

Ayudantía 05



### Función Heuristica

Es una función que estima que tan cerca está un estado s de un estado final G.

Es un "atajo" para resolver problemas cuando no hay soluciones exactas o el tiempo de obtención de esta solución es muy largo.

Se utiliza para aproximar, ya que si indicara la distancia real al objetivo, el problema estaría resuelto.

### Admisibilidad

H(n) es admisible si no sobreestima el costo real para llegar al objetivo, es decir :

•  $h(\mathbf{n}) \leq H(\mathbf{n}) \forall \mathbf{n}$ , donde  $H(\mathbf{n})$  es el costo real

### Admisibilidad

H(n) es admisible si no sobreestima el costo real para llegar al objetivo, es decir :

•  $h(\mathbf{n}) \leq H(\mathbf{n}) \forall \mathbf{n}$ , donde  $H(\mathbf{n})$  es el costo real







### Admisibilidad

H(n) es admisible si no sobreestima el costo real para llegar al objetivo, es decir:

•  $h(\mathbf{n}) \leq H(\mathbf{n}) \forall \mathbf{n}$ , donde  $H(\mathbf{n})$  es el costo real

| I | G=1 |  |
|---|-----|--|
|   |     |  |
|   |     |  |
| F |     |  |

| G=1 | H=7 |  |
|-----|-----|--|
| H=3 |     |  |
|     |     |  |
|     |     |  |







#### Consistencia

H(n) es consistente si el valor de la heurística para los vecinos de cierto nodo no es mayor al valor de la heurística en el nodo más el costo por llegar al vecino, es decir:

- $h(\mathbf{n}) \le C(\mathbf{n}, a, \mathbf{n'}) + h(\mathbf{n'}) \ \forall \ \mathbf{n'}$  vecino de  $\mathbf{n}$ , donde  $C(\mathbf{n}, a, \mathbf{n'})$  es el costo para llegar del nodo  $\mathbf{n}$  al nodo  $\mathbf{n'}$
- $h(\mathbf{n}) = 0 \forall \mathbf{n} \in G$ , es decir,  $\mathbf{n}$  es un objetivo

#### Consistencia

Reemplazando la condición de consistencia en F(**n**'):

- F(n') = G(n') + H(n')
- F(n') = G(n) + C(n, a, n') + H(n')
- $F(n') \ge G(n) + H(n) = F(n)$
- $F(n') \ge F(n)$

, de esta forma tenemos que  $F(\mathbf{n})$  es una función no decreciente.

## Distancia Manhattan y Euclidiana

La distancia entre dos puntos es:

Manhattan: la suma de las diferencias absolutas de sus coordenadas

$$D_{Manhattan} = |x_1 - x_2| + |y_1 - y_2|$$

 $D_{Manhattan} = |x_1 - x_2| + |y_1 - y_2|$ Euclidiana: distancia en línea recta entre los puntos

$$D_{\text{Euclidiana}} = \sqrt{[(x_1 - x_2)^2 + (y_1 - y_2)^2]}$$



# Relajación de problemas















**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$\mathbf{4} \ \ g(v) \leftarrow cost_v$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

- **2** *Open* ←  $\{s_0\}$
- $g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$
- **4** while  $Open \neq \emptyset$
- Extrae un u desde Open con menor valor-f
- **if** u es objetivo **return** u
- for each  $v \in Succ(u)$  do
  - $1 cost_v = g(u) + c(u, v)$
  - **2** if  $cost_v \ge g(v)$  return
  - 3  $parent(v) \leftarrow u$

  - 5  $f(v) \leftarrow g(v) + h(v)$
  - **6** if  $v \in Open$  then Reordenar Open
  - **7 else** Insertar *v* en *Open*

| inf | inf | inf | inf |
|-----|-----|-----|-----|
| S   |     |     |     |
| 6   | 5   |     | 3   |
| inf | inf | inf | inf |
|     |     |     |     |
| 5   | 4   |     | 2   |
| inf | inf | inf | inf |
|     |     |     |     |
| 4   | 3   | 2   | 1   |
| inf | inf | inf | inf |
|     |     |     | G   |
| 3   | 2   |     |     |

**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

2 
$$Open \leftarrow \{s_0\}$$

**3** 
$$g(s_0) \leftarrow 0$$
;  $f(s_0) \leftarrow h(s_0)$ 

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

| inf | inf | inf | inf |
|-----|-----|-----|-----|
| S   |     |     |     |
| 6   | 5   |     | 3   |
| inf | inf | inf | inf |
|     |     |     |     |
| 5   | 4   |     | 2   |
| inf | inf | inf | inf |
|     |     |     |     |
| 4   | 3   | 2   | 1   |
| inf | inf | inf | inf |
|     |     |     | G   |
| 3   | 2   |     |     |

**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

2 
$$Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

4 
$$g(v) \leftarrow cost_v$$

5 
$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

|   | 6 0 | inf | inf | inf |
|---|-----|-----|-----|-----|
|   | S   |     |     |     |
|   | 6   | 5   |     | 3   |
|   | inf | inf | inf | inf |
| f |     |     |     |     |
|   | 5   | 4   |     | 2   |
|   | inf | inf | inf | inf |
|   |     |     |     |     |
|   | 4   | 3   | 2   | 1   |
|   | inf | inf | inf | inf |
|   |     |     |     | G   |
|   | 3   | 2   |     |     |

**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

- $2 Open \leftarrow \{s_0\}$
- $g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$

#### 4 while $Open \neq \emptyset$

- **E**xtrae un *u* desde *Open* con menor valor-*f*
- **if** u es objetivo **return** u
- for each  $v \in Succ(u)$  do
  - $1 cost_v = g(u) + c(u, v)$
  - **2** if  $cost_v \ge g(v)$  return
  - 3  $parent(v) \leftarrow u$

  - $f(v) \leftarrow g(v) + h(v)$
  - **6** if  $v \in Open$  then Reordenar Open
  - **7 else** Insertar *v* en *Open*

| 6 0 | inf | inf | inf |
|-----|-----|-----|-----|
| S   |     |     |     |
| 6   | 5   |     | 3   |
| inf | inf | inf | inf |
|     |     |     |     |
| 5   | 4   |     | 2   |
| inf | inf | inf | inf |
|     |     |     |     |
| 4   | 3   | 2   | 1   |
| inf | inf | inf | inf |
|     |     |     | G   |
| 3   | 2   |     |     |

**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

$$2 Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

**4** while 
$$Open \neq \emptyset$$

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

5 
$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

| 6 0 | inf | inf | inf |
|-----|-----|-----|-----|
| S   |     |     |     |
| 6   | 5   |     | 3   |
| inf | inf | inf | inf |
|     |     |     |     |
| 5   | 4   |     | 2   |
| inf | inf | inf | inf |
|     |     |     |     |
| 4   | 3   | 2   | 1   |
| inf | inf | inf | inf |
|     |     |     | G   |
| 3   | 2   |     |     |

**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** Open 
$$\leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

if 
$$u$$
 es objetivo return  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$4 g(v) \leftarrow cost_v$$

5 
$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

| 6 0 | inf | inf | inf |
|-----|-----|-----|-----|
| S   |     |     |     |
| 6   | 5   |     | 3   |
| inf | inf | inf | inf |
|     |     |     |     |
| 5   | 4   |     | 2   |
| inf | inf | inf | inf |
|     |     |     |     |
| 4   | 3   | 2   | 1   |
| inf | inf | inf | inf |
|     |     |     | G   |
| 3   | 2   |     |     |

**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** Open 
$$\leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$g(v) \leftarrow cost_v$$

5 
$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

|   | 6 0 | inf | inf | inf |
|---|-----|-----|-----|-----|
|   | S   |     |     |     |
|   | 6   | 5   |     | 3   |
|   | inf | inf | inf | inf |
| c |     |     |     |     |
|   | 5   | 4   |     | 2   |
|   | inf | inf | inf | inf |
|   |     |     |     |     |
|   | 4   | 3   | 2   | 1   |
|   | inf | inf | inf | inf |
|   |     |     |     | G   |
|   | 3   | 2   |     |     |

**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

- **2** Open  $\leftarrow \{s_0\}$
- $g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$
- **4** while  $Open \neq \emptyset$
- Extrae un u desde Open con menor valor-f
- **if** *u* es objetivo **return** *u*
- for each  $v \in Succ(u)$  do

  - **2** if  $cost_v \ge g(v)$  return
  - 3  $parent(v) \leftarrow u$
  - $4 g(v) \leftarrow cost_v$
  - 5  $f(v) \leftarrow g(v) + h(v)$
  - **6** if  $v \in Open$  then Reordenar Open
  - **7 else** Insertar *v* en *Open*

| 6 0 | inf | inf | inf |
|-----|-----|-----|-----|
| S   |     |     |     |
| 6   | 5   |     | 3   |
| inf | inf | inf | inf |
|     |     |     |     |
| 5   | 4   |     | 2   |
| inf | inf | inf | inf |
|     |     |     |     |
| 4   | 3   | 2   | 1   |
| inf | inf | inf | inf |
|     |     |     | G   |
| 3   | 2   |     | _   |

**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** Open 
$$\leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$4 g(v) \leftarrow cost_v$$

5 
$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** Open 
$$\leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

**4** while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

1 
$$cost_v = g(u) + c(u, v)$$

**2** if 
$$cost_v \ge g(v)$$
 return

$$\exists parent(v) \leftarrow u$$

4 
$$g(v) \leftarrow cost_v$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** Open 
$$\leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

4 
$$g(v) \leftarrow cost_v$$

5 
$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 





1 for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$   
2  $Open \leftarrow \{s_0\}$   
3  $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$   
4 while  $Open \neq \emptyset$   
5 Extrae un  $u$  desde  $Open$  con menor valor- $f$   
6 if  $u$  es objetivo return  $u$   
7 for each  $v \in Succ(u)$  do  
1  $cost_v = g(u) + c(u, v)$   
2 if  $cost_v \geq g(v)$  return  
3  $parent(v) \leftarrow u$   
4  $g(v) \leftarrow cost_v$   
5  $f(v) \leftarrow g(v) + h(v)$   
6 if  $v \in Open$  then Reordenar  $Open$   
7 else Insertar  $v$  en  $Open$ 



**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** Open 
$$\leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$4 g(v) \leftarrow cost_v$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

|      | 6 0 | 6 1     | inf | inf |
|------|-----|---------|-----|-----|
|      | S   |         |     |     |
|      | 6   | (0,0) 5 |     | 3   |
|      | inf | inf     | inf | inf |
| or-f |     |         |     |     |
|      | 5   | 4       |     | 2   |
|      | inf | inf     | inf | inf |
|      |     |         |     |     |
|      | 4   | 3       | 2   | 1   |
| 1    | inf | inf     | inf | inf |
|      |     |         |     | G   |
|      | 3   | 2       |     |     |

**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** Open 
$$\leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$4 g(v) \leftarrow cost_v$$

5 
$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** Open 
$$\leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** Open 
$$\leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

1 
$$cost_v = g(u) + c(u, v)$$

**2** if 
$$cost_v \geq g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

4 
$$g(v) \leftarrow cost_v$$

5 
$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** Open 
$$\leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

4 
$$g(v) \leftarrow cost_v$$

5 
$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

$$2 Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$4 g(v) \leftarrow cost_v$$

5 
$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** Open 
$$\leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

1 
$$cost_v = g(u) + c(u, v)$$

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$\mathbf{4} \ g(v) \leftarrow cost_v$$

$$f(v) \leftarrow g(v) + h(v)$$

#### **6** if $v \in Open$ then Reordenar Open



**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

$$2 Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$4 g(v) \leftarrow cost_v$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

|      | 6     | 0   | 6     | 1   | inf | inf |
|------|-------|-----|-------|-----|-----|-----|
|      | S     | )   |       |     |     |     |
|      |       | 6   | (0,0) | 5   |     | 3   |
|      | 6     | 1   |       | inf | inf | inf |
| or-f |       |     |       |     |     |     |
|      | (0,0) | 5   |       | 4   |     | 2   |
|      |       | inf |       | inf | inf | inf |
|      |       |     |       |     |     |     |
|      |       | 4   |       | 3   | 2   | 1   |
| 1    |       | inf |       | inf | inf | inf |
|      |       |     |       |     |     | G   |
|      |       | 3   |       | 2   |     |     |

**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

2 
$$Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

**4** while 
$$Open \neq \emptyset$$

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

5 
$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

| 6     | 0   | 6                       | 1                                  | inf                                             | inf                                                     |
|-------|-----|-------------------------|------------------------------------|-------------------------------------------------|---------------------------------------------------------|
| S     | 6   | (0.0)                   | _                                  |                                                 | 3                                                       |
|       | 0   | (0,0)                   | <u> </u>                           |                                                 | 3                                                       |
| 6     | 1   |                         | inf                                | inf                                             | inf                                                     |
|       |     |                         |                                    |                                                 |                                                         |
| (0,0) | 5   |                         | 4                                  |                                                 | 2                                                       |
|       | inf |                         | inf                                | inf                                             | inf                                                     |
|       |     |                         |                                    |                                                 |                                                         |
|       | 4   |                         | 3                                  | 2                                               | 1                                                       |
|       | inf |                         | inf                                | inf                                             | inf                                                     |
|       |     |                         |                                    |                                                 | G                                                       |
|       | 3   |                         | 2                                  |                                                 |                                                         |
|       | 6   | 6 6 1 (0,0) 5 inf 4 inf | 6 (0,0)  6 1  (0,0) 5  inf  4  inf | 6 (0,0) 5 6 1 inf (0,0) 5 4 inf inf 4 3 inf inf | 6 (0,0) 5 6 1 inf inf (0,0) 5 4 inf inf inf inf inf inf |

