

인공지능과 수학적 배경

Continuation by gradient descent

- Gradient descent technique:
 - Initialization: Start with some values (w_0, w_1) .

■ Iterate (loop): Keep updating (w_0, w_1) to reduce the loss value $L(w_0, w_1)$ until a minimum is reached (when no possible update is possible).

Linear Regression Dynamic process

Idea: Move the values of (w_0, w_1) in the direction of the steepest descent to decrease the value of the loss L as fast as possible.

$$(w_0, w_1)$$

- **◆** How to start?
 - Initialization can be random.
 - It can also be estimated if additional information on L is available.

◆ Optimization scheme is faster with initialization #2 because the optimization starts closer to the solution.

- **◆ Good initialization can be essential:**
 - Start closer to the minimizer \Rightarrow Quicker convergence.
 - If bad choice then gradient descent captures local minimizer (not as good as global minimizer).

Linear Regression Minimizers

- **◆ Stationary/critical points: Points where the gradient/slope of the function is zero.**
- **♦ Characterization** of stationary points:
 - Global minimizers (maximizers)
 - Local minimizers (maximizers)
 - Saddle points

Linear Regression Convexity vs non-convexity

◆ Convex losses are mathematically well studied: Fast optimization techniques, well understood behaviors and properties (existence of global minimum).

1D convex function

2D convex function

Linear Regression Convexity vs non-convexity

♦ Non-convex losses are in general not well understood, are slow to optimize (gradient descent), have critical points, but they offer large learning capacity.

1D non-convex function

2D non-convex function

Linear Regression Formalization

Repeat until convergence (until reaching a stationary point):

Iteration number
$$k$$
 number k $w_j^{k+1} = w_j^k - \tau \frac{\partial}{\partial w_j} L(w^k)$ Math notation

Linear Regression

Gradient descent with one variable

◆ Let us consider a single parameter w:

• Prediction function: $f_w(x) = wx$

 $\min_{w} L(w) = \frac{1}{n} \sum_{i=1}^{n} \left(wx_i - y_i \right)^2$ $w \leftarrow w - \tau \frac{\partial}{\partial w} L(w)$ Loss optimization:

Gradient descent:

Linear Regression Different initialization

◆ Any initialization of the gradient descent does **converge** to the solution of the optimization problem. Only the optimization time is affected.

Why? Loss is convex.

Linear Regression Convexity vs non-convexity with GD

◆ Gradient descent techniques with convex function: Only global minimizers, GD will converge for all initializations.

◆ Gradient descent techniques with non-convex function: Critical points

⇒ Choice of initialization is critical for global minimizers, local
minimizer, saddle points.

Linear Regression Learning rate

CAU

◆ Influence of learning rate/ time step in gradient descent:

$$w \leftarrow w - \underbrace{\tau}_{\partial w}^{\partial} L(w)$$

 If τ is too small, then the optimization process requires a lot of iterations to converge to the solution.

◆ If τ is too large, then the optimization process does not converge (diverges) and cannot capture the minimum (loss value explodes).

Linear Regression Convergence speed

• Do we need to decrease the learning rate τ to guarantee convergence? No. The slope/gradient decreases its value when we get closer to the minimum.

Linear Regression

Gradient descent for linear regression

• Prediction function:
$$f_w(x) = w_0 + w_1 x$$

• Parameters:
$$w_0, w_1$$

• Loss function:
$$L(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n \left(w_0 + w_1 x_i - y_i \right)^2$$

• Optimization:
$$\min_{w=(w_0,w_1)} L(w_0,w_1)$$

Gradient descent:

$$w_j \leftarrow w_j - \sqrt{\frac{\partial}{\partial w_j}} L(w)$$

Loss gradient

Linear Regression Loss gradient

• For any w_i :

$$\frac{\partial}{\partial w_j} L(w_0, w_1) = \frac{\partial}{\partial w_j} \left[\frac{1}{n} \sum_{i=1}^n \left(w_0 + w_1 x_i - y_i \right)^2 \right]$$

• For w_0 :

$$\frac{\partial}{\partial w_0} L(w_0, w_1) = \frac{\partial}{\partial w_0} \left[\frac{1}{n} \sum_{i=1}^n \left(w_0 + w_1 x_i - y_i \right)^2 \right]$$

$$= \frac{1}{n} \sum_{i=1}^n \frac{\partial}{\partial w_0} \left(w_0 + w_1 x_i - y_i \right)^2$$

$$= \frac{2}{n} \sum_{i=1}^n \left(w_0 + w_1 x_i - y_i \right) \cdot \frac{\partial}{\partial w_0} (w_0 + w_1 x_i - y_i)$$

$$= \frac{2}{n} \sum_{i=1}^n \left(w_0 + w_1 x_i - y_i \right) \cdot 1$$

Linear Regression Loss gradient

• For any w_1 :

$$\frac{\partial}{\partial w_1} L(w_0, w_1) = \frac{\partial}{\partial w_1} \left[\frac{1}{n} \sum_{i=1}^n \left(w_0 + w_1 x_i - y_i \right)^2 \right]$$

$$= \frac{1}{n} \sum_{i=1}^n \frac{\partial}{\partial w_1} \left(w_0 + w_1 x_i - y_i \right)^2$$

$$= \frac{2}{n} \sum_{i=1}^n \left(w_0 + w_1 x_i - y_i \right) \cdot \frac{\partial}{\partial w_1} (w_0 + w_1 x_i - y_i)$$

$$= \frac{2}{n} \sum_{i=1}^n \left(w_0 + w_1 x_i - y_i \right) \cdot x_i$$

Linear Regression Gradient descent equation

• Initialize: w_0, w_1

Iterate until convergence:

$$w_0 \leftarrow w_0 - \tau \frac{2}{n} \sum_{i=1}^n (w_0 + w_1 x_i - y_i)$$

$$w_1 \leftarrow w_1 - \tau \frac{2}{n} \sum_{i=1}^{n} (w_0 + w_1 x_i - y_i) x_i$$

Linear Regression Gradient descent in action

Linear Regression

Stochastic vs deterministic GD

◆ Training set size is *n*:

$$w_{j} \leftarrow w_{j} - \tau \frac{\partial}{\partial w_{j}} L(w)$$
with $L(w) = \frac{1}{n} \sum_{i=1}^{n} \left(w_{0} + w_{1}x_{i} - y_{i} \right)^{2}$

$$\downarrow \downarrow$$

$$w_j \leftarrow w_j - \tau \left(\sum_{i=1}^n \frac{\partial}{\partial w_j} \left(w_0 + w_1 x_i - y_i \right)^2 \right)$$

- ◆ If n is small a few K, but if n is as large as M or B?
 - **⇒** Stochastic gradient descent (neural networks)