基于"XXX"的低碳建筑研究

摘要

关键词

1 问题重述

1.1 问题背景

"双碳"即碳达峰与碳中和的简称,我国力争 2030 年前实现碳达峰, 2060 年前实现碳中和。"双碳"战略倡导绿色、环保、低碳的生活方式。我 国加快降低碳排放步伐,大力推进绿色低碳科技创新,以提高产业和经济 的全球竞争力。低碳建筑是指在建筑材料与设备制造、施工建造和建筑物 使用的整个生命周期内,减少化石能源的使用,提高能效,降低二氧化碳排 放量。

1.2 目标任务

问题一: 计算给定建筑通过空调调节温度的年碳排放量。

问题二:建立综合评价模型,找出易于量化的指标,评估居住建筑整个生命周期的碳排放。

问题三:基于问题二,考虑建筑生命周期三个阶段的碳排放问题,对江苏省13个地级市的居住建筑进行评价,验证模型的有效性。

问题四:建立碳排放预测模型,基于江苏省建筑全过程碳排放的历史数据,对 2023 年江苏省建筑全过程的碳排放量进行预测。

问题五:结合前面的讨论给出江苏省建筑碳减排的政策建议。

问题分析 2

2.1问题一

问题一要求计算通过空题调节温度产生的年碳排放量。我们需先求出 空调制热和制冷的热量,借此通过 COP 和 EER 求出空调消耗的电量,最 后转换成碳排放。其中 COP 和 EER 的定义分别为

$$COP = \frac{Q_{heat}}{W}, \qquad EER = \frac{Q_{cold}}{W}$$
 (2.1)

 Q_{heat}/Q_{cold} 指的是单位时间内的制热/制冷量,单位为 J,公式中 W 指的 是单位为时间内空调消耗的功率,单位为W

首先计算出建筑物各个月的能量需求量。设室内温度要维持的温度为 t_{in} , 室外温度为 t_{out} , 当月该地区平均温度为 t_{ave} , 方便起见, 我们规定

$$t_{in} = \begin{cases} 18^{\circ}C & t_{out} < 18^{\circ}C \\ t_{out} & t_{out} \in [18^{\circ}C, 26^{\circ}C] \\ 26^{\circ}C & t_{out} > 26^{\circ}C \end{cases}$$

我们使用热传导方程计算用来需要制热/制冷的热量,其形式为

$$\Phi = \frac{\lambda \cdot A \cdot |\Delta T|}{\delta} \tag{2.2}$$

其中 Φ 表示传热速率, λ 为导热系数,A 为传热面积, ΔT 是室内外温度 差,即 $t_{in}-t_{out}$, δ 表示材料厚度。

将建筑分成墙、门窗、房顶、地面四个部分,分别计算并累加即可得到 需要制热/制冷的热量,设为 Q_{make} ,由COP和EER的定义可得到需电量 Q_{elec} 和热量 Q_{make} 的转化关系

$$Q_{elec} = \begin{cases} \frac{Q_{make}}{EER} & \Delta t < 0\\ 0 & \Delta t = 0\\ \frac{Q_{make}}{COP} & \Delta t > 0 \end{cases}$$
 (2.3)

最后根据需电量与碳排放的换算关系 $m = Q_{elec} \cdot 0.28$ 求出每月碳排放 后累加,即得到年度碳排放量。

- 3 模型假设
- 4 符号说明

5 模型的建立与求解

- 5.1 问题一的模型建立与求解
- 5.2 问题二的模型建立与求解
- 5.2.1 建立层次结构模型

图 1: 层次分析法框架

准则层中准则因素之间相互独立。

我们选择的准则因素有:生活使用能耗、地区差异、周边产业、建造与拆除能耗、生产运输。

5.2.2 构建成对比较矩阵及归一化

1. 构建比较矩阵

构造比较矩阵是通过比较同一层次上的各因素对上-层相关因素的影响作用. 而不是把所有因素放在一起比较,即将同一层的各因素进行两两对比。设某层有 n 个因素, $x = \{x_1, x_2 ... x_n\}$ 要比较它们对上一层某一准则 (或目标) 的影响程度,确定在该层中相对于某一准则所

占的比重。上述比较是两两因素之间进行的比较,比较时常取 1 9 尺度。

尺度	含义
1	第 i 个因素与第 j 个因素影响相同
3	第 i 个因素与第 j 个因素影响稍强
5	第 i 个因素与第 j 个因素影响较强
7	第i个因素与第j个因素影响明显强
9	第i个因素与第j个因素影响极端强
2, 4, 6, 8	两相邻判断的中间值

用 a_{ij} 表示第 i 个因素相对于第 j 个因素的比较结果,则

$$a_{ij} = \frac{1}{a_{ji}}$$

$$A = (a_{ij})_{n \times n} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$
(5.1)

