

EECS 204002 Data Structures 資料結構 Prof. REN-SONG TSAY 蔡仁松 教授 NTHU

CH. 2 ARRAYS

2.2

Array Abstract
Data Type

2.2

Definition of Array

- A data structure that represents an ordered or linear list.
- Elements in an array could be the same or different data types.
 - Days of the week:
 - {Sunday, Monday, ..., Saturday}
 - Deck of cards:
 - {Ace, 2, 3, ..., King}
 - Phone Book:
 - {(James, #1), (Claire, #2), ..., (Tony, #n)}

Common Array Operations

- ADT array[n]= $\{a_0, a_1, ..., a_{n-1}\}$
 - I. Find the length, n, of the array.
 - 2. Read the array from left to right (or reverse).
 - 3. Retrieve the ith element, $0 \le i < n$.
 - 4. Store a new element into i^{th} position, $0 \le i < n$.
 - 5. Insert/delete the element at position i, $0 \le i < n$.
- It is not necessary to include all operations
- Different representations carry out different subset of operations efficiently.

Sequential mapping

- Element a_i is stored in the location i of the array
- The most commonly used
- Efficient random access (operation 1,2,3)

Non-sequential mapping

- Perform insertion and deletion efficiently
- E.g. Linked Lists in chapter 4

2.3

Polynomial

- $p(x) = a_0 x^{e_0} + a_1 x^{e_1} + \dots + a_n x^{e_n} = \sum a_i x^{e_i}$
- Each $a_i x^{e_i}$ is called a **term** with coefficient a_i
 - The **degree** of p(x) is the largest exponent from among the non-zero terms.
 - Ex. $p(x) = x^5 + 4x^3 + 2x^2 + 1$ Has 4 terms with coefficients 1, 4, 2 and 1. The degree of p(x) is 5
- Array representation
 - Store (a_i, e_i) as (array[n-i], i) pair and n is the degree

Polynomial Operation

- If $a(x) = \sum a_i x^i$ and $b(x) = \sum b_i x^i$
- Polynomial addition

•
$$a(x) + b(x) = \sum (a_i + b_i)x^i$$

Ex. $a(x) = x^5 + 4x^3 + 2x^2 + 1$ (degree = 5)
 $b(x) = 3x^6 + 4x^3 + x$ (degree = 6)
 $a(x) + b(x) = 3x^6 + x^5 + 8x^3 + 2x^2 + x + 1$ (degree = 6)

Polynomial multiplication

•
$$a(x) \cdot b(x) = \sum (a_i x^i \cdot \sum (b_i x^j))$$

Polynomial:ADT

```
class Polynomial {
public:
   // Construct p(x) = 0
                             We will ignore destructor in the codes
   Polynomial (void);
                             hereafter. It is programmer's responsibility
   // Destructor
                             to treat her memory well ©
   ~Polynomial(void);
   // Return the sum of *this and poly
   Polynomial Add(Polynomial poly);
   // Return multiplication of *this and poly
   Polynomial Mult(Polynomial poly);
   // Return the evaluation result
   float Eval(float x );
private:
   // Array representation
};
```

Polynomial: Ist Representation

```
// in class Polynomial
public: // for convenience...
  // degree \leq MaxDegree
  int degree;
  // coefficient array
  float coef[MaxDegree+1];
```

```
Usage:
    Polynomial a;
    a.degree = n;
    a.coef[i] = a<sub>n-i</sub>
```

- Coefficients are stored in order of decreasing exponents
- Advantages:
 - Simple algorithm of operations
- Disadvantages:
 - Waste memory in a sparse polynomial

Polynomial: 2nd Representation

```
class Term {
  friend Polynomial;
  float coef;
  int exp;
};
```

```
// in class Polynomial
private:
   // array of nonzero terms
   Term* termArray;
   int capacity; // size of termArray
   int terms; // number of nonzero terms
```

- Store only nonzero terms.
- Each nonzero term holds an exponent and its corresponding coefficient.
- If polynomial is sparse, 2nd representation is better. If polynomial is full, 2nd one has double size of 1st.

