複素関数論

最終コンパイル 平成 30 年 5 月 25 日

目 次

第1章	複素数と複素関数	5
1.1	複素数の定義と基本性質	5
	1.1.1 複素数の定義	5
	1.1.2 複素数の基本演算	5
1.2	極形式と偏角	6
	1.2.1 複素数のノルムと大小関係	6
	1.2.2 偏角	7
	1.2.3 極形式	7
1.3	共役複素数	7
	1.3.1 共役複素数の定義	7
	1.3.2 共役複素数の性質	7
1.4	複素数と三角関数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
	1.4.1 オイラーの公式	10
	1.4.2 三角関数の諸定理	11
	1.4.3 逆三角関数	13
第2章	複素関数と性質	14
2.1	複素関数の微分・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14
	2.1.1 正則関数の定義と非正則関数	14
第3章	複素線積分とコーシーの積分定理	15
	3.0.1 コーシー・リーマンの方程式	15
3.1	グリーンの定理	15
第4章	コーシーの積分公式と応用	16
4.1	コーシーの積分公式	16
4.2	リュウビルの定理	16
第5章	冪級数展開の拡張	17

第6章	留数定理	18
6.1	ローラン展開	18
6.2	留数と留数定理	18
	6.2.1 留数定理	19

第1章 複素数と複素関数

1.1 複素数の定義と基本性質

1.1.1 複素数の定義

定義 1.1.1 (虚数単位).

2乗して-1となるような数をiを用いて次のように表し、虚数単位という.

$$i = \sqrt{-1} \tag{1.1}$$

定義 1.1.2 (複素数).

虚数単位を用いて表すことのできる数を複素数という.

$$\dot{z} = x + iy \tag{1.2}$$

定義 1.1.3 (実部).

複素数 $\dot{z} = x + iy$ の実数部分を実部といい次のように示す.

$$\Re(z) = x \tag{1.3}$$

定義 1.1.4 (虚部).

複素数 $\dot{z} = x + iy$ の虚数部分を虚部といい次のように示す.

$$\Im(z) = y \tag{1.4}$$

1.1.2 複素数の基本演算

1. 和

$$(a+ib) + (c+id) = (a+c) + i(b+d)$$
(1.5)

2. 差

$$(a+ib) - (c+id) = (a-c) + i(b-d)$$
(1.6)

3. 積

$$(a+ib)(c+id) = ac + iad + ibc + i^2bd$$

= $(ac-bd) + i(ad+bc)$ (1.7)

4. 商

$$\frac{a+ib}{c+id} = \frac{(a+ib)(c-id)}{(c+id)(c-id)}$$

$$= \frac{(ac+bd)+i(bc-ad)}{c^2+d^2}$$
(1.8)

1.2 極形式と偏角

1.2.1 複素数のノルムと大小関係

定義 1.2.1 (複素数のノルム).

$$||\dot{z}|| = ||x + iy||$$

= $\sqrt{x^2 + y^2}$
= r (1.9)

定理 1.2.1 (複素数の大小関係).

2つの任意の複素数において、その複素数同士の大小関係は定義されない.

証明 $-i < i \cdots (1)$ が成り立つとする

$$-i \times i < i \times i \cdots (\times i)$$

$$i \times 1 < -i \times 1 \cdots (\times i)$$

$$i < -i$$
(1.10)

よって矛盾するため定義不可

1.2.2 偏角

1.2.3 極形式

定義 1.2.2 (極形式).

 $z=a+bi(a,b\subset\mathbb{R})$ におて, $\sqrt{a^2+b^2}\neq 0$ であるとき,

$$z = a + bi = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} + \frac{b}{\sqrt{a^2 + b^2}} i \right)$$

ここで $r = \sqrt{a^2 + b^2}$ 及び実数 θ を

$$\cos \theta = \frac{a}{\sqrt{a^2 + b^2}}, \sin \theta = \frac{b}{\sqrt{a^2 + b^2}}$$

と定めると, $z = r(\cos \theta + i \sin \theta)$ となり、このような表示形式を極形式という.

