Protocollo WT901WIFI

Register table

DR	AD DR (De c)	REGISTE R NAME	FUNCTION	SERI AL I/F	Bit 15			Bit 12							Bit 4	Bit 3	Bit 2	Bit 1	Bit(D
00	00	SAVE	Save/restart/ factory restore	R/W					Ç	SAV	/E[:	15:()]							
01	01	CALSW	Calibration mode	R/W												C.	ALS	SW[3:0]	J
05	05	AXOFFSE T	Acceleration X zero bias	R/W					AX	OFF	SE	T[1	5:0)]						
06	06	AYOFFSE T	Acceleration Y zero bias	R/W	AYOFFSET[15:0]															
07	07	AZOFFSE T	Acceleration Z zero offset	R/W	AZOFFSET[15:0]															
08	08	GXOFFSE T	Angular velocity X zero deviation	R/W					GX	OFF	SE	T[1	5:0)]						
09	09	GYOFFSE T	Angular velocity Y zero deviation	R/W					GY	OFF	SE	T[1	5:0)]						
0A	10	GZOFFSE T	Angular velocity Z zero deviation	R/W					GΖ	OFF	SE	T[1	5:0)]						
0В	11	HXOFFSE T	Magnetic field X zero bias	R/W					ΗX	OFF	SE	T[1	5:0)]						
0C	12	HYOFFSE T	Magnetic field Y zero bias	R/W					HY	OFF	SE	T[1	5:0)]						

0D	13	HZOFFSE T	Magnetic field Z zero bias	R/W	HZOFFSET[15:0]			
1C	28	MAGRAN GX	Magnetic field X calibration range	R/W	MAGRANGX[15:0]			
1D	29	MAGRAN GY	Magnetic field Y calibration range	R/W	MAGRANGY[15:0]			
1E	30	MAGRAN GZ	Magnetic field Z calibration range	R/W	MAGRANGZ[15:0]			
1F	31	BANDWI DTH	Bandwidth	R/W	BA	ANDWII [0:		
20	32	GYRORA NGE	Gyroscope range	R/W	G,	YRORAN [0:	_	
21	33	ACCRAN GE	Acceleration range	R/W	A	CCRAN(GE[3:	
23	35	ORIENT	Installation direction	R/W			ORIE NT	
24	36	AXIS6	algorithm	R/W			AXIS 6	
25	37	FILTK	Dynamic filtering	R/W	FILTK[15:0]			
26	38	Q0	Quaternion 0	R	Q0[15:0]			
27	39	Q1	Quaternion 1	R	Q1[15:0]			
28	40	Q2	Quaternion 2	R	Q2[15:0]			
29	41	Q3	Quaternion 3	R	Q3[15:0]			
2A	42	ACCFILT	Acceleration filtering	R/W	ACCFILT[15:0]			

2D	45	WIFIMOD E	WIFI mode	R		WIFIMODE[3:0		
2E	46	VERSION	Version number	R	VERSION[15:0]			
30	48	YYMM	Years	R/W	MOUTH[15:8]	YEAR[7:0]		
31	49	DDHH	Date	R/W	HOUR[15:8]	DAY[7:0]		
32	50	MMSS	Minutes and seconds	R/W	SECONDS[15:8]	MINUTE[7:0]		
33	51	MS	Millisecond	R/W	MS[1	5:0]		
34	52	AX	AccelerationX	R	AX[1:	5:0]		
35	53	AY	AccelerationY	R	AY[15:0]			
36	54	AZ	AccelerationZ	R	AZ[15:0]			
37	55	GX	Angular velocityX	R	GX[15:0]			
38	56	GY	Angular velocityY	R	GY[1	5:0]		
39	57	GZ	Angular velocityZ	R	GZ[1.	5:0]		
3A	58	НХ	Magnetic field X	R	HX[1	5:0]		
3B	59	НҮ	Magnetic field Y	R	HY[1:	5:0]		
3C	60	HZ	Magnetic field Z	R	HZ[1	5:0]		
3D	61	Roll	Roll angle	R	Roll[1	5:0]		
3E	62	Pitch	Pitch angle	R	Pitch[]	15:0]		
3F	63	Yaw	Yaw angle	R	Yaw[15:0]			

