Modelos Estatísticos I Modelos para desfecho contínuo

Leo Bastos – leonardo.bastos@fiocruz.br

PROCC - Fundação Oswaldo Cruz

https://github.com/lsbastos/eae2

Outline

- Modelo linear múltiplo
- 2 Análise de resíduos
- 3 Comparação de modelos
 - ANOVA
 - Critério de informação
- 4 Revisitando outros exemplos

O modelo linear múltiplo

- Vamos assumir que temos duas ou mais variáveis explicativas.
- Seja Y um desfecho contínuo avaliado em n observações independentes, e de forma geral p variáveis explicativas X, ou seja,

$$Y_i \mid X_i \sim N(\mu_i, \sigma^2), \quad i = 1, 2, ..., n,$$

 $\mu_i = \alpha + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \cdots + \beta_p X_{p,i}.$

Isso é o mesmo que escrever

$$Y_i = \alpha + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \dots + \beta_p X_{p,i} + \epsilon_i$$
 onde $\epsilon_i \sim N(0, \sigma^2)$, e $\epsilon_i \perp \epsilon_j$, $\forall i \neq j$.

Exemplo do peso dos ratinhos

- Considere um estudo realizado para avaliar a eficiência de ração no ganho de peso de ratos.
- Seja Y peso (em g) de 45 ratos com 20 dias de idade alimentados a partir do desmame por duas semanas com uma das três marcas diferentes de ração.
- Os ratos também pertencem a 3 linhagens distintas.

Visualisando os dados

ANOVA

Visualisando os dados

ANOVA

Visualisando os dados

ANOVA

```
> summary(aov(Peso ~ Racao + Linhagem, data = racao))

Df Sum Sq Mean Sq F value Pr(>F)

Racao 2 394.0 197.0 54.19 5.51e-12 ***

Linhagem 2 2492.7 1246.3 342.87 < 2e-16 ***

Residuals 39 141.8 3.6

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1 observation deleted due to missingness
```


O modelo

 O modelo que incorpora a exposição e controla pela linhagem é dado por

$$Y_{i} \sim N(\mu_{i}, \sigma^{2}), \quad i = 1, 2, ..., 45,$$

 $\mu_{i} = \alpha + \beta_{2} X_{1,i}^{(NovaAu)} + \beta_{3} X_{1,i}^{(NovaIr)} + \beta_{3} X_{2,i}^{(ALOX5)} + \beta_{2} X_{2,i}^{(Swiss)}$

onde X_1 é o efeito da ração, e X_2 é o efeito da linhagem.

• A notação no R seria: Peso ~ Racao + Linhagem

O modelo no R

```
> modelo <- lm(Peso ~ Racao + Linhagem, data = racao)</pre>
> summary(modelo)
Call:
lm(formula = Peso ~ Racao + Linhagem, data = racao)
Residuals:
   Min
           10 Median
                          30
                                 Max
-4.0292 -1.3412 0.1531 1.4275 3.7783
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.4941
                         0.7533 25.879 < 2e-16 ***
RacaoNovaIr -4.8073
                         0.6962 -6.905 2.89e-08 ***
RacaoNovaAuto -6.7749 0.7087 -9.560 9.02e-12 ***
LinhagemALOX 5 -1.5100 0.8988 -1.680 0.101
LinhagemSwiss 14.5277
                         0.7375 19.698 < 2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

A partir da saída

Em média

- os ratos da linha 129 PAS tratados com a ração controle pesam 19.5g.
- as duas rações, Nova Irradiada e Nova autoclavada, reduzem o peso médio em 4.8 e 6.8g respectivamente quando comparadas ao controle.
- a linhagem ALOX 5 não difere estatísticamente da 129 PAS. No entanto, a linhagem Swiss em média pesa 14.5g a mais que a 129 PAS.

Análise de resíduos

- Quais forma as suposições assumidas para o modelo anterior?
 - Normalidade
 - Independência
 - Variância constante
- Será que elas são válidas?
- Como podemos checar?

Análise de resíduos

Vamos definir os resíduos do modelo como

$$e_i = Y_i - \hat{Y}_i$$

Por construção, a distribuição dos resíduos é

$$e_i \sim N(0, \sigma^2), \quad \forall i \quad e_i \perp e_i \forall i \neq j$$

Podemos então olhar estatísticas descritivas dos resíduos

Suposição de normalidade

> hist(modelo\$residuals, col = 2)

Histogram of modelo\$residuals

Suposição de normalidade

> qqnorm(modelo\$residuals)

Suposição de normalidade

Podemos testar a hipótese de normalidade usando o teste de Shapiro-Wilks

