- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call

Example contd.

Compactness

- A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values
- Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1-p)
- If each variable has no more than k parents, the complete network requires $O(n \cdot 2^k)$ numbers
- I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution
- For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. $2^5-1 = 31$)

Semantics

The full joint distribution is defined as the product of the local conditional distributions:

$$P(X_1, \ldots, X_n) = \prod_{i=1}^n P(X_i | Parents(X_i))$$

e.g.,
$$P(j \land m \land a \land \neg b \land \neg e)$$

$$= P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e)$$

Constructing Bayesian networks

- 1. Choose an ordering of variables X_1, \ldots, X_n
- 2. For i = 1 to n
 - add X_i to the network
 - select parents from X_1, \ldots, X_{i-1} such that $P(X_i \mid Parents(X_i)) = P(X_i \mid X_1, \ldots, X_{i-1})$

This choice of parents guarantees:

$$P(X_{1}, ..., X_{n}) = \prod_{i=1}^{n} P(X_{i} | X_{1}, ..., X_{i-1})$$
(chain rule)
$$= \pi_{i=1} P(X_{i} | Parents(X_{i}))$$
(by construction)

• Suppose we choose the ordering M, J, A, B, E

$$P(J \mid M) = P(J)$$
?

• Suppose we choose the ordering M, J, A, B, E

$$P(J \mid M) = P(J)?$$

$$P(A | J, M) = P(A | J)? P(A | J, M) = P(A)?$$

Suppose we choose the ordering M, J, A, B, E

$$P(J \mid M) = P(J)?$$

$$P(A | J, M) = P(A | J)? P(A | J, M) = P(A)?$$
No

$$P(B | A, J, M) = P(B | A)$$
?

$$P(B | A, J, M) = P(B)$$
?

Suppose we choose the ordering M, J, A, B, E

$$P(J \mid M) = P(J)$$
?

$$P(A | J, M) = P(A | J)? P(A | J, M) = P(A)?$$
No

$$P(B | A, J, M) = P(B | A)$$
? Yes

$$P(B | A, J, M) = P(B)$$
? No

$$P(E \mid B, A, J, M) = P(E \mid A)$$
?

$$P(E | B, A, J, M) = P(E | A, B)$$
?

Suppose we choose the ordering M, J, A, B, E

$$P(J \mid M) = P(J)?$$

$$P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No$$

$$P(B | A, J, M) = P(B | A)$$
? Yes

$$P(B | A, J, M) = P(B)$$
? No

$$P(E \mid B, A, J, M) = P(E \mid A)$$
? No

$$P(E \mid B, A, J, M) = P(E \mid A, B)$$
? Yes

Example contd.

Deciding conditional

noncausal directions

- (Causal models and conditional independence seem hardwired for humans!)
- Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed

Summary

- Bayesian networks provide a natural representation for (causally induced) conditional independence
- Topology + CPTs = compact representation of joint distribution
- Generally easy for domain experts to construct

Inference Using Bayes Theorem

- The general probabilistic inference problem is to find the probability of an event given a set of evidence;
- This can be done in Bayesian nets with sequential applications of Bayes Theorem;
- In 1986 Judea Pearl published an innovative algorithm for performing inference in Bayesian nets.

Propagation Example

"The impact of each new piece of evidence is viewed as a perturbation that propagates through the network via message-passing between neighboring variables . . ." (Pearl, 1988, p 143)

• The example above requires five time periods to reach equilibrium after the introduction of data

Basic Inference

$$P(b) = ?$$

Product Rule

$$S \rightarrow C$$

$$\blacksquare P(C,S) = P(C|S) P(S)$$

$S \Downarrow$	$C \Rightarrow$	none	benign	malignant
no		0.768	0.024	0.008
light		0.132	0.012	0.006
heav	y	0.035	0.010	0.005

Marginalization

$S^{\downarrow} C \Rightarrow$	none	benign	malig	total
no	0.768	0.024	0.008	.80
light	0.132	0.012	0.006	.15
heavy	0.035	0.010	0.005	.05
total	0.935	0.046	0.019	

P(Smoke)

P(Cancer)

Basic Inference

$$P(b) = \sum_{a} P(a, b) = \sum_{a} P(b \mid a) P(a)$$

$$P(c) = \sum_{b} P(c \mid b) P(b)$$

$$P(c) = \sum_{b,a} P(a, b, c) = \sum_{b,a} P(c \mid b) P(b \mid a) P(a)$$

$$= \sum_{b} P(c \mid b) \sum_{a} P(b \mid a) P(a)$$

P(b)

Variable elimination

"Icy roads" example

- Inspector Smith is waiting for Holmes and Watson who are both late for an appointment.
- Smith is worried that if the roads are icy one or both of them may have crashed his car.
- Suddenly Smith learns that Watson has crashed.
- Smith thinks: If Watson has crashed, probably the roads are icy, then Holmes has probably crashed too!
- Smith then learns it is warm outside and roads are salted
- Smith thinks: Watson was unlucky; Holmes should still make it.

