

Index

Reactor Fuel Processing

Volume 8

Note: The page range for each of the four issues of Vol. 8 is as follows: No. 1, pages 1 to 68; No. 2, pages 69 to 140; No. 3, pages 141 to 192; and No. 4, pages 193 to 241.

A

- Accidents
Hanford Works, Recuplex Facility, Apr. 7, 1962, 239-40
maximum liability, 4-5
Rocky Flats Plant, noncritical, June 14, 1963, 65-7
Savannah River Plant, Oct. 1, 1964, 135-36
United Nuclear Corp., July 24, 1964, 133-35, 239-40
Actinides
separation from lanthanides, 81-2, 100
Advanced Gas Cooled Reactor (see Reactors (Advanced Gas Cooled) (AGR))
AGR Reactor
(see Reactors (Advanced Gas Cooled) (AGR))
AIROX process, 169
economics, 170
Alpha monitors and printers
description, 203
Aluminum
(see also SAP)
dissolution, 18
volatilization with HCl, 19-20
Aluminum (liquid)
corrosion of Nb, Ta, Y, and Inconel, 102
uranium solubility, 29-30
Aluminum alloys (Al-U)
dissolution, 18
recovery by fluoride volatility processes, 152-56
Aluminum chlorides
volatility, 19-20
Aluminum fluorides
fuel element cladding dissolution, 146
U-Zr alloy dissolution, 146-47
Aluminum fluorides (AlF₃)
thermodynamic properties, 210-11
Aluminum nitrate systems (Al(NO₃)₃-HF-HNO₃)
ThO₂-UO₂ dissolution, 12
Aluminum nitrates
wastes, calcination of, 224-25
Aluminum oxides
phosphate adsorption, 38
Americium
separation processes, 198-200
Amines
development for solvent extraction, 13-14
solvent extraction with, 82, 198

- Aminopolyacetic acids
actinide separation, 81-2
Ammonium compounds (quaternary)
development for solvent extraction, 13-14
Ammonium fluoride complexes
(UF₄.NH₄)
decomposition, 125-26

- Antimony
density, 102
Aqueous methods, 8-17, 78-87, 146-51, 195-205
economics, 72-3

- Arc casting
preparation of Th₂Al, ThB₄, ThBe₁₂, ThC, ThC₂, Th₃Si₂ and ThSi, 61
Asphalt
incorporation of nuclear wastes in, 172-74, 220-21

B

- Beryllium
density, 102
separation from Th and U, flow sheet, 196
Beryllium fluoride systems (BeF₂-LiF)
processing by fluoride volatility processes, 211-14

- Beryllium oxide systems (BeO-ThO₂-UO₂)
dissolution, 196

- Beryllium oxides
crucibles, use in skull reclamation process, 165
dissolution of fuel matrices, 196

- Bibliographies, 7

- Bismuth (liquid)
corrosion of Nb, Ta, Y, and Inconel, 102
uranium solubility, 29-30

- Bismuth fluorides (BiF₃)
preparation, 211

- Blankets
processing by fluoride volatility, 94-7
processing by skull reclamation, 99

- Breeder reactors
(see Reactors (breeder))

- Burial
low level wastes, 228

C

- Cadmium (liquid)
uranium solubility, 29-30
Cadmium alloys (Cd-Mg)(liquid)

- use in liquid metal-fused salt extraction processes, 167

- Cadmium alloys (Cd-Mg-Zn)(liquid)
corrosion of container materials, 30
corrosion of stainless steels, 167

- use in liquid metal-fused salt extraction processes, 166-67

- Calcination, 41, 112-13, 119-20, 174-79, 223-27

- Calder Hall Reactors
(see Reactors (Calder Hall))

- California Nuclear, Inc.
waste processing plant at Hanford, 70

- Capacitance meters

- description, 203

- Carbide fuels
processing by pyrochemical processes, 106-8

- Carbon (pyrolytic)
coating of UC with, 55, 234
coating of UO₂ with, 234

- Carbon steels

- (see Steels (carbon))
Carbon tetrachloride
chlorination of UO₂ and PuO₂, 91-2

- Carbon tetrachloride systems (CCl₄-Cl₂)
chlorination of UO₂, 21

- Carbon tetrachloride systems (CCl₄-TBP)
solvent extraction flow sheet, 80-1

- CARBOX process, 169-70
economics, 143

- Ceramics
coating of UC with, 54-5
thorium base, preparation by arc casting, 61

- Cerium
reduction to metal, 101
removal by ion exchange, 39-40
separation from nuclear wastes, 180

- Cerium-144
removal by ion exchange, 219

- Cermets (stainless steel-UO₂)
uranium recovery by fluoride volatility processes, 156

- Cesium
adsorption from waste solutions, 228
removal by foam separation, 220
removal by ion exchange, 39-40