```
 \begin{cases} H_0: & \text{as observações seguem uma distribuição normal}(\mu,\sigma^2) \\ H_1: & \text{as observações seguem outra distribuição}. \end{cases}
```

> shapiro.test(modelo\$residuals)

Shapiro-Wilk normality test

data: modelo\$residuals

W = 0.9773, p-value = 0.5292

Variância constante (e padrões não-lineares)

Faz-se um scatter plot dos resíduos versus a ordem dos dados, e espera-se que a variância não tenha um padrão bem definido > plot(modelo\$residuals)

Análise de resíduos (resumo)

- A análise de resíduos consite em um conjunto de estatísticas descritivas associadas aos resíduos de um modelo ajustado.
- A analise de resíduos deve ser realizada sempre que um modelo linear for ajustado e os coeficientes testados (teste de Wald H_0 : $\beta_k = 0$ versus H_1 : $\beta_k \neq 0$).
- As principais suposições de um modelo linear são
 - Normalidade (que pode ser relaxada se a amostra for grande)
 - Variância constante (Homocedasticidade)
 - Independência
- A análise de resíduos pode se estender ad infinitum, pois podemos testar a influencia de outras variáveis, formas não lineares, presença de outlier, etc. (Ler capítulos 8 e 9 do open statistics 4th ed.)

Comparação de modelos

Suponha agora que gostaríamos de ajustas difentes modelos:

```
> modeloR <- lm(Peso ~ Racao, data = racao)</pre>
```

```
> modeloL <- lm(Peso ~ Linhagem, data = racao)</pre>
```

```
> modelo <- lm(Peso ~ Racao + Linhagem, data = racao)
```

> modeloRL <- lm(Peso ~ Racao * Linhagem, data = racao)

Comparação de modelos

- Como podemos comparar diferentes modelos?
- Se os modelos forem aninhados* podemos usar a ANOVA no modelo mais completo
- Outra forma de comparar modelos é usando critérios de informação.

Testando a interação

No modelo mais completo temos o termo de interação Racao: Linhagem, podemos testar se algum dos termos da interação é significativo

Estimate Std. Error t value Pr(>|t|)

```
> summary(modeloRL)
Call:
```

```
lm(formula = Peso ~ Racao * Linhagem, data = racao)
Residuals:
   Min
            10 Median
                            30
                                   Max
-3.5889 -1.2083 0.1174 1.4931 4.0111
```

Coefficients:

```
(Intercept)
                            19.9867
                                       1.0700 18.679 < 2e-16 ***
RacaoNovaIr
                            -3.9567
                                       1.5132
                                               -2.615
                                                       0.0131 *
RacaoNovaAuto
                            -9.1033
                                       1.5132 -6.016 7.36e-07 ***
LinhagemALOX 5
                            -1.7967
                                       1.5132 -1.187
                                                       0.2431
LinhagemSwiss
                            13.8022
                                       1.2355 11.171 4.33e-13 ***
RacaoNovaIr:LinhagemALOX 5
                            -1.3900
                                       2.1400 -0.650
                                                       0.5202
RacaoNovaAuto:LinhagemALOX 5
                             2.2500
                                       2.1400 1.051
                                                       0.3003
RacaoNovaIr:LinhagemSwiss
                                       1.7473 -0.546
                                                       0.5884
                            -0.9544
RacaoNovaAuto:LinhagemSwiss
                             3.2019
                                       1.7609
                                                1.818
                                                       0.0776 .
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

FIOCRUZ

Testando a interação

Testando usando a ANOVA de modelos, partindo do modelo nulo até o modelo completo

```
> anova(modeloRL)
Analysis of Variance Table
```

Response: Peso

```
Df Sum Sq Mean Sq F value Pr(>F)
Racao 2 393.98 196.99 57.3526 9.006e-12 ***
Linhagem 2 2492.67 1246.33 362.8666 < 2.2e-16 ***
Racao:Linhagem 4 21.55 5.39 1.5688 0.2043
Residuals 35 120.21 3.43
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Cada linha testa a igualdade do modelo anterior (o primeiro é o modelo nulo, i.e. $Y\sim 1$) e o modelo com a adição da variável daquela linha.

Testando a interação

Note que a ordem de entrada das covariáveis do modelo é importante

Dica: Se for usar esse recurso, inclua a sua exposição de interesse primeiro.

Podemos comparar dois modelos

