Annotated slides from Tuesday

MA313 : Linear Algebra I

Week 3: Spanning set; the Null and Column Spaces

Dr Niall Madden

20 and 23 September, 2022

https://commons.wikimedia.org/wiki/File:KerIm_2015Joz_L2.png.

These slides are adapted (slightly) from ones by Tobias Rossmann.

Outline

- 1 Part 1: Linear combinations
 - Building subspaces
 - Definition
- 2 Part 2: Spans
 - Examples
 - Linking spans and subspaces
 - Linking spans and subspaces
- 3 Part 3: Null spaces
 - Nul A is a subspace of \mathbb{R}^n
 - Finding Nul A
- 4 Part 4: Spanning Sets
 - Examples: \mathbb{R}^2 , \mathbb{R}^n , \mathbb{P}_n , $M_{m \times n}$
 - Spanning sets are not unique
- 5 Part 5: Column spaces
 - Summary: two spaces
- 6 Part 6: Spanning sets of Nul A
 - Linear systems

For more details,

- LinAlg for Data Science:
 Chapter 7 for Linear
 Independence and Span
- ► Lay et al: Sections 4.1 and 4.2.

Assignment 1

Deadline is Tuesday, 20 Sept at 5pm.

Assignment 2

- ▶ Opened Monday, 19 Sep 2022.
- ▶ **Deadline:** 5pm, Friday 30 Sep 2022.
- ▶ It contributes 5% to the final grade for MA313.
- ► Topics: ...

Communication Skills

- Topics and Info posted on Blackboard. Also at https://www.niallmadden.ie/teaching/2223-MA313/ 22_23_Communication_Skills.pdf
- 2. Select one that is not crossed out, or propose one of your own.
- Confirm your topic by this Friday (23 September); do that by first emailing Niall with your choice and, if agreed, entering in on Blackboard.

Tutorials start this week.

	Mon	Tue	Wed	Thu	Fri
9 – 10					
10 – 11					
11 – 12					
12 – 1				Tutorial IT206	Lecture
1 – 2		Lecture			
2 – 3					
3 – 4					
4 – 5					

Week 3: Spanning set; the Null and Column Spaces

Start of ...

PART 1: Linear combinations

Part 1: Linear combinations

A question

Last week we learned how to check if a given space is indeed a subspace of some other vector space.

It is natural to wonder: how can we make those subspaces in the first place?

Equivalently: How can we describe all subspaces of a given vector space?

Part 1: Linear combinations

Example (Subspaces of \mathbb{R}^2) There are precisely three *types* of subspaces of \mathbb{R}^2 : points on this line not a vector spale **▶** {0}, $ightharpoonup \mathbb{R}^2$. lines through the origin. ر کر ₂

How we build subspaces?

There are two possible approaches.

- ► **Top down:** start with the full space, and look at all vectors that have "suitable properties".
- ▶ Bottom up: start with some collection of vectors and consider the subspace that they "span".

Definition (Linear combinations)

A **linear combination** of vectors u_1, \ldots, u_p in some vector space is a vector of the form

$$c_1u_1+\cdots+c_pu_p$$

for scalars $c_1, c_2, \ldots, c_p \in \mathbb{R}$.

Example

In \mathbb{R}^2 , $\begin{bmatrix} 2 \\ -3 \end{bmatrix}$ is a linear combination of $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

We wont to show
$$\begin{bmatrix} 2 \\ -3 \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + C_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 for some $C_1 C_2$.

That is $\begin{bmatrix} C_1 \\ -C_1 + C_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$. So can take $C_1 = 2$ and then $C_2 = -1$.

Example

Show that $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is **not** linear combination of $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} -4 \\ -6 \end{bmatrix}$ in \mathbb{R}^2 .

Suppose there are numbers
$$C_{1}$$
, C_{2} with $C_{1}\begin{bmatrix}27\\3\end{bmatrix}+C_{2}\begin{bmatrix}-4\\-6\end{bmatrix}=\begin{bmatrix}1\\1\end{bmatrix}$

So $\begin{bmatrix}2C_{1}-4C_{2}\\3C_{1}-6C_{2}\end{bmatrix}=\begin{bmatrix}1\\1\end{bmatrix}=$) $2C_{1}-4C_{2}=1$; $C_{1}-2C_{2}=\frac{1}{2}$; $3C_{1}-6C_{2}=1$; $C_{1}-2C_{2}=\frac{1}{3}$.

