Bioinformatics CS300

Horizontal Gene Transfer Database, Tools, Multiseq Alignment

Spring 2021
Oliver BONHAM-CARTER

- Differences between DNA and RNA
- Basic Python programming: syntax, keywords and definitions (covered in class)
- Global and local alignment
- Terms and definitions

- Some questions are similar to those on activities
- Central Dogma of Biology
 - Transcription, Translation
- Detecting genetic disorders
- STUDY YOUR SLIDES!

- Multiple choice, Short answer, Short essay,
- Given online on Sakai's "Tests and Quizzes" Tab at the beginning of lab.
- You will have 24 hours to take the exam starting from Monday's lab (2:50pm)
- The exam will be due on the following day at 2:50pm and will likely take about two hours to complete during that time.

Horizontal Gene Transfer

Horizontal gene transfer (HGT) refers to the **transfer** of **genes** between organisms in a manner other than traditional reproduction.

Generally stated: the movement of genetic information between organisms, a process that includes the spread of antibiotic resistance genes among bacteria (except for those from parent to offspring), fueling pathogen evolution.

What is HGT? (Horizontal Gene Transfer)

- The transmission of portions of genomic DNA between distant organisms
- A process decoupled from vertical inheritance (no mating).
- Various fragments of the genome are the result of different evolutionary histories and come from unrelated organisms.
- This can therefore complicate the investigations of evolutionary relatedness of lineages and species
- Bacteria can acquire new traits such as antibiotic resistance or pathogenic toxins.

Detection of HGT: Fragments that do not belong

ALLEGHENY COLLEGE

Statistical evidence: Elevated GC content in DNA regions

1. Parametric methods

Genome location

2. Phylogenetic methods

Species that are too closely related to each other

Gene distance

2a. Implicit phylogenetic methods

2b. Explicit phylogenetic methods

Phylogenetic tests using relationship trees:
Organisms living physically near each other show close relations

Genetic Sharing: Experiment

	bio	met	phe	thr
Strain I	+	+	-	-
Strain 2	-	-	+	+

- Colonies have opposing growth requirements: each colony requires two extra genes to survive under conditions
- Strain 1 needs *phe* and *thr*, Strain 2 needs bio and met.
- In the experiment, colonies randomly share missing genes with each other.
- Surviving cells make a new colony and have all four necessary genes from HTG.

No colonies

New colony needs to have genes from both sides of filter to grow. Filter prevents gene passage

Mechanisms of DNA Transfer

Conjugation

 Conjugation is the process by which one bacterium transfers genetic material to another through direct contact.

Transduction

Virus mediated transfer of DNA between bacteria

Transformation

 Requires release of DNA into the environment and then the manual take-up of the DNA by bacteria

Mechanisms of DNA Transfer

Transformation

Lysis of donor cell releases DNA into medium.

Conjugation

Donor cell plasmid

Recipient cell

Bacteriophage infects a cell.

Transduction

Recipient cell

Donor DNA is taken up by recipient.

Donor DNA is transferred directly to recipient through a connecting tube. Contact and transfer are promoted by a specialized plasmid in the donor cell.

Bacteriophage: a virus that parasitizes a bacterium by infecting it and reproducing inside it.

Lysis of donor cell.

Donor DNA is packaged in released bacteriophage.

Donor DNA is transferred when phage particle infects recipient cell.

Bacterial Conjugation

- Only specific bacteria can serve as donors
 - Arber, Werner. "Horizontal gene transfer among bacteria and its role in biological evolution." Life 4.2 (2014): 217-224.
- The donor bacterium carries a DNA sequence called the fertility factor, or F-factor.
- The F-factor allows the donor to produce a thin, tube-like structure called a *pilus*, which the donor uses to contact the recipient and transfer genetic content to recipient.

