MATH 262: Homework #5

Jesse Farmer

17 February 2005

- (a) Show that no two of the spaces (0,1), (0,1], and [0,1] are homeomorphic.
 Consider the separating properties of these sets. Removing any point from (0,1) separates it, but it is possible to remove a point from (0,1] and [0,1] so that they both remain connected, viz., {1}. Likewise, the removal of any two points separates (0,1], but it is possible to remove two points from [0,1] and still remain connected, viz., {0,1}. Therefore none of these spaces are homeomorphic to any of the others.
 - (b) Suppose that there exist imbeddings $f: X \to Y$ and $g: Y \to X$. Show by means of an example that X and Y need not be homeomorphic. Let $f(x) = \frac{1}{2}x + \frac{1}{4}$, X = [0,1], and Y = (0,1). Then $f(X) = \left[\frac{1}{4}, \frac{3}{4}\right] \subset Y$. f is clearly an imbedding of X in Y. Similarly, let g(x) = x, then $g(Y) = (0,1) \subset [0,1]$ is an imbedding of Y in X. From the previous part X and Y are not homeomorphic.
 - (c) Show that \mathbb{R}^n and \mathbb{R} are not homeomorphic if n > 1. The removal of any one point of \mathbb{R} separates it, but, this is not the case with \mathbb{R}^n for n > 1. Indeed, not only is $\mathbb{R}^n \setminus \{a\}$ still connected, but it is path-connected. For any two points $x, y \in \mathbb{R}^n \setminus \{a\}$, if a is not on the line connecting x and y then that line connects x and y. Otherwise, if a is on that line, pick another point $z \in \mathbb{R}^n \setminus \{a\}$ distinct from x and y. Then the line connecting x to z joined with the line connecting z to y connects x and y. Hence \mathbb{R}^n and \mathbb{R} are not homeomorphic for n > 1.
- 2. Let $f: X \to X$ be continuous. Show that if X = [0,1] there is a point x such that f(x) = x, What happens if X equals [0,1) or (0,1)?
 - If f(0) = 0 or f(1) = 1 then we are done, so assume f(0) > 0 and f(1) < 1. Define g(x) = f(x) x. Then g(1) < 0 < g(0), and by the intermediate value theorm there exists some x such that g(x) = 0, which implies that f(x) = x.
 - If X is [0,1) or (0,1) then this is not necessarily true because neither of these sets are compact. For example, $x \mapsto \frac{1}{2}(x+1)$ is a function which is continuous on X but has no fixed point there.
- 3. (a) Let X and Y be ordered sets in the order topology. Show that if $f: X \to Y$ is order preserving and surjective then f is a homeomorphism.
 - If f is order preserving then x < y implies f(x) < f(y). f is an injection since if f(x) = f(y) then it cannot be the case that either x < y or y < x, since then $f(x) \ne f(y)$. Similarly, if f(x) < f(y) then x < y, by the same argument mutatis mutandis. Hence f is a bijection and its inverse is also order-preserving. It is therefore sufficient to show that f is an open map, since it then follows that f^{-1} is also an open map and hence that f is a homeomorphism. This is fairly obvious since the order-preserving property of f guarantees that the image of a basis element (x, y) under f is (f(x), f(y)), which is still a basis element. f preserves unions since it is a bijection, and therefore the image of an open set under f is an open set.

- (b) Let $X = Y = \overline{\mathbb{R}}_+$. Given a positive integer n, show that the function $f(x) = x^n$ is order preserving and surjective. Conclude that its inverse is continuous.
 - If x^n is order-preserving and surjective then by the previous part it is a homeomorphism, which by definition means that its inverse is continuous. If x < y where x > 0, then $x^2 < xy < y^2$. Inductively it follows that $x^n < y^n$ for all positive integers n. This map is obviously surjective as $\sqrt[n]{x}$ is a well-defined real number for all x > 0 and $n \in \mathbb{Z}_+$.
- (c) Let X be the subspace $(-\infty, -1) \cup [0, \infty)$ of \mathbb{R} . Show that the function $f: X \to \mathbb{R}$ defined by setting f(x) = x + 1 if x < -1 and f(x) = x if $x \ge 0$ is an order-preserving surjection. Is f a homeomorphism? Compare with (a).

