МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский Авиационный Институт» (Национальный Исследовательский Университет)

Институт: №8 «Информационные технологии и прикладная математика»

Кафедра: 806 «Вычислительная математика и программирование»

Курсовая работа по курсу «Фундаментальная информатика» І семестр Задание 3

«Вещественный тип. Приближенные вычисления. Табулирование функций»

Группа	М8О-109Б-22
Студент	Фомин И.Д.
Преподаватель	Сысоев М.А.
Оценка	
Дата	

Постановка задачи

Составить программу на Си, которая печатает таблицу значений элементарной функции, вычисленной двумя способами: по формуле Тейлора и с помощью встроенных функций языка программирования. В качестве аргументов таблицы взять точки разбиения отрезка [a, b] на п равных частей (n+1 точка включая концы отрезка), находящихся в рекомендованной области хорошей точности формулы Тейлора. Вычисления по формуле Тейлора проводить по экономной в сложностном смысле схеме с точностью $\varepsilon * 10^k$, где ε - машинное эпсилон аппаратно реализованного вещественного типа для данной ЭВМ, а k — экспериментально подбираемый коэффициент, обеспечивающий приемлемую сходимость. Число итераций должно ограничиваться сверху числом порядка 100. Программа должна сама определять машинное ε и обеспечивать корректные размеры генерируемой таблицы.

Вариант 9:

Ряд Тэйлора:

$$1+2\frac{x}{2}+...+\frac{n^2+1}{n!}(\frac{x}{2})^n$$

Функция:

$$(\frac{x^2}{4} + \frac{x}{2} + 1)e^{\frac{x}{2}}$$

Значения а и b: 0.1 и 0.6

Теоретическая часть

Формула Тейлора — формула разложения функции в бесконечную сумму степенных функций. Формула широко используется в приближённых вычислениях, так как позволяет приводить трансцендентных функций к более простым. Сама она является следствием теоремы Лагранжа о среднем значении дифференцируемой функции. В случае а=0 формула называется рядом Маклорена.

$$\sum_{n=0}^k rac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f^{(1)}(a) (x-a) + rac{f^{(2)}(a)}{2!} (x-a)^2 + \ldots + rac{f^{(k)}(a)}{k!} (x-a)^k$$

Машинное эпсилон — числовое значение, меньше которого невозможно задавать относительную точность для любого алгоритма, возвращающего вещественные числа. Абсолютное значение для машинного эпсилон зависит от разрядности сетки применяемой ЭВМ и от разрядности используемых при расчёте чисел. Формально это машинное эпсилон определяют как число, удовлетворяющее равенству $1 + \varepsilon = 1$. Фактически, два отличных от нуля числа являются равными с точки зрения машинной арифметики, если их модуль разности меньше или не превосходит машинное эпсилон.

В языке Си машинные эпсилон определено для следующих типов: float – $1.19 * 10^{-7}$, double – $2.20 * 10^{-16}$, long double – $1.08 * 10^{-19}$.

Описание алгоритма

Рассмотрим алгоритм решения. Сперва нужно найти машинное эпсилон, на котором будет основываться точность вычисления. Это можно сделать просто деля 1 на 2.

Для каждой N+1 строки нужно просуммировать і членов формулы Тейлора, пока $|A_1-A_2| > \varepsilon$. Для этого просто ищем каждый новый член из формулы Тэйлора и суммируем с результатом

Использованные в программе переменные

Название	Тип	Смысл переменной
переменной	переменной	
n	int64_t	То самое число N, на которое нужно разбить отрезок
k	int	То самое число K, используемое для вычисления точности.
FLT_EPSILON	float	То самое машинное эпсилон.
		1.192092896e-07F
step	long double	Формально разница между предыдущим значением из отрезка и следующим, если отрезок разбит на п равных частей.
currentX	long double	Переменная, для которой будем производить вычисления
getTaylorSeries (currentX, i)	double	То самое значение А1, вычисленное с помощью формулы Тейлора
func(currentX)	double	То самое значение A2, вычисленное с помощью встроенных функций языка
i	double	Счётчик члена формулы Тейлора + кол- во итераций

Исходный код программы:

```
int64 t factorial(int64 t n) {
printf("
sum, func(currentX), i);
printf("
```

```
if (fabsl(func(currentX) - sum) < LDBL_EPSILON) break;
}
return 0;
}</pre>
```

Входные данные

Единственная строка содержит одно целое число N (0≤N≤100) – число разбиений отрезка на равные части

Выходные данные

Программа должна вывести значение машинного эпсилон, а затем N+1 строку.

