



# FCC PART 22, 74 and 90

# **TEST REPORT**

For

# **Hytera Communications Corporation Limited**

Hytera Tower, Hi-Tech Industrial Park North, 9108# Beihuan Road, Nanshan District, Shenzhen, 518057 China

FCC ID: YAMEPOLE100VHF

Report Type: Product Type:

Original Report Digital WANET Repeater

**Report Number:** RDG180525001-00B

**Report Date:** 2018-07-12

Rocky Kang

Reviewed By: RF Engineer

**Prepared By:** Bay Area Compliance Laboratories Corp. (Shenzhen)

6/F., West Wing, Third Phase of Wanli Industrial Building,

Rocky Kang

Shihua Road, Futian Free Trade Zone, Shenzhen,

Guangdong, China

Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

**Note:** This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA\* or any agency of the Federal Government. \* This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "\*".

# **TABLE OF CONTENTS**

| GENERAL INFORMATION                                                                                 |          |
|-----------------------------------------------------------------------------------------------------|----------|
| PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)                                                  |          |
| OBJECTIVE                                                                                           |          |
| RELATED SUBMITTAL(S)/GRANT(S)                                                                       |          |
| TEST METHODOLOGY                                                                                    |          |
| TEST FACILITY                                                                                       |          |
| SYSTEM TEST CONFIGURATION                                                                           |          |
| DESCRIPTION OF TEST CONFIGURATION.                                                                  |          |
| EUT Exercise Software                                                                               |          |
| SPECIAL ACCESSORIES.                                                                                |          |
| EQUIPMENT MODIFICATIONS                                                                             | 6        |
| SUPPORT EQUIPMENT LIST AND DETAILS                                                                  |          |
| EXTERNAL I/O CABLE                                                                                  | <u>(</u> |
| BLOCK DIAGRAM OF TEST SETUP                                                                         |          |
| SUMMARY OF TEST RESULTS                                                                             | 8        |
| TEST EQUIPMENT LIST                                                                                 | 9        |
| FCC §1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)                                   | 10       |
| APPLICABLE STANDARD                                                                                 | 10       |
| Result                                                                                              | 10       |
| FCC §2.1046 & § 22.727 & §74.461 & §90.205 - RF OUTPUT POWER                                        | 12       |
| APPLICABLE STANDARD                                                                                 | 12       |
| TEST PROCEDURE                                                                                      | 12       |
| TEST DATA                                                                                           | 12       |
| FCC §2.1047 & §74.463 & §90.207 - MODULATION CHARACTERISTIC                                         | 13       |
| APPLICABLE STANDARD                                                                                 |          |
| FCC §2.1049 & §22.357 & § 22.731 & §74.462 & §90.209 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK |          |
| APPLICABLE STANDARD                                                                                 |          |
| TEST PROCEDURE                                                                                      |          |
| TEST DATA                                                                                           |          |
| FCC §2.1051 & §22.861 & §74.462 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINA                   |          |
| APPLICABLE STANDARD                                                                                 |          |
| TEST PROCEDURE                                                                                      |          |
| TEST DATA                                                                                           | 22       |
| FCC §2.1053 & §22.861 & §74.462 & §90.210 - RADIATED SPURIOUS EMISSIONS                             | 20       |
| APPLICABLE STANDARD                                                                                 | 26       |
| TEST PROCEDURE                                                                                      |          |
| TEST DATA                                                                                           | 26       |
| FCC §2.1055 & § 22.355 & §74.464 & §90.213 - FREQUENCY STABILITY                                    | 28       |
| APPLICABLE STANDARD                                                                                 |          |
| TEST PROCEDURE                                                                                      | 28       |

| TEST DATA                                  | 28 |
|--------------------------------------------|----|
| FCC §90,214 - TRANSIENT FREQUENCY BEHAVIOR | 31 |
| APPLICABLE STANDARD                        |    |
| TEST PROCEDURE                             |    |
| TEST DATA                                  | 32 |

## **GENERAL INFORMATION**

#### **Product Description for Equipment under Test (EUT)**

The *Hytera Communications Corporation Limited's* product, model number: *E-pole100 VHF* (*FCC ID: YAMEPOLE100VHF*) in this report is a *Digital WANET Repeater*, which was measured approximately: 316 mm (L) x 223 mm (W) x 133 mm(H), rated input voltage: AC 100V - 240V or DC 13.5V-16.5V.

Report No.: RDG180525001-00B

\* All measurement and test data in this report was gathered from production sample serial number: 180525001 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2018-05-25.

#### **Objective**

This test report is prepared on behalf of *Hytera Communications Corporation Limited* in accordance with Part 2, and Part 22, 74, 90 of the Federal Communication Commissions rules.

#### Related Submittal(s)/Grant(s)

FCC Part 22H & 24E PCB submissions with FCC ID: YAMEPOLE100VHF.

