DOWNLOAD THIS FREE AT

www.vturesource.com

USN	BCS304
	V //

Third Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024 Data Structures and Applications

Time: 3 hrs. Max. Marks/100

Note: I. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	М	1	C
Q.1	a.	Define Data Structures. Explain with neat block schematic different type of	10	L2	CO
		data structures with examples. What are the primitive operations that can be performed?		•	
	b.	Differentiate between structures and unions shown examples for both.	5	L1	CO
	c.	What do you mean by pattern matching? Outline knuth, Morris, Pratt pattern matching algorithm.	5	L2	COI
		OR	1	-	-
Q.2	a.	Define stack. Give the implementation of Push (), POP () and display () functions by considering its empty and full conditions.	7	L2	COI
	b.	Write an algorithm to evaluate a postfix expression and apply the same for the given postfix expression 6, 2, /, 3, -, 4, 2, *, #	7	L3	COI
	c.	Write the Postfix form of the following using stack: (i) A*(B*C+D*E) + F (ii) (a+(b*c)/(d-e))	6	L3	COI
		Module – 2			
Q.3	a.	What are the disadvantages of ordinary queue? Discuss the implementation of circular queue.	8	1.2	CO2
	b.	Write a note on multiple stacks and priority queue.	6	L2	CO2
	c.	Define Queue. Discuss how to represent queue using dynamic arrays.	6	L2	CO2
	1	OR			
Q.4	a.	What is a linked list? Explain the different types of linked lists with neat diagram.	4	L2	CO2
	b.	Give the structure definition for singly linked list (SLL). Write a C function to, (i) Insert on element at the end of SLL. (ii) Delete a node at the beginning of SLL.	8	L3	CO2
	c.	Write a C-function to add two polynomials show the linked list representation of below two polynomials $p(x) = 3x^{14} + 2x^8 + 1$ $q(x) = 8x^{14} - 3x^{10} + 10x^6$	8	L3	CO2
		Module – 3			
Q.5	a.	Write a C-function for the following operations on Doubly Linked List (DLL): (i) addition of a node. (ii) concatenation of two DLL.	8	L3	CO3
	75.	Write C functions for the following operations on circular linked list: (i) Inserting at the front of a list. (ii) Finding the length of a circular list.	8	L3	CO3
		1 of 2			

1 of 2

DOWNLOAD THIS FREE AT

www.vturesource.com

				BCS	8304
	c.	For the given sparse matrix, give the diagrammatic linked representation. $A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 4 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 8 & 0 & 0 & 1 \\ 0 & 0 & 6 & 0 \end{bmatrix}.$	4	L3	CO3
		OR			1
Q.6	a.	Discuss how binary tree are represented using, (i) Array (ii) Linked list	6	1.2	CO
	b.	Discuss inorder, preorder, postorder and level order traversal with suitable recursive function for each.	8	L-2	CO
	c.	Define Threaded Binary Tree. Discuss In-Threaded binary Tree.	6	L2	CO:
		Module – 4		1	
Q.7	a.	Write a function to perform the following operations on Binary Search Tree (BST): (i) Inserting an element into BST. (ii) Recursive search of a BST.	8	L3	CO
-	b.	Discuss selection Trees with an example.	8	L2	CO
-	c.	Explain Transforming a first into a binary tree with an example. OR	4	L2	CO
Q.8	a.	Define graph. Show the adjacency matrix and adjacency list representation of the graph given below (Refer Fig. Q8 (a)). Fig. Q8 (a)	6	L3	CO
	b.	Define the following Terminologies with examples, (i) Digraph (ii) Weighted graph (iii) Self loop (iv) Parallel edges	8	Lı	CO
	c.	Explain in detail elementary graph operations.	6	L2	CO
Q.9	a.	Module - 5 What is collision? What are the methods to resolve collision? Explain linear	7	1.2	CO
2.7	a.	probing with an example.	/	L2	CO:
	b.	Explain in detail, about static and dynamic hashing.	6	L2	CO
-	c.	Discuss Lettist Trees with an example.	7	L2	CO
		OR			
Q.10	a.	Explain different types of HASH function with example.	6	1.2	COS
	b.	Discuss AVI. tree with an example. Write a function for insertion into an AVI. Tree.	6	L3	COS
	"	Define Red-black Tree, Splay tree. Discuss the method to insert an element into Red-Black tree.	8	1.2	COS

2 of 2