Machine Learning HW#3

Evgeny Marshakov

Problem 1

We have the following network

$$y_k(x, w) = \sigma \left(\sum_{j=1}^{M} w_{kj}^{(2)} \sigma \left(\sum_{i=1}^{D} w_{ji}^{(1)} x_i + w_{j0}^{(1)} \right) + w_{k0}^{(2)} \right)$$
 (1)

We want to find an equivalent network with tanh(x) as the hidden unit activation function. It can be easily seen that

$$2\sigma(a) - 1 = 2\frac{1}{1 + e^a} - 1 = \frac{1 - e^a}{1 + e^a} = -\frac{e^{\frac{a}{2}} - e^{-\frac{a}{2}}}{e^{\frac{a}{2}} + e^{-\frac{a}{2}}} = -\tanh\left(\frac{a}{2}\right)$$
(2)

or

$$\sigma(a) = \frac{1 - \tanh(\frac{a}{2})}{2} \tag{3}$$

Substituting this formula to the first layer of our network we obtain

$$y_k(x,w) = \sigma \left(\sum_{j=1}^{M} w_{kj}^{(2)} \left[\frac{1}{2} - \frac{1}{2} \tanh \left(\sum_{i=1}^{D} \frac{w_{ji}^{(1)}}{2} x_i + \frac{w_{j0}^{(1)}}{2} \right) \right] + w_{k0}^{(2)} \right) =$$
(4)

$$= \sigma \left(\sum_{j=1}^{M} \tilde{w}_{kj}^{(2)} \tanh \left(\sum_{i=1}^{D} \tilde{w}_{ji}^{(1)} x_i + \tilde{w}_{j0}^{(1)} \right) + \tilde{w}_{k0}^{(2)} \right)$$
 (5)

where

$$\tilde{w}_{ji}^{(1)} = \frac{1}{2} w_{ji}^{(1)} \tag{6}$$

$$\tilde{w}_{j0}^{(1)} = \frac{1}{2}w_{j0}^{(1)} \tag{7}$$

$$\tilde{w}_{kj}^{(2)} = -\frac{1}{2}w_{kj}^{(2)} \tag{8}$$

$$\tilde{w}_{k0}^{(2)} = w_{k0}^{(2)} + \frac{1}{2} \sum_{i=1}^{M} w_{kj}^{(2)}$$
(9)

Here we change only the hidden activation function. If we also want to change an output activation function then we obtain

$$y_k(x,w) = \frac{1}{2} - \frac{1}{2} \tanh \left(\sum_{j=1}^M \frac{\tilde{w}_{kj}^{(2)}}{2} \tanh \left(\sum_{i=1}^D \tilde{w}_{ji}^{(1)} x_i + \tilde{w}_{j0}^{(1)} \right) + \frac{\tilde{w}_{k0}^{(2)}}{2} \right) =$$
(10)

$$= \frac{1}{2} - \frac{1}{2} \tanh \left(\sum_{j=1}^{M} \hat{w}_{kj}^{(2)} \tanh \left(\sum_{i=1}^{D} \hat{w}_{ji}^{(1)} x_i + \hat{w}_{j0}^{(1)} \right) + \hat{w}_{k0}^{(2)} \right)$$
(11)

where

$$\hat{w}_{ji}^{(1)} = \frac{1}{2} w_{ji}^{(1)} \tag{12}$$

$$\hat{w}_{j0}^{(1)} = \frac{1}{2} w_{j0}^{(1)} \tag{13}$$

$$\hat{w}_{kj}^{(2)} = \frac{1}{2}\tilde{w}_{kj}^{(2)} = -\frac{1}{4}w_{kj}^{(2)} \tag{14}$$

$$\hat{w}_{k0}^{(2)} = \frac{1}{2}\tilde{w}_{k0}^{(2)} = \frac{1}{2}w_{k0}^{(2)} + \frac{1}{4}\sum_{i=1}^{M}w_{kj}^{(2)}$$
(15)

