Chapter 1 Proofs

Item	Summary
Definition 1.1	Complex numbers
Theorem 1.1	Properties of complex arithmetic
Definition 1.2	$-\alpha$, subtraction, $1/\alpha$, division
Notation 1.1	F
Corollary 1.1	Power operations
Definition 1.3	List, length
Definition 1.4	\mathbf{F}^n
Definition 1.5	Addition in \mathbf{F}^n
Theorem 1.2	Commutativity of addition in \mathbf{F}^n
Definition 1.6	0
Definition 1.7	Additive inverse in \mathbf{F}^n
Definition 1.8	Scalar multiplication in \mathbf{F}^n
Definition 1.9	Addition, scalar multiplication
Definition 1.10	Vector space
Definition 1.11	Vector, point
Definition 1.12	Real vector space, complex vector space
Notation 1.2	\mathbf{F}^{S}
Theorem 1.3	Unique additive identity
Theorem 1.4	Unique additive inverse
Notation 1.3	-v, w-v
Notation 1.4	V
Theorem 1.5	The number 0 times a vector
Theorem 1.6	A number times the vector 0
Theorem 1.7	The number -1 times a vector
Definition 1.13	Subspace
Theorem 1.8	Conditions for a subspace
Theorem 1.9	Sum of subspaces is the smallest containing subspace
Definition 1.14	Direct sum

Theorem 1.10	Condition for a direct sum
Theorem 1.11	Direct sum of two subspaces

Theorem 1.1 (Properties of complex arithmetic)

Commutativity

$$\alpha + \beta = \beta + \alpha$$
 and $\alpha\beta = \beta\alpha$ for all $\alpha, \beta \in \mathbf{C}$.

Associativity

$$(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$$
 and $(\alpha\beta)\lambda = \alpha(\beta\lambda)$ for all $\alpha, \beta, \lambda \in \mathbb{C}$.

Identities

$$\lambda + 0 = \lambda$$
 and $\lambda \cdot 1 = \lambda$ for all $\lambda \in \mathbf{C}$.

· Additive inverse

For every $\alpha \in \mathbf{C}$, there exists a unique $\beta \in \mathbf{C}$ such that $\alpha + \beta = 0$.

• Multiplicative inverse

For every $\alpha \in \mathbf{C}$ with $\alpha \neq 0$, there exists a unique $\beta \in \mathbf{C}$ such that $\alpha\beta = 1$.

• Distributive property

$$\lambda(\alpha + \beta) = \lambda\alpha + \lambda\beta$$
 for all $\lambda, \alpha, \beta \in \mathbf{C}$.

Proof. For all $\alpha, \beta, \lambda \in \mathbb{C}$, let $\alpha = a + bi, \beta = c + di, \lambda = e + fi$, where $a, b, c, d, e, f \in \mathbb{R}$.

Commutativity

$$\alpha + \beta = (a + bi) + (c + di)$$

$$= (a + c) + (b + d)i$$

$$= (c + a) + (d + b)i$$

$$= (c + di) + (a + bi)$$

$$= \beta + \alpha.$$

$$\alpha\beta = (a + bi)(c + di)$$

$$= (ac - bd) + (ad + bc)i$$

$$= (ac - bd) + (da + cb)i$$

$$= (ca - db) + (cb + da)i$$

$$= (c + di)(a + bi)$$

$$= \beta\alpha.$$

Associativity

$$(\alpha + \beta) + \lambda = [(a + bi) + (c + di)] + (e + fi)$$

$$= [(a + c) + (b + d)i] + (e + fi)$$

$$= (a + c + e) + (b + d + f)i$$

$$= (a + bi) + [(c + e) + (d + f)i]$$

$$= (a + bi) + [(c + di) + (e + fi)]$$

$$= \alpha + (\beta + \lambda).$$

$$(\alpha\beta)\lambda = [(a + bi)(c + di)](e + fi)$$

$$= [(ac - bd) + (ad + bc)i](e + fi)$$

$$= (ace - bde - adf - bcf) + (acf - bdf + ade + bce)i$$

$$= (a + bi)[(ce - df) + (cf + de)i]$$

$$= (a + bi)[(c + di)(e + fi)]$$

$$= \alpha(\beta\lambda).$$

• Identities

$$\lambda + 0 = (e + fi) + (0 + 0i) = (e + 0) + (f + 0)i = e + fi = \lambda.$$
$$\lambda \cdot 1 = (e + fi)(1 + 0i) = (e \cdot 1 - f \cdot 0) + (e \cdot 0 + f \cdot 1)i = e + fi = \lambda.$$

