Quantum Sub-Gaussian Mean Estimator

Yassine Hamoudi

ESA 2021

Experiment with unknown outcome distribution ${\cal D}$

Experiment with unknown outcome distribution D

Experiment with unknown outcome distribution D

$$n$$
 = # of runs of the experiment $\begin{cases} \text{classical} = n \text{ i.i.d. samples from } D \\ \text{quantum} = \text{see later} \end{cases}$

Experiment with unknown outcome distribution D

n = # of runs of the experiment $\begin{cases} \text{classical} = n \text{ i.i.d. samples from } D \\ \text{quantum} = \text{see later} \end{cases}$

Goal: compute an estimate $\tilde{\mu}$ that minimizes the error $\varepsilon(n)$ such that

$$\Pr\left[\left|\mu - \tilde{\mu}\right| > \varepsilon(n)\right] < \delta \quad \text{given } \delta \in (0,1)$$

$$\Pr\left[|\mu - \tilde{\mu}| > \varepsilon(n)\right] < \delta$$

$$\Pr\left[|\mu - \tilde{\mu}| > \varepsilon(n)\right] < \delta$$

 \to If $D \in \left\{ \mathcal{N}(\mu, \sigma^2) \right\}_{\mu, \sigma}$ is Gaussian then the Empirical Mean is optimal and

$$\varepsilon(n) = O\left(\sqrt{\frac{\sigma^2 \log(1/\delta)}{n}}\right)$$

$$\Pr\left[|\mu - \tilde{\mu}| > \varepsilon(n)\right] < \delta$$

ightarrow If $D\in\left\{\mathcal{N}(\mu,\sigma^2)\right\}_{\mu,\sigma}$ is Gaussian then the Empirical Mean is optimal and

$$\varepsilon(n) = O\left(\sqrt{\frac{\sigma^2 \log(1/\delta)}{n}}\right)$$

 \rightarrow An estimator is sub-Gaussian if it achieves the above bound for any D

$$\Pr\left[\left|\mu - \tilde{\mu}\right| > \varepsilon(n)\right] < \delta$$

 \to If $D\in\left\{\mathcal{N}(\mu,\sigma^2)\right\}_{\mu,\sigma}$ is Gaussian then the Empirical Mean is optimal and

$$\varepsilon(n) = O\left(\sqrt{\frac{\sigma^2 \log(1/\delta)}{n}}\right)$$

- \rightarrow An estimator is sub-Gaussian if it achieves the above bound for any D
 - X Empirical Mean is not sub-Gaussian

$$\Pr\left[\left|\mu - \tilde{\mu}\right| > \varepsilon(n)\right] < \delta$$

 \rightarrow If $D\in\left\{\mathcal{N}(\mu,\sigma^2)\right\}_{\mu,\sigma}$ is Gaussian then the Empirical Mean is optimal and

$$\varepsilon(n) = O\left(\sqrt{\frac{\sigma^2 \log(1/\delta)}{n}}\right)$$

- \rightarrow An estimator is sub-Gaussian if it achieves the above bound for any D
 - X Empirical Mean is not sub-Gaussian
 - ✓ Median-of-Means, [Catoni'12], [Lee, Valiant'21], ... are sub-Gaussian

$$\Pr\left[\left|\mu - \tilde{\mu}\right| > \varepsilon(n)\right] < \delta$$

 \to If $D \in \left\{ \mathcal{N}(\mu, \sigma^2) \right\}_{\mu, \sigma}$ is Gaussian then the Empirical Mean is optimal and

$$\varepsilon(n) = O\left(\sqrt{\frac{\sigma^2 \log(1/\delta)}{n}}\right)$$

- ightarrow An estimator is sub-Gaussian if it achieves the above bound for any D
 - X Empirical Mean is not sub-Gaussian
 - ✓ Median-of-Means, [Catoni'12], [Lee, Valiant'21], ... are sub-Gaussian

optimal
$$\sqrt{2} + o(1)$$
 factor in $O(\,.\,)$

Classical:
$$\varepsilon(n) = O\left(\sqrt{\frac{\sigma^2 \log(1/\delta)}{n}}\right)$$

Classical:
$$\varepsilon(n) = O\left(\sqrt{\frac{\sigma^2 \log(1/\delta)}{n}}\right)$$

$$\dots \frac{B \log(1/\delta)}{n}$$

given
$$B \ge \max\{|x|: p_x \ne 0\}$$

[Grover'98] [Abrams, Williams'99] [Brassard, Dupuis, Gambs, Tapp'11] ...