- Cesium-137
removal by ion exchange, 219
separation from wastes, 179-80

- Cesium fluorides
reactions with WF₆, 25
reactions with UF₆, 25

REACTOR FUEL PROCESSING

Chemical decladding
(see Decladding (chemical))
Chloride volatility processes, 88-92
flow sheets, 89
Chlorine fluorides (ClF_3)
reactions with U compounds, 159
reactions with UO_2F_2 , 26-7
Chlorine systems ($\text{CCl}_4\text{-Cl}_2$)
chlorination of UO_2 , 21
Chromic acid
 UF_4 dissolution, 10
Chromium fluorides (CrF_3)
preparation and properties, 211
Chromium oxifluorides (CrOF_3)
preparation and properties, 211
Coatings
decontamination, 149
radiation effects, 149
of UC particles with ceramics, 54-5
Cobalt-60
removal by ion exchange, 219
Cobalt fluorides (CoF_3)
thermodynamic properties, 211
Colorimeters
description, 203
Columns (extraction)
design of pulsed plate, 15-16
Columns (pulse)
design, 83, 149-51
Combustion
impregnated graphite fuels, 12, 90
U, 20
Commercial Aspects of Fuel Processing,
1-7, 69-77, 141-45, 193-94
Dow-Westinghouse joint laboratory, 1
Eurochemic Processing Plant, 83-6
General Electric proposed plant, 1
Nuclear Fuel Services, 5-6
Pacific Northwest Laboratory, 2
Commercial facilities
Eurochemic Processing Plant, 83-6
in U. K., 142
in U. S., 1-7, 70-1, 141, 193
Concretes
disposal of wastes in, between shale
layers, 116-17
Converter reactors
(see Reactors (converters))
Copper alloys (Cu-Mg^{II} liquid)
decontamination of U, 168
use in liquid metal-fused salt extraction
processes, 167
Corrosion
container materials in fused fluorides,
159-61
container materials in fused UC, 108
container materials in glass forming
systems, 42-5
container materials in HF-HNO_3
systems, 9-10
container materials in liquid metals,
30, 102, 167
Duranickel alloy, 20
In fluoride volatility processes, 159-61,
207-8
Corrosion inhibitors
aluminum nitrate, 10
of stainless steels, 10, 30, 42-3, 167, 221
Criticality
accidental, Hanford Works, 239-40
accidental, Savannah River Plant, 135-36
accidental, United Nuclear Corp., 133-35
Crucibles
 BeO , for use in skull reclamation
process, 165
tungsten, for use in skull reclamation
process, 28, 165
Crucibles (liquid)
design of ThO_2 , 102

Curium
separation processes, 198-200
Curium-244
hazards from reprocessing plant
accidents, 5
Cyclone separators
(see Hydroclone separators)

D

Darex Process
conversion of liquid wastes to glass, 41-5
Decalso
use in waste processing, 228
Decladding (chemical), 31-2, 78, 146-48
Decladding (mechanical), 78, 195-96
Decontamination
of coatings, 149
purex process wastes, 39-40
of U, 168
 UF_6 from volatility processes, 23-5
Degassing
of ion exchange solutions, 198
Dissolvers
corrosion, 9, 10
materials of construction, 8
Distillation processes, 102
Dowex-1 resin
Am and Cm adsorption, 200
Pu adsorption, 197
safe temperatures for use with Pu,
240-41
use in waste disposal, 219
Dowex-50 resin
Am and Cm adsorption, 200
Dowex-50W resin
use in waste disposal, 219
DR-3 Reactor
(see Reactors (DR-3))
Drying
(see also Freeze drying and Vacuum
drying)
Duranickel alloy
corrosion, 20

E

EBR-II Fuel Cycle Facility, 27-8, 97-9
design and operation, 162-65
efficiency, 98
fuel processing by pyrochemical
processes, 214-16
operation, 27-28, 97-99, 214-17
Economics
(see also Commercial Aspects of
Fuel Processing)
converter reactor fuels, 3-4
Magnox reactor fuel cycles, 71-2
UC fuels, 143
waste disposal, 120-21
EDF-2 Reactor
(see Reactors (EDF-2))
EDF-3 Reactor
(see Reactors (EDF-3))
Eddy current induction probes, 29
Electrodeionization
ruthenium removal, 40
Electrodialysis
ruthenium removal, 40
Electrolysis, 101
use in salt-cycle process, 169
Electrorefining processes, 101
plutonium refining, 189-90
Electrowinning, 101
Eurochemic Processing Plant, 69
design, 83-6
flow sheets, 84-5

Evaporation
of waste liquids in underground tanks,
45-7
Excursions
Hanford Works, Recuplex Facility,
Apr. 7, 1962, 240
United Nuclear Corp., July 24,
1964, 239-40
Experimental Breeder Reactor II
(see EBR-II Fuel Cycle Facility)
Extraction columns
(see Columns (extraction))

F

Fallout
from processing plant accidents, 5
Fast breeder reactors
(see Reactors (fast breeder))
Filtration, 25-6
off gases from chloride volatility
processes, 88
Fissile materials
licensing by states, for possession,
193-94
Fission products
removal by chloride volatility processes,
88-97
separation from wastes, 11, 118-19
separation from wastes, 179-80
Flow sheets
Eurochemic Processing Plant, 84-5
fluoride volatility processes, 89,
95, 97, 156
foam separation, 220
graphite fuel combustion, 90-1
liquid metal-fused salt extraction, 166
MSRE fuel reprocessing by fluoride
volatility, 95, 97
precipitation of UO_2 , 232
preparation of glass incorporating
nuclear wastes, 175
Purex type, TBC- CCl_4 extraction, 80-1
separation of Be, Th, and U, 196
skull reclamation process, 216
Fluidized beds
use in fluoride volatility processes,
19-23, 157
Fluoride volatility processes, 92-7,
152-61, 207-14
adsorption on NaF , 23-5
corrosion, 159-61
equipment design, 157-58
flow sheets, 156
plant at ORNL, 70-1
 TeF_6 removal, 25-6
 UF_6 decontamination, 23-5
Fluorides
thermodynamic properties, 210-11
Fluorination
of UCl_3 , 19-20, 89
of UF_4 , 19-20
of UO_2 ash, 91
Fluorination processes
corrosion of container materials, 20
Fluorine
reactions with UCl_3 , 88-90
reactions with UF_4 , 19-20
Foam separation
flow sheet, 220
of ^{90}Sr , 111
waste disposal techniques, 220
France
waste disposal methods, 121
Freeze drying, 111-12
Fuel cycles
economics of Pu, 142-43
economics of Th-U-233, 142-43

