日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されてる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed th this Office.

出願年月日 Date of Application:

2004年 3月31日

願番号 oplication Number:

特願2004-102167

T. 10/C]:

[JP2004-102167]

願 人 blicant(s):

セイコーエプソン株式会社

CERTIFIED COPY OF PRIORITY DOCUMENT

2004年 4月16日

特許庁長官 Commissioner, Japan Patent Office 今井康

ページ: 1/E

【書類名】 特許願 【整理番号】 PA04G748

【提出日】 平成16年 3月31日

【あて先】 特許庁長官 今井 康夫 殿

【国際特許分類】 H04N 1/60

【発明者】

【住所又は居所】 長野県諏訪市大和三丁目3番5号 セイコーエプソン株式会社内

【氏名】 相磯 政司

【特許出願人】

【識別番号】 000002369

【氏名又は名称】 セイコーエプソン株式会社

【代理人】

【識別番号】 110000028

【氏名又は名称】 特許業務法人 明成国際特許事務所

【代表者】 下出 隆史 【電話番号】 052-218-5061

【先の出願に基づく優先権主張】

【出願番号】 特願2003-109754 【出願日】 平成15年 4月15日

【手数料の表示】

【予納台帳番号】 133917 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

 【包括委任状番号】
 0105458

【書類名】特許請求の範囲

【請求項1】

画像の生成方法であって、

- (a) 同一の対象が記録された部分を互いに含む複数の第1の画像を準備する工程と、
- (b) 画像を構成する画素の密度が前記第1の画像よりも高い第2の画像を生成する領域である画像生成領域を、前記複数の第1の画像との重なりの状態に基づいて決定する工程と、
- (c) 前記複数の第1の画像から、前記画像生成領域について前記第2の画像を生成する 工程と、を含む画像の生成方法。

【請求項2】

請求項1記載の画像生成方法であって、

前記工程(b)は、

前記画像生成領域と前記複数の第1の画像との重なりの程度を表す重なり指標値が、所 定の条件下で、あらかじめ定められた目標値に最も近づくように、前記画像生成領域を決 定する工程を含む、画像の生成方法。

【請求項3】

請求項1記載の画像生成方法であって、

前記工程(b)は、

- (b1) 前記各第1の画像が記録している領域の和の領域内に含まれる複数の候補領域を 準備する工程と、
- (b2)前記候補領域と前記複数の第1の画像との重なりの状態に基づいて決定される前記各候補領域の評価値に基づいて、前記複数の候補領域の中から前記画像生成領域として一つの候補領域を選択する工程と、を含む画像の生成方法。

【請求項4】

請求項3記載の画像生成方法であって、

前記工程(b2)は、

前記候補領域と前記各第1の画像との相対位置に基づいて、前記候補領域の前記評価値 を決定する工程を含む、画像の生成方法。

【請求項5】

請求項3記載の画像生成方法であって、

前記工程(b2)は、

前記候補領域と前記各第1の画像との重複部分に含まれる前記各第1の画像の画素の数 に基づいて前記評価値を決定する工程を含む、画像の生成方法。

【請求項6】

請求項3記載の画像生成方法であって、

前記工程(b2)は、

前記各候補領域について前記評価値を決定する工程を含み、

一つの候補領域の評価値を決定する工程は、

- (b3) 前記評価値を決定する対象候補領域の外輪郭のうち、前記複数の第1の画像のうちの一つの領域内に含まれる部分である評価部分を決定する工程と、
- (b4) 前記複数の第1の画像についての前記評価部分の長さに基づいて、前記対象候補 領域の評価値を決定する工程と、を含む、画像の生成方法。

【請求項7】

請求項3記載の画像生成方法であって、

前記工程(b2)は、

- (b3) 前記各候補領域の外輪郭にサンプル点を設定する工程と、
- (b4) 前記サンプル点に基づいて、前記各候補領域について前記評価値を決定する工程と、を含み、
 - 一つの候補領域の評価値を決定する工程は、
- (b5) 前記評価値を決定する対象候補領域の前記サンプル点のうち、前記複数の第1の

画像のうちの一つの領域内に含まれる評価サンプル点を決定する工程と、

(b6)前記複数の第1の画像についての前記評価サンプル点の数に基づいて、前記対象候補領域の評価値を決定する工程と、を含む、画像の生成方法。

【請求項8】

請求項3記載の画像生成方法であって、

前記工程(b2)は、

- (b3) 前記各第1の画像の外輪郭にサンプル点を設定する工程と、
- (b4)前記サンプル点に基づいて、前記各候補領域について前記評価値を決定する工程と、を含み、
 - 一つの候補領域の評価値を決定する工程は、
- (b5)一つの前記第1の画像の前記サンプル点のうち、前記評価値を決定する対象候補領域内に含まれるサンプル点である評価サンプル点を決定する工程と、
- (b6) 前記複数の第1の画像の前記評価サンプル点の数に基づいて、前記対象候補領域の評価値を決定する工程と、を含む、画像の生成方法。

【請求項9】

請求項3記載の画像生成方法であって、

前記工程(b2)は、

- (b3) 前記各候補領域の外輪郭の近傍に、一定の幅を有する評価領域を設定する工程と
- (b4)前記評価領域に基づいて、前記各候補領域について前記評価値を決定する工程と、を含み、
 - 一つの候補領域の評価値を決定する工程は、
- (b5) 前記評価値を決定する対象候補領域の前記評価領域であって、前記複数の第1の画像のうちの一つの領域に含まれる領域である特定評価領域を決定する工程と、
- (b6) 前記特定評価領域に含まれる前記各第1の画像の画素の数の、前記複数の第1の画像についての合計に基づいて、前記対象候補領域の評価値を決定する工程と、を含む、画像の生成方法。

【請求項10】

請求項3記載の画像生成方法であって、

前記工程(b2)は、

- (b3) 前記各候補領域の外輪郭の近傍にサンプル点を設定する工程と、
- (b4) 前記サンプル点に基づいて、前記各候補領域について前記評価値を決定する工程と、を含み、
 - 一つの候補領域の評価値を決定する工程は、
- (b5) 前記評価値を決定する対象候補領域の前記サンプル点のうち、前記複数の第1の 画像のうちの一つの領域内に含まれる評価サンプル点を決定する工程と、
- (b6)前記複数の第1の画像についての前記評価サンプル点の数に基づいて、前記対象候補領域の評価値を決定する工程と、を含む、画像の生成方法。

【請求項11】

請求項3ないし10のいずれかに記載の画像生成方法であって、

前記工程(b1)は、

- (b7) 前記各第1の画像が記録している領域の和の領域内に含まれる第1の候補領域を 設定する工程と、
- (b8) 前記各第1の画像が記録している領域の和の領域内に含まれる領域であって、第1の向きに所定の量だけずらすことで前記第1の候補領域と重ねることができる第2の候補領域と、

前記各第1の画像が記録している領域の和の領域内に含まれる領域であって、前記第1の向きとは逆の向きに前記所定の量だけずらすことで前記第1の候補領域と重ねることができる第3の候補領域と、を準備する工程と、を含む画像の生成方法。

【請求項12】

請求項3ないし10のいずれかに記載の画像生成方法であって、

前記工程(b1)は、

- (b7) 前記各第1の画像が記録している領域の和の領域内に含まれる第1の候補領域を 設定する工程と、
- (b8) 前記各第1の画像が記録している領域の和の領域内に含まれる領域であって、所定の点を基準にして縮小することで前記第1の候補領域と重ねることができる第2の候補領域と、

前記各第1の画像が記録している領域の和の領域内に含まれる領域であって、前記所定 の点を基準にして拡大することで前記第1の候補領域と重ねることができる第3の候補領 域と、を準備する工程と、を含む画像の生成方法。

【請求項13】

請求項12記載の画像生成方法であって、さらに、

- (d) 前記複数の第1の画像のうちの少なくとも一つを出力部を通じて出力する工程と、
- (e) 前記第2の画像を、前記出力された第1の画像と同じ大きさで、前記出力部を通じて出力する工程と、を有する画像の生成方法。

【請求項14】

請求項1ないし12のいずれかに記載の画像生成方法であって、さらに、

(f) 前記同一の対象が記録された部分に基づいて、前記複数の第1の画像同士の相対位置を計算する工程を含み、

前記複数の第1の画像の画素は、それぞれ階調値を有しており、

前記工程(c)は、

- (c1) 前記第2の画像の画素の中から前記階調値を計算する対象画素を選択する工程と
- (c2)前記複数の第1の画像の各画素を前記相対位置にしたがって配置し、さらに前記画像生成領域に前記第2の画像の画素を配置したとき、前記対象画素の近傍の所定の範囲内に位置する複数の特定画素を、前記複数の第1の画像の画素の中から選択する工程と、
- (c3) 前記各特定画素の前記階調値を加重平均することで前記対象画素の階調値を計算する工程と、を含む画像の生成方法。

【請求項15】

画像生成装置であって、

同一の対象が記録された部分を互いに含む複数の第1の画像を準備する画像取得部と、 画像を構成する画素の密度が前記第1の画像よりも高い第2の画像を生成する領域であ る画像生成領域を、前記複数の第1の画像との重なりの状態に基づいて決定する生成領域 決定部と、

前記複数の第1の画像から、前記画像生成領域について前記第2の画像を生成する画像 生成部と、を有する画像生成装置。

【請求項16】

請求項15記載の画像生成装置であって、

前記生成領域決定部は、

前記画像生成領域と前記複数の第1の画像との重なりの程度を表す重なり指標値が、所 定の条件下で、あらかじめ定められた目標値に最も近づくように、前記画像生成領域を決 定する、画像生成装置。

【請求項17】

請求項15記載の画像生成装置であって、

前記生成領域決定部は、

前記各第1の画像が記録している領域の和の領域内に含まれる複数の候補領域を準備する候補領域生成部と、

前記候補領域と前記複数の第1の画像との重なりの状態に基づいて決定される前記各候補領域の評価値に基づいて、前記複数の候補領域の中から前記画像生成領域として一つの候補領域を選択する候補領域選択部と、を備える画像生成装置。