#### **Test Methodology**

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part J as well as the following individual parts:

Part 22 – Public Mobile Service

Part 74 – Experimental Radio, Auxiliary, Special Broadcast and other Program Distributonal Service

Part 90 – Private Land Mobile Radio Service

Applicable Standards: TIA 603-D.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 22, 74 and 90 Page 4 of 33

## **Measurement Uncertainty**

| Parameter                    |            | Uncertainty |
|------------------------------|------------|-------------|
| Occupied Channel Bandwidth   |            | ±5%         |
| RF output power, conducted   |            | ±1.5dB      |
| Unwanted Emission, conducted |            | ±1.5dB      |
| Emissions,                   | Below 1GHz | ±4.70dB     |
| radiated                     | Above 1GHz | ±4.80dB     |
| Temperature                  |            | ±1 °C       |
| Supply                       | voltages   | ±0.4%       |

Report No.: RDG180525001-00B

# **Test Facility**

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 342867, the FCC Designation No. : CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

FCC Part 22, 74 and 90 Page 5 of 33

# **SYSTEM TEST CONFIGURATION**

## **Description of Test Configuration**

The system was configured for testing in a test mode which has been done in the factory.

Report No.: RDG180525001-00B

#### **EUT Exercise Software**

"Embeded-Toolkit" software was used.

## **Special Accessories**

No special accessory was used.

# **Equipment Modifications**

No modification was made to the EUT tested.

## **Support Equipment List and Details**

| Manufacturer | Description | Model | Serial Number |
|--------------|-------------|-------|---------------|
| N/A          | Load        | N/A   | N/A           |
| НР           | Laptop      | 516   | Gjh511644g    |

#### **External I/O Cable**

| Cable Description                       | Length (m) | From Port  | То              |
|-----------------------------------------|------------|------------|-----------------|
| Un-shielding Detachable RJ45 Cable      | 1.0        | Laptop     | Data port Cable |
| Un-shielding Detachable Data port Cable | 0.5        | RJ45 Cable | EUT Data Port   |
| Shielding Detachable RF Cable           | 0.5        | EUT        | Load            |

FCC Part 22, 74 and 90 Page 6 of 33

# **Block Diagram of Test Setup**



FCC Part 22, 74 and 90 Page 7 of 33

# **SUMMARY OF TEST RESULTS**

| FCC Rules                                                    | Description of Test                   | Results        |
|--------------------------------------------------------------|---------------------------------------|----------------|
| §1.1307(b), §2.1091                                          | Maximum Permissible exposure (MPE)    | Compliance     |
| §2.1046; § 22.727; §74.461;<br>§90.205                       | RF Output Power                       | Compliance     |
| §2.1047; §74.463;§90.207                                     | Modulation Characteristic             | Not Applicable |
| \$2.1049;\$22.357; \$22.731;<br>\$74.462; \$90.209; \$90.210 | Occupied Bandwidth & Emission Mask    | Compliance     |
| \$2.1051; \$22.861;<br>\$74.462;\$90.210                     | Spurious Emission at Antenna Terminal | Compliance     |
| §2.1053; §22.861;<br>§74.462;§90.210                         | Spurious Radiated Emissions           | Compliance     |
| §2.1055; § 22.355;<br>§74.464;§90.213                        | Frequency Stability                   | Compliance     |
| §90.214                                                      | Transient Frequency Behavior          | Compliance     |

Note: This device can support two types of power supply, pre-test with AC and DC mode which will not affect the test result, and the worst case was performed for AC power supply.

FCC Part 22, 74 and 90 Page 8 of 33

# TEST EQUIPMENT LIST

| Manufacturer          | Description                    | Model                     | Serial Number          | Calibration<br>Date | Calibration<br>Due Date |
|-----------------------|--------------------------------|---------------------------|------------------------|---------------------|-------------------------|
|                       | I                              | Radiated Emission         | Test                   |                     |                         |
| Sunol Sciences        | Horn Antenna                   | DRH-118                   | A052604                | 2017-12-22          | 2020-12-21              |
| Rohde & Schwarz       | Signal Analyzer                | FSEM                      | 845987/005             | 2018-04-24          | 2019-04-24              |
| Sunol Sciences        | Broadband Antenna              | JB1                       | A040904-1              | 2017-12-22          | 2020-12-21              |
| Mini                  | Pre-amplifier                  | ZVA-183-S+                | 5969001149             | 2018-05-21          | 2019-05-21              |
| HP                    | Amplifier                      | HP8447E                   | 1937A01046             | 2018-05-21          | 2018-11-19              |
| Anritsu               | Signal Generator               | 68369B                    | 004114                 | 2017-12-24          | 2018-12-24              |
| Rohde & Schwarz       | EMI Test Receiver              | ESCI                      | 101120                 | 2018-01-11          | 2019-01-11              |
| COM POWER             | Dipole Antenna                 | AD-100                    | 041000                 | NCR                 | NCR                     |
| A.H. System           | Horn Antenna                   | SAS-200/571               | 135                    | 2015-08-18          | 2018-08-17              |
| Ducommun technologies | RF Cable                       | UFA210A-1-<br>4724-30050U | MFR64369<br>223410-001 | 2018-05-21          | 2018-11-19              |
| Ducommun technologies | RF Cable                       | 104PEA                    | 218124002              | 2018-05-21          | 2018-11-19              |
| Ducommun technologies | RF Cable                       | RG-214                    | 1                      | 2018-05-21          | 2018-11-19              |
| Ducommun technologies | RF Cable                       | RG-214                    | 2                      | 2018-05-22          | 2018-11-22              |
| N/A                   | Band Pass Filter               | 225-1200MHz               | N/A                    | 2018-05-21          | 2018-11-19              |
|                       |                                | RF Conducted T            | `est                   |                     |                         |
| ESPEC                 | Temperature & Humidity Chamber | EL-10KA                   | 09107726               | 2017-12-21          | 2018-12-21              |
| Changjiang            | Contact Voltage<br>Regulator   | TDGC2-                    | N/A                    | NCR                 | NCR                     |
| TDK-Lambda            | DC Power Supply                | Z60-14-L-C                | N/A                    | NCR                 | NCR                     |
| Fluke                 | Digital Multimeter             | 287                       | 19000011               | 2018-04-09          | 2019-04-09              |
| Rohde & Schwarz       | SPECTRUM<br>ANALYZER           | FSU26                     | 200120                 | 2017-12-24          | 2018-12-24              |
| Rohde & Schwarz       | Signal Analyzer                | FSIQ26                    | 837405/023             | 2018-04-24          | 2019-04-24              |
| N/A                   | Band Pass Filter               | 225-1200MHz               | N/A                    | 2018-5-21           | 2018-11-19              |
| N/A                   | 30dB Attenuator                | 53-30-43                  | PG633                  | Each Time           |                         |

