		The	e por	wer	of		
1000	2 / / Miles	A	SONT MAN	Na - 27 / 100	CHRIST	Charles A	200
a						ry rooi	m
					9		
A		1				A	
		V			(
				1			
	To the						1

Chapitre de rappel Calcul matriciel

Définitions et rappels : on se place dans l'ensemble des réels

On appelle matrice A de type (n,p); un tableau de nombres réels a_{ij} à n lignes et p colonnes. a_{ij} désigne le coefficient de la matrice M situé à l'intersection de la ligne n° i et de la colonne n° j \cdot i : indice des lignes; i = 1,2,3,.....,n \cdot j : indice des colonnes; j = 1,2,3,....,p

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1p} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{ip} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nj} & \cdots & a_{np} \end{pmatrix} = \ (a_{ij}) \quad \begin{cases} 1 \leq i \leq n \\ 1 \leq j \leq p \end{cases}$$

On notera par A(n,p) l'ensemble des matrices du type (n,p) à coefficients dans R $(a_{ij} \text{ coefficients}).$

Remarques:

Si n = p : la matrice A est dite matrice carrée d'ordre n.

exemple:
A matrice carrée d'ordre 3 est:

A =
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Si n = 1 : la matrice A est dite matrice ligne (ou vecteur ligne)

$$A=(a_{11},\quad \cdots \quad a_{1n})$$

Si p = 1 : la matrice A est dite matrice **colonne** (ou vecteur colonne)

$$A = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ \vdots \\ a_{n1} \end{pmatrix}$$

Opérations sur les matrices

•Transposition d'une matrice

Soit A une matrice de type (n,p). (n lignes et p colonnes)

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1p} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{1i} & \cdots & a_{ij} & \cdots & a_{ip} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{ij} & \cdots & a_{ij} & \cdots & a_{ip} \\ \end{bmatrix} = (a_{ij}) \quad \begin{cases} 1 \le i \le p \\ 1 \le j \le p \end{cases}$$

La transposée de la matrice A (p,n) ; noée t_A ou ^tA telle que :

$${}^{t}A = \begin{pmatrix} a_{11} & \cdots & a_{k1} & \cdots & a_{n1} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{1l} & \cdots & a_{kl} & \cdots & a_{nl} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{1p} & \cdots & a_{kp} & \cdots & a_{np} \end{pmatrix} = (a_{kl}) \quad \begin{cases} 1 \le k \le p \\ 1 \le l \le n \end{cases}$$

Remarques:

*Si n = p : la matrice A est dite matrice carrée d'ordre n.

exemple:

A matrice carrée d'ordre 3 est

$$A = \begin{pmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33} \end{pmatrix}$$

Si n = 1 : la matrice A est dite matrice **ligne** (ou vecteur ligne)

$$A=(a_{11}, \quad \cdots \quad a_{1n})$$

Si p = 1 : la matrice A est dite matrice **colonne** (ou vecteur colonne)

$$A = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ \vdots \\ a_{n} \end{pmatrix}$$

• Transposée d'une matrice

La transposée de A = (a_{ij}) de M_{np} est la matrice tA = (a_{ji}) de M_{pn} obtenue par permutation des ligne en colonnes

 t A est une matrice de type (p,n) (p lignes et n colonnes): les lignes de A deviennent colonnes de t A et inversement.

Exemple

$$A = \begin{pmatrix} 1 & 2 & 3 & 6 \\ -5 & 7 & 8 & 10 \\ -3 & 1 & 9 & -2 \\ 0 & 1 & 0 & 5 \end{pmatrix} \qquad {}^{\prime}A = \begin{pmatrix} 1 & -5 & -3 & 0 \\ 2 & 7 & 1 & 1 \\ 3 & 8 & 9 & 0 \\ 6 & 10 & -2 & 5 \end{pmatrix}$$

	_				
•	Som	me	de	matr	ices

La **somme** de deux matrices $A = (a_{ij})$ et $B = (b_{ij})$ de même type (n,p) est la matrice C = A + B du type (n,p); $C = (c_{ij})$ avec $c_{ij} = a_{ij} + b_{ij}$ avec $i = 1,2,\ldots,n$; $j = 1,2,\ldots,p$.

