

C1100 应用业务流程手册_V1.5

此文档适用于如下产品

	后缀	蜂窝模式	GNSS	频段	TAF 封装
	MGGT	CatM/NB/GPRS	支持	全球频段	支持
C1100	NGGT	NB 单模	支持	全球频段	支持
C1100	MGCX	CatM/NB/GPRS	支持	国内全网通	不支持
	NGCX	NB 单模	支持	国内全网通	不支持

目录

Ι.	引音	5
	1.1. 文档目的	5
	1.2. 内容一览	5
	1.3. 相关文档	5
	1.4. 修订记录	6
	1.5. 缩略语	6
2.	简介	8
3.	基本业务流程	9
	3.1. 初始化流程	9
	3.2. 开机流程	10
	3.2.1. 输入 PIN 码开机流程	10
	3.2.2. 正常开机流程	11
	3.3. 数据链接流程	12
	3.3.1. TCP/IP 数据传输	12
	3.3.1.1. TCP/IP 链路建立	12
	3.5.1.2. TCP/IP 链路断开	13
	3.3.2. 透传功能	14
	3.3.3. PPP 拨号方式	16
	3.4 GPS 业务流程	17
	3.5 LWM2M 业务流程	18
	3.5.1 配置单个服务器	18
	3.5.2 配置多个服务器	19
	3.6 MQTT 业务流程	
	3.6.1 MQTT 连接服务器配置	20
	3.6.2 MQTT 订阅主题配置	21
	3.6.3 MQTT 退订主题流程	
	3.6.4 MQTT 发布主题流程	22
	3.6.5 MQTT 断开连接	22
	3.7 HTTP 业务流程	
	3.7.1 HTTP 设置 http url	23
	3.7.2 HTTP 配置 head 参数	23
	3.7.3 HTTP GET 服务器内容	24
	3.7.4 HTTP POST 命令流程	25
	3.8 低功耗业务流程	26
	3.8.1 PSM 业务流程	26
	3.8.2 eDRX 业务流程	27

表格

表	1	:	版本修订记录	6
表	2	:	缩略语描述对照表	6
表	3	:	C1100 MGGT/C1100 MGCX 频段配置	8
表	4	:	C1100 NGGt/C1100 NGCX 频段配置	8

图表

冬	1 :	:	初始化流程图	9
图	2	:	PIN 码开机流程图	. 10
冬	3	:	正常开机流程图	. 11
冬	4	:	TCP/IP 链路建立流程图	.12
冬	5	:	TCP/IP 链路断开流程图	. 13
冬	6	:	透传功能流程图	. 14
图	7	:	PPP 拨号流程图	. 16
冬	8	:	GPS 业务流程图	. 17
			配置单个服务器业务流程图	
冬	10	:	配置多个服务器业务流程图	. 19
冬	11	:	连接 MQTT 服务器流程图	. 20
冬	12	:	订阅主题流程图	.21
			退订主题流程图	
冬	14	:	发布主题流程图	. 22
冬	15	:	断开 MQTT 服务器流程图	. 23
图	16	:	配置 HTTP URL	. 23
冬	17	:	配置 http head 参数	. 23
图	18	:	http get 流程图	. 24
图	19	:	http post 流程	. 25

1. 引言

C1100 应用业务流程描述了 C1100 模块常见业务的处理流程,为客户端应用软件开发工程师提供参考。

1.1. 文档目的

该文档主要目的在于指导客户端应用软件开发人员方便使用 C1100 模块。本文对模块常见业 务推荐了相应的 AT 交互流程,协助开发人员尽快完成相关的应用开发。

1.2. 内容一览

本文共分为以下几部分:

- ◆ 第1章,主要介绍文档目的、相关资料、修订记录、缩略语解释等;
- ◆ 第2章,简单描述 C1100 模块的基本信息;
- ◆ 第3章,详细描述了C1100常见业务的流程图。

