()()()

Anonymous Country. Correspondence to: Anonymous Author <anon.email@domain.com>.

¹Anonymous Institution, Anonymous City, Anonymous Region,

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.

Recursive Feature Elimination by Sensitivity Testing

Anonymous Authors¹

1. Supplementary Material

1.1. Generalization of Theorem 2.1

In this Section, we will prove a stronger version of Theorem 2.1, generalizing it to apply to a product distribution \mathcal{D} and to a function other than parity.

There are two parameters that are important in generalizing Theorem 2.1, ρ and I_{\min} . Under a uniform distribution, each feature j has equal probability of being either 1 or 0. Under a product distribution, one of these two probabilities may be larger than the other. We use $\rho>0$ to denote the maximum, over all features j, of the ratio between the larger and the smaller of these two probabilities, for product distribution \mathcal{D} . Thus, for example, if each feature j is 1 with probability 3/4 and 0 with probability 1/4, then $\rho=3$.

When the examples are labeled according to a parity function (on a subset of the variables), flipping the value of a relevant feature j in a random example drawn from \mathcal{D} always changes the value of the function. For other functions g, flipping the value of a relevant feature j in a random example drawn from \mathcal{D} will change the value of g with some non-zero probability. We denote the minimum of that probability, over all relevant j, by I_{\min} . This is the minimum influence of a relevant variable of g, with respect to distribution \mathcal{D} (cf. (Hellerstein & Servedio, 2007)).

For the uniform distribution with g being a parity function, $\rho=1$ and $I_{\min}=1$.

The generalized theorem replaces the polynomial dependence of m on $\frac{1}{\frac{1}{2}-\epsilon}$ in Theorem 2.1 with a polynomial dependence on $\frac{1}{\frac{1}{2}I_{\min}-\rho\epsilon}$.

Theorem 1.1. Suppose a machine learning algorithm is used to learn a classifier M for a Boolean target concept f defined on n Boolean features, where the target concept labels examples according to the value of a Boolean function g, computed on a fixed subset of the features. Suppose M has true error rate $\epsilon < \frac{1}{2}$, with respect to a product distri-

bution \mathcal{D} , where $2\rho\epsilon \leq I_{\min}$. Then there is a quantity t that is polynomial in $n, \ln \frac{1}{\delta}, and \frac{1}{\frac{1}{2}I_{\min}-\rho\epsilon}$, with the following property: for all $0 < \delta < 1$, if the $\tilde{R}(j)$ values for all n features are computed using M and an i.i.d. sample of size t, drawn from distribution \mathcal{D} , then with probability least $1-\delta$, the computed $\tilde{R}(j)$ values for all the relevant features will be higher than the computed $\tilde{R}(j)$ values for the irrelevant features.

Proof. Consider a random example a drawn from \mathcal{D} . Flipping any relevant bit in a reverses the output of f with probability at least I_{\min} .

Let P(a) denote the probability of drawing assignment a from distribution \mathcal{D} . By the definition of ρ , for any bit j, $\frac{1}{\rho}P(a) \leq P(a_{\neg j}) \leq \rho P(a)$. Here $a_{\neg j}$ denotes the assignment produced by flipping bit j of a.

Let A denote the set of assignments in $\{0,1\}^n$ such that $M(a) \neq f(a)$.

Consider a relevant variable j of f. First, we will lower bound the probability, for random a drawn from distribution \mathcal{D} , that $f(a) \neq M(a_{\neg j})$. It is easy to see that $f(a) \neq M(a_{\neg j})$ iff one of the following two conditions holds: (1) $f(a) \neq f(a_{\neg j})$, and $a_{\neg j} \notin A$, or (2) $f(a) = f(a_{\neg j})$, and $a_{\neg j} \in A$. Thus the probability that $f(a) \neq M(a_{\neg j})$ is lower bounded by the probability that Condition (1) holds. We will now lower bound that probability.

$$Prob[f(a) \neq f(a_{\neg j}) \text{ and } a_{\neg j} \notin A]$$

 $\geq Prob[f(a) \neq f(a_{\neg j})] - Prob[a_{\neg j} \in A]$ (1)
 $\geq I_{\min} - \rho \epsilon$

The last inequality above uses the fact that the total probability mass of A is ϵ , and therefore the total probability mass of assignments a such that $a_{\neg j} \in A$ is at most $\rho \epsilon$.

Thus, for relevant variable j, for random a drawn from \mathcal{D} , $Prob[f(a) \neq M(a_{\neg j})] \geq I_{\min} - \rho \epsilon$.

Now consider the case where j is an irrelevant variable. In this case, the only way that $f(a) \neq M(a_{\neg j})$ is if $a_{\neg j} \in A$, which happens with probability at most $\rho \epsilon$. Therefore, $Prob[f(a) \neq M(a_{\neg j})] \leq \rho \epsilon$.

In the statement of the theorem, we assumed that $I_{\min} > 2\rho\epsilon$. Let $\tau = \frac{1}{2}I_{\min} - \rho\epsilon$.