40	64	TEMP	Temperature	R	TEMP[15:0]
42	66	BAT	Power	R	BAT[15:0]
43	67	TCPIP0	TCPIP	R	TCPIP0[15:0]
4A	74	TCPIP7	TCPIP	R	TCPIP7[15:0]
4B	75	TCPPORT	TCP port	R	TCPPORT[15:0]
4C	76	UDPIP0	UDPIP	R	UDPIP0[15:0]
53	83	UDPIP7	UDPIP	R	UDPIP7[15:0]
54	84	UDPPORT	UDP port	R	UDPPORT[15:0]
5D	93	RSSI	WIFI signal	R	RSSI[15:0]
60	96	LOCALPO RT	local port	R	LOCALPORT[15:0]
68	104	RATE	Sending rate	R/W	RATE[15:0]
75	117	TCP/UDP	Connection method	R/W	TCP/ UDP
78	120	SSID0	WIFI account	R	SSID0[15:0]
87	135	SSID15	WIFI account	R	SSID15[15:0]
88	136	PASSWO RD0	WIFI password	R	PASSWORD0[15:0]

A7	167	PASSWO RD31	WIFI password	R	PASSWORD31[15:0]

Protocol format

Read format

data analysis

The data is sent in hexadecimal format, not ASCII code.

Each data is divided into low byte and high byte and transmitted sequentially, and the two are combined into a signed short type data. For example, data DATA1, where DATA1L is the low byte and DATA1H is the high byte. The conversion method is as follows: Assume that DATA1 is the actual data, DATA1H is its high byte part, and DATA1L is its low byte part, then: DATA1=(short)((short)DATA1H<<8|DATA1L). It must be noted here that DATA1H needs to be forced to be converted to a signed short type data before shifting, and the data type of DATA1 is also a signed short type, so that negative numbers can be represented.

Serial number	HEX code	ASCII code	Illustrate
1	0x57	W	Fixed and cannot be changed
2	0x54	Т	Fixed and cannot be changed
3	0x35	5	Fixed and cannot be changed
4	0x35	5	Fixed and cannot be changed

5	ID		Set by the original factory: ID: 0x30~0x39
6	ID		Set by the original factory: ID: 0x30~0x39
7	ID		Set by the original factory: ID: 0x30~0x39
8	ID		Set by the original factory: ID: 0x30~0x39
9	ID		Set by the original factory: ID: 0x30~0x39
10	ID		Set by the original factory: ID: 0x30~0x39
11	ID		Set by the original factory: ID: 0x30~0x39
12	ID	produced by	Set when produced by the original factory: ID: 0x30~0x39, the device ID is 12, for example, WT5500001234
13	YY		Year
14	MM		moon
15	DD		Day
16	НН		Hour
17	MM		point
18	SS		Second
19	MSL		millisecond low

		Millisesand high hit millisesand - (MCH
20	MSH	Millisecond high bit, millisecond =(MSH <<8) MSL
21	AXL	Acceleration X is low
22	AXH	Acceleration X high bit, acceleration X=((AXH<<8) AXL)/32768*16(g)
23	AYL	Acceleration Y is low
24	АҮН	Acceleration Y high bit, acceleration Y=((AXH<<8) AXL)/32768*16(g)
25	AZL	Acceleration Z is low
26	AZH	Acceleration Z high position, acceleration Z=((AZH<<8) AZL)/32768*16(g)
27	GXL	Angular velocity X is low
28	GXH	Angular velocity X low position, angular velocity
		X=((GXH<<8) GXL)/32768*2000 (°/s)
29	GYL	Angular velocity Y is low
30	GYH	Angular velocity Y low position, angular velocity Y=((GYH<<8) GYL)/32768*2000(°/s)
31	GZL	Angular velocity Z is low
32	GZH	Angular velocity Z low position, angular velocity

