1179: Probability Lecture 5 — Bayes' Rule, Independence, and Combinatorics

Ping-Chun Hsieh (謝秉均)

September 29, 2021

Announcement

- Online office hour for today, 1pm-1:30pm:
 - https://nycu.webex.com/nycu/j.php? MTID=ma2106f2503f60807a6dedb2d5d777756 (same as the Webex link for the lectures)

About Problem 3 of HW1

```
Problem 3 (Continuity of Probability Functions)
```

(12+12=24 points)

(a) Let A_1, A_2, A_3 be a countably infinite sequence of events. Prove that if $\sum_{n=1}^{\infty} P(A_n) < \infty$, then $P(\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n) = 0$. This property is known as the *Borel-Cantelli Lemma*. (Hint: Consider the continuity of probability function for $\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$ and then apply the union bound)

Quick Review

What is "reduction of sample space" (or conditional universe)?

Multiplication rule?

Total probability theorem?

$$P(\bigcup_{i=1}^{\infty}A_{i} \mid B)$$

$$A_{1} \cap A_{n-1} = \sum_{i=1}^{\infty} P(A_{i} \mid B)$$

$$A_{B}$$

$$= P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_1 \cap A_2) \cdots P(A_n|A_1 \cap A_{n-1}) = \sum_{i=1}^{\infty} P(A_i|B)$$

$$= P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_1 \cap A_2) \cdots P(A_n|A_1 \cap A_{n-1}) = \sum_{i=1}^{\infty} P(A_i|B)$$

$$= P(A_1) \cdot P(B|A_1) + P(A_2) \cdot P(B|A_1) + \cdots + P(A_n) \cdot P(B|A_n)$$

$$= P(A_1) \cdot P(B|A_1) + P(A_2) \cdot P(B|A_1) + \cdots + P(A_n) \cdot P(B|A_n)$$

This Lecture

1. Conditioning and Independence

2. Review: Combinatorial Methods

Reading material: Chapter 2 and 3.1~3.5

- Example: Two gamblers A and B keep tossing a fair coin
 - If "head" occurs, A pays \$1 to B; otherwise, B pays \$1 to A
 - Initially, A has $\underline{2}$ dollars, and B has $\underline{3}$ dollars
 - The game ends when either A or B has zero dollar $(P_4-P_3=P_3-P_2)$
 - What is the probability that A wins the game?

A
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{$

$$= \frac{1}{2} P_1 + \frac{1}{2} P_3 \rightarrow P_3 - P_2 = P_2 - P_1$$

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B)$$

$$= P(A_1 \cap B) + P(A_2 \cap B)$$

$$A_1 = \{ | s \in t \text{ oss is } T \}$$

$$A_2 = \{ | s \in t \text{ oss is } T \}$$

Bayes' Rule

Tool #3: Bayes' Rule

Theorem: Let A_1, A_2, \cdots, A_n be mutually exclusive events that form a partition of Ω , and $P(A_i) > 0$, for all i. Then, for any event B, we have

► Why is Bayes' rule useful? → Inference

Bayesian Inference: Crush and Dates

$$P(A_i | B) = \frac{P(A_i)P(B | A_i)}{P(B)} \neq \frac{P(A_i)P(B | A_i)}{P(A_1)P(B | A_1) + \dots + P(A_n)P(B | A_n)}$$

- Example: Bill has a crush on Amy, and Bill wants to ask Amy out to see whether Amy likes him or not.
 - $A_1 = \{ \text{Amy likes Bill} \}, A_2 = \{ \text{Amy does not like Bill} \}$
 - $ar{B} = \{ \text{Amy looks happy during the date} \}$
 - Suppose $P(A_1) = P(A_2) = 0.5$, $P(B)A_1 = 0.9$, and $P(B|A_2) = 0.3$
 - What are $P(A_1|B)$ and $P(A_1|B^c)$?

