UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2007 question paper

9709 MATHEMATICS

9709/07

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

		1	, , ,
Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9709	07

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *q* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9709	07

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)			
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)			
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)			
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)			
CWO	Correct Working Only - often written by a 'fortuitous' answer			
ISW	Ignore Subsequent Working			
MR	Misread			
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)			
SOS	See Other Solution (the candidate makes a better attempt at the same question)			
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)			

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper	
	GCE A/AS LEVEL – October/November 2007	9709	07	

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 H_0 p = 0.3			
$ \begin{array}{c} + 0.3^3 \times 0.7^{16} \times _{16}C_{3} \\ = 0.001628 + 0.01256 + 0.04576 \\ = 0.0599 \end{array} $ Sum needed $ \begin{array}{c} - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0115 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.01256 + 0.04576 \\ - 0.0599 \\ - 0.01526 + 0.04576 \\ - 0.01628 + 0.04576 \\ - 0.01599 \\ - 0.0116 \\ - 0$	$H_1 p < 0.3$	B1		Both hypotheses correct
$ \begin{array}{c} + 0.3^3 \times 0.7^{16} \times _{16}C_{3} \\ = 0.001628 + 0.01256 + 0.04576 \\ = 0.0599 \end{array} $ Sum needed $ \begin{array}{c} - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0115 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.0599 \\ - 0.01256 + 0.04576 \\ - 0.0599 \\ - 0.01526 + 0.04576 \\ - 0.01628 + 0.04576 \\ - 0.01599 \\ - 0.0116 \\ - 0$				
$ \begin{array}{c} + 0.3^2 \times 0.7^{16} \times _{16}C_2 \\ = 0.001628 + 0.01256 + 0.04376 \\ = 0.0599 \end{array} $ sum needed $ \begin{array}{c} \text{sum needed} \\ \text{Correct answer accept } 0.06(0) \\ \text{This is } > 0.05 \\ \text{Accept Isaac's claim.} \\ \text{OR Using N}(0.3,0.0116) \\ \text{H}_0 p = 0.3 \\ \text{H}_1 p = 0.3 \\ \text{Accept Isaac's claim} \\ \text{OR Using N}(5.4,3.78) \\ \text{H}_0 = 1.49159 \times 1.645 \\ \text{H}_1 \mu \leq 5.4 \\ \text{H}_1 \mu \leq 5.4 \\ \text{H}_2 \mu \leq 5.4 \\ \text{Accept Isaac's claim} \\ \text{Accept Isaac's claim} \\ \text{All} \\ \text{All} \\ \text{Accept Isaac's claim} \\ \text{All} \\ Al$	$P(0, 1, 2) = 0.7^{18} + 0.3 \times 0.7^{17} \times {}_{18}C_1$	M1		For finding $P(0, 1, 2)$ at least two terms of this
$= 0.001628 + 0.01256 + 0.04576 \\ = 0.0599$ A1 Correct answer accept $0.06(0)$ This is > 0.05 Accept Isaac's claim. OR Using N(0.3,0.0116) H _{0.0} p=0.3 H _{1.0} p=0.3 H _{1.}				sum needed
This is > 0.05 Accept Isaac's claim. OR Using N(0.3,0.0116) H _{0.p=0.3} H _{1.p=0.3} $z=0.111 \pm 1/36 = 0.3 = -1.49159$ $\sqrt{0.0116}$ -1.49159>-1.645 Accept Isaac's claim OR Using N(5.4,3.78) H _{0.p=5.4} H _{1.p=5.4} H _{1.p=5.4} H _{1.p=5.4} Accept Isaac's claim OR Using N(5.4,3.78) Accept Isaac's claim OR Using N(5.4,3.78) H _{0.p=5.4} H _{1.p=5.4} Accept Isaac's claim OR Using N(5.4,3.78) Accept Isaac's claim OR Using N(5.4,3.78) H _{0.p=5.4} H _{1.p=5.4} H _{1.p=5.4} A _{1.p=5.1}				
This is > 0.05 Accept Isaac's claim. OR Using N(0.3,0.0116) H ₀ p=0.3 H ₁ p=0.3 $\frac{z=0.111+1/36-0.3}{\sqrt{0.0116}} = -1.49159$ $\frac{\sqrt{0.0116}}{\sqrt{0.0116}} = -1.49159 - 1.645$ Accept Isaac's claim OR Using N(5.4,3.78) H ₀ µ=5.4 H ₁ µ≤5.4 $\frac{z=2.5-5.4}{\sqrt{3.78}} = -1.49159$ $\frac{\sqrt{3.78}}{\sqrt{3.78}} = -1.49159 = -1.645$ Accept Isaac's claim OR 1 Sing N(5.4,3.78) H ₀ µ=5.4 H ₁ µ≤5.4 For attempt at z with or without ce For correct z For orrect z For correct z For orrect	= 0.0599	A1		Correct answer accept 0.06(0)
