Tutorial TidyML

Introduction

TidyML is a minimal library focused on providing all the essential tools for the workflow of a machine learning modelling process. It divides the whole process into 5 sequential steps:

- 1. Preprocessing
- 2. Model Building
- 3. Fine Tuning
- 4. Computing Performance Metrics
- 5. Sensitivity Analysis / Interpretable ML

TidyML can be downloaded from github using the devtools::install_github() function.

```
#install.packages("devtools")
#devtools::install_github("JMartinezGarcia/TidyML")
library(dplyr)
```

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

```
The following objects are masked from 'package:base': intersect, setdiff, setequal, union
```

library(TidyML)

Loading required package: tidyverse

```
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
v forcats
           1.0.0
                     v readr
                                 2.1.5
           3.5.2
v ggplot2
                     v stringr
                                 1.5.1
v lubridate 1.9.4
                                 3.2.1
                     v tibble
v purrr
           1.0.4
                     v tidyr
                                 1.3.1
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
                 masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
```

Internally, due to the sequential nature of the workflow, each step stores new information of the analysis on an object called "tidy_object". At any time during the process, the internal information of the analysis can be retrieved from the tidy_object using the "\$" operator. The implemented fields are:

- formula: Modelling formula
- task: task of analysis ("regression" or "classification")
- full data: Full data matrix
- train_data: Training data matrix
- validation_data: Validation data matrix (with Grid Search CV there is no validation data)
- *test_data*: Testing data matrix
- outcome_levels: Levels of target feature if task is classification
- transformer: Preprocessor object (recipe from recipe library)
- models names: Name of model
- models: Model before fitting (from parsnip library)
- hyperparameters: Hyperparameters for tuning
- metrics: Metric used for tuning

- tuner: Name of tuner
- $tuner_fit$: Results from tuner search
- workflow: Whole workflow (from workflow library)
- final_models: Final trained model (from parsnip library)
- fit_summary: Performance summary results
- predictions: Predictions of the model
- $\bullet \;\; sensitivity_analysis:$ Sensitivity analysis results

Binary Classification Example

We will start by creating a small binary classification dataset using the palmerpenguins data.

Create Dataset

```
df <- palmerpenguins::penguins %>%
  na.omit() %>%
  dplyr::select(-year) %>%
  dplyr::filter(species == "Adelie" | species == "Gentoo") %>%
  dplyr::mutate(species = droplevels(species))
```

Preprocessing Step

We will first preprocess the data set using the *preprocessing()* function. We will pass the dataset along with the formula for our problem. The preprocessing step requires to specify which columns are going to be preprocessed:

- Numerical columns will be normalized by z-score
- Categorical columns will be one-hot encoded

As well as the task to be performed: "regression" or "classification".

In our case, we will preprocess all numerical columns and all categorical columns using the **all** keyword (by default):

```
Registered S3 method overwritten by 'future':
method from
all.equal.connection parallelly
```

Model Definition

The function *build_model()* allows to create a ML model. Each model has it's own set of hyperparameters which we can choose to fine_tune by passing a range of values or to set to a specific value. By default each hyperparameter will be tuned within a given range. The The ML models implemented are:

1. Neural Network:

- 1. hidden_units: number of hidden_units
- 2. activation: activation functions ("relu", "sigmoid", "tanh")
- 3. learn_rate: learning rate

2. Support Vector Machine ("SVM"):

- $1. \ cost:$ regularization penalty
- 2. margin : margin of classifier
- 3. type: type of kernel ("linear", "rbf", "polynomial")
- 4. rbf siqma (rbf kernel only): rbf kernel sigma
- 5. degree (polynomial kernel only): polynomial kernel degree
- 6. scale_factor (polynomial kernel only): polynomial kernel scale factor

3. Random Forest:

- 1. mtry: Size of feature sampling
- 2. trees: Number of trees
- 3. $min \ n$: Minimum number of samples for splitting

4. XGBoost:

- 1. mtry: Size of feature sampling
- 2. trees: Number of trees
- 3. $min \ n$: Minimum number of samples for splitting
- 4. tree_depth: Maximum tree depth
- 5. learn rate: Learning rate
- 6. loss reduction: Loss reduction

Hyperparameter Tuning

Once the model has been defined, we can fine tune the hyperparameters using the *fine_tune()* function. There are 2 different hyperparameter tuning strategies:

- 1. Bayesian Optimization
- 2. Grid Search CV

Additionally, we will specify the metric used to select the best performing hyperparameters:

Regression	Classification	
rmse	accuracy	
mae	bal_accuracy	
$_{ m mpe}$	precision	
mape	recall	
ccc	specificity	
smape	sensitivity	
rpiq	kap	
rsq	f_{meas}	
	mcc	
	detection_prevalence	
	j_index	
	roc_auc	
	pr_auc	
	gain_capture	
	brier_class	
	roc_aunp	

We can visualize the tuning results by setting the *plot_results* parameter to TRUE:

- [1] "Commencing Tuning..."
- [1] "Tuning Finalized"
- [1] "########## Hyperparameter Tuning Results"

Grid Search CV Search Results

Results

Once we have found the best hyperparameter configuration we can compute the performance metrics of our model based on the test data using the **show_results()** function. There are different options for the results depending on whether we are doing a regression task or a classification task:

• Regression:

- summary
- $-\ scatter_residuals$
- $-\ scatter_predictions$
- $-\ residuals_dist$

• Classification:

- summary
- $-\ roc_curve$
- pr_curve
- $-\ gain_curve$
- $\ \mathit{lift}_\mathit{curve}$
- $-\ dist_by_class$
- $-\ reliability_plot$
- $\ confusion_matrix$

[1] "######### Showing Results"

Ассигасу	1.000
Balanced_Accuracy	1.000
Precision	1.000
Recall	1.000
Specificity	1.000
Sensitivity	1.000
Kappa	1.000
F1_score	1.000
MCC	1.000
J_index	1.000
Detection_Prevalence	0.507
AUC_ROC	1.000
AUC_PR	1.000
Gain Cantura	1 000

ROC Curve

Confusion Matrix

Sensitivity Analysis

We can also perform sensitivity analysis for our fitted model using the **sensitivity_analysis()** function. There are currently different methods implemented, some of these methods only work for particular models:

- 1. Permutation Feature Importance ("PFI")
- 2. SHAP
- 3. Integrated Gradients (Neural Network only)
- 4. Olden method (Neural Network only)
- 5. **TO DO**: SOBOL? Shapley Effects?:

```
tidy_object <- sensitivity_analysis(tidy_object, type = "SHAP")</pre>
```

Mean |SHAP| value

SHAP Value Distribution

-0.2

Regression Example

Create Dataset

We will again use the palmerpenguins dataset but choose a different formula for a regression task:

1 0.0 SHAP value 0.2

```
df <- palmerpenguins::penguins %>%
  na.omit() %>%
  dplyr::select(-year)
```

The Pipe (%>%) Operator

Due to the sequential nature of the processing, we can concatenate all the modelling steps using the %>% (pipe) operator without expliciting passing the tidy_object each time:

```
norm_num_vars = "all",
                encode_cat_vars = "all",
                task = "regression"
            ) %>%
 build_model(
                model_names = "Neural Network",
                hyperparameters =
                  list(
                      hidden_units = c(3,10),
                      activation = c("relu", "tanh")
            ) %>%
fine_tuning(
                tuner = "Bayesian Optimization",
                metrics = "rmse",
               plot_results = T
           ) %>%
show_results(
                summary = TRUE,
                scatter_residuals = TRUE,
                scatter_predictions = TRUE
            ) %>%
sensitivity_analysis(
               type = "Integrated Gradients"
            ) %>%
sensitivity_analysis(
               type = "Olden"
```

- [1] "Commencing Tuning..."
- ! No improvement for 5 iterations; returning current results.
- [1] "Tuning Finalized"
- [1] "########## Hyperparameter Tuning Results"

Bayesian Optimization Iteration Loss

Bayesian Optimization Iteration Results

Bayesian Optimization Search Results

- [1] "######### Best Hyperparameters Found:"
- # A tibble: 1 x 10

- # i 2 more variables: .config <chr>, .iter <int>
- [1] "######## Loss Curve"

Neural Network Loss Curve

[1] "######### Showing Results"

Metric	Value
RMSE	2.080
MAE	1.740
MAPE	3.990
MPE	0.175
CCC	0.910
SMAPE	3.990
RPIQ	4.510
RSQ	0.864

Mean |Integrated Gradient| value

Integrated Gradient Distribution

Integrated Gradient Swarm Plot

Olden Feature Importance

