

Programación. Python

Dataframes con pandas

Operaciones básicas 1.a Construcción de tablas

```
# Creación de una tabla o dataframe
# dando los nombres de sus columnas y valores a sus elementos:
tabla_a = pd.DataFrame({"A": [1, 3, 5], "B": [2, 4, 6]}
print(tabla a)
# El valor `None` permite forzar un dato missing (`NaN`, *Not A Number* en inglés):
tabla_b = pd.DataFrame({"B": [2, 4], "C": [20, None]})
print(tabla b)
# A veces, necesitaremos crear un dataframe con números aleatorios:
import numpy as np
np.random.seed(0) # damos una semilla concreta para que la ejecución sea reproducible
# Se generan 3x4 números aleatorios N(0, 1):
tabla c = pd.DataFrame(np.random.randn(3, 4), columns=["A", "B", "C", "D"])
tabla c
```

```
A B 1 2 1 3 4 2 5 6 B C 0 2 20 0 1 4 NaN
```

```
        A
        B
        C
        D

        0
        1.764052
        0.400157
        0.978738
        2.240893

        1
        1.867558
        -0.977278
        0.950088
        -0.151357

        2
        -0.103219
        0.410599
        0.144044
        1.454274
```

Operaciones básicas 1.a Construcción de tablas

```
# Creación de un dataframe a partir de una lista de tuplas
# v sin dar los nombres de las columnas:
tuplas = [
    (1, 2, 3),
    (4, 5, 6)
tabla d = pd.DataFrame(tuplas)
tabla d
# Ahora podemos renombramos las columnas:
tabla d.columns = ["Una", "Dos", "Tres"]
tabla d
# Los dos pasos anteriores a un tiempo:
# - Creación de la tabla (con una lista de listas esta vez),
# - y nombrabdo las columnas desde el principio:
listas = [
    [1, 2, 3],
    [4, 5, 6]
tabla e = pd.DataFrame(listas, columns=["Una", "Dos", "Tres"]
tabla e
```


1.b Modificación de tablas

```
# Añadir (o modificar) una fila:
otra_fila = {"Una": 100, "Dos": 200, "Nueva": 300}
tabla_e.loc[2] = otra_fila
tabla_e

# Modificar el valor de una celda:
tabla_e.at[1, "Dos"] = 1000
tabla_e
```

```
# Modificar los valores de una fila:
tabla_e.loc[1] = [-1, -2, -3]
tabla_e
```

```
# Modificar los valores de una columna:

tabla_e["Dos"] = [20, 50, 90]
tabla_e
```

```
# Añadir una columna:

tabla_e "Nueva"] = [-2, -3, -5]
tabla_e
```

	Una	Dos	Tres
0	1	2	3.0
1	4	1000	6.0
2	100	200	NaN

	Una	Dos	Tres	
0	1	2	3.0	
1	4	5	6.0	
2	100	200	NaN	

	Una	Dos	Tres	
0	1	2	3.0	
1	-1	-2	-3.0	J
2	100	200	NaN	

	Una	Dos	Tres	Nueva
0	1	20	3.0	-2
1	-1	50	-3.0	-3
2	100	90	NaN	-5

1.b Modificación de tablas

```
Una Dos Tres Nueva

0 1 20 30 -2

1 -1 50 -3 0 -3

2 100 90 NaN -5
```

```
# Suprimir una columna:

del tabla_e["Tres"]
tabla_e
```

```
# Otra manera de suprimir columnas...
tabla_e.drop(["Una", "Dos"], axis="columns")
# Pero OJO...
```

```
# Cuidado, se ha calculado la eliminación de la columna,
# pero la operación no se ha realizado in place:
tabla_e
```

```
tabla_e.drop(["Una", "Dos"], axis="columns", inplace=True tabla_e
```


1.c. Operaciones in-place

```
# Una tabla para los ejemplos de este apartado:
     = pd.DataFrame({"A": [1, 3, 5, 7, 9, 11], "B": [2, 4, 6, 1, 2, 3]})
tabla
                    # Ordenamos las filas de un dataframe
   A B
                    tabla.sort values("B")
0 1 2
                    tabla
1 3 4
                    # 0JO: no parece haber funcionado
2 5 6
3 7 1
                                       # La operación, en realidad, sí funciona...
                        A B
4 9 2
                                       tabla.sort values("B")
                     0 1 2
5 11 3
                     1 3 4
                                                               # Pero para que la tabla se actualice...
                                           A B
                     2 5 6
                                        3 7 1
                                                               tabla.sort values("B", inplace=True)
                     3 7 1
                                                               tabla
                                        0 1 2
                     4 9 2
                                                                                    # Y para que el índice también se reinicie:
                                        4 9 2
                     5 11 3
                                                                  A B
                                        5 11 3
                                                                                    tabla.reset index(inplace=True)
                                                               3 7 1
                                        1 3 4
                                                                0 1 2
                                                                                    tabla
                                        2 5 6
                                                                4 9 2
                                                                                       index A B
                                                               5 11 3
                                                                                         3 7 1
                                                               1 3 4
                                                                                          0 1 2
                                                               2 5 6
                                                                                          4 9 2
                                                                                          5 11 3
                                                                                          1 3 4
                                                                                          2 5 6
```

