COMP 543: Tools & Models for Data Science Dimensionality Reduction

Chris Jermaine & Risa Myers

Rice University

Our Scenario

- We have high dimensional data and we want to make predictions on the data
- ... or we want to classify the data
- but, there's too much data
- ? What can we do?

Too much Data Problem

- ? What can we do?
- We can use an approach that randomly samples from the data ... not today
- We can throw away data points
 - ... that's almost always a bad idea
- 3 We can throw away features
 - ... let's explore this option

High Dimension Data

- What do we mean by "high dimension"?
 - Many, many features
 - Can be millions!
 - Lots of useless features obscure useful ones
 - Example: Genomic data
 - Comparing genome sequences
 - Classifying genomes

The Curse of Dimensionality

- "As the number of features or dimensions grows, the amount of data we need to generalize accurately grows exponentially."
 - Charles Isbell, Professor and Senior Associate Dean, School of Interactive Computing, Georgia Tech
- Data become sparse in high dimensions
- All points are basically the same distance from one another

Dimensionality Reduction: Basic Idea

- Keep the dimensions that contain the most information
- Discard the least helpful dimensions
- To get the data down to a manageable size

How to do Dimensionality Reduction

- Goal: Find the line(s) on which to project the data to show most of the variability
- Approach: Compute a set of orthogonal (perpendicular) basis vectors
- We do this by computing the Eigenvalues and Eigenvectors of the data

Eigenvalues and Eigenvectors

- The ellipse describes the shape of the data
- The length of the red line is the value of the first Eigenvalue
- The length of the blue line is the value of the second Eigenvalue
- Each Eigenvector has direction based on the tilt of the data
- ...and the length is the Eigenvalue

 x_1

What Does Our Data Look Like?

- **X** is $n \times d$
- \blacksquare $n \ll d$
 - Genomic data
 - Many more dimensions than data points
 - Each row is a patient
 - Each item is a feature: nucleotide, age, fasting blood glucose level, ...
 - Underconstrained / underspecified problem

- \blacksquare $n \gg d$
 - Netflix
 - Lots of users
 - Not so many movies
 - Not so many reviews
 - Not addressed by this approach
 - Overconstrained / overspecified problem

 $\mathbf{X} = n \left\{ \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & \cdots & x_{1,d} \\ x_{2,1} & x_{2,2} & \cdots & \cdots & x_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & \cdots & x_{n,d} \end{bmatrix} \right.$

Dimensionality Reduction

- X can be too big to operate on directly
- We want a linear transform to compute data matrix X' with a reduced number of dimensions

Computing X'

- Linear transform realized by a mapping matrix **W** (d rows, m columns)
- \blacksquare So that $\mathbf{X}' = \mathbf{X}\mathbf{W}$

How Big are these Matrices?

- **X**' is $n \times m$
- \blacksquare $m \ll d$
- Recall X' = XW
- Want to compute **W** such that
- The columns of **W** are the basis functions in the reduced space

NCE 12

What can W do?

- $\mathbf{x}' = \mathbf{X}\mathbf{W}$
- It can weight columns by zero
- It can create new columns that are weighted sums of other columns

...

Classic Dimensionality Reduction Method: PCA

- Basic idea: Compute a set of orthogonal (perpendicular) basis vectors
- Then choose most important basis vectors (those with the most variance)
- Those become the rows of the mapping matrix W
- Then XW projects down onto that basis, giving us X'

? If we want to draw a line that best describes the data, what line do we draw?

An Extreme Data Set

- Here there is no variability along the second dimension
- In the extreme case, we could completely drop it
- Note: When $d \gg n$ there will be some dimensions with Eigenvalue = 0

Classic Dimensionality Reduction Method: PCA

- Principal Component Analysis
- We want to lose the least amount of information
- So we remove the dimensions with NO variability
- Note that the number of principle components = the number of dimensions in our data
- We want to drop out the low variance ones that aren't helpful
- For example:
 - If all of our data points are about people who are ages 18 19
 - ... or have a fasting blood glucose value in a very narrow, equivalent range
 - That piece of information is highly unlikely to be useful in discriminating between people

