Math 5515 Lab 1 Christie Burris

The Goodwin Model:

1a. Draw a diagram for this system.

Figure 1: Goodwin model schema.

1b. Find the dynamics of x_1, x_2 and x_3 over time for $b_1 = b_2 = b_3 = 0.05, p = 2, x_1(0) = x_2(0) = x_3(0) = .5$. What do you observe?

Figure 2

Simulations of x_1, x_2, x_3 over time with p = 2. Each x_i has oscillations as seen in the figures below, however the oscillations quickly dampen to a stable steady state.

1c. Find the dynamics of x_1, x_2 and x_3 over time for $b_1 = b_2 = b_3 = 0.05, p = 8, x_1(0) = x_2(0) = x_3(0) = .5$. What do you observe?

Simulations of x_1, x_2, x_3 over time with p = 8. Oscillations are sustained for p = 8 as shown by the limit cycle in the plot of x_1 versus x_3 .

Figure 3

1d. Draw $x_1(t)$ versus $x_3(t)$ for the parameters in part (c).

Figure 4: x_1 versus x_3 .

The Bliss Model:

2a. Draw a diagram for the system.

Figure 5

2b. Find the dynamics of x_1, x_2 and x_3 over time for $b_1=b_2=b_3=0.2, a=129, c=1, x_1(0)=x_2(0)=x_3(0)=.5$. What do you observe?

Simulations of x_1, x_2, x_3 over time with c = 1. We do not see oscillations. One possible explanation is that the value of c is too high, causing too much dampening in the concentration of x_1 from x_3 .

Figure 6

2c. Find the dynamics of x_1, x_2 and x_3 over time for $b_1 = b_2 = b_3 = 0.2, a = 129, c = 16.2, <math>x_1(0) = x_2(0) = x_3(0) = .5$. What do you observe?

Here we have sustained, smooth oscillations. To confirm they are sustained we extended the time and found the amplitude to be unchanging as $t \to 5000$ (Fig. 7a).

Figure 7: Simulations of x_1, x_2, x_3 over time with c = 16.2.

2d. Draw $x_1(t)$ versus $x_3(t)$ for the parameters in part (c).

Figure 8: x_1 versus x_3 . Notice the stable limit cycle.

The Goldbeter model of circadian rhythms:

3a. Draw a diagram of the system and explain each term.

This is the model that describes the dynamics of a protein (per). Variables:

- M: per protein mRNA
- P_0 : unphosphorylated per protein coded by per mRNA
- \bullet $P_1\colon$ mono-phosphorylated per protein
- \bullet P_2 : double-unphosphorylated per protein
- P_N : per protein in the nucleus

Terms:

- $\frac{\mu_s}{1+(P_N/K_I)^n}$: Hill term, inhibition of M by per protein in the nucleus.
- $\frac{\mu_m M}{K_{m1}+M}$: natural degradation rate of M.
- k_sM : Rate of protein synthesis dependant on M.

- $\frac{V_1 P_0}{K_1 + P_0}$: phosphorylation of *per* protein.
- $\frac{V_2P_1}{K_2+P_1}$: dephosphorylation of phosphorylated per protein.
- $\frac{V_3P_1}{K_3+P_1}$: double phosphorylation of per protein.
- $\frac{V_4 P_2}{K_4 + P_2}$: dephosphorylation of double phosphorylated per protein.
- $\frac{\mu_d P_2}{k_d + P_2}$: degradation rate of P_2 .
- k_1P_2 : double phosphorylated *per* protein sent to the nucleus.
- k_2P_N : double phosphorylated per protein coming out of the nucleus.
- 3b. For $n=4, \mu_s=.76, \mu_m=.65, \mu_d=.95, k_s=.38, k_1=1.9, k_2=1.3, V_1=3.2, V_2=1.58, V_3=5, V_4=2.5, K_1=K_2=K_3=K_I=1, K_{m1}=.5, K_d=.2,$ plot M over time.

3c. Modify the result in (b) to show that the period of M's oscillation depends on μ_d . Choose two values for μ_d and interpret your results.

For $\mu_d = .75$, P_2 degrades slower which means more *per* protein in the nucleus inhibiting M. Therefore M cannot sustain oscillations and drops off. For $\mu_d = .8$, the period of oscillation is smaller than 24 hours, but still sustained.

Figure 10

Substrate-depletion model: with $a=.5, b=1, \epsilon=.05.$

4a. Use pplane8 to determine and classify the steady states.

Using pplane8, the steady state for the given system is a spiral source at $(\overline{x}, \overline{y}) = (1.6529, 0.55)$. $(\overline{x}, \overline{y})$ is therefore unstable and has a limit cycle as seen in Fig. 11 below.

Figure 11: x(t) versus y(t). Blue curves represent solutions for various initial conditions and the red point represents the steady state $(\overline{x}, \overline{y})$

Figure 12: x(t) versus t

Figure 13: y(t) versus t