UNIDAD 12 A:

BIBLIOGRAFÍA:

- ·Guía de estudio ;
- •Cengel, Yunus A.; Boles, Michael A. "Termodinámica";
- 5° Edic.; Edit. Mc Graw Hill; 2006

CICLOS DE MÁQUINAS TÉRMICAS DE VAPOR

12.A. Ciclos de Maquinas de Vapor . Ciclos de máquinas de vapor: Ciclo para fluidos Carnot de condensables. Rendimiento del ciclo y relación trabajo. Ciclo de Rankine. Introducción de Mejoras. Ciclo con expansión multietapa y ciclo regenerativo. Cogeneración.

CICLOS DE MÁQUINAS TÉRMICAS DE VAPOR

FLUIDO DE TRABAJO: SE EVAPORA Y SE CONDENSA ALTERNADAMENTE

CICLOS DE MÁQUINAS TÉRMICAS DE VAPOR

<u>CICLO CARNOT</u>: MÁXIMO RENDIMIENTO PARA T_{FC} Y T_{FF} DADAS

$$\eta_t = \frac{W_{\text{NETO}}}{Q_{\text{FC}}} = \frac{\left(Q_{\text{FC}} - Q_{\text{FF}}\right)}{Q_{\text{FC}}} = \frac{T_{\text{FC}} - T_{\text{FF}}}{T_{\text{FC}}} = 1 - \frac{T_{\text{FF}}}{T_{\text{FC}}}$$

CICLO CARNOT: INSTALACIÓN

DIFICULTADES QUE DETERMINAN LA MODIFICACIÓN DEL CICLO DE CARNOT

- > COMPRESIÓN ISOENTRÓPICA DE MEZCLA LÍQUIDO-VAPOR
- > DIFICULTAD DE LOGRAR EL ESTADO DEL FLUIDO A LA ENTRADA DEL COMPRESOR
- > CANTIDAD DE LÍQUIDO EN EL FLUIDO QUE SALE DE LA TURBINA: EROSIÓN
- ➤ LIMITACIÓN DE LA TEMPERATURA DE LA FUENTE CALIENTE (TEMP. CRÍTICA BAJA: 374°C)
- > BAJA RELACION DE TRABAJO $r_t = \frac{\text{Potencia útil}}{\text{Potencia instalada}} = \frac{W_{\text{NETO}}}{W_T + W_C} >$

CICLO RANKINE SIMPLE:

CICLO RANKINE IDEAL

HIPÓTESIS PARA SU ESTUDIO TÉRMODINÁMICO:

- **✓FLUIDO DE TRABAJO**
- AGUA SUSTANCIA PURA
- LÍQUIDO INCOMPRESIBLE

- ✓ PROCESOS O EVOLUCIONES
- CUASIESTÁTICAS Ó "INTERNAMENTE" REVERSIBLES
- EN RÉGIMEN PERMANENTE
- ΔEc y ΔEp DESPRECIABLES

SI CONSIDERAMOS LA PRIMERA LEY APLICADA A ESTE CICLO

$$\sum_{\text{ciclo}} \ \mathbf{Q} = \sum_{\text{ciclo}} \ \mathbf{W}$$

$$Q_{neto} = W_{neto}$$

$$\mathbf{Q}_{\mathsf{neto}} = \mathbf{Q}_{\mathsf{FC}} \, - \left| \mathbf{Q}_{\mathsf{FF}} \right| = \mathbf{Q}_{\mathsf{cal}} - \mathbf{Q}_{\mathsf{con}}$$

$$\mathbf{W}_{\mathsf{neto}} = \mathbf{W}_{\mathsf{T}} - \left| \mathbf{W}_{\!\mathsf{B}} \right|$$

$$\mathbf{Q}_{\mathsf{cal}} - \mathbf{Q}_{\mathsf{con}} = \mathbf{W}_{\mathsf{T}} - \mathbf{W}_{\mathsf{B}}$$

$$\eta = \frac{W_{\text{neto}}}{Q_{\text{FC}}} = \frac{W_{\text{neto}}}{Q_{\text{cal}}} = \frac{W_{\text{T}} - |W_{\text{B}}|}{Q_{\text{cal}}}$$

APLICANDO EL 1º PPIO EN CALDERA, CONDENSADOR, BOMBA Y TURBINA

$$Q_{cal} = m(h_3 - h_1)$$
 $|Q_{con}| = m(h_4 - h_5)$

$$W_{T} = m \cdot (h_{3} - h_{4})$$
 $|W_{B}| = m(h_{1} - h_{5})$

$$\eta = \frac{W_{\text{neto}}}{Q_{\text{FC}}} = \frac{W_{\text{neto}}}{Q_{\text{cal}}} = \frac{W_{\text{T}} - |W_{\text{B}}|}{Q_{\text{cal}}} = \frac{(h_{3} - h_{4}) - (h_{1} - h_{5})}{(h_{3} - h_{1})}$$

