The Timepix3 readout chip for hybrid pixel detectors: design and first measurements

Massimiliano De Gaspari CERN, European Organization for Nuclear Research Geneva, Switzerland

Outline

- Introduction to Timepix3
- Front-end architecture
- Tests on bare chips
- Measurements with sensor
- Summary

Timepix -> Timepix3

	Timepix	Timepix3
Year	2006	2013
# pixels	256 x 256	
Pixel size	55 x 55 μm	
Technology	CMOS 250nm	CMOS 130nm
Measurement modes	- Time-Over-Threshold (TOT)- Time Of Arrival (TOA)- Event counting (PC)	Simultaneous 10bit TOT and 18bitTOA18bit TOA only10bit PC and 14bit integral TOT (itot)
Readout type	Sequential (frame-based)	- Frame-based- Data Driven (zero suppressed)
Dead time	>300µs full frame readout	> 375ns packet transfer, maximum hit rate 40Mhits/s/cm ²
Time resolution	10ns	1.56ns
TOT monotonicity (h+)	No	Yes
Power pulsing	No	Yes
Minimum threshold	~750e ⁻	>500e ⁻

Timepix3 is a joint design effort by **CERN**, **NIKHEF** and the **University of Bonn**

Main applications are:

- Fast readout of solid-state pixelated sensors
- Readout of gaseous detectors (TPC)
- Vertex Locator for LHCb (future VELOpix)
- Power pulsing tests for the Linear Collider
- Dosimetry

Timepix3

Fast ToA measurement

40MHz global clock always running (14bit ToA)

One 640MHz Voltage-Controlled Oscillator per SuperPixel (2x4 pixels) activated only when a discriminator fires (4bit fast ToA)

Pixel/SuperPixel diagram

T. Poikela

Pixel/SuperPixel diagram

T. Poikela

Pixel/SuperPixel diagram

T. Poikela

Outline

- Introduction to Timepix3
- Front-end architecture
- Tests on bare chips
- Measurements with sensor
- Summary

Front-end specifications

Parameter	Value	Notes
Area	55μmx13.5μm	
Signal polarity	Positive and negative	
Detector capacitance	~50fF	25fF to 100fF
Leakage current	-5nA to +20nA	
Amplitude linearity	Not required	Time measurement
TOT monotonicity	Yes, up to 300kh+	
ToA jitter and mismatch	Compatible with 1.56ns resolution	Gas detector applications
Time-to-peak	Target 25ns	In view of VELOpix
Noise + threshold mismatch	~90e ⁻	for a minimum threshold ~500e-
Equalization DACs	4bit	Compensate pixel-to-pixel threshold mismatch
Power consumption	12μW/pixel	

Front-end architecture

Timepix/Timepix3: preamplifier

Out_{ampl}

Triple

well

BiasNcas

ln

TOT monotonicity

TOT monotonicity issue for large positive input charges:

 $Q_{in}>100kh^+ \rightarrow V(In)>V(NodeX) \rightarrow current through the wrong path$

Added diode-connected PMOS transistors → good current path

TOT monotonicity

Comparison between TOT with and without monotonicity PMOS diodes.

Outline

- Introduction to Timepix3
- Front-end architecture
- Tests on bare chips (using test pulses)
- Measurements with sensor
- Summary

Test setup

SPIDR: Speedy Plxel Detector Readout

Developed for Timepix3 (from single chips up to quads)

1 x 10Gbps Ethernet link IO

Credits:

Bas van der Heijden, Frans Schreuder, Henk Boterenbrood (NIKHEF) Szymon Kulis (CERN)

S-curves

X. Llopart

250 test pulses injected and counted in Photon Counting mode ENC extracted from the S-width: 5.7LSB = 64e⁻ rms

Timewalk and TOT linearity

Outline

- Introduction to Timepix3
- Front-end architecture
- Tests on bare chips
- Measurements with sensor: 300μm Silicon P-on-N
- Summary

Fluorescence measurements (65k pixels)

Gain calibration using fluorescence (65k pixels)

 $40.5eV/LSB = 11.2e^{-}/LSB = 44.6mV/ke^{-}$

Noise map before/after bonding

Same chip measured at wafer level and after sensor bonding:

Noise distribution

Average noise over the full matrix increases by 10e⁻ only. Its distribution widens a little bit.

Count rate

Measurement done with a Cu X-ray tube Count rate modulated by adjusting the global threshold

TOA & TOT mode limited by output block bandwidth (set at 8x160Mbps for this measurement) Maximum count rate possible is **85.33 Mhit/s** @ 8x640Mbps links (43MHits/s/cm²)

MIP (cosmic)

Alpha particle

Outline

- Introduction to Timepix3
- Front-end architecture
- Tests on bare chips
- Measurements with sensor
- Summary

Summary

- Timepix3 designed and fabricated in 2013
- Tests on bare chips and on wafers give good results
- First measurements with 300µm Silicon sensors look promising

	Bare chip	With 300μm Silicon sensor
Noise	51.4±2.7 e ⁻ rms	61.2±3.4 e ⁻ rms
Threshold mismatch (equalized)	35e⁻	35e⁻
Minimum threshold	500e ⁻	550e ⁻
TOT mismatch	6.5% rms	
Timewalk (1ke- above threshold)	10ns	
TOA < 25ns	Charge > 0.8ke ⁻	
TOA jitter < 0.5ns	Charge > 5.5ke⁻	
Energy resolution		124e ⁻ (Cu) with equalization on noise floor
Maximum count rate		85 Mhit/s (43MHits/s/cm²)

Thanks for your time and attention!

- Timepix3 designed and fabricated in 2013
- Tests on bare chips and on wafers give good results
- First measurements with 300µm Silicon sensors look promising

	Bare chip	With 300µm Silicon sensor
Noise	51.4±2.7 e⁻ rms	61.2±3.4 e ⁻ rms
Threshold mismatch (equalized)	35e⁻	35e ⁻
Minimum threshold	500e ⁻	550e ⁻
TOT mismatch	6.5% rms	
Timewalk (1ke- above threshold)	10ns	
TOA < 25ns	Charge > 0.8ke⁻	
TOA jitter < 0.5ns	Charge > 5.5ke⁻	
Energy resolution		124e ⁻ (Cu) with equalization on noise floor
Maximum count rate		85 Mhit/s (43MHits/s/cm²)

Massimiliano De Gaspari for the CERN Medipix team (J Alozy, R Ballabriga, M Campbell, E Fröjdh, J Idarraga, S Kulis, X Llopart, T Poikela, P Valerio, W Wong) in collaboration with NIKHEF and the University of Bonn.

Thanks for your time and attention!

References:

- M. De Gaspari et al.

"Design of the analog front-end for the Timepix3 and Smallpix hybrid pixel detectors in 130 nm CMOS technology," 2014 JINST 9 C01037

- T. Poikela et al.

"Digital column readout architectures for hybrid pixel detector readout chips," 2014 JINST 9 C01007

- Y. Fu et al.

"The charge pump PLL clock generator designed for the 1.56 ns bin size time-to-digital converter pixel array of the Timepix3 readout ASIC," 2014 JINST 9 C01052

Massimiliano De Gaspari for the CERN Medipix team (J Alozy, R Ballabriga, M Campbell, E Fröjdh, J Idarraga, S Kulis, X Llopart, T Poikela, P Valerio, W Wong) in collaboration with NIKHEF and the University of Bonn.

Outline

• Back up slides

Timepix3 floorplan

Readout modes

Sequential frame-based mode.

Threshold equalization

Threshold equalization

Fluorescence measurements