A 则称为成对比较矩阵。

2. 归一化

对各城市的数据进行归一化处理

数据 城市 指标	苏州	南京	南通	无锡	常州
直接	48	51.5	27	57.2	29
间接	126.3	134.3	118.7	97.8	71.6
运营	4.8	4.9	3.5	2.7	2.8
	0.226	0.242	0.127	0.269	0.126
归一化比例	0.230	0.245	0.216	0.178	0.130
	0.257	0.262	0.187	0.144	0.150

5.2.3 层次单排序及一致性检验

1. 层次单排序

和积法 (算术平均法): 取判断矩阵 n 个列向量归一化后的算术平均值,近似作为权重,即

$$W_i = \frac{1}{n} \sum_{j=1}^n \frac{a_{ij}}{\sum_{k=1}^n a_{kj}} (i = 1, 2, \dots, n)$$
 (5.2)

求根法(几何平均法): 将比较矩阵的各列(或行)向量求几何平均后 归一化,可近似作权重,即

$$W_{i} = \sum_{j=1}^{n} \frac{(\prod_{j=1}^{n} a_{ij})_{\frac{1}{n}}}{\sum_{k=1}^{n} (\prod_{j=1}^{n})_{\frac{1}{n}}} (i = 1, 2, \dots, n)$$
 (5.3)

特征值法:求出矩阵的最大特征值以及其对应的特征向量,对求出的特征向量进行归一化即可得到我们的权重。

在我们的模型中综合采用了三种方法得到权重,降低了单一方法带来的不确定性,使数据结果更加可靠。

2. 一致性检验

通常情况下,由实际得到的判断矩阵不一定是一致的,即不一定满足

传递性和一致性实际中,也不必要求一致性绝对成立,但要求大体上是一致的,即不一致的程度应在容许的范围内主要考查以下指标:

(a) 一致性指标 CI

$$CI = \frac{\lambda_{\text{max}} - n}{n - 1} \tag{5.4}$$

(b) 平均随机一致性指标 RI

为衡量 CI 的大小,引入随机一致性指标 RI:

$$RI = \frac{CI_1 + CI_2 + \dots + CI_n}{n} \tag{5.5}$$

其中,随机一致性指标 *RI* 和判断矩阵的阶数有关,一般情况下, 矩阵阶数越大,则出现一致性随机偏离的可能性也越大,对于阶 数小于 9,其对应关系如图:

									9
RI	0	0	0.58	0.90	1.12	1.24	1.32	1.41	1.45

(c) 检验系数 CR

考虑到一致性的偏离有可能是由于随机原因造成的,因此在检验判断矩阵是否具有满意的一致性时,还需将 CI 和 RI 进行比较,得出检验系数 CR,公式如下:

$$CR = \frac{CI}{RI} \tag{5.6}$$

一般地,如果 $CR \leq 0.1$,则认为该判断矩阵通过一致性检验, A_{max} 对应的特征向量 W 可以作为排序的权重向量,此时

$$\lambda_{\text{max}} \approx \sum_{i=1}^{n} \frac{(A \cdot W)_i}{nw_i} = \frac{1}{n} \sum_{i=1}^{n} \frac{\sum_{j=1}^{n} a_{ij} w_j}{w_i}$$
 (5.7)

否则就不具有满意一致性, 需要调整对比较矩阵。

5.2.4 计算组合权重及得分

得到最大特征值对应的特征向量

$$T = \begin{bmatrix} t_1 & t_2 & \cdots & t_n \end{bmatrix}$$

计算得到权重向量

$$W = \begin{bmatrix} w_1 & w_2 & \cdots & w_n \end{bmatrix}$$
$$w_i = \frac{t_i}{\sum_{i=1}^n t_i}$$

随后分别通过公式 (5.2) 和公式 (5.3) 求得两个权重向量,最后将三个权重向量取算术平均作为最终的权重向量。设指标评分矩阵为 P,那么最后的得分矩阵 S 为:

$$S = P \cdot W$$

- 6 结果检验与误差分析
 - 7 模型评价
 - 8 模型推广与改进
 - 9 参考文献

10 附录

附录 A 问题一

Listing 1: Question1

```
import matplotlib.pyplot as plt
 2
    monthdays = [31, 28, 31, 30, 31, 30, 31, 30, 31, 30, 31]
 3
    temperatures = [-1, 2, 6, 12, 22, 28, 31, 32, 26, 23, 15, 2]
 4
 5
 6
    COP = 3.5
 7
    EER = 2.7
 8
 9
    length = 4
10
    width = 3
11
    height = 3
12
13
    roof_thickness = 0.3
14
    roof\_thermal = 0.2
15
    roof_square = length * width
16
    windowAndDoor_thickness = 0.1
17
    windowAndDoor_thermal = 1.6
18
    windowAndDoor_square = 5
19
    wall_thickness = 0.3
20
    wall_thermal = 0.3
21
    wall_square = (length + width) * height * 2 - windowAndDoor_square
22
    ground_thickness = 1.0
23
    ground_thermal = 0.25
24
    ground_square = length * width
25
26
27
    def get_delta_t(tout):
28
        if tout < 18:
29
            return 18 - tout
30
        elif tout > 26:
31
            return 26 - tout
32
        else:
33
            return 0
34
35
36 def get_qmake(k, a, t, d):
```

```
37
        return (k * a * t) / d
38
39
40
    def get_day_qmake(dt):
        if dt == 0:
41
            return 0.0
42
43
44
        day_qmake = \
            get_qmake(wall_thermal, wall_square, dt, wall_thickness) + \
45
            get_qmake(windowAndDoor_thermal, windowAndDoor_square, dt,
46
                 windowAndDoor_thickness) + \
47
            get_qmake(roof_thermal, roof_square, dt, roof_thickness) + \
48
            get_qmake(ground_thermal, ground_square, dt, ground_thickness)
        return day_qmake * 86400
49
50
51
52
    def get_month_qmake(month):
        return get_day_qmake( abs(get_delta_t(temperatures[month]))) * monthdays[month]
53
54
55
56
    def get_qelec(qmake, dt):
        if dt < 0:
57
58
            return qmake / EER
59
        elif dt == 0:
60
            return 0
61
        else:
62
            return qmake / COP
63
64
65
    def get_carbon_emission(qelec):
        return (qelec / 3600000) * 0.28
66
67
68
69
    carbonEmissions = []
70
    for i in range(0, 12):
        qelec = get_qelec(get_month_qmake(i), get_delta_t(temperatures[i]))
71
72
        carbonEmissions.append(get_carbon_emission(qelec))
73
74
    print("Sum of carbon emissions: " + str( sum(carbonEmissions)) + "kg")
75
76
   plt.figure(figsize=(10, 6))
   plt.bar( range(1, len(carbonEmissions) + 1), carbonEmissions, fc='g')
```

```
plt.title("Carbon Emissions")
plt.xlabel("Month")
plt.ylabel("kg")

plt.show()
```

附录 B 问题二

Listing 2: Question2

```
import numpy as np
 2
    import matplotlib.pyplot as plt
 3
 5
    cities = ["SuZhou", "NanJing", "NanTong", "WuXi", "ChangZhou"]
 6
 7
    discriminantMatrix = np.array([[1, 1/5, 1/5], [5, 1, 1/2], [5, 2, 1]])
 8
    eigens = np.linalg.eig(discriminantMatrix)
    maxEigenvalue = np. max(eigens[0])
10
    rowAndColumn = np.argwhere(eigens[0] == maxEigenvalue)
    maxEigenvector = eigens[1][::-1, rowAndColumn[0]]
11
12
13
   RI_LIST = [0, 0.001, 0.58, 0.9, 1.12, 1.24, 1.32, 1.41, 1.45, 1.49, 1.52, 1.54, 1.56,
        1.58, 1.59]
   dim = discriminantMatrix.shape[0]
14
15
   RI = RI_LIST[dim]
    CI = (maxEigenvalue - dim) / (dim - 1)
16
17
    CR = CI / RI
    print("CR: " + str(CR))
18
19
    print("Passed consistency test") if CR < 0.1 else print("Failed to passed consistency
        test")
20
21
    Scores = np.array([[48.0, 126.3, 4.8],
                       [51.5, 134.3, 4.9],
22
23
                       [27, 118.7, 3.5],
                       [57.2, 97.8, 2.7],
24
25
                       [29, 71.6, 2.8]])
26
27
    sums = np. sum(Scores, axis=0)
    weightedScores = Scores / sums.reshape(1, -1)
28
29
```

```
# Eigenvalue average
    eigenvectorWeight = maxEigenvector / sum(maxEigenvector)
31
32
33
    # Arithmatic average
    arithmaticSums = np. sum(discriminantMatrix, axis=0)
34
35
    normalizedMatrix = discriminantMatrix / arithmaticSums.reshape(1, -1)
    arithmaticWeight = np. sum(normalizedMatrix, axis=1)
36
37
    arithmaticWeight /= dim
    arithmaticWeight = arithmaticWeight[-1::-1]
38
39
40
    # Geometric average
41
    prodVector = np.prod(discriminantMatrix, axis=1)
42
    prodVector = np.power(prodVector, 1/dim)
    prodSums = np. sum(prodVector, axis=0)
43
44
    geometricWeight = prodVector / prodSums
45
    geometricWeight = geometricWeight[-1::-1]
46
    weight = (arithmaticWeight + geometricWeight) / 2
47
48
49
    finalScores = np.dot(weightedScores, weight)
50
    for i in range( len(finalScores)):
        print('City {:}, Scores {:}'. format(cities[i], finalScores[i]))
51
52
53
    plt.figure(figsize=(10, 6))
54
   x = [1, 2, 3, 4, 5]
55
    x_label = cities
56
   plt.bar(x, finalScores, fc='g')
    plt.title("Scores given by evaluation model")
57
58
   plt.xticks(x, x_label)
59
    plt.xlabel("City")
60
   plt.ylabel("Evaluation score")
61
62
   plt.show()
```

附录 C 问题三

附录 D 问题四

附录 E 问题五