

Welcome to ASCrypto 2025! Opening Remarks

Organizers

Javier Verbel

Arantxa Zapico

Speakers

Sophia Yakoubov

Alan Szepieniec

Benedikt Bünz

Monday

Now-10:30: Introduction to Proof Systems

Coffee Break

11:00-12:30: Folding and Accumulation Schemes

Lunch break

14:00-15:30: Introduction to zk-STARKs

Coffee Break

16:00-17:30: Secure MPC and applications to zk proofs

Tuesday

9:00-10:30: Folding and Accumulation Schemes

Coffee Break

11:00-12:30: Introduction to zk-STARKs

Lunch break

14:00-15:30: Secure MPC and applications to zk proofs

Coffee Break

16:00-17:30: Q&A Practical Session

Funded Students

50 participants

65 applications for funding

30 students

11 countries

Thanks!

Introduction to Proof Systems

Arantxa Zapico
Ethereum Foundation

This talk:

How to build SNARKs (Succinct Non-Interactive Arguments of Knowledge) or just SNARGs (without knowledge) from Interactive Proofs (what are Interactive Proofs?)

Prover

Prover

Verifier

Peggy

Victor

Valeria

Something is true

Valeria

Pedrinho Valeria

Pedrinho

Valeria

Google Cloud

Mobil Phone

You

Security at Club

Cryptocurrency user

Block Builder

ZkVM

Smart Contract

Something

Completeness

Completeness

If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Completeness

If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Soundness

Completeness

If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Soundness

If something is false, then Verifier rejects with overwhelming probability

Completeness

If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Soundness

If something is false, then Verifier rejects with overwhelming probability

Zero-Knowledge

Completeness

If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Soundness

If something is false, then Verifier rejects with overwhelming probability

Zero-Knowledge

The Verifier does not learn anything but the truth of Something

Something

Something

R is a PT decidable relation

$$R = \{(x, w) : \dots\}$$
 is a PT decidable relation

$$R = \{(x, w) : ...\}$$
 is a PT decidable relation

Something is true

$$R = \{(x, w) : \dots\}$$
 is a PT decidable relation

$$x \in \mathcal{L}_R$$

$$R = \{(x,w): \ldots\} \text{ is a PT decidable relation}$$

$$x \in \mathcal{L}_R$$

$$\mathcal{L}_R = \{x \ s \ . \ t \ . \ \exists w \ s \ . \ t \ . \ (x, w) \in R\}$$

You

Security at Club

You

Security at Club

$$R = \{(x, w) : x \text{ is a name and } w \text{ an age above 18}\}$$

You

Security at Club

$$R = \{(x, w) : x \text{ is a name and } w \text{ an age above 18}\}$$

"I am in \mathscr{L}_R ": there exists a w (my age) such that (me, w) $\in R$

Something is true

Something

Completeness

If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Soundness

If something is false, then Verifier rejects with overwhelming probability

Zero-Knowledge

Something

Completeness

If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Soundness

If something is false, then Verifier rejects with overwhelming probability

Zero-Knowledge

 $R = \{(x, w) : something\}$

Completeness

If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Soundness

If something is false, then Verifier rejects with overwhelming probability

Zero-Knowledge

$$R = \{(x, w) : something\}$$

Completeness

If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Soundness

If something is false, then Verifier rejects with overwhelming probability

Zero-Knowledge

Probabilistic Polynomial Time Algorithms

$$\mathcal{P}(pp,(x,w))$$

$$\mathcal{T}(pp,x)$$

Probabilistic Polynomial Time Algorithms

$$\mathcal{T}(pp,x)$$

Probabilistic Polynomial Time Algorithms

$$\mathcal{P}(pp,(x,w))$$

$$\mathcal{T}(pp,x)$$

Verifier is public coin

Efficiency

$$\mathcal{P}(x, w)$$

$$m_1$$
 α_1
 m_2
 α_2
 m_3

Efficiency

$$\mathcal{O}(x, w)$$

$$m_1$$
 α_1
 m_2
 α_2
 m_3

Efficiency: Proof Size

$$|m_1| + |m_2| + |m_3|$$

Efficiency: Prover time

Efficiency: Verifier Time

$$\mathcal{P}(x, w)$$

$$m_1$$
 α_1
 m_2
 α_2
 m_3

Succinctness

Succinctness

In verification

Succinctness

$$|m_1| + |m_2| + |m_3| < < |w|$$

In communication

In verification

If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

If $x \in \mathcal{L}_R$ and both, Prover and Verifier, follow the procedure, Verifier accepts

