Assignment 8

PHY310: Mathematical Methods for Physicists I

Instructor:Dr. Prasenjit Das

No Need to Submit

- 1. Write the Sturm-Liouville form and identify p(x), q(x), and w(x) in each of the following equations:
 - (a) $(1-x^2)y''(x) xy'(x) + \lambda y(x) = 0; -1 \le x \le +1$
 - (b) $xy''(x) + (1-x)y'(x) + \lambda y(x) = 0; -1 \le x < \infty$
 - (c) $(1-x^2)y''(x) 2xy'(x) + \left[\lambda \frac{m^2}{1-x^2}\right]y(x) = 0; -1 \le x \le +1$
- 2. Show that the eigenvalues and the corresponding eigenfunctions of the Sturm-Liouville problems
 - (a) with u(1) = 0 and $u(e^2) = 0$ in $1 \le x \le e^2$,

$$x^2u''(x) + xu'(x) + \lambda u(x) = 0$$

are given by $\lambda_n = (n\pi/2)^2$ and $u_n(x) = C_n \sin(\frac{n\pi}{2} \ln x), n = 1, 2, 3, \cdots$

(b) with u(1) = 0 and u(2) = 0 in $1 \le x \le 2$,

$$x^{4}u''(x) - 2x^{3}u'(x) + \lambda u(x) = 0$$

are given by $\lambda_n = (2n\pi)^2$ and $u_n(x) = C_n \sin(2n\pi/x), n = 1, 2, 3, \cdots$

(c) with u(0) = 0 and u(1) = 0 in $0 \le x \le 1$,

$$xu''(x) - u'(x) + 4x^3\lambda u(x) = 0$$

are given by $\lambda_n = n^2 \pi^2$ and $u_n(x) = C_n \sin(n\pi x^2)$, $n = 1, 2, 3, \cdots$.

- 3. Using the Schmidt Orthogonalization procedure to obtain the first four normalized orthogonal polynomials $\psi_n(x)$ from a non-orthogonal set of linearly independent functions $u_n(x) = x^n$; $n = 0, 1, 2, 3, \cdots$ for
 - (a) w(x) = 1 in $-1 \le x \le +1$.
 - (b) $w(x) = 1 \text{ in } 0 \le x \le +1.$
 - (c) w(x) = 1 in $0 \le x \le +2$.
 - (d) $w(x) = \exp(-x)$ in $0 \le x < \infty$.
 - (e) $w(x) = \exp(-x^2)$ in $-\infty < x < +\infty$.
- 4. The functions $u_1(x)$ and $u_2(x)$ are eigen functions of the same Hermitian operator but for distinct eigenvalues λ_1 and λ_2 . Prove that $u_1(x)$ and $u_2(x)$ are linearly independent.

1

- 5. Use the Gram-Schmidt process to determine an orthonormal basis for the subspace of \mathbb{R}^n spanned by the given set of vectors.
 - (a) $\{(2,1,-2),(1,3,-1)\}.$
 - (b) $\{(1,-1,-1),(2,1,-1)\}.$
 - (c) $\{(-1,1,1,1),(1,2,1,2)\}.$
 - (d) $\{(1,2,0,1),(2,1,1,0),(1,0,2,1)\}.$
 - (e) $\{(1,0,-1,0),(1,1,-1,0),(-1,1,0,1)\}.$
 - (f) $\{(1,1,-1,0),(-1,0,1,1),(2,-1,2,1)\}.$
- 6. Which of the following boundary conditions do not satisfy the orthonormality conditions?
 - (a) p(x) = 1, $0 \le x \le 1$, u(0) = u(1) = 2, and u'(0) = u'(1).
 - (b) $p(x) = x^2$, $1 \le x \le 2$, u(0) = u(2), and u'(0) = u'(2).
 - (c) p(1) = p(2), $1 \le x \le 2$, u(1) = u'(2), and u'(1) = u(2).
- 7. Which of the following boundary conditions ensure that all the eigenvalues will be non-negative, if $q(x) \ge 0$?
 - (a) p(x) = 2, $0 \le x \le 1$, u(0) = 0, and u'(1) = 0.
 - (b) $p(x) = \sin x$, $0 \le x \le \pi$, $u(0) = u'(\pi)$, and $u'(0) = u(\pi)$.
 - (c) $p(x) = e^{-x}$, $-10 \le x \le +10$, u(-10) = u(10), and u'(-10) = u'(10).