

28.07.2004

PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 8月20日

REC'D 16 SEP 2004

WIPO

出 願 番 号 Application Number:

特願2003-296802

[ST. 10/C]:

[JP2003-296802]

出 願 人 Applicant(s):

JFEスチール株式会社

JFE鋼板株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

3 日

特許庁長官

Commissioner,
Japan Patent Office

1) [1]

2004年

9月





【書類名】 特許願 【整理番号】 P03031B

【あて先】特許庁長官 殿【国際特許分類】C23C 22/40

【発明者】

【住所又は居所】 東京都千代田区内幸町二丁目2番3号 JFEスチール株式会社

内

【氏名】 山地 隆文

【発明者】

【住所又は居所】 東京都千代田区内幸町二丁目2番3号 JFEスチール株式会社

内

【氏名】 松崎 晃

【発明者】

【住所又は居所】 東京都千代田区内幸町二丁目2番3号 JFEスチール株式会社

内

【発明者】

【住所又は居所】 東京都千代田区内幸町二丁目2番3号 JFEスチール株式会社

内

【氏名】 吉田 啓二

【発明者】

【住所又は居所】 東京都千代田区内幸町二丁目2番3号 JFEスチール株式会社

内

【氏名】 山下 正明

【発明者】

【住所又は居所】 神奈川県川崎市川崎区水江町6-1 エヌケーケー鋼板株式会社

内

【氏名】 福島 祐一

【発明者】

【住所又は居所】 神奈川県川崎市川崎区水江町6-1 エヌケーケー鋼板株式会社

内

【氏名】 大熊 俊之

【特許出願人】

【識別番号】 000001258

【氏名又は名称】 JFEスチール株式会社

【特許出願人】

【識別番号】 500045615

【氏名又は名称】 エヌケーケー鋼板株式会社

【代理人】

【識別番号】 100083253

【弁理士】

【氏名又は名称】 苫米地 正敏

【手数料の表示】

【予納台帳番号】 066969 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

【物件名】 明細書 1 【物件名】 要約書 1



## 【曹類名】特許請求の範囲 【請求項1】

A1を25~75 mass%含有するA1-Zn系合金めっき皮膜を有するA1-Zn系合金めっき鋼板の前記めっき皮膜表面に、4価の価数を有する少なくとも1種のバナジウム化合物(A)と、リン酸又は/及びリン酸系化合物(B)と、A1,Mg,Znからなる群の中から選ばれる少なくとも1種の金属成分(C)(但し、上記リン酸系化合物の一部として含有される金属及びその他の金属化合物の一部として含有される金属を含む)と、水溶性有機樹脂又は/及び水分散性有機樹脂(D)とを主成分とし、該有機樹脂(D)が、スチレン(a)と、(メタ)アクリル酸(b)と、炭素数1~6のアルキル鎖を持つ(メタ)アクリル酸エステル(c)と、これら成分(a)~(c)と共重合可能なビニルモノマー(d)とから得られる共重合樹脂であって、該共重合樹脂の固形分100 mass%に対するスチレン(a)の固形分割合が20~60 mass%、(メタ)アクリル酸(b)の固形分割合が0.5~1.0 mass%、炭素数1~6のアルキル鎖を持つ(メタ)アクリル酸エステル(c)の固形分割合が20~60 mass%である有機樹脂であり、バナジウム化合物(A)の金属 V 換算での付着量が1~100 m g/m²、有機樹脂(D)の付着量が0.5~5 g/m²の表面処理皮膜を有することを特徴とする、耐食性、加工性及び外観品質が優れたクロメートフリー表面処理A1-Zn系合金めっき鋼板。

### 【請求項2】

Alを25~75 mass%含有するAl-Zn系合金めっき皮膜を有するAl-Zn系合金めっき鋼板の前記めっき皮膜表面に、4価の価数を有する少なくとも1種のバナジウム化合物(A)と、リン酸又は/及びリン酸系化合物(B)と、Al,Mg,Znからなる群の中から選ばれる少なくとも1種の金属成分(C)(但し、上記リン酸系化合物の一部として含有される金属を含む)と、水溶性有機樹脂又は/及び水分散性有機樹脂(D)とを主成分し、該有機樹脂(D)が、スチレン(a)と、(メタ)アクリル酸(b)と、炭素数1~6のアルキル鎖を持つ(メタ)アクリル酸エステル(c)と、これら成分(a)~(c)と共重合可能なビニルモノマー(d)とから得られる共重合樹脂であって、該共重合樹脂の固形分100 mass%に対するスチレン(a)の固形分割合が20~60 mass%、(メタ)アクリル酸(b)の固形分割合が0.5~10 mass%、炭素数1~6のアルキル鎖を持つ(メタ)アクリル酸エステル(c)の固形分割合が20~60 mass%である処理液を塗布した後、到達板温60~250℃で乾燥することを特徴とする、耐食性、加工性及び外観品質が優れたクロメートフリー表面処理Al-Zn系合金めっき鋼板の製造方法。

#### 【請求項3】

A1を25~75 mass%含有するA1-Zn系合金めっき皮膜を有するA1-Zn系合金めっき鋼板の前記めっき皮膜表面に、4価の価数を有する少なくとも1種のバナジウム化合物(A)と、リン酸又は/及びリン酸化合物(B)と、A1,Mg,Znからなる群の中から選ばれる少なくとも1種の金属成分(C)(但し、上記リン酸系化合物の一部として含有される金属及びその他の金属化合物の一部として含有される金属を含む)とを成分とする処理液を塗布した後、到達板温60~250℃で乾燥し、さらにその上部に、水溶性有機樹脂又は/及び水分散性有機樹脂(D)を主成分し、該有機樹脂(D)が、スチレン(a)と、(メタ)アクリル酸(b)と、炭素数1~6のアルキル鎖を持つ(メタ)アクリル酸エステル(c)と、これら成分(a)~(c)と共重合可能なビニルモノマー(d)とから得られる共重合樹脂であって、該共重合樹脂の固形分100 mass%に対するスチレン(a)の固形分割合が20~60 mass%、(メタ)アクリル酸(b)の固形分割合が0.5~10 mass%、炭素数1~6のアルキル鎖を持つ(メタ)アクリル酸エステル(c)の固形分割合が20~60 mass%である処理液を塗布した後、到達板温60~250℃で乾燥することを特徴とする、耐食性、加工性及び外観品質が優れたクロメートフリー表面処理A1-Zn系合金めっき鋼板の製造方法。



### 【書類名】明細書

【発明の名称】耐食性、加工性及び外観品質が優れたクロメートフリー表面処理Al-Zn系合金めっき鋼板及びその製造方法

#### 【技術分野】

### [0001]

本発明は、建材や家電分野の用途に主として無塗装で用いられるAl-Zn系合金めっき鋼板の表面処理材、特に、所謂55%Al-Zn系合金めっき鋼板に代表される高Al-Zn系合金めっき鋼板に好適な、皮膜中にCrを含まないクロメートフリー表面処理材に関する。

## 【背景技術】

### [0002]

所謂 5 5 % A 1 - Z n 系合金めっき鋼板に代表される高 A 1 - Z n 系合金めっき鋼板は、めっき外観が美麗で且つ耐食性にも優れていることから、建材用途として屋根材や外壁材等に、また家電用途として例えば冷蔵庫の裏板等に、いずれも無塗装のままで用いられている。これらの用途では、めっき鋼板に長期に亘る防食性が要求されるだけでなく、めっき表面が直接目に触れる部分に用いられることから、湿潤環境等に曝されてもめっき表面が変色することなく、美麗な表面外観が長期間に亘って維持される耐食性を有することが必要である。また、建材用途の場合には、めっき鋼板がロールフォーミングにより成形されるため、めっきがロールにピックアップしないこと(すなわち、ロールフォーミング性が良好であること)が求められ、また家電用途の場合には、プレス成形後の外観が金型との摺動により黒化しない特性が必要である。

