Autoencoder e aplicações

Bruno Guimarães de Oliveira 19/11/2021

Sumário

- 1. O que são?
 - Definição
 - Arquitetura
- 2. Tipos de autoencoders
 - Sparse Autoencoders
 - Denoising Autoencoders
 - Variational Autoencoders
- 3. Aplicações
 - Redução de dimensionalidade
 - Remoção de ruído
 - Recuperação de imagens
 - Unsupervised pretraining
 - Sistemas de recomendação
- 4. Referências

O que são? Definição

- Um Autoencoder é uma rede neural que é treinada para ter como output uma cópia do seu input, ou seja, a camada de saída tem a mesma dimensionalidade da camada de entrada.
- A ideia é que essa rede neural consiga reconstruir cada dimensão do input.
- É composta de três partes:
 - Encoder: Rede neural feedforward e densa que recebe um input e comprime ele em um representação, no chamado espaço latente, tentando manter ao máximo as características necessárias para essa representação poder ser usada pra reconstruir o input original.
 - Vetor latente: Compressão do input.
 - Decoder: Rede neural feedfoward que recebe os embeddings gerados pelo encoder e tem como missão reconstruir o input original.

$$L\left(\mathbf{x},\mathbf{x'}\right) = \left\|\mathbf{x} - \mathbf{x'}\right\|_2 = \frac{1}{n} \sum_{i=1}^n \left(\mathbf{x}^{(i)} - \mathbf{x'}^{(i)}\right)^2 \quad \text{onde} \quad \mathbf{x'} = f_{\theta}(g_{\phi}(\mathbf{x}))$$

O que são? Arquitetura

- Dada essa estrutura, podemos ter dois casos:
 - Undercomplete: $dim(\mathbf{z}) \leq dim(\mathbf{x})$
 - Overcomplete: $dim(\mathbf{z}) \ge dim(\mathbf{x})$
- Em ambos os casos, é importante controlar a complexidade do modelo.
- Podemos usar algum tipo de regularização.

Sparse Autoencoders

 Temos a mesma estrutura de um autoencoder tradicional porém agora adicionamos regularização em nossa função de perda afim.

Sparse Autoencoders

 Temos a mesma estrutura de um autoencoder tradicional porém agora adicionamos regularização em nossa função de perda afim.

Sparse Autoencoders

 Temos a mesma estrutura de um autoencoder tradicional porém agora adicionamos regularização em nossa função de perda afim.

Denoising autoencoder

• O input é corrompido por um ruído ou mascarando alguns valores do input de maneira estocástica.

Denoising autoencoder

 O input é corrompido por um ruído ou mascarando alguns valores do input de maneira estocástica.

Denoising autoencoder

 O input é corrompido por um ruído ou mascarando alguns valores do input de maneira estocástica.

Denoising autoencoder

 Perda é computada levando em consideração o input original não o input ruidoso.

Variational Autoencoder

- Modelo generativo, ou seja, em contrapartida ao Autoencoder tradicional conseguimos criar dados novos.
- Em vez de mapear os dados de input para um vetor fixo, queremos agora mapear os dados em uma distribuição, ou seja, o output do encoder do VAE são os parâmetros de uma distribuição pré definida no espaço latente.
- O VAE impõe uma restrição ao espaço latente forçando essa distribuição a ser normal padrão, podemos pensar nessa restrição como sendo uma espécie de regularização.

Tipos de Autoencoder Variational Autoencoder

Tipos de Autoencoder Variational Autoencoder

Variational Autoencoder

Tipos de Autoencoder Variational Autoencoder

Variational Autoencoder

Variational Autoencoder

$$L(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|_{2} + D_{KL} \left(\mathcal{N}(\mu_{\mathbf{x}}, \sigma_{\mathbf{x}}) \| \mathcal{N}(0, \mathcal{I}) \right)$$

Variational Autoencoder

Função perda de reconstrução

$$L(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|_2 + D_{KL} \left(\mathcal{N}(\mu_{\mathbf{x}}, \sigma_{\mathbf{x}}) \| \mathcal{N}(0, \mathcal{I}) \right)$$

Variational Autoencoder

Função perda de similaridade

$$L(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|_2 + D_{KL} \left(\mathcal{N}(\mu_{\mathbf{x}}, \sigma_{\mathbf{x}}) \| \mathcal{N}(0, \mathcal{I}) \right)$$

Aplicações

Redução de dimensionalidade

- Utilizamos apenas o encoder já treinado.
- Diferente do PCA, consegue capturar não linearidade nos dados, pois sempre conseguimos usar funções de ativações não lineares e adicionar mais camadas.

Aplicações Remoção de ruído

Aplicações Recuperação de Imagens

 Utilizamos apenas o encoder já treinado e extraímos todos os encodings de nosso database de imagens.

Aplicações Recuperação de Imagens

• Treinamos um KNN com nosso novo dataset de encodings.

Aplicações Recuperação de Imagens

• Com uma imagem de referência conseguimos recuperar as imagens mais parecidas em nosso database.

Aplicações Unsupervised pretaining

 Imagine um cenário em que você tenha muitos dados pra resolver uma task específica de Machine Learning porém apenas uma pequena porção desses dados estão anotados.

Aplicações Unsupervised pretaining

 Imagine um cenário em que você tenha muitos dados pra resolver uma task específica de Machine Learning porém apenas uma pequena porção desses dados estão anotados.

Aplicações Sistemas de Recomendação

Aplicações Sistemas de Recomendação

Aplicações Sistemas de Recomendação

Referências

- [1] Ian Goodfellow, Deep Learning.
- [2] Aurélion Geron, Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow.
- [3] Ferreira, D.; Silva, S.; Abelha, A.; Machado, J. Recommendation System Using Autoencoders. Appl. Sci. 2020, 10, 5510.
- [4] https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
- [5] https://becominghuman.ai/using-variational-autoencoder-vae-to-generate-new-images-14328877e88d
- [6] https://stats.stackexchange.com/questions/409995/why-is-random-sampling-a-non-differentiable-operation
- [7] https://www.pyimagesearch.com/2020/02/24/denoising-autoencoders-with-keras-tensorflow-and-deep-learning/

