

WHAT IS CLAIMED IS:

1. An optical disk which is constructed in such
a manner that an information recording layer formed
on a substrate is covered with a light transmission
layer and in which the range of the thickness and the
refractive index of the light transmission layer is set
so that aberration due to a deviation of the thickness
and the refractive index of the light transmission
layer from each standard value falls within the range
of certain acceptable values, wherein

the thickness t of the light transmission layer
is set within the range of $f(n) - t_1 \leq t \leq f(n) + t_2$,
employing function $f(n)$ of the refractive index n of
the light transmission layer and constants t_1 , t_2
determined based on an acceptable value of aberration
in the light transmission layer,

the refractive index of the light transmission
layer is set within the range of 1.45 to 1.75,

the numerical aperture of a lens emitting laser
light which is incident onto the light transmission
layer is set to 0.65, and

the function $f(n)$ is shown by

$$f(n) = \frac{A_1 \times n^3}{n^2 - 1} \times \frac{n^2 + A_2}{n^2 + A_3} \quad (\mu\text{m})$$

employing constants A_1 , A_2 , A_3 .

2. The optical disk according to claim 1, wherein
the refractive index of the light transmission layer is

set within the range of 1.5 to 1.7.

3. The optical disk according to claim 1, wherein
the wavelength of the laser light which is incident
onto the light transmission layer is set within the
range of 395 to 415 nm.
5

4. The optical disk according to claim 1, wherein
the constant A_1 is 0.26200, constant A_2 is -0.32400,
and constant A_3 is 0.00595.

5. The optical disk according to claim 1,
10 wherein minimum values of the constants t_1 , t_2 are
substantially set to 10 μm .

6. The optical disk according to claim 1, wherein
the constants t_1 , t_2 are substantially set to 13 μm .

7. The optical disk according to claim 1, wherein
15 predetermined positions on curved lines that $f(n) - t_1$
and $f(n) + t_2$ show are sampled, and an area encircled
by connecting each sample point by means of straight
lines is set as the range of the thickness t of the
light transmission layer.

20 8. An optical disk which is constructed in such
a manner that a plurality of information recording
layers are laminated by sandwiching a space layer
having a light transmission property therebetween on
a substrate and are covered with a light transmission
25 layer, wherein

the thickness t of the light transmission layer is
set to $f(n) - t_1$ or more, employing function $f(n)$ of

the refractive index n of the light transmission layer and constants t₁, t₂ determined based on an acceptable value of aberration in the layer comprising the light transmission layer, the information recording layers,
5 and the space layer,

the sum of thicknesses of the light transmission layer, the space layer, and the information recording layer excluding the information recording layer which is closest to the substrate is set to f(n) + t₂ or
10 less,

the refractive index of the light transmission layer is set within the range of 1.45 to 1.75,

the refractive index of the space layer is set within the range of +0.0 to -0.15 of the refractive
15 index of the light transmission layer,

the numerical aperture of a lens emitting laser light which is incident onto the light transmission layer is set to 0.65, and

20 the function f(n) is shown by

$$f(n) = \frac{A_1 \times n^3}{n^2 - 1} \times \frac{n^2 + A_2}{n^2 + A_3} \text{ } (\mu\text{m})$$

employing constants A₁, A₂, A₃.

9. The optical disk according to claim 8, wherein the refractive index of the light transmission layer is
25 set within the range of 1.5 to 1.7.

10. The optical disk according to claim 8, wherein the wavelength of the laser light which is incident

onto the light transmission layer is set within the range of 395 to 415 nm.

11. The optical disk according to claim 8, wherein the constant A_1 is 0.26200, constant A_2 is -0.32400, and constant A_3 is 0.00595.

12. The optical disk according to claim 8, wherein minimum values of the constants t_1 , t_2 are substantially set to 10 μm .

13. The optical disk according to claim 8, wherein the constants t_1 , t_2 are substantially set to 22 μm .

14. The optical disk according to claim 8, wherein predetermined positions on a curved line that $f(n) - t_1$ shows are sampled so that the thickness that a straight line connecting each sample point shows is set to a minimum value of the thickness t of the light transmission layer in a corresponding refractive index, and

predetermined positions on a curved line that $f(n) + t_2$ shows are sampled so that the thickness that a straight line connecting each sample point shows is set to a maximum value of the thickness of the sum of the light transmission layer in a corresponding refractive index, the space layer, and the information recording layer excluding the information recording layer which is closest to the substrate.

15. An optical disk apparatus comprising:
a semiconductor laser element emitting laser light

whose wavelength is 395 to 415 nm; and

a processing unit allowing the laser light from the semiconductor laser element to be emitted to the optical disk to perform recording processing and
5 reproducing processing, for an optical disk which is constructed in such a manner that an information recording layer formed on a substrate is covered with a light transmission layer and in which the range of the thickness and the refractive index of the light transmission layer is set so that aberration due to
10 a deviation of the thickness and the refractive index of the light transmission layer from each standard value falls within the range of certain acceptable values, wherein

15 the thickness t of the light transmission layer is set within the range of $f(n) - t_1 \leq t \leq f(n) + t_2$, employing function $f(n)$ of the refractive index n of the light transmission layer and constants t_1, t_2 determined based on an acceptable value of aberration
20 in the light transmission layer,

the refractive index of the light transmission layer is set within the range of 1.45 to 1.75,

the numerical aperture of a lens emitting laser light which is incident onto the light transmission
25 layer is set to 0.65, and

the function $f(n)$ is shown by

$$f(n) = \frac{A_1 \times n^3}{n^2 - 1} \times \frac{n^2 + A_2}{n^2 + A_3} \quad (\mu\text{m})$$

employing constants A_1 , A_2 , A_3 .

16. The optical disk apparatus according to
claim 15, wherein the refractive index of the light
transmission layer is set within the range of 1.5
5 to 1.7.

17. An optical disk apparatus comprising:
a semiconductor laser element emitting laser light
whose wavelength is 395 to 415 nm; and
10 a processing unit allowing the laser light from
the semiconductor laser element to be emitted to the
optical disk to perform recording processing and
reproducing processing, for an optical disk which is
constructed in such a manner that a plurality of
15 information recording layers are laminated by
sandwiching a space layer having a light transmission
property therebetween on a substrate and are covered
with a light transmission layer, wherein
the thickness t of the light transmission layer is
20 set to $f(n) - t_1$ or more, employing function $f(n)$ of
the refractive index n of the light transmission layer
and constants t_1 , t_2 determined based on an acceptable
value of aberration in the layer comprising the light
transmission layer, the information recording layers,
25 and the space layer,

the sum of thicknesses of the light transmission
layer, the space layer, and the information recording

layer excluding the information recording layer which is closest to the substrate is set to $f(n) + t_2$ or less,

5 the refractive index of the light transmission layer is set within the range of 1.45 to 1.75,

 the refractive index of the space layer is set within the range of ± 0.1 of the refractive index of the light transmission layer,

10 the numerical aperture of a lens emitting laser light which is incident onto the light transmission layer is set to 0.65, and

 the function $f(n)$ is shown by

$$f(n) = \frac{A_1 \times n^3}{n^2 - 1} \times \frac{n^2 + A_2}{n^2 + A_3} \quad (\mu\text{m})$$

15 employing constants A_1, A_2, A_3 .

18. The optical disk apparatus according to claim 17, wherein the refractive index of the light transmission layer is set within the range of 1.5 to 1.7.