Chapter 1

Measure Theory

1.1 Sigma algebra

Definition 1.1.1 (Power set). We define $\mathcal{P}(X)$ as the power set of set X. Assume that set $X = \{a, b\}$, the power set P(X) would be $\{\emptyset, X, \{a\}, \{b\}\}$

Definition 1.1.2 (Sigma algebra). $A \subseteq \mathcal{P}(X)$ is called a σ – algebra:

$$(a) \ \emptyset, X \in \mathcal{A} \tag{1.1.1}$$

$$(b) A \in \mathcal{A} \Longrightarrow A^c := X \mid A \in \mathcal{A}$$
 (1.1.2)

(c)
$$A_i \in \mathcal{A}, \ i \in \mathcal{N} \Longrightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}.$$
 (1.1.3)

Definition 1.1.3 (Measurable sets). $A \in \mathcal{A}$ is called a \mathcal{A} -measurable set.

Example 1.1.1.

$$(1) \mathcal{A} = \{\emptyset, X\} \tag{1.1.4}$$

(2)
$$A = \{P(X)\}.$$
 (1.1.5)

Lemma 1.1.1. Assume A_i is σ -algebra on X, $i \in I$ (index set). Then, we have $\cap_{i \in I} A_i$ is also a σ -algebra on X.

Definition 1.1.4 (Sigma algebra generated by \mathcal{M}). For $\mathcal{M} \subseteq \mathcal{P}(X)$, there is a smallest σ -algebra that contains \mathcal{M} :

$$\sigma(\mathcal{M}) := \cap_{\mathcal{A} \supset \mathcal{M}, \ a \ \sigma-algebra} \mathcal{A}. \tag{1.1.6}$$

Example 1.1.2. We define $X = \{a, b, c, d\}$ and $\mathcal{M} = \{\{a\}, \{b\}\}$. Then we have

$$\sigma(\mathcal{M}) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}, \{a, c, d\}, \{c, d\}\}. \tag{1.1.7}$$

Here is a very nice picture which shows the connections between the topological space, metric space and vector space. It is from this video:

Definition 1.1.5 (Topological spaxe). Topological space (X, τ) , where X is a set and τ is a collection of subsets of X. This τ is called the topology on X. The pair (X, τ) is called the topological space. In order to be a topological space, the collection of subsets must satisfy three properties:

- Empth set $\emptyset, X \in \tau$.
- Unions must be in τ , i.e., $\bigcup_{i=1}^{\infty} \tau_i \in \tau$.
- Intersections must be in τ , i.e., $\bigcap_{i=1}^n \tau_i \in \tau$.

Definition 1.1.6 (Indiscrete topology). Indiscrete topology is defined as $\tau = \{\emptyset, X\}$.

Proof. This can proved by the definition of 1.1.5.

Definition 1.1.7 (Discrete topology). Discrete topology is the power set 1.1.1 of X.

Proposition 1.1.1. Any topology τ on X satisfy the following relation: $\{\emptyset, X\} \subset \tau \subset \mathcal{P}(X)$, where $\{\emptyset, X\}$ is the indiscrete topology 1.1.6 and $\mathcal{P}(X)$ is the discrete topology 1.1.7.

Definition 1.1.8 (Borel sigma algebra). Let (X, \mathcal{T}) be a topological space 1.1.5 (Let X be a metric space/Let X be a subset of \mathbb{R}^n ; We need "open sets".). We then define $\mathcal{B}(X)$ is the borel σ -algebra on X as

$$\mathcal{B}(X) := \sigma(\mathcal{T}),\tag{1.1.8}$$

which is the σ -algebra generated by the open sets \mathcal{T} .

Definition 1.1.9 (Borel sets). Any set contained in Borel σ -algebra is called Borel set. If $A \in \mathcal{B}(X)$, then A is borel set.

Proposition 1.1.2. Let $\Omega = [0,1)$ and $b \in \Omega$, then the singleton $\{b\}$ is a Borel set.

Proof.

$$\{b\} = \bigcap_{n=1}^{\infty} \left[(b - \frac{1}{n}, b + \frac{1}{n}) \cap \Omega \right].$$
 (1.1.9)

Proposition 1.1.3. Let $\Omega = [0,1)$ and $b \in \Omega$, then (a,b], [a,b] and [a,b) are Borel sets.

Proof. We write

$$(a,b] = \bigcap_{n=1}^{\infty} (a,b + \frac{1}{n}) \cap \Omega.$$
 (1.1.10)

Then we can prove (a, b] is a borel set.

We can also write (a, b] as the union of singletons and there use 1.1.2 and the fact that the union of borel sets is also a borel set.

Definition 1.1.10 (Borel measure). A borel measure on \mathbb{R} is a measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Definition 1.1.11 (Cumulative distribution function). A CDF(cumulative distribution function) is a function $F : \mathbb{R} \to \mathbb{R}$ such that

- F is nondecreasing $(x \le y \Longrightarrow F(x) \le F(y))$
- F is right continuous $(\lim_{a\to a^+} = F(a))$
- $\lim_{x\to\infty} F(x) = 1$
- $\lim_{x\to-\infty} F(x) = 0$

Theorem 1. • If F is a CDF then there si a unique Borel probability measure on \mathbb{R} such that $P((-\infty, x]) = F(x), \forall x \in \mathbb{R}$.

• If P is a Borel probability measure on \mathbb{R} then there is a unique CDF F such that $F(x) = P((-\infty, x]), \forall x \in \mathbb{R}$.

That is, there is an equivalence between CDFs and Borel probability measure.

1.2 What is a measure?

Definition 1.2.1 (Measure). (X, A) is called a measurable space, where X is a set and A is a σ -algebra on X. A map $\mu: A \to [0, \infty] := [0, \infty) + \{\infty\}$ is called a measure if it satisfies:

$$(a) \mu(\emptyset) = 0 \tag{1.2.1}$$

(b)
$$\mu(\bigcup_{i=1}^{\infty} \mathcal{A}_i) = \sum_{i=1}^{\infty} \mu(\mathcal{A}_i) \text{ with } \mathcal{A}_i \cap \mathcal{A}_j = \emptyset, i \neq j \text{ for all } \mathcal{A}_i \in \mathcal{A}.(\sigma - additive)$$

$$(1.2.2)$$

Definition 1.2.2. (X, \mathcal{A}, μ) is called a measure space.

Example 1.2.1. Given X and $A = \mathcal{P}(X)$.

• Counting measure $(A \in A)$ is defined as

$$\mu(A) := \begin{cases} \#A, & A \text{ has finitely many elements} \\ \infty & else \end{cases}$$
 (1.2.3)

where #A means the number of elements in A.

