			**
1	solution 1993 (paper 2)	Mark	s Remarks (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1.	For $n = 1$, L.H.S. = 2		
	R.H.S. = $\frac{1}{12}$ × 2 × 3 × 4 = 2		
,	The statement is true for $n = 1$	1	
	Assume $1^2 \times 2 + 2^2 \times 3 + \dots + k^2(k+1) =$	1	
	$\frac{k(k+1)(k+2)(3k+1)}{12}$	1	
	(for some positive integer k)		•
	Then $1^2 \times 2 + 2^2 \times 3 + \dots + k^2(k+1) + (k+1)^2$ (A)	(+ 2)	-
	$= \frac{k(k+1)(k+2)(3k+1)}{12} + (k+1)^{2} (k+2)$	1	
	$= \frac{(k+1)(k+2)}{12} \left\{ k(3k+1) + 12(k+1) \right\}$		
	$= \frac{(k+1)(k+2)(3k^2+13k+12)}{12}$		
	$= \frac{(k+1)(k+2)(k+3)[3(k+1)+1]}{12}$	1	
	The statement is also true for $n = k + 1$		
	(if it is true for $n = k$)		
	(By the principle of mathematical induction)		
•	the statement is true for all +ve integers n .	1_5	
• (a) $\sqrt{3}\cos x - \sin x$		OR
	$= 2\left(\frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x\right)$		$r\cos\alpha = \sqrt{3}$ $r\sin\alpha = 1$
	$= 2\cos(x + \frac{\pi}{6})$	1A+1A	$x = 2, \alpha = \frac{\pi}{6} \approx 30^{\circ}$
	$2\cos(x + \frac{\pi}{6}) = 1$		
	$x + \frac{\pi}{6} = 2n\pi \pm \frac{\pi}{3}$	1M+1A	1M for $(2n\pi \pm \alpha)$ 1A for $\frac{\pi}{3}$
	$x = 2n\pi + \frac{\pi}{6} \text{or} 2n\pi - \frac{\pi}{2}$	1A	no mark if degree is used
		5	
		1 1	

	····		1011/	-11
	Sol	ution	Marks	Remarks (
•	(a)	$(1+ 4x + x^2)^n = [1 + x(4 + x)]^n$		
		$= [1 + x(4 + x)]^n$	1M	For separating into 2 terms
		$= 1 + n x(4 + x) + \frac{n(n-1)}{2}x^{2}(4 + x)^{2} + \dots$	1A	Accept ${}_{n}C_{r}$ notation (pp - 1) for omitting dots
		$\therefore a = 4n$ $b = n + 8n(n - 1)$	1A	
		$=8n^2-7n$	1A	
	(b)	n = 25	1A	
		b = 165	1A 6	
		slope of the line be m		
	$\frac{m-}{1}$	$\frac{\frac{1}{3}}{\frac{m}{3}} = \pm 1$	1A+1A	$\left \frac{m-\frac{1}{3}}{1+\frac{m}{3}}\right =1 \left(\frac{2}{3}\right)^{\frac{1}{3}}$
	m =	2 or $-\frac{1}{2}$	1A+1A	
	Equat	ion of lines are		
	$\frac{y}{x}$	$\frac{3}{4} = 2$ i.e. $y = 2x - 5$		2x - y - 5 = 0
	<u>y -</u>	$\frac{3}{4} = -\frac{1}{2} \qquad y = -\frac{x}{2} + 5$	<u>1A+1A</u>	x + 2y - 10 = 0
			_6	
		rnative solution		
	Let	the angle of inclination of $y = \frac{1}{3}x$ be θ		
•	tané	$rac{1}{3}$		
	Angl	es of inclination of the two lines = $\theta \pm \frac{\pi}{4}$	1M+1M	
	Slop	$e m = \tan(\theta + \frac{\pi}{4}) = \frac{\tan\theta + \tan\frac{\pi}{4}}{1 - \tan\theta \tan\frac{\pi}{4}} = 2$	}1A+1A	
	or i	$\pi = \tan(\theta - \frac{\pi}{4}) = \frac{\tan\theta - \tan\frac{\pi}{4}}{1 + \tan\theta \tan\frac{\pi}{4}} = -\frac{1}{2}$]	
	1	tion of the lines are $2x - 5 \text{and} y = \frac{-x}{2} + 5$	1A+1A	
	<u> </u>			

