Engenharia de Software II

Introdução ES

Prof. André Hora DCC/UFMG 2019.1

O que é Software?

Software:

- Programa de computador + ? [Sommerville]
- Instruções + estruturas de dados + ? [Pressman]

Classificação:

- Produtos genéricos
- Produtos customizados

O que é Software?

Software:

- Programa de computador + documentação [Sommerville]
- Instruções + estruturas de dados + documentação [Pressman]

Classificação:

- Produtos genéricos
- Produtos customizados

Características do Software

- Software é lógico e não um elemento físico
- Software não desgasta com o tempo, mas deteriora (perde qualidade)

Curva de Falha do Hardware

Curva de Falha do Hardware

- Curva da banheira
- Mortalidade infantil
 - Falhas de projeto e fabricação
- Defeitos corrigidos, e falhas diminuem
- Desgaste
 - Falhas devido a efeitos ambientais, poeira, vibração
- Todo hardware tem tempo de vida limitado

Mudanças de Software

- Mudanças são necessárias para:
 - Adicionar novas funcionalidades
 - Refatorar código (melhorar qualidade)
 - Corrigir defeitos (o que pode gerar novos defeitos)
- Inevitáveis durante a evolução do software

Crise do Software (anos 60)

- Dificuldades no desenvolvimento de software
- Rápido crescimento da:
 - Demanda por software
 - Complexidade dos problema
- Inexistência de técnicas estabelecidas para o desenvolvimento
- Resultado: custo alto, atraso, baixa qualidade, baixa confiabilidade, dificuldade de manutenção

- Documento de 1968/1970 sobre construção de software
 - 1. Cronogramas não observados
 - 2. Projetos abandonados
 - 3. Módulos que não operam corretamente quando combinados
 - 4. Programas não fazem exatamente o esperado
 - 5. Programas tão difíceis de usar que são descartados
 - 6. Programas que simplesmente param de funcionar

- Documento de 1968/1970 sobre construção de software
 - 1. Cronogramas não observados

Os problemas são os mesmos da atualidade

- 5. Programas tão difíceis de usar que são descartados
- 6. Programas que simplesmente param de funcionar

Hoje em dia, software está em todo lugar...

Erro de software pode ter causado a queda da sonda da ExoMars em Marte

Confiabilidade

Pesquisadores da missão ExoMars estão apontando para uma potencial falha de software como a causa do acidente da sonda Schiaparelli na semana passada. O desafio agora é isolar e corrigir o erro na esperança de evitar sua repetição em 2020, quando os cientistas planejam enviar uma sonda muito maior para o planeta vermelho.

Confiabilidade

- Vôo Air France 447 Rio Paris (2009)
 - 1. Dados conflitantes (falha nos sensores)
 - 2. Sistema assume o controle (piloto automático)
 - 3. Piloto tenta reiniciar o sistema (boot)
 - 4. Em 4 minutos o avião mergulha no oceano

