Chapter 1: Eerstegraadsvergelikingen

Afraz Salim

October 21, 2017

Bepaal of de uitspraken waar of vals zijn en verklaar je antwoorden

• Als A en B matrixs zijn zodat AB = O dan is A = 0 of B = 0. Antwoord: vals.

Tegenvoorbeeld: $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ Nu A * B = 0 maar $A \neq 0$ $\log B = 0.$

• Als $A^2 = 1$ en $B^2 = 1$ dan $(AB)^{-1} = BA$.

Antwoord: waar. Wij vermenigvuldigen beide zijden met AB zodat $AB(AB)^{-1} = AB^{2}A$

$$AB(AB)^-1 = \mathbb{1}$$
 en $A(B^2 = \mathbb{1}$ Dit is al gegeven $A = A * \mathbb{1} * A$

$$1 = A^2$$

$$1 = 1$$

• Als A en B inverteerbaar matrices zijn dan is A + B ook inverteerbaar.

Antwoord: vals

Tegenvoorbeeld:
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $B = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix}$ A en B zijn inverteerbaar maar niet A + B = 0.

• If A en B en AB symmetrisch zijn dan is AB = BA. Antwoord waar.

Proof: $AB = (AB)^T$ omdat AB Symmetrisch is dan $AB = B^T * A^T = BA$.

 \bullet Als A en Bzijn symmetrisch dan is ABook symmetrisch. Antwoord: waar

Proof: Omdat A en B symmetrisch zijn $a_{ij} = a_{ji}$ en $b_{ij} = b_{ji}$. Let $c_{ij} = a_{ij} * b_{ij}$ en $c_{ji} = a_{ji} * b_{ji}$ dan $c_{ij} = c_{ji}$ Symmetrisch.

 \bullet Als A is niet inverteer baar dan is ook AB niet inverteer baar. Antwoord waar:

f(A.B) = f(A).f(B) en indien f(A) = 0 dan voor elke B is AB = 0.

- Als E_1 en E_2 twee elementaire matrices zijn dan is $E_1*E_2=E_2*E_1$. Antwoord: Niet waar. Tegenvoorbeeld: $A=\begin{bmatrix}1&2\\0&1\end{bmatrix}$ $B=\begin{bmatrix}1&0\\3&1\end{bmatrix}$ $A * B \neq B * A$.
- Exercise 21:

$$A * A^T$$
 en $A + A^T$ zijn symmetrisch.

$$C = A * A^T \operatorname{dan} c_{ij} = a_{ij} * (a_{ij})^T = > c_{ij} = a_{ij} * a_{ij}$$
.

 $C = A * A^T \text{ dan } c_{ij} = a_{ij} * (a_{ji})^T ==> c_{ij} = a_{ij} * a_{ij}$. Dus c_{ij} is symmetrisch want elk element wordt met zichzelf vermigvuldigd.

• $A - A^T$ is scheefsymmetrisch. Antwoord: Waar

Een matric is scheefsymmetrisch indien
$$A^T = -A$$
.

$$(A - A^{T})^{T} = -(A - A^{T})$$

$$A^{T} - A = -A + A^{T}$$

$$A^{T} - A = -A + A^{T}$$

$$A^T - A = -A + A^T$$

$$A^T - A = -A + A^T$$

Proved.

Nilpoten: Een matrix is niet-nilpoten indien voor elke k $A^k \neq 0$.

• Toon aan dat een inverteerbare matrix nipotent is.

Stel dat een matrix niet-nilpoten is dan is die matrix inverteerbaar en voor elke k A^k is hetzelfda als een A matrix k keer met zichzelf vermenigvuldigen.

TODO :(

• Bepaal Lu-decompositie van een matrix:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} | \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \xrightarrow{r_1 + r_2}$$

$$\stackrel{R2->R2+R1}{\longrightarrow} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mid \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

$$R^{3-} \xrightarrow{R^3+R^2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} | \begin{bmatrix} E_1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A = LU \text{ dus } A = E_1^{-1} * E_2^{-1} * U$$

$$E_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

$$A = LU \text{ dus } A = E_1^{-1} * E_2^{-1} * U$$

$$E_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

$$E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$E_2^{-1} * E_1 - 1 = L$$

$$E_2^{-1} * E_1 - 1 = L$$