ZÁKLADNÍ VLASTNOSTI KREVNÍHO OBĚHU

Oběhová soustava je uzavřený systém cév a srdce; naplněný krví

Systém cirkulace je funkční jen v kooperaci s funkcemi krve.

Eufemisticky řečeno, krev, která necirkuluje přestává být efektivní; cirkulace bez krve nemůže fungovat.

Krev je nestlačitelná kapalina.

V důsledku této vlastnosti vykazuje proudění krve řadu specifických charakteristik.

Krev vytéká ze srdce tepnami (arteriemi);

přesněji řečeno krev je ze srdce v době systoly vypuzována (ejekční fáze).

> V období diastoly krev plní srdeční dutiny.

Protože levá komora vypuzuje krev aortou do těla (systému) označuje se tato část systémový oběh, (velký oběh), ten je ukončen vtokem horní a dolní žíly do pravé síně.

Z pravé předsíně krev plní pravou komoru. Z pravé komory je krev vypuzena prostřednictvím plicnice do plic. Tato část se nazývá *plicní oběh* (malý oběh).

V plicích dochází k regeneraci obsahu dýchacích plynů.

Krev z plic proudí do levé předsíně plicními žilami (obvykle jsou čtyři).

Následovně krev přetéká do levé komory a celý cyklus se opakuje.

V oběhové soustavě se krev pohybuje jednosměrně. Jednosměrnost je určena chlopenními systémy srdce.

Obecný vzorec směru cirkulace je: levá komora – aorta – systémový oběh – žilní systém velkého oběhu – pravá předsíň – pravá komora – plicnice – plice – plicní žíly – levá síň.

SRDEČNÍ VÝDEJ

SRDEČNÍ VÝDEJ = MNOŽSTVÍ KRVE VYPUZENÉ JEDNOU KOMOROU DO PŘÍSLUŠNÉ ČÁSTI OBĚHU ZA ZVOLENÝ ČASOVÝ ÚSEK, OBVYKLE ZA 1 MINUTU.

(PROTO SE NĚKDY POUŽÍVÁ NÁZVU: Minutový objem srdeční, MOS).

KREV JE NESTLAČITELNÁ

ZA NORMÁLNÍCH OKOLNOSTÍ SE VÝDEJ LEVÉ KOMORY ROVNÁ VÝDEJI KOMORY PRAVÉ

POKUD JE NAPŘÍKLAD VÝDEJ KOMORY LEVÉ MENŠÍ NEŽ KOMORY PRAVÉ, KREV SE HROMADÍ PŘED LEVOU SÍNÍ A POSLÉZE V PLICÍCH. VZNIKÁ PLICNÍ OTOK

POKUD JE VÝDEJ KOMORY PRAVÉ MENŠÍ NEŽ KOMORY LEVÉ, KREV SE HROMADÍ NA PERIFERII (NAPŘ.OTOK JATER)

KREV TEČE V ŘEČIŠTI JEN JEDNÍM SMĚREM

Směr toku krve určují chlopenní systémy v srdci

CÍPATÉ CHLOPNĚ SE OTEVÍRAJÍ ZE SÍNĚ DO KOMORY, V OPAČNÉM SMĚRU SE ZAVÍRAJÍ

POLOMĚSÍČITÉ CHLOPNĚ SE OTEVÍRAJÍ DO VELKÉ TEPNY (VLEVO DO AORTY, VPRAVO DO a. PULMONALIS); ZPĚTNÝ POHYB KRVE JE UZAVÍRÁ

POHYBY CHLOPNÍ JSOU PASIVNÍ

Pohyby chlopní určuje rozdíl tlaků působících z jedné a z druhé strany

Tlak je definován jako působení síly na plochu:

$$\mathbf{P} = \frac{\mathbf{F}}{\mathbf{s}}$$

Plocha chlopně je přibližně stejná na obou stranách, tudíž se tlak projeví rozdílnou silou F. Pokud je F větší v otevíratelném směru, chlopeň se otevírá; v opačném případě zavírá

JAK SE MĚNÍ PRŮTOK KRVE CÉVOU S JEJÍM PRŮMĚREM

Rychlost proudu krve v určité části řečiště závisí na úhrnné ploše, kterou krev protéká.

Lze odvodit, že

S.v=konstantě

S je úhrnná plocha dané části řečiště, v je rychlost proudu krve.

Zjednodušeně lze shrnout:

s rostoucím průřezem klesá rychlost pohybu krve.

Z TEORETICKÉ HYDRODYNAMIKY PLYNE, ŽE PRŮTOK JE FUNKCÍ ČTVRTÉ MOCNINY POLOMĚRU

Z UVEDENÉ ZÁVISLOSTI VYPLÝVÁ, ŽE RELATIVNĚ MALÉ ZMĚNY PRŮMĚRU CÉVY ZPŮSOBUJÍ VÝZNAMNÉ ZMĚNY V PRŮTOKU.

