5.3 Directional Coupler

Module:5 Microwave Passive components

Course: BECE305L – Antenna and Microwave Engineering

-Dr Richards Joe Stanislaus

Assistant Professor - SENSE

Email: richards.stanislaus@vit.ac.in

Module:5 Microwave Passive components 6 hours

 Microwave Networks - ABCD, 'S' parameter and its properties. E-Plane Tee, H-Plane Tee, Magic Tee and Multi-hole directional coupler. Principle of Faraday rotation, isolator, circulator and phase shifter.

Source of the contents: Pozar

• S matrix of a reciprocal four port network matched at all ports:
$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} & S_{14} \\ S_{12} & 0 & S_{23} & S_{24} \\ S_{13} & S_{23} & 0 & S_{34} \\ S_{14} & S_{24} & S_{34} & 0 \end{bmatrix}$$

For lossless network

$$S_{13}^* S_{23} + S_{14}^* S_{24} = 0$$
 (C1,C2)
 $S_{14}^* S_{13} + S_{24}^* S_{23} = 0$ (C3,C4)

• S matrix of a reciprocal four port network matched at all ports:
$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} & S_{14} \\ S_{12} & 0 & S_{23} & S_{24} \\ S_{13} & S_{23} & 0 & S_{34} \\ S_{14} & S_{24} & S_{34} & 0 \end{bmatrix}$$

For lossless network

$$S_{13}^* S_{23} + S_{14}^* S_{24} = 0$$

$$S_{14}^* S_{13} + S_{24}^* S_{23} = 0$$

• Multiply the above two by S_{24}^* and S_{13}^* respectively and subtract,

$$S_{14}^*(|S_{13}|^2 - |S_{24}|^2) = 0$$

• S matrix of a reciprocal four port network matched at all ports:
$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} & S_{14} \\ S_{12} & 0 & S_{23} & S_{24} \\ S_{13} & S_{23} & 0 & S_{34} \\ S_{14} & S_{24} & S_{34} & 0 \end{bmatrix}$$

- $S_{14}^*(|S_{13}|^2 |S_{24}|^2) = 0$
- Multiplying Col 1 and Col 3 and multiplication of Col 4 and Col 2 gives:

$$S_{12}^* S_{23} + S_{14}^* S_{34} = 0$$
 and $S_{14}^* S_{12} + S_{34}^* S_{23} = 0$

• S matrix of a reciprocal four port network matched at all ports:
$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} & S_{14} \\ S_{12} & 0 & S_{23} & S_{24} \\ S_{13} & S_{23} & 0 & S_{34} \\ S_{14} & S_{24} & S_{34} & 0 \end{bmatrix}$$

- $S_{14}^*(|S_{13}|^2 |S_{24}|^2) = 0$
- Multiplying Col 1 and Col 3 and multiplication of Col 4 and Col 2 gives:

$$S_{12}^*S_{23} + S_{14}^*S_{34} = 0$$
 and $S_{14}^*S_{12} + S_{34}^*S_{23} = 0$

Multiply the above two by S_{12} and S_{34} and subtract:

$$S_{23}(|S_{12}|^2 - |S_{34}|^2) = 0$$

• S matrix of a reciprocal four port network matched at all ports:
$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} & S_{14} \\ S_{12} & 0 & S_{23} & S_{24} \\ S_{13} & S_{23} & 0 & S_{34} \\ S_{14} & S_{24} & S_{34} & 0 \end{bmatrix}$$

- $S_{14}^*(|S_{13}|^2 |S_{24}|^2) = 0$
- $S_{23}(|S_{12}|^2 |S_{34}|^2) = 0$
- One way the above two may be satisfied: if $S_{14} = S_{23} = 0$, which results in a directional coupler

• S matrix of a reciprocal four port network matched at all ports:
$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} & 0 \\ S_{12} & 0 & 0 & S_{24} \\ S_{13} & 0 & 0 & S_{34} \\ 0 & S_{24} & S_{34} & 0 \end{bmatrix}$$

