$(-)P_1$ 落在 $T_A \cdot T_B \cdot T_C$ 上

在此不失一般性,將其平移、旋轉、翻轉後令A = (0,0)、 $B = \left(k \cdot \frac{1}{\tan \theta_1}, k\right)$ 、 $C = \left(-k \cdot \frac{1}{\tan \theta_2}, k\right), \quad \exists \ \theta_1 < \theta_2 \circ \exists \ \overline{BC} \ \overline{PC} \ \overline{EA} \ \exists \ x \ \overline{AB} \ \exists \$

此時與 \overline{AC} 的夾角為 θ_1 ,與 \overline{AB} 的夾角為 θ_2 ,故 $\angle P_1AC_1=2\theta_1$ 、 $\angle P_1AA_1=2\theta_2$ 。 (因對頂角及鏡射,可得角度),如圖x。

圖x-將 ΔABC 平移、旋轉、翻轉後,

 T_A 與 x 軸正向的夾角為

 $180^{\circ} + \theta_1 - \theta_2$

圖 $x - A_1$ 相當於 P_1 以A點為原點

旋轉 $2\theta_2$, C_1 同理,

因此 $\overline{A_1C_1}$ 的中垂線固定。

因 $\angle P_1AC_1 = 2\theta_1$,故 $\overleftarrow{C_1A}$ 與 x 軸正向的夾角為

 $180^{\circ} + \theta_1 - \theta_2 - 2\theta_1 = 180^{\circ} - \theta_1 - \theta_2$,則 $\overleftarrow{C_1A}$ 的斜率為 $tan(180^{\circ} - \theta_1 - \theta_2)$ 。

因 $\angle P_1AA_1 = 2\theta_2$,故 $\overleftarrow{A_1A}$ 與 x 軸正向的夾角為

 $180^\circ + \theta_1 - \theta_2 + 2\theta_2 = 180^\circ + \theta_1 + \theta_2$,則 $\overleftarrow{A_1A}$ 的斜率為 $tan(180^\circ + \theta_1 + \theta_2)$ 。

由於 P_1 再過 A 點的直線上移動,所以 $\overline{A_1A}$ 跟 $\overline{C_1A}$ 的斜率不變,可得知中垂線為固定直線;又因 $\overline{C_1A} = \overline{P_1A} = \overline{A_1A}$,故 $\overline{C_1A_1}$ 的中垂線即為 $\angle C_1AA_1$ 的角平分線,

其斜率是 $tan\left[\frac{(180^\circ-\theta_1-\theta_2)+(180^\circ+\theta_1+\theta_2)}{2}\right]=tan\ 180^\circ$,與 \overline{BC} 平行。利用平移、旋轉、翻轉,可以此類推 P_1 落在 T_B 、 T_C 的情況也成立,如圖 x。

根據上述證明可得知 P_1 只要落在過頂點的外接圓切線上, O_1 的所有可能位置會落在過頂點且平行對邊的直線上,如圖 x。

圖 $x - P_1$ 在 T_A 上時, $\overline{O_1A}$ 平行 \overline{BC} 。

圖 x -即使 ΔABC 沒有刻意擺放, $P_1 \cdot P_2 \leftarrow T_A \perp$ 時, $\overline{O_1A} \cdot \overline{O_2A}$

仍然平行 \overline{BC} 。

將上述整理為**定理** *x* 如下:

定理 x: 當 P_1 落在 ΔABC 的外接圓切線 $T_A \setminus T_B \setminus T_C$ 上時,

鏡射外心 0_1 會落在過切點且平行對邊的直線上。

$(二)P_1$ 落在過 $\triangle ABC$ 其中一頂點的直線

在此不失一般性,將其平移、旋轉、翻轉後令A = (0,0)、 $B = \left(k \cdot \frac{1}{\tan \theta_1}, k\right)$ 、 $C = \left(-k \cdot \frac{1}{\tan \theta_2}, k\right), \quad \exists \ \theta_1 < \theta_2 \circ \exists \ \overline{BC} \ \overline{PC} \ \overline{BC} \ \overline{AB} \ \exists \ x \ \overline{AB} \ \exists \ x \ \overline{BC} \ \overline{AB} \ \overline{BC} \ \overline{AB} \ \overline{BC} \ \overline{B$

此時比較 P_1 與 P_2 的鏡射結果,發現 $\angle C_2AC_1 = \angle A_2AA_1 = \phi$ 。因 $\overline{C_1A} = \overline{P_1A} = \overline{A_1A}$,故 $\overline{A_2C_2}$ 的中垂線即為 $\angle C_2AA_2$ 的角平分線;又因 $\overline{AC_2}$ 與 $\overline{AA_2}$ 分別為 $\overline{AC_1}$ 與 $\overline{AC_1}$ 順時針旋轉 ϕ 的結果,故 $\angle C_2AA_2$ 的角平分線也就會是 $\angle C_1AA_1$ 順時針旋轉 ϕ 後的結果,如圖 x。

/* img*2 (1, 2) */

利用平移、旋轉、翻轉,可以此類推 P_1 落在過 $B \times C$ 直線上的情況也成立,如圖 x。 根據上述證明可得知 P_1 只要落在過頂點直線上, O_1 的所有可能位置會落在過頂點的直線上,如圖 x。

/* img*2 (3, 4) */

將上述整理為**定理** x 如下:

定理 x:當 P_1 落在 ΔABC 過頂點的直線上時,鏡射外心 O_1 會落在過該頂點且的直線上。