0.1 El teorema de Langlands y Tunnel y la Modularidad de $\bar{\rho}_{E,3}$

En esta sección, probamos cómo la modularidad de $\bar{\rho}_{E,3}$ se sigue de un teorema celebrado de Langlands [?] y Tunnel [?]. La versión de su teorema que vamos a usar es:

Teorema 1. (Langlands-Tunnell) Sea $\sigma: G_{\mathbb{Q}} \to \operatorname{GL}_2(\mathbb{C})$ una representación continua, impar (ie. $\det(\sigma(\tau)) = -1$ donde τ es la conjugación compleja), irreducible y tal que $\operatorname{Im}(\sigma) \subset \operatorname{PGL}_2(\mathbb{C})$ es un subgrupo soluble. Entonces existe una eigenforma $g \in S_1(\Gamma_0(N), \varepsilon)$ (para algún entero N y un caracter ε módulo N) tal que para casi todo primo g se tiene

$$a_q(g) = \operatorname{tr}(\sigma(\operatorname{Frob}_q)).$$

La prueba de este teorema se divide en tres casos: cuando la $\operatorname{Im}(\sigma)$ es isomorfo a S_4 (las simetrías del octahedro), A_4 (las simetrías del tetrahedro) y D_{2n} (el grupo dihédrico). La prueba en el caso dihédrico es debido a los trabajos de Hecke y Maass. El caso tetrahédrico es debido a Langlands y el caso octahédrico lo empezó Langlands en [?] y lo terminó Tunnell en [?].

En realidad el teorema 1 viene formulado (y probado) con el lenguaje de formas automorfas cuspidales de peso 1:

Teorema 2. Para cada representación $\sigma: G_{\mathbb{Q}} \to \mathrm{GL}_2(\mathbb{C})$ continua, irreducible, impar y con imagen soluble, hay una representación automorfa, cuspidal, de peso 1 sobre $\mathrm{GL}_2(\mathbb{A}_{\mathbb{Q}})$, denotada por $\pi(\sigma)$ tal que para casi todo primo q se tiene que

$$\operatorname{tr}(t_{\pi_q}) = \operatorname{tr}(\sigma(\operatorname{Frob}_q)),$$

donde $\mathbb{A}_{\mathbb{Q}}$ es el anillo de adeles racional y t_{π_q} es la clase de Langlands asociado al componente no-ramificado π_q de $\pi(\sigma)$.

No explicamos las definiciones necesarias para este teorema porque se salen del rango de este document. Simplemente mencionamos el teorema y referimos al lector a [?, capítulo 6 de Stephen Gelbart] para el enunciado y la prueba.

El teorema de Langlands-Tunnell se sigue del resultado anterior gracias a que existe una correspondecia 1-a-1 entre eigenformas primitivas de peso 1 y representaciones irreducibles automorfas de peso 1 sobre $GL_2(\mathbb{A}_{\mathbb{Q}})$ (por ejemplo [?, capítulo 6 de Stephen Gelbart, §2.5]). Esta correspondencia es un caso particular de la conjetura de reciprocidad de Langlands.

El propósito de usar el teorema de Langlands-Tunnell es probar el siguiente teorema que forma parte de un paso importante para reducir STW-semiestable a CLMS(3): en esencia dice que la irreducibilidad de $\bar{\rho}_{E,3}$ es suficiente para deducir la modularidad de E (asumiendo que CLMS es cierto para p=3).

Teorema 3. Si $\bar{\rho}_{E,3}: G_{\mathbb{Q}} \to \mathrm{GL}_2(\mathbb{F}_3)$ es irreducible, entonces $\bar{\rho}_{E,3}$ es modular.

Proof. El primer paso de la demostración es aplicar el teorema de Langlands-Tunnell, pero para esto debemos "levantar" la representación $\bar{\rho}_{E,3}$ a una representación $\sigma: G_{\mathbb{Q}} \to \mathrm{GL}_2(\mathbb{C})$ que sea irreducible, impar y soluble.

