Diverse interactions and ecosystem engineering stabilize assembly of ecological networks

Justin D. Yeakel^{a,b}, Mathias Pires^c, Marcus A. M. de Aguiar^c, James O'Donnell^d, Paulo R. Guimarães Jr.^e, Dominique Gravel^f, and Thilo Gross^g

^a School of Natural Sciences, University of California Merced, Merced, CA 95343, USA; ^bSanta Fe Institute; ^cUniversidade Estadual de Campinas; ^dUniversity of Washington; ^eUniversidade de São Paulo; ^fUniversitè de Sherbrooke; ^gUniversity of California Davis, Davis CA

This manuscript was compiled on June 28, 2019

Some cool shit.

Ecosystem assembly | Ecological networks | Colonization | Extinction | Ecosystem engineering

Simplifying the abundant complexities and eccentricities of nature is necessary to unravel its secrets. The layers of natural history giving rise to an ecological community can be distilled – among many possible forms – into a network, where nodes represent species and links represent interactions between them. This minimalist perspective provides insight into community structure (1, 2), and consequently, the dynamics of populations and system stability (3–5). Community structure can directly impact the ability of the system to absorb external perturbations (6–8), the existence and ubiquity of tipping points marking sudden changes in species' populations (9, 10), and promote or inhibit extinction cascades (11, 12). Importantly, community structure is the result of a dynamical process that takes place over time, where species are added to or removed from the community in succession (13). This process is generally referred to as community assembly, and though it is an engine for much that we observe in nature, is not well understood.

Ecological networks are generally constructed and analyzed with respect to a single type of interaction. For example, beneficial relationships between species form the foundation of mutualistic networks, whereas antagonistic interactions form the foundation of trophic networks, or food webs. There has been a growing interest in understanding community structure by taking into account diverse interaction types (14), where multiple unique interactions are included, sometimes in a multi-layer network (15). Interactions between two species are inherently compound in nature, such that both species in an interaction experiences different effects. For example, mutualistic interactions generally involve a flow of biomass in one direction and a reproductive service in the other; in a trophic interaction there is a flow of biomass from the prey to the predator but not the reverse. This asymmetry is generally encoded into the dynamics, rather than the network structure itself (4, 5).

Diverse interactions occur not only between species, but indirectly through the effects species have on their environment (16–18). Species that alter the environment on timescales longer than themselves are known as ecosystem engineers (19). In contemporary systems, ecosystem engineers are relatively common and can alter the landscape on which ecological interactions occur (22). For example, elephants root out large saplings and small trees, enabling the formation and maintenance of grasslands (23) and creating habitat for smaller vertebrates (24). Burrowing rodents create shelter and aerate the soil, promoting primary production (25), salmon and aquatic invertebrates create freshwater habitats by changing stream morphology (26), and leaf-cutter ants alter microclimates, influencing seedling survival and plant growth (27).

Ecosystem engineering not only has large effects on communities within ecological timescales, but has profoundly influenced the evolution of life on Earth. For example, the emergence of multicellular cyanobacteria fundamentally altered the atmosphere during the Great Oxidation Event of the Proterozoic roughly 2.5 Byrs BP (20), paving the way for the invasion of plants on land. In the oceans, it is thought that rRNA and protein biogenesis of aquatic photoautotrophs drove the nitrogen:phosphorous ratio (the Redfield Ratio) to ca. 16:1, matching that of plankton (21). While local habitats can be significantly impacted by single engineering species, larger scale effects are generally modified by diverse engineering clades.

[Might significantly reduce this section] Theoretical models exploring the effects of ecosystem engineering are relatively few, but have covered important ground (18, 19). Initial efforts focused on understanding how habitat modification might impact the persistence of engineering species (28), while more recent models have shown that engineering can promote invasion (29) and impact primary productivity (30). On eco-evolutionary

Significance Statement

Here

Please provide details of author contributions here.

Please declare any conflict of interest here.