### [0003]

従来、このような用途に対しては、有機樹脂と $Cr^{6}$  + を含むクロム化合物を含有する表面処理層をめっき表面に形成することにより対応してきた(例えば、特許文献  $1\sim3$ )。しかしその一方で、最近では環境に対する影響度の観点からCr の規制が進みつつあり、これに伴い表面処理のクロメートフリー化が指向されている。また、 $Cr^{3}$  + は無害であるが実際に市場で使用された場合、皮膜中の $Cr^{6}$  +  $&Cr^{3}$  + を見分けることは困難である。このような背景から、&Cr 化合物を含まず、しかもクロメート処理に匹敵する優れた耐食性等の性能を有するクロメートフリー皮膜が強く望まれている。

【特許文献1】特公平1-53353号公報

【特許文献2】特公平4-2672号公報

【特許文献3】特公平6-146001号公報

#### [0004]

従来、クロムに代わる成分としてバナジウム化合物を含有した処理液を用い、浸漬、塗布、電解処理等の方法によってめっき表面に薄膜を形成させる技術が数多く開示されている。具体的には、(a)主にリン酸イオンとバナジン酸イオンを含有する塗料で処理を行う方法(例えば、特許文献4,5)、(b)有機樹脂とチオカルボニル基含有化合物、バナジウム化合物を含む塗膜を形成する方法(特許文献6)、(c)特殊変性フェノール樹脂とバナジウム化合物とジルコニウム、チタニウム等の金属化合物を含む表面処理剤により処理を行う方法(特許文献7)、(d)バナジウム化合物とジルコニウム化合物、チタニウム化合物等を含む表面処理液で処理を行う方法(特許文献8)などが挙げられる。

#### [0005]

【特許文献4】特開平1-92279号公報

【特許文献 5】 特開平 1 - 1 3 1 2 8 1 号公報

【特許文献6】特開2000-248380号公報

【特許文献7】特開2001-181860号公報

【特許文献8】特開2002-30460号公報

#### 【発明の開示】

【発明が解決しようとする課題】

[0006]



また、上記(d)の方法は、皮膜の耐アルカリ性(耐水性)を向上させることを目的として、主として2~4価のバナジウム化合物とZr、Ti、Mo、W、Mn等との複合皮膜を形成させるものであるが、特に2価または3価のバナジウム化合物を用いた場合には、5価のバナジウム化合物を用いた場合よりもさらに溶解性が高い皮膜となり、また、酸化或いは分解反応が進みやすいため処理液が不安定となり、安定した皮膜品質が得られにくいという問題もある。

## [0007]

このように従来技術によるクロメートフリーの表面処理皮膜では、従来から高AI-Zn合金めっき鋼板に用いられてきたクロメート処理皮膜に匹敵するような耐食性や外観品質は得られない。

したがって本発明の目的は、クロメート処理皮膜による表面処理材に匹敵する優れた耐食性、外観品質、加工性等の性能を有するAl-Zn合金めっき鋼板のクロメートフリー表面処理材及びその製造方法を提供することにある。

## 【課題を解決するための手段】

### [0008]

上記課題を解決するための本発明の特徴は以下のとおりである。

[1]  $A 1 & 2 5 \sim 7 5 mass$ %含有するA 1 - Z n系合金めっき皮膜を有するA 1 - Z n系合金めっき鋼板の前記めっき皮膜表面に、4 価の価数を有する少なくとも 1 種のバナジウム化合物(A)と、リン酸又は/及びリン酸系化合物(B)と、A 1,M g,Z n からなる群の中から選ばれる少なくとも 1 種の金属成分(C)(但し、上記リン酸系化合物の一部として含有される金属及びその他の金属化合物の一部として含有される金属を含む)と、水溶性有機樹脂又は/及び水分散性有機樹脂(D)とを主成分とし、該有機樹脂(D)が、スチレン(a)と、(x y)アクリル酸(a)と、炭素数  $1 \sim 6$  のアルキル鎖を持つ(x y)アクリル酸エステル(x y)アクリル酸エステル(x y)アクリル酸エステル(x y)アクリル酸の固形分割合が x y0 の固形分割合が x y0 の最極極 x y0 の表面処理皮膜を有することを特徴とする、耐食性、加工性及び外観品質が優れたクロメートフリー表面処理 x y0 の一の音のの言葉板。

#### [0009]

[2] A1 & 25 & 75 mass% 含有する <math>A1 - Zn 系合金めっき皮膜を有する A1 - Zn 系合金めっき鋼板の前記めっき皮膜表面に、 4 価の価数を有する少なくとも 1 種のバナジウム化合物(A)と、リン酸又は/及びリン酸系化合物(B)と、 A1 , Mg , Zn からなる群の中から選ばれる少なくとも 1 種の金属成分(C)(但し、上記リン酸系化合物の一部として含有される金属及びその他の金属化合物の一部として含有される金属を含む)と、水溶性有機樹脂又は/及び水分散性有機樹脂(D)とを主成分し、該有機樹脂(D)が、スチレン(a)と、(メタ)アクリル酸(b)と、炭素数  $1 \sim 6$  のアルキル鎖を持つ(メタ)アクリル酸エステル(c)と、これら成分(a)~(c)と共重合可能なビニルモノマー(d)とから得られる共重合樹脂であって、該共重合樹脂の固形分 100 mass%に対するスチレン(a)の固形分割合が  $20 \sim 60$  mass%、(メタ)アクリル酸(b)の固形分割合が  $0.5 \sim 10$  mass%、炭素数  $1 \sim 6$  のアルキル鎖を持つ(メタ)アクリル酸エステル(c)の固形分割合が  $20 \sim 60$  mass%である処理液を塗布した後、到達板温  $0 \sim 250$  でで乾燥することを特徴とする、耐食性、加工性及び外観品質が優れたクロメ



### 【発明の効果】

### [0011]

本発明によれば、耐食性、加工性及び外観品質等に優れたクロメートフリーの表面処理 Al-Zn系合金めっき鋼板を安定して得ることができる。

## 【発明を実施するための最良の形態】

### [0012]

本発明のクロメートフリー表面処理A1-2n系合金めっき鋼板のベースとなるめっき 鋼板は、めっき皮膜中にA1が25~75 mass%含まれるA1-2n系合金めっき鋼板で あり、所謂55%A1-2n系合金めっき鋼板が最も代表的なものとして知られている。 通常、この種のめっき皮膜中には、SiがA1量の0. 5 mass%以上含まれている。また 、所謂55%A1-2n系合金めっき鋼板とは、通常、A1が50~60 mass%程度含まれるA1-2n系合金めっき鋼板(以下の説明において、「高A1-2n系合金めっき鋼板」という場合、上記A1含有量のA1-2n合金めっき鋼板を指すものとする)を指し 、その皮膜中には通常Siが1~3 mass%程度含まれている。

