

Agenda

Was ist das FZI?

FZI-Abteilung Wissensmanagement

Ziel

Auswertung von großen Datenmengen aus heterogenen Quellen mit intelligenten Verarbeitungspipelines unter Einsatz von maschinellen Lernverfahren zur Entscheidungsunterstützung und -automatisierung.

Technik

Datengrundlage

Datenanbindung und -visualisierung

Stream Processing

Data Parsing / Extraction

Zeitreihen

Text

Ton

Bilder

Web Application

Web Application

Wissensgraphen

ByteF

Ansprechpartner

Dr. Steffen Thoma, Abteilungsleitung

Felix Hertlein, Computervision

Jacqueline Höllig, Explainable Al

Jin Liu NLP

Lucas Cazzonelli, Online Learning

Anastasia Slobodyanik

Walter Laurito, NLP

Prof. Dr. York Sure-Vetter Direktor FZI, Professor, Web Science, AIFB

Dr. Philipp Zehnder

Dr. Dominik Riemer **Industrial Data Analytics**

Industrial Data Analytics

Idee des Seminars

Die Studierenden bearbeiten in Gruppen (≤ 3 Pers.) ein Themen mit bereitgestellten Daten. Hierbei wird der typische Ablauf eines **Data Science Projektes** abgebildet.

Ergebnis der Arbeit

Auf Grundlage der jeweils vorgegebenen Datenbasis soll eine **einsatz- und auslieferungsfähige Softwarlösung** entwickelt werden.

Lernziel ist...

...den **strukturierten** Umgang mit den Herausforderungen **realer Daten** und den Möglichkeiten **moderner Technologien** erlernen, um Potentiale für bessere unternehmerische Entscheidungen zu heben.

Organisatorisches

- Die Case Challenge bietet die Möglichkeit zur "freien" Gestaltung
 - des Lösungswegs und
 - des konkreten Deliverables.
- Was wird bewertet?
 - Die entwickelte Lösung, insb. Der Lösungsweg
 - Schriftliche Ausarbeitung
 - Präsentation

Wissenschaftliches Arbeiten

Was macht eine gute wissenschaftliche Arbeit aus?

Objektivität

- Unvoreingenommenes wissenschaftliches Vorgehen
- eine sachliche Argumentation und neutrale Darstellung der Ergebnisse

Nachvollziehbarkeit

- Nachvollziehbare Aussagen und Ergebnisse
- Richtige Geltungsbereiche

Relevanz

- Informationswert
- Neue Verfahren, die helfen, Probleme

Verständlichkeit

- Definition relevanter Begriffe
- Klare, präzise Sprache
- Wahrnehmungshilfen

Überprüfbarkeit

- Belegen von Aussagen
- Vollständige Quellenangaben

Ehrlichkeit

- Fremdwissen & Eigenleistung
- Primärquellen
- Künstliches aufblähen von Quellenangaben

Leitfaden: https://www.aifb.kit.edu/images/3/39/AIFB_Leitfaden_Abschlussarbeiten.pdf

Zeitplan

Datum	Uhrzeit	Ort	Gegenstand
06. November 2024	15:00 – 17:00	Raum Hamburg, FZI	Kick-Off & initiales Gruppenmeeting
11. Dezember 2023	15:00 – 17:00	Raum ?, FZI	Zwischenpräsentation 5 min Präsentation
09. Februar 2024	23:59 Uhr	(elektronisch)	Abgabe der Ausarbeitung
29. Januar 2024	16:00 – 18:00	Raum ?, FZI	Abschlusspräsentation 10 min Präsentation

Ablauf und Formales

- Initiales Gruppenmeeting mit Betreuer (im Anschluss & meldet euch bitte bei euren zugeteilten Betreuern)
- Anmeldung: https://campus.studium.kit.edu/exams/registration.php (2513315)
- Treffen mit Gruppenbetreuer nach Vereinbarung
- Midterm Meeting
 - **Ziel:** Vorstellung Halbzeitstand, bisherige Erkenntnisse, Herausforderungen und weiteres Vorgehen
 - Präsentation (5 Min.) Vorstellung der Gruppe, Thema und bisherige Erkenntnisse
 - Diskussion (5 Min.)
 - Austausch Betreuer / Seminarteilnehmer
- Abschlusspräsentation (10 Min. Vortrag + 10 Min Diskussion)
- Deliverable:
 - Umfang: 10 15 Seiten (Inhalt)
 - Inhalt: Dokumentation der Projektarbeit

UniCluster

- Für die Laufzeit des Seminars (bis 01.03)
- Registrierung notwendig: https://bwidm.scc.kit.edu
- Danach können Sie sich auf einem Login-Knoten des Clusters mit Ihrem KIT-Account einloggen (uc2.scc.kit.edu).
- Weitere Informationen:
 - https://wiki.bwhpc.de/e/BwUniCluster_2.0_User_Access
 - http://www.scc.kit.edu/dienste/hpc.php

