Variant prioritization

University of Cambridge

Cambridge, UK 30th September 2014

Marta Bleda Latorre

mb2033@cam.ac.uk

Research Assistant at the Department of Medicine University of Cambridge Cambridge, UK

The objective

And now what?

Finding the mutations causative of diseases

The simplest case: monogenic disease due to a single general

And now what?

Finding the mutations causative of diseases

Clear individual **gene associations are difficult to find** in some diseases

Same phenotype can be due to **different mutations and different genes** (or combina **Many cases** have to be used to obtain significant associations to many markers

The only common element is the **pathway** (yet unknown) affected

Strategies

- Filtering using family information
- Network (Systems biology) approaches
 - PPIs
 - Gene regulatory elements (miRNAs, Tfs)
 - GO terms
- GWAS
- Burden tests for rare variants....

- Families containing control and disease individuals can help us reduce the number of variants obtained
- Individuals from the same family → less variability
- Filter variants present in healthy people

RPad

Dominant inheritance

Recessive homozygous

Recessive - Compound heterozygosity

BierApp

Bierapp.babelomics.org

Using network information

Example with Inherited Retinal Dystrophic

- Prevalence 1 in 3000
- Clinically and genetically very heterogeneous
- 190 GENES account for aprox. 50% of IRDs.

Is genetic overlapping among IRDs related to protein in

Example with Inherited Retinal Dystrophic

SNOW

- The SNOW tool introduces protein-protein interaction data into the function profiling of genomic data
 - Evaluates role of the list within the interactome: identifies hubs in the proteins/genes (nodes) and evaluates the topological parameters of the within the interactome
 - Evaluates the list's cooperative behavior as a functional module

http://babelomics.bioinfo.cipf.es/functional.html

NetworkMiner

Prioritizing disease candidate genes

Scenario

http://babelomics.bioinfo.cipf.es/functional.html

You have:

- 1.a list of **disease candidates** (ranked by their populational frequency)
- 2.a list of **genes** that are known to be associated to the disease

You want to see:

which of your candidates are functionally related or interacting with the known disease genes

NetworkMiner Study

Tests whether any of the candidates is significantly located in the neighborhood of the known disease genes

NetworkMiner

Prioritizing disease candidate genes

Example: Genome-Wide Association Study in Bipolar Disorder

Seed list: Genes associated to Bipolar Disorder

Ranked list: Genes ranked according the association degree in a Case-Control Association Study

Network Miner

RENATO (REgulatory Network Analsis TOo

Identifying common regulatory elements

Sometimes, the problem is not in the gene but in its regulators

http://renato.bioinfo.cipf.es

Tool for the interpretation and visualization of transcriptional (TFs) and post-transcriptional (miRNAs) regulatory information

- Designed to identify common regulatory elements in a list of genes
- RENATO maps these genes to the regulatory network, extracts the corresponding regulatory connections and evaluate each regulator for significant over-representation in the list.

