In the Claims

Please amend the Application as follows:

- 1. Canceled
- 2. Canceled
- 3. Canceled
- 4. Canceled
- 5. Canceled
- 6. Canceled
- 7. Canceled
- 8. Canceled
- 9. Canceled
- 10. Canceled
- 11. Canceled
- 12. Canceled
- 13. Canceled
- 14. Canceled
- 15. Canceled
- 16. Canceled
- 17. Canceled
- 18. Canceled
- 19. Canceled
- 20. Canceled
- 21. Canceled
- 22. Canceled
- 23. Canceled

24. (Currently Amended) A compound of the formula III

in which

- A is a C_1 - C_3 C_2 chain wherein each carbon atom is optionally substituted with one or two members selected from the group consisting of C_1 - C_4 -alkyl, OH, $O-C_1-C_4$ -alkyl, CO_2H , $CO_2-C_1-C_4$ -alkyl and phenyl or one C atom may also carry an =O group;
- X is selected from the group consisting of S, O and NH; and
- R¹ iodine, branched and unbranched C₁-C₆-alkyl, OH, nitro, CF₃, CN, NR¹¹R¹² is selected from the group consisting of hydrogen, chlorine, fluorine, bromine, NH-CO-R¹³, and O-C₁-C₄-alkyl, where R¹¹ and R¹² are, independently of one another, hydrogen or C₁-C₄-alkyl, and R¹³ is hydrogen, C₁-C₄-alkyl, C₁-C₄-alkyl-phenyl or phenyl;

excluding the compounds

9-amino-3-methyl-1,2,3,4-tetrahydro-5H1,4-benzodiazepin-5-one,

9-amino-3-methyl-3,4-dihydro-1H-1,4-benzodiazepine-2,5-dione,

6,8-diamino-2,4(1H,3H)-quinazolinedione,

8-amino-2,4-(1H,3H)-quinazolinedione,

and the salts thereof.

25. (Currently Amended) A process for preparing compounds of claim 24 wherein 2-halo-3-nitrobenzoic esters are reacted with a suitable diamine in a polar

solvent in the presence of a base, and then the nitro group is hydrogenated with hydrogen in the presence of a suitable catalyst.

- 26. Canceled
- 27. (Currently Amended) A compound of the formula I

$$R^1$$
 R^1
 R^1

in which

A is a C_4 - C_3 C_2 chain where each carbon atom is optionally substituted with one or two substituents selected from the group consisting of C_1 - C_4 -alkyl, OH, O- C_1 - C_4 -alkyl, COOH, COO- C_1 - C_4 -alkyl and phenyl or one C atom may also carry an =O group;

X¹ is selected from the group consisting of S, O and NH;

- R¹ is selected from the group consisting of hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched C₁-C₆-alkyl, OH, nitro, CF₃, CN, NR¹¹R¹², NH-CO-R¹³ and O-C₁-C₄-alkyl, where R¹¹ and R¹² are, independently of one another, hydrogen or C₁-C₄-alkyl, and R¹³ is hydrogen, C₁-C₄-alkyl, C₁-C₄-alkyl-phenyl or phenyl;
- B is piperidine or piperazine, which is optionally substituted by one R⁴ or a maximum of two R⁵;

 R^4 is hydrogen or $-(D)_p-(E)_s-(F^1)_q-G^1-(F^2)_r-(G^2)-G^3$, where

D is S, NR⁴³ or O

E is selected from the group consisting of phenyl, C=O
-SO₂-, -SO₁NH-, -NHCO-, -CONH-, HNSO₂-, and -NHCOCH₂X⁴-;

 X^4 is S, O or NH;

- F¹ is a straight-chain or branched saturated or unsaturated carbon chain of 1 to 8 C atoms;
- F^2 has, independently of F^1 , the same meaning as F^1 ;
- G¹ is a bond or an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring with a maximum of 15 carbon atoms, or an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring with a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms or 0 to 2 sulfur atoms, each of which is optionally substituted by maximum of 3 different or identical R⁵ radicals, and one or two carbon or sulfur atoms may also carry one or two =O groups;

 G^2 is $NR^{41}R^{42}$,

or a bond;

- G³ is an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring with a maximum of 15 carbon atoms or an unsaturated, saturated or partially unsaturated mono-, bi- or tricyclic ring with a maximum of 14 carbon atoms and 0 to 5 nitrogen atoms, 0 to 2 oxygen atoms or 0 to 2 sulfur atoms each of which is optionally substituted by a maximum of 3 different or identical R⁵ radicals, and one or two carbon or sulfur atoms may also carry one or two =O groups, or hydrogen;
- p is 0 or 1;
- s is 0 or 1;
- q is 0 or 1;
- r is 0 or 1;

