

Exemple of Fast Translation Algorithm

Object-oriented modeling and post-genomic biology: Programming Analogies

David Hill

Former Blaise Pascal University > UCA)
Université Clermont Auvergne
UMR CNRS 6158 : LIMOS
France

Key points

- Molecular Biology basics
- Correspoding Classes in UML
- A translation algorithm
- Programming analogies
- Perspectives & Applications

mRNA Translation process

- A group of 3 bases is called a codon
- To each codon corresponds an amino acid
- There are 20 different amino acids
- We have coding redundancies since different codons give the same amino acid.
 - 64 codons => 20 amino acids
- The amino acid sequence specifies a protein (with start & stop sequences) or the enzymes.

From Amino Acids to proteins

- All the proteins that make up living organisms are huge molecules, but they're composed of tinier building blocks, known as amino acids.
- There are over 500 amino acids found in nature, yet, of these, the human genetic code only directly codes for 20.
- Every protein in your body is made up of some linked combination of these amino acids
- The previous graphic shows the structure of each, as well as giving a little information on the notation used to represent them.

Essentials or not? (Covid again?)

- Broadly, these twenty amino acids can be sorted into two groups: essential and non-essential.
- Non-essential amino acids are those which the human body is capable of synthesising, whereas essential amino acids must be obtained from the diet.
- Some can also be termed 'conditionally essential', meaning that they may be needed from the diet during illness or as a result of health problems. This sub-category includes arginine, glycine, cysteine, tyrosine, proline, and glutamine.
- The essentials amino acids are histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan and valine.

Start & stop codons...

- Usual START codon : ATG (AUG)
- 3 STOP codons: TAG, TGA, TAA

- Sequences between 2 stop codons are called open reading frames (ORFs), they are potentially coding for a protein
- With codons of 3 bases there are potentially 6 reading frames (3 on each complementary strands

The « genetic code »...

2nd								
1st	T	С	Α	G	3rd			
т	F Phe	S Ser	Y Tyr	C Cys	Т			
	F Phe	S Ser	Y Tyr	C Cys	С			
	L Leu	S Ser	Ter	Ter	A			
	L Leu	S Ser	Ter	W Trp	G			
C	L Leu	P Pro	H His	R Arg	Т			
	L Leu	P Pro	H His	R Arg	С			
	L Leu	P Pro	QGln	R Arg	A			
	L Leu	P Pro	QGln	R Arg	G			
A	I Ile	T Thr	N Asn	S Ser	T			
	I Ile	T Thr	N Asn	S Ser	С			
	I Ile	T Thr	K Lys	R Arg	A			
	M Met	T Thr	K Lys	R Arg	G			
G	V Val	A Ala	D Asp	GGly	T			
	V Val	A Ala	D Asp	GGly	С			
	V Val	A Ala	EGlu	GGly	A			
	V Val	A Ala	EGlu	GGly	G			

Translation algorithms

- Bioinformaticians intensively use Translation of mRNA sequences and it is a very simple process compared to the sequence alignment problems (were the famous BLAST and FASTA programs are used)
- A fast translation process is modelled and implemented using :
 - Translation automata
 - (or even) Lockup tables
- Translation routines exist in every Bioinformatic package and library (GCG Translate, Bioperl translate,...)

Main translation code (C or C++)

```
// The following code supposes the initialization
// lookup tables. Thus majority of the code is composed of
// array initialisation + a simple computation of the
// binary index (given below for one codon)

index = Binary_Lkup [ Bases[ i++ ] ];  // 1st base
index <<= 2;
index += Binaire_Lkup [ Bases[ i++ ] ];  // 2nd base
index <<= 2;
index += Binairy_Lkup [ Bases[ i++ ] ];  // Last base
// for codon
// Look up of the corresponding Amino Acid
result = AminoAcid[index]</pre>
```

Some translation times

Linux Athlon 1.5 Ghz	CODING APPROACHES								
File size	Library routine	Better coding	Look	up tables	Fastest algorithm				
# of input bases			Without opt.	With optimzation	Without opt.	With opt.			
1 016 684	8,0	2,8	1,1	0,52	0,1	0,09			
2 033 351	16	5,4	2,0	1,0	0,2	0,2			
4 066 684	32	11	4,1	2	0,4	0,37			
8 133 351	63	22	8,3	4,1	1	0,6			
16 266 684	126	43	17	8	1,9	1,2			
32 533 351	251	86	33	16	3,2	2,5			
64 066 684			66	32	6,6	5			
130 133 351			132	65	12,6	9,5			
260 266 684					25	19			

Translation times in seconds in 2002!

Test at genome scale... on a basic PC and 2 Giga bases

- On simple PC, the whole translation takes 3mins & 15 seconds (Including the reading of a 2Gb file (fasta format) and output of 670 Mb file (in 2002!)
- The translation in itself takes 14 seconds for 2 Giga bases.
- Input / outputs now take 94% of the global response time
- => if possible optimize input/ouputs with the Unix mmap function and specific HW (see code).

Analogy between genetic « data » and optimized computer programs ?

- The draft of the human genome sequence announces that only 1.1% of the genome is spammed by exons (coding regions), 24% in introns (non coding region) and 75% being (unknown) intergenic DNA
- Advances showed that some introns area could be coding in specific tissues
- What about the role of intergenic DNA, could it be used as data by the rest of the code?

Applications @ LIMOS

- Breast Cancer Research
- Design of oligonucleotides for DNA chips and microarrays
- Study of the Encephalitozoon cuniculi parasite (smallest Eucaryote genome, sequenced at Blaise Pascal University)
- Bioremediation : design biological depollutant with Micro-arrays

Perspectives

- Study of SNP surprises! (Single Nucleotide Polymorphism) and developement of simulations
- Study of the bioremediation process thanks to reverse transcription
- Development of gene prediction models at genome scale, based on the fast algorithm presented (discovering ORFs)
- Evaluation of classification techniques

Unrolling with a C++ metaprogram

```
template<bool> void IF(int tab[], int n)
inline void IF<true>(int tab[], int n)
                                          { tab[n] *= -1; }
inline void IF<false>(int tab[], int n) { tab[n] = 0; }
template<int N>
inline void FOR(int tab[])
   IF<N%2>(tab,N);
   FOR (N-1) (tab);
inline void FOR<-1>(int tab[])
const int N = 10;
void main()
   int * tab, i ;
   tab = new int[N];
   for(i = 0 ; i < N ; i++) cin >> tab[i];
   FOR<N-1>(tab);
   for(i = 0 ; i < N ; i++) cout << tab[i];</pre>
```

THANKS FOR YOUR ATTENTION

More to come Invitation to C++ TMP ZZ3