• Additive inverse

Let c = -a and d = -b, then

$$\alpha + \beta = (a+bi) + (c+di) = (a+c) + (b+d)i = (a-a) + (b-b)i = 0 + 0i = 0.$$

• Multiplicative inverse

Because $\alpha \neq 0$, $a^2 + b^2 \neq 0$. Let $c = a/(a^2 + b^2)$ and $d = -b/(a^2 + b^2)$, then

$$\alpha\beta = (a+bi)\left(\frac{a}{a^2+b^2} + \frac{-b}{a^2+b^2}i\right) = \left(\frac{a^2+b^2}{a^2+b^2} + \frac{-ab+ab}{a^2+b^2}i\right) = (1+0i) = 1.$$

• Distributive property

$$\lambda(\alpha + \beta) = (e + fi)[(a + bi) + (c + di)]$$
$$= (e + fi)[(a + c) + (b + d)i]$$

$$= (ea + ec - fb - fd) + (eb + ed + fa + fc)i$$

$$= [(ea - fb) + (eb + fa)i] + [(ec - fd) + (ed + fc)i]$$

$$= (e + fi)(a + bi) + (e + fi)(c + di)$$

$$= \lambda \alpha + \lambda \beta.$$

Corollary 1.1 For all $\alpha, \beta \in \mathbf{F}$ and all positive integers m, n, there is $(\alpha^m)^n = \alpha^{mn}$ and $(\alpha\beta)^m = \alpha^m\beta^m$.

Proof. For all $\alpha, \beta \in \mathbf{F}$ and all positive integers m, n, there is

$$(\alpha^m)^n = \underbrace{\alpha^m \alpha^m \cdots \alpha^m}_{n} = \alpha^{mn}.$$

$$(\alpha\beta)^m = \underbrace{(\alpha\beta)(\alpha\beta)\cdots(\alpha\beta)}_{m} = \underbrace{(\alpha\alpha\cdots\alpha)}_{m}(\underbrace{\beta\beta\cdots\beta}_{m}) = \alpha^m\beta^m.$$

Theorem 1.2 (Commutativity of addition in Fⁿ**)** If $x, y \in \mathbf{F}^n$, then x + y = y + x.

Proof. For $x, y \in \mathbf{F}^n$, let $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$, then

$$x + y = (x_1, \dots, x_n) + (y_1, \dots, y_n)$$

$$= (x_1 + y_1, \dots, x_n + y_n)$$

$$= (y_1 + x_1, \dots, y_n + x_n)$$

$$= (y_1, \dots, y_n) + (x_1, \dots, x_n)$$

$$= y + x.$$

Theorem 1.3 (Unique additive identity) A vector space has a unique additive indentity.

Proof. Suppose that a vector space V has another additive indentity 0', so v+0=v+0'=v for all $v \in V$. Then

$$0 + 0' = 0' + 0
0 + 0' = 0'
0' + 0 = 0$$

$$\Rightarrow 0 = 0'.$$

Thus, a vector space has a unique additive indentity.

Theorem 1.4 (Unique additive inverse) Every element in a vector space has a unique additive inverse.

Proof. Suppose that every element in a vector space V has another additive inverse, so for every $v \in V$, there exists $w, w' \in V$ such that v + w = v + w' = 0. Then

$$w = w + 0 = w + (v + w') = (w + v) + w' = 0 + w' = w'.$$

Thus, every element in a vector space has a unique additive inverse.

Theorem 1.5 (The number 0 times a vector) $0 \cdot v = 0$ for every $v \in V$.

Proof. For every $v \in V$, we have

$$0 \cdot v = (0+0) \cdot v = 0 \cdot v + 0 \cdot v \quad \Rightarrow \quad 0 \cdot v = 0.$$

Thus, $0 \cdot v = 0$ for every $v \in V$.

Theorem 1.6 (A number times the vector 0) $a \cdot 0 = 0$ for every $a \in \mathbf{F}$.

Proof. For every $a \in \mathbf{F}$, we have

$$a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0 \implies a \cdot 0 = 0.$$

Thus, $a \cdot 0 = 0$ for every $a \in \mathbf{F}$.

Theorem 1.7 (The number -1 times a vector) $(-1) \cdot v = -v$ for every $v \in V$.

Proof. For every $v \in V$, we have

$$v + (-1) \cdot v = 1 \cdot v + (-1) \cdot v = [1 + (-1)] \cdot v = 0 \cdot v = 0.$$

Thus, $(-1) \cdot v = -v$ for every $v \in V$.

