EXERCICE N1 : (7 points)

Le plan est orienté dans le sens direct. ABC est un triangle équilatéral direct. On désigne par I, J et K les milieux respectifs de [CB], [AC] et [AB]. Soit D le point tel que : $\overrightarrow{CD} = \overrightarrow{BK}$ et E le symétrique de D par rapport à C.

- $1/Soit\ S$ la similitude directe qui transforme J en B et D en A .
- a) Déterminer le rapport et une mesure de l'angle de S . Déterminer le centre de S .
- b) Déterminer et construire les images par S des points K et I.
- 2/Soit r la rotation de centre C et d'angle $\frac{\pi}{3}$ et h l'homothétie de centre B et de rapport 2. On pose $S'=h\circ r$.
- a) Déterminer S'(J). Montrer que S' est une similitude directe dont on précisera le rapport et l'angle.
- b) On désigne par Ω le centre de S'. Construire Ω .
- 3/Soit M un point du plan. On pose $M_1 = S(M)$ et $M_2 = S'(M)$. Montrer que $\overline{M_1M_2} = \overrightarrow{BC}$.
- 4/ Soit σ la similitude indirecte de centre D transformant J en E . Déterminer la nature et les éléments caractéristiques de l'application $f = \sigma \circ S_{(ID)}$.

EXERCICE N2 : (6 points)

Soit f la fonction définie sur [0,2] par : $f(x) = 2\sqrt{2x - x^2}$. On désigne par (C) la courbe représentative de f dans un repère orthonormé $(0,\vec{\imath},\vec{\jmath})$.

1/ Soit (C') le symétrique de (C) par rapport à $(0,\vec{t})$ et (Γ) = (C) \cup (C').

Montrer que (Γ) a pour équation : $(x-1)^2 + \frac{y^2}{4} = 1$. Préciser et tracer (Γ) .

- 2/ Soit pour $x \in [0,\pi]$; $F(x) = \int_0^{1+\cos x} f(t)dt$. Montrer que F est dérivable sur $[0,\pi]$ et que $F'(x) = -2\sin^2 x$
- 3/a) Déduire l'expression de F(x) pour tout $x \in [0, \pi]$
 - b) En déduire l'aire de l'intérieur de (Γ).

EXERCICE N3:(7 points)

Soit f la fonction définie sur $[0,1[par:f(x)=\frac{x}{\sqrt{1-x^4}},(C_f)]$ la courbe de f dans un repère orthonormé $(0,\vec{\iota},\vec{j})$.

- 1/a) Dresser le tableau de variation de f.
 - b) Déterminer la position de (C_f) par rapport à la droite Δ d'équation: y = x puis tracer Δ et (C_f)
- 2/ Soit F la fonction définie sur $[0, \frac{\pi}{2}[par: F(x) = \int_0^{\sqrt{sinx}} f(t)dt]$.
 - a) Montrer que F dérivable sur $]0,\frac{\pi}{2}[$ et calculer F'(x). En déduire que $\forall x \in [0,\frac{\pi}{2}[$ on $a: F(x) = \frac{x}{2}]$.
 - b) Trouver alors l'aire A de la partie du plan limitée par (C_f) et les droites y=x, x=0 et $x=\frac{\sqrt{2}}{2}$.
- 3/Soit $\alpha \in \left[\frac{\pi}{6}, \frac{\pi}{2}\right]$, on pose $I(\alpha) = \int_{\frac{\sqrt{2}}{2}}^{\sqrt{\sin}\alpha} \frac{\sqrt{1-t^4}}{t^3} dt$.

A l'aide d'une intégration par parties , calculer $I(\alpha)$. Déterminer $\lim_{\alpha \to (\frac{\pi}{2})^-} I(\alpha)$

Bon travail