- Fuel elements ($\text{BeO}-\text{ThO}_2-\text{UO}_2$)
dissolution, 196
- Fuel elements (ceramic)
dissolution, 196
processing by fluoride volatility processes, 208-10
- Fuel elements (enriched)
processing by volatility processes, 19-23
- Fuel elements (highly enriched)
volatility processes for, 88-90
- Fuel elements (impregnated graphite)
combustion, 12, 20, 90
combustion, flow sheet, 90-1
dissolution, 12
grinding, 12
leaching, 12
processing by volatility processes, 20
- Fuel elements (irradiated)
cutting, 8
dissolution, 8-10
shipping, 143
transportation, 72-3
transportation costs, 2-3
- Fuel elements (magnesium clad)
cladding dissolution, 78
- Fuel elements (Magnox)
processing at Windscale, 69-70
- Fuel elements (Pu)
fuel cycle economics, 143
- Fuel elements (PuO_2)
chlorination with CCl_4 , 91-2
chlorination with CCl_4-Cl_2 systems, 21
dissolution, 11-12
processing by volatility processes, 20-3
- Fuel elements (PuO_2-UO_2)
fluoride volatility processing, 94
processing by salt-cycle process, 103-4, 169
- Fuel elements (PuO_2-UO_2)(Zircaloy clad)
chemical decladding, 146
dissolution, 31-2
- Fuel elements (stainless steel clad)
decladding, 22
oxidation in air, 22
- Fuel elements ($\text{Th}-\text{U}$)
fuel cycle economics, 143
- Fuel elements ($\text{ThC}-\text{UC}$)
dissolution, 12
- Fuel elements (ThO_2-UO_2)
dissolution in HNO_3 , 147
- Fuel elements (ThO_2-UO_2 -graphite)
processing by fluoride volatility processes, 208-9
- Fuel elements (tubes)
mechanical decladding, 195-96
- Fuel elements ($\text{U}-\text{Zr}$)
processing by Nitrofluor Process, 206-7
reprocessing by fluoride volatility processes, 207-8
volatility processing with HCl , 88-90
- Fuel elements ($\text{U}-\text{Zr})(\text{Zr}$ -clad)
dissolution, 8
- Fuel elements (UC)
conversion to UN, 106-8
decontamination by CARBOX Process, 169-70
disintegration in $\text{HNO}_3-\text{H}_2\text{SO}_4$, 147-48
fuel cycle economics, 143
melting, 106-8
- Fuel elements (UC)(irradiated)
conversion with steam to UO_2 , 79
- Fuel elements (UO_2)
chlorination with CCl_4-Cl_2 systems, 21
decontamination by AIROX Process, 169
Pu separation, 21-2
processing by volatility processes, 20
- 20-3
- Fuel elements (UO_2 -graphite)
processing by fluoride volatility processes, 208-9
- Fuel elements (UO_2 -stainless steel)
(stainless steel clad)
dissolution, 12-13
- Fuel elements (UO_2-ZrO_2)(Zircaloy-clad)
dissolution, 10
- Fuel elements (UO_2)(Zircaloy-2 clad)
cutting, 8
- Fuel elements (Zircaloy-clad)
zirconium recovery, 157
- Furnaces
design for fluidized-bed particle coating, 55
- G
- Gamma absorption meters
description, 204
- Gamma radiation
effects on PuF_6 , 22
- Gases
elimination in ion exchange processes, 198
- General Electric fuel fabrication plant
 UF_6 to UO_2 conversion at Vallecitos, 70
- Glass
flow sheet for waste disposal in, 175
incorporation of nuclear wastes, 41-5, 113-16, 174-79
preparation from calcined waste, 223-25, 227
- Graphite
cathodes in salt-cycle process, 33
combustion, 20
corrosion by fused UC, 108
- Graphite (impregnated)
combustion, 12, 20, 90
grinding, 12
leaching, 12
- Graphite systems (ThO_2-UO_2 -graphite)
processing by fluoride volatility processes, 208-9
- Graphite systems (UO_2 -graphite)
processing by fluoride volatility processes, 208-9
- Grinding
impregnated graphite fuels, 12
- H
- Hallam Nuclear Power Facility
(see Reactors (Hallam Power))
- Hallam Power Reactor
(see Reactors (Hallam Power))
- Hanford Works
commercial fuel processing, 193
nuclear excursion in Recuplex Facility, Apr. 7, 1962, 240
proposed commercial, 141
- Head-end processes, 8-13, 78-79, 146-48, 195-96
Eurochemic processing plant, 84-5
- Health physics
fuel processing plant monitoring, 121
- HIFAR Reactor
(see Reactors (HIFAR))
- High Temperature Gas Cooled Reactor
(see Reactors (Peachbottom Power) (HTGR))
- High temperature materials
interactions, 102
- HNPF
(see Reactors (Hallam Power))
- HTGR
(see Reactors (Peachbottom Power))
- I
- HCPP Plant
request for proposals, 141
- ICPP Process
conversion of liquid wastes to glass, 41-5
Shippingport PWR fuel dissolution, 10
waste calcining facility, 48
- Idaho Chemical Processing Plant
(see ICPP Plant)
- Inconel alloy
corrosion, 20
corrosion by liquid metals, 102
- Inconel 600 alloy
corrosion in fluoride volatility processes, 207-8
- Inconel-X alloy
corrosion, 20
- India
waste disposal methods, 121
- INOR-8 alloy
corrosion, 20
corrosion by fused fluorides, 159-61
- Instruments
alpha monitors, 203
capacitance meters, 203
colorimeters, 203
eddy current induction probes, 29
gamma absorption meters, 204
general description, in fuel processing, 200, 203-5
level indicators, 29
neutron monitors, 204
pH meters, 204
polarographs, 204
reduction-oxidation meters, 204
resistance meters, 203

REACTOR FUEL PROCESSING

turbidity meters, 201
 viscometers, 102
 Intermetallic compounds
 thermodynamics, 101
 Iodine oxyfluorides (IOF_3)
 preparation and properties, 211
 Ion exchange processes, 197-99
 accident at Rocky Flats Plant,
 June 14, 1963, 65-7
 fire at Savannah River Plant, 135-36
 safe temperatures for Pu anion systems,
 240-41
 use in waste disposal, 38-41, 118-19,
 180, 219, 228
 waste disposal requirements, 241

