$V.t = \sum_{i=1}^{2} \tau_i.t = 3 + 2 = 5$

$$\mathcal{V}[0]$$
 $\mathcal{V}[1]$ $\mathcal{V}[2]$ $\mathcal{V}[3]$ $\mathcal{V}[3+]$ $\mathcal{V}[4]$ $\mathcal{V}[5]$ $=\tau_2[0]$ $=\tau_1[3]$ $\tau_2 = (\tau_2.\mathsf{y}, \tau_2.\pi, \tau_2.\mathsf{c}, \tau_2.\mathsf{t}) \leftarrow \mathsf{VDF.solve}(\tau_2.\mathsf{c}, \tau_2.\mathsf{t})$

A VDF chain $\mathcal{V} = (x_0, \tau_1, x_1, \tau_2)$