Álgebra II Práctica (clase 5)

Guido Arnone

Universidad de Buenos Aires

28 de Abril de 2020

Prerrequisitos

Para leer estas diapositivas se recomienda haber leído el apunte teórico hasta la Sección 1.6.

Vamos a relacionar las definiciones de grupo normal y cociente con la noción de sistema de generadores de un grupo.

Vamos a relacionar las definiciones de grupo normal y cociente con la noción de sistema de generadores de un grupo.

Recordemos que dado un grupo G, un subconjunto $S \subset G$ es un sistema de generadores de G si todo elemento de G se puede escribir como un producto de elementos de G o sus inversos.

Vamos a relacionar las definiciones de grupo normal y cociente con la noción de sistema de generadores de un grupo.

Recordemos que dado un grupo G, un subconjunto $S \subset G$ es un sistema de generadores de G si todo elemento de G se puede escribir como un producto de elementos de G o sus inversos. Concretamente, si G0 entonces existen G1, ..., G2, G3 y G4, ..., G5 y G6 entonces existen G6 y G7.

$$g = s_1^{\varepsilon_1} \cdots s_n^{\varepsilon_n}$$
.

Vamos a relacionar las definiciones de grupo normal y cociente con la noción de sistema de generadores de un grupo.

Recordemos que dado un grupo G, un subconjunto $S \subset G$ es un sistema de generadores de G si todo elemento de G se puede escribir como un producto de elementos de G o sus inversos. Concretamente, si G0 entonces existen G1, ..., G2, G3 y G4, ..., G5 y G6 entonces existen G6 y G7.

$$g=s_1^{\varepsilon_1}\cdots s_n^{\varepsilon_n}.$$

Equivalentemente, es $G = \langle S \rangle = \bigcap_{S \subset H \leq G} H$.

Vamos a relacionar las definiciones de grupo normal y cociente con la noción de sistema de generadores de un grupo.

Recordemos que dado un grupo G, un subconjunto $S\subset G$ es un sistema de generadores de G si todo elemento de G se puede escribir como un producto de elementos de G o sus inversos. Concretamente, si G0 entonces existen G1, ..., G2, G3 y G4, ..., G5 y G5 y G6 tales que

$$g=s_1^{\varepsilon_1}\cdots s_n^{\varepsilon_n}.$$

Equivalentemente, es $G = \langle S \rangle = \bigcap_{S \subset H \leq G} H$. Decimos también que G está generado por S.

Vamos a relacionar las definiciones de grupo normal y cociente con la noción de sistema de generadores de un grupo.

Recordemos que dado un grupo G, un subconjunto $S\subset G$ es un sistema de generadores de G si todo elemento de G se puede escribir como un producto de elementos de G o sus inversos. Concretamente, si G0 entonces existen G1, ..., G2, G3 y G4, ..., G5 y G5 y G6 tales que

$$g=s_1^{\varepsilon_1}\cdots s_n^{\varepsilon_n}.$$

Equivalentemente, es $G = \langle S \rangle = \bigcap_{S \subset H \leq G} H$. Decimos también que G está generado por S. Por ejemplo, el grupo S_n está generado por las transposiciones y el diedral D_n por los elementos que denotamos r y s.

Trabajar con generadores nos permite dar información sobre todo el grupo G analizando sólo lo que sucede para algunos elementos. Por ejemplo,

Trabajar con generadores nos permite dar información sobre todo el grupo G analizando sólo lo que sucede para algunos elementos. Por ejemplo,

Proposición

Sea G un grupo y S un conjunto de generadores. Un subgrupo H de G es normal si y solo si $sHs^{-1} \subset H$ y $s^{-1}Hs \subset H$ para todo $s \in S$.

Trabajar con generadores nos permite dar información sobre todo el grupo G analizando sólo lo que sucede para algunos elementos. Por ejemplo,

Proposición

Sea G un grupo y S un conjunto de generadores. Un subgrupo H de G es normal si y solo si $sHs^{-1} \subset H$ y $s^{-1}Hs \subset H$ para todo $s \in S$.

Demostración.

Si H es normal, ya sabemos que $gHg^{-1} \subset H$ para todo $g \in G$, lo que debemos ver es la recíproca.

Trabajar con generadores nos permite dar información sobre todo el grupo G analizando sólo lo que sucede para algunos elementos. Por ejemplo,

Proposición

Sea G un grupo y S un conjunto de generadores. Un subgrupo H de G es normal si y solo si $sHs^{-1} \subset H$ y $s^{-1}Hs \subset H$ para todo $s \in S$.