If $x \in \mathcal{L}_R$ and both, Prover and Verifier, follow the procedure, Verifier accepts

$$Pr\left[\left\langle \mathcal{P}(pp,(x,w),\mathcal{V}(pp,x))\right\rangle\right]=1$$

If $x \in \mathcal{L}_R$ and both, Prover and Verifier, follow the procedure, Verifier accepts

$$Pr\left[\langle \mathcal{P}(pp,(x,w),\mathcal{V}(pp,x))\rangle\right] = 1$$

Completeness

If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Soundness

If something is false, then Verifier rejects with overwhelming probability

Zero-Knowledge

Completeness
$$Pr\left[\left\langle \mathcal{P}(pp,(x,w),\mathcal{V}(pp,x))\right\rangle\right]=1$$

Soundness

If something is false, then Verifier rejects with overwhelming probability

Zero-Knowledge

If something is false, then Verifier rejects with overwhelming probability

If $x \notin \mathcal{L}_R$, then Verifier rejects with overwhelming probability

If $x \notin \mathcal{L}_R$, then Verifier rejects with overwhelming probability

If $\not\equiv w \ s \ t \ (x, w) \in R$, then Verifier rejects with overwhelming probability

If $x \notin \mathcal{L}_R$, then Verifier rejects with overwhelming probability

If $\not\equiv w \ s \ . \ t \ . \ (x, w) \in R$, then Verifier rejects with overwhelming probability

$$Pr\left[\langle \mathcal{P}^*(pp,x), \mathcal{V}(pp,x) \rangle\right] \leq negl(\lambda)$$

If $x \notin \mathcal{L}_R$, then Verifier rejects with overwhelming probability

If $\not\equiv w \ s \ t \ (x, w) \in R$, then Verifier rejects with overwhelming probability

$$Pr\left[\langle \mathcal{P}^*(pp,x), \mathcal{V}(pp,x) \rangle\right] \leq negl(\lambda)$$

Arguments

If $x \notin \mathcal{L}_R$, then Verifier rejects with overwhelming probability

If $\not\equiv w \ s \ t \ (x, w) \in R$, then Verifier rejects with overwhelming probability

$$Pr\left[(\mathscr{P}^*(pp,x),\mathscr{V}(pp,x))\right] \leq negl(\lambda)$$

We are actually talking about arguments

Completeness
$$Pr\left[\left\langle \mathcal{P}(pp,(x,w),\mathcal{V}(pp,x))\right\rangle\right]=1$$

Soundness

If something is false, then Verifier rejects with overwhelming probability

Zero-Knowledge

Completeness
$$Pr\left[\left\langle \mathcal{P}(pp,(x,w),\mathcal{V}(pp,x))\right\rangle\right]=1$$

$$Pr\left[\langle \mathscr{P}^*(pp,x), \mathscr{V}(pp,x)\rangle\right] \leq negl(\lambda)$$

Zero-Knowledge

The Verifier does not learn anything but the truth of Something

Examples of provers and verifiers

Examples of provers and verifiers

There exists a password for this email address

Examples of provers and verifiers

There exists a password for this email address

Not enough!!!
I should *know* it

Arguments of Knowledge

There exists a PT algorithm \mathscr{E} , the extractor, such that for every malicious prover \mathscr{P}^* :

Knowledge-soundness

There exists a PT algorithm \mathscr{E} , the extractor, such that for every malicious prover \mathscr{P}^* :

$$Pr\left[(x,w)\in R: w\leftarrow \mathscr{E}^{\mathscr{P}^*}(x)\right]-Pr\left[\langle \mathscr{P}^*(x),\mathscr{V}(x)\rangle=1\right]\leq negl(\lambda)$$

Knowledge-soundness

There exists a PT algorithm \mathscr{E} , the extractor, such that for every malicious prover \mathscr{P}^* :

$$Pr\left[(x,w)\in R: w\leftarrow \mathscr{E}^{\mathscr{P}^*}(x)\right] - Pr\left[\langle \mathscr{P}^*(x),\mathscr{V}(x)\rangle = 1\right] \leq negl(\lambda)$$

Knowledge-soundness

There exists a PT algorithm \mathscr{E} , the extractor, such that for every malicious prover \mathscr{P}^* :

$$Pr\left[(x,w)\in R: w\leftarrow \mathscr{E}^{\mathscr{P}^*}(x)\right]-Pr\left[\langle \mathscr{P}^*(x),\mathscr{V}(x)\rangle=1\right]\leq negl(\lambda)$$

An argument that satisfies knowledge-soundness is an argument of knowledge

Completeness
$$Pr\left[\left\langle \mathcal{P}(pp,(x,w),\mathcal{V}(pp,x))\right\rangle\right]=1$$

Knowledge-Soundness

$$Pr\left[(x,w)\in R: w\leftarrow \mathscr{E}^{\mathscr{P}^*}(x)\right]-Pr\left[\langle \mathscr{P}^*(x),\mathscr{V}(x)\rangle=1\right]\leq negl(\lambda)$$

Zero-Knowledge

The Verifier does not learn anything but the truth of Something

How to build SNARK(G)s?