Accept Isaac's claim. OR Using N(0.3,0.0116) H ₀ p=0.3 H ₁ p<0.3 $z=0.111+1/36-0.3=-1.49159$ $\sqrt{0.0116}$ -1.49159>-1.645 Accept Isaac's claim OR Using N(5.4,3.78) H ₀ μ =5.4 H ₁ μ <5.4 $z=2.5-5.4=-1.49159$ $\sqrt{3.78}$ -1.49159>-1.645 Accept Isaac's claim OR Using N(5.4,3.78) H ₀ μ =5.4 H ₁ μ >5.4 $z=2.5-5.4=-1.49159$ $\sqrt{3.78}$ -1.49159>-1.645 Accept Isaac's claim MI For attempt at z with or without cc For correct z For comparison Correct conclusion ft their test statistic OR Using N(5.4,3.78) H ₀ μ =5.4 H ₁ μ >5.4 $z=2.5-5.4=-1.49159$ $\sqrt{3.78}$ -1.49159>-1.645 Accept Isaac's claim MI For comparison Correct conclusion ft their test statistic MI For attempt at z with or without cc For correct z For correct z For comparison Correct conclusion ft their test statistic MI For attempt at z with or without cc For correct z For attempt at z with or without cc For correct z For attempt at z with or without cc For correct z For attempt at z with or without cc For correct z For attempt at z with or without cc For correct z For attempt at z with or without cc For correct z For attempt at z with or without cc For correct z For attempt at z with or without cc For correct z For attempt at z with or without cc For correct z For attempt at z with or without cc For correct z For attempt at z with or without cc For correct z For attempt at z with or without cc For correct z For attempt at z with or without cc For correct z For comparison Correct z value 1.96 For equation involving 0.02 or 0.04, n in denom and a s q t and proportions used For 2.47 For inequality correct way round (ft their 2.47 but must be <3.2) MI For proportion used Correct shape $\bar{x} \pm zs / \sqrt{n}$ Correct z value 1.96 used Correct z value 1.96 used Correct grain and a sq t and proportions used For 2.47 For inequality correct way round (ft their 2.47 but must be <3.2) MI Correct shape $\bar{x} \pm zs / \sqrt{n}$ Correc				
Accept Isaac's claim. OR Using N(0.3,0.0116) H_0 p=0.3 H_1 p>0.3 $z=0.111+1/36-0.3=-1.49159$ $\sqrt{0.0116}$ Accept Isaac's claim OR Using N(5.4,3.78) H_0 µ=5.4 H_1 µ=5.4 H_1 µ=5.4 H_1 µ=5.4 H_1 µ=5.4 H_1 µ=5.4 H_1 µ=5.6 Accept Isaac's claim OR Using N(5.4,3.78) d_1 = 0.1645 0.1645	This is > 0.05	M1		Comparing with 0.05 must be 0.05
Contradictions Contradictions Contradictions Contradictions B1 Both hypotheses correct M1 For attempt at z with or without ce For correct z For comparison Correct conclusion ft their test statistic Correct conclusion ft their test statistic B1 Both hypotheses correct M1 For comparison Correct conclusion ft their test statistic Correct z For comparison Correct z For comparison Correct z For correct z For correct z For correct z For correct z Alf for correct z For comparison Correct conclusion ft their test statistic Correct conclusion ft their test statistic M1 For comparison Correct conclusion ft their test statistic M1 For comparison Correct conclusion ft their test statistic M1 For comparison Correct conclusion ft their test statistic M1 For comparison Correct conclusion ft their test statistic M1 For standardising, must have sq rt. and z value For ± 1.645 used For ± 1.645 used For ± 1.645 used For ± 1.645 used For inequality correct way round (ft their 2.47 but must be <3.2) M1 For inequality correct way round (ft their 2.47 but must be <3.2) M1 For inequality correct way round (ft their 2.47 but must be <3.2) M1 For proportion used M1 Correct shape $\bar{x} \pm zs / \sqrt{n}$ Correct z value 1.96 used A1 A1 Correct z value 1.96 used A1 A1 Correct z value 1.96 used A1 A1 Correct z value 1.96 used A1 Correct limits (written as interval) M1* M1* Seeing an equation involving 0.02 or 0.04, n in denom and a sq rt and proportions used For equation of correct form	Accept Isaac's claim.			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		71111		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	OR Using N(0 3 0 0116)			contradictions
