Voting

MATH1210

21 February 2017

US elections

Around 138.8 millions votes were cast in November 2016.

- Hilary Clinton (D) got 65,853,516 votes (48.18%)
- Donald Trump (R) got 62,984,825 votes (46.09%)

Donald Trump was elected, with 304 electoral college votes, to Hilary Clinton's 227.

538 electors in total — you need 270 to become president

		Hillary Clinton Democratic			Donald Trump Republican		
State or district	Electoral method	# +	% \$	Electoral votes	# +	% ≑	Electoral votes
Alabama	WTA	729,547	34.36%	-	1,318,255	62.08%	9
Alaska	WTA	116,454	36.55%	-	163,387	51.28%	3
Arizona	WTA	1,161,167	45.13%	-	1,252,401	48.67%	11
Arkansas	WTA	380,494	33.65%	-	684,872	60.57%	6
California	WTA	8,753,788	61.73%	55	4,483,810	31.62%	_
Colorado	WTA	1,338,870	48.16%	9	1,202,484	43.25%	-
Connecticut	WTA	897,572	54.57%	7	673,215	40.93%	_
Delaware	WTA	235,603	53.18%	3	185,127	41.79%	_
District of Columbia	WTA	282,830	90.48%	3	12,723	4.07%	-

		Clinton		Trump		Votes needed
California	55	8,753,788	61.73%	4,483,810	31.62%	6,618,799
<u>Texas</u>	38	3,877,868	43.24%	4,685,047	52.23%	4,281,458
<u>Florida</u>	29	4,504,975	47.82%	4,617,886	49.02%	4,561,431
New York	29	4,547,562	58.40%	2,814,589	36.15%	3,681,076
<u>Illinois</u>	20	3,090,729	55.83%	2,146,015	38.76%	2,618,372
<u>Pennsylvania</u>	20	2,926,441	47.85%	2,970,733	48.58%	2,948,587
<u>Ohio</u>	18	2,394,164	43.56%	2,841,005	51.69%	2,617,585
Georgia	16	1,877,963	45.64%	2,089,104	50.77%	1,983,534
Michigan	16	2,268,839	47.27%	2,279,543	47.50%	2,274,191
North Carolina	15	2,189,316	46.17%	2,362,631	49.83%	2,275,974
New Jersey	14	2,148,278	54.99%	1,601,933	41.00%	1,875,106
	270					35,736,110
Could win with	25.74648	percent of	the popula	r vote!		

	Clinton	Trump		Votes needed	
California	55 8.753.78		31.62%		
Texas	38 3.877.86	, ,	52.23%	-,,	
Florida	29 4,504,97	5 47.82% 4,617,886	49.02%	4,561,431	
New York	29 4,547,56	2 58.40% 2,814,589	36.15%	3,681,076	
Illinois	20 3,090,72	9 55.83% 2,146,015	38.76%	2,618,372	
Pennsylvania	20 2,926,44	1 47.85% 2,970,733	48.58%	2,948,587	
Ohio	18 2,394,16	4 43.56% 2,841,005	51.69%	2,617,585	
Georgia	16 1,877,96	3 45.64% 2,089,104	50.77%	1,983,534	
Michigan	16 2,268,83	9 47.27% 2,279,543	47.50%	2,274,191	
North Carolina	15 2,189,31	6 46.17% 2,362,631	49.83%	2,275,974	
New Jersey	14 2,148,27	3 54.99% 1,601,933	41.00%	1,875,106	
	270			35,736,110	
Could win with	25.74648 percent of	74648 percent of the popular vote!			

"The United States is the only country that elects a politically powerful president via an electoral college and the only one in which a candidate can become president without having obtained the highest number of votes in the sole or final round of popular voting." – George C. Edwards, 2011'

A toy election

We have 3 magnificent candidates. They will tell you in one sentence why they should win. Now rank the three candidates in one of the six possible orders:

A, B, C

A, C, B

B, A, C

B, C, A

C, A, B

C, B, A

Who should win?

