

5팀 권태형, 신경임,조우찬

01

개요

02

구성도

03

작업 과정

04

시연영상

05

고찰 및 개선 사항

개요

[Intel] 엣지 AI S/W 아카데미

차량 내부 온도와 습도에 맞춘 실내환경 유지 ▶ 미세먼지 농도에 따른 적절한 공기질 유지

장마철 건강을 위해서는 차량 내부에 곰팡이가 생기지 않도록 청소에 유의해야 한다./사진=게티이미지뱅크

유례없이 긴 장마가 지속되며 연일 습한 날씨가 이어지고 있다. 장마철에는 습도가 80% 이상으로 유지되는데, 이때는 곰팡이에 유의해야 한다. 가정 내 곰팡이도 문제지만, 특히 차량에 곰팡이가 생기면 좁은 공간에서 호흡기로 잘 유입될 수 있다. 장마철 건강을 위해서는 차량 내부에 곰팡이가 새기지 아드로 처스에 시겨 쓰는 게 좋다. 처스하며 차량 고고도 하께 저거하며 비긴 사고도 예반

차량 내 대기 오염

차내 대기오염

업데이트 Feb 12, 2019 | 8:20 AM PT 작성자: IQAir Staff Writer

이 글 공유하기:

차량 오염 물질은 보도를 따라 걸을 때 안개와 스모그로 볼 수 있습니다. 이 준비된 가시성은 야외 대기 오염에 대한 인식을 장려합니다. 수십 년 동안 연구는 차량 외부의 대기 질에 중점을 두었습니다. 연구에 대한 연구에 따르면 차량 내부의 공기 는 심박수 증가와 혈압에서 운전자 졸음의 위험 증가에 이르기까지 원인에 대한 심각한 건강 문제가 될 수 있음을 나타냅니

차량 내부의 공기는 심박수와 혈압이 높아지는 것에서부터 운전자 졸 음의 위험 증가에 이르기까지 심각한 건강 문제가 될 수 있습니다.

전 세계적으로 도로에서 보낸 시간이 증가하고 있습니다. 2018 년 유럽 연합의 도로에는 2 억 7,700 만 여객이있었습니다. 1 2020 년 1 월 미국의 Covid-19 Pandemic, 월간 도로 및 거리 여행과 관련된 여행 제한 이전에는 2019 년 1 월부터 53 억 대의 차량 마일로 253 억 대의 차량 마일로 추정되었습니다.2

Covid-19 Pandemic은 2020 년 전 세계 일부 지역에서 트래픽이 둔화되었을 수 있지만, 혼잡은 인도 도시로 돌아 왔습니다. <u>뭄바이, 벵갈 루루, 델리, 그리고 푸네</u> 2021 년 초.³ 전염병이 가라 앉으면 서 트래픽이 계속 될 것으로 예상되어 차량 내부 및 실외 오염의 농도가 증가합니다.

자동차 내부의 공기가 외부보다 더 나쁜 이유는 무엇입니까?

자동차는 주변 차량에서 배출되어 재순환하기 때문에 오염 물질 수준은 종종 차량 내부에서 더 높습니다. 차량은 밀폐되어 있지 않기 때문에 오염 물질은 공기 통풍구 및 기타 개구부를 통해 자동차 오두막으로 들어갑니다.4

[Intel] 엣지 AI S/W 아카데미

어플로 공조 시스템 조절

어디서나 어플로 차량 공조 시스템 가동

차량 실내 엠비언트 라이트

미세먼지 농도 & 제습에 따라 차량 실내 조명 색깔 변경 02.

[Intel] 엣지 AI S/W 아카데미

구성도

구성도

03.

