A guided tour for analyzing and quantifying single-molecule localization microscopy data

Part 1: Analysing raw SMLM data

NEUBIAS@Home webinar 11/06/2020

Siân Culley a.k.a. @SuperResoluSian

Overview

- Basic principles of SMLM analysis
- Analysis for sparse datasets
- Analysis for dense datasets
- Quality control
- 3D localisation

Basic principles of SMLM

subset of emitting molecules Diffraction-limited image Frame 1 Frame 2 Frame n Induce fluorophore 'blinking' 5µm **Detection and localisation** Render superresolution image

Individual frames containing small

Detection and localization

- Approximate molecule locations = detection
- Accurate determination of molecule centre = localization

(x, y) coordinates of molecule within image

e.g. (45.29nm, 53.75nm)

ThunderSTORM

- Fiji plugin, all GUI-based
- Can handle 2D and 3D data
- Has options for high density analysis
- Easy to export particles table
- Generates protocol .txt files

Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software

Daniel Sage 1,22*, Thanh-An Pham 1,22, Hazen Babcock 2, Tomas Lukes, Thomas Pengo 5, Jerry Chao ^{⊙6,7}, Ramraj Velmurugan^{7,8}, Alex Herbert ^{⊙9}, Anurag Agrawal ^{⊙10}, Silvia Colabrese^{1,11}, Ann Wheeler12, Anna Archetti13, Bernd Rieger 14, Raimund Ober6,7,15, Guy M. Hagen 16, Jean-Baptiste Sibarita 17,18, Jonas Ries 19, Ricardo Henriques 20, Michael Unser and Seamus Holden @21,22*

Sage et al, Nature Methods (2019)

BIOINFORMATICS APPLICATIONS NOTE Vol. 30 no. 16 2014, pages 2389–2390 doi:10.1093/bioinformatics/btu202

Bioimage informatics

Advance Access publication April 25, 2014

ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging

Martin Ovesný, Pavel Křížek, Josef Borkovec, Zdeněk Švindrych and Guy M. Hagen* Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Prague 12800, Czech Republic

Associate Editor: Jonathan Wren

Supplementary data – bonus maths, user manual https://github.com/zitmen/thunderstorm/wiki

Fiji install:

Help > Update... > Manage Update Sites

Data 'density'

Real experimental datasets from http://bigwww.epfl.ch/smlm/datasets/index.html

- Emitters are all very well separated
- Few emitters per µm²
- Typically acquired over long period of time (i.e. large number of frames)
- Drift can be severe

Low density (sparse)

High density

- Emitters overlap
- Several emitters per µm²
- Often fewer frames
- From live cells? Watch out for movement

2µm

Particles tables

central coordinate

width of Gaussian

amplitude and offset of Gaussian

 χ^2 goodness-of-fit

uncertainty

 $\langle (\Delta \mathbf{x})^2 \rangle = \frac{2\sigma^2 + a^2/12}{N} + \frac{8\pi\sigma^4 b}{a^2 N^2}$

Analysis woes for high-density data...

Raw data

Detections

Rendered image

Widths of fitted Gaussians ('Plot Histogram' button)

Low

density

High density data in ThunderSTORM

- Just filtering out 'bad' detections?
- ThunderSTORM: multi-emitter fitting

ThunderSTORM alternatives...

HD algorithms...

Pre-processing high density data

- HAWK wavelet filtering
- Makes datasets more 'sparse'

nature methods BRIEF

BRIEF COMMUNICATION
https://doi.org/10.1038/s41592-018-0072-5

Artifact-free high-density localization microscopy analysis

Richard J. Marsh, Karin Pfisterer, Pauline Bennett, Liisa M. Hirvonen, Mathias Gautel, Gareth E. Jones and Susan Cox.

Download from: www.coxphysics.com

Example raw highdensity frame

Example high-density frame after HAWK

Non-particles table approaches

• SOFI, SRRF...

RESEARCH ARTICLE

Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI)

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein

PNAS December 29, 2009 106 (52) 22287-22292; https://doi.org/10.1073/pnas.0907866106

Edited by John W. Sedat, University of California, San Francisco, CA, and approved October 29, 2009 (received for review July 15, 2009)

Open Access | Published: 12 August 2016

Fast live-cell conventional fluorophore nanoscopy with ImageJ through superresolution radial fluctuations

Nils Gustafsson, Siân Culley, George Ashdown, Dylan M. Owen, Pedro Matos Pereira & Ricardo Henriques ☑

Nature Communications 7, Article number: 12471 (2016) | Cite this article

10k Accesses | 141 Citations | 95 Altmetric | Metrics

SRRF analysis of high density data

- SRRF is available as a Fiji plugin
- Used for very high density data
- Image ≈ probability map, not intensity or molecule coordinates

Artefacts in SMLM reconstructions

- Merging of closely-separated structures
- Incomplete representation of structures
- Intensity non-linearities

Low density data – filtering around fiducial marker

2µm

Using SQUIRREL to assess image quality

- Can compare different algorithm results
- Can map resolution across image
- Can test how many frames you need to represent an image

github.com/superresolusian/ NanoJ-SQUIRREL/releases

Latest release

v1.1-alpha

3D data

- You can't get axial localizations unless you used specific optics to encode axial information
- You need to have calibration data for your microscope

Algorithms with 3D data

- ThunderSTORM is good for astigmatism
- SMAP can do all 3D modalities (very high performance for biplane)

Published: 09 April 2018

Real-time 3D single-molecule localization using experimental point spread functions

Yiming Li, Markus Mund, Philipp Hoess, Joran Deschamps, Ulf Matti, Bianca Nijmeijer, Vilma Jimenez Sabinina, Jan Ellenberg, Ingmar Schoen & Jonas Ries [™]

Nature Methods 15, 367–369(2018) Cite this article

3400 Accesses | 36 Citations | 55 Altmetric | Metrics

General advice for SMLM analysis

Walk before you run

 Test analysis on small crops of data before running on whole datasets

Get familiar with one piece of software

Report what you did!

- What algorithm did you use?
- What parameters did you use?
- How are your images rendered?

 Did you test any other algorithms/parameters – how did you decide which was best?