Math 351 DNHI I

Mario L. Gutierrez Abed

(1) If r is a rational $(r \neq 0)$ and x is irrational, prove that r + x and r x are irrational.

Proof:

If r and r + x were both rational, then r + x - r = x would also be rational, so we have a contradiction. $(\Rightarrow \Leftarrow)$

Similarly, if both r and r x were rational, then $\frac{r}{r} = x$ must also be rational, which again contradicts the assumption that x is irrational. $(\Rightarrow \Leftarrow)$

(2) Prove that there is no rational number whose square is 12.

Proof:

Assume there exists such a rational number $r = \frac{m}{n}$ such that $\left(\frac{m}{n}\right)^2 = 12$, where $\frac{m}{n}$ is in simplest terms. Then this implies that $m^2 = 12$ $n^2 \Longrightarrow m = 2\sqrt{3}$ $n \Longrightarrow m$ is even. Since $\frac{m}{n}$ is assumed to be in simplest terms, n must be odd.

Thus, let m = 2 $s \Longrightarrow s^2 = 3$ n^2 . Since n is odd so is s, hence we let n = 2 k + 1, s = 2 c + 1.

Then
$$s^2 = (2 c + 1)^2 = 3 (2 k + 1)^2$$

 $= 4 c^2 + 4 c + 1 = 3 (4 k^2 + 4 k + 1)$
 $= 4 c^2 + 4 c + 1 = 12 k^2 + 12 k + 3$
 $= 4 c^2 + 4 c - 12 k^2 - 12 k - 2 = 0$
Thus we have $s^2 = 4 c^2 + 4 c - 12 k^2 - 12 k = 2$
 $= 4 (c^2 + c - 3 k^2 - 3 k) = 2$

This is absurd, because 2 cannot be a multiple of 4. Hence, our assumption that r existed is erroneous, and we conclude that no rational number has square 12.

(Alternate) Proof:

Suppose $\left(\frac{m}{n}\right)^2 = 12$ and gcd(m, n) = 1. Then $m^2 = 4$ (3 n^2), implying that $3 \mid m^2$. Since 3 is prime, $3 \mid m$. In particular, m = 3 k for some integer k.

Thus $m^2 = 9 k^2 = 4 (3 n^2)$ or, equivalently, $3 k^2 = 4 n^2$. Since $3 \mid 4 n^2$ and 3×4 , it follows that $3 \mid n^2$ and, therefore, $3 \mid n$.

Thus, it follows that n = 3 p for some $p \in \mathbb{Z}$. $(\Rightarrow \Leftarrow)$

This is a contradiction because $gcd(m, n) = gcd(3 k, 3 p) \ge 3 > 1$, and we assumed initially that gcd(m, n) = 1.

(3) Let E be a nonempty subset of an ordered set; suppose α is a lower bound and β is an upper bound of *E*. Prove that $\alpha \leq \beta$.

Proof:

The subset E is nonempty, so there exists $x \in E$. Then, by the definition of lower and upper bounds, it must be true that $\alpha \le x \le \beta$. But then since E is ordered, it follows that $\alpha < \beta$. Otherwise we would have $\alpha = x = \beta$, which contradites our assumption that α and β are a lower bound and an upper bound of E, respectively.

(4) Let A be a nonempty set of real numbers which is bounded below. Let -A be the set of all numbers -x, where $x \in A$. Prove that inf $A = -\sup(-A)$.

Proof:

We have that A is not empty and is bounded below. What's more, since A is a bounded subset of \mathbb{R} we know that it must have a greatest lower bound, call it β , i.e. inf $A = \beta$. Hence we have that $x \ge \beta \ \forall x \in A$. But then, this implies that $-x \le -\beta \ \forall x \in A$. Thus, we have that $-\beta$ is an upper bound of -A. Now we show that it must in fact be the least upper bound. For any $\varepsilon > 0$, we have

$$-\beta - \varepsilon = -(\beta + \varepsilon)$$

But then $\beta + \varepsilon$ is not a lower bound of A, since inf $A = \beta$. Hence, it follows that $-\beta$ is in fact the least upper bound of -A. Thus, $\beta = \inf A = -(-\beta) = -\sup(-A)$.

