CSE202 Design and Analysis of Algorithms

Week 2 — Divide & Conquer 1: How fast can we multiply?

Naive Multiplication

Input: two *n*-digit integers

n multiplications + O(n) carries

•

n multiplications + O(n) carries

 $O(n^2)$ additions + O(n) carries

Output: $\leq 2n$ digits

Total: $O(n^2)$ digit (or bit) operations

For integers $\leq N$ this is $O(\log^2 N)$

Quadratic algorithm: #operations $O(n^2)$ for an input size n

One Second of Computation

With a good polynomial or integer library, 1 sec. is sufficient to

multiply two integers with 30,000,000 digits; multiply two polynomials of degree 650,000; multiply two matrices of size 850x850; (but factor an integer with 42 digits only).

1 sec. is in the asymptotic regime of the algorithms

Divide and Conquer

The total cost may be

- mostly at the top (quickselect)
- mostly at the leaves

Karatsuba, Strassen

balanced along the levels (binary powering, mergesort)

this week

I. Polynomials

Polynomials and Integers

Polynomials Integers
$$(7x^{2} + 3x + 5) \times (2x + 3) = (7x^{2} + 3x + 5) \times 2x + (7x^{2} + 3x + 5) \times 2x = 21x^{2} + 9x + 15 \times 10 \times 100 \times 100$$

Polynomials behave like integers, without carries

Divide & Conquer by Itself Doesn't Help

F and G of degree $\langle n \mapsto H := FG$

- 1. If n = 1 return FG
- 2. Let $k := \lceil n/2 \rceil$
- 3. Split $F = F_0 + x^k F_1$, $G = G_0 + x^k G_1$ F_0, F_1, G_0, G_1 of degree < k
- 4. Compute recursively

$$H_0 := F_0G_0, H_1 := F_0G_1, H_2 := F_1G_0, H_3 := F_1G_1$$

5. Return $H_0 + x^k(H_1 + H_2) + x^{2k}H_3$

Complexity: $C(n) \le 4C(\lceil n/2 \rceil) + \lambda n$ coefficient operations

Complexity of the Naive DAC

$$C(n) \le 4C(\lceil n/2 \rceil) + \lambda n$$

iterate once

$$\leq \lambda n + 4\lambda \lceil n/2 \rceil + 16C(\lceil n/2 \rceil_2)$$

Notation:

$$\lceil x/2 \rceil_1 = \lceil x/2 \rceil$$

$$\lceil x/2 \rceil_{k+1} = \lceil \lceil x/2 \rceil_k / 2 \rceil$$

N: power of 2 s.t.

$$n \le N < 2n$$

$$\leq \lambda \left(n + 2(2\lceil n/2 \rceil_1) + \dots + 2^{k-1}(2^{k-1}\lceil n/2 \rceil_{k-1})\right) + 2^{k+1}C(\lceil n/2 \rceil_k)$$

use N

$$\leq \lambda N \left(1 + 2 + \dots + 2^{k-1} \right) + 4^k C(\lceil n/2 \rceil_k)$$

bound geometric series

$$\leq 4^k \left(\lambda \frac{N}{2^k} + C(\lceil n/2 \rceil_k) \right)$$

use
$$k = \lceil \log_2 n \rceil$$

$$= O(n^2)$$

An extra idea is needed to beat the naive algorithm

Polynomials of Degree 1

$$F = f_0 + f_1 T$$
, $G = g_0 + g_1 T$ \mapsto $H := FG = h_0 + h_1 T + h_2 T^2$

Naive algorithm:

$$H = (\underbrace{f_0 g_0}) + (\underbrace{f_0 g_1} + \underbrace{f_1 g_0}) T + \underbrace{f_1 g_1} T^2 \qquad \text{4 multiplications}$$
 & 1 addition

Interpolation from 3 values:

$$h_0 = F(0)G(0) = f_0 g_0$$
 1 mult.
 $h_2 = {}^{\shortparallel}F(\infty)G(\infty){}^{\shortparallel} = f_1 g_1$ 1 mult.
 $\tilde{h}_1 = h_0 + h_1 + h_2 = F(1)G(1) = (f_0 + f_1)(g_0 + g_1)$ 1 mult.

$$FG = h_0 + (\tilde{h}_1 - h_0 - h_2)T + h_2T^2$$

3 multiplications, 2 additions, 2 subtractions

Karatsuba's Algorithm

F and G of degree $\langle n \mapsto H := FG$

Idea: Evaluate $FG = h_0 + (\tilde{h}_1 - h_0 - h_2)T + h_2T^2$ at $T = x^k$.

- 1. If *n* is small, use naive multiplication
- 2. Let k := [n/2]
- 3. Split $F = F_0 + x^k F_1$, $G = G_0 + x^k G_1$ F_0, F_1, G_0, G_1 of degree < k
- 4. Compute recursively

$$H_0 := F_0 G_0, H_2 := F_1 G_1, \tilde{H}_1 := (F_0 + F_1)(G_0 + G_1)$$

5. Return
$$H_0 + x^k(\tilde{H}_1 - H_0 - H_2) + x^{2k}H_2$$

$$u_n = n + 3u_{\lceil n/2 \rceil}, u_1 = 1$$

Complexity: $C(n) \le 3C(\lceil n/2 \rceil) + \lambda n$ coefficient operations

Complexity of Karatsuba's Algorithm

$$C(n) \le 3C(\lceil n/2 \rceil) + \lambda n$$

iterate once

$$\leq \lambda n + 3\lambda \lceil n/2 \rceil + 9C(\lceil n/2 \rceil_2)$$

iterate k-1 times, use N

$$\leq \lambda N \left(1 + \frac{3}{2} + \dots + \left(\frac{3}{2} \right)^{k-1} \right) + 3^k C(\lceil n/2 \rceil_k)$$

