Due: 2022/06/05Special thanks to 108071001

To begin with some preprocessing.

```
library(rpart)
library(rpart.plot)
library(magrittr)
library(dplyr)

dataset <- read.csv("insurance.csv")
dataset <- na.omit(dataset)
# Split the dataset
train_indices<- sample(1:nrow(dataset), size = 0.8*nrow(dataset))
train_set <- dataset[train_indices,]
test_set <- dataset[-train_indices,]</pre>
```

Question 1. (a) Create an OLS regression model.

```
# Question 1 (a)
ins_lm <- lm(charges ~ age + factor(sex) + bmi + factor(smoker) +
factor(region), data=dataset)
report_lm <- summary(ins_lm)
write.table(round(report_lm$coefficients, digits=5),
file="1a.csv",
sep = ",",
col.names=NA)</pre>
```

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-11556.95734	985.62619	-11.7255	0
age	258.5397	11.93749	21.65779	0
factor(sex)male	-111.57001	334.25839	-0.33378	0.7386
bmi	340.45918	28.71413	11.85685	0
factor(smoker)yes	23862.90634	414.82279	57.52554	0
factor(region)northwest	-304.10359	478.01318	-0.63618	0.52477
factor(region)southeast	-1039.2021	480.64936	-2.16208	0.03079
factor(region)southwest	-916.44143	479.72079	-1.91036	0.0563

(b) Create a decision (regression) tree.

```
library(rpart)
library(magrittr)
library(dplyr)

dataset <- read.csv("insurance.csv")
dataset <- na.omit(dataset)
# Split the dataset
train_indices<- sample(1:nrow(dataset), size = 0.8*nrow(dataset))
train_set <- dataset[train_indices,]
test_set <- dataset[-train_indices,]</pre>
```


- (ii) The depth is 2.
- (iii) There are 4 leaf groups
- (iv) As the following table shows.

smoker, age<43	smoker, age>=43	non-smoker, bmi<30	non-smoker, bmi>=30
28675	36716	7977	8843

(v) Please refer to the plot in (i).

Question 2. The codes to compute the RMSE:

```
# Question 2
mse_oos <- function(actuals, preds) { # MSEs in this homework are all RMSE
sqrt(mean( (actuals - preds)^2 ))
}
mse_oos(dataset$charges, predict(ins_lm, dataset))
mse_oos(dataset$charges, predict(ins_tree, dataset))</pre>
```

- (a) The RMSE_{oos} for the OLS regression model is 6068.683.
- (b) The $RMSE_{oos}$ for the decision tree model is 4321.024.

Question 3. (a) Thanks to 108071021 for help of this part (3(a)) of codes

```
# Question 3 (a)
   # Thanks to 108071021 for help of this part of codes
   bagged_retrain <- function(model, dataset, b){</pre>
     resample <- unique(sample(1:nrow(dataset), replace = TRUE))</pre>
     train_data <- dataset[resample,]</pre>
     train_model <- update(model, data = train_data)</pre>
     train_model
   }
   bagged_learn <- function(model, dataset, b=100){</pre>
10
     lapply(1:b, bagged_retrain, model = model, dataset = dataset)
   }
12
   pred <- function(model, dataset, b){</pre>
     model = model[[b]]
     predict(model, dataset)
   }
17
   bagged_predict <- function(bagged_model, dataset, b){</pre>
```

```
prediction <- lapply(1:b, pred, model = bagged_model, dataset = dataset)
mse_oos(unlist(prediction), rep(unlist(dataset[7]), times = b))
}

# Question 3 (b)
lm_bagged_models <- bagged_learn(ins_lm, train_set, 100)
lm_bagged_mse <- bagged_predict(lm_bagged_models, test_set, 100)

# Question 3 (c)
ins_tree_models <- bagged_learn(ins_tree, train_set, 100)
ins_tree_bagged_mse <- bagged_predict(ins_tree_models, test_set, 100)</pre>
```

- (b) The RMSE_{oos} for the bagged OLS regression model is 6654.777.
- (c) The RMSE_{oos} for the bagged decision tree model is 5073.554.