Propriétés de la somme de matrices

- La somme de matrices de même type (n,p) est la matrice Commutative A + B = B+A Associative A+(B+C) = (A+B)+C
- L'opposée de la matrice A = (a_{ij}) \in $M(n,p)\,$ est la matrice (-A) \in M(n,p) où :

$$(-A) = -(a_{ij}) = (-a_{ij})$$
; $i = 1,2,...,n$ et $j = 1,2,...,p$.

$$A = \begin{pmatrix} 2 & 3 & -17 & 5 \\ 0 & -6 & 8 & -3 \\ \frac{2}{3} & 5 & -4 & \sqrt{5} \end{pmatrix} \qquad -A = \begin{pmatrix} -2 & -3 & 17 & -5 \\ 0 & 6 & -8 & 3 \\ -\frac{2}{3} & -5 & 4 & -\sqrt{5} \end{pmatrix}$$

Propriétés de la somme de matrices

- •La transposée d'une somme de deux matrices A et B est égale à la somme des transposées tA et tB : ${}^t(A+B) = {}^tA + {}^tB$
- •Le produit d'une matrices A = $(a_{ij}) \in M(n,p)\,$ par un scalaire $\pmb{\lambda}$ est la matrice A' :

$$A' = (a'_{ij}) \in M(n,p)$$
 et $a'_{ij} = \lambda a_{ij}$

• Produit de matrices

Soit $A=(aij)\in M(n,p)$ et $B=(bij)\in M(p,l)$, on appelle produit de la matrice A par la matrice B; la matrice C=A. B C=(cij) $(1\leq i\leq n$ et $1\leq i\leq p)$ de taille (n,l) défini par :

Le produit de deux matrices n'est défini que si le nombre de colonnes de la 1ère matrice est égal au nombre de lignes de la 2ème matrice.

Exemple

Exemple
1- Soit:
$$A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & -4 & 5 \end{pmatrix}$$
 $B = \begin{pmatrix} 2 & 7 \\ -1 & 0 \\ 4 & 6 \end{pmatrix}$

La matrice produit $C = A B = \begin{pmatrix} 11 & 19 \\ 30 & 51 \end{pmatrix}$

Remarques

- •Soit A \in M(n,p) et B \in M(p,l) ; (A.B) existe, mais en général si l \neq n, (B.A) n'existe pas.
- •Si n = I, on a A(n,p). B(p,n) = C(n,n) matrice carrée; $D(p,p) = B(p,n). A(n,p) \rightarrow D$ matrice carrée
- \bullet ^t(A.B) = ^tB. ^tA
- •Le Produit A.B = 0 n'implique pas que A = 0 ou B = 0

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \; ; \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \text{ or } A.B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Complexité algorithmique

Quel est l'algorithme qui calcule C=AB le plus vite ?

 $\begin{array}{l} {\sf D\acute{e}finitions} \\ {\sf * \ \ } \ \ f(x) = {\sf O}\big(g(x)\big) \\ {\sf lorsque} \ \ x \to \infty \equiv f(x) = g(x)H(x), \ \ H(x) \\ {\sf \acute{e}tant \ \ } \ \ born\acute{e} \ \ \grave{a} \ \ l'infini \\ \end{array}$

• petit o f(x) = o(g(x)) lorsque $x \to \infty \equiv \lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$

• équivalence asymptotique $f(x) = \Omega(g(x))$ lorsque $x \to \infty \equiv \lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$

A, B et C sont des matrices carrées de taille n $o(n^2) < \text{Algorithme} < o(n^3)$ Exemple, n=2

 $\begin{pmatrix} a_{11} & a_{21} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{21} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{21} \\ c_{21} & c_{22} \end{pmatrix}$

 $c_{11} = a_{11} \times b_{11} + a_{12} \times b_{21}$ $c_{12} = a_{11} \! \times \! b_{12} + a_{12} \! \times \! b_{22}$

2³ = 8 multiplications Comme Strassen, 1969 sauriez vous faire mieux ?

Quel est l'algorithme qui calcule C=AB le plus vite?