#### [0013]

本発明において、めっき皮膜中のAl含有量が25~75mass%のAl-Zn系合金めっき鋼板を対象とするのは、このAl含有量の範囲において、特に優れた耐食性(耐赤錆性)が得られるためである。但し、このめっき鋼板には、めっき皮膜中にAlを多く含むことに由来する問題として、Alに腐食が生じると黒錆が発生し、赤錆に対しては防錆性を保つものの外観品質が著しく損なわれるという難点がある。また、このめっき鋼板を無塗装で用いる場合、めっきままの外観であることが好まれるためにスキンパスによる表面の著しい平滑化が行われず、このためめっき表面は微細な凹凸が形成されたままの状態になっている。この状態で例えばロールフォーミング加工を受けると、ロールとの接触によってめっき表面にかじりが生じ、ロール損傷の原因となるほか、成形後の外観が劣るという品質面での問題がある。したがって、これらを解消するために、めっき表面にさらに皮膜を形成することが必要となる。

以下に述べるように、本発明による特性改善効果は、めっき皮膜中のA 1 含有量が 2 5 ~ 7 5 mass %のA 1 - Z n 系合金めっき鋼板において顕著に得られるものであるが、そのなかでも上記高A 1 - Z n 系合金めっき鋼板において特に顕著な特性改善効果が得られる

#### [0014]

次に、Al-Zn系合金めっき皮膜の表面に形成する表面処理皮膜について説明する。 本発明において、Al-Zn系合金めっき皮膜の表面に形成する表面処理皮膜は、クロ



## [0015]

本発明者らは、着色を起こすことなく優れた皮膜外観が得られ、且つ優れた耐食性が得られる表面処理用の無機化合物を見い出すべく検討を行った。その結果、高A1-Zn系合金めっき鋼板の表面に、4価の価数を有するバナジウム化合物(A)とリン酸又は/及びリン酸系化合物(B)とからなる皮膜を形成することにより、特に優れた耐食性が得られることを見い出した。この皮膜は、4価のバナジウム化合物とリン酸又は/及びリン酸系化合物を配合した表面処理組成物でめっき皮膜表面を処理した後、乾燥することによって形成することが可能である。しかし、4価のバナジウム化合物(A)とリン酸又は/及びリン酸系化合物(B)とからなる皮膜は耐溶解性が不十分であり、例えば、濡れた状態でスタックされていると、皮膜の一部が溶解して外観ムラが生じたり、濡れることにより皮膜の密着性が低下して皮膜が剥離しやすくなるという問題があることが判った。また、これらの現象は、加工性を向上させるために有機樹脂を用いた皮膜系で特に顕著に生じることが判った。

### [0016]

そこで、この問題を解決するために種々検討を行った結果、Zn,Al,Mgの中から選ばれる少なくとも1種の金属成分(C)を皮膜中に添加することにより、皮膜の耐溶解性が著しく向上することを見出した。この金属成分(C)の添加形態に特別な制限はないが、通常、金属化合物の一部として皮膜中に添加される。したがって、金属成分(C)は、上記リン酸系化合物の一部として含有される金属であってもよいし、その他の金属化合物の一部として含有される金属であってもよく、例えば、第一リン酸亜鉛、第一リン酸アルミニウム、第一リン酸マグネシウム、上記金属のフッ化物、硝酸塩等として添加することが可能である。但し、これらの金属化合物に限定されるものではない。

#### [0017]

本発明において、Al-Zn系合金めっき鋼板のめっき皮膜の組成をAl:25~75 mass%に限定した別の理由は、上記処理液を亜鉛めっき等のようなAl:25 mass%未満のめっき皮膜に塗布した場合、耐黒変性が低下するのに対して、Al:25 mass%以上のAl-Zn系合金めっきにおいては、リン酸の添加により耐黒変性が向上することによる。また、Al:75 mass%を超えた場合、皮膜の密着性が低下し、剥離が生じやすくなる

4価のバナジウム化合物としては、バナジウムの酸化物、水酸化物、硫化物、硫酸物、 炭酸物、ハロゲン化物、窒化物、フッ化物、炭化物、シアン化物(チオシアン化物)及び これらの塩などが挙げられる。このようにバナジウムの供給源は特に制限はなく、これら の1種を単独で又は2種以上を混合して用いることができる。但し、4価のバナジウム化 合物の中でも、特に優れた耐食性を発現できるという点でバナジウムの硫酸物が特に望ま しい。

#### [0018]

上記成分(A)~(C)に更に有機樹脂(D)を添加することにより、皮膜に加工性が付与され、耐食性、外観品質、耐溶解性、加工性を全て兼ね備えた表面処理皮膜となる。有機樹脂(D)は、スチレン(a)と、(メタ)アクリル酸(b)(アクリル酸又は/及びメタクリル酸)と、炭素数1~6のアルキル鎖を持つ(メタ)アクリル酸エステル(c)(アクリル酸エステル又は/及びメタクリル酸エステル)と、これら成分(a)~(



c)と共重合可能なビニルモノマー(d)とから得られる共重合樹脂であって、この共重合樹脂の固形分100 mass%に対するスチレン(a)の固形分割合が $20\sim60$  mass%、(メタ) アクリル酸(b)の固形分割合が $0.5\sim10$  mass%、炭素数 $1\sim6$  のアルキル鎖を持つ(メタ)アクリル酸エステル(c)の固形分割合が $20\sim60$  mass%である有機樹脂である。

### [0019]

この共重合樹脂は、アクリルースチレン樹脂中でスチレン(a)が占める割合が 20mass%未満では耐食性が低下し、一方、60mass%を超えると加工性が低下する。したがって、共重合樹脂の固形分 100mass%に対するスチレン(a)の固形分割合が  $20\sim60mass\%$ のアクリルースチレン系樹脂を用いることにより、安価で耐食性、可能性に優れた皮膜を形成することが可能となる。

前記(メタ)アクリル酸(b)は、エマルジョンの分散安定性及び金属表面との密着性を高める効果がある。共重合樹脂の固形分100 mass%に対する(メタ)アクリル酸の固形分割合は $0.5\sim10$  mass%、好ましくは $0.5\sim7$  mass%、より好ましくは $1\sim4$  mass%とする。(メタ)アクリル酸(b)の固形分割合が0.5 mass%未満では、エマルジョンの安定性および金属表面との密着性が低下するので好ましくなく、一方、10 mass%を超えると皮膜の親水性が強くなり耐水性が低下するので好ましくない。

#### [0020]

前記炭素数1~6のアルキル鎖を持つ(メタ)アクリル酸エステル(c)としては、メ チルメタクリレート及びその異性体、(メタ)アクリル酸-n-プロピル及びその異性体 、(メタ)アクリル酸ーnーブチル及びその異性体、(メタ)アクリル酸ーnーペンチル 及びその異性体、 (メタ) アクリル酸-n-ヘキシル及びその異性体などが挙げられ、こ れらの1種又は2種以上を用いることができる。(メタ)アクリル酸エステルは皮膜の加 工性向上に寄与する。 (メタ) アクリル酸エステルのアルキル鎖が7以上の有機樹脂によ り得られる皮膜は、加工性が低く、加工時の金型との摺動により皮膜が剥離しやすい。し たがって、(メタ)アクリル酸エステルはアルキル鎖の炭素数が6以下、好ましくは3~ 5のものを用いる。共重合樹脂の固形分100mass%に対する、炭素数1~6のアルキル 鎖を持つ(メタ)アクリル酸エステル(c)の固形分割合は20~60mass%、好ましく は20~55 mass%、より好ましくは25~55 mass%とする。炭素数1~6のアルキル 鎖を持つ(メタ)アクリル酸エステル(c)の固形分割合が20mass%未満では皮膜の加 工性向上効果が乏しく、一方、60mass%を超えると皮膜の耐食性向上に効果のあるスチ レンの絶対量が少なくなるので好ましくない。なお、メタクリル酸エステルとアクリル酸 エステルの比率については特に制限はなく、共重合樹脂に含まれる(メタ)アクリル酸エ ステルがすべてメタクリル酸エステル若しくはアクリル酸エステルでも構わない。

