#### **Activité Introduction**

1. Construire un triangle quelconque



2. Tracer la hauteur perpendiculaire à son plus grand côté.



**3.** Noté M le pied de la hauteur et marqué en couleur les angles du triangles.



**4.** Découper le triangle et plier les sommets vers le point marqué M.



**5.** Finir de rabattre les sommets pour obtenir un rectangle.



**6.** Que peut-on dire des angles du triangle ? Compléter la phrase suivante :

« La somme des mesures des angles d'un triangle donne toujours ...... ° »

# <u>I – Angles du triangles :</u>

#### **Propriété**

Dans un **triangle**, la **somme** de la mesure des angles est toujours égale à 180°.

# **Exemple:**



$$\widehat{ABC} + \widehat{BCA} + \widehat{CAB} = 180^{\circ}$$

### II - Triangles particuliers:

# 1) Triangle isocèle :

Un triangle isocèle est un triangle qui a deux côtés de même longueur.

# **Exemple:**



- Le triangle ABC ci-contre est isocèle en A.
- A est appelé sommet principal du triangle ABC.
- Le segment [BC] est la base du triangle ABC.

#### <u>Propriété</u>

Dans un triangle **isocèle** les angles à la base ont la même mesure.

#### **Exemple:**



$$\widehat{ABC} = \widehat{BCA}$$

# 2) Triangle équilatéral :

Un triangle équilatéral est un triangle qui a trois côtés de même longueur.

### **Exemple:**



Le triangle DEF ci-contre est équilatéral.

#### Propriété:

Dans un triangle **équilatéral** tous les angles ont la même mesure, il mesure 60°.

## **Exemple:**



$$\widehat{DEF} = \widehat{EFD} = \widehat{FDE} = 60^{\circ}$$

# 3) Triangle rectangle:

Un triangle rectangle est un triangle qui a deux côtés perpendiculaires, donc un angle droit (90°).

# **Exemple:**



Le triangle GHI est **rectangle** en H.  $\widehat{GHI} = 90^{\circ}$