Classical:
$$\varepsilon(n) = O\left(\sqrt{\frac{\sigma^2 \log(1/\delta)}{n}}\right)$$

$$\cdots \frac{B \log(1/\delta)}{n}$$

$$\dots \frac{\sqrt{B\mu} \log(1/\delta)}{n} + \frac{B \log(1/\delta)^2}{n^2}$$

given
$$B \ge \max\{|x|: p_x \ne 0\}$$

[Grover'98] [Abrams, Williams'99] [Brassard, Dupuis, Gambs, Tapp'11] ...

[Brassard, Høyer, Mosca, Tapp'02]

Amplitude Estimation

Classical:
$$\varepsilon(n) = O\left(\sqrt{\frac{\sigma^2 \log(1/\delta)}{n}}\right)$$

$$\dots \frac{B \log(1/\delta)}{n}$$

$$\dots \frac{\sqrt{B\mu} \log(1/\delta)}{n} + \frac{B \log(1/\delta)^2}{n^2}$$

$$\ldots \frac{\sum \log(1/\delta)}{n}$$

given
$$B \ge \max\{|x|: p_x \ne 0\}$$

[Grover'98] [Abrams, Williams'99] [Brassard, Dupuis, Gambs, Tapp'11] ...

[Brassard, Høyer, Mosca, Tapp'02]

Amplitude Estimation

given
$$\Sigma \geq \sigma$$

[Heinrich'02][Montanaro'15]

Classical:
$$\varepsilon(n) = O\left(\sqrt{\frac{\sigma^2 \log(1/\delta)}{n}}\right)$$

$$\dots \frac{B \log(1/\delta)}{n}$$

$$\dots \frac{\sqrt{B\mu} \log(1/\delta)}{n} + \frac{B \log(1/\delta)^2}{n^2}$$

$$\ldots \frac{\sum \log(1/\delta)}{n}$$

$$\cdots \frac{\mu \Delta \log(1/\delta)}{n}$$

given
$$B \ge \max\{|x|: p_x \ne 0\}$$

[Grover'98] [Abrams, Williams'99] [Brassard, Dupuis, Gambs, Tapp'11] ...

[Brassard, Høyer, Mosca, Tapp'02]

Amplitude Estimation

given
$$\Sigma \geq \sigma$$

[Heinrich'02][Montanaro'15]

given
$$\Delta \ge \sigma/\mu$$
[H.,Magniez'19]

Quantum "sub-Gaussian" estimator:

$$\varepsilon(n) = \tilde{O}\!\!\left(\frac{\sigma \log(1/\delta)}{n}\right)$$

Quantum "sub-Gaussian" estimator:

$$\varepsilon(n) = \tilde{O}\left(\frac{\sigma \log(1/\delta)}{n}\right)$$

- \checkmark Doesn't require any prior knowledge about D
- ✓ Subsumes all previous quantum estimators
- Better than any classical sub-Gaussian estimator (recall: $\sqrt{\frac{\sigma^2 \log(1/\delta)}{n}}$)
- ✓ Optimal (lower bound by reduction from Quantum Search)

^{*}up to log factors

Model 1: n copies of the qsample $\sum_{x} \sqrt{p_x} |x\rangle$

Model 1: n copies of the qsample $\sum_{x} \sqrt{p_x} |x\rangle$

→ classical sub-Gaussian estimators are optimal in this model!

Model 1: n copies of the qsample $\sum_{x} \sqrt{p_x} |x\rangle$

→ classical sub-Gaussian estimators are optimal in this model!

Model 2: n accesses to a unitary U_D such that $U_D|0\rangle = \sum_x \sqrt{p_x} |x\rangle | \text{garbage}_x\rangle$

Model 1: n copies of the qsample $\sum_{x} \sqrt{p_x} |x\rangle$

→ classical sub-Gaussian estimators are optimal in this model!

Model 2: n accesses to a unitary U_D such that $U_D|0\rangle = \sum_x \sqrt{p_x} |x\rangle | \text{garbage}_x\rangle$

 $\rightarrow U_D$, U_D^{-1} and their controlled versions can be accessed

Model 1: n copies of the qsample $\sum_{x} \sqrt{p_x} |x\rangle$

→ classical sub-Gaussian estimators are optimal in this model!

