

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

« Методы координации агентов в многоагентных системах»

Выполнил: студент 4 курса группы ИУ7-76Б

Дремин Кирилл Александрович

Научный руководитель: Москвичев Николай Владимирович

Москва, 2024

Цель и задачи

Цель: сравнить методы координации агентов применительно к задаче визуального контроля критических областей.

Задачи:

- 1. Провести анализ предметной области и описать рассматриваемую многоагентную систему.
- 2. Выделить характеристики для классификации и сравнения методов координации агентов в многоагентных системах.
- 3. Формализовать математические описания рассматриваемых методов.
- 4. Провести сравнительный анализ методов по ключевым характеристикам.

Задача координации агентов

Цель координации агентов – обеспечение визуального контроля критических областей и устранение угроз

Агенты:

- Действуют независимо
- Обладают одинаковыми параметрами и возможностями
- Перемещаются
- Обзор ограничен препятствиями

Описание предметной области

Навигационная карта задана графом, где вершинам соответствуют области в виде выпуклых многоугольников:

$$G = (V, E), N = \bigcup_{v \in V} A_v, A_v \subset \mathbb{R}^2$$

Агенты:

- Максимизируют визуальное покрытие областей
- Нейтрализуют угрозы
- Охраняют критические области

Методы: потенциальные поля, метод ролей, рой частиц

Метод потенциальных полей:

Агенты движутся в соответствии с градиентом потенциала, создаваемого угрозами и критическими точками:

$$\dot{p} = -\nabla V(p)$$

Метод ролей:

Агент получает одну из возможных ролей, минимизируя стоимость её назначения:

$$r = argmin_{r \in \mathbb{R}} \mathcal{C}(r,p,U,T)$$
, где $\mathcal{C}(r,p,U,T)$ - функция стоимости назначения роли г агенту, зависящая от функции опасности U и набора угроз T

Метод роя частиц:

Агенты перемещаются, координируя направление движения с соседними агентами, но не приближаясь слишком быстро, стремясь достичь визуального покрытия всей области и нейтрализовать угрозы:

$$\dot{p} = f_{\text{притяжения}}(p) + f_{\text{избегания}}(p) + f_{\text{выравнивания}}(p) + f_{\text{опасность}}(p) + f_{\text{угроза}}(p) + f_{\text{покрытие}}(p)$$

Методы: теоретико-игровой, обучение с подкреплением

Теоретико-игровой метод:

Агенты формируют математическую модель игры и находят оптимальную стратегию, соответствующую равновесию Нэша:

$$U(s_{-i}^*, s_i^*) \ge U(s_{-i}^*, s_i), \forall s_i \in S_i$$

В случае обнаружения угрозы, стратегия агентов меняется и выбирается стратегия, приводящая к её нейтрализации.

Метод обучения с подкреплением:

Среда представляется в виде марковского процесса принятия решений:

$$(S, A, P, R, \gamma)$$

Агенты обучаются максимизации функции награды при помощи Q-обучения или глубокого Q-обучения во время симуляции среды

Обученные агенты действуют в системе согласно приобретенным стратегиям

Критерии сравнения методов и сравнительная таблица

Метод	Тип взаимодействия	Область восприятия	Распределени е задач	Сложность	Гибкость	Праводоподобие
Потенциальны х полей	Децентрализованный	Локальная	Динамическое	$O(a\cdot(c+b+t))$	Высокая	Высокая
Ролей	Централизованный	Глобальная	Динамическое	$O(a\cdot(v+c+t))$	Высокая	Высокая
Рой частиц	Децентрализованный	Локальная	Динамическое	$O(a\cdot(N_l+v+t))$	Низкая	Высокая
Теоретико- игровой	Централизованный	Локальная	Статическое	$O(a \cdot v^2)$	Высокая	Низкая
Обучения с подкреплением	Децентрализованный	Локальная	Статическое	0(a)	Высокая	Высокая

Заключение

Достигнута поставленная цель: проведено сравнение методов координации агентов применительно к задаче визуального контроля критических областей.

Все задачи решены:

- 1. Проведен анализ предметной области и описана рассматриваемая многоагентная система.
- 2. Выделены характеристики для классификации и сравнения методов координации агентов в многоагентной системе.
- 3. Формализованы математические описания рассматриваемых методов.
- 4. Проведен сравнительный анализ методов по ключевым характеристикам.