EAD0759 - Machine Learning 02/05/2023

Análise de Agrupamentos (Cluster)

- Agrupamento: uma coleção de objetos de dados
 - ☐ Similares aos objetos do mesmo grupo
 - ☐ Diferentes dos objetos dos demais grupos
- Análise de Agrupamento
 - ☐ Agrupar de um conjunto de objetos de dados em clusters (grupos)
- Agrupamento corresponde à uma classificação não supervisionada, sem classes pré-definidas.
- Aplicações típicas
 - □ Como uma análise isolada, obter conhecimento sobre a distribuição de objetos de dados.
 - □ Como um passo anterior para outros algoritmos para preparação para outras análises, reduzindo a complexidade de análise ao reduzir uma população em subgrupos memores que podem ser analisados separadamente.

Aplicações da Análise de Cluster

- Marketing: descobrir grupos distintos de clientes e depois utilizar este conhecimento para aplicar diferentes estratégias de relacionamento.
- Uso do Solo: identificar áreas com uso semelhante do solo a partir de uma base de dados geo referenciada.
- **Seguros:** identificar grupos distintos de risco para determinação de níveis de custos em apólices.
- Planejamento Urbano: identificar grupos de edificações de acordo com seu tipo, valor e localização geográfica.
- **Programas Sociais**: identificar grupos distintos de cidadãos de acordo com suas características e necessidades para aplicação de programas sociais.
- E muitas outras áreas como Saúde, Educação e Política.

EAD0759 - Machine Learning 02/05/2023

O que é um bom Agrupamento

- Um bom método de agrupamento produzirá grupos com:
 - □ Alta similaridade intragrupo;
 - ☐ Baixa similaridade intergrupo.
- Uma definição precisa para a qualidade do agrupamento é muito difícil:
 - □ Depende da aplicação (problema)
 - □É subjetiva

Análise de Agrupamento

- É uma técnica exploratória.
- O resultado depende da escola das variáveis, da definição do número de clusters e/ou das "sementes".
- Não apresenta uma solução ótima global ou única.
- Sempre gerará uma solução.
- A interpretação dos resultados tem forte componente subjetivo (conhecimento do negócio)
- É uma técnica de Aprendizado de Máquina Não Supervisionado.

EAD0759 - Machine Learning 02/05/2023

Distância Euclidiana

Distance = $\sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2}$

	Observation								
Observation	Α	В	С	D	E	F	G		
Α	_								
В	3.162	_							
C	5.099	2.000	_						
D	5.099	2.828	2.000	_					
E	5.000	2.236	2.236	4.123	_				
F	6.403	3.606	3.000	5.000	1.414	_			
G	3.606	2.236	3.606	5.000	2.000	3.162	_		

Similaridade e Diferença entre Objetos

■ Distância euclidiana (p = 2):

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

- Propriedades da métrica *d(i, j)*:
 - $\Box d(i, j) \geq 0$
 - $\Box d(i, i) = 0$
 - $\Box d(i,j) = d(j,i)$
 - $\Box d(i,j) \leq d(i,k) + d(k,j)$

Distância Euclidiana

Distancia Euclidiana no Espaço Multidimensional

$$\sqrt{(p_1-q_1)^2+(p_2-q_2)^2+\cdots+(p_n-q_n)^2}$$

$$=\sqrt{\sum_{i=1}^n(p_i-q_i)^2}.$$

dist(exemplo4[2:6], method="euclidean")

Similarity Measure: Euclidean Distance

		Case								
Case	1	2	3	4	5	6	7			
1	nc						-			
2	3.32	nc								
3	6.86	6.63	nc							
4	10.25	10.20	6.00	nc						
5	15.78	16.19	10.10	7.07	nc					
6	13.11	13.00	7.28	3.87	3.87	nc				
7	11.27	12.16	6.32	5.10	4.90	4.36	nc			

nc = distances not calculated.

Requisitos para Agrupamento

- Escalabilidade
- Habilidade para lidar com diferentes tipos de atributos
- Descobrir grupos com formatos arbitrários
- Mínimo conhecimento do domínio é requerido para determinar os parâmetros de entrada
- Habilidade para lidar com ruídos e anomalias (outliers)
- Insensibilidade à ordem dos dados
- Robustez vs. alta dimensionalidade
- Incorporação de restrições especificadas pelo analista
- Interpretabilidade e usabilidade

EAD0759 - Machine Learning 02/05/2023

Quantos Grupos Formar? Critério da Soma de Distancias ao Quadrado (wss)

Fonte: TAN, P.; STEINBACH, M.; KUMAR, V. (2016)

Principais Técnicas de Agrupamento

- Particionamento: construir várias partições e depois avalia-las com algum critério (proximidade às sementes ou protótipos);
- Hierarquia: criar uma decomposição hierárquica do conjunto de objetos usando algum critério (formam árvores ou hierarquias);
- Modelo: criar modelos para cada cluster e achar os melhores modelos estatísticos para os objetos.
- **Densidade**: guiadas por funções de conectividade e densidade (proximidade usando algum critério).