Bayes net for "Icy roads" example

P(Watson lcy)	loy = yes	lcy = na
Watson Crash = yes	0.8	0.1
Watson Crash = no	0.2	0.9

P(Holmes 1cy	Jay = yes	lcy = na
Holones Crosh = ves	0.5	0.1
Halanes Crash = na	0.2	0.9

Extracting marginals

To find P(Holmes Crash) we first compute P(Holmes Crash, Icy) using the fundamental rule:

e.g.
$$P(H Crash = yes, Icy = yes)$$

= P(H Crash=yes | Icy =yes)P(Icy=yes)

P(Holmes,ley)	Icy = yes	Tcy = no	P(H Crash)
Holmes Clash = yes	0.8 x0,7=0,56	0.1 ×0,3=0,03	0.56+0.03=0.59
Holmes Clash = no	0.2 x0,7=0,14	0.9 x0,3=0,27	0.14+0.27=0.41

Then summing each row gives us the required probabilities. By symmetry P (W Ctash) is the same.

Updating with Bayes rule (given evidence "Watson has crashed")

After we discover that Watson has crashed we can compute P(Icy | W Crash = y) using Bayes rule:

$$P(\text{Icy} \mid W \text{ Crash}=y) = \frac{P(W \text{ Crash} = y \mid \text{Icy})P(\text{Icy})}{P(W \text{ Crash} = y)}$$

= (0.8x0.7, 0.1x0.3)/0.59

=(0.95,0.05)

Extracting the marginal

To calculate P(H Crash | W Crash = y) we first calculate
 P(H Crash, Icy | W Crash)

P(H W=y, lcy)	Icy = yes	Tcy = ho	
Holmes Ctash = yes	0.8 ×0.95=0,76	0.1 ×0,05=0,005	0.765
Holtoes Clash = no	0.2 x0.95=0,19	0.9 x0,05=0,045	0.235

Again, summing gives us $P(H \text{ Crash} \mid W \text{ Crash} = yes)$

$$P(H \text{ Crash} \mid W \text{ Crash}, \text{ Icy=no}) = P(H \text{ Crash} \mid \text{ Icy=no})$$

= $(0.1,0.9)$

Alternative perspective

We represent the model as two joint tables, P(Watson, Icy) and P(Holmes, Icy) with a table for the overlap P(Icy).

Alternative perspective

If evidence on Watson actives of the form $P^{New}(W|Ccash) = (1,0)$ then $P^{New}(W|Ccash, lcy) = P(lcy | W|Ccash) P^{New}(W|Ccash) = \frac{P(W|Ccash, lcy)}{P(W|Ccash)} P^{New}(W|Ccash)$

Alternative perspective

The table for Icy can then be updated by marginalizing the table for Watson. The table for Holmes can then be updated using the same rule:

$$P^{\text{New}}(H \text{ Crash}, lcy) = \frac{P(H \text{ Crash}, lcy)}{P(lcy)} P^{\text{New}}(lcy)$$

Polytrees

■ A network is *singly connected* (a *polytree*) if it contains no undirected loops.

Theorem: Inference in a singly connected network can be done in linear time*.

Main idea: in variable elimination, need only maintain distributions over single nodes.

Variable Elimination with loops

Complexity is exponential in the size of the factors

Join Trees

A Multiply Connected Network. There are two paths between node a and node d.

A Clustered, Multiply
Connected Network.

By clustering nodes b and c, we turned the graph
into a singly connected network.

Graphical Method of Building the Junction Tree

The Junction Tree can be constructed through a series of graph operations

- Marry the Parents ("moralize the graph"): Add an undirected edge between every pair of parents of a node (unless they are already connected.
- Make All Arrows Undirected
- **Triangulate the Graph:** Add edges so that every cycle of length 4 or more contains a chord.
- Identify the maximal Cliques: A clique is a complete graph. A maximal clique is a maximal complete subgraph.
- Form Junction Graph: Create a cluster node for each clique and label it with the variables in the clique.
 - Create an edge between any pair of cluster nodes that share variables.
 - Place a separator node on the edge labeled with the set of variables shared by the cluster nodes it joins.
- Form the junction tree: Compute a maximum weighted spanning tree of the junction graph where the weight on each edge is the number of variables in the separator of the edge.

