Projeto Mathematical Ramblings

mathematical ramblings. blogspot.com

$$\mathrm{Em}\; \mathbb{U} = \mathcal{M}_{3x1},$$

$$A \cdot X = B_i$$

para
$$A = \begin{bmatrix} 2 & 1 & 7 \\ 1 & 3 & 2 \\ 5 & 3 & 4 \end{bmatrix}$$
, $B_1 = \begin{bmatrix} 16 \\ -5 \\ 11 \end{bmatrix}$, $B_2 = \begin{bmatrix} 25 \\ -11 \\ -5 \end{bmatrix}$, $B_3 = \begin{bmatrix} 3 \\ 5 \\ -5 \end{bmatrix}$.

Sejam x_1 o primeiro elemento da solução do sistema para $i=1, z_2$ o terceiro elemento da solução do sistema para i=2, e y_3 o segundo elemento da solução do sistema para i=3.

Seja D o determinante de A. D = -66.

Seja D_1 o determinante da matriz A com a primeira coluna substituída por B_1 , $D_1 = -198$. Por Cramer, $x_1 = 3$.

Seja D_2 o determinante da matriz A com a terceira coluna substituída por B_2 , $D_2 = -264$. Por Cramer, $z_2 = 4$.

Seja D_3 o determinante da matriz A com a segunda coluna substituída por B_3 , $D_3 = -132$. Por Cramer, $y_3 = 2$.

$$A^{-1} = \frac{1}{D} \cdot adj \ A, \ \text{logo o traço de} \ A^{-1} \ \text{\'e} \ t = \frac{-16}{-66} = \frac{8}{33}.$$

$$t + x_1 + z_2 + y_3 = \frac{315}{33} \approx 10$$

Documento compilado em Friday 16th April, 2021, 10:28, tempo no servidor.

Última versão do documento (podem haver correções e/ou aprimoramentos): "bit.ly/mathematicalramblings_public".

Comunicar erro: "a.vandre.g@gmail.com".