1.d. Modificación genérica de columnas

```
# Vamos a usar esta pequeña tabla como ejemplo:
viviendas = pd.DataFrame(
   {'Zona': ['B.Pilar', 'Chueca', 'Moncloa', 'B.Pilar', 'Chueca', 'Chueca', 'Moncloa'],
     'Dorms': [3, 2, 4, 4, 3, 1, 2],
     'Precio': [450, 600, 750, 550, 850, 300, 500]})
viviendas
     Zona Dorms Precio
                          # Modificamos la columna "Precio", subiendo un 10%:
    B.Pilar
                   450
                           viviendas["Precio"] = viviendas["Precio"] * 1.10
1 Chueca
                           viviendas
2 Moncloa
                   750
3 B.Pilar
                   550
                                Zona Dorms Precio
                                                        # De otro modo, modificamos la columna "Precio", subiendo un 10%:
4 Chueca
                   850
                              B Pilar
                                         3 495 0
                                                        viviendas["Precio"] = viviendas["Precio"].applv(lambda valor: valor*1.10)
5 Chueca
                   300
                           1 Chueca
                                         2 660 0
6 Moncloa
                   500
                                         4 825.0
                                                        viviendas
                           2 Moncloa
                                         4 605.0
                           3 B.Pilar
                                                             Zona Dorms Precio
                           4 Chueca
                                         3 935.0
                                                                                    # Observa que, sin la asignación, parece que la tabla se actualiza...
                                                        B.Pilar
                                                                       3 544.5
                           5 Chueca
                                         1 330.0
                                                                                    viviendas["Precio"].apply(lambda valor: 0)
                                         2 550.0
                                                        1 Chueca
                                                                       2 726.0
                           6 Moncloa
                                                                                                                 # Pero no. La operación no es in place y por eso hace falta realizar la asianación:
                                                                       4 907.5
                                                        2 Moncloa
                                                                                                                 viviendas
                                                        3 B.Pilar
                                                                       4 665.5
                                                                                    3
                                                        4 Chueca
                                                                       3 1028.5
                                                                                                                       Zona Dorms Precio
                                                        5 Chueca
                                                                       1 363.0
                                                                                                                     B.Pilar
                                                                                                                                3 544.5
                                                                                    Name: Precio, dtype: int64
                                                        6 Moncloa
                                                                       2 605.0
                                                                                                                  1 Chueca
                                                                                                                                2 726.0
                                                                                                                  2 Moncloa
                                                                                                                                 4 907.5
                                                                                                                  3 B.Pilar
                                                                                                                                4 665.5
                                                                                                                  4 Chueca
                                                                                                                                3 1028.5
                                                                                                                  5 Chueca
                                                                                                                                1 363.0
                                                                                                                                2 605.0
                                                                                                                  6 Moncloa
```

1.d. Modificación genérica de columnas

```
# Modificación condicional:
aumento de precio = lambda precio : precio + 100 if precio >= 500 else precio + 50
viviendas["Precio"] = viviendas["Precio"].apply(aumento de precio)
viviendas
                                        # Modificación condicional:
      Zona Dorms Precio
                                        # Los inmuebles de Chueca baian su precio en 100 euros exactamente:
    B.Pilar
               3 644.5
                                        viviendas["Precio"] = viviendas.loc[viviendas["Zona"] == "Chueca", ["Precio"]] = \
1 Chueca
               2 826 0
                                           viviendas["Precio"] - 100
2 Moncloa
               4 1007.5
                                        viviendas
               4 765.5
    B.Pilar
4 Chueca
               3 1128.5
                                             Zona Dorms Precio
                                                                              # Cálculo de una columna nueva con una fórmula:
5 Chueca
               1 413.0
                                                       3 544 5
                                            B.Pilar
                                                                              viviendas["P.p.d."] = viviendas["Precio"] / viviendas["Dorms"]
6 Moncloa
               2 705.0
                                           Chueca
                                                       2 726.0
                                                                              viviendas
                                         2 Moncloa
                                                       4 907.5
                                            B Pilar
                                                       4 665.5
                                                                                    Zona Dorms Precio
                                                                                                            P.p.d.
                                                                                                                            # Modificación de una columna:
                                           Chueca
                                                       3 1028.5
                                                                                   B.Pilar
                                                                                              3 544.5 181.500000
                                                                                                                            viviendas["P.p.d."] = round(viviendas["P.p.d."], 2)
                                           Chueca
                                                       1 313.0
                                                                                  Chueca
                                                                                              2 726.0 363.000000
                                         6 Moncloa
                                                       2 605 0
                                                                                                                            viviendas
                                                                                              4 907.5 226.875000
                                                                                  Moncloa
                                                                                   B Pilar
                                                                                              4 665 5 166 375000
                                                                                                                                  Zona Dorms Precio P.p.d.
                                                                                  Chueca
                                                                                              3 1028.5 342.833333
                                                                                                                                 B.Pilar
                                                                                                                                           3 544.5 181.50
                                                                                  Chueca
                                                                                              1 313.0 313.000000
                                                                                                                             1 Chueca
                                                                                                                                           2 726.0 363.00
                                                                               6 Moncloa
                                                                                              2 605.0 302.500000
                                                                                                                             2 Moncloa
                                                                                                                                           4 907.5 226.88
                                                                                                                                           4 665.5 166.38
                                                                                                                             3 B.Pilar
                                                                                                                             4 Chueca
                                                                                                                                           3 1028.5 342.83
                                                                                                                             5 Chueca
                                                                                                                                           1 313 0 313 00
```