Report No.: RDG180525001-00B

FCC Part 22, 74 and 90 Page 9 of 33

<sup>\*</sup> Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Report No.: RDG180525001-00B

## **Applicable Standard**

According to subpart 1.1307 (b)(1), 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

**Limits for Occupational/Controlled Exposure** 

|                             | Limits for occupational/Controlled Exposure |                                     |                        |                                |  |  |
|-----------------------------|---------------------------------------------|-------------------------------------|------------------------|--------------------------------|--|--|
| Frequency<br>Range<br>(MHz) | Electric Field<br>Strength<br>(V/m)         | Magnetic Field<br>Strength<br>(A/m) | Power Density (mW/cm²) | Averaging<br>Time<br>(Minutes) |  |  |
| 0.3-1.34                    | 614                                         | 1.63                                | *(100)                 | 6                              |  |  |
| 1.34-30                     | 1842/f                                      | 4.89/f                              | $*(900/f^2)$           | 6                              |  |  |
| 30-300                      | 61.4                                        | 0.163                               | 1.0                    | 6                              |  |  |
| 300-1500                    | /                                           | /                                   | f/300                  | 6                              |  |  |
| 1500-100,000                | /                                           | /                                   | 5.0                    | 6                              |  |  |

f = frequency in MHz

\* = Plane-wave equivalent power density

#### Result

#### **Calculated Formulary:**

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm<sup>2</sup>)

P = power input to the antenna (in appropriate units, e.g., mW).
G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} \le 1$$

FCC Part 22, 74 and 90 Page 10 of 33

#### Worst case as below:

| Frequency<br>(MHz) | Antenna Gain |           | Tune up<br>Conducted Power |          | Tune up<br>Average<br>power | Evaluation<br>Distance | Power Density         | MPE Limit (mW/cm²) |
|--------------------|--------------|-----------|----------------------------|----------|-----------------------------|------------------------|-----------------------|--------------------|
|                    | (dBi)        | (numeric) | (dBm)                      | (mW)     | (mW)                        | (cm)                   | (mW/cm <sup>2</sup> ) |                    |
| 824-849            | 1.0          | 1.26      | 32.5                       | 1778.28  | 222.29                      | 50                     | 0.009                 | 2.75               |
| 1850-1910          | 3.5          | 2.24      | 31.0                       | 1258.93  | 157.37                      | 50                     | 0.011                 | 5.0                |
| 136-174            | 3.2          | 2.09      | 43.1                       | 20417.38 | 10208.69                    | 50                     | 0.679                 | 1.0                |

Note:

For GSM mode, the Time-base average power was consideration, Average power as below:

GSM850: 1778.28\*(1/8)mW=222.29mW. PCS1900: 1258.93\*(1/8)mW=157.37mW.

For DMR mode, the duty cycle of 50% was consideration, Average power as below: 20417.38\*50%mW=10208.69mW.

Simultaneous transmitting consideration: GSM850 and DMR, or PCS1900 and DMR

The ratio=MPE/limit $_{824MHz}$ +MPE/limit $_{DMR}$ =0.009/2.75+0.679/1.0=0.682<1.0.

The ratio=MPE/limit<sub>1850MHz</sub>+MPE/limit<sub>DMR</sub>=0.011/5.0+0.679/1.0=0.681 < 1.0.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 50 cm from nearby persons.

**Result: Compliance** 

# FCC §2.1046 & § 22.727 & §74.461 & §90.205 - RF OUTPUT POWER

Report No.: RDG180525001-00B

# **Applicable Standard**

FCC §2.1046, § 22.727, §74.461 and §90.205

#### **Test Procedure**

Conducted RF Output Power:

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Spectrum Analyzer Setting:

R B/W Video B/W 100 kHz 300 kHz

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 25 ℃      |  |
|--------------------|-----------|--|
| Relative Humidity: | 56 %      |  |
| ATM Pressure:      | 101.0 kPa |  |

The testing was performed by Kiki Kong on 2018-06-07.

