Probabilidad Distribución Ordenada *

García Prado, Sergio sergio@garciparedes.me

31 de octubre de 2017

1. Introducción

La distribución ordenada es aquella que surge a partir de un conjunto de variables aleatorias independientes e igualmente distribuidas (v.a.i.i.d. a partir de ahora) sobre las cuales se impone la restricción de orden ascendente entre ellas. De manera matemática, se dice que $X_1, X_2, ..., X_i, ..., X_n$ es un conjunto de v.a.i.i.d. Entonces, la distribución ordenada que surge a partir de estas se denota como $X_{(1)}, X_{(2)}, ..., X_{(i)}, ..., X_{(n)}$, es decir, se añaden paréntesis a los subíndices. Por tanto, la restricción que tiene esta distribución generada respecto de la anterior es el siguiente: $X_{(1)} < X_{(2)} < ... < X_{(i)} < ... < X_{(n)}$.

Cabe destacar que estas variables llevan siguen todas ellas la misma distribución (de ahí el igualmente distribuidas). Esto se puede denotar como $X_i \sim F$ donde F puede ser cualquier distribución. Por tanto, todas las variables poseen la misma función de densidad y de distribución, es decir, $f(x) = f_{X_i}(x) = f_{X_j}(x)$ y $F(x) = F_{X_i}(x) = F_{X_j}(x)$ $\forall i, j \in \{1, ..., n\}$. La propiedad de independencia implica por tanto, que la función de distribución conjunta cumpla la siguiente propiedad: $f(x_1, ..., x_n) = f(x_1) * ... * f(x_n)$. Dichas cualidades serán de utilidad posteriormente.

[TODO]

El resto del trabajo se desarrolla de la siguiente manera: en las sección ?? se demuestra la función de densidad conjunta para el vector $(X_{(1)}, X_{(n)})$, que después se particulariza para el caso $X_i \sim Exp(1)$. En la sección 3 se estudia la distribución del rango $R = X_{(n)} - X_{(1)}$ y se particulariza para el caso exponencial de parámetro $\lambda = 1$ al igual que en la sección anterior. Por último, en la sección 4 se obtienen las distribuciones del rango y la mediana para el caso de que $X_i \sim U\{1,2,3\} \ \forall i \in \{1,...,4\}$ utilizando propiedades de combinatoria.

2. Función de densidad conjunta de la distribución ordenada $(X_{(1)},X_{(n)})$ para variables continuas

[TODO]

$$F_{(X_{(1)},X_{(n)})}(x,y) = \tag{1}$$

$$=P(X_{(1)} < x, X_{(n)} < y) \tag{2}$$

$$=P(X_{(n)} < y) - P(x < X_{(1)}, X_{(n)} < y)$$
(3)

$$=P(X_{(n)} < y) - P(x < X_{(1)} < X_{(n)} < y) \tag{4}$$

$$=P(X_1 < y) * \dots * P(X_n < y) - P(x < X_1 < y) * \dots * P(x < X_n < y)$$
 (5)

$$=F(y) * ... * F(y) - (F(y) - F(x)) * ... * (F(y) - F(x))$$
(6)

$$=F(y)^{n} - (F(y) - F(x))^{n}$$
(7)

 $^{^*\}mathrm{URL}$: https://github.com/garciparedes/probability-ordered-distribution

$$f_{(X_{(1)},X_{(n)})}(x,y) = \tag{8}$$

$$= \frac{\partial^2}{\partial x \partial y} F_{(X_{(1)}, X_{(n)})}(x, y) \tag{9}$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} F(y)^n - (F(y) - F(x))^n \right) \tag{10}$$

$$= \frac{\partial}{\partial x} (n(F(y)^{n-1} * f(y) - (F(y) - F(x))^{n-1} * f(y)))$$
(11)

$$= \frac{\partial}{\partial x} (-n(F(y) - F(x))^{n-1} * f(y))) \tag{12}$$

$$=n(n-1)f(x)f(y)(F(y)-F(x))^{n-2}$$
(13)

