Macroeconomics A: Review Session X

Modeling the Financial Sector

Gregory Auclair allan.auclair@graduateinstitute.ch

Outline

1 Bank Runs and Diamond-Dybvig (1983)

- 2 Banking Risks
 - Adverse Selection
 - Moral Hazard

Bank Runs: Diamond-Dybvig

- Questions:
 - Why are runs so prevalent?
 - Why do people hold deposits if they are susceptible to runs?
 - What type of policies can be used to prevent/reduce/mitigate runs?
- Contributions of the model
 - Provides a precise definition of liquidity
 - Shows why financial intermediaries are needed
 - Demonstrates how liquidity transformation can lead to runs

The following exposition is based on Eric Sim's notes

Basic Setup

- There are three periods, indexed by T starting at T = 0
- \blacksquare T = 0 is the 'present' and $T = \{1, 2\}$ is the 'future'
- Households are (ex-ante) identical and receive \$1 in T = 0 and will need to consume in either T = 1 or T = 2
- Idiosyncratic uncertainty: individual does not know whether she will be type 1 (consumes in T = 1) or type 2 (consume in T = 2)
- Type revealed in T = 1 and a fixed fraction $t \in [0, 1]$ of households will be type 1 and (1 t) type 2
- There are two assets
 - Cash: save \$1 and have \$1 available in either T = 1 or T = 2
 - Investment: save \$1 and have r_1 in T=1 and $r_2 \ge r_1$ in T=2

Greg Auclair Review Session X 3 / 18

Household Utility

An individual household has utility:

$$U(c)=1-\frac{1}{c}$$

Expected utility is simply the probability-weighted sum over types:

$$\mathbb{E}[U] = tU(c_1) + (1-t)U(c_2)$$

- Where c_1 and c_2 are consumption at each date depending on type
- Consumption allocations
 - Cash: $c_1 = c_2 = 1$

$$\implies \mathbb{E}[U_{cash}] = 0$$

Investment: $c_1 = r_1$ and $c_2 = r_2$

$$\implies \mathbb{E}[U_{inv}] = tU(r_1) + (1-t)U(r_2)$$

■ Household prefers investment if $\mathbb{E}[U_{inv}] > 0$ (e.g. $r_1 = 1$ and $r_2 = 2$)

Liquidity

We can think about liquidity as the discount for early liquidation of an investment

$$\ell = \frac{r_1}{r_2}$$

- Since $r_2 \ge r_1$ (by assumption) then $\ell \le 1$ for investment
- The further ℓ is from 1, the less liquid is the asset
- Cash is perfectly liquid since $\ell = 1$
- Households still prefer the less liquid investment whenever expected utility is higher than cash

Liquidation Cost

- Suppose early liquidation incurs a cost τ where $\tau \ge 0$
 - Household gets $(1 \tau)r_1$ for early liquidation
- If $r_1 = 1$ and $r_2 = 2$, the liquidity of investment is then

$$\ell = (1-\tau)\frac{1}{2}$$

■ Given that t = 1/4, utility becomes

$$\mathbb{E}[U_{inv}] = \frac{1}{4}U(1-\tau) + \frac{3}{4}U(2)$$
$$= \frac{1}{4}\left(1 - \frac{1}{1-\tau}\right) + \frac{3}{4} \times \frac{1}{2}$$

- \blacksquare $\mathbb{E}[U_{inv}] < 0$ when au > 3/5
- In this case, household will prefer cash

Greg Auclair Review Session X 6 / 18

Liquidation Cost and Returns

- Suppose $\tau = 2/3$
- This liquidation cost is high enough to discourage households from investment
- Now let's compute the expected returns to cash and investment

$$\begin{split} \mathbb{E}[\textit{R}_\textit{cash}] &= 1 \\ \mathbb{E}[\textit{R}_\textit{inv}] &= \frac{1}{4} \left(1 - \frac{2}{3}\right) \times 1 + \frac{3}{4} \times 2 = \frac{19}{12} > 1 \end{split}$$

- The household will not directly invest if the project is sufficiently illiquid, even when net returns are positive
- This is because of the idiosyncratic (individual) risk the household will be type 1 and will need to liquidate the investment early
 - Risk aversion plays a role here

Introducing Banks

- An individual household is uncertain about when she will need to consume
 - This gives rise to a preference for liquidity
- There is no uncertainty in aggregate
 - **Exactly fraction** t of households will be type 1 and 1 -t will be type 2
- Bank can pool resources from many households exploiting this lack of aggregate uncertainty
- They do this by offering households an asset that is more liquid than the investment project

Worked Example

■ The bank offers the following payout structure (assume $\tau = 0$)

$$r_{b,1} = 1.28$$
 and $r_{b,2} = 1.813$

This is more liquid than the investment

$$\frac{1.28}{1.813} = 0.706 > \frac{1}{2}$$

- Out of 100 households, 25 will need to withdraw in period T=1
- The bank puts \$100 in investment at T = 0
- It will need to liquidate $25 \times 1.28 = 32$ units of the investment to raise necessary funds in T = 1, leaving 68 invested
- The remaining investment generates 136 in income in T = 2, which can be distributed to the remaining 75 deposit holders for

$$r_{b,2}=\frac{136}{75}=1.813$$

Which Utility Is Highest?