- $S_{14}^*(|S_{13}|^2 |S_{24}|^2) = 0$
- $S_{23}(|S_{12}|^2 |S_{34}|^2) = 0$
- One way the above two may be satisfied: if $S_{14} = S_{23} = 0$, which results in a directional coupler

• S matrix of a reciprocal four port network matched at all ports:

With
$$S_{14} = S_{23} = 0$$

$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} & 0 \\ S_{12} & 0 & 0 & S_{24} \\ S_{13} & 0 & 0 & S_{34} \\ 0 & S_{24} & S_{34} & 0 \end{bmatrix}$$

• S matrix of a reciprocal four port network matched at all ports: With
$$S_{14}=S_{23}=0$$

$$[S]=\begin{bmatrix}0&S_{12}&S_{13}&0\\S_{12}&0&0&S_{24}\\S_{13}&0&0&S_{34}\\0&S_{24}&S_{34}&0\end{bmatrix}$$

The self product of the rows of the unitary scattering matrix:

$$|S_{12}|^2 + |S_{13}|^2 = 1$$

$$|S_{12}|^2 + |S_{24}|^2 = 1$$

$$|S_{13}|^2 + |S_{34}|^2 = 1$$

$$|S_{24}|^2 + |S_{34}|^2 = 1$$

• S matrix of a reciprocal four port network matched at all ports: With
$$S_{14}=S_{23}=0$$

$$[S]=\begin{bmatrix}0&S_{12}&S_{13}&0\\S_{12}&0&0&S_{24}\\S_{13}&0&0&S_{34}\\0&S_{24}&S_{34}&0\end{bmatrix}$$

• The self product of the rows of the unitary scattering matrix:

$$|S_{12}|^2 + |S_{13}|^2 = 1$$

$$|S_{12}|^2 + |S_{24}|^2 = 1$$

$$|S_{13}|^2 + |S_{34}|^2 = 1$$

$$|S_{24}|^2 + |S_{34}|^2 = 1$$

This results in $|S_{13}| = |S_{24}|$ and $|S_{12}| = |S_{34}|$

• S matrix of a reciprocal four port network matched at all ports:

With
$$S_{14} = S_{23} = 0$$

$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} & 0 \\ S_{12} & 0 & 0 & S_{24} \\ S_{13} & 0 & 0 & S_{34} \\ 0 & S_{24} & S_{34} & 0 \end{bmatrix}$$

And
$$|S_{13}| = |S_{24}|$$
 and $|S_{12}| = |S_{34}|$

•

• S matrix of a reciprocal four port network matched at all ports:

With
$$S_{14} = S_{23} = 0$$

$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} & 0 \\ S_{12} & 0 & 0 & S_{24} \\ S_{13} & 0 & 0 & S_{34} \\ 0 & S_{24} & S_{34} & 0 \end{bmatrix}$$

And $|S_{13}| = |S_{24}|$ and $|S_{12}| = |S_{34}|$

• Further simplification: choose phase reference on three of the four ports: $S_{12} = S_{34} = \alpha$ $S_{13} = \beta e^{j\theta}$ and $S_{24} = \beta e^{j\phi}$ with α, β : real and θ and ϕ are yet to be obtained.

• S matrix of a reciprocal four port network matched at all ports:

With
$$S_{14} = S_{23} = 0$$

$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} & 0 \\ S_{12} & 0 & 0 & S_{24} \\ S_{13} & 0 & 0 & S_{34} \\ 0 & S_{24} & S_{34} & 0 \end{bmatrix}$$

And $|S_{13}| = |S_{24}|$ and $|S_{12}| = |S_{34}|$

- Further simplification: choose phase reference on three of the four ports: $S_{12} = S_{34} = \alpha$ $S_{13} = \beta e^{j\theta}$ and $S_{24} = \beta e^{j\phi}$ with α, β : real and θ and ϕ are yet to be obtained.
- Dot product of Columns 2 and 3: $S_{12}^*S_{13} + S_{24}^*S_{34} = 0$ which gives a relation between phase constants $\theta + \phi = \pi \pm 2n\pi$

• S matrix of a reciprocal four port network matched at all ports:

With
$$S_{14} = S_{23} = 0$$

$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} & 0 \\ S_{12} & 0 & 0 & S_{24} \\ S_{13} & 0 & 0 & S_{34} \\ 0 & S_{24} & S_{34} & 0 \end{bmatrix}$$

And $|S_{13}|=|S_{24}|$ and $|S_{12}|=|S_{34}|$; $S_{12}=S_{34}=\alpha$ $S_{13}=\beta e^{j\theta}$ and $S_{24}=\beta e^{j\phi}$; relation between phase constants $\theta+\phi=\pi\pm2n\pi$

Case 1: Symmetric coupler: $\theta = \phi = \pi/2$, with similar β ,

$$[S] = \begin{bmatrix} 0 & \alpha & j\beta & 0 \\ \alpha & 0 & 0 & j\beta \\ j\beta & 0 & 0 & \alpha \\ 0 & j\beta & \alpha & 0 \end{bmatrix}$$

S matrix of a reciprocal four port network matched at all ports:

With
$$S_{14} = S_{23} = 0$$

$$[S] = \begin{bmatrix} 0 & S_{12} & S_{13} & 0 \\ S_{12} & 0 & 0 & S_{24} \\ S_{13} & 0 & 0 & S_{34} \\ 0 & S_{24} & S_{34} & 0 \end{bmatrix}$$

And $|S_{13}| = |S_{24}|$ and $|S_{12}| = |S_{34}|$; $S_{12} = S_{34} = \alpha$ $S_{13} = \beta e^{j\theta}$ and $S_{24} = \beta e^{j\phi}$; relation between phase constants $\theta + \dot{\phi} = \pi \pm 2n\pi$

Case 1: Symmetric coupler: $\theta = \phi = \pi/2$; Case 2: Antisymmetric coupler $\theta = 0$, $\phi = \pi$

$$[S] = \begin{bmatrix} 0 & \alpha & j\beta & 0 \\ \alpha & 0 & 0 & j\beta \\ j\beta & 0 & 0 & \alpha \\ 0 & j\beta & \alpha & 0 \end{bmatrix}$$

$$[S] = \begin{bmatrix} 0 & \alpha & \beta & 0 \\ \alpha & 0 & 0 & -\beta \\ \beta & 0 & 0 & \alpha \\ 0 & -\beta & \alpha & 0 \end{bmatrix}$$
 Amplitudes β are chosen 180° apart

Case 1: Symmetric coupler: $\theta = \phi = \pi/2$; Case 2: Antisymmetric coupler $\theta = 0$, $\phi = \pi$

$$[S] = \begin{bmatrix} 0 & \alpha & j\beta & 0 \\ \alpha & 0 & 0 & j\beta \\ j\beta & 0 & 0 & \alpha \\ 0 & j\beta & \alpha & 0 \end{bmatrix}$$

$$[S] = \begin{bmatrix} 0 & \alpha & j\beta & 0 \\ \alpha & 0 & 0 & j\beta \\ j\beta & 0 & 0 & \alpha \\ 0 & j\beta & \alpha & 0 \end{bmatrix}$$

$$[S] = \begin{bmatrix} 0 & \alpha & \beta & 0 \\ \alpha & 0 & 0 & -\beta \\ \beta & 0 & 0 & \alpha \\ 0 & -\beta & \alpha & 0 \end{bmatrix}$$

Note: The two couplers – differ in choice of reference planes

Amplitudes are not independent, $\alpha^2 + \beta^2 = 1$

Phase references, ideal four port directional coupler has only one degree of freedom – With two configurations.

