TEST REPORT

Reference No	WTS18S08121897W
1/CICICIICE 140	VV 10 10000 12 1001 VV

FCC ID...... : 2AJIV-MF8360

Applicant: Creative Labs Pte. Ltd.

609921

Manufacturer : AJS Electronics Limited

Tech Zone, Nanshan District, Shenzhen, Guangdong, China

Product : Creative Stage

Model(s)..... : MF8360

Date of Receipt sample : 2018-08-24

Date of Test 2018-08-24 to 2018-09-10

Date of Issue : 2018-09-11

Test Result Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen,

Guangdong, China Tel:+86-755-83551033 Fax:+86-755-83552400

Tested by:

Approved by:

Jack Wen / Project Engineer

Philo Zhong / Manager

2 Laboratories Introduction

Waltek Services (Shenzhen) Co., Ltd is a professional third-party testing and certification laboratory with multi-year product testing and certification experience, established strictly in accordance with ISO/IEC 17025 requirements, and accredited by ILAC (International Laboratory Accreditation Cooperation) member. A2LA (American Association for Laboratory Accreditation, the certification number is 4243.01) of USA, CNAS (China National Accreditation Service for Conformity Assessment, the registration number is L3110) of China.Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC(The Federal Communications Commission), CEC(California energy efficiency), ISED (Innovation, Science and Economic Development Canada). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as Intertek(ETL-SEMKO), TÜV Rheinland, TÜV SÜD, etc.

Waltek Services (Shenzhen) Co., Ltd is one of the largest and the most comprehensive third party testing laboratory in China. Our test capability covered four large fields: safety test. ElectroMagnetic Compatibility(EMC), and energy performance, wireless radio. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

2.1 Test Facility

A. Accreditations for Conformity Assessment (International)

Country/Region	Scope Covered By	Scope	Note
USA		FCC ID \ DOC \ VOC	1
Canada		IC ID \ VOC	2
Japan		MIC-T \ MIC-R	-
Europe		EMCD \ RED	-
Taiwan	ISO/IEC 17025	NCC	-
Hong Kong		OFCA	-
Australia		RCM	-
India		WPC	-
Thailand		NTC	_
Singapore		IDA	-

Note:

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476.
- 2. ISED Canada Registration No.: 7760A

B.TCBs and Notify Bodies Recognized Testing Laboratory.

Recognized Testing Laboratory of	Notify body number
TUV Rheinland	
Intertek	
TUV SUD	Optional.
SGS	
Phoenix Testlab GmbH	0700
Element Materials Technology Warwick Ltd.	0891
Timco Engineering, Inc.	1177
Eurofins Product Service GmbH	0681

3 Contents

		Page
1	COVER PAGE	1
2	LABORATORIES INTRODUCTION	2
	2.1 TEST FACILITY	3
3	CONTENTS	4
4	6	
5	GENERAL INFORMATION	7
	5.1 GENERAL DESCRIPTION OF E.U.T	
	5.2 DETAILS OF E.U.T	
	5.3 CHANNEL LIST	
_	EQUIPMENT USED DURING TEST	
6		
	6.1 EQUIPMENTS LIST	
	6.3 TEST EQUIPMENT CALIBRATION	
7	TEST SUMMARY	
8	CONDUCTED EMISSION	
	8.1 E.U.T. OPERATION	12
	8.2 EUT SETUP	
	8.3 MEASUREMENT DESCRIPTION	
_	8.4 CONDUCTED EMISSION TEST RESULT	
9	RADIATED EMISSIONS	
	9.1 EUT OPERATION9.2 TEST SETUP	
	9.3 SPECTRUM ANALYZER SETUP	
	9.4 TEST PROCEDURE	
	9.5 SUMMARY OF TEST RESULTS	19
10	BAND EDGE MEASUREMENT	
	10.1 Test Procedure	22
	10.2 TEST RESULT:	23
11	BANDWIDTH MEASUREMENT	
	11.1 Test Procedure:	
	11.2 TEST RESULT:	
12	MAXIMUM PEAK OUTPUT POWER	
	12.1 TEST PROCEDURE:	
	12.2 Test Result:	
13	HOPPING CHANNEL SEPARATION	
	13.1 TEST PROCEDURE:	
1.4	13.2 TEST RESULT:	
14	NUMBER OF HOPPING FREQUENCY	
	14.1 Test Procedure:	
15		
1.7	LATE	