Let $A = (-\infty, -1)$ and $B = [0, \infty)$. If $x, y \in A$ then f(x) = x + 1 < y + 1, and similarly for B. If $x \in A$ and $y \in B$ then x < y and f(x) < 0 and $f(y) \ge 0$, so that f(x) < f(y). Let $a \in \mathbb{R}$. If $a \ge 0$ then f(a) = a. Otherwise, f(a - 1) = a, so f is surjective. f cannot be a homeomorphism because $A \cup B$ is disconnected, but this is precisely what makes the implication fail, i.e., there is no guarantee that (a) holds if X is not connected.

4. What are the components and path components of \mathbb{R}_l ? What are the continuous maps $f: \mathbb{R} \to \mathbb{R}_l$?

Lemma 1. \mathbb{R}_l is totally disconnected.

Proof. Let $A \subset \mathbb{R}_l$ be a connected subset such that there are at least two distinct points $x, y \in A$ and assume without loss of generality that x < y. $(-\infty, y)$ and $[y, \infty)$ are both closed and open in \mathbb{R}_l . $A \setminus (-\infty, y)$ and $A \setminus [y, \infty)$ therefore separate A, i.e., A is not connected.

From this lemma is follows directly that the only components and therefore path-components are the singletons of \mathbb{R}_l . If f is continuous then $f(\mathbb{R})$ must be connected since \mathbb{R} is connected. Since the only connected sets are the singletons, it follows that f must be constant. Every constant function is continuous, and therefore $f: \mathbb{R} \to \mathbb{R}_l$ is continuous if and only if it is constant.

5. (a) What are the components and path components of \mathbb{R}^{ω} in the product topology?

Lemma 2. Let $\{X_{\alpha}\}$ be a family of path-connected spaces indexed by an arbitrary set J. Then the Cartesian product of all these spaces is also path-connected under the product topology.

Proof. Let $X = \prod_{\alpha \in J} X_{\alpha}$. Let $x = (x_{\alpha})$ and $y = (y_{\alpha})$ be two points of X. By hypothesis there exists a continuous function $\gamma_{\alpha} : [0,1] \to X_{\alpha}$ for each $\alpha \in J$ such that $\gamma_{\alpha}(0) = x_{\alpha}$ and $\gamma_{\alpha}(1) = y_{\alpha}$. Define $\gamma = (\gamma_{\alpha})_{\alpha \in J}$. This function is continuous from the properties of the product topology, and by construction connects x and y.

Since \mathbb{R} is path-connected it follows directly from the above lemma that \mathbb{R}^{ω} is path-connected when endowed with the product topology, and hence the only path-component (and component) is \mathbb{R}^{ω} .

(b) Consider \mathbb{R}^{ω} with the uniform topology. Show that \vec{x} and \vec{y} lie in the same component if and only if the sequence

$$\vec{x} - \vec{y} = (x_1 - y_1, x_2 - y_2, \ldots)$$

 $is\ bounded.$

Lemma 3. Let \mathbb{R}^{ω} have the uniform topology. Let A be the set of all bounded sequences and let B be the set of all unbounded sequences. Then A and B separate \mathbb{R}^{ω} .

Proof. Let $\overline{\rho}$ be the uniform metric on \mathbb{R}^{ω} . Let $\vec{x}=(x_1,x_2,\ldots)\in A$ and $\vec{y}=(y_1,y_2,\ldots)\in B$. There exists some real R>0 such that $|x_n|< R$ for all $n\in\mathbb{N}$ by hypothesis, and, since y is unbounded, there must exist some $k\in\mathbb{N}$ such that $|y_k|>R+1$. But then $|x_n-y_k|>1$ and $\overline{\rho}(\vec{x},\vec{y})=1$. Therefore, for any r<1, the ball of radius r about a point in one of A or B does not contain any elements of the other set and hence both are open. Moreover, since $A=\mathbb{R}^{\omega}\setminus B$, it follows that A and B separate \mathbb{R}^{ω} .