https://spectrum.ieee.org/computing/software/why-software-fails

YEAR	COMPANY	OUTCOME (COSTS IN US \$)
2005	Hudson Bay Co. [Canada]	Problems with inventory system contribute to \$33.3 million* loss.
2004-05	UK Inland Revenue	Software errors contribute to \$3.45 billion* tax-credit overpayment.
2004	Avis Europe PLC [UK]	Enterprise resource planning (ERP) system canceled after \$54.5 million [†] is spent.
2004	Ford Motor Co.	Purchasing system abandoned after deployment costing approximately \$400 million.
2004	J Sainsbury PLC [UK]	Supply-chain management system abandoned after deployment costing \$527 million.†
2004	Hewlett-Packard Co.	Problems with ERP system contribute to \$160 million loss.
2003-04	AT&T Wireless	Customer relations management (CRM) upgrade problems lead to revenue loss of \$100 million.
2002	McDonald's Corp.	The Innovate information-purchasing system canceled after \$170 million is spent.
2002	Sydney Water Corp. [Australia]	Billing system canceled after \$33.2 million [†] is spent.
2002	CIGNA Corp.	Problems with CRM system contribute to \$445 million loss.
2001	Nike Inc.	Problems with supply-chain management system contribute to \$100 million loss.
2001	Kmart Corp.	Supply-chain management system canceled after \$130 million is spent.
2000	Washington, D.C.	City payroll system abandoned after deployment costing \$25 million.
1999	United Way	Administrative processing system canceled after \$12 million is spent.
1999	State of Mississippi	Tax system canceled after \$11.2 million is spent; state receives \$185 million damages.
1999	Hershey Foods Corp.	Problems with ERP system contribute to \$151 million loss.
1998	Snap-on Inc.	Problems with order-entry system contribute to revenue loss of \$50 million.
1997	U.S. Internal Revenue Service	Tax modernization effort canceled after \$4 billion is spent.
1997	State of Washington	Department of Motor Vehicle (DMV) system canceled after \$40 million is spent.
1997	Oxford Health Plans Inc.	Billing and claims system problems contribute to quarterly loss; stock plummets, leading to \$3.4 billion loss in corporate value.
1996	Arianespace [France]	Software specification and design errors cause \$350 million Ariane 5 rocket to explode.
1996	FoxMeyer Drug Co.	\$40 million ERP system abandoned after deployment, forcing company into bankruptcy.
1995	Toronto Stock Exchange [Canada]	Electronic trading system canceled after \$25.5 million** is spent.
1994	U.S. Federal Aviation Administration	Advanced Automation System canceled after \$2.6 billion is spent.
1994	State of California	DMV system canceled after \$44 million is spent.
1994	Chemical Bank	Software error causes a total of \$15 million to be deducted from IOO 000 customer accounts.
1993	London Stock Exchange [UK]	Taurus stock settlement system canceled after \$600 million** is spent.
1993	Allstate Insurance Co.	Office automation system abandoned after deployment, costing \$130 million.
1993	London Ambulance Service [UK]	Dispatch system canceled in 1990 at \$11.25 million**; second attempt abandoned after deployment, costing \$15 million.**
1993	Greyhound Lines Inc.	Bus reservation system crashes repeatedly upon introduction, contributing to revenue loss of \$6I million.
1992	Budget Rent-A-Car, Hilton Hotels, Marriott International, and AMR [American Airlines]	Travel reservation system canceled after \$165 million is spent.

Custo, desempenho, variabilidade

- Sistemas embarcados
 - Atualização constante
 - Grande variação em características

Sistemas Críticos

- Equipamentos médicos
 - Extremamente críticos
 - Lidam com vidas
- Caixas eletrônicos
 - Prejuízos financeiros

Em resumo...

Desenvolvimento informal de software geralmente não é suficiente

- Técnicas e métodos são necessários
- Algumas dificuldades:
 - Custo e prazo
 - Confiabilidade
 - Mudança contínua

O que é Engenharia de Software?

- Disciplina de engenharia relacionada a todos os aspectos de produção de software, da concepção até a operação e manutenção [Sommerville]
- Abordagem sistemática, disciplinada e quantificável no desenvolvimento, operação e manutenção de software [Pressman & IEEE]
- Foco no desenvolvimento de software de alta qualidade com custos e prazos adequados

Abordagem sistemática, disciplinada e quantificável no desenvolvimento, operação e manutenção de software

Abordagem sistemática, disciplinada e quantificável no desenvolvimento, operação e manutenção de software

- Sistemática: existe um processo de desenvolvimento definindo as atividades a serem executadas
- **Disciplinada**: processo definido será seguido
- Quantificável: define um conjunto de medidas a serem extraídas do processo
- Desenvolvimento, operação e manutenção: fases do processo de software

O que difere ES de outras engenharias?

- Software é desenvolvido, não fabricado
- Software não se desgasta (mas se deteriora)
- Software é muitas vezes produzido para um cliente específico

Guide to the Software Engineering Body of Knowledge

Editors

Pierre Bourque Richard E. (Dick) Fairley

IEEE **Computer society**

SWEBOK

- Estabelece e reconhece a ES como uma disciplina de engenharia
- Dividida em 15 áreas do conhecimento (KAs)
- Publicado inicialmente em 2004
- Última versão: 2014 (v3.0)
- https://www.computer.org/web/swebok

SWEBOK: Objetivos

- Promover uma visão consistente da ES
- Especificar o escopo e clarificar o lugar da ES em relação a outras disciplinas
- Caracterizar o conteúdo da ES
- Promover a fundação para currículos, certificações e licenças

SWEBOK

Table I.1. The 15 SWEBOK KAs		
Software Requirements		
Software Design		
Software Construction		
Software Testing		
Software Maintenance		
Software Configuration Management		
Software Engineering Management		
Software Engineering Process		
Software Engineering Models and Methods		
Software Quality		
Software Engineering Professional Practice		
Software Engineering Economics		
Computing Foundations		
Mathematical Foundations		
Engineering Foundations		