Capstone Project

Project Documentation

Forensic Dentistry: Gender Prediction Using Dental Metrics

Project Title: Using Dental Metrics to Predict Gender

Author: Saurabh Sharma

Date: 01-04-2025

¹Introduction

Problem Statement

Forensic dentistry is a branch of forensic medicine that plays a crucial role in identifying individuals, especially in cases where bodies are unrecognizable due to natural disasters or other incidents. Dental structures, particularly **teeth**, are highly durable and can serve as reliable indicators of identity. This project leverages **machine learning** to predict an individual's **gender** based on dental measurements.

Objective

- To analyze dental metrics and their relationship with gender.
- To implement **machine learning models** for gender classification.
- To evaluate the performance of different classifiers and identify the best-performing model.

2 Dataset Description

Dataset Name: Dentistry Dataset.csv

This dataset contains various dental measurements, including inter-canine distance, canine width, and canine index, used to classify gender.

Canine index measurement

Key Features:

Canine Index

Feature Name	Description
Age	The age of the individual
Gender (Target Variable)	Male (1) / Female (0)
Sample ID & SL No.	Unique identifier (not used for prediction)
Inter-canine distance intraoral	Measurement between upper canine teeth
Right & Left Canine Width Casts Width of the right and left canines	

Capstone Project

- Target Variable:
 - Gender (Male = 1, Female = 0)
 - Independent Variables: Various dental measurements

1 Methodology

- Step 1: Data Preprocessing
 - Handle **missing values** (if any).
 - Encode categorical variables (Label Encoding for Gender).
 - Drop unnecessary columns (Sample ID, SL No.).
 - Normalize numerical features (Scaler or Normalizer).
- Step 2: Exploratory Data Analysis (EDA)
 - Heatmap to check feature correlations
 - Histograms to visualize distributions of features
- Step 3: Model Building
 - Split data into training (80%) and testing (20%).
 - Train the following classification models:
 - 1. Logistic Regression
 - 2. Decision Tree
 - 3. Random Forest
 - 4. XGBoost
- Step 4: Model Evaluation
 - Accuracy Score
 - Confusion Matrix
 - ROC-AUC Curve

4☐Results & Analysis

Model Performance Comparison

Model Accuracy (%)

Logistic Regression 0.64090909090909

Decision Tree 0.8772727272727

Capstone Project

Model Accuracy (%)

Random Forest 0.895454545454545

XGBoost 0.9

Key Findings:

- The best model, XGBoost, achieved an accuracy of XX%.
- The **heatmap analysis** showed that certain **dental features are strongly correlated** with gender.

5Conclusion & Future Work

Conclusion

- This project successfully built a **gender classification model** using dental metrics.
- The best model achieved an **accuracy of XX%**, demonstrating potential for forensic applications.

Future Work

- Expand dataset: More diverse samples for better accuracy.
- Use Deep Learning: Implement Neural Networks for improved classification.
- Test on real-world forensic datasets: Validate the model in forensic investigations.

©References

- Scikit-learn Documentation: https://scikit-learn.org
- XGBoost Documentation: https://xgboost.readthedocs.io
- Research Papers on Forensic Dentistry

☑nstallation & Usage

Clone the Repository

git clone https://github.com/Saurabhji-1/Capstone-Project/tree/main

Install Dependencies

pip install -r requirements.txt

Run the Jupyter Notebook

jupyter notebook