Stěna cévy je vybavena hladkou svalovinou, která může navozovat řízenou vazokonstrikci (zůžení cévy) a tím pokles průtoku, nebo řízenou vazodilataci (rozšíření cévy) a tím zvýšení průtoku.

Reakce cévní hladké svaloviny jsou určeny:

- 1) vazomotorickými nervy (vazokonstrikční, vazodilatační)
- 2) vazoaktivní informační molekuly (látky uvolňované tkáněmi v místě průtoku, místní hladina O_2 , hormony, a další.

Jediným typem cév, které postrádají hladkou svalovinu jsou KAPILÁRY

U žil někdy užíváme názvu venokonstrikce a venodilatace

Pokud dojde k povšechné vazokonstrikci nebo vazodilataci, označujeme tento stav generalizovaná vazokonstrikce (vazodilatace).

Změny průměru cév (zejména generalizované) významně mění periferní odpor (a tím se podílejí na regulaci TK)

 $v_1 \cdot P_1 = konstant.$

Proud krve je laminární nebo turbulentní

Pohyb krve v srdečních dutinách během srdečního cyklu obsahuje (s výjimkou izovolumických fází komorových dutin) vždy laminární i turbulentní komponenty.

Charakter proudění

Proudění laminární

PŘI LAMINÁRNÍM PROUDĚNÍ SE JEDNOTLIVÉ VRSTVY KAPALINY POHYBUJÍ PO SOBĚ ANIŽ SE VÝRAZNĚ MÍSÍ.

Z důvodů, které plynou ze zákonů hydrodynamiky, lze změřit, že osová (střední) vrstva se pohybuje nejrychleji a směrem ke stěně trubice se pohyb zpomaluje. Příčinou je vzájemné tření pohybujících se vrstev. Nejpomaleji se pohybuje vrstva, která je v přímém kontaktu se stěnou trubice (zde k deceleraci přispívá i tření o stěnu).

PRAKTICKÝM DŮSLEDKEM UVEDENÉHO ROZDĚLENÍ RYCHLOSTÍ LAMINÁRNĚ TEKOUCÍ KAPALINY, NAPŘÍKLAD KRVE V CÉVÁCH, JE ROZVRSTVENÍ KRVE A KREVNÍCH BUNĚK.

V nejrychleji se pohybující osové vrstvě se pohybují krvinky (hematokrit je zde největší); u stěn převažuje proud plasmy s relativně nižším hematokritem.

Proudění turbulentní

Víry způsobují vibrace cévní stěny = vznik šelestů

Turbulence (turbulentní proudění krve) způsobí vibrace cévní (srdeční) stěny, které mohou být slyšitelné jako šelesty.

Přehled parametrů cirkulace

Srdce

Struktura	úhrnná plocha průřezu cm²	tlouštka stěny	tlak (mmHg)	objem k krve %
Aorta	4.5	2 mm	100	cca 2
Střední arterie	20	1 mm	90	8
Arterioly	400	20 μm	60 – 30	1
Kapiláry	4 500	1µm	30 – 18	5
Venuly	4000		18 – 15	
				54
Duté žíly	18	1.5 mm	10	
Plicní řečiště				18 (z toho 10 v žilách plic)

Rychlost pohybu krve v různých částech řečiště

Typ cévy	úhrnný průřez	rychlost proudu	
Aorta	4.5 cm ²	0.33 m/s (1,3 –0)	
Kapiláry	4 500 cm ²	0,0033 m/s	
Horní a dolní	18 cm ²	0.1 m/s	

Co je příčinou pohybu krve v řečišti?

Co je
zdrojem
TLAKOVÉHO
GRADIENTU
V KREVNÍM
ŘEČIŠTI?

PŘÍMOČAŘE LZE ODPOVĚDĚT, ŽE PŘÍČINOU TLAKOVÉHO GRADIENTU JE SRDEČNÍ PRÁCE.

Současně si musíme uvědomit, že srdce vypuzuje krev ve dvou taktech (systola = vypuzování), (diastola = plnění srdce)

V době ejekční fáze systoly (kdy je krev vypuzována kontrakcí srdeční svaloviny, je systola přímou příčinou tlakového gradientu

V době diastoly jsou uzavřeny chlopně mezi tepnou a srdeční komorou (poloměsíčité chlopně) a přímá srdeční práce se na produkci tlakového gradientu nepodílí.

Je pak otázkou, kde je zdroj tlakového gradientu pro období diastoly?

Arteriální řečiště je uspořádáno tak, že ze srdce vystupují tepny s převahou elastických vláken. Chování těchto tepen lze přirovnat k pružné gumové hadici. Tuto vlastnost mají aorta a velké tepny v blízkosti srdce.

Za řečištěm elastických, pružných cév, následují tepny a arterioly, které kladou proudu krve relativně velký odpor (odporové cévy, ve stěně mají velké množství hladké cévní svaloviny a proto mohou ve velkém rozmezí měnit průměr a tudíž i průtok).

