离散数学作业 Problem set 18

Problem 1

对以下各小题给定的群 G_1 和 G_2 ,以及 $f:G_1 \to G_2$,说明 f 是否为群 G_1 到 G_2 的同态,如果是,说明是否为单同态、满同态和同构。求同态像 $f(G_1)$ 。

(1) $G_1 = \langle Z, + \rangle$, $G_2 = \langle R^*, \cdot \rangle$, 其中 R^* 为非零实数集合,+ 和·分别表示数的加法和乘法。

(2) $G_1 = \langle Z, + \rangle$, $G_2 = \langle A, \cdot \rangle$, 其中 + 和 · 分别表示数的加法和乘法, $A = \{x | x \in C \land |x| = 1\}$, 其中 C 为复数集合。

$$f: Z \to A, f(x) = \cos x + i \sin x$$

Problem 2

令 G, G' 为群,函数 $f: G \to G'$ 是一个群同态。证明:

- (1) ker $f = \{x \in G | f(x) = e\}$ 是 G 的子群
- (2) img $f = \{x \in G' | \exists g \in G, f(g) = x\}$ 是 G' 的子群

Problem 3

设 G_1 为循环群, f 是群 G_1 到 G_2 的同态, 证明 $f(G_1)$ 也是循环群。

Problem 4

设 ϕ 是群 G 到 G' 的同构映射, $a \in G$, 证明: a 的阶和 $\phi(a)$ 的阶相等。

Problem 5

证明: 三阶群必为循环群。

Problem 6

我们记 n 阶循环群为 C_n ,欧拉函数 $\phi(m)$ 定义为与 m 互素且不大于 m 的正整数的个数,考虑以下三个事实:

- (1) 对正整数 m, 欧拉函数的结果 $\phi(m)$ 为 C_m 的生成元的个数
- (2) C_n 的每个元素均生成 C_n 的一个子群
- (3) C_n 的每个子群均是一个循环群 C_m , 且 $m \mid n$

证明著名的公式

$$\sum_{m>0,m|n} \phi(m) = n$$

Problem 7

设 p 是素数,证明每一个 p 阶群都是循环群,且以每一个非单位元的元素 作为它的生成元。

Problem 8

证明:循环群一定是阿贝尔群。

Problem 9

设 G 为群, a 是 G 中给定元素, a 的正规化子 N(a) 表示 G 中与 a 可交换的元素构成的集合,即 $N(a) = \{x | x \in G \land xa = ax\}$. 证明: N(a) 是 G 的

子群.