```
> anova(modeloR, modeloRL)
Analysis of Variance Table
Model 1: Peso ~ Racao
Model 2: Peso ~ Racao * Linhagem
    Res.Df    RSS Df Sum of Sq    F    Pr(>F)
1     41 2634.43
2     35 120.21 6    2514.2 122 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1</pre>
```


Critério de informação

- O método da ANOVA para comparar modelos funciona bem para comparar modelos lineares alinhados
- Uma abordagem mais geral, é baseada em critérios de informação
- Os critérios de informação são construídos a partir da função de desvio (deviance)
- ullet Essa função é dada por $-2\log_e\hat{L}$, \hat{L} é a verossimilhança ajustada
- Para o modelo linear a função desvio é dada por:

$$-2\log_{e}\hat{L} = n\log(2\pi\hat{\sigma}^{2}) + \frac{1}{\hat{\sigma}^{2}}\sum_{i}(y_{i} - \hat{y}_{i})^{2}$$

Critério de informação

- Se compararmos a função desvio de dois modelos com o mesmo tamanho de amostra, temos que aquele com o menor valor é o melhor ajustado.
- No entanto, modelos com muitos parâmetros acabam sendo beneficiados. (overfitting)
- O critério de informação mais famoso foi proposto por Akaike (1974)

$$AIC = 2p - 2\log_e \hat{L}$$

onde p é o número de parâmetros

• Outro critério também popular é o BIC, proporto por Schwarz (1978)

$$BIC = p \log_e n - 2 \log_e \hat{L}$$

• Ambos critérios penalizam modelos com mais parâmetros

Critérios de informação no R

- Os critérios de informação apresentados estão implementados no R
- As funções associadas se aplicam ao objeto do modelo ajustado
- No exemplo:
- > AIC(modelo)
- [1] 188.3463
- > BIC(modelo)
- [1] 199.0515

Critérios de informação no R

	df	AIC	BIC
modeloR	4.00	312.92	320.06
modeloL	4.00	239.57	246.71
modelo	6.00	188.35	199.05
modeloRL	10.00	189.09	206.93

Exemplo SHHS

- Seja uma amostra de 150 participantes do SHHS (Scotish Heart Health Study), e desejamos ver como o IMC depende do histórico de tabagismo e do sexo.
- O desfecho é será o IMC (kg/m^2) , e as explicativas são sexo (duas categorias) e tabagismo (3 categorias)
- Teremos quatro modelos candidatos:

 - 2 IMC versus tabagismo $(X_2 = \{\text{current}, \text{ex}, \text{never}\})$
 - 3 IMC versus sexo e tabagismo
 - 4 IMC versus sexo, tabagismo, e sua interação

$$Y_i \mid X_i \sim N(\mu_i, \sigma^2), \quad i = 1, 2, ..., 150, \quad Y_i \perp Y_j, \forall i \neq j,$$

 $\mu_i = \alpha + \beta_1 X_{1,i}^{(2)}.$

onde $X_1^{(1)}$ é a categorias de referência de sexo.

$$Y_i \mid X_i \sim N(\mu_i, \sigma^2), \quad i = 1, 2, ..., 150, \quad Y_i \perp Y_j, \forall i \neq j,$$

 $\mu_i = \alpha + \beta_2 X_{2,i}^{(2)} + \beta_3 X_{2,i}^{(3)}.$

onde $X_2^{(1)}$ é a categoria de referência de tabagismo.

$$Y_i \mid X_i \sim N(\mu_i, \sigma^2), \quad i = 1, 2, ..., 150, \quad Y_i \perp Y_j, \forall i \neq j,$$

 $\mu_i = \alpha + \beta_1 X_{1,i}^{(2)} + \beta_2 X_{2,i}^{(2)} + \beta_3 X_{2,i}^{(3)}.$

$$Y_i \mid X_i \sim N(\mu_i, \sigma^2), \quad i = 1, 2, ..., 150, \quad Y_i \perp Y_j, \forall i \neq j,$$

 $\mu_i = \alpha + \beta_1 X_{1,i}^{(2)} + \beta_2 X_{2,i}^{(2)} + \beta_3 X_{2,i}^{(3)} + \beta_4 X_{1,i}^{(2)} X_{2,i}^{(2)} + \beta_5 X_{1,i}^{(2)} X_{2,i}^{(3)}.$

