

# Estimation of Causal Effect in the Absence of Treatment Observability

Joon Sup Park supervised by Dr. Fan Li Department of Statistical Science, Duke University Joonsup.park@duke.edu



## **Motivations & Backgrounds**

- Causal Inference: Estimating the counterfactual effect of treatment  $Y_i(1) - Y_i(0)$  $Z_i$  on outcome  $Y_i$ :
- Average Treatment Effect (ATE):  $\delta = E[Y_i(1) Y_i(0)]$
- Need to control for confounders  $X_i$  that may affect both treatment and outcome:
- But treatment observability is not guaranteed in many practices
- Non-compliance: the actual treatment a patient takes is different from the treatment assigned to her

#### **Research Goals**

- Propose a method that recuperates the treatment Z from the information provided by the outcome Y and confounders X
- Propose a heuristic that summarizes when the method is applicable
- Conduct simulations to check the performance, robustness, and sensitivity of the method

## (Fairly Standard) Assumptions

- Two ways to control for confounders:
  - 1. Outcome model-based (Parametric)
  - 2. Propensity score-based (Non-parametric)
- Assume the following outcome model as data generating process:  $Y_i = f(X_i, Z_i) + \epsilon_i = X_i^T \beta + Z_i \delta + \epsilon_i, \quad \epsilon_i \sim_{iid} N(0, \sigma_v^2)$
- A1 (Ignorability):  $\{Y_i(0), Y_i(1)\} \perp Z_i \mid X_i, \forall i$ → No unmeasured confounders!
- A2 (Overlap):  $0 < Pr(Z_i \mid X_i) < 1$ ,  $\forall i$
- A3 (Binary Treatment):  $Z_i \in \{0,1\}, \forall i$
- A4 (Positive Treatment Effect):  $\delta > 0$
- A5 (Knowledge of the functional form  $f(X_i, Z_i)$ )

#### Method

- In matrix form:  $Y = X\beta + Z\delta + \epsilon$ ,  $\epsilon \sim N(0, \sigma_v^2 I_n)$
- Step 1: Regress Y on X alone to obtain our first estimate of  $\beta$

$$\hat{\beta}^{(1)} = (X^T X)^{-1} X^T y = \beta + (X^T X)^{-1} X^T (Z \delta + \epsilon)$$

which is biased. Get the residual

$$\hat{\epsilon}^{(1)} = Y - X\hat{\beta}^{(1)} = (I_n - X(X^T X)^{-1} X^T)(Z\delta + \epsilon)$$

We use the bias in the residual to reconstruct our estimate of Z

# Method (Cont'd)

• Step 2: Since  $Z_i = 0$  or  $Z_i = 1$ ,

$$\hat{\epsilon}^{(1)} = (I_n - X(X^T X)^{-1} X^T)(Z\delta + \epsilon)$$

will be distributed around 2 centers





 $\rightarrow$  Clustering  $\hat{\epsilon}^{(1)}$  into 2 groups may be feasible!

Label the unit i's in the group with the larger center with  $\hat{Z}_i^{(1)} = 1$ Label the unit i's in the group with the smaller center with  $\hat{Z}_i^{(1)} = 0$ 

- Step 3: Regress Y on X and  $\hat{Z}^{(1)}$  to obtain our second estimate of  $\beta$ ,  $\hat{\beta}^{(2)}$ , and our first estimate of  $\delta$ ,  $\hat{\delta}^{(1)}$
- Step 4: If the histogram of  $\hat{\epsilon}^{(1)}$  suggests that clustering is promising, then we know that our estimate  $\hat{Z}^{(1)}$  would provide good information about Z

 $\rightarrow$  Our estimate  $\hat{\beta}^{(2)}$  obtained from regressing Y on X and  $\hat{Z}^{(1)}$  will be a better estimate of  $\beta$  than  $\hat{\beta}^{(1)}$  obtained from regressing Y on X alone

 $\rightarrow$  The residual  $\hat{\epsilon}^{(2)} = Y - X\hat{\beta}^{(2)}$  will provide more precise information about Z than  $\hat{\epsilon}^{(1)} = Y - X\hat{\beta}^{(1)}$ 

 $\rightarrow$  Clustering  $\hat{\epsilon}^{(2)}$  into 2 groups will result in finer labeling and a better estimate of Z,  $\hat{Z}^{(2)}$ 