Demostración.

Si H es normal, ya sabemos que $gHg^{-1}\subset H$ para todo $g\in G$, lo que debemos ver es la recíproca. Tomemos $h\in H,g\in G$ y escribamos $g=s_1^{\varepsilon_1}\cdots s_n^{\varepsilon_n}$.

Trabajar con generadores nos permite dar información sobre todo el grupo G analizando sólo lo que sucede para algunos elementos. Por ejemplo,

Proposición

Sea G un grupo y S un conjunto de generadores. Un subgrupo H de G es normal si y solo si $sHs^{-1} \subset H$ y $s^{-1}Hs \subset H$ para todo $s \in S$.

Demostración.

Si H es normal, ya sabemos que $gHg^{-1}\subset H$ para todo $g\in G$, lo que debemos ver es la recíproca. Tomemos $h\in H, g\in G$ y escribamos $g=s_1^{\varepsilon_1}\cdots s_n^{\varepsilon_n}$. En estos términos, debe ser $g^{-1}=s_n^{-\varepsilon_n}\cdots s_1^{-\varepsilon_1}$.

Trabajar con generadores nos permite dar información sobre todo el grupo G analizando sólo lo que sucede para algunos elementos. Por ejemplo,

Proposición

Sea G un grupo y S un conjunto de generadores. Un subgrupo H de G es normal si y solo si $sHs^{-1} \subset H$ y $s^{-1}Hs \subset H$ para todo $s \in S$.

Demostración.

Si H es normal, ya sabemos que $gHg^{-1}\subset H$ para todo $g\in G$, lo que debemos ver es la recíproca. Tomemos $h\in H, g\in G$ y escribamos $g=s_1^{\varepsilon_1}\cdots s_n^{\varepsilon_n}$. En estos términos, debe ser $g^{-1}=s_n^{-\varepsilon_n}\cdots s_1^{-\varepsilon_1}$. Ahora, por hipótesis $h_1=s_n^{\varepsilon_n}hs_n^{-\varepsilon_n}$ es un elemento de H.

Trabajar con generadores nos permite dar información sobre todo el grupo G analizando sólo lo que sucede para algunos elementos. Por ejemplo,

Proposición

Sea G un grupo y S un conjunto de generadores. Un subgrupo H de G es normal si y solo si $sHs^{-1} \subset H$ y $s^{-1}Hs \subset H$ para todo $s \in S$.

Demostración.

Si H es normal, ya sabemos que $gHg^{-1}\subset H$ para todo $g\in G$, lo que debemos ver es la recíproca. Tomemos $h\in H, g\in G$ y escribamos $g=s_1^{\varepsilon_1}\cdots s_n^{\varepsilon_n}$. En estos términos, debe ser $g^{-1}=s_n^{-\varepsilon_n}\cdots s_1^{-\varepsilon_1}$. Ahora, por hipótesis $h_1=s_n^{\varepsilon_n}hs_n^{-\varepsilon_n}$ es un elemento de H. Del mismo modo $h_2=s_{n-1}^{\varepsilon_{n-1}}h_1s_{n-1}^{-\varepsilon_{n-1}}$ también está en H.

Trabajar con generadores nos permite dar información sobre todo el grupo G analizando sólo lo que sucede para algunos elementos. Por ejemplo,

Proposición

Sea G un grupo y S un conjunto de generadores. Un subgrupo H de G es normal si y solo si $sHs^{-1} \subset H$ y $s^{-1}Hs \subset H$ para todo $s \in S$.

Demostración.

Si H es normal, ya sabemos que $gHg^{-1}\subset H$ para todo $g\in G$, lo que debemos ver es la recíproca. Tomemos $h\in H, g\in G$ y escribamos $g=s_1^{\varepsilon_1}\cdots s_n^{\varepsilon_n}$. En estos términos, debe ser $g^{-1}=s_n^{-\varepsilon_n}\cdots s_1^{-\varepsilon_1}$. Ahora, por hipótesis $h_1=s_n^{\varepsilon_n}hs_n^{-\varepsilon_n}$ es un elemento de H. Del mismo modo $h_2=s_{n-1}^{\varepsilon_{n-1}}h_1s_{n-1}^{-\varepsilon_{n-1}}$ también está en H.Repetimos el proceso hasta llegar a que

$$ghg^{-1} = s_1^{\varepsilon_1} \cdots s_n^{\varepsilon_n} h s_n^{-\varepsilon_n} \cdots s_1^{-\varepsilon_1}$$

pertenece a H, como queríamos ver.