A Pilus : An Exchange Bridge

- Gene sharing possible if F-Factor present
- Fimbriae or pili
 (singlular: pilus): hair
 like filaments (tiny
 hollow projections)
- Extend from the cell membrane into the external environment
- A pilus is composed of subunits of the protein pilin

The F-Factor Fertility Material

- F-Factor: a material (i.e., the fertility factor) that is encoded on the plasmid (bacterial DNA). F+ (means has factor) F- (means does not have factor)
- Enables the creation of the pilus bridge to transfer circular piece of DNA

Transfer of Genetic Material

Plasmids are transferred containing genes of donor to recipient through the pilus

Mechanism of Transfer

- The relaxosome:
 a complex of
 proteins
 facilitating
 plasmid transfer
 during bacterial
 conjugation
- Relaxosome begins the transfer of T-DNA (transfer DNA) from donor to recipient

- T-DNA is separated but bound to relaxase protein.
- Complex called nucleoprotein
- Complex is recognized by a coupling factor, fed through exporter (conjugation tube)

F Factor Transfer

- Relaxase joins ends to produce circular molecule
- Single strand of F-Factor are in both cells (DNA replication)

In the donor cell, the F-factor DNA is replicated to become double stranded. In the recipient cell, relaxase joins the ends of the T-DNA strand. It is then replicated to become double stranded.

- Genes encoded on F-Factor can integrate into host DNA and alter its genotype (genetics) and phenotype (look-like)
- An Hfr strain was derived from an F+ strain

Plasmids Contain (lots of) Genes

- Antibiotic resistance genes on plasmids
- Insertion sequences
- Pathogenicity islands
- Toxin resistance genes on plasmids
- Viruses and viroids
- Organelle to nucleus transfers

Genetic code that did not come from common ancestry.

From Farm-to-Fork Spread of Antibiotic Resistance

Overuse of antibiotics in agriculture is widening the spread of superbugs that are immune to

Supporting Videos

- Why the sex pilus is so dangerous horizontal gene transfer
 - https://www.youtube.com/watch?v=GzCLp1KBf4Q
- Antibiotic Resistance (4mins)
 - https://ed.ted.com/lessons/how-antibiotics-become-resistantover-time-kevin-wu

How do we find common regions in genetic material?

Multi-Sequence Alignment

- Clustal Omega: MultiSequence Alignment
- https://www.ebi.ac.uk/Tools/msa/clustalo/

Where are the chucks of common genes?

Are these chunks from horizontal gene transfers?

Input form Web services Help & Documentation

Tools > Multiple Sequence Alignment > Clustal Omega

EMBL-EBI to be HTTPS by default from 1st October

On the 1st October the majority of services hosted on www.ebi.ac.uk will be served over HTTPS by default. automatically redirect users accessing the site on insecure HTTP URLs to secure HTTPS URLs.

Users of EMBL-EBI services may wish to update links, bookmarks or API clients to use the HTTPS URLs.

Results for job clustalo-I20171005-050706-0613-19128639-oy

Alignments Result Summary Phylogenetic Tree Submission Details

Download Alignment File Send to Simple_Phylogeny

CLUSTAL O(1.2.4) multiple sequence alignment

AB011005.1	
X95927.1	GGGAGG-CAAGAATCAGGC-CTCAAAACCCTCAAACTCTA
X95928.1	TATTATTTCATGAAACTAATGTGAGGAGAAAAATTAGGCAGACGTATAAGTGACAGTAGA
KU325497.1	
KU325498.1	
AB011005.1	
X95927.1	ACCTTGGAACAAACAGCCCTAGTGGGATAGCCCTATCAAACCCTTCCCTTCAGGGATT
1105000 1	01 1 m 1 0 m 0 1 0 0 0 m m m 0 m m 0 1 1 0 0 1 0 m m 1 0 1 0

Clustal: Load Input Sequences

Multiple Sequence Alignment

Clustal Omega is a new multiple sequence alignment program that uses seeded guide trees and HMM profile-profile techniques to generate alignments between **three or more** sequences. For the alignment of two sequences please instead use our pairwise sequence alignment tools.

