Overheads: - Outline, NMR Problems

Handout: - NMR Problems

Recap Wednesday: NMR

What to look for in a spectrum:

1) Number of peaks

Each "different" H gives a peak (can overlap if similar 🗵)

- Must be "identical" (aka "chemically equivalent") to be the same

- Consider if H's can rotate into same space

- 2) Chemical Shift (δ):
 - electronegative groups pull \leftarrow
 - aromatic H's \sim 7-8; C=C-H \sim 5-6
 - aldehyde ~ 9-10; $RCO_2H \sim 10-12$
- 3) Integration: gives relative # of H's in each peak (will be given to you!)

- singlet (s) = no neighbours, doublet (d) = 1 neighbour; - triplet (t) = 2; quartet (q) = 3; quintet, sextet, septet etc "splifling" ⇒ signal are "split" if neighboring C's have H's on them. em. (as long as neighbours are not same as original) Saka coupling neighboring B have "n" H's on them (blai), signal split into not peaks CH3-CH Fig 1411 CI has one n+1=4: a neighbour n+/=) :. double CH2-CH2-Br eal Diffe heights => Chem 361! * & (chem. shift) = middle of signal * "multiplicity" = & of peaks in signal (s,d,t,g. "m" = unidentified) normally see: - coupling between H's an direct neighboring CS -coupling longer range of there is a C=C in between 4 no coupling to O-H or N-H's

Coupling: peaks are split by "n" next-door neighbours into "n+1" peaks

4)

C	H30H +	CH3OH = CH3OH + CH	1 ₃ OH
	⇒ exch	ranging H's don't couple because	we moving to often
Nole:	solvents Nmr.	Por NMR → replace H W	D (H) so invisible
	e.g.	CDC/3 instead of HeO	most common/cleapent