# FUELWISE

**Machine Learning Project** 



## OUTLINE

- Team Members
- Introduction
- The Problem
- Proposed Solution
- Methods & Approaches
- Project Outcome
- Next Steps
- Conclusion

### TEAM MEMBERS

Team Leader

**Deem Alrashidi** 

**Group Member** 

Lama Alhujaili

**Group Member** 

Sara Thaer

**Group Member** 

Shahad Alsadah

**Group Member** 

Sana Araj

**Group Member** 

**Shahad Adel** 

### INTRODUCTION

Fuel consumption prediction utilizes advanced analytics and machine learning models to forecast the amount of fuel vehicles will use, enabling more efficient operations and reduced environmental impact.

Importance of Accurately Predicting Fuel Consumption:

**Cost Efficiency** 

Operational Optimization

Reduced
Carbon
Footprints

### THE PROBLEM

The problem of current fuel consumption prediction methods is:

- Lack of accuracy
- High variability in results
- Inefficiencies

And this can have a huge impact!

### PROPOSED SOLUTION

We will use machine learning-based approach to predict fuel consumption more accurately.

Benefits of using machine learning model:

Adaptability to new data

Improvement in prediction accuracy

Automation of estimation processes.

### DATA CLEANING

```
[ ] df = df.replace({'Fuel Type' : {'Z':'95', 'X': '91'}})
    df = df[~df['Fuel Type'].isin(['E','D'])]
    df
```



```
df.isna().sum()
Make
                                       0
Mode1
                                       0
Vehicle Class
                                      0
Engine Size(L)
                                       0
Cylinders
                                       0
Fuel Type
                                      0
Fuel Consumption(Comb (L/100 km))
                                      0
CO2 Emissions(g/km)
                                      0
CO2 Rating
                                      0
Smog Rating
                                       0
dtype: int64
```

| Correlation= data[['Engine Size(<br>Correlation | L)','CO2 Emissio | ons(g/km)', 'Fuel Cons | sumption(Comb (L/100 km))', 'Smog R | ating','Cylin | ders']].corr() |
|-------------------------------------------------|------------------|------------------------|-------------------------------------|---------------|----------------|
|                                                 | Engine Size(L)   | CO2 Emissions(g/km)    | Fuel Consumption(Comb (L/100 km))   | Smog Rating   | Cylinders      |
| Engine Size(L)                                  | 1.000000         | 0.824188               | 0.818694                            | -0.448239     | 0.920698       |
| CO2 Emissions(g/km)                             | 0.824188         | 1.000000               | 0.971671                            | -0.520437     | 0.833241       |
| Fuel Consumption(Comb (L/100 km))               | 0.818694         | 0.971671               | 1.000000                            | -0.490473     | 0.821718       |
| Smog Rating                                     | -0.448239        | -0.520437              | -0.490473                           | 1.000000      | -0.502149      |
| Cylinders                                       | 0.920698         | 0.833241               | 0.821718                            | -0.502149     | 1.000000       |



