

EXPERIMENT 5

CO3: To perform data collection and initial data handling by managing data structures and measurement levels.

Aim: To apply binary logistic regression on a medical dataset to predict the likelihood of a medical condition (e.g., presence or absence of a disease) based on patient characteristics (e.g., age, blood pressure, cholesterol).

Objective

To develop and interpret a binary logistic regression model using OriginPro 2024b that accurately predicts the presence or absence of a medical condition based on a set of patient-related predictor variables.

Step-by-Step Procedure

Step 1: Prepare the Data

- 1. Create a New Workbook:
 - o Open OriginPro 2024b and create a new workbook.
- 2. Input the Medical Data:
 - o Enter the following sample medical data into the workbook:

Sample Medical Data Table:

Patient	Age	Blood Pressure (mm	Cholesterol	Condition (1 = Present, 0 =
	(Years)	Hg)	(mg/dL)	Absent)
1	45	140	200	1
2	50	160	220	1
3	35	120	180	0
4	40	130	190	0
5	55	170	240	1
6	60	180	250	1
7	30	110	170	0
8	50	150	210	1
9	40	140	200	0
10	35	130	185	0

Step 2: Open the Nonlinear Curve Fit Tool

- 1. Go to the Analysis Menu:
 - Navigate to Analysis > Fitting > Nonlinear Curve Fit > Open Dialog....
- 2. Select a Logistic Model:
 - o In the "Function Selection" tab, you'll need to choose a logistic model. Since binary logistic regression isn't pre-built, you'll have to define it.
 - Use the equation for the logistic function:

$$P(Y=1|X) = rac{1}{1 + e^{-(eta_0 + eta_1 X_1 + eta_2 X_2 + \ldots + eta_n X_n)}}$$

You may need to use a custom fitting function or find a logistic function that matches this form

3. Set the Dependent and Independent Variables:

o In the "Input Data" tab, select your binary dependent variable as the "Y" and your predictor variables as the "X".

Step 3: Perform the Fit

1. Run the Nonlinear Fit:

- After setting up the model and input data, click "Fit" to run the analysis.
- ο The software will estimate the coefficients β 0, β 1, β 2,...\beta_0, \beta_1, \beta_2, \ldots β 0, β 1, β 2,... for the logistic regression model.

2. Review the Results:

• Check the output for the coefficients, standard errors, and other statistics related to the fit. You can interpret these as you would in any logistic regression analysis.

Step 4: Interpretation and Validation

1. Examine the Fit Statistics:

o Look at the goodness-of-fit measures to evaluate how well the model describes the data.

2. Interpret the Coefficients:

 Just like in any logistic regression analysis, interpret the coefficients in terms of odds ratios and their statistical significance.

3. Residual Analysis (Optional):

o Perform residual analysis to check for outliers or other issues that might affect the model's performance.

OR

Using Generalized Linear Models (GLM)

If OriginPro has a "Generalized Linear Models" (GLM) tool:

1. Open the GLM Tool:

o Go to Statistics > General Linear Models > Generalized Linear Models.

2. Specify Logistic Regression:

o In the GLM dialog, specify that you want to use a logistic link function (logit) with a binary distribution for the dependent variable.

3. **Input Your Data**:

o Choose the dependent variable and the independent variables.

4. Run the Analysis:

o Click "OK" or "Compute" to run the logistic regression.