \frac{2}{2n}$$

$$\frac{(2^{n}!)^{4}}{(2n+1)} \cdot \frac{2}{((2n)!)^{2}} \le \pi \le \frac{(2^{n}n!)^{4}}{(2n!)^{2}} \cdot \frac{2}{2n}$$

$$\Rightarrow \pi = \lim_{n \to \infty} \frac{1}{n} \frac{(2^{n}n!)^{4}}{(2n!)^{2}} \qquad \text{Wallische Formel.}$$

Beispiel 6.24 (Stirlingsche Formel)

Für $n \ge 2$ sei $\ln(n!) = \sum_{k=2}^n \ln(k)$. Wir zeigen dass man kann $\ln |k|$ sehr gut durch $\int\limits_{k-1/2}^{k+1/2} \ln x dx$ approximieren.

Da

$$x \ln x - x$$

Stammfunktion von ln(x) ist, folgt

$$\int_{k-1/2}^{k+1/2} \ln x dx = x \ln x - x \Big|_{k-1/2}^{k+1/2}$$

Darin kommen also $\ln\left(k+\frac{1}{2}\right)$ sowie $\ln\left(k-\frac{1}{2}\right)$ vor. Wir benutzen nun Taylor:

Falls $g(x) = \ln(x)$ sei

$$g(x) = g(x_0) + g'(x_0)(x - x_0) + \frac{g''(x_0)}{2!}(x - x_0)^2 + \frac{g^{(3)}(\xi)}{3!}(x - x_0)^3$$

mit ξ zwischen x und x_0 .

Auf $x = k + \frac{1}{2}$ $x_0 = k$ aufgewendet ergibt:

$$\ln\left(k + \frac{1}{2}\right) = \ln k + \frac{1}{2k} - \frac{1}{8k^2} + t_k$$

wobei

$$t_k = \frac{2}{\xi^3} \frac{1}{3!} \left(\frac{1}{2}\right)^3 = \frac{1}{24\xi^3}$$

$$|t_k| \le \frac{1}{24k^3} \qquad \quad \xi \in \left[k, k + \frac{1}{2}\right]$$

Analog:

$$\ln\left(k - \frac{1}{2}\right) = \ln k - \frac{1}{2k} - \frac{1}{8k^2} + t'_k$$

$$|t_k'| \le \frac{1}{24(k - \frac{1}{2})^3}$$

Also:

$$\int_{k-1/2}^{k+1/2} x \ln -x dx = \left(k + \frac{1}{2}\right) \left(\ln k + \frac{1}{2k} - \frac{1}{8k^2} + t_k\right) - \left(k + \frac{1}{2}\right)$$

$$- \left[\left(k - \frac{1}{2}\right) \left(\ln k - \frac{1}{2k} - \frac{1}{8k^2} + t_k'\right) - \left(k - \frac{1}{2}\right)\right]$$

$$= \ln k - \frac{1}{8k^2} + \left(k + \frac{1}{2}\right) t_k - \left(k - \frac{1}{2}\right) t_k'$$

$$= \ln k + r_k \qquad |r_k| \le \frac{c}{k^2}$$

Mit

$$(*) = \left(\int_{k-\frac{1}{2}}^{k+\frac{1}{2}} \ln x dx = \ln k + r_k \right)$$

folgt dass:

$$\ln n! = \sum_{k=2}^{n} \ln k \overset{(*)}{=} \sum_{k=2}^{n} \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} \ln x dx - \sum_{k=2}^{n} r_k$$

$$= \underbrace{\int_{1}^{n+\frac{1}{2}} \ln x dx}_{(*)} - \int_{1}^{\frac{3}{2}} \ln x dx - \sum_{k=2}^{n} r_k$$

$$(*) = \int_{1}^{n+\frac{1}{2}} \ln x dx = x \ln x - x \Big|_{1}^{n+\frac{1}{2}}$$

$$= \left(n + \frac{1}{2}\right) \ln \left(n + \frac{1}{2}\right) - \left(n + \frac{1}{2}\right) + 1$$

$$= \left(n + \frac{1}{2}\right) \ln \left(n + \frac{1}{2}\right) - n + \frac{1}{2}$$

Ersetzen wir $\ln\left(n+\frac{1}{2}\right) = \ln n + \frac{1}{2n} - \frac{1}{8n^2} + t_n$ so folgt:

$$\begin{split} (*) &= \left(n + \frac{1}{2}\right) \ln n - n + \left(n + \frac{1}{2}\right) \left\{\frac{1}{2n} - \frac{1}{8n^2} + t_n\right\} + \frac{1}{2} \\ &= \left(n + \frac{1}{2}\right) \ln n - n + \frac{1}{2} - \frac{1}{8n^2} + nt_n + \frac{1}{4n} - \frac{1}{16n^2} + \frac{1}{2}t_n + \frac{1}{2} \\ &= \left(n + \frac{1}{2}\right) \ln n - n + 1 + \frac{1}{8n} + nt_n - \frac{1}{16n^2} + \frac{1}{2}t_n \end{split}$$

Also:

$$\ln(n!) = n \ln n + \frac{1}{2} \ln n - n + a_n$$

wobei

$$a_n = \frac{1}{4n} + \left(n + \frac{1}{2}\right) \left(-\frac{1}{8n^2} + t_n\right) + \sum_{k=2}^n r_k - \int_1^{\frac{3}{2}} \ln x dx$$

und $|r_k| \leq \frac{c}{k^2} \Rightarrow \sum_{k=2}^n r_k$ konvergiert.

Sei $a := \lim a_n$, $b = e^a$ und $b_n = e^{a_n}$. Also:

$$\log n! = \left(n + \frac{1}{2}\right) \log n - n + a_n = \log n^{n + \frac{1}{2}} - n + a_n$$

folgt

$$n! = n^{n + \frac{1}{2}} e^{-n} e^{a_n} = \sqrt{n} n^n e^{-n} e^{a_n} \Rightarrow b_n = \frac{n!}{\sqrt{n} n^n e^{-n}}$$

Wir möchten jetzt $b := e^a$ bestimmen:

$$b = \lim b_n = \lim_{n \to \infty} \frac{b_n^2}{b_{2n}} = \lim \left(\frac{n!}{\sqrt{n}n^n e^{-n}}\right)^2 \left(\frac{\sqrt{2n}(2n)^{2n}e^{2n}}{(2n)!}\right)$$
$$= \lim_{n \to \infty} \frac{(n!)^2}{(2n)!} \sqrt{\frac{2}{n}} \frac{(2n)^{2n}}{n^{2n}} = \lim_{n \to \infty} \frac{(n!)^2}{(2n)!} \sqrt{\frac{2}{n}} 2^{2n} = \lim_{n \to \infty} \frac{(2^n n!)^n}{(2n)!} \cdot \frac{\sqrt{2}}{\sqrt{n}}$$
$$= \sqrt{2\pi}$$

Also $b = \sqrt{2\pi}$ womit

$$n! \approx \sqrt{2\pi n} n^n e^{-n}$$
 Stirling's formel

Beispiel: Der Satz von Taylor

Die Taylor - Entwicklung eine Funktion $f \in C^{n+1}$ um x_0 erhält man durch n-fache partielle Integration:

$$f(x) - f(x_0) = \int_{x_0}^x f'(t)dt = \int_{x_0}^x \underbrace{(x-t)^0}_{v'} \underbrace{f'(t)}_{u} dt$$

$$= (x-x_0)f'(x_0) + \int_{x_0}^x \underbrace{(x-t)'}_{v'} \underbrace{f''(t)}_{u} dt$$

$$= (x-x_0)f'(x_0) + \frac{(x-x_0)^2}{2} f''(x_0) + \frac{1}{2} \int_{x_0}^x (x-t)^2 f'''(t) dt$$

$$\vdots$$

$$= \sum_{k=1}^n (x-x_0)^k \frac{f^{(k)}(x_0)}{k!} + \frac{1}{n!} \int_{x_0}^x (x-t)^n f^{(n+1)}(t) dt$$

Aus Mittelwertsatz der Integralrechnung bekommt man die Lagrange Restgliedformel.

$$\frac{1}{n!} \int_{x_0}^{x} (x-t)^n f^{(n+1)}(t) dt = \frac{1}{(n+1)!} f^{n+1}(\xi) (x-x_0)^{n+1} \text{ für ein } \xi \in [x_0, x]$$

6.4 Methode der Substitution

Methode der Substitution ist eine Umkehrung der Kettenregel.

Satz 6.25 (Substitutionsregel)

Sei

- $f:[a,b]\to\mathbb{R}$ stetig
- $g: [\alpha, \beta] \to \mathbb{R}$ der klasse C'

Sowie $t_0 \le t_1$ in $[\alpha, \beta]$ so dass $g([t_0, t_1]) \subset [a, b]$. Dann gilt

$$\int_{g(t_0)}^{g(t_1)} f(x)dx = \int_{t_0}^{t_1} f(g(t)) g'(t) dt$$

Beweis

Sei $F:[a,b]\to\mathbb{R}$ eine Stammfunktion für f. Dann gilt (nach Hauptsatz B)

$$\int_{g(t_0)}^{g(t_1)} f(x)dx = F(g(t_1)) - F(g(t_0))$$

Nach der Kettenregel, haben wir

$$(F \circ g)'(t) = F'(g(t))g'(t) = f(g(t))g'(t)$$

d.h. $F \circ g$ ist eine Stammfunktion für f(g(t))g'(t). Woraus mit dem Hauptsatz B folgt

$$\int_{t_0}^{t_1} f(g(t))g'(t)dt = (F \circ g)(t_1) - (F \circ g)(t_0)$$

$$= F(g(t_1)) - F(g(t_0))$$

$$= \int_{g(t_0)}^{g(t_1)} f(x)dx$$

Korollar 6.26

$$\int f(x)dx = \int f(g(t))g'(t)dt + C$$

Dies Formel bedeutet folgenden: Die Linke Seite als Funktion von x ist gleich der rechten Seite als Funktion von t vermöge der Relation

$$x = g(t)$$
$$dx = g'(t)dt$$

Für die Substitutionsregel

$$\int_{t_0}^{t_1} f(g(t)) g'(t) dt = \int_{g(t_0)}^{g(t_1)} f(x) dx$$

gibt es im Prinzip zwei lesarten. Mann kann sie entweder von links nach rechts oder von rechts nach links anwenden:

1. (links \rightarrow rechts) Liegt ein Integral explizit in der Form

$$\int_{t_0}^{t_1} f(g(t)) g'(t) dt \text{ vor,}$$

so können wir die Substitutionsregel von links nach rechts abwende

Beispiel

(a) $\int_{0}^{1} (1+t^{2})^{4} (2t) dt$

Setzt man nämlich $f(x) := x^4$ und $g(t) := 1 + t^2$. So folgt:

$$\int_{0}^{1} (1+t^{2})^{4} (2t)dt = \int_{0}^{1} f(g(t)) g'(t)dt$$

$$= \int_{g(0)}^{g(1)} f(x)dx = \int_{1}^{2} x^{4} dx = \left[\frac{1}{5}x^{5}\right]_{1}^{2}$$

$$= \frac{32}{5} - \frac{1}{5} = \frac{31}{5}$$

(b) $\int \sin^3 t \cos t dt$

Die substitution $x = \sin t$ mit $\frac{dx}{dt} = \cos t \Rightarrow dx = \cos t dt$ liefert

$$\int x^3 dx = \frac{x^4}{4} + C = \frac{\sin^4 t}{4} + C$$

(c) $\int \tan t dt = \int \frac{\sin t}{\cos t} dt$

Die Substitution $x = \cos t \frac{dx}{dt} = -\sin t, dx = -\sin t dt$

$$\int \tan t dt = -\int \frac{1}{\cos t} (-\sin t) dt$$
$$= -\int \frac{1}{x} dx = -\log|x| + C$$
$$= -\log|\cos t| + C$$

2. (rechts \rightarrow links)

Ein integral liegt der Gestalt $\int_{\alpha}^{\beta} f(x)dx$ mit gewissen Grenzen $\alpha, \beta \in \mathbb{R}$ vor, das schwer zu berechnen scheint, versucht man dann mittels geeigneten Substitution x = g(t), dieses Integral umzuformulieren, so dass die Substitutionsregel anwendbar ist, wobei $g(t_0) = \alpha$ und $g(t_1) = \beta$ gelten muss.

Beispiel 6.26

 $\int_{0}^{1} \sqrt{1 - x^2} dx$

Also $f(x)=\sqrt{1-x^2}$. Mit der Substituten $x=g(t)=\sin t, t\in [0,\pi/2], dx=\cos t dt$ ist dann $g(0)=0, g\left(\frac{\pi}{2}\right)=1$ und

$$\int_{0}^{1} \sqrt{1 - x^{2}} dx = \int_{g(0)}^{g(\pi/2)} f(x) dx = \int_{0}^{\pi/2} f(g(t)) g'(t) dt$$

$$= \int_{0}^{\pi/2} \sqrt{1 - \sin^{2} t} \cos t dt$$

$$\stackrel{(*)}{=} \int_{0}^{\pi/2} \cos^{2} dt = \int_{0}^{\pi/2} \frac{1}{2} (1 + \cos 2t) dt$$

$$= \frac{1}{2} \left(t + \frac{\sin 2t}{2} \right) \Big|_{0}^{\pi/2} = \frac{1}{2} (t + \sin t \cos t) \Big|_{0}^{\pi/2} = \frac{\pi}{2}$$

mit

$$(*) \qquad \qquad \cos^2(t) = \frac{1 + \cos 2t}{2}$$

(b)
$$\int \frac{x}{\sqrt{2x-3}} dx \quad \begin{cases} u = \sqrt{2x-3} \\ du = \frac{1}{2} (2x-3)^{-1/2} 2 dx = \frac{dx}{\sqrt{2x-3}} \\ u^2 = 2x-3 \\ \frac{u^2+3}{2} = x \end{cases}$$

$$\int \frac{x}{\sqrt{2x-3}} dx = \int \left(\frac{u^2+3}{2}\right) du = \frac{1}{2} \int (u^2+3) du$$
$$= \frac{1}{2} \left(\frac{u^3}{3} + 3u\right) = \frac{u}{2} \left(\frac{u^2}{3} + 3\right)$$
$$= \frac{\sqrt{2x-3}}{2} \left[\frac{2x-3}{3} + 3\right] + C$$
$$= \sqrt{2x-3} \left(\frac{x}{3} + 1\right) + C$$

Beispiel: Flächeninhalt einer Ellipse

mit x = au, dx = adu

$$F = 4 \int_0^1 b\sqrt{1 - u^2} a du$$
$$= 4ab \int_0^1 \sqrt{1 - u^2} du$$

 $mit u = \sin t, du = \cos t dt$

$$4ab \int_0^{\pi/2} \sqrt{1 - \sin^2 t} \cos t dt = 4ab \int_0^{\pi/2} \cos^2 t dt$$
$$= \frac{4ab}{2} \left(t + \sin t \cos t \right) \Big|_0^{\pi/2}$$
$$= \pi ab$$

6.5 Integration rationaler Funktionen (Partialbruchzerlegung)

Sei $R(x) = \frac{P(x)}{Q(x)}$ eine Rationale Funktion, d.h. P,Q sind polynome mit reelen Koeffizienten. Die Partialbruchzerlegung ist eine Darstellung von R(x) als summe von "elementaren" rationale Funktionen. Sie basiert auf einem Korollar des Fundamentales Satzes der Algebra, das sagt, dass jedes reelle Polynom ein Produkt von linearen und quadratischen Polynomen mit $\mathbb R$ Koeffizienten.

Satz 6.27

Sei $R(x) = \frac{P(x)}{Q(x)}$ eine rationale Funktion. Dann

$$R(x) = P_1(x) + \sum_{i=1}^{n} R_i(x) + \sum_{j=1}^{m} S_j(x)$$

wobei $P_1 = \text{polynom}$

$$R_i(x) = \frac{a_{i1}}{(x - x_i)} + \frac{a_{i2}}{(x - x_i)^2} + \dots + \frac{a_{ir_i}}{(x - x_i)^{r_i}}$$

$$S_{j}(x) = \frac{b_{j1}x + d_{j1}}{\left((x - \alpha_{j})^{2} + \beta_{j}^{2}\right)} + \frac{b_{j2}x + d_{j2}}{\left((x - \alpha_{j})^{2} + \beta_{j}^{2}\right)^{2}} + \dots + \frac{b_{jm_{j}}x + d_{jm_{j}}}{\left((x - \alpha_{j})^{2} + \beta_{j}^{2}\right)^{m_{j}}}$$

Die $\frac{1}{(x-a)}$, $\frac{bx+d}{((x-\alpha)^2+\beta^2)^m}$ werden "elementare rationale Funktionen" genannt und wir wollen dafür Stammfunktionen bestimmen.

Bemerkung

- 1. Das Polynom $P_1(x)$ tritt nur auf, falls $\deg P > \deg Q$. In diesem Fall berechnet mann $P_1(x)$ mit Polynom division und es gilt $p(x) = P_1(x) Q(x) + P_2(x)$ mit $\deg P_2 < \deg Q$
- 2. Das nennerpolynom Q(x) besitze

KAPITEL 6. INTEGRATION

- Die reelen Nullstellen x_i mit Vielfachheit r_i
- Die Komplexe Nullstellen $z_j = \alpha_j + i\beta_j$ mit Vielfachheit m_j und damit komplex Konjugierte Nullstellen $\overline{z_j} = \alpha_j i\beta_j$
- 3. Unbekannte Parameter, die bestimmt werden müssen

$$a_{ik}$$
 $k = 1, \dots, r_i$ $i = 1, \dots, n$ β_{il}, α_{il} $l = 1, \dots, m_i$ $j = 1, \dots, m$

Diese Parameter werden durch Koeffizientenvergleich berechnet, die rechte Seite wird dabei auf den Hauptnenner gebracht.

Beispiel

 $R(x) = \frac{1-x}{x^2(x^2+1)}$ Ansatz:

$$R(x) = \frac{a_1}{x} + \frac{a_2}{x^2} + \frac{b_1 x + d_1}{x^2 + 1}$$

$$\Rightarrow 1 - x = x(x^2 + 1)a_1 + a_2(x^2 + 1) + x^2(b_1 x + d_1)$$

Ausmultiplizieren:

$$1 - x = (a_1 + b_1)x^3 + (a_2 + d_1)x^2 + a_1x + a_2$$

Koeffizientenvergleich:

$$a_1 + b_1 = 0$$
 $a_2 + d_1 = 0$ $a_1 = -1$ $a_2 = 1$

Partialbruchzerlegung:

$$\frac{1-x}{x^2(x^2+1)} = -\frac{1}{x} + \frac{1}{x^2} + \frac{x-1}{x^2+1}$$

Grundtypen der Integration rationaler Funktionen

• Typ O: Polynom:

$$\int \sum a_n x^n dx = \sum a_n \frac{x^{n+1}}{n+1} + c$$

• Typ I: Inverse Potenzen

$$\int \frac{dx}{(x-x_0)^r} = \begin{cases} \log|x-x_0| + c & \text{für } = 1\\ \frac{1}{(1-r)} \frac{1}{(x-x_0)^{r-1}} & \text{für } \ge 2 \end{cases}$$

• Typ II:

$$\int \frac{bx+d}{\left[\left(x-\alpha\right)^2+\beta^2\right]^m}dx$$

Substitution: $x - \alpha = \beta t$, $dx = \beta dt$ ergibt

$$\int \frac{b[\beta t + \alpha] + d}{(t^2 + 1)^m \beta^{2m}} \beta dt$$

Dies hat die allgemeine Form

$$\int \frac{ct+b}{(t^2+1)^m} dt = c \int \frac{t}{(t^2+1)^m} dt + \int \frac{b}{(t^2+1)^m} dt$$

$$\int \frac{t}{(t^2+1)^m} dt \qquad \text{mit } t^2+1 = u, 2t dt = du$$

$$= \frac{1}{2} \int \frac{du}{u^m} = \begin{cases} \frac{u^{-m+1}}{2(1-m)} & , m \ge 2\\ \frac{1}{2} \ln|u| & , m = 1 \end{cases} = \begin{cases} \frac{1}{2(1-m)} \frac{1}{(t^2+1)} (1-m) & , m \ge 2\\ \frac{1}{2} \ln|1+t^2| & , m = 1 \end{cases}$$

Sei

$$I_m := \int \frac{dt}{(t^2 + 1)^m}$$

– Für m=1:

$$I_1 = \int \frac{dt}{(t^2 + 1)} = \arctan t + C$$

– Für $m \geq 1$:

$$I_m := \int \frac{dt}{(t^2 + 1)^m}$$

Partielle Integration ergibt:

$$I_m := \int \underbrace{1}_{v'} \underbrace{\frac{1}{(t^2+1)^m}} dt = \frac{t}{(t^2+1)^m} + \int \frac{t \cdot 2m \cdot t}{(t^2+1)^{m+1}} dt$$

$$= \frac{t}{(t^2+1)^m} + 2m \int \frac{t^2+1-1}{(t^2+1)^{m+1}} dt$$

$$= \frac{t}{(t^2+1)^m} + 2m \int \frac{1}{(t^2+1)^m} dt - 2m \int \frac{1}{(t^2+1)^{m+1}} dt$$

$$\Rightarrow I_m = \frac{t}{(t^2+1)^m} + 2m \{I_m - I_{m+1}\}$$

woraus

$$I_{m+1} = \frac{1}{2m} \left[\frac{t}{(t^2+1)^m} + \left(\frac{2m-1}{2m} \right) I_m \right]$$

z.B.

$$I_2 = \int \frac{dt}{(t^2 + 1)^2} = \frac{1}{2} \left[\frac{t}{(t^2 + 1)} + \frac{1}{2} I_1 \right]$$
$$= \frac{1}{2} \left[\frac{t}{(t^2 + 1)^2} + \frac{1}{2} \arctan t \right] + C$$

Beispiel 6.28

1.

$$\frac{1}{x^2 - 3x - 4} = \frac{1}{(x - 4)(x + 1)} = \frac{A}{x - 4} + \frac{B}{x + 1}$$
$$\Rightarrow A(x + 1) + B(x - 4) = 1$$

KAPITEL 6. INTEGRATION

$$x = 4 \Rightarrow A \cdot 5 = 1 \Rightarrow A = \frac{1}{5}$$

$$x = -1 \Rightarrow B \cdot (-5) = 1 \Rightarrow B = -\frac{1}{5}$$

$$\int \frac{1}{x^2 - 3x - 4} dx = \frac{1}{5} \int \left(\frac{1}{x - 4} - \frac{1}{x + 1}\right) dx = \frac{1}{5} \ln \left|\frac{x - 4}{x + 1}\right| + c$$
2.
$$\frac{9}{x^3 - 3x - 2} = \frac{9}{(x - 2)(x + 1)^2} = \frac{A}{x - 2} + \frac{Bx + C}{(x + 1)^2}$$

$$A(x + 1)^2 + (Bx + C)(x - 2) = 9$$

$$x = -1 \Rightarrow (-B + C)(-3) = 9$$

$$x = 2 \Rightarrow A(9) = 9 \Rightarrow A = 1$$

$$x = 0 \Rightarrow A + C(-2) = 9 \Rightarrow -2C = 8 \Rightarrow C = -4$$

$$(-B + C) = -3 \Rightarrow B = C + 3 = -1$$

$$\Rightarrow \frac{9}{x^3 - 3x - 2} = \frac{1}{x - 2} + \frac{-x - 4}{(x + 1)^2}$$

$$\int \frac{9}{x^3 - 3x - 2} dx = \int \left(\frac{1}{x - 2} + \frac{-x - 1}{(x + 1)^2} - \frac{3}{(x + 1)^2}\right) dx$$

$$= \ln|x - 2| - \ln|x + 1| + \frac{3}{x + 1} + c$$

$$= \ln\left|\frac{x - 2}{x + 1}\right| + \frac{3}{x + 1} + c$$

6.6 Das Uneigentliche Integral

Sei f eine unbeschränkte Funktion. Dann ist f nicht R. Integrierbar, z.B. $\int_0^1 \frac{1}{\sqrt{x}} dx$ hat keinen Sinn. Aber $\forall \varepsilon > 0$ ist $\frac{1}{\sqrt{x}} \in [\varepsilon, 1]$ stetig also Integrierbar. Der Wert des Integral ist

$$\int_{\varepsilon}^{1} \frac{1}{\sqrt{x}} dx = 2\sqrt{x} \Big|_{\varepsilon}^{1} = 2 - 2\sqrt{\varepsilon}$$

also existiert

$$\lim_{\varepsilon \searrow 0} \int_{0}^{1} \frac{1}{\sqrt{x}} dx = 2$$

Dies ist ein Beispiel von uneigentlichen R. Integral.

