(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-67910 (P2003-67910A)

(43)公開日 平成15年3月7日(2003.3.7)

								1 H (E000.0.1)
(51) Int.Cl. ⁷		識別記号	FΙ				5	テーマコード(参考)
G11B	5/64		G 1	1 B	5/64	•		4K029
C 2 3 C	14/34	,	C 2	3 C	14/34		Α	5 D 0 0 6
							P	5 D 1 1 2
G 1 1 B	5/65		G 1	1 B	5/65			5E049
	5/66				5/66			
		審查請求	未請求	請求	-	OL	(全 17 頁)	最終頁に続く
(21)出願番号	}	特顧2001-257624(P2001-257624)	(71)	出願人	人 000002 昭和電		△ ≱ŀ	
(22)出顧日		平成13年8月28日(2001.8,28)					大門 1 丁目13	张0 县
			(72)	発明症			VI 11 1 110	田 9 7
			(,	,,,,,			八幡海岸通り	5番の1 昭和
							ディー株式会	
			(72)	杂明之			א איז איז די	III. A
			(, _,,				八幡海岸通り	5番の1 昭和
							ディー株式会	
			(74)4	、電子			A ANDARA	mr. 1
					弁理士		仲司	
							•	最終頁に続く

(54) 【発明の名称】 磁気記録媒体、その製造方法および磁気記録再生装置

(57)【要約】

【課題】記録再生特性、熱ゆらき耐性を向上させ高密度の情報の記録再生が可能な磁気記録媒体、その製造方法、および磁気記録再生装置を提供する。

【解決手段】非磁性基板上に、少なくとも、直上の層の配向性を制御する配向制御層と、磁化容易軸が基板に対し主に垂直に配向した垂直磁性層と、保護層とが設けられ、垂直磁性層が、Coを主成分とし、少なくともCr、Pt、Ndを含んだ材料からなり、基板に対して垂直方向の残留磁化(Mr)と飽和磁化(Ms)との比(Mr/Ms)が0.85以上であり、活性化体積と飽和磁気モーメントの積で表される活性化磁気モーメントが0.3×10⁻¹⁵ emuであることを特徴とする磁気記録媒体によって解決される。

【特許請求の範囲】

【請求項1】非磁性基板上に、少なくとも、直上の層の 配向性を制御する配向制御層と、磁化容易軸が基板に対 し主に垂直に配向した垂直磁性層と、保護層とが設けら れ、垂直磁性層が、

Coを主成分とし、少なくともCr、Pt、Ndを含んだ材料からなり、

基板に対して垂直方向の残留磁化(Mr)と飽和磁化 (Ms)との比(Mr/Ms)が0.85以上であり、活性化体積と飽和磁気モーメントの積で表される活性化 10 磁気モーメントが $0.3\times10^{-15}\,\mathrm{emu}\sim0.8\times1$ $0^{-15}\,\mathrm{emu}$ であることを特徴とする磁気記録媒体。

【請求項2】基板に対して垂直方向の保磁力が2500 [〇e]以上であり、垂直方向の保磁力(Hc-v)と 基板に対して平行な面の保磁力(Hc-i)の比(Hcv)/(Hc-i)が5以上であることを特徴とする請求項1記載の磁気記録媒体。

【請求項3】基板に対して垂直な方向の逆磁区核形成磁界が0~2000 [Oe]であることを特徴とする請求項1または2記載の磁気記録媒体。

【請求項4】垂直磁性層は、Cr含有量が18~28a t%、Pt含有量が10~20at%、Nd含有量が 0.5~8at%である材料からなることを特徴とする 請求項1乃至3のいずれか1項に記載の磁気記録媒体。 【請求項5】垂直磁性層が、B、Ta、Cuから選ばれ るいずれか1種類以上を含み、それら元素の合計含有量 が8at%以下である材料からなることを特徴とする請 求項1乃至4のいずれか1項に記載の磁気記録媒体。

【請求項6】垂直磁性層が複数の磁性層から構成され、 そのうち少なくとも1層が請求項1乃至5のいずれか1 に項記載の垂直磁性層からなることを特徴とする磁気記 録媒体。

【請求項7】複数の磁性層から構成された垂直磁性層の 最上の磁性層が請求項1乃至6のいずれか1に項記載の 垂直磁性層からなることを特徴とする磁気記録媒体。

【請求項8】非磁性基板と配向制御層との間に軟磁性材料からなる軟磁性下地層が設けられたことを特徴とする請求項1乃至7のいずれか1項に記載の磁気記録媒体。

【請求項9】軟磁性層の表面が酸化もしくは窒化されていることを特徴とする請求項1乃至8のいずれか1項に記載の磁気記録媒体。

【請求項10】非磁性基板と軟磁性下地層との間に、磁気異方性が主に面内方向を向いた硬磁性層を設けることを特徴とする請求項8または9に記載の磁気記録媒体。 【請求項11】硬磁性層が、CoSm合金または、CoCrPtX2合金(X2:Pt、Ta、Zr、Nb、Cu、Re、Ni、Mn、Ge、Si、O、NおよびBのうち1種または2種以上。)を含む材料からなり、500[Oe]以上の保磁力を有し磁化方向が基板半径方向であることを特徴とする請求項10に記載の磁気記録媒50 体。

【請求項12】非磁性基板上に、少なくとも、直上の層の配向性を制御する配向性制御層と、磁化容易軸が基板に対して主に垂直に配向した垂直磁性層と、保護層とを順次成膜する工程を含む垂直磁気記録媒体の製造方法において、`

2

垂直磁性層をスパッタ法で成膜する工程において、

Coを主成分とし、少なくとも、Cr、Pt、Ndを含んだ材料からなり、Cr含有量が18~28at%、Pt含有量が10~20at%、Nd含有量が0.5~8at%であるスパッタターゲットを使用することを特徴とする磁気記録媒体の製造方法。

【請求項13】垂直磁性層の成膜する工程のスパッタガスの圧力を3~20Paとすることを特徴とする請求項12に記載の磁気記録媒体の製造方法。

【請求項14】配向制御層を成膜する工程の前に、軟磁性層を成膜し軟磁性層を成膜後、その表面を酸素ガス、窒素ガス、それらの混合ガスまたはそれらを含有するガスから選ばれるいずれかのガスに曝す工程を含むことを特徴とする請求項12または13に記載の磁気記録媒体の製造方法。

【請求項15】磁気記録媒体と、該磁気記録媒体に情報を記録再生する磁気ヘッドとを備えた磁気記録再生装置であって、磁気記録媒体が請求項1乃至11のいずれか1項に記載の磁気記録媒体であることを特徴とする磁気記録再生装置。

【発明の詳細な説明】

[0001]

20

【発明の属する技術分野】本発明は、ハードディスク装 ② 置などに用いられる磁気記録媒体、磁気記録媒体の製造 方法および磁気記録再生装置に関するものであり、特 に、記録再生特性に優れたものに関するものである。 【 0 0 0 2 】

【従来の技術】磁気記録再生装置の1種であるハードディスク装置(HDD)は、現在その記録密度が年率60%以上で増えており今後もその傾向は続くと言われている。その為に高記録密度に適した磁気記録用ヘッドの開発、磁気記録媒体の開発が進められている。

【0003】現在市販されているハードディスク装置用 40 の磁気記録媒体は、磁性層内の磁化容易軸が主に基板に 対し水平に配向した面内磁気記録媒体がほとんどであ る。ここで磁化容易軸とは、磁化の向き易い軸のことで あり、Co基合金の場合、Coのhcp構造のc軸のこ とである。

【0004】このような面内磁気記録媒体では、高記録密度化した状態では1ビットあたりの磁性層の体積が小さくなりすぎ、熱揺らぎ効果により記録再生特性が悪化する可能性があると言われている。また、高記録密度化した際に、記録ビットの境界で発生する反磁界の影響により媒体ノイズが増加すると言われている。

【0005】これに対し、磁性層内の磁化容易軸が主に 垂直に配向した、いわゆる垂直磁気記録媒体は、高記録 密度化した際にもビット境界での反磁界の影響が小さく 境界が鮮明な記録磁区が形成されるため、低ノイズ化が 可能でありしかも高記録密度化した場合でも、比較的儀 ビット体積を大きくすることができることから熱揺らぎ 効果にも強い。そこで、近年大きな注目を集めており、 垂直磁気記録に適した媒体の構造が提案されている。 【0006】

【発明が解決しようとする課題】近年では、磁気記録媒 10 体の更なる高記録密度化の要望に対して、垂直磁性層に対する書き込み能力に優れている単磁極ヘッドを用いることが検討されている。そのようなヘッドに対応するために、記録層である垂直磁性層と基板との間に裏打ち層と称される軟磁性材料からなる層を設けることにより、単磁極ヘッドと磁気記録媒体との間の磁束の出入りの効率を向上させた磁気記録媒体が提案されている。

【0007】しかしながら、上記のように単に裏打ち層を設けた磁気記録媒体を用いた場合では、記録再生時の記録再生特性や、耐熱減磁耐性、記録分解能において満20足できるものではなく、これらの特性に優れる磁気記録媒体が要望されていた。

【0008】特開平2-103715号公報には、Co-Cr系合金の垂直磁性層において第3元素としてNdを始めとする希土類元素を添加することが提案されている。しかしながら、Co-Cr系合金にNdを単に添加しただけでは、保磁力、残留磁化(Mr)と飽和磁化(Ms)の比Mr/Ms、逆磁区核形成磁界(-Hn)、垂直磁気異方性(Hc-v)/(Hc-i)(基板に対して垂直方向の保磁力:(Hc-v)、基板に対して平行な面の保磁力:(Hc-i))といった磁気特性の改善効果は不十分である。ただ単により多くNdを添加してもKu増加による前記磁気特性の改善効果はたいして得られず、逆にノイズの増加による記録再生特性の悪化といった弊害を招くおそれがある。

【0009】また、磁性層のCo合金の有するKu(磁気異方性定数)を増大させるために、一般にCo合金にPtを多く含有させる(16~26at%)手法が使われているが、Co合金にPtを多く含有させた材料を用いると磁性層中の磁気的な粒子間相互作用が強くなりす40ぎることによるノイズが大きくなるために、高密度記録に適さない特性となってしまう。

【0010】よって、垂直方向のKuを増大させつつ、 ノイズの増加を抑えることができる磁性材料およびその ような特性を有する磁気記録媒体が望まれている。

【0011】本発明は、上記事情に鑑みてなされたもので、記録再生特性、熱ゆらき耐性を向上させ高密度の情報の記録再生が可能な磁気記録媒体、その製造方法、および磁気記録再生装置を提供することを目的とする。