(Alternate) Proof:

Suppose $A \subseteq \mathbb{R}$ is bounded below by β . That is, $\beta \le x \ \forall x \in A$. Define $-A = \{-x : x \in A\}$. Then -Ais bounded above by $-\beta$. Let $\alpha = \sup(-A)$. Notice that $-x \le \alpha \ \forall -x \in -A$. This means that $-\alpha \le x \ \forall \ x \in A$. In particular, $-\alpha$ is a lower bound of A.

Let $\varepsilon > 0$, then $\alpha - \varepsilon$ is not an upper bound of -A since there exists some $-x \in -A$ such that $\alpha - \varepsilon < -x \le \alpha$. It follows that $-\alpha + \varepsilon > x \ge -\alpha$, which tells us that $-\alpha + \varepsilon$ is not a lower bound. We thus conclude that $-\alpha$ is the greatest lower bound of A. That is, $\inf A = -\alpha = -\sup(-A)$.

(Alternate) Proof:

We need to prove that $-\sup(-A)$ is the greatest lower bound of A. For brevity, let $s = -\sup(-A)$. We want to show that $s \le x \ \forall x \in A$ and $s \ge t$ if t is any lower bound of A. Suppose $x \in A$. Then, $-x \in -A$, and thus, $-x \le \sup(-A)$. It follows that $x \ge -\sup(-A)$, i.e. $s \le x$. Thus s is a lower bound of A. Now let t be any lower bound of A. This means $t \le x \ \forall x \in A$. Hence,

 $-x \le -t \ \ \forall \ x \in A$, which says $y \le -t \ \ \forall \ y \in -A$. This means that -t is an upper bound of -A. Hence $-t \ge \sup(-A)$ by definition of \sup , i.e. $t \le -\sup(-A)$, and so $-\sup(-A)$ is the greatest lower bound of A.

- (5) Fix b > 1. Then,
- a) Let m, n, p, q be integers, with n, q > 0 and $r = \frac{m}{n} = \frac{p}{q}$. Prove that

$$(b^m)^{1/n} = (b^p)^{1/q}$$

Hence it makes sense to define $b^r = (b^m)^{1/n}$.

Proof:

Let
$$r = \frac{m}{n} = \frac{p}{q}$$
. Then $mq = np$ and $((b^m)^{1/n})^{nq} = b^{mq} = b^{np} = ((b^p)^{1/q})^{nq}$.

Since roots are unique, it follows that $(b^m)^{1/n} = (b^p)^{1/q}$. Hence it makes sense to define $b^r = (b^m)^{1/n}$.

b) Prove that $b^{r+s} = b^r b^s$ if r and s are rational.

Let
$$r = \frac{m}{n}$$
 and $s = \frac{c}{t}$. Then,
 $(b^{r+s})^{nt} = b^{mt+nc} = b^{mt} b^{nc} = ((b^{mt})^{1/nt})^{nt} ((b^{nc})^{1/nt})^{nt} = (b^{m/n})^{nt} (b^{c/t})^{nt} = (b^r)^{nt} (b^s)^{nt} = (b^r b^s)^{nt}$.
Since roots are unique, it follows that $b^{r+s} = b^r b^s$.

c) If x is real, define B(x) to be the set of all numbers b^t , where t is rational and $t \le x$. Prove that

$$b^r = \sup B(r)$$

when r is rational. Hence it makes sense to define

$$b^{x} = \sup B(x)$$

for every real x.

Proof:

Let $s, t \in \mathbb{Q}$ wih s < t.

Then, $t - s = \frac{m}{n} > 0$ and

$$\left(\frac{b^t}{b^s}\right)^n = \left(b^{t-s}\right)^n = \left(b^{m/n}\right)^n = b^m.$$

Since b > 1, it follows that $b^m > b > 1$. We conclude that $(b^m)^{1/n} > 1$. Thus, $b^{t-s} > 1$ or, equivalently, $b^t > b^s$.

If we define $B(x) = \{b^t : t \in \mathbb{Q}, t \le x\}$, we obtain $b^r = \sup B(r)$, because for any t < r, we have $b^t < b^r$ and $b^r \in B(r)$.

d) Prove that $b^{x+y} = b^x b^y$ for all real x and y.

Proof:

Let $b^p \in B(x)$ and $b^q \in B(y)$. Then $p, q \in \mathbb{Q}$ and p < x, q < y. It follows that $b^p b^q = b^{p+q} \in B(x+y)$. Therefore $\sup B(x) \sup B(y) \le \sup B(x+y)$.