В каждой строке должно быть значение x, для которого вычисляется функция, число A_1 — значение, вычисленное с помощью формулы Тейлора, A_2 — значение, вычисленное с помощью встроенных функций языка, i — количество итерация, требуемых для вычисления, и Δ — разница значений A_1 и A_2 по модулю. A_1 , A_2 и Δ должны быть выведены с точностью 16 знаков после запятой.

Протокол исполнения и тесты

Тест №1

Ввод:

2

Вывод:

```
N = 2

Machine epsilon is equal to: 2.22045e-16

Table for values of Taylor series and of base function

| x | sum | f(x) | number of iterations |

| 0.350 | 1.35000000000000001 | 1.4361962199032741 | 1 |

| 0.600 | 1.82500000000000002 | 1.8763037425306446 | 2 |
```

Process finished with exit code 0

Тест №2

Ввод:

200

Вывод:

N Ma	N = 200 Machine epsilon is equal to: 2.22045e-16 Table for values of Taylor series and of base function							
1	х	I	sum	I	f(x)	number	of iter	ations
I	0.103	1.102500	00000000000	I	1.1092957226814248	I	1	1
I	0.105	1.111890	62500000000	I	1.1121372655243895	I	2	Ι
1	0.108	1.114981	4680989583	I	1.1149874787883696	I	3	1
1	0.110	1.117846	 2733593750	I	1.1178463838420398	I	4	Ι
1	0.113	1.120714	0004534721	I	1.1207140020991240	I	5	Ι
1	0.115	1.123590	 3549976711	I	1.1235903550184816	I	6	Ι
1	0.118	1.126475	4641039618	I	1.1264754641041927	I	7	Ι
1	0.120	1.129369	3509056417	I	1.1293693509056446	I	8	I
 	0.122 	1.132272	 0370176180 	I	1.1322720370176180	 	9	I

Тест №3

Ввод:

100000

Вывод:

100000					
N = 100000					
Machine epsilon is equal to: 2.2204	Machine epsilon is equal to: 2.22045e-16				
Table for values of Taylor series and of base function					
x sum	 f(x)	 number o	 f iterations		
0.100 1.100004999999999 1.10	 64684861056084	 1	 I		
0.100 1.1062612500625000 1.10	64741433099630	2			
0.100 1.1064753022380216 1.10	 64798005488288	3	 		
0.100 1.1064853892343978 1.10	64854578222068 	4 	 		
0.100 1.1064911143181122 1.10	64911151300965 	5 	l 		
0.100 1.1064967724646682 1.10	64967724724986 	6	l 		
0.100 1.1065024298493489 1.10	65024298494124 	7 	l 		
0.100 1.1065080872608386 1.10	65080872608390 	8	l		
0.100 1.1065137447067783 1.10	65137447067783 	J 9	l 		

Вывод

В работе описано определение машинного эпсилон, приведены его значения для разных переменных языка Си, описана формула Тейлора и составлен алгоритм реализации вычисления значения функции с заданной точностью для заданного числа точек на отрезке. На основе алгоритма составлена программа на языке Си, проведено её тестирование на различных тестах, составлен протокол исполнения программы. В целом, работа понравилась. Приятно применять знания из других областей для решения какой-либо задачи по программированию.

Список литературы

- 1. Машинный ноль URL: https://ru.wikipedia.org/wiki/Машинный ноль
- 2. Ряд Тейлора URL: https://ru.wikipedia.org/wiki/Ряд Тейлора