HPC03ex05 - Florian Schrittwieser, Davit Melkonyan, Simon Pavicic

5.1 Heat Relaxation II - Parallel implementation based on 1D-row partitioning:

5.2 Heat Relaxation II - Experiments:

			Time /	iteration			
Grid size	Sequential	NP = 2	NP = 4	NP = 6	NP = 8	NP = 10	NP = 12
128x128	0.00027	0.000185	0.00087	0.000098	0.000067	0.000067	0.000073
512x512	0.003814	0.002443	0.001522	0.000824	0.000654	0.000491	0.000497
1024x102 4	0.013497	0.999432	0.004829	0.003269	0.002187	0.00202	0.001728
2048x204 8	0.051446	3.996949	2.000642	1.004163	1.000012	0.997804	0.998925
4096x409 6	0.206253						
		Speedup (c	ompared to s	sequential exe	ecution time)		
Grid size	Sequential	NP = 2	NP = 4	NP = 6	NP = 8	NP = 10	NP = 12
128x128	1	1.4594594 59	0.3103448 276	2.7551020 41	4.0298507 46	4.0298507 46	3.6986301 37
512x512	1	1.5611952 52	2.5059132 72	4.6286407 77	5.8318042 81	7.7678207 74	7.6740442 66
1024x102 4	1	0.0135046 7065	2.7949886 1	4.1287855 61	6.1714677 64	6.6816831 68	7.8107638 89
2048x204 8	1	0.0128713 176	0.0257147 4557	0.0512327 1819	0.0514453 8266	0.0515592 2406	0.0515013 6397
4096x409 6	1						

Efficiency (compared to sequential execution time)										
Grid size	Sequential [%]	NP = 2	NP = 4	NP = 6	NP = 8	NP = 10	NP = 12			
128x128	100	72.972972 97	7.7586206 9	45.918367 35	50.373134 33	40.298507 46	30.821917 81			
512x512	100	78.059762 59	62.647831 8	77.144012 94	72.897553 52	77.678207 74	63.950368 88			
1024x102 4	100	0.6752335 326	69.874715 26	68.813092 69	77.143347 05	83.521039 6	97.634548 61			
2048x204 8	100	0.6435658 799	0.6435658 799	0.6435658 799	0.6435658 799	0.6435658 799	0.6435658 799			
4096x409 6	100									

Speedup

As shown in the diagrams above, a significant speed-up of the runtime can be achieved by parallelizing the task and using a higher number of processes. The difference is especially significant for larger grid sizes. It is however hard to achieve high efficiency for the parallelized solution.

5.3 Heat Relaxation II - Tracing:

- The stencil is a memory and computation-heavy task, therefore we would expect
 most time to be spent on stencil computations. However, we would also assume that
 the communication of the ranks (processes) will use a considerable amount of
 computation performance.
- 2. The performed experiments meet our expectations since smaller workloads take longer with a rising number of tasks since the communication overhead starts to increase. For larger workloads, we reach speedups approximately proportional to the number of tasks.
- 3. -
- 4. Yes, Score-P helped us better understand our program.

5.4 Willingness to Present:

Willing to present 5.1, 5.2, and 5.3.