Theorem 1.8 (Conditions for a subspace) A subset U of V is a subspace of V if and only if U satisfies the following three conditions:

Additive identity

$$0 \in U$$
.

· Closed under addition

$$u, w \in U$$
 implies $u + w \in U$.

· Closed under scalar multiplication

$$a \in \mathbf{F}$$
 and $u \in U$ implies $au \in U$.

Proof.

(a) A subset U of V is a subspace of $V \Rightarrow U$ satisfies those three conditions.

Because U is a subspace of V, U is a vector space. With the additive identity, there exists an element $0 \in U$ such that u + 0 = U for all $u \in U$; with the addition, $u + w \in U$ for each pair of elements $u, w \in U$; with the scalar multiplication, $au \in U$ for each $a \in \mathbf{F}$ and each $u \in U$.

- (b) A subset U of V is a subspace of $V \Leftarrow U$ satisfies those three conditions.
 - Commutativity

Because $U \in V$ and for all $u, v \in U$, there are $u, v \in V$. Because u + v = v + u for all $u, v \in V$, there are u + v = v + u for all $u, v \in U$.

Associativity

Because $U \in V$ and for all $u, v, w \in U$, there are $u, v, w \in V$. Because (u + v) + w = u + (v + u) and (ab)v = a(bv) for all $u, v, w \in V$ and all $a, b \in \mathbf{F}$. There are (u + v) + w = u + (v + u) and (ab)v = a(bv) for all $u, v, w \in U$ and all $a, b \in \mathbf{F}$.

Additive identity

Because $U \in V$ and for all $u \in U$, there is $u \in V$. Because there exists an element $0 \in V$ such that v + 0 = v for all $v \in V$, there is u + 0 = u for all $u \in U$.

• Additive inverse

If $u \in U$, because $-1 \in \mathbf{F}$, there is $-1 \cdot u = -u \in U$. For every $u \in U$, there exists $-u \in U$ such that u + (-u) = 0.

• Multiplicative identity

Because $U \in V$ and for all $u \in U$, there is $u \in V$. Because $1 \cdot v = v$ for all $v \in V$, there is $1 \cdot u = u$ for all $u \in U$.

• Distributive identity

Because $U \in V$ and for all $u, v \in U$, there is $u, v \in V$. Because a(u + v) = au + av and (a + b)v = av + bv for all $a, b \in \mathbf{F}$ and all $u, v \in V$, there is a(u + v) = au + av and (a + b)v = av + bv for all $a, b \in \mathbf{F}$ and all $u, v \in U$.

To sum up, U is a vector space. With U is a subset of V, U is a subspace of V.

Theorem 1.9 (Sum of subspaces is the smallest containing subspace) Suppose

 U_1, \dots, U_m are subspaces of V. Then $U_1 + \dots + U_m$ is the smallest subspace of V containing U_1, \dots, U_m .

Proof.

(a) We will prove that $U_1 + \cdots + U_m$ is a subspace of V.

• Because $0 \in U_1, \dots, 0 \in U_m$, then $0 + \dots + 0 = 0 \cdot m = 0 \in U_1 + \dots + U_m$.

• For every $u_1, w_1 \in U_1, \dots, u_m, w_m \in U_m$, we have $u_1 + w_1 \in U_1, \dots, u_m + w_m \in U_m$ and $u_1 + \dots + u_m, w_1 + \dots + w_m \in U_1 + \dots + U_m$. In addition,

$$(u_1 + w_1) + \cdots + (u_m + w_m) \in U_1 + \cdots + U_m$$
.

Because

$$(u_1 + w_1) + \cdots + (u_m + w_m) = (u_1 + \cdots + u_m) + (w_1 + \cdots + w_m),$$

 $U_1 + \cdots + U_m$ is closed under addition.

• For every $a \in \mathbf{F}$ and $u_1 \in U_1, \dots, u_m \in U_m$, we have $au_1 \in U_1, \dots, au_m \in U_m$ and $u_1 + \dots + u_m \in U_1 + \dots + U_m$. In addition,

$$au_1 + \cdots + au_m \in U_1 + \cdots + U_m$$
.

Because

$$au_1 + \dots + au_m = a(u_1 + \dots + u_m),$$

 $U_1 + \cdots + U_m$ is closed under scalar multiplication.

To sum up, $U_1 + \cdots + U_m$ is a subspace of V.