Reference No.: WTS18S08121897W Page 5 of 73

15.1	Test Procedure:	48
15.2	TEST RESULT:	48
16 AN	TENNA REQUIREMENT	54
17 RF I	EXPOSURE	55
17.1	REQUIREMENTS	55
17.2	THE PROCEDURES / LIMIT	55
17.3	MPE CALCULATION METHOD	56
18 PHC	DTOGRAPHS -TEST SETUP PHOTOS	57
18.1	PHOTOGRAPH-CONDUCTED EMISSIONS TEST SETUP	57
18.2		
19 PHC	DTOGRAPHS – CONSTRUCTIONAL DETAILS	60
19.1	EUT –External Photos	60
19.2	EUT – Internal Photos	68

Reference No.: WTS18S08121897W Page 6 of 73

4 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS18S08121897W	2018-08-24	2018-08-24 to 2018-09-10	2018-09-11	original	-	Valid

Reference No.: WTS18S08121897W Page 7 of 73

5 **General Information**

5.1 General Description of E.U.T

Product: Creative Stage

MF8360 Model(s):

N/A **Model descriptions:**

Operation Frequency: 2402-2480MHz, 79(EDR) Channels in total

RF out Power: 2.72dBm

PCB Printed Antenna Antenna installation:

-4.12dBi **Antenna Gain:**

Type of Modulation: GFSK, Pi/4DQPSK, 8DPSK

5.2 Details of E.U.T

Power Source: AC 100-240V 50/60Hz Ratings:

Output Power: 80W

5.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2402	2	2403	3	2404	4	2405
5	2406	6	2407	7	2408	8	2409
9	2410	10	2411	11	2412	12	2413
13	2414	14	2415	15	2416	16	2417
17	2418	18	2419	19	2420	20	2421
21	2422	22	2423	23	2424	24	2425
25	2426	26	2427	27	2428	28	2429
29	2430	30	2431	31	2432	32	2433
33	2434	34	2435	35	2436	36	2437
37	2438	38	2439	39	2440	40	2441
41	2442	42	2443	43	2444	44	2445
45	2446	46	2447	47	2448	48	2449
49	2450	50	2451	51	2452	52	2453
53	2454	54	2455	55	2456	56	2457
57	2458	58	2459	59	2460	60	2461
61	2462	62	2463	63	2464	64	2465
65	2466	66	2467	67	2468	68	2469
69	2470	70	2471	71	2472	72	2473
73	2474	74	2475	75	2476	76	2477
77	2478	78	2479	79	2480	-	-

Reference No.: WTS18S08121897W Page 8 of 73

5.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Table 1 Tests Carried Out Under FCC part 15.247

Test mode	Low channel	Middle channel	High channel
Transmitting	2402MHz	2441MHz	2480MHz

Table 2 Tests Carried Out Under FCC part 15.207 and 15.209

Test Item	Test Mode
Radiated Emissions	Transmitting
Conducted Emissions	Transmitting

6 Equipment Used during Test

6.1 Equipments List

Condu	Conducted Emissions								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1.	EMI Test Receiver	R&S	ESCI	100947	2017-09-12	2018-09-11			
2.	LISN	R&S	ENV216	101215	2017-09-12	2018-09-11			
3.	Cable	Тор	TYPE16(3.5M)	-	2017-09-12	2018-09-11			
3m Ser	3m Semi-anechoic Chamber for Radiation Emissions Test site 1#								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1	Spectrum Analyzer	R&S	FSP	100091	2017-09-14	2018-09-13			
2	Amplifier	Agilent	8447D	2944A10178	2017-10-16	2018-10-15			
3	Active Loop Antenna	Beijing Dazhi	ZN30900A	0703	2018-04-08	2019-04-07			
4	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	2017-09-12	2018-09-11			
5	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	2018-04-08	2019-04-07			
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	2017-09-14	2018-09-13			
7	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	2017-09-14	2018-09-13			
8	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2018-04-12	2019-04-11			
9	Coaxial Cable (above 1GHz)	Тор	1GHz-18GHz	EW02014-7	2018-04-12	2019-04-11			
3m Ser	3m Semi-anechoic Chamber for Radiation Emissions Test site 2#								
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date			
1	Test Receiver	R&S	ESCI	101296	2018-04-12	2019-04-11			
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2018-04-08	2019-04-07			
3	Amplifier	ANRITSU	MH648A	M43381	2018-04-12	2019-04-11			
4	Cable	HUBER+SUHNER	CBL2	525178	2018-04-12	2019-04-11			
RF Conducted Testing									
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	2017-09-14	2018-09-13			
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	2017-09-12	2018-09-11			

Reference No.: WTS18S08121897W Page 10 of 73

3	Signal Analyzer	Agilent	N9010A	MY50520207	2017-09-12	2018-09-11
Э.	(9k~26.5GHz)	rigiloni	14001071	W100020201		

6.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
	± 5.03 dB (30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

6.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by GUANG ZHOU GRG METROLOGY & TEST CO., L TD. address is No.163, Pingyun Rd. West of Huangpu Ave, Tianhe District, Guangzhou, Guangdong, China.

