

 Министерство
 науки
 и
 высшего
 образования
 Российской

 Федеральное
 государственное
 бюджетное

 «Московский
 государственный
 технический

 университет именты надамительный
 технический

 (нацынальный
 иследовательскы

 университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления КАФЕДРА Теоретическая информатика и компьютерные технологии

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА <u>К КУРСОВОЙ РАБОТЕ</u> <u>ПО КУРСУ БАЗЫ ДАННЫХ</u> <u>НА ТЕМУ:</u>

База данных стоматологической клиники

Студент		Ионов Т.Р.
	подпись, дата	фамилия, и.о.
Научный руководитель —		Вишняков И.Э.
Tany mana py no bodini wib —	подпись, дата	фамилия, и.о.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1. Изучение предметной области	5
2. Разработка базы данных и приложения	6
2.1 Разработка модели "сущность-связь"	6
2.2 Разработка реляционной модели	7
2.3 Таблицы сущностей	11
2.4 Обоснование правил связи сущностей	14
3. Реализация базы данных и приложения	18
3.1 Реализация интерфейса	18
3.2 Реализация запросов к базе данных	23
4. Тестирование	26
ЗАКЛЮЧЕНИЕ	29
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	30

ВВЕДЕНИЕ

Сфера здравоохранения является ключевой в любом современном обществе. Вследствие противоестественного образа жизни, человек встречается с разного рода проблемами со здоровьем. В частности, мягкая пища с большим содержанием сахара приводит к развитию осложнений в полости рта. Оказание качественной и квалифицированной медицинской помощи способно значительно улучшить качество жизни.

Государственные учреждения не способны обеспечить все потребности пациентов. Частные клиники могут предоставить индивидуальное отношение, гибкий график и более открыты к инновациям. Частный сектор, помимо всего прочего, предоставляет возможности карьерного роста и создание личного бренда врача.

В медицинской сфере существует колоссальное количество детальных данных, которые необходимо хранить, обрабатывать и предоставлять с разным уровнем систематизации. С исследовательской точки зрения, это позволяет определить тренд в причинах визита, улучшения или ухудшения здоровья в определенных слоях населения. С точки бизнес-логики, анализ данных позволяет определить выгодные маршруты развития, прозрачность денежного оборота и понятное представление бизнес-процессов.

Целью данной работы является разработка базы данных стоматологической клиники для хранения сотрудников с их рабочим расписанием, клиентов вместе с медицинскими данными, приемов врача и каждой проведенной процедуры и приложения, предоставляющего доступ к данным через понятный интерфейс.

С учетом бизнес-составляющей, требуется разработать приложение, которое принимает информацию о посещении пациентов врача, а также списка процедур, которые были проведены. С учетом бизнес-составляющей – требуется разработать понятный интерфейс для расчета заработной платы сотрудника,

основываясь на его специализации, расписании и сумме от проведенных приемов.

Для выполнения задач необходимо:

- Разработать модель "сущность-связь";
- Разработать и реализовать реляционную базу данных;
- Создать оконное приложения для ввода и вывода данных;
- Провести тесты системы.

1. Изучение предметной области

Частная медицинская клиника, в целом, состоит из нескольких кабинетов приема, состава врачей разных специальностей, медсестер, администратора.

Клиенты медицинской клиники представляются и как личность, и как обезличенная медицинская карта, храня все необходимые сведения о здоровье.

Управлять частным бизнесом – непростая задача, особенно, если речь идет о человеческом здоровье. Одна из ключевых задач бизнеса – автоматизация процессов. Помимо этого, для сотрудников важна прозрачность процессов формирования заработной платы, поэтому необходимо хранить и уметь предоставлять информацию в понятном виде.

В представлении пациента достаточно хранить данные о его ФИО и номере телефона, все медицинские сведения должны хранится обезличено и независимо.

Поскольку сотрудники клиники работают по сменам, необходимо удобное внесение информации в формате даты и временных промежутков.

Помимо смены, один врач принимает одного пациента в указанном кабинете в указанное время. При необходимости, выписывается рецепт. Посещение включает в себя набор процедур, которые характеризуются кодом в прейскуранте и кодом зуба, над котором процедура была проведена.

