Pattern Recognition

Krystian Mikolajczyk

Blackboard

Data representation

Parametric vs non parametric

Parametric vs non parametric

Normal Distribution

- a very common continuous probability distribution
- All normal distributions are symmetric.
- bell-shaped curve with a single peak.
- 68% of the observations fall within 1 standard deviation of the mean
- 95% of the observations fall within 2 standard deviations of the mean
- 99.7% of the observations fall within 3 standard deviations of the mean
- for a normal distribution, almost all values lie within 3 standard deviations of the mean

Parametric vs non parametric

- In cases where
 - the data which are measured by interval or ratio scale come from a normal distribution*
 parametric are used.
- In cases where

* - simplifying assumption, other distributions are possible

- the data is nominal or ordinal
- the assumptions of parametric tests are inappropriate nonparametric are used.

Parametric

Multivariate Gaussian

$$\Sigma_{\mathsf{ML}} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}_{\mathsf{ML}}) (\mathbf{x}_n - \boldsymbol{\mu}_{\mathsf{ML}})^{\mathsf{T}}$$

Parametric – Gaussian mixture

Linear super-position of Gaussians

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Normalization and positivity require

$$\sum_{k=1}^{K} \pi_k = 1 \qquad 0 \leqslant \pi_k \leqslant 1$$

Can interpret the mixing coefficients as prior probabilities

$$p(\mathbf{x}) = \sum_{k=1}^{K} p(k)p(\mathbf{x}|k)$$

Parametric – Gaussian mixture

3 Gaussians

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Fisher Vectors

$$\begin{array}{c} \textbf{v}_1\\ \textbf{u}_1\\ \textbf{v}_2\\ \textbf{FV encoding } \boldsymbol{\Phi} = \\ \textbf{+ sqrt-l^2}\\ \textbf{normalisation} \\ \end{array} \vdots \\ \textbf{v}_K\\ \textbf{u}_K \end{bmatrix}$$

first and second order statistics

$$\mathbf{v}_{k} = \frac{1}{M\sqrt{\pi_{k}}} \sum_{i=1}^{M} \gamma_{k}(\mathbf{x}_{i}) \frac{\mathbf{x}_{i} - \mu_{k}}{\sigma_{i}}$$

$$\mathbf{u}_{k} = \frac{1}{M\sqrt{2\pi_{k}}} \sum_{i=1}^{M} \gamma_{k}(\mathbf{x}_{i}) \left(\frac{\mathbf{x}_{i} - \mu_{k}}{\sigma_{i}} - 1\right)^{2}$$

Nonparametric - histogram

- A histogram is a representation of the distribution of data.
 - an estimate of the probability distribution of a continuous variable
 - a rough sense of the density of the underlying distribution of the data
 - total area of a histogram used for probability density is always normalized to 1
 - m_i bin value
 - n number of observations
 - k number of bins

Nonparametric - histogram

 Cumulative histogram - counts the cumulative number of observations in all of the bins up to the specified bin

$$M_i = \sum_{j=1}^i m_j$$

Nonparametric - histogram

Quantisation of data space

- k number of bins
- *x* data point

 $k = \left\lceil rac{\max x - \min x}{h}
ight
ceil$

• h – bin width

general

$$k = \sqrt{n}$$

assumes normal distribution

$$k = \lceil \log_2 n \rceil + 1$$

$$k = \lceil 2n^{1/3}
ceil$$

non-normal data + adds bins for skewness

$$k = 1 + \log_2(n) + \log_2\left(1 + rac{|g_1|}{\sigma_{g_1}}
ight)$$
Skew

Skew =
$$g_1 = \frac{\sum (x_i - \mu)^3}{n\sigma^3}$$

$$\sigma_{g_1} = \sqrt{rac{6(n-2)}{(n+1)(n+3)}}$$

- Classification of similar objects into different groups
- partitioning of a data set into subset (clusters), so that the data in each subset (ideally) share some common trait - often proximity according to some defined distance measure.

- kmeans partitional
 - Top-down

- Agglomerative
 - Bottom-up

Top-down clustering

- Kmeans
 - Random initialization with arbitrarily set K initial cluster centers

For each data point find the nearest cluster center and assign the point to this cluster

Recompute the duster center by computing the average of the

Top-down clustering

- Kmeans
 - Random initialization with arbitrarily set K
 The solution depends on initialization local optimum

Top-down clustering

- Kmeans
 - Random initialization with arbitrarily set K
 - finds local optimum
 - sensitive to outliers
 - cluster centers might not represent well the point distribution
 - O(Nkld) low complexity, efficient
 - Not if k is comparable with N
 - Good method for partitioning the data

Bottom-up agglomerative

Set the threshold distance – maximum distance between two points

- 1. Compare all pairs and mark the with the smallest distance
- 2. Compare with the threshold stop clustering if distance is larger than the threshold
- 3. Merge the pair and replace by its average
- 4. Repeat points 1 to 3

Bottom-up agglomerative

- Agglomerative,
 - Arbitrarily set maximum cluster size
 - Robust to outliers
 - Meaningful cluster centers

Distance/Similarity Metrics

Intro

- Numerical data
 - Each data instance is a numerical feature vector.

$$\mathbf{x} = \begin{pmatrix} 26 \\ 21.6 \\ 102 \\ \dots \end{pmatrix}$$

• Example: the age, body mass index, blood pressure, ... of a patient.

- Each instance is a structured object: a string, a tree or a graph.
 - Examples: words, DNA sequences, XML documents, molecules, social communities...

SFGAAJHSKJH

Intro

- Pairwise metric
 - Informally, a way of measuring the distance (or similarity) between object
- Metrics are ubiquitous in machine learning
 - Get yourself a good metric and you've basically solved the problem. Metrics are convenient proxies to manipulate complex objects.