- R⁴¹ is selected from the group consisting of hydrogen, C₁-C₆-alkyl, where each carbon atom is optionally substituted with a maximum of two R⁶ radicals, phenyl which is optionally substituted with a maximum of two R⁶ radicals, and (CH₂)_t-K;
- R^{42} is selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, CO- R^8 , CO_2 - R^8 , SO_2 NH₂, SO_2 - R^8 , -(C=NH)- R^8 and -(C=NH)-NHR⁸;
- R⁴³ is hydrogen or C₁-C₄-alkyl;
- t is 1, 2, 3 or 4;
- K is selected from the group consisting of NR¹¹R¹², NR¹¹-C₁-C₄-alkyl-phenyl, pyrrolidine, piperidine 1,2,5,6-tetra-hydropyridine, morpholine, homopiperidine, piperazine which is optionally substituted by an C₁-C₆-alkyl radical, and homopiperazine which is optionally substituted by an C₁-C₆-alkyl radical;
- is selected from the group consisting of hydrogen, chlorine, fluorine, bromine, iodine, OH, nitro, CF₃, CN, NR¹¹R¹², NH-CO-R¹³, C₁-C₄-alkyl-CO-NH-R¹³, COR⁸, C₀-C₄-alkyl-O-CO-R¹³, C₁-C₄-alkyl-phenyl, phenyl, CO₂-C₁-C₄-alkyl, and branched and unbranched C₁-C₆-alkyl, O-C₁-C₄-alkyl or S-C₁-C₄-alkyl wherein each C atom of the alkyl chains is optionally substituted with a maximum of two R⁶ radicals, and the alkyl chains are optionally unsaturated;
- R⁶ is selected from the group consisting of hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched C₁-C₆-alkyl, OH, nitro, CF₃, CN, NR¹¹R¹², NH-CO-R¹³ and O-C₁-C₄-alkyl;
- R⁷ is selected from the group consisting of hydrogen, C₁-C₆-alkyl, phenyl wherein the ring is optionally substituted by up to two R⁷¹ radicals, an amine NR¹¹R¹² or a cyclic saturated amine which has 3 to 7 members and is optionally substituted by a C₁-C₆ alkyl radical, and homopiperazine which is optionally substituted by a C₁-C₆ alkyl radical;
- where the radicals R¹¹, R¹² and R¹³ in K, R⁵, R⁶ and R⁷ may, independently of one another, assume the same meaning as for R¹;

- R⁷¹ is selected from the group consisting of OH, C₁-C₆-alkyl, O-C₁-C₄-alkyl, chlorine, bromine, iodine, fluorine, CF₃, nitro and NH₂;
- R⁸ is selected from the group consisting of C₁-C₆-alkyl, CF₃, phenyl and C₁-C₄-alkyl-phenyl wherein the phenyl ring is optionally substituted by up to two R⁸¹ radicals;
- R⁸¹ is selected from the group consisting of OH, C₁-C₆-alkyl, O-C₁-C₄-alkyl, chlorine, bromine, iodine, fluorine, CF₃, nitro and NH₂;
- R⁹ is selected from the group consisting of hydrogen, C₁-C₆-alkyl, C₁-C₄-alkyl-phenyl, CO₂-C₁-C₄-alkyl-phenyl, CO₂-C₁-C₄-alkyl, SO₂-phenyl, COR⁸ and phenyl wherein the phenyl rings are optionally substituted by up to two R⁹¹ radicals; and
- R⁹¹ is selected from the group consisting of OH, C₁-C₆-alkyl, O-C₁-C₄-alkyl, chlorine, bromine, iodine, fluorine, CF₃, nitro and NH₂

its tautomeric forms, possible enantiomeric and diastereomeric forms, and prodrugs thereof.