#### [0021]

前記成分(a)~(c)と共重合可能なビニルモノマー(d)の種類は特に限定されないが、例えば、(メタ)アクリル酸-2-ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、アクリルアミド、Nーメチロールアクリルアミド、ジアセトンアクリルアミド、グリシジルメタクリレート、ビニルトルエン、酢酸ビニル、アクリロニトリル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、炭素数7以上のアルキル鎖を持つ(メタ)アクリル酸エステルなどが挙げられ、これらの1種又は2種以上を用いることができる。なお、共重合樹脂の固形分100mass%に対するビニルモノマー(d)の固形分割合は特に限定しないが、40mass%以下とし、共重合樹脂のガラス転移温度を10~70℃、好ましくは15~60℃の範囲に調整する割合で配合することが好ましい。

#### [0022]

表面処理皮膜中には上記成分(A)~(D)以外の添加成分として、例えば、CaxCax A化合物、SiO2、その他のケイ酸系化合物、Tax Nb、Tax A化合物、Nbx Cax C合物の1種又は2種以上を添加することができる。これらの成分は、耐食性のさらなる向上を目的として添加される。添加の方法としては、例えば、リン酸系化合物(リン酸亜鉛、ポリリン酸亜鉛、トリポリリン酸アルミニウム等)を水中に分散させた状態で、珪酸 N



#### [0023]

次に、表面処理皮膜の付着量について述べると、まず、表面処理皮膜中の有機樹脂(D)の付着量は $0.5\sim5$  g/m² とする。有機樹脂の付着量が0.5 g/m² 未満では加工性が著しく低下し、加工によりめっきにかじりが生じる。一方、有機樹脂を5 g/m² を超えて付着させると、ロールフォーミングのロールに皮膜が付着しやすくなる。また、以上の観点から有機樹脂(D)の付着量のより好ましい範囲は $1.0\sim4.5$  g/m² 、さらに望ましくは $1.5\sim4$  g/m² である。

また、バナジウム化合物(A)の付着量は、金属 V 換算で  $1\sim100\,\mathrm{mg/m^2}$  とする。バナジウム化合物の付着量が  $1\,\mathrm{mg/m^2}$  未満では耐食性向上効果が認められず、一方、  $100\,\mathrm{mg/m^2}$  を超えて付着させても耐食性向上効果が飽和し、逆に、皮膜の加工性が低下する傾向が認められる。また、以上の観点からバナジウム化合物(A)の金属 V 換 質での付着量のより好ましい範囲は  $3\sim50\,\mathrm{mg/m^2}$  、さらに望ましくは  $5\sim40\,\mathrm{mg/m^2}$  である。

## [0024]

また、リン酸又は/及びリン酸系化合物(B)の付着量は、 $PO_4$  換算で  $5\sim200\,\mathrm{m}$  g/m² とすることが好ましい。付着量が  $5\,\mathrm{m}$  g/m² 未満では耐食性向上効果が十分ではなく、一方、過剰に添加すると皮膜の耐水性が低下し、水との接触により皮膜が白化する傾向がある。但し、この白化に関しては樹脂の物性によっても大きく影響されるため、これらの観点から添加量を選択することができる。

さらに、Zn, Al, Mgからなる群の中から選ばれる少なくとも1種の金属成分(C)の付着量は、その各金属換算(Zn換算, Al換算, Mg換算)の合計量 [Zn+Al+Mg] と上記リン酸又は/及びリン酸系化合物(B)の $PO_4$  換算量  $[PO_4]$  との質量比 [Zn+Al+Mg] /  $[PO_4]$  で0.05~0.5、好ましくは、0.1~0.3 とすることが適当である。上記金属成分(C)の付着量が過少であると耐水性向上効果が十分に得られず、一方、付着量が過剰であると処理液安定性が劣る。

#### [0025]

次に、本発明の表面処理材の製造方法について説明する。

本発明の第1の製造方法では、上述したようなA1-2n系合金めっき鋼板のめっき皮膜表面に、4価の価数を有する少なくとも1種のバナジウム化合物(A)と、リン酸又は/及びリン酸系化合物(B)と、A1, Mg, Znからなる群の中から選ばれる少なくとも1種の金属成分(C)(但し、上記リン酸系化合物の一部として含有される金属及びその他の金属化合物の一部として含有される金属を含む)と、水溶性有機樹脂又は/及び水分散性有機樹脂(D)とを主成分し、該有機樹脂(D)が、スチレン(a)と、(メタ)アクリル酸(b)と、炭素数1~6のアルキル鎖を持つ(メタ)アクリル酸エステル(c)と、これら成分(a)~(c)と共重合可能なビニルモノマー(d)とから得られる共重合樹脂であって、該共重合樹脂の固形分100mass%に対するスチレン(a)の固形分割合が20~60mass%、(メタ)アクリル酸(b)の固形分割合が0.5~10mass%、炭素数1~6のアルキル鎖を持つ(メタ)アクリル酸エステル(c)の固形分割合が20~60mass%である処理液を塗布した後、到達板温60~250℃で乾燥する。

#### [0026]

また、本発明の第2の製造方法では、上述したようなA1-2n系合金めっき鋼板のめっき皮膜表面に、まず、4 価の価数を有する少なくとも1 種のパナジウム化合物(A)と、1 ン酸又は/ 及びリン酸化合物(B)と、A1, Mg, Zn からなる群の中から選ばれる少なくとも1 種の金属成分(C)(但し、上記リン酸系化合物の一部として含有される金属及びその他の金属化合物の一部として含有される金属を含む)とを主成分とする処理液を塗布した後、到達板温60-250 で乾燥し、さらにその上部に、水溶性有機樹脂



## [0027]

この2つの製造方法のうち、耐食性の観点からは第2の製造方法の方が優れる傾向を示すが、設備的負荷の観点では第1の製造方法が有利である。但し、いずれにおいても必要レベルの品質が得られる。

また、上記第2の製造方法においては、有機樹脂(D)を主成分とする処理液中に、バナジウム化合物(A)と、リン酸又は/及びリン酸化合物(B)と、AI,Mg,Znからなる群から選ばれる少なくとも1種の金属成分(C)(但し、上記リン酸系化合物の一部として含有される金属及びその他の金属化合物の一部として含有される金属を含む)のうちの1種以上を添加することも可能である。

処理液は、水に対して各成分(A)~(D)を添加することにより調整される。各成分  $(A) \sim (D)$  の種類、各成分を添加する際の化合物の形態や添加方法は先に述べたとおりである。また、処理液には、上記成分(A)~(D)以外に、必要に応じて先に述べた  $SiO_2$  などの添加成分を添加することができる。

### [0028]

本発明の製造方法においては、一般に各処理液の塗布後は、水洗することなく乾燥させる。また、処理液の塗布方法は、例えば、スプレー+ロール絞り、ロールコーターなど任意であり、また、塗布後の乾燥方式についても、例えば、熱風方式、誘導加熱方式、電気炉方式など任意である。