【請求項18】

請求項17記載の画像生成装置であって、

前記候補領域選択部は、

前記候補領域と前記各第1の画像との相対位置に基づいて、前記候補領域の前記評価値 を決定する、画像生成装置。

【請求項19】

請求項17記載の画像生成装置であって、

前記候補領域選択部は、

前記候補領域と前記各第1の画像との重複部分に含まれる前記各第1の画像の画素の数に基づいて前記評価値を決定する、画像生成装置。

【請求項20】

請求項17記載の画像生成装置であって、

前記候補領域選択部は、

前記各候補領域について前記評価値を決定し、

一つの候補領域の評価値を決定する際には、

前記評価値を決定する対象候補領域の外輪郭のうち、前記複数の第1の画像のうちの 一つの領域内に含まれる部分である評価部分を決定し、

前記複数の第1の画像についての前記評価部分の長さに基づいて、前記対象候補領域 の評価値を決定する、画像生成装置。

【請求項21】

請求項17記載の画像生成装置であって、

前記候補領域選択部は、

前記各候補領域の外輪郭に設定されたサンプル点に基づいて、前記各候補領域について 前記評価値を決定し、

一つの候補領域の評価値を決定する際には、

前記評価値を決定する対象候補領域の前記サンプル点のうち、前記複数の第1の画像 のうちの一つの領域内に含まれる評価サンプル点を決定し、

前記複数の第1の画像についての前記評価サンプル点の数に基づいて、前記対象候補 領域の評価値を決定する、画像生成装置。

【請求項22】

請求項17記載の画像生成装置であって、

前記候補領域選択部は、

前記各第1の画像の外輪郭に設定されたサンプル点に基づいて、前記各候補領域について前記評価値を決定し、

一つの候補領域の評価値を決定する際には、

一つの前記第1の画像の前記サンプル点のうち、前記評価値を決定する対象候補領域内に含まれるサンプル点である評価サンプル点を決定し、

前記複数の第1の画像の前記評価サンプル点の数に基づいて、前記対象候補領域の評価値を決定する、画像生成装置。

【請求項23】

請求項17記載の画像生成装置であって、

前記候補領域選択部は、

前記各候補領域の外輪郭の近傍に一定の幅で設定された評価領域に基づいて、前記各候 補領域について前記評価値を決定し、

一つの候補領域の評価値を決定する際には、

前記評価値を決定する対象候補領域の前記評価領域であって、前記複数の第1の画像 のうちの一つの領域に含まれる領域である特定評価領域を決定し、

前記特定評価領域に含まれる前記各第1の画像の画素の数の、前記複数の第1の画像 についての合計に基づいて、前記対象候補領域の評価値を決定する、画像生成装置。

【請求項24】

請求項17記載の画像生成装置であって、

前記候補領域選択部は、

前記各候補領域の外輪郭の近傍に設定されたサンプル点に基づいて、前記各候補領域について前記評価値を決定し、

一つの候補領域の評価値を決定する際には、

前記評価値を決定する対象候補領域の前記サンプル点のうち、前記複数の第1の画像 のうちの一つの領域内に含まれる評価サンプル点を決定し、

前記複数の第1の画像についての前記評価サンプル点の数に基づいて、前記対象候補 領域の評価値を決定する、画像生成装置。

【請求項25】

請求項17ないし24のいずれかに記載の画像生成装置であって、

前記候補領域生成部は、

前記各第1の画像が記録している領域の和の領域内に含まれる第1の候補領域を設定し

前記各第1の画像が記録している領域の和の領域内に含まれる領域であって、第1の向きに所定の量だけずらすことで前記第1の候補領域と重ねることができる第2の候補領域と、前記各第1の画像が記録している領域の和の領域内に含まれる領域であって、前記第1の向きとは逆の向きに前記所定の量だけずらすことで前記第1の候補領域と重ねることができる第3の候補領域と、を準備する、画像生成装置。

【請求項26】

請求項17ないし24のいずれかに記載の画像生成装置であって、

前記候補領域生成部は、

前記各第1の画像が記録している領域の和の領域内に含まれる第1の候補領域を設定し

前記各第1の画像が記録している領域の和の領域内に含まれる領域であって、所定の点を基準にして縮小することで前記第1の候補領域と重ねることができる第2の候補領域と、前記各第1の画像が記録している領域の和の領域内に含まれる領域であって、前記所定の点を基準にして拡大することで前記第1の候補領域と重ねることができる第3の候補領域と、を準備する、画像生成装置。

【請求項27】

請求項26記載の画像生成装置であって、さらに、

前記複数の第1の画像のうちの少なくとも一つを出力部を通じて出力し、

前記第2の画像を、前記出力された第1の画像と同じ大きさで、前記出力部を通じて出力する生成画像出力部を有する画像生成装置。

【請求項28】

請求項15ないし26のいずれかに記載の画像生成装置であって、さらに、

前記同一の対象が記録された部分に基づいて、前記複数の第1の画像同士の相対位置を 計算する相対位置計算部を有し、

前記複数の第1の画像の画素は、それぞれ階調値を有しており、

前記画像生成部は、

前記第2の画像の画素の中から前記階調値を計算する対象画素を選択し、

前記複数の第1の画像の各画素を前記相対位置にしたがって配置し、さらに前記画像生成領域に前記第2の画像の画素を配置したとき、前記対象画素の近傍の所定の範囲内に位置する複数の特定画素を、前記複数の第1の画像の画素の中から選択し、

前記各特定画素の前記階調値を加重平均することで前記対象画素の階調値を計算する、 画像生成装置。

【請求項29】

画像を生成するためのプログラムであって、

同一の対象が記録された部分を互いに含む複数の第1の画像を準備する第1の部分と、 画像を構成する画素の密度が前記第1の画像よりも高い第2の画像を生成する領域であ る画像生成領域を、前記複数の第1の画像との重なりの状態に基づいて決定する第2の部分と、

前記複数の第1の画像から、前記画像生成領域について前記第2の画像を生成する第3 の部分と、を含む画像生成プログラム。

【書類名】明細書

【発明の名称】低画質の複数の画像から高画質な画像を合成する画像合成

【技術分野】

$[0\ 0\ 0\ 1]$

この発明は、画素の密度が低い複数の画像から画素の密度が高い画像を生成する技術に関し、特に、生成される画像の質が高くなるように画像の生成範囲を決定する技術に関する。

【背景技術】

[0002]

従来より、画素の密度の低い動画の複数のフレームから画素の密度の高い静止画を合成する技術が存在した。たとえば、特許文献1においては、水平方向に走査が繰り返されることにより画像が表示されるCRT等の機器における複数のフレーム画像から、垂直方向についてフレーム画像の走査線の密度を超える密度を有する画像を生成する技術が開示されている。

[0003]

【特許文献1】特開平11-164264号公報

$[0\ 0\ 0\ 4\]$

しかし、画素の密度が低い複数の画像から画素の密度が高い画像を生成する際に、生成される画像の質が高くなるように画像の生成範囲を決定する技術は存在しなかった。

【発明の開示】

【発明が解決しようとする課題】

[0005]

この発明は、従来技術における上述の課題を解決するためになされたものであり、画素の密度が低い複数の画像から画素の密度が高い画像を生成する際に、生成される画像の質が高くなるように画像の生成範囲を決定することを目的とする。

【課題を解決するための手段】

[0006]

上述の課題の少なくとも一部を解決するため、本発明では、画素の密度が低い複数の画像から画素の密度が高い画像を生成する際に、以下の処理を行う。まず、同一の対象が記録された部分を互いに含む複数の第1の画像を準備する。そして、画像を構成する画素の密度が第1の画像よりも高い第2の画像を生成する領域である画像生成領域を、複数の第1の画像との重なりの状態に基づいて決定する。その後、複数の第1の画像から、画像生成領域について第2の画像を生成する。

[0007]

このような態様とすれば、複数の第1の画像のうちの多数の第1の画像が重複して含んでいる画像の範囲を、画像生成範囲とすることができる。よって、画素の密度が低い複数の画像から画素の密度が高い画像を生成する際に、生成される画像の質が高くなるように画像生成範囲を決定することができる。

[0008]

また、画像生成領域を決定する際には、以下のようにすることが好ましい。すなわち、画像生成領域と複数の第1の画像との重なりの程度を表す重なり指標値が、所定の条件下で、あらかじめ定められた目標値に最も近づくように、画像生成領域を決定する。このような態様とすれば、目標値を調整することで、たとえば画像生成領域の広さなどの、複数の第1の画像との重なりの程度以外の評価が悪くならないように、画像生成領域を決定することができる。

[0009]

画像生成領域を決定する際には、以下のようにすることが好ましい。すなわち、まず、各第1の画像が記録している領域の和の領域内に含まれる複数の候補領域を準備する。そして、候補領域と複数の第1の画像との重なりの状態に基づいて決定される各候補領域の評価値に基づいて、複数の候補領域の中から画像生成領域として一つの候補領域を選択す

る。このような態様においては、限られた候補の中から評価値に基づいて画像生成領域を 選択すればよい。よって、簡単に画像生成領域を選択することができる。

[0010]

なお、候補領域を選択する際には、候補領域と各第1の画像との相対位置に基づいて、 候補領域の評価値を決定することが好ましい。

$[0\ 0\ 1\ 1]$

また、候補領域を選択する際には、各候補領域について評価値を決定することが好ましい。そして、一つの候補領域の評価値を決定する際には、以下のようにすることが好ましい。すなわち、評価値を決定する対象候補領域の外輪郭のうち、複数の第1の画像のうちの一つの領域内に含まれる部分である評価部分を決定する。そして、複数の第1の画像についての評価部分の長さを求めて、その評価部分の長さに基づいて対象候補領域の評価値を決定する。このような態様とすれば、簡単な計算に基づいて、生成される画像の質が高くなるように画像生成範囲を決定することができる。

$[0\ 0\ 1\ 2]$

なお、候補領域を選択する際には、以下のような態様とすることもできる。すなわち、 各候補領域の外輪郭にサンプル点を設定する。そして、サンプル点に基づいて、各候補領域について評価値を決定する。一つの候補領域の評価値を決定する際には、以下のようにすることが好ましい。すなわち、評価値を決定する対象候補領域のサンプル点のうち、複数の第1の画像のうちの一つの領域内に含まれる評価サンプル点を決定する。そして、複数の第1の画像についての評価サンプル点を求め、その評価サンプル点の数に基づいて、対象候補領域の評価値を決定する。このような態様としても、簡単な計算に基づいて、生成される画像の質が高くなるように画像生成範囲を決定することができる。

$[0\ 0\ 1\ 3\]$

候補領域を選択する際には、さらに、以下のような態様とすることもできる。すなわち、各第1の画像の外輪郭にサンプル点を設定する。そして、サンプル点に基づいて、各候補領域について評価値を決定する。一つの候補領域の評価値を決定する際には、以下のようにすることが好ましい。すなわち、一つの第1の画像のサンプル点のうち、評価値を決定する対象候補領域内に含まれるサンプル点である評価サンプル点を決定する。そして、複数の第1の画像の評価サンプル点を求め、その評価サンプル点の数に基づいて対象候補領域の評価値を決定する。このような態様としても、簡単な計算に基づいて、多くの第1の画像が重複して含んでいる画像の範囲を含む候補領域を、画像生成範囲として選択することができる。

$[0\ 0\ 1\ 4]$

また、候補領域を選択する際には、以下のような態様とすることもできる。すなわち、 各候補領域の外輪郭の近傍に、一定の幅を有する評価領域を設定する。そして、評価領域 に基づいて、各候補領域について評価値を決定する。一つの候補領域の評価値を決定する 際には、以下のようにすることが好ましい。すなわち、評価値を決定する対象候補領域の 評価領域であって、複数の第1の画像のうちの一つの領域に含まれる領域である特定評価 領域を決定する。そして、特定評価領域に含まれる各第1の画像の画素の数の、複数の第 1の画像についての合計を求める。その画素数の合計値に基づいて、対象候補領域の評価 値を決定する。

[0015]

なお、候補領域を選択する際には、以下のような態様とすることもできる。すなわち、 各候補領域の外輪郭の近傍にサンプル点を設定する。そして、サンプル点に基づいて、各 候補領域について評価値を決定する。一つの候補領域の評価値を決定する際には、以下の ようにすることが好ましい。すなわち、評価値を決定する対象候補領域のサンプル点のう ち、複数の第1の画像のうちの一つの領域内に含まれる評価サンプル点を決定する。そし て、複数の第1の画像についての評価サンプル点を求め、その評価サンプル点の数に基づ いて、対象候補領域の評価値を決定する。

[0016]

また、以下のような態様とすることも好ましい。すなわち、複数の第1の画像のうちの少なくとも一つを出力部を通じて出力する。そして、第2の画像を、出力された第1の画像と同じ大きさで、出力部を通じて出力する。このような態様とすれば、ユーザは、第1の画像の領域と、第2の画像の領域とを容易に比較することができる。