Test Mode: Transmitting

**Test Result:** Compliance. Please refer to following table.

| Mode    | Frequency<br>Spacing<br>(kHz) | Frequency<br>(MHz) | Power<br>Level | Output<br>Power<br>(dBm) | Output<br>Power<br>(W) | Remark  |      |
|---------|-------------------------------|--------------------|----------------|--------------------------|------------------------|---------|------|
|         | 12.5                          | 136.0125           | High           | 42.86                    | 19.32                  | Federal |      |
|         | 12.3                          | 130.0123           | Low            | 37.06                    | 5.08                   | regeral |      |
|         | 12.5                          | 153.0125           | High           | 42.97                    | 19.82                  | PART 74 |      |
|         |                               | 133.0123           | Low            | 36.84                    | 4.83                   | FART /4 |      |
| Digital | 12.5                          | 155.7525           | High           | 43.01                    | 20.00                  | PART 90 |      |
| Digital |                               |                    | Low            | 36.88                    | 4.88                   | PART 90 |      |
|         | 12.5 158                      | 158.55             | High           | 43.07                    | 20.28                  | PART 22 |      |
|         |                               | 12.3               | 14.3           | 130.33                   | Low                    | 36.91   | 4.91 |
|         | 12.5                          | 12.5               | High           | 43.04                    | 20.14                  | Federal |      |
|         |                               | 173.9875           | Low            | 37.13                    | 5.16                   | regeral |      |

Rated high power is 20 W Rated low power is 5 W

FCC Part 22, 74 and 90 Page 12 of 33

Report No.: RDG180525001-00B

# FCC §2.1047 & §74.463 & §90.207 - MODULATION CHARACTERISTIC

# **Applicable Standard**

According to FCC  $\S$  2.1047(d), Part 22, 74, 90 there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

FCC Part 22, 74 and 90 Page 13 of 33

# FCC §2.1049 & §22.357 & § 22.731 & §74.462 & §90.209 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK

#### **Applicable Standard**

FCC §2.1049, §22.357, § 22.731, §74.462, §90.209 and §90.210

Emission Mask D - 12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

Report No.: RDG180525001-00B

- 1) For any frequency removed from the center of the authorized bandwidth  $f_0$  to 5.625 kHz removed from  $f_0$ , 0dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency ( $f_d$  in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 ( $f_d$  –2.88 kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency ( $f_d$  in kHz) of more than 12.5 kHz at least: At least  $50 + 10 \log (P) dB$  or 70 dB, whichever is the lesser attenuation.

FCC §22.357, Any authorized station in the Public Mobile Services may transmit emissions of any type(s) that comply with the applicable emission rule, i.e. §22.359, §22.861 or §22.917

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB
- (b) Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 30 kHz or more. In the 60 kHz bands immediately outside and adjacent to the authorized frequency range or channel, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e., 30 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

FCC §74.462, For emissions on frequencies above 25 MHz with authorized bandwidths up to 30 kHz, the emissions shall comply with the emission mask and transient frequency behavior requirements of §§90.210 and 90.214 of this chapter.

#### **Test Procedure**

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 100 Hz and the spectrum was recorded in the frequency band  $\pm 50$  kHz from the carrier frequency.

FCC Part 22, 74 and 90 Page 14 of 33

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 24~27 ℃         |
|--------------------|-----------------|
| Relative Humidity: | 50~57 %         |
| ATM Pressure:      | 100.9~101.0 kPa |

The testing was performed by Kiki Kong from 2018-06-07 to 2018-06-12.

Test mode: transimitting

| Modulation | Channel<br>Separation<br>(kHz) | Frequency (MHz) | Power<br>Level | 99% Occupied<br>Bandwidth<br>(kHz) | 26 dB Emissions<br>Bandwidth<br>(kHz) | Note    |
|------------|--------------------------------|-----------------|----------------|------------------------------------|---------------------------------------|---------|
| Digital    |                                | 153.0125        | High           | 7.292                              | 9.215                                 | DADT 74 |
|            | 12.5                           |                 | Low            | 7.131                              | 8.413                                 | PART 74 |
|            |                                | 155.7525        | High           | 7.452                              | 8.894                                 | DADT OO |
|            |                                |                 | Low            | 7.131                              | 9.615                                 | PART 90 |
|            |                                | 158.55          | High           | 7.372                              | 9.375                                 | DADT 22 |
|            |                                |                 | Low            | 7.292                              | 9.215                                 | PART 22 |

Report No.: RDG180525001-00B

Note: Emission designator is base on calculation instead of measurement.

Emission Designator Per CFR 47  $\S 2.201 \& \S 2.202 \&$ , Bn = 2M + 2D

#### For Digital Mode (Channel Spacing: 12.5 kHz)

Emission Designator 7K60F1D and 7K60F1E

The 99% energy rule (title 47CFR 2.1049) was used for digital mode. It basically states that 99% of the modulation energy falls within X kHz, in this case, 7.452 kHz. The emission mask was obtained from 47CFR 90.210(d). F1D and F1E portion of the designator indicates digital information.

