Лемма. Окружности ω и Ω с радиусами R_1 и R_2 вписаны в угол с вершиной P. Через P внутри угла проведена произвольная прямая k. Пусть k пересекает окружности ω и Ω соответственно в точках A и A'; B' и B. К окружностям в точках A и B построены соответственно касательные a и b. Пусть $a \cap b = C$. Тогда AC = BC.

Доказательство. Пусть O_1 и O_2 — центры соответственно ω и Ω . Заметим, что т.к. ω и Ω вписаны в один угол \Rightarrow P, O_1 , O_2 лежат на одной прямой — биссектрисе угла P. Зададим гомотетию $H_P^{\frac{R_2}{R_1}}$. Тогда $H_P(\omega) = \Omega$. Из свойств гомотетии имеем:

$$\left. \begin{array}{l} H_P(A) = B' \\ H_P(T_1) = T_2 \\ H_P(A') = B \end{array} \right\} \Rightarrow \smile AT_1A' = \smile B'T_2B$$

Так как $\checkmark AT_1A' = \checkmark B'T_2B$, то по теореме об угле между касательной и хордой $\angle CBA = \frac{\checkmark B'T_2B}{2} = \frac{\checkmark AT_1A'}{2} = \angle CAB \Rightarrow \triangle ABC - \text{p/f} \Rightarrow AC = BC.$

Следствие. Если l – радикальная ось окружностей ω и Ω , то $C \in l$.