EAD0759 - Machine Learning 02/05/2023

EAD0759 - Machine Learning 02/05/2023

Algoritmos de Particionamento

- Método de Particionamento: construir uma partição de uma base de dados D com n objetos dentro de um conjunto de k clusters.
- Dado k (número de clusters), achar a partição de k clusters que otimiza o critério de particionamento:
 - □ Otimização global: exaustivamente enumera todas as partições;
 - ☐ Métodos heurísticos: algoritmos K-means e K-medoids;
 - □ K-means (MacQueen, 1967): cada cluster é representado pelo centro do cluster (centróide);
 - □ K-medoids (Kaufman & Rousseew, 1987) cada cluster é representado por dois objetos do cluster.

K-Means Clustering

- Dado k (número de clusters), o algoritmo consiste em quatro etapas:
 - 1. Selecionar os centroides iniciais aleatoriamente;
 - 2. Assinalar cada objeto ao cluster com o centroide mais próximo.
 - 3. Recalcular cada centroide como uma média de objetos assinalados a ele e reposicionar o centroide.
 - Repetir as duas etapas anteriores até que não haja alterações (o centroide não se mova).

02/05/2023

02/05/2023 EAD0759 - Machine Learning

Prof. Antonio Geraldo da Rocha Vidal

EAD0759 - Machine Learning

Prof. Antonio Geraldo da Rocha Vidal

02/05/2023

Prof. Antonio Geraldo da Rocha Vidal

K-Means Cluster

 A ideia basica do algoritmo k-Means é definir os clusters de maneira a minimizar a variação dentro do cluster e ao mesmo tempo maximizar a variação entre os clusters

Cluster SSE =
$$\sum_{\mathbf{x} \in C_i} dist(\mathbf{c}_i, \mathbf{x})^2$$

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist(c_i, x)^2$$

Total SSB =
$$\sum_{i=1}^{K} m_i \ dist(\mathbf{c}_i, \mathbf{c})^2$$

$$c_i = \frac{1}{m_i} \sum_{\mathbf{x} \in C_i} \mathbf{x}$$
 TSS $= \sum_{i=1}^K \sum_{x \in C_i} (x - c)^2 = \text{SSE} + \text{SSB}$

Fonte: Tan et al., 2006

Comentários sobre K-Means

Pontos Fortes

- □ Relativamente eficiente: O (tkn), onde n é o número de objetos, k o número de clusters, e t o número de iterações. Normalmente, k e t são muito menores que n.
- □ Normalmente finaliza otimizado: a otimização pode ser conseguida usando técnicas como simulação e algoritmo genético.

Pontos Fracos

- □ Aplicável apenas quando uma média pode ser definida; não aplicável a dados categóricos.
- □ É necessário especificar **k**, o número de clusters, com antecedência.
- ☐ Dificuldade com dados com ruídos e *outliers*.
- □ Não é adequado para descobrir clusters em formas não convexas.

Cluster Hierárquico

- Usa uma matriz de distância como critério para o agrupamento.
- Não requer o número de clusters k como uma entrada, mas precisa de uma condição para encerramento.

AGNES (Aninhamento Aglomerativo)

- Produz uma árvore de clusters (nós)
- Inicialmente cada objeto é um cluster (folha)
- Recursivamente mescla nós que possuem a menor dissimilaridade.
- Critério: menor distância, máxima distância, distância média, distância central.
- Eventualmente todos os nós pertencem ao mesmo cluster (raiz).

DIANA (Análise Divisiva)

- Ordem inversa do Aglomerativo (AGNES).
- Inicia com o cluster raiz contendo todos os objetos.
- Recursivamente divide em subclusters.
- Eventualmente cada cluster contém um único objeto.

Outros Métodos Hierárquicos

- Fraquezas do método aglomerativo de agrupamento:
 - □ Não escalam bem: complexidade de tempo.
 - □ Não se pode desfazer o que foi feito previamente.
- Integração de métodos hierárquicos com métodos baseados em distância:
 - □ **BIRCH**: usa CF-tree (Cluster Feature Tree) e incrementalmente ajusta a qualidade dos subclusters.
 - □ CURE: seleciona objetos bem dispersos a partir do conjunto e, em seguida, os contrai em direção ao centro do conjunto por uma fração especificada.

Agrupamento baseado em Densidade

- Cluster baseado na densidade (critério de cluster local), tais como pontos conectados à densidade
- Destaques:
 - ☐ Descobre agrupamentos de formato arbitrário
 - ☐ Trata ruído
 - □ Uma única varredura
 - □ Necessita parâmetros de densidade como condição de finalização
- Algoritmos representativos:
 - □ DBSCAN (éster et al., 1996)
 - □ DENCLUE (Hinneburg & Keim, 1998)

