ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ ЧЕТКИХ МНОЖЕСТВ

1. U – универсальное множество, $U = \{u\}, u \in U$.

Пример 1. Пусть дано множество из 10 цифр: $\{0,1,2,3,4,5,6,7,8,9\} = U$, множество четных цифр $\underline{A} = \{0,2,4,6,8\}$.

Будем обозначать: \underline{A} — четкое подмножество универсального множества U, A — нечеткое подмножество U.

Способы записи множества:

а) справа от вертикальной черты записываются все свойства множества:

$$A = \{u \mid u - \text{четное число от } 0 \text{ до } 8\};$$

б) определение множества заданием характеристической функции (рис. 1).

2. Характеристическая функция $\underline{A}(u)$, определяющая подмножество \underline{A} в универсальном множестве U, представляет собой отображение, для которого U – область определения, а двузначное множество из 0 и 1 $\{0,1\}$ есть область значений

$$\mu_{\underline{A}}(u): U \to \{0,1\}: \ \mu_{\underline{A}}(u) = \begin{cases} 1, \ u \in \underline{A} \\ 0, \ u \notin \underline{A} \end{cases},$$

 $\mu_{A}(u) = 1$ (если элемент удовлетворяет свойствам <u>А</u>),

 $\mu_A(u) = 0$ (если элемент не удовлетворяет свойствам <u>A</u>).

1, 0 – степени принадлежности элемента u множеству A.

 $\emptyset \in U$ – **пустое множество**, характеристическая функция пустого множества $\mu_0(u) = 0, \forall u \in U$. Характеристическая функция **универсального множества** $\mu_U(u) = 1, \forall u \in U$.

3. Число элементов множества называется *мощностью множества*, или *кардинальным* числом.

Обозначения: #, card.

Пример 2. Для примера 1: #U = 10, #A = 5. Если #A = 1, то A -*синглтон* (singleton).

4. Объединение всех подмножеств универсального множества U называется *степенным множеством* и обозначается 2^U .

Пример 3:
$$\{a,b,c\} = U$$
, тогда $2^U = \{0,\{a\},\{b\},\{c\},\{ab\},\{bc\},\{ac\},\{abc\}\}.$

Кардинальное число степенного множества $#2^U = 2^{\#U} = \operatorname{card} 2^U = 2^{\operatorname{card} U}$. В примере $2^{\operatorname{card} U} = 2^3 = 8$.

5. Понятие "расстояние" в математике.

Если определяется расстояние d между двумя элементами u, v, то должны выполняться условия $\forall u, v, w \in U$:

- 1) d(u, v) ≥ 0 неотрицательность;
- 2) d(u, v) = d(v, u) симметричность;
- 3) $d(u, w) \le d(u, v) * d(v, w)$ транзитивность, где * оператор , связанный с понятием "расстояние";
- 4) d(u, u) = 0.

Расстояние Хемминга (линейное расстояние):

$$d(\underline{A},\underline{B}) = \sum_{i=1}^{n} |\mu_{\underline{A}}(u_i) - \mu_{\underline{B}}(u_i)|.$$

Евклидово (квадратичное) расстояние:

$$e(\underline{A},\underline{B}) = \sqrt{\sum_{i=1}^{n} (\mu_{\underline{A}}(u_i) - \mu_{\underline{B}}(u_i))^2}.$$

6. **Прямое** (декартово) произведение $U \times V$ — множество, состоящее из упорядоченных пар элементов (u, v),

$$U \times V = \{ (u, v) | u \in U, v \in V \}.$$

 $U_1 \times U_2 ... \times U_n$ — множество всех упорядоченных n-к $(u_1, u_2, ..., u_n)$ с элементами $u_i \in U_i \ (i=1,2,...n)$ (рис. 3).

Пример 4: $\{a,b\} \times \{1,2,3\} = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$, (не произведение в обычном смысле, а "сборка" участников).

1.1 ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ НЕЧЕТКИХ МНОЖЕСТВ

Отличие HM – степень принадлежности элемента множеству любым числом единичного интервала [0, 1].

- 1. **Нечеткое множество** (HM) совокупность упорядоченных пар, составленных из элементов u универсального множества U и значений характеристической **функции принадлежности** $A = \{(u, \mu_A(u))\}, A \subset U$.
- 2. **Функция принадлежности** (ФП) $\mu_A(u)$, определяющая нечеткое подмножество A в универсальном множестве U, представляет собой отображение, для которого U область определения, а интервал [0,1] есть область значений $\mu_A(u): U \to [0,1]$.