Reference No.: WTS18S08121897W Page 11 of 73

7 Test Summary

Test Items	Test Requirement	Result			
Conduct Emission	15.207	С			
	15.205(a)				
Spurious Radiated Emissions	15.209	С			
	15.247(d)				
Pand adaa	15.247(d)	С			
Band edge	15.205(a)	C			
Bandwidth	15.247(a)(1)	С			
Maximum Peak Output Power	15.247(b)(1)	С			
Frequency Separation	15.247(a)(1)	С			
Number of Hopping Frequency	15.247(a)(1)(iii)	С			
Dwell time	15.247(a)(1)(iii)	С			
SAR	1.1307(b)(1)	С			
Antenna Requirement	15.203	С			
Note: C=Compliance; NC=Not Compliance; NT=Not Tested; N/A=Not Applicable.					

Reference No.: WTS18S08121897W Page 12 of 73

8 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

,

Frequency (MHz)	Conducted Limit (dBµV)				
Frequency (MHZ)	Qsi-peak	Average			
0.15 to 0.5	66 to 56*	56 to 46*			
0.5 to 5.0	56	46			
5.0 to 30	60	50			
*Decreases with the logarithm of the frequency.					

8.1 E.U.T. Operation

Limit:

Operating Environment:

Temperature: 22.8 °C
Humidity: 52.6 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation : Refer to Section 4.4.

8.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

8.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

8.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live line:

Neutral line:

Reference No.: WTS18S08121897W Page 15 of 73

9 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

LIIIII.					
_	Field Strei	ngth	Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m	Distance uV/m		dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

9.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation : Refer to Section 4.4.

9.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10: 2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Reference No.: WTS18S08121897W Page 17 of 73

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m
Turn Table From 0 ° to 360 °

BUT

Absorbers

PC
System
Analyzer

AMP
Combining
Network

The test setup for emission measurement above 1 GHz.

9.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GH	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS18S08121897W Page 18 of 73

9.4 Test Procedure

1. The EUT is placed on a turntable. For below 1GHz, the EUT is 0.8m above ground plane; For above1GHz, the EUT is 1.5m above ground plane.

- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

9.5 Summary of Test Results

Test Frequency: 32.768kHz ~ 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

F	Receiver	Receiver Detector	Turn	RX Antenna		Corrected	Commonto d	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GFSK Lo	ow Chanr	nel 2402	MHz			
256.20	15.29	QP	75	1.9	Н	10.54	25.83	39.43	-13.60
256.20	15.21	QP	215	1.4	V	10.54	25.75	39.43	-13.68
4804.00	49.53	PK	238	1.5	V	-1.08	48.45	74.00	-25.55
4804.00	42.61	Ave	238	1.5	V	-1.08	41.53	54.00	-12.47
7206.00	52.57	PK	144	1.8	Н	1.34	53.91	74.00	-20.09
7206.00	43.07	Ave	144	1.8	Н	1.34	44.41	54.00	-9.59
2324.38	48.03	PK	43	1.7	V	-13.20	34.83	74.00	-39.17
2324.38	38.75	Ave	43	1.7	V	-13.20	25.55	54.00	-28.45
2373.68	49.12	PK	261	1.2	Н	-13.12	36.00	74.00	-38.00
2373.68	36.92	Ave	261	1.2	Н	-13.12	23.80	54.00	-30.20
2499.98	47.37	PK	86	1.5	V	-13.02	34.35	74.00	-39.65
2499.98	37.20	Ave	86	1.5	V	-13.02	24.18	54.00	-29.82

