

第二章 聚类分析

- 2.1 聚类分析的概念
- 2.2 模式相似性测度
- 2.3 类的定义与类间距离
- 2.4 准则函数
- 2.5 聚类的算法

第二章 聚类分析

2-5 聚类的算法

2.5.1 聚类的技术方案

聚类分析有很多具体的算法,有的比较简单,有的相对复杂和完善,但归纳起来就是三大类:

- 1、按最小距离原则简单聚类方法
- 2、按最小距离原则进行两类合并的方法
- 3、依据准则函数动态聚类方法

(1) 简单聚类方法

针对具体问题确定相似性阈值,将模式到各聚 类中心间的距离与阈值比较,当大于阈值时该模式 就作为另一类的类心,小于阈值时按最小距离原则 将其分划到某一类中。

这类算法运行中模式的类别及类的中心一旦确定将不会改变。

(2) 按最小距离原则进行两类合并的方法

首先视各模式自成一类,然后将距离最小的两类合并成一类,不断地重复这个过程,直到成为两类为止。

这类算法运行中,类心不断地修正,但模式 类别一旦指定后就不再改变,就是模式一旦划为 一类后就不再被分划开,这类算法也称为谱系聚 类法。

(3) 依据准则函数动态聚类法

设定一些分类的控制参数,定义一个能表征聚 类结果优劣的准则函数,聚类过程就是使准则函 数取极值的优化过程。

算法运行中,类心不断地修正,各模式的类别的指定也不断地更改。这类方法有—C均值法、ISODATA法等。

2.5.2 根据相似性阈值的简单聚类方法

- 1) 根据相似性阈值和最小距离原则的简单聚类方法
 - 1. 条件及约定

设待分类的模式为 定类内距离门限 T 。 $\left\{\vec{x}_1, \vec{x}_2, \cdots, \vec{x}_N\right\}$,选

2. 算法思想

计算模式特征矢量到聚类中心的距离并和门限 T 比较,决定归属该类或作为新的一类中心。这种算法通常选择欧氏距离。

2.5.2 根据相似性阈值的简单聚类方法

- 1) 根据相似性阈值和最小距离原则的简单聚类方法
 - 3. 算法原理步骤
 - (1) 取任意的一个模式特征矢量作为第一个聚类中心。 例如,令 类的中心 $\vec{z}_1 = \vec{x}_1$
 - (2) 计算下一个模式特征矢量 \vec{x}_2 到 \vec{z}_1 的距离 若 d_{21} d_{21} 则建立新的一类 ,其类 o_2
 心 $\vec{z}_2 = \vec{x}_2$ 。 若 $d_{21} \leq T$,则 $\vec{x}_2 \in \omega_1$ 。

- 2.5.2 根据相似性阈值的简单聚类方法
- 1) 根据相似性阈值和最小距离原则的简单聚类方法
 - 3. 算法原理步骤
 - (3) 假设已有聚类中心 $\vec{z}_1, \vec{z}_2, \dots, \vec{z}_k$, 计算尚未确定 类别的模式特征矢量 \vec{x}_i 到各聚类中心 \vec{z}_i $(j=1,2,\dots,k)$ 的距离 d_{ij} 。 如果 $d_{ij} > T$ $(j=1,2,\cdots,k)$,则 \vec{x}_i 作为新的一类 ω_{k+1} 的中心, $\vec{z}_{k+1} = \vec{x}_i$; 否则,如果 $d_{il}=\min[d_{ij}]$,则指判 $\vec{\chi}_i\in\omega_l$ 。检查 是否所有的模式都分划完类别,如果都分划完了则 结束: 否则返到(3)。

1) 根据相似性阈值和最小距离原则的简单聚类方法

算法特点:

这类算法的突出优点是算法简单。但聚类过程中,类的中心一旦确定将不会改变,模式一旦指定 类后也不再改变。

从算法的过程可以看出,该算法结果很大程度上依赖于距离门限T的选取及模式参与分类的次序。如果能有先验知识指导门限T的选取,通常可获得较合理的效果。也可考虑设置不同的T和选择不同的次序,最后选择较好的结果进行比较。