Calculation rules in $[0, \infty]$:

$$x + \infty := \infty \text{ for all } x \in [0, \infty]$$
 (1.2.4)

$$x \cdot \infty := \infty \text{ for all } x \in (0, \infty]$$
 (1.2.5)

$$0 \cdot \infty := 0$$
 (only true in most cases in measure theory!) (1.2.6)

• Dirac measure for $p \in X$ is defined as

$$\delta_p(A) := \begin{cases} 1, & p \in A \\ 0, & else \end{cases}$$
 (1.2.7)

• We search a measure on $X \in \mathbb{R}^n$ satisfying:

(1)
$$\mu([0,1]^n) = 1$$
 (1.2.8)

(2)
$$\mu(x+A) = \mu(A) \text{ for all } x \in \mathbb{R}^n,$$
 (1.2.9)

which is known as Lebesque measure where the σ -algebra is not equal to power set.

1.3 Not everything is lebesgue measurable

Measure problem: search measure μ on $\mathcal{P}(\mathbb{R})$ with:

- (1) $\mu([a,b]) = b a, b > a,$
- (2) $\mu(x+A) = \mu(A), A \in \mathcal{P}(\mathbb{R}), x \in \mathbb{R}.$

 $\Longrightarrow \mu$ does not exist.

Claim: Let μ be a measure on $\mathcal{P}(\mathbb{R})$ with $\mu((0,1]) < \infty$ and (2). $\Longrightarrow \mu = 0$.

Proof. (a) Definitions: $I \in (0,1]$ with equivalence relation on I: $x \sim y \iff x-y \in \mathbb{Q}$ i.e., $[x] := \{x+r | r \in \mathbb{Q}, x+r \in I\}$. Following this definition, we have a disjoint decomposition of I into boxes, possibly uncontable many of them! We then pick one element a_n from each box $[x_n]$ and form a set $A \in I$, i.e., $\{a_1, a_2, \dots\} = A$. We have $A \in I$ with prperty:

- (1) For each [x], there is an $a \in A$ with $a \in [x]$.
- (2) For all $a, b \in A : a, b \in [x] \Longrightarrow a = b$.

In uncountable case, the existence of $A \in I$ with the above property is guaranted by the axiom of choice of set theory.

We define $A_n := r_n + A$, where $(r_n)_{n \in \mathbb{N}}$ enumeration of $\mathbb{Q}_n(-1,1]$.

- (b) We then claim that $A_n \cap A_m = \emptyset \iff n \neq m$. The proof is as follows: $x \in A_n \cap A_m \Longrightarrow x = r_n + a_n$, $a_n \in A$ and $x = r_m + a_m$, $a_m \in A$. $\Longrightarrow r_n + a_n = r_m + a_m \Longrightarrow a_n a_m = r_n r_m \in \mathbb{Q} \Longrightarrow a_n \sim a_m \Longrightarrow a_m, a_n \in [a_m] \Longrightarrow a_n = a_m \Longrightarrow r_n = r_m \Longrightarrow n = m$.
 - (c) We claim that $(0,1] \subseteq \bigcup_{n \in \mathbb{N}} A_n \subseteq (-1,2]$. The proof is as follows:

Assume now: μ measure on $\mathcal{P}(\mathbb{R})$ with $\mu((0,1]) < \infty$ and (2).

By (2): $\mu(1+A) = \mu(A)$ for all $n \in \mathbb{N}$.

By (c): we have

$$\mu((0,1]) \le \mu(\cup_{n \in \mathbb{N}} A_n) \le \mu((-1,2]) \tag{1.3.1}$$

We know: $\mu((0,1]) =: C < \infty$. By using (2) and σ -additivity, we get $\mu((-1,2]) = \mu((-1,0] \cup (0,1] \cup (1,2] = 3C)$. $\Longrightarrow_{1.3.1,(b)} C \leq \sum_{n=1}^{\infty} \mu(A_n) \leq 3C \Longrightarrow C \leq \sum_{n=1}^{\infty} \mu(A) \leq 3C \Longrightarrow \mu(A) = 0 \Longrightarrow C = 0 \text{(henceL } \mu((0,1]) = 0) \Longrightarrow \mu(\mathbb{R}) = \mu(\cup_{n \in \mathbb{Z}} (m,m+1]) = 0 \Longrightarrow \mu = 0.$

1.4 Measurable maps

Definition 1.4.1 (Measurable maps). $(\Omega_1, \mathcal{A}_1)$ and $(\Omega_2, \mathcal{A}_2)$ are measurable spaces. $f: \Omega_1 \to \Omega_2$ is a measurable map w.r.t. \mathcal{A}_1 and \mathcal{A}_2 if $f^{-1}(A_2) \in \mathcal{A}_1$ for all $A_2 \in \mathcal{A}_2$.

Example 1.4.1. • (Ω, \mathcal{A}) and $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ are two measurable spaces. We define characteristic function (aksi indicator function) as $\chi_A : \Omega \to \mathbb{R}$, where

$$\chi_A(w) := \begin{cases} 1, & w \in A \\ 0, & w \notin A \end{cases} \tag{1.4.1}$$

For all measurable $A \in \mathcal{A}$, χ_A is a measurable map. We have

$$\chi_A^{-1}(\emptyset) = \emptyset \in \mathcal{A}, \ \chi_A^{-1}(\mathbb{R}) = \Omega \in \mathcal{A}$$
(1.4.2)

$$\chi_A^{-1}(\{A\}) = A, \ \chi_A^{-1}(\{0\}) = A^c \in \mathcal{A}.$$
 (1.4.3)

• Composition of measurable maps.

Lemma 1.4.1. $(\Omega_1, \mathcal{A}_1)$, $(\Omega_2, \mathcal{A}_2)$, $(\Omega_3, \mathcal{A}_3)$ are measurable space. We define $\Omega_1 \xrightarrow{f} \Omega_2 \xrightarrow{g} \Omega_3$. Then f, g are measurable implies $g \circ f$ is measurable.

Proof.

$$(g \circ f)^{-1}(A_3) = f^{-1}(g^{-1}(A_3)) \tag{1.4.4}$$

$$\in \mathcal{A}_1 \tag{1.4.5}$$

Important measurable maps

Lemma 1.4.2. (Ω, \mathcal{A}) and $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ are measurable spaces. $f, g : \Omega \to \mathbb{R}$ are measurable maps indicates that f + g, f - g, $f \cdot g$, |f| are measurable maps.

1.5 Lebesgue integral

Example 1.5.1. Define Characteristic function $\chi_A : X \to \mathbb{R}$, $A \in \mathcal{A}$. We define $I(A) := \mu(A)$. Surprisingly, I(A) is nothing but the integral of χ_A over A.

Definition 1.5.1 (Simple/Step/Staircsae functions,...). For $A_1, A_2, ..., A_n \in \mathcal{A}$, and $c_1, c_2, ..., c_n \in \mathbb{R}$. We define

$$f(x) := \sum_{i=1}^{n} c_i \cdot \chi_{A_i}(x). \tag{1.5.1}$$

We then have f(x) is measurable and the integraal of f is defined as $I(f) := \sum_{i=1}^{n} c_i \mu(A_i)$.

Remark 1.5.1. The problem of the integral I(f) is that it is undefined when $\mu(A_i) = \infty$. The problem can be solved by exclude ∞ by definition or the following way.

