Regression Script

Ananthan Ambikairajah

11 February, 2022

Contents

1	Exe	ercise 1 - Advertisement and Sales	2
	1.1	Load data and inspect	2
	1.2	Run simple linear regression	2
	1.3	Using the mean as a simple model	3
	1.4	Plot the linear regression	4
2	Exe	ercise 2 - Deriving Model Output	5
	2.1	Baseline model	5
	2.2	Simple linear regression	7
	2.3	Create a function that calculates the summary of the linear model	8
	2.4	Test the function	8
3	Exe	ercise 3 - Anscombe Dataset	9
	3.1	Mean and variance for all four datasets - Using a forloop	10
	3.2	Run all four regressions - using a for loop	11
	3.3	Plot all four regressions - using a for loop	13

1 Exercise 1 - Advertisement and Sales

1.1 Load data and inspect

```
album_data <- read.delim("Album Sales 1.dat", header = TRUE)</pre>
head(album_data)
##
      adverts sales
## 1
       10.256
                330
## 2 985.685
                120
## 3 1445.563
                360
## 4 1188.193
                270
## 5 574.513
                220
## 6 568.954
                170
tail(album_data)
##
        adverts sales
## 195
       700.929
                  250
## 196 910.851
                  190
## 197 888.569
                  240
## 198 800.615
                  250
## 199 1500.000
                  230
## 200 785.694
                  110
summary(album data)
##
       adverts
                           sales
## Min.
          :
               9.104
                       Min.
                               : 10.0
   1st Qu.: 215.918
                       1st Qu.:137.5
## Median : 531.916
                       Median :200.0
                               :193.2
## Mean
         : 614.412
                       Mean
    3rd Qu.: 911.226
                       3rd Qu.:250.0
##
##
   Max.
           :2271.860
                       Max.
                               :360.0
str(album data)
## 'data.frame':
                    200 obs. of 2 variables:
## $ adverts: num
                    10.3 985.7 1445.6 1188.2 574.5 ...
                    330 120 360 270 220 170 70 210 200 300 ...
## $ sales : int
1.2
      Run simple linear regression
album_lm_0 <- lm(sales ~ 1, data = album_data); summary(album_lm_0)</pre>
##
## Call:
```

```
## lm(formula = sales ~ 1, data = album data)
##
## Residuals:
##
     Min
             10 Median
                           3Q
                                 Max
## -183.2 -55.7
                   6.8
                         56.8
                               166.8
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 193.200
                            5.706
                                    33.86
                                            <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 80.7 on 199 degrees of freedom
album_lm_1 <- lm(sales ~ 1 + adverts, data = album_data); summary(album_lm_1)
##
## Call:
## lm(formula = sales ~ 1 + adverts, data = album_data)
##
## Residuals:
##
       Min
                      Median
                                   30
                                           Max
                  1Q
## -152.949 -43.796
                      -0.393
                               37.040 211.866
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.341e+02 7.537e+00 17.799
                                             <2e-16 ***
## adverts
              9.612e-02 9.632e-03
                                     9.979
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 65.99 on 198 degrees of freedom
## Multiple R-squared: 0.3346, Adjusted R-squared: 0.3313
## F-statistic: 99.59 on 1 and 198 DF, p-value: < 2.2e-16
```

1.3 Using the mean as a simple model

Advertisement Investment and Number of Records Sold in 2019

Amount Spent on Adverts (Thousands of Dollars)

1.4 Plot the linear regression

Advertisement Investment and Number of Records Sold in 2019

2 Exercise 2 - Deriving Model Output

2.1 Baseline model

```
summary(album_lm_0)
##
## Call:
## lm(formula = sales ~ 1, data = album data)
## Residuals:
##
      Min
              1Q Median
                            3Q
                                  Max
## -183.2
          -55.7
                    6.8
                          56.8
                                166.8
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                                     33.86
## (Intercept)
                193.200
                             5.706
                                             <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 80.7 on 199 degrees of freedom
estimate <- mean(album data$sales); estimate</pre>
## [1] 193.2
standard_error <- sd(album_data$sales)/sqrt(nrow(album_data)); standard_error</pre>
## [1] 5.706278
t value <- estimate/standard error; t value
## [1] 33.85745
residuals_sales <- album_data$sales - mean(album_data$sales); residuals_sales
##
     [1]
          136.8 -73.2 166.8
                                76.8
                                       26.8 -23.2 -123.2
                                                             16.8
                                                                     6.8
                                                                          106.8
##
    [11]
           96.8 -123.2
                        -43.2
                                -3.2
                                       46.8
                                             -93.2
                                                      56.8
                                                             16.8
                                                                    86.8
                                                                           36.8
##
    [21]
           16.8
                  36.8
                       126.8
                                16.8
                                       36.8
                                              56.8 -133.2 136.8
                                                                  -43.2
                                                                          -43.2
                                                                          -43.2
##
    [31]
          -13.2 -113.2
                       -13.2
                              -63.2
                                      126.8
                                              86.8
                                                       6.8 - 63.2
                                                                    -3.2
##
    [41]
           36.8
                 116.8 146.8
                                46.8 -13.2
                                              26.8 -153.2
                                                             -3.2
                                                                    96.8
                                                                          146.8
##
    [51]
           56.8
                  -3.2
                        -73.2
                                36.8
                                       -3.2
                                              16.8
                                                    -23.2 116.8 -103.2
                                                                          -53.2
##
    [61]
          106.8 146.8
                       -23.2 -93.2
                                        6.8 -113.2
                                                    -93.2 -123.2 -143.2
                                                                           46.8
##
    [71]
          -33.2
                  96.8
                       -53.2
                                16.8
                                      106.8
                                              36.8
                                                     86.8 -33.2
                                                                     6.8 -83.2
##
    [81]
          -83.2 -123.2 -93.2
                                -3.2 -123.2 166.8
                                                    166.8 106.8
                                                                  -73.2
                                                                          -43.2
##
    [91]
           26.8
                  86.8
                       106.8
                              -53.2
                                       96.8
                                             -13.2
                                                    -53.2
                                                             16.8
                                                                    56.8
                                                                           56.8
## [101]
          -73.2
                               -53.2
                  96.8 -133.2
                                       96.8
                                             -33.2
                                                    -93.2
                                                           -33.2 -43.2
                                                                          -53.2
## [111]
          36.8
                  36.8 -163.2 -113.2
                                       -3.2 -103.2
                                                    -73.2
                                                            -43.2
                                                                    36.8 -43.2
                               166.8 -183.2
## [121]
          16.8 -13.2
                       -53.2
                                              46.8
                                                     76.8
                                                             96.8
                                                                    26.8
                                                                           36.8
## [131]
           26.8
                  46.8
                         66.8
                               -23.2 -63.2
                                              76.8
                                                    -53.2 -133.2
                                                                    16.8
                                                                           16.8
                          6.8 -53.2 -103.2 -73.2
## [141]
          46.8
                  16.8
                                                    -93.2 166.8
                                                                  -13.2 -43.2
## [151]
          -83.2 -103.2 -33.2
                                36.8 -153.2 -133.2
                                                      36.8
                                                             36.8
                                                                  -73.2 -43.2
## [161]
          -73.2 -133.2
                         86.8
                               -73.2
                                       36.8
                                              36.8 -153.2
                                                           -53.2
                                                                  166.8
                                                                           16.8
## [171]
           66.8
                  56.8
                               -43.2
                                       56.8 -93.2
                                                             16.8
                                                                           26.8
                          6.8
                                                      66.8
                                                                    96.8
## [181] -123.2 -83.2
                         56.8
                               126.8 106.8
                                             -13.2
                                                    -13.2
                                                              6.8
                                                                   126.8 -53.2
## [191]
          -93.2 -73.2
                         36.8
                               -43.2
                                       56.8
                                              -3.2
                                                      46.8
                                                             56.8
                                                                    36.8 -83.2
quantile residuals sales <- quantile(residuals sales); quantile residuals sales
##
       0%
             25%
                    50%
                           75%
                                 100%
## -183.2
          -55.7
                    6.8
                          56.8
                                166.8
residual_standard_error <- sd(residuals_sales); residual_standard_error</pre>
## [1] 80.69896
lower_confint <- estimate - (1.96*standard_error); lower_confint</pre>
```

6

[1] 182.0157

```
upper_confint <- estimate + (1.96*standard_error); upper_confint
## [1] 204.3843</pre>
```

2.2 Simple linear regression

```
summary(album lm 1)
##
## Call:
## lm(formula = sales ~ 1 + adverts, data = album data)
## Residuals:
                       Median
                                    3Q
                  1Q
## -152.949 -43.796
                      -0.393
                                37.040 211.866
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.341e+02 7.537e+00 17.799
                                              <2e-16 ***
## adverts
              9.612e-02 9.632e-03
                                      9.979
                                              <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 65.99 on 198 degrees of freedom
## Multiple R-squared: 0.3346, Adjusted R-squared: 0.3313
## F-statistic: 99.59 on 1 and 198 DF, p-value: < 2.2e-16
RMSE <- sqrt(sum(residuals(album lm 1)^2)/df.residual(album lm 1)); RMSE
## [1] 65.99144
# Residual Standard Error - Actually the standard deviation
R2 <- cor(album_data$adverts, album_data$sales)^2; R2
## [1] 0.3346481
R2_adjusted \leftarrow 1 - (1 - R2)*((nrow(album_data))-1)/((nrow(album_data))-1-1); R2_adjusted
## [1] 0.3312877
F_test <- anova(album_lm_0, album_lm_1); F_test
## Analysis of Variance Table
##
## Model 1: sales ~ 1
## Model 2: sales ~ 1 + adverts
    Res.Df
             RSS Df Sum of Sq
                                    F
                                           Pr(>F)
##
```

```
## 1
       199 1295952
## 2
       198 862264 1
                         433688 99.587 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
t adverts <- 0.09612/0.009632; t adverts
## [1] 9.979236
t_intercept <- 134.1/7.537; t_intercept
## [1] 17.79223
residuals <- quantile(album lm 1$residuals); residuals
##
            0%
                        25%
                                     50%
                                                  75%
                                                              100%
## -152.9492603 -43.7961350
                              -0.3933042
                                           37.0404487 211.8657789
```

2.3 Create a function that calculates the summary of the linear model

```
linear_output <- function(baseline_model, simple_linear_model, data){
   list <- list()
   list[["RMSE"]] <- sqrt(sum(residuals(simple_linear_model)^2)/df.residual(simple_linear_list[["R2"]] <- cor(data[,1], data[,2])^2
   list[["R2_adjusted"]] <- 1 - (1 - (cor(data[,1], data[,2])^2))*(((nrow(data))-1)/((nrowlist[["F_test"]] <- anova(baseline_model, simple_linear_model)
   list[["t_intercept"]] <- summary(simple_linear_model)$coefficients[1,1]/summary(simple_list[["t_predictor"]] <- summary(simple_linear_model)$coefficients[2,1]/summary(simple_list[["Residuals"]] <- quantile(simple_linear_model)$residuals)
   print(list)
}</pre>
```

2.4 Test the function

```
linear_output(album_lm_0, album_lm_1, album_data)

## $RMSE
## [1] 65.99144
```

```
## ## $R2
## [1] 0.3346481
## ## $R2_adjusted
## [1] 0.3312877
```

```
## $F test
## Analysis of Variance Table
##
## Model 1: sales ~ 1
## Model 2: sales ~ 1 + adverts
               RSS Df Sum of Sq
    Res.Df
                                          Pr(>F)
## 1
       199 1295952
## 2
       198 862264
                         433688 99.587 < 2.2e-16 ***
                    1
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## $t intercept
## [1] 17.79853
##
## $t_predictor
## [1] 9.979322
##
## $Residuals
            0%
                         25%
                                      50%
                                                   75%
                                                               100%
##
                                            37.0404487 211.8657789
## -152.9492603 -43.7961350
                              -0.3933042
```

3 Exercise 3 - Anscombe Dataset

```
anscombe_data <- read.csv("Anscombe.csv", header = TRUE)</pre>
head(anscombe_data)
##
           y distri
      Х
## 1 10 8.04
                  1
## 2 8 6.95
## 3 13 7.58
## 4 9 8.81
                  1
## 5 11 8.33
                  1
## 6 14 9.96
tail(anscombe_data)
##
             y distri
       Х
## 39
       8 7.04
                     4
## 40
      8 5.25
                    4
                    4
## 41 19 12.50
## 42 8 5.56
                    4
## 43 8 7.91
## 44 8 6.89
                    4
```

summary(anscombe data) ## distri Х У Min. ## Min. : 4 : 3.100 Min. :1.00 1st Qu.: 7 1st Qu.: 6.117 1st Qu.:1.75 ## Median: 8 Median : 7.520 Median:2.50 ## Mean : 9 Mean : 7.501 Mean :2.50 3rd Qu.: 8.748 3rd Qu.:3.25 3rd Qu.:11 ## :12.740 ## Max. :19 :4.00 Max. Max. str(anscombe data) ## 'data.frame': 44 obs. of 3 variables: \$ x : int 10 8 13 9 11 14 6 4 12 7 ...

Mean and variance for all four datasets - Using a forloop 3.1

3.1.1Create empty data frame with named columns and rows

: num 8.04 6.95 7.58 8.81 8.33 ...

\$ distri: int 1 1 1 1 1 1 1 1 1 ...

```
df <- data.frame(matrix(ncol = 4, nrow = 4))</pre>
x <- c("Group 1", "Group 2", "Group 3", "Group 4")
y <- c("Mean X", "Variance X", "Mean Y", "Variance Y")
rownames(df) <- x
colnames(df) <- y</pre>
```

3.1.2Check empty dataframe

NA

```
df
##
            Mean X Variance X Mean Y Variance Y
## Group 1
                NA
                            NA
                                    NA
                                                NΑ
## Group 2
                NA
                            NA
                                    NA
                                                NA
## Group 3
                            NA
                NA
                                    NA
                                                NA
## Group 4
                                                NA
```

NA

NA

Create a for loop 3.1.3

```
for(i in 1:4){
  df[i,1] <- mean(anscombe data[anscombe data$distri == i, "x"])</pre>
  df[i,2] <- var(anscombe data[anscombe data$distri == i, "x"])</pre>
  df[i,3] <- mean(anscombe_data[anscombe_data$distri == i, "y"])</pre>
  df[i,4] <- var(anscombe data[anscombe data$distri == i, "y"])</pre>
}
```

3.1.4 Check filled dataframe

```
df
##
           Mean X Variance X
                               Mean Y Variance Y
                          11 7.500909
## Group 1
                9
                                         4.127269
                9
                          11 7.500909
## Group 2
                                         4.127629
## Group 3
                9
                          11 7.500000
                                       4.122620
## Group 4
                9
                          11 7.500909
                                        4.123249
```

3.2 Run all four regressions - using a for loop

```
anscombe lm <- list()</pre>
for(i in 1:4){
anscombe_lm[[i]] <- summary(lm(y ~ x, data = anscombe_data[anscombe_data$distri==i,]))</pre>
}
anscombe 1m
## [[1]]
##
## Call:
## lm(formula = y ~ x, data = anscombe data[anscombe data$distri ==
##
       i, ])
##
## Residuals:
        Min
                  1Q
                       Median
                                    30
                                            Max
## -1.92127 -0.45577 -0.04136 0.70941 1.83882
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 3.0001
                            1.1247
                                     2.667 0.02573 *
## x
                 0.5001
                            0.1179
                                     4.241 0.00217 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295
## F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
##
##
## [[2]]
##
## Call:
## lm(formula = y ~ x, data = anscombe_data[anscombe_data$distri ==
##
       i, ])
```

```
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -1.9009 -0.7609 0.1291 0.9491
                                    1.2691
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
                             1.125
                  3.001
                                     2.667
                                            0.02576 *
## (Intercept)
## x
                  0.500
                             0.118
                                     4.239
                                            0.00218 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
##
##
## [[3]]
##
## Call:
## lm(formula = y ~ x, data = anscombe data[anscombe data$distri ==
##
       i, ])
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -1.1586 -0.6146 -0.2303 0.1540
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 3.0025
                            1.1245
                                     2.670
                                           0.02562 *
## x
                 0.4997
                            0.1179
                                     4.239
                                           0.00218 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
##
##
## [[4]]
##
## Call:
## lm(formula = y ~ x, data = anscombe_data[anscombe_data$distri ==
       i, ])
##
##
```

```
## Residuals:
     Min
             1Q Median
                           ЗQ
                                 Max
## -1.751 -0.831 0.000 0.809 1.839
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                3.0017
                           1.1239
                                    2.671 0.02559 *
                0.4999
                                    4.243 0.00216 **
                           0.1178
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297
## F-statistic:
                  18 on 1 and 9 DF, p-value: 0.002165
```

3.3 Plot all four regressions - using a for loop

