Dinamica #1

Moto armonico

14 novembre 2022

Consideriamo un corpo di massa m appeso a una molla di costante elastica k.

Consideriamo un corpo di massa m appeso a una molla di costante elastica k. Possiamo [osservare] che

▶ il moto avviene lungo un segmento: il corpo compie delle oscillazioni intorno alla Posizione di Equilibrio

Consideriamo un corpo di massa m appeso a una molla di costante elastica k. Possiamo [osservare] che

- ▶ il moto avviene lungo un segmento: il corpo compie delle oscillazioni intorno alla Posizione di Equilibrio
- si tratta di un moto periodico: le oscillazioni hanno tutte lo stesso periodo T

Consideriamo un corpo di massa m appeso a una molla di costante elastica k. Possiamo [osservare] che

- ▶ il moto avviene lungo un segmento: il corpo compie delle oscillazioni intorno alla Posizione di Equilibrio
- ▶ si tratta di un moto periodico: le oscillazioni hanno tutte lo stesso periodo T
- ► le oscillazioni hanno tutte la stessa ampiezza A: l'ampiezza è la massima distanza dalla P.d.E.

Forza

In base alla legge di Hooke, la forza elastica F sul corpo è direttamente proporzionale e opposta alla posizione s:

$$F = -k \cdot s$$

Forza

In base alla legge di Hooke, la forza elastica F sul corpo è direttamente proporzionale e opposta alla posizione s:

$$F = -k \cdot s$$

Osserviamo che

- ightharpoonup F è nulla quando il corpo transita dalla pos. s=0
- l'intensità di F <u>è massima</u> quando il corpo si trova agli estremi dell'oscillazione $s=\pm A$

Accelerazione

Essendo F = ma, l'accelerazione a del corpo risulta

$$a = -\frac{k}{m} \cdot s$$

Accelerazione

Essendo F = ma, l'accelerazione a del corpo risulta

$$a = -\frac{k}{m} \cdot s$$

<u>Definizione.</u> Un moto è armonico se l'accelerazione *a* è direttamente proporzionale e opposta alla posizione *s*.

Accelerazione

Essendo F = ma, l'accelerazione a del corpo risulta

$$a = -\frac{k}{m} \cdot s$$

<u>Definizione.</u> Un moto è armonico se l'accelerazione *a* è direttamente proporzionale e opposta alla posizione *s*.

In generale, un moto armonico verifica quindi la relazione $a=-\omega^2\cdot s$, dove ω è detta pulsazione del moto.

Velocità

Contrariamente all'accelerazione, la velocità v del corpo

- <u>è nulla</u> agli estremi dell'oscillazione (dove si verifica infatti un'inversione di moto)
- ightharpoonup è massima quando il corpo si trova in s=0

Velocità

Contrariamente all'accelerazione, la velocità v del corpo

- è nulla agli estremi dell'oscillazione (dove si verifica infatti un'inversione di moto)
- ightharpoonup è massima quando il corpo si trova in s=0

Riepilogo. In un moto armonico le grandezze s, v e a variano continuamente e in modo periodico. In qualsiasi istante vale la relazione $a = -\omega^2 \cdot s$.

Moto armonico e moto circolare uniforme

<u>Teorema.</u> Qualsiasi moto armonico è la *proiezione lungo* una retta di un opportuno moto circolare uniforme. [Link]

Moto armonico e moto circolare uniforme

<u>Teorema.</u> Qualsiasi moto armonico è la *proiezione lungo* una retta di un opportuno moto circolare uniforme. [Link]

- un'oscillazione corrisponde a un giro
- ▶ la durata di un'oscillazione è il periodo *T*
- ▶ l'ampiezza A corrisponde al raggio R
- ightharpoonup la pulsazione ω corrisponde alla velocità angolare

Dimostrazione

Se ω è la pulsazione del moto armonico, consideriamo un moto circolare uniforme con velocità angolare ω .

Indicando con \vec{s} il *raggio vettore*, sappiamo che

$$\vec{a} = -\omega^2 \cdot \vec{s}$$

Prendendo le componenti lungo l'asse x otteniamo

$$a_{x}=-\omega^{2}\cdot s_{x}$$

Conseguenze (1)

Consideriamo un moto armonico caratterizzato da una pulsazione ω e da un'ampiezza A.

I valori massimi di s, v e a risultano:

Conseguenze (1)

Consideriamo un moto armonico caratterizzato da una pulsazione ω e da un'ampiezza A.

I valori massimi di s, v e a risultano:

- $ightharpoonup s_{max} = A$
- $ightharpoonup v_{\max} = \omega \cdot A$ (nella posizione di equilibrio)
- $ightharpoonup a_{\max} = \omega^2 \cdot A$ (agli estremi di oscillazione)

Conseguenze (2)

Nel caso di un oscillatore armonico abbiamo $\omega = \sqrt{\frac{k}{m}}$.

Conseguenze (2)

Nel caso di un oscillatore armonico abbiamo $\omega = \sqrt{\frac{k}{m}}$. Di conseguenza, la durata di un'oscillazione è

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$$

Conseguenze (2)

Nel caso di un oscillatore armonico abbiamo $\omega = \sqrt{\frac{k}{m}}$. Di conseguenza, la durata di un'oscillazione è

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$$

Osserviamo che T

- non dipende dall'ampiezza di oscillazione
- ▶ aumenta se *m* aumenta oppure se *k* diminuisce

Leggi orarie

Leggi orarie

Un corpo compie un moto armonico lungo un asse fissato.

- ightharpoonup La posizione di equilibrio è s=0
- ightharpoonup La posizione iniziale del corpo è s=+A

Leggi orarie

Un corpo compie un moto armonico lungo un asse fissato.

- ightharpoonup La posizione di equilibrio è s=0
- ightharpoonup La posizione iniziale del corpo è s=+A

La posizione s, la velocità v e l'accelerazione a del corpo variano nel tempo seguendo le leggi

$$s(t) = A\cos(\omega t)$$

$$v(t) = -A\omega \sin(\omega t)$$
 $a(t) = -A\omega^2 \cos(\omega t)$