Polynomial Addition: Code

```
Polynomial Polynomial::Add(Polynomial b)
{ // Return sum of polynomial *this and b
 Polynomial c;
  int aPos = 0, bPos = 0;
 while((aPos < terms) && (bPos < b.terms))</pre>
    if(termArray[aPos].exp == b.termArray[bPos].exp) {
        float t = termArray[aPos].coef + b.termArray[bPos].coef;
        If(t) c.NewTerm(t, termArray[aPos].exp);
        aPos++; bPos++;
    else if(termArray[aPos].exp < b.termArray[bPos].exp) {</pre>
        c.NewTerm(b.termArray[bPos].coef, b.termArray[bPos].exp);
        bPos++;
    else{
        c.NewTerm(termArray[aPos].coef,termArray[aPos].exp);
        aPos++;
  // add in remaining terms of *this
  for(; aPos < terms; aPos++)</pre>
    c.NewTerm(termArray[aPos].coef, termArray[aPos].exp);
  // add in remaining terms of b
  for(; bPos < b.terms; bPos++)</pre>
    c.NewTerm(b.termArray[bPos].coef, b.termArray[bPos].exp);
  return c;
```

Example

$$a(x) = x^5 + 9x^4 + 7x^3 + 2x$$

$$b(x) = x^6 + 3x^5 + 6x + 3$$

$$c(x) = x^6 + (1+3)x^5 + 9x^4 + 7x^3 + (2+6)x + 3$$
$$= x^6 + 4x^5 + 9x^4 + 7x^3 + 8x + 3$$

Time Complexity of Analysis

- Inside the while loop: every statement takes O(I) time
- How many times the "while loop" is executed in the worst case?
 - Let a(x) have m terms, and b(x) have n terms.
 - In each iteration, we access next element in a(x) or b(x), or both.
 - Worst case: m + n.
 e.g. It happens when

$$A(x) = 7x^5 + x^3 + x$$
; $B(x) = x^6 + 2x^4 + 6x^2 + 3$
Access remaining terms in $A(x)$: $O(m)$
Access remaining terms in $B(x)$: $O(n)$

• Hence, total run time = O(m + n)

2.4

Matrix

- Denote a matrix consists of m rows and n columns as A_{m*n} (read A is a m by n matrix).
- Usually stored as a two-dimensional array, a[m][n], in which element at i^{th} row and j^{th} column is accessed by a[i][j].

$$A_{5 \star 3} = \begin{bmatrix} -27 & 3 & 4 & \text{row 0} \\ 6 & 82 & -2 & \text{row I} \\ 109 & -64 & 11 & \text{row 2} \\ 12 & 8 & 9 & \text{row 3} \\ 48 & 27 & 47 & \text{row 4} \end{bmatrix}$$

col 0 col 1 col 2

Matrix Operations

Transpose

$$\circ$$
 $C_{nxm} = A_{mxn}^T$

$$\circ c[i][j] = a[j][i]$$

Addition

$$\circ$$
 C_{mxn} = A_{mxn} + B_{mxn}

•
$$c[i][j] = a[i][j] + b[i][j]$$

Multiplication

$$\circ$$
 $C_{mxp} = A_{mxn} + B_{nxp}$

•
$$c[i][j] = \sum_{k=0}^{n-1} a[i][k] \times b[k][j]$$

Matrix: ADT

```
class Matrix{
public:
   // Construct
   Matrix(int r, int c);
   // Return the transpose of (*this) matrix
   Matrix Transpose(void);
   // Return sum of *this and b
   Matrix Add(Matrix b);
   // Return the multiplication of *this and b
   Matrix Multiply(Matrix b);
private:
   // Array representation
    int **a, rows, cols;
};
```

Transpose: Code

Time complexity: O(rows · cols)

Add: Code

Time complexity: O(rows · cols)

Multiply: Code

```
Matrix Matrix::Multiply(Matrix b) {
  Matrix c(rows, b.cols);
   for (i=0; i<rows; i++) { // O(rows)
     for (j=0; j<b.cols; j++) { // O(b.cols)
         sum=0;
         for (k=0; k < cols; k++) // O(cols)
             sum += a[i][k]*b[k][j];
         c[i][j]=sum;
  return c;
                               mxn
                                           nxp
                 mxp
```

Time complexity: O(rows · cols · b.cols)

2.4.2

Sparse Matrix

$$a[6][6] = \begin{pmatrix} 15 & 0 & 0 & 22 & 0 & -15 \\ 0 & 11 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & -6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 91 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 28 & 0 & 0 & 0 \end{pmatrix}$$

- A matrix has few non-zero elements.
- 2D array representation is inefficient.
 - Wasteful memory and computing time
 - Consider a matrix A_{5000X5000} with only 100 nonzero elements!

Single Linear List Example

0	0	3	0	4	
0	0	5	7	0	
0	0	0	0	0	
0	2	6	0	0	

One Linear List Per Row

				1
0		~		4
U	V		U	

$$row1 = [(3, 3), (5,4)]$$

$$row2 = [(3,5), (4,7)]$$

$$row3 = []$$

$$row4 = [(2,2), (3,6)]$$

We use an array, smArray[], of triple
 <row, col, value> to store those nonzero elements.

