Персептрон

$$y = f\left(\sum_{i=1}^{n} w_i x_i\right)$$

$$f(x) = \operatorname{sign}(x)$$

Вес активации

Реализация конъюнкции

<i>x</i> ₁	<i>x</i> ₂	$x_1 \wedge x_2$
0	0	0
0	1	0
1	0	0
1	1	1

$$\begin{cases} w_0 & < 0 \\ w_0 + w_1 & < 0 \\ w_0 + w_2 & < 0 \\ w_0 + w_1 + w_2 & > 0 \end{cases}$$

Реализация конъюнкции

<i>x</i> ₁	<i>x</i> ₂	$x_1 \wedge x_2$
0	0	0
0	1	0
1	0	0
1	1	1

$$\begin{cases} w_0 & < 0 \\ w_0 + w_1 & < 0 \\ w_0 + w_2 & < 0 \\ w_0 + w_1 + w_2 & > 0 \end{cases}$$

$$w_0 = 3$$

 $w_1 = 2$
 $w_2 = 2$

Реализация дизъюнкции

<i>x</i> ₁	<i>x</i> ₂	$x_1 \vee x_2$
0	0	0
0	1	1
1	0	1
1	1	1

$$\begin{cases} w_0 & < 0 \\ w_0 + w_1 & > 0 \\ w_0 + w_2 & > 0 \\ w_0 + w_1 + w_2 & > 0 \end{cases}$$

$$w_0 = 1$$

 $w_1 = 2$
 $w_2 = 2$

Геометрическая интерпретация

в РР

Обучение персептрона

Тут про советчиков, м.б. тоже в РР

Функция XOR Функция XOR

Функция *п* переменных:

$$F: \mathbb{R}^n \to \mathbb{R}$$

$$F(x_1, \ldots, x_n)$$

Частная производная по *i*-й переменной:

$$\frac{\partial F}{\partial x_i}(x_1,\ldots,x_n) = \lim_{\varepsilon \to 0} \frac{F(x_1,x_2,\ldots,x_i+\varepsilon,\ldots,x_n) - F(x_1,x_2,\ldots,x_i,\ldots,x_n)}{\varepsilon}$$
$$\frac{\partial F}{\partial x_i}: \mathbb{R}^n \to \mathbb{R}$$

$$F(x, y, z, u) = x^{3} + y^{u} + \sin z^{2}u^{3}$$

$$\frac{\partial F}{\partial x} = 3x^{2}$$

$$\frac{\partial F}{\partial y} = \frac{\partial F}{\partial z} = 3x^{2}$$

$$F(x, y, z, u) = x^{3} + y^{u} + \sin z^{2}u^{3}$$

$$\frac{\partial F}{\partial x} = 3x^{2}$$

$$\frac{\partial F}{\partial y} = uy^{u} - 1$$

$$\frac{\partial F}{\partial z} =$$

$$F(x, y, z, u) = x^{3} + y^{u} + \sin z^{2}u^{3}$$

$$\frac{\partial F}{\partial x} = 3x^{2}$$

$$\frac{\partial F}{\partial y} = uy^{u} - 1$$

$$\frac{\partial F}{\partial z} = (-\cos z^{2}u^{3})(u^{3}2z)$$

Производная сложной функции

Градиент

$$\nabla F = \left(\frac{\partial F}{\partial x_1}, \frac{\partial F}{\partial x_2}, \dots, \frac{\partial F}{\partial x_n}\right)$$

$$\nabla F :$$

Градиент

$$\nabla F = \left(\frac{\partial F}{\partial x_1}, \frac{\partial F}{\partial x_2}, \dots, \frac{\partial F}{\partial x_n}\right)$$
$$\nabla F : \mathbb{R}^n \to \mathbb{R}^n$$

Градиентный спуск