[0012]

【課題を解決するための手段】本発明者等は上記課題を 解決するために、Coを主成分とし、Cr. Ptを会有

解決するために、Coを主成分とし、Cr、Ptを含有した磁性材料にNdを添加する技術に関して、各元素の含有量の組み合わせと媒体の記録再生特性の関係を鋭意検討し、以下の構成に基づく発明を完成した。

- 1)上記課題を解決するための第1の発明は、非磁性基板上に、少なくとも、直上の層の配向性を制御する配向制御層と、磁化容易軸が基板に対し主に垂直に配向した垂直磁性層と、保護層とが設けられ、垂直磁性層が、Coを主成分とし、少なくともCr、Pt、Ndを含んだ材料からなり、基板に対して垂直方向の残留磁化(Mr)と飽和磁化(Ms)との比(Mr/Ms)が0.85以上であり、活性化体積と飽和磁気モーメントの積で表される活性化磁気モーメントが0.3×10⁻¹⁵emu~0.8×10⁻¹⁵emuであることを特徴とする磁気記録媒体である。
- 2)上記課題を解決するための第2の発明は、基板に対して垂直方向の保磁力が2500 [Oe]以上であり、垂直方向の保磁力(Hc-v)と基板に対して平行な面の保磁力(Hc-i)の比(Hc-v)/(Hc-i)が5以上であることを特徴とする1)記載の磁気記録媒体である。
- 3) 上記課題を解決するための第3の発明は、基板に対して垂直な方向の逆磁区核形成磁界が0~2000.[Oe]であることを特徴とする1)または2)記載の磁気記録媒体である。
- 4) 上記課題を解決するための第4の発明は、垂直磁性層は、Cr含有量が18~28at%、Pt含有量が10~20at%、Nd含有量が0.5~8at%である 材料からなることを特徴とする1) 乃至3) のいずれか1項に記載の磁気記録媒体である。
 - 5)上記課題を解決するための第5の発明は、垂直磁性層が、B、Ta、Cuから選ばれるいずれか1種類以上を含み、それら元素の合計含有量が8at%以下である材料からなることを特徴とする1)乃至4)のいずれか1項に記載の磁気記録媒体である。
 - 6)上記課題を解決するための第6の発明は、垂直磁性層が複数の磁性層から構成され、そのうち少なくとも1層が1)乃至5)のいずれか1に項記載の垂直磁性層からなることを特徴とする磁気記録媒体である。
 - 7)上記課題を解決するための第7の発明は、複数の磁性層から構成された垂直磁性層の最上の磁性層が1)乃至6)のいずれか1に項記載の垂直磁性層からなることを特徴とする磁気記録媒体である。
 - 8) 上記課題を解決するための第8の発明は、非磁性基板と配向制御層との間に軟磁性材料からなる軟磁性下地層が設けられたことを特徴とする1)乃至7)のいずれか1項に記載の磁気記録媒体である。
- 9)上記課題を解決するための第9の発明は、軟磁性層 50 の表面が酸化もしくは窒化されていることを特徴とする

1)乃至8)のいずれか1項に記載の磁気記録媒体である。

10)上記課題を解決するための第10の発明は、非磁性基板と軟磁性下地層との間に、磁気異方性が主に面内方向を向いた硬磁性層を設けることを特徴とする8)または9)に記載の磁気記録媒体である。

11)上記課題を解決するための第11の発明は、硬磁性層が、CoSm合金または、CoCrPtX2合金(X2:Pt、Ta、Zr、Nb、Cu、Re、Ni、Mn、Ge、Si、O、NおよびBのうち1種または2種以上。)を含む材料からなり、500[Oe]以上の保磁力を有し磁化方向が基板半径方向であることを特徴とする10)に記載の磁気記録媒体である。

12)上記課題を解決するための第12の発明は、非磁性基板上に、少なくとも、直上の層の配向性を制御する配向性制御層と、磁化容易軸が基板に対して主に垂直に配向した垂直磁性層と、保護層とを順次成膜する工程を含む垂直磁気記録媒体の製造方法において、垂直磁性層をスパッタ法で成膜する工程において、Coを主成分とし、少なくとも、Cr、Pt、Ndを含んだ材料からな20り、Cr含有量が18~28at%、Pt含有量が10~20at%、Nd含有量が0.5~8at%であるスパッタターゲットを使用することを特徴とする磁気記録媒体の製造方法である。

13)上記課題を解決するための第13の発明は、垂直 磁性層の成膜する工程のスパッタガスの圧力を3~20* * Paとすることを特徴とする12) に記載の磁気記録媒体の製造方法である。

14) 上記課題を解決するための第14の発明は、配向制御層を成膜する工程の前に、軟磁性層を成膜し軟磁性層を成膜後、その表面を酸素ガス、窒素ガス、それらの混合ガスまたはそれらを含有するガスから選ばれるいずれかのガスに曝す工程を含むことを特徴とする12) または13) に記載の磁気記録媒体の製造方法である。

15)上記課題を解決するための第15の発明は、磁気記録媒体と、該磁気記録媒体に情報を記録再生する磁気へッドとを備えた磁気記録再生装置であって、磁気記録媒体が1)乃至11)のいずれか1項に記載の磁気記録媒体であることを特徴とする磁気記録再生装置である。本明細書で、主成分とはその合金においてその含有量が最も多い元素である。好ましくは、主成分とはその合金においてその含有量が50at%を越えるものである。【0013】本発明では磁性材料が少なくともCr、Pt、Ndを含んでいる。NdをPtの存在下で添加する効果により、良好な磁気特性を得るのに必要なPtの添加量を抑えることができるので、Pt含有量が増加した際に問題となる磁気記録媒体の記録再生時におけるノイズを増加させることなく、記録再生特性の分解能を向上させたり磁化の熱的な安定性を高めることができる。

【0014】Ndの添加効果を表1を用いて説明する。 【0015】

【表1】

720, 1	ノノスへの圧力で		<u> </u>	3X I		
	組成	保磁力	Mr/Ms	-Hn	Hc-v/Hc-i	vlsb
	(at%)	(Oe)		(O _B)		(×10 ⁻¹⁵ emu)
1	Co20Cr14Pt	2700	0. 81	-200	3	0. 75
2	Co20Cr16Pt	3500	0. 85	0	3	0. 82
3	Co20Cr18Pt	3800	0. 91	50	3	0. 85
4	Co20Cr20Pt	4200	0. 95	500	3	0. 93
5	Co20Cr24Pt	4500	1	1500	3	1. 1
6	Co20Cr10Pt	2400	0. 75	-800	3	0. 68
	Co20Cr10Pt2Nd	2950	0. 95	0	5	0. 65
8	Co20Cr10Pt4Nd	3800	1	200	7	0. 67
9	Co20Cr10Pt6Nd	4300	1	1100	9	0. 6
10	Co20Cr10Pt8Nd	4600	1	1000	8	0. 62
11	Co20Cr10Pt10Nd	4000	1	300	5	0. 75
12	Co18Cr	1000	0. 53	-1500	2	1. 1
13	Co18Cr5Nd	1200	0. 53	-1400	2	1. 16
14	Co18Cr10Nd	1100	0. 53	-1450	2	1. 2
15	Co20Cr8Pt	2200	0. 61	-1000	2	0. 6
16	Co20Cr8Pt6Nd	2300	0.62	-1000	2	2.6

非磁性基板上に配向制御層としてRu膜を20nmの厚さで形成し、その上に垂直磁気記録層として、表1記載の組成の磁性材料からなる膜を20nmの厚さで形成した場合の磁気特性、記録再生特性を表1に示す。

【0016】表1に示す保磁力は、垂直方向の保磁力を 意味しており、値が大きいほうが記録再生時の分解能特 性が良好であり、磁化の熱的な安定性も増す。また、比 (Mr/Ms)の値は磁性層の磁化の熱的安定性を表す※50

※指標である。さらに-Hnは、磁性層の磁化の熱的な安定性を表す指標であり、(Hc-v)/(Hc-i)は磁性層を構成するCo合金結晶の磁化容易軸が基板垂直方向にどの程度そろっているかを示す指標である。

【0017】また、vIsbは活性化磁気モーメントを表しており、記録再生時におけるノイズの大きさと密接な関係があり、この値が小さいほうがノイズも小さい。ここで、活性化磁気モーメント(vIsb)は、VSM

を用いた垂直磁性層の垂直方向の保磁力 (Hc-v)の 時間依存特性測定データを基にして次のように算出した ものである。なお測定時の温度条件は室温とすることが できる。

* c k) の式 (例えば、J. App 1. Phys. 62 (7)、p2918。) に時間依存特性測定データを代 入して (Ku×V) / (k×T) を求める。 [0019]

【数1】

【0018】(I)下記のシャーロック (Sharro* △ (Hc-v) =Hc0 {1-[(k×T/Ku×V) △In (At/0. 693)]'}

 $[0020]A=1\times10^{9}, n=0.5$ k:ボル ツマン定数、HcO:理論上の最大保磁力

【0021】具体的には以下のように求めることができ 10 る。

(1)磁化曲線を測定す際の1ループあたりの時間 tを 何点か変化させ(例えば、30秒、60秒、180秒、 300秒、600秒)、それぞれの磁化曲線から保磁力 (Hc)を求める。磁化曲線の測定器は、一般に用いら れるVSMまたはKerr効果による磁気特性測定装置 を用いることができる。

【0022】(2) m通りに変化させたときにm通りの (測定時間、保磁力) のデータの組み合わせが得られ

【0023】(3) これらのデータを、{1 n (A×t※

※/0.635) } 0.5をX軸、HcをY軸としたグラフ 上にプロットする。

【0024】(4)プロットしたデータから近似直線を 求める。

【0025】(5)近似直線の傾きからHc0×(k× T/Ku×V) 0.5を、Y軸切片からHc Oを読み取

【0026】(6) これから (Ku×V/k×T) を求 める。

【0027】(II)次に、求めた($Ku \times V/k \times$ T)を下記の式に代入して活性化磁気モーメント (v I sb)を求める。

20 [0028] 【数2】

 $(Ku \times V) / (k \times T) = Hc O \times v \mid s b \times O. 5 / (k \times T)$

【0029】表1の試料1~5は、Crの含有量を固定 しPt含有量を増加させている。その結果、保磁力 (H c)、(Mr/Ms)比は増加している。-Hnは増加 しているが、磁性層の垂直磁気異方性を表す(Hcv)/(Hc-i)に変化は見られない。むしろ、記録 再生時のノイズと密接な関係をもつvІsbの値が増加 している。