6 Moncloa

2 605.0 302.50

1.e. Agrupamiento de datos

```
viviendas = pd.DataFrame(
   {'Zona': ['B.Pilar', 'Chueca', 'Moncloa', 'B.Pilar', 'Chueca', 'Chueca', 'Moncloa'],
     'Dorms': [3, 2, 4, 4, 3, 1, 2],
     'Precio': [450, 600, 750, 550, 850, 300, 500]})
viviendas
     Zona Dorms Precio
    B.Pilar
              3
                   450
                   600

    Chueca

                  750
2 Moncloa
                                        # Una manera de evitar la duplicidad de columnas anterior:
    B.Pilar
                   550
4 Chueca
                   850
                                        viviendas.groupby("Zona").size()
5 Chueca
                                        7ona
              2
                   500
6 Moncloa
                                        B.Pilar
                                                    2
                                        Chueca
                                                    3
                                        Moncloa
viviendas.groupby("Zona").mean()
                                        dtype: int64
        Dorms Precio
                                        # Otra manera de evitar la duplicidad de columnas:
   Zona
                                        props = viviendas[["Zona", "Dorms"]]
  B.Pilar
           3.5 500.000000
                                        props.groupby("Zona").count()
           2.0 583 333333
 Chueca
Moncloa
           3.0 625.000000
                                                  Dorms
viviendas.groupby("Zona").count()
                                           Zona
                                          B.Pilar
                                                      2
        Dorms Precio
                                          Chueca
                                                      3
   Zona
                                         Moncloa
  B.Pilar
 Chueca
                   3
Moncloa
```

```
viviendas.groupby(["Zona", "Dorms"]).mean()
                Precio
   Zona Dorms
  B.Pilar
                 450.0
                 550.0
  Chueca
              1 300.0
                 600.0
              3 850.0
 Moncloa
              2 500 0
              4 750.0
viviendas.groupby(["Zona", "Dorms"]).agg(["mean", "count"])
                Precio
                mean count
   Zona Dorms
  B.Pilar
              3 450.0
              4 550.0
              1 300.0
  Chueca
              2 600 0
              3 850.0
              2 500.0
 Moncloa
              4 750.0
```

1.f. Estadísticos básicos

```
viviendas = pd.DataFrame(
   {'Zona': ['B.Pilar', 'Chueca', 'Moncloa', 'B.Pilar', 'Chueca', 'Chueca', 'Moncloa'],
    'Dorms': [3, 2, 4, 4, 3, 1, 2],
    'Precio': [450, 600, 750, 550, 850, 300, 500]})
viviendas
                         # Estadísticos básicos con datos cuantitativos:
    Zona Dorms Precio
                         viviendas.describe()
    B.Pilar
             3
                 450
                         # Obsérvese que la columna "Zona" no se está incluvendo
1 Chueca
             2
                 600
2 Moncloa
                 750
                                 Dorms
                                            Precio
    B Pilar
                 550
                          count 7.000000
                                          7.000000
                 850
4 Chueca
                          mean 2.714286 571.428571
                 300
5 Chueca
                            std 1.112697 184.519969
6 Moncloa
             2 500
                           min 1 000000 300 000000
                                                                   # Podríamos haber obtenido
                                                                   # estos estadísticos por separado:
                           25% 2.000000 475.000000
                           50% 3.000000 550.000000
                                                                   print(viviendas["Dorms"].count())
                           75% 3.500000 675.000000
                                                                   print(viviendas["Dorms"].mean())
                                                                   print(viviendas["Dorms"].min())
                           max 4 000000 850 000000
                                                                   print(viviendas["Dorms"].quantile(q=0.25))
                                                                   print(viviendas["Dorms"].quantile(q=0.50))
                         # Si deseamos Limitarnos a una columna:
                                                                   print(viviendas["Dorms"].quantile(q=0.75))
                                                                   print(viviendas["Dorms"].max())
                         viviendas["Dorms"].describe()
                                  7.000000
                         count
                                                                   2.7142857142857144
                         mean
                                  2.714286
                         std
                                  1.112697
                                                                   2.0
                         min
                                  1.000000
                                                                   3.0
                         25%
                                  2.000000
                         50%
                                  3.000000
                                                                   3.5
                         75%
                                  3.500000
                                                                   4
                         max
                                  4.000000
```

Name: Dorms, dtype: float64

```
# Con datos cualitativos o categóricos:
viviendas["Zona"].describe()
# Obtenemos: cuantas filas tenemos en total,
# cuantas zonas distintas.
# la más frecuente (la moda)
# v su frecuencia
count
unique
top
          Chueca
frea
Name: Zona, dtvpe: object
# Estadística completa, datos cuantotativos y cualitativos:
viviendas.describe(include="all")
# Obvérvense los valores NaN
```

