TITANIC - Machine Learning from Disaster

N M A Chamindu Nipun

Titanic - Machine Learning from Disaster

INTRODUCTION

Titanic disaster is one of the most famous shipwrecks in the world history.

Titanic was a British cruise liner that sank in the North Atlantic Ocean a few hours after colliding with an iceberg.

While there are facts available to support the cause of the shipwreck, there are various speculations regarding the survival rate of passengers in the Titanic disaster.

Over the years, data of survived as well as deceased passengers has been collected.

The dataset is publically available on a website called Kaggle.com.

This dataset has been studied and analyzed using Logistic Regression machine learning algorithm.

Pre-Processing

Model Training

RESULTS

Description of Data

INTRODUCTION

Code Link:

https://github.com/Chamindu77/TITANIC-Machine_Learning_from_Disaster/blob/main/titanic_ptoject.ipynb

Dataset: Titanic - Machine Learning from Disaster

O No. Data Points: 891

O No. Rows & Columns:

(891, 12)

Pre-Processing

Model Training

RESULTS

Description of Data

INTRODUCTION

O Data Dictionary:

Variable	Definition	Key
survival	Survival	0 = No, 1 = Yes
pclass	Ticket class	1 = 1st, 2 = 2nd, 3 = 3rd
sex	Sex	
Age	Age in years	
sibsp	# of siblings / spouses aboard the Titanic	
parch	# of parents / children aboard the Titanic	
ticket	Ticket number	
fare	Passenger fare	
cabin	Cabin number	
embarked	Port of Embarkation	C = Cherbourg, Q = Queenstown, S = Southampton

Pre-Processing

Model Training

RESULTS

Pre-Processing Data

ieee.org

Pre-Processing

Model Training

RESULTS

Pre-processing Data

INTRODUCTION

Pre-Processing

Model Training

RESULTS

Describe Dataset

Pre-Processing

titanic_df.head()

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

Model Training

RESULTS

Describe Dataset

Pre-Processing

titanic_df.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Model Training

RESULTS


```
custom_palette = sns.color_palette("viridis", 3)
sns.countplot(x='Pclass', hue='Survived', data=titanic_df_3, palette=custom_palette)
# Group DataFrame by 'Pclass' and calculate mean survival rate for each class
titanic_df_3.groupby(['Pclass'], as_index=False)['Survived'].mean()
```

Pre-Processing

Pclass	Survived
1	0.629630
2	0.472826
3	0.242363

Model Training

RESULTS


```
custom_palette = sns.color_palette("viridis", 3)
sns.countplot(x='Sex', hue='Survived', data=titanic_df_6, palette=custom_palette)
# Group the DataFrame by the 'Sex' column and calculate the mean survival rate for gender
```

Pre-Processing

titanic df 6.groupby(['Sex'], as index=False)['Survived'].mean()

Model Training

RESULTS

Survival vs Age in years

sns.displot(titanic_df_6, x='Age', col='Survived', binwidth=10, height=5)

Pre-Processing

Model Training

RESULTS

CONCLUSION

11

Survival vs siblings

INTRODUCTION

```
custom_palette = sns.color_palette("viridis", 3)
sns.countplot(x='SibSp', hue='Survived', data=titanic_df_6, palette=custom_palette)
```

Group the DataFrame by the 'SibSp' column and calculate the mean survival rate for each unique value titanic df 6.groupby(['SibSp'], as index=False)['Survived'].mean()

SibSp	Survived
0	0.345395
1	0.535885
2	0.464286
3	0.250000
4	0.166667
5	0.000000
8	0.000000

Pre-Processing

Model Training

RESULTS


```
custom_palette = sns.color_palette("viridis", 3)
sns.countplot(x='Parch', hue='Survived', data=titanic_df_6, palette=custom_palette)
# Group the DataFrame by the 'Parch' column and calculate the mean survival rate for each unique value
```

Pre-Processing

titanic_df_6.groupby(['Parch'], as_index=False)['Survived'].mean()

	Parch	Survived
0	0	0.343658
1	1	0.550847
2	2	0.500000
3	3	0.600000
4	4	0.000000
5	5	0.200000
6	6	0.000000

Model Training

RESULTS

sns.displot(titanic_df_9, x='Fare', col='Survived', binwidth=80, height=5)

Pre-Processing

Model Training

RESULTS


```
# Calculate the mean survival rate for passengers grouped by their port of embarkation
titanic_df_10.groupby(['Embarked'], as_index=False)['Survived'].mean()

custom_palette = sns.color_palette("viridis", 3)
sns.countplot(x='Embarked', hue='Survived', data=titanic_df_10, palette=custom_palette)
```

