Particle spectrograph

Wave operator and propagator

_	$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma_{1^{+}lphaeta}^{\#2}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\sharp 1}{}_{lpha}$	$\sigma_{1}^{\#2}{}_{\alpha}$	$ au_1^{\#1}$	$ au_1^{\#2}$
$\sigma_{1^+}^{\sharp 1}\dagger^{lphaeta}$	$-\frac{\frac{1}{3(\alpha_0-4\beta_1)(\alpha_0+8\beta_3)}}{16(\beta_1+2\beta_3)}+(\alpha_2+\alpha_5)k^2$	$-\frac{2\sqrt{2}(3\alpha_{0}-4\beta_{1}+16\beta_{3})}{(1+k^{2})(-3(\alpha_{0}-4\beta_{1})(\alpha_{0}+8\beta_{3})+16(\alpha_{2}+\alpha_{5})(\beta_{1}+2\beta_{3})k^{2})}$	$-\frac{2 i \sqrt{2} (3 \alpha_0 - 4 \beta_1 + 16 \beta_3) k}{(1+k^2) (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 8 \beta_3) + 16 (\alpha_2 + \alpha_5) (\beta_1 + 2 \beta_3) k^2)}$	0	0	0	0
$\sigma_{1}^{\#2} \dagger^{lphaeta}$	$\frac{2\sqrt{2}(3\alpha_0-4\beta_1+16\beta_3)}{(1+k^2)(-3(\alpha_0-4\beta_1)(\alpha_0+8\beta_3)+16(\alpha_2+\alpha_5)(\beta_1+2\beta_3)k^2)}$	$\frac{6 \alpha_0 + 8 (\beta_1 + 8 \beta_3 + 3 (\alpha_2 + \alpha_5) k^2)}{(1+k^2)^2 (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 8 \beta_3) + 16 (\alpha_2 + \alpha_5) (\beta_1 + 2 \beta_3) k^2)}$	$\frac{2 i k (3 \alpha_0 + 4 (\beta_1 + 8 \beta_3 + 3 (\alpha_2 + \alpha_5) k^2))}{(1 + k^2)^2 (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 8 \beta_3) + 16 (\alpha_2 + \alpha_5) (\beta_1 + 2 \beta_3) k^2)}$	0	0	0	0
$ au_{1}^{\#1} \dagger^{lphaeta}$	$\frac{2 i \sqrt{2} (3 \alpha_0 - 4 \beta_1 + 16 \beta_3) k}{(1 + k^2) (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 8 \beta_3) + 16 (\alpha_2 + \alpha_5) (\beta_1 + 2 \beta_3) k^2)}$	$-\frac{2 i k (3 \alpha_0+4 (\beta_1+8 \beta_3+3 (\alpha_2+\alpha_5) k^2))}{(1+k^2)^2 (-3 (\alpha_0-4 \beta_1) (\alpha_0+8 \beta_3)+16 (\alpha_2+\alpha_5) (\beta_1+2 \beta_3) k^2)}$	$\frac{2 k^2 (3 \alpha_0 + 4 (\beta_1 + 8 \beta_3 + 3 (\alpha_2 + \alpha_5) k^2))}{(1 + k^2)^2 (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 8 \beta_3) + 16 (\alpha_2 + \alpha_5) (\beta_1 + 2 \beta_3) k^2)}$	0	0	0	0
$\sigma_1^{\sharp 1} {\dagger}^{lpha}$	0	0	0	$-\frac{\frac{1}{3(\alpha_0-4\beta_1)(\alpha_0+2\beta_2)}+(\alpha_4+\alpha_5)k^2}{8(2\beta_1+\beta_2)}$	$\frac{2\sqrt{2}(3\alpha_0-4\beta_1+4\beta_2)}{(1+2k^2)(-3(\alpha_0-4\beta_1)(\alpha_0+2\beta_2)+8(\alpha_4+\alpha_5)(2\beta_1+\beta_2)k^2)}$	0	$\frac{4 i (3 \alpha_0 - 4 \beta_1 + 4 \beta_2) k}{(1 + 2 k^2) (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 2 \beta_2) + 8 (\alpha_4 + \alpha_5) (2 \beta_1 + \beta_2) k^2)}$
$\sigma_1^{#2} \dagger^{\alpha}$	0	0	0	$\frac{2\sqrt{2}(3\alpha_0-4\beta_1+4\beta_2)}{(1+2k^2)(-3(\alpha_0-4\beta_1)(\alpha_0+2\beta_2)+8(\alpha_4+\alpha_5)(2\beta_1+\beta_2)k^2)}$	$\frac{6 \alpha_0 + 8 (\beta_1 + 2 \beta_2 + 3 (\alpha_4 + \alpha_5) k^2)}{(1 + 2 k^2)^2 (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 2 \beta_2) + 8 (\alpha_4 + \alpha_5) (2 \beta_1 + \beta_2) k^2)}$	0	$\frac{2 i \sqrt{2} k (3 \alpha_0 + 4 (\beta_1 + 2 \beta_2 + 3 (\alpha_4 + \alpha_5) k^2))}{(1 + 2 k^2)^2 (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 2 \beta_2) + 8 (\alpha_4 + \alpha_5) (2 \beta_1 + \beta_2) k^2)}$
$ au_1^{\#_1} \dagger^{lpha}$	0	0	0	0	0	0	0
$\tau_{1}^{#2} \uparrow^{\alpha}$	0	0	0	$-\frac{4 i (3 \alpha_{0}-4 \beta_{1}+4 \beta_{2}) k}{(1+2 k^{2}) (-3 (\alpha_{0}-4 \beta_{1}) (\alpha_{0}+2 \beta_{2})+8 (\alpha_{4}+\alpha_{5}) (2 \beta_{1}+\beta_{2}) k^{2})}$	$-\frac{2 i \sqrt{2} k (3 \alpha_0+4 (\beta_1+2 \beta_2+3 (\alpha_4+\alpha_5) k^2))}{(1+2 k^2)^2 (-3 (\alpha_0-4 \beta_1) (\alpha_0+2 \beta_2)+8 (\alpha_4+\alpha_5) (2 \beta_1+\beta_2) k^2)}$	0	$\frac{4 k^2 (3 \alpha_0 + 4 (\beta_1 + 2 \beta_2 + 3 (\alpha_4 + \alpha_5) k^2))}{(1 + 2 k^2)^2 (-3 (\alpha_0 - 4 \beta_1) (\alpha_0 + 2 \beta_2) + 8 (\alpha_4 + \alpha_5) (2 \beta_1 + \beta_2) k^2)}$