【0030】垂直磁性層の磁気特性改善のためにPt含 有量を増加させる方法を用いた場合は、分解能、熱的な 安定性を向上させることができるが、反面、磁性層の結 晶配向性を改善することはできず、磁性粒子間の相互作 用の増加によるノイズの増加といったことが生じること を意味している。

【0031】一方、表1の試料6~10に示すように、 Ptの代わりにNdを添加し、その添加量を増加した場 合、P t と同様にH c 、M r /M s 比は増加している。 また一Hnを増加させることができることがわかる。 (Hc-v)/(Hc-i)の値も大きくなっているので 磁性層の結晶配向性が改善されていることが推定され、 その結果Hc、Mr/Ms、-Hnが向上していると考 えられる。ここで注目する点は、これら特性の改善を得 た状態でvIsbの値の増加を抑えることができている ことである。Ptの存在下においてNdを磁性材料に添 加する本発明により、記録再生時のノイズを増加させる ことなく、(Hc-v)/(Hc-i)を改善し、Hc、 Mr/Ms、-Hnのような磁気特性を向上させること がわかる。

- ★【0032】また、Ndを8at%を超えて添加する と、磁気特性が低下している。一方、CoCrのみから なる磁性材料やPt量が10at%未満の磁性材料にN dを添加しても磁気特性が低下している。基になる磁性 材料の磁気異方性定数(Ku)が小さいため、磁気特性 の改善効果が少ないからと考えられる。このことから、
- 30 より効果的にNdの改善効果を得るには、10at%以 上のPtの存在下でNdを添加することが好ましいこと がわかる。

【0033】Ndを添加することで何故磁気特性が向上 するのかは、完全に明らかではないが、次のように推測 することができる。Coを主成分とする磁性材料にNd を添加すると、Coの一部とNdにより、CoとNdの 金属化合物(NdCo5やNd2Co17等)が形成さ れることがあると考える。これらNdとCoの金属化合 物は希土類-コバルト磁石の原料と同じ組成であり、そ

40 の組成の合金は結晶磁気異方性や磁気異方性定数 (K u)の値が大きいことが知られている。この化合物が形 成されることにより磁性層全体の磁気異方性定数(K u)が向上し、また、これらの結晶の磁化容易軸を基板 に対して垂直方向に向けることで、垂直磁気異方性(H c-v/Hc-i)の値が大きくなる。その結果、垂直磁 性層全体の保磁力(Hc)、Mr/Ms比、-Hnに代 表される磁気特性を向上させると考えられる。さらに、 単にPtの添加量を増加させた場合と異なり、Ndの添 加はCr偏析を阻害してしまうことが無いため、磁性粒 ★50 子の肥大化や磁性粒子間相互作用を大きくする作用がな

く、記録再生時におけるノイズを増加させないと考えら れる。

【0034】ここで、Ptを存在させていないと磁性粒 子内部にある程度の磁気異方性を有しない状態になるの で、磁化反転において反磁界の影響が大きく、結果とし て、高密度記録に必要な保磁力やMr/Ms、-Hnと いった磁気特性を得ることが難しくなると考えられる。 【0035】本実施形態の磁気記録媒体にあっては、垂 直磁性層5を、Coを主成分としてすくなくともCr、 Ptを含む材料からなるものとし、さらにNdを添加し た磁性材料より形成して、基板に対して垂直方向の残留 磁化(Mr)と飽和磁化(Ms)との比Mr/Msを 0.85以上として、活性化体積と飽和磁気モーメント の積で表される活性化磁気モーメントを 0.3×10 $^{-15}$ e m u \sim 0. 8×10^{-15} e m u \circ あるとしている。 【0036】さらに、配向制御層と磁性層との間にhc p構造を有する中間膜を設けることにより、残留磁化 (Mr)と飽和磁化(Ms)の比Mr/Ms、保磁力 (Hc-v)、垂直方向の保磁力(Hc-v)と面内方向の 保磁力(Hc-i)の比(Hc-v)/(Hc-i)、逆 磁区核形成磁界(- Hn)向上させている。

【0037】その結果、記録再生時の分解能の向上や熱 揺らぎ耐性を大きく改善され、また活性化磁気モーメント(vIsb)の増加が抑えられているので記録再生時 のノイズを低くし高密度記録に必要な信号/ノイズ比 (S/N)が確保できているので、本発明の磁気記録媒 体は記録再生特性が改善された磁気記録媒体となる。

【0038】なお、熱揺らぎとは、記録ビットが不安定となり記録したデータの熱消失が生じる現象をいい、磁気記録媒体装置においては、記録したデータの再生再生 30出力の経時的な減衰として現れる。

[0039]

【発明の実施の形態】図1は、本発明の磁気記録媒体の第1の実施形態を示すもので、ここに示す磁気記録媒体は、非磁性基板1上に、軟磁性下地層2と、配向制御層3と、中間層4と、垂直磁性層5と、保護層6と潤滑層7とが順次形成されて構成されている。

【0040】非磁性基板1としては、アルミニウム、アルミニウム合金等の金属材料からなる金属基板を用いてもよいし、ガラス、セラミック、シリコン、シリコンカ 40 ーバイド、カーボンなどの非金属材料からなる非金属基板を用いてもよい。

【0041】ガラス基板としては、アモルファスガラス、結晶化ガラスがあり、アモルファスガラスとしては汎用のソーダライムガラス、アルミノケートガラス、アルミノシリケートガラスを使用できる。また、結晶化ガラスとしては、リチウム系結晶化ガラスを用いることができる。セラミック基板としては、汎用の酸化アルミニウム、窒化アルミニウム、窒化子素などを主成分とする焼結体や、これらの繊維強化物などが使用可能である。

【0042】非磁性基板1としては、上記金属基板、非金属基板の表面にメッキ法やスパッタ法を用いてNiP層が形成されたものを用いることもできる。

10

【0043】本発明では、配向制御層の下に軟磁性層2を設けるのが好ましい。軟磁性下地層2は、ヘッドから出てくる磁束の基板に対する垂直方向成分を大きくすること、および情報が記録される垂直磁性層5の磁化の方向をより強固に基板1と垂直な方向に固定することができるからである。この作用は特に、記録再生用の磁気ヘッドとして垂直記録用の単磁極ヘッドを用いる場合に、より顕著なものとなる。

【0044】上記軟磁性下地層2は、軟磁性材料からなるもので、この材料としては、Fe、Ni、Coを含む材料を用いることができる。この材料としては、FeCo系合金(FeCo、FeCoV)、FeNi系合金(FeNi、FeNiMo、FeNiCr、FeNiSi)、FeA1系合金(FeA1、FeA1Si、FeA1SiCr、FeA1SiTiRu、FeA1O)、FeCr系合金(FeCr、FeCrTi、FeCrCu)、FeTa系合金(FeTa、FeTaC、FeTaN)、FeMg系合金(FeMgO)、FeZr系合金(FeZrN)、FeC系合金、FeN系合金、FeSi系合金、FeP系合金、FeN方合金、FeHf系合金、FeB系合金を挙げることができる。

【0045】またFeを60at%以上含有するFeA1O、FeMgO、FeTaN、FeZrN等の微結晶構造を有する材料、あるいは微細な結晶粒子がマトリクス中に分散されたグラニュラー構造を有する材料を用いてもよい。

0 【0046】軟磁性下地層2の材料としては、上記のほか、Coを80at%以上含有し、Zr、Nb、Ta、Cr、Mo等のうち少なくとも1種を含有し、アモルファス構造を有するCo合金を用いることができる。この材料としては、CoZr、CoZrNb、CoZrTa、CoZrCr、CoZrMo系合金などを好適なものとして挙げることができる。

【0047】軟磁性下地層2の保磁力Hcは200[Oe]以下(好ましくは50[Oe]以下)とするのが好ましい。この保磁力Hcが上記範囲を超えると、軟磁気特性が不十分となり、再生信号波形がいわゆる矩形波から歪みをもった波形になるため好ましくない。

【0048】軟磁性下地層2の飽和磁束密度Bsは、 0.6 T以上(好ましくは1 T以上)とするのが好ましい。このBsが上記範囲未満であると、再生信号波形がいわゆる矩形波から歪みをもった波形になるため好まし

【0049】軟磁性層の膜厚は、50~400nmであるのが好ましい。この範囲であると再生信号波形において歪のない波形が得られるからである。

【0050】また、軟磁性下地層2の飽和磁束密度Bs

50

くない。

(T)と軟磁性下地層2の層厚t(nm)との積Bs・ t(T・nm)が20(T・nm)以上(好ましくは4 0(T・nm)以上)であること好ましい。このBs・ tが上記範囲未満であると、再生信号波形が歪みをもつ ようになったり、OW特性が悪化するため好ましくない。

【0051】軟磁性下地層2の最表面(配向制御層3側の面)は、軟磁性下地層2を構成する材料が部分的、あるいは完全に酸化されて構成されていることが好ましい。つまり、軟磁性下地層2の表面(配向制御層3側の面)およびその近傍に、軟磁性下地層2を構成する材料が部分的に酸化されるか、もしくは前記材料の酸化物を形成して配されていることが好ましい。これにより、軟磁性下地層2の表面の磁気的な揺らぎを抑えることができるので、この磁気的な揺らぎに起因するノイズの低減して、磁気記録媒体の記録再生特性を改善することができる。また、軟磁性下地層2上に形成される配向制御層3の結晶粒の微細化して、記録再生特性を改善することができる。

【0052】この軟磁性下地層2の表面の酸化された部 20 分は、例えば軟磁性下地層2を形成した後、酸素を含む 雰囲気に曝す方法や、軟磁性下地層2の表面に近い部分 を成膜する際のプロセス中に酸素を導入する方法により 形成することができる。具体的には、軟磁性下地層2の 表面を酸素に曝す場合には、酸素単体、あるいは酸素を アルゴンや窒素などのガスで希釈したガス雰囲気中に 0.3~20秒程度保持しておけばよい。また、大気中 に曝すこともできる。特に酸素をアルゴンや窒素などの ガスで希釈したガスを用いる場合には、軟磁性下地層2 表面の酸化の度合いの調節が容易になるので、安定した 30 製造を行うことができる。また、軟磁性下地層2の成膜 用のガスに酸素を導入する場合には、例えば成膜法とし てスパッタ法を用いるならば、成膜時間の1部のみに酸 素を導入したプロセスガスを用いてスパッタを行えばよ い。このプロセスガスとしては、例えばアルゴンに酸素 を体積率で0.05%~50%(好ましくは0.1~2 0%)程度混合したガスが好適に用いられる。

