

IV. Boosting 기반 지도학습

- 1. Adaboost
- 2. Gradient Boost

1. Adaboost

- Adaboost는 Ensemble 기법의 Boosting을 DT에 적용
- Stump로 부터 학습을 시작
 - Stump: 단순한 형태의 Tree, Weak learner

1. Adaboost

- Forest of stumps를 활용
 - Random Forest: 모든 tree는 같은 weight을 갖음
 - Adaboost: Stump마다 중요도의 차이가 존재
- Random Forest에서는 Tree가 같은 중요도를 지님

• Adaboost에서의 stump의 중요도: Amount of say로 표현, 클 수록 결과에 큰 영향을 미침

1. Adaboost

- Forest of stumps
 - 첫 stump는 다음 stump에 영향, 순차적으로 다음 stump에 영향을 주는 방식

Adaboost VS Gradient Boost

- Adaboost: 여러 Stump의 순차적 계산
- GB: leaf로 부터 시작
 - Leaf: Target에 대한 초기 추정값(예: 평균, log(odds ratio) 등)
 - Stump가 아닌 Tree를 생성: 각 tree는 leaf가 8~32개 크기 수준으로 생성

Target

Height	Color	Gender	Weight
1.6	В	M	88
1.6	G	F	76
1.5	В	F	56
1.8	R	M	73
1.5	G	M	77
1.4	В	F	57

Gradient Boost, Step 1

- Leaf의 계산
- Target인 Weight의 평균: 71.2
- Residual을 계산: 실제값과 예측값의 차이(error)

같은 X변수들로 Residual에 대한 Tree

Height	Color	Gender	Weight	Residual
1.6	В	М	88	16.8
1.6	G	F	76	4.8
1.5	В	F	56	-15.2
1.8	R	М	73	1.8
1.5	G	М	77	5.8
1.4	В	F	57	-14.2
			I	
		i		

- Gradient Boost, Step 1
 - Leaf + 1st Tree

- Male, Blue인 경우 예측 예시:
 - 71.2 + 16.8 = 88 (관측치와 동일하지만 과적합)
 - Bias는 작지만 Variance 큰 상태

Gradient Boost, Step 2

- 과적합 방지, 학습속도 조절을 위한 학습율 도입
- Learning Rate: 0~1사이, 이 예에서는 0.1 사용

- Male, Blue인 경우 예측 예시: 71.2 + 0.1 X 16.8 = 72.9
 - 실제값에 가까워지지만, 그 정도가 조절됨 (Gradient의 개념)
 - Variance를 낮게 유지할 수 있음

Gradient Boost, Step 3

• Learning Rate: 0~1사이, 이 예에서는 0.1 사용

• H=1.6, Male, Blue인 경우 예측 예시: 71.2 + 0.1 X 16.8 + 0.1 X 15.1 = 74.4

Gradient Boost, Step 3

• 학습율 반영 예측값을 통한 두 번째 Residual 계산

같은 X변수들로 New Residual에 대한 Tree

					I
Height	Color	Gender	Weight	Residual	Residual(new)
1.6	В	М	88	16.8	15.1
1.6	G	F	76	4.8	4.3
1.5	В	F	56	-15.2	-13.7
1.8	R	М	73	1.8	1.4
1.5	G	М	77	5.8	5.4
1.4	В	F	57	-14.2	-12.7

Residual 크기 감소

- 위의 과정을 계속 반복
 - 정해진 iteration한도 까지 반복
 - 또는 이전 단계와 이후 단계의 Residual 차이가 없을 때까지 반복
- 매 iteration에서의 Tree의 leaf는 8~32개 사이에서 생성
- 매 iteration마다 다르게 생성
 - 1st tree: leaf 8개
 - 2nd tree: leaf 327H
 - 3rd tree: leaf 16개
 - ...

- Gradient Boost for Classification, Step 1
 - Leaf의 계산
 - X 범주 2개 대비 O범주는 4개, Odds = 4/2, leaf는 log(odds) = 0.7

X1	X2	X3	Target
Υ	12	Blue	0
Υ	87	Green	0
N	44	Blue	X
Υ	19	Red	X
N	32	Green	0
N	14	Blue	0

- Gradient Boost for Classification, Step 1
 - Leaf의 계산: X 범주 2개 대비 O범주는 4개, Odds = 4/2, leaf는 log(odds) = 0.7
 - Leaf를 통한 O 범주의 확률?
 - Exponential(log(odds)) / (1+exponential(log(odds))) = 0.7
 - 이 값이 기준인 0.5와 비교하여 O, X 분류
 - Residual을 계산: 예를 들어 O는 확률 1이고, leaf 는 0.7이어서 Residual은 0.3

같은 X변수들로 Residual에 대한 Tree

범주 O	Prob.
1	0000
0.5 -	
0	X X

i X1	X2	Х3 і	Target	Residual	
Υ	12	Blue	0	0.3	
iΥ	87	Green	0	0.3	
N	44	Blue	Х	-0.7	
Υ	19	Red	Х	-0.7	
N	32	Green	0	0.3	
. N	14	Blue	0	0.3	
L		;			

- Gradient Boost, Step 1
 - 1st Tree
 - leaf의 수를 8~32로 제한하며 그 범위내에서 tree 생성

- Gradient Boost, Step 1
 - 1st Tree

 $\overline{\sum (\mathit{Previous\,Prob}\, \times (1 - \mathit{Previous\,Prob}))}$

 $\sum Residuals$

- Gradient Boost, Step 2
 - Leaf 의 initial prediction에 tree에 학습율 반영하여 계산
 - Leaf + 1st Tree

Gradient Boost for Classification, Step 3

- 각 범주에 대한 발생 확률 계산
 - 1st Obs의 업데이트된 log(odds)는 1.8
 - Leaf 0.7 + 1.4(from tree) X 0.8 = 1.8
 - 1st Obs의 확률: $\frac{e^{1.8}}{1+e^{1.8}}$

X1	X2	Х3	Target	Residual	Prob
Y	12	Blue	0	0.3	0.9
Y	87	Green	0	0.3	0.5
N	44	Blue	X	-0.7	0.5
Y	19	Red	X	-0.7	0.1
N	32	Green	0	0.3	0.9
N	14	Blue	0	0.3	0.9

- Gradient Boost for Classification, Step 3
 - Residual 다시 계산, 다음 tree 생성

					i	
X1	X2	Х3	Target	Residual	Prob.	New Residual
Υ	12	Blue	0	0.3	0.9	1-0.9
Y	87	Green	0	0.3	0.5	1-0.5
N	44	Blue	X	-0.7	0.5	0-0.5
Y	19	Red	X	-0.7	0.1	0-0.1
N	32	Green	0	0.3	0.9	1-0.9
N	14	Blue	0	0.3	0.9	1-0.9

• Gradient Boost, Step 3

• Learning Rate: 0~1사이, 이 예에서는 0.1 사용