Problem 2

We have i.i.d. data, so the likelihood function is the following

$$L(t_1, ..., t_N | w) = p(t_1, ..., t_N | w) = \prod_{i=1}^{N} p(t_i | w)$$

Since we have the classification problem, we consider Bernoulli distribution

$$p(t_i|y) = y^{t_i}(1-y)^{1-t_i}$$

Also we know that there is a probability ϵ that the class label on a training data point has been incorrectly set, so we have the following

$$p(t_i|w) = p(t_i|y_i) = (y_i(1-\epsilon) + (1-y_i)\epsilon)^{t_i} ((1-y_i)(1-\epsilon) + y_i\epsilon)^{1-t_i}$$

So calculating the likelihood function we obtain

$$L(w) = p(\mathcal{D}|w) = \prod_{i=1}^{N} p(t_i|y_i) = \prod_{i=1}^{N} (y_i(1-\epsilon) + (1-y_i)\epsilon)^{t_i} ((1-y_i)(1-\epsilon) + y_i\epsilon)^{1-t_i}$$
(16)

Hence the negative log-likelihood function is the following

$$E_{\epsilon}(w) := -\log L(w) = -\sum_{i=1}^{N} \left[t_i \ln \left(y_i (1 - \epsilon) + (1 - y_i) \epsilon \right) + (1 - t_i) \ln \left((1 - y_i) (1 - \epsilon) + y_i \epsilon \right) \right]$$
(17)

Finally, we substitute $\epsilon = 0$ and find that

$$E_0(w) = -\sum_{i=1}^{N} \left[t_i \ln y_i + (1 - t_i) \ln(1 - y_i) \right] = E(w)$$

Problem 3

We want to find the Hessian matrix of the following function

$$E(w) = \frac{1}{2} \sum_{n=1}^{N} \|y(x_n, w) - t_n\|^2 = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, w) - t_n)^T (y(x_n, w) - t_n)$$

Let us calculate the first derivative with respect to w_i

$$\frac{\partial E}{\partial w_i} = \frac{1}{2} \sum_{n=1}^{N} \left(\frac{\partial y(x_n, w)}{\partial w_i} \right)^T (y(x_n, w) - t_n) + (y(x_n, w) - t_n)^T \left(\frac{\partial y(x_n, w)}{\partial w_i} \right) = \tag{18}$$

$$= \sum_{n=1}^{N} \left(\frac{\partial y(x_n, w)}{\partial w_i} \right)^T (y(x_n, w) - t_n)$$
 (19)

We assume that ∇y Let us calculating the second derivative of E with respect to w_i, w_j :

$$\frac{\partial^2 E}{\partial w_i \partial w_j} = \sum_{n=1}^N \left(\frac{\partial^2 y(x_n, w)}{\partial w_i \partial w_j} \right)^T \left(y(x_n, w) - t_n \right) + \left(\frac{\partial y(x_n, w)}{\partial w_i} \right)^T \left(\frac{\partial y(x_n, w)}{\partial w_j} \right) \tag{20}$$

If the network has been trained on the data set, and its outputs $y_n(x_n, w)$ happen to be very close to the target values t_n , then the second term in (20) will be small and can be neglected. Under this assumption we obtain that

$$\mathbf{H} = \sum_{n=1}^{N} \nabla y(x_n, w) \nabla y(x_n, w)^T$$

where

$$\{\nabla y(x_n, w)\}_{ij} = \frac{\partial y(x_n, w)_j}{\partial w_i}$$

Problem 4

We have the following neural network

$$y_k(x,w) = a_k \left(\sum_{j=1}^M w_{kj}^{(2)} \tanh\left(\sum_{i=1}^D w_{ji}^{(1)} x_i + w_{j0}^{(1)}\right) + w_{k0}^{(2)} + \sum_{i=1}^D v_{ki} x_i \right) + b_k$$
 (21)

here v_{ki} are additional parameters corresponding to skip-layer connections. We consider the sum-of-squares errors loss function

$$E(w) = \frac{1}{2} \sum_{n=1}^{D} ||y(x_n, w) - t_n||^2$$

Let us calculate the derivative of E(w) w.r.t v_{ki} . Using the expression (19) we obtain

$$\frac{\partial E}{\partial v_{ki}} = \sum_{n=1}^{D} \left(\frac{\partial y(x_n, w)}{\partial v_{ki}} \right)^T (y(x_n, w) - t_n)$$
(22)