 $\rightarrow$  Regressing Y on X and  $\hat{Z}^{(2)}$  will result in better estimates of  $\beta$ ,  $\hat{\beta}^{(3)}$ , and of  $\delta$ ,  $\hat{\delta}^{(2)}$ 

Step 5: Iterate Step 4 until  $\|\hat{\beta}^{(S+1)} - \hat{\beta}^{(S)}\| < t$  for some small threshold value t, and obtain our final estimates of Z and ATE,  $\hat{Z}^{(S)}$  and  $\hat{S}^{(S)}$ 

If  $\|\hat{\beta}^{(S+1)} - \beta\| \approx 0$ , then  $\hat{\epsilon}^{(S)} = y - X\hat{\beta}^{(S+1)} \approx Z\delta + \epsilon$  and the histogram of  $\hat{\epsilon}^{(S)}$  will have 2 centers 0 and  $\delta$ 





#### **Simulation Results**

• The data generating process for simulation:

$$X_{i} = \left(X_{i,1}, X_{i,2}, \cdots, X_{i,16}\right) \sim_{iid} Multivariate\ Normal(0_{16}, \sigma_{x}^{2}I_{16})$$

$$Z_{i} \sim_{iid} Bernoulli(\pi_{i}), \qquad where\ \pi_{i} = \frac{\exp\{X_{i}\theta\}}{1 + \exp\{X_{i}\theta\}}$$

where  $\theta = (-1, 0.5, -0.25, -0.1, \dots, -1, 0.5, -0.25, -0.1)$  and

 $Y_i = 210 + X_i^T \beta + Z_i \delta + \epsilon_i$ , where  $\epsilon_i \sim_{iid} N(0, \sigma_v^2)$ 

where  $\beta = (27.4, 13.7, -10, 20, \dots, 27.4, 13.7, -10, 20)$  and  $\delta = 20$ 

### **Simulation Results (Cont'd)**

•  $\sigma_v^2 = 1$  and  $\sigma_x^2 = 1$ 

$$\widehat{Pr}(\{\hat{Z}^{(1)} = Z\}) = 0.8797, \quad \hat{\delta}^{(1)} = 13.50$$

$$\rightarrow \widehat{Pr}(\{\hat{Z}^{(S)} = Z\}) = 1, \qquad \hat{\delta}^{(S)} = 20.002$$

•  $\sigma_y^2 = 5$  and  $\sigma_x^2 = 1$ 

$$\widehat{Pr}(\{\hat{Z}^{(1)} = Z\}) = 0.7997, \quad \hat{\delta}^{(1)} = 15.07$$

$$\rightarrow \widehat{Pr}(\{\widehat{Z}^{(S)} = Z\}) = 0.9675, \quad \widehat{\delta}^{(S)} = 18.98$$

•  $\sigma_v^2 = 1$  and  $\sigma_x^2 = 5$ 

$$\widehat{Pr}(\{\widehat{Z}^{(1)} = Z\}) = 0.8081, \quad \widehat{\delta}^{(1)} = 11.31$$





•  $\sigma_v^2 = 5$  and  $\sigma_x^2 = 5$ 

$$\widehat{Pr}(\{\widehat{Z}^{(1)} = Z\}) = 0.7353, \quad \widehat{\delta}^{(1)} = 13.44$$

$$\rightarrow \widehat{Pr}(\{\widehat{Z}^{(S)} = Z\}) = 0.7641, \quad \widehat{\delta}^{(S)} = 13.55$$





#### Conclusion

- Successful clustering of  $\hat{\epsilon}^{(S)}$  depends on how large  $\delta$  is relative to  $\sigma_v^2$  and  $\sigma_x^2$ , and their relative sizes are summarized well in the histogram of  $\hat{\epsilon}^{(S)}$
- → This serves as a heuristic to see if the method would be applicable
- The method was robust to increasing the dimensions
- Uncertainty quantification of the estimate from the method is still under consideration
- Application of the method to non-compliance settings is straightforward: we would have an additional variable "assigned treatment" W distinguished from "actual treatment" Z, but W will affect Y only through Z and does not enter in the outcome model
- $\rightarrow$  No change in the method required to recuperate actual treatment Z
- Extension of the method to non-parametric cases is on the way: To relax the assumption of the knowledge in outcome model, we substitute machine learning algorithms for linear regression