H ₁ p<0.3 $\frac{7-0.111+1/36-0.3}{\sqrt{0.0116}} = -1.49159$ $\sqrt{0.0116}$ -1.49159>-1.645 $Accept Isaac's claim$ B1 B0th hypotheses correct M1 For attempt at z with or without cc For correct z For comparison Correct conclusion ft their test statistic R1 For attempt at z with or without cc For correct z For comparison Correct conclusion ft their test statistic R1 For attempt at z with or without cc For correct z For comparison Correct conclusion ft their test statistic R1 For attempt at z with or without cc For correct z R1 For attempt at z with or without cc For correct z R1 For comparison Correct conclusion ft their test statistic R1 For comparison Correct conclusion ft their test statistic R1 For comparison Correct conclusion ft their test statistic R1 For comparison Correct conclusion ft their test statistic R1 For comparison Correct conclusion ft their test statistic R1 For comparison Correct conclusion ft their test statistic R1 For comparison Correct conclusion ft their test statistic R1 For comparison Correct conclusion ft their test statistic R1 For comparison Correct conclusion ft their test statistic R1 For comparison Correct conclusion ft their test statistic R1 For comparison Correct conclusion ft their test statistic R1 For comparison Correct conclusion ft their test statistic R1 For comparison Correct conclusion ft their test statistic R1 For comparison Correct conclusion ft their test statistic R1 For comparison Correct conclusion ft their test statistic R1 For comparison Correct conclusion ft their test statistic R1 For comparison Correct z R1 For comparison Correct test statistic R1 For comparison Correct		D1		Dath hypothogog garrent
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		DI		Both hypotheses correct
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	3.61		T
-1.49159>-1.645 Accept Isaac's claim OR Using N(5.4,3.78) $H_0 \mu = 5.4$ $H_1 \mu \le 5.4$ $H_1 \mu \le 5.4$ $-1.49159 \ge 1.645$ Accept Isaac's claim B1 Both hypotheses correct M1 For attempt at z with or without ec For comparison Correct conclusion ft their test statistic M1 For attempt at z with or without ec For correct z Alt For comparison Correct conclusion ft their test statistic M1 For attempt at z with or without ec For correct z M1 For comparison Correct conclusion ft their test statistic M1 For comparison Correct conclusion ft their test statistic M1 For comparison Correct conclusion ft their test statistic M1 For comparison Correct conclusion ft their test statistic M1 For comparison Correct zonclusion ft their test statistic M1 For standardising, must have sq rt. and z value For $z = 1.645$ used For $z = 2.47$ For inequality correct way round (ft their $z = 2.47$ but must be $z = 3.2$) For inequality correct way round (ft their $z = 3.47$ ft on their (i) M1 Solution M1 Correct shape $z = 2.47$ For proportion used Correct $z = 2.47$ For proportion used M1 Correct $z = 2.47$ For proportion used Correct $z = 2.47$ For proportion used Correct $z = 2.47$ For proportion used M1 Correct $z = 2.47$ For proportion used For equation of correct form				
Accept Isaac's claim OR Using N(5.4,3.78) H ₀ μ =5.4 H ₁ μ <5.4 χ =2.5-5.4=-1.49159 χ 3.78 -1.49159>-1.645 Accept Isaac's claim OR Using N(5.4,3.78) B1 Both hypotheses correct For attempt at z with or without cc For correct z All For comparison Correct conclusion ft their test statistic Provided Security of Se				
OR Using N(5.4,3.78) $H_0 \mu = 5.4$ $H_1 \mu \le 5.4$ $z = 2.5 - 5.4 = -1.49159$ $\sqrt{3.78}$ Accept Isaac's claim $2 \text{ (i) } -1.645 = \frac{c - 3.2}{1.4/\sqrt{10}} \qquad c = 2.47$ $\text{rejection region is } \overline{x} < 2.47$ $\text{(ii) } m < 2.47$ $\text{B1ft} 1$ $3 \text{ (i) a sample where every element has an equal chance of being picked.}$ B1 $0.371 \pm 1.96 \times \sqrt{\frac{(0.371)(0.629)}{n}} = 0.02$ B1 $0.321, 0.422$ B1 $0.371 \pm 1.96 \times \sqrt{\frac{(0.371)(0.629)}{n}} = 0.02$ B1 $0.301 = 80th hypotheses correct$ For attempt at z with or without cc For correct z For comparison Correct conclusion ft their test statistic For standardising, must have sq rt. and z value For ± 1.645 used For 2.47 For inequality correct way round (ft their 2.47 but must be < 3.2) B1 1 1 Correct shape $\overline{x} \pm zs / \sqrt{n}$ Correct z value 1.96 used Correct limits (written as interval) Seeing an equation involving 0.02 or 0.04, n in denom and a sq rt and proportions used For equation of correct form				