$$P(A_{1}|B) = \frac{P(A_{1}) \cdot P(B|A_{1})}{P(A_{1}) \cdot P(B|A_{1}) + P(A_{2}) \cdot P(B|A_{2})} = \frac{0.5 \times 0.9}{0.5 \times 0.9 + 0.5 \times 0.3} = \frac{0.75}{0.75}$$

$$P(A_{1}|B^{c}) = \frac{P(A_{1}) \cdot P(B|A_{1})}{P(A_{1}) \cdot P(B^{c}|A_{1})} = \frac{0.5 \times 0.9}{0.5 \times 0.9 + 0.5 \times 0.3} = \frac{0.75}{0.75}$$

$$P(A_{1}|B^{c}) = \frac{P(A_{1}) \cdot P(B^{c}|A_{1})}{P(A_{1}) \cdot P(B^{c}|A_{1})} = \frac{0.5 \times 0.9}{0.5 \times 0.9 + 0.5 \times 0.3} = \frac{0.75}{0.75}$$

Example: Answer an Exam Question

Example: Bill answers a question with 4 choices (A, B, C, D)

a myltile-choice question

- Bill either knows the correct answer or makes a random guess
- P(Bill knows the correct answer) = 2/3
- P(Bill does not make a random guess | answer is correct) = ?

$$P(E|F) = \frac{3}{3} P(E)P(F|E) + P(E)P(F|E) = \frac{2}{3}$$

$$P(E)P(F|E) + P(E)P(F|E) = \frac{2}{3} + \frac{1}{12}$$

Independence

Independence?

Independence of 2 Events

P(AnBc)=P(A).P(Bc)

Definition: Two events A and B are said to be independent to be independent to the said to be

independent if
$$P(A \cap B) = P(A)P(B)$$
 ---- Operational

Moreover, if $\underline{P(B)} > 0$, then independence is equivalent to the condition

$$P(A \mid B) = P(A)$$
 intuition

- Example:
- If A and B are independent, then are A and B^c also A also A independent? A

Example

Yellowstone N

- ► Example: Old Faithful Geyser
 - Erupts every 70-110 minutes (at random)
 - Let X = waiting time before next eruption

$$A = \{80 \le X \le 100\} \ P(A) = \frac{1}{2}$$

$$B = \{90 \le X \le 110\} \ P(B) = \frac{1}{2}$$

$$C = \{80 \le X \le 90 \text{ or } 95 \le X \le 105\}$$
1. A and B independent?
$$C = \{80 \le X \le 90 \text{ or } 95 \le X \le 105\}$$

$$C = \{80 \le X \le 90 \text{ or } 95 \le X \le 105\}$$

$$C = \{80 \le X \le 90 \text{ or } 95 \le X \le 105\}$$

$$C = \{80 \le X \le 90 \text{ or } 95 \le X \le 105\}$$

 $\sum_{i=1}^{n} B_i$ and C independent?

2. B and C independent? $P(B \cap C) = P(\{95 \le X \le (05)\}) = \frac{1}{4} = P(B)P(C)$ 3. A and C independent? $P(A \cap C) = P(\{95 \le X \le (05)\}) = \frac{3}{8} \Rightarrow P(A)P(C)$ 4. B and $A \cap C$ independent? $P(\{95 \le X \le (05)\}) = \frac{3}{8} \Rightarrow P(A)P(C)$ $P(\{95 \le X \le (05)\}) = \frac{3}{8} \Rightarrow P(A)P(C)$

$$P(Bn(Anc)) = P(\{95 \le X \le |00\}) = \frac{1}{8} \ne P(B).P(Anc)$$

Independence of Several Events

Definition: Events A_1, A_2, \dots, A_n are said to be independent if

$$P(\bigcap_{i \in S} A_i) = \prod_{i \in S} P(A_i), \text{ for every } S \subseteq \{1, 2, \dots, n\}$$

When
$$n = 3$$
?
$$P(A_1 \cap A_2 \cap A_3) = P(A_1) \cdot P(A_2) \cdot P(A_3)$$

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2) + P(A_3)$$

$$P(A_2 \cap A_3) = P(A_2) \cdot P(A_3) + P(A_3)$$

$$P(A_1 \cap A_3) = P(A_1) \cdot P(A_3) + P(A_3)$$

Pairwise Independence Independence

- ► Example: Toss a fair coin twice
 - $T_1 = \{1 \text{st toss is a tail}\} \ \ |T_1| = \frac{1}{2}$
 - $T_2 = \{2 \text{nd toss is a tail}\} P(T_2) = \frac{1}{2}$
 - $D = \{2 \text{ tosses have different results}\}$

