IB Analysis and Approaches HL2 Inverse Trigonometric Functions

Definition & Purpose

Triangle

Suppose we have a right triangle with an angle θ and sides of length a, b, and c as shown below.

In regular trigonometry:

$$\sin(\theta) = \frac{b}{c},$$

$$\cos(\theta) = \frac{a}{c},$$

$$\tan(\theta) = \frac{b}{a}.$$

Trigonometric Function	Domain	Range
$\arcsin(x)$		
$\arccos(x)$		
$\arctan(x)$		

Domain and Range Visualization

Example Problems

1. Satellite Communication: A satellite orbits the Earth, and the angle between the line from the satellite to a ground station and the line from the satellite to the Earth's center is $arcsin(\frac{2}{3})$. If the distance from the satellite to the Earth's center is 10,000 km, what is the distance from the satellite to the ground station?

Key Takeaways

Inverse Trigonometric Functions

- $\arcsin(x)$: Inverse of $\sin(x)$. Domain: $-1 \le x \le 1$, Range: $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.
- $\arccos(x)$: Inverse of $\cos(x)$. Domain: $-1 \le x \le 1$, Range: $0 \le y \le \pi$.
- $\arctan(x)$: Inverse of $\tan(x)$. Domain: $-\infty < x < \infty$, Range: $-\frac{\pi}{2} < y < \frac{\pi}{2}$.