Primero observamos que el ideal primo $(1+\sqrt{-2})\subset \mathbb{Z}[\sqrt{-2}]$ contiene a $(3)\subset \mathbb{Z}$ y que

$$\frac{\mathbb{Z}[\sqrt{-2}]}{(1+\sqrt{-2})} \cong \mathbb{F}_3$$

En efecto, el cociente anterior es una extensión finita de $\mathbb{Z}/3\mathbb{Z} = \mathbb{F}_3$ de dimensión 1 que es el grado inercial de $(1+\sqrt{-2})$ sobre (3), que se calcula a partir de la *identidad fundamental* [?, §1.8] y del hecho que (3) se descompone completamente como (3) = $(1+\sqrt{-2})(1-\sqrt{-2})$ en $\mathbb{Q}(\sqrt{-2})$.

La proyección natural $\mathbb{Z}[\sqrt{-2}] \twoheadrightarrow \mathbb{F}_3$ induce una función $\nu : \operatorname{GL}_2(\mathbb{Z}[\sqrt{-2}]) \to \operatorname{GL}_2(\mathbb{F}_3)$. Tomamos $\Psi : \operatorname{GL}_2(\mathbb{F}_3) \to \operatorname{GL}_2(\mathbb{Z}[\sqrt{-2}])$ una sección de ν :

$$GL_{2}(\mathbb{F}_{3}) \xrightarrow{\Psi} GL_{2}(\mathbb{Z}[\sqrt{-2}])$$

$$\downarrow^{\nu}$$

$$GL_{2}(\mathbb{F}_{3})$$

$$(1)$$

La representación Ψ se puede dar explícitamente sobre los generadores* de $GL_2(\mathbb{F}_3)$:

$$\Psi\begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix} := \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix} \quad , \quad \Psi\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} := \begin{pmatrix} 1 & -1 \\ -\sqrt{-2} & -1 + \sqrt{-2} \end{pmatrix}.$$

Gracias a la conmutatividad del diagrama (1) podemos calcular fácilmente la traza y el determinante de la representación Ψ . Más precisamente, si $g \in GL_2(\mathbb{F}_3)$ entonces:

$$\operatorname{tr}(\Psi(g)) \equiv \operatorname{tr}(g) \pmod{1 + \sqrt{-2}} \quad \text{y} \quad \det(\Psi(g)) \equiv \det(g) \pmod{3}.$$
 (2)

Ahora, como $\mathbb{Z}[\sqrt{-2}] \subseteq \mathbb{C}$, podemos pensar a Ψ como a representación $\Psi : GL_2(\mathbb{F}_3) \to GL_2(\mathbb{C})$. Con esta notación definimos:

$$\sigma := \Psi \circ \bar{\rho}_{E,3} : G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_2(\mathbb{C}).$$

Para poder aplicar el Teorema de Langlands-Tunnell necesitamos probar que σ cumple tres cosas[†]:

i) σ es impar.

Sea $\tau \in G_{\mathbb{Q}}$ la conjugación compleja. Claramente $\tau^2 = \mathrm{Id}$ lo cual implica que $\sigma(\tau)^2 = \mathrm{Id}$ y así $\det(\sigma(\tau))$ satisface la ecuación $x^2 - 1 = 0$. Por lo tanto $\det(\sigma(\tau)) = \pm 1$.

Por otro lado, la segunda identidad de (2) nos dice que

$$\det (\sigma(\tau)) = \det (\Psi(\bar{\rho}_{E,3}(\tau))) \equiv \det (\bar{\rho}_{E,3}(\tau)) \pmod{3},$$

pero ya sabemos que det $\bar{\rho}_{E,3} = \chi_3$ (Teorema ??) donde claramente $\chi_3(\tau) = -1$ porque $\mu_3 \subset \mathbb{Q}(e^{2\pi i/3}) \not\subseteq \mathbb{R}$. Estos dos hechos nos garantizan que

$$\det (\sigma(\tau)) \equiv \chi_3(\tau) \equiv -1 \pmod{3}.$$

Como a priori teníamos que $\det(\sigma(\tau)) = \pm 1$, la congruencia anterior implica que $\det(\sigma(\tau)) = -1$ porque $1 \not\equiv -1 \pmod{3}$. Por lo tanto σ es impar.

^{*}Los generadores $A = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$ y $B = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ cumplen las siguientes relaciones: $A^3 = \operatorname{Id}$, $B^4 = -\operatorname{Id}$ y $B = AB^7A$.

