Blatt 1

Aufgabe 4.

(a) Man betrachte die Multimengendarstellungen von a und b gegeben durch $a_m = PD_m(a)$ sowie $b_m = PD_m(b)$.

Dann ist $gcd_m = PD_m(gcd(a, b)) = a_m \cap b_m$.

Ebenso seien $a_r = a_m \setminus gcd_m$ und $b_r = b_m \setminus gcd_m$, sodass $a_m = a_r \cup gcd_m$ und $b_m = b_r \cup gcd_m$.

Daraus folgt, dass $a_m \cup b_m = a_r \cup b_r \cup gcd_m \cup gcd_m$. Ebenso folgt direkt, dass $PD_m(\frac{a \cdot b}{gcd(a,b)}) = a_r \cup b_r \cup gcd_m = a_r \cup b_m = b_r \cup a_m$.

Da $PD_m(lcm(a,b)) = a_m \cup a_s = b_m \cup b_s$ und, da es sich um das kleinste gemeinsame Vielfache handelt, $a_s \cap b_s = \emptyset$ gilt, muss $a_r = a_s$ und $b_r = b_s$ sein.

handelt, $a_s \cap b_s = \emptyset$ gilt, muss $a_r = a_s$ und $b_r = b_s$ sein. Somit resultiert, dass $PD_m(\frac{a \cdot b}{gcd(a,b)}) = PD_m(lcm(a,b))$ bzw. $\frac{a \cdot b}{gcd(a,b)} = lcm(a,b)$.

(b) Nach der ersten Teilaufgabe kann man das Problem mit $lcm(a,b) = \frac{a \cdot b}{gcd(a,b)}$ auf die Berechnung des größten gemeinsamen Teilers reduzieren. Dafür haben wir in der Vorlesung bereits den Euklidschen Algorithmus kennengelernt.

(siehe Programmieraufgaben innerhalb des .zip Archives)