16.2 Elements of the greedy strategy

A greedy algorithm obtains an optimal solution to a problem by making a sequence of choices. At each decision point, the algorithm makes choice that seems best at the moment. This heuristic strategy does not always produce an optimal solution, but as we saw in the activity-selection problem, sometimes it does. This section discusses some of the general properties of greedy methods.

The process that we followed in Section 16.1 to develop a greedy algorithm was a bit more involved than is typical. We went through the following steps:

- 1. Determine the optimal substructure of the problem.
- 2. Develop a recursive solution. (For the activity-selection problem, we formulated recurrence (16.2), but we bypassed developing a recursive algorithm based on this recurrence.)
- 3. Show that if we make the greedy choice, then only one subproblem remains.
- 4. Prove that it is always safe to make the greedy choice. (Steps 3 and 4 can occur in either order.)
- 5. Develop a recursive algorithm that implements the greedy strategy.
- 6. Convert the recursive algorithm to an iterative algorithm.

In going through these steps, we saw in great detail the dynamic-programming underpinnings of a greedy algorithm. For example, in the activity-selection problem, we first defined the subproblems S_{ij} , where both i and j varied. We then found that if we always made the greedy choice, we could restrict the subproblems to be of the form S_k .

Alternatively, we could have fashioned our optimal substructure with a greedy choice in mind, so that the choice leaves just one subproblem to solve. In the activity-selection problem, we could have started by dropping the second subscript and defining subproblems of the form S_k . Then, we could have proven that a greedy choice (the first activity a_m to finish in S_k), combined with an optimal solution to the remaining set S_m of compatible activities, yields an optimal solution to S_k . More generally, we design greedy algorithms according to the following sequence of steps:

- 1. Cast the optimization problem as one in which we make a choice and are left with one subproblem to solve.
- 2. Prove that there is always an optimal solution to the original problem that makes the greedy choice, so that the greedy choice is always safe.

3. Demonstrate optimal substructure by showing that, having made the greedy choice, what remains is a subproblem with the property that if we combine an optimal solution to the subproblem with the greedy choice we have made, we arrive at an optimal solution to the original problem.

We shall use this more direct process in later sections of this chapter. Nevertheless, beneath every greedy algorithm, there is almost always a more cumbersome dynamic-programming solution.

How can we tell whether a greedy algorithm will solve a particular optimization problem? No way works all the time, but the greedy-choice property and optimal substructure are the two key ingredients. If we can demonstrate that the problem has these properties, then we are well on the way to developing a greedy algorithm for it.

Greedy-choice property

The first key ingredient is the *greedy-choice property*: we can assemble a globally optimal solution by making locally optimal (greedy) choices. In other words, when we are considering which choice to make, we make the choice that looks best in the current problem, without considering results from subproblems.

Here is where greedy algorithms differ from dynamic programming. In dynamic programming, we make a choice at each step, but the choice usually depends on the solutions to subproblems. Consequently, we typically solve dynamic-programming problems in a bottom-up manner, progressing from smaller subproblems to larger subproblems. (Alternatively, we can solve them top down, but memoizing. Of course, even though the code works top down, we still must solve the subproblems before making a choice.) In a greedy algorithm, we make whatever choice seems best at the moment and then solve the subproblem that remains. The choice made by a greedy algorithm may depend on choices so far, but it cannot depend on any future choices or on the solutions to subproblems. Thus, unlike dynamic programming, which solves the subproblems before making the first choice, a greedy algorithm makes its first choice before solving any subproblems. A dynamic-programming algorithm proceeds bottom up, whereas a greedy strategy usually progresses in a top-down fashion, making one greedy choice after another, reducing each given problem instance to a smaller one.

Of course, we must prove that a greedy choice at each step yields a globally optimal solution. Typically, as in the case of Theorem 16.1, the proof examines a globally optimal solution to some subproblem. It then shows how to modify the solution to substitute the greedy choice for some other choice, resulting in one similar, but smaller, subproblem.

