

Decision Tree Learning

Dr. Shaifu Gupta shaifu.gupta@iitjammu.ac.in

Contents

- Decision Trees concept
- Entropy, Information gain
- ID3 algorithm
- CART algorithm, Gini Impurity
- C4.5 algorithm
- Overfitting
- Methods to reduce overfitting
- Random Forest

Decision Trees

Tree in which each branch node represents a choice between a number of alternatives, and each leaf node represents a decision.

Supervised learning algorithm!

Training data/validation/test

Decision Tree: structure

Learning classification tree

What criteria should a decision tree

algorithm use to split variables/columns?

Entropy

Used to measure uncertainty / disorder

Example:

Mixed structure

Positive (1): ²/₃ [10/15]

Negative (0): 1/3 [5/15]

The more mixed (1)s and (0)s in column, higher the entropy

1
1
1
0
1
1
1
1
0
0
1
0
1
1
0

Entropy

$$-\sum_{i=1}^{c} P(x_i) log_b P(x_i)$$

$$-(10/15 \cdot \log_2(10/15) + 5/15 \cdot \log_2(5/15))$$

 $-(-.389975 + -.528308)$
 $-(-.918278)$
 $.918278$

1	
1	
1	
0	
1	
1	
1	
1	
0	
0	
1	
0	
1	
1	
0	

b=2 irrespective of number of classes

Entropy

What will the entropy for all positives or all negatives?

- Entropy is 0 if all the members belong to the same class.
- Entropy is 1 when the collection contains an equal no. of +ve and -ve examples.
- Entropy is between 0 and 1 if collection contains unequal no. of +ve and -ve examples.

Goal: Find best attributes to split on when building a decision tree based on reduction in entropy.

Keep splitting the variables/columns until mixed target column is no longer mixed.

Information gain

- Use entropy to measure quality of split
- Compute entropies for branches, determine quality of the split by weighting entropy of each branch by how many elements it has.
- Subtract from previous entropy to measure reduction -> Information gain

$$IG(T,A) = Entropy(T) - \sum_{v \in A} \frac{|T_v|}{|T|} \cdot Entropy(T_v)$$

T = Target column, A = the variable (column) we are testing, <math>v = each value in A

child entropy
$$-\left(\frac{13}{17} \cdot \log_2 \frac{13}{17}\right) - \left(\frac{4}{17} \cdot \log_2 \frac{4}{17}\right) = 0.787$$

Entire population (30 instances)

17 instances

child entropy
$$-\left(\frac{1}{13} \cdot \log_2 \frac{1}{13}\right) - \left(\frac{12}{13} \cdot \log_2 \frac{12}{13}\right) = 0.391$$

parent
$$-\left(\frac{14}{30} \cdot \log_{2} \frac{14}{30}\right) - \left(\frac{16}{30} \cdot \log_{2} \frac{16}{30}\right) = 0.996$$

(Weighted) Average Entropy of Children =
$$\left(\frac{17}{30} \cdot 0.787\right) + \left(\frac{13}{30} \cdot 0.391\right) = 0.615$$

Information Gain= 0.996 - 0.615 = 0.38 for this split

Putting it all together: ID3 algorithm

- ID3: Iterative Dichotomizer 3
- Follows greedy approach by selecting a best attribute that yields maximum Information Gain
- The steps in ID3 algorithm are as follows:
 - Calculate entropy for target (using all training examples).
 - For each attribute/feature:
 - Calculate entropy for all its categorical values.
 - Calculate information gain for the feature.
 - Find the feature with maximum information gain.
 - Repeat it until we get the desired tree.

Gini Impurity -> CART Algorithm

One of the other methods used in decision tree algorithms to decide optimal split from a root node, and subsequent splits.

The lower the Gini Impurity the better the split

$$G = \sum_{i=1}^C p(i)*(1-p(i))$$

Where p(i) is the probability of class i.

Gini Impurity: Example

Left Branch has only blues, so G_left = 0

Right Branch has 1 blue and 5 greens, so G_right= 0.278

Quality of split obtained by weighting impurity of each branch by how many elements it has:

$$0.4*0 + 0.6*0.278 = 0.167$$

Amount of impurity "removed" with this split (Gini Gain) 0.5 - 0.167 = 0.333

Higher Gini Gain = Better Split

Gini Impurity on continuous data

Weight	Heart Disease
220	Yes
180	Yes
225	Yes
190	No
155	No

Weight	Heart Disease
155	No
180	Yes
190	No
220	Yes
225	Yes

Gini Impurity on continuous data

Gini Impurity on continuous data

Gini Impurity vs Entropy

Gini Impurity is more efficient than entropy in terms of computing power Computationally, entropy is more complex since it makes use of logarithms and consequently, the calculation of the Gini Index will be faster.

