模拟电子技术作业 (3) 参考答案

班级	_ 学号	姓名		
一.选择填空题				
1、长尾式差动放大电路中,Re 的阻值越	大则:D (A.Ad越:	大,B. A d 越小, C.Ac 越	大,D.Ac 越小)则电路	
的共模抑制比 KCMRA (A.越大	、B.越小)。这种电路主	要是为了B_ (A.稳定放	女大倍数, B.克服零点》	票移,
C.提高输入电阻, D.扩展通频带)。				
2、电流串联负反馈组态可以稳定 <mark>B</mark>		出电流)其输入电阻比	C反馈前增大,其轴	渝出电阻
比反馈前增大_。(A.无改变, B.增				
3、集成运算放大器工作在a(A.线	性区,B.非线性区)时,	可用"虚短"和"虚断"的方	方法来分析电路。	
4、以下不属于负反馈作用的是(
A、稳定静态工作点 B、产		减小非线性失真	D、改变输入输出	出电阻
5、以下属于集成运放非线性应用的	り是(<mark>A</mark>)			
A、电压比较器 B、比例运	≦算电路 C、加汐	法运算电路 D、积	!分运算电路	
6、以下不属于功率放大电路基本要	更求的是(D)。			
A、输出功率大 B、转抄	D. A. D.	性失真小 D、	电压放大倍数高	
7、以下不属于电压并联负反馈放力	大电路特点的是(<mark>A</mark>)。		
A、减小输入电流 B、稳定输出	:电压 C、降低放大	电路的输入电阻	D、降低放大电路的)输出电阻
8、以下不是集成运放特点的是(D) _o			
A、高输入电阻 B、低输出电	a阻 C、级间采用了	直接耦合 D、级间	采用阻容耦合	
9、不属于深度负反馈的特点的是	(D)			
A、反馈信号近似等于外加输入	信号 B、不会产生	上自激振荡		
C、净输入信号约等于 0	D、输入和输出电阻	近似为 0 或∞		
二.判断下列说法的正误,正确的打	J"√",否则打"×"。			
(1) 多级放大电路的输入电阻为第一级	放大电路的输入电阻。	(✓)		
(2) 电路中各电量的交流成份是交	を流信号源提供的。(×)		
(3) 放大电路的级数越多,频带愈容	窄。 (√)		
(4) 既然电流负反馈稳定输出电流	li,那么必然稳定输 b	出电压。	(×)	
(5) 放大电路的级数越多,引入的	负反馈越强,电路的	放大倍数也就越稳	定。(×)	
6) 若放大电路的放大倍数为负,	则引入的反馈一定是	负反馈。	(×)	
(7) 反馈量仅仅决定于输出量。		(✓)		
(8) 电压负反馈减小输出电阻,电流	流负反馈增大输出电	.阻。(✓)		
9) 串联负反馈减小输入电阻,并且	联 负 反 馈 增 大 输 入 电	,阻。(×)		
(10) 交流负反馈可改善放大电路的	动态性能,直流负反	馈可稳定放大电路	的静态工作点。(✓)
(11) 阻容耦合的多级放大电路具有良好	的低频特性,可以放大到	变化缓慢的信号。	(×)
(12) 同相比例运算电路有共模信号输入	.。 (✓)			
(13) 反相比例运算电路无共模信号输入	.。(✓)			
(14) 多级放大电路的输出电阻就是	₫末级放大电路的输	出电阻。(√)		
(15) 负反馈改善放大电路的性能是以牺	i牲放大倍数为代价。	(√)		
三、已知某放大电路的电压放大倍数为:	已知某电路的频率特性	为:		
3	忧画出对应 Bode 图(包括	幅频和相频特性);2)	在图中标出 fL和 fn的位	过置,
$\dot{A}_{u} = \frac{-32}{(1 + \frac{10}{jf})(1 + j\frac{f}{10^{5}})}$ (1)	^立 生 f _L 和 f _H 的主要因素:	是什么? (3) 该放	女大电路耦合方式是什么	4?
<i>jf</i> 10°				

解:(1) 由Àu 的表达式可得: Au=-32, f_L =10Hz, f_H =10 5 Hz。其对应烦人幅频特性和相频特性如下图所示:

生 fl 的主要因素: 耦合电容和旁路电容的存在。

产生 fн的主要因素: 半导体管极间电容和分布电容的存在。

(3) 该电路中有一个耦合电容,故该电路为阻容耦合方式。

判断下图所示电路中引入了那种组态的交流负反馈,并计算深 四、 度 负 反馈条件下的反馈系数 F 和 Auf 。 -270°

(2) 电压串联负反馈 P279 页例题 6.4.2

(1) 电流串联负反馈 P283 页例题 6.4.4

$$\dot{I}_{R2} = \frac{R_3}{R_1 + R_2 + R_3} \dot{I}_o$$

$$\dot{U}_J \approx \dot{U}_f = \dot{I}_{R2} R_1 = \frac{R_1 R_3}{R_1 + R_2 + R_3} \dot{I}_o$$

$$\dot{F}_{\omega J} = \dot{U}_f / \dot{I}_o = \frac{R_1 R_3}{R_1 + R_2 + R_3}$$

$$\dot{A}_{\omega f} = \frac{\dot{U}_o}{\dot{U}} \approx \frac{\dot{U}_o}{\dot{U}} = \frac{R_1 + R_2 + R_3}{R_1 R_2 + R_3} \cdot R_1$$

$$\dot{U}_o = \dot{I}_o R_L$$

$$\dot{F}_{uu} = \dot{U}_{f} / \dot{U}_{o} = \frac{R_{e1}}{R_{e1} + R_{f}}$$

$$\dot{A}_{uf} = \frac{\dot{U}_{o}}{\dot{U}_{f}} \approx \frac{\dot{U}_{o}}{\dot{U}_{f}} = \frac{1}{\dot{F}_{uu}} = 1 + \frac{R_{f}}{R_{e1}}$$

五、理想运放电路如图所示,设电位器动臂到地的电阻为 KR_W ,0≤K≤1。试求该电路电压增益的调节范围。

解: 电路引入负反馈,故有: up=un=KU_I, ip=in=0,

$$\frac{U_{_{J}}-u_{_{N}}}{R_{_{1}}}=\frac{u_{_{N}}-U_{_{_{\mathcal{O}}}}}{R_{_{f}}}\mathbb{ED}:\frac{U_{_{J}}-\mathsf{KU}_{_{_{1}}}}{R_{_{1}}}=\frac{\mathsf{KU}_{_{_{1}}}-U_{_{_{\mathcal{O}}}}}{R_{_{f}}}$$

故有:
$$U_o = (11K - 10)U_J$$
, $A_u = \frac{U_o}{U_J} = 11K - 10$

因为0≤K≤1,所以:-10≤A ≤1

六、电路如下图所示。

(1) 写出 u_0 与 u_{11} 、 u_{12} 的运算关系式;

- (2) 当 R_W 的滑动端在最上端时,若 $u_{11} = 10 \text{ mV}$, $u_{12} = 20 \text{ mV}$,则 $u_0 = ?$
- (3) 若 u_0 的最大幅值为±14V,输入电压最大值 $u_{11max} = 10mV$, $u_{12max} = 20mV$,最小值均为 0V,则为了保证集成运放工作在线性区, R_2 的最大值为多少?

解: (1) 对 A₁、A₂由"虚短"和"虚断"可得:

A₁ 输入端电位:
$$u_{P1} = u_{N1} = \frac{R_f}{R + R_f} u_{/2}$$
 (1)

由 KCL 可得:
$$\frac{u_{I1} - u_{N1}}{R} = \frac{u_{N1} - u_{N2}}{R_f}$$
 (2)

由 (1) (2) 可得:
$$u_{N2} = \frac{R_f}{R} (u_{I2} - u_{I1})$$
 (3)

而
$$A_2$$
 输入端电位: $u_{P2} = u_{N2} = \frac{R_1}{R_w} u_o$ (4)

由 (3) (4) 可得: 输出电压
$$u_0 = (1 + \frac{R_2}{R_1}) \cdot u_{P2} = 10 (1 + \frac{R_2}{R_1}) (u_{12} - u_{11})$$

或
$$u_0 = 10 \cdot \frac{R_W}{R_s} \cdot (u_{12} - u_{11})$$

- (2) 将 $u_{11} = 10 \text{mV}$, $u_{12} = 20 \text{mV}$ 代入上式,得 $u_0 = 100 \text{mV}$
- (3) 根据题目所给参数,(u₁₂ -u₁₁)的最大值为 20mV。若 *R*1 为最小值,则为保证集成运放工作在线

性区, $(u_{12} - u_{11}) = 20 \,\mathrm{mV}$ 时集成运放的输出电压应为 $+ 14 \,\mathrm{V}$,写成表达式为

$$u_0 = 10 \cdot \frac{R_W}{R_{1 \text{min}}} \cdot (u_{12} - u_{11}) = 10 \cdot \frac{10}{R_{1 \text{min}}} \cdot 20 = 14$$

$$R_{2\text{max}} = R_W - R_{1\text{min}} \approx (10 - 0.143) \text{ k}\Omega \approx 9.86 \text{ k}\Omega$$