ANALISI II

Federico Mainetti Gambera

10 giugno 2020

Indice

1	Ripa		5
	1.1	Trigonometria	5
	1.2		6
	1.3	Derivate	7
	1.4	Sviluppi	ç
2	Sau:	e (analisi I)	r
2		,	
	2.1	Serie notevoli	
		2.1.1 serie geometrica	
		2.1.2 serie armonica	
		2.1.3 serie armonica generalizzata	
		2.1.4 serie di mengoli	
		2.1.5 numero e	
		2.1.6 sviluppi di Taylor delle funzioni elementari	
	2.2	Criteri e teoremi	1
3	Seri	e di funzioni (analisi II) 1	3
	3.1		3
		3.1.1 Nel campo complesso	
		3.1.2 Nel campo reale	
		3.1.3 Serie di Taylor / MacLaurin	
	3.2	Serie di Fourier	
		3.2.1 Forma trigonometrica	
		3.2.2 Funzioni con periodi diversi da 2π	
		3.2.3 Forma esponenziale complessa	
	3.3	Note sugli esercizi	
		3.3.1 Serie di potenze nel campo reale	
		3.3.2 Convergenza uniforme per serie di potenza	
		3.3.3 Sviuluppabilità in serie di Fourier	
		3.3.4 Calcolo delle serie di Fourier per funzioni 2π -periodiche	
		3.3.5 Semplificazioni nel calcolo delle serie di Fourier per funzioni pari e dispari 2	
		3.3.6 Riassunto dei criteri per la convergenza della serie di Fourier $\sum F$	
		3.3.7 Armoniche	
4		zioni $\mathbb{R} o \mathbb{R}^n$ ("Funzioni di una variabile a valori vettoriali", "Curve nel piano e	_
		o spazio")	
	4.1	Introduzione alle funzioni $R \to R^n$	
		4.1.1 Definizioni e terminologia	
		4.1.2 Calcolo differenziale per funzioni $R \to R^n$	
		4.1.3 Calcolo integrale per funzioni $R \to R^n$	
	4.2	Lunghezza di un arco di curva	
		4.2.1 Curve rettificabili e lunghezza	
		4.2.2 Riparametrizzazioni e parametro arco (o ascissa curvilinea)	
	4.3	Integrali di linea (di prima specie)	
	4.4	Note sugli esercizi	
		4.4.1 Ripasso sul calcolo vettoriale	
		4.4.2 Proprietà delle curve	6
		4.4.3 Equazioni di grafici di funzioni	7

		4.4.4 Rappresentazioni di equazioni in forma polare	
5	Funz	oni $\mathbb{R}^n o \mathbb{R}$ ("Calcolo differenziale per funzioni reali di più variabili", "Funzioni	
	reali	di più variabili") 3	C
	5.1	Topologia in \mathbb{R}^n e proprietà delle funzioni continue $\ldots \ldots \ldots \ldots \ldots 3$	C
	5.2	Calcolo di limiti di funzioni in più variabili	
		5.2.1 Non esistenza del limite	
		5.2.2 Uso di maggiorazioni con funzioni radiali per provare l'esistenza del limite 3	
	- 0	5.2.3 Note sugli esercizi per il calcolo di limiti	
	5.3	Continuità di funzioni in più variabili	
	5.4	Calcolo differenziale di funzioni in più variabili	
		5.4.1 Derivate parziali	
		5.4.3 Differenziabilità e approssimazione lineare	
		5.4.4 Verifica della differenziabilità	
		5.4.5 Derivate direzionali	
		5.4.6 Riepilogo	
		5.4.7 Extra: Gradiente di una funzione radiale, Criterio di continuità e differenziabilità	
		per funzioni radiali, funzioni omogenee, Equazione del trasporto	6
	5.5	Derivate di ordine superiore e matrice Hessiana	
		5.5.1 Formula di Taylor (resto secondo Peano)	
	5.6	Ottimizzazione libera	
		5.6.1 Ripasso sugli autovalori e autovetori	
		5.6.2 Posizione reciproca di una superficie e il piano tangente hessiano	
		5.6.3 Massimi e minimi	
		5.6.4 Strategia per lo studio dei massimi e dei minimi	
		5.6.6 Massimi e minimi (assoluti) per funzioni con domini illimitati	
	5.7	Ottimizzazione vincolata	
	0	5.7.1 Metodo dei moltiplicatori di Lagrange	
	5.8	Funzioni convesse di n variabili	
		5.8.1 Generalità sulle funzioni convesse	2
		5.8.2 Ottimizzazione di funzioni convesse e concave	3
	5.9	Funzioni definite implicitamente	3
		5.9.1 Funzione implicita di una variabile	
		5.9.2 Note sugli esercizi	4
6	Rina	so sugli integrali (analisi I)	5
U	6.1	Teorema fondamentale del calcolo integrale:	
	6.2	Proprietà degli integrali:	
	6.3	ntegrali fondamentali:	
	6.4	ntegrali notevoli:	
	6.5	ntegrali riconducibili:	7
	6.6	ntegrazione per sostituzione:	7
	6.7	ntegrazione delle funzioni razionali:	7
	6.8	Funzioni razionali di e^x	
	6.9	ntegrazione per parti:	
		ntegrazione delle funzioni trigonometriche	
		Integrazione delle funzioni irrazzionali	
		Simmetrie e valori assoluti nel calcolo di integrali definiti	
	0.13	Integrali generalizzati	
		5.13.1 Integrazione di funzioni non limitate	
		5.13.3 Integrazione su intervalli illimitati	
		o.عان milograzione da milorvam millitati	1

	6.14	6.13.5	Criteri di integrabilità all'infinito
7	Into	arali da	oppi e tripli (analisi II) 54
•	7.1		lli doppi
	1.1	7.1.1	Integrale su una regione semplice
		7.1.2	Cambio di variabili
		7.1.2	Cambio di variabili in coordinate polari
	7.2	Integra	·
	1.2	7.2.1	Integrazione per fili
		7.2.1	Integrazione per strati
		7.2.2	Cambio di variabili
		7.2.3	Cambio di variabili in coordinate cilindriche
		7.2.4	Cambio di variabili in coordinate chindriche
		7.2.6	Cenno agli integrali multipli generalizzati
	7.3		ugli esercizi
	1.5	7.3.1	Ripasso sulle simmetrie (pari e dispari) per funzioni in due variabili
		7.3.1	Significato geometrico di un integrale doppio e calcolo del volume
		7.3.2	Note sull'elemento d'area per vari cambi di variabile
		7.3.4	Baricentro e momento d'inerzia
		7.3.5	Significato dei domini in \mathbb{R}^3 per "strati" e per "fili"
		7.3.6	Equazione di un piano passante per tre punti
		7.3.7	Equazioni di circonferenze non centrate nell'origine
		7.3.8	Equazione di un toro di raggi α e β , con $\alpha > \beta$
8	Funz 8.1		$n o \mathbb{R}^n$ ("funzioni di più variabili a valori vettoriali") 61 vettoriali
	8.2	•	
	0.2	8.2.1	·
		8.2.2	
		-	Verifica della conservatività di un campo vettoriale
		8.2.3 8.2.4	·
	0.2	•	Forme differenziali lineari
	8.3		e Teorema della divergenza
		8.3.1 8.3.2	Flusso
		0.3.2	reorema dena divergenza
9	Eau	azioni d	lifferenziali 68
	9.1		iioni
	9.2		ıza e unicità
	9.3		oni del primo ordine
		9.3.1	Equazioni a variabili separabili
		9.3.2	Note sugli esercizi: Insieme di definizione di un problema ci Cauchy per equazioni
			a variabili separabili
		9.3.3	Equazioni lineari (derivata di un prodotto; sovrapposizione e variazione delle
		3.0.0	costanti arbitrarie)
		9.3.4	Note sugli esercizi: Insieme di definizione di un problema ci Cauchy per equazioni
		3.0	lineari del prim'ordine
		9.3.5	Equazioni omogenee
		9.3.6	Equazione di Bernoulli
		9.3.7	Prolungamento delle soluzioni
	9.4		oni lineari del secondo ordine a coefficienti costanti
	9.4	9.4.1	Integrale generalea dell'equazione omogenea e integrale particolare dell'equa-
		9.4.1	
		0.4.2	zione completa
		9.4.2	Note sugli esercizi: Struttura della soluzione e principio di sovrapposizione per
		0.4.2	equazioni differenziali del second'ordine
	0 -	9.4.3	Equazione di Eulero
	9.5		oni lineari del secondo ordine (bramanti)
		9.5.1	Spazi di funzioni
		9.5.2	Generalità sulle equazioni lineari. Problema di Cauchy
		9.5.3	La struttura dell'integrale generale

9.5.4	Equazioni omogenee a coefficienti costanti	77
9.5.5	Equazioni completa a coefficienti costanti	77
9.5.6	metodo di somiglianza	77
9.5.7	Metodo di sovrapposizione	78
9.5.8	Metodo di variazione delle costanti	78
9.5.9	Note sugli esercizi	79
9.5.10	Equazione di Eulero	79
9.5.11	Note sugli esercizi: tabella riassuntiva del metodo di somiglianza	80
10 Sistemi dif	ferenziali lineari	81
10 Sistami dil	foronziali linoari	Ω1
	ferenziali lineari cipio di sovrapposizione	81 81
10.1 II prin		81 81
10.1 II prin	cipio di sovrapposizione	81
10.1 II prin 10.1.1	Cipio di sovrapposizione	81
10.1 II prin 10.1.1 10.2 Sisten	Cipio di sovrapposizione	81
10.1 II prin 10.1.1 10.2 Sisten 10.3 Sisten	Cipio di sovrapposizione	81 81 82
10.1 II prin 10.1.1 10.2 Sisten 10.3 Sisten 10.4 Sisten 10.5 Note	Cipio di sovrapposizione	81 81 82 83
10.1 II prin 10.1.1 10.2 Sisten 10.3 Sisten 10.4 Sisten 10.5 Note	Cipio di sovrapposizione	81 81 82 83 84
10.1 II prin 10.1.1 10.2 Sisten 10.3 Sisten 10.4 Sisten 10.5 Note 10.6 Note	Cipio di sovrapposizione	81 81 82 83 84 85

1 Ripasso

1.1 Trigonometria

$$sin^{2}(x) + cos^{2}(x) = 1$$

$$sin(2x) = 2sin(x)cos(x)$$

$$sin(x)cos(x) = \frac{1}{2}sin(2x)$$

$$cos(2x) = \begin{cases} cos^{2}(x) - sin^{2}(x) \\ 1 - 2sin^{2}(x) \\ 2cos^{2}(x) - 1 \end{cases}$$

$$sin^{2}(x) = \frac{1}{2}(1 - cos(2x)) \quad ottenuta da [cos(2x) = cos^{2}(x) - sin^{2}(x) = 1 - 2sin^{2}(x)]$$

$$cos^{2}(x) = \frac{1}{2}(1 + cos(2x)) \quad ottenuta da [cos(2x) = cos^{2}(x) - sin^{2}(x) = 2cos^{2}(x) - 1]$$

$$sin(cos^{-1}(x)) = \sqrt{1 - x^{2}}$$

$$cos(sin^{-1}(x)) = \sqrt{1 - x^{2}}$$

$$Ch^{2}(x) = \frac{e^{x} + e^{-x}}{2}$$

$$Sh^{2}(x) = \frac{e^{x} - e^{-x}}{2}$$

$$Ch^{2}(x) - Sh^{2}(x) = 1$$

$$Sh(2x) = 2Sh(x)Ch(x)$$

$$Ch(2x) = Sh^{2}(x) + Ch^{2}(x)$$

$$SettSh(x) = log(x + \sqrt{x - 1} \cdot \sqrt{x + 1})$$

$$Sh(SettCh(a)) = \sqrt{a^{2} - 1} \quad ottenuta da [Ch^{2}(x) - Sh^{2}(x) = 1] \rightarrow [Sh(x) = \sqrt{Ch^{2}(x) - 1}] \rightarrow [x - SettCh(a)]$$

$$Sh(SettSh(a)) = \sqrt{a^{2} + 1} \quad ottenuta da [Ch^{2}(x) - Sh^{2}(x) = 1] \rightarrow [Ch(x) = \sqrt{1 + Sh^{2}(x)}] \rightarrow [x - SettSh(a)]$$

$$sin(a)cos(b) = \frac{1}{2}sin(a + b) + sin(a - b)$$

$$cos(a)sin(b) = \frac{1}{2}sin(a + b) + sin(a - b)$$

$$cos(a)cos(b) = \frac{1}{2}cos(a + b) - cos(a - b)$$

$$sin(a)sin(b) = -\frac{1}{2}cos(a + b) - cos(a - b)$$

$$sin(a)sin(b) = -\frac{1}{2}cos(a + b) - cos(a - b)$$

$$sin(a)sin(b) = -\frac{1}{2}cos(a + b) - cos(a - b)$$

$$sin(a + b) = sin(a)cos(b) + sin(b)cos(a)$$

$$sin(a - b) = sin(a)cos(b) + sin(b)cos(a)$$

$$cos(a + b) = cos(a)cos(b) + sin(a)sin(b)$$

$$cos(a - b) = cos(a)cos(b) + sin(a)sin(b)$$

$$sin(a) + sin(\beta) = 2sin(\frac{a + \beta}{2}) cos(\frac{a - \beta}{2})$$

$$sin(\alpha) - sin(\beta) = 2cos(\frac{\alpha + \beta}{2}) cos(\frac{\alpha - \beta}{2})$$

$$cos(\alpha) - cos(\beta) = -2cos(\frac{\alpha + \beta}{2}) cos(\frac{\alpha - \beta}{2})$$

$$cos(\alpha) - cos(\beta) = -2cos(\frac{\alpha + \beta}{2}) cos(\frac{\alpha - \beta}{2})$$

Angolo Radianti Gradi		Seno	Coseno	Tangente	Cotangente
Raulallu	Graui				
0	0°	0	1	0	αο
$\frac{\pi}{6}$	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	√ <u>3</u> 3	√3
$\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
$\frac{\pi}{3}$	60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	√3	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{2}$	90°	1	0	ω	0
π	180°	0	-1	0	œ
$\frac{3\pi}{2}$	270°	-1	0	co	0
2 π 568 × 539	360°	0	1	0	ω

1.2 Asintotici

$$\begin{split} \sin(f(x)) \sim f(x) & \ln(1+f(x)) \sim f(x) & \log_a(1+f(x)) \sim \frac{f(x)}{\ln(a)} \\ e^{f(x)} - 1 \sim f(x) & a^{f(x)} - 1 \sim \ln(a) f(x) & (1+f(x))^c - 1 \sim c f(x) \\ 1 - \cos(f(x)) \sim \frac{1}{2} [f(x)]^2 & \tan(f(x)) \sim f(x) & \arcsin(f(x)) \sim f(x) \\ & \arctan(f(x)) \sim f(x) & \sinh(f(x)) \sim f(x) & \cosh(f(x)) - 1 \sim \frac{[f(x)]^2}{2} \\ & \tanh(f(x)) \sim f(x) \end{split}$$

1.3 Derivate

FUNZIONE	DERIVATA
f(x) = costante	$f^{\prime}(x)=0$ Dimostrazione derivata di una costante
f(x) = x	f'(x)=1 Dimostrazione derivata di x
$f(x) = x^s, \ s \in \mathbb{R}$	$f^{\prime}(x)=sx^{s-1}$ Dimostrazione derivata di una potenza
$f(x) = a^x$	$f'(x) = a^x \ln{(a)} \label{eq:f'}$ Dimostrazione derivata dell'esponenziale
$f(x) = e^x$	$f'(x) = e^x$
$f(x) = \log_a(x)$	$f'(x) = \frac{1}{x \ln{(a)}}$ Dimostrazione derivata del logaritmo
$f(x) = \ln\left(x\right)$	$f'(x) = \frac{1}{x}$
f(x) = x	$f'(x) = \frac{ x }{x}$ Dimostrazione derivata valore assoluto
$f(x) = \sin\left(x\right)$	$f'(x) = \cos{(x)}$ Dimostrazione derivata del seno
$f(x) = \cos\left(x\right)$	$f'(x) = -\sin{(x)}$ Dimostrazione derivata del coseno
$f(x) = \tan(x)$ [non è elementare]	$f'(x) = \frac{1}{\cos^2{(x)}}$ Dimostrazione derivata della tangente
$f(x) = \cot(x)$ [non è elementare]	$f'(x) = -\frac{1}{\sin^2{(x)}}$ Dimostrazione derivata della cotangente

$f(x) = \arcsin(x)$	$f'(x) = \frac{1}{\sqrt{1-x^2}}$ Dimostrazione derivata dell'arcoseno
$f(x) = \arccos(x)$	$f'(x) = -\frac{1}{\sqrt{1-x^2}}$ Dimostrazione analoga alla precedente
$f(x) = \arctan(x)$	$f'(x) = \frac{1}{1+x^2} \label{eq:f'}$ Dimostrazione derivata dell'arcotangente
$f(x) = \operatorname{arccot}(x)$	$f'(x) = -\frac{1}{1+x^2} \label{eq:f'}$ Dimostrazione analoga alla precedente
$f(x) = \sinh(x) = \frac{e^x - e^{-x}}{2}$	$f'(x) = \cosh(x)$ Dimostrazione: semplici conti
$f(x) = \cosh(x) = \frac{e^x + e^{-x}}{2}$	$f'(x) = \sinh(x)$ Idem come sopra

1.4 Sviluppi

Alcuni sviluppi di McLaurin notevoli

(si sottintende ovunque che i resti sono trascurabili per $x \to 0$)

$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n}) $ $= \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n}) $ $= \sin x = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}) $ $= \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}) $ $= \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}) $ $= \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n+2}) $ $= \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n+2}) $ $= x + \frac{1}{3}x^{3} + \frac{2}{15}x^{5} + o(x^{6}) $ $= x - \frac{1}{3}x^{3} + \frac{2}{15}x^{5} + o(x^{6}) $ $= \sum_{k=0}^{n} (-1)^{k-1} \frac{x^{k}}{k} + o(x^{n}) $	$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o\left(x^{2n+2}\right)$	$= \sum_{k=0}^{n} \frac{x^k}{k!} + o(x^n)$
$ \cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + o\left(x^{2n+1}\right) = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o\left(x^{2n+2}\right) \\ \tanh x = x - \frac{1}{3}x^3 + \frac{2}{15}x^5 + o\left(x^6\right) \\ \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1}\frac{x^n}{n} + o\left(x^n\right) = \sum_{k=1}^{n} (-1)^{k-1}\frac{x^k}{k} + o\left(x^n\right) $		
$ tanh x = x - \frac{1}{3}x^3 + \frac{2}{15}x^5 + o\left(x^6\right) $ $ \ln\left(1+x\right) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1}\frac{x^n}{n} + o\left(x^n\right) $ $ = \sum_{k=1}^{n} (-1)^{k-1}\frac{x^k}{k} + o\left(x^n\right) $	$\cosh x = 1 + \frac{x^2}{1} + \frac{x^4}{1} + \dots + \frac{x^{2n}}{1} + o(x^{2n+1})$	$= \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o\left(x^{2n+2}\right)$
$ tanh x = x - \frac{1}{3}x^3 + \frac{2}{15}x^5 + o\left(x^6\right) $ $ \ln\left(1+x\right) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1}\frac{x^n}{n} + o\left(x^n\right) $ $ = \sum_{k=1}^{n} (-1)^{k-1}\frac{x^k}{k} + o\left(x^n\right) $		$= \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o\left(x^{2n+2}\right)$
$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n) = \sum_{k=1}^n (-1)^{k-1} \frac{x^k}{k} + o(x^n)$		
n = 2k+1	$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n)$	$= \sum_{k=1}^{n} (-1)^{k-1} \frac{x^k}{k} + o(x^n)$
$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o\left(x^{2n+2}\right) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} + o\left(x^{2n+2}\right)$, , , , , , , , , , , , , , , , , , ,	$= \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} + o\left(x^{2n+2}\right)$
$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o\left(x^{2n+1}\right) = \sum_{k=0}^n (-1)^k \frac{x^{2k}}{(2k)!} + o\left(x^{2n+1}\right)$		$= \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!} + o(x^{2n+1})$
$\tan x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^6)$		
$\arcsin x = x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + \dots + \left \binom{-1/2}{n} \right \frac{x^{2n+1}}{2n+1} + o\left(x^{2n+2}\right) = \sum_{k=0}^{n} \left \binom{-1/2}{k} \right \frac{x^{2k+1}}{2k+1} + o\left(x^{2n+2}\right) = \sum_{k=0}^{n} \left \binom{-1/2}{k} \right \frac{x^{2n+2}}{2k+1} + o\left(x^{2n+2}\right) = \sum_{k=0}^{n} \left \binom{-1/2}{2k} \right \frac{x^{2n+2}}{2k+1} + o\left(x^{2n+2}\right) =$	$\arcsin x = x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + \dots + \left \binom{-1/2}{n} \right \frac{x^{2n+1}}{2n+1} + o\left(x^{2n+2}\right)$	$= \sum_{k=0}^{n} \left \binom{-1/2}{k} \right \frac{x^{2k+1}}{2k+1} + o\left(x^{2n+2}\right)$
$\arccos x = \frac{\pi}{2} - \arcsin x$		
$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o\left(x^{2n+2}\right) = \sum_{k=0}^n (-1)^k \frac{x^{2k+1}}{2k+1} + o\left(x^{2n+2}\right)$	$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o\left(x^{2n+2}\right)$	$= \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{2k+1} + o(x^{2n+2})$
$(1+x)^{\alpha} = 1 + \alpha x + {\alpha \choose 2} x^2 + {\alpha \choose 3} x^3 + \dots + {\alpha \choose n} x^n + o(x^n) = \sum_{k=0}^n {\alpha \choose k} x^k + o(x^n)$	$(1+x)^{\alpha} = 1 + \alpha x + {\alpha \choose 2} x^2 + {\alpha \choose 3} x^3 + \dots + {\alpha \choose n} x^n + o(x^n)$	
$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 + \dots + (-1)^n x^n + o(x^n) = \sum_{k=0}^n (-1)^k x^k + o(x^n)$	$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 + \dots + (-1)^n x^n + o(x^n)$	
$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots + x^n + o(x^n)$ $= \sum_{k=0}^n x^k + o(x^n)$	$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots + x^n + o(x^n)$	$= \sum_{k=0}^{n} x^k + o(x^n)$
$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + \dots + \binom{1/2}{n}x^n + o(x^n) = \sum_{k=0}^n \binom{1/2}{k}x^k + o(x^n)$	$\sqrt{1+x}$ = $1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + \dots + {1/2 \choose n}x^n + o(x^n)$	$= \sum_{k=0}^{n} \binom{1/2}{k} x^k + o(x^n)$
$\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \dots + \binom{-1/2}{n}x^n + o(x^n) = \sum_{k=0}^n \binom{-1/2}{k}x^k + o(x^n)$	$\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \dots + {\binom{-1/2}{n}}x^n + o(x^n)$	$= \sum_{k=0}^{n} {\binom{-1/2}{k}} x^k + o\left(x^n\right)$
$\sqrt[3]{1+x} = 1 + \frac{1}{3}x - \frac{1}{9}x^2 + \frac{5}{81}x^3 + \dots + \binom{1/3}{n}x^n + o(x^n) = \sum_{k=0}^n \binom{1/3}{k}x^k + o(x^n)$	$\sqrt[3]{1+x}$ = $1 + \frac{1}{3}x - \frac{1}{9}x^2 + \frac{5}{81}x^3 + \dots + \binom{1/3}{n}x^n + o(x^n)$	$= \sum_{k=0}^{n} {1/3 \choose k} x^k + o(x^n)$
1 1 2 7 $(-1/3)$ $\sum_{i=1}^{n} (-1/3)^{i}$ $k \in \mathbb{N}$	$\frac{1}{\sqrt[3]{1+x}} = 1 - \frac{1}{3}x + \frac{2}{9}x^2 - \frac{7}{81}x^3 + \dots + \binom{-1/3}{n}x^n + o(x^n)$	$= \sum_{k=0}^{n} {\binom{-1/3}{k}} x^k + o\left(x^n\right)$

Si ricordi che $\forall \alpha \in \mathbb{R}$ si pone $\binom{\alpha}{0} = 1$ e $\binom{\alpha}{n} = \overbrace{\alpha \left(\alpha - 1\right) \cdots \left(\alpha - n + 1\right)}^{n \text{ fitteri}}$ se $n \geq 1$.

2 Serie (analisi I)

2.1 Serie notevoli

2.1.1 serie geometrica

$$\sum_{n=0}^{\infty} q^n = \lim_{k \to \infty} \frac{1 - q^{k+1}}{1 - q} = \begin{cases} \frac{1}{1 - q} & se \quad -1 < q < 1 \\ +\infty & se \quad q \ge 1 \\ irregolare & se \quad q \le -1 \end{cases}$$

2.1.2 serie armonica

$$\sum_{n=1}^{\infty} \frac{1}{n} \ge \log(n+1) \to +\infty$$

2.1.3 serie armonica generalizzata

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$
 per $\alpha \leq 1$
$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \geq \sum_{n=1}^{\infty} \frac{1}{n} \to +\infty \quad \text{diverge}$$
 per $\alpha > 1$
$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} = converge$$
 per $\alpha = 2$
$$\sum_{n=1}^{\infty} \frac{1}{n^{2}} = \frac{\pi^{2}}{6} \left(\sim \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = serie \quad di \quad mengoli \right)$$

2.1.4 serie di mengoli

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1} \to 1$$

2.1.5 numero e

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$$

2.1.6 sviluppi di Taylor delle funzioni elementari

$$e^{x} = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{x^{k}}{k!} = \sum_{k=0}^{+\infty} \frac{x^{k}}{k!}$$

$$sin(x) = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k+1}}{(2k+1)!} = \frac{e^{ix} - e^{-ix}}{2}$$

$$cos(x) = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k}}{(2k)!} = \frac{e^{ix} + e^{-ix}}{2}$$

$$Sh(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$$

$$Ch(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$$

$$log(1+x) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^{k}}{k} \quad per \quad |x| < 1$$

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} \binom{\alpha}{k} x^{k} \quad \text{per } \alpha \in \mathbb{R} \text{ e per } |x| < 1$$

2.2 Criteri e teoremi

teor. Condizione necessaria affinché una serie $\sum_{n=0}^{\infty} a_n$ converga è che il termine generale a_n tenda a zero. (Cioè perchè la serie converga, il termine a_n deve tendere a zero, ma non per forza se il termine a_n tende a zero allora la serie converge)

teor. supponiamo che una serie $\sum_{n=0}^{\infty} a_n$ converga, allora per ogni k anche risulta convergente anche $\sum_{n=k}^{\infty} a_n$.

Criterio serie a termini non negativi Una serie $\sum_{n=0}^{\infty} a_n$ a termini non negativi è convergente o divergente a $+\infty$. Essa converge se e solo se la successione delle somme parziali n-esime è limitata.

Criterio del confronto Siano $\sum an$ e $\sum b_n$ due serie a termini non negativi tali che $a_n < b_n$ definitivamente, allora:

- $\sum b_n$ convergente $\Rightarrow \sum a_n$ convergente.
- $\sum a_n$ divergente $\Rightarrow \sum b_n$ divergente.

Criterio del confronto asintotico Se $a_n \sim b_n$, allora le corrispondenti serie $\sum a_n$ e $\sum b_n$ hanno lo stesso carattere (o entrambe divergenti o entrambe divergenti)

Criterio della radice Sia $\sum a_n$ una serie a termini non negativi. Se esiste il limite

$$\lim_{n \to +\infty} \sqrt[n]{a_n} = l$$

- l > 1 la serie diverge $+\infty$
- l < 1 la serie converge
- l=1 nulla si può concludere

Spesso utilizzato con termini che hanno come esponente n.

Criterio del rapporto Sia $\sum a_n$ una serie a termini positivi. Se esiste il limite

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = l$$

- l>1 diverge $+\infty$
- l < 1 converge
- ullet l=1 nulla si può concludere

Spesso utilizzato quando si hanno termini come n^n e n!.

Criterio serie a termini di segno variabile Una serie $\sum a_n$ si dice assolutamente convergente se converge la serie $\sum |a_n|$. Se la serie $\sum a_n$ converge assolutamente, allora converge.

Criterio di Leibniz Sia data la serie

$$\sum_{n=0}^{\infty} (-1)^n a_n \ con \ a_n \ge 0 \ \forall \ n$$

Se la successione $\{a_n\}$ è decrescente e se $a_n \to 0$ per $n \to \infty$, allora la serie è convergente.

Il criterio di Leibniz può essere applicato anche se i termini sono definitivamente di segno alterno e la successione a_n è definitivamente decrescente.

Per verificare la decrescenza bisogna dimostrare che $a_{n+1} < a_n$ oppure mediante il limite a $+\infty$ della derivata prima di a_n o studiano quando la derivata prima di $a_n < 0$.

Per determinare se una serie è decrescente non vanno usati gli asintotici!

Criterio della somma di serie convergenti Se $\sum_{n=1}^{\infty} a_n$ converge e $\sum_{n=1}^{\infty} b_n$ converge, allora $\sum_{n=1}^{\infty} a_n + b_n$ converge.

Criterio della somma di serie convergenti e divergenti Se $\sum_{n=1}^{\infty}a_n$ converge e $\sum_{n=1}^{\infty}b_n$ diverge, allora $\sum_{n=1}^{\infty}a_n+b_n$ diverge.

Criterio serie a termini complessi Sia la serie $\sum_{n=0}^{\infty}a_n$ con a_n complesso, se la serie $\sum_{n=0}^{\infty}|a_n|$ converge, allora anche $\sum_{n=0}^{\infty}a_n$ converge

Criterio di Dirichlet Siano a_n e b_n due succesioni tali che:

- $\bullet \ a_n$ è a valori complessi e la sua successione delle somme parziali è limitata.
- ullet b_n è a valori reali positivi e tende monotonamente a zero

allora la serie $\sum a_n b_n$ è convergente.

3 Serie di funzioni (analisi II)

3.1 Serie di potenze

3.1.1 Nel campo complesso

def. Sia $\{a_n\}$ una successione di numeri complessi e sia $z_0\in\mathbb{C}.$ La serie

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n$$

si chiama **serie di potenza centrata** in z_0 .

Con la semplice traslazione $z-z_0 \to z$ possiamo ricondurci al caso $z_0=0$:

$$\sum_{n=0}^{\infty} a_n z^n$$

Una serie di potenze ammette un $R \in [0, +\infty]$ tale che converge se |z| < R, non converge se |z| > R e nulla si può dire se |z| = R.

Criterio del rapporto: Se esiste

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

allora la serie $\sum_{n=0}^{\infty} a_n z^n$ converge se |z| < R e non converge se |z| > R.

Criterio della radice: Se esiste

$$R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}$$

allora la serie $\sum_{n=0}^{\infty} a_n z^n$ converge se |z| < R e non converge se |z| > R.

L'insieme di convergenza di una serie di potenze in $\mathbb C$ è un disco.

Se $R=+\infty$ il disco è tutto \mathbb{C} , se R=0 il disco è vuoto. Il numero $R\in [0,+\infty]$ si chiama **raggio di convergenza** della serie di potenza.

Questi due criteri non dicono nulla sul comportamento della serie nei punti sul bordo del disco, cioè |z|=R.

teor. Sia $\{a_n\}$ una successione di numeri complessi tale che la serie di potenze

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

converga per |z| < R (con R > 0). Allora le serie ottenute derivando e integrando termine a termine, e cioè

$$\sum_{n=1}^{\infty} n a_n z^{n-1} \qquad \sum_{n=0}^{\infty} \frac{a_n}{n+1} z^{n+1}$$

sono rispettivamente la derivata e una primitiva della funzione f; inoltre, il loro raggio di convergenza è ancora R.

3.1.2 Nel campo reale

Diremo che una serie di funzioni $\sum_n f_n(x)$ converge puntualmente per ogni $x \in I$ se la serie numerica $\sum_n f_n(x)$ converge per ogni $x \in I$.

$$f(x) = \sum_{n=0}^{\infty} f_n(x) = \lim_{k \to \infty} \sum_{n=0}^{k} f_n(x) \quad \forall \ x \in I$$

cioè

$$f_n(x) o f(x)$$
 puntualmente se $\lim_{n o \infty} f_n(x) = f(x)$

Diremo che la serie di funzioni $\sum_n f_n(x)$ converge uniformemente a f(x) su I se

$$\lim_{k \to \infty} \sup_{x \in I} \left| f(x) - \sum_{n=0}^{k} f_n(x) \right| = 0$$

dove $f(x) = \sum_{n=1}^{\infty} f_n(x)$ è il limite puntuale della serie e $\sum_{n=0}^{k} f_n(x)$ è la somma parziale ennesima della serie.

Cioè

$$f_n(x) \to f(x)$$
 uniformemente se $\lim_{n \to \infty} \sup_{x \in I} |f_n(x) - f(x)| = 0$

Diremo che la serie di funzioni $\sum_n f_n(x)$ converge totalmente su I se

$$\sum_{n=0}^{\infty} \sup_{x \in I} |f_n(x)| < +\infty$$

convergenza totale \implies convergenza uniforme \implies convergenza puntuale

Serie di potenza nel campo reale:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

che possiamo traslare nell'origine:

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$

Criteri del rapporto e della radice: Si possono ancora usare i criteri della radice e del rapporto specificati nel campo complesso, R rappresenta ancora il raggio del disco di convergenza nel piano complesso, ma essendo interessati all'asse reale si considera il solo intervallo (-R,R).

La serie di potenza nel campo reale converge **puntualmente** per ogni $x \in (-R, R)$, dove R è dato dal criterio del rapporto o dal criterio della radice, e non converge se |x| > R.

Come nel caso complesso, non possiamo dire nulle sulla convergenza in $x = \pm R$.

Per quanto riguarda la convergenza **uniforme**, la serie di potenza nel campo reale converge uniformemente in $[-R+\epsilon,R-\epsilon]$ per ogni $\epsilon\in(0,R)$.