【0053】配向制御層3は、直上に設けられた中間層 4および垂直磁性層5の配向性や粒径を制御するもので ある。

【0054】この材料としては、特に限定されるものではないが、hcp構造、fcc構造、アモルファス構造を有するものが好ましい。特に、Ru系合金、Ni系合金、Co系合金が特に好ましい。

【0055】本実施形態の磁気記録媒体では、配向制御層3の厚さを0.5~40nm(好ましくは1~20nm)とするのが好ましい。配向制御層3の厚さが0.5~40nm(好ましくは1~20nm)の範囲であるとき、垂直磁性層5の垂直配向性が特に高くなり、かつ記録時における磁気ヘッドと軟磁性下地層2との距離を小50

さくすることができるので、再生信号の分解能を低下させることなく記録再生特性を高めることができる。この厚さが上記範囲未満であると、垂直磁性層5における垂直配向性が低下し、記録再生特性および熱揺らぎ耐性が劣化する。また、この厚さが上記範囲を超えると、垂直磁性層5の磁性粒子径が大きくなり、ノイズ特性が劣化するおそれがあるため好ましくない。また記録時における磁気ヘッドと軟磁性下地層2との距離が大きくなるため、再生信号の分解能や再生出力の低下するため好ましくない。

【0056】配向制御層3の表面形状は、垂直磁性層5、保護層6の表面形状に影響を与えるため、磁気記録媒体の表面凹凸を小さくして、記録再生時における磁気へッド浮上高さを低くするには、配向制御層3の表面平均粗さRaを2nm以下とするのが好ましい。この表面平均粗さRaを2nm以下とすることによって、磁気記録媒体の表面凹凸を小さくし、記録再生時における磁気へッド浮上高さを十分に低くし、記録密度を高めることができる。

0 【0057】配向制御層3の成膜用のガスに酸素や窒素を導入してもよい。例えば、成膜法としてスパッタ法を用いるならば、プロセスガスとしては、アルゴンにに酸素を体積率で0.05~50%(好ましくは0.1~20%)程度混合したガス、アルゴンに窒素を体積率で0.01~20%(好ましくは0.02~10%)程度混合したガスが好適に用いられる。

【0058】配向制御層3と垂直磁性層5との間に、中間層4が設けることができる。中間層4を設けることによって、垂直磁性層5の垂直配向性を高めることができるので、垂直磁性層5の保磁力を高め、記録再生特性および熱揺らぎ耐性をさらに向上させることができる。 【0059】中間層4にはhcp構造を有する材料を用いるのが起ましい。中間層4には

いるのが好ましい。中間層4には、CoCr合金やCoCrX1合金やCoX1合金(X1:Pt、Ta、Zr、Ru, Nb、Cu、Re、Ni、Mn、Ge、Si、O、NおよびBから選ばれる1種または2種以上)を用いるのが好適である。

【0060】中間層4のCoの含有量は30~70at %であることが好ましい。この範囲であれば中間層が非40 磁性であるからである。

【0061】中間層4の厚さは、垂直磁性層5における磁性粒子の粗大化による記録再生特性の悪化や、磁気ヘッドと軟磁性下地層2との距離が大きくなることによる記録分解能の低下を起こさないようにするために、20nm以下(好ましくは10nm以下)とするのが好ましい。

【0062】垂直磁性層5は、その磁化容易軸が基板に対して主に垂直方向に向いたものであり、Coを主成分とし、少なくともCr、Pt、Ndを含んだ材料からなる。各元素の含有量として、Cr含有量が18~28a

が1 あ

t% (好ましくは $19\sim24$ a t%)、P t含有量が $10\sim20$ a t% (好ましくは $13\sim18$ a t%) であり、N d含有量が $0.5\sim8$ a t% (好ましくは $1\sim4$ a t%) であることが好ましい。

【0063】Crの含有量が18at%未満であると、Cr偏析により磁性粒子間に形成される粒界層の厚さが薄くななるために磁性粒子間の磁気的な粒子間相互作用が大きくなり、また磁性粒子自体の粒径も肥大化しやすくなる。その結果記録再生時におけるノイズが増大し、より高密度記録に適した信号/ノイズ比(S/N)が得 10られなくなる。

【0064】また、Cr含有量が28at%を超えると、Crが粒界層へ偏析しきれず磁性粒子内部に残留する割合が増加する。その結果として垂直方向の保磁力、および残留磁化(Mr)と飽和磁化(Ms)の比Mr/Msが低下しやすくなる。さらに、磁性粒子の結晶配向性が損ねられて、垂直方向の保磁力(Hc-v)と面内方向の保磁力(Hc-i)の比(Hc-v)/(Hc-i)が小さくなってしまうおそれがある。

【0065】Ptの含有量が10at%未満であると、垂直磁性層に必要な磁気異方性定数(Ku)が得られず、磁化が熱的に不安定となる。また、Ptが20at%を超える場合、磁性層中のCr偏析を阻害するばかりでなく、磁性層中にfcc構造の層が形成されるために保磁力の低下をもたらすおそれがあるので、上記範囲が好ましい。

【0066】Ndの含有量が0.5at%未満であると、Kuの値を大きくするという効果が低下するおそれがある。また、Ndを8at%を超えて含有させると逆に保磁力が低下し、結果として記録再生時におけるノイズを増大させるおそれがある。

【0067】B、Ta、Cuは、磁性層中のCr偏析を促進し、磁気的な粒子間相互作用や磁性粒子径を小さし、結果として記録再生時のノイズを減少させる効果を有する。これら元素の添加量は各元素の合計で8at%以下であることが好ましい。8at%を超えて添加した場合、これら元素が磁性粒子内に残留し、その結果、垂直保磁力および残留磁化(Mr)と飽和磁化(Ms)の比Mr/Msが低下するため好ましくない。

【0068】磁性材料の例としては、Co20Cr14Pt2Nd(Cr含有率20at%、Pt含有率14at%、Nd含有率2at%)やCo22Cr12Pt4Nd(Cr含有率22at%、Pt含有率12at%、Nd含有率4at%)、Co19Cr14Pt1B1Ta1Nd(Cr含有率19at%、Pt含有率14at%、B含有率1at%、Ta含有率1at%、Nd含有率1at%)、Co22Cr12Pt2B2Nd(Cr含有率22at%、Pt含有率12at%、B含有率2at%、Nd含有率2at%、Nd含有率2at%、Nd含有率2at%、Nd含有率2at%、Nd含有率2at%、Nd含有率2at%、Dd交合。CoCrPtNd至全全。CoCrPtRd类合金。CoCrPtRd至全会。CoCrPtRd

14 Nd系合金、CoCrPtCuNd系合金、CoCrP

tBCuNd系合金の材料をあげることができる。 【0069】垂直磁性層5は、上記の本発明の磁性材料からなる1層構造とすることもできるし、各種の磁性材料と組み合わせて積層した多層構造とすることもできる。垂直磁性層が複数の磁性層から構成される場合、そのされのなくにより場合にあるませばといった。

る。垂直磁性層が複数の磁性層から構成される場合、そのうち少なくとも1層が上記の垂直磁性層からなることが好ましい。特に垂直磁性層の最上の層がNdを含有したものであることが好ましい。

【0070】多層構造に用いる各種の磁性材料としては上記以外に、CoCrPt系合金、CoCr系合金、CoCrPtB系合金、CoCrPtCu系合金のほか、Co系合金(CoCr、CoB、Co-SiO2等)とPd系合金(PdB、Pd-SiO2等)の積層材料やTbFeCo等のアモルファス材料とCoCrPtCu系材料とすることもできる。

【0071】また、多層構造とする場合、磁性層間に非磁性材料からなる中間層を形成した構成とすることもできる。非磁性材料としては、hcp構造を有する非磁性金属材料のほか、bcc構造やfcc構造、アモルファス構造を有する非磁性の金属材料、酸化金属材料、窒化金属材料とすることもできる。

【0072】垂直磁性層5の厚さは、3~60nm(好ましくは5~40nm)とするのが好ましい。垂直磁性層5の厚さが上記範囲未満であると、十分な磁束が得られず、再生出力が低下する。また、垂直磁性層5の厚さが上記範囲を超えると、垂直磁性層5内の磁性粒子の粗大化が起き、記録再生特性が低下するため好ましくない。

60 【0073】本発明の垂直磁性層5は基板に対しての残留磁化(Ms)と飽和磁化(Mr)の比Mr/Msが0.85以上(好ましくは0.95以上。)である。Mr/Msが0.85未満の磁気記録媒体は、逆磁区核形成磁界が低下するので熱揺らぎ耐性に劣るため好ましくない。

ない。
【0074】本発明の垂直磁性層5は、活性化体積
(v)と飽和磁気モーメント(Is)の積で表される活性化磁気モーメント(vIsb)の値が、0.3×10
-15 e mu~0.8×10-15 e mu (好ましくは0.4)
×10-15 e mu~0.7×10-15 e mu。)の範囲である。vIsbが0.3×10-15 e mu未満であると、磁気クラスターサイズが小さくなりすぎ、熱的に不安定になるため、容易に熱減磁が生じ、磁気記録媒体としては好ましくない。また、vIsbが0.8×10
-15 e muを超える場合、記録再生時におけるノイズが大きくなりすぎ、高密度記録に必要な信号/ノイズ比(S/N)が得られなくなるため、好ましくない。【0075】磁性層の垂直方向の保磁力(Hc-v)

at%、Nd含有率2at%)の他、CoCrPtNd は、2500[Oe]以上とすることが好ましい。保磁 系合金、CoCrPtBNd系合金、CoCrPtTa 50 力が2500[Oe]未満の磁気記録媒体は、高記録密 度には不適であり、また熱揺らぎ耐性が低下する。 【0076】垂直方向の保磁力(Hc-v)と面内方向の保磁力(Hc-i)の比で表される垂直磁気異方性(Hc-v)/(Hc-i)が5以上であることが好ましい。Hc-v/Hc-iの値が5未満である場合、磁性層の結晶配向性が悪くCoの磁化容易軸であるC軸が基板垂直面に対して分散していることになるので、保磁力(Hc-v)、Mr/Ms比、逆磁区核形成磁界(-Hn)の低下を招きやすい。さらに磁化が熱的に不安定であり熱減磁が生じるばかりでなく、記録再生時のノイズ 10

