Propiedades mecánicas de la matriz rocosa

Fórmulas

Resistencia a la compresión

$$\sigma_{ci} = \frac{P}{A}$$

Efecto de escala en la resistencia a compresión

$$R = R_1 \left(0.778 + 0.222 \frac{D}{L} \right)$$
 Obert, Windes y Duvall (1946)
 $R = R_{0.5} \left(0.875 + 0.250 \frac{D}{L} \right)$ Brook (1993)
 $R = R_{50} \left(\frac{50}{D} \right)^{0.18}$ Hoek y Brown (1980)

Resistencia a la compresión, ensayo de carga puntual

$$\begin{split} I_s &= \frac{P}{D^2} & \sigma_{ci} = KI_s & \text{si } D = 50\,\text{mm} \\ I_{s(50)} &= \left(\frac{D}{50}\right)^{0.45} I_s & \sigma_{ci} = KI_{s(50)} & \text{si } D \neq 50\,\text{mm} \end{split}$$

Donde el factor K depende del tipo de roca, según ASTM D5731

Tamaño (mm)	20	30	40	50	54	60
K	17.5	19	21	23	24	24.5

También puede usarse el ajuste teórico

$$K = 6.6817 \ln D - 3.09$$

Resistencia a la compresión (γ en kN/m³) y módulo de elasticidad, martillo Schmidt Tipo L

$$\begin{split} \log \sigma_{ci} &= 0.00088 \gamma R_L + 1.01 & \text{en MPa} \\ \ln E_i &= -8.967 + 3.091 \ln R_L & \text{en GPa} \end{split}$$

Equivalencia entre número de rebote martillo Schmidt Tipo L y Tipo N

$$R_L = -3.4 + 0.83R_N + 0.00295R_N^2$$

Corrección por ángulo de inclinación para martillo Schmidt Tipo L

Rebote	Hacia	abajo	Horizontal	Hacia	arriba
Tiebote	-90°	-45°	0°	45°	90°
10	0	7.52	4.98	-	-
20	0	5.86	3.57	7.44	5.15
30	0	4.14	2.16	4.70	2.4
40	0	2.51	0.79	2.02	-0.26
50	0	0.82	-0.62	-0.70	-2.98
60	0	-0.86	-2.01	-3.39	-5.66

Resistencia a la tracción

$$\sigma_t = \frac{2P}{\pi Dt}$$
 ensayo brasileño
$$\sigma_t = \frac{16PL}{3\pi D^3}$$
 ensayo a flexión

Ábaco para martillo Schmidt Tipo L

Average dispersion of strength for most rocks - MPa

Figura 1: Practical Rock Engineering - Evert Hoek (2007)

Esfuerzo normal y cortante

$$\sigma = \frac{\sigma_1 + \sigma_3}{2} - \frac{\sigma_1 - \sigma_3}{2} \cos 2\beta$$
$$\tau = \frac{\sigma_1 - \sigma_3}{2} \sin 2\beta$$

Criterio de Mohr-Coulomb

$$\tau = c + \sigma \tan \phi$$

Criterio de Mohr-Coulomb en el espacio (s,t)

$$t = a + s \tan \alpha$$

Cambios de variable para el espacio (s,t)

$$s = \frac{\sigma_1 + \sigma_3}{2} \qquad a = c \cos \phi$$

$$t = \frac{\sigma_1 - \sigma_3}{2} \qquad \tan \alpha = \sin \phi$$

Criterio de Hoek-Brown

$$\sigma_1 = \sigma_3 + \sigma_{ci} \sqrt{m_i \frac{\sigma_3}{\sigma_{ci}} + s_i}$$

Ejercicios

1. Después de realizar ensayos de compresión uniaxial en varias muestras de roca intacta, se obtuvieron los siguientes resultados:

ID	113-1	113-2	113-3	113-4	113-5
P (kN)	240	292	225	248	225
D (mm)	44.6	44.6	44.6	44.6	44.6
L (mm)	94.2	93.6	94.3	94.7	94.5

Calcular:

- a) Resistencia a la compresión
- 2. Una muestra con D/L = 1 tiene una resistencia a compresión de 20 MPa, estimar la resistencia para una muestra con $D = 50 \,\mathrm{mm}$ y $L = 100 \,\mathrm{mm}$ usando al ecuación de Obert, Windes y Duvall.
- 3. Una muestra con D/L = 0.5 tiene una resistencia a compresión de 55 MPa, estimar la resistencia para una muestra con $D = 72 \,\mathrm{mm}$ y $L = 127 \,\mathrm{mm}$ usando al ecuación de Brook.
- 4. Una muestra con diámetro $D=50\,\mathrm{mm}$ tiene una resistencia a compresión de 18 MPa, estimar la resistencia para una muestra con $D=60\,\mathrm{mm}$ usando al ecuación de Hoek y Brown.
- 5. Después de realizar ensayos de carga puntual en varias muestras de roca intacta isotrópica, se obtuvieron los siguientes resultados:

ID	113-1	113-2	113-3	113-4	113-5
P (kN)	2.45	2.13	2.27	2.28	2.26
D (mm)	54	50	40	30	30

Calcular:

a) Resistencia a la compresión

6. Después de realizar ensayos de carga puntual en varias muestras de roca intacta anisotrópica, con la carga perpendicular al eje de la muestra se obtuvieron los siguientes resultados:

ID	121-1	121-2	121-3	121-4	121-5
P (kN)	5.1	4.9	4.6	4.5	3.7
D (mm)	54	54	50	50	40

Con la carga paralela al eje de la muestra se obtuvieron los siguientes resultados:

ID	121-6	121-7	121-8	121-9	121-10
P (kN)	0.9	0.64	0.82	0.79	0.67
D (mm)	54	54	50	50	40

Calcular:

- a) Resistencia a la compresión
- 7. Después de realizar ensayos de carga puntual en varias muestras de roca intacta anisotrópica, con la carga perpendicular al eje de la muestra se obtuvieron los siguientes resultados:

ID	122-1	122-2	122-3	122-4	122-5
P (kN)	5.63	6.2	5.4	5.8	4.8
b (mm)	75	70	70.5	78.5	92.1
h (mm)	63	60	60.2	65.3	80.6

Con la carga paralela al eje de la muestra se obtuvieron los siguientes resultados:

ID	122-6	122-7	122-8	122-9	122-10
P(kN)	1.23	1.28	1.98	1.53	1.36
b (mm)	80	76	77.5	82.5	95
h (mm)	68	66	67.3	70.3	85

Calcular:

- a) Resistencia a la compresión
- 8. Después de realizar ensayos de carga puntual y ensayos de compresión uniaxial en varias muestras de roca intacta, se obtuvieron los siguientes resultados:

ID	132-1	132-2	132-3	132-4	132-5	132-6	132-7	132-8	132-9	132-10
$I_{s(50)}$ (MPa)	2.36	3.51	3.77	3.91	4.05	4.62	5.35	5.42	6.17	6.46
$UCS_{(50)}$ (MPa)	58.59	74.62	76.78	85.62	92.31	105.74	106.47	113.87	122.05	131.54

Calcular:

- a) El coeficiente K
- 9. Mediante un martillo Schmidt Tipo L (de abajo hacia arriba 45°, $\gamma=22\,\mathrm{kN/m^3}$) se obtuvieron los siguientes datos:

Rebote	30	30	31	32	36	38	30	40	40	12
TUDOUC	30	50	91	32	50	30	33	40	40	42

Calcular:

- a) Resistencia a la compresión
- b) Módulo de elasticidad

10. Mediante un martillo Schmidt Tipo L (de arriba hacia abajo 45°, $\gamma = 24 \, \mathrm{kN/m^3}$) se obtuvieron los siguientes datos:

Rebote 38	38 39	39 40	40 41	42 42	2 45
-----------	-------	-------	-------	-------	------

Calcular:

- a) Resistencia a la compresión
- b) Módulo de elasticidad
- 11. Mediante un martillo Schmidt Tipo N (de arriba hacia abajo 90°, $\gamma = 28 \, \text{kN/m}^3$) se obtuvieron los siguientes datos:

Rebote	38	38	39	39	40	40	41	42	42	43
--------	----	----	----	----	----	----	----	----	----	----

Calcular:

- a) Resistencia a la compresión
- b) Módulo de elasticidad
- 12. Mediante un martillo Schmidt Tipo N (horizontal 0°, $\gamma=26\,\mathrm{kN/m^3}$) se obtuvieron los siguientes datos:

R	Rebote	50	45	52	47	55	39	65	55	53	54

Calcular:

- a) Resistencia a la compresión
- b) Módulo de elasticidad
- 13. Después de realizar ensayos de tracción indirecta (ensayo brasileño) en varias muestras de roca intacta, se obtuvieron los siguientes resultados:

ID	132-1	132-2	132-3	132-4	132-5
P(kN)	1.53	1.09	1.39	1.34	1.14
D (mm)	50.1	50.1	50	50.2	50.2
t (mm)	25	25.1	26	25.2	25.3

Calcular:

- a) Resistencia a la tracción
- 14. Después de realizar ensayos de tracción indirecta (ensayo a flexión) en varias muestras de roca intacta, se obtuvieron los siguientes resultados:

ID	140-1	140-2	140-3	140-4	140-5
P (kN)	1.35	1.21	1.56	1.5	1.27
D (mm)	50.2	50.3	50	50.1	50.2
L (mm)	380	380	380	380	380

