Definition 2.23. A homomorphism $h: K_1 \to K_2$ between two fields K_1 and K_2 is just a homomorphism between the rings K_1 and K_2 .

However, because K_1^* and K_2^* are groups under multiplication, a homomorphism of fields must be injective.

Proof. First, observe that for any $x \neq 0$,

$$1 = h(1) = h(xx^{-1}) = h(x)h(x^{-1})$$

and

$$1 = h(1) = h(x^{-1}x) = h(x^{-1})h(x),$$

so $h(x) \neq 0$ and

$$h(x^{-1}) = h(x)^{-1}.$$

But then, if h(x) = 0, we must have x = 0. Consequently, h is injective.

Definition 2.24. A field homomorphism $h: K_1 \to K_2$ is an *isomorphism* iff there is a homomorphism $g: K_2 \to K_1$ such that $g \circ f = \mathrm{id}_{K_1}$ and $f \circ g = \mathrm{id}_{K_2}$. An isomorphism from a field to itself is called an *automorphism*.

Then, just as in the case of rings, g is unique and denoted by h^{-1} , and a bijective field homomorphism $h: K_1 \to K_2$ is an isomorphism.

Definition 2.25. Since every homomorphism $h: K_1 \to K_2$ between two fields is injective, the image $f(K_1)$ of K_1 is a subfield of K_2 . We say that K_2 is an *extension* of K_1 .

For example, \mathbb{R} is an extension of \mathbb{Q} and \mathbb{C} is an extension of \mathbb{R} . The fields $\mathbb{Q}(\sqrt{d})$ and $\mathbb{Q}(\sqrt{-d})$ are extensions of \mathbb{Q} , the field \mathbb{R} is an extension of $\mathbb{Q}(\sqrt{d})$ and the field \mathbb{C} is an extension of $\mathbb{Q}(\sqrt{-d})$.

Definition 2.26. A field K is said to be algebraically closed if every polynomial p(X) with coefficients in K has some root in K; that is, there is some $a \in K$ such that p(a) = 0.

It can be shown that every field K has some minimal extension Ω which is algebraically closed, called an *algebraic closure* of K. For example, \mathbb{C} is the algebraic closure of \mathbb{R} . The algebraic closure of \mathbb{Q} is called the *field of algebraic numbers*. This field consists of all complex numbers that are zeros of a polynomial with coefficients in \mathbb{Q} .

Definition 2.27. Given a field K and an automorphism $h: K \to K$ of K, it is easy to check that the set

$$\mathrm{Fix}(h) = \{a \in K \mid h(a) = a\}$$

of elements of K fixed by h is a subfield of K called the field fixed by h.