Graph

Topics

- Graph Concepts
- Graph Terminology
- Graph Representation
- Depth First Search

What is a Graph?

Non-linear data structure

A Graph is a data structure which consists of a set of *vertices*, and a set of *edges* that connect (some of) them.

G = (V, E)

where,

V - set of vertices

E - set of edges

What is a Graph?

$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{ (1,2), (1,3), (1,4), (2,3), (3,5), (4,5) \}$$

A "Real-life" Example of a Graph

V=set of 6 people:

John, Mary, Joe, Helen, Tom, and Paul, of ages 12, 15, 12, 15, 13, and 13, respectively.

 \blacksquare E = {(x,y) | if x is younger than y}

Applications

Computer Networks

Electrical Circuits

Road Map

Resistor/Inductor/...

Applications

Applications

Graph Categorization: Digraph

 A Directed Graph or Digraph is a graph where each edge has a direction

Graph Categorization: Digraph

Digraph - Example

$$G = (V, E)$$

$$V = \{1, 2, 3, 4, 5, 6\}$$

$$E = \{(1,4), (2,1), (2,3), (3,2), (4,3), (4,5), (4,6), (5,3), (6,1), (6,5)\}$$

$$(1, 4) = 1 \rightarrow 4$$
 where 1 is the *tail* and 4 is the *head*

Graph Categorization: Undirected Graph

 An Undirected Graph is a graph where the edges have no directions

Graph Categorization

Undirected Graph - Example

Graph Categorization: Weighted Graph

 A Weighted Graph is a graph where all the edges are assigned weights

Graph Categorization: Multigraph

If the same pair of vertices have more than one edge, that graph is called a Multigraph

Graph Terminology: Adjacent Vertices

Adjacent vertices: If (i,j) is an edge of the graph, then the nodes i and j are adjacent

Vertices 2 and 5 are *not* adjacent

Graph Terminology: Loop

- Loop or Self edges: An edge (i,i) is called a self edge or a loop
- In graphs loops are not permitted

(1,1) and (4,4) are self edges

Graph Terminology: Path

- Path: A sequence of edges in the graph
- There can be more than one path between two vertices
- Vertex A is reachable from B if there is a path from A to B

Graph Terminology: Simple Path

Simple Path: A path where all the vertices are distinct

1,4,5,3 is a simple path.

But 1,4,5,4 is not a simple path.

Graph Terminology: Length

Length: Sum of the lengths of the edges on the path.

Length of the path 1,4,5,3 is 3

Graph Terminology: Circuit

Circuit: A path whose first and last vertices are the same

The path 3,2,1,4,5,3 is a circuit

Graph Terminology: Cycle

 Cycle: A circuit where all the vertices are distinct except for the first (and the last) vertex

1,4,5,3,1 is a cycle

1,4,5,4,1 is not a cycle

Graph Terminology: Hamiltonian Cycle

Hamiltonian Cycle: A Cycle that contains all the vertices of the graph

1,4,5,3,2,1 is a Hamiltonian Cycle

Graph Terminology: Degree

- Degree of a Vertex: In an directed graph, the no. of edges incident to the vertex
- In-degree: indeg(N)
- Out-Degree: outdeg(N)

Calculate indeg(1) and outdeg(5)

Graph Terminology: Subgraph

■ A Subgraph of graph G=(V,E) is a graph H=(U,F) such that U € V and F € E

Graph Terminology

A graph is said to be Connected if there is at least one path from every vertex to every other vertex in the graph

Graph Terminology

The Spanning Tree of a Graph G is a subgraph of G that is a tree and contains all the vertices of G

Graph Representation

Representation of Graphs

- Adjacency Matrix (A)
 - The Adjacency Matrix $A=(a_{i,j})$ of a graph G=(V,E) with n nodes is an nXn matrix

Representation of Graphs

Eg: Find the adjacency matrices of the following graphs

1		3
	2	

0	1	1	1	0
1	0	1	0	0
1	1	0	0	1
1	0	0	0	1
0	0	1	1	0

0	1	0
0	0	1
1	1	0

Representation of Graphs

Adjacency Matrix of a Weighted Graph

INF	4	INF
INF	INF	5
9	5	INF

Pros and Cons of Adjacency Matrices

Pros:

- Simple to implement
- Easy and fast to tell if a pair (i,j) is an edge: simply check if A[i][j] is 1 or 0
- Cons:
 - No matter how few edges the graph has, the matrix takes O(n²) in memory

Adjacency Lists Representation

- A graph of n nodes is represented by a one-dimensional array L of linked lists, where
 - L[i] is the linked list containing all the nodes adjacent from node i.
 - The nodes in the list L[i] are in no particular order

Graph

Example of Linked Representation

L[0]: empty

L[1]: empty

L[2]: 0, 1, 4, 5

L[3]: 0, 1, 4, 5

L[4]: 0, 1

L[5]: 0, 1

Pros and Cons of Adjacency Lists

Pros:

Saves on space (memory): the representation takes as many memory words as there are nodes and edge.

Cons:

It can take up to O(n) time to determine if a pair of nodes (i,j) is an edge: one would have to search the linked list L[i], which takes time proportional to the length of L[i].

Example of Representations

Linked Lists:

L[0]: 1, 2, 3

L[1]: 0, 2, 3

L[2]: 0, 1, 3

L[3]: 0, 1, 2

L[4]: 5

L[5]: 4

Adjacency Matrix:

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Graph Traversal

Searching Graphs

- Why do we need to search graphs
 - To find paths
 - To look for connectivity

- Two Strategies
 - Depth-First Search (DFS) Use STACK
 - Breadth-First Search (BFS) Use QUEUE

Tree - Depth First Traversal

DFS Algorithm

STEP 1: SET status = 1 (ready state) for each node/vertices of G.

STEP 2: PUSH the starting node (let it be 'A') on the stack and set STATUS = 2 (waiting)

STEP 3: Repeat steps 4 and 5 until STACK is empty

DFS Algorithm

STEP 4: POP the top node (let it be 'N'), process it and set its STATUS = 3 (processed)

STEP 5: PUSH on the STACK all the neighbors of 'N' that are in the ready state (STATUS = 1) and set their STATUS = 2 (waiting)

[END LOOP]

STEP 6: Exit

Depth-First Search Example

Depth-First Search

THANK YOU