	Zona	Dorms	Precio
count	7	7.000000	7.000000
unique	3	NaN	NaN
top	Chueca	NaN	NaN
freq	3	NaN	NaN
mean	NaN	2.714286	571.428571
std	NaN	1.112697	184.519969
min	NaN	1.000000	300.000000
25%	NaN	2.000000	475.000000
50%	NaN	3.000000	550.000000
75%	NaN	3.500000	675.000000
max	NaN	4.000000	850.000000

1.g. Combinación de tablas, vertical

```
# Combinación vertical de tablas:
tabla1 = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
print(tabla1, "\n")
tabla2 = pd.DataFrame({"A": [7, 8, 9], "B": [10, 11, 12]})
print(tabla2, "\n")
tabla3 = pd.concat([tabla1, tabla2], ignore index=True)
print(tabla3)
      11
      12
      12
```

```
# Otra situación:
tabla1 = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
print(tabla1, "\n")
tabla2 = pd.DataFrame({"B": [7, 8, 9], "C": [10, 11, 12]})
print(tabla2, "\n")
tabla3 = pd.concat([tabla1, tabla2], ignore_index=True)
print(tabla3)
# Observa que, al no coincidir el nombre de *todas* las columnas,
# la operación completa los valores desconocidos,
# sin tener en cuenta si hay valores coincidentes.
2 9 12
           NaN
           NaN
            NaN
  NaN 7
          10.0
5 NaN 9 12.0
```

1.g. Combinación de tablas, join interno

```
# Merge:

tabla1 = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
print(tabla1, "\n")

tabla2 = pd.DataFrame({"B": [4, 5, 6], "C": [7, 8, 9]})
print(tabla2, "\n")

tabla3 = pd.merge(tabla1, tabla2, on="B")
print(tabla3)
```

```
# Es el join interno de SQL.
# Observa el funcionamiento cuando algún valor no coincide:

tabla1 = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
print(tabla1, "\n")

tabla2 = pd.DataFrame({"B": [4, 5, 60], "C": [7, 8, 9]})
print(tabla2, "\n")

tabla3 = pd.merge(tabla1, tabla2, on="B")
print(tabla3)

A B
B 1 4
```

```
A B 0 1 4 5 5 2 3 6 8 C 0 4 7 1 5 8 2 6 9 C 0 1 4 7 1 2 5 8
```

```
2 3 6

B C

0 4 7

1 5 8

2 60 9
```

1.g. Combinación de tablas, join externos

```
tabla1 = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
print(tabla1, "\n")

tabla2 = pd.DataFrame({"B": [4, 5, 60], "C": [7, 8, 9]})
print(tabla2, "\n")
```

```
0 1 4
1 2 5
2 3 6
B C
0 4 7
1 5 8
2 60 9
```

```
tabla4 = tabla1.merge(tabla2, how="outer")
print(tabla4)

tabla5 = tabla1.merge(tabla2, how="left")
print(tabla5)

tabla6 = tabla1.merge(tabla2, how="right")
## Aplicación: *realstate*
print(tabla6)
```

```
A B C
0 1.0 4 7.0
1 2.0 5 8.0
2 3.0 6 NaN
3 NaN 60 9.0
A B C
0 1 4 7.0
1 2 5 8.0
2 3 6 NaN
A B C
0 1.0 4 7
1 2.0 5 8
2 NaN 60 9
```

2. Ejemplo. Realestate

import pandas as pd realestate = pandas.read_csv('realestate.csv') realestate

	street	city	zip	state	beds	baths	sqft	type	sale_date	price	latitude	longitude
0	3526 HIGH ST	SACRAMENTO	95838	CA	2	1	836	Residential	Wed May 21 00:00:00 EDT 2008	59222	38.631913	-121.434879
1	51 OMAHA CT	SACRAMENTO	95823	CA	3	1	1167	Residential	Wed May 21 00:00:00 EDT 2008	68212	38.478902	-121.431028
									Wod May 21 00:00:00			

1	51 OMAHA CT	SACRAMENTO	95823	CA	3	1	1167	Residential	Wed May 21 00:00:00 EDT 2008	68212	38.478902	-121.431028
2	2796 BRANCH ST	SACRAMENTO	95815	CA	2	1	796	Residential	Wed May 21 00:00:00 EDT 2008	68880	38.618305	-121.443839
_					_				Wed May 21 00:00:00			

2	2796 BRANCH ST	SACRAMENTO	95815	CA	2	1	796	Residential	Wed May 21 00:00:00 EDT 2008	68880	38.618305	-121.443839
3	2805 JANETTE WAY	SACRAMENTO	95815	CA	2	1	852	Residential	Wed May 21 00:00:00 EDT 2008	69307	38.616835	-121.439146
4	6001 MCMAHON DR	SACRAMENTO	95824	CA	2	1	797	Residential	Wed May 21 00:00:00	81900	38 519470	-121 435768

