Feuille d'exercice n° 19 : Espaces vectoriels

Exercice 1 () Dire si les objets suivants sont des espaces vectoriels.

- 1) L'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ et vérifiant $f(x) \xrightarrow[x \to +\infty]{} 0$.
- 2) L'ensemble des fonctions réelles impaires, définies sur $\mathbb{R}.$
- 3) L'ensemble des fonctions f définies sur [a,b], continues et vérifiant $f(a) = 7f(b) + \int_a^b t^3 f(t) dt$.
- 4) L'ensemble des fonctions f de classe \mathscr{C}^2 vérifiant $f'' + \omega^2 f = 0$.
- **5)** L'ensemble des primitives de la fonction $x \mapsto xe^x$ sur \mathbb{R} .
- 6) L'ensemble des nombres complexes d'argument $\pi/4 + k\pi$, pour $k \in \mathbb{Z}$.
- 7) L'ensemble des points (x,y) de \mathbb{R}^2 , vérifiant $\sin(x+y)=0$.
- 8) L'ensemble des vecteurs de \mathbb{R}^3 orthogonaux au vecteur (-1,3,-2).

Exercice 2 () Soit E un \mathbb{R} -espace vectoriel. On pose $F = E^2$. Pour tout couple $((x_1, y_1), (x_2, y_2))$ d'éléments de F, on pose $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$. Pour tout $\lambda \in \mathbb{C}$, et tout $(x, y) \in F$, on note $\lambda \cdot (x, y) = (ax - by, bx + ay)$, où $a = \text{Re } \lambda$ et $b = \text{Im } \lambda$.

Montrer que $(F, +, \cdot)$ est un \mathbb{C} -espace vectoriel (appelé le complexifié du \mathbb{R} -espace vectoriel E).

Exercice 3 (%)

- 1) Soit les vecteurs $v_1 = (1 i, i)$, $v_2 = (2, -1 + i)$ et $v_3 = (1 + i, i)$. Le vecteur v_1 est-il combinaison linéaire de v_2 et v_3 dans \mathbb{C}^2 , considéré comme \mathbb{C} -espace vectoriel ? comme \mathbb{R} -espace vectoriel ?
- 2) Dans $\mathscr{F}(\mathbb{R}, \mathbb{R})$, la fonction $x \mapsto \sin(3x)$ est-elle combinaison linéaire des deux fonctions $x \mapsto \sin(x)$ et $x \mapsto \sin(2x)$? Généraliser.

Exercice 4 Soient F et G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E. Montrer que $F \cup G = F + G \Leftrightarrow F \subset G$ ou $G \subset F$.

Exercice 5 () Soit

$$F = \left\{ f \in \mathscr{C}([-1,1], \mathbb{C}) \mid \int_{-1}^{1} f(t) \, \mathrm{d}t = 0 \right\}$$

et
$$G = \{ f \in \mathscr{C}(\left[-1,1\right],\mathbb{C}) \mid f \text{ constante} \}$$
.

Montrer que ce sont des sous-espaces vectoriels supplémentaires de $\mathscr{C}([-1,1],\mathbb{C})$.

Exercice 6 () Dans \mathbb{R}^4 , on considère F d'équation x-2y+z+t=0, G d'équation 2x-y+3t=0 et

$$H = \text{Vect} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

F et G sont-ils des sous-espaces vectoriels supplémentaires ? Même question pour F et H, puis pour G et H

Exercise 7 (%) Soit $F = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f(0) + f(1) = 0 \}.$

- 1) Montrer que F est un espace vectoriel.
- 2) Déterminer un supplémentaire de F dans $\mathscr{F}(\mathbb{R},\mathbb{R})$.

Exercice 8 Soient F, G, F', G' des sous-espaces vectoriels d'un espace vectoriel E, tels que $F \cap G = F' \cap G'$.

Montrer que $(F + (G \cap F')) \cap (F + (G \cap G')) = F$.

Exercice 9 Soit \mathscr{V} et \mathscr{W} deux sous-espaces affines **disjoints** d'un \mathbb{R} -espace vectoriel E. On note V et W leurs directions respectives. Soit $a \in \mathscr{V}$ et $b \in \mathscr{W}$. On pose U = V + W, $\mathscr{V}' = a + U$ et $\mathscr{W}' = b + U$. Montrer que \mathscr{V}' et \mathscr{W}' sont deux sous-espaces affines disjoints, de même direction et contenant respectivement \mathscr{V} et \mathscr{W} .