Ejercicio

El resultado anterior es falso si pedimos solamente que s $Hs^{-1} \subset H$ para todo $s \in S$. Justificar por qué la demostración anterior no es correcta si sólo tenemos esta hipótesis.

Ejercicio

El resultado anterior es falso si pedimos solamente que s $Hs^{-1} \subset H$ para todo $s \in S$. Justificar por qué la demostración anterior no es correcta si sólo tenemos esta hipótesis.

Algunas consecuencias inmediatas:

Ejercicio

El resultado anterior es falso si pedimos solamente que s $Hs^{-1} \subset H$ para todo $s \in S$. Justificar por qué la demostración anterior no es correcta si sólo tenemos esta hipótesis.

Algunas consecuencias inmediatas:

• Un subgrupo H es normal en S_n si y sólo si $\tau H \tau^{-1} \subset H$ para toda transposición $\tau \in S_n$.

Ejercicio

El resultado anterior es falso si pedimos solamente que s $Hs^{-1} \subset H$ para todo $s \in S$. Justificar por qué la demostración anterior no es correcta si sólo tenemos esta hipótesis.

Algunas consecuencias inmediatas:

- Un subgrupo H es normal en S_n si y sólo si $\tau H \tau^{-1} \subset H$ para toda transposición $\tau \in S_n$.
- Para decidir si un subgrupo H de D_n es normal, alcanza ver que $sHs \subset H$ y $rHr^{-1}, r^{-1}Hr \subset H$.

Si H es un subgrupo normal de un grupo G, sabemos que G/H es un grupo, y por lo tanto tiene sentido hablar de un sistema de generadores para G/H.

Si H es un subgrupo normal de un grupo G, sabemos que G/H es un grupo, y por lo tanto tiene sentido hablar de un sistema de generadores para G/H. A partir de generadores de G podemos conseguir generadores de G/H,

Si H es un subgrupo normal de un grupo G, sabemos que G/H es un grupo, y por lo tanto tiene sentido hablar de un sistema de generadores para G/H. A partir de generadores de G podemos conseguir generadores de G/H,

Proposición

Sea G un grupo $y \ H \triangleleft G$. Notamos $\pi : g \mapsto [g] = gH \in G/H$ a la proyección canónica. Si S es un conjunto de generadores de G, entonces $T := \pi(S) = \{[s] : s \in S\}$ es un conjunto de generadores de G/H.

Si H es un subgrupo normal de un grupo G, sabemos que G/H es un grupo, y por lo tanto tiene sentido hablar de un sistema de generadores para G/H. A partir de generadores de G podemos conseguir generadores de G/H,

Proposición

Sea G un grupo $y \ H \triangleleft G$. Notamos $\pi : g \mapsto [g] = gH \in G/H$ a la proyección canónica. Si S es un conjunto de generadores de G, entonces $T := \pi(S) = \{[s] : s \in S\}$ es un conjunto de generadores de G/H.

Demostración.

Tomemos $x \in G/H$. Sabemos que es de la forma x = [g] = gH para algún $g \in G$.

Si H es un subgrupo normal de un grupo G, sabemos que G/H es un grupo, y por lo tanto tiene sentido hablar de un sistema de generadores para G/H. A partir de generadores de G podemos conseguir generadores de G/H,

Proposición

Sea G un grupo $y \ H \triangleleft G$. Notamos $\pi : g \mapsto [g] = gH \in G/H$ a la proyección canónica. Si S es un conjunto de generadores de G, entonces $T := \pi(S) = \{[s] : s \in S\}$ es un conjunto de generadores de G/H.

Demostración.

Tomemos $x \in G/H$. Sabemos que es de la forma x = [g] = gH para algún $g \in G$. Como S genera a G, es $g = s_1^{\varepsilon_1} \cdots s_n^{\varepsilon_n}$ para ciertos $\{s_i\}_{i=1}^n \subset S, \{\varepsilon_i\}_{i=1}^n \subset \{-1,1\}.$

Si H es un subgrupo normal de un grupo G, sabemos que G/H es un grupo, y por lo tanto tiene sentido hablar de un sistema de generadores para G/H. A partir de generadores de G podemos conseguir generadores de G/H,

Proposición

Sea G un grupo $y \ H \triangleleft G$. Notamos $\pi : g \mapsto [g] = gH \in G/H$ a la proyección canónica. Si S es un conjunto de generadores de G, entonces $T := \pi(S) = \{[s] : s \in S\}$ es un conjunto de generadores de G/H.

