Exploring Visualisation and Game-Based Learning tools for teaching Data Structures and Algorithms

Edward Zhang Simon Su

Department of ECSE The University of Auckland

Literature Review Seminar

Research Intent

ayy Imao

Why DSA?

Data Structures and Algorithms are an essential topic in Computer Science-related fields, and form the foundation of many higher-level concepts in CS.

DSA Curriculum

The ACM CS2013 provides guidelines on subjects that should be taught in an undergrad CS course. Algorithms & Complexity is identified as a core Knowledge Area and within that the knowledge unit of Fundamental Data Structures and Algorithms.

DSA Curriculum

The ACM CS2013 provides guidelines on subjects that should be taught in an undergrad CS course. Algorithms & Complexity is identified as a core Knowledge Area and within that the knowledge unit of Fundamental Data Structures and Algorithms.

Our Implementation

We will focus on teaching Fundamental DSA for the purposes of the tool we intend to develop.

Fundamental DSA in ACM CS2013

- Simple Numeric Algorithms
- Sequential and Binary Search
- Quadractic and $\Omega(n \log(n))$ sorting algorithms
- Hash tables and collisions
- Binary search trees
- Graphs and common graph algorithms
- Heaps
- Pattern matching/string algorithms

DSA Learning Outcomes in CS2013

We will target some of the learning outcomes outlined in CS2013...

- 1. Implement basic numerical algorithms.
- 2. Be able to implement common quadratic and $O(N \log N)$ sorting algorithms.
- 3. Discuss the runtime and memory efficiency of principal algorithms for sorting, searching, and hashing.
- 4. Demonstrate the ability to evaluate algorithms, to select from a range of possible options, to provide justification for that selection, and to implement the algorithm in a particular context.

What is Algorithm Visualisation?

ye

What is Game-based Learning?

yeet