Criterio di Abel: Se la serie di potenza $\sum_{n=0}^{\infty} a_n x^n$ converge per x=R, allora converge uniformemente in $[-R+\epsilon,R]$ per ogni $\epsilon\in(0,R)$; analogo risultato se la serie converge per x=-R. Se la serie converge per $x=\pm R$ allora converge uniformemente su tutto [-R,R].

teor. (Integrazione per serie)

Se la serie di potenza $\sum_{n=0}^{\infty} a_n x^n$ converge uniformemente a f su [c,d] allora

$$\int_{c}^{d} f(x)dx = \int_{c}^{d} \left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) dx = \sum_{n=0}^{\infty} a_{n} \int_{c}^{d} x^{n} dx = \sum_{n=0}^{\infty} a_{n} \frac{d^{n+1} - c^{n+1}}{n+1}$$

teor. (Derivazione per serie)

Date le serie

$$(1) \sum f_n(x) \qquad (2) \sum f'_n(x),$$

se sono verificate le seguenti ipotesi:

- le f_n sono continue nell'intervallo (a, b),
- la serie (2) converge uniformemente in (a, b),
- la serie (1) converge per $x = x_0 \in (a, b)$

allora valgono le seguenti tesi:

• la serie (1) converge uniformemente in (a,b) (quindi converge a una funzione continua),

- la serie (1) converge a una funzione derivabile in (a,b),
- è possibile derivare la (1) termine a termine, cioè

$$\frac{d}{dx}\left(\sum f_n(x)\right) = \sum f'_n(x).$$

3.1.3 Serie di Taylor / MacLaurin

Introduciamo una vasta classe di funzioni elementari delle quali sappiamo scrivere esplicitamente le serie di potenza che le rappresentano.

Data una funzione f di classe C^{∞} in un punto x_0 , possiamo scrivere formalmente

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

che, se poniamo $a_n=f^{(n)}(x_0)/n!$, coincide con una serie di potenza nel campo reale. Se R>0 e la serie converge a f, allora la scrittura non è solo formale ma vale per ongi $x\in (x_0-R,x_0+R)$. In tale intervallo si ha convergenza puntuale, mentre la convergenza uniforme è garantita negli intervalli $[x_0-R+\epsilon,x_0+R-\epsilon]$ per ogni $\epsilon\in (0,R)$.

$$e^x = \sum_{n=0}^\infty \frac{x^n}{n!} \quad (R=\infty)$$

$$Ch(x) = \text{termini pari dello sviluppo di } e^x = \sum_{n=0}^\infty \frac{x^{2n}}{(2n)!} \quad (R=\infty)$$

$$Sh(x) = \text{termini dispari dello sviluppo di } e^x = \sum_{n=0}^\infty \frac{x^{2n+1}}{(2n+1)!} \quad (R=\infty)$$

$$sin(x) = \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} x^{2n+1} \quad (R=\infty)$$

$$cos(x) = \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!} x^{2n} \quad (R=\infty)$$

$$\frac{1}{1-x} = \sum_{n=0}^\infty x^n \quad (R=1)$$

$$\begin{cases} \text{se } x = 1 : \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} \quad (\text{converge per Leibniz}) \\ \text{se } x = -1 : \sum_{n=1}^\infty \frac{-1}{n} \quad (\text{diverge, serie armonica}) \end{cases}$$

$$\frac{1}{1+x^2} = \sum_{n=0}^\infty -1^n \cdot x^{2n} \quad (R=1)$$

$$arctan(x) = \sum_{n=0}^\infty (-1)^n \frac{x^{2n+1}}{2n+1} \quad (R=1)$$

$$(1+x)^\alpha = \sum_{n=0}^\infty \binom{\alpha}{n} x^n \quad (R=1)$$

3.2 Serie di Fourier

3.2.1 Forma trigonometrica

Nello studio delle serie di potenza $\sum_n a_n z^n$ abbiamo visto che i problemi principali riguardano lo studio di |z|=R con R raggio di convergenza. Per tali possiamo scrivere $z=R(cos(\theta)+sin(\theta))$ e ottenere:

$$\sum_{n=0}^{\infty} a_n R^n(\cos(n\theta) + i\sin(n\theta))$$

Se $\{a_n\}\subset\mathbb{R}$, siamo quindi portati a studiare la convergenza di serie trigonometriche del tipo

$$\sum_{n=0}^{\infty} \alpha_n cos(n\theta) \qquad \sum_{n=1}^{\infty} \beta_n sin(n\theta)$$

Per ogni scelta di $\alpha_n, \beta_n \in \mathbb{R}$ le funzioni

$$a_0 + \sum_{n=1}^{\infty} (\alpha_n cos(nx) + \beta_n sin(nx))$$

si chiamano **polinomi trigonometrici** di grado k; che sono funzioni periodiche di periodo 2π che hanno valor medio α_0 su $[0, 2\pi]$.

Diremo che una serie in forma trigonometrica converge se converge una successione di polinomi trogonometrici.

oss.

$$\sum_{n=1}^{\infty}(|\alpha_n|+|\beta_n|)<\infty\Rightarrow \text{converge totalmente su }[0,2\pi]\Rightarrow \text{converge uniformemente}\Rightarrow \text{converge puntualmente}$$

oss. La serie trigonometrica può perdere la convergenza dopo una derivazione.

Criterio di Dirichlet

$$\alpha_n, \beta_n \downarrow 0 \Rightarrow$$
 polinomio trigonometrico converge puntualmente su $(0, 2\pi)$

dove con il simbolo $\downarrow 0$ indichiamo che le successioni descrescono monotonamente a 0 e che sono positive.

Lemma. Per ogni $m, n = 1, 2, \ldots$ risulta

$$\begin{split} \int_0^{2\pi} \sin(nx) dx &= \int_0^{2\pi} \cos(nx) = 0 \\ \int_0^{2\pi} \sin(mx) \cos(nx) dx &= 0 \\ \int_0^{2\pi} \sin^2(nx) dx &= \int_0^{2\pi} \cos^2(nx) dx = \pi \\ \int_0^{2\pi} \sin(mx) \sin(nx) dx &= \int_0^{2\pi} \cos(mx) \sin(nx) dx = 0 \quad \text{se } m \neq n \end{split}$$

Si trovano gli stessi valori integrando su qualunque intervallo di ampiezza 2π .

teor. calcolo delle serie di Fourier per funzioni 2π -periodiche Se una funzione f è 2π -periodica ed è sviluppabile in serie di Fourier, si ha che

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n cos(nx) + b_n sin(nx))$$

allora

$$a_n = \frac{1}{\pi} \int_I f(x) cos(nx) dx \quad \forall \ n \ge 0$$

$$b_n = \frac{1}{\pi} \int_I f(x) \sin(nx) dx \quad \forall \ n \ge 1$$

dove l'intervallo I è un qualunque intervallo di ampiezza 2π (tipicamente si prende da $-\pi$ a π , per sfruttare eventuali simmetrie. . .) e il termine a_0 si calcola come $a_0=\frac{1}{\pi}\int_I f(x)dx$. Gli a_n e b_n vengono chiamati **coefficienti di Fourier** di f, mentre la serie $f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}(a_ncos(nx)+b_nsin(nx))$ viene chiamata **serie di Fourier** associata a f.

oss. Gli integrali del teorema si possono calcolare se risulta $\int_0^{2\pi} |f| < \infty$ e cioè se l'integrale improprio di |f| è convergente.

Diremo che la serie

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n cos(nx) + b_n sin(nx))$$

converge in media quadratica alla f se

$$\lim_{k \to \infty} \int_0^{2\pi} \left| f(x) - \frac{a_0}{2} - \sum_{n=1}^k \left(a_n \cos(nx) + b_n \sin(nx) \right) \right|^2 dx = 0$$

teor. Sia f una funzione 2π -periodica tale che $\int_0^{2\pi} f^2 < \infty$. Allora la sua serie di Fourier converge a f in media quadratica.

Definiamo lo spazio X delle funzioni f tali che $\int_0^{2\pi} f^2 < \infty$ e introduciamo il "prodotto scalare" definito come

$$(x,g)_X = \frac{1}{\pi} \int_0^{2\pi} f(x)g(x)dx \quad \forall f,g \in X$$

per cui troviamo che

$$B = \left\{ \frac{1}{\sqrt{2}}, \cos(nx), \sin(nx) \right\}_{n=1}^{\infty}$$

è ortonormale in X.

teor. Identità di Parseval

Sia $f \in X$ e sia $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n cos(nx) + b_n sin(nx))$ la sua serie di Fourier. Allora

$$\frac{1}{\pi} \int_0^{2\pi} f(x)^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

Per il teorema di Riemann-Lebesgue sappiamo che $a_n, b_n \to 0$ per $n \to \infty$.

convergenza uniforme ⇒ convergenza in media quadratica ⇒ ⇒ convergenza puntuale su sottosuccession in quasi ogni punto

def. Diciamo che $f:[0,2\pi]\to\mathbb{R}$ è **regolare a tratti** se è limitata in $[0,2\pi]$ e se l'intervallo $[0,2\pi]$ si può scomporre in un numero finito di sottointervalli su ciascuno dei quali f è continua e derivabile; inoltre, agli estremi di ogni sottointervallo, esistno finiti i limiti sia di f che di f'.

oss. se $f\in C^1[0,2\pi]$ allora f è regolare a tratti. Ma anche se ci sono punti angolosi o punti di discontinuità a salto, purchè f e f' abbiano limiti finiti in prossimità dei salti, allora f è regolare a tratti. Non devono esserti asintoti verticali o punti a tangenza verticale.

Se una funzione f è regolare a tratti allora la sua serie di Fourier converge a f in media quadratica. Dunque a meno di pochi possibili punti, la conergenza sarà anche puntuale.

teor. Sia $f:[0,2\pi]\to\mathbb{R}$ regolare a tratti. Allora la sua serie di Fourier converge in ogni punto $x_0\in[0,2\pi]$ alla media dei due limiti $f(x_0^\pm)$:

$$\frac{a_0}{2} + \sum_{n=0}^{\infty} \left(a_n cos(nx_0) + b_n sin(nx_0) \right) = \frac{f(x_0^+) + f(x_0^-)}{2}$$

con la convenzione che $f(0^{\pm})=f(2\pi^{\pm})$. In particolare, se f è continua in x_0 , allora la serie converge a $f(x_0)$.

3.2.2 Funzioni con periodi diversi da 2π

Come ci si comporta in presenza di funzioni con periodo $T \neq 2\pi$? L'unica differenza sta nel calcolo dei coefficienti di Fouriere:

$$a_n = \frac{2}{T} \int_0^T f(x) \cos\left(\frac{2\pi n}{T}x\right) dx, \qquad b_n = \frac{2}{T} \int_0^T f(x) \sin\left(\frac{2\pi n}{T}x\right)$$

La funzione f si scrive allora:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{2\pi n}{T}x\right) + b_n \sin\left(\frac{2\pi n}{2}x\right) \right)$$

Tutti i teoremi valgono allo stesso modo, l'unico da "sistemare" è l'identità di Parseval, che, per fuznioni T-periodiche f soddisfacenti $\int_0^T f^2 < \infty$, diventa:

$$\frac{2}{T} \int_0^T f(x)^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

3.2.3 Forma esponenziale complessa

La formula di Eulero, $e^{i\theta} = cos(\theta) + isin(\theta)$, suggerisce di scrivere una serie di Fourier utilizzando gli esponenziali.

$$f_n = \frac{a_n - ib_n}{2} = \frac{1}{2\pi} \int_0^{2\pi} f(x)(\cos(nx) - i\sin(nx)) dx = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-inx}$$

$$f_{-n} = \frac{a_n + ib_n}{2} = \frac{1}{2\pi} \int_0^{2\pi} f(x)(\cos(nx) + i\sin(nx)) dx = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{inx}$$

da cui

$$a_n = f_n + f_{-n}$$
$$b_n = i(f_n)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n cos(nx) + b_n sin(nx)) = \sum_{n=-\infty}^{\infty} f_n e^{inx}$$

Identità di Parseval:

$$\frac{1}{2\pi} \int_0^{2\pi} f(x)^2 dx = \sum_{n=-\infty}^{\infty} |f_n|^2$$

3.3 Note sugli esercizi

3.3.1 Serie di potenze nel campo reale

Sono dette serie di potenza le serie di funzioni della forma:

$$\sum_{n} a_n x^n \qquad \sum_{n} a_n (x - x_0)^n$$

in cui la prima si dice centrata nell'origine e la seconda centrata in x_0 (con la semplice traslazione di $x-x_0$ a x ci si può sempre ricondurre al caso $x_0=0$).

Una volta calcolato il raggio di convergenza R come

$$R = \lim_{n \to +\infty} \frac{|a_n|}{|a_{n+1}|} \qquad \qquad R = \lim_{n \to +\infty} \frac{1}{\sqrt[n]{|a_n|}}$$

dove l'uso della prima o della seconda è suggerito dalle circostanze, ci sono tre casi possibili:

- R=0, la serie converge se e solo se $x=x_0$;
- $R = +\infty$, la serie converge puntualmente per ogni $x \in \mathbb{R}$;
- $0 < R < \infty$,
 - la serie converge puntualmente se $|x-x_0| < R$, ossia nell'intervalo (x_0-R,x_0+R)
 - la serie non converge se $|x x_0| > R$
 - nulla si può dire riguardo al comportamento della serie nei punti $x=x_0-R$ e $x=x_0+R$

Per calcolare il raggio di convergenza R si usano due formule:

$$R = \lim_{n \to +\infty} \frac{|a_n|}{|a_{n+1}|}$$

$$R = \lim_{n \to +\infty} \frac{1}{\sqrt[n]{|a_n|}}$$

3.3.2 Convergenza uniforme per serie di potenza

Se una serie di potenze converge per $x \in (a,b)$, si dimostra che tale serie converge uniformemente in ogni intervallo $[\alpha,\beta]$ con $a<\alpha<\beta< b$.

Vale inoltre il **teorema di Abel**: se la serie di potenze $\sum a_n(x-x_0)^n$, converge negli estremi di un intervallo [a,b], allora converge uniformemente in tutto l'intervallo [a,b].

Possibili casi:

- converge in $x \in [a, b]$, converge uniformemente in [a, b]
- converge in $x \in [a,b)$, fissato un $\epsilon > 0$, converge uniformemente in $[a,b-\epsilon]$
- converge in $x \in (a, b]$, fissato un $\epsilon > 0$, converge uniformemente in $[a + \epsilon, b]$
- converge in (a,b), fissato un $\epsilon > 0$ e $\delta > 0$, converge uniformemente in $[a+\delta,b-\epsilon]$
- converge per x uguale a un solo punto, non ha senso parlare di convergenza uniforme
- converge per $x \in \mathbb{R}$, converge uniformemente in $[\alpha, \beta]$ con $-\infty < \alpha < \beta < +\infty$

3.3.3 Sviuluppabilità in serie di Fourier

Una funzione periodica $f: \mathbb{R} \to \mathbb{R}$ è sviluppabile in serie di Fourier se vale una delle due condizioni seguenti:

- \bullet f è limitata e monotona a tratti su un periodo, oppure
- il quadrato di f è integrabile su un periodo (vale meno di ∞).

Inoltre se la funzione f è continua in x_0 , allora la serie di Fourier converge al valore della funzione, viceversa se in x_0 è presente una discontinuità di prima specie (ma f è limitata e monotona a tratti):

$$\lim_{x \to x_0^-} f(x) = f_-(x_0)$$

$$\lim_{x \to x_0^+} f(x) = f_+(x_0)$$

$$f_{-}(x_0) \neq f_{+}(x_0)$$

allora (quale sia il valore che f assume in x_0) il valore della serie in x_0 è la media aritmentica dei due valori:

$$\frac{f_{-}(x_0) + f_{+}(x_0)}{2}$$

In parole povere, **per valutare se la funzione sia rappresentabile o meno con una serie di Fourier**, per prima cosa si controlla se è limitata e monotona tratti su un periodo (si capisce con una analisi grafica), se lo è allora la funzione è rappresentabile con Fourier. Altrimenti si può usare anche un metodo analitico: si prende la funzione, e si fa l'integrale $\int_0^{2\pi} f^2$, se l'integrale ha un valore finito, allora la funzione può essere sviluppata con una serie di Fourier. Da notare che l'integrale può essere svolto anche in senso generalizzato per risolvere puntii in cui la funzione va a ∞ .

Per valutare per quali valori di x la serie converge effettivamente alla funzione indicata, si usa il seguente criterio: dove la funzione è continua, la serie converge al valore della funzione, dove ci sono discontinuità a salto la serie converge al valor medio degli estremi del salto, dove ci sono altri tipi di discontinuità non si può concludere nulla sul comportamento della seria.

3.3.4 Calcolo delle serie di Fourier per funzioni 2π -periodiche

Se una funzione f è 2π -periodica ed è sviluppabile in serie di Fourier, si ha che

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n cos(nx) + b_n sin(nx))$$

allora

$$a_n = \frac{1}{\pi} \int_I f(x) cos(nx) dx \quad \forall \ n \ge 0$$

$$b_n = \frac{1}{\pi} \int_I f(x) \sin(nx) dx \quad \forall \ n \ge 1$$

dove l'intervallo I è un qualunque intervallo di ampiezza 2π (tipicamente si prende da $-\pi$ a π , per sfruttare eventuali simmetrie...) e il termine a_0 si calcola come $a_0 = \frac{1}{\pi} \int_I f(x) dx$.

3.3.5 Semplificazioni nel calcolo delle serie di Fourier per funzioni pari e dispari

I coefficienti di Fourier di funzioni 2π -periodiche si possono calcolare integrando su un qualunque intervallo di ampiezza 2π . Tipicamente si sceglie l'intervallo $[-\pi,\pi]$ perchè permette di sfruttare eventuali simmetrie della funzione f.

Infatti, se la funzione f è **pari** allora risulta pari anche f(x)cos(nx) mentre risulta dispari f(x)sin(nx), dunque:

$$f \text{ pari } \Rightarrow a_n = \frac{2}{\pi} \int_0^{\pi} f(x) cos(nx) dx, \quad b_n = 0$$

Invece, se la funzione f è **dispari** allora risulta dispari anche la funzione f(x)cos(nx) mentre risulta pari f(x)sin(nx), dunque:

$$f$$
 dispari $\Rightarrow a_n = 0, \quad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) sin(nx) dx$

3.3.6 Riassunto dei criteri per la convergenza della serie di Fourier $\sum F$

Appunti prof:

Condizione di partenza:

$$\int_0^{2\pi} f^2 < \infty \Leftrightarrow \text{possiamo calcolare } \{a_n, b_n\}$$

- se $\sum_{n=1}^{\infty}(|a_n|+|b_n|)<\infty$ (converge) $\Rightarrow \sum F \to f$ totalmente $\Rightarrow \sum F \to f$ uniformemente. Proprietà: una successione/serie di funzioni continue che converge uniformemente ha limite continuo.
- ullet se f non è continua, la serie di Fourier $\sum F$ non può convergere uniformemente.
- $\int_0^{2\pi} f^2 < \infty$ e cioè $\sum_{n=0}^\infty (a_n^2 + b_n^2) < \infty$ \iff $\sum F \to f$ in media quadratica.
- Criterio di Dirichlet: se $a_n, b_n \downarrow 0 \Rightarrow \sum F \rightarrow f$ puntualmente su $(0, 2\pi)$.
- f regolare a tratti $\Rightarrow \sum F(x) o rac{f(x)^+ + f(x)^-}{2}$ puntualmente su $[0,2\pi]$

Note dal libro di esercizi:

Data la generica funzione di Fourier:

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n cos(nx) + b_n sin(nx)$$

per stabilirne la convergenza è possibile percorrere due strade:

- Criterio di Dirichlet: se le successioni a_n e b_n sono monotone decrescenti e tendono a 0, allora la serie di Fourier covnerge in tutti i punti, tranne al più in $x=2k\pi$.
- Criterio di Weierstrass per le serie di funzioni: Data una serie di funzioni $\sum f_n(x)$, se per $x \in [a,b]$ si ha che
 - $-|f_n(x)| \le c_n$
 - $-\sum c_n$ converge

allora la serie di partenza converge uniformemente in tutto l'intervallo [a,b]. Per usarlo con le serie di Fourier: poichè

$$|a_n cos(nx) + b_n sin(nx)| \le |a_n| + |b_n|$$

se la serie $\sum |a_n| + |b_n|$ converge, allora la serie di Fourier converge (uniformemente), e quindi la funzione a cui converge è continua.

Inoltre, poichè derivando la funzione termine a termine, otteniamo la serie

$$\sum_{n=1}^{\infty} (nb_n)cos(nx) - (na_n)sin(nx)$$

è sufficiente riapplicare a quust'ultima i criteri di convergenza, per controllare se la serie di partenza converge a una funzione derivabile.

3.3.7 Armoniche

Data una serie di Fourier:

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n cos(nx) + b_n sin(nx))$$

Allora può essere riscritta nella forma

$$f(x) \sim \text{valor medio } + \sum_{n=1}^{\infty} \alpha_n cos(nx + \theta_n)$$

di cui dobbiamo ricavare α_n e θ_n :

$$\alpha_n = \sqrt{a_n^2 + b_n^2}$$

е

$$cos(\theta_n) = \frac{a_n}{\sqrt{a_n^2 + b_n^2}}$$

$$sin(\theta_n) = -\frac{b_n}{\sqrt{a_n^2 + b_n^2}}$$

da cui si ricava che θ_n è:

$$\theta_n = \begin{cases} \arctan\left(\frac{-b_n}{a_n}\right) & \text{se } a_n > 0\\ \pi + \arctan\left(\frac{-b_n}{a_n}\right) & \text{se } a_n < 0 \end{cases}$$

se $a_n=0$, non si può usare l'arcotangente, ma in tal caso la trasposizione è banale e diventa diventa:

$$b_n sin(nx) = b_n cos(nx - \frac{\pi}{2})$$

4 Funzioni $\mathbb{R} \to \mathbb{R}^n$ ("Funzioni di una variabile a valori vettoria-li", "Curve nel piano e nello spazio")

4.1 Introduzione alle funzioni $R \rightarrow R^n$

4.1.1 Definizioni e terminologia

Si dice funzione a valori vettoriali una funzione $\vec{f}: \mathbb{R} \to \mathbb{R}^n$ con n > 1.

Il limite della funzione a valori vettoriali si calcola componente per componente:

$$\lim_{t \to t_0} (r_1(t), r_2(t), \dots, r_n(t)) = \left(\lim_{t \to t_0} r_1(t), \lim_{t \to t_0} r_2(t), \dots, \lim_{t \to t_0} r_n(t) \right)$$

Valgono allo stesso modo delle funzioni unidimensionali il teorema di unicità del limite e la definizione di **continuità** (una funzione a valori vettoriali è continua in un punto se lo sono tutte le sue componenti).

Nel caso n=2 o 3, una funzione $\vec{f}:\mathbb{R}\to\mathbb{R}^n$ rappresenta una curva nel piano o nello spazio tridimensionale.

Sia I un intervallo in $\mathbb R$. Si dice **arco di curva continua**, o **cammino**, in $\mathbb R^n$ una funzione $\vec r:I\to\mathbb R^n$ continua.

Una curva si dice **chiusa** se $\vec{r}(a) = \vec{r}(b)$ con I = [a, b].

Una curva si dice **semplice** se non ripassa mai nello stesso punto, cioè se $r:(a,b)\to\mathbb{R}^n$ è iniettiva..

Una curva si dice **piana** se esiste un piano che contiene il suo sostegno (in particolare tutte le curve $f: \mathbb{R} \to \mathbb{R}^n$ con n=2).

Il **sostegno** della curva è l'immagine della funzione, cioè l'insieme dei punti di \mathbb{R}^n percorsi dal punto mobile.

Due curve si dicono equivalenti se hanno lo stesso sostegno.

4.1.2 Calcolo differenziale per funzioni $R \rightarrow R^n$

Sia $\vec{r}:I \to \mathbb{R}^n$ e $t_0 \in I$, si dice che \vec{r} è **derivabile** in t_0 se esiste finito

$$\vec{r}'(t_0) = \lim_{h \to 0} \frac{\vec{r}(t_0 + h) - \vec{r}(t_0)}{h}$$

Se \vec{r} è derivabile in tutto I e inoltre \vec{r}' è continuo in I, si dice che \vec{r} è di **classe** $C^1(I)$ ($\vec{r} \in C^1(I)$).

Notiamo che il vettore derivato è il vettore delle derivate delle componeneti:

$$\vec{r'}(t_0) = (r'_1(t_0), r'_2(t_0), \dots, r'_n(t_0))$$

Sia $I\subseteq\mathbb{R}$ un intervallo. Si dice arco di curva **regolare** un arco di curva $\vec{r}:I\to\mathbb{R}^n$ tale che $\vec{r}\in C^1(I)$ e $\vec{r}'(t)\neq 0$ per ogni $t\in I$ (solo nell'intervallo aperto, queste due proprietà possono non verificarsi agli estremi).

Il fatto che $\vec{r}'(t) \neq 0$ è una proprietà il cui significato è vettoriale: le componenti di $\vec{r}'(t)$ non possono annullarsi contemporanemente, e cioè che $|\vec{r}'(t)| \neq 0$, cioè che il punto mobile non si ferma mai $(\vec{r}'(t)$ rappresenta la velocità).

Dato un vettore $\vec{r}(t)$ si dice

• velocità: $\vec{r}'(t)$

• velocità scalare: $|\vec{r}'(t)|$

• accellerazione: $\vec{r}''(t)$

• accellerazione scalare: $|\vec{r}''(t)|$

Di conseguenza per le curve regolari è ben definito il versore tangente:

$$\vec{T} = \frac{\vec{r}'(t)}{|\vec{r}'(t)|}$$

Si dice arco di curva **regolare a tratti** un arco di curva $\vec{r}:I\to\mathbb{R}^n$ tale che: \vec{r} è continua e l'intervallo I può essere suddiviso in un numero finito di sottointervalli, su ciascuno dei quali \vec{r} è un arco di curva regolare.

Alcune proprietà del calcolo differenziale vettoriale:

$$(\vec{u}+\vec{v})' = \vec{u}' + \vec{v}'$$

$$(c\vec{u})' = c\vec{u}' \quad \text{con c costante}$$

$$(f\vec{u})' = f'\vec{u} + \vec{u}'f \quad \text{con } f \text{ funzione}$$

$$[\vec{u}(f(t))]' = \vec{u}'(f(t))f'(t)$$

$$(\vec{u}\cdot\vec{v})' = \vec{u}'\cdot\vec{v} + \vec{u}\cdot\vec{v}'$$

$$(\vec{u}\times\vec{v})' = \vec{u}'\times\vec{v} + \vec{u}\times\vec{v}' \quad in \ \mathbb{R}^3$$

4.1.3 Calcolo integrale per funzioni $R \rightarrow R^n$

$$\int_a^b \vec{r}(t)dt = \left(\int_a^b \vec{r_1}(t)dt, \int_a^b \vec{r_2}(t)dt, \dots, \int_a^b \vec{r_n}(t)dt, \right)$$

Diremo che \vec{r} è **integrabile** in [a,b] se lo è ognuna delle sue componenti.

$$\int_{a}^{b} \vec{r}'(t)dt = \vec{r}(b) - \vec{r}(a)$$

Può essere utile utilizzare il seguente lemma:

$$\left| \int_{a}^{b} \vec{r}(t)dt \right| \leq \int_{a}^{b} |\vec{r}(t)|dt$$

Se $\vec{r}(t)$ è una curva regolare e chiusa in [a,b], allora $\int_a^b \vec{r}'(t)dt = 0$.

4.2 Lunghezza di un arco di curva

4.2.1 Curve rettificabili e lunghezza

Si dice che γ è **rettificabile** se

$$sub_{\mathcal{P}}l(\mathcal{P}) = l(\gamma) < +\infty$$

Dove l'estremo superiore è calcolato al variare di tutte le possibili partizioni $\mathcal P$ di [a,b]. In tal caso $l(\gamma)$ assegna per definizione, la lunghezza di γ .

teor. Sia $\vec{r}:[a,b]\to\mathbb{R}^n$ la parametrizzazione di un arco di curva γ regolare. Allora γ è rettificabile e la sua **lunghezza** vale

$$l(\gamma) = \int_{a}^{b} |\vec{r}'(t)| dt$$

Nello spazio tridimensionale la formula diventa:

$$l(\gamma) = \int_{a}^{b} \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} dt$$

(Da un punto di vista fisico queste due formule ci dicono che lo spostamento è l'integrale della velocità, cosa ben nota).

Inoltre:

Sia γ l'unione di due curve rettificabili, allora γ è rettificabile, la stessa proprietà si estende a un numero finito qualsiasi di curve rettificabili.

Se una curva γ è regolare a tratti, allora è rettificabile.

Vediamo il caso in cui si vuole calcolare la lunghezza di una curva in forma cartesiana (una funzione...) y = f(x):

Sia γ una curva piana regolare che sia grafico di una funzione, ossia:

$$\gamma: \begin{cases} x=t \\ y=f(t) \end{cases} \qquad \text{per } t \in [a,b]$$

allora

$$l(\gamma) = \int_{a}^{b} \sqrt{1 + f'(t)^2} dt$$

Vediamo il caso in cui su vuole calcolare la **lunghezza di una curva in forma polare** $\rho = f(\theta)$: Sia γ una curva piana regolare in forma polare, ossia:

$$\gamma: \begin{cases} x = f(\theta)cos(\theta) \\ y = f(\theta)sin(\theta) \end{cases} \quad \text{per } \theta \in [\theta_1, \theta_2]$$

allora

$$l(\gamma) = \int_{\theta_1}^{\theta_2} \sqrt{g(\theta)^2 + g'(\theta)^2} d\theta$$

4.2.2 Riparametrizzazioni e parametro arco (o ascissa curvilinea)

Sostanzialmente, due curve equivalenti dipendono da un cambio di variabile. Se r=r(t) con $t\in [a,b]$ ha per sostegno γ e se $\phi:[c,d]\to [a,b]$ è una funzione continua e strettamente monotona (crescente o descrescente), allora la curva $\rho(t):=r(\phi(t))$, con $t\in [c,d]$, ha lo stesso sostegno di γ . Si usa dire che $\rho(t)$ è una **riparametrizzazione** di r(t).

Notiamo che dopo una riparametrizzazione la lunghezza dell'arco di curva rimane la stessa, anche se il verso o la velocità di percorrenza cambiano (es. per invertire il senso di percorrenza si può riparametrizzare t con -t).

Se invece di calcolare la lunghezza di una curva da un valore a a un valore b, cioè in [a,b], la calcolassimo in $[t_0,t]$, con t_0 un effettivo valore e t una variabile, otterremmo una funzione di t definita come:

$$s(t) = \int_{t_0}^t |\vec{r}'(\tau)| d\tau$$

Inoltre se si è in grado di calcolare esplicitamente tale funzione e poi di invertirla, esprimendo t come funzione di s, è possibile riparametrizzare la curva in funzione del parametro s, detto **parametro arco** o **ascissa curvilinea** (ricordarsi di ricalcolare anche gli estremi dell'intervallo secondo il nuovo parametro).

Notiamo che se $|\vec{r}'(t)| = 1$, t coincide con il parametro arco, quindi la curva sarebbe già parametrizzata secondo il parametro arco.

Se $\vec{r} = \vec{r}(s)$ è un curva parametrizzata mediante il parametro arco, il vettore derivato $\vec{r}'(s)$ coincide col **versore tangente** \vec{T} .

Se $\vec{r}(t)$ è una curva parametrizzata rispetto a un parametro t qualunque (non necessariamente il parametro arco), si ha:

$$\frac{ds}{dt} = |\vec{r}'(t)| = v(t)$$

che si riscrive anche nella forma

$$ds = |\vec{r}'(t)|dt = v(t)dt$$

dove il simbolo ds prende il nome di lunghezza d'arco elementare.

4.3 Integrali di linea (di prima specie)

Sia $\vec{r}:[a,b]\to\mathbb{R}$ un arco di curva regolare di sostegno γ e sia f una funzione a valori reali, definita in un sottoinsieme A di \mathbb{R}^n contenente γ , cioè $f:A\subset\mathbb{R}^n\to\mathbb{R}$ con $\gamma\subset A$.

Si dice integrale di linea (di prima specie) di f lungo γ l'integrale

$$\int_{\gamma} f ds = \int_{a}^{b} f(\vec{r}(t)) |\vec{r}'(t)| dt$$

Lintegrale di f di prima specie lungo γ è invariante per parametrizzazioni equivalenti e anche per cambiamento di orientazione.

Osserviamo che se f=1 (soffitto di altezza costatne), ritroviamo la lunghezza di una linea.

Applicazioni fisiche:

• Il **baricentro** di γ è il punto $B=(\bar{x},\bar{y},\bar{z})$ con:

$$\begin{cases} \bar{x} = \frac{1}{m} \int_{\gamma} x \rho ds = \frac{1}{m} \int_{a}^{b} x(t) \rho(\vec{r}(t)) | \vec{r}'(t) | dt \\ \bar{y} = \frac{1}{m} \int_{\gamma} y \rho ds = \frac{1}{m} \int_{a}^{b} y(t) \rho(\vec{r}(t)) | \vec{r}'(t) | dt \\ \bar{z} = \frac{1}{m} \int_{\gamma} z \rho ds = \frac{1}{m} \int_{a}^{b} z(t) \rho(\vec{r}(t)) | \vec{r}'(t) | dt \end{cases}$$

dove ρ è la densità lineare e m è la massa (calcolabile come $\int_{\gamma} \rho ds$). Se il corpo è **omogeneo** (ρ = costante), il baricentro si dice **centroide** e ha coordinate:

$$\begin{cases} \bar{x} = \frac{\rho}{m} \int_{\gamma} x ds = \frac{1}{l(\gamma)} \int_{a}^{b} x(t) |\vec{r'}(t)| dt = \frac{\int_{a}^{b} x(t) |\vec{r'}(t)| dt}{\int_{a}^{b} |\vec{r''}(t)| dt} \\ \bar{y} = \text{ stesso di sopra} \\ \bar{z} = \text{ stesso di sopra} \end{cases}$$

• momento di inerzia di γ rispetto a un asse fissato. Se $\delta(x,y,z)$ indica la distanza del punto (x,y,z) da quest'asse fissato, si ha:

$$I = \int_{\gamma} \delta^2 \rho ds = \int_a^b \delta^2(\vec{r}(t)) \rho(\vec{r}(t)) |\vec{r}'(t)| dt$$

Se il corpo è **omogeneo** (ρ = costante):

$$I = \frac{m}{l(\gamma)} \int_{\gamma} \delta^2 ds = m \frac{\int_a^b \delta^2(\vec{r}(t)) |\vec{r'}(t)| dt}{\int_a^b |\vec{r'}(t)| dt}$$

Per gli esercizi: può essere molto utile cercare di ridefinire la curva spostandola in modo tale che l'asse di riferimento sia uno degli assi cartesiani, in questo modo esprimere la distanza δ di ogni punto dall'asse può essere più facile.