 ^{†&}lt;br/>la continuidad de σ se sigue inmediatamente de la continuidad de
 $\bar{\rho}_{E,3}$ y de Ψ

ii) σ es soluble.

Primero observamos que

$$PGL_2(\mathbb{F}_3) := \frac{GL_2(\mathbb{F}_3)}{\{Id, -Id\}} \cong S_4$$
(3)

donde S_4 es el grupo de permutaciones de un conjunto de cuatro elementos. Es fácil verificar esto:

La acción natural $GL_2(\mathbb{F}_3) \curvearrowright \mathbb{P}^1(\mathbb{F}_3)$ no es fiel pues las matrices escalares actúan trivialmente y sobre \mathbb{F}_3 , las únicas matrices escalares son $\{\mathrm{Id}, -\mathrm{Id}\}$. De esta manera, la acción induce una acción fiel $\mathrm{PGL}_2(\mathbb{F}_3) \curvearrowright \mathbb{P}^1(\mathbb{F}_3)$, es decir una homomorfismo inyectivo de $\mathrm{PGL}_2(\mathbb{F}_3)$ al grupo de permutaciones de los elementos de $\mathbb{P}^1(\mathbb{F}_3)$. Como $\mathbb{P}^1(\mathbb{F}_3)$ tiene 4 elementos (tres elementos en \mathbb{F}_3 más un punto al infinito), entonces el homomorfismo inyectivo es $\mathrm{PGL}_2(\mathbb{F}_3) \to S_4$. Por otro lado, $\mathrm{GL}_2(\mathbb{F}_3)$ tiene $(3^2 - 1)(3^2 - 3) = 48$ elementos [?, Teorema 8.5, pg 219] y así $\mathrm{PGL}_2(\mathbb{F}_3)$ tiene 48/2 = 24 elementos; la misma cantidad que tiene S_4 . Por lo tanto el homomorfismo inyectivo anterior es en realidad un isomorfismo.

Una vez establecido (3), es sencillo ver que la imagen de σ en $\operatorname{PGL}_2(\mathbb{C})$ es soluble. Como Ψ es inyectivo, podemos identificar $\operatorname{Im}(\Psi) \subset \operatorname{GL}_2(\mathbb{C})$ con $\operatorname{GL}_2(\mathbb{F}_3)$. Por lo tanto, la imagen de Ψ en $\operatorname{PGL}_2(\mathbb{C})$ es $\operatorname{PGL}_2(\mathbb{F}_3) \cong S_4$. Como $\sigma = \Psi \circ \bar{\rho}_{E,3}$, entonces $\operatorname{Im}(\sigma)$ es un subgrupo de $\operatorname{Im}(\Psi)$ y así la imagen de $\operatorname{Im}(\sigma)$ en $\operatorname{PGL}_2(\mathbb{C})$ es un subgrupo de $\operatorname{PGL}_2(\mathbb{F}_3) \cong S_4$, que es un grupo soluble[‡]. Por lo tanto la imagen de $\operatorname{Im}(\sigma)$ en $\operatorname{PGL}_2(\mathbb{C})$ es soluble.

iii) σ es irreducible.

Para probar esto, primero necesitamos verificar que $\bar{\rho}_{E,3}$ es absolutamente irreducible, es decir que $\bar{\rho}_{E,3}: G_{\mathbb{Q}} \to \mathrm{GL}_2(\mathbb{F}_3) \to \mathrm{GL}_2(\bar{\mathbb{F}}_3)$ es una representación irreducible donde $\bar{\mathbb{F}}_3$ es la cerradura algebraica de \mathbb{F}_3 .