Definition 1.5.2 (Lebesgue integral). Define $S^+ := \{f : X \to \mathbb{R} | f \text{ simple function}, f \geq 0\}$. $f \in S^+$ and choose representation $f(x) = \sum_{i=1}^n c_i \chi_{A_i}(x), c_i \geq 0$. The lebesgue integral of f w.r.t. μ is defined as

$$\int_{X} f(x) d\mu(x) = \int_{X} f d\mu \qquad (1.5.2)$$

$$= I(f) \tag{1.5.3}$$

$$=\sum_{i=1}^{n}c_{i}\cdot\mu(A_{i})\tag{1.5.4}$$

$$= [0, \infty]. \tag{1.5.5}$$

Property 1.5.1. • $I(\alpha f + \beta g) = \alpha I(f) + \beta I(g), \ \alpha, \beta \ge 0.$

• $f \leq g \Longrightarrow I(f) \leq I(g)$ (monotomicity)

Definition 1.5.3. Define a measurable map $f: X \to [0, \infty)$. $h = \sum_{i=1}^{n} c_i \cdot \chi_{A_i}$. The lebesgue integral of f w.r.t. μ is defined as

$$\int_{X} f \, d\mu := \sup \{ I(h) | h \in S^{+}, \ h \le f \}$$
 (1.5.6)

$$\in [0, \infty]. \tag{1.5.7}$$

f is called μ -integrable if $\int_X f \, d\mu < \infty$.

Property 1.5.2. Define measurable maps $f, g: X \to [0, \infty)$, we have

- 1. f = g for μ -almost everywhere (a.e.), which satisfies μ ($\{x \in X | f(x) \neq g(x)\}$) = $\Rightarrow \int_X f \ d\mu = \int_X g \ d\mu$.
- 2. $f \leq g$ for μ a.e. $\Longrightarrow \int_X f \ d\mu \leq \int_X g \ d\mu$
- 3. f = 0 for μ -a.e. $\iff \int_X f \ d\mu = 0$.

Proof of 2.: monotonicity. Let $h := X \to [0, \infty)$ be a simple function, i.e.,

$$h(x) = \sum_{i=1}^{n} c_i \chi_{A_i}(x)$$
 (1.5.8)

$$= \sum_{t \in h(X)} t \cdot \chi_{\{x \in X | h(x) = t\}}.$$
 (1.5.9)

Let $X = \tilde{X}^c \cup \tilde{X}$ with $\mu(\tilde{X}^c) = 0$,

$$\tilde{h}(x) := \begin{cases} h(x), & x \in \tilde{X} \\ a, & x \in \tilde{X}^c \end{cases}$$
 (1.5.10)

$$\tilde{h}(x) = \sum_{t \in h(X)} t \cdot \chi_{\left\{x \in \tilde{X} \mid h(x) = t\right\}} + a \cdot \chi_{\tilde{X}^c}$$
(1.5.11)

$$I(\tilde{h}) = \sum_{t \in h(X)} t \cdot \mu(\left\{x \in \tilde{X} | h(x) = t\right\}) + a \cdot \mu(\tilde{X}^c)$$

$$(1.5.12)$$

$$= \sum_{t \in h(X)} t \left[\mu \left(\left\{ x \in \tilde{X} | h(x) = t \right\} \right) + \mu \left(\left\{ x \in \tilde{X}^c | h(x) = t \right\} \right) \right]$$
 (1.5.13)

$$= \sum_{t \in h(X)} t \left[\mu \left(\left\{ x \in \tilde{X} | h(x) = t \right\} \cup \left\{ x \in \tilde{X}^c | h(x) = t \right\} \right) \right]$$
 (1.5.14)

$$I(h) = \sum_{t \in h(X) \setminus \{0\}} t \cdot \mu \left(\{ x \in X | h(x) = t \} \right). \tag{1.5.15}$$

We define

$$\tilde{X} := \{ x \in X | f(x) \le g(x) \},$$
(1.5.16)

$$\mu(\tilde{X}^c) = 0 \tag{1.5.17}$$

$$\int_{X} f \, d\mu = \sup \{ I(h) | h \in S^{+}, h \le f \}$$
 (1.5.18)

$$= \sup\{I(\tilde{h})|\tilde{h} \in S^+, \tilde{h} \le f \text{ on } \tilde{X}\}$$
 (1.5.19)

$$\leq \sup\{I(\tilde{h})|\tilde{h} \in S^+, h \leq g \text{ on } \tilde{X}\}$$
 (1.5.20)

$$= \sup\{I(h)|h \in S^+, h \le g\}$$
 (1.5.21)

$$= \int_X g \, \mathrm{d}\mu. \tag{1.5.22}$$

Theorem 2 (Monotone convergence theorem). (X, \mathcal{A}, μ) measurable spaces, $f_n : X \to [0, \infty]$, $(f : X \to [0, \infty])$ measurable for all $n \in \mathbb{N}$ with

$$f_1 \le f_2 \le f_3 \le \dots \quad \mu - a.e.$$
 (1.5.23)

$$\left(\lim_{n\to\infty} \int_X f_n \, \mathrm{d}\mu = \int_X f \, \mathrm{d}\mu \quad \mu - a.e.(x \in X)\right) \tag{1.5.24}$$

This implies that

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X \lim_{n \to \infty} f_n \, d\mu. \tag{1.5.25}$$

Proof. $\int_X f_1 d\mu \leq \int_X f_2 d\mu \leq \cdots$ and $\int_X f_n d\mu \leq \int_X f d\mu$ for $n \in \mathbb{N}$. Then we have

$$\lim_{n \to \infty} \int_{V} f_n \, d\mu \le \int_{V} f \, d\mu, \tag{1.5.26}$$

which is the first part of 1.5.25.

Let h be a simple function $0 \le h \le f$ and $\varepsilon > 0$. We define

$$X_n := \{ x \in X | f_n(x) \ge (1 - \varepsilon)h(x) \}$$

$$(1.5.27)$$

with $\bigcup_{n=1}^{\infty} X_n = \tilde{X}$, and $\mu(\tilde{X}^c) = 0$. We have

$$\int_{X} f_n \, d\mu \ge \int_{X_n} f_n \, d\mu \ge \int_{X_n} (1 - \varepsilon) h \, d\mu \tag{1.5.28}$$

$$\lim_{n \to \infty} \int_{X} f_n \, d\mu \ge \lim_{n \to \infty} \int_{X_n} (1 - \varepsilon) h \, d\mu \tag{1.5.29}$$

$$= \int_{\tilde{X}} (1 - \varepsilon) h \, d\mu \tag{1.5.30}$$

$$= \int_{X} (1 - \varepsilon) h \, d\mu. \tag{1.5.31}$$

This implies

$$\lim_{n \to \infty} \int_X f_n \, d\mu \ge \int_X h \, d\mu, \tag{1.5.32}$$

since $\varepsilon > 0$ arbitrarily. Then we have

$$\lim_{n \to \infty} \int_X f_n \, d\mu \ge \int_X f d\mu, \tag{1.5.33}$$

since h is arbitrary and $h \leq f$, which is second part of 1.5.25.

