

EMC TEST REPORT - 369969-2TRFEMC

Applicant:

TR Controls Inc

Product name:

Access Management Keypad

Model:

K1

Specifications:

- FCC 47 CFR Part 15, Subpart B Verification
- ICES-003 Issue 6 January 2016

Date of issue: May 8, 2019

Test engineer(s): Kevin Rose, Wireless/EMC Specialist Signature:

Reviewed by: Andrey Adelberg, Senior Wireless/EMC Specialist Signature:

Company name	Nemko Canada Inc.			
Facilities	Ottawa site:	Montréal site:	Cambridge site:	Almonte site:
	303 River Road	292 Labrosse Avenue	1-130 Saltsman Drive	1500 Peter Robinson Road
	Ottawa, Ontario	Pointe-Claire, Québec	Cambridge, Ontario	West Carleton, Ontario
	Canada	Canada	Canada	Canada
	K1V 1H2	H9R 5L8	N3E 0B2	KOA 1LO
	Tel: +1 613 737 9680	Tel: +1 514 694 2684	Tel: +1 519 650 4811	Tel: +1 613 256-9117
	Fax: +1 613 737 9691	Fax: +1 514 694 3528		Fax: +1 613 256-8848
Test site registration	Organization	Recognition numbers and location	n	
	FCC/ISED	CA2040 (Ottawa/Almonte); CA20	41 (Montreal); CA0101 (Cambri	lge)
Website	www.nemko.com			

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

Table of Contents

Table of C	Contents	. 3
Section 1	Report summary	. 4
1.1	Test specifications	4
1.2	Exclusions	4
1.3	Statement of compliance	4
1.4	Test report revision history	4
Section 2	Summary of test results	. 5
2.1	Testing period	5
2.2	North America test results	5
Section 3	Equipment under test (EUT) details	. е
3.1	Applicant	6
3.2	Manufacturer	6
3.3	Sample information	6
3.4	EUT information	6
3.5	EUT setup details	7
Section 4	Engineering considerations	٠.
4.1	Modifications incorporated in the EUT for compliance	9
4.2	Technical judgment	9
4.3	Deviations from laboratory tests procedures	9
Section 5	Test conditions	10
5.1	Atmospheric conditions	10
5.2	Power supply range	10
Section 6	Measurement uncertainty	11
6.1	Uncertainty of measurement	11
Section 7	Terms and definitions	12
7.1	Product classifications definitions	12
7.2	General definitions	12
Section 8	Testing data	13
8.1	Radiated emissions	13

Section 1 Report summary

1.1 Test specifications

FCC 47 CFR Part 15, Subpart B – Verification
ICES-003 Issue 6 January 2016

Title 47: Telecommunication; Part 15—Radio Frequency Devices

Information Technology Equipment (ITE) – Limits and methods of measurement

1.2 Exclusions

None

1.3 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.2 above. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.4 Test report revision history

Table 1.4-1: Test report revision history

Revision #	Date of issue	Details of changes made to test report
TRF	May 8, 2019	Original report issued

Section 2 Summary of test results

2.1 Testing period

Test start date	April 8, 2019
Test end date	April 9, 2019

2.2 North America test results

Table 2.2-1: Result summary for emissions

Standard	Clause	Test description	Verdict
FCC 47 CFR Part 15, Subpart B	§15.109	Radiated emissions limits ¹	Pass
FCC 47 CFR Part 15, Subpart B	§15.107	Conducted emissions limits (AC mains) ¹	Not applicable ²
ICES-003 Issue 6	6.1	AC Power Line Conducted Emissions Limits ¹	Not applicable ²
ICES-003 Issue 6	6.2	Radiated Emissions Limits ¹	Pass

Notes:

¹ Product classification B

²The EUT is DC powered

Section 3 Equipment under test (EUT) details

3.1 Applicant

Company name	TR Controls Inc
Address	955 Green Valley Road London Ontario N6N1E4 Canada

3.2 Manufacturer

Company name	Microart Services Inc	
Address	190 Duffield Drive Markham Ontario L6G1B5 Canada	

