COMMON EXTERNAL TANGENT

IN

A SQUARE

Ť

Jean - Louis AYME 1

Résumé.

L'auteur propose une nouvelle approche purement synthétique d'un résultat remarquable du vietnamien Linh Nguyen Van ² bien connue sous le pseudonyme "Livetolove212" sur le site *Art of Problem Solving* ³.

Les figures sont toutes en position générale et tous les théorèmes cités peuvent tous être démontrés synthétiquement.

Abstract.

The author proposes a new purely synthetic approach to a remarkable result of the Vietnamese Linh Nguyen Van Linh ⁴, well-known under the pseudonym "Livetolove212" on the *Art of Problem Solving* website.

The figures are all in general position and all cited theorems can all be demonstrated synthetically.

Tóm tắt.

Trong bài viết này, tác giả đưa ra một lời giải sơ cấp cho bài toán thú vị được đề xuất bởi tác giả người Việt Nam- Nguyễn Văn Linh- được biết đến với tên gọi "Livetolove212" trên diễn đàn *Art of Problem Solving*.

Hình vẽ của bài toán được vẽ ở trường hợp tổng quát. Các hình vẽ khác chứng minh tương tự.

St-Denis, Île de La Réunion (Océan Indien, France), le 30/06/2016 ; jeanlouisayme@yahoo.fr

a traduit cette article : http://jl.ayme.pagesperso-orange.fr/Docs/Jayme%20proof.pdf
et publié sur sont site : https://nguyenvanlinh.files.wordpress.com/2016/06/jayme-proof.pdf

http://www.artofproblemsolving.com/community/c6t48f6_geometry

translated this article: http://jl.ayme.pagesperso-orange.fr/Docs/Jayme%20proof.pdf
and published on site: https://nguyenvanlinh.files.wordpress.com/2016/06/jayme-proof.pdf

Sommaire

- A. Le problème de Linh Nguyen Van1. Le problème
- 2. La solution
- 3. Une courte biographie de Linh Nguyen Van
- B. Le problème revisité par l'auteur de l'article

2

4

A. LE PROBLÈME

DE

LINH NGUYEN VAN

1. Le problème

Jul 10, 2015, 8:29 am • 1 «

Given square ABCD. Let P be an arbitrary point on AB, (I_1) , (I_2) be the incircles of triangle ADP, BCP, CI_2 , DI_1 meet AB at E, F, respectively. Line through E and parallel to BD meets AC at M, line through F and parallel to AC meets BD at N. Prove that MN is the common external tangent of (I_1) and (I_2) .

Attachments:

http://www.artofproblemsolving.com/community/c6t48f6h1112721_common_tangent_in_square

2. La solution

livetolove212

Nov 17, 2015, 7:45 am

Dear Jean-Louis,

This is my proof.

Lemma. Given a quadrilateral ABCD. Let $(I_1),(I_2)$ be the incenters of triangles ABD,CBD, respectively. The second

Common internal tangent l (not BD) of (I_1) and (I_2) intersects AC at T. Then $\frac{TA}{TC} = \frac{\cot A/2}{\cot C/2}$.

This is a well-known problem, for proof you can see at http://www.artofproblemsolving.com/community/q1h354536p1922652

Back to our problem

Let (I_3) be the incircle of triangle PCD.

Let (I_3) be the incircle of triangle PCD. First we will show that 3 circles (I_1) , (I_2) , (I_3) have a common tangent. Let XY be the second external common tangent of (I_1) and (I_2) , XY intersects PD, PC at G, L, respectively. (I_1) is tangent to AD, DP, PA at R, T, S; (I_2) is tangent to BC, CP, PB at U, Z, V. Quadrilateral GLCD is circumscribed if and only if GL + CD = DG + CL. $\Leftrightarrow XY - GX - LY + CD = DT - GT + CZ - LZ$ $\Leftrightarrow SV + CD = DT + CZ = DR + CU = AD - AR + BC - BU$. $\Leftrightarrow AB - AS - BV + CD = AD - AR + BC - BU$. $\Leftrightarrow AB + CD = AD + BC$, right.

Let $I_3K \perp CD$. We have $\angle I_1DI_3 = \frac{1}{2}\angle ADC = \angle BDC$ hence $\angle EDM = \angle I_3DK$.