But $\frac{1}{2}+\frac{1}{3}$, so this is not possible.

Example (Quadratic polynomials)

Which vectors in \mathbb{P}_2 (over t) are linear combinations of the vectors $p_0(t) = 1$, $p_1(t) = t$, $p_2(t) = t^2$?

Any poly in
$$P_2$$
 can be written us
$$P_2(t) = c_0 + c_1 t + c_2 t^2$$

$$= c_0 P_0 + c_1 P_1 + c_2 P_2$$

Example (Polynomials again)

Which vectors in \mathbb{P}_2 (over t) are linear combinations of the vectors $p_0(t) = 1$, $p_1(t) = t$, $p_2(t) = 2t$?

Ans: we can make any vector in
$$P_1$$

$$P_1 = C_0 + C_1 t$$

Example

Define the 2×3 matrix

$$A = \begin{bmatrix} a_{1} & a_{2} & a_{3} \\ 1 & -3 & -2 \\ -5 & 9 & 1 \end{bmatrix}.$$

$$A = \begin{bmatrix} a_{1} & a_{2} & a_{3} \\ 1 & a_{3} & a_{3} \\ 1 & a_{4} & a_{5} \end{bmatrix}.$$

For any vector

the vector Ax is a linear combination of the vectors

$$\begin{bmatrix} 1 \\ -5 \end{bmatrix}, \quad \begin{bmatrix} -3 \\ 9 \end{bmatrix}, \quad \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

$$Ax = \begin{bmatrix} 1 & -3 & -2 \\ -5 & q \end{bmatrix} + \begin{bmatrix} a & -35 - 2c \\ b & c \end{bmatrix} = \begin{bmatrix} a - 35 - 2c \\ -5a + 95 + c \end{bmatrix}$$

$$= a \begin{bmatrix} 1 \\ -5 \end{bmatrix} + b \begin{bmatrix} -3 \\ q \end{bmatrix} + c \begin{bmatrix} 12 \\ 1 \end{bmatrix}$$

Part 2: Spans

MA313

Week 3: Spanning set; the Null and Column Spaces

Start of ...

PART 2: Spans

Part 2: Spans

Definition (SPAN)

Given vectors u_1, \ldots, u_p in some vector space V, their **span** is

$$\mathrm{span}\{u_1,\ldots,u_p\} := \{c_1u_1 + \cdots + c_pu_p : c_1,\ldots,c_p \in \mathbb{R}\}.$$

In other words, $\mathrm{span}\{u_1,\ldots,u_p\}$ is the set of all linear combinations of u_1,\ldots,u_p within V.

Part 2: Spans

Theorem

 $\operatorname{span}\{u_1,\ldots,u_p\}$ is a subspace of V.

In fact, more than this is true: one can show that $\mathrm{span}\{u_1,\ldots,u_p\}$ is the "smallest" subspace of V which contains each of u_1,\ldots,u_p .

why: ① clearly
$$0 \in \text{span } 2u_1, ..., u_p3 - \text{just}$$

take $c_1 = c_2 = ... = c_p = 0$.

- ② If V & W ore in Span $\{U_1, ..., U_p\}$ so $V = C_1 U_1 + C_2 U_2 + ... + C_p U_p$ $W = C_1 U_1 + d_2 U_2 + ... + d_p U_p$
- So u+w = (c,+d) u, + (cz+dz) uz + ... + (cp+dp) (ep)
 is in span { U, ..., up }

Immediate consequences

- Every choice of vectors u_1, \ldots, u_p provides us with an example of a subspace of V.
 - (However, *different* sequences of vectors may well span the *same* subspace!)
- ▶ If we can show a *subset* of *V* is the a **span of some set of vectors**, then we we have shown it is a subspace!

Finished here Tuesday