GEL-4074 Ingénierie de la compatibilité électromagnétique

Automne 2019

Examen mi-session

Le 21 oct. 2019 de 08h30 à 11h20, PLT-2512

Durée: 170 minutes

Professeur: Mohamed Haj Taieb

Cet examen comporte 5 questions sur 8 pages (incluant celle-ci), comptabilisées sur un total de 100 points. L'examen compte pour 30% de la note totale pour la session.

- Vous avez droit à tout vos documents, à vos ordinateur portable , ainsi qu'une calculatrice acceptée;
- Votre ordinateur portable ne doit être utilisé que pour accèder au sites du cours, aucune recherche internet ne doit être effectuée et aucun logiciel n'est permis;
- Il faut bien donner la formule utilisée avant de faire le calcul numérique. Ainsi on pourra détecter les erreurs de calcul, si lieu.
- Assurez-vous d'avoir toutes les pages;
- SVP sortez votre carte étudiante et placez-la visiblement sur votre table de travail;
- L'examen contient quatre (2) annexes:
 - l'annexe A contient certaines formules et valeurs numériques;
 - l'annexe B contient les limites FCC et CISPR pour les émissions rayonnées;

Bonne chance!

Question	Points	Score
1	18	
2	18	
3	30	
4	18	
5	16	
Total:	100	

1. (18 points) Considérez les 2 conducteurs 18-AWG donnés à la figure 1. Ces deux conducteurs sont parallèles avec une séparation de s=2,048 mm. La longueur de chacun de ces 2 conducteurs est de L=30 cm.

Figure 1 - Couplage capacitif entre 2 conducteurs

- *(a) (3 points) Tracer la représentation physique du couplage capacitif en plaçant les capacités suivantes :
 - C_{1G} : capacité entre le conducteur 1 et la masse.
 - $-C_{2G}$: capacité entre le conducteur 2 et la masse.
 - C₁₂ : capacité de couplage entre les 2 conducteurs.
 - (b) (2 points) Tracer le circuit équivalent de couplage capacitif.
 - (c) (2 points) Donner l'expression du voltage parasite V_N (Donnez simplement la formule sans faire le développement).
 - (d) (4 points) Déterminer la valeur numérique de C_{12} .
 - (e) Pour cette question on va prendre $C_{1G} = C_{2G} = 24$ pF et $C_{12} = 6$ pF.

Calculer et tracer V_N en fonction du temps pour les valeurs suivantes de la résistance de charge R_C :

- i. (3 points) La résistance R_C est infinie.
- ii. (4 points) La résistance $R_C = 50 \Omega$.

Considérer uniquement une seule période de V_N pour les différents tracés. Indiquez bien les valeurs et les unités des échelles de coordonnées.

y revenir for

2. (18 points) Considérez 2 boucles rectangulaires formées de conducteurs 18-AWG comme le montre la figure 2. La longueur de chacune de ces 2 boucles est de b=30 cm et la hauteur est de a=1cm. Les valeurs des résistances du circuit sont : $R_C=R_1=R_2=50~\Omega$.

FIGURE 2 - Couplage inductif entre 2 conducteurs

- (a) (3 points) Tracer la représentation physique du couplage inductif en plaçant les éléments suivant :
 - $-I_1$: le courant traversant la boucle 1.
 - -M: Inductance mutuelle entre les 2 boucles.
 - $-V_N$: Le voltage induit par la boucle 1 dans la boucle 2.
- (b) (2 points) Tracer le circuit équivalent de couplage inductif.
- (c) (2 points) Donner l'expression du voltage parasite V_N .
- (d) (4 points) Pour un coefficient de couplage magnétique k=0.2 entre ces 2 boucles, calculer l'inductance mutuelle M.

Pour le reste de la question on va prendre $M = 0.1 \mu H$.