Четкое множество

Нечеткое множество

ТИПЫ ФУНКЦИЙ ПРИНАДЛЕЖНОСТИ

- 3. **Нечетким синглтоном** называется одноточечное НМ $A = (u_0, \mu_A(u_0)), \mu_A(u_0) \in (0, 1].$
- 4. ФП ставит в соответствие каждому элементу $u_0 \in U$ число $\mu_A(u_0)$ из интервала [0,1], характеризующее *степень принадлежности* элемента u_0 нечеткому множеству A.

Примеры 5. Сравнение четких и нечетких множеств: четкое множество \underline{A} – температура ниже 0 градусов (рис. 5 a);

нечеткое множество A – низкая температура (рис. 5 δ).

 $\mu_A(u_0)$ — субъективная оценка степени принадлежности u_0 множеству A.

Пусть
$$t^0 = -2^0$$
, $\mu_A(t^0) = 0.8$, значит $t^0 = -2 \in A$ на 80%

Примеры НМ:

- В заданном множестве людей подмножество высоких людей.
- В множестве цветов подмножество темно-зеленых цветов.

5. Варианты записи НМ:

• U – дискретное:

$$A = \{(u_1, \mu_A(u_1)), (u_2, \mu_A(u_2)), (u_3, \mu_A(u_3)), (u_4, \mu_A(u_4))\};$$

$$A = \mu_A(u_1)|u_1 + \mu_A(u_2)|u_2 + \mu_A(u_3)|u_3 + \mu_A(u_4)|u_4;$$

•
$$U$$
 – непрерывное: $A = \int_{U} \mu_A(u) |u|$

Здесь знаки "+", \int — объединение, а не арифметическое суммирование или интегрирование, $\operatorname{HM} A$ — объединение составляющих его одноточечных множеств нечетких синглтонов.

6. **Четкое множество** \underline{A} , ближайшее к нечеткому A (т. е. расположенное на наименьшем линейном или евклидовом расстоянии от данного нечеткого множества)

$$\mu_{\underline{A}}(u) = \begin{cases} 0, \text{ если } \mu_A(u) < 0.5; \\ 1, \text{ если } \mu_A(u) > 0.5; \\ 0, \text{ или } 1, \text{ если } \mu_A(u) = 0.5. \end{cases}$$
 Примем $\mu_{\underline{A}}(u) = 0, \text{ если } \mu_A(u) = 0.5.$

Пример 6.

	u_1	u_{\angle}	ns	v14	no		
<u>A</u> =	0		1	0	0	1	

7. *Множество* α -*уровня* (α -сечение) нечеткого множества A — четкое подмножество универсального множества U, если элементы нечеткого множества имеют степени принадлежности большие или равные α : $\underline{A}_{\alpha} = \{u \mid u \in U, \mu_{A}(u) \geq \alpha\}, \alpha \in [0,1]$.

Значение α называют α – *уровнем*.

 Π p u m e p 7: HM A = 0,2 $|u_1$ + 0 $|u_2$ + 0,5 $|u_3$ + 1 $|u_4$, множества Ω -уровня: $\underline{A}_{0,3}$ = { u_3 , u_4 }, $\underline{A}_{0,7}$ = { u_4 }.

$$\mu_A(u), \mu_{\underline{A}}(u)$$
8. Объединение всех I
Пусть L – множество з

С-сечение, \underline{A}_{α} Кардинальное число степенного (четкого) множества $\operatorname{card} 2^{\cup} = 2^k$, *кардинальное число объединения НМ*

$$\operatorname{card} R(U) = m^k. \tag{1.2}$$

Пример 7:

1)
$$\{u_1, u_2\} = U$$
, card $\{u_1, u_2\} = 2$, $k = 2$, $2^U = \{0, \{u_1\}, \{u_2\}, \{u_1, u_2\}\},$ card $2^U = 2^k = 4$;

Кардинальное число степенного множества.

$$\{u_1,u_2\}=U,\ L=\{0,0.5,1\},\ \mathrm{card}\ L=3,\ m=3,$$
 кардинальное число объединения НМ. кардинальное число объединения НМ.

