NATIONAL UNIVERSITY OF SINGAPORE

SEMESTER 1, 2021/2022

MA2002 Calculus

Solution to Tutorial 9

TUTORIAL PART I

- 1. (a) Take logarithmic function: $\ln|y| = 2\ln|x| + x\ln 2 \frac{1}{3}\ln|\sin 3x|$. Differentiate with respect to x: $\frac{1}{v} \frac{dy}{dx} = \frac{2}{v} + \ln 2 - \frac{1}{3} \frac{3 \cos 3x}{\sin 3x}$. Then $\frac{dy}{dx} = y \left(\frac{2}{x} + \ln 2 - \cot 3x \right) = \frac{x^2 2^x}{\sqrt[3]{\sin 3x}} \left(\frac{2}{x} + \ln 2 - \cot 3x \right).$
 - (b) Let $u = x^x$. Take logarithmic function: $\ln u = x \ln x$ (x > 0). Differentiate with respect to x: $\frac{1}{u}\frac{du}{dx} = 1 \cdot \ln x + x \cdot \frac{1}{x} = \ln x + 1$. Then $\frac{d}{dx}(x^x) = \frac{du}{dx} = u(\ln x + 1) = x^x(\ln x + 1).$ Now take logarithmic function to $y = x^{(x^x)}$: $\ln y = x^x \ln x$. Differentiate with respect to x: $\frac{1}{v} \frac{dy}{dx} = x^x (\ln x + 1) \ln x + x^x \cdot \frac{1}{x}$.

Then $\frac{dy}{dx} = y(x^x(\ln x + 1)\ln x + x^{x-1}) = x^{(x^x)}(x^x(\ln x + 1)\ln x + x^{x-1})$.

2. (a) Recall that
$$\lim_{x \to \infty} e^x = \infty$$
. We can apply the l'Hôpital's rule repeatedly:
$$\lim_{x \to \infty} \frac{e^x}{x^n} = \lim_{x \to \infty} \frac{(e^x)'}{(x^n)'} = \lim_{x \to \infty} \frac{e^x}{nx^{n-1}} = \lim_{x \to \infty} \frac{(e^x)'}{n(x^{n-1})'} = \lim_{x \to \infty} \frac{e^x}{n(n-1)x^{n-2}}$$
$$= \cdots = \lim_{x \to \infty} \frac{e^x}{n(n-1)\cdots 2x} = \lim_{x \to \infty} \frac{(e^x)'}{n(n-1)\cdots 2(x)'} = \lim_{x \to \infty} \frac{e^x}{n(n-1)\cdots 2\cdot 1}$$
$$= \lim_{x \to \infty} \frac{e^x}{n!} = \infty.$$

- (b) $\lim_{x \to 0} (e^{2x} + 2x)^{1/x} = \lim_{x \to 0} \exp\left(\frac{1}{x}\ln(e^{2x} + 2x)\right) = \exp\left(\lim_{x \to 0} \frac{\ln(e^{2x} + 2x)}{x}\right)$ $= \exp\left(\lim_{x \to 0} \frac{(2e^{2x} + 2)/(e^{2x} + 2x)}{1}\right) = \exp(4) = e^4.$
- (c) $\lim_{x \to \infty} x^{1/x} = \lim_{x \to \infty} \exp\left(\frac{1}{x} \ln x\right) = \exp\left(\lim_{x \to \infty} \frac{\ln x}{x}\right) = \exp\left(\lim_{x \to \infty} \frac{1/x}{1}\right) = \exp(0) = 1.$