4.4 Note sugli esercizi

4.4.1 Ripasso sul calcolo vettoriale

vettore:

$$\vec{x} = (x_1, x_2, \dots, x_n)$$

modulo di un vettore:

$$|\vec{x}| = \sqrt{\sum_{i=1}^{n} x_i^2}$$

versore:

$$vers(\vec{x}) = \frac{\vec{x}}{|\vec{x}|}$$

 \vec{x}, \vec{y} sono **paralleli** se

$$\lambda \vec{x} = \mu \vec{y}$$
 per qualche $\lambda, \mu \in \mathbb{R}$

Somma di vettori: si sommano le componenti simili.

Prodotto fra un vettore e uno scalare: si moltiplica ogni componente per lo scalare.

Prodotto scalare fra vettori: ha come risultato un numero reale ottenuto dalla formula

$$\vec{u} \cdot \vec{v} = (u_1v_1 + u_2v_2 + \dots + u_nv_n)$$

Il prodotto scalare può essere espresso anche come

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| cos(\theta)$$

dove θ rappresenta l'angolo tra i due vettori. Di conseguenza $\vec{u}\cdot\vec{v}=0$ solo se i due vettori sono ortogonali.

Dal prodotto scalare si può ricavare l'angolo fra due vettori

$$cos(\theta) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}$$

Inoltre $\vec{v} \cdot \vec{v} = |\vec{v}|^2$.

Prodotto vettoriale:

$$\vec{u} \times \vec{v} = \begin{vmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

Il prodotto vettoriale si annulla solo se i vettori sono paralleli.

Regola della mano destra: il primo fattore va sul pollice, il secondo sull indice, il risultato è nel medio.

Inoltre $\vec{v} \times \vec{v} = 0$.

Prodotto misto:

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

Il prodotto misto si annulla solo se i tre vettori sono linearmente indipendenti.

4.4.2 Proprietà delle curve

- continua: se le componenti sono continue.
- chiusa: se agli estremi dell'intervallo in cui son definite la curva ha lo stesso valore (se fosse definita su tutto \mathbb{R} si controllano i limiti all'infinito).
- asintoti: se i limiti all'infinito hanno un valore finito per una delle due componenti.
- semplice: se la curva non passa mai due volte per lo stesso punto. Si verifica per logica, spesso è utile notare se almeno una delle due componenti è strettamente monotona (crescente o decrescente). Spesso per funzioni trigonometriche si cerca di ragionare sulla loro periodicità.
- regolare: Si calcola la derivata della curva (derivata delle componenti) e in seguito il modulo della derivata (radice della somma delle componenti alla seconda). Se le derivate delle componenti sono funzioni continue e il modulo della derivata non si annulla mai per i valori di t per cui la curva è definita (estremi esclusi, sempre) allora la curva è regolare. (Ci sono metodi particolari per calcolare il modulo della derivata, per esempio, per funzioni in forma polare il modulo della derivata è: $\rho = f(\theta) \Rightarrow |\vec{r}'(\theta)| = \sqrt{f'(\theta)^2 + f(\theta)^2}$; ma, inoltre, non bisogna scordarsi di calcolare le derivate delle componenti per controllare che siano continue). Infine per individuare i punti di singolarità (cioè quelli in cui la funzione non è regolare) si calcolano

i punti in cui $\vec{r}(t) = (x, y, z)$ per cui t annulla la derivata.

• piana:

Primo metodo: si controlla se il versore binormale alla curva è costante. Il vettore binormale della caruva $\gamma(x(t),y(t),z(t))$ si calcola come prodotto vettoriale di $\gamma'(t) \times \gamma''(t)$, una volta normalizzato (dividendo ogni componente per il modulo (componenti al quadrato sommate sotto radice)) si ottiene il versore e si controlla se è costante (curva piana) o non costante (curva non piana)

e dunque basta assicurarsi che non sia presente la variabile t (p.s. $\gamma'(t)=(x'(t),y'(t),z'(t),\gamma''(t)=(x'(t),y'(t),z'(t))$). Concettualmente, se i calcoli sono troppo complicati, si può ragionare sul fatto che se il vettore binormale (che è sempre ortonormale alla curva) ha sempre la stessa direzione (anche se di modulo diverso) allora la curva è piana.

Secondo metodo: sostiuiamo le equazioni parametriche della curva $\gamma(x(t),y(t),z(t))$ nella formula del piano generico ax+by+cz+d=0. Se risulta che l'equazione è sempre soddisfatta, allora la curva è complanare.

4.4.3 Equazioni di grafici di funzioni

Curve ottenute da grafici di funzioni in una variabile:

$$y = f(x)$$
 per x in $[a, b]$

Forma parametrica:

$$\begin{cases} x = t \\ y = f(t) \end{cases} \quad \text{per t } \in [a,b]$$

Proprietà:

- è continua se e solo se f è continua
- è regolare se e solo se f è derivabile con continuità (le condizioni di non annullamento della derivata prima sono automaticamente verificate perchè x'(t) = 1)
- ullet è regolare a tratti se e solo se f è continua e a tratti derivabile con continuità
- non è mai chiusa
- è sempre semplice

4.4.4 Rappresentazioni di equazioni in forma polare

L'equazione

$$\rho = f(\theta) \quad \text{per} \ \theta \in [\theta_1, \theta_2]$$

è una forma abbreviata che, tramite la sostituzione $x = \rho cos(\theta)$ e $y = \rho sin(\theta)$, può essere riscritta:

$$\begin{cases} x = f(\theta)cos(\theta) \\ y = f(\theta)sin(\theta) \end{cases} \quad \text{per } \theta \in [\theta_1, \theta_2]$$

Ricordiamo che $\rho = \sqrt{x^2 + y^2}$ Osserviamo che

$$\vec{r}'(\theta) = (f'(\theta)\cos(\theta) - f(\theta)\sin(\theta), f'(\theta)\sin(\theta) - f(\theta)\cos(\theta))$$
$$|\vec{r}'(\theta)| = \sqrt{\rho(\theta)^2 + \rho'(\theta)^2} = \sqrt{f'(\theta)^2 + f(\theta)^2}$$

Geometricamente la forma polare $\rho=f(\theta)$ può essere visualizzata come la curva tracciata da una penna posta su un braccio che ruota attorno all'origine a velocità costante (in modo che il tempo t combaci con l'angolo θ). Mentre il braccio ruota la penna si sposta lungo il braccio in modo da essere a distanza $f(\theta)$ dall'origine all'istante θ .

Proprietà:

- ullet è continua se e solo se f è continua
- ullet è regolare se e solo se f è derivabile con continuità, inoltra f e f' non si annullano mai contemporaneamente
- è chiusa se e solo se $f(\theta_1) = f(\theta_2)$ e $\theta_2 \theta_1 = 2n\pi$ per qualche intero n.

Rappresetnazioni di coniche in forma polare

Equazione polare della conica:

$$\rho = \frac{\epsilon p}{1 - \epsilon cos(\theta)}$$

con $\epsilon > 0$ e p > 0 e θ varia nell'intervallo in cui il secondo membro è definito e positivo. Questa equazione rappresenta:

$$\begin{cases} \text{un'ellissi} & \text{se } \epsilon < 1 \\ \text{una parabola} & \text{se } \epsilon = 1 \\ \text{un'iperbole} & \text{se } \epsilon > 1 \end{cases}$$

Notiamo che il segmo - davanti al coseno non è importante, infatti se cambiamo $\theta=t+\pi$ l'equazione si trasforma in $\rho = \frac{\epsilon p}{1 + \epsilon cos(t)}$.

Equazione della circonferenza:

$$\rho = R$$

4.4.6 Equazione di una retta passante per due punti

Dati due punti (x_1, x_2) e (y_1, y_2) la retta passante per questi punti è definita dall'equazione

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$$

Questa formula vale se i due punti non sono allineati verticalmente o orizzontalmente.

Negli esercizi sul calcolo delle lunghezze di archi di curve e di parametrizzazione secondo il parametro arco è risultato molto utile l'intergale:

$$\int_0^{2\pi} \sqrt{1 + cos(t)} dt = \left[\text{moltiplicando per } \frac{\sqrt{1 - cos(t)}}{\sqrt{1 - cos(t)}} \right] = \int_0^{2\pi} \frac{|sin(t)|}{\sqrt{1 - cos(t)}} dt = \left[2\sqrt{cos(t) + 1} \cdot tan(\frac{t}{2}) \right]_0^{2\pi} = 4\sqrt{2}$$

Alternativamente l'equazione della retta può essere trovata come

$$y = mx + q$$

con
$$m = \frac{y_1 - y_2}{x_1 - x_2}$$
 e $q = \frac{x_1 y_2 - x_2 y_1}{x_1 - x_2}$

4.4.7 Equazione della retta tangente a una curva r(t) = (x(t), y(t)) in un punto t_0

La generica retta ha forma y = mx + q.

Il coefficiente m si trova facendo il rapporto $\frac{y'(t_0)}{x'(t_0)}$.

Il valore di q si ricava sostituendo nell'equazione y=mx+q la m trovata, la y con il valore di $y(t_0)$ e la x con il valore di $x(t_0)$.

In alternativa, data una curva $\vec{r}(t) = \begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$, il vettore tangente è dato da $\vec{r}'(t) = \begin{cases} x = x'(t) \\ y = y'(t) \\ z = z'(t) \end{cases}$. Ora per scrivere l'equazione della retta tangente in un certo punto $\vec{r}(t_0) = \begin{bmatrix} x(t_0) \\ y(t_0) \\ z(t_0) \end{bmatrix}$ è sufficiente

calcolare il valore di $\vec{r}'(t)$ in $t = t_0$ e scrivere:

$$\vec{r}(t) = \begin{bmatrix} x'(t_0) \\ y'(t_0) \\ z'(t_0) \end{bmatrix} + t \cdot [$$

28

4.4.8 Equazione della circonferenza

$$(x - x_c)^2 + (y - y_c)^2 = r^2$$

con r raggio e (x_c,y_c) centro. Centrata nell'origine la circonferenza è $x^2+y^2=1$.

La forma canonica è

$$x^2y^2 + \alpha x + \beta y + \gamma = 0$$

La circonferenza parametrizzata è spesso:

$$\begin{cases} x = x_0 + R \cdot \cos\alpha \\ y = y_0 + R \cdot \sin\alpha \end{cases}$$

con (x_0, y_0) centro e R raggio.

4.4.9 Equazione dell'ellisse

Con a lunghezza del semiaasse orizzontale e b lunghezza del semiasse verticale

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

L'ellisse parametrizzata è spesso:

$$\begin{cases} x = a \cdot \cos \alpha \\ y = b \cdot \sin \alpha \end{cases}$$

4.4.10 Interpretazione geometrica degli integrali di prima specie

Data una linea γ nel piano (x,y) e data una funzione z=f(x,y) (una superficie) definita e non negativa in corrispondenza dei punti di γ , l'integrale

$$\int_{\gamma} f(x,y)ds$$

può essere visto come l'area della superficie verticale compresa tra la linea γ nel piano (x,y) e la superficie z=f(x,y)

4.4.11 Integrali di linea di seconda specie

Come per gli integrali di prima specie, anche per gli integrali di seconda specie le variabiliche compaiono nell'integrale vengono trasformate nel parametro della linea γ ; mentre nel caso degli integrali di prima specie ds diventava $|\vec{r}'(t)|dt$, ora negli integrali compaiono i termini dx,dy,dz che diventano rispettivamente

$$dx = x'(t)dt$$
 $dy = y'(t)dt$ $dz = z'(t)dt$

Da notare è che negli integrali di seconda specie, siccome le variabili di integrazione sono x,y,z, il risultato è legatoal verso di percorrenza della linea.

5 Funzioni $\mathbb{R}^n \to \mathbb{R}$ ("Calcolo differenziale per funzioni reali di più variabili", "Funzioni reali di più variabili")

5.1 Topologia in \mathbb{R}^n e proprietà delle funzioni continue

Dato un punto $M(x_0,y_0)\in\mathbb{R}^2$ e dato r>0 indicheremo con $B_r(M)$ il disco centrato in M di raggio r:

$$B_r(X_0, y_0) = \{(x, y) \in \mathbb{R}^2; (x - x_0)^2 + (y - y_0)^2 < r^2\}.$$

Diremo anche che $B_r(x_0, y_0)$ è un **intorno** del punto (x_0, y_0) : tutti gli intorni del punto si ottengono facendo variare r > 0. Indicheremo invece con $B_r^0(x_0, y_0)$ un **intorno bucato** di (x_0, y_0) e cioè:

$$B_r^0(x_0, y_0) = \{(x, y) \in \mathbb{R}^2; 0 < (x - x_0)^2 + (y - y_0)^2 < r^2\}$$

Nel caso n-dimensionale, dato un punto $M(x_1^0,\ldots,x_n^0)\in\mathbb{R}^n$, si definisce

$$B_r(M) = \left\{ (x_1, \dots, x_n) \in \mathbb{R}^n; \sum_{i=1}^n (x_i - x_i^0)^2 < r^2 \right\}$$

Sia E un sottoinsieme di \mathbb{R}^n , un **punto** x_0 si dice:

- **interno** ad E, se esiste un intorno centrato in x_0 contenuto in E;
- **esterno** ad E, se esiste un intorno centrato in x_0 contenuto in E^c ;
- di frontiera per E, se ogni intorno centrato in x_0 contiene almeno un punto di E e uno di E^c .

Un insieme $E \subseteq \mathbb{R}^n$ si dice:

- aperto, se ogni suo punto è interno a E;
- chiuso, se il suo complementare è aperto.

Sia E un **insieme** di \mathbb{R}^n , si dice:

- **interno** di E, e si indica con E^o , l'insieme dei punti interni di E;
- frontiera o bordo di E, e si indica con δE , l'insieme dei punti di frontiera di E;
- chiusura di E, e si indica con \bar{E} , l'insieme $E \cup \delta E$.

Alcune informazioni extra:

- si ha sempre $E^o \subset \delta E \subset \bar{E}$;
- il complementare di un aperto è chiuso e viceversa;
- esistono insiemi nè aperti nè chiusi, gli unici insiemi sia aperti sia chiusi sono quello vuoto e \mathbb{R}^n ;
- l'unione di una famiglia qualsiasi (anche infinita) di insiemi aperti e l'intersezione di un numero finito di insiemi aperti sono insiemi aperti
- l'intersezione di una famiglia qualsiasi (anche infinita) di insiemi chiusi è l'unione di un numero finito di insiemi chiusi sono insiemi chiusi;
- un insieme aperto non contiene nessuno dei suoi punti di frontiera, un insieme chiuso contiene tutti i suoi punti di frontiera.

Un insieme si dice:

- limitato se esiste un intorno che lo contiene tutto;
- connesso se per ogni coppia di punti dell'insieme, esiste un arco continuo che che li connette contenuto nell'insieme.

Estremi:

Sia $\Omega\subset\mathbb{R}^n$ e sia $f_\Omega\to\mathbb{R}$. Diremo che $(\bar x,\bar y)\in\Omega$ è un punto di **massimo relativo** per f se esiste r>0 tale che $f(x,y)\leq f(\bar x,\bar y)$ per ogni $(x,y)\in B_r(\bar x,\bar y)\cap\Omega$; Diremo che $(\bar x,\bar y)\in\Omega$ è un punto di **minimo relativo** per f se vale la disuguaglianza opposta. Diremo che $(\bar x,\bar y)\in\Omega$ è punto di **massimo assoluto** per f se $f(x,y)\leq f(\bar x,\bar y)$ per ogni $f(x,y)\in\Omega$; diremo che $f(x,y)\in\Omega$ 0 è punto di **minimo assoluto** per f se vale la disuguaglianza opposta.

5.2 Calcolo di limiti di funzioni in più variabili

Sia $l \in \mathbb{R}$, diremo che

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = l$$

se

$$\forall \epsilon > 0 \; \exists \; \delta > 0 \; \text{tale che} \; (x,y) \in B^0_\delta(x_0,y_0) \Rightarrow |f(x,y)-l| < \epsilon$$

In \mathbb{R} si parla di limite "destro" e "sinistro", in \mathbb{R}^n , per via della presenza dell'intorno bucato, ci sono infiniti modi di avvicinarsi al limite: il valore dipende dal cammina che si segue.

5.2.1 Non esistenza del limite

Per mostrare che un certa funzione in più varibili non ammette limite in un determinato punto, è sufficiente determinare due curve passasnti per il punto lungo le quali la funzione assume limiti diversi.

es.

$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2}$$

Analiziamo la funzione lungo due curve:

- con y = x ottengo $f(x, x) = \frac{1}{2}$
- con y = -x ottengo $f(x, -x) = -\frac{1}{2}$

non ammette limite.

5.2.2 Uso di maggiorazioni con funzioni radiali per provare l'esistenza del limite

Il trucco più efficace per calcolare i limiti (in \mathbb{R}^2) è quello di passare in **coordinate polari**.

Per dimostrare l'esistenza di un limite per $(x,y) \to (0,0)$ (!), si impone $x = \rho \cdot cos(\theta)$ e $y = \rho \cdot sin(\theta)$, successivamente si pone l'intera funzione sotto modulo e si fa il limite per $\rho \to 0$. Il segreto dta nell'usare semplificazioni e maggiorazioni per eliminare i seni e i coseni. E' essenziale che la funzione non dipenda da θ , altrimenti il limite non esiste.

Più in generale se si volesse calcolare il limite per $(x,y) \to (x_0,y_0)$ (con (x_0,y_0) anche diverso dall'origine) si pongono $x=x_0+\rho\cdot cos(\theta)$ e $y=y_0+\rho\cdot sin(\theta)$ e si procede come sopra.

5.2.3 Note sugli esercizi per il calcolo di limiti

- Se il limite non presenta una forma di indeterminazione allora il valore cercato si ricava sostituendo direttamente il punto nella funzione.
- Tecniche standard della maggiorazione:
 - disuguaglianza triangolare:

$$|a+b| \le |a| + |b|$$

- maggiorazione di frazioni, con a, b, c > 0:

$$\frac{a}{b+c} \le \frac{a}{b}$$

- maggiorazione di funzioni trigonometriche:

$$|cos(\theta)| \le 1$$
, $|sin(\theta)| \le 1$

- Il criterio che ci permette di trovare il limite richiede di trovare una funzione maggiorante di |f| che sia radiale (dipenda solo da ρ , non θ) e infinitesima. Da notare è che è possibile semplificare la funzione anche senza passare subito in coordinate polari.
- Solitamente si suddivide la funzione in una serie di somme di funzioni e si studiano quest'ultime separatamente.

5.3 Continuità di funzioni in più variabili

Una funzione $f: \mathbb{R}^n \to \mathbb{R}$ è **continua** in un punto x_0 se

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

La continuità di una funzione è anche deducibile dal fatto che sia costituita (somma/ prodotto/ quoziente/ certe volte anche composizione) da funzioni elementari continue.

oss. Per verificare la continuità di una funzione si usa spesso il concetto di differenziabilità (vedi sotto, "verifica della differenziabilità").

Proprietà delle funzioni continue:

- Teorema di Weierstrass. Sia $E \subset \mathbb{R}^n$ un insieme chiuso e limitato e $f: E \to \mathbb{R}$ sia continua, allora f ammette massimo e minimo in E, cioè esistono x_m e x_M tali che $f(x_m) \leq f(x) \leq f(x_M)$ per ogni $x \in E$.
- Teorema degli zeri. Sia E un insieme connesso di \mathbb{R}^n e $f:E\to\mathbb{R}$ sia continua. Se x,y sono due punti di E tali che f(x)<0 e f(y)>0, allora esiste un terzo punto $z\in E$ in cui f si annulla. In particolare, lungo ogni arco di curva continua contenuto in E che congiunge x e y, c'è almeno un punto in cui f si annulla.
- Teorema di permanenza del segno. Se f è continua in $(x_0, y_0) \in \mathbb{R}^2$ e $f(x_0, y_0) > 0$, allora esiste $\delta > 0$ tale che f(x, y) > 0 per ogni $f(x, y) \in B_{\delta}(x_0, y_0)$.

5.4 Calcolo differenziale di funzioni in più variabili

5.4.1 Derivate parziali

Una funzione $f: \mathbb{R}^2 \to \mathbb{R}$ si dice **derivabile** in $(x_0, y_0) \in \mathbb{R}^2$ se esistono finiti i due limiti

$$f_x(x_0, y_0) = \lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0}$$

$$f_y(x_0, y_0) = \lim_{y \to y_0} \frac{f(x_0, y) - f(x_0, y_0)}{y - y_0}$$

in tal caso, i numeri $f_x(x_0, y_0)$ e $f_y(x_0, y_0)$ si chiamato **derivate parziali** di f in (x_0, y_0) .

Geometricamente, le derivate parziali rappresentano le pendenze che si hanno sul fianco della montagna quando si prendono le direzioni degli assi orientati.

Una funzione $f:A\subseteq\mathbb{R}^n\to\mathbb{R}$ si dice **derivabile** in un punto del suo dominio se in quel punto **esistono tutte le sue derivate parziali**; si dice derivabile in A se è derivabile in ogni punto di A.

Se le derivate parziali, oltre ad esistere, sono continue nel punto (x_0, y_0) , diremo che la funzione f è di classe C^1 in tale punto.

Se f è derivabile in un punto, chiameremo **gradiente** ($\nabla f(x)$) il vettore delle sue derivate parziali.

Diversamente dal caso n=1, in n=2 la **derivabilità non implica continuità**.

Proprietà per il calcolo delle derivate:

$$\delta(\alpha \cdot f + \beta \cdot g) = \alpha \delta(f) + \beta \delta(g)$$

$$\delta(f \cdot g) = g \cdot \delta(f) + f \cdot \delta(g)$$

$$\delta\left(\frac{f}{g}\right) = \frac{g \cdot \delta(f) - f \delta(g)}{g^2}$$

$$h(x) = f(g(x)) = g \circ f \Rightarrow h'(x) = f'(g(x))g'(x)$$

$$\frac{\delta}{\delta x}|x| = \frac{|x|}{x}$$

Molto spesso, per calcolare una derivata parziale si può evitare di usare la definizione: per derivare rispetto a x basta considerare y come una costante e derivare la funzione come se fosse della sola variabile x e viceversa.

Per il calcolo di una derivata parziale in punto (x_0,y_0) secondo la definizione, seguire questo procedimento: se si richiede di calcolare il valore della derivata parziale di x (cioè $\frac{\delta f}{\delta x}(x_0,y_0)$), si parte dalla funzione f(x,y) e si sostituisce $y=y_0$, ottenendo quindi $f(x,y_0)$, successivamente si calcola la derivata parziale, ottenendo dunque $\frac{\delta f}{\delta x}(x,y_0)$. Come ultima cosa si sostituisce $x=x_0$ e si arriva a un risultato numerico. Per la trovare il valore della derivata parziale di y in un preciso punto seguire lo stesso procedimento opposto.

In alcuni esercizi è richiesto di calcolare le derivate parziali in tutti i punti in cui esistono. Il procedimento tipico consiste nel calcolare per prima cosa le derivate parziali generiche. Una volta calcolate sapremo che sicuramente esistono dove queste sono definite (dominio), ma non siamo sicuri dei punti in cui non lo sono (al di fuori del dominio). Quindi dobbiamo analizzare singolarmente tutti i punti al di fuori del dominio e per farlo sfruttiamo il procedimento visto sopra ("derivata parziale in un punto secondo la definizione"), calcolando esplicitamente le derivate nei punti richiesti. Finchè si tratta per esempio di calcolarle per un punto preciso non ci sono problemi, il calcolo è facile, ma ci sono alcuni casi difficili, per esempio:

• Calcolare le derivate parziali secondo la definizione lungo una retta. Per esempio in y=0, per calcolare la $\frac{\delta f}{\delta x}(x_0,0)$ non ci sono problemi, si procede come al solito. Ma per la $\frac{\delta f}{\delta y}(x_0,0)$ ci sono difficoltà, siccome non possiamo sostituire le y con 0 e poi derivare per la y, dobbiamo ragionare così: la derivata non esiste a meno che non ci sia un valore che le x possono assumere che annullino la funzione (per gli es che ho fatto fino ad ora sono solo al numeratore). Il concetto generale è che se non si trovano valori per x_0 tali che annullino la funzione e quindi ci permettano di calcolare la derivata parziale, si finisce per tornare a guardare la derivata parziale generica e quindi a non trovarla per quella retta. [spiegato davvero male, ma è un concetto strano].

Per stabilire dove la funzione sia derivabile bisogna calcolare le derivate parziali e osservarne il dominio.

(n.b. tipicamente negli esercizi le funzioni sono descritte da un sistema che contiene una funzione prolungata nell'origine, in questo caso bisogna calcolare le derivate parziali al di fuori dell'origine e studiarne il dominio, in seguito bisogna calcolare il valore della derivata parziale nel punto (0,0) col metodo descritto precedentemente).

5.4.2 Piano tangente a funzioni in due variabili

Il procedimento che mostriamo permette di individuare il piano tangente nell'ipotesi che esso esista, potrebbe però non esserci (il piano tangente esiste se la funzione è differenziabile in quel punto).

Costruire il **piano tangente** a una funzione in due variabili in un punto (x_0, y_0) :

1. troviamo la retta tangente alla funzione nel piano $y=y_0$:

$$\begin{cases} z = f(x_0, y_0) + \frac{\delta f}{\delta x}(x_0, y_0) \cdot (x - x_0) \\ y = y_0 \end{cases}$$

2. troviamo la retta tangente alla funzione nel piano $x = x_0$:

$$\begin{cases} z = f(x_0, y_0) + \frac{\delta f}{\delta x}(x_0, y_0) \cdot (y - y_0) \\ x = x_0 \end{cases}$$

3. costruiamo il piano che contiene entrambe le rette:

$$z = f(x_0, y_0) + \frac{\delta f}{\delta x}(x_0, y_0) \cdot (x - x_0) + \frac{\delta f}{\delta x}(x_0, y_0) \cdot (y - y_0)$$

5.4.3 Differenziabilità e approssimazione lineare

In due o più variabili la sola derivabilità non implica nè continuità nè l'esistenza del piano tangente.

Concetto di differenziabilità in più variabili: l'incremento di f è uguale all'incremento calcolato lungo il piano tangente, più un infinitesimo di ordine superiore rispetto alla lunghezza dell'incremento (h,k)delle variabili indipendenti. In formule:

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = \frac{\delta f}{\delta x}(x_0, y_0) \cdot (x - x_0) + \frac{\delta f}{\delta y}(x_0, y_0) \cdot (y - y_0) + o(\sqrt{h^2 + k^2})$$

per $(h, k) \to (0, 0)$.

Tutto ciò che è prima dell'uguale (primo membro) rappresenta l'incremento della funzione, i primi due addendi del secondo membro rappresentano l'incremento calacolato lungo il pinao tangente. Ricordiamo che l'ultimo addendo rappresenta una funzione tale che $\lim_{(h,k)\to(0,0)} \frac{o(\sqrt{h^2+k^2})}{\sqrt{h^2+k^2}} = 0$. Se l'equazione di prima è soddisfatta, diremo che la funzione è **differenziabile** in (x_0,y_0) .

Una funzione $f: \mathbb{R}^2 \to \mathbb{R}$ si dice **differenziabile** in (x_0, y_0) se è derivabile e se

$$\lim_{(h,k)\to(0,0)} \frac{f(x_0+h,y_0+k)-f(x_0,y_0)-hf_x(x_0,y_0)-kf_y(x_0,y_0)}{\sqrt{h^2+k^2}} = 0$$

(Ricordiamo che $h = x - x_0$ e $k = y - y_0$

Questa scrittura dice che "il grafico della superficie si allontana dal piano tangente con un ordine di infinitesimo superiore a quello della distanza dal punto".

f differenziabile in
$$(x_0, y_0) \Rightarrow f$$
 continua in (x_0, y_0)

Da notare che la differenziabilità implica la derivabilità, cioè se una funzione è differenziabile in un punto, allora è anche derivabile nello stesso.

Se f è differenziabile in $\vec{x} \in \mathbb{R}^n$, si dice **differenziale** di f calcolato in \vec{x} la funzione lineare $df(\vec{x})$: $\mathbb{R}^n \to \mathbb{R}$ definita da:

$$df(\vec{x}) : h \to \nabla f(\vec{x}) \cdot h.$$

dove $\nabla f(\vec{x})$ è il gradiente e h è l'incremento.

Nel caso in due varibiali, il numero $\nabla f(x_0) \cdot h$ rappresenta l'incremento della funzione nel passare da x_0 a $x_0 + h$, calcolato lungo il piano tangente al grafico di f in x_0 .

Negli esercizi viene spesso richeisto di calcolare il differenziale per una funzione f(x,y) in un punto (x_0, y_0) : Per prima cosa bisogna verificare che la funzione sia differenziabile in quel punto, in seguito si calcolano le derivate parziali di f nel punto, cioè il valore di $f_x(x_0,y_0)$ e $f_y(x_0,y_0)$, una volta calcolate si pone "dx" come l'incremento lungo l'asse delle x e dy l'incremento lungo l'asse delle y e il **differenziale** si scrive come: $df(x_0, y_0) = f_x(x_0, y_0) \cdot dx + f_y(x_0, y_0) dy$.

L'approssimazione dell'incremento di f con il suo differenziale prende il nome di linearizzazione.

5.4.4 Verifica della differenziabilità

Per dimostrare la differenziabilità in un punto (x_0, y_0) bisogna provare che:

$$\lim_{h,k\to 0,0} \frac{f(x_0+h,y_0+k) - \{f(x_0,y_0) + \frac{\delta f}{\delta x}(x_0,y_0)h + \frac{\delta f}{\delta y}(x_0,y_0)k\}}{\sqrt{h^2 + k^2}} = 0.$$

dove $h = x - x_0$ e $k = y - y_0$.

Ma per certi casi particolari esistono criteri molto più comodi e semplici.

Teorema di condizione sufficiente di differenziabilità: se le derivate parziali di f esistono in un intorno di x_0 e sono continue in x_0 , allora f è differenziabile in x_0 .

In particolare se le derivate parziali esistono e sono continue in tutto A, allora f è differenziabile in tutto A.

Una funzione le cui derivate parziali esistono e sono continue in tutto A si dice di classe $C^1(A)$, dunque: $f \in C^1(A) \to f$ differenziabile in A.

Negli esercizi spesso si usa anche l'omogeneità di una funzione per sapere se essa è differenziabile o continua, oppure le proprietà delle funzioni radiali.

Negli esercizi seguire quest'ordine:

- 1. E' continua nel punto richiesto? se non lo è, può essere allungata?
- 2. Funzione radiale? (vedi più avanti)
- 3. Funzione omogenea? (vedi più avanti)
- 4. Calcolo delle derivate parziali nel punto. Sono continue in quel punto?
- 5. Verifica della differenziabilità tramite la definizione.

5.4.5 Derivate direzionali

Si dice **derivata direzionale** della funzione f rispetto al versore $v_{\theta} = \begin{cases} cos(\theta) \\ sin(\theta) \end{cases}$, nel punto (x_0, y_0) ,

il limite

$$\frac{\delta f}{\delta \theta}(x_0, y_0) = \lim_{t \to 0} \frac{f(x_0 + t cos(\theta), y_0 + t sin(v_\theta)) - f(x_0, y_0)}{t}$$

Se tale limite esiste ed è finito diremo che f è derivabile nella direzione v_{θ} .

Calcolo di una derivata direzionale per un generico vettore $(cos(\theta), sin(\theta))$ nell'origine di una funzione f: Per prima cosa si ottiene la funzione $g(t) = f(t \cdot cos(\theta), t \cdot sin(\theta))$ e la si semplifica per $t \to 0$ (anche usando asintotici). In seguito si studia la derivata $g'(0) = \frac{\delta f}{\delta t}(t \cdot cos(\theta), t \cdot sin(\theta))$. Se è richiesto il calcolo in un punto generico, e non nell'origine, è sufficiente usare $t \cdot cos(\theta) + x_0$ e $t \cdot sin(\theta) + y_0$.

Se la funzione è differenziabile, allora le derivate parziali consentono di calcolare tutte le altre derivate direzionali.

Formula del gradiente:

$$\frac{\delta f}{\delta v_{\theta}}(x_0, y_0) = \nabla f(x_0, y_0) \cdot v_{\theta} = \frac{\delta f}{\delta x}(x_0, y_0) cos(\theta) + \frac{\delta f}{\delta y}(x_0, y_0) sin(\theta)$$

Cioè la derivata direzionale è il prodotto scalare del gradiente con il versore nella direzione in cui si deriva, quindi tutte le derivate direzionali sono combinazioni lineari delle derivate parziali. Se la formula del gradiente non vale in un punto, allora la funzione non è differenziabile in quel punto. Inoltre la formula del gradiente non vale se la generica derivata direzionale non è combinazione lineare di $cos(\theta), sin(\theta)$.

Negli esercizi se viene dato un vettore come direzione, bisogna prima assicurarsi che esso sia un versore, se non lo è bisogna ottenerlo dividendo per il modulo del vettore.

Da notare è che $\nabla f(x_0, y_0)$ indica la **direzione di massima crescita** di f, ossia la direzione di massima derivata direzionale, invece $-\nabla f(x_0)$ rappresenta la direzione di minima derivata direzionale, infine nelle direzioni ortogonali al gradiente le derivate direzionali sono nulle, quindi di **pendenza nulla**.

Il gradiente è ortogolane il ogni punto alle linee di livello.