P(U) = P(A)P(S)P(T|A)P(L|S)P(B|S)P(E|L,T)P(D|B,E)P(X|E)

Step 1: Moralize the Graph

We join T and L because they are parents of E.

We join \mathbf{E} and \mathbf{B} because they are parents of \mathbf{D} .

Step 2: Triangulate the Moral Graph

There is a cycle of length four with no shortcuts: \mathbf{E} , \mathbf{L} , \mathbf{S} , \mathbf{B} .

We have a choice of where to add the shortcut. Either **LB** or **SE** would work.

Step 3: Cliques and Junction Graph

Step 4: Junction Tree

Notice that the running intersection property holds (this is guaranteed by the maximum weight spanning tree and the moralizing and triangulating edges).

Decision making

- Decision an irrevocable allocation of domain resources
- Decision should be made so as to maximize expected utility.
- View decision making in terms of
 - ♦ Beliefs/Uncertainties
 - ◆ Alternatives/Decisions
 - ♦ Objectives/Utilities

A Decision Problem

Should I have my party inside or outside?

Value Function

■ A numerical score over all possible states of the world.

Location?	Weather?	Value
in	dry	\$50
in	wet	\$60
out	dry	\$100
out	wet	\$0

Preference for Lotteries

Desired Properties for Preferences over Lotteries

If you prefer \$100 to \$0 and p < q then

(always)

Expected Utility

Properties of preference \Rightarrow existence of function U, that satisfies:

iff

$$\Sigma_i p_i U(x_i) < \Sigma_i q_i U(y_i)$$

Are people rational?

Attitudes towards risk

Maximizing Expected Utility

choose the action that maximizes expected utility

$$EU(in) = 0.7 \cdot .632 + 0.3 \cdot .699 = .652$$
 Choose in $EU(out) = 0.7 \cdot .865 + 0.3 \cdot 0 = .605$

Decision Making with Influence Diagrams

Expected Utility of this policy is 100

Value-of-Information in an Influence Diagram

Value-of-Information is the increase in Expected Utility

Expected Utility of this policy is 112.5

LEARNING BAYES NETS

Input: training data

Output: BN modeling data

- Input: fully or partially observable data cases?
- Output: parameters or also structure?

Known structure, Fully Observable

Preg	Glucose	Insulin	Mass	Age	Diabetes
5	121	112	26.2	30	0
10	101	180	32.9	63	0
7	137	0	32.0	39	0
12	100	105	30.0	46	0
9	140	0	32.7	45	1
1	102	0	39.5	42	1
2	99	160	36.6	21	0
2	174	120	44.5	24	1
1	111	0	32.8	45	0
5	117	105	39.1	42	0

Learning Process

Discretize the Data

Glucose
$$< 100 \Rightarrow 0$$

 $100 \le \text{Glucose} < 120 \Rightarrow 1$
 $120 \le \text{Glucose} < 140 \Rightarrow 2$
 $140 \le \text{Glucose} \Rightarrow 3$

Count Cases

$$P(Mass=0|Preg=1,Age=2) = \frac{N(Mass=0,Preg=1,Age=2)}{N(Preg=1,Age=2)}$$

Read more about Learning BN in: http://http.cs.berkeley.edu/ ~murphyk/Bayes/learn.html

Profiling with Bayes Nets User Profiling: the problem

The BBN encoding the user preference

- Preference Variables:
 what kind of TV programmes does the user prefer and how much?
- Context Variables: in which (temporal) conditions does the user prefer ...?⁵⁴

BBN based filtering

- 1) From each item of the input offer extract:
 - the classification
 - the possible (empty) context
- 2) For each item compute

Prob (<*classification*> | <*context*>)

3) Items with highest probabilities are the output of the filtering

Example of filtering

The input offer is a set of 3 items:

- 1. a concert of classical music on Thursday afternoon
- 2. a football match on Wednesday night
- 3. a subscription for 10 movies on evening

The probabilities to be computed are:

- 1. P (MUS = CLASSIC_MUS | Day = Thursday, ViewingTime = afternoon)
- 2. P (SPO = FOOTBAL_SPO | Day = Wednesday, ViewingTime = night)
- 3. P (CATEGORY = MOV | ViewingTime = evening)

BBN based updating

- The BBN of a new user is initialised with uniform distributions
- The distributions are updated using a Bayesian learning technique on the basis of user's actual behaviour
- Different user's behaviours -> different learning weights:
 - 1) the user declares their preference
 - 2) the user watches a specific TV programme
 - 3) the user searches for specific kind of programmes