1.	Formuła zdaniowa $p \Leftrightarrow (\dots (p \Leftrightarrow (p \Leftrightarrow p)))\dots)$, w której zmienna p występuje n razy $(n \geqslant 2)$, jest
	x) tautologią wtedy i tylko wtedy, gdy $n \ge 2$ jest liczbą naturalną parzystą.
2.	Formuła zdaniowa $p \veebar q$ (alternatywa wykluczająca) jest równoważna formule zdaniowej
	$(p \Leftrightarrow q).$
3.	Wnioskiem z systemu S2 jest formuła zdaniowa
	x) $p \Rightarrow [(\sim q \land q) \Leftrightarrow \sim r].$
4.	Wyrażenie
	x) $\sim (\bigvee_x F(x,y) \land \bigvee_x G(x,y,z) \sim \Leftrightarrow H(z))$ jest formulą kwantyfikatorową.
5.	Dla dowolnych $x,y:\mathbb{R}$ wyrażenie
	x) $x^2 + y^2 < 0$ jest zdaniem logicznym.
6.	Która z poniższych formuł zdaniowych jest tautologią?
	x) $(p \Rightarrow p \land \sim q) \Rightarrow (p \Rightarrow p \lor \sim q)$.
7.	Które z następujących zdań jest prawdziwe?
	$\underset{x:\mathbb{R}}{\underline{\hspace{1cm}}}$ x) $\bigwedge_{x:\mathbb{R}} \bigwedge_{y:\mathbb{R}} x^2 + y^2 \geqslant -2xy$.
8.	Czy prawdziwe są następujące stwierdzenia?
	x) Formuła $\bigvee_{x}\bigvee_{y}R(x,y)\Rightarrow\bigvee_{y}\bigvee_{x}R(x,y)$ jest wnioskiem z systemu aksjomatów $Q1.$
9.	Funkcja zdaniowa $F(n):="\bigvee_{k:\mathbb{Z}} n^3-n=3k"$ zmiennej całkowitej $n,$ jest prawdziwa
	x) dla wszystkich $n: \mathbb{N}$.
10.	Prawem rachunku zdań jest formuła
	$\mathbf{x}) \ (\sim p \Rightarrow q) \land (q \Rightarrow \sim p) \Rightarrow \sim p \lor \sim q.$
11.	Prawem rachunku kwantyfikatorów jest formuła
	\mathbf{x}) $\sim \bigwedge_{x} R(x,x) \Leftrightarrow \sim \bigwedge_{x} \bigwedge_{y} R(x,y)$.
12.	Prawem rachunku kwantyfikatorów jest formuła
	x) $[\bigvee_{x} \sim P(x) \Rightarrow \bigvee_{x} \sim Q(x)] \Rightarrow \bigvee_{x} [\sim P(x) \Rightarrow \sim Q(x)].$
13.	Prawdziwe jest zdanie
	$\sum_{x:\mathbb{R}} \bigwedge_{y:\mathbb{R}} (x+y)^2 > 2 xy .$
14.	Prawdziwe jest zdanie
	$ x) \bigvee_{a:\mathbb{Q}} \bigvee_{b:\mathbb{Q}} [\sim a: \mathbb{Z} \land \sim b: \mathbb{Z} \land a+b: \mathbb{Z} \land a-b: \mathbb{Z}]. $
15.	Prawdziwe jest zdanie
16.	Funkcja zdaniowa $F(y) := \bigvee_{x:\mathbb{R}} (x^2 + y^2 = 1 \land x \neq y)$ " zmiennej $y:\mathbb{R}$ jest
	x) zdaniem prawdziwym gdy $-1 \le y \le 1$.
17.	Formułą zdaniową jest wyrażenie
	\mathbf{x}) $\sim (\sim p \Rightarrow (q \lor \sim r) \sim)$.
18.	Wiadomo, że zdanie odpowiadające formule zdaniowej $\sim p \Rightarrow (q \vee \sim r)$ jest falszywe. Wówczas
	x) zdanie odpowiadające zmiennej q jest fałszywe.
