Graph Algorithms

Peter Lammich

27. Januar 2020

Outline

- 1 Directed Graphs
 Formal Definition
 Implementation
 - Graph Traversal Algorithms Generic Graph Traversal DFS and BFS Topological Sorting Shortest Paths
- 3 Shortest Path in Weighted Graphs Single-Source Shortest Path

Directed Graphs

• A directed graph is a set of nodes V and edges $E \subseteq V \times V$

$$V = \{1, 2, \dots, 9\}$$

$$E = \{(1, 2), (1, 3), (2, 4), (2, 5), (3, 6), (3, 7), (4, 8), (4, 9), (6, 5), (9, 2)\}$$

Directed Graphs

• A directed graph is a set of nodes V and edges $E \subseteq V \times V$

Path: Sequence of nodes $u_1 \ldots u_n$, with $\forall i \in \{1 \ldots n-1\}$. $(u_i, u_{i+1}) \in E$ e.g. 1, 2, 4, 8 If not noted otherwise: paths are cycle-free, e.g., no repeated nodes!

Directed Graphs

• A directed graph is a set of nodes V and edges $E \subseteq V \times V$

Cycle: Path with same start and end node e.g. 2,4,9,2

Operations

- Here: nodes implicitly given by edges:
 - $V := \{ u \mid \exists v. (u, v) \in E \lor (v, u) \in E \}$
- EMPTY returns empty graph. $E \leftarrow \emptyset$
- ADDEDGE(u,v) adds an edge. $E \leftarrow E \cup \{(u,v)\}$
- REMOVEEDGE(u,v) removes an edge. $E \leftarrow E \setminus \{(u,v)\}$
- ISEDGE(u,v) checks for edge. $(u, v) \in E$
- SUCCS(u) returns successors of node. $\{v \mid (u, v) \in E\}$

Implementation

Implementation

Adjacency list

Store list/set of successors for each node

$$succs[1] = \{2,3\}$$

$$succs[2] = \{4, 5\}$$

$$\mathit{succs}[3] = \{6,7\}$$

$$\textit{succs}[4] = \{8,9\}$$

$$succs[5] = \{\}$$

$$succs[5] = \{5\}$$

$$succs[7] = \{\}$$

$$succs[t] = \{\}$$

$$succs[8] = \{\}$$

Implementation

Adjacency Matrix m(u, v) = T iff edge from u to v

Adjacency Lists

- Map each node to list of successors
 - $E = \{(u, v) \mid v \in succs(u)\}$
 - directly implements SUCCS(u)
 - for integer nodes: use array of (dynamic) arrays
- Memory O(|V| + |E|)

Operation	Implementation	Complexity
ADDEDGE(u, v)	append v to $succs(u)$	O(1) (amortized)
REMOVEEDGE(u, v)	remove v from $succs(u)$	O(V)
ISEDGE(u, v)	search for v in $succs(u)$	O(V)
SUCCS(u)	return <i>succs(u)</i>	O(1)

Adjacency Matrix

- Store $|V| \times |V|$ map to Booleans
 - $E = \{(u, v) \mid m(u, v) = \text{true}\}$
 - for integer nodes: use 2 dimensional array
- Memory $O(|V|^2)$.
 - Bad for sparse graphs $(|E| << |V|^2)$.

Operation	Implementation	Complexity
ADDEDGE(u, v)	$m(u, v) \leftarrow \text{true}$	O(1)
REMOVEEDGE(u, v)	$m(u, v) \leftarrow \text{false}$	O(1)
ISEDGE(u, v)	return $m(u, v)$	O(1)
SUCCS(u)	return $\{v \mid m(u, v) = \text{true}\}$	O(V)

Adjacency Matrix + Adjacency List

- Store graph simultaneously as adjacancy list and matrix
- Memory: $O(|V|^2)$
- ADDEDGE, ISEDGE, SUCCS O(1)
- REMOVEEDGE O(|V|)