Demostración.

Tomemos $x \in G/H$. Sabemos que es de la forma x = [g] = gH para algún $g \in G$. Como S genera a G, es $g = s_1^{\varepsilon_1} \cdots s_n^{\varepsilon_n}$ para ciertos $\{s_i\}_{i=1}^n \subset S, \{\varepsilon_i\}_{i=1}^n \subset \{-1,1\}$. Aplicando π a ambos lados de la igualdad, resulta $[g] = [s_1^{\varepsilon_1} \cdots s_n^{\varepsilon_n}] = [s_1]^{\varepsilon_1} \cdots [s_n]^{\varepsilon_n}$.

También podemos conseguir generadores de G a partir de generadores de H y G/H. Concretamente,

También podemos conseguir generadores de G a partir de generadores de H y G/H. Concretamente,

Proposición

Sea G un grupo y H un subgrupo normal. Si tenemos $S,T\subset G$ tales que S genera a H y $\pi(T)$ genera a G/H, entonces $S\cup T$ genera a G.

También podemos conseguir generadores de G a partir de generadores de H y G/H. Concretamente,

Proposición

Sea G un grupo y H un subgrupo normal. Si tenemos $S, T \subset G$ tales que S genera a H y $\pi(T)$ genera a G/H, entonces $S \cup T$ genera a G.

Idea de la demostración.

También podemos conseguir generadores de G a partir de generadores de H y G/H. Concretamente,

Proposición

Sea G un grupo y H un subgrupo normal. Si tenemos S, $T \subset G$ tales que S genera a H y $\pi(T)$ genera a G/H, entonces $S \cup T$ genera a G.

Idea de la demostración.

• Tomemos $g \in G$. Por hipótesis [g] se escribe como $[g] = [t_1]^{\varepsilon_1} \cdots [t_n]^{\varepsilon_n} = [t_1^{\varepsilon_1} \cdots t_n^{\varepsilon_n}]$ para ciertos $t_i \in T$.

También podemos conseguir generadores de G a partir de generadores de H y G/H. Concretamente,

Proposición

Sea G un grupo y H un subgrupo normal. Si tenemos $S, T \subset G$ tales que S genera a H y $\pi(T)$ genera a G/H, entonces $S \cup T$ genera a G.

Idea de la demostración.

- Tomemos $g \in G$. Por hipótesis [g] se escribe como $[g] = [t_1]^{\varepsilon_1} \cdots [t_n]^{\varepsilon_n} = [t_1^{\varepsilon_1} \cdots t_n^{\varepsilon_n}]$ para ciertos $t_i \in T$.
- Esta igualdad nos dice que existe $h \in H$ tal que $g = t_1^{\varepsilon_1} \cdots t_n^{\varepsilon_n} h$.

También podemos conseguir generadores de G a partir de generadores de H y G/H. Concretamente,

Proposición

Sea G un grupo y H un subgrupo normal. Si tenemos $S, T \subset G$ tales que S genera a H y $\pi(T)$ genera a G/H, entonces $S \cup T$ genera a G.

Idea de la demostración.

- Tomemos $g \in G$. Por hipótesis [g] se escribe como $[g] = [t_1]^{\varepsilon_1} \cdots [t_n]^{\varepsilon_n} = [t_1^{\varepsilon_1} \cdots t_n^{\varepsilon_n}]$ para ciertos $t_i \in T$.
- Esta igualdad nos dice que existe $h \in H$ tal que $g = t_1^{\varepsilon_1} \cdots t_n^{\varepsilon_n} h$.
- Por otro lado debe ser $h = s_1^{\delta_1} \cdots s_n^{\delta_m}$ con $s_j \in S$ así que, en definitiva, es $g = t_1^{\varepsilon_1} \cdots t_n^{\varepsilon_n} s_1^{\delta_1} \cdots s_n^{\delta_m}$.

Antes de seguir, veamos una aplicación:

Antes de seguir, veamos una aplicación:

Dijimos anteriormente que si $n \ge 3$, entonces $S_n/A_n = \{[1], [\tau]\}$ con τ cualquier transposición. Este cociente es un grupo cíclico generado por $[\tau]$.

Antes de seguir, veamos una aplicación:

Dijimos anteriormente que si $n \ge 3$, entonces $S_n/A_n = \{[1], [\tau]\}$ con τ cualquier transposición. Este cociente es un grupo cíclico generado por $[\tau]$.