(d)
$$\lim_{x \to 0} \left(\frac{\tan x}{x} \right)^{1/x^2} = \lim_{x \to 0} \exp\left(\frac{1}{x^2} \ln \frac{\tan x}{x} \right) = \exp\left(\lim_{x \to 0} \frac{\ln(\tan x/x)}{x^2} \right)$$
$$= \exp\left(\lim_{x \to 0} \frac{\frac{x \sec^2 x - \tan x}{x^2} \cdot \frac{x}{\tan x}}{2x} \right) = \exp\left(\lim_{x \to 0} \frac{x \sec^2 x - \tan x}{2x^3} \cdot \lim_{x \to 0} \frac{x}{\tan x} \right)$$
$$= \exp\left(\lim_{x \to 0} \frac{\sec^2 x + x \cdot 2 \sec x \cdot \sec x \tan x - \sec^2 x}{6x^2} \right) = \exp\left(\lim_{x \to 0} \frac{\sec^2 x \tan x}{3x} \right)$$
$$= \exp\left(\lim_{x \to 0} \frac{1}{3 \cos^3 x} \cdot \frac{\sin x}{x} \right) = \exp\left(\frac{1}{3} \cdot 1 \right) = \sqrt[3]{e}.$$

- 3. (i) Let $y = \sinh x = \frac{e^x e^{-x}}{2}$. Set $X = e^x$. Then $y = \frac{X - X^{-1}}{2}$, or equivalently $X^2 - 2yX - 1 = 0$. Solve the equation in X, we obtain $X = \frac{2y \pm \sqrt{(2y)^2 - (-4)}}{2} = y \pm \sqrt{y^2 + 1}$. Note that $X = e^x > 0$. So $X = y + \sqrt{y^2 + 1}$, i.e., $x = \ln X = \ln(y + \sqrt{y^2 + 1})$. Therefore, $\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1})$, $x \in \mathbb{R}$.
 - (ii) $\frac{d}{dx} \sinh^{-1} x = \frac{d}{dx} \ln(x + \sqrt{x^2 + 1}) = \frac{1 + \frac{x}{\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}} = \frac{\frac{1}{\sqrt{x^2 + 1}} (\sqrt{x^2 + 1} + x)}{x + \sqrt{x^2 + 1}}$ $= \frac{1}{\sqrt{x^2 + 1}}.$
- 4. (a) Let $x = 2\tan t$, $t \in (-\frac{\pi}{2}, \frac{\pi}{2})$. Then $\sqrt{x^2 + 4} = 2\sec t$ and $\frac{dx}{dt} = 2\sec^2 t$. $\int \frac{dx}{x^2 \sqrt{x^2 + 4}} = \int \frac{1}{(2\tan t)^2 2\sec t} \cdot 2\sec^2 t \, dt = \frac{1}{4} \int \frac{\cos t}{\sin^2 t} \, dt = \frac{1}{4} \int \frac{1}{\sin^2 t} \, d(\sin t)$ $= -\frac{1}{4\sin t} + C = -\frac{1}{4} \frac{\sec t}{\tan t} + C = -\frac{\sqrt{x^2 + 4}}{4x} + C.$
 - (b) Note that $6x x^2 = 3^2 (x 3)^2$. Let $x 3 = 3\sin t$, $t \in (-\frac{\pi}{2}, \frac{\pi}{2})$.

 Then $x = 3(1 + \sin t)$, $\sqrt{6x x^2} = 3\cos t$ and $\frac{dx}{dt} = 3\cos t$. $\int \frac{x^2}{\sqrt{6x x^2}} dx = \int \frac{3^2 (1 + \sin t)^2}{3\cos t} \cdot 3\cos t \, dt = 9 \int (1 + 2\sin t + \sin^2 t) \, dt$ $= 9 \int \left(1 + 2\sin t + \frac{1}{2}(1 \cos 2t)\right) \, dt = 9 \int \left(\frac{3}{2} + 2\sin t \frac{1}{2}\cos 2t\right) \, dt$ $= 9 \left(\frac{3}{2}t 2\cos t \frac{1}{4}\sin 2t\right) + C = 9 \left(\frac{3}{2}t 2\cos t \frac{1}{2}\sin t\cos t\right) + C$ $= 9 \left(\frac{3}{2}\sin^{-1}\frac{x 3}{3} 2\frac{\sqrt{6x x^2}}{3} \frac{1}{2}\frac{x 3}{3}\frac{\sqrt{6x x^2}}{3}\right) + C$ $= \frac{27}{2}\sin^{-1}\frac{x 3}{3} \frac{1}{2}x\sqrt{6x x^2} \frac{9}{2}\sqrt{6x x^2} + C.$

