机械原理课程设计指导书

四冲程内燃机设计

一. 已知条件: 在图示的四冲程内燃机中

活塞行程 H = (mm)

活塞直径 D= (mm)

活塞移动导路相对于曲柄中心的距离 e= (mm)

行程速比系数 K=

连杆重心 c_2 至 A 点的距离 $l_{AC_2} =$ 系 数 l_{AB} (mm)

曲柄重量 $Q_1 = (N)$

连杆重量 $Q_2 = (N)$

活塞重量 Q3= (N)

连杆通过质心轴 c₂ 的转动惯性半径 ρ_c $\rho_c^2 =$ 系数 1^2_{AB} (m m²)

曲柄的转速 n₁= (rpm)

发动机的许用速度不均匀系数 $[\delta] =$

曲柄不平衡的重心到 O点的距离 $l_{OC} = l_{OA}$ (mm)

开放提前角:

进气门: -10°;排气门: -32°

齿轮参数:

m=3.5 (mm); $\alpha = 20^{\circ}$; $h_a^* = 1$

 $Z_2 = Z_2 = 14$; $Z_3 = Z_3 = 72$; $Z_1 = 36$

示功图见 P10 图 2 所示。

二.设计任务

1. 机构设计

按照行程速比系数 K 及已知尺寸决定机构的主要尺寸,并绘出机构运动简图(4号图纸)(凸轮要计算出装角后才画在该图上)

2. 选定长度比例尺作出连杆机构的位置图

以活塞在最高位置时为起点,将曲柄回转一周按顺时针方向分为十二等

- 分,然后找出活塞在最低位置时和活塞速度为最大时的曲柄位置(即曲柄旋转一周共分十五个位置)并作出机构各位置时的机构位置图,求出滑快的相对位移。
- 3. 作出机构 15 个位置的速度多边形 求出这 15 个位置的 V_{BA} 、 V_{C2} 、 V_{B} 、 2的数值,并列表表示。(表一)
- 4. 作出机构的 15个位置的加速度多边形 求出 15个位置的 a_{BA}^n 、 a_{BA}^t 、 a_{BA} 、 a_{C_2} 、 a_{C_2} 、 a_{B} 的数值 , 并列表表示。(表二)
- 5.用直角坐标作滑快 B点的位移曲线 $S_B = S_B (\phi)$, 速度曲线 $V_B = V_B(\varphi)$ 及加速度曲线 $a_B = a_B(\varphi)$ 。(把以上 2 3 4 5作在一张 2号图纸上)
- 6. 动态静力分析(1号图纸) 求出机构在各位置时各运动副的反力及应加于曲柄 CA的平衡力矩 M_b(每人完成五个位置)各种数据均要列表表示:
 - (1) 将各个位置的 P₁,、 M₁,、 P₁,等数值列于表三。
 - (2) 列出各个位置的 R₁ 的计算公式,并计算出其数值。
 - (3) 将各个位置的 p[']、R₁₂ⁿ、R₁₂、R₁₂、R₀₃ 、R₂₃等数值列于 表四。
 - (4) 将各个位置的 R₀₁、 M_b等数值列于表五
 - 7. 用直角坐标作出 M_b =M_b (φ) 曲线。(用方格纸绘制)
 (M_b 统一用 " 动态静力分析 " 所求得的值)
 - 8. 计算当不考虑机构各构件的质量和转动惯量时的飞轮转动惯量 J₂。
 - 9. 计算发动机功率。
 - 10. 对曲柄滑快机构进行机构部分平衡(平衡 A点的质量)。
 - 11. 用图解法设计凸轮 和 的实际轮廓曲线(4号图纸2张)
 - 12. 绘制内燃机的工作循环图(4号图纸)。 根据工作循环图及曲柄的位置,求出凸轮的安装角,把凸轮画在机构运动简图上。

13. 最后将设计过程写成 20页左右的详细说明书 (要求手写)。

三.设计步骤及注意问题

1 求连杆及曲柄的长度

设连杆的长度为 L 曲柄长度为 r

联立(1)(2)式求解,可求出连杆的长度1及曲柄的长度r.