【0077】垂直磁性層5の逆磁区核形成磁界(-Hn)は、0~2000[Oe](より好ましくは0~1500[Oe]。)であることが好ましい。逆磁区核形成磁界(-Hn)が、0未満の磁気記録媒体は、熱揺らぎ耐性に劣るため好ましくない。

も増加してしまうため好ましくない。

【0078】逆磁区核形成磁界(-Hn)は、図2に示すように、VSMなどにより求めたMH曲線において、磁化が飽和した状態から外部磁界を減少させる過程で外部磁界が0となる点a、MH曲線の磁化が0である点bでのMH曲線の接線を延長した線と飽和磁化との交点を点cとすると、Y軸から点cまでの距離[Oe]で表すことができる。なお、逆磁区核形成磁界(-Hn)は、点cが外部磁界が負である領域にある場合に正の値をとり(図2を参照)、逆に、点cが外部磁界が正である領域にある場合に負の値をとる(図3を参照)。

【0079】なお本明細書中で、基板に対して主に垂直 方向に向いたものとは、たとえばVSMで測定した、基 板方向に対して垂直方向の保磁力の値が基板に対して水 平方向のそれより大きいものである。

【0080】保護層6は垂直磁性層5の腐食を防ぐとともに、磁気ヘッドが媒体に接触したときに媒体表面の損傷を防ぐためのもので、従来公知の材料を使用でき、例えばC、SiO2、ZrO2を含むものが使用可能である。

【0081】保護層6の厚さは、1~10nmとするのがヘッドと媒体の距離を小さくできるので高記録密度の点から望ましい。

【0082】潤滑剤7には、パーフルオロポリエーテル、フッ素化アルコール、フッ素化カルボン酸などを用 40 いるのが好ましい。

【0083】本発明の磁気記録媒体は、非磁性基板上に、少なくとも、直上の層の配向性を制御する配向制御層と、磁化容易軸が基板に対し主に垂直に配向した垂直磁性層と、保護層とが設けられ、垂直磁性層がCoを主成分とし、少なくとも、Cr、Pt、Ndを含んだ材料からなり、基板に対して垂直方向の残留磁化(Mr)と飽和磁化(Ms)との比Mr/Msが0.85以上であり、活性化体積と飽和磁気モーメントの積で表される活性化磁気モーメントが0.3×10⁻¹⁵emu~0.8

16

×10⁻¹⁵ e m u であることを特徴とする磁気記録媒体であるから、磁気記録媒体の記録再生時におけるノイズを増加させることなく、記録再生特性の分解能を向上させたり磁化の熱的な安定性を高めることができる。

【0084】次に上記構成の磁気記録媒体を製造する方法の一例について説明する。上記構成の磁気記録媒体を製造するには、非磁性基板1上に、軟磁性下地層2、配向制御層3、中間層4、垂直磁性層5を順次、スパッタ法、真空蒸着法、イオンプレーティング法などにより形成する。次いで保護層6を、好ましくはプラズマCVD法、イオンビーム法、スパッタ法により形成する。

【0085】非磁性基板1としては、アルミニウム、アルミニウム合金等の金属材料からなる金属基板を用いてもよいし、ガラス、セラミック、シリコン、シリコンカーバイド、カーボンなどの非金属材料からなる非金属基板を用いてもよい。

【0086】ガラス基板としては、アモルファスガラス、結晶化ガラスがあり、アモルファスガラスとしては汎用のソーダライムガラス、アルミノケートガラス、アルミノシリケートガラスを使用できる。また、結晶化ガラスとしては、リチウム系結晶化ガラスを用いることができる。セラミック基板としては、汎用の酸化アルミニウム、窒化アルミニウム、窒化珪素などを主成分とする焼結体や、これらの繊維強化物などが使用可能である。【0087】非磁性基板1としては、上記金属基板、非金属基板の表面にメッキ法やスパッタ法を用いてNiP

層が形成されたものを用いることもできる。 【0088】非磁性基板は、平均表面粗さRaが2nm (20Å)以下、好ましくは1nm以下であるとことが 30 ヘッドを低浮上させた高記録密度記録に適している点から望ましい。

【0089】また、表面の微小うねり(Wa)が0.3 nm以下(より好ましくは0.25[nm]以下。)であるのがヘッドを低浮上させた高記録密度記録に適している点から好ましい。端面のチャンファー部の面取り部、側面部の少なくとも一方のいずれの表面平均粗さRaが10nm以下(より好ましくは9.5nm以下。)のものを用いることが磁気ヘッドの飛行安定性にとって好ましい。微少うねり(Wa)は、例えば、表面荒粗さ測定装置P-12(KLM-Tencor社製)を用い、測定範囲80μmでの表面平均粗さとして測定することができる。

【0090】必要に応じて非磁性基板を洗浄して、非磁性基板を成膜装置のチャンバ内に設置する。必要に応じて基板は、例えばヒータより100~400℃に加熱される。非磁性基板1上に、軟磁性下地層2と、配向制御層3と、中間層4と、垂直磁性層5を各層の材料と同じ組成の材料を原料とするスパッタターゲットを用いてDC或いはRFマグネトロンスパッタ法により形成する。

50 膜を形成するためのスパッタの条件は例えば次のように

する。形成に用いるチャンバ内は真空度が10⁻⁴~10⁻⁷Paとなるまで排気する。チャンバ内に基板を収容して、スパッタガスとして、たとえばArガスを導入して放電させてスパッタ成膜をおこなう。このとき、供給するパワーは0.2~2.0kWとし、放電時間と供給するパワーを調節することによって、所望の膜厚を得ることができる。

【0091】軟磁性下地層2を放電時間と供給するパワーを調節することによって50~400nmの膜厚で形成するのが好ましい。

【0092】軟磁性下地層2を形成する際には、軟磁性 材料からなるスパッタターゲットを用いるのが軟磁性下 地層を容易に形成できるので好ましい。軟磁性材料とし ては、FeCo系合金(FeCo、FeCoVなど)、 FeNi系合金(FeNi、FeNiMo、FeNiC r、FeNiSiなど)、FeAl系合金(FeAl、 FeAlSi、FeAlSiCr、FeAlSiTiR u、FeAlOなど)、FeCr系合金(FeCr、F eCrTi、FeCrCuなど)、FeTa系合金(F eTa、FeTaC、FeTaNなど)、FeMg系合 20 金(FeMgOなど)、FeZr系合金(FeZrNな ど)、FeC系合金、FeN系合金、FeSi系合金、 FeP系合金、FeNb系合金、FeHf系合金、Fe B系合金、Feを60at%以上含有するFeA10、 FeMgO、FeTaN、FeZrNを挙げることがで きる。さらに、Coを80at%以上含有し、Zr、N b、Ta、Cr、Mo等のうち少なくとも1種を含有 し、アモルファス構造を有している、CoZr、CoZ rNb、CoZrTa、CoZrCr、CoZrMo系 合金を好適なものとして挙げることができる。

【0093】上記のターゲットは溶製法による合金ターゲットまたは焼結合金ターゲットである。

【0094】軟磁性下地層2を形成した後に、その表面を酸化する工程を含ませるのが好ましい。例えば軟磁性下地層2を形成した後、酸素を含む雰囲気に曝す方法や、軟磁性下地層2の表面に近い部分を成膜する際のプロセス中に酸素を導入する方法を挙げることができる。

【0095】軟磁性下地層2を形成後、配向制御層を、放電時間と供給するパワーを調節することによって配向制御層3を0.5~40nm(好ましくは1~20nm)の膜厚で形成する。配向制御層の形成に用いるスパッタ用ターゲットの材料としてはRu系合金、Ni系合金、Co系合金を挙げることができる。

【0096】配向制御層を形成した後、15~40nmの膜厚を有した磁性層を磁性層の材料からなるスパッタターゲットを用いて同様にスパッタ法により形成する。スパッタターゲットの材料としては、Co20Cr14Pt2Nd(Cr含有率20at%、Pt含有率14at%、Nd含有率2at%)やCo22Cr12Pt4Nd(Cr含有率22at%、Pt含有率12at%、

Nd含有率4at%)、Co19Cr14Pt1B1Ta1Nd(Cr含有率19at%、Pt含有率14at%、B含有率1at%、Ta含有率1at%、Nd含有率1at%)、Co22Cr12Pt2B2Nd(Cr含有率22at%、Pt含有率12at%、B含有率2at%、Nd含有率2at%、DcCrPtNd系合金、CoCrPtBNd系合金、CoCrPtTaNd系合金、CoCrPtCuNd系合金、CoCrPtCuNd系合金、CoCrPtBCuNd系合金

10 CoCrPt系合金、CoCr系合金、CoCrPtB系合金、CoCrPtCu系合金のほか、Co系合金(CoCr、CoB、Co-SiO2等)とPd系合金(PdB、Pd-SiO2等)の積層材料やTbFeCo等のアモルファス材料とCoCrPtCu系材料を挙げることができる。

【0097】また、Cr、Pt、Nd以外の元素として、B、Ta、Cuから選ばれるいずれかの元素の内1種類以上を添加したものを用いることも好ましい。

【0098】Coを主成分とし、少なくともCr、Pt、Ndを含んだ材料からなり、基板に対して垂直方向の残留磁化(Mr)と飽和磁化(Ms)との比Mr/Msが0.85以上であり、活性化体積と飽和磁気モーメントの積で表される活性化磁気モーメントが0.3×10⁻¹⁵ emu~0.8×10⁻¹⁵ emuである垂直磁性層を形成するためのスパッタの条件は例えば次のようにする。

【0099】Coを主成分とし、少なくともCrおよびPtさらにNdを含んだ材料からなるターゲットを使用し、形成に用いるチャンバ内は真空度が10-4~10-730 Paとなるまで排気した状態で、チャンバ内に基板を収容して、スパッタガスとして例えばArガスを導入して放電させてスパッタ成膜をおこなう。このとき、供給するパワーは0.2~2.0kWとし、放電時間と供給するパワーを調節することによって、所望の膜厚を得ることができる。

【0100】スパッタガスの圧力が3~20Pa(より好ましくは5~15Pa。)であるのが好ましい。

【0101】非磁性下地層と磁性層との間に中間層を設ける場合は、CoCr合金(Crの含有量は25~4540at%)を原料としたスパッタターゲットを用いるのが好ましい。CoCr合金としては、CoCr合金やCoCrX1合金やCoX1合金(X1:Pt、Ta、Zr、Ru、Nb、Cu、Re、Ni、Mn、Ge、Si、O、NおよびBから選ばれる1種または2種以上)を挙げることができる。このとき、磁性層にBを含む場合には、非磁性下地層と磁性層との境界付近において、B濃度が1at%以上の領域におけるCr濃度が40at%以下となるようなスパッタ条件で成膜するのが好ましい。

