Super-Mario

Knowledge Engineering und Lernen in Spielen

Übersicht

- 1. Super-Mario (allgemein)
- 2. Modellierung der Spielerfahrung¹
 - Lernen, wann ein Level Spaß macht
- 3. Reinforcement Learning Benchmark²
 - Training eines Controllers, der Super-Mario spielt
- 4. Mario Al Competition 2009³
 - Andere Ansätze zur Implementierung eines Controllers

¹ C. Pedersen, J. Togelius and G. N. Yannakakis: Modeling Player Experience in Super Mario Bros

² J. Togelius, S. Karakovskiy, J. Koutnik and J. Schmidhuber: Super Mario Evolution

 $³_{\rm http://julian.togelius.com/mariocompetition2009/index.php}$

Super Mario (allgemein)

Screenshot

Super Mario (allgemein)

Beschreibung

- ► Klassisches "Jump & Run" von Nintendo
 - Spielablauf in Echtzeit
 - Levelende unter Zeitdruck erreichen
 - Abgründe überspringen
 - Gegner meiden
 - Münzen einsammeln
 - Gegenstände verleihen neue Fähigkeiten

Super Mario (allgemein)

Beschreibung

- Klassisches "Jump & Run" von Nintendo
 - Spielablauf in Echtzeit
 - Levelende unter Zeitdruck erreichen
 - Abgründe überspringen
 - Gegner meiden
 - Münzen einsammeln
 - Gegenstände verleihen neue Fähigkeiten
- Hier: "Infinite Mario Bros"
 - Open-Source (Java)
 - Automatisch generierte Levels
 - Im Webbrowser spielbar

Übersicht

- 1. Super-Mario (allgemein)
- 2. Modellierung der Spielerfahrung
 - Lernen, wann ein Level Spaß macht
- 3. Reinforcement Learning Benchmark
 - ► Training eines Controllers, der Super-Mario spielt
- 4. Mario Al Competition 2009
 - ► Andere Ansätze zur Implementierung eines Controllers

Modellierung der Spielerfahrung Motivation

- Spieleentwicklung zeitaufwändig
 - Automatische Levelgenerierung
 - Aber: Qualität der Lösung?

Modellierung der Spielerfahrung Motivation

- Spieleentwicklung zeitaufwändig
 - Automatische Levelgenerierung
 - Aber: Qualität der Lösung?
- Daher Bewertungsfunktion nötig
 - Was macht einen Level spaßig?
 - Wie erzeugt man eine Herausforderung...
 - ... ohne den Spieler zu frustrieren?
 - Ansatz: Machinelles Lernen

Datensammlung (Leveldesign)

- Modifiziertes "Infinite Mario Bros"
 - Zufälligkeit der Levels begrenzt
 - Feste Anzahl von Gegenständen / Gegnern
 - Systematisch Variation
 - Anzahl Abgründe
 - ► Durchschnittliche Breite
 - Verteilung im Level (Vorhersagbarkeit)
 - Anzahl "Richtungsänderungen"
 - Merkmale beeinflussen Schwierigkeitsgrad
 - Auch gültig für ähnliche Spiele

Datensammlung (Spielerfahrung)

- Teilnehmer spielen über Internet
 - Spiel generiert zwei Levels
 - Levels werden in beiden Reihenfolgen gespielt
 - Fragebogen nach jedem Paar
 - ▶ "Level 1 / 2 war mehr E"
 - ► "Beide Levels waren E"
 - "Keiner der Levels war E"
 - ▶ Wobei E ∈ fun, challenging, boring, frustrating, predictable, anxious
 - Alle Levelkombinationen mindestens einmal gespielt

Datensammlung (Spielerverhalten)