[Intel] 엣지 AI S/W 아카데미

작업과정 STM32 (WiFi)

1. 와이파이 통신

라즈베리파이에 연결하여 STM32 보드에 연결된 센서로 읽은 값들을 서버에 보내는 역할

2. 온습도 센서

온도와 습도를 측정용으로 사용 -> 기준된 value에 따른 변화 측정

3. 먼지센서

미세먼지 정도에 따라 LED 색깔로 구별

03. 작업과정

[Intel] 엣지 AI S/W 아카데미

작업과정 ARDUINO (BLUETOOTH)

1. 서버 관제 HW

SENSOR VALUE에 따른 변화를 LCD 와 BUZZER로 출력 및 알람

2. BUZZER

- Humi Value > 70 이상 시 ON 현재 습도가 높음을 관리자에게 알림

03. 작업과정

[Intel] 엣지 AI S/W 아카데미

라즈베리파이(서버)

Debug recv : [SHIN_AND]FAN@ON
Debug send : [SHIN_AND]FAN@ON
h: 32% t: 24.1'C
h: 31% t: 24.1'C

Debug recv : [SHIN_AND]FAN@OFF Debug send : [SHIN_AND]FAN@OFF h: 32% t: 24.1'C h: 32% t: 24.1'C h: 32% t: 24.1'C

1.서버 역할 및 기능

라즈베리파이는 TCP 서버로 동작하며, 다중 클라이언트의 접속을 관리하고 메시지를 주고 받는다. 클라이언트는 FAN ON/OFF 명령을 서버로 전송할 수 있다.

2. 데이터 송수신 및 처리

클라이언트로부터 받은 메시지를 수신하면 이를 분석하여 해당 FAN을 제어하는 명령을 실행한다.

03. 작업과정

[Intel] 엣지 AI S/W 아카데미

라즈베리파이(서버) DB & SERVER

#	id 🦞	name	date ▼ ₁	time V ₂	temp	humi
1	663	SHIN_STM	2025-03-04	13:53:49	24	32
2	662	SHIN_STM	2025-03-04	13:53:29	24	33
3	661	KTH_STM32	2025-03-04	13:53:27	26	30
- 4	660	SHIN_STM	2025-03-04	13:53:09	24	33
5	659	KTH_STM32	2025-03-04	13:53:07	26	32
6	658	SHIN_STM	2025-03-04	13:52:49	24	34
7	657	KTH_STM32	2025-03-04	13:52:47	26	34
.8	656	SHIN_STM	2025-03-04	13:52:29	24	35
9	655	KTH_STM32	2025-03-04	13:52:26	26	37
10	654	SHIN_STM	2025-03-04	13:52:08	24	36
11	653	KTH_STM32	2025-03-04	13:52:06	26	43
12	652	KTH_STM32	2025-03-04	13:51:47	26	26

1.센서 데이터 수집

와이파이에 연결된 DHT11 센서가 주기적으로 온도와 습도 데이터를 측정하여 데이터베이스에 저장한다.

2. 데이터 저장 구조

수집된 데이터는 id, name, date, time, temp, humi 등의 필드로 구성된 테이블에 저장되며 특정 시간에 기록된다.

3. 이벤트 발생 감지

습도가 특정 임계값 이상이 되면 "HIGH_HUMIDITY" 이벤트가 발생하며 별도의 이벤트 테이블에 event_time과 함께 기록된다.

4. 데이터 활용

실시간 모니터링, 경고 알림, 자동 팬 제어 등의 목적으로 활용될 수 있으며, 특정 조건 발생 시 즉각적인 대응이 가능하다.

[Intel] 엣지 AI S/W 아카데미

습도 ON/OFF MODE

04 **시연영상**

[Intel] 엣지 AI S/W 아카데미

미세먼지 LED

고찰 및 개선 사항

먼지 센서의 정확한 데이터 값 확보

작품의 하드웨어 구성

추가적인 충돌 감지 센서 탑재

고찰 및 개선 사항 느낀점

권 태형

먼지센서를 좀 더 분석해서 제대로 된 값을 얻지 못한 것은 아쉬었지만, 짧은 시간 내에 프로젝트를 완성하기 위해 팀원들과 업무를 분담하여 시간 내에 마무리 지은 것이 뿌듯했다.

조 우 찬

통신을 STM32와 아두이노를 통해 이제 직접 구현되는 것을 볼 수 있는 프로젝트를 만들어서 좋았습니다. 팀원과 역할 분담과 협업이 있기에 가능했으며, 임베디드 제작에 한걸음 성장할 수 있었습니다.

신 경 임

stm32를 활용하면서 어려운 점들이 많았지만 하나씩 문제해결이 되는 것에 재미를 느꼈다.혼자 해결하지 못 하는 점들을 팀원들과 합심하여 해결함에 팀워크의 중요성을 깨달았다.

감사합니다