Applications

- Classification
- k-Nearest Neighbors,
- Support Vector Machines...
- Clustering: K-Means and its variants.
- Information Retrieval / Ranking: search by query, image/document retrieval...
- Data visualization in high dimensions. ...
- Computer Vision: compare images or videos in ad-hoc representations. Used in image classification, object/face recognition, tracking, image annotation...
- Bioinformatics: compare structured objects such as DNA sequences or temporal series.
- Whenever the notion of metric plays an important role. Fun examples of applications include music recommendation, identity verification, cartoon synthesis and assessing the efficacy of acupuncture, to name a few

Metrics

- The notion of good metric is problem-dependent
 - Each problem has its own semantic notion of similarity, which is often badly captured by standard metrics (e.g., Euclidean distance).
- Solution: learn the metric from data
 - Basic idea: learn a metric that assigns small (resp. large) distance to pairs of examples that are semantically similar (resp. dissimilar).

• Non-negativity:

$$D(P,Q) \ge 0$$

• Identity of indiscernibles:

$$D(P,Q) = 0 \text{ iff } P = Q$$

• Symmetry:

$$D(P,Q) = D(Q,P)$$

• Subadditivity (triangle inequality):

$$D(P,Q) \le D(P,K) + D(K,Q)$$

Pseudo-Metric (aka Semi-Metric)

• Non-negativity: $D(D, Q) \ge 0$

$$D(P,Q) \ge 0$$

• Property changed to:

$$D(P,Q) = 0 \quad \text{if} \quad P = Q$$

• Symmetry:

$$D(P,Q) = D(Q,P)$$

• Subadditivity (triangle inequality):

$$D(P,Q) \le D(P,K) + D(K,Q)$$

Similarity measures

- String edit distance
 - The edit distance is the cost of the cheapest sequence of operations (script) turning a string into another. Allowable operations are insertion, deletion and substitution of symbols. Costs are gathered in a matrix C.

С	\$	а	b	
\$	0	1	1	⇒ edit distance between abb and aa is 2 (needs at least two operations)
а	1	0	1	
b	1	1	0	

• It is a proper distance if and only if C satisfies:

$$Cij \ge 0$$
, $Cij = Cji$, $Cik \le Cij + Cjk \forall i,j,k$

 Generalization to trees (quadratic or cubic complexity) and graphs (NP-complete).

Minkowski-Form Distances

$$L_p(P,Q) = \left(\sum_{\underline{i}} \left|P_i - Q_i\right|^p\right)^{\frac{1}{p}}$$

$$\begin{split} L_1(P,Q) &= \sum_i |P_i - Q_i| \\ L_2(P,Q) &= \sqrt{\sum_i (P_i - Q_i)^2} \\ L_\infty(P,Q) &= \max_i |P_i - Q_i| \end{split}$$

Similarity Measures

• Euclidean Distance

$$d(Q, V) = \sum_{i} (q_i - v_i)^2$$

- Properties
 - Focuses on the differences between the histograms
 - Range: [0,∞]
 - All cells are weighted equally.
 - Not very robust to outliers!

Similarity measures

- Cosine similarity
 - The cosine similarity measures the cosine of the angle between two instances, and can be computed a

$$\mathcal{K}_{cos}(\mathbf{x}, \mathbf{x}') = \frac{\mathbf{x}^T \mathbf{x}'}{\|\mathbf{x}\|_2 \|\mathbf{x}'\|_2}.$$

- It is widely used in data mining (better notion of similarity for bag-of-words + efficiently computable for sparse vectors).
- Bilinear similarity
 - The bilinear similarity is related to the cosine but does not include normalization and is parameterized by a matrix M:

$$K_{\mathbf{M}}(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{M} \mathbf{x}',$$

where M ∈ R^{d×d} is not required to be PSD nor symmetric

Similarity Measures

Cross correlation

$$f_1 = \begin{vmatrix} I_1(0,0) \\ I_1(0,1) \\ I_1(0,2) \\ \vdots \end{vmatrix}$$

$$f_2 = \begin{vmatrix} I_2(0,0) \\ I_2(0,1) \\ I_2(0,2) \\ \vdots \end{vmatrix}$$

$$D_{\text{Euclidean}}^2(f_1, f_2) = ||f_1 - f_2|| = \sum_n (f_1(n) - f_2(n))^2 =$$

If the patches are normalized than
$$\sum_{n} f_1^2(n) = \sum_{n} f_2^2(n) = constant$$

 $CrossCorrelation(f_1, f_2) = \sum_{n} f_1(n) f_2(n)$

- **Properties**
- -very disctinctive,
- -easy to implement

- -very high dimensional,
- -not very robust to noise

Similarity Measures

Intersection

$$\cap (Q, V) = \sum_{i} \min(q_i, v_i)$$

- Properties
 - Measures the common part of both histograms
 - Range: [0,1]
 - For unnormalized histograms, use the following formula

$$\cap(Q, V) = \frac{1}{2} \left(\frac{\sum_{i} \min(q_i, v_i)}{\sum_{i} q_i} + \frac{\sum_{i} \min(q_i, v_i)}{\sum_{i} v_i} \right)$$

Kullback-Leibler Divergence

$$KL(P,Q) = \sum_i P_i \log \frac{P_i}{Q_i}$$

Properties

- Difference between two probability distributions
- Information theoretic origin
- Non symmetric
- Not a metric

$$-Q_{i} = 0$$
?

Jensen-Shannon Divergence

$$JS(P,Q) = \frac{1}{2}KL(P,M) + \frac{1}{2}KL(Q,M)$$
$$M = \frac{1}{2}(P+Q)$$

$$JS(P,Q) = \frac{1}{2} \sum_{i} P_{i} \log \frac{2P_{i}}{P_{i} + Q_{\underline{i}}} + \frac{1}{2} \sum_{i} Q_{i} \log \frac{2Q_{i}}{P_{i} + Q_{i}}$$

Properties

- Information theoretic origin
- Symmetric.
- \sqrt{JS} is a metric.