K

Kjeller Reprocessing Pilot Plant, 70

L

L-nickel alloy
 corrosion, 20
 Lanthanides
 separation from actinides, 81-2, 100
 Latina Reactor
 (see Reactors (Latina))
 Leaching
 impregnated graphite fuels, 12
 Lead (liquid)
 corrosion of Nb, Ta, Y, and Inconel, 102
 Lead fluorides (PbF_2)
 thermodynamic properties, 211
 Lead fluorides (PbF_4)
 preparation, 211
 Lead sulfate
 precipitation of strontium from
 Purex process wastes, 47-8
 Level indicators
 eddy current induction probes, 29
 Liability
 in processing plant accidents, 4-5
 Licensing
 by states for possession of fissile
 materials, 193-94
 Linde AW-500
 use in waste processing, 228
 Liquid metal extraction, 29-30, 99-100
 Liquid metal fuels
 corrosion of Nb, Ta, Y, and Inconel, 102
 Liquid metal-fused salt extraction, 100,
 166-68
 flow sheets, 166
 Liquid wastes
 (see also Waste disposal)
 conversion to solids, 41-7, 180
 treatment by ion exchange, 38-41
 Lithium chloride systems ($\text{LiCl}-\text{KCl}$)
 (fused)
 UO_2 dissolution, 32
 Lithium chloride systems ($\text{LiCl}-\text{MgCl}_2-\text{KCl}$)(fused)
 use in liquid metal-fused salt extrac-
 tion processes, 167-68
 Lithium fluoride systems (BeF_2-LiF)
 processing by fluoride volatility
 processes, 211-14
 Lithium fluoride systems ($\text{LiF}-\text{NaF}-\text{ZrF}_4$)
 (fused)
 corrosion of INOR-8, 159-61
 Lithium fluorides
 reactions with WF_6 , 25
 reactions with UF_6 , 25

M

Magnesium
 dissolution in HNO_3 and H_2SO_4 , 78
 distillation in skull reclamation
 process, 28
 ThCl_4 reduction, 130
 Magnesium alloys ($\text{Cd}-\text{Mg}$)(liquid)
 use in liquid metal-fused salt extrac-
 tion processes, 167
 Magnesium alloys ($\text{Cd}-\text{Mg}-\text{Zn}$)(liquid)
 corrosion of container materials, 30
 corrosion of stainless steels, 167
 use in liquid metal-fused salt extrac-
 tion processes, 166-67
 Magnesium alloys ($\text{Cu}-\text{Mg}$)(liquid)
 decontamination of U, 168
 use in liquid metal-fused salt extrac-
 tion processes, 167
 Magnesium alloys ($\text{Mg}-\text{Th}$)(liquid)
 use in liquid metal-fused salt extrac-
 tion processes, 167-68
 Magnesium chloride systems ($\text{LiCl}-\text{MgCl}_2-\text{KCl}$)(fused)
 use in liquid metal-fused salt extrac-
 tion processes, 167-68
 Magnesium chloride systems ($\text{MgCl}_2-\text{KCl}-\text{NaCl}$)(fused)
 use in liquid metal-fused salt extrac-
 tion processes, 166-67
 Magnesium fluorides (MgF_2)
 thermodynamic properties, 210-11
 Manganese fluorides (MnF_4)
 preparation, 211
 Magnesium oxide systems ($\text{MgO}-\text{TiO}_2$)
 cell for Pu reduction, 168
 Mechanical decladding
 (see Decladding (mechanical))
 Melt-refining process, 28
 operation, 214-15
 Mixer-settlers
 design, 15
 Molybdenum
 corrosion by liquid Zn, 30
 corrosion by liquid Zn alloys, 30
 recovery from waste solutions, 180
 Monel alloy
 corrosion, 20
 Molten Salt Reactor Experiment
 (see Reactors (Molten Salt, Experi-
 ment)(MSRE))
 MSRE
 (see Reactors (Molten Salt, Experi-
 ment)(MSRE))

N

Neptunium
 extraction with CCl_4-TBP , 80-1
 Neptunium separation processes, 14,
 197-98
 Neutron monitors
 description, 204
 NFS plant
 (see Nuclear Fuel Services, Inc.)
 Nickel
 mesh, TeF_6 removal from gas streams,
 25-6
 Nickel 200 alloy
 corrosion in fluoride volatility processes,
 207
 Nickel 201 alloy
 corrosion in fluoride volatility processes,
 207
 Nickel alloys
 corrosion, 20
 Nickel fluorides (NiF_3)

P

thermodynamic properties, 211
 Niobium
 corrosion by liquid metals, 102
 recovery from waste solutions, 180
 Niobium-95
 removal by ion exchange, 219
 Niobium fluorides (NbF_5)
 thermodynamic properties, 211
 Nitric acid
 magnesium dissolution, 78
 PuO_2 dissolution, 11-12
 SAP dissolution, 10-11
 $\text{ThC}-\text{UC}$ dissolution, 12
 ThO_2-UO_2 dissolution, 147
 UO_2 dissolution, 11-12, 79
 UO_2 -stainless steel cermet dissolution,
 12-13
 Nitric acid systems ($\text{Al}(\text{NO}_3)_3-\text{HF}-\text{HNO}_3$)
 ThO_2-UO_2 dissolution, 12
 Nitric acid systems ($\text{HF}-\text{HNO}_3$)
 corrosive effects, 9
 PuO_2 dissolution, 11-12
 UO_2 dissolution, 11-12
 Nitric acid systems ($\text{HNO}_3-\text{H}_2\text{SO}_4$)
 UC disintegration, 147-48
 Nitrofluor process, 18-19, 206-7
 Nonaqueous processes, 18-36, 88-100,
 206-18
 Nuclear Fuel Services, Inc.
 fuel shipments, 193
 safety and siting considerations, 5-6
 UO_2 fabrication at Erwin, Tenn., 70

O

Oceans
 waste disposal into, 48
 OMRE
 (see Reactors (Organic Moderated,
 Experiment))(OMRE)
 Oregon
 agreement with AEC over control of
 nuclear materials, 194
 Organic Moderated Reactor Experiment
 (see Reactors (Organic Moderated,
 Experiment))(OMRE))
 Organophosphites
 solvent extraction with, 82
 Oxidation processes
 corrosion of container materials, 20
 Oxide fuels
 by pyrochemical processes, 102-6
 Oxygen systems ($\text{HF}-\text{O}_2$)
 stainless steel oxidation, 22

