Uvod v geometrijsko topologijo

Luka Horjak (lukahorjak@student.uni-lj.si)

15. februar 2022

Kazalo Luka Horjak

Kazalo

Uvod		3
	Kvocientni prostori 1.1 Kvocientna topologija	4
St	varno kazalo	5

Uvod Luka Horjak

Uvod

V tem dokumentu so zbrani moji zapiski s predavanj predmeta Uvod v geometrijsko topologijo v letu 2021/22. Predavatelj v tem letu je bil izr. prof. dr. Sašo Strle.

Zapiski niso popolni. Manjka večina zgledov, ki pomagajo pri razumevanju definicij in izrekov. Poleg tega nisem dokazoval čisto vsakega izreka, pogosto sem kakšnega označil kot očitnega ali pa le nakazal pomembnejše korake v dokazu.

Zelo verjetno se mi je pri pregledu zapiskov izmuznila kakšna napaka – popravki so vselej dobrodošli.

1 Kvocientni prostori

1.1 Kvocientna topologija

Definicija 1.1.1. Naj bo X množica. Relacija \sim na X je ekvivalenčna, če je refleksivna, simetrična in tranzitivna.

Definicija 1.1.2. Kvocientna množica je množica vseh ekvivalenčnih razredov relacije \sim , oziroma

$$X/_{\sim} = \{ [x] \mid x \in X \}.$$

Definicija 1.1.3. Kvocientna projekcija je preslikava $q: x \mapsto [x]$.

Definicija 1.1.4. Naj bo X topološki prostor z ekvivalenčno relacijo \sim . Kvocientna topologija τ_{\sim} je najmočnejša topologija na X/\sim , za katero je kvocientna projekcija zvezna, oziroma

$$\tau_{\sim} = \left\{ V \subseteq X /_{\sim} \mid q^{-1}(V) \in \tau \right\}.$$

Opomba 1.1.4.1. Odprtost in zaprtost sta invariantni za q^{-1} .

Opomba 1.1.4.2. Kvocientna projekcija ni nujni odprta/zaprta.

Definicija 1.1.5. Naj bo X topološki prostor in q kvocientna projekcija. Za množico A definiramo nasičenje kot

$$q^{-1}(q(A)) \subseteq X$$
.

Trditev 1.1.6. Pri zgornjih oznakah je q(A) odprta¹ natanko tedaj, ko je njeno nasičenje odprto. q je odprta natanko tedaj, ko je nasičenje vsake odprte množice odprto.

Dokaz. The proof is obvious and need not be mentioned.

¹ Enako velja za zaprtost.

Stvarno kazalo

E Ekvivalenčna relacija, 4 K Kvocientna množica, 4 Kvocientna projekcija, 4 N Nasičenje, 4 T Topologija Kvocientna, 4