Apprentissage: cours 7 Modélisation probabiliste, maximum de vraisemblance

Simon Lacoste-Julien

30 octobre 2015

Résumé

Modèle probabiliste pour la régression et la classification. Maximum de vraisemblance. Divergence de Kullback-Leibler.

Principe : proposer un modèle probabiliste des données. Déterminer les paramètres du modèle en utilisant le *principe du maximum de vraisemblance*, prédire grâce au modèle obtenu. Avant de considérer des modèles impliquant des entrées et des sorties, on considère un modèle de données simple.

Soit μ une mesure de référence sur \mathcal{Y} (la mesure de comptage sur \mathbb{N} , la mesure de Lebesgue sur \mathbb{R}).

Définition 1. (Modèle paramétrique de distributions) Soit $\Theta \subset \mathbb{R}^p$ un ensemble de paramètres. On appelle modèle \mathcal{P} un ensemble de lois de probabilités à valeur dans \mathcal{Y} , possédant une densité par rapport à la mesure de référence sur \mathcal{Y} et indexés par $\Theta : \mathcal{P} = \{p_\theta d\mu \mid \theta \in \Theta\}$

Exemple 1. Modèles Binomial, Multinomial, Gaussien univarié et multivarié.

Définition 2. (Vraisemblance) Soit une donnée $y \in \mathcal{Y}$. On appelle vraisemblance la fonction $\theta \mapsto p_{\theta}(x)$

On considère un ensemble d'entraı̂nement i.i.d. y_1, \ldots, y_n (dans ce contexte aussi échantillon). La vraisemblance de l'ensemble d'entraı̂nement est

$$L(\theta) := \prod_{i=1}^{n} p_{\theta}(y_i)$$

1 Principe du maximum de vraisemblance

Principe : un bon choix de paramètre est un choix de paramètre qui maximise la probabilité des données observées, i.e. qui maximise la vraisemblance.

- principe du à Sir Ronald Fisher
- validé a posteriori par les bonnes propriétés du maximum de vraisemblance
- À noter que maximiser la vraisemblance est équivalent à maximiser le log de la vraisemblance car log est une fonction strictement monotone.

1.1 Reformulation en terme de risque

Ici, nous sommes dans le cadre de l'estimation de densité (étant données des observations, nous voulons identifier la distribution qui a généré les données). Les actions possibles sont donc $\mathcal{A} = \Theta$; une action a est de choisir une distribution p_{θ} . La perte standard utilisée dans ce cadre est le négatif de la log-vraisemblance $\ell(\theta, y) = -\log(p_{\theta}(y))$ (appelée aussi perte-log). Le risque associé est alors

$$\mathcal{R}(\theta) = -\mathbb{E}[\log(p_{\theta}(Y))]$$

En particulier si $Y \sim p_{\theta_0} d\mu$ pour $\theta_0 \in \Theta$ alors la le paramètre cible est $\theta^* = \theta_0$. Le risque empirique est alors par définition

$$\widehat{\mathcal{R}}_n(\theta) = -\frac{1}{n} \sum_{i=1}^n \log(p_{\theta}(y_i))$$

Le principe de minimisation du risque empirique coïncide alors avec le principe du maximum de vraisemblance de Fisher.

1.2 Divergence de Kullback-Leibler

Considérons l'excès de risque (en supposant que les données sont générés à partir de p_{θ_0}) :

$$\mathcal{R}(\theta) - \mathcal{R}(\theta_0) = -\mathbb{E}_{\theta_0}[\log(p_{\theta}(Y))] + \mathbb{E}_{\theta_0}[\log(p_{\theta_0}(Y))]$$
$$= \mathbb{E}_{\theta_0}[\log\left(\frac{p_{\theta_0}(Y)}{p_{\theta}(Y)}\right)] =: KL(p_{\theta_0}||p_{\theta})$$

KL(p||q) est la divergence de Kullback-Leibler :

$$KL(p||q) := \int_{\mathcal{V}} p(y) \log \frac{p(y)}{q(y)} d\mu(y)$$

Propriétés:

- $KL(p||q) \ge 0$ (par Jensen).
- KL(p||p) = 0 (et donc on voit pourquoi θ_0 minimisait le risque).
- KL n'est pas une métrique (non-symétrique, pas d'inégalité triangulaire, etc.), mais est souvent interprétée comme une distance généralisée sur les distributions.
- Avec un abus de notation, on peut écrire la minimisation du risque empirique pour la perte-log avec la KL, où \hat{p}_n est la distribution empirique :

$$\min_{\theta \in \Theta} KL(\hat{p}_n||p_\theta).$$

1.3 Exemples de maximum de vraisemblance

On considère les modèles de Bernoulli, multinomial et gaussien univarié et multivarié.

Exercice 1. Calculer l'estimateur du maximum de vraisemblance pour ces modèles.

1.3.1 Surapprentissage dans le modèle multinomial

Pour le modèle multinomial : chaque observation Y_i est une variable discrète qui peut prendre k valeurs. On l'encode avec un vecteur $\mathbf{y}_i \in \{0,1\}^k$ tel que $y_{ij} = 1$ si Y_i prend la valeur j et 0 autrement (pour j dans $\{1,\ldots,k\}$). Le modèle multinomial $\mathbf{y}_i \sim \text{Mult}(\pi,1)$ donne la probabilité aux vecteurs \mathbf{y}_i valides (donc une seule entrée égale à 1) de : $p(\mathbf{y}_i) = \prod_{j=1}^k \pi_j^{y_{ij}}$.

Soit $n_j := \sum_{i=1}^n y_{ij}$ le nombre de fois que l'option j a été observée dans les données. L'estimateur du maximum de vraisemblance est :

$$\hat{\pi}_j = \frac{n_j}{n}.$$

Si le nombre d'options k est élevé (par exemple, on pourrait modéliser la probabilité des mots dans un texte; chaque mot est une option; donc k peut facilement être dans les centaines de milliers), i.e. p = k > n, alors plusieurs options ne sont pas observées et donc on estime leur probabilité à zéro. La perte-log pour ces options est infinie; le modèle est dans le surapprentissage! Le maximum de vraisemblance surapprend quand p > n.

Pour le modèle multinomial, on peut régler se problème en régularisant. Une approche est avec la méthode bayésienne avec un à priori sur les paramètres $p(\theta)$ et en utilisant le maximum à-postériori $\operatorname{argmax}_{\theta} p(\theta|D_n) = \operatorname{argmax}_{\theta} p(D_n|\theta) p(\theta)$ (avec la règle de Bayes) plutôt que le maximum de vraisemblance $\operatorname{argmax}_{\theta} p(D_n|\theta)$. Les méthodes bayésiennes donnent souvent des estimateurs avec de bonnes propriétés fréquentistes.

1.4 Modèles conditionnels

La formulation s'étend au cas de paires de données d'entrées et de sortie. Modèle génératif :

$$\mathcal{R}(\theta) = -\mathbb{E}[\log(p_{\theta}(X, Y))] \qquad \widehat{\mathcal{R}}_n(\theta) = -\frac{1}{n} \sum_{i=1}^n \log(p_{\theta}(x_i, y_i))$$

Modèle conditionnel :

$$\mathcal{R}(\theta) = -\mathbb{E}[\log(p_{\theta}(Y|X))] \qquad \widehat{\mathcal{R}}_n(\theta) = -\frac{1}{n} \sum_{i=1}^n \log(p_{\theta}(y_i|x_i))$$

Modèle probabiliste pour la régression linéaire (modèle conditionnel)

On considère la modélisation probabiliste d'un couple entrée sortie (X,Y) avec $\mathcal{X}=\mathbb{R}^p$ et $\mathcal{Y}=\mathbb{R}$ Précisément on ne modélise que la loi conditionnelle de Y sachant X comme étant $Y=\mathbf{w}^\top X+\varepsilon$ avec $\varepsilon \sim \mathcal{N}(0,\sigma^2)$ pour les paramètres $\theta=(\mathbf{w},\sigma^2)\in\mathbb{R}^p\times\mathbb{R}_+$. La log-vraisemblance conditionnelle du modèle est

$$\widehat{\mathcal{R}}_n(\theta) = -\frac{1}{n} \sum_{i=1}^n \log(p_{\theta}(y_i|\mathbf{x}_i)) = \frac{1}{2n\sigma^2} \sum_{i=1}^n (y_i - \mathbf{w}^\top \mathbf{x}_i)^2 + \frac{1}{2} \log(2\pi\sigma^2).$$

L'estimateur du maximum de vraisemblance en ${\bf w}$ est donc celui de la régression linéaire.

Exercice 2. Calculer l'EMV de σ^2