H ₀ μ =5.4 H ₁ μ <5.4 z=2.5 - 5.4 = -1.49159 $\sqrt{3.78}$ -1.49159>-1.645 Accept Isaac's claim M1 Alft 5 For comparison Correct conclusion ft their test statistic 2 (i) -1.645 = $\frac{c-3.2}{1.4/\sqrt{10}}$ c = 2.47 rejection region is \bar{x} < 2.47 M1 B1 Alft 4 For standardising, must have sq rt. and z value For ± 1.645 used For 2.47 For inequality correct way round (ft their 2.47 but must be <3.2) (ii) m < 2.47 B1ft 1 ft on their (i) 3 (i) a sample where every element has an equal chance of being chosen OR a random sample of size n is a sample chosen in such a way that each possible group of size n has the same chance of being picked. B1 1 For proportion used Correct z value 1.96 used Correct limits (written as interval) (iii) $1.96\sqrt{\frac{(0.371)(0.629)}{n}} = 0.02$ M1* Secing an equation involving 0.02 or 0.04, n in denom and a sq rt and proportions used For equation of correct form	Accept Isaac's claim	Alft		Correct conclusion ft their test statistic
H ₀ μ =5.4 H ₁ μ <5.4 z=2.5 - 5.4 = -1.49159 $\sqrt{3.78}$ -1.49159>-1.645 Accept Isaac's claim M1 Alft 5 For comparison Correct conclusion ft their test statistic 2 (i) -1.645 = $\frac{c-3.2}{1.4/\sqrt{10}}$ c = 2.47 rejection region is \bar{x} < 2.47 M1 B1 Alft 4 For standardising, must have sq rt. and z value For ± 1.645 used For 2.47 For inequality correct way round (ft their 2.47 but must be <3.2) (ii) m < 2.47 B1ft 1 ft on their (i) 3 (i) a sample where every element has an equal chance of being chosen OR a random sample of size n is a sample chosen in such a way that each possible group of size n has the same chance of being picked. B1 1 For proportion used Correct z value 1.96 used Correct limits (written as interval) (iii) $1.96\sqrt{\frac{(0.371)(0.629)}{n}} = 0.02$ M1* Secing an equation involving 0.02 or 0.04, n in denom and a sq rt and proportions used For equation of correct form	07.77			
H ₁ μ <5.4 $z=2.5-5.4=-1.49159$ $\sqrt{3.78}$ $-1.49159>-1.645$ Accept Isaac's claim 2 (i) -1.645 = $\frac{c-3.2}{1.4/\sqrt{10}}$ $c=2.47$ Rejection region is $\bar{x} < 2.47$ 3 (i) a sample where every element has an equal chance of being chosen OR a random sample of size n is a sample chosen in such a way that each possible group of size n has the same chance of being picked. B1	· · · · · · · · · · · · · · · · · · ·	B1		Both hypotheses correct
The standardising in the statistic	•			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$H_1 \mu < 5.4$	M1		For attempt at z with or without cc
For comparison Correct conclusion ft their test statistic 2 (i) $-1.645 = \frac{c - 3.2}{1.4/\sqrt{10}}$ $c = 2.47$ rejection region is $\overline{x} < 2.47$ (ii) $m < 2.47$ B1ft 1 3 (i) a sample where every element has an equal chance of being chosen OR a random sample of size n is a sample chosen in such a way that each possible group of size n has the same chance of being picked. B1 1 For comparison Correct conclusion ft their test statistic For standardising, must have sq rt. and z value For ± 1.645 used For 2.47 For inequality correct way round (ft their 2.47 but must be < 3.2) If no their (i) For proportion used for ± 1.645	z = 2.5 - 5.4 = -1.49159	A1		For correct z
Accept Isaac's claim Alft 5 Correct conclusion ft their test statistic 2 (i) -1.645 = $\frac{c-3.2}{1.4/\sqrt{10}}$ $c = 2.47$ $alg 1$ $alg 2$ $alg 2$ $alg 2$ $alg 3$ $alg 4$ $alg 2$ $alg 4$ $alg 2$ $alg 2$ $alg 4$ $alg 2$ $alg 4$ $alg 2$ $alg 4$ $alg 4$ $alg 2$ $alg 4$	$\sqrt{3.78}$			
Accept Isaac's claim A1ft 5 Correct conclusion ft their test statistic 2 (i) -1.645 = $\frac{c-3.2}{1.4/\sqrt{10}}$ $c = 2.47$ rejection region is $\overline{x} < 2.47$ A1ft 4 B1 For standardising, must have sq rt. and z value For ± 1.645 used For 2.47 For inequality correct way round (ft their 2.47 but must be < 3.2) (ii) $m < 2.47$ B1ft 1 ft on their (i) 3 (i) a sample where every element has an equal chance of being chosen OR a random sample of size n is a sample chosen in such a way that each possible group of size n has the same chance of being picked. B1 1 1 (ii) $1.30/350 (0.371)$ $0.371 \pm 1.96 \times \sqrt{\frac{(0.371)(0.629)}{350}}$ $= 0.371 \pm 0.050609$ $= (0.321, 0.422)$ B1 Correct conclusion ft their test statistic For standardising, must have sq rt. and z value For ± 1.645 used For inequality correct way round (ft their 2.47 but must be < 3.2) If to n their (i) Correct shape $\overline{x} \pm 2s / \sqrt{n}$ Correct shape $\overline{x} \pm 2s / \sqrt{n}$ Correct z value 1.96 used Correct limits (written as interval) (iii) $1.96 \sqrt{\frac{(0.371)(0.629)}{n}} = 0.02$ M1* Seeing an equation involving 0.02 or 0.04 , n in denom and a sq rt and proportions used For equation of correct form	-1.49159>-1.645	M1		For comparison
2 (i) $-1.645 = \frac{c - 3.2}{1.4/\sqrt{10}}$ $c = 2.47$ Rejection region is $\overline{x} < 2.47$ (ii) $m < 2.47$ B1ft 1 from their (i) 3 (i) a sample where every element has an equal chance of being chosen OR a random sample of size n is a sample chosen in such a way that each possible group of size n has the same chance of being picked. B1 1 For proportion used (ii) $130/350 (0.371)$ $0.371 \pm 1.96 \times \sqrt{\frac{(0.371)(0.629)}{350}}$ $= 0.371 \pm 0.050609$ $= (0.321, 0.422)$ B1 A1 4 For standardising, must have sq rt. and z value For ± 1.645 used For ± 1.645 used For inequality correct way round (ft their 2.47 but must be < 3.2) B1 ft on their (i) For proportion used Correct shape $\overline{x} \pm zs / \sqrt{n}$ Correct shape $\overline{x} \pm zs / \sqrt{n}$ Correct plane $\overline{x} \pm zs / \sqrt{n}$ Correct limits (written as interval) (iii) $1.96 \sqrt{\frac{(0.371)(0.629)}{n}} = 0.02$ M1* Seeing an equation involving 0.02 or 0.04 , n in denom and a sq rt and proportions used For equation of correct form		A1ft	5	•
2 (i) $-1.645 = \frac{1}{1.4/\sqrt{10}}$ $c = 2.47$ $A1ft = 4$ For ± 1.645 used For 2.47 For inequality correct way round (ft their 2.47 but must be <3.2) (ii) $m < 2.47$ B1 ft on their (i) 3 (i) a sample where every element has an equal chance of being chosen OR a random sample of size n is a sample chosen in such a way that each possible group of size n has the same chance of being picked. B1 1 (ii) $130/350$ (0.371) $0.371 \pm 1.96 \times \sqrt{\frac{(0.371)(0.629)}{350}}$ $= 0.371 \pm 0.050609$ $= (0.321, 0.422)$ B1 A1	Troop round a dimin			
2 (i) $-1.645 = \frac{1}{1.4/\sqrt{10}}$ $c = 2.47$ $A1ft = 4$ For ± 1.645 used For 2.47 For inequality correct way round (ft their 2.47 but must be <3.2) (ii) $m < 2.47$ B1 ft on their (i) 3 (i) a sample where every element has an equal chance of being chosen OR a random sample of size n is a sample chosen in such a way that each possible group of size n has the same chance of being picked. B1 1 (ii) $130/350$ (0.371) $0.371 \pm 1.96 \times \sqrt{\frac{(0.371)(0.629)}{350}}$ $= 0.371 \pm 0.050609$ $= (0.321, 0.422)$ B1 A1	c-3 2	M1		For standardising, must have so rt, and z value
rejection region is $\overline{x} < 2.47$ Alft 4 Alft 4 For inequality correct way round (ft their 2.47 but must be <3.2) (ii) $m < 2.47$ Blft 1 ft on their (i) 3 (i) a sample where every element has an equal chance of being chosen OR a random sample of size n is a sample chosen in such a way that each possible group of size n has the same chance of being picked. (ii) $130/350 (0.371)$ $0.371 \pm 1.96 \times \sqrt{\frac{(0.371)(0.629)}{350}}$ $= 0.371 \pm 0.050609$ $= (0.321, 0.422)$ Bl Correct shape $\overline{x} \pm zs / \sqrt{n}$ Correct z value 1.96 used Alft Alft 4 For inequality correct way round (ft their 2.47 but must be <3.2) Bl Correct shape $\overline{x} = \frac{1}{2}$ Correct shape $\overline{x} = \frac{1}{2}$ Correct shape $\overline{x} = \frac{1}{2}$ Correct z value 1.96 used Alft Alft Alft 4 For inequality correct way round (ft their 2.47 but must be <3.2) Bl Correct shape $\overline{x} = \frac{1}{2}$ Correct shape $\overline{x} = \frac{1}{2}$ Correct z value 1.96 used Alft Alft Alft 4 Correct limits (written as interval) M1* Seeing an equation involving 0.02 or 0.04, n in denom and a sq rt and proportions used For equation of correct form	2 (i) -1.645 = $\frac{c}{c} = \frac{3.2}{1.0000}$ $c = 2.47$			