F	Receiver	5	Turn	RX An	tenna	Corrected	Corrected	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GFSK Mid	ddle Chai	nnel 244	11MHz			
256.20	15.97	QP	72	1.1	Н	10.54	26.51	39.43	-12.93
256.20	16.06	QP	216	2.0	V	10.54	26.60	39.43	-12.84
4882.00	40.23	PK	227	1.0	V	-0.62	39.61	74.00	-34.39
4882.00	40.37	Ave	227	1.0	V	-0.62	39.75	54.00	-14.25
7323.00	53.22	PK	72	1.5	Н	2.21	55.43	74.00	-18.57
7323.00	42.90	Ave	72	1.5	Н	2.21	45.11	54.00	-8.89
2348.95	46.82	PK	355	1.8	V	-13.19	33.63	74.00	-40.37
2348.95	38.07	Ave	355	1.8	V	-13.19	24.88	54.00	-29.12
2360.11	46.93	PK	106	1.7	Н	-13.14	33.79	74.00	-40.21
2360.11	37.51	Ave	106	1.7	Н	-13.14	24.37	54.00	-29.63
2489.48	48.53	PK	48	1.9	V	-13.08	35.45	74.00	-38.55
2489.48	38.16	Ave	48	1.9	V	-13.08	25.08	54.00	-28.92

Facessass	Receiver	Datastan	Turn	RX An	tenna	Corrected	Corrected	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK High Channel 2480MHz								
256.20	20.71	QP	359	1.3	Н	10.54	31.25	39.43	-8.19
256.20	20.44	QP	229	1.0	V	10.54	30.98	39.43	-8.45
4960.00	54.67	PK	107	2.0	V	-0.24	54.43	74.00	-19.57
4960.00	44.22	Ave	107	2.0	V	-0.24	43.98	54.00	-10.02
7440.00	50.72	PK	99	1.6	Н	2.84	53.56	74.00	-20.44
7440.00	44.64	Ave	99	1.6	Н	2.84	47.48	54.00	-6.52
2349.73	45.16	PK	248	1.4	V	-13.19	31.97	74.00	-42.03
2349.73	38.91	Ave	248	1.4	V	-13.19	25.72	54.00	-28.28
2379.45	42.09	PK	264	1.2	Н	-13.14	28.95	74.00	-45.05
2379.45	36.42	Ave	264	1.2	Н	-13.14	23.28	54.00	-30.72
2495.07	43.12	PK	287	1.8	V	-13.08	30.04	74.00	-43.96
2495.07	37.08	Ave	287	1.8	V	-13.08	24.00	54.00	-30.00

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTS18S08121897W Page 22 of 73

10 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in the

restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see

Section 15.205(c)).

Test Method: ANSI C63.10

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold

10.2 Test Result:

Test plots

Reference No.: WTS18S08121897W Page 29 of 73

11 Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: C63.10: 2013

Test Mode: Test in fixing operating frequency at low, Middle, high channel.

11.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 30kHz, VBW = 100kHz

11.2 Test Result:

Modulation	Test Channel	20 dB Bandwidth(MHz)	99% Bandwidth(MHz)
GFSK	Low	1.026	0.900
GFSK	Middle	1.026	0.900
GFSK	High	1.026	0.900
Pi/4 DQPSK	Low	1.296	1.176
Pi/4 DQPSK	Middle	1.296	1.176
Pi/4 DQPSK	High	1.296	1.176
8DPSK	Low	1.290	1.194
8DPSK	Middle	1.290	1.194
8DPSK	High	1.290	1.182

Test result plot as follows:

Modulation: GFSK Low Channel

Modulation: Pi/4 DQPSK

Modulation: 8DPSK

Reference No.: WTS18S08121897W Page 34 of 73

12 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: C63.10:2013

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band:

0.125 watts.

Refer to the result "Number of Hopping Frequency" of this

document. The 1watts (30 dBm) limit applies.

Test mode: Test in fixing frequency transmitting mode.

12.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 3 MHz. VBW =3 MHz. Sweep = auto; Detector Function = Peak.

3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

12.2 Test Result:

Data		Pea	Peak Power(dBm)				
Test Mode	Data Rate	Low Channel	Middle Channel	High Channel	Limit (dBm)		
GFSK	1Mbps	1.97	2.37	2.72	20.97		
Pi/4 DQPSK	2Mbps	1.20	1.59	1.89	20.97		
8DPSK	3Mbps	1.28	1.73	2.07	20.97		

Test result plot as follows:

Modulation: GFSK
Low Channel

Middle Channel

Modulation: Pi/4 DQPSK Low Channel Low Channel

Middle Channel

Modulation: 8DPSK Low Channel Low Channel

Middle Channel

Reference No.: WTS18S08121897W Page 40 of 73

13 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: C63.10:2013

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the

systems operate with an output power no greater than 1W.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 30KHz. VBW = 100KHz , Span = 3MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