Applictions Given a series $(g_n)_{n\in\mathbb{N}}$, $g_n:X\to[0,\infty]$ measurable for all n. Then we have $\sum_{n=1}^{\infty}g_n:X\to[0,\infty]$ measurable and

$$\int_{X} \sum_{n=1}^{\infty} g_n \, d\mu = \sum_{n=1}^{\infty} \int_{X} g_n \, d\mu, \qquad (1.5.34)$$

which means the integral and sum can exchange.

1.6 Fatou' lemma

Lemma 1.6.1 (Fatou' lemma). Given (X, \mathcal{A}, μ) measurable space, $f_n : X \to [0, \infty]$ measurable for all $n \in \mathbb{N}$. Then we have

$$\int_{X} \liminf_{n \to \infty} f_n \, d\mu \le \liminf_{n \to \infty} \int_{X} f_n \, d\mu. \tag{1.6.1}$$

Remark 1.6.1. $\liminf_{n\to\infty} f_n: X\to [0,\infty]$ is a function. This is

$$g(x) := \left(\liminf_{n \to \infty} f_n\right)(x) \tag{1.6.2}$$

$$:= \lim_{n \to \infty} \left(\inf_{k > n} f_k(x) \right) \tag{1.6.3}$$

$$\in [0, \infty] \tag{1.6.4}$$

$$g_n(x) := \inf_{k \ge n} f_k(x). \tag{1.6.5}$$

We have

$$g_1 \le g_2 \le g_3 \le \cdots, \tag{1.6.6}$$

which is monotonically increasing. All these functions are measurable.

Proof.

Since (2),

$$\int_{X} \lim_{n \to \infty} g_n \, d\mu = \lim_{n \to \infty} \int_{X} g_n \, d\mu \tag{1.6.7}$$

$$= \liminf_{n \to \infty} \int_X g_n \, \mathrm{d}\mu. \tag{1.6.8}$$

We know that $g_n \leq f_n$ for all $n \in \mathbb{N}$. By (1.5.2), we have

$$\int_{X} g_n \, \mathrm{d}\mu \le \int_{X} f_n \, \mathrm{d}\mu,\tag{1.6.9}$$

for all $n \in \mathbb{N}$. Then we have

$$\int_{X} \liminf_{n \to \infty} f_n \, d\mu = \liminf_{n \to \infty} \int_{X} g_n \, d\mu$$
 (1.6.10)

$$\leq \liminf_{n \to \infty} \int_{Y} f_n \, \mathrm{d}\mu. \tag{1.6.11}$$

1.7 Lebesgue's dominated convergence theorem

 $(X, \mathcal{A}, \mu), \ \mathcal{L}^1 := \{f : X \to \mathbb{R} \ measurable | \int_X |f|^1 \ d\mu < \infty \}.$ For $f \in \mathcal{L}^1(\mu)$, write $f = f^+ - f^-$, where $f^+, f^- \ge 0$. Define $\int_X f \ d\mu := \int_X f^+ \ d\mu - \int_X f^- \ d\mu$.

Theorem 3 (Lebesgue's dominated convergence theorem). $f_n: X \to \mathbb{R}$ measurable for all $n \in \mathbb{N}$. $f: X \to \mathbb{R}$ with f(x) for $x \in X$ (μ -a.e.) and $|f_n| \leq g$ with $g \in \mathcal{L}^1(\mu)$ for all $n \in \mathbb{N}$, where g is called integral majorant. Then: we have $f_1, f_2, \dots \in \mathcal{L}^1(\mu)$, $f \in \mathcal{L}^1(\mu)$ and

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu. \tag{1.7.1}$$

Proof.

$$|f_n| \le g \stackrel{monotonicity}{\Longrightarrow} \int_X g \, d\mu < \infty$$
 (1.7.2)

$$\Longrightarrow f_1, f_2, \dots \in \mathcal{L}^1(\mu)$$
 (1.7.3)

$$|f| \le g \text{ for } \mu - \text{a.e.} \Longrightarrow f \in \mathcal{L}^1(\mu)$$
 (1.7.4)

We will show $\int_X |f_n - f| d\mu \stackrel{n \to \infty}{\Longrightarrow} 0$.

$$|f_n - f| \le |f_n| + |f| \le 2g \tag{1.7.5}$$

$$\implies h_n := 2g - |f_n - f| \ge 0 \tag{1.7.6}$$

Hence: $h_n: X \to [0, \infty]$ measurable for all $n \in \mathbb{N}$. Then by (1.6.1),

$$\Longrightarrow \int_{X} \liminf_{n \to \infty} h_n \, d\mu \le \liminf_{n \to \infty} \int_{X} h_n \, d\mu \tag{1.7.7}$$

$$\Longrightarrow \int_{X} 2g \, d\mu \le \int_{X} 2g \, d\mu - \limsup_{n \to \infty} \int_{X} |f_{n} - f| \, d\mu \qquad (1.7.8)$$

$$\implies 0 \le \liminf_{n \to \infty} \int_X |f_n - f| \, d\mu \le \limsup_{n \to \infty} \int_X |f_n - f| \, d\mu \le 0$$
 (1.7.9)

$$\Longrightarrow$$
 (1.7.10)

Limits exists and $\lim_{n\to\infty} |f_n - f| d\mu = 0$. We conclude that

(1.7.11)

$$0 \le |\int_X f_n \, d\mu - \int_X f \, d\mu| = |\int_X (f_n - f) \, d\mu| \le \int_X |f_n - f| \, d\mu \xrightarrow{n \to \infty} 0,$$

$$(1.7.12)$$

where the third inequality is due to the integral's triangle inequality.

(1.7.13)

$$\Longrightarrow \lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu. \tag{1.7.14}$$

1.8 Caratheodory's extension theorem

Theorem 4 (Caratheodory's extension theorem). X set, $A \in \mathcal{P}(X)$ semiring of sets. A map $\mu : A \to [0, \infty]$. Note that μ is not a measure, it is called A pre-measure.

- Then μ has an extension $\tilde{\mu}: \sigma(\mathcal{A}) \to [0, \infty]$, where $\tilde{\mu}$ is a measure and $\sigma(\mathcal{A})$ is a σ -algebra generated by \mathcal{A} , i.e., $\mu(A) = \tilde{\mu}(A)$.
- If there is sequence (S_j) with S_j ∈ A, ∪_{j=1}[∞]S_j = X, then the extension μ̃ from (a) is unique. (μ̃ is also σ-finite)

Definition 1.8.1 (Semiring set). *Semiring of sets* $A \subseteq \mathcal{P}(X)$:

- $\emptyset \in \mathcal{A}$ (as for σ -algebra)
- $A.B \in \mathcal{A} \Longrightarrow A \cap B \in \mathcal{A}$
- For $A, B \in \mathcal{A}$, there are pairwise disjoint sets $S_1, S_2, \ldots, S_n \in \mathcal{A} : \bigcup_{j=1}^n S_j = A \setminus B$

