Ejercicios de Cálculo II Relación 2: Derivadas (I)

1) Sean $f: \mathbb{R} \to \mathbb{R}$ y $a \in \mathbb{R}$. Se define la función $g: \mathbb{R}^* \to \mathbb{R}$ como sigue:

$$g(h) = \frac{f(a+h) - f(a-h)}{2h}.$$

Prueba que si f es derivable en a, entonces g tiene límite en 0. ¿Es cierto el recíproco?

2) Sea $f: A \to \mathbb{R}$ una función derivable en $a \in A \cap A'$. Prueba que existen $M, \delta \in \mathbb{R}^+$ verificando que:

$$x \in A$$
, $|x - a| < \delta \implies |f(x) - f(a)| \le M|x - a|$.

¿Es cierta esta afirmación suponiendo solamente que f es continua en el punto a?

3) Estudia la derivabilidad, y calcula la derivada donde sea posible, de las funciones siguientes :

a)
$$f(x) = \sqrt{\frac{1+x}{1-x}}, \forall x \in [-1, 1[;$$

b)
$$f(x) = \frac{1}{2}x|x|, \forall x \in \mathbb{R};$$

c)
$$f(x) = x^x$$
, $\sin x > 0$ y $f(0) = 1$;

d)
$$f(x) = \sqrt{x}^{\sqrt{x}}, \forall x > 0.$$

4) Estudia la derivabilidad, y calcula la derivada donde sea posible, de las funciones siguientes :

a)
$$f(x) = \sqrt{2x - x^2}, \ \forall x \in [0, 1];$$

b)
$$f(x) = (x^2 - 3x + 2)\sqrt[3]{|x - 2|}, \ \forall x \in \mathbb{R};$$

c)
$$f(x) = \frac{2x}{1+|x|}, \forall x \in \mathbb{R};$$

d)
$$f(x) = x \sqrt[n]{|x|}, \forall x \in \mathbb{R}, \text{ con } n \in \mathbb{N}.$$

5) Comprueba que la función $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} 2x, & \text{si } x < 0\\ 3x^2, & \text{si } x \ge 0 \end{cases}$$

es continua pero no es derivable en el origen.

6) Se considera $f: \mathbb{R} \to \mathbb{R}$ definida como sigue:

$$f(x) = \begin{cases} e^{-1/x^2} & \text{si } x < 0\\ \frac{2x}{x^2 + 1} & \text{si } 0 \le x \le 1\\ 1 + \frac{\log(x)}{x} & \text{si } x > 1 \end{cases}$$

Estudia la continuidad y derivabilidad de f.

- 7) Calcula la derivada de:
 - a) $f(x) = \sqrt[3]{x^2 + 1}$, $\forall x \in \mathbb{R}$;
 - b) $f(x) = x^4 e^x \log(x), \forall x \in \mathbb{R};$
 - c) $f(x) = \log(x + \sqrt{1 + x^2}), \forall x \in \mathbb{R};$
 - d) $f(x) = e^{\frac{1}{x^2}}, \forall x \in \mathbb{R}^*.$
- 8) Calcula la recta tangente de las siguientes funciones en los puntos dados:
 - a) $y = \frac{x}{x^2 + 1}$ en el origen;
 - b) $y = x^2 + 1$ en (3, 10);
 - c) y = |x| en (1,1).
- 9) Sean $a, b, c \in \mathbb{R}$ y $f, g \colon \mathbb{R} \to \mathbb{R}$ las funciones definidas por:

$$f(x) = x^2 + ax + b$$
, $g(x) = x^3 - c$

Determina los valores de a,b,c que hacen que las gráficas de f y g pasen por el punto (1,2) y tengan la misma recta tangente en dicho punto.

- 10) (*) Calcula las rectas tangentes de la función $f(x) = \frac{1}{x}$ que pasan por el punto (-1,1).
- 11) Estudia la derivabilidad de la función parte entera.
- 12) Si g y h son funciones derivables en \mathbb{R} , estudia la derivabilidad de la función $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = g(x), \ \forall x \in \mathbb{Q}, \ f(x) = h(x), \ \forall x \in \mathbb{R} \setminus \mathbb{Q}.$$

- 13) Da un ejemplo de una función inyectiva $f: A \to \mathbb{R}$, derivable en un punto $a \in A \cap A'$ con $f'(a) \neq 0$, y tal que f^{-1} no sea derivable en el punto f(a).
- 14) (*) Sea $f: \mathbb{R} \to \mathbb{R}$ una función. Supongamos que existen números reales $K \ge 0$ y $\alpha > 1$ tales que

$$|f(x)| \le K|x|^{\alpha}$$
,

para cualquier x en un entorno de cero. Demuestra que la función f es derivable en 0. ¿Qué se puede decir si $\alpha = 1$?