COA-Quiz1 (CSN-221-CAM Aut2020-21)

5

The Sun microsystems processors usually follow architecture
○ CISC
○ RISC
○ ULTRA SPARC
The computer architecture aimed at reducing the time of execution of instructions is
7
The CISC stands for
Computer Instruction Set Compliment
Complete Instruction Set Compliment
Computer Indexed Set Components
Complex Instruction set computer
8
Both the CISC and RISC architectures have been developed to reduce the
○ Time delay
○ Cost
○ Semantic gap
○ All
9
Out of the following which is not a CISC machine
○ IBM 370/168
○ VAX 11/780
☐ Intel 80486
Motorola A567

Pipe-lining is a unique feature of
○ RISC
○ CISC
○ IANA
11
In CISC architecture most of the complex instructions are stored in
Register
○ Diodes
○ cmos
○ Transistors
12
Which of the architecture is power efficient?
○ CISC
RISC
○ ISA
○ IANA
13
Consider the following processor design characteristics.
I. Register-to-register arithmetic operations only II. Fixed-length instruction format III. Hardwired control unit
Which of the characteristics above are used in the design of a RISC processor?
○ I and II only
○ II and III only
O I and III only
○ I, II and III

14
The main difference(s) between a CISC and a RISC processor is/are that a USC processor typically:
a) has fewer instructionsb) has fewer addressing modesc) has more registersd) is easier to implement using hardwired control logic
a and b
O b and c
a and d
a, b, c and d
15
Evaluate the following statements and select the appropriate answer given from the choices below.
I. Von Neumann Architecture shares common memory for Data and Instructions II. Harvard Architecture has separate physical memories for Data and Instructions
Only I is true
Only II is true
O Both I and II are true
O None of them is true
16
Which of the following processors belong to Reduced Instruction Set Computers (RISC) family?
○ ARM
○ AVR
○ MIPS
All of the above
17
A bus cycle request that transfers to or from an address which is unrelated to the address used in the preceding cycle is called a
Sequential Cycle
○ Internal Cycle
Non-Sequential Cycle

Ocoprocessor Register Transfer Cycle

Using only two instructions, add a 64-bit integer contained in R2 and R3 to another 64-bit integer contained in R0 and R1, and place the result in R4 and R5.
O ADD r4, r0, r2; ADC r5, r1, r3;
ADDS r4, r0, r2; ADCS r5, r1, r3;
O ADD r4, r0, r2; ADD r5, r1, r3;
ADD r4, r0, r2; ADCS r5, r1, r3;
19
Which of the following is False with respective to possible outcomes of executing a TM over a given input?
it may halt and accept the input
it may halt by changing the input
It may halt and reject the input
O It may never halt
20
Which of the following is wrong?
TM is a simple mathematical model of general purpose computer
TM is more powerful than finite automata
TM can be simulated by a general purpose computer
All of these
21
Consider the following sequence of micro-operations.
MBR ← PC
$\begin{array}{l} MAR \leftarrow X \\ PC \leftarrow Y \end{array}$
Memory ← MBR
Which one of the following is a possible operation performed by this sequence?
○ Instruction fetch
Operand fetch
Conditional branch
○ Initiation of interrupt service

The amount of ROM needed to implement a 4 bit multiplier is

\bigcirc	64 bits
\bigcirc	128 bits
\bigcirc	1 Kbits
	2 Kbits
	23
	The register which holds the address of the location to or from which data are to be transferred is called
	Index register
\bigcirc	Instruction register
\bigcirc	Memory address register
	Memory data register
	24
	The register which contains the data to be written into or readout of the addressed location is called
\bigcirc	Index register
\bigcirc	Instruction register
0	Memory address register
\bigcirc	Memory data register
	25
	The register used as a working area in CPU is
\bigcirc	Program counter
	Instruction register
	Instruction decoder
	Accumulator

A single tape Turing Machine M has two states q0 and q1, of which q0 is the starting state. The tape alphabet of M is $\{0, 1, B\}$ and its input alphabet is $\{0, 1\}$. The symbol B is the blank symbol used to indicate the end of an input string. The transition function of M is described in the following table.

The table is interpreted as illustrated below. The entry (q1, 1, R) in row q0 and column 1 signifies that if M is in state q0 and reads 1 on the current tape square, then it writes 1 on the same tape square, moves its tape head one position to the right and transitions to state q1. Which of the following statements is true about M?

	0	1	В
q0	q1,1,R	q1,1,R	Halt
q1	q1,1,R	q0,L,R	q0,B,L

\Box	M does	not halt	on any	string	in (0) +	1)+
--------	--------	----------	--------	--------	-------	-----	-----

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

M does not halt on any string in (00 + 1)*

M halts on all string ending in a 0

M halts on all string ending in a 1