5.4.6 Riepilogo

- $f \in C^1(A) \Rightarrow f$ differenziabile in A (cioè f ha iperpiano tangente) $\Rightarrow f$ è continua, derivabile, ha derivate direzionali, vale la formula del gradiente.
- f continua, derivabile, dotata di tutte le derivate direzionali $\Rightarrow f$ differenziabile
- f derivabile, dotata di tutte le derivate direzionali $\Rightarrow f$ continua

5.4.7 Extra: Gradiente di una funzione radiale, Criterio di continuità e differenziabilità per funzioni radiali, funzioni omogenee, Equazione del trasporto

Gradiente di una funzione radiale

Si chiama funzione radiale una funzione h che dipende solo dalla distanza di dall'origine, ossia

$$h(x) = g(|x|).$$

ponendo $\rho = |x| = \sqrt{\sum_{j=1}^n x_j^2}$ si ha:

$$\nabla_{\rho} = (\frac{x_1}{\rho}, \frac{x_2}{\rho}, \dots, \frac{x_n}{\rho}).$$

$$\nabla h(x) = g'(|x|)(\frac{x_1}{|x|}, \dots, \frac{x_n}{|x|})$$

$$|\nabla h(x)| = |g'(|x|)|$$

Le funzioni radiali sono spesso utilizzate negli esercizi in cui le incognite compaiono solo all'interno del termine $\sqrt{\sum_{j=1}^n x_j^2}$, in tal caso si ottiene $g(\rho)$ sostituendo ogni $\sqrt{\sum_{j=1}^n x_j^2}$ con ρ , successivamente si può procedere sfruttando le proprietà di continuità e differenziabilità delle funzioni radiali.

Criterio di continuità e differenziabilità per funzioni radiali

Sia $f:\mathbb{R}^n-\{0\}\to\mathbb{R}$ una funzione radiale, cioè f(x)=g(|x|) con $g:(0,+\infty)\to\mathbb{R}$ e sia f continua fuori dall'origine. Allora:

- f è continua in 0, se e solo se esiste finito $\lim_{\rho \to 0^+} g(\rho)$;
- f è differenziabile in 0 se e solo se esiste g'(0) = 0.

Negli esercizi spesso si controlla prima la continuità nell'origine, se non lo è si allunga la funzione e successivamente si calcola la differenziabilità nell'origine.

Funzioni omogenee

Una funzione $f: \mathbb{R}^n \to \mathbb{R}$ (eventualmente definita solo per $x \neq 0$), non identicamente nulla, si dice positivamente omogenea di grado $\alpha \in \mathbb{R}$ se

$$f(\lambda x) = \lambda^{\alpha} f(x) \quad \forall x \in \mathbb{R}^n, x \neq 0, \lambda > 0.$$

La funzione f si dice omogenea di grado α se la formula di prima vale anche per $\lambda < 0$. Se f è positivamente omogenea vale

$$f(x) = f(|x| \cdot \frac{x}{|x|}) = |x|^{\alpha} f(\frac{x}{|x|}).$$

In particolare se f è omogenea (o positivamente omogenea) di grado zero, significa che è costante su ogni retta (o semiretta) uscente dall'origine. Infatti, indicata con

$$r(t) = tv$$

con v versore fissato, sarà

$$f(r(t)) = f(tv) = t^0 f(v) = f(v) = costante.$$

Più in generale, per una funzione in due variabili positivamente omogenea di grado α vale la seguente rappresentazione in coordinate polari:

$$f(\rho, \theta) = \rho^{\alpha} g(1, \theta)$$

per qualche $\alpha \in \mathbb{R}$ e qualche funzione g : $[0,2\pi) \to \mathbb{R}$.

Sia $f:\mathbb{R}^n \to \mathbb{R}$ una funzione positivamente omogenea di grado α , definita e continua per $x \neq 0$. Allora:

- f è continua anche nell'origine se $\alpha > 0$; in questo caso f(0) = 0; f è discontinua nell'origine se $\alpha < 0$; è discontinua anche se $\alpha = 0$, tranne il caso banale in cui f è costante.
- f è differenziabile nell'origine se $\alpha > 1$; non è differenziabile nell'origine se $\alpha < 1$, tranne il caso banale in cui $\alpha = 0$ e f è costante; se $\alpha = 1$, f è differenziabile se e solo se è una funzione lineare, (ossia $f(x) = a \cdot x$ per qualche vettore costante $a \in \mathbb{R}^n$).

Si ricordi che ogni ogni derivata parziale prima di una funzione posivamente omogenea di grado α , se esiste, è una funzione positivamente omogenea di grado $\alpha-1$.

Equazione del trasporto

Si definisce equazione del trasporto la seguente:

$$c\frac{\delta u}{\delta x} + \frac{\delta u}{\delta t} = 0 \tag{?}$$

Teorema del valor medio. Sia $A \subset \mathbb{R}^n$ un aperto e $f: A \to \mathbb{R}$ una funzione differenziabile in A. Allora per ogni coppia di punti $x_0, x_1 \in A$, esiste un punto x^* tale per cui:

$$f(x_1) - f(x_0) = \nabla f(x^*) \cdot (x_1 + x_0).$$

In particolare:

$$|f(x_1) - f(x_0)| \le |\nabla f(x^*)| \cdot |(x_1 + x_0)|.$$

5.5 Derivate di ordine superiore e matrice Hessiana

Per una funzione $f: \mathbb{R}^n \to \mathbb{R}$ esistono n^2 derivate parziali seconde che indicheremo nel seguente modo:

$$f_{x_i x_j} = (f_{x_i})_{x_j} = \frac{\delta^2 f}{\delta x_j \delta x_i} = \frac{\delta}{\delta x_j} \left(\frac{\delta f}{\delta x_i}\right)$$

Le derivate seconde vengono poi inserite in una matrice chiamata matrice Hessiana:

$$H_f = \begin{pmatrix} f_{x_1x_1} & f_{x_1x_2} & \dots & f_{x_1x_n} \\ f_{x_2x_1} & f_{x_2x_2} & \dots & f_{x_2x_n} \\ \dots & \dots & \dots & \dots \\ f_{x_nx_1} & f_{x_nx_2} & \dots & f_{x_nx_n} \end{pmatrix}$$

In particolare, per due variabili:

$$H_f(x_0, y_0) = \begin{pmatrix} f_{xx}(x_0, y_0) & f_{xy}(x_0, y_0) \\ f_{yx}(x_0, y_0) & f_{yy}(x_0, y_0) \end{pmatrix}$$

Chiameremo derivate seconde doppie quelle del tipo $f_{x_ix_i}$ che giaciono sulla diagonale principale di H_f e derivate seconde miste tutte le altre.

Dato un sottoinsieme $\Omega \subset \mathbb{R}^n$, indichiamo con $C^2(\Omega)$ l'insieme delle funzioni $f:\Omega \to \mathbb{R}$ che hanno tutte le derivate seconde continue. La storia poi continua: una funzione si dice di classe C^k se ha tutte le derivate k-esime continue.

Teorema di Schwarz Sia $\Omega \subset \mathbb{R}^n$ un insieme aperto e sia $f \in C^2(\Omega)$; allora $f_{x_ix_j} = f_{x_jx_i}$ per ogni $i, j = 1, \ldots, n$, e cioè la matrice hessiana H_f è simmetrica.

La traccia della matrice Hessiana viene chiamata Laplaciano e indicato come:

$$\Delta f = \sum_{i=1}^{n} f_{x_i x_j}$$

Se $f \in C^2(A)$ e $x_0 \in A$, si dice **differenziale secondo** di f in x_0 la funzione

$$d^2 f(x_0)$$
: $h \to \sum_{i=1}^n \sum_{j=0}^n \frac{\delta^2(f)}{\delta(x_i)\delta(x_j)}(x_0)h_i h_j$.

5.5.1 Formula di Taylor (resto secondo Peano)

Formula di Taylor al secondo ordine (resto secondo peano):

Sia f di classe C^2 in $(x_0, y_0) \in \mathbb{R}^2$. Allora, per $(x, y) \to (x_0, y_0)$ si ha

$$f(x,y) = f(x_0, y_0) + \nabla f(x_0, y_0) \cdot \binom{x - x_0}{y - y_0} + \frac{1}{2} H_f(x_0, y_0) \binom{x - x_0}{y - y_0} \cdot \binom{x - x_0}{y - y_0} + o[(x - x_0)^2 + (y - y_0)^2]$$

dove l'operazione indicata con \cdot è un prodotto scalare, mentre l'operazione $H_f(x_0,y_0){x-x_0 \choose y-y_0}$ è un prodotto matriciale righe per colonne.

Formula di Taylor (resto secondo Peano) scritta per esteso per $(x,y) \to (x_0,y_0)$:

$$f(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) +$$

$$+ \frac{1}{2} \left(f_{xx}(x_0, y_0)(x - x_0)^2 + 2f_{xy}(x_0, y_0)(x - x_0)(y - y_0) + f_{yy}(x_0, y_0)(y - y_0)^2 \right) +$$

$$+ o[(x - x_0)^2 + (y - y_0)^2]$$

per $(x, y) \to (x_0, y_0)$.

5.6 Ottimizzazione libera

5.6.1 Ripasso sugli autovalori e autovetori

Ricordiamo che un numero complesso λ e un vettore non nullo $v \in \mathbb{C}^n$. Si dicono, rispettivamente, autovalore e autovettore (di λ) di una matrice M di ordine n, se soddisfano la relazione:

$$Mv = \lambda v$$

oppure

$$(M - \lambda I_n)v = 0.$$

Quest'ultima equazione ha soluzioni v non nulle se e solo se la matrice dei coefficienti e singolare, ovvero se λ è soluzione dell'equazione caratteristica:

$$det(M - \lambda I) = 0$$

esistono esattamente n autovalori di M ciascuno contato secondo la propria molteplicità. Le matrici M simmetriche hanno prorpietà importanti:

- gli autovalori di M sono reali e possiedono autovettori reali;
- esistono n autovettori lineari che costituiscono una base ortonormale in \mathbb{R}^n ;
- La matrice $S=w_1,w_2,\ldots,w_n$ le cui colonne sono gli autovettori lineari è orotognale e diagonalizza M, precisamente:

$$S^T M S = \Lambda = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

5.6.2 Posizione reciproca di una superficie e il piano tangente hessiano

Caso funzione in due variabili:

Data una funzione f, e dato il piano tangente ad essa in un punto $(x_0,y_0,f(x_0,y_0))$, la differenza fra le quote nel punto (\bar{x},\bar{y}) della superficie definita da f e del piano tangente è data (a meno di infinitesimi di ordine superiore al secondo, rispetto alla distanza (x_0,y_0) e (\bar{x},\bar{y}))dai termini di secondo grado dello sviluppo di Taylor:

$$f_{xx}(x_0,y_0)(x-x_0)^2 + 2f_{xy}(x_0,y_0)(x-x_0)(y-y_0) + f_{yy}(x_0,y_0)(y-y_0)^2$$

se questa espressione è sempre positiva (negativa) nell'intorno di (x_0, y_0) , possiamo affermare con sicurezza che la superficie si trova sempre sopra (sotto) il piano tangente. La teoria permette di risolvere tale questione con l'analisi della matrice Hessiana:

$$H_f(x_0, y_0) = \begin{bmatrix} f_{xx}(x_0, y_0) & f_{xy}(x_0, y_0) \\ f_{yx}(x_0, y_0) & f_{yy}(x_0, y_0) \end{bmatrix}$$

Infatti tutto dipende dagli autovalori di H_f :

- 1. se sono entrambi positivi, allora la superficie è tutta al di sopra del piano tangente;
- 2. se sono entrambi negativi, allora la superficie è tutta al di sotto del piano tangente;
- 3. se uno è positivo e uno e negativo, allora la superficie e il piano si intersecano;
- 4. se uno dei due autovalori è nullo, nulla si può dire.

Poichè il determinante di una matrice è il prodotto degli autovalori, nel caso di una matrice 2x2 è sufficiente osservare il segno del determinante di H_f :

$$det H_f(x_0,y_0)>0
ightarrow ext{casi 1 e 2}$$
 $det H_f(x_0,y_0)<0
ightarrow ext{caso 3}$ $det H_f(x_0,y_0)=0
ightarrow 4$

e, se il determinante è maggiore di 0, è sufficiente guardare il segno di $f_{xx}(x_0,y_0)$ (o, che è lo stesso, $f_{yy}(x_0,y_0)$):

- se $f_{xx}(x_0, y_0) > 0$: la superficie è al di sopra del piano;
- se $f_{xx}(x_0, y_0) < 0$: la superficie è al di sotto del piano.

Caso funzione in tre o più variabili:

Poichè ciò che ci interessa è il segno degli autovalori dell'hessiano, nel caso di una matrice 3x3 (0, più in generale, nxn) il determinante non costituisce più un indicatore completo del loro comportamento. Dato che l'hessiano è una matrice reale e simmetrica, e pertanto possiede solo autovalori reali, un metodo di facile applicazione per determinare il segno di tali autovalori consiste nell'applicare al suo polinomio caratteristico la **regola dei segni di Cartesio**:

Data un'equazione di grado n

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = 0$$

essa ha tante radici positive quanti i cambi di segno tra i coefficienti, e tante radici negative quante le permanenze di segno.

Alternativamente si può procedere al calcolo completo degli autovalori grazie al segno dei quali si può stabilire la posizione della superficie rispetto al piano tangente.

5.6.3 Massimi e minimi

Riassunto - note sugli esercizi:

Se la funzione f di cui cerchiamo massimi e minimi liberi è definita in un insieme aperto, ed è differenziabile in tutti i punti di tale insieme, si cercano i punti in cui il gradiente di f si annulla, ossia i punti con piano tangente orizzontale e in tali punti si studia poi l'hessiano (come nel paragrafo precedente): se la superficie si trova al di sopra del piano tangente siamo in presenza di un minimo, se la superficie si trova al di sotto del piano tangente siamo in presenza di un massimo, se la superficie attraversa il piano tangente siamo in presenza di un punto di sella e non vi è né minimo né massimo.

Invece, se la funzione non è differenziabile in alcuni punti del proprio insieme di definizione, oltre allo studio dei punti di differenziabilità è necessario esaminare singolarmente i punti di non differenziabilità.

Teoria:

Teorema Sia f di classe C^2 in un punto $\vec{x}^0 \in \mathbb{R}^n$ e sia $H_f(\vec{x}^0)$ la sua matrice Hessiana. Se tutti gli autovalori di $H_f(\vec{x}^0)$ sono **positivi**, allora esiste un intorno di \vec{x}^0 dove la superficie di equazione $x_{n+1} = f(x_1, \dots, x_n)$ sta sopra al piano tangente in \vec{x}^0 . Se tutti gli autovalori di $H_f(\vec{x}^0)$ sono **negativi**, allora esiste un intorno di \vec{x}^0 dove la superficie di equazione $x_{n+1} = f(x_1, \dots, x_n)$ sta sotto al piano tangente in \vec{x}^0 . Se $H_f(\vec{x}^0)$ ha autovalori di entrambi i segni, allora la superficie di equazione $x_{n+1} = f(x_1, \dots, x_n)$ attraversa il piano tangente in \vec{x}^0 .

Questo teorema si può enunciare geometricamente dicendo che se tutti gli autovalori di $H_f(\vec{x}^0)$ sono positivi (negativi) allora la funzione f è convessa (concava) in \vec{x}^0 .

Definiamo i punti di estremo:

- x_0 è detto punto di massimo (minimo) globale se per ogni x si ha $f(x) \le f(x_0)$ ($f(x) \ge f(x_0)$);
- x_0 è detto punto di massimo (minimo) locale se esiste un intorno di x_0 detto U tale per cui per ogni $x \in U$ si ha $f(x) \le f(x_0)$ ($f(x) \ge f(x_0)$).

Il teorema enunciato prima è utile per determinare i massimi e minimi relativi della funzione f. I punti candidati ad essere tali sono individuati dal:

Teorema di Fermat: Sia $f: \mathbb{R}^n \to \mathbb{R}$ derivabile in un punto $\vec{x}^0 \in \mathbb{R}^n$ di estremo relativo: allora $\nabla f(\vec{x}^0) = 0$.

I punti in cui il gradiente di una funzione si annulla si dicono punti **critici** o **stazionari** di f. Una volta individuati tutti i punti stazionari, si può iniziare un'analisi su di essi per verificare se sono o meno punti di massimo o minimo. Se non lo sono essi prendono il nome di punti di **sella** o **colle**. Da notare particolarmente è che una funzione può assumere valori di massimo o minimo anche in punti in cui non è derivabile, dunque questi punti vanno analizzati separatamente.

Caso n=2:

Sia f di classe C^2 , in un punto critico (trovato col teorema di Fermat) $(x_0, y_0) \in \mathbb{R}^2$.

Se $f_{xx}(x_0,y_0)f_{yy}(x_0,y_0)>f_{xy}(x_0,y_0)^2$ allora f ha un estremo relativo in (x_0,y_0) : se $f_{xx}(x_0,y_0)>0$ allora il punto è di minimo relativo, se $f_{xx}(x_0,y_0)<0$ allora il punto è di massimo relativo.

Si ha $det[H_f(x_0,y_0)]=f_{xx}(x_0,y_0)f_{yy}(x_0,y_0)-f_{xy}(x_0,y_0)^2$. Se i due autovalori sono concordi il determinante è positivo e, in particolare, non può essere $f_{xx}(x_0,y_0)=0$. Se i due autovalori sono discordi, allora il determinante è negativo.

Se $det[H_f(x_0, y_0)] = 0$ diremo che siamo nel "caso dubbio". Per toglierci il dubbio, potremmo analizzare le derivate terze e quarte (ma diventerebbe troppo complicato), quindi solitamente si preferisce affrontare il problema direttamente analizzando il segno di $f(x, y) - f(x_0, y_0)$.

5.6.4 Strategia per lo studio dei massimi e dei minimi

Vediamo una strategia da seguire:

1. si isolano i punti di f che non sono regolari (es. non derivabili una o due volte). Questi punti dovranno essere analizzati separatamente;

2. trovare i punti critici risolvendo:

$$\begin{cases} f_{x_1}(x_1, x_2, \dots, x_n) = 0 \\ f_{x_2}(x_1, x_2, \dots, x_n) = 0 \\ \dots \\ f_{x_n}(x_1, x_2, \dots, x_n) = 0 \end{cases}$$

- 3. per ogni punto critico:
 - (a) si calcola l'Hessiana:

$$H_f(x_0, y_0) = \begin{matrix} f_{xx}(x_0, y_0) & & f_{xy}(x_0, y_0) \\ f_yx(x_0, y_0) & & f_{yy}(x_0, y_0) \end{matrix}$$

- (b) se $det(H_f(x_0, y_0)) > 0$ e
 - $f_{xx}(x_0, y_0) > 0$ allora (x_0, y_0) è di minimo locale forte;
 - $f_{xx}(x_0, y_0) < 0$ allora (x_0, y_0) è di massimo locale forte;

(si noti che in questo caso $f_{xx}(x_0, y_0)$ e $f_{yy}(x_0, y_0)$ hanno lo stesso segno).

- (c) se $det(H_f(x_0, y_0)) < 0$ allora (x_0, y_0) è punto di sella;
- (d) se $det(H_f(x_0,y_0))=0$ occore un analisi ulteriore. Si possono percorrere due vie: 1.si studiano le derivate successive (terza e quarta) [sconsigliato]; 2. si affronta il problema direttamente analizzando il segno di $f(x,y)-f(x_0,y_0)$

5.6.5 Massimi e minimi per funzioni con domini chiusi e limitati

Per una funzione f(x,y) definita e continua in un dominio chiuso e limitato, vale il **teorema di Weierstrass**: una funzione f definita e continua in un insieme chiuso e limitato, ammette massimo e minimo assoluto.

La ricerca di massimo e minimo, in questa tipologia di esercizi, si svolge così: innanzitutto si cercano tutti gli estremi liberi di f (ci si comporta come sempre: annullando il gradiente e analizzando il comportamento di f negli eventuali punti di non differenziabilità), fra questi punti trovati si scartano quelli esterni al dominio e dopodichè si procede a studiare il comportamento di f lungo la linea che costituisce la frontiera del dominio in esame, combinando i risultati si trovano i massimi e minimi globali e relativi di f ristretta per un certo dominio chiuso e limitato. Per studiare il comportamento lungo le linee che costituiscono la frontiera tipicamente si cerca di esprimere queste come funzioni y=f(x) o x=f(y) e si studia la funzione f sostituendo le espressioni trovate. In seguito logicamente si combinano tutti i risultati ottenuti per giugnere a una conclusione.

5.6.6 Massimi e minimi (assoluti) per funzioni con domini illimitati

Per determinare la presenza di massimi o minimi assoluti per funzioni con domini illimitati occorne stabilirne il comprotamento all'infinito:

- Se si riesce a stabilire una direzione lungo la quale f tende a $+\infty$, allora f non potrà ammettere massimo assoluto;
- Se si reisce a stabilire una direzione lungo la quale f tende a $-\infty$, allora f non potrà ammettere minimo assoluto.

5.7 Ottimizzazione vincolata

Un problema che si può presentare consiste nel dover determinare massimi e minimi di una funzione f nell'ipotesi che le sue variabili non siano libere di assumere qualsiasi valore, ma siano vincolate da una (o più) equazioni.

Vi sono allora due possibili strategie:

- Se l'equazione che definisce il vincolo è particolarmente semplice, e si può esprimere una delle variabili in funzione dell'altra, allora si può sostituire questa espressione nella funzione.
- Se l'equazione che definisce il vincolo non è "semplice", si utilizza il metodo dei moltiplicatori di Lagrange: data la funzione f(x,y) e il vincolo g(x,y)=0, costruiamo la funzione, detta Lagrangiana, $L(x,y,\lambda)=f(x,y)+\lambda g(x,y)$ e ne cerchiamo i massimi e minimi, che si riveleranno massimi e minimi per f sotto il vincolo g.

5.7.1 Metodo dei moltiplicatori di Lagrange

Analiziamo qua il metodo dei moltiplicatori di lagrange nel dettaglio:

Un punto di ottimo per f vincolato a g=0 si ottiene cercando una curva di livello di f che sia tangente alla curva di livello 0 di g. Dato che il gradiente di una funzione è ortogonale alla sua curva di livello, la condizione di tangenza tra le due curve di livello si traduce in una relazione di proporzionalità tra ∇f e ∇g . Questo è il principio che governa il **metodo dei moltiplicatori di Lagrange**.

Siano $f,g\in C^1$ e supponiamo di volere ottimizzare (massimizzare o minimizzare) la funzione z=f(x,y) sotto il vincolo g(x,y)=0 (se fosse g(x,y)=b possiamo trasformarla in g(x,y)-b=0). Introduciamo la funzione $L:\mathbb{R}^3\to\mathbb{R}$ definita da

$$L(x, y, \lambda) = f(x, y) - \lambda g(x, y)$$

e che si chiama **Lagrangiana**. Se cerchiamo i punti stazionari (in \mathbb{R}^3 !) della funzione L siamo portati a risolvere il sistema $\nabla L = 0$ e cioè

$$\begin{cases} f_x(x,y) = \lambda g_x(x,y) \\ f_y(x,y) = \lambda g_y(x,y) \\ g(x,y) = 0 \end{cases}$$

Le prime due condizioni si possono riscrivere come $\nabla f = \lambda \nabla g$ ed esprimono la proporzionalità tra gradienti che, a sua volta, descrive la tangenza delle curve di livello di f e g. La terza equazione è l'equazione del vincolo e dice che la suddetta tangenza va cercata tra i punto che appartengono al vincolo.

Chiaramente da queste equazioni non distinguiamo gli eventuali massimi dai minimi e non è nemmeno detto che una soluzione sia un estremo relativo, tuttavia: gli eventuali punti di ottimo di f soggetti al vincolo g=0 vanno cercati tra le soluzioni di queste tre equazioni.

Per capire quali dei punti che sono soluzione del sistema sono estremi, è sufficiente calcolare i valori della funzione in tali punti e valutare se sono massimi o minimi.

Il **teorema di Weierstrass** può essere di aiuto per garantire l'esistenza dei massimi e dei minimi: Sia $[a,b]\subset\mathbb{R}$ un intervallo chiuso e limitato non vuoto e sia $f\colon [a,b]\to\mathbb{R}$ una funzione continua. Allora f(x) ammette (almeno) un punto di massimo assoluto e un punto di minimo assoluto nell'intervallo [a,b]. Da notare è che se il vincolo non è chiuso e limitato non si può usare il teorema di Weierstrass.

Notiamo che il valore esatto del moltiplicatore λ non è essenziale: permette di trovare i punti candidati, ma non serve per calcolare il livello della funzione.

Un punto più delicato riguarda i punti in cui i vettori delle derivate parziali di f e di g (∇f e ∇g) si annullano sul vincolo. Se si annulla ∇f troveremo un moltiplicatore nullo e saremo in presenza di un punto critico libero di f che posiamo tranquillamente inserire tra i candidati e valutarlo insieme agli altri punti. Se invece si annulla ∇g il metodo di Lagrange non funziona dato che non si riesce a determinare il moltiplicatore, quindi questi punti dovranno essere inseriti fra i candidati e valutati a parte.

5.8 Funzioni convesse di n variabili

5.8.1 Generalità sulle funzioni convesse

Un insieme $\Omega\subseteq\mathbb{R}^n$ si dice **convesso** se per ogni coppia di punti $x_1,x_2\in\Omega$ si ha che $[x_1,x_2]\subseteq\Omega$ (dove col simbolo $[x_1,x_2]$ si denota il segmento con estremi x_1,x_2); si dice strettamente convesso se per ogni coppia di punti $x_1,x_2\in\Omega$ il segmento (x_1,x_2) privato degli estremi è strettamente contenuto in Ω .

Si dice **epigrafico** di una funzione $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ l'insieme

$$epi(f) = \{(x, z) \in \mathbb{R}^{n+1} : z \ge f(x), x \in \Omega\}$$

Si dice che una funzione è **convessa** se epi(f) è un sottoinsieme convesso, si dice che una funzione è **concava** se -f è convessa.

Formalmente si dice che una funzione è convessa se e solo se per ogni $x_1, x_2, t \in [0, 1]$ vale la condizione

$$f(tx_2 + (1-t)x_1) \le tf(x_2) + (1-t)f(x_1).$$

Si noti che $tx_2 + (1-t)x_1$ percorre il segmento $[x_1, x_2]$ al variare di $t \in [0, 1]$

Se f è convessa allora:

- f è continua;
- f ha derivate parziali destre e sinistre in ogni punto;
- nei punti in cui è derivabile, f è anche dierenziabile.

Teorema di convessità e piano tangente. Sia $f:\Omega\to\mathbb{R}$ differenziabile in Ω . Allora f è convessa in Ω se e solo se per ogni coppia di punti $x_0,x\in\Omega$ si ha:

$$f(x) \ge f(x_0) + \nabla f(x_0) \cdot (x - x_0).$$

In due dimensioni:

$$f(x,y) \ge f(x_0,y_0) + \frac{\delta f}{\delta x}(x_0,y_0)(x-x_0) + \frac{\delta f}{\delta y}(x_0,y_0)(y-y_0).$$

che geometricamente significa che il paino tangente in $x - 0, y_0$ sta sotto f.

Teorema di convessità e matrice Hessiana. Sia $f \in C^2(\Omega)$, con Ω aperto convesso in \mathbb{R}^n . Se per ogni x_0 in Ω la forma quadratica $d^2f(x_0)$ è semidefinita positiva, allora f è convessa in Ω .

5.8.2 Ottimizzazione di funzioni convesse e concave

Nelle funzioni convesse (concave) i punti stazionari, se esistono, rappresentano minimi (massimi) globali. Inoltre se la funzione è strettamente convessa (concava), il punto critico è di minimo (massimo) globale forte, quindi, in particolare, è unico.

5.9 Funzioni definite implicitamente

5.9.1 Funzione implicita di una variabile

Teorema di Dini della funzione implicita. Sia A un aperto in \mathbb{R}^2 e f: $A \to \mathbb{R}$ una funzione $C^1(A)$. Supponiamo che in un punto $(x_0,y_0) \in A$ sia:

$$f(x_0, y_0) = 0$$
 e $f_y(x_0, y_0) \neq 0$.

Allora esiste un intorno I di x_0 in $\mathbb R$ e un'unica funzione g : $I \to \mathbb R$, tale che $y_0 = g(x_0)$ e

$$f(x, g(x)) = 0 \quad \forall x \in I.$$

Inoltre, $g \in C^1(I)$ e

$$g'(x) = -\frac{f_x(x, g_x)}{f_y(x, g_x)} \quad \forall \ x \in I.$$

Notiamo che se $f(x_0,y_0)=0$ e $f_y(x_0,y_0)=0$, ma $f_x(x_0,y_0)\neq 0$, il teorema è ancora applicabile scambiando gli ruoli di x e y.

In sostanza i punti in cui il teorema di Dini non è applicabile sono quelli in cui il gradiente di f si annulla, ossia i punti critici.

5.9.2 Note sugli esercizi

Tipicamente negli esercizi la richiesta è di calcolare la funzione g'(x) in un punto. Si inizia calcolando i punti per cui f(x,y)=0 (solitamente vengono forniti). Una volta trovati questi punti si deve verificare che $\frac{\delta f}{\delta y}f(x,y)$ (oppure $\frac{\delta f}{\delta x}f(x,y)$) sia $\neq 0$. Se queste condizioni si verificano, allora il Teorema di Dini è applicabile e si può procedere a calcolare $g'(x)=-\frac{\frac{\delta f}{\delta x}(x,y)}{\frac{\delta f}{\delta y}(x,y)}$ e a trovarne il valore in un punto.

Se in un esercizio viene chiesto di calcolare, oltre a g'(x), anche g''(x), allora si può usare un altro procedimento: si può derivare rispetto a x l'equazione f(x,g(x))=0 e quindi ricavare g'(x). Succesivamente si può derivare ancora l'equazione e ricavare g''(x). Spesso per risolvere queste equazioni è più semplice derivarle e poi sostituire $x=x_0$ con l' x_0 richiesto dall'esercizio.

6 Ripasso sugli integrali (analisi I)

6.1 Teorema fondamentale del calcolo integrale:

$$\int_{a}^{b} f(x)dx = G(b) - G(a)$$

6.2 Proprietà degli integrali:

$$\int_{a}^{b} f(x)dx = \int_{a}^{r} f(x)dx + \int_{r}^{b} f(x)dx$$
$$\left| \int_{a}^{b} f(x)dx \right| \le \int_{a}^{b} |f(x)|dx$$
$$\int k \cdot f(x)dx = k \cdot \int f(x)dx$$
$$\int [f_{1}(x) + f_{2}(x)]dx = \int f_{1}(x)dx + \int f_{2}(x)dx$$

6.3 Integrali fondamentali:

$$\int f'(x)dx = f(x) + c$$

$$\int a \, dx = ax + c$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$

$$\int \frac{1}{x} dx = \ln(|x|) + c$$

$$\int \sin(x) dx = -\cos(x) + c$$

$$\int \cos(x) dx = \sin(x) + c$$

$$\int \tan(x) dx = -\log|\cos(x)| + c$$

$$\int \log(x) dx = x\log(x) - \int x \cdot \frac{1}{x} dx - \int 1 dx = x\log(x) - x + c$$

$$\int \arctan(x) dx = -\log|\cos(x)| + c$$

$$\int \cot(x) dx = x - \int 1 dx = x - \int 1$$

$$\int e^x dx = e^x + c$$

$$\int e^{kx} dx = \frac{e^{kx}}{k} + c$$

$$\int a^x dx = \frac{a^x}{\ln(a)} + c$$

6.4 Integrali notevoli:

$$\int \sin^2(x) dx = [integrato \ una \ volta \ per \ parti \ e \ sostituzione \ con \ cos^2(x) + sin^2(x) = 1] = \frac{1}{2}(x - sin(x) cos(x)) + c$$

$$\int \cos^2(x) dx = [integrato \ una \ volta \ per \ parti \ e \ sostituzione \ con \ cos^2(x) + sin^2(x) = 1] = \frac{1}{2}(x + sin(x) cos(x)) + c$$

$$\int \tan^2(x) dx = tan(x) - x + c$$

$$\int \cot^2(x) dx = -x - \cot(x) + c$$

$$\int \sinh^2(x) dx = -x - \cot(x) + c$$

$$\int \cosh^2(x) dx = [integrato \ una \ volta \ per \ parti \ e \ sostituzione \ con \ Ch^2(x) - Sh^2(x) = 1] = \frac{1}{4}(Sh(2x) - 2x) + c$$

$$\int Ch^2(x) dx = [integrato \ una \ volta \ per \ parti \ e \ sostituzione \ con \ Ch^2(x) - Sh^2(x) = 1] = \frac{1}{2}(x + Sh(x)Ch(x)) + c$$

$$\int Th^2(x) dx = x - Th(x) + c$$

$$\int Coth^2(x) dx = x - Coth(x) + c$$

$$\int \frac{1}{\sin^2(x)} dx = [1 = \cos^2(x) + sin^2(x)] = \int 1 + tan^2(x) dx = -\cot n(x) + c$$

$$\int \frac{1}{\cos^2(x)} dx = [1 = \cos^2(x) + sin^2(x)] = \int 1 + \cot n^2(x) dx = tan(x) + c$$

$$\int \frac{1}{\cos^2(x)} dx = [1 = \cos^2(x) + sin^2(x)] = \int 1 + \cot n^2(x) dx = tan(x) + c$$

$$\int \frac{1}{\cot^2(x)} dx = \int \cot n^2(x) dx$$

$$\int \frac{1}{\cot^2(x)} dx = \int \cot^2(x) dx = -\cot h(x) + c$$

$$\int \frac{1}{(h^2(x))} dx = \int (1 - Th^2(x)) dx = -Toth(x) + c$$

$$\int \frac{1}{1 - x^2} dx = \arctan tg(x) + c$$

$$\int \frac{1}{1 - x^2} dx = \arctan tg(x) + c$$

$$\int \frac{1}{\sqrt{1 + x^2}} dx = \arcsin(x) + c$$

$$\int \frac{1}{\sqrt{1 + x^2}} dx = \arcsin(x) + c$$

$$\int \frac{1}{\sqrt{1 + x^2}} dx = -\log|x + \sqrt{x^2 + a^2}| + c$$

$$\int \sqrt{x^2 + a^2} dx = \frac{1}{2} \log|x + \sqrt{x^2 + a^2}| + c$$

$$\int \sqrt{x^2 + a^2} dx = \frac{1}{2} \sqrt{x^2 + a^2} dx = \frac{1}{2} \log(x + \sqrt{x^2 + a^2}) + c$$

$$\int \sqrt{a^2 - x^2} dx = \frac{1}{2} (a^2 \arcsin(\frac{x}{a}) + x\sqrt{a^2 - x^2}) + c$$

$$\int e^{ax} \cos(bx) dx = Re(\int e^{a+ib} x dx)$$

$$\int e^{ax} \sin(bx) dx = Im(\int e^{a+ib} x dx)$$

$$\int e^{(a+ib)x} dx = \frac{1}{a+ib} e^{(a+ib)x} = \frac{e^{ax}}{a^2 + b^2} (a-ib)(\cos(bx) + i\sin(bx))$$

6.5 Integrali riconducibili:

$$\int f^{n}(x) \cdot f'(x) dx = \frac{f^{n+1}(x)}{n+1} + c$$

$$\int \frac{f'(x)}{f(x)} dx = \log|f(x)| + c$$

$$\int f'(x) \cdot \cos(f(x)) dx = \sin(f(x)) + c$$

$$\int f'(x) \cdot \sin(f(x)) dx = -\cos(f(x)) + c$$

$$\int e^{(f(x))} \cdot f'(x) dx = e^{f(x)} + c$$

$$\int a^{f(x)} \cdot f'(x) dx = \frac{a^{f(x)}}{\ln(a)} + c$$

$$\int \frac{f'(x)}{1 + f^{2}(x)} dx = \operatorname{arct} g(f(x)) + c$$

6.6 Integrazione per sostituzione:

Sostituire alla variabile x una funzione di un'altra variabile t, purchè tale funzione sia derivabile e invertibile.

