Degenerate Motion Analysis for Aided INS with Online Spatial and Temporal Sensor Calibration

Y. Yang, P. Geneva, K. Eckenhoff, and G. Huang

RPNG

Motivation

- Aided inertial navigation is one of the most popular 6DOF pose estimation methods.
- Spatial and temporal calibration are vital for fusing exteroceptive measurements with inertial information.
- Degenerate motions may cause some calibration parameters unobservable

Spatial and temporal calibration for aided inertial navigation system.

Contributions

- Both spatial and temporal calibration parameters are observable for any-source aided INS under general motions.
- We identify 4 degenerate motion primitives causing online spatial/temporal calibration to partially fail.
- These identified degenerate motions still hold even when global pose measurements are present.

System Model

• State vector containing IMU, calibration and feature state:

$$\mathbf{x} = egin{bmatrix} \mathbf{x}_I^ op & \mathbf{x}_{calib}^ op & t_d & \mathbf{x}_\mathbf{f}^ op \end{bmatrix}^ op$$

• State transition matrix:

$oldsymbol{\Phi}_{I(k,1)}$	$0_{15 imes 6}$	$0_{15\times1}$	$0_{15 imes3}$ $ ceil$
$0_{6 imes15}$	$oldsymbol{\Phi}_{Calib(k,1)}$	$0_{5\times1}$	$0_{6 \times 3}$
$0_{1 imes 15}$	$0_{1 imes 6}$	$\mathbf{\Phi}_{t_d(k,1)}$	$0_{1 \times 3}$
$0_{3 imes15}$	$0_{3 imes 6}$	$0_{3\times 1}$	$oldsymbol{\Phi}_{\mathbf{f}(k,1)}$

Observability analysis:

$$\mathbf{M}(\mathbf{x}) = egin{bmatrix} \mathbf{H}_{I_1} \mathbf{\Phi}_{(1,1)} \ \mathbf{H}_{I_2} \mathbf{\Phi}_{(2,1)} \ dots \ \mathbf{H}_{I_k} \mathbf{\Phi}_{(k,1)} \end{bmatrix}$$

N is the unobservable Space If:

$$\mathbf{M}(\mathbf{x})\mathbf{N} = \mathbf{0}$$

Degenerate Motion

- Given random motion, spatial and temporal calibration are observable.
- Pure translation: translation part of spatial calibration is unobservable.
- One-axis rotation: translation part of spatial calibration along the rotation axis is unobservable.
- Constant local angular and linear velocity: time offset is unobservable.
- Constant local angular velocity and global linear acceleration: time offset is unobservable.

Degenerate Summary

Motion	Unobservable	Observable	
No motion	$^{C}\mathbf{p}_{I},_{I}^{C}\mathbf{R}$ and t_{d}	_	
Pure Translation	$^{C}\mathbf{p}_{I}$	$_{I}^{C}\mathbf{R}$ and t_{d}	
One-axis Rotation	$^{C}\mathbf{p}_{I}$ along rotation axis	$_{I}^{C}\mathbf{R}$ and t_{d}	
Constant ${}^{I}\omega$	t_d and	$_{I}^{C}\mathbf{R}$	
Constant $^{I}\mathbf{v}$	${}^{C}\mathbf{p}_{I}$ along rotation axis	I IC	
Constant ${}^{I}\omega$	t_d and	$_{I}^{C}\mathbf{R}$	
Constant $^{G}\mathbf{a}$	${}^{C}\mathbf{p}_{I}$ along rotation axis	$I^{\mathbf{R}}$	
One global axis translation		$_{I}^{C}\mathbf{R},^{C}\mathbf{p}_{I},t_{d}$	
Two-axis rotation		I 10, \mathbf{p}_I , ι_d	
Random motion	_	$_{I}^{C}\mathbf{R},^{C}\mathbf{p}_{I},t_{d}$	

Simulation Setup

Values	
$[0,0,0,1]^{\top}$	
$[0.01, 0.02, 0.02]^{\top}$ (m)	
0.04 (sec)	
$[0.0099, 0.0198, -0.0099, 0.9997]^{\top}$	
$[0.05, 0.06, -0.02]^{\top}$ (m)	
0.02 (sec)	
0.04 (rad)	
0.05 (m)	
0.02 (sec)	

Simulations

 Online MSCKF with spatial/temporal calibration with 4 motion primitives

•The convergence for spatial and temporal calibration parameters

Experiments

•Real-world experiments with 3 motion models:

- are observable under random motion.
- Translation unobservable with one-axis rotation motion.
- Time offset and translation unobservable with circular planar motion.

Average Calib Orientation Error O.3 Average Calib Translation Error O.3 Average Calib Translation Error O.4 Average Calib Translation Error O.5 O.6 Average Calib Time Offset Error O.7 Random motion One-axis rotation Circular planar motion One-axis rotation Circular planar motion Time (s)

Summary

Conclusions:

- Performed observability analysis for linearized aided INS with both spatial and temporal calibration and showed that calibration are observable.
- Identified four non-trivial degenerate motions that might cause online spatial/temporal calibration to fail.
- Unobservable directions still hold even when global pose measurements are available.

Future work:

- Extend the current work to multisensor calibration with both spatial/temporal calibration.
- Investigate the case when the time offset is time-varying.