**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** Open 
$$\leftarrow \{s_0\}$$

**3** 
$$g(s_0) \leftarrow 0$$
;  $f(s_0) \leftarrow h(s_0)$ 

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

for each 
$$v \in Succ(u)$$
 do

$$1 cost_v = g(u) + c(u, v)$$

2 if 
$$cost_v \ge g(v)$$
 return

$$=$$
  $($ 

$$\blacksquare$$
 parent $(v) \leftarrow u$ 

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

$$2 Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$4 g(v) \leftarrow cost_v$$

5 
$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

$$2 Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$4 g(v) \leftarrow cost_v$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

|     | 6     | 0   | 6     | 1   | inf | inf |
|-----|-------|-----|-------|-----|-----|-----|
|     | S     | )   |       |     |     |     |
|     |       | 6   | (0,0) | 5   |     | 3   |
|     | 6     | 1   |       | inf | inf | inf |
| r-f |       |     |       |     |     |     |
|     | (0,0) | 5   |       | 4   |     | 2   |
|     |       | inf |       | inf | inf | inf |
|     |       |     |       |     |     |     |
|     |       | 4   |       | 3   | 2   | 1   |
|     |       | inf |       | inf | inf | inf |
|     |       |     |       |     |     | G   |
|     |       | 3   |       | 2   |     |     |

**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** Open 
$$\leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$4 g(v) \leftarrow cost_v$$

5 
$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

$$2 Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \geq g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$g(v) \leftarrow cost_v$$

5 
$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

2 
$$Open \leftarrow \{s_0\}$$

**3** 
$$g(s_0) \leftarrow 0$$
;  $f(s_0) \leftarrow h(s_0)$ 

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

1 
$$cost_v = g(u) + c(u, v)$$

**2** if 
$$cost_v \ge g(v)$$
 return

$$\exists parent(v) \leftarrow u$$

4 
$$g(v) \leftarrow cost_v$$

5 
$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** Open 
$$\leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

2 if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** Open 
$$\leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

1 
$$cost_v = g(u) + c(u, v)$$

**2** if 
$$cost_v \geq g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

5 
$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

| 6     | 0   | 6                         | 1                                     | inf                                                    | inf                                                           |
|-------|-----|---------------------------|---------------------------------------|--------------------------------------------------------|---------------------------------------------------------------|
| S     |     |                           |                                       |                                                        |                                                               |
|       | 6   | (0,0)                     | 5                                     |                                                        | 3                                                             |
| 6     | 1   | 6                         | 2                                     | inf                                                    | inf                                                           |
|       |     |                           |                                       |                                                        |                                                               |
| (0,0) | 5   | (1,0)                     | 4                                     |                                                        | 2                                                             |
|       | inf |                           | inf                                   | inf                                                    | inf                                                           |
|       |     |                           |                                       |                                                        |                                                               |
|       | 4   |                           | 3                                     | 2                                                      | 1                                                             |
|       | inf |                           | inf                                   | inf                                                    | inf                                                           |
|       |     |                           |                                       |                                                        | G                                                             |
|       | 3   |                           | 2                                     |                                                        |                                                               |
|       | 6   | s 6 6 1 (0,0) 5 inf 4 inf | 6 (0,0) 6 1 6 (0,0) 5 (1,0) inf 4 inf | 6 (0,0) 5 6 1 6 2 (0,0) 5 (1,0) 4 inf inf  4 3 inf inf | 6 (0,0) 5 6 1 6 2 inf (0,0) 5 (1,0) 4 inf inf inf inf inf inf |

**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** Open 
$$\leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

5 
$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

2 
$$Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

**4** while 
$$Open \neq \emptyset$$

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

|     | 6     | 0   | 6     | 1   | inf | inf |
|-----|-------|-----|-------|-----|-----|-----|
|     | S     |     |       |     |     |     |
|     |       | 6   | (0,0) | 5   |     | 3   |
|     | 6     | 1   | 6     | 2   | inf | inf |
| r-f |       |     |       |     |     |     |
|     | (0,0) | 5   | (1,0) | 4   |     | 2   |
|     |       | inf |       | inf | inf | inf |
|     |       |     |       |     |     |     |
|     |       | 4   |       | 3   | 2   | 1   |
|     |       | inf |       | inf | inf | inf |
|     |       |     |       |     |     | G   |
|     |       | 3   |       | 2   |     | _   |

**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** Open 
$$\leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

**if** 
$$u$$
 es objetivo **return**  $u$ 

7 for each 
$$v \in Succ(u)$$
 do

$$1 cost_v = g(u) + c(u, v)$$

2 if 
$$cost_v \ge g(v)$$
 return

$$\exists parent(v) \leftarrow u$$

4 
$$g(v) \leftarrow cost_v$$
  
5  $f(v) \leftarrow g(v) + h(v)$ 

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

|     | 6     | 0   | 6     | 1   | inf | inf |
|-----|-------|-----|-------|-----|-----|-----|
|     | S     | )   |       |     |     |     |
|     |       | 6   | (0,0) | 5   |     | 3   |
|     | 6     | 1   | 6     | 2   | inf | inf |
| r-f |       |     |       |     |     |     |
|     | (0,0) | 5   | (1,0) | 4   |     | 2   |
|     |       | inf |       | inf | inf | inf |
|     |       |     |       |     |     |     |
|     |       | 4   |       | 3   | 2   | 1   |
|     |       | inf |       | inf | inf | inf |
|     |       |     |       |     |     | G   |
|     |       | 3   |       | 2   |     |     |

1 for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$   
2  $Open \leftarrow \{s_0\}$ 

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

| 6     | 0   | 6               | 1                                     | inf                                                   | inf                                                               |
|-------|-----|-----------------|---------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|
| S     |     |                 |                                       |                                                       |                                                                   |
|       | 6   | (0,0)           | 5                                     |                                                       | 3                                                                 |
| 6     | 1   | 6               | 2                                     | inf                                                   | inf                                                               |
|       |     |                 |                                       |                                                       |                                                                   |
| (0,0) | 5   | (1,0)           | 4                                     |                                                       | 2                                                                 |
|       | inf |                 | inf                                   | inf                                                   | inf                                                               |
|       |     |                 |                                       |                                                       |                                                                   |
|       | 4   |                 | 3                                     | 2                                                     | 1                                                                 |
|       | inf |                 | inf                                   | inf                                                   | inf                                                               |
|       |     |                 |                                       |                                                       | G                                                                 |
|       | 3   |                 | 2                                     |                                                       |                                                                   |
|       | 6   | (0,0) 5 inf inf | 6 (0,0) 6 1 6 (0,0) 5 (1,0) inf 4 inf | 6 (0,0) 5 6 1 6 2 (0,0) 5 (1,0) 4 inf inf 4 3 inf inf | 6 (0,0) 5 6 1 6 2 inf (0,0) 5 (1,0) 4 inf inf inf inf inf inf inf |

**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** Open 
$$\leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$4 g(v) \leftarrow cost_v$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

| 3   |
|-----|
| 3   |
|     |
| inf |
|     |
| 2   |
| inf |
|     |
| 1   |
| inf |
|     |
|     |
|     |

**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

2 
$$Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$4 g(v) \leftarrow cost_v$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

|    | 6     | 0   | 6     | 1   | inf | inf |
|----|-------|-----|-------|-----|-----|-----|
|    | S     |     |       |     |     |     |
|    |       | 6   | (0,0) | 5   |     | 3   |
|    | 6     | 1   | 6     | 2   | inf | inf |
| -f |       |     |       |     |     |     |
|    | (0,0) | 5   | (1,0) | 4   |     | 2   |
|    |       | inf |       | inf | inf | inf |
|    |       |     |       |     |     |     |
|    |       | 4   |       | 3   | 2   | 1   |
|    |       | inf |       | inf | inf | inf |
|    |       |     |       |     |     | G   |
|    |       | 3   |       | 2   |     |     |

**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** Open 
$$\leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

7 for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

4 
$$g(v) \leftarrow cost_v$$

5 
$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

|   | 6     | 0   | 6     | 1   | inf | inf |
|---|-------|-----|-------|-----|-----|-----|
|   | S     |     |       |     |     |     |
|   |       | 6   | (0,0) | 5   |     | 3   |
|   | 6     | 1   | 6     | 2   | inf | inf |
| f |       |     |       |     |     |     |
|   | (0,0) | 5   | (1,0) | 4   |     | 2   |
|   |       | inf |       | inf | inf | inf |
|   |       |     |       |     |     |     |
|   |       | 4   | (1,1) | 3   | 2   | 1   |
|   |       | inf |       | inf | inf | inf |
|   |       |     |       |     |     | G   |
|   |       | 3   |       | 2   |     | _   |

2 
$$Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

1 
$$cost_v = g(u) + c(u, v)$$

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$parent(v) \leftarrow u$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

| 6     | 0   | 6                           | 1                                   | inf                                                 | inf                                                                 |
|-------|-----|-----------------------------|-------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------|
| S     |     |                             |                                     |                                                     |                                                                     |
|       | 6   | (0,0)                       | 5                                   |                                                     | 3                                                                   |
| 6     | 1   | 6                           | 2                                   | inf                                                 | inf                                                                 |
|       |     |                             |                                     |                                                     |                                                                     |
| (0,0) | 5   | (1,0)                       | 4                                   |                                                     | 2                                                                   |
|       | inf |                             | 3                                   | inf                                                 | inf                                                                 |
|       |     |                             |                                     |                                                     |                                                                     |
|       | 4   | (1,1)                       | 3                                   | 2                                                   | 1                                                                   |
|       | inf |                             | inf                                 | inf                                                 | inf                                                                 |
|       |     |                             |                                     |                                                     | G                                                                   |
|       | 3   |                             | 2                                   |                                                     |                                                                     |
|       | 6   | s 6 6 6 1 (0,0) 5 inf 4 inf | 6 (0,0) 6 1 6 (0,0) inf 4 (1,1) inf | 6 (0,0) 5 6 1 6 2 (0,0) 5 (1,0) 4 inf 3 inf inf inf | 6 (0,0) 5 6 1 6 2 inf (0,0) 5 (1,0) 4 inf 3 inf 4 (1,1) 3 2 inf inf |

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



1 for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$   
2  $Open \leftarrow \{s_0\}$ 

3 
$$g(s_0) \leftarrow 0$$
;  $f(s_0) \leftarrow h(s_0)$ 

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$parent(v) \leftarrow u$$

$$4 g(v) \leftarrow cost_v$$

$$f(v) \leftarrow g(v) + h(v)$$

## **6** if $v \in Open$ then Reordenar Open



1 for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$   
2  $Open \leftarrow \{s_0\}$ 

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

$$cost_v = g(u) + c(u, v)$$

**2** if 
$$cost_v \ge g(v)$$
 return

$$=$$
 11 costy  $\geq g(v)$  recta

$$\exists$$
 parent(v)  $\leftarrow$  u

5 
$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

2 
$$Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

$$\mathbf{I} cost_v = g(u) + c(u, v)$$

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

2 
$$Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$4 g(v) \leftarrow cost_v$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** Open 
$$\leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

for each 
$$v \in Succ(u)$$
 do

2 if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$4 g(v) \leftarrow cost_v$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

|   | 6<br>S | 0   | 6     | 1   | inf | inf |
|---|--------|-----|-------|-----|-----|-----|
|   |        | 6   | (0,0) | 5   |     | 3   |
| f | 6      | 1   | 6     | 2   | inf | inf |
|   | (0,0)  | 5   | (1,0) | 4   |     | 2   |
|   |        | inf | 6     | 3   | inf | inf |
|   |        | 4   | (1,1) | 3   | 2   | 1   |
|   |        | inf |       | inf | inf | inf |
|   |        | 3   |       | 2   |     |     |

