

What is claimed is:

- 1 1. A processor comprising:
 - 2 an apparatus to rotate registers in software pipelined loops; and
 - 3 a register rotation prediction unit to predict register addresses for future loop
 - 4 iterations.

- 1 2. The processor of claim 1 further including a buffer to hold buffered
2 instructions with predicted register addresses.

- 1 3. The processor of claim 2 further including unarchitected predicate registers to
2 predicate the buffered instructions.

- 1 4. The processor of claim 2 wherein the predicted register addresses are such
2 that the buffered instructions can be issued simultaneously with a branch instruction.

- 1 5. The processor of claim 1 further including a hint register to encode prediction
2 hints for the register rotation prediction unit.

- 1 6. The processor of claim 5 wherein the hint register is configured to hold static
2 hints generated by a compiler.

- 1 7. The processor of claim 5 wherein the hint register is configured to hold
2 dynamic hints generated at runtime.

- 1 8. The processor of claim 5 wherein the hint register includes a field to specify
2 an iteration distance.

- 1 9. The processor of claim 1 further comprising a plurality of unarchitected
2 frame marker registers.

1 10. The processor of claim 9 wherein the register rotation prediction unit
2 comprises speculation decision making hardware to compute values for the plurality
3 of unarchitected frame marker registers.

1 11. The processor of claim 10 further comprising register renaming hardware in a
2 pipeline, the register renaming hardware being responsive to the plurality of
3 unarchitected frame marker registers.

1 12. The processor of claim 1 further comprising a trace cache.

1 13. The processor of claim 12 wherein the trace is configured to hold a prediction
2 hint for each trace.

1 14. The processor of claim 13 further comprising a trace cache fill unit to apply
2 register rotation prediction to traces as traces are constructed.

1 15. A processing system comprising:
2 an execution pipeline;
3 cache memory coupled to the execution pipeline to hold processor
4 instructions arranged in a software loop; and
5 register rotation prediction hardware to predict physical register values for the
6 processor instructions in future iterations of the software loop.

1 16. The processing system of claim 15 further comprising:
2 a software pipeline instruction buffer coupled between the execution pipeline
3 and the register rotation prediction hardware to hold the processor instructions in
4 future iterations of the software loop.

1 17. The processing system of claim 16 further comprising:
2 at least one unarchitected frame marker register coupled to the register
3 rotation prediction hardware to hold predicted register offsets for future iterations.

1 18. The processing system of claim 17 wherein the execution pipeline includes
2 register renaming logic responsive to the at least one unarchitected frame marker
3 register.

1 19. The processing system of claim 16 wherein the register rotation prediction
2 hardware includes a circuit to specify complete physical register addresses for the
3 processor instructions in future iterations of the software loop.

1 20. The processing system of claim 19 wherein processor instructions held in the
2 software pipeline instruction buffer include fully specified physical register
3 addresses.

1 21. The processing system of claim 16 wherein the execution pipeline is
2 configured to speculatively execute instructions received from the software pipeline
3 instruction buffer.

1 22. The processing system of claim 21 further comprising a plurality of
2 unarchitected predicate registers, wherein the instructions within the software
3 pipeline instruction buffer are predicated on at least one of the plurality of
4 unarchitected predicate registers.

1 23. A method of executing a software pipelined loop comprising:
2 rotating registers for each iteration of the loop; and
3 predicting register rotations for future iterations of the loop.

- 1 24. The method of claim 23 wherein the software pipelined loop comprises at
- 2 least one branch instruction, the method further comprising issuing at least one non-
- 3 branch instruction simultaneously with the at least one branch instruction.

- 1 25. The method of claim 24 wherein the at least one non-branch instruction is
- 2 predicated on an unarchitected predicate register.

- 1 26. The method of claim 24 further comprising speculatively removing stop bits
- 2 from the at least one branch instruction.

- 1 27. The method of claim 26 further comprising speculatively executing the at
- 2 least one non-branch instruction.

- 1 28. The method of claim 23 wherein predicting comprises:
 - 2 responsive to a hint register, predicting register rotations for more than one
 - 3 iteration in the future; and
 - 4 modifying at least one unarchitected frame marker register.

- 1 29. The method of claim 28 further comprising:
 - 2 speculatively executing instructions for the more than one iteration in the
 - 3 future; and
 - 4 squashing the speculative execution if a data dependence is violated.

- 1 30. The method of claim 29 further comprising modifying the hint register when
- 2 speculative execution is squashed.