Exercise 1.2.5: Use the triangle inequality to establish the following inequalities:

(a) $|a - b| \le |a| + |b|$.

Proof. Note that |a-b| = |a+(-b)|. By the triangle inequality we note that $|a+(-b)| \le |a|+|-b|$. There are three possibilities ether b < 0, b = 0, or b > 0. In the case that b < 0 we know that -b > 0. From the definition of absolute value |b| = -b and |-b| = -b thus in this case |b| = |-b|. In the case that b = 0 we know that -b = 0. From the definition of absolute value |b| = b and |-b| = b thus in this case |b| = |-b|. In the case that b > 0 we know that -b < 0. From the definition of absolute value |b| = b and |-b| = -(-b) = b thus in this case |b| = |-b|. Thus in all cases |b| = |-b| and so |a| + |-b| = |a| + |b| thus $|a-b| \le |a| + |b|$. □

(b) $||a| - |b|| \le |a - b|$.

Proof. Note that |c| = |c - d + d| witch by the triangle inequality means $|c| \le |c - d| + |d|$ so $|c| - |d| \le |c - d|$ for any c and d in \mathbb{R} . Consider ||a| - |b|| noting that there are two possibilities, eater ||a| - |b|| = |a| - |b| or ||a| - |b|| = -(|a| - |b|) = |b| - |a|, by the definition of absolute value. In the case that ||a| - |b|| = |a| - |b| we see from the first statement that $||a| - |b|| = |a| - |b| \le |a - b|$. In the second case $||a| - |b|| = |b| - |a| \le |b - a|$ and we proved in the previous question that |b - a| = |-(b - a)| = |a - b|, thus in this case $||a| - |b|| \le |a - b|$. Thus in all cases $||a| - |b|| \le |a - b|$. □

Exercise 1.2.6(b), (d): Given a function f and a subset A of its domain, let f(A) represent the range of f over the set A; that is, $f(a) = \{f(x) : x \in A\}$.

- (b) Find two sets A and B for which $f(A \cap B) \neq f(A) \cap f(B)$. Suppose we let $A = \{1\}$ and $B = \{-1\}$. Consider the function $f(x) = x^2$. Note that $A \cap B = \emptyset$ and thus $f(A \cap B) = \emptyset$. Also note that $f(A) \cap f(B) = \{1\} \cap \{1\} = \{1\}$ and since $\emptyset \neq \{1\}$ in this case $f(A \cap B) \neq f(A) \cap f(B)$.
- (d) Form and prove a conjecture concerning $f(A \cup B)$ and $f(A) \cup f(B)$. Conjecture $f(A \cup B) \subseteq f(A) \cup f(B)$

Proof. Choose some element y from the set $f(A \cup B)$. By our definition of evaluating a function on a set there must exist some element x in $A \cup B$ such that f(x) = y. By the definition of union $x \in A$ or $x \in B$. Thus $f(x) \in f(A)$ or $f(x) \in f(B)$ and so $y \in f(A)$ or $y \in f(B)$ witch means by definition $y \in f(A) \cup f(B)$. Since we chose y arbitrarily from $f(A \cup B)$ and showed that y is in $f(A) \cup f(B)$ we can say by the definition of subset $f(A \cup B) \subseteq f(A) \cup f(B)$.

Exercise 1.2.8: Form the logical negation of each claim. Do not use the easy way out: "It is not the case that..." is not permitted

(a) For all real numbers satisfying a < b, there exists $n \in \mathbb{N}$ such that a + (1/n) < b. There exists real numbers satisfying a < b, that for all $n \in \mathbb{N}$, $a + (1/n) \ge b$.

- (b) Between every two distinct real numbers there is a rational number.

 There exists two distinct real numbers where there is no rational number between them.
- (c) For all natural numbers $n \in \mathbb{N}$, \sqrt{n} is either a natural number or is an irrational number. There exists some natural number $n \in \mathbb{N}$ where \sqrt{n} is not a natural number or an irrational number.
- (d) Given any real number $x \in \mathbb{R}$ there exists $n \in \mathbb{N}$ satisfying n > x. There exists a real number $x \in \mathbb{R}$ where there is no $n \in \mathbb{N}$ satisfying n > x.