Example 1.8.1. $A := \{[a,b)| a,b \in \mathbb{R}, a \leq b\}$ not a σ -algebra because $\mathbb{R} \notin \mathcal{A}$. But $\sigma(\mathcal{A}) = \mathcal{B}(\mathbb{R})$ (Borel σ -algebra). Check that \mathcal{A} is semiring set:

• $\emptyset \in \mathcal{A}$

•

$$[a,b) \cap [c,d) = \begin{cases} \emptyset, & b \le c, d \le a \\ [c,b), & c \in [a,b), d \notin [a,b) \\ \dots \end{cases}$$
 (1.8.1)

•

$$[a,b)\backslash[c,d) = \begin{cases} [a,b), & d \le a,b \le c \\ [a,c), & c \in [a,b), d \notin [a,b) \\ [a,c) \cup [d,b), & c > a,d < b \\ & \dots \end{cases}$$
(1.8.2)

Definition 1.8.2 (Pre-measure). $\mu: \mathcal{A} \to [0, \infty]$ with \mathcal{A} semiring os sets:

- $\mu(\emptyset) = 0$
- $\mu(\bigcup_{j=1}^{\infty}) = \sum_{j=1}^{\infty} \mu(A_j)$, for $A_j \in \mathcal{A}$, $A_i \cap A_j = \emptyset$ for $i \neq j$ and $\bigcup_{j=1}^{\infty} A_j \in \mathcal{A}$.

Application: $A := \{[a,b)| a, b \in \mathbb{R}, a \leq b\}, \ \mu : \mathcal{A} \to [0,\infty], \ \mu([a,b)) = b-a \text{ is a premeasure (We can check by the definition of pre-measure). Then by (4), there is a unique extension to <math>\mathcal{B}(\mathbb{R}) \Longrightarrow$ lebesgue measure.

1.9 Lebesgue-Stieltjes measures

 $F:\mathbb{R}\to\mathbb{R}$ monotonically increasing (non-decreasing).[a,b) is the length of the interval. Now we consider new kinds of intervals:

$$F(b^{-}) - F(a^{-}) =: \mu_F([a, b)),$$
 (1.9.1)

where $F(a^{-}) := \lim_{\varepsilon \to 0^{+}} F(a - \varepsilon)$. Alternatively, we also have

$$F(b^+) - F(a^+) =: \mu_F((a, b]),$$
 (1.9.2)

where $F(a^+) := \lim_{\varepsilon \to 0^+} F(a + \varepsilon)$. We consider the previous one hereafter.

Definition 1.9.1. $A := \{[a,b) : a,b \in \mathbb{R}, a \leq b\}$ semiring of sets. Then by Caratheodory' theorem, we have that there exists exactly one measure

$$\mu_F: \mathcal{B}(\mathbb{R}) \to [0, \infty]$$
 (1.9.3)

with $\mu_F([a,b))$

(1.9.4)

Example 1.9.1. • F(x) = x, $\mu_F([a,b)) = b - a \rightarrow Lebesgue measure.$

• F(x) = 1, $\mu_F([a,b)) = 0 \rightarrow zero\ measure$.

•

$$F(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$
 (1.9.5)

 $\mu_F([-\varepsilon,\varepsilon)) = 1 \to Dirac measure \delta_0.$

• $F: \mathbb{R} \to \mathbb{R}$ monotonically increasing + continuously differentiable. Then we have

$$F': \mathbb{R} \to [0, \infty) \tag{1.9.6}$$

and

$$\mu_F([a,b)) = F(b) - F(a) \tag{1.9.7}$$

$$= \int_{a}^{b} F'(x) \, \mathrm{d}x, \tag{1.9.8}$$

which implies

$$\mu_F: A \longmapsto \int_A F'(x) \, \mathrm{d}x,$$
 (1.9.9)

where F'(x) is called the density function.

1.10 Radon-Nikodym theorem and Lebesgue's decomposition theorem

 $(X, \mathcal{A}, \lambda)$ measure space. Special case: $X = \mathcal{R}$, $\mathcal{A} = \mathcal{B}(\mathbb{R})$, and λ is lebesgue measure. Recall that $\lambda([a,b)) = b - a$. Another measure $\mu : \mathcal{B}(\mathbb{R}) \to [0,\infty]$. We will look how μ acts w.r.t. the given reference measure: lebesgue measure.

Definition 1.10.1. • μ is called absolutely continuous (w.r.t. λ) if $\lambda(A) = 0 \Longrightarrow \mu(A) = 0$ for all $A \in \mathcal{B}(\mathbb{R})$. One writes: $\mu << \lambda$.

μ is called singular (w.r.t. λ) if there is N ∈ B(ℝ) with λ(N) = 0 and μ(N^c) = 0.
 One writes: μ ⊥ λ.

Example 1.10.1. δ_0 Dirac measure $(\delta_0(\{0\}) = 1) \Longrightarrow \delta_0 \perp \lambda$ (Choose $N = \{0\}$).

Theorem 5 (Lebesgue's decomposition theorem). $\mu: \mathcal{B}(\mathbb{R}) \to [0, \infty]$ (σ -finite)

• There are measures (uniquely determined) $\mu_{ac}, \mu_s : \mathcal{B}(\mathbb{R}) \to [0, \infty]$ with $\mu = \mu_{ac} + \mu_s, \ \mu_{ac} << \lambda, \mu_s \perp \lambda$.

Theorem 6 (Radon-Nikodym theorem). $\mu: \mathcal{B}(\mathbb{R}) \to [0, \infty]$ (σ -finite)

• There is a measurable map $h : \mathbb{R} \to [0, \infty)$ with $\mu_{ac} = \int_A d \ d\lambda$ for all $A \in \mathcal{B}(\mathbb{R})$, where h is called the density function.

1.11 Image measure and substitution formula

Image measure is also called pushforward measure. Substitution formula is also called change of variable.

Definition 1.11.1 (Image measure). Measure space (X, A), μ is a measure on X. Measure space (Y, \mathcal{E}) , $\tilde{\mu}$ is a measure on Y. Define a measure map $h: X \to Y$. See the above figure. We then define the image measure as

$$\tilde{\mu}(c) = \mu(h^{-1}(c)).$$
 (1.11.1)

The notations: $h * \mu$ or $\mu \circ h^{-1}$. $h * \mu$ means pushforward and $\mu \circ h^{-1}$ is readble. Remember that $\tilde{\mu}$ is an measure on Y.

Lemma 1.11.1 (Substitution formula). A integrable function $g: Y \to \mathbb{R}$. We have

$$\int_{Y} g \ d(h * \mu) = \int_{X} g \circ h \ d\mu, \tag{1.11.2}$$

which can also be written as

$$\int_{Y} g(y) \ d(\mu \circ h^{-1})(y) = \int_{Y} g(h(x)) \ d\mu(x), \tag{1.11.3}$$

which is called the change of variables: y = h(x).