P

Patents
 AEC owned Australian, for processing,
 list, 194
 AEC owned Italian, for processing,
 list, 194
 British, listing of, 6
 licensing, 75-6, 143-44
 Peach Bottom Power Reactor
 (see Reactors (Peachbottom Power)
 (HTGR))
 pH meters
 description, 204
 Phosphates
 adsorption on Al_2O_3 , 38
 use in conversion of liquid wastes to
 glass, 42-5
 Phosphine
 reactions with uranium, 57
 Plastics

- decontamination of coatings, 149
radiation effects on coatings, 149
- Platinum**
corrosion by glass forming systems, 44
- Platinum alloys**
corrosion by glass forming systems, 44
- Plutonium**
adsorption, 21-2, 197, 240-41
dissolution in HF-NaO₄ systems, 18
electrolysis in fused salts, 29
electrolysis in salt-cycle process, 33
extraction with CCl₄-TBP, 80-1
fuel cycle economics, 142-43
nitridation, 55
preparation from PuCl₃, 168
production and refining, 186-90
recovery by fluoride volatility processes, 93-4, 157
recovery by melt-refining process, 28
recovery by salt-cycle process, 31-4
recovery from wastes, 190
reduction to metal, 29, 101
separation by ion exchange processes, 197-98
separation from UC fuels, 79
separation from UO₂ fuel, 21-2
solubility in amines, 13-14
utilization as fuel in UK, 142
- Plutonium-238**
hazards from processing plant
accidents, 5
separation processes, 14
- Plutonium-239**
hazards from processing plant
accidents, 5
- Plutonium alloys (Pu-U)**
conversion to PuC-UC systems, liquid metal process, 236
- Plutonium alloys (Pu-Zn)**
thermodynamics, 101
- Plutonium carbides (PuC)**
preparation, 187-88
preparation from PuCl₃ in fused salt, 236
- Plutonium carbides (Pu₂C₃)**
preparation, 187-88
- Plutonium carbide systems (PuC-UC)**
preparation, 187-88
preparation from Pu-U alloy, liquid metal process, 236
preparation from PuO₂-UO₂ systems, carbothermic, 236
- Plutonium chlorides (PuCl₃)**
conversion to PuC in fused salt, 236
reduction to metal, 168, 188-89
- Plutonium fluorides (PuF₄)**
conversion to fluorides in fused salts, 104-6
- Plutonium fluorides (PuF₄)**
absorption spectrum of gaseous, 23.
conversion to fluorides in fused salts, 104-6
determination in UF₆, 23
gamma radiation effects, 23
- Plutonium nitride systems (PuN-UN)**
preparation, 188
- Plutonium nitrides (PuN)**
preparation, 55, 188
- Plutonium oxide systems (PuO₂-UO₂)**
conversion to PuC-UC systems, carbothermic, 236
dissolution, 11-12
fluoride volatility processing, 94, 156-58
by salt-cycle process, 103-4
separation by salt-cycle process, 169
- Plutonium oxides (PuO₂)**
(see also Fuel elements (PuO₂))
chlorination with CCl₄, 91-2
chlorination with CCl₄-Cl₂ systems, 21
- dissolution, 11-12
production and properties, 186-87
reprocessing by volatility processes, 20-3
- Plutonium phosphides (PuP)**
preparation, 188
- Polarographs**
description, 204
- Potassium chloride systems (LiCl-KCl) (fused)**
U₃O₈ dissolution, 32
- Potassium chloride systems (LiCl-MgCl₂-KCl)(fused)**
use in liquid metal-fused salt extraction processes, 167-68
- Potassium chloride systems (MgCl₂-KCl-NaCl) (fused)**
use in liquid metal-fused salt extraction processes, 166-67
- Potassium fluorides**
reactions with WF₆, 25
reactions with UF₆, 25
- Powders**
production of ThO₂, 129-30
wastes, calcination, 176-78
- Processing plants**
(see specific processes; Commercial facilities)
- Protactinium-233**
separation process for, 82-3
- Pulse columns**
(see Columns (pulse))
- Purex process**
calcination of wastes from, 176-78
conversion of liquid wastes to glass, 41-5
flow sheet, using TBP-CCl₄ extraction, 80-1
operation and performance, 148-49
strontium separation from wastes, 47-8
waste decontamination, 39-40
waste processing, 179-80, 227-28
- Pyrochemical processes, 31-34, 102-8, 161-68, 214-17**
- Pyrohydrolysis**
of carbide fuels, 78-9
- Pyrolytic carbon**
(see Carbon (pyrolytic))
- Pyrometallurgical processes, 27-30, 97-102**
- R
- Radiation effects**
on PuF₄ gamma, 23
on protective coatings, 149
TBP, 13
- Railroads**
shipment of irradiated fuels, 193
- Rare earths**
separation from nuclear wastes, 180
- Reactors (Advanced Gas Cooled)(AGR)**
fuel cycle economics, 72
- Reactors (breeder)**
blanket processing, 94-7
- Reactors (Calder Hall)**
fuel cycle economics, 71-2
- Reactors (converters)**
fuel processing costs, 3-4
- Reactors (DR-3)**
irradiated fuel element transportation to UK, 74
- Reactors (EDF-2)**
irradiated fuel element shipping, 73
- Reactors (EDF-3)**
irradiated fuel element shipping, 73
- Reactors (Experimental Breeder-II)**
(see EBR-2 Fuel Cycle Facility)
- Reactors (fast breeder)**
- fuel processing by pyrochemical methods, 165-68**
- Reactors (Hallam Power)**
fuel element dissolution, 12
- Reactors (HIFAR)**
irradiated fuel element transportation to UK, 74
- Reactors (High Temperature Gas Cooled Reactor)**
(see Reactors (Peach Bottom Power))
- Reactors (Humboldt Bay Power)**
fuel element fabrication, 70
- Reactors (Latina)**
fuel element transportation to UK, 74-6
- Reactors (Molten Salt Experiment)(MSRE)**
fuel processing by fluoride volatility, 94-7, 211-14
processing facility design, 211-14
- Reactors (Organic Moderated, Experiment)(OMRE)**
fuel dissolution, 12
- Reactors (Peach Bottom Power (HTGR))**
fuel dissolution, 12
fuel element processing by pyrochemical processes, 216-17
fuel processing, 209
- Reactors (Shippingport Pressurized Water)**
fuel processing, 10
- Reactors (Tokai-Mura)**
fuel element transportation to UK, 74-6
- Reactors (Turret)**
(see Reactors (UHTREX))
- Reactors (UHTREX)**
fuel dissolution, 12
- Reactors (Ultra High Temperature, Experiment)**
(see Reactors (UHTREX))
- Recuplex Process**
accident on Apr. 7, 1962, 240
- Reduction-oxidation meters**
description, 204
- Refractory oxides**
dissolution, 11-12
- Reprocessing plants**
(see specific processes; Commercial facilities)
- Resistance meters**
description, 203
- Rhenium fluorides (ReF₇)**
preparation, 211
- Rivers and streams**
waste disposal into, 48
- Rocky Flats Plant**
accident, June 14, 1963, 65-7
- Rubidium fluorides**
reactions with WF₆, 25
reactions with UF₆, 25
- Ruthenium**
removal by electrodeionization, 40
removal by electrodialysis, 40
removal by ion exchange, 39-40
- Ruthenium-106**
removal by ion exchange, 219
- S
- Safety, 65-67, 133-36, 239-41**
waste disposal, 120-21
- Salt-cycle process, 31-4, 103-4, 169**
- Salt mines**
storage of calcined wastes in, 117-18
- SAP**
dissolution, 10-11
- Savannah River Plant**
anion-exchange resin fire, 136-37
processing economics, 72-3
- Selenium fluorides (SeF₆)**
thermodynamic properties, 210-11

