

October 22, 1997

WG-97-15

APPLICATION FOR UNITED STATES PATENT

FOR

HORIZONTAL AND VERTICAL RECEIVER-CONSISTENT DECONVOLUTION
FOR AN OCEAN BOTTOM CABLE

INVENTOR:
JAMES E. GAISER

EXPRESS MAIL CERTIFICATE

"EXPRESS MAIL" LABEL NO. EE024369775US

Date of Deposit: October 22, 1997

I hereby certify that this paper and/or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to Box Patent Application, Patent and Trademark Office, Washington D.C. 20231.

Signature: E. EUGENE THIGPEN
Date of Signature: October 22, 1997

5 **HORIZONTAL AND VERTICAL RECEIVER-CONSISTENT
DECONVOLUTION FOR AN OCEAN BOTTOM CABLE**

BACKGROUND OF THE INVENTION

10 **Field of the Invention**

This invention is concerned with improving the coupling response of a three-component seismic sensor implanted on the bottom of a body of water. Attention is directed to spectral balancing of the cross-line and vertical sensor response in amplitude and phase, consistent with the geometry of the array as deployed on the water bottom.

15 **Discussion of Relevant Art**

20 Seismic exploration studies often involve use of both compressional wavefields and shear-wave radiation. In marine operations, although compressional waves propagate through the water, shear waves do not because water has no shear strength. Therefore, shear-wave studies, such as used in vertical rock-fracture studies, in a marine environment require use of motion-sensitive sensors, such as geophones, 25 planted on the water bottom using ocean bottom cables (OBC).

25 Please refer to Figure 1 where a plurality of seismic sensors $10_0, 10_1, 10_2, \dots, 10_i$ ($i=3, 4, \dots, n$, where n is an integer) are shown laid on the bottom 12 of a body of water, 30 14. The sensors are spaced-apart by a desired separation such as 10 meters. The sensors are preferably multiaxial motion-sensitive devices which generate an electrical signal proportional to particle velocity of the water bottom material. The sensors are responsive to seismic waves in

10/20/97

general and in particular to both compressional and shear waves.

The sensors are mechanically and electrically coupled to a sectionalized ocean-bottom cable (OBC) 16 of any well-known type, which may be many kilometers long. The OBC includes communication channels, which may be electrical, optical or ethereal, for transmitting sensor signals to suitable instrumentation mounted in a service vehicle. One or both ends of a cable may be marked by a buoy, such as 18, at the water surface for later recovery. For three-dimensional (3-D) areal surveys, many cables may be laid out side-by side in parallel, perhaps 25 meters apart, in a wide swath.

Usually, the cables and sensors (hereinafter referred to as receivers) are laid out over the area to be surveyed by a cable-tender boat. At some later time, a service ship such as 20, recovers one or more cables, such as 16 from the water bottom. The cable communication channels are connected to recording instrumentation of any desired type, generally shown as 21, installed in the ship 20, for receiving and partially processing seismic signals. The ship is usually equipped with a precision navigation means such as a GPS receiver and may include a radar beacon 22 for ranging on a radar reflector 24 mounted on tail buoy 18 at the other end of cable 16.

An acoustic sound source 26 is fired at each of a plurality of designated source locations distributed over an area of interest. The source location are preferably spaced apart by an integral multiple of the sensor spacings. Source 26 radiates wavefields such as generally shown by 28 and 30 to insonify subsurface earth layers such as 32, whence the wavefield is reflected back towards the surface as reflected wavefield 34. The receivers 10_i intercept the mechanical

10/20/97

earth motions, convert those motions to electrical signals and send those signals through the communication channels to the recording equipment 21 in ship 20.

5 A wavefield may propagate along a direct travel path such as 36 or along reflected-ray travel paths such as 38, 38' and 38'' to the respective receivers 10_i. The recorded data are presented in the form of time-scale traces, one trace per receiver/shot.

