Работа 1.1.4

Измерение интенсивности радиационного фона

17 сентября 2023 г.

1 Аннотация

Цель работы: применение методов обработки экспериментальных данных для изучения статистических закономерностей при измерении интенсивности радиационного фона

Оборудование: счетчик Гейгера-Мюллера (СТС-6), блок питания, компьютер с интерфейсом для связи со счетчиком, флэш-накомпитель.

2 Теоретические сведения

2.1 Описание эксперимента

Утверждается, что если случайные события однородны во времени и каждое последующее событие не зависит от предыдущего, то такой процесс называется nyaccohobckum.

Для него выполняется, что среднеквадратичная ошибка $\sigma = \sqrt{n}$, где n - измеренное значение. Это показывает (с вероятностью 68%), что

$$n_0 = n \pm \sqrt{n}$$

где n_0 - истинное среднее значение.

Если \overline{n} - среднее число частиц, сосчитанное за одно измерение, то стандартная ошибка отдельного измерения

$$\sigma_{\text{отд}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (n_i - \overline{n})^2}$$

Также должно выполняться

$$\sigma_{ ext{otj}} pprox \sqrt{\overline{n}}$$

Конечно, \overline{n} не обязана совпадать с n_0 . Стандартная ошибка отклонения \overline{n} от n_0 определяется по формуле:

$$\sigma_{\overline{n}} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (n_i - \overline{n})^2} = \frac{\sigma_{\text{ota}}}{\sqrt{N}}$$

2.2 Счетчик Гейгера-Мюллера

Счетчик Гейгера-Мюллера применяется для измерения интенсивности космических лучей. В нашем случае не все лучи будут космическими, т.к. их подавляющее большинство является результатом вза-имодействия с крышей помещения, в котором проводились измерения.

Счетчик Гейгера-Мюллера устроен таким образом, что один луч, попавший в него, способен вызывать лавину электронов, которую можно зафиксировать с помощью конденсатора. В нашей работе счетчик Гейгера подключен к компьютеру, записывающему данные по числу срабатываний счетчика за секунду в файл.

Рис. 1: Используемая схема

3 Ход работы

3.1 Группировка данных и построение гистограмм

Включив счетчик Гейгера-Мюллера, мы выставили длительность эксперимента на t=4000 сек и запустили эксперимент. Спустя t были получены посекундные данные о количестве частиц, измеренном датчиком. После группировки по $\tau=10$ сек; 20 сек; 40 сек, были вычислены частоты w_n , с которыми каждое число n встречается среди результатов. Данные представлены в виде гисторамм.

Рис. 2: Гистограмма для $\tau=10$ сек

Рис. 3: Гистограмма для $\tau=20$ сек

Рис. 4: Гистограмма для $\tau=40$ сек

Рис. 5: Сравнение гистограмм для $\tau = 10$ сек; 20 сек; 40 сек

3.2 Построение графиков нормального распределения

Для каждого au ($N=rac{t}{ au}$ - число измерений):

Среднее число регистрируемых частиц

$$\langle n \rangle = \frac{1}{N} \sum_{i}^{N} n_i$$

Отклонение каждого измерения

$$\Delta n_i = n_i - \langle n \rangle$$

Стандартное отклонение

$$\sigma_n = \sqrt{\frac{1}{N} \sum_{i}^{N} \Delta n_i^2}$$

Погрешность среднего

$$\sigma_{\langle n \rangle} = \frac{\sigma_n}{\sqrt{N}}$$

Средняя интенсивность регистрируемых частиц

$$\langle j \rangle = \frac{\langle n \rangle}{\tau}$$

Отклонение интенсивности j отдельного измерения

$$\Delta j_i = j_i - \langle j \rangle$$

Погрешность средней интенсивности

$$\sigma_{\langle j \rangle} = \frac{1}{N} \sqrt{\sum_{i}^{N} \Delta j_{i}^{2}}$$

	τ , c	N	$\langle n \rangle$	σ_n	$\sigma_{\langle n \rangle}$	$\langle j \rangle$	$\sigma_{\langle j \rangle}$
ſ	10	400	12.61	3.39756	0.16988	1.26075	0.01699
Ī	20	200	25.22	4.73801	0.33503	1.26075	0.01675
Ī	40	100	50.43	6.32338	0.63234	1.26075	0.01581

Таблица 1: Погрешности и средняя интенсивность

Использауя полученные данные $\langle n \rangle$ и σ_n , наложим поверх гисторамм нормальное распределение (Рис. 5).

Формула нормального распределения

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

в нашем случае $x=n, \mu=\langle n \rangle, \sigma=\sigma_n$.

Видим, что экспериментальные данные вписываются в теорию.

3.3 Проверка основного свойства распределения Пуассона

Проверим основное свойство распределения Пуассона, описанное в теории, и оценим его точность

$$\sigma_{ ext{otd}} pprox \sqrt{\langle n
angle}$$

τ , c	$\langle n \rangle$	σ_n	$\sqrt{\langle n \rangle}$	$ \sigma_n - \sqrt{\langle n \rangle} $	$\epsilon,\%$
10	12.61	3.39756	3.55070	0.15314	4.51
20	25.22	4.73801	5.02145	0.28344	5.98
40	50.43	6.32338	7.10141	0.77803	12.30

Таблица 2: Проверка свойства распределения Пуассона

$$\epsilon = \frac{|\sigma_n - \sqrt{\langle n \rangle}|}{\sqrt{\langle n \rangle}}$$

Как видим, экспериментальные данные в нашем случае отличаются от теории не более, чем на 12%. Точность могла бы быть больше, если бы мы провели больше измерений, т.к. видно, что чем больше N, тем меньше погрешность σ_n , а следовательно и относительная погрешность ϵ .

Можем утверждать, что экспериментальные данные подтвердили теорию.

Отсюда можно сделать вывод, что *характер распределения регистрируемых частиц вписывается* в нормальное распределение.

3.4 Определение доли случаев, когда отклонение n от $\langle n \rangle$ не превышает 1, 2 и 3 σ

$$\begin{aligned} w_{1\sigma} &= \frac{n}{N}, |n - \langle n \rangle| \le \sigma \\ w_{2\sigma} &= \frac{n}{N}, |n - \langle n \rangle| \le 2\sigma \\ w_{3\sigma} &= \frac{n}{N}, |n - \langle n \rangle| \le 3\sigma \end{aligned}$$

τ	$w_{1\sigma}$	$w_{2\sigma}$	$w_{3\sigma}$
10	0.703	0.97	0.9975
20	0.625	0.97	1.0000
40	0.650	0.96	1.0000

Таблица 3: Доля попавших в ворота $\pm 1, 2, 3\sigma$

Согласно теории, $w_{1\sigma} \approx 68\%$, $w_{2\sigma} \approx 95\%$, $w_{3\sigma} \approx 99.73\%$. Это сходится с нашими данными, следовательно можно сделать вывод, что распределение частии подчиняется законам нормального распределения.

4 Вывод

По результатам подсчета числа частиц, попавших в датчик за разные промежутки времени, были построены гистограммы, благодаря которым удалось установить, что распределение частиц подчиняется законам нормального распределения.

Лаба понравилась, еще раз повторил теорию по погрешностям. Всего 4 часа ушло на оформление, все сошлось с теорией, плюс есть ощущение, что качественно сделал.