1.
$$P(T_1 \cap T_2) = \frac{1}{4} = P(T_1)P(T_2)$$

- 2. $P(D \cap T_1) = 1 = P(D) \cdot P(T_1) \Rightarrow D_1 T_1$ are independent (pairwise of the pendent of the p
- 4. $P(D \cap T_1 \cap T_2) = 0 + P(D) P(T_1) P(T_2)$

$$5.P(D|T_1 \cap T_2) = P(D \cap T_1 \cap T_2)$$

$$5.P(D|T_1 \cap T_2) = P(D \cap T_1 \cap T_2)$$

$$(P(T_1 \cap T_2) = T_1 \cap T_2)$$
From $T_1 \cap T_2$

Example: Communication Over a Noisy Channel

Example: Communication Over a Noisy Channel

Example: Communication Over a Noisy Channel

Review: Combinatorial Methods

Why Counting?

Principle of indifference: All outcomes are equally likely

Discrete uniform probability law: Let Ω be the sample space of an experiment. If Ω has Nelements that are equally likely to occur, then for any event A of Ω , we have

$$P(A) = \frac{\text{Number of elements in A}}{N}$$

Basic Counting Principle

- Example: Buy a sandwich at Subway
 - 1. Size: 6-inch or 12-inch?
 - 2. Meat: Chicken, meatball, beef, or tuna?
 - 3. Vegetable: Lettuce or tomato?

Question: How many different types of sandwich?

Replacement

Example: Suppose we want to <u>draw 3 cards</u> from 52 poker cards. How many possible ways?

1. With replacement:

2. Without replacement:

Permutation

Example: Count # of passwords that consist of 8
 distinct English letters (case sensitive)

Definition: Given n distinct objects, and let k be some positive integer with $k \leq n$. Then, an <u>ordered</u> <u>arrangement</u> of k objects is called a k-element **permutation from** n **objects**. The number of k-element permutation from n objects is denoted by P_k^n , and

$$P_k^n = n \cdot (n-1) \cdots (n-k+1) = \frac{n!}{(n-k)!}$$

Combination

Example: Count # of possible collections that consist of 8 distinct letters (case sensitive)

Definition: Given n distinct objects, and let k be some positive integer with $k \leq n$. Then, an <u>unordered</u> <u>arrangement</u> of k objects is called a k-element combination from n objects. The number of k-element combination from n objects is denoted by C_k^n , and

$$C_k^n = \frac{P_k^n}{k!} = \frac{n!}{(n-k)!k!}$$

Example: Birthday Problems

What is the probability that <u>at least 2 students</u> of a class of size N have the same birthday?

• What if N = 23? How about N = 60?

Example: Hash Collision

- ightharpoonup Suppose there are K possible hash values
- What is the probability of at least 1 hash collision of a random group of N English words (keys)?

• What if $N \ll K$?

Example: Sum of Integers

Let X_1, X_2, \dots, X_{10} be integers and $X_1 + X_2 + \dots + X_{10} = 6$ 1. If X_1, X_2, \dots, X_{10} are all <u>binary</u> (0 or 1), how many different combinations do we have?

2. If X_1, X_2, \dots, X_{10} are all nonnegative integers, how many different combinations do we have?

Binomial Expansion

• Example: $(x + y)^3 = ?$

Theorem: For any $n \ge 0$, we have

$$(x+y)^n = \sum_{i=0}^n C_i^n x^{(n-i)} y^i$$

• Example: $C_0^n + C_1^n + \cdots + C_n^n = ?$

Multinomial Expansion

• Example: $(x + y + z)^3 = ?$

Theorem: In the expansion of $(x_1 + x_2 + \cdots + x_k)^n$, the coefficient of the term $x_1^{n_1}x_2^{n_2}\cdots x_k^{n_k}$ with $n_1+n_2+\cdots+n_k=n$ is $(n_1+n_2+\cdots+n_k)!$

How to interpret this?

 $n_1!n_2!\cdots n_k!$

1-Minute Summary

1. Conditioning and Independence

- Bayes' rule
- Gambler's ruin / Communication over a noisy channel
- Independence of two or several events
- Pair-wise independence ⇒ independence

2. Review: Combinatorial Methods

Permutation / Combination / Binomial expansion