Important note: This tool can align up to 4000 sequences or a maximum file size of 4 MB.

STEP 1 - Enter your input sequences	
Enter or paste a set of	
DNA	₩
sequences in any supported format:	
Or, upload a file: Choose File No file chosen	

Using Example DNA Sequences

Results for job clustalo-E20191003-040355-0978-26932726-p1m

Alignments

Result Summary

Guide Tree

Phylogenetic Tree

Results Viewers

Submission Details

Download Alignment File

CLUSTAL O(1.2.4) multiple sequence alignment

test1	ATGAGTCTCTCTGATAAGGACAAGG	CTGCTGTGAAAGCCCTATGG	45
test2	CTGTCTCCTGCCGACAAGA	CCAACGTCAAGGCCGCCTGGGGTAAG	45
test3	ACAAAA	GCAACATCAAGGCTGCCTGGGGGAAGATTGGTGGC	41
	***	* ** ** **	
test1	45		
test2	45		
tes+3	CATC 45		

Results for job clustalo-E20191003-040019-0643-26585412-p1m

Alignments Result Summary Guide Tree Phylogenetic Tree Results Viewers Submission Details

Download Alignment File Show Colors

CLUSTAL O(1.2.4) multiple sequence alignment

```
sp|P69905|HBA HUMAN
                      MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
sp|P01942|HBA MOUSE
                                                                            60
                      MVLSGEDKSNIKAAWGKIGGHGAEYGAEALERMFASFPTTKTYFPHFDVSHGSAOVKGHG
sp|P13786|HBAZ CAPHI
                      MSLTRTERTIILSLWSKISTOADVIGTETLERLFSCYPOAKTYFPHFDLHSGSAOLRAHG
                      sp|P69905|HBA HUMAN
                                                                            120
                      KKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTP
sp|P01942|HBA MOUSE
                      KKVADALASAAGHLDDLPGALSALSDLHAHKLRVDPVNFKLLSHCLLVTLASHHPADFTP
                                                                           120
sp | P13786 | HBAZ_CAPHI
                                                                           120
                      SKVVAAVGDAVKSIDNVTSALSKLSELHAYVLRVDPVNFKFLSHCLLVTLASHFPADFTA
                      sp|P69905|HBA HUMAN
                                                142
                      AVHASLDKFLASVSTVLTSKYR
sp|P01942|HBA MOUSE
                                                142
                      AVHASLDKFLASVSTVLTSKYR
sp|P13786|HBAZ CAPHI
                                                142
                      DAHAAWDKFLSIVSGVLTEKYR
                       .**: ****: ** ***
```

Results took about five minutes to get! :-/
Is there a way to get faster results?

BLAST: A Heuristic Approach to Database Searching

- https://blast.ncbi.nlm.nih.gov/Blast.cgi
- Basic Local Alignment Search Tool
 - NCBI DNA and protein sequence
 - Compares one sequence to database of > 100 million
 - Finds best hits (optimal alignments) in a matter of seconds
 - (would take >3 years using Needlman-Wunsch algorithm)

BLAST: A Heuristic Approach to Database Searching

"Where does my sequence show up in other organisms?"

BLAST: Output

♣ Download ▼

GenBank Graphics Sort by: E value

▼ Next ▲ Previ

Tepidimicrobium xylanilyticum strain DSM 23310, whole genome shotgun sequence

Sequence ID: NZ_FNNG01000007.1 Length: 162671 Number of Matches: 4

Range 1: 102686 to 102707 GenBank Graphics

▼ Next Match A Previous Match

Score	Expect	Identities	Gaps	Strand
44.1 bits(22)	0.005	22/22(100%)	0/22(0%)	Plus/Plus

