U.S. Parent Application No. 09/823,196

Please amend the claims to read as follows:

1. (currently amended) A CVD precursor composition for forming a thin film dielectric on a substrate, such precursor composition including at least one metalloamide source reagent compound of the having a formula:

$M(NR^{\dagger}R^{2})_{*}M(NR_{2})_{*}(NR'_{2})_{*}$

wherein M is selected from the group consisting of: Z_{F} , Hf, Y, La, Lanthanide series elements, Ta, Ti, and Al; N is nitrogen each of R^{1} and R^{2} R and R is same or different and is independently selected from the group consisting of H, aryl, perfluoroaryl, C_{1} - C_{8} alkyl, C_{1} - C_{8} perfluoroalkyl, and alkylsilyl; and x is from 2 1 to 5; y is from 1 to 5; and x+y is equal to the oxidation state of metal M. with the provise that at least two of x are different.

- 2. (previously amended) The CVD precursor composition according to claim 1, wherein at least one of x is NMe₂.
- 3. (previously amended) The CVD precursor composition according to claim 1, wherein at least one of x is NEt₂.
- 4. (canceled)
- 5. (original) The CVD precursor composition according to claim 1, wherein M is Hf.
- 8. (original) The CVD precursor composition according to claim 1, wherein the precursor composition further comprises a solvent medium selected from the group consisting of: ethers, glymes, tetraglymes, amines, polyamines, alcohols, glycols, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, cyclic ethers and combinations of two or more of the foregoing.
- 9. (currently amended) The CVD precursor composition according to claim 4-5, wherein the precursor composition further comprises a solvent medium selected from the group consisting of: ethers, glymes, tetraglymes, amines, polyamines, alcohols, glycols, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, cyclic ethers and combinations of two or more of the foregoing.

10. (previously amended) The CVD precursor composition according to claim 8, wherein the solvent is octane.

Cork

- 11. (original) The CVD precursor composition according to claim 1, wherein the metalloamide source reagent compound is injected by liquid delivery into a chemical vapor deposition chamber.
- 12. (original) The CVD precursor composition according to claim 1, wherein the metalloamide source reagent compounds is delivered by bubbler into a chemical vapor deposition chamber.
- 16. (original) The CVD precursor composition according to claim 1, wherein the precursor composition comprises multiple metalloamide source reagent compounds.
- 37. (currently amended) A CVD precursor composition for forming a thin film dielectric on a substrate, such precursor composition including a vapor source reagent mixture including a metalloamide source reagent compound of the having a formula:

$M(NR^4R^2)_x M(NR_2)_x(NR'_2)_y$

wherein M is selected from the group consisting of: $Z_{\overline{+}}$, Hf, Y, La, Lanthanide series elements, Ta, $T_{\overline{+}}$, and Al; N is nitrogen each of R^{1} and R^{2} R and R is same or different and is independently selected from the group consisting of H, aryl, perfluoroaryl, C_{1} - C_{8} alkyl, C_{1} - C_{8} perfluoroalkyl, and alkylsilyl; and x is from 2 1 to 5; y is from 1 to 5; and x+y is equal to the oxidation state of metal M, with the proviso that at least two of x are different.

86. (previously added, currently amended) A CVD precursor composition for forming a thin film dielectric on a substrate, such precursor composition including a metalloamide source reagent compound selected from the group consisting of: Zr(NMe₂)₂(NPr₂)₂, and Zr(NEt₂)₂(NPr₂)₂.