- Aufzeichnung des Spielerverhaltens
 - Zeit: Bis Levelende. Dauer des letzten Lebens
 - Gesammelte Gegenstände: Anzahl, Typ
 - Tode: Durch Abgründe, verschiedene Gegnertypen
 - Besiegte Gegner: Springen, Schussfähigkeit, Wurf von Schildkrötenpanzern
 - Sprünge: Anzahl, Schwierigkeit (Heuristik)
 - Sonstiges: Wurde Level beendet?
 - Und weitere...
- Ermöglicht Rückschlüsse auf Fähigkeiten / Spielstil

Aufgabenstellung

- Approximiere E = f(Leveldesign, Spielerverhalten)
 - ▶ Nur für *E* ∈ *fun*, *challenging*, *frustrating*
- Mit möglichst wenigen Features
 - Einfachere Analyse
 - Leichter anwendbar für Levelgenerierung
- Starke Ungenauigkeiten ("Noise") angenommen
 - Subjektivität der Spielerfahrung
 - Nur wenige Durchläufe gespielt
 - Robuste Verfahren zur Verhinderung von "Overfitting"

Statistische Analyse (Vorgehen)

- Lineare Zusammenhänge
- Anteil bei dem Reihenfolge relevant
 - Bei Spaß und Frustration egal
 - Jedoch "Noise" bei Herausforderung
- Anteil mit klarer Präferenz für E
 - ▶ 79 % Herausforderung bis 63 % Frustration
- Anteil bei dem Feature bestimmte Präferenz bedingt
 - Signifikantes Subset gewählt

Statistische Analyse (Ergebnis)

- Spaß
 - Wenige Features, nur von Spielerverhalten abhängig
 - Konstanter und ungehinderter Fortschritt
 - Komplexe Aktion (Schildkrötenpanzer) wichtigstes Merkmal
- Herausforderung
 - Viele Features, unabhängig von Spaß
 - Ende nicht erreicht, oft gestorben
 - Wenige Gegenstände gesammelt, schwierige Sprünge
- Frustration
 - Stärkste Korrelationen, ähnlich Herausforderung
 - Zusätzlich langer Stillstand

Statistische Analyse (Ergebnis)

- Spaß
 - Wenige Features, nur von Spielerverhalten abhängig
 - Konstanter und ungehinderter Fortschritt
 - Komplexe Aktion (Schildkrötenpanzer) wichtigstes Merkmal
- Herausforderung
 - Viele Features, unabhängig von Spaß
 - Ende nicht erreicht, oft gestorben
 - Wenige Gegenstände gesammelt, schwierige Sprünge
- Frustration
 - Stärkste Korrelationen, ähnlich Herausforderung
 - Zusätzlich langer Stillstand
- Herausforderung => Spaß und Frustration, Frustration => kein Spaß
 - Hinweis auf Nichtlinearität

Machinelles Lernen (Vorgehen I)

- Neuronales Netz
 - Modelliert Gehirnzellen
 - Nichtlineare Zusammenhänge
 - Hier mit nur einem Neuron
 - Einfacher analysierbar
 - Ungenauer als mehrere Schichten

Sigmoid:
$$f(x) = \frac{1}{1 + e^{-x}}$$

Machinelles Lernen (Vorgehen I)

- Neuronales Netz
 - Modelliert Gehirnzellen
 - Nichtlineare Zusammenhänge
 - Hier mit nur einem Neuron
 - Einfacher analysierbar
 - Ungenauer als mehrere Schichten
- Genetischer Algorithmus
 - Entspricht natürlicher Evolution / zufälligen Mutationen
 - Abweichung zu E als Fitnessfunktion
 - Nötig da keine differenzierbare Fehlerfunktion

 $w \in [-5, 5]$

 $in \in \{0, 1\}$

Machinelles Lernen (Vorgehen II)

- Auswahl eines Subset von Features.
 - nBest
 - Features geordnet
 - n beste ausgewählt
 - SFS
 - Hillclimbing
 - Feature hinzufügen das maximalen Wert erzeugt
 - PFS
 - Sukzessives Eliminieren von Features mit geringem Gewicht
 - Nicht notwendigerweise optimal
 - ► Bester Wert aus 3-Fold-Crossvalidation