Case 1: Symmetric coupler: $\theta = \phi = \pi/2$;

$$[S] = \begin{bmatrix} 0 & \alpha & j\beta & 0 \\ \alpha & 0 & 0 & j\beta \\ j\beta & 0 & 0 & \alpha \\ 0 & j\beta & \alpha & 0 \end{bmatrix}$$

Case 1: Symmetric coupler: $\theta = \phi = \pi/2$; Case 2:Antisymmetric coupler $\theta = 0$, $\phi = \pi$

$$[S] = \begin{bmatrix} 0 & \alpha & j\beta & 0 \\ \alpha & 0 & 0 & j\beta \\ j\beta & 0 & 0 & \alpha \\ 0 & j\beta & \alpha & 0 \end{bmatrix}$$

$$[S] = \begin{bmatrix} 0 & \alpha & \beta & 0 \\ \alpha & 0 & 0 & -\beta \\ \beta & 0 & 0 & \alpha \\ 0 & -\beta & \alpha & 0 \end{bmatrix}$$

$$[S] = \begin{bmatrix} 0 & \alpha & \beta & 0 \\ \alpha & 0 & 0 & -\beta \\ \beta & 0 & 0 & \alpha \\ 0 & -\beta & \alpha & 0 \end{bmatrix}$$

Case 1: Symmetric coupler: $\theta = \phi = \pi/2$; Case 2:Antisymmetric coupler $\theta = 0$, $\phi = \pi$

$$[S] = \begin{bmatrix} 0 & \alpha & j\beta & 0 \\ \alpha & 0 & 0 & j\beta \\ j\beta & 0 & 0 & \alpha \\ 0 & j\beta & \alpha & 0 \end{bmatrix} \qquad [S] = \begin{bmatrix} 0 & \alpha & \beta & 0 \\ \alpha & 0 & 0 & -\beta \\ \beta & 0 & 0 & \alpha \\ 0 & -\beta & \alpha & 0 \end{bmatrix}$$

Note: The two couplers – differ in choice of reference planes

Amplitudes are not independent, $\alpha^2 + \beta^2 = 1$

Phase references, ideal four port directional coupler has only one degree of freedom – With two configurations.

• For the <u>reciprocal network</u>: $S_{31} = S_{13}$ and $S_{21} = S_{12}$

- For the <u>reciprocal network</u>: $S_{31} = S_{13}$ and $S_{21} = S_{12}$
- Power supplied is coupled to port 3 with coupling factors $|S_{13}|^2 = \beta^2$
- Remainder of power to port 2 (through port) with coefficient $|S_{12}|^2 = \alpha^2 =$

 $1-\beta^2$

$$[S] = \begin{bmatrix} 0 & \alpha & j\beta & 0 \\ \alpha & 0 & 0 & j\beta \\ j\beta & 0 & 0 & \alpha \\ 0 & i\beta & \alpha & 0 \end{bmatrix}$$

- For the <u>reciprocal network</u>: $S_{31} = S_{13}$ and $S_{21} = S_{12}$
- Power supplied is coupled to port 3 with coupling factors $|S_{13}|^2 = \beta^2$
- Remainder of power to port 2 (through port) with coefficient $|S_{12}|^2 = \alpha^2 = 1 \beta^2$
- Ideal directional coupler:
 Port 4 is isolated from port 1,
 No power is delivered to port 4 (Isolated port)

 [S] = $\begin{bmatrix}
 0 & \alpha & j\beta & 0 \\
 \alpha & 0 & 0 & j\beta \\
 j\beta & 0 & 0 & \alpha \\
 0 & j\beta & \alpha & 0
 \end{bmatrix}$ Input

 (1)

 (2) Through

 (3)

 Coupled

• Coupling= $C = 10 \log_{10} \frac{P_1}{P_3} = -20 \log_{10} \beta$ dB

Fraction of input power coupled to output port

• Coupling= $C = 10 \log_{10} \frac{P_1}{P_2} = -20 \log_{10} \beta$ dB

Fraction of input power coupled to output port

• Directivity= $D = 10 \log_{10} \frac{P_3}{P_4} = 20 \log_{10} \frac{\beta}{|S_{14}|} dB$

Coupler's ability to isolate forward and backward waves (or coupled and decoupled ports)

Through

Coupled

3.3 Directional couplers characteristics

• Coupling= $C = 10 \log_{10} \frac{P_1}{P_3} = -20 \log_{10} \beta$ dB

Fraction of input power coupled to output port

• Directivity= $D = 10 \log_{10} \frac{P_3}{P_4} = 20 \log_{10} \frac{\beta}{|S_{14}|} dB$

