霍尔效应实验报告

北京大学物理学院 吴熙楠

2021年3月21日

摘要

固体材料中的载流子在外加磁场中运动时,因为受到洛仑兹力的作用而使轨迹 发生偏移,并在材料两侧产生电荷积累,形成垂直于电流方向的电场,最终使载流 子受到的洛仑兹力与电场斥力相平衡,从而在两侧建立起一个稳定的电势差即霍尔 电压。这个就叫"霍尔效应"。在此次实验过程中,我们将学习霍尔效应测量磁场。

关键词:载流子、洛伦兹力、霍尔电压

目录

1	实验目的	3								
2	实验器材	3								
3	实验过程及数据整理 3.1 测量霍尔电流 I_H 和霍尔电压 U_H 的关系									
	$3.1.1$ 电流从 $1,2$ 端流入, $I_M = 0.600A$									
	3.2 测量霍尔元件灵敏度 K _H									
	3.3 做出磁化曲线图	7								
	3.4 测量电磁铁磁场的水平分布	8								
4	思考题	9								
5	分析与讨论									
6	收获与感想	9								

1 实验目的 3

1 实验目的

- (1) 了解霍尔效应的基本原理;
- (2) 学习用霍尔效应测量磁场。

2 实验器材

霍尔效应仪,稳流电源,稳压电源,电流表,毫安表,功率函数发生器,特斯拉计,数字 多用表,电阻箱,导线

3 实验过程及数据整理

3.1 测量霍尔电流 I_H 和霍尔电压 U_H 的关系

$$U_H = \frac{1}{4}(U_1 - U_2 + U_3 - U_4)$$

3.1.1 电流从 1,2 端流入, $I_M = 0.600A$

表 1: 测量数据 (电流从 1,2 端流入, $I_M = 0.600A$)

			-		
$I_H(mA)$	2.000	4.000	6.000	8.000	10.000
$U_1(mV)$	4.31	8.61	13.17	17.27	21.78
$U_2(mV)$	-4.34	-8.65	-13.25	-17.42	-22.02
$U_3(mV)$	3.82	7.64	11.67	15.34	19.43
$U_4(mV)$	-3.84	-7.66	-11.75	-15.45	-19.61
$U_H(mV)$	4.08	8.14	12.46	16.37	20.71

图 1: 霍尔电流 I_H 和霍尔电压 U_H 的关系图

由图可知,霍尔电流 I_H 与霍尔电压 U_H 呈线性关系,相关系数 r=0.99998 也可以佐证其线性关系。

3.1.2 电流从 3,4 端流入, $I_M = 0.600A$

$\frac{1}{1}$ 1										
$I_H(mA)$	2.000	4.000	6.000	8.000	10.000					
$U_1(mV)$	3.82	7.69	11.68	15.67	19.42					
$U_2(mV)$	-3.83	-7.73	-11.76	-15.81	-19.29					
$U_3(mV)$	4.31	8.65	13.11	17.46	21.77					
$U_4(mV)$	-4.32	-8.70	-13.20	-17.73	-21.96					
$U_H(mV)$	4.07	8.19	12.44	16.66	20.61					

表 2: 测量数据 (电流从 3,4 端流入, $I_M = 0.600A$)

图 2: 霍尔电流 I_H 和霍尔电压 U_H 的关系图

由图可知,霍尔电流 I_H 与霍尔电压 U_H 呈线性关系,相关系数 r=0.999993 也可以佐证 其线性关系。

3.2 测量霍尔元件灵敏度 K_H

$I_M(A)$	0.000	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	1.000
B(mT)	3.4	39.2	78.4	113.1	156.6	197.2	239.2	276.3	310.0	350.7	385.0
$U_1(mV)$	1.22	4.40	7.60	10.94	14.42	17.76	21.20	24.42	28.42	31.81	34.65
$U_2(mV)$	-1.42	-4.61	-7.78	-11.12	-14.61	-17.96	-21.41	-24.63	-28.63	-32.01	-34.82
$U_3(mV)$	0.94	2.21	5.49	8.85	12.28	15.59	19.03	22.38	26.25	29.68	32.70
$U_4(mV)$	-1.14	-2.43	-5.66	-9.03	-12.46	-15.78	-19.23	-22.59	-26.45	-29.92	-32.88
$U_H(mV)$	1.18	3.41	6.63	9.99	13.44	16.77	20.22	23.51	27.44	30.86	33.76

表 3: 测量数据 (电流从 1,2 端流入, $I_H=10.000mA$)

