Potencia de punto y eje radical

Adonay Rafaelano

September 2024

1 Definiciones

- 1. Se define la potencia del punto P respecto a una circunferencia Γ como $PA \cdot PB$, donde A y B son puntos en Γ tal que P, A y B son colineales.
- 2. Se define como el eje radical entre las circunferencias Γ_1 y Γ_2 al sector geometrico que cumple que cada punto tiene igual potencia de punto hacia Γ_1 que hacia Γ_2 y viceversa.

2 Propiedades

- 1. Para un punto P y una circunferencia Γ de centro O y radio r, la potencia de punto de P respecto a Γ es constante, y es $|PO^2 r^2|$.
- 2. Si l es una recta tangente a Γ en A, entonces, para todo punto $P \in l$ se tiene que la potencia de punto de P respecto a Γ es PA^2 .
- 3. ABCD es un cuadrilátero ciclico sí, y solo si, $PA \cdot PC = PB \cdot PD$, siendo P la interseccion de AC y BD.
- 4. El eje radical de dos circunferencias es una recta perpendicular a la recta que pasa por ambos centros. Si las rectas se intersectan en dos puntos entonces el eje radical es la recta que une esos dos puntos de intersección; si las circunstancias son tangentes, entonces es la recta tangente a ambas por ese punto de tangencia.
- 5. Los tres ejes radicales que podemos formar con tres circunstancias siempre concurren.
- 6. El eje radical biseca la tangente común.

3 Problemas

1. Demuestre el teorema de Pitágoras usando potencia de punto.

- 2. DB = 8 Es una cuerda de un círculo de centro O y E un punto en ella tal que DE = 3. Sea C la intersección del rayo OE con la circunferencia y supongamos que EC = 1. Encuentre el radio de, círculo.
- 3. Sean AB y CD dos cuerdas de las circunferencias $S_1 y S_2$ que se cortan en X e Y. Si los puntos A, B, C y D son concíclicos, entonces las rectas AB y CD se cortan sobre XY.
- 4. Sea H el ortocentro de un triángulo acutángulo ABC. La circunferencia de centro en el punto medio de BC que pasa por H corta a BC en A_1 y A_2 . Análogamente se definen los puntos B_1 , B_2 en CA, y C_1 , C_2 en AB. Demuestre que los puntos A_1 , A_2 , B_1 , B_2 , C_1 y C_2 son concíclicos.
- 5. Sea P un punto al interior del triángulo ABC, con $CA \neq CB$. Las rectas AP, BP y CP cortan al circuncírculo de ABC en K, L y M respectivamente. La tangente por C al circuncírculo de ABC corta AB en S. Pruebe que si SC = SP, entonces MK = ML.
- 6. Dos circunferencias Γ₁ y Γ₂ se cortan en A y B. Se traza Γ₃, una circunferencia tangente internamente a Γ₁ y Γ₂ en E y D respectivamente. Sea C uno de los puntos de corte de la recta AB con Γ₃, F y G son las intersecciones de CE con Γ₁ y de CD con Γ₂. Si H e I son los puntos de intersección de DE con Γ₁ y Γ₂, demuestre que los puntos F, G, I, H están sobre una misma circunferencias.