3.3 Sample information

Receipt date	April 3, 2019
Nemko sample ID number	#5

3.4 EUT information

Product name	Access Control Keypad
Model	K1
Serial number	None
Part number	None
Power requirements	12–60 V _{DC}
Description/theory of operation The K1 is an access control device with NFC/RFID (13.56 MHz) and PIN keypad entry options.	
	The device will be transmitting constant modulated signal at 13.56 MHz
	The modulation used is specific to the ISO14443A protocol which is 106 kbit/s data rate and 100% ASK.
Operational frequencies	13.56 MHz, Highest clock frequency: 27.12 MHz
Software details	Test firmware version 1.0.08

3.5 EUT setup details

EUT description of the methods used to exercise the EUT and all relevant ports:

- The EUT is powered with 12 V DC source and unit transmits signals at frequency 13.56 MHz
- When connections are made, observe the LED's on the keypad
- Yellow LED will initially light up to indicate the keypad is connected
- The EUT is tested for keypress and NFC functionality

EUT setup/configuration rationale:

- The EUT setup in a configuration that was expected to produce the highest amplitude emissions relative to the limit and that satisfy normal
 operation/installation practice by the end user.
- The type and construction of cables used in the measurement set-up were consistent with normal or typical use. Cables with mitigation features (for example, screening, tighter/more twists per length, ferrite beads) have been noted below:
 - The following deviations were:
 - None
- The EUT was setup in a manner that was consistent with its typical arrangement and use. The measurement arrangement of the EUT, local AE and associated cabling was representative of normal practice. Any deviations from typical arrangements have been noted below:
 - The following deviations were:
 - None

EUT monitoring method:

Once EUT is powered ON, it starts transmitting and is monitored through a receiver antenna

3.5 EUT setup details, continued

Table 3.5-1: EUT interface ports

Description	Qty.
DC mains port	1

Table 3.5-2: Support equipment

Description	Brand name	Model, Part number, Serial number, Revision level
Power Supply source	GW Instek	GPR-306000

Table 3.5-3: Inter-connection cables

Cable description	From	То	Length (m)
DC mains power cable	EUT	Power Supply	<1

Figure 3.5-1: block diagram

Section 4 Engineering considerations

4.1 Modifications incorporated in the EUT for compliance

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5 Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	86–106 kPa

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6 Measurement uncertainty

6.1 Uncertainty of measurement

Nemko Canada Inc. has calculated measurement uncertainty and is documented in EMC/MUC/001 "Uncertainty in EMC measurements." Measurement uncertainty was calculated using the methods described in CISPR 16-4-2 Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics and limit modelling – Measurement instrumentation uncertainty. The expression of Uncertainty in EMC Testing. Measurement uncertainty calculations assume a coverage factor of K=2 with 95% certainty.

Table 6.1-1: Measurement uncertainty calculations

		U_{cispr}	U _{lab} dB			
Measurement		dB	Ottawa	Montreal	Cambridge	Almonte
Conducted disturbance at AC mains and other port power	(9 kHz to 150 kHz)	3.8	2.9	2.8	2.8	N/A
using a V-AMN	(150 kHz to 30 MHz)	3.4	2.3	2.2	2.2	N/A
Conducted disturbance at telecommunication port using AAN	(150 kHz to 30 MHz)	5.0	4.3	4.3	4.3	N/A
Conducted disturbance at telecommunication port using CVP	(150 kHz to 30 MHz)	3.9	2.9	2.8	2.8	N/A
Conducted disturbance at telecommunication port using CP	(150 kHz to 30 MHz)	2.9	1.4	1.1	1.1	N/A
Conducted disturbance at telecommunication port using CP	(150 kHz to 30 MHz)	4.0	3.1	3.0	3.0	N/A
and CVP						
Disturbance power	(30 MHz to 300 MHz)	4.0	3.7	3.7	3.7	N/A
Radiated disturbance (electric field strength at an OATS or in	(30 MHz to 1 GHz)	6.3	5.7	5.5	5.5	5.5
a SAC)						
Radiated disturbance (electric field strength in a FAR)	(1 GHz to 6 GHz)	5.2	4.8	5.1	4.8	N/A
Radiated disturbance (electric field strength in a FAR)	(6 GHz to 18 GHz)	5.5	5.1	5.0	4.7	N/A