2.曲柄回转一周共分为 15 个位置

当活塞在最高位置时为起点,曲柄 A 点的编号为 A。,由 A。点开始,顺时针方向把圆等分为 12 等分,得 A。、 A_1 、 A_2 、……, A_{11} 等点。当滑快在最低位置时,曲柄上 A 点的编号为 A_6 。

可近似认为,当曲柄在 $\mathrm{OA_2}$ 和 $\mathrm{OA_9}$ 位置时,滑快 B 的速度为最大值。

注:括号内的编号在分析力时才使用。

3.动态静力分析步骤

(1) 计算活塞上的气体压力

$$p' = p_i \cdot F \qquad (N)$$

F—活塞的面积 (cm²)

(2) 求作用于构件上的惯性力

$$p_{I_{2}} = -m_{2} \cdot a_{c_{2}}$$
 (N)
 $J_{C_{2}} = m_{2} \cdot \rho_{C}^{2}$
 $P_{I} = -m_{3} \cdot a_{B}$ (N)

(3) 出活塞上受力的大小及方向 $P = P' + P'_{I_3} + Q'_3$

(4) 把作用在构件 2 上的反力 R $_{12}$ 分解为 R $_{12}^n$ 和 R $_{12}^t$ 取 \sum M $_B$ =0 , 求 出 R $_{12}^t$

- (5) 以构件 2、3 为示力体,取 $\sum_{i=0}^{r}$ = 0,求出 R_{12}^{n} 和 R_{03}
- (6) 以构件 1 为示力体,(构件 1 的重力忽略不计),取 $\sum \overset{\mathbf{Y}}{\mathbf{F}}=0$,求 $\exists \, \mathbf{R}_{01} \,$,再由 $\sum \mathbf{M}_{0}=0$,求出 \mathbf{M}_{b} 。
- (7) 用一张 4 号图纸大小的方格纸作出 $M_b = M_b$ (ϕ) 曲线。

4.飞轮转动惯量的确定

- (2) 在本课程设计中,决定飞轮的转动惯量时,不考虑机构各构件的质量和转动惯量。
- (3) 把 $M_b = M_b$ (ϕ) 曲线作为 $M_d = M_d$ (ϕ) 曲线(驱动力矩曲线)

规定:当 M_b 与 α_l 的方向一致时为负,画在横坐标的下方。

 $\exists M_b = \omega_l$ 的方向相反时为正,画在横坐标的上方。

 $(在本课程设计中,<math>\alpha$ 的方向为顺时针)

- (4) 以 M_b 的平均值作为阻抗力矩 M_r (常数)。这是因为在周期性的速度波动中,一个波动周期内的输入功等于输出功。即 $\omega_d \omega_r = \Delta E = 0$
 - (a) 首先求出下列各单元的面积:

 $f_1, f_2, f_3, f_4, f_5, f_6$

(b) 求出阻抗力矩 ($M_r = M_r$ (ϕ)) 的纵坐标 H:

$$H = \frac{f_1 + f_2 + f_3 + f_4 + f_5 + f_6}{L} (mm)$$

注意:) f_1 , f_2 …… f_6 表示各单元的面积,单位为 mm^2 , 在横坐标之下为负值,在横坐标之上为正值。)H 的单位为毫米,当乘上比例尺 μ_{M_b} 之后,才得 出 M_r 之值。

(c)根据求出的 H 值 ,作出 $M_r = M_r$ (ϕ)阻抗力矩曲线(现为水平线)

(5) 求出下列各单元的面积:

$$f_1$$
, f_2 , f_3 , f_4 , f_5 , f_6 , f_7

在阻抗力矩曲线之上的面积表示盈功,在阻抗力矩曲线之下面积表示亏功。盈功为正,亏功为负值。

(6) 根据上面各单元的面积求相应的功

$$\begin{aligned} W_{1} &= f_{1} \cdot \mu_{M_{B}} \cdot \mu_{\Phi} & W_{4} &= f_{4} \mu_{M_{b}} \cdot \mu_{\Phi} & W_{7} &= f_{7} \cdot \mu_{M_{b}} \cdot \mu_{\Phi} \\ W_{2} &= f_{2} \cdot \mu_{M_{b}} \cdot \mu_{\Phi} & W_{5} &= f_{5} \mu_{M_{b}} \cdot \mu_{\Phi} \\ W_{3} &= f_{3} \cdot \mu_{M_{b}} \cdot \mu_{\Phi} & W_{6} &= f_{6} \cdot \mu_{M_{b}} \cdot \mu_{\Phi} \end{aligned}$$

(7) 求出在各个位置上功的累积变化量 ΔW

$$\Delta W_a = (Nm)$$
 $\Delta W_d = (Nm)$ $\Delta W_b = (Nm)$ $\Delta W_e = (Nm)$ $\Delta W_c = (Nm)$ $\Delta W_f = (Nm)$ 根据上面各值找出

 W_{max} =..... (Nm) W_{min} =..... (Nm)