Calcular:

- a) Resistencia a la tracción
- 15. Después de realizar un ensayo de compresión uniaxial con bandas extensométricas en una muestra de roca intacta $D=50.2\,\mathrm{mm}$ y $L=127.4\,\mathrm{mm}$, se obtuvieron los siguientes resultados:

σ_1 (MPa)	0	24	54	84	104	20	40	60	80	110
ε (%)	0	0.05	0.1	0.15	0.19	-0.01	-0.02	-0.03	-0.04	-0.045
Eje	axial	axial	axial	axial	axial	radial	radial	radial	radial	radial

Calcular:

- a) Modulo de elasticidad al 50 % de su resistencia y coeficiente de Poisson
- b) Modulo de elasticidad secante al 50% de su resistencia y coeficiente de Poisson
- 16. Después de realizar un ensayo de compresión uniaxial con bandas extensométricas en una muestra de roca intacta $D = 50.4 \,\mathrm{mm}$ y $L = 126.7 \,\mathrm{mm}$, se obtuvieron los siguientes resultados:

σ_1 (MPa)	0	20	40	60	63	20	40	60	65
ε (%)	0	0.05	0.1	0.15	0.18	-0.01	-0.02	-0.04	-0.05
Eje	axial	axial	axial	axial	axial	radial	radial	radial	radial

Calcular:

- a) Modulo de elasticidad al 50 % de su resistencia y coeficiente de Poisson
- b) Modulo de elasticidad secante al 50 % de su resistencia y coeficiente de Poisson
- 17. Después de realizar ensayos de compresión uniaxial en varias muestras de roca intacta, se observo que se formaba un plano de falla con un ángulo β medido desde el eje axial en sentido horario, se obtuvieron los siguientes resultados:

ID	150-1	150-2	150-3	150-4	150-5
σ_1 (MPa)	17	32	25	19	22
σ_3 (MPa)	0	0	0	0	0
β (°)	35	54	45	30	36

Obtener:

- a) Envolvente de falla aplicando el criterio de Mohr-Coulomb
- b) Resistencia a la tracción
- 18. Después de realizar ensayos de compresión triaxial en varias muestras de roca intacta, se observo que se formaban varios planos de falla, se obtuvieron los siguientes resultados:

ID	152-1	152-2	152-3	152-4	152-5	152-6	152-7
$\sigma_1 \text{ (MPa)}$	1.24	6.07	8.96	12.07	12.82	19.31	20
σ_3 (MPa)	0	0.35	0.69	1.24	1.38	3.45	3.45

Obtener:

- a) Envolvente de falla aplicando el criterio de Mohr-Coulomb
- b) Resistencia a la tracción
- Mediante el criterio de Hoek-Brown deducir las fórmulas para calcular la resistencia a tracción y compresión uniaxial.
- 20. Después de realizar ensayos de compresión triaxial en varias muestras de roca intacta, se obtuvieron los siguientes resultados:

ID	152-1	152-2	152-3	152-4	152-5	152-6	152-7
$\sigma_1 \text{ (MPa)}$	1.24	6.07	8.96	12.07	12.82	19.31	20
σ_3 (MPa)	0	0.35	0.69	1.24	1.38	3.45	3.45

Obtener:

- a) Envolvente de falla aplicando el criterio de Hoek-Brown
- b) Resistencia a la compresión uniaxial
- c) Resistencia a la tracción
- 21. Después de realizar ensayos de compresión triaxial en varias muestras de roca intacta, se obtuvieron los siguientes resultados:

ID	152-1	152-2	152-3	152-4	152-5	152-6	152-7	152-8	152-9	152-10	152-11	152-12
σ_1 (MPa)	25	57.5	62.5	75	77.5	70	95	97.5	63	120	150	147
σ_3 (MPa)	0	2.5	3	4	5	6	8	10	11	15	19	20

Obtener:

- a) Envolvente de falla aplicando el criterio de Hoek-Brown
- b) Resistencia a la compresión uniaxial
- c) Resistencia a la tracción
- 22. Después de realizar ensayos de compresión uniaxial y ensayos de tracción indirecta en varias muestras de roca intacta, se obtuvieron los siguientes resultados:

ID	162-1	162-2	162-3	162-4	162-5	162-6	162-7	162-8	162-9	162-10
$UCS_{(50)}$ (MPa)	58.59	74.62	76.78	85.62	92.31	105.74	106.47	113.87	122.05	131.54
$BTS_{(50)}$ (MPa)	4.51	6.52	6.65	7.73	8.15	8.3	9.07	9.7	10.14	10.44

Calcular:

- a) El coeficiente m_i
- b) El coeficiente s_i