rejection region is $\bar{x} < 2.47$ A1ft 4 For inequality correct way round (ft their 2.47 but must be <3.2) (ii) $m < 2.47$ B1ft 1 ft on their (i) 3 (i) a sample where every element has an equal chance of being chosen OR a random sample of size n is a sample chosen in such a way that each possible group of size n has the same chance of being picked. B1 1 For proportion used M1 Correct shape $\bar{x} \pm zs / \sqrt{n}$ $= 0.371 \pm 0.050609$ $= (0.321, 0.422)$ B1 Correct z value 1.96 used A1 4 Correct limits (written as interval) M1* Seeing an equation involving 0.02 or 0.04, n in denom and a sq rt and proportions used For equation of correct form				
but must be <3.2) (ii) $m < 2.47$ B1ft 1 ft on their (i) 3 (i) a sample where every element has an equal chance of being chosen OR a random sample of size n is a sample chosen in such a way that each possible group of size n has the same chance of being picked. B1 1 (ii) $130/350 (0.371)$ $0.371 \pm 1.96 \times \sqrt{\frac{(0.371)(0.629)}{350}}$ $= 0.371 \pm 0.050609$ $= (0.321, 0.422)$ B1 Correct shape $\overline{x} \pm zs / \sqrt{n}$ Correct z value 1.96 used Correct limits (written as interval) (iii) $1.96 \sqrt{\frac{(0.371)(0.629)}{n}} = 0.02$ M1* Seeing an equation involving 0.02 or 0.04, n in denom and a sq rt and proportions used For equation of correct form	rejection region is $\bar{x} < 2.47$		4	
(ii) $m < 2.47$ B1ft 1 ft on their (i) 3 (i) a sample where every element has an equal chance of being chosen OR a random sample of size n is a sample chosen in such a way that each possible group of size n has the same chance of being picked. B1 1 (ii) $130/350 (0.371)$ $0.371 \pm 1.96 \times \sqrt{\frac{(0.371)(0.629)}{350}}$ $= 0.371 \pm 0.050609$ $= (0.321, 0.422)$ B1 For proportion used Correct shape $\bar{x} \pm zs / \sqrt{n}$ Correct z value 1.96 used Correct limits (written as interval) M1* Seeing an equation involving 0.02 or 0.04, n in denom and a sq rt and proportions used For equation of correct form		7 1110	•	* * *
3 (i) a sample where every element has an equal chance of being chosen OR a random sample of size n is a sample chosen in such a way that each possible group of size n has the same chance of being picked. B1 1 For proportion used O.371 ± 1.96 × $\sqrt{\frac{(0.371)(0.629)}{350}}$ $= 0.371 \pm 0.050609 = (0.321, 0.422)$ B1 Correct shape $\overline{x} \pm zs / \sqrt{n}$ Correct z value 1.96 used Correct limits (written as interval) M1* Seeing an equation involving 0.02 or 0.04, n in denom and a sq rt and proportions used For equation of correct form				out must be (3.2)
3 (i) a sample where every element has an equal chance of being chosen OR a random sample of size n is a sample chosen in such a way that each possible group of size n has the same chance of being picked. B1 1 (ii) $130/350 (0.371)$ $0.371 \pm 1.96 \times \sqrt{\frac{(0.371)(0.629)}{350}}$ $= 0.371 \pm 0.050609$ $= (0.321, 0.422)$ B1 For proportion used Correct shape $\bar{x} \pm zs / \sqrt{n}$ Correct z value 1.96 used Correct limits (written as interval) M1* Seeing an equation involving 0.02 or 0.04, n in denom and a sq rt and proportions used For equation of correct form	(ii) $m < 2.47$	R1ft	1	ft on their (i)
equal chance of being chosen OR a random sample of size n is a sample chosen in such a way that each possible group of size n has the same chance of being picked. (ii) $130/350 (0.371)$ (ii) $130/350 (0.371)$ B1 For proportion used $0.371 \pm 1.96 \times \sqrt{\frac{(0.371)(0.629)}{350}}$ $= 0.371 \pm 0.050609$ $= (0.321, 0.422)$ B1 Correct shape $\overline{x} \pm zs / \sqrt{n}$ Correct z value 1.96 used Correct limits (written as interval) M1* Seeing an equation involving 0.02 or 0.04, n in denom and a sq rt and proportions used For equation of correct form		Diit	•	it on then (i)
OR a random sample of size n is a sample chosen in such a way that each possible group of size n has the same chance of being picked. B1 1 (ii) $130/350 (0.371)$ B1 For proportion used $0.371 \pm 1.96 \times \sqrt{\frac{(0.371)(0.629)}{350}}$ $= 0.371 \pm 0.050609$ $= (0.321, 0.422)$ B1 Correct shape $\overline{x} \pm zs / \sqrt{n}$ Correct z value 1.96 used Correct limits (written as interval) (iii) $1.96 \sqrt{\frac{(0.371)(0.629)}{n}} = 0.02$ M1* Seeing an equation involving 0.02 or 0.04, n in denom and a sq rt and proportions used For equation of correct form	3 (i) a sample where every element has an			