定理 1.2.2 (ド・モアブルの定理).

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta \tag{1.11}$$

1.3 共役複素数

1.3.1 共役複素数の定義

定義 1.3.1 (共役複素数).

複素数zの虚部を-1倍したものを共役複素数という。すなわち

$$\dot{z} = x + iy \tag{1.12}$$

に対し、

$$\dot{z}^* = x - iy \tag{1.13}$$

が共役複素数である.

1.3.2 共役複素数の性質

定理 1.3.1 (共役複素数の性質).

1. z が実数

$$\dot{z}^* = \dot{z} \tag{1.14}$$

証明

z が実数より

z = x

よって共役複素数は定義より

 $z^* = x$

よって

 $z = z^*$

2. z が純虚数

$$\dot{z}^* = -\dot{z} \tag{1.15}$$

証明

zが純虚数より

z = iy

よって共役複素数は定義より

 $z^* = -iy$

よって

 $z = -z^*$

3. 対合

$$(\dot{z}^*)^* = \dot{z} \tag{1.16}$$

証明

z の共役複素数は

$$(\dot{z}^*) = x - iy$$

よって (*ż**)* は

$$(\dot{z}^*)^* = z$$

4. ノルムの一致

$$|\dot{z}| = |\dot{z}^*| \tag{1.17}$$

証明

ノルムの定義より

$$r = \sqrt{x^2 + y^2} = \sqrt{x^2 + (-y)^2}$$

5. 共役複素数の和と差

$$\dot{z} + \dot{z}^* = 2\Re(\dot{z})
\dot{z} - \dot{z}^* = 2\Im(\dot{z})
(\dot{z}_1 + \dot{z}_2)^* = \dot{z}_1^* + \dot{z}_2^*$$
(1.18)

証明

$$x + iy + x - iy = 2x = 2\Re(\dot{z})$$

$$x + iy - x + iy = 2y = 2\Im(\dot{z})$$

$$(x_1 - iy_1 + x_2 - iy_2) = \dot{z_1}^* + \dot{z_2}^*$$

6. 共役複素数の積

$$\dot{z}\dot{z}^* = |\dot{z}|^2
(\dot{z}_1\dot{z}_2)^* = \dot{z}_1^* \cdot \dot{z}_2^*$$
(1.19)

証明

$$\dot{z}\dot{z}^* = (x+iy)(x-iy)
= x^2 + y^2
|\dot{z}|^2 = \left(\sqrt{x^2 + y^2}\right)^2
= x^2 + y^2
(\dot{z}_1\dot{z}_2)^* = ((x_1 + iy_1)(x_2 + iy_2))^*
= x_1x_2 - ix_1y_2 - iy_1x_2 - y_1y_2
\dot{z}_1^* \cdot \dot{z}_2^* = (x_1 - iy_1)(x_2 - iy_2)
= x_1x_2 - ix_1y_2 - iy_1x_2 - y_1y_2$$

7. 共役複素数の商

$$\left(\frac{\dot{z}_1}{\dot{z}_2}\right)^* = \frac{\dot{z}_1^*}{\dot{z}_2^*}$$

$$\dot{z}^{-1} = \frac{\dot{z}^*}{|\dot{z}|^2}$$
(1.20)

1.4 複素数と三角関数

1.4.1 オイラーの公式

定理 1.4.1 (オイラーの公式).

$$e^{i\theta} = \cos\theta + i\sin\theta \tag{1.21}$$

定理 1.4.2 (オイラーの等式).

特に $\theta = \pi$ の時のオイラーの公式をオイラーの等式という。オイラーの等式は

$$e^{i\pi} = -1 \tag{1.22}$$

となる.

定理 1.4.3 (三角関数の複素表示).

定理 1.4.1 の関係を用いると

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{i2}$$

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
(1.23)

1.4.2 三角関数の諸定理

定理 1.4.4 (加法定理).