$[0\ 0\ 1\ 7]$

また、上述の課題の少なくとも一部を解決するため、画素の密度が低い複数の画像から 画素の密度が高い画像を生成する際に、以下のような処理を行うこともできる。まず、画 像を構成する画素の密度が比較的低く、同一の対象が記録された部分を互いに含む複数の 第1の画像を準備する。そして、同一の対象が記録された部分に基づいて、複数の第1の 画像同士の相対位置を計算する。その後、画像を構成する画素の密度が比較的高い第2の 画像を生成する領域であって、各第1の画像が記録している領域の和の領域内に含まれる 画像生成領域を、複数の第1の画像同士の相対位置に基づいて決定する。そして、複数の 第1の画像から、画像生成領域について第2の画像を生成する。このような態様とすれば 、複数の第1の画像のうちの多数の第1の画像が重複して含んでいる画像の範囲を、画像 生成範囲とすることができる。よって、生成される画像の質が高くなるように画像生成範 囲を決定することができる。

[0018]

なお、第1の画像同士の相対位置に基づいて決定する際には、まず、各第1の画像が記録している領域の和の領域内に含まれる複数の候補領域を準備する。そして、候補領域と各第1の画像との相対位置に基づいて決定される各候補領域の評価値に基づいて、複数の候補領域の中から画像生成領域として一つの候補領域を選択する。このような態様とすることで、準備された複数の第1の画像との相対位置に基づいて、簡単に画像生成領域を決定することができる。

[0019]

また、候補領域を選択する際には、候補領域と各第1の画像との重複部分に含まれる各第1の画像の画素の数に基づいて評価値を決定することが好ましい。このような態様とすれば、多くの第1の画像が重複して含んでいる画像の範囲を含む候補領域を、画像生成範囲として選択することができる。よって、生成される画像の質が高くなるように画像生成範囲を決定することができる。

[0020]

なお、候補領域を選択する際には、候補領域の外輪郭のうち各第1の画像の領域に含まれる部分の長さに基づいて評価値を決定してもよい。このような態様とすれば、より簡単な計算に基づいて、多くの第1の画像が重複して含んでいる画像の範囲を含む候補領域を、画像生成範囲として選択することができる。すなわち、より簡単な計算に基づいて、生成される画像の質が高くなるように画像生成範囲を決定することができる。

$[0\ 0\ 2\ 1]$

さらに、候補領域を選択する際には、候補領域の外輪郭上に設けられたサンプル点のうち各第1の画像の領域に含まれるサンプル点の数に基づいて評価値を決定することが好ましい。このような態様とすれば、さらに簡単な計算に基づいて、多くの第1の画像が重複して含んでいる画像の範囲を含む候補領域を、画像生成範囲として選択することができる。すなわち、さらに簡単な計算に基づいて、生成される画像の質が高くなるように画像生成範囲を決定することができる。

[0022]

なお、候補領域を選択する際には、各第1の画像の外輪郭上に設けられたサンプル点の うち候補領域に含まれるサンプル点の数に基づいて評価値を決定してもよい。このような 態様としても、簡単な計算に基づいて、多くの第1の画像が重複して含んでいる画像の範 囲を含む候補領域を、画像生成範囲として選択することができる。

$[0\ 0\ 2\ 3]$

また、候補領域を選択する際には、候補領域の外輪郭の近傍に設けられた評価領域のうち各第1の画像の領域内にある部分に含まれる各第1の画像の画素の数に基づいて評価値

を決定してもよい。

[0024]

そして、候補領域を選択する際には、候補領域の外輪郭の近傍に設けられたサンプル点のうち各第1の画像の領域に含まれるサンプル点の数に基づいて評価値を決定する態様としてもよい。

[0025]

なお、複数の候補領域を準備する際には、以下のような手順を実行することが好ましい。すなわち、まず、各第1の画像が記録している領域の和の領域内に含まれる第1の候補領域を設定する。そして、各第1の画像が記録している領域の和の領域内に含まれる領域であって、第1の向きに所定の量だけずらすことで第1の候補領域と重ねることができる第2の候補領域と、各第1の画像が記録している領域の和の領域内に含まれる領域であって、第1の向きとは逆の向きに所定の量だけずらすことで第1の候補領域と重ねることができる第3の候補領域と、を準備する。このような態様とすれば、第1の候補領域を中心とした所定の範囲内に複数の候補領域を設け、その中から画像生成領域を選択することができる。

[0026]

また、複数の候補領域を準備する際には、以下のような手順を実行することも好ましい。まず、各第1の画像が記録している領域の和の領域内に含まれる第1の候補領域を設定する。そして、各第1の画像が記録している領域の和の領域内に含まれる領域であって、所定の点を基準にして縮小することで第1の候補領域と重ねることができる第2の候補領域と、各第1の画像が記録している領域の和の領域内に含まれる領域であって、所定の点を基準にして拡大することで第1の候補領域と重ねることができる第3の候補領域と、を準備する。このような態様とすれば、第1の候補領域よりも大きいまたは小さい候補領域を準備して、その中から画像生成領域を選択することができる。なお、第1の候補領域は、ユーザが指定することが好ましい。

$[0\ 0\ 2\ 7]$

さらに、複数の第1の画像の画素がそれぞれ階調値を有している場合には、第2の画像を生成する際には、以下のような手順で第2の画像の各画素の階調値を計算することが好ましい。すなわち、まず、第2の画像の画素の中から階調値を計算する対象画素を選択する。そして、複数の第1の画像の各画素を相対位置にしたがって配置し、さらに画像生成領域に第2の画像の画素を配置したとき、対象画素の近傍の所定の範囲内に位置する複数の特定画素を、複数の第1の画像の画素の中から選択する。その後、各特定画素の階調値を加重平均することで対象画素の階調値を計算する。このような態様とすれば、画素の密度の低い画像の画素の階調値から、画素の密度が高い画像の画素の階調値を計算することができる。

[0028]

なお、特定画素は、複数の第1の画像の各画素を相対位置にしたがって配置し、さらに画像生成領域に第2の画像の画素を配置したとき、複数の第1の画像の画素の中でもっとも対象画素に近い位置にある画素を含むことが好ましい。そして、特定画素は、複数の第1の画像の各画素を相対位置にしたがって配置し、さらに画像生成領域に第2の画像の画素を配置したとき、対象画素を中心とし、第1の画像の画素ピッチの2倍の長さの半径を有する円の範囲内に含まれる画素であることが好ましい。

[0029]

なお、本発明は、以下に示すような種々の態様で実現することが可能である。

- (1) 画像生成方法、画像処理方法、画像データ生成方法。
- (2) 画像生成装置、画像処理装置、画像データ生成装置。
- (3) 上記の装置や方法を実現するためのコンピュータプログラム。
- (4)上記の装置や方法を実現するためのコンピュータプログラムを記録した記録媒体。
- (5)上記の装置や方法を実現するためのコンピュータプログラムを含み搬送波内に具現 化されたデータ信号。

【発明を実施するための最良の形態】

[0030]

以下で、本発明の実施の形態を実施例に基づいて以下の順序で説明する。

A. 第1実施例:

- A-1. 装置構成:
- A-2. 静止画データを生成するための全体の手順:
- A-3. 画像生成領域の決定:
- A-4. 静止画データの生成:
- B. 第2実施例:
- C. 第3実施例:
- D. 第4 実施例:
- E. 第5実施例:
- F. 変形例:

[0031]

A. 第1実施例:

A-1. 装置構成:

図1は、本発明の実施例である画像処理装置の概略構成を示す説明図である。この画像処理装置は、画像データに対して所定の画像処理を行うパーソナルコンピュータ100と、パーソナルコンピュータ100に情報を入力する装置としてのキーボード120、マウス130およびCD-R/RWドライブ140と、情報を出力する装置としてのディスプレイ110およびプリンタ22と、を備えている。コンピュータ100では、所定のオペレーティングシステムの下で、アプリケーションプログラム95が動作している。このアプリケーションプログラム95が実行されることで、コンピュータ100のCPU102は様々な機能を実現する。

[0032]

画像のレタッチなどを行うアプリケーションプログラム95が実行され、キーボード120やマウス130からユーザーの指示が入力されると、CPU102は、CD-R/RWドライブ140内のCD-RWからメモリ内に画像データを読み込む。CPU102は、画像データに対して所定の画像処理を行って、ビデオドライバを介して画像をディスプレイ110に表示する。また、CPU102は、画像処理を行った画像データを、プリンタドライバを介してプリンタ22に印刷させることもできる。

[0033]

なお、動画を含む画像データは、それぞれが静止画を表す複数のフレーム画像データを含む。複数のフレーム画像データはそれぞれ順番が付されており、その順番に沿って各フレーム画像データの静止画がディスプレイ110に表示されることで、ディスプレイ110上で動画が再生される。

$[0\ 0\ 3\ 4]$

A-2. 静止画データを生成するための全体の手順:

図2は、動画データの複数のフレーム画像から静止画を表す静止画データを生成する手順を示すフローチャートである。アプリケーションプログラム95が実行され、キーボード120やマウス130からユーザーの指示が入力されると、CPU102は、まず、ステップS2で、メモリ内に格納されている動画を表す画像データから連続する5組のフレーム画像データを取得する。

[0035]

図3は、ユーザが動画再生中に高精度の静止画を生成したい瞬間を指定するためのユーザインターフェイス画面を示す説明図である。たとえば、CPU102は、キーボード120やマウス130を介してコンピュータ100に入力されたユーザーの指示に基づいて、CD-RWから特定の動画データ(図3の例においては映像ファイルMovie.avi)を読み込み、メモリ内に格納する。そして、その動画データの動画Fmを、図3に示すように、ディスプレイ110上で再生する。ステップS2においては、ディスプレイ110上で

動画を再生させているときに、ユーザーがマウス130を诵じてカーソルCsを操作して 、ユーザインターフェイス画面内の「シーン取得」ボタンを押し、コンピュータ100に 、動画再生期間中の特定の瞬間を指定する。なお、動画再生期間中の特定の瞬間の指定は 、キーボード120を操作して行うこともできる。

[0036]

ユーザによって、動画再生期間中の特定の瞬間が指定されると、CPU102は、その 瞬間にディスプレイ110上に表示されているフレーム画像データF3と、その直前の二 つのフレーム画像データF1、F2、およびその直後の二つのフレーム画像データF4, F5を取得する。このように、ユーザーの指示を受け取って複数のフレーム画像データを 取得する機能は、CPU102の機能部であるフレームデータ取得部102a(図1参照)によって実行される。

[0037]

ここで、CD-RWから読み込まれメモリ内に格納されている動画データは、縦と横の 寸法比が3:4の矩形の画像領域を有する動画のデータであるものとする。この動画デー タは、静止している対象、例えば風景や静物などを撮影した動画のデータであり、撮影者 の手ブレによって微妙に画像が揺れているものとする。その結果、ステップS2で選択さ れた5組のフレーム画像データは、それぞれが表す静止画中に同一の対象を含むが、画面 中で撮影対象の位置が微妙にずれている。

[0038]

図4は、フレーム画像データの相対位置を特定する方法を示す説明図である。図2のス テップS4では、ステップS2で読み込んだ5組のフレーム画像データの画像の相対位置 ずれを計算する。各フレーム画像データの画像の相対位置ずれの特定は、以下のようにし て行われる。

[0039]