Triples are stored in a row-major order.

15	0	0	22	0	-15
0	11	3	0	0	0
0	0	0	-6	0	0
0	0	0	0	0	0
91	0	0	0	0	0
0	0	28	0	0	0

	row	col	value				
smArray[0]	0	0	15				
smArray[1]	0	3	22				
smArray[2]	0	5	-15				
smArray[3]	I	I	П				
smArray[4]	1	2	3				
smArray[5]	2	3	-6				
smArray[6]	4	0	91				
smArray[7]	5	2	28				

2.4.2

ADT2.4

Sparse Matrix: ADT

```
class SparseMatrix{
public:
   // Construct, t is the capacity of nonzero terms
   SparseMatrix(int r, int c, int t);
   // Return the transpose of (*this) matrix
   SparseMatrix Transpose(void);
   // Return sum of *this and b
   SparseMatrix Add(SparseMatrix b);
   // Return the multiplication of *this and b
   SparseMatrix Multiply(SparseMatrix b);
private:
   // Sparse representation
    int rows, cols, terms, capacity;
    MatrixTerm *smArray;
                             class MatrixTerm {
};
                              friend SparseMatrix;
                              int row, col, value;
```

Approximate Memory Requirements

 5000 x 5000 matrix with 100 nonzero elements, 4 bytes per element

- 2D array
 - \circ 5000 x 5000 x 4 = 100 million bytes
- Class SparseMatrix
 - \circ 100 x 4 x 3 + 4 = 1204 bytes

2.4.3

Trivial Transpose

• c[i][j] = a[j][i]

	row	col	value	
smArray[0]	0	0	15	
smArray[1]	0	3	22	
smArray[2]	0	5	-15	
smArray[3]	I	Ī	П	
smArray[4]	I	2	3	
smArray[5]	2	3	-6	
smArray[6]	4	0	91	
smArray[7]	5	2	28	

Transpose

	•					
	row	col	value			
smArray[0]	0	0	15			
smArray[1]	3	0	22			
smArray[2]	5	0	-15			
smArray[3]	I	ı	П			
smArray[4]	2	ı	3			
smArray[5]	3	2	-6			
smArray[6]	0	4	91			
smArray[7]	2	5	28			
		•				

• Problem: the nonzero terms in A^T are no longer stored in row major order!

Smart Transpose

Because the row and column are swapped, we trace the nonzero terms in a **column-major** order.

For (all non-zero elements in column i)

For(all non-zero elements in column j)
 Store a(i,j,value) as aT(j,i,value)

	row	col	value
smArray[0]	0	0	15
smArray[1]	0	3	22
smArray[2]	0	5	-15
smArray[3]	I	I	П
smArray[4]	1	2	3
smArray[5]	2	3	-6
smArray[6]	4	0	91
smArray[7]	5	2	28

	row	col	value
smArray[0]	0	0	15
smArray[1]	0	4	91
smArray[2]			
smArray[3]			
smArray[4]			
smArray[5]			
smArray[6]			
smArray[7]			

Smart Transpose: Code

```
SparseMatrix SparseMatrix::Transpose()
{ // Return the transpose of (*this) matrix
 // b.smArray has the same number of nonzero terms
 SparseMatrix b(cols, rows, terms);
 if (terms > 0) // has nonzero terms
   int currentB = 0;
   for(int c=0; c<cols; c++) // O(cols)
      for(int i=0; i<terms; i++) // O(terms)</pre>
        if(smArray[i].col == c)
         b.smArray[currentB].row = c;
         b.smArray[currentB].col = smArray[i].row;
         b.smArray[currentB++].value = smArray[i].value;
 return b;
```

- Examine all terms only twice!
- Use additional space to store
 - rowSize[i]: # of nonzero terms in ith row of A^T
 - rowStart[i]: location of nonzero term in ith row of A^T
 - For i>0, rowStart[i]=rowStart[i-I]+rowSize[i-I]
- Copy element from A to A^T one by one.
- Time complexity: O(terms + cols)!