RESTRICTED 內部文件

	1 3 141-74	- # A
Solution	Marks	Remarks (\)
$\left 1+\frac{m}{3}\right =\left m-\frac{1}{3}\right $	2A	
$1 + \frac{2}{3}m + \frac{m^2}{9} = m^2 - \frac{2}{3}m + \frac{1}{9}$		
$2m^2 - 3m - 2 = 0$		
$m = 2 \text{ or } -\frac{1}{2}$	2A	
Equation of lines are		
$y = 2x - 5$ and $y = \frac{1}{2}x + 5$	1A+1A	Ma.
5. (a) $\sin x = \cos x$,	
tanx = 1		
$x = \frac{\pi}{4} , \frac{5\pi}{4}$	1A	
The coordinates of A and B are		•
$(\frac{\pi}{4}, \frac{\sqrt{2}}{2})$ and $(\frac{5\pi}{4}, \frac{-\sqrt{2}}{2})$ respectively	1A	Do not accept degrees
(b) Area = $\int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (\sin x - \cos x) dx$	1M+1A	1A for ∫ (sinx - cosx)dx
$= \left[-\cos x - \sin x\right] \frac{5\pi}{\frac{4}{4}}$	1A	1M for limits
$= 2\sqrt{2}$	1 <u>N</u>	

	- KLOTKICTED P	VAD C	P.5
·	Solution	Marks	Remarks ()
(a) $\frac{dy}{dx} = 3x^2 - 6x - 1$	1A	$V = \int (3v^2 - 6v - 1) dv$
	$y = x^3 - 3x^2 - x + k.$	1A	$y = \int (3x^2 - 6x - 1) dx$
	Put $x = 1$, $y = 0$. $k = 3$		withhold 1A for giving $x^3 - 3x^2 - x + 3 = 0$
	$\therefore y = x^3 - 3x^2 - x + 3$		X - 3X - X + 3 = 0
(b) At $x = 0$, $y = 3$	1A	
	$\frac{dy}{dx} = -1$	1A	marked independently
	$\therefore \text{ Equation of tangent is } y = -x + 3$	1A 7	
(a) $\cos \angle VBA = \frac{6}{24} = \frac{1}{4}$	1 M	
•	LVBA = 75.5° (75,52° Normak)	1A	or 1.32 radian
	$AD = 12 \sin \angle VBA$		V
	= 11.6 cm (11,619 Noma, k)	1A	
()	The angle between the two planes is $\angle ADC$	1A	24 cm
	By symmetry, $CD = AD$	1A	/ 1 \
	$\sin \frac{\angle ADC}{2} = \frac{\frac{1}{2}AC}{AD}$	1м .	C
	= 6 11.619		$A \xrightarrow{12 \text{ cm}} B$
	LADC = 62.2° (62,3° No mark)	1A	or 1.09 radian
Al	ternative solution		7
():	The angle between the two planes is ZADC	1A	
	By symmetry, $CD = AD$	1A	
	$\cos \angle ADC = \frac{AD^2 + CD^2 - AC^2}{2(AD)(CD)}$	1M	
	$=\frac{(11.619)^2 + (11.619)^2 - 12^2}{2(11.619)(11.619)}$		
	∠ ADC = 62.2°	1A	
<u></u>			
		7	

