DICA RASPBERRY PI3: FIQUE LIVRE DO RAIO AMARELO (LIGHT ICON)

Leandro Teodoro Out/2019

O raio amarelo, ou light icon, que aparece no monitor da placa Raspberry Pi, indica que a alimentação está abaixo da tensão de limite. Na maioria dos casos, a substituição da fonte de alimentação por uma de melhor qualidade resolve o problema. Porém, pode acontecer que mesmo com essa substituição a indicação de baixa tensão continue.

Figura 1: Indicação de Baixa Tensão

Fonte: https://www.raspberrypistarterkits.com/guide/raspberry-pi-lightning-bolt/

Em alguns casos, pode ocorrer incompatibilidade entre o firmware e a versão da placa, fato bastante relatado no modelo B+. Em outros casos, a indicação de baixa tensão somente desaparece quando a tensão fica selecionada em torno de 5.6Vdc. Porém, em condições acima de 5.4Vdc podem ocorrer falhas no hadware externo. Por exemplo, a não detecção do teclado e mouse ligados em um hub USB. Em tensões abaixo dos 4.3Vdc, podem ocorrer falhas de demanda de energia, levando o sistema operacional a travar ou falhas de sinal de vídeo HDMI (tela piscando). Valores de tensão para uma operação ótima com uma fonte ajustável chaveada de 5V e 10A ficaram em torno de 4.8Vdc.

Caso não seja possível resolver a situação com a substituição da fonte de alimentação existe a opção de inibir o alerta por uma configuração no sistema operacional, bastando incluir no arquivo /boot/config.txt a linha:

avoid warnings=1

Desta forma, o alerta não será mais exibido quando o sistema operacional é carregado. Somente ocorrendo o sinal nas primeiras telas de boot, já que esse é gerado por um firmware de nível mais baixo.

Uma outra dica é que a placa pode ser alimentada diretamente pelo pino 2 e 6 do conector de 40 pinos, 5Vdc e terra respectivamente. Esse procedimento facilita a adaptação de uma fonte, por exemplo uma fonte ATX de computador, não sendo necessário utilizar o conector micro USB. Porém é necessário tomar cuidado com o limite de tensão.

	Raspberry F			
Pin#	NAME		NAME_	Pin#
01	3.3v DC Power		DC Power 5v	02
03	GPIO02 (SDA1 , I ² C)	0	DC Power 5v	04
05	GPIO03 (SCL1 , I ² C)	0	Ground	06
07	GPIO04 (GPIO_GCLK)	O O	(TXD0) GPIO14	08
09	Ground	0 0	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	00	Ground	14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)	O	Ground	20
21	GPIO09 (SPI_MISO)	O	(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)	\odot	(SPI_CE0_N) GPIO08	24
25	Ground	00	(SPI_CE1_N) GPIO07	26
27	ID_SD (I2C ID EEPROM)	00	(I ² C ID EEPROM) ID_SC	28
29	GPIO05	00	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40

Figura 2: Pinagem Raspberry Pi 3 – Conector de 40 pinos Fonte: www.element14.com/RaspberryPi

CONCLUSÃO

Nesse post foi apresentado uma forma rápida e fácil de inibir o aviso de baixa tensão da placa Raspberry Pi3. Nota-se que antes de efetuar esse procedimento é importante tentar efetuar a troca da fonte. Se a troca não surtir efeito é necessário um check total no projeto a fim da certificação que todas as funcionalidades da placa estão disponíveis na tensão de trabalho atual.

REFERÊNCIAS

[1]. Site: https://www.raspberrypi.org/documentation/configuration/config-txt/misc.md. Acessado em: 22/10/19