3	2805 JANETTE WAY	SACRAMENTO	95815	CA	2	1	852	Residential	Wed May 21 00:00:00 EDT 2008	69307	38.616835	-121.439146
4	6001 MCMAHON DR	SACRAMENTO	95824	CA	2	1	797	Residential	Wed May 21 00:00:00 EDT 2008	81900	38.519470	-121.435768
5	5828 PEPPERMILL CT	SACRAMENTO	95841	CA	3	1	1122	Condo	Wed May 21 00:00:00 EDT 2008	89921	38.662595	-121.327813

Wed May 21 00:00:00 6048 OGDEN NASH WAY SACRAMENTO 95842 1104 Residential 90895 38.681659 -121.351705 CA **EDT 2008** Wed May 21 00:00:00

```
import pandas as pd
```

6001 MCMAHON DR

5828 PEPPERMILL CT

6048 OGDEN NASH WAY

4

5

realestate = pandas.read_csv('realestate.cs realestate

```
Data columns (total 12 columns):
                 street
                                city
                                         state beds baths so
                                                            street
                                                            city
0
           3526 HIGH ST
                        SACRAMENTO 95838
                                           CA
                                                            zip
                                                            state
           51 OMAHA CT
                        SACRAMENTO 95823
                                           CA
                                                            beds
                                                            baths
```

2 2796 BRANCH ST SACRAMENTO 95815 CA CA 2 3 2805 JANETTE WAY SACRAMENTO 95815

SACRAMENTO 95824

SACRAMENTO 95842

CA SACRAMENTO 95841 CA

CA

 $C\Lambda$

3

3

2

latitude

type sale date price

1 1177 Pecidential

longitude

sq_ft

memory usage: 92.4+ KB

type(realestate)

realestate.info()

pandas.core.frame.DataFrame

985 non-null int64

Wed May 21 00:00:00

985 non-null object

<class 'pandas.core.frame.DataFrame'>

985 non-null object

985 non-null object

985 non-null int64

985 non-null object

985 non-null int64

985 non-null float64

985 non-null float64

dtypes: float64(2), int64(5), object(5)₅₁₇₀₅

RangeIndex: 985 entries, 0 to 984

985 non-null int64 985 non-null object

985 non-null int64

91002 38 535092

43839

39146 35768

gitude

34879

31028

27813

6001 MCMAHON DR

5828 PEPPERMILL CT

6048 OGDEN NASH WAY

2561 10TH AVE

3

5

import pandas as pd realestate = pandas.read_csv('realest realestate

					_)
	street	city	zip	state	bed	6
0	3526 HIGH ST	SACRAMENTO	95838	CA		7

SACRAMENTO CA 95823

51 OMAHA CT 2 2796 BRANCH ST SACRAMENTO 95815 CA

2805 JANETTE WAY SACRAMENTO 95815

SACRAMENTO

SACRAMENTO

CA

SACRAMENTO 95841

95824

95842

CA

CA

CA

980 981 982

3

3

0

983 984

. . .

price, dtype: int6400

1122

1104

3 1 1177 Decidential

235738

realestate['price']

59222

68212 68880

69307

81900

89921 90895

91992

232425 234000 235000 235301

Condo

Residential

00 00

2008 בעו

EDT 2008

EDT 2008

Wed May 21 00:00:00

Wed May 21 00:00:00

Wed May 21 00:00:00

00

8(

price 59222

68212

68880

69307

81900

89921

90895

latitude 38.631913 -121.434879

38.662595

38.681659 -121.351705

01002 38 535002 121 /81367

38.478902 -121.431028

38.618305 -121.443839

longitude

38.616835 -121.439146 38.519470 -121.435768

-121.327813

5828 PEPPERMILL CT

6048 OGDEN NASH WAY

import pandas as pd

5

realestate[['price','zip']]

zip

price

235738

985 rows x 2 columns

95762

984

realestate['price']

	lestate = panda lestate	as.read_cs	sv(r	0	59222	95838
_	street	city	zip	1	68212	95823
0	3526 HIGH ST	SACRAMENTO		2	68880	95815
1	51 OMAHA CT	SACRAMENTO	95823	3	69307	95815
2	2796 BRANCH ST	SACRAMENTO				
_				981	234000	95823
3	2805 JANETTE WAY	SACRAMENTO	95815	982	235000	95610
4	6001 MCMAHON DR	SACRAMENTO	95824	983	235301	95758
				300	200001	00700