まず、各画像が含む同一の対象が記録された部分に、特徴点を決定する。図4において 、特徴点を各フレーム画像データF1,F3中の黒い丸Sp1~Sp3で示す。図4にお いては、各フレーム画像データF1,F3には、ともに同一の対象としての二つの山と空 が写っている。特徴点は、一般の画像中において頻繁に現れることのないような特徴的な 画像部分に配することができ、たとえば図4に示すように、山の頂上(Sp1, Sp3) や山と山の輪郭が交わっている点(Sp2)とすることができる。

$[0\ 0\ 4\ 0\]$

そして、図4の下段に示すように、それぞれのフレーム画像データF1,F3中の特徴 点Sp1~Sp3が重なるように、フレーム画像データF1,F3の画像の相対位置を決 定することによって、各フレーム画像データの画像の相対位置ずれが特定され、計算され る。

$[0\ 0\ 4\ 1\]$

図5は、5組のフレーム画像データF1~F5の相対位置を示す説明図である。ステッ プS4で5組のフレーム画像データF1~F5の相対位置ずれが計算されると、各フレー ム画像データF1~F5の相対位置は、図5に示すように特定される。なお、図5に示し た画像において、5組のフレーム画像データF1~F5のすべてが重複して同一の対象を 記録している部分をp5で示している。そして、2個~4個のフレーム画像データが重複 して記録している部分をそれぞれp2~p4で示している。さらに、1個のフレーム画像 データのみが記録している部分をp1で示している。

[0042]

特徴点に基づいて複数のフレーム画像データの画像の相対位置を特定する機能は、CP U102の機能部であるフレーム合成部102b(図1参照)によって実行される。なお 、図5において示す各フレーム画像データF1~F5の相対位置は、説明を分かりやすく するために、互いに大きくずらされている。すなわち、図5は、実際の動画のフレーム画 像のズレの大きさを反映したものではない。

[0043]

図2のステップS6では、フレーム画像データF1~F5が表す画像中のどの部分について静止画データを生成するかが決定される。生成する静止画データが表す画像は、動画データの動画と同様に縦と横の寸法比が3:4の矩形の形状を有している。そして、生成する静止画データの画像は、フレーム画像データF1~F5の画素の縦横それぞれ4倍の密度の画素で構成される。以下、静止画データを生成する画像の領域を「画像生成領域」と呼ぶ。静止画データを生成する画像生成領域を決定する機能は、CPU102の機能部である生成領域決定部102c(図1参照)によって実行される。

[0044]

その後、ステップS8において、ステップS6で決定された領域について静止画データが生成される。静止画データを生成する機能は、CPU102の機能部である静止画生成部102d(図1参照)によって実行される。以下で、ステップS6における画像生成領域の決定と、ステップS8における静止画データの生成の手順について説明する。

$[0\ 0\ 4\ 5]$

A-3. 画像生成領域の決定:

図6は、図2のステップS6において静止画データを生成する領域を決定する手順を示すフローチャートである。ステップS22では、まず、目標評価値Stを設定する。Stは1から5までのいずれかの数である。この目標評価値Stは、「1」から「ステップS2で取得したフレーム画像データの数」までの任意の値を取ることができる。目標評価値Stを大きくするほどより精度の高い静止画を生成することができる可能性が高くなるが、同時に画像生成領域が小さくなる可能性も高くなる。目標評価値Stについては、後述する。

[0046]

この目標評価値S t は、あらかじめ「4」や「3」などの値に定められていてもよいし、ユーザーがマウス 1 3 0 、キーボード 1 2 0 を通じてコンピュータ 1 0 0 に入力してもよい。ユーザが目標評価値S t を設定する態様とすれば、目標評価値S t を調整することで、生成する静止画の精度の高さと画像生成領域の大きさのバランスについて、ユーザが制御することができる。

[0047]

ステップS24では、画像生成領域の候補である候補領域Ac0~Ac12が設定される。この候補領域を生成する機能は、CPU102の機能部である候補領域生成部102 e(図1参照)によって実行される。候補領域生成部102eは、CPU102の機能部である生成領域決定部102cの一部を構成する機能部である。

$[0\ 0\ 4\ 8]$

ステップS24では、まず候補領域Ac0が設定される。候補領域Ac0は、フレーム画像データF3の画像の範囲に等しい(図5参照)。よって、候補領域Ac0の縦と横の寸法比は3:4である。

[0049]

図7は、候補領域 $Ac1\sim Ac12$ を示す説明図である。各候補領域 $Ac1\sim Ac12$ に対する候補領域Ac0の相対位置を図中、破線で示す。候補領域Ac1は、フレーム画像データF3の範囲に等しい候補領域Ac0に対して1画素分、上方にずれている範囲である。

[0050]

なお、ここでいう「1画素」とは、フレーム画像データの画素密度における1画素であり、生成する静止画データの画素密度(フレーム画像データの画素密度の4倍)における1画素ではない。よって、静止画データの画素密度の画素の単位で言い換えれば、候補領域Ac1は、候補領域Ac0に対して4画素分、上方にずれている範囲である。また、各候補領域Ac1~Ac12と候補領域Ac0の相対位置を分かりやすく示すために、図7では、実際の寸法の割合とは異なる割合で各候補領域のずらし量を示している。

$[0\ 0\ 5\ 1]$

候補領域Ac2は、候補領域Ac0に対して1画素分、下方にずれている範囲である。

そして、候補領域Ac3は、候補領域Ac0に対して1画素分、左方にずれている範囲で あり、候補領域Ac4は、候補領域Ac0に対して1画素分、右方にずれている範囲であ る。すなわち、候補領域Ac3は、候補領域Ac0に対して右方に1画素分だけずらすこ とで候補領域Ac0と重ねることができる。そして、候補領域Ac2は、候補領域Ac0 に対して左方に1画素分だけずらすことで候補領域Ac0と重ねることができる。なお、 図中において、各候補領域Acl~4が候補領域Ac0に対してずれている方向を、白い 矢印で示す。

[0052]

また、候補領域Ac5は、候補領域Ac0に対して左端部分が1画素分、欠落しており 、下端部分が3/4画素分、欠落している範囲である。よって、候補領域Ac5の縦と横 の寸法比も候補領域Ac0と同様に3:4である。すなわち、候補領域Ac5は、右上の 頂点を基準点として候補領域Ac0を縮小した領域である。

なお、ここでいう「1画素」も、フレーム画像データの画素密度における1画素であり 、生成する静止画データの画素密度における1画素ではない。よって、静止画データの画 素密度の画素の単位で言い換えれば、候補領域Ac5は、候補領域Ac0に対して左端部 分が4画素分、欠落しており、下端部分が3画素分、欠落している範囲である。

$[0\ 0\ 5\ 4]$

候補領域Ac6は、候補領域Ac0に対して右端部分が1画素分、欠落しており、下端 部分が3/4画素分、欠落している範囲である。候補領域Ac7は、候補領域Ac0に対 して右端部分が1画素分、欠落しており、上端部分が3/4画素分、欠落している範囲で ある。候補領域Ac8は、候補領域Ac0に対して左端部分が1画素分、欠落しており、 上端部分が3/4画素分、欠落している範囲である。これら候補領域Ac6~8の縦と横 の寸法比も候補領域Ac0と同様に3:4である。なお、図中において、各候補領域Ac 5~8が候補領域Ac0に対して減縮されている方向を、各候補領域Ac5~8内の矢印 で示す。

[0055]

候補領域Ac9は、候補領域Ac0に対して1画素分、右端部分が拡張されており、3 /4画素分、上端部分が拡張されている範囲である。候補領域Ac10は、候補領域Ac 0に対して1画素分、左端部分が拡張されており、3/4画素分、上端部分が拡張されて いる範囲である。候補領域Ac11は、候補領域Ac0に対して1画素分、左端部分が拡 張されており、3/4画素分、下端部分が拡張されている範囲である。候補領域Ac12 は、候補領域Ac0に対して1画素分、右端部分が拡張されており、3/4画素分、下端 部分が拡張されている範囲である。

$[0\ 0\ 5\ 6]$

これら候補領域Ac9~12の縦と横の寸法比も候補領域Ac0と同様に3:4である 。なお、図中において、各候補領域Ac9~12が候補領域Ac0に対して拡張されてい る方向を、各候補領域A c 9 ~ 1 2 の外周近辺に付した矢印で示す。これらの矢印が付さ れている角と対角線上の位置にある角が、それぞれの候補領域の候補領域Ac0からの拡 張または減縮の基準となる点である。

[0057]

以上に説明したように、候補領域Ac0を拡大または減縮した各候補領域Ac5~Ac 12は、いずれも縦と横の寸法比が3:4の矩形の形状を有している。このため、いずれ の候補領域が画像生成領域として選択されても、動画の画像と同じ縦横比の画像を生成す ることができる。なお、図2のステップS8で生成する静止画データは、フレーム画像デ ータF1~F5の4倍の密度の画素で構成される。よって、各候補領域Ac5~Ac12 のように、縦方向の寸法をフレーム画像データの画素の1/4の単位で拡張または減縮し ても、生成する画像は静止画データの画素の集合で表現できる。

[0058]

図8は、フレーム画像データF1~F5が記録している画像の領域の和の領域である領

域Faと、候補領域Ac0~Ac12との相対位置を示す説明図である。図8に示す領域Faは、フレーム画像データF1~F5の画像の領域のいずれかに含まれる領域の集合である。図8においては、候補領域Ac0を実線で示しているのに対して、候補領域Ac1~Ac12は破線で示している。また、候補領域Ac1~Ac12の候補領域Ac0に対する移動、拡大または縮小の方向を白い矢印で示している。第1実施例では、図2のステップS2でユーザーが選択した画像の範囲である候補領域Ac0を中心として、図8に示すように領域を上下左右にずらした候補領域Ac1~Ac4、領域を拡張または減縮した候補領域Ac5~Ac12を、複数の候補領域として設定している。そして、これら候補領域Ac1~Ac12の中から一つの候補領域が画像生成領域Adとして選択される。このため、ユーザーが希望した画像に近い画像を静止画として生成することができる。

[0059]

たとえば、候補領域Ac1は候補領域Ac0に対して1画素分、上方にずれている範囲であり、候補領域Ac2は候補領域Ac0に対して1画素分、下方にずれている範囲である。すなわち、候補領域Ac1は、候補領域Ac0に対して下方に1画素分だけずらすことで候補領域Ac0と重ねることができ、候補領域Ac2は、候補領域Ac0に対して上方に1画素分だけずらすことで候補領域Ac0と重ねることができる。このように、ユーザが指定した画像の範囲である候補領域Ac0を互いに逆の方向にずらした候補範囲を準備することで、ユーザが指定した画像の範囲を尊重しつつ、好ましい画像生成領域を選択することができる。

[0060]

また、たとえば、候補領域A c 5 は、右上の頂点を基準点として候補領域A c 0 を縮小した領域である。これに対して、候補領域A c 1 1 は、右上の頂点を基準点として候補領域A c 0 を拡大した領域である。言い換えれば、候補領域A c 5 は、右上の頂点を基準として拡大することで候補領域A c 0 と重ねることができる。そして、候補領域A c 1 1 は、右上の頂点を基準として縮小することで候補領域A c 0 と重ねることができる。このように、同一の点を基準として、ユーザが指定した画像の範囲である候補領域A c 0 を拡大または縮小した候補範囲を準備することで、ユーザが指定した画像の範囲を尊重しつつ、好ましい画像生成領域を選択することができる。