Machinelles Lernen (Ergebnis)

Spaß

- SFS 69 % Genauigkeit bei 3 Features
- nBest ähnlich mit 10 Features, PFS deutlich schlechter
- Zeit der Bewegung nach links, auf Gegner gesprungen, Level nicht gespiegelt

Herausforderung

- SFS 78 % und 5 Features
- Großer Abstand zu PFS, nBest noch schlechter
- Stillstand, Sprungschwierigkeit, wenige Gegenstände und erledigte Gegner

Frustration

- SFS 89 % und 4 Features
- nBest ähnlich, PFS deutlich schlechter
- Oft in Lücken gefallen und wenig Zeit im letzten Leben
- Unterschiede zu Herausforderung (wenig Stillstand und leichte Sprünge)

Fazit

- Zufriedenstellende Ergebnisse
- Könnten verbessert werden
 - Andere Leveldesign-Features
 - Mehr als ein Neuron verwenden
 - Weitere Trainingsdaten
- Noch kein Praxiseinsatz zur Levelgenerierung sinnvoll

Übersicht

- 1. Super-Mario (allgemein)
- 2. Modellierung der Spielerfahrung
 - ► Lernen, wann ein Level Spaß macht
- 3. Reinforcement Learning Benchmark
 - Training eines Controllers, der Super-Mario spielt
- 4. Mario Al Competition 2009
 - ► Andere Ansätze zur Implementierung eines Controllers

Motivation I

- Benchmarks erlauben Vergleich verschiedener Algorithmen
 - Liefern reproduzierbare Ergebnisse
 - Stellen ein relevantes Problem dar
 - Existieren schon f
 ür Spiele aus anderen Genres
 - » "Relevant, da es die menschliche Intelligenz spielen kann"
 - Möglichkeit von Wettbewerben
- Hier f
 ür Reinforcement Learning
 - Viele Durchläufe
 - "Verstärke" Züge, die zum Ziel geführt haben

Motivation II

- Super-Mario als Benchmark geeignet
 - Hohe Dimension der Eingabedaten
 - ► Teilweise kontinuierlicher Zustandsraum
 - Welt enthält statische und dynamische Objekte
 - Zustand partiell beobachtbar
 - 32 mögliche Aktionen
 - Anpassbarer Schwierigkeitsgrad
 - Einfache Levels mit wenig Aufwand schaffbar
 - Später auch komplexe Pläne nötig
 - Bildet eine Lernkurve

Implementierung

- ► Ebenfalls modifiziertes "Infinite Mario Bros"
 - Wiederholbare Levelgenerierung
 - Echtzeit-Komponente entfernt
 - Ablauf in Schritten
 - Erlaubt Spielen von 20 Levels / Sekunde
 - Java-Interface für Controller
 - TCP-Interface für andere Sprachen
 - Deutlich langsamer

Anforderungen an den Controller

- Controller erhält Beobachtungen
 - Hindernissen und Gegnern in Umgebung
 - Verschiedene Umgebungsgrößen möglich
 - Bias, am Boden, Springen möglich
 - Durch boolsche Werte repräsentiert
 - Erzeugt 21, 53 oder 101 Inputs
- Erzeugt daraus eine Aktion (Tastendruck)
- Kann einen internen Zustand haben

Beispielcontroller

- Verwendet Neuronales Netz
 - 1. Multilayer-Perceptron
 - ► Eine verdeckte Schicht
 - 2. Simple Recurrent Network
 - Zusätzlich Rückkopplungen
 - Beide mit 10 verdeckten Knoten

Beispielcontroller

- Verwendet Neuronales Netz
 - 1. Multilayer-Perceptron
 - Eine verdeckte Schicht
 - 2. Simple Recurrent Network
 - Zusätzlich Rückkopplungen
 - Beide mit 10 verdeckten Knoten
- Gewichte über genetischen Algorithmus
 - 100 Generationen
 - Level beendet -> Schwierigkeit erhöhen
 - Levelfortschritt als Fitnessfunktion

