

Probabilidade e Estatística Probabilidades

Prof. Fermín Alfredo Tang Montané

Experimento Aleatório

- Um experimento é dito aleatório quando satisfaz as seguintes condições:
 - Pode ser repetido indefinidamente;
 - É possível descrever todos os resultados do experimento, sem predizer com certeza qual ocorrerá;
 - Obedece à regularidade estatística, ou seja, quando o experimento for repetido um grande número de vezes, surgirá uma configuração definida.

Experimento Aleatório

Exemplos:

- Lançar um dado e observar a face superior;
- Lançar duas moedas e verificar as faces que o correm;
- Verificar o tempo de vida de uma lâmpada.

Espaço Amostral

Espaço Amostral

 \blacktriangleright Denotado por Ω , é o conjunto de todos os resultados possíveis de um experimento aleatório.

Exemplo:

- Considere o experimento aleatório sendo o lançamento de duas moedas não viciadas.
 - E = "Duas moedas não viciadas são lançadas"
 - Onde cara=k e coroa=c
 - $\Omega = \{ (k,k), (k,c), (c,k), (c,c) \}$

Tipos de Espaço Amostral

- ▶ I)Finito: tem um número finito de elementos.
 - Exemplo: Lançamento de um dado.
 - $\Omega = \{1,2,3,4,5,6\}$
- ▶ 2)Infinito enumerável ou contável: tem um número infinito de elementos enumeráveis.
 - Exemplo: Uma moeda é lançada sucessivas vezes até que ocorra uma coroa (c).
 - $\Omega = \{ c, kc, kkc, kkkc, kkkkc, ... \}$
- > 3)Infinito não enumerável ou não contável: tem um número infinito de elementos não enumeráveis.
 - Exemplo: Observar o tempo de vida de uma lâmpada.

Evento

- \blacktriangleright Define-se como evento a qualquer subconjunto de um espaço amostral Ω .
 - \blacktriangleright Considere como evento impossível, aquele que não pertence a Ω .
 - \blacktriangleright Como evento que sempre ocorre ao próprio espaço amostral Ω .

$$A \not\subset \Omega$$

$$\Omega\!\subseteq\!\Omega$$

Exemplo:

- No lançamento de um dado não viciado, considere que o evento A ocorre se obtida uma face com número par.
 - E = "um dado não viciado é lançado"
 - A ="uma face par é obtida"

 - $A = \{ 2, 4, 6 \}$

$$A \subset \Omega$$

- \blacktriangleright Sejam A e B dois eventos de um espaço amostral Ω .
- ▶ **A)** União: O evento A∪B ocorre quando:
 - ocorre somente o evento A;
 - ou ocorre somente o evento B;
 - ou ocorrem ambos os eventos A e B.

 \blacktriangleright Sejam A e B dois eventos de um espaço amostral Ω .

B) Interseção: O evento A∩B ocorre quando ambos os eventos A e B ocorrem.

 \blacktriangleright Sejam A e B dois eventos de um espaço amostral Ω .

C) Diferença: O evento A-B ocorre quando ocorre o evento A mas não ocorre o evento B.

 \blacktriangleright Sejam A e B dois eventos de um espaço amostral Ω .

D) Complemento: O evento A^C ocorre quando o evento A não ocorre.

- \blacktriangleright Sejam A e B dois eventos de um espaço amostral Ω .
- ▶ E) Mutuamente Excludentes: Dois eventos A e B são ditos mutuamente excludentes (exclusivos ou disjuntivos) quando não podem ocorrer simultaneamente. Se a interseção deles for o conjunto vazio.

Exemplo I:

- ► Sendo os eventos A = {1, 3, 4, 7, 8}, B = {1, 2, 5, 6, 7, 9} e Ω = N, determinar:
 - ▶ a) A U B
 - b) A ∩ B
 - b c) A − B
 - \rightarrow d) B A
 - ▶ e) A^c ∩ B

Exemplo 2:

- Numa pesquisa, das pessoas entrevistadas, 120 assistem a emissora A, 150 assistem a emissora B, 40 assistem as duas emissoras e 120 não assistem nenhuma das emissoras. Quantas pessoas foram entrevistadas?
- Resposta: 350 pessoas

Exemplo 3:

- Sejam A, B e C eventos de um espaço amostral Ω. Descrever os eventos abaixo utilizando as operações de união, intersecção e complementar.
- ▶ a) Somente o evento B ocorre.
 - ightharpoonup Resposta: $A^c \cap B \cap C^c$
- b)Pelo menos um evento ocorre.
 - Resposta: AUBUC
- c)Os três eventos ocorrem.
 - ▶ Resposta: A∩B∩C
- d) Exatamente dois eventos ocorrem.
 - ▶ Resposta: $(A \cap B \cap C^c)U(A \cap B^c \cap C)U(A^c \cap B \cap C)$

Exemplo 4:

Descrever os eventos hachurados nos diagramas abaixo utilizando as operações de união, intersecção e complementar.