Por otro lado, el grupo alternante está generado por los 3-ciclos (esta respuesta en Zulip incluye una demostración).

Antes de seguir, veamos una aplicación:

Dijimos anteriormente que si $n \ge 3$, entonces $S_n/A_n = \{[1], [\tau]\}$ con τ cualquier transposición. Este cociente es un grupo cíclico generado por $[\tau]$.

Por otro lado, el grupo alternante está generado por los 3-ciclos (esta respuesta en Zulip incluye una demostración). El resultado que probamos nos dice que S_n está generado por los 3-ciclos y una única transposición (y no importa cuál elijamos!).

Recordar: si $f: G \to G'$ es un morfismo de grupos y $K \triangleleft G$ un subgrupo normal de G contenido en ker f, existe un único morfismo de grupos

$$\overline{f}:[g]\in G/K\mapsto f(g)\in G'$$

tal que $\overline{f}\pi=f$, donde $\pi:G\to G/K$ es la proyección canónica. Además, se tiene $\mathrm{im}f=\mathrm{im}\overline{f}$.

Recordar: si $f: G \to G'$ es un morfismo de grupos y $K \triangleleft G$ un subgrupo normal de G contenido en ker f, existe un único morfismo de grupos

$$\overline{f}:[g]\in G/K\mapsto f(g)\in G'$$

tal que $\overline{f}\pi=f$, donde $\pi:G\to G/K$ es la proyección canónica. Además, se tiene $\mathrm{im}f=\mathrm{im}\overline{f}$.

Cuando $K = \ker f$, el morfismo \overline{f} es inyectivo y entonces es un isomorfismo con su imagen, por lo que

$$G/\ker f \simeq \operatorname{im} f$$
.

En estos términos, los cocientes que vimos hace unas clases se pueden caracterizar como grupos:

En estos términos, los cocientes que vimos hace unas clases se pueden caracterizar como grupos:

• $\operatorname{sg}: S_n \to G_2 \leadsto S_n/A_n \simeq G_2$

En estos términos, los cocientes que vimos hace unas clases se pueden caracterizar como grupos:

- $\operatorname{sg}: S_n \to G_2 \rightsquigarrow S_n/A_n \simeq G_2$
- $r_n: \mathbb{Z} \to \mathbb{Z}_n \leadsto \mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}_n$, con r_n la función que devuelve el resto en la división por $n \in \mathbb{N}$.

En estos términos, los cocientes que vimos hace unas clases se pueden caracterizar como grupos:

- $\operatorname{sg}: S_n \to G_2 \rightsquigarrow S_n/A_n \simeq G_2$
- $r_n: \mathbb{Z} \to \mathbb{Z}_n \leadsto \mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}_n$, con r_n la función que devuelve el resto en la división por $n \in \mathbb{N}$.
- $p:(x,y) \in \mathbb{R}^2 \mapsto (0,y) \in \mathbb{R} \leadsto \mathbb{R}^2/\mathbb{R} \oplus 0 \simeq \mathbb{R}$.

En estos términos, los cocientes que vimos hace unas clases se pueden caracterizar como grupos:

- $\operatorname{sg}: S_n \to G_2 \rightsquigarrow S_n/A_n \simeq G_2$
- $r_n: \mathbb{Z} \to \mathbb{Z}_n \leadsto \mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}_n$, con r_n la función que devuelve el resto en la división por $n \in \mathbb{N}$.
- $p:(x,y) \in \mathbb{R}^2 \mapsto (0,y) \in \mathbb{R} \leadsto \mathbb{R}^2/\mathbb{R} \oplus 0 \simeq \mathbb{R}$.

Veamos otro ejemplo, para el cual necesitaremos primero algunas definiciones.

Una función $T: \mathbb{R}^n \to \mathbb{R}^n$ se dice afín si es de la forma T(x) = Ax + b con $b \in \mathbb{R}^n$ y $A \in M_n\mathbb{R}$. Notaremos T = A + b.

Una función $T: \mathbb{R}^n \to \mathbb{R}^n$ se dice afín si es de la forma T(x) = Ax + b con $b \in \mathbb{R}^n$ y $A \in M_n\mathbb{R}$. Notaremos T = A + b. Intuitivamente, estamos considerando funciones lineales que "olvidan el origen", ya que permitimos trasladar.