50 【0102】磁性層を形成した後、公知の方法、例えば

スパッタ法、プラズマCVD法またはそれらの組み合わ せを用いて保護膜、たとえばカーボンを主成分とする保 護膜を形成する。

【0103】さらに、保護膜上には必要に応じパーフル オロポリエーテルのフッ素系潤滑剤をディップ法、スピ ンコート法などを用いて塗布し潤滑層を形成する。

【0104】本発明に従って製造した磁気記録媒体は、 垂直磁性層が、Coを主成分とし、少なくとも、Cr、 Pt、Ndを含んだ材料からなり、基板に対して垂直方 向の残留磁化(Mr)と飽和磁化(Ms)との比Mr/ Msが0.85以上であり、活性化体積と飽和磁気モー メントの積で表される活性化磁気モーメントが0.3× 10^{-15} emu~0.8× 10^{-15} emuであることを特 徴とする磁気記録媒体であるから、磁気記録媒体の記録 再生時におけるノイズを増加させることなく、記録再生 特性の分解能を向上させたり磁化の熱的な安定性を高め ることができる。

【0105】また前述したのスパッタターゲットを用い た本発明の製造方法は、垂直磁性層が、Coを主成分と し、少なくともCr、Pt、Ndを含んだ材料からな り、基板に対して垂直方向の残留磁化(Mr)と飽和磁 化(Ms)との比Mr/Msが0.85以上であり、活 性化体積と飽和磁気モーメントの積で表される活性化磁 気モーメントが $0.3 \times 10^{-15}\,\mathrm{emu} \sim 0.8 \times 10^{-15}$ -15 e m u であることを特徴とする磁気記録媒体を容易 に製造することができる。

【0106】図5は、上記磁気記録媒体を用いた磁気記 録再生装置の例を示すものである。ここに示す磁気記録 再生装置は、図1に示す構成の磁気記録媒体50と、磁 気記録媒体50を回転駆動させる媒体駆動部51と、磁 30 気記録媒体50に情報を記録再生する磁気ヘッド52 と、この磁気ヘッド52を磁気記録媒体50に対して相 対運動させるヘッド駆動部53と、記録再生信号処理系 54とを備えている。記録再生信号処理系54は、外部 から入力されたデータを処理して記録信号を磁気ヘッド 52に送ったり、磁気ヘッド52からの再生信号を処理 してデータを外部に送ることができるようになってい る。本発明の磁気記録再生装置に用いる磁気ヘッド52 には、再生素子として巨大磁気抵抗効果 (GMR)を利 用したGMR素子などを有したより高記録密度に適した 40 ヘッドを用いることができる。上記磁気記録再生装置に よれば、垂直磁性層が、Coを主成分とし、少なくと も、Cr、Pt、Ndを含んだ材料からなり、基板に対 して垂直方向の残留磁化 (Mr) と飽和磁化 (Ms) と の比Mr/Msが0.85以上であり、活性化体積と飽 和磁気モーメントの積で表される活性化磁気モーメント が 0.3×10^{-15} emu $\sim 0.8 \times 10^{-15}$ emuであ ることを特徴とする磁気記録媒体を用いているので、磁 気記録媒体の記録再生時におけるノイズを増加させるこ となく、記録再生特性の分解能を向上させたり磁化の熱 50 000[0e])以上が好ましい。

2.0 的な安定性を高めることができ、高記録密度に適した磁 気記録再生装置となる。

【0107】図4は、本発明の磁気記録媒体の第2の実 施形態を示すもので、非磁性基板1と軟磁性下地層2と の間に、磁気異方性が主に面内方向を向いた硬磁性層8 を設けることができる。

【0108】硬磁性層8にはCoSm合金や、CoCr PtX2合金(X2:Pt、Ta、Zr、Nb、Cu. Re、Ni、Mn、Ge、Si、O、NおよびBのうち 1種または2種以上。)を用いるのが好適である。

【0109】硬磁性層8は、保磁力Hcが500[0 e]以上 (好ましくは1000 [Oe]以上) であるこ とが好ましい。

【0110】硬磁性層8の厚さは、150 nm以下 (好 ましくは70 nm以下)であることが好ましい。硬磁性 層8の厚さが150nmを超えると、配向制御層3の表 面平均粗さRaが大きくなるため好ましくない。

【0111】硬磁性層8は軟磁性下地層2と交換結合し て、硬磁性層の磁化方向が基板半径方向であるものとす るのが好ましい。その結果軟磁性層2の磁化が交換結合 により半径方向に固着されるのでヘッドによる書き込み 磁界と磁化の向きが直交することになり、記録再生時に 交換結合状態がより安定する。その結果ノイズの発生を 抑えることができるので好ましい。

【0112】硬磁性層8を設けることにより、より効果 的に軟磁性下地層2での巨大な磁区の形成を抑えること ができるので、磁壁によるスパイクノイズの発生を防止 して、記録再生時のエラーレートを十分に低くすること ができる。

【0113】硬磁性層8の配向を制御するために、非磁 性基板1と硬磁性層8との間にC r合金材料やB 2構造 材料を用いてもよい。

【0114】以上の構成の磁気記録媒体を製造するに は、基板1上に硬磁性層8を形成する工程を含ませ、そ の後スパッタ法などにより軟磁性下地層2を形成し、そ の後必要に応じてこの軟磁性下地層2の表面を酸化処理 を施し、次いで配向制御層3、中間膜4、垂直磁性層5 をスパッタ法などにより形成し、次いで保護層6をCV D法、イオンビーム法、スパッタ法などにより形成す る。次いで、ディッピング法、スピンコート法などによ り潤滑層7を形成する。

【0115】例えば、硬磁性層を形成するには、従来の 面内等方媒体を作成する方法を用いることができる。例 えば、ガラス基板/NiAl合金層/CrMo合金層/ CoCr合金層/CoCrPtB合金層の構成を挙げる ことができる。次に、保護膜まで形成した磁気記録媒体 に半径方向の磁場を印加して硬磁性層に半径方向の磁化 を与える。印加する磁場の強さは、硬磁性層が充分に磁 気的に飽和する磁界、例えば790000A/m(10

[0116]

【実施例】以下、実施例を示して本発明の作用効果を明 確にする。ただし、本発明は以下の実施例に限定される ものではない。

(実施例1)洗浄済みのガラス基板(オハラ社製、外直 径2.5インチ)をDCマグネトロンスパッタ装置(ア ネルバ社製C-3010)の成膜チャンバ内に収容し て、到達真空度1×10⁻⁵Paとなるまで成膜チャンバ 内を排気した後、このガラス基板上に890042r7 Nb(Co含有量89at%、Zr含有量4at%、N b含有量7at%)のターゲットを用いて100℃以下 の基板温度で膜厚100nmの軟磁性下地層2をスパッ タにより成膜した。この膜の飽和磁束密度Bs(T)と 膜厚t (nm)の積Bs・t (T・nm)が120 (T ・ n m) であることを振動式磁気特性測定装置 (VS M)で確認した。

【0117】次いで、基板を200℃に加熱して、上記 軟磁性下地層上に、Ruターゲットを用いて膜厚20n mの配向制御層3を形成し、65Co30Cr5B(C o含有量65at%、Cr含有量30at%、B含有量 20 5at%) ターゲットを用いて膜厚5nmの中間膜4、 68Co18Cr10Pt4Nd (Co含有量68at %、C r含有量18at%、Pt含有量10at%、N d含有量4at%) ターゲットを用いて膜厚20nmの 垂直磁性層5を順次形成した。なお、上記スパッタ工程 においては、成膜用のスパッタガスとしてアルゴンを用 い、圧力O.6Paにて成膜した。次いで、CVD法に より膜厚5 n m の保護層6を形成した。次いで、ディッ ピング法によりパーフルオロポリエーテルからなる潤滑 層7を形成し、磁気記録媒体を得た。

(実施例2~11)垂直磁性層5の組成と厚さを変えた 以外は、実施例1と同様にして磁気記録媒体を作製し

【0118】(比較例1)洗浄済みのガラス基板(オハ ラ社製、外直径2.5インチ)をDCマグネトロンスパ ッタ装置(アネルバ社製C-3010)の成膜チャンバ 内に収容して、到達真空度1×10-5Paとなるまで成 膜チャンバ内を排気した後、このガラス基板上に89C o4Zr7Nbのターゲットを用いて100℃以下の基 板温度で膜厚100nmの軟磁性下地層2をスパッタに 40 より成膜した。この膜の飽和磁束密度 Bs (T)と膜厚 t (nm)の積Bs・t (T・nm)が120 (T・n m)であることを振動式磁気特性測定装置(VSM)で 確認した。次いで、基板を200℃に加熱して、上記軟 磁性下地層上に、Ruターゲットを用いて膜厚20nm の配向制御層3を形成し、65Co30Cr5Bターゲ ットを用いて膜厚5nmの中間膜4、72Co18Cr 10Ptターゲットを用いて20nmの垂直磁性層5を 順次形成した。なお、上記スパッタ工程においては、成

Paにて成膜した。次いで、CVD法により膜厚5nm の保護層6を形成した。次いで、ディッピング法により パーフルオロポリエーテルからなる潤滑層7を形成し、 磁気記録媒体を得た。

【0119】(比較例2~12)垂直磁性層5の組成と 厚さを変えた以外は、比較例1と同様にして磁気記録媒 体を作製した。

【0120】実施例1~11、比較例1~12の磁気記 録媒体の磁気特性を、振動式磁気特性測定装置(VS M)にて測定した。なお、垂直方向の保磁力(Hcv)と面内方向の保磁力(Hc-i)の比(Hc-v)/ (Hc-i)の評価は以下のように実施した。軟磁性下 地層を設けないサンプルを別途作成し、(Hc-v) は、基板面に対して垂直方向に磁場が印加されるよう に、(Hc-i)は、基板面に平行な方向、かつ円周方 向もしくは径方向に対して磁場が印加されるようにして 測定してその比を算出した。

【0121】また、v I s bの評価結果を、振動式磁気 特性測定装置を用い、垂直方向の保磁力の時間依存デー 夕を測定し、前述した式より算出した。

【0122】また記録再生特性を、GUZIK社製リー ドライトアナライザーRWA1632、およびスピンス タンドS1701MPを用いて測定した。電磁変換特性 の評価には、再生部に巨大磁気抵抗(GMR)素子を有 する複合型薄膜磁気記録ヘッドを用い、記録条件を線記 録密度500kFCIとして測定を行った。

