Fundamentos de Inteligência Artificial / Introdução à Inteligência Artificial 2024/2025 Época Normal

As respostas erradas descontam nas certas.

1. Classifique as afirmações como verdadeiras ou falsas.

Afirmações	V	F
O algoritmo de aprofundamento progressivo, por fazer a procura em profundidade primeiro, pode ficar preso em ciclos.		X
A principal desvantagem do algoritmo de procura em profundidade limitada é a existência de ciclos.		X
Os agentes reativos recorrem à memória para armazenar conhecimento, raciocinando depois sobre esse conhecimento.	X	
O algoritmo de eliminação de candidatos é tolerante a erros.		X
Uma rede neuronal não consegue implementar a função XOR.		X
Todos os algoritmos de aprendizagem computacional dependem da existência de exemplos previamente classificados.		×
O algoritmo MinMax só pode ser usado para jogos com espaço de procura bastante limitado.		X
O trepa-colinas é sempre superior à procura aleatória.		X
O papel do operador de recombinação é explorar novas combinações de material genético já existente na população.	X	
O operador de mutação deve garantir que é possível introduzir novo material genético.	X	
Do ponto de vista computacional, sobrevivência sem reprodução é inútil.		X
O algoritmo de clustering k-means é um algoritmo hierárquico.		X
Podemos usar algoritmos evolutivos para resolver problemas de otimização combinatória.	X	
O algoritmo MinMax assume que os jogadores escolhem sempre a melhor opção.	X	
Uma heurística admissível nunca pode sobrestimar o custo.	X	

2. Considere o espaço de procura da figura, onde A é o estado inicial e G o estado final. O valor associado a cada aresta indica o custo real de transição entre os dois estados. O valor no interior dos nós indica a estimativa do custo de transitar desde esse nó até ao estado final. Assuma que os desempates são feitos por ordem alfabética e que os nós são adicionados à fila ou pilha um a um. Por exemplo, o primeiro descendente de A é B e o segundo é C. Classifique as afirmações como verdadeiras ou falsas.

Afirmações	V	F
O algoritmo de procura em profundidade entra em ciclo.		X
O algoritmo de procura em profundidade visita 4 nós.	X	
O algoritmo de custo uniforme visita 9 nós.	X	
O algoritmo A* visita mais nós que o de procura em profundidade mas menos que o de custo uniforme.	X	
O algoritmo de procura em largura encontra o caminho A-C-G.	X	
A heurística não é admissível.		

3. Considere o seguinte conjunto de exemplos de treino dados a um agente aprendiz e classifique as afirmações como verdadeiras ou falsas.

Exemplo	Situação de Jogo	Remate	Assistência	Golo
1	Penálti Nuno Mendes		_	Sim
2	Penálti	Bruno	_	Sim
3	Penálti	Ruben	_	Sim
4	Bola Corrida Vitinha		Bruno	Não
5	Bola Corrida	Bola Corrida Nuno Mendes		Sim
6	Bola Corrida Ronaldo		Nuno Mendes	Sim
7	Bola Corrida	Ronaldo	Pedro Neto	Não
8	Bola Corrida Bruno Ronaldo		Ronaldo	Não
9	Bola Corrida Bruno Nuno Mendes		Nuno Mendes	Não

log ₂ (n/d)		n							
		1	2	3	4	5	6	7	
	1	_							
	2	-1.00	1						
	3	-1.58	-0.58	ı					
d	4	-2.00	-1.00	-0.42	_				
	5	-2.32	-1.32	-0.74	-0.32	_			
	6	-2.58	-1.58	-1.00	-0.58	-0.26	_		
	7	-2.81	-1.81	-1.22	-0.81	-0.49	-0.22	_	

Afirmações	V	F
O algoritmo ID3 não pode ser aplicado porque há atributos com valor desconhecido.		X
Um dos ramos da árvore de decisão determina que sempre que o Nuno Mendes está envolvido na jogada, Portugal marca.		X
A regra de pertença à classe positiva tem duas disjunções (ou's).	X	•
A árvore de decisão não menciona o Ronaldo.		X
A raíz da árvore de decisão tem o atributo "Situação de Jogo".		X
A raíz da árvore de decisão tem o atributo "Assistência".	X	

4. Considerando a distribuição de dados (pontos) e a posição inicial dos centróides (letras) apresentados na figura, e a aplicação do algoritmo k-means, classifique as afirmações como verdadeiras ou falsas.

Afirmações	V	F
O centróide A desloca-se para baixo e para a direita.	X	
O centróide B desloca-se para a esquerda e para cima.	X	
Há mais centróides que clusters.	X	
Os centróides E e D vão convergir para posições que permitem dividir os pontos da zona superior entre si.	X	

5. Considerando a árvore dada pela figura que se segue, onde os valores associados às folhas correspondem ao resultado da função de avaliação, e admitindo que o primeiro a jogar é o Max, classifique as afirmações como verdadeiras ou falsas.

Afirmações	V	F
O nó A tem o valor 90.		X
O nó G tem o valor 90.	×	
O nó J tem o valor 5.		X
O nó D tem o valor 6.	X	
O corte alfa-beta elimina a ligação B-F.		X
O corte alfa-beta elimina a ligação C-I.		×
O corte alfa-beta elimina a ligação I-S.	X	
O corte alfa-beta elimina a ligação D-K.		X

6. Considere a Rede Neuronal Artificial apresentada na figura, e o seguinte exemplo de treino:

exemplo de treino

i1	i2	о1	ο2
1	1	10	-10

a) Quais são os valores de h1, h2, h3, o1 e o2 associados ao exemplo de treino?

h1	h2	h3	01	ο2
۵			0	Ó

b) Aplicando de forma rigorosa o algoritmo de retropropagação, indique se os valores dos pesos aumentam, diminuem, ou se mantêm iguais. Considere que a função de ativação é linear.

w1	w2	w3	w4	w5	w6	w7	w8	w9	w10	w11
4	4	1		4	\rightarrow)1	1	1	11	1)