**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** Open 
$$\leftarrow \{s_0\}$$

**3** 
$$g(s_0) \leftarrow 0$$
;  $f(s_0) \leftarrow h(s_0)$ 

4 while 
$$Open \neq \emptyset$$

**E**xtrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

**for each** 
$$v \in Succ(u)$$
 **do**

$$cost_v = g(u) + c(u, v)$$

2 if 
$$cost_v \ge g(v)$$
 return

$$\exists parent(v) \leftarrow u$$

4 
$$g(v) \leftarrow cost_v$$
  
5  $f(v) \leftarrow g(v) + h(v)$ 

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

2 
$$Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

**4** while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

1 
$$cost_v = g(u) + c(u, v)$$

**2** if 
$$cost_v \ge g(v)$$
 return

$$\square$$
 parent $(v) \leftarrow u$ 

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

$$2 Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

if 
$$u$$
 es objetivo return  $u$ 

7 **for each** 
$$v \in Succ(u)$$
 **do**

$$1 cost_v = g(u) + c(u, v)$$

2 if 
$$cost_v \ge g(v)$$
 return

$$\exists$$
 parent(v)  $\leftarrow$  u

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

$$2 Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



inf

inf

inf

inf

G

**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** *Open* 
$$\leftarrow$$
 { $s_0$ }

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

2 if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$4 g(v) \leftarrow cost_v$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

|   | 6<br>S | 0   | 6     | 1   | inf | inf |
|---|--------|-----|-------|-----|-----|-----|
|   |        | 6   | (0,0) | 5   |     | 3   |
| f | 6      | 1   | 6     | 2   | inf | inf |
|   | (0,0)  | 5   | (1,0) | 4   |     | 2   |
|   |        | inf | 6     | 3   | inf | inf |
|   |        | 4   | (1,1) | 3   | 2   | 1   |
|   |        | inf |       | inf | inf | inf |
|   |        | 3   |       | 2   |     |     |

**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

2 
$$Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

|   | 6     | 0   | 6     | 1   | inf | inf |
|---|-------|-----|-------|-----|-----|-----|
|   | S     | )   |       |     |     |     |
|   |       | 6   | (0,0) | 5   |     | 3   |
|   | 6     | 1   | 6     | 2   | inf | inf |
| f |       |     |       |     |     |     |
|   | (0,0) | 5   | (1,0) | 4   |     | 2   |
|   |       | inf | 6     | 3   | inf | inf |
|   |       |     |       |     |     |     |
|   | (O,1) | 4   | (1,1) | 3   | 2   | 1   |
|   |       | inf |       | inf | inf | inf |
|   |       |     |       |     |     | G   |
|   |       | 3   |       | 2   |     |     |

1 for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$   
2  $Open \leftarrow \{s_0\}$ 

$$\mathbf{3} \ g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

4 
$$g(v) \leftarrow cost_v$$

5 
$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

|   | 6     | 0   | 6     | 1   | inf | inf |
|---|-------|-----|-------|-----|-----|-----|
|   | S     |     |       |     |     |     |
|   |       | 6   | (0,0) | 5   |     | 3   |
|   | 6     | 1   | 6     | 2   | inf | inf |
| f |       |     |       |     |     |     |
|   | (0,0) | 5   | (1,0) | 4   |     | 2   |
|   |       | 2   | 6     | 3   | inf | inf |
|   |       |     |       |     |     |     |
|   | (0,1) | 4   | (1,1) | 3   | 2   | 1   |
|   |       | inf |       | inf | inf | inf |
|   |       |     |       |     |     | G   |
|   |       | 3   |       | 2   |     |     |

**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

$$2 Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

2 
$$Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

1 
$$cost_v = g(u) + c(u, v)$$

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$parent(v) \leftarrow u$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



- 2 *Open*  $\leftarrow$  { $s_0$ }
- $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$
- 4 while  $Open \neq \emptyset$
- Extrae un u desde Open con menor valor-
- if u es objetivo return u
- for each  $v \in Succ(u)$  do
  - 1  $cost_v = g(u) + c(u, v)$
  - **2** if  $cost_v \ge g(v)$  return
  - 3  $parent(v) \leftarrow u$

  - 4  $g(v) \leftarrow cost_v$
  - 5  $f(v) \leftarrow g(v) + h(v)$
  - **6** if  $v \in Open$  then Reordenar Open
  - 7 else Insertar v en Open

|     | 6     | 0   | 6     | 1   | inf | inf |
|-----|-------|-----|-------|-----|-----|-----|
|     | S     |     |       |     |     |     |
|     |       | 6   | (0,0) | 5   |     | 3   |
|     | 6     | 1   | 6     | 2   | inf | inf |
| r-f |       |     |       |     |     |     |
|     | (0,0) | 5   | (1,0) | 4   |     | 2   |
|     | 6     | 2   | 6     | 3   | inf | inf |
|     |       |     |       |     |     |     |
|     | (O,1) | 4   | (1,1) | 3   | 2   | 1   |
|     |       | inf |       | inf | inf | inf |
|     |       |     |       |     |     | G   |
|     |       | 3   |       | 2   |     |     |
| 1   |       |     |       |     |     |     |

**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** Open 
$$\leftarrow \{s_0\}$$

$$\mathbf{3} \ g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

**4** while 
$$Open \neq \emptyset$$

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

|   | 6     | 0   | 6     | 1   | inf | inf |
|---|-------|-----|-------|-----|-----|-----|
|   | S     |     |       |     |     |     |
|   |       | 6   | (0,0) | 5   |     | 3   |
|   | 6     | 1   | 6     | 2   | inf | inf |
| f |       |     |       |     |     |     |
|   | (0,0) | 5   | (1,0) | 4   |     | 2   |
|   | 6     | 2   | 6     | 3   | inf | inf |
|   |       |     |       |     |     |     |
|   | (0,1) | 4   | (1,1) | 3   | 2   | 1   |
|   |       | inf |       | inf | inf | inf |
|   |       |     |       |     |     | G   |
|   |       | 3   |       | 2   |     |     |
|   |       |     |       |     |     |     |

**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

2 
$$Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

**4** while 
$$Open \neq \emptyset$$

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$4 g(v) \leftarrow cost_v$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

|   | 6     | 0   | 6     | 1   | inf | inf |
|---|-------|-----|-------|-----|-----|-----|
|   | S     | 6   | (0,0) | 5   |     | 3   |
|   | 6     | 1   | 6     | 2   | inf | inf |
| f | (0.0) | _   | (4.0) |     |     | 2   |
|   | (0,0) | 5   | (1,0) | 4   |     | 2   |
|   | 6     | 2   | 6     | 3   | inf | inf |
|   | (O,1) | 4   | (1,1) | 3   | 2   | 1   |
|   |       | inf |       | inf | inf | inf |
|   |       |     |       |     |     | G   |
|   |       | 3   |       | 2   |     |     |

**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** Open 
$$\leftarrow \{s_0\}$$

**3** 
$$g(s_0) \leftarrow 0$$
;  $f(s_0) \leftarrow h(s_0)$ 

4 while 
$$Open \neq \emptyset$$

7 for each 
$$v \in Succ(u)$$
 do

$$1 cost_v = g(u) + c(u, v)$$

**2** if 
$$cost_v \geq g(v)$$
 return

$$\exists$$
 parent(v)  $\leftarrow$  u

4 
$$g(v) \leftarrow cost_v$$

5 
$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

| 3   |
|-----|
| inf |
|     |
| 2   |
| inf |
|     |
| 1   |
| inf |
| G   |
|     |
|     |

**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

2 
$$Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

$$\mathbf{I} cost_v = g(u) + c(u, v)$$

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$\exists parent(v) \leftarrow u$$

4 
$$g(v) \leftarrow cost_v$$
  
5  $f(v) \leftarrow g(v) + h(v)$ 

$$g(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

2 
$$Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$4 g(v) \leftarrow cost_v$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

| 6     | 0          | 6                       | 1                                                   | inf                                                           | inf                                                                         |
|-------|------------|-------------------------|-----------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------|
| S     |            |                         |                                                     |                                                               |                                                                             |
|       | 6          | (0,0)                   | 5                                                   |                                                               | 3                                                                           |
| 6     | 1          | 6                       | 2                                                   | inf                                                           | inf                                                                         |
|       |            |                         |                                                     |                                                               |                                                                             |
| (0,0) | 5          | (1,0)                   | 4                                                   |                                                               | 2                                                                           |
| 6     | 2          | 6                       | 3                                                   | inf                                                           | inf                                                                         |
|       |            |                         |                                                     |                                                               |                                                                             |
| (0,1) | 4          | (1,1)                   | 3                                                   | 2                                                             | 1                                                                           |
|       | inf        |                         | inf                                                 | inf                                                           | inf                                                                         |
|       |            |                         |                                                     |                                                               | G                                                                           |
|       | 3          |                         | 2                                                   |                                                               |                                                                             |
|       | 6<br>(0,0) | (0,0) 5 6 2 (0,1) 4 inf | 6 (0,0) 6 1 6 (0,0) 5 (1,0) 6 2 6 (0,1) 4 (1,1) inf | 6 (0,0) 5 6 1 6 2 (0,0) 5 (1,0) 4 6 2 6 3 (0,1) 4 (1,1) 3 inf | 6 (0,0) 5 6 1 6 2 inf (0,0) 5 (1,0) 4 6 2 6 3 inf (0,1) 4 (1,1) 3 2 inf inf |

**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

2 
$$Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

$$cost_v = g(u) + c(u, v)$$

2 if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$4 g(v) \leftarrow cost_v$$

5 
$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

|   | 6<br>S | 0   | 6     | 1   | inf | inf |
|---|--------|-----|-------|-----|-----|-----|
|   |        | 6   | (0,0) | 5   |     | 3   |
| f | 6      | 1   | 6     | 2   | inf | inf |
|   | (0,0)  | 5   | (1,0) | 4   |     | 2   |
|   | 6      | 2   | 6     | 3   | inf | inf |
|   | (0,1)  | 4   | (1,1) | 3   | 2   | 1   |
|   |        | inf |       | inf | inf | inf |
|   |        | 3   |       | 2   |     |     |

**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

$$2 Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

$$1 cost_v = g(u) + c(u, v)$$

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

4 
$$g(v) \leftarrow cost_v$$

5 
$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



1 for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 
2  $Open \leftarrow \{s_0\}$ 
2  $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$ 
3  $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$ 
5 Extrae un  $u$  desde  $Open$  con menor valor- $f$ 
6 if  $u$  es objetivo return  $u$ 
7 for each  $v \in Succ(u)$  do
9  $cost_v = g(u) + c(u, v)$ 
1  $f(s_0) \leftarrow g(v) + f(s_0)$ 
2 if  $cost_v \geq g(v)$  return
1  $f(s_0) \leftarrow g(v) \leftarrow f(s_0)$ 
3  $f(s_0) \leftarrow f(s_0) \leftarrow f(s_0)$ 
6  $f(s_0) \leftarrow f(s_0)$ 
6  $f(s_0) \leftarrow f(s_0)$ 
6  $f(s_0) \leftarrow f(s_0)$ 
6  $f(s_0) \leftarrow f(s_0)$ 
7 else Insertar  $f(s_0) \leftarrow f(s_0)$ 
8  $f(s_0) \leftarrow f(s_0)$ 
9  $f(s_0) \leftarrow f(s_0)$ 
9

inf

inf

inf

inf

1 for each 
$$s \in S$$
 do  $g(s) \leftarrow \infty$ 
2  $Open \leftarrow \{s_0\}$ 
3  $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$ 
5 Extrae un  $u$  desde  $Open$  con menor valor- $f$ 
6 if  $u$  es objetivo return  $u$ 
7 for each  $v \in Succ(u)$  do
9  $cost_v = g(u) + c(u, v)$ 
1 if  $cost_v \geq g(v)$  return
1 parent( $v$ )  $\leftarrow u$ 
1  $g(v) \leftarrow cost_v$ 
2 if  $v \in Open$  then Reordenar  $Open$ 
1 else Insertar  $v$  en  $Open$ 

6 0 0 6 1 inf

(0,0) 5

(1,0) 4

(1,1) 3 (1,2) 2

inf

inf

inf

inf

1 for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$   
2  $Open \leftarrow \{s_0\}$   
3  $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$   
4 while  $Open \neq \emptyset$   
5 Extrae un  $u$  desde  $Open$  con menor valor- $f$   
6 if  $u$  es objetivo return  $u$   
7 for each  $v \in Succ(u)$  do  
1  $cost_v = g(u) + c(u, v)$   
2 if  $cost_v \geq g(v)$  return  
3  $parent(v) \leftarrow u$   
4  $g(v) \leftarrow cost_v$   
5  $f(v) \leftarrow g(v) + h(v)$   
6 if  $v \in Open$  then Reordenar  $Open$   
7 else Insertar  $v$  en  $Open$ 



**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

- $2 Open \leftarrow \{s_0\}$
- $g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$
- 4 while  $Open \neq \emptyset$
- **5** Extrae un *u* desde *Open* con menor valor-
- **if** u es objetivo **return** u

for each 
$$v \in Succ(u)$$
 do

- 1  $cost_v = g(u) + c(u, v)$
- **2** if  $cost_v \ge g(v)$  return
- 3  $parent(v) \leftarrow u$
- $4 g(v) \leftarrow cost_v$
- 5  $f(v) \leftarrow g(v) + h(v)$
- **6** if  $v \in Open$  then Reordenar Open
- **7 else** Insertar v en Open

|    | 6     | 0   | 6     | 1   |       | inf | inf |
|----|-------|-----|-------|-----|-------|-----|-----|
|    | S     |     |       |     |       |     |     |
|    |       | 6   | (0,0) | 5   |       |     | 3   |
|    | 6     | 1   | 6     | 2   |       | inf | inf |
| -f |       |     |       |     |       |     |     |
|    | (0,0) | 5   | (1,0) | 4   |       |     | 2   |
|    | 6     | 2   | 6     | 3   | 6     | 4   | inf |
|    |       |     |       |     |       |     |     |
|    | (0,1) | 4   | (1,1) | 3   | (1,2) | 2   | 1   |
|    |       | inf |       | inf |       | inf | inf |
|    |       |     |       |     |       |     | G   |
|    |       | 3   |       | 2   |       |     |     |
|    | (0,1) | inf | (1,1) | inf | (1,2) |     | in  |