Pre-Processing

Embarked	Survived
С	0.553571
Q	0.389610
S	0.339009

Model Training

RESULTS

Dropping Columns

INTRODUCTION

□ PassengerId Column

Drop the 'PassengerId' column from the DataFrame 'titanic_df_3'
titanic_df_3 = titanic_df_3.drop(columns = 'PassengerId',axis=1)

☐ Ticket Column

```
# drop Ticket columns
titanic_df_9 = titanic_df_9.drop(columns = 'Ticket',axis=1)
```

Cabin Column

```
# drop Cabin columns
titanic_df_10 = titanic_df_10.drop(columns = 'Cabin',axis=1)
```

Pre-Processing

Model Training

RESULTS


```
# create family size column using SibSp column and Parch column
titanic_df_7['Family_Size'] = titanic_df_7['SibSp'] + titanic_df_7['Parch'] + 1
```

Calculate the mean survival rate for passengers grouped by their family size
titanic_df_7.groupby(['Family_Size'], as_index=False)['Survived'].mean()

Family_Size	Survived
1	0.303538
2	0.552795
3	0.578431
4	0.724138
5	0.200000
6	0.136364
7	0.333333
8	0.000000
11	0.000000

Pre-Processing

Model Training

RESULTS


```
titanic_df_3['Name']
                                 Braund, Mr. Owen Harris
0
       Cumings, Mrs. John Bradley (Florence Briggs Th...
                                  Heikkinen, Miss. Laina
            Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                Allen, Mr. William Henry
                                   Montvila, Rev. Juozas
886
                            Graham, Miss. Margaret Edith
887
                Johnston, Miss. Catherine Helen "Carrie"
888
                                   Behr, Mr. Karl Howell
889
890
                                     Dooley, Mr. Patrick
Name: Name, Length: 891, dtype: object
```

Pre-Processing

titanic_df_4['Title'] Mr Mrs Miss Mrs Mr . . . Rev 886 Miss 887 888 Miss 889 Mr 890 Mr Name: Title, Length: 891, dtype: object **Model Training**

RESULTS

Create Columns – Title

INTRODUCTION

	Title
0	Capt
1	Col
2	Don
3	Dr
4	Jonkheer
5	Lady
6	Major
7	Master
8	Miss
9	Mlle
10	Mme
11	Mr
12	Mrs
13	Ms
14	Rev
15	Sir
16	the Countess

ieee.org

```
# Map titles to corresponding categories:
#military - Capt, Col, Major
#noble - Jonkheer, the Countess, Don, Lady, Sir
#unmaried Female - Mlle, Ms, Mme
# Replace titles with corresponding categories
titanic_df_5 = titanic_df_4.copy()
titanic_df_5['Title'] = titanic_df_5['Title'].replace({
    'Capt': 'Military',
    'Col': 'Military',
    'Major': 'Military',
    'Jonkheer': 'Noble',
    'the Countess': 'Noble',
    'Don': 'Noble',
    'Lady': 'Noble',
    'Sir': 'Noble',
    'Mlle': 'Noble',
    'Ms': 'Noble'.
    'Mme': 'Noble'
```

Pre-Processing

	Title	count			
0	Dr	7			
1	Master	40			
2	Military	5			
3	Miss	182			
4	Mr	517			
5	Mrs	125			
6	Noble	9			
7	Rev	6			

Model Training

RESULTS

Create Columns – Title

INTRODUCTION

	Title
0	Capt
1	Col
2	Don
3	Dr
4	Jonkheer
5	Lady
6	Major
7	Master
8	Miss
9	Mlle
10	Mme
11	Mr
12	Mrs
13	Ms
14	Rev
15	Sir
16	the Countess

ieee.org

```
# Map titles to corresponding categories:
#military - Capt, Col, Major
#noble - Jonkheer, the Countess, Don, Lady, Sir
#unmaried Female - Mlle, Ms, Mme
# Replace titles with corresponding categories
titanic_df_5 = titanic_df_4.copy()
titanic_df_5['Title'] = titanic_df_5['Title'].replace({
    'Capt': 'Military',
   'Col': 'Military',
    'Major': 'Military',
    'Jonkheer': 'Noble',
    'the Countess': 'Noble',
   'Don': 'Noble',
    'Lady': 'Noble',
    'Sir': 'Noble',
    'Mlle': 'Noble',
    'Ms': 'Noble'.
    'Mme': 'Noble'
```

Pre-Processing

	Title	count		
0	Dr	7		
1	Master	40		
2	Military	5		
3	Miss	182		
4	Mr	517		
5	Mrs	125		
6	Noble	9		
7	Rev	6		