2.1. Particularización para $X_i \sim Exp(1)$

$$X_i \sim Exp(1) \tag{14}$$

$$f_{X_i}(x) = e^{-x} \tag{15}$$

$$F_{X_i}(x) = 1 - e^{-x} (16)$$

(17)

$$f_{(X_{(1)},X_{(n)})}(x,y) = \tag{18}$$

$$= n(n-1)f(x)f(y)(F(y) - F(x))^{n-2}$$
(19)

$$=n(n-1)e^{-x}e^{-y}((1-e^{-y})-(1-e^{-x}))^{n-2}$$
(20)

$$=n(n-1)e^{-(x+y)}(e^{-x}-e^{-y})^{n-2}$$
(21)

[TODO]

3. Función de densidad del rango de la distribución ordenada $R=X_{(n)}-X_{(1)}$ para variables continuas

[TODO]

$$T^{-1}: \begin{cases} R = X_{(n)} - X_{(1)} \\ S = X_{(1)} \end{cases} \qquad T: \begin{cases} X_{(1)} = S \\ X_{(n)} = R + S \end{cases}$$
 (22)

$$abs(J) = abs(det(DT)) = abs\left(det\left(\begin{array}{cc} \frac{\partial X_{(1)}}{\partial R} & \frac{\partial X_{(n)}}{\partial R} \\ \frac{\partial X_{(1)}}{\partial S} & \frac{\partial X_{(n)}}{\partial S} \end{array}\right)\right) = abs\left(det\left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right)\right) = |-1| = 1$$
 (23)

$$f_{R,S}(r,s) = \tag{24}$$

$$= f_{(X_{(1)}, X_{(n)})}(s, r+s) \tag{25}$$

$$= n(n-1)f(s)f(r+s)(F(r+s) - F(s))^{n-2}$$
(26)

$$f_R(r) = \tag{27}$$

$$= \int_{-\infty}^{\infty} f_{R,S}(r,s)ds \tag{28}$$

$$= \int_{-\infty}^{\infty} n(n-1)f(s)f(r+s)(F(r+s) - F(s))^{n-2}ds$$
 (29)

$$= n(n-1) \int_{-\infty}^{\infty} f(s)f(r+s)(F(r+s) - F(s))^{n-2} ds$$
 (30)

(31)

3.1. Particularización para $X_i \sim Exp(1)$

[TODO]

$$X_i \sim Exp(1) \tag{32}$$

$$f_{X_i}(x) = e^{-x} \tag{33}$$

$$F_{X_i}(x) = 1 - e^{-x} \tag{34}$$

(35)

$$f_R(r) = \tag{36}$$

$$= \int_{-\infty}^{\infty} f_{R,S}(r,s)ds \tag{37}$$

$$= n(n-1) \int_0^\infty f(s)f(r+s)(F(r+s) - F(s))^{n-2} ds$$
 (38)

$$= n(n-1) \int_0^\infty e^{-s} e^{-(r+s)} ((1 - e^{-(r+s)}) - (1 - e^{-s}))^{n-2} ds$$
 (39)

$$=n(n-1)e^{-r}\int_0^\infty e^{-2s}(e^{-s}-e^{-(r+s)})^{n-2}ds$$
(40)

$$=(n-1)e^{-r}e^{-r(-2+n)}(e^r-1)^{-2+n}$$
(41)

$$=(n-1)e^{-2r(-2+n)r}(e^r-1)^{-2+n}$$
(42)

4. Distribuciones del rango y la mediana para la distribución ordenada generada por $X_i \sim U\{1,2,3\} \ \forall i \in \{1,...,4\}$

[TODO]

