Оглавление

Введение	2
1 Построение математической модели	3
1.1 Модель без термо регулятора	3
1.2 Молель с терморегулятором	4

Введение

Каждый день люди встречают нагревательные приборы. Это может быть пальник, электрическая кухонная плита, радиатор отопления или обычный электрический утюг.

Каждый из приборов имеет своих характеристики, и человеку, как пользователю, хочется знать, как быстро нагреется тот или иной прибор. Для этого можно потроить математическую модель, которая и сможет спрогнозировать поведение прибора. Кроме того, почти каждый нагревательный прибор оснащён терморегулятором.

В данной работе рассмотрим построение математической модели нагревателя на примере паяльника с терморегулятором и без него.

1 Построение математической модели

1.1 Модель без термо регулятора

Основной характеристикой нагревательного прибора является температура. При включенном нагревателе она изменяется со временем. Нас интересует зависимость изменения температуры ([T] = K) от веремни ([t] = c): T(t).

Предположим, что нагреватель состоит из одного материала, температура окружающей среды постоянная и равна T_{env} . Также отметим, что масса окружающей среды намного больше массы нагревательного прибора (паяльника): $m_{env} >> m_H$.

Процесс нагревания описыватеся изменением количеством внутренней энергии тела (ΔQ , $[Q] = \mathcal{A}$ ж) от изменении температуры (ΔT):

$$\Delta Q = cm\Delta T,\tag{1}$$

где c - удельная теплоёмкость тела $\left(\frac{\underline{\mathcal{I}}_{\mathsf{K}\Gamma}}{\mathsf{K}\Gamma^{\mathsf{K}}}\right)$, m - масса нагревателя (кг).

Нагревательный прибор использует электрический ток для увеличения внутренней энергии:

$$\Delta Q_1 = P\Delta t,\tag{2}$$

где P - мощность (B_T).

На изменение внутренней энергии также влияют входящие и исходящие тепловые потоки. На единицу площади за единицу времени исходящий поток будет изменять энергию на величину -kT, а входящий - на величину kT_{env} , где k - коэффициент теплопередачи, характерынй для данной конструкции нагревательного прибора $\left(\frac{B_T}{M^2K}\right)$. С учётом этих явлений, внутренняя энергия будет изменяться на следующую величину:

$$\Delta Q_2 = -kS(T - T_{env})\Delta t. \tag{3}$$

Кроме этих явлений, согласно закону Стефана-Больцмана, любое тело, нагретое выше абсолютного нуля за единицу веремени на единицу площади излучает энергию равную $-\sigma T^4$, где $\sigma \approx 5.68 \cdot 10^{-8} \left(\frac{\mathrm{Bt}}{\mathrm{M}^2 \cdot \mathrm{K}^2}\right)$ - постоянная Стефана-Больцмана. Аналогично, излучение поступает из

кружающей среды, равное σT_{env}^4 . Тогда, измненение внутренней энергии, вызванного этим процессом, равно:

$$\Delta Q_3 = -\sigma S(T^4 - T_{env}^4) \Delta t. \tag{4}$$

Суммируя все потоки энергии, получаем уравнение теплового баланса (см. 1, 2, 3, 4):

$$cm\Delta T = P\Delta t - kS(T - T_{env})\Delta t - \sigma S(T^4 - T_{env}^4)\Delta t.$$
 (5)

Разделим, обе части уравнения (5) на $cm\Delta t$ и совершим предельный переход $\Delta t \to 0$:

$$\frac{dT}{dt} = \frac{P - kS(T - T_{env}) - \sigma S(T^4 - T_{env}^4)}{cm} \tag{6}$$

Таким образом, мы получили дифференциальное уравнение теплового баланса, которое описывает поведение температуры нагрвателя. Для нахождения единственного достаточно ввести начальное условие: $T(0) = T_0$.

1.2 Модель с терморегулятором

Для предотвращения перегрева нагревателя, целесообразно установить терморегулятор, которые будет выключать нагреватель при достижении максимальной температуры. Для этого достаточно ввести функцию, которая будет отключать нагреватель, когда температура больше максимально установленной (T_{max}) , и включать, при достижении минимальной установленной температуры (T_{min}) .

$$I(T, T_{min}, T_{max}) = \begin{cases} 1, & T < T_{min} \\ 0, & T > T_{max} \end{cases}$$
 (7)

Добавляя (7) в (6) получим:

$$\frac{dT}{dt} = \frac{P \cdot I(T, T_{min}, T_{max}) - kS(T - T_{env}) - \sigma S(T^4 - T_{env}^4)}{cm}.$$
 (8)