$$R(U) = \{\{(u_1\big|0), (u_2\big|0)\}, \{(u_1\big|0), (u_2\big|0.5)\}, \{(u_1\big|0.5), (u_2\big|0)\},$$

$$\{(u_1\big|0.5),(u_2\big|0.5)\},\{(u_1\big|0),(u_2\big|1)\},\{(u_1\big|1),(u_2\big|0)\},\{(u_1\big|1),(u_2\big|0.5)\},\{(u_1\big|0.5),(u_2\big|1)\},\{(u_1\big|1),(u_2\big|$$

9. НМ называется *нормальным*, если верхняя граница $\Phi\Pi$ равна 1: $\sup \mu_A(u) = 1$; в противном случае НМ называется *субнормальным*. Непустое субнормальное множество можно привести (нормализовать) к нормальному по формуле

$$\mu_{A}'(u) = \frac{\mu_{A}(u)}{\sup_{u \in U} \mu_{A}(u)}.$$
(1.3)

Пример 8 (рис. 6). Нормализация нечеткого множества A' с функцией принадлежности $\mu_{A'}(x) = \frac{0.6}{1+(10-x)^2}.$

Пример 9. Универсальное множество $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$

HM, обозначаемое словом «несколько»:

[несколько]=
$$\sum_{i} \mu_{i} \mid u_{i} = 0.5|3 + 0.8|4 + 1|5 + 1|6 + 0.8|7 + 0.5|8$$
, НМ – нормальное.

Нечеткое множество – «не малое и не большое»

[не малое и не большое]= $\sum_{i} \mu_{i} \mid u_{i} = 0.2 \mid 2 + 0.3 \mid 3 + 0.5 \mid 5 + 0.4 \mid 6 + 0.3 \mid 7 + 0.2 \mid 8$. НМ — субнормальное.

$$\mu_{A}'(u) = \frac{\mu_{A}(u)}{\sup_{u \in U} \mu_{A}(u)}$$

[не малое и не большое]= $\sum_i \mu_i \mid u_i = 0.4$ |2 + 0.6|3 + 1|5 +0.8|6 +0.6|7 + 0.4|8. НМ – нормальное.

ОПЕРАЦИИ НАД НЕЧЕТКИМИ МНОЖЕСТВАМИ

1. Равенство нечетких множеств.

$$A, B \subset R(U)$$
 – НМ, $\mu_A(u)$, $\mu_B(u)$ – ФП, соответственно, A, B .

A и B равны, если $\forall u \in U$ выполнено равенство $\mu_B(u) = \mu_A(u)$. Обозначение: A = B.

2. Операция вложения.

B содержится в A (B –подмножество нечеткого множества A), $B\subseteq A$, если $\forall u\in U$:

$$\mu_B(u) \leq \mu_A(u)$$
.

Пример 10:

$$U = \{a,b,c\}; A = \{(a,0.7),(c,0.3)\};$$

$$B = \{(a, 0.4), (c, 0.1)\};$$

$$C = \{(a, 0.7), (b, 0.2)\} \Rightarrow$$

$$\Rightarrow$$
 $B \subset A$, $C \not\subset A$.

3. *Операция пересечения* (рис. 8). Пересечением функцией принадлежности

 $A \cap B$ c

$$\mu_{A \cap B}(u) = \mu_{A}(u) \wedge \mu_{B}(u) = \min\{\mu_{A}(u), \mu_{B}(u)\}, \ \forall u \in U, \quad (1.4)$$

где ∧ −логическая операция конъюнкции.

Пример11:

$$A = \{(a, 0.7), (c, 0.1)\};$$

$$\mu_{A \cap B}(u)$$

$$\{U = \{a, b, c\};$$

$$B = \{(a, 0.4), (c, 0.5)\};$$

$$A \cap B = \{(a, 0.4), (c, 0.1)\}.$$

Рис. 7

4. Операция объединения.

Объединением НМ $A,B\!\subset\!R(U)$ называется НМ $A\bigcup B$ (рис. 8) с ФП вида

$$\mu_{A \bigcup B}(u) = \mu_{A}(u) \lor \mu_{B}(u) = \max \{\mu_{A}(u), \mu_{B}(u)\}, \quad \forall u \in U,$$

(1.5)

где ∨ – логическая операция дизъюнкции.