**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

- 2  $Open \leftarrow \{s_0\}$
- $g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$
- 4 while  $Open \neq \emptyset$
- **5** Extrae un *u* desde *Open* con menor valor-*f*
- **if** u es objetivo **return** u
- for each  $v \in Succ(u)$  do
  - - **2** if  $cost_v \ge g(v)$  return
    - 3  $parent(v) \leftarrow u$
    - $\mathbf{4} \ g(v) \leftarrow cost_v$
    - $f(v) \leftarrow g(v) + h(v)$
    - **6** if  $v \in Open$  then Reordenar Open
    - 7 else Insertar v en Open

| 6     | 0       | 6                             | 1                                                   |                                                               | inf                                                                                      | inf                                                                               |
|-------|---------|-------------------------------|-----------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| S     |         |                               |                                                     |                                                               |                                                                                          |                                                                                   |
|       | 6       | (0,0)                         | 5                                                   |                                                               |                                                                                          | 3                                                                                 |
| 6     | 1       | 6                             | 2                                                   |                                                               | inf                                                                                      | inf                                                                               |
|       |         |                               |                                                     |                                                               |                                                                                          |                                                                                   |
| (0,0) | 5       | (1,0)                         | 4                                                   |                                                               |                                                                                          | 2                                                                                 |
| 6     | 2       | 6                             | 3                                                   | 6                                                             | 4                                                                                        | inf                                                                               |
|       |         |                               |                                                     |                                                               |                                                                                          |                                                                                   |
| (O,1) | 4       | (1,1)                         | 3                                                   | (1,2)                                                         | 2                                                                                        | 1                                                                                 |
|       | inf     |                               | inf                                                 |                                                               | inf                                                                                      | inf                                                                               |
|       |         |                               |                                                     |                                                               |                                                                                          | G                                                                                 |
|       | 3       |                               | 2                                                   |                                                               |                                                                                          |                                                                                   |
|       | 6 (0,0) | 6 6 1 (0,0) 5 6 2 (0,1) 4 inf | 6 (0,0) 6 1 6 (0,0) 5 (1,0) 6 2 6 (0,1) 4 (1,1) inf | 6 (0,0) 5 6 1 6 2 (0,0) 5 (1,0) 4 6 2 6 3 (0,1) 4 (1,1) 3 inf | 6 (0,0) 5<br>6 1 6 2<br>(0,0) 5 (1,0) 4<br>6 2 6 3 6<br>(0,1) 4 (1,1) 3 (1,2)<br>inf inf | 6 (0,0) 5 6 1 6 2 inf (0,0) 5 (1,0) 4 6 2 6 3 6 4 (0,1) 4 (1,1) 3 (1,2) 2 inf inf |

**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

- **2** *Open*  $\leftarrow$  { $s_0$ }
- $g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$
- 4 while  $Open \neq \emptyset$
- **5** Extrae un *u* desde *Open* con menor valor-*f*
- **if** u es objetivo **return** u
- for each  $v \in Succ(u)$  do

  - **2** if  $cost_v \ge g(v)$  return
  - 3  $parent(v) \leftarrow u$
  - $4 g(v) \leftarrow cost_v$
  - 5  $f(v) \leftarrow g(v) + h(v)$
  - **6** if  $v \in Open$  then Reordenar Open
  - 7 else Insertar v en Open

|     | 6     | 0   | 6     | 1   |       | inf | inf |
|-----|-------|-----|-------|-----|-------|-----|-----|
|     | S     |     |       |     |       |     |     |
|     |       | 6   | (0,0) | 5   |       |     | 3   |
|     | 6     | 1   | 6     | 2   |       | inf | inf |
| r-f |       |     |       |     |       |     |     |
|     | (0,0) | 5   | (1,0) | 4   |       |     | 2   |
|     | 6     | 2   | 6     | 3   | 6     | 4   | inf |
|     |       |     |       |     |       |     |     |
|     | (0,1) | 4   | (1,1) | 3   | (1,2) | 2   | 1   |
|     |       | inf |       | inf |       | inf | inf |
|     |       |     |       |     |       |     | G   |
|     |       | 3   |       | 2   |       |     |     |

1 for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$   
2  $Open \leftarrow \{s_0\}$   
3  $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$   
4 while  $Open \neq \emptyset$   
5 Extrae un  $u$  desde  $Open$  con  $u$ 

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**2** if 
$$cost_v \geq g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



|                                                                                       | 6     | 0     | 6     | 1 |       | inf  | inf |
|---------------------------------------------------------------------------------------|-------|-------|-------|---|-------|------|-----|
|                                                                                       | S     |       |       |   |       |      |     |
| $  2   Open \leftarrow \{s_0\} $                                                      |       | 6     | (0,0) | 5 |       |      | 3   |
| 3 $g(s_0) \leftarrow 0$ ; $f(s_0) \leftarrow h(s_0)$<br>4 while $Open \neq \emptyset$ | 6     | 1     | 6     | 2 |       | inf  | inf |
| Extrae un $u$ desde $Open$ con menor valor- $f$                                       |       |       |       |   |       |      |     |
| <b>if</b> $u$ es objetivo <b>return</b> $u$                                           | (0,0) | 5     | (1,0) | 4 |       |      | 2   |
| for each $v \in Succ(u)$ do                                                           | (0,0) | J     | (1,0) | 4 |       |      |     |
| $ cost_v = g(u) + c(u, v) $                                                           | 6     | 2     | 6     | 3 | 6     | 4    | inf |
| <b>2</b> if $cost_v \geq g(v)$ return                                                 |       |       |       |   |       |      |     |
| 3 $parent(v) \leftarrow u$                                                            |       |       |       |   |       |      |     |
|                                                                                       | (O,1) | 4     | (1,1) | 3 | (1,2) | 2    | 1   |
| $f(v) \leftarrow g(v) + h(v)$                                                         |       | inf   |       | 4 |       | inf  | inf |
| <b>6</b> if $v \in Open$ then Reordenar $Open$                                        |       | 11 11 |       |   |       | 1111 |     |
| 7 else Insertar v en Open                                                             |       |       |       |   |       |      | G   |
|                                                                                       |       | 3     | (1,2) | 2 |       |      |     |

|                                                                                       | 6     | 0   | 6     | 1 |       | inf | inf |
|---------------------------------------------------------------------------------------|-------|-----|-------|---|-------|-----|-----|
|                                                                                       | S     |     |       |   |       |     |     |
| $  2  Open \leftarrow \{s_0\} $                                                       |       | 6   | (O,O) | 5 |       |     | 3   |
| 3 $g(s_0) \leftarrow 0$ ; $f(s_0) \leftarrow h(s_0)$<br>4 while $Open \neq \emptyset$ | 6     | 1   | 6     | 2 |       | inf | inf |
| Extrae un $u$ desde $Open$ con menor valor- $f$                                       |       |     |       |   |       |     |     |
| if $u$ es objetivo return $u$                                                         | (0,0) | 5   | (1,0) | 4 |       |     | 2   |
| for each $v \in Succ(u)$ do                                                           | (0,0) | J   | (1,0) | 4 |       |     | ۷   |
| $ cost_v = g(u) + c(u, v) $                                                           | 6     | 2   | 6     | 3 | 6     | 4   | inf |
| 2 if $cost_v \geq g(v)$ return                                                        |       |     |       |   |       |     |     |
| 3 $parent(v) \leftarrow u$                                                            |       |     |       |   |       |     |     |
|                                                                                       | (O,1) | 4   | (1,1) | 3 | (1,2) | 2   | 1   |
| $f(v) \leftarrow g(v) + h(v)$                                                         |       | inf | 6     | 4 |       | inf | inf |
| <ul><li>6 if v ∈ Open then Reordenar Open</li><li>7 else Insertar v en Open</li></ul> |       |     |       |   |       |     | G   |
| a cise insertal v en Open                                                             |       |     |       |   |       |     |     |
|                                                                                       |       | 3   | (1,2) | 2 |       |     |     |

|                                                                                       | 6     | 0   | 6     | 1 |       | inf | inf |
|---------------------------------------------------------------------------------------|-------|-----|-------|---|-------|-----|-----|
| <b>1</b> for each $s \in \mathcal{S}$ do $g(s) \leftarrow \infty$                     | S     |     |       |   |       |     |     |
| $  2   Open \leftarrow \{s_0\} $                                                      |       | 6   | (0,0) | 5 |       |     | 3   |
| 3 $g(s_0) \leftarrow 0$ ; $f(s_0) \leftarrow h(s_0)$<br>4 while $Open \neq \emptyset$ | 6     | 1   | 6     | 2 |       | inf | inf |
| Extrae un $u$ desde $Open$ con menor valor- $f$                                       |       |     |       |   |       |     |     |
| <ul> <li>if u es objetivo return u</li> <li>for each v ∈ Succ(u) do</li> </ul>        | (0,0) | 5   | (1,0) | 4 |       |     | 2   |
| $ 1   cost_v = g(u) + c(u, v) $                                                       | 6     | 2   | 6     | 3 | 6     | 4   | inf |
| 2 if $cost_v \ge g(v)$ return                                                         |       |     |       |   |       |     |     |
| 3 $parent(v) \leftarrow u$                                                            |       |     |       |   |       |     |     |
|                                                                                       | (0,1) | 4   | (1,1) | 3 | (1,2) | 2   | 1   |
| 5 $f(v) \leftarrow g(v) + h(v)$<br>6 if $v \in Open$ then Reordenar $Open$            |       | inf | 6     | 4 |       | inf | inf |
| 7 else Insertar v en Open                                                             |       |     |       |   |       |     | G   |
|                                                                                       |       | 3   | (1,2) | 2 |       |     | _   |

|                                                                                       | 6     | 0   | 6     | 1 |       | inf | inf |
|---------------------------------------------------------------------------------------|-------|-----|-------|---|-------|-----|-----|
| 1 for each $s \in \mathcal{S}$ do $g(s) \leftarrow \infty$                            | S     |     |       |   |       |     |     |
| $  2   Open \leftarrow \{s_0\} $                                                      |       | 6   | (0,0) | 5 |       |     | 3   |
| 3 $g(s_0) \leftarrow 0$ ; $f(s_0) \leftarrow h(s_0)$<br>4 while $Open \neq \emptyset$ | 6     | 1   | 6     | 2 |       | inf | inf |
| Extrae un $u$ desde $Open$ con menor valor- $f$                                       |       |     |       |   |       |     |     |
| <ul> <li>if u es objetivo return u</li> <li>for each v ∈ Succ(u) do</li> </ul>        | (0,0) | 5   | (1,0) | 4 |       |     | 2   |
| $ cost_v = g(u) + c(u, v) $                                                           | 6     | 2   | 6     | 3 | 6     | 4   | inf |
| 2 if $cost_v \geq g(v)$ return                                                        |       |     |       |   |       |     |     |
| $\exists parent(v) \leftarrow u$                                                      |       |     |       |   |       |     |     |
|                                                                                       | (0,1) | 4   | (1,1) | 3 | (1,2) | 2   | 1   |
| 5 $f(v) \leftarrow g(v) + h(v)$<br>6 if $v \in Open$ then Reordenar $Open$            |       | inf | 6     | 4 |       | inf | inf |
| 7 else Insertar v en Open                                                             |       |     |       |   |       |     | G   |
|                                                                                       |       | 3   | (1,2) | 2 |       |     |     |

**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** *Open* 
$$\leftarrow$$
 { $s_0$ }

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

$$cost_v = g(u) + c(u, v)$$

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$a$$
 parent( $v$ )  $\leftarrow u$ 

4 
$$g(v) \leftarrow cost_v$$
  
5  $f(v) \leftarrow g(v) + h(v)$ 

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

2 
$$Open \leftarrow \{s_0\}$$

**3** 
$$g(s_0) \leftarrow 0$$
;  $f(s_0) \leftarrow h(s_0)$ 

4 while 
$$Open \neq \emptyset$$

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \geq g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

|    | 6     | 0   | 6     | 1 |       | inf | inf |
|----|-------|-----|-------|---|-------|-----|-----|
|    | S     |     |       |   |       |     |     |
|    |       | 6   | (0,0) | 5 |       |     | 3   |
|    | 6     | 1   | 6     | 2 |       | inf | inf |
| -f |       |     |       |   |       |     |     |
|    | (0,0) | 5   | (1,0) | 4 |       |     | 2   |
|    | 6     | 2   | 6     | 3 | 6     | 4   | inf |
|    |       |     |       |   |       |     |     |
|    | (0,1) | 4   | (1,1) | 3 | (1,2) | 2   | 1   |
|    |       | inf | 6     | 4 |       | inf | inf |
|    |       |     |       |   |       |     | G   |
|    |       | 3   | (1,2) | 2 |       |     | _   |
|    |       | 3   | (1,2) | 2 |       |     |     |