Quadratic (free) action
$S_{F} == \iiint \left(\frac{1}{6}\right) \left($
$((-3\alpha_0 + 4\beta_1 - 4\beta_2) \omega^{\alpha\beta}_{\alpha} \omega^{\chi}_{\beta \chi} + \omega_{\alpha\chi\beta} (-3\alpha_0 \omega^{\alpha\beta\chi} + 16(\beta_1 - \beta_3) \partial^{\chi} f^{\alpha\beta}) +$
$2(-2(\beta_1 - 4\beta_3) \omega_{\alpha}^{\chi\delta} \omega_{\chi\delta}^{\alpha} + 2(\beta_1 + 2\beta_3) \omega_{\chi\delta}^{\alpha} \omega_{\alpha}^{\chi\delta} + 3f^{\alpha\beta} \tau_{\alpha\beta} +$
$3 \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + 3 \alpha_1 \partial_{\alpha}\omega^{\chi\delta}_{\chi} \partial^{\alpha}\omega_{\delta\zeta}^{\zeta} + 3 \alpha_2 \partial_{\alpha}\omega^{\chi\delta}_{\chi} \partial^{\alpha}\omega_{\delta\zeta}^{\zeta} - 3 \alpha_4 \partial_{\alpha}\omega^{\chi\delta}_{\chi} \partial^{\alpha}\omega_{\delta\zeta}^{\zeta} -$
$3 \alpha_5 \partial_{\alpha} \omega_{\chi}^{\chi \delta} \partial^{\alpha} \omega_{\delta}^{\zeta} - 2 \beta_1 \omega_{\alpha \chi}^{\chi} \partial_{\beta} f^{\alpha \beta} + 2 \beta_2 \omega_{\alpha \chi}^{\chi} \partial_{\beta} f^{\alpha \beta} - 2 \beta_1 \omega_{\alpha \delta}^{\delta} \partial_{\beta} f^{\alpha \beta} +$
$2 \beta_2 \omega_{\alpha \delta}^{\delta} \partial_{\beta} f^{\alpha\beta} - 3 \alpha_0 f^{\alpha\beta} \partial_{\beta} \omega_{\alpha \chi}^{\chi} + 3 \alpha_0 \partial_{\beta} \omega_{\alpha}^{\alpha\beta} - 2 \alpha_1 \partial^{\alpha} \omega_{\chi}^{\beta\zeta} \partial_{\beta} \omega_{\zeta\alpha}^{\chi} +$
$2 \alpha_{3} \partial^{\alpha} \omega^{\beta \zeta}_{\chi} \partial_{\beta} \omega_{\zeta \alpha}^{\chi} + 2 \beta_{1} \omega_{\beta \chi}^{\chi} \partial^{\beta} f^{\alpha}_{\alpha} - 2 \beta_{2} \omega_{\beta \chi}^{\chi} \partial^{\beta} f^{\alpha}_{\alpha} + 2 \beta_{1} \omega_{\beta \delta}^{\delta} \partial^{\beta} f^{\alpha}_{\alpha} -$
$2 \beta_2 \omega_{\beta \delta}^{\delta} \partial^{\beta} f_{\alpha}^{\alpha} - 2 \beta_1 \partial_{\beta} f_{\chi}^{\chi} \partial^{\beta} f_{\alpha}^{\alpha} + 2 \beta_2 \partial_{\beta} f_{\chi}^{\chi} \partial^{\beta} f_{\alpha}^{\alpha} + 3 \alpha_0 f_{\alpha\beta}^{\alpha\beta} \partial_{\chi} \omega_{\alpha\beta}^{\chi} -$
$3 \alpha_0 f^{\alpha}_{\alpha} \partial_{\chi} \omega^{\beta \chi}_{\beta} + 3 \alpha_1 \partial_{\beta} \omega_{\delta}^{\zeta}_{\zeta} \partial_{\chi} \omega^{\beta \chi \delta} - 3 \alpha_2 \partial_{\beta} \omega_{\delta}^{\zeta}_{\zeta} \partial_{\chi} \omega^{\beta \chi \delta} -$
$3 \alpha_4 \partial_{\beta} \omega_{\delta}^{\ \zeta} \partial_{\chi} \omega^{\beta \chi \delta} + 3 \alpha_5 \partial_{\beta} \omega_{\delta}^{\ \zeta} \partial_{\chi} \omega^{\beta \chi \delta} + 2 \alpha_1 \partial_{\beta} \omega_{\zeta \alpha}^{\ \chi} \partial_{\chi} \omega^{\beta \zeta \alpha} -$