Coupler's ability to isolate forward and backward waves (or coupled and decoupled ports)

• Isolation= $I = 10 \log_{10} \frac{P_1}{P_4} = -20 \log |S_{14}| dB$

Power delivered to the uncoupled port I = D + C dB

Isolated

(4)

Through

Coupled

3.3 Directional couplers characteristics

• Coupling= $C = 10 \log_{10} \frac{P_1}{P_3} = -20 \log_{10} \beta$ dB

Fraction of input power coupled to output port

• Directivity= $D = 10 \log_{10} \frac{P_3}{P_4} = 20 \log_{10} \frac{\beta}{|S_{14}|} dB$

Coupler's ability to isolate forward and backward waves (or coupled and decoupled ports)

• Isolation= $I = 10 \log_{10} \frac{P_1}{P_4} = -20 \log |S_{14}| dB$

Power delivered to the uncoupled port I = D + C dB

• Insertion loss L= $10 \log \frac{P_1}{P_2} = -20 \log |S_{12}| dB$

Input power delivered to through port, diminished by power delivered to coupled and isolated ports

(4)

• Ideal directional coupler: Directivity $D=\infty=10\log_{10}\frac{P_3}{P_4}$ and

$$S_{14} = 0$$
 $I = 10 \log_{10} \frac{P_1}{P_4} = -20 \log |S_{14}| = -\infty$

Both α , β can be obtained from coupling factor

- Ideal directional coupler: Directivity $D = \infty$ and Isolation $S_{14} = 0$
 - Both α , β can be obtained from coupling factor
- Hybrid couplers

$$\alpha = \beta = 1/\sqrt{2}$$

- Ideal directional coupler: Directivity $D = \infty$ and Isolation $S_{14} = 0$
 - Both α , β can be obtained from coupling factor
- Hybrid couplers

Special case of directional couplers. [0

Coupling factor C = 3dB $\alpha = R = 1/\sqrt{2}$

$$\alpha = \beta = 1/\sqrt{2}$$

1) Quadrature hybrid: 90° phase

ecial case of directional couplers.
$$[S] = \begin{bmatrix} 0 & \alpha & \beta e^{j\theta} & 0 \\ \alpha & 0 & 0 & \beta e^{j\phi} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & e^{j\theta} & 0 \\ 1 & 0 & 0 & e^{j\phi} \\ e^{j\theta} & 0 & 0 & \alpha \\ 0 & \beta e^{j\phi} & \alpha & 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & e^{j\theta} & 0 \\ 1 & 0 & 0 & e^{j\phi} \\ e^{j\theta} & 0 & 0 & 1 \\ 0 & e^{j\phi} & 1 & 0 \end{bmatrix}$$
Suadrature hybrid: 90° phase shift between port 2 and 3 $(\theta = \phi = \pi/2)$
$$[S] = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & j & 0 \\ 1 & 0 & 0 & j \\ 0 & e^{j\phi} & 1 & 0 \end{bmatrix}$$

- Ideal directional coupler: Directivity $D = \infty$ and Isolation $S_{14} = 0$
 - Both α , β can be obtained from coupling factor
- Hybrid couplers

Special case of directional couplers. [0

Coupling factor C = 3dB

$$\alpha = \beta = 1/\sqrt{2}$$

 $[S] = \begin{bmatrix} 0 & \alpha & j\beta e^{j\theta} & 0 \\ \alpha & 0 & 0 & \beta e^{j\phi} \\ \beta e^{j\theta} & 0 & 0 & \alpha \\ 0 & \beta e^{j\phi} & \alpha & 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & e^{j\theta} & 0 \\ 1 & 0 & 0 & e^{j\phi} \\ e^{j\theta} & 0 & 0 & 1 \\ 0 & e^{j\phi} & 1 & 0 \end{bmatrix}$

- 1) Quadrature hybrid: 90° phase shift between port 2 and 3 ($\theta = \phi = \pi/2$)
- Magic T hybrid and Rat race hybrid: 180° phase shift between ports 2,3

$$\theta = 0, \phi = \pi$$