Aspectos Teóricos da Computação

Prof. Rodrigo Martins rodrigo.Martins@francomontoro.com.br

Cronograma

 Autômatos Finitos não determinístico (AFND) com epsílon transições (transições vazias)

Exemplos

Exercícios

Autômatos Finitos não determinístico (AFND) com epsílon transições (transições vazias)

- Um AFND-e tem permissão para fazer uma transição espontaneamente, sem receber um símbolo de entrada.
- A característica principal é que permitimos transições sobre ε, o string vazio.
- Veremos exemplos de diagramas de transições que permitem ter ε como um rótulo.

Autômatos Finitos não determinístico (AFND) com epsílon transições (transições vazias)

- Nestes exemplos, imagine que o autômato aceite as sequências de rótulos ao longo dos caminhos desde o estado inicial até um estado de aceitação.
- Cada ε encontrado ao longo de um caminho é "invisível", isto é, ele não contribui com nada para o string formado ao longo do caminho.
- É uma extensão do formalismo AFND, a diferença é que permite movimentos vazios.

 O autômato vai do estado p para q sem ler um símbolo de entrada.

• Na figura temos um AFND-ε que aceita números decimais consistindo em:

- 1- Um sinal + ou opcional.
- 2- Um string de dígitos.
- 3- Um ponto decimal
- 4- Outro string de dígitos. Esse string de dígitos ou o string (2) podem ser vazios, mas pelo menos um dos dois strings deve ser não vazio.

Sola 1	3	+, -		0, 1, , 9
90	{q ₁ }	{q ₁ }	0	0
q_1	0	0	{q ₂ }	$\{q_1, q_4\}$
q_2	0	0	0	{q ₃ }
q ₃	{q ₅ }	0	0	(q ₃)
q ₃ q ₄	0	0	{q ₃ }	0
95	0	0	0	0

• Suponha um autômato que reconhece a soma de um inteiro positivo ou negativo com um decimal positivo.

• Acompanhar esse autômato com a expressão -12+2.6

- Mostre como o autômato finito não determinístico com transições vazias (AFND-ε) se comporta ao receber a palavra abc.
- Para isso, mostre os conjuntos de estados atingidos após a leitura de cada símbolo da palavra.
- Lembre-se de considerar as transições ε antes e depois de fazer a transição para os símbolos da palavra.

Exercício

a) Mostre como o autômato finito não-determinístico com transições vazias (AFND- ε) se comporta ao receber expressão 15 + 5.6

Referência desta aula

- MENEZES, P. B. Linguagens Formais e Autômatos. Editora SagraLuzzato, 2000.
- HOPCROFT, John E.; MOTWANI, Rajeey; ULLMAN, Jeffrey D. Introdução a teoria de autômatos, linguagens e computação. Rio de Janeiro: Campus, 2002.

FIM Obrigado