4.0 VU Theoretische Informatik und Logik Teil 2 □ SS/ □ WS 2017 24. Jänner 2018						
Matrikelnummer	Familienname	Vorname	A			
Wählen Sie dabei zunä	nde Aussagen als prädikatenlo ächst eine geeignete Signatur aller Symbole vollständig an.		gorie und die			
(1) Jedes Kind besitzt (Every child owns	t höchstens einen Hund. at most one dog.)					
	atze besitzt, dann besitzt sie i t, then she does not own a do		(7 Punkte)			
$\exists z \neg R(h(x,c),z) \supset \forall z(I)$ Beachten Sie dabei die beide Interpretationen	and ein Gegenbeispiel zu folge $R(y,z) \vee \neg R(z,h(d,y))$ in der Vorlesung eingeführte formal und begründen Sie die Che Variablen frei und welche	en Schreibkonventionen. S Richtigkeit Ihrer Lösung	_			
Beachten Sie die Schrei	oleau-Kalkül: $x)\supset x=c)$ folgt $\forall x(Q(f(x), bkonventionen bezüglich Variy- und \delta-Formeln und numme$	ablen- und Konstantensyn				
Hinweis: Sie müssen n	tigkeit folgender Aussagen un icht auf den Hoare-Kalkül v für die Richtigkeit Ihrer Antv ines Gegenbeispiels.)	erweisen, aber in jedem l	Fall möglichst			
gegebenen Spezifil Begründung:	$y>2x$ } while $y\geq 0$ do $y\leftarrow$ sation über dem Datentyp \mathbb{Z} properties π bezüglich der Vorbeding	partiell, aber nicht total k □ ri	orrekt. .chtig □ falsch			
korrekt ist, so ist τ	π auch bezüglich der Vorbedin ei R eine beliebige Formel (ül	ngung $R \supset P$ und der Nachber dem jeweiligen Datent	hbedingung Q			
			(8 Punkte)			

da himner 2 ist and Rays inve wall 13t Beim redder Terz ist der Under Terz der Disjuddion inner Falsels und der ceche teil für 257 auch, wederch du Arsduck nicht für alle z webr ist.

- \	7	C:-		1	T-11	TZ = 11-21
(.)	Zeigen	Sie	mn	dem	Tableau-	·naikui:

Aus c = a und $\forall x (Q(x, x) \supset x = c)$ folgt $\forall x (Q(f(x), f(x)) \supset a = f(x))$.

Beachten Sie die Schreibkonventionen bezüglich Variablen- und Konstantensymbolen.

Kennzeichnen Sie alle γ - und δ -Formeln und nummerieren Sie alle auftretenden Formeln.

(8 Punkte)

(1)	It: c=a	An
(2)	+: tx (B(KK) > x=c)	An, Y
	f: Yx (Q (fex), fexs)) > a = fexs)	An. S
	F: Q(P(65, P(6)) > a = F(6))	(7)
	+: Q(Febs, Febs)	(4)
	F: a= FC6)	(4)
(2)	+ i Q(9205, 9205) > F265 5 C	(2)
10)	Fi Q (Fes, Fes) (2) (9) +: Fes = C	(7)
	Vd. 8/5 100 t: F16-59	(7,3)
-	Vd. 6/10	
		<u> </u>

Hinweis: Sie müssen nicht auf den Hoare-Kalkül verweisen, aber in jedem Fall möglichst genau und vollständig für die Richtigkeit Ihrer Antwort argumentieren. (Im Negativfall am besten durch Angabe eines Gegenbeispiels.) • Das Programm $\{y > 2x\}$ while $y \ge 0$ do $y \leftarrow y + x \{y < x * x\}$ ist bezüglich der angegebenen Spezifikation über dem Datentyp \mathbb{Z} partiell, aber nicht total korrekt. richtig □ falsch Begründung: ullet Wenn ein Programm π bezüglich der Vorbedingung P und der Nachbedingung Q total korrekt ist, so ist π auch bezüglich der Vorbedingung $R \supset P$ und der Nachbedingung Qtotal korrekt, wobei R eine beliebige Formel (über dem jeweiligen Datentyp) ist. Begründung: □ richtig □ falsch (8 Punkte) 9) Das Programm termer our, wen 460 oder (4 > 0 n x < 0). Der lette Fall Wen y 20 dans mss and x co und x. e ist sider græßer als y en y >0 dans wird y nade Scherce Mer O, alex R (s) 6) Nem, 2,13; R= False, P=x=7, pi= e e x+7, B=x=2 So ist die Verbedingen für x=3 er Ein aler die Nach bedingen nie

8.) Beurteilen Sie die Richtigkeit folgender Aussagen und begründen Sie Ihre Antworten.