It is sufficient to consider the case where $\vec{y}=0$ since \vec{x} and \vec{y} lie in the same component if and only if $\vec{x}-\vec{y}$ and 0 lie in the same component, and $\vec{x}\mapsto\vec{x}-\vec{y}$ is a homeomorphism of \mathbb{R}^{ω} for fixed \vec{y}

Assume \vec{x} is bounded, then $|x_n| < R$ for some real R > 0 and all $n \in \mathbb{N}$. Define

$$\gamma(t) = t\vec{x} = (tx_1, tx_2, \ldots)$$

For any $\epsilon > 0$ let $\delta = \frac{\epsilon}{R}$. Then $\gamma(B_{\delta}(t)) \subset B_{\epsilon}(\gamma(t))$, and hence γ is continuous. Thus γ connects 0 and \vec{x} , so that they must lie in the same path component and hence the same component.

Conversely, if \vec{x} is unbounded then by Lemma 3 it is in a different component from 0.

(c) Consider \mathbb{R}^{ω} with the box topology. Show that \vec{x} and \vec{y} lie in the same component of \mathbb{R}^{ω} if and only if the sequence $\vec{x} - \vec{y}$ is eventually zero.

As in the previous exercise we may assume that $\vec{y} = 0$. If \vec{x} is eventually 0 then there exists some $N \in \mathbb{N}$ such that $\vec{x} \in \mathbb{R}^N \times \{0\} \times \{0\} \times \cdots \subset \mathbb{R}^\omega$, which is homeomorphic to \mathbb{R}^N . Since we know \mathbb{R}^N is connected, it follows that \vec{x} and 0 are in the same component.

Let \vec{x} have infinitely many non-zero terms. Define $h: \mathbb{R}^{\omega} \to \mathbb{R}^{\omega}$ by

$$h_n(\vec{z}) = \begin{cases} s_n z_n & x_n \neq 0 \\ z_n & x_n = 0 \end{cases}$$

where s_n is a sequence of real numbers such that $s_n|x_n|\to\infty$ as $n\to\infty$, e.g., $s_n=\frac{n}{|x_n|}$. This map is a bijection, and also a homeomorphism. Consider the open set $U_1\times U_2\times\cdots$. Then $f_n(U_n)$ is either U_n if $x_n=0$, or s_nU_n if $x_n\neq 0$, but both of these are open. It is the same for f^{-1} , so that h is a homeomorphism.

Moreover, h(0) = 0 and $h(\vec{x})$ is unbounded, so that they lie in different components from the previous part (the box topology is finer than the uniform topology). Since h is a homeomorphism \vec{x} and 0 must be in different components.

6. Let X be locally path connected. Show that every connected open set in X is path connected.

Let $A \subset X$ be open and connected and fix $a \in A$. Define

$$P_a = \{x \in A \mid \text{There exists a path connecting } x \text{ to } a\}$$

To show that A is path connected it is sufficient to show that P_a is both open and closed in A since A is connected. To show that P_a is open let $y \in A$. Then by hypothesis there exists a neighborhood in A of y, call it U_y , which is path-connected. But then $P_a = \bigcup_{y \in A} U_y$, and hence P_a is open.

Likewise, to show that P_a is closed, let $y \in A$ be a limit point of P_a . Then there exists a path-connected neighborhood of y, U_y , which intersects with P_a . Let $z \in P_a \cap U_y$. There is a path connecting any $x \in P_a$ to z, and, since U_y is path connected, another path connecting z to y, and therefore a path connecting x to y, viz., the combination of these two paths. Hence $y \in P_a$, and P_a is closed. It follows that $P_a = A$.

- 7. (a) Let \mathfrak{T} and \mathfrak{T}' be two topologies on the set X. If \mathfrak{T}' is finer than \mathfrak{T} what does the compactness of X under one of these topologies imply about compactness under the other?
 - If X is compact with respect to \mathfrak{T}' then it is compact with respect to \mathfrak{T} . This is obvious since any cover \mathfrak{C} in \mathfrak{T} is also a cover in \mathfrak{T}' , and hence has a finite subcover. The converse does not hold. As an example, let X = [0,1]. If \mathfrak{T}' is the discrete topology and \mathfrak{T} is the usual topology, then we know that X is compact with respect to \mathfrak{T} . However, it is not compact with respect to \mathfrak{T}' since the union of all the singletons is a cover of X with no finite subcover.
 - (b) Show that if X is compact Hausdorff under both $\mathfrak T$ and $\mathfrak T'$ then either $\mathfrak T=\mathfrak T'$ or they are not comparable.