REACTOR FUEL PROCESSING

- Shales
 hydraulic fracturing, 116-17
- Shears, 8
- Shipping
 spent fuel elements, 143
- Shipping casks
 EBR-II Fuel Cycle Facility, 98
 specifications, 73
- Silex Process, 70
- Sintered aluminum products
 (see SAP)
- Sintering
 UC, properties, 128
- Skull reclamation process, 28, 99, 163-65
 development, 215-16
 flow sheet, 216
 operation, 216
- Sodium
 ThCl_4 reduction, 140
- Sodium chloride systems ($\text{MgCl}_2\text{-KCl-NaCl}$)
 (fused)
 use in liquid metal-fused salt extraction processes, 166-67
- Sodium fluoride systems (LiF-NaF-ZrF_4)
 (fused)
 corrosion of INOR-8, 159-61
- Sodium fluorides
 UF₆ adsorption, 23-5
- Soils
 thermal conductivity, 47
- Sol-gel process, 58-60, 129-30
- Solidification, 112-16
 of high level wastes by calcination, 223-27
 in-tank, of waste solutions, 222-23
 in underground tanks, 45-7
- Solvent extraction processes, 13-14, 79-82, 148-51, 198-204
 development of phosphonate solvents, 13
 waste processing, 118-19
- Spent fuels
 transportation costs, 2-3
- Stainless steel systems (stainless steel- UO_2 cermetts)
 dissolution, 12-13
 uranium recovery by fluoride volatility processes, 156
- Stainless steels
 corrosion by liquid Cd-Mg-Zn alloy, 167
 corrosion by high level waste solutions, 221
- Stainless steels (304)
 corrosion by glass forming systems, 42-3
- Stainless steels (304L)
 corrosion, 10
- Stainless steels (309 SCb)
 dissolver construction, 8-9
- Stainless steels (405)
 corrosion by liquid Cd-Mg-Zn alloy, 30
- Steam
 reactions with UC, 79
- Steels (carbon)
 corrosion by liquid Cd-Mg-Zn alloy, 30
- Storage
 of high level wastes, 117-18, 120-21, 221
 solidification of intermediate wastes, in-tank, 222-23
- Strontium
 removal by foam separation, 220
 removal by ion exchange, 39-40
 separation from Purex process wastes, 47-8
- Strontium-90
 hazards from processing plant
 accidents, 5
 removal by ion exchange, 219
 separation from wastes, 111, 180
- Sulfur fluorides (SF₆)
- thermodynamic properties, 210-11
- Sulfuric acid
 magnesium dissolution, 78
 UO_2 -stainless steel cermet dissolution, 12-13
- Sulfuric acid systems ($\text{HNO}_3\text{-H}_2\text{SO}_4$)
 UC disintegration, 147-48
- Surface waters
 waste disposal in, 120
- T
- Tanks
 storage of high level wastes in, 221
- Tantalum
 corrosion by liquid metals, 30, 102
- Tantalum fluorides (TaF_5)
 thermodynamic properties, 211
- TBP Process
 effects of additives on degradation products, 13
- Tellurium fluorides (TeF_6)
 removal from gas streams, 25-6
- Tennessee
 proposal for control over radioactive materials, 194
- Thorium
 electrolysis in fused salts, 29
 fuel cycle economics, 142-43
 oxidation by combustion, 20
 reactions with H₂S, 61-2
 reduction, 29
 reduction from ThCl₄, 130
 separation from Be and U, flowsheet, 196
- Thorium alloys (Mg-Th)(liquid)
 use in liquid metal-fused salt extraction processes, 167-68
- Thorium alloys (Th-Zn)
 thermodynamics, 101
- Thorium carbide systems (ThC-UC)
 dissolution, 12
- Thorium carbides ((Th,U)C)
 coating of particles with ceramics, 54-5, 61
 phase diagrams, 61
 preparation, 60
- Thorium ceramics
 preparation by arc casting, 61
- Thorium chloride (ThCl₄)
 production, 130
- Thorium fluorides (ThF₄)
 surface tension, 102
 thermodynamic properties, 211
- Thorium nitrates
 conversion to ThO₂, 58-60
- Thorium oxide systems (BeO-ThO₂-UO₂)
 dissolution, 196
- Thorium oxide systems (ThO₂-UO₂)
 dissolution, 12, 147
- Thorium oxide systems (ThO₂-UO₂-graphite)
 processing by fluoride volatility processes, 208-9
- Thorium oxides (ThO₂)
 conversion to (Th,U)C₂, 60-1
 design of liquid crucible, 102
 dissolution, 11-12
 preparation from Th(NO₃)₄, 58-60
 production of powder, 129-30
 sintering properties, 129-30
- Thorium sulfides
 preparation, 61-2
- Tin (liquid)
 corrosion of Nb, Ta, Y, and Inconel, 102
- Titanium
 corrosion by glass forming systems, 42-5
- Titanium oxide systems (MgO-TiO₂)
- cell for Pu reduction, 168
- Tokai-Mura Reactor
 (see Reactors (Tokai-Mura))
- Tramex process, 199
- Transportation
 irradiated fuel elements, economics, 73-6
- Tributyl phosphate
 radiation effects, 13
- Tributyl phosphate systems (CCl₄-TBP)
 solvent extraction flow sheet, 80-1
- Trilaurylamine
 Np extraction, 198
- Tritium
 disposal of wastes at ORNL, 37-8
- Trombay Fuel Reprocessing Plant, 70
- Tubes (Zircaloy)
 cutting, 8
- Tungsten
 corrosion by fused UC, 108
 corrosion by liquid Zn, 30
 corrosion by liquid Zn alloys, 30
 crucibles, fabrication, 165
 crucibles, for use in skull reclamation process, 28, 165
- Tungsten carbide
 corrosion by fused UC, 108
- Tungsten fluorides (WF₆)
 reactions with CsF, LiF, KF, and RbF, 25
- Turbidity meters
 description, 201
- Turret Reactor
 (see Reactors (UHTREX))
- U
- UHTREX Reactor
 (see Reactors (UHTREX))
- UKAEA
 commercial fuel processing, 142
- Ultra High Temperature Reactor Experiment
 (see Reactors (UHTREX))
- Underground storage
 waste disposal, 120-21
- UNH
 (see Uranyl Nitrates ($\text{UO}_2(\text{NO}_3)_2 \cdot 4\text{H}_2\text{O}$))
- United Kingdom
 patents, listing of, 6
- United Nuclear Corp.
 criticality accident at Wood River Junction, R. I. plant, 133-35, 239-40
- Uranium
 conversion to UC, 53, 236-37
 decontamination with liquid Cu-Mg alloys, 168
 dissolution in HF-N₂O₄ systems, 18
 electrolysis in fused salts, 29
 electrolytic reduction from UO₂, 235
 electrolytic separation from Pu, 31-2
 extraction with CCl₄-TBP, 80-1
 nitridation, 55
 oxidation by combustion, 20
 production from UF₄, 234-35
 reactions with H₂S, 57-8
 reactions with PH₃, 57
 recovery by liquid metal-fused salt extraction processes, 166-67
 recovery from Pu by fluoride volatility, 93-4
 recovery by salt-cycle process, 31-4
 reduction, 29, 101
 recovery by skull reclamation process, 163-65
 separation from alloys, 19-20
 separation from Be and Th, flow sheet,

