Supplementary Tables

Tables S1-S4. Benchmark datasets genome information and statistics.

Genomes used for benchmarking downloaded on: *Bifidobacterium*: 2017 Jan., *Escherichia / Shigella*: 2018 Feb., *P. acnes*: 2016 Jun., *Staphylococcus*: 2016 Apr. Selection of genomes was based on all genomes publicly available at NCBI assembled genomes and NCBI Traces WGS databases [1]. For *Staphylococcus* and *Escherichia / Shigella* a maximum of 200 genomes was selected in order to allow for practically feasible computation times. Therefore, careful effort was undertaken to take into account all available biodiversity based on provided strain annotations. High-quality genomes were first selected (i.e. those assigned as *'reference'* or *'representative'*, thereafter those with closed genomes assemblies or with the lowest number of contigs / scaffolds).

File:

S1-S4 Datasets-for-Benchmarking.xlsx

(online) http://ederveen.science/Thesis/Chapter3/Table-S1-

S4_Datasets-for-Benchmarking.PRESUBMISSION.xlsx

Table S5. 16S and SLST primers used in this study for benchmarking and sequencing.

Method	Region	Primer ID	FW primer (5'-3' sense)	RV primer (5'-3' antisense)	Used for	Reference
16S	V1-V2	27Fx338R	AGAGTTTGATCCTGGCTCAG	TGCTGCCTCCCGTAGGAGT	Benchmarking	Baurecht <i>et al.,</i> 2018 [2]
16S	V1-V9	8Fx1391R	AGAGTTTGATCCTGGCTCAG	GACGGGCGGTG W GT R CA	Benchmarking	Kong <i>et al.,</i> 2012 [3]
16S	V3-V4	357Fx802RV2	CCTACGGGAGGCAGCAG	TAC NV GGGTATCTAA K CC	Sequencing	Zeeuwen <i>et al.,</i> 2017 [4]
SLST	30S ribosomal protein S11 (OG #1123)	not applicable	TGGCACGTAAACAAGTATC	GACGACGTTTTGGTGGAC	Sequencing	Current study (and Smits et al., 2018, manuscript in preparation)

Tables S6-S9. Benchmark datasets TaxPhIAn run output reports.

File:

S6-S9 TaxPhlAn-Reference-Runs.xlsx

(online) http://ederveen.science/Thesis/Chapter3/Table-S6-

 ${\tt S9_TaxPhlAn-Reference-Runs.PRESUBMISSION.xlsx}$

Table S10. Study samples overview Ederveen et al.

The samples used in this study are from a recently generated larger cohort from our department by Smits *et al.*, (manuscript in preparation), from which we have selected all available baseline samples for which both 16S and SLST sequences were generated. In the study by Smits *et al.*, we studied the effect of coal tar treatment on the skin microbiome; however, the for this study selected samples are from before start of coal tar treatment (hence, baseline) and thus considered the endogenous skin microbiome of these volunteers. "COMB_" samples (from *combination*) are samples with 1:1 pooled amplicons of 16S and SLST of the same volunteer (note that 16S and SLST amplicons were generated from the same DNA sample of each volunteer). The general idea behind the "COMB_" samples is (i) to have biological replicates, and (ii) to test feasibility of combining 16S and SLST amplicons of the same volunteer in one sequencing sample with the same barcodes (i.e. to reduce sequencing costs for application of SLST). * samples codes as reported by Smits *et al.*, (manuscript in preparation), these are the same sample identifiers as have been uploaded to ENA. ** sample names are similar for 16S and for SLST, but preceded by "16S_" or "SLST_", respectively (with exception of "COMB_" samples because these contain both 16S and SLST amplicons). AD = atopic dermatitis patient. EASI = Eczema Area and Severity Index. HC = healthy control volunteer.

