

W5500-EVB 用户手册

V1.01

© Copyright 2013 WIZnet Co., Inc. All rights reserved

更多内容请参考: http://wizwiki.net/

文档历史信息

版本	时间	描述
V1.0	2013-10-08	与 W5500-EVB 发布
V1.01	2014-01-14	调整格式;

目录

1	简介.		1				
2	特点						
3	规格.		1				
4	方框图		2				
5	硬件有	万局	2				
6	插针引	脚分布	4				
7	开发调	周试工具	5				
	7.1	编译工具	5				
	7.2	烧录工具	6				
	7.3	USB 转 UART 接口 IC 驱动	6				
8	程序)	下载	7				
	8.1	硬件连接	7				
	8.2	程序编译	7				
	8.3	程序下载	8				
9	固件獲	漢示	12				
	9.1	默认配置	12				
	9.2	打开 Http Server					
	9.3	Http Server 修改参数					
10	表示	各由路 图	18				

插图清单

图 1 方	7框图2
图 2 底	板布局 (正面) 2
图 3 底	民板布局 (反面) 3
图 4 底	民板布局 (正面) 3
图 5 ST	「烧录工具下载6
图 6 硬	更件连接 7
图 7 程	是序编译8
图 8 查	E看端口号8
图 9 程	程序下载 (步骤 1)9
图 10	程序下载,按键顺序 9
图 11 和	程序下载 (步骤 2)10
图 12	程序下载 (步骤 3)10
图 13	程序下载 (步骤 4):选择固件程序11
图 14	硬件连接12
图 15	固件程序默认配置13
图 16	查看端口号14
图 17	串口输出默认配置 14
图 18 H	
图 19 ト	Http Server 配置页面:修改配置15
图 20 H	Http Server 重启16
图 21 H	

1	串口输出修改结果	22	图
1	核心板	23	图
1	· 底板	24	图
	单	清	表格
	规格	1 丸	表
	插针引脚分布	2 指	表
1	W5500-EVB Http Server 默认配置 	: 3 W	表

1 简介

W5500 Evaluation Board 简称 **W5500-EVB**,是为了方便广大用户更好的了解、使用 **W5500** 这 款网络芯片所开发的评估板。该板采用了 **STM32F103RCT6+W5500** 的设计,基于 **ARM** 的 **Cortex-M3** 平台。

W5500 延续了之前 WIZnet 系列产品的 ToE 技术,使用硬件逻辑门电路实现 TCP/IP 协议栈的传输层及网络层(如: TCP, UDP, ICMP, IPv4, ARP, IGMP, PPPoE 等协议),并集成了数据链路层,物理层,以及 32K 字节片上 RAM 作为数据收发缓存。从而把网络数据流量的处理工作全部转移到 W5500 集成硬件中进行。使得上位机主控芯片(此板为 STM32F103RCT6),只需承担 TCP/IP 应用层控制信息的处理任务。从而大大节省了上位机对于数据复制、协议处理和中断处理等方面的工作量,提升了系统利用率及可靠性。

在操作过程中,用户可以近似的将 W5500 作为 STM32F103RCT6 的一个外设 RAM 来使用,非常简易。另外, W5500 还提供网络唤醒及掉电模式供客户选用,从而降低系统能耗。W5500 对外接口为通用的 80MHz 高速 SPI,供不同平台拓展高速以太网方案选用。

2 特点

- 支持硬件 TCP/IP 协议: TCP, UDP, ICMP, IPv4, ARP, IGMP, PPPoE
- 支持 8 个独立端口(Socket) 同时通讯
- 支持掉电模式
- 支持网络唤醒
- 支持高速串行外设接口 (SPI 模式 0, 3)
- 内部 32K 字节收发缓存
- 内嵌 10BaseT/100BaseTX 以太网物理层 (PHY)
- 支持自动协商 (10/100-Based 全双工/半双工)
- 不支持 IP 分片
- 3.3V 工作电压, I/O 信号口 5V 耐压;
- LED 状态显示 (全双工/半双工, 网络连接, 网络速度, 活动状态)
- 48 引脚 LQFP 无铅封装 (7x7mm, 0.5mm 间距)

3 规格

表 1 规格

模块	器件	描述	备注
	以太网核心芯片	W5500	全硬件 TCP/IP 协议栈
核心板	MCU	STM32F103RCT6	
松心似	EEPROM	AT24C16	4K 电可擦除只读存储器
	J1, J2 排针	外接引脚	2.54mm 12*2
	网络变压器	B-TRC1188NLE	
	RJ-45		不带变压器及灯
	电压转换芯片	LM1117-3.3	
接口板	USB 转 RS232 芯片	FT232RL	
	LED 指示灯		Link, ACT, Speed
	J3 , J4 排针	外接引脚	2.54mm 12*2
	P3 排针	J-Tag 接口	2.54mm 10*2

按键 直插上位按键 6个

4 方框图

图 1 方框图

5 硬件布局

图 2底板布局(正面)

图 3 底板布局(反面)