Beispielcontroller

- Verwendet Neuronales Netz
 - 1. Multilayer-Perceptron
 - ► Eine verdeckte Schicht
 - Simple Recurrent Network
 - Zusätzlich Rückkopplungen
 - Beide mit 10 verdeckten Knoten
- Gewichte über genetischen Algorithmus
 - 100 Generationen
 - Level beendet -> Schwierigkeit erhöhen
 - ► Levelfortschritt als Fitnessfunktion
- Verwendung von HyperGP
 - Kombiniert diese Techniken
 - Nutzt Regelmäßigkeiten im Zustandsraum

Ergebnisse I

Max. Level			
Methode	3x3	5x5	7x7
MLP	3,0	0,8	0,5
SRN	2,8	1,8	0,3
SRN + HyperGP	1,9	2,1	1,3

- Overfitting bei MLP / SRN und großem Input
- HyperGP erlaubt größere Netze durch Kompression
- Kein Overfitting bei großem Input
- Probleme bei Generalisierung trotz gleichem Schwierigkeitsgrad

Ergebnisse II

- Controller springen wenn fester Boden zu Ende...
- ...ohne zu wissen wo sie aufkommen werden
- Sie laufen oft in Gegner
 - Abgründe beenden Spiel sofort
 - Aber bei Gegnern erst nach dem dritten Kontakt
 - Daher als weniger gefährlich eingestuft
- Es werden keine Gegenstände gesehen, dadurch geringe Punktzahlen

Fazit

- Generalisierung ist noch ein Problem
- Benchmark ist neue Herausforderung für Reinforcement Learning
- Ansatz: Level auch nach erfolglosem Durchlauf ändern
 - Könnte Generalisierung erleichtern
 - Aber zusätzliches "Noise"
- Erweiterung des Inputs möglich
 - Bisher einmalige Größenordnung
 - Z. B. Art der Gegner

Übersicht

- 1. Super-Mario (allgemein)
- 2. Modellierung der Spielerfahrung
 - ► Lernen, wann ein Level Spaß macht
- 3. Reinforcement Learning Benchmark
 - Training eines Controllers, der Super-Mario spielt
- 4. Mario Al Competition 2009
 - Andere Ansätze zur Implementierung eines Controllers

Mario Al Competition 2009 Beschreibung

- Basiert auf dem beschriebenen Benchmark
- Controller spielt bis zu 40 festgelegte Levels
- Maximal 40 ms pro Schritt
- Erreichter Level und Punkte gewertet

Sieger

- Sieger verwendet A*-Algorithmus zur Bewertung von Knoten
 - Knoten sind mögliche Aktionen
 - Heuristik ist Zeit bis zum Ziel ohne Hindernisse
 - Plant zwei Schritte vorraus
- Hat eigenes Weltbild
 - Sagt Gegnerbewegungen vorher
 - Regelmäßig aktualisiert

Video des Siegers

http://www.youtube.com/watch?v=DlkMs4ZHHr8

Andere Ansätze

- Neuronales Netz und genetischer Algorithmus
- Durch menschlichen Spieler trainiertes Neuronales Netz
- Regelbasierte Systeme
- State Machines
- Mit genetischem Algorithmus gebildete Hashtabellen (100 MB)

Ergebnisse und Fazit

- Benchmark zeigt deutliche Unterschiede
- ► Implementierungen mit A* sind überlegen
 - Benötigt jedoch die längste Berechnungszeit
 - Funktioniert gut, weil Levels kein Backtracking erfordern
- Wenige Teilnehmer verwendeten (Reinforcement) Learning

Jeweils beste Implementierungen			
Algorithmus	Level	Punkte	
A*	40	47000	
A*	40	47000	
RB	11	21000	
RB	11	18000	
EV	8	12000	
EV	7	13000	
SM	4	12000	
SM	3	7000	
HT	Absturz		

Ende

Danke für die Aufmerksamkeit!