Outline

- Directed Graphs
 Formal Definition

 Implementation
- ② Graph Traversal Algorithms Generic Graph Traversal DFS and BFS Topological Sorting Shortest Paths
- 3 Shortest Path in Weighted Graphs Single-Source Shortest Path

Generic Graph Traversal

Explore edges to new nodes, until all nodes discovered

```
procedure EXPLORE(s)
D \leftarrow \{s\}, \ F \leftarrow \emptyset
while D \neq \emptyset do
u \leftarrow \text{Some } u \in D
D \leftarrow D \setminus \{u\}, \ F \leftarrow F \cup \{u\}
D \leftarrow D \cup \{v \mid (u, v) \in E \land v \notin F\}
return F
```

- F finished, outgoing edges have been explored
- D discovered, but outgoing edges yet to be explored
- EXPLORE(s) returns exactly the nodes reachable from s

1

- n finished
- n discovered

 $D=\{\ 1\ \}$

$$D = \{\ 2\ 3\ \}$$

- (n) finished
- n discovered

$$D = \{\ 3\ 4\ 5\ \}$$

- n finished
- n discovered

$$D = \{\; 3\; 4\; \}$$

$$D = \{\ 4\ 6\ 7\ \}$$

$$D = \{\ 4\ 7\ \}$$

Generic Graph Traversal (Correctness)

EXPLORE(s) returns exactly the nodes reachable from s

- Any node in $D \cup F$ is reachable:
 - Initially, only $s \in D \cup F$
 - only successors of nodes in D∪F added
- If a node is reachable, it will be included in F:
 - During the loop, successors of finished nodes are finished or discovered
 - Finally, $D = \emptyset$, thus successors of finished nodes are finished
 - \implies every reachable node is finished (follow path from s)

DFS and BFS

```
\begin{aligned} & \text{procedure } \text{ } \text{EXPLORE}(s) \\ & D \leftarrow \{s\}, \ F \leftarrow \emptyset \\ & \text{while } D \neq \emptyset \text{ } \text{do} \\ & u \leftarrow \text{Some } u \in D \\ & D \leftarrow D \setminus \{u\}, \ F \leftarrow F \cup \{u\} \\ & D \leftarrow D \cup \{v \mid (u,v) \in E \land v \notin F\} \\ & \text{return } F \end{aligned}
```

- In which order do we process nodes from D
- Last in / first out (stack): Depth First Search (DFS)
- First in / first out (queue): Breadth First Search (BFS)

(1)

n finished

n discovered

D (LiFo): [1]

D (LiFo): [3 2]

n finished

n discovered

D (LiFo): [3 5 4]

- n finished
- n discovered

 $\widehat{1}$

n finished

n discovered

D (FiFo): [1

]

D (FiFo): [2 3

- n finished
- n discovered

D (FiFo): [3 4 5]

D (FiFo): [4 5 7 6]

Recursive DFS

DFS has nice recursive implementation

```
procedure DFSREC(F, u)

if u \notin F then

F \leftarrow F \cup \{u\}

for all v with (u, v) \in E do

F \leftarrow \text{DFSREC}(F, v)

return F

procedure DFS(s) return DFSREC(\emptyset, s)
```

Topological Sorting

- Set of tasks (e.g. build jobs in Makefile)
- Dependencies, i.e. tasks that needs to be completed before a task can be started
- Model as directed graph. Edge (u, v): v depends on u.
- Find a build sequence

```
main: main.o hashtable.o dynarray.o graph.o
   gcc ...

main.o: main.c
hashtable.o: hashtable.h hashtable.c dynarray.h
dynarray.o: dynarray.h dynarray.c
graph.o: graph.h graph.c
```