- 28. (Previously Presented) A compound of the formula I as claimed in claim 27, where
 - A is a C₂ chain which is optionally substituted,
 - X^1 is O, and
 - R¹ is hydrogen.
- 29. (Previously Presented) A compound of the formula I as claimed in claim 27, where
 - R^4 is hydrogen or $D_{0,1}$ - $F^1_{0,1}$ - G^2 - G^3 where G^3 is hydrogen,
 - D is O, and NR^{43} , where R^{43} is hydrogen or C_1 - C_3 -alkyl and
 - F^1 is C_2 - C_4 -alkyl.
- 30. (Previously Presented) A compound selected from the group

consisting of 2-(6-nitro-1,3-benzodioxol-5 ył)-5,6-dihydroimidazo[4,5,1-jk][1,4]benzodiazepin-7(4H)-one, 2-(2,3-dihydro-1,3-benzodioxin-6-yl)-5,6-dihydroimidazo[4,5,1-jk][1,4]benzodiazepin-7(4H)-one, 2-(1,3-benzodioxol-5-yl)-5,6-dihydroimidazo[4,5,1-jk][1,4]benzodiazepin-7(4H)-one, 2-(2,5-dimethoxytetrahydro-3-furanyl)-5,6-dihydroimidazo[4,5,1-jk][1,4]benzodiazepin-7(4H)-one, 2-(2,3-diyhdro-1-benzofuran-5-yl)-5,6-dihydroimidazo[4,5,1-jk][1,4]benzodiazepin-7(4H)-one, and 2-(6-chloro-1,3-benzodioxol-5-yl)-5,6-dihydroimidazo[4,5,1-jk][1,4]benzodiazepin-7(4H)-one

its tautomeric forms, possible enantiomeric and diastereomeric forms, and prodrugs thereof.

- 31. (Previously Presented) A pharmaceutical composition comprising one or more compounds as claimed in claim 27 in addition to conventional carriers and excipients.
- 32. (Previously Presented) A method of treating patients having disorders characterized by elevated PARP comprising administering a therapeutically effective amount of a compound of claim 27 to the patient.
- 33. (Previously Presented) The method of claim 32 wherein the disorders are neurodegenerative disorders or neuronal damage.
- 34. (Previously Presented) The method of claim 32 wherein the disorders are neurodegenerative disorders or neuronal damage caused by ischemia, trauma or massive bleeding.
- 35. (Previously Presented) The method of claim 32 wherein the disorders are stroke or craniocerebral trauma.
 - 36. (Previously Presented) The method of claim 32 wherein the disorders

are Alzheimer's disease, Parkinson's disease or Huntington's disease.

- 37. (Previously Presented) The method of claim 32 wherein the disorders are due to ischemias.
- 38. (Previously Presented) The method of claim 32 wherein the disorders are epilepsies.
- 39. (Previously Presented) The method of claim 38 wherein the epilepsies are petit mal seizures, tonoclonic seizures, temporal lobe seizures or complex partial seizures.
- 40. (Previously Presented) The method of claim 32 wherein the disorders result from damage to the kidneys after renal ischemia, damage caused by drug therapy or kidney transplants.
- 41. (Previously Presented) The method of claim 32 wherein the disorders result from damage to the heart following cardiac ischemia.
- 42. (Previously Presented) The method of claim 32 wherein the disorders result from microinfarcts.
- 43. (Previously Presented) The method of claim 42 wherein the microinfarcts result from heart valve replacement, aneurysm resections or heart transplants.
- 44. (Previously Presented) The method of claim 32 wherein the disorders result from revascularization of critically narrowed coronary arteries.

- 45. (Previously Presented) The method of claim 32 wherein the disorders result from PTCA, bypass operations or critically narrowed peripheral arteries.
- 46. (Previously Presented) The method of claim 32 wherein the disorders result from acute myocardial infarct or damage during and after medical or mechanical lysis thereof.
- 47. (Previously Presented) The method of claim 32 wherein the disorders result from tumors and metastasis thereof.
- 48. (Previously Presented) The method of claim 32 wherein the disorders result from sepsis or multiorgan failure.
- 49. (Previously Presented) The method of claim 32 wherein the disorders result from septic shock or acute respiratory distress syndrome.
- 50. (Previously Presented) The method of claim 32 wherein the disorders are immunological disorders.
- 51. (Previously Presented) The method of claim 50 wherein the immunological disorders are inflammations or rheumatic disorders.
- 52. (Previously Presented) The method of claim 50 wherein the immunological disorder is rheumatoid arthritis.
- 53. (Previously Presented) The method of claim 32 wherein the disorder is disabetes mellitus.

54. (Currently Amended) A method of preparing a compound of claim 27 comprising converting a compound of claim 24 to said compound of claim 27 by reacting the compound of claim 24 with an aldehyde of the formula CHO where B is

as defined in Claim 27 under suitable conditions.