$2\alpha_3\partial_\beta\omega_{\zeta\alpha}^{\chi}\partial_\chi\omega^{\beta\zeta\alpha}-6\alpha_1\partial_\beta\omega_{\delta}^{\zeta}\partial_\chi\omega^{\chi\delta\beta}-6\alpha_2\partial_\beta\omega_{\delta}^{\zeta}\partial_\chi\omega^{\chi\delta\beta}+$
$6 \alpha_4 \partial_\beta \omega_{\delta_\zeta}^{\ \zeta} \partial_\chi \omega^{\chi \delta \beta} + 6 \alpha_5 \partial_\beta \omega_{\delta_\zeta}^{\ \zeta} \partial_\chi \omega^{\chi \delta \beta} - 2 \alpha_1 \partial_\beta \omega_{\zeta \alpha}^{\ \chi} \partial_\chi \omega^{\zeta \alpha \beta} -$
$3 \alpha_2 \partial_{\beta} \omega_{\zeta\alpha}^{ \chi} \partial_{\chi} \omega^{\zeta\alpha\beta} - \alpha_3 \partial_{\beta} \omega_{\zeta\alpha}^{ \chi} \partial_{\chi} \omega^{\zeta\alpha\beta} + 2 \beta_1 \omega_{\alpha\beta\chi} \partial^{\chi} f^{\alpha\beta} + 4 \beta_3 \omega_{\alpha\beta\chi} \partial^{\chi} f^{\alpha\beta} -$
$2\beta_1\omega_{\beta\alpha\chi}\partial^\chi f^{\alpha\beta} - 4\beta_3\omega_{\beta\alpha\chi}\partial^\chi f^{\alpha\beta} + 4\beta_1\omega_{\beta\chi\alpha}\partial^\chi f^{\alpha\beta} + 8\beta_3\omega_{\beta\chi\alpha}\partial^\chi f^{\alpha\beta} +$
$2\beta_1\partial_\chi f_{\beta}^{\delta}\partial^\chi f_{\delta}^{\beta} - 2\beta_3\partial_\chi f_{\beta}^{\delta}\partial^\chi f_{\delta}^{\beta} + 4\beta_1\partial_\chi f_{\beta}^{\delta}\partial^\chi f_{\delta}^{\beta} + 2\beta_3\partial_\chi f_{\beta}^{\delta}\partial^\chi f_{\delta}^{\beta} -$
$2 \alpha_1 \partial_{\chi} \omega^{\beta \zeta \alpha} \partial^{\chi} \omega_{\zeta \alpha \beta} + 2 \alpha_3 \partial_{\chi} \omega^{\beta \zeta \alpha} \partial^{\chi} \omega_{\zeta \alpha \beta} + 2 \alpha_1 \partial_{\chi} \omega^{\zeta \alpha \beta} \partial^{\chi} \omega_{\zeta \alpha \beta} +$
$3 \alpha_2 \partial_\chi \omega^{\zeta \alpha \beta} \partial^\chi \omega_{\zeta \alpha \beta} + \alpha_3 \partial_\chi \omega^{\zeta \alpha \beta} \partial^\chi \omega_{\zeta \alpha \beta} + 4 \beta_1 \partial^\beta f^\alpha_{\ \alpha} \partial_\delta f^\delta_{\ \beta} -$
$4\beta_2\partial^\beta f^\alpha_{\ \alpha}\partial_\delta f_\beta^{\ \delta} - 2\beta_1\partial_\beta f_\chi^{\ \beta}\partial_\delta f^{\chi\delta} + 2\beta_2\partial_\beta f_\chi^{\ \beta}\partial_\delta f^{\chi\delta} + 4\alpha_1\partial_\beta \omega^{\alpha\beta}_{\ \alpha}\partial_\delta \omega^{\chi\delta}_{\ \chi} -$
$6 \alpha_4 \partial_{\beta} \omega^{\alpha\beta}_{\alpha} \partial_{\delta} \omega^{\chi\delta}_{\chi} + 2 \alpha_6 \partial_{\beta} \omega^{\alpha\beta}_{\alpha} \partial_{\delta} \omega^{\chi\delta}_{\chi} + 4 \alpha_1 \partial^{\beta} \omega_{\alpha}^{\delta\zeta} \partial_{\delta} \omega_{\zeta\beta}^{\alpha} -$