19.	Dane są funkcje zdaniowe $F(x) := x$ jest matematykiem" oraz $G(x, y) := x$ jest starszy od y ". Wówczas schematem kwantyfikatorowym zdania "każdy matematyk jest starszy od pewnego matematyka" jest
	x) $\bigwedge_{x} [F(x) \Rightarrow \bigvee_{y} (F(y) \land G(x,y))].$
20.	Prawem rachunku kwantyfikatorów jest formuła
	x) $\bigwedge_{x} \bigwedge_{y} (F(x) \land G(y) \Rightarrow H(x,y)) \Leftrightarrow [\bigwedge_{x} F(x) \land \bigwedge_{y} G(y) \Rightarrow H(x,y)].$
91	
Z1.	Następujące zdanie jest zdaniem analitycznym: x) "Jeżeli Jan skłamał lub Piotr skłamał, to jeśli Piotr nie skłamał, to Jan nie skłamał".
22	
44.	Dla dowolnych klas A, B i C zachodzi równość

23. Dla dowolnych klas A, B i C zachodzi inkluzja
x) $A \subset (A \cup B) \cap C$.
24. Dla dowolnych klas A,B i C zachodzi równoważność
25. Dla dowolnych niepustych klas A,B i C prawdą jest, że
$(A \times (B \setminus C) = (A \times B) \setminus (A \times C).$
26. Każda funkcja ${\cal R}$
x) spełnia warunek $\bigwedge_x \bigwedge_y \bigwedge_z [(x,y) : R \land (x,z) : R \land y = z].$
27. Dla każdego $n:\mathbb{N},$ relacja $R:=\{v \bigvee_{x:\mathbb{R}}\bigvee_{y:\mathbb{R}}(v=(x,y)\wedge x^n=y^2)\}$
x) jest funkcją.
28. Każda relacja jest
x) klasą równą pewnemu iloczynowi kartezjańskiemu $A \times B$.
29. Każda funkcja jest
x) relacją równoważności.
30. Dana jest relacja $R:=\{v \bigvee_{x:\mathbb{R}}\bigvee_{y:\mathbb{R}}(v=(x,y)\wedge 4x^2+2y^2=16)\}$. Wówczas
31. Niech funkcje $f,g,h:\mathbb{R}\to\mathbb{R}$ będą określone wzorami $f(x):=x-1,\ g(x):=x^2$ i $h(x):=-2x+2$ dla $x:\mathbb{R}.$ Wówczas
x) $g \circ f(x) = f \circ g(x) + h(x)$ dla każdego $x : \mathbb{R}$.
32. Relacja $R := \{(1,1), (1,2), (2,3), (1,3)\}$ jest w klasie $A := \{1,2,3\}$
x) antysymetryczna.
33. Klasa liczb całkowitych $\mathbb Z$ jest
x) równoliczna z klasą liczb całkowitych nieparzystych.
34. Relacja $R:=\{v \bigvee_{x:\mathbb{R}}\bigvee_{y:\mathbb{R}}(v=(x,y)\wedge x+y:\mathbb{Z})\}$ jest
\mathbf{x}) relacją porządku w \mathbb{R} .
35. Relacja $R:=\{v \bigvee_{x:\mathbb{Z}}\bigvee_{y:\mathbb{Z}}(v=(x,y)\wedge x-y:\mathbb{N})\}$ jest
\mathbf{x}) relacją równoważności w \mathbb{Z} .
36. Relacja $R := \{ v \bigvee_{x:\mathbb{R}} \bigvee_{y:\mathbb{R}} (v = (x, y) \wedge x^4 = y^3) \}$ jest
x) funkcją różnowartościową.
37. Relacja $R:=\{v \bigvee_{x:\mathbb{R}}\bigvee_{y:\mathbb{R}}(v=(x,y)\wedge x^4=y^4)\}$ jest
x) relacją równoważności w \mathbb{R} .
38. Dana jest relacja $R := \{(1,1), (2,1), (3,1), (3,2), (4,1), (4,2)\}$. Wówczas
$\underline{D}(R^{-1}) = \{1, 2\}.$
39. Formułą kwantyfikatorową jest wyrażenie
$x \mapsto P(x,y).$