**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

2 
$$Open \leftarrow \{s_0\}$$

3 
$$g(s_0) \leftarrow 0$$
;  $f(s_0) \leftarrow h(s_0)$ 

4 while 
$$Open \neq \emptyset$$

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

$$cost_v = g(u) + c(u, v)$$

2 if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 

|     | 6     | 0   | 6     | 1 |       | inf | inf |
|-----|-------|-----|-------|---|-------|-----|-----|
|     | S     |     |       |   |       |     |     |
|     |       | 6   | (0,0) | 5 |       |     | 3   |
|     | 6     | 1   | 6     | 2 |       | inf | inf |
| r-f |       |     |       |   |       |     |     |
|     | (0,0) | 5   | (1,0) | 4 |       |     | 2   |
|     | 6     | 2   | 6     | 3 | 6     | 4   | inf |
|     |       |     |       |   |       |     |     |
|     | (0,1) | 4   | (1,1) | 3 | (1,2) | 2   | 1   |
|     |       | inf | 6     | 4 |       | inf | inf |
|     |       |     |       |   |       |     | G   |
|     |       | 3   | (1,2) | 2 |       |     |     |
|     |       |     |       |   |       |     |     |

1 for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$   
2  $Open \leftarrow \{s_0\}$   
3  $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$   
4 while  $Open \neq \emptyset$   
5 Extrae un  $u$  desde  $Open$  con menor valor- $f$   
6 if  $u$  es objetivo return  $u$   
7 for each  $v \in Succ(u)$  do  
1  $cost_v = g(u) + c(u, v)$   
2 if  $cost_v \geq g(v)$  return  
3  $parent(v) \leftarrow u$   
4  $g(v) \leftarrow cost_v$   
5  $f(v) \leftarrow g(v) + h(v)$   
6 if  $v \in Open$  then Reordenar  $Open$ 

else Insertar v en Open



1 for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$   
2  $Open \leftarrow \{s_0\}$   
3  $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$   
4 while  $Open \neq \emptyset$   
5 Extrae un  $u$  desde  $Open$  con menor valor- $f$   
6 if  $u$  es objetivo return  $u$   
7 for each  $v \in Succ(u)$  do  
1  $cost_v = g(u) + c(u, v)$   
2 if  $cost_v \geq g(v)$  return  
3  $parent(v) \leftarrow u$   
4  $g(v) \leftarrow cost_v$   
5  $f(v) \leftarrow g(v) + h(v)$ 

**6** if  $v \in Open$  then Reordenar Open

**7** else Insertar v en Open



- 2  $Open \leftarrow \{s_0\}$
- **3**  $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$
- 4 while  $Open \neq \emptyset$
- 5 Extrae un *u* desde *Open* con menor valor-*t*

## if u es objetivo return u

- 7 for each  $v \in Succ(u)$  do
  - $1 cost_v = g(u) + c(u, v)$
  - **2** if  $cost_v \ge g(v)$  return

  - $\exists parent(v) \leftarrow u$

  - $f(v) \leftarrow g(v) + h(v)$
  - **6** if  $v \in Open$  then Reordenar Open
  - 7 else Insertar v en Open

|      | 6     | 0   | 6     | 1 |       | inf | inf |
|------|-------|-----|-------|---|-------|-----|-----|
|      | S     |     |       |   |       |     |     |
|      |       | 6   | (0,0) | 5 |       |     | 3   |
|      | 6     | 1   | 6     | 2 |       | inf | inf |
| or-f |       |     |       |   |       |     |     |
|      | (0,0) | 5   | (1,0) | 4 |       |     | 2   |
|      | 6     | 2   | 6     | 3 | 6     | 4   | inf |
|      |       |     |       |   |       |     |     |
|      | (0,1) | 4   | (1,1) | 3 | (1,2) | 2   | 1   |
| ì    |       | inf | 6     | 4 |       | inf | inf |
| 26   |       |     |       |   |       |     | G   |
|      |       | 3   | (1,2) | 2 |       |     | _   |

1 for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

$$2 Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

$$1 cost_v = g(u) + c(u, v)$$

**2** if 
$$cost_v \geq g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$a$$
 parent( $v$ )  $\leftarrow u$ 

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



|                                                   | 6     | 0    | 6     | 1 |       | inf  | inf   |
|---------------------------------------------------|-------|------|-------|---|-------|------|-------|
|                                                   | S     | )    |       |   |       |      |       |
| $  2   Open \leftarrow \{s_0\} $                  |       | 6    | (0,0) | 5 |       |      | 3     |
| $g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$ |       | 4    |       |   |       | ٠. ر | • . ( |
| 4 while $Open \neq \emptyset$                     | 6     | 1    | 6     | 2 |       | inf  | inf   |
| Extrae un $u$ desde $Open$ con menor valor- $f$   |       |      |       |   |       |      |       |
| <b>if</b> $u$ es objetivo <b>return</b> $u$       | (0.0) | _    | (4.0) |   |       |      | 2     |
| for each $v \in Succ(u)$ do                       | (0,0) | 5    | (1,0) | 4 |       |      | 2     |
|                                                   | 6     | 2    | 6     | 3 | 6     | 4    | inf   |
| <b>2</b> if $cost_v \geq g(v)$ return             |       |      |       |   |       |      |       |
| 3 $parent(v) \leftarrow u$                        |       |      |       |   |       |      |       |
| 4 $g(v) \leftarrow cost_v$                        | (O,1) | 4    | (1,1) | 3 | (1,2) | 2    | 1     |
| $f(v) \leftarrow g(v) + h(v)$                     |       | inf  | 6     | 4 |       | inf  | inf   |
| <b>6</b> if $v \in Open$ then Reordenar $Open$    |       | 1111 | O     | 4 |       | 1111 |       |
| 7 else Insertar v en Open                         |       |      |       |   |       |      | G     |
|                                                   |       | 3    | (1,2) | 2 |       |      |       |

1 for each 
$$s \in S$$
 do  $g(s) \leftarrow \infty$   
2  $Open \leftarrow \{s_0\}$ 

$$\mathbf{3} \ g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

**4** while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

$$cost_v = g(u) + c(u, v)$$

2 if 
$$cost_v \ge g(v)$$
 return

2 II 
$$cost_v \geq g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

4 
$$g(v) \leftarrow cost_v$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



If for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

2  $Open \leftarrow \{s_0\}$ 

3  $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$ 

4 while  $Open \neq \emptyset$ 

5 Extrae un  $u$  desde  $Open$  con menor valor- $f$ 

5 if  $u$  es objetivo return  $u$ 

7 for each  $v \in Succ(u)$  do

8  $g(v) \leftarrow cost_v = g(u) + c(u, v)$ 

9  $g(v) \leftarrow cost_v$ 

1  $g(v) \leftarrow cost_v$ 

1  $g(v) \leftarrow cost_v$ 

1  $g(v) \leftarrow f(v) \leftarrow f(v) \rightarrow f(v)$ 

1 inf

2 if  $v \in Open$  then Reordenar  $Open$ 

1 else Insertar  $v \in Open$ 

|                                                                                                     | 6     | 0        | 6     | 1 |       | inf  |       | inf   |
|-----------------------------------------------------------------------------------------------------|-------|----------|-------|---|-------|------|-------|-------|
| $\textbf{1} \   \textbf{for each} \   s \in \mathcal{S} \   \textbf{do} \   g(s) \leftarrow \infty$ | S     |          |       |   |       |      |       |       |
| $  2  Open \leftarrow \{s_0\} $                                                                     |       | 6        | (O,O) | 5 |       |      |       | 3     |
| $ g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0) $                                                 | 6     | 1        | 6     | 2 |       | inf  |       | inf   |
| 4 while $Open \neq \emptyset$                                                                       | 0     | '        | O     | ۷ |       | 1111 |       | ""    |
| Extrae un $u$ desde $Open$ con menor valor- $f$                                                     |       |          |       |   |       |      |       |       |
| <b>if</b> $u$ es objetivo <b>return</b> $u$                                                         | (0.0) | 5        | (4.0) | _ |       |      |       | 2     |
| for each $v \in Succ(u)$ do                                                                         | (0,0) | <u> </u> | (1,0) | 4 |       |      |       | 2     |
| $ cost_v = g(u) + c(u, v) $                                                                         | 6     | 2        | 6     | 3 | 6     | 4    |       | 5     |
| 2 if $cost_v \geq g(v)$ return                                                                      |       |          |       |   |       |      |       |       |
| 3 $parent(v) \leftarrow u$                                                                          |       |          |       |   |       |      |       |       |
|                                                                                                     | (0,1) | 4        | (1,1) | 3 | (1,2) | 2    | (2,2) | 1     |
| $f(v) \leftarrow g(v) + h(v)$                                                                       |       | inf      | 6     | 4 |       | inf  |       | inf   |
| <b>6</b> if $v \in Open$ then Reordenar $Open$                                                      |       |          | O     |   |       |      |       | . ''' |
| 7 else Insertar v en Open                                                                           |       |          |       |   |       |      | G     |       |
|                                                                                                     |       | 3        | (1,2) | 2 |       |      |       |       |

|                                                                        | 6     | 0    | 6     | 1 |       | inf  |       | inf |
|------------------------------------------------------------------------|-------|------|-------|---|-------|------|-------|-----|
|                                                                        | S     |      |       |   |       |      |       |     |
| $  2   Open \leftarrow \{s_0\} $                                       |       | 6    | (O,O) | 5 |       |      |       | 3   |
| $ g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0) $                    | 6     | 1    | 6     | 2 |       | inf  |       | inf |
| 4 while $Open \neq \emptyset$                                          |       | ·    |       | _ |       |      |       | ""  |
| <b>E</b> xtrae un <i>u</i> desde <i>Open</i> con menor valor- <i>f</i> |       |      |       |   |       |      |       |     |
| if u es objetivo return u                                              | (0,0) | 5    | (1,0) | 4 |       |      |       | 2   |
| for each $v \in Succ(u)$ do                                            |       |      |       |   | _     |      |       |     |
| $ cost_v = g(u) + c(u, v) $                                            | 6     | 2    | 6     | 3 | 6     | 4    | 6     | 5   |
| 2 if $cost_v \geq g(v)$ return                                         |       |      |       |   |       |      |       |     |
| $3$ parent $(v) \leftarrow u$                                          |       |      |       |   |       |      |       |     |
|                                                                        | (0,1) | 4    | (1,1) | 3 | (1,2) | 2    | (2,2) | 1   |
| $f(v) \leftarrow g(v) + h(v)$                                          |       | inf  | 6     | 4 |       | inf  |       | inf |
| <b>6</b> if $v \in Open$ then Reordenar $Open$                         |       | 1111 |       | 7 |       | 1111 |       | ""  |
| 7 else Insertar v en Open                                              |       |      |       |   |       |      | G     |     |
|                                                                        |       | 3    | (1,2) | 2 |       |      |       |     |

|                                                                                                     | 6     | 0   | 6     | 1 |       | inf |       | inf |
|-----------------------------------------------------------------------------------------------------|-------|-----|-------|---|-------|-----|-------|-----|
| $\textbf{1} \   \textbf{for each} \   s \in \mathcal{S} \   \textbf{do} \   g(s) \leftarrow \infty$ | S     |     |       |   |       |     |       |     |
| $  2   Open \leftarrow \{s_0\} $                                                                    |       | 6   | (O,O) | 5 |       |     |       | 3   |
| 3 $g(s_0) \leftarrow 0$ ; $f(s_0) \leftarrow h(s_0)$<br>4 while $Open \neq \emptyset$               | 6     | 1   | 6     | 2 |       | inf |       | inf |
| Extrae un $u$ desde $Open$ con menor valor- $f$                                                     |       |     |       |   |       |     |       |     |
| <b>if</b> $u$ es objetivo <b>return</b> $u$                                                         | (0,0) | 5   | (1,0) | 4 |       |     |       | 2   |
| for each $v \in Succ(u)$ do                                                                         | (0,0) | J   | (1,0) | 4 |       |     |       |     |
| $ cost_v = g(u) + c(u, v) $                                                                         | 6     | 2   | 6     | 3 | 6     | 4   | 6     | 5   |
| 2 if $cost_v \geq g(v)$ return                                                                      |       |     |       |   |       |     |       |     |
| $parent(v) \leftarrow u$                                                                            |       |     |       |   |       |     |       |     |
|                                                                                                     | (0,1) | 4   | (1,1) | 3 | (1,2) | 2   | (2,2) | 1   |
| $f(v) \leftarrow g(v) + h(v)$                                                                       |       | inf | 6     | 4 |       | inf |       | inf |
| <b>6</b> if $v \in Open$ then Reordenar $Open$                                                      |       |     |       | · |       |     |       |     |
| 7 else Insertar v en Open                                                                           |       |     |       |   |       |     | G     |     |
|                                                                                                     |       | 3   | (1,2) | 2 |       |     |       |     |

|                                                                                       | 6     | 0   | 6     | 1 |       | inf |       | inf |
|---------------------------------------------------------------------------------------|-------|-----|-------|---|-------|-----|-------|-----|
| <b>1</b> for each $s \in \mathcal{S}$ do $g(s) \leftarrow \infty$                     | S     |     |       |   |       |     |       |     |
| $  2   Open \leftarrow \{s_0\} $                                                      |       | 6   | (O,O) | 5 |       |     |       | 3   |
| 3 $g(s_0) \leftarrow 0$ ; $f(s_0) \leftarrow h(s_0)$<br>4 while $Open \neq \emptyset$ | 6     | 1   | 6     | 2 |       | inf |       | inf |
| Extrae un $u$ desde $Open$ con menor valor- $f$                                       |       |     |       |   |       |     |       |     |
| <ul> <li>if u es objetivo return u</li> <li>for each v ∈ Succ(u) do</li> </ul>        | (0,0) | 5   | (1,0) | 4 |       |     |       | 2   |
| $ 1   cost_v = g(u) + c(u, v) $                                                       | 6     | 2   | 6     | 3 | 6     | 4   | 6     | 5   |
| <b>2</b> if $cost_v \geq g(v)$ return                                                 |       |     |       |   |       |     |       |     |
| $\exists parent(v) \leftarrow u$                                                      |       |     |       |   |       |     |       |     |
|                                                                                       | (0,1) | 4   | (1,1) | 3 | (1,2) | 2   | (2,2) | 1   |
| 5 $f(v) \leftarrow g(v) + h(v)$<br>6 if $v \in Open then Reardener Open$              |       | inf | 6     | 4 |       | inf |       | inf |
| <ul><li>6 if v ∈ Open then Reordenar Open</li><li>7 else Insertar v en Open</li></ul> |       |     |       |   |       |     | G     |     |
|                                                                                       |       | 3   | (1,2) | 2 |       |     |       |     |