2. Разработка базы данных и приложения

2.1 Разработка модели "сущность-связь"

Модель "сущность-связь" — модель данных, позволяющая описывать концептуальные схемы предметной области. На основе требований и ограничений к базе данных, была создана модель сущность-связь (Рисунок 1).

Рисунок 1 - модель сущность-связь

2.2 Разработка реляционной модели

На основе данной модели "сущность-связь" необходимо разработать реляционную модель с помощью этапов:

- 1. Создание таблицы для каждой сущности:
 - 1.1. определение первичного ключа (возможно, суррогатного);
 - 1.2. определение ключей кандидатов;
 - 1.3. определение свойств каждого столбца:
 - 1.3.1. тип данных;
 - 1.3.2. возможность неопределенного значения;
 - 1.3.3. значение по умолчанию;
 - 1.3.4. ограничений на значения.
 - 1.4. проверка нормализации.
- 2. Создание связей с помощью внешних ключей:
 - 2.1. Между сильными сущностями (1:1, 1:N, N:M);
 - 2.2.Для идентификационно-зависимых сущностей;
 - 2.3. Для слабых сущностей;
 - 2.4. Для сущностей тип-подтип.
- 3. Обеспечение условий минимальной кардинальности.

После итераций проектирования, получается реляционная модель, представленная на рисунке 2.

Рисунок 2 - реляционная модель

В ходе преобразований, нормализации и осуществления связей получились 9 сущностей:

1. Stuff – сотрудник клиники.

Атрибуты:

- phone номер телефона;
- name имя сотрудника;
- surname фамилия сотрудника;
- job_id идентификатор должности;
- license лицензия медицинского работника;
- interest_rate процент за выполненную операцию;
- 2. Qualification квалификация сотрудника (врача).

Атрибуты:

- stuff_id идентификатор сотрудника;
- specialization код специализации;
- organization организация, выдавшая диплом;
- date дата вручения диплома.
- 3. Job профессия.

Атрибуты:

- job_name наименование должности;
- daily_salary плата за смену.
- 4. Stuff workdays рабочее расписание.

Атрибуты:

- stuff_id идентификатор сотрудника;
- date рабочий день.
- 5. Patient клиент клиники.

Атрибуты:

- name имя клиента;
- surname фамилия клиента;
- phone номер телефона клиента.
- 6. Medical card медицинская карта пациента клиники;

Атрибуты:

- sex пол;
- blood_type группа крови;

- birth_date дата рождения;
- allergy аллергия на препараты;
- diseases заболевания;
- medicines принимаемые препараты.

7. Visit – посещение врача клиентом.

Атрибуты:

- patient_id идентификатор пациента;
- doctor_id идентификатор врача;
- date дата приема;
- time время начала приема;
- room кабинет приема;
- receipt рецепт.

8. Treatment

Атрибуты:

- visit_id идентификатор приема;
- code код операции;
- location код расположения зуба;
- quantity количество оказаний услуги.

9. Price list

Атрибуты:

- name наименовании позиции;
- price цена.

2.3 Таблицы сущностей

Ниже представлены таблицы для каждой сущности.

Таблица 2.3.1 – Stuff

Поле	Тип	Ключ	Неопределенное значение	Дополнительно
id	int	Первичный	Нет	Суррогатный, уникальный
name	varchar(50)	Нет	Нет	
surname	varchar(50)	Нет	Нет	
phone	varchar(15)	Альтернативный	Нет	Уникальный
job_id	int	Нет	Нет	
license	varchar(50)	Нет	Да	Уникальный
phone	varchar(15)	Альтернативный	Нет	Уникальный
interest_rate	real	Нет	Нет	

Таблица 2.3.2 – Qualification

Поле	Тип	Ключ	Неопределенное значение	Дополнительно
id	int	Первичный	Нет	Суррогатный,
Id	Int			Уникальный
stuff_id	int	Внешний	Нет	
specialization	smallint	Нет	Нет	
organization	varchar(100)	Нет	Нет	
date	date	Нет	Да	

Таблица 2.3.3 – Job

Поле	Тип	Ключ	Неопределенное значение	Дополнительно
id	int	Первичный	Нет	Суррогатный, Уникальный
job_name	varchar(100)	Альтернативный	Нет	Уникальный
daily_salary	numeric	Нет	Нет	