$[0\ 0\ 6\ 1]$

また、第1実施例では、候補領域Ac0を中心として逆の向きにずらした候補領域を、それぞれ同じ数(第1実施例においては1個ずつ)だけ候補領域としている。よって、ユーザーが希望した画像の範囲に近い範囲であって、画素値の精度の高い画像を生成しやすい領域について、静止画を生成することができる。同様に、候補領域Ac0に対してそれぞれ同じ点を基準として領域を拡張または減縮した候補領域を、それぞれ同じ数(第1実施例においては1個ずつ)だけ、候補領域として設定している。よって、ユーザーが希望した画像の範囲に近い範囲であって、画素値の精度の高い画像を生成しやすい領域について、静止画を生成することができる。

$[0\ 0\ 6\ 2]$

図6のステップS26においては、候補領域Ac0~Ac12の中から、評価値Eiを計算する候補領域を一つ選択する。最初は、フレーム画像データF3の画像の領域と等しい候補領域Ac0が選択される。フレーム画像データF3は、図2のステップS2において、ユーザが、動画再生中にキーボード120またはマウス130で特定した瞬間のフレーム画像データである。

[0063]

図9は、候補領域Ac0のサンプル点Peとフレーム画像データF1~F5の関係を示す説明図である。各候補領域Ac0~Ac12には、各辺上に5個のサンプル点Peが設定されている。各サンプル点は、各辺内において互いに均等の間隔で設けられており、各辺内の両端のサンプル点から各辺の端までの距離は、各サンプル点同士の間隔の1/2である。

[0064]

図6のステップS28では、ステップS26で選択された候補領域のある辺の上にあるサンプル点のうち、各フレーム画像データ内にあるものの数 N_{ijk} を求める。ここで、iは、候補領域 $Ac0\sim Ac12$ にそれぞれ対応する0から12までの整数である。jは、矩形形状を有する各候補領域の4辺を表す1から4までの整数である。j=1は候補領域の左辺を表し、j=2は右辺を表し、j=3は上辺を表し、j=4は下辺を表すものとする。kは、フレーム画像データ $F1\sim F5$ にそれぞれ対応する1から5までの整数である。なお、本明細書において、候補領域に関連して設けられたサンプル点のうち、各フレーム画像データの領域内にあるものを「評価サンプル点」と呼ぶことがある。処理が最初にステップS28に達したときには、まず、候補領域の左辺上にあるサンプル点のうち、各フレーム画像データ内にある物の数 N_{i1k} を求める。

[0065]

図10は、候補領域A c 0 についてのフレーム画像データ内にあるサンプル点の数 N_{0j} k、候補領域A c 0 の各辺の評価値 S_{0j} 、候補領域A c 0 の評価値 E_0 を表す表である。たとえば、図 9 において、候補領域A c 0 の左辺上にある 5 個のサンプル点 P e のうち、比較的粗い破線で示したフレーム画像データF 1 の画像の範囲内にあるものは 4 個である。したがって、図 1 0 において、「左辺」の行で「F 1」の列には「4」が表示されている。同様に、候補領域A c 0 の左辺上にあるサンプル点 P e のうち、比較的細かい破線で示したフレーム画像データF 2 内にあるものは 5 個である。したがって、図 1 0 において、「左辺」の行で「F 2」の列には「5」が表示されている。

[0066]

一方、候補領域A c 0 はフレーム画像データF 3 と一致しているので、候補領域A c 0 の各辺上にあるサンプル点 P e は、フレーム画像データF 3 の各辺上にある。候補領域のサンプル点がフレーム画像データの各辺上にある場合には、そのサンプル点は、そのフレーム画像データ内には「ない」ものとする。このため、図1 0 において、「左辺」の行で「F 3 」の列には「0 」が表示されている。なお、候補領域A c 0 の各辺のサンプル点はいずれもフレーム画像データF 3 内にはないとされるため、図1 0 の「F 3 」の列においては、「左辺」の行だけでなく、「右辺」、「上辺」、「下辺」のいずれの行においても、サンプル点の数 N_{013} 、 N_{023} 、 N_{033} 、 N_{043} の値は0 である。

$[0\ 0\ 6\ 7]$

前述したように、図6のステップS28では、ステップS26で選択された候補領域のある辺の上にあるサンプル点のうち、フレーム画像データ内にある物の数 N_{ijk} を求められる。すなわち、ステップS26で候補領域Ac0が選択されたときには、候補領域Ac0について、図10の表における「左辺」、「右辺」、「上辺」、「下辺」のいずれかの行の「F1」~「F5」の各列の値が求められる。最初は、図10の表における「左辺」の行の「F1」~「F5」の各列の値が求められるものとする。

[0068]

図6のステップS30では、候補領域の辺の評価値S $_{ij}$ が求められる。各辺の評価値S $_{ij}$ は以下の数式(1)で計算される。なお、 N_{ijA} は、候補領域の各辺に設けられたサンプル点の総数である。第1実施例では、 N_{ijA} はいずれの辺についても5である。

[0069]

【数1】

$$S_{ij} = \sum_{k=1}^{5} \left\{ \frac{N_{ijk}}{N_{iiA}} \right\}$$
 ... (1)

[0070]

たとえば、候補領域Ac0の左辺については、図10に示すように、フレーム画像データF1内にあるサンプル点が4個、フレーム画像データF2内にあるサンプル点が5個、フレーム画像データF3~F5内にあるサンプル点が0であるので、S01は1.8となる

。その他、候補領域AcOの各辺の評価値So1~So4を図1Oの表に示す。

[0071]

図6のステップS32では、ステップS26で選択された候補領域のすべての辺について、評価値 S_{ij} が計算されたか否かが判定される。まだ候補領域のすべての辺について、評価値 S_{ij} が計算されておらず、判定結果が N_0 であるときには、ステップS28に戻る。そして、まだ評価値 S_{ij} を計算していない辺について、各フレーム画像データ内にある物の数 N_{ijk} を求める。そして、ステップS26で選択された候補領域のすべての辺について評価値 S_{ij} が計算されるまで、ステップS28~S32が繰り返される。ステップS30判定結果が Y_0 8 となったときには、処理はステップS34に移行する。

[0072]

ステップS 3 4 では、ステップS 2 6 で選択された候補領域A c i (i は各候補領域に付された整数の番号。 $i=0\sim1$ 2) についての評価値E i が求められる。評価値E i は以下の式 (2) で計算される。なお、S t は、ステップS 2 2 で設定された目標評価値である。

[0073]

【数2】

$$E_i = \sum_{j=1}^{4} (S_{ij} - St)^2$$
 ... (2)

[0074]

たとえば、図9および図10の例では、 E_0 は17.68である。数式(2)の形から分かるように、各辺の評価値 S_{ij} がステップS22で設定された目標評価値S1に近いほど、候補領域 A_{ij} 0には小さくなる。数式(1)および数式(2)から分かるように、評価値 E_{ij} 1は、サンプル点のうち各フレーム画像データ内にあるもの(評価サンプル点)の数 N_{ijk} 2、目標評価値 S_{ij} 2と、に基づいて決定される。ここで、評価サンプル点の数は、候補領域と各第1の画像との重なりの状態によって決まる。よって、評価値 E_{ij} 1は、候補領域と各第1の画像との重なりの状態と、目標評価値 S_{ij} 2と、に基づいて決定される。

[0075]

ステップS36では、すべての候補領域 $Ac0\sim Ac12$ について評価値Eiを計算したか否かが判定される。まだ評価値Eiが計算されていない候補領域があり、判定結果がNoである場合には、ステップS26に戻り、まだ評価値Eiを計算していない候補領域の中から次の候補領域が設定される。すべての候補領域 $Ac0\sim Ac12$ について評価値Eiが計算されると、処理はステップS38に移行する。

[0076]

ステップS38では、評価値Eiが最も小さい候補領域が、画像生成領域として選択される。すなわち、各辺の評価値 S_{ij} が最も目標評価値Stに近い候補領域が画像生成領域として選択される。そして画像生成領域を決定する処理(図2のステップS6)は終了する。

[0077]

この候補領域の評価値を計算し、その評価値に基づいて複数の候補領域の中から一つの候補領域を選択する機能は、CPU102の機能部である候補領域選択部102f(図1参照)によって実行される。候補領域選択部102fは、CPU102の機能部である生成領域決定部102cの一部を構成する機能部である。

[0078]

図11は、フレーム画像データF1~F5が重複して記録している部分と、画像生成領域Adの関係を示す説明図である。図11において、フレーム画像データF1~F5が重複して記録している部分p5を細かい縦横のクロスハッチ示し、4個のフレーム画像デー

タが重複して記録している部分 p 4 を細かい斜めのクロスハッチで示している。そして、3個のフレーム画像データが重複して記録している部分 p 3 を斜線のハッチで示し、2個のフレーム画像データが重複して記録している部分 p 2 を粗いクロスハッチで示している

[0079]

以上に説明したようにして候補領域の中から画像生成領域を選択することで、各フレーム画像データF1~F5内に多くのサンプル点が含まれる候補領域が画像生成領域Adとして選択される。

[0080]

各フレーム画像データF1~F5内に多くのサンプル点が含まれる候補領域は、その領域中により多くのフレーム画像データの画像の領域を含む。よって、そのような候補領域を画像生成領域とすれば、以下で説明する静止画像の生成の際に、より多くのフレーム画像データの画素の画素値に基づいて、正確に静止画像の各画素の階調値を特定することができる。

[0081]

たとえば、図11の例においては、候補領域Ac0(フレーム画像データF3の領域に等しい)に対して下端部分と左端部分を減縮した候補領域Ac5が、画像生成領域Adとして選択されている。図11において、領域p5およびp4の領域は、すべて画像生成領域Adに含まれる。そして、領域p1は、図11の左下の一部の領域は画像生成領域Adに含まれるものの、残りの領域は画像生成領域Adに含まれるものの、残りの領域は画像生成領域Adに含まれるものの、残りの領域は画像生成領域Adに含まれるものの、残りの領域は画像生成領域Adに含まれない。

[0082]

なお、候補領域A c 5 が画像生成領域A d として選択されたものと仮定したのは、説明の便宜のためである。よって、この仮定は、図 5 や図 9 に示されたフレーム画像データ F 1 ~ F 5 と各サンプル点 P e との関係から、各フローチャートに示した手続きに従って候補領域A c 5 が選択されることを意味するものではない。

[0083]

また、第1実施例では、有限個の候補領域について評価値Eiを計算し、その値に基づいて候補領域の中から画像生成領域を選択している。このため、正確に静止画像の各画素の階調値を特定することができる画像生成領域を短時間で決定することができる。

[0084]

そして、第1実施例では、図2のステップS2でユーザーが選択した画像の範囲である候補領域Ac0を中心として、領域を上下左右にずらした候補領域、領域を拡張または減縮した候補領域を、候補領域として設定している。このため、ユーザーが希望した画像に近い画像を静止画として生成することができる。

[0085]

A-4. 静止画データの生成:

図2のステップS8では、ステップS6で決定された領域について、フレーム画像データF1~F5をもとに静止画データが生成される。各フレーム画像データは、画素の集合で画像を表すデータである。そして、各画素は、レッド(R)、グリーン(G)、ブルー(B)の階調値を有している。すなわち、各画素は、それぞれのフレーム画像データの画像内における自己の位置の情報と、RGBの各階調値の情報とを有している。

[0086]

