Advancement in Mathematical Analysis

Yutong Zhang

Contents

T	Lim	nit and Continuity	2
	1.1	Intermediate Value Theorem	2
	1.2	Extreme Value Theorem	2
2	Seq	uence and Series	3
	2.1	Cauchy Sequence	3
	2.2	Series Convergence Tests	3
3	Diff	Gerentiation	3
	3.1	Leibniz's Rules of Differentiation	3
	3.2	Derivative of Inverse Function	4
	3.3	Derivative of Composite Function	4
	3.4	Mean Value Theorems	5
		3.4.1 Rolle's Theorem	5
		3.4.2 Lagrange's Mean Value Theorem	5
		3.4.3 Cauchy's Mean Value Theorem	6
	3.5	L'Hôpital's Rule	6
4	Rie	mann-Darboux Integral	6
	4.1	Fundamental Theorem of Calculus	6
5	Exp	ponential and Logarithmic Function	7
	5.1	Equivalency of Usual Definition of $\exp x$ and that by Series	7

1 Limit and Continuity

1.1 Intermediate Value Theorem

Theorem. For function $f:[a,b]\subset D\to\mathbb{R}$, if f is continuous on [a,b], then for any $y_0\in[f(a),f(b)]$, there exists an x_0 such that $y=f(x_0)$.

Proof. Define the set

$$S = \{x \in [a, b] \mid f(v) \le y \,\forall v \in [a, x]\},\$$

then it is not empty because $a \in S$, and it is bounded above because b is an upper bound, then by the least upper bound property of real number, the set S has a least upper bound, denoted as c. It is claimed that f(c) = y.

Suppose f(c) > y, let $\epsilon = f(c) - y > 0$. Then by the continuity of f, there exists $\delta > 0$ such that $|x - c| < \delta$ implies $|f(x) - f(c)| < \epsilon$, which suggests that f(x) > y. But these means that if $|x - c| < \delta$, $x \notin S$, then there would be other upper bound of S that is less than c, say $c - \frac{\delta}{2}$. This contradicts the fact that c is the **least** upper bound of S.

Suppose f(c) < y, let $\epsilon = y - f(c) > 0$. Then by the continuity of f, there exists $\delta > 0$ such that $|x - c| < \delta$ implies $|f(x) - f(c)| < \epsilon$, which suggests that f(x) < y. Then there exists an $x \in S$ that is greater than c, say $c + \frac{\delta}{2}$. This contradicts the fact that c is an upper bound of S.

1.2 Extreme Value Theorem

Lemma (Boundedness Lemma). For a function $f:[m,n]\to\mathbb{R}$, if f is continuous, then it is bounded.

Proof. Suppose f is unbounded, then it is possible to define a sequence $\{a_n\}$ such that $f(a_n) > n$. Since $\{a_n\} \in [m,n]$ which is bounded, by **Bolzano-Weierstraß Theorem**, there exists a convergent subsequence $\{a_{n_k}\}$, denoting its limit a, which is a limit point of [m,n]. [m,n] being closed, $a \in [m,n]$. By the continuity of f, $\lim_{k\to\infty} f(a_{n_k}) = f(a)$, but $f(a_{n_k}) > n_k > k$ for $k \in \mathbb{N}$ thus $\lim_{k\to\infty} f(a_{n_k}) = \infty$, which contradicts the fact that it converges, as desired.

Lemma (Subsequence Limit Lemma). For sequence $\{a_n\}$ and any one of its subsequence a_{n_k} , if $\lim_{n\to\infty}a_n=L$, then $\lim_{k\to\infty}a_{n_k}=L$.

Proof. For any given $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that for n > N, $|a_n - L| < \epsilon$. For k > N, it is obvious that $n_k > k > N$, thus $|a_{n_k} - L| < \epsilon$, as desired.

Lemma. If a function f is continuous at a, then for any sequence $\{a_n\}$ that converges to a, $\lim_{n\to\infty} f(a_n) = f(a)$.

Proof. Trivial. \Box

Theorem (Extreme Value Theorem). For a function $f:[m,n] \to \mathbb{R}$ that is continuous over the domain, f attains its maximum and minimum in [m,n].