10 A collection of time-scale traces resulting from a single source activation (a shot) that insonifies a plurality of receivers such as in Figure 1, constitutes a common source gather. On the other hand, with reference to Figure 5, a collection of time-scale traces as recorded by a single receiver 10_i after insonification by a plurality of spaced-apart shots 26, 26', 26'' constitutes a common receiver gather. The separation between a source and a receiver, is defined as the offset. Typically in 3-D operations ship 20 occupies a convenient central location, interconnected with a plurality of receivers, while a second shooting ship (not shown) actually visits the respective designated survey stations to generate common receiver gathers.

15 Figure 2 is a close-up, X-ray-like side view of a three-component motion receiver 10_i. The sensitive axes are in-line (x axis), unit 42, cross-line (y axis), unit 44 and vertical (z axis) unit 40. Preferably, the two horizontally-polarized receivers respond to shear waves and the vertical receiver responds to compressional waves.

20 A 3-component receiver is customarily packaged in a single elongated case. The individual units are gimbal-mounted so as to become automatically aligned along their mutually orthogonal axes after deposition on the sea floor. For good and sufficient reasons, the case containing the

10/20/97

receiver components is usually cylindrical. Cable 16 is relatively heavy. Secured to the fore and aft ends of the elongated receiver case, the cable 16 firmly holds a typical multi-axis receiver unit, 10_i, to the sea floor 12. The in-line receiver component 42 is well coupled to sea floor 12 because of the inherent stability of the elongated case along the in-line direction. That situation is not valid, however, for the cross-line receiver component 44.

Please refer to Figure 3 which is an X-ray-like cross section of multi-component receiver 10_i taken along line 3-3', looking back towards ship 20. Because of its cylindrical shape, case 10_i not only rolls from side to side as shown by curved arrows 46, but water currents and other disturbances can cause the receiver case to roll and shift laterally in the cross-line direction as shown by arrows 48, 48'. Those disturbances do not affect the in-line receiver components because of their respective polarizations but they do introduce severe noise to the cross-axis signals.

Figure 4 is multi-axis receiver 10_i as viewed from above along line 4-4' of Figure 2.

A method for correcting poor coupling of a logging sonde in a borehole was described in a paper by J. E. Gaiser et al., entitled Vertical Seismic Profile Sonde Coupling, published in *Geophysics* n. 53, pp 206-214, 1988. Although that method is not directly applicable to 3-D seismic exploration, it is of interest because it demonstrates the evil effects of poor coupling of a sensor to the ground.

There is a long-felt need for a method for measuring and suppressing signal distortion attributable to poor water-bottom coupling of one of the components of an ocean-bottom, cable-mounted, 3-component seismic receiver and for balancing the spectral response of the respective components.

10/20/97

SUMMARY OF THE INVENTION

A computer-aided method for balancing the spectral response characteristics of the vertical and cross-line components of a three-component seismic receiver relative to the in-line component. The method has particular application to three-dimensional seismic surveys. Limits are defined for near-offset source-receiver trajectory vectors in range and azimuth. A plurality of seismic wavefields emanating from near-offset source locations are assembled in a computer matrix to form in-line, cross-line and vertical common receiver gathers of reflection data from within a time window of a preferred length. The respective common receiver gathers are normalized for spherical divergence and said seismic wavefields are transformed from the time domain to the frequency domain. Cross-line and vertical deconvolution operators are generated and applied to the cross-line and the vertical receiver gathers respectively to form a corrected cross-line component. An additional vertical deconvolution operator is generated for minimizing vertical component energy. The vertical deconvolution operator is applied to the vertical receiver gathers to form a corrected vertical component.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features which are believed to be characteristic of the invention, both as to organization and methods of operation, together with the objects and advantages thereof, will be better understood from the following detailed description and the drawings wherein the invention is illustrated by way of example for the purpose of illustration and description only and are not intended as a definition of the limits of the invention:

10/20/97

FIGURE 1 is a conventional view of a ship servicing an ocean-bottom cable to which are coupled a plurality of multi-axis sensors;

5 FIGURE 2 is an X-ray-like cross section of a three-component seismic receiver;

FIGURE 3 is an end view of the three-axis seismic receiver;