Sabemos por (i) que $\det(\bar{\rho}_{E,3}(\tau)) = -1$, entonces $\bar{\rho}_{E,3}(\tau)$ tiene dos eigenvalores distintos en \mathbb{F}_3 : 1 y -1. Por lo tanto, si consideramos $\bar{\rho}_{E,3}$ como la representación $\bar{\rho}_{E,3}: G_{\mathbb{Q}} \to \mathrm{GL}_2(\bar{\mathbb{F}}_3)$, entonces existe una $\bar{\mathbb{F}}_3$ -base tal que $\bar{\rho}_{E,3}(\tau)$ se puede diagonalizar, ie.

$$\bar{\rho}_{E,3}(\tau) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in \mathcal{M}_2(\bar{\mathbb{F}}_3).$$

Además, existe un $g \in G_{\mathbb{Q}}$ tal que $\bar{\rho}_{E,3}(g) \in M_2(\bar{\mathbb{F}}_3)$ no es diagonal. De esta manera, las únicas matrices de $M_2(\bar{\mathbb{F}}_3)$ que conmutan con $\bar{\rho}_{E,3}(\tau)$ y $\bar{\rho}_{E,3}(g)$ son las matrices escalares. En símbolos, esto es:

$$\operatorname{End}_{G_{\mathbb{Q}}}(\bar{\mathbb{F}}_{3} \times \bar{\mathbb{F}}_{3}) := \{ \mathcal{L} \in \operatorname{Hom}(\bar{\mathbb{F}}_{3} \times \bar{\mathbb{F}}_{3}) \mid \mathcal{L} \circ \bar{\rho}_{E,3}(s) = \bar{\rho}_{E,3}(s) \circ \mathcal{L} \ \forall s \in G_{\mathbb{Q}} \} = \{ \lambda \operatorname{Id} \}_{\lambda \in \bar{\mathbb{F}}_{3}^{\times}}.$$

Como $G_{\mathbb{Q}}$ es un grupo compacto (por ser límite inverso de grupos compactos), podemos aplicar el inverso del lema de Schur y concluir que $\bar{\rho}_{E,3}:G_{\mathbb{Q}}\to \mathrm{GL}_2(\bar{\mathbb{F}}_3)$ es irreducible, ie. $\bar{\rho}_{E,3}$ es absolutamente irreducible.

Ahora, supongamos que σ es una representación reducible. Como $G_{\mathbb{Q}}$ es un grupo compacto, entonces σ se descompone como suma de representaciones irreducibles [?, §4.3].

[‡]En efecto, $\{1\} \triangleleft \mathbb{F}_2 \times \mathbb{F}_2 \triangleleft A_4 \triangleleft S_4$ es una serie normal cuyos cocientes son abelianos.

Como σ es una representación de dimensión 2 y estamos suponiendo que es reducible, entonces σ es la suma de dos representaciones irreducibles de dimensión 1. Esto implica que $\operatorname{Im}(\sigma) \subseteq \operatorname{GL}_2(\mathbb{C})$ es un subgrupo abeliano. En efecto, si escribimos $\sigma = \sigma_1 \oplus \sigma_2$, entonces $\sigma_i(g) \in \operatorname{GL}_1(\mathbb{C}) = \mathbb{C}$ y así

$$\sigma(g) = \begin{pmatrix} \sigma_1(g) & 0\\ 0 & \sigma_2(g) \end{pmatrix}$$

una vez que elegimos una base de $\mathbb{C} \times \mathbb{C}$. De esta manera, si $g, g' \in G_{\mathbb{Q}}$, entonces:

$$\sigma(g)\sigma(g') = \begin{pmatrix} \sigma_1(g) & 0 \\ 0 & \sigma_2(g) \end{pmatrix} \begin{pmatrix} \sigma_1(g') & 0 \\ 0 & \sigma_2(g') \end{pmatrix} = \begin{pmatrix} \sigma_1(g)\sigma_1(g') & 0 \\ 0 & \sigma_2(g)\sigma_2(g') \end{pmatrix}$$
$$= \begin{pmatrix} \sigma_1(g')\sigma_1(g) & 0 \\ 0 & \sigma_2(g')\sigma_2(g) \end{pmatrix} = \begin{pmatrix} \sigma_1(g') & 0 \\ 0 & \sigma_2(g') \end{pmatrix} \begin{pmatrix} \sigma_1(g) & 0 \\ 0 & \sigma_2(g) \end{pmatrix}$$
$$= \sigma(g')\sigma(g).$$

Por lo tanto $\operatorname{Im}(\sigma) \subset \operatorname{GL}_2(\mathbb{C})$ es abeliano.