- (e) (4 points) Calculer la valeur du voltage induit V_N en fonction de V_1 .
- (f) (3 points) Déterminer le voltage V_C en fonction de V_1

3. (30 points)

- (a) Considérez un fil de longueur l=5 cm parcouru par un courant I=1 mA de fréquence f=150 MHz.
 - i. (1 point) Déterminer la limite entre champs proche et champs lointain.
 - ii. (1 point) À partir de quelle distance peut-on considérer qu'il s'agit des champs lointains
 - iii. (5 points) Déterminer l'amplitude |E| et la phase $\angle E$ du champs électrique à une distance de 10 m en considérant la direction d'émission maximale. Donnez la valeur de |E| en $\mu V/m$ et en $dB\mu V/m$.
 - iv. (3 points) Déduire l'amplitude |H| et la phase $\angle H$ du champs magnétique à la même distance de 10 m. Donnez votre réponse en $\mu A/m$ et en $dB\mu A/m$.
 - v. (1 point) Est ce que les émissions rayonnées générées par ce fils respectent la limite de la FCC Classe A pour une distance de 10 m.
 - vi. (2 points) De combien de dB (au-dessous ou au-dessus) ces émissions se trouvent t-elles par rapport à cette limite.
- (b) On prend ce même fil de longueur l=5 cm et on l'utilise pour former une boucle circulaire parcourue par un courant $I=10~\mu\mathrm{A}$ de fréquence $f=150~\mathrm{MHz}$.
 - i. (4 points) Déterminer l'amplitude du champs électrique |E| à une distance de 10 m en considérant la direction d'émission maximale. Donnez votre réponse en $\mu V/m$ et en $dB\mu V/m$.
 - ii. (1 point) Est ce que les émissions rayonnées générées par cette boucle respectent la limite de la FCC Classe A pour une distance de 10 m.
 - iii. (2 points) De combien de dB (au-dessous ou au-dessus) ces émissions se trouvent t-elles par rapport à cette limite.
- (c) Considérez maintenant un fil de longueur l=1 m parcouru par un courant $I=100~\mu\mathrm{A}$ de fréquence $f=150~\mathrm{MHz}$. La valeur du courant au centre du fils est de $100~\mu\mathrm{A}$.
 - i. (4 points) Déterminer l'amplitude du champs électrique |E| à une distance de 10 m en considérant la direction d'émission maximale. Donnez votre réponse en $\mu V/m$ et en $dB\mu V/m$.
 - ii. (1 point) Est ce que les émissions rayonnées générées par ce fils respectent la limite de la FCC Classe A pour une distance de 10 m.
 - iii. (2 points) De combien de dB (au-dessous ou au-dessus) ces émissions se trouvent t-elles par rapport à cette limite.
 - iv. (3 points) Donner la valeur du courant maximale I pour respecter la limite FCC Classe A à 10 m avec une marge de 3 dB.

4. (18 points) Considérons 2 câbles à ruban de longueur 0.5 m avec une séparation s=6 mm comme le montre la figure 3. Ces 2 fils sont parcourus à leurs centre par un courant $I_1=20$ mA et $I_2=20.05$ mA de 300 MHz. On effectue des tests d'émission rayonnée FCC classe \ref{p} à 10 m. Remarquer bien qu'il s'agit d'un dipôle demi-onde.

FIGURE 3 - Mode différentiel et mode commum

- (a) (4 points) Déterminer le courant en mode commun I_C et le courant en mode différentiel I_D .
- (b) Mode commun.
 - i. (4 points) Déterminer le module du champ électrique $|E_C|$ du mode commun. Donnez votre réponse en $\mu V/m$ et en $dB\mu V/m$.
 - ii. (1 point) Est ce que les émissions rayonnées générées par le mode commun respectent la limite de la FCC Classe A pour une distance de 10 m.
 - iii. (2 points) De combien de dB (au-dessous ou au-dessus) les émissions du mode commun se trouvent t-elles par rapport à cette limite.
- (c) Mode différentiel.
 - i. (4 points) Déterminer le module du champ électrique $|E_D|$ du mode différentiel. Donnez votre réponse en $\mu V/m$ et en $dB\mu V/m$.
 - ii. (1 point) Est ce que les émissions rayonnées générées par le mode différentiel respectent la limite de la FCC Classe A pour une distance de 10 m.
 - iii. (2 points) De combien de dB (au-dessous ou au-dessus) les émissions du mode différentiel se trouvent t-elles par rapport à cette limite.