Themenübersicht

Gruppe	Thema	Ansprechpartner	
1	Integration von Python Jupyter Notebooks in eine Webanwendung	Philipp Zehnder (philipp.zehnder@bytefabrik.ai) Dominik Riemer (dominik.riemer@bytefabrik.ai)	
2	Explaining Text Classification Models using LLM generated counterfactuals	Anastasia Slobodyanik (slobodyanik@fzi.de)	
3	Real-World Fact Checking	Jin Liu (Liu2@fzi.de)	
4	Forward-Forward Algorithmus für Online Learning	Lucas Cazzonelli (cazzonelli@fzi.de)	
5	Explainable Machine Learning for Time Series	Jacqueline Höllig (hoellig@fzi.de)	
6	ChemChat	Walter Laurit (laurito@fzi.de)	

Bytefabrik.Al

Bytefabrik.AI: Experten an der Schnittstelle zwischen OT, IT und KI

Unternehmen

IIoT/KI-Analyselösungen für automatisierte Anlagen

Spin-Off des Karlsruher Instituts für Technologie (KIT)

Open-Core-Geschäftsmodell

Produkte

Bytefabrik Manufacturing Insights Analyselösung für automatisierte Anlagen

Bytefabrik IIoT-Anwendungsplattform Beschleunigte Entwicklung von KI-

Anwendungen für die Industrie

Apache StreamPipes Open Source

Dienstleistungen

Entwicklung

Beratung

Training

IT/OT-Integration, KI-Anwendungen, Apache StreamPipes

Automated production lines in manufacturing and intralogistics

PROBLEM

Many factors cause **reduced performance** and **unforeseen failures**of automated production lines.

Root cause analysis is often based on experience and gut feeling.

SOLUTION

Bytefabrik.Al feels the pulse of your production line - through Al-based evaluation of control and sensor data, you get a 360-degree analysis of all processes and process parameters.

You save costs through higher plant efficiency, lower maintenance costs and consistent product quality.

Live Data from PLCs

OPEN CORE

Thema: Integration von Python Jupyter Notebooks in eine Webanwendung

Seminarinhalt: Integration von Jupyter Notebooks in eine Webanwendung

- Fokus: Entwicklung einer Plug-and-Play-Lösung zur Verwaltung und Bearbeitung von Python-Programmen im Browser
- Ziel: Nahtlose Nutzung der Python-Schnittstelle für IIoT-Daten direkt im Web

Praktische Umsetzung:

- Technische Integration von Jupyter Notebooks für eine webbasierte, benutzerfreundliche Python-Entwicklungsumgebung
- Nutzer können eigene KI-Modelle entwickeln und ausführen

Ergebnisse: Studierende entwickeln eine Lösung, die Jupyter Notebooks mit IIoT-Daten verbindet, um eine komfortable und integrierte Plattform für datengetriebene Anwendungen und KI-Entwicklung bereitzustellen.

Text Classification

 Assign a label or class to a given text or a relationship between two given texts

Sentiment Analysis (SA)

25

- Positive, Negative, (Neutral)
- Natural Language Inference (NLI)
 - Entailment, Contraction, Neutral

Natural Language Inference

Determine whether a "hypothesis" is true (entailment), false (contradiction), or undetermined (neutral) given a "premise".

Premise	Hypothesis	Label
A man inspects the uniform of a figure in some East Asian country.	The man is sleeping.	contradiction
An older and younger man smiling.	Two men are smiling and laughing at the cats playing on the floor.	neutral
A soccer game with multiple males playing.	Some men are playing a sport.	entailment

Counterfactual Explanations

Explain predictions of individual instances by finding the smallest change to the feature values that changes the prediction to a predefined output

Task: LLM-Generated Counterfactuals for NLI

- Literature review
- Chose a pretrained model and a dataset
- Implement a baseline
 - Existing approaches
 - Heuristics
- Prompt a LLM to
 - Change the premise
 - Change the hypothesis
 - Change both
- Evaluate results

Natural Language Inference

Premise Sentence: "A group of men riding bicycles in a line."

Hypothesis Sentence: "The men riding together."

Relation between the Premise and the Hypothesis: entailment

Premise Sentence: "A group of men riding bicycles in a line."

Hypothesis Sentence: "The men riding horses."

Relation between the Premise and the Hypothesis: contradiction

Real-World Fact-Checking

- Automated fact-checking
 - Knowledge-intensive NLP tasks
 - Information retrieval
 - Natural language inference (reasoning): (Premise, Hypothesis) □ Verdict (Supported, Refuted, Not Enough Information)

Pipeline [1]

Real-World Fact-Checking – AVeriTeC [2]

- Tasks:

- Question Generation with LLM
- Evidence Retrieval
 - Given the claim and corresponding question, retrieve relevant documents with Google Search API
 - Question-Answering with LLM
- Claim Verification

Claim: Donald Trump has kept his promises to voters.

Claim type: Event/Property Claim

Speaker: None

Claim date: 24-8-2020

Question 1: What promises did Donald Trump

make to voters?

Answer 1 (Extractive & Abstractive): During the 2016 campaign, Donald Trump made more than 280 promises, though many were contradictory or just uttered in a single campaign event. By 2020 Trump had made a number of promises, 6 of which he had not fulfilled, including ...