Ocorre o evento A ∩ B

Ocorre o evento B U C

Ocorre o evento $(A \cap B) \cup (A \cap C)$

Ocorre o evento (A \cap B^c \cap C^c)

Propriedades das Operações com Eventos

- lacksquare a) Idempotente: $A \cup A = A$, $A \cap A = A$
- **b)** Comutativa: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- $(A \cup B) \cup C = A \cup (B \cup C)$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

▶ d) Distributiva:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

• e) Identidade:

$$A \cup \emptyset = A, A \cap \emptyset = \emptyset$$

$$A \cup \Omega = \Omega$$
, $A \cap \Omega = A$

• f) Complementar: $A \cup A^C = \Omega$, $A \cap A^C = \emptyset$

$$(A^C)^C = A, \quad \Omega^C = \emptyset, \quad \emptyset^C = \Omega$$

Propriedades das Operações com Eventos

▶ g) Lei de Morgan:

$$(A \cap B)^{C} = A^{C} \cup B^{C}$$
$$(A \cup B)^{C} = A^{C} \cap B^{C}$$

Partição de um Espaço Amostral

- ▶ Os eventos A_1 , A_2 , ..., A_n formam uma **partição do espaço amostral** Ω se:
 - i) $A_i \neq \emptyset$, i = 1, 2, ..., n
 - ii) $A_i \cap A_j = \emptyset$, para $i \neq j$ ($A_i \in A_j$ são eventos mutuamente excludentes)
 - $\qquad \qquad \mathsf{iii)} \ \bigcup_{i=1}^n A_i = \Omega$
- Uma partição de um espaço amostral Ω é uma coleção de subconjuntos nãovazio e mutuamente excludentes de Ω , cujas uniões são iguais a Ω .

Definição de Probabilidade

- ▶ Definição Clássica: (Laplace 1749-1827)
- Seja um espaço amostral finito Ω , formado por eventos equiprováveis. Sendo A um evento de Ω , então a probabilidade de ocorrência de A é dada por:

$$P(A) = \frac{n(A)}{n(\Omega)}, \quad \text{com } 0 \le P(A) \le 1$$

- onde:
- ▶ n(A) é o número de elementos do evento A;
- $ightharpoonup n(\Omega)$ é o número de elementos de espaço amostral Ω .

Definição de Probabilidade

- ▶ Definição de Frequência: (von Mises 1883-1953)
- ▶ Se em N realizações de um experimento aleatório, o evento A ocorre n_A vezes, então a frequência relativa de A nas N realizações é:

$$f_r = \frac{n_A}{N}$$
, com $0 \le f_r \le 1$

▶ A probabilidade de ocorrência do evento A é:

$$P(A) = \lim_{N \to \infty} \frac{n_A}{N}, \quad \text{com } 0 \le P(A) \le 1$$

Definição de Probabilidade

Exemplo:

Qual a probabilidade de sair ao menos uma cara em dois lançamentos consecutivos de uma moeda não viciada?

Resposta:

- Considere os resultados possíveis: cara = k e coroa = c
- Defina o experimento: E = "lançar uma moeda duas vezes"
- ► Calcule o espaço amostral: $\Omega = \{(k,k), (k,c), (c,k), (c,c)\}$
- Defina o evento: A = "sair ao menos uma cara"
- $A = \{(k,k), (k,c), (c,k)\}$
- Calcule a probabilidade P(A):

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{3}{4} = 0,75$$

Axiomas da Probabilidade

- \blacktriangleright Considere que os eventos A e B estão associados ao espaço amostral Ω , verifica-se que:
 - $) 0 \le P(A) \le 1$
 - 2) $P(\Omega) = 1$
 - > 3) Se A e B são eventos mutuamente excludentes, então:

$$P(A \cup B) = P(A) + P(B)$$

- ▶ 1) Se \emptyset é um conjunto vazio, então: $P(\emptyset) = 0$
- ▶ 2) Se A^c é o evento complementar do evento A, então:

$$P(A^C) = 1 - P(A)$$

Exemplo:

- A probabilidade de ocorrer face 2 e 3 (simultaneamente) no lançamento de um dado não viciado é $P(\emptyset)=0$,
- ► Enquanto que a probabilidade de ocorrer face 2 ou 3 é 1/6+1/6=1/3.