		Z=((GZH<<8) GZL)/32768*2000 (°/s)
33	HXL	Magnetic field X is low
34	НХН	Magnetic field X is high, magnetic field X = $((HXH < < 8) HXL)*100/1024 (uT)$
35	HYL	Magnetic field Y is low
36	НҮН	Magnetic field Y is high, magnetic field Y =((HYH<<8) HYL)*100/1024 (uT)
37	HZL	Magnetic field Z is low
38	HZH	Magnetic field Z is high, magnetic field Z = $((HZH < < 8) HZL)*100/1024 (uT)$
39	AgXL	X angle low position
40	AgXH	Angle X is high, angle $X=((AgXH<<8) AgXL)/32768*180(°)$
41	AgYL	Y angle low position
42	AgYH	Angle Y high position, angle Y=((AgYH<<8) AgYL)/32768*180(°)
43	AgZL	Z angle low position
44	AgZH	Angle Z high position, angle Z=((AgZH<<8) AgZL)/32768*180(°) low temperature
45	TEMPL	low temperature

46	ТЕМРН		Temperature high position, temperature=((TEMPH <<8) TEMPL)/100(℃)
47	BATL		Not enough power
48	ВАТН		High power level, power=((BATH <<8) BATL)/100(V)
49	RSSIL		low signal
50	RSSIH		Signal high bit, signal = (RSSIH <<8) RSSIL (dBm)
51	VERSIONL		Low version number
52	VERSIONH		High bit of version number, version number = (VERSIONH <<8) VERSIONL
53		0x0D	Newline character
54		0x0A	Newline character

Read register return value

Used to read the value of the user-specified register. If REG1 is read, the values of the 4 registers REG1~REG4 will be returned. The protocol must return 4 registers.

Send command: FF AA 27 REG 00

Returns as follows:

0x55 0x5F	REG1L	REG1H	REG2L	REG2H	REG3L	REG3H	REG4L	REG4H	SUM

nam e	Describ e	Remark
REG1	Registe r 1 lower 8 bits	REG1[15:0]=((REG1H<<8) REG1L)
REG1	Registe r 1 high 8 bits	
REG2	Registe r 2 lower 8 bits	REG2[15:0]=((REG2H<<8) REG2L)
REG2	Registe r 2 high 8 bits	
REG3	Registe r 3 lower 8 bits	REG3[15:0]=((REG3H<<8) REG3L)
REG3	Registe r 3 high 8 bits	
REG4	Registe r 4 lower 8 bits	REG4[15:0]=((REG4H<<8) REG4L)

REG4	Registe r 4 high 8 bits	
SUM	Checks um	SUM=0x55+0x5F+REG1L+REG1H+REG2L+REG2H+REG3L+REG3 H+REG4L+REG4H

For example:

Reading register "AXOFFSET" returns: 0x55 0x5F AXOFFSET[7:0] AXOFFSET[15:8] AYOFFSET[7:0] AYOFFSET[15:8] AZOFFSET[7:0]

AZOFFSET[15:8] GXOFFSET[7:0] GXOFFSET[15:8] SUM

write format

ASCII setting format

Function V	instructions	Illustrate
Calibratio n time	WTTIME:20230728125959001\r\n	Calibrate sensor time Year: 2023 Month: 07 Day: 28 Hours: 12 Points: 59 Seconds: 59 milliseconds:

		001
UDP Broadcast IP	WIT192.168.4.2\r\n	192.168.4.2: Determined according to the user's computerGo to IP: 255.255.255.25 5, port 9250 to broadcast the IP. After the sensor searches for the IP, it immediately switches the IP.
Set up WIFI	WITWIFI:"WIT_A","wtznwtzn"\r\n	WIT_A: User WIFI name wtznwtzn: User WIFI password WIFI must be in the 2.4GHz frequency band. After setting, it will automatically switch to STA mode (WIFIMODE register)
Specified	TCPIP:192.168.4.2,1399\r\n	192.168.4.2:

user TCP		Determined by
(STA		user
mode		1200 · D · · · · · · · ·
TCP)		1399: Depends
		on user decision
		This function is
		only supported
		in STA mode, so
		after setting, it
		will
		automatically
		switch to STA
		mode TCP
		communication
		(WIFIMODE
		register), and
		the data is sent
		to the server
		specified by the
		user. In STA
		mode, the user's
		routing WIFI
		(2.4GHz
		frequency band)
		must be
		connected.
		192.168.4.2:
Specify		Determined by
LIDD	UDDYD 400 400 4 0 4000 V	user
(STA	UDPIP:192.168.4.2,1399\r\n	usei
mode		1399: Depends
UDP))		on user decision
7		This function is
	13	This faircion is

		only supported in STA mode, so after setting, it will automatically switch to STA mode UDP communication (WIFIMODE register), and the data is sent to the server specified by the user. In STA mode, the user's routing WIFI (2.4GHz frequency band) must be connected.
Vit TCP	WITTCP\r\n	Connecting to the cloud platform of Witte Intelligence
AP mode TCP	WITAPTCP\r\n	After setting, it automatically switches to TCP communication in AP mode. The sensor generates WIFI, and the computer can

		connect to the WIFI. The WIFI name is the device ID.
AP mode UDP	WITAPUDP\r\n	After setting, it automatically switches to UDP communication in AP mode. The sensor generates WIFI, and the computer can connect to the WIFI. The WIFI name is the device ID.
Set up TCPIP and WIFI at the same time	IPWIFI:"WIT_A","wtznwtzn";TCP192.168.4.2,1399\ r\n	Set IP and WIFI at the same time. If the user changes IP or WIFI remotely, it is recommended to use this command to avoid WIFI and IP settings being issued separately. Otherwise, it will appear that the changed IP takes effect and

		the data is sent to other places and cannot be modified remotely. So it is recommended to use this command
WIFI at	IPWIFI:"WIT_A","wtznwtzn";UDP192.168.4.2,1399\ r\n	Set IP and WIFI at the same time. If the user changes IP or WIFI remotely, it is recommended to use this command to avoid WIFI and IP settings being issued separately. Otherwise, it will appear that the changed IP takes effect and the data is sent to other places and cannot be modified remotely. So it is recommended to use this command

Write register format (HEX code format)

This method is more flexible, and each register can be operated, but it is easy to set it incorrectly. You need to understand each register before setting it, and it only supports a single setting. For multiple settings (account password), you need to send multiple registers, which is a waste A lot of time for data interaction

The following data all use Hex code hexadecimal

All settings require first operating the unlock register (KEY)

Protocol header	Protocol header	Register	Lower 8 bits of data	High 8 bits of data
0xFF	0xAA	ADDR	DATAL[7:0]	DATAH[15:8]

The data is sent in hexadecimal format, not ASCII code.

Each data is divided into low byte and high byte and transmitted sequentially, and the two are combined into a signed short type data. For example, data DATA, where DATAL is the low byte and DATAH is the high byte. The conversion method is as follows: Assume that DATA is actual data, DATAH is its high-byte part, and DATAL is its low-byte part, then:

DATA=(short)((short)DATAH<<8|DATAL). It must be noted here that DATAH needs to be forced to be converted to a signed short type data before shifting, and the data type of DATA is also a signed short type, so that negative numbers can be represented.

For example:

Acceleration calibration (acceleration calibration must place the module on the front for calibration. If the module is placed on the reverse side for calibration, it will cause abnormal acceleration and thus abnormal angle)

1. Enter calibration: FF AA 01 01 00 (calibration uses register 0x01, which will be discussed later)

2. Delay 5 seconds

3. Exit calibration: FF AA 01 00 00

4. Save calibration: FF AA 00 00 00

SAVE (save/restart/factory restore)

Register name: SAVE

Register address: 0 (0x00)