Example 1.11.1. F is a strictly monotonically increasing and continuously differentiable and surjective function from $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ with μ_F as $\mu_F(A) = \int_A F'(x) dx$ to

 $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. We have

$$(F * \mu_F)([a,b)) = \mu_F(F^{-1}([a,b)))$$
(1.11.4)

$$= \mu_F([F^{-1}(a), F^{-1}(b)]) \tag{1.11.5}$$

$$= \int_{F^{-1}(a)}^{F^{-1}(b)} F'(x) \, dx \tag{1.11.6}$$

$$= \int_{a}^{b} \mathrm{d}y \tag{1.11.7}$$

$$= \lambda([a,b)) \tag{1.11.8}$$

$$\Longrightarrow F_x \mu_F = \lambda,\tag{1.11.9}$$

 $Substitution\ formula:$

$$\int_{Y} g \, \mathrm{d}(F * \mu_F) = \int_{X} g \circ F \, \mathrm{d}\mu_F \tag{1.11.10}$$

$$\Longrightarrow \int_{\mathbb{R}} g(y) \, dy = \int_{\mathbb{R}} g(F(x))F'(x) \, dx. \tag{1.11.11}$$

Proof. (1) Let $g = \chi_c$ with $C \subseteq Y$ measurable. For the left hand side, we have

$$\int_{V} \chi_{c} d(h * \mu) = (h * \mu)(c)$$
(1.11.12)

$$= \mu(h^{-1}(c)). \tag{1.11.13}$$

For the right hand side, we have

$$\int_{X} \chi_c \circ h \, d\mu = \int_{X} \chi_c \circ h \, d\mu \tag{1.11.14}$$

$$= \int_X \chi_c(h(x)) \, \mathrm{d}\mu(x) \tag{1.11.15}$$

$$= \int_{X} \chi_{h^{-1}(c)} \, \mathrm{d}\mu \tag{1.11.16}$$

$$= \mu(h^{-1}(c)), \tag{1.11.17}$$

where

$$\chi_c(h(x)) = \begin{cases} 1, & x \in h^{-1}(c) \\ 0, & x \notin h^{-1}(c) \end{cases}$$
 (1.11.18)

(2) Let g be a simple function, i.e., $g = \sum_{i=1}^{n} \chi_{c_i}$. We then obtating

$$\int_{Y} \sum_{i=1}^{n} \lambda_{i} \chi_{c_{i}} d(h * \mu) = \sum_{i=1}^{n} \lambda_{i} \int_{Y} \chi_{c_{i}} d(h * \mu)$$
(1.11.19)

By (1)

$$= \sum_{i=1}^{n} \lambda_i \int_X \chi_{c_i}(h(x)) d\mu(x)$$
 (1.11.20)

$$= \int_{X} (\sum_{i=1}^{n} \lambda_{i} \chi_{c_{i}})(h(x)) d\mu(x)$$
 (1.11.21)

$$= \int_X g \circ h \, \mathrm{d}\mu. \tag{1.11.22}$$

(3) Let $g: Y \to [0, \infty)$ measurable. We have

$$\int_{Y} g \ \mathrm{d}(h * \mu) = \sup \left\{ \int_{Y} \tilde{s} \ \mathrm{d}(h * \mu) | \tilde{s} : Y \to [0, \infty) \ simple, \ \tilde{s} \le g \right\}. \tag{1.11.23}$$

We have the following equivalence relation:

$$\forall y \in h(x) : \tilde{s}(y) \le g(y) \tag{1.11.24}$$

$$\iff \forall x \in X : \tilde{s}(h(x)) \le g(h(x))$$
 (1.11.25)

$$[i.e., \tilde{s} \circ h \le (g \circ h)(x)]. \tag{1.11.26}$$

Then we have

$$\int_{Y} g \ \mathrm{d}(h * \mu) = \sup \left\{ \int_{X} \tilde{s} \circ \ \mathrm{d}\mu | \tilde{s} : Y \to [0, \infty) \ simple, \tilde{s} \circ h \le g \circ h \right\}$$
 (1.11.27)

Left as exercise

$$=\sup\left\{\int_X s\circ \ \mathrm{d}\mu|s:X\to [0,\infty) \ simple, s\circ h\leq g\circ h\right\} \qquad (1.11.28)$$

$$= \int_{X} g \circ h \, \mathrm{d}\mu. \tag{1.11.29}$$

1.12 Product measure and Cavalieri's principle

 $(X_1, \mathcal{A}_1, \mu_1)$ measure space and $(X_2, \mathcal{A}_2, \mu_2)$ measure space,

$$\Longrightarrow (X_1 \times X_2, \mathcal{A}, \mu), \text{ where } \mu \text{ is the product measure.}$$
 (1.12.1)

We have

$$\mu(A_1 \times A_2) = \mu_1(A_1) \cdot \mu_2(A_2). \tag{1.12.2}$$

Definition 1.12.1 (Product σ -algebra).

$$\mathcal{A} = \sigma(\mathcal{A}_1 \times \mathcal{A}_2). \tag{1.12.3}$$

Remark 1.12.1. Set of rectangles $(=A_1 \times A_2)$ are not a σ -algebra (but a semiring of sets)

Definition 1.12.2. Define product measure μ as $\mu(A_1 \times A_2) = \mu_1(A_1) \times \mu_2(A_2)$ for all $A_1 \in \mathcal{A}_1$ and $A_2 \in \mathcal{A}_2$, and use (4).

Remark 1.12.2. Product measure in general not unique.

Proposition: If
$$M_1$$
, M_2 are Γ -finite, then there is exactly one measure M with $M(A_A \times A_L) = M_A(A_A) \cdot M_L(A_L)$.

It satisfies:

$$M(M) = \int_{X_L} M_A(M_Y) \ d\mu_2(Y)$$

$$= \int_{X_L} M_2(M_X) \ d\mu_A(X)$$

$$M_X := \left\{ x_L \in X_L \mid (x_L, x_L) \in M \right\}$$

$$= \left\{ x_L \in X_L \mid (x_L, x_L) \in M \right\}$$

$$= \left\{ x_L \in X_L \mid (x_L, x_L) \in M \right\}$$

$$= \left\{ x_L \in X_L \mid (x_L, x_L) \in M \right\}$$

$$= \left\{ x_L \in X_L \mid (x_L, x_L) \in M \right\}$$

$$= \left\{ x_L \in X_L \mid (x_L, x_L) \in M \right\}$$

$$= \left\{ x_L \in X_L \mid (x_L, x_L) \in M \right\}$$

$$= \left\{ x_L \in X_L \mid (x_L, x_L) \in M \right\}$$

$$= \left\{ x_L \in X_L \mid (x_L, x_L) \in M \right\}$$

$$= \left\{ x_L \in X_L \mid (x_L, x_L) \in M \right\}$$

$$= \left\{ x_L \in X_L \mid (x_L, x_L) \in M \right\}$$

$$= \left\{ x_L \in X_L \mid (x_L, x_L) \in M \right\}$$

Proposition 1.12.1 (Cavalieri's principle). If μ_1 , μ_2 are σ -finite, then there is exactly one measure μ with $\mu(A_1 \times A_2) = \mu_1(A_1) \cdot \mu_2(A_2)$. Is satisfies:

$$\mu(M) = \int_{X_2} \mu_1(M_y) \, d\mu_2(y) \tag{1.12.4}$$

$$= \int_{X_1} \mu_2(M_x) \, d\mu_1(x). \tag{1.12.5}$$

Example 1.12.1 (An example for Cavalieri's principle). Calculate the volume of the pyramid with corners (-1,-1,0), (-1,1,0), (1,-1,0), (1,1,0), (0,0,1), $K \subset \mathbb{R}^3$, where the volume if the lebesgue measure in \mathbb{R}^3 : $\mu(Recall\ product\ measure\ construction\ with\ lebesgus\ measure\ on\ \mathbb{R})$.