(c)
$$\int \frac{\ln x}{x^2} dx = -\int \ln x \, d(1/x) = -\left(\ln x \cdot \frac{1}{x} - \int \frac{1}{x} \cdot (\ln x)' \, dx\right)$$
$$= -\frac{\ln x}{x} + \int \frac{1}{x} \cdot \frac{1}{x} \, dx = -\frac{\ln x}{x} - \frac{1}{x} + C.$$

(d)
$$\int \tan^{-1} \left(\frac{1}{x}\right) dx = x \tan^{-1} \left(\frac{1}{x}\right) - \int x \cdot \left(\tan^{-1} \left(\frac{1}{x}\right)\right)' dx$$
$$= x \tan^{-1} \left(\frac{1}{x}\right) - \int x \cdot \frac{-\frac{1}{x^2}}{1 + (\frac{1}{x})^2} dx = x \tan^{-1} \left(\frac{1}{x}\right) + \int \frac{x}{1 + x^2} dx$$
$$= x \tan^{-1} \left(\frac{1}{x}\right) + \frac{1}{2} \ln(1 + x^2) + C.$$

(e) $\int \cos(\ln x) \, dx = x \cos(\ln x) - \int x (\cos(\ln x))' \, dx = x \cos(\ln x) + \int x \sin(\ln x) \cdot \frac{1}{x} \, dx$ $= x \cos(\ln x) + \int \sin(\ln x) \, dx.$ $\int \sin(\ln x) \, dx = x \sin(\ln x) - \int x (\sin(\ln x))' \, dx = x \sin(\ln x) - \int x \cos(\ln x) \cdot \frac{1}{x} \, dx$ $= x \sin(\ln x) - \int \cos(\ln x) \, dx.$

Then we can solve that $\int \cos(\ln x) \, dx = \frac{1}{2} x \sin(\ln x) + \frac{1}{2} x \cos(\ln x) + C.$

- (f) Let $t = \sqrt{x}$. Then $x = t^2$ ($t \ge 0$), and $\frac{dx}{dt} = 2t$. Therefore, $\int e^{\sqrt{x}} dx = \int e^t \cdot 2t \, dt = 2 \int t \, d(e^t) = 2 \left(t e^t - \int e^t \cdot (t)' \, dt \right) = 2(t e^t - e^t) + C$ $= 2e^t (t-1) + C = 2e^{\sqrt{x}} (\sqrt{x} - 1) + C.$
- (g) We first convert the rational function into its partial fraction form. Suppose

$$\frac{4(x+1)}{x^2(x^2+4)} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx+D}{x^2+4} = \frac{Ax(x^2+4) + B(x^2+4) + (Cx+D)x^2}{x^2(x^2+4)}$$
$$= \frac{(A+C)x^3 + (B+D)x^2 + 4Ax + 4B}{x^2(x^2+4)}.$$

Compare the coefficients:

$$A + C = 0$$
, $B + D = 0$, $4A = 4$ and $4B = 4$.

Solve the system, we have A = 1, B = 1, C = -1 and D = -1. Therefore,

$$\int \frac{4(x+1)}{x^2(x^2+4)} dx = \int \left(\frac{1}{x} + \frac{1}{x^2} - \frac{1}{x^2+4} - \frac{x}{x^2+4}\right) dx$$
$$= \ln|x| - \frac{1}{x} - \frac{1}{2} \tan^{-1} \left(\frac{x}{2}\right) - \frac{1}{2} \ln(x^2+4) + C.$$

(h) Let
$$u = \cos\theta$$
. Then $\frac{du}{d\theta} = -\sin\theta$.
$$\int \frac{\sin\theta}{\cos^2\theta + \cos\theta - 2} d\theta = -\int \frac{du}{(u-1)(u+2)} du = -\frac{1}{3} \int \left(\frac{1}{u-1} - \frac{1}{u+2}\right) du$$

$$= -\frac{1}{3}(\ln|u-1| - \ln|u+2|) + C = \frac{1}{3}\ln(2 + \cos\theta) - \frac{1}{3}\ln(1 - \cos\theta) + C.$$