Una función $T: \mathbb{R}^n \to \mathbb{R}^n$ se dice afín si es de la forma T(x) = Ax + b con $b \in \mathbb{R}^n$ y $A \in M_n\mathbb{R}$. Notaremos T = A + b. Intuitivamente, estamos considerando funciones lineales que "olvidan el origen", ya que permitimos trasladar.

Ejercicio

Probar que:

Una función $T:\mathbb{R}^n\to\mathbb{R}^n$ se dice afín si es de la forma T(x)=Ax+b con $b\in\mathbb{R}^n$ y $A\in M_n\mathbb{R}$. Notaremos T=A+b. Intuitivamente, estamos considerando funciones lineales que "olvidan el origen", ya que permitimos trasladar.

Ejercicio

Probar que:

• Una transformación afín T = A + b es inversible si y sólo si A lo es. En tal caso, su inversa es también una transformación afín.

Una función $T: \mathbb{R}^n \to \mathbb{R}^n$ se dice afín si es de la forma T(x) = Ax + b con $b \in \mathbb{R}^n$ y $A \in M_n\mathbb{R}$. Notaremos T = A + b. Intuitivamente, estamos considerando funciones lineales que "olvidan el origen", ya que permitimos trasladar.

Ejercicio

Probar que:

- Una transformación afín T = A + b es inversible si y sólo si A lo es. En tal caso, su inversa es también una transformación afín.
- La composición de transformaciones afines resulta una transformación afín.

Una función $T: \mathbb{R}^n \to \mathbb{R}^n$ se dice afín si es de la forma T(x) = Ax + b con $b \in \mathbb{R}^n$ y $A \in M_n\mathbb{R}$. Notaremos T = A + b. Intuitivamente, estamos considerando funciones lineales que "olvidan el origen", ya que permitimos trasladar.

Ejercicio

Probar que:

- Una transformación afín T = A + b es inversible si y sólo si A lo es. En tal caso, su inversa es también una transformación afín.
- La composición de transformaciones afines resulta una transformación afín.

El ejercicio anterior justifica que

$$\begin{split} \mathit{Aff}_n(\mathbb{R}) := \{ T: \mathbb{R}^n \to \mathbb{R}^n : T \text{ es afin e inversible} \} \\ = \{ T: \mathbb{R}^n \to \mathbb{R}^n \mid T(x) = Ax + b, b \in \mathbb{R}^n, A \in \mathsf{GL}_n(\mathbb{R}) \} \end{split}$$

es un grupo con la composición. Lo llamamos el grupo afín de \mathbb{R}^n .

En $Aff_n(\mathbb{R})$ hay dos subgrupos distinguidos:

En $Aff_n(\mathbb{R})$ hay dos subgrupos distinguidos:

• Las funciones lineales inversibles $H := \{ T \in Aff_n(\mathbb{R}) : T \text{ es lineal} \}.$

En $Aff_n(\mathbb{R})$ hay dos subgrupos distinguidos:

- Las funciones lineales inversibles $H := \{ T \in Aff_n(\mathbb{R}) : T \text{ es lineal} \}.$
- Las traslaciones,

$$K := \{ T \in Aff_n(\mathbb{R}) \mid T(x) = x + b, b \in \mathbb{R}^n \} = \{ I + b : b \in \mathbb{R}^n \}.$$

En $Aff_n(\mathbb{R})$ hay dos subgrupos distinguidos:

- Las funciones lineales inversibles $H := \{ T \in Aff_n(\mathbb{R}) : T \text{ es lineal} \}.$
- Las traslaciones.

$$K := \{ T \in Aff_n(\mathbb{R}) \mid T(x) = x + b, b \in \mathbb{R}^n \} = \{ I + b : b \in \mathbb{R}^n \}.$$

Ejercicio

Probar que:

En $Aff_n(\mathbb{R})$ hay dos subgrupos distinguidos:

- Las funciones lineales inversibles $H := \{ T \in Aff_n(\mathbb{R}) : T \text{ es lineal} \}.$
- Las traslaciones.

$$K := \{ T \in Aff_n(\mathbb{R}) \mid T(x) = x + b, b \in \mathbb{R}^n \} = \{ I + b : b \in \mathbb{R}^n \}.$$

Ejercicio

Probar que:

• Existen isomorfismos $H \simeq GL_n(\mathbb{R})$ y $K \simeq \mathbb{R}^n$.