Reading and writing direction: R/W

Default value: 0x0000

Bit NAME FUNCTION

Save: 0x0000

15:0 SAVE[15:0] Restart: 0x00FF

Factory reset: 0x0001

Example: FF AA 00 FF 00 (restart)

Example: FF AA 00 00 00 (save)

Example: FF AA 00 01 00 (factory reset)

CALSW (calibration mode)

Register name: CALSW

Register address: 1 (0x01)

Reading and writing direction: R/W

Bit	NAME	FUNCTION
15:4		
		Set calibration mode:
	CAL[3:0]	0000(0x00): normal working mode
3:0		0001 (0x01): Automatic addition calibration
		0011(0x03): Clear height (this version does not have this function)
		0100(0x04): Set heading angle to zero

0111(0x07): Magnetic field calibration (spherical fitting method)

1000(0x08): Set angle reference

1001(0x09): Magnetic field calibration (bi-plane mode, this version does not have this function)

Example: FF AA 01 04 00 (heading angle set to zero)

Addition calibration example:

FF AA 01 01 00 (to enter the addition calibration, please make sure it is placed horizontally)

Wait 5 seconds for automatic calibration to complete

FF AA 01 00 00 (Exit totaling calibration)

FF AA 00 00 00 (save)

Magnetic field calibration example:

FF AA 01 07 00 (enter magnetic field calibration)

Rotate 1~2 times around north around each axis. Please refer to the magnetic field calibration video.

FF AA 01 00 00 (Exit magnetic field calibration)

FF AA 00 00 00 (save)

AXOFFSET~HZOFFSET (zero offset setting)

Register name: AXOFFSET~HZOFFSET

Register address: $5\sim13 (0x05\sim0x0D)$

Reading and writing direction: R/W

Bit	NAME	FUNCTION
15:0	AXOFFSET[15:0]	Acceleration X-axis zero offset, actual acceleration zero offset=AXOFFSET[15:0]/10(LSB)
15:0	AYOFFSET[15:0]	Acceleration Y-axis zero offset, actual acceleration zero offset=AYOFFSET[15:0]/10(LSB)
15:0	AZOFFSET[15:0]	Acceleration Z-axis zero offset, actual acceleration zero offset=AZOFFSET[15:0]/10(LSB)
15:0	GXOFFSET[15:0]	Angular velocity X-axis zero offset, actual angular velocity zero offset=GXOFFSET[15:0]/10(LSB)
15:0	GYOFFSET[15:0]	Angular velocity Y-axis zero offset, actual angular velocity zero offset=GYOFFSET[15:0]/10(LSB)
15:0	GZOFFSET[15:0]	Angular velocity Z-axis zero offset, actual angular velocity zero

		offset=GZOFFSET[15:0]/10(LSB)
15:0	HXOFFSET[15:0]	Magnetic field X-axis zero offset
15:0	HYOFFSET[15:0]	Magnetic field Y axis zero offset
15:0	HZOFFSET[15:0]	Magnetic field Z axis zero offset

Example: FF AA 05 E8 03 (set acceleration X-axis zero offset 0.0488g), 0x03E8=1000, 1000/10=100 (LSB), the user can automatically add the calibration; if you want to set it yourself, read the basis of the original acceleration Go up, multiply it by 10 times and then send it out.

MAGRANGX~MAGRANGZ (Magnetic field calibration range)

Register name: MAGRANGX~MAGRANGZ

Register address: $28\sim30 (0x1C\sim0x1E)$

Reading and writing direction: R/W

Default value: 0x01F4

Bit	NAME	FUNCTION
15:0	MAGRANGX[15:0]	Magnetic field calibration X-axis range
15:0	MAGRANGY[15:0]	Magnetic field calibration Y-axis range
15:0	MAGRANGZ[15:0]	Magnetic field calibration Z-axis range

Example: FF AA 1C F4 01 (set the magnetic field calibration X-axis range to 500)

BANDWIDTH (Bandwidth)

Register name: BANDWIDTH

Register address: 31 (0x1F)

Reading and writing direction: R/W

Default value: 0x0004

Bit	NAME	FUNCTION
15:4		
3:0	BANDWIDTH[3:0]	Set bandwidth 0000(0x00): 256Hz 0001(0x01): 188Hz 0010(0x02): 98Hz 0011(0x03): 42Hz 0100(0x04): 20Hz
		0100(0x04): 20112 0101(0x05): 10Hz 0110(0x06): 5Hz

Example: FF AA 1F 01 00 (set bandwidth to 188Hz)

GYRORANGE (Gyroscope range)

Register name: GYRORANGE

Register address: 32 (0x20)

Reading and writing direction: R/W

Default value: 0x0003

Bit	NAME	FUNCTION
15:4		
		Set gyroscope range
3:0	GYRORANGE[3:0]	0011(0x00): 250°/s
		0011(0x01): 500°/s
		0011(0x02): 1000°/s
		0011(0x03): 2000°/s (Default)

Example: FF AA 20 03 00 (set the gyroscope range to 2000°/s)

ACCRANGE (Accelerometer range)

Register name: ACCRANGE

Register address: 33 (0x21)

Reading and writing direction: R/W

Bit	NAME	FUNCTION
15:4		
3:0	ACCRANGE[3:0]	Set accelerometer range

0000(0x00): ±2g

0000(0x01): ±4g

0000(0x02): ±8g

0011(0x03): ±16g (Default)

Example: FF AA 21 00 00 (set acceleration measurement range 2g)

ORIENT (Installation direction)

Register name: ORIENT

Register address: 35 (0x23)

Reading and writing direction: R/W

Default value: 0x0000

Bit	NAME	FUNCTION
15:1		
0	ORIENT	Set installation direction $0(0x00)$: Horizontal installation $1(0x01)$: Vertical installation (the Y-axis arrow of the coordinate axis must be pointing upward)

Example: FF AA 23 01 00 (set for vertical mounting)

AXIS6 (Algorithm)

Register name: AXIS6

Register address: 36 (0x24)

Reading and writing direction: R/W

Default value: 0x0000

Bit	NAME	FUNCTION
15:1		
0	AXIS6	Set algorithm 0 (0x00): 9-axis algorithm (magnetic field calculation navigation angle, absolute heading angle) 1(0x01): 6-axis algorithm (integral calculation of navigation angle, relative heading angle)

Example: FF AA 24 01 00 (set 6-axis algorithm mode)

FILTK (K Value filter)

Register name: FILTK

Register address: 37 (0x25)

Reading and writing direction: R/W

Default value: 0x001E

Bit NAME FUNCTION

15:0 FILTK[15:0]	Range: 1~10000, default 30 (not recommended to modify, once modified, if the angle does not meet the usage requirements, please modify it to 30) The smaller FILTK[15:0] is, the more trustful the angular velocity data is, the seismic performance is enhanced, and the real-time performance is weakened. All angular velocities are taken and set to 1. The larger the FILTK[15:0], the more the acceleration data is believed, the seismic performance is weakened, and the real-time performance is enhanced. If all acceleration is taken, set it to 10000.
------------------	--

Example: FF AA 25 1E 00 (set the K value filter to 30)

Q0~Q3 (Quaternion)

Register name: Q0~Q3

Register address: $38\sim41$ (0x26 \sim 0x29)

Reading and writing direction: R

Bit	NAME	FUNCTION
15:0	Q0[15:0]	Quaternion 0=Q0[15:0]/32768
15:0	Q1[15:0]	Quaternion 1=Q1[15:0]/32768

15:0	Q2[15:0]	Quaternion 2=Q2[15:0]/32768
15:0	Q3[15:0]	Quaternion 3=Q3[15:0]/32768

ACCFILT (Acceleration filtering)

Register name: ACCFILT

Register address: 42 (0x2A)

Reading and writing direction: R/W

Bit	NAME	FUNCTION
15:0	ACCFILT[15:0]	Range: 1~10000, default 500 (modification is not recommended, once modified, if the angle does not meet the usage requirements, please modify it to 0) The smaller the ACCFILT[15:0], the better the seismic performance and the weaker the real-time
		performance. The larger the ACCFILT[15:0], the weaker the seismic performance and the stronger the real-time performance.
		This parameter is an empirical value and needs to be adjusted according to different environments. In the tractor environment,
		ACCFILT[15:0] can be adjusted to 300, because the tractor shakes seriously and the anti-seismic performance needs to be improved.

Example: FF AA 2A F4 01 (set acceleration filter 500)

WIFIMODE (WIFI model)

Register name: WIFIMODE

Register address: 45 (0x2D)

Reading and writing direction: R

Default value: 0x0002

Bit	NAME	FUNCTION
15:4		
3:0	WIFIMODE	Others: STA mode (needs to connect to WIFI in the 2.4G frequency band) 0010(0x02): AP mode (sensor broadcasts WIFI, equivalent to routing)

VERSION (version number)

Register name: VERSION

Register address: 46 (0x2E)

Reading and writing direction: R

Default value: 0x32D3(13011)

Bit	NAME	FUNCTION
15:0	VERSION[15:0]	13011

Example:

Send: FF AA 27 2E 00 (read the version number, 0x27 means reading,

0x2E is the version number register)

Return: 55 5F VL VH XX XX XX XX XX XX SUM

VERSION[15:0]=(short)(((short)VH<<8)|VL)

YYMM~MS (On-screen time)

Register name: YYMM~MS

Register address: $48\sim51$ (0x30 \sim 0x33)

Reading and writing direction: R/W

Bit	NAME	FUNCTION
15:8	YYMM[15:8]	Moon
7:0	YYMM[7:0]	Year
15:8	DDHH[15:8]	Hour
7:0	DDHH[7:0]	Day
15:8	MMSS[15:8]	Second
7:0	MMSS[7:0]	Point
15:0	MS[15:0]	millisecond

Example:

FF AA 30 16 03 (set year and month 22-03)

FF AA 31 0C 09 (set date and time 12-09)

FF AA 32 1E 3A (set minutes and seconds 30:58)

FF AA 33 F4 01 (set milliseconds 500)

Example:

Send: FF AA 27 30 00 (read the version number, 0x27 means reading,

0x30 is the year and month register)

Return: 55 5F YYMM[7:0] YYMM[15:8] DDHH[7:0] DDHH[15:8]

MMSS[7:0] MMSS[15:8] MS[7:0] MS[15: 8] SUM

AX~AZ (Acceleration)

Register name: AX~AZ

Register address: $52\sim54$ (0x34 \sim 0x36)

Reading and writing direction: R

Bit	NAME	FUNCTION
15:0	AX[15:0]	Acceleration X=AX[15:0]/32768*16g (g is the acceleration of gravity, which can be 9.8m/s2)
15:0	AY[15:0]	Acceleration Y=AY[15:0]/32768*16g (g is the acceleration of gravity, which can be 9.8m/s2)

15:0	AZ[15:0]	Acceleration Z=AZ[15:0]/32768*16g (g is the acceleration of gravity, which can be 9.8m/s2)
------	----------	--

The 16 in the formula is determined according to the range set by the user. The default is 16g.

GX~GZ (Angular velocity)

Register name: GX~GZ

Register address: $55\sim57$ (0x37 \sim 0x39)

Reading and writing direction: R

Default value: 0x0000

Bit	NAME	FUNCTION
15:0	GX[15:0]	Angular velocity X=GX[15:0]/32768*2000°/s
15:0	GY[15:0]	Angular velocity Y=GX[15:0]/32768*2000°/s
15:0	GZ[15:0]	Angular velocity Z=GX[15:0]/32768*2000°/s

The 2000 in the formula is determined according to the range set by the user. The default is 2000°/s.