$6 \alpha_2 \partial^{\beta} \omega_{\alpha}^{\delta \zeta} \partial_{\delta} \omega_{\zeta\beta}^{\alpha} + 2 \alpha_3 \partial^{\beta} \omega_{\alpha}^{\delta \zeta} \partial_{\delta} \omega_{\zeta\beta}^{\alpha} + 2 \alpha_1 \partial^{\beta} \omega_{\alpha}^{\zeta\delta} \partial_{\delta} \omega_{\zeta\beta}^{\alpha} -$
$2 \alpha_3 \partial^{\beta} \omega_{\alpha}^{\ \zeta \delta} \partial_{\delta} \omega_{\zeta \beta}^{\ \alpha} - 3 \alpha_1 \partial_{\beta} \omega_{\delta}^{\ \zeta} \partial^{\delta} \omega^{\beta \chi}_{\chi} + 3 \alpha_2 \partial_{\beta} \omega_{\delta}^{\ \zeta} \partial^{\delta} \omega^{\beta \chi}_{\chi} +$
$3\alpha_{4}\partial_{\beta}\omega_{\delta}^{\zeta}\partial^{\delta}\omega^{\beta\chi}_{\chi} - 3\alpha_{5}\partial_{\beta}\omega_{\delta}^{\zeta}\partial^{\delta}\omega^{\beta\chi}_{\chi} - 3\alpha_{1}\partial_{\chi}\omega^{\beta\chi\delta}\partial_{\zeta}\omega_{\delta}^{\zeta} +$
$3 \alpha_2 \partial_{\chi} \omega^{\beta \chi \delta} \partial_{\zeta} \omega_{\delta \beta}^{\zeta} + 3 \alpha_4 \partial_{\chi} \omega^{\beta \chi \delta} \partial_{\zeta} \omega_{\delta \beta}^{\zeta} - 3 \alpha_5 \partial_{\chi} \omega^{\beta \chi \delta} \partial_{\zeta} \omega_{\delta \beta}^{\zeta} +$
$3 \alpha_1 \partial_{\chi} \omega^{\chi \delta \beta} \partial_{\zeta} \omega_{\delta \beta}^{\zeta} + 3 \alpha_2 \partial_{\chi} \omega^{\chi \delta \beta} \partial_{\zeta} \omega_{\delta \beta}^{\zeta} - 3 \alpha_4 \partial_{\chi} \omega^{\chi \delta \beta} \partial_{\zeta} \omega_{\delta \beta}^{\zeta} -$
$3 \alpha_5 \partial_{\chi} \omega^{\chi \delta \beta} \partial_{\zeta} \omega_{\delta \beta}^{\zeta} + 3 \alpha_1 \partial^{\delta} \omega^{\beta \chi}_{\chi} \partial_{\zeta} \omega_{\delta \beta}^{\zeta} - 3 \alpha_2 \partial^{\delta} \omega^{\beta \chi}_{\chi} \partial_{\zeta} \omega_{\delta \beta}^{\zeta} -$
$3 \alpha_4 \partial^{\delta} \omega^{\beta \chi}_{\chi} \partial_{\zeta} \omega_{\delta \beta}^{\zeta} + 3 \alpha_5 \partial^{\delta} \omega^{\beta \chi}_{\chi} \partial_{\zeta} \omega_{\delta \beta}^{\zeta} - 2 \beta_1 \partial^{\chi} f_{\zeta}^{\beta} \partial^{\zeta} f_{\beta \chi} +$
$2 \beta_{3} \partial^{\chi} f_{\zeta}^{\beta} \partial^{\zeta} f_{\beta \chi} - 4 \beta_{1} \partial^{\chi} f_{\zeta}^{\beta} \partial^{\zeta} f_{\chi \beta} - 2 \beta_{3} \partial^{\chi} f_{\zeta}^{\beta} \partial^{\zeta} f_{\chi \beta} + 2 \beta_{1} \partial^{\chi} f_{\delta \zeta} \partial^{\zeta} f_{\chi}^{\delta} -$
$2 \beta_3 \partial^X f_{\delta\zeta} \partial^\zeta f^{\delta}_{\chi} - 2 \beta_1 \partial^X f_{\zeta\delta} \partial^\zeta f^{\delta}_{\chi} + 2 \beta_3 \partial^X f_{\zeta\delta} \partial^\zeta f^{\delta}_{\chi})))[t, x, y, z] dz dy dx dt$