- 196
 solubility in amines, 13-14
 solubility in liquid metals, 29-30
 thermal capacity of gamma between
 1205-1394°K, 102
- Uranium (enriched)
 processing by volatility processes,
 19-20
- Uranium (liquid)
 surface tension, 102
- Uranium-233
 fuel cycle economics, 142-43
 separation by fluoride volatility, 94-7
- Uranium alloys (Al-U)
 dissolution, 18
 recovery by fluoride volatility
 processes, 152-56
- Uranium alloys (Pu-U)
 conversion to PuC-UC systems, liquid
 metal process, 236
- Uranium alloys (U-Zircaloy-2)
 processing by volatility processes,
 19-20
- Uranium alloys (U-Zn)
 thermodynamics, 101
- Uranium alloys (U-Zr)
 recovery by fluoride volatility
 processes, 152-56, 207-8
 processing by Nitrofluor process,
 206-7
- Uranium carbide systems (PuC-UC)
 preparation, 187-88
 preparation from PuO_2 - UO_2 systems,
 carbothermic, 236
 preparation from Pu-U alloy, liquid
 metal process, 236
- Uranium carbide systems (ThC-UC)
 dissolution, 12
- Uranium carbides
 fuel cycle economics, 143
- Uranium carbides (UC)
 disintegration, 147-48
 preparation from U, 53, 236-37
 preparation from UCl_3 in fused salts, 236
 reactions with steam, 79
 sintering properties, 237
- Uranium carbides ((Th,U)C₂)
 coating of particles with ceramics,
 54-5, 61
 phase diagrams, 61
 preparation, 60
- Uranium carbides (UC)
 conversion to UN, 106-8
 decontamination by CARBOX Process,
 169-70
 disintegration in HNO_3 - SO_4 , 147-48
 melting, 106-8
 preparation and properties, 126-29
 preparation from uranium, 53, 236-37
 preparation from UO_2 , 53
 reactions with steam, 79
 sintering properties, 54
- Uranium carbides (UC₂)
 coating of particles with ceramics, 54-5
- Uranium carbides (UC)fused)
 corrosive effects on container materials,
 108
- Uranium carbonitrides
 preparation, 56
- Uranium chlorides
 volatilization, 19-20
- Uranium chlorides (UCl_3)
 conversion to UC in fused salt, 236
 conversion to UF_4 , 19-20
 reactions with F_2 , 88-90
 reactions with HF, 19-20
- Uranium chlorides (UCl_4)
 production, 21
- Uranium chlorides (UCl_6)
 production, 21
- production, 21
- Uranium fluoride complexes (UF_4 .
 NH_4F)
 decomposition, 125-26
- Uranium fluorides (UF₃)
 thermodynamic properties, 211
- Uranium fluorides (UF₄)
 conversion from UCl_3 , 19-20
 conversion to UF_4 , 19-20
 conversion from UO_2 , 92-3, 231
 dissolution, 10
 production, 125
 production from uranium concentrates,
 52-3
 reactions with F_2 , 19-20
 reduction to metal, 234-35
 reduction to UO_2 in fused salts, 104-6,
 232-33
 surface tension, 102
- Uranium fluorides (UF₆)
 preparation, 210
 thermodynamic properties, 210-11
- Uranium fluorides (UF₇)
 analysis for PuF_6 , 23
 conversion from UCl_3 , 88-90
 conversion from UF_4 , 19-20
 conversion to UO_2 , 104-6, 184-86
 decontamination, 23-5, 159
 preparation and properties, 159
 preparation from UF_2 and ClF_3 , 28-7
 reactions with CsF , LiF , KF, and RbF ,
 25
 reduction to UF_4 , 126
 volatilization, 18-19
- Uranium hydrides
 preparation in skull-reclamation
 process, 29
- Uranium nitride systems (PuN-UN)
 preparation, 188
- Uranium nitrides (UN)
 preparation, 55-7, 106-8
 properties, 56-7
 sintering properties, 237
- Uranium oxide systems (BeO- ThO_2 - UO_2)
 dissolution, 196
- Uranium oxide systems (PuO_2 - UO_2)
 conversion to PuC-UC systems,
 carbothermic, 236
 dissolution, 11
 fluoride volatility processing, 94, 156-58
 recovery by salt-cycle process, 103-4,
 169
- Uranium oxide systems (stainless steel-
 UO_2 cermets)
 dissolution, 12-13
 uranium recovery by fluoride volatility
 processes, 156
- Uranium oxide systems (ThO_2 - UO_2)
 dissolution, 12, 147
- Uranium oxide systems (ThO_2 - UO_2 -graphite)
 processing by fluoride volatility
 processes, 208-9
- Uranium oxide systems (UO_2 -graphite)
 processing by fluoride volatility
 processes, 208-9
- Uranium oxides
 conversion to UF_6 , 159
 reduction to UO_2 , 50
- Uranium oxides (UO_2)
 (see also Fuel elements (UO_2))
 chlorination with CCl_4 , 91-2
 coating, 233-34
 conversion to ((Th,U)C₂), 60-1
 conversion to UC, 53
 conversion to UF_4 , 92-93, 231
 dissolution, 11-12, 79
 oxidation to U_3O_8 , 32
 preparation from UF_4 in fused salts,
 232-33
- preparation from UF_6 , 184-86
 preparation from UO_2CO_3 , 231-32
 preparation from UO_3 , 230-31
 preparation from U_4O_9 , 231
 processing by fluoride volatility
 processes, 92-4, 209-10
 pulverization by oxidation and reduc-
 tion, 169
 reduction from higher oxides, 50, 183-84
 reduction to metal, electrolytic, 235
 reduction to UC, 53, 127-28
 reduction to UN, 56
 sintering, 233
 sintering properties, 50-1
 solubility in HNO_3 , 11-12, 79
- Uranium oxides (UO_3)
 hydrate formation, 124-25
 preparation and properties, 124-25
 preparation from UNH, 124, 230
 reduction to UO_2 , 183-84, 230-31
- Uranium oxides (U_3O_8)
 reduction to UO_2 , 183-84
- Uranium oxides (U_4O_9)
 fluorination, 21
 preparation from UO_3 , 32
 preparation from UO_3 fuel elements, 22
 reduction to UO_2 , 183-84
 solubility in fused LiCl-KCl, 32
- Uranium oxides (U_6O_{11})
 reduction to UO_2 , 183-84, 231
- Uranium phosphides
 preparation, 57
 properties, 57
- Uranium sulfides (US)
 preparation, 57-8
 sintering properties, 57-8
- Uranyl carbonate
 conversion to UO_2 , 231-32
- Uranyl fluoride
 reactions with ClF_3 , 26-7
- Uranyl nitrates ($\text{UO}_2(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$)
 conversion to UF_4 , 52-3
 conversion to UO_3 , 124, 230

