

圖 1-5 (a) 摻雜 As (為施體) 與(b) 摻雜 B (為受體) 之化學鍵結模型 (取自 Sze [5]) 。

一般來說,在室溫下即有足夠的熱能,供給游離所有施體或受體雜質所需的能量,因此可提供等量的電子數或電洞數,此稱為「完全游離」。讓我們考慮一個 n 型半導體,其摻雜施體濃度 $N_D \gg n_i$,因此在完全游離的情形下,自由電子濃度等於 $n=N_D+n_i\cong N_D$,將此代入式(1.6)可得到:

$$E_{C} - E_{F} = kT \ln \left(\frac{N_{C}}{N_{D}} \right) \tag{1.15}$$

相同地,若 p 型半導體中受體濃度 $N_A \gg n_i$,在完全游離下之電洞濃度 $p=N_A+n_i\cong N_A$,代入式 (1.7) 可得到:

$$E_{F} - E_{V} = kT \ln \left(\frac{N_{V}}{N_{A}} \right) \tag{1.16}$$

由式 (1.15) 可知,當施體濃度 N_D 愈大,則能量差 $(E_C - E_F)$ 愈小,表示費米能階 E_F 愈往導電帶底部 E_C 接近,如圖 1-6(a)所顯示。同樣地,若 P型半導體中的受體濃度 N_A 愈大,則式 (1.16) 中的 $(E_F - E_V)$ 愈小,表示費米能階 E_F 愈遠離本質半費米能階 E_F ,且愈往價電帶頂部 E_V 靠近,如圖 1-6(b)所顯示。