HDSDP for Optimal Diagonal Pre-conditioning

July 26, 2022

In this report we present the experiments results on HDSDP for the optimal diagonal pre-conditioning problem.

Updates on July 26th, 2022

• Iterative & bisection

On random and sparse problems, the iterative methods work well but for the real-life matrices the iterative method progresses slowly as the SDP becomes increasingly ill-conditioned.

Figure 1. Convergence of the two methods

• Randomly sampling

Random sampling works quite well on regression datasets. In general only $1\% \sim 10\%$ of data is needed to reduce condition number to a desirable level.

Figure 2. Pre-conditioning by randomly sampling

• Comparison with Ruiz-scaling

In a word, when SDP is solved accurately, two-sided pre-conditioning is always better than Ruiz-scaling ($\|\cdot\|_{\infty}$), especially for matrices with all-one nonzero entries. Test is over 43 Suite-sparse instances.

Average reduction of Opt. precond	69.7%
Average reduction of Ruiz-scaing	46.8%
Average improvement of Opt. over Ruiz	33.0%

Table 1. Summary of camparison between two-sided and Ruiz pre-conditioning

1 Experiment Setup

In this section we introduce the detailed experiment setup for the optimal diagonal-precondition problem.

1.1 Formulation

Given a full-rank matrix $X \in \mathbb{R}^{m \times n}$, the optimal pre-conditioning problem solves the SDP instance

 $\max_{\tau,D}$

subject to
$$D \leq M$$

 $\tau M - D \leq 0$,

where $M = X^{\top}X \in \mathbb{S}_{+}^{n \times n}$ and $D^{1/2}$ is applied as the pre-conditioner.

1.2 Datasets and Processing

To verify the effect of the optimal diagonal preconditioner, we test the algorithm on a extensively large collection of matrices. Currently there are threes sources for our test.

• Tim Davis SuiteSparse Dataset (Ready)

https://sparse.tamu.edu

In this dataset we are for now testing matrices X with $n \leq 1000$.

• LIBSVM Regression (Ready)

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html

We take the regression $(\|X\beta - y\|^2)$ datasets from LIBSVM.

• OPENML Machine Learning Regression (Ready)

https://www.openml.org/search?type=data

We take the regression $(\|X\beta - y\|^2)$ datasets from OPENML

and without loss of generality, we choose the matrices whose condition number $\leq 10^8$ and if a matrix does not meet the condition, we add diagonal perturbation $M \leftarrow M + \varepsilon I$ till $\kappa(M) \leq 10^8$.

1.3 Experiment Environment

All the experiments in the report are carried out on Mac Mini with Apple Silicon and 16 GB memory.

1.4 Solver and Configuration

We adopt the HDSDP solver to solve the optimal diagonal pre-conditioning problem. To enhance the performance, we let the solver start from $(\tau, d) = (-10^{\alpha}, 0)$ for some $\alpha \ge 1$.

1.5 Evaluation

For each matrix X, we report the following statistics

• $\kappa(M)$ (Marked by Cbef)

Condition number of M

• $\kappa(D^{-1/2}MD^{-1/2})$ (Marked by Caft)

Condition number after pre-conditioning

The relative reduction in condition number by $\operatorname{rdc}(M) = 1 - \frac{\kappa(D^{-1/2}MD^{-1/2})}{\kappa(M)}$.

e.g., if rdc(M) = 0.99, then pre-conditioning reduces the condition number by 99%.

Remark 1. For some problems HDSDP fails and in this case rdc(M) may be less than 0. We drop these cases from the results presented below.