Sample ID	Sample ID		Sample	Arm (L = left,		Skin	AD Severity	Age	Gender
Smits et al. *	Ederveen <i>et al.</i> **	Individual	Site	R = right)	Condition	Status	(EASI)	(years)	(M/F)
AD1_T_0	AD1_L	AD1	inner elbow	7	AD	lesional	13.8	27	Σ
AD1_V_0	AD1_R	AD1	inner elbow	œ	AD	lesional	13.8	27	Σ
AD2_T_0	AD2_L	AD2	inner elbow	7	AD	lesional	44.4	21	Σ
AD2_V_0	AD2_R	AD2	inner elbow	œ	AD	lesional	44.4	21	Σ
AD3_T_0	AD3_L	AD3	inner elbow	7	AD	lesional	8.1	27	ட
AD3_V_0	AD3_R	AD3	inner elbow	œ	AD	lesional	8.1	27	ட
AD5_T_0	AD <mark>4</mark> _L	AD <mark>4</mark>	inner elbow	7	AD	lesional	25.4	25	ட
AD5_V_0	AD <mark>4</mark> _R	AD4	inner elbow	œ	AD	lesional	25.4	25	ш
AD7_T_0	AD <mark>5</mark> _L	AD <mark>5</mark>	inner elbow	7	AD	lesional	11.6	23	Σ
AD7_V_0	AD <mark>S</mark> _R	AD <mark>5</mark>	inner elbow	œ	AD	lesional	11.6	23	Σ
HC10_T_0	HC <mark>1</mark> _L	HC <mark>1</mark>	inner elbow	7	HC	normal	0	30	Σ
HC10_V_0	HC <mark>1</mark> _R	HC <mark>1</mark>	inner elbow	œ	HC	normal	0	30	Σ
HC2_T_0	HC2_L	НС2	inner elbow	7	НС	normal	0	30	L.
HC2_V_0	HC2_R	НС2	inner elbow	œ	HC	normal	0	30	ш
HC3_T_0	HC3_L	НСЗ	inner elbow	7	НС	normal	0	30	L.
HC3_V_0	HC3_R	НСЗ	inner elbow	œ	HC	normal	0	30	ட
HC4_T_0	HC4_L	HC4	inner elbow	7	HC	normal	0	35	ட
HC4_V_0	HC4_R	HC4	inner elbow	œ	НС	normal	0	35	L
HC5_T_0	HC5_L	HC5	inner elbow	7	HC	normal	0	22	ட
HC5_V_0	HC5_R	HC5	inner elbow	œ	НС	normal	0	22	L
HC6_T_0	HC6_L	92Н	inner elbow	7	HC	normal	0	30	ш
HC6_V_0	HC6_R	92Н	inner elbow	œ	НС	normal	0	30	Ł
HC7_T_0	HC7_L	HC7	inner elbow	7	НС	normal	0	51	ш
HC7_V_0	HC7_R	HC7	inner elbow	œ	HC	normal	0	51	ч
HC8_T_0	HC8_L	HC8	inner elbow	7	HC	normal	0	27	Σ
HC8_V_0	HC8_R	HC8	inner elbow	~	HC	normal	0	27	Σ
HC9_T_0	HC9_L	НС9	inner elbow	7	H	normal	0	22	ш
HC9_V_0	HC9_R	НС9	inner elbow	~	HC	normal	0	22	щ
COMB_AD1_V_0	COMB_AD1_R	AD1	inner elbow	œ	AD	lesional	13.8	27	Σ
COMB_AD2_V_0	COMB_AD2_R	AD2	inner elbow	œ	AD	lesional	44.4	21	Σ
COMB_AD3_T_0	COMB_AD3_L	AD3	inner elbow	7	AD	lesional	8.1	27	ш
COMB_AD5_T_0	COMB_AD <mark>4</mark> _L	AD4	inner elbow	Γ	AD	lesional	25.4	25	Ł
COMB_AD7_T_0	COMB_AD <mark>5</mark> _L	AD <mark>5</mark>	inner elbow	7	AD	lesional	11.6	23	Σ

Suppl. Table S11. 16S sequencing read statistics and alpha diversity metrics.

File:

S11 16S-Sequencing-Read-Statistics.xlsx

(online) http://ederveen.science/Thesis/Chapter3/Table-S11_16S-

Sequencing-Read-Statistics. PRESUBMISSION. xlsx

Suppl. Table S12. 16S analysis of *Staphylococcus* by OTU clustering of full-length 16S, V1-2 and V3-4.

File:

S12 16S-Analysis-Staphylococcus(V1-9)(V1-2)(V3-4).xlsx

(online) http://ederveen.science/Thesis/Chapter3/Table-S12_16S-

Analysis-Staphylococcus(V1-9)(V1-2)(V3-4).PRESUBMISSION.xlsx

Suppl. Table S13. SLST candidates for Staphylococcus profiling.

In total, 9 primer sets as listed in this table were initially screened on the lab by PCR with genomic DNA from *S. aureus* strain ATCC 29213 to check for recognition of *Staphylococcus* species. The SLST primer sets marked in green showed positive PCR responses and were further evaluated as reported in Suppl. Fig. S8. The SLST OG #1123 (dark green) is our final SLST target which survived all *in silico* and lab validations, and with which our study was performed. SLST candidates were found by running TaxPhlAn on a set of 200 *Staphylococcus* reference genomes (Table 1, Suppl. Table S9), and their characteristics according to TaxPhlAn default reports and additional *in silico* tests are listed below. The *in silico* PCR were performed on 7085 *Staphylococcus* reference genomes, and on available family Staphylococcaceae 'out-genomes' and common skin commensals.