Таблица 2.3.4 – Patient

Поле	Тип	Ключ	Неопределенное значение	Дополнительно
id	int	Первичный, внешний	Нет	Суррогатный, уникальный
name	varchar(50)	Нет	Нет	
surname	varchar(50)	Нет	Нет	
phone	varchar(15)	Альтернативный	Нет	Уникальный

Таблица 2.3.5 – Medical card

Поле	Тип	Ключ	Неопределенное значение	Дополнительно
id	Int	Первичный	Нет	Суррогатный, уникальный
name	Varchar(50)	Нет	Нет	
surname	Varchar(50)	Нет	Нет	
phone	Varchar(15)	Альтернативный	Нет	Уникальный

Таблица 2.2.6 – Treatment

Поле	Тип	Ключ	Неопределенное значение	Дополнительно
id	int	Первичный	Нет	Суррогатный, уникальный
visit_id	int	Внешний	Нет	
code	int	Внешний	Нет	
location	smallint	Нет	Да	
quantity	smallint	Нет	Нет	

Таблица 2.2.7 – Stuff workdays

Поле	Тип	Ключ	Неопределенное значение	Дополнительно
id	int	Первичный	Нет	Суррогатный, уникальный
stuff_id	int	Внешний	Нет	
date	date	Нет	Нет	

Таблица 2.2.8 – Price list

Поле	Тип	Ключ	Неопределенное значение	Дополнительно
id	int	Первичный	Нет	Суррогатный, уникальный
name	varchar(255)	Альтернативный	Нет	Уникальный
price	numeric	Нет	Нет	

Таблица 2.3.9 – Visit

Поле	Тип	Ключ	Неопределенное значение	Дополнительно
id	int	Первичный	Нет	Суррогатный, уникальный
patient_id	int	Внешний	Нет	
doctor_id	int	Внешний	Нет	
date	date	Нет	Нет	
time	time	Нет	Нет	
room	smallint	Нет	Нет	
receipt	text	Нет	Да	

2.4 Обоснование правил связи сущностей

Свя	3Ь	Кардинальность		
Родитель	Потомок	тип	Макс.	Мин.
Stuff	Qualification	Идентифицирующая	1:N	М-О
Job	Stuff	Идентифицирующая	1:N	М-О
Stuff	Stuff Workdays	Идентифицирующая	1:N	М-О
Patient	Medical card	Идентифицирующая	1:1	M-M
Stuff	Visit	Идентифицирующая	1:N	М-О
Patient	Visit	Идентифицирующая	1:N	М-О
Visit	Treatment	Идентифицирующая	1:N	M-M
Price list	Treatment	Идентифицирующая	1:N	M-O

Таблица 2.4.1 – описание связей между сущностями

В следующих таблицах приведены действия для ограничения минимальной кардинальности.

Идентифицирующая связь Stuff – Qualification 1:N, M-O:

Таблица 2.4.2 - Stuff к Qualification

	Действие на Stuff	Действие на Qualification
	(родитель)	(потомок)
Вставка	Ничего	Подбор родительской записи
Изменение ключа или внешнего ключа	Каскадное обновление	Запрещено
Удаление	Запрещено	Разрешено

Таблица 2.4.3 - Job к Stuff

	Действие на Job (родитель)	Действие на Stuff (потомок)
Вставка	Ничего	Подбор родительской записи
Изменение ключа или внешнего ключа	Каскадное обновление	Запрещено
Удаление	Запрещено	Запрещено

Таблица 2.4.4 - Stuff к Stuff workdays

	Действие на Stuff	Действие на Stuff workdays
	(родитель)	(потомок)
Вставка	Ничего	Подбор родительской записи
Изменение ключа или	Каскадное обновление	Запрещено
внешнего ключа	таскадное обновление	запрещено
Удаление	Запрещено	Разрешено

Таблица 2.4.5 - Patient к Medical card

	Действие на Patient	Действие на Medical card
	(родитель)	(потомок)
Вставка	Ничего	Подбор родительской записи
Изменение ключа или	Каскадное обновление	Запрещено
внешнего ключа	таскадное обновление	Зипрещено
Удаление	Запрещено	Запрещено