Ahora, como $\Psi: \operatorname{GL}_2(\mathbb{F}_3) \to \operatorname{GL}_2(\mathbb{C})$ es un encaje, podemos identificar $\operatorname{Im}(\Psi)$ con $\operatorname{GL}_2(\mathbb{F}_3)$ y $\Psi(\operatorname{Im}(\bar{\rho}_{E,3})) = \operatorname{Im}(\sigma)$ con $\operatorname{Im}(\bar{\rho}_{E,3})$ como subconjunto de $\operatorname{GL}_2(\mathbb{F}_3)$. Por lo tanto $\operatorname{Im}(\bar{\rho}_{E,3}) \subseteq \operatorname{GL}_2(\mathbb{F}_3)$ es un subgrupo abeliano. Pero esto contradice que $\bar{\rho}_{E,3}$ es absolutamente irreducible porque si $\operatorname{Im}(\bar{\rho}_{E,3}) \subseteq \operatorname{GL}_2(\bar{\mathbb{F}}_3)$ es abeliano de dimensión 2, entonces se podría descomponer en suma de dos representaciones irreducibles de dimensión 1, ie. $\bar{\rho}_{E,3}$ no sería absolutamente irreducible. La contradicción surge de asumir que σ es reducible, entonces podemos concluir que σ es irreducible.

Después de probar estas tres propiedades, podemos aplicar el Teorema de Langlands-Tunnell a la representación σ : existe una eigenforma $g \in S_1(\Gamma_0(N), \varepsilon)$ para alguna $N \in \mathbb{N}$ y algún caracter $\varepsilon : (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$, donde

$$g(z) = \sum_{n=1}^{\infty} a_n(g)e^{2\pi i nz}$$

у

$$a_q(g) = \operatorname{tr}(\sigma(\operatorname{Frob}_q))$$

para casi todo primo $q \in \mathbb{Z}$.

Observa que por (2) podemos calcular $a_q(g)$ módulo $1 + \sqrt{-2}$:

$$\operatorname{tr}\big(\sigma(\operatorname{Frob}_q)\big) = \operatorname{tr}\big(\Psi(\bar{\rho}_{E,3}(\operatorname{Frob}_q))\big) \equiv \operatorname{tr}\big(\bar{\rho}_{E,3}(\operatorname{Frob}_q)\big) \pmod{1 + \sqrt{-2}}$$

Ahora, como el conjunto de coeficientes de Fourier junto con los valores de ε están contenidos en el anillo de enteros de un campo numérico. Entonces. $\mathbb{Q}(\{a_n(g), \varepsilon(n)\}_{n\geq 1}) = \mathcal{O}_g$ es una extensión finita de \mathbb{Q} . Sea $\mathfrak{P} \subset \mathcal{O}_g$ un ideal primo que contiene al ideal $(1+\sqrt{-2})$, podemos calcular congruencias con las $a_q(g)$'s:

$$a_q(g) = \operatorname{tr}(\sigma(\operatorname{Frob}_q)) \equiv \operatorname{tr}(\bar{\rho}_{E,3}(\operatorname{Frob}_q)) \pmod{1 + \sqrt{-2}}$$

$$\therefore a_q(g) \equiv \operatorname{tr}(\bar{\rho}_{E,3}(\operatorname{Frob}_q)) \pmod{\mathfrak{p}},$$
(4)

porque $(1+\sqrt{-2}) \subseteq \mathfrak{P}$.

Por el teorema ??, tenemos que

$$\operatorname{tr}(\bar{\rho}_{E,3}(\operatorname{Frob}_q)) \equiv q + 1 - \#E(\mathbb{F}_q) \pmod{3},$$

pero como $(3) \subseteq (1 + \sqrt{-2}) \subseteq \mathfrak{P}$, la congruencia anterior sigue siendo válido módulo \mathfrak{P} , entonces esta congruencia, junto con (4) nos garantiza que:

$$a_q(g) \equiv q + 1 - \#E(\mathbb{F}_q) \pmod{\mathfrak{P}}$$
 (5)

para caso todo primo q.

A primera vista parece que ya probamos que $\bar{\rho}_{E,3}$ es modular, pero bajo mejor inspección observamos que el peso de la eigenforma g es 1, en lugar de 2. Entonces el siguiente paso es subir el peso de g a 2 multiplicándola por una serie de Eisenstein.

