Lista 2

10 de maio de 2025

- 1. Seja X um espaço normal. Prove que, dados dois fechados disjuntos $A \subset X$ e $B \subset X$, existem abertos U e V em X tais que $A \subset U$, $B \subset V$ e $\overline{U} \cap \overline{V} = \emptyset$.
- 2. Prove que a única topologia T_1 em um conjunto finito X é a topologia discreta.
- 3. (Quali-Fevereiro 2021) Seja $X = \{p, q\}$ um conjunto com dois pontos. Construa topologias $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3$ em X, tais que:
 - (a) (X, \mathcal{T}_1) seja Hausdorff;
 - (b) (X, \mathcal{T}_2) seja regular, mas não seja Hausdorff;
 - (c) (X, \mathcal{T}_3) não seja regular nem Hausdorff.
- 4. Verdadeiro ou Falso
 - (a) Seja $K\subset X$ um subespaço compacto de um espaço topológico X. Prove que o fecho de K em X, denotado por \overline{K} , é compacto.
 - (c) Todo conjunto compacto é fechado.
 - (d) Se $p_1: X \times Y \to X$ é a projeção no primeiro fator, então p_1 é uma aplicação fechada.
- 5. (Quali-Fevereiro 2022) Seja $A\subset X$ um subconjunto de um espaço topológico. Denote por $Y=(X\setminus A)\cup\{A\}$ (notar que $\{A\}$ é um conjunto com exatamente um elemento). Defina a aplicação $\pi:X\to Y$ por

$$\pi(x) = \begin{cases} x & \text{se } x \notin A, \\ \{A\} & \text{se } x \in A. \end{cases}$$

Considere Y com a topologia quociente.

- (a) Mostrar que, se $F \subset X$ é fechado e $F \cap A = \emptyset$, então $\pi(F)$ é fechado em Y.
- (b) Mostrar que, se Y é Hausdorff, então A é fechado em X.
- 6. (Quali-Fevereiro 2022) Sejam X e Y espaços topológicos, com Y compacto. Se V é um subespaço aberto de $X \times Y$ contendo o conjunto $\{x_0\} \times Y$, então existe uma vizinhança aberta W de x_0 em X tal que $W \times Y \subseteq V$.
- 7. (Quali-Agosto 2024) Seja X um conjunto infinito munido da topologia cofinita, isto é, os abertos não vazios de X são complementos de subconjuntos finitos. Mostre que todo subespaço de X é compacto e que todo aberto não vazio de X é denso.
- 8. Mostre que, se Y é compacto, então a projeção $\pi: X \times Y \longrightarrow X$ é uma aplicação fechada.
- 9. (Quali-Fevereiro 2023) Sejam X e Y espaços topológicos e seja $f: X \to Y$ uma função, com Y compacto e Hausdorff. Mostre que f é contínua se, e somente se, o gráfico de f,

$$G_f := \{(x, f(x)) : x \in X\},\$$

- é fechado em $X \times Y$ (usar o exercício anterior).
- 10. Seja $p:X\to Y$ uma aplicação contínua, fechada e sobrejetora tal que $p^{-1}(\{y\})$ é compacto para todo $y\in Y$. Mostre que, se Y é compacto, então X é compacto.
- 11. Exercícios do Munkres:
 - Seção 30: 1, 2, 3 e 14
 - Seção 33: 3, 5 e 8