²To whom correspondence should be addressed. E-mail: jyeakel@ucmerced.edu

timescales, ecosystem engineering can alter the selective environment (18, 31) and ultimately lead to unexpected outcomes such as the fixation of deleterious alleles (32). On macroevolutionary timescales, there is considerable interest in understanding the role of innovation on diversification and extinction rates within and among clades (33). While such innovation generally pertains to the appearance of morphological traits, environmental modifications that result from evolutionary innovations can sometimes be wide-ranging, such as the planetary-scale consequences following the evolution of multicellular cyanobacteria (20). On smaller scales, microbiota construct shared resources such as metabolites that have a significant influence on microbial communities (34), the dynamics of which may even serve as the missing ingredient stabilizing some complex ecological systems (35).

Despite the relevance of ecosystem engineers to community dynamics over short and long timescales, they have been absent in models of ecological networks. While interactions between species and the abiotic environment have been conceptually described (17, 36), to what extent these interactions serve to modify community function has not been explored. This theoretical gap was addressed by Odling-Smee et al. (18), where they describe a conceptual framework with both species and abiotic compartments included as nodes of a network, with links representing both biotic and abiotic interactions. Importantly, they emphasize the potential eco-evolutionary consequences of prior alterations to the environment influencing an ecological system at some future state. Because ecological assembly is not a memory-less process, it is likely that engineers can have considerable impact on the emergence of community structure and dynamics.

Here we model an ecological system as a network where nodes represent ecological entities, including nonengineering species, engineering species, and the effects of the latter on the environment, which we call objects. The links of the network that connect both species and objects represent resource (eat interactions), service (need interactions), and engineering dependencies, respectively (Fig. 1; see Methods for a full description). Objects in our framework overlap conceptually with the 'abiotic compartments' described in Odling-Smee et al. (18). Following Pillai et al. (37), we do not track the abundances of entities but only track their presence or absence. We use this framework to explore the dynamics of ecosystem assembly, where the colonization and extinction of species within a community depends on the constraints imposed by the resource, service, and engineering dependencies.

Our results offer four key insights into the roles of diverse interactions and ecosystem engineering in driving community assembly. First, we show that the assembly of species networks in the absence of engineering reproduces many features observed in empirical systems. These include changes in the proportion of generalists over the course of assembly that accord with measured values, and trophic diversity similar to empirical observations. Sec-

ond, we show that increasing the frequency of mutualistic interactions leads to the assembly of ecological networks that are more nested, a hallmark feature of mutualistic systems (42). However, we observe that increased mutualistic dependencies in the assembled communities also lower species' persistence. This suggests that while nested mutualistic networks appear to be dynamically favored (cf. Ref. 38), our model predicts that the additional inter-dependencies that define mutualisms should result in greater species turnover and changes to community composition.

We next explore the effects of ecosystem engineering on the dynamics of community assembly. Our third key result is that increasing both the number of ecosystem engineers and engineering interactions within a community has nonlinear effects on observed extinction rates. While we find that a low amount of engineering increases extinction rates, a high amount of engineering serves to reduce extinction rates by increasing engineering redundancies. Finally, we show that the inclusion of engineering modifies the effects of mutualistic interactions, and can eliminate the negative effects that mutualisms have on species' persistence.

Trophic assembly without engineering

Assembly of ecological communities in the absence of engineering results in interaction networks with structures consistent with observations of empirical systems. Assembly of communities from a source pool of potential colonizers (see Methods) follows a general pattern that results in the emergence of a steady state community: following the establishment of an autotrophic base, mixotrophs and lower trophic-level heterotrophs comprise the initial colonizers. Primary extinctions occur by competitive exclusion, where a species' competitive strength is increased with its mutualistic interactions and decreased by its trophic generality (the number of prey it consumes) as well as its vulnerability (the number of predators it has). Secondary extinctions occur when species lose their trophic or service requirements. See Methods for a complete description of the assembly process due to losses from primary extinctions. As the colonization and extinction rates converge, the community reaches a steady state around which it oscillates stochastically.

