Espacios de Hardy y Operadores de Hankel

Jonas Schober

October 30, 2024

Requisitos

Conocimiento básico de Análisis Funcional y Análisis Complejo. Voy a adaptar el curso a las necesidades de los estudiantes. Si fuera necesario, repasamos los temas que se requieren.

 $\mathbf{2}$

Preguntas?

No dudes a contactarme: schober.jonas@gmail.com

1 Espacios de Hardy en el disco y el semiplano

Temario

	1.1	Espacios de Hilbert con núcleo reproductor
2	Fact 2.1 2.2 2.3	torización en funciones interiores y exteriores Productos de Blaschke
3	Оре 3.1 3.2	Teorema de Hartman
(Lo	os det	talles se encuentran en las siguientes páginas.)
\mathbf{B}	ibli	ografía
[Ni	19]	Nikolski, N., Hardy Spaces, Cambridge Univ. Press, 2019
[Pa	188]	Partington, J., An Introduction to Hankel Operators, London Math. Soc. Studen Texts 13, 1988
[RI	R94]	Rosenblum, M., and J. Rosnyak, <i>Topics on Hardy Classes and Univalent Functions</i> Birkhäuser, 1994
[Rı	186]	Rudin, W., Real and Complex Analysis, 3rd ed., McGraw Hill, 1986

1 Espacios de Hardy en el disco y el semiplano

Los espacios de Hardy son espacios de funciones holomorfas en el disco

$$\mathbb{D} \coloneqq \{z \in \mathbb{C} : |z| < 1\}$$

o en los semiplanos

$$\mathbb{C}_{\pm} \coloneqq \{ z \in \mathbb{C} : \pm \operatorname{Im}(z) > 0 \}.$$

En lo siguiente nos vamos a restringir al caso del semiplano, pero en el curso se van a tocar los dos casos.

Definition 1.0.1. Para una función holomorpha $f \in \mathcal{O}(\mathbb{C}_+)$ definimos

$$||f||_{H^p} := \sup_{y>0} \left(\int_{\mathbb{R}} |f(x+iy)|^p dx \right)^{\frac{1}{p}}, \quad 1 \le p < \infty$$

у

$$||f||_{H^{\infty}} \coloneqq \sup_{z \in \mathbb{C}_+} |f(z)|.$$

Entonces, para $1 \leq p \leq \infty$, se define el espacio de Hardy $H^p(\mathbb{C}_+)$ de la siguiente manera:

$$H^p(\mathbb{C}_+) := \{ f \in \mathcal{O}(\mathbb{C}_+) : ||f||_{H^p} < \infty \}.$$

Los espacios de Hardy $H^p(\mathbb{C}_+)$ son espacios de Banach y para cada $f \in H^p(\mathbb{C}_+)$, los límites no-tangenciales

$$f^*(x) \coloneqq \lim_{\epsilon \downarrow 0} f(x + i\epsilon)$$

existen para casi todo $x \in \mathbb{R}$. Eso define una función $f^* \in L^p(\mathbb{R}, \mathbb{C})$ con $||f^*||_p = ||f||_{H^p}$. En particular, $H^2(\mathbb{C}_+)$ es un espacio de Hilbert con producto escalar

$$\langle f|g\rangle_{H^2} := \langle f^*|g^*\rangle.$$

1.1 Espacios de Hilbert con núcleo reproductor

El espacio de Hardy $H^2(\mathbb{C}_+)$ es un ejemplo de un espacio de Hilbert con núcleo reproductor, los cuales se definen de la siguiente manera:

Definition 1.1.1. Sea X un conjunto arbitrario y no-vacio y sea H un espacio de Hilbert que es un subconjunto de las funciones en X con valores complejos. H se llama un espacio de Hilbert con núcleo reproductor si los funcionales lineales

$$\operatorname{ev}_x: H \to \mathbb{C}, \quad f \mapsto f(x)$$

son continuos para cada $x \in X$.

2 Factorización en funciones interiores y exteriores

Vamos a probar que cada función $f \in H^p(\mathbb{C}_+)$ se puede factorizar como un producto de una función interior y exterior, los cuales se definen la siguiente manera:

Definition 2.0.1. Una función $\varphi \in H^{\infty}(\mathbb{C}_+)$ se llama *interior*, si $|\varphi^*(x)| = 1$ para casi cada $x \in \mathbb{R}$. Escribimos $\text{Inn}(\mathbb{C}_+)$ para el conjunto de funciones interiores.

