Last time, we shalled operators $\varphi: V \to V$ (finite dim. vect space), their eigenspaces $\ker(\varphi-\lambda I)$ and generalized eigenspaces $V_{\chi} = \ker(\varphi-\lambda I)^n$ ($n = \dim V$). We shared:

- 1) Vy are invariant subspaces of 10 and linearly independent inside V.
- 2) If k is alg. closed then $V = \bigoplus V_{\lambda}$.
- 3) For a nilpotent operator (ym=0 for some m>0), I Jordan basis {φ^{mq}(v_i), φ^{mi-(n)},..., v₁, ..., φ^{mk}(v_k),..., v_k} where φ^{mi+(}(v_i)=0 ∀i in which the matrix of φ is block diagonal built from 0.1.0nilpotent Jordan blocks 0.1.0

We now combine our rouths to write at the geg. C

Jordan normal form: V finite din. wehr space over k alg. cloud, $\varphi \in Hom(V,V)$ $\Rightarrow \exists basis of V in which the matrix of <math>\varphi$ is block-diagonal, with each block a Jordan block $\begin{pmatrix} \lambda, 1, 0 \\ 0 & \lambda \end{pmatrix}$.

Ronk: • size 1 Jardon block: (1), size 2: $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$, ... φ is diagonalizable \iff all the blocks have size 1.

- · The values of I that appear are exactly the eigenvalues of q. There may be several blocks with the same λ ; their direct sum is the generalized eigenspace V_{λ} .
- proof: we've seen $V=\bigoplus V_{\lambda}$ generalized eigenspaces; now $\Psi_{|V_{\lambda}}-\lambda I$ is nilpotent, so can decomposed into nilpotent Jordan blocks $\Psi_{|V_{\lambda}}-\lambda I=\bigoplus {\binom{0}{1}\choose{0}}$, so $\Psi_{|V_{\lambda}}=\bigoplus {\binom{1}{1}\choose{\lambda}}$.

4 Characteistic polynomial, minimal polynomial:

let k be algebraidly closed, $\varphi: V \rightarrow V$, $V = \bigoplus_{i=1}^{\ell} V_{\lambda_i}$. V_{λ_i} generalized eigenspaces

Call $n_i = \dim V_{\lambda_i}$ the <u>multiplicity</u> of λ_i ($\Sigma n_i = \dim V$)

· Mi = nilpotence order of (4/Vi; - \lambda_i Id) is - smallest mi st. Vi; = ker(4-\lambda_i I) mi

From the above: $m_i \in n_i$, and V_{λ_i} is diagonalizable iff all $m_i = 1$.

Def: | The characterstic polynomial of φ is $\chi_{\varphi}(x) = \prod_{i=1}^{n} (x - \lambda_i)^{n_i}$

The usual definition, are we have defined determinant, is: $||\chi_{\varphi}(x)| = \det(xI - \varphi)$ Manifestly, in a basis where M(q) is triangular (or Jordan), M(xI-cq= (x-2, x) and this is the same thing. (but can use any basis to calculate def).

So $\mu_{\psi}(\psi) = \text{simplet polynomial expression in } \psi \text{ that is zero on all } V_{\lambda_i}'s, hence on <math>\Phi V_{\lambda_i} = V$.

Here: $\| y \varphi(\varphi) = 0$, and $\forall P \in k(x)$, $P(\varphi) = 0 \in Hom(V, V)$ iff μ_{φ} divides P.

Since nilpotrue order m_i is always $\leq \dim V_{\lambda_i} = n_i$, pre d'video χ_{φ} , so: $\frac{1}{2} \ln \left(\text{Cayley-Hamilton} \right) \mid \chi_{\varphi}(\varphi) = 0$.

(This is also have now algorithms, by passing to algorithms; see before for an example)

· A word about operators on finite din. R. vector spaces:

Let V real vector space (din. n), $\varphi: V \rightarrow V$ linear operator.

Since R is not alg. closed, if night not have eigenvalues, and we can't put in triangular or Jordan form.

Yet: every real operator has an invariant subspace of dim. 1 or 2

Apprach, work over I which is alg. closed. How do we do this?

Del: The complexition of V is $V_C = V \times V = \{v + iw \mid v, w \in V\}$, with addition $(v, + iw_1) + (v_2 + iw_2) = (v_1 + v_2) + i(w_1 + w_2)$ scalar mult: (a + ib)(v + iw) = (av - bw) + i(bv + aw)

- This is a C-vector space of dimension n: if $(e_1...e_n)$ is a basis of V ove P, then $e_1(=e_1+i0)$, ..., e_n is also a basis of V_C ove C.
- Gran $\varphi: V \rightarrow V$ IR. Anear, we can extend it to $\varphi_{\mathcal{C}}: V_{\mathcal{C}} \rightarrow V_{\mathcal{C}}$ C. linear simply by $\varphi_{\mathcal{C}}(v+iw) = \varphi(v)+i\psi(w)$. Choosing a basis $(e_i...e_n)$ as above, the matrix of $\varphi_{\mathcal{C}}$ is the same as that of $\varphi_{\mathcal{C}}(e_j+i0) = \varphi(e_j)+i0$).

```
But now... \varphi_{\mathbb{C}} is guaranteed to have an eigenvector!

(and gent eigenpace, and Jordan form,...)

Let V=V+iW be an eigenvector of \psi_{\mathbb{C}} for eigenvalue \lambda \in \mathbb{C}, \psi_{\mathbb{C}}(V)=\lambda V.

There are two case:

if \lambda \in \mathbb{R}, then \psi_{\mathbb{C}}(V+iW)=\psi(V)+i\psi(V)=\lambda V+i\lambda W

\Rightarrow v=\mathbb{R}(V) and W=\mathrm{Im}(V) are eigenvectors of \psi with the same eigenvalue \lambda (if they are nonzero; one of them is).

(A the multiplicity of \lambda for \psi has no reason to be even).

if \lambda=a+ib\notin\mathbb{R}, then \psi_{\mathbb{C}}(V+iW)=(a+ib)(V+iW)

\Rightarrow \psi_{\mathbb{C}}(V-iW)=(a-ib)(V-iW) (compare real and ineginary parts!)

if. V=V-iW is an eigenvector of \psi_{\mathbb{C}} with eigenvalue \lambda.

If follows that V and W are linearly integrabet, and span a 2-dimensional invariant subspace U\subset V: \psi(V)=aV-bW \mathcal{M}(\psi_{\mathbb{C}}(V,W))=(a-b).
```

(One could hister show block historylar decompositions of 4 etc. starting from 40).