Exemple,
$$n=2$$

$$\begin{pmatrix} a_{11} & a_{21} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{21} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{21} \\ c_{21} & c_{22} \end{pmatrix}$$

Quelques matrices particulières

- Matrice carrée
 - Matrice carrée d'ordre n : toute matrice A ayant n lignes et n colonnes.
 - $-~a_{11},~a_{22},~a_{33},~......,~a_{ij},~.......,~a_{nn}$ sont les termes de la diagonale principales de la matrice A.
- A matrice triangulaire supérieure (resp. inf.) : A matrice carrée $a_{ij}=0$ pour i>j (resp. $a_{ij}=0$ pour i< j)
 - les éléments situés au dessous (au dessus) de la diagonale sont nuls
 - A et B sont deux matrices triangulaires supérieures (resp. inf.)
 d'ordre n alors, (A + B) et (A.B) sont aussi des matrices triangulaires supérieures (resp. inf.).
- A matrice diagonale : A matrice carrée et $a_{ij} = 0$ si $i \neq j$
- I_{nn} : unitaire : matrice diagonale d'ordre n (notée I_n) qui vérifie : I_{ii} = 1 (si i≠j I_{ij} = 0)

Exemple
$$I_{4} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

- A matrice symétrique : A matrice carrée et ${}^tA=A$ $a_{ij}=a_{ji}\ ; i=1,\cdots,n\ ; j=1,\cdots n$
- A matrice antisymétrique : A matrice carrée et ${}^tA=-A$ $a_{ij}=-a_{ji}$; $i=1,\cdots,n$; $j=1,\cdots n$

- A matrice orthogonale ssi ${}^t\!A$, A=A. ${}^t\!A=I$ A matrice carrée et $a_{ij}=0$ si $i\neq j$
- A matrice orthogonale : ${}^tA = A^{-1}$

Le déterminant d'une matrice **orthogonale** est de carré 1, c'est-à-dire qu'il est égal à +1 ou -1.

Vérifiez si la matrice M est orthogonale

$$M = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{2} & 1/\sqrt{6} \\ 1/\sqrt{3} & 0 & -2/\sqrt{6} \end{pmatrix}$$

Propriétés et remarques

- •A et B sont deux matrices symétriques, alors (A+B) est une matrice symétrique.
- •A est une matrice symétrique et λ réel, alors ($\lambda A)$ est une matrice symétrique.
- •A et B sont deux matrices symétriques, la matrice (A.B) n'est pas nécessairement une matrice symétrique.
- •A est une matrice antisymétrique alors $A + {}^{t}A = 0$
- •A et B sont deux matrices antisymétriques, la matrice (A.B) n'est pas nécessairement une matrice antisymétrique.

Déterminant d'une matrice

- A : matrice carrée déterminant de A: noté det A, ou | A |
 → valeur scalaire : définition récursive
- Mineur de l'élément a_{ij} , le déterminant $|M_{ij}|$ d'ordre (n-1) obtenu à partir du déterminant de A en supprimant dans ce déterminant la ième ligne et la jme colonne.
- A_{ij} cofacteur de l'élément $a_{ij} \rightarrow A_{ij} = (-1)^{(i+j)} M_{ij}$
- Exemple A $\begin{pmatrix} 2 & -1 & 0 \\ -1 & 5 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ $\begin{cases} M_{32} = \begin{vmatrix} 2 & 0 \\ -1 & 1 \end{vmatrix} \Rightarrow A_{32} = -2 \\ M_{22} = \begin{vmatrix} 2 & 0 \\ 0 & 1 \end{vmatrix} \Rightarrow A_{22} = 2 \\ M_{33} = \begin{vmatrix} 2 & -1 \\ -1 & 5 \end{vmatrix} \Rightarrow A_{33} = 9 \end{cases}$

Determinant d'une matrice	
 A: matrice carrée Le mineur de l'élément a_{ij} d'une matrice carrée A est le déterminant obtenu en supprimant la ligne i et la colonne j dans la matrice A (∀ i, j ∈ {1,,n}). 	
	7
A : matrice carrée d'ordre n : det A, ou A Le déterminant de A est égale à la somme des produits de chaque élément d'une ligne (ou d'une colonne) par son cofacteur.	
$\det A = \sum_{i=1}^n a_{ij} (-1)^{i+j} \det [A_{ij}]$ (dev. Selon les lignes)	
$(-1)^{i+j} \mathrm{det}[A_{ij}]$: est appelé cofacteur de a_{ij}	
Avec $[A_{ij}]$ est la matrice carrée d'ordre (n-1) obtenue à partir de la matrice A, en supprimant les éléments de la ligne i et les élément de la colonne j	
Remarques	
 Le déterminant d'ordre n ne change pas de valeur quelle que soit la ligne ou la colonne suivant laquelle le développement est effectué. 	
 Dans chaque cas, on est ramené au calcul de n déterminants d'ordre (n-1). On applique la même règle pour calculer chacun d'eux et ainsi de suite, jusqu'à ce qu'on arrive à des déterminants d'ordre 2. 	
 Pour le calcul de déterminant d'une matrice, il convient de choisir la ligne ou la colonne qui contient un maximum de termes nuls (des zéros). 	
 le déterminant d'une matrice d'ordre n diagonale, triangulaire supérieure, triangulaire inférieure est égal au produit des termes de sa diagonale principale. 	