1.

$$\sin(\theta_1 \pm \theta_2) = \sin \theta_1 \cos \theta_2 \pm \cos \theta_1 \sin \theta_2 \tag{1.24}$$

2.

$$\cos(\theta_1 \pm \theta_2) = \cos\theta_1 \cos\theta_2 \mp \sin\theta_1 \sin\theta_2 \tag{1.25}$$

3.

$$\tan(\theta_1 \pm \theta_2) = \frac{\tan(\theta_1 \pm \tan \theta_2)}{1 \mp \tan(\theta_1 \tan \theta_2)}$$
(1.26)

定理 1.4.5 (加法定理).

1.

$$\sin(\theta_1 \pm \theta_2) = \sin \theta_1 \cos \theta_2 \pm \cos \theta_1 \sin \theta_2 \tag{1.27}$$

2.

$$\cos(\theta_1 \pm \theta_2) = \cos\theta_1 \cos\theta_2 \mp \sin\theta_1 \sin\theta_2 \tag{1.28}$$

3.

$$\tan(\theta_1 \pm \theta_2) = \frac{\tan(\theta_1 \pm \tan \theta_2)}{1 \mp \tan(\theta_1 \tan \theta_2)}$$
(1.29)

定理 1.4.6 (三角関数の周期性).

1.

$$\sin(-\theta) = -\sin\theta \tag{1.30}$$

2.

$$\cos(-\theta) = \cos\theta \tag{1.31}$$

3.

$$\tan(-\theta) = -\tan\theta \tag{1.32}$$

4.

$$\sin\left(\theta \pm \frac{\pi}{2}\right) = \pm\cos\theta\tag{1.33}$$

5.

$$\cos\left(\theta \pm \frac{\pi}{2}\right) = \mp \sin\theta\tag{1.34}$$

6.

$$\tan\left(\theta \pm \frac{\pi}{2}\right) = -\frac{1}{\tan\theta} \tag{1.35}$$

7.

$$\sin\left(\theta \pm \pi\right) = -\sin\theta\tag{1.36}$$

8.

$$\cos\left(\theta \pm \pi\right) = -\cos\theta\tag{1.37}$$

9.

$$\tan\left(\theta \pm \pi\right) = \tan\theta\tag{1.38}$$

定理 1.4.7 (半角の公式).

1.

$$\sin^2\frac{\theta}{2} = \frac{1-\cos\theta}{2} \tag{1.39}$$

2.

$$\cos^2\frac{\theta}{2} = \frac{1+\cos\theta}{2} \tag{1.40}$$

3.

$$\tan^2 \frac{\theta}{2} = \frac{\sin^2 \frac{\theta}{2}}{\sin^2 \frac{\theta}{2}}$$

$$= \frac{1 - \cos \theta}{1 + \cos \theta}$$
(1.41)

定理 1.4.8 (三倍角の公式).

1.

$$\sin^3 \theta = 3\sin \theta - 4\sin^3 \theta \tag{1.42}$$

2.

$$\cos^3 \theta = 4\cos^3 \theta - 3\cos\theta \tag{1.43}$$

定理 1.4.9 (チェビシェフ多項式).

 $\cos nx$ は $\cos \theta$ の n 次多項式で表すことができる.このような多項式をチェビシェフ多項式と呼び, $T_n(x)$ と表す.

1.4.3 逆三角関数

定義 1.4.1 (逆三角関数).

 $x = \sin \theta$ の逆関数を $\theta = \sin^{-1} x$ と書き、逆三角関数という.

第2章 複素関数と性質

- 2.1 複素関数の微分
- 2.1.1 正則関数の定義と非正則関数

第3章 複素線積分とコーシーの積分 定理

3.0.1 コーシー・リーマンの方程式

定理 3.0.1 (コーシー・リーマンの方程式).

複素変数 z = x + iy の関数 f(z) = u(x, y) + iv(x, y) について

$$\begin{split} \frac{\partial u}{\partial x} &= \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} &= -\frac{\partial v}{\partial x} \end{split} \tag{3.1}$$

をコーシー・リーマンの方程式という.

3.1 グリーンの定理

定理 3.1.1 (グリーンの定理).