Exercise 1.3.4: Assume that *A* and *B* are nonempty, bounded above, and satisfy $B \subseteq A$. Show that $\sup B \leq \sup A$.

Proof. Assume to the contrary, namely that there exists sets A and B that are nonempty, bounded above, and satisfy $B \subseteq A$. Further suppose that $\sup B > \sup A$. Lets define $\alpha = \sup A$. Suppose there is no element in B grater than α . By the definition of upper bound, α would be a upper bound to B, however $\sup B > \alpha$, a contradiction, thus our assumption that there is no element of B grater than α must be false, and there is some element of B grater than α . Lets take one of these elements with the property $\gamma \in B$ and $\gamma > \alpha$. Note that since $B \subseteq A$, $\gamma \in A$. Since α is a upper bound to A we know that every element of A is less than or equal to α thus $\gamma \leq \alpha$. Contradiction $\gamma > \alpha$ and $\gamma \leq \alpha$, thus our initial supposition that $\sup B > \sup A$ must be false and so we are forced to conclude $\sup B \leq \sup A$.

Exercise 1.3.5: Let *A* be bounded above and let $c \in \mathbb{R}$. Define the sets $c + A = \{a + c : a \in A\}$ and $cA = \{ca : a \in A\}$.

- (a) Show that $\sup(c + A) = c + \sup(A)$.
- (b) If $c \ge 0$, show that $\sup(cA) = c \sup(A)$.
- (c) Postulate a similar statement for $\sup(cA)$ when c < 0.

Proof (a). Lets start by defining $\alpha = \sup(A)$, $\beta = c + \sup(A)$. We will proceed by showing that β must have the two properties defining $\sup(c + A)$.

Suppose that there existed some $\gamma \in c + A$ where $\gamma > \beta$. Note that $\gamma - c \in A$ and that $\gamma - c > \beta - c = \alpha$. Contradiction, we have found a element in A, $\gamma - c$, that is greater than $\sup(A)$. We are forced to conclude the negation of our supposition and so conclude that there is no element in c + A that is greater than β , and so β is a upper bound on c + A, the first condition on $\sup(c + A)$.

Suppose that there is a upper bound to c + A, lets call it λ , that is smaller than β . Note that $\lambda - c < \beta - c = \alpha$. Since α is larger than $\lambda - c$ we know from the definition of sup that $\lambda - c$ is not a upper bound on A, therefore there must be at least one element in A greater than $\lambda - c$, lets call it τ . Since τ is in A $c + \tau$ is in c + A, and since $\tau > \lambda - c$, $\tau + c > \lambda$.

Contradiction, λ is a upper bound on c+A but there is a element in c+A, namely $\tau+c$, that is grater than λ . Thus we are forced to conclude the negation of our supposition, that all upper bounds on c+A are grater than or equal to β .

 β meets the definition of sup(c+A) and so $\beta = \sup(c+A)$ and $c + \sup(A) = \sup(c+A)$. \square

Proof(b). Firstly let me eliminate a special case, c = 0. In this case $cA = \{0\}$, by inspection $\sup(cA) = 0$ and also $c\sup(A) = 0 * \sup(A) = 0$. In this degenerate case it is clearly true that $c\sup(A) = \sup(cA)$. From here on I will work with c > 0. Note, in this proof I am taking advantage of the fact that dividing over a positive number across a inequality does not affect the inequality, that is why c > 0 is necessary for this proof.

Lets start by defining $\alpha = \sup(A)$, $\beta = c \sup(A)$. We will proceed by showing that β must have the two properties defining $\sup(cA)$.

Suppose that there existed some $\gamma \in cA$ where $\gamma > \beta$. Note that $\gamma/c \in A$ and that $\gamma/c > \beta/c = \alpha$. Contradiction, we have found a element in A, γ/c , that is greater than $\sup(A)$. We are forced to conclude the negation of our supposition and so conclude that there is no element in cA that is greater than β , and so β is a upper bound on cA, the first condition on $\sup(cA)$.

