Masalah: Pemberian Beasiswa

Mahasiswa	IPK	Gaji Ortu (Rp/bulan)	
A	3,00	10 juta	
В	2,99	1 juta	

Fuzzification & Rule Evaluation

- * Misalkan proses fuzzification-nya sama persis dengan model Mamdani.
- * Misalkan Rule yang digunakan juga sama persis dengan model Mamdani.

5

Mahasiswa A

IF IPK = Cukup(0,5) AND Gaji = Besar(0,4) THEN NK = Rendah(0,4)

IF IPK = Cukup(0,5) AND Gaji = Sangat Besar(0,6) THEN NK = Rendah(0,5)

IF IPK = Bagus(0,5) AND Gaji = Besar(0,4) THEN NK = Tinggi(0,4)

IF IPK = Bagus(0,5) AND Gaji = Sangat Besar(0,6) THEN NK = Rendah(0,5)

NK = Rendah(0,5)

NK = Tinggi(0,4)

Defuzzyfication: Weighted Average

$$y* = \frac{(0,5)50 + (0,4)80}{(0,5) + (0,4)} = 63,33$$

Mahasiswa B

IF IPK = Cukup(0,52) AND Gaji = Kecil(1)THEN NK = Tinggi(0,52)

IFIPK = Cukup(0.52) ANDGaji = Sedang(0)THENNK = Rendah(0)

IFIPK = Besar(0,48) ANDGaji = Kecil(1)THENNK = Tinggi(0,48)

IFIPK = Besar(0,48) ANDGaji = Sedang(0)THENNK = Tinggi(0)

NK = Rendah (o)

NK = Tinggi (0,52)

11

Untuk Mahasiswa B • NK = Rendah (0) • NK = Tinggi (0,52) Rendah Tinggi O,52 Nilai Kelayakan skala [0, 100]

Defuzzyfication: Weighted Average

$$y^* = \frac{(0)50 + (0,52)80}{0 + 0,52} = 80$$

13

Keputusan Model Sugeno

- Mahasiswa B dengan IPK = 2,99 dan Gaji orangtuanya sebesar Rp 1 juta per bulan memperoleh Nilai Kelayakan sebesar 80.
- * Lebih besar dibandingkan dengan Nilai Kelayakan mahasiswa A yang sebesar **63,33**.
- * Jadi, mahasiswa B layak mendapatkan beasiswa.

Nilai Kelayakan mahasiswa A & B

Maharima	Nilai Kelayakan mendapat beasiswa			
Mahasiswa	Model Mamdani	Model Sugeno		
А	52,39	63,33		
В	69,66	80		
Selisih A dan B	17,72	16,67		

17

Sistem Berbasis Crisp Sets dan FOL

IF IPK = 2,57 AND Gaji = 1,20 juta THEN NK = 62,5

IF IPK = 2,57 AND Gaji = 1,25 juta THEN NK = 62,3

...

• • •

...

Aturan FOL untuk proses inference

IPK Gaji	G1	G2	G3	G4	G5
P1	70	60	40	30	20
P2	80	70	50	40	30
P3	90	80	60	50	40
P4	100	90	70	60	50

19

Aturan FOL untuk proses inference

- 1. IF $Interval(IPK, P1) \land Interval(Gaji, G1) \Rightarrow NK = 70$
- 2. IF $Interval(IPK, P1) \land Interval(Gaji, G2) \Rightarrow NK = 60$

• • •

•••

20. IF $Interval(IPK, P4) \land Interval(Gaji, G5) \Rightarrow NK = 50$

Kelemahan

- * Dengan menggunakan 20 aturan FOL di atas, tentu saja sistem akan mengeluarkan *output* berupa salah satu dari 20 nilai yang kita definisikan tersebut.
- * Dengan kata lain, sistem ini sangat statis.
- * Untuk masalah yang membutuhkan tingkat ketelitian tinggi atau yang adil secara intuitif, tentu saja cara ini tidak bisa digunakan.

21

Sistem yang Linier

$$NK = W_1(IPK/4) + W_2((20 - Gaji)/20)$$

- W₁ adalah bobot untuk IPK, W₂ adalah bobot untuk Gaji.
- Asumsi: IPK maksimum adalah 4,00
- Asumsi: Gaji Orang tua maksimum adalah Rp 20 jt/bln.
- Karena skala untuk NK adalah [o, 100], maka W_1 + W_2 harus sama dengan 100.

Kelebihan Fuzzy Systems

- * Kebanyakan permasalahan dunia nyata: non linier
- * Sistem berbasis crisp set dengan pembobotan sulit digunakan karena menghasilkan grafik yang linier.
- * Untuk menyelesaikan masalah non linier, tentu saja dibutuhkan sistem yang juga bersifat non linier.
- * Dilihat dari proses dan keluarannya, sistem berbasis fuzzy set memiliki sifat non linier.

Kekurangan Fuzzy Systems

- * Dari ketiga contoh sistem fuzzy di atas, sistem fuzzy mana yang paling baik untuk menyelesaikan masalah Pemberian Beasiswa?
- * Berapa kali kita harus melakukan *trial-and-error* (mencoba-coba)?
- * Kita bisa menghitung performansi sistem fuzzy berdasarkan akurasi dan kecepatannya.

Kekurangan Fuzzy Systems

- * Dibutuhkan seorang ahli yang sangat memahami tingkah laku variabel-variabel linguistik dan aturan yang ada.
- * Pendefinisian fungsi keanggotaan dan aturan fuzzy bisa dilakukan secara otomatis menggunakan Evolutionary Algorithms (EAs) atau Artificial Neural Network (ANN) atau teknik lain.
- * Evolving Fuzzy Systems
- * Neuro-Fuzzy