Jensen-Shannon Divergence

Using Taylor extension and some algebra:

$$JS(P,Q) = \sum_{n=1}^{\infty} \frac{1}{2n(2n-1)} \sum_{i} \frac{(P_{i} - Q_{i})^{2n}}{(P_{i} + Q_{i})^{2n-1}}$$

$$= \frac{1}{2} \sum_{i} \frac{(P_{i} - Q_{i})^{2}}{(P_{i} + Q_{i})} + \frac{1}{12} \sum_{i} \frac{(P_{i} - Q_{i})^{4}}{(P_{i} + Q_{i})^{3}} + \dots$$

$$\chi^{2}(P,Q) = \frac{1}{2} \sum_{i} \frac{(P_{i} - Q_{i})^{2}}{(P_{i} + Q_{i})}$$

Similarity Measures

Chi-square

$$\chi^{2}(P,Q) = \frac{1}{2} \sum_{i} \frac{(P_{i} - Q_{i})^{2}}{(P_{i} + Q_{i})}$$

- Properties
 - Statistical background:
 - Test if two distributions are different
 - Experimentally results are very similar to JS.
 - Range: [0,∞]
 - Cells are not weighted equally!
 - $\sqrt{\chi^2}$ is a metric, experimentally better than L₂
 - More robust to outliers, reduces the effect of large bins

χ^2 Histogram Distance

Different metrics may lead to opposite conclusion

Bin-to-Bin distances such as L2 are sensitive to quantization:

Bin-to-Bin Distances

Can we achieve robustness and

distinctiveness?

Quadratic-Form Histogram Distance

$$\begin{split} QFA(P,Q) &= \sqrt{(P-Q)^T A (P-Q)} \\ &= \sqrt{\sum_{ij} (P_i - Q_i) (P_j - Q_j) A_{\underline{i}j}} \end{split}$$

Properties

- A_{ij} is the similarity between bin i and j.
- If A is the inverse of the covariance matrix, QF is called Mahalanobis distance.
- If A is the identity matrix, QF is the Euclidean distance

$$A = I \underbrace{\sum_{ij} (P_i - Q_i)^2}_{ij} = \underbrace{\int_{2} (P, Q)}_{ij}$$

Quadratic-Form Histogram Distance

$$QFA(P,Q) = \sqrt{(P-Q)^T A(P-Q)}$$

Properties

- Does not reduce the effect of large bins.
- Alleviates the quantization problem.
- Linear time computation in # of non zero $\,A_{ij}\,$
- If A is positive-definite then QF is a metric
- If A is positive-semidefinite then QF is a pseudo-metric

Quadratic-Form Histogram Distance

$$QFA(P,Q) = \sqrt{(P-Q)^T A(P-Q)}$$

$$= \sqrt{(P-Q)^T W^T W(P-Q)}$$

$$= L_2(WP, WQ)$$

- Properties
 - We assume there is a linear transformation that makes bins independent
 - There are cases where this is not true e.g. COLOR
 - Converting distance to similarity (Hafner et. al 95):

$$A_{ij} = 1 - \frac{D_{ij}}{\max_{ij}(D_{ij})} \qquad \text{or} \qquad \begin{aligned} A_{ij} &= e^{-\alpha \frac{D(i,j)}{\max_{ij}(D(i,j))}} \\ &\text{If α is large enough,} \\ &A \text{ will be positive-definitive} \end{aligned}$$

Quadratic-Chi Histogram Distance

$$\mathrm{QC}_{m}^{A}(P,Q) = \sqrt{\sum_{ij} \frac{(P_{i} - Q_{i})(P_{j} - Q_{j})A_{ij}}{(\sum_{c}(P_{c} + Q_{c})A_{ci})^{m}(\sum_{c}(P_{c} + Q_{c})A_{cj})^{m}}}$$

Properties

- A_{ij} is the similarity between bin i and j.
- Generalizes *QF* and χ^2
- Reduces the effect of large bins.
- Alleviates the quantization problem.
- non-negative if A is positive-semidefinite.
- Symmetric
- Triangle inequality unknown.
- If we define $\frac{0}{0} = 0$ and $0 \le m < 1$, QC is continuous.

The Earth Mover's Distance

The Earth Mover's Distance

• The Earth Mover's Distance is defined as the minimal cost that must be paid to transform one histogram into the other, where there is a "ground distance" between the basic features that are aggregated into the histogram.

Earth Mover's Distance - example

[Rubner *et al.* 1998]

 We are given the distribution of grades for a course over the past three years and we want to compare the distributions:

• If we just compare theses as vectors, the results from Year 3 are as similar to the results from Year 2 as they they are to the results of Year1.

Earth Mover's Distance - approach

- Instead of comparing the values in each bin (e.g. Euclidean distance), compute the amount of work needed to transform one distribution into the other.
- Define the cost of moving d values from bin to i to bin j as:

$$\operatorname{Work}(d, i, j) = d \cdot |i - j|$$

 Find the minimal amount of work that needs to be done to transform one distribution into the other.

Earth Mover's Distance - definition

• Given distributions $X = \{x_1, ..., x_n\}$ and $Y = \{y_1, ..., y_n\}$, set $c_{ij} = |i-j|$ and find the values for f_{ij} that minimize:

$$EMD_{work} = \min_{F = \{F_{ij}\}} \sum_{i=1}^{n} \sum_{j=1}^{n} f_{ij} c_{ij}$$

subject to the constraints:

$$c_{ij} \ge 0$$
 cost of moving from bin i to bin j

 $f_{ij} \ge 0$ amount of data moved from bin i to bin j

$$\sum_{j=1}^{n} f_{ij} = X_{i} \quad \text{and} \quad \sum_{j=1}^{n} f_{ij} = Y_{j}$$

- In general, this is the transportation problem and can be solved using linear programming.
- For 1D histograms, this can be solved using the greedy algorithm.

- In general, this is the transportation problem and can be solved using linear programming.
- For 1D histograms, this can be solved using the greedy algorithm.

- Find the first non-empty bin.
- Move earth into first non-empty bin in the other histogram.

- In general, this is the transportation problem and can be solved using linear programming.
- For 1D histograms, this can be solved using the greedy algorithm.

- Find the first non-empty bin.
- Move earth into first non-empty bin in the other histogram.

- In general, this is the transportation problem and can be solved using linear programming.
- For 1D histograms, this can be solved using the greedy algorithm.

- Find the first non-empty bin.
- Move earth into first non-empty bin in the other histogram.

- In general, this is the transportation problem and can be solved using linear programming.
- For 1D histograms, this can be solved using the greedy algorithm.

- Find the first non-empty bin.
- Move earth into first non-empty bin in the other histogram.

- In general, this is the transportation problem and can be solved using linear programming.
- For 1D histograms, this can be solved using the greedy algorithm.

- Find the first non-empty bin.
- Move earth into first non-empty bin in the other histogram.

- In general, this is the transportation problem and can be solved using linear programming.
- For 1D histograms, this can be solved using the greedy algorithm.

- Find the first non-empty bin.
- Move earth into first non-empty bin in the other histogram.

- In general, this is the transportation problem and can be solved using linear programming.
- For 1D histograms, this can be solved using the greedy algorithm.

- Find the first non-empty bin.
- Move earth into first non-empty bin in the other histogram.

- In general, this is the transportation problem and can be solved using linear programming.
- For 1D histograms, this can be solved using the greedy algorithm.

- Find the first non-empty bin.
- Move earth into first non-empty bin in the other histogram.

- In general, this is the transportation problem and can be solved using linear programming.
- For 1D histograms, this can be solved using the greedy algorithm.

- Find the first non-empty bin.
- Move earth into first non-empty bin in the other histogram.

- In general, this is the transportation problem and can be solved using linear programming.
- For 1D histograms, this can be solved using the greedy algorithm.

- Find the first non-empty bin.
- Move earth into first non-empty bin in the other histogram.

Earth Mover's Distance

Alternatively:

Compute the cumulative distributions:

$$CDX(i) = \sum_{j=1}^{i} X_{j}$$

Then the Earth Mover's Distance between X and Y is:

$$EMD(X,Y) = \sum_{i=1}^{n} |CDX(i) - CDY(i)|$$

So that for 1D histograms, the EMD can be expressed as a normed difference.

Distance/Similarity measures

- Euclidean L₂
- Manhattan L₁
- Chesboard L_{inf}
- Euclidean L₂
- Cosine
- Correlation
- Intersection

- Kullback-Leibler divergence
- Jenses-Shanon divergence
- Chi square
- Quadratic form distance
- Earth movers distance
- Mahalanobis distance

Distance Metric Learning

Distance Metric Learning - motivation

Learn metric for scaling dimensions/features

- Example: UCI Wine data set
 - 13 features 9/13 features have mean value in [0,10]
 - 3/13 features have mean value in [10,100]
 - One feature has a mean value of 747 (with std 315)

- 1) Alcohol
- 2) Malic acid
- 3) Ash
- 4) Alcalinity of ash
- 5) Magnesium
- 6) Total phenols
- 7) Flavanoids
- 8) Nonflavanoid phenols
- 9) Proanthocyanins
- 10)Color intensity
- 11)Hue
- 12)OD280/OD315 of diluted wines
- 13)Proline
- Using a standard distance such as Euclidean distance, the largest feature dominates the computation
 - That feature may not be important for classification
- Need a weighting of the features that improves classification or other tasks

Distance Metric Learning - motivation

Learn metric for reducing/grouping dimensions/features

Distance Metric Learning - motivation

Learn metric for reducing/grouping dimensions/features

Distance Metric Learning

- Feature re-weighting/scaling
 - Learn weightings (scaling) over the features, then use standard distance (e.g., Euclidean) after re-weighting
 - Diagonal Mahalanobis methods
 - Number of parameters grows linearly with the dimensionality d
- Full linear transformation
 - In addition to scaling of features, also rotates the data
 - Linear dimensionality reduction for transformations to r < d dimensions
 - For transformations from d dimensions to d dimensions, number of parameters grows quadratically in d
- Non-linear transformation
 - Variety of methods
 - Kernelization of linear transformations
 - Neural nets
 - Complexity varies from method to method

Distance Metric Learning

- Unsupervised Metric Learning
 - Dimensionality reduction
 - Principal Components Analysis
 - Kernel PCA
 - Multidimensional Scaling

- Supervised and Semi-supervised Metric Learning
 - Constraints or labels given to the algorithm
 - Example: set of similarity and dissimilarity constraints

Mahalanobis distance – original covariance based

ON THE GENERALIZED DISTANCE IN STATISTICS.

By P. C. MAHALANOBIS.

(Read January 4, 1936.)

1. A normal (Gauss-Laplacian) statistical population in P-variates is usually described by a P-dimensional frequency distribution:—

$$df = \text{const.} \times e^{-\frac{1}{2\alpha} \left[A_{11}(x_1 - \alpha_1)^2 + A_{22}(x_2 - \alpha_2)^2 + \dots + 2A_{12}(x_1 - \alpha_1)(x_2 - \alpha_2) + \dots \right]} \cdot dx_1 \cdot dx_2 \cdot dx_P$$
 (1.0)

where

 $\alpha_1, \alpha_2 \dots \alpha_P$ =the population (mean) values
of the P-variates $x_1, x_2 \dots x_P$... (1·1) $\alpha_{ii} = \sigma_i^2$, are the respective variances (1·2) $\alpha_{ij} = \sigma_i \cdot \sigma_j \cdot \rho_{ij}$, where ρ_{ij} =the coefficient of correlation between the ith and jth variates (1·3) α is the determinant $|\alpha_{ij}|$ defined more fully in (2·2), and A_{ij} is the minor of α_{ij} in this determinant.

A P-variate normal population is thus completely specified by the set of P(P+1)/2 parameters *:—

Mahalanobis distance – original covariance based

Assume the data is represented as N vectors of length d:

$$X = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N]$$

Squared Euclidean distance

$$d(\mathbf{x}_1, \mathbf{x}_2) = \|\mathbf{x}_1 - \mathbf{x}_2\|_2^2$$

= $(\mathbf{x}_1 - \mathbf{x}_2)^T (\mathbf{x}_1 - \mathbf{x}_2)$

Let
$$\Sigma = \sum_{i,j} (\mathbf{x}_i - \mu) (\mathbf{x}_j - \mu)^T$$

The "original" Mahalanobis distance:

$$d_{M}(\mathbf{x}_{1},\mathbf{x}_{2})=(\mathbf{x}_{1}-\mathbf{x}_{2})^{T}\Sigma^{-1}(\mathbf{x}_{1}-\mathbf{x}_{2})$$

Mahalanobis distance

- Weighting/scaling of dimensions/features
 - Diagonal covariance matrix

$$f_{1} = [v_{1}, \dots, v_{N}] \qquad D_{\text{Euclidean}}^{2} (f_{1}, f_{2}) = ||f_{1} - f_{2}|| = \sum_{n} (f_{1}(n) - f_{2}(n))^{2} \qquad f_{2} = [v_{1}, \dots, v_{N}]$$

$$D_{\text{Mahalanobis}}^{2} (f_{1}, f_{2}) = [f_{1} - f_{2}]^{T} \cdot \sum^{-1} \cdot [f_{1} - f_{2}] =$$

$$= \begin{bmatrix} f_{1}(0) - f_{2}(0) \\ f_{1}(1) - f_{2}(1) \\ \vdots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} & \cdots \\ \sigma_{12} & \sigma_{2}^{2} & \cdots \\ \sigma_{12} & \sigma_{2}^{2} & \cdots \end{bmatrix}^{-1} \begin{bmatrix} f_{1}(0) - f_{2}(0) \\ f_{1}(1) - f_{2}(1) \\ \vdots & \vdots & \ddots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} & \cdots \\ \sigma_{13} & \sigma_{2}^{2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}^{-1} \begin{bmatrix} f_{1}(0) - f_{2}(0) \\ f_{1}(1) - f_{2}(1) \\ \vdots & \vdots & \ddots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} & \cdots \\ \sigma_{13} & \sigma_{2}^{2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} & \cdots \\ \sigma_{13} & \sigma_{2}^{2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} & \cdots \\ \sigma_{13} & \sigma_{2}^{2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} & \cdots \\ \sigma_{13} & \sigma_{2}^{2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} & \cdots \\ \sigma_{13} & \sigma_{2}^{2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} & \cdots \\ \sigma_{13} & \sigma_{2}^{2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} & \cdots \\ \sigma_{13} & \sigma_{2}^{2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{13} & \cdots \\ \sigma_{13} & \sigma_{2}^{2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{13} & \cdots \\ \sigma_{2} & \sigma_{2}^{2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{13} & \cdots \\ \sigma_{2} & \sigma_{2}^{2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{13} & \cdots \\ \sigma_{2} & \sigma_{2}^{2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{13} & \cdots \\ \sigma_{2} & \sigma_{2}^{2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{13} & \cdots \\ \sigma_{2} & \sigma_{2}^{2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{13} & \cdots \\ \sigma_{2} & \sigma_{2}^{2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{13} & \cdots \\ \sigma_{2} & \sigma_{2}^{2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{13} & \cdots \\ \sigma_{2} & \sigma_{2}^{2} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{13} & \cdots \\ \sigma_{2} & \sigma_{2}^{2} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{13} & \cdots \\ \sigma_{2} & \sigma_{2}^{2} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{13} & \cdots \\ \sigma_{2} & \sigma_{2}^{2} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{13} & \cdots \\ \sigma_{2} & \sigma_{2}^{2} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{13} & \cdots \\ \sigma_{2}^{2} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}^{T} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{13} & \cdots \\ \sigma_{2}^{2} &$$

$$if \quad \sigma_{ab} = 0 \quad \forall a \neq b$$

$$then D^{2} \qquad (f_{1}, f_{2}) = \sum_{n=0}^{\infty} \frac{(f_{1}(n) - f_{2}(n))}{2}$$

then
$$D_{Mahalanobis}^{2}(f_{1}, f_{2}) = \sum_{n} \frac{(f_{1}(n) - f_{2}(n))^{2}}{\sigma_{n}^{2}}$$

if
$$\sigma_{ab} = const \ \forall a = b, and \ \sigma_{ab} = 0 \ \forall a \neq b$$

$$D_{Mahalanobis}^{2}(f_{1}, f_{2}) = \frac{1}{const^{2}} \sum_{n} (f_{1}(n) - f_{2}(n))^{2} = D_{Euclidean}^{2}(f_{1}, f_{2})$$

Mahalanobis distance - general

General form

$$d_{\mathcal{A}}(\mathbf{x}_1,\mathbf{x}_2) = (\mathbf{x}_1 - \mathbf{x}_2)^T \mathcal{A}(\mathbf{x}_1 - \mathbf{x}_2)$$

- Why is A positive semi-definite (PSD)?
 - If A is not PSD, then d_A could be negative
 - Suppose $\mathbf{v} = \mathbf{x}_1 \mathbf{x}_2$ is an eigenvector corresponding to a negative eigenvalue λ of A

$$d_{A}(\mathbf{x}_{1}, \mathbf{x}_{2}) = (\mathbf{x}_{1} - \mathbf{x}_{2})^{T} A(\mathbf{x}_{1} - \mathbf{x}_{2})$$

$$= \mathbf{v}^{T} A \mathbf{v}$$

$$= \lambda \mathbf{v}^{T} \mathbf{v} = \lambda < 0$$

Mahalanobis distance - general

- Properties of a metric:
 - $d(\mathbf{x}, \mathbf{y}) \geq 0$
 - $d(\mathbf{x}, \mathbf{y}) = 0$ if and only if $\mathbf{x} = \mathbf{y}$
 - $d(\mathbf{x},\mathbf{y}) = d(\mathbf{y},\mathbf{x})$
 - $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$
- d_A is not technically a metric $d_A(\mathbf{x}_1,\mathbf{x}_2)=(\mathbf{x}_1-\mathbf{x}_2)^TA(\mathbf{x}_1-\mathbf{x}_2)$
 - Analogous to Euclidean distance, need the square root:

$$\sqrt{d_A(\mathbf{x}_1,\mathbf{x}_2)} = \sqrt{(\mathbf{x}_1 - \mathbf{x}_2)^T A(\mathbf{x}_1 - \mathbf{x}_2)}$$

- Square root of the Mahalanobis distance satisfies all properties if A is strictly positive definite, but if A is positive semi-definite then second property is not satisfied
 - Called a pseudo-metric
- In practice, most algorithms work only with d_A

Mahalanobis distance - general

- Can view d_A as the squared Euclidean distance after applying a linear transformation
 - Decompose $A = G^T G$ via Cholesky decomposition
 - (Alternatively, take eigenvector decomposition $A = V\Lambda V^T$ and look at $A = (\Lambda^{1/2}V^T)^T(\Lambda^{1/2}V^T)$)

$$d_{A}(\mathbf{x}_{1}, \mathbf{x}_{2}) = (\mathbf{x}_{1} - \mathbf{x}_{2})^{T} A(\mathbf{x}_{1} - \mathbf{x}_{2})$$

$$= (\mathbf{x}_{1} - \mathbf{x}_{2})^{T} G^{T} G(\mathbf{x}_{1} - \mathbf{x}_{2})$$

$$= (G\mathbf{x}_{1} - G\mathbf{x}_{2})^{T} (G\mathbf{x}_{1} - G\mathbf{x}_{2})$$

$$= ||G\mathbf{x}_{1} - G\mathbf{x}_{2}||_{2}^{2}$$

- Mahalanobis distance is just the squared Euclidean distance after applying the linear transformation G
 - Unitless and scale invariant

Mahalanobis distance learning - illustration

 Given this grouping we may want to learn matrix A such that it brings closer the related groups

$$d_{A}(\mathbf{x}_{1}, \mathbf{x}_{2}) = (\mathbf{x}_{1} - \mathbf{x}_{2})^{T} A(\mathbf{x}_{1} - \mathbf{x}_{2})$$

$$= (\mathbf{x}_{1} - \mathbf{x}_{2})^{T} G^{T} G(\mathbf{x}_{1} - \mathbf{x}_{2})$$

$$= (G\mathbf{x}_{1} - G\mathbf{x}_{2})^{T} (G\mathbf{x}_{1} - G\mathbf{x}_{2})$$

$$= \|G\mathbf{x}_{1} - G\mathbf{x}_{2}\|_{2}^{2}$$
 | learn:

$$A = \left(egin{array}{cc} 1 & 0 \ 0 & \epsilon \end{array}
ight) \qquad G = \left(egin{array}{cc} 1 & 0 \ 0 & \sqrt{\epsilon} \end{array}
ight)$$

Mahalanobis distance learning - illustration

 Given this grouping we may want to learn matrix A such that it brings closer the related groups

$$d_{A}(\mathbf{x}_{1}, \mathbf{x}_{2}) = (\mathbf{x}_{1} - \mathbf{x}_{2})^{T} A(\mathbf{x}_{1} - \mathbf{x}_{2})$$

$$= (\mathbf{x}_{1} - \mathbf{x}_{2})^{T} G^{T} G(\mathbf{x}_{1} - \mathbf{x}_{2})$$

$$= (G\mathbf{x}_{1} - G\mathbf{x}_{2})^{T} (G\mathbf{x}_{1} - G\mathbf{x}_{2})$$

$$= \|G\mathbf{x}_{1} - G\mathbf{x}_{2}\|_{2}^{2}$$
| learn:

$$A = \left(\begin{array}{cc} \epsilon & 0 \\ 0 & 1 \end{array} \right) \qquad G = \left(\begin{array}{cc} \sqrt{\epsilon} & 0 \\ 0 & 1 \end{array} \right)$$

Mahalanobis distance learning - formulation

- Typically 2 main pieces to a Mahalanobis metric learning problem
 - A set of constraints on the distance
 - A regularizer on the distance / objective function
- In the constrained case, a general problem may look like:

min_A
$$r(A)$$

s.t. $c_i(A) \le 0$ $0 \le i \le C$
 $A \succeq 0$

• r is a regularizer/objective on A and c_i are the constraints on A

Mahalanobis distance learning - constraints

- Similarity / Dissimilarity constraints
 - ullet Given a set of pairs ${\cal S}$ of points that should be similar, and a set of pairs of points ${\mathcal D}$ of points that should be dissimilar
 - A single constraint would be of the form

$$d_A(\mathbf{x}_i, \mathbf{x}_j) \leq \ell$$

for
$$(i,j) \in \mathcal{S}$$
 or

$$d_A(\mathbf{x}_i, \mathbf{x}_j) \geq u$$

for
$$(i,j) \in \mathcal{D}$$

- Easy to specify given class labels
- Aggregate distance constraints
 - Constrain the sum of all pairs of same-class distances to be small, e.g.,

$$\sum_{ij} y_{ij} d_{A}(\mathbf{x}_{i}, \mathbf{x}_{j}) \leq 1$$

Mahalanobis distance learning - constraints

- Relative distance constraints
 - Given a triple $(\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k)$ such that the distance between \mathbf{x}_i and \mathbf{x}_j should be smaller than the distance between \mathbf{x}_i and \mathbf{x}_k , a single constraint is of the form

$$d_A(\mathbf{x}_i,\mathbf{x}_j) \leq d_A(\mathbf{x}_i,\mathbf{x}_k) - m,$$

where *m* is the margin

Popular for ranking problems

Define constraints tailored to k-NN in a local way

the k nearest neighbours should be of same class ("target neighbors"),
 while examples of different classes should be kept away ("impostors"):

$$S = \{(x_i, x_j) : y_{ij} = 1 \text{ and } x_j \text{ belongs to the k-neighborhood of } x_i\},$$

