3,0 Jewbut

UNIVERSIDADE FEDERAL DO MARANHÃO

FUNDAÇÃO Instituída nos termos da Lei nº 5.152, de 21/10/1996 - São Luís - Maranhão

CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA DEPARTAMENTO DE FÍSICA

Terceira avaliação de Eletricidade e Magnetismo – Engenharia Elétrica (11/01/2018)	
Aluno: Antonio Gabriel Sousa Borra LNO	
THE SOUSA BORRALMO	Cod. 2016048555
Observação: A escolha de sua alternativa nas questões 2, 3 e 4 só será aceita acomp	anhada da devida evaligação
· · · · · · · · · · · · · · · · · · ·	annada da devida explicação.

- 1. Explique de forma sucinta o Efeito Hall. O que é a diferença de potencial de Hall?(1,0 ponto)
- 2. Uma partícula negativamente carregada penetra em uma região onde existe um campo magnético constante. Se a velocidade da partícula ao entrar na região é perpendicular ao campo magnético, qual é a trajetória subsequente da partícula? (1,0 ponto)
- (a) A partícula descreve uma trajetória helicoidal em torno das linhas de campo magnético.
- A partícula descreve uma trajetória circular em um plano perpendicular as linhas de campo magnético.
 - (c) A partícula descreve uma trajetória retilínea na mesma direção em que estava se movendo ao entrar na região.
 - (d) A partícula descreve uma trajetória circular em um plano paralelo às linhas de campo magnético.
 - (e) Não há informações suficientes para responder.
- 3. Um dos lados da espira retangular mostrada no desenho passa pelo centro do solenoide. Quando uma corrente atravessa o solenoide, (1,0 ponto)
- (a) a força magnética faz a espira subir.
- (b) a força magnética faz a espira descer.
- (c) a força magnética desloca a espira para a direita.
- Ma força magnética desloca a espira para a esquerda.
- e a espira não é afetada pela corrente que atravessa o solenoide nem pelo campo magnético criado pela corrente

- 4. Uma casca cilíndrica de cobre possui um raio externo 2R, um raio interno R e conduz uma corrente i. O campo magnético na região limitada pela casca (1,0 ponto)
- pode ser representado por circunferências concêntricas, nas quais o campo tem o mesmo sentido que do lado de fora da casca.
- (b) pode ser representado por circunferências concêntricas, nas quais o campo magnético tem o sentido oposto ao do campo do lado de fora da casca. (c) é paralelo ao eixo da casca e aponta na mesma direção que a corrente.
- (d) é paralelo ao eixo da casca e aponta na direção oposta à da corrente.
- (e) é zero.
- 5. Considere três fíos condutores infinitos, paralelos e contidos no mesmo plano. Os dois fíos mais afastados conduzem correntes I_a e I_b e estão separados de uma distância D. Entre os dois fíos anteriores está o terceiro fio que conduz uma corrente I_c (a) Qual deve ser o sentido das correntes I_a e I_b para que o fio com a corrente I_c não sofra deflexão? (Justifique sua resposta) . (b) Calcule a posição do fio que conduz a corrente I_c em relação aos outros dois, para que a pergunta do item anterior seja verdadeira, como função das correntes e D. (c) Essa posição depende da corrente I_c ? (Justifique sua resposta) (1,5 pontos)
- 6. Um fio de comprimento infinito, forma um ângulo de 90º graus, conforme indica a figura 1, e conduz uma corrente I. Determine o módulo, a direção e o sentido do campo magnético resultante produzido pelo fio no ponto P. (1,5 pontos)
- 7. Um cilindro comprido, orientado ao longo do eixo Oz, possui uma densidade de corrente \vec{J} . A densidade de corrente, embora simétrica em relação ao eixo do cilindro, não é constante e varia de acordo com a relação: $\vec{J} = \frac{b}{r} e^{(r-a)t} \vec{k}$ para $r \le a$, e $\vec{J} = 0$ para r > a, onde a é o raio do cilindro, r é a distância radial entre o ponto considerado e o eixo do cilindro, b é uma constante e δ outra constante. (a) Seja Io a corrente total que passa através da seção reta do fio. Obtenha uma expressão para a corrente Io em termos de b, δ e a . (b) Usando a lei de Ampere, deduza uma expressão para o módulo do campo magnético na região $r \ge a$. (c) Obtenha uma expressão para o módulo do campo magnético na região

Boa	prova	 	 		
Dou prova	 	 			

Obs.: O trabalho vale até três pontos. No entanto, só vou considerar a nota do trabalho somada a da prova se o aluno retirar nota maior ou igual a 3,0 na prova.