Model 2: n accesses to a unitary U_D such that $U_D|0\rangle = \sum_x \sqrt{p_x} |x\rangle | \text{garbage}_x\rangle$

- $\rightarrow U_D$, U_D^{-1} and their controlled versions can be accessed
- ightarrow Grover Search, Phase/Amplitude Estimation... can be used on U_D

Model 1: n copies of the qsample $\sum_{x} \sqrt{p_x} |x\rangle$

→ classical sub-Gaussian estimators are optimal in this model!

Model 2: n accesses to a unitary U_D such that $U_D|0\rangle = \sum_x \sqrt{p_x} |x\rangle | \text{garbage}_x\rangle$

- $\rightarrow U_D$, U_D^{-1} and their controlled versions can be accessed
- ightarrow Grover Search, Phase/Amplitude Estimation... can be used on U_D
- → Similar models in other works on estimating/testing statistics [Nayak,Wu'99] [Bravyi,Harrow,Hassidim'11][Montanaro'15]...

Natural approach: truncate the distribution at a certain level T

Natural approach: truncate the distribution at a certain level T

Natural approach: truncate the distribution at a certain level T

 \rightarrow How to choose T?

Natural approach: truncate the distribution at a certain level T

 \rightarrow How to choose T?

 $T \approx n\sigma$

[Heinrich'02] [Montanaro'15] [H.,Magniez'19] Require some knowledge about σ

Natural approach: truncate the distribution at a certain level T

 \rightarrow How to choose T?

 $T pprox n\sigma$ [Heinrich'02] Require some [Montanaro'15] Require some knowledge about σ

Our work: $T \approx \text{ quantile satisfying } \Pr_{x \leftarrow D} [x > T] = 1/n^2$

Natural approach: truncate the distribution at a certain level T

 \rightarrow How to choose T?

[Heinrich'02] Require some $T \approx n\sigma$ [Montanaro'15] knowledge about σ [H.,Magniez'19]

 $T \approx$ quantile satisfying $\Pr[x > T] = 1/n^2$ by adapting Minimum Our work:

Computed in O(n) time Finding [Dürr, Høyer'96]

- Estimating expected values of observables
 - \rightarrow observable O, state $|\psi\rangle$
 - $\rightarrow \mu = \langle \psi | O | \psi \rangle$ and $\sigma^2 = \langle \psi | (O \mu)^2 | \psi \rangle$

Estimating expected values of observables

- \rightarrow observable O, state $|\psi\rangle$
- $\rightarrow \mu = \langle \psi | O | \psi \rangle$ and $\sigma^2 = \langle \psi | (O \mu)^2 | \psi \rangle$
- \rightarrow if $|\psi\rangle=e^{-iHt}|0\rangle$ is obtained by Hamiltonian sim. then n=# runs of Hs

Estimating expected values of observables

- \rightarrow observable O, state $|\psi\rangle$
- $\rightarrow \mu = \langle \psi | O | \psi \rangle$ and $\sigma^2 = \langle \psi | (O \mu)^2 | \psi \rangle$
- \rightarrow if $|\psi\rangle=e^{-iHt}|0\rangle$ is obtained by Hamiltonian sim. then n=# runs of Hs

Monte Carlo estimation

- → integration
- → partition functions
- → mathematical finance

Estimating expected values of observables

- \rightarrow observable O, state $|\psi\rangle$
- $\rightarrow \mu = \langle \psi | O | \psi \rangle$ and $\sigma^2 = \langle \psi | (O \mu)^2 | \psi \rangle$
- \rightarrow if $|\psi\rangle = e^{-iHt}|0\rangle$ is obtained by Hamiltonian sim. then n=# runs of Hs

Monte Carlo estimation

- → integration
- → partition functions
- → mathematical finance

• ...

Sub-Gaussian estimators

$$\Theta\!\left(\sqrt{\frac{\sigma^2\log(1/\delta)}{n}}\right)$$
 vs $\tilde{\Theta}\!\left(\frac{\sigma\log(1/\delta)}{n}\right)$ Classical Quantum

Open questions

- Improve the log-factors
- Extend to the multivariate setting (recent work: [Cornelissen, Jerbi'21])
- Find other applications