Query 1 22

Sbjct 102686 ATATATATATATATATATATATAT 102707

Range 2: 102686 to 102707 GenBank Graphics

▼ Next Match ▲ Previous Match ▲ First Match

Score	Expect	Identities	Gaps	Strand
44.1 bits(22)	0.005	22/22(100%)	0/22(0%)	Plus/Minus

Query 1 22

Sbict 102707 ATATATATATATATATATATATATATAT 102686

Range 3: 102685 to 102705 GenBank Graphics

▼ Next Match ▲ Previous Match ▲ First Match

Score	Expect	Identities	Gaps	Strand
42.1 bits(21)	0.019	21/21(100%)	0/21(0%)	Plus/Plus

Query 2 22

Sbjct 102685

102705

BLAST: Output

Nucleotide	Nucleotide \$	L
	Advanced	

Graphics - Send to: -

Tepidimicrobium xylanilyticum strain DSM 23310, whole genome shotgun sequence

NCBI Reference Sequence: NZ_FNNG01000007.1

GenBank FASTA

BLAST: Tree of Relations

Cyprinus GenBank: KF		Customize viev
Go to: ♥		Analyze this se Run BLAST
LOCUS DEFINITION ACCESSION VERSION KEYWORDS	KF881970 375 bp mRNA linear VRT 06-NOV-2014 Cyprinus carpio SIRT1 mRNA, partial cds. KF881970 KF881970.1	Highlight Sequent
SOURCE ORGANISM	Cyprinus carpio (common carp) Cyprinus carpio Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Actinopterygii; Neopterygii; Teleostei; Ostariophysi; Cypriniformes; Cyprinidae; Cyprinus.	Articles about t
REFERENCE AUTHORS	1 (bases 1 to 375) Fuentes, E.N., Zuloaga, R., Nardocci, G., Fernandez de la Reguera, C., Simonet, N., Fumeron, R., Valdes, J.A., Molina, A. and Alvarez, M.	Skeletal muscle p se [Comp Biocher
TITLE	Skeletal muscle plasticity induced by seasonal acclimatization in carp involves differential expression of rRNA and molecules that epigenetically regulate its synthesis	
JOURNAL	Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 172-173, 57-66 (2014)	Reference sequinformation
PUBMED REFERENCE AUTHORS TITLE	24769445 2 (bases 1 to 375) Fernandez de la Reguera, C. and Alvarez, M. Isolation of the Sirtuin 1 (Sirt1) in the common carp	RefSeq mRNA See reference mF LOC109064745 g

Sirt1 (member of the sirtuin family) is a nicotinamide adenosine dinucleotide (NAD)-dependent deacetylase that removes acetyl groups from various proteins. Sirt1 performs a wide variety of functions in biological systems.

NI	H U.S. National	Library of Medicine	NCBI			Sign ir	to NCBI
E	BLAST ® » blas	tn suite		Home	Recent Results	Saved Strategies	Help
			Standard N	ucleotide BL	AST		
b	lastn <u>blastp</u> <u>blast</u>	x tblastn tblastx					
	Enter Query Se		rograms search nucle	otide databases us	sing a nucleotide query	. more	Reset page Bookmark
		•					
	Enter accession nu	imber(s), gi(s), or f	-ASTA sequence(s)	<u> </u>	Clear	Query subrange @)
	KF881970.1					From	
						То	
	Or, upload file	Choose File No f	ile chosen				
	Job Title						
		Enter a descriptive	title for your BLAST se	arch 🚱			
	☐ Align two or mor	re sequences 😡					

We are checking the occurrence of this RNA sequence, **Cyprinus carpio SIRT1 mRNA**, partial cds GenBank: **KF881970.1**) in many other sequences to determine common parts of code.

Job Title	gb KF881970.1
RID	TRT19U51014 Search expires on 10-09 09:19 am Download All ➤
Program	BLASTN ② <u>Citation</u> ♥
Database	refseq_rna <u>See details</u> ♥
Query ID	KF881970.1
Description	Cyprinus carpio SIRT1 mRNA, partial cds.
Molecule type	rna
Query Length	375
Other reports	Distance tree of results MSA viewer ?

