·

Längsdynamikmodell

Parameter

Fahrzeugmasse: m=1600 kg
Trägheitsmoment Rad: Jr=10 kg m^2
Trägheitsmoment Motor: Jmot=10kg m^2
Radradius: rRad= 0.4 m

CW-Wert: cw=0.3 Fahrzeugfläche: A= 2 m^2

Luftdichte: rho= 1.2 kg/m^3 Erdbeschleunigung: g=9.81 m/s^2

Maximaler Steigungswinkel: betamax für 10 % Steigung Grad

Rollwiderstandsparameter

fr0=0.9*10^-2 fr1=0.15*10^-2 fr4=0.12*10^-2

Drehmoment			DK-	Winkel			
		0	10	20	30	50	90
	600	60	100	101	102	103	105
	1000	50	90	110	120	122	124
Drehzahl	2000	0	50	125	140	160	170
	3000	0	30	100	150	166	175
	4000	0	0	60	135	170	175
	5000	0	0	40	120	165	180
	6000	0	0	0	85	148	175

Gang	1	2	3	4	5
Geschwindigkeit	0-20	20-40	40-75	75-100	>100
Übersetzung i	3.91	2.71	1.57	1	0.89

Achsübersetzung: 4

Formeln:

Gesamtwiderstandskraft:

$$F_{ges} = F_{Ro} + F_L + F_{St}$$

 F_{ges} ... Gesamtwiderstandskraft

 F_{Ro} ... Rollreibungskraft

 F_L ... Luftwiderstandskraft

 F_{St} ... Steigungswiderstand

Steigungswiderstand

$$F_{St} = F_g \cdot \sin \beta$$
$$= m \cdot g \cdot \sin \beta$$

Rollwiderstand

$$\begin{split} F_R &= F_N \cdot f_R \\ f_R &= f_{R0} + f_{R1} \Biggl(\frac{v}{100 \frac{km}{h}} \Biggr) + f_{R4} \Biggl(\frac{v}{100 \frac{km}{h}} \Biggr)^4 \\ f_{R0} &= 0.9 \cdot 10^{-2} \\ f_{R1} &= 0.15 \cdot 10^{-2} \\ f_{R4} &= 0.12 \cdot 10^{-2} \end{split}$$

Luftwiderstand

$$F_L = \frac{1}{2} \cdot \rho \cdot c_w \cdot A \cdot (v + v_w)^2$$

 ρ ... Luftdichte (bei 200m 1,202kg/m³

A ... Projektionsfläche Fahrzeug

v ... Fahrzeuggeschwindigkeit

v... ... Luftgeschwindigkeit gegen die Fahrtrichtung

Antriebskraft

$$F_{an} = \frac{M_{Mot}}{r} \cdot i$$

r ... Radradius

Getriebeübersetzung

Aus:

$$M_2\omega_2 = M_1 \cdot \omega_1$$

folgt:

$$M_2 = M_1 \cdot \frac{\omega_1}{w_2}$$

$$mit i = \frac{\omega_1}{\omega_2}$$

$$\Rightarrow M_2 = M_1 \cdot i$$

$$\Rightarrow \omega_2 = 1/i \cdot \omega_1$$

Da:

$$F = F \cdot r$$

folgt:

$$F_2 = \frac{M_1}{r} \cdot i$$

Längsdynamik

$$m \cdot x = F_{an} - F_{St} - F_L - F_{Ro} - F_{Bremse}$$

Aufgaben:

Stellen Sie ein Modell folgender Größen dar, übertragen Sie das Modell in Simulink und stellen Sie folgende Größen in Simulink dar:

- Zugkraft in Abhängigkeit der Motordrehzahl
- Radwiderstandskraft in Abhängigkeit der Fahrgeschwindigkeit
- Luftwiderstandskraft in Abhängigkeit der Fahrgeschwindigkeit
- > Getriebemodell -> Gang in Abhängigkeit der aktuellen Geschwindigkeit
- Modell zur Berechnung der Motordrehzahl in Abhängigkeit der Fahrgeschwindigkeit
- > Fügen Sie die Teilmodelle zu einem Längsdynamikmodell zusammen
- Modularisieren Sie die einzelnen Effekte (Luftwiderstand, Rollwiderstand, Getriebe, Antrieb, ...) mit Hilfe der Funktion: "Create Subsystem"

Bremsenmodell

Formeln:

$$J_R \cdot \frac{d\omega}{dt} = F_R \cdot r_{dyn} - M_B$$

Bremsschlupf:

$$s = \frac{v - \boldsymbol{\omega} \cdot r}{v}$$

Bremskraft am Rad:

$$F_R=f(s,F_N)$$

Reifenkennfeld:

S	μ
0	0
0.05	0.5
0.1	0.8
0.2	0.6
1	0.5

Aufgabe:

- > Erstellen Sie ein Modell unter ML/SL für die Vorgänge am nicht angetriebenen Rad
- > Simulieren Sie den Verlauf der Fahrzeuggeschwindigkeit und den Verlauf des Schlupfs bei unterschiedlichen Bremsmomenten
- > Erläutern Sie das Ergebnis