Therefore, the entire designator for 12.5 kHz channel spacing digital mode is 7K60F1D and 7K60F1E.

FCC Part 22, 74 and 90 Page 15 of 33

#### **Digital Modulation:**

## Frequency 153.0125 MHz: 99% Occupied & 26 dB Bandwidth, High Power



Date: 12.JUN.2018 20:11:51

## Frequency 153.0125 MHz: 99% Occupied & 26 dB Bandwidth, Low Power



Date: 7.JUN.2018 11:54:32

FCC Part 22, 74 and 90 Page 16 of 33

## Frequency 153.025 MHz: Emission Mask, High Power, FCC Part 74.462



Date: 7.JUN.2018 13:17:56

## Frequency 153.025 MHz: Emission Mask, Low Power, FCC Part 74.462



Date: 7.JUN.2018 13:14:55

FCC Part 22, 74 and 90 Page 17 of 33

Frequency 155.7525 MHz: 99% Occupied & 26 dB Bandwidth, High Power



Date: 7.JUN.2018 11:47:09

## Frequency 155.7525 MHz: 99% Occupied & 26 dB Bandwidth, Low Power



Date: 7.JUN.2018 11:51:44

FCC Part 22, 74 and 90 Page 18 of 33

Frequency 155.7525 MHz: Emission Mask D, High Power



Date: 7.JUN.2018 13:02:19

Frequency 155.7525 MHz: Emission Mask D, Low Power



Date: 7.JUN.2018 13:05:51

FCC Part 22, 74 and 90 Page 19 of 33

## Frequency 158.55 MHz: 99% Occupied & 26 dB Bandwidth, High Power



Date: 7.JUN.2018 11:42:19

## Frequency 158.55 MHz: 99% Occupied & 26 dB Bandwidth, Low Power



Date: 7.JUN.2018 11:32:02

FCC Part 22, 74 and 90 Page 20 of 33

Frequency 158.55 MHz: Emission Mask, High Power, FCC part 22.359



Date: 7.JUN.2018 12:54:43

## Frequency 158.55 MHz: Emission Mask, Low Power, FCC part 22.359



Date: 7.JUN.2018 12:48:41

FCC Part 22, 74 and 90 Page 21 of 33

# FCC §2.1051 & §22.861 & §74.462 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Report No.: RDG180525001-00B

#### **Applicable Standard**

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) For any frequency removed from the center of the authorized bandwidth  $f_0$  to 5.625 kHz removed from  $f_0$ , 0 dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency ( $f_d$  in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 ( $f_d$  –2.88 kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency ( $f_d$  in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

#### **Test Procedure**

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100kHz for below 1GHz, and 1MHz for above 1GHz. Sufficient scans were taken to show any out of band emissions up to 10<sup>th</sup> harmonic.

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 26 ℃      |  |
|--------------------|-----------|--|
| Relative Humidity: | 53 %      |  |
| ATM Pressure:      | 101.0 kPa |  |

The testing was performed by Kiki Kong on 2018-06-07.

Test Mode: Transmitting, worst case for High power level, please refer to the following plots.

FCC Part 22, 74 and 90 Page 22 of 33

#### Report No.: RDG180525001-00B

## **Digital Modulation:**

## 30MHz – 1 GHz, 153.0125 MHz



Date: 7.JUN.2018 14:55:12

## 1 GHz - 2 GHz, 153.0125 MHz



Date: 7.JUN.2018 13:24:25

FCC Part 22, 74 and 90 Page 23 of 33

#### Report No.: RDG180525001-00B

## 30MHz - 1 GHz, 155.7525 MHz



Date: 7.JUN.2018 14:44:31

#### 1 GHz - 2 GHz, 155.7525 MHz



Date: 7.JUN.2018 14:45:42

FCC Part 22, 74 and 90 Page 24 of 33

# 30MHz – 1 GHz, 158.55 MHz

Report No.: RDG180525001-00B



Date: 7.JUN.2018 14:43:24

## 1 GHz - 2 GHz, 158.55 MHz



Date: 7.JUN.2018 14:42:11

FCC Part 22, 74 and 90 Page 25 of 33

# FCC §2.1053 & §22.861 & §74.462 & §90.210 - RADIATED SPURIOUS EMISSIONS

Report No.: RDG180525001-00B

#### **Applicable Standard**

FCC §2.1053, §22.861, §74.462 and §90.210

#### **Test Procedure**

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =10 1g (TXpwr in Watts/0.001)-the absolute level

Spurious attenuation limit in  $dB = 50+10 \text{ Log}_{10}$  (power out in Watts) for EUT with a 12.5 kHz channel bandwidth.

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log (P) dB$ 

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 26 ℃      |  |
|--------------------|-----------|--|
| Relative Humidity: | 51 %      |  |
| ATM Pressure:      | 101.0 kPa |  |

The testing was performed by Kiki Kong on 2018-07-02.