- Count the # of nonzero terms in each row of A^T
- Calculate the location of Ist nonzero term ith row of A^T

A	row	col	value	col	rowSize	rowStart
smArray[0]	0	0	15	[0]	2	0
smArray[I]	0	3	22	[1]	I	2
smArray[2]	0	5	-15	[2]	2	3
smArray[3]	I	I	П	[3]	2	5
smArray[4]	I	2	3	[4]	0	7
smArray[5]	2	3	-6	[5]	I	7
smArray[6]	4	0	91			
smArray[7]	5	2	28			

A	row	col	value	col	rowSize	rowStart	A ^T	row	col	value
smArray[0]	0	0	15	[0]	2	0	smArray[0]	0	0	15
smArray[1]	0	3	22	[1]	I	2	smArray[1]			
smArray[2]	0	5	-15	[2]	2	3	smArray[2]			
smArray[3]	I	I	П	[3]	2	5	smArray[3]			
smArray[4]	Ι	2	3	[4]	0	7	smArray[4]			
smArray[5]	2	3	-6	[5]	I	7	smArray[5]			
smArray[6]	4	0	91				smArray[6]			
smArray[7]	5	2	28				smArray[7]			

Α	row	col	value	col	rowSize	rowStart
smArray[0]	0	0	15	[0]	2	I
smArray[1]	0	3	22	[1]	I	2
smArray[2]	0	5	-15	[2]	2	3
smArray[3]	I	I	П	[3]	2	5
smArray[4]	I	2	3	[4]	0	7
smArray[5]	2	3	-6	[5]	I	7
smArray[6]	4	0	91			
smArray[7]	5	2	28			

A ^T	row	col	value
smArray[0]	0	0	15
smArray[1]			
smArray[2]			
smArray[3]			
smArray[4]			
smArray[5]			
smArray[6]			
smArray[7]			

A	row	col	value
smArray[0]	0	0	15
smArray[1]	0	3	22
smArray[2]	0	5	-15
smArray[3]	İ	I	11
smArray[4]	Ì	2	3
smArray[5]	2	3	-6
smArray[6]	4	0	91
smArray[7]	5	2	28

col	rowSize	rowStart
[0]	2	ı
[1]	I	2
[2]	2	3
[3]	2	5
[4]	0	7
[5]	I	7

Α ^T	row	col	value
smArray[0]	0	0	15
smArray[1]			
smArray[2]			
smArray[3]			
smArray[4]			
smArray[5]			
smArray[6]			
smArray[7]			

A	row	col	value	col	rowSize	rowStart
smArray[0]	0	0	15	[0]	2	ı
smArray[1]	0	3	22	[1]	I	2
smArray[2]	0	5	-15	[2]	2	3
smArray[3]	I	I	П	[3]	2	6
smArray[4]	I	2	3	[4]	0	7
smArray[5]	2	3	-6	[5]	I	7
smArray[6]	4	0	91			
smArray[7]	5	2	28			

A ^T	row	col	value
smArray[0]	0	0	15
smArray[1]			
smArray[2]			
smArray[3]			
smArray[4]			
smArray[5]	3	0	22
smArray[6]			
smArray[7]			

Fast Transpose

Copy element from A to A^T one by one

A	row	col	value	col
smArray[0]	0	0	15	[0]
smArray[1]	0	3	22	[1]
smArray[2]	0	5	-15	[2]
smArray[3]	I	I	П	[3]
smArray[4]	I	2	3	[4]
smArray[5]	2	3	-6	[5]
smArray[6]	4	0	91	
smArray[7]	5	2	28	

col	rowSize	rowStart
[0]	2	I
[1]	ĺ	3
[2]	2	4
[3]	2	7
[4]	0	7
[5]	I	8

A ^T	row	col	value
smArray[0]	0	0	15
smArray[1]	0	4	91
smArray[2]	I	I	Ш
smArray[3]	2	Ī	3
smArray[4]			
smArray[5]	3	0	22
smArray[6]	3	2	-6
smArray[7]	5	0	-15

Fast Transpose

Copy element from A to A^T one by one

A	row	col	value	col	rowSize	rowSta
smArray[0]	0	0	15	[0]	2	2
smArray[1]	0	3	22	[1]	I	3
smArray[2]	0	5	-15	[2]	2	4
smArray[3]	I	I	П	[3]	2	7
smArray[4]	I	2	3	[4]	0	7
smArray[5]	2	3	-6	[5]	I	8
smArray[6]	4	0	91			
smArray[7]	5	2	28			

A ^T	row	col	value
smArray[0]	0	0	15
smArray[1]	0	4	91
smArray[2]	1	Ī	П
smArray[3]	2	I	3
smArray[4]			
smArray[5]	3	0	22
smArray[6]	3	2	-6
smArray[7]	5	0	-15