Now suppose we compute the $\tilde{R}(j)$ values for all features j using an i.i.d. random sample $\mathcal X$ drawn from $\mathcal D$ and labeled according to f. Let $t=\frac{1}{2\tau^2}\ln\frac{n}{\delta}$ be the size of this sample. Recall that $\tilde{R}(j)$ is the difference between the accuracy of M on $\mathcal X$, and the accuracy of M on the sample derived from $\mathcal X$ by flipping j in each example. This second accuracy measures the percentage of examples a for which $f(a)=M(a_{\neg j})$. Let d(j) be the percentage of examples a for which $f(a)\neq M(a_{\neg j})$. It follows that for any pair of features j' and j'', $\tilde{R}(j')\geq \tilde{R}(j'')$ iff $d(j')\geq d(j'')$. We will prove the following claim: with probability at least $1-\delta, d(j)>\frac{1}{2}I_{min}$ for each relevant feature j, and $d(j)<\frac{1}{2}I_{min}$ for each irrelevant feature j. This suffices to prove the theorem.

To prove the claim, consider a random a drawn from \mathcal{D} . We can view the test of whether $f(a) \neq M(a_{\neg j})$ as a Bernoulli trial, with success when the inequality holds. Thus if j is a relevant variable, the probability of success is at least $I_{min} - \rho \epsilon$. If j is an irrelevant variable, the probability of success is at most $\rho \epsilon$.

With this view, we can apply a standard bound of Hoeffding. Consider a sequence of m independent Bernoulli trials, each with probability p of success. Suppose that out of these m trials, the observed fraction of successes is \hat{p} . The bound of Hoeffding states that for any c>0, $Prob[\hat{p}\geq p+c]\leq e^{-2mc^2}$ (Hoeffding, 1963). By exchanging the role of failures and successes, it immediately follows that the inequality $Prob[\hat{p}\leq p-c]\leq e^{-2mc^2}$ also holds. Thus if $m\geq \frac{1}{2c^2}\ln\frac{1}{\delta}$, we have the following two inequalities

$$Prob[\hat{p} \ge p + t] \le \delta$$
 (2)

$$Prob[\hat{p} \le p - t] \le \delta \tag{3}$$

We apply these two inequalities to the tests performed in computing d(j) from \mathcal{X} . Consider a random assignment a drawn from \mathcal{D} . If j is relevant, then the probability of success (i.e., that $f(a) \neq M(a_{\neg j})$) is at least $(I_{min} - \rho \epsilon)$. If j is irrelevant, then the probability of success is at most $\rho \epsilon$. The assignments in \mathcal{X} correspond to $\frac{1}{2\tau^2} \ln \frac{n}{\delta}$ Bernoulli trials. Because $\tau = \frac{1}{2} I_{\min} - \rho \epsilon$, applying the above bounds with $c = \tau$ and $s = \frac{1}{2\tau^2} \ln \frac{n}{\delta}$ implies that the following holds for each feature j: If j is relevant, then $Prob[d(j) \leq \frac{1}{2} I_{\min}] \leq \frac{\delta}{n}$, and if j is irrelevant, then $Prob[d(j) \geq \frac{1}{2} I_{\min}] \leq \frac{\delta}{n}$.

Since there are n features, it follows that with probability at least $1-\delta$, the d(j) values for the relevant variables will all be greater than $\frac{1}{2}I_{\min}$, and the d(j) values for the irrelevant features will be less then $\frac{1}{2}I_{\min}$.

The condition $\epsilon < I_{min}/(2\rho)$ in the above theorem limits

its applicability to arbitrary functions g, even under the uniform distribution. For example, consider the consensus function (which is correlation immune): $g(x_1,\ldots,x_k)=1$ iff $x_1=x_2=\ldots=x_k$. Under the uniform distribution, the value of I_{min} for the consensus function is $1/2^{k-2}$. For k=4, the condition $\epsilon < I_{min}/(2\rho)$ would then be satisfied only if the error ϵ of model M was less than 1/8.

We note that while it might be possible to prove a version of the theorem with a somewhat less restrictive condition, there are inherent limits as to what can be proved. For example, suppose g is a function on k variables that classifies at least 75% of its 2^k possible examples as negative. (The consensus function on 3 variables has this property.) Then the model that predicts negative on all examples has exactly 75% accuracy. Using RFEST with such a model, there is no hope of distinguishing relevant from irrelevant variables.

References

Hellerstein, L. and Servedio, R. A. On pac learning algorithms for rich boolean function classes. *Theoretical Computer Science*, 384(1):66 – 76, 2007. ISSN 0304-3975. doi: https://doi.org/10.1016/j.tcs.2007.05.018. Theory and Applications of Models of Computation.

Hoeffding, W. Probability inequalities for sums of bounded random variables. *Journal of the American Statistical Association*, 58(301):13–30, 1963. ISSN 01621459.