Lecture 2: random functions and functional analysis

Tianpei Xie

Jul. 9th., 2015

Contents

1 Defi		initions	2
	1.1	Random functions	2
	1.2	Topology and functional analysis	3
	1.3	Gaussian process as measure on space of functions	4
2 Theorems		5	
3	Con	nputations and examples	6

1 Definitions

1.1 Random functions

- A family of random variables $\xi \equiv \{\xi_t, t \in T\}$ defined on $(\Omega, \mathscr{F}, \mathbb{P})$ is called a random function. For $T \subset \mathbb{R}$, it is called a random process, whereas for $T \subset \mathbb{R}^n$, it is called a random field.
- Note that each random variable is a function $\xi_t : T \times \Omega \to \mathbb{R}$, and it is a measureable mapping from $(\Omega, \mathscr{F}, \mathbb{P})$ to $(\mathbb{R}, \mathcal{B}^1)$.

For fixed $\omega \in \Omega$, $\xi(\omega)$ a function on T. It is called a *sample function* of the random function [Lifshits, 2013], or a *sample path* of the random process for $T \subset \mathbb{R}$.

• It is assumed that all ξ_t , $\forall t$ are well-defined on a common subset $\Omega_0 \subset \Omega$. Then $\xi: T \times \Omega_0 \to \mathbb{R}$ is a modification of the random function above.

Different modifications defines a different property about the sample paths (measureabilty, boundedness, continuity etc.) That is, a random process ξ_t process the corresponding property, if an appropriate modification of this random function is considered.

- The joint distributions of random vectors $(\xi_{t_1}, \ldots, \xi_{t_n})$ for all possible (t_1, \ldots, t_n) are called the *finite-dimensional distributions* of the random functions ξ .
- $\{\xi_t, t \in T\}$ is called (Strictly Sense) Stationary (SSS), if its finite-dimensional distributions remain unaltered upon a parameter shift; i.e., $(\xi_{t_1}, \ldots, \xi_{t_n})$ and $(\xi_{t_1+\tau}, \ldots, \xi_{t_n+\tau})$ are identical distributed, for all (t_1, \ldots, t_n) , $\tau \in \mathbb{R}^1$.

 $\{\xi_t, t \in T\}$ is called *stationary increments* if $(\xi_{t_2} - \xi_{t_1}, \dots, \xi_{t_n} - \xi_{t_{n-1}})$ and $(\xi_{t_2+\tau} - \xi_{t_1+\tau}, \dots, \xi_{t_n+\tau} - \xi_{t_{n-1}+\tau})$ are identical distributed, for all $(t_1, \dots, t_n), \tau \in \mathbb{R}^1$.

 $\{\xi_t, t \in T\}$ is called uncorrelated increments if $\xi_{t_2} - \xi_{t_1}, \dots, \xi_{t_n} - \xi_{t_{n-1}}$ are pairwise uncorrelated, for all $(t_1, \dots, t_n), \tau \in \mathbb{R}^1$.

If these variables are jointly independent, it is called independent increments.

• Given the metric topology on $T=(T,\rho)$ and a random function ξ on it, a modification of ξ is called ρ -separable, if there exists a countable subset $T_c \subset T$ such that, for any open set $V \subset T$, the equalities

$$\sup_{t \in V} \xi_t = \sup_{t \in V \cap T_c} \xi_t; \qquad \qquad \inf_{t \in V} \xi_t = \inf_{t \in V \cap T_c} \xi_t;$$

holds with probability one. The subset T_c is called the *separant* of the modification ξ .

Note we always deals with the countable index set T or within the separant T_c of the uncountable set.

• $\{\xi_t, t \in T\}$ is called Wide-Sense Stationary (WSS) if the covariance function is the function

of increment of index

$$K(s,t) \equiv \operatorname{cov}(\xi_t, \xi_s)$$

= $K(t-s), \quad s, t \in T.$

SSS process is WSS process. The covariance function of WSS process has spectral representation.

1.2 Topology and functional analysis

- A vector space X endowed with a topology is called a topological vector space, denoted as (X, \mathcal{T}) , if the addition $+: X \times X \to X$ and scale multiplication $\cdot: \mathbb{R} \times X \to X$ are continuous.
- A topological vector space is *locally convex space*, if V is open and $x \in V$, then one can find a *convex open* set $U \subset X$ such that $x \in U \subset V$. That is, there exists a base of convex sets \mathscr{B} that generates the topology.
- A semi-norm on a vector space X is a mapping $q: X \to \mathbb{R}_+$ satisfying the homogeneity condition, i.e. $q(\gamma x) = |\gamma| q(x)$ and the triangle inequality, $q(x+y) \le q(x) + q(y)$. If furthermore $q(x) = 0 \Rightarrow x = 0$, then q is a norm.
- The smallest topology \mathscr{T} induced by the set of semi-norms $\{q_{\theta}, \theta \in \Theta\}$ is generated by the convex basis $U_{x,r,\theta} = \{y \in X \mid q_{\theta}(y-x) \leq r\} \in \mathscr{B}, x \in X, r > 0$. The topological vector space (X,\mathscr{T}) is thus locally convex space.

If $\{q_{\theta}, \theta \in \Theta\}$ is a set of norms, then (X, \mathcal{T}) is a normed space.