Definimos:

$$E_{1,\chi}(z) = 1 + 6\sum_{n=1}^{\infty} \sum_{d|n} \chi(d)e^{2\pi i n z} = \sum_{n=0}^{\infty} a_n(E_{1,\chi})e^{2\pi i n z}.$$

donde $\chi(d)=\left(\frac{d}{3}\right)$ es el símbolo de Legendre; en general, χ es el caracter de Dirichlet módulo 3 definido por:

$$\chi(d) := \begin{cases} 0 & \text{si } d \equiv 0 \pmod{3} \\ 1 & \text{si } d \equiv 1 \pmod{3} \\ -1 & \text{si } d \equiv -1 \pmod{3} \end{cases}$$

Observemos que:

$$g(z)E_{1,\chi}(z) = \left(\sum_{n=1}^{\infty} a_n(g)e^{2\pi i nz}\right) \left(\sum_{n=0}^{\infty} a_n(E_{1,\chi})e^{2\pi i nz}\right) = \sum_{n=1}^{\infty} \left(a_n(g) + \sum_{\substack{i+j=n\\i,j>0}} a_i(g)a_j(E_{1,\chi})\right)e^{2\pi i nz}$$

no tiene término constante, entonces $gE_{1,\chi}$ es una forma cuspidal. Como $g \in S_1(\Gamma_0(N), \varepsilon)$ y $E_{1,\chi} \in M_1(\Gamma_0(3), \chi)$, entonces $gE_{1,\chi} \in S_2(\Gamma_0(3N), \varepsilon\chi)$. Además, por la fórmula de $E_{1,\chi}(z)$ tenemos que $a_0(E_{1,\chi}) \equiv 1 \pmod 3$ y $a_n(E_{1,\chi}) \equiv 0 \pmod 3$ para toda n > 1. Por lo tanto los coeficientes de $gE_{1,\chi}$ cumplen:

$$a_n(gE_{1,\chi}) = a_n(g) + \sum_{\substack{i+j=n\\i,j>0}} a_i(g)a_j(E_{1,\chi}) \equiv a_n(g) \pmod{3} \quad \forall n > 0.$$

El argumento anterior se puede resumir con la siguiente notación:

$$E_{1,\chi} \equiv 1 \pmod{3} \implies gE_{1\chi} \equiv g \pmod{3}.$$

Ahora aplicamos el lema de levantamiento de Deligne-Serre (lema ??) aplicado a§ $f = gE_{1,\chi} \in M := S_2(\Gamma_0(3N), \varepsilon \psi)$. Obtenemos una eigenforma $f' \in S_2(\Gamma_0(3N), \varepsilon \chi)$ (con coeficientes en una extensión de \mathcal{O}_q) tal que para casi todo primo q:

$$a_q(f') \equiv a_q(gE_{1,\chi}) \equiv a_q(g) \stackrel{(5)}{\equiv} q + 1 - \#E(\mathbb{F}_q) \pmod{\mathfrak{P}'}$$
(6)

[§]Estamos tomando \mathcal{F} como la familia de operadores de Hecke T_q y estamos tomando $\mathcal{O} = \mathcal{O}_{g,\mathfrak{P}}$, el anillo de valuación de la completación de \mathcal{O}_g en \mathfrak{P} ; estamos asumiendo tácitamente que $\mathcal{O}_g \hookrightarrow \mathcal{O}_{g,\mathfrak{P}}$

para algún ideal primo \mathfrak{P}' sobre \mathfrak{P} .

En resumen, existe una eigenforma $f' \in S_2(\Gamma_0(N), \psi)$ (para alguna N y algún caracter ψ módulo N) tal que para casi todo primo q tenemos:

$$\operatorname{tr}(\bar{\rho}_{E,3}(\operatorname{Frob}_q)) = \iota(a_q(f'))$$

donde $\iota: \mathcal{O}_{f'} \twoheadrightarrow \mathcal{O}_{f'}/\mathfrak{P}$ es la proyección sobre algún ideal primo de $\mathcal{O}_{f'}$ sobre 3 (además $\mathcal{O}_{f'}/\mathfrak{P}$ es una extensión finita de \mathbb{F}_3). Por lo tanto $\bar{\rho}_{E,3}$ es modular.