图 4 底板布局(正面)

6 插针引脚分布

表 2 插针引脚分布

	表 2 插针引脚分布 				J3
 编号				名称	
1	TXP	AO	差分信号传输	д/4//16	ТХР
3	RXP	Al	差分信号接收RXP		
5	ACTLED	0	活动状态指示灯		
7	SPDLED	0	网络速度指示灯		SPDLED
9	PA9	I/O	PA9	USART1_TX/TIM1_CH2	RX USB
11	PA11	I/O	PA11	USART1_CTS/USBDM	RTS_USB
				CAN_RX/TIM1_CH4	
13	PA13	I/O	JTMS- SWDIO	JTMS- SWDIO	SWDIO
15	PA15	I/O	JTDI	SPI3_NSS/ I2S3_WS	JIDI
17	PC8	I/O	PC8	TIM8_CH3/SDIO_D0	PC8
19	PC10	I/O	PC10	UART4_TX/SDIO_D2	PC10
21	PC12	I/O	PC12	UART5_TX/SDIO_CK	PC12
23	GND		GND		GND
2	TXN	AO	差分信号传输		TXN
4	RXN		差分信号接收		RXN
6	LINKLED		网络连接指示灯		
8	PA8	I/O	PA8	USART1_CK/TIM1_CH1/MCO	PA8
10	PA10	I/O	PA10	USART1_RX/TIM1_CH3	TX_USB
12	PA12	I/O	PA12	USART1_RTS/USBDP/CAN_TX/	CTS_USB
			TIM1_ETR		
14	PA14	I/O	JTCK- SWCLK		SWCLK
16	PD3	I/O	PD3	FSMC_CLK	SWO
18	PC9	I/O	PC9	TIM8_CH4/SDIO_D1	PC9
20	PC11	I/O	PC11	UART4_RX/SDIO_D3	PC11
22	PD2	I/O	PD2	TIM3_ETR/UART5_RX	PD2
				SDIO_CMD	
24	VCC		VCC		VCC
			J2		J4
编号	名称	类型	说明	备用功能	名称
1	PC7	I/O	PC7	I2S3_MCK/TIM8_CH2/SDIO_ D7	
3	PC13	I/O	PC13	TAMPER-RTC	
5	PC15	I/O	PC15	OSC32_OUT	
7	PB11	I/O	PB11	I2C2_SDA/USART3_RX	
9	PC5	I/O	PC5	ADC12_IN15	
11	PC3	I/O	PC3	ADC12_IN13 ADC123_IN13	
13	PC1	I/O	PC1	ADC123_IN11	
13	rCi	1/0	FCI	ADC 123_IN 1 1	

15	PA7	I/O	PA7	SPI1_MOSI/TIM8_CH1N/ADC
				12_IN7
				TIM3_CH2
17	PA5	I/O	PA5	SPI1_SCK/DAC_OUT2
				ADC12_IN5
19	PA3	I/O	PA3	USART2_RX/TIM5_CH4/ADC
				123_IN3/TIM2_CH4
21	PA1	I/O	PA1	USART2_RTS
				ADC123_IN1/TIM5_CH2/TIM
				2_CH2
23	VCC		VCC	
2	воото	ı	воото	
4	PC14	I/O	PD14	FSMC_D0
6	nRESET			
8	PB10	I/O	PB10	I2C2_SCL/USART3_TX
10	PC4	I/O	PC4	ADC12_IN14
12	PC2	I/O	PC2	ADC123_IN12
14	PC0	I/O	PC0	ADC123_IN10
16	PA6	I/O	PA6	SPI1_MISO
				TIM8_BKIN/ADC12_IN6
				TIM3_CH1
18	PA4	I/O	PA4	SPI1_NSS/USART2_CK
				DAC_OUT1/ADC12_IN4
20	PA2	I/O	PA2	USART2_TX/TIM5_CH3
				ADC123_IN2/TIM2_CH3
22	PA0	I/O	PA0	WKUP/USART2_CTS
				ADC123_IN0 TIM2_CH1_ETR
				TIM5_CH1/TIM8_ETR
24	GND			

7 开发调试工具

7.1 编译工具

1) IAR Embedded

当前的 IAR 嵌入式工作台支持 ARM IDE。(其他的 IDE 工具也支持 ARM IDE,例如,例如 Keil)。 W5500EVB 软件包发行的版本是针对 ARM 5.41 的嵌入式工作台。关于如何使用 IAR,请参见 IAR 操作手册。

Driver Code Source: w5500_cortexm3_firmware_for_legacy.zip

2) CoIDE

ColDE 集成了 CoBuilder 和 CoDebugger,适用于编译、烧写及调试嵌入式系统应用。该平台简单易用,可以使用户快速创建一个可运行的嵌入式程序,为 ARM Cortex M 系列的开发者提供了一套