Notes:

Compliance assessment:

If U_{lab} is less than or equal to U_{cispr} then:

- compliance is deemed to occur is no measured disturbance level exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit

If $U_{\rm lab}$ is greater than $U_{\rm cispr}$ then:

- compliance is deemed to occur is no measured disturbance level, increased by (U_{lab} U_{cispr}), exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance level, increased by ($U_{lab} U_{cispr}$), exceeds the disturbance limit

Section 7 Terms and definitions

7.1 Product classifications definitions

7.1.1 Title 47: Telecommunication – Part 15-Radio Frequency devices, Subpart A – General – Equipment classification

Class B digital device

A digital device that is marketed for use in a residential environment notwithstanding use in commercial, business and industrial environments. Examples of such devices include, but are not limited to, personal computers, calculators, and similar electronic devices that are marketed for use by the general public.

Note: The responsible party may also qualify a device intended to be marketed in a commercial, business or industrial environment as a Class B device, and in fact is encouraged to do so, provided the device complies with the technical specifications for a Class B digital device. In the event that a particular type of device has been found to repeatedly cause harmful interference to radio communications, the Commission may classify such a digital device as a Class B digital device, regardless of its intended use.

7.1.2 ICES-003 – Equipment classification

Class B ITE

limits of radio noise for ITE for residential operation

7.2 General definitions

7.2.1 Title 47: Telecommunication – Part 15-Radio Frequency devices, Subpart A – General – Digital device definitions

Digital device (Previously defined as a computing device)

An unintentional radiator (device or system) that generates and uses timing signals or pulses at a rate in excess of 9,000 pulses (cycles) per second and uses digital techniques; inclusive of telephone equipment that uses digital techniques or any device or system that generates and uses radio frequency energy for the purpose of performing data processing functions, such as electronic computations, operations, transformations, recording, filing, sorting, storage, retrieval, or transfer. A radio frequency device that is specifically subject to an emanation requirement in any other FCC Rule part or an intentional radiator subject to subpart C of this part that contains a digital device is not subject to the standards for digital devices, provided the digital device is used only to enable operation of the radio frequency device and the digital device does not control additional functions or capabilities.

Note: Computer terminals and peripherals that are intended to be connected to a computer are digital devices.

7.2.2 ICES-003 – Definitions

Information technology equipment (ITE)

Information Technology Equipment (ITE) is defined as devices or systems that use digital techniques for purposes such as data processing and computation. ITE is any unintentional radiator (device or system) that generates and/or uses timing signals or pulses having a rate of at least 9 kHz and employs digital techniques for purposes such as computation, display, data processing and storage, and control.

Section 8 Testing data

8.1 Radiated emissions

8.1.1 References and limits

- FCC 47 CFR Part 15, Subpart B: Clause §15.109 (Test method ANSI C63.4:2014)
- ICES-003: Section 6.2

 Table 8.1-1: Requirements as per FCC Part 15 Subpart B and ICES-003 for radiated emissions for Class B

F [DALL-]		Measurement	limits	
Frequency range [MHz]	Distance [m]	Detector type/ bandwidth	[dBµV/m]	
30–88			29.5	
88–216	10	O: P1/420 HI-	33.1	
216–960	10	Quasi Peak/120 kHz	35.6	
960–1000			43.5	
30–88			40.0	
88–216	3	Quasi Peak/120 kHz	43.5	
216–960	3	Quasi Peak/120 km2	46.0	
960-1000			54.0	
>1000	10	Linear average/1 MHz	43.6	
>1000	10	Peak/1 MHz	63.6	
1000	2	Linear average/1 MHz	54.0	
>1000	3	Peak/1 MHz	74.0	

Notes: Where there is a step in the relevant limit, the lower value was applied at the transition frequency.