 $R = \{(x_i, x_j, x_k) : y_{ij} = 1, y_{ik} = 0\}.$

Mahalanobis distance learning - objectives

- General loss functions D(A,A₀)
 - Distance between matrices A and A_0
 - A is a matrix we learn
 - A_0 is a baseline matrix, which we start the learning with
- Loss/divergence functions
 - Squared Frobenius $||A A_0||_F^2$
 - LogDet divergence: $tr(AA_0^{-1}) log det(AA_0^{-1}) d$
 - $||A||_F^2$ Frobenius norm
 - $tr(AC_0)$ (i.e., if C_0 is the identity, this is the trace norm)

Mahalanobis distance learning - objectives

Frobenius norm – "Euclidean" norm used for matrices

$$||\mathbf{A}||_F \equiv \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$

LogDet divergence

$$D_{\ell d}(X,Y) = \operatorname{trace}(XY^{-1}) - \log \det(XY^{-1}) - d,$$

=
$$\operatorname{trace}(Y^{-1/2}XY^{-1/2}) - \log \det(Y^{-1/2}XY^{-1/2}) - d.$$

- Can be used as a measure of distance
 - Positive, and zero iff X = Y
 - But not symmetric, and triangle inequality does not hold
 - Scale-invariance

$$D_{\ell d}(X, Y) = D_{\ell d}(\alpha X, \alpha Y), \quad \alpha \geq 0$$

Trace - sum of diagonal elements

$$\operatorname{tr}(A) = \sum_{i} a_{ii}$$

Mahalanobis distance learning - objectives

- Example 1: tr(A)
 - Trace function is the sum of the eigenvalues
 - Analogous to the ℓ_1 penalty, promotes sparsity
 - Leads to low-rank A
- Example 2: LogDet Divergence
 - Defined only over positive semi-definite matrices
 - Makes computation simpler
 - Possesses other desirable properties
- Example 3: $||A||_F^2$
 - Arises in many formulations
 - Easy to analyze and optimize

Mahalanobis distance learning – example A

Problem posed as follows:

$$\max_{A} \qquad \sum_{(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{D}} \sqrt{d_A(\mathbf{x}_i, \mathbf{x}_j)}$$
s.t.
$$c(A) = \sum_{(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{S}} d_A(\mathbf{x}_i, \mathbf{x}_j) \leq 1$$

$$A \succeq 0.$$

- ullet Here, ${\mathcal D}$ is a set of pairs of dissimilar pairs, ${\mathcal S}$ is a set of similar pairs
- Objective tries to maximize sum of dissimilar distances
- Constraint keeps sum of similar distances small
 - Use square root in regularizer to avoid trivial solution

[Xing, Ng, Jordan, and Russell; NIPS 2002]

Mahalanobis distance learning – example B

Problem formulated as follows:

$$\|A\|_F^2$$
s.t. $d_A(\mathbf{x}_i, \mathbf{x}_k) - d_A(\mathbf{x}_i, \mathbf{x}_j) \geq 1 \quad \forall (i, j, k) \in \mathcal{R}$
 $A \succeq 0$.

- ullet Constraints in ${\cal R}$ are relative distance constraints
- ullet There may be no solution to this problem; introduce slack variables ξ_{ijk}

$$\begin{aligned} \min_{A,\xi} & \|A\|_F^2 + \gamma \sum_{(i,j,k) \in \mathcal{R}} \xi_{ijk} \\ \text{s.t.} & d_A(\mathbf{x}_i, \mathbf{x}_k) - d_A(\mathbf{x}_i, \mathbf{x}_j) \geq 1 - \xi_{ijk} \quad \forall (i,j,k) \in \mathcal{R} \\ & \xi_{ijk} \geq 0 \quad \forall (i,j,k) \in \mathcal{R} \\ & A \succeq 0. \end{aligned}$$

[Schultz and Joachims; NIPS 2002]

Mahalanobis distance learning – example C

Problem Formulation

$$\min_{A} \qquad \sum_{(\mathbf{x}_i, \mathbf{x}_j) \in \mathcal{S}} d_A(\mathbf{x}_i, \mathbf{x}_j)
\text{s.t.} \quad d_A(\mathbf{x}_i, \mathbf{x}_k) - d_A(\mathbf{x}_i, \mathbf{x}_j) \ge 1 \quad \forall (\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_k) \in \mathcal{R}
\quad A \succeq 0.$$

- Also define set S of pairs of points $(\mathbf{x}_i, \mathbf{x}_j)$ such that \mathbf{x}_i and \mathbf{x}_j are neighbors in the same class
- ullet Want to minimize sum of distances of pairs of points in ${\cal S}$
- Also want to satisfy the relative distance constraints
- Introduce slack variables

$$\min_{A,\xi} \quad \sum_{(\mathbf{x}_i,\mathbf{x}_j)\in\mathcal{S}} d_A(\mathbf{x}_i,\mathbf{x}_j) + \gamma \sum_{(\mathbf{x}_i,\mathbf{x}_j,\mathbf{x}_k)\in\mathcal{R}} \xi_{ijk}
\text{s.t.} \quad d_A(\mathbf{x}_i,\mathbf{x}_k) - d_A(\mathbf{x}_i,\mathbf{x}_j) \ge 1 - \xi_{ijk} \quad \forall (\mathbf{x}_i,\mathbf{x}_j,\mathbf{x}_k) \in \mathcal{R}
\quad A \succeq 0, \xi_{ijl} \ge 0.$$