It is obvious that

$$\frac{\partial y(x_n, w)}{\partial v_{ki}} = (0, \dots, 0, x_i, 0, \dots, 0)$$
(23)

Where x_i is in the position k. So we obtain

$$\frac{\partial E}{\partial v_{ki}} = \sum_{n=1}^{D} x_i \cdot [y_k(x_n, w) - t_n]$$
(24)

Problem 5

We want to estimate the following function

$$\tilde{E} = \frac{1}{2} \iiint (y(x+\xi) - t)^2 p(t|x) p(x) p(\xi) d\xi dt dx$$
(25)

It is obvious that

$$\frac{\partial y(x+\xi)}{\partial \xi_i} = \frac{\partial y(x)}{\partial x_i} = \{\nabla y\}_i$$

$$\frac{\partial^2 y(x+\xi)}{\partial \xi_i \partial \xi_j} = \frac{\partial \{\nabla y\}_i}{\partial \xi_j} = \mathbf{H}_{ij}$$

Using Taylor series of $(y(x+\xi)-t)^2$ we have the following approximation for \tilde{E}

$$\tilde{E} = \frac{1}{2} \iiint (y(x) - t)^2 p(t|x) p(x) p(\xi) d\xi dt dx + \iiint (y(x) - t) (\nabla y)^T \xi p(t|x) p(x) p(\xi) d\xi dt dx + \tag{26}$$

$$+\frac{1}{2}\iiint \xi^T \left[(y(x) - t)\mathbf{H} + (\nabla y)(\nabla y)^T \right] \xi p(t|x)p(x)p(\xi)d\xi dt dx$$
 (27)

The second term we can split into multiplication of two integrals

$$\iiint (y(x) - t)(\nabla y)^T \xi p(t|x) p(x) p(\xi) d\xi dt dx = \int \xi p(\xi) d\xi \iint (y(x) - t)(\nabla y)^T p(t|x) p(x) dt dx$$

One of them is equal to zero due to the fact that

$$\int \xi p(\xi) d\xi = \mathbb{E}[\xi] = 0$$

So the second term vanishes. We use the same argument as in the exercise 4. We think that our outputs are very close to the target values, so the term with \mathbf{H} can be neglected. So we can approximate the last term of (27) as follows

$$\frac{1}{2} \iiint \xi^T \left[(y(x) - t)\mathbf{H} + (\nabla y)(\nabla y)^T \right] \xi p(t|x) p(x) p(\xi) d\xi dt dx =$$
(28)

$$= \frac{1}{2} \iint \xi^T \left[(\nabla y)(\nabla y)^T \right] \xi p(x) p(\xi) d\xi dt dx$$
 (29)

It can be easily seen that

$$\xi^T A \xi = \sum_{ij} A_{ij} \xi_i \xi_j = \operatorname{tr}(\xi \xi^T A)$$

We know that $\mathbb{E}[\xi\xi^T]=I$ so it can be easily seen that

$$\frac{1}{2} \iint \{\nabla y\}_i \{\nabla y\}_j \xi_i \xi_j p(\xi) p(x) d\xi dx = \frac{1}{2} \int \delta_{ij} \{\nabla y\}_i \{\nabla y\}_j p(x) dx$$

so we can simplify the expression (29) as follows

$$\frac{1}{2} \iint \xi^T \left[(\nabla y)(\nabla y)^T \right] p(x) p(\xi) d\xi dx = \frac{1}{2} \iint \operatorname{tr} \left(\xi \xi^T (\nabla y)(\nabla y)^T \right) p(x) p(\xi) d\xi dx =$$
 (30)

$$= \frac{1}{2} \int \operatorname{tr} \left(\nabla y \right) (\nabla y)^T \right) p(x) dx = \frac{1}{2} \int (\nabla y)^T (\nabla y) p(x) dx = \frac{1}{2} \int \|\nabla y\|^2 p(x) dx =: \Omega$$
 (31)

So we see that

$$\tilde{E} \simeq E + \Omega$$