Formulário de Electrónica Geral

2. Amplificadores Operacionais

$$\omega V_{om} \leq SR$$

$$SR = \frac{dv_o}{dt}\bigg|_{\text{max}}$$

3. Filtros Activos

Butterworth

n	н(Ŝ)	
1	S + 1	
2	S 2+ 1,414 S + 1	
3	$(\hat{S} + 1)(\hat{S}^2 + \hat{S} + 1)$	

$$A(\Omega) = 10\log(1 + \varepsilon^2 \Omega^{2n})$$

$$\hat{S} = \sqrt[n]{\varepsilon} \frac{s^2 + \omega_0^2}{Bs}; \quad \hat{S} = \sqrt[n]{\varepsilon} \frac{s}{\omega_p}; \quad \hat{S} = \sqrt[n]{\varepsilon} \frac{\omega_p}{s}; \quad \hat{S} = \sqrt[n]{\varepsilon} \frac{Bs}{s^2 + \omega_0^2}$$

Chebyshev

$$A_{Cheby}(\Omega) = 10log[1 + \epsilon^2 C_n^2(\Omega)]$$

$$S = \frac{s^2 + \omega_0^2}{Bs}; S = \frac{s}{\omega_p}; S = \frac{\omega_p}{s}; S = \frac{Bs}{s^2 + \omega_0^2}$$

C _n (Ω)	
Ω	
11	
2Ω²-1	
4Ω³-3Ω	

$$S = s/\omega_p$$

$$S = \omega_p / s$$

$$S = (s^2 + \omega_0^2) / Bs$$

$$S = Bs/(s^2 + \omega_0)$$

Ap=0,5 dB	T(S) = K / D(S)
7 tp -0,5 db	I(D) - II / D(D)

n	K	D(S)	
1	2,863	S+2,863	
2	1,431	S ² +1,425S+1,516	
3	0,716	(S+0,626) (S ² +0,626S+1,142)	

T(S) = K / D(S)Ap=1 dB

n	K	D(S)	
1	1,965	S+1,965	
2	0,983	S ² +1,098S+1,103	
3	0,491	(S+0,494) (S ² +0,490S+0,994)	

KHN (Two Integrator in Loop - TIL)

$$T_{LP}(s) = \frac{v_{LP}(s)}{v_i(s)} = \frac{k \omega_0^2}{s^2 + \frac{\omega_0}{Q} s + \omega_0^2}$$

$$\omega_0 = \frac{1}{RC} ; \frac{R_3}{R_2} = 2Q - 1 ; k = 2 - \frac{1}{Q}$$

$$\omega_0 = \frac{1}{RC}$$
; $\frac{R_3}{R_2} = 2Q - 1$; $k = 2 - \frac{1}{Q}$

GIC

Tow-Thomas

$$C_1$$
=AC, R_1 =R/D, R_2 =R/E, R_3 =R/B, R_4 = Q_0 R

Rauch

4. Osciladores

CRITÉRIO DE BARKHAUSEN

$$A(j\omega_0)\beta(j\omega_0) = 1 \quad \Rightarrow \quad \begin{cases} |A(j\omega_0)\beta(j\omega_0)| = 1 \\ \arg\{A(j\omega_0)\beta(j\omega_0)\} = 0 \end{cases} \quad ou \quad \begin{cases} \operatorname{Re}\{A(j\omega_0)\beta(j\omega_0)\} = 1 \\ \operatorname{Im}\{A(j\omega_0)\beta(j\omega_0)\} = 0 \end{cases}$$

Tensão aos terminais de um condensador a ser carregado por um sinal em degrau via uma resistência

$$v_C = v_C(\infty) + \left[v_C(0) - v_C(\infty)\right] e^{-\frac{t}{RC}}$$

5. Conversores A/D e D/A

Resposta em frequência de sistemas amostrados:

$$T(s)\big|_{s=j\omega} = T(z)\big|_{z=e^{j\omega T}} = T(z)\big|_{z=e^{j\gamma}}$$

6. Conversores Electrónicos de Potência

$$\eta = \frac{V_0 I_0}{V_I I_I}$$

Redutor

$V_0 = V_I D$	$V_0 = \frac{V_I}{1 - D}$	$V_0 = -V_I \frac{D}{1 - D}$
$\frac{L}{R} > \frac{1-D}{2f_S}$	$\frac{L}{R} > \frac{D(1-D)^2}{2f_s}$	$\frac{L}{R} > \frac{(1-D)^2}{2f_S}$
$V_0 = \frac{D}{D + D_0} V_I$	$V_0 = rac{D+D_0}{D_0} V_I$	$V_0 = -\frac{D}{D_0}V_I$
$D_0^2 + DD_0 - \frac{2L}{RT} = 0$	$\frac{D+D_0}{DD_0^2} = \frac{RT}{2L}$	$D_0 = \sqrt{\frac{2L}{RT}}$

Ampliador

Redutor-Ampliador

7. Filtros Digitais

Transformação Bilinear

$$s = \frac{2}{T_s} \frac{1 - z^{-1}}{1 + z^{-1}}$$

Resposta em Frequência

$$s = j\omega$$

$$z = e^{j\omega Ts} = e^{j\gamma}$$
 , $\gamma = \omega T_s$

$$\tau(\omega) = -\frac{\partial \phi}{\partial \omega}$$

$$e^{jx} = \cos(x) + j\sin(x) \ , \ \cos(x) = \frac{1}{2} \left(e^{jx} + e^{-jx} \right) \ , \ \sin(x) = \frac{1}{2} \left(e^{jx} - e^{-jx} \right)$$

$$1+e^{jx} = e^{jx/2} (e^{jx/2} + e^{-jx/2}) = e^{jx/2} 2\cos(x/2)$$