Пример 12:

$$U = \{a,b,c\};$$

 $A = \{(a, 0.7), (c, 0.1)\};$

$$B = \{(b, 1), (c, 0.5)\};$$

$$A \cup B = \{(a, 0.7), (b, 1), (c, 0.5)\}.$$

5. Операция дополнения (отрицания).

Дополнением (отрицанием) НМ $A \subset R(U)$ называется НМ \overline{A} (рис. 9) с $\Phi\Pi$ вида

$$\mu_A^{(u)}$$
, \bar{A}
 $\mu_{\bar{A}}^{(u)}$

Puc. 9

$$\mu_{\overline{A}}(u) = 1 - \mu_{A}(u)$$
. (1.6)

В системе $(R(U), \subset, \bigcup, \bigcap, \overline{\ })$ выполняются законы тавтологии, коммутативности, ассоциативности, абсорбции (погашения), дистрибутивности, де Моргана, двойного отрицания. Не выполняется закон комплементарности, т. е.

$$A \cap \overline{A} \neq 0, \ A \cup \overline{A} \neq U$$

$$A \cap B = B \cap A$$

1. Коммутативность: $A \cup B = B \cup A$

3. Закон тавтологии:
$$A \cap A = A$$
$$A \cup A = A$$

4. Закон поглощения:
$$A \cup (A \cap B) = A$$

 $A \cap (A \cup B) = A$

- 5. Дистрибутивный закон: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- 6. Закон де Моргана: $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$.

Система $(R(U), \subset, \bigcup, \cap, \bar{})$ образует так называемую полную псевдобулеву алгебру.

Замечание. Система $(R(U), \subset, \bigcup, \cap, \bar{})$ четкого степенного множества образует булеву алгебру. 6. *Операция концентрирования*.

Концентрированием НМ $A \subset R(U)$ называется НМ A^2 с ФП вида $\mu_{A^2}(u) = \mu_A^2(u)$.

7. Операция растяжения.

Растяжением НМ $A \subset R(U)$ называется НМ $A^{0.5}$ с ФП вида $\mu_{A^{0.5}}(u) = \mu_A^{0.5}(u)$.

 A^2 – сужает диапазон определения (уточняет); A^2 – "более чем A ",

 $A^{0.5}$ – расширяет диапазон определения НМ, "почти что A".

Рис. 10

8. Операция алгебраического произведения.

Алгебраическим произведением $\mbox{ HM } \mbox{ A } \mbox{ и } \mbox{ B }$ называется $\mbox{ HM } \mbox{ AB } \mbox{ с } \mbox{ } \mbo$

$$\mu_{A B}(u) = \mu_{A}(u)\mu_{B}(u), \forall u \in U.$$

Пример 13: $U = \{a,b,c\}$ $U = \{a,b,c\}$; $A = \{(a,0.7),(c,0.1)\}$; $B = \{(a,0.4),(c,0.5)\}$; $AB = \{(a,0.28),(c,0.05)\}$.

9. Операция алгебраического суммирования.

Алгебраическим суммированием НМ A и B называется НМ A+B с $\Phi\Pi$ вида

$$\mu_{A+B}(u) = \mu_{A}(u) + \mu_{B}(u) - \mu_{A}(u) \mu_{B}(u), \quad \forall u \in U.$$

10. $m{O}$ перация модуля разности |A-B|. ФП вида

$$\mu_{|A-B|}(u) = \max\{\mu_A(u), \mu_B(u)\} - \min\{\mu_A(u), \mu_B(u)\}, \quad \forall u \in U.$$
(1.8)

Замечание. Основное свойство четкого множества, ближайшего к нечеткому:

$$\forall u \in U : \left| \mu_A(u) - \mu_{\underline{A}}(u) \right| = \mu_{A \cap \overline{A}}(u). \tag{1.9}$$

Пример 14. Проверим утверждение.

Пусть $\mu_A(u) = 0.4$, тогда из (1.1), $\mu_A(u) = 0$. Из (1.8)

$$\mu_{|A-A|}(u) = \max \{\mu_A(u), \mu_A(u)\} - \min \{\mu_A(u), \mu_A(u)\} = 0.4 - 0 = 0.4.$$

Из (1.6), (1.4)
$$\mu_{\overline{A}}(u) = 1 - \mu_{A}(u) = 1 - 0.4 = 0.6$$
, $\mu_{A \cap \overline{A}}(u) = \min(\mu_{A}(u), \mu_{\overline{A}}(u)) = 0.4$.

