

(43) 国際公開日 2006年4月6日(06.04.2006)

(10) 国際公開番号 WO 2006/036032 A1

(51)	国際特許分類:	
	G02B 3/06 (2006.01)	G02B 3/02 (2006.01)
	F21S 2/00 (2006.01)	G02B 5/02 (2006.01)
	F21V 5/04 (2006.01)	G02F 1/13357 (2006.01)
	G02B 3/00 (2006.01)	F21Y 103/00 (2006.01)

- (21) 国際出願番号: PCT/JP2005/018588
- (22) 国際出願日: 2005年9月30日(30,09,2005) (25) 国際出願の言語: 日本語
- 日本語 (26) 国際公開の言語: (30) 優先権データ:
- 特願2004-288518 2004年9月30日(30.09.2004) JP (71) 出願人(米国を除く全ての指定国について): ソニー 株式会社 (SONY CORPORATION) [JP/JP]; 〒1410001 東京都品川区北品川6丁目7番35号 Tokyo (JP).
- (72) 発明者: および (75) 発明者/出願人(米国についてのみ): 有馬 光雄
- (ARIMA, Mitsuo) [JP/JP]; 〒1410001 東京都品川区北 品川6丁目7番35号ソニー株式会社内 Tokyo (JP). 清水 純 (SHIMIZU, Jun) [JP/JP]; 〒1410001 東京都 品川区北品川 6 丁目 7番 3 5 号 ソニー株式会社内 Tokyo (JP), 小田桐 広和 (ODAGIRI, Hirokazu) [JP/JP]; 〒1410001 東京都品川区北品川6丁目7番35号 ソニー株式会社内 Tokyo (JP). 太田 栄治 (OHTA, Eiji) [JP/JP]; 〒1410001 東京都品川区北品川 6 丁目 7番35号 ソニー株式会社内 Tokyo (JP). 小幡 慶 (OBATA, Kei) [JP/JP]; 〒1410001 東京都品川区北品 川6丁目7番35号 ソニー株式会社内 Tokyo (JP).
- (74) 代理人: 杉浦正知 (SUGIURA, Masatomo): 〒1710022 東京都豊島区南池袋 2丁目49番 7号 池袋パークビル 7階 Tokyo (JP),
- (81) 指定国(表示のない限り、全ての種類の国内保護が 可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW. BY. BZ. CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, [続葉有]

(54) Title: OPTICAL SHEET, BACKLIGHT, AND LIQUID CRYSTAL DISPLAY DEVICE

(54) 発明の名称: 光学シート、バックライトおよび液晶表示装置

- 25 POLARIZATION PLATE
- 2a POLARIZATION PLATE LIQUID CRYSTAL PANEL
- REFLECTION-TYPE POLARIZATION PLATE
 - CYLINDRICAL LENS BODY
- 14 LENS SHEET
- 16 CONVEX SECTION
- DIFFUSION SHEET
- DIFFUSION PLATE LIGHT SOURCE
- REFLECTION PLATE
 - BACKLIGHT

(57) Abstract: Cylindrical lens bodies are armyed on one main surface of an optical sheet, and the lenses each have one finite focal length on the exit side of illumination light and have a left-right symmetrical aspheric cross-sectional shape. The cross-sectional Stape of each cylindrical lens body satisfies $Z = X^2/(R + C(R^2 - (1 + K))^2)^2 + X^2 + BX^2 + CX^2 + ...$ with the $E = X^2 + E = X^$ the curvature radius of the vertex of the body, K is the conic constant, and A, B, C, . . . are aspheric factors.

(57) 要約: 光学シートの一主面には、照明光の出射側に一つの有限な焦点距離を有し、且つ、断面形状が左右対 称な非球面のシリンドリカルレンズ体が多数連続して配列されている。光学シートの法線方向に平行にて軸をと り、シリンドリカルレンズ体の列方向にX軸を取ったとき、

DZ, EC, EF, EG, ES, FI, GB, GD, GF, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, S, LT, LU, LY, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, KS, SL, SM, SY, TJ, TM, TN, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZM

(84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, KS, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG,

CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, FT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類: — 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。