(i) Let
$$x = \frac{1}{t}$$
. Then $t = \frac{1}{x}$ and $\frac{dx}{dt} = -\frac{1}{t^2}$.
$$\int \frac{1}{x^{2002} - x} dx = \int \frac{1}{\frac{1}{t^{2002}} - \frac{1}{t}} \cdot \frac{-1}{t^2} dt = \int \frac{t^{2000}}{t^{2001} - 1} dt = \frac{1}{2001} \ln|t^{2001} - 1| + C$$

$$= \frac{1}{2001} \ln\left|\frac{1}{x^{2001}} - 1\right| + C.$$

TUTORIAL PART II

- 1. (i) Let $f(x) = e^x (1+x)$. Then $f'(x) = e^x 1$. Recall that e^x is increasing. If x > 0, then $f'(x) > e^0 1 = 0$; so f is increasing on $[0, \infty)$. If x < 0, then $f'(x) < e^0 1 = 0$; so f is decreasing on $(-\infty, 0]$. Therefore, f attains the absolute minimum at x = 0. So for all $x \in \mathbb{R}$, $f(x) \ge f(0) = 0$, i.e., $e^x \ge 1 + x$.
 - (ii) Let M > 0. Take N = M 1. Then by (i),

$$x > N \Rightarrow e^x \ge x + 1 > N + 1 = M$$
.

It follows that $\lim_{x\to\infty} e^x = \infty$.

(iii) Let y = -x. Then $x \to -\infty \Leftrightarrow y \to \infty$. Then by (ii),

$$\lim_{x \to -\infty} e^x = \lim_{y \to \infty} e^{-y} = \lim_{y \to \infty} \frac{1}{e^y} = 0.$$

2. If $a_1 = \cdots = a_k = 1$, then it is trivial that

$$\sqrt[m]{a_1} + \cdots + \sqrt[m]{a_k} = \sqrt[n]{a_1} + \cdots + \sqrt[n]{a_k} = k.$$

Suppose not all $a_1, ..., a_k$ are equal to 1. Define $f(x) = a_1^x + \cdots + a_k^x$. Then

$$f'(x) = a_1^x \ln a_1 + \dots + a_k^x \ln a_k,$$

$$f''(x) = a_1^x (\ln a_1)^2 + \dots + a_k^x (\ln a_k)^2.$$

Note that f''(x) > 0 for all $x \in \mathbb{R}$. It follows that f' is increasing on \mathbb{R} . In particular, for all x > 0,

$$f'(x) > f'(0) = \ln a_1 + \dots + \ln a_k = \ln(a_1 \dots a_k) = \ln 1 = 0.$$

Therefore, f is increasing on $[0, \infty)$.

If m > n > 0, then 0 < 1/m < 1/n, and thus f(1/m) < f(1/n). That is,

$$\sqrt[m]{a_1} + \dots + \sqrt[m]{a_k} < \sqrt[n]{a_1} + \dots + \sqrt[n]{a_k}$$

3. If we substitute $x = 2 \tan^{-1} t$, where $t \in (-\pi, \pi)$, then

$$\int f(\sin x, \cos x) \, dx = \int f\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \frac{2}{1+t^2} \, dt.$$

Therefore,

$$\int \frac{dx}{2 + \sin x - 2\cos x} = \int \frac{1}{2 + \frac{2t}{1 + t^2} - 2\frac{1 - t^2}{1 + t^2}} \frac{2}{1 + t^2} dt$$

$$= \int \frac{2dt}{2(1 + t^2) + 2t - 2(1 - t^2)}$$

$$= \int \frac{dt}{t(2t + 1)} = \int \left(\frac{1}{t} - \frac{2}{2t + 1}\right) dt$$

$$= \ln|t| - \ln|2t + 1| + C$$

$$= \ln\left|\tan\frac{x}{2}\right| - \ln\left|2\tan\frac{x}{2} + 1\right| + C.$$