Definition 2.0.2. Sea $C \in \mathbb{T}$ y $K : \mathbb{R} \to \mathbb{R}$ con K > 0 y

$$\int_{\mathbb{R}} \frac{\left|\log\left(K\left(\lambda\right)\right)\right|}{1+\lambda^2}\,d\lambda < \infty.$$

Definimos la función exterior $F_{C,K} \in \mathcal{O}(\mathbb{C}_+)$ por

$$F_{C,K}\left(z\right) = C \exp\left(\frac{1}{\pi i} \int_{\mathbb{R}} \left[\frac{1}{\lambda - z} - \frac{\lambda}{1 + \lambda^{2}} \right] \log\left(K\left(\lambda\right)\right) dp \right).$$

Entonces $K(x) = |(F_{C,K})^*(x)|$ para $x \in \mathbb{R}$. Definimos $F_K := F_{1,K}$ y escribimos $\mathrm{Out}(\mathbb{C}_+)$ para el conjunto de funciones exteriores.

Tenemos el siguiente teorema:

Theorem 2.0.3. Sea $1 \le p \le \infty$ $y \ f \in H^p(\mathbb{C}_+)$. Entonces existe una función interior $\varphi \in \text{Inn}(\mathbb{C}_+)$ así que

$$f = \varphi \cdot F_{|f^*|} \in \operatorname{Inn}(\mathbb{C}_+) \cdot \operatorname{Out}(\mathbb{C}_+).$$

Esa decomposición es única hasta multiplicación con una constante $C \in \mathbb{T}$.

También vamos a probar que cada función interior φ es de la forma

$$\varphi = C \cdot B \cdot e^{iF}$$

con $C \in \mathbb{T}$, un producto de Blaschke B y una función de Herglotz F, los cuales se definen de la siguiente manera:

2.1 Productos de Blaschke

Definition 2.1.1. Para $a \in \mathbb{C}_+$ definimos el factor de Blaschke $B_a \in \mathcal{O}(\mathbb{C}_+)$ por

$$B_a(z) := \frac{z-a}{z-\overline{a}}.$$

Para un subconjunto contable $N \subseteq \mathbb{C}_+$ definimos el producto de Blaschke $B \in \mathcal{O}(\mathbb{C}_+)$ por

$$B(z) \coloneqq \prod_{a \in N} B_a(z).$$

2.2 Funciones de Herglotz

Definition 2.2.1. Una función holomorfa $F \in \mathcal{O}(\mathbb{C}_+)$ se llama función de Herglotz si

$$\operatorname{Im} F(z) \ge 0 \qquad \forall z \in \mathbb{C}_+.$$

2.3 Teorema de representación de Herglotz

Theorem 2.3.1. Cada función de Herglotz F es de la forma

$$F(z) = C + Dz + \int_{\mathbb{R}} \frac{1}{\lambda - z} - \frac{\lambda}{1 + \lambda^2} d\mu(\lambda),$$

 $con \ C \in \mathbb{R}, \ D \in \mathbb{R}_{>0} \ y \ una \ medida \ \mu \ en \ \mathbb{R} \ con$

$$\int_{\mathbb{D}} \frac{1}{1+\lambda^2} \, d\mu(\lambda) < \infty.$$

3 Operadores de Hankel

En la segunda parte del curso vamos a ver los operadores de Hankel, cuáles se definen de la siguiente manera:

Definition 3.0.1. Para una función $g \in L^{\infty}(\mathbb{R}, \mathbb{C})$ definimos el operador de multiplicación M_g por

$$M_g: L^2(\mathbb{R}, \mathbb{C}) \to L^2(\mathbb{R}, \mathbb{C}), \quad f \mapsto g \cdot f.$$

Un operador de Hankel es un operador acotado $H: H^2(\mathbb{C}_+) \to H^2(\mathbb{C}_+)$ con

$$HM_g = M_g^* H \qquad \forall g \in H^{\infty}(\mathbb{C}_+).$$

En el curso vamos a tocar dos teoremas sobre operadores de Hankel, los cuales son el Teorema de Nehari y el Teorema de Hartman:

3.1 Teorema de Nehari

Theorem 3.1.1. Consideramos la proyección $P: L^2(\mathbb{R}, \mathbb{C}) \to H^2(\mathbb{C}_+)$ y la involución

$$R: L^2(\mathbb{R}, \mathbb{C}) \to L^2(\mathbb{R}, \mathbb{C}), \qquad (Rf)(x) = f(-x).$$

Entonces, para cada operador de Hankel H existe una función $h \in L^{\infty}(\mathbb{R}, \mathbb{C})$ con $||h||_{\infty} = ||H||$ así que

$$H = PM_hRP^*$$
.

3.2 Teorema de Hartman

Theorem 3.2.1. Un operador de Hankel H es compacto, si y solo si existe una función $h \in C(\mathbb{R})$ con

$$\lim_{p \to -\infty} h(p) = \lim_{p \to \infty} h(p) \in \mathbb{C}$$

así que $H = PM_hRP^*$.