Liczenie gradientów w prostej sieci neuronowej z jedną warstwą ukrytą. Wersja 2 (zaktualizowana po zajęciach)

Kamil Kmita

Zaawansowane Metody Uczenia Maszynowego MiNI PW

Architektura sieci

2/11

ZMUM

Uwagi

- co do zasady, wagi indeksuje się jako $W^{(1)}$, $W^{(2)}$ itd., tu dla uproszczenia W oraz U (mamy tylko dwie warstwy: ukrytą i output),
- nie reprezentujemy X jako [1|X], bias nie jest elementem macierzy W (konwencja tak jak w Keras),
- \bullet σ to sigmoid,
- $y \in \{0,1\}, \hat{y} \in (0,1),$
- funkcja straty $L(\hat{y}, y) = CE(\hat{y}, y)$ to binary cross-entropy, zob. https: //www.tensorflow.org/api_docs/python/tf/keras/losses/BinaryCrossentropy,
- użyjemy klasycznego algorytmu optymalizacyjnego SGD.

K. Kmita ZMUM 3/11

Literatura i zadanie

Źródła:

- https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/readings/gradient-notes.pdf (uwaga na możliwe literówki),
- ② https://www.deeplearningbook.org/contents/mlp.html, rozdział 6, w szczególności 6.5 Back-Propagation Computation in Fully Connected MLP.

Potrzebujemy do SGD następujących gradientów:

$$\frac{\partial L}{\partial U}, \frac{\partial L}{\partial b_2}, \frac{\partial L}{\partial W}, \frac{\partial L}{\partial b_1}$$

Użyjemy reguły łańcuchowej (ang. chain rule), żeby je obliczyć.

4/11

Gradient δ_1

Liczymy gradienty wag z warstwy output. Zauważmy, że zawierają one wspólną część, którą nazwiemy δ_1 .

$$\frac{\partial L}{\partial U} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial \theta} \frac{\partial \theta}{\partial U},\tag{1}$$

$$\frac{\partial L}{\partial b_2} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial \theta} \frac{\partial \theta}{\partial b_2}.$$
 (2)

$$\frac{\partial L}{\partial \hat{\mathbf{y}}} \frac{\partial \hat{\mathbf{y}}}{\partial \theta} = \frac{\partial L}{\partial \theta} = \delta_1 = \hat{\mathbf{y}} - \mathbf{y}. \tag{3}$$

Równanie (3) przyjmuje prostą postać ze względu na użytą funkcję aktywacji σ (wybraliśmy sigmoid) oraz funkcję straty L=CE.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ めの○

5/11

Gradient δ_2

Licząc gradienty wag względem warstwy ukrytej 1st layer: $\frac{\partial L}{\partial W}, \frac{\partial L}{\partial b_2}$ wystąpi część wspólna $\frac{\partial L}{\partial z}$.

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial \theta} \frac{\partial \theta}{\partial h} \frac{\partial h}{\partial z} \frac{\partial z}{\partial W}$$
$$\frac{\partial L}{\partial b_2} = \frac{\partial L}{\partial \theta} \frac{\partial \theta}{\partial h} \frac{\partial h}{\partial z} \frac{\partial z}{\partial b_2}$$

Oznaczmy część wspólna jako δ_2 . Jej intuicyjne znaczenie: "(...) convert the gradient (...) into a gradient on the pre-nonlinearity activation." (źródło 2).

$$\frac{\partial L}{\partial z} = \delta_2 = \frac{\partial L}{\partial \theta} \frac{\partial \theta}{\partial h} \frac{\partial h}{\partial z}$$

6/11

Gradient δ_2 c.d.

$$\frac{\partial L}{\partial z} = \delta_2 = \frac{\partial L}{\partial \theta} \frac{\partial \theta}{\partial h} \frac{\partial h}{\partial z} \stackrel{[1]}{=} \delta_1 U \frac{\partial h}{\partial z} \stackrel{[4]}{=} \delta_1 U \circ \sigma'(z), \tag{4}$$

gdzie [1] oraz [4] odnoszą się do operacji opisanych w źródle 1, a \circ to element-wise multiplication. W naszej konkretnej sieci neuronowej, którą rozważamy:

$$\delta_{2} = \delta_{1} \cdot [u_{11}, u_{21}, u_{31}, u_{41}] \circ \begin{bmatrix} \sigma'(z_{1}) \\ \sigma'(z_{2}) \\ \sigma'(z_{3}) \\ \sigma'(z_{4}) \end{bmatrix}
= \delta_{1} \cdot [u_{11} \cdot \sigma'(z_{1}), u_{21} \cdot \sigma'(z_{2}), u_{31} \cdot \sigma'(z_{3}), u_{41} \cdot \sigma'(z_{4})],$$
(5)