Tato vlastnost společně s viskozitou krve (ta se stává na periferii výraznější), neboť kromě vnitřního tření se uplatňuje tření o stěny cév. Úhrnná plocha stěny cév se směrem do periferie zvětšuje. Periferie se tak stává hlavní příčinou PERIFERNÍHO ODPORU.

ZJEDNODUŠENĚ LZE KREVNÍ TLAK SCHEMATICKY VYPOČÍTAT PODLE VZTAHU:

R = PERIFERNÍ ODPOR

PERIFERNÍ ODPOR JE ÚHRNNÁ SÍLA BRÁNÍCÍ TOKU KRVE

PŘÍČINY PERIFERNÍHO ODPORU JSOU:

- 1) VIZKOZITA KRVE
 - 2) TŘENÍ KRVE O ENDOTEL
 - 3) VZRŮST CÉVNÍ PLOCHY SMĚREM K ŘEČIŠTI MIKROCIRKULACE
 - 4) NÁHLÉ ZŮŽENÍ NA ÚROVNI PŘECHODU DROBNÉ TEPNY – ARTERIOLY 5) VAZOMOTORICKÉ REAKCE CÉV

BĚHEM EJEKČNÍ FÁZE KOMOROVÉ SYSTOLY JE PŘÍMÝM ZDROJEM TLAKOVÉHO GRADIENTU KONTRAKCE MYOKARDU (PŘÍMÁ SRDEČ-NÍ PRÁCE)

BĚHEM EJEKČNÍ FÁZE JE ZA ČASOVOU JEDNOTKU VYPUZENO Z KOMORY VÍCE KRVE, NEŽ MŮŽE VE STEJNÉM ČASE ODTÉCI DO PERIFERIE (BRÁNÍ TOMU PERIFERNÍ ODPOR) A ČÁST KINETIC-KÉ ENERGIE SE UPLATNÍ JAKO SÍLA (TLAK) NA STĚNY ELASTIC-KÝCH (PRUŽNÝCH) TEPEN. DOCHÁZÍ K VAKOVITÉMU PASIVNÍMU ROZEPĚTÍ STĚNY AORTY A JEJÍCH VELKÝCH VĚTVÍ.

V SOUVISLOSTI S UKONČENÍM EJEKČNÍ FÁZE PRUDCE KLESÁ INTRAVENTRIKULÁRNÍ TLAK, ZPĚTNÝM POHYBEM KRVE DOJDE K UZÁVĚRU POLOMĚSÍČITÝCH CHLOPNÍ A ENERGIE ULOŽENÁ DO PRUŽNÉHO ROZEPJETÍ AORTY ZPŮSOBUJE NÁVRAT STĚN DO PŮVODNÍ POLOHY A TÍM JE V DOBĚ DIASTOLY VYTLAČOVÁNA KREV.

PRIMÁRNÍM ZDROJEM TLAKOVÉHO GRADIENTU JE SRDEČNÍ PRÁCE

V DOBĚ SYSTOLY (V OBDOBÍ OTEVŘENÝCH POLOMĚSÍČITÝCH CHLOPNÍ) JE ZDROJEM TLAKOVÉHO GRADIENTU PŘÍMO KONTRAK-CE SRDEČNÍCH VLÁKEN.

V DOBĚ DIASTOLY (JSOU UZAVŘENY POLOMĚSÍČITÉ CHLOPNĚ) JE BEZPROSTŘEDNÍ PŘÍČINOU EXISTENCE TLAKOVÉHO GRADIENTU SÍLA PRUŽNÉHO ROZEPJETÍ ELASTICKÝCH TEPEN. TENTO FENOMEN NAZÝVÁME

PRUŽNÍK

SYSTOLA A DIASTOLA SE RYTMICKY STŘÍDAJÍ A PROTO DOCHÁZÍ K RYTMICKÉMU STŘÍDÁNÍ DETERMINACE TLAKOVÉHO GRADIENTU.

Během ejekční fáze má vyšší hodnotu, než během diastoly.

Tento fenomen se směrem do periferie zmenšuje a na Úrovni přechodu arteriol v kapiláry zaniká.

Začátek aorty

Skutečnost, že hodnoty krevního tlaku kolísají ve velkých tepnách lze pro praktické užití zjednodušit zavedením veličiny

Střední arteriální tlak

(někdy se doporučuje užívat názvu střední cirkulační tlak)

Pro převod tlaku v mm Hg na jednotky SI se užívá převodní vztah 1 mm Hg = 0.1333 kPa

V klinickém slova smyslu se tlakem rozumi jeho systolická a diastolická hodnota ve výši srdce, zpravidla měřeno vleže.

Kolísání tlaku v cévách na úrovni srdce:

SAT = TD + 1/3 (TS - TD)

Tlakový gradient systémového řečiště Vyjádřený prostřednictvím SAT (SCT)