Definition 6.29

Sei f eine Funktion auf einem offenen Interval (a,b), deren Einschränkung auf jedes kompakte Teilinterval [a',b'] integrierbar ist. Dann das uneigentliche Integral von f von a bis b definiert als

$$\int_{a}^{b} f(x)dx := \lim_{a' \searrow a} \lim_{b' \nearrow b} \int_{a'}^{b'} f(x)dx$$

falls diese Grenzwerte existieren (a und b können $\pm \infty$ sein)

Bemerkung 6.30

- 1. Ist f schon auf [a, b] definiert und integrierbar, so existiert das Uneigentliche Integral und stimmt mit dem üblichen bestimmten Integral überein.
- 2. Ist f schon [a, b) definiert und auf jedem kompakten Teilinterval der Form [a, b'] integrierbar, so gilt schon

$$\int_{a}^{b} f(x)dx = \lim_{b' \nearrow b} \int_{a}^{b} f(x)dx$$

Beispiel

$$\int_{0}^{\infty} e^{-x} = \lim_{b \to \infty} \int_{0}^{b} e^{-x} dx = \lim \left(-e^{-x} \Big|_{0}^{b} \right) = \lim_{b \to \infty} \left(-e^{-b} + 1 \right) = 1$$

3. Vorsicht: Die beiden Grenzwerte müssen im allgemeinen unabhängig voneinander genommen werden.

Beispiel

$$\int_{-b}^{b} x dx = 0 \qquad \forall b > 0, \text{ und daher}$$

$$\lim_{b \to \infty} \int_{-b}^{b} x dx = \lim \left(\frac{b^2}{2} - \frac{b^2}{2} \right) = \lim_{b \to \infty} 0 = 0$$

Die einzelnen Grenzwerte von $\int\limits_a^b x dx$ für $b \to \infty$ und $a \to -\infty$ existieren dagegen nicht

$$\left(\int_{a}^{b} x dx = \frac{x^{2}}{2} \Big|_{a}^{b} = \frac{b^{2}}{2} - \frac{a^{2}}{2} \right)$$

KAPITEL 6. INTEGRATION

und somit auch nicht das uneigentliche Integral $\int_{-\infty}^{\infty} x dx$

4. Alle Grundeigenschaften und Integrationstechniken für das bestimmte Integral gelten ebenso für das uneigentliche Integral.

Als Beispiel beweisen wir folgendes nützliches Konvergenzkriterium für Reihen

Satz 6.30

Sei $f:[1,\infty)\to\mathbb{R}_+$ monoton fallend. Dann konvergiert $\sum\limits_{k=1}^\infty f(k)$ genau dann wann $\int\limits_1^\infty f(x)dx$ existiert. In diesem Fall gilt:

$$0 \le \sum_{k=1}^{\infty} f(k) - \int_{1}^{\infty} f(x)dx \le f(1)$$

Beweis

$$f(1) + f(2) + \dots + f(n-1) \ge \int_{1}^{n} f(x)dx \ge f(2) + \dots + f(n)$$
$$\sum_{k=1}^{n} f(k) - f(n) = \sum_{k=1}^{n-1} f(x) \ge \int_{1}^{n} f(x)dx \ge \sum_{k=1}^{n-1} f(k+1) = \sum_{k=1}^{n} f(x) - f(1)$$

(*)
$$\sum_{k=1}^{n} f(k) - f(n) \ge \int_{1}^{n} f(x) dx \ge \sum_{k=1}^{n} f(k) - f(1)$$

$$\Rightarrow 0 < f(n) \le \sum_{k=1}^{n} f(k) - \int_{1}^{n} f(x)dx \le f(1)$$

Aus

$$\sum_{k=1}^{n-1} f(k) \ge \int_{1}^{n} f(x) dx$$

folgt das,

$$\sum_{k=1}^{\infty} f(k) < \infty \Rightarrow \int\limits_{1}^{\infty} f(x) dx < \infty$$

und, aus

$$\int_{1}^{n} f(x)dx \ge \sum_{k=1}^{n-1} f(k+1)$$

folgt dass

$$\int_{1}^{\infty} f(x)dx < \infty \Rightarrow \sum_{k=1}^{\infty} f(k) < \infty$$

Aus (*) folgt:

$$0 < f(n) \le \sum_{k=1}^{\infty} f(k) - \int_{1}^{\infty} f(x) dx \le f(1)$$

Beispiel 6.31

1. $\sum (s) = \sum_{k=1}^{\infty} \frac{1}{k^s}$ existiert für alle s > 1

$$\int_{1}^{\infty} \frac{1}{x^{s}} dx = \lim_{b \to \infty} \int_{1}^{b} x^{-s} dx = \lim_{s \to \infty} \left\{ \begin{array}{l} \log|b| & s = 1 \\ \frac{x^{-s+1}}{1-s} \Big|_{1}^{b} & s > 1 \end{array} \right.$$

$$= \left\{ \begin{array}{l} \text{divergent falls } s = 1 \\ \text{konvergent gegen } \frac{1}{s-1} \end{array} \right.$$

und

$$0 \le \sum_{n=1}^{\infty} n^{-s} - \int_{1}^{\infty} f(x)dx \le f(1) = 1$$
$$\Rightarrow \frac{1}{s-1} \sum_{n=1}^{\infty} n^{-s} \le 1 + \frac{1}{s-1} = \frac{s}{s-1}$$

2.

$$\int_{-\infty}^{\infty} |x| e^{-x^2} dx = -\int_{-\infty}^{0} x e^{-x^2} dx + \int_{0}^{\infty} x e^{-x^2} dx = 2 \int_{0}^{\infty} x e^{-x^2} dx$$

$$\int_{0}^{b} x e^{-x^2} dx = \frac{1}{2} \int_{0}^{b^2} e^{-u} du \qquad \text{mit } u = x^2, du = 2x dx$$

$$= \frac{1}{2} \left(1 - e^{-b^2} \right) \to \frac{1}{2} \text{ für } b \to \infty$$

Somit gilt

$$\int_{-\infty}^{\infty} |x| e^{-x^2} dx = 1$$

KAPITEL 6. INTEGRATION

3. Wir haben die folgende einfache aber wichtige Beispiele

(a) $\int_{a}^{\infty} \frac{dx}{x^{s}} = \begin{cases} \frac{a^{1-s}}{s-1} & \text{für } s > 1\\ \infty & \text{für } s \leq 1 \end{cases}$

(b) Für alle a < b und $s \in \mathbb{R}$ gilt

$$\int_{a}^{b} \frac{dx}{(x-a)^{s}} = \begin{cases} \frac{(b-a)^{1-s}}{1-s} & \text{für } s < 1 \\ \infty & \text{für } s \ge 1 \end{cases}$$

Satz 6.32 (Majorantenkriterium)

a) Sei $f:[a,\infty)\to\mathbb{R}$ stetig. Dann gilt

$$\forall x : |f(x)| < g(x)$$

und $\int\limits_a^\infty g(x)$ konvergent $\Rightarrow \int f(x) dx$ (absolut) konvergent.

b) Weiterhin gilt folgende Umkehrung: $\forall x: 0 \leq g(x) \leq f(x)$ und $\int_{a}^{\infty} g(x)$ divergent $\Rightarrow \int_{a}^{\infty} f(x)$ divergent.

Beispiel 6.33

1.

$$\int_{0}^{\infty} \frac{t^2}{(1+6t^2)^{5/3}} dt < \int_{0}^{\infty} \frac{t^2}{(6t^2)^{5/3}} dt < \int \frac{c}{t^{4/3}} dt < \infty$$

$$\Rightarrow \int_{0}^{\infty} \frac{t^2}{(1+6t^2)^{5/2}} dt \text{ konvergient}$$

2.

$$\int\limits_0^\infty \frac{t^2}{\left(1+6t^2\right)^{3/2}}dt$$

$$\frac{t^2}{\left(1+6t^2\right)^{3/2}} > \frac{t^2}{\left(12t^2\right)^{3/2}} > \frac{c}{t} \qquad t \geq 1$$

$$\Rightarrow \int\limits_0^\infty \frac{t^2}{\left(1+6t^2\right)^{5/2}}dt \text{ divergient weil } \int\limits_0^\infty \frac{c}{t}dt \text{ divergient}$$

3. Exponentialintegral:

$$E_i(x) := \int_{-\infty}^{x} \frac{e^t}{t} dt \text{ für } x < 0$$

Da $\lim_{t\to -\infty}te^t=0,$ gibt es c>0 mit $|te^t|\leq c,\,\forall t\in [-\infty,x],$ und somit gilt

$$\left| \frac{e^t}{t} \right| = \left| \frac{te^t}{t^2} \right| \le \frac{c}{t^2}$$

Mit der Konvergenz des Integrals $\int\limits_{-\infty}^x \frac{1}{t^2} dt$ folgt die (Absolut) Konvergenz des $E_i(x)$ für alle x<0

Kapitel 7

Gewöhnliche Differenzialgleichungen

Eine Gleichung, in der Ableitungen einer gesuchte Funktionen auftreten, nennt man Differentialgleichung.

$$y'(t) = y + y^2$$

$$\left(y'(t)\right)^2 = y(t) + 2$$

Hängt die gesuchte Funktion in der DGL nur von einer einzigen variablen ab, so spricht man von einer "gewöhnliche DGL".

Hängt hingegen die gesuchte Funktion von mehrere Variabeln ab, d.h. kommen partielle Ableitungen in der Differentialgleichung vor, so liegt eine "Partielle DGL" vor. Viele physikalische Prozesse lassen sich oft durch Differenzialgleichungen bescreiben.

Beispiel

1. Ein lineares Federpendel wird durch folgende DGL beschrieben

$$m\frac{d^2x}{dt^2} = -Kx$$
 mit K = Federkonstante

Unbekannt ist hier die Auslenkung x in Abhängigkeit von der Zeit t

2. Beim radioaktiven Zerfall, haben wir

$$\frac{df(t)}{dt} = -\alpha f \qquad f(0) = f_0$$

wobei f(t) = die noch vorhandeden Masse eines Stoffes. Pro zeiteinheit zerfallende Masse ist proportional zur noch vorhandene Masse

3. Freier Fall mit Reibung

Sei m eine Massepunkt der Unter Einfluss der Schwerkraft fällt. Es kann auch ein Reibungskraft geben.

Die grösse der Reibungskraft ist proportional zur Geschwindigkeit. Dann ist, nach der zweiten Newtonische Gesetzt

$$m\ddot{x} = mg - a\dot{x} \qquad v = \frac{dx}{dt}$$

Beim Beispiel 2., haben wir schon letze Semester gesehen dass

$$\frac{df(t)}{dt} = -\alpha f$$

als eine Lösung $Ke^{-\alpha t}$, $K \in \mathbb{R}$, hat

$$f' = -\alpha f \Rightarrow \frac{f'}{f} = -\alpha$$

$$\int \frac{f'(t)}{f(t)} dt = -\int \alpha dt$$

$$\ln |f(t)| = -\alpha t + C$$

$$\Rightarrow f(t) = Ke^{-\alpha t} \text{ mit } K = e^{C}$$

Alle 3 Beispiele sind Lineare DGL mit konstanten Koeffizienten.

7.1 Lineare DGL mit konstante Koeffizienten

Definition 7.1

Eine lineare Differentialgleichung n-ter Ordnung hat die Gestalt

$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = b(x)$$

mit $a_i(x), i = 0, \dots, n-1, b(x)$ Funktionen.

Ist das so genannte Störfunktion b(x) konstant gleich 0, so heisst die DGL homogen, andernfalls inhomogen. Im Falle $a_i(x) = a_i$ Konstanten, heisst die LDG, LDG mit Konstanten koeffizienten.

In diesem Abschnitt betrachten wir DGL mit konstanten Koeffizienten. Eine DGL ist genau dann linear wenn alle Potenzen der gesuchte Funktion und deren Ableitung(en) nur mit Potenz 1 vorkommen. z.B.:

- $(y')^2 + y^2 = 1$ ist nicht linear
- y' = 2xy ist linear
- $y' = \sqrt{y} + 1$ ist nicht linear
- y'' + 2y' + x = 0 ist linear

Zum nächst betrachten wir Homogene LDG mit konstanten Koeffizienten. Sei

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0 = 0$$
 (H)

wobei $a_i \in \mathbb{R}$ $i = 0, \dots, n-1$

Definition 7.2

Das charakteristische Polynom der Gleichung (H) ist gegeben durch

$$p(t) := t^n + a_{n-1}t^{n-1} + \dots + a_0$$

Lemma 7.3

Die Funktion $y(x) = e^{\lambda x}$ ist genau dann Lösung von (H) falls $p(\lambda) = 0$

Beweis

$$y(x) = e^{\lambda x}$$

$$y'(x) = \lambda e^{\lambda x}$$

$$y^j(x) = \lambda^j e^{\lambda x}$$

Also mit

$$= y^{(n)}(x) + a_{n-1}y^{(n-1)}(x) + \dots + a_0 = (\lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_0)e^x =$$

$$\Leftrightarrow \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_0 = p(\lambda) = 0$$

Satz 7.4

Sei $p(\lambda) = \prod_{i=1}^l (\lambda - \lambda_i)^{m_i}$ mit $\lambda_j \in \mathbb{C}$, $\lambda_i \neq \lambda_j (i \neq j)$. Dann ist jede Lösung der zugehörigen HDGL darstellbar als Linearkombination der n linear unabhängigen Funktionen $y_{ik}(x) = x^k e^{\lambda_i x}$, $1 \leq i \leq l$, $0 \leq k \leq m_i$.

Bemerkung 7.5

1. Falls die characteristischen Polynom n verschiedene reelle Nullstelle $\lambda_1, \ldots, \lambda_n$ besitzt, so bilden $e^{\lambda_1 x}, e^{\lambda_2 x}, \ldots, e^{\lambda_n x}$ eine Basis des Vektorraums der Lösungen, das heisst für jede Lösung y(x)gibt es c_1, c_2, \ldots, c_n so dass

$$y(x) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x} + \ldots + c_n e^{\lambda_n x}$$

2. Sei λ eine k-fache reelle Nullstelle das charakteristisches polynoms. Dann sind

$$e^{\lambda x}, xe^{\lambda x}, \dots, x^{k-1}e^{\lambda x}$$

k linear unabhängige Lösungen.

What ?? page 82 bottom

3. Sind $\lambda = \alpha + i\beta$, $\overline{\lambda} = \alpha - i\beta$, ein Paar konjugiert komplexer k- fache nullstellen, so sind die Funktionen

$$e^{\alpha x}\cos(\beta x)$$
 $e^{\alpha x}\sin(\beta x)$
 \vdots \vdots
 $x^{k-1}e^{\alpha x}\cos(\beta x)$ $x^{k-1}e^{\alpha x}\sin(\beta x)$

2k linear unabhängige Lösungen der DGL

$$\left(e^{(\alpha+i\beta)x} = e^{\alpha x} \cdot e^{i\beta x} = e^{\alpha x} \cos{(\beta x)} + ie^{\alpha x} \sin{(\beta x)}\right)$$

Beispiel 7.6

1.

$$y'' - y = 0$$

$$p(\lambda) = \lambda^{2} - 1 = 0 = (\lambda - 1)(\lambda + 1)$$

$$y(x) = c_{1}e^{x} + c_{2}e^{-x}$$

2.

$$y'' + y = 0$$
$$p(\lambda) = \lambda^2 + 1 = (\lambda + 1)(\lambda - 1)$$
$$y(x) = c_1 \cos x + c_2 \sin x$$

3.

$$y^{(4)} + 2y^{(2)} + y = 0$$

$$p(\lambda) = \lambda^4 + 2\lambda^2 + 1 = 0 = (\lambda^2 + 1)^2 = (\lambda - i)^2 (\lambda + i)^2$$

Also, $\cos x$, $\sin x$, $x \cos x$, $x \sin x$ sind Lösungen.

$$y(x) = c_1 \cos x + c_2 x \cos x + c_3 \sin x + c_4 x \sin x$$

$$y^{(4)} - y = 0$$

$$p(\lambda) = t^4 - 1 = (t^2 - 1)(t^2 + 1) = (t + 1)(t - 1)(t + i)(t - i)$$

$$y(x) = c_1 e^x + c_2 e^{-x} + c_3 \sin x + c_4 \cos x$$

5.

$$2y'' + 20y' + 48y = 0$$
$$p(\lambda) = 2\lambda^2 + 20\lambda + 48 = 0 \Rightarrow \lambda_{1,2} = -4, -6$$

Die Lösung ist

$$y(x) = c_1 e^{-4x} + c_2 e^{-6x}$$

7.2 Inhomogene DGL

Bisher haben wir nur Homogene Lineare DGL mit konstanten Koeffizienten betrachtet. Sehr oft treten auch Zusatzterme in den Gleichung auf. Wir haben der Folgende Allgemeine Satz für die Lösungsstruktur linearer DGL

Satz 7.7

Die allgemeine Lösung einer inhomogenen DGL

$$y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = b(x)$$

ist die Summe einer "spezielle" Lösung der inhomogenen DGL und der allgemeinen Lösung der zugehörigen homogenen DGL

$$\underbrace{y_A(x)}_{\text{Allgemeine Losung}} = \underbrace{y_S(x)}_{\text{Spezielle Losung}} + \underbrace{y_{AH}(x)}_{\text{Allgemeine Losung}}$$
 and der inhomogene DGL

Beispiel

$$y'' + y = \sin x$$

Um diese inhomogene DGL zu lösen, benötigen wir die allgemeine Lösung der zugehörigen homogene DGL y'' + y = 0

$$p(\lambda) = \lambda^2 + 1 = 0 \Rightarrow y_{AH}(x) = c_1 \sin x + c_2 \cos x$$

Nun wird noch eine spezielle Lösung der inhomogene DGL $y'' + y = \sin x$ benötigt. Wir verifizieren dass $y(x) = -\frac{1}{2}x\cos x$ eine derartige Lösung ist

$$y'(x) = -\frac{1}{2}\cos x + \frac{1}{2}x\sin x$$
$$y''(x) = \frac{1}{2}\sin x + \frac{1}{2}\sin x + \frac{1}{2}x\cos x = \sin x + \frac{1}{2}x\cos x$$
$$y''(x) + y(x) = \sin x + \frac{1}{2}x\cos x - \frac{1}{2}x\cos x = \sin x$$

Die allgemeine Lösung der inhomogenes DGL ist damit

$$y(x) = \underbrace{-\frac{1}{2}x\cos x}_{\text{Spezielle Losung der inhomogene DGL}} + \underbrace{c_1\sin x + c_2\cos x}_{\text{Allgemeine Losung der Homogene DGL}}$$

Bemerkung

Man kann als Speziell Lösung der inhomogenes DGL auch

$$y(x) = -\frac{1}{2}x\cos x + 5\sin x$$

wählen. Dann gilt auch hier $y''+y=\sin x.$ Die allgemeine Lösung der inhomogenes DGL

$$y(x) = \underbrace{-\frac{1}{2}x\cos x + 5\sin x}_{\text{Spezielle L\"osung inhomogenes DGL}} + \underbrace{k_1\sin x + k_2\cos x}_{\text{Allgemeine L\"osung homogenes DGL}}$$

Sie unterscheidet sich nicht von der Lösung

$$y(x) = -\frac{1}{2}x\cos x + c_1\sin x + c_2\cos x$$
$$c_1 = 5 + k$$

Frage:

Wie kann man eine spezielle Lösung finden?

Antwort:

Zur Lösung der inhomogenes DGL kann man in vielen Fällen einen so genannte "Ansatz vom Typ der rechten Seite" wählen. Hier geht man davon aus, dass die Lösung die gleiche Gestalt wie die Störfunktion haben wird.

z.B.: ist die Störfunktion ein Polynom, so nimmt man an, dass die spezielle Lösung auch ein polynom sein wird. Ist die Störfunktion ein exponentialfunktion so nimmt man an, dass die Lösung auch ein exponentialfunktion sein wird.