1.3. 相关文档

- ◆ C1100 模块规格说明
- ♦ C1100 AT 指令集
- ◆ C1100 模块硬件接口手册
- ◆ C1100 参考设计电路
- ♦ C1100 EVB 操作手册

1.4. 修订记录

表 1: 版本修订记录

版本	姓名	发布时间	修订描述
V1.0		2017-03-08	创建
V1.1		2017-03-10	修改
V1.2		2017-07-19	修改
V1.3		2017-07-19	修改
V1.3.1		2017-08-08	调整
V1.4		2017-08-23	增加 HTTP 相关内容
V1.5		2017-9-21	增加低功耗业务流程

1.5. 缩略语

表 2: 缩略语描述对照表

缩写	描述	中文描述
AMR	Adaptive Multi-rate	自适应多速率
BER	Bit Error Rate	误码率
BTS	Base Transceiver Station	基站收发信台
PCI	Peripheral Component Interconnect	外设部件互连
CS	Circuit Switched (CS) domain	电路域
CSD	Circuit Switched Data	电路交换数据
DCE	Data communication equipment	数据电路终端设备
DTE	Data terminal equipment	数据终端设备
DTR	Data Terminal Ready	数据终端就绪
EDGE	Enhanced Data rates for GSM Evolution	增强型 GPRS
EFR	Enhanced Full Rate	增强型全速率
EGSM	Enhanced GSM	增强型 GSM
EMC	Electromagnetic Compatibility	电磁兼容性
ESD	Electrostatic Discharge	静电释放
FR	Frame Relay	帧中继
GMSK	Gaussian Minimum Shift Keying	高斯最小移频键控
GPIO	General Purpose Input Output	通用输入/输出
GPRS	General Packet Radio Service	通用分组无线系统
GSM	Global Standard for Mobile Communications	全球标准移动通信系统
HR	Half Rate	半速
HSDPA	High Speed Downlink Packet Access	高速下行分组接入
HSUPA	High Speed Uplink Packet Access	高速上行分组接入
HSPA	HSPA High-Speed Packet Access	高速分组接入
IEC	International Electro-technical Commission	国际电工技术委员会

IMEI	International Mobile Equipment Identity	国际移动设备标识		
I/O	Input/Output	输入/输出		
ISO	International Standards Organization	国际标准化组织		
ITU	International Telecommunications Union	国际电信联盟		
bps	bits per second	比特每秒		
LED	Light Emitting Diode	发光二极管		
LTE	Long Term Evolution	长期演进		
M2M	Machine to machine	机器到机器		
МО	Mobile Originated	移动台发起的		
MT	Mobile Terminated	移动台终止的		
NTC	Negative Temperature Coefficient	负温度系数		
PC	Personal Computer	个人计算机		
PCB	Printed Circuit Board	印制电路板		
PCS	Personal Cellular System	个人蜂窝系统		
PCI	Peripheral Component Interconnect	外设部件互连		
PCM	Pulse Code Modulation	脉冲编码调制		
PCS	Personal Communication System	GSM1900		
PDU	Packet Data Unit	分组数据单元		
PPP	Point-to-point protocol	点到点协议		
PS	Packet Switched	分组交换		
QPSK	Quadrate Phase Shift Keying	正交相位移频键控		
SIM	Subscriber Identity Module	用户识别模块		
TCP/IP	Transmission Control Protocol/ Internet Protocol	传输控制协议/互联网协议		
UART	Universal asynchronous receiver-transmitter	通用异步收/发器(机)		
USIM	Universal Subscriber Identity Module	通用用户识别模块		
UMTS	Universal Mobile Telecommunications System	通用移动通信系统		
USB	Universal Serial Bus	通用串行总线		
WCDMA	Wideband Code Division Multiple Access	宽带码分多址		

2. 简介

C1100 无线模块是一款适用于 LTE Cat.M1/LTE NB1/EGPRS 多种网络制式的无线终端产品。

C1100 模块支持多种频段:

表 3: C1100 MGGT/C1100 MGCX 频段配置

	C1100 MGGT
FDD-LTE eMTC	B1/B2/B3/B4/B5/B8/B12/B13/B17/B18/B19/B20/B26/B28
TDD-LTE eMTC	B39
分集接收	不支持
NB-IoT	B1/B2/B3/B4/B5/B8/B12/B13/B17/B18/B19/B20/B26/B28
EGPRS	B2/B3/B5/B8
GNSS	GPS+BeiDou+GLONASS

表 4: C1100 NGGt/C1100 NGCX 频段配置

,	
	C1100 NGGT
分集接收	不支持
NB-IoT	B1/B2/B3/B4/B5/B8/B12/B13/B17/B18/B19/B20/B26/B28
GNSS	GPS+BeiDou+GLONASS

C1100 本身支持AT命令扩展以及QMI接口规范,可以实现用户个性化定制方案。

C1100 支持LTE 低速接入,可广泛应用于移动宽带接入、视频监控、手持终端、车载设备等产品。

3. 基本业务流程

本文档主要对初始化、开关机、以及PPP连接等基本业务进行了描述,文档中所描述的流程图均为选取的典型流程图,涉及的AT指令详见《C1100 AT指令集》。

3.1. 初始化流程

图 1: 初始化流程图

- 1) 对模块开机;
- 2) AP 端输入"ATV0\r"返回"0\r",(ATV 指令决定返回 result code 是数字格式还是字符格式,ATV0 返回为数字格式,其中 0 表示 OK, 1 表示 CONNECT, 2 表示 RING, 3 表示 NO CARRIER, 4 表示 ERROR),具体可参考协议 27007; ATV1 返回为字符格式,此为模块缺省设置,可选择输入指令);本手册以 ATV0 格式进行举例说明;
- 3) AP 端输入"AT+CPIN?\r"返回"+CPIN: READY\r\n\0\r"的上报,该上报表示不需要提供密码;
- 4) AP 端输入"AT+CSQ\r"返回"+CSQ: 22,99\r\n\0\r"的上报,该命令为信号查询命令;
- 5) AP 端输入"AT+CEREG=1\r",返回"0\r",该命令用于设置网络注册信息自动上报。当 网络注册信息发生变化时,AP 会收到上报信息+CEREG: <stat>信息。(其中参数 <stat> 表示 0:未注册;1:已注册;2:未注册,但 ME 正在搜索注册业务的新运营商;3:注册被拒绝;4:未知;5:已注册,漫游;8:紧急呼叫状态);
- 6) AP 端输入"AT+CGREG=1\r",返回"0\r",该命令用于设置 GPRS 网络注册信息自动上报。当网络注册信息发生变化时,AP 会收到上报信息+CGREG: <stat>信息。(其中参

数<stat>表示 0:未注册; 1:注册到本地网络; 2:未注册,但 ME 正在搜索注册业务的新运营商; 3:注册被拒绝; 4:未知; 5:已注册,漫游; 8:紧急呼叫状态);

7) AP 端输入"AT+COPS?\r",返回"+COPS: 0,2,"46000",0\r\n\0\r",该命令为查询当前注册的网络运营商。

(注:对于不同的 SIM 卡,以及当地的网络覆盖情况不同,这个返回参数会有不同,请参考 AT 指令集关于 AT+COPS 指令)。

3.2. 开机流程

3.2.1. 输入 PIN 码开机流程

图 2: PIN 码开机流程图

- 1) 对模块开机;
- 2) AP 端输入 "AT+CPIN?\r",返回 "+CPIN:SIM PIN \r\n\0\r", 查询得出 PIN 码已锁,等待提供 PIN 码;