Ponendo x=g(t) da cui deriva $dx=g^{\prime}(t)dt$ si ha che:

$$\int f(x)dx = \int f[g(t)] \cdot g'(t)dt$$

Da ricordare è che se si è in presenza di un integrale definito bisogna aggiornare anche gli estremi di integrazione. Se non si volesse cambiare l'intervall odi integrazione si può risostituire il vecchio valore di t.

6.7 Integrazione delle funzioni razionali:

$$\int \frac{P_n(x)}{Q_m(x)} dx$$

Per prima cosa se il grado del numeratore $\grave{e} \geq$ del grado del denominatore, si esegue la divisione di polinomi:

• Si dispongono i polinomi dal termine di grado maggiore a quello minore nella seguente maniera:

$$P(x) \mid Q(x)$$

badando al fatto che se nel polinomio P(x) mancasse qualche termine bisognerebbe scrivere 0 nella sua posizione.

- Si dividono il termine di grado massimo di P(x) con quello di grado massimo di Q(x), riportando il risultato al di sotto di Q(x).
- Moltiplichiamo il termine appena scritto per ogni termine di Q(x), ne invertiamo il segno e lo trascriviamo al di sotto dei termini con lo stesso grado di P(x)

- ullet Sommiamo termine per termine P(x) con i valore appena scritti e li riportiamo sotto.
- Ripetiamo questo procedimento finchè il grado più alto fra i termini dell'ultima riga scritta a sinistra è minore (non minore uguale) del termine di grado massimo di Q(x)
- Il polinomio a destra è il risultato della divisione S(x), mentre ciò che rimane sulla sinistra è il resto R(x). Possiamo ora riscrivere il numeratore:

$$P(x) = S(x) \cdot Q(x) + R(x)$$

Vediamo ora i vari casi possibili:

- denominatore di primo grado: integrale immediato tramite il logaritmo
- denominatore di secondo grado: si calcola il segno del discriminante:
 - due radici distinte: si scompone in fratti semplici

$$\frac{N(x)}{D_1(x) \cdot D_2(x)} = \frac{a}{D_1(x)} + \frac{b}{D_2(x)}$$
$$\frac{a \cdot D_2(x) + b \cdot D_1(x)}{D_1(x) \cdot D_2(x)} = \frac{N(x)}{D_1(x) \cdot D_2(x)}$$
$$a \cdot D_2(x) + b \cdot D_1(x) = N(x)$$

Una volta determinate a e b si riscrive l'integrale come $\frac{a}{D_1(x)}+\frac{b}{D_2(x)}$ e si integra come somma di logaritmi

denominatore quadrato perfetto: (due soluzioni coincidenti), si procede per sostituzione:

$$\int \frac{N(x)}{D(x)^2} dx = [D(x) = t, \dots] = \dots$$

L'utilità della sostituzione è quella di spezzare la frazione in una somma di frazion ida integrare una ad una.

- denominatore non si annulla mai:

Casi semplici:

$$\int \frac{1}{1+x^2} dx = arctg(x) + c$$

$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} arctg \frac{x}{a} + c$$

$$\int \frac{1}{a^2 + (x+b)^2} dx = \frac{1}{a} arctg \frac{x+b}{a} + c$$

Caso generico: Si cerca di dividere l'integrale in una somma di integrali, il primo deve contenere al numeratore la derivata del denominatore, il secondo non deve contenere la \boldsymbol{x} al numeratore, cioè deve essere una costante e quindi riconducibile ai casi semplici sopra riportati. Il denominatore non cambia. Ci si arriva a logica.

• denominatore di grado maggiore di due: è sempre possibile scomporlo in prodotti di fattori di primo grado o di secondo grado irriducibili, per farlo si usa Ruffini (o altrimenti si va a tentoni ricordando che PROBABILMENTE una radice della funzione è un dividendo (positivi e negativi) del numero che si ricava moltiplicando il coefficiente del termine massimo e il termine noto). Fatto questo si scompone la frazione in fratti semplici con la stessa logica del caso di due radici distinte, ricordando che il numeratore deve essere un espressione di un grado minore del denominatore, per esempio se il denominatore è di grado 2, allora si userà ax + b che è di grado 1.

6.8 Funzioni razionali di e^x

Si pone $e^x=t$, x=log(t), $dx=\frac{dt}{t}$ e ci si riconduce a una funzione razionale classica.

6.9 Integrazione per parti:

$$\int f'(x) \cdot g(x) dx = f(x) \cdot g(x) - \int f(x) \cdot g'(x) dx$$

La formula deriva dalla formula di derivazione della moltiplicazioni di due funzioni:

$$(fg)' = f'g + fg'$$
$$fg' = (fg)' - f'g$$

Si può vedere la formula di integrazione per parti più facilmente così:

$$\int integranda \cdot derivanda \ dx = primitiva \cdot derivanda - \int primitiva \cdot derivata \ dx$$

L'integrazione per parti si usa:

• dovendo calcolare integrali della forma

$$\int x^n \cdot f(x)dx \quad f(x) = \begin{cases} \cos(x) \\ \sin(x) \\ e^x \\ Sh(x) \\ Ch(x) \end{cases}$$

si integra per parti derivando x^n e integrando f(x). Per n=1 l'integrale si riduce a uno immediato, per n>1 si itera il procedimento fino al caso n=1. Si possono svolgere allo stesso modo anche integrali del tipo:

$$\int P_n(x)f(x)dx$$

• dovendo calcolare integrali della forma

$$\int f(x)g(x)dx \quad \begin{cases} f(x) = e^{\alpha x}, Sh(\alpha x), Ch(\alpha x), a^{bx} \\ g(x) = \cos(\beta x), \sin(\beta x) \end{cases}$$

si eseguono due integrazioni per parti consecutive, nella prima la scelta della funzione da integrare o derivare è indifferente, nella seconda però la scelte deve essere coerente alla prima. Chiamando I l'integrale di partenza si ottiene una funzione della forma

$$I = h(x) - \frac{\beta^2}{\alpha}I$$

da cui si ricava I.

Se entrambe le funzioni f(x) e g(x) sono del tipo cos(x) o sin(x) si usano le formule di duplicazione o prostaferesi (vedi più avanti).

ullet L'integrale del logaritmo, derivando log(x) e integrando 1

$$\int \log(x)dx = x\log(x) - \int x \cdot \frac{1}{x}dx - \int 1dx = x\log(x) - x + c$$

Più in generale, dovendo calcolare integrali della forma

$$\int x^m \log^n(x) dx$$

e ponendo $g'=x^m$ e $f=log^n(x)$ ed eseguendo iterativamente n integrazioni per parti si riesce a calcolare l'integrale del logaritmo. Ancora più in generale si possono risolvere integrali della forma:

$$\int P_m(x) \cdot Q_n(\log(x)) dx$$

• l'integrale dell'arcotangente, derivando arctg(x) e integrando 1

$$\int arctg(x)dx = xarctg(x) - \int \frac{x}{1+x^2}dx = xarctg(x) - \frac{1}{2}log(1+x^2) + c$$

Più in generale

$$\int x^n arctg(x) dx = \frac{x^{n+1}}{n+1} arctg(x) - \int \frac{x^{n+1}}{n+1} \frac{dx}{1+x^2}$$

6.10 integrazione delle funzioni trigonometriche

• dovendo calcolare

$$\int f(\sin(x)) \cdot \cos(x) dx \quad \Rightarrow \quad \sin(x) = t, \cos(x) dx = dt$$

$$\int f(\cos(x)) \cdot \sin(x) dx \quad \Rightarrow \quad \cos(x) dx = dt$$

In particolare per calcolare

$$\int sin^n(x)cos^m(x)$$

se almeno uno degli esponenti è dispari si riesce a riscrivere l'integrale in una delle forme viste sopra utilizzando: $sin^2(x) + cos^2(x) = 1$. Se entrambi gli esponenti sono pari si usano le formule trigonometriche per abbassarne il grado: $cos^2(x) = \frac{1}{2}(1 + cos(2x))$ e $sin^2(x) = \frac{1}{2}(1 - cos(2x))$

• per integrali del tipo

$$\int cos(\alpha x)sin(\beta x)dx, \quad \int cos(\alpha x)cos(\beta x)dx, \quad \int sin(\alpha x)sin(\beta x)dx,$$

si usano le regole di prostaferesi che riconducono a somme di integrali immediati

• integrali di funzioni razionali di sin(x) e cos(x) possono sempre essere ricondotti a integrali di funzioni razionali generiche tramite la sostituzione:

$$t = tg\left(\frac{x}{2}\right), \quad x = 2arctg(t), \quad dx = \frac{2}{1+t^2}dt$$

ne derivano le seguenti identità trigonometriche:

$$\begin{cases} \cos(x) = \frac{1-t^2}{1+t^2} \\ \sin(x) = \frac{2t}{1+t^2} \end{cases}$$

• integrali definiti notevoli:

$$\int_0^{n\frac{\pi}{2}} \cos^2(kx) dx = \int_0^{n\frac{\pi}{2}} \sin^2(kx) dx = n\frac{\pi}{4}$$

• per calcolare integrali razionali con Sh(x) e Ch(x) o si trovano scorciatoie con trasformazioni oppure si usa la sostituzione $e^x=t, x=log(t), dx=\frac{dt}{t}$

6.11 Integrazione delle funzioni irrazzionali

ullet se l'integranda è una funzione razionale di x moltiplicata per solo una delle seguenti

$$\int R(x)\sqrt{a^{2}-x^{2}}dx = [x = a \cdot sin(t), dx = a \cdot cos(t)dt] = \int \sqrt{a^{2}(1-sin^{2}(t))}dx = \int |a \cdot cos(t)|dx$$

$$\int R(x)\sqrt{a^{2}+x^{2}} = [x = a \cdot Sh(t), dx = a \cdot Ch(t)dt] = \int \sqrt{a^{2}(1-Sh^{2}(t))}dx = \int a \cdot Ch(t)dx$$

$$\int R(x)\sqrt{x^{2}-a^{2}} = [x = a \cdot Ch(t), dx = a \cdot Sh(t)dt] = \int \sqrt{a^{2}(Ch^{2}(t)-1)}dx = \int |a \cdot Sh(t)|dx$$

Negli ultimi due casi per tornare alla variabile x occorre usare le funzioni iperobliche inverse:

$$\begin{cases} x = a \cdot Ch(t) \Rightarrow t = SettCh(\frac{x}{a}) = log\left(\frac{x}{a} + \sqrt{\frac{x^2}{a^2} - 1}\right) \\ x = a \cdot Sh(t) \Rightarrow t = SettSh\left(\frac{x}{a}\right) = log\left(\frac{x}{a} + \sqrt{\frac{x^2}{a^2} + 1}\right) \end{cases}$$

è utile anche ricordare che $Sh(SettCh(a)) = \sqrt{a^2 - 1}$ e $Ch(SettSh(a)) = \sqrt{a^2 + 1}$

- integrale di una funzione razionale di $x, x^{\frac{n_1}{m_1}}, x^{\frac{n_2}{m_2}}$, etc. Si pone $x = t^n$ con n = minimo comune multiplo di m_1, m_2 , etc. Si ha quindi $dx = n \cdot t^{n-1} dt$ e si ottiene una funzione razionale di t.
- Se l'integranda è una funzione del tipo $R(x^{2n+1}, \sqrt{x^2 \pm a^2})$

$$\int x^{2n+1}R(\sqrt{x^2\pm a^2})dx = [\sqrt{x^2\pm a^2} = t, xdx = tdt, x^{2n+1} \cdot dx = (t^2 \mp a^2)^n t \cdot dt]$$

6.12 Simmetrie e valori assoluti nel calcolo di integrali definiti

• se f(x) è pari:

$$\int_{-k}^{k} f(x)dx = 2\int_{0}^{k} f(x)dx$$

• se f(x) è dispari:

$$\int_{-k}^{k} f(x)dx = 0$$

Osservazione: Integrale generalizzato di una funzioen dispari su un intervallo simmetrico.

Non è corretto affermare l'annullarsi di un integrale dispari per motivi di simmetria in un intervallo simmetrico senza prima verificare la convergenza dell'integrale stesso.

6.13 Integrali generalizzati

6.13.1 Integrazione di funzioni non limitate

Metodo generale di risoluzione:

$$\lim_{x \to b^{-}} f(x) = \pm \infty$$

$$\lim_{x \to a^{+}} f(x) = \pm \infty$$

$$\int_{a}^{b} f(x)dx = \lim_{\epsilon \to 0^{+}} \int_{a}^{b-\epsilon} f(x)dx$$

$$\int_{a}^{b} f(x)dx = \lim_{\epsilon \to 0^{+}} \int_{a+\epsilon}^{b} f(x)dx$$

6.13.2 Criteri di integrabilità al finito

Siano $\lim_{x\to b^-} f(x) = \lim_{x\to b^-} g(x) = +\infty$:

- confronto: se $0 \le f(x) \le g(x)$, allora g integrabile $\Rightarrow f$ integrabile e f non integrabile $\Rightarrow g$ non integrabile.
- confronto asintotico: se f > 0 e g > 0 e $f \sim g$ per $x \to b^-$, allora f integrabile $\Leftrightarrow g$ integrabile.
- **teor.** (da usare per studiare per esempio funzioni seno e coseno per $x \to \infty$)

$$\int_a^b |f(x)| dx \ convergente \ \Rightarrow \int_a^b f(x) dx \ convergente$$

6.13.3 Integrazione su intervalli illimitati

Metodo generale di risoluzione:

$$\int_{a}^{+\infty} f(x)dx = \lim_{\omega \to +\infty} \int_{a}^{\omega} f(x)dx$$
$$\int_{-\infty}^{b} f(x)dx = \lim_{\omega \to -\infty} \int_{\omega}^{b} f(x)dx$$
$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx$$

def. Se il limite dell'integrale di f esiste finito allora f si dice integrabile oppure che l'integrale è convergente.

def. Se il limite dell'integrale è $\pm \infty$, l'integrale si dice divergente.

def. Se il limite non esiste, l'integrale non esiste.

per essere integrabile deve avere limite finito.

6.13.4 Criteri di integrabilità all'infinito

- confronto: se $0 \le f(x) \le g(x)$ in $[a, +\infty)$, allora g integrabile $\Rightarrow f$ integrabile e f non integrabile.
- confronto asintotico: se f>0, g>0 e $f\sim g$ per $x\to +\infty$, allora f integrabile $\Leftrightarrow g$ integrabile
- **teor.** (da usare per studiare per esempio funzioni seno e coseno per $x \to \infty$)

$$\int_{a}^{+\infty} |f(x)| dx \ convergente \ \Rightarrow \int_{a}^{+\infty} f(x) dx \ convergente$$

6.13.5 Integrali generalizzati notevoli

Caso 1:

$$\int_{a}^{b} \frac{1}{(x-a)^{p}} dx \to \begin{cases} converge & se \ p < 1 \\ diverge & se \ p \ge 1 \end{cases}$$

$$\int_{a}^{b} \frac{dx}{(b-x)^{p}} \to \begin{cases} converge & se \ p < 1 \\ diverge & se \ p \ge 1 \end{cases}$$

Caso 2:

$$\int_{a}^{+\infty} \frac{1}{x^{p}} dx \to \begin{cases} converge & se \ p > 1\\ diverge & se \ p \leq 1 \end{cases}$$

Caso 3: con $0 < \alpha < 1$

$$\int_0^\alpha \frac{1}{x^a \cdot |ln(x)|^b} \to \begin{cases} converge \ se \end{cases} \begin{cases} a < 1 \ e \ b \in \mathbb{R} \\ oppure \\ a = 1 \ e \ b > 1 \end{cases}$$
$$\begin{cases} a > 1 \ e \ b \in \mathbb{R} \\ oppure \\ a = 1 \ e \ b \leq 1 \end{cases}$$

Caso 4: con $\alpha > 1$

Caso 5: con $\alpha>1$

$$\int_{1}^{\alpha} \frac{1}{\ln^{p}(x)} dx \to \begin{cases} converge \ se & p < 1 \\ diverge \ se & p \geq 1 \end{cases}$$

6.14 Funzioni integrali

teor. Secondo teorema fondamentale del calcolo integrale Sia $f:[a,b]\to\mathbb{R}$ una funzione integrabile e sia $x_0\in[a,b]$ e sia

$$F(x) = \int_{x_0}^{x} f(t)dt$$

Allora:

- La funzione F è continua in [a,b]
- Se inoltre f è continua in [a, b], allora F è derivabile in [a, b] e vale

$$F'(x) = f(x)$$
 per ogni $x \in [a, b]$

(Se f(t) non è continua su tutto I, ma è integrabile in senso generalizzato, in tutti i punti in cui f(t) è continua, F(x) è derivabile e F'(x) = f(x)) F ha punti di non derivabilità dove f è discontinua.

Conseguenze:

- ullet se f è continua, F è derivabile con continuità
- se f è continua e derivabile con continuità, anche F' è derivabile con continuità, quindi F è due volte derivabile con continuità. Iterando: la funzione integrale ha sempre un grado di regolarità in più rispetto alla funzione integranda

ullet ogni fuzione continua su I ha una primitiva su I

Logica degli esercizi in cui bisogna trovare l'intervallo di definizione:

$$F(x) = \int_{x_0}^{x} f(x)dx$$

- lo scopo è determinare dove la funzione integranda è integrabile.
- Vedere dove la funzione integranda è continua, una funzione continua è integrabile. Analizzare i punti di discontinuità:
- Se una funzione ha un numero finito di discontinuità limitate in un intervallo, allora è integrabile in quell'intervallo. In poche parole se è una discontinuità a salto è integrabile.
- Per gli altri punti di discontinuità la funzione integranda è illimitat, quindi bisogna studiarla (con i
 criteri del confronto, del confronto asintotico, col teorema del modulo, calcolando effettivamente
 la primitiva e il limite, o riducendosi al caso particolare delle funzioni non limitate con gli asintotici
 o gli sviluppi di Taylor).
- Se la funzione itegranda non è integrabile nel punto x_0 allora l'insieme di definizione di F è vuoto. Ma se x_0 fosse un punto di accumulazione bisogna studiare l'integrale della funione per $t \to x_0$ e vedere se è effettivamente integrabile o meno.

Logica degli esercizi sulla regolarità delle funzioni integrali:

$$F(x) = \int_{x_0}^{x} f(x)dx$$

- si determina l'insieme di definizione. (vedi sopra)
- per determinare i punti di non derivabilità di F(x) studiamo la sua derivata F'(x) = f(x). I punti di non derivabilità sono quelli quelli dove f(x) non è definita, e in F(x) corrispondono a:
 - discontinuità a salto in f è un punto angoloso in F
 - punti di asintoto verticale di f sono cuspidi (verso l'alto o il basso) o flessi a tangente verticale (ascendente o discendente) di F
- Notiamo che tangenti verticali o discontinuità a salto o buchi nella funzione di F non possono essere presenti nel dominio di F, perchè essendo punti di discontinuità non sono derivabili e dunque non presenti nell'intervallo di integrazione di f.

Dunque la funzione F è (sempre) continua nel suo intervallo di definizione.

Logica degli esercizi sui grafici qualitativi della funzione integrale F(x) a partire dalla funzione integranda g(x)

- F è crescente sugli intervalli in cui g è positiva, F è decrescente sugli intervalli in cui g è negativa.
- ullet punti in cui g incrocia l'asse delle x sono punti di massimo o minimo
- ullet discontinuità a salto in g sono punti angolosi
- F è concava verso l'alto (il basso) negli intervalli in cui g è crescente (decrescente)
- $\bullet\,$ punti di cambio massimo e minimo in g sono punti di cambio di concavità in F

Limite all'infinito di una funzione integrale:

$$\lim_{x \to +\infty} F(x) = integrale \ generalizzato = \int_{x_0}^{+\infty} f(t)dt$$

se l'integrale generallizzato converge esiste limite finito (anche se non si riesce a calcolare), se non converge o è divergente o non esiste.

Caso particolare è quello in cui $f(t) \to m$, costante non nulla, per cui $F(x) \sim mx$. Quindi F(x) tende a infinito con crescita lineare e potrebbe avere asintoto obliquo calcolabile come

$$\lim_{x \to \infty} [F(x) - mx] = \lim_{x \to \infty} \int_{x_0}^x [f(t) - m]dt + mx_0$$

Ossia esiste asintoto obliquo se l'integrale generalizzato

$$\int_{x_0}^{\infty} [f(t) - m] dt$$

converge.

7 Integrali doppi e tripli (analisi II)

7.1 Integrali doppi

L'integrale doppio serve per il calcolo di volumi.

$$\int_{\Omega} f(x,y) dx dy$$

Proprietà:

- se $f(x,y) \ge g(x,y) \Rightarrow \int_{\Omega} f(x,y) dx dy \ge \int_{\Omega} g(x,y) dx dy$
- $|\int_{\Omega} f(x,y) dx dy| \leq \int_{\Omega} |f(x,y)| dx dy$
- linearità:

$$\int_{\Omega} [\alpha \cdot f(x,y) + \beta \cdot g(x,y)] dx dy = \alpha \int_{\Omega} f(x,y) dx dy + \beta \int_{\Omega} g(x,y) dx dy$$

• addittività: Se Ω_1, Ω_2 sono aperti tali che $\Omega_1 \cap \Omega_2 = \emptyset$, allora

$$\int_{\Omega_1 \cap \Omega_2} f(x, y) dx dy = \int_{\Omega_1} f(x, y) dx dy + \int_{\Omega_2} f(x, y) dx dy$$

• valor medio: se $f \in C^0(\Omega)$ con Ω chiuso e limitato, allora esiste $(x_0,y_0) \in \Omega$ tale che

$$f(x_0, y_0) = \frac{1}{|\Omega|} \int_{\Omega} f(x, y) dx dy$$

Regione y-semplice: Se l'intersezione di una qualunque retta verticale con la Ω è un segmento o vuota.

Regione x-semplice: Se l'intersezione di una qualunque retta orizzontale con la Ω è un segmento o vuota.

Una regione piana Ω si dice **regolare** se può essere scomposta in un numero finito di regioni semplici.

7.1.1 Integrale su una regione semplice

Consideriamo il caso in cui Ω è un rettangolo con vertici a,b,c,d.

Prendendo una sezione verticale rispetto a x nel punto x_0 , notiamo che l'area è rappresentata da $A = \int_c^d f(x_0, y) dy$. Variando per tutte le x_0 che appartengono all'intervallo [a, b] otteniamo

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx$$

Questo concetto è applicabile anche a tutte le Ω semplici, l'area della sezione rispetto a x è $A=\int_{g(x)}^{h(x)}f(x,y)dy$, e quindi il volume:

$$\int_{a}^{b} \left(\int_{g(x)}^{h(x)} f(x, y) dy \right) dx$$

Dunque:

teor. Formula di riduzione per integrali doppi:

• Se Ω è y-semplice, cioè se $\Omega = \{(x,y) \in \mathbb{R}^2, a < x < b, g(x) < y < h(x)\}$

$$\int_{\Omega} f(x,y)dxdy = \int_{a}^{b} \left(\int_{g(x)}^{h(x)} f(x,y)dy \right) dx$$

Dove g(x) rappresenta il limite inferiore di Ω , e h(x) il limite superiore.

• Se Ω è **x-semplice**, cioè se $\Omega = \{(x,y) \in \mathbb{R}^2, a < y < b, g(x) < x < h(x)\}$

$$\int_{\Omega} f(x,y)dxdy = \int_{a}^{b} \left(\int_{g(y)}^{h(y)} f(x,y)dx \right) dy$$

Dove g(x) rappresenta il limite inferiore di Ω , e h(x) il limite superiore.

Questo teorema afferma che, su una regione semplice, un integrale doppio si può calcolare con due integrazioni successive. Se poi la regione fosse regolare ma non semplice, si può scomporre in un numero finito di regioni semplici sulle quali applicare questo teorema e concludere sommando tutti i risultati.

7.1.2 Cambio di variabili

Il problema è quello di trasformare un insieme $\Omega\subset\mathbb{R}^2$ in un altro insieme $T\subset\mathbb{R}^2$ più semplice geometricamente.

$$(u,v) = \Phi(x,y)$$

La trasformazione Φ deve essere biunivoca, cioè all'interno dell'intervallo la derivata prima di Φ non deve annullarsi.

Stiamo quindi cercando di creare una trasformazione $\Phi:\Omega\to T$ che sia invertibile

$$\Phi: \begin{cases} u = u(x, y) \\ v = v(x, y) \end{cases}$$

$$\Phi^{-1}: \begin{cases} x = x(u, v) \\ y = y(u, v) \end{cases}$$

Cerchiamo ora una condizione sulle derivate di Φ in modo da essere sicuri che il cambio di variabile sia invertibile.

Sia $\Phi:\Omega\to T$ una trasformazione piana con componenti u=(x,y) e v=v(x,y) di classe $C^1.$ Si chiama **matrice Jacobiana** della trasformazione Φ la matriche

$$\frac{\delta(u,v)}{\delta(x,y)} = \begin{bmatrix} u_x(x,y) & u_y(x,y) \\ v_x(x,y) & v_y(x,y) \end{bmatrix}$$

Se risulta $\det\left(\frac{\delta(u,v)}{\delta(x,y)}\right) \neq 0 \quad \forall \ (x,y) \in \Omega \text{(senza la frontiera)}, \ \text{allora} \ \Phi \ \text{sarà localmente invertibile.}$ A differenza del caso monodimensionale, questa condizione non consente però di concludere che Φ sia globalmente invertibile. Inoltre se questa condizione è valida, sappiamo che di sicuro anche per la matrice Jacobiana della funzione inversa Φ^{-1} vale $\det\left(\frac{\delta(x,y)}{\delta(u,v)}\right) \neq 0 \quad \forall \ (u,v) \in T.$ Inoltre questa condizione di non annullamento viene garantita solo nell'insieme aperto.

Il termine $det\left(\frac{\delta(x,y)}{\delta(u,v)}\right)$ rappresenta il fattore che dilata o contrae l'elemento d'area, dunque abbiamo:

$$dxdy = det\left(\frac{\delta(x,y)}{\delta(u,v)}\right)dudv$$

teorema del cambiamento di variabili negli integrali doppi

Sia $\Omega \in \mathbb{R}^2$ un aperto limitato regolare e sia $\Phi: \Omega \to T$ una trasformazione piana invertibile di classe C^1 . Allora, detta Φ^{-1} la sua inversa, se vale $\det\left(\frac{\delta(u,v)}{\delta(x,y)}\right) \neq 0 \quad \forall \ (x,y) \in \Omega$, allora vale anche $\det\left(\frac{\delta(x,y)}{\delta(u,v)}\right) \neq 0 \quad \forall \ (u,v) \in T$. Sia poi $f \in R(\Omega)$; allora

$$\int_{\Omega} f(x,y) dx dy = \int_{T} f(x(u,v),y(u,v)) \cdot \left| \det \left(\frac{\delta(x,y)}{\delta(u,v)} \right) \right| du dv$$

7.1.3 Cambio di variabili in coordinate polari

Sia $\Omega \in \mathbb{R}^2$, i punti (x,y) vengono trasformati in punti $(\rho,\theta) \in T$ tali che

$$\Phi^{-1}: \begin{cases} x = \rho cos(\theta) \\ y = \rho sin(\theta) \end{cases}$$

$$\rho = \sqrt{x^2 + y^2} \ge 0 \qquad \theta \in [0, 2\pi)$$

Questa trasformazione trasforma il piano \mathbb{R}^2 in una striscia di piano, la cui altezza massima è $\theta=2\pi$ (non compresa) e la lunghezza è determinata da ρ .

Un caso particolare è rappresentato da $\rho = 0$, in cui θ non è definito.

Analiziamo il Jacobiano:

Jacobiano
$$= \rho$$

Nelle integrazioni in coordinate polari, essendo il Jacobiano $= \rho$, il termine $dx\ dy$ diventa $\rho\ d\rho\ d\theta$.

Il cambio in coordinate polari è consigliabile quando nell'integranda compare l'espressione $x^2 + y^2$.

7.2 Integrali tripli

Ridurre un integrale triplo significa scomporre 3=1+2 o 3=2+1, cioè svolgere prima un integrale semplice e poi un integrale doppio o viceversa.

Salvo pochi casi in cui si può operare in entrambi i modi, la scelta dipenderà dalla forma dell'insieme di integrazione.

7.2.1 Integrazione per fili

Se l'insieme Ω è semplice rispetto all'asse z o **z-semplice**, cioè esistono $D \subset \mathbb{R}^2$ e $g,h \in C^0(\bar{D})$ tali che g < h in D e

$$\Omega = \{(x, y, z) \in \mathbb{R}^3, (x, y) \in D, q(x, y) < z < h(x, y)\}$$

cioè se l'intersezione di una retta parallela all'asse z e Ω è un segmeno o vuota, allora data $f\in C^0(\Omega)$ si ha

$$\int_{\Omega} f(x, y, z) dx dy dz = \int_{D} \left(\int_{g(x, y)}^{h(x, y)} f(x, y, z) dz \right) dx dy$$

Allo stesso modo si procede nel caso di Ω x-semplice o y-semplice.

Ma non tutti i domini sono semplici rispetto a una delle tre variabili, per cui...

7.2.2 Integrazione per strati

Se Ω è semplice rispetto alla coppia (x,y) e cioè esistono a < b tali che

$$\Omega = \{(x, y, z) \in \mathbb{R}^3, a < z < b, (x, y) \in D_z \ \forall \ z \in (a, b)\}$$

dove D_z è un insieme regolare $\,\,\forall\,\,z\in(a,b)$, cioè se l'intersezione fra un piano parallelo al piano z=0 e Ω è un insieme regolare oppure è vuota, allora data $f\in C^0(\bar\Omega)$ si ha

$$\int_{\Omega} f(x, y, z) dx dy dz = \int_{a}^{b} \left(\int_{D_{z}} f(x, y, z) dx dy \right) dz$$

Allo stesso modo si procede nel caso di Ω semplice rispetto alle coppie (x, z) o (y, z).

7.2.3 Cambio di variabili

ANche le formule di cambio di variabili negli integrali tripli si ricavano senza sorprese rispetto a quelle per gli integrali doppi.

7.2.4 Cambio di variabili in coordinate cilindriche

Le coordinate cilindriche sono le coordinate polari con una dimensione invariante (la z) in più.

Presa una sezione verticale (cioè di un piano che passa per l'asse z) si definiscono:

- ρ rappresenta la distanza tra l'origine degli assi e la proiezione del punto P sul piano xy (in poche parole la distanza fra il punto e l'asse z).
- z rappresenta la quota del punto P dal piano xy

ullet di quando deve ruotare il piano per rappresentare il volume di partenza.

$$\forall \begin{cases} \rho \in [0, \infty) \\ \theta \in [0, 2\pi) \\ z \in \mathbb{R} \end{cases} \Longrightarrow \begin{cases} x = \rho cos(\theta) \\ y = \rho sin(\theta) \\ z = z \end{cases}$$

Matrice Jacobiana:

$$\begin{split} \frac{\delta(x,y,z)}{\delta(\rho,\theta,z)} &= \begin{bmatrix} \cos(\theta) & -\rho \sin(\theta) & 0 \\ \sin(\theta) & \rho \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ \det\left(\frac{\delta(x,y,z)}{\delta(\rho,\theta,z)}\right) &= \rho \end{split}$$

Il fattore di variazione del volume è quindi ρ e si annulla solo sull'asse z che è parte della prontiera dell'insieme dove variano (ρ,θ,z) .

7.2.5 Cambio di variabili in coordinate sferiche

$$\forall \begin{cases} \rho \in [0, \infty) \\ \phi \in [0, \pi] \\ \theta \in [0, 2\pi) \end{cases} \implies \begin{cases} x = \rho sin(\phi)cos(\theta) \\ y = \rho sin(\phi)sin(\theta) \\ z = \rho cos(\phi) \end{cases}$$

 $\rho^2=x^2+y^2+z^2\,$ e rappresenta la distanza fra il punto (x,y,z) e l'origine

oppure, se si prende $\phi \in [-\pi/2, +\pi/2]$, si ottengono le coordinate:

$$\begin{cases} x = \rho cos(\phi) cos(\theta) \\ y = \rho cos(\phi) sin(\theta) \\ z = \rho sin(\phi) \end{cases}$$

Matrice Jacobiana:

$$\frac{\delta(x,y,z)}{\delta(\rho,\theta,z)} = \begin{bmatrix} \sin(\phi)\cos(\theta) & \rho\cos(\phi)\cos(\theta) & -\rho\sin(\phi)\sin(\theta) \\ \sin(\phi)\sin(\theta) & \rho\cos(\phi)\sin(\theta) & \rho\sin(\phi)\cos(\theta) \\ \cos(\phi) & -\rho\sin(\phi) & 0 \end{bmatrix}$$

$$det\left(\frac{\delta(x,y)}{\delta(u,v)}\right) = \rho^2 sin(\phi)$$

che si annulla per $\phi \in \{0, \pi\}$ (poli) e per $\rho = 0$ (centro) e cioè i punti dell'asse z.