V

- Vacuum drying, 111-12
- Viscometers
 design of oscillating crucible, 102
- Volatility processes, 18-27, 70-1, 88-97,
 152-61, 206-14
 enriched fuel processing, 88-94

W

- Waste Calcining Facility, 48
- Waste disposal, 7, 37-49, 111-23, 172-82,
 219-29
 plutonium recovery, 190
- Western Europe
 waste disposal, 121
- Windcale fuel processing plant
 design, 69-70
- Winlo process, 52-3
- Wood River Junction, R. I.
 nuclear excursion, July 24, 1964, 135-36,
 239-40

Y

- Yttrium
 corrosion by liquid metals, 102
- Yttrium fluorides (YF₃)
 thermodynamic properties, 210-11

REACTOR FUEL PROCESSING

Z

Zinc
 distillation in skull-reclamation process, 28
Zinc (liquid)
 corrosion of container materials, 30
 corrosion of Nb, Ta, Y, and Inconel, 102
 uranium solubility, 29-30
Zinc alloys (Cd-Mg-Zn)(liquid)
 corrosion of container materials, 30
 corrosion of stainless steels, 167
 use in liquid metal-fused salt extraction processes, 166-67
Zinc alloys (liquid)
 corrosion of container materials, 30
Zinc alloys (Pu-Zn)
 thermodynamics, 101

Zinc alloys (Th-Zn)
 thermodynamics, 101
Zinc alloys (U-Zn)
 thermodynamics, 101
Zircaloy alloy
 cladding removal by chloride volatility, 157
 corrosion by high level waste solution, 221
 dissolution in NH₄F, 146
Zirconium
 recovery from waste solutions, 180
 removal by ion exchange, 39-40
 volatilization with HCl, 19-20
Zirconium-95
 removal by ion exchange, 219
Zirconium alloys
 dissolution, 9-10, 18

Zirconium alloys (U-Zircaloy-2)
 processing by volatility, 19-20
Zirconium alloys (U-Zr)
 dissolution in NH₄F, 146-47
 processing by fluoride volatility processes, 152-56, 207-8
 processing by Nitrofluor process, 207-8
Zirconium chlorides
 volatility, 19-20, 157
Zirconium fluoride systems (LiF-NaF-ZrF₄) (fused)
 corrosion of INOR-8, 159-61
Zirconium fluorides (ZrF₄)
 removal, 10
 vapor pressure, 211
Zirconium phosphate
 gels, Pu adsorption on, 197

LEGAL NOTICE

This journal was prepared under the sponsorship of the U. S. Atomic Energy Commission. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this journal, or that the use of any information, apparatus, method, or process disclosed in this journal may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this journal.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