执行输入 PIN 码操作,AP 端输入"AT+CPIN="****"\r",返回"0\r"。其中"****"为 SIM 卡 PIN 码。

3.2.2. 正常开机流程

图 3: 正常开机流程图

- 1) 对模块开机;
- 2) AP 端输入"ATV0\r"返回"0\r",(ATV 指令决定返回 result code 是数字格式还是字符格式,ATV0 返回为数字格式,其中 0 表示 OK, 1 表示 CONNECT, 2 表示 RING, 3 表示 NO CARRIER, 4 表示 ERROR),具体可参考协议 27007; ATV1 返回为字符格式,此为模块缺省设置,可选择输入指令):本手册以 ATV0 格式进行举例说明:
- 4) AP 端输入"AT+CSQ\r"返回"+CSQ: 22,99\r\n\0\r"的上报,该命令为信号查询命令;
- 5) AP 端输入"AT+CEREG=1\r",返回"0\r",该命令用于设置网络注册信息自动上报。当 网络注册信息发生变化时,AP 会收到上报信息+CEREG: <stat>信息。(其中参数 <stat> 表示 0:未注册;1:已注册;2:未注册,但 ME 正在搜索注册业务的新运营商;3:注册被拒绝;4:未知;5:已注册,漫游;8:紧急呼叫状态);
- 6) AP 端输入"AT+CGREG=1\r",返回"0\r",该命令用于设置 GPRS 网络注册信息自动上报。当网络注册信息发生变化时,AP 会收到上报信息+CGREG: <stat>信息。(其中参数<stat>表示 0:未注册;1:注册到本地网络;2:未注册,但 ME 正在搜索注册业务的新运营商;3:注册被拒绝;4:未知;5:已注册,漫游;8:紧急呼叫状态);
- 7) AP 端输入"AT+COPS?\r",返回"+COPS: 0,2,"46000",0\r\n\0\r",该命令为查询当前注册的网络运营商。

(注:对于不同的 SIM 卡,以及当地的网络覆盖情况不同,这个返回参数会有不同,请参考 AT 指令集关于 AT+COPS 指令)。

3.3. 数据链接流程

3.3.1. TCP/IP 数据传输

3.3.1.1. TCP/IP 链路建立

图 4: TCP/IP 链路建立流程图

- 1) AP 端输入"AT+LSIPPROFILE=1,"CMNET"\r",返回"0\r",此为 TCPIP 相关 PDP 文件 定义,设置中国移动的 APN: CMNET;
 - 注: 具体 APN 应和当地的运营商联系获取,根据实际的 APN 进行设置。
- 2) AP 端输入"AT+LSIPCALL=1\r", 返回 "+LSIPCALL:1, 10.32.226.112\r+LSIP:OK\r\0\r", 该命令为实现 PPP 连接

(其中 1 表示处于连接状态: 10.32.226.112 为网络侧分配的 IP 地址);

- 3) AP 端输入"AT+LSIPCALL?\r",返回"+LSIPCALL: 1, 10.32.226.112\r\n\0\r",此 为查询 PPP 连接状态:
- 4) AP 端输入"AT+LSIPOPEN=1,5000,"223.47.251.33",60000,0\r",返回 "+LSIPOPEN=1,1\r+LSIP:OK\r\0\r",此为初始化连接远程主机的新 SOCKET。(其中1:表示 SOCKET ID;5000:是设置本端的端口号;"223.47.251.33":是远程主机的 IP 地址;60000:是远程主机所建立的可供连接的端口号;0:TCP协议)。而返回 "+LSIPOPEN=1,1\r\0\r"表示与远程主机的新 SOCKET 连接建立成功;
- 5) AP 端输入"AT+LSIPOPEN? \r",返回"+LSIPOPEN:2,3,4\r\n\0\r",此为查询当前 SOCKET_ID 列表。返回所列出的为当前尚未被激活的 SOCKET ID。可以看出,少了 SOCKET 1,说明与远程主机所建立的连接 SOCKET 1 成功,也可以用此命令来查询当 前活跃的 SOCKET 连接;
- 6) AP 端输入"AT+LSIPHEX=1\r", 返回"\0\r", 该命令为设置以 HEX 形式收发数据;
- 7) AP 端输入"AT+LSIPSEND=1,"313233"\r", 返回"+LSIPSEND:1,1497\r\n\0\r", 此命令为发送数据到 SOCKET 缓存中, 所发送的数据为十六进制的 ASCII 值。所以发送的"313233"实际为"123"。而返回值中的第二位表示剩余缓存的大小,缓存总值为 1500 字节,发送 3 字节数据,所以返回值剩余为 1497 字节:
- 8) AP 端输入"AT+LSIPPUSH=1\r",返回"+LSIP:OK \r\0\r"此命令为发送缓存数据到 远程主机:
- 9) C1100 收到远程主机发送的数据后,以"+LSIPRTCP=1,3,313233\r"的形式上报给AP。其中"313233"为远程主机所发送的数据内容。