$$\eta_{\text{CARNOT}} = 1 - \frac{T_{\text{con}}}{T_{\text{cal}}}$$
 $\eta_{\text{RANKINE}} < \eta_{\text{CARNOT}}$
Se debería aumentar la T_{FC}

$$|W_B| = m(h_1 - h_5)$$

LÍQUIDO INCOMPRESIBLE

$$|\mathbf{W}_{B}| = \mathbf{m} \mathbf{v}_{5} (\mathbf{P}_{cal} - \mathbf{P}_{con})$$

$$r_t = \frac{Potencia \ \text{útil}}{Potencia \ \text{total instalada}} = \frac{\dot{W}_{\text{NETO}}}{\dot{W}_{\text{TOTAL}}}$$

$$r_t \cong 1$$

PERO:
$$\eta_t < \eta_{CARNOT}$$

SE INTENTA
MEJORARLO
AUMENTANDO T_{FC}

CICLO RANKINE CON SOBRECALENTAMIENTO:

AUMENTO $\mathbf{DE}\;\mathbf{LA}\;\mathbf{T_{FC}}$

 $\eta_{\text{CON SOBREC}} > \eta_{\text{SIN SOBREC}}$

CICLO RANKINE CON SOBRECALENTAMIENTO:

Unidad 12 Ciclo Vapor Rankine 1 (bajaryoutube.com).mp4

CENTRAL TERMOELECTRICA DE VAPOR

Caldera con sobrecalentamiento

Torre de enfriamiento

CICLO RANKINE REAL: IRREVERSIBILIDADES

CICLO RANKINE REAL: IRREVERSIBILIDADES

Rendimientos isoentrópicos (<1)

Cuantifican la desviación en W_T y W_B a causa de las irreversibilidades *dentro* de turbina y compresor

$$\eta_{\text{T}} = \frac{\text{Trabajo real}}{\text{Trabajo ideal}} = \frac{w_{\text{t}}}{w_{\text{s}}} = \frac{h_{\text{3}} - h_{\text{4a}}}{h_{\text{3}} - h_{\text{4s}}}$$

$$\eta_{\text{B}} = \frac{\text{Trabajo ideal}}{\text{Trabajo real}} = \frac{w_{\text{s}}}{w_{\text{B}}} = \frac{h_{2\text{s}} - h_{1}}{h_{2\text{a}} - h_{1}}$$

MEJORAS PARA INCREMENTAR LA EFICIENCIA DEL CICLO RANKINE CON SOBRECALENTAMIENTO

DISMINUIR LA TEMPERATURA "PROMEDIO" A LA QUE SE CEDE CALOR

 $< T_{FF}$

>DISMINUCIÓN DE LA PRESIÓN EN EL CONDENSADOR

AUMENTAR LA TEMPERATURA "PROMEDIO" A LA QUE SE RECIBE CALOR

> T_{FC}

- >AUMENTO DE LA TEMPERATURA FINAL EN EL SOBRECALENTADOR
- >AUMENTO DE LA PRESIÓN EN LA CALDERA

1.DISMINUCIÓN DE LA PRESIÓN EN EL CONDENSADOR

2. AUMENTO DE LA TEMPERATURA FINAL EN EL SOBRECALENTADOR

3. AUMENTO DE LA PRESIÓN EN LA CALDERA

CICLO RANKINE CON EXPANSIÓN MÚLTIPLE Y SOBRECALENTAMIENTO INTERMEDIO

Permite incrementar el Wneto sin humedad excesiva al final de la expansión

CICLO RANKINE CON EXPANSIÓN MÚLTIPLE Y SOBRECALENTAMIENTO INTERMEDIO

Unidad 12 - Ciclo Vapor con Recalentamiento.avi.mp4

CICLO RANKINE REGENERATIVO (Extracciones, precalentamiento)

$$W_{T} = m_{6} \cdot (h_{5} - h_{6}) + m_{2} \cdot (h_{5} - h_{7})$$

CICLO RANKINE REGENERATIVO

La absorción de calor en la caldera, para calentar el líquido comprimido, se realiza a temperaturas más altas

CICLO RANKINE REGENERATIVO

Unidad 12 - Ciclo de vapor con Regeneración.avi.mp4

COGENERACIÓN: CICLO COMBINADO

COGENERACIÓN: CICLO COMBINADO

El esquema de Ciclo Combinado permite aprovechar los gases de escape de las turbinas que sobrepasan los 550°C y redirigirlos a una caldera que utiliza los gases para transformar agua en vapor de alta presión que se utiliza como fuerza motriz para impulsar los álabes del rotor de la turbina, y de esta manera transformar la energía cinética de la turbina en energía eléctrica en el generador. De este modo, se eleva la eficiencia en la transformación del combustible (gasoil o gas) a energía eléctrica. En promedio, las turbinas de gas tienen una eficiencia del 34,5% en la transformación energética del combustible en electricidad. Ese porcentaje se elevará al 50% cuando se aplica cogeneración con una turbina de vapor

COGENERACIÓN: CICLO COMBINADO

FIN