Proof. By the boundedness lemma, function f is bounded from above, thus by the least upper bound property of real number, there exists $M = \sup f(x)$. Since M is the least upper bound, it is possible to define a sequence $\{a_n\}$ such that $M - \frac{1}{n} < a_n$ for $n \in \mathbb{N}$. By definition, $M - \frac{1}{n} < f(a_n) \leq M$, apply the squeeze theorem, $M = \lim_{n \to \infty} a_n$.

By Bolzano-Weierstraß Theorem, there exists a subsequence $\{a_{n_k}\}$ of $\{a_n\}$ that converges, say to a. The interval [m,n] is closed, thus the limit point $a \in [m,n]$. Since $\{f(a_{n_k})\}$ is a subsequence of $\{f(a_n)\}$, and $\{f(a_n)\}$ converges to M, by the subsequence limit lemma, $M = \lim_{k \to \infty} f(a_{n_k})$. And by the continuity

of f and the previous lemma¹², $M = \lim_{k \to \infty} f(a_{n_k}) = f(a)$, which is the point at which f attains its maximum.

The case of minimum is similar.

$\mathbf{2}$ Sequence and Series

Cauchy Sequence 2.1

Theorem (Cauchy Convergence Criterion). A sequence $\{a_n\}$ is convergent if and only if for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all p, q > N,

$$|a_p - a_q| < \epsilon$$
.

Proof. The (\Longrightarrow) direction is trivial, we only prove the (\Leftarrow) direction. The sequence $\{a_n\}$ is clearly bounded, thus by the **Bolzano-Weierstraß** Theorem, there exists a subsequence $\{a_{n_k}\}$ convergent to, say L. Choose N such that for all $p,q>N, |a_p-a_q|<\frac{\epsilon}{2}$, and choose K such that for k>K, $|a_{n_k} - L| < \frac{\epsilon}{2}$. For any n > N, pick k such that k > K and $n_k > N$, then

$$|a_n - L| \le |a_n - a_{n_k}| + |a_{n_k} - L| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

as desired.

2.2Series Convergence Tests

3 Differentiation

Leibniz's Rules of Differentiation 3.1

Theorem (Leibniz's Product Rule). For two functions f and g differentiable at a,

$$(f \cdot g)'(a) = f'(a)g(a) + f(a)g'(a).$$

Proof.

$$(f \cdot g)'(a) = \lim_{x \to a} \frac{f(x)g(x) - f(a)g(a)}{x - a}$$

$$= \lim_{x \to a} \frac{f(x)g(x) - f(x)g(a) - f(a)g(a) + f(x)g(a)}{x - a}$$

$$= \lim_{x \to a} \left(f(x) \frac{g(x) - g(a)}{x - a} - g(a) \frac{f(a) - f(x)}{x - a} \right)$$

$$= f(a)g'(a) - g(a)(-f'(a)) = f'(a)g(a) + f(a)g'(a).$$

Theorem (Leibniz's Quotient Rule). For two functions f and g differentiable at a, if $g(a) \neq 0$,

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g^2(a)}.$$

3

 $[\]left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g^2(a)}.$ ${}^{1}f \text{ conti. at } a \iff \forall \{a_n\} \in \text{Dom}(f). \lim_{\substack{n \to \infty \\ n \to \infty}} a_n = a \implies \lim_{\substack{n \to \infty \\ n \to \infty}} f(a_n) = f(a)$ ${}^{2}f \text{ lim exists at } a \iff \forall \{a_n\} \in \text{Dom}(f). \lim_{\substack{n \to \infty \\ n \to \infty}} a_n = a \implies \lim_{\substack{n \to \infty \\ n \to \infty}} f(a_n) = \lim_{\substack{x \to a \\ x \to a}} f(x)$

Proof.

$$\left(\frac{f}{g}\right)'(a) = \lim_{x \to a} \frac{\frac{f(x)}{g(x)} - \frac{f(a)}{g(a)}}{x - a}$$

$$= \lim_{x \to a} \frac{f(x)g(a) - g(x)f(a)}{(x - a)g(x)g(a)}$$

$$= \lim_{x \to a} \frac{f(x)g(a) - f(a)g(a) - g(x)f(a) + f(a)g(a)}{(x - a)g(x)g(a)}$$

$$= \lim_{x \to a} \frac{1}{g(x)g(a)} \left(g(a)\frac{f(x) - f(a)}{x - a} - f(a)\frac{g(x) - g(a)}{x - a}\right)$$

$$= \frac{1}{g^2(a)} (g(a)f'(a) - f(a)g'(a)) = \frac{f'(a)g(a) - f(a)g'(a)}{g^2(a)}.$$

3.2 Derivative of Inverse Function

Theorem. For a bijection f differentiable at a, the derivative of its inverse function $g'(b) = \frac{1}{f'(g(b))}$ if g(b) = a.