Model Training

RESULTS

Checking NULL Values

INTRODUCTION

□ Age column

☐ Cabin ☐ Drop

■ Embarked column

Categorical Values

Mode

Pre-I	Proce	essing
-------	-------	--------

titanic_df.isnull().sum()

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2
dtype: int64	

Model Training

RESULTS

Filling Missing Values

INTRODUCTION

□ Age column

Fill missing values in the 'Age' column with the mean age of all passengers
titanic_df_1['Age'].fillna(titanic_df_1['Age'].mean(), inplace=True)

■ Embarkation column

Fill missing values in the 'Embarked' column with the mode of the column
titanic_df_2['Embarked'].fillna(titanic_df_2['Embarked'].mode()[0], inplace=True)

Pre-Processing

Model Training

RESULTS

Outlier Detection

INTRODUCTION

- ☐ Age Column
- ☐ Fare Column
- ☐ Family_Size Column

$$z = \frac{x - \mu}{\sigma}$$

$$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$$

$$\mu = \frac{\sum x}{N}$$

Pre-Processing

Model Training

RESULTS

Outlier Detection

INTRODUCTION

☐ Age Column

```
Step - 01
```

```
age_mean = np.mean(titanic_df_10['Age'])
age_mean

29.69911764705882

age_std = np.std(titanic_df_10['Age'])
age_std

12.994716872789033
```

Step - 02

```
titanic_df_11 = titanic_df_10.copy()
titanic_df_11['Age_z_score'] = (titanic_df_11['Age'] - age_mean)/age_std
```

Step - 03

```
titanic_df_11['Age_z_score'].min()
-2.2531554887793948
```

```
titanic_df_11['Age_z_score'].max()
3.8708717431367314
```

Pre-Processing

Model Training

RESULTS

Outlier Detection

INTRODUCTION

Step - 04

```
age_outlier_indexes = []
age_outlier_indexes.extend(titanic_df_11.index[titanic_df_11['Age_z_score']>3].tolist())
age_outlier_indexes
[96, 116, 493, 630, 672, 745, 851]
Threshold Value
```

Pre-Processing

Step - 05

titanic_df_11_new = titanic_df_11.drop(titanic_df_11.index[age_outlier_indexes])

Model Training

Step - 06

titanic_df_12 = titanic_df_11_new.drop('Age_z_score', axis=1)

RESULTS

Feature Scaling

INTRODUCTION

Normalization

$$x' = rac{x - x_{\min}}{x_{\max} - x_{\min}}$$

Standardization

$$x' = \frac{x - \mu}{\sigma}$$

Pre-Processing

Model Training

RESULTS

CONCLUSION

Accuracy

- **☐** Age Column
- ☐ Fare Column

```
titanic_df_17 =titanic_df_16.copy()

scaler = MinMaxScaler(feature_range=(0, 10))

numeric_columns = ['Age', 'Fare']

for column in numeric_columns:
    column_data = titanic_df_17[column].values.reshape(-1, 1)
    scaled_data = scaler.fit_transform(column_data)
    titanic_df_17[column] = scaled_data
```

Pre-Processing

Model Training

RESULTS

Data Encoding

INTRODUCTION

- **☐** Label Encoding
- **☐** One Hot Encoding

Pre-Processing

Model Training

RESULTS

Data Encoding using One Hot Encoding

- ☐ Embarked Column Pclass Column
- ☐ Sex Column ☐ Title Column

```
titanic df 18 = titanic df 17.copy()
# Select categorical columns
categorical columns = ['Pclass', 'Sex', 'Embarked', 'Title']
# Extract categorical features
categorical data = titanic df 18[categorical columns]
# Initialize OneHotEncoder
one hot encoder = OneHotEncoder(sparse=False, drop='first')
# Fit and transform the categorical features
encoded data = one hot encoder.fit transform(categorical data)
# Get the feature names from OneHotEncoder
feature names = one hot encoder.get feature names out(categorical columns)
# Create DataFrame with encoded features
encoded df = pd.DataFrame(encoded data, columns=feature names, index=titanic df 18.index)
# Drop original categorical columns from titanic df 18
titanic df 18.drop(columns=categorical columns, inplace=True)
# Concatenate titanic df 18 with encoded df
titanic df 18 = pd.concat([titanic df 18, encoded df], axis=1)
```

Pre-Processing

Model Training

RESULTS

CONCLUSION

29

Feature Selection

INTRODUCTION

- ☐ Correlation Matrix and Heat Map Visualization
- Mutual Information Feature Selection

Pre-Processing

Mutual Information

- Captures both linear and non-linear relationships between variables
- Considers the direct relationship between features and the target variable
- Computationally more expensive compared to correlation matrix
- May require tuning parameters like the number of features to select (k)