7.2.6 Cenno agli integrali multipli generalizzati

[manca]

7.3 Note sugli esercizi

7.3.1 Ripasso sulle simmetrie (pari e dispari) per funzioni in due variabili

Data una funzione su due variabili f(x, y):

 \bullet f è dispari rispetto a x se

$$f(-x,y) = -f(x,y)$$

ullet f è pari rispetto a x se

$$f(-x,y) = f(x,y)$$

• f è dispari rispetto a y se

$$f(x, -y) = -f(x, y)$$

• f è pari rispetto a y se

$$f(x, -y) = f(x, y)$$

Quindi

- Se la funzione f è dispari rispetto a y e la superficie di integrazione è simmetrica rispetto a x, allora l'integrale è nullo.
- Se la funzione f è dispari rispetto a x e la superficie di integrazione è simmetrica rispetto a y, allora l'integrale è nullo.
- Se la funzione f è pari rispetto a y e la superficie di intergrazione è simmetrica rispetto a x, allora l'integrale si può calcolare solo su metà superficie (moltiplicando per due il risultato finale)
- Se la funzione f è pari rispetto a x e la superficie di intergrazione è simmetrica rispetto a y, allora l'integrale si può calcolare solo su metà superficie (moltiplicando per due il risultato finale)

7.3.2 Significato geometrico di un integrale doppio e calcolo del volume

Dato un dominio T (superficie) del piano e una funzione $f(x,y) \geq 0$ definita su T, l'integrale doppio esteso a T di f rappresenta, il volume del solido compreso tra il piano xy e la superficie definita dalla funzione f, che si proietta in T.

Sempre in analogia con quanto accade in una variabile, se la funzione cambia segno in T, il volume del solido va calcolato integrando su T il valore assoluto di $f\colon |f|$. Inoltre, ponendo f=1 su T, l'integrale doppio della funzione costante uguale a 1 sappresenta l'area di T.

Dato un dominio T di \mathbb{R}^3 , il volume di T può essere espresso tramite il calcolo dell'integrale triplo della funzione costante f(x,y,z)=1

$$Volume(T) = \int \int \int_{T} dx dy dz$$

7.3.3 Note sull'elemento d'area per vari cambi di variabile

Passando nel piano da coordinate cartesiane a coordinate polari abbiamo visto che l'elemento d'area $dx\ dy$ diventa $\rho\ d\rho\ d\theta$, allo stesso modo nello spazio l'elemento di volume $dx\ dy\ dz$ diventa in coordinate cilindriche $\rho\ d\rho\ d\theta\ dz$ e in coordinate sferiche, se adottiamo la convezione che ϕ parte dall'asse z, $R^2sin(\phi)\ dR\ d\phi\ d\theta$ (se però adottiamo le coordinate sferiche con phi che parte dall'asse delle x, e quindi spazia in $-\frac{\pi}{2} \le \phi \le \frac{\pi}{2}$, l'elemento di volume diventa $R^2cos(\phi)\ dR\ d\phi\ d\theta$).

7.3.4 Baricentro e momento d'inerzia

Data una regione piana T di \mathbb{R}^2 , e detta $\delta(x,y)$ non negativa su T densità superficiale di massa relativa alla lamina rappresentata dalla regione T, l'integrale doppio esteso su T della funzione δ rappresenta la masssa M della lamina T:

$$M = \int \int_{T} \delta(x, y) dx dy$$

Valgono inoltre le seguenti formule per il calcolo delle coordinate (x_b, x_a) del baricentro della lamina:

$$x_b = \frac{1}{M} \int \int_T x \delta(x, y) dx dy$$
$$y_b = \frac{1}{M} \int \int_T y \delta(x, y) dx dy$$

Se la densità fosse costante avremmo $\delta(x,y)=d,\ M=d|\Omega|$ e

$$x_b = \frac{1}{|T|} \int \int_T x \, dx dy$$
 $y_b = \frac{1}{|T|} \int \int_T y \, dx dy$

Invece per il calcolo del momento d'inerzia $M_{(x_0,y_0)}$ della lamina rispetto a un asse r perpendicolare al piano passante per il punto (x,y), detta d(x,y) la distanza di ogni punto $(x,y) \in T$ dall'asse r perpendicolare al piano:

$$M_{(x_0,y_0)} = \int \int_T d^2(x,y)\delta(x,y)dxdy = \int \int_T ((x-x_0)^2 + (y-y_0)^2)\delta(x,y)dxdy$$

Data una regione T di \mathbb{R}^3 , e data una funzione $\delta(x,y,z)$ non negativa su T, interpretando δ come densità di massa, relativa al solido rappresentato dalla regione T, l'integrale triplo esteso a T della funzione δ rappresenta la massa M del solido T:

$$M = \int \int \int_{T} \delta(X, y, z) dx dy dz$$

Valgono inoltre le seguenti formule, per il calcolo delle coordinate (x_b, y_b, z_b) del baricentro del solido:

$$x_b = \frac{1}{M} \int \int \int_T x \, \delta(x, y, z) dx dy dz$$
$$y_b = \frac{1}{M} \int \int \int_T y \, \delta(x, y, z) dx dy dz$$
$$z_b = \frac{1}{M} \int \int \int_T z \, \delta(x, y, z) dx dy dz$$

Invece per il calcolo del momento d'inerzia di un solido T rispetto all'asse z, detta d(x,y,z) la distanza di un generico punto dall'asse z:

$$M_z = \int \int \int_T d^2(x, y, z) \, \delta(x, y, z) dx \, dy \, dz = \int \int \int_T (x^2 + y^2) \, \delta(x, y, z) dx \, dy \, dz$$

7.3.5 Significato dei domini in \mathbb{R}^3 per "strati" e per "fili"

Domini in \mathbb{R}^3 : vi sono 6 differenti oridini con i quali esprimere i domini, tra questi meritano particolare attenzione i seguenti:

- quello per cui z è la variabile più esterna: fissata z, si procede a fissare le restanti due coordinate (x,y per coordinate cartesiante, ρ,θ per coordinate cilindriche) sui domini piani che corrispondono alle varie quote di z (la cosiddetta espressione per **strati**);
- quell per cui z è la variabile più interna: si fissano le due coordinate piane (x,y) per coordinate polari, ρ,θ per coordinate cilindriche) in modo generale, dopodichè per ogni coppia x,y o ρ,θ , si fissa la corrispondente z (la cosiddetta espressione per **fili**).

Esempio per fili a sinistra, per strati a destra:

7.3.6 Equazione di un piano passante per tre punti

L'equazione caratteristica di un piano è ax+bx+cz=d, dati i tre punti $(x_1,y_1,z_1),(x_2,y_2,z_2),(x_3,y_3,z_3)$ scriviamo il sistema:

$$\begin{cases} ax_1 + by_1 + cz_1 = d \\ ax_2 + by_2 + cz_2 = d \\ ax_3 + by_3 + cz_3 = d \end{cases}$$

da cui ricaviamo i valori di a, b, c e d da sostituire.

C'è anche quest'altro metodo ma non ne sono sicurissimo:

Piano per tre punti (x_a, y_a, z_a) (x_b, y_b, z_b) e (x_c, y_c, z_c) è il determinante della matrice

$$\det \begin{pmatrix} x - x_a & y - y_a & z - z_a \\ x_b - x_a & y_b - y_a & z_b - z_a \\ x_c - x_a & y_c - y_a & z_c - z_a \end{pmatrix} = 0$$

7.3.7 Equazioni di circonferenze non centrate nell'origine

La generica equazione della circonferenza è

$$(x - x_c)^2 + (y - y_c)^2 = r$$

in cui (x_c,y_c) sono le coordinate della circonferenza e r è il raggio.

Spesso negli esercizi si trovano equazioni come per esempio $x^2 + y^2 - 2y = 0$, per capire come è fatta è sufficiente sviluppare l'equazione generica della ciroconferenza e eguagliare i termini per capire il centro e il raggio:

$$x^{2} + x_{c}^{2} - 2x_{c}x + y^{2} + y_{c}^{2} - 2y_{c}y - r = 0$$

da cui concludiamo che $y_c = 1$ e $x_c = 0$ e r = 1.

7.3.8 Equazione di un toro di raggi α e β , con $\alpha > \beta$

L'equazione di un toro di raggi α e β , con $\alpha > \beta$, è

$$\vec{r}(u,v) = [(\alpha + \beta cos(u))cos(v)]\vec{i} + [(\alpha + \beta cos(u))sin(v)]\vec{j} + [\beta sin(u)]\vec{k}$$

con $u \in [0, 2\pi]$ e $v \in [0, 2\pi]$.

8 Funzioni $\mathbb{R}^m o \mathbb{R}^n$ ("funzioni di più variabili a valori vettoriali")

8.1 Campi vettoriali

Un campo vettoriale $F:\mathbb{R}^n \to \mathbb{R}^m$ è una funzione che ad ogni punto dello spazio \mathbb{R}^n associa un vettore di \mathbb{R}^m .

$$F(\vec{x}) = (F_1(\vec{x}), \dots, f_m(\vec{x})) = \sum_{h=1}^{m} F_h(\vec{x})e_h$$

dove le componenti F_h sono funzioni scalari e gli e_h rappresentano i vettori della base canonica di \mathbb{R}^m . Se tutte le componenti F_h sono di classe C^1 , diremo che $F \in C^1(\mathbb{R}^n, \mathbb{R}^m)$

oss. n=m=1 funzione reale di variabile reale; $n=1, m\geq 2$ curva; $n\geq 2, m=1$ funzione scalare di più variabili.

Sia $\Omega \in \mathbb{R}^3$ un aperto, dato un campo $F \in C^1(\Omega, \mathbb{R}^3)$, chiameremo **linea di campo** di F una curva regolare che in ongi punto del suo sostegno sia tangente a F.

Con questa definizione si caratterizza una linea di campo di $F \in C^1(\mathbb{R}^3, \mathbb{R}^3)$ con una curva regolare r = r(t) tale che r'(t) sia proporzionale a F(r(t)). Dato che il coefficiente di proporzionalità è variabile possiamo scrivere:

$$r'(t) = p(t)F(r(t))$$

dove p(t) rappresenta la proporzionalità. Notiamo che $p(t) \neq 0$ per ogni t, quindi o p(t) > 0 (verso di percorrenza e flusso coincidono) o p(t) < 0 (verso di percorrenza opposto al flusso).

$$\begin{pmatrix} x'(t) \\ y'(t) \\ z'(t) \end{pmatrix} = p(t) \begin{pmatrix} F_1(x(t), y(t), z(t)) \\ F_2(x(t), y(t), z(t)) \\ F_3(x(t), y(t), z(t)) \end{pmatrix}$$

$$\frac{x'(t)}{F_1(x(t), y(t), z(t))} = \frac{y'(t)}{F_2(x(t), y(t), z(t))} = \frac{z'(t)}{F_3(x(t), y(t), z(t))}$$

$$\frac{dx}{F_1(x, y, z)} = \frac{dy}{F_2(x, y, z)} = \frac{dz}{F_3(x, y, z)}$$

e le linee di campo si ottengono integrando:

$$\int \frac{dx}{F_1(x,y,z)} = \int \frac{dy}{F_2(x,y,z)} = \int \frac{dz}{F_3(x,y,z)}$$

Chiamiamo rotore di un campo $F \in C^1(\mathbb{R}^3, \mathbb{R}^3)$ il vettore

$$rot(F) = \nabla \wedge F = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\delta}{\delta x} & \frac{\delta}{\delta y} & \frac{\delta}{\delta z} \\ F_1 & F_2 & F_3 \end{vmatrix}$$

Un campo a rotore nullo viene chiamato irrotazionale.

Per calcolare il rotore di una funzione $F \in C^1(\mathbb{R}^2, \mathbb{R}^2)$, è sufficiente immergerlo in \mathbb{R}^3 , ponendo $F(x,Y) = (F_1(x,y), F_2(x,y)) \to F(x,y,z) = (F_1(x,y), F_2(x,y), 0)$ e si trova:

$$rot(F) = \nabla \wedge F = \left(\frac{\delta F_2}{\delta x} - \frac{\delta F_1}{\delta y}\right) \vec{k}$$

Quindi il rotore è perpendicolare al piano del campo.

Anche in tre dimensioni il rotore individue una direzione che è perpendicolare al piano che localmente tende a contenere le linee di campo.

Il modulo del rotore misura la tendenza a ruotare attorno all'asse della sua direzione. Se le linee di campo tendono ad avvolgersi attorno all'asse, il rotore avrà il verso della vite che ruota nel verso delle linee di campo. Se il rotore è nullo, non c'è effetto rotatorio.

Chiamiamo divergenza di un campo $F \in C^1(\mathbb{R}^3, \mathbb{R}^3)$ lo scalare

$$div(F) = \nabla \cdot F = \frac{\delta F_1}{\delta x} + \frac{\delta F_2}{\delta y} + \frac{\delta F_3}{\delta z}$$

Un campo a divergenza nulla viene chiamato solenoidale.

La divergenza in n=1 coincide con la derivata di una funzione scalare.

oss.

$$\nabla \wedge (\nabla u) = rot(\nabla u) = 0 \qquad \forall \ u \in C^2(\Omega,\mathbb{R}), \quad \text{cioè un gradiente è irrotazionale;}$$

$$\nabla \cdot (\nabla \wedge F) = div(rot(F)) = 0 \qquad \forall \ F \in C^2(\Omega,\mathbb{R}^3), \quad \text{cioè un rotore è solenoidale;}$$

$$\nabla \cdot (\nabla u) = div(\nabla u) = \nabla u \qquad \forall \ u \in C^2(\Omega,\mathbb{R}).$$

8.2 Lavoro di un campo vettoriale

8.2.1 Definizioni

Sostenzialmente il lavoro è dato dalla forza per lo spostamento.

def. Sia γ il sostegno orientato di una curva regolare a tratti $r: I \to \mathbb{R}^n$ e sia $F \in C^0(\mathbb{R}^n, \mathbb{R}^n)$. Si chiama **lavoro** di F lungo γ l'integrale di linea

$$L_{\gamma}(F) = \int_{\gamma} F \cdot dr = \int_{I} F(r(t)) \cdot r'(t) dt$$

Sia I=[a,b], da un punto di vista fisico, $L_{\gamma}(F)$ rappresenta il lavoro che compie la forza F per spostare il suo punto di applicazione lungo γ da r(b).

Rispetto al classico integrale di linea che non cambia se riparametriziamo la curva con verso opposto, l'integrale che calcola il lavoro cambia segno se la curva cambia verso.

Notiamo che l'integrale che serve per il calcolo del lavoro cambia segno se la curva cambia verso.

Diremo che $F \in C^1(\Omega, \mathbb{R}^n)$ è **conservativo** se esite una funzione reale $U \in C^2(\Omega, \mathbb{R})$, che chiameremo **potenziale** di F, tale che $\nabla U = F$.

Pertanto, se esiste, il potenziale U ha derivate parziali che coincidono con le componenti del campo F, inoltre, sempre se esiste, il potenziale U è unico a meno di una costante additiva.

teor.

$$F$$
 conservativo $\Longrightarrow F$ irrotazionale

da cui ricaviamo che se ${\cal F}$ non è irrotazionale, allora non è conservativo.

Il lavoro di F lungo un qualunque sostegno γ si esprime come

$$L_{\gamma}(F) = \int_{a}^{b} \nabla U(r(t)) \cdot r'(t) dt = U(r(b)) - U(r(a))$$

Questa espressione ci dice che il lavoro di un campo conservativo si calcola come differenza di potenziale e che il lavoro di un campo conservativo non dipende dalla curva di percorrenza, ma solo dai suoi estremi. Inoltre il lavoro di F lungo il sostegno di una qualunque linea chiusa è nullo.

teor. Sla $\Omega \subset \mathbb{R}^n$ un aperto; un campo $F \in C^1(\Omega, \mathbb{R}^n)$ è **conservativo** se e solo se vale una delle condizioni seguenti (equivalenti fra di loro):

- Il lavoro di F lungo un qualunque sostegno orientato γ si esprime tramite $L_{\gamma}(F) = \int_{a}^{b} \nabla U(r(t)) \cdot r'(t) dt = U(r(b)) U(r(a));$
- il lavoro di F lungo il sostegno orientato di qualunque coppia di curve coincidenti agli estremi è uguale;

 \bullet il lavoro di F lungo il sostegno di una qualunque linea chiusa è nullo.

def. Un insieme $\Omega \subset \mathbb{R}^n$ si dice **semplicemente connesso** se ogni linea chiusa $\gamma \subset \Omega$ è contraibile in Ω a un punto di Ω . In altre parole, partendo da una linea chiusa $\gamma \subset \Omega$ deve essere possibile contrarla con continuità, fino a ridurla a un punto e questo deve avvenire sempre rimanendo in Ω . In parole povere, in \mathbb{R}^2 un insieme si dice semplicemente connsesso se è fatto da un "pezzo unico" e non ha buchi (anche di un solo punto), in \mathbb{R}^3 un buco puntuale non è sufficiente a far perdere questa proprietà, ma deve esserci un buco della forma simile a quella di un segmento perchè l'insieme non sia semplicemente connesso.

teor. sia Ω un insieme semplicemente connesso, e sia F, allora

$$F$$
 conservativo \iff F irrotazionale

Da notare è il fatto che sia una condizione sufficiente, non necessaria. Notiamo anche che un campo irrotazionale è sempre localmente conservativo.

8.2.2 Verifica della conservatività di un campo vettoriale

Per sapere se un campo è conservativo:

- si controlla se è irrotazionale:
 - se non lo è, il campo non è conservativo, e per calcolarne il lavoro dobbiamo per forza usare la definizione (vedi metodi sotto).
 - se lo è, dobbiamo vedere se il dominio dove è definito è semplicemente connesso:
 - * se lo è, il campo è conservativo (vedi metodi sotto per il calcolo del lavoro).
 - * se non lo è, non possiamo concludere nulla a priori e quindi siamo costretti a provare uno dei seguenti metodi:
 - · Si cerca un potenziale e se esiste ed è differenziabile (ricordiamo che è condizione sufficiente che il potenziale sia C^1 per essere differenziabile) in tutto il dominio di F, allora F è conservativo.
 - · Si verifica se il lavoro di F lungo un sostegno di una qualunque linea chiusa è nullo. Per mostrare questa proprietà mostro un esempio che può chiarire facilmente come procedere: abbiamo un campo F il cui dominio è tutto $\mathbb{R}^2-\{0,0\}$, tutte le curve chiuse che non circondano l'origine hanno sicuramente lavoro nullo (perchè possono essere racchiusi in sottoinsiemi del dominio di F semplicemente connessi). Per quanto riguarda le curve che, invece, contengono l'origine, si fa la considerazione di analizzare una particolare curva "comoda", osservando che tutte le altre curve che circondano l'origine possono essere deformata con continuità fino a sovrapporsi alla nostra scelta "comoda". In questo esercizio in particolare come curva "comoda" si può scegliere la circonferenza di raggio 1 centrata nell'origine $(x^2+y^2=1)$. Dunque si calcola il lavoro compiuto da F lungo la curva $r(t)=cos(t)\vec{i}+sin(t)\vec{i}$ per $t\in[0,2\pi]$ e se esso è nullo il campo è conservativo in tutto il suo dominio, altrimento no.

8.2.3 Calcolo di un potenziale

• **Metodo 1:**Dato un campo $F(x,y,z)=(F_1(x,y,z),F_2(x,y,z),F_3(x,y,z)), \ F\in C^1(\mathbb{R}^3,\mathbb{R}^3),$ cerchiamo una funzione $U\in C^2(\mathbb{R}^3,\mathbb{R})$ tale che

$$U_x(x, y, z) = F_1(x, y, z)$$

 $U_y(x, y, z) = F_2(x, y, z)$
 $U_z(x, y, z) = F_3(x, y, z)$

Analiziamo il procedimento per la prima di queste: integriamo rispetta a x, ma trattandosi di un integrale indefinito abbiamo una costante indefinita che potrebbe dipendere da y e z:

$$U(x, y, z) = \int F_1(x, y, z) dx + \phi(y, z)$$

Dunque

$$U(x, y, z) = \int F_2(x, y, z)dy + \phi(x, z)$$
$$U(x, y, z) = \int F_3(x, y, z)dz + \phi(x, y)$$

Se riusciamo a trovare un'espressione che si possa esprimere contemporaneamente in queste tre forme, quella sarebbe un potenziale. A livello pratico U(x,y,z) è uguale a tutti i termini che compaiono nelle tre equazioni viste sopra, senza ripetere gli elementi (per esempio se nella prima equazione esce $U=x+\phi(\ldots)$ e nella seconda $U=x+y+\phi(\ldots)$ e nella terza $U=z+\phi(\ldots)$, il potenziale sarà U=x+y+z, cioè senza ripetere i termini uguali).

Metodo 2: Sia $F(x,y,z) = X(x,y,z)\vec{i} + Y(x,y,z)\vec{j} + Z(x,y,z)\vec{k}$ conservativo, esiste U(x,y,z) tale che

$$\frac{\delta U}{\delta x} = X(x,y,z) \qquad \frac{\delta U}{\delta y} = Y(x,y,z) \qquad \frac{\delta U}{\delta z} = Z(x,y,z)$$

Ora si considera la più semplice di queste euqazioni, immaginiamo sia la prima.

Per determinare U prendiamo una primitiva di U_x in cui y e z figurano come costanti:

$$f(x, y, z) = \int X(x, y, z)dx + H(y, z)$$

Se adesso deriviamo rispetto a y, il risultato deve corrispondere a Y:

$$\frac{\delta f}{\delta y}(x, y, z) = Y(x, y, z)$$

Questa relazione ci permette di determinare la "porzione" di H(y,z) che dipende da y, quindi sostituendo questa in f(x,y,z) e quindi trasformando H(y,z) in solo H(z) e riderivando rispetto a z e uguagliando il risultato a Z(x,y,z), troveremo l'espressione definitava di U, a meno di una costante arbitraria.

• Metodo 3: calcolo del lavoro con la definizione:

$$L_{\gamma}(F) = \int_{\gamma} F \cdot dr = \int_{I} F(r(t)) \cdot r'(t) dt$$

Per calcolarlo usiamo il seguente metodo:

Dati un campo vettoriale e una linea orientata

$$F(x,y) = X(x,y,z)\vec{i} + Y(x,y,z)\vec{j},$$

$$l: r(t) = [x(t)]\vec{i} + [y(t)]\vec{j}, \quad \forall \ t \in [a, b]$$

il lavoro da r(a) a r(b) è dato dall'integrale di linea:

$$L_{AB} = \int_{I} F \cdot dr = \int_{I} [X(x,y)dx + Y(x,y)dy]$$

Questo integrale si può trasformare in un integrale nella variabile t ponendo al posto di x e y i valori x(t) e y(t), e ponendo dx = x'(t)dt e dy = y'(t)dt, ossia:

$$L_{AB} = \int_{a}^{b} \left[X(x(t), y(t)) \ x'(t) + Y(x(t), y(t)) \ y'(t) \right] dt$$

Con a e b estremi tali che se t=a e t=b la funzione della curva r(t) valga i suoi estremi.

Se la linea l è chiusa, allora il lavoro compiuto da F per compiere un giro (in senso antiorario) lungo l prende il nome di **circuitazione**.

oss. se U è un potenziale di F, cioè grad(U)=F, anche grad(U+C)=F, e quindi anche U+C è un potenziale per F, pertando, se F è conservativo esistono infiniti potenziali di F, che differiscono per una costante.

oss. è sempre possibile verificare l'esattezza dei propri conti nella ricerca di un potenziale: grad(U) = F, dunque calcolando le derivate parziali di U dovremmo trovare le componenti di F.

oss. Bisogna sempre verificare che il dominio sia un insieme semplicemente connesso, se non lo fosse bisogna suddividere il dominio in tanti intervalli semplicemente connessi e specificare che il potenziale vale per ognuno di questi separatamente.

8.2.4 Forme differenziali lineari

Nel calcolo del lavoro di un campo $F \in C^1(\mathbb{R}^n, \mathbb{R}^n)$, ci imbattiamo in integrande del tipo

$$F \cdot dr = F_1 dx + f_2 dy + F_3 dz$$

nel caso n=3 e con solo i primi due addenti nel caso n=2. UN'espressione di questo tipo prende il nome di **forma differenziale lineare**. Il lavoro si esprime quindi come integrale di linea di una forma differenziale lineare:

$$\int_{\gamma} F \cdot dr = \int \begin{pmatrix} F_1(x, y, z) \\ F_2(x, y, z) \\ F_3(x, y, z) \end{pmatrix} \cdot \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix} = \int_{\gamma} (F_1 dx + F_2 dy + F_3 dz)$$

Se F è conservativo, esiste un potenziale $U \in C^2(\mathbb{R}^n,\mathbb{R})$ tale che $\nabla U = F$ e cioè

$$dU = U_x dx + U_y dy + U_z dz = F_1 dx F_2 dy + F_3 dz$$

In questo caso, la forma differenziale coincide con il differenziale di U e viene chiamata forma differenziale esatta.

Se

$$\begin{cases} (F_1)_y = (F_2)_x \\ (F_1)_z = (F_3)_x \\ (F_2)_z = (F_3)_y \end{cases}$$

allora la funzione F è irrotazionale e la forma differenziale lineare corrispondente viene chiamata forma differenziale **chiusa**.

Ogni forma differenziale esatta è anche chiusa, mentre il viceversa non è vero.

8.3 Flusso e Teorema della divergenza

8.3.1 Flusso

Per calcolare il flusso abbiamo bisogno di

- un campo vettoriale $F: C \subseteq \mathbb{R}^3 \to \mathbb{R}^3$
- una superficie Σ dello spazio \mathbb{R}^3 espressa in forma parametrica: $\vec{r}(u,v) = (x(u,v),y(u,v),z(u,v))$ (con anche il dominio S in cui u e v si muovono, questo dominio servirà poi per fare un integrale doppio!).
- $\vec{n}:\mathbb{R}^3 \to \mathbb{R}^3$, il versore normale alla superficie al variare del punto (posizione) (x,y,z) appartenente alla superficie. Bisogna porre attenzione al verso della normale, che solitamente è dato dall'esercizio stesso, per ogni normale potremmo dare dure versi, opposti tra loro. Quando la superficie è espressa in forma parametrica, il vettore normale si ottiene effettuando il prodotto vettoriale tra $\frac{\delta \vec{r}}{\delta u} \times \frac{\delta \vec{r}}{\delta v}$ e quindi il versore normale è dato da:

$$\frac{\frac{\delta \vec{r}}{\delta u} \times \frac{\delta \vec{r}}{\delta v}}{\left| \frac{\delta \vec{r}}{\delta u} \times \frac{\delta \vec{r}}{\delta v} \right|}$$

Il flusso di un campo vettoriale F attraverso la superficie Σ è

$$\begin{split} \Phi &= \int \int_{\Sigma} F \cdot n d\Sigma = \int \int_{S} F(r(u,v)) \cdot \frac{\frac{\delta \vec{r}}{\delta u} \times \frac{\delta \vec{r}}{\delta v}}{\left|\frac{\delta \vec{r}}{\delta u} \times \frac{\delta \vec{r}}{\delta v}\right|} \left|\frac{\delta \vec{r}}{\delta u} \times \frac{\delta \vec{r}}{\delta v}\right| du dv \\ &= \int \int_{S} F(r(u,v)) \cdot \frac{\delta \vec{r}}{\delta u} \times \frac{\delta \vec{r}}{\delta v} du dv \end{split}$$

dove S è il dominio in cui sono definite le coordinate u e v.

Se la superficie è il grafico di una funzione nella forma z=f(x,y) allora la precedente formula si riscrive come:

$$\Phi = \int \int_{S} F(x, y, f(x, y)) \cdot \left(-\frac{\delta f}{\delta x}, -\frac{\delta f}{\delta y}, 1 \right) dx dy$$

Poichè il terzo elemento del vettore normale è 1 allora esso è rivolto verso le quote crescenti di z.

Se la superficie è espressa in forma implicita dobbiamo parametrizzarla e usare le formule illustrate.

Ovviamente, queste formule danno uno dei due possibili versori normali di una superficie, nel caso in cui il flusso cercato abbia verso opposto al versore normale, sarà sufficiente cambiare di segno l'intergrale.

8.3.2 Teorema della divergenza

Consideriamo $F \in C^1(\Omega,\mathbb{R}^n)$ con $\Omega \subset \mathbb{R}^n$ e limitato, inoltre sia \vec{n} un versore definito su un punto del bordo di Ω (detto $\delta\Omega$) e perpendicolare al piano tangente in $\delta\Omega$ e orientato verso l'esterno. Il prodotto scalare $F \cdot \vec{n}$ rappresenta il flusso uscente (se > 0, entrante se < 0) da $\delta\Omega$.

Teorema della divergenza:

Sia $\Omega \subset \mathbb{R}^n$ un aperto limitato, semplice rispetto a tutti gli assi cartesiani con versore normale uscente \vec{n} in ogni punto di $\delta\Omega$. Sia $F \in C^1(\bar{\Omega}, \mathbb{R}^n)$ (con $\bar{\Omega}$ chiusura di Ω) un campo vettoriale. Allora

$$\int_{\Omega} \nabla \cdot F(x) dx = \int_{\delta\Omega} F \cdot \vec{n} \ dS$$

Questo teorema afferma che l'integrale su un dominio della divergenza di un campo è pari al flusso del campo che attraversa la sua frontiera.

Nel caso n=1, con $\Omega=(a,b)$, diventa il teorema fondamentale del calcolo integrale:

$$\int_{a}^{b} F'(x)dx = F(b) - F(a)$$

Con questo teorema spiagamo anche il significato dell'operatore divergenza: misura il grado di comprimibilità di un fluido e, più in generale, quella di un campo vettoriale.

es. Determinare il flusso del campo vettoriale $F(x,y,z)=(3x+e^z)\vec{i}+(2y^2+zcos(x))\vec{j}+(x^2+y^2)\vec{k}$ attraverso la superficie $\Sigma=\begin{cases} x^2+y^2+z^2=2\\ z\geq 0 \end{cases}$ scegliendo come versore normale quello avente componente positiva in z.

Osserviamo che Σ è metà superficie sferica che, sul piano (x,y), poggia sulla circonferenza $x^2+y^2=2$. Immaginando di "chiudere" Σ con il disco $D=\{x^2+y^2\leq 2, z=0\}$, possiamo calcolare il flusso di F uscente dal volume Ω racchiuso tra la semisfera e il disco, tramite il teorema della divergenza:

$$\Phi_{\Omega} = \int_{\Omega} div(F) dx dy dz = \int_{\Omega} (3+4y) dx dy dz = \int_{\Omega} 3 dx dy dz + \int_{\Omega} 4y dx dy dz = 4\pi \sqrt{2}.$$

Osserviamo ora che il flusso uscente da Ω è la somma del flusso Φ_{Σ} attraverso Σ (con normale che punta verso l'alto) e del flusso Φ_D attraverso D (con normale che punta verso il basso: $n=-\vec{k}$), otteniamo allora il flusso attraverso Σ per differenza:

$$\Phi_{\Sigma} = \Phi_{\Omega} - \Phi_{D} = 4\pi\sqrt{2} - \int_{D} F \cdot (-k) dx dy = 4\pi\sqrt{2} + \int_{0}^{2\pi} d\theta \int_{0}^{\sqrt{2}} \rho^{2} \rho d\rho = 4\pi\sqrt{2} + 2\pi$$

In parole più semplici il teorema della divergenza ci permette di dire che:

Se la superficie l è una superficie chiusa, per calcolare il flusso di un campo vettoriale F uscente da l è possibile usare il teorema della divergenza: Se la superficie l è la frontiera di un solido V, allora il flusso del campo vettoriale F uscente da l è uguale all'integrale triplo su V della divergenza di F:

$$Flusso = \Phi = \int \int_{I} F \cdot n \ dS = \int \int \int_{V} div(F) dx dy dz$$

oss. se l rappresentasse una superficie D, possiamo comunque calcolare il flusso del campo vettoriale attraverso l come l'integrale doppio su D.

E' anche possibile usare il teorema della divergenza per calcolare integrali tripli su solidi V la cui frontiera l sia definita in forma parametrica: dovendo calcolare

$$\int \int \int_V f(x,y,z) dx dy dz$$

è sufficiente determinare un campo vettoriale $\vec{F}(x,y,z)$ tale che div(F)=f e

$$\int\int\int_V f(x,y,z) dx dy dz = \int\int_l \vec{F} \cdot \vec{n} dS$$

dove \vec{n} è la normale uscente dal solido V.

9 Equazioni differenziali

9.1 Definizioni

Un'equazione differenziale è una relazione tra una funzione incognita y=y(t) e alcune sue derivate.

Si dice equazione differenziale di ordine n un equazione del tipo:

$$F(t, y(t), y'(t), y''(t), \dots, y^{(n)}(t)) = 0 \qquad (t \in I)$$

dove y(t) è la funzione incognita.

