1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе №3 по курсу «Моделирование»

на тему: «Генерация случайных чисел»

Студент $\frac{\text{ИУ7-73Б}}{(\Gamma \text{руппа})}$	(Подпись, дата)	В. П. Авдейкина (Фамилия И.О.)
Руководитель	(Подпись, дата)	И.В.Рудаков (Фамилия И.О.)

СОДЕРЖАНИЕ

1 Условие лабораторной	3
2 Теоретическая часть	4
2.1 Методы получения последовательности случайных чисел .	2
2.2 Табличный способ	2
2.3 Алгоритмиический способ	2
2.4 Критерий случайности	۷
3 Практическая часть	(

1 Условие лабораторной

Необходимо взять одно-, двух- и трехразрядные числа, сгенерированные табличным и алгоритмическим способами (три столбца). Дать возможность ввести 10 любых чисел и затем под каждым из столбцов вывести число, показывающее случайность данной последовательности — разработать количественный критерий случайности для чисел, сгенерированных табличным и алгоритмическим способами. Если числа будут подчиняться какому-либо закону, то они уже не случайны.

2 Теоретическая часть

2.1 Методы получения последовательности случайных чисел

Существует три метода получения последовательности случаных чисел:

- 1) аппаратный;
- 2) табличный;
- 3) алгоритмический.

2.2 Табличный способ

Табличный способ подразумевает использование файла (таблицы), содержащего случайные числа.

2.3 Алгоритмиический способ

В качестве алгоритмического способа генерации псевдослучайных чисел был выбран способ генерации при помощи генератора равномерных вихревых последовательностей целых случайных величин без запоминающего массива. Данный способ описан Алексеем Фёдоровичем Деоном в статье "Генератор равномерных вихревых последовательностей случайных величин без запоминающего массива", а также в статье "Вихревой генератор случайных величин Пуассона по технологии кумулятивных частот", изданных в журнале "Вестник приборостроения" в 2020 году в МГТУ им. Н. Э. Баумана.

2.4 Критерий случайности

Был составлен следующий критерий случайности последовательности: вычислялась b-арная энтропия $H_b(S)$ последовательности S по формуле 1, вычислялось среднее арифметическое k модулей разности чисел, расположенных рядом, делёных на максимальную из данных разностей. Итоговый коэффициент, определяющий случайность, вычислялся по формуле 2.

$$H_b(S) = -\sum_{i=1}^n p_i \log_b p_i \tag{1}$$

где n — количество встречающихся в последовательности чисел, p_i - частота появления i-го числа, b — длина последовательности.

$$r = \frac{1 - H_b(s) + k}{2} \tag{2}$$

Чем ближе к нулю находится значение коэффициента r, тем случайнее значения последовательности S.

3 Практическая часть

Рисунок 1 — Результат работы программы