Second law of thermodynamic Qualitative difference between head & work 1st law system undergoes change = 1 energy must be balanced. but does not tell if such change is feasible or not metal rod unitorm temp hot cold let low ok. is a process in feasible or not how to know (and law) process in nature Sportaneous only in one direction (sequene driving force) what happens (flux, current, effect) -> work Completely connect into Complete Conversion of heat to work is not possible. hence, nork of head are not equivalent

 $W = Q, \qquad Q > W$ $V = Q_{2} \rightarrow 1$ $Q_{1} \rightarrow 2$ $Q_{2} \rightarrow 1$ $Q_{2} \rightarrow 1$ $Q_{2} \rightarrow 1$

Cycle heat Engine
Engineering purpose -> 2nd Land
Condition which govern the production of work by a thermodynamic system operating in a cycle.
head engine cycle
net heat in in net work out of system. The system of net work out of system.
system executes. called heat engine.
Example of heat engine.
1 - que term
() _> WE -> (by system)
System (by system) We -> (by system) We -> (on system)
LQ, - oud of system.
had trained Cycle performed by a closed.
System undergoing four successive energy interaction with
B, - added -> WE -> by system -> We on System
Q2 - rejected to Surrounding
Come to original stade (Complete Cycle).

Net heat transfer

'Qnet = 9, -92

net mork transfer, What = WT-Wp (or What = Wk-Wc)

by 1st low of thermodynamics.

Egale 9 = Egale W

Quet = Whit

=> 9,-92 = WIT-Wp

purpose of heat engine.

to produce mork continously

hence wy & Q, and of pointry interest.

Efficiency of heat engine.

n = ret work output in a cycle total heat input in cycle

n = Whet = W7-Wp = 91-92

 $\gamma = 1 - \frac{9}{9}$

thermal efficiency of heat engine.

(how to maximize efficiency)

Energy Reservior

Stage body with infinite head capacity

Capable of absorbing or rejecting unlimited heat without suffering noticable changes in thermodynamics co-endinates.

MER

Mechanical energy reservior or boiler

Cadiabatic, mechanical energy

Storage)

E.g. valving weight K.E.

(MER recieme cend delimers mechanical

Energy quari-statically).

TER - RIMER

See

(Stimk)

See

$$\eta = \frac{W_{net}}{8_1} = 1 - \frac{8_2}{8_1}$$
Whet L_{9_1}

- =) B, transferred to a System can not be Completely converted to work. In a Cycle.
- => M21 => 92>0 => some heat will always be sujected.
- =) two-reservior or heat exchanges bodies.

Kelvin - plank

Les impossible for a heat engine to produce net nork in a complete cycle if it exchange heat with only one body at a fixed temperature.

S2 = 0 => N=1 => heart-engine with one exchanging body

voilating K-P Rule

- => PMM2 __ impossible
- -> two heat exchanging bodies at different temp.
- -> Work will be produced by heat engine till temp. of two heat exchanging bodies become equal.

Clausius's statement of the second lang head flow from high T to slow temp. Reveres can not be occur spontaneously. Not possible 6 No effect other than head transfer from hoter to colder bodies. how to do? wid work. Refrigerator and heat - pump a retrigerator is a device, - cycle - maintain T& Tsworondry 丁2 くす A -> some leakage (Q2) 1-192 — heart adsorbed by working flued called retrigerant

1-1-2 = Constant evaporates (E1) at TLT2 by evaporting refrigerant body A losses. head of maintain temp. Tz. Vapour compressed in Compressor (C) by work he

than condense in condenser Cz rejecting heat of condensation 3, at T, > T2 then condensate expands adiabatically through an expander (an engine or turbine) Producing work WE when, Temp. T<T2 => heart transfer from A to refrigerator atomosphere expander Evaporator

g, = [COP]H.P. W = [(cop)ref. +1] W Electrical heater ?? => work = heat Ly heart 17 However current _ > compressor -> mork < heat Ex. 300 n = nex= 1- 12 h 92 H.E.) -> W=9,-92