95841

95842

SACRAMENTO

SACRAMENTO

SACRAMENTO 95820

te	Э
)(3(
)(3(
)(3(
)(3(
64)(1 2008	
0:00:00	0

latitude

38.631913 -121.434879

38.478902 -121.431028

38.618305 -121.443839

38.616835 -121.439146

38.519470 -121.435768

38.662595 -121.327813

38.681659 -121.351705

91002 38 535092 121 481367

price

59222

68212

68880

69307

81900

89921

90895

T 2008

0:00:00

T 2008

longitude

	street	С	city	zip	state	beds	bat	ths	sqft	type	sale_date	price	latitude	longitude
0	3526 HIGH ST	SACRAMEN'	ITO 9	95838	CA	2		1	836	Residential	Wed May 21 00:00:00 EDT 2008	59222	38.631913	-121.434879
1	51 OMAHA CT	SVCDVIVE	selc selc		real	.esta	te.	colu	ımns[2	2:6]		68212	38.478902	-121.431028
2	2796 BRANCH ST	SACRAME I	Inde	x(['z	ip',	'sta	te',	, 'b	eds',	, 'baths']	, dtype='object')	68880	38.618305	-121.443839
3	2805 JANETTE WAY	SACRAME	real	estat	e[sel	.cols]					69307	38.616835	-121.439146
4	6001 MCMAHON DR	SACRAME		ziņ	stat	e be	ds	bath	ıs			81900	38.519470	-121.435768
5	5828 PEPPERMILL CT	SACRAME	0	95838 95823			2		1			89921	38.662595	-121.327813
6	6048 OGDEN NASH WAY	SACRAME	2	95815			2		1			90895	38.681659	-121.351705
7	2561 19TH A\/F	SACRAME	3	95818	5 C	A	2		1			91002	38 535092	_121 481367
			981	95823	B C	A	3	2	2					
			982	95610) C/	A	3	2	2					
			983	95758	B C	A	4	2	2					
			984	95762	2 C/	A	3	1	2					
		9	985 r	ows ×	4 colu	ımns								

	street	city	zip	state	beds	baths	sqft	ty	pe	sale	e_date	price	latitude	longitude
0	3526 HIGH ST	SACRAMENTO	95838	CA	2	1	836	Residen	tial We	ed May 21 00 ED	0:00:00 T 2008	59222	38.631913	-121.434879
1	51 OMAHA CT	SACRAME	cols = cols	real	lestat	te.co	lumns[2	2:6]				68212	38.478902	-121.431028
2	2796 BRANCH ST	SACRAME Ind	ex(['z	ip',	'stat	œ',	'beds',	, 'bath	ns'], d	itype='ob	ject')	68880	38.618305	-121.443839
3	2805 JANETTE WAY	SACRAME rea	lestat	te[se]	rca	ixed ixed		st(sel	lcols) + ['pri	ce']		35	-121.439146
4	6001 MCMAHON DR	SACRAME	zi	p stat	te			tate'	'hec	ds', 'ba	aths'	'nr		-121.435768
5	5828 PEPPERMILL CT	SACRAME			A	2-1	, ,		, 500	, ,	,	, Pi	_	-121.327813
6	6048 OGDEN NASH WAY	SACRAME 2	9582		A r	eale	state	[mixed	d]				59	-121.351705
7	2561 19TH Δ\/F	SACRAME 3	9581	5 C	;A		zip	state	beds	baths	price		12	_121 //81367
						0	95838	CA	2	1	59222			
		981	9582	3 C	A	1	95823	CA	3	1	68212			
		982	9561	0 C	A	2	95815	CA	2	1	68880			
		983	9575	8 C	A	3	95815	CA	2	1	69307			
		984	95762	2 C	A		05004	0.4	2	4	03307			
		985	rows ×	4 colu	umns									

	street	city	zip	state	beds	baths	sqft	type	sale_date	price	latitude	longitude
0	3526 HIGH ST	SACRAMENTO	95838	CA	2	1	836	Residential	Wed May 21 00:00:00 EDT 2008		38.631913	-121.434879
1	51 OMAHA CT	SACRAMENTO	95823	CA	3	1	1167	Residential	Wed May 21 00:00:00 EDT 2008		38.478902	-121.431028
2	2796 BRANCH ST	SACRAMENTO	95815	CA	2	1	796	Residential	Wed May 21 00:00:00 EDT 2008		38.618305	-121.443839
3	2805 JANETTE WAY	SACRAMENTO	95815	CA	2	1	852	Residential	Wed May 21 00:00:00 EDT 2008		38.616835	-121.439146
4	6001 MCMAHON DR	SACRAMENTO	95824	CA	2	rea	lesta	te.iloc	[3]		70	-121.435768
5	5828 PEPPERMILL CT	SACRAMENTO	95841	CA	3	str cit			2805		MENTO 35	-121.327813
6	6048 OGDEN NASH WAY	SACRAMENTO	95842	CA	3	zip sta					95815 ₅₉ CA	-121.351705
7	2561 19TH Δ\/F	SACRAMENTO	95820	CA	3	bat sq_ typ sal pri lat	hs _ft e e_dat ce itude gitud		d May 21 00:00 object	38		_121 481367