Exemple: Soit la matrice A tel que: $A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & -5 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 7 \end{pmatrix}$

- calculer la déterminant de A en le développant suivant:
- - 2) la 1ère ligne
 - 3) 2eme ligne

$$\det A = |A| = 0 \times \begin{vmatrix} -1 & -5 \\ 0 & 1 \end{vmatrix} - 1 \begin{vmatrix} 2 & -1 \\ 0 & 1 \end{vmatrix} + 1 \begin{vmatrix} 2 & -1 \\ -1 & -5 \end{vmatrix}$$

- Si les éléments d'une colonne dans une matrice sont tous nuls, alors le déterminant de cette matrice est nul.
- Si dans une matrice une colonne est multipliée par un scalaire λ , alors son déterminant est multiplié par ce même scalaire.
- Généralement, si A est une matrice d'ordre n, alors: $\det(\lambda A) = \lambda^n \det A$

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & -5 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad \text{et} \qquad \qquad B = \begin{pmatrix} 4 & -1 & 0 \\ -2 & -5 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

- On calcule les déterminants des matrices A et B:
 det A = -13 et det B = -26 = 2*det A

- Un déterminant ne change pas de valeur si aux éléments d'une colonne (resp. ligne) on ajoute les éléments un multiple d'une autre colonne (resp. ligne).
- Exemple:
 Calculer les déterminants des matrices A et B suivantes:

•
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & -5 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & -1 & 0 \\ 0 & -3 & 1 \\ 0 & 1 & 1 \end{pmatrix}$

- Que peut-on déduire?det A = det B = -4

P5- Pour toute matrice carrée A d'ordre n, on a :	det A = det t
1 3-1 our toute matrice currer it a ordre ii, on a .	uct A uct t

Remarque importante:
Puisque det A = det t_A; les propriétés précédentes restent valables si on remplace le mot « colonne » par le mot « ligne ».

Conséquence: Un déterminant ayant deux colonnes (ou lignes) identiques ou proportionnelles est nul. si par exemple, on a :

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & k_{a_{21}} & a_{13} \\ a_{21} & k_{a_{21}} & a_{23} \\ a_{31} & k_{a_{31}} & a_{33} \end{vmatrix}, \quad alors obligatoirement$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 0$$

4.2-Comatrice:

Calcul d'une comatrice 3cd :
$$M = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

$$Cof(M) = \begin{bmatrix} +\begin{vmatrix} e & f \\ h & i \end{vmatrix} & -\begin{vmatrix} d & f \\ h & i \end{vmatrix} & +\begin{vmatrix} d & e \\ g & i \end{vmatrix} & +\begin{vmatrix} d & e \\ g & i \end{vmatrix}$$

$$+\begin{vmatrix} b & c \\ h & i \end{vmatrix} + \begin{vmatrix} a & c \\ g & i \end{vmatrix} - \begin{vmatrix} a & b \\ d & d \end{vmatrix}$$

$$+\begin{vmatrix} b & c \\ e & f \end{vmatrix} - \begin{vmatrix} a & c \\ d & f \end{vmatrix} + \begin{vmatrix} a & c \\ d & d \end{vmatrix} + \begin{vmatrix} a & b \\ d & e \end{vmatrix}$$

• $A^{-1} = \frac{t_{ComA}}{\det A} comA$: comatrice de A

Théorème A : matrice carrée , A inversible $\Leftrightarrow \det A \neq 0$

Propriétés ${\rm P1: si\ une\ matrice}\ A\ {\rm est\ inversible\ alors\ son\ inverse}\ A^{-1}\ \ {\rm est}$ unique et : $\det A^{-1} = \frac{1}{\det A}$ P2 : $(A^{-1})^{-1} = A$ P3 : $(AB)^{-1} = A^{-1}B^{-1}$

P3': $(A^n)^{-1} = (A^{-1})^n$

Exemple:

Soit A la matrice donnée comme suit:

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & -5 & 1 \\ 4 & 1 & 1 \end{pmatrix}$$

- Déterminer A⁻¹.
 En déduire le det A⁻¹.

