

TD: Séries.

Exercice 1 Etudier la nature des séries numériques suivantes avec le test de convergence indiqué.

- 1. Condition nécessaire de convergence :
 - (a) $U_n = \frac{n+1}{2n+1}$;
 - (b) $V_n = \sqrt{n^2 + n} n$;
 - (c) $W_n = Arc\sin(\frac{n^2+1}{n^2})$.
- 2. Test de d'Alembert :
 - (a) $U_n = \frac{1}{(2n-1)2^{2n-1}}$;
 - (b) $V_n = \frac{(n+1)(n+2)...(2n)}{(2n)^n}$;
 - (c) $W_n = \frac{n^3}{n!}$.
- 3. Test de Cauchy
 - (a) $U_n = \frac{2^n}{n}$;
 - (b) $V_n = (\frac{n+1}{2n+2})^n$;
 - (c) $W_n = (Arc\sin(\frac{1}{n}))^n$.
- 4. Test de comparaison :
 - (a) $U_n = \frac{n}{n^2 + 2}$;
 - (b) $V_n = \frac{n}{(n^2+1)(n+2)}$;
 - (c) $W_n = \frac{1}{n} (\frac{3}{4})^n$.
- 5. Test d'équivalence :
 - (a) $U_n = \frac{1}{(3n-1)(2n+1)}$;
 - (b) $V_n = (\sin(\frac{1}{n}))^3$;
 - (c) $W_n = \ln(\frac{n^2+1}{n^2})$.

Exercice 2 Etudier la nature des séries alternées suivantes:

- 1. $U_n = (-1)^n e^{-n}$:
- 2. $V_n = (-1)^n n$;
- 3. $W_n = (-1)^n \frac{1}{n}$.

Exercice 3 Soit la série de terme général u_n ,

$$u_{2n} = \frac{1}{n+1}, \ u_{2n+1} = \ln(\frac{n+1}{n+2}) \ (n \ge 0).$$

Montrer que cette série est alternée et converqente.

Exercice 4 Soit f continue décroissante sur défini par $U_0 = 0$ et $U_n = \frac{1}{n(n+1)(n+2)}$ si $n \ge 1$. $[0, +\infty[$ telle que $\lim_{x \to +\infty} f(x) = 0$.

- 1. Etudier la série de terme général $(n \ge 0)$ $u_n = \int_{n\pi}^{(n+1)\pi} f(t) \sin(t) dt$
- 2. Cas particulier:

$$u_n = \int_{\sqrt{n\pi}}^{\sqrt{(n+1)\pi}} \sin(t^2) dt \quad (n \ge 1).$$

Exercice 5 Montrer, pour tout $n \in \mathbb{N}$, on a

$$\sqrt{n+1} - \sqrt{n} \le \frac{1}{2\sqrt{n}}$$

En déduire le comportement de la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$$

Exercice 6 Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par

$$u_n = \left(1 + \frac{1}{n^2}\right) \left(1 + \frac{2}{n^2}\right) \cdots \left(1 + \frac{n}{n^2}\right).$$

On pose $v_n = ln(u_n)$

1. Montrer, pour tout $x \geq 0$, l'inégalité

$$x - \frac{x^2}{2} \le \ln(1+x) \le x$$

2. En déduire que

$$\frac{n+1}{2n} - \frac{(n+1)(2n+1)}{12n^3} \le v_n \le \frac{n+1}{2n}$$

- 3. Montrer que (v_n) converge, et préciser sa li-
- 4. Montrer que (u_n) converge, et préciser sa limite.

Exercice 7 Soit n un entier naturel, $n \geq 2$, on considère la serie de terme général $U_n = \frac{4}{n^2-1}$.

- 1. Montrer que cette serie est convergente.
- 2. Déterminer les réels a et b tels que : $\frac{4}{n^2-1} = \frac{a}{n-1} + \frac{b}{n+1}$
- 3. En déduire que : $\sum_{k=2}^{n} U_k = 3 \frac{4n+2}{n(n+1)}$.
- 4. En déduire la somme $\sum_{k=0}^{+\infty} U_k$.

Exercice 8 Considérons la série de terme général

1. Montrer que cette série est convergente.

- 2. Décomposer en éléments simples la fraction rationnelle $\frac{1}{X(X+1)(X+2)}$.
- 3. En déduire la somme $\sum_{k=1}^{+\infty} U_k$.

Exercice 9 Notons, pour tout entier $n \ge 1$: $S_n = \sum_{p=1}^{n} \frac{(-1)^{p-1}}{p} = \sum_{p=0}^{n-1} \frac{(-1)^p}{p+1}$.

- 1. Calculer $\int_{0}^{1} t^{p} dt$.
- 2. Calculer $\sum_{p=0}^{n-1} (-t)^p$.
- 3. Démontrer que $S_n = \ln 2 \int_0^1 \frac{(-t)^n}{1+t} dt$.
- 4. Démontrer que $|S_n \ln 2| \le \frac{1}{n+1}$.
- 5. En déduire la somme $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n}$.