【0123】熱揺らぎ耐性(熱減磁)については、スピ ンスタンドS1701MPを用い、70℃において線記 録密度50kFCIで書きこみを行った後、書きこみ後 1秒後の再生出力に対する出力の低下率(%/deca 30 de)を、(So-S)×100/(So×3)に基づ いて算出した。この式において、Soは磁気記録媒体に 信号記録後1秒経過時の再生出力をしめし、Sは100 0秒後の再生出力を示す。結果を表2に示す。

【0124】(実施例12)洗浄済みのガラス基板(オ ハラ社製、外直径2.5インチ)をDCマグネトロンス パッタ装置(アネルバ社製C-3010)の成膜チャン バ内に収容して、到達真空度1×10-5Paとなるまで 成膜チャンバ内を排気した後、このガラス基板上に89 Co4Zr7Nbのターゲットを用いて100℃以下の 基板温度で膜厚100nmの軟磁性下地層2をスパッタ により成膜した。この膜の飽和磁束密度 Bs (T)と膜 厚t (nm)の積Bs・t (T・nm)が120 (T・ nm)であることを振動式磁気特性測定装置 (VSM) で確認した。次いで、基板を200℃に加熱して、上記 軟磁性下地層上に、Ruターゲットを用いて膜厚20n mの配向制御層3を形成し、65Co30Cr5Bター ゲットを用いて膜厚5mmの中間膜4、58Co22C r14Pt2B4Ndターゲットを用いて膜厚20nm 膜用のスパッタガスとしてアルゴンを用い、圧力0.6 50 の垂直磁性層5を順次形成した。なお、上記スパッタエ

程においては、成膜用のスパッタガスとしてアルゴンを 用い、圧力0.6Paにて成膜した。次いで、CVD法 により膜厚5 nmの保護層6を形成した。次いで、ディ ッピング法によりパーフルオロポリエーテルからなる潤 滑層7を形成し、磁気記録媒体を得た。

【0125】(実施例13~16)垂直磁性層5の組成 を変えた以外は実施例12と同様にして磁気記録媒体を 作成した。

【0126】(比較例13、14)垂直磁性層5の組成 を変えた以外は比較例1と同様にして磁気記録媒体を作 10 成した。実施例12~16、比較例13、14の磁気記 録媒体の磁気特性、(Hc-v)/(Hc-i)、vIs bを実施例1と同様に測定、評価した。結果を表3に示 す。

【0127】(実施例17)洗浄済みのガラス基板(オ ハラ社製、外直径2.5インチ)をDCマグネトロンス パッタ装置(アネルバ社製C-3010)の成膜チャン バ内に収容して、到達真空度1×10-5Paとなるまで 成膜チャンバ内を排気した後、このガラス基板上に89 C o 4 Z r 7 N b のターゲットを用いて 1 0 0 ℃以下の 20 基板温度で膜厚100nmの軟磁性下地層2をスパッタ により成膜した。この膜の飽和磁束密度Bs (T)と膜 厚t (nm)の積Bs・t (T・nm)が120 (T・ nm)であることを振動式磁気特性測定装置(VSM) で確認した。次に、表面を酸素ガスに曝した。暴露は、 暴露ガスとして50%酸素-アルゴン混合ガスを用い、 圧力1 P a 状態に 1 0 s e c 間放置の条件で行った。次 いで、基板200℃に加熱して、上記軟磁性下地層上 に、Ruターゲットを用いて膜厚20nmの配向制御層 3を形成し、65Co30Cr5Bターゲットを用いて 膜厚5nmの中間膜4を形成した。さらに一番目の垂直 磁性層51として63Co18Cr14Ptを膜厚15 nm、さらに二番目の垂直磁性層52として59Co2 2Cr14Pt5Ndターゲットを用いて膜厚5nmを 順次形成した。なお、上記スパッタ工程においては、成 膜用のスパッタガスとしてアルゴンを用い、圧力0.6 Paにて成膜した。次いで、CVD法により膜厚5 nm の保護層6を形成した。次いで、ディッピング法により パーフルオロポリエーテルからなる潤滑層7を形成し、 磁気記録媒体を得た。

【0128】(実施例18、19)―番目の垂直磁性層 51を表4のように変えた他は、実施例17と同様にし て磁気記録媒体を作成した。実施例17、18、19の 磁気記録媒体の磁気特性、(Hc-v)/(Hc-i)、 v I s bを実施例1と同様に測定、評価した。結果を表 **4に示す。**

【0129】(実施例20)洗浄済みのガラス基板(オ ハラ社製、外直径2.5インチ)をDCマグネトロンス パッタ装置(アネルバ社製C-3010)の成膜チャン バ内に収容して、到達真空度 1×1 0^{-5} P a となるまで 50 するスパッタ工程においては、成膜用のスパッタガスと

成膜チャンバ内を排気した後、このガラス基板上に硬磁 性層8の配向を制御するための940r6Moを膜厚2 Onm成膜し、さらに硬磁性層8としてCo20Cr1 4Pt4Bを膜厚50nmに形成した。次に89Co4 Zr7Nbのターゲットを用いて100℃以下の基板温 度で膜厚100nmの軟磁性下地層2をスパッタにより 成膜した。この膜の飽和磁束密度 Bs (T)と膜厚も (nm)の積Bs·t (T·nm)が120 (T·n m)であることを振動式磁気特性測定装置 (VSM)で 確認した。次に、表面を酸素ガスに曝した。暴露は、暴 露ガスとして50%酸素-アルゴン混合ガスを用い、圧 カ1Paの雰囲気に10sec間放置の条件で行った。 次いで、基板200℃に加熱して、上記軟磁性下地層上 に、Ruターゲットを用いて膜厚20nmの配向制御層 3を形成し、65Co30Cr5Bターゲットを用いて 膜厚5nmの中間膜4、59Co22Cr14Pt5N dターゲットを用いて膜厚20nmの垂直磁性層5を順 次形成した。なお、上記スパッタ工程においては、成膜 用のスパッタガスとしてアルゴンを用い、圧力0.6P aにて成膜した。次いで、CVD法により膜厚5 nmの 保護層6を形成した。次いで、ディッピング法によりパ ーフルオロポリエーテルからなる潤滑層7を形成し、磁 気記録媒体を得た。得られた磁気記録媒体を、10mg e c オーダーの反値幅を有するパルス磁界を発生させる 磁気記録媒体専用の着磁ジグに200Vの電圧を印加し て、半径方向に948kA/m(11850[〇e]) の強度のパルス磁界を印加し、半径方向に磁化固着を行

【0130】 (実施例21~24) 硬磁性層層の組成お よび膜厚を変えた他は、実施例20と同様にして磁気記 録媒体を作成した。実施例20~24の磁気記録媒体の 磁気特性、(Hc-v)/(Hc-i)、vIsbを実施 例1と同様に測定、評価した。結果を表5に示す。 【0131】 (実施例25) 洗浄済みのガラス基板 (オ ハラ社製、外直径2.5インチ)をDCマグネトロンス パッタ装置(アネルバ社製C-3010)の成膜チャン バ内に収容して、到達真空度1×10-5Paとなるまで 成膜チャンバ内を排気した後、このガラス基板上に89 Co4Zr7Nbのターゲットを用いて100℃以下の 40 基板温度で膜厚100mmの軟磁性下地層2をスパッタ により成膜した。この膜の飽和磁束密度Bs (T)と膜 厚t (nm)の積Bs・t (T・nm)が120 (T・ nm)であることを振動式磁気特性測定装置 (VSM) で確認した。次いで、基板を200℃に加熱して、上記 軟磁性下地層上に、Ruターゲットを用いて膜厚20n mの配向制御層3を形成し、65Co30Cr5Bター ゲットを用いて膜厚5nmの中間膜4、59Co22C

r14Pt5Ndターゲットを用いて膜厚20nmの垂

直磁性層5を順次形成した。なお、垂直磁性層5を成膜

してアルゴンを用い圧力3Paにて成膜した。その他の 成膜のスパッタ工程においては、0.6Paにて成膜し た。次いで、CVD法により膜厚5nmの保護層6を形 成した。次いで、ディッピング法によりパーフルオロボ リエーテルからなる潤滑層7を形成し、磁気記録媒体を

*圧力を変えた他は、実施例24と同様にして磁気記録媒 体を作成した。実施例25~28の磁気記録媒体の磁気 特性、(Hc-v)/(Hc-i)、vIsbを実施例1 と同様に測定、評価した。結果を表6に示す。 [0133]

【表2】

【0132】(実施例26

	年自孫本國		おりは								2
	相成	を	育込む日	Mr/Ms	Mr/Ms! Hc-v/Hc-i	お存む物をエーベント	新猿冈核先移野	電磁変換特性 Dwift lend	a特性 SNO	熱減磁	1
	[at%]	[_nm]	[00]		:	[x 10 ⁻¹⁵ em;]		004	ביינים ביינים	3	(実
実施例 1	Co18Cr10Pt4Nd	20	4150	1.00	80	0 80	200	100	10 06		施伊
実施便 2	Co20Cr10Pt4Nd	20	3800	1.00	7		200	1 0	•	9 9	120
米施倒 3	Co23Cr10Pt4Nd	20	3550	1.00	9	,	150) IC	•		<u>5~</u>
来施例 4	Co28Cr10Pt4Nd	20	3400	0.95	တ		100	!	.1	0.44	28
実施贸 5	Co18Cr20Pt4Nd	20	4700	1.00	80		1. 300	10	•		3) =
実施例 6	Co28Cr20Pt4Nd	8	3800	0.95	မ	0.56	300	10.9	,	900	垂直
英施例 7	Co22Cr14Pt2Nd	20	3400	1.00	7		200	!	!		磁性
海施包 8	Co22Cr14Pt5Nd	20	4000	1.00	æ	0.59	909	.!	!	. 1	悟
実施領 9	Co22Cr14Pt8Nd	20	4700	1.00	80		1,000		!	.1	50
実施例 10	10 Co22Cr14Pt2Nd	10	3300	0.92	ဖ		0	10 8	.!)成
実施例 11	11 Co22Cr14Pt2Nd	40	4400	1. 00	7		1, 500	•	!	.! .	摸*
比較倒 1	Co18Cr10Pt	20	2700	0. 70	3	0. 55	- 600	15.0	11	14	
比較例 2	Co18Cr14Pt	20	3400	0.75	3	0.70	-200	14.0	16. 19	:	
比較倒 3	Co18Cr16Pt	20	3800	0.85		0.85	0	l l	1		
比較例 4	Co 18Cr20Pt	20	3600	0.92	က	06 .0	200	11.6	1 .		
九数鱼 5	Co18Cr24Pt	20	3500	1.00	ဇ	1. 05	1, 000	10.7	l .	:	
比数 <u>多</u> 6	Co32Cr14Pt4Nd	8	2500	0.80	4	÷	-1, 200	13. 2	16.82	1. 17	
比較倒 7	Co16Cr14Pt4Nd	20	4200	1.00	6	0.75	2, 000	10.	17.94	0.10	
比較便 8	Co22Cr14Pt12Nd	20	4500	1.00	4	0.75	1, 000	10.6	! .		
比較例 9	Co18Cr8Pt4Nd	8	2500	0.63	ď	0.62	-1, 000	16. 7	!	Ι.	
九大大 10	10 Co18Cr24Pt4Nd	20	2800	1.00	က	0.80	1, 200	10 8		0.63	
- 1	1 & 18Cr	5	1000	0. 53	ZI		-	·	16. 65		
比較例 12	12 Co 18 Cr5Nd	8	1200	0. 53	2	1, 15	-1, 400	20.8	•		
1		;								ł	