As the community reaches steady state, we find that the connectance of trophic interactions $(C=L/S^2)$ follows a decay-like trajectory to values similar to – but on average 9% greater than – the connectance of the source pool. Decaying connectance has been documented in the assembly of mangrove communities (39), however this decay is a statistical inevitability, as a growing food web early in the assembly process inevitably has high link density (few species that are fully connected) from which it can only decline. That the connectance of assembled communities is greater than the source pool is due to the fact that only species connected by trophic interactions can enter the community to begin with, increasing expected

Fig. 1. A. Diverse interactions between species (colored nodes) and abiotic objects (black nodes) B. An assembling food web with species (colored nodes) and objects (black nodes) C. The corresponding adjacency matrix with colors denoting interactions between biotic (species) and abiotic (objects) entities. The basal resource is denoted in row/column 1.

link density compared to the overall pool. Compared to food webs constructed using the Niche model with similar species richness and connectance, our framework results in networks with roughly similar degree distributions, but with reduced means and variances (Supplementary Information: Appendix I).

Recent empirical work has suggested that generalist species may play an important role early in community assembly, whereas specialists tend to colonize after a diverse resource base has accumulated (39). Here, the trophic generality for a species i is defined as $G_i = \sum_j A_{i,j} (L/S)^{-1}$, where A is the adjacency matrix of trophic interactions such that the summation is the number of resources consumed by species i (40). A species is classified as a generalist if the number of its trophic interactions is greater than the average number of links per species, L/S, such that $G_i > 1$ and a specialist if $G_i < 1$. Following Piechnick et al. (39), if generalism is scaled to the steady state link density, we observe that generalists dominate early in assembly, with an increase in specialists as assembly progresses (diamonds representing the average over replicates in Fig. ??). At steady state the proportion of specialists levels out at ca. 60%, similar to empirical observations of assembling mangrove communities.

The role of specialists early in assembly is primarily due to the accumulation of autotrophs specializing on the basal resource. This is evident when we observe that the trophic level distribution early in assembly is peaked at the lowest trophic level. Four trophic levels are typically established by t=50, where colonization is still the dominant dynamic, and by the time communities reach steady state the interaction networks are characterized by on average 10 trophic levels (Fig. 2). The distribution of trophic levels changes shape over the course of assembly: early on, we observe that the community exhibits a skewed pyramidal structure, where most species richness

Fig. 2. A. The frequency distribution of trophic levels over the course of assembly taken across 10^4 replicates. Autotrophs occupy trophic level 1. We set $S=200,\,p_e=0.01,\,p_n=0.002,\,{\rm and}\,\,t=4000$ (see methods). B. The proportion of specialists as a function of assembly time, where a specialist is defined as a species with a generality index $G_i<1$. All measures of G_i are scaled by the average number of links per species where L and S are measured with respect to the communities at steady state.

feeds from the base of the food web. At steady state, we observe that intermediate trophic levels dominate, with frequencies taking on an hour-glass structure. Compellingly, the richness pyramids that we observe at steady state follow closely the distribution observed for empirical food webs and are less top-heavy than those produced by static food web models (41).

Structure and dynamics of mutualisms

Nested interactions, where specialist interactions are subsets of generalist interactions, are a distinguishing feature of mutualistic networks (42). Moreover, nested interactions have been shown to maximize the structural stability of mutualistic networks (38), emerge naturally via adaptive foraging behaviors (43), and promote the influence of indirect effects in driving coevolutionary dynamics (44). While models and experiments of trophic networks suggest that compartmentalization confers greater stabilizing properties (11, 45), interaction asymmetry among individuals may promote nestedness in both trophic (46) and mutualistic systems (47). Processes that operate on different

temporal and spatial scales may have a significant influence on these observations (48). Over evolutionary time, coevolution and speciation may degrade nested structures in favor of modularity (49), and there is some evidence from Pleistocene food webs that geographical insularity may reinforce this process (50).

Does the assembly process that we model favor nested structures in systems where there are more mutualistic interactions between species? Increasing service dependencies (need interactions; see Fig. 1) leads to a higher frequency of both service-resource and service-service dependencies. These interactions alter two key dynamics in our model: more service interactions i) increases a species' competition strength, which will lower its probability of primary extinction, while also ii) increasing inter-species dependencies. As such, elimination of a species that provides a service will result in the secondary extinction of the species that receives that service. While mutualisms must carry with them fitness advantages in order to evolve, the latter dynamic highlights the potential risk associated with losing mutualistic partners (51, 52). Indeed, the precarious balance that mutualists must maintain by way of their dependencies may have large implications for the future of global biodiversity (53).

We find that as we increase the frequency of mutualistic interactions, the assembled community at steady state becomes more nested (Fig. 3). In this case, nestedness is both the outcome of the assembly process as well as a stabilizing structure. We observe this by examining the differences in competitive strength between species in mutualistic versus trophic networks in a simple nested motif (Fig. ??). In trophic networks, species with many predators (high vulnerability) are at greater risk of competitive exclusion. Their elimination will have a large effect on specialist consumers internal to the nested structure, rendering it prone to disturbance. In mutualistic networks, species with many predators also gain the competitive advantages of services. If the benefit of mutualisms to competition strength is greater than the cost of vulnerability (described in Methods), it is the low vulnerability species consumed by fewer predators that are at greater risk of competitive exclusion. Their elimination will only affect generalist consumers external to the nested structure, rending it more resistant to disturbance.

Our results also suggest that the addition of mutualistic interactions comes at a cost. Because mutualisms increase dependencies between species, and by extension the frequency of secondary extinctions, we observe that these networks have both lower species diversity on average as well as lower species' persistence. This means that we expect mutualistic systems to have greater species turnover... In fact, assembling plant-pollinator systems have demonstrated high rates of species and interaction turnover, seemingly independent of whether the system was actively assembling or had reached a steady state (54). And important limitation of our framework is that we do not allow for flexible mutualistic interactions; a species

Fig. 3. A. Species persistence and B. Nestedness (measured as NODF) for communities with increasing frequencies of mutualistic (service) interactions.

must satisfy all of its service requirements to remain in the community. Relaxing these assumptions permits mutualism plasticity, long considered to be an important component driving the structure of mutualistic interactions (43, 54, 55), which we aim to explore in the future.

Community assembly with ecosystem engineers

We next introduce ecosystem engineering by allowing species to produce abiotic objects as addition nodes in the ecological network. These object nodes produced by engineers can serve to fulfill resource or service requirements for other species. The parameter η defines the mean number of objects produced by each species, drawn from a Poisson distribution (see Methods for details). Increasing the frequency of engineering interactions both increases the number of engineering species (those species that make ≥ 1 object) and the number of objects made per species. There are two characteristics of engineering that have particular relevance for community assembly: i) objects can linger in the community even after the species that produces it has been excluded; ii) more than one engineer can produce the same object, such that redundancy in object production increases nearly monotonically with

While the importance of engineered modifications having timescales longer than the engineering species has been emphasized previously (19), redundancy in those modifications has not (56). We argue that redundancy may be an important component of highly engineered systems, and particularly relevant when there exists a positive feedback between the effects of engineers on their success (29).

Adaptive radiation may lead to increased engineering redundancy over evolutionary time, and this may feed back to influence the radiation. The vast majority of contemporary ecosystem engineering case studies focus on single taxa, such that redundant engineers appear rare (56). If, for example, we consider longer timescales these dynamics likely facilitated the global changes induced by cyanobacteria in the Proterozoic (20). On shorter timescales, diverse sessile epifauna on shelled gravels in shallow marine environments are facilitated by the engineering efforts of their ancestors (57). In the microbiome, redundant engineering may be very common due to the influence of horizontal gene transfer in structuring metabolite production (58). In these systems, redundancy in producing these shared metabolitic resources may play a key role in community structure and dynamics (34, 35).

We find that increasing engineering has significant consequences on stability, however the effect of engineering is dependent on the frequency of service interactions within the community. Here, we measure stability of the community by i) the rate of extinction and ii) species persistence, or the proportion of assembly time each species was present in the community. Both measures were averaged over each species within the community across assembly time. When service interactions are absent, we find that increasing engineering both lowers extinction rates and increases persistence (Fig. 4). Greater numbers of engineered objects/species (higher η) means that more species can be trophically linked to objects. Because objects can linger in the community following the extinction of the engineer, their presence lowers the risk of secondary extinctions, facilitating stability. When most species are engineers ($\eta = 2$), the probability that a single object has two or more engineers is higher. This added redundancy means that the disappearance of a single engineer has a lower impact on the community, further increasing stability.

Increasing the frequency of service interactions increases both mutualisms as well as service interactions between species and engineered objects. While an example of the former is an Acacia spp. serviced by Acacia ants (Pseudomyrmex spp.) (59, 60), an example of the later is the freshwater habitat provided to invertebrates by the recently discovered rock-boring teredinid shipworm (Lithoredo abatanica) (61). In our framework, service interactions are less flexible than trophic interactions: while just a single trophic interaction is required to avoid extinction, all service interactions must be realized. In systems with higher frequencies of service interactions, extinction rates increase with engineering and then decline (Fig 4a). In contrast, persistence increases with engineering but at a slower rate compared to systems without service interactions.

The nonlinear effect of engineering on mean extinction rates results from two competing forces. When there are few engineers in the community, engineered objects are typically unique to the engineer. When service interac-

Fig. 4. A. Extinction rate and B. species persistence for communities with increasing frequencies of service interactions and average number of objects made per species η

tions are common, the presence of a few engineers reduces stability because there are more dependencies between species and objects that must be maintained. However if engineering continues to increase, greater dependencies are offset by increased redundancy. If engineers and the objects they create are redundant, service interactions can be maintained even when engineers go extinct. In contrast, species persistence is not strongly penalized by the lack of engineering redundancy 4b), however we observe that the beneficial effects of engineering is reduced.

Together, the results of our model point to the importance of considering diverse interactions both between species and as mediated through changes to the environment via engineering. We suggest that including the effects of engineers, either explicitly as we have done here, or otherwise, is vital for understanding the inter-dependencies that define ecological systems. As past ecosystems have fundamentally altered the landscape on which contemporary communities interact, future ecosystems will be defined by the influence of ecosystem engineers today. Understanding their role is thus tantamount to understanding our own.

Materials and Methods

We model an ecological system with a network where nodes represent ecological entities such as populations of species and or the presence of inanimate objects affecting species such as (examples). Following Pilai et al. (37), we do not track the abundances of entities but only track their presence or absence. The links of the network represent interactions between pairs of entities (x,y). We

distinguish three types of such interactions: x eats y, x needs y to be present, x makes object y.

The model is initialized by creating S species and $O = \eta S$ objects, such that N = S + O is the total number of entities and η is the number of objects per species in the system. For each pair of species (x,y) there is a probability p_e that x eats y and probability p_n that x needs y. For each pair of species x and object o, there is a probability q_e that x eats o and a probability q_n that species x needs object o.. Additionally, each species makes a number of objects that is drawn from a Poisson distribution with mean $\mu = \eta e(e-1)^{-1}$ where e is Euler's number. Once the number of objects per species is determined, each object is assigned to a species independently. This means that there multiple species may make the same object, and that may be some objects that are not made by any species.

In addition to interactions with ecosystem entities, there can be interactions with a basal resource, which is always present. The first species always eats this resource, such that there is always a primary producer in the pool. Other species eat the basal resource with probability p_e .

We then consider the assembly of a community which at any time will contain a subset of entities in the pool and always the basal resource. In time, the entities in the community are updated following a set of rules. A species from the pool can colonize the community if the following conditions are met: 1) all entities that a species needs are present in the community, and 2) at least one entity that a species eats is present in the community. If a colonization event is possible, it occurs stochastically in time with

An established species is at risk of extinction if it is not the strongest competitor at least one of its resources that it eats. We compute the competitive strength of species i as

$$\sigma_i = c_n n_i - c_e e_i - c_v v_i, \tag{1}$$

where n_i is the number of entities that species i needs, e_i is the number of entities from the pool that species i can eat, and v_i is the number of species in the community that eat species i. This captures the ecological intuition that mutualisms provide a fitness benefit, specialists are stronger competitors than generalists, and many predators entail an energetic cost. The coefficients $c_{\mathrm{n}},\ c_{\mathrm{e}},\ c_{\mathrm{v}}$ describe the relative effects of these contributions to competitive strength. In the following, we use the values $c_{\rm n} =$ π , $c_{\rm e} = \sqrt{2}$, $c_{\rm v} = 1$, such that the competitive benefit of adding an additional mutualism is greater than the detriment incurred by adding another prey or predator. A species at risk of extinction leaves the community stochastically in time at rate r_e .

An object is present in the community whenever at least one species that makes the object is present. If a species that makes an object colonizes a community, the object is created immediately, however objects may persist for some time after the last species that makes the object goes extinct. Any object that has lost all of its makers disappears stochastically in time at rate r_o .

The model described here can be simulated efficiently with a event-driven simulation utilizing a Gillespie algorithm. In these types of simulations, one computes the rates r_j of all possible events j in a given step. One then selects the time at which the next event happens by drawing a random number from an exponential distribution with mean $1/\sum_{j} r_{j}$. At this time, an event occurs that is randomly selected from the set of possible events such that the probability of event a is $r_a/\sum_j r_j$. Then the effect of the event is realized and the list of possible events is updated for the next step. This algorithm is known to offer a much better approximation to the true stochastic continuous time process than a simulation in discrete time steps, while providing a much higher numerical efficiency (62).

- 1. Dunne JA, Williams RJ, Martinez ND (2002) Food-web structure and network theory: the role of connectance and size. Proc. Natl. Acad. Sci. USA 99(20):12917-12922.
- 2. Pascual M, Dunne J (2006) Ecological Networks: Linking Structure to Dynamics in Food Webs. (Oxford University Press, USA).
- 3. May RM (1972) Will a large complex system be stable? Nature 238(5364):413-414.
- Gross T. Levin SA. Dieckmann U (2009) Generalized Models Reveal Stabilizing Factors in Food Webs. Science 325(5941):747-750.
- 5. Allesina S, Tang S (2012) Stability criteria for complex ecosystems. Nature 483(7388):205-208.
- 6. Novak M, et al. (2011) Predicting community responses to perturbations in the face of imperfect knowledge and network complexity. Ecology 0:00.