3.5.1.2. TCP/IP 链路断开

图 5: TCP/IP 链路断开流程图

- 1) AP 端输入"AT+LSIPCLOSE?\r", 返回"+LSIPCLOSE:1\r\n\0\r",从返回值看到,当前存在 1 个活跃的 socket 连接;
- 2) AP 端输入"AT+LSIPCLOSE =1\r", 返回"+LSIPCLOSE:1,3,3,0\r+LSIP:OK\r\0\r",此命令为关闭 socket 连接 1,命令

的返回值会将该链接在活跃时的一些信息进行上报。从返回值可看到:

- 1- socket ID
- 3- send data (该连接发送数据的大小)
- 3- receive data (该链接收到数据的大小):
- 3) AP 端输入"AT+LSIPCALL=0\r",返回"+LSIPCALL:0\r+LSIP:OK\r\0\r",此命令为断开 PPP 连接(返回参数 0 为<stat>0:处于断开状态; 1:处于连接状态)。

3.3.2. 透传功能

图 6: 透传功能流程图

- 1) AP 端输入"AT+LSIPPROFILE=1,"CMNET"\r",返回"0\r",此为 TCPIP 相关 PDP 文件 定义,设置中国移动的 APN: CMNET;
 - 注: 具体 APN 应和当地的运营商联系获取,根据实际的 APN 进行设置。
- 2) AP 端输入"AT+LSIPCALL=1\r", 返回
 - " +LSIPCALL:1, 10.34.41.70\r +LSIP:OK\r\0\r", 该命令为实现 PPP 连接

(其中 1 表示处于连接状态: 10.34.41.70 为网络侧分配的 IP 地址);

- AP 端输入"AT+LSIPCALL?\r",返回
 "+LSIPCALL:1,10.34.41.70\r\n\0\r", 此为查询 PPP 连接状态;
- 4) AP 端 输 入 "AT+LSIPOPEN=1,5000,"223.47.251.33",60000,0\r", 返 回 "+LSIPOPEN=1,1\r+LSIP:OK\r\0\r",此为初始化连接远程主机的新 SOCKET。(其中1:表示 SOCKET ID;5000:是设置本端的端口号;"223.47.251.33":是远程主机的 IP 地址;60000:是远程主机所建立的可供连接的端口号;0:TCP 协议)。而返回 "+LSIPOPEN=1,1\r\0\r"表示与远程主机的新 SOCKET 连接建立成功;
- 5) AP 端输入"AT+LSIPOPEN? \r",返回"+LSIPOPEN:2,3,4\r\n\0\r",此为查询当前 SOCKET_ID 列表。返回所列出的为当前尚未被激活的 SOCKET ID。可以看出,少了 SOCKET 1 说明与远程主机所建立的连接 SOCKET 1 成功,也可以此命令来查询当前 活跃的 SOCKET 连接;
- 6) AP 端输入"AT+LSIPHEX=0\r", 返回"\0\r", 该命令为设置以字符形式收发数据;
- 7) AP 端输入"AT+LSIPTPS=1,1,5000,600",返回">",该命令为使用配置的模式透传数据

AT+LSIPTPS = < Mode>[, < Socket_id>[, < timeout> [, < Max_len>]]] 表 7: AT+LSIPTPS 参数描述

