PS 6

Shane T. Mueller shanem@mtu.edu October, 2018

Problem 1: Categorical relationships

Consider the following data sets, which are the results of a survey where children were asked two questions. First, they were asked "At an indoor birthday party, would you prefer a. clowns; b. horses; c. chocolate fountain; d. magician?". Then they were asked the same thing about outdoor parties. tab1 looks at the cross-tabulations of each pair of responses. tab2 looks at hypothetical marginal values—what responses were given for indoor and outdoor across the four options.

```
set.seed(1000)
indoor<- sample(c("A", "B", "C", "D"), prob=c(5,8,25,6),
   size=200,replace=T)
outdoor <-sample(c("A","B","C","D"),prob=c(5,20,3,6),
   size=200, replace=T)
tab1 <- table(indoor,outdoor)</pre>
tab2 <- table(c(indoor,outdoor),rep(c("I","0"),each=200))</pre>
##
         outdoor
                 С
## indoor A B
                    D
##
           4 11
                  3
        Α
          9 23 1 10
##
        В
##
        C 19 59 10 19
##
        D 5 12 2 8
tab2
##
##
         Ι
             0
##
        23 37
##
        43 105
##
     C 107
            16
##
        27
```

Conduct both chi-squared tests and bayes factor contingency table tests for tab1 and tab2 to determine (1) whether responses to indoor preference influenced individuals response to outdoor preference, and (2) to determine whether indoor and outdoor preferences were the same. Describe the meaning of the result, and interpret specifically what it means for the particular table. Your explanation should differ for the two tables, regardless of whether they are significant or not.

Problem 2: Which test to do: You decide.

For the following example data sets and questions, answer the statistical question using an appropriate test. Whenever possible, run both a NHST and a Bayesian test. If you choose to use a non-parametric test, give a rationale for why. The data here are completely fabricated, so do not use your intuition for what should be true, but rather find out from the data.

The column names are: * age: age of car owner * gender: gender of car owner * type: type of vehicle * origin: location car was manufactured * origin.last: location of previous car's manufacture * carval: purchase price of vehicle * carval.last purchase price of previous vehicle

cardat	<- read.tak	ole(text="a	ge gender	type o	rigin origin.last carval carval.last
34	F SU\		US	16400	15800
31	M Truck		Europe	16900	16000
47	M Sedar		US	18800	17100
21	F Sedar	n Japan	Japan	16000	15500
42	M SUV	-	Japan	16800	16100
43	F SUV		US	17200	16300
60	F Truck	x Europe	Europe	19900	17800
37		k Europe	Europe	17100	16200
46	F SUV	<i>I</i> Japan	Japan	16900	16300
27	M Sedan	US	US	16200	15700
50	M SUV	US	US	18800	17100
64	F SUV	Japan	US	50700	31700
33	M SUV	Japan	Japan	16500	15900
39	M Truck	US	Europe	17000	16200
58	F Sedan	Japan	US	19400	17500
53	F SUV	US	Europe	19200	17400
29	F Sedan	US	Japan	16300	15700
37	F Sedan	US	US	17300	16300
37	M SUV	US	Japan	18200	16700
54	F Sedan	Japan	Japan	24500	19800
46	F SUV	Japan	Europe	18000	16700
55	F SUV	US	Japan	28900	21700
46	F Truck	US	Europe	16600	16100
57		Europe	Europe	24300	19700
40	M SUV	US	US	16800	16100
27	M Sedan	Japan	US	16900	16000
58		Europe	Europe	20300	17900
64	M Truck	US	US	40600	27100
47	M Truck	US	Europe	18400	16900
32	M Truck	US	US	15900	15600
43	F Sedan	Japan	US	17200	16300
66 36	M Truck F SUV	_	Europe	19100	17500 16100
		US US	Japan US	16900	
68 54	M Truck F Sedan	Japan	US	69300 17000	40100 16400
64	M Truck	Japan Japan	Europe	34900	24600
27	M SUV	Japan Japan	Europe	15800	15500
51	F Sedan	Japan Japan	Japan	29000	21700
69	M Sedan	US	Japan	54400	33400
25	F Sedan	Japan	Japan	15800	15500",header=T)
20	1 beddii	Japan	Japan	20000	10000 ,1104401 1/

Answer each of the following: * Is there an impact of gender on the type of car purchased? * Is there a difference in amount paid for a car for men versus women? * Do people tend to buy vehicles from of the same origin as their last vehicle (US, europe, japan)? * Is there a relationship between driver age and the value of he car? * What is your best estimate for the value of a car driven by a 32, 52, and 62-year-old? * Is there a relationship between how much someone paid for their previous car and how much they paid for their current car? * Did people tend to pay more for their current car than their previous car? * Did trucks cost more than SUVs?

In each case: - describe the appropriate test to determine the answer - conduct the relevant NHST and

Bayesian tests, or appropriate methods for estimating/predicting. - Create an appropriate figure illustrating the answer to the question. - Give an answer in words, both in terms of the question asked and in terms of the statistical test. - Provide the code used to conduct the test.