5. (16 points) Soit le champs électrique incident à un cable à ruban formé par une paire de fils 28-AWG parallèle de longueur L=1 m et séparés par une distance s=5 mm. Comme le montre la figure 4, une onde électromagnétique est présente au niveau du câble à ruban.

FIGURE 4 - Champs électromagnétique incident à une paire de fils parallèles

- (a) (4 points) Déterminer l'impédance caractéristique du câble Z_C . Utiliser $\epsilon_r=1$.
- (b) (4 points) Calculer $j\omega\mu_0H_nLs$. Indication : $H_n=\frac{10}{\eta_0}$ est la composante normale du champs magnétique.
- (c) (4 points) Calculer $j\omega \frac{\pi\varepsilon_0}{\ln(\frac{s}{r_w})}E_tLs$.

Indication : $E_t = \frac{10\sqrt{2}}{4}$ est la composante transversale du champs électrique.

(d) (4 points) Déduire le circuit équivalent simplifié représentant l'impact de l'onde incidente.

A Annexe : Formules et valeurs numériques

A.1 Formules

Calcul de la capacité de 2 fils parallèles de rayon r_w , de longueur L et séparés de s

$$C = \frac{\pi \varepsilon_0 L}{\ln \left(\frac{s}{2r_w} + \sqrt{\left(\frac{s}{2r_w}\right)^2 - 1}\right)}$$

L'inductance propre d'une boucle rectangulaire formée d'un fil de rayon r_w est donnée par

$$L = \frac{\mu_0}{\pi} \left[b \ln \left(\frac{a}{r_w} \right) + a \ln \left(\frac{b}{r_w} \right) \right]$$

La relation entre l'inductance mutuelle et les inductance propres L_1 et L_2 de 2 boucles est donnée par

$$M = k\sqrt{L_1 L_2}$$

A.2 Constantes

$$\varepsilon_0 = 8.854 \times 10^{-12} F/m \approx \frac{1}{36\pi} 10^{-9} F/m$$

$$\mu_0 = 4\pi \times 10^{-7} H/m$$

$$\eta_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 120\pi = 377\Omega$$

$$c = \sqrt{\frac{1}{\mu_0 \varepsilon_0}} = 3 \times 10^8 m/s$$

$$\lambda = \frac{c}{f}$$

$$\beta = \frac{2\pi}{5}$$

A.3 Caractéristiques des fils dans le standard American Wire Gauge (AWG)

Taille AWG	Diamètre [mm]
10	2.588
12	2.053
14	1.628
16	1.291
18	1.024
20	0.812
22	0.644
24	0.511
26	0.405
28 .	0.361

B Annexe : Limites des émissions rayonnées

Requis des émissions rayonnées du FCC et du CISPR

TABLE 1-1. FCC Class A Radiated Emission Limits Measured at (10 m.)

Frequency (MHz)	Field Strength (μV/m)	Field Strength (dB μV/m)
30–88	90	39.0
88-216	150	43.5
216–960	210	46.5
> 960	300	49.5

TABLE 1-2. FCC Class B Radiated Emission Limits Measured at 3 m.

Frequency (MHz)	Field Strength (μV/m)	Field Strength (dB μV/m)
30–88	100	40.0
88–216	150	43.5
216–960	200	46.0
> 960	500	54.0

TABLE 1-3. FCC Class A and Class B Radiated Emission Limits Measured at 10 m.

Frequency (MHz)	Class A Limit (μV/m)	Class B Limit (dB µV/m)
30–88	39.0	29.5
88–216	43.5	33.0
216-960	46.5	35.5
> 960	49.5	43.5

TABLE 1-8. CISPR Radiated Emission Limits at 10 m.

Frequency (MHz)	Class A Limit (dB μV/m)	Class B Limit (dB μV/m)
30–230	40	30
230–1000	47	37