_	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}lphaeta}^{\#2}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1}^{\sharp 1}{}_{lpha}$	$\omega_1^{\#2}{}_{lpha}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{\#2}$
$\omega_{\scriptscriptstyle 1}^{\scriptscriptstyle \#1}\dagger^{lphaeta}$	$\frac{\alpha_0}{4} + \frac{1}{3} (\beta_1 + 8 \beta_3) + (\alpha_2 + \alpha_5) k^2$	$\frac{3 \alpha_0 - 4 \beta_1 + 16 \beta_3}{6 \sqrt{2}}$	$\frac{i(3\alpha_0-4\beta_1+16\beta_3)k}{6\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{lphaeta}$	$\frac{3 \alpha_0 - 4 \beta_1 + 16 \beta_3}{6 \sqrt{2}}$	$\frac{2}{3}\left(\beta_1+2\beta_3\right)$	$\frac{2}{3}i(\beta_1+2\beta_3)k$	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha\beta}$	$-\frac{i(3\alpha_0-4\beta_1+16\beta_3)k}{6\sqrt{2}}$	$-\frac{2}{3}\bar{i}\left(\beta_1+2\beta_3\right)k$	$\frac{2}{3}(\beta_1 + 2\beta_3)k^2$	0	0	0	0
$\omega_1^{\sharp 1} \dagger^{\alpha}$	0	0	0	$\frac{\alpha_0}{4} + \frac{1}{3} (\beta_1 + 2 \beta_2) + (\alpha_4 + \alpha_5) k^2$	$-\frac{3\alpha_0-4\beta_1+4\beta_2}{6\sqrt{2}}$	0	$-\frac{1}{6}i(3\alpha_0-4\beta_1+4\beta_2)k$
$\omega_1^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{3 \alpha_0 - 4 \beta_1 + 4 \beta_2}{6 \sqrt{2}}$	$\frac{1}{3}\left(2\beta_1+\beta_2\right)$	0	$\frac{1}{3}i\sqrt{2}(2\beta_1+\beta_2)k$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$\frac{1}{6}$ i (3 α_0 - 4 β_1 + 4 β_2) k	$-\frac{1}{3}i\sqrt{2}(2\beta_1+\beta_2)k$	0	$\frac{2}{3} (2 \beta_1 + \beta_2) k^2$