OR a random sample of size n is a sample chosen in such a way that each possible group of size n has the same chance of being picked. B1 1 (ii) $130/350 (0.371)$ B1 For proportion used $0.371 \pm 1.96 \times \sqrt{\frac{(0.371)(0.629)}{350}}$ $= 0.371 \pm 0.050609$ $= (0.321, 0.422)$ B1 Correct shape $\overline{x} \pm zs / \sqrt{n}$ Correct z value 1.96 used Correct limits (written as interval) (iii) $1.96 \sqrt{\frac{(0.371)(0.629)}{n}} = 0.02$ M1* Seeing an equation involving 0.02 or 0.04, n in denom and a sq rt and proportions used For equation of correct form	equal chance of being chosen			
chosen in such a way that each possible group of size n has the same chance of being picked. B1 1 (ii) $130/350 (0.371)$ $0.371 \pm 1.96 \times \sqrt{\frac{(0.371)(0.629)}{350}}$ $0.371 \pm 0.050609 = (0.321, 0.422)$ B1 For proportion used M1 Correct shape $\overline{x} \pm zs / \sqrt{n}$ Correct z value 1.96 used Correct limits (written as interval) M1* Correct z value 1.96 used Correct limits (written as interval) M1* Seeing an equation involving 0.02 or 0.04, n in denom and a sq rt and proportions used For equation of correct form				
group of size n has the same chance of being picked. (ii) $130/350 (0.371)$ $0.371 \pm 1.96 \times \sqrt{\frac{(0.371)(0.629)}{350}}$ $= 0.371 \pm 0.050609$ $= (0.321, 0.422)$ B1 Correct shape $\overline{x} \pm zs / \sqrt{n}$ Seeing an equation involving 0.02 or 0.04, n in denom and a sq rt and proportions used For equation of correct form				
being picked. (ii) $130/350 \ (0.371)$ $0.371 \pm 1.96 \times \sqrt{\frac{(0.371)(0.629)}{350}}$ $= 0.371 \pm 0.050609$ $= (0.321, 0.422)$ B1 Correct shape $\bar{x} \pm zs / \sqrt{n}$ Correct z value 1.96 used Correct limits (written as interval) M1* Seeing an equation involving 0.02 or 0.04, n in denom and a sq rt and proportions used For equation of correct form		B1	1	
(ii) $130/350 (0.371)$ $0.371 \pm 1.96 \times \sqrt{\frac{(0.371)(0.629)}{350}}$ $= 0.371 \pm 0.050609$ $= (0.321, 0.422)$ B1 Correct shape $\bar{x} \pm zs / \sqrt{n}$ B1 Correct z value 1.96 used Correct limits (written as interval) (iii) $1.96 \sqrt{\frac{(0.371)(0.629)}{n}} = 0.02$ M1* Seeing an equation involving 0.02 or 0.04, n in denom and a sq rt and proportions used For equation of correct form				
0.371 ± 1.96 × $\sqrt{\frac{(0.371)(0.629)}{350}}$ M1 Correct shape $\bar{x} \pm zs / \sqrt{n}$ = 0.371 ± 0.050609 = (0.321, 0.422) B1 Correct z value 1.96 used Correct limits (written as interval) (iii) 1.96 $\sqrt{\frac{(0.371)(0.629)}{n}} = 0.02$ M1* Seeing an equation involving 0.02 or 0.04, n in denom and a sq rt and proportions used For equation of correct form				
0.371 ± 1.96 × $\sqrt{\frac{(0.371)(0.629)}{350}}$ M1 Correct shape $\bar{x} \pm zs / \sqrt{n}$ = 0.371 ± 0.050609 = (0.321, 0.422) B1 Correct z value 1.96 used Correct limits (written as interval) (iii) 1.96 $\sqrt{\frac{(0.371)(0.629)}{n}} = 0.02$ M1* Seeing an equation involving 0.02 or 0.04, n in denom and a sq rt and proportions used For equation of correct form		1		
0.371 ± 1.96 × $\sqrt{\frac{(0.371)(0.629)}{350}}$ M1 Correct shape $\bar{x} \pm zs / \sqrt{n}$ = 0.371 ± 0.050609 = (0.321, 0.422) B1 Correct z value 1.96 used Correct limits (written as interval) (iii) 1.96 $\sqrt{\frac{(0.371)(0.629)}{n}} = 0.02$ M1* Seeing an equation involving 0.02 or 0.04, n in denom and a sq rt and proportions used For equation of correct form	(ii) 130/350 (0.371)	B1		For proportion used
$= 0.371 \pm 0.050609$ $= (0.321, 0.422)$ B1 A1 4 Correct z value 1.96 used Correct limits (written as interval) M1* Seeing an equation involving 0.02 or 0.04, n in denom and a sq rt and proportions used For equation of correct form				* *
