Appendix of the paper "Towards a Tractable Exact Test for Global Multiprocessor Fixed Priority Scheduling"

Artem Burmyakov (Innopolis University, Russia) Enrico Bini (University of Turin, Italy) Chang-Gun Lee (Seoul National University, South Korea)

January 5, 2022

1 Introduction

This appendix describes a runtime efficient implementation of an exact schedulability test introduced in the following publication:

• Artem Burmyakov, Enrico Bini, Chang-Gun Lee, "Towards a Tractable Exact Test for Global Multiprocessor Fixed Priority Scheduling", IEEE Transactions on Computers journal, accepted in 2021, to appear.

2 Efficient implementation of pruning rules

By relying on Theorem 1 in [2], we proposed the following pruning rules in [2]:

Pruning rule 1

$$\forall g' \in G',$$

$$\mathsf{IF} \quad \exists g \in V: \ c_i \geq c_i' \land p_i \leq p_i', \quad \forall i = 1, \dots, k$$

$$\mathsf{THEN} \quad G' := G' \setminus \{g'\}$$

Pruning rule 2

$$\forall g \in G', \quad \forall g' \in V$$

$$\mathsf{IF} \quad c_i' \leq c_i \, \land \, p_i' \geq p_i, \qquad \forall i = 1, \dots, k$$

$$\mathsf{THEN} \quad V := V \setminus \{g'\}$$

The time needed to evaluate (1) and (2) is exponential, since it depends on the size of V. Below, we propose an efficient implementation of these rules.

The states in V are arranged in a table \mathbb{T}_V . The columns of \mathbb{T}_V correspond to state parameters $p_1, \ldots, p_k, c_1, \ldots, c_k$ respectively, and values in columns are sorted increasingly. See an example in Table 2a, for the graph depicted in Fig. 1.

We next provide an example of using \mathbb{T}_V to check (1). Consider \mathbb{T}_V as depicted in Table 2a. Consider state $g' = \{(1,4), (1,3)\}$. We next check the existence of $g \in V$ for a given g', satisfying (1).

Condition (1) requires $p_1 \leq p'_1$. Thus, we recursively check all rows in \mathbb{T}_V with $p_1 \leq 4$, as $p'_1 = 4$ (these rows are shaded in Table 2b). As rows are sorted by increasing p_i , we terminate the search once condition $p_1 \leq 4$ is violated. We then proceed with p_2 . Among all rows with $p_1 \leq 4$, we identify those with $p_2 \leq 3$ (as $p'_2 = 3$). We repeat the procedure recursively for c_1 and c_2 . Among all rows with $p_1 \leq 4$ and $p_2 \leq 3$, we identify those with $c_1 \geq 1$ (as $c'_1 = 1$), and finally, those with $c_2 \geq 1$ (as $c'_2 = 1$). The resulted rows correspond to states $p_1 = 1$ satisfying condition (1). As no row left in our case (see Table 2b), condition (1) is violated for a given $p'_1 = 1$.

The runtime gain of using \mathbb{T}_V over an exhaustive search is achieved thanks to states being ordered by increasing p_i and c_i . Once conditions $p_i \leq p'_i$ or $c_i \geq c'_i$ are violated, the remaining rows are pruned.

Figure 1: State transition graph, pruned by (1)

p_1	p_2	$\begin{vmatrix} c_1 \\ 0 \end{vmatrix}$	$\frac{c_2}{0}$		<i>p</i> ₁	$\begin{array}{ c c c c }\hline p_2 & c_1 \\ 0 & 0 \\ \hline \end{array}$	0		p_1	$\begin{vmatrix} p_2 \\ 0 \end{vmatrix}$		$\frac{c_2}{0}$		B^c	B^p	$B^{p,1}$	$\sum_{i=1}^k c_i$	$\sum_{i=1}^{k} p_i$	p_1	p_2	c_1	$ c_2 $
0	5	0	1			5 0	1		0	5	0	1		00	00	00	0	0	0	0	0	0
	6	0	2			6 0	2		0	6	0	2			01	01	1	5	0	5	0	1
	7	0	3			7 0	3	3		7	0	3					2	6	0	6	0	2
1	3	0	1		1)()	<i>(3/)</i> 0	1		1	3	0	1					3	7	0	7	0	3
2	3	0	1			3/ 0	1			3	0	1	State to be removed	01	11	00	1	4	1	3	0	1
	4	0	2		/ / //	4 0	2		2	4	0 2	2					-	5	2	3	0	1
3	3	0	1			/3// 0	1			3	0	1				01	2	6	2	4	0	2
	4	0	2		/3//	4 0	2			4	0 2	2				10	1	6	3	3	0	1
	5	0	3			5 0	3			5		3				11	2	7	3	4	0	2
4	0	1	0			(8///	0			0		0					3	8	3	5	0	3
	4	1	1			Δ 1	1			1/1/1/	//////	<i>[[[]</i>]		10			1	4	4	0	1	0
	5	1	2			5 1	2										2	5	5	0	2	0
	6	1	3			6 1	3			6//		3					(//2///	8	4	4	1	1
	7	1	3			7 1	3					3					///3///	9	4	5	1	2
	0	2			////	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0		<i>(////</i>	0	////	$\frac{3}{0}$						10	5	5	2	1
5	_	-	0			-	1			////	2	1		////	//1//	///\$\$		10	4	6	1	3
	5	2	1		5	5 2 1		//5//		2	1					<u> </u>	11	4	7	1	3	
	6	2	2			6 2	2			/2//		2							5	6	2	2
	7	2	3	L		7 2	3				2 3	3				///////////////////////////////////////	///5///	12	5	7	2	3
(a) All states				(b) Checking (1)				(c) Checking (2)					(d) Extended table; checking (1)									

Table 2: Table \mathbb{T}_V for set V, corresponding to the graph in Fig. 1. Examples correspond to $g' = \{(1,4), (1,3)\}$

3 Runtime reduction by using binary search

To speed-up implementation for (1) and (2) further, we extend table \mathbb{T}_V , introduced in Section 2, by incorporating additional search keys. Our approach ellaborates the idea of a binary search, and is as follows.