		14	HIV	
	Solu	ution	Marks	Remarks (\(\)
8.	(a)	$\cos x = \frac{1 - t^2}{1 + t^2}$	1A	
		$\sin x = \frac{2t}{1+t^2}$	1A	
		$a\cos x + b\sin x = c$		
	·	$a(\frac{1-t^2}{1+t^2}) + b(\frac{2t}{1+t^2}) = c$	1M	
		$a(1-t^2) + 2bt = c(1+t^2)$		
		$(a + c)t^2 - 2bt + (c - a) = 0 \dots (*)$	1	2
		If E has solutions in x , (*) has solutions in	4	
		$(2b)^2 - 4(a + c) (c - a) \ge 0$	1M	
-		$b^2 - (c^2 - a^2) \ge 0$		
		$a^2 + b^2 \ge c^2$	<u>1</u> _6	,
	(b)	(i) Put $a = 5$, $b = 6$, $c = 7$ into (*)	1M	
		$12t^2 - 12t + 2 = 0$	1A	
		The roots are $\tan \frac{x_1}{2}$, $\tan \frac{x_2}{2}$		·
		$\therefore \tan \frac{x_1}{2} + \tan \frac{x_2}{2} = 1$	1M	or $\tan \frac{x_1}{2} = \frac{3 + \sqrt{3}}{6}$
		$\tan\frac{x_1}{2}\tan\frac{x_2}{2}=\frac{1}{6}$	1M	$\tan \frac{x_2}{2} = \frac{3 - \sqrt{3}}{6}$
		$\tan(\frac{x_1 + x_2}{2})$		
_		$= \frac{\tan\frac{x_1}{2} + \tan\frac{x_2}{2}}{1 - \tan\frac{x_1}{2} \tan\frac{x_2}{2}}$	1A	
at.		$= \frac{1}{1 - \frac{1}{6}} = \frac{6}{5}$	17	
		(ii) $tanx_1 tanx_2$		
		$= \frac{2 \tan \frac{x_1}{2}}{1 - \tan^2 \frac{x_1}{2}} \cdot \frac{2 \tan \frac{x_2}{2}}{1 - \tan^2 \frac{x_2}{2}}$	1A	
		$= \frac{x_1}{2} \tan \frac{x_2}{2}$	1M	For expressing the denominator in terms of sum and product.
		$1 - (\tan \frac{x_1}{2} + \tan \frac{x_2}{2})^2 + 2\tan \frac{x_1}{2} \tan \frac{x_2}{2} + (\tan \frac{x_2}{2})^2$	$\frac{1}{2}$ tan $\frac{x_2}{2}$	2
		$= \frac{4(\frac{1}{6})}{1-1+2(\frac{1}{6})+(\frac{1}{6})^2}$		
		= 24	2A 10	

		VESTRICTED N	入る。	C/F P.7	
	Sol	ution	Marks	Remarks (\)	
•	(a)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\sin^{m-1}x\cos^{n+1}x\right)$			
		$= (m-1) \sin^{m-2} x \cos^{n+2} x - (n+1) \sin^{m} x \cos^{n} x$	1A+1A 2		
	(b)	Integrating with respect to \varkappa ,			
		$[\sin^{m-1}x\cos^{n+1}x]_0^{\pi/2} = (m-1) \int_0^{\pi/2} \sin^{m-2}x\cos^{n+2}x dx$			
		$-(n+1)\int_0^{\pi/2}\sin^mx\cos^nxdx$	1M+1A	(pp - 1) for omitting limits	
		$0 = (m-1) \int_0^{\pi/2} \sin^{m-2} x \cos^{n+2} x dx$			
		$-(n+1)\int_0^{\pi/2}\sin^m x\cos^n x\mathrm{d}x$	1A	For L.H.S. = 0	
	,	$(n+1) \int_0^{\pi/2} \sin^m x \cos^n x dx =$			
		$(m-1)$ $\int_0^{\pi/2} \sin^{m-2} x \cos^n x (1 - \sin^2 x) dx$	1M	For rewriting $\cos^{n+2}x = \cos^n x (1 - \sin^2 x)$	
		$(n+1+m-1)$ $\int_0^{\pi/2} \sin^m x \cos^n x dx =$		Jan A	
		$(m-1) \int_0^{\pi/2} \sin^{m-2} x \cos^n x \mathrm{d}x$		•	
		$\int_0^{\pi/2} \sin^m x \cos^n x dx = \frac{m-1}{m+n} \int_0^{\pi/2} \sin^{m-2} x \cos^n x dx$	1		
			_5		
	(c)	Put $x = \frac{\pi}{2} - y$, $dx = -dy$			
		$\int_0^{\pi/2} \sin^n x \cos^m x dx = \int_{\pi/2}^0 \sin^n \left(\frac{\pi}{2} - y \right) \cos^m \left(\frac{\pi}{2} - y \right) \left(-dy \right)$	1A		
		$= \int_0^{\pi/2} \cos^n y \sin^m y \mathrm{d}y$			
		$= \int_0^{\pi/2} \sin^m x \cos^n x \mathrm{d}x$	1A		
		$= \frac{m-1}{m+n} \int_{\pi/2}^{0} \sin^{m-2}(\frac{\pi}{2} - y) \cos^{n}(\frac{\pi}{2} - y)$	()(-dy)		
		$= \frac{m-1}{m+n} \int_0^{\pi/2} \cos^{m-2} y \sin^n y \mathrm{d}y$		•	
		$= \frac{m-1}{m+n} \int_0^{\pi/2} \sin^n x \cos^{m-2} x \mathrm{d}x$	1		