Therefore $\triangle EDM \sim \triangle I_3DK$, which follows that $\frac{DM}{MB} = \frac{DM}{ME} = \frac{DK}{KI_3} = \cot \angle I_3DC = \frac{\cot \angle I_3DC}{\cot 45^\circ} = \frac{\cot \angle I_3DC}{\cot \angle I_2BC}$. Applying the lemma above, M lies on the internal common tangent of (I_2) and (I_3) . Similarly we get MN is the common tangent of (I_2) and (I_3) .

of (I_1) and (I_2) .

http://www.artofproblemsolving.com/community/c6t48f6h1112721_common_tangent_in_square

3. Une très courte biographie de Linh Nguyen Van

Linh Nguyen Van est né le 2 décembre 1992 à Hanoi (Vietnam). Dans une correspondance, il précise

I'm graduated from Hanoi Foreign Trade University in 2015.

However I like to become a math teacher and now I'm a geometry trainer for Vietnamese and Arab Saudian IMO teams.

I have some interesting problems which you can find on my geometry blog 7.

https://nguyenvanlinh.wordpress.com/

B. LE PROBLÈME

REVISITÉ

PAR

L'AUTEUR

VISION

Figure:

Traits :ABCDun carré,
Pun point de [CD],
les cercles inscrits resp. aux triangles PBC, PAD,
J, KJ, Kles centres resp. de 1c, 1d,
Zle point d'intersection de (AK) et (CD),
le pied de la perpendiculaire à (AC) issue de ZetTla seconde tangente commune extérieure à 1c et 1d.

Donné : V est sur *T*. 8

_

Un point sur une tangente à deux cercles, Les-Mathematiques.net; http://www.les-mathematiques.net/phorum/read.php?8,1279285

VISUALISATION

- Notons
 Ip
 I le cercle inscrit au triangle PAB,
 I le centre de Ip,
 M, N les points d'intersection de T resp. avec (PB), (PA)
 et Q le point d'intersection de (JM) et (KN).
- Scolies: (1) (CD), (JK) et *T* sont concourantes
 - (2) les triangles CJM et ZKN sont perspectifs.
- Conclusion partielle : d'après Desargues "Le théorème des deux triangles" 9

 (AIQ) est l'arguésiennes des triangles perspectifs CJM et ZKN. 10

Ayme J.-L., Une rêverie de Pappus d'Alexandrie, G.G.G. vol. 6, p. 40-44; http://jl.ayme.pagesperso-orange.fr/

http://www.artofproblemsolving.com/community/c6h1250815_an_interesting_problem

Ayme J.-L., A interesting problem, AoPS du 01/06/2016;

- Notons
 X le point d'intersection de (AI) et (BC),
 Y, Y' les symétriques de B, D resp. par rapport à (AX), (AZ)
 et la le quart de cercle de centre A passant par B; il passe par D.
- 1a étant tangent à (XY), (ZY') resp. en Y, Y', Y' et Y sont confondus.
- Conclusion partielle : $(XZ) \perp (PA)$.
- Scolies: (1) $< XAZ = 45^{\circ}$
 - (2) (AB) et (AZ) sont deux A-isogonales du triangle AXC.

• Notons U le milieu de [XZ]

et T le point d'intersection de (AX) et (BD).

- D'après "45°, un angle dans un carré" 11, (1)
 - (2) (ZT) est la Z-hauteur du triangle AXZ ¹²

(TU) // (BC)

(3) (XK) est la X-hauteur du triangle AXZ.

- Notons V' le point d'intersection de (TU) et (AC).
- D'après Vigarié "Isogonale et perpendiculaires",
 en conséquence,
 (ZV') ⊥ (AC);
 V' et V sont confondus.

Ayme J.-L., 45° un angle dans un carré, G.G.G. vol. 27, p. 10-11; http://jl.ayme.pagesperso-orange.fr/
Ayme J.-L., 45° un angle dans un carré, G.G.G. vol. 27, p. 12-14; http://jl.ayme.pagesperso-orange.fr/

- Scolie: (AX) et (AZ) sont deux A-isogonales du triangle AYV.
- D'après Vigarié "Isogonale et perpendiculaires", $(YV) \perp (AX)$.
- Conclusion partielle : par hypothèse, (YV) passe par B.

- Notons le cercle de diamètre [AZ] ; il passe par T, V, Y et D.
- D'après Pascal "Hexagramma mysticum" 13, (BP) étant la pascale de l'hexagone cyclique TDZVYAT, (ZV) passe par W.

- D'après Pappus "La proposition 139" 14 (NMV) est la pappusienne de l'hexagone sectoriel APWZQCA de frontières (AQW) et (ZPC).
- **Conclusion**: V est sur *T*.

¹³

Ayme J.-L., Hexagramma mysticum, G.G.G. vol. **12**, p. 4-8; http://jl.ayme.pagesperso-orange.fr/ Ayme J.-L., Une rêverie de Pappus d'Alexandrie, G.G.G. vol. **6**, p. 10-17; http://jl.ayme.pagesperso-orange.fr/