МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ярославский государственный университет им. П.Г. Демидова»

Кафедра математического анализа

Выпускная квалификационная работа Нормы интерполяционных проекторв и экстремальные симплексы

(Направление 01.03.02 Прикладная математика и информатика)

Научный ру Ухалов А.Ю.	ководитель
	(подпись)
«»	20 _ г.
Студент группы	ПМИ-41БО
Лютенков А.В.	
	(подпись)
« »	20 г.

Содержание

1	Задача линейной интерполяции на n-мерном кубе		3
	1.1	Норма интерполяционного проектора	3
\mathbf{C}_{1}	писо	к используемой литературы	4

1 Задача линейной интерполяции на п-мерном кубе

 $Q_n := [0..1]^n$, где $n \in \mathbb{R}^n$, Q_n - n-мерный куб. Положим S - невырожденный сиплекс в \mathbb{R}^n , вершины симплекса зададим через $x^{(j)} = (x_1^{(j)}, ..., x_n^{(j)})$.

$$A := \begin{pmatrix} x_1^{(1)} & \dots & x_n^{(1)} & 1\\ \vdots & \ddots & \vdots & \vdots\\ x_1^{(n+1)} & \dots & x_n^{(n+1)} & 1 \end{pmatrix}$$

Скажем, что набор точек $x^{(j)}$ — допустим для интерполяции многочленами из $\Pi_1(\mathbb{R}^n)$. Это условие эквивалентно тому, что матрица А является невырожденной.

 $\Delta := det(A)$, определитель, который получается из Δ заменой j-й строки на строку $(x_1, \ldots, x_n, 1)$. Многочленый $\lambda_j(x) := \Delta_j(x)/\Delta$ из $\Pi_1(\mathbb{R}^n)$ являются базисными многочленами Лагранжа симплекса S. $\lambda_j = l_{1j}x_1 + \cdots + l_{nj}x_n + l_{n+1j}$, коэффициентны l_{ij} составляют столбцы A^{-1} .

Так как $det(A) \neq 0$, то для любой $f \in C(Q_n)$, где $C(Q_n)$ — совокупность $f: Q_n \to \mathbb{R}$ найдется единственный многочлен $p \in \Pi_1(\mathbb{R}^n)$ удовлетворяющий условиям $p(x^{(j)}) = f(x(j))$.

1.1 Норма интерполяционного проектора

Введем в рассмотрение оператор $P:C(Q_n)\to\Pi_1(\mathbb{R}^n)$, который далее будем называть интеполяционным проектором. Интерполяционный проектор по системе узлов $x^{(j)}$ определяется с помощью равенств:

$$Pf(x^{(j)}) = fj := f(x^{(j)}), j = 1, \dots, n+1$$

Эти равенства показывает, что данный оператор является линейным и справедлив следующий аналог интерполяционной формулы Лагранжа:

$$Pf(x^{(j)}) = p(x) = \sum_{j=1}^{n+1} f_j \lambda_j(x)$$

Обозначим ||P|| норму оператора Р. Эта виличина зависит от от узлов $x^{(j)}$. Обозначим через θ_n минимальну норму проектора, при условии, что все узлы принадлежат кубу Q_n :

$$\theta_n := \min_{x^{(j)} \in Q_n} ||P||$$

Список литературы

- [1] H. Edelsbrunner and E. P. Mucke. Three-dimensional alpha shapes. ACM Trans. Graph., 13(1):43–72, January 1994.
- [2] Thomas Lafarge and Beatriz Pateiro-Lopez. Implementation of the 3D Alpha-Shape for the Reconstruction of 3D Sets from a Point Cloud, 2016