参数	取值	说明
<mode></mode>	1	确认模式,输入+++结束输入并发送
	2	超时模式 (暂时不支持)
	3	buff full 模式,当输入超过最大设定长度时,截断并发送
	4	自动模式 (不支持)
<socket_id></socket_id>	-	选定发送的socket id
<timeout></timeout>	-	超时时间
<max_len></max_len>	-	一次最大发送的字节数

输入完该 AT 命令后 C1100 会返回一个">"符号, 然后可以继续输入需要发送的数据, C1100 不会回显所发送的数据,输入+++退出透传模式,之前的数据即可被发送(不包括+++),数据发送成功后,则收到上报信息"\r+LSIP:OK\r\0\r";

8) C1100 收到远程主机发送的数据后,以"+LSIPRTCP=1,4,abcd\r"的形式上报给 AP。 其中"abcd"为远程主机所发送的数据内容。

3.3.3. PPP 拨号方式

图 7: PPP 拨号流程图

- 1) AP 端输入"AT+MODODREX=2\r"设置搜网模式为自动模式。其他模式请参考 C1100 AT 指令集:
- 2) AP端输入"AT+CDGCONT=1,"IP","3GNET"\r"设置PDP上下文(此处以中国联通APN: "3GNET"为例):

注: 具体 APN 应和当地的运营商联系获取,根据实际的 APN 进行设置。

- 3) AP 端输入"ATD*99#"拨号;
- 4) 开始 PPP 协商;
- 5) PPP 协商,协商成功后获取 IP 地址,可正常进行网络数据交互;
- 6) 挂断 PPP 拨号 (可通过 AT 端口下发 ATH 挂断命令, 挂断 PPP 拨号);
- 7) PPP 连接断链。

3.4 GPS 业务流程

图 8: GPS 业务流程图

- 1) AP 端输入"AT+GPSMODE=1\r"设置 GPS 模式;
- 2) AP 端输入"AT+GPSCONFIG=20,180,9999999,1,2,1\r"配置 GPS 的相关参数;
- 3) AP 端输入"AT+ GPSSTART\r"启动 GPS;
- 4) AP 端输入"AT+GPSEND"结束 GPS。

3.5 LWM2M 业务流程

3.5.1 配置单个服务器

图 9: 配置单个服务器业务流程图

- 1) AP 端输入"AT+LWMTM=3,"5.39.83.206:5683"\r"设置 ID102 服务器;
- 2) AP 端输入"AT+LWMTM=1\r"配置自动启动 LWM2M 功能;
- 3) AP 端输入"AT+ CFUN=1,1\r"重启;
- 4) AP 重启后自动连接服务器。

3.5.2 配置多个服务器

图 10: 配置多个服务器业务流程图

- 1) AP 端输入"AT+LWMTM=3,"5.39.83.206:5683"\r"设置 ID102 服务器;
- 2) AP 端输入"AT+LWMTM=4,"5.39.83.205:5683"\r"设置 ID101 服务器;
- 3) AP 端输入"AT+LWMTM=5,"5.39.83.204:5683"\r"设置 ID1000 服务器;
- 4) AP 端输入"AT+LWMTM=1\r"配置自动启动 LWM2M 功能;
- 5) AP 端输入"AT+ CFUN=1,1\r"重启;
- 6) AP 重启后自动连接多个服务器。

3.6 MQTT 业务流程

3.6.1 MQTT 连接服务器配置

图 11: 连接 MQTT 服务器流程图

AP 端可通过 AT+LSMQTTCFG 来配置各种参数。

其中 clientid 为必须、username 和 password 看服务器需求选配、如果需要设置意外中断, 服务器自动发送,可配置 topic/message/gos/retained。之后通过 AT+LSMQTTCALL=1 激活数据业务,再通过{AT+LSMQTTOPEN="183.230.40.39",6002,60}连接 MQTT 服 务器。

3.6.2 MQTT 订阅主题配置

图 12: 订阅主题流程图

- 1) 使用 AT+LSMQTTCFG 配置 topic、qos 两项;
- 2) 可通过 AT+LSMQTTSUB?来查看当前参数和内容;
- 3) 通过 AT+LSMQTTSUB=1 订阅主题。