Таблица 2.4.6 - Stuff к Visit

	Действие на Stuff	Действие на Visit (потомок)
	(родитель)	
Вставка	Ничего	Подбор родительской записи
Изменение ключа или	Каскадное обновление	Запрещено
внешнего ключа	таскадное обновнение	запрещено
Удаление	Запрещено	Запрещено

Таблица 2.4.7 - Patient к Visit

	Действие на Patient	Действие на Visit (потомок)
	(родитель)	
Вставка	Ничего	Подбор родительской записи
Изменение ключа или	Каскадное обновление	Запрещено
внешнего ключа	таскадное обновнение	запрещено
Удаление	Запрещено	Запрещено

Таблица 2.4.8 - Visit к Treatment

	Действие на Visit	Действие на Treatment
	(родитель)	(потомок)
Вставка	Ничего	Подбор родительской записи
Изменение ключа или внешнего ключа	Каскадное обновление	Запрещено
Удаление	Запрещено	Запрещено

Таблица 2.4.9 - Visit к Treatment

	Действие на Visit	Действие на Treatment
	(родитель)	(потомок)
Вставка	Ничего	Подбор родительской записи
Изменение ключа или	Каскадное обновление	Запрещено
внешнего ключа	каскадное обновление	эштрещено
Удаление	Запрещено	Запрещено

3. Реализация базы данных и приложения

Для создания базы данных была выбрана система управления реляционными базами данных с открытым исходным кодом — PostgreSQL [1]. Данная СУБД поддерживает запросы SQL (реляционные) и JSON (нереляционные). PostgreSQL возможно расширить с помощью собственных типов данных, индексов и функциональных языков.

Сформируем основные требования к разрабатываемому приложению:

- возможность простого перехода между страницами;
- удобные поля для ввода даты и времени приема;
- удобный поиск по врачам, пациентам и процедурам в виде списка;
- кросс-платформенность;

Для разработки приложения был выбран язык Python 3.7.10 [2] с использованием библиотек psycopg2 [3], tkinter [4] и tkcalendar [5]. Python имеет простой синтаксис и большую общественную поддержку, что позволяет ускорить разработки приложения. Psycopg2 – интерфейс взаимодействия языка Python и PostgreSQL, позволяющий безопасно работать с многопоточными приложениям. Тkinter — кросс-платформенная событийно-ориентированная графическая библиотека на основе средств Тk, предназначенная для организации диалогов с помощью оконного графического интерфейса. TkCalendar — модуль, предоставляющий виджеты ввода даты для Tkinter.

3.1 Реализация интерфейса

На листинге 1 представлен класс Арр приложения с методом switch_frame, принимающий любой объект Frame из модуля tkinter и создающий новый Frame, удаляя предыдущий. На рисунке 3 изображена главная страница приложения.

```
class App(tk.Tk):
    def init (self, *args, **kwargs):
        super(). init (*args, **kwargs)
        self. frame = None
        self.title font = tkfont.Font(family='Helvetica',
       size=18, weight="bold", slant="italic")
        self.eval("tk::PlaceWindow . center")
        self.geometry(f''\{W\}x\{H\}-\{W BIAS\}+0")
        self.configure(background=BG)
        self.focus()
        self.switch frame(MainPage)
    def switch frame(self, frame class):
        new frame = frame class(self)
        if self. frame is not None:
            self. frame.destroy()
        self. frame = new frame
        self. frame.pack propagate(0)
        self. frame.pack()
```

Листинг 1 – класс приложения

На листинге 2 представлен класс реализации Frame из модуля tkinter на примере главного меню (рисунок 3) приложения с двумя кнопками: перейти к калькулятору зарплат и к меню внесения нового визита.

```
class MainPage(tk.Frame):
   def __init__(self, master):
       tk.Frame.__init__(self, master)
       self.master = master
       label = tk.Label(self, text='Главная страница', bg=LBL BG)
       label.grid(row=0, column=2, pady=30, padx=30)
       calc button = tk.Button(
           self, text='калькулятор зарплат',
           bg=BG, background=BG,
           command=lambda: self.master.switch frame(CalcPage),
           highlightbackground=BTN BG, height=3,
       calc button.grid(row=1, column=1, padx=30, pady=30)
       insert visit button = tk.Button(
           self, text='внести визит',
           bg=BG, background=BG,
           command=lambda: self.master.switch frame(InsertVisitPage),
           highlightbackground=BTN BG, height=3,
       insert visit button.grid(row=1, column=3, padx=30, pady=30)
                         Листинг 2 – класс главной страницы
```


Рисунок 3 – главное меню приложения

Страница расчета зарплат (рисунок 4) реализована аналогично главной с добавлением форм ввода данных.