処理液の乾燥温度については、乾燥温度が60℃未満では、皮膜形成が不十分となり耐食性等に劣る皮膜となる。一方、250℃を超える板温で乾燥させても耐食性等の品質を高める効果が得られず、逆に低下する場合がある。これは、特に有機樹脂の耐熱限界を超えているために皮膜が熱により損傷されるためであると考えられる。

### 【実施例】

#### [0029]

表2~表5に示す各成分を添加した処理液を、めっき鋼板(表1)の表面に塗布し、加熱乾燥させることにより表面処理材を製造した(表6に示す「単層処理」)。また、No.44の本発明例については、表2~表4に示す各成分を添加した処理液をめっき鋼板(表1)の表面に塗布し、加熱乾燥させた後、その上に表5に示す樹脂を添加した処理液を塗布し、加熱乾燥させることにより表面処理材を製造した(表6に示す「二層処理」)。このようにして得られた各表面処理材について、耐白錆性、耐黒変性、耐水試験後着色外観ムラ、耐水試験後皮膜密着性、加工性(耐かじり性)を評価した。その結果を各表面処理材の製造条件とともに表7~表12に示す。

上記各性能評価は、以下のような試験により行った。

#### (1) 耐白錆性

表面処理材の各サンプルについて、塩水噴霧試験(JIS-2-2371)を実施し、240時間後の白錆面積率で評価した。その評価基準は以下のとおりである。

- ◎ :白錆面積率 5 %未満
- 〇 :白錆面積率5%以上、10%未満
- 〇一:白錆面積率10%以上、25%未満
- △ :白錆面積率25%以上、50%未満
- × :白錆面積率50%以上

#### [0030]



表面処理材の各サンプルについて、同一条件のサンプル処理面を合わせてスタック状態とし、50℃>98%RHの環境下で28日間放置した後の外観を目視評価した。その評価基準は以下のとおりである。

◎:黒変部なし

○:斜めから見て確認できる程度のうすい黒変部有り(表面積の10%未満)

△:斜めから見て確認できる程度のうすい黒変部有り(表面積の10%以上)或いは明らかな黒変部有り(表面積の10%未満)

×:明らかな黒変部有り(表面積の10%以上)

(3)耐水試験後着色外観ムラ

表面処理材の各サンプルについて、同一条件のサンプル処理面を合せてスタック状態とし、 $50 \sim 98\%$ RHの環境下で5日間放置した後の外観を目視評価した。その評価基準は以下のとおりである。

〇:ムラが全く無い均一な外観

ム:ムラが若干目立つ外観

×:ムラが目立つ外観

[0031]

### (4) 耐水試験後皮膜密着性

表面処理材の各サンプルについて、同一条件のサンプル処理面を合せてスタック状態とし、50℃>98%RHの環境下で5日間放置した後、碁盤目試験、テープ剥離を行い、皮膜の剥離の有無により評価した。その評価基準は以下のとおりである。

〇:皮膜の剥離なし

×:皮膜の剥離有り

(5)加工性(耐かじり性)

各表面処理材のサンプルについて、先端が5mmRのビードを100Kgfで表面に押付けた状態でサンプルを一定速度で引き抜く試験を7回繰り返して実施し、表面の黒化又は皮膜の剥離の程度を評価した。その評価基準は以下のとおりである。

◎ :黒化部10%未満,剥離無

○ : 黒化部10%以上25%未満,剥離10%未満

△ :黒化部25%以上、剥離10%未満

△-:剥離10%以上25%未満

× :剥離25%以上

【0032】 【表1】

表1

#### [めっき鋼板]

| No. | 種類               | めっき量<br>(両面付着量)     |
|-----|------------------|---------------------|
| 1   | 55%AIーZn系合金めっき鋼板 | 150g/m <sup>2</sup> |
| 2   | 5%AIーZn系合金めっき鋼板  | 220g/m <sup>2</sup> |
| 3   | 溶融亜鉛めっき鋼板        | 270g/m <sup>2</sup> |

[0033]

## 【表 2】

| 表2   | [バナジウム化合物] |
|------|------------|
| 75.5 | 【ハノンフみルロ物】 |

| No. | V価数 | 種類                                                             |
|-----|-----|----------------------------------------------------------------|
| 1   | 4価  | VOSO <sub>4</sub>                                              |
| 2   | 4価  | VO(C <sub>5</sub> H <sub>7</sub> O <sub>2</sub> ) <sub>2</sub> |
| 3   | 4価  | VCI <sub>4</sub>                                               |
| 4   | 4価  | V <sub>2</sub> O <sub>4</sub>                                  |
| 5   | 5価  | NH₄VO₃                                                         |
| 6   | 5価  | VOCI <sub>3</sub>                                              |
| 7   | 5価  | V <sub>2</sub> O <sub>5</sub>                                  |
| 8   | 3価  | VCI <sub>3</sub>                                               |
| 9   | 3価  | V <sub>2</sub> O <sub>3</sub>                                  |
| 10  | 2価  | VO                                                             |

【0034】 【表3】

表3

## [リン酸系化合物]

| No. | 種類                                                |
|-----|---------------------------------------------------|
| 1   | H <sub>3</sub> PO <sub>4</sub>                    |
| 2   | (NH <sub>4</sub> )H <sub>2</sub> PO <sub>4</sub>  |
| 3   | Mg(H <sub>2</sub> PO <sub>4</sub> ) <sub>2</sub>  |
| 4   | AI(H <sub>2</sub> PO <sub>4</sub> ) <sub>3</sub>  |
| 5   | Zn(H <sub>2</sub> PO <sub>4</sub> ) <sub>2</sub>  |
| 6   | Mn (H <sub>2</sub> PO <sub>4</sub> ) <sub>2</sub> |
| 7   | Ni(H <sub>2</sub> PO <sub>4</sub> ) <sub>2</sub>  |
| 8   | Co(H <sub>2</sub> PO <sub>4</sub> ) <sub>2</sub>  |

※ No.3~7はさらにH<sub>3</sub>PO<sub>4</sub>を添加

【0035】 【表4】

表4 [金属化合物]

| 符号 | 種類       |
|----|----------|
| Α  | 硝酸亜鉛     |
| В  | 硝酸アルミニウム |
| С  | 硝酸マグネシウム |
| D  | 硫酸マグネシウム |

[0036]

【表5】

|                 | 太祭明条件             |         | 満足する     | 満足する     | 満足する                 | 満足する     | 満足する     | 満足する     | 満足しない    | 満足しない   | 満足しない   | 満足しない    | 謝足しない   |
|-----------------|-------------------|---------|----------|----------|----------------------|----------|----------|----------|----------|---------|---------|----------|---------|
| ()]             |                   | モノマー(d) | 2HEA(4)  | 2EHA(13) | GMA(2)               | 2EHA(40) | 2EHA(25) | 2EHA(32) | 2HEA(20) | GMA(3)  | GMA(2)  | 2EHA(35) | l       |
| [水系有機樹脂(共重合樹脂)] | モノマー(mass%) *1 *2 | モノマー(c) | HMA (35) | BMA(30)  | BMA(30) + iso-PA(19) | BMA(20)  | BA(32)   | MMA(25)  | HMA(60)  | BMA(15) | HMA(48) | 1        | HMA(65) |
|                 | モノマー              | モノマー(b) | AA(1)    | MA(2)    | MA(4)                | MA(5)    | AA(5)    | AA(5)    | AA(5)    | AA(2)   | 1       | MA(5)    | MA(5)   |
|                 |                   | モノマー(a) | St(60)   | St(55)   | St(45)               | St(35)   | St(38)   | St(38)   | St(15)   | St(80)  | St(50)  | St(60)   | St(30)  |
| 第55             | :                 | ė<br>Š  | A1       | A2       | A3                   | A4       | A5       | A6       | A7       | A8      | 9A      | A10      | A       |

isoーPA:アクリル酸イソプロピル, 2HEA:アクリル酸2ーヒドロキシプロピル, 2EHA:アクリル酸2ーエチルヘキシル, St:スチレン, AA:アクリル酸, MA:メタクリル酸, HMA:メタクリル酸nーヘキシル, BMA:メタクリル酸nーブチル, GMA:グリシジルメタクリレート, MMA:メチルメタクリレート, BA:ブチルアクリレート