Let t < x + y. Then t - x < y. Since the rationals are dense on the real number line, there exists $s \in \mathbb{Q}$ such that t - x < s < y. Since t - s < x, there exists some $r \in \mathbb{Q}$ such that t - s < r < x. Hence t < r + s < x + s < x + y, where r < x and s < y. Thus, $b^t < b^{r+s} = b^r b^s \le \sup B(x) \sup B(y) = b^x b^y$. In other words, $b^{x+y} = \sup B(x + y) \le b^x b^y$.

Since $b^{x+y} \le b^x b^y$ and $b^x b^y \le b^{x+y}$, it follows that $b^{x+y} = b^x b^y$.

- (6) Fix b > 1, y > 0, and prove that there is a unique real x such that $b^x = y$, by completing the following outline (This x is called the logarithm of y to the base b):
- a) For any positive integer n, $b^n 1 \ge n(b 1)$.

Solution:

$$b^{n}-1=(b-1)(b^{n-1}+b^{n-2}+...+1)>(b-1)(1+1+...+1)=(b-1)n$$
.

b) Hence $b - 1 \ge n(b^{1/n} - 1)$.

Solution:

Let $\alpha = b^{1/n}$. Then $\alpha^n - 1 > n(\alpha - 1)$ by part a) (since $\alpha > 1$). Now $\alpha^n = b$ and the inequality can be expressed as $b - 1 > n(b^{1/n} - 1)$.

c) If t > 1 and $n > \frac{b-1}{t-1}$, then $b^{1/n} < t$.

Solution:

If t > 1 and $n > \frac{b-1}{t-1}$, then by part b), $n(t-1) > b-1 > n(b^{1/n}-1)$. The inequality $n(t-1) > n(b^{1/n}-1)$ is equivalent to $t > b^{1/n}$.

d) If w is such that $b^w < y$, then $b^{w+1/n} < y$ for sufficiently large n; to see this, apply part c) with $t = y b^{-w}$.

Solution:

Suppose $b^w < y$, then $y b^{-w} > 1$. Setting $t = y b^{-w}$ and $n > \frac{b-1}{t-1}$ yields $b^{1/n} < y b^{-w}$ (by part c)). Therefore, $b^w b^{1/n} = b^{w+1/n} < y$.

e) If $b^w > y$, then $b^{w-1/n} > y$ for a sufficiently large n.

Solution:

Suppose $b^w > y$, then $y^{-1} b > 1$. Setting $t = y^{-1} b$ and $n > \frac{b-1}{t-1}$ yields $b^{1/n} < t = y^{-1} b$ (by part **c**)). Therefore, $y < b^w b^{-1/n} = b^{w-1/n}$.

f) Let A be the set of all w such that $b^w < y$, and show that $x = \sup A$ satisfies $b^x = y$.

Let $A = \{w \in \mathbb{R} : b^w < y\}$. Then,

i) $A \neq \emptyset$:

If y > 1, set $n > \frac{b-1}{y-1}$ and use part c) to conclude that $b^{1/n} < y$.

In other words, if y > 1, $\frac{1}{n} \in A$. If y = 1, then $b^0 = 1 = y$, hence $0 \in A$. Finally, if y < 1, then $\frac{1}{y} > 1$ and setting $m > \frac{b-1}{\frac{1}{y}-1}$ yields $b^{1/m} < \frac{1}{y}$ by part c). It follows that $y < b^{-1/m}$. In any case, A is

not empty. ii) A is bounded above:

Define $B = \{b^n : n \in \mathbb{N}\}$. Then B does not have an upper bound. To see why, assume instead that it does. Set $\sup B = s$. Since b > 1, $\frac{s}{b} < s$. In particular, $\frac{s}{b}$ is not an upper bound of B. There exists some $n \in \mathbb{N}$ such that $b^n > \frac{s}{b}$. But then $b^{n+1} > s$, which contradicts the assumption that $s = \sup B$. $(\Rightarrow$ \Leftarrow

It follows that B is not bounded above. This means that for some integer $k \in \mathbb{N}$, $b^k > y$. Since w < kimplies $b^w < b^k$ (and $b^w < b^k$ implies w < k), we see that A is bounded above by k.

Let $x = \sup A$. we wish to show that $b^x = y$.

If $b^x < y$, part d) implies that $b^{x+1/n} < y$ for some sufficiently large n. Thus, $b^x < b^{x+1/n} < y$ and $x + \frac{1}{n} \in A$ in contradiction to the assumption that $x = \sup A$.

If otherwise $b^x > y$, part e) implies that $b^{x-1/n} > y$ for some sufficiently large n. Thus, $x - \frac{1}{n}$ is an upper bound of A, which is not possible. $(\Rightarrow \Leftarrow)$

g) Prove that this x is unique.

Proof:

If α and β satisfy $b^{\alpha} = b^{\beta} = \gamma$ then $\alpha = \beta$. This follows from the fact that if $\alpha < \beta$ then there are rationals r, s that satisfy $\alpha < r < s < \beta$. Thus $b^{\alpha} < b^{s} < b^{\beta}$ by the work done in the previous problem. It follows then that an x satisfying $b^x = y$ is unique.

(7) Let $p \ge 2$ be a fixed integer, and let 0 < x < 1. If x has a finite-length base-p decimal expansion, that is, if $x = \frac{a_1}{b} + ... + \frac{a_n}{p^n}$ with $a_n \neq 0$, prove that x has precisely two base-p decimal expansions.

Otherwise, show that the base-p decimal expansion for x is unique.

Proof:

Suppose $x = \frac{a_1}{b} + \dots + \frac{a_n}{b^n}$.

Then,

$$x = \frac{a_1}{p} + \dots + \frac{a_n - 1}{p^n} + \sum_{i=n+1}^{\infty} \frac{p-1}{p^i}$$
 (since $\frac{1}{p^n} = \sum_{i=n+1}^{\infty} \frac{p-1}{p^i}$).

Let

$$0. b_1 b_2 \dots b_n \dots$$
 and $0. c_1 c_2 \dots c_n \dots$

be any two base p decimal expansions for x and suppose n is the first integer for which $b_i \neq c_i$. Then, WLOG, $b_1 = c_1$, $b_2 = c_2$, ..., $b_{i-1} = c_{i-1}$, $b_n < c_n$.

$$0. b_1 b_2 \dots b_n \dots = \sum_{i=1}^{\infty} \frac{b_i}{p^i} \le \sum_{i=1}^{n} \frac{b_i}{p^i} + \sum_{i=n+1}^{\infty} \frac{p-1}{p^i} = \frac{b_1}{p} + \frac{b_2}{p^2} + \dots + \frac{b_{n+1}}{p^n}$$
$$\le \frac{c_1}{p} + \frac{c_2}{p^2} + \dots + \frac{c_n}{p^n} \le \sum_{i=1}^{\infty} \frac{c_i}{p^i} = 0. c_1 c_2 \dots c_n \dots$$

with equality iff $b_{n+i} = p - 1$, $c_n = b_n + 1$, and $c_{n+i} = 0 \quad \forall i \ge 1$.

This means that if x has two decimal expansions, one of them must be finite. Hence, if x does not have a finite decimal expansion (mod p), its representation is unique.

(8) Prove that no order can be defined in the complex field that turns it into an ordered field. Hint: -1 is a square.

Proof:

If order is imposed on \mathbb{C} , then, for each $z \in \mathbb{C}$ $(z \neq 0)$, either z > 0 or z < 0.

Let z = i. By proposition 1.18(d) (Rudin's), $z^2 > 0$ for any $z \neq 0$.

Thus, $-1 = i^2 > 0$. However, since $1 = 1^2 > 0$ (again by 1.18(d)), it follows that both 1 and -1 are greater than 0. This violates proposition 1.18(a). Thus C cannot be an ordered field.

(9) Suppose z = a + b i, w = c + d i. Define z < w if a < c, and also if a = c but b < d. Prove that this turns the set of all complex numbers into an ordered set. (This type of order relation is called a dictionary order, or lexicographic order, for obvious reasons.) Does this ordered set have the leastupper-bound property?

Proof:

The proof that the lexicographic order turns $\mathbb C$ into an ordered set is trivial. To see whether or not $\mathbb C$ is transformed into a set with the least upper bound property, set $A = \{b \mid i : b \in \mathbb{R}\}$. Then A is bounded above by any element $z \in \mathbb{C}$ for which Re(z) > 0. Observe also that if z = a + bi with

 $a = \text{Re}(z) \le 0$, then w = (|b| + 1) $i \in A$ satisfies w > z.

