TradeWatch Complete Architecture - UML Class Diagram

VectorStream Systems

August 2025

TradeWatch Complete Architecture - UML Class Diagram

System Overview

This UML class diagram represents the complete TradeWatch Global Trade Intelligence Platform architecture, including the newly integrated TensorFlow AI processing system and PostgreSQL database infrastructure.

Architecture Layers

1. React Frontend Application

- Main Application: App component managing routing and global state
- Layout System: Responsive layout with mobile optimization and navigation
- Page Components: Dashboard, VesselTracking, TariffTracking, Analytics, LivePortView, MobileAppDownload

2. Dashboard Components

- GlobalMap: Interactive Leaflet.js map with real-time data visualization
- DateSlicer: Temporal data filtering with mobile-responsive design
- ActiveAlerts: Real-time disruption and alert management
- MetricsPanel: Key performance indicators and system metrics
- **DisruptionTimeline**: Temporal visualization of trade disruptions

3. TensorFlow AI Processing System

- TensorFlowProcessor: Main FastAPI application for AI processing
- ModelManager: Manages multiple AI models and their lifecycle
- VesselMovementPredictor: Advanced LSTM+Attention model for vessel prediction
- DisruptionDetector: Multi-modal AI for trade disruption detection
- DataPipeline: Real-time data ingestion and processing pipeline

4. PostgreSQL Database Layer

- DatabaseManager: Async PostgreSQL connection and query management
- Maritime Schema: Vessels, vessel positions, ports, port performance, disruptions, tariffs, trade routes
- AI Models Schema: Model registry, predictions, training sessions, feature store
- Analytics Schema: Performance metrics, economic impact, risk assessments
- Logs Schema: System events, API requests, data quality logs

5. API Integration Layer

- APIAggregator: Centralized data aggregation with intelligent caching
- RealTimeIntegration: AIS, news, weather, and port data integration
- TariffIntegration: Comprehensive tariff data from multiple sources
- NewsIntegration: Maritime news analysis and disruption signal extraction
- MaritimeAPIs: Core maritime data APIs and services

6. Docker Container Infrastructure

- **DockerCompose**: Complete multi-container orchestration
- PostgreSQLContainer: PostGIS-enabled database with spatial indexing
- TensorFlowContainer: GPU-enabled AI processing with model serving
- CeleryWorker: Distributed task processing for background jobs
- Monitoring Stack: Prometheus, Grafana, Flower for system monitoring

Key Features

AI Processing Capabilities

- Vessel Movement Prediction: Uses LSTM networks with attention mechanisms to predict vessel positions and arrival times
- **Disruption Detection**: Multi-modal AI combining news sentiment, vessel anomalies, and economic indicators
- Economic Impact Assessment: Real-time calculation of disruption impacts on global trade
- Continuous Learning: Models that improve over time with new data

Database Architecture

- Geospatial Data: PostGIS extension for efficient spatial queries and indexing
- Time-Series Optimization: Specialized indexing for temporal maritime data
- AI Model Versioning: Complete model lifecycle management and performance tracking
- Real-Time Analytics: Materialized views and aggregation tables for dashboard performance

Scalability and Performance

- Horizontal Scaling: Docker Compose setup supports multi-instance deployment
- GPU Acceleration: TensorFlow models optimized for GPU processing
- Intelligent Caching: Multi-layer caching strategy for API responses and predictions
- Connection Pooling: Async PostgreSQL connection management for high throughput

Real-Time Processing

- Stream Processing: Continuous data ingestion from multiple maritime APIs
- Anomaly Detection: Real-time identification of vessel behavior anomalies
- Predictive Alerts: Proactive notification system for potential disruptions
- Live Updates: WebSocket-based real-time dashboard updates

Technology Stack

Frontend

- React 18: Modern component-based UI framework
- Leaflet.js: Interactive mapping with mobile optimization

Figure 1: TradeWatch Complete UML Class Diagram

- Tailwind CSS: Utility-first styling with responsive design
- Vite: Fast development and build tooling

Backend AI Processing

- TensorFlow 2.15: Advanced machine learning and neural networks
- FastAPI: High-performance async Python web framework
- Celery: Distributed task queue for background processing
- Redis: In-memory caching and message broker

Database

- PostgreSQL 15: Robust relational database with ACID compliance
- PostGIS 3.3: Geospatial extension for maritime coordinate data
- AsyncPG: High-performance async PostgreSQL client

Infrastructure

- **Docker Compose**: Multi-container application orchestration
- Prometheus: Metrics collection and monitoring
- Grafana: Visualization and alerting dashboards
- **TensorFlow Serving**: Model deployment and inference serving

Data Sources

- AIS Data: Real-time vessel tracking and positioning
- Port APIs: Throughput, congestion, and performance metrics
- News APIs: Maritime news and disruption event detection
- Weather APIs: Environmental conditions affecting shipping
- Tariff Databases: International trade policy and tariff data

Innovation Highlights

- 1. Multi-Modal AI: First maritime intelligence system combining news sentiment, vessel behavior, and economic indicators for disruption prediction
- 2. Attention Mechanisms: Advanced neural architectures specifically designed for maritime time-series prediction
- 3. Real-Time Learning: Continuous model improvement with live maritime data
- 4. Geospatial Intelligence: Comprehensive spatial analysis of global trade routes and chokepoints
- 5. Economic Impact Modeling: Quantitative assessment of disruption effects on global supply chains

This architecture represents a comprehensive, scalable, and intelligent maritime trade monitoring system capable of processing real-time data, making accurate predictions, and providing actionable insights for global trade stakeholders.