各モノマーは固形分濃度が30mass%であり、カッコ内の数値は各モノマーの共重合樹脂の 固形分100mass%に対する固形割合(mass%)である。 رب \*

[0037]

【表 6】

表6

## [処理方法]

| No. | 種類                  |
|-----|---------------------|
| а   | <b>単層処理</b>         |
| ,b  | 二層処理(下層無機成分/上層有機樹脂) |

【0038】 【表7】

| 表7          |    |             |     |                        |         | ;                      | <    |                 | 1 1 1            | 2H 441 H2           |
|-------------|----|-------------|-----|------------------------|---------|------------------------|------|-----------------|------------------|---------------------|
|             |    | #<br>{<br>€ | バナジ | バナジウム化合物               | アンプ     | リン観米行句物                | 田田田  | 田風以が            | 一<br>分<br>形<br>点 | <b>六米午飯</b> 飯福      |
| 区分          | Š  | のおり         | 翅翅  | 付籍量                    | 種類      | 付着量                    | 種類   | 金属/PO           | 種類               | 付着量                 |
| :           |    | *           | *5  | (mg/m <sup>2</sup> )*6 | က္<br>* | (mg/m <sup>2</sup> )*7 | *4   | <b>8</b> 0<br>* | *5               | (g/m <sup>2</sup> ) |
| 比較例         | -  | -           | -   | 20                     | ı       | 0                      | 1    | 0               | A6               | 1.5                 |
| 比較例         | 2  | -           | -   | 02                     | -       | 09                     |      | 0               | A6               | 1.5                 |
| 比較例         | 8  | -           | -   | 20                     | 2       | 09                     | 1    | 0               | A6               | 1.5                 |
| 発明例         | 4  | -           | -   | 20                     | 3       | 09                     | က    | 0.12            | A6               | 1.5                 |
| 発明例         | 5  | -           | -   | 20                     | 4       | 09                     | 4    | 0.11            | A6               | 1.5                 |
| 発明例         | 9  | -           | _   | 20                     | 5       | 09                     | 5    | 0.26            | A6               | 1.5                 |
| 比較例         | 7  | -           | -   | 20                     | 9       | 09                     | 9    | 0.19            | A6               | 1.5                 |
| 北<br>数<br>愈 | 8  | -           |     | 20                     | 7       | 09                     | 7    | 0.19            | A6               | 1.5                 |
| 比<br>数<br>愈 | 6  | _           | -   | 20                     | 8       | 99                     | 8    | 0.19            | A6               | 1.5                 |
| 発明例         | 9  |             | -   | 20                     | -       | 09                     | A    | 0.28            | A6               | 1.5                 |
| 発明例         | =  | -           | -   | 20                     | -       | 09                     | В    | 0.11            | A6               | 7.5                 |
| 発明例         | 12 | -           | -   | 20                     | -       | 09                     | ၁    | 0.12            | A6               | 1.5                 |
| 祭明例         | 13 | -           | _   | 20                     |         | 09                     | Q    | 0.12            | A6               | 1.5                 |
| 発明例         | 14 | -           | -   | 20                     | 3       | 09                     | 3    | 0.12            | A1               | 1.5                 |
| 発明例         | 15 | -           | -   | 20                     | 3       | 09                     | 3    | 0.12            | A2               | 1.5                 |
|             |    | , Line      |     |                        |         | olv 間段をネショニュー          | 松肥Nc |                 |                  |                     |

\*5 玻5の水系樹脂No.

\*6 金属V換算量

\*7 PO4換算量

\*8 金属化合物の金属(Al,Mg,Zn)換算量/ リン酸系化合物のPO,換算量(質量比) 【0039】 【表8】

| 表8  |    |        |              |      |      |                 |                |                |
|-----|----|--------|--------------|------|------|-----------------|----------------|----------------|
|     |    | 一艘沿    | 製造方法         |      |      | 品質評価            |                |                |
| 区分  | ò  | 種類 * 6 | 乾燥温度<br>(°C) | 耐白鲭性 | 耐黑変性 | 耐水試験後<br>着色外観ムラ | 耐水試験後<br>皮膜密着性 | 加工性<br>(配かじり性) |
| 比較例 | -  | Ø      | 150          | ×    | ×    | ◁               | 0              | 0              |
| 比較例 | 2  | a      | 150          | 0    | 0    | ٥               | ×              | 0              |
| 比較例 | 3  | æ      | 150          | ٥    | ٥    | Δ               | ×              | 0              |
| 発明例 | 4  | Ø      | 150          | 0    | 0    | 0               | 0              | 0              |
| 発明例 | 5  | ß      | 150          | 0    | 0    | 0               | 0              | 0              |
| 発明例 | 9  | a      | 150          | 0    | 0    | 0               | 0              | 0              |
| 比較例 | 7  | ø      | 150          | 0    | 0    | ٧               | 0              | 0              |
| 比較例 | 8  | Ø      | 150          | ۵    | 0    | Δ               | 0              | 0              |
| 比較例 | 6  | a      | 150          | ۵    | 0    | ٥               | 0              | 0              |
| 発明例 | 2  | a      | 150          | 0    | 0    | 0               | 0              | 0              |
| 発明例 | =  | ø      | 150          | 0    | 0    | 0               | 0              | 0              |
| 発明例 | 12 | æ      | 150          | 0    | 0    | 0               | 0              | 0              |
| 発明例 | 13 | æ      | 150          | 0    | 0    | 0               | 0              | 0              |
| 発明例 | 14 | a      | 150          | 0    | 0    | 0               | 0              | 0              |
| 発明例 | 15 | a      | 150          | 0    | 0    | 0               | 0              | 0              |
|     |    |        |              |      |      |                 |                |                |

\*9 表6の処理方法符号

[0040]