```
> (modelo4.shhs <- lm(BMI ~ Sex * Smoking, data = SHHS))
```

Call:

lm(formula = BMI ~ Sex * Smoking, data = SHHS)

Coefficients:

 (Intercept)
 SexF
 Smokingex
 Smokingnever

 25.5287
 -2.2954
 1.3009
 1.3722

SexF:Smokingex SexF:Smokingnever 0.8008 2.1348

Escolhendo modelo via ANOVA

Escolhendo modelo via critérios de informação

	df	AIC	BIC
modelo1.shhs	3.00	802.10	811.13
modelo2.shhs	4.00	795.19	807.23
modelo3.shhs	5.00	791.18	806.23
modelo4.shhs	7.00	792.37	813.44

Análise de resíduos

hist(modelo3.shhs\$residuals)

Histogram of modelo3.shhs\$residuals

Análise de resíduos

> plot(modelo3.shhs\$residuals)

Modelo final

Call:

Residuals:

> summary(modelo3.shhs)

Leo Bastos (Fiocruz)

lm(formula = BMI ~ Sex + Smoking, data = SHHS)

```
10 Median 30
   Min
                                Max
-9.5618 -2.1509 -0.2218 1.9846 9.4236
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 25.1118
                       0.5071 49.522 < 2e-16 ***
          -1.3400 0.5486 -2.443 0.015779 *
SexF
Smokingex 1.6545 0.6707 2.467 0.014785 *
Smokingnever 2.4829 0.6498 3.821 0.000196 ***
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
Residual standard error: 3.315 on 146 degrees of freedom
```

Multiple R-squared: 0.1177, Adjusted R-squared: 0.09966RUZ vic. 6 492 on 3 and 146 DE n value. 0 0003737 Modelos Estatísticos I

Epidemiologia/Fiocruz 2024

44 / 73

Exemplo: DMFT

DMFT versus consumo de açucar e tipo de país

$$Y_i \mid X_i \sim N(\mu_i, \sigma^2), \quad i = 1, 2, ..., n, \quad Y_i \perp Y_j, \forall i \neq j,$$

 $\mu_i = \alpha + \beta_1 X_{1,i} + \beta_2 X_{2,i}.$

- n = 90 países
- X_1 é o consumo de açucar (kg per capita / ano)
- X₂ é a classificação do país

$$X_2 = \left\{ egin{array}{ll} 1 & ext{se país industrializado,} \\ 0 & ext{se país em desenvolvimento.} \end{array}
ight.$$

Exemplo: DMFT versus consumo de açucar

Quatro modelos distintos

• Modelo 1:

$$\mathbb{E}[\mathit{DFMT}] = \alpha + \beta_1 \mathsf{Consumo}$$

• Modelo 2:

$$\mathbb{E}[DFMT] = \alpha + \beta_1 \mathsf{Consumo} + \beta_2 \mathsf{Pais}$$

Modelo 3:

$$\mathbb{E}[DFMT] = \alpha + \beta_1 \mathsf{Consumo} + \beta_3 \mathsf{Consumo}$$
:Pais

Modelo 4:

$$\mathbb{E}[\mathit{DFMT}] = \alpha + \beta_1 \mathsf{Consumo} + \beta_2 \mathsf{Pais} + \beta_3 \mathsf{Consumo} : \mathsf{Pais}$$

Ajuste dos modelos no R