En $Aff_n(\mathbb{R})$ hay dos subgrupos distinguidos:

- Las funciones lineales inversibles $H := \{ T \in Aff_n(\mathbb{R}) : T \text{ es lineal} \}.$
- Las traslaciones.

$$K := \{ T \in Aff_n(\mathbb{R}) \mid T(x) = x + b, b \in \mathbb{R}^n \} = \{ I + b : b \in \mathbb{R}^n \}.$$

Ejercicio

Probar que:

- Existen isomorfismos $H \simeq GL_n(\mathbb{R})$ y $K \simeq \mathbb{R}^n$.
- El subgrupo K es normal en $Aff_n(\mathbb{R})$, pero H no.

Observemos también que todo elemento S(x) = Ax + b del grupo afín se escribe como S = TL con T(x) = x + b una traslación y L(x) = Ax una función lineal inversible. De hecho,

Observemos también que todo elemento S(x) = Ax + b del grupo afín se escribe como S = TL con T(x) = x + b una traslación y L(x) = Ax una función lineal inversible. De hecho,

Ejercicio (para más adelante!)

Probar que $Aff_n(\mathbb{R}) \simeq \mathbb{R}^n \rtimes GL_n(\mathbb{R})$.

Observemos también que todo elemento S(x) = Ax + b del grupo afín se escribe como S = TL con T(x) = x + b una traslación y L(x) = Ax una función lineal inversible. De hecho,

Ejercicio (para más adelante!)

Probar que $Aff_n(\mathbb{R}) \simeq \mathbb{R}^n \rtimes GL_n(\mathbb{R})$.

Volvamos al primer teorema de isomorfismo: sabemos que las traslaciones son un grupo normal.

Observemos también que todo elemento S(x) = Ax + b del grupo afín se escribe como S = TL con T(x) = x + b una traslación y L(x) = Ax una función lineal inversible. De hecho,

Ejercicio (para más adelante!)

Probar que $Aff_n(\mathbb{R}) \simeq \mathbb{R}^n \rtimes GL_n(\mathbb{R})$.

Volvamos al primer teorema de isomorfismo: sabemos que las traslaciones son un grupo normal. Intuitivamente, identificando transformaciones afines si difieren en una traslación deberíamos recuperar "su parte lineal".

Observemos también que todo elemento S(x) = Ax + b del grupo afín se escribe como S = TL con T(x) = x + b una traslación y L(x) = Ax una función lineal inversible. De hecho,

Ejercicio (para más adelante!)

Probar que $Aff_n(\mathbb{R}) \simeq \mathbb{R}^n \rtimes GL_n(\mathbb{R})$.

Volvamos al primer teorema de isomorfismo: sabemos que las traslaciones son un grupo normal. Intuitivamente, identificando transformaciones afines si difieren en una traslación deberíamos recuperar "su parte lineal". Es decir, deberíamos tener que $Aff_n(\mathbb{R})/\mathcal{K} \simeq GL_n(\mathbb{R})$. Veámoslo.

En base a lo anterior, consideramos la función

$$\Lambda \colon Aff_n(\mathbb{R}) \to \mathsf{GL}_n(\mathbb{R})$$
$$A + b \longmapsto A$$

En base a lo anterior, consideramos la función

$$\Lambda \colon Aff_n(\mathbb{R}) \to \mathsf{GL}_n(\mathbb{R})$$
$$A + b \longmapsto A$$

Si
$$T = A + b$$
 y $S = C + d$, entonces

$$T \circ S(x) = T(Cx + d) = ACx + Ad + b$$

y
$$\Lambda(TS) = AC = \Lambda(T)\Lambda(S)$$
.

En base a lo anterior, consideramos la función

$$\Lambda \colon Aff_n(\mathbb{R}) \to \mathsf{GL}_n(\mathbb{R})$$
$$A + b \longmapsto A$$

Si T = A + b y S = C + d, entonces

$$T \circ S(x) = T(Cx + d) = ACx + Ad + b$$

y $\Lambda(TS) = AC = \Lambda(T)\Lambda(S)$. Por lo tanto Λ es un morfismo de grupos. Además Λ es sobreyectivo, ya que $\Lambda(A) = A$ para toda A inversible, y

$$\ker \Lambda = \{I + b : b \in \mathbb{R}^n\} = K.$$

En base a lo anterior, consideramos la función

$$\Lambda \colon Aff_n(\mathbb{R}) \to \mathsf{GL}_n(\mathbb{R})$$
$$A + b \longmapsto A$$

Si T = A + b y S = C + d, entonces

$$T \circ S(x) = T(Cx + d) = ACx + Ad + b$$

y $\Lambda(TS) = AC = \Lambda(T)\Lambda(S)$. Por lo tanto Λ es un morfismo de grupos. Además Λ es sobreyectivo, ya que $\Lambda(A) = A$ para toda A inversible, y

$$\ker \Lambda = \{I + b : b \in \mathbb{R}^n\} = K.$$

Por el primer teorema de isomorfismo, obtenemos efectivamente que

$$Aff_n(\mathbb{R})/K \simeq GL_n(\mathbb{R}).$$

Subgrupos de un Cociente

Para terminar, caractericemos a los subgrupos de un cociente. Sea ${\it G}$ un grupo y ${\it H}$ un subgrupo normal en ${\it G}$.