Proof. By the definition of derivative and the property of inverse function,

$$g'(b) = \lim_{y \to b} \frac{g(y) - g(b)}{y - b} = \lim_{y \to f(a)} \frac{g(y) - g(f(a))}{y - f(a)} = \lim_{f(x) \to f(a)} \frac{g(f(x)) - g(f(a))}{f(x) - f(a)}.$$

Since g is the inverse function of a continuous function f, it is continuous, i.e. $f(x) \to f(a)$ as $x \to a$, we substitute the variable of the limit to x,

$$g'(b) = \lim_{x \to a} \frac{x - a}{f(x) - f(a)} = \frac{1}{f'(a)} = \frac{1}{f'(g(b))}.$$

3.3 Derivative of Composite Function

Lemma (Linear Decomposition Lemma). A function f is differentiable at a point a if and only if it can be decomposed near a to

$$f(x) = f(a) + A(x - a) + \eta(x - a)(x - a),$$

where A is a linear map (in this case, a real number) and $\lim_{h\to 0} \eta(h) = 0 = \eta(0)$.

Proof. Trivial.
$$\Box$$

Theorem (The Chain Rule). If $f: I \to J$ is differentiable at $a, g: J \to \mathbb{R}$ differentiable at f(a), then $g \circ f$ is differentiable at a, and the derivative $(g \circ f)'(a) = g'(f(a))f'(a)$.

Proof. By the **Linear Decomposition Lemma**, f being differentiable at a implies that f can be decomposed by linear principal part near a as

$$f(x) = f(a) + f'(a) \cdot (x - a) + \eta(x - a) \cdot (x - a)$$

where $\lim_{x\to a} \eta(x-a) = 0 = \eta(0)$. Similarly, g can be decomposed near f(a) as

$$g(y) = g(f(a)) + g'(f(a)) \cdot (y - f(a)) + \xi(y - f(a)) \cdot (y - b)$$

where $\lim_{y\to f(a)}\xi(y-f(a))=0=\xi(0)$. Now we attempt to decompose the composition $g\circ f$ near x,

$$g(f(x)) = g(f(a)) + g'(f(a)) \cdot (f(a) + f'(a) \cdot (x - a) + \eta(x - a) \cdot (x - a) - f(a)) + \xi(f(a) + f'(a) \cdot (x - a) + \eta(x - a) \cdot (x - a) - f(a)) \cdot (f(a) + f'(a) \cdot (x - a) + \eta(x - a) \cdot (x - a) - f(a)).$$

Simplify, we get

$$g(f(x)) = g(f(a)) + g'(f(x))f'(a) \cdot (x - a) + \left(g'(f(x))\eta(x - a) \cdot (x - a) + \xi(f'(a) \cdot (x - a) + \eta(x - a) \cdot (x - a)) \cdot (f'(a) \cdot (x - a) + \eta(x - a) \cdot (x - a))\right).$$

$$(1)$$

Define

$$\chi(h) = g'(f(x))\eta(h) + \xi(f'(a) \cdot (h) + \eta(h) \cdot (h)) \cdot (f'(a) + \eta(h)),$$

then since $\eta(h), \xi(h) \to 0$ when $h \to 0$ and $\eta(0) = \xi(0) = 0$, when $h \to 0$, $\chi \to 0$ and $\chi(0) = 0$, which satisfies the condition for error term in the decomposition, thus (1) can be rewritten as

$$g(f(x)) = g(f(a)) + g'(f(x))f'(a) \cdot (x - a) + \chi(x - a) \cdot (x - a),$$

thus by the **Linear Decomposition Lemma**, $g \circ f$ is differentiable at a and the derivative is g'(f(a))f'(a).

3.4 Mean Value Theorems

3.4.1 Rolle's Theorem

Theorem (Rolle's Theorem). For a function f that is continuous on [m, n], differentiable on (m, n), if f(m) = f(n), then there exists a $c \in (m, n)$ such that f'(c) = 0.

