```
DD2360 Assignment 4
```

Group 35

Shiyuan Shan

Github repository: ShiyuanShan/DD2360HT23 (github.com)

Exercise 1

1.1 16*16 threads per block / 32 threads per warp = 8 warps per block, In total ceil(800/16) * ceil(600/16) = 1900 blocks.

Thus 1900 * 8 = 15200 warps.

800 % 16 = 0, so no block has divergence in horizontal direction.

600 % 16 = 8, the bottom most blocks have divergence.

Each warp is a 16*2 thread array,

8 % 2 = 0, Thus no warp has divergence. In a bottom most block there would be 4 warps following "THEN" statement and the rest 4 following "ELSE" statement.

1.2 600 % 16 = 8, the right most blocks have divergence.

800 % 16 = 0, thus only the right most blocks have divergence.

Each warp is a 16*2 thread array.

800 / 2 = 400. There are 400 warps that have divergence.

1.3 600 % 16 = 8, the right most blocks have divergence.

799 % 16 = 15, the bottom most blocks have divergence.

Each warp is a 16*2 thread array.

15 % 2 = 1, each bottom most block has one warp that has control divergence.

Ceil(600 / 16) = 38. There are 38 bottom most warps with control divergence

Ceil(799 / 2) = 400. There are 400 right most warps with control divergence.

In total 38+400-1 = 437 warps with control divergence. (-1 is for bottom right corner overlap)

Exercise 2

2.1

With the increment of vector size from 1000 to 100000000, the performance decrement becomes less and less. It is sensible to make a guess that with even bigger vector size, the performance will increase.

!nvprof --output-profile hw4_ex2_stream_profile.nvprof ./hw4_ex2 100000000 4

2.2

Here we use fixed vector size of 100000000 and different segment number of 4, 8, 16, and 32. No big difference is spotted.

Exercise 3

3.1

The sparse matrix-vector multiplication consists of 2*nzv = 6*dimX-12 FLOPs. AXPY needs 2*dimX FLOPs.

Vector Norm Calculation requires 2*dimX FLOPs for squaring and summing. In total there thus are 10*dimX-12 FLOPS per nstep.

Greater input size will increase the FLOP rate to approach the peak.

3.2 Higher nstep leads to lower error.

nsteps vs error

3.3 Performance with prefetching is shown as followed.

```
running ex3 with dimX=128 nsteps = 100, 500, 1000, 5000, 10000 with prefetching
The X dimension of the grid is 128
The number of time steps to perform is 100
Timing - Allocating device memory.
                                                      Elasped 174862 microseconds
Timing - Prefetching GPU memory to the host.
                                                              Elasped 526 microseconds
Timing - Initializing the sparse matrix on the host.
                                                                       Elasped 5 microseconds
Timing - Initializing memory on the host.
                                                               Elasped 0 microseconds
Timing - Prefetching GPU memory to the device.
                                                               Elasped 387 microseconds
The relative error of the approximation is 3.318021
The X dimension of the grid is 128
The number of time steps to perform is 500
Timing - Allocating device memory.

Timing - Prefetching GPU memory to the host.
                                                      Elasped 165599 microseconds
                                                              Elasped 452 microseconds
Timing - Initializing the sparse matrix on the host.
                                                                       Elasped 5 microseconds
                                                              Elasped 0 microseconds
Timing - Initializing memory on the host.
Timing - Prefetching GPU memory to the device.
                                                               Elasped 359 microseconds
The relative error of the approximation is 2.002595
The X dimension of the grid is 128
The number of time steps to perform is 1000
Timing - Allocating device memory. Elas
Timing - Prefetching GPU memory to the host.
Timing - Initializing the sparse matrix on the host.
                                                      Elasped 168551 microseconds
                                                               Elasped 443 microseconds
                                                                      Elasped 5 microseconds
Timing - Initializing memory on the host.
                                                               Elasped 0 microseconds
Timing - Prefetching GPU memory to the device.
                                                               Elasped 439 microseconds
The relative error of the approximation is 1.488118 The X dimension of the grid is 128
The number of time steps to perform is 5000
Timing - Allocating device memory.
                                                      Elasped 182679 microseconds
Timing - Prefetching GPU memory to the host.
                                                               Elasped 495 microseconds
Timing - Initializing the sparse matrix on the host.
Timing - Initializing memory on the host.
                                                                       Elasped 5 microseconds
                                                               Elasped 0 microseconds
Timing - Prefetching GPU memory to the device.
                                                               Elasped 412 microseconds
The relative error of the approximation is 0.337648
The X dimension of the grid is 128
The number of time steps to perform is 10000
Timing - Allocating device memory.
                                                      Elasped 177807 microseconds
Timing - Prefetching GPU memory to the host.
                                                               Elasped 502 microseconds
Timing - Initializing the sparse matrix on the host.
                                                                       Elasped 6 microseconds
Timing - Initializing memory on the host.
Timing - Prefetching GPU memory to the device.
                                                               Elasped 0 microseconds
                                                               Elasped 300 microseconds
The relative error of the approximation is 0.082647
```

And here is the performance without prefetching.

```
running ex3 with dimX=128 nsteps = 100, 500, 1000, 5000, 10000 without prefetching
The X dimension of the grid is 128
The number of time steps to perform is 100
Timing - Allocating device memory.
                                                 Elasped 204552 microseconds
Timing - Initializing the sparse matrix on the host. Elasped 452 microseconds
Timing - Initializing memory on the host.
                                                          Elasped 0 microseconds
The relative error of the approximation is 3.318021
The X dimension of the grid is 128
The number of time steps to perform is 500
                                                 Elasped 209013 microseconds
Timing - Allocating device memory.
Timing - Initializing the sparse matrix on the host. Elasped 422 microseconds
Timing - Initializing memory on the host.
The relative error of the approximation is 2.002595
                                                          Elasped 0 microseconds
The X dimension of the grid is 128
The number of time steps to perform is 1000
Timing - Allocating device memory.
                                                 Elasped 206513 microseconds
Timing - Initializing the sparse matrix on the host. Elasped 476 microseconds
Timing - Initializing memory on the host.
                                                          Elasped 0 microseconds
The relative error of the approximation is 1.488118
The X dimension of the grid is 128
The number of time steps to perform is 5000
Timing - Allocating device memory.
                                                  Elasped 206603 microseconds
Timing - Initializing the sparse matrix on the host. Elasped 477 microseconds
Timing - Initializing memory on the host.
The relative error of the approximation is 0.337648
                                                          Elasped 1 microseconds
The X dimension of the grid is 128
The number of time steps to perform is 10000
Timing - Allocating device memory.
                                                  Elasped 190143 microseconds
Timing - Initializing the sparse matrix on the host.

Timing - Initializing memory on the host.
                                                                 Elasped 482 microseconds
                                                          Elasped 1 microseconds
The relative error of the approximation is 0.082647
```

With prefetching the time cost is reduced obviously.