完整的集成开发环境,包括工程管理、编辑、编译工具、调试器及一个开发者可以分享自己的代码和 看法的交流平台。

Driver Source Code: iolibrary_v100.zip

注:关于更多 CoIDE 代码及使用方法,请参考 WizWiki → W5500;或登录 CooCox 官方网站。

7.2 烧录工具

Flash loader Demonstrator 用于为 W5500-EVB 烧录程序。

想了解更多关于 STM32F103xx Flash Loader demonstrator 的信息,请参见 <u>www.st.com</u> 的 UM0462 用户手册。

下载: UM0462 Flash loader demonstrator

http://www.st.com/internet/mcu/product/216817.jsp

单击 "Design Support" -> SW DEMOS (页面底端)

图 5 ST 烧录工具下载

7.3 USB 转 UART 接口 IC 驱动

当 mini-USB 连接到 Windows 电脑的 USB 设备时,设备管理器会正确安装 USB 转串口驱动。如果 USB 转串口适配器不能像预期一样工作,你可以在 www.ftdichip.com 下载 USB 转串口驱动。

8 程序下载

8.1 硬件连接

Mini USB 线缆

图 6 硬件连接

8.2 程序编译

使用 IAR 打开 W5500EVB 演示所用的固件程序(Loopback 演示),并编译。

图 7 程序编译

8.3 程序下载

1) 打开设备管理器,查看 Mini USB 线缆所占用的端口号。

图 8 查看端口号

2) 打开 Flash loader Demonstrator,选择对应的串口端口号及配置信息;

图 9 程序下载 (步骤 1)

3) 按下按键 **SW7** (**BOOT0**) 不松开,同时点击 **SW6** (**RESET**) 重启 **EVB** 板后,松开 **SW7.** 进入程序下载模式;

图 10 程序下载,按键顺序

4) 在 Flash loader Demonstrator 中点击下一步。检查单片机内存的是否可写。

图 11 程序下载 (步骤 2)

5) 点击下一步,选择目标设备;

图 12 程序下载(步骤3)

6) 选择目标程序并进行烧录。

注:建议烧录时,擦除之前所有的Flash内容。

图 13 程序下载 (步骤 4): 选择固件程序

7) 烧录完成。

9 固件演示

该固件可以实现让嵌入式系统实现一个 Web Server 的示例功能。

Mini USB 线缆

图 14 硬件连接

9.1 默认配置

表 3 W5500-EVB Http Server 默认配置

配置	参数
本地 MAC 地址	00:08:DC:11: 11: 11
本地 IP 地址	192.168.1.101
子网掩码	255.255.255.0
网关	192.168.1.1

1) 使用 IAR 打开程序目录中 app.eww 工程文件,浏览 IAR 左侧文件栏,双击打开 device.c 文件,如果 EVB 板式第一次使用, EEPROM 里是没有存储设备的 IP 地址等信息的,会使用默认的配置信息。在 set_default()函数中(如图 2),可以看到默认的配置信息,这里先把本机 IP 地址(lip)和网关地址(gw)修改为与您网络环境匹配的地址(可以在自己的电脑里查看电脑的网关地址和 IP 地址,然后再修改 EVB 板的地址信息)。

图 15 固件程序默认配置

2) 也可以使用串口调试工具,在系统设备管理器中查看 USB Serial Port (串口端口号),并使用串口工具打开对应串口端口。按下开发板上的 Reset 按键 (SW6) 重启评估板,可以从串口工具中看到默认的配置参数。

图 16 查看端口号

图 17 串口输出默认配置

9.2 打开 Http Server

若想成功登陆 Http Server,需要保证调试 PC 的 IP 地址与测试 W5500-EVB 的本地 IP 处于同一网段内。

- 1) 可以参考默认的配置信息,将调试 PC 设置为 192.168.1.xxx 这个网段内;
- 2) 在已知调试 PC 的 IP 地址的前提下,也可以在 IAR 中修改程序中的配置信息,使之与调试 PC 处于同一网段下。并参考第 8 节-程序下载,重新烧录到开发板中。

打开任意浏览器,在地址栏中输入 W5500-EVB 的本地 IP 地址,进入 Http Server 页面。

注:以下演示,采用的是 W5500-EVB 的默认配置 (192.168.1.101)。

图 18 Http Server 配置页面: 默认配置

9.3 Http Server 修改参数

1) 在打开的网页中修改 IP, 子网掩码及网关

图 19 Http Server 配置页面: 修改配置

2) 点击 'Save Settings and Reboot', 保存设置并重启设备 (5s 时间), 并自动跳转到新的 **IP** 设置页面上。

图 20 Http Server 重启

图 21 Http Server 配置后页面

3) 通过串口可以查看修改后的配置。

图 22 串口输出修改结果

至此,演示结束。更多 W5500 演示代码持续发布中,敬请关注!

10参考电路图

图 23 核心板

图 24 底板

版权声明

© Copyright 2013 WIZnet, Inc.版权所有.

技术支持: wiznethk@wiznet.co.kr

销售**&**代理: wiznetbj@wiznet.co.kr

更多信息,请登录 http://www.iwiznet.cn

Http://www.wiznet.co.kr

Http://wizwiki.net/