1) 根据相似性阈值和最小距离原则的简单聚类方法

初始条件不同的简单聚

2.5.2 根据相似性阈值的简单聚类方法

2) 最大最小距离算法

1. 条件及约定 设待分类的模式为 $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_N\}$, 选定比例系数 θ 。

2. 算法思想

在模式特征矢量集中以最大距离原则选取新的聚类中心。以最小距离原则进行模式归类。这 种方法通常也使用欧氏距离。

2.5.2 根据相似性阈值的简单聚类方法

2) 最大最小距离算法

3. 算法原理步骤

- (1) 选任一模式特征矢量作为第一个聚类中心 \vec{z}_1 例如, $\vec{z}_1 = \vec{x}_1$ 。
- (2) 从待分类矢量集中选距离 \vec{z}_1 最远的特征矢量作为第二个聚类中心 \vec{z}_2 。

2) 最大最小距离算法

(3) 计算未被作为聚类中心的各模式特征矢量 $\left\{ \overrightarrow{x}_{i} \right\}$ 与 \overrightarrow{z}_{1} 、 \overrightarrow{z}_{2} 之间的距离,并求出它们之中的最小值,

$$d_{ij} = \|\vec{x}_i - \vec{z}_j\| \qquad (j = 1, 2)$$

$$d_i = \min [d_{i1}, d_{i2}] \quad (i = 1, 2, \dots, N)$$

为表述简洁,虽然某些模式已选做聚类中心,但 上面仍将所有模式下角标全部列写出来,因这并 不影响算法的正确性。

2.5.2 根据相似性阈值的简单聚类方法

2) 最大最小距离算法

(4) 若 $d_l = \max_i \left[\min(d_{i1}, d_{i2}) \right] > \theta ||\vec{z}_1 - \vec{z}_2||$ 则相应的特征矢量 \vec{x}_l 作为第三个聚类中心, $\vec{z}_3 = \vec{x}_l$

然后转至(5);否则,转至最后一步(6)。

2.5.2 根据相似性阈值的简单聚类方法

2) 最大最小距离算法

(5) 设存在 k个聚类中心,计算未被作为聚类中心的各特征矢量到各聚类中心的距离 d_{ij} ,并算出 $d_l = \max_i \left[\min_i \left[d_{i1}, d_{i2}, \cdots, d_{ik}\right]\right]$ 如果 $d_l > \theta \left\|\vec{z}_1 - \vec{z}_2\right\|$,则 $\vec{z}_{k+1} = \vec{x}_l$ 并转至(5); 否则,转至最后一步(6)。

(6) 当判断出不再有新的聚类中心之后,将模式特 征矢量 $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_N\}$ 按最小距离原则分到各类 中去。即计算

$$d_{ij} = \left\| \vec{x}_i - \vec{z}_j \right\| \quad (j = 1, 2, \dots; i = 1, 2, \dots, N)$$
 当 $d_{il} = \min_{j} \left[d_{ij} \right]$,则判 $\vec{x}_i \in \omega_l$ 。

这种算法的聚类结果与参数分以及第一个聚类中 心的选取有关。如果没有先验知识指导日和之的选 取,可适当调整 θ 和 \vec{z}_1 ,比较多次试探分类结果, 选取最合理的一种聚类。

$\theta = 0.2$	z_1	\mathbf{z}_2	\mathbf{z}_3	\mathbf{Z}_4	
	$x_1:(0,0)$	$x_6:(4,8)$			
x ₁ :(0,0)	0	80			
x ₂ :(1,1)	1	58			

$\theta = 0.2$	\mathbf{z}_1	\mathbf{z}_2	\mathbf{Z}_3	\mathbf{z}_4
	$x_1:(0,0)$	x ₆ :(4,8)		
x ₁ :(0,0)	0	80		
x ₂ :(1,1)	1	58		
x ₃ :(2,2)	8	40		
x ₄ :(3,8)	73	1		
x ₅ :(5,3)	34	26		
x ₆ :(4,8)	80	0		
$x_7:(6,3)$	45	29		
x ₈ :(5,4)	41	26		