1 for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$   
2  $Open \leftarrow \{s_0\}$   
3  $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$   
4 while  $Open \neq \emptyset$   
5 Extrae un  $u$  desde  $Open$  con menor valor- $f$   
6 if  $u$  es objetivo return  $u$   
7 for each  $v \in Succ(u)$  do  
1  $cost_v = g(u) + c(u, v)$   
2 if  $cost_v \geq g(v)$  return  
3  $parent(v) \leftarrow u$   
4  $g(v) \leftarrow cost_v$   
5  $f(v) \leftarrow g(v) + h(v)$   
6 if  $v \in Open$  then Reordenar  $Open$   
7 else Insertar  $v$  en  $Open$ 



**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

- 2  $Open \leftarrow \{s_0\}$
- $g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$
- **4** while  $Open \neq \emptyset$

- **if** *u* es objetivo **return** *u*
- for each  $v \in Succ(u)$  do

  - **2** if  $cost_v \ge g(v)$  return
  - 3  $parent(v) \leftarrow u$
  - $\mathbf{s}$  parent( $\mathbf{v}$ )  $\leftarrow \mathbf{u}$

  - $f(v) \leftarrow g(v) + h(v)$
  - **6 if**  $v \in Open$  **then** Reordenar Open
  - **7 else** Insertar v en Open

|     | 6     | 0        | 6     | 1 |       | inf |       | inf |
|-----|-------|----------|-------|---|-------|-----|-------|-----|
|     | S     |          |       |   |       |     |       |     |
|     |       | 6        | (0,0) | 5 |       |     |       | 3   |
|     | 6     | 1        | 6     | 2 |       | inf |       | inf |
| r-f |       |          |       |   |       |     |       |     |
|     | (0,0) | 5        | (1,0) | 4 |       |     |       | 2   |
|     | 6     | 2        | 6     | 3 | 6     | 4   | 6     | 5   |
|     |       |          |       |   |       |     |       |     |
|     | (O,1) | 4        | (1,1) | 3 | (1,2) | 2   | (2,2) | 1   |
|     |       | inf      | 6     | 4 |       | inf |       | inf |
|     |       |          |       |   |       |     | G     |     |
|     |       | 3        | (1,2) | 2 |       |     |       |     |
|     |       | <u> </u> | (1,2) |   |       |     |       |     |

1 for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$   
2  $Open \leftarrow \{s_0\}$   
3  $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$   
4 while  $Open \neq \emptyset$   
5 Extrae un  $u$  desde  $Open$  con menor valor- $f$   
6 if  $u$  es objetivo return  $u$   
7 for each  $v \in Succ(u)$  do  
1  $cost_v = g(u) + c(u, v)$   
2 if  $cost_v \geq g(v)$  return  
3  $parent(v) \leftarrow u$   
4  $g(v) \leftarrow cost_v$   
5  $f(v) \leftarrow g(v) + h(v)$ 

else Insertar v en Open



|                                                                   |                                                   | 6     | 0    | 6     | 1 |       | inf |       | inf |
|-------------------------------------------------------------------|---------------------------------------------------|-------|------|-------|---|-------|-----|-------|-----|
| <b>1</b> for each $s \in \mathcal{S}$ do $g(s) \leftarrow \infty$ |                                                   | S     |      |       |   |       |     |       |     |
| 2                                                                 | $Open \leftarrow \{s_0\}$                         |       | 6    | (0,0) | 5 |       |     |       | 3   |
| 3                                                                 | $g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$ | 6     | 4    | 6     |   |       | : £ |       | ٠(  |
| 4                                                                 | while $Open \neq \emptyset$                       | 6     | 1    | 6     | 2 |       | inf |       | inf |
| 5                                                                 | Extrae un $u$ desde $Open$ con menor valor- $f$   |       |      |       |   |       |     |       |     |
| 6                                                                 | <b>if</b> $u$ es objetivo <b>return</b> $u$       | (0.0) | _    | (4.0) |   |       |     |       |     |
| 7                                                                 | for each $v \in Succ(u)$ do                       | (0,0) | 5    | (1,0) | 4 |       |     |       | 2   |
|                                                                   |                                                   | 6     | 2    | 6     | 3 | 6     | 4   | 6     | 5   |
|                                                                   | 2 if $cost_v \geq g(v)$ return                    |       |      |       |   |       |     |       |     |
|                                                                   | $\exists parent(v) \leftarrow u$                  |       |      |       |   |       |     |       |     |
|                                                                   |                                                   | (0,1) | 4    | (1,1) | 3 | (1,2) | 2   | (2,2) | 1   |
|                                                                   | $f(v) \leftarrow g(v) + h(v)$                     |       | inf  | 6     | 4 |       | inf |       | inf |
|                                                                   | <b>6</b> if $v \in Open$ then Reordenar $Open$    |       | 1111 | O     | 4 |       | inf |       | inf |
|                                                                   | 7 else Insertar v en Open                         |       |      |       |   |       |     | G     |     |
|                                                                   |                                                   |       | 3    | (1,2) | 2 |       |     |       |     |

1 for each 
$$s \in S$$
 do  $g(s) \leftarrow \infty$ 
2  $Open \leftarrow \{s_0\}$ 
2  $Open \leftarrow \{s_0\}$ 
3  $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$ 
5 Extrae un  $u$  desde  $Open$  con menor valor- $f$ 
6 if  $u$  es objetivo return  $u$ 
7 for each  $v \in Succ(u)$  do
8  $g(v) \leftarrow cost_v = g(u) + c(u, v)$ 
9 if  $cost_v \geq g(v)$  return
1 garent( $v$ ) ←  $u$ 
1 g( $v$ ) ←  $cost_v$ 
1 f( $v$ ) ←  $g(v)$  +  $h(v)$ 
1 inf  $f(v) \leftarrow g(v)$  +  $h(v)$ 
2 if  $f(v) \leftarrow g(v)$  +  $h(v)$ 
3 if  $f(v) \leftarrow Open$  then Reordenar  $Open$ 
1 else Insertar  $v$  en  $Open$ 
3 (1,2) 2

1 for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$   
2  $Open \leftarrow \{s_0\}$ 

- 3  $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$
- 4 while  $Open \neq \emptyset$
- Extrae un u desde Open con menor valor-f
- **if** u es objetivo **return** u
- for each  $v \in Succ(u)$  do
  - $cost_v = g(u) + c(u, v)$
  - 2 if  $cost_v \ge g(v)$  return
  - $\exists parent(v) \leftarrow u$
  - $parent(v) \leftarrow u$
  - 4  $g(v) \leftarrow cost_v$ 5  $f(v) \leftarrow g(v) + h(v)$

  - **6** if  $v \in Open$  then Reordenar Open
  - 7 else Insertar v en Open



inf

inf

inf

|                                                                                       | 6     | 0   | 6     | 1 |       | inf |       | inf |
|---------------------------------------------------------------------------------------|-------|-----|-------|---|-------|-----|-------|-----|
| <b>1</b> for each $s \in \mathcal{S}$ do $g(s) \leftarrow \infty$                     | S     |     |       |   |       |     |       |     |
| $  2   Open \leftarrow \{s_0\} $                                                      |       | 6   | (0,0) | 5 |       |     |       | 3   |
| 3 $g(s_0) \leftarrow 0$ ; $f(s_0) \leftarrow h(s_0)$<br>4 while $Open \neq \emptyset$ | 6     | 1   | 6     | 2 |       | inf |       | 6   |
| Extrae un $u$ desde $Open$ con menor valor- $f$                                       |       |     |       |   |       |     |       |     |
| <ul> <li>if u es objetivo return u</li> <li>for each v ∈ Succ(u) do</li> </ul>        | (0,0) | 5   | (1,0) | 4 |       |     | (3,2) | 2   |
| $ cost_v = g(u) + c(u, v) $                                                           | 6     | 2   | 6     | 3 | 6     | 4   | 6     | 5   |
| 2 if $cost_v \geq g(v)$ return                                                        |       |     |       |   |       |     |       |     |
|                                                                                       |       |     |       |   |       |     |       |     |
|                                                                                       | (O,1) | 4   | (1,1) | 3 | (1,2) | 2   | (2,2) | 1   |
| 5 $f(v) \leftarrow g(v) + h(v)$<br>6 if $v \in Open$ then Reordenar $Open$            |       | inf | 6     | 4 |       | inf |       | inf |
| 7 else Insertar v en Open                                                             |       |     |       |   |       |     | G     |     |
|                                                                                       |       | 3   | (1,2) | 2 |       |     |       |     |

|                                                                                       | 6     | 0   | 6     | 1 |       | inf |       | inf |
|---------------------------------------------------------------------------------------|-------|-----|-------|---|-------|-----|-------|-----|
|                                                                                       | S     |     |       |   |       |     |       |     |
| $  2   Open \leftarrow \{s_0\} $                                                      |       | 6   | (O,O) | 5 |       |     |       | 3   |
| 3 $g(s_0) \leftarrow 0$ ; $f(s_0) \leftarrow h(s_0)$<br>4 while $Open \neq \emptyset$ | 6     | 1   | 6     | 2 |       | inf | 8     | 6   |
| Extrae un $u$ desde $Open$ con menor valor- $f$                                       |       |     |       |   |       |     |       |     |
| <ul> <li>if u es objetivo return u</li> <li>for each v ∈ Succ(u) do</li> </ul>        | (0,0) | 5   | (1,0) | 4 |       |     | (3,2) | 2   |
| $ 1   cost_v = g(u) + c(u, v) $                                                       | 6     | 2   | 6     | 3 | 6     | 4   | 6     | 5   |
| 2 if $cost_v \geq g(v)$ return                                                        |       |     |       |   |       |     |       |     |
| $\exists parent(v) \leftarrow u$                                                      |       |     |       |   |       |     |       |     |
|                                                                                       | (0,1) | 4   | (1,1) | 3 | (1,2) | 2   | (2,2) | 1   |
| $f(v) \leftarrow g(v) + h(v)$ <b>6</b> if $v \in Open$ then Reordenar $Open$          |       | inf | 6     | 4 |       | inf |       | inf |
| 7 else Insertar v en Open                                                             |       |     |       |   |       |     | G     |     |
|                                                                                       |       | 3   | (1,2) | 2 |       |     |       |     |

|                                                                                       | 6     | 0   | 6     | 1 |       | inf |       | inf |
|---------------------------------------------------------------------------------------|-------|-----|-------|---|-------|-----|-------|-----|
|                                                                                       | S     |     |       |   |       |     |       |     |
| $  2  Open \leftarrow \{s_0\} $                                                       |       | 6   | (O,O) | 5 |       |     |       | 3   |
| 3 $g(s_0) \leftarrow 0$ ; $f(s_0) \leftarrow h(s_0)$<br>4 while $Open \neq \emptyset$ | 6     | 1   | 6     | 2 |       | inf | 8     | 6   |
| Extrae un $u$ desde $Open$ con menor valor- $f$                                       |       |     |       |   |       |     |       |     |
| <ul> <li>if u es objetivo return u</li> <li>for each v ∈ Succ(u) do</li> </ul>        | (0,0) | 5   | (1,0) | 4 |       |     | (3,2) | 2   |
| $ 1   cost_v = g(u) + c(u, v) $                                                       | 6     | 2   | 6     | 3 | 6     | 4   | 6     | 5   |
| 2 if $cost_v \ge g(v)$ return                                                         |       |     |       |   |       |     |       |     |
| $\exists parent(v) \leftarrow u$                                                      |       |     |       |   |       |     |       |     |
|                                                                                       | (0,1) | 4   | (1,1) | 3 | (1,2) | 2   | (2,2) | 1   |
| 5 $f(v) \leftarrow g(v) + h(v)$<br>6 if $v \in Open$ then Reordenar $Open$            |       | inf | 6     | 4 |       | inf |       | inf |
| 7 else Insertar v en Open                                                             |       |     |       |   |       |     | G     |     |
|                                                                                       |       | 3   | (1,2) | 2 |       |     |       |     |

