CHAPTER-6 (TRIANGLES) DAY 1

BASIC PROPORTIONALITY THEOREM (THALES THEOREM)

Statement:-If a line is drawn parallel to one side of a triangle it intersect other two sides in distinct points, the other two sides are divided in the same ratio.

Given :- ΔABC in which DE | BC and DE intersects AB at D & AC at E.

To prove :-
$$\frac{AD}{DB} = \frac{AE}{EC}$$

Construction:- join BE, CD and draw DL \perp AC and EM \perp AB

Proof :- In \triangle ADE & \triangle BDE, EM \perp AB

EM is the height for both of triangles $\triangle ADE \& \triangle BDE$

Now
$$\frac{\operatorname{ar}(\Delta ADE)}{\operatorname{ar}(\Delta BDE)} = \frac{\frac{1}{2} \times AD \times EM}{\frac{1}{2} \times DB \times EM} = \frac{AD}{DB} \dots i)$$

Similarly
$$\frac{ar(\Delta ADE)}{ar(\Delta CDE)} = \frac{\frac{1}{2} \times AE \times DL}{\frac{1}{2} \times EC \times DL} = \frac{AE}{EC}$$
 ii)

Since $\triangle BDE$ and $\triangle CDE$ are on the same base and between the same parallel lines DE and BC.

∴ ar (
$$\triangle$$
BDE) = ar (\triangle CDE)....... iii)
From i), ii) & iii), we get
$$\Rightarrow \frac{AD}{DB} = \frac{AE}{EC}$$

Note:- In \triangle ABC, if DE || BC then

i)
$$\frac{AD}{DB} = \frac{AE}{EC}$$
 ii) $\frac{DB}{AD} = \frac{EC}{AE}$ iii) $\frac{AD}{AB} = \frac{AE}{AC}$

Now lets discuss some examples on it.

1. In $\triangle ABC$, if $DE \mid \mid BC$ then find x.

i)

ii)

iii)

Sol:-

i) In $\triangle ABC$, if $DE \mid \mid BC$

∴ By Thales Theorem
$$\frac{AD}{DB} = \frac{AE}{EC}$$

$$\Rightarrow \frac{5}{4} = \frac{15}{x} \Rightarrow x = 15 \times \frac{4}{5} = 12^{-become-educated}$$
ii) In $\triangle ABC$, if $DE = 10^{-4}$ BC

∴ By Thales Theorem
$$\frac{AD}{DB} = \frac{AE}{EC}$$

$$\Rightarrow \frac{4}{7} = \frac{x}{14} \Rightarrow x = 14 \times \frac{4}{7} = 8$$

iii) In ΔABC, if DE | BC

∴ By Thales Theorem
$$\frac{AD}{DB} = \frac{AE}{EC}$$

$$\Rightarrow \frac{1.2}{2.1} = \frac{x}{8.4} \Rightarrow x = 8.4 \times \frac{1.2}{2.1} = 1.2 \times 4 = 4.8$$

EXERCISE

1. Ex 6.2, Q1