reorder sum

$$\leq \lambda N \left(\frac{3}{2}\right)^{k-1} \left(1 + 2/3 + \dots + (2/3)^{k-1}\right) + 3^k C(\lceil n/2 \rceil_k)$$

bound geometric series

$$\leq 3^k \left(2\lambda \frac{N}{2^k} + C(\lceil n/2 \rceil_k) \right)$$

 $use \\ k = \lceil \log_2 n \rceil$

$$\leq (2\lambda + 1)3^{\lceil \log_2 n \rceil} = O(n^{\log_2 3})$$

$$\approx 1.58$$

Notation:

$$\lceil x/2 \rceil_1 = \lceil x/2 \rceil$$

$$\lceil x/2 \rceil_{k+1} = \lceil \lceil x/2 \rceil_k / 2 \rceil$$

$$N$$
: power of 2 s.t.

$$n \le N < 2n$$

Not the final word. See assignment.

00 400 500 600 700 800 900 1000

II. Integers

From Polynomials to Integers

Recall: Polynomials behave like integers, without carries

No theorem of complexity equivalence exists, but the algorithms over polynomials can often be adapted to integers, with the same complexity.

Karatsuba's Algorithm for Integers

$$F$$
 and G integers $< 2^n \mapsto H := FG$

- 1. If *n* is small, use naive multiplication
- 2. Let $k := \lceil n/2 \rceil$
- 3. Split $F = F_0 + 2^k F_1$, $G = G_0 + 2^k G_1$ $F_0, F_1, G_0, G_1 < 2^k$

x into 2 in the polynomial version.

Obtained by changing

4. Compute recursively

$$H_0 := F_0 G_0, \quad H_2 := F_1 G_1, \quad \tilde{H_1} := (F_0 + F_1)(G_0 + G_1)$$

5. Return $H_0 + 2^k (\tilde{H}_1 - H_0 - H_2) + 2^{2k} H_2$

Same algorithm as for polynomials, similar (not exactly the same) complexity analysis.

$$\rightarrow O(n^{\log_2 3})$$
 bit operations

$$\approx 1.58$$

Which of these Algorithms is Best?

None of them!

GMP (the Gnu Multiprecision Library) uses:

# 64-bit words	approx # digits	Algorithm		
0	0	Naive		
26	500	Karatsuba		
73	1,400	Toom - 3		
208	4,000	Toom - 4		
4736	90,000	FFT		

III. Matrices

Matrix Multiplication

Input: two $n \times n$ matrices A, X with $n = 2^k$

Output: AX

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

Naive algorithm: O(n³)

Matrix Multiplication: Strassen's Algorithm

Input: two $n \times n$ matrices A, X with $n = 2^k$

Output: AX

- 1. If n = 1, return AX
- 2. Split $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, X = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$, with $(n/2) \times (n/2)$ blocks
- 3. Compute recursively the 7 products

$$q_1 = a(x+z), \ q_2 = d(y+t), \ q_3 = (d-a)(z-y),$$
 $q_4 = (b-d)(z+t), \ q_5 = (b-a)z,$ Exercise: prove the complexity $q_6 = (c-a)(x+y), \ q_7 = (c-d)y$ in $O(n^{\log_2 7})$ operations.

4. Return $\begin{pmatrix} q_1 + q_5 & q_2 + q_3 + q_4 - q_5 \\ q_1 + q_3 + q_6 - q_7 & q_2 + q_7 \end{pmatrix}$

World Records

Best algorithm for matrix multiplication

Application: Graph Transitive Closure

Def. A graph is a pair (V,E) where

- 1. V is a finite set of nodes/vertices
- 2. $E \subseteq V \times V$ is a finite set of edges

$$(\{0,1,2,3\},\{(0,1),(0,2),(2,1),(2,3)\})$$

Adjacency matrix

Nodes				
0	0	1	1 0 0 0	0
1	0	0	0	0
2	0	1	0	1
3	0	0	0	0

Boolean matrix

Boolean Matrices: Multiplication

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

$$c_{ij} = \bigvee_{k=1}^{n} a_{ik} \wedge b_{kj}$$

Boolean ops (and, or) instead of algebraic ops (sum, product)

Algebraic multiplication + flatten all non-zero entries to 1

Graph Transitive Closure

Let G = (V,E) be a graph

A path from i to j is a sequence of edges $e_1,...,e_n$ such that:

- the source of e₁ is i and the target of e_n is j
- for every $1 \le k < n$, the target of e_k is the source of e_{k+1}

The transitive closure $G^* = (V, E^*)$ is the graph where (u,v) $\in E^*$ iff there is a path from u to v

Application: Graph Transitive Closure

$$(\{0,1,2,3\},\{(0,1),(0,2),(2,1),(2,3)\})$$

Adjacency matrix

If A is the adjacency matrix of a graph, then

- $(A^k)_{ij} = 1$ iff there is a path of length k from i to j
- if I is the identity matrix, then $(A \lor I)_{ij}^{k} = 1$ iff there exists a path of length at most k from i to j

Application: Graph Transitive Closure

Let G = (V,E) be a graph with n vertices

If A is the adjacency matrix of G, then $(A \lor I)^{n-1}$ is the adjacency matrix of G*

The matrix $(A \lor I)^{n-1}$ can be computed by $\log n$ squaring operations/multiplications $O(n^{\log_2 7} \cdot \log_2 n)$

References for this lecture

The slides are designed to be self-contained.

They were prepared using the following books that I recommend if you want to learn more:

Next

Assignment this week: generalisation of Karatsuba's algorithm

Next tutorial: multiplication, transitive closure

Next week: algorithms related to statistics

Feedback

Moodle

Questions: constantin.enea@polytechnique.edu