We can usually make the greedy choice more efficiently than when we have to consider a wider set of choices. For example, in the activity-selection problem, assuming that we had already sorted the activities in monotonically increasing order of finish times, we needed to examine each activity just once. By preprocessing the input or by using an appropriate data structure (often a priority queue), we often can make greedy choices quickly, thus yielding an efficient algorithm.

Optimal substructure

A problem exhibits *optimal substructure* if an optimal solution to the problem contains within it optimal solutions to subproblems. This property is a key ingredient of assessing the applicability of dynamic programming as well as greedy algorithms. As an example of optimal substructure, recall how we demonstrated in Section 16.1 that if an optimal solution to subproblem S_{ij} includes an activity a_k , then it must also contain optimal solutions to the subproblems S_{ik} and S_{kj} . Given this optimal substructure, we argued that if we knew which activity to use as a_k , we could construct an optimal solution to S_{ij} by selecting a_k along with all activities in optimal solutions to the subproblems S_{ik} and S_{kj} . Based on this observation of optimal substructure, we were able to devise the recurrence (16.2) that described the value of an optimal solution.

We usually use a more direct approach regarding optimal substructure when applying it to greedy algorithms. As mentioned above, we have the luxury of assuming that we arrived at a subproblem by having made the greedy choice in the original problem. All we really need to do is argue that an optimal solution to the subproblem, combined with the greedy choice already made, yields an optimal solution to the original problem. This scheme implicitly uses induction on the subproblems to prove that making the greedy choice at every step produces an optimal solution.

Greedy versus dynamic programming

Because both the greedy and dynamic-programming strategies exploit optimal substructure, you might be tempted to generate a dynamic-programming solution to a problem when a greedy solution suffices or, conversely, you might mistakenly think that a greedy solution works when in fact a dynamic-programming solution is required. To illustrate the subtleties between the two techniques, let us investigate two variants of a classical optimization problem.

The **0-1** knapsack problem is the following. A thief robbing a store finds n items. The ith item is worth v_i dollars and weighs w_i pounds, where v_i and w_i are integers. The thief wants to take as valuable a load as possible, but he can carry at most W pounds in his knapsack, for some integer W. Which items should he take? (We call this the 0-1 knapsack problem because for each item, the thief must either

take it or leave it behind; he cannot take a fractional amount of an item or take an item more than once.)

In the *fractional knapsack problem*, the setup is the same, but the thief can take fractions of items, rather than having to make a binary (0-1) choice for each item. You can think of an item in the 0-1 knapsack problem as being like a gold ingot and an item in the fractional knapsack problem as more like gold dust.

Both knapsack problems exhibit the optimal-substructure property. For the 0-1 problem, consider the most valuable load that weighs at most W pounds. If we remove item j from this load, the remaining load must be the most valuable load weighing at most $W-w_j$ that the thief can take from the n-1 original items excluding j. For the comparable fractional problem, consider that if we remove a weight w of one item j from the optimal load, the remaining load must be the most valuable load weighing at most W-w that the thief can take from the n-1 original items plus w_j-w pounds of item j.

Although the problems are similar, we can solve the fractional knapsack problem by a greedy strategy, but we cannot solve the 0-1 problem by such a strategy. To solve the fractional problem, we first compute the value per pound v_i/w_i for each item. Obeying a greedy strategy, the thief begins by taking as much as possible of the item with the greatest value per pound. If the supply of that item is exhausted and he can still carry more, he takes as much as possible of the item with the next greatest value per pound, and so forth, until he reaches his weight limit W. Thus, by sorting the items by value per pound, the greedy algorithm runs in $O(n \lg n)$ time. We leave the proof that the fractional knapsack problem has the greedychoice property as Exercise 16.2-1.

To see that this greedy strategy does not work for the 0-1 knapsack problem, consider the problem instance illustrated in Figure 16.2(a). This example has 3 items and a knapsack that can hold 50 pounds. Item 1 weighs 10 pounds and is worth 60 dollars. Item 2 weighs 20 pounds and is worth 100 dollars. Item 3 weighs 30 pounds and is worth 120 dollars. Thus, the value per pound of item 1 is 6 dollars per pound, which is greater than the value per pound of either item 2 (5 dollars per pound) or item 3 (4 dollars per pound). The greedy strategy, therefore, would take item 1 first. As you can see from the case analysis in Figure 16.2(b), however, the optimal solution takes items 2 and 3, leaving item 1 behind. The two possible solutions that take item 1 are both suboptimal.