Hc-v/Hc-i比は、GoOrZrからなる軟磁性下地層を除いて作成したサンプルを用いて評価した。

【0134】表2より、垂直磁性層5にNdを添加した磁 性材料を使うことで、vIsbの増加を抑え、Mr/M s比、(Hc-v)/(Hc-i)、-Hnが向上し、結 果として記録再生時の分解能、S/N比そして熱揺らぎ 特性が改善していることがわかる。実施例1はNdの添 加により、Ndを添加していない比較例1よりも、Mr /Ms比、(Hc-v)/(Hc-i)、-Hnが向上し

%Ptを増加させた比較例 $1\sim$ 5では、Ptを20at%まで添加する必要がある上、Pt量の増加によりvIs bが大きくなり、結果として記録再生時におけるS/N 比が低下することがわかる。一方、実施例7~9より、 Nd含有量を増加ることで、VIsbをほとんど増加さ せることなく、Mr/Ms比、(Hc-v)/(Hci)、一Hnをさらに向上させることができることがわ ている。また、実施例1と同等な磁気特性を得るのに、%50かる。これより、磁気記録媒体の磁気特性を向上させる

のに、Ptを増加させるよりもNdを添加するほうが効 果的であることがわかる。比較例6~8より、Cr含有 量が18~28at%の範囲をはずれた場合、Ndの添 加量が8at%を超えた場合、Mr/Ms比や熱揺らぎ 耐性が低下したり、VIsbが増加し、記録再生時にお けるS/N比が低下することがわかる。比較例9より、*

*Pt量が10at%より少ない場合、Nd添加の効果は ほとんど得られない。また、比較例10より、Pt量が 20at%を超える場合、急激に磁気特性が低下するこ とがわかる。

[0135]

【表3】

	垂直磁性層 組成	厚さ	Hc-v	磁気特性 Mr/Ms	Ho-v/Ho-i	活性化磁気	遊磁区核 形成磁界
	[at%]	[nm]	[Oe]			[×10 ⁻¹⁵ emu]	[Oa]
実施例12	Co22Cr14Pt2B4Nd	20	3, 600	1	8	0. 56	500
実施例13	Co22Cr14Pt8B4Nd	20	3, 400	0.9	6	0. 49	100
実施例14	Co22Cr14Pt4Te4Nd	20	3, 500	1	6	0. 53	150
実施例15	Co22Cr14Pt2Cu4Nd	20	3, 800	1	9	0. 55	600
実施例16	Co22Cr14Pt2B2Cu4Nd	20	4, 000	1	8	0. 52	500
比較例13	Co22Cr14Pt12B4Nd	20	3, 700	0.8	4	0. 40	-200
比較例14	Co22Cr14Pt6B4Ta4Nd	20	3, 200	<u>0</u> . 75	4	0. 50	-600

注)Hc-v/Hc-i比は、CoCrZrからなる軟磁性下地層を除いて作成したサンプルを用いて評価した。

【0136】垂直磁性層5を形成する磁性材料にNdを 添加した上、さらにCu、B、Taを添加することで磁 気特性の制御が可能である。ただし、比較例9、10に 20 【表4】

※%を超えると、磁気特性が低下することがわかる。

[0137]

見られるように、Cu、B、Taの合計含有量が8at%

厚さ [nm Pt5Nd 20	[Oe]		Hc-v/Hc-i	活性化磁気 モーメント [×10 ⁻¹⁵ emu]	逆磁区核 形成磁界 [Oe]
		1.00		[×10 ⁻¹⁵ emu]	
≥t5Nd 20	4.000	1 00			
		; 1. 00	8	0. 59	600
Pt5Nd 5	3, 600	0. 95	6	0. 57	200
2t5Nd 5	3, 800	1. 00	6	0.62	300
2t5Nd 6	3, 950	1. 00	6		350
-			-		
	'	_	_		-600 -200
	- BNCF	- 3, 400	- 2, 700 O. 70	- 2, 700 0. 70 g	- 2, 700 0. 70 a 0. 55

注)Ho-v/Ho-i比は、軟磁性下地層を除いて作成したサンプルを用いて評価した。

【0138】垂直磁性層5を複数設け、その内の1層を Ndを添加した磁性材料とすることで、磁気特性が向上

★【0139】 【表5】

することがわかる。

	硬磁性層	磁気特性			活性化磁気	逆磁区核	
	組成	厚さ	Hc-∨		Hc-v/Hc-i		形成磁界
	[at%]	[nm]	[Oe]			[× 10 ⁻¹⁵ emu]	[Oe]
実施例 8	-	-	4, 000	1	8	0. 59	600
実施例20	Co20Cr14Pt4B	50	4, 100	1	8	0. 60	600
実施例21	Co20Cr14Pt4B	20	4, 050	1	8	0. 60	600
実施例22	Co20Cr14Pt4B	150	4. 200	1	8	0. 60	600
実施例23	Co17Cr22Pt	50	4, 000	1	8	0. 60	600
実施例24	Co16Sm	50	3, 900	1	. 8	0. 62	600

注)Hc-v/Hc-i比は、便磁性層および軟磁性下地層を除いて作成したサンブルを用いて評価した。

【0140】硬磁性層8として、各種材料が使用可能で ☆【0141】 あることがわかる。 【表6】 松

	垂直磁性用		744 444 444	Id.			
	組成	成膜圧力	Hc–v	磁気特 Mr/Ms	19≊ Ho~v∕Ho∹i	活性化磁気モーメント	逆磁区核 形成磁界
	[at%6]	[Pa]	[Oe]			[× 10 ⁻¹⁵ emu]	[Oe]
	Co22Cr14Pt5Nd	0. 5	4, 000	1.00	8	0. 59	600
	Co22Cr14Pt5Nd	3	4, 000	1.00	8	0. 51	500
	Co22Cr14Pt5Nd		3, 950	1. 00	7	0.48	400
	Co22Cr14Pt5Nd		3, 900	0. 95	6	0. 46	200
実施例28	Co22Cr14Pt5Nd	25_	3, 400	0. 80	4	0.46	-150

注)Hc-v/Hc-i比は、軟磁性下地層を除いて作成したサンプルを用いて評価した。

【0142】垂直磁性層5の成膜時のスパッタガス圧力を高くすることで、他の特性を損ねることなく、vIs bがより小さくできることがわかる。実施例28から、 成膜圧力が20Paを超えると、磁気特性が低下するこ とがわかる。

[0143]

【発明の効果】以上説明したように、本発明の磁気記録 媒体にあっては、垂直磁性層がCoを主成分とし、少な くともCr、Pt、Ndを含んだ材料から形成すること により、記録再生特性を損ねることなく、磁気特性を向 20 上させることができる。さらに、Ptの替わりにNd含 有量を制御することで磁気特性を向上させることができ るので、垂直磁性層中のPt含有量を減らすことがで き、磁気記録媒体の製造コストの上昇を防ぐことができ る。*

*【図面の簡単な説明】

【図1】本発明の磁気記録媒体の第一の実施形態を示す 断面図である。

- 【図2】磁化曲線の一例を示す図である。
- 【図3】磁化曲線の他の例を示す図である。
- 【図4】本発明の第二の実施形態を示す断面図である。
- 【図5】本発明の磁気記録媒体を用いた磁気記録再生装置の一例を示す概略構成図である。

【符号の説明】

0 1…非磁性基板、2…軟磁性下地層、3…配向制御層、 4…中間層、5…垂直磁性層、6…保護層、7…潤滑 層、8…硬磁性層

50:磁気記録媒体、51:媒体駆動部、52:磁気へッド、53:ヘッド駆動部、54:記録再生信号処理系

【図1】

【図2】

【図3】

【図4】

【図5】

フロン	トペー	ジの続き
-----	-----	------

) H > 1. (ンマン形にさ		
(51) Int. C1	1907 100 7		F I
G11E	3 5/667		G11B 5/667
	5/738		5/738
	5/851		5/851
H01F	` 10/16		HO1F 10/16
	10/30		10/30
	41/18		41/18
(72)発明者	望月 寛夫		(72) 発明者 酒井 浩志
	千葉県市原市八幡海岸通り5番の1	昭和	
	電工エイチ・ディー株式会社内	мин	千葉県市原市八幡海岸通り5番の1 昭和
(72)発明者	國分 誠人		電工エイチ・ディー株式会社内
	千葉県市原市八幡海岸通り5番の1	昭和	Fターム(参考) 4K029 AA02 AA04 AA09 BA24 BB02
	電工エイチ・ディー株式会社内	ндли	BCO6 BD11 CAO5 DCO4 EAO3
(72)発明者	楊輝		5D006 BB01 BB06 BB07 BB08 CA01
(.=//8//1	千葉県市原市八幡海岸通り5番の1	mia	CAO3 CAO6 DAO3 DAO8 EAO3
	電工エイチ・ディー株式会社内	昭和	FA09
(72)発明者	小林 正和		5D112 AAO3 AAO4 AAO5 AA24 BBO5
(14//6/)14		HTT-6-4	BB06 BD03 FA04 FB06 FB08
	千葉県市原市八幡海岸通り5番の1 電工エイチ・ディー株式会社内	昭和	5E049 AA04 BA06 DB12 GC01