Suppose that there is a upper bound to cA, lets call it λ , that is smaller than β . Note that $\lambda/c < \beta/c = \alpha$. Since α is larger than λ/c we know from the definition of sup that λ/c is not a upper bound on A, therefore there must be at least one element in A greater than λ/c , lets call it τ . Since τ is in A $c\tau$ is in cA, and since $\tau > \lambda/c$, $\tau c > \lambda$. Contradiction, λ is a upper bound on cA but there is a element in cA, namely τc , that is grater than λ . Thus we are forced to conclude the negation of our supposition, that all upper bounds on cA are grater than or equal to β .

 β meets the definition of $\sup(cA)$ and so $\beta = \sup(cA)$ and $c\sup(A) = \sup(cA)$.

Statement for part (c):

The region A would be flipped across 0 and be magnified by a factor of |c|, thus $\sup(cA) = c \inf(A)$.

Exercise 1.3.6: Compute, without proof, the suprema and infima of the following sets.

- (a) $\{n \in \mathbb{N} : n^2 < 10\}.$
- (b) $\{n/(n+m): n, m \in \mathbb{N}\}.$
- (c) $\{n/(2n+1) : n \in \mathbb{N}\}.$
- (d) $\{n/m : m, n \in \mathbb{N} \text{ with } m + n \le 10\}.$

Solution:

- (a) $\sup = 3$, $\inf = 1$
- (b) $\sup = 1, \inf = 0$
- (c) $\sup = 1/2, \inf = 1/3$
- (d) $\sup = 1/9, \inf = 9$

Exercise 1.3.7: Prove that if a is an upper bound for A and if a is also an element of A, then $a = \sup A$.

Proof. Suppose b is a upper bound of A and that b < a. Since b is a upper bound on A and $a \in A$ we know that $a \le b$. We have arrived at a contradiction, thus there is no upper bound on A that is less than a, and so all upper bounds on A are grater than or equal to a. We now can say that a meets both of the elements of the definition of $\sup A$ thus $a = \sup A$

Exercise 1.3.8: If $\sup A < \sup B$ then show that there exists an element $b \in B$ that is an upper bound for A.

Proof. Let's begin with a short contradiction, suppose there is no element in B greater than $\sup A$. By the definition of upper bound $\sup A$ is a upper bound for B. Thus by the definition of $\sup B$ we conclude $\sup B \leq \sup A$. This is a contradiction, and so we are forced to conclude that there is at least one element of B greater than $\sup A$. Cause one of these elements, $\beta \in B$, $\sup A < \beta$. The definition of $\sup A$ gives us that for all $\alpha \in A$, $\alpha \leq \sup A \Rightarrow \alpha \leq \beta$. We then see that β must be a upper bound on A and thus there is a element in B that is a upper bound on A.

Authors note: Is it necessary that $\sup A < \sup B$, or only that $\sup A \le \sup B$? Consider A = [0, 1] and B = [0, 1), here $\sup A \le \sup B$ but there is no element of B that is a upper bound for A.

Exercise 1.2.9: Show that the sequence $(x_1, x_2, x_3, ...)$ defined in Example 1.2.7 is bounded above by 2. That is, show that for every $i \in \mathbb{N}$, $x_i \le 2$.

Proof. We will proceed with a proof by induction on i.

In the base case i=1 we are given $x_i=1$ since $1 \le 2$ the statement $i \in \mathbb{N}$, $x_i \le 2$ holds in the base case.

Suppose $x_i \le 2$. Consider the next step x_{i+1} , note that by definition $x_{i+1} = (1/2)x_i + 1$. Note that $x_i \le 2 \Rightarrow (1/2)x_i \le (1/2)2 = 1 \Rightarrow (1/2)x_i + 1 \le 1 + 1 = 2 \Rightarrow x_{i+1} \le 2$. Thus by induction we conclude that for all $i \in \mathbb{N}$, $x_i \le 2$.

Exercise 1.3.7: Prove that if a is an upper bound for A and if a is also an element of A, then $a = \sup A$.

Proof. Suppose b is a upper bound of A and that b < a. Since b is a upper bound on A and $a \in A$ we know that $a \le b$. We have arrived at a contradiction, thus there is no upper bound on A that is less than a, and so all upper bounds on A are grater than or equal to a. We now can say that a meets both of the elements of the definition of $\sup A$ thus $a = \sup A$