Si dirà **soluzione**, o (curva) integrale, di un equazione differenziale, nell'intervallo I, una funzione $\phi(t)$, definita almeno in I (ma in generale può essere definita in $J \subseteq I$) e a valori reali per cui risulti

$$F(t, \phi(t), \phi'(t), \phi''(t), \dots, \phi^{(n)}(t)) = 0 \qquad \forall t \in J$$

Diremo che un'equazione differenziale è in **forma normale** se è possibile esplicitare la derivata di ordine massimo in funzione di tutte le derivate di ordine inferiore:

$$y^{(n)}(t) = g(t, y(t), y'(t), y''(t), \dots, y^{(n-1)}(t)) \qquad (t \in I)$$

Problema di Cauchy: Data un'equazione in forma normale

$$y^{(n)}(t) = g(t, y(t), y'(t), y''(t), \dots, y^{(n-1)}(t)) \qquad (t \in I)$$

a essa vengono associate n delle condizioni

$$y(t_0) = y_0$$
 $y'(t_0) = y_1$... $y^{(n-1)}(t_0) = y_{n-1}$

dove t_0 rappresenta l'istante iniziale e y_0,\ldots,y_{n-1} rappresentano lo stato. Risolvere un problema di Cauchy significa riuscire a prevedere come si comproterà la y(t) (stato del sistema) negli istanti futuri $t>t_0$. Per risolvere un problema di Cauchy si intende sempre che bisogna trovare come soluzione una funzione:

- definita su un intervallo I, contenente il punto t_0 ;
- ullet derivabile in tutto I e che soddisfa l'equazione in tutto I.

Chiameremo **integrale generale** di un'equazione differenziale l'insieme di tutte le sue infinite soluzioni; chiameremo invece **integrale particolare** una sua soluzione che soddisfa particolari proprietà quali, ad esempio, quelle imposte dal problema di Cauchy.

L'integrale generale è ricavabile dall'equazione in forma normale con vari metodi che vediamo più avanti, mentre le varie condizioni permettono di ricavare un integrale particolare.

9.2 Esistenza e unicità

In questo paragrafo studiamo l'esistena e l'unicità per il problema di Cauchy nel caso di equazioni differenziali del prim'oridne in forma normale. Se un equazione fosse di ordine superiore, ad esempio del second'ordine y''=f(t,y,y'), con un semplice trucco potremmo ricondurci a un sistema del prim'ordine: basta porre z=y' e la precedente equazione del second'ordine si traduce nelle due seguenti equazioni del prim'ordine: y'=z e z'=f(t,y,z), dove l'incognita è adesso il vettore (y,z).

teor. Teorema di Peano:

Sia $\Omega \subset \mathbb{R}^2$ un aperto e sia $(t_0, y_0) \in \Omega$. Se $f \in C^0(\Omega)$ allora esiste una soluzione del problema di Cauchy:

$$\begin{cases} y' = f(t, y) \\ y(t_0) = y_0 \end{cases}$$

teor. Teorema di Cauchy:

Sia $\Omega \subset \mathbb{R}^2$ un aperto e sia $(t_0, y_0) \in \Omega$. Se $f, f_y \in C^0(\Omega)$, allora esiste un'unica soluzione del problema di Cauchy:

$$\begin{cases} y' = f(t, y) \\ y(t_0) = y_0 \end{cases}$$

9.3 Equazioni del primo ordine

Analiziamo ora vari metodi per risolvere il problema di Cauchy per equazioni del prim'ordine:

$$\begin{cases} y' = f(t, y) \\ y(t_0) = y_0 \end{cases}$$

9.3.1 Equazioni a variabili separabili

Un'equazione differenziale del tipo

$$y' = f(t)q(y)$$

si dice equazione a variabili separabili.

Dai teoremi di Cauchy e di Peano ricaviamo il seguente **corollario**: Siamo $t_0, y_0 \in \mathbb{R}$ e sia f continua in un intorno di t_0 :

- Se g è continua in un intorno di y_0 , allora il problema di Cauchy $y(t_0) = y_0$ per l'equazione a variabili separabili y' = f(t)g(y) ammette una soluzione.
- Se g è di classe C^1 in un intorno di y_0 , allora il problema di Cauchy $y(t_0) = y_0$ per l'equazione a variabil iseparabili y' = f(t)g(y) ammette una e una sola soluzione.

Come prima cosa, osserviamo che se esiste $\bar{y} \in \mathbb{R}$ tale che $g(\bar{y})=0$ allora $y(t)\equiv \bar{y}$ è una soluzione costante dell'equazione a variabili separabili; pertanto, se all'equazione a variabili separabili associamo il problema di cauchy $y(t_0)=\bar{y}$ abbiamo già trovato una soluzione (naturalmente se g è solo continua potrebbero essercene altre). Ma supponiamo di considerare un problema di cauchy $y(t_0)=y_0$ con $g(y_0)\neq 0$, in modo da poter dividere l'intera equazione a variabili separabili per g(y) (almeno in un intorno di y_0). Usando la notazione $y'=\frac{dy}{dt}$, i semplici passaggi per risolvere l'equazione a variabili separabili y'=f(t)g(y) sono i seguenti:

$$\frac{dy}{dt} = f(t)g(y) \Longrightarrow \frac{dy}{g(y)} = f(t)dt \Longrightarrow \int \frac{1}{g(y)} dy = \int f(t)dt$$

A questo punto, una volta risolti gli integrali, è sufficiente esprimere y in funzione di tutto il resto: quindi se G(y) è una primitiva di $\frac{1}{g(y)}$ e F(t) è una primitiva di f(t), otteniamo

$$G(y) = F(t) + c$$

e se si può ottenere la funzione inversa di G possiamo scrivere;

$$y = G^{-1}(F(t) + c)$$

Notiamo che gli integrali fanno comparire una costante arbitraria che verrà determinata tramite le condizioni importe dal problema di Cauchy.

Procedimento per risolvere equazioni a variabili separabili:

- stabilire se $f, g \in C^0$ o se $g \in C^1$;
- risolvere l'equazione $g(\bar{y}) = 0$;
- tutte le soluzioni di questa equazione rappresentano soluzioni costanti;
- se $g \notin C^1$ ci potrebbe essere un pennello di Peano che si stacca dalla soluzione costante;
- se $g \in C^1$ c'è unicità e le soluzioni costanti rappresentano dei "limiti invalicabili" per le altre soluzioni:
- risolvere il problema di Cauchy.

9.3.2 Note sugli esercizi: Insieme di definizione di un problema ci Cauchy per equazioni a variabili separabili

Dato un problema di Cauchy per un'equazione a variabili separabili

$$\begin{cases} y' = f(t)g(y) \\ y(t_0) = y_0 \end{cases}$$

la teoria garantisce che se a(t) è continua in un intorno di $t=t_0$ e le funzioni b(y),b'(y) sono continue in un intorno di y_0 allora esiste un'unica soluzione al problema di Cauchy, definita in un intorno di t_0 (contenuto nell'intorno di t_0 relativo alla funzione a(t)).

9.3.3 Equazioni lineari (derivata di un prodotto; sovrapposizione e variazione delle costanti arbitrarie)

Un'equazione differenziale del tipo

$$y' = a(t)y + b(t)$$

si dice equazione lineare.

Dal teorema di Cauchy ricaviamo il seguente corollario:

Siano $t_0, y_0 \in \mathbb{R}$ e siano a, b continue in un intorno di t_0 . Allora il problema di Cauchy $y(t_0) = y_0$ per l'equazione differenziale lineare ammette una e una sola soluzione.

Per trovare l'integrale generale ci sono due metodi:

• Primo metodo: derivata di un prodotto:

Data y'=a(t)y+b(t), sia $A(t)=\int a(\tau)d\tau$ una qualunque primitiva di a(t). Trasportando a primo membro il termine a(t)y e moltiplicando per l'esponenziale $e^{-A(t)}$, possiamo riscrivere l'equazione differenziale lineare nella forma:

$$e^{-A(t)}y'(t) - e^{-A(t)}a(t)y(t) = e^{-A(t)}b(t).$$

In questa forma, a primo membro riconosciamo la derivata di un prodotto:

$$\frac{d}{dt}\left(e^{-A(t)}y(t)\right) = e^{-A(t)}b(t).$$

Integrando ambo i membri si ottiene

$$e^{-A(t)}y(t) = \int e^{-A(\tau)}b(\tau)d\tau + C$$

dove con $C\in\mathbb{R}$ abbiamo indicato la generica costante dovuta all'integrale indefinito. Moltiplicando per l'esponenziale otteniamo infine

$$y(t) = e^{A(t)} \left\{ \int e^{-A(\tau)} b(\tau) d\tau + C \right\}.$$

La soluzione di un problema di Cauchy si ottiene imponendo la condizione iniziale $y(t_0) = y_0$. oss. Non imparare a memoria la formula ! E' facile confondersi con i segni di A.

• Secondo metodo: sovrapposizione e variazione delle costanti arbitrarie:

Data y'=a(t)y+b(t), per prima cosa risolviamo l'**equazione omogenea** associata, che si ottiene ponendo b(t)=0 e che quindi è y'=a(t)y. Ovviamente $t\equiv 0$ è soluzione. Per $y\neq 0$, diventa un equazione a variabili separabili che, stando a quanto visto precedentemente si risolve come

$$\frac{dy}{dt} = a(t)y \Rightarrow \frac{dy}{y} = a(t)dt \Rightarrow log|y| = A(t) + c \Rightarrow |y(t)| = Ce^{A(t)}$$

dove $c \in \mathbb{R}$ e A è una primitiva di a.

Possiamo quindi affermare che tutte le soluzioni dell'equazione y'=a(t)y sono $y(t)=Ce^{A(t)}$ con $C\in\mathbb{R}$.

Vale il principio di sovrapposizione:

L'integrale generale dell'equazione y'=a(t)y+b(t) si ottiene sommando all'integrale generale dell'equazione omogenea associata un integrale particolare di y'=a(t)y+b(t).

Resta dunque da determinare una soluzione dell'equazione completa y'=a(t)y+b(t). Per trovarla sfruttiamo il **metodo della variazione delle costanti arbitrarie**. La costante che faremo variare è C che compare in $Ce^{A(t)}$: supponiamo cioè che anzichè essere una costante sia una funzione e cerchiamo l'integrale particolare di y'=a(t)y+b(t) nella forma $y_1(t)=C(t)e^{A(t)}$. Imponendo a questa funzione di soddisfare y'=a(t)y+b(t) si trova

$$y_1' = a(t)y_1 + b(t) \Rightarrow C'(t)e^{A(t)} + C(t)a(t)e^{A(t)} = C(t)a(t)e^{A(t)} + b(t) \Rightarrow$$

 $\Rightarrow C'(t)e^{A(t)} = b(t) \Rightarrow C'(t) = b(t)e^{-A(t)} \Rightarrow C(t) = \int b(\tau)e^{-A(\tau)}d\tau$

Abbiamo così trovato l'integrale particolare $y_1(t)=e^{A(t)}\int b(\tau)e^{-A(\tau)}d\tau$ che, sommato all'integrale generale dell'equazione omogenea $Ce^{A(t)}$, fornisce lo stesso risultato che abbiamo ottenuto col primo metodo della derivata di un prodotto:

$$y(t) = e^{A(t)} \left\{ \int e^{-A(\tau)} b(\tau) d\tau + C \right\}.$$

Riassunto: equazioni lineari in breve

teor. Problema di Cauchy per un equazione lineare del prim'ordine.

Siano a, f funzioni continue in un intervallo I contenente t_0 . Allora, per ogni $y_0 \in \mathbb{R}$ il problema di Cauchy

$$\begin{cases} y'(t) + a(t)y(t) = f(t) \\ y(t_0) = y_0 \end{cases}$$

ha una e una sola soluzione $y \in C^1(I)$ e tale soluzione è

$$y(t) = ce^{-A(t)} + e^{-A(t)} \int_{t_0}^t f(s)e^{A(s)}ds$$

9.3.4 Note sugli esercizi: Insieme di definizione di un problema ci Cauchy per equazioni lineari del prim'ordine

Dato il problema di Cauchy

$$\begin{cases} y' = a(t)y + b(t) \\ y(t_0) = y_0 \end{cases}$$

la teoria garantisce che, se le funzioni a(t) e b(t) sono continue in un intervallo I aperto contenente t_0 , allora esiste una e una sola soluzione dell'equazione differenziale data che soddisfi anche la condizione $y(t_0)=y_0$, tale soluzione sarà definita per $t\in I$.

Una volta calcolata y(t) (cioè dopo aver trovato l'integrale generale y(t) e averci sostituito il valore di C trovato tramite la condizione $y(t_0)=y_0$) essa è soluzione di un problema di Cauchy nell'intervallo aperto più grande contenente t_0 e in cui è definita continua e derivabile.

Analiziamo l'approccio da seguire:

Per trovare l'**insieme di definizione della soluzione del problema di Cauchy** innanzitutto si controlla dove è definita e continua l'equazione di partenza y' = a(t)y + b(t):

- Se t_0 non appartiene all'insieme appena trovato, allora la teoria non permette di dire nulla circa l'esistenza di una soluzione.
- ullet Se t_0 appartiene all'insieme appena trovato la teoria ci dice che la soluzione esiste.

In ogni caso si procede col calcolo dell'integrale generale y(t) e a trovare la soluzione del problema di Cauchy (si cerca il valore della costante C, imponendo il passaggio dell'integrale generale y(t) per il punto definito dalla condizione di Cauchy $y(t_0) = y_0$).

A questo punto per determinare l'insieme di definizione in cui questa soluzione sia valida bisogna prendere l'**intervallo** (cioè un insieme continuo) contenente il punto t_0 per cui la soluzione y(t) e

l'equazione di partenza y'=a(t)y+b(t) (che rappresenta la derivata della soluzione) siano continue e definite.

La ricerca dell'intervallo di definizione non finisce qui: c'è la possibilità di **prolungare per continuità** la soluzione in un intervallo più grande. Invece di stabilire l'intervallo in cui la soluzione sia valida nei domini di y(t) e y'=a(t)y+b(t), lo cerchiamo **dove la soluzione** y(t) è **continua e derivabile** (in alcuni casi la derivata della soluzione ha un insieme di definizione "più grande" di quello dell'equazione differenziale di partenza y'=a(t)y+b(t), questo effetto è dovuto al fatto che la costante C. che sostituiamo nella soluzione, modifica la soluzione e in alcuni casi "fa sparire" i termini fastidiosi che limitano il dominio).

9.3.5 Equazioni omogenee

Un'equazione differenziabile si dice omogenea se si può scrivere nella forma

$$y' = f(\frac{y}{t}).$$

Dal teorema di Cauchy ricaviamo il seguetne corollario:

Siano $t_0,y_0\in\mathbb{R}$ e sia $f\in C^1$ in un intorno di $\frac{y_0}{t_0}$. Allora il problema di Cauchy $y(t_0)=y_0$ per l'equazione omogenea ammette una e una sola soluzione.

La fomra stessa di un equazione omogenea richiede una certa prudenza nello scegliere $t_0=0$ come istante iniziale. In realtà la stessa prudenza va usata anche per $y_0=0$, dato che, ad esempio, anche l'equazione $y'=\frac{t}{y}$ è omogenea.

Per trovare l'integrale generale dell'equazione omogenea, la si riconduce a un'equazione a variabili separabili. Si pone

$$z(t) = \frac{y(t)}{t} \Rightarrow y(t) = tz(t) \Rightarrow y'8t) = z(t) + tz'(t)$$

e l'equazione omogenea diventa

$$z + tz' = f(z) \Rightarrow z' = \frac{f(z) - z}{t} \Rightarrow \frac{dz}{f(z) - z} = \frac{dt}{t} \Rightarrow \int \frac{dz}{f(z) - z} = \log|t| + c.$$

A questo punto, è enecessario risolvere l'equazione f(z)=z; se esiste $k\in\mathbb{R}$ tale che f(k)=k, allora $z(t)\equiv k$ è soluzione e, diconseguenza, y(t)=kt è soluzione dell'equazione omogenea. Se $f\in C^1$, la retta che rappresenta tale funzione diventa un limite invalicabile per le altre soluzioni. Esclusi questi valori di k, l'equazione è diventata a variabili separabili.

9.3.6 Equazione di Bernoulli

Un equazione differenziale si dice di Bernoulli se si può scrivere nella forma

$$y' = a(t)y + b(t)y^{\alpha} \qquad (\alpha \in \mathbb{R})$$

osserviamo subito che se $\alpha=0$ o $\alpha=1$ l'equazione è lineare (e possiamo risolverla con il metodo della derivata di un prodotto o il metodo di sovrapposizione e variazione delle costanti arbitrarie). Se poi α fosse irrazionale o razionale con denominatore pari, non avrebbe senso definire y^{α} per y<0. Infine, se $\alpha<0$ non ha senso y^{α} per y=0.

Per evitare complicazioni ci occuperemo solo di soluzioni non negativa ($y \ge 0$).

Dal teorema di cauchy ricaviamo il seguente corollario:

Siano $t_0 \in \mathbb{R}$, $y_0 \ge 0$ e siano $a,b \in C^0$ in un intorno di t_0 . Allora il problema di Cauchy $y(t_0) = y_0$ per un equazione di Bernoulli ammette una e una sola soluzione nei seguenti casi:

- $\alpha > 1$ $y_0 \ge 0$
- $0 < \alpha < 1$ $y_0 > 0$
- $\alpha < 0$ $y_0 > 0$

Se $\alpha > 0$ l'equazione di bernoulli ammette anche la soluzione nulla $y \equiv 0$, pertanto se $\alpha > 1$ e $y_0 = 0$, il problema di Cauchy ammette solo la soluzione nulla.

Nel caso $y_0=0$ e $0<\alpha<1$, è garantita l'esistenza di una soluzione per il problema di Cauchy $y(t_0)=0$ ma non ne è assicurata l'unicità (potrebbe crearsi un pennello di Peano).

Se $y_0>0$ la soluzione rimarrà strettamente positiva per $\alpha>1$, potrenne agganciarsi alla soluzione y=0 con un pannello di peano se $0<\alpha<1$, potrebbe tendere a 0 con tangente verticale se $\alpha<0$ (in quest'ultimo caso, bisogna verificare il comportamento della funzione b(t) che, annullandosi, potrebbe verificare l'infinito di y^{α}).

Risolvere un equazione di Bernoulli:

Si divide l'equazione per y^{α} e si ottiene $y^{-\alpha}y'=a(t)y^{1-\alpha}+b(t)$.

Si pone $z(t)=y(t)^{1-\alpha}$ e si ottiene $z'=(1-\alpha)a(t)z+(1-\alpha)b(t)$, che è un'equazione lineare e quindi possiamo risolvere con i soliti metodi. Una volta trovata la soluzione z(t) (che sarà ≥ 0 o > 0 a seconda dei valori di α), si determina $y(t)=z(t)^{\frac{1}{1-\alpha}}$.

9.3.7 Prolungamento delle soluzioni

Sia $f,f_y\in C^0\left((a,b)\mathbf{x}\mathbb{R}
ight)$ e supponiamo che esistano due costanti $k_1,k_2>0$ tali che

$$|f(t,y)| \le k_1 + k_2|y| \quad \forall (t,y) \in (a,b) \times \mathbb{R}$$

Allora per ogni $(t_0, y_0) \in (a, b) \times \mathbb{R}$ lìunica soluzione del problema di Cauchy di prim'ordine è prolungabile a tutto l'intervallo (a, b).

9.4 Equazioni lineari del secondo ordine a coefficienti costanti

9.4.1 Integrale generalea dell'equazione omogenea e integrale particolare dell'equazione completa

Consideriamo l'equazione differenziale

$$ay''(t) + by'(t) + cy(t) = f(t)$$
 $t \in I$

dove $a,b,c \in \mathbb{R}$ e $f \in C^0(I)$. Se fosse a=0, questa equazione sarebbe del prim'ordine. Se $a \neq 0$ possiamo dividere per a e ottenere un'equazione del tipo

$$y''(t) + by'(t) + cy(t) = f(t) \qquad t \in I.$$

Questa è un'equazione lineare del second'ordine a coefficienti costanti.

Analogamente a quanto visto per il metodo di sovrapposizione e variazione delle costanti per le equazioni lineari di prim'ordine, vale il principio di sovrapposizione: L'**integrale generale** di y''(t) + by'(t) + cy(t) = f(t) si ottiene sommando all'integrale **generalea** dell'equazione **omogenea** un integrale **particolare** dell'equazione **completa**:

• Vediamo dunque come risolvere l'**equazione omogenea associata**:

$$y'' + by' + cy = 0 \qquad t \in I$$

Dato che quest'equazione si può ricondurre a un sistema di due equazioni del prim'ordine, il problema di cauchy da associare sarà del tipo

$$y(t_0) = y_0, y'(t_0) = y_1.$$

Questo significa che, oltre alal posizionei niziale $y(t_0)$, è necessario imporre una variazione iniziale $y'(t_0)$, in questo modo il teorema di Cauchy nella versione per i sistemi, garantisce che ci sia un'unica soluzione.

Le due condizioni imposte mostrano che le soluzioni hanno **due gradi di libertà**: l'integrale generale è uno spazio vettoriale di dimensione 2. basta quindi trovare due soluzioni non proporzionali.

Iniziamo sostituendo $y(t) = e^{\lambda t}$ e otteniamo

$$e^{\lambda t}(\lambda^2 + b\lambda + c) = 0.$$

L'equazione

$$\lambda^2 + b\lambda + c = 0$$

viene chiamata equazione caratteristica associata e si possono verificare tre casi:

- $b^2>4c$: in tal caso, l'equazione caratteristica ammette due soluzioni reali $\lambda_1,\lambda_2\in\mathbb{R}$ e le soluzioni cercate sono semplicemente

$$y_1(t) = e^{\lambda_1 t}, \quad y_2(t) = e^{\lambda_2 t};$$

 $-b^2 < 4c$: in tal caso, l'equazione caratteristica ammette due soluzioni complesse coniugate $\lambda = \alpha \pm i\beta$, $(\alpha, \beta \in \mathbb{R})$ e, usando la formula di Eulero per l'esponenziale complesso, si trovano le soluzioni

$$y_1(t) = e^{\alpha t} cos(\beta t), \quad y_2(t) = e^{\alpha t} sin(\beta t);$$

– $b^2=4c$: in tal caso, l'equazione caratteristica ammette due soluzioni reali coincidenti $\lambda_1=\lambda_2=\lambda\in\mathbb{R}$; le due soluzioni non proporzionali sono

$$y_1(t) = e^{\lambda t}, \quad y_2(t) = te^{\lambda t}.$$

L'integrale generale dell'equazione omogenea è quindi dato da

$$c_1y_1(t) + c_2y_2(t)$$

dove $c_1, c_2 \in \mathbb{R}$ sono costanti arbitrarie.

- Per determinare l'integrale particolare dell'equazione completa possiamo procedere in due metodi distinti:
 - Metodo di somiglianza:

Se la forzante f ha una forma "semplice" possiamo cercare soluzioni particolari dell'equazione completa che le somiglino.

st Se f è un **polinomio**, cherchiamo soluzioni **polinomiali**.

Più precisamente, se f è un polinomio di grado n cerchiamo:

- · soluzioni polinomiali di grado n se $c \neq 0$;
- · soluzioni di grado n moltiplicato per t se c=0 e $b\neq 0$;
- · soluzioni di grado n moltiplicato per t^2 se c = b = 0.

Il motivo di questa distinzione è che nel membro di sinistra dell'equazione completa deve rimanere un polinomio che ha lo stess ogrado di f.

* Se f è **esponenziale**, cerchiamo soluzioni **esponenziali**.

Più precisamente, se $f(t) = k \cdot e^{\lambda t}$ cerchiamo:

- · soluzioni del tipo $y(t)=ce^{\lambda t}$ se λ non risolve l'equazione caratteristica;
- · soluzioni del tipo $y(t)=cte^{\lambda t}$ se λ è soluzione semplice dell'equazione caratteristica:
- · soluzioni del tipo $y(t)=ct^2e^{\lambda t}$ se λ è soluzione doppia dell'equazione caratteristica.
- * Se f è **esponenziale complessa**, cerchiamo soluzioni **esponenziali complesse**. Più precisamnete, se $f(t) = Ae^{\alpha t}cos(\beta t) + Be^{\alpha t}sin(\beta t)$ (possibilmente $\alpha = 0$, ma anche A o B nullo) cerchiuamo:
 - · soluzioni del tipo $y(t)=c_1e^{\alpha t}cos(\beta t)+c_2e^{\alpha t}sin(\beta t)$ se $\alpha\pm i\beta$ non risolvono l'equazione caratteristica;
 - · soluzioni del tipo $y(t)=c_1te^{\alpha t}cos(\beta t)+c_2te^{\alpha t}sin(\beta t)$ se $\alpha\pm i\beta$ sono soluzioni dell'equazione caratteristica;

Altre f dove il metodo di somiglianza è possibile sono combinazioni lineari delle precedenti, oppure polinomi per esponenziali reali o complessi.

- metodo della variazione delle costanti arbitrarie:

Una volta trovato l'integrale generale dell'equazione omogenea associata, per trovare un integrale particolare dell'equazione completa facciamo variare le costanti c_1 e c_2 considerandole come funzioni. Cerchiamo dunque una soluzione particolare del tipo

$$\bar{y}(t) = c_1(t)y_1(t) + c_2(t)y_2(t)$$

dove y_1 e y_2 sono soluzioni non proporzionali.

Ci sono diverse scelte possibili per $c_1(t)$ e $c_2(t)$, vediamone una: se $c_1,c_2\in C^1(I)$ soddisfano le condizioni

$$c'_1(t)y_1(t) + c'_2(t)y_2(t) = 0, \quad c'_1(t)y'_1(t) + c'_2(t)y'_2(t) = f(t)$$

allora la funzione $\bar{y} = c_1(t)y_1(t) + c_2(t)y_2(t)$ risolve l'equazione di second'ordine lineare a coefficienti costanti y''(t) + by'(t) + cy(t) = f(t).

Resta da stabilire se sia possibile trovare una coppia di funzioni c_1, c_2 che soddisfano le condizioni appena enunciate. Usando la regola di Cramer, si ottiene

$$c'_1 = \frac{-fy_2}{y_1y'_2 - y_2y'_1}, \quad c'_2 = \frac{fy_1}{y_1y'_2 - y_2y'_1}$$

e integrando otteniamo c_1 e c_2 . Osserviamo che l'integrale indefinito genera delle costanti arbitrarie che non hanno importanza dato che, a loro volta, genera soluzioni dell'equazione omogenea associata. Inoltre i denominatori sono sempre diversi da 0 perchè y_1 e y_2 non sono proporzionali.

9.4.2 Note sugli esercizi: Struttura della soluzione e principio di sovrapposizione per equazioni differenziali del second'ordine

Un'equazione lineare del second'ordine ha la forma

$$a(t)y'' + b(t)y' + c(t)y = f(t)$$

se f(t)=0 l'equazione è detta omogenea, altrimenti è detta completa. Per le equazioni lineari vale il principio di sovrapposizone: se $y_1(t)$ e $y_2(t)$ sono soluzioni rispettivamente di

$$a(t)y'' + b(t)y' + c(t)y = f_1(t)$$

$$a(t)y'' + b(t)y' + c(t)y = f_2(t)$$

allora $y_1(t) \pm y_2(t)$ è soluzione di

$$a(t)y'' + b(t)y' + c(t)y = f_1(t) \pm f_2(t)$$

In particolare:

- una combinazione lineare di due soluzioni $z_1(t)$ e $z_2(t)$ si un equazione omogenea a(t)z'' + b(t)z' + c(t)z = 0 è ancora soluzione della stessa equazione, ed è l'integrale generale se $z_1(t)$ e $z_2(t)$ sono linearmente indipendenti;
- la differenza di deu soluzioni di una equazione completa dà una soluzione dell'equazione omogenea associata;
- la somma di una soluzione dell'equazione completa con una soluzione (l'integrale generale) dell'equazione omogenea associata dà ancora una soluzione dell'equazione completa (ovvero: la somma di una soluzione dell'equazione completa con l'integrale generale dell'equazione omogenea associata dà l'integrale generale dell'equazione completa).

9.4.3 Equazione di Eulero

Un esempio di equazione lineare del second'ordine a coefficienti variabili, ma riconducibile a coefficienti costanti è l'**equazione di Eulero** che, nella sua forma generale, si scrive

$$t^2y''(t) + bty'(t) + cy(t) = f(t)$$
 $t > 0$

dove $b, c \in \mathbb{R}$.

Innanzitutto, anche per l'euqazione di Eulero, vale il principio di sovrapposizione e si applica il metodo della variazione delle costanti arbitrarie. Vediamo dunque solo come si risolve l'equazione omogenea:

$$t^2y''(t) + bty(t) + cy(t) = 0$$
 $t > 0$

Posto $t = e^s$ risulta s = log(t) e

$$y'(t) = \frac{dy}{dt} = \frac{dy}{ds} \frac{ds}{ds} = \frac{y'(s)}{t}, \quad y''(t) = \frac{y''(s)}{t^2} - \frac{y'(s)}{t^2}.$$

Dunque l'equazione omogenea associata diventa:

$$y''(s) + (b-1)y'(s) + cy(s) = 0$$
 $s \in \mathbb{R}$

che è del tipo a coefficienti costanti.

9.5 Equazioni lineari del secondo ordine (bramanti)

9.5.1 Spazi di funzioni

Sia I un intervallo e consideriamo l'insieme \mathbb{F} di tutte le funzioni definite in I, a valori reali. Con le operazioni naturali di somma di due funzioni e prodotto per uno scalare:

$$(f+g)(x) = f(x) + g(x)$$
$$(\lambda f)(x) = \lambda f()$$

 ${\mathbb F}$ risulta essere uno spazio vettoriale.

def. definiamo $C^n(I)$ lo spazio delle funzioni dotate di derivata n-essima continua.

9.5.2 Generalità sulle equazioni lineari. Problema di Cauchy

Un equazione differenziale del secondo ordine si dice lineare se è del tipo

$$a_2(t)y'' + a_1(t)y' + a_0(t)y = g(t)$$

dove le funzioni a_i e il termine noto g sono funzioni continue in un certo intervallo I.

Se il termine noto è nulla l'equazione si dice omogenea, altrimenti si dice completa.

Se i coefficienti a_i sono costanti, l'equazione si dirà a coefficienti costanti, altrimenti a coefficienti variabili.

Se $a_2 = 1$ l'equazione si dirà in forma normale (se in un equazione il coefficiente a_2 non si annulla mai possiamo riscrivere l'equazione in fomra normale dividendo per questo).

Nella soluzione si avranno sempre due coefficienti c_1 e c_2 , per selezionare una soluzione particolare avremo bisogno di due condizioni iniziali:

$$\begin{cases} y(t_0) = y_0 \\ y'(t_0) = y_1 \end{cases}$$

che insieme all'equazione iniziale prenderà il nome di problema di Cauchy.

teor. (per funzioni del secondo ordine in forma normale)

Se a,b,f sono funzioni continue in un intervallo I contenente il punto t_0 , per ogni $y_0,y_1\in\mathbb{R}$ il problema di Cauchy

$$\begin{cases} y'' + a(t)y' + b(t)y = f(t) \\ y(t_0) = y_0 \\ y'(t_0) = y_1 \end{cases}$$

ha una e una sola soluzione $y \in C^2(I)$.

Tale soluzione è individuata imponendo le condizioni iniziali nell'espressione che assegna l'integrale generale dell'equazione.

9.5.3 La struttura dell'integrale generale

teor. Struttura dell'integrale generale dell'equazione lineare completa

- a. L'insieme delle soluzioni dell'equazione omogenea Lz=0 con $L:C^2(I)\to C^0(I)$ in un dato intervallo I è uno spazio vettoriale (sottospazio di $C^2(I)$).
- b. L'integrale generale dell'equazione completa di ottiene sommando l'integrale generale dell'equazione omogenea e una soluzione particolare dell'equazione completa.

teor. Proprietà di un equazione omogenea del secondo ordine.

Lo spazio vettoriale delle soluzioni di un'equazione lineare omogenea del secondo ordine ha dimensione due.

Significa che esistono 2 soluzioni (z_1, z_2) tali che:

- 1. sono linearmente indipendenti
- 2. ogni altra soluzione è combinazione lineare di queste due soluzioni.
- 3. L'integrale generale dell'equazione omogenea è assegnato dalla formula

$$c_1 z_1(t) + c_2 z_2(t)$$

teor. Determinante Wronskiano e indipendenza.

Siano z_1 e z_2 due funzioni $C^2(I)$, soluzioni di un equazione lineare omogenea di secondo ordine nell'intervallo I. Allora esse sono linearmente indipendenti in $C^2(I)$ se e solo se la seguente matrice

$$z_1(t)$$
 $z_2(t)$ $z'_1(t)$ $z'_2(t)$

detta matrice Wronskiana, ha determinante diverso da 0 per ongi $t \in I$. Inoltre, affinché questo accada, è sufficiente che il determinante si adiverso da 0 in un punto $t_0 \in I$ (il determinante o si annulla in tutti i punti o è diverso da 0 in tutti i punti, se è diverso da zero in tutti i punti z_1, z_2 sono indipendenti).

Per determinare l'integrale generale di un'equazione differenziale completa del secondo ordine si riconduce ai due passi seguenti:

- 1) determinare l'integrale generale dell'equazione omogenea corrispondente, cioè due soluzioni $z_1(t), z_2(t)$ linearmente indipendenti.
- 2) determinare una soluzione particolare $\bar{y}(t)$ dell'equazione completa. L'integrale generale avrà dunque la forma:

$$\bar{y}(t) + c_1 z_1(t) + c_2 z_2(t)$$

9.5.4 Equazioni omogenee a coefficienti costanti

$$z''(t) + az'(t) + bz(t) = 0$$

Sostituendo $z(t) = e^{rt}$

$$e^{rt}(r^2 + ar + b) = 0$$

Calcoliamo il Δ di $r^2 + ar + b$, detta equazione caratteristica:

• $\Delta > 0$, due radici reali distinte r_1 e r_2 , soluzione:

$$z(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

• $\Delta < 0$, due radici complesse $r_1 = \alpha + i\beta$, $r_2 = \alpha - i\beta$, soluzione:

$$z_1(t) = e^{(\alpha + i\beta)t} = e^{\alpha t}(\cos(\beta t) + i\sin(\beta t)) = e^{\alpha t}\cos(\beta t)$$

$$z_2(t) = e^{(\alpha - i\beta)t} = e^{\alpha t}(\cos(\beta t) + i\sin(\beta t)) = e^{\alpha t}\sin(\beta t)$$

da cui

$$z(t) = e^{\alpha t} (c_1 cos(\beta t) + c_2 sin(\beta t))$$

quest'ultima espressione può essere riscritta anche come $z(t)=e^{\alpha t}Acos(\beta t+\phi)$, con A e ϕ costanti reali arbitrarie.

