EVE&D - Battery Management - Mini Projects using Python with AI

SUDARSHANA KARKALA | EV.ENGINEER | +91 9845561518 | CARSOFTWARESYSTEMS.COM | EVE&D CODE IITM

AI-Powered EV Battery Fire Prevention System

Battery Temperature Monitoring System

Battery Voltage & Current Analysis

State of Charge (SOC) Estimation

EV Battery Health Prediction (Al Mini Project)

Real-Time Battery Monitoring with IoT (Advanced)

Intrusion Detection in Battery Management System (BMS)

Project Overview

Expected Outcomes

Steps to Implement the Project

Collect Battery Data Logs (or Use Sample Data)

Analyse Normal vs. Anomalous Data

Implement an Anomaly Detection Model

Real-Time Intrusion Detection Simulation

Secure Battery Data with Encryption (Advanced)

Al-Powered EV Battery Fire Prevention System

Battery Temperature Monitoring System

Goal: Read temperature data, analyze trends, and detect overheating.

Concepts: File handling, NumPy, Pandas, Matplotlib

Tasks:

- Read a CSV file containing battery temperature data
- Calculate average, max, and min temperatures
- Plot a temperature trend graph using Matplotlib
- Detect overheating conditions (e.g., alert if temp > 60°C)

Outcome: Basic battery monitoring using Python

Battery Voltage & Current Analysis

Goal: Analyze voltage & current data to detect anomalies. **Concepts:** Pandas, Data Visualization, Time-Series Analysis

Tasks:

- Load battery voltage & current datasets
- Identify voltage drops and current spikes
- Plot Voltage vs. Time & Current vs. Time
- Set a rule: Alert if voltage drops below a threshold

Outcome: Detect battery performance issues

State of Charge (SOC) Estimation

Goal: Estimate battery **SOC** using voltage and current data. **Concepts:** Numerical computing, Basic Machine Learning

Tasks:

- Load **historical battery data** (Voltage, Current, SOC)
- Train a simple regression model to predict SOC
- · Validate results using test data
- Display real-time SOC values for a given input

Outcome: SOC estimation using Python

EV Battery Health Prediction (AI Mini Project)

Goal: Use AI to predict battery degradation over time.

Concepts: Machine Learning, Data Science

Tasks:

- Load battery charge-discharge cycle data
- Identify patterns in battery degradation
- Train an ML model (Scikit-learn) to predict Remaining Useful Life (RUL)
- · Visualize predictions with graphs

Outcome: Al-based battery health prediction

Real-Time Battery Monitoring with IoT (Advanced)

Goal: Collect real-time battery data using IoT (optional).

Concepts: Python, MQTT, IoT Sensor Integration

Tasks:

- Connect a temperature sensor (DHT11) or voltage sensor
- Use Raspberry Pi / ESP8266 to collect data
- Send data via **MQTT or HTTP** to Python
- Analyze and store data in a database

Outcome: Real-time battery health monitoring

Intrusion Detection in Battery Management System (BMS)

Goal: Detect **anomalous activities** (hacking attempts, data tampering, or unauthorised access) in an **EV Battery Management System (BMS)** using Python.

Concepts Used:

- Log Analysis & Data Forensics
- Anomaly Detection (Machine Learning)

Cybersecurity Threat Detection

Project Overview

The Battery Management System (BMS) logs critical parameters:

- Voltage, Current, Temperature
- State of Charge (SOC), State of Health (SOH)
- · Communication logs (CAN messages)

Potential Cyber Threats:

Spoofing Attack: Fake voltage readings injected
Man-in-the-Middle Attack: SOC data modified

• Malware in BMS: Unauthorised data manipulation

Expected Outcomes

Build a Battery Intrusion Detection System (IDS)

Detect cyber attacks on BMS data

Train an ML model to differentiate between normal and attack conditions

Secure BMS communication with encryption (Advanced)

Steps to Implement the Project

Collect Battery Data Logs (or Use Sample Data)

- Use a CSV file containing battery logs with timestamps
- Add a column for intrusion detection labels (Normal / Attack)

Analyse Normal vs. Anomalous Data

- Load the dataset using Pandas
- Visualize voltage/current variations using Matplotlib
- Identify unexpected spikes, drops, or inconsistent SOC values

Implement an Anomaly Detection Model

- Use Scikit-Learn to train an ML model for intrusion detection
- Algorithms: Isolation Forest, Random Forest, or Logistic Regression
- Train model on normal vs. attack data samples
- Detect real-time anomalies from live battery logs

Real-Time Intrusion Detection Simulation

- Simulate incoming battery data (live stream using Python)
- Detect unauthorised activities and trigger alerts
- Implement logging system to save security breach attempts

Secure Battery Data with Encryption (Advanced)

- Use **AES Encryption** (Python pycryptodome module)
- Encrypt critical BMS data before transmission
- Ensure only authorised systems can decrypt it