Consider the Case of the Multivariate Normal Distribution

- **Z** is an equation variable
- From the data matrix, **X** we get
 - μ is the vector of means, 1 for each dimension
 - \blacksquare Σ is the covariance matrix of **X**
- Each entry, $\sigma_{i,j} = E[(\mathbf{X}_i \mu_i)(\mathbf{X}_j \mu_i)]$
- \blacksquare Σ is a symmetric matrix
- \blacksquare If Σ is diagonal
 - The dimensions of **X** are independent
- ? Which features in this PDF matter the most / least?
- We leverage the covariance matrix to figure out which dimensions are most important

$$\mathrm{pdf}(\mathbf{Z}) = \frac{exp^{(-\frac{1}{2}(\mathbf{Z} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{Z} - \boldsymbol{\mu}))}}{\sqrt{(2\pi)^k |\boldsymbol{\Sigma}|}}$$

$$\Sigma = \left[egin{array}{cccc} oldsymbol{\sigma}_{1,1} & oldsymbol{\sigma}_{1,2} & \cdots & oldsymbol{\sigma}_{1,d} \ oldsymbol{\sigma}_{2,1} & oldsymbol{\sigma}_{2,2} & \cdots & oldsymbol{\sigma}_{2,d} \ \cdots & \cdots & \cdots & \cdots \ oldsymbol{\sigma}_{d,1} & oldsymbol{\sigma}_{d,2} & \cdots & oldsymbol{\sigma}_{d,d} \end{array}
ight]$$

Consider the Case of the Multivariate Normal Distribution

- From Linear Algebra, we know
 - The Eigenvectors of Σ describe the direction of the spread in **X**
 - The Eigenvalues of Σ describe the magnitude of the Eigenvectors

 - Now we know why we need them: to project data onto them
 - We also know what they are: they determine the shape and spread of the data cloud
 - ? How do we determine the Eigenvalues & Eigenvectors?

Computing the Eigenvalues & Eigenvectors

- Method 1: EVD
- The covariance matrix Σ can be decomposed into $\Sigma = \mathbf{VLV}^T$
- This is the **Eigenvalue Decomposition** of Σ
- Where L is a diagonal matrix of values, typically sorted in decreasing order, from left to right
- These values are called Eigenvalues
- The top left value is the largest / most significant
- The columns of **V** are Eigenvectors
- ...and will be sorted by Eigenvalue magnitude
- Each Eigenvalue is how much variance exists across the Eigenvector

Why EVD Doesn't Work in High Dimensions

- It decomposes the covariance matrix Σ which is $d \times d$ to get the Eigenvalues and Eigenvectors
- Recall that the $d \gg n$
- Computationally difficult
- The covariance matrix is $d \times d$, so taking the inverse is $O(d^3)$
- This can be done while d < 50K or so
- Once the data gets "big" we can't use closed form approaches

Why use the Covariance Matrix?

- Because it's square
- It solves the Normal Equation from Linear Regression
 - \blacksquare $\mathbf{X}r = b$
 - Where *r* is the vector of regression coefficients
 - and b is the vector of intercept terms
 - Note that we are not guaranteed to have a solution to this equation
 - Because the problem is underconstrained

Why use the Covariance Matrix?

1
$$\mathbf{X}r = b$$

2
$$\mathbf{X}^T \mathbf{X} r = \mathbf{X}^T b$$

$$\mathbf{3} \quad \frac{1}{n-1} \mathbf{X}^T \mathbf{X} r = \mathbf{X}^T b \frac{1}{n-1}$$

- 1 Normal Equation
- 2 Multiply both sides by \mathbf{X}^T
- 3 Multiply both sides
- Note that $\frac{1}{n-1}\mathbf{X}^T\mathbf{X}$ is the definition of a covariance matrix, Σ for data with mean 0
- The n-1 term gives us a bias free estimator

Solve

$$\frac{1}{n-1}\mathbf{X}^T\mathbf{X}r = \mathbf{X}^Tb\frac{1}{n-1}$$

- To solve for r, compute $(\mathbf{X}^T\mathbf{X})^{-1}$
- But this is very expensive to compute
- Instead we can approximate the calculation
- EVD gives the best approximation
- \blacksquare So, we do an EVD of Σ to learn which dimensions are important

Computational Complexity

- Eigenvalue decomposition is $O(d^3)$
- Which leads us to Method 2: Singular Value Decomposition (SVD) of X
- In SVD, we operate on **X** directly, instead of Σ because it is smaller
- **X** is $n \times d$ and Σ is $d \times d$
- Recall $n \ll d$

Computing X'

- Linear transform realized by a mapping matrix **W** (*d* rows, *m* columns)
- \blacksquare So that $\mathbf{X}' = \mathbf{X}\mathbf{W}$

$$\begin{bmatrix} & & \\ & \mathbf{x} & \end{bmatrix} \times \begin{bmatrix} & & \mathbf{x}^T & & \end{bmatrix} = \begin{bmatrix} & & & & \\ & & & & \end{bmatrix}$$