A Suite-sparse Benchmark

A.1 Summary statistics

We test 391 small-medium sized Suite sparse matrices and

Reduction	Number
≥80%	121
≥50%	190
≥20%	261

Average reduction	49.7%
Average time	1.29

Table 2. Average condition number reduction

A.2 Smaller Matrices

A.2.1 Left Pre-conditioning

Mat	Size	Cbef	Caft	Cdiag	Reduce	Time
abb313	176	3.719000e+07	3.146000e+07	6.779000e+07	0.154092	0.374230
ash219 $ ash292$	$85 \\ 292$	$\begin{array}{c} 9.150000\mathrm{e}{+00} \\ 4.188000\mathrm{e}{+07} \end{array}$	$\begin{array}{c} 4.194000\mathrm{e}{+00} \\ 6.040000\mathrm{e}{+06} \end{array}$	$\substack{4.690000\text{e}+00\\2.645000\text{e}+07}$	0.541579 0.855788	$0.171661 \\ 1.126949$
ash232 $ash331$	104	9.588000e+00	3.668000e+00	4.084000e+00	0.617469	0.226226
ash608	188	1.138000e+01	3.861000e+00	4.317000e+00	0.660595	0.435684
ash85	85	$2.151000\mathrm{e}{+05}$	$1.283000\mathrm{e}{+05}$	$1.839000\mathrm{e}{+05}$	0.403496	0.204586
ash958	292	$1.025000\mathrm{e}{+01}$	$4.757000\mathrm{e}{+00}$	$4.317000\mathrm{e}{+00}$	0.535855	0.623655
bcspwr01	39	2.756000e+03	2.164000e+03	2.559000e+03	0.214776	0.743860
bcspwr02	49	1.856000e+07	6.563000e+06	1.200000e+07	0.646473	0.134231
bcspwr03 bcspwr04	$\frac{118}{274}$	$\substack{2.514000\text{e}+05\\2.558000\text{e}+07}$	$\begin{array}{c} 1.137000\mathrm{e}{+05} \\ 6.589000\mathrm{e}{+06} \end{array}$	$\substack{1.814000\mathrm{e}+05\\2.436000\mathrm{e}+07}$	$0.547642 \\ 0.742365$	0.274450 1.315488
bcspwr05	443	2.681000e+07	$1.200000\mathrm{e}{+07}$	1.764000e+07	0.742503 0.552557	0.819582
bcsstk02	66	1.871000e+07	2.973000e+06	4.023000e+06	0.841086	0.162481
bcsstk05	153	$2.982000\mathrm{e}{+07}$	$1.672000\mathrm{e}{+06}$	$3.286000\mathrm{e}{+06}$	0.943950	0.596362
bcsstk06	420	$2.109000\mathrm{e}{+07}$	$1.593000\mathrm{e}{+04}$	3.030000e+04	0.999245	3.996074
bcsstk07	420	2.109000e+07	1.593000e+04	3.030000e+04	0.999245	4.016814
bcsstk22	138	6.194000e+07	5.012000e+05	7.312000e+05	0.991909	0.381385
$\frac{bcsstm01}{bcsstm02}$	48 66	7.782000e+07 7.660000e+01	${1.000000\mathrm{e}{+00}\atop 1.000000\mathrm{e}{+00}}$	${1.000000\mathrm{e}{+00}\atop 1.000000\mathrm{e}{+00}}$	$1.000000 \\ 0.986945$	$0.105460 \\ 0.106136$
$\frac{\text{bcsstm02}}{\text{bcsstm03}}$	112	5.569000e+07	1.000000e+00 1.000000e+00	1.000000e+00 1.000000e+00	1.000000	0.100130 0.176999
bcsstm04	132	2.987000e+04	1.0000000e+00	1.0000000e+00	0.999967	0.134561
bcsstm05	153	$1.612000\mathrm{e}{+02}$	1.000000e + 00	1.000000e+00	0.993798	0.158579