RESTRICTED 內部文件

Sol	Solution		Remarks $ \langle \langle \rangle \rangle $
	Alternative solution		
	Put $x = \frac{\pi}{2} - y$, $dx = -dy$		
	The identity in (b) becomes		
	$\int_{\pi/2}^{0} \sin^{m}\left(\frac{\pi}{2} - y\right) \cos^{n}\left(\frac{\pi}{2} - y\right) \left(-dy\right)$		
	$= \frac{m-1}{m+n} \int_{\pi/2}^{0} \sin^{m-2}(\frac{\pi}{2} - y) \cos^{n}(\frac{\pi}{2} - y) (-dy)$	1A+1A	
	$\int_0^{\pi/2} \cos^m y \sin^n y dy = \frac{m-1}{m+n} \int_0^{\pi/2} \cos^{m-2} y \sin^n y dy$	1A	
	$\int_0^{\pi/2} \sin^n x \cos^m x dx = \frac{m-1}{m+n} \int_0^{\pi/2} \sin^n x \cos^{m-2} x dx$	1	
		4	
(d)	$\int_0^{\pi/2} \sin^4 x \cos^6 x \mathrm{d}x$		
	$= \frac{4-1}{4+6} \int_0^{\frac{\pi}{2}} \sin^2 x \cos^6 x dx \text{ (using (b))}$	1M	For using (b)
	$= \frac{3}{10} \cdot \frac{2-1}{2+6} \int_0^{\frac{\pi}{2}} \sin^0 x \cos^6 x dx \text{ (using (b))}$		
	$= \frac{3}{10} \cdot \frac{1}{8} \cdot \frac{6-1}{6} \int_0^{\frac{\pi}{2}} \cos^4 x_i / (u \sin g (c))$	1M	For using (c)
	$= \frac{3}{10} \cdot \frac{1}{8} \cdot \frac{5}{6} \cdot \frac{4-1}{4} \int_0^{\frac{\pi}{2}} \cos^2 x dx \text{ (using (c))}$		
	$= \frac{3}{10} \cdot \frac{1}{8} \cdot \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{2-1}{2} \int_0^{\frac{\pi}{2}} \cos^0 x dx \text{ (using (c))}$	1M	For evaluating the last integral, accept stopping at
			$\int \cos^2 x dx \int \sin^2 x dx$
	3 1 5 3 1 27		$\int \sin^0 x dx$ or $\int \cos^2 x \sin^2 x dx$
	$= \frac{3}{10} \cdot \frac{1}{8} \cdot \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}$		
	$= \frac{3\pi}{512}$	2A _5	
	· ·	1	

		- ILDINICIED	入こので	-1T
	Solu	ution	Marks	Remarks (\(\frac{1}{3}\)
10.	(a)	$\frac{y-s^2}{x-2s} = \frac{t^2-s^2}{2t-2s}$	1A	
		$2y - 2s^2 = (t + s)x - 2s(t + s)$		
		$y = \frac{s+t}{2}x - st$	<u>1A</u>	(s+t)x-2y-2st=0
			2	
	(p)	Put $t = s$	1A	
		Equation of tangent is $y = sx - s^2$	1A	
		Alternative solutions		
		Using the formula $\frac{1}{2}(y + y_1) = \frac{1}{4}xx_1$		
***	•	Equation of tangent is $\frac{1}{2}(y+s^2) = \frac{1}{4}x(2s)$	1A	
		$y = sx - s^2$	1A	
		$\frac{dy}{dx} = \frac{1}{2}x$ At $(2s, s^2)$, $\frac{dy}{dx} = s$ Equation of tangent is	1A	
	•	$\frac{y-s^2}{x-2s} = s$ $y = sx - s^2$	1A	
	.(c)	(i) Substitute (0, 1) into $y = \frac{s+t}{2}x - st$		
		$1 = \frac{s + t}{2}(0) - st$		
		st = -1	1	
		(ii) slope of $PS = S$		
		slope of $PT = t$	}1A	
		From (i), $st = -1$ $\therefore PS$ and PT are \bot , angle b th them = $\frac{\pi}{2}$	1A 1A	Accept PS 1 PT
		Alternative solution		Ī
		Let $ heta$ be the angle between PS and PT		
		$\tan\theta = \frac{m_{PS} - m_{PT}}{1 + m_{PS}m_{PT}} = \frac{s - t}{1 + st}$	1A	
	4	∵st = -1	1A	
		$\therefore \theta = \frac{\pi}{2}$	1A A	ccept <i>PS</i> PT