	$\omega_{0}^{\sharp 1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\sharp 1}$	_	$\omega_{2^{+}lphaeta}^{\sharp1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2}^{\sharp 1}{}_{lphaeta\chi}$
v ₀ ^{#1} †	$\frac{\alpha_0}{2} + \beta_2 + (\alpha_4 + \alpha_6) k^2$	$-\frac{i(\alpha_0+2\beta_2)k}{\sqrt{2}}$	0	0	$\omega_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	$-\frac{\alpha_0}{4} + \beta_1 + (\alpha_1 + \alpha_4) k^2$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0
7#1 0+ †	$\frac{i(\alpha_0+2\beta_2)k}{\sqrt{2}}$	$2 \beta_2 k^2$	0	0	$f_{2+}^{#1}\dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	$2 \beta_1 k^2$	0
^{#2} ₀ + †	0	0	0	0	$\omega_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	$-\frac{\alpha_0}{4} + \beta_1 + (\alpha_1 + \alpha_2) k^2$
) ₀ -1 †	0	0	0	$\frac{\alpha_0}{2} + 4\beta_3 + (\alpha_2 + \alpha_3) k^2$	•		,	

	$\sigma^{\sharp 1}_{2^+ lpha eta}$	$ au_{2^{+}lphaeta}^{\#1}$	$\sigma_{2^{-}lphaeta\chi}^{\#1}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{16 \beta_1}{-\alpha_0^2 + 4 \alpha_0 \beta_1 + 16 (\alpha_1 + \alpha_4) \beta_1 k^2}$	$\frac{2 i \sqrt{2} (\alpha_0 - 4 \beta_1)}{\alpha_0 (\alpha_0 - 4 \beta_1) k - 16 (\alpha_1 + \alpha_4) \beta_1 k^3}$	0
$ au_{2}^{\#1} \dagger^{lphaeta}$	$-\frac{2i\sqrt{2}(\alpha_{0}\text{-}4\beta_{1})}{\alpha_{0}(\alpha_{0}\text{-}4\beta_{1})k\text{-}16(\alpha_{1}+\alpha_{4})\beta_{1}k^{3}}$	$\frac{2 \left(\alpha_0 - 4 \left(\beta_1 + (\alpha_1 + \alpha_4) k^2\right)\right)}{k^2 \left(\alpha_0^2 - 4 \alpha_0 \beta_1 - 16 \left(\alpha_1 + \alpha_4\right) \beta_1 k^2\right)}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{1}{-\frac{\alpha_0}{4}+\beta_1+(\alpha_1+\alpha_2)k^2}$