10 FIGURE 4 is a view of the three axis receiver of FIGURE 2 as seen from above;

15 FIGURE 5 illustrates the concept of common receiver gathers;

FIGURE 6 is a panel showing a comparison of an in-line gather of seismic signals, a cross-line gather of seismic signals and a gather of vertically-polarized signals;

20 FIGURE 7 illustrates the criteria for data selection to be used in processing with reference to the shot-receiver layout in the field;

FIGURE 8 is a panel showing the same data as FIGURE 6, after processing by the method of this invention; and

25 FIGURES 9A AND 9B are flow diagrams showing the data-processing steps taught by this invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Figure 6 is a panel of time scale traces representative of three co-located common receiver gathers, 60, 62 and 64 which display respectively from left to right, in-line, cross-line and vertical geophone signals. Direct water arrivals and strong shear-wave signals appear on the in-line gather, 60, in addition to low-frequency interface waves. The cross-line gather, 62, is very weak although the high-amplitude, low-frequency interface waves are present. The vertical gather, 64, exhibits converted-wave reflections accompanied by the interface waves.

10/20/97

Please refer now to Figure 7. An OBC represented by solid line 66, is laid along a receiver line having an in-line azimuth which happens to be north or 0° for this example. A plurality of 3-component receivers are mounted in cable 66, one of which, 68, is a receiver such as might have been responsible for the common receiver gathers of Figure 6. Receiver 68 contains three mutually orthogonally polarized receivers as previously described, of which one is polarized in-line according to the double-headed arrow 67.

10 A source advances along a shot line (dashed line 69) parallel to but offset from line 66 by a few tens or hundreds of meters. The source sequentially visits a plurality of designated stations that are uniformly spaced-apart along line 69. Some exemplary stations are shown by small circles 70, 72, 74, 76. For simplicity, only one receiver, 68, from one receiver line 66 is shown. Four source stations chosen at random from along a shot line 69 are shown. A second shot line 73 and source location 75 are also shown. In an actual 3-D seismic survey, many receiver lines and many shot lines would be occupied.

15 As a source advances along line 69, the source-receiver trajectory vector changes from a virtual in-line geometry, such as between receiver 68 and source station 76, to a direct broadside geometry between receiver 68 and source station 72. The changing geometry is reflected in the response characteristics of the traces of the common receiver gathers of Figure 6. On the in-line panel, the first arrivals and the shear-wave reflections are characterized by high amplitude on all traces except for the 20 four innermost traces at the point of closest source-receiver approach such as would be the case of source station 72 which lies directly opposite receiver 68. At that point, the source-receiver trajectory is essentially

10/20/97

perpendicular to the polarization direction of the in-line receiver. Conversely, since that is the very direction in which the cross-line receiver is polarized, as might be expected, the signals on the innermost traces of the cross-line panel are much stronger than on the outer traces. The vertical panel has a strong component of converted PS waves mixed with interface wave interference.

The objective of this invention is to provide a method for estimating, in the frequency domain, deconvolution operators for removing the coupling responses from the cross-line and the vertical seismic signal components in OBC surveys. The purpose is to balance the spectral response of the respective signal component in amplitude and phase in a manner consistent with the field geometry.

The method proposed to determine the deconvolution operators for the cross-line and the vertical components is by least squares minimization in the frequency domain. For each frequency, a complex coefficient is determined such that the particular equation is minimized. The entire bandwidth of these operators contain the appropriate coupling responses. The approach to be described minimizes the first arrival energy of the transverse component over a reflection time window, containing the early arrivals, that is 500 to 1000 milliseconds long, measured from the first breaks. Early arrivals are preferred because they are less contaminated by noise. The energy in the window is assumed to be predominantly polarized in the vertical plane, even in the presence of azimuthal anisotropy, and thus also in the radial and vertical components. The transverse component is assumed to be relatively devoid of energy in the window of interest. Near-offset data originating from offsets less than about 500-750 meters are normalized for spherical spreading due to varying offsets. Far-offset data, such as

10/20/97

that from source location 76, Figure 7, which lives beyond some preferred limiting offset range defined by arc 71, preferably are not used.