Question 4. Thanks to 傳奕軒's code in the Microsoft Teams.

```
# Question 4 (a)
   boosted_learn <- function(model, dataset, outcome, n=100, rate=0.1, type) {
     # get data frame of only predictor variables
     predictors <- dataset[, -which(names(dataset) %in% outcome)]</pre>
     # Initialize residuals and models
     res <- dataset[,outcome] # get vector of actuals to start
     models <- list()
     for (i in 1:n) {
       this_model <- update(model, data = cbind(charges = res, predictors))</pre>
       # update residuals with learning rate
10
       if (type == "1")
11
       {
12
         res <- res - rate * this_model$fitted.values
       }
14
       else
15
16
         res <- res - rate * this_model$y
18
       models[[i]] <- this_model # Store model
19
20
     list(models=models, rate=rate)
21
   }
22
23
   boost_predict <- function(boosted_learning, new_data) {
24
     boosted_models <- boosted_learning$models
25
     rate <- boosted_learning$rate
26
     n <- length(boosted_models)</pre>
27
28
     # get predictions of new_data from each model
     predictions = lapply(1:n, function(i){
30
       rate*predict(boosted_models[[i]], new_data)
31
     })
32
     pred_frame = as.data.frame(predictions) #%>% unname
     pred <- apply(pred_frame, 1, sum)</pre>
     mse_oos(pred, new_data[,7]) # 7 for charges
36
37
   # Question 4 (b)
```

```
ins_lm_boosted_model <- boosted_learn(ins_lm, train_set, outcome = "charges",</pre>
                                              type = "1")
   ins_lm_boosted_mse <- boost_predict(ins_lm_boosted_model, test_set)</pre>
   # Question 4 (c)
   ins_tree_stump <- rpart(charges ~ age + sex + bmi + smoker + region,
                              data=dataset, cp=0, maxdepth=1)
   ins_tree_boosted_model <- boosted_learn(ins_tree_stump, train_set,</pre>
                                                outcome="charges", type='t')
   ins_tree_boost_mse <- boost_predict(ins_tree_boosted_model, test_set)</pre>
49
   (b) The RMSE<sub>oos</sub> for the boosted OLS regression model is 6638.21.
```

(c) The RMSE_{oos} for the boosted decision tree model is 5166.023.

Note that the RMSE boosted method varies a lot.

Question 5. (a) The bagging of the decision tree

```
# Question 5 (a)
   flag <- 0 # break the loop or not
   maxdepth_ins <- 1 # maxdepth of the tree
   maxdepth_vector <- c()</pre>
   bagged_mse <- c()</pre>
   while(flag == 0){
     control <- rpart.control(maxdepth = maxdepth_ins, cp = 0)</pre>
     # Using code in Question 3 (c)
     ins_tree <- rpart(charges ~ bmi + age + sex + children + smoker + region,
11
                         data = train_set, control = control)
12
     ins_tree_models <- bagged_learn(ins_tree, train_set, 100)</pre>
13
     ins_tree_bagged_mse <- bagged_predict(ins_tree_models, test_set, 100)</pre>
15
     # append the result to the vector
16
     maxdepth_vector <- c(maxdepth_ins)</pre>
17
     bagged_mse <- c(bagged_mse, ins_tree_bagged_mse)</pre>
19
     # To determine to brake the loop or not
20
     if(length(bagged_mse) >= 2){
21
       if(bagged_mse[maxdepth_ins-1] < bagged_mse[maxdepth_ins]){</pre>
22
         flag <- 1 # break
23
       }
24
25
     maxdepth_ins <- maxdepth_ins + 1
26
27
28
   result_dataframe_5a <- cbind(maxdepth_vector, bagged_mse)
29
   names(result_dataframe_5a) <- c("maxdepth", "bagged_mse")</pre>
   write.table(result_dataframe_5a, file="5a.csv", sep = ",", col.names=NA)
```

$maxdepth_vector$	bagged_mse
1	7108.743
2	4775.779
3	4572.248
4	4473.494
5	4512.021

```
# Question 5 (b)
   flag <- 0 # break the loop or not
   maxdepth_ins <- 1 # maxdepth of the tree
   maxdepth_vector <- c()</pre>
   boost_mse <- c()
   while(flag == 0){
     control <- rpart.control(maxdepth = maxdepth_ins, cp = 0)</pre>
     # Using code in Question 4 (c)
10
     ins_tree_stump <- rpart(charges ~ age + sex + bmi + smoker + region,</pre>
11
                                data=dataset, control = control)
12
     ins_tree_boosted_model <- boosted_learn(ins_tree_stump, train_set,</pre>
13
                                                 outcome="charges", type='t')
14
     ins_tree_boost_mse <- boost_predict(ins_tree_boosted_model, test_set)</pre>
15
     # append the result to the vector
     maxdepth_vector <- c(maxdepth_ins)</pre>
     boost_mse <- c(boost_mse, ins_tree_boost_mse)</pre>
19
     # To determine to brake the loop or not
     if(length(boost_mse) >= 2){
       if(boost_mse[maxdepth_ins-1] < boost_mse[maxdepth_ins]){</pre>
         flag <- 1 # break
       }
     }
26
     maxdepth_ins <- maxdepth_ins + 1</pre>
27
28
29
   result_dataframe_5b <- cbind(maxdepth_vector, boost_mse)</pre>
30
   names(result_dataframe_5b) <- c("maxdepth", "bagged_mse")</pre>
31
   write.table(result_dataframe_5b, file="5b.csv", sep = ",", col.names=NA)
32
```

$maxdepth_vector$	boost_mse
1	7095.81
2	4730.264
3	4481.213
4	4414.42
5	4471.158