图 3:
$$U_H - B$$
 图

由图可知,霍尔电压 U_H 与磁感应强度 B 呈线性关系,相关系数 r=0.9993 也可以佐证其线性关系。

考察斜率的不确定度,随机误差造成的部分为:

$$\sigma_k = k \sqrt{\frac{1/r^2 - 1}{n - 2}} = 1.08 \times 10^{-3} T/A$$

我们认为霍尔电流 I_H 存在允差为 0.1mA,则:

$$\sigma_{I_H} = \frac{e}{\sqrt{3}} = 0.0578mA$$

因此计算 $K_H = \frac{k}{I_H} = 8.66V/(T \cdot A)$ 不确定度为:

$$\sigma_{K_H} = K_H \sqrt{(\frac{\sigma_k}{k})^2 + (\frac{\sigma_{I_H}}{I_H})^2} = 0.12 V/(T \cdot A)$$

因此霍尔灵敏度 $K_H = (8.66 \pm 0.12)V/(T \cdot A)$

3.3 做出磁化曲线图

我们由上一问求得的 K_H 可以通过 $B = \frac{U_H}{K_H I_H}$ 计算出磁感应强度 B 的值:

表 4: $B - I_M$ 数据表

$I_M(A)$	0.000	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	1.000
B(mT)	13.6	39.4	76.5	115.3	155.2	193.6	233.4	271.4	316.8	356.3	389.8

图 4: 磁化曲线图

3.4 测量电磁铁磁场的水平分布

$\chi 0. B - \chi $											
x(mm)	$U_1(mV)$	$U_2(mV)$	$U_3(mV)$	$U_4(mV)$	$U_H(mV)$	B(mT)					
40.00	21.41	-21.62	19.39	-19.57	20.50	236.7					
45.00	21.36	-21.57	19.33	-19.53	20.45	236.1					
50.00	21.53	-21.74	19.52	-19.72	20.63	238.2					
55.00	22.32	-22.54	20.20	-20.35	21.35	246.5					
56.00	20.02	-20.23	17.90	-17.98	19.03	219.7					
57.00	15.61	-15.81	13.55	-13.72	14.67	169.4					
58.00	12.43	-12.63	10.40	-10.57	11.51	132.9					
59.00	10.44	-10.63	8.43	-8.62	9.53	110.0					
60.00	8.99	-9.17	7.00	-7.17	8.08	93.3					

表 5: B-x 数据表 ($I_H = 10.000mA$, $I_M = 0.600A$)

我们观察到磁感应强度 B 的值随着距离变化会在中心位置比较平缓,在边缘处下降比较陡峭。

4 思考题 9

4 思考题

Q: 在测量 $B - I_M$ 曲线中, $I_M = 0$ 时 U_H 测量端仍有较小的电压,这是为什么?

A: 因为 $I_M=0$ 的时候会有众多的副效应,比如不等位效应,埃廷豪森效应,能斯特效应,里吉勒杜克效应,就算没有磁场 B,也会存在电势差;而且有可能存在磁滞现象,即可能就算 $I_M=0$,但磁感应强度 B 并不等于 0。因此这样测量端仍然会有较小的电压。

5 分析与讨论

(1)Q: 比较实验内容 4.1 中 (a)(b) 两种接法观测的结果,并解释现象?

A: 我们交换接法后测量的结果发现 (a) 接法中 U_1 和 U_2 与 (b) 接法中 U_3 和 U_4 接近; (a) 接法中 U_3 和 U_4 与 (b) 接法中 U_1 和 U_2 接近; 但虽然接近,却不完全一致,因为会有很多的环境影响因此不会完全相同;而接近的原因是两种接法相当于电流方向反向,因此我们改变电流方向与改变接法是等效的,因此接近。

(2)Q: 说明实验内容 4.3 中为什么用计算的 B 作磁化曲线比用直接测量的 B 更好?

A: 因为我们直接测量的磁感应强度 B 只测量了一次,随机误差较大,可能对于线性比较不合理,而用计算的磁感应强度 B 完全反映线性结果,更适合拿来观察线性趋势。

(3)Q: 实验中观测到的各种曲线有什么主要特征,如何解释?

A:(1) 霍尔电流 I_H 和霍尔电压 U_H 线性正相关,因为霍尔电流 I_H 越大,则力平衡需要的电场越大,即霍尔电压 U_H 越大。(2) 励磁电流 I_M 越大,磁感应强度 B 越大,霍尔电压 U_H 也越大,大致呈线性关系因为励磁电流越大,产生磁感应强度越大,同理力平衡需要的电场强度越大,即霍尔电压越大。(3) 电磁铁磁场水平分布在中心最大,且变化比较平缓,然后改变较快,在边缘处大致变为中心磁感应强度的 $\frac{1}{2}$,因为在中心处大概我们可以将其视作为无限长螺线管,在边缘处大致为半无限长螺线管,因此中心处磁场大致为边缘处磁场的 $\frac{1}{3}$ 。

6 收获与感想

在我们本次实验中,我们通过老师的讲解,了解了霍尔效应的基本原理,同时通过使用活 儿效应的仪器学习了使用霍尔效应测量磁场的方式。为我们以后将要从事凝聚态物理的同学学 习量子霍尔效应,分数霍尔效应,量子反常霍尔效应等霍尔效应的衍生效应打下了基础,做好 了铺垫。