Edwin Josué Brenes Cambronero, B51187.

Halle el dominio, los puntos críticos, los extremos locales e intervalos de crecimiento, puntos de inflexión, y analice la concavidad. Haga un bosquejo de la gráfica.

•
$$f(x) = 2 sen x + cos 2x$$
; $0 \le x \le 2\pi$

•
$$f'(x) = 2\cos x - 2\sin 2x$$

•
$$f''(x) = -2\operatorname{senx} - 4\cos 2x$$

1. Dominio de
$$f: D_f = [0,2\pi]$$

2. Puntos críticos de
$$f$$
 (si $f'(c) = 0$ o $f'(c)$ no exitse, entonces $x = c$ es un punto crítico): $x = \frac{\pi}{2}$, $x = \frac{3\pi}{2}$, $x = \frac{\pi}{6}$, $x = \frac{5\pi}{6}$

3. Extremos locales(con el criterio de la segunda derivada):

en
$$\left(\frac{\pi}{2},1\right)$$
 y $\left(\frac{3\pi}{2},-3\right)$ f alcanza mínimos relativos.

en
$$\left(\frac{\pi}{6}, \frac{3}{2}\right)$$
 y $\left(\frac{5\pi}{6}, \frac{3}{2}\right)$ f alcanza máximos relativos.

4. Intervalos de crecimiento. Para esto se analiza el signo de la primera derivada con una tabla de signos.

	0		$\frac{\pi}{6}$		$\frac{\pi}{2}$		$\frac{5\pi}{6}$		$\frac{3\pi}{2}$		2π
f'(x)	2	+	0	-	0	+	0	-	0	+	2
f(x)	1	crece	$\frac{3}{2}$	decrece	1	crece	3 2	decrece	ფ	crece	1

5. Puntos de inflexión (donde f''(x) = 0)

Al despejar la ecuación se obtiene que senx = $\frac{-1\pm\sqrt{33}}{-8}$, entonces los puntos de inflexión son los valores de x en $[0,2\pi]$ que satisfacen esa ecuación. Con ayuda de un software, determiné que

los puntos son: $x = 1.00297, x = \pi - 1.00297, x = \pi + 0.63487, x = 5.64832$

6. Resolviendo las inecuaciones correspondientes de donde la segunda derivada es positiva y negativa se obtiene que:

f es cóncava hacia arriba para $x \in [0,2\pi]$ en tal que sen $x \in \left[\frac{-1+\sqrt{33}}{-8},\frac{-1-\sqrt{33}}{-8}\right]$

f es cóncava hacia abajo para $x \in [0,2\pi]$ en tal que sen $x \in [0,2\pi]$ en tal que sen $x \in [0,2\pi]$, $-1[\cup 1,0]$, -1,0, -1

- 7. f interseca al **eje** x en $x = \pi + 0.37473$ y $x = 2\pi 0.37473$ (determiné la precisión con ayuda de un software).
- 8. f interseca al **eje** y en y = 1
- 9. La función no posee asíntotas verticales, horizontales ni oblicuas.

Grafica de la función f en $[0,2\pi]$ (termina en el punto azul)

En esta gráfica se observan los puntos de inflexión de la función f (están en color) azul y, los máximos y mínimos relativos (en negro).

Bosquejo de la función f