Proof. Set

$$K = \{(x, y, z)^T \in \mathbb{R}^3 | 0 \le z \le 1, |x| \le 1 - z, |y| \le 1 - z \}.$$
 (1.12.6)

Define μ as a product measure of μ_1 and μ_2 , where μ_1 is the lebesgue measure in $\mathbb{R}(z-coordinate)$ and μ_2 is the lebesgue measure on $\mathbb{R}^2(x-coordinate)$. Following the definition of product measure, we have the volume of K as

$$\mu(k) = \int_{\mathbb{R}} \mu_2(M_{z_0}) \, d\mu_1(z_0) \tag{1.12.7}$$

$$= \int_{[0,1]} 4 \cdot (1 - z_0)^2 d\mu_1(z_0)$$
 (1.12.8)

$$=\frac{4}{3},\tag{1.12.9}$$

where

$$M_{z_0} := \{(x, y)^T \in \mathbb{R}^2 | |x| \le 1 - z_0, |y| \le 1 - z_0 \},$$
 (1.12.10)

and $\mu_2(M_{z_0})$ is the area of the square only for $z_0 \in [0,1]$.

1.13 Fubini's theorem

Theorem 7 (Fubini's theorem). Let μ_1 and μ_2 be σ -finite, μ be the product measure and

$$f: X_1 \times X_2 \to [0, \infty] \text{ measurable [or } f \in \mathcal{L}^1(\mu)],$$
 (1.13.1)

then:

$$\int_{X_1 \times X_2} f \, d\mu = \int_{X_2} \left(\int_{X_1} f(x, y) \, d\mu_1(x) \right) \, d\mu_2(x)$$
 (1.13.2)

$$= \int_{X_1} \left(\int_{X_2} f(x, y) \, d\mu_2(x) \right) \, d\mu_1(x). \tag{1.13.3}$$

Example 1.13.1. μ lebesgue measure for \mathbb{R}^2 . Calculate $\int_A f \ d\mu = ?$, where

$$A = \{(x, y) \in [0, 1] \times [0, 1] | x \ge y \ge x^2 \}, \tag{1.13.4}$$

$$f(x,y) = 2xy. (1.13.5)$$

We have

$$\int_{A} f \, \mathrm{d}\mu = \int_{\mathbb{R}^2} f \cdot \chi_A \, \mathrm{d}\mu \tag{1.13.6}$$

$$= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x, y) \chi_A(x, y) \, dy \right) \, dx \tag{1.13.7}$$

$$= \int_0^1 \left(\int_x^{x^2} 2xy \, dy \right) \, dx \tag{1.13.8}$$

$$=\frac{1}{12}. (1.13.9)$$

1.14 Outer measure

- tools for the proof of (4)
- "outer measure" is a new notion. "Outer measure" is not an attribute for "measure"! "Outer mesure" do not have to be measures!

Definition 1.14.1 (Outer measure). A map $\phi : \mathcal{P}(X) \to [0, \infty]$ is called an outer measure if:

- $(a) \phi(\emptyset) = 0$
- (b) $A \subseteq B \Longrightarrow \phi(A) \le \phi(B)$. (monotonicity)
- (c) $A_1, A_2, \ldots, \in \mathcal{P}(X) \Longrightarrow \phi(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \phi(A_n)$. (σ -subadditivity)

Question: $\phi: \mathcal{P}(X) \to [0, \infty]$ outer measure $\stackrel{?}{\longrightarrow} \mu$ measure?

Definition 1.14.2 (ϕ -measurable). Let ϕ be an outer measure. $A \in \mathcal{P}(X)$ is called ϕ -measurable if for all $Q \in \mathcal{P}(X)$ we have:

$$\phi(Q) \ge \phi(Q \cap A) + \phi(Q \cap A^c). \tag{1.14.1}$$

Proposition 1.14.1. *If* $\phi : \mathcal{P}(X) \to [0, \infty]$ *is an outer measure, then:*

- $\mathcal{A}_{\phi} := \{ A \subseteq X | A \ \phi \ measurable \} \ is \ a \ \sigma\text{-algebra}.$
- $\mu: \mathcal{A}_{\phi} \to [0, \infty], \ \mu(A) := \phi(A), \ is \ a \ measure.$

• union with two sets:
$$A_1$$
, $A_2 \in A_{\psi} \widetilde{\mathbb{Q}}$

$$\phi(Q) = \phi(Q \cap A_1) + \phi(\widetilde{Q} \cap A_2^c) = \phi(Q \cap A_1) + \phi(\widetilde{Q} \cap A_2) + \phi(\widetilde{Q} \cap A_2^c)$$

$$\geq \phi(Q \cap A_1) \cup (\widetilde{Q} \cap A_2) + \phi(\widetilde{Q} \cap A_2^c)$$

$$Q \cap A_1 \cap A_2^c$$

Proof. $\phi \in \mathcal{A}_{\phi}$? Is $\emptyset \phi$ -measurable?

$$\phi(Q) = \phi(Q \cap \emptyset) + \phi(Q \cup \emptyset^c) \tag{1.14.2}$$

$$= 0 + \phi(Q) \tag{1.14.3}$$

• $X \in \mathcal{A}_{\phi}$? Is $X \phi$ -measurable?

$$\phi(Q) = \phi(Q \cap X) + \phi(Q \cap X^c) \tag{1.14.4}$$

$$= \phi(Q) + \phi(\emptyset). \tag{1.14.5}$$

• $A \in \mathcal{A}_{\phi} \Longrightarrow$

$$\phi(Q) = \phi(Q \cap A) + \phi(Q \cap A^c) \tag{1.14.6}$$

$$= \phi(Q \cap A^c) + \phi(Q \cap (A^c)^c) \tag{1.14.7}$$

$$\Longrightarrow A^c \in \mathcal{A}_{\phi}.$$
 (1.14.8)

• union with two sets: $A_1, A_2 \in \mathcal{A}$

$$\phi(Q) = \phi(Q \cap A_1) + \phi(Q \cap A_1^c) \tag{1.14.9}$$

Define $\tilde{Q}:=Q\cap A_1^c$

$$= \phi(Q \cap A_1) + \phi(\tilde{Q} \cap A_2) + \phi(\tilde{Q} \cap A_2^c) \tag{1.14.10}$$

$$\geq \phi\left((Q \cap A_1) \cup (\tilde{Q} \cap A_2)\right) + \phi(\tilde{Q} \cap A_2^c) \tag{1.14.11}$$

$$= \phi(Q \cap (A_1 \cup A_2)) + \phi(Q \cap (A_1 \cup A_2)^c), \tag{1.14.12}$$

$$\Longrightarrow \phi(Q) \ge \phi(Q \cap (A_1 \cup A_2)) + \phi(Q \cap (A_1 \cup A_2)^c) \tag{1.14.13}$$

$$\Longrightarrow A_1 \cup A_2 \in \mathcal{A}_{\phi},\tag{1.14.14}$$

where the fouth equation is obtain by the above figure.