Possible build sequence: graph.o, dynarray.o, hashtable.o, main.o, main

Topological Sorting

- Arrange nodes sequentially, such that all edges point forwards
 - Intuition: All prerequisites come earlier in sequence
- Topological sorting possible iff graph has no cycles
 - Directed Acyclic Graph (DAG)
- Now: DFS based algorithm for topological sorting and cycle detection

Cycle detection with DFS

- When first encountering a node, mark it as open.
- Only when finished exploring its children, mark it as done
- Whenever we encounter an open node again, it's a cycle

```
procedure DFSREC(F, u)
   if F(u) = N then
       F(u) \leftarrow O // Start processing node
       for all v with (u, v) \in E do
          F \leftarrow DFSREC(F,v)
       F(u) \leftarrow D // Done processing node
   else if F(u) = 0 then
       Error: found cycle
   return F
procedure DFS(s)
   F(u) \leftarrow N for all nodes u return DFSREC(F, s)
```

Topological Sorting

```
procedure DFSREC(F, u)

if F(u) = N then

F(u) \leftarrow O \qquad // \text{ Start processing node}

for all v with (u, v) \in E do

F \leftarrow \text{DFSREC}(F, v)

F(u) \leftarrow D \qquad // \text{ Done processing node}
else if F(u) = O then

Error: \text{ found cycle}
\text{return } F

procedure \text{DFS}(s)
F(u) \leftarrow N \text{ for all nodes } u \text{ return } \text{DFSREC}(F, s)
```

- When node is done, all its successors are already done
 - → Nodes done in reverse topological order
- to get topological sort: *prepend* nodes to list when marked as done

- n Oper
- n Done

- n New
- n Oper
- n Done

- n New
- n Oper
- n Done

- (n) New
- n Oper
- n Done

n New

n New

Result List: 4

- n New
- n Oper
- n Done

Result List: 4

- n New
- n Open
- n Done

Result List: 4

- n New
- n Open
- n Done

Example

(n) New

Example

Result List: 4 Error: found cycle

- n New
- n Oper
- n Done

Shortest paths with BFS

- Shortest path from s to some node?
 - shortest = minimal number of edges
- BFS visits nodes in order of their distance from s!
- Obtain path via predecessor map:
 - For each node, store node from which it was discovered
 - Follow these nodes backwards, until s is reached
 - Convention: predecessor of *s* is *s* itself.

BFS Shortest Path

```
procedure SHORTESTPATHS(s)
     D \leftarrow [s], F \leftarrow \emptyset, \pi(s) \leftarrow s
     while D \neq [] do
          (u, D) \leftarrow \text{DEQUEUE}(D)
          D \leftarrow D \setminus \{u\}, F \leftarrow F \cup \{u\}
          for all v with (u, v) \in E \land v \notin F do
               D \leftarrow \text{ENQUEUE}(v), \ \pi(v) \leftarrow u
     return \pi
procedure GETPATH(\pi, u)
     p \leftarrow [u]
     while \pi(u) \neq u do
          u \leftarrow \pi(u), p \leftarrow up
```


- n discovered
 - n finished
 - → predecessor map

D (FiFo): [1 |

- n discovered
- n finished
- → predecessor map

D (FiFo): [1 | 2 3 |

- n discovered
- n finished
- → predecessor map

D (FiFo): [1 | 2 3 | 4 5

- n discovered
- n finished
- → predecessor map

D (FiFo): [1 | 2 3 | 4 5 7 6 |

- discovered
- finished
- predecessor map

- n discovered
- n finished
- → predecessor map

- discovered
- finished
- predecessor map

- discovered
- finished
- predecessor map

- n discovered
- n finished
- → predecessor map

- discovered
- finished
- predecessor map

26 / 31

- n discovered
- n finished
- → predecessor map

Outline

- Directed Graphs
 Formal Definition
 Implementation
 - Graph Traversal Algorithms Generic Graph Traversal DFS and BFS Topological Sorting Shortest Paths
- 3 Shortest Path in Weighted Graphs Single-Source Shortest Path