	str	reet	city	zip	state	beds	baths	sqft	type	sale_dat	e price	latitude	longitude
0	3526 HIGH	IST SACR	AMENTO	95838	CA	2	1	836	Residential	Wed May 21 00:00:0 EDT 200		38.631913	-121.434879
1	51 OMAHA	CT SACR	AMENTO	95823	CA	3	1	1167	Residential	Wed May 21 00:00:0 EDT 200		38.478902	-121.431028
2	2796 BRANCH	SACR/	AMENTO	95815	CA	2	1	796	Residential	Wed May 21 00:00:0 EDT 200		38.618305	-121.443839
3	2805 JANETTE V	VAY SACRA	AMENTO	95815	CA	2	1	852	Residential	Wed May 21 00:00:0 EDT 200		38.616835	-121.439146
4	6001 MCMAHON	DR SACRA	AMENTO	95824	CA	2	rea	alesta	te.iloc	[3]		70	-121.435768
5	5828 PEPPERMILL	.CT SACRA	AMENTO	95841	CA	3	str cit	eet y		2805		TE WAY AMENTO	
6	6048 OGDEN NASH V	VAY SACRA	AMENTO	95842	CA	3	zip sta					95815 CA	-121.351705
7	2561 19TH /	AVE SACRA	AMENTO	95820	CA	3	l boo	ls				2 ₂₂	_121 481367
rea	lestate.iloc[[3,6]]												
	street	city	y zip	state	beds	baths	sqft	ty	ре	sale_date	price	latitude l	ongitude
3	2805 JANETTE WAY	SACRAMENTO	O 95815	CA	2	1	852	Resident	ial Wed May	21 00:00:00 EDT 2008	69307 38	.616835 -12	1.439146
6	6048 OGDEN NASH WAY	SACRAMENTO	95842	CA	3	2	1104		•	21 00:00:00 EDT 2008			1.351705
								ngitud ne: 3,	e dtype:	object	-1	21.439	

realestate describe()

real	estate.sort_values(by=	'price', asce	nding=	False))							
	street	city	zip	state	beds	baths	sqft	type	sale_date	price	latitude	longitude
864	9401 BARREL RACER CT	WILTON	95693	CA	4	3	4400	Residential	Fri May 16 00:00:00 EDT 2008	884790	38.415298	-121.194858
863	2982 ABERDEEN LN	EL DORADO HILLS	95762	CA	4	3	0	Residential	Fri May 16 00:00:00 EDT 2008	879000	38.706692	-121.058869

reales	state.descri	be()					
	zip	beds	baths	sqft	price	latitude	longitude
count	985.000000	985.000000	985.000000	985.000000	985.000000	985.000000	985.00000
mean	95750.697462	2.911675	1.776650	1314.916751	234144.263959	38.607732	-121.355982
std	85.176072	1.307932	0.895371	853.048243	138365.839085	0.145433	0.138278
min	95603.000000	0.000000	0.000000	0.000000	1551.000000	38.241514	-121.551704
25%	95660.000000	2.000000	1.000000	952.000000	145000.000000	38.482717	-121.446127
50%	95762.000000	3.000000	2.000000	1304.000000	213750.000000	38.626582	-121.376220
75%	95828.000000	4.000000	2.000000	1718.000000	300000.000000	38.695589	-121.295778
max	95864.000000	8.000000	5.000000	5822.000000	884790.000000	39.020808	-120.597599

atroat

4085 FAWN CIR

oite

SACRAMENTO 95823

realestate[cond]

11

cond = realestate['baths'] == 2
cond

0 False
1 False
2 False
3 False
4 False
5 False
6 True
7 False
8 True

calo dato

Wed May 21 00:00:00

EDT 2008

price

latituda

106250 38.470746 -121.458918

longitudo

1		street	city	zip	state	beas	patns	sqπ	туре	sale_date	price	iatitude	iongituae
ı	6	6048 OGDEN NASH WAY	SACRAMENTO	95842	CA	3	2	1104	Residential	Wed May 21 00:00:00 EDT 2008	90895	38.681659	-121.351705
ı	8	11150 TRINITY RIVER DR Unit 114	RANCHO CORDOVA	95670	CA	2	2	941	Condo	Wed May 21 00:00:00 EDT 2008	94905	38.621188	-121.270555
ı	9	7325 10TH ST	RIO LINDA	95673	CA	3	2	1146	Residential	Wed May 21 00:00:00 EDT 2008	98937	38.700909	-121.442979
ı	10	645 MORRISON AVE	SACRAMENTO	95838	CA	3	2	909	Residential	Wed May 21 00:00:00 EDT 2008	100309	38.637663	-121.451520

timo

Residential

ctate bade bathe

```
two_baths = realestate['baths'] == 2
three_beds = realestate['beds'] == 3
realestate[two_baths & three_beds]
```

	street	city	zip	state	beds	baths	sqft	type	sale_date	price	latitude	longitude
6	6048 OGDEN NASH WAY	SACRAMENTO	95842	CA	3	2	1104	Residential	Wed May 21 00:00:00 EDT 2008	90895	38.681659	-121.351705
9	7325 10TH ST	RIO LINDA	95673	CA	3	2	1146	Residential	Wed May 21 00:00:00 EDT 2008	98937	38.700909	-121.442979
10	645 MORRISON AVE	SACRAMENTO	95838	CA	3	2	909	Residential	Wed May 21 00:00:00 EDT 2008	100309	38.637663	-121.451520
11	4085 FAWN CIR	SACRAMENTO	95823	CA	3	2	1289	Residential	Wed May 21 00:00:00 EDT 2008	106250	38.470746	-121.458918
19	113 LEEWILL AVE	RIO LINDA	95673	CA	3	2	1356	Residential	Wed May 21 00:00:00 EDT 2008	121630	38.689999	-121.463220