Test Mode: Transmitting, worst case for High power level.

FCC Part 22, 74 and 90 Page 26 of 33

30MHz - 2 GHz:

|                    | Dogeiran                      | Turn                     | Rx An      | tenna          |             | Substitut             | ed                      | Absolute                   |                |                |
|--------------------|-------------------------------|--------------------------|------------|----------------|-------------|-----------------------|-------------------------|----------------------------|----------------|----------------|
| Frequency<br>(MHz) | Receiver<br>Reading<br>(dBµV) | Table<br>Angle<br>Degree | Height (m) | Polar<br>(H/V) | Level (dBm) | Cable<br>Loss<br>(dB) | Antenna<br>Gain<br>(dB) | Absolute<br>Level<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) |
|                    | Digital 153.0125MHz, 12.5 kHz |                          |            |                |             |                       |                         |                            |                |                |
| 306.0250           | 32.83                         | 336                      | 2.2        | Н              | -70.0       | 0.36                  | 0.0                     | -70.36                     | -20            | 50.36          |
| 306.0250           | 37.32                         | 138                      | 1.5        | V              | -62.8       | 0.36                  | 0.0                     | -63.16                     | -20            | 43.16          |
| 459.0375           | 57.53                         | 75                       | 1.8        | Н              | -46.2       | 0.47                  | 0.0                     | -46.67                     | -20            | 26.67          |
| 459.0375           | 62.12                         | 214                      | 1.4        | V              | -37.1       | 0.47                  | 0.0                     | -37.57                     | -20            | 17.57          |
| 612.0500           | 45.88                         | 184                      | 2.3        | Н              | -53.0       | 0.57                  | 0.0                     | -53.57                     | -20            | 33.57          |
| 612.0500           | 49.23                         | 229                      | 2.5        | V              | -47.7       | 0.57                  | 0.0                     | -48.27                     | -20            | 28.27          |
| 1377.1125          | 43.86                         | 123                      | 2.0        | Н              | -64.9       | 1.60                  | 8.50                    | -58.00                     | -20            | 38.00          |
| 1377.1125          | 44.12                         | 10                       | 1.3        | V              | -64.9       | 1.60                  | 8.50                    | -58.00                     | -20            | 38.00          |
| 1530.1250          | 43.28                         | 63                       | 1.4        | Н              | -65.0       | 1.40                  | 8.70                    | -57.70                     | -20            | 37.70          |
| 1530.1250          | 43.95                         | 174                      | 1.8        | V              | -64.2       | 1.40                  | 8.70                    | -56.90                     | -20            | 36.90          |
|                    |                               |                          | D          | igital 155     | .7525MH     | z, 12.5 kH            | Z                       |                            |                |                |
| 311.5050           | 34.09                         | 220                      | 1.8        | Н              | -68.8       | 0.36                  | 0.0                     | -69.16                     | -20            | 49.16          |
| 311.5050           | 34.48                         | 286                      | 1.5        | V              | -65.7       | 0.36                  | 0.0                     | -66.06                     | -20            | 46.06          |
| 467.2575           | 54                            | 205                      | 2.4        | Н              | -49.9       | 0.47                  | 0.0                     | -50.37                     | -20            | 30.37          |
| 467.2575           | 60.04                         | 237                      | 2.2        | V              | -40.0       | 0.47                  | 0.0                     | -40.47                     | -20            | 20.47          |
| 623.0100           | 41.99                         | 231                      | 1.9        | Н              | -56.9       | 0.57                  | 0.0                     | -57.47                     | -20            | 37.47          |
| 623.0100           | 44.55                         | 126                      | 2.4        | V              | -52.4       | 0.57                  | 0.0                     | -52.97                     | -20            | 32.97          |
| 1401.7725          | 44.69                         | 195                      | 1.9        | Н              | -64.1       | 1.60                  | 8.50                    | -57.20                     | -20            | 37.20          |
| 1401.7725          | 43.87                         | 225                      | 1.1        | V              | -65.2       | 1.60                  | 8.50                    | -58.30                     | -20            | 38.30          |
| 1557.5250          | 42.56                         | 31                       | 2.5        | Н              | -65.8       | 1.40                  | 8.70                    | -58.50                     | -20            | 38.50          |
| 1557.5250          | 43.11                         | 36                       | 2.0        | V              | -65.0       | 1.40                  | 8.70                    | -57.70                     | -20            | 37.70          |
|                    |                               |                          | Ι          | Digital 15     | 8.55 MHz    | , 12.5 kHz            |                         |                            |                |                |
| 317.1000           | 35.12                         | 123                      | 2.1        | Н              | -67.7       | 0.38                  | 0.0                     | -68.08                     | -13            | 55.08          |
| 317.1000           | 40.21                         | 109                      | 1.7        | V              | -59.9       | 0.38                  | 0.0                     | -60.28                     | -13            | 47.28          |
| 475.6500           | 55.35                         | 237                      | 1.6        | Н              | -48.5       | 0.51                  | 0.0                     | -49.01                     | -13            | 36.01          |
| 475.6500           | 62.64                         | 13                       | 2.2        | V              | -37.8       | 0.51                  | 0.0                     | -38.31                     | -13            | 25.31          |
| 634.2000           | 41.59                         | 46                       | 1.5        | Н              | -58.6       | 0.59                  | 0.0                     | -59.19                     | -13            | 46.19          |
| 634.2000           | 41.63                         | 315                      | 2.4        | V              | -56.6       | 0.59                  | 0.0                     | -57.19                     | -13            | 44.19          |
| 1426.9500          | 43.85                         | 116                      | 1.5        | Н              | -64.9       | 1.60                  | 8.50                    | -58.00                     | -13            | 45.00          |
| 1426.9500          | 44.58                         | 209                      | 1.8        | V              | -64.5       | 1.60                  | 8.50                    | -57.60                     | -13            | 44.60          |
| 1585.5000          | 43.17                         | 239                      | 1.3        | Н              | -65.2       | 1.40                  | 8.70                    | -57.90                     | -13            | 44.90          |
| 1585.5000          | 43.89                         | 349                      | 1.8        | V              | -64.2       | 1.40                  | 8.70                    | -56.90                     | -13            | 43.90          |