HX~HZ (Magnetic field)

Register name: HX~HZ

Register address: 58~60 (0x3A~0x3C)

Reading and writing direction: R

Default value: 0x0000

Bit	NAME	FUNCTION
15:0	HX[15:0]	Magnetic field X=HX[15:0]*100/1024 (unit: uT)
15:0	HY[15:0]	Magnetic field Y=HY[15:0] *100/1024 (unit: uT)
15:0	HZ[15:0]	Magnetic field Z=HZ[15:0] *100/1024 (unit: uT)

Roll~Yaw (Angle)

Register name: Roll~Yaw

Register address: 61~63 (0x3D~0x3F)

Reading and writing direction: R

Default value: 0x0000

Bit	NAME	FUNCTION
15:0	Roll[15:0]	Roll angle X=Roll[15:0]/32768*180°
15:0	Pitch[15:0]	Pitch angle Y=Pitch[15:0]/32768*180°
15:0	Yaw[15:0]	Heading angle Z=Yaw[15:0]/32768*180°

TEMP (Temperature)

Register name: TEMP

Register address: 64 (0x40)

Reading and writing direction: R

Default value: 0x0000		
Bit	NAME	FUNCTION
15:0	TEMP[15:0]	Temperature =TEMP[15:0]/100℃

BAT (Power)

Register name: BAT

Register address: 66 (0x42)

Reading and writing direction: R

Default value: 0x0000

Bit	NAME	FUNCTION
15:0	BAT[15:0]	Power =BAT[15:0]/100(V)

TCPIPO~TCPIP7 (TCPIP)

Register name: TCPIP0~TCPIP7

Register address: 67~74 (0x43~0x4A)

Reading and writing direction: R

Bit	NAME	FUNCTION
63:0	TCPIP[63:0]	Default: 192.168.4.2

TCPPORT (TCP Remote port)

Register name: TCPPORT

Register address: 75 (0x4B)

Reading and writing direction: R

Default value: 0x0577

Bit	NAME	FUNCTION
15:0	TCPPORT[15:0]	Default port: 1399

UDPIP0~UDPIP7 (UDPIP)

Register name: UDPIP0~UDPIP7

Register address: 76~83 (0x4C~0x53)

Reading and writing direction: R

Default value: 0x0000

Bit	NAME	FUNCTION
63:0	UDPIP[63:0]	Default: 192.168.4.2

UDPPORT (UDP Remote port)

Register name: UDPPORT

Register address: 84 (0x54)

Reading and writing direction: R

Default value: 0x0577

Bit NAME FUNCTION

15:0 UDPPORT[15:0] Default port: 1399

RSSI (WIFI Signal)

Register name: RSSI

Register address: 93 (0x5D)

Reading and writing direction: R

Default value: 0x0000

Bit	NAME	FUNCTION
15:0	BAT[15:0]	Temperature =BAT[15:0]/10(V)

LOCALPORT (local port)

Register name: LOCALPORT

Register address: 96 (0x60)

Reading and writing direction: R

Bit	NAME	FUNCTION
15:0	LOCALPORT[15:0]	Default port: 9250

RATE (Transmission rate)

Register name: RATE

Register address: 104 (0x68)

Reading and writing direction: R/W

Default value: 0x0064

Bit	NAME	FUNCTION
15:0	RATE[15:0]	Default: 100ms, 1000/100ms = 10Hz

Example (set 200Hz):

FF AA 68 05 00, 1000/5ms=200Hz

TCP/UDP (Connection method)

Register name: TCP/UDP

Register address: 104 (0x68)

Reading and writing direction: R/W

Bit	NAME	FUNCTION
15:1		
0	TCP/UDP	0:UDP (Default) 1:TCP

SSID0~SSID15 (WIFI Account)

Register name: SSID0~SSID15

Register address: 120~135 (0x78~0x87)

Reading and writing direction: R

Default value: 0x0000

Bit	NAME	FUNCTION
127:0	SSID[128:0]	

PASSWORD0~PASSWORD31 (WIFI password)

Register name: PASSWORD0~PASSWORD31

Register address: 136~167 (0x88~0xA7)

Reading and writing direction: R

Bit	NAME	FUNCTION
255:0	PASSWORD[255:0]	