C4.5 Algorithm

- ID3 applicable for discrete datasets
- Extended to C4.5
 - Handling both continuous and discrete attributes
 - Pruning trees after creation Reduce overfitting
- C4.5 uses Gain Ratio

$$Gain Ratio(S) = \frac{Gain(S)}{Split Info(S)}$$

Example

Day	Outlook	Temp.	Humidity	Wind	Decision
1	Sunny	85	85	Weak	No
2	Sunny	80	90	Strong	No
3	Overcast	83	78	Weak	Yes
4	Rain	70	96	Weak	Yes
5	Rain	68	80	Weak	Yes
6	Rain	65	70	Strong	No
7	Overcast	64	65	Strong	Yes
8	Sunny	72	95	Weak	No
9	Sunny	69	70	Weak	Yes
10	Rain	75	80	Weak	Yes
11	Sunny	75	70	Strong	Yes
12	Overcast	72	90	Strong	Yes
13	Overcast	81	75	Weak	Yes
14	Rain	71	80	Strong	No

Overfitting

Lose some generalization capability.

Overfitting happens when learning algorithm continues to develop hypotheses that reduces training set error at the cost of an increased test set error.

Causes

- Due to Presence of Noise
- Due to Lack of Representative Instances

Overfitting due to noise

An example training set for classifying mammals. Asterisks denote mislabelings.

Name	Body Temperature	Gives Birth	Four-legged	Hibernates	Class Label
Porcupine	Warm-blooded	Yes	Yes	Yes	Yes
Cat	Warm-blooded	Yes	Yes	No	Yes
Bat	Warm-blooded	Yes	No	Yes	No*
Whale	Warm-blooded	Yes	No	No	No*
Salamander	Cold-blooded	No	Yes	Yes	No
Komodo dragon	Cold-blooded	No	Yes	No	No
Python	Cold-blooded	No	No	Yes	No
Salmon	Cold-blooded	No	No	No	No
Eagle	Warm-blooded	No	No	No	No
Guppy	Cold-blooded	Yes	No	No	No

Model 1

Overfitting due to noise

An example testing set for classifying mammals.

Name	Body Temperature	Gives Birth	Four-legged	Hibernates	Class Label
Human	Warm-blooded	Yes	No	No	Yes
Pigeon	Warm-blooded	No	No	No	No
Elephant	Warm-blooded	Yes	Yes	No	Yes
Leopard shark	Cold-blooded	Yes	No	No	No
Turtle	Cold-blooded	No	Yes	No	No
Penguin	Cold-blooded	No	No	No	No
Eel	Cold-blooded	No	No	No	No
Dolphin	Warm-blooded	Yes	No	No	Yes
Spiny anteater	Warm-blooded	No	Yes	Yes	Yes
Gila monster	Cold-blooded	No	Yes	Yes	No

Overfitting due to lack of samples

An example training set for classifying mammals.

Name	Body Temperature	Gives Birth	Four-legged	Hibernates	Class Label
Salamander	Cold-blooded	No	Yes	Yes	No
Guppy	Cold-blooded	Yes	No	No	No
Eagle	Warm-blooded	No	No	No	No
Poorwill	Warm-blooded	No	No	Yes	No
Platypus	Warm-blooded	No	Yes	Yes	Yes

- Although the model's training error is zero, its error rate on the test set is 30%.
- Humans, elephants, and dolphins are misclassified because the decision tree classifies all warmblooded vertebrates that do not hibernate as non-mammals.

A good model must not only fit the training data well

- but also accurately classify records
- it has never seen. ??

Identify overfitting

Relation between error and model complexity

Avoid overfitting in decision trees

Identify and removes subtrees that are likely to be due to noise

- Early stopping: stop growing tree earlier, before it reaches the point where it perfectly classifies the training data. (depth goes beyond limit, IG insufficient)
- Post-pruning: allow the tree to overfit the data, and then post-prune the tree.

Select "best" tree:

- measure performance over training data
- measure performance over separate validation data set

Post-Pruning (Reduced error pruning)

- Consider each of the decision nodes in the tree to be candidates for pruning.
- Pruning decision node: remove subtree rooted at that node, making it a leaf node, and assign it most common classification of training examples affiliated with that node.
- Nodes are removed only if the resulting pruned tree performs no worse than the original over the validation set.
- Pruning of nodes continues until further pruning is harmful (i.e., decreases accuracy of the tree over the validation set).

Example

Model 1

ID3 variation for regression

	Pre	dictors		Target
Outlook	Temp.	Humidity	Windy	Hours Played
Rainy	Hot	High	Falce	26
Rainy	Hot	High	True	30
Overoast	Hot	High	Falce	48
Sunny	Mild	High	Falce	46
Sunny	Cool	Normal	Falce	62
Sunny	Cool	Normal	True	23
Overoast	Cool	Normal	True	43
Rainy	Mild	High	Falce	36
Rainy	Cool	Normal	Falce	38
Sunny	Mild	Normal	Falce	48
Rainy	Mild	Normal	True	48
Overoast	Mild	High	True	62
Overoast	Hot	Normal	Falce	44
Sunny	Mild	High	True	30