<ロト < 回 > < 巨 > < 巨 > く 巨 > り へ で

K. Kmita ZMUM 7/11

Gradient funkcji straty względem macierzy W

$$\frac{\partial L}{\partial W} = \delta_2 \frac{\partial z}{\partial W}$$

Przypomnienie: z=Wx. Jak policzyć gradient z względem macierzy W, żeby zachować efektywność zwektoryzowanych operacji np. w numpy?

Niech $\alpha=4$ będzie rozmiarem warstwy ukrytej, a $\beta=3$ rozmiarem inputu. Moglibyśmy macierz $W_{\alpha\times\beta}$ zareprezentować jako wektor o długości $\alpha\times\beta$, i policzyć gradient względem takiego wektora, lecz tracimy efektywność obliczeniową. Przypomnijmy, że w SGD

$$W^{\mathsf{new}} = W^{\mathsf{old}} - \eta \cdot \frac{\partial L}{\partial W^{\mathsf{old}}}.$$

Chcemy więc by kształt (shape) $\frac{\partial L}{\partial W}$ był taki sam, jak kształt $W_{\alpha \times \beta}$.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

8/11

K. Kmita

$\frac{\partial L}{\partial W}$

Okazuje się [źródło 1, operacja (5)], że możemy w naszej sieci neuronowej przedstawić ten gradient w formie macierzowej. Skrótowo: wychodzimy od żądanej postaci $\frac{\partial L}{\partial W}$ (tj. α wierszy i β kolumn), i rozważamy jak powinien wyglądać element $\left(\frac{\partial L}{\partial W}\right)_{ij}$, gdzie $i=1,\ldots,\alpha$, zaś $j=1,\ldots,\beta$.

Okazuje się, że możemy przedstawić całe wyrażenie $\frac{\partial L}{\partial W} = \delta_2 \frac{\partial z}{\partial W}$ jako *outer product* (oznaczony poprzez \otimes)

$$\frac{\partial L}{\partial W} = \delta_2 \frac{\partial z}{\partial W} = \delta_2^T \otimes x^T = \begin{bmatrix} \delta_1 \cdot u_{11} \cdot \sigma'(z_1) \cdot x_1 & \cdots & \delta_1 \cdot u_{11} \cdot \sigma'(z_1) \cdot x_3 \\ \vdots & \ddots & \vdots \\ \delta_1 \cdot u_{41} \cdot \sigma'(z_1) \cdot x_1 & \cdots & \delta_1 \cdot u_{41} \cdot \sigma'(z_1) \cdot x_3 \end{bmatrix}$$
(6)

9/11

$\frac{\partial L}{\partial U}$

Rozumowanie jest analogiczne jak względem gradientu $\frac{\partial L}{\partial W}$. Otrzymamy

$$\frac{\partial L}{\partial U} = \delta_1 \frac{\partial \theta}{\partial U} = \delta_1^T \otimes h^T = \delta_1 \cdot [h_1, h_2, h_3, h_4]. \tag{7}$$

10 / 11

Gradienty względem b_1 oraz b_2

$$\frac{\partial L}{\partial b_2} = \frac{\partial L}{\partial \theta} \frac{\partial \theta}{\partial b_2} = \delta_1 \frac{\partial \theta}{\partial b_2} = \delta_1 \in (-1, 1), \tag{8}$$

bo $b_2 \in R$.

Natomiast b_1 to wektor, i mamy

$$\frac{\partial L}{\partial b_1} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial b_1} = \delta_2^{\mathsf{T}}.$$
 (9)

Transpozycja potrzebna, bo chcemy by kształt (shape) $\frac{\partial L}{\partial b_1}$ był taki, jak kształt b_1 . Kształt b_1 to (4, 1), zaś kształt δ_2 to (1, 4) - stąd potrzeba transpozycji do obliczeń zwektoryzowanych np. w numpy.

11 / 11