|                                                                   | 6     | 0    | 6     | 1 |       | inf   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inf |
|-------------------------------------------------------------------|-------|------|-------|---|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <b>1</b> for each $s \in \mathcal{S}$ do $g(s) \leftarrow \infty$ | S     |      |       |   |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| $  2   Open \leftarrow \{s_0\} $                                  |       | 6    | (O,O) | 5 |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3   |
| $ g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0) $               | 6     | 1    | 6     | 2 |       | inf   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6   |
| 4 while $Open \neq \emptyset$                                     |       | •    | ŭ     | _ |       |       | , and the second | Ü   |
| Extrae un <i>u</i> desde <i>Open</i> con menor valor- <i>f</i>    |       |      |       |   |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| if $u$ es objetivo return $u$                                     | (0,0) | 5    | (1,0) | 4 |       |       | (3,2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2   |
| for each $v \in Succ(u)$ do                                       |       |      | . , . |   |       |       | . , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| $ cost_v = g(u) + c(u, v) $                                       | 6     | 2    | 6     | 3 | 6     | 4     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5   |
| <b>2</b> if $cost_v \geq g(v)$ return                             |       |      |       |   |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| $\exists parent(v) \leftarrow u$                                  |       |      |       |   |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 4 $g(v) \leftarrow cost_v$                                        | (0,1) | 4    | (1,1) | 3 | (1,2) | 2     | (2,2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1   |
| $f(v) \leftarrow g(v) + h(v)$                                     |       | inf  | 6     | 4 |       | inf   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inf |
| <b>6</b> if $v \in Open$ then Reordenar $Open$                    |       | 1111 | O     | 4 |       | 11 11 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ""  |
| <b>7 else</b> Insertar <i>v</i> en <i>Open</i>                    |       |      |       |   |       |       | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|                                                                   |       | 3    | (1,2) | 2 |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |

**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

- 2  $Open \leftarrow \{s_0\}$
- $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$
- 4 while  $Open \neq \emptyset$
- Extrae un u desde Open con menor valor-f
- **if** u es objetivo **return** u

for each 
$$v \in Succ(u)$$
 do

- **2** if  $cost_v \ge g(v)$  return
- 3  $parent(v) \leftarrow u$
- 4  $g(v) \leftarrow cost_v$
- 5  $f(v) \leftarrow g(v) + h(v)$
- **6** if  $v \in Open$  then Reordenar Open
- **7 else** Insertar *v* en *Open*



1 for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$   
2  $Open \leftarrow \{s_0\}$   
3  $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$   
4 while  $Open \neq \emptyset$   
5 Extrae un  $u$  desde  $Open$  con menor valor- $f$   
6 if  $u$  es objetivo return  $u$   
7 for each  $v \in Succ(u)$  do  
1  $cost_v = g(u) + c(u, v)$   
2 if  $cost_v \geq g(v)$  return  
3  $parent(v) \leftarrow u$   
4  $g(v) \leftarrow cost_v$   
5  $f(v) \leftarrow g(v) + h(v)$   
6 if  $v \in Open$  then Reordenar  $Open$   
7 else Insertar  $v$  en  $Open$ 



**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

- 2  $Open \leftarrow \{s_0\}$
- $g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$
- 4 while  $Open \neq \emptyset$
- **E**xtrae un *u* desde *Open* con menor valor-
- **if** u es objetivo **return** u
- for each  $v \in Succ(u)$  do

  - **2** if  $cost_v \ge g(v)$  return
  - 3  $parent(v) \leftarrow u$

  - $f(v) \leftarrow g(v) + h(v)$
  - if w C Open then Boardanar Open
  - **6** if  $v \in Open$  then Reordenar Open
  - 7 else Insertar v en Open

|     | 6     | 0   | 6     | 1 |       | inf |       | inf |
|-----|-------|-----|-------|---|-------|-----|-------|-----|
|     | S     |     |       |   |       |     |       |     |
|     |       | 6   | (0,0) | 5 |       |     |       | 3   |
|     | 6     | 1   | 6     | 2 |       | inf | 8     | 6   |
| r-f |       |     |       |   |       |     |       |     |
|     | (0,0) | 5   | (1,0) | 4 |       |     | (3,2) | 2   |
|     | 6     | 2   | 6     | 3 | 6     | 4   | 6     | 5   |
|     |       |     |       |   |       |     |       |     |
|     | (O,1) | 4   | (1,1) | 3 | (1,2) | 2   | (2,2) | 1   |
|     |       | inf | 6     | 4 |       | inf |       | inf |
|     |       |     |       |   |       |     | G     |     |
|     |       | 3   | (1,2) | 2 |       |     |       |     |

1 for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$   
2  $Open \leftarrow \{s_0\}$   
3  $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$   
4 while  $Open \neq \emptyset$   
5 Extrae un  $u$  desde  $Open$  con menor valor- $f$   
6 if  $u$  es objetivo return  $u$   
7 for each  $v \in Succ(u)$  do  
1  $cost_v = g(u) + c(u, v)$   
2 if  $cost_v \geq g(v)$  return  
3  $parent(v) \leftarrow u$   
4  $g(v) \leftarrow cost_v$   
5  $f(v) \leftarrow g(v) + h(v)$   
6 if  $v \in Open$  then Reordenar  $Open$   
7 else Insertar  $v$  en  $Open$ 



|                                                                   | 6     | 0   | 6     | 1 |       | inf |       | inf |
|-------------------------------------------------------------------|-------|-----|-------|---|-------|-----|-------|-----|
| <b>1</b> for each $s \in \mathcal{S}$ do $g(s) \leftarrow \infty$ | S     | )   |       |   |       |     |       |     |
| <b>2</b> <i>Open</i> ← $\{s_0\}$                                  |       | 6   | (O,O) | 5 |       |     |       | 3   |
| $3 \ g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$             | 6     | 1   | 6     | 2 |       | inf | 8     | 6   |
| 4 while $Open \neq \emptyset$                                     | O     | ı   | O     | 2 |       | IM  | 0     | O   |
| Extrae un $u$ desde $Open$ con menor valor- $f$                   |       |     |       |   |       |     |       |     |
| <b>if</b> $u$ es objetivo <b>return</b> $u$                       | (0.0) | 5   | (1,0) | _ |       |     | (3,2) | 2   |
| for each $v \in Succ(u)$ do                                       | (0,0) | 5   | (1,0) | 4 |       |     | (3,2) | 2   |
| $ cost_v = g(u) + c(u, v) $                                       | 6     | 2   | 6     | 3 | 6     | 4   | 6     | 5   |
| <b>2</b> if $cost_v \geq g(v)$ return                             |       |     |       |   |       |     |       |     |
| $parent(v) \leftarrow u$                                          |       |     |       |   |       |     |       |     |
|                                                                   | (0,1) | 4   | (1,1) | 3 | (1,2) | 2   | (2,2) | 1   |
| $f(v) \leftarrow g(v) + h(v)$                                     |       | inf | 6     | 4 |       | inf |       | 6   |
| <b>6</b> if $v \in Open$ then Reordenar $Open$                    |       |     |       |   |       |     |       |     |
| 7 else Insertar v en Open                                         |       |     |       |   |       |     | G     |     |
|                                                                   |       | 3   | (1,2) | 2 |       |     | (3,2) |     |

1 for each 
$$s \in S$$
 do  $g(s) \leftarrow \infty$ 
2 Open  $\leftarrow \{s_0\}$ 
2 If  $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$ 
3 If  $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$ 
6 If  $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$ 
6 If  $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$ 
6 If  $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$ 
7 If  $g(s_0) \leftarrow g(s_0) \leftarrow g(s_0)$ 
8 If  $g(s_0) \leftarrow g(s_0) \leftarrow g(s_0)$ 
9 If  $g(s_0) \leftarrow g(s_0) \leftarrow g(s_0)$ 
9 If  $g(s_0) \leftarrow g(s_0) \leftarrow g(s_0)$ 
9 If  $g(s_0) \leftarrow g(s_0) \leftarrow g(s_0)$ 
1 If  $g(s_0) \leftarrow g(s_0) \leftarrow g(s_0)$ 
1 If  $g(s_0) \leftarrow g(s_0) \leftarrow g(s_0)$ 
1 If  $g(s_0) \leftarrow g(s_0) \leftarrow g(s_0)$ 
2 If  $g(s_0) \leftarrow g(s_0) \leftarrow g(s_0)$ 
3 If  $g(s_0) \leftarrow g(s_0) \leftarrow g(s_0)$ 
4 If  $g(s_0) \leftarrow g(s_0) \leftarrow g(s_0)$ 
6 If  $g(s_0) \leftarrow g(s_0) \leftarrow g(s_0)$ 
7 If  $g(s_0) \leftarrow g(s_0) \leftarrow g(s_0)$ 
8 If  $g(s_0) \leftarrow g(s_0) \leftarrow g(s_0)$ 
9 If  $g(s_0) \leftarrow g($ 

|                                                     | 6     | 0     | 6     | 1 |       | inf  |       | inf |
|-----------------------------------------------------|-------|-------|-------|---|-------|------|-------|-----|
|                                                     | S     |       |       |   |       |      |       |     |
| $  2   Open \leftarrow \{s_0\} $                    |       | 6     | (O,O) | 5 |       |      |       | 3   |
| $ g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0) $ | 6     | 1     | 6     | 2 |       | inf  | 8     | 6   |
| 4 while $Open \neq \emptyset$                       | O     | '     | O     | _ |       |      | O     | U   |
| Extrae un $u$ desde $Open$ con menor valor- $f$     |       |       |       |   |       |      |       |     |
| <b>if</b> $u$ es objetivo <b>return</b> $u$         | (0.0) | E     | (4.0) |   |       |      | (2.2) | 2   |
| for each $v \in Succ(u)$ do                         | (0,0) | 5     | (1,0) | 4 |       |      | (3,2) | 2   |
| $ 1   cost_v = g(u) + c(u, v) $                     | 6     | 2     | 6     | 3 | 6     | 4    | 6     | 5   |
| 2 if $cost_v \geq g(v)$ return                      |       |       |       |   |       |      |       |     |
| 3 $parent(v) \leftarrow u$                          |       |       |       |   |       |      |       |     |
|                                                     | (O,1) | 4     | (1,1) | 3 | (1,2) | 2    | (2,2) | 1   |
| $f(v) \leftarrow g(v) + h(v)$                       |       | inf   | 6     | 4 |       | inf  | 6     | 6   |
| <b>6</b> if $v \in Open$ then Reordenar $Open$      |       | 11 11 | O     | 4 |       | 1111 |       | V   |
| <b>7 else</b> Insertar v en Open                    |       |       |       |   |       |      | G     |     |
|                                                     |       | 3     | (1,2) | 2 |       |      | (3,2) |     |

|                                                   | 6     | 0    | 6     | 1 |       | inf  |       | inf |
|---------------------------------------------------|-------|------|-------|---|-------|------|-------|-----|
|                                                   | S     |      |       |   |       |      |       |     |
| $  2   Open \leftarrow \{s_0\} $                  |       | 6    | (O,O) | 5 |       |      |       | 3   |
| $g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$ | 6     | 1    | 6     | 2 |       | inf  | 8     | 6   |
| 4 while $Open \neq \emptyset$                     | 0     | '    | O     | ۷ |       | 1111 | O     | O   |
| Extrae un $u$ desde $Open$ con menor valor- $f$   |       |      |       |   |       |      |       |     |
| <b>if</b> $u$ es objetivo <b>return</b> $u$       | (0,0) | 5    | (1,0) |   |       |      | (3,2) | 2   |
| for each $v \in Succ(u)$ do                       | (0,0) | 5    | (1,0) | 4 |       |      | (3,2) |     |
| $ cost_v = g(u) + c(u, v) $                       | 6     | 2    | 6     | 3 | 6     | 4    | 6     | 5   |
| 2 if $cost_v \geq g(v)$ return                    |       |      |       |   |       |      |       |     |
| $3$ parent $(v) \leftarrow u$                     |       |      |       |   |       |      |       |     |
|                                                   | (0,1) | 4    | (1,1) | 3 | (1,2) | 2    | (2,2) | 1   |
| $f(v) \leftarrow g(v) + h(v)$                     |       | inf  | 6     | 4 |       | inf  | 6     | 6   |
| <b>6</b> if $v \in Open$ then Reordenar $Open$    |       | 1111 | O     | 4 |       | 1111 | 0     | O   |
| 7 else Insertar v en Open                         |       |      |       |   |       |      | G     |     |
|                                                   |       | 3    | (1,2) | 2 |       |      | (3,2) |     |