Expected utilities:

$$\begin{split} \mathbb{E}[\textit{U}_\textit{cash}] &= 0 \\ \mathbb{E}[\textit{U}_\textit{inv}] &= \frac{1}{4} \times 0 + \frac{3}{4} \times \frac{1}{2} = \frac{3}{8} \\ \mathbb{E}[\textit{U}_\textit{bank}] &= \frac{1}{4} \left(1 - \frac{1}{1.28} \right) + \frac{3}{4} \left(1 - \frac{1}{1.813} \right) = 0.391 > \frac{3}{8} \end{split}$$

- Utility is highest from bank deposits :)
- Household willing to tolerate lower expected returns on deposits because they are more liquid than investment
- This is even starker when $\tau > 0$

Adding Bank Runs to the Example

- Let's focus on multiplicity of equilibria given expectations
 - Good equilibrium: what we just described
 - Bad equilibrium: type 2s withdraw early in T = 1 because they expect other type 2s to withdraw early as well
- The bad equilibrium will cause the bank to fail and make everyone worse off
- Say that fraction f of depositors withdraw in T = 1 where $f \ge t$
- With \$100 in deposits, bank must liquidate $128 \times f$ of the investment
- The return is distributed to the remaining depositors at T=2

$$r_{b,2}^* = \frac{(100 - 128f) \times 2}{(1 - f) \times 100}$$

■ If t > t (some type 2s withdraw), then $r_{h2}^* < 1.813$.

Good Equilibrium

- Let f^* be the expectation of each household for f
- Suppose $f^* = 1/2$, meaning that 1/3 of the type 2s withdraw earlier than needed
- In this case

$$r_{b,2}^* = \frac{(100 - 64) \times 2}{50} = 1.44$$

■ This is less than what was promised, but better than withdrawing at T = 1

$$r_{b,2} > r_{b,2}^* > r_{b,1}$$

- It is not optimal for type 2s to withdraw given this forecast
- Hence, $f^* = 1/2$ is not self-fulfilling even if believed by everyone

Bad Equilibrium

- Suppose instead $f^* = 3/4$
- Then households believe they get

$$r_{b,2}^* = \frac{(100 - 96) \times 2}{25} = 0.32$$

- This is (significantly) worse than r_1 and best to "get out now"
- But then $f^* = 3/4$ is not self-fulfilling
 - If everyone believes it, then everyone should withdraw
- So $f^* = f = 1$ is another Nash equilibrium
- It is completely rational to withdraw in T = 1 given this belief
- If everyone withdraws, the bank fails
 - It can pay \$1 per depositor in T = 1, less than the r_1 it promised
- There is some value of f^* that divides the good and bad equilibria

Dealing with Runs

- "First come, first served"
 - The first to line up are "made whole" and the last get nothing
 - This increases incentive to withdraw and withdraw early
- Suspension of convertibility
 - Simply refuse (temporarily) to convert deposits into cash
 - Economically costly and doesn't stop runs, but keeps banks solvent
- Lender of last resort
 - Banks could go to the central bank if they need cash
 - Stigma: borrowing makes banks appear weak
- Deposit insurance
 - Has more or less eliminated traditional banking panics
 - People know deposits are safe, so no reason to run
 - Banks usually pay a (small) fee for insurance, but this is much less costly than bank runs

Table of contents

1 Bank Runs and Diamond-Dybvig (1983)

- 2 Banking Risks
 - Adverse Selection
 - Moral Hazard

Adverse Selection: Stiglitz and Weiss

- Two types of borrowers:
 - type G repays with probability q_g
 - **u** type B repays with probability $q_b < q_g$
- \blacksquare Take r as the opportunity cost of funds, if lender can discriminate
 - type-G can borrow at rate r/q_g and type B at r/q_b
- Now assume the two types appear identical to lenders
- Changes in the terms of a loan (interest rate, collateral, amount) affect the mix of borrower types
- Assume a fraction g are of type G and the lender charges r_l so that

$$gq_gr_l + (1-g)q_br_l = r \quad \iff \quad r_l = r/[gq_g + (1-g)q_b]$$

- The lender attracts more type B borrowers since $r/q_q < r_l < r/q_b$
- If a higher interest rate on loans increases the type-B share, the expected return to the lender declines

Moral Hazard: Stiglitz and Weiss (Again)

- Before, borrowers differed in their underlying riskiness
- Suppose instead each borrower can choose between several projects of differing risk
- If the lender cannot monitor this choice, a moral hazard results
- Higher loan rates lead the borrower to invest in riskier projects and lower the expected return to the lender
- Suppose the borrower can invest in
 - \blacksquare project A, which paying R^a in the good state and 0 in the bad
 - lacksquare project B, which pays $R^b > R^a$ in the good state and 0 in the bad
- The probabilities of success for projects A and B are $p^a > p^b$
- Project B is the riskier project
- The expected payoff from *A* is higher: $p^aR^a > p^bR^b$

Moral Hazard (Cont.)

By investing in A, the borrower's expected return is

$$\mathbb{E}[\pi^{a}] = p^{a}[R^{a} - (1 + r_{l})L] - (1 - p^{a})C$$

- Here, *L* is the loan amount and *C* is collateral
- By investing in B, the borrower's expected return is

$$\mathbb{E}[\pi^b] = \rho^b[R^b - (1 + r_l)L] - (1 - \rho^b)C$$

It is straightforward to show that

$$\mathbb{E}[\pi^a] > \mathbb{E}[\pi^b] \iff \frac{p^a R^a - p^b R^b}{p^a - p^b} > (1 + r_l)L - C$$

- \blacksquare Assume there is some r_i^* where borrower is indifferent
 - Only when $r_l < r_l^*$ does borrower prefer to invest in A

■ What about collateral?