Subgrupos de un Cociente

Para terminar, caractericemos a los subgrupos de un cociente. Sea G un grupo y H un subgrupo normal en G. Si aplicamos la Proposición 1.4.24 del apunte teórico a la proyección $\pi:G\to G/H$, obtenemos una correspondencia biyectiva

$$\{H \subset K : K \text{ subgrupo de } G\} \leftrightarrow \{L \subset G/H : L \text{ subgrupo de } G/H\}$$

que envía K a $\pi(K)$ y L a $\pi^{-1}(L)$. Además, la correspondencia envía subgrupos grupos normales a subgrupos normales.

Subgrupos de un Cociente

Para terminar, caractericemos a los subgrupos de un cociente. Sea G un grupo y H un subgrupo normal en G. Si aplicamos la Proposición 1.4.24 del apunte teórico a la proyección $\pi:G\to G/H$, obtenemos una correspondencia biyectiva

$$\{H \subset K : K \text{ subgrupo de } G\} \leftrightarrow \{L \subset G/H : L \text{ subgrupo de } G/H\}$$

que envía K a $\pi(K)$ y L a $\pi^{-1}(L)$. Además, la correspondencia envía subgrupos grupos normales a subgrupos normales.

Relacionando esto con el ejemplo anterior, los subgrupos de $Aff_n(\mathbb{R})$ que contienen a las traslaciones se identifican con los subgrupos de $Aff_n(\mathbb{R})/K$.

Subgrupos de un Cociente (cont.)

Por otro lado, pudimos caracterizar el cociente como un grupo conocido, y bajo el isomorfismo $\overline{\Lambda}: Aff_n(\mathbb{R})/K \to GL_n(\mathbb{R})$ los subgrupos de $Aff_n(\mathbb{R})/K$ son de la forma $\overline{\Lambda}^{-1}(L)$ con L un subgrupo de $GL_n(\mathbb{R})$.

Subgrupos de un Cociente (cont.)

Por otro lado, pudimos caracterizar el cociente como un grupo conocido, y bajo el isomorfismo $\overline{\Lambda}: Aff_n(\mathbb{R})/K \to GL_n(\mathbb{R})$ los subgrupos de $Aff_n(\mathbb{R})/K$ son de la forma $\overline{\Lambda}^{-1}(L)$ con L un subgrupo de $GL_n(\mathbb{R})$.

Juntando ambas correspondencias, vemos que todo subgrupo de $Aff_n(\mathbb{R})$ que contiene a las traslaciones es de la forma

$$H_L := \{Ax + b : b \in \mathbb{R}^n, A \in L\}$$

con $L \leq \operatorname{GL}_n(\mathbb{R})$.

Ejercicios

Pueden relacionar todos los conceptos que vimos con los siguientes ejercicios,

Ejercicios

Pueden relacionar todos los conceptos que vimos con los siguientes ejercicios,

Ejercicio

¿Cuántos subgrupos de $D_{7981326}$ que contienen a $H := \langle r^2 \rangle$ hay?

Ejercicios

Pueden relacionar todos los conceptos que vimos con los siguientes ejercicios,

Ejercicio

¿Cuántos subgrupos de $D_{7981326}$ que contienen a $H := \langle r^2 \rangle$ hay?

Ejercicio

Un grupo G se dice simple si $G \neq \{1\}$ y sus únicos subgrupos normales son $\{1\}$ y G.

- (i) Sea H un subgrupo normal en un grupo G. Probar que G/H es simple si y sólo si el único subgrupo normal que contiene propiamente a H es G.
- (ii) Probar que un grupo abeliano finito G es simple si y sólo si $G\simeq \mathbb{Z}_p$ con p primo. Concluir que en todo grupo abeliano finito $G\neq \{1\}$ existe un subgrupo H tal que $G/H\simeq \mathbb{Z}_p$, para algún p primo.