Tool 1: Interactive Oracle Proof

$$f(m_1, \alpha_1)$$

$$g(m_2,\alpha_2)$$

Tool 1: Interactive Oracle Proof

Tool 1: Interactive Oracle Proof

Tool 2: Functional Commitment Scheme

Tool 2: Functional Commitment Scheme

$$\mathcal{P}(x, w)$$

 $com_1 \leftarrow Commit(m_1)$

 $y \leftarrow f(m_1, \alpha_1)$

$$\alpha_1$$

 $Verify(com_1, f, y)$?

Tool 2: Functional Commitment Scheme

 $com_1 \leftarrow Commit(m_1)$

 $y \leftarrow f(m_1, \alpha_1)$

$$\mathcal{I}(x)$$

 $Verify(com_1, f, y)$?

Efficiency?

Efficiency

 $\mathcal{O}(x, w)$

 x_1 α_1 y_1, com_2 α_2

IOP

Interactive
Succinct
Argument

Commitment Scheme

From Interactive to Non-interactive Proofs

No Cryptographic Assumptions

IOP

Interactive
Succinct
Argument

Commitment Scheme

Cryptographic Assumptions here!

From Interactive to Non-interactive Proofs

IOP

Interactive
Succinct
Argument

Non-Interactive
Succinct
Argument

Commitment Scheme

Interactive Succinct Argument

Non-Interactive
Succinct
Argument

$$\mathcal{P}(x, w)$$

$$\begin{array}{c}
com_1 \\
\alpha_1 \\
y_1, com_2 \\
\alpha_2 \\
y_2 \\
\end{array}$$

$$\mathcal{P}(x, w)$$

 com_1, y_1, com_2, y_2

$$\mathcal{U}(x)$$

$$H: \{0,1\}^* \to \{0,1\}^{256}$$

$$H: \{0,1\}^* \to \{0,1\}^{256}$$

Collison resistant:

Find x, y such that H(x) = H(y)

$$H: \{0,1\}^* \to \{0,1\}^{256}$$

Collison resistant:

Find
$$x$$
, y such that $H(x) = H(y)$

Pre-image resistant:

Given z, find x such that H(x) = z

$$H: \{0,1\}^* \to \{0,1\}^{256}$$

Collison resistant:

Find x, y such that H(x) = H(y)

Pre-image resistant:

Given z, find x such that H(x) = z

Second pre-image resistant:

Given x find y such that H(x) = H(y)

$$\mathcal{O}(x, w)$$

$$\alpha_1 = H(x, m_1)$$

$$\alpha_2 = H(x, m_1, m_2)$$

$$com_1$$

$$y_1, com_2$$

$$y_2$$

$$\mathcal{U}(x)$$

$$\mathcal{P}(x, w)$$

$$com_1$$

$$\alpha_1 = H(x, m_1)$$

$$y_1, com_2$$

$$\alpha_2 = H(x, m_1, m_2)$$

$$y_2$$

$$\pi = com_1, y_1, com_2, y_2$$

$$\mathcal{P}(x, w)$$

$$com_1$$

$$\alpha_1 = H(x, m_1)$$

$$y_1, com_2$$

$$\alpha_2 = H(x, m_1, m_2)$$

$$y_2$$

$$\pi = com_1, y_1, com_2, y_2$$

 $\mathcal{I}(x)$

Secure under the Random Oracle Model!!!!

$$\mathcal{P}(x,w)$$

$$\pi$$

$$\mathcal{P}(x,w)$$

$$\mathcal{\Pi}$$

Knowledge soundness:

$$Pr \begin{bmatrix} (x, w) \notin R \land & pp \leftarrow \mathcal{K} \\ \mathcal{V}(pp, x, \pi) = 1 \\ & w \leftarrow \mathcal{E}(pp, x, \pi) \end{bmatrix} \leq negl(\lambda)$$

Take aways:

SNARK: Succinct Non-interactive Argument of Knowledge

SNARG: Succinct Non-interactive Argument

Efficiency: Prover time, verifier time, proof-size, pp-size

Security: setup (trusted/transparent), model (ROM) and

assumptions (discrete log)

Most of it depends on the commitment scheme!

iiiGracias!!!

Obrigado!!

arantxa@ethereum.org

@criptolatinoOrg