We get basic information from the search...

~	select all 28 sequences selected		GenB	ank <u> </u>	<u>Graphics</u>	<u>Distar</u>	nce tree of results
	Description	Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
$\overline{\mathbf{v}}$	Cyprinus carpio SIRT1 mRNA, partial cds	693	693	100%	0.0	100.00%	KF881970.1
$\overline{\mathbf{v}}$	PREDICTED: Cyprinus carpio NAD-dependent protein deacetylase sirtuin-1-like (LOC1	654	654	100%	0.0	98.13%	XM_019081783.1
\checkmark	PREDICTED: Sinocyclocheilus rhinocerous NAD-dependent protein deacetylase sirtuin	621	621	100%	1e-174	96.53%	XM_016538446.1
\checkmark	PREDICTED: Sinocyclocheilus grahami NAD-dependent protein deacetylase sirtuin-1-li	616	616	100%	5e-173	96.27%	XM_016247026.1
\checkmark	PREDICTED: Carassius auratus NAD-dependent protein deacetylase sirtuin-1-like (LO	604	604	100%	1e-169	95.73%	XM_026277791.1
\checkmark	PREDICTED: Cyprinus carpio NAD-dependent protein deacetylase sirtuin-1-like (LOC1	604	604	100%	1e-169	95.73%	XM_019107331.1
$\overline{\mathbf{Z}}$	PREDICTED: Sinocyclocheilus anshuiensis NAD-dependent protein deacetylase sirtuin	604	604	100%	1e-169	95.73%	XM_016487894.1
673	DDEDICTED. Ciarrichalista and ciarric MAD decended and decendent ciarric	E02	E03	1000/	20 166	05 200/	VM 016497200 1

Cases (sequences) in which the subsequence is found in other sequences

PREDICTED: Anabas testudineus sirtuin 1 (sirt1), mRNA

Sequence ID: XM_026356561.1 Length: 2767 Number of Matches: 1

Range 1: 1074 to 1442 GenBank Graphics				▼ Next Match ▲ Previous Match	
Score 252 bits(136)		Expect 2e-63	Identities 295/373(79%)	Gaps 5/373(1%)	Strand Plus/Plus
Query	1	TGCGACTGCCTCC	CTGTCTTATCTGTAAACAT	AAGGTTGACTGTGA	GGCCGTAA
Sbjct	1074	ŤĠĊŦĀĊŤĠĊĀŤĊ <i>Ĩ</i>	ATGTCTTGTCTGTAAACAC	AAAGTGGATTGTGA	GGCTATAA
Query	61	TATATTCAACCAC	GGTTGTTCCTCACTGTCCC	AGGTGTCCGGCAGA	CGTCCCGT;
Sbjct	1134	CATCTTTAACCAC	GATTGTCCCTCATTGTCCA	CGATGT-CCAGA	TATTCC-T
Query	120	TCATGAAACCAGA	ACATCGTCTTCTTTGGCGA	GAACCTTCCAGAGT	TTTTCCAC
Sbjct	1190	TCATGAAACCAG	ACATTGTCTTCTTTGGAGA	GAATCTTCCAGAAA	TGTTTCAC
Query	180	TGAAGCAGGATAA	AAGATGAGGTGGATCTTCT	CATCGTGATCGGCT	CCTCGCTG
Sbjct	1250	TGAAGCAGGATA	AAGATGAGGTGGACCTCTT	GATTGTCATTGGCT	CTTCACTT
Query	240	GGCCAGTGGCTCT	CATACCCAGCTCTATACC	TCATGACGTGCCTC	AAGTCCTG
Sbjct	1310	GACCAGTTGCCC	TGATCCCTAACTCCATTCC	TCATGAAGTGCCTC	AGGTCCTG

BLAST Tutorial: DigitalWorldBiology

https://digitalworldbiology.com/tutorial/blast-for-beginners