- 7. Aufderheide H, Rudolf L, Gross T, Lafferty KD (2013) How to predict community responses to perturbations in the face of imperfect knowledge and network complexity Proc. Roy. Soc. B 280(1773):20132355-11873.
- 8. Novak M, et al. (2016) Characterizing Species Interactions to Understand Press Perturbations: What Is the Community Matrix? Annu. Rev. Ecol. Evol. Syst. 47(1):annurev-ecolsvs-032416-010215
- Lade SJ, Gross T (2011) Early warning signals for critical transitions: A generalized modeling approach. arXiv.
- Boettiger C, Hastings A (2012) Quantifying limits to detection of early warning for critical transitions. J. R. Soc. Interface 9(75):2527-2539.
- 11. Stouffer DB (2011) Compartmentalization increases food-web persistence. Proc. Natl. Acad. Sci. USA 108(9):3648-3652.
- Yeakel JD, et al. (2014) Collapse of an ecological network in Ancient Egypt. Proceedings of the National Academy of Sciences 111(40):14472-14477.
- Weiher E, Keddy P (2001) Ecological Assembly Rules: Perspectives, Advances, Retreats. (Cambridge University Press).
- 14. Kéfi S, Miele V, Wieters EA, Navarrete SA, Berlow EL (2016) How Structured Is the Entangled Bank? The Surprisingly Simple Organization of Multiplex Ecological Networks Leads to Increased Persistence and Resilience. PLoS Biol 14(8):e1002527
- 15. Pilosof S, Porter MA, Pascual M, Kéfi S (2017) The multilayer nature of ecological networks. Nature Ecology & Amp; Evolution 1:0101 EP -. Perspective
- 16. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69(3):373-386.
- 17. Olff H, et al. (2009) Parallel ecological networks in ecosystems. Philos. T. Roy. Soc. B 364(1524):1755.
- 18. Odling-Smee J, Erwin DH, Palkovacs EP, Feldman MW, Laland KN (2013) Niche construction theory: a practical guide for ecologists. Q Rev Biol 88(1):4-28
- Hastings A, et al. (2007) Ecosystem engineering in space and time. Ecol. Lett. 10(2):153-164.
- 20. Schirrmeister BE, de Vos JM, Antonelli A, Bagheri HC (2013) Evolution of multicellularity coincided with increased diversification of cyanobacteria and the great exidation event. Proceedings of the National Academy of Sciences 110(5):1791-1796.
- 21. Loladze I. Elser JJ (2011) The origins of the redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rrna ratio. Ecology Letters 14(3):244-250.
- Wright JP, Jones CG (2006) The Concept of Organisms as Ecosystem Engineers Ten Years On: Progress, Limitations, and Challenges. BioScience 56(3):203-209.
- 23. Haynes G (2012) Elephants (and extinct relatives) as earth-movers and ecosystem engineers. Geomorphology 157-158:99 - 107. Special Issue Zoogeomorphology and Ecosystem Engineering Proceedings of the 42nd Binghamton Symposium in Geomorphology, held 21-23 October 2011.
- 24. Pringle RM (2008) Elephants as agents of habitat creation for small vertebrates at the patch scale. Ecology 89(1):26-33.
- Reichman O, Seabloom EW (2002) The role of pocket gophers as subterranean ecosystem engineers. Trends in Ecology & Evolution 17(1):44 - 49.
- Moore JW (2006) Animal Ecosystem Engineers in Streams. BioScience 56(3):237-
- 27. Meyer ST, Leal IR, Tabarelli M, Wirth R (2011) Ecosystem engineering by leaf-cutting ants: nests of atta cephalotes drastically alter forest structure and microclimate. Ecological Entomology 36(1):14-24.
- Gurney WSC, Lawton JH (1996) The population dynamics of ecosystem engineers. Oikos 76(2):273-283.
- Cuddington K (2004) Invasive engineers. Ecol. Model.
- Wright JP, Jones CG (2004) Predicting effects of ecosystem engineers on patch-scale species richness from primary productivity. Ecology 85(8):2071-2081.
- 31. Krakauer DC, Page KM, Erwin DH (2009) Diversity, dilemmas, and monopolies of niche construction. Am. Nat. 173(1):26-40.
- 32. Laland KN, Odling-Smee FJ, Feldman MW (1999) Evolutionary consequences of niche construction and their implications for ecology. Proc. Natl. Acad. Sci. USA 96(18):10242-10247.
- Marshall CR, Quental TB (2016) The uncertain role of diversity dependence in species diversification and the need to incorporate time-varying carrying capacities. Philosophical Transactions of the Royal Society B: Biological Sciences 371(1691):20150217.
- 34. Kallus Y, Miller JH, Libby E (2017) Paradoxes in leaky microbial trade. Nat Commun 8(1):1361.
- Muscarella ME, O'Dwyer JP (2017) Ecological Insights from the Evolutionary History of Microbial Innovations. bioRxiv p. 220939.
- Getz WM (2011) Biomass transformation webs provide a unified approach to consumer-resource modelling. Ecol. Lett. 14(2):113-124.
- 37. Pillai P, Gonzalez A, Loreau M (2011) Metacommunity theory explains the emergence of food web complexity. PNAS 108(48):19293-19298.
- 38. Rohr RP, Saavedra S, Bascompte J (2014) On the structural stability of mutualistic systems. Science 345(6195):1253497-1253497.
- Piechnik DA, Lawler SP, Martinez ND (2008) Food-web assembly during a classic biogeographic study: species'"trophic breadth" corresponds to colonization order. Oikos.
- Williams RJ, Martinez ND (2000) Simple rules yield complex food webs. Nature 404(6774):180-183.
- 41. Turney S, Buddle CM (2016) Pyramids of species richness: the determinants and distribution of species diversity across trophic levels. Oikos 125(9):1224-1232.

- Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plantanimal mutualistic networks. Proc. Natl. Acad. Sci. USA 100(16):9383–9387.
- Valdovinos FS, et al. (2016) Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability. Ecol. Lett. 19(10):1277–1286.
- Guimarães Jr PR, Pires MM, Jordano P, Bascompte J, Thompson JN (2017) Indirect effects drive coevolution in mutualistic networks. Nature 18:586.
- Gilarranz LJ, Rayfield B, Liñán-Cembrano G, Bascompte J, Gonzalez A (2017) Effects of network modularity on the spread of perturbation impact in experimental metapopulations. Science 357(6347):199–201.
- Araújo MS, et al. (2010) Nested diets: a novel pattern of individual-level resource use. Oikos 119(1):81–88.
- Pires MM, Prado PI, Guimarães Jr PR (2011) Do Food Web Models Reproduce the Structure of Mutualistic Networks? PLoS ONE 6(11):e27280.
- Massol F, et al. (2011) Linking community and ecosystem dynamics through spatial ecology. *Ecol. Lett.* 14(3):313–323.
- Ponisio LC, et al. (2019) A network perspective for community assembly. Frontiers in Ecology and Evolution 7:103.
- Yeakel JD, Guimarães Jr PR, Bocherens H, Koch PL (2013) The impact of climate change on the structure of Pleistocene food webs across the mammoth steppe. *Proc. Roy. Soc. B* 280(1762):20130239–20130239.
- Bond WJ, Lawton JH, May RM (1994) Do mutualisms matter? assessing the impact of pollinator and disperser disruption on plant extinction. *Philosophical Transactions* of the Royal Society of London. Series B: Biological Sciences 344(1307):83–90.
- Colwell RK, Dunn RR, Harris NC (2012) Coextinction and Persistence of Dependent Species in a Changing World. http://dx.doi.org.proxy.lib.sfu.ca/10.1146/annurevecolsys-110411-160304 43(1):183–203.
- Dunn RR, Harris NC, Colwell RK, Koh LP, Sodhi NS (2009) The sixth mass coextinction: are most endangered species parasites and mutualists? Proceedings of the Royal Society B: Biological Sciences 276(1670):3037–3045.
- Ponisio LC, Gaiarsa MP, Kremen C (2017) Opportunistic attachment assembles plant–pollinator networks. *Ecology Letters* 20(10):1261–1272.
- Ramos-Jiliberto R, Valdovinos FS, Moisset de Espanés P, Flores JD (2012) Topological plasticity increases robustness of mutualistic networks. *Journal of Animal Ecology* 81(4):896–904.
- 56. Lawton JH (1994) What do species do in ecosystems? Oikos 71(3):367-374.
- Kidwell SM (1986) Taphonomic feedback in miocene assemblages; testing the role of dead hardparts in benthic communities. *Palaios* 1(3):239–255.
- Polz MF, Alm EJ, Hanage WP (2013) Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends in Genetics 29(3):170 – 175.
- Janzen DH (1966) Coevolution of mutualism between ants and acacias in central america. Evolution 20(3):249–275.
- Guimarães Jr PR, Rico-Gray V, Furtado dos Reis S, Thompson JN (2006) Asymmetries in specialization in ant-plant mutualistic networks. Proc. Roy. Soc. B 273(1597):2041.
- Shipway JR, et al. (2019) A rock-boring and rock-ingesting freshwater bivalve (shipworm) from the philippines. *Proceedings of the Royal Society B: Biological Sciences* 286(1905):20190434.
- Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25):2340–2361.