Combo 1

July 3, 2024

1 Defina cuándo un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es llamado Σ -recursivo (no hace falta que defina "función Σ -recursiva")

Un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ sera llamado Σ -recursivo cuando la funcion $\chi_S^{\omega^n\times\Sigma^{*m}}$ sea Σ -recursiva.

2 Defina $\langle s_1, s_2, ... \rangle$

Dada una infinitupla $(s_1, s_2, ...) \in \omega^{[\mathbf{N}]}$ usaremos $\langle s_1, s_2, ... \rangle$ para denotar al numero $\prod_{i=1}^{\infty} pr(i)^{s_i}$.

3 Defina "f es una función Σ -mixta"

Sea Σ un alfabeto finito. Dada una funcion f, diremos que f es Σ -mixta si cumple las siguientes propiedades

- (M1) Existen $n, m \geq 0$, tales que $D_f \subseteq \omega^n \times \Sigma^{*m}$
- (M2) Ya sea $I_f \subseteq \omega$ o $I_f \subseteq \Sigma^*$

4 Defina "familia Σ -indexada de funciones"

Dado un alfabeto Σ , una familia Σ -indexada de funciones sera una funcion \mathcal{G} tal que $D_{\mathcal{G}} = \Sigma$ y para cada $a \in D_{\mathcal{G}}$ se tiene que $\mathcal{G}(a)$ es una funcion.

5 Defina $R(f, \mathcal{G})$

5.1 Recursion primitiva sobre variable alfabetica con valores numericos

Sea

$$f: S_1 \times ... \times S_n \times L_1 \times ... \times L_m \to \omega$$

con $S_1,...,S_n\subseteq\omega$ y $L_1,...,L_m\subseteq\Sigma^*$ conjuntos no vacios y sea $\mathcal G$ una familia Σ -indexada de funciones tal que

$$\mathcal{G}_a: \omega \times S_1 \times ... \times S_n \times L_1 \times ... \times L_m \times \Sigma^* \to \omega$$

para cada $a \in \Sigma$. Definamos

$$R(f,\mathcal{G}): S_1 \times ... \times S_n \times L_1 \times ... \times L_m \times \Sigma^* \to \omega$$

de la siguiente manera

- (1) $R(f, \mathcal{G})(\vec{x}, \vec{\alpha}, \varepsilon) = f(\vec{x}, \vec{\alpha})$
- (2) $R(f,\mathcal{G})(\vec{x},\vec{\alpha},\alpha a) = \mathcal{G}_a(R(f,\mathcal{G})(\vec{x},\vec{\alpha},\alpha),\vec{x},\vec{\alpha},\alpha)$

Diremos que $R(f, \mathcal{G})$ es obtenida por recursion primitiva a partir de f y \mathcal{G} .

5.2 Recursion primitiva sobre variable alfabetica con valores alfabeticos

Supongamos Σ es un alfabeto finito. Sea

$$f: S_1 \times ... \times S_n \times L_1 \times ... \times L_m \to \Sigma^*$$

con $S_1,...,S_n\subseteq\omega$ y $L_1,...,L_m\subseteq\Sigma^*$ conjuntos no vacios y sea $\mathcal G$ una familia Σ -indexada de funciones tal que

$$\mathcal{G}_a: S_1 \times ... \times S_n \times L_1 \times ... \times L_m \times \Sigma^* \times \Sigma^* \to \Sigma^*$$

para cada $a \in \Sigma$. Definamos

$$R(f,\mathcal{G}): S_1 \times ... \times S_n \times L_1 \times ... \times L_m \times \Sigma^* \to \Sigma^*$$

de la siguiente manera

- (1) $R(f, \mathcal{G})(\vec{x}, \vec{\alpha}, \varepsilon) = f(\vec{x}, \vec{\alpha})$
- (2) $R(f,\mathcal{G})(\vec{x},\vec{\alpha},\alpha a) = \mathcal{G}_a(\vec{x},\vec{\alpha},\alpha,R(f,\mathcal{G})(\vec{x},\vec{\alpha},\alpha)).$

Diremos que $R(f,\mathcal{G})$ es obtenida por recursion primitiva a partir de f y \mathcal{G} .