 $\bullet \ \Delta = 0$, unica radice $r = \frac{-a}{2}$, soluzioni:

$$e^{rt}$$
 te^{rt}

$$z(t) = e^{rt}(c_1 + c_2 t)$$

9.5.5 Equazioni completa a coefficienti costanti

$$y''(t) + ay'(t) + by(t) = f(t)$$

Vediamo per prima cosa il

9.5.6 metodo di somiglianza

Si analizza il termine noto f(t):

• $f(t) = p_r(t)$, dove $p_r(t)$ è un polinomio di grado r, si cerca una soluzione di tipo polinomiale:

$$y(t) = q_r(t)$$
 se $b \neq 0$
 $y(t) = tq_r(t)$ se $b = 0, a \neq 0$
 $y(t) = t^2q_r(t)$ se $b = 0, a = 0$

dove $q_r(t)$ è un generico polinomio di grado r di cui occorre determinare i coefficienti.

• $f(t) = Ae^{\lambda t}$, con $\lambda \in \mathbb{C}$. Si cerca una soluzione del tipo $y(t) = e^{\lambda t} \gamma(t)$:

$$\gamma'' + \gamma'(2\lambda + a) + \gamma(\lambda^2 + a\lambda + b) = A$$

Se:

— se
$$\lambda^2+a\lambda+b\neq 0$$

$$\gamma(t)=costante=\frac{A}{\lambda^2+a\lambda+b}$$

$$y(t)=\frac{Ae^{\lambda t}}{\lambda^2+a\lambda+b}$$
 — se $\lambda^2+a\lambda+b=0$, ma $2\lambda+a\neq 0$

- se
$$\lambda^2 + a\lambda + b = 0$$
, ma $2\lambda + a \neq 0$

$$\gamma'(t) = costante = \frac{A}{2\lambda + a}$$
$$\gamma(t) = \frac{At}{2\lambda + a}$$
$$y(t) = \frac{Ate^{\lambda t}}{2\lambda + a}$$

— se
$$\lambda^2+a\lambda+b=0$$
, ma $2\lambda+a=0$
$$\gamma''=A$$

$$\gamma(t)=\frac{A}{2}t^2$$

$$y(t)=\frac{A}{2}t^2e^{\lambda t}$$

Nella classe dei termini noti $e^{\lambda t}$ con $\lambda \in \mathbb{C}$, rientrano anche:

$$cos(\omega t)$$
, $sin(\omega t)$, $e^{\lambda t}cos(\omega t)$, $e^{\lambda t}sin(\omega t)$

Ricordiamo la formula di Eulero:

$$re^{i\theta} = r[cos(\theta) + isin(\theta)]$$

Quindi se si è in presenza di un $sin(\omega t)$ come termine noto, si può studiare l'equazione che ha come termine noto $cos(\omega t) + i \cdot sin(\omega t)$ e poi prenderne la parte immaginaria.

Viceversa se si è in presenza di una $cos(\omega t)$ come termine noto, si può studiare l'equazione che ha come termine noto $cos(\omega t) + i \cdot sin(\omega t)$ e poi prenderne la parte reale.

In ogni caso, per facilitare la derivazione, si trasforma $cos(\omega t) + i \cdot sin(\omega t)$ in $e^{i\omega t}$ e si procede nello studio di un termine noto della forma $f(t) = Ae^{\lambda t}$. Fa eccezione a questa tipologia il caso in cui manchi il termine in y'.

Metodo di sovrapposizione

se, per esempio, il termine noto f(t) = polinomio + una funzione trigonometrica, si può trovare unasoluzione per f(t) = polinomio, e una per f(t) = funzione trigonometrica e sommando le soluzioni si trova una soluzione dell'equazione di partenza.

9.5.8 Metodo di variazione delle costanti

Illustriamo ora un metodo generale che consente di determinare una soluzione particolare qualunque sia la forma del termine noto.

Il metodo è applicabile purchè si conoscando già due soluzioni z_1,z_2 indipendenti dell'equazione omogenea associata.

Dovremo quindi trovare le due funzioni c_1 e c_2 tali che

$$\begin{cases} c'_1 z_1 + c'_2 z_2 = 0 \\ c'_1 z'_1 + c'_2 z'_2 = f \end{cases}$$

cioè

$$c'_1 = \frac{-z_2 f}{z'_2 z_1 - z_2 z'_1}$$
$$c'_2 = \frac{z - 1 f}{z'_2 z_1 - z_2 z'_1}$$

Dobbiamo quindi trovare due primitive di c_1^\prime e c_2^\prime e sostituire in:

$$y(t) = (c_1(t) + k_1)z_1(t) + (c_2(t) + k_2)z_2(t)$$

con k_i costanti arbitrarie di integrazione.

9.5.9 Note sugli esercizi

$$\int e^{ax}\cos(bx)dx = Re(\int e^{a+ib}xdx)$$

$$\int e^{ax}\sin(bx)dx = Im(\int e^{a+ib}xdx)$$

$$\int e^{(a+ib)x}dx = \frac{1}{a+ib}e^{(a+ib)x} = \frac{e^{ax}}{a^2+b^2}(a-ib)(\cos(bx)+i\sin(bx))$$

9.5.10 Equazione di Eulero

Per risolvere:

$$ax^2y'' + bxy' + cy = 0$$

si risolve l'equazione di secondo grado:

$$ar(r-a) + br + c = 0$$

• $\Delta > 0$, soluzioni r_1, r_2

$$y(x) = c_1 x^{r_1} + c_2 x^{r_2}$$

per x > 0

• $\Delta < 0$, soluzioni $r_{1,2} = \alpha \pm i\beta$

$$y(x) = x^{\alpha}(c_1 cos(\beta log(x)) + c_2 sin(\beta log(x)))$$

 $\mathrm{per}\; x>0$

ullet $\Delta=0$, soluzioni coincidenti r

$$y(x) = x^r(c_1 + c_2 log(x))$$

 $\mathrm{per}\; x>0$

Per x < 0, si studia ancora la stessa equazione di secondo grado e si hanno soluzioni analoghe, ma con x sostituita da -x.

9.5.11 Note sugli esercizi: tabella riassuntiva del metodo di somiglianza

Il "metodo di somiglianza" per la ricerca di una soluzione particolare delle equazioni differenziali lineari del second'ordine non omogenee:

> ay'' + by' + cy = f(x)(*) $(con a, b, c costanti, a \neq 0)$

Forma di $f(x)$	Forma in cui si cerca $\overline{y}(x)$	Eventuali eccezioni e osservazioni
CASO 1		
polinomio di grado n	polinomio di grado n	Se nella (*) $c=0$, cercare un polinomio di grado $n+1$; se $c=b=0$, cercare un polinomio di grado $n+2$.
ESEMPI CASO 1		
$y'' + 2y = x^3 + 2$	$\overline{y}(x) = \alpha x^3 + \beta x^2 + \gamma x + \delta$	
y'' - 3y' = 2x + 1	$\overline{y}(x) = \alpha x^2 + \beta x + \gamma$	
CASO 2		
esponenziale $Ae^{\lambda x}$	esponenziale $ce^{\lambda x}$	Se non c'è soluzione di questo tipo (ciò accade perché $a\lambda^2 + b\lambda + c = 0$,
	(lo stesso λ , e c da determinarsi)	ossia perché $e^{\lambda x}$ è soluzione dell'eq. diff. omogenea), cercare $\overline{y}(x) = cxe^{\lambda x}$; se nemmeno questo tipo di soluzione esiste, cercare $\overline{y}(x) = cx^2e^{\lambda x}$
ESEMPI CASO 2		
$y'' + 2y' + 3y = 2e^{-3x}$	$\overline{y}(x) = ce^{-3x}$	
$y'' + 2y' - 3y = 3e^x$	$\widetilde{y}(x) = cxe^x$	
(Spiegazione 2º esempie	$\lambda = 1$ è soluzione dell'eq. caratterist	ica $\lambda^2 + 2\lambda - 3 = 0$; equivalentemente: e^x è soluzione dell'eq. diff. omogenea
y'' + 2y' - 3y = 0; perc	iò occorre moltiplicare per x)	
CASO 3		
CASO 3		
$A\cos\omega x + B\sin\omega x$	$c_1\cos\omega x + c_2\sin\omega x$	Notare che anche se f ha uno solo dei due addendi (seno o coseno),
		Notare che anche se f ha uno solo dei due addendi (seno o coseno), in generale la soluzione li ha entrambi.
) in generale la soluzione li ha entrambi. Se $b=0$ può accadere che $c_1\cos\omega x+c_2\sin\omega x$ sia soluzione dell'omogenea:
) in generale la soluzione li ha entrambi.

Forma di $f(x)$	Forma in cui si cerca $\overline{y}(x)$	Eventuali eccezioni e osservazioni
CASO 4	- NTD	POS BOTTOS IN HIS DE VIOLENTATION AND NAME OF TAXABLE
$e^{\lambda x}(A\cos\omega x + B\sin\omega x)$	$e^{\lambda x}(c_1 \cos \omega x + c_2 \sin \omega x)$ (gli stessi ω, λ e c_1, c_2 da determinarsi)	Se $z = \lambda + i\omega$ è soluzione di $az^2 + bz + c = 0$, sostituire $e^{\lambda z}$ con $xe^{\lambda z}$. Notare che anche se f ha uno solo dei due addendi (seno o coseno), in generale la soluzione li ha entrambi.
ESEMPI CASO 4	7.00	•
$y'' + 2y = 3e^{-x}\sin 2x$	$\overline{y}(x) = e^{-x}(c_1 \cos 2x + c_2 \sin 2x)$	
$y'' - 4y' + 5y = 3e^{2x}\cos x$	$\overline{y}(x) = xe^{2x}(c_1 \cos x + c_2 \sin x)$	
y'' - 4y' + 5y = 0, perci (Nel caso 4 può essere pi	2+1+2 soluzione dell'el, carattens ò si introduce il fattore x). iù comodo effettuare i calcoli utilizi i riporta l'illustrazione di quel mete	
$e^{\lambda x}p(x)$, dove $p(x)$ è un polinomio di grado n	$e^{\lambda x}q(x)$, con lo stesso λ , e $q(x)$ polinomio di grado n , da determinarsi	Se λ è soluzione dell'eq. caratteristica $a\lambda^2+b\lambda+c=0$, cercare una soluzione $y(x)=e^{\lambda x}\cdot$ (polinomio di grado $n+1$)
ESEMPI CASO 5		
$y'' + 2y' - y = e^{\lambda x}(x+2)$	$\bar{y}(x) = e^{3x}(ax+b)$	
	$\overline{y}(x) = e^x(ax^2 + bx + c)$	
	: $\lambda = 1$ è soluzione dell'eq. caratte compare in \bar{y} si alza di grado).	ristica $\lambda^2 - \lambda = 0$, ossia e^x è soluzione dell'equazione omogenea $y'' - y = 0$;

OSSERVAZIONE. QUANDO IL TERMINE NOTO E' SOMMA DI DUE FUNZIONI DEI TIPI PRECEDENTI

Se il termine noto è del tipo $f(x) = f_1(x) + f_2(x)$, con f_1, f_2 dei tipi descritti in precedenza, è sufficente cercare (separatamente): una soluzione particolare y_1 dell'equazione $Ly = f_1$; una soluzione particolare y_2 dell'equazione $Ly = f_2$; a questo punto (per la linearità dell'equazione differenziale), la funzione $y_1 + y_2$ sarà una soluzione particolare di $Ly = f_1 + f_2$.

Esempio: $y'+2y=3e^{-x}+x^2+1$ Si cerca una soluzione $y_1=c_1e^{-x}$ dell'equazione $y''+2y=3e^{-x}$; si cerca una soluzione $y_1=ax^2+bc+c$ dell'equazione $y''+2y=x^2+1$; la funzione y_1+y_2 sarà allora una soluzione particolare dell'equazione di partenza.

10 Sistemi differenziali lineari

10.1 Il principio di sovrapposizione

Siano A=A(t) e b=b(t), rispettivamente, una matrice $n \times n$ e un vettore di \mathbb{R}^n , dipendenti con continuità da un parametro reale $t \in I$, dove $i \subseteq \mathbb{R}$ è un intervallo. Il sistema di n equazioni

$$y' = A(t)y + b(t) \quad (t \in I)$$

si chiama sistema differenziale lineare; l'incognita è il vettore $y=y(t)\in\mathbb{R}^n$. Dette $y_i(t)$ (con $i=1,\ldots,n$) le componenti del vettore y_i , il sistema si scrive anche

$$y'_i = \sum_{j=1}^n a_{ij}(t)y_j(t) + b_i(t)$$
 $i = 1, ..., n$

dove $a_{ij}(t)$ sono gli elementi della matrice A(t) e $b_i(t)$ sono le componenti del vettore b(t).

Nel caso n=1 ci riduciamo al caso di equazioni differenziale lineare del prim'ordine, di cui abbiamo visto i metodi di soluzione (derivata di un prodotto e sovrapposizione + variazione delle costanti).

Nel caso n=2 il sistema diventa

$$\begin{cases} y_1' = a_{11}(t)y_1 + a_{12}y_2 + b_1(t) \\ y_2' = a_{21}(t)y_1 + a_{22}y_2 + b_2(t) \end{cases}$$

In questo caso (e in tutti i casi in cui $n \geq 2$) non si riesce ad usare il metodo della derivata di un prodotto, ma è invece possibile usare il metodo di sovrapposizione e variazione delle costanti in via generalizzata.

In generale, un vettore $y=y(t)\in\mathbb{R}^n$ è soluzione di un sistema y'=A(t)y+b(t) $(t\in I)$ se la soddisfa per ogni $t\in I$. L'insieme di tutte le soluzioni viene ancora chiamato integrale generale. Chiamaremo **sistema omogeneo associato** il sistema

$$y' = A(t)y \quad (t \in I)$$

con un ragionamento analogo a quello fatto per il caso di equazioni del prim'ordine si dimostra che l'integrale generale si ottiene sommando all'integrale generale del sistema omogeneo associato un integrale particolare del sistema completo.

L'integrale generale del sistema omogeneo è uno spazio vettoriale di dimensione n e basterà quindi trovare una base di esso, e cioè n soluzioni linearmente indipendenti (nel caso n=1 la soluzione dell'equazione omogenea è unica a meno di una costante moltiplicativa, e quindi l'integrale generale è uno spazio vettoriale mono-dimensionale).

Facciamo notare che le equazioni differenziali lineari **di qualsiasi ordine** possono essere sempre ricondotte alla forma di un sistema differenziale lineare y' = A(t)y + b(t).

10.1.1 Note sugli esercizi: corrispondenza tra equazioni lineari del second'ordine e sistemi lineari del prim'ordine

Mostriamo ora come l'equazione ay'' + by' + cy = f(t) può essere trasformata in un sistema di due equazioni differenziali del prim'ordine delal forma $\vec{y}' = A\vec{y} + \vec{f}(t)$.

Il sistema di due equazioni del prim'ordine

$$\begin{cases} y_1' = ay_1 + by_2 + f_1(t) \\ y_2' = cy_1 + by_2 + f_2(t) \end{cases}$$

può essere scritto anche in forma vettoriale: posto

$$\vec{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \qquad A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad \vec{f}(t) = \begin{bmatrix} f_1(t) \\ f_2(t) \end{bmatrix}$$

poichè il vettore derivato è il vettore delle derivate:

$$\vec{y}' = \begin{bmatrix} y_1' \\ y_2' \end{bmatrix}$$

abbiamo

$$\begin{cases} y_1' = ay_1 + by_2 + f_1(t) \\ y_2' = cy_1 + by_2 + f_2(t) \end{cases} \Leftrightarrow \begin{bmatrix} y_1' \\ y_2' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} + \begin{bmatrix} f_1(t) \\ f_2(t) \end{bmatrix}$$

cioè $\vec{y}' = A\vec{y} + \vec{f}(t)$.

Veniamo alla nostra equazione: poniamo $y_1=y$ e $y_2=y'$ (cioè $y_1'=y_2$), allora possiamo scrivere le due equazioni

$$y_1' = y_2$$
 $ay_2' + by_2 + cy_1 = f(t)$

queste, poste in forma normale, diventano

$$\begin{cases} y_1' = y_2 \\ y_2' = -\frac{c}{a}y_1 - \frac{b}{a}y_2 + \frac{1}{a}f(t) \end{cases}$$

e cioè, posto

$$\vec{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \qquad A = \begin{bmatrix} 0 & 1 \\ -\frac{c}{a} & -\frac{b}{a} \end{bmatrix} \qquad \vec{f}(t) = \begin{bmatrix} 0 \\ \frac{1}{a}f(t) \end{bmatrix}$$

il sistema $\vec{y}' = A\vec{y} + \vec{f}(t)$.

10.2 Sistemi lineari omogenei

Nel caso in cui b(t)=0, il sistema $y^{\prime}=A(t)y+b(t)$ diventa

$$y' = A(t)y$$

e viene detto omogeneo.

Associato al sistema lineare omogeneo abbiamo il problema di Cauchy

$$\begin{cases} y' = A(t)y & t \in I \\ y(t_0)y_0 \end{cases}$$

dove $t_0 \in I$ e $y_0 \in \mathbb{R}^n$.

Teor. Sia $A \in C^0(I)$ e sia $t_0 \in I$. Per ogni $y_0 \in \mathbb{R}^n$ il problema di Cauchy $\begin{cases} y' = A(t)y & t \in I \\ y(t_0)y_0 \end{cases}$ ammette un'unica soluzione che è prolungabile a tutto l'intervallo I.

Questo teorema ha delle conseguenze importanti:

Notiamo che nel problema di Cauchy, $y_0=0\in\mathbb{R}^n$, allora l'unica soluzione è $y(t)\equiv 0$.

Se ϕ_1 e ϕ_2 risolvono y' = A(t)y, allora anche $\alpha \phi_1 + \beta \phi_2$ lo risolvono per ogni $\alpha, \beta \in \mathbb{R}$:

Corollario: L'integrale generale di un sistema lineare omogeneo è uno spazio vettoriale di dimensione n.

Il problema quindi si riduce a trovare n soluzioni linearmente indipendenti del sistema omogeneo, che è una ricerca difficile, tuttavia, se la mtrice dei coefficienti A è costante esiste un metodo che consente di trovarle (vedi più avanti).

Ad ogni modo, fissate n soluzioni $\phi_1, \phi_2, \ldots, \phi_n$ ci poniamo il problema di capire se esse siano linearmente indipendenti: le n soluzioni $\phi_1, \phi_2, \ldots, \phi_n$ sono **linearmente indipendenti** se l'equazione

$$c_1\phi_1(t) + c_2\phi_2(t) + \dots + c_n\phi_n(t) = 0 \quad (t \in I)$$

può essere soddisfatta solo per $c_1=c_2=\cdots=c_n=0.$

Dalla definizione di combinazione lineare, possiamo dire che $c_1\phi_1(t)+c_2\phi_2(t)+\cdots+c_n\phi_n(t)$ si annulla in un certo $t_0\in I$ se e solo se si annulla su tutto I.

Per provare l'indipendenza lineare delle **funzioni** ϕ_k basta quindi verificare che i **vettori** $\phi_k(t_0)$ siano linearmente indipendenti per un certo $t_0 \in I$. Per formalizzare questa importante proprietà introduciamo la **matrice wronskiana** associata alle funzioni (vettoriali) ϕ_k ; questa si ottiene accostando i vettori colonna $\phi_k(t)$:

$$W(t) = (\phi_1(t)|\phi_2(t)|\dots|\phi_n(t)) \qquad t \in I$$

Chiamiamo determinante wronskiano il suo determinante det(W(t)).

Teor. Le n soluzioni ϕ_1, \ldots, ϕ_n sono linearmente indipendenti se e solo se il loro determinante wronskiano è diverso da zero in un punto di I:

$$\exists t_0 \in I, det(W(t_0)) \neq 0$$

In tal caso diremo che la famiglia di soluzioni ϕ_k è un **sistema fondamentale di soluzioni** e che la corrispondente matrice wronskiana è una matrice fondamentale (una matrice wronskiana è fondamentale se e solo se il suo determinante è diverso da zero in almento un punto $t_0 \in I$).

Proprietà dela matrice fondamentale W:

- il vettore y=y(t) è soluzione di un sistema lineare omogeneo se e solo se esiste $C\in\mathbb{R}^n$ tale che y(t)=W(t)C;
- la matrice W soddisfa l'equazione (matriciale!) W'(t) = A(t)W(t).
- detta a(t) la traccia di A(t), il determinante wronskiano soddisfa l'equazione (scalare!) |W(t)|' = a(t)|W(t)|;
- fissato $t_0 \in I$ come istante iniziale, il determinante wronskiano in t è esplicitamente dato da $|W(t)| = |W(t_0)| exp(\int_{t_0}^t a(\tau) d\tau);$
- ullet le ultime due proprietà confermano che W(t) è sempre singolare o non lo è mai.

10.3 Sistemi omogenei a coefficienti costanti

Studiamo ora il sistema omogeneo y' = A(t)y nel caso in cui la matrice A sia costante:

$$y' = Ay \quad t \in I$$

Se n=1 (A scalare), l'integrale generale è dato da $y(t)=Ce^{At}$ con $C\in\mathbb{R}$. Se n=2, il sistema si scrive come

$$y'_1 = a_{11}y_1 + a_{12}y_2$$
 $y'_2 = a_{21}y_1 + a_{22}y_2$ $A = (a_{ij})_{i,i=1,2}$

questo sistema si può integrare riconducendolo a un'equazione del second'ordine: infatti, derivando la prima equazione e sostituendo la seconda si ottiene

$$y_1'' = (a_{11} + a_{22})y_1' + (a_{12}a_{21} - a_{11}a_{22})y_1$$

che si risolve coi metodi già visti (osserviamo che i coefficienti solo la traccia e l'opposto del determinante di A).

Quanto appena osservato suggerisce di cercare soluzioni tra gli esponenziali (eventualmente complessi).

Sarebbe utile poter definire in qualche modo la matrice esponenziale e^{At} e dedurre che le soluzioni della generica y'=Ay sono tutte e sole del tipo $e^{At}C$ con $C\in\mathbb{R}^n$ vettore arbitrario.

Il meotodo migliore per definire la matrice esponenziale di una matrice M è quello di prendere spunto sia dalla definizione del numero e che dalla serie di potenze dell'esponenziale:

$$e^{M} = \lim_{k \to \infty} \left(I_n + \frac{M}{k} \right)^k \qquad e^{M} = \sum_{k=0}^{\infty} \frac{M^k}{k!}$$

dove I_n è la matrice identità. Queste definizioni non possono però essere usate in maniera semplice per calcolare e^M . Ci sono due situazioni i ncui il calcolo si fa agevolmente:

 \bullet Se M è diagonale, si ottiene semplicemente l'esponenziale della diagonale:

$$M = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} \Longrightarrow e^M = \begin{bmatrix} e^{\lambda_1} & 0 & \dots & 0 \\ 0 & e^{\lambda_2} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & e^{\lambda_n} \end{bmatrix}$$

ullet Se M è diagonalizzabile, e cioè esiste una matrice non singolare S tale che $\Lambda=S^{-1}MS$ sia diagonale, allora

$$M = S\Lambda S^{-1} \Longrightarrow M^k = S\Lambda^k S^{-1} \Longrightarrow e^M = Se^\Lambda S^{-1}$$

con e^{Λ} che si calcola come nel caso precedente.

Ricordiamo che una matrice quadrata è diagonalizzabile se e solo se tutti i suoi autovalori sono regolari. Precisiamo che vengono considerati anche autovalori complessi che, per una matrice a coefficienti reali, possono esserci se e solo se c'è anche il loro coniugato. In tal caso gli esponenziali dipendenti dal tempo vanno interpretati con la formula di Eulero e generano funzioni trigonometriche.

Volendo ora trovare l'esponenziale della matrice At, afacciamo un paio di osservazioni elementari:

- se A è diagonalizzabile, lo è anche At e si può usare la stessa matrice di passaggio S per diagonalizzarla;
- gli autovalori di At sono uguali agli autovalori di A moltiplicati per t.

Da queste due osservazioni possiamo dedurre l'implicazione

$$e^A = Se^{\Lambda}S^{-1} \Longrightarrow e^{At} = Se^{\Lambda t}S^{-1}$$

Teor. Le colonne della matrice e^{At} formano un sistema fondamentale di soluzioni di y' = Ay e cioè, per ogni $C \in \mathbb{R}^n$ il vettore $e^{At}C$ è una soluzione.

Questo teorema permette di concludere che la funzione $\phi(t)=Ce^{\lambda t}$ è soluzione di y'=Ay se e solo se λ è un autovalore di A (possibilmente complesso) e C è un autovettore associato a λ .

10.4 Sistemi non omogenei

Consideriamo il problema di cauchy

$$\begin{cases} y' = A(t)y + b(t) \\ y(t_0) = t_0 \end{cases}$$

dove $t_0 \in I$ e $y_0 \in \mathbb{R}^n$.

Teor. Siano $A,b \in C^0(I)$ e sia $t_0 \in I$. Per ogni $y_0 \in \mathbb{R}^n$ il problema di Cauchy ammette un'unica soluzione che è prolungabile a tutto l'intervallo I.

Supponiamo ora di aver già trovato l'integrale generale del sistema omogeneo associato e cerchiamo un integrale particolare del sistema completo. Per fare ciò bisogna usare il metodo della **variazione delle costanti arbitrarie**. Sia dunque $\{\phi_k\}_{k=1,\dots,n}$ un sistema fondamentale di soluzioni e sia W(t) la corrispondente matrice wronskiana fondamentale. Allora, l'integrale generale si scrive nella forma y(t) = W(t)C con $C \in \mathbb{R}^n$ vettore arbitratio. Cerchiamo dunque una soluzione particolare del tipo

$$\phi(t) = W(t)C(t)$$
 $t \in I$

dive, adesso, il vettore C(t) può dipendere da t. Imponendo alla funzione vettoriale ϕ appena definita di soddisfare y'=A(t)y+b(t) otteniamo

$$W'(t)C(t) + W(t)C'(t) = A(t)W(t)C(t) + b(t)$$

e usando una proprietà delle matrici wronskiane deduciamo

$$W(t)C'(t) = b(t) \Longrightarrow C'(t) = [W(t)]^{-1}b(t) \Longrightarrow C(t) = \int [W(\tau)]^{-1}b(\tau)d\tau$$

Per calcolare l'integrale si fa in quest'ordine: si calcola l'inversa $W(t)^{-1}$, si applica al vettore b(t) in modo da ottenere un altro vettore, e poi si integra componente per componente. Infine l'integrale è indefinito e quindi risulta determinato a meno di una vettore costante arbitrario.

Inserendo la forma trovata con questo integrale di C(t) nella forma cercata di phi(t)=W(t)C(t) otteniamo

$$\phi(t) = W(t) \int [W(\tau)]^{-1} b(\tau) d\tau \quad t \in I$$

10.5 Note sugli esercizi: diagonalizzazione di una matrice

Una matrice A è diagonalizzabile se

- Il numero degli autovalori di A contati con la loro molteplicità è uguale all'ordine della matrice
- ullet la molteplicità geometrica di ciascun autovalore coincide con la realtiva molteplicità algebrica Sia A una matrice, i suoi autovalori si ottengono risolvendo

$$det(A - \lambda I) = \begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = 0$$

risolvendo questa equazione per λ otteniamo i vari autovalori.

La molteplicità algebrica consiste nel quante volte λ appare come soluzione dell'equazione precedente. Perchè A sia diagonalizzabile, la somma della molteplicità algebrica di ogni autovalore deve essere uguale all'ordine della matrice.

Perchè A sia diagonalizzabile bisogna anche verificare che la molteplicità algebrica di ogni autovalore coincide con la realtiva molteplicità geometrica, che si calcola così:

$$m_g(\lambda) = n - rk(A - \lambda I)$$

dove n è l'ordine di A.

Se A è diagonalizzabile, allora esiste una matrice P che la diagonalizza e una matrice D a cui A è simile, per cui valga:

$$D = PAP^{-1}$$

- la matrice D è una matrice diagonale i cui elementi della diagonale principale sono gli autovalori della matrice A. Gli autovalori con molteplicità algebrica maggiore di 1 vanno ripetuti più volte.
- la matrice P è la matrice che ha come colonne gli autovettori associati a ogni autovalore, ossia ha come colonne i vettori che fromano le basi degli autospazi relativi a ciascun autovalore.

Affinchè tutto funzioni ci deve essere corrispondenza fra le matrici D e P: la j-esima colonna della matrice P contiene l'autovettore associato all'autovalore presente nella j-esima colonna della matrice D.

Il calcolo degli autovettori relativi a un autovalore λ si esegue risolvendo il sistema:

$$(A - \lambda I)v = 0$$

con $v = \binom{x}{y}$, e cioè risolvendo il sistema:

$$\begin{pmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

Invece per calcolare l'inversa della matrice P si seguono i seguenti passaggi:

- ullet Calcola la trasposta A^T della matrice A (basta scambiare tra loro le righe con le colonne)
- sostituire ogni elemento della matrice trasposta col il proprio complemento algebrico (complemento algebrico: preso l'elemento $a_{h,k}$ della matrice, il suo complemento algebrico si calcola come $(-1)^{(h+k)} \cdot C_{h,k}$, dove con $X_{h,k}$ si intende il determinante della matrice ottenuta da quella di partenza eliminando la riga h e la colonna k)
- Adesso dividi la matrice dei complementi algebrici per det(A) (cioe' dividi ogni termine per det(A)) e ottieni l'inversa della matrice quadrata di partenza

10.6 Note sugli esercizi: Esponenziale di matrice (preso da Automatica)

Per sistemi a tempo continuo lineari tempo invarianti di ordine maggiore di 1, nel calcolo dei movimenti dello stato e dell'uscita occorre calcolare l'esponenziale di matrice e^{At} .

Vediamo come fare per il caso in cui A sia **diagonalizzabile** (cioè se il numero di autovalori contati con la loro molteplicità è pari all'ordine della matrice e se la molteplicità geometrica di ciascun autovalore coincide con la relativa molteplicità algebrica; notiamo che una matrice quadrata di ordine n che ammette esattamente n autovalori distinti è sicuramente diagonalizzabile), altrimenti il movimento non è calcolabile con l'esponenziale di matrice e quindi si userà un altro approccio, che incontreremo più avanti.

10.6.1 Dimostrazione

Definizioni e concetti importanti:

- Data una matrice M, scriviamo $e^M = I + M + \frac{M^2}{2!} + \frac{M^3}{3!} + \dots$
- Se M è diagonalizzabile, allora esiste una matrice T^{-1} (non singolare) tale che $T^{-1}MT=D$ è una matrice diagonale tale che i suoi elementi sulla diagonale sono gli autovalori λ_i di M. Di conseguenza $M=TDT^{-1}$.

(oss. T è la matrice degli autovettori accostati, T^{-1} si ricava da T, e la matrice diagonale D ha lungo la sua diagonale gli autovalori nell'ordine corrispondente agli autovettori di T).

Quindi unendo questi due concetti posso scrivere

$$e^{M} = I + M + \frac{M^{2}}{2!} + \frac{M^{3}}{3!} + \dots =$$

$$= TT^{-1} + TDT^{-1} + \frac{TDT^{-1}TDT^{-1}}{2!} + \frac{TDT^{-1}TDT^{-1}}{3!} + \dots =$$

$$= TT^{-1} + TDT^{-1} + \frac{TD^{2}T^{-1}}{2!} + \frac{TD^{3}T^{-1}}{3!} + \dots =$$

[dove $TT^{-1} = I$. Ora raccogliendo ottengo]

$$= T(I + D + \frac{D^2}{2!} + \frac{D^3}{3!} + \dots)T^{-1} = Te^D T^{-1}$$

ma siccome $D=\begin{bmatrix}\lambda_1&0&0\\0&\dots&0\\0&0&\lambda_n\end{bmatrix}$, allora elevando D a un generico indice k, otteniamo $D^k=0$

$$\begin{bmatrix} \lambda_1^k & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_n^k \end{bmatrix}.$$

Di conseguenza $Te^DT^{-1}=T\begin{bmatrix}e^{\lambda_1}&0&0\\0&\dots&0\\0&0&e^{\lambda_n}\end{bmatrix}T^{-1}.$

Tornando alla nostra matrice \overline{A} (diagonalizzabile)

$$e^{At} = e^{TD_AT^{-1}t} =$$

[con $D_A = T^{-1}AT$ diagonale (cioè la matrice A diagonalizzata). Porre molta **attenzione** alla posizione dei T e T^{-1} , è un errore molto gettonato all'esame.]

$$= T(It + D_A t + \frac{(D_a t)^2}{2!} + \dots)T^{-1} = T \begin{bmatrix} e^{\lambda_1 t} & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & e^{\lambda_n t} \end{bmatrix} T^{-1}$$

con λ_i autovalore i-esimo di A, gli autovalori $e^{\lambda_i t}$ prendono il nome di **modi del sistema**.

10.6.2 Metodo pratico

I passaggi per calcolare un generico esponenziale di matrice e^{At} da seguire sono:

- calcolare gli autovalori di A;
- calcolcare gli autovettori corrispondenti per ogni autovalore di A;
- definire la matrice diagonalizzante T come l'accostamento degli autovettori (e ricordarsi l'ordine) e, una volta determinato T, calcolare la sua inversa T^{-1} ;
- notare che $T^{-1}AT=D=$ matrice con gli autovalori di A lungo la diagonale nell'ordine in cui compaiono gli autovettori in T;
- $e^{At}=e^{TDT^{-1}t}$ (notare l'ordine con cui sono scritti T e T^{-1} , un errore tipico è confondersi in questo punto)

$$\bullet \ e^{At} = Te^{Dt}T^{-1} = T \begin{bmatrix} e^{\lambda_1 t} & 0 & \dots & 0 \\ 0 & e^{\lambda_2 t} & \dots & \dots \\ \dots & \dots & \dots & 0 \\ \dots & \dots & 0 & e^{\lambda_n t} \end{bmatrix} T^{-1} \text{, fare i conti e fine.}$$