#### **Note:**

Absolute Level = Substituted Level - Cable loss + Antenna Gain Margin = Limit- Absolute Level

FCC Part 22, 74 and 90

Report No.: RDG180525001-00B

# FCC §2.1055 & § 22.355 & §74.464 & §90.213 - FREQUENCY STABILITY

Report No.: RDG180525001-00B

#### **Applicable Standard**

FCC §2.1055, § 22.355, §74.464 and §90.213

#### **Test Procedure**

Frequency Stability vs. Temperature: The equipment under test was connected to an external AC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The power cable and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 26 ℃      |  |
|--------------------|-----------|--|
| Relative Humidity: | 56 %      |  |
| ATM Pressure:      | 101.0 kPa |  |

The testing was performed by Kiki Kong on 2018-07-06.

Test Mode: Transmitting

Note: The device is intended for fixed using.

FCC Part 22, 74 and 90 Page 28 of 33

For AC power supply:

For 12.5 kHz:

| Digital Modulation, Reference Frequency: 153.0125 MHz, Limit: ±2.5 ppm |                                     |                                     |                          |  |  |
|------------------------------------------------------------------------|-------------------------------------|-------------------------------------|--------------------------|--|--|
| Test En                                                                | vironment                           | Frequency Measure with Time Elapsed |                          |  |  |
| Temperature<br>(°C)                                                    | Voltage Supplied (V <sub>AC</sub> ) | Measured<br>Frequency<br>(MHz)      | Frequency Error<br>(ppm) |  |  |
|                                                                        | Frequency Stability                 | y versus Input Temper               | rature                   |  |  |
| 50                                                                     | 120                                 | 153.012414                          | -0.56                    |  |  |
| 40                                                                     | 120                                 | 153.012425                          | -0.49                    |  |  |
| 30                                                                     | 120                                 | 153.012436                          | -0.42                    |  |  |
| 20                                                                     | 120                                 | 153.012412                          | -0.58                    |  |  |
| 10                                                                     | 120                                 | 153.012436                          | -0.42                    |  |  |
| 0                                                                      | 120                                 | 153.012412                          | -0.58                    |  |  |
| -10                                                                    | 120                                 | 153.012420                          | -0.52                    |  |  |
| -20                                                                    | 120                                 | 153.012423                          | -0.50                    |  |  |
| -30                                                                    | 120                                 | 153.012412                          | -0.58                    |  |  |
| Frequency Stability versus Input Voltage                               |                                     |                                     |                          |  |  |
| 25                                                                     | 102                                 | 153.012412                          | -0.58                    |  |  |
|                                                                        | 138                                 | 153.012423                          | -0.50                    |  |  |

Report No.: RDG180525001-00B

| Digital Modulation, Reference Frequency: 155.7525 MHz, Limit: ±2.5 ppm |                                     |                                     |                          |  |  |
|------------------------------------------------------------------------|-------------------------------------|-------------------------------------|--------------------------|--|--|
| Test En                                                                | vironment                           | Frequency Measure with Time Elapsed |                          |  |  |
| Temperature<br>(℃)                                                     | Voltage Supplied (V <sub>AC</sub> ) | Measured<br>Frequency<br>(MHz)      | Frequency Error<br>(ppm) |  |  |
|                                                                        | Frequency Stability                 | y versus Input Temper               | ature                    |  |  |
| 50                                                                     | 120                                 | 155.752412                          | -0.56                    |  |  |
| 40                                                                     | 120                                 | 155.752436                          | -0.41                    |  |  |
| 30                                                                     | 120                                 | 155.752445                          | -0.35                    |  |  |
| 20                                                                     | 120                                 | 155.752410                          | -0.58                    |  |  |
| 10                                                                     | 120                                 | 155.752411                          | -0.57                    |  |  |
| 0                                                                      | 120                                 | 155.752412                          | -0.56                    |  |  |
| -10                                                                    | 120                                 | 155.752423                          | -0.49                    |  |  |
| -20                                                                    | 120                                 | 155.752442                          | -0.37                    |  |  |
| -30                                                                    | 120                                 | 155.752423                          | -0.49                    |  |  |
| Frequency Stability versus Input Voltage                               |                                     |                                     |                          |  |  |
| 25                                                                     | 102                                 | 155.752420                          | -0.51                    |  |  |
| 25                                                                     | 138                                 | 155.752436                          | -0.41                    |  |  |