• countable union: $A_1, A_2, \dots \in \mathcal{A}_{\phi}, A := \bigcup_{j=1}^{\infty} A_j \in \mathcal{A}_{\phi}$?

$$\phi(Q) = \phi(Q \cap A_1) + \phi(Q \cap A_1^c) \tag{1.14.15}$$

Set $Q = \hat{Q} \cap (A_1 \cup A_2)$

$$= \phi(\hat{Q} \cap A_1) + \phi(\hat{Q} \cap A_2). \tag{1.14.16}$$

Induction: $\phi(\hat{Q} \cap \bigcup_{j=1}^n A_j) = \sum_{j=1}^n \phi(\hat{Q} \cap A_j)$. We have:

$$\phi(\hat{Q}) = \phi(\hat{Q} \cap \bigcup_{j=1}^{n}) + \phi(\hat{Q} \cap (\bigcup_{j=1}^{n} A_j)^c)$$
 (1.14.17)

$$\geq \sum_{j=1}^{n} \phi(\hat{Q} \cap A_j) + \phi(\hat{Q} \cap A^c) \tag{1.14.18}$$

$$\Longrightarrow \phi(\hat{Q}) \ge \sum_{j=1}^{n} \phi(\hat{Q} \cap A_j) + \phi(\hat{Q} \cap A^c)$$
 (1.14.19)

$$\geq \phi(\hat{Q} \cap A) + \phi(\hat{Q} \cap A^c) \tag{1.14.20}$$

$$\ge \phi(\hat{Q}) \tag{1.14.21}$$

$$\Longrightarrow A \in \mathcal{A}_{\phi}. \tag{1.14.22}$$

Example 1.14.1. (1) $\phi : \mathcal{P}(\mathbb{R}) \to [0, \infty],$

$$\phi(A) = \begin{cases} 0, & A = \emptyset \\ 1, & A \neq \emptyset. \end{cases} \implies outer \ measure \ but \ not \ a \ measure! \tag{1.14.23}$$

Example 1.14.2. $\phi: \mathcal{P}(\mathbb{N}) \to [0, \infty],$

$$\phi(A) = \begin{cases} |A|, & A \text{ finite} \\ \infty, & A \text{ not finite.} \end{cases}$$
 (1.14.24)

 \implies outer measure but a measure!(counting measure) (1.14.25)

(3)
$$\mathcal{I} = \left\{ [a,b] \mid a,b \in \mathbb{R} , a \leq b \right\}, \mu([a,b)) = b - a \left(\| [a_{n_0} + b^*] \right)$$

Define $\varphi : \mathcal{P}(\mathbb{R}) \longrightarrow [0,\infty)$ by :
$$\varphi(A) := \inf \left\{ \sum_{j=1}^{\infty} \mu(T_j) \mid T_j \in \mathcal{I}, A \subseteq \bigcup_{j=1}^{\infty} T_j \right\}$$
 $\downarrow \varphi(A) := \inf \left\{ \sum_{j=1}^{\infty} \mu(T_j) \mid T_j \in \mathcal{I}, A \subseteq \bigcup_{j=1}^{\infty} T_j \right\}$
 $\downarrow \varphi(A) := \inf \left\{ \sum_{j=1}^{\infty} \mu(T_j) \mid T_j \in \mathcal{I}, A \subseteq \bigcup_{j=1}^{\infty} T_j \right\}$
 $\downarrow \varphi(A) := \inf \left\{ \sum_{j=1}^{\infty} \mu(T_j) \mid T_j \in \mathcal{I}, A \subseteq \bigcup_{j=1}^{\infty} T_j \right\}$

Example 1.14.3. $\mathcal{I} = \{[a,b)|a,b \in \mathbb{R}, \ a \leq b\}, \ \mu([a,b)) = b - a("length").$

Define $\phi: \mathcal{P}(\mathbb{R}) \to [0, \infty)$ by:

$$\phi(A) := \inf \left\{ \sum_{j=1}^{\infty} \mu(I_j) | I_j \in \mathcal{I}, \ A \subseteq \bigcup_{j=1}^{\infty} I_j \right\}$$
 (1.14.26)

$$\implies \phi \text{ is an outer measure!}$$
 (1.14.27)

Proof. check (a) of (1.14.1): $\phi(\emptyset) = 0$.

check (b) of (1.14.1): monotonicity,

$$A \subseteq B \Longrightarrow \phi(B) \tag{1.14.28}$$

$$=\inf\left\{\sum_{j=1}^{\infty}\mu(I_j)|I_j\in\mathcal{I},\ B\subseteq U_{j=1}^{\infty}I_j\right\}$$
(1.14.29)

$$\geq \inf \left\{ \sum_{j=1}^{\infty} \mu(I_j) | I_j \in \mathcal{I}, \ A \subseteq U_{j=1}^{\infty} I_j \right\}, \tag{1.14.30}$$

since $A \subseteq B$.

check (c) of (1.14.1): show that $\phi(\bigcup_{n\in\mathbb{N}}A_n)\leq \sum_{n\in\mathbb{N}}\phi(A_n)$. Let $\varepsilon>0$. Choose $\varepsilon_n>0$ with $\sum_{n\in\mathbb{N}}\varepsilon_n=\varepsilon$. Then there are intervals $I_{j,n}$ with:

$$\phi(A_n) \ge \sum_{j=1}^{\infty} \mu(I_{j,n}) - \varepsilon_n, \tag{1.14.31}$$

and

$$A_n \subseteq \bigcup_{j=1}^{\infty} I_{j,n}. \tag{1.14.32}$$

Then: $\bigcup_{n\in\mathbb{N}}\subseteq\bigcup_{n\in\mathbb{N}}\bigcup_{j\in\mathbb{N}}I_{j,n}=\bigcup_{j,n}I_{j,n}.$

$$\Longrightarrow \phi(\cup_{n\in\mathbb{N}}) \stackrel{(b)}{\leq} \phi(\cup_{j,n} I_{j,n}) \tag{1.14.33}$$

$$\leq \sum_{j,n} \mu(I_{j,n})$$
(1.14.34)

$$= \sum_{n \in \mathbb{N}} \left\{ \sum_{j \in \mathbb{N}} \mu(I_{j,n}) \right\}$$
 (1.14.35)

$$\leq \sum_{n\in\mathbb{N}} (\phi(A_n) + \varepsilon_n) \tag{1.14.36}$$

$$= \sum_{n \in \mathbb{N}} \phi(A_n) + \varepsilon. \tag{1.14.37}$$