図12は、画素の密度の低い複数の画像から画素の密度の高い画像を合成する方法を示す説明図である。図中、丸の中に「1」が書かれている各符号は、フレーム画像データF1の画素の中心位置を示している。そして、丸の中に「2」が書かれている各符号は、フレーム画像データF2の画素の中心位置を示している。そして、図中の「+」は、生成する静止画データの画素の中心位置を示している。説明を簡単にするため、ここでは、フレーム画像データをF1とF2に限定して説明する。なお、図12において、フレーム画像

データF1、F2および静止画像データの各画素は、一部のみを示している。また、それぞれの画素の中心位置は、図5に示したフレーム画像データF1とF2の画像の範囲やステップS6で決定された画像生成範囲の相対位置を正確に反映するものではない。

[0087]

前述のように、静止画データの画素の密度は各フレーム画像データの画素の密度の 4 倍である。このため、図 1 2 中の「+」同士の間隔は、「マル 1 」同士の間隔および「マル 2 」同士の間隔の 1 / 4 である。

[0088]

図13は、フレーム画像データの各画素のRGBの階調値から、静止画データの画素についてのRGBの各階調値を求める手順を示すフローチャートである。フレーム画像データから静止画データを生成するには、図12において「+」で示す各位置について、RGBそれぞれの階調値を求める必要がある。それは、以下のような手順で求められる。

[0089]

まず、ステップS52において、階調値を計算する対象画素を特定する。ここでは、階調値を計算する対象画素を図12中のPs1とする。ステップS54においては、フレーム画像データF1とF2の各画素のうち、中心位置が最も対象画素Ps1に近いものを見つける。この画素を「最近傍画素」と呼ぶ。図12において、最近傍画素は、フレーム画像データF2の画素のうち符号2を二重の丸で囲んだ画素Pn11である。

[0090]

最近傍画素 Pn11 を特定した後、図13のステップ S56 で、最近傍画素 Pn11 が 含まれるフレーム画像データの画素であって、最近傍画素 Pn11 ととなり合う3個の画素であり、対象画素 Ps1 を最近傍画素 Pn11 とともに囲む3個の画素を特定する。本実施例では、これらの画素を最近傍画素も含めて「特定画素」と呼ぶ。図12の例では、フレーム画像データ Ps2 の画素のうち左上の4つの画素 Ps11, Ps12, Ps13, Ps14 が、特定画素である。

[0091]

その後、ステップS58において、階調値を計算する対象画素Ps1の階調値を、重み付け平均によって計算する。具体的には、対象画素Ps1の階調値Vtは、以下の数式(3)で求めることができる。ここで、 $V1\sim V4$ は、それぞれ特定画素Pn11~Pn14が有するレッド、グリーンまたはブルーの階調値である。そして、 $r1\sim r4$ は、定数である。たとえば、対象画素Ps1のレッドの階調値をVtとすると、Vtは、各特定画素のレッドの階調値V1,V2,V3,V4から数式(3)で求めることができる。対象画素の階調値の計算は、レッド、グリーン、ブルーそれぞれについて行われる。

[0092]

 $V t = (r 1 \times V 1) + (r 2 \times V 2) + (r 3 \times V 3) + (r 4 \times V 4) \cdot \cdot \cdot (3)$

[0093]

ここで、 $r1\sim r4$ は以下の式(4) \sim (7) で求めることができる。Aa は、4個の特定画素 $Pn11\sim Pn14$ で囲まれる長方形の面積である。A1 は、特定画素Pn11 以外の3個の特定画素 $Pn12\sim Pn14$ と、対象画素Ps1 と、で構成される四辺形の面積である。同様に、A2 は、特定画素Pn12 以外の3個の特定画素と対象画素Ps1 とで構成される四辺形の面積である。A3 は、特定画素Pn13 以外の3個の特定画素と対象画素Ps1 とで構成される四辺形の面積である。A4 は、特定画素Pn14 以外の3個の特定画素と対象画素Ps1 とで構成される四辺形の面積である。

[0094]

 $r 1 = A 1 / A a \cdot \cdot \cdot (4)$

[0095]

 $r 2 = A 2 / A a \cdot \cdot \cdot (5)$

[0096]

 $r 3 = A 3 / A a \cdot \cdot \cdot (6)$

[0097]

 $r 4 = A 4 / A a \cdot \cdot \cdot (7)$

[0098]

図13のステップS60では、静止画データのすべての画素について階調値を計算したか否かを判定する。まだ、階調値を計算していない画素が存在し、判定結果がNoである場合には、ステップS52に戻る。

[0099]

たとえば、図12に示した画素 Ps2について階調値を計算する場合は、最近傍画素は符号1を二重丸で囲んで示した画素 Pn21となる。そして、特定画素は、フレーム画像データ Pn24 である。画素 Ps20 階調値は、画素 Ps12 同様に、式(3)に基づいて、特定画素 Pn21~Pn24 の階調値から計算することができる。

[0100]

図13のステップS60において、すべての画素について階調値を計算し終えたと判定され、判定結果がYesとなったときには、処理を終了する。

[0101]

以上に説明したような手順を行うことで、画素の密度が比較的低い複数のフレーム画像データから、画素の密度が比較的高い静止画データを生成することができる。そして、階調値を計算する対象画素に最も近い最近傍画素の階調値を最も反映し、最近傍画素に近い他の画素の画素値を使用して補間を行うため、実物の色彩に近い値に階調値を定めることができる。

[0102]

B. 第2実施例:

第1実施例では、図9に示すように、候補領域の辺の上にサンプル点Peを設け、そのサンプル点Peのうち各フレーム画像データF1~F5に含まれるものの数に基づいて候補領域の評価値Eiを定めていた。そして、その評価値Eiに基づいて複数の候補領域の中から画像生成領域を決定していた。第2実施例では、複数の候補領域から画像生成領域として一つの候補領域を選択する方法が第1実施例とは異なる。他の点は第1実施例と同じである。

[0103]

図14は、候補領域Ac0の内側であって外周の辺の近傍に所定の幅で設定された評価領域Ae0を示す説明図である。第2実施例では、候補領域Aciの内側であって外周の辺の近傍に所定の幅で評価領域Aei(iは各候補領域に付された整数の番号。i=0~12)を設定する。ここでは、評価領域Aeiの幅は候補領域の長辺の1/20とする。図14において、評価領域Ae0をハッチおよびクロスハッチを付した領域として示す。

[0104]

候補領域Aci(iは各候補領域に付された整数の番号。 $i=0\sim12$)の評価値Diを決定する際には、まず、評価領域Aeiのうちフレーム画像データF1内に含まれる領域(図14において、クロスハッチで示す)内の画素の数 T_{i1} (iは各候補領域に付された整数の番号。 $i=0\sim12$)を計算する。なお、ここで評価領域Aeiについてカウントされる画素は、フレーム画像データF1の画素である。

[0105]

同様に、評価領域Aeiのうちフレーム画像データ $F2\sim F5$ 内に含まれる部分にあるフレーム画像データ $F2\sim F5$ の画素数 $T_{i2}\sim T_{i5}$ を計算する。そして、以下の式(8)で候補領域の評価値Diを定める。ここで、Taは、フレーム画像データの領域と候補領域が一致している場合に、評価領域内に含まれるフレーム画像データの画素数である。i、kの定義は、第1実施例と同じである。なお、本明細書において、評価領域Aeiのうちフレーム画像データの領域内に含まれる部分を「特定評価領域」と呼ぶことがある。

[0106]

【数3】

$$D_i = \sum_{k=1}^{5} \left\{ \frac{T_{ik}}{T_a} \right\} \qquad (8)$$

[0107]

そして、Diが最大の候補領域を画像生成領域として選択する。このような態様として も、各フレーム画像データが多数重なっている領域を多く含む候補領域を、画像生成領域 として選択することができる。すなわち、このような態様としても、高精度の静止画を生 成することができる領域を画像生成領域とすることができる。

[0108]

C. 第3実施例:

第2実施例では、評価領域Aeiのうちフレーム画像データF1内に含まれる領域の画素数に基づいて、各候補領域Aciの評価値Diが定められた。そして、評価値Diに基づいて各候補領域Aciの中から画像生成領域が決定された。第3実施例では、候補領域Aciの各辺のうちフレーム画像データ内に含まれる部分の長さLcikに基づいて、各候補領域Aciの中から画像生成領域を決定する。他の点は、第2実施例と同様である。なお、本明細書において、候補領域Aciの各辺のうちフレーム画像データの領域内に含まれる部分を「評価部分」と呼ぶことがある。

[0109]

図15は、候補領域Ac0の4辺のうち、フレーム画像データF1の範囲内に含まれる部分の長さLc $_{01}$ を示す説明図である。第3実施例においては、以下の式(9)で各候補領域Aciの評価値Gi(iは各候補領域に付された整数の番号。i $=0\sim1$ 2)を定める。ここで、L $_{cik}$ は、候補領域Aciの外周の4辺のうち、フレーム画像データの範囲内に含まれる部分の長さである。i, $_{k}$ の定義は、第1実施例と同じである。このL $_{cik}$ が、「課題を解決するための手段」における、「評価距離」に相当する。L1は各候補領域の短辺の長さであり、L2は候補領域の長辺の長さである。

[0110]

【数4】

$$G_i = \sum_{k=1}^{5} {\frac{L_{Cik}}{(L_1 + L_2) \times 2}}$$
 ... (9)

[0111]

そして、Giが最大の候補領域を画像生成領域として選択する。このような態様として も、各フレーム画像データが多数重なっている領域を多く含む候補領域を、画像生成領域 として選択することができる。すなわち、このような態様としても、高精度の静止画を生 成することができる領域を画像生成領域とすることができる。

[0112]

D. 第4 実施例:

第4実施例も、複数の候補領域から画像生成領域として一つの候補領域を選択する方法 が第1実施例とは異なる。他の点は第1実施例と同じである。

[0 1 1 3]

図16は、各フレーム画像データF1~F5の画像の領域の辺上に設けられたサンプル点Pe1~Pe5を示す説明図である。各サンプル点は、各フレーム画像データF1~F5の領域の外周の各辺上に均等の間隔で設けられている。そして、一つの辺内の両端のサンプル点から各辺の端までの距離は、各サンプル点同士の間隔の1/2である。

[0114]

第4実施例では、候補領域Aciの評価値Hi(iは各候補領域に付された整数の番号。 $i=0\sim12$)は、各候補領域が含むサンプル点Pel \sim Pe5の数である。図16において、候補領域Ac0内に含まれるサンプル点Pel \sim Pe5は、黒い丸の周りにリングを付して示す。本明細書において、フレーム画像データの辺上にあるサンプル点のうち、候補領域内に含まれるものを「評価サンプル点」と呼ぶことがある。図16の例では、候補領域Ac0の評価値、すなわち候補領域Ac0内に含まれるサンプル点Pel \sim Pe5は、その候補領域内にあるものとして計算される。

[0115]

第4実施例では、評価値Hiの数が最も多い候補評価値を画像生成領域とする。このような態様としても、各フレーム画像データが多数重なっている領域を多く含む候補領域を、画像生成領域として選択することができる。すなわち、このような態様としても、高精度の静止画を生成することができる領域を画像生成領域とすることができる。

$[0\ 1\ 1\ 6]$

E. 第5実施例:

図17は、第5実施例の画像処理装置の概略構成を示す説明図である。図18は、第5実施例において、動画データの複数のフレーム画像から静止画を表す静止画データを生成する手順を示すフローチャートである。第5実施例においては、図2のステップS8において静止画データを生成した後、ステップS10において、その生成画像でよいかどうかをユーザに確認する。アプリケーションプログラム95が実行されることによってそのような機能を果たすCPU102の機能部を、生成画像確認部102gとして図17に示す。第5実施例の印刷システムは、ステップS10の処理以外の点は、ハードウェアの構成も含めて第1実施例と同じである。