Question 2: Of the promises Donald Trump made, did he fulfil any of them?

Answer 2 (Boolean): Yes.

Question 3: Has President Donald Trump kept his campaign promises to voters?

Answer 3 (Abstractive): President Trump has only kept a few of his promises.

Verification: Conflicting Evidence/Cherrypicking **Justification**: QA pairs state promises kept and not kept. Claim does not state he kept all promises.

References

- 1. Guo, Z. et al., A Survey on Automated Fact-Checking, TACL 2022
- 2. Schlichtkrull, M. et al., AVeriTeC: A Dataset for Real-world Claim Verification with Evidence from the Web. NeurIPS 2024

Forward-Forward Algorithmus für Online Learning

- Neuartiges, biologisch plausibles Lernverfahren für neuronale Netze
- Potentiell besonders für Online Learning geeignet, da genaue Anpassung des Modells an Einzelbeispiele möglich sind

Ziele:

- Implementierung des Forward-Forward Algorithmus für Online Learning
- Vergleichende Evaluation mit Backpropagation und ggf. weiteren Lernverfahren

Erwarteter Nutzen:

Bessere Anpassungsfähigkeit und Effizienz bei dynamischen Datenströmen

Hinton, 2022

Explainability for Time Series Classification and (Regression)

[2] https://christophm.github.io/interpretable-ml-book/anchors.html

[3] Höllig, J., Thoma, S., and Grimm, F., "XTSC-Bench: Quantitative Benchmarking for Explainers on Time Series Classification", <i>arXiv e-prints</i>2023.

[4] Raykar, Vikas C., et al. "TsSHAP: Robust model agnostic feature-based explainability for time series forecasting." arXiv preprint arXiv:2303.12316 (2023)

[5] Spinnato, Francesco, et al. "Understanding Any Time Series Classifier with a Subsequence-based Explainer." ACM Transactions on Knowledge Discovery from Data (2023).

[6] Grabocka, Josif, et al. "Learning time-series shapelets." Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. 2014.

[7] Bostrom, Aaron, and Anthony Bagnall. "Binary shapelet transform for multiclass time series classification." Transactions on Large-Scale Data-and Knowledge-Centered Systems XXXII: Special Issue on Big Data Analytics and Knowledge Discovery (2017): 24-46.

Subsequence-Based Explainers for Time Series Models

Which parts of the model input are significant for the prediction?

Can subsequence and patter mining algorithms be used to find prediction Anchors [2]?

- 1. Research Existing Algorithms
- 2. Implement Algorithm.
- Evaluate with the help of [3].

Chatbot to support prioritisation of identified unknown chemicals in water quality studies by retrieving contextual information not directly available

Chatbot concept

^{* [2-[2-(2,6-}dichloroanilino)phenyl]acetic acid

Challenges:

- Database can be quite big
- LLM can still say false things
- **>** ...

* Tools we might use:

- > Python
- > Haystack
- > HuggingFace
- > PubChem

FZI-Abteilung Wissensmanagement

Ziel

ChemChat

Real-World Fact Checking

Explaining Text Classification Models using LLM generated counterfactuals

Explainers for Time Series Classification

Integration von Jupyter Notebooks in eine Webanwendung

Forward-Forward Algorithmus für Online Learning

Datengrundlage

Auswertung von großen Datenmengen aus heterogenen Quellen mit intelligenten Verarbeitungspipelines unter Einsatz von maschinellen Lernverfahren zur Entscheidungsunterstützung und -automatisierung.

Themenübersicht

Gruppe	Thema	Ansprechpartner	Gruppe
1	Integration von Python Jupyter Notebooks in eine Webanwendung	Philipp Zehnder (philipp.zehnder@bytefabrik.ai) Dominik Riemer (dominik.riemer@bytefabrik.ai)	Felix Marschall
2	Explaining Text Classification Models using LLM generated counterfactuals	Anastasia Slobodyanik (slobodyanik@fzi.de)	
3	Real-World Fact Checking	Jin Liu (Liu2@fzi.de)	
4	Forward-Forward Algorithmus für Online Learning	Lucas Cazzonelli (cazzonelli@fzi.de)	Bilal Akdag Tim Fridtjof Tenning
5	Explainable Machine Learning for Time Series	Jacqueline Höllig (hoellig@fzi.de)	Dominik Müller Fabian Wylczoch
6	ChemChat	Walter Laurito (laurito@fzi.de)	Jasper Richter Jeremias Hohner

Zeitplan

Datum	Uhrzeit	Ort	Gegenstand
06. November 2024	15:00 – 17:00	Raum Hamburg, FZI	Kick-Off & initiales Gruppenmeeting
11. Dezember 2023	15:00 – 17:00	Raum ?, FZI	Zwischenpräsentation 5 min Präsentation
09. Februar 2024	23:59 Uhr	(elektronisch)	Abgabe der Ausarbeitung
29. Januar 2024	16:00 – 18:00	Raum ?, FZI	Abschlusspräsentation 10 min Präsentation

VIELEN DANK