Source constraints/ga	auge generators
SO(3) irreps	Multiplicities
$\tau_{0+}^{\#2} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_1^{\#1}{}^{\alpha} == 0$	3
$\overline{\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta}} = 0$	3
Total constraints:	10

$\sigma_{0^{-}}^{\#1} \dagger \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	τ ₀ ^{#2} †	$\tau_{0+}^{#1} + \frac{\alpha_0 (c)}{\alpha_0 (c)}$	$\sigma_{0+}^{*1} + -\frac{1}{\alpha_0}$	
0	0	$i \sqrt{2} (\alpha_0 + 2\beta_2)$ $\alpha_0 + 2\beta_2) k - 4(\alpha_4 + \alpha_6) \beta_2 k^3$	$-\frac{4 \beta_2}{\alpha_0^2 + 2 \alpha_0 \beta_2 - 4 (\alpha_4 + \alpha_6) \beta_2 k^2}$	$\sigma_{0}^{\#1}$
0	0	$\frac{i\sqrt{2}(\alpha_0+2\beta_2)}{\alpha_0(\alpha_0+2\beta_2)k-4(\alpha_4+\alpha_6)\beta_2k^3} = \frac{\frac{\alpha_0}{2}+\beta_2+(\alpha_4+\alpha_6)k^2}{\frac{1}{2}\alpha_0(\alpha_0+2\beta_2)k^2+2(\alpha_4+\alpha_6)\beta_2k^4}$	$\frac{i\sqrt{2}(\alpha_0+2\beta_2)}{-\alpha_0(\alpha_0+2\beta_2)k+4(\alpha_4+\alpha_6)\beta_2k^3}$	$ au_0^{\#1}$
0	0	0	0	$\tau_0^{\#2}$
$\frac{2}{\alpha_0+8\beta_3+2(\alpha_2+\alpha_3)k^2}$	0	0	0	$\sigma_{0^{\tilde{-}}}^{\#1}$