Although A is bounded above, A does not have a l.u.b. To see this, suppose $\alpha + \beta i$ is an upper bound. Then $\alpha > 0$ and $\frac{\alpha}{2} + \beta i$ is also an upper bound with $\frac{\alpha}{2} + \beta i < \alpha + \beta i$.

(10) Suppose z = a + b i, w = u + v i, and

$$a = \sqrt{\frac{|w| + u}{2}}$$
, $b = \sqrt{\frac{|w| - u}{2}}$

Prove that $z^2 = w$ if $v \ge 0$ and $(\overline{z})^2 = w$ if $v \le 0$. Conclude that every complex number (with one exception!) has two complex square roots.

Proof:

Let z = a + b i and w = u + v i.

Then $z^2 = w$ iff the equations

$$(I) \qquad a^2 - b^2 = u$$

(II)
$$2 a b = i$$

are satisfied.

We now write $b = \frac{v}{2a}$ and plug it into (I) to obtain $a^2 - \frac{v^2}{4a^2} = u$. Now we take this result and multiply it by a^2 to obtain $a^4 - a^2 u - \frac{v^2}{4} = 0$. From here we have $a^2 = \frac{u + \sqrt{u^2 + v^2}}{2}$. Now since $b^2 = u - a^2$ by (I), we have that $b^2 = \frac{-u + \sqrt{u^2 + v^2}}{2}$. Therefore $a^2 = \frac{|w| + u}{2}$ and $b^2 = \frac{|w| - u}{2}$, from which we obtain that $a = \pm \sqrt{\frac{|w| + u}{2}}$ and $b = \pm \sqrt{\frac{|w| - u}{2}}$.

If v > 0 then

$$2\sqrt{\frac{|w|+u}{2}}\sqrt{\frac{|w|-u}{2}} = 2\sqrt{\frac{|w|^2-u^2}{4}} = 2\sqrt{\frac{v^2}{4}} = |v| = v.$$

Similarly,

$$2\left(-\sqrt{\frac{|w|+u}{2}}\right)\left(-\sqrt{\frac{|w|-u}{2}}\right) = v \quad \text{if } v > 0 \ .$$

Thus |a| + |b| i and -(|a| + |b| i) are solutions to the equation $z^2 = w$ in this case.

If v < 0, then -|a| + |b| i and |a| - |b| i are solutions to $z^2 = w$.

We see that if $w \neq 0$ the equation $z^2 = w$ has at least two solutions. It can be shown that a polynomial equation of degree n can have at most n solutions. In particular, $z^2 - w = 0$ can have at most two solutions. Thus, if $w \neq 0$, the equation $z^2 = w$ has exactly two solutions.

(11) If z is a complex number, prove that there exists an $r \ge 0$ and a complex number w with |w| = 1, such that z = r w. Are w and r always uniquely determined by z?

Proof:

Let $z \neq 0$ and set r = |z| and $w = \frac{z}{|z|}$, so that |w| = 1 and r > 0. Clearly, z = r w.

To see that z determines r and w uniquely, suppose z = p u, where p > 0 and |u| = 1. Then $|z|=|p\,u|=|p|\,|u|=p$. But |z|=r. Hence, p=r. Now $\frac{1}{r}\,z=\frac{1}{r}\,p\,u=\frac{1}{r}\,r\,w$. Thus, it follows that u=w.

- * Remark: If z = 0, z = r w when r = 0 and |w| = 1. *
- (12) If z_1 , ..., z_n are complex, prove that $|z_1 + \dots + z_n| \le |z_1| + \dots + |z_n|$.

Proof:

This follows from repeatedly applying theorem 1.33 (e) (Rudin's).

(13) If z is a complex number such that |z| = 1, i.e. $z\bar{z} = 1$, compute $|1+z|^2+|1-z|^2$.

Solution:

Suppose $z \overline{z} = 1$. Then

$$|1+z|^2 + |1-z|^2 = (1+z)\overline{(1+z)} + (1-z)\overline{(1-z)} = (1+z)(1+\overline{z}) + (1-z)(1-\overline{z})$$

$$= (1+\overline{z}+z+z\overline{z}) + (1-\overline{z}-z+z\overline{z}) = (2+\overline{z}+z) + (2-\overline{z}-z)$$

$$= 4.$$