Fast Transpose

Copy element from A to A^T one by one

Α	row	col	value	C
smArray[0]	0	0	15	[
smArray[1]	0	3	22	[
smArray[2]	0	5	-15	[
smArray[3]	I	I	П	[
smArray[4]	1	2	3	[
smArray[5]	2	3	-6	[
smArray[6]	4	0	91	
smArray[7]	5	2	28	

col	rowSize	rowStart
[0]	2	2
[1]	I	3
[2]	2	4
[3]	2	7
[4]	0	7
[5]	I	8

\mathbf{A}^{T}	row	col	value
smArray[0]	0	0	15
smArray[I]	0	4	91
smArray[2]	I	Í	П
smArray[3]	2	I	3
smArray[4]	2	5	28
smArray[5]	3	0	22
smArray[6]	3	2	-6
smArray[7]	5	0	-15

Fast Transpose: Codes

```
SparseMatrix SparseMatrix::FastTranspose( )
{ // Compute the transpose in O(terms + cols) time
  SparseMatrix b(cols, rows, terms);
  if (terms > 0) {
    int *rowSize = new int[cols];
    int *rowStart = new int[cols];
    // compute rowSize[i]=number of terms in row i of b
    fill(rowSize, rowSize+cols, 0);
    for(int i=0; i<terms; i++) rowSize[smArray[i].col]++;</pre>
    // rowStart[i] = starting position of row i in b
    rowStart[0] = 0;
    for(int i=1; i<cols; i++)</pre>
      rowStart[i]=rowStart[i-1]+rowSize[i-1];
    for(int i=0; i<terms; i++)</pre>
    { // copy terms from *this to b
      int j = rowStart[smArray[i].col];
      b.smArray[j].row = smArray[i].col;
      b.smArray[j].col = smArray[i].row;
      b.smArray[j].value = smArray[i].value;
      rowStart[smArray[i].col]++; // Increase the start pos by 1
    delete [] rowSize;
    delete [] rowStart;
  return b;
                                                                 40
```

Computation Time Comparison

Trivial Transpose	Smart Transpose	Fast Transpose
$O(rows \cdot cols)$	$O(cols \cdot terms)$	O(terms + cols)

- For a dense matrix (terms = $rows \cdot cols$)

 Fast equals to Trivial: $O(rows \cdot cols)$ Smart is the slowest: $O(rows \cdot cols^2)$
- For a sparse matrix (terms << rows · cols)
 - Fast is faster than Trivial and Smart ones

2.4.4

Sparse Matrix Multiplication

Compute the transpose of b

c: m x p $= \begin{bmatrix} 0 & 5 & 2 & 0 & 0 & 7 \\ 0 & 5 & 2 & 0 & 0 & 7 \\ 0 & 4 & 3 & 6 & 5 \end{bmatrix}$ b: n x p

Sparse Matrix Multiplication

 Use approach similar to "Polynomial Addition" to compute the X!

$$x = (2)(4) + (7)(5) = 43$$

Time Complexity

Complexity:

- O(rows · b.cols · (Terms[i] + b.Terms[j]))
- rows · Terms[i] = a.terms and b.cols · b.Terms[j] = b.terms
- O(rows · b.terms + b.cols · a.terms)

2.6

The String Abstract Data Type

2.6.1

Simple String Pattern Matching

- s= string.length();
- p= pattern.length();

O(s*p)

The Knuth-Morris-Pratt Alg.

Complexity: O(p+s)

j	0	I	2	3	4	5	6	7	8	9
pat	a	b	С	a	b	С	a	С	a	b
f	-]	-1	-1	0	I	2	3	-]	0	I
	•	-								

$$f = \begin{cases} \text{largest } k < j, \text{s. t.} p_0 \dots p_k = p_{j-k} \dots p_j &, \exists k \ge 0 \\ -1 &, otherwise \end{cases}$$

• If a partial match is found such that $s_{i-j} \dots s_{i-1} = p_0 \dots p_{j-1}$ and $s_i \neq p_j$ then matching may resume by comparing s_i and $p_{f(j-1)+1}$

string

Pattern Matching

string

pattern

••••	a	b	С	a	b	С	a	X		• • • •	
j	0	I	2	3	4	5	6	7	8	9	
pat	a	b	С	a	b	С	a	С	a	b	
f	- 	-	- I	0	I	2	3	- I	0	I	

Pattern-matching with a Failure Function

```
int String::FastFind(String pat) {
  // Determine if pat is a substring of s
  int PosP = 0, PosS = 0; // j=> PosP, i=> PosS
  int LengthP = pat.Length(), LengthS = Length();
  while((PosP < LengthP) && (PosS < LengthS))</pre>
    if (pat.str[PosP] == str[PosS]) {
         PosP++: PosS++:
    } else
         if (PosP == 0) PosS++;
         else PosP = pat.f[PosP-1] + 1;
  if (PosP < LengthP) return - I;</pre>
  else return PosS-LengthP;
```