 $x_9:(6,4)$ $x_{10}:(7,5)$

$\theta = 0.2$	\mathbf{z}_1	\mathbf{z}_2	\mathbf{Z}_3	\mathbf{Z}_4
	$x_1:(0,0)$	$x_6:(4,8)$	$x_7:(6,3)$	
$x_1:(0,0)$	0	80	45	
x ₂ :(1,1)	1	58	29	
x ₃ :(2,2)	8	40	17	
x ₄ :(3,8)	73	1	34	
x ₅ :(5,3)	34	26	1	
$x_6:(4,8)$	80	0	29	
$x_7:(6,3)$	45	29	0	
x ₈ :(5,4)	41	26	2	
$x_9:(6,4)$	52	20	1	
x_{10} :(7,5)	74	18	5	
				21

$\theta = 0.2$	\mathbf{z}_1	\mathbf{z}_2	\mathbf{Z}_3	\mathbf{Z}_4
	$x_1:(0,0)$	$x_6:(4,8)$	x ₇ :(6,3)	
x ₁ :(0,0)	0	80	45	
x ₂ :(1,1)	1	58	29	
x ₃ :(2,2)	8	40	17	
x ₄ :(3,8)	73	1	34	
x ₅ :(5,3)	34	26	1	
$x_6:(4,8)$	80	0	29	
x ₇ :(6,3)	45	29	0	
x ₈ :(5,4)	41	26	2	
$x_9:(6,4)$	52	20	1	
x_{10} :(7,5)	74	18	5	
				22

2.5.3 谱系聚类法

按最小距离原则不断进行两类合并

层次聚类法 (Hierarchical Clustering Method)(系统聚类法、谱系聚类法)

2.5.3 谱系聚类法

1. 条件及约定

设待分类的模式特征矢量为 $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_N\}$, $G_i^{(k)}$ 表示第 k 次合并时的第 i 类。

2. 算法思想

首先将 N 个模式视作各自成为一类,然后计算 类与类之间的距离,选择距离最小的一对合并成一 个新类,计算在新的类别分划下各类之间的距离, 再将距离最近的两类合并,直至所有模式聚成两类 为止。

2.5.3 谱系聚类法

3. 算法原理步骤

- (1) 初始分类。令 k=0 ,每个模式自成一类,即 $G_i^{(0)} = \left\{ \vec{x}_i \right\} \ (i=1,2,\cdots,N)$
- (2) 计算各类间的距离 D_{ij} ,由此生成一个对称的距离矩阵 $D^{(k)}=(D_{ij})_{m\times m}$,m 为类的个数(初始时 m=N)。

- 2.5.3 谱系聚类法
 - 3. 算法原理步骤
- (3) 找出前一步求得的矩阵 $D^{(k)}$ 中的最小元素,设它是 $G_i^{(k)}$ 和 $G_j^{(k)}$ 间的距离,将 $G_i^{(k)}$ 和 $G_j^{(k)}$ 两类合并成一类,于是产生新的聚类 $G_1^{(k+1)}, G_2^{(k+1)}, \cdots$ 令 k=k+1, m=m-1

(4) 检查类的个数。如果类数 m 大于2, 转至(2); 否则, 停止。

- 1、设全部样本分为6类,
- 2、作距离矩阵D(0)
- 3、求最小元素:
- 4、把ω1,ω3合并ω7=(1,3)ω4,ω6合并ω8=(4,6)
- 5、作距离矩阵D(1)

	ω_1	ω_2	ω_3	ω_4	ω_5
ω_2	3				
ω_3	1	4			
ω_4	7	4	8		
ω_5	5	2	6	2	
ω_6	8	5	9	1	3

- 1、求最小元素:
- 2、把ω₂,ω₅,ω₈合并

	ω_7	ω_2	ω_8
ω_2	3		
ω_8	7	4	
ω_5	5	2	2

2.5.3 谱系聚类法

D(1)					
	ω_7	ω_2	ω_8		
ω_2	3				
ω_8	7	4			
ω_5	5	2	2		

作业

1、有样本集 {(0,0),(0,1),(4,4),(4,5),(5,4),(5,5),(1,0)}, 试用普系聚类算法对其分类。

2, P64: 2.11

谢 谢!