For the comparable fractional problem, however, the greedy strategy, which takes item 1 first, does yield an optimal solution, as shown in Figure 16.2(c). Taking item 1 doesn't work in the 0-1 problem because the thief is unable to fill his knapsack to capacity, and the empty space lowers the effective value per pound of his load. In the 0-1 problem, when we consider whether to include an item in the knapsack, we must compare the solution to the subproblem that includes the item with the solution to the subproblem that excludes the item before we can make the

Figure 16.2 An example showing that the greedy strategy does not work for the 0-1 knapsack problem. (a) The thief must select a subset of the three items shown whose weight must not exceed 50 pounds. (b) The optimal subset includes items 2 and 3. Any solution with item 1 is suboptimal, even though item 1 has the greatest value per pound. (c) For the fractional knapsack problem, taking the items in order of greatest value per pound yields an optimal solution.

choice. The problem formulated in this way gives rise to many overlapping sub-problems—a hallmark of dynamic programming, and indeed, as Exercise 16.2-2 asks you to show, we can use dynamic programming to solve the 0-1 problem.

Exercises

16.2-1

Prove that the fractional knapsack problem has the greedy-choice property.

16.2-2

Give a dynamic-programming solution to the 0-1 knapsack problem that runs in $O(n \ W)$ time, where n is the number of items and W is the maximum weight of items that the thief can put in his knapsack.

16.2-3

Suppose that in a 0-1 knapsack problem, the order of the items when sorted by increasing weight is the same as their order when sorted by decreasing value. Give an efficient algorithm to find an optimal solution to this variant of the knapsack problem, and argue that your algorithm is correct.

16.2-4

Professor Gekko has always dreamed of inline skating across North Dakota. He plans to cross the state on highway U.S. 2, which runs from Grand Forks, on the eastern border with Minnesota, to Williston, near the western border with Montana.

The professor can carry two liters of water, and he can skate *m* miles before running out of water. (Because North Dakota is relatively flat, the professor does not have to worry about drinking water at a greater rate on uphill sections than on flat or downhill sections.) The professor will start in Grand Forks with two full liters of water. His official North Dakota state map shows all the places along U.S. 2 at which he can refill his water and the distances between these locations.

The professor's goal is to minimize the number of water stops along his route across the state. Give an efficient method by which he can determine which water stops he should make. Prove that your strategy yields an optimal solution, and give its running time.

16.2-5

Describe an efficient algorithm that, given a set $\{x_1, x_2, \ldots, x_n\}$ of points on the real line, determines the smallest set of unit-length closed intervals that contains all of the given points. Argue that your algorithm is correct.

16.2-6 ★

Show how to solve the fractional knapsack problem in O(n) time.

16.2-7

Suppose you are given two sets A and B, each containing n positive integers. You can choose to reorder each set however you like. After reordering, let a_i be the ith element of set A, and let b_i be the ith element of set B. You then receive a payoff of $\prod_{i=1}^{n} a_i^{b_i}$. Give an algorithm that will maximize your payoff. Prove that your algorithm maximizes the payoff, and state its running time.

16.3 Huffman codes

Huffman codes compress data very effectively: savings of 20% to 90% are typical, depending on the characteristics of the data being compressed. We consider the data to be a sequence of characters. Huffman's greedy algorithm uses a table giving how often each character occurs (i.e., its frequency) to build up an optimal way of representing each character as a binary string.

Suppose we have a 100,000-character data file that we wish to store compactly. We observe that the characters in the file occur with the frequencies given by Figure 16.3. That is, only 6 different characters appear, and the character a occurs 45,000 times.

We have many options for how to represent such a file of information. Here, we consider the problem of designing a *binary character code* (or *code* for short)