8.1.2 Test summary

Verdict	Pass		
Test date	April 8, 2019	Temperature	27 °C
Test engineer	Kevin Rose	Air pressure	985 mbar
Test location	Cambridge	Relative humidity	24 %

8.1.3 Notes

- The spectral plots within this section are a summation of a vertical and horizontal scans. The spectral scans have been corrected with the associated applicable transducer factors.
- Where tabular data has not been provided, no emissions were observed within 10 dB of the specified limit when measured with the appropriate detector.
- Where less than 6 measurements per detector has been provided, fewer than 6 emissions were observed within 10 dB of the specified limit when measured with the appropriate detector.
- The spectrum was scanned to 1GHz according to the EUT highest digital operating frequency.

 Table 8.1-2: Maximum frequency test range based on highest digital operating frequency

Highest internal frequency [Fx]	Highest measured frequency
F _X ≤ 108 MHz	1 GHz
108 MHz < F _X ≤ 500 MHz	2 GHz
500 MHz < F _X ≤ 1 GHz	5 GHz
F _X > 1 GHz	$5 \times F_X$ up to a maximum of 40 GHz

Notes:

Highest internal frequency $[F_X]$ – highest fundamental frequency generated or used within the EUT or highest frequency at which it operates. This includes frequencies which are solely used within an integrated circuit.

For FM and TV broadcast receivers F_X is determined from the highest frequency generated or used excluding the local oscillator and tuned frequencies.

8.1.4 Setup details

Port under test	Enclosure Port
EUT power input during test	12 V _{DC}
EUT setup configuration	Table top
Test facility	Semi anechoic chamber
Measuring distance	3 m
Antenna height variation	1–4 m
Turn table position	0–360°
Measurement details	A preview measurement was generated with receiver in continuous scan or sweep mode while the EUT was rotated
	and antenna adjusted to maximize radiated emission. Emissions detected within 10 dB or above the limit were re-
	measured with the appropriate detector against the correlating limit and recorded as the final measurement.

Receiver/spectrum analyzer settings:

Resolution bandwidth	120 kHz
Video bandwidth	300 kHz
Detector mode	Peak (Preview measurement), Quasi-peak (Final measurement)
Trace mode	Max Hold
Measurement time	100 ms (Peak preview measurement), 100 ms (Quasi-peak final measurement)

Table 8.1-3: Radiated emissions equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Receiver/spectrum analyzer	Rohde & Schwarz	ESR 26	FA002969	1 year	Jun-01/2019
3m EMI Test chamber	TDK	SAC-3	FA003012	1 year	Aug-22/2019
Flush mount table	SUNAR	FM2022	FA003006	-	NCR
Controller	SUNAR	SC110V	FA002976	_	NCR
Antenna mast	SUNAR	TLT2	FA003007	-	NCR
Bilog Antenna(20-2000 MHz)	SUNAR	JB1	FA003009	1year	Sep-06/2019

Notes: NCR - no calibration required

Table 8.1-4: Radiated emissions test software details

Manufacturer of Software	Details
Rohde & Schwarz	EMC 32, software for EMC Measurements, Version 10.40.10

8.1.5 Test data

Figure 8.1-1: Radiated emissions spectral plot (30 to 1000 MHz)

Table 8.1-5: Radiated emissions (Quasi-Peak) results

Frequency (MHz)	Quasi-Peak field strength¹ (dBμV/m)	3 m Quasi- Peak limit ³ (dBµV/m)	Margin (dB)	Measurement time (ms)	Bandwidth (kHz)	Antenna height (cm)	Pol. (V/H)	Turn table position (°)	Correction factor ² (dB)
40.68	33.9	40.0	6.1	100	120	108.0	V	289	13.8
128.01	27.4	43.5	16.1	100	120	108.0	V	86	14.3
192.00	28.1	43.5	15.4	100	120	100.0	V	154	12.0
271.20	29.3	46.0	16.7	100	120	100.0	V	345	13.8
298.32	34.4	46.0	11.6	100	120	108.0	V	324	14.0
325.44	32.2	46.0	13.8	100	120	108.0	V	329	14.7

Notes:

Sample calculation: 33.9 dB μ V/m (field strength) = 20.1 dB μ V (receiver reading) + 13.8dB (Correction factor)

End of the test report

 $^{^{1}}$ Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

² Correction factor = antenna factor ACF (dB) + cable loss (dB)

³ Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.