[0117]

図19は、図18のステップS8において静止画データを生成した後、ステップS10において、ディスプレイ110に表示されるユーザインターフェイス画面を示す説明図である。生成画像確認部102gは、図18のステップS2(図3参照)において取得したフレーム画像データF3と、ステップS8で生成した静止画データFfとを並べて表示する。

[0118]

図19に示すように、ステップS8で生成された静止画データFfは、ユーザインターフェイス画面において、フレーム画像データF3と同じ大きさに表示される。第5実施例では、画像生成領域として、候補領域Ac7が選択されたものとする(図7参照)。候補領域Ac7は、フレーム画像データF3よりも小さい領域である。このため、候補領域Ac7について生成された静止画データFfは、フレーム画像データF3と同じ縮尺でディスプレイ110に表示されると、フレーム画像データF3よりも小さく表示されることになる。図19において、フレーム画像データF3の領域に対する静止画データFfの領域を、領域Ffoとして破線で示す。

[0119]

静止画データFfは、図19のユーザインターフェイス画面において、フレーム画像データF3と同じ縮尺で表示された場合の大きさよりも拡大されて、フレーム画像データF3と同じ大きさに表示される。なお、図19において、静止画データFfがフレーム画像データF3と同じ縮尺でディスプレイ110に表示された場合の領域を、静止画データFf上に領域Ffo2として一点鎖線で示す。

[0120]

ここでは、フレーム画像データF3よりも小さい領域について静止画データFfが生成された場合を例に説明した。しかし、フレーム画像データF3よりも大きい領域(たとえば、候補領域Ac9~Ac12)について静止画データFfが生成された場合には、静止画データFfは、フレーム画像データF3と同じ縮尺で表示された場合の大きさよりも縮小されて、フレーム画像データF3と同じ大きさに表示される。

なお、フレーム画像データF3と同じ大きさの領域(たとえば、候補領域Ac0~Ac4)について静止画データFfが生成された場合は、静止画データFfは、フレーム画像データF3と同じ縮尺で表示される。その結果、静止画データFfは、フレーム画像データF3と同じ大きさに表示される。

[0122]

このような態様とすることで、ユーザは、自己がステップS2で選択したフレーム画像データF3が含む画像の領域と、生成された静止画データFfが含む画像の領域と、を容易に比較することができる。

[0123]

比較の結果、表示されている静止画データFfで良いと判断した場合は、ユーザは、マウス130を操作して、図19の下段に示すようにカーソルCsを画面上の「OK」のボタンに合わせて、クリックする。すると、動画データのフレーム画像から静止画データを生成する処理は終了する。一方、比較の結果、表示されている静止画データFfの内容に不満である場合には、図19の下段左側に示す「戻る」ボタンをクリックする。その場合には、静止画データを生成する処理は、図18のステップS2から再び実行される。

$[0 \ 1 \ 2 \ 4]$

このような態様とすることで、ユーザは、生成された静止画データFfの内容を見た上で、好ましい領域を有する静止画データを生成することができる。

[0125]

F. 変形例:

なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。

[0126]

(1) 第1実施例では、生成する静止画データの画像は、フレーム画像データの画素の4倍の密度の画素で構成されていた。しかし、静止画データの画素の密度はこれに限られるものではなく、他の画素密度でもよい。すなわち、生成する静止画の画像は、画像を構成する画素の密度がもとの画像の密度よりも高い画像であればよい。ここで、「画素の密度が高い」は、以下のような意味である。すなわち、第1の画像と第2の画像とがともに画像中に含んでいる同一の対象物がある場合に、第2の画像がその対象物を表すのに要している画素の数が、第1の画像がその対象物を表すのに要している画素の数が、第1の画像がその対象物を表すのに要している画素の数よりも多いとき、第2の画像は第1の画像よりも「画素の密度が高い」ものとする。

[0127]

(2) 第1実施例では、ユーザが指定した範囲と等しい範囲である候補領域Ac0を中心として、互いに逆の向きにずれている候補領域を、それぞれ1個ずつ準備した。しかし、これらの候補領域の数は1こずつに限られるものではなく、1個以上の任意の数とすることができる。ただし、互いに逆の向きにずれている候補領域は同数だけ準備することが好ましい。

[0128]

また、第1実施例では、候補領域Ac0に対してそれぞれ同じ点を基準として領域を拡大または縮小した候補領域を、それぞれ1個ずつ、候補領域として準備した。しかし、これらの候補領域の数は1こずつに限られるものではなく、1個以上の任意の数とすることができる。ただし、同じ点を基準として領域を拡張または減縮した候補領域は、拡大されたものと縮小されたものとを同数だけ準備することが好ましい。

[0129]

(3)上記第1実施例では、サンプル点は候補領域の各辺について5個づつ設けられていた。また、第4実施例においては、サンプル点はフレーム画像データの画像の領域の辺上に5個づつ設けられていた。しかし、これらのサンプル点の数は5個に限られるものではなく、任意の数とすることができる。ただし、5個から21個の間の数であることが好ま

しく、9個から17個の間の数とすることがより好ましい。サンプル点が多いほど、各候補領域の評価を詳細に行うことができる。ただし、サンプル点が多いほど、各候補領域を評価する際の計算量は多くなる。

[0130]

また、第2実施例においては、評価領域Aeiの幅は矩形形状を有する候補領域の長辺の1/20であった。しかし、評価領域Aeiの幅は他の値とすることもできる。ただし、評価領域Aeiのうち候補領域の短辺近傍の部分の幅W1は、候補領域の長辺の長さL2の1/5以下の所定の寸法とすることが好ましく、評価領域Aeのうち候補領域の長辺近傍の部分の幅W2は、候補領域の短辺の長さL1の1/5以下の所定の寸法とすることが好ましい。さらに、短辺近傍の評価領域Aeの幅W1は、L2の1/10以下の所定の寸法とすることがより好ましい。そして、長辺近傍の評価領域Aeの幅W2は、候補領域の短辺の長さL1の1/10以下の所定の寸法とすることがより好ましい。

[0 1 3 1]

上記第2実施例では、候補領域AcOの内側であって外周の辺近傍に所定の幅で設定された評価領域AeOと、フレーム画像データの範囲と、の重複部分の大きさに基づいて候補領域の中から画像生成領域を選択していた。しかし、評価領域は、候補領域の外側であって外周の辺近傍に所定の幅で設定された領域であってもよい。すなわち、評価領域とフレーム画像データの範囲との重複部分の大きさ(その領域の面積やその領域に含まれる画素の数)に基づいて画像生成領域を選択する際には、評価領域は、候補領域の外輪郭の近傍の領域とすることができる。

$[0\ 1\ 3\ 2]$

なお、「候補領域の外輪郭の近傍」は、以下のように特定される。すなわち、候補領域内に含まれることができる線分であって長さが最大である線分の長さを「第1の長さ」と呼ぶこととする。このとき、ある地点が、候補領域の外輪郭から第1の長さの20%以下の範囲にある場合には、その地点は、「候補領域の外輪郭の近傍」にあるものとする。

[0133]

また、上記第1実施例では、サンプル点は候補領域の各辺上に設けられていた。しかし、候補領域の外輪郭の近傍に複数のサンプル点を設け、それらのサンプル点のうち、各フレーム画像データの範囲に含まれるものの数に基づいて候補領域の中から画像生成領域を選択してもよい。

$[0\ 1\ 3\ 4]$

さらに、フレーム画像データの画像の範囲と候補領域との重複部分の大きさに基づいて、画像生成領域を選択する態様とすることもできる。そのような態様においては、重複部分の大きさを重複部分の面積で評価する態様とすることができる。また、フレーム画像データの画像の画素のうち、上記重複範囲に含まれるものの数に基づいて重複部分の大きさを評価し、画像生成領域を選択する態様とすることができる。

$[0\ 1\ 3\ 5]$

(4) 第2実施例においては、評価領域Aeiのうちフレーム画像データ内に含まれる領域内の画素数に基づいて、候補領域の評価値を決定していた。そして、その画素数はフレーム画像データの画素に基づいてカウントされていた。しかし、画素数は生成する画像の画素に基づいてカウントしてもよい。そして、そのようにして計数した画素数に基づいて、候補領域の評価値を決定してもよい。また、評価領域Aeiのうちフレーム画像データ内に含まれる領域の面積に基づいて候補領域の評価値を決定してもよい。

[0136]

(5)上記第2~第4実施例では、候補領域から画像生成領域を選択する際の目標となる数値を、ユーザーが入力していなかった。すなわち、第1実施例における目標評価値Stに相当する数値をユーザーが入力していなかった。しかし、第2~第4実施例において、ユーザーがそのような数値を入力することとしてもよい。第2実施例において、ユーザがキーボード120やマウス130を通じてDiの目標値であるDtの値を入力し、Dtとの差が最も小さい評価値Diを有する候補領域を、画像生成領域として選択する態様とし

てもよい。同様に、第3または4実施例において、ユーザがGiの目標値であるGt、Hiの目標値であるHtの値を入力する態様とし、それらとの差が最も小さい評価値Gi、Hiを有する候補領域を、画像生成領域として選択する態様としてもよい。このような態様とすれば、画像生成領域の大きさと生成する画像の精度とをユーザーが制御することができる。

[0137]

たとえば、第2実施例において、候補領域A c 0 を大幅に減縮した候補領域を設けた場合、その候補領域は各フレーム画像データF $1\sim$ F 5 の領域に比べて小さいため、評価領域A e i のうちのより多くの割合の部分が各フレーム画像データF $1\sim$ F 5 の領域に含まれやすい。よって、そのような候補領域は、D i の値が大きくなり、画像生成領域として選択されやすくなる。しかし、ユーザーがD i の目標値であるD t の値を入力し、D t との差が最も小さいD i を有する候補領域を画像生成領域として選択する態様とすれば、面積の小さい候補領域が常に画像生成領域として選択されてしまうのを防止することができる。第3 実施例についても同様である。

[0138]

また、第4実施例において、候補領域Ac0を大幅に拡張した候補領域を設けた場合、その候補領域は各フレーム画像データF1~F5の領域に比べて大きいため、そのような候補領域は、より多くのサンプル点 $Pe1\sim Pe5$ を含みやすい。よって、そのような候補領域は、Hiの値が大きくなり、画像生成領域として選択されやすくなる。しかし、ユーザーがHiの目標値であるHtの値を入力し、Htとの差が最も小さいHiを有する候補領域を画像生成領域として選択する態様とすれば、面積の大きい候補領域が常に画像生成領域として選択されてしまうのを防止することができる。

[0139]

また、第1実施例においては、候補領域の辺上に設けられたサンプル点は、短辺、長辺とも5個であった。このため、目標評価値Stは、 $1\sim5$ の間で一つだけ設定された。しかし、候補領域の辺上に設けられたサンプル点は任意の数とすることができる。そして、候補領域の辺上に設けられたサンプル点の数が、短辺と長辺とで異なる場合は、短辺と長辺それぞれについて目標評価値St1, St2を設定し、目標評価値St1, St2と各辺の評価値S_{ij}のズレに基づいて候補領域の評価値を計算する態様とすることもできる。

[0140]

