Answers and Comments¹

- **1. a)** The cone of feasible directions is $\{(x,y): x \leq y < \frac{1}{2}x\}$ (def. on p. 235).
 - **b)** The cone of possible gradients is $\{(x,y): y \le -x, y \le -2x\}$. (-2,-3) and $(-3,\pm 2)$ are possible gradients (Lemma 1, p. 235).
 - c) Set y=x to minimize the first term. Then within the set $0 \le x^4 + x^{2014} \le 2$. Clearly there exists $0 \le x_0 \le 1$ such that $x_0^4 + x_0^{2014} = 1$ which minimizes the second term. So the minimum point $(x_0, x_0) \in S$ exists (and min=0).
- **2. a)** No. The second equation in the convex combination $-2\lambda_1 + 2\lambda_2 + \lambda_3 \lambda_4 = 6$ is impossible since $-2\lambda_1 + 2\lambda_2 + \lambda_3 \lambda_4 \le 2\lambda_2 + \lambda_3 < 2 + 1 = 3 < 6$.
 - b) It is *constrained* nonlinear optimization due to $x \ge 0$. Analytical methods: KKT, duality (no gap by convexity), and numerical methods: penalty, barrier, are possible. One more trick is to use 3a) that gives min ||Ax b|| = 0.
- **3.** a) The set is nonempty. A basic feasible solution is $(0,2,3,1)^T$.
 - b) Set $c = (1, 0, 0, -1)^T$. The dual problem is $\max b^T y$ subject to $A^T y \leq c$. The CSP gives equality in the 1st, 3^d and 4th rows. Solve it: $y = (0, -1, -1)^T$. The inequality in the 2^d row is OK, hence, a feasible point for the dual. Finally $b^T y = c^T x = -7$ shows no duality gap, hence, the optimal points.
- **4. a)** It follows immediately from the definition of convex function that for h = f + g

$$h(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y) + \lambda g(x) + (1-\lambda)g(y) = \lambda h(x) + (1-\lambda)h(y),$$

which proves convexity of h.

- **b)** By Lemma 2(2), p. 211, $t = \max\{f, 0\} \ge 0$ convex $\Rightarrow g = |t| = t$ convex too. $h = \max\{|f|, 0\} = |f|$. With y = z = 0 the function $|f(x, 0, 0)| = |e^x 1|$ is not convex (e.g. can be seen by the graph) $\Rightarrow h$ is not convex.
- **5.** The set is compact \Rightarrow min exists. No CQ points. KKT points: many stationary and other KKT points that give f = 0 and two KKT points (1, -1, 2), (-1, 1, 2) that give f = -2. The last two are the minimum points.
- **6. a)** The dual function is $\Theta(u) = 4u \frac{1}{4(1-u)}$ for $0 \le u < 1$ (otherwise $-\infty$). The optimal $\bar{u} = 3/4$ and $\Theta(3/4) = 2$. Since $f(0, -2) = 2 = \Theta(3/4)$, there is no duality gap \Rightarrow the minimum point is (0, -2).
 - b) See the book, Ex 7, p. 16 (plus Th. 13, p. 216 and Corollary 1, p. 215).

¹For re-exams only answers are provided.