Consider an arbitrary state g. From definition (1) in [2] of a system state, it holds that $c_i \in \{0, \dots, C_i\}$ and $p_i \in \{0, \dots, P_i\}$.

For such g, let us compare its values c_i and p_i to the centers of the respective feasibility intervals, that are $c_i/2$ and $c_i/2$ and define boolean parameters $c_i/2$ and $c_i/2$ and c

$$b_i^{\mathsf{x}} = \begin{cases} 1, & \text{if } \mathsf{x}_i > \mathsf{x}_i/2 \\ 0, & \text{otherwise} \end{cases},$$

where $x \in \{c, p\}$ and $X \in \{C, P\}$. Table 2d shows an example, with $B^c = b_1^c \dots b_n^c$ and $B^p = b_1^p \dots b_n^p$ computed for each state in the graph from Fig. 1.

By using b_i^c and b_i^p , we optimize the implementation for (1) and (2) as follows. From (1), g and g' must satisfy the following necessary conditions:

$$\begin{cases} b_i^c \geq b_i^{c'} \\ b_i^p \leq b_i^{p'} \end{cases}, \qquad i = 1, \dots, n,$$

with $b_i^{c'}$ and $b_i^{p'}$ corresponding to state g'. Thus, when searching for g satisfying (1), we safely discard all rows in \mathbb{T}_V , that violate the conditions above. For example, if checking (1) for $g' = \{(1,4),(1,3)\}$, we examine only those table cells, that are shaded in Table 2d. The same idea applies to (2).

We generalize this approach further. For an arbitrary g, suppose that $b_i^p = 1$, that is $p_i \in (P_i/2, P_i]$. Let us compare p_i to the center of this interval, ${}^{3P_i}/4$, and let us define boolean parameter $b_i^{p,1} = 1$, if $p_i > {}^{3P_i}/4$, and $b_i^{p,1} = 0$, if $p_i \leq {}^{3P_i}/4$. If instead $b_i^p = 0$, that is $p_i \in [0, P_i/2]$, then we compare p_i to the respective center $P_i/4$, and we set $b_i^{p,1} = 0$, if $p_i \leq {}^{P_i}/4$, and $b_i^{p,1} = 1$, otherwise:

$$b_i^{p,1} = 1 \quad \Leftrightarrow \quad \begin{bmatrix} b_i^p = 1 \land p_i > {}^{3P_i/4} \\ b_i^p = 0 \land p_i > {}^{P_i/4} \end{bmatrix},$$

 $b_i^{p,1} = 0, \quad otherwise.$

(The definition above can be extended to parameter c_i as well.) See an example of computing $b_i^{p,1}$ in Table 2d, with $B^{p,1} = b_i^{p,1} \dots b_i^{p,1}$.

Condition (1) implies the following necessary condition for g and g':

$$b_i^{p'} = 0 \quad \Rightarrow \quad \left(b_i^{p,1} \le b_i^{p',1}\right),\tag{3}$$

with $b_i^{p'}$ and $b_i^{p',1}$ corresponding to state g', as well as condition (2) implies that

$$b_i^p = 1 \quad \Rightarrow \quad \left(b_i^{p',1} \ge b_i^{p,1}\right). \tag{4}$$

Thus, we use the conditions above to prune rows, when traversing \mathbb{T}_V .

According to our evaluation, \mathbb{T}_V depicted in Table 2d provides an optimal balance between the runtime reduction and the memory increase, caused by the introduction of redundant data in \mathbb{T}_V (that is columns $B^c, B^p, B^{p,1}$), for the settings defined in Section 5 of [2]. We achieve 3-5 times of runtime reduction at the price of 15-35% memory increase.

4 An optimized order of states traversal

Bonifaci et al. [1] examine graph states in the order of increasing state depth (that is the breadth-first traversal [3]). Instead, we examine states in the order of decreasing number of pending jobs at a state. Such an approach yields a much faster schedulability test, because the efficiency of pruning conditions (1) and (2) is maximized in this case¹.

5 Acknowledgement

This research has been financially supported by The Analytical Center for the Government of the Russian Federation (Agreement No. 70-2021-00143 01.11.2021). This work was supported in part by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT).

¹A refined criteria for the order of states traversal can be found in our code, that is available at https://github.com/burmyakov/exact-sched-test-gfp.git

References

- [1] Vincenzo Bonifaci and Alberto Marchetti-Spaccamela. Feasibility analysis of sporadic real-time multiprocessor task systems. *Algorithmica*, 2012.
- [2] Artem Burmyakov, Enrico Bini, and Chang-Gun Lee. Towards a tractable exact test for global multiprocessor fixed priority scheduling. *IEEE Transactions on Computers*, accepted in 2021, to appear.
- [3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. *Introduction to Algorithms*. MIT Press, 3 edition, 2009.