MATH20142 Cheat Sheet

1 Construction and Basic Properties of Complex Numbers

An expression $a + ib(a, b \in \mathbb{R})$ is called a **complex number**. We denote the set of complex numbers by \mathbb{C} . For z = x + iy, we use x = Rez and y = Imz and say that z is real if Imz = 0 and that z is imaginary if Rez = 0.

• $\operatorname{Re}(z \pm w) = \operatorname{Re}z \pm \operatorname{Re}w$

• $\overline{(z/w)} = \overline{z}/\overline{w}$ if $w \neq 0$

 $\bullet ||zw| = |z||w|$

• $\operatorname{Im}(z \pm w) = \operatorname{Im} z \pm \operatorname{Re} w$

• $z + \overline{z} = 2 \text{Re} z$

• |z/w| = |z|/|w| if $w \neq 0$

 $\bullet \ \overline{(z \pm w)} = \overline{z} \pm \overline{w}$

• $z - \overline{z} = 2 \text{Im} z$

 $\bullet |z+w| \le |z| + |w|$

• $\overline{zw} = \overline{z} \overline{w}$

• $|z| = 0 \iff z = 0$

• $|z - w| \ge ||z| - |w||$

2 Topology in $\mathbb C$

 ε -neighbourhood of z_0 : $N_{\varepsilon}(z_0) = \{z \in \mathbb{C} : |z - z_0| < \varepsilon\}$ (disc centred at z_0 containing points with distance $< \varepsilon$)

limit point: $z_0 \in \mathbb{C}$ is a limit point of a set $S \subset \mathbb{C}$ if, for every $\varepsilon > 0$, $N_{\varepsilon}(z_0)$ contains a point in $S \setminus \{z_0\}$

interior point: let $S \subset C, z_0$ a limit point of S, then z_0 is an interior point of S if $\exists \varepsilon > 0, N_{\varepsilon}(z_0) \subset S$

boundary point: let $S \subset C$, z_0 a limit point of S, then z_0 is an boundary point of S if it is not a interior point

open: a set $S \subset \mathbb{C}$ is called open if it consists only of interior points

domain: let $S \subset \mathbb{C}, S \neq \emptyset$, then S is called a domain if S is open and every pair of points can be connected by a polygonal arc lying entirely in S

function: let $S \subset C, S \neq \emptyset$, a function $f : \subset \to \mathbb{C}$ is a rule which assigns to each $z \in S$, an image $f(z) \in \mathbb{C}$

 $\lim_{z\to z_0} f(z)$: let $f:S\to\mathbb{C}$ be a function. if z_0 is a limit point of S then we say $\lim_{z\to z_0} f(z)=l$ if, $\forall \varepsilon>0, \exists \delta>0, s\in S$ and $0<|z-z_0|<\delta\implies |f(z)-l|<\varepsilon$

continuity: f(z) is continuous at z_0 if $\lim_{z\to z_0} f(z) = f(z_0)$

proposition 2.1 a set $S \subset \mathbb{C}$ is closed \iff its complement $\mathbb{C} \setminus S$ is open

proposition 2.2 if $\lim_{z\to z_0} f(z) = l$ and $\lim_{z\to z_0} g(z) = k$, then

- 1. $\lim_{z \to z_0} (f(z) \pm g(z)) = l \pm k$
- 2. $\lim_{z \to z_0} (f(z)g(z)) = lk$
- 3. $\lim_{z\to z_0} (f(z)/g(z)) = l/k \text{ (for } k\neq 0)$

proposition 2.3 $\lim_{z\to z_0} f(z) = l = \alpha + i\beta \ (\alpha, \beta \in \mathbb{R}) \iff u(x,y) \to \alpha, v(x,y) \to \beta, \text{ as } (x,y) \to (\text{Re}z, \text{Im}z)$