

Construcción de un ECDL y espectroscopía DAVS

Se muestra la construcción de un láser tipo ECDL, su estabilización en temperatura y la realización de Espectroscopía de Vapor Atómico Dicroico (DAVS) sobre la línea D2 del Rubidio alrededor de 384230 GHz. Existen diversas aplicaciones para el ECDL y la técnica DAVS en óptica cuántica y física atómica (trampa de iones, patrones de frecuencia, etc).

1) ECDL: Diodo láser con cavidad externa

Se construyó un ECDL y se realizaron simulaciones para optimizar sus ventajas, las cuales son:

Mono-modo: La realimentación (configuración Littrow) selecciona uno de los modos de la cavidad externa.

Sintonizable: Rotar la red de difracción con PZT respecto del punto pivot sintoniza la frecuencia en un cierto rango.

Económico

3) Medición de la señal DAVS

3.b) Resultados

Se midió el espectro de absorción del Rb de un haz con polarización σ^+ y σ^- cerca de una de sus transiciones hiperfinas en 384230,1 GHz y con su resta se midió la señal de error DAVS.

2) Estabilización en temperatura del ECDL

2.a) ¿Por qué hay que hacerlo?

Hay que estabilizar en temperatura para estabilizar en frecuencia:

2.b) ¿Cómo se estabiliza?

Para la estabilización se construyó un circuito de control PI, cuyo funcionamiento consiste en:

2.c) Resultados de la estabilización

El mejor parámetro de estabilidad obtenido, el 3 σ en una hora, es de 0,18mV que se corresponde con 2,5 mK

(criterio 2, naranja) y equivale a una variación en frecuencia de 0,0654 GHz.

4) Conclusiones

- Se construyó un ECDL que posee las ventajas de ser económico, mono-modo y sintonizable continuamente en un rango de aproximadamente 2,8 GHz.
- Se construyó un circuito de control PI y se estabilizó el ECDL en temperatura. El parámetro de estabilidad es de 2,5mK, el cual corresponde a una variación en frecuencia de 0,0654GHz.
- Se realizó Espectroscopía DAVS en una transición atómica hiperfina del Rubidio. Esta técnica será utilizada para estabilizar la frecuencia del láser a dicha transición y con una cavidad Fabry-Perot, en condición confocal, se transferirá dicha frecuencia a un láser libre.

5) Referencias

- [1] N. Fernandez, Laseres de cavidad vertical y emision horizontal atomica de alta resolucion en la lnea D1 del 87Rb, 2017,
- [2] Saleh B.E.A. y Teich C.M., Fundamentals of photonics (Wiley, 1991)
- [3] K. Hardman, S. Bennetts, J. Debs, C. Kuhn, G. McDonald, N. Robins, Construction and Characterization of External Cavity Diode Lasers for Atomic Physics (2014)
- [4] M. Luda, J. Codnia, M. L. Azcárate, Rubidium D2 line spectroscopy with an external cavity diode laser, (2014)