Technische Universität Berlin

Fakultät II – Institut für Mathematik G. Bärwolff · A. Gündel-vom Hofe · F. Tröltzsch

SS 2012 08.10.2012

Oktober – Klausur Analysis 1 für Ingenieure

Name:					Vorname:				
MatrN	Nr.:				Studiengang:				
					otizen sind keine weit ne Handys zugelasse		fsmittel	zugelas	sen. Ins-
	atrikeln				n abzugeben. Jedes B stift geschriebene Kla				
Ihrer Ar Skript"	ntwort z gilt nicl	ur Aufg ht als Be	abe gibt egründu	es keine Punkte., ng. Der entspreche	oder den vollständig e "Nach dem Satz in de ende Satz muss zitiert be angewendet werder	r Vorles werden	ung / in	ı Tutori	um / im
Die Bea	rbeitun	gszeit be	eträgt 90	0 Minuten.					
				on 60 Punkten be erreicht werden.	standen, wenn in jede	em der b	oeiden T	eile der	Klausur
Recher	nteil						V	erstän	dnisteil
1	2	3	Σ			4	5	6	Σ

Rechenteil:

1. Aufgabe 12 Punkte

Berechnen Sie:

- (a) $\int_{1}^{2} \frac{\ln x}{x} dx.$
- (b) $\int_{0}^{\infty} xe^{-x} dx$ mithilfe von partieller Integration.
- (c) $\int_{2}^{3} \frac{5x^2+5x-4}{(x-1)(x^2+3x+2)} dx$ mithilfe einer Partialbruchzerlegung.

2. Aufgabe

Gegeben sei die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = e^{-x}$.

- (a) Berechnen Sie das Taylorpolynom 3. Grades von f um den Entwicklungspunkt $x_0 = 0$.
- (b) Zeigen Sie, dass für das Restglied $R_4(x)$ und $x \in [-1,1]$ die Abschätzung $|R_4(x)| \leq \frac{1}{8}$ gilt. (Hinweis: Benutzen Sie dafür $e \leq 3$.)

3. Aufgabe 8 Punkte

Es sei $f : \mathbb{R} \to \mathbb{R}$ die durch $f(x) = |x|, x \in [-\pi, \pi]$ definierte 2π -periodische Funktion. Berechnen Sie die zu f gehörenden Fourierkoeffizienten.

Verständnisteil:

4. Aufgabe

(a) Zeigen Sie mit vollständiger Induktion, dass für alle $n \in \mathbb{N}$ gilt:

$$\sum_{k=0}^{n} \frac{1-k}{2^k} = \frac{n+1}{2^n}$$

(b) Benutzen Sie Teilaufgabe (a), um den Grenzwert der Folge

$$b_n = \sin\left(\frac{1}{n}\right) \frac{(-2)^n}{n} \sum_{k=0}^n \frac{k-1}{2^k}$$

zu bestimmen.

5. Aufgabe 12 Punkte

Sei $f: \mathbb{R} \to \mathbb{R}$ gegeben durch:

$$x \mapsto \left\{ \begin{array}{cc} x^2 \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{array} \right..$$

- (a) Untersuchen Sie f auf Stetigkeit.
- (b) Untersuchen Sie f auf Differenzierbarkeit.

6. Aufgabe 8 Punkte

 $z_0 = 2 + i$ ist eine Lösung der komplexen Gleichung $z^4 = -7 + 24i$.

- (a) Wieviele Lösungen $z \in \mathbb{C}$ besitzt die obige Gleichung? Begründen Sie ihre Antwort.
- (b) Bestimmen Sie die weiteren Lösungen der obigen Gleichung.