Beispiel 7.8

1. Wir betrachten die DGL

$$y'' + y' - 6y = 3e^{-4x}$$

Die Zugehörige homogenes DGL

$$y'' + y' - 6y = 0$$

$$p(\lambda) = \lambda^2 + \lambda - 6 = 0$$
 $\lambda_{1,2} = 2, -3$

Die Allgemeine Lösung der Homogenes DGL ist

$$y(x) = c_1 e^{-3x} + c_2 e^{2x}$$

Zur Lösung der inhomogenes DGL verwenden wir einen "Ansatz vom Typ der Rechten Seite", gehen also davon aus, dass die spezielle Lösung der inhomogenes DGL die ähnliche Gestalt hat (als die Störfunktion)

$$y_s(x) = Ke^{-4x}$$

Für die Ableitungen des Ansatzes haben wir

$$y_{c}'(x) = -4Ke^{-4x}$$

$$y_s''(x) = 16Ke^{-4x}$$

Eingesetzt in die homogenes DGL ergibt sich

$$y'' + y' - 6y = 16Ke^{-4x} - 4Ke^{-4x} - 6Ke^{-4x} = 6Ke^{-4x} = 3e^{-4x}$$

Also $6K=3 \Rightarrow K=\frac{1}{2}$. Damit ist $y_s(x)=\frac{1}{2}e^{-4x}$ und die allgemeine Lösung der DGL

$$y(x) = \frac{1}{2}e^{-4x} + c_1e^{-3x} + c_2e^{2x} \qquad c_1, c_2 \in \mathbb{R}$$

2.

$$y'' + y' - 6y = 50\sin x$$

Wählen wir als "Ansatz vom Typ der rechten Seite"

$$y_s(x) = K_1 \sin x + K_2 \cos x$$

$$y'_s(x) = K_1 \cos x - K_2 \sin x$$

$$y_s''(x) = -K_1 \sin x - K_2 \cos x$$

 $y'' + y' - 6y = -K_1 \sin x - K_2 \cos x + K_1 \cos x - K_2 \sin x + 6K_1 \sin x + 6K_2 \cos x$ $= (-7K_1 - K_2) \sin x + (-7K_2 + K_1) \cos x$

$$= 50 \sin x$$

$$\Rightarrow -7K_2 + K_1 = 0 \Rightarrow K_1 = 7K_2$$
$$-7K_1 - K_2 = 50 \Rightarrow -49K_2 - K_2 = 50$$
$$\Rightarrow K_2 = -1, K_1 = -7$$

$$y_s(x) = -7\sin x - \cos x$$

Damit ist die allgemeine Lösung der inhomogenes DGL

$$y(x) = -7\sin x - \cos x + c_1 e^{-3x} + c_2 e^{2x}$$

Ein problem ergibt sich, wenn als Störfunktion eine Lösung der homogenes DGL erscheint:

3.

$$y'' + y' - 6y = e^{2x}$$

"Der Ansatz vom Typ der rechten Seite"

$$y(x) = Ke^{2x}$$

führt nicht weiter da dieser Ansatz eingesetzt in homogenes DGL 0 ergeben muss und nicht e^{2x} . Wir führen nun der Ansatz

$$y(x) = Kxe^{2x}$$

$$y'(x) = Ke^{2x} + 2Kxe^{2x}$$

$$y''(x) = 2Ke^{2x} + 2Ke^{2x} + 4Kxe^{2x}$$

$$y'' + y' - 6y = 4Kxe^{2x} + 4Kxe^{2x} + Ke^{2x} + 2Kxe^{2x} - 6Kxe^{2x}$$

$$= 5Ke^{2x} = 10e^{2x}$$

$$\Rightarrow K = 2$$

Der Ansatz führte also auf die Lösung

$$y_s(x) = 2xe^{2x}$$

Insgesamt:

$$y(x) = 2xe^{2x} + c_1e^{-3x} + c_2e^{2x}$$
 $c_1, c_2 \in \mathbb{R}$

3.

$$y'' + y = \sin x$$

$$y_H = c_1 \sin x + c_2 \cos x$$

Für die Spezielle Lösung zu finden, wählen wir den Ansatz vom Typ der rechten Seite

$$y_s(x) = x \left(K_1 \sin x + K_2 \cos x \right)$$

$$y_s'(x) = (K_1 \sin x + K_2 \cos x) + x (K_1 \cos x - K_2 \sin x)$$

$$y_s''(x) = K_1 \cos x - K_2 \sin x + K_1 \cos x - K_2 \sin x + x (-K_1 \sin x - K_2 \cos x)$$

Eingesetzt in die DGL ergibt sich

$$y_s''(x) + y(x) = 2K_1 \cos x - 2K_2 - x(K_1 \sin x + K_2 \cos x) + x(K_1 \sin x + K_2 \cos x)$$

$$= 2K_1 \cos x - 2K_2 \sin x = \sin x$$

$$\Rightarrow 2K_1 = 0, -2K_2 = 1 \Rightarrow K_1 = -\frac{1}{2}$$

$$\Rightarrow y_s(x) = -\frac{1}{2}x \cos x$$

$$y_A = -\frac{1}{2}x \cos x + c_1 \sin x + c_2 \cos x$$

Zur Lösung der Inhomogene Differentialgleichung mit konstanten Koeffizienten, kann man einen "Ansatz vom Typ der rechten Seite" wählen. Die Idee ist dass die Lösungsfunktion und Störfunktion ähnlich sind.

Störfunktion	Ansatz für Lösung $y_s(x)$
$P_n(x)$	$Q_n(x) = a_n x^n + \dots + a_0$
Ke^{ax}	Ke^{ax}
$A\sin bx$	$K_1\sin bx + K_2\cos bx$
$A\cos bx$	
$Ae^{\alpha x}\sin\beta x$	$K_1 e^{\alpha x} \sin \beta x + K_2 e^{\alpha x} \cos \beta x$
$Be^{\alpha x}\cos\beta x$	
$P_n(x)e^{\alpha x}\sin\beta x$	$e^{\alpha x}[R_n(x)\sin\beta x + S_n(x)\cos\beta x]$

wobei P_n, Q_n, S_n, R_n Polynome von Grad n sind.

Bemerkung 7.9

1. <u>Liegt eine Linearkombination der Störfunktion vor, so hat man auch als</u> end of this list? Ansatz eine entsprechende Linearkombination zu wählen. Dies ist Superpositionsprinzip

Beispiel

Die DGL $y'' + y' - 6y = 50 \sin x$ hat die spezielle Lösung

$$y_s(x) = -7\sin x - \cos x$$

und die DGL $y'' + y' - 6y = 10e^{2x}$ hat die spezielle Lösung

$$y_s(x) = 2xe^{2x}$$

Die DGL $y'' + y' - 6y = 50 \sin x + 10e^{2x}$ hat die spezielle Lösung

$$y_s(x) = -7\sin x - \cos x + 2xe^{2x}$$

Die allgemenine Lösung

$$y(x) = -7\sin x - \cos x + 2xe^{2x} + c_1e^{-3x} + c_2e^{2x}$$

${\bf Superposition sprinzip:}$

Ist $y_1(c)$ eine spezielle Lösung der L. Differentialgleichung

$$y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + \dots + a_0(x)y = b_1(x)$$

und $y_2(x)$ eine spezielle Lösung der LDGL

$$y^n(x) + \dots + a_0(x)y = b_2(x)$$

dann ist $y_1(x) + y_2(x)$ eine Spezielle Lösung der DGL

$$y^{(n)}(x) + a_{n-1}y^{(n-1)}(x) + \dots + a_0(x)y = b_1(x) + b_2(x)$$

2. Falls $\lambda = \alpha + i\beta$ (β kann null sein) eine m-fache Nullstelle der characteristichen Polynoms von (Resonanzfall)

(H)
$$y^n(x) + a_n y^{(n-1)} + \dots + a_0 = 0$$

so muss man den Ansatz für $y_s(x)$ mit dem Faktor x^m multiplizieren.

Beispiel

 $y'' + y = \sin x$ hat die spezielle Lösung $y_s = -\frac{1}{2}x\cos x$

Zusatzbedingungen einer DGL. Anfangs und Randbedingungen

Die in der allgemeinen Lösung einer DGL n-ter Ordnung auftretenden parameter lassen sich durch Zusatzbedingungen festlegen. Physikalische sinnvolle Zusatzbedingungen werden meist in der Form von Anfangsbedingungen oder Randbedingungen vorgegeben.

Durch Vorgabe von derartigen Bedingungen eliminiert man die Parameter aus der allgemeinen Lösung der DGL und erhält damit eine partikuläre Lösung.

Beispiel 7.10

Freifall mit Reibung

$$m\ddot{x} = mg - a\dot{x}$$
. Anfangsbedingungen: $x(0) = 0$; $v(0) = \dot{x}(0) = 0$

$$mx''(t) + ax'(t) = mg$$

$$(H) \qquad mx''(t) + ax'(t) = 0$$

$$p(\lambda) = m\lambda^2 + a\lambda = 0 \Rightarrow \lambda = 0, \lambda = -\frac{a}{m}$$

$$x_h(t) = c_1 + c_2 e^{-\frac{a}{m}t}$$

Für die spezielle Lösung, wählen wir als Ansatz $x_s(t) = kt$

$$\left(\begin{array}{c} b(t)=mg=\text{ konstant, aber }e^{0\cdot t}=1=\text{ konstant}\\\\ \text{ist eine Lösung der }(H) \end{array}\right)$$

$$x'(t) = k$$
 $x''(t) = 0$
$$mx''(t) + ax'(t) = ak = mg \Rightarrow k = \frac{mg}{a}$$

Allgemeine Lösung

$$x(t) = x_h(t) + x_s(t) = c_1 + c_2 e^{-\frac{a}{m}t} + \frac{mg}{a}t$$

Anfangsbedingungen

$$x(0) = 0 = c_1 + c_2 = 0$$

$$x'(t) = c_2 \left(-\frac{a}{m} \right) e^{-\frac{a}{m}t} + \frac{mg}{a} = 0$$

$$x'(0) = 0 \Rightarrow c_2 \left(-\frac{a}{m} \right) + \frac{mg}{a} = 0$$

$$c_2 = \frac{m^2g}{a^2} \qquad c_1 = -\frac{m^2g}{a^2}$$

$$\Rightarrow x(t) = -\frac{m^2g}{a^2} + \frac{m^2g}{a^2} e^{-\frac{a}{m}t} + \frac{mg}{a}t$$

$$x(t) = \frac{mg}{a}t - \frac{m^2g}{a^2} \left[1 - e^{-\frac{a}{m}t} \right]$$

Eine partikuläre Lösung einer DGL $n{\rm -ter}$ Ordnung

$$y^{(n)}(x) + a_{n-1}(x) + \dots + a_0 y(x) = b(x)$$

kann man aus der allgemeine Lösung

$$y(x) = y(x, c_1, c_2, \dots, c_n)$$

der DGL erhalten

• Durch die Vorgabe von Anfangsbedingungen

$$y(x_0) = A_0$$
$$y'(x_0) = A_1$$
$$y^{(n-1)}(x_0) = A_n$$

(Funktionswert und weitere Ableitungen bis zur (n-1)—ten an einer speziellen stelle x_0 .

• Durch die Vorgabe von Randbedingungen

$$y(x_1) = B_1, y(x_2) = B_2, \dots, y(x_n) = B_n$$

Funktionswerte an n verschiedene Stellen

Beispiel 7.11

Lineares Federpendel:

$$mx''(t) + K_1 x = 0, \omega^2 = \frac{K}{m}$$
$$x''(t) + \omega^2 x = 0 \qquad (H)$$
$$p(\lambda) : \lambda^2 + \omega^2 = 0 \Rightarrow \lambda_{1,2} = \pm \omega i$$

Homogene Lösung: $x_h(t) = c_1 \cos \omega t + c_2 \sin \omega t$ Wenn wir den folgenden Zusatzbedingungen haben

(i)
$$x(0) = 1, x'(0) = 2\omega$$

$$x'(t) = -c_1\omega\sin\omega t + c_2\omega\cos\omega t$$

$$x(0) = 1 \Rightarrow c_1\cos0 + c_2\sin0 = c_1 = 1$$

$$x'(0) = 2\omega \Rightarrow -c_1\omega\sin0 + c_2\omega\cos0 = 2\omega$$

$$\Rightarrow \omega c_2 = 2\omega \Rightarrow c_2 = 2$$

$$\Rightarrow x_p(t) = \cos\omega t + 2\sin\omega t$$

(ii) Mit Randbedingungen:
$$x(0) = 1$$
, $x\left(\frac{\pi}{2\omega}\right) = 1$
$$x(0) = c_1 \cos 0 + c_2 \sin 0 = c_1 = 1$$

$$x\left(\frac{\pi}{2\omega}\right) = c_1 \cos \frac{\pi}{2} + c_2 \sin \frac{\pi}{2} = c_2 = 1$$

Also $x_p(t) = \cos \omega t + \sin \omega t$

7.3 Lineare DGL erster Ordnung (mit allgemeinen koeffizienten)

Die LDGL hat allgemeine Form

$$y'(x) = a(x)y + b(x)$$

b(x) - inhomogene Term.

Und y'(x) = a(x)y ist die zugehörige homogene Gleichung.

Lösung von y'(x) = a(x)y:

$$\frac{y'(x)}{y(x)} = a(x)$$

d.h. $(\ln y(x))' = a(x)$. Sei A(x) eine Stammfunktion von a(x), so ist

$$ln y(x) = A(x) + c$$

Also
$$y(x) = e^{A(x)} \cdot e^c = Ke^{A(x)}$$

Satz 7.12

Die allgemeine Lösung von y'=ay ist $y(x)=Ke^{A(x)}$ wobei $K\in\mathbb{R}$ und A'(x)=a(x)

Beispiel

$$xy'-2y=0$$

$$y'=\frac{2}{x}y\Rightarrow a(x)=\frac{2}{x}, A(x)=2\ln|x|=\ln x^2$$

$$e^{A(x)}=e^{\ln x^2}=x^2$$

$$\Rightarrow \text{ L\"osung von }y'(x)=\frac{2}{x}y\Rightarrow y(x)=Kx^2$$

Jetzt suchen wir eine spezielle Lösung von y' = a(x)y + b(x)

Ansatz

y = uv wobei u, v Funktionen sind. Dann ist

$$y' = u'v + uv'$$

und

$$a(x)y + b(x) = ay + b = u'v + uv'$$
$$a(uv) + b = u'v + uv'$$
$$\Rightarrow u'v + u[v' - av] = b$$

Jetzt wählen wit v so dass

$$v' - av = 0$$

, d.h.

$$v = e^{A(x)}$$

Dann ist u'v = b d.h. $u' = be^{-A(x)}$ d.h. u ist eine Stammfunktion von $be^{-A(x)}$

Satz 7.13

Seien A(x) eine Stammfunktion von a(x) und U(x) ein Stammfunktion von $be^{-A(x)}$. Dann ist $y(x)=e^{A(x)}$. U Lösung von y'=a(x)y+b(x)

Korollar 7.14

Die Allgemeine Lösung von LDGL y'=ay+b ist durch $y(x)=e^{A(x)}\int b(x)e^{-A(x)}dx+Ke^{A(x)}$ gegeben wobei $K\in\mathbb{R},\ A(x)$ eine Stammfunktion von a(x)

Beispiel 7.15

1.

$$xy' - 2y = 2x^4$$

$$\Rightarrow y' = \underbrace{\frac{2}{x}}_{a(x)} y + \underbrace{2x^3}_{b(x)}$$

$$A(x) = 2\ln|x| = \ln x^2$$

 $Ke^{A(x)} = Kx^2$ ist die Lösung von homogene DGL y' = ay

Wir bestimmen jetzt die Stammfunktion von

$$b(x) \cdot e^{-A(x)} = 2x^3 e^{-\ln(x)^2} = 2x^3 x^{-2} = 2x$$
$$2\frac{x^3}{x^2} = 2x$$

Also ein Stammfunktion von $b(x)e^{-Ax}$ ist $\int 2xdx=x^2$ und $x^2e^{A(x)}=x^4$. Somit ist die Allgemeine Lösung

$$y(x) = x^4 + Kx^2$$

2.

$$y' = 4x + 5y - 3$$
$$y' - \underbrace{5}_{a} y = \underbrace{4x - 3}_{b}$$

LDGL mit konstanten koeffizienten. Störfunktion ist 4x - 3.

HDGL:

$$y' - 5y = 0$$

$$\frac{y'}{y} = 5$$

$$\ln y(x) = 5x + c$$

$$y_h(x) = Ke^{5x} \text{ Hom. Lösung}$$

$$A(x) = 5x$$

Spez. Lösung: Sei U(x) stammfunktion von $(4x-3)e^{-5x}$. Dann ist die spezielle Lösung

$$e^{5x}U(x) = e^{5x} \int (4x - 3)e^{-5x} dx$$
$$\int \underbrace{(4x - 3)}_{u} \underbrace{e^{-5x}}_{v'} dx$$
$$\stackrel{P.I.}{=} (4x - 3) \frac{e^{-5x}}{-5} + \frac{4}{5} \int e^{-5x} dx$$

$$= \left[\left(\frac{4x - 3}{-5} \right) - \frac{4}{25} \right] e^{-5x}$$
$$= \left(\frac{-4x}{-5} + \frac{11}{25} \right) e^{-5x}$$

$$\Rightarrow$$
 Spezielle Lösung: $y_s(x) = e^{5x} \cdot U(x) = \frac{-4x}{5} + \frac{11}{25}$

Allgemeine Lösung:

$$y(x) = Ke^{5x} - \frac{4x}{5} + \frac{11}{25}$$

7.4 Separierbare DGL

Definition 7.16

Eine separierbare DGL ist eine der Form

$$y' = f(x)g(y)$$

Ein einfaches Verfahren, so genannte "separation der Variablen" lässt sich anwenden, wenn die DGL separierbar ist. Der "trick": Wir trennen die Terme voneinander und dann integrieren. Dabei ist es hilfreich $y' = \frac{dy}{dx}$ zu schreiben und formel dy bzw. dx als Zähler bzw. Nenner des Bruches aufzufassen

Beispiel 7.17

1.

$$y' = 2xy$$

$$\frac{dy}{dx} = 2xy \quad \Rightarrow \quad \frac{dy}{y} = 2xdx$$

$$\downarrow$$

trennen formel x bzw y - Terme

Jetzt Integrieren wir auf beiden Seiten

$$\int \frac{dy}{y} = \int 2x dx$$
$$\ln|y| = x^2 + c$$

Da wir an der Lösung y interessiert sind und nicht am Logarithmus davon, wenden wir die Exponentialfunktion an

$$|y| = e^{x^2 + c} = e^c e^{x^2}$$

Links und rechts stehen nur positive Grösse. Wenn wir aber auf der Rechten Seite nicht nur positive konstante $e^c>0$ zulassen, sondern irgendwelche Konstanten $K\in\mathbb{R}$ so erhalten wir

$$y(x) = Ke^{x^2}$$

2.

$$y' = 1 + y^2$$
 ist separierbar
$$\int \frac{dy}{1 + y^2} = \int dx$$

$$\Rightarrow \arctan y = x + c \Leftrightarrow y = \tan(x + c)$$

Bemerkung 7.18

y'=f(x)g(x) hat die Konstante Lösungen $y=y_0$ für alle y_0 mit $g(y_0)=0$. Der fall g(y)=0 muss gesondert betrachtet werden.

3

$$|x|, |y| < 1, y' = \sqrt{\frac{1 - y^2}{1 - x^2}}$$

hat keine Konstante Lösungen

$$\frac{dy}{\sqrt{1-y^2}} = \frac{dx}{\sqrt{1-x^2}} \Rightarrow \int \frac{dy}{\sqrt{1-y^2}} = \int \frac{dx}{\sqrt{1-x^2}}$$

$$\Rightarrow \arcsin y = \arcsin x + c$$

$$y = \sin[\arcsin x + c]$$

$$= x \cos c \pm \sqrt{1-x^2} \sin c$$

$$= ax + b\sqrt{1-x^2}$$

wobei $a,b\in\mathbb{R}$ mit $a^2+b^2=1.$ Rückeinsetzen in die DGL liefert die Zusatzbedingung

$$y' = a - \frac{bx}{\sqrt{1 - x^2}} > 0, \quad (1 + y^2 > 0)$$

Kapitel 8

Differential rechnung in \mathbb{R}^n

8.1 Partielle Ableitungen und Differential

Wie kann man die Begriffe der Differentialrechnung auf Funktionen $f:\Omega\subset$ Missing content?? page $\mathbb{R}^n \to \mathbb{R}$ erweitern?

Funktion in mehreren variablen sind ein bisschen komplizierter als Funktionen in einer variable.

Beispiel

1. $f(x) = x^2 + 5$ ist in ursprung stetig da $\lim_{x \to 0} f(x) = f(0)$. Aber $f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

ist im Ursprung nicht stetig.

Where is number 2 of the beispiel??

$$\lim_{x \to 0} \frac{x \cdot y}{x^2 + y^2} = 0 = f(0, 0) \qquad \lim_{y \to 0} \frac{x \cdot y}{x^2 + y^2} = 0 = f(0, 0)$$

$$y = 0 \qquad x = 0$$

is this continuation of the Beispiel, or is it outside??

Aber der Limes entlang der Gerade y = mx

$$\lim_{x \to 0} f(x, mx) = \lim_{x \to 0} \frac{mx^2}{(1 + m^2)x^2} = \frac{m}{1 + m^2}$$

$$\downarrow \qquad \qquad \downarrow$$

$$y \to 0$$

$$y = mx$$
Hängt von m ab

und $\frac{m}{1+m^2} \neq 0$, falls $m \neq 0$. Eine funktion f(x,y) an der stelle (x_0,y_0) ist stetig wenn der limes $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ in jeder Richtung der gleichen wert haben.

Definition 8.1

Sei $\Omega \subset \mathbb{R}^n$, $f: \Omega \to \mathbb{R}$, $a \in \Omega$

1. f hat den Grenzwert $c \in \mathbb{R}$, d.h

$$\lim_{x \to a} f(x) = c$$

ween es zu jeder (Beliebig kleinen) Schranke $\varepsilon > 0$, eine δ -umgebung

$$B_{\delta}(a) := \{ x \in \mathbb{R}^n \mid |x - a| < \delta \}$$

gibt, so dass $|f(x) - a| < \varepsilon$ für alle $x \in \Omega \cap B_{\delta}(a), x \neq a$ gilt

- 2. f heisst in $a \in \Omega$ stetig, wenn $\lim_{x \to a} f'(x) = f(a)$ gilt.
- 3. f heisst in Ω stetig, wenn f in allen $a \in \Omega$ stetig ist.

Die Summe, das Produkt, der Quotient (Nenner ungleich Null) stetiger Funktion sind stetig.

f besitzt keinen Grenzwert in x_0 wenn sich bei Annäherungen an x_0 auf verschiedenen Kurven (z.b. Geraden) verschiedene oder keine Grenzwert ergeben.

Sandwichlemma

Sei f, g, h funktionen wobei g < f < h. Wenn $\lim_{x \to a} g = L = \lim_{x \to a} h$ gilt, dann ergibt $\lim_{x \to a} f = L$.

Da
$$\lim_{(x,y)\to(0,0)} |y| = 0$$
 gilt, $\lim_{(x,y)\to(0,0)} f(x,y) = 0 \Rightarrow f$ ist in (0,0) stetig.

$\underline{\mathbf{Oder}}$

Für Grenzwertbestimmungen (also auch für Stetigkeitsuntersuchungen) ist es oft nützlich, die Funktionen mittels Polarkoordinaten umzuschreiben. Vor allem bei Rationalen Funktionen.

Hierbei gilt $x = r \cos \theta$, $y = r \sin \theta$, wobei r = länge des Vektors (x, y) und φ der Winkel. Nun lass wir die Länge r gegen 0 gehen.

Beispiel

- 1. Die Funktionen
 - $f(x,y) = x^2 + y^2$
 - $f(x,y,z) = x^3 + \frac{x^2}{y^2+1} + z$

KAPITEL 8. DIFFERENTIALRECHNUNG IN \mathbb{R}^n

•
$$f(x,y) = 4x^2y^3 + 3xy$$

•
$$f(x,y) = \cos xy$$

sind stetig, da sie aus Steigen Funktionen zusammengesetzt.

2.

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

Für $(x,y) \neq (0,0)$ ist f als Quotient von steiger Funktionen stetig. Es verbleibt f im Punkt (0,0) zu untersuchen. Da

$$\left| \frac{x^2}{x^2 + y^2} \right| \le 1$$

$$0 < |f(x, y)| < |y|$$

$$f(x, y) = \frac{x^2 y}{x^2 + y^2} = \frac{\left(r^2 \cos^2 \theta\right) (r \sin \theta)}{r^2 \left(\cos^2 \theta + \sin^2 \theta\right)} = r \cos^2 \theta \sin \theta$$

$$\lim_{r \to 0} f(r, \theta) = \lim_{r \to 0} r \cos^2 \theta \sin \theta = 0$$

3. Wir können nochmals die Stetigkeit der Funktion

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

mittels Polarkoordinaten untersuchen

$$f(x,y) = \frac{r^2 \cos \theta \sin \theta}{r^2} = \cos \theta \sin \theta$$
$$\lim_{r \to 0} f(x,y) = \cos \theta \sin \theta$$

hängt von θ ab.

$$\Rightarrow f$$
 in (0,0) nicht stetig

Bemerkung

Eine trickreiche Variante Grenzwerte zu berechnen, ergibt sich durch substitution, d.h. man berechnet den Grenzwert

is this supposed to be inside the list or out??

$$\lim_{(x,y)\to(x_0,y_0)} f\left(g(x,y)\right)$$

indem man zunächst t = g(x, y) setzt und den Grenzwert

$$t_0 = \lim_{(x,y)\to(x_0,y_0)} g(x,y)$$

bestimmt. Dann ist

$$\lim_{(x,y)\to(x_0,y_0)} f(g(x,y)) = \lim_{t\to t_0} f(t)$$

Beispiel

$$\lim_{(x,y)\to(4,0)} \frac{\sin xy}{xy}$$

Hier ist g(x, y) = xy, $\lim_{(x,y)\to(4,0)} g(x,y) = 0$. Somit

$$\lim_{(x,y)\to(4,0)}\frac{\sin xy}{xy}=\lim_{t\to0}\frac{\sin t}{t}=1$$

Wir werden auch sehen das die Existenz der Ableitungen in einigen Richtungen ungenügend für die Differenzierbarkeit der Funktion ist.