- (b) We will prove that $U_1 + \cdots + U_m$ is the smallest subspace of V containing U_1, \cdots, U_m .
 - For $j=1,\cdots,m$ and for every $u_1\in U_1,\cdots,u_m\in U_m$, we have

$$\underbrace{0+\cdots+0+u_j+0+\cdots+0}_{m}=u_j\in U_1+\cdots+U_m.$$

Therefore, U_1, \dots, U_m are all contained in $U_1 + \dots + U_m$.

• Because every element $u \in U_1 + \cdots + U_m$ can be written in the form

$$u = u_1 + \cdots + u_m$$

where $u_1 \in U_1, \dots, u_m \in U_m$. Every subspace of V must contain all the elements of $U_1 + \dots + U_m$, so it contains $U_1 + \dots + U_m$.

To sum up, $U_1 + \cdots + U_m$ is the smallest subspace of V containing U_1, \cdots, U_m .

Theorem 1.10 (Condition for a direct sum) Suppose U_1, \dots, U_m are subspaces of V. Then $U_1 + \dots + U_m$ is a direct sum if and only if the only way to write 0 as a sum $u_1 + \dots + u_m$, where each u_j is in U_j , is by taking each u_j equal to 0.

Proof.

(a) $U_1 + \cdots + U_m$ is a direct sum \Rightarrow the only way to write 0 as a sum $u_1 + \cdots + u_m$, where each u_j is in U_j , is by taking each u_j equal to 0.

Because $U_1 + \cdots + U_m$ is a direct sum and $0 \in U_1 + \cdots + U_m$, there is only one way to write 0 as a sum $u_1 + \cdots + u_m$. If we take each u_j which is in U_j equal to 0, we can get 0. Therefore, it is the only way to write 0 as a sum $u_1 + \cdots + u_m$, where each u_j is in U_j .

(b) $U_1 + \cdots + U_m$ is a direct sum \Leftarrow the only way to write 0 as a sum $u_1 + \cdots + u_m$, where each u_j is in U_j , is by taking each u_j equal to 0.

Let $v \in U_1 + \cdots + U_m$. We can write

$$v = u_1 + \cdots + u_m$$

for some $u_1 \in U_1, \dots, u_m \in U_m$. To show that this representation is unique, suppose we also have

$$v = v_1 + \dots + v_m$$

where $v_1 \in U_1, \dots, v_m \in U_m$. Subtracting these two equations, we have

$$0 = (u_1 - v_1) + \dots + (u_m - v_m).$$

Because $u_1 - v_1 \in U_1, \dots, u_m - v_m \in U_m$, the equation above implies that each $u_j - v_j$ equals 0. Thus, $u_1 = v_1, \dots, u_m = v_m$.

Theorem 1.11 (Direct sum of two subspaces) Suppose U and W are subspaces of V. Then U+W is a direct sum if and only if $U\cap W=\{0\}$.

Proof.

(a) U + W is a direct sum $\Rightarrow U \cap W = \{0\}$.

Because $0 \in U$ and $0 \in W$, we have $0 \in U \cap W$. Suppose that there exists another element $v \in U \cap W$ and $v \neq 0$, then there are two ways to write v as a sum u + w, where $u \in U, w \in W$.

This contradicts with the statement that U+W is a direct sum, so $U\cap W=\{0\}$.

If $v \in U \cap W$, then 0 = v + (-v), where $v \in U$ and $-v \in W$. By the unique representation of 0 as the sum of a vector in U and a vector in W, we have v = 0. Thus $U \cap W = \{0\}$.

(b) U + W is a direct sum $\Leftarrow U \cap W = \{0\}$.

Because there is one way to write v as a sum u+w, where $u\in U, w\in W$. Let u=w=0, then u+w=0+0=0. Suppose that there is another way to write v as a sum u+w, where $u\in U, w\in W$. Let $u\neq 0$, then

$$u + w = 0 \implies w = -u.$$

However, because $w=-u\in W$ and $-1\in \mathbf{F}$, we have $-1\cdot (-u)=-(-u)-u\in W$. Therefore, $u\in U\cap W$ and $u\neq 0$, which contradicts with the statement that $U\cap W=\{0\}$. Thus, the only way to write 0 as a sum u+w, where each $u\in U$ and $w\in W$, is by taking each u and w equal to 0. With Theorem 1.10, we can conclude that U+W is a direct sum.

Suppose $u \in U, w \in W$, and

$$0 = u + w$$
.

The equation above implies that $u=-w\in W$. Thus, $u\in U\cap W$. Hence, u=0, which by the equation above implies that w=0.

11