- First-past-the-post (plurality)
 - candidate with most votes wins

- First-past-the-post (plurality)
 - candidate with most votes wins
- Single transferable vote
 - candidates ranked in order of preference
 - candidate with fewest first choices eliminated
 - transfer votes of eliminated to next choice; continue

- First-past-the-post (plurality)
 - candidate with most votes wins
- Single transferable vote
 - candidates ranked in order of preference
 - candidate with fewest first choices eliminated
 - transfer votes of eliminated to next choice; continue
- Borda count
 - lacksquare n candidates ranked in order of preference
 - lacksquare n points for first, n-1 for second, ..., 1 point for last
 - most points wins

- First-past-the-post (plurality)
 - candidate with most votes wins
- Single transferable vote
 - candidates ranked in order of preference
 - candidate with fewest first choices eliminated
 - transfer votes of eliminated to next choice; continue
- Borda count
 - lacksquare n candidates ranked in order of preference
 - lacksquare n points for first, n-1 for second, ..., 1 point for last
 - most points wins
- Condorcet
 - winner is one who beats all others in head-to-heads

Suppose there are 30 voters, choosing between candidates $A,\,B$ and C. They vote:

12: A, B, C

10: *C*, *B*, *A*

8: B, C, A

■ FPTP: A wins, with 12 votes. But $\frac{18}{30} = 60\%$ wanted A least of all!

Suppose there are 30 voters, choosing between candidates $A,\,B$ and C. They vote:

12: A, B, C

10: C, B, A

8: B, C, A

- FPTP: A wins, with 12 votes. But $\frac{18}{30} = 60\%$ wanted A least of all!
- STV: B is eliminated. Then A has 12, and C gains B's votes, so has 18. C wins! But $\frac{20}{30} = 66\%$ preferred B to C.

Suppose there are 30 voters, choosing between candidates $A,\,B$ and C. They vote:

12: A, B, C

10: C, B, A

8: B, C, A

- FPTP: A wins, with 12 votes. But $\frac{18}{30} = 60\%$ wanted A least of all!
- STV: B is eliminated. Then A has 12, and C gains B's votes, so has 18. C wins! But $\frac{20}{30} = 66\%$ preferred B to C.
- Borda: A has $12 \times 3 + 10 \times 1 + 8 \times 1 = 54$ B has $12 \times 2 + 1 \times 2 + 8 \times 3 = 68$ C has $12 \times 1 + 10 \times 3 + 8 \times 2 = 58$ so B wins! But only $\frac{8}{30} = 27\%$ voted B top.

Suppose there are 30 voters, choosing between candidates $A,\,B$ and C. They vote:

12: A, B, C

10: C, B, A

8: B, C, A

- FPTP: A wins, with 12 votes. But $\frac{18}{30} = 60\%$ wanted A least of all!
- STV: B is eliminated. Then A has 12, and C gains B's votes, so has 18. C wins! But $\frac{20}{30} = 66\%$ preferred B to C.
- Borda: A has $12 \times 3 + 10 \times 1 + 8 \times 1 = 54$ B has $12 \times 2 + 1 \times 2 + 8 \times 3 = 68$ C has $12 \times 1 + 10 \times 3 + 8 \times 2 = 58$ so B wins! But only $\frac{8}{30} = 27\%$ voted B top.
- Condorcet: Ignore C: $AvB \rightarrow A = 12, B = 18$ Ignore A: $BvC \rightarrow B = 20, B = 10$ Ignore B: $AvC \rightarrow A = 12, C = 18$ So B wins!

Arrow's theorem

These apparent contradictions are actually quite typical.

Arrow's theorem

These apparent contradictions are actually quite typical. A reasonable system in which voters rank all candidates would require:

- 1 No dictators: no single person should determine the outcome
- 2 Unanimity: if everyone prefers A to B, then the outcome should rank A above B
- 3 Independence of Irrelevant Alternatives: outcome's relative ranking of A and B shouldn't change if voters change ranking of other candidates, but not A and B.

Arrow's theorem

These apparent contradictions are actually quite typical. A reasonable system in which voters rank all candidates would require:

- 1 No dictators: no single person should determine the outcome
- 2 Unanimity: if everyone prefers A to B, then the outcome should rank A above B
- Independence of Irrelevant Alternatives: outcome's relative ranking of A and B shouldn't change if voters change ranking of other candidates, but not A and B.

Theorem (Arrow's Impossibility Theorem)

If there are three or more candidates, there is no voting system that satisfies these requirements.

 \implies 1972 Nobel for Economics.

Problems — FPTP 1

Problems — FPTP 1

Problems — FPTP 2

Splitting the vote

Suppose we have 3 candidates. Two, A and B, are moderates and share many common values, and the third C is an extremist who alienates supporters of the other two.

Suppose votes are cast as:

30% : *A* 30% : *B* 40% : *C*

Then C wins, in spite of the fact that over half the voters hate this choice. Should A and B have joined forces? Should they have had to?

Problems — Condorcet 1

Suppose 30 voters, choosing between A, B and C.

