Escuela Técnica Superior de Ingeniería Informática

Estructuras Algebraicas para la Computación

25 de Junio de 2012

Apellidos y Nombi	re:				Grupo:
DNI:	Titulac	ión:		. Firma:	•••••
1. En el conjunto	\mathbb{R} de los núme	eros reales se o	consideran los	subconjuntos:	
	$A = \{x \in \mathbb{R} \mid \exists$	$1 \le x \le 3\}$	$B = \begin{cases} b_n = 1 \end{cases}$	$\frac{3n}{n+6} \mid n \in \mathbb{N} \bigg\}$	
Determina los c	eardinales de cada	uno de los co	onjuntos:		
((i) A (ii)	B (iii	$A \cup B$	(iv) $A \cap B$	(v) $B-A$
2. En los siguiente	s apartados deter	mina si el dia	grama de Hass	se representa un re	tículo ordenado
	(a)	(b)	(c)	(d)	
En caso afirmat	civo, estudia si es	complementa	do y si es dist	ributivo.	

- 3. Determina la veracidad de los siguientes enunciados:
 - a) En $(D_{90}, |)$ hay exactamente 4 elementos que no tienen complemento.
 - b) $(D_{90}, |)$ es un álgebra de Boole.
 - c) D_{1001} y \mathbb{B}^3 son álgebras de Boole isomorfas.
 - d) $\mathcal{F}_3 = \mathcal{F}(\mathbb{B}^3, \mathbb{B})$ es un álgebra de Boole que tiene 8 átomos.
 - e) La forma normal conjuntiva de la función $F: \mathbb{B}^3 \to \mathbb{B}$ definida $F(x,y,z) = xz + y\overline{z}$ es $(\overline{x} + y + z) \cdot (x + y + \overline{z}) \cdot (x + y + z)$
 - f) $(\mathbb{R} \{0\}, *)$ es grupo, siendo * la operación definida $x * y = \frac{x \cdot y}{2}$
 - g) Sea (G,*) un grupo. Si G tiene siete elementos, entonces es abeliano.
 - h) El conjunto de matrices

$$\mathcal{A} = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix}, \ a, b \in \mathbb{R} \right\}$$

tiene estructura de cuerpo con la suma y el producto usual de matrices.

4. Se considera el siguiente sistema de ecuaciones lineales en \mathbb{Z}_5

$$\left\{
\begin{array}{cccccc}
x & + & 2y & + & z & = & 2 \\
2x & + & y & + & z & = & \alpha + 3 \\
4x & + & y & & = & 0
\end{array}
\right\}$$

- a) Estudia la compatibilidad según el valor del parámetro α .
- b) Resuélvelo cuando sea posible.
- 5. Sea la aplicación lineal $f: \mathbb{R}^4 \to \mathbb{R}^4$ definida por

$$f(x, y, z, t) = (x + y + t, ax + ay + z + (1 + a)t, x + (1 - a)y + 2az + (1 + a)t, x + 2z + 2t)$$

- a) Halla la matriz asociada a f respecto a la base canónica de \mathbb{R}^4 .
- b) Determina, según los valores de a, la dimensión de Ker(f) e Im(f).
- c) Estudia si el vector $(1, 1+a, 1+2a, a+3) \in Im(f)$ para algún $a \in \mathbb{R}$.
- d) Halla, según los valores de a, una base de Ker(f)
- 6. Sea la matriz

$$A = \left(\begin{array}{rrr} 3 & a & 0 \\ -1 & 2 & 1 \\ 0 & b & 3 \end{array}\right)$$

- a) Determina los valores de los parámetros a y b para los que existe una matriz Q tal que Q^tAQ sea una matriz diagonal D.
- b) Asigna valores adecuados a los parámetros y halla Q y D.
- c) Enuncia el teorema de Cayley-Hamilton.
- d) Usa el apartado anterior para calcular la inversa de A (si existe).
- 7. En el espacio \mathbb{R}^3 se considera la base

$$\mathcal{B} = {\vec{v}_1 = (0, 1, 1), \vec{v}_2 = (1, 0, 1), \vec{v}_3 = (1, 1, 0)}$$

- a) Halla una base ortonormal \mathcal{B}' a partir de la base \mathcal{B} .
- b) Calcula las coordenadas del vector $\vec{v} = (1, -2, 3)$ respecto a la base \mathcal{B}' .

NORMAS DEL EXAMEN: Numera todos los folios y escribe tus datos en todos ellos, incluido éste.

Escribe en azul o negro.

Razona todas las respuestas.