1- Det A = -17 donc la matrice inverse existe. On calcule d'abord la comatrice de A

Soit: CoA|=
$$\begin{pmatrix} -6 & 5 & 19\\ 1 & 2 & -6\\ -1 & -2 & -11 \end{pmatrix}$$
 done = $A^{-1} = -\frac{1}{17}\begin{pmatrix} -6 & 1 & -1\\ 5 & 2 & -2\\ 19 & -6 & -11 \end{pmatrix}$

donc =
$$A^{-1} = -\frac{1}{17} \begin{pmatrix} -6 & 1 & -1 \\ 5 & 2 & -2 \\ 19 & -6 & -11 \end{pmatrix}$$

2-
$$\det A^{-1} = -\frac{1}{17}$$

Rang d'une matrice

Soit A une matrice de type (m,n), dans cette matrice A, on choisit d'une façon arbitraire k lignes et k colonnes, avec lesquelles on forme une matrice carrée d'ordre k; le déterminant de cette matrice carrée s'appelle mineur d'ordre k de la matrice A.

Il existe un mineur d'ordre r non nul tel que tous les mineurs d'ordre s > r sont nuls. Le nombre r s'appelle le rang de la matrice A; qu'on note r(A).

Méthode directe

Exemple:

$$A = \begin{pmatrix} 2 & -4 & 3 & 1 & 0 \\ 1 & -2 & 1 & -4 & 2 \\ 0 & 1 & -1 & 3 & 1 \\ 4 & -7 & 4 & -4 & 5 \end{pmatrix}$$

On va calculer les déterminants de tous les mineurs d'ordre $4.\,$

$$\mathbf{M}_{\mathbf{4}^{(1)}} = \begin{vmatrix} 2 & -4 & 3 & 1 \\ 1 & -2 & 1 & -4 \\ 0 & 1 & -1 & 3 \\ 4 & -7 & 4 & -4 \end{vmatrix} = 0 \; ; \; \; \underline{\mathbf{M}_{\mathbf{4}^{(2)}}} = \begin{vmatrix} 2 & -4 & 3 & 0 \\ 1 & -2 & 1 & 2 \\ 0 & 1 & -1 & 1 \\ 4 & -7 & 4 & 5 \end{vmatrix} = 0 \; ; \; \; \mathbf{M}_{\mathbf{4}^{(3)}} = \begin{vmatrix} 2 & -4 & 1 & 0 \\ 1 & -2 & -4 & 2 \\ 0 & 1 & 3 & 1 \\ 4 & -7 & -4 & 5 \end{vmatrix} = 0 \; ;$$

$$M_{4}{}^{(4)} = \begin{vmatrix} 2 & 3 & 1 & 0 \\ 1 & 1 & -4 & 2 \\ 0 & -1 & 3 & 1 \\ 4 & 4 & -4 & 5 \end{vmatrix} = 0 \hspace{1cm} ; \hspace{1cm} M_{4}{}^{(5)} = \begin{vmatrix} -4 & 3 & 1 & 0 \\ -2 & 1 & -4 & 2 \\ 1 & -1 & 3 & 1 \\ -7 & 4 & -4 & 5 \end{vmatrix} = 0 \; ;$$

Le mineur d'ordre 3 donné par:

$$M_3 = \begin{bmatrix} 2 & -4 & 3 \\ 1 & -2 & 1 \\ 0 & 1 & -1 \end{bmatrix} = 1 \neq 0$$
; donc le rang de la matrice est égal à $3 \Rightarrow \mathbf{r}(\mathbf{A}) = 3$

2- On donne la matrice A de type (4,5) suivante:

$$A = \begin{pmatrix} 2 & 3 & 5 & -3 & -2 \\ 3 & 4 & 3 & -1 & -3 \\ 5 & 6 & -1 & 3 & -5 \\ -4 & -3 & 17 & -15 & 4 \end{pmatrix}$$

Le mineur d'ordre 2 donné par:

$$\mathbf{M}_2 = \begin{vmatrix} 2 & 3 \\ 3 & 4 \end{vmatrix} = -1 \neq 0 \quad ;$$

