Calculus I Lecture 17 Curve Sketching and Derivatives

Todor Milev

https://github.com/tmilev/freecalc

2020

Outline

- Derivatives and the Shapes of Curves
 - What Does f' Say About f?
 - What Does f" Say About f?

- 2 Curve sketching
 - Curve sketching summary

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein

What Does f' Say About f?

Increasing/Decreasing Test

- Consider the graph on the left.
- f'(x) > 0 to the left of c and f'(x) < 0 to the right of c.
- f is increasing to the left of c and decreasing to the right of c.
- This property holds more generally:
- If f'(x) > 0 on an interval, then f is increasing on that interval.
- ② If f'(x) < 0 on an interval, then f is decreasing on that interval.

Todor Milev Lecture 17 ... 2020

Find where the function $f(x) = 3x^4 + 8x^3 - 18x^2 + 6$ is increasing and where it is decreasing.

$$f'(x) = 12x^3 + 24x^2 - 36x = 12x(x^2 + 2x - 3) = 12x(x + 3)(x - 1)$$

f'(x) equals zero for x = -3, 0, 1. Therefore f' doesn't change sign in the intervals

Interval	12 <i>x</i>	<i>x</i> + 3	<i>x</i> − 1	f'(x)	f
$(-\infty, -3)$	_	_	_	_	decreasing
(-3,0)	_	+	_	+	increasing
(0, 1)	+	+	_	_	decreasing
$(1,\infty)$	+	+	+	+	increasing

- Recall: if f has a local max at c and f'(c) exists, then f'(c) = 0. However if f'(c) = 0, it is not necessary that c be a local max.
- In the first picture, f'(x) > 0 to the left of c and f'(x) < 0 to the right of c.
- In other words, f'(x) changes sign at c.
- In the second picture, f'(x) > 0 to the left of c and f'(x) > 0 to the right of c. f'(x) doesn't change sign at c.
- In the first picture there's a local maximum, but not in the second.
- This suggests a way of testing for local maxima/minima.

Todor Miley Lecture 17 ... 2020

The First Derivative Test

Suppose f'(c) = 0 (i.e., f is differentiable at c and c is critical number for f).

- If f' changes from positive to negative at c, then f has a local maximum at c.
- If f' changes from negative to positive at c, then f has a local minimum at c.
- If f' doesn't change signs at c, then f has no local maximum or minimum at c.

Todor Milev Lecture 17 ... 2020

The First Derivative Test

Suppose f'(c) = 0 (i.e., f is differentiable at c and c is critical number for f).

- If f' changes from positive to negative at c, then f has a local maximum at c.
- If f' changes from negative to positive at c, then f has a local minimum at c.
- If f' doesn't change signs at c, then f has no local maximum or minimum at c.

Todor Milev Lecture 17 ... 2020

Suppose f'(c) = 0 (i.e., f is differentiable at c and c is critical number for f).

- If f' changes from positive to negative at c, then f has a local maximum at c.
- 2 If f' changes from negative to positive at c, then f has a local minimum at c.
- If f' doesn't change signs at c, then f has no local maximum or minimum at c.

Lecture 17 2020 Todor Milev

What Does f" Say About f?

f and g are both increasing on (a, b), but "bend" in different directions.

Definition (Concave Up/Concave Down, most general definition)

A function is called concave up/down if the line segment between any two points on its graph lies above/below the graph.

Theorem (Can be taken as a definition)

Let f be a differentiable function on an interval I. Then f is concave up (on I) if its graph lies above all of its tangents (on I), and f is concave down (on I) if its graph lies below all of its tangents (on I).

- In the graph of f the slopes of the tangent lines increase as we move from left to right.
- This means f' is an increasing function.
- This means f'' is positive on (a, b).
- Similarly g'' is negative on (a, b).

Concavity Test

- If f''(x) > 0 for all x in I, then the graph of f is concave up on I.
- ② If f''(x) < 0 for all x in I, then the graph of f is concave down on I.

Definition (Inflection Point)

A point P = (x, f(x)) on a curve y = f(x) is called an inflection point if

- f''(x) exists
- the graph of *f* changes from concave up to concave down or from concave down to concave up at *P*.

In other words P = (x, f(x)) is an inflection point if f'' exists and changes signs at x.

This gives us a new way of checking if critical points are local maxima or local minima:

The Second Derivative Test Suppose f'' is exists near c.

- If f'(c) = 0 and f''(c) > 0, then f has a local minimum at c.
- If f'(c) = 0 and f''(c) < 0, then f has a local maximum at c.