5 A good model to describe the recorded signals, x' , for an ocean-bottom cable (OBC) survey is given in matrix form by

$$x' = Gx \quad (1)$$

where the x are actual ground motions and G is a 3×3 matrix of complex valued coupling terms. Expanding (1) yields

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} I & 0 & 0 \\ 0 & C & W \\ 0 & -W & V \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \quad (2)$$

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305

10/20/97

coupling, C and V are unity and W is zero. If C and V are not unity and W is not zero and these values are known, we can remove the effects of coupling and obtain the original ground motion. The approach described here uses the in-line
5 response as a reference of the wavefield (but only in the in-line direction) to design deconvolution operators in a least squares energy sense to be adapted to the cross-line and vertical data.

The first step to determine the deconvolution operator
10 is to determine the actual cross-line response. The procedure used here exploits the physics that polarized P-waves and PS-waves for early near-offset arrivals have particle motion predominantly in the source-receiver vertical plane, i. e., the radial vector with respect to the source station of origin. Data to be selected for processing preferable reside within a sector embracing a source-receiver azimuth of $45^\circ \pm \alpha^\circ$ relative to the orientation of the in-line receiver component. Here α is an arbitrary tolerance such as 30° . Referring back to Figure 7, data from shot stations such as 72 and 76 in the shaded zones, outside the so-delimited sectors, are considered to be far offset and not used. For purposes of this disclosure, the near offset has thus been defined in range and azimuth.

The vertical plane contains vertical motion and radial
25 horizontal motion for the direct P-wave, the reflected P and PS waves and the elliptically polarized water sediment interface waves. Radial horizontal motion is obtained by vector rotation of the in-line and cross-line components given by

30 $r = \cos(\theta)x + \sin(\theta)y,$ (4)

where the angle θ is the amount of rotation necessary to point the in-line vector, 77, away from the source perpendicular to the wavefront 79 emanating from source

10/20/97

location 70, in the radial direction, angle 78 of Figure 7. The component of the particle motion of these waves perpendicular to the vertical plane (transverse horizontal) is minimal. Transverse horizontal motion normal to the 5 vertical plane is given by the rotation,

$$t = -\sin(\theta)x + \cos(\theta)y. \quad (5)$$

Equation (5) leads to the hypothesis that the summed energy of the transverse horizontal components after transformation to the frequency domain, as given by

$$\Sigma_i |-\sin(\theta_i)x_i(\omega) + \cos(\theta_i)y_i(\omega)|^2 = \text{min}, \quad (6)$$

is a minimum for each angular frequency ω . Summation i , is over many shots from different directions into a single receiver station and the angle θ_i is the rotation for the i th source. Substituting for x_i and y_i in equation (3) gives

$$\Sigma_i |-\sin(\theta_i)x'_i + \cos(\theta_i)[c(\omega)y'_i + w(\omega)z'_i]|^2 = \text{min}, \quad (7)$$

where the complex coefficients to be solved in the least squares sense are $c = V/\det|G|$ and $w = -W/\det|G|$. From equation (7), it is clear that the data used for the analysis are 3-component receiver gathers as in Figure 1.

Expanding equation (7) and differentiating with respect to the complex conjugates of c and w leads to the normal equations

$$\begin{pmatrix} \Sigma_i \cos^2(\theta_i) \bar{y}_i \bar{y}_i & \Sigma_i \cos^2(\theta_i) \bar{z}_i \bar{y}_i \\ \Sigma_i \cos^2(\theta_i) \bar{y}_i \bar{z}_i & \Sigma_i \cos^2(\theta_i) \bar{z}_i \bar{z}_i \end{pmatrix} \begin{pmatrix} c(\omega) \\ w(\omega) \end{pmatrix} = \begin{pmatrix} \Sigma_i \sin(\theta_i) \cos(\theta_i) \bar{x}_i \bar{y}_i \\ \Sigma_i \sin(\theta_i) \cos(\theta_i) \bar{x}_i \bar{z}_i \end{pmatrix} \quad (8)$$

where the bar denotes the complex conjugate of the primed quantities x'_i , y'_i and z'_i .