Was bedeutet die Ableitung in einiger Richtung?

Beispiel

Sei

$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \to (x^2 + xy)\cos(xy)$

Man kann für jedes y, die Funktion

$$\mathbb{R} \to \mathbb{R}$$
$$x \to (x^2 + xy)(\cos xy)$$

als Funktion einer Variablen x auflassen und die Ableitung davon berechnen. Das Resultat mit $\frac{\partial f}{\partial x}$ bezeichnet, ist die erste partielle Ableitung von f nach x. In diesem fall ist es durch

$$\frac{\partial f}{\partial x}(x,y) = (2x+y)(\cos xy) - (x^2 + xy)y\sin(xy)$$

gegeben.

Analog definiert man $\frac{\partial f}{\partial y}$

$$\frac{\partial f}{\partial y}(x,y) = x(\cos xy) - (x^2 + xy)x\sin(xy)$$

Die allgemeine Definition nimmt folgende Gestallt ein. Sei $\Omega \subset \mathbb{R}^n$. In zukunft bezeichnen wir die i-te Koordinate eines Vektors $x \in \mathbb{R}^n$ mit x^i ; also ist $x = (x^1, x^2, \dots, x^n)$.

Sei $e_i := (0, \dots, 0, 1, 0, \dots, 0)$ der i—te Basisvektor von \mathbb{R}^n

Definition 8.2

Die Funktion $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ heisst an der stelle $x_0 \in \Omega$ in Richtung e_i (oder nach x^i) partielle differenzierbar falls der limes

$$\frac{\partial f}{\partial x^i}(x_0) = f_{x^i}(x_0) := -\lim_{h \to 0} \frac{f(x_0 + he_i) - f(x_0)}{h}$$

$$h \neq 0$$

KAPITEL 8. DIFFERENTIALRECHNUNG IN \mathbb{R}^n

$$=\lim_{h\to 0}\frac{f\left(x_0^1,x_0^2,\ldots,x_0^i+h,x_0^{i+1},\ldots,x_0^n\right)-f\left(x_0^1,\ldots,x_0^n\right)}{h}$$
 existiert

Bemerkung 8.3

Sei $f: \mathbb{R}^2 \to \mathbb{R}, \left(x_0^1, x_0^2\right) \in \mathbb{R}^2$. Wir betrachten die scharen von f

$$f(\cdot, x_0^2): \mathbb{R} \to \mathbb{R}$$

und

$$f(x_0^1,\cdot):\mathbb{R}\to\mathbb{R}$$

 $\frac{\partial f}{\partial x^1},\;\frac{\partial f}{\partial x^2}$ sind die Ansteig der Tangente zur entsprechende schrittkurven

Beispiel

1.
$$f(x, y, z) = \cos yz + \sin xy$$

$$\bullet \ \ \frac{\partial f}{\partial x} = y \cos xy$$

•
$$\frac{\partial f}{\partial y} = -\sin(yz) \cdot z + \cos(xy) \cdot x$$

•
$$\frac{\partial f}{\partial z} = -\sin(yz) \cdot y$$

2.

$$\begin{split} f(x,y) &= \begin{cases} \frac{x^3y}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) \neq (0,0) \end{cases} \\ \frac{\partial f}{\partial x}(0,0) &= \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim \frac{\frac{h^3 \cdot 0}{h^2} - 0}{h} = 0 \\ \frac{\partial f}{\partial y}(0,0) &= \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim \frac{\frac{h \cdot 0^3}{0 + h^2} - 0}{h} = 0 \end{split}$$

Bemerkung

Für Funktionen $f: \mathbb{R} \to \mathbb{R}$ einer variable impliziert die differenzierbarkeit in x_0 , die Stetigkeit in x_0 und zudem eine gute Approximation von f durch eine affine Funktion in einer Umgebung von x_0 . Folgendes Beispiel zeigt, dass in \mathbb{R}^n $(n \ge 2)$ Partielle Differenzierbarkeit keine analoges Approximationseigenschaften oder stetigkeit impliziert:

$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) \neq (0,0) \end{cases}$$

Für alle $(x_0, y_0) \in \mathbb{R}^2$ ist f in beiden Richtungen partiel differenzierbar:

• Für $(x_0, y_0) \neq (0, 0)$

$$\frac{\partial f}{\partial x}(x_0, y_0) = \frac{y(x^2 + y^2) - 2x^2y}{(x^2 + y^2)^2} \bigg|_{(x,y) = (x_0, y_0)} = \frac{y_0^3 - x_0^2 y_0}{(x_0^2 + y_0^2)^2}$$

$$\frac{\partial f}{\partial y}(x_0, y_0) = \left. \frac{x(x^2 + y^2) - 2xy^2}{(x^2 + y^2)^2} \right|_{(x,y) \neq (x_0, y_0)} = \frac{x^2 - xy^2}{(x^2 + y^2)^2}$$

• Für $(x_0, y_0) = (0, 0)$

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{\overbrace{f(0+h,0) - f(0,0)}^{f(x_0+he_1) - f(x_0)}}{h} = \lim_{h \to 0} \frac{0}{h} = 0$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{\overbrace{f(0,0+h) - f(0,0)}^{f(x_0+he_2) - f(x_0)}}{h} = \lim_{h \to 0} \frac{0}{h} = 0$$

Im Ursprung besitzt f beide partielle Ableitungen, sie ist aber nicht stetig. Der Grund ist, dass die partielle Ableitungen nur partielle Informationen geben. Wir müssen die Differenzierbarkeit irgend eine andere weise verallgemeinen.

Die Lösung dieses Problem ist, dass man eine Approximations-Eigenschaft durch eine Lineare Abbildung postuliert.

Sei $f: \mathbb{R} \to \mathbb{R}$ differenzierbar in x_0 ; $f'(x_0)$ existiert. In diesem Fall kann f für alle x nähe x_0 durch die Funktion $f(x_0) + f'(x_0)(x - x_0)$ gut approximiert werden. Dass heisst dass

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + R(x, x_0)$$
 mit $\lim_{x \to x_0} \frac{R(x, x_0)}{x - x_0} = 0$

Bemerkung

 $f'(x): \mathbb{R} \to \mathbb{R}'$ sollt als lineare Abbildung interpretiert werden

Lineare Abbildungen

Eine Abbildung $A: \mathbb{R}^n \to \mathbb{R}$ ist linear falls für alle $x, y \in \mathbb{R}^n$ und $\alpha, \beta \in \mathbb{R}$

$$A(\alpha x + \beta y) = \alpha A(x) + \beta A(y)$$

Eine solche Abbildung ist durch ihre Werte

$$A(e_i) := A_1, A(e_2) := A_2, \dots, A(e_n) := A_n$$

auf der Standardbasis e_1, \ldots, e_n eindeutig bestimmt. Aus $x = \sum_{i=1}^n x^i e_i$ und linearität folgt nämlich

(*)
$$A(x) = \sum_{i=1}^{n} x^{i} A(e_{i}) = \sum_{i=1}^{n} A_{i} x^{i}$$

Umgekehrt bestimmt ein Vektor (A_1, \ldots, A_n) vermöge der Formel (*) eine Lineare Abbildung.

Schreiben wir
$$x=\left(\begin{array}{c} x^1\\ \vdots\\ x^n \end{array}\right)$$
 für einen Vektor $x=(x^1)_{1\leq i\leq n}$ und

 $A = (A_1, \ldots, A_n)$ für die Darstellung einer Lineare Abbildung $A : \mathbb{R}^n \to \mathbb{R}$ bezüglich die Standard Basis $\{e_1, \ldots, e_n\}$ so ist

$$A(x) = (A_1, \dots, A_n) \begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix} = \sum A_i x^i$$

Definition 8.4

Die Funktion $f:\Omega\to\mathbb{R}$ heisst an der Stelle $x_0\in\Omega\subset\mathbb{R}^n$ differenzierbar falls eine lineare Abbildung $A:\mathbb{R}^n\to\mathbb{R}$ gibt so dass

$$f(x) = f(x_0) + A(x - x_0) + R(x_0, x)$$

wobei
$$\lim_{x \to x_0} \frac{R(x, x_0)}{|x - x_0|} = 0$$

In diesem fall heisst A der Differential an der Stelle x_0 und wird mit df bezeichnet, d.h. f ist total differenzierbar in $x_0 = (x_0^1, \dots, x_0^n)$ falls reelle Zahlen A_1, \dots, A_n existieren so dass gilt

$$f(x) = f(x_0) + A_1 (x^1 - x_0^1) + A_2 (x^2 - x_0^2) + \dots + A_n (x^n - x_0^n) + R(x, x_0)$$

$$\text{mit } \lim_{x \to x_0} \frac{R(x, x_0)}{|x - x_0|} = 0$$

Bemerkung: Geometrische Interpretation

Sei $f: \Omega \to \mathbb{R}$, $\Omega \in \mathbb{R}^2$. Wir können die differenzierbare Funktion nähe dem Punkt $x_0 = (x_0^1, x_0^2)$ mit hilfe der Lineare Funktion

$$P(x) = P(x^{1}, x^{2}) = f(x_{0}^{1}, x_{0}^{2}) + \underbrace{A_{1}(x^{1} - x_{0}^{1}) + A_{2}(x^{2} - x_{0}^{2})}_{d_{x_{0}}f(x - x_{0})}$$

approximieren.

can't understand what comes after the formula, page 126.1 middle Die Differenz $\underbrace{f(x)-P(x)}_{dx_0} \xrightarrow{x\to x_0} 0P(x)$ ist eine Ebene. Die ist die Tangentee-

bene zur f an der Stelle x_0 und spielt die Rolle des Tangente für Funktionen in einer Variable.

Beispiel 8.5

a) Jede affin Lineare Funktion f(x) = Ax + b, $x \in \mathbb{R}^n$, wobei $a : \mathbb{R}^n \to \mathbb{R}$ linear, $b \in \mathbb{R}$ ist an jeder stelle $x_0 \in \mathbb{R}^n$ differenzierbar, mit df = A unabhängig von x_0 da

$$f(x) - f(x_0) - A(x - x_0) = 0 \qquad \forall x, x_0 \in \mathbb{R}^n$$

b) Koordinaten funktionen $x^i: \mathbb{R}^n \to \mathbb{R}, \ \left(x^1, x^2, \dots, x^n\right) \to x^i, \ x^i(x) = x^i.$ Dann ist x^i differenzierbar an jeder Stelle $x_0 \in \mathbb{R}^n$ mit

$$dx^{i}\big|_{x=x_0} = (0, \dots, 0, 1, 0, \dots, 0)$$

die Differenziale dx^1, dx^2, \ldots, dx^n bilden also an jeder Stelle $x_0 \in \mathbb{R}^n$ eine Basis des Raumes $L(\mathbb{R}^n : \mathbb{R}) := \{A : \mathbb{R}^n \to \mathbb{R}; A \text{ linear}\}$, wobei wir $A \in L(\mathbb{R}^n : \mathbb{R})$ mit der darstellung $A = (A_1, \ldots, A_n)$ bzg. der Standardbasis $\{e_1, \ldots, e_n\}$ der \mathbb{R}^n identifizieren, und mit $A_i = A(e_i)$

$$dx^i = (0, \dots, 0, 1, 0, \dots, 0)$$

$$\left(dx^{i}\left(e_{1}\right),dx^{i}\left(e_{2}\right),\ldots,dx^{i}\left(e_{n}\right)\right)$$

Da gilt $dx^{i}\left(e_{j}\right)=\left\{ \begin{array}{ll} 1 & i=j\\ 0 & i\neq j \end{array} \right.$ ist $\left(dx^{i}\right)_{1\leq i\leq n}$ die duale Basis von $L\left(\mathbb{R}^{n}:\mathbb{R}\right)$

zur Standardbasis $(e_i)_{1 < i < n}$ des \mathbb{R}^n .

KAPITEL 8. DIFFERENTIALRECHNUNG IN \mathbb{R}^n

c) Jedes $f: \mathbb{R} \to \mathbb{R} \in \subset'(\mathbb{R})$ besitzt das Differential

$$df(x_0) = \frac{df}{dx}(x_0) dx = f'(x_0) dx$$

d.h. $f'(x_0)$ ist die Darstellung von $df(x_0)$ bezüglich der Basis dx von $L(\mathbb{R}:\mathbb{R})$

d) $f(x,y)=xe^y, \mathbb{R}^2 \to \mathbb{R}$ ist an jeder Stelle $(x_0,y_0)\in \mathbb{R}^2$ differenzierbar und es gilt

$$df(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right) = (e^{y_0}, xe^{y_0})$$

$$f(x, y) - f(x_0, y_0) = \underbrace{f(x, y) - f(x_0, y)}_{\swarrow} + f(x_0, y) - f(x_0, y_0)$$

$$= \frac{\partial f}{\partial x}(\xi, y)(x - x_0) + \frac{\partial f}{\partial y}(x_0, \eta)(y - y_0)$$

Nach der MWS der DR, mit geeigneten Zwischenstellen $\xi = \xi(y)$ und η

$$=\frac{\partial f}{\partial x}\left(x_{0},y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0},y_{0}\right)\left(y-y_{0}\right)+R\left(x,y\right)$$

mit

$$R(x,y) = \left[\frac{\partial f}{\partial x}(\xi,y) - \frac{\partial f}{\partial x}(x_0,y_0)\right](x-x_0) + \left[\frac{\partial f}{\partial y}(x_0,\eta) - \frac{\partial f}{\partial y}(x_0,y_0)\right](y-y_0)$$

Wegen die Stetigkeit der Funktionen

$$\frac{\partial f}{\partial x}(x,y) = e^y$$
 und $\frac{\partial f}{\partial y}(x,y) = xe^y$

können wir den "Fehler" $R\left(x,y\right)$ leicht abschätzen

$$\frac{|R(x,y)|}{|(x,y)-(x_0,y_0)|} \le \sup_{\substack{|\xi-x_0|<|x-x_0|\\ |\eta-y_0|<|y-y_0|}} (|e^y-e^{y_0}|+|x_0||e^\eta-e^{y_0}|)$$

Für $(x, y) \to (x_0, y_0), (x, y) \neq (x_0, y_0)$: d.h. es gilt

$$\frac{R\left(x,y\right)}{\left|\left(x,y\right)-\left(x_{0},y_{0}\right)\right|}\to0$$

d.h. es gilt

$$\frac{f\left(x,y\right)-f\left(x_{0},y_{0}\right)-\frac{\partial f}{\partial x}\left(x_{0},y_{0}\right)\left(x-x_{0}\right)-\frac{\partial f}{\partial y}\left(x_{0},y_{0}\right)\left(y-y_{0}\right)}{\left|\left(x,y\right)-\left(x_{0},y_{0}\right)\right|}\underset{\left(x,y\right)\rightarrow\left(x_{0},y_{0}\right)}{\rightarrow}0$$

d.h. f(x,y) ist differenzierbar und

can't read, page 130 bottom

$$df(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)$$

e) Die Funktion

$$f(x,y) = \begin{cases} \frac{x^3y}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

ist in (0,0) differenzierbar.

Wir haben schon gesehen dass $\frac{\partial f}{\partial x}(0,0)=0$ und $\frac{\partial f}{\partial y}(0,0)=0$. Dann gilt

$$\frac{|R|}{|(x,y)|} = \frac{\left| f(x,y) - f(0,0) - \frac{\partial f}{\partial x}(0,0)(x-0) - \frac{\partial f}{\partial y}(0,0)(y-0) \right|}{|(x-0,y-0)|}$$

$$= \frac{|f(x,y) - 0 - 0 - 0|}{|(x,y)|} = \frac{|f(x,y)|}{|(x,y)|}$$

Zum untersuchen ist

$$\lim_{(x,y)\to(0,0)}\frac{|R\left(\left(x,y\right),\left(0,0\right)\right)|}{(x,y)-\left(0,0\right)}=\lim_{(x,y)\to(0,0)}\frac{|f\left(x,y\right)|}{|(x,y)|}$$

Mittels Polarkoordinaten ist dies noch einsichtiger

$$\lim_{(x,y)\to(0,0)} \frac{|f(x,y)|}{x^2 + y^2} = \lim_{r\to 0} \frac{r^4 \cos^3 \theta \sin \theta}{r^2} = \lim_{r\to 0} r^2 \cos^3 \theta \sin \theta = 0$$

$$\Rightarrow f \text{ in } (0,0) \text{ differenzierbar}$$

Gibt es eine Beziehung zwischen des Differential und der partielle Ableitungen?

Bemerkung 8.6

Sei $f: \Omega \to \mathbb{R}$, $\Omega \subset \mathbb{R}^n$ differenzierbar an der Stelle $x_0 \in \Omega$. Dann existieren die partiellen Ableitungen $\frac{\partial f}{\partial x^i}(x_0)$, $i = 1, \ldots, n$ und dass Differential kann

$$d_{y_0}f = \left(\frac{\partial f}{\partial x^1}(x_0), \dots, \frac{\partial f}{\partial x^n}(x_0)\right)$$

dargestellt werden.

Beweis

f an der Stelle x_0 differenzierbar

$$\Rightarrow f(x_0 + he_i) = f(x_0) + (d_{x_0}f)(he_i) + R(x_0 + he_i, x_0)$$

wobei

$$\lim_{h \to 0} \frac{R(x_0 + he_i, x_0)}{h} = \lim \frac{f(x_0 + he_i) - f(x_0)(d_{x_0}f(he_i))}{h} = 0$$

$$\Rightarrow \lim \frac{f(x_0 + he_i) - f(x_0)}{h} = \lim \frac{hd_{x_0}f(e_i)}{h} = d_{x_0}f(e_i)$$

d.h. $\frac{\partial f}{\partial x^i}(x_0)$ existiert und $=d_{x_0}f(e_i)$.

Da $(dx^i)_{i=1,...,n}$ die zur $(e_j)_{1 \le j \le n}$ duale Basis ist

$$d_{x_0}f = \sum_{i=1}^{n} \frac{\partial f}{\partial x^i}(x_0) dx^i = \left(\frac{\partial f}{\partial x^1}(x_0), \frac{\partial f}{\partial x^2}(x_0), \dots, \frac{\partial f}{\partial x^n}(x_0)\right)$$

KAPITEL 8. DIFFERENTIALRECHNUNG IN \mathbb{R}^n

Beispiel

Die Funktion

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

ist in (0,0) nicht differenzierbar (f ist in (0,0) nicht stetig)

Satz 8.7

Falls $f: \Omega \to \mathbb{R}$ in $x_0 \in \Omega \subset \mathbb{R}$ differenzierbar, ist sie in x_0 auch stetig.

Beweis

Folgt aus der Definition

Definition 8.8

 $f: \Omega \to \mathbb{R}$ heisst von der Klasse C', $(f \in C'(\Omega))$ falls f an jeder Stelle $x_0 \in \Omega$ und in jede Richtung e_i partielle differenzierbar ist und die Funktionen $x \to \frac{\partial f}{\partial x^i}(x)$ für jedes $1 \le i \le n$ auf Ω stetig sind

Satz 8.9

Sei $f \in C'(\Omega)$. Dann ist f an jeder Stelle $x_0 \in \Omega$ differenzierbar.

Beweis

Für n = 3 seien $x = (x^1, x^2, x^3), x_0 = (x_0^1, x_0^2, x_0^3).$ Dann ist

$$f(x) - f(x_0) = \{ f(x^1, x^2, x^3) - f(x^1, x^2, x_0^3) \}$$

$$+ \{ f(x^1, x^2, x_0^3) - f(x^1, x_0^2, x_0^3) \}$$

$$+ \{ f(x^1, x_0^2, x_0^3) - f(x_0^1, x_0^2, x_0^3) \}$$

Nach dem MWS der DR gilt:

$$f\left(x^{1}, x_{0}^{2}, x_{0}^{3}\right) - f\left(x_{0}^{1}, x_{0}^{2}, x_{0}^{3}\right) = \frac{\partial f}{\partial x^{1}} \left(\xi^{1}, x_{0}^{2}, x_{0}^{3}\right) \left(x^{1} - x_{0}^{1}\right)$$

wobei ξ^1 zwischen x_0^1 und x^1 . Analog:

$$f(x^1, x^2, x_0^3) - f(x^1, x_0^2, x_0^3) = \frac{\partial f}{\partial x^2} (x^1, \xi^2, x_0^3) (x^2 - x_0^2)$$

wobei $\xi^2 \in (x_0^2, x^2)$ und

$$f(x^{1}, x^{2}, x^{3}) - f(x^{1}, x^{2}, x_{0}^{3}) = \frac{\partial f}{\partial x^{3}}(x^{1}, x^{2}, \xi^{3})(x^{3} - x_{0}^{3})$$

Eingesetz in dem Ausdrucke für $f(x) - f(x_0)$ ergibt:

$$f(x) - f(x_0) = \frac{\partial f}{\partial x^1} (\xi^1, x_0^2, x_0^3) (x^1 - x_0^1)$$

$$+ \frac{\partial f}{\partial x^2} (x^1, \xi^2, x_0^3) (x^2 - x_0^2)$$

$$+ \frac{\partial f}{\partial x^3} (x^1, x^2, \xi^3) (x^3 - x_0^3)$$

Also

$$f(x) - f(x_0) = \sum_{i=1}^{3} \frac{\partial f}{\partial x^1} (x_0^1, x_0^2, x_0^3) (x^i - x_0^i) + R(x_0, x)$$

Wobei

$$R(x_0, x) = \left(\frac{\partial f}{\partial x^1} \left(\xi^1, x_0^2, x_0^3\right) - \frac{\partial f}{\partial x^1} \left(x_0^1, x_0^2, x_0^3\right)\right) \left(x^1 - x_0^1\right)$$

$$+ \left(\frac{\partial f}{\partial x^2} \left(x^1, \xi^2, x_0^3\right) - \frac{\partial f}{\partial x^2} \left(x_0^1, x_0^2, x_0^3\right)\right) \left(x^2 - x_0^2\right)$$

$$+ \left(\frac{\partial f}{\partial x^3} \left(x^1, x^2, \xi^3\right) - \frac{\partial f}{\partial x^3} \left(x_0^1, x_0^2, x_0^3\right)\right) \left(x^3 - x_0^3\right)$$

Also

$$|R(x,x_0)| < |x - x_0| \underbrace{\{|(\ldots)| + |(\ldots)| + |(\ldots)|\}}_{\substack{\to 0 \text{ mit } x \to x_0 \\ \text{weil } \frac{\partial f}{\partial x^i} \text{ stetig sind}}}$$

Also $\lim \frac{R(x,x_0)}{(x-x_0)} = 0$ und f(x) ist differenzierbar.

Beispiel 8.10

Polynome auf \mathbb{R}^n sind von Klasse C!. Für jedes Multindex $\alpha = (\alpha_0, \dots, \alpha_n) \in \mathbb{N}^n$ definieren wir die Monomialfunktion

$$x^{\alpha} := (x^0)^{\alpha_0} (x^1)^{\alpha_1} \dots (x^n)^{\alpha_n}$$

Ein polynom von Grad $\leq N$ ist dann gegeben durch

$$p(x) = \sum_{|\alpha| \le N} a_{\alpha} x^{\alpha}$$

wobei $|\alpha| = \alpha_0 + \ldots + \alpha_n$

Pages 135.1 - 135.2 are a zusammen fassung, not sure if needed to be included

8.2 Differentiationsregeln

Ganz analog zum eindimensionalen Fall gelten folgende Differentiationsregeln

Satz 8.11

Sei $\Omega \subset \mathbb{R}^n$, sowie $f, g: \Omega \to \mathbb{R}$ an der Stelle $x_0 \in \Omega$ differenzierbar. Dann gilt

1.
$$d(f+g)(x_0) = df(x_0) + dg(x_0)$$

2.
$$d(fg)(x_0) = g(x_0) df(x_0) + f(x_0) dg(x_0)$$

3. Falls $g(x_0) \neq 0$

$$d\left(\frac{f}{g}\right)\left(x_{0}\right) = \frac{g\left(x_{0}\right)df\left(x_{0}\right) - f\left(x_{0}\right)dg\left(x_{0}\right)}{\left(g\left(x_{0}\right)\right)^{2}}$$

Beweis ist der selbe wie in Dim=1. Für die Kettenregel gibt es mehrere variationen

Satz 8.12 (Kettenregel, 1. Version)

Sei $g:\Omega\to\mathbb{R}$ in $x_0\in\Omega\subset\mathbb{R}^n$ differenzierbar, sowie $f\mathbb{R}\to\mathbb{R}$ an der stelle $g\left(x_0\right)\in\mathbb{R}$ differenzierbar. Dann gilt

$$d(f \circ g)(x_0) = f'(g(x_0)) \cdot dg(x_0)$$

Beweis

g an der Stelle x_0 differenzierbar

$$\Rightarrow g(x) - g(x_0) \stackrel{A}{=} dg(x_0)(x - x_0) + R_q(x - x_0)$$

 $_{
m mit}$

$$\frac{R_{g}\left(x-x_{0}\right)}{\left(x-x_{0}\right)}\underset{x\rightarrow x_{0}}{\rightarrow}0\Rightarrow\frac{g\left(x\right)-g\left(x_{0}\right)}{\left|x-x_{0}\right|}\overset{B}{\leq}C=\max\left[\frac{\partial g}{\partial x^{i}}\left(x_{0}\right)\right]$$

f in $g(x_0)$ differenzierbar

$$f\left(g\left(x\right)\right) - f\left(g\left(x_{0}\right)\right) \stackrel{C}{=} f'\left(g\left(x_{0}\right)\right) \left[g(x) - g\left(x_{0}\right)\right] + R_{f}\left(g\left(x\right), g\left(x_{0}\right)\right)$$

Woraus folgt:

$$f(g(x)) - f(g(x_0)) = f'(g(x_0)) [dg(x_0)(x - x_0) + R_g(x, x_0)] + R_f(g(x_0), g(x))$$

Aus B folgt:

$$\frac{R_f(g(x_0), g(x))}{x - x_0} = \underbrace{\frac{R_f(g(x_0) - g(x))}{|g(x) - g(x_0)|}}_{C} \cdot \underbrace{\frac{|g(x) - g(x_0)|}{|x - x_0|}}_{C}$$

$$\downarrow \qquad \qquad \downarrow$$

$$0$$

d.h.

$$f(g(x)) - f(g(x_0)) = (f'(g(x_0)) \cdot dg(x_0))(x - x_0) + R_{f \circ g}(x, x_0)$$

wobei

$$R_{f \circ g}(x, x_0) = f'(g(x_0)) R_g(x, x_0) + R_f(g(x_0), g(x))$$

und

$$\frac{R_{f \circ g}\left(x, x_{0}\right)}{x - x_{0}} = \underbrace{f'\left(g\left(x_{0}\right)\right) \frac{R_{g}\left(x, x_{0}\right)}{\left(x - x_{0}\right)}}_{\downarrow 0} + \underbrace{\frac{R_{f}\left(g\left(x_{0}\right), g\left(x\right)\right)}{x - x_{0}}}_{\downarrow 0}$$

Beispiel 8.13

Sei $h: \mathbb{R}^2 \to \mathbb{R}$

$$h(x,y) = e^{xy}$$

 $h = f \circ g$ wobei g(x, y) = xy, $f(t) = e^t$. Dann ist einerseits

$$dh(x,y) = \left(\frac{\partial h}{\partial x}, \frac{\partial h}{\partial y}\right) = (ye^{xy}, xe^{xy})$$

anderseits nach Kettenregel

$$dh(x,y) = d(f \circ g)' = f'(g(x,y)) \cdot dg(x,y) = e^{xy} \cdot (y,x) = (ye^{xy}, xe^{xy})$$

Für die nächste Kettenregel führen wir folgende Definition ein:

Definition 8.14

Sei $\Omega \subset \mathbb{R}$ und $f = (f_1, \dots, f_n) : \Omega \to \mathbb{R}^n$ eine Abbildung. Dann ist f an der Stelle $x_0 \in \mathbb{R}$ differenzierbar, falls jede Komponentenfunktion f_i an der Stelle x_0 differenzierbar ist. Wir definieren in diesem Fall

$$f'(x_0) := (f_1'(x_0), f_2'(x_0), \dots, f_n'(x_0))$$

Bemerkung 8.15

 $f'(x_0)$ kann als Geschwindigkeitsvektor im Punkt $f(x_0)$ aufgefasst werden.

Satz 8.16 (Kettenregel, 2. Version)

Sei $\Omega \subset \mathbb{R}^n$, $I \subset \mathbb{R}$. Sei $g: I \to \Omega$, $t \to (g_1(t), g_2(t), \dots, g_n(t))$, an der Stelle $t_0 \in I$ differenzierbar sowie $f: \Omega \to \mathbb{R}$ an der Stelle $g(t_0)$ differenzierbar. Dann gilt:

$$\frac{d}{dt} (f \circ g) (t_0) = df (g (t_0)) \cdot g' (t_0)$$

$$d (f \circ g) (t_0) = df (g (t_0)) \cdot dg (t_0)$$

$$= \frac{\partial f}{\partial x^1} (g (t_0)) \cdot \frac{dg_1}{dt} (t_0) + \frac{\partial f}{\partial x^2} (g (t_0)) \cdot \frac{dg_2}{dt} (t_0)$$

$$+ \dots + \frac{\partial f}{\partial x^n} (g (t_0)) \cdot \frac{dg_n}{dt} (t_0)$$

Beispiel 8.17

Die vier Grundrechenarten sind differenzierbare Funktionen von zwei variablen. Insbesondere gilt:

•
$$a: \mathbb{R}^2 \to \mathbb{R}, (x,y) \to x+y$$

$$da(x,y) = \left(\frac{\partial a}{\partial x}, \frac{\partial a}{\partial y}\right) = (1,1)$$

•
$$m: \mathbb{R}^2 \to \mathbb{R}, (x, y) \to x \cdot y$$

$$dm(x, y) = (y, x)$$

Setzt man diese beiden Funktionen in die obige Kettenregel ein, so erhält man die aus der Analysis I bekannte Summen und Produktregel:

$$g: \mathbb{R} \to \mathbb{R}^2, t \to (g_1(t), g_2(t))$$

$$\frac{d}{dt}(g_1 + g_2) = \frac{d}{dt}(a \circ g) = (1, 1) \cdot \left(\frac{dg_1}{dt}, \frac{dg_2}{dt}\right) = 1 \cdot \frac{dg_1}{dt} + 1 \cdot \frac{dg_2}{dt}$$

und

$$\frac{d}{dt}(g_1 \cdot g_2) = \frac{d}{dt}(m \circ g) = ((dm)(g(t))) \cdot \left(\frac{dg}{dt}\right)$$

$$= (g_2(t), g_1(t)) \cdot \left(\frac{dg_1}{dt}, \frac{dg_2}{dt}\right)$$

$$= \frac{dg_1}{dt} \cdot g_2(t) + \frac{dg_2}{dt} \cdot g_1(t)$$

Beispiel 8.18

Sei $f: \Omega \to \mathbb{R}$ differenzierbar an der Stelle $x_0 \in \Omega$ und sei $e \in \mathbb{R}^n \setminus \{0\}$; mit |e| = 1. Betrachte die Gerade $g(t) = x_0 + te$, $t \in \mathbb{R}$ durch x_0 mit Richtungsvektor

Dann ist die Funktion $f\circ g$ in einer Umgebung von $t_0=0$ definiert und nach Kettenregel $f\circ g$ an der Stelle $t_0=0$ differenzierbar mit

$$\frac{d}{dt}\left(f\circ g\right)\left(0\right) = df\left(g\left(0\right)\right)\frac{dg}{dt}\left(0\right) = df\left(x_{0}\right)\left(e\right) = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}\left(x_{0}\right) \cdot e^{i}$$

 $e=\left(e^{1},\ldots,e^{n}\right)$ und wird Richtungsableitung von f in Richtung e genannt; $\partial_{e}f\left(x_{0}\right)$ bezeichnet. Insbesondere gilt für $e=e_{i}$

$$\partial_{e_i} f(x_0) = \frac{\partial f}{\partial x^i}(x_0) = df(x_0)(e_i)$$

Geometrisch die Richtungsableitung von f in Richtung e ist genau die Steigung der Tangente zur Schnittkurve falls wir den Graph von f mit einer zur Ebene xy senkrecht Ebene durch $x_0 + te$ scheiden.

Für den Mittelwertsatz der DR - zu verallgemeinen benützen wir folgenden Begriffen:

Definition 8.19

Eine Menge $K \subset \mathbb{R}^n$ ist genau dann Konvex falls für jede Paar von Punkten $x,y \in K$ die Menge K auch das segment

$$(1-t)x + ty$$
 $t \in [0,y]$

mit endpunkt x, y enthält

Satz 8.20

Sei $\Omega \subset \mathbb{R}^n$ konvex $f: \Omega \to \mathbb{R}$ differenzierbar, $x_0, x_1 \in \Omega$ sowie $x_t := (1-t)x_0 + tx_1$. Dann gibt es $\vartheta \in [0,1]$ mit

is it tx_1 or tx, ?? page 145 middle

$$f(x_1) - f(x_0) = df(x_{i\vartheta})(x_1 - x_0)$$

Beweis

Sei $g(t) = (1-t)x_0 + tx_1 = x_t$. Dann ist $t \to (f \circ g)(t)$ auf [0,1] stetig und in (0,1) differenzierbar. Also gibt es $\vartheta \in (0,1)$ mit (nach MWS der DS einer variable)

$$f(x_i) - f(x_0) = (f \circ g)(1) - (f \circ g)(0) = (f \circ g)'(\vartheta)(1 - 0)$$

Nur ist

$$(f \circ g)'(\vartheta) = df\left(g(\vartheta) \cdot \frac{dg}{dt}(\vartheta)\right)$$

Die Kettenregel wird auch angewandelt um Integrale mit Parametern zu studieren. Ein Beispiel davon ist:

Is the formula done or does it continue on a new line, page 146 top

Beispiel

Sei $h: \mathbb{R}^2 \to \mathbb{R}$, $(s,t) \to h(s,t)$. Wir nehmen an, h ist stetig, $\frac{\partial h}{\partial t}$ existiert und ist uf ganz \mathbb{R}^2 stetig. Sei

$$u(t) = \int_{a}^{b(t)} h(s,t)ds, b(t) \in \subset'(\mathbb{R}), a \in \mathbb{R}$$

Is it C' or \subset' ?? page 146 middle

Satz 8.21

Sei h(s,t) eine stetige differenzierbare Funktion von zwei variablen und b(t) differenzierbare Funktion eine variable. Dann ist die Funktion

$$u(t) := \int_{a}^{b(t)} h(s,t)ds$$

wo definiert, differenzierbar mit der Ableitung

$$u'(t) := h(b(t), t) \cdot b'(t) + \int_{a}^{b(t)} \frac{\partial h}{\partial t}(s, t) ds$$

Korollar 8.22

Sei $h=h\left(s,t\right):\mathbb{R}^2\to\mathbb{R}$ stetig, und $\frac{\partial h}{\partial t}$ existiert und auf ganz \mathbb{R}^2 stetig. Sei

$$u(t) = \int_{0}^{t} h(s, t) ds$$

Dann

$$u(t) \in \subset' (\mathbb{R}) \text{ und } u'(t) = h(t,t) + \int_{0}^{t} \frac{\partial h}{\partial t}(s,t) ds$$

Beweis

Setze b(t) = t, a = 0 in Satz 8.21.

Korollar 8.23

Sei $h: \mathbb{R}^2 \to \mathbb{R}$ eine stetige Funktion mit Stetiger partieller Ableitung $\frac{\partial h}{\partial t}$. Dann ist die Funktion

$$u(t) := \int\limits_{-b}^{b} h(s,t) ds$$

differenzierbar mit Ableitung

$$u'(t) := \int_{a}^{b} \frac{\partial h}{\partial t}(s, t) ds$$

Beweis

Setze b(t) = b, in Satz 8.20

Bemerkung 8.24

Mit Korollar 8.23 kann man bestimmte Integrale berechnen, auch wenn die zugehörige unbestimmten Integrale nicht elementar darstellbar sind

Beispiel 8.25

Berechne das integral

$$\int_{0}^{1} \frac{x^5 - 1}{\log x} dx$$

Sei

$$u\left(\alpha\right) := \int_{0}^{1} \frac{x^{\alpha} - 1}{\log x} dx$$

Für $\alpha \geq 0$ erfüllt $u\left(\alpha\right)$ die Voraussetzungen des Satzes. Wir berechnen

$$u'(\alpha) = \int_{0}^{1} \frac{\partial}{\partial \alpha} \left(\frac{x^{\alpha} - 1}{\log x} \right) dx = \int_{0}^{1} \frac{x^{\alpha} \log x}{\log x} dx = \int_{0}^{1} x^{\alpha} dx = \left. \frac{x^{\alpha + 1}}{\alpha + 1} \right|_{0}^{x = 1} = \frac{1}{\alpha + 1}$$

Daraus folgt aus Fundamentales Satz der Integral Rechnung

$$u(\alpha) = \int u'(\alpha) d\alpha = \int \frac{d\alpha}{\alpha + 1} = \log(\alpha + 1) + C$$

Für eine noch zu bestimmende Konstante C. Aber

$$u(0) = \int_{0}^{1} 0 dx = 0 \Rightarrow C = 0$$

$$\Rightarrow \int_{0}^{1} \frac{x^{\alpha} - 1}{\log x} dx = \log(\alpha + 1)$$

$$\Rightarrow \int_{0}^{1} \frac{x^{5} - 1}{\log x} dx = \log 6$$

Beweis Satz 8.21 (Idee)

Sei

$$f(x,y) = \int_{a}^{x} h(s,y) ds : \mathbb{R}^{2} \to \mathbb{R}$$

$$g(t) = \begin{pmatrix} b(t) \\ t \end{pmatrix} : \mathbb{R} \to \mathbb{R}^2, g'(t) = \begin{pmatrix} b'(t) \\ 1 \end{pmatrix}$$

Dann

$$u(t) = (f \circ g)(t) = f(b(t), t) = \int_{a}^{b(t)} h(s, t)ds$$

Nach Hauptsatz der Integral Rechnung f ist nach x partielle differenzierbar und $\frac{\partial f}{\partial x} = h(x,y)$. Man muss zeigen das f ist nach y partielle differenzierbar mit

$$\frac{\partial f}{\partial y}(x,y) = \int_{a}^{x} \frac{\partial h(s,y)}{\partial x} ds$$

Dann ergibt die Kettenregel

$$\begin{split} u'(t) &= \frac{d}{dt} \left(f \circ g \right)(t) = \left(\frac{\partial f}{\partial x} \left(g(t) \right), \frac{\partial f}{\partial y} \left(g(t) \right) \right) \cdot \frac{dg}{dt} \\ &= \left(h \left(b(t), t \right), \left(\int\limits_{a}^{x} \frac{\partial h(s, y)}{\partial y} ds \right) h \left(b(t), t \right) \right) \left(\begin{array}{c} b'(t) \\ 1 \end{array} \right) \\ &= \left(h \left(b(t), t \right), \int\limits_{a}^{b(t)} \frac{\partial h}{\partial y} (s, t) ds \right) \left(\begin{array}{c} b'(t) \\ 1 \end{array} \right) \\ &= h \left(b(t), t \right) \cdot b'(t) + \int\limits_{a}^{b(t)} \frac{\partial h}{\partial t} (s, t) ds \end{split}$$

8.3 Differentialformen und Vektorfelder

Sei $L(\mathbb{R}^n,\mathbb{R})$ der Raum der linearen Abbildungen von \mathbb{R}^n nach \mathbb{R} . Falls $f:\Omega\subset\mathbb{R}^n\to\mathbb{R}$ eine Funktion ist, die in jedem Punkt differenzierbar ist, dann ist $df(x)\in L(\mathbb{R}^n,\mathbb{R})$ und man erhält eine Abbildung

$$\Omega \to L\left(\mathbb{R}^n, \mathbb{R}\right)$$

$$x_0 \to df\left(x_0\right) = \left(\frac{\partial f}{\partial x^1}\left(x_0\right), \dots, \frac{\partial f}{\partial x^n}\left(x_0\right)\right)$$

$$= \frac{\partial f}{\partial x^1}\left(x_0\right) dx^1 + \dots + \frac{\partial f}{\partial x^n}\left(x_0\right) dx^n$$

Dies ist ein Beispiel von 1-form

Definition 8.26

Eine Differentialform vom Grad 1 (auch "1-Form") auf Ω ist eine Abbildung

$$\lambda:\Omega\to L\left(\mathbb{R}^n,\mathbb{R}\right)$$

Beispiel 8.27

1. Seien $x^i: \mathbb{R}^n \to \mathbb{R}$ die Koordinatenfunktionen $1 \leq i \leq n$. Für jedes $x_0 \in \mathbb{R}^n$ ist $dx^i(x_0) \in L(\mathbb{R}^n, \mathbb{R})$; dies führt zur 1-Form

$$dx^{i}: \mathbb{R}^{n} \to L(\mathbb{R}^{n}, \mathbb{R})$$

 $x_{0} \to dx^{i}(x_{0})$

Für jedes $x_0 \in \mathbb{R}^n$, gilt $dx^i(e_j) = \delta_{ij}$ also bilden $dx^1(x_0), \dots, dx^n(x_0)$ eine Basis für $L(\mathbb{R}^n, \mathbb{R}), \forall x \in \mathbb{R}^n$.

Eine beliebig 1—Form $\lambda:\mathbb{R}^n\to L\left(\mathbb{R}^n,\mathbb{R}\right)$ lässt sich dann eindeutig wie folgt darstellen

$$\lambda(x_0) = \sum_{i=1}^{n} \lambda_i(x_0) dx^i(x_0)$$

wobei $\lambda_i : \mathbb{R}^n \to \mathbb{R}$ Funktionen sind.

2. Für jedes $f \in \subset' (\Omega)$ ist das differential df eine 1 - Form

Is it C' or \subset' ?? page 152.1 top

$$df = \frac{\partial f}{\partial x^1} dx^1 + \frac{\partial f}{\partial x^2} dx^2 + \dots + \frac{\partial f}{\partial x^n} dx^n$$

3. Der Ausdrück $\lambda\left(x,y,z\right)=3dx+5zdy+xdz$ definiert ein 1
–Form auf \mathbb{R}^3 mit

$$\lambda_1(x, y, z) = 3$$
$$\lambda_2(x, y, z) = 5z$$
$$\lambda_3(x, y, z) = x$$

Definition 8.28

Ein Vektorfeld auf $\Omega \subset \mathbb{R}^n$ ist eine Abbildung $v: \Omega \to \mathbb{R}^n$

Does the definition include the examples? page 153 top

Beispiel

1.

$$v: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \to (2xy, x^2)$

2. v(x,y) = (-y,x)

Bemerkung 8.29

Sei <,> das übliche Skalarprodukt auf \mathbb{R}^n , d.h.

$$\langle x, y \rangle := \sum_{i=1}^{n} x^{i} y^{i}$$

Mittels <, > kann man von 1-Formen zu Vektorfelder und umgekehrt übergehen. Dies geht wie folgt:

1. Sei $v:\Omega\to\mathbb{R}^n$ ein Vektorfeld. Dann definieren wir $\forall x\in\Omega,\,\omega\in\mathbb{R}^n$

$$\lambda(x)(\omega) := \langle v(x), \omega \rangle$$

Offensichtlich $\lambda(x) \in (\mathbb{R}^n, \mathbb{R})$ und somit ist

$$\lambda: \Omega \to L(\mathbb{R}^n, \mathbb{R})$$
$$x \to \lambda(x): \mathbb{R}^n \to \mathbb{R}$$
$$\omega \to \langle v(x), \omega \rangle$$

eine 1—Form auf Ω

Umgekehrt

2. Sei $\lambda: \Omega \to L(\mathbb{R}^n, \mathbb{R})$ 1–Form und $\lambda(x) := \sum_{i=1}^n \lambda_i(x) dx^i$ wie oben.

Wir definieren

$$v: \Omega \to \mathbb{R}^n$$

 $x \to (\lambda_1(x), \lambda_2(x), \dots, \lambda_n(x))$

dann ist v ein Vektorfeld und

$$\lambda(x)(\omega) = \langle v(x), \omega \rangle$$

Sei $\omega = \omega^1 e_1 + \omega^2 e_2 + \dots + \omega^n e_n$. Dann

$$\lambda(x)(\omega) = \sum_{i=1}^{n} \lambda_i(x) dx^i(\omega)$$

$$= \sum_{i=1}^{n} \lambda_i(x) dx^i \left(\omega^1 e_1 + \omega^2 e_2 + \dots + \omega^n e_n\right)$$

$$= \sum_{i=1}^{n} \lambda_i(x) \left(\omega^1 dx^i \left(e_1\right) + \omega^i dx^i \left(e_i\right) + \dots + \omega^n dx^i \left(e_n\right)\right)$$

$$dx^i(e_j)_{ij} \leftarrow = \sum_{i=1}^{n} \lambda_i(x) \omega^i = (\lambda_i(x), \dots, \lambda_n(x)) \cdot (\omega^1, \dots, \omega^n)$$

$$= \langle v(x), \omega \rangle$$

Diese Diskussion können wir auf das Differential einer Funktion anwenden

Definition 8.30

Sei $f \in \subset' (\Omega)$, das durch

$$\langle v(x), \omega \rangle := df(x)(\omega), \omega \in \mathbb{R}^n$$

definierte Vektorfeld heisst Gradientenfeld von f und wird mit $v(x) = \nabla f(x)$ oder gradf bezeichnet.

Bezüglich der Standardbasis e_1, \ldots, e_n der \mathbb{R}^n folgt die Darstellung

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x^1}(x) \\ \vdots \\ \frac{\partial f}{\partial x^n}(x) \end{pmatrix}, \forall x \in \Omega$$

(Oben nehmen wir $\lambda(x) := df(x) = \sum_{i} \frac{\partial f}{\partial x^i} r^i x^i$, Bemerkung 8.29, 2.)

Satz 8.31

Sei $f \in C'(\Omega)$ und $x_0 \in \Omega$. Dann gibt $\nabla f(x_0)$ die Richtung und $|\nabla f(x_0)|$ den Betrag des Steilsten Anstiegen von f an der Stelle x_0

Beweis

Aus der Definition des Gradientenfeld folgt $\forall e \in \mathbb{R}^n$, unit Vektor ||e|| = 1

$$df(x_0)(e) = \langle \nabla f(x_0), e \rangle$$

Mit Cauchy-Schwarz folgt

$$<\nabla f(x_0)> \le ||\nabla f(x_0)|| ||e|| = ||\nabla f(x_0)||$$

mit Gleichkeit genau dann wann e ein positives vielfachen von $\nabla f(x_0)$ ist, nähmlich

$$e = \frac{\nabla f(x_0)}{|\nabla f(x_0)|}$$

$$\Rightarrow df(x_0) e \le |\nabla f(x_0)|$$

mit gleicheit für $e = \frac{\nabla f(x_0)}{|\nabla f(x_0)|} \nabla f(x_0) \neq 0 \Rightarrow \nabla f(x_0)$ zeigt die Richtung an, in der f am schnellsten wächst.

Geometrische Interpretation Sei $f: \mathbb{R}^n \to \mathbb{R}, C'$. Für jedes $s \in \mathbb{R}$ wird $f^{-1}(s) = \{x \in \mathbb{R}^n \mid f(x) = s\}$ Niveaufläche genannt.

Beispiel

1.

$$f: \mathbb{R}^3 \to \mathbb{R}$$
$$(x, y, z) \to x^2 + y^2 + z^2$$

dann ist $f^{-1}(s) = \text{Sphäre mit Zenter } O \text{ und Radius } \sqrt{s}$

2. f(x,y) = xy ist ein Hyperbolischer Parabolid mit Niveaulinien

 $f: \mathbb{R}^n \to \mathbb{R}$. Nun sei $x_0 \in \Omega$ mit $f(x_0) = s$, i.e. $x_0 \in f^{-1}(s)$. Sei $\gamma: [-1,1] \to \mathbb{R}^n$ ein diff. kurve durch x_0 mit $\gamma[-1,1] \subset f^{-1}(s)$, $\gamma(0) = x_0$

Dann gilt $f(\gamma(t)) = s, \forall t \in [-1, 1]$ und es folgt aus Kettenregel

$$\begin{split} \frac{d}{dt}\left(f\left(\gamma(t)\right)\right) &= \frac{d}{dt}(s) = 0 \\ & \qquad \qquad \Downarrow \\ df\left(\gamma(t)\right) \cdot \gamma'(t) &= 0 = <\nabla f\left(\gamma(t)\right), \gamma'(t) > \end{split}$$

Insbesondere $0=df\left(\gamma(0)\right)\cdot\gamma'(0)=<\nabla f\left(x_0\right),\gamma'(0)>$ d.h. $\nabla f\left(x_0\right)$ steht senkrecht zur Niveauflache von f durch x_0

Beispiel

Sei
$$f(x,y) = \frac{x^2 - y^2}{2}, x, y \in \mathbb{R}^2$$

$$\nabla f(x,y) = (x, -y)$$
 Sei $(x_0, y_0) = (1, -1)$
$$\nabla f(1, -1) = (1, 1) \qquad (\nabla f(1, -1)) = \sqrt{2}$$

$$\frac{\nabla f}{|\nabla f|}(1, -1) = \frac{1}{\sqrt{2}}(1, 1)$$

3. Im Punkt P biegt der Bergweg ab; nach Südosten geht er mit 25% steigung berg an, nach Süden mit 20% Gefälle berg ab. Der wanderer im Nebel möchte über die Wiese möglichst rascht zum Gipfel. In welche Richtung muss er gehen und wie steil ist es dorthin?

Wir legen die Koordinatensystem so, dass die x-Achse nach Osten und die y-Achse nach Norden zeigt, und setzen voraus, dass die Höhenfunktion h differenzierbar ist. Wir wollen ihren Gradienten in P $\nabla h(P)$ bestimmen. Noch Voraussetzung hat h die beiden Richtungsableitungen

$$dh(P)(v_1) = 0.25$$
 $dh(P)(v_2) = -0.2$

wobei

$$v_1 = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$$
 $v_2 = (0, -1)$

$$dh(P)(v_1) = \left(\frac{\partial h}{\partial x}(P), \frac{\partial h}{\partial y}(P)\right) \cdot v_1$$
$$= \frac{\partial h}{\partial x}(P)\frac{1}{\sqrt{2}} + \frac{\partial h}{\partial y}(P)\left(-\frac{1}{\sqrt{2}}\right) = \frac{1}{4}$$
$$dh(P)(v_2) = \left(\frac{\partial h}{\partial x}(P)\right)(0) - \frac{\partial h}{\partial y}(P)(-1) = -\frac{1}{5}$$

Durch Lösen des linearen Gleichungssystem folgen wir:

$$\frac{\partial h}{\partial x}\left(P\right) = \frac{\sqrt{2}}{4} + \frac{1}{5}, \frac{\partial h}{\partial y}\left(P\right) = \frac{1}{5}$$

Die Richtung des Gradients ist somit

$$\nabla h\left(P\right) = \arctan \frac{\frac{1}{5}}{\frac{\sqrt{2}}{4} + \frac{1}{5}} = 19.86 degrees$$

und die Steigung in diese Richtung ist

$$|\nabla h(P)| = \sqrt{\left(\frac{\sqrt{2}}{4} + \frac{1}{5}\right)^2 + \left(\frac{1}{5}\right)^2} = 0.59 = 59\%$$

add arg at the beginning of the equation using special command, as well as tilde on top of equal sign

add tilde on top of second to last equal sign

8.4 Wegintegrale

Wir haben gesehen in Bemerkung 8.29 dass Mittels das übliche SKalarprodukt <,> kann man von 1-Formen zu Vektorfelder und umgekehrt übergehen.

can't read, page 162 middle

In diesem Kapitel werden wir das "Wegintegral" von 1-Formen oder von Vektorfelder längs eine Kurve studieren. Dazu untersuchen wir zunächst Kurven in \mathbb{R}^n

Parameterdarstellung einer Kurve

Sei $\gamma \subset \mathbb{R}^n$ eine Kurve. Eine Parameterdarstellung (PD) von γ ist eine Funktion

$$\gamma: I = [a, b] \to \mathbb{R}^n$$

$$t \to \gamma(t)$$

wobei $\gamma\left(t\right)$ ein Punkt γ ist und jeder Punkt auf γ kann als $\gamma\left(t\right)$ dargestellt werden

$$\gamma(t) = (\gamma_1(t), \dots, \gamma_n(t))$$

Die positive Orientierung von γ ist die Richtung mit der die Kurve durchgelaufen wird

Besipiel 8.32

1.

$$\gamma(t) = (a_1 + b_1 t, a_2 + b_2 t, a_3 + b_3 t), t \in \mathbb{R}$$

ist die Parameterdarstellung einer Gerade durch den Punkt $a=(a_1,a_2,a_3)$ und parallel zum Vektor (b_1,b_2,b_3)

2. $\gamma(t) = (a\cos t, b\sin t)$ ist eine Parameter Darstellung eine Ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$t \in [0, 2\pi]$$

3. $\gamma_1(t)=(a\cos t,b\sin t,ct),\,t\in[0,2\pi]$ ist eine Parameterdarstellung einer elliptische Helix

 $\gamma_2(t)=(a\cos t,-b\sin t,c(2\pi-t)),$ $t\in[0,2\pi]$ ist Parameterdarstellung der gleichen Kurve wobei die Orientierung umgekehrt ist

Der Tangentenvektor zur Kurve an der Stelle $\gamma(t)$ ist $\gamma'(t)$

$$\gamma'(t) = (\gamma_1'(t), \gamma_2'(t), \dots, \gamma_n'(t))$$

Do I have to include the example?? page 164 bottom

Definition 8.33

Das Wegintegral von ϑ langs γ

$$\int\limits_{\gamma} v d\vec{s} = \int\limits_{\gamma} v(\gamma) d\gamma := \int\limits_{a}^{b} \langle v(\gamma(t)), \gamma'(t) \rangle dt$$

 $vd\vec{s} = \gamma'(t)dt$ heisst gerichtetes Längeelement

Beispiel 8.34

Ein einführendes Beispiel: Sei ein Massenpunkt, der sich unter den Einfluss eines Kraftfeldes $F: \mathbb{R}^2 \to \mathbb{R}$ bewegt.

Wenn der Massenpunkt durch eine Konstante Kraft \overrightarrow{F} längs einer Geraden um den Vektor \overrightarrow{s} verschoben.

Die dabei verrichtete Arbeit ist definitionsgemäss das Skalar Produkt aus dem Kraftvektor \overrightarrow{F} und dem Verschiebungsvektor \vec{s} .

Allgemeinen Fall

Verschiebungs längs einer Kurve γ in einem Kraftfeld F = (P(x,y), Q(x,y))

 $\Delta W = F \cdot \Delta(\gamma) = \text{Kraftkomponente}$ entlang des Weges mal züruckgelagter weg.

Da sich Betrag und Richtung der Kraft sowie der jeweilige Winkel zum Weg vom Punkt zu Punkt ändern, gilt das zur Berechnung notwendige Skalarprodukt näherungsweise jeweils nur für ein Wegelement $\overrightarrow{\Delta}r$. Die Berechnung der Arbeit erfolgt daher in folgender Weise.

a) Zerlegung des Weges in Teilabschnitte

$$\Delta \gamma_1 = \gamma(t_{i+1}) - \gamma(t_i) = \frac{\Delta \gamma}{\Delta t} \cdot \Delta t$$

can't read, page 167 middle

b) Ermittlung der Arbeit Kraft:

$$F\left(\gamma\left(t_{i}\right)\right) = F\left(x\left(t_{i}\right), y\left(t_{i}\right)\right)$$

c) Berechnen der Arbeit je Teilabschnitt-Skalarprodukt

$$\Delta W_i = F\left(x\left(t_i\right), y\left(t_i\right)\right) \cdot \Delta \gamma_i$$

d) Aufsummeren der Teil-Arbeit

$$W \approx \sum \Delta W_{i} = \sum F(x(t_{i}), y(t_{i})) \cdot \underbrace{\Delta \gamma}_{\frac{\Delta \gamma}{\Delta t} \cdot \Delta t}$$

e) Durch Verkleinerung des Wegelementes enthält man den exakten Wert

der geleisteten Arbeit

$$W = \int_{a}^{b} F(\gamma(t)) \cdot \gamma'(t) dt$$
$$= \int_{a}^{b} \langle F(\gamma(t)), \gamma'(t) \rangle dt$$

Bemerkung 8.35

Wir können das Wegintegral auch mit Differentialformen formulieren. Sei

$$v: \Omega \to \mathbb{R}^n$$

 $x \to (v^i(x))_{i=1}^n$

ein stetiges Vektorfeld $(v^i(x): \mathbb{R}^n \to \mathbb{R} \text{ stetig})$ dann ist durch $\lambda(x)(\omega) := < v(x), \omega > \text{definierte } \lambda(x) \in L(\mathbb{R}^n, \mathbb{R})$ eine 1-Form

$$\int_{\gamma} v d\vec{s} = \int_{a}^{b} \langle v(\gamma(t)), \gamma'(t) \rangle dt$$
$$= \int_{a}^{b} \lambda(\gamma(t)) (\gamma'(t)) dt$$

Umgekehrt

Sei $\lambda:\Omega\to L\left(\mathbb{R}^n,\mathbb{R}\right)$ eine 1–Form die in Folgende Sinne stetig ist:

Sei

$$\gamma: [a, b] \to \Omega$$

 $t \to (\gamma^1(t), \gamma^2(t), \dots, \gamma^n(t))$

ein C'—weg. Dann ist

$$[a, b] \to \mathbb{R}$$

$$t \to \lambda (\gamma(t)) (\gamma'(t))$$

$$= \sum_{i} \lambda_{i} (\gamma(t)) \cdot \frac{d\gamma^{i}}{dt} (t)$$

eine Stetige Funktion somit ist das Integral $\int_{a}^{b} \lambda(\gamma(t))(\gamma'(t)) dt$ wohl definiert.

Definition 8.36

Das Wegintegral von $\gamma \in L\left(\mathbb{R}^{n},\mathbb{R}\right)$ längs γ ist

$$\int_{\gamma} \lambda := \int_{a}^{b} \lambda (\gamma(t)) (\gamma'(t)) dt$$

Beispiel 8.37

1. Sei $\gamma \in C'([0, 2\pi] = \mathbb{R}^2)$ mit

$$\gamma(t) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$$

$$0 \le t \le 2\pi$$

$$\gamma'(t) = \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix}$$

eine Parametrisierung des Einheitskreises $\lambda = \lambda(x,y)$ die 1-Form mit

$$\lambda(x,y) = -ydx + xdy \qquad (x,y) \in \mathbb{R}^2$$

Dann gilt

$$\int_{\gamma} \lambda = \int_{0}^{2\pi} \underbrace{\left(-\sin t, \cos t\right)}_{\lambda(\gamma(t))} \cdot \underbrace{\left(\begin{array}{c} -\sin t \\ \cos t \end{array}\right)}_{\gamma'(t)} dt$$
$$= \int_{0}^{2\pi} \left(\sin^{2}t + \cos^{2}t\right) dt = 2\pi$$

2. Sei $\gamma(x,y)=3x^2ydx+\left(x^3+1\right)dy$. Wir betrachten die Kurvenintegral längs verschiederer Wege

page 170 top, add formulas as well using a minipage

$$\int_{\gamma_1} \lambda = \int_{\gamma_1} 3x^2 y dx + (x^3 + 1) dy = \int_{0}^{1} (3t^3 + (t^3 + 1)) dt = 2$$

$$\int_{\gamma} \lambda = \int_{0}^{1} (3t^4 + (t^3 + 1) \cdot 2t) dt = 2$$

Bemerkung

is inside the enumed list or out?? page bottom

Sei $f(x,y) = x^3y + y$. Dann ist

$$df(x + y) = 3x^2ydx + (x^3 + 1) dy$$

und

$$f(1,1) - f(0,0) = (1+1) - (0,0) = 2$$

Wir können der Begriff des Wegintegrals auf Wege zu erweitern die Stückweise C' sind. Ein Stückweise C'-Weg ist eine Stetige Abbildung $\gamma:[a,b]\to\mathbb{R}^n$ mit einer Unterteilung des Intervals

$$a = a_0 < a_1 < a_2 < \dots < a_n = b$$

so dass

$$\gamma|_{[a_i,a_{i+1}]} = [a_i,a_{i+1}] \to \mathbb{R}^n$$

C' ist.

d.h. $t \to \gamma'(t)$ ist auf (a_i, a_{i+1}) stetig und erweitert sich stetig auf $[a_i, a_{i+1}]$

Beispiel

is this inside the enume-Missing Page 171 bottom figure

ed list or out?? page

middle

Dann definiert man

$$\int\limits_{\gamma}\lambda:=\sum\limits_{t=0}^{n-1}\int\limits_{\gamma\mid_{\left[a_{i},a_{i+1}\right]}}\lambda$$

Jetzt werden wir einzige Grundlegenden Eigenschaften des Wegintegrals herleiten.

Satz 8.38

Eigenschaften des Wegintegrals

E1) Das Wegintegral $\int \lambda$ ist unabhängig von einer orientierungsverhaltenden umparametrisierung.

D.h. Sei $\gamma:[a,b]\to\Omega,$ C' und $\varphi:[a',b']\to[a,b],$ C' mit $\varphi(a')=a,$ $\varphi(b')=b,$ $\varphi'(t)>0$ $\forall t\in[a',b'].$ Dann ist

$$\int_{\gamma \circ \varphi} \lambda = \int_{a'}^{b'} \lambda \left(\gamma \left(\varphi(t) \right) \right) \left(\gamma \circ \varphi \right)' (t) dt$$

$$= \int_{a'}^{b'} \lambda \left(\gamma \left(\varphi(t) \right) \right) \gamma' \left(\varphi(t) \right) \varphi'(t) dt$$

$$= \int_{a}^{b} \lambda \left(\gamma \left(s \right) \right) \gamma' (s) ds = \int_{\gamma}^{a} \lambda$$

Geometrisch heisst dies, dass $\int\limits_{\gamma}\lambda$ nur vom Bild $\gamma\left([a,b]\right)$ mit vorgegebenen Durchlaufsinn abhängt

E2) Seien $\gamma_1:[a_1,b_1]\to\Omega$ und $\gamma_2:[a_2,b_2]\to\Omega$ zwei Wege mit $\gamma_1(b_1)=\gamma_2(a_2)$

Wir definieren $\gamma_1 + \gamma_2$ der Weg der durch aneinanderhängen von γ_1 mit γ_2 entsteht, d.h.

$$\gamma_1 + \gamma_2 = \begin{cases} \gamma_1(t) & t \in [a_1, b_1] \\ \gamma_2(t - b_1 + a_2) & t \in [b_1, b_1 + b_2 - a_2] \end{cases}$$

Dann gilt

$$\int_{\gamma_1 + \gamma_2} \lambda = \int_{\gamma_1} \lambda + \int_{\gamma_2} \lambda$$

E3) Sei $\gamma:[a,b]\to\Omega$ ein Weg. Dann sei $-\gamma:[a,b]\to\Omega$ der Gleiche Weg aber im entgegengesetzen Durchlaufsinn, d.h. $(-\gamma)(t)=\gamma(-t+a+b)$

Dann gilt

$$\int_{-\gamma} \lambda = -\int_{\gamma} \lambda$$

E4) Sei $f:\Omega\to\mathbb{R}$ eine $C'-\text{Funktion, sowie }\gamma:[a,b]\to\Omega$ Stückweise C'. Dann gilt

$$\int_{\gamma} df = f(\gamma(b)) - f(\gamma(a))$$

 γ ist C', dann ist

$$\int_{\gamma} df = \int_{a}^{b} df (\gamma (t)) \gamma' (t) dt$$

$$= \int_{a}^{b} \frac{d}{dt} (f \circ \gamma) (t) dt$$

$$= (f \circ \gamma) (b) - (f \circ \gamma) (a)$$

$$= f (\gamma (b)) - f (\gamma (a))$$

Mittels den Wegintegrals können wir die C'-Funktionen charakterisieren deren Differentialverschwinden.

Satz 8.39

Sei Ω "Offen" und (C'-)Wegzusammenhängend. Sei $f \in C'(\Omega)$ falls df(x) = 0, $\forall x \in \Omega$ so ist f konstant.

Can't read, page 175 middle

Beweis

 Ω wegzusammenhängend heisst dass zu je zwei Punkten $x,y\in\Omega$ gibt es in $C'-\mathrm{Weg}\ \gamma:[0,1]\to\gamma$ mit $\gamma(0)=x$ und $\gamma(1)=y,\,\gamma\left([0,1]\right)\subset\Omega.$ Dann folgt

$$f(y) - f(x) = f(\gamma(1)) - f(\gamma(0))$$
$$= \int_{\gamma} df = 0$$

 $\Rightarrow f(y) = f(x), \forall x, y \in \Omega \Rightarrow f \text{ ist konstant.}$

Frage: Wann ist eine 1-Form λ , von der form $\lambda = df$, d.h. differential einer Funktion? d.h. gegeben eine 1-Form λ , gibt es eine Funktion $f: \Omega \to \mathbb{R}$ s.d. $df = \lambda$

Wenn ein $f:\Omega\to\mathbb{R}$ gibt so dass $df=\lambda$, heisst f ein Potential. (Potential ist wie ein Stammfunktion für ein 1-Form). Mittels Wegintegral,stellen wir jetzt ein Kriterium

Satz 8.30

Sei $\lambda \in \Omega \to L(\mathbb{R}^n, \mathbb{R})$ eine Stetige 1–Form. Folgende Aussage sind äquivalent

- 1. Es gibt $f \in C'(\Omega)$ mit $df = \Omega$
- 2. Für je zwei Stückweise C'-Wege $\gamma_i = [a_i, b_i] \to \Omega$ mit selben Anfangs und Endpunkten (d.h. $\gamma_1(a_1) = \gamma_2(a_2), \gamma_1(b_1) = \gamma_2(b_2)$) gilt

$$\int_{\gamma_1} \lambda = \int_{\gamma_2} \lambda$$

3. Für jede geschlossene C'Weg γ gilt

$$\int_{\gamma} \lambda = 0$$

Beweis

 $(1) \Rightarrow (2)$: Folgt aus E4)

 $(2) \Leftrightarrow (3)$: Klar

(2) \Rightarrow (1): Sei $p_0 \in \Omega$; für jedes $x \in \Omega$. Sei $\gamma : [0,1] \to \Omega$ Stückweise C' mit $\gamma(0) = p_0, \, \gamma(1) = x$. Definiere $f(x) := \int\limits_{\gamma} \lambda$.

Dann ist f nach Annahme (2) Wohldefiniert (d.h. unabhängig von dem Weg von p_0 nach x) (Wir können f auch mit $\int_{p_0}^x \lambda$ bezeichnen)

Behauptung

 $f\in C'\left(\Omega\right)$ und $df=\lambda.$ Um zu zeigen dass $df=\lambda$ müssen wir zeigen dass für $x,x_{0}\in\Omega$

$$f(x) - f(x_0) = \lambda(x_0)(x - x_0) + R(x, x_0)$$

 $mit \frac{R(x,x_0)}{|x-x_0|} \to 0.$

Sei $x_0 \in \mathbb{R}$. Sei $\gamma_1 : [-1, 0] \to \Omega$ ein Weg von p_0 nach x_0 . Dann gilt

$$\int_{\gamma_1} \lambda = f\left(x_0\right)$$

Sei

$$\gamma_x : [0,1] \to \Omega$$

$$t \to (1-t)x_0 + tx$$

Um $\gamma^x([0,1]) \subset \Omega$ zu garantieren, nehmen wir r > 0 so dass $B_r(x_0) \subset \Omega$ und nehmen an, dass $x \in B_r(x_0)$. Dann ist

$$f(x) = \int_{\gamma_1 + \gamma_x} \lambda = \int_{\gamma_1} \lambda + \int_{\gamma_x} \lambda = f(x_0) + \int_{\gamma^x} \lambda$$

Nun ist

$$\int_{\gamma^{x}} \lambda = \int_{0}^{1} \lambda (\gamma_{x}(t)) \gamma_{x}'(t) dt$$

$$= \int_{0}^{1} \lambda (\gamma_{x}(t)) (x - x_{0}) dt$$

$$= \lambda (x_{0}) (x - x_{0}) + \int_{0}^{1} (\lambda (\gamma^{x}(t)) - \lambda (x_{0})) (x - x_{0}) dt$$

Sei $\lambda = \sum \lambda^i dx^i$ dann ist obigen Integral gleich

$$\sum \int_{0}^{1} \left[\lambda_{i}\left(\gamma^{x}\left(t\right)\right) - \lambda_{i}\left(x_{0}\right)\right] \left(x^{i} - x_{0}^{i}\right) dt$$

$$\leq \sum \left(\int_{0}^{1} \left[\lambda_{i}\left(\gamma^{x}\left(t\right)\right) - \lambda_{i}\left(x_{0}\right)\right]^{2}\right)^{\frac{1}{2}} |x - x_{0}|$$

Also $f(x) - f(x_0) = \lambda(x_0)(x - x_0) + R(x, x_0)$, wobei

$$\frac{R(x-x_0)}{|x-x_0|} \le \left(\sum_{i=1}^n \left(\int_0^1 \left(\lambda_i \left(\gamma^x(t)\right) - \lambda_i(x_0)\right) dt\right)^2\right)^{\frac{1}{2}}$$

Aus stetigkeit der folgt das

Can't read, page 179 bottom

$$\lim_{x \to x_0} \frac{R(x, x_0)}{|x - x_0|} \to 0$$

Beispiel 8.31

1. Sei $\lambda = 2xy^2dx + 2x^2ydy$.

Ansatz:

$$f(x,y) = \int_{\gamma_{(x,y)}} \lambda$$

wobei $\gamma_{(x,y)}(t) = (t_x, t_y), t \in (0,1)$. Dann ist

$$\begin{split} \int\limits_{\gamma} \lambda &= \int\limits_{0}^{1} \lambda \left(tx, ty \right) \left(x, y \right) dt \\ &= \int\limits_{0}^{1} \left[2 \left(tx \right) \left(ty \right)^{2} \cdot x + 2 (tx)^{2} \left(ty \right) \cdot y \right] dt \\ &= 4x^{2}y^{2} \int\limits_{0}^{1} t^{3} dt = x^{2}y^{2} \end{split}$$

und $df(x,y) = 2xy^2dx + 2x^2ydy$.

Oder: Ansatz:

$$df: \lambda \Rightarrow \frac{\partial f}{\partial x} = 2xy^2, \frac{\partial f}{\partial y} = 2x^2y$$

$$\Rightarrow \frac{\partial f}{\partial x} = 2xy^2 \Rightarrow f(x,y) = \int 2xy^2 dx = x^2y^2 + C(y)$$

$$\Rightarrow \frac{\partial f}{\partial y} = 2x^2y + \frac{d}{dy}C(y) = 2x^2y \Rightarrow \frac{d}{dy}C(y) = 0 \Rightarrow C(y) = \text{ Konstant}$$

$$\Rightarrow f(x,y) = x^2y^2 + C$$

Where is number 2?? page 180

Analog wie für 1-Formen kann man Satz 8.30 für Vektorfelder Formulieren

Definition 8.32

Ein Vektorfeld $v:\Omega\to\mathbb{R}^n$ heisst konservative falls $\forall\gamma:[0,1]\to\Omega$ geschlossen

$$\int_{\gamma} v ds = 0$$

Aus Satz 8.30 Folgt

Satz 8.33

Für eine Stetige Vektorfeld $v:\Omega\to\mathbb{R}^n$ sind folgende Aussagen equivalent

- 1. v ist Konservative
- 2. Es gibt $f \in C'(\Omega)$ mit $v = \nabla f$. In diesem Fall heisst v Potentialfeld mit dem Potential f.

Im Nächsten Kapitel, mittels höhere Partielle Ableitungen, erhalten wir eine einfach zu notwendige Bedingung für ein Konservatives Vektorfeld. Wir werden sehen dass

can't understand, page 182 top

$$v = (v^i)_{1 \le i \le n} \in C'(\Omega, \mathbb{R}^n)$$
 konservative
$$\Rightarrow \frac{\partial v^i}{\partial x^j} = \frac{\partial v^j}{\partial x^i} \quad 1 \le i, j \le n$$

8.5 Höhere Ableitungen

$$f:\Omega\to\mathbb{R},\,\Omega\subset\mathbb{R}^n$$
 $f\in C'(\Omega)$ heisst von Klasse C^2 falls $\frac{\partial f}{\partial x^i}\in C'(\Omega)_{1\leq i\leq n}$

Für beliebiges m, die Funktion $f \in C'(\omega)$ heisst von der Klasse C^m , $f \in C^m(\omega)$ Where does the definitional falls $\frac{\partial f}{\partial x^i} \in C^{m-1}(\Omega)$, $1 \le i \le n$ on end? page 183 top

Für eine $f \in C^2(\Omega)$, die Funktionen

$$\frac{\partial^2 f}{\partial x^i \partial x^j} := \frac{\partial}{\partial x^i} \left(\frac{\partial f}{\partial x^j} \right)$$

heissen die zweiten partiellen Ableitungen von f.

Analog definiert man die m-ten partielle Ableitungen von f oder partielle Ableitungen vom Grad m für jedes m > 0 (Für $f \in C^m(\Omega)$)

Satz 8.45

Sei $f \in C^2(\Omega)$. Dann gilt

$$\begin{split} \frac{\partial^2 f}{\partial x^i \partial x^j} &= \frac{\partial}{\partial x^i} \left(\frac{\partial f}{\partial x^j} \right) \\ &= \frac{\partial}{\partial x^j} \left(\frac{\partial}{\partial x^i} f \right) = \frac{\partial^2 f}{\partial x^j x^i} \end{split}$$

Im Allgemein

Satz 8.46

Für jede C^k -Funktion sind alle Partielle Ableitungen vom Grad $\leq k$ von der Reihenfolge der Ableitungen unabhängig. Von Satz 8.35 erhalten wir folgende notwendige Bedingung für konservativität

Korollar 8.47

Sei $v:\Omega\to\mathbb{R}^n,\,v=\left(v^i\right)_{1\leq i\leq n}$ ein C'-Vektorfeld. Falls vkonservativ ist, folgt

$$\frac{\partial v^i}{\partial x^j} = \frac{\partial v^j}{\partial x^i} \qquad 1 \le i, j \le n$$

Beweis

Nach voraussetzung gibt es $f\in C'(\Omega)$ mit $v^i(x)=\frac{\partial f}{\partial x^i}$. Da nun $v^i\in C',$ $1\leq i\leq n$ folgt $f\in C^2(\Omega)$. Woraus

$$\frac{\partial v^i}{\partial x^j} = \frac{\partial}{\partial x^j} \left(\frac{\partial f}{\partial x^i} \right) = \frac{\partial}{\partial x^i} \left(\frac{\partial f}{\partial x^j} \right) = \frac{\partial}{\partial x^i} v^j$$

folgt.

Beispiel 8.48

1.

$$v\left(x,y\right) = \left(\begin{array}{c} 4xy^2\\ 2y \end{array}\right)$$

Es gilt $\frac{\partial v'}{\partial y} = 8xy$, $\frac{\partial v^2}{\partial x} = 2$. Also ist v nicht konservativ

2. Sei $\Omega=\left\{(x,y)\in\mathbb{R}^2:(x,y)\neq(0,0)\right\}=\mathbb{R}^2\backslash\left\{0,0\right\}$ und

$$v(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$$

Dann $v:\Omega\to\mathbb{R}^2$ mindestens C'. Ausserdem

$$\frac{\partial v'}{\partial y} = \frac{y^2 - x^2}{(x^2 + y^2)^2} = \frac{\partial v^2}{\partial x}$$

Jetzt berechnen wir $\int\limits_C v ds,$ wobei C:

page 186, middle. Also add the formula describing C(t) using a minipage

$$\int_{C} v ds = \int_{0}^{2\pi} \langle v(C(t)), C'(t) \rangle dt$$

$$= \int_{0}^{2\pi} (-\sin t, \cos t) \cdot \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix} dt$$

$$= \int_{0}^{2\pi} (\sin^{2} t + \cos^{2} t) dt = 2\pi \neq 0$$

$$\Rightarrow v \text{ auf } \Omega \text{ ist nicht konservativ!}$$

Jetzt betrachten wir $\Omega' = \{(x,y) \mid x > 0\}$ und führen Polarkoordinaten can't understand image

on page 187, top

Dann ist $\tan \theta = \frac{y}{x}$ und

$$\theta = \arctan \frac{y}{x}$$

Wir betrachten $\theta: \Omega' \to \mathbb{R}$ als ein Funktion der Variabeln x, y und berechnen

$$\begin{split} \frac{\partial \theta}{\partial x} = & \frac{1}{1 + \left(\frac{y}{x}\right)^2} \left(-\frac{y}{x^2} \right) = -\frac{y}{x^2 + y^2} \\ \frac{\partial \theta}{\partial x} = & \frac{x}{x^2 + y^2} \end{split}$$

Also gilt

$$\nabla \theta (x, y) = v (x, y)$$
$$v (x, y) \in \Omega'$$

 $\Rightarrow v$ ist konservative auf Ω

Das heisst konservativität ist eine Eigenschaft zugleich des Vektorfeldes v $\underline{\mathbf{v}}$ der Region Ω

Definition 8.49

Eine offene Menge $\Omega \subset \mathbb{R}^n$ heisst einfach zusammenhängend falls

- 1. Ω ist stückweise C'-Wegzusammenhängend
- 2. Jeder Stückweise C'–Weg in Ω kann stetig innerhalb Ω auf einen Punkt zusammengezogen werden

Die Region $\Omega = \mathbb{R} \setminus \{0\}$ ist nicht einfach zu $\Omega' = \{(x,y) \mid x > 0\}$ ist es aber.

Satz 8.50

Sei $\Omega \in \mathbb{R}^2$ beschränkt zusammenhängend sowie einfachzusammenhängend, sei $v \in C'(\Omega : \mathbb{R}^2)$ Vektorfeld. Dann sind äquivalent

1. v ist konservativ

2.
$$\frac{\partial v_1}{\partial u} = \frac{\partial v_2}{\partial x}$$

Taylorentwicklung und der lokale Verhalten von C^m -Funktionen

Not sure how big of a title...

Wir werden jetzt ein Verallgemeinerung der 1. Variablen Taylorentwicklung herleiten.

Sei $f: \mathbb{R}^n \to \mathbb{R}$ eine C^m -Funktion sowie $x_0, x_1 \in \mathbb{R}^n$. (Allgemein könnte man \mathbb{R}^n durch eine offene konvexe Menge ersetzen)

Sei

$$\varphi: \mathbb{R} \to \mathbb{R}^n$$
$$t \to (1-t) x_0 + x_1$$

Dann ist $g := f \circ \varphi : \mathbb{R} \to \mathbb{R}$ eine

Dont know where this actually fits: $(g(0) = f = (x_0), g(1) = f(x_1))$

can't read, page 189 bottom

 C^m -Funktion und (nach Taylor von Funktionen 1−variable) es gibt $\xi \in (0,1)$ so dass

(*)
$$g() = g(0) + g'(0) + \ldots + \frac{g^{(m-1)}(0)}{(m-1)!} + \frac{g^{(m)}(\xi)}{m!}$$

can't read between brackets before equal sign, page 190 very top

Jetzt berechnen wir $g^{(i)}(t)$ im Funktion von f und seinem Ableitungen. Für g'(t) benutzen wir die Kettenregel:

$$g'(t) = df(\varphi(t)) \cdot \varphi'(t)$$

mit

$$\varphi'(t) = x_1 - x_0 = (x_1' - x_0', x_1^2 - x_0^2, \dots, x_1^n - x_0^n)$$

Erhalten wir:

$$g'(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} (\varphi(t)) \left(x_{1}^{i} - x_{0}^{i} \right) = \nabla f (\varphi(t)) \cdot (x_{1} - x_{0})$$

$$g'(0) = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} (x_{0}) (x_{1}^{i} - x_{0}^{i}) = \nabla f (x_{0}) \cdot (x_{1} - x_{0})$$

Jetzt berechnen wir $g^{(2)}(t)$:

$$g^{(2)}(t) = \frac{d}{dt} \left(g'\left(t\right) \right) = \sum_{i=1}^{n} \frac{d}{dt} \left(\frac{\partial f}{\partial x^{i}} \left(\varphi\left(t\right) \right) \right) \left(x_{1}^{i} - x_{0}^{i} \right)$$

Analog gilt:

$$\frac{d}{dt}\left(\frac{\partial f}{\partial x^{i}}\left(\varphi\left(t\right)\right)\right) = \sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x^{j} \partial \mathbf{x}^{i}}\left(\varphi\left(t\right)\right)\left(x_{1}^{j} - x_{0}^{j}\right)$$

Eingesetzt gilt:

$$g^{(2)}(t) = \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{\partial^{2} f}{\partial x^{j} \partial x^{i}} (\varphi(t)) \right) \left(x_{1}^{i} - x_{0}^{i} \right) \left(x_{1}^{j} - x_{0}^{j} \right)$$
$$g^{(2)}(0) = \sum_{i=1}^{n} \left(\frac{\partial^{2} f}{\partial x^{j} \partial x^{i}} (x_{0}) \right) \left(x_{1}^{i} - x_{0}^{i} \right) \left(x_{1}^{j} - x_{0}^{j} \right)$$

Daraus schliesst man induktive das

$$g^{(k)}(t) = \sum_{i_1, i_2, \dots, i_k = 1}^{n} \left(\frac{\partial^k f}{\partial x^{i_1} \dots \partial x^{i_k}} (\varphi(t)) \right) \prod_{l=1}^{k} \left(x_1^{i_l} - x_0^{i_l} \right)$$

Eingesetzt in (*) (s.134) ergibt

MISSING CONTENT?? page 191 bottom

Satz 8.51(Taylor entwicklung)

$$f(x_{1}) = f(x_{0}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(x_{0}) (x_{1}^{i} - x_{0}^{i}) + \dots$$

$$+ \frac{1}{(m-1)!} \sum_{i_{1}, \dots, i_{m-1}=1}^{n} \frac{\partial^{m-1} f}{\partial x^{i_{1}} \dots \partial x^{i_{m-1}}} (x_{0}) \prod_{l=1}^{(m-1)} (x_{1}^{i_{l}} - x_{0}^{i_{l}})$$

$$+ \frac{1}{m!} \sum_{i_{1}, \dots, i_{m}=1}^{n} \frac{\partial^{m} f}{\partial x^{i_{1}} \dots \partial x^{i_{m}}} (x_{\xi}) \prod_{l=1}^{m} (x_{1}^{i_{l}} - x_{0}^{i_{l}})$$

mit eine Zahl $\xi \in (0,1), x_{\xi} = (1 - \xi) x_0 + \xi x_1.$

Bemerkung 8.52

Insbesondere für m=2 erhalten wir für f die quadratische Näherung

$$f(x_1) = f(x_0) + \nabla f(x_0) (x_1 - x_0)$$

$$+ \frac{1}{2} \sum_{i,j=1}^{2} \frac{\partial^2 f}{\partial x^i \partial x^j} (x_0) (x_1^i - x_0^i) (x_1^j - x_0^j) + r_2 (f, x_1, x_0)$$

mit Fehler

$$\frac{r_2(f, y_1, x_0)}{|x_1 - x_0|} \to 0, (x_1 \to x_0)$$

Definition 8.53

Die Matrix der Zweiten partiellen Ableitungen heisst die Hesse - Matrix von f, und mit $\operatorname{Hess}(f)$ oder $\nabla^2 f$ bezeichnet

$$\begin{split} \operatorname{Hess}(f) = & \nabla^2 f := \left(\frac{\partial^2 f}{\partial x^i \cdot \partial x^j}\right)_{i,j=1\dots n} \\ = & \begin{pmatrix} \frac{\partial^2 f}{\partial x' \partial x'} & \frac{\partial^2 f}{\partial x' \partial x^2} & \cdots & \frac{\partial^2 f}{\partial x' \partial x^n} \\ \frac{\partial^2 f}{\partial x^2 \partial x'} & \frac{\partial^2 f}{\partial x^2 \partial x^2} & \cdots & \frac{\partial^2 f}{\partial x^2 \partial x^n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x^n \partial x'} & \cdots & \cdots & \frac{\partial^2 f}{\partial x^n \partial x^n} \end{pmatrix} \end{split}$$

Seien $\nabla f, x_1-x_0$ Zeilenvektoren und sei $(x-x_0)^t$ der zu x_1-x_0 transponierte Spaltenvektor . Dann wird die Taylorentwicklung von Grad 2 äquivalent zu

$$f(x) = f(x_0) + \nabla f(x_0) (x - x_0)^t + \frac{1}{2} (x - x_0) \cdot \nabla^2 f(x_0) (x - x_0)^t + r_3 (f, x, x_0)$$

Bemerkung

Die Hesse - Matrix von f, nach Satz von Schwarz ist eine Symmetrische Matrix.

Beispiel

 $f(x,y) = e^{x+y}\cos x$ im Punkt (0,0). Die Taylorentwicklung vom Grad 2:

$$\frac{\partial f}{\partial x} = e^{x+y} \cos x - e^{x+y} \sin x, \ \frac{\partial f}{\partial x}(0,0) = 1$$
$$\frac{\partial f}{\partial x} = e^{x+y} \cos x, \ \frac{\partial f}{\partial x}(0,0) = 1$$

shouln't it be $\frac{\partial f}{\partial u}(0,0) = 1$ for second one??

$$(\nabla f)(0,0) = (1,1)$$
 $f(0,0) = 1$

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = e^{x+y} \cos x - e^{x+y} \sin x, \quad \frac{\partial^2 f}{\partial x \partial y} (0,0) = 1$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = e^{x+y} \cos x - e^{x+y} \sin x - e^{x+y} \sin x - e^{x+y} \cos x$$

$$= -2e^{x+y} \sin x$$

$$\frac{\partial^2 f}{\partial x^2} (0,0) = 0$$

$$\frac{\partial^2 f}{\partial y^2} = e^{x+y} \cos x \qquad \frac{\partial^2 f}{\partial y^2} (0,0) = 1$$

$$\nabla^2 f(0,0) = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

$$((x,y) - (0,0)) \nabla^2 f(0,0) ((x,y) - (0,0))^T = (x,y) \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= (x,y) \begin{pmatrix} y \\ x+y \end{pmatrix}$$
$$= 2xy + y^2$$

$$f(x,y) = e^{x+y}\cos x = 1 + \begin{pmatrix} 1 \\ 1 \end{pmatrix}(x,y) + \frac{1}{2}(x,y) \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= 1 + (x,y) + \frac{1}{2}(2xy + y^2) + r_3(f,(x,y))$$

Taylorpolynom von Grad 2: $1 + (x + y) + \frac{1}{2}(2xy + y^2)$

Die Hesse - Matrix bestimmt ob die Funktion f in der Nähe von x konvex oder konkav ist (oder nicht). Sie "spielt" die gleiche Rolle, wie die zweite Ableitung von Funktionen in einer Variable.

Als nächstes benötigen wir eine mehrdimensionale Entsprechung zu den positivität in den eindimensionalen Beziehungen f''(z) > 0 bzw. f''(z) < 0.

Can't understand word between brackets, page 197 middle

Definition 8.54

Eine symmetrische Matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ heisst

1. Positiv definit wenn

$$^{t}xAx = \sum_{i,j=1}^{n} a_{ij}x^{i}x^{j} > 0$$
 $\forall x \in \mathbb{R}^{n}$

(oder wenn ihre Eigenwerte sämtlich positive sind)

2. Negativ definit wenn

$${}^t x A x < 0 \qquad \forall x \in \mathbb{R}^n$$

(wenn ihre Eigenwerte sämtlich negativ sind)

3. Sonst **indefinit** (wenn sie sowohl positive als auch negative Eigenwerte besitzt)

Im symmetrischen 2×2 Fall ist die Gleichung auf Definitheit besonders leicht

Satz 8.55

Eine Symmetrische Matrix

$$A = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{12} & a_{11} \end{array}\right)$$

ist genau dann

- 1. Positive definit, wenn det A > 0 und $a_{11} > 0$
- 2. Negativ definit, wenn det A > 0 und $a_{11} < 0$
- 3. Indefinit, wenn $\det A < 0$

Extrema von Funktionen mehrere Variablen

Jetzt werden wir nach Punkten $x \in \mathbb{R}^n$ sehen, in denen eine funktion $F: \mathbb{R}^n \to \mathbb{R}$ ein lokales Extremum annimmt. Wir erinnern uns an das Vorgehen im $f: \mathbb{R} \to \mathbb{R}$:

- 1. Finde alle Punkte $x \in \mathbb{R}$, für die f'(x) = 0 gilt (Notwendige Bedingung)
- 2. Falls in einem solchen Punkt zusätzlich f''(x) > 0 (bzw. f''(z) < 0) gilt so handelt es sich um ein lokales Minimum (bzw. Maximum) (hinreichende Bedingung)

Jetzt verallgemeinern wir diese Strategie Zunächst

Definition 8.55

Ein Punkt $x_0 \in \mathbb{R}^n$ mit $df(x_0) = 0$ heisst <u>kritischer Punkt</u> von f (oder <u>stationärer</u> Punkt von f)

Satz 8.56

Sei

$$f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$$

 $f \in C^2(\Omega); x_0 \in \Omega$

- 1. Falls $x_0 \in \Omega$ lokale Extremum (min oder max) von f ist, so gilt $df(x_0) = 0$
- 2. Falls $df(x_0) = 0$, und falls $Hess(f)(x_0)$ positive definiert ist, so ist x_0 eine lokale Minimalstelle
- 3. Falls $df(x_0)$, und falls $\operatorname{Hess}_f(x_0) < 0$ negative definiert ist, so ist x_0 eine lokale Maximalstelle
- 4. Falls $df(x_0) = 0$, und $\operatorname{Hess}_f(x_0)$ indefinite ist, so ist x_0 ein Sattelpunkt (d.h. jede Umgebung U von x_0 enthält Punkte $p, q \in U$ mit $f(P) > f(x_0) > f(q)$)

Beispiel

1.

$$f(x, y, z) = (x - 1)^{2} + (y + 2)^{2} + (z + 1)^{2}$$

$$\nabla f = (2(x - 1), 2(y + 2), 2(z + 1))$$

$$\nabla f(x_{0}) = (0, 0, 0) \Rightarrow x_{0} = (1, -2, -1)$$

$$H_f(x_0) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

 $H_{f}\left(x_{0}\right)$ ist positiv definier
t $\Rightarrow x_{0}\left(1,-2,-1\right)$ ist ein lokales Minimum.

2.

$$f(x,y) = \cos(x+2y) + \cos(2x+3y)$$

$$\nabla f = (-\sin(x+2y) - 2\sin(2x+3y),$$

$$-2\sin(x+2y) - 3\sin(2x+3y)) = (0,0)$$

$$\Rightarrow -\sin(x+2y) - 2\sin(2x+3y) = 0$$

$$-2\sin(x+2y) - 3\sin(2x+3y) = 0$$

$$\Rightarrow \sin(2x+3y) = 0, \sin(x+2y) = 0$$

$$\Rightarrow \sin(2x+3y) = 0, \sin(x+2y) = 0$$

$$\Rightarrow \frac{2x+3y=k\pi}{x+2y=l\pi}$$

$$\Rightarrow y = k\pi \text{ und } x = l\pi$$

Kritische punkte: $(\pi l, \pi k)$ $k, l \in \mathbb{Z}$

$$\frac{\partial f}{\partial y \partial x} = \frac{\partial f}{\partial x \partial y} = -2\cos(x+2y) - 6\cos(2x+3y)$$
$$\frac{\partial^2 f}{\partial x^2} = -\cos(x+2y) - 4\cos(2x+3y)$$
$$\frac{\partial^2 f}{\partial y^2} = -4\cos(x+2y) - 9\cos(2x+3y)$$

$$(0,0): \frac{\partial^2 f}{\partial x^2} = -5 < 0$$

$$\left| \nabla^2 f(0,0) \right| = \begin{vmatrix} -5 & -8 \\ -8 & -13 \end{vmatrix} = 13 \cdot 5 - 64 = 1 < 0$$

 $\Rightarrow \nabla^2 f(0,0)$ ist negative definiert und (0,0) ist eine lokale maximalestelle.

Auch alle punkte $(-2\pi k, 2\pi l)$ sind lokale maxima. Analog, bis auf Addition von Vielfachen von 2π f hat lokale minimalestelle in (π, π) und Sattelpunkte in $(0, \pi)$ und $(\pi, 0)$

8.6 Vektorwertige Funktionen

Sei
$$\Omega \in \mathbb{R}^n$$
, $f = (f^i)_{1 < i < l} \Omega \to \mathbb{R}^l$

Definition 8.57

1. Die Funktion

can,t understand the function, page 203 top

heisst an der stelle $x_0 \in \Omega$ differenzierbar, falls jede komponente f^i , 1 < i < l an der stelle x_0 differenzierbar ist.

Das Differential $df(x_0)$ hat die Gestalt

$$df(x_0) = \begin{pmatrix} df'(x_0) \\ df^n(x_0) \end{pmatrix}$$

2. f heisst auf Ω differenzierbar (bzw. von der Klasse C^m , $m \geq 1$) falls jedes f^i differenzierbar ist (bzw. $f^i \in C^m(\Omega)$) $1 \leq i \leq l$

Bemerkung 8.58

1. Bezüglich der Standardbasis $dx^j,\,1\leq j\leq n$ erhalten wir

$$df^{i}(x_{0}) = \sum_{j=1}^{n} \frac{\partial f^{i}}{\partial x^{j}}(x_{0}) dx^{j} = \left(\frac{\partial f^{i}}{\partial x'}(x_{0}), \dots, \frac{\partial f^{i}}{\partial x^{n}}(x_{0})\right)$$

die Darstellung

$$df(x_0) = \begin{pmatrix} \frac{\partial f'}{\partial x'}(x_0) & \frac{\partial f'}{\partial x^2}(x_0) & \dots & \frac{\partial f'}{\partial x^n}(x_0) \\ \frac{\partial f^2}{\partial x'}(x_0) & \frac{\partial f^2}{\partial x^2}(x_0) & \dots & \frac{\partial f^2}{\partial x^n}(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f^l}{\partial x'}(x_0) & \frac{\partial f^l}{\partial x'}(x_0) & \dots & \frac{\partial f^l}{\partial x^n}(x_0) \end{pmatrix}$$

Die $l \times n$ matrix $df\left(x_0\right) = \left(\frac{\partial f^i}{\partial x^j}\left(x_0\right)\right)_{1 \leq i \leq l, 1 \leq j \leq n}$ heisst Jacobi oder Funktionalmatrix von f an der Stelle x_0 .

2. Auch im Vektorwertigen Fall ist die Funktion f genau dann differenzierbar in x_0 , wenn eine lineare Abbildung $A: \mathbb{R}^n \to \mathbb{R}^l$ existiert mit

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - A(x - x_0)}{|x - x_0|} = 0$$

Beispiel 8.59

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f(x,y) = \begin{pmatrix} x^2 - y^2 \\ 2xy \end{pmatrix}$$

$$f \in C^{\infty} (\mathbb{R}^2 \mathbb{R}^2) \text{ mit } df(x,y) = \begin{pmatrix} 2x & -2y \\ 2y & 2x \end{pmatrix}$$

Can't understant the symbol between the \mathbb{R}^2 , page 205 middle to top

Es gelten die üblichen Differentiationsregeln

Satz 8.60

Sei $f,g:\Omega\subset\mathbb{R}^n\to\mathbb{R}^l$ an der Stelle $x_0\in\Omega$ differenzierbar und $\alpha\in\mathbb{R}$. dann sin die Funktionen αf und f+g sowie das Skalarprodukt von f und g an der Stelle x_0 differenzierbar und

1.
$$d(\alpha f)(x_0) = \alpha df(x_0)$$

2.
$$d(f+g)(x_0) = df(x_0) + dg(x_0)$$

3.
$$d(f \cdot g)(x_0) = f(x_0) \cdot dg(x_0) + g(x_0) \cdot df(x_0)$$

wobei $f(x_0) \cdot dg(x_0) = \sum_{i=1}^{l} f^i(x_0) dg^i(x_0)$

Satz 8.61

Seien $g: \Omega \to \mathbb{R}^l$ an der Stelle $x_0 \in \Omega$ und $f: \mathbb{R}^l \to \mathbb{R}^m$ an der Stelle $g(x_0)$ differenzierbar.

Dann ist die Funktion $f \circ g : \Omega \to \mathbb{R}^m$ an der Stelle x_0 differenzierbar, und

$$d\left(f\circ g\right)\left(x_{0}\right)=df\left(g\left(x_{0}\right)\right)\cdot dg\left(x_{0}\right)$$

Beispiel

Sei

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$(x,y) \to \begin{pmatrix} x^2 - y^2 \\ 2xy \end{pmatrix} \qquad df = \begin{pmatrix} 2x & -2y \\ 2y & 2x \end{pmatrix}$$

$$g: \mathbb{R}^3 \to \mathbb{R}^3$$

$$(x,y,z) \to \begin{pmatrix} x^2 + y^2 + z^2 \\ xyz \end{pmatrix} \qquad dg = \begin{pmatrix} 2x & 2y & 2z \\ yz & xz & xy \end{pmatrix}$$

$$(f \circ g): \mathbb{R}^3 \to \mathbb{R}^2$$
$$(x, y, z) \to \begin{pmatrix} (x^2 + y^2 + z^2)^2 - (xyz)^2 \\ 2(x^2 + y^2 + z^2)(xyz) \end{pmatrix}$$

$$d(f \circ g)(x, y, z) = df(g(x, y, z)) \cdot dg(x, y, z)$$

$$= \begin{pmatrix} 2(x^2 + y^2 + z^2) & -2xyz \\ 2xyz & 2(x^2 + y^2 + z^2) \end{pmatrix} \begin{pmatrix} 2x & 2y & 2z \\ yz & xz & xy \end{pmatrix}$$

$$= \begin{pmatrix} 4x(x^2 + y^2 + z^2) - 2xy^2z^2 & * & * \\ & * & * & * \\ * & * & * & * \end{pmatrix}$$

Kapitel 9

Integration in \mathbb{R}^n

Im Eindimensionalen hatten wir mit dem Integral

$$\int_{a}^{b} f(x)dx$$

den Flächeninhalt unter dem Graphen von f berechnet. Wir suchen nach eine Verallgemeinerung mit der z.B. Volumen unter dem Graphen einer Funktion von zwei Variablen berechnen kann

can't understand word, page 207 middle

Erinnerung: Bestimmtes Riemann-Integral einen Funktion f(x) über einem Interval [a,b]:

$$I = \int_{a}^{b} f(x)dx$$

Das Integral I war als Grenzwert von Riemannscher Ober und Untersumme definiert (falls diese Grenzwert jeweils existieren und übereinstimmten).

Konstruktionsprinzip für Bereichsintegrale ist Analog. Aber die Definitionsbereich D ist komplizierter. Wir betrachten zunächst den Fall zweier Variabler, n=2, und einen Definitionsbereich $D\subset\mathbb{R}^2$ der Form

$$D = [a_1, b_1] \times [a_2, b_2] \subset \mathbb{R}^2$$

d.h. Dist ein kompakter Quader (Rechteck). Sei $f:D\to\mathbb{R}$ eine beschränkte Funktion.

Definition 9.1

Mann nennt $Z = \{(x_0, x_1, \dots, x_n), (y_0, y_1, \dots, y_m)\}$ eine Zerlegung des Quaders $D = [a_1, b_1] \times [a_2, b_2]$ falls gilt

$$a_1 = x_0 < x_1 \dots < x_n = b_1$$

 $a_2 = y_0 < y_1 \dots < y_m = b_2$

- 1. WHERE IS NUMBER 1??
- 2. Die Feinheit einer Zerlegung $Z \in Z(D)$ ist

$$||Z|| := \max_{i,j} \{|x_{i+1} - x_i|, |y_{j+1} - y_j|\}$$

3. Für eine vorgegebene Zerlegung Z, nennt man die Mengen

$$Q_{ij} := [x_i, x_{i+1}] \times [y_j, y_{j+1}]$$

die Teilquader der Zerlegung Z. Das Volumen des Teilquaders Q_{ij} ist

$$vol(Q_{ij}) := (x_{i+1} - x_i)(y_{j+1} - y_j)$$

4. Für beliebige Punkte $\xi_{ij} \in Q_{ij}$ der Jeweiligen Teilquader nennt man

$$R_f(Z) := \sum_{i,j} f(\xi_{ij}) \operatorname{vol}(Q_i j)$$

eine Riemannsche Summe zur Zerlegung ${\cal Z}$

5. Analog zum Integral einer Variablen heissen für eine Zerlegung ${\cal Z}$

$$U_{f}(Z) := \sum_{i,j} \inf_{\mathbf{X} \in Q_{ij}} f(\mathbf{X}) \operatorname{vol}(Q_{i}j)$$

$$O_f(Z) := \sum_{i,j} \sup_{\mathbf{X} \in Q_{ij}} f(\mathbf{X}) \operatorname{vol}(Q_i j)$$

die Riemannsche Untersumme bzw. Riemannsche Obersumme con f(x)

Bemerkung 9.2

1. Es gilt

$$U_f(Z) \le R_f(Z) \le O_f(Z)$$

d.h. eine Riemannsche Summe zur Zerlegung Z liegt stets zwischen der Unter und Obersumme dieser Zerlegung.

2. Entsteht eine Zerlegung \mathbb{Z}_2 aus der Zerlegung \mathbb{Z}_1 durch Hinzunahme wei-

KAPITEL 9. INTEGRATION IN \mathbb{R}^n

terer zwischenpunkte x_i oder/und y_j so gilt

$$U_f(Z_2) \ge U_f(Z_1)$$
 und $O_f(Z_2) \le O_f(Z_1)$

Für zwei beliebige Zerlegungen $\mathbb{Z}_1, \mathbb{Z}_2$ gilt stets

$$U_f\left(Z_1\right) \le O_f\left(Z_2\right)$$

Definition 9.3

Sei $f:D\to\mathbb{R}$ beschränkt

1. Riemannsche Unterintegral b
sz. Riemannsche Oberintegral der Funktion $f\left(x\right)$ über
 D ist

$$U_f := \sup \{U_f(z) : z \in Z(D)\} := \int_{\underline{D}} f(x) d\mu$$

$$O_f := \inf \left\{ O_f(z) : z \in Z(D) \right\} := \int_D^- f(x) d\mu$$

2. Die Funktion f(x) nennt man Riemann - integrierbar über D, falls Unter und Oberintegral übereinstimmen. Das Riemann Integral von f(x) über D ist

$$\int\limits_{D} f(x)d\mu = \int\limits_{D}^{-} f(x)d\mu = \int\limits_{D} f(x)d\mu$$

Bemerkung

In höheren Dimensionen, n>2, ist die Vorgehensweise analog. Schreibweise: Für $n=2,\,n=3$

$$\int\limits_{D}f\left(x,y\right) d\mu \text{ bzw. }\int\limits_{D}f\left(x,y,z\right) d\mu$$

oder auch

$$\int_{D} f(x,y) dxdy \text{ bzw. } \int_{D} f(x,y,z) dxdydz$$

oder

$$\int\limits_{D} f dx dy \text{ bzw. } \int\limits_{D} f dx dy dz$$

Satz 9.4 (Elementare Eigenschaften des Integrals)

1. <u>Linearität:</u> Seien $f,g:D\to\mathbb{R}$ beschränkt und R integrabel, $\beta,\alpha\in\mathbb{R}$. Dann sind $\alpha f,\,f+g$ R - Integrabel

$$\int_{D} (\alpha f + \beta g) d\mu = \alpha \int_{D} f d\mu + \beta \int_{D} g d\mu$$

2. Monotonie: Gilt $f(x) \leq g(x), \forall x \in D$, so folgt

$$\int\limits_{D} f d\mu \le \int\limits_{D} g d\mu$$

3. Positivität: Gilt für alle $x \in D$, $f(x) \ge 0$ (d.h. f(x) ist nichtnegativ), so folgt

$$\int_{D} f d\mu \ge 0$$

4. Abschätzung

$$\left| \int_{D} f(x) d\mu \right| \le \sup_{x \in D} |f(x)| \operatorname{vol}(D)$$

5. Sind D_1, d_2, D Quader, $D = D_1 \cup D_2$ und $\operatorname{vol}(D_1 \cap D_2) = 0$, so ist f genau dann über D integrierbar, falls f über D_1 und über D_2 integrierbar ist und es gilt

$$\int\limits_{D} f d\mu = \int\limits_{D_1} f d\mu + \int\limits_{D_2} f d\mu$$

(Gebietsadditivität)

9.1 Der Satz von Fubini

According to the notes it should be 9.2, which one is right??

Wie kann man das R - Integral konkret berechnen? Der Satz von Fubini hilft uns.

KAPITEL 9. INTEGRATION IN \mathbb{R}^n

Satz 9.5 (Satz von Fubini)

Sei $Q = [a, b] \times [c, d] \in \mathbb{R}^2$ und sei $f \in C^{\circ}(Q)$. Dann gilt

$$\int_{Q} f d\mu = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy$$

d.h. das Integral von füber Qkann iterativ durch 1—Dimensionale Integration bestimmt werden

Beispiel 9.6

1. Sei f(x,y) = 2x + 2yx, $Q = [0,1] \times [-2,2]$

$$\int_{Q} f d\mu = \int_{-2}^{2} \left(\int_{0}^{1} (2x + 2yx) dx \right) dy$$

$$= \int_{-2}^{2} \left(x^{2} + yx^{2} \Big|_{0}^{1} \right) dy$$

$$= \int_{-2}^{2} (1 + y) dy = y + \frac{y^{2}}{2} \Big|_{-2}^{2} = 4$$

Oder:

$$\int_{0}^{1} \left(\int_{-2}^{2} (2x + 2yx) \, dy \right) dx$$

$$= \int_{0}^{1} \left(2xy + y^{2}x \Big|_{-2}^{2} \right) dx$$

$$= \int_{0}^{1} \left[(4x + 4x) - (-4x + 4x) \right] dx$$

$$= \int_{0}^{1} 8x dx = 4x^{2} \Big|_{0}^{1} = 4$$

2.

$$\int_{0}^{1} \int_{0}^{2\pi} (e^x \sin y) \, dy dx$$
$$= \int_{0}^{1} \left(-e^x \cos y \Big|_{0}^{2\pi} \right) dx$$
$$= \int_{0}^{1} 0 dx = 0$$

Oder:

$$\int_{0}^{2\pi} \left(\int_{0}^{1} e^{x} \sin y dx \right) dy$$

$$= \int_{0}^{2\pi} \left(\sin y e^{x} \Big|_{0}^{1} \right) dy$$

$$= \int_{0}^{2\pi} (e - 1) \sin y dy$$

$$= -(e - 1) \cos y \Big|_{0}^{2\pi} = 0$$

Geometrische Dehnung

Not sure about the text size...

In der Skizze ergibt sch
 als Volumen der markierten Schicht bei festem x und sehr kleinen Dicke
 dxnäherungswege das Volumen

$$\left(\int_{c}^{d} f(x,y) \, dy\right) dx$$

Das Aufaddieren sämtlicher Schichtvolumen entspricht gerader der Integration über die Variable x, d.h. für das gesuchte Volumen gilt

$$V = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, dy \right) dx$$

Bis jetzt können wir nur Integrale über achsenparallel rechteckige bzw. quaderförmige Bereiche berechnen.

Das reicht für viele praktische Aufgaben nicht aus. Meist ist der Integrationsbereich D krummling oder zumindest anders begrenzt

Die meisten praktischen Aufgaben lassen sich auf die Integration über sogenannte Normalbereiche zurückführen.

Definition 9.10

1. Eine Teilmenge $D\subset\mathbb{R}^2$ heisst ein Normalbereich bezüglich der x-achse bzw. bezüglich der y-Achse falls es stetige Funktionen g,h bzw. $\overline{g},\overline{h}$ gibt mit

$$D = \{(x, y) \mid a \le x \le b, \text{ und } g(x) \le y \le h(x)\}$$

bzw.

$$D = \{(x, y) \mid \overline{a} \le x \le \overline{b}, \text{ und } \overline{g}(x) \le y \le \overline{h}(x)\}$$

Beispiel

Kreise und Rechtecke sind Normalbereiche bzg. beider Achsen

Über Normalbereiche lässt sich sehr bequem integrieren

Die markierte Scheibe bei y=const. mit kleiner Dicke dx besitzt näherungsweise das Volumen

$$V(x) = \left(\int_{q(x)}^{f(x)} f(x, y) dy\right) dx$$

Nun braucht man V(x) nur noch über [a,b] zu integrieren

$$V = \int_{a}^{b} \left(\int_{g(x)}^{h(x)} f(x, y) \, dy \right) dx$$

Satz 9.11

1. Ist f(x) stetig auf einem Normalbereich

$$D = \left\{ (x, y) \in \mathbb{R}^2 \mid a \le x \le b, \text{ und } g(x) \le y \le h(x) \right\}$$

so gilt

$$\int_{D} f(x)d\mu = \int_{a}^{b} \left(\int_{g(x)}^{h(x)} f(x, y) dy \right) dx$$

2. bzw. Falls

$$D = \{(x, y) \in \mathbb{R}^2 \mid \overline{a} \le x \le \overline{b}, \text{ und } \overline{g}(x) \le y \le \overline{h}(x)\}$$

so gilt

$$\int\limits_{D}f(x)d\mu=\int\limits_{\overline{a}}^{\overline{b}}\left(\int\limits_{\overline{q}(x)}^{\overline{h}(x)}f\left(x,y\right)dx\right)dy$$

Beispiel 9.12

1. Sei f(x,y) = x - y

KAPITEL 9. INTEGRATION IN \mathbb{R}^n

$$\int_{D} f d\mu = \int_{x=0}^{x=1} \int_{y=0}^{y=\sqrt{1-x^{2}}} (x-y) \, dy dx$$

$$= \int_{0}^{1} \left(xy - \frac{y^{2}}{2} \Big|_{0}^{\sqrt{1-x^{2}}} \right) dx$$

$$= \int_{0}^{1} \left(x\sqrt{1-x^{2}} - \frac{1-x^{2}}{2} \right) dx$$

$$= \int_{0}^{1} x\sqrt{1-x^{2}} dx - \frac{1}{2} \int_{0}^{1} 1 - x^{2} dx$$

$$= \frac{1}{2} - \frac{2}{3} = \frac{1}{3}$$

$$\int_{0}^{1} x\sqrt{1-x^{2}}dx \quad u = 1-x^{2}$$

$$du = -2xdx$$

$$= -\frac{1}{2} \int_{0}^{1} \sqrt{u}du = -\frac{1}{2} \cdot \frac{2}{3}u^{\frac{3}{2}} \Big|_{0}^{1} = \frac{1}{3}$$

$$\int_{D} f d\mu = \frac{1}{3} - \frac{1}{3} = 0$$

2. Sei D die durch die Gerade g(x) = x + 2 und die Parabel $b(x) = 4 - x^2$ missing content?? page begrenzte Gebiet

Schnittpunkte:

$$x + 2 = 4 - x^{2}$$
$$x^{2} + x - 2 = 0$$
$$(x - y)(x + 2)$$

Zu Berechnung des Doppelintegrals zerlegen wir das Gebiet in Streifen parallel zur y-Achse. Für festes x variert y von g(x) = x + 2 bis h(x) =

 $4-x^2$

$$\int_{D} x d\mu = \int_{-2}^{1} \left(\int_{x+2}^{4-x^{2}} x dy \right) dx$$

$$= \int_{-1}^{2} x \left(4 - x^{2} - x + 2 \right) dx$$

$$= \int_{-1}^{2} \left(2x - x^{3} - x^{2} \right) dx$$

$$= \left(2x - \frac{x^{4}}{4} - \frac{x^{3}}{3} \right)_{-1}^{2}$$

$$= \left(4 - 4 - \frac{8}{3} \right) - \left(1 - \frac{1}{4} + \frac{1}{9} \right) = -\frac{127}{36}$$

3. Sei D:

$$\int_{D} f d\mu = \int_{-1}^{1} \left(\int_{x=y^{2}}^{1} f dx \right) dy$$
*

(*= Zerlegung des Gebietes in Streifen parallel zur x-achse)

oder mit Zerlegung in streifen parallel zur $y-{\rm Achse}$

$$\int_{D} f d\mu = \int_{x=0}^{1} \left(\int_{y=-\sqrt{x}}^{y=\sqrt{x}} f(x,y) dy \right) dx$$

Manchmal muss man D zerlegen.

4. Bestimme $\int\limits_{D}xdxdy$ wobe
iD von $y^2=4x$ und y=2x-4 begrenzt wird.

Schnittpunkte P_1, P_2 :

$$4x = y^2 = (2x - 4)^2$$

 $\Rightarrow (2x - 4)^2 = 4x \dots$
 $\Rightarrow x = 1 \text{ und } x = 4$
 $P_1 = (1, -2)$ $P_2 = (4, 4)$

Zerlegung des Gebiets in Streifen parallel zur y-Achse

$$\int_{D} x d\mu = \int_{0}^{1} \left(\int_{-2\sqrt{x}}^{2\sqrt{x}} x dy \right) dx + \int_{1}^{4} \left(\int_{y=2x-4}^{2\sqrt{x}} x dy \right) dx = \dots = 14.4$$

Wenn wir Aussen nach y integrieren, brauchen wir keine Unterteilung

$$\int_{D} x d\mu = \int_{y=-2}^{y=4} \left(\int_{y=\frac{y^{2}}{4}}^{\frac{y}{2}+2} x dx \right) dy$$

$$= \int_{-2}^{4} \left(\left(\frac{x^{2}}{2} \right) \Big|_{\frac{y^{2}}{4}}^{\frac{y}{2}+2} \right) dy$$

$$= \frac{1}{2} \int_{-2}^{4} \left(\left(\frac{y}{2} + 2 \right)^{2} - \frac{y^{4}}{16} \right) dy$$

Bemerkung 9.13

1. Das Integral

$$A = \int_{D} 1d\mu$$

ergibt die Fläche von D. Für einen Normal bereich bzg. der x-Achse erhalten wir daraus die bekannte Formel

$$A = \int_{a}^{b} \int_{g(x)}^{h(x)} 1 dy dx = \int_{a}^{b} (h(x) - g(x)) dx$$

2. Interpretiert man $\rho(x,y)$ als ortabhängige Flächendichte, so erhält man mit

$$m = \int_{D} \rho(x, y) \, d\mu$$

die Masse von D

Definition 9.14

Eine Teilmenge $D\subset\mathbb{R}^3$ heisst Normalbereich, falls es eine Darstellung

$$D = \left\{ \left. (x,y,z) \in R^3 \right| a \le x \le b; g(x) < y < h(x); \varphi\left(x,y\right) \le z \le \psi\left(x,y\right) \right\}$$
 gibt.

(Vertauscht man die Rollen von x,y und z so entstehen weitere Mengen, die auch Normalbereiche genannt werden.)

Satz 9.15

Sei $D \subset \mathbb{R}^3$ ein Normalbereich mit Darstellung wie oben, und $f: D \to \mathbb{R}$ stetig. Dann gilt

$$\int\limits_{D}fd\mu=\int\limits_{a}^{b}\int\limits_{g(x)}^{h(x)}\int\limits_{\varphi(x,y)}^{\psi(x,y)}f\left(x,y,z\right) dzdydx$$

 $z = \varphi\left(x,y\right)$ und $z = \psi\left(x,y\right)$ stellen die "Grund" und Deckelfläche von D dar.

Der Normalbereich A ist die Senkrechte Projektion von D in die x-y Ebene. Dessen "Grund" und "Deckelkurve" sind durch y=g(x) und y=h(x) gegeben.