Design Automation & Optimisation for Multi-Material 3D Printing

Benjamin Yi

August 3, 2018

Contents

1	Alg	orithm comparisons	2
2	Pop	pulation size testing	3
3	Uni	form objective function	5
4	Vox	el number	8
5	6 Custom crossover		10
6	Clu	stering	12
List of Figures			
	1	Comparison of algorithms for a 1D beam	2
	2	Population size vs final error	3
	3	Population size vs time vs final error	4
	4	Linear fit as objective function	5
	5	Uniform fit over a range of frequencies	6
	6	Uniform fit over a range of frequencies (non-dimensionalised)	7
	7	40 voxel vs 800 voxel comparison	8
	8	Custom crossover vs standard 2 point crossover	10
	9	Custom crossover mode frequencies	11
	10	Clustering introduced error	12
	11	Clustering introduced error for many frequencies	13

1 Algorithm comparisons

Current work

Figure 1: Comparison of algorithms for a 1D beam

- 1D 40 voxel beam using PLA and Al
- Objective function: Sum of absolute differences to target frequencies
- Trying to match a known beam comparing GA, CMA-ES (binary encoding), PSO, GA (adaptive) in 250 generations
- All algorithms perform fairly well, reaching < 1% error in 250 generations.
- CMA-ES performed the best, but hard to draw conclusions.

- Test using 2D 40 voxel and flex/PLA/steelfill
- Test using custom GA crossover
- Test using time as stop criterion, not number of generations
- Test using sum of squares as objective function

2 Population size testing

Figure 2: Population size vs final error

- $\bullet\,$ 2D 40 voxel beam using PLA and Al
- Objective function: Sum of absolute differences to (f1 = 200, df = 600)
- Testing population size for GA
- \bullet Population size ≥ 25 seems to be the best, with minimal gains after (6.5% vs 8.5%)
- \bullet This ignores time taken assumes number of cores ≥ 45

Figure 3: Population size vs time vs final error

- $\bullet\,$ 2D 40 voxel beam using PLA and Al
- Objective function: Sum of absolute differences to (f1 = 200, df = 600)
- Testing population size for GA, using time as stop criterion
- Difficult to draw any conclusion here

- Test using flex/PLA/steelfill
- Test using custom GA crossover
- Test using machine with large number of cores.
- Repeat second experiment with a larger range of populations
- Test using sum of squares as objective function

3 Uniform objective function

Figure 4: Linear fit as objective function

- 2D 40 voxel beam using PLA and Al
- Objective function: Fit to a line, minimizing r^2
- Using GA for 50 generations
- $r^2 = 0.98 \pm 0.008$, $f1 = 140 \pm 30$, $df = 420 \pm 40^1$

Figure 5: Uniform fit over a range of frequencies

- 2D 40 voxel beam using PLA and Al, doubled dimensions for second graph
- Objective function: Sum of absolute differences to (f1, df)
- Using GA for 1 hour
- Best spot around f1 = 200, $df = 600^2$

 $^{^1} https://github.com/byi649/Design-Automation-Optimisation-for-Multi-Material-3D-Printing/blob/master/Results/2018-05-02/Statistical%20analysis%20-%20uniform.ipynb<math display="inline">^2 https://github.com/byi649/Design-Automation-Optimisation-for-Multi-Material-3D-$

Printing/blob/master/Results/2018-07-06/Statistical%20analysis%20uniform.ipynb

Figure 6: Uniform fit over a range of frequencies (non-dimensionalised)

- Same as above, but non-dimensionalised by average wave speed
- Best spot around f1 = 0.009, df = 0.0035

- Test using flex/PLA/steelfill
- Test using custom GA crossover
- Test using time as stopping criterion
- Test more beam sizes
- Non-dimensionalise by individual wave speed
- Test using sum of squares as objective function

4 Voxel number

Figure 7: 40 voxel vs 800 voxel comparison

- $\bullet\,$ 2D 40 voxel beam using PLA and Al, 3D 800 voxel beam using PLA and Al
- Objective function: Sum of absolute differences to (f1 = 200, df = 600)
- Using GA for 1 hour

 $\bullet~40~\rm voxel~performs~better~than~800~voxel^3,$ no other patterns found

- Test using flex/PLA/steelfill
- Test using custom GA crossover
- $\bullet\,$ Test using sum of squares as objective function

 $[\]overline{\ \ }^3 https://github.com/byi649/Design-Automation-Optimisation-for-Multi-Material-3D-Printing/blob/master/Results/2018-06-08/Statistical%20analysis.ipynb$

5 Custom crossover

Figure 8: Custom crossover vs standard 2 point crossover

- $\bullet~$ 3D 800 voxel beam using PLA and Al
- \bullet Objective function: Sum of absolute differences to (f1 = 200, df = 600)
- Using GA for 1 hour
- 6-point crossover performs better than stock 2-point crossover $(17.5\% \text{ vs } 19\% \text{ error})^4$, p-value = 3.8e-8.

 $[\]overline{\ \ ^4 https://github.com/byi649/Design-Automation-Optimisation-for-Multi-Material-3D-Printing/blob/master/Results/2018-06-29/Statistical%20analysis.ipynb}$

Figure 9: Custom crossover mode frequencies

- Same as above, looking into individual frequencies matched
- Mode 4 perhaps slightly better?

- Test using flex/PLA/steelfill
- Test using sum of squares as objective function
- More indepth tests on custom crossover usefulness (testing individual frequencies etc)

6 Clustering

Figure 10: Clustering introduced error

- $\bullet~$ 2D 40 voxel beam using flex and steel fill
- Objective function: Sum of squares to (f1 = 200, df = 600)
- Using CMA-ES for one hour, then clustering via scikit-learn
- Breakpoints at n.clusters = 5, 10, 15 (final error = 20\%, 10\%, 5\%)

Figure 11: Clustering introduced error for many frequencies

- \bullet 2D 40 voxel beam? using ? and ?
- Objective function: Sum of squares to (f1, df)
- Using CMA-ES for one hour, then clustering via scikit-learn
- \bullet Errors are normalised within each plot

- $\bullet \ {\it Test using flex/PLA/steelfill}$
- $\bullet\,$ Test using sum of squares as objective function