Mahalanobis distance learning

- Many existing Mahalanobis distance learning methods can be obtained simply by choosing a regularizer/objective and constraints
 - Memory overhead grows quadratically with the dimensionality of the data
 - Does not scale to high-dimensional data $(d = O(10^6))$ for many image embeddings)
 - Only works for linearly separable data

but
There is no linear transformation for such grouping problem

Map input data to higher-dimensional "feature" space:

$$\mathbf{x} \to \varphi(\mathbf{x})$$

- Idea: Run machine learning algorithm in feature space
- Use the following mapping:

$$\mathbf{x} = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \to \left[\begin{array}{c} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{array} \right]$$

Map input data to higher-dimensional "feature" space:

$$\mathbf{x} \to \varphi(\mathbf{x})$$

- Idea: Run machine learning algorithm in feature space
- Use the following mapping:

$$\mathbf{x} = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \to \left[\begin{array}{c} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{array} \right]$$

- Kernel function: $\kappa(\mathbf{x}, \mathbf{y}) = \langle \varphi(\mathbf{x}), \varphi(\mathbf{y}) \rangle$
- "Kernel trick" no need to explicitly form high-dimensional features
- In this example: $\langle \varphi(\mathbf{x}), \varphi(\mathbf{y}) \rangle = (\mathbf{x}^T \mathbf{y})^2$

- Kernel function (Definition)
 - A symmetric similarity function K is a kernel if there exist a (possibly implicit) mapping function $\phi: X \to H$ from instance space X to a Hilbert space H such that K can be written as an inner product in H: $K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$
 - *K* is a kernel if it is *positive semi-definite* i.e. the following

$$\sum_{i,j=1}^n c_i c_j K(x_i,x_j) \geq 0$$

holds for any $n \in \mathbb{N}, x_1, \ldots, x_n \in \mathcal{X}, c_1, \ldots, c_n \in \mathbb{R}$

- Main idea
 - Take an existing learning algorithm
 - Write it using inner products
 - Replace inner products $\mathbf{x}^T \mathbf{y}$ with kernel functions $\varphi(\mathbf{x})^T \varphi(\mathbf{y})$
 - If $\varphi(\mathbf{x})$ is a non-linear function, then algorithm has been *implicitly* non-linearly mapped
- Examples of kernel functions

$$\kappa(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y})^p$$
 Polynomial Kernel $\kappa(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{y}\|_2^2}{2\sigma^2}\right)$ Gaussian Kernel $\kappa(\mathbf{x}, \mathbf{y}) = \tanh(c(\mathbf{x}^T \mathbf{y}) + \theta)$ Sigmoid Kernel

 Kernel functions also defined over objects such as images, trees, graphs, etc.

Kernel Distance learning - kmeans example

Recall the k-means clustering algorithm

- Repeat until convergence:
 - Compute the means of every cluster π_c

$$\mu_c = \frac{1}{|\pi_c|} \sum_{\mathbf{x}_i \in \pi_c} \mathbf{x}_i$$

Reassign points to their closest mean by computing

$$\|\mathbf{x} - \mu_c\|_2^2$$

for every data point **x** and every cluster π_c

Kernelization of k-means

• Expand
$$\|\mathbf{x} - \mu_c\|_2^2$$
 as

ernelization of
$$k$$
-means
$$\mathbf{x}^T\mathbf{x} - \frac{2\sum_{\mathbf{x}_i \in \pi_c} \mathbf{x}^T\mathbf{x}_i}{|\pi_c|} + \frac{\sum_{\mathbf{x}_i, \mathbf{x}_j \in \pi_c} \mathbf{x}_i^T\mathbf{x}_j}{|\pi_c|^2}$$

- No need to explicitly compute the mean; just compute this for every point to every cluster
- Replace inner products with kernels, and this is kernel k-means

$$\kappa(\mathbf{x}, \mathbf{x}) - \frac{2\sum_{\mathbf{x}_i \in \pi_c} \kappa(\mathbf{x}, \mathbf{x}_i)}{|\pi_c|} + \frac{\sum_{\mathbf{x}_i, \mathbf{x}_j \in \pi_c} \kappa(\mathbf{x}_i, \mathbf{x}_j)}{|\pi_c|^2}$$

Kmeans finds linear separators for cluster boundaries, kernel Kmeans finds non-linear separators

Distance learning – Mahalanobis kernel summary

Consider the following kernelized problem

- You are given a kernel function $\kappa(\mathbf{x}, \mathbf{y}) = \varphi(\mathbf{x})^T \varphi(\mathbf{y})$
- You want to run a metric learning algorithm in kernel space
 - Optimization algorithm cannot use the explicit feature vectors $\varphi(\mathbf{x})$
 - Must be able to compute the distance/kernel over arbitrary points (not just training points)
- Mahalanobis distances:

$$d_{\mathcal{A}}(\mathbf{x}, \mathbf{y}) = (\mathbf{x} - \mathbf{y})^{T} A(\mathbf{x} - \mathbf{y}) \qquad d_{\mathcal{A}}(\mathbf{x}, \mathbf{y}) = (\varphi(\mathbf{x}) - \varphi(\mathbf{y}))^{T} A(\varphi(\mathbf{x}) - \varphi(\mathbf{y}))$$

Inner products / kernels:

$$\kappa_{A}(\mathbf{x}, \mathbf{y}) = \mathbf{x}^{T} A \mathbf{y}$$
 $\kappa_{A}(\mathbf{x}, \mathbf{y}) = \varphi(\mathbf{x})^{T} A \varphi(\mathbf{y})$

- Algorithms for constructing A learn both measures
 - Can be thought of as a kind of kernel learning problem