【表9】

| 843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                               | 107 H 3. | 事やイントットッ               | 理べこ          | 二、路路个个粒                                  | 金属          | 金属成分                                           | 水系有 | 水系有機樹脂              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------|----------|------------------------|--------------|------------------------------------------|-------------|------------------------------------------------|-----|---------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | なった                           |          | 1410 E 12              | , I          | 21 11 11 11 11 11 11 11 11 11 11 11 11 1 |             |                                                |     |                     |
| 女女                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Š           | 盤板                            | 福超       | 付着量                    | 種類           | 付着量                                      | 種類          | 金属/PO                                          | 種類  | 「有軍                 |
| <br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | *                             | *2       | (mg/m <sup>2</sup> )*6 | <del>*</del> | (mg/m <sup>2</sup> )*7                   | *4          | <b>ω</b><br>*                                  | *   | (g/m <sup>2</sup> ) |
| SK RB (In)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16          | -                             | -        | 20                     | 8            | 09                                       | 3           | 0.12                                           | A3  | 1.5                 |
| SK BB (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 2         |                               | -   -    | 20                     | 3            | 99                                       | က           | 0.12                                           | A4  | 1.5                 |
| 19 19 28 BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>    |                               | -        | 200                    | 3            | 09                                       | က           | 0.12                                           | A5  | 1.5                 |
| 光光型                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 5         | -                             | -   -    | 2 %                    | 3            | 09                                       | 8           | 0.12                                           | A7  | 1.5                 |
| に表面                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 6         |                               | -   -    | 200                    |              | 09                                       | 3           | 0.12                                           | A8  | 1.5                 |
| LE EXTEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 8         |                               | -   -    | 20                     | es es        | 09                                       | 3           | 0.12                                           | A9  | 1.5                 |
| 比較地                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 8         | -   -                         | -   -    | 2 2                    | 6            | 09                                       | က           | 0.12                                           | A10 | 1.5                 |
| 兄<br>校<br>校<br>校<br>校<br>校<br>校<br>校<br>校<br>校<br>校<br>校<br>校<br>を<br>成<br>を<br>成<br>を<br>の<br>を<br>の<br>を<br>の<br>を<br>の<br>を<br>の<br>を<br>の<br>を<br>の<br>の<br>の<br>の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 77          | -   -                         | -   -    | 202                    | 3            | 09                                       | က           | 0.12                                           | A11 | 1.5                 |
| に表別                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 6         | -   -                         |          | 20                     | က            | 09                                       | ဗ           | 0.12                                           | A6  | 1.5                 |
| <b>26.97.97</b><br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10<br>18.10 | , u         | -   -                         | 1 "      | 200                    | 8            | 09                                       | 8           | 0.12                                           | A6  | 1.5                 |
| 12 Mary 12 Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 8         | - -                           | , \      | 2 8                    | 6            | 09                                       | 8           | 0.12                                           | 9e  | 1.5                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 5         | - -                           | F 4      | 2 2                    |              | 09                                       | 8           | 0.12                                           | A6  | 1.5                 |
| 1 数字                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 77 5        | -   ,                         | 2 4      | 3 8                    |              | 09                                       | က           | 0.12                                           | 9e  | 1.5                 |
| 表                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8           |                               |          | 3 8                    | ,            | 60                                       | 67          | 0.12                                           | 9e  | 1.5                 |
| <b>光</b> 数 多                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29          | -                             | -        | 2                      | ,            | 3                                        | ,   ,       |                                                | ۶   | -                   |
| 工<br>数<br>多                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30          | -                             | 80       | 07                     | ဗ            | 09                                       | 8           | 0.12                                           | Ao  | C:-                 |
| *1 表10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>プか</b> り | 1 表1のめつき鰡板No.                 |          |                        |              | *5 表5の水系樹脂No.                            | ·鼓脂No.      |                                                |     |                     |
| *2 表20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | かがナ         | 2 表2のパナジウム化合物No               | 小香No.    |                        |              | *6 金属V換算量*1 00 金色                        |             |                                                |     |                     |
| *3被30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | こと語         | 嵌3のJン酸※化合物No.                 | No.      |                        |              | * / 1047年                                |             | 447                                            | 0   |                     |
| *4 表40<br>表30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | り金属         | 表4の金属化合物符号又は<br>表3のリン酸系化合物No. | 号文は別る。   |                        |              | *8 金属化合                                  | 80組織(7<br>: | 金属化合物の缶属(Al/Mg.Zn) 授身軍/<br>リン酸系化合物のPO4換算量(質量比) | 国化) |                     |

[0041]

【表10】

| 汞10         |     |           |              |      |      |                 |                |                |
|-------------|-----|-----------|--------------|------|------|-----------------|----------------|----------------|
|             |     | 製         | 製造方法         |      |      | 品質評価            | * 10           |                |
| 区公          | Š   | 種類 * 0    | 乾燥温度<br>(°C) | 耐白鳍性 | 耐黑変性 | 耐水試験後<br>着色外観ムラ | 耐水試験後<br>皮膜密着性 | カエ柱<br>(耐かCり柱) |
| 発明例         | 16  | Ø         | 150          | 0    | 0    | 0               | 0              | 0              |
| 発明例         | 17  | æ         | 150          | 0    | 0    | 0               | 0              | 0              |
| 発明例         | 18  | æ         | 150          | 0    | 0    | 0               | 0              | 0              |
| 比較例         | 19  | ø         | 150          | 0    | 0    | 0               | 0              | ν              |
| 比較包         | 20  | æ         | 150          | 0    | 0    | 0               | 0              | - Δ            |
| 比較例         | 21  | ø         | 150          | 0    | 0    | 0               | 0              | ν              |
| 比較例         | 22  | Ø         | 150          | 0    | 0    | 0               | 0              | ٥              |
| 比較例         | 23  | æ         | 150          | 0    | 0    | 0               | 0              | ×              |
| 発明例         | 24  | a         | 150          | 0    | 0    | 0               | 0              | 0              |
| 発明例         | 25  | Ø         | 150          | 0    | 0    | 0               | 0              | 0              |
| 発明例         | 26  | Ø         | 150          | 0    | 0    | 0               | 0              | 0              |
| 比較例         | 27  | ø         | 150          | ⊲    | 0    | ×               | 0              |                |
| 光<br>数<br>室 | 28  | ß         | 150          | ٥    | 0    | ×               | 0              | -              |
| 比較例         | 29  | ø         | 150          | ۵    | 0    | ×               | 0              | 1              |
| 比較例         | ဇ္တ | Ø         | 150          | ٥    | ٥    | 1               | 1              | 1              |
| 1           | 出るの | 第6の日間七年位の |              |      |      |                 |                |                |

\*9 表6の処理方法符号 \*10 "-"は試験実施せず

[0042]

【表11】

| 液1.                                     |      |             |       |           |             |                        |        |              | + + -          | C40 141 941 |
|-----------------------------------------|------|-------------|-------|-----------|-------------|------------------------|--------|--------------|----------------|-------------|
|                                         |      | 1           | シナジ   | パナジウムた合物  | こと語         | リン酸米化 台 列              | 金属     | 金属灰分         | <b>不米布飯</b> 每個 | <b>落</b>    |
| <b>₹</b>                                | 2    | 含り明         | 異類    | 年卷音       | 審報          | 付着量                    | 種類     | 金属/PO        | 種類             | 付着量         |
| 3                                       | į    | *           | # * * | (mg/m²)*6 | ¥<br>*<br>* | (mg/m <sup>2</sup> )*7 | *      | <b>&amp;</b> | چ<br>*ئ        | $(g/m^2)$   |
| 子客室                                     | 31   | -           | 6     | 20        | 6           | 09                     | 3      | 0.12         | A6             | 1.5         |
| 工學室                                     | 32   | -           | 10    | 20        | 6           | 09                     | 3      | 0.12         | A6             | 1.5         |
| 子零金                                     | 33   | 2           | -     | 20        | က           | 09                     | 3      | 0.12         | A6             | 1.5         |
| 五十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二 | 34   | 3           | -     | 20        | 8           | 09                     | 3      | 0.12         | A6             | 1.5         |
| 子校宣                                     | , F  | -           | 1     | 0         | က           | 09                     | ဗ      | 0.12         | A6             | 1.5         |
| 路田極                                     | 8 8  | -           | -     | 50        | 8           | 09                     | 3      | 0.12         | A6             | 1.5         |
| 子教室                                     | 3 8  | -           | -     | .200      | က           | 09                     | 3      | 0.12         | A6             | 1.5         |
| も特色で                                    | ;    |             | -     | 20        | 3           | . 09                   | ဗ      | 0.12         | 9e             | 0.3         |
| 28日周                                    | 3 8  | -   -       |       | 20        | 8           | 09                     | 3      | 0.12         | A6             | 3           |
| 光光を                                     | 6    |             | -   - | 20        | 8           | 99                     | ဇ      | 0.12         | A6             | 8           |
| AS BRADI                                | } =  | -   -       | -     | 20        | 6           | 09                     | က      | 0.12         | A6             | 1.5         |
| おお客                                     | £ 5  | -           | -     | 20        | 8           | 9                      | က      | 0.12         | 9V             | 1.5         |
| も数を                                     | 43 4 |             |       | 20        | က           | 09                     | က      | 0.12         | A6             | 1.5         |
| 発明極                                     | 4    | -           | .   - | 20        | 8           | 09                     | 3      | 0.12         | A6             | 1.5         |
| *1表10                                   | (A)  | 表1のめつき倒板No. |       |           |             | *5 表5の水系樹脂No.          | ·樹脂No. |              |                |             |