13.2 Test Result:

Test result plot as follows:

Modulation	Test Channel	Separation (MHz)	Result
GFSK	Low	0.900 MHz	PASS
GFSK	Middle	0.900 MHz	PASS
GFSK	High	0.900 MHz	PASS
Pi/4 DQPSK	Low	1.002 MHz	PASS
Pi/4 DQPSK	Middle	1.002 MHz	PASS
Pi/4 DQPSK	High	1.002 MHz	PASS
8DPSK	Low	1.002 MHz	PASS
8DPSK	Middle	1.002 MHz	PASS
8DPSK High		1.002 MHz	PASS

Test plots

GFSK Middle Channel

Reference No.: WTS18S08121897W Page 46 of 73

14 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: C63.10:2013

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in the

2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

14.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

14.2 Test Result:

Total Channels are 79 Channels.

Reference No.: WTS18S08121897W Page 48 of 73

15 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: C63.10:2013

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are

used.

Test Mode: Test in hopping transmitting operating mode.

15.1 Test Procedure:

1.Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2.Set spectrum analyzer span = 0. centred on a hopping channel;
- 3.Set RBW = 1MHz and VBW = 3MHz. Sweep = as necessary to capture the entire dwell time per hopping channel.
- 4.Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

15.2 Test Result:

Dwell time = Pulse wide x (Hopping rate / Number of channels) x Period

The test period: T = 0.4(s) * 79 = 31.6(s)

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 / 2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)		
DH5	1600/79/6*31.6*(MkrDelta)/1000		
DH3	1600/79/4*31.6*(MkrDelta)/1000		
DH1	1600/79/2*31.6*(MkrDelta)/1000		
Remark	Mkr Delta is single pulse time.		

Modulation	Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
GFSK [Low	2.888	0.308	0.4
	DH5	middle	2.888	0.308	0.4
		High	2.888	0.308	0.4
	2DH5	Low	2.888	0.308	0.4
Pi/4DQPSK		middle	2.888	0.308	0.4
		High	2.888	0.308	0.4
8DPSK	3DH5	Low	2.888	0.308	0.4
		middle	2.888	0.308	0.4
		High	2.888	0.308	0.4

DH5.Low channel

DH5.Middle channel

DH5,High channel

Reference No.: WTS18S08121897W Page 51 of 73

2DH5 Low channel

2DH5.Middle channel

Reference No.: WTS18S08121897W Page 52 of 73

2DH5,High channel

3DH5.Low channel

3DH5.Middle channel

3DH5,High channel

16 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

The EUT have PCB Printed Antenna, meets the requirements of FCC 15.203.

Reference No.: WTS18S08121897W Page 55 of 73

17 RF Exposure

Test Requirement: FCC Part 1.1307
Evaluation Method: FCC Part 2.1091

17.1Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

17.2The procedures / limit

(A) Limits for Occupational / Controlled Exposure

(71) Elithite for Cocapational 7 Controlled Exposure						
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)		
0.3-3.0	614	1.63	(100)*	6		
3.0-30	1842 / f	4.89 / f	(900 / f)*	6		
30-300	61.4	0.163	1.0	6		
300-1500			F/300	6		
1500-100,000			5	6		

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTS18S08121897W Page 56 of 73

17.3MPE Calculation Method

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)=0.2m

The formula can be changed to

Pd = $P_{out}*G/(4*Pi*R^2)$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)
-4.12	0.387	2.72	1.87	0.0001	1

Result: Compliance.

No SAR measurement is required.

18 Photographs -Test Setup Photos

18.1 Photograph-Conducted Emissions Test Setup

18.2 Photograph-Radiated Emissions

Test Frequency Below 30MHz

Test Frequency 30MHz to 1000MHz

Test Frequency Above 1GHz

19 Photographs – Constructional Details

19.1 EUT -External Photos

Reference No.: WTS18S08121897W Page 61 of 73

Reference No.: WTS18S08121897W Page 62 of 73

Reference No.: WTS18S08121897W Page 63 of 73

Reference No.: WTS18S08121897W Page 64 of 73

Reference No.: WTS18S08121897W Page 65 of 73

Reference No.: WTS18S08121897W Page 66 of 73

Reference No.: WTS18S08121897W Page 67 of 73

19.2 EUT – Internal Photos

Reference No.: WTS18S08121897W Page 70 of 73

ANT

Reference No.: WTS18S08121897W Page 72 of 73

Reference No.: WTS18S08121897W Page 73 of 73

=====End of Report=====