Correlation Matrix

- Helps identify highly correlated features
- Easy to understand and visualize
- Only captures linear relationships between variables
- May not identify non-linear relationships

Model Training

RESULTS

☐ Correlation Matrix and Heat Map Visualization

Pre-Processing

Model Training

RESULTS

Mutual Information Feature Selection

Pre-Processing

Model Training

RESULTS

Data Balancing

INTRODUCTION

Undersampling

Oversampling

Pre-Processing

Model Training

RESULTS

CONCLUSION

SMOTE (Synthetic Minority Oversampling Technique)

ieee.org

SMOTE (Synthetic Minority Oversampling Technique)

Survived

Pre-Processing

Model Training

RESULTS

CONCLUSION

100

Curvived

Data Splitting

INTRODUCTION

Pre-Processing

Model Training

RESULTS

CONCLUSION

20%

80%

Model Evaluation Technique

Cross-validation is a technique used in machine learning to check how well a model can generalize to new, or unseen data.

Model Training

RESULTS

CONCLUSION

Testing Data

Training Data

ieee.org

Model Evaluation Technique

INTRODUCTION

■ Add K-Fold Cross-Validation Technique for Better Accuracy

Pre-Processing

```
log_reg_model = LogisticRegression()
num_splits = 3

kf = KFold(n_splits=num_splits, shuffle=True, random_state=21)

cv_scores = cross_val_score(log_reg_model, X, y, cv=kf).mean()

print("Cross-validation scores:", cv_scores)

Cross-validation scores: 0.8128904249871992
```

Model Training

RESULTS

Modifications

INTRODUCTION

Pre-Processing

Model Training

RESULTS

CONCLUSION

Parameters:

Kernal Function

Regularization Parameter

Tolerance to Convergence

Class Weight

Penalty

Solver

Multi-class Handling

Variable

Fixed

Add Hyper Parameter Tuning

```
param grid = {
        'penalty': ['l1', 'l2', 'elasticnet', 'none'],
        'C': np.logspace(-2, 2, 5),
        'solver': ['lbfgs', 'liblinear', 'saga'],
        'max iter': [100, 500, 1000],
        'l1 ratio': np.linspace(0, 1, 3),
num splits = 3
kf = KFold(n_splits=num_splits, shuffle=True, random_state=21)
grid search = GridSearchCV(log reg model, param grid, cv=kf, scoring='accuracy')
grid_search.fit(X_train, y_train)
best params = grid search.best params
cv scores = grid search.best score
best model = grid search.best estimator
print("Best Hyperparameters" )
best_params
```

Pre-Processing

Model Training

Best Hyperparameters

```
{'C': 0.01,
  'l1_ratio': 0.0,
  'max_iter': 100,
  'penalty': 'none',
  'solver': 'lbfgs'}
```

RESULTS

Performance Evaluation Metrics

INTRODUCTION

□ Accuracy

Precision

☐ Recall

☐ F1 - Score

Pre-Processing

Function Name	Formula
Accuracy	$\frac{TP + TN}{TP + TN + FP + FN}$
Precision	$\frac{TP}{TP + FP}$
Recall	$\frac{TP}{TP + FN}$
F1 score	$\frac{2.Precision.Recall}{Precision + Recall}$

Model Training

RESULTS

Key Results

☐ Before Hyper parameter Tuning

Training Accuracy: 0.8286
Training Precision: 0.7968
Training Recall: 0.7576
Training F1-score: 0.7767

Training ROC AUC Score: 0.8161

Testing Accuracy: 0.8274
Testing Precision: 0.7937
Testing Recall: 0.7576
Testing F1-score: 0.7752
Testing ROC AUC Score: 0.8151

Pre-Processing

Model Training

Key Results

■ After Hyper parameter Tuning

Training Accuracy after Hyperparameter Tuning: 0.8286
Training Precision after Hyperparameter Tuning: 0.7945
Training Recall after Hyperparameter Tuning: 0.7614
Training F1-score after Hyperparameter Tuning: 0.7776
Training ROC AUC Score after Hyperparameter Tuning: 0.8168

Testing Accuracy after Hyperparameter Tuning: 0.8333
Testing Precision after Hyperparameter Tuning: 0.7969
Testing Recall after Hyperparameter Tuning: 0.7727
Testing F1-score after Hyperparameter Tuning: 0.7846
Testing ROC AUC Score after Hyperparameter Tuning: 0.8226

INTRODUCTION

Pre-Processing

Model Training

RESULTS

Key Results

☐ After Hyper parameter Tuning

INTRODUCTION

Pre-Processing

Model Training

RESULTS

Thank You

INTRODUCTION

METHODOLOGY

RESULTS

EPICS