4.1. Rango

$$X_{(1)} = 1, X_{(4)} = 1 \Rightarrow \frac{1}{81}$$

$$1111 \to 1$$

$$X_{(1)} = 1, X_{(4)} = 2 \Rightarrow \frac{14}{81}$$

$$1112 \to \frac{4!}{3!1!} = 4$$

$$1122 \to \frac{4!}{2!2!} = 6$$

$$1222 \to \frac{4!}{3!1!} = 4$$

$$X_{(1)} = 1, X_{(4)} = 3 \Rightarrow \frac{50}{81}$$

$$1113 \rightarrow \frac{4!}{3!1!} = 4$$

$$1133 \rightarrow \frac{4!}{2!2!} = 6$$

$$1333 \rightarrow \frac{4!}{3!1!} = 4$$

$$1123 \rightarrow \frac{4!}{2!} = 12$$

$$1223 \rightarrow \frac{4!}{2!} = 12$$

$$1233 \rightarrow \frac{4!}{2!} = 12$$

$$1233 \rightarrow \frac{4!}{2!} = 12$$

$$1233 \rightarrow \frac{4!}{2!} = 12$$

$$X_{(1)} = 2, X_{(4)} = 2 \Rightarrow \frac{1}{81}$$

$$2222 \rightarrow 1$$

$$X_{(1)} = 2, X_{(4)} = 3 \Rightarrow \frac{14}{81}$$

$$2223 \rightarrow \frac{4!}{3!1!} = 4$$

$$2233 \rightarrow \frac{4!}{2!2!} = 6$$

$$2333 \rightarrow \frac{4!}{2!2!} = 6$$

$$2333 \rightarrow \frac{4!}{3!1!} = 4$$

$$X_{(1)} = 3, X_{(4)} = 3 \Rightarrow \frac{1}{81}$$

$$3333 \rightarrow 1$$

$X_{(1)}, X_{(4)}$	1	2	3	
1	$\frac{1}{81}$	$\frac{14}{81}$	$\frac{50}{81}$	65 81 15 81
2	0	$\frac{1}{81}$	$\frac{14}{81}$	$\frac{15}{81}$
3	0	0	$\frac{1}{81}$	$\frac{1}{81}$
	$\frac{1}{81}$	$\frac{15}{81}$		1

Tabla 1

Valores	0	1	2
Probabilidad	$\frac{3}{81}$	$\frac{28}{81}$	$\frac{50}{81}$

Tabla 2

4.2. Mediana

$X_{(2)}, X_{(3)}$	1	2	3	
1	$\frac{9}{81}$	$\frac{18}{81}$	$\frac{6}{81}$	$\frac{39}{81}$
2	0	$\frac{21}{81}$	$\frac{\frac{18}{81}}{\frac{9}{9}}$	$\frac{\frac{27}{81}}{\frac{9}{21}}$
3	0	0	$\frac{9}{81}$	$\frac{9}{81}$
	$\frac{9}{81}$	$\frac{27}{81}$	$\frac{39}{81}$	1

Tabla 3

$$X_{(2)} = 1, X_{(3)} = 1 \Rightarrow \frac{9}{81}$$

$$1111 \rightarrow 1$$

$$1112 \rightarrow \frac{4!}{3!1!} = 4$$

$$1113 \rightarrow \frac{4!}{3!1!} = 4$$

$$X_{(2)} = 1, X_{(3)} = 2 \Rightarrow \frac{18}{81}$$

$$1123 \rightarrow \frac{4!}{2!} = 12$$

$$1122 \rightarrow \frac{4!}{2!2!} = 6$$

$$X_{(2)} = 1, X_{(3)} = 3 \Rightarrow \frac{6}{81}$$

$$1133 \rightarrow \frac{4!}{2!2!} = 6$$

$$X_{(2)} = 2, X_{(3)} = 2 \Rightarrow \frac{21}{81}$$

$$2222 \rightarrow 1$$

$$2223 \rightarrow \frac{4!}{3!1!} = 4$$

$$1222 \rightarrow \frac{4!}{3!1!} = 4$$

$$1223 \rightarrow \frac{4!}{2!} = 12$$

$$X_{(2)} = 2, X_{(3)} = 3 \Rightarrow \frac{18}{81}$$

$$1233 \rightarrow \frac{4!}{2!} = 12$$

$$2233 \rightarrow \frac{4!}{2!2!} = 6$$

$$X_{(2)} = 3, X_{(3)} = 3 \Rightarrow \frac{9}{81}$$

$$3333 \rightarrow 1$$

$$1333 \rightarrow \frac{4!}{3!1!} = 4$$

$$2333 \rightarrow \frac{4!}{3!1!} = 4$$

Tabla 4

Referencias

[1] Rodríguez del Tío, M. P. Probabilidad, 2017/18.