Massive and massless spectra

Massive partic	le
Pole residue:	$ \begin{array}{l} (3 (\alpha_0^2 (3 \alpha_2 + 3 \alpha_5 + 2 \beta_1 + 4 \beta_3) - \\ 8 \alpha_0 (\beta_1^2 + \alpha_2 (\beta_1 - 4 \beta_3) + \alpha_5 (\beta_1 - 4 \beta_3) - 4 \beta_3^2) + \\ 16 (-4 \beta_1 \beta_3 (\beta_1 + 2 \beta_3) + \alpha_2 (\beta_1^2 + 8 \beta_3^2) + \alpha_5 (\beta_1^2 + 8 \beta_3^2)))) / \\ (2 (\alpha_2 + \alpha_5) (\beta_1 + 2 \beta_3) (3 \alpha_0^2 - 12 \alpha_0 (\beta_1 - 2 \beta_3) + \\ 16 (\alpha_5 \beta_1 + 2 \alpha_5 \beta_3 - 6 \beta_1 \beta_3 + \alpha_2 (\beta_1 + 2 \beta_3)))) > 0 \end{array} $
Polarisations:	3
Square mass:	$\frac{\frac{3(\alpha_0-4\beta_1)(\alpha_0+8\beta_3)}{16(\alpha_2+\alpha_5)(\beta_1+2\beta_3)}}{16(\alpha_2+\alpha_5)(\beta_1+2\beta_3)} > 0$
Spin:	1
Parity:	Even

Massive partic	le
Pole residue:	$ \begin{array}{l} -((3(\alpha_{0}^{2}(3\alpha_{4}+3\alpha_{5}+4\beta_{1}+2\beta_{2})+\\ 4\alpha_{0}(-2\alpha_{4}\beta_{1}-2\alpha_{5}\beta_{1}-4\beta_{1}^{2}+2\alpha_{4}\beta_{2}+2\alpha_{5}\beta_{2}+\beta_{2}^{2})+\\ 8(-2\beta_{1}\beta_{2}(2\beta_{1}+\beta_{2})+\alpha_{4}(2\beta_{1}^{2}+\beta_{2}^{2})+\alpha_{5}(2\beta_{1}^{2}+\beta_{2}^{2}))))/\\ (2(\alpha_{4}+\alpha_{5})(2\beta_{1}+\beta_{2})(3\alpha_{0}^{2}+6\alpha_{0}(-2\beta_{1}+\beta_{2})+\\ 4(2\alpha_{5}\beta_{1}+\alpha_{5}\beta_{2}-6\beta_{1}\beta_{2}+\alpha_{4}(2\beta_{1}+\beta_{2})))))>0 \end{array} $
Polarisations:	3
Square mass:	$\frac{\frac{3(\alpha_0 - 4\beta_1)(\alpha_0 + 2\beta_2)}{8(\alpha_4 + \alpha_5)(2\beta_1 + \beta_2)}}{ 8(\alpha_4 + \alpha_5)(2\beta_1 + \beta_2)} > 0$
Spin:	1
Parity:	Odd

		.		
Spin:	Square mass:	Polarisations: 5	Pole residue:	Massive particle
2	$\frac{\alpha_0 (\alpha_0 - 4\beta_1)}{16 (\alpha_1 + \alpha_4) \beta_1} > 0$	5	$-\frac{2}{\alpha_0} + \frac{\alpha_1 + \alpha_4 + 2\beta_1}{2\alpha_1\beta_1 + 2\alpha_4\beta_1}$	e

		•~	3		
Parity:	Spin:	Square mass:	Polarisations:	Pole residue:	Massive particle
Even	0	$\frac{\alpha_0 (\alpha_0 + 2\beta_2)}{4 (\alpha_4 + \alpha_6) \beta_2} > 0$	1	$\frac{1}{\alpha_0} + \frac{\alpha_4 + \alpha_6 + 2\beta_2}{2\alpha_4\beta_2 + 2\alpha_6\beta_2}$	le

	Massive partic	le
?	Pole residue:	$-\frac{1}{\alpha_2 + \alpha_3} > 0$
9	Polarisations:	1
?	Square mass:	$-\frac{\alpha_0+8\beta_3}{2(\alpha_2+\alpha_3)}>0$
?	Spin:	0
	Parity:	Odd

$J^{P} = 2^{-} $ k^{μ} ?	Massive particle	
	Pole residue:	$-\frac{1}{\alpha_1+\alpha_2}$
	Polarisations:	5
	Square mass:	$\frac{\alpha_0 - 4\beta_1}{4(\alpha_1 + \alpha_2)}$
	Spin:	2
	Parity:	Odd

Unitarity conditions