RESTRICTED 内部文件

*	MESTINIC IED P	フロンへ	-TT-
Sol	ution	Marks	Remarks (\langle \langle \langle \langle
	(iii) $\begin{cases} y = sx - s^2 \\ y = tx - t^2 \end{cases}$	1A	Equation of PT
,	Eliminating x, $\frac{y+s^2}{s} = \frac{y+t^2}{t}$	1 M	For solving y
	$ty + s^2t = sy + st^2$	į	
	(t-s)y=st(t-s)		
	$y = st = -1 (\because s \neq t)$ $\therefore P \text{ lies on the line } y + 1 = 0$	1	
	Alternative solution $cy = sx - s^2 \dots \dots (1)$		
	Alternative solution $\begin{cases} y = sx - s^2 \dots (1) \\ y = tx - t^2 \dots (2) \end{cases}$.1A	Equation of PT
-	Since $st = -1$, (2) becomes $y = \frac{-1}{s}x - \frac{1}{s^2}$		
	$s^{2}y = -sx - 1 \dots$ (1) + (3) : (1 + s ²)y = -(1 + s ²)	(3) 1M	For solving y
	y = -1	1	Tot bolving y
	$\therefore P$ lies on the line $y + 1 = 0$	1	
	(iv) Let (x, y) be a point on the locus.		
	$\begin{cases} x = s + t \\ y = \frac{1}{2}(s^2 + t^2) \end{cases}$	1A	·
	$\int y = \frac{1}{2} (s^2 + t^2)$		
	$2y = s^2 + t^2$		
	$= (s + t)^2 - 2st$	1M	1M for completing square
_	$2y = x^2 + 2$	1M+1A	1M for using $st = -1$
	\therefore The equation of the locus is $2y = x^2 +$	2	
	Alternative solution		
	$\begin{cases} x = s + t \\ y = \frac{1}{2}(s^2 + t^2) \end{cases}$	1A	
	Since st = -1		
	$\begin{cases} x = s - \frac{1}{s} \\ y = \frac{1}{2}(s^2 + \frac{1}{s^2}) \end{cases}$	1M	For using st = -1
	$x^2 = \left(s - \frac{1}{s}\right)^2$	1M	For completing square
	$= (s^{2} + \frac{1}{s^{2}}) - 2$ $x^{2} = 2y - 2$ $\therefore \text{ The equation of the locus is } x^{2} = 2y - 2$	1A	
		12	

RESTRICTED 內部文件

		ILD INCILD	くこれに	-1T
	Sol	ution	Marks	Remarks \\\
		, i		
11.	(a)	$AB = \int (0-3)^2 + (2-\frac{3}{4})^2$		
		$=\frac{13}{\lambda}$	1A	
	• •	•		
		Radius of $C_2 = \frac{3}{4}$	1A	
		Radius of C_1 - radius of C_2	1M	•
		$=4-\frac{3}{4}=\frac{13}{4}=AB$		
		\therefore c_1 and c_2 touch each other.	4	
		,		
	(b)	$PA = \sqrt{s^2 + (t - 2)^2}$ If the girale touches the wavis and C	lA.	
		If the circle touches the x-axis and C_1 ,		
		$\sqrt{s^2 + (t-2)^2} = 4 - t$	1M	no mark for t - 4
		$s^{2} + (t - 2)^{2} = (4 - t)^{2}$ $4t = 12 - s^{2}$		
		40 - 12 - 5	3	
		2 3 2		
	(C)	$PB = \sqrt{(s-3)^2 + (t-\frac{3}{4})^2}$	1A	
		If the circle touches the x-axis and C_2 ,		
		$(s-3)^2+(t-\frac{3}{4})^2=t+\frac{3}{4}$	1M	
		$(s-3)^2 + (t-\frac{3}{4})^2 = (t+\frac{3}{4})^2$		
		$3t = (s-3)^2$	1	
	(d)	44 12	3	
	(u)	$\begin{cases} 4t = 12 - s^2 \\ 3t = (s - 3)^2 \end{cases}$		
		Eliminating t,		
		$\frac{12 - s^2}{4} = \frac{(s - 3)^2}{3}$		
		$\frac{-4}{4} = \frac{3}{3}$ $36 - 3s^2 = 4s^2 - 24s + 36$	1M	or eliminating s
		$7s^2 - 24s = 0$		
		s = 0, $t = 3$	1A	·
		or $s = \frac{24}{7}$, $t = \frac{3}{40}$	1A 1A	
		∴ The equations of the 2 circles are	, An	
		$x^2 + (y - 3)^2 = 3^2$	1A	
		and $(x - \frac{24}{7})^2 + (y - \frac{3}{49})^2 = (\frac{3}{49})^2$	1A	
		7 ' '49' '49'	_6	
			l l	