(6)上記第1実施例では、特定画素は同一のフレーム画像データに含まれる画素であった。しかし、特定画素は同一のフレーム画像データに含まれる画素には限られない。すなわち、特定画素は、対象画素の近傍にある任意の画素とすることができる。ここで、「対象画素の近傍」とは、対象画素を中心とし、フレーム画像データの画素の幅2個分の長さの半径を有する円の中に含まれる範囲をいう。ただし、特定画素は、対象画素の最も近くにある3個または4個の画素とすることが好ましい。

$[0\ 1\ 4\ 1]$

(7)上記各実施例では、生成する静止画データの画像の領域の形状とフレーム画像データの画像の領域の形状とは、相似であった。しかし、生成する静止画データの画像の領域は任意の形状とすることができる。たとえば、その形状は、ユーザがキーボード120やマウス130を通じて指定し、または選択することとしてもよい。そして、候補領域は、そのようにして指定された形状の領域を上下左右に動かした領域や、拡大または縮小した領域とすることができる。

[0142]

(8)上記実施例では、フレーム画像データの各画素はレッド、グリーン、ブルーの階調値を有していた。しかし、フレーム画像データの各画素はシアン、マゼンタ、イエロなどの、他の組み合わせの色の階調値を有する態様とすることもできる。

[0143]

(9) 第5実施例においては、動画から取得したフレーム画像データF3と、生成した静止画データFfとは、ディスプレイ110上に表示された(図19参照)。しかし、動画

から取得したフレーム画像データF3と、生成した静止画データFfとを、プリンタ22 で印刷する態様とすることもできる。そのような態様としても、ユーザは、フレーム画像 データF3の画像領域と、生成した静止画データFfの画像領域とを比較することができ る。

[0144]

すなわち、高解像度画像データを生成する印刷システムは、高解像度画像データを生成する材料である低解像度画像データと、その低解像度データから生成される高解像度画像データとを、何らかの形で画像データを出力することができる出力部を介して、出力する態様とすることができる。その際、低解像度データと高解像度画像データとは、同じ大きさで出力されることが好ましい。

[0145]

(10)上記各実施例では、候補領域の評価値は、サンプル点の数や、候補領域Aciの各辺のうちフレーム画像データ内に含まれる部分の長さに基づいて決定されていた。しかし、候補領域の評価値は他の方法で決定することもできる。ただし、候補領域の評価値は、(i)候補領域と複数の第1の画像との重なりの程度と、(i i) 画像生成領域と複数の第1の画像との重なりの程度を表す目標値と、に基づいて決定することが好ましい。その際、候補領域と複数のフレーム画像との重なりの程度を表す指標値(たとえば、第1実施例において候補領域の辺の評価値 S_{ij})と、目標値(たとえば、第1実施例における目標評価値 S_{ij})とのずれに基づいて、評価値が決定されることが好ましい。

[0146]

(11)上記実施例において、ハードウェアによって実現されていた構成の一部をソフトウェア(コンピュータプログラム)に置き換えるようにしてもよく、逆に、ソフトウェアによって実現されていた構成の一部をハードウェアに置き換えるようにしてもよい。例えば、図1に示したようなフレームデータ取得部、静止画生成部による処理をハードウェア回路で行うこととしてもよい。

[0147]

(12)上述の機能を実現するコンピュータプログラムは、フロッピディスクやCD-ROM等の、コンピュータ読み取り可能な記録媒体に記録された形態で提供される。ホストコンピュータは、その記録媒体からコンピュータプログラムを読み取って内部記憶装置または外部記憶装置に転送する。あるいは、通信経路を介してプログラム供給装置からホストコンピュータにコンピュータプログラムを供給するようにしてもよい。コンピュータプログラムの機能を実現する時には、内部記憶装置に格納されたコンピュータプログラムがホストコンピュータのマイクロプロセッサによって実行される。また、記録媒体に記録されたコンピュータプログラムをホストコンピュータが直接実行するようにしてもよい。

[0148]

(13)この明細書において、ホストコンピュータとは、ハードウェア装置とオペレーションシステムとを含む概念であり、オペレーションシステムの制御の下で動作するハードウェア装置を意味している。コンピュータプログラムは、このようなホストコンピュータに、上述の各部の機能を実現させる。なお、上述の機能の一部は、アプリケーションプログラムでなく、オペレーションシステムによって実現されていても良い。

[0149]

(14)なお、この発明において、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスクやCD-ROMのような携帯型の記録媒体に限らず、各種のRAMやROM等のコンピュータ内の内部記憶装置や、ハードディスク等のコンピュータに固定されている外部記憶装置も含んでいる。

【図面の簡単な説明】

[0150]

【図1】本発明の実施例である画像処理装置の概略構成を示す説明図。

【図2】動画データの複数のフレーム画像から静止画を表す静止画データを生成する 手順を示すフローチャート。

- 【図3】ユーザが動画再生中に高精度の静止画を生成したい瞬間を指定するためのユ ーザインターフェイス画面を示す説明図。
- 【図4】 フレーム画像データの相対位置を特定する方法を示す説明図。
- 【図5】 5組のフレーム画像データF1~F5の相対位置を示す説明図。
- 【図6】図2のステップS6において静止画データを生成する領域を決定する手順を 示すフローチャート。
- 【図7】候補領域Ac1~Ac12を示す説明図。
- 【図8】フレーム画像データ $F1\sim F5$ が記録している画像の和の領域である領域Faと、候補領域 $Ac0\sim Ac12$ との相対位置を示す説明図。
- 【図9】候補領域Ac0のサンプル点Peとフレーム画像データ $F1\sim F5$ の関係を示す説明図。
- 【図10】候補領域A c 0 についてのフレーム画像データ内にあるサンプル点の数N $_{ijk}$ 、候補領域A c 0 の各辺の評価値 S_{0j} 、候補領域A c 0 の評価値 E_0 を表す表。
- 【図11】フレーム画像データF1~F5が重複して記録している部分と、画像生成領域Adの関係を示す説明図。
- 【図12】画素の密度の低い複数の画像から画素の密度の高い画像を合成する方法を示す説明図。
- 【図13】フレーム画像データの各画素のRGBの階調値から、静止画データの画素についてのRGBの各階調値を求める手順を示すフローチャート。
- 【図14】候補領域Ac0の内側であって外周の辺の近傍に所定の幅で設定された評価領域Ae0を示す説明図。
- 【図15】候補領域Ac0の4辺のうち、フレーム画像データF1の範囲内に含まれる部分の長さ Lc_{01} を示す説明図。
- 【図16】各フレーム画像データF $1\sim$ F5の画像の領域の辺上に設けられたサンプル点Pe $1\sim$ Pe5を示す説明図。
- 【図17】第5実施例の画像処理装置の概略構成を示す説明図。
- 【図18】第5実施例において、動画データの複数のフレーム画像から静止画を表す 静止画データを生成する手順を示すフローチャート。
- 【図19】図18のステップS10において、ディスプレイ110に表示されるユーザインターフェイス画面を示す説明図。

【符号の説明】

- [0151]
 - 22…プリンタ
 - 95…アプリケーションプログラム
- 100…パーソナルコンピュータ
- 1 0 2 ··· C P U
- 102a…フレームデータ取得部
- 102b…フレーム合成部
- 102c…生成領域決定部
- 102d…静止画生成部
- 102e…候補領域生成部
- 102 f …候補領域選択部
- 102g…生成画像確認部
- 110…ディスプレイ
- 120…キーボード
- 130…マウス
- 140…R/RWドライブ
- A c 0~A c 1 2 ··· 候補領域
- A d ···画像生成領域
- A e 0 …評価領域

- Cs…カーソル
- F1~F5…フレーム画像データ
- Fa…フレーム画像データF1~F5が記録している画像の領域
- Ff…静止画データ
- Ffo…フレーム画像データF3の領域に対する静止画データFfの領域
- Ffo2…静止画データFfがフレーム画像データF3と同じ縮尺で表示された場合の 領域
- N_{ijk}…候補領域のある辺の上にあるサンプル点のうち、各フレーム画像データ内にあるものの数
 - Pe…サンプル点
 - Pe1~Pe5…サンプル点
 - Pn11…対象画素Ps1の最近傍画素
 - Pn11~Pn13…対象画素Ps1の特定画素
 - Pn21…対象画素Ps2の最近傍画素
 - Pn21~Pn24…対象画素Ps2の特定画素
 - Ps1, Ps2…対象画素
 - Sp1~Sp3…特徵点
- T_{01} …評価領域 $A \in O$ の画素のうちで、フレーム画像データ $F \cap A$ 下のに含まれる領域内の画素の数
- p 1 …フレーム画像データF 1~F 5 が記録している画像のうち、1 個のフレーム画像 データのみが記録している部分
- p 2 ··· フレーム画像データ F 1 ~ F 5 が記録している画像のうち、2 個のフレーム画像 データが重複して記録している部分
- p 3 ··· フレーム画像データF1~F5が記録している画像のうち、3個のフレーム画像 データが重複して記録している部分
- p 4 …フレーム画像データF1~F5が記録している画像のうち、4個のフレーム画像 データが重複して記録している部分
- p5…フレーム画像データF1~F5が記録している画像のうち、全フレーム画像データF1~F5が重複して記録している部分

【書類名】図面 【図1】

【図2】

【図3】

【図4】

【図5】

【図7】

【図9】

【図10】

	フレ	—4两(カサンこ	フレーム内のサンプル点数Nok	¢N _{0jk}	辺の評価値	候補領域の評価値
	F1	F2	F3	F4	F5	\mathcal{S}_{0_j}	Εo
左辺	4	5	0	0	0	$S_{01} = 1.8$	
右辺	0	0	0	9	9	$S_{02} = 2.0$	1760
武士	5	2	0	0	0	$S_{03} = 2.0$	00.7-
下辺	0	0	0	4	2	S ₀₄ = 1.8	

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【書類名】要約書

【要約】

【課題】 画素の密度が低い複数の画像から画素の密度が高い画像を生成する際に、生成される画像の質が高くなるように画像の生成範囲を決定する。

【解決手段】 まず、画像を構成する画素の密度が比較的低く、同一の対象が記録された部分を互いに含む複数のフレーム画像データを準備する(S2)。そして、同一の対象が記録された部分に基づいて、複数のフレーム画像データの画像同士の相対位置を計算する(S4)。その後、画像を構成する画素の密度が比較的高い画像を生成する領域であって、複数のフレーム画像データの画像が記録している領域内に含まれる画像生成領域を、複数のフレーム画像データの画像同士の相対位置に基づいて決定する(S6)。そして、複数のフレーム画像データの画像から、画像生成領域について画像を生成する(S8)。

【選択図】 図2

ページ: 1/E

認定・付加情報

特許出願の番号 特願2004-102167

受付番号 50400538397

書類名 特許願

担当官 第四担当上席 0093

作成日 平成16年 4月 5日

<認定情報・付加情報>

【特許出願人】

【識別番号】 000002369

【住所又は居所】 東京都新宿区西新宿2丁目4番1号

【氏名又は名称】 セイコーエプソン株式会社

【代理人】 申請人

【識別番号】 110000028

【住所又は居所】 愛知県名古屋市中区錦2丁目18番19号 三井

住友銀行名古屋ビル7階

【氏名又は名称】 特許業務法人明成国際特許事務所

特願2004-102167

出願人履歷情報

識別番号

[000002369]

O

1. 変更年月日

1990年 8月20日

[変更理由]

新規登録

住 所

東京都新宿区西新宿2丁目4番1号

氏 名

セイコーエプソン株式会社