Table S13 part 1 of 2

#OG	predicted gene product	amplicon length (based on alignment incl. primers)	# of unique sequences (VR), i.e. SLST types	ML-based correlation to phylogeny (rho)	FW len.	RV len.	FW T _m	RV T _m	delta T _m
810	50S ribosomal protein L16	152	46	0.91	19	19	49.0	53.3	4.3
440	Elongation factor G	482	69	0.91	20	20	55.2	53.7	1.5
426	Elongation factor G	452	66	0.91	20	20	55.2	49.5	5.7
1076	DNA-directed RNA polymerase subunit beta	453	80	0.89	18	20	46.0	51.4	5.4
1123	30S ribosomal protein S11	381	48	0.87	19	18	50.0	53.9	3.9
420	Elongation factor T	205	51	0.83	21	19	50.3	53.5	3.2
1116	50S ribosomal protein L16	241	47	0.80	20	20	52.1	54.6	2.5
952	50S ribosomal protein L16	203	42	0.78	20	19	50.1	49.3	0.8
435	50S ribosomal protein L1	171	49	0.73	19	19	50.6	52.5	1.9
					prim	ner set pr	edicted o	characte	ristics

#OG	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	FW primer (5'-3' sense)	RV primer (5'-3' antisense)	# Staph. genomes recognized (7085 references)	blue off-targets within the family of
810	52	40	32	26	21	9	7	4	GTCAAGGTAAACAAAC W CG	ACCGTTACGTCC W ACTTCA	7080	
440	80	65	51	36	21	10	6	5	CGTGAACGTGTAGGTCGTTT	ACATCACC <u>R</u> TATTGACCACG	7084	
426	76	61	48	34	21	10	6	5	CGTGAACGTGTAGGTCGTTT	TGACGAGAGAATTTACCTTG	7084	Bacillus
1076	80	65	60	51	37	23	17	12	CWGGTGAAAAAGTTGAAG	CACCTTGCATACGRTAAACT	7063	Macrococcus, Salinicoccus
1123	59	51	44	36	27	12	9	4	TGGCACGTAAACAAGTATC	GACGACGTTTTGGTGGAC	7078	Macrococcus
420	61	49	40	33	26	13	10	5	GC <u>W</u> GGTATGATGGATTGTAAA	TACGAGCAACGAAGTC W GT	7081	Aliicoccus, Jeotgalicoccus, Nosocomiicoccus
1116	46	29	22	15	13	8	3	1	ATATCGTCGTCAACATCGTC	ACCTTTACCAGCACCCATAC	7082	
952	38	25	18	12	10	7	3	1	$\mathtt{CGTGT}\underline{\mathbf{W}}\mathtt{AAATATCGTCGTCA}$	GGTGTATG <u>W</u> GGGAAGATTT	7082	Bacillus
435	49	43	34	31	27	13	7	3	GTGCTGAAAAAGC W GGTAT	CAGGACCCATTGTTGT <u>W</u> GT	7076	Bacillus, Macrococcus
	number of SNP per SDI threshold				DI th	iresh	old					

Suppl. Table S14-S15. 16S and SLST compositional matrix.

File :

S14-15 16S-and-SLST-Compositional-Tables.xlsx

(online) http://ederveen.science/Thesis/Chapter3/Table-S14-S15_16S-and-SLST-

 $Compositional \hbox{-} Tables. \hbox{PRESUBMISSION}. xlsx$

References Supplementary Tables

- 1. Kitts, P.A., et al., *Assembly: a resource for assembled genomes at NCBI.* Nucleic Acids Res, 2016. **44**(D1): p. D73-80.
- 2. Baurecht, H., et al., *Epidermal lipid composition, barrier integrity, and eczematous inflammation are associated with skin microbiome configuration.* Journal of Allergy and Clinical Immunology, 2018. **141**(5): p. 1668-1676.e16.
- 3. Kong, H.H., et al., *Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis.* Genome Res, 2012. **22**(5): p. 850-9.
- 4. Zeeuwen, P.L.J.M., et al., *Reply to Meisel et al.* Journal of Investigative Dermatology, 2017. **137**(4): p. 961-962.