Рисунок 4 – страница расчета заработной платы

Выбор сотрудника представлен в виде выпадающего списка с именами и должностями (рисунок 5) и реализован с помощью OptionMenu (листинг 3).

```
def set drop menu(self):
   stuff = get table(cls=Stuff)
   job = get table(cls=Job)
   names = [s.get name(job) for s in stuff.values()]
   name to id = dict(zip(names, stuff.keys()))
   clicked = StringVar(self)
   clicked.set('выбор сотрудника')
   def on select(choice):
       text = clicked.get()
       name = text
       self.stuff id = int(name to id.get(name))
        st = stuff.get(self.stuff id)
        self.salary = job[st.job_id].daily_salary
        text = f'сотрудник: {name}\ncмeнa: {self.salary}'
        if st.interest rate != 0:
            self.interest rate = st.interest rate
            text += f', {round(self.interest rate*100, 2)}%'
        label.config(text=text)
   drop = OptionMenu(self, clicked, *names, command=on select)
   drop.grid(row=1, column=1, padx=10, pady=40)
   label = Label(self, text=' ')
   label.grid(row=2, column=1, padx=10, pady=40)
```

Листинг 3 – реализация выпадающего меню с сотрудниками

Рисунок 5 – выпадающее окно сотрудников

Внесение начальный и конечной даты для расчета заработной платы реализуется с помощью DataEnrty из модуля TkCalendar, позволяющего вводить дату как в текстовом формате, так и с помощью выпадающего календаря (листинг 4) и изображен на рисунке 6.

Листинг 4 – ввод даты

Рисунок 6 – ввод даты

Выпадающие списки сотрудников, пациентов и процедур реализованы аналогично листингу 3.

Сообщения об ошибках внесения реализованы с помощью всплывающих окон messagebox (рисунок 7), базовая проверка представлена на листинге 5.

Листинг 5 – базовая проверка внесения визита

Рисунок 7 – пример всплывающего окна с ошибкой

3.2 Реализация запросов к базе данных

На листинге 6 изображено подключение к базе данных с помощью языка Python и библиотеки psycopg2.

```
config = {
    'host': 'localhost',
    'user': 'postgres',
    'password': '123',
    'database': 'clinic'
}
try:
    conn = psycopg2.connect(**config)
except Exception as ex:
    print(f'Cannot connect: {ex}')
```

Листинг 6 – подключение к базе данных

Классы модели данных наследуются от обобщенного класса Entity, имеющего методы get_data для получения словаря из полей для генерации строки sql.

На листинге 7 представлена функция get_table, позволяющая получить список всех сущностей таблицы в ООП представлении из базы данных, передав соединение и cls — класс, полностью соответствующий табличному представлению.

```
def get_table(cls, conn=get_connection()):
    table name = cls. name .lower()
   query = f'select * from {table name}'
        with conn.cursor() as cur:
            cur.execute(query)
            conn.commit()
            rows = cur.fetchall()
            entities = [cls(*r) for r in rows]
            table = dict()
            for e in entities:
                table[e.id] = e
            return table
   except Exception as ex:
        conn.rollback()
        print(f"Exeption select: {ex} for table {table name}")
        return None
```