4085 FAWN CIR

113 LEEWILL AVE

11

19

```
two_baths = realestate['baths'] == 2
three_beds = realestate['beds'] == 3
realestate[two_baths & three_beds]
                   street
                                    city
                                               state beds baths sq
  6 6048 OGDEN NASH WAY
                            SACRAMENTO 95842
                                                 CA
                                                              2
  9
             7325 10TH ST
                               RIO LINDA 95673
                                                 CA
                                                              2
 10
        645 MORRISON AVE
                            SACRAMENTO 95838
                                                 CA
                                                        3
                                                              2
```

SACRAMENTO 95823

RIO LINDA 95673

CA

CA

3

2

2

zip	baths			
95603	2	2		_
	3	3	de	le
95608	1	4	0.)5
	2	15	0.	5
	3	1	79	'9
95610	2	5		
	3	1	20	20
	4	1		
95614	2	1	118	8
95619	2	1		
95621	1	7	20	20
	2	20	_	
	3	1		

tabla = realestate.groupby(['zip','baths']).size().unstack()
tabla = tabla.fillna(0)
tabla[tabla.columns] = tabla[tabla.columns].astype(int)
tabla

baths 0 1

eales	tate.	groui	obv(['zip'	. 'bat	hs'l`
		B. 541) ([,	
baths	0	1	2	3	4	5
zip						
95603	NaN	NaN	2.0	3.0	NaN	NaN
95608	NaN	4.0	15.0	1.0	NaN	NaN
95610	NaN	NaN	5.0	1.0	1.0	NaN
95614	NaN	NaN	1.0		NaN	NaN
95619	NaN	NaN	1.0			NaN
95621	NaN	7.0	20.0	1.0	NaN	NaN
95623	NaN	1.0	1.0	NaN	NaN	NaN
95624	3.0	1.0	22.0	8.0	NaN	NaN

Realestate. Visualización

Realestate. Matplotlib

```
from scipy import stats
import numpy as np
import matplotlib.pyplot as plt
xs = tabla_habs_precios['beds']
ys = tabla_habs_precios['price']
slope, intercept, r value, p value, std err = \
    stats.linregress(xs, ys)
recta regres = lambda x: intercept + slope*x
plt.plot(xs, ys, 'o', label='(hab, precio)')
plt.plot(xs, recta_regres(xs), 'r', \
         label='recta de regresión')
plt.legend(loc = 'upper left')
plt.xlabel('número de dormitorios')
plt.ylabel('precio')
plt.show()
```

tabla_habs_precios = realestate[['beds','price']]
tabla_habs_precios

beds price
0 2 59222
1 3 68212
2 2 68880
3 2 69307
4 2 81900

Realestate. seaborn

import seaborn

seaborn.pairplot(realestate)

https://seaborn.pydata.org/

Realestate. seaborn

Asuntos - técnicos

import warnings
warnings.filterwarnings('ignore')

%matplotlib inline

import seaborn

seaborn.pairplot(realestate)

https://seaborn.pydata.org/


```
notas = [3.5, 5.0, 4.1, 4.5, 6.8, 8.0, 6.0, 8.9, 7.5, 9.0, 10.0, 8.5, 9.0, 8.5, 9.5]
                                                                                         3. Series
serie de notas = pd.Series(notas)
print(serie de notas)
                          print("La primera nota: ", serie_de_notas[0])
                          num_notas = serie de_notas.count()
       3.5
                          print("Cuantas notas tengo: ", num_notas)
       5.0
                          print("La última nota: ", serie de_notas[num_notas-1])
       4.1
       4.5
                          serie de notas.describe()
                                                               serie de notas.plot()
       6.8
                                                               <Axes: >
       8.0
                          La primera nota: 3.5
       6.0
                          Cuantas notas tengo: 15
                                                                10
       8.9
                          La última nota: 9.5
8
       7.5
       9.0
                                                                 9 .
                                   15.000000
                          count
10
      10.0
                          mean
                                    7.253333
11
      8.5
                          std
                                    2.131353
                                                                 8
12
       9.0
                          min
                                    3.500000
13
       8.5
                          25%
                                    5.500000
14
       9.5
                          50%
                                    8.000000
dtype: float64
                          75%
                                    8.950000
                                                                 6
                                   10.000000
                          max
                          dtype: float64
                                                                 5 ·
```

10

12

14

```
serie_de_notas.to_csv("./data/notas.csv", sep = ';')
```

3. Series

```
В
            3.5
            5.0
            4.1
            4.5
            6.8
            8.0
            6.0
            8.9
            7.5
            9.0
10
           10.0
11
            8.5
12
            9.0
13
            8.5
14
            9.5
```

```
# Lectura de la tabla de datos, seleccionando sólo la segunda columna:
notas_cargadas = pd.Series(pd.read_csv("./data/notas.csv", sep = ';', header=None, skiprows=1)[1])
notas_cargadas
       3.5
       5.0
       4.1
       4.5
       6.8
       8.0
       6.0
       8.9
      7.5
       9.0
      10.0
11
      8.5
12
       9.0
13
       8.5
       9.5
14
Name: 1, dtype: float64
```


Programación. Python

Dataframes con pandas

