2D Plotting

Example:

$$y=3\cos 2x$$
 for $0 \le x \le 7$

We choose to use an increment of 0.01 to generate a large number of x values in order to produce a smooth curve. The function $\underline{\text{plot}(x,y)}$ generates a plot with the x values on the horizontal axis and the y on the vertical access.

To add x and y labels and a title to the graph

To add a grid to the graph

To increase the font size

To increase the plotted line

To save the figure in Matlab

```
Example 10
      x=0:0.01:7;
      y=3*cos(2*x);
      plot(x,y,'linewidth', 2)
      xlabel('x', 'FontSize', 18);
      ylabel('y', 'FontSize', 18);
       title('Example 10', 'FontSize', 24);
       grid
      saveas(gcf, 'Example 10.tiff');
saveas(gcf, 'Example 1.fig');
saveas(gcf, 'Example 1.tiff');
```

Data Markers and Line Types In the graph

to choose different color or marker type or line type (solid, dashed,) Choose from the following table :

Data markers		Line types		Colors	
Dot (.)		Solid line	_	Black	k
Asterisk (*)	*	Dashed line		Blue	b
Cross (x)	×	Dash-dotted line		Cyan	C
Circle (•)	•	Dotted line		Green	g
Plus sign (+)	+	***************************************	:	Magenta	m
Square (-)	s			Red	r
Diamond (>)	d			White	W
Five-pointed star (w)	р			Yellow	у

Data Markers and Line Types

A plotting command with a certain color:

```
plot(x,y, 'r')
```

A combination of line type & color :

```
plot(x,y, '--r')
```

A combination of mark & color :

```
plot(x,y, '+r')
```

A combination of line type, mark & color :

```
plot(x, y, '--+r')
```

plot(x,y,'--rs','LineWidth',2)

Multiple Curve Plots

```
clc; clear; close all
theta = 0:0.2:2*pi;
y = theta.*exp(-theta);
z = 2*theta.*exp(-2*theta);
plot(theta, y, 'r'), theta, z, 'b')
xlabel('theta(rad)');
ylabel('y and z')
grid on
```

OR

```
clc; clear; close all
theta = 0:0.2:2*pi;
y = theta.*exp(-theta);
z = 2*theta.*exp(-2*theta);
plot(theta, y, 'r')
hold on
plot(theta, z, 'b')
legend('y','z')
xlabel('theta(rad)'); ylabel('y and z')
grid on
```


grid off: To delete the grids hold off: To release the figure

If we want to plot two figures, we use the following commands:

```
x=0:0.01:7;
y=3*cos(2*x);
z=5*sin(2*x);
figure(1)
plot(x,y,'linewidth', 2)
xlabel('x','FontSize',18);
ylabel('y','FontSize',18);
title('Example 10', 'FontSize', 24);
grid
saveas(gcf, 'Example 10.tiff');
figure(2)
plot(x,z,'r','linewidth', 2)
xlabel('x', 'FontSize', 18);
ylabel('z', 'FontSize', 18);
title('Example 11', 'FontSize', 24);
grid
saveas(gcf, 'Example 10_2.tiff');
```


If we want to plot two plots in the same window, we use the following commands:

```
x=0:0.01:7;
       y=3*cos(2*x);
       z=5*sin(2*x);
       subplot(1,2,1)
       plot(x,y,'linewidth', 2)
       xlabel('x', 'FontSize', 18);
       ylabel('y', 'FontSize', 18);
       title('Example 10', 'FontSize', 24);
       grid
10 -
       subplot(1,2,2)
       plot(x,z,'r','linewidth', 2)
11
       xlabel('x', 'FontSize', 18);
12
       ylabel('z', 'FontSize', 18);
13 -
       title('Example 11', 'FontSize', 24);
14 -
15 -
       grid
       saveas(gcf, 'Example 10_subplot.tiff');
16 -
17
```


Subplot Commands

Example:

Subplot (2, 3, 1)	Subplot (2, 3, 2)	Subplot (2, 3, 3)
Subplot (2, 3, 4)	Subplot (2, 3, 5)	Subplot (2, 3, 6)

```
clc; clear; close all
theta = 0:0.2:2*pi ;
y = theta.*exp(-theta);
z = 2*theta.*exp(-2*theta);
subplot(2,3,3)
plot(theta,y,'r')
legend('y')
subplot(2,3,5)
plot(theta,z,'b')
legend('z')
grid on
```


Axis Command

The maximum and minimum of the coordinates on the graph may be specified by the command:

```
axis([xmin, xmax, ymin, ymax])
Example: axis([0 , 5 , -0.5 , 1.5])
```

A figure can be reshaped by the command:

```
axis('square')
```

☐ Figure clearing The command clf clears everything inside the graphic window.

Text in graph

Text can be written in a graph by the following command:

text

Example

```
text(x , y , ' string ')
```

where x, y are the coordinates where the string starts string is the required string

```
clear ; clf ;
theta = 0:0.2:2*pi ;
y = theta.*exp(-theta) ;
z = sin(theta).*exp(-theta) ;
plot(theta , y , 'r' , theta , z , 'b')
xlabel('\theta(rad)') ; ylabel('Distance')
title('Distance y and zeta versus theta')
text(2.4 , 0.24 , 'y' , 'fontname' ,
'arial','fontsize' , 14 , 'color', 'r')
text(2.2 , 0.11 , 'z' , 'fontname' ,
'symbol','fontsize' , 14 , 'color' , 'b')
grid
```


Logarithmic Plots

Replace <u>plot</u> command with <u>semilogx</u> or <u>semilogy</u> or <u>loglog</u>

semilogx(theta , y , 'r' , theta , z , 'b')

semilogy(theta , y , 'r' , theta , z , 'b')

loglog(theta , y , 'r' , theta , z , 'b')

Specialized plot commands

Command	Description
bar(x,y)	Creates a bar chart of y versus x .
plotyy(x1,y1,x2,y2)	Produces a plot with two <i>y</i> -axes, y1 on the left and y2 on the right.
polar(theta,r,'type')	Produces a polar plot from the polar coordinates theta and r, using the line type, data marker, and colors specified in the string type.
stairs(x,y)	Produces a stairs plot of y versus x .
stem(x,y)	Produces a stem plot of y versus x.

Bar Plots

clc; clear, close all x = 1988:1994; y =[8 12 20 22 18 24 27]; bar(x, y, 'r') xlabel('year') ylabel('No. of ...') grid

```
clc; clear, close all

x = 1988:1994;

y=[ 8 12 20 22 18 24 27];

barh(x, y, 'b')

xlabel('No. of ...')

ylabel('year')

grid
```


Pie Plot

Pie charts are useful for visualizing the relative sizes of different but related quantities.

For example, the table below shows the grades that were assigned to a class.

The data is used to create the pie chart that follows.

Grade	A	В	C	D	E
Number of students	11	18	26	9	5