## DATA ANALYSIS

Correlation



## DATA ANALYSIS

Bivariate analysis

## THE FEATURES

#### **Before Preprocessing and Cleaning**

| ~            | <ul> <li>Investigate data (Missing values, Descriptions, Data Types)</li> </ul> |               |       |                           |                  |                   |           |              |              |                                            |                                        |                                         |                                    |                        |               |                |
|--------------|---------------------------------------------------------------------------------|---------------|-------|---------------------------|------------------|-------------------|-----------|--------------|--------------|--------------------------------------------|----------------------------------------|-----------------------------------------|------------------------------------|------------------------|---------------|----------------|
| -            |                                                                                 |               |       |                           |                  |                   |           |              |              | + Code                                     | + Code + Text                          |                                         |                                    |                        |               | <u> </u>       |
| C            | data=pd.read_csv("dataset.csv") data.head()                                     |               |       |                           |                  |                   |           |              |              |                                            |                                        |                                         |                                    |                        |               |                |
| <del>2</del> |                                                                                 | Model<br>Year | Make  | Model                     | Vehicle<br>Class | Engine<br>Size(L) | Cylinders | Transmission | Fuel<br>Type | Fuel<br>Consumption<br>(City (L/100<br>km) | Fuel<br>Consumption(Hwy<br>(L/100 km)) | Fuel<br>Consumption(Comb<br>(L/100 km)) | Fuel<br>Consumption(Comb<br>(mpg)) | CO2<br>Emissions(g/km) | CO2<br>Rating | Smog<br>Rating |
|              | 0                                                                               | 2022          | Acura | ILX                       | Compact          | 2.4               | 4         | AM8          | Z            | 9.9                                        | 7.0                                    | 8.6                                     | 33                                 | 200                    | 6             | 3              |
|              | 1                                                                               | 2022          | Acura | MDX<br>SH-AWD             | SUV:<br>Small    | 3.5               | 6         | AS10         | Z            | 12.6                                       | 9.4                                    | 11.2                                    | 25                                 | 263                    | 4             | 5              |
|              | 2                                                                               | 2022          | Acura | RDX SH-<br>AWD            | SUV:<br>Small    | 2.0               | 4         | AS10         | Z            | 11.0                                       | 8.6                                    | 9.9                                     | 29                                 | 232                    | 5             | 6              |
| П            | 3                                                                               | 2022          | Acura | RDX SH-<br>AWD A-<br>SPEC | SUV:<br>Small    | 2.0               | 4         | AS10         | Z            | 11.3                                       | 9.1                                    | 10.3                                    | 27                                 | 242                    | 5             | 6              |
|              | 4                                                                               | 2022          | Acura | TLX SH-<br>AWD            | Compact          | 2.0               | 4         | AS10         | Z            | 11.2                                       | 8.0                                    | 9.8                                     | 29                                 | 230                    | 5             | 7              |

## THE FEATURES

#### After Preprocessing and Cleaning

| 0            | x.head() |            |           |                                   |                     |            |             |                 |        |         |    |    |
|--------------|----------|------------|-----------|-----------------------------------|---------------------|------------|-------------|-----------------|--------|---------|----|----|
| <del>∑</del> | Engin    | ne Size(L) | Cylinders | Fuel Consumption(Comb (L/100 km)) | CO2 Emissions(g/km) | CO2 Rating | Smog Rating | Vehicle Class_X | Make_X | Model_Y | 91 | 95 |
|              | 1        | 3.5        | 6         | 11.2                              | 263                 | 4          | 5           | 6.0             | 25.0   | 576.0   | 0  | 1  |
|              | 2        | 2.0        | 4         | 9.9                               | 232                 | 5          | 6           | 6.0             | 25.0   | 511.0   | 0  | 1  |
|              | 3        | 2.0        | 4         | 10.3                              | 242                 | 5          | 6           | 6.0             | 25.0   | 512.0   | 0  | 1  |
|              | 4        | 2.0        | 4         | 9.8                               | 230                 | 5          | 7           | 2.0             | 25.0   | 513.0   | 0  | 1  |
| Γ.           | 5        | 2.0        | 4         | 9.8                               | 231                 | 5          | 7           | 2.0             | 25.0   | 514.0   | 0  | 1  |
|              |          |            |           |                                   |                     |            |             |                 |        |         |    |    |

#### SVM

- SVM is a robust algorithm for classification and regression tasks.
- Accuracy is 99.3%

#### SVM

```
from sklearn.svm import SVR

# Assuming you've defined your SVM regressor with appropriate parameters
svm_regressor = SVR(kernel='rbf')
# Fit the SVR model to your training data
svm_regressor.fit(xtrain, ytrain)
# Predict on the test set
y_pred = svm_regressor.predict(xtest)

# Evaluate the model
mse = mean_squared_error(ytest, y_pred)
print("Mean Squared Error:", mse)

# Calculate accuracy (you may want to use a different metric for regression tasks)
accuracy = svm_regressor.score(xtest, ytest)
print("Accuracy:", accuracy*100)
```

Mean Squared Error: 0.028949171032108784
Accuracy: 99.28363455213638

#### KNN

- Straightforward and intuitive algorithm.
- Its performance depends on the choice of the hyperparameter k.
- The Accuracy is 97%

```
KNN
     from sklearn.neighbors import KNeighborsRegressor
     knn regressor = KNeighborsRegressor(n neighbors=3)
     knn_regressor.fit(xtrain, ytrain)
₹
             KNeighborsRegressor
      KNeighborsRegressor(n_neighbors=3)
     y_pred = knn_regressor.predict(xtest)
    mse = mean_squared_error(ytest, y_pred)
     print("Mean Squared Error:", mse)
     accuracy = knn_regressor.score(xtest, ytest)
     print("R^2 Score:", accuracy)
    Mean Squared Error: 0.12236781609195396
     R^2 Score: 0.9697193141449272
```