Hours Played

30

48

Count = n = 14

$$Average = \bar{x} = \frac{\sum x}{n} = 39.8$$

Standard Deviation =
$$S = \sqrt{\frac{\sum (x - \overline{x})^2}{n}} = 9.32$$

Coeffeicient of Variation =
$$CV = \frac{S}{\bar{x}} * 100\% = 23\%$$

$$S(T,X) = \sum_{c \in X} P(c)S(c)$$

		Hours Played (StDev)	Count
	Overcast	3.49	4
Outlook	Rainy	7.78	5
	Sunny	10.87	5
			14

		Hours Played (StDev)			Hours Played (StDev)
	Overcast	3.49		Cool	10.51
Outlook	Rainy	7.78	Temp.	Hot	8.95
	Sunny	10.87	S.	Mild	7.65
	SDR=1.66	5		SDR= 0.4	8
		Hours Played (StDev)			Hours Played (StDev)
lumidity	High	9.36	Military de la	False	7.8
	Normal	8.37	Windy	True	10.59

SDR=0.29

$$SDR(T, X) = S(T) - S(T, X)$$

SDR=0.28

SDR(Hours , Outlook) =
$$\mathbf{S}$$
(Hours) – \mathbf{S} (Hours, Outlook)
= $9.32 - 7.66 = 1.66$

		Outlook	Temp	Humidity	Windy	Hours Playe
		Sunny	Mild	High	FALSE	45
	Sunny	Sunny	Cool	Normal	FALSE	52
ſ	=	Sunny	Cool	Normal	TRUE	23
	22	Sunny	Mild	Normal	FALSE	46
1		Sunny	Mild	High	TRUE	30
М		William St. Co.		A) 0.00		
	ts	Overcast	Hot	High	FALSE	46
ı	Overcast	Overcast	Cool	Normal	TRUE	43
Ī	ē	Overcast	Mild	High	TRUE	52
	3	Overcast	Hot	Normal	FALSE	44
4						
ı		Rainy	Hot	High	FALSE	25
l	>	Rainy	Hot	High	TRUE	30
L	Rainy	Rainy	Mild	High	FALSE	35
	~	Rainy	Cool	Normal	FALSE	38
		Rainy	Mild	Normal	TRUE	48

Outlook - Overcast

		Hours Played (StDev)	Hours Played (AVG)	Hours Played (CV)	Count
	Overcast	3.49	46.3	8%	4
Outlook	Rainy	7.78	35.2	22%	5
	Sunny	10.87	39.2	28%	5

Outlook - Sunny

Temp	Humidity	Windy	Hours Played
Mild	High	FALSE	45
Cool	Normal	FALSE	52
Cool	Normal	TRUE	23
Mild	Normal	FALSE	46
Mild	High	TRUE	30
			S = 10.87
			AVG = 39.2
			CV = 28%

		Hours Played (StDev)	Count
T	Cool	14.50	2
Temp	Mild	7.32	3

SDR = 10.87-((2/5)*14.5 + (3/5)*7.32) = 0.678

		Hours Played (StDev)	Count
Manual dilan	High	7.50	2
Humidity	Normal	12.50	3

SDR = 10.87-((2/5)*7.5 + (3/5)*12.5) = 0.370

		Hours Played (StDev)	Count
Windy	False	3.09	3
	True	3.50	2

SDR = 10.87-((3/5)*3.09 + (2/5)*3.5) = 7.62

Outlook - Rainy

Temp	Humidity	Windy	Hours Played
Hot	High	FALSE	25
Hot	High	TRUE	30
Mild	High	FALSE	35
Cool	Normal	FALSE	38
Mild	Normal	TRUE	48
			S = 7.78
			AVG = 35.2
			CV = 22%

		Hours Played (StDev)	Count
	Cool	0	1
Temp	Hot	2.5	2
	Mild	6.5	2

SDR = 7.78 - ((1/5)*0+(2/5)*2.5 + (2/5)*6.5) 4.18

*		Hours Played (StDev)	Count
U. and disc.	High	4.1	3
Humidity	Normal	5.0	2

SDR = 7.78 - ((3/5)*4.1 + (2/5)*5.0) = 3.32

1		Hours Played (StDev)	Count	
Windy	False	5.6	3	
	True	9.0	2	

SDR = 7.78 - ((3/5)*5.6 + (2/5)*9.0) = 0.82

Real valued features/ attributes

Create a discrete attribute to test continuous

Temperature = 24.50C

(Temperature > 22.00C) = {true, false}

Where to set the threshold?

Temperature	15 ⁰C	18ºC	19º C	22ºC	24ºC	27ºC
PlayTennis	No	No	Yes	Yes	Yes	No

Random forest

- Utilizes ensemble learning (combines many classifiers) to provide solutions
- Consists of many decision trees
- Predicts by taking average (regression) or majority vote (classification) of output from various trees
- It reduces the overfitting of datasets
- Trained through bagging

Random forest vs decision tree

Main difference between decision tree algorithm and random forest algorithm is that establishing root nodes and segregating nodes is done randomly in the latter.

Random forest : Bagging

- Random forest classifier divides training dataset into subsets.
- These subsets are given to every decision tree in the random forest system.
- Each decision tree produces its specific output.

Note: not suited to classification problems with a skewed class distribution