- f'(c) = 0, so f has a horizontal tangent at c.
- f''(c) < 0, so f is concave down near c.
- This means *f* lies below its horizontal tangent.
- This means f(c) is a local maximum.

Curve sketching 13/29

Example

Discuss the curve $y = f(x) = x^4 - 4x^3$ with respect to concavity, points of inflection, and local maxima and minima. Sketch the curve.

Interval	f''(x)	Concave
$(-\infty,0)$	+	up
(0,2)	_	down
$(2,\infty)$	+	up

$$f'(x) = 4x^3 - 12x^2 = 4x^2(x-3).$$

•
$$f''(x) = 12x^2 - 24x = 12x(x-2)$$
.

- Critical numbers: 0 and 3.
- f''(0) = 0 and f''(3) = 36 > 0.
- Second Derivative Test:
- Localminimum at 3. f(3) = -27.
- No information about 0.
- First Derivative Test:
- f' is on $(-\infty, 0)$ and on (0, 3).
- No local max or min at 0.
- Inflection points: (0, 0) and (2, -16).

Draw the graph of $f(x) = e^{\frac{1}{x}}$.

- f(x) is always positive.
- Domain: everything but 0.
- Check for vertical asymptote at 0.

$$\bullet \ t = 1/x : \lim_{x \to 0^+} e^{1/x} = \lim_{t \to \infty} e^t = \infty.$$

- $t = 1/x : \lim_{x \to 0^-} e^{1/x} = \lim_{t \to -\infty} e^t = 0.$
- As $x \to \pm \infty$, $1/x \to 0$.
- Therefore $\lim_{x\to\pm\infty}e^{1/x}=1$
- y = 1 is a horizontal asymptote.

$$f'(x) = e^{\frac{1}{x}} \left(\frac{1}{x}\right)' = e^{\frac{1}{x}} \left(-x^{-2}\right) = -\frac{e^{\frac{1}{x}}}{x^2}.$$

$$f''(x) = -\frac{\left(-\frac{e^{\frac{1}{x}}}{x^2}\right) x^2 - e^{\frac{1}{x}}(2x)}{x^4} = \frac{e^{\frac{1}{x}}(1+2x)}{x^4}.$$
Always decreasing. Inflection point: $(-1/2, e^{-2})$.

Todor Miley Lecture 17 ... 2020

Curve sketching Curve sketching summary 15/29

Guidelines for Sketching a Curve

The following items are to be considered when drawing a curve. Not every item is relevant to every function.

- Determine the domain of the function.
- Depending on availability, use computer software to plot.
- Compute x, y intercepts.
- Determine symmetries, periodicity.
- Compute asymptotes vertical, horizontal, optional slanted.
- Ompute intervals of increase or decrease.
- Compute local and global maxima and minima.
- Ompute concavity and points of inflection.

Todor Milev Lecture 17 ... 202

- Domain
 - Find the domain of the function.
 - Remember the two restrictions: no dividing by 0, and no taking the even root of a negative number.
- You can use computer software to plot your function.
 - Most computer software will ask you to specify the domain of the function explicitly.
 - Some software may be able to determine the (implied) domain of your function.
 - Software may not be always available (example: Calculus I exams).

- Intercepts
- Find the intercepts of the function.
- f(0) is the *y*-intercept.
- To find the *x*-intercepts, set y = 0 and solve for *x*.
- You can sometimes skip this step if the equation is too difficult to solve.

- Symmetry, Periodicity
 - If f(-x) = f(x) for all x, then f is even.
 - If f(-x) = -f(x) for all x, then f is odd.
 - If there is some number p such that f(a+p)=f(a) for all a, then f is called periodic. The smallest such p is called its period.

- Symmetry, Periodicity
 - If f(-x) = f(x) for all x, then f is even.
 - If f(-x) = -f(x) for all x, then f is odd.
 - If there is some number p such that f(a+p)=f(a) for all a, then f is called periodic. The smallest such p is called its period.

Symmetry, Periodicity

- If f(-x) = f(x) for all x, then f is even.
- If f(-x) = -f(x) for all x, then f is odd.
- If there is some number p such that f(a+p)=f(a) for all a, then f is called periodic. The smallest such p is called its period.

- Asymptotes
 - Horizontal asymptotes can be found by finding $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$.
 - If either of these equals a number L, then y = L is a horizontal asymptote of f.
 - If neither limit exists, there is no horizontal asymptote.
 - The line x = a is a Vertical asymptote of f if any of the following is true

$$\lim_{\substack{x \to a^+ \\ \lim_{x \to a^+}}} f(x) = \infty \qquad \lim_{\substack{x \to a^- \\ \lim_{x \to a^-}}} f(x) = \infty$$

• We may discuss slant asymptotes in another lecture if time allows.

Todor Milev Lecture 17 ... 2020

- Intervals of increase or decrease
 - To find intervals of increase or decrease, use the increasing/decreasing test.
 - Compute f'.
 - Find where f' is positive or negative.
 - Where f' is positive, f is increasing.
 - Where f' is negative, f is decreasing.

- Local maxima and minima
 - Find the critical numbers of f (the numbers c where f'(c) doesn't exist or f'(c) = 0).
 - Use the First Derivative Test on each of these numbers:
 - If f' changes from positive to negative at a critical number c, then c is a local maximum.
 - If f' changes from negative to positive at a critical number c, then c is a local minimum.
 - If f' doesn't change sign at a critical number c, then c is neither a local maximum nor a local minimum.

- Oncavity and points of inflection
 - To find inflection points and intervals of concavity, use the concavity test.
 - Compute f".
 - Find where f'' is positive or negative.
 - Where f" is positive, f is concave up.
 - Where f'' is negative, f is concave down.
 - Inflection points occur when f" changes signs.

Sketch the curve $y = \frac{2x^2}{x^2 - 1}$.

Domain

The domain of the function is $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$.

Sketch the curve $y = \frac{2x^2}{x^2-1}$.

Intercepts

• y-intercept: f(0) = 0.

• x-intercept: f(x) = 0 when x = 0.

• The only intercept is (0,0).

Sketch the curve
$$y = \frac{2x^2}{y^2 - 1}$$
.

Symmetry

$$f(-x) = \frac{2(-x)^2}{(-x)^2 - 1} = \frac{2x^2}{x^2 - 1} = f(x)$$

Therefore *f* is even.

Sketch the curve
$$y = \frac{2x^2}{x^2 - 1}$$
.

Saymptotes

$$\lim_{x \to \pm \infty} \frac{2x^2}{x^2 - 1} = \lim_{x \to \pm \infty} \frac{2}{1 - 1/x^2} = 2$$

y = 2 is a horizontal asymptote.

$$\lim_{x \to 1^{+}} \frac{2x^{2}}{x^{2} - 1} = \infty$$

$$\lim_{x \to 1^{-}} \frac{2x^{2}}{x^{2} - 1} = -\infty$$

$$\lim_{x \to -1^{+}} \frac{2x^{2}}{x^{2} - 1} = -\infty$$

$$\lim_{x \to -1^{-}} \frac{2x^{2}}{x^{2} - 1} = \infty$$

 $x = \pm 1$ are vertical asymptotes.

Sketch the curve $y = \frac{2x^2}{x^2-1}$.

Interval	I/D	Concavity
$(-\infty, -1)$	I	
(-1,0)	I	
(0,1)	D	
$(1,\infty)$	D	

Intervals of increase or decrease

$$f'(x) = \frac{(x^2 - 1)(4x) - 2x^2(2x)}{(x^2 - 1)^2}$$
$$= \frac{-4x}{(x^2 - 1)^2}$$

	-4x	$(x^2-1)^2$	f'
$(-\infty, -1)$	+	+	+
(-1, 0)	+	+	+
(0,1)	_	+	_
$(1,\infty)$	_	+	_

Sketch the curve $y = \frac{2x^2}{x^2 - 1}$.

Interval	I/D	Concavity
$(-\infty, -1)$	I	
(-1,0)	I	
(0,1)	D	
$(1,\infty)$	D	

Local maxima and minima

	-4x	$(x^2-1)^2$	f'
$(-\infty, -1)$	+	+	+
(-1,0)	+	+	+
(0,1)	_	+	_
$(1,\infty)$	_	+	_

- f' changes sign from + to at 0.
- Therefore (0,0) is a local maximum.

2020

Example

Sketch the curve $y = \frac{2x^2}{x^2-1}$.

Curve sketching

Interval	I/D	Concavity
$(-\infty, -1)$	I	up
(-1,0)	I	down
(0,1)	D	down
$(1,\infty)$	D	up

Concavity and points of inflection

$$f''(x) = \frac{-4(x^2 - 1)^2 + 4x \cdot 2(x^2 - 1)2x}{(x^2 - 1)^4}$$
$$= \frac{12x^2 + 4}{(x^2 - 1)^3}$$

	$12x^2 + 4$	$(x^2-1)^3$	f"
$(-\infty, -1)$	+	+	+
(-1,1)	+	_	_
$(1,\infty)$	+	+	+

No points of inflection because ± 1 are not in the domain of f.