RESTRICTED 内部文件

	Solu	tion NESINICIED P	Marks	Remarks (()
	3014	(0.101)	Hazks	
12.	(a)	Capacity = $\int_0^{\frac{\pi}{2}} \pi x^2 dy$	1A+1A	1A for $\int \pi x^2 dy$ 1A if others correct
		$= \int_0^{\frac{\pi}{2}} \pi k^2 \sin^2 y \mathrm{d}y$	1м	Substituting x = ksiny
		$= nk^2 \int_0^{\frac{\pi}{2}} \frac{1}{2} (1 - \cos 2y) dy$	114	For $\sin^2 y = \frac{1}{2}(1 - \cos 2y)$
		$= \pi k^2 \left[\frac{1}{2} y - \frac{1}{4} \sin 2y \right]_0^{\frac{\pi}{2}}$	1A	45
		$= \frac{1}{4}k^2\pi^2$	<u>1</u> 6	
	(b)	(i) Put $x = 4$, $y = \frac{\pi}{2}$ in $x = k \sin y$		
		k = 4	1A	
		$\therefore \text{Volume of water} = \frac{1}{4} (4)^2 \pi^2 = 4\pi^2$	1A	
		(ii) Let V be the volume of water remaining after t minutes		*
		$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{t}} = -(\pi + 2\mathbf{t})$	1A	
		$V = -(\pi t + t^2) + c$	1A	and and
		After $c = 0$, $V = 4\pi^2$, $\therefore c = 4\pi^2$	1M+1A	1 2 V
		$\therefore V = 4\pi^2 - (\pi t + t^2)$		
		Alternative solution		
		Volume remaining, $V = 4\pi^2 - \int_0^t (\pi + 2t) dt$	1M+1A	
		$= 4\pi^2 - [\pi t + t^2]_0^t$	1A	
		$= 4\pi^2 - (\pi t + t^2)$	1A	
		Let V be the volume of water pumped away		
		$\frac{\mathrm{d}V}{\mathrm{d}t} = \pi + 2t$	1A	
		$V = \pi t + t^2 + c$	1A	h. r. fr
		At $t = 0$, $V = 0$ $\therefore c = 0$	1M+1A	1 1
		$\therefore V = \pi t + t^2$,	Police on market
		Volume pumped away = $\int_0^t (\pi + 2t) dt$	1M+1A	
		$= \left[\pi t + t^2\right]_0^t$	1A	
,		$= \pi t + t^2$	1A	
		RESTRICTED内	当的之	5件
		I Chan D I A C I I Am to I	a 141° 🖍	~

Solution	Marks	Remarks ///	
Put $V = 2\pi^2$	1M	(1)	
$t^2 + \pi t - 2\pi^2 = 0$			
$t = \pi$ [or -2π (rejected)]	1A	(1/2/2 2/2)	
. Time required to pump out half of the water $= \pi$ (minutes)		(1/27/2 + 427) - 1	
Put $V = 0$,			
$t^2 + \pi t - 4\pi^2 = 0$			
$t = \frac{-\pi + \sqrt{17}\pi}{2} \text{[or } \frac{-\pi - \sqrt{17}\pi}{2} \text{(rejected)}$	1A		
Time required to pump out the remaining water		**************************************	
$= (\frac{\sqrt{17} - 1}{2})\pi - \pi$			
$= \left(\frac{\sqrt{17} - 3}{2}\right)\pi \text{(minutes)}$	1A		
2	10		