

Clustering on wikipedia graphs

PGM 2024/2024

Melvin Gode*, Andrej Perovic* and Antoine Sicard*

Ecole Normale Supérieure Paris-Saclay, *all these authors contributed equally to this research

Intr			
Intr	UUI	ибы	

Title 1

• NMDARs exist as multiple subtypes primarly defined by the type of GluN2 subunits they incorporate. These subtypes have unique biophysical, pharmacological, anatomical and signaling properties.

Title 2

• The role of GluN2B-NMDARs in synaptic physiology (LTP, LTD, excitotoxicity, etc.) is currently under debate^{2,3}. GluN2B-NMDAR classical pharmacological modulators have major limitations for in vivo use, notably off-target effects, slow diffusion and delivery.

Results and methods

1. Firs	t app	roach
---------	-------	-------

• NMDARs exist as multiple subtypes primarly defined by the type of GluN2 subunits they incorporate. These subtypes have unique biophysical, pharmacological, anatomical and signaling properties.

2. Second approach

A. Decrease in NMDA-EPSC photomodulation with age in pyramidal neurons

B. Decrease in NMDAR tonic current photomodulation age in pyramidal neurons

Conclusion and perspectives

- First opto-chemical tool to selectively target NMDARs containing two GluN2B subunits (2B-diheteromers).
- **Decrease** of **synaptic 2B-dihet.** expression with age (GluN2B→GluN2A switch).
- Extrasynaptic 2B-diheteromers also undergo a developmental regulation of expression.
- In CA1 pyramidal cells,
- At young ages, 2B-dihets are major contributors to NMDAR extrasynaptic currents but minor to synaptic ones.
- At adult ages, 2B-dihets are minor contributors to both NMDAR extrasynaptic and synaptic currents.
- In CA1 SST interneurons, 2B-dihets are minor contributors to both NMDAR extrasynaptic and synaptic currents at all ages (preliminary results).
- → Next: in vivo implementation to address currently debated physiological roles of 2B-dihets and investigate their therapeutic potential.

Acknowledgements and references

- C. Cardoso, J. Lefrançois for genotyping.
 - G. Dugué, A. Mourot, J. Frontera for help with experiments.
- Spectrum Info Ltd for MASp synthesis.
- Institut Clinique de la Souris for generation of Opto2B KI mouse.
- Paoletti lab for help and advice.
- Paoletti, P., Bellone, C. & Zhou, Q. Nat Rev Neurosci 14, 383-400 (2013).
- von Engelhardt, J. et al. Neuron 60, 846-60 (2008).
- Zhou, Q. & Sheng, M. Neuropharmacology 74, 69-75 (2013). Kramer, R.H., Mourot, A. & Adesnik, H. *Nat Neurosci* 16, 816-23 (2013).
- Mony, L., Zhu, S., Carvalho, S. & Paoletti, P. *EMBO J* 30, 3134-46 (2011).
- Berlin, S. et al. Elife 5(2016). Canales, A., et al. Acc Chem Res 51, 829-838 (2018).