Interlude: the language of categories. (then we'll return to (bi) linear algebra)

Del: A category is a collection of objects + for each pair of objects, a collection

of morphisms Mor(A,B), and an operation called conjustion of morphisms, Mor(A,B) \times Mor(B,C) \longrightarrow Mor(A,C) st.

f, g \longmapsto gof

- 1) every object A how on identity norphism id $\in \Pi$ or (A,A) st. $\forall f \in \Pi$ or (A,B), $f \circ id_A = id_B \circ f = f$.
- 2) compacition is associative; (fog) oh = fo(g.h).

Ex: 1) category of sets, $Mor(A,B) = all maps <math>A \rightarrow B$

- 2) Vecty finte dins victor spaces/k, linear maps.
- 3) groups, group homomorphisms
- 4) top. spaces, continuos maps.

Def. $f \in \Pi_{or}(A,B)$ is an ismorphism if $\exists g \in \Pi_{or}(B,A)$ sto $g \circ f = id_A$ and $f \circ g = id_B$. (the inverse isomorphism)

Check: • The invest of f, if it exists, is unique...
• id is an isomorphism; f iso $\Rightarrow f^{-1}$ iso; f, g isos $\Rightarrow g \cdot f$ isos.

~> The automorphisms of A Aw(A) = firomorphisms A → A} < Nor(A, A), form a group.

· Isomorphic abjects have isomorphic automorphism groups: an isomorphism $f \in Mor(A,B)$ determines an isom. of groups $c_f: AW(A) \rightarrow Aut(B)$, $g \mapsto fog_0 f^{-1}$.

 E_{K} : 1) In Sets, A finit set with n elements => $Aw(A) = \{bijediano A \rightarrow A\} \cong \mathbb{G}_n$ 2) V = n.din! vector space/k: => $Aw(V) \cong GL_n(k)$ involved non medico

* Products and shows in categories:

· Given objects A,B in a category E, a product A&B is an object Z of E and a par of maps Ti : Z > A, Ti : Z > B &. VTE ob C, VIE Mor(T, A), f2 & Mor(T, B), $\exists ! \text{ (unique)} \ \varphi \in Mor(T, Z) \text{ st. } \pi_1 \circ \varphi = f_1 \text{ and } \pi_2 \circ \varphi = f_2 \cdot f_1 \int_{\exists z}^{z} \varphi \cdot f_2 \cdot f_2 \cdot f_3 \cdot$ \underline{Ex} . in Sets, $\overline{z} = A \times B$ would Cartesian product $A \leftarrow \overline{\eta}_1 \xrightarrow{\overline{z}} B$ given fi; T-1A, fz; T-1B, def. 4, T-1 AxB $t \mapsto (f_1(t), f_2(t))$

Same in groups, Vector

· A sum of objects A and B is an object Z of & + maps in: A -> Z, i2: B -> Z st. VTE ob C, Vf, E Mor (A,T), Vf, E Mor (B,T), fi Tyiz B 3, 4 (Mor(Z,T) sh. 4 0 4=f, & 4 0 12=f2.

Ex: in Sets, this is Z=AUB disjoint union; define φ : Z = T $\Rightarrow f_1(x)$ if $x \in A$ $f_2(x)$ if $x \in B$.

in Vector, it's Z= ABB (so ... sun = product!)

with i, i2 = incluion of A as ABOCZ B OBBCZ define y: Z - T $(a,b) \mapsto f_1(a) + f_2(b).$

et ..

* Functors:

Def: (C,D categories. A (covariant) functor F; C -> D is an acignned · to each object X in C, an object FOX) in D. · to each morphism $f \in Nor_{\mathbb{C}}(X,Y)$, a morphism $F(f) \in Mor_{\mathbb{D}}(F(X),F(Y))$ st. 1) $F(id_{x}) = id_{F(x)}$

 $2) F(g \circ f) = F(g) \circ F(f)$

Ex: 1) forgotal functor taking a group, a top. space,... to he underlying set.

- 2) on vector spaces, given a vect space V, F. W > Hom(V,W)

 if f: W > W' is linear, then induced map Hom(V, W) = Hom(V,W)

 This gives a functor Vector Vector (denoted Hom(V,)) a > foa.
- 3) Complexitication, Vector Vector: on objects, V -> VC, on morphisms & -> Complexitication, Vector -> Vector on objects, V -> VC, on morphisms & -> Complexitication, vector of scendove.
- 3) Sets -> Groups $X \mapsto \frac{\text{free group generated by } X \cdot \text{Eg. } F(\{a,b\}) = \langle a,b \rangle \text{ free group on } 2 \text{ generators.}$
- A contravariant functor = same except direction of morphisms is reversed: $f \in Mor_{c}(X,Y) \longmapsto F(f) \in Mor_{D}(F(Y), F(X)) ; F(gof) = F(f) \circ F(g).$ Ex. on Vector, $V \mapsto V^{*}$ and (see HW5).