Exercice 10 Calculer les sommes des séries suivantes après avoir vérifié leur convergence.

- 1. $\sum_{n=0}^{+\infty} \frac{n+1}{3^n}$;
- 2. $\sum_{n=3}^{+\infty} \frac{2n-1}{n^3-4n}$;
- 3. $\sum_{n=0}^{+\infty} \frac{1}{(3n)!}$;
- 4. $\sum_{n=2}^{+\infty} \left(\frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n+1}} \frac{2}{\sqrt{n}} \right)$;
- 5. $\sum_{n=2}^{+\infty} \ln\left(1 + \frac{(-1)^n}{n}\right)$;
- 6. $\sum_{n=0}^{+\infty} \ln\left(\cos\frac{a}{2^n}\right) \ a \in \left]0, \frac{\pi}{2}\right[;$
- $7. \sum_{n=0}^{+\infty} \frac{\tanh \frac{a}{2^n}}{2^n}.$

Exercice 11 Etudier, suivant les valeurs de α et β , la convergence des séries suivantes :

$$\sum_{n=2}^{+\infty} \frac{1}{n^{\alpha} (\ln(n))^{\beta}}$$

Exercice 12 1. En utilisant une intégrale, montrer que pour tout n > 0: $\frac{1}{n+1} \le \ln(n+1) - \ln(n) \le \frac{1}{n}.$

- 2. Pour $n \ge 1$, on pose $H_n = \sum_{k=1}^n \frac{1}{k}$.
 - a) Etablir que pour tout $n \ge 1$: $ln(n+1) \le H_n \le ln(n) + 1$.
 - **b)** Déterminer un équivalent simple à la suite (H_n) ainsi que sa limite.

- 3. Pour $n \ge 1$, on pose $u_n = H_n ln(n+1)$.
 - a) Montrer que la suite (u_n) est convergente. On pose $\gamma = \lim_{n \to +\infty} u_n$. Ce réel est appelé constante d'Euler.
 - **b)** Etablir l'identité $H_n = ln(n) + \gamma + o(1)$.
- 4. Pour $n \ge 1$, on pose $S_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$.
 - a) Montrer que les suites extraites (S_{2n}) et (S_{2n+1}) sont adjacentes.
 - **b)** Quelle est la nature de la suite (S_n) ?
- 5. Dans cette question, on se propose de calculer $\ell = \lim_{n \to +\infty} S_n$.
 - a) Etablir que pour tout $n \ge 1$: $S_{2n} = H_{2n} - H_n$.
 - b) En exploitant le résultat de la question 3.b, déterminer ℓ .
- 6. En discutant selon la parité de n, établir la majoration : $|S_n \ell| \le \frac{1}{n+1}$.
- 7. Pour $n \ge 1$, on pose $T_n = \sum_{k=1}^{n} \frac{1}{k} \cos(\frac{2k\pi}{3})$.
 - a) Déterminer $a, b, c \in \mathbb{R}$ tels que $T_{3n} = a \sum_{k=1}^{n} \frac{1}{3k} + b \sum_{k=0}^{n-1} \frac{1}{3k+1} + c \sum_{k=0}^{n-1} \frac{1}{3k+2}.$
 - **b)** En déduire que $T_{3n} = \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} \frac{1}{2} \sum_{k=1}^{3n} \frac{1}{k}$.
- 8. Déterminer la limite de la suite (T_n) .

Exercice 13 Soit p un entier naturel et f une fonction continue, strictement positive, décroissante sur $[p, +\infty[$ et telle que $\int_{-\infty}^{+\infty} f(t)dt$ converge.

Pour tout entier naturel n supérieur ou égal à p, on pose $S_n = \sum_{k=p}^n f(k)$.

- 1. (a) Utiliser la décroissance de f pour montrer que, pour tout entier naturel n supérieur ou égal p, on $a: S_n f(p) \leqslant \int_p^n f(t)dt$.
 - (b) En déduire que la série de terme général f(n) est convergente.

On pose désormais, pour tout entier naturel n supérieur ou égal à p, $R_n = \sum_{k=n+1}^{+\infty} f(k)$.

2. (a) Montrer que, pour tout entier naturel n supérieur ou égal à p, on a :

$$\int_{n}^{+\infty} f(t)dt - f(n) \leqslant R_n \leqslant \int_{n}^{+\infty} f(t)dt$$

(b) En déduire une condition suffisante portant sur f(n) et $\int_{n}^{+\infty} f(t)dt$ pour que :

$$R_n \sim \int_{-\infty}^{+\infty} f(t)dt$$

- 3. Dans cette question, pour tout réel x de $[2, +\infty[$, on pose $f(x) = \frac{1}{x(\ln x)^2}$.
 - (a) Montrer que cette fonction vérifie les quatre hypothèses de l'énoncé ainsi que la condition trouvée à la question 2b).
 - (b) En déduire un équivalent, lorsque n est au voisinage de $+\infty$, de $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k(\ln k)^2}$
 - (c) La série de terme général R_n est-elle convergente?