|                                                                                                                  | 6     | 0   | 6     | 1 |       | inf |               | inf |
|------------------------------------------------------------------------------------------------------------------|-------|-----|-------|---|-------|-----|---------------|-----|
|                                                                                                                  | S     | )   |       |   |       |     |               |     |
| $  2   Open \leftarrow \{s_0\} $                                                                                 |       | 6   | (0,0) | 5 |       |     |               | 3   |
| 3 $g(s_0) \leftarrow 0$ ; $f(s_0) \leftarrow h(s_0)$<br>4 while $Open \neq \emptyset$                            | 6     | 1   | 6     | 2 |       | inf | 8             | 6   |
| Extrae un <i>u</i> desde <i>Open</i> con menor valor- <i>f</i>                                                   |       |     |       |   |       |     |               |     |
| <ul> <li>if u es objetivo return u</li> <li>for each v ∈ Succ(u) do</li> </ul>                                   | (0,0) | 5   | (1,0) | 4 |       |     | (3,2)         | 2   |
|                                                                                                                  | 6     | 2   | 6     | 3 | 6     | 4   | 6             | 5   |
| 2 <b>if</b> $cost_v \ge g(v)$ <b>return</b><br>3 $parent(v) \leftarrow u$                                        |       |     |       |   |       |     |               |     |
|                                                                                                                  | (O,1) | 4   | (1,1) | 3 | (1,2) | 2   | (2,2)         | 1   |
| <ul> <li>f(v) ← g(v) + h(v)</li> <li>if v ∈ Open then Reordenar Open</li> <li>else Insertar v en Open</li> </ul> |       | inf | 6     | 4 |       | inf | 6<br><b>G</b> | 6   |
|                                                                                                                  |       | 3   | (1,2) | 2 |       |     | (3,2)         |     |



|                                                         | 6     | 0    | 6     | 1 |       | inf  |       | inf |
|---------------------------------------------------------|-------|------|-------|---|-------|------|-------|-----|
|                                                         | S     | )    |       |   |       |      |       |     |
| $  2   Open \leftarrow \{s_0\} $                        |       | 6    | (0,0) | 5 |       |      |       | 3   |
| $ g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0) $     | 6     | 1    | 6     | 2 |       | inf  | 8     | 6   |
| 4 while $Open \neq \emptyset$                           | 0     | '    | O     | ۷ |       | 1111 | U     | U   |
| <b>E</b> xtrae un $u$ desde $Open$ con menor valor- $f$ |       |      |       |   |       |      |       |     |
| <b>if</b> <i>u</i> es objetivo <b>return</b> <i>u</i>   | (O,O) | 5    | (1,0) | 1 |       |      | (3,2) | 2   |
| for each $v \in Succ(u)$ do                             | (0,0) | J    | (1,0) | 4 |       |      | (5,2) |     |
|                                                         | 6     | 2    | 6     | 3 | 6     | 4    | 6     | 5   |
| <b>2</b> if $cost_v \geq g(v)$ return                   |       |      |       |   |       |      |       |     |
| $3$ parent $(v) \leftarrow u$                           |       |      |       |   |       |      |       |     |
|                                                         | (0,1) | 4    | (1,1) | 3 | (1,2) | 2    | (2,2) | 1   |
| $f(v) \leftarrow g(v) + h(v)$                           |       | inf  | 6     | 4 |       | inf  | 6     | 6   |
| <b>6</b> if $v \in Open$ then Reordenar $Open$          |       | 1111 | O     | 4 |       | 1111 | 0     |     |
| <b>7</b> else Insertar v en Open                        |       |      |       |   |       |      | G     |     |
|                                                         |       | 3    | (1,2) | 2 |       |      | (3,2) |     |

1 for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

2 
$$Open \leftarrow \{s_0\}$$
  
3  $g(s_0) \leftarrow 0$ ;  $f(s_0) \leftarrow h(s_0)$ 

4 while 
$$Open \neq \emptyset$$

**E**xtrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

$$\blacksquare$$
 parent $(v) \leftarrow u$ 

$$g(v) \leftarrow cost_v$$

5 
$$f(v) \leftarrow g(v) + h(v)$$

**if** 
$$v \in Open$$
 **then** Reordenar  $Open$ 

6 If 
$$v \in Open$$
 then Reordenar  $Open$ 



**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

2 
$$Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$\exists parent(v) \leftarrow u$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**1** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

- $2 Open \leftarrow \{s_0\}$
- $g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$
- 4 while  $Open \neq \emptyset$
- Extrae un u desde Open con menor valor-f
- **if** u es objetivo **return** u
- for each  $v \in Succ(u)$  do

  - **2** if  $cost_v \ge g(v)$  return
  - 3  $parent(v) \leftarrow u$

  - $f(v) \leftarrow g(v) + h(v)$
  - $f(v) \leftarrow g(v) + h(v)$
  - **6** if  $v \in Open$  then Reordenar Open
  - 7 else Insertar v en Open



**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

$$2 Open \leftarrow \{s_0\}$$

**3** 
$$g(s_0) \leftarrow 0$$
;  $f(s_0) \leftarrow h(s_0)$ 

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$f(v) \leftarrow g(v) + h(v)$$

**6** if 
$$v \in Open$$
 then Reordenar  $Open$ 



**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

2 
$$Open \leftarrow \{s_0\}$$

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

Extrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$f(v) \leftarrow g(v) + h(v)$$

**6 if** 
$$v \in Open$$
 **then** Reordenar  $Open$ 



**I** for each 
$$s \in \mathcal{S}$$
 do  $g(s) \leftarrow \infty$ 

**2** *Open* 
$$\leftarrow$$
 { $s_0$ }

$$g(s_0) \leftarrow 0; \ f(s_0) \leftarrow h(s_0)$$

4 while 
$$Open \neq \emptyset$$

**E**xtrae un 
$$u$$
 desde  $Open$  con menor valor- $f$ 

**if** 
$$u$$
 es objetivo **return**  $u$ 

for each 
$$v \in Succ(u)$$
 do

**2** if 
$$cost_v \ge g(v)$$
 return

3 
$$parent(v) \leftarrow u$$

$$4 g(v) \leftarrow cost_v$$

$$f(v) \leftarrow g(v) + h(v)$$

**if** 
$$v \in Open$$
 **then** Reordenar  $Open$ 





$$f(n) = g(n) + h(n)$$

g(n): costo de un camino desde  $s_{start}$  hasta el nodo n

h(n): estima el costo de un camino desde n hasta  $s_{goal}$ 

 $\delta(s,t)$ : costo de un camino óptimo entre s y t

Admisibilidad : h es admisible si y solo si

$$h(s) \leq \delta(s, s_{goal}),$$

para todo estado s.

 $\delta(s,t)$ : costo de un camino óptimo entre s y t

Admisibilidad : h es admisible si y solo si

$$h(s) \leq \delta(s, s_{goal}),$$

para todo estado s.

#### Algoritmo A\*

$$h(s) \le \delta(s, s_{goal})$$

$$f(s^*) = g(s^*) + h(s^*)$$

#### Algoritmo Weighted A\*

$$h(s) \le \delta(s, s_{goal})$$

$$f(s^*) = g(s^*) + wh(s^*)$$

$$h(s) \le \delta(s, s_{goal})$$

Al ser ejecutado con una heurística h admisible, Weighted A\* retorna una solución cuyo costo está acotado superiormente por  $w \cdot \underline{\delta(s_{start}, s_{goal})}$ costo óptimo

$$f(s^*) = g(s^*) + wh(s^*)$$

- 1.  $s^*$  está en un camino óptimo hacia  $s_{goal}$
- 2. se cumple que  $g(s^*) = \delta(s_{start}, s^*)$

$$h(s) \le \delta(s, s_{goal})$$

$$g(s_{start}) = \delta(s_{start}, s_{start}) = 0$$

$$O \longrightarrow O \longrightarrow S_1 \longrightarrow S_2 \longrightarrow S_j \longrightarrow S_{j+1} \longrightarrow S_n$$

$$(s_1 = s_{start}) \longrightarrow S_n$$

$$(s_n = s_{goal})$$

 $g(s_{start}) = \delta(s_{start}, s_{start}) = 0$   $O \longrightarrow O \longrightarrow S_1 \longrightarrow S_2 \longrightarrow S_j \longrightarrow S_{j+1} \longrightarrow S_n$   $(s_1 = s_{start}) \longrightarrow S_n$   $(s_n = s_{goal})$ 

$$\delta(s_{start}, s^*) + \delta(s^*, s_{goal}) = \delta(s_{start}, s_{goal})$$

$$g(s_{start}) = \delta(s_{start}, s_{start}) = 0$$

$$O \longrightarrow O \longrightarrow S_1 \longrightarrow S_2 \longrightarrow S_j \longrightarrow S_{j+1} \longrightarrow S_n$$

$$(s_1 = s_{start}) \longrightarrow S_n$$

$$(s_n = s_{goal})$$

$$\delta(s_{start}, s^*) + \delta(s^*, s_{goal}) = \delta(s_{start}, s_{goal})$$
$$g(s^*)$$

$$g(s_{start}) = \delta(s_{start}, s_{start}) = 0$$

$$O \longrightarrow O \longrightarrow S_1 \longrightarrow S_2 \longrightarrow S_j \longrightarrow S_{j+1} \longrightarrow S_n$$

$$(s_1 = s_{start}) \longrightarrow S_n$$

$$(s_n = s_{goal})$$

$$\delta(s_{start}, s^*) + \delta(s^*, s_{goal}) = \delta(s_{start}, s_{goal})$$
$$g(s^*)$$

$$g(s_{start}) = \delta(s_{start}, s_{start}) = 0$$

$$O \longrightarrow O \longrightarrow S_1 \longrightarrow S_2 \longrightarrow S_j \longrightarrow S_{j+1} \longrightarrow S_n$$

$$(s_1 = s_{start}) \longrightarrow S_n$$

$$(s_n = s_{goal})$$

$$\delta(s_{start}, s^*) + \delta(s^*, s_{goal}) = \delta(s_{start}, s_{goal})$$
$$g(s^*) + h(s^*) \leq \delta(s_{start}, s_{goal})$$

$$g(s_{start}) = \delta(s_{start}, s_{start}) = 0$$

$$O \longrightarrow S \longrightarrow S \longrightarrow S^* \longrightarrow O \longrightarrow \cdots \longrightarrow O$$

$$S_1 \longrightarrow S_2 \longrightarrow S_j \longrightarrow S_{j+1} \longrightarrow \cdots \longrightarrow S_n$$

$$(s_1 = s_{start}) \longrightarrow S_n$$

$$(s_n = s_{goal})$$

$$f(s) = \min_{t \in Open} \{f(t)\}$$

$$f(s) \leq f(s^*)$$

$$f(s) = \min_{t \in Open} \{ f(t) \}$$
$$f(s) \le f(s^*)$$

$$f(s) = \min_{t \in Open} \{f(t)\}\$$
  
$$f(s) \le f(s^*)$$

$$f(s) = \min_{t \in Open} \{f(t)\}$$
$$f(s) \le f(s^*)$$
$$f(s) \le g(s^*) + wh(s^*)$$

$$f(s) = \min_{t \in Open} \{f(t)\}$$

$$f(s) \le f(s^*)$$

$$f(s) \le g(s^*) + wh(s^*)$$

$$f(s) \le w(g(s^*) + h(s^*)) \quad (con w > 1)$$

$$f(s) = \min_{t \in Open} \{f(t)\}$$

$$f(s) \le f(s^*)$$

$$f(s) \le g(s^*) + wh(s^*)$$

$$f(s) \le w(g(s^*) + h(s^*)) \quad (con w > 1)$$

$$f(s) = \min_{t \in Open} \{f(t)\}$$

$$f(s) \leq f(s^*)$$

$$f(s) \leq g(s^*) + wh(s^*)$$

$$f(s) \leq w(g(s^*) + h(s^*)) \quad (con w > 1)$$

$$f(s) \leq w\delta(s_{start}, s_{goal})$$

Todo estado s que es extraído de Open satisface:

$$f(s) \leq w\delta(s_{start}, s_{goal})$$

Todo estado s que es extraído de Open satisface:

$$f(s) \leq w\delta(s_{start}, s_{goal})$$

En particular, cuando  $s_{goal}$  es extraído:

$$g(s_{goal}) + wh(s_{goal}) \le w\delta(s_{start}, s_{goal})$$

Todo estado s que es extraído de Open satisface:

$$f(s) \leq w\delta(s_{start}, s_{goal})$$

En particular, cuando  $s_{qoal}$  es extraído:

$$g(s_{goal}) + wh(s_{goal}) \le w\delta(s_{start}, s_{goal})$$
  
 $g(s_{goal}) \le w\delta(s_{start}, s_{goal})$ 

$$g(s_{goal}) \le w\delta(s_{start}, s_{goal})$$

$$g(s_{goal}) \le \delta(s_{start}, s_{goal})$$

https://www.youtube.com/watch?v=\_41v4I5GTNc