\*2 表2のパナジウム化合物No. \*3 表3のリン酸系化合物No. \*一枚一つ多つに対析がい。

\*4 表4の金属化合物符号又は 表3のリン酸系化合物No.

\*8 金属化合物の金属(Al,Mg,Zn)換算量/ リン酸系化合物のPO4換算量(質量比) \*7 PO4換算量

\*6 金属V換算量

[0043]

【表12】

|                                           | L                                       | į    | 404          |      |       | 口姆阿伍            | * 10           |                |
|-------------------------------------------|-----------------------------------------|------|--------------|------|-------|-----------------|----------------|----------------|
| 製造方法                                      | 製造方法                                    | 質力法  | i.e          |      |       |                 | 2              |                |
| No. 種類 乾燥<br>*9 (%                        |                                         | 乾燥   | 乾燥温度<br>(°C) | 耐白鳍性 | 耐黑変性  | 耐水試験後<br>着色外観ムラ | 耐水試験後<br>皮膜密着性 | 加工性<br>(耐かじり性) |
| 31 a                                      |                                         | _    | 150          | ٥    | ٥     | 1               | ľ              | 1              |
| 32 a 15                                   |                                         | 5    | 150          | ٧    | 7     | ļ               | 1              | 1              |
| 33 a 150                                  |                                         | 55   | 0            | ٥    | ×(白錆) | 1               | ì              | 1              |
| 34 a 150                                  |                                         | 150  |              | ٥    | ×(白鲭) | 1               | 1              | 1              |
| 35 a 150                                  |                                         | 15(  |              | ×    | ×     | 1               | i              | 1              |
| 36 a 150                                  |                                         | 150  |              | 0    | 0     | 0               | 0              | 0              |
| 37 a 150                                  |                                         | 150  |              | ۵    | ٥     | 1               | 1              | -              |
| 38 a 150                                  | -                                       | 150  |              | 0    | ٥     | 0               | 0              | ×              |
| 39 a 150                                  |                                         | 155  |              | 0    | 0     | 0               | 0              | 0              |
| _                                         |                                         | 150  |              | 0    | ٥     | 0               | 0              | 0              |
| 41 a 100                                  |                                         | 9    |              | 0    | 0     | 0               | 0              | 0              |
| 42 a 40                                   |                                         | 8    |              | ×    | ٥     | ı               | 1              | ı              |
| 43 a 350                                  |                                         | 35   | 0            | ×    | 0     | 1               | ]              | 1              |
| 44 b 150-                                 | -                                       | 150- | 150+150      | 0    | 0     | 0               | 0              | 0              |
| 一年 の 日本 の 日 | 1十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二 |      |              |      |       |                 |                |                |

\*9 表6の処理方法符号



【要約】

【課題】 クロメート処理皮膜による表面処理材に匹敵する優れた耐食性、外観品質、加工性等の性能を有するA1-Zn合金めっき鋼板のクロメートフリー表面処理材を得る。【解決手段】 めっき皮膜中のA1 $\acute{n}$ 2 $5\sim75$  mass%のA1-Zn系合金めっき鋼板の表面に、A6 価の価数を有する少なくとも1種のバナジウム化合物(A)と、リン酸又は/及びリン酸系化合物(B)と、A1, Mg, Znの中から選ばれる少なくとも1種の金属成分(C)と、水溶性有機樹脂又は/及び水分散性有機樹脂(D)とを主成分とし、この有機樹脂(D)が、スチレン(A0)と、(A0)アクリル酸(A0)と、炭素数1A0のアルキル鎖を持つ(A0)アクリル酸エステル(A0)と、これら成分(A0)を共重合可能なビニルモノマー(A0)とから得られる共重合樹脂であって、上記成分(A0)の金属 A0、が所定割合に調整された有機樹脂であり、バナジウム化合物(A0)の金属 A0、砂積量がA100 mg/A2、有機樹脂(A0)の付着量がA3、5A5 g/A6 型皮膜を有する。

【選択図】 なし

ページ: 1/E

## 認定・付加情報

特許出願の番号 特願2003-296802

受付番号 50301372481

書類名 特許願

担当官 第五担当上席 0094

作成日 平成15年 8月28日

<認定情報・付加情報>

【提出日】 平成15年 8月20日

【書類名】

出願人名義変更届(一般承継)

先】 特許庁長官 殿

【事件の表示】

【出願番号】

特願2003-296802

【承継人】·

【識別番号】

000200323

【氏名又は名称】

J F E 鋼板株式会社

【承継人代理人】

【識別番号】

100083253

【弁理士】

【氏名又は名称】 【電話番号】 苫米地 正敏 03-3535-1050

【提出物件の目録】

【物件名】

承継人であることを証する書面 1

【援用の表示】 特願2000-389988の出願人名義変更届に添付のもの(

平成16年6月14日付手続補足書にて提出)を援用する。

# 認定・付加情報

特許出願の番号 特願2003-296802

受付番号 50401097021

書類名 出願人名義変更届(一般承継)

担当官 林 圭輔 9868

作成日 平成16年 8月 3日

<認定情報・付加情報>

【提出日】 平成16年 6月29日

【承継人】

【識別番号】 000200323

【住所又は居所】 東京都中央区日本橋室町三丁目1番9号

【氏名又は名称】 JFE鋼板株式会社

【承継人代理人】 申請人

【識別番号】 100083253

【住所又は居所】 東京都中央区京橋1丁目17番4号 杉江ビル8

階 苫米地特許事務所

【氏名又は名称】 苫米地 正敏

## 出願人履歴情報

識別番号

[000001258]

1. 変更年月日

2003年 4月 1日

[変更理由]

名称変更 住所変更

住 所

東京都千代田区内幸町二丁目2番3号

氏 名

JFEスチール株式会社



特願2003-296802

出願人履歴情報

識別番号

[500045615]

·1. 変更年月日 [変更理由] 住 所

氏 名

2000年 2月 3日

新規登録

神奈川県川崎市川崎区水江町6-1

エヌケーケー鋼板株式会社



特願2003-296802

## 出願人履歴情報

識別番号

[000200323]

1. 変更年月日

1998年 1月19日

「変更理由]

住所変更

住 所 氏 名

住 所

東京都中央区日本橋室町三丁目1番9号

川鉄鋼板株式会社

2. 変更年月日

2004年 4月 1日

[変更理由] 名称変更

東京都中央区日本橋室町三丁目1番9号

氏 名 J F E 鋼板株式会社