Student Information

Full Name : Zeynep ERDOGAN

 $Id\ Number:\ 2171577$

Answer 1

Table 1: truth table for $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$

				\	1 /1	1//
p	\mathbf{q}	$\neg \mathbf{q}$	$\mathbf{p} o \mathbf{q}$	$\neg \mathbf{q} \wedge (\mathbf{p} \rightarrow \mathbf{q})$	$\neg \mathbf{p}$	$(\neg \mathbf{q} \wedge (\mathbf{p} \rightarrow \mathbf{q})) \rightarrow \neg \mathbf{p}$
T	Т	F	Т	F	F	Т
Т	F	Т	F	F	F	Т
F	Т	F	Т	F	Т	T
F	F	Т	Т	Τ	Т	Т

Table 2: truth table for $((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$

p	\mathbf{q}	r	$\neg \mathbf{p}$	$\mathbf{p} \lor \mathbf{q}$	$\neg \mathbf{p} \lor \mathbf{r}$	$\mathbf{q} \lor \mathbf{r}$	$(\mathbf{p} {\vee} \mathbf{q}) {\wedge} (\neg \mathbf{p} {\vee} \mathbf{r})$	$((\mathbf{p} {\vee} \mathbf{q}) {\wedge} (\neg \mathbf{p} {\vee} \mathbf{r})) {\rightarrow} (\mathbf{q} {\vee} \mathbf{r})$
T	Τ	Τ	F	Т	Т	Т	T	T
T	Т	F	F	Т	F	Т	F	T
T	F	Т	F	Т	Т	Т	Т	T
T	F	F	F	Т	F	F	F	T
F	Т	Т	Т	Т	Т	Т	Т	T
F	Т	F	Т	Т	Т	Т	Т	T
F	F	Т	Т	F	Т	Т	F	T
F	F	F	Т	F	Т	F	F	T

Answer 2

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$
 Table 7 (1)

$$\equiv \neg (q \lor r) \to \neg p \tag{2}$$

$$\equiv (\neg q \land \neg r) \rightarrow \neg p \qquad \qquad De \ Morgan's \ 2. \ Law \qquad (3)$$

Answer 3

0.1

- a) All cats are friends with some dogs.
- b) Some cats are friends with all dogs.

0.2

```
 \begin{aligned} \mathbf{a}) \forall x \forall y ((Eats(x,y) \land Meal(y)) \rightarrow Customer(x)) \\ \mathbf{b}) \exists x \forall y (Chef(x) \land Meal(y) \land \neg Cooks(x,y)) \\ \mathbf{c}) \exists x \forall y \exists z ((Customer(x) \land Eats(x,y) \land Meal(y)) \rightarrow (Cooks(z,y) \land Chef(z))) \\ \mathbf{d}) \forall x \exists y \exists z (Chef(x) \land \neg Cooks(x,z) \land Meal(z) \land Knows(x,y) \land Chef(y) \land Cook(y,z)) \end{aligned}
```

Answer 4

For this to be a deduction rule in a sound deductive system, if $p \to q$ and $\neg p$ are true, $\neg q$ must also be true.

However if we pick p false and q true, $p \to q$ and $\neg p$ would be true but $\neg q$ would be false so this example wouldn't satisfy the rule.

Answer 5

Table	$3: p \to q, q \to r, r$	$r \to p \vdash (p \leftrightarrow q) \land (p \leftrightarrow r)$
1	$p \to q$	premise
2	$q \to r$	premise
3	$r \to p$	premise
4	q	assumption
5	r	\rightarrow e 2,4
6	p	\rightarrow e 3, 5
7	$q \to p$	$\rightarrow i 4 - 6$
8	p	assumption
9	q	→e 1,8
10	r	\rightarrow e 2,9
11	$q \to r$	$\rightarrow i \ 8 - 10$
12	$p \leftrightarrow q$	$\leftrightarrow i \ 1, 7$
13	$p \leftrightarrow r$	$\leftrightarrow i \ 3, 11$
14	$(p \leftrightarrow q) \land ($	$p \leftrightarrow r) \wedge i \ 12, 13$

Answer 6

Table 4:
$$\forall x(Q(x) \rightarrow R(x)), \exists x(P(x) \rightarrow Q(x)), \forall xP(x) \vdash \exists x(P(x) \land R(x))$$

1 $\forall x(Q(x) \rightarrow R(x))$ premise

2 $\exists x(P(x) \rightarrow Q(x))$ premise

3 $\forall xP(x)$ premise

4 $P(x_0) \rightarrow Q(x_0)$ assumption

5 $P(x_0) \rightarrow Q(x_0)$ $\forall x \in 3$

6 $Q(x_0) \rightarrow e \ 4, 5$

7 $Q(x_0) \rightarrow R(x_0)$ $\forall x \in 3$

8 $R(x_0) \rightarrow e \ 6, 7$

9 $P(x_0) \land R(x_0)$ $\land e \ 5, 8$

10 $\exists x(P(x_0) \land R(x_0)) \exists x \ i \ 9$

11 $\exists x(P(x_0) \land R(x_0)) \exists x \ e \ 2, 4 - 10$