On vérifie par la suite que:

$$\begin{vmatrix} 2 & 3 & 5 \\ 3 & 4 & 3 \\ 5 & 6 & -1 \end{vmatrix} = \begin{vmatrix} 2 & 3 & -3 \\ 3 & 4 & -1 \\ 5 & 6 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 3 & -2 \\ 3 & 4 & -3 \\ 5 & 6 & -5 \end{vmatrix} = \begin{vmatrix} 2 & 5 & -3 \\ 3 & 3 & -1 \\ 5 & -1 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 5 & -2 \\ 3 & 3 & -3 \\ 5 & -1 & -5 \end{vmatrix} = \begin{vmatrix} 2 & -3 & -2 \\ 3 & -1 & -3 \\ 5 & 3 & -5 \end{vmatrix} = \begin{vmatrix} 2 & -3 & -2 \\ 3 & 3 & -3 \\ 5 & 3 & -5 \end{vmatrix} = \begin{vmatrix} 2 & -3 & -2 \\ 3 & 3 & -3 \\ 5 & 3 & -5 \end{vmatrix} = \begin{vmatrix} 2 & -3 & -2 \\ 3 & 3 & -3 \\ 5 & 3 & -5 \end{vmatrix} = \begin{vmatrix} 2 & -3 & -2 \\ 3 & 3 & -3 \\ 5 & 3 & -5 \end{vmatrix} = \begin{vmatrix} 2 & -3 & -2 \\ 3 & 3 & -2 \end{vmatrix} = \begin{vmatrix} 2 & -3 & -2 \\ 3 & 3 & -2 \end{vmatrix} = \begin{vmatrix} 2 & -3 & -2 \\ 3 & 3 & -2 \end{vmatrix} = \begin{vmatrix} 2 & -3 & -2 \\ 3 & 3 & -2 \end{vmatrix} = \begin{vmatrix} 2 & -3 & -2 \\ 3 & 3 & -2 \end{vmatrix} = \begin{vmatrix} 2 & -3 & -2 \\ 3 & 3 & -2 \end{vmatrix} = \begin{vmatrix} 2 & -3 & -2 \\ 3 & 3 & -2 \end{vmatrix} = \begin{vmatrix} 2 & -3 & -2 \\ 3 & 3 & -2 \end{vmatrix} = \begin{vmatrix} 2 & -3 & -2 \\ 3 & 3 & -2 \end{vmatrix} = \begin{vmatrix} 2 & -3 & -2 \\ 3 & 3 & -2 \end{vmatrix} = \begin{vmatrix} 2 & -3 & -2 \\ 3 & 3 & -2 \end{vmatrix} = \begin{vmatrix} 2 & -3 & -2 \\ 3 & 3 & -2 \end{vmatrix} = \begin{vmatrix} 2 & -3 & -2 \\ 3 & 3 & -2 \end{vmatrix} = \begin{vmatrix} 2 & -3 & -2 \\ 3 & 3 & -2 \end{vmatrix} = \begin{vmatrix} 2 & -3 & -2 \\ 3 & 3 & -2 \end{vmatrix} = \begin{vmatrix} 2 & -3 & -2 \\ 3 & 3 & -2 \end{vmatrix}$$

$$\begin{vmatrix} 3 & 5 & -3 \\ 4 & 3 & -1 \\ 6 & -1 & 3 \end{vmatrix} = \begin{vmatrix} 3 & 5 & -2 \\ 4 & 3 & -3 \\ 6 & -1 & -5 \end{vmatrix} = \begin{vmatrix} 3 & -3 & -2 \\ 4 & -1 & -3 \\ 6 & 3 & -5 \end{vmatrix} = \begin{vmatrix} 5 & -3 & -2 \\ 3 & -1 & -3 \\ -1 & 3 & -5 \end{vmatrix} = \dots = 0$$

Tous les mineurs d'ordre 3 sont nuls, donc le rang de la matrice A est égal à $2 \Rightarrow r(A) = 2$.

Exemple:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}; \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$r = 3$$

$$r = 2$$

$$r = 1$$

Remarques
Les opérations suivantes sont dites opération élémentaires: • Permutation de 2 lignes (resp) 2 colonnes
Multiplication d'une ligne (resp. colonne) par un scalaire non nul
Ajouter à une ligne (resp. colonne) une autre ligne(resp. colonne) multipliée par un nombre