10: A, B, C

10: *B*, *C*, *A*

10: *C*, *A*, *B*

Then in AvB we have A=20, B=10. In BvC we have B=20, C=10, and in AvC we have A=10, C=20. We have no winner!

Problems — Condorcet 2

Suppose there are 3 candidates: A is strongly liberal, C is strongly conservative, and B is moderate. The electorate are very polarised, and 45% support A, and 45% support C. We will likely have votes:

45: A, B, C

10: B, A, C or B, C, A

45: C, B, A

Then B will win the Condorcet vote by virtue of the second places. (It makes no difference which order the B supporters put A and C.) Condorcet favours moderates, but when the electorate clearly favours soemthing away from the centre, should the centrist win? Here the existence of B gives both A and C a zero chance of winning!

Very susceptible to tactical voting. Suppose we have 5 voters, voting for $A,\,B,\,C$, who vote

3: *A*, *B*, *C*

 $2:\ B,\ C,\ A$

Then B wins.

Very susceptible to tactical voting. Suppose we have 5 voters, voting for $A,\,B,\,C$, who vote

3: A, B, C

2: *B*, *C*, *A*

Then B wins.

But if A voters recognise the danger, and change to

3: A, C, B

2: B, C, A

then A wins. Does this disenfranchise B's supporters?

Suppose we have 7 voters, voting for A, B, C, who vote

3: *C*, *B*, *A*

2: *A*, *C*, *B*

2: *B*, *A*, *C*

Then C wins (with B second and A last).

Suppose we have 7 voters, voting for A, B, C, who vote

- 3: C, B, A
- 2: A, C, B
- 2: B, A, C

Then C wins (with B second and A last).

But if new candidate X enters the race, and we have

- 3: C, B, A, X
- 2: A, X, C, B
- 2: B, A, X, C

then even though X was useless and came last, now A wins, with B second and C third. So the entrance of a hopeless candidate reversed the result.

Suppose there are 21 voters, voting for A, B, C, D, who rank:

7: A, B, C, D

6: B, A, C, D

5: *C*, *B*, *A*, *D*

3: *D*, *C*, *B*, *A*

A wins.

Suppose there are 21 voters, voting for A, B, C, D, who rank:

7: A, B, C, D

6: B, A, C, D

5: C, B, A, D

3: *D*, *C*, *B*, *A*

A wins.

But now suppose the three voters who favoured D change their mind and opt for A (nothing else changes):

7: A, B, C, D

6: *B*, *A*, *C*, *D*

5: C, B, A, D

3: A, D, C, B

Now B wins! So A has lost out by attracting more votes. Should A stop canvassing in some areas?

Suppose there are 26 voters, voting for A, B, C, who rank:

9: A, B, C

8: B, C, A

9: C, B, A

 ${\cal C}$ wins.

Suppose there are 26 voters, voting for A, B, C, who rank:

- 9: A, B, C
- 8: B, C, A
- 9: C, B, A

C wins.

But now suppose we split the constituency into two parts, who vote:

- 6: A, B, C
- 4: B, C, A
- 3: *C*, *B*, *A*
- B wins! and
- 3: *A*, *B*, *C*
- 4: B, C, A
- 6: C, B, A
- B wins! So by dividing up the voters, we change the winner.

Gerrymandering

Gerrymandering in US elections

Current congressional district map

Computer-drawn map to optimize compactness

The Prisoner's dilemma

Two prisoners, A and B are being questioned about a serious crime.

- If both stay silent, both will get convicted of a lesser crime (1 year in jail).
- If A blames B, and B remains silent, A will be rewarded by being set free, and B will be jailed for 3 years (and vice versa).
- If both blame each other, both get 2 years.

The Prisoner's dilemma

Two prisoners, A and B are being questioned about a serious crime.

- If both stay silent, both will get convicted of a lesser crime (1 year in jail).
- If A blames B, and B remains silent, A will be rewarded by being set free, and B will be jailed for 3 years (and vice versa).
- If both blame each other, both get 2 years.

	B says nothing	B blames A		
A says nothing	$A \ \& \ B$ both get 1 year	A gets 3 years; B is free		
A blames B	A is free; B gets 3 years	A & B both get 2 years		

"Mutual cooperation is better than mutual defection but is not rational"

The Prisoner's dilemma in the EU referendum

Basic principle of the Prisoner's dilemma:

- Everyone has a choice of C or D
- It's better for everyone if everyone chooses C
- Every individual gains by switching from C to D if nobody else switches

What does this have to do with the EU referendum?