FCC Part 22, 74 and 90 Page 29 of 33

| Digital Modulation, Reference Frequency: 158.55 MHz, Limit: ±5 ppm |                                     |                                     |                          |  |  |
|--------------------------------------------------------------------|-------------------------------------|-------------------------------------|--------------------------|--|--|
| Test En                                                            | vironment                           | Frequency Measure with Time Elapsed |                          |  |  |
| Temperature<br>(°C)                                                | Voltage Supplied (V <sub>AC</sub> ) | Measured<br>Frequency<br>(MHz)      | Frequency Error<br>(ppm) |  |  |
|                                                                    | Frequency Stability                 | y versus Input Temper               | rature                   |  |  |
| 50                                                                 | 120                                 | 158.549924                          | -0.48                    |  |  |
| 40                                                                 | 120                                 | 158.549911                          | -0.56                    |  |  |
| 30                                                                 | 120                                 | 158.549912                          | -0.56                    |  |  |
| 20                                                                 | 120                                 | 158.549920                          | -0.50                    |  |  |
| 10                                                                 | 120                                 | 158.549913                          | -0.55                    |  |  |
| 0                                                                  | 120                                 | 158.549910                          | -0.57                    |  |  |
| -10                                                                | 120                                 | 158.549921                          | -0.50                    |  |  |
| -20                                                                | 120                                 | 158.549920                          | -0.50                    |  |  |
| -30                                                                | 120                                 | 158.549923                          | -0.49                    |  |  |
| Frequency Stability versus Input Voltage                           |                                     |                                     |                          |  |  |
| 25                                                                 | 102                                 | 158.549921                          | -0.50                    |  |  |
|                                                                    | 138                                 | 158.549912                          | -0.56                    |  |  |

FCC Part 22, 74 and 90 Page 30 of 33

# FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR

#### **Applicable Standard**

Regulations: FCC §90.214

Test method: ANSI/TIA-603-D 2010, section 2.2.19.3

#### **Test Procedure**

a) Connect the EUT and test equipment as shown on the following block diagram.

b) Set the Spectrum Analyzer to measure FM deviation, and tune the RF frequency to the transmitter assigned frequency.

Report No.: RDG180525001-00B

- c) Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at  $\pm 12.5$  kHz deviation and set its output level to -100dBm.
- d) Turn on the transmitter.
- e) Supply sufficient attenuation via the RF attenuator to provide an input level to the Spectrum Analyzer that is 40 dB below the maximum allowed input power when the transmitter is operating at its rated power level. Note this power level on the Spectrum Analyzer as P<sub>0</sub>.
- f) Turn off the transmitter.
- g) Adjust the RF level of the signal generator to provide RF power equal to P<sub>0</sub>. This signal generator RF level shall be maintained throughout the rest of the measurement.
- h) Remove the attenuation 1, so the input power to the Spectrum Analyzer is increased by 30 dB when the transmitter is turned on.
- i) Adjust the vertical amplitude control of the spectrum analyzer to display the 1000 Hz at ±4 divisions vertically centered on the display. Set trigger mode of the Spectrum Analyzer to "Video", and tune the "trigger level" on suitable level. Then set the "tiger offset" to -10ms for turn on and -15ms for turn off.
- j) Turn on the transmitter and the transient wave will be captured on the screen of Spectrum Analyzer. Observe the stored display. The instant when the 1 kHz test signal is completely suppressed is considered to be t<sub>on</sub>. The trace should be maintained within the allowed divisions during the period t<sub>1</sub> and t<sub>2</sub>.
- k) Then turn off the transmitter, and another transient wave will be captured on the screen of Spectrum Analyzer. The trace should be maintained within the allowed divisions during the period t<sub>3</sub>.



FCC Part 22, 74 and 90 Page 31 of 33

## **Test Data**

#### **Environmental Conditions**

| Temperature:       | 26 ℃      |  |
|--------------------|-----------|--|
| Relative Humidity: | 54 %      |  |
| ATM Pressure:      | 101.1 kPa |  |

The testing was performed by Kiki Kong on 2018-06-11.

| Channel Separation (kHz) Transient Period (ms) |        | <b>Transient Frequency</b> | Result |
|------------------------------------------------|--------|----------------------------|--------|
|                                                | 5 (t1) | <+/-12.5 kHz               |        |
| 12.5                                           | 20(t2) | <+/-6.25 kHz               | Pass   |
|                                                | 5 (t3) | <+/-12.5 kHz               |        |

Report No.: RDG180525001-00B

Please refer to the following plots.

## Channel: 155.7525 MHz, 12.5 kHz

#### Turn on



FCC Part 22, 74 and 90 Page 32 of 33

## Turn off



\*\*\*\*\* END OF REPORT \*\*\*\*\*

FCC Part 22, 74 and 90 Page 33 of 33