単純閉曲線 $C(=\partial D)$ に囲まれた領域 D ついて

$$\int_{\partial D} P dx + Q dy = \int \int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial x} \right) dx dy \tag{3.2}$$

第4章 コーシーの積分公式と応用

4.1 コーシーの積分公式

定理 4.1.1 (コーシーの積分公式).

単連結領域内 $\mathrm{D}f(z)$ で正則である f(z) について,D のジョルダン閉曲線上を正の方向に 1 周する積分路を C とすると,C 内部の任意の点 z に関して

$$f(z) = \frac{1}{2\pi i} \oint_{\mathcal{C}} \frac{f(\zeta)}{\zeta - z} d\zeta \tag{4.1}$$

が成り立つ

証明

f(z) は領域内で正則であるので ζ — 平面上で C の内部にある $\frac{f(\zeta)}{\zeta-z}$ の特異点は $\zeta=z$ だけであり、その時の留数は

$$\operatorname{Res}(z) = \lim_{\zeta \to z} (\zeta - z) \frac{f(\zeta)}{\zeta - z} d\zeta$$
$$= f(z)$$
(4.2)

4.2 リュウビルの定理

第5章 冪級数展開の拡張

第6章 留数定理

6.1 ローラン展開

定理 6.1.1 (ローラン級数).

関数 f(z) を領域 $0 \le R_1 < |z-a| < R_2$ で正則とする.このとき,f(z) は点 a を中心を中心とするローラン級数

$$f(z) = \sum_{n=0}^{\infty} a_n (z - a)^n + \sum_{n=1}^{\infty} \frac{a_{-n}}{(z - a)^n}$$

$$a_n = \frac{1}{2\pi i} \int_{|\zeta - a| = r} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta$$

$$(n = 0 \pm 1, \pm 2, \dots, 0 < R_1 < |z - a| < R_2)$$

に展開できる.

6.2 留数と留数定理

定理 6.2.1 (1位の極).

aが1位の極である場合に留数を求めるには

$$\operatorname{Res}(a,f) = \lim_{z \to a} (z-a)f(z) \tag{6.2}$$

定理 6.2.2 (2 位の極).

aが2位の極である場合に留数を求めるには

$$\operatorname{Res}(a,f) = \lim_{z \to a} \frac{d}{dz} \{ (z - a^2) f(z) \}$$
(6.3)

定理 6.2.3 (n 位の極).

a が n 位の極である場合に留数を求めるには

$$\operatorname{Res}(a,f) = \frac{1}{(n-1)!} \lim_{z \to a} \frac{d^{n-1}}{dz^{n-1}} \{ (z-a)^n f(z) \}$$
 (6.4)

6.2.1 留数定理

定理 6.2.4 (留数定理).

$$\oint f(z)dz = 2\pi i \text{Res}(a, f)$$
(6.5)

索引

定義一覧

1.1.1	虚数単	位																						5
1.1.2	複素数																							5
1.1.3	実部 .																							5
1.1.4	虚部 .																							5
1.2.1	複素数	の	ノ	ル	1	4																		6
1.2.2	極形式																							7
1.3.1	共役複	素	数																					7
1.4.1	逆三角	関	数																				1	3

定理一覧

1.2.1 複素数の大小関係	6
1.2.2 ド・モアブルの定理	7
1.3.1 共役複素数の性質	7
1.4.1 オイラーの公式	10
1.4.2 オイラーの等式	10
1.4.3 三角関数の複素表示	10
1.4.4 加法定理	11
1.4.5 加法定理	11
1.4.6 三角関数の周期性	11
1.4.7 半角の公式	12
1.4.8 三倍角の公式	13
1.4.9 チェビシェフ多項式	13
3.0.1 コーシー・リーマンの方程式	15
3.1.1 グリーンの定理	15
4.1.1 コーシーの積分公式	16
6.1.1 ローラン級数	18
6.2.1 1 位の極	18
6.2.2 2 位の極	18
6.2.3 n 位の極	18
6.2.4 留数定理	19