$= 0.371 \pm 0.050609$ $= (0.321, 0.422)$ B1 A1 4 Correct z value 1.96 used Correct limits (written as interval) M1* Seeing an equation involving 0.02 or 0.04, n in denom and a sq rt and proportions used For equation of correct form	$0.371 \pm 1.96 \times \sqrt{\frac{(0.371)(0.029)}{0.371}}$	M1		Correct shape $\overline{x} + 75 / \sqrt{n}$
= (0.321, 0.422) $A1$				Correct shape $x \perp zs / \sqrt{n}$
(iii) $1.96\sqrt{\frac{(0.371)(0.629)}{n}} = 0.02$ M1* Seeing an equation involving 0.02 or 0.04, n in denom and a sq rt and proportions used For equation of correct form		B1		Correct z value 1.96 used
(iii) $1.96\sqrt{\frac{(0.371)(0.629)}{n}} = 0.02$	=(0.321, 0.422)		4	
M1*dep For equation of correct form				
M1*dep For equation of correct form	(iii) $1.96 \left \frac{(0.371)(0.629)}{(0.371)(0.629)} \right = 0.02$	M1*		Seeing an equation involving 0.02 or 0.04 , n in
M1*dep For equation of correct form	n			
		M1*de	ер	
	<i>n</i> = 2241or 2242 or 2243 or 2240	A1	3	
	1			

			<u> </u>
Page 5	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9709	07

4 (i) E (cost to Stella) = $600 + 5.52 \times 500$	M1		For multiplying by 5.52 and adding 600
= 3360	A1		Correct mean
$Var (cost to Stella) = 5.52^2 \times 7.1^2$	M1		For mult $7.1/7.1^2/50.41^2$ by 5.52 ²
= 1540 (1536)	M1		For $5.52^{(2)}$ x $7.1^{(2)}$ or 50.41^2 with no
10.10 (1000)	1,11		addition/subtraction
	A1	5	For correct answer
	- 		1 of correct diswer
(ii) $P(D > 2S) = P(D - 2S > 0)$	M1		For attempt (D - $2S$) (or equiv) either $<$ or $>$ 0
$D - 2S \sim N(-120, 421 + 4 \times 1536)$	B1		For correct mean (seen or implied)
l i	Alft		
~ N(-120, 6565)	AIII		For correct unsimplified variance
$P(D-2S > 0) = P(z > \frac{120}{\sqrt{6565}})$	2.61		7
$\sqrt{6565}$	M1		For standardising attempt
= P(z > 1.481)			
= 0.0693	A1	5	For correct answer, accept 0.069
0.0055	111		Tor correct answer, accept one
$\Gamma 2 \exists b$	B1		Correct answer (accept unsimplified)
5 (i) $E(X) = \int_{0}^{b} \frac{x}{b} dx = \left[\frac{x^2}{2b} \right]_{0}^{b} = \frac{b}{2}$			(market property)
$\begin{vmatrix} b & b & b \end{vmatrix} = \begin{vmatrix} b & b & b \end{vmatrix} = \begin{vmatrix} b & b & b \end{vmatrix}$	M1		For (substituted) attempt at $\int x^2 f(x) dx - [E(X)^2]$ ie
2 30	1,11		For (substituted) attempt at $\int x \int (x) dx = [L(X)]$ is
h 2 12 12			$-[E(X^2)]$ must be seen even if ignored in next line
$Var(X) = \int_{0}^{b} \frac{x^{2}}{h} - \frac{b^{2}}{4} = \frac{b^{2}}{12}$			[2(11)] must be seen even it ignored in next inte
$ \stackrel{\circ}{b} b = 4 = 12 $	A1	3	Correct answer. Accept unsimplified – but must be a
	7 11		single fraction.
			Single fraction.
(ii) $9.5 = b/2$	M1		Equating their mean to their 9.5
b = 19 AG	A1	2	Correct answer
	111	_	Correct answer
	1		
(iii) 8/19 or 0.421	B1	1	Correct answer
	1		
(iv) $\overline{X} \sim N(9.5, 30.08/336)$	M1		Dividing their $b^2/12$ by 336
	A1ft		Correct mean and variance
or using totals N(3192,10106.88)	AIII		Contot mean and variance
$P(\overline{X} < 9) = P\left(z < \frac{9 - 9.5}{\sqrt{30.08/336}}\right)$ or equiv			Standardising (must involve 336) and area < 0.5
$P(A < 9) = P \left[Z < \frac{\sqrt{30.08/336}}{\sqrt{30.08/336}} \right]$ or equiv	M1		
			or consistent with their figures
= P(z < -1.671)			
= 1 - 0.9526			
= 0.0474	A1	4	Correct answer

			
Page 6	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2007	9709	07

$6 (i) \qquad \frac{e^{-\lambda} \lambda^2}{2!} = 3 \frac{e^{-\lambda} \lambda^4}{4!}$	M1		Poisson equation involving λ
$2! \qquad 4!$ $\lambda = 2$	A1		Correct mean
$new \lambda = 7$	B1ft		New mean ft $3.5 \times \text{previous one}$
$P(X > 3) = 1 - e^{-7} \left(1 + 7 + \frac{7^2}{2!} + \frac{7^3}{3!} \right)$	M1		Poisson probs with their mean (at least 3 probs) and 1-
= 0.918	A1	5	Correct answer
(ii) (a) $\lambda = 1.3k$ $P(X > 0) = 1 - e^{-1.3k} = 0.96$ $0.04 = e^{-1.3k}$ k = 2.48	B1 M1 A1 A1	4	Correct new mean Equation with k or λ in involving $1 - P(0) = 0.96$ correct equation correct answer
(b) <i>X</i> ~ N(1300, 1300)	B1		correct mean and variance
$P(X > 1250) = P\left(z > \frac{1250.5 - 1300}{\sqrt{1300}}\right)$	M1		standardising must have sq rt with or without cc
= P(z > -1.373) = 0.915	A1	3	correct answer