- Given the inner product (duality) $\langle \cdot, \cdot \rangle_d$ defined a product space $X \times X'$, a set of semi-norm is defined as $\{q_{\boldsymbol{v}}(\cdot) \equiv \langle \cdot, \boldsymbol{v} \rangle_d \mid \boldsymbol{v} \in X'\}$.
- In a topological vector space X, the dual space X^* is the set of all linear continuous real-valued functionals on X.

The dual space X^* is a vector space.

- For a Hausdorff locally convex space X, for any $x \in X$, $x \neq 0$, there exists a linear functional $f \in X^*$ such that f(x) = 1.
- The dual space can be made a Hausdorff locally convex space as well, by defining the weak topology in X^* . The weak topology in X^* is induced by the norm $q_x(f) = |f(x)|$, for all $f \in X^*$, $x \in X$.

The weak topology can also be introduced into X by $q_f(\mathbf{x}) = |f(\mathbf{x})|$, for all $\mathbf{x} \in X$, $f \in X^*$.

• Another topology in X^* is given by norm $q_{\Delta}(f) = \sup_{\boldsymbol{x} \in \Delta} |f(\boldsymbol{x})|$, for any Δ strongly convex compact subset of X. Denote the topology as \mathscr{T}_{X,X^*} , which is no weaker than the topology above.

If a linear functional of functional $L: X^* \to \mathbb{R}$ is continuous in \mathscr{T}_{X,X^*} , then there exists a

vector $v \in X$, such that L(f) = f(v) for all $f \in X^*$. In other words, $(X^*, \mathcal{I}_{X,X^*})^* = X$, the dual space of dual with \mathcal{I}_{X,X^*} is the primal space.

- A duality is naturally induced btw X and X' in that a topology induced by $\{q_{\boldsymbol{v}}(\cdot) \equiv \langle \cdot, \boldsymbol{v} \rangle \mid \boldsymbol{v} \in X'\}$ in X and similarly in X'. The dual space $(X^*, \mathscr{T}_{X,X^*}) \simeq (X', \mathscr{T}_q)$.
- In dual form, a linear functional can be uniquely represented as $f(\cdot) = \langle \cdot, \mathbf{v} \rangle_d, \mathbf{v} \in X'$.
- The weak topology \mathcal{I}_{X,X^*} coincides with the topology induced by duality.
- As an example, for $X = \mathbb{R}^{\infty}$, $X^* \equiv c_0 \subset \mathbb{R}^{\infty}$ be the subspace of finite sequences. The weak topology is induced by the semi-norm $\{q_j = |x_j|, j \in \mathbb{N}\}$ and it defines the point-wise convergence.
- For X Hausdorff, locally convex, $X' = X^*$ and $\langle X, X^* \rangle_d$ is a dual pair, so $\langle f, \boldsymbol{x} \rangle_d \equiv f(\boldsymbol{x}), \boldsymbol{x} \in X, f \in X^*$.
- If X is Hilbert space, then X' = X and \langle , \rangle_d is given by the \langle , \rangle_X defined in X.

1.3 Gaussian process as measure on space of functions

• A random function ξ is *Gaussian* if *all* its finite-dimensional distributions are Gaussian. For a Gaussian random function, a covariance function

$$cov(\xi_s, \xi_t) = K(s, t), \quad \forall s \, t \in T$$

is well defined. K is a covariance function of a Gaussian random function if and only if K is positive definite.

- For Gaussian process, WSS \Leftrightarrow SSS.
- A random function is Gaussian if its distribution \mathcal{P} that defined on (X, \mathcal{B}) is Gaussian. Here X is the linear space of functions on T, which is infinite-dimensional.

2 Theorems

• Theorem 2.1 (The representation of stationary kernel: Bochner's theorem)

A complex-valued function K on \mathbb{R}^D is the covariance function of a weakly stationary mean square continuous complex-valued random process on \mathbb{R}^D if and only if it can be represented as

$$K(\boldsymbol{x}, \boldsymbol{x}') = K(\boldsymbol{x} - \boldsymbol{x}') = \int_{\mathbb{R}^D} \exp(2\pi j \, \boldsymbol{s}^T(\boldsymbol{x} - \boldsymbol{x}')) \, d\mu(\boldsymbol{s}), \tag{1}$$

where μ is a positive finite measure, which is called the spectral measure of this process [Lifshits, 2013].

The covariance function of a stationary process can be represented as the Fourier transform of a positive finite measure.

For the spectral density exists as S(s),

$$K(\boldsymbol{x} - \boldsymbol{x}') = K(\boldsymbol{\tau}) = \int_{\mathbb{R}^D} S(\boldsymbol{s}) \exp(2\pi j \, \boldsymbol{s}^T \boldsymbol{\tau}) \, d\boldsymbol{s},$$
$$S(\boldsymbol{s}) = \int_{\mathbb{R}^D} K(\boldsymbol{\tau}) \exp(-2\pi j \, \boldsymbol{s}^T \boldsymbol{\tau}) \, d\boldsymbol{\tau}.$$
 (2)

• Theorem 2.2 Let T be arbitrary set, $K: T \times T \to \mathbb{R}$ a positive definite function. Then there exists a probability space and a Gaussian random function defined on that space, whose covariance function is K.

3 Computations and examples

•

References

Mikhail Antolevich Lifshits. $Gaussian\ random\ functions,$ volume 322. Springer Science & Business Media, 2013.