Exemplo:

- Uma urna contém 4 bolas verdes, 3 bolas brancas e 8 bolas amarelas. Uma bola é retirada aleatoriamente. Determinar a probabilidade de que a bola retirada:
- a) Não seja amarela;b) Não seja verde e nem amarela.

Solução:

Defina os eventos possíveis e a probabilidade correspondente:

```
V = \text{``a bola retirada \'e verde''} P(V) = 4/15 = 26,67\%
```

- B = "a bola retirada é branca" P(B) = 3/15 = 20,00%
- A = "a bola retirada é amarela" P(A) = 8/15 = 53,33%
- ▶ a) Pede-se a probabilidade do P(A^c), onde:
 - ▶ A^c = "a bola retirada não é amarela"
 - $P(A^c) = I P(A) = I 8/15 = 7/15 = 46,67\% = P(VUB)$

Exemplo:

- Uma urna contém 4 bolas verdes, 3 bolas brancas e 8 bolas amarelas. Uma bola é retirada aleatoriamente. Determinar a probabilidade de que a bola retirada:
- a) Não seja amarela;b) Não seja verde e nem amarela.
- Solução:
- ▶ b)Pede-se $P(V^c \cap A^c)$, onde:
 - $V^c \cap A^c$ = "a bola retirada não é verde e nem amarela"
- ▶ Pela lei de Morgan, sabe-se que: $V^{C} \cap A^{C} = (V \cup A)^{C}$
- ▶ Pelo complemento: $P[(V \cup A)^C] = 1 P(V \cup A)$
- Como V e A são mutuamente excludentes:

$$P[(V \cup A)^C] = 1 - (P(V) + P(A)) = 1 - \frac{4}{15} - \frac{8}{15} = \frac{3}{15} = P(B)$$

- > 3) Teorema da Soma:
- ▶ Se A e B são dois eventos quaisquer, ou seja, podem ser mutuamente excludentes ou não, então:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

- Prova:
- Observe que:

Prova:

Neste caso:

$$A \cap B \neq \emptyset$$

 $(A \cup B)$ é escrito em termos de dois conjuntos mutuamente exclusivos:

$$A \cup B = A \cup (A^C \cap B)$$

Com isso:

$$P(A \cup B) = P(A) + P(A^{C} \cap B)$$

Considerando B como a união de dois conjuntos disjuntos:

$$B = (A \cap B) \cup (A^{c} \cap B)$$

A probabilidade correspondente: $P(B) = P(A \cap B) + P(A^{C} \cap B)$

Re-escrevendo: $P(A^{C} \cap B) = P(B) - P(A \cap B)$

Substitutindo: $P(A \cup B) = P(A) + P(A^{C} \cap B)$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Exemplo:

Dois dados são lançados simultaneamente. Determine a probabilidade de ocorrer pelo menos uma face com valor cinco.

Solução: A = "ocorrer 5 no dado 1"

B = "ocorrer 5 no dado 2"

A U B = "ocorrer pelo menos um cinco"

	1	2	3	4	5	6
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

$$n(\Omega) = 36$$

$$n(A) = 6$$

$$n(B) = 6$$

$$n(A \cap B) = 1$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 6/36 + 6/36 - 1/36 = 11/36 = 30,56\%$$

- ▶ 4) Teorema da Soma:
- ▶ Se A, B e C são dois eventos quaisquer, ou seja, podem ser mutuamente excludentes ou não, então:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

- Prova:
- Observe que:

- > 5) Teorema da Diferença:
- ▶ Se (A B) é a diferença entre dois eventos quaisquer A e B então:

$$P(A-B) = P(A) - P(A \cap B)$$

- Prova:
- O evento A é escrito como a união de dois eventos disjuntos:

$$A = (A - B) \cup (A \cap B)$$

A probabilidade correspondente:

$$P(A) = P(A - B) + P(A \cap B)$$

Re-escrevendo:

$$P(A-B) = P(A) - P(A \cap B)$$