3.6.3 MQTT 退订主题流程

图 13: 退订主题流程图

- 1) 使用 AT+LSMQTTCFG 配置 topic 项;
- 2) 可通过 AT+LSMQTTSUB?来查看当前参数和内容;

3) 通过 AT+LSMQTTSUB=0 退订主题。

3.6.4 MQTT 发布主题流程

图 14: 发布主题流程图

- 1) 使用 AT+LSMQTTCFG 配置 topic、message、retained 和 qos 四项;
- 2) 可通过 AT+LSMQTTPUB?来查看当前参数和内容;
- 3) 通过 AT+LSMQTTPUB=1 发布主题。

3.6.5 MQTT 断开连接

图 15: 断开 MQTT 服务器流程图

▶ 使用 AT+LSMQTTCLOSE=1 来断开 MQTT 服务器。

3.7 HTTP 业务流程

3.7.1 HTTP 设置 http url

图 16: 配置 HTTP URL

- 1) AP 端可通过 AT+LSHTTPURL 来配置各种 URL:
- 2) 如果设置的长度大于 URL 实际长度时,输入完 URL 要以+++结尾。

3.7.2 HTTP 配置 head 参数

图 17: 配置 http head 参数

- ▶ headname 为 http 通用头名称,如"Connection"
- ▶ value 为其对应的值,"keep-alive"

可以同时使用该命令配置多个 head 参数。

注: 如果是配置 CONTENTTYPE 的值,可用 AT+LSHTTPCFG:"contenttype",0 来

配置。

♦ value 0: application/x-www-form-urlencoded

♦ value 2: application/octet-stream

value 4: application/json

→ value 5: 其他值,参考 at+Ishttpheaderinfo 配置

3.7.3 HTTP GET 服务器内容

图 18: http get 流程图

其中:

- ♦ 0---表示解析成功
- ◆ 200---表示 http 状态码
- ◆ 1724---表示应答内容的长度
- → <context>---表示 http 服务器应答的 body 内容

注:必须在之前配置好 HTTP URL。

3.7.4 HTTP POST 命令流程

图 19: http post 流程

其中:

- ◆ 0---表示解析成功
- ◆ 200---表示 http 状态码
- ◆ 2---表示应答内容的长度
- ◆ <content>---表示 http 服务器应答的 body 内容

注:必须在之前配置好 HTTP URL。

3.8 低功耗业务流程

3.8.1 PSM 业务流程

- 1. AP 端可通过 AT+CEREG=4 设置 PSM 相关非请求结果码的显示,详见 AT 命令手册。
 - 2. 设置终端请求的 PSM T3412 和 T3324 时间参数。
 - 3. AP 端可以通过 AT+CPSMS?命令查询终端设置的 PSM 时间参数。
- 4. 终端 Attach 流程和 TAU 流程结束后,会主动上报网络状态非请求结果码,其中包含 PSM 时间参数。
 - 5. AP 端可以通过 AT+CEREG?查询网络下发的 PSM 时间参数。

- 6. 终端数据业务结束后,会上报^DATADISCONN 命令表示 RRC Release 进入 RRC Idle 态。
- 7. RRC Release 后 T3324 定时器超时后终端进入 PSM 状态,并上报 ^ENTERPSMMODE 非请求结果码。
- 8. T3412 定时器超时或 AP 端主动退出 PSM, 终端会上报^EXITPSMMODE 非请求结果码。

3.8.2 eDRX 业务流程

- 1. AP 端通过 AT+CEDRXS 命令打开 LTE NB 网络的 eDRX 功能,并设置 eDRX 周期时间参数。
- 2. AP 端可以通过 AT+CEDRXS?命令查询终端设置的 eDRX 参数。

3.	AP 端可以通过	AT+CEDRXRDP	命令查询网络下发的	eDRX	周期和	PTW	时间参数。
----	----------	-------------	-----------	-------------	-----	-----	-------