### Московский государственный университет имени М. В. Ломоносова Механико-математический факультет

# Курсовая работа

# Оценка Var-риска в модели Белецкого-Плиски

Студент 404 группы Гимаев Назар

## 1 Введение

Var-риск — это выраженная в данных денежных единицах (базовой валюте) оценка величины, которую не превысят ожидаемые в течение данного периода времени потери с заданной вероятностью. Охарактеризуем Var-риск с математической точки зрения. Пусть зафиксирован портфель, состоящий из некоторых ценных бумаг. Var-риск портфеля для данного доверительного уровня  $(1-\alpha)$  и данного периода позиций t определяется как такое значение, которое обеспечивает покрытие возможных потерь x держателя портфеля за время t с вероятностью  $(1-\alpha)$ , то есть  $P(Var \geq x) = 1-\alpha$ . В данной работе за падение капитала я считал разность между значением капитала в конечный момент времени, управляемым оптимально, и значением капитала в конечный момент времени, который сначала управляется оптимально, а потом в какой-то момент времени управление "замораживается".

### 2 Основная часть

### 2.1 Описание модели

Рассмотрим рынок, состоящий из  $m \geq 2$  ценных бумаг и  $n \geq 1$  факторов. Цена і-ой ценной бумаги в данной модели задается следующим стохастическим дифференциальным уравнением:

$$\begin{cases} \frac{dS_i}{S_i} = (\alpha + AX(t))_i dt + \sum_{k=0}^{m+n} \sigma_{ik} dW_k, \\ S_i(0) = s_i, \quad i = 1, \dots m \end{cases}$$

$$(2.1)$$

а X(t) удовлетворяет следующему СДУ:

$$\begin{cases} dX(t) = (\beta + BX(t))dt + \Lambda dW, \\ X(0) = x \end{cases}$$
 (2.2)

Коэффициенты в этих уравнениях:

 $\alpha$  – вектор длины m

A – матрица размера  $m \times n$ 

 $\Sigma$  – матрица размера  $m \times (m+n)$ .  $\sigma_{ik}$  – её элементы

 $\beta$  – вектор длины n

B – матрица размера  $n \times n$ 

 $\Lambda$  – матрица  $n \times (m+n)$ 

Обозначим за  $\overline{h(t)}$  процесс управления капиталом, где  $\sum\limits_{i=1}^m h_i(t)=1.$ 

Капитал V(t) удовлетворяет следующему уравнению:

$$\begin{cases} dV(t) = V(t) (\sum_{i=1}^{m} h_i(t) (\alpha + AX(t))_i dt + \sum_{i=1}^{m+n} \sigma_{ik} dW_k)), \\ V(0) = v_0 \end{cases}$$
 (2.3)

Оптимальное уравнение должно максимизировать следующий функционал:

$$J_{\theta}(v, x, h(.)) = \liminf_{x \to \infty} \left( -\frac{2}{\theta} t^{-1} \ln(E(e^{\frac{-\theta}{2} \ln V(t)})) \right)$$
 (2.4)

при условиях  $V(0)=v,\,X(0)=x.$  Параметр  $\theta:(\theta=1)$  означает осторожного игрока,  $\theta=-1$ авантюрного,  $\theta = 0$  – безразличного к риску).

Введем следующий функционал:

$$K_{\theta}(x,h) = \frac{1}{2}(\frac{\theta}{2} + 1)(h, \Sigma \Sigma^{T} h) - (h, \alpha + AX)$$
(2.5)

При фиксированном  $\theta$  обозначим за  $H_{\theta}(x)$  точку в которой достигается инфимум (2.5). Утверждается, что управление  $h(t) = H_{\theta}(X(t))$  является оптимальным для задачи максимизации функционала (2.4).

#### 2.2Конкретный случай

Рассмотрим рынок с 2-мя ценными бумагами и 1-им фактором, задающимися следущими СДУ:

$$\begin{cases}
\frac{dS_1}{S_1} = (0.15 - X(t))dt + 0.2dW_1, \\
S_1(0) = s_1, \quad i = 1, \dots m, \\
\frac{dS_2}{S_2} = X(t)dt + dW_2, \\
S_2(0) = s_2, \quad i = 1, \dots m,
\end{cases}$$
(2.6)

$$\begin{cases} dX(t) = (0.05 - X(t))dt + 0.02dW_3, \\ X(0) = x \end{cases}$$
 (2.7)

Пусть  $\theta = 0$ .

Положим h1 = h, h2 = 1 - h. Найдем оптимальное управление:

$$K_{\theta}(x,h) = \frac{1}{2}(0.04h^2 + (1-h)^2) - (0.15-x)h - (1-h)x = \frac{1}{2} * 1.04 * h^2 - (1.15-x)h - x;$$

Это квадратичная функция с положительным старшим коэффициентом.Значит

$$H_{\theta}(x) = \frac{1.15 - 2x}{1.04} \tag{2.8}$$

Тогда, оптимальное управление выглядит так:

$$h_1(t) = \frac{1.15 - 2X(t)}{1.04},\tag{2.9}$$

$$h_2(t) = 1 - h_1(t) (2.10)$$

#### 2.3план численного оценивания var-риска

Оценка var-риска будет происходить численно. Введем параметры:

t0 = 0 – начальный момент времени

T = 0.6 – конечный момент времени

 $N_1 = 600$  – количество разбиений отрезка времени

 $N_2 = 100$  – количество симуляций

 $dt = \frac{(T-t0)}{N_1}$  X0 = 1 – значение X в начальный момент времени

V0 = 1 – значение V в начальный момент времени

 $\alpha = 0.05$  – доверительный уровень

За V(t) обозначим капитал с оптимальным управлением, а за V2(t) – капитал с замороженным в точке t=0.3 управлением. Обозначим за  $Y=V(T)-V_2(T)$  падение капитала.

С помощью метода Эйлера-Маруямы численно найдем X(t),V(t) и  $V_2(t)$ . Произведем  $N_2$  симуляций. Найдя в каждой симуляции значение величин V(T) и V2(T), получим эмпирическое распределение падения капитала Y.

Найдем  $\alpha$ -квантиль распределения(это и есть var-риск) следующим образом:

- 1. Значения Y из всех симуляций упорядочим по неубыванию, т.е  $Y_0 \leq Y_1 \leq \ldots \leq Y_{N_2-1}$
- 2.Положим  $K = [\alpha(N_2 1)]$

3. Сравниваем K и  $\alpha N_2$ :

Если  $K+1<\alpha N$ , то положим  $Var=Y_{K+1}$  Если  $K+1=\alpha N$ , то положим  $Var=\frac{Y_{K+1}+Y_K}{2}$  Если  $K+1>\alpha N$ , то положим  $Var=Y_K$ 

#### 3 Результаты

Приведем результаты:

#### 3.1графики



Рис. 1: Капиталы V(t) (оранжевый, с оптимальным управлением) и  $V_2(t)$  (синий, с управлением, замороженным в точке t = 0.3). Здесь была произведена одна симуляция

4



Рис. 2: Гистограмма распределения падения капитала. на картинке красным отмечен var-риск.

## 3.2 Числовые характеристики

В итоге получили:

Var-риск Var = -1.1

Медианное значение падения капитала равно 0.0083

Среднее значение падения капитала равно -0.19

### 4 Вывод

Исходя из полученных числовых характеристик, появилось сомнение, не было ли где-то допущено ошибок, так как значение капитала в конечный момент времени с оптимальным управлением не сильно лучше, чем капитал с замороженным в точке t=0.3 управлением, а по среднему показателю падения капитала даже хуже.