SVD Decomposition

- We want to avoid computing and using covariance matrix Σ because it is $\mathbf{X}^T\mathbf{X}$ and is of size $d \times d$
- ? Can we get the Eigenvalues and Eigenvectors of Σ by using **X** instead?
- The SVD of $\mathbf{X} = \mathbf{USV}^T$
 - **U** is a unitary matrix ($\mathbf{U}\mathbf{U}^T = 1$)
 - V is matrix of right singular vectors
 - S is a diagonal matrix of singular values
- Idea is that we can factorize **X** instead of Σ
- We can reduce the number of dimensions by projecting onto the space determined by the right singular vectors with the largest values
- In this case, the biggest singular values correspond to the Eigenvalues with the largest magnitude

Using the SVD of X

```
\mathbf{X} = \mathbf{USV}^T\mathbf{X}^T \mathbf{X} = (\mathbf{VS}^T \mathbf{U})(\mathbf{USV}^T)= \mathbf{VS}^T \mathbf{SV}^T
```

- Where S^TS is L from EVD
- Where L is a diagonal matrix of values, typically sorted in decreasing order, from left to right

Dimensions & Complexity, Revisited

- **X** is $n \times d$
- **X** T **X** is $d \times d$
- When $d \gg n$
- EVD is $O(d^3)$, operating on a $d \times d$ covariance matrix
- SVD is $O(\min(d^2n, n^2d))$, because we are operating on **X**, instead of **C**

How Do We Find the Dimensions with the Most Variance?

Options

- 1 Traditional approach: Eigenvalue Decomposition (EVD)
- 2 More efficient approach: Singular Value Decomposition (SVD)
- 3 Highly efficient approach: Random Matrix
- Taking into consideration
 - **X** is not square
 - So, it can't have Eigenvalues / Eigenvectors
 - So, we use the covariance matrix Σ instead

Which Dimensions Matter?

- AKA How to Compute the Basis Vectors?
- 1 Center your data
 - Subtract out the mean in each dimension
 - So the data has mean 0
- 2 Compute C
- 3 Do the EVD of C
 - Then the basis vectors are the Eigenvectors of data covariance matrix, C

$$\mathbf{C} = \frac{\mathbf{X}^T \mathbf{X}}{(n-1)}$$

- Where **C** is a $d \times d$ matrix
- 4 Get W from the vectors in V, using the largest values in L

How to Compute the Basis Vectors?

- Center your data
 - Subtract out the mean in each dimension
 - So the data has mean 0
- Then basis vectors are the Eigenvectors of data covariance matrix

$$\mathbf{C} = \frac{\mathbf{X}^T \mathbf{X}}{(n-1)}$$

- Construct mapping matrix **W** from the *m* most important Eigenvectors
- That is leftmost columns of V

Dimensions

- **X** is $n \times d$
- **X** T **X** is $d \times d$
- When $d \gg n$
- EVD is $O(d^3)$, operating on a $d \times d$ covariance matrix
- SVD is $O(\min(d^2n, n^2d))$, because we are operating on **X**, instead of **C**

How Many Eigenvectors to Use?

- There's no magic number
- Look at the values
- Decide how many you can handle, computationally
- Red point is probably not a good choice to stop including Eigenvectors

Even SVD Can Be Too Expensive

- In practice, just fill **W** with samples from Normal(0,1)
 - Known as a random projection¹
 - Often does a very nice job in practice!
 - Johnson-Lindenstrauss Lemma
 - Basic premise is that the distances between points in a high dimensional space are "nearly preserved" when they are projected on to a large enough random subspace

¹Bingham E, Mannila H, editors. Random projection in dimensionality reduction: applications to image and text data. Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining; 2001: ACM.

Summary Motivation

- Why do it at all?
 - Counteract the Curse of Dimensionality
 - Reduce computational burden

Summary of Methods

- PCA via eigenvalue decomposition
 - Classic approach
 - Can be difficult for even good software to do the math correctly (consider ill-conditioned matrices)
- PCA via SVD
 - Avoids the covariance matrix entirely, we operate directly on X
 - Considered more stable numerically
 - Computationally faster
 - But still very expensive
 - Results in the same W
- Random Projections
 - Not as precise
 - May not get the dimensions with the most variance
 - But is computationally feasible

Questions?

rice 37