

Prof. Dr. Anne Frühbis-Krüger M.Sc. Marco Melles

Präsenzaufgaben 6

Keine Abgabe vorgesehen

Präsenzaufgabe 6.5 (2. Isomorphiesatz). Sei R ein Ring und seien $I, J \leq R$ Ideale mit $J \subseteq I$. Es bezeichne I/J das Bild von I unter der kanonischen Restklassenabbildung bzgl. J. Zeigen Sie, dass

$$\psi: \stackrel{\left(R_{/J}\right)}{/}_{\left(I_{/J}\right)} \longrightarrow \stackrel{R_{/I}}{/}_{I}$$
$$[([a]_J)]_{I/J} \longmapsto [a]_I$$

ein Ringisomorphismus ist.

Präsenzaufgabe 6.6. Gehen Sie davon aus, dass Aufgabe 6.2. bereits bewiesen ist.

- (a). Sei $m \in \mathbb{N}$, $R = \mathbb{Z}_m$ und $a \in R$. Entscheiden Sie, ob a in R invertierbar ist und bestimmen Sie gegebenenfalls a^{-1} für:
 - (i) m := 16 und a := 13.
 - (ii) m := 105 und a := 14.
- (b). Es seien $f := t^4 + 2t^3 + t^2 + 2t \in \mathbb{Z}_5[t]$ und $g := t^3 + 2t^2 + 2t + 1 \in \mathbb{Z}_5[t]$. Begründen Sie, dass die Restklasse $[f]_g$ in $\mathbb{Z}_5[t]$ / $_g\mathbb{Z}_5[t]$ eine Einheit ist und bestimmen Sie $([f]_g)^{-1}$ als Restklasse modulo $g\mathbb{Z}_5[t]$, dargestellt durch ein Polynom vom Grad $< \deg(g)$.

Präsenzaufgabe 6.7. Es seien $R := \mathbb{Z}[i]$ und I das Hauptideal $I := (1 + 2i)\mathbb{Z}[i] \leq R$.

- (a). Beweisen Sie, dass folgende Kongruenzen in R_I gelten: $2i \equiv -1 \mod I$, $i \equiv 2 \mod I$ und $5 \equiv 0 \mod I$. Folgern Sie, dass $5 \in \operatorname{Kern}(\pi) \cap \mathbb{Z}$, wobei $\pi: R \to R_I$, $x \mapsto \pi(a) = x + I$ der kanonischen Epimorphismus ist.
- (b). Es bezeichne $\varphi: \mathbb{Z} \to R/I$, $x \mapsto x + I$ die Einschränkung von π auf den Unterring \mathbb{Z} von $\mathbb{Z}[i]$. Zeigen Sie, dass Kern $(\varphi) = 5\mathbb{Z}$ und wenden Sie den Homomorphiesatz an, um zu folgern, dass $R/I \cong \mathbb{Z}/5\mathbb{Z}$.