It is sufficient to show that if \mathcal{T} and \mathcal{T}' are comparable then they are equal. Assume \mathcal{T} and \mathcal{T}' are comparable and $\mathcal{T}' \subset \mathcal{T}$ without loss of generality. Denote by X' and X the same underlying set

X with the topologies \mathfrak{T}' and \mathfrak{T} respectively. Then the inclusion map $i: X' \to X$ is a continuous bijection. Since X is compact Hausdorff under both \mathfrak{T} and \mathfrak{T}' , by Theorem 26.6, it follows that i is a homeomorphism and hence $\mathfrak{T} = \mathfrak{T}'$.

8. Let A and B be disjoint compact subspaces of the Hausdorff space X. Show that there exist disjoint open sets U and V containing A and B respectively.

Lemma 4. Let Y be a compact subspace of the Hausdorff space X. If $x \in X \setminus Y$ then there exist disjoint neighborhoods U and V containing x and Y, respectively.

Proof. Let $x \in X \setminus Y$. For every $y \in Y$ there exist disjoint neighborhoods U_y and V_y of x and y, respectively. Then $\bigcup_{y \in Y} V_y$ is a covering of Y. Since X is compact there exist V_{y_1}, \ldots, V_{y_n} such that $V = \bigcup_{i=1}^n V_i$ covers Y. Let $U = \bigcap_{i=1}^n U_{y_i}$. Then U is open, $x \in U$ since $x \in U_{y_i}$ for every i, and $U \cap V = \emptyset$.

Let A and B be disjoint compact subspaces of the Hausdorff space X and let $x \in A$ be arbitrary. From the lemma there exist U_x and V_x containing x and B, respectively. As in the lemma, $\{U_x\}$ cover A, and so there is a finite subset that also covers A, call it U_{x_1}, \ldots, U_{x_n} and their union U. Then the intersection of the corresponding $\{V_{x_i}\}$ is open, contains B, and is disjoint from U.

9. Show that if Y is compact then the projection $\pi: X \times Y \to X$ is a closed map. Let $A \subset X \times Y$ be closed. We want to show that $\pi(A)$ is closed. Let $x \in X \setminus \pi(A)$. Then

$$\pi^{-1}(x) = x \times Y \subset (X \times Y) \setminus A$$

and therefore $\pi^{-1}(A)$ is open. By Lemma 26.8 (the tube lemma) there exists a $W \subset X$ such that $x \times W$ and $W \times Y \subset (X \times Y) \setminus A$. Hence $W \cap \pi(A) = \emptyset$ and $x \in W \subset X \setminus \pi(A)$, so that $X \setminus \pi(A)$ is open, i.e., $\pi(A)$ is closed.

10. Let $f: X \to Y$ and Y be compact Hausdorff. Show that f is continuous if and only if the graph of f

$$G_f = \{x \times f(x) \mid x \in X\}$$

is closed in $X \times Y$.

To begin, assume that f is continuous. We will show that $(X \times Y) \setminus G_f$ is open. Let $(x, y) \in (X \times Y) \setminus G_f$ so that $y \neq f(x)$. Since Y is Hausdorff there exist disjoint neighborhoods U and V of f(x) and y, respectively. It follows that $f^{-1}(U) \cap f^{-1}(V) = \emptyset$ and $f^{-1}(U) \times V \subset (X \times Y) \setminus G_f$. Since f is continuous $f^{-1}(U)$ is open, and therefore $(X \times Y) \setminus G_f$ is open, i.e, G_f is closed.

Now suppose G_f is closed. Let $V \subset Y$ be open. Since $(X \times Y) \setminus (X \times (Y \setminus V)) = X \times V$ is open, $X \times (Y \setminus V)$ is closed. Then $A = G_f \cap (X \times (Y \setminus V))$ is also closed. But

$$A = \{x \times f(x) \mid f(x) \in Y \setminus V\}$$

From the previous problem $\pi(A) = \{x \mid x \in Y \setminus V\} = Y \setminus f^{-1}(V)$ is closed, and hence $f^{-1}(V)$ is open and f is continuous.