

Universität Stuttgart

Institut für Biomedizinische Technik

Institutsleiter: Prof. Dr. Ing. G. Cattaneo

Masterarbeit

Konzipierung und Realisierung eines numerischen Algorithmus zur Modellierung des menschlichen Bronchialbaums für die anschließende Fertigung physikalischer Modelle zur invitro Untersuchung der kleinen Atemwege

cand. tech. kyb. Bastian Neuber

16.06.2020

Gliederung

- Motivation
- Literaturrecherche
- Modellierung
- Implementierung des Modells
- Weiterverarbeitung der Geometriedaten
- Fertigung physikalischer Prototypen
- Zusammenfassung und Ausblick

Gliederung

- Motivation
- Literaturrecherche
- Modellierung
- Implementierung des Modells
- Weiterverarbeitung der Geometriedaten
- Fertigung physikalischer Prototypen
- Zusammenfassung und Ausblick

Motivation

- Experimentelle Untersuchung von Auswaschverfahren
- Physikalisches
 Bronchialbaummodell

 erforderlich
- 23 Verzweigungsgenerationen
 - ⇒ 2²³ Bronchiolen in der letzten Generation
- Manuelle Konstruktion unpraktikabel
 - ⇒ automatische Konstruktion

Quelle: Bayrischer Rundfunk [1]

Gliederung

- Motivation
- Literaturrecherche
- Modellierung
- Implementierung des Modells
- Weiterverarbeitung der Geometriedaten
- Fertigung physikalischer Prototypen
- Zusammenfassung und Ausblick

Bronchialbaummodelle

Punktdaten aus Röntgen-CT

Physikalisches Modell Mathematische Modellierung

Zentralachsenmodell Oberflächenmodell

- Anforderungen:
- Flexible, parametrisierbare Konstruktion
- Umsetzbarkeit in physikalische Modelle

- Anforderungen:
- Flexible, parametrisierbare Konstruktion
- Umsetzbarkeit in physikalische Modelle

Anforderungen:

- Flexible, parametrisierbare Konstruktion
- Umsetzbarkeit in physikalische Modelle

Modellierungsstrategie

diskret, numerisch

	1	2	3	
3896187	-28.1077	-41.5004	02.0372	_
3896188	-28.1090	-41.4935	62.5385	
3896189	-28.1105	-41.4866	62.5394	
3896190	-28.1123	-41.4797	62.5401	
3896191	-28.1144	-41.4729	62.5405	
3896192	-28.1168	-41.4661	62.5406	
3896193	-28.1195	-41.4595	62.5406	
3896194	-28.1226	-41.4531	62.5403	
2006105	_22 1250	-/11 ///60	62 5300	~

diskrete Flächen

Gliederung

- Motivation
- Literaturrecherche
- Modellierung
- Implementierung des Modells
- Weiterverarbeitung der Geometriedaten
- Fertigung physikalischer Prototypen
- Zusammenfassung und Ausblick

Segmentierung

Formparameter und Diskretisierung

- Konstruktion der Rohr- und Verzweigungselemente im Ursprung
- Drehung und Verschiebung der Rohrelemente
- Drehung und Verschiebung der Verzweigung
- Ausrichtung der Verzweigungen an den Zentralachsen der Rohrelemente

- Konstruktion der Rohr- und Verzweigungselemente im Ursprung
- Drehung und Verschiebung der Rohrelemente
- Drehung und Verschiebung der Verzweigung
- Ausrichtung der Verzweigungen an den Zentralachsen der Rohrelemente

- Konstruktion der Rohr- und Verzweigungselemente im Ursprung
- Drehung und Verschiebung der Rohrelemente
- Drehung und Verschiebung der Verzweigung
- Ausrichtung der Verzweigungen an den Zentralachsen der Rohrelemente

- Konstruktion der Rohr- und Verzweigungselemente im Ursprung
- Drehung und Verschiebung der Rohrelemente
- Drehung und Verschiebung der Verzweigung
- Ausrichtung der Verzweigungen an den Zentralachsen der Rohrelemente

- Konstruktion der Rohr- und Verzweigungselemente im Ursprung
- Drehung und Verschiebung der Rohrelemente
- Drehung und Verschiebung der Verzweigung
- Ausrichtung der Verzweigungen an den Zentralachsen der Rohrelemente

- Konstruktion der Rohr- und Verzweigungselemente im Ursprung
- Drehung und Verschiebung der Rohrelemente
- Drehung und Verschiebung der Verzweigung
- Ausrichtung der Verzweigungen an den Zentralachsen der Rohrelemente

 Konstruktion der Rohr- und Verzweigungselemente im Ursprung

 Drehung und Verschiebung der Rohrelemente

- Drehung und Verschiebung der Verzweigung
- Ausrichtung der Verzweigungen an den Zentralachsen der Rohrelemente

Gliederung

- Motivation
- Literaturrecherche
- Modellierung
- Implementierung des Modells
- Weiterverarbeitung der Geometriedaten
- Fertigung physikalischer Prototypen
- Zusammenfassung und Ausblick

Implementierung des Modells

- Implementiert in Matlab
- Berechnung der Punktkoordinaten Punktmodells
- Eingabe über eine GUI (graphical user interface)
- Modulare Programmstruktur aus Haupt- und Unterfunktionen
- Ausgabe einer Datei mit Koordinaten

- Allgemeine Eigenschaften:
 - Ursprung der Geometrieparam.
 - Auflösung
- Geometrieparametererzeugung:
 - Stochastische Erzeugung von Geometrieparametern
 - optional
- Bifurkationsmodell:
 - Formparameter der Verzweigungselemente
- Post-Processing:
 - Wandstärke
 - Endstücke

- Allgemeine Eigenschaften:
 - Ursprung der Geometrieparam.
 - Auflösung
- Geometrieparametererzeugung:
 - Stochastische Erzeugung von Geometrieparametern
 - optional
- Bifurkationsmodell:
 - Formparameter der Verzweigungselemente
- Post-Processing:
 - Wandstärke
 - Endstücke

- Allgemeine Eigenschaften:
 - Ursprung der Geometrieparam.
 - Auflösung
- Geometrieparametererzeugung:
 - Stochastische Erzeugung von Geometrieparametern
 - optional
- Bifurkationsmodell:
 - Formparameter der Verzweigungselemente
- Post-Processing:
 - Wandstärke
 - Endstücke

- Allgemeine Eigenschaften:
 - Ursprung der Geometrieparam.
 - Auflösung
- Geometrieparametererzeugung:
 - Stochastische Erzeugung von Geometrieparametern
 - optional
- Bifurkationsmodell:
 - Formparameter der Verzweigungselemente
- Post-Processing:
 - Wandstärke
 - Endstücke

Programmstruktur


```
%% Bronchialbaummodell erzeugen
114
115 -
                for g = 2 : Gen % Schleife über alle Generationen
116 -
                         Offset = 0; % Schleife über alle Verzweigungen einer Generation
117 -
                         for v = 1 : n VZW % Schleife über alle Tochteräste einer Verzweigung
118 -
                                 for t = 1: size(D{g-1,v},1)
119
                                          %% Anpassung von Geometrieparametern
120 -
                                        if Eingabemodus == 'a' % Falls der stochastische Erzeugungsprozess zur
121 -
                                                 [D{g,Offset + t},L{g,Offset + t},Alpha{g,Offset + t},Beta{g,Offset +
122 -
                                                 Alpha{g,Offset + t} = [zeros(size(Alpha{g,Offset + t},1),1),Alpha{g,C
123 -
                                         elseif Eingabemodus == 'm' % Falls der manuelle Eingabemodus verwendet
124 -
                                                 if Param VE{1}{6} == true
125 -
                                                         Param VE{1} = {0,0,0,Param_VE{1,1}{7}*BL{g,Offset + t}./Alpha{g,C
126 -
                                                         L\{g,Offset + t\} = Param VE\{1,1\}\{7\}*BL\{g,Offset + t\};
127 -
128 -
                                         elseif Eingabemodus == 'w' % Falls die Wandstärke konstruiert wird, ...
129 -
                                                 D nenn = D{g,Offset + t};
                                                 D\{g,Offset + t\} = D\{g,Offset + t\} + ones(size(D\{g,Offset + t\},1),1)*2
130 -
131 -
                                                 Param VE{1} = {0,0,0,M K WS{g,Offset + t}(2:end,1),0}; % Konstruktic
132
                                                 % Carinalverrundungsparameter sowohl für den Durchmesser als auch für
133
                                                 % des Mutterastes durch Wandstärke abhängig machen. => Außenwand führ
134 -
                                                 if Param WS(4) == 1
135 -
                                                         Param_VE\{2\} = [sum(D_nenn)^2/(sum(D\{g,Offset + t\})^2)*Param_VE2_r
136
                                                                 sum(D_nenn)^2/(sum(D{g,Offset + t})^2)*Param_VE2_nenn(2), ...
137
                                                                 Param VE2 nenn(3)]; % Breite der Carinalkurve bleibt unverär
138 -
                                                 end
139 -
                                         end
140
141
                                         %% Haltestelle
142 -
                                         Halt = 1;
143
144
                                         %% Erzeugung des Verzweigungselementes
145 -
                                         [P_VZW,M_RE{1},M_K{g,Offset + t}] = FNC_Erzeugung_VE([D{g-1,v}(t);D{g,Off
146 -
                                        M RE{1} = M RE{1}(2:end,:); % Anpassung des Variablenformats: Löschen de
147
148
                                         %% Erzeugung der Rohrelemente
149 -
                                         P RE = zeros(N(1)*N(2),3,size(D\{g,Offset + t\},1));
150 -
                                         for r = 1: size(D{g,Offset + t},1)
151 -
                                                  P RE(:,:,r) = FNC Erzeugung RE(N(1),N(2),L{g,Offset + t}(r),D{g,Offse
152 -
                                        end
153
154
                                         %% Bestimmung der lokalen Anschlussmittelpunkte
                                          for the selection of th
```

Programmstruktur

Programmstruktur

Ausgabe

Punktkoordinaten

X	У	Z
5.5109106e-16	9.0000000e+00	-8.9772727e+00
-5.6511468e-01	8.9822406e+00	-8.9772727e+00
-1.1279991e+00	8.9290323e+00	-8.9772727e+00
-1.6864318e+00	8.8405853e+00	-8.9772727e+00
-2.2382090e+00	8.7172485e+00	-8.9772727e+00
-2.7811529e+00	8.5595086e+00	-8.9772727e+00
-3.3131210e+00	8.3679884e+00	-8.9772727e+00
-3.8320136e+00	8.1434435e+00	-8.9772727e+00
-4.3357831e+00	7.8867601e+00	-8.9772727e+00
-4.8224412e+00	7.5989513e+00	-8.9772727e+00
-5.2900673e+00	7.2811529e+00	-8.9772727e+00
-5.7368159e+00	6.9346192e+00	-8.9772727e+00
-6.1609240e+00	6.5607176e+00	-8.9772727e+00
-6.5607176e+00	6.1609240e+00	-8.9772727e+00
-6.9346192e+00	5.7368159e+00	-8.9772727e+00
-7.2811529e+00	5.2900673e+00	-8.9772727e+00
-7.5989513e+00	4.8224412e+00	-8.9772727e+00
-7.8867601e+00	4.3357831e+00	-8.9772727e+00
-8.1434435e+00	3.8320136e+00	-8.9772727e+00
-8.3679884e+00	3.3131210e+00	-8.9772727e+00
-8.5595086e+00	2.7811529e+00	-8.9772727e+00
-8.7172485e+00	2.2382090e+00	-8.9772727e+00
-8.8405853e+00	1.6864318e+00	-8.9772727e+00
-8.9290323e+00	1.1279991e+00	-8.9772727e+00
-8.9822406e+00	5.6511468e-01	-8.9772727e+00
-9.0000000e+00	1.1021821e-15	-8.9772727e+00
-8.9822406e+00	-5.6511468e-01	-8.9772727e+00
-8.9290323e+00	-1.1279991e+00 -1.6864318e+00	-8.9772727e+00 -8.9772727e+00
-8.8405853e+00 -8.7172485e+00		-8.9772727e+00
-8.5595086e+00	-2.2382090e+00 -2.7811529e+00	-8.9772727e+00
-8.3679884e+00	-3.3131210e+00	-8.9772727e+00
-8.1434435e+00	-3.8320136e+00	-8.9772727e+00
-8.1434435e+00 -7.8867601e+00	-3.8320136e+00	-8.9772727e+00
-7.5989513e+00	-4.3357631e+00	-8.9772727e+00
7 201152000	-4.0224412e+00	0.9//2/2/6+00

Matlab-Variablen

Name 🔺	Value	
() Alpha	4x4 cell	
← Beta	4x4 cell	
← BL ←	4x1 cell	
{} D	4x4 cell	
👍 Eingabemodus	'a'	
empty	4x4 logical	
⊞ g	4	
H Gen	4	
⊞ i	8	
{} L	4x4 cell	
<u></u>	4x4 cell	
	4x4 cell	
← M_RE M_RE M_RE M_RE M_	2x1 cell	
M_REx	4x3 double	
⊞ ME	[10,10]	
⊞ N	[50,6,20,3]	
	4	
→ Offset	4	
<mark>⊞</mark> P	45897x3 double	
H P_AE	1250x3 double	
H P_Gruppe	4951x3 double	
H P_RE	300x3x2 double	
H P_VZW	4351x3 double	
Haram_Modell	2	
Param_PP	1xб cell	
Param_RE	4x1 cell	
Param_VE	3x1 cell	
H Param_WS	[0,1,1,1]	
<mark>⊞</mark> r	2	
⊞ s	2	
⊞ t	2	
⊞ tt	2	
	_	
₩ v	2	

Plot des Ergebnisses

Variationsbreite und Parametrisierbarkeit

- kleine Carinalverrundung
- mittlere Krümmung
- kurze Rohrelemente

- mittlere Krümmung
- mittlere Rohrelemente

- große Carinalverrundung
- große Krümmung
- kurze Rohrelemente

Variationsbreite und Parametrisierbarkeit

- große Verzweigungswinkel
- lange Rohrelemente

- kleine Verzweigungswinkel
- kurze Rohrelemente

- kleine Verzweigungswinkel
- lange Rohrelemente

Erweiterung der Punktewolke

Endstücke

- Endstücke an allen terminalen Bronchien als gerade Zylinder
- Sockel vor der ersten Generation
- Wandstärke

Sockel

Gliederung

- Motivation
- Literaturrecherche
- Modellierung
- Implementierung des Modells
- Weiterverarbeitung der Geometriedaten
- Fertigung physikalischer Prototypen
- Zusammenfassung und Ausblick

Überführung der Punktkoordinaten in ein

Oberflächenmodell

Datenimport

Punktkoordinaten

Triangulation

Punktewolke

Einzelflächen

Schließen der Oberflächen

Oberflächenmodell

Oberflächenfehler bei der Triangulation

- Entfernen der "Schwimmhäute"
- Löcher in der Oberfläche möglich
 - ⇒ Auflösung der Punktewolke ist entscheidend für erfolgreiche Oberflächenbildung

Verfeinerung der Triangulation

Gliederung

- Motivation
- Literaturrecherche
- Modellierung
- Implementierung des Modells
- Weiterverarbeitung der Geometriedaten
- Fertigung physikalischer Prototypen
- Zusammenfassung und Ausblick

Fertigungsmethode und Werkstoff

- 3D-Druckverfahren
- Transparentes, elastisches Kunstharz
- 2 Prototypen gefertigt

- Druck
- Reinigen des Werkstücks
- Entfernen der Stützstruktur
- Aushärten
- Sichtprüfung des Werkstücks
- Prüfung der Maßtreue

- Druck
- Reinigen des Werkstücks
- Entfernen der Stützstruktur
- Aushärten
- Sichtprüfung des Werkstücks
- Prüfung der Maßtreue

- Druck
- Reinigen des Werkstücks
- Entfernen der Stützstruktur
- Aushärten
- Sichtprüfung des Werkstücks
- Prüfung der Maßtreue

- Druck
- Reinigen des Werkstücks
- Entfernen der Stützstruktur
- Aushärten
- Sichtprüfung des Werkstücks
- Prüfung der Maßtreue

UV-Licht bei 60 °C

- Druck
- Reinigen des Werkstücks
- Entfernen der Stützstruktur
- Aushärten
- Sichtprüfung der Werkstücke
- Prüfung der Maßtreue

Gliederung

- Motivation
- Literaturrecherche
- Modellierung
- Implementierung des Modells
- Weiterverarbeitung der Geometriedaten
- Fertigung physikalischer Prototypen
- Zusammenfassung und Ausblick

Zusammenfassung

- Geometrisches Modell
- Implementierung einer automatisierten Modellkonstruktion
- Weiterverarbeitung der Punktewolke
- Fertigung eines physikalischen Modells

Ausblick

- Kollisionsdetektion
 - ⇒ Berechnung einer optimalen Zentralachse
- Endstücke
 - ⇒ Trompetenform, Glockenform
 - ⇒ Flansche zur Fertigung großer Bronchialbäume
- Fertigungsmethode verbessern
- Validierung
 - ⇒ Auswirkung der Carinalverrundung
 - ⇒ Abgleich des Modells mit Messdaten realer Bronchialbäume

Teilflächen

- I: rechte Außenfläche
- II: linke Innenfläche
- III: Carinalfläche
- IV: rechte Innenfläche
- V: rechte Außenfläche

$$r_{K,i}(\eta) = \left| |M_{K,i,x'}| + \sin(\eta) \cdot \frac{d_i}{2} \right|$$

Carinalverrundungs-Radius $m_c(\eta)$ 9% Für h vgl. Folie 21 m_l $/m_r$ α_r φ_l φ_r $M_{K,r}$ $x^{'}$ $M_{K,l}$ d_0

$$r_C(\eta) = \sin(\eta) \cdot (\tau_{C,1} \cdot (d_r + d_l) + \tau_{C,2} \cdot (\alpha_r + \alpha_l))$$

Fallunterscheidung: VE-Typ

Fallunterscheidung: ZK-Typ

Zwischenflächenkurven (ZK)

Abschnitt I: Carinalverrundungsbogen

Abschnitt I: Carinalverrundungsbogen

Abschnitt I: Carinalverrundungsbogen

Abschnitt I:

Carinalverrundungsbogen

Abschnitt II:

Krümmungsbogen

Abschnitt I: Carinalverrundungsbogen

Abschnitt II:

Krümmungsbogen

Abschnitt I:

Carinalverrundungsbogen

Abschnitt II:

Krümmungsbogen

Abschnitt I:

Carinalverrundungsbogen

Abschnitt II:

Krümmungsbogen

Abschnitt III:

Verlängerungsabschnitt

Abschnitt I:

Carinalverrundungsbogen

Abschnitt II:

Krümmungsbogen

Abschnitt III:

Verlängerungsabschnitt

ZK 1: Typ 1

ZK 1: Typ 1

ZK 2: Typ 2

ZK 1: Typ 1

ZK 2: Typ 2

ZK 3: Typ 2

ZK 1: Typ 1

ZK 2: Typ 2

ZK 3: Typ 2

 $\Rightarrow VE-Typ = ZK-Typ (ZK(h^*))$ = ZK-Typ (ZK 3)= Typ 2

Berechnung der Carinalverrundung

1. Iterationsschritt

1. Iterationsschritt: Winkelprüfung

1. Iterationsschritt: Mittelpunkt Carinalverrundung

1. Iterationsschritt: Übergangspunkte

1. Iterationsschritt: Fälle ausschließen

$$\Delta_{1,i,\eta'} = |\alpha_i| - |\gamma_{1,i,\eta'}| \text{ mit } i \in \{r,l\}$$

$$\Delta_{1,r,\eta'} \geq 0 \wedge \Delta_{1,l,\eta'} < 0 \Rightarrow \text{ZK-Typ 3 kann ausgeschlossen werden.}$$

$$\Delta_{1,r,\eta'} < 0 \land \Delta_{1,l,\eta'} \ge 0 \Rightarrow \text{ZK-Typ 2 kann ausgeschlossen werden.}$$

$$\Delta_{1,r,\eta'}<0 \land \Delta_{1,l,\eta'}<0 \Rightarrow \text{ ZK-Typ 2}$$
 und 3 können ausgeschlossen werden.

2. Iterationsschritt

2. Iterationsschritt ⇒ Parallelverschobene Gerade mit Steigung - α_l \Rightarrow Kreis um $M_{K,r}$ m_l m_r α_r α_l

2. Iterationsschritt ⇒ Parallelverschobene Gerade mit Steigung - α_l \Rightarrow Kreis um $M_{K,r}$ ⇒ Gleichsetzen führt zu M_C^st m_l m_r α_r

2. Iterationsschritt

$$M_{C1,\eta'}^* = \begin{bmatrix} \frac{-\varepsilon_3}{2} - \operatorname{sgn}(M_{K,i,x'}) \cdot \sqrt{\frac{\varepsilon_3^2}{4} - \varepsilon_4} \\ 0 \\ \varepsilon_1 \cdot \left(\frac{-\varepsilon_3}{2} - \operatorname{sgn}(M_{K,i,x'}) \cdot \sqrt{\frac{\varepsilon_3^2}{4} - \varepsilon_4}\right) + \varepsilon_2 \end{bmatrix}$$

 $_{
m mit}$

mit
$$\varepsilon_{1} = \tan\left(\frac{\pi}{2} - \alpha_{j}\right)$$

$$\varepsilon_{2} = B_{j,\eta',z'} - \tan\left(\frac{\pi}{2} - \alpha_{j}\right) \cdot B_{j,\eta',x'} + \frac{r_{C,\eta'}}{\alpha_{j}}$$

$$\varepsilon_{3} = 2 \cdot \frac{\varepsilon_{1}\varepsilon_{2} - M_{K,i,x'}}{1 + \varepsilon_{1}^{2}}$$

$$\varepsilon_{4} = \frac{M_{K,i,x'}^{2} + \varepsilon_{2}^{2} - (r_{K,i,\eta'} + r_{C,\eta'})^{2}}{1 + \varepsilon_{1}^{2}}$$

2. Iterationsschritt

2. Iterationsschritt: Fall bestimmen

$$\Delta_{2,i,\eta'} = |\alpha_i| - |\gamma_{2,i,\eta'}|$$
$$i \in \{r,l\}$$

$$\Delta_{2,r,\eta'} \geq 0 \wedge \Delta_{2,l,\eta'} < 0 \Rightarrow \text{Es liegt ZK-Typ 2 vor.}$$

 $\Delta_{2,r,\eta'} < 0 \wedge \Delta_{2,l,\eta'} \geq 0 \Rightarrow \text{Es liegt ZK-Typ 3 vor.}$
 $\Delta_{2,r,\eta'} < 0 \wedge \Delta_{2,l,\eta'} < 0 \Rightarrow \text{Es liegt ZK-Typ 4 vor.}$

2. Iterationsschritt: Übergangspunkte berechnen

$$U_{C,\eta',i}^* = M_{C,\eta'}^* + \operatorname{sgn}(\alpha_i) \cdot \begin{bmatrix} -\cos(\gamma_{i,\eta'}) \\ 0 \\ \sin(\gamma_{i,\eta'}) \end{bmatrix} \cdot r_{C,\eta'}$$
$$U_{C,\eta',j}^* = M_{C,\eta'}^* + \operatorname{sgn}(\alpha_j) \cdot \begin{bmatrix} -\cos(\alpha_j) \\ 0 \\ \sin(\alpha_i) \end{bmatrix} \cdot r_{C,\eta'}$$

3. Iterationsschritt: Übergangspunkte berechnen

$$\gamma_{i,\eta'} = \operatorname{sgn}(\alpha_i) \cdot \arctan\left(\frac{M_{C,\eta',z'}^*}{|M_{K,i,x'} - M_{C,\eta',x'}^*|}\right)$$
$$U_{C,\eta',i}^* = M_{C,\eta'}^* + \operatorname{sgn}(\alpha_i) \cdot \begin{bmatrix} -\cos(\alpha_i) \\ 0 \\ \sin(\alpha_i) \end{bmatrix} \cdot r_{C,\eta'}$$

Berechnung der projizierten Zwischenfläche

Carinalkurve

$$c^*(\eta) = M_{C,\eta}^* + r_C(\eta) \cdot \begin{bmatrix} -\cos\left(\min\{\alpha_l, \gamma_{l,\eta}\} + \frac{\gamma_{C,\eta}}{2}\right) \\ 0 \\ -\sin\left(\min\{\alpha_l, \gamma_{l,\eta}\} + \frac{\gamma_{C,\eta}}{2}\right) \end{bmatrix}$$

Carinalkurve

 $M_{C,3}$

Proj. Anschlusskreise

Radiale Grenzkonstruktionswinkel

Projzierte Zwischenfläche: Abschnitt I

$$v_{Z,I}^{*}(\eta,\gamma) = m_{C}(\eta) + r_{C}(\eta) \cdot \begin{bmatrix} \cos(\gamma) \\ 0 \\ -\sin(\gamma) \end{bmatrix}$$

$$\eta \in \mathcal{H}_{Z,I} := \left\{ \eta \in \mathbb{R} : 0 \leq \eta \leq \pi \right\}$$

$$\gamma \in \mathcal{G}_{\eta} := \left\{ \gamma \in \mathbb{R} : |\gamma_{r,\eta}| \leq \gamma \leq \pi - \gamma_{l,\eta} \right\}$$

$$\mathcal{V}_{Z,I}^{*} := \left\{ v_{Z,I}^{*}(\eta,\gamma) : \eta \in \mathcal{H}_{Z,I} \wedge \gamma \in \mathcal{G}_{\eta} \right\}$$

Projzierte Zwischenfläche: Abschnitt I

$$v_{Z,\text{II},i}^*(\eta,\varphi) = M_{K,i} + r_{K,i}(\eta) \cdot \begin{bmatrix} \operatorname{sgn}(\alpha_i) \cdot \cos(\varphi) \\ 0 \\ \sin(\varphi) \end{bmatrix}$$

$$\eta \in \mathcal{H}_{Z,\text{II},i} := \left\{ \eta \in \mathbb{R} : 0 \leq \eta \leq \eta_{g,i} \lor \pi - \eta_{g,i} \leq \eta \leq \pi \right\}$$

$$\varphi \in \mathcal{P}_{Z,i} := \left\{ \varphi \in \mathbb{R} : |\gamma_{\eta,i}| \leq \varphi \leq |\alpha_i| \right\}$$

$$\mathcal{V}_{Z,\text{II},i}^* := \left\{ v_{Z,\text{II},i}^*(\eta,\varphi) : \eta \in \mathcal{H}_{Z,\text{II},i} \land \varphi \in \mathcal{P}_{Z,i} \right\}$$

Projzierte Zwischenfläche: Abschnitt I

$$v_{Z,\text{III},i}^*(\eta,\lambda) = b_i^*(\eta) + \begin{bmatrix} -\sin(\alpha_i) \\ 0 \\ \cos(\alpha_i) \end{bmatrix} \cdot \lambda$$

$$\eta \in \mathcal{H}_{Z,\text{III},i} := \left\{ \eta \in \mathbb{R} : \eta_{g,i} \leq \eta \leq \pi - \eta_{g,i} \right\}$$

$$\lambda \in \mathcal{L}_{Z,i} := \left\{ \lambda \in \mathbb{R} : 0 \le \lambda \le ||a_l^*(\eta) - b_l^*(\eta)|| \right\}$$

$$\mathcal{V}_{Z,\mathrm{III},i}^* := \left\{ v_{Z,\mathrm{III},i}^*(\eta,\lambda) : \eta \in \mathcal{H}_{Z,\mathrm{III},i} \ \land \ \lambda \in \mathcal{L}_{Z,i} \right\}$$

Berechnung der projizierten Außenfläche

$$r_{T,i}(\varphi) = \frac{d_0 - d_i}{2} \cdot (-2\omega(\varphi)^3 + 3\omega(\varphi)^2) + \frac{d_i}{2}$$

$$\omega(\varphi) = 1 - \left(\frac{\varphi}{\Phi}\right)^{\tau_S}$$

$$\varphi \in \mathcal{P}_A$$

$$\Phi_i = |\alpha_i| + \frac{l_{i,\text{III}}}{|M_{K,i,x'}|}$$

Projizierte Außenfläche: Abschnitt II

$$v_{A,\text{II},i}^*(\eta,\varphi) = M_{K,i} + \begin{bmatrix} \operatorname{sgn}(\alpha_i) \cdot \cos(\varphi) \\ 0 \\ \sin(\varphi) \end{bmatrix} \cdot \left(|M_{K,i,x'}| - \sin(\eta) \cdot r_T(\varphi) \right)$$

Projizierte Außenfläche: Abschnitt III

 $M_{K,l}$

Dreidimensionale Zwischenflächen

Carinalkurve

Carinalkurvenfunktion

$$c(\eta) = c^*(\eta) + \left[\left| \left(1 - \frac{2\eta}{\pi} \right)^{\tau_{C,3}} \right| \cdot sgn\left(\eta - \frac{\pi}{2} \right) \cdot \sqrt{1 - \frac{\|c^*(\eta)\|^2}{\|c^*(\eta^*)\|^2}} \cdot \frac{d_0}{2} \right]$$

$$\mathcal{A}_i := \left\{ \eta \in \mathcal{H}_{2\pi} : a_i(\eta) = a_i \eta^* + \begin{bmatrix} 0 \\ \cos(\eta) \cdot \frac{d_i}{2} \\ 0 \end{bmatrix} \right\}$$

$$y'_{Z,\eta',i}(x') = |C_{\eta',y'} - A_{\eta',i,y'}| \cdot (-2\omega(x')^3 + 3\omega(x')^2) + A_{\eta',i,y'}$$

$$\omega(x') = 1 - \left(\frac{|x' - C_{\eta',x'}|}{|A_{\eta',i,x'} - C_{\eta',x'}|}\right)^{\tau_S}$$

$$x' \in \mathcal{X}_i := \left\{x' \in \mathbb{R} : \min\{C_{\eta',x'}, A_{\eta',i,x'}\} \le x' \le \max\{C_{\eta',x'}, A_{\eta',i,x'}\}\right\}$$

Berechnung der Zwischenflächen: Abschnitt I

$$v_{Z,I,i}(\eta, x') = v_{Z,I}^*(\eta, \gamma(\eta, x')) + y_{Z,i}'(\eta, x')$$
$$\gamma(\eta, x') = \arccos\left(\frac{x' - m_{C,x'}^*(\eta)}{r_C(\eta)}\right)$$
$$\eta \in \mathcal{H}_{\pi}$$

Berechnung der Zwischenflächen: Abschnitt II

$$v_{Z,II,i}(\eta, x') = v_{Z,II}^*(\eta, \varphi(\eta, x')) + y_{Z,i}'(\eta, x')$$
$$\varphi(\eta, x') = \arccos\left(\frac{x' - M_{K,i,x'}}{r_{K,i}(\eta) + \sin(\eta) \cdot \frac{d_i}{2}}\right)$$
$$\eta \in \mathcal{H}_{\pi}$$

$$x' \in \begin{cases} \mathcal{X}_{\text{II},l} := \left\{ x' \in \mathbb{R} : b_{l,x'}^*(\eta) \le x' \le u_{l,x'}^*(\eta) \right\} & \text{wenn } i = l \\ \mathcal{X}_{\text{II},r} := \left\{ x' \in \mathbb{R} : u_{r,x'}^*(\eta) \le x' \le b_{r,x'}^*(\eta) \right\} & \text{wenn } i = r \end{cases}$$

$$\mathcal{V}_{Z,\text{II},i} := \left\{ v_{Z,\text{II},i}(\eta,x') : \eta \in \mathcal{H}_{\pi} \land x' \in \mathcal{X}_{\text{II},i} \right\}$$

Berechnung der Zwischenflächen: Abschnitt II

$$v_{Z,\text{III},i}(\eta, x') = v_{Z,\text{III}}^*(\eta, \lambda(\eta, x')) + y_{Z,i}'(\eta, x')$$
$$\lambda(\eta, x') = \frac{x' - b_{i,x'}^*(\eta)}{\sin(\alpha_i)}$$
$$\eta \in \mathcal{H}_{\pi}$$

$$x' \in \begin{cases} \mathcal{X}_{\text{III},l} := \left\{ x' \in \mathbb{R} : a_{l,x'}^*(\eta) \le x' \le \min\{b_{l,x'}^*(\eta), u_{l,x'}^*(\eta)\} \right\} & \text{wenn i} = l \\ \mathcal{X}_{\text{III},r} := \left\{ x' \in \mathbb{R} : \max\{b_{r,x'}^*(\eta), u_{r,x'}^*(\eta)\} \le x' \le a_{r,x'}^*(\eta) \right\} & \text{wenn i} = r \end{cases}$$

$$\mathcal{V}_{Z,\text{III},l} := \left\{ v_{Z,\text{III},i}(\eta,x') : \eta \in \mathcal{H}_{\pi} \ \land \ x' \in \mathcal{X}_{\text{III},l} \right\}$$

Dreidimensionale Außenflächen

Problem

- ⇒ Zwischenfläche hängt von x' ab.
- ⇒ projizierte Außenfläche hängt von f ab.
- ⇒ Wie kann eine stetige Übergangsfunktion formuliert werden?

Lösungsansatz

$$v_{y',A,i}(\eta,x') = \cos(\eta) \cdot (\sin(\eta)^2 \cdot f(x') + \cos(\eta)^2 \cdot g(x'))$$

$$\sin(\eta)^2 + \cos(\eta)^2 = 1$$

Übergangsfunktion

$$f(\varphi) = \frac{d_0 - d_i}{2} \cdot (-2\omega_f(\varphi)^3 + 3\omega_f(\varphi)^2) + \frac{d_i}{2}$$
$$\omega_f(\varphi) = 1 - \left(\frac{\varphi}{\Phi_i}\right)^{\tau_S}$$

Übergangsfunktion

$$f(\varphi) = \frac{d_0 - d_i}{2} \cdot (-2\omega_f(\varphi)^3 + 3\omega_f(\varphi)^2) + \frac{d_i}{2}$$
$$\omega_f(\varphi) = 1 - \left(\frac{\varphi}{\Phi_i}\right)^{\tau_S}$$

$$g(\tilde{x}(\eta,\varphi)) = \frac{d_0 - d_i}{2} \cdot (-2\omega_g(\tilde{x}(\eta,\varphi))^3 + 3\omega_g(\tilde{x}(\eta,\varphi))^2) + \frac{d_i}{2}$$
$$\omega_g(\tilde{x}(\eta,\varphi)) = 1 - \left(\frac{\tilde{x}(\eta,\varphi)}{|a_{i,x'}(\eta) - \sin(\eta) \cdot \frac{d_0}{2}|}\right)^{\tau_S}$$

Übergangsfunktion

$$f(\varphi) = \frac{d_0 - d_i}{2} \cdot (-2\omega_f(\varphi)^3 + 3\omega_f(\varphi)^2) + \frac{d_i}{2}$$
$$\omega_f(\varphi) = 1 - \left(\frac{\varphi}{\Phi_i}\right)^{\tau_S}$$

$$g(\tilde{x}(\eta,\varphi)) = \frac{d_0 - d_i}{2} \cdot (-2\omega_g(\tilde{x}(\eta,\varphi))^3 + 3\omega_g(\tilde{x}(\eta,\varphi))^2) + \frac{d_i}{2}$$
$$\omega_g(\tilde{x}(\eta,\varphi)) = 1 - \left(\frac{\tilde{x}(\eta,\varphi)}{|a_{i,x'}(\eta) - \sin(\eta) \cdot \frac{d_0}{2}|}\right)^{\tau_S}$$

$$\tilde{x}(\eta,\varphi) = \begin{cases} M_{K,i,x'} - \cos(\varphi) \cdot (M_{K,i,x'} - r_{T,i}(\varphi) \cdot \sin(\eta)) & \text{wenn } 0 \leq \varphi \leq |\alpha_i| \\ M_{K,i,x'} - \cos(\alpha_i) \cdot (M_{K,i,x'} - r_{T,i}(\alpha_i) \cdot \sin(\eta)) + \varphi \cdot \sin(\alpha_i)) & \text{wenn } |\alpha_i| \leq \varphi \leq \Phi_i \end{cases}$$

Berechnung der Außenflächen

$$v_{A,\text{II},i}(\eta,\varphi) = v_{A,\text{II},i}(\eta,\varphi) + \begin{bmatrix} 0 \\ \cos(\eta) \cdot \left(\sin(\eta)^2 \cdot f(\varphi) + \cos(\eta)^2 \cdot g(\tilde{x}(\eta,\varphi))\right) \end{bmatrix}$$

$$\varphi \in \mathcal{P}_A$$

$$\eta \in \mathcal{H}_{\pi}$$

$$\mathcal{V}_{A,i} := \left\{ v_{A,\text{II},i}(\eta,\varphi) : \eta \in \mathcal{H}_{\pi} \land \varphi \in \mathcal{P}_A \right\}$$

$$\mathcal{V}_A := \mathcal{V}_{A,l} \cup \mathcal{V}_{A,r}$$