AI-POWERED INTERACTIVE LEARNING ASSISTANT FOR CLASSROOMS

INTRODUCTION

Objective:

To enhance student engagement using an intelligent assistant that:

- Accepts voice, text, and document inputs.
- Runs locally (no need for high-end GPU or constant internet).
- Leverages OpenVINO for optimized performance.

MODEL ARCHITECTURE

Main Components:

- Text Model: Phi-3 Mini 4k Instruct (Microsoft)
- Speech-to-Text: Whisper Base (OpenAI)
- PDF Processing: PyPDF2
- UI/UX Layer: CustomTkinter

Flow:

- 1. User Input (Text/Voice/PDF)
- 2. Preprocessing
- 3. Prompt construction (contextualized)
- 4. Phi-3 generates response
- 5. Display via GUI

LIBRARIES USED

Primary Libraries:

- transformers, optimum-intel: for model inference
- torch, numpy: backend tensor & math ops
- sounddevice: audio recording
- PyPDF2: document text extraction
- customtkinter: GUI interface
- openai-whisper: voice transcription model

Custom Implementation:

- PDF-to-context pipeline
- Audio transcription thread management
- GUI state updates and prompt orchestration
- Dynamic multi-modal input handling

How the Al Assistant Works

1. User Input

• The user can type a question, speak into the mic, or upload a PDF.

2. Input Processing

- Voice is converted to text using the Whisper model
- PDF content is extracted using PyPDF2

3. Context Building

 The system combines the current question with past conversation and PDF content.

4. Response Generation

 The processed input is sent to Phi-3 Mini, which generates a relevant, friendly answer.

5. Output Display

• The response appears in a chat window inside the CustomTkinter GUI. (All of this happens locally, optimized using Intel OpenVINO, without needing the internet.)

Sample Response Generated by "Sol"

THANK YOU!

BY,
GOVIND KRISHNA C
FARHANA SALAM