评分卡

2022-01-14

1. 原理

- 1. 1. WOE
- 1. 2. IV
- 1. 3. Logistics
- 1. 4. A和B估计
- 1.5. 建模过程
- 2. 评分卡
- 3. 参考文档

1. 原理

1.1. WOE

假设违约客户为正样本(bad),其标签为1,正常客户为负样本(good),其标签为0。则WOE(Weight of Evidence)的定义为:

$$WOE_i = \ln\left(rac{P_{y1}}{P_{y0}}
ight) = \ln\left(rac{B_i/B_{total}}{G_i/G_{total}}
ight)$$

其中, i 表示某特征的第 i 个分组 (9)

 B_i 表示该分组中bad样本数量, G_i 表示good样本数量 B_{total} 表示bad样本总数量, G_{total} 表示good样本总数量

以Age特征为例:

Age	bad	good	WOE
0-10	50	200	$=\lnrac{50/100}{200/1000}=0.92$
10-18	20	200	$= \ln \frac{20/100}{200/1000} = 0.0$
18-35	5	200	$= \ln \frac{5/100}{200/1000} = -1.39$
35-50	15	200	$=\lnrac{15/100}{200/1000}=-1.39$
50以上	10	200	$= \ln \frac{\frac{10/100}{200/1000}}{= -0.69}$
汇总	100	1000	

1.2. IV

IV相当于WOE的加权平均,公式如下:

$$IV_{i} = \left(\frac{B_{i}}{B_{total}} - \frac{G_{i}}{G_{total}}\right) * \ln\left(\frac{B_{i}/B_{total}}{G_{i}/G_{total}}\right)$$

$$IV = \sum_{k=0}^{n} IV_{i}$$
(10)

其中, n为分组个数

以Age为例, IV为:

$$(0.5-0.2)*0.92+(0.2-0.2)*0+(0.05-0.2)*(-1.39)+(0.15-0.2)*(-1.39)+(0.1-0.2)*(-0.69)=0.623$$

1.3. Logistics

假设违约客户为正样本,其标签为1,概率为p,正常客户为负样本,其标签为0,概率为1-p。

令正样本概率为:

$$p = \frac{1}{1 + e^{-(\theta^T X + b)}} \tag{11}$$

定义正负样本概率的比值为odds:

$$odds = \frac{p}{1-p} \tag{12}$$

因此, 正样本 (违约) 的概率越大, odds越大。

对个人信用评分卡,我们希望违约的概率越大,其分数越低。那么,可使用下式计算Score:

$$Score = A - B \cdot \ln (odds)$$

 $= A - B \cdot (\theta^T X + b)$
其中, $A \pi B$ 为常数 (13)

一般情况下,我们将连续值进行离散化,然后转为WOE作为特征值,使用Logistics进行建模。得到其系数后,便可进行分数的计算。

1.4. A和B估计

对评分卡的计算公式:

$$Score = A - B \cdot \ln\left(odds\right) \tag{14}$$

对于参数A和B, 可基于以下两个假设进行计算:

- 1. 某个特定的违约概率下的预期分值
- 2. 指定的违约概率翻倍的分数 (PDO)

假设,当对数几率为 $\frac{1}{60}$ 时,设定的特定分数为600,PDO=200,那么对数几率为 $\frac{1}{30}$ 时的分数是620。带入公式得:

$$600 = A - B * \log\left(\frac{1}{60}\right)$$

$$620 = A - B * \log\left(\frac{1}{30}\right)$$

$$(15)$$

解得, A=522, B=29

1.5. 建模过程

1. 特征分箱

对特征进行分箱处理

2. 特征选择

选择 $IV \geq 0.1$ 的特征

3. Logistics模型建立

将特征值根据分箱结果转为对应的WOE,然后将WOE作为训练数据进行建模

4. 预测数据-Score计算

$$Score = A - B \cdot (\theta^T X + b)$$

其中, $A \cap B$ 为常数, $\theta \cap b$ 为模型参数, X 为特征对应的 WOE (16)

2. 评分卡

评分卡:

left_interval right_interval woe score

feature					
30-59	0	0.00	0.00	-0.48	14.0
	1	1.00	1.00	0.91	-27.0
	2	2.00	3.00	1.71	-51.0
	3	4.00	5.00	2.35	-70.0
	4	6.00	13.00	2.65	-79.0
60-89	0	0.00	0.00	-0.25	8.0
	1	1.00	1.00	1.85	-62.0
	2	2.00	3.00	2.72	-91.0
	3	4.00	11.00	3.11	-104.0
>=90	0	0.00	0.00	-0.35	18.0
	1	1.00	1.00	1.99	-102.0
	2	2.00	3.00	2.82	-144.0
	3	4.00	5.00	3.25	-166.0
	4	6.00	17.00	3.10	-159.0
age	0	21.00	35.00	-0.54	-8.0
	1	36.00	42.00	-0.30	-4.0
	2	43.00	47.00	-0.25	-4.0
	3	48.00	52.00	-0.17	-3.0
	4	53.00	57.00	0.00	0.0
	5	58.00	63.00	0.38	6.0
	6	64.00	70.00	0.86	13.0
	7	71.00	99.00	1.08	16.0
percentage	0	0.00	0.03	1.20	23.0
	1	0.03	0.14	1.16	22.0
	2	0.14	0.51	0.26	5.0
	3	0.51	1.00	-1.05	-20.0

计算示例:

3. 参考文档

- 1. <u>信用卡评分模型(A卡) 知乎 (zhihu.com)</u>
- 2. <u>AI智能风控(二) ——风控评分卡全流程建模看这篇就够了 知乎 (zhihu.com)</u>
- 3. 《SAS开发经典案例解析》 (杨驰然)