Утверждение (1.9) верно.

11. Операция прямого произведения. Пусть $A = \{(u, \mu_A(u)) | u \in U\}$,

$$B = \{(v, \mu_B(v)) | v \in V\}$$
 – НМ в U и V .

Прямое произведение $A \times B$ HM A и B в $U \times V$ – HM вида

$$A \times B = \{ ((u, v), \ \mu_{A \times B}(u, v)) | (u, v) \in U \times V \},$$

(1.11)

$$\mu_{A\times B}(u,v) = \min \{\mu_A(u), \mu_B(v)\}$$
 или $\mu_{A\times B}(u,v) = \mu_A(u) \mu_B(v)$.

ПОКАЗАТЕЛИ НЕЧЕТКОСТИ НМ

Показатели нечеткости, которые можно интерпретировать, как:

• меру отличия НМ от ближайшего к нему четкого множества;

• характеристику внутренней неопределенности, двусмысленности, обусловленной неполной принадлежностью объектов множеству.

Метрический подход к определению показателей нечеткости

Линейный показатель нечеткости

$$v(A) = \frac{2}{n} d(A, \underline{A}) = \frac{2}{n} \sum_{i=1}^{n} \left| \mu_A(u_i) - \mu_{\underline{A}}(u_i) \right|,$$

где $d(A,\underline{A})$ — обобщенное расстояние Хемминга, $\frac{d(A,\underline{A})}{n}$ — обобщенное относительное расстояние Хемминга. С учетом (1.9)

$$v(A) = \frac{2}{n} \sum_{i=1}^{n} \mu_{A \cap \overline{A}}(u_i).$$

Таким образом, НМ и его дополнение имеют один и тот же показатель нечеткости.

Квадратичным показателем нечеткости

$$\varepsilon(A) = \frac{2}{\sqrt{n}} e(A, \underline{A}) = \frac{2}{\sqrt{n}} \sqrt{\sum_{i=1}^{n} (\mu_A(u_i) - \mu_{\underline{A}}(u_i))^2},$$

где $e(A, \underline{A})$ — обобщенное евклидово расстояние, $\frac{e(A,\underline{A})}{\sqrt{n}}$ _ обобщенное относительное евклидово расстояние.

Замечание. Если $A, B \subset R(U)$, то нельзя определенно сказать: больше или меньше показатели нечеткости для $A \cup B$, $A \cap B$, чем для A и для B.

Пример 15. Показатели нечеткости						u_1	u_2	и3			
		u_1	u_2	и3							
A =		0.2	0.6	0.1	<i>B</i> =	0.6	0.3	0.8			
		u_1	u_2	u_3							
$A \cap B$	1	0.2	0.3	0.1							
$v(A) = \frac{2}{n} d(A, \underline{A}) = \frac{2}{n} \left \mu_A(u_i) - \mu_A(u_i) \right = \frac{2}{n} \sum_{i=1}^{n} \mu_{A \cap \overline{A}}(u_i) =$											

$$v(A) = -\frac{d}{n}(A, \underline{A}) = -\sum_{i=1}^{n} |\mu_{A}(u_{i}) - \mu_{\underline{A}}(u_{i})| = -\sum_{i=1}^{n} |\mu_{A} \cap \overline{A}(u_{i})|$$

$$= 2/3(0.2 + 0.4 + 0.1) = 0.46,$$

$$v(B) = 2/3(0.4 + 0.3 + 0.2) = 0.6,$$

$$v(A \cap B) = 2/3(0.2 + 0.3 + 0.1) = 0.4.$$

Оценка нечеткости через энтропию

Известно, что энтропией системы измеряется степень беспорядка компонентов системы относительно вероятностей состояния. Рассмотрим N состояний $(\delta_1,\delta_2,\cdots,\delta_N)$ системы, с которой связаны вероятности $p_1,p_2,...,p_N$, тогда энтропия системы определяется выражением

$$H(p_1, p_2,..., p_N) = -\sum_{i=1}^{N} p_i \ln p_i$$
.

По аналогии вводится энтропия НМ:

$$H(A) = k \sum_{i=1}^{N} s(\mu_A(u_i)),$$

где k = const > 0, s – функция Шеннона, $s(\mu_A(u_i)) = s(y)$. Функция $s(y) = -y \ln y - (1-y) \ln(1-y)$, s(0) = s(1) = 0.