LOM3099 - Estática

Statics

Créditos-aula: 2 Créditos-trabalho: 0 Carga horária: 30 h Ativação: 01/01/2022

Departamento: Engenharia de Materiais

Curso (semestre ideal): EM (2)

Objetivos

Estática de Partículas. Estática de Corpos Rígidos. Equilíbrio de Corpos Rígidos. Análise de Estruturas.

Docente(s) Responsável(eis)

Proporcionar ao aluno um conhecimento básico da mecânica dos corpos rígidos com ênfase na estática. Fornecer conhecimentos necessários para cálculo de reações de apoios e de esforços internos em estruturas isostáticas.

Mecânica e suas áreas: Corpos rígidos e corpos deformáveis (sólidos). Terminologia e metodologia básica. Estática de Partículas: Vetores, resultante de várias forças concorrentes, equilíbrio de uma partícula. Estática de Corpos Rígidos: Conceito de corpo rígido. Momento de uma força com relação a um ponto, sistemas equivalentes de forças, momento e binário. Apoios e vínculos. Diagrama de corpo livre. Reações de apoios e conexões para uma estrutura 2D. Equilíbrio de um corpo rígido em 2D. Reações estaticamente indeterminadas e vínculos parciais. Equilíbrio de um corpo rígido em 3D. Análise de Estruturas: análise do equilíbrio de estruturas, ação de múltiplas forças, forças internas, terceira Lei de Newton. Treliças: método dos nós, método das seções. Estruturas e Máquinas: transmissão e modificação de forças. Esforços internos em pórticos, vigas, cabos e eixos de transmissão.

Os alunos serão avaliados continuamente a qual serão considerados: provas escritas, exercícios propostos e seminários

Programa resumido

Para compor a Nota Final (NF) serão consideradas as avaliações de Provas Escritas (P1 e P2) e Exercícios Propostos e Seminários (T) em que:

NF = (P1 + P2 + T)/3. Serão considerados aprovados os alunos que obtiverem: NF maior ou igual a 5,0. Serão considerados reprovados os alunos que obtiverem: NS menor que 3,0 Para os alunos em que NS é maior ou igual a 3,0 e menor que 5,0 será dada uma prova de recuperação (R).

Programa

: A prova de Recuperação (R) irá compor a nota final de recuperação (NR) da seguinte forma: NR = (R + NF)/2. Serão considerados aprovados os alunos que obtiverem NF maior ou igual a 5,0.

Avaliação

Método: 1. F.P. BEER, E.R. JOHNSTON, J.T. DeWOLF, D.MAZUREK. Estática e Mecânica dos Materiais. São Paulo: McGraw Hill, 2013, 728p.

- 2. F.P. BEER, E.R. JOHNSTON, E. RUSSEL. Mecânica vetorial para engenheiros: Estática. São Paulo: McGraw Hill. 9a Ed., 2012, 626p.
- 3. HIBBELER, R.C. Mecânica para engenharia vol.1: estática. São Paulo: Pearson Prentice Hall, 12a Ed., 2011.
- 4. MERIAM, J.L. KRAIGE, L.G. Mecânica para engenharia Estática. Grupo GEN Editora LTC, 6a Ed., 2009, 364p.
- 5. RUIZ, C.C.de La P. Fundamentos de mecânica para engenharia Estática. Grupo GEN Editora LTC, 2017, 306p.

Critério: 471420 - Carlos Antonio Reis Pereira Baptista **Norma de recuperação:** 5840793 - Sérgio Schneider

Bibliografia

7797767 - Viktor Pastoukhov

Requisitos

LOB1036 - Geometria Analítica (Requisito fraco)