Cleaning Practice

Let's first practice handling missing values and duplicate data with cancer_data_means.csv.

```
In [1]: # import pandas and load cancer data
        import pandas as pd
        df = pd.read_csv('cancer_data_means.csv')
        # check which columns have missing values with info()
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 569 entries, 0 to 568
        Data columns (total 11 columns):
                               569 non-null int64
        diagnosis
                               569 non-null object
        radius mean
                               569 non-null float64
                              548 non-null float64
        texture mean
                             569 non-null float64
        perimeter mean
                               569 non-null float64
        area mean
        smoothness_mean
                             521 non-null float64
        compactness_mean
                             569 non-null float64
        concavity mean
                             569 non-null float64
        concave points mean
                               569 non-null float64
                               504 non-null float64
        symmetry mean
        dtypes: float64(9), int64(1), object(1)
        memory usage: 49.0+ KB
In [2]: # use means to fill in missing values
        df.fillna(df.mean(), inplace=True)
        # confirm your correction with info()
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 569 entries, 0 to 568
        Data columns (total 11 columns):
        id
                               569 non-null int64
        diagnosis
                               569 non-null object
                              569 non-null float64
        radius mean
        texture mean
                              569 non-null float64
        perimeter mean
                             569 non-null float64
        area mean
                               569 non-null float64
        smoothness mean
                              569 non-null float64
        compactness_mean
                             569 non-null float64
        concavity mean
                              569 non-null float64
        concave points mean
                               569 non-null float64
        symmetry_mean
                               569 non-null float64
        dtypes: float64(9), int64(1), object(1)
        memory usage: 49.0+ KB
```

```
In [3]: # check for duplicates in the data
sum(df.duplicated())

Out[3]: 5

In [4]: # drop duplicates
df.drop_duplicates(inplace=True)

In [5]: # confirm correction by rechecking for duplicates in the data
sum(df.duplicated())

Out[5]: 0
```

Renaming Columns

Since we also previously changed our dataset to only include means of tumor features, the "_mean" at the end of each feature seems unnecessary. It just takes extra time to type in our analysis later. Let's come up with a list of new labels to assign to our columns.

```
In [6]: # remove " mean" from column names
        new_labels = []
        for col in df.columns:
             if '_mean' in col:
                 new labels.append(col[:-5]) # exclude last 6 characters
             else:
                 new labels.append(col)
        # new labels for our columns
        new labels
Out[6]: ['id',
          'diagnosis',
          'radius',
          'texture',
          'perimeter',
          'area',
          'smoothness',
          'compactness',
          'concavity',
          'concave points',
          'symmetry']
```

Out[7]:

	id	diagnosis	radius	texture	perimeter	area	smoothness	compactness
0	842302	М	17.99	19.293431	122.80	1001.0	0.118400	0.27760
1	842517	М	20.57	17.770000	132.90	1326.0	0.084740	0.07864
2	84300903	М	19.69	21.250000	130.00	1203.0	0.109600	0.15990
3	84348301	М	11.42	20.380000	77.58	386.1	0.096087	0.28390
4	84358402	М	20.29	14.340000	135.10	1297.0	0.100300	0.13280

In [8]: # save this for later
 df.to_csv('cancer_data_edited.csv', index=False)