Proof. By the **Extreme Value Theorem**, there exists a maximum and a minimum in [m, n]. If they are both on the border of the interval, namely m and n, then the function is a constant function, the derivative of which is constantly 0. If not, say the maximum x_0 is in (m, n) (if it's the minimum or both, the case is similar), then it is true that for all $x \in [m, n]$, $f(x) < f(x_0)$. We claim that $c = x_0$. The right derivative of f at point c

$$f'_{+}(c) = \lim_{x \to c^{+}} \frac{f(x) - f(c)}{x - c}$$

is obvious smaller than 0. Similarly, $f'_{-}(c) \geq 0$. Since f is differentiable at c, $f'_{+}(c) = f'_{-}(c)$, then f'(c) = 0, as desired.

3.4.2 Lagrange's Mean Value Theorem

Theorem (Lagrange's Mean Value Theorem). For a function f that is continuous on [m, n], differentiable on (m, n), there exists a $c \in (m, n)$ such that $f'(c) = \frac{f(n) - f(m)}{n - m}$.

Proof. Construct function

$$F(x) = f(x) - \left(f(m) + \frac{f(n) - f(m)}{n - m}(x - m)\right).$$

It is true that F(m) = F(n) = 0, which brings f to satisfy the premises of the **Rolle's Theorem**. Applying it, the conclusion is that there exists a $c \in (m, n)$ such that F'(c) = 0. Then

$$F'(c) = f'(c) - \frac{f(n) - f(m)}{n - m} = 0,$$

as desired.

3.4.3 Cauchy's Mean Value Theorem

Theorem (Cauchy's Mean Value Theorem). For two functions f and g that is continuous on [m, n], differentiable on (m, n), there exists a $c \in (m, n)$ such that

$$f'(c)(g(n) - g(m)) = g'(c)(f(n) - f(m)).$$

Proof. Construct function

$$F(x) = f(x)(g(n) - g(m)) - g(x)(f(n) - f(m)).$$

F satisfies the premises of the Rolle's Theorem: F(m) = F(n) = f(m)g(n) - g(m)f(n). Applying it, it concludes that there exists a $c \in (m, n)$ such that F'(c) = 0, which suggests

$$F'(c) = f'(x)(g(n) - g(m)) - g'(x)(f(n) - f(m)) = 0,$$

as desired. \Box

3.5 L'Hôpital's Rule

Theorem (L'Hôpital's Rule). For functions f and g that is differentiable on (a,b) with $g(x) \neq 0$ for all $x \in (a,b)$, if $\lim_{x \to a} \frac{f'(x)}{g'(x)} = A$, and $f(x), g(x) \to 0$ as $x \to a$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = A$.

Proof. Since $\frac{f'(x)}{g'(x)} \to A$ as $x \to a$, for any $\epsilon > 0$, there exists $c = \min\{\delta, b\} \in (a, b)$ such that

$$A - \epsilon < \frac{f'(x)}{g'(x)} < A + \epsilon$$

when a < x < c. For a < x < y < c, by the **Cauchy's Mean Value Theorem**, there exists a point $t \in (x, y)$ such that

$$A - \epsilon < \frac{f(x) - f(y)}{g(x) - g(y)} = \frac{f'(t)}{g'(t)} < A + \epsilon.$$

Since $f(x), g(x) \to 0$ as $x \to a$, take the limit $x \to a$ and $y \to a$ and apply the property that limit preserves non-strict order relation, we have

$$A - \epsilon \le \lim_{y \to a} \frac{f(y)}{g(y)} \le A + \epsilon.$$

Since ϵ is arbitrary, the theorem is proven.

4 Riemann-Darboux Integral

4.1 Fundamental Theorem of Calculus

Lemma. For a Riemann-Darboux integrable function $f:[a,b]\to\mathbb{R}$ and partition $P=\{x_0,x_1,\ldots,x_n\}$ of interval [a,b] such that $U(P,f)-L(P,f)<\epsilon$ for some ϵ , if t_i are arbitrary points in $[x_{i-1},x_i]$, then

$$\left| \sum_{i=1}^{n} f(t_i) \cdot (x_i - x_{i-1}) - \int_a^b f(x) \, \mathrm{d} x \right| < \epsilon.$$

Proof. Since t_i are arbitrary points in $[x_{i-1}, x_i]$,

$$L(P,f) = \sum_{i=1}^{n} \inf_{x_{i-1} \le x \le x_i} f(x) \cdot (x_i - x_{i-1}) \le \sum_{i=1}^{n} f(t_i) \cdot (x_i - x_{i-1}) \le \sum_{i=1}^{n} \sup_{x_{i-1} \le x \le x_i} f(x) \cdot (x_i - x_{i-1}) = U(P,f).$$

And since f is Riemann-Darboux integrable,

$$L(P, f) \le \int_a^b f(x) \, \mathrm{d} \, x \le U(P, f).$$

Finally, since $U(P, f) - L(P, f) < \epsilon$, the result is proven.