Листинг $7 - функция get_table$

На листинге 8 представлена функция insert, позволяющая вставить любой экземпляр, реализующего базовый класс Entity за счет генерации строки SQL исходя из полей класса.

```
def insert(entity: Entity, conn=get connection()):
    table name = entity.__class__.__name__.lower()
    query = f'insert into {table name}'
    d = entity.get data()
    fields = d.keys()
    values = list(d.values())
    query += ' (' + ','.join(fields) + ')'
    query += ' values (' + ','.join(['%s'] * len(values)) + ');'
    trv:
       with conn.cursor() as cur:
           cur.execute(query, values)
            conn.commit()
        return 0
    except Exception as ex:
        conn.rollback()
       print(f"Exeption in insert: {ex} for table {table_name}+
              f"with entity {entity}")
        return ex
```

Листинг 8 – функция insert

Пример реализации триггера на вставку посещения изображен на листинге 9: только врач может вести прием и, более того, только в рабочие дни.

```
create or replace function check stuff()
    returns trigger
as $check stuff$
begin
    if not exists(select id, job id from stuff where id=new.doctor id and job id=3)
then
        raise exception 'Only doctor can hold a visit';
    end if;
    if new.date not in(
        select date from stuff workdays s where s.stuff id=new.doctor id
    ) then
        raise exception 'Doctor cannot hold a visit on a non-working day';
    end if;
   return new;
end:
$check stuff$ language plpgsql;
```

Листинг 9 – триггер на вставку посещения

4. Тестирование

В ходе тестирование необходимо проверить осуществление расчета заработной платы сотрудникам в соответствии с их должностью и расписанием, внесение визита в соответствии с рабочим расписанием.

Например, введем в базу данных врача Арину Жук с процентной ставкой 25%, и ее рабочие с помощью генерации серии дат начиная 2 июня и заканчивая 23 с интервалом в два дня (листинг 10). Ожидаемый результат, 11 смен по 3000 и суммарно за визиты 2000.

```
insert into job (id, daily salary, job name) values
   (3, 3000, 'врач');
commit;
insert into stuff (id, name, surname, job id, license, phone, interest rate) values
       (6, 'Арина', 'Жук', 3, 'DOC123-4124', '89617391777', 0.25);
commit:
insert into stuff workdays(stuff id, date)
select 6, * from generate series('2022-06-02'::date, '2022-06-23'::date, '2
day'::interval);
insert into price list values
   (1, 'анестезия', 1000),
    (2, 'удаление зуба', 2500),
    (3, 'лечение кариеса', 3000),
    (4, 'установка коронки', 5000);
commit;
insert into visit(patient id, doctor id, date) values
       (2, 6, '2022-06-02');
insert into treatment (visit id, code, quantity) values
   (2, 1, 2),
    (2, 3, 2);
commit;
```

Листинг 10 – ввод произвольных данных

На рисунке 8 изображено главное меню приложения, с помощью которого можно перейти на страницы калькулятора и внесения визита.

Рисунок 8 – главная страница

Перейдем в калькулятор зарплат, изображенный на рисунке 9. Получаем правильный результат

Рисунок 9 – страница калькулятора зарплат

Теперь внесем визит, на котором было вылечено 10 кариесов, с помощью страницы внесения через графический интерфейс (рисунок 10).

Рисунок 10 – страница внесения визита

Вернемся в калькулятор зарплат, чтобы убедится в изменение заработной платы с учетом нового визита (рисунок 11).

Рисунок 11 – изменения в заработной плате

ЗАКЛЮЧЕНИЕ

В итоге выполнения данной курсовой работы были разработаны реляционная модель и модель "сущность-связь" стоматологической клиники, создана база данных на СУБД PostgreSQL. Было разработано кроссплатформенное оконное приложение на основе событийно-ориентированной графической библиотеке с помощью средств Тк.

Приложение учитывает специфику вводимых и выводимых данных, производит базовую проверку вводимых значений и, в случае ошибки, выводит ее на экран.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Documentation PostgreSQL. URL: https://www.postgresql.org/docs/ (дата обращения 20.06.2022)
- 2. Documentation Python. URL: https://www.python.org/doc/ (дата обращения 20.06.2022)
- 3. Documentation Psycopg2. URL https://www.psycopg.org/docs/ (дата обращения 20.06.2022)
- 4. Documentation Tkinter. URL: https://docs.python.org/3/library/tkinter.html (дата обращения 20.06.2022)
- 5. Documentation TkCalendar. URL: https://github.com/j4321/tkcalendar#documentation (дата обращения 20.06.2022)