training score = 0.9996615319816969

#### AdaBoost Regressor

- Works on multiple weak models
- adjusts the weights
- deals with complex data and avoids overfitting
- The Accuracy is 99.9%

```
import numpy as np
     from sklearn.ensemble import AdaBoostRegressor
     from sklearn.tree import DecisionTreeRegressor
     from sklearn.metrics import mean_squared_error
     from sklearn.model_selection import train_test_split
     # Assuming xtrain, ytrain, xtest, ytest are already defined
     # Create a DecisionTreeRegressor as the base estimator
     base estimator = DecisionTreeRegressor(max depth=4)
     # Create the AdaBoost regressor
     ada_regressor = AdaBoostRegressor(base_estimator=base_estimator, n_estimators=50, learning_rate=1.0, random_state=42)
     # Fit the AdaBoost regressor to your training data
     ada regressor.fit(xtrain, ytrain)
     # Predict on the test set
     y pred = ada regressor.predict(xtest)
     # Evaluate the model
     mse = mean squared error(ytest, y pred)
     rmse = np.sqrt(mse)
     print("Root Mean Square Error:", rmse)
     # Calculate the R^2 score (coefficient of determination)
     accuracy = ada regressor.score(xtest, ytest)
     print("R^2 Score:", accuracy*100)
     print("training score = ",ada regressor.score(xtrain,ytrain))
→ Root Mean Square Error: 0.0377194013811472
     R^2 Score: 99.96479307606988
```



#### **Linear Regression**

- A statistical method used for prediction
- It provides simple and interpretable way to understand the relationship between the variables.
- The Accuracy is 100%

```
Linear Regression

#To check if there is overfitting or under fitting
print("training score = ",lr.score(xtrain,ytrain))
print("testing score = ",lr.score(xtest,ytest))

training score = 1.0

ypred = lr.predict(xtest)

r2_score(ytest, ypred)

1.0

1.0
```



#### **Artificial Neural Network**

- particularly useful because of their ability to model complex relationships between input variables and the target output.
  The Accuracy is 99%
- Neural Network from sklearn.neural network import MLPRegressor nn = MLPRegressor(hidden layer sizes=(900,), activation='relu', solver='adam', max iter=1000) nn.fit(xtrain, ytrain) **₹** MLPRegressor MLPRegressor(hidden\_layer\_sizes=(900,), max\_iter=1000) from sklearn.metrics import mean\_squared error, r2\_score, mean absolute error accuracy nn = nn.score(xtest, ytest) \* 100 print("Accuracy:", accuracy nn) rmse nn = np.sqrt(mean squared error(ytest, ypred)) print("RMSE:", rmse nn) mae nn = mean absolute error(ytest, ypred) print("MAE:", mae nn) r2 nn = r2 score(ytest, ypred) print("R2:", r2 nn) → Accuracy: 99.39959865306272 RMSE: 1.8513413036726634e-15 MAE: 1.5435928397547003e-15 R2: 1.0



#### Random Forest

- The random forest method is an ensemble learning technique used primarily for classification and regression tasks.
   The Accuracy is 99%
- Random Forest from sklearn.ensemble import RandomForestRegressor rf = RandomForestRegressor() no of decision tree = [10,20,30,40,50,60,70,80,90,100] max no of features = ['sqrt','log2']  $\max_{depth} = [6,7,8,9,10,11,12,13,14,15]$ criterion of decision tree = ["squared error", "poisson"] min sample split=[2,3,4,5,6] [ ] random\_grid = { 'n\_estimators': no\_of\_decision\_tree, 'max features': max no of features, 'max depth': max\_depth, 'criterion': criterion\_of\_decision\_tree, 'min samples split': min sample split [ ] from sklearn.model selection import RandomizedSearchCV rscv = RandomizedSearchCV(estimator = rf , param\_distributions = random\_grid , n\_iter = 25 , cv = 5 ,n\_jobs=-1) rscv.fit(xtrain, ytrain) RandomizedSearchCV ▶ estimator: RandomForestRegressor ▶ RandomForestRegressor





### PROJECT OUTCOME

### NEXT STEPS

#### DATA PROCESSING

Include more sophisticated data processing techniques.

## LARGER DATESETS

Implement oour models on larger datasets

#### OUR WEBSITE

Improve our website to include an Al chatbot

#### **EXPERIMENT**

Experiment with various other factors and models.

### CONCLUSION

#### STRIVE FOR SUSTAINABALITY