(8) 求出最大盈亏功 ΔW_{max}

$$\Delta W_{max} = W_{max} - W_{min} = \dots (Nm)$$

(8) 根据许用不均匀系数[δ],求出等效构件上所需的等效转动惯量:

$$J_{e} = \frac{\Delta W_{max}}{\omega_{m}^{2} [\delta]} (kg \cdot m^{2}) \qquad (\omega_{m} = \frac{2\pi n_{1}}{60})$$

(9)确定飞轮的转动惯量:

$$J_e = J_F + J_c$$

按题意: 不考虑各构件的质量和转动惯量。

:. J_c可忽略不挤

$$\therefore \quad J_F \approx J_e$$

5. 计算发动机功率

$$N = \frac{\stackrel{\mathbf{v}}{M}_{r} \times L \times \mu_{M_{b}} \times \mu_{\Phi}}{2} \times \frac{\mathbf{n}_{1}}{60} \times \frac{1}{750} (HP)$$

- 6. 曲柄滑快机构的平衡
 - (1) 把连杆的质量代换到 A、B 点

$$\begin{cases} m_{2} = m_{2A} + m_{2B} \\ m_{2A} \cdot l_{AC_{2}} = m_{2B} (l_{AB} - l_{AC_{2}}) \end{cases}$$

由上面的方程组可求得:

$$m_{2B} = -m_2 \frac{l_{AC_2}}{l_{AB}}$$

$$m_{_{2\,A}} = m_{_2} \, \frac{l_{_{AB}} - l_{_{AC_2}}}{l_{_{AB}}}$$

$$\therefore \begin{cases} m_{B} = m_{3} + m_{2B} \\ m_{A} = m_{1} + m_{2A} \end{cases}$$

(2) 把曲柄 A 点的质量用距 O 点为 a=0.5r 的平衡质量 m_b 平衡。

$$m_{b} \cdot a = m_{A} \cdot r$$

$$m_{b} \cdot 0.5r = m_{A} \cdot r$$

$$m_{b} = 2 \cdot m_{A}$$

- 7.凸轮(凸轮 和)的轮廓设计.
 - (1) 升程角为 60°, 回程角为 60°, 远停程角为 10°。
 - (2)选择升程和回程的运动规律。
 - (3) 用图解法设计凸轮的轮廓曲线。 需画出 $s \delta$ 曲线以及凸轮的轮廓曲线。
- 8. 以曲柄作为定标构件,曲柄每转两周为一工作循环。画出各执行机构在位置上协调配合工作的循环图。

附:

分组			负责人			
A	0	7	12	18	14	
В	1	8	13	19	6	
С	2	9	14	20	6	
D	3	9'	15	21	2	
Е	4	10	16	22	18	
F	5	11	17	23	21	

四冲程内燃机机构运动简图

比例: 1: 4

	H (mm)	D (mm)	e (mm)	K	1 _{AC2} (mm)	Q (X)	Q ₂ (N)	Q3 (N)	$ ho_{ m C}^2 \ ho_{ m C}^2$	n1 (rpm)	[]
方案	225	170	5(1.04	0.35xlab	160	120	190	0.16xlAB	620	1/100
方案	270	220	6(1.05	0.36xlab	170	135	210	0.165xlab	610	1/100
方案	320	230	7(1.06	0.38xlab	190	140	230	0.17xlab ²	590	1/80
方案	185	150	55	1.07	0.4xlab	120	110	180	0.18 xlAB 2	630	1/100
方案	220	160	36	1.08	0.35xlab	135	125	200	0.15xlAB ²	640	1/90
方案	200	180	4(1.035	0.38xlab	140	115	190	0.17xlAB ²	650	1/100
方案	215	170	45	1.04	0.35xlab	150	120	200	0.16 xlAB 2	600	1/90
方案	210	160	6 <u>£</u>	1.08	0.35xlab	140	120	190	0.15xlAB ²	580	1/100

		凸轴	Ê		凸轮					
	$h_{_{1}}$	e_1	$ m r_{ m 0~mir}$	ω	h_2	$\mathbf{e}_{_{2}}$	$ m r_{ m 0min}$	ω		
方案 方案	8	5	55		10	0	60			
方案	1(0	60		8	5	55			
方案	9	3	55		9	6	55 55			
方案	6	0	60		7	0	60			

		凸轮	}		凸轮				
	h_1	e_1	r ₀ (min)	W	h_2	e_2	$r_{0(min)}$	W	
方案	7	0	55		6	0	60		
方案	8	4	60		8	5	60		
<u>方案</u> 方案 方案 方案 方案	10	0	55		10	7	60		
方案	6	0	55		10	3	55		

单位:mm