```
> # Modelo ignorando o tio de país
> modelo1 <- lm(DMFT ~ Consumo, data = dmft)</pre>
> #
> # Modelo variando intercepto
> modelo2 <- lm(DMFT ~ Consumo + Pais, data = dmft)</pre>
> #
> # Modelo variando slope
> modelo3 <- lm(DMFT ~ Consumo + Consumo:Pais,</pre>
                 data = dmft
+
> #
> # Modelo variando intercepto e slope
> modelo4 <- lm(DMFT ~ Consumo + Pais + Consumo:Pais,
                 data = dmft
+
```


	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.2966	0.3062	4.23	0.0001
Consumo	0.0451	0.0089	5.06	0.0000

> AIC(modelo1)

[1] 319.3474

> BIC(modelo1)

[1] 326.8468

51 / 73

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.6774	0.4998	3.36	0.0012
Consumo	0.0403	0.0102	3.94	0.0002
PaisEm desenvolvimento	-0.3479	0.3608	-0.96	0.3375

> AIC(modelo2)

[1] 320.3903

> BIC(modelo2)

[1] 330.3895

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.3211	0.3129	4.22	0.0001
Consumo	0.0464	0.0094	4.92	0.0000
Consumo:PaisEm desenvolvimento	-0.0038	0.0087	-0.43	0.6680

> AIC(modelo3)

[1] 321.156

> BIC(modelo3)

[1] 331.1552

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3.9086	1.2865	3.04	0.0032
Consumo	-0.0131	0.0301	-0.43	0.6658
PaisEm desenvolvimento	-2.7439	1.3248	-2.07	0.0413
Consumo:PaisEm desenvolvimento	0.0600	0.0320	1.88	0.0638

> AIC(modelo4)

[1] 318.7751

> BIC(modelo4)

[1] 331.2742

Análise de resíduos do Modelo 4

Histogram of modelo4\$residuals

Análise de resíduos

Análise de resíduos

Quatro modelos distintos na escala do log

• Modelo 1:

$$\log(\mathbb{E}[DFMT]) = \alpha + \beta_1 \mathsf{Consumo}$$

Modelo 2:

$$\log(\mathbb{E}[DFMT]) = \alpha + \beta_1 \mathsf{Consumo} + \beta_2 \mathsf{Pais}$$

• Modelo 3:

$$log(\mathbb{E}[DFMT]) = \alpha + \beta_1 Consumo + \beta_3 Consumo: Pais$$

Modelo 4:

$$log(\mathbb{E}[DFMT]) = \alpha + \beta_1 Consumo + \beta_2 Pais + \beta_3 Consumo: Pais$$

Ajuste dos modelos no R

```
> # Modelo ignorando o tio de país
> modelo1 <- lm(log(DMFT) ~ Consumo, data = dmft)</pre>
> #
> # Modelo variando intercepto
> modelo2 <- lm(log(DMFT) ~ Consumo + Pais, data = dmft)</pre>
> #
> # Modelo variando slope
> modelo3 <- lm(log(DMFT) ~ Consumo + Consumo:Pais,</pre>
                 data = dmft
+
> #
> # Modelo variando intercepto e slope
> modelo4 <- lm(log(DMFT) ~ Consumo + Pais + Consumo:Pais,</pre>
                 data = dmft)
+
```


	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.1511	0.1229	1.23	0.2221
Consumo	0.0212	0.0036	5.92	0.0000

> AIC(modelo1)

[1] 155.0517

> BIC(modelo1)

[1] 162.5512

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.3736	0.1994	1.87	0.0644
Consumo	0.0184	0.0041	4.50	0.0000
PaisEm desenvolvimento	-0.2032	0.1439	-1.41	0.1616

> AIC(modelo2)

[1] 155.0132

> BIC(modelo2)

[1] 165.0125

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.1691	0.1253	1.35	0.1806
Consumo	0.0221	0.0038	5.85	0.0000
Consumo:PaisEm desenvolvimento	-0.0028	0.0035	-0.79	0.4327

> AIC(modelo3)

[1] 156.4114

> BIC(modelo3)

[1] 166.4106

	Estimate	Std. Error	t value	Pr(> t)
	LStilliate	Stu. Liftor	t value	F1(> L)
(Intercept)	1.3871	0.5102	2.72	0.0079
Consumo	-0.0059	0.0120	-0.49	0.6241
PaisEm desenvolvimento	-1.2916	0.5254	-2.46	0.0160
Consumo:PaisEm desenvolvimento	0.0273	0.0127	2.15	0.0343

> AIC(modelo4)

[1] 152.2993

> BIC(modelo4)

[1] 164.7983

Análise de resíduos do Modelo 1

Histogram of modelo4\$residuals

Análise de resíduos

Melhorou?

Resumo

- Análise de resíduos do modelo linear
 - Normalidade (histograma ou qqplot dos resíduos)
 - Independência (resíduos versus ordem dos dados)
 - Variancia constante (resíduos versus ordem dos dados)
- Comparação de modelos
 - ANOVA
 - Critérios de informação
- Aula prática
 - Replicar os exemplos da aula e outros
 - Veremos métodos de seleção de variáveis

