Homework 3

Name: Chhay lay Heng Net ID: cxh 220032

Q.1 - Determine whether the following graphs are isomorphic.

- G₁ G₂
 1) Vertice 6 6
 2) Edge 10 10
- 3) Edge of Vertice: 12-DE, 15-DC, 16-DB, 23-EA, 24-EF, 25-EC, 34-AF, 36-AB, 45-FC, 56-CB

f(1) = D, f(2) = E, f(3) = A, f(4) = F, f(5) = C, f(6) = B

.. The graphs are isomorphic

Q.2 - Determine whether the following graph has a Hamilton circuit or Hamilton path.

 $HP - \{(1, 2, 3, 6, 5, 4, 7, 8, 9, 10)\}$

HC - No

Q.3 - Determine whether the following graph has an Euler circuit or Euler path.

EC - No

Not every vertices are even.

EP - No

There are more than & vertices with odd degree.

Q.L. - Determine whether the following graph is bipartite.

 $V = \{a, b, c, d, e\}$

: The graph is bipartite

Q.5 - Determine whether the following graph is bipartite.

- V= {a,b,c,d,e,f}
 - $V_1 = \{a, b, d, e\}$ $V_2 = \{c, f\}$
- .. The graph is bipartite

- Q.6- For which values of n are these graphs bipartite?
- a) K_n : A complete graph K_n is bipartite for even values of n, and non-partite for add values of n.

 Because a complete graph K_n with n vertices can be divided into two subset of n/2.

 Vertices each, and all the edges of the graph connect vertices from different subset.
- b) C_n : A cycle graph C_n is bipartite for even values of n, and non-bipartite for odd values of n. Because a cycle graph C_n can be divided into two sets of vertices, with each set containing alternate vertices on the cycle.
- Q.7 For which values of n are these graphs bipartite?
- a) W_n : The wheel graph W_n is bipartite for all values of $n \ge 4$. Because a wheel graph consist of a cycle graph with one additional vertex connected to all vertices on the cycle.

b) Q_n: The hypercube graph Q_n is bipartite for all value of n. Because a hypercube graph can be constructed recursively, by taking two copies of a hypercube graph of one dimension lower and connecting corresponding vertices between the two copies.

Q.8 - Find the union of the given pair of sample graphs.

 $E_1 = \{(a,b), (a,c), (a,d), (b,c), (b,d)\}$

V,={a,b,c,d}

$$G_4 \cup G_2 = \{(a,b),(a,c),(a,d),(a,e),(a,f),(a,h),(b,c),(b,d),(f,g),(g,h)\}$$

Q.9 - Determine if the following graphs are isomorphic.

- G₁ G₂
 1) Vertices 5 5
- 2) Edges 8 8

$$f(u_{1}) = V_{1} \quad ; \quad f(u_{2}) = V_{3} \quad ; \quad f(u_{3}) = V_{2} \quad ; \quad f(u_{u}) = V_{5} \quad ; \quad f(u_{5}) = V_{u}$$

The graphs are isomorphic.

0.10 - Find the strongly connected components of following graph.

ab-ab ac-abc
ad-abcd ae-abcde
af-abcdf ag-abcdfg
ah-abh ai-abhi

ba-bhia bc-bc bd-bcd be-bcde
bf-bcdf bg-bcdfg bh-bh bi-bhi
ca-cdfghia cb-cdfghiab cd-cd ce-cde
cf-cdf cq-cdfg ch-cdfgh ci-cdfghia

da – dfghīa	db - dfghiab	dc-dfgc	de-de
df - df	dg - dfg	dh-dfgh	dī - dfghī
fa-fghīa	fb - fghiab	fc - fgc	fd - fgcd
fe-fgcde	fg - fg	fh-fgh	fi - fghi
ga - ghia	- •	gc-gc	•
ge - gcde	gf - gcdf	gh-gh	gī - ghī
	ib - iab	0 0	id - iabcd
		1g-Tabcdfg	ih - iabh
		3 0	