Verilog Size Checking

Equivalence-Based Typing Rules

The statement $\Gamma \mid n \vdash e : \tau, X$ mean:

In the variable context Γ and the size context n, the size of the expression e is the value of the variable τ , with X the size-tagged set of equivalence classes of size variables.

So we have:

- $\Gamma: \mathcal{O} \to \mathbb{N}$ a mapping from operand to their size, with \mathcal{O} the set of operands,
- $n \in \mathbb{N} \cup \{*\}$ a size context (with * for the empty one),
- $e \in \mathcal{E}$, with \mathcal{E} the set of expressions,
- $\tau \in \mathcal{V}$, with \mathcal{V} the set of size variable,
- X=(S,f) with $S\in 2^{\mathcal{V}}$ the set of equivalence classes and $f:S\to\mathbb{N}$ a size valuation for each equivalence class.

We use the following notations:

•

$$\bowtie : \left\{ \begin{array}{ccc} \mathbb{N} \times (\mathbb{N} \cup \{*\}) & \to & \mathbb{N} \\ (m,*) & \mapsto & m \\ (m,n) & \mapsto & \max(m,n) \end{array} \right.$$

- $\Delta_X : \mathcal{V} \to \mathbb{N}$ the function that given a size variable x returns its size in the environment X = (S, f). We have $\Delta_X(x) = f([x]_S)$ with $[x]_S$ the equivalence class of x in S.
- $\{v := s\}$: the declaration of a *fresh* size variable v.

• $X/\alpha \sim \beta$ the operation that combines two classes. For the newly created class, the valuation function gives the maximum of the previous classes:

$$\begin{split} (S,f)/\alpha \sim \beta &= (S',f') \\ S' &= \left\{ [\alpha]_S \sqcup [\beta]_S \right\} \sqcup S \setminus \left\{ [\alpha]_S, [\beta]_S \right\} \\ f' &= \left\{ \begin{array}{ccc} S' & \to & \mathbb{N} \\ c & \mapsto & f(c) & \text{if } c \in S \setminus \left\{ [\alpha]_S, [\beta]_S \right\} \\ c & \mapsto & \max \left(f \left([\alpha]_S \right), f \left([\beta]_S \right) \right) & \text{if } c = [\alpha]_S \text{ or } c = [\beta]_S \\ \end{array} \end{split}$$

Base case

$$\frac{\Gamma(x) = m}{\Gamma \mid n \vdash x : \upsilon, \{\upsilon \coloneqq m \bowtie n\}}$$