The next step is to minimize the vertical component response $z(\omega)$ for each frequency because it has the added contribution from the cross-line component. This leads to the least squares problem

10/20/97

$$\sum_i |z_i(\omega)|^2 = \sum_i |-w(\omega)y_i + v(\omega)z_i|^2 = \min \quad (9)$$

where w is already known and the coefficient $v=C/\det|G|$ must be determined. Expanding (9) and differentiating with respect to the complex conjugate of v , leads to the normal equation

$$v(\omega) \sum_i z_i \bar{z}_i = w(\omega) \sum_i y_i \bar{z}_i, \quad (10)$$

5 where $v(\omega)$ easily can be solved.

After the coefficients $c(\omega)$ and $w(\omega)$ have been determined in a least squares sense for all of the shots contributing to the analysis, the cross-line response is

$$y(\omega) = c(\omega)y'(\omega) + w(\omega)z'(\omega). \quad (11)$$

10 The corrected vertical response is given by

$$z(\omega) = -w(\omega)y'(\omega) + v(\omega)z'(\omega), \quad (12)$$

once the coefficient $v(\omega)$ has been determined.

15 Figure 8 shows the time scale gathers 61, 63, 65 corresponding to the same three gathers, previously shown in Figure 6, after application of the least-square operators (11) and (12). The cross-line component has been increased in amplitude to approximately match the in-line response but the high-amplitude, low frequency interface wave has been substantially reduced. On the vertical component, much of 20 the converted-wave energy has been reduced but the first break energy and the interface waves are essentially unchanged.

The best mode of operation is best shown from the flow diagram shown in Figures 9A and 9B. For a given receiver 25 and arbitrarily-selected shot stations, a volume of data from co-located, receivers 80, 82 and 84, formatted as common receiver gathers, are entered as an ordered array into a matrix, such as a computer memory 86. For a given

10/20/97

common receiver gather, data are selected from those source locations at 88 that lie within a predetermined range of offsets (the rear offset). Source locations are further limited to those residing within a fan, in an appropriate quadrant, of $45^\circ \pm$ some arbitrary tolerance, α , at step 90. Thereafter, a time window of data with predetermined length is selected at step 92 that begins at the water break time, defined for each source-receiver pairing from the known water velocity (at 94), receiver water depth and offset distance. At step 96, the rear-offset data entries are normalized for spherical divergence to provide a 3-component normalized, resolved data block of near-offset early reflected arrivals in the time domain.

Having completed the housekeeping preliminaries, the data block is transformed from the time domain to the frequency domain at step 98. The terms for the normal equations (8) and (10) are determined for each angular frequency at step 100, and added into the appropriate summations. At step 102, the program loops back to 104 to process data from the next source location to be included in the given gather. The program continues iteratively until the data from all of the source locations which meet acceptable criteria have been processed.

Thereupon the program solves for the cross-line and vertical component coupling coefficients in equations (8) and (10) at step 108 for each angular frequency. In the final loop of the program, these coefficients are applied to the entire receiver gather, taken from computer memory 86 (Figure 9B), for all offsets, all source receiver azimuths and all recorded times. For a selected shot, the data are transformed from the time domain into the frequency domain at step 112. The cross-line component is corrected at 114 using equation (11) and the vertical component is corrected

10/20/97

at 116 using equation (12). Finally, the data are transformed into the time domain at 118 before looping back at 120 to select the next shot at 126. The program continues iteratively until the response characteristics for 5 all the cross-line and vertical components have been corrected. Thereupon, the program loops back at 122, selects the next receiver at step 106, and repeats the above steps. The program ends at 124 after all combinations of the source-receiver trajectory vectors have been resolved.

10 This invention has been described with a certain degree of specificity by way of example but not by way of limitation. Those skilled in the art will devise obvious variations to the examples given herein but which will fall within the scope and spirit of this invention which is 15 limited only by the appended claims.

WHAT IS CLAIMED IS: