START: Self-taught Reasoner with Tools

如何用 HINT (提示) + SFT 唤醒 QWQ 的 TOOL CALLING 能力?

Chengpeng Li^{1,2*}, Mingfeng Xue^{2*}, Zhenru Zhang², Jiaxi Yang^{2*}, Beichen Zhang^{2*}, Xiang Wang¹, Bowen Yu², Binyuan Hui², Junyang Lin², Dayiheng Liu^{2†}

¹University of Science and Technology of China ²Alibaba Group

{lichengpeng.lcp,liudayiheng.ldyh}@alibaba-inc.com

本文提出了 START,一种让 QwQ"自学使用工具"的训练方法,核心流程分为两步:

Hint-infer: 在原有的纯语言推理数据中插入自然语言提示,引导 QwQ 自动生成包含 Python 解释 器调用的 TIR(Tool-Integrated Reasoning)数据。

Hint-RFT:对这些自生成数据进行打分筛选,再用 SFT 训练QwQ,最终得到内化了 Tool Calling 能 力的强化版本 —— START 模型。

背景

随着LLM推理能力的增强,Long CoT逐渐成为主流:模型不 仅给答案,还能一步步"思考"过程。但仅靠语言生成推理 path往往不够,如果能再结合外部工具想必是极好的,这类 方法被称为工具集成推理(Tool-Integrated Reasoning, TIR)。

目前主流做法是RL、SFT以及prompt,本文聚焦sft,一个 自然的问题是如何得到TIR训练数据呢? START 提出了一种 全新范式:不依赖人工标准数据,让模型"自学"如何使用工 具,通过提示激发(Hint-Infer)、再微调强化(Hint-RFT),最 终获得稳定的 tool calling 能力。

TOOL: PYTHON解释器

任务: 数学推理和代码生成

- 实验对象: QwQ-32B-preview
- 针对数学推理和代码生成,作者构造了很多hint(提 示),尽量覆盖方方面面,见下左图(Hint-Library)
- 如何使用hint?即hint如何插入到已有的纯语言推理 path中: 1) 在高频连接词(比如"Alternatively", "Wait")之后插入 hint,因为这些词通常出现在模型 "反思"、"切换思路"的时刻,插入hint让llm调用tool帮 助自己;2)在generation即将结束时插入 hint,延长 "思考时间",鼓励补充 reasoning 和调用工具

HINT长什么样子?

🔗 Hint-Library 🚣

Code Hint							
Debug hint							
Let me first write a code that includes all test cases from							
the problems to validate my reasoning locally. To ensure that							
my coderuns correctly, I need to embed all test case inputs							
directly into my code and print the corresponding output,							
following the sample structure below:							

```python [A code template]

```output

Alright, with this structure, I can write and execute my code in a Python compiler using real example inputs. By comparing the actual outputs with the expected outputs, I can initially assess the correctness of my code. If the outputs do not match, I can debug accordingly. Recall the test cases in the problem statement. {testcase} Alright, now I can write a debug code with samples input. ```python

(A hint for code question without starter code) (Different Functional hints for math question)

Math Hint Complex calculations hint

I can use Python to perform complex calculations for this problem.```python

Self-reflection hint I can use Python to check if my approach is correct and refine

it, if necessary. ``` python **Check logic hint**

maybe Python can assist in ensuring our logical deductions are

sound. ```python **Alternative method hint**

I can use Python to explore an alternative method for solving

General hint

maybe using python here is a good idea. ` ` ` python

tools.```python

Deeper think hint I can think more deeply about this problem through python

训练流程

c) RFT

| Method | GPQA | MATH500 | AMC23 | AIME24 | AIME25 | LiveCodeBench |
|----------------------------------|--------------------|--------------------|---------------------|-------------|--------------------|---------------|
| | | G | eneral LLMs | | | |
| Qwen2.5-32B | 46.4 | 75.8 | 57.5 | 23.3 | - | 22.3 |
| Qwen2.5-Coder-32B | 33.8 | 71.2 | 67.5 | 20.0 | - | 25.0 |
| Llama3.3-70B | 43.4 | 70.8 | 47.5 | 36.7 | - | 34.8 |
| DeepSeek-V3-671B | 59.1 | 90.2 | - | 39.2 | - | 40.5 |
| GPT-40 [†] | 50.6 | 60.3 | - | 9.3 | - | 33.4 |
| | | Red | soning LLMs | | | |
| API Only | | | | | | |
| o1-preview [†] | 73.3 | 85.5 | 81.8 | 44.6 | 37.5 | 53.6 |
| o1-mini [†] | - | 90.0 | - | 63.6 | 50.8 | - |
| o1 [†] | 77.3 | 94.8 | - | 74.4 | - | 63.4 |
| o3-mini(low) [†] | 70.6 | 95.8 | - | 60.0 | 44.2 | 75.6 |
| Open weights | | | | | | |
| R1-Distill-Qwen-32B [†] | 62.1 | 94.3 | 93.8 | 72.6 | 46.7 | 57.2 |
| s1-32B [†] | 59.6 | 93.0 | - | 50.0 | 33.3 | - |
| Search-o1-32B [†] | 63.6 | 86.4 | 85.0 | 56.7 | - | 33.0 |
| QwQ-32B-Preview | 58.1 | 90.6 | 80.0 | 50.0 | 40.0 | 41.4 |
| START | 63.6 (+5.5) | 94.4 (+3.8) | 95.0 (+15.0) | 66.7(+16.7) | 47.1 (+7.1) | 47.3(+5.9) |

让QWQ自己生成数据SFT自己,然后还能提升TIR能 提升QWQ的TIR能力,

这也让我联想到近期大量使用 RLVR 声称"让 QWEN2.5 学会了某种能力"的工作。在采信这些结论 之前,我们或许应该追问一下:这些被"学会"的能 力,是模型原本就具备的,只是被 RL 引导激活出 来? 还是通过 RL 真正学习到了全新知识?