Theorem (Fundamental Theorem of Calculus). If f is Riemann-Darboux integrable and if there exists a function F differentiable on [a, b] such that F'(x) = f(x), then

$$\int_a^b f(x) \, \mathrm{d} \, x = F(b) - F(a).$$

Proof. For given $\epsilon > 0$, it is possible to choose a partition $P = \{x_0, x_1, \dots, x_n\}$ of interval [a, b] such that $U(P, f) - L(P, f) < \epsilon$, because f is Riemann-Darboux integrable. By the **Lagrange's Mean Value Theorem**, there exists $t_i \in [x_{i-1}, x_i]$ such that

$$F(x_i) - F(x_{i-1}) = f(t_i) \cdot (x_i - x_{i-1}).$$

Sum these up, we have

$$F(b) - (a) = \sum_{i=1}^{n} f(t_i) \cdot (x_i - x_{i-1}),$$

which satisfies the premises of previous lemma. Applying it, we have

$$\left| F(b) - (a) - \int_a^b f(x) \, dx \right| = \left| \sum_{i=1}^n f(t_i) \cdot (x_i - x_{i-1}) - \int_a^b f(x) \, dx \right| < \epsilon,$$

as desired.

5 Exponential and Logarithmic Function

5.1 Equivalency of Usual Definition of $\exp x$ and that by Series

Lemma. For any function f, f is continuous at $a \iff$ for all sequence $\{a_n\} \in \text{Dom}(f)$ with $\lim_{n \to \infty} a_n = a$, $\lim_{n \to \infty} f(a_n) = f(a)$.

From previous arguments, the following statements are assumed.

- $E(p) = e^p \text{ for } p \in \mathbb{Q};$
- E(x) is continuous on \mathbb{R} ;
- E(x) is strictly monotonically increasing on \mathbb{R} ; and
- e^p is strictly monotonically increasing on \mathbb{Q} .

Theorem.

$$E(x) = e^x$$

where

$$e^x = \sup_{\substack{p \in \mathbb{Q} \\ p < x}} e^p.$$

Proof. Since $e^x = \sup_{\substack{p \in \mathbb{Q} \\ p < x}} e^p$, there exists a sequence $\{p_n\} \in \mathbb{Q}$ such that

1.
$$\lim_{n\to\infty} e^{p_n} = \sup_{\substack{p\in\mathbb{Q}\\p< x}} e^{p_n};$$

- 2. $e^{p_n} < e^{p_{n+1}} \implies p_n < p_{n+1}$ (by monotonicity of e^p for $p \in \mathbb{Q}$); and
- 3. $p_n < x$.

This existence holds since there exists a rational number between any two real numbers. We claim that $\lim_{n\to\infty} p_n = x$, and this can be proven by contradiction. Suppose $L = \lim_{n\to\infty} p_n \neq x$, then either

- L > x, in which case there exists a $p_n > x$, which contradicts the hypotheses made on $\{p_n\}$, or
- L < x, in which case we can pick $k, r \in \mathbb{Q}$ such that L < k < r < x. Since e^p is monotonic, $e^{p_n} < e^k$ for all n; take limit on both sides, we have

$$\lim_{n \to \infty} p_n \le e^k < e^r \le \sup_{\substack{p \in \mathbb{Q} \\ p < x}} e^p \implies \lim_{n \to \infty} p_n < \sup_{\substack{p \in \mathbb{Q} \\ p < x}} e^p,$$

which contradicts the hypotheses made on $\{p_n\}$.

By the statements assumed, $e^{p_n} = E(P_n)$. Take limit on both sides, $\lim_{n\to\infty} e^{p_n} = \lim_{n\to\infty} E(p_n)$. By continuity of E(x), swap E and the limit sign, $\lim_{n\to\infty} E(p_n) = E(\lim_{n\to\infty} p_n) = E(x)$.