bcsstm06	420	$5.512000\mathrm{e}{+07}$	$1.0000000\mathrm{e}{+00}$	$1.0000000\mathrm{e}{+00}$	1.000000	0.721068
bcsstm07	420	$4.456000\mathrm{e}{+07}$	$4.136000\mathrm{e}{+04}$	7.454000e+04	0.999072	4.501864
bcsstm22	138	8.860000e+05	1.000000e+00	1.000000e+00	0.999999	0.148473
$ \begin{array}{c} \operatorname{can}_{-144} \\ \operatorname{can}_{-161} \end{array} $	$\frac{144}{161}$	2.443000e+07 4.940000e+04	2.256000e+07 3.960000e+04	2.255000e+07 4.615000e+04	$0.076367 \\ 0.198256$	$0.309114 \\ 0.440638$
$\frac{\text{can}}{\text{can}}$ 187	187	7.056000e+04	3.191000e+07	6.229000e+07	0.198250 0.547706	0.440638 0.558273
$ \begin{array}{c} \operatorname{can}_{-107} \\ \operatorname{can}_{-229} \end{array} $	229	1.891000e+07	$1.604000\mathrm{e}{+07}$	$1.929000\mathrm{e}{+07}$	0.347700 0.151527	0.606216
$ can_24 $	$^{-24}$	6.046000e+03	$4.025000\mathrm{e}{+03}$	4.900000e+03	0.334338	0.127885
$\operatorname{can}_{-256}^{-}$	256	$7.565000\mathrm{e}{+06}$	$3.686000\mathrm{e}{+06}$	$6.533000\mathrm{e}{+06}$	0.512763	4.624222
${\rm can}_268$	268	$2.091000\mathrm{e}{+07}$	$8.414000\mathrm{e}{+06}$	$1.676000\mathrm{e}{+07}$	0.597536	1.479174
can_292	292	3.699000e+07	2.342000e+07	1.324000e+08	0.366954	1.222109
$\frac{\text{can}_{445}}{61}$	445	4.006000e+07	1.346000e+07	3.943000e+07	0.663895	2.818335
$\begin{array}{c} { m can}_61 \\ { m can} \end{array}$	61 62	2.996000e+07 3.646000e+05	$1.355000\mathrm{e}{+07} \\ 2.100000\mathrm{e}{+05}$	2.925000e+07 3.135000e+05	$0.547665 \\ 0.423995$	$0.163705 \\ 0.164177$
$\frac{\text{can}}{\text{can}} \frac{-02}{73}$	73	$1.270000\mathrm{e}{+03}$	1.053000e+03	$1.228000\mathrm{e}{+03}$	0.423993 0.170424	0.104177 0.191222
$\frac{\text{can}}{\text{can}} = 96$	96	2.104000e+04	1.733000e+04	1.971000e+04	0.176483	0.198430
$\frac{1}{\text{curtis}}$	54	$4.522000\mathrm{e}{+07}$	$1.366000\mathrm{e}{+07}$	$3.878000\mathrm{e}{+07}$	0.697928	0.146304
dwt_162	162	$2.204000\mathrm{e}{+07}$	$1.579000\mathrm{e}{+07}$	$3.449000\mathrm{e}{+07}$	0.283632	0.334807
dwt_193	193	1.310000e+07	$1.037000\mathrm{e}{+07}$	$1.513000\mathrm{e}{+07}$	0.208211	0.597751
$\frac{\text{dwt}}{198}$	198	3.397000e+07	1.963000e+07	3.034000e+07	0.422230	0.408961
$\frac{\text{dwt}}{209}$	209	5.449000e+07	9.330000e+06	3.408000e+07	$0.828784 \\ 0.674357$	0.795283
$\begin{array}{c} \mathrm{dwt}_221 \\ \mathrm{dwt}_234 \end{array}$	$\frac{221}{234}$	3.381000e+07 1.042000e+05	${1.101000\mathrm{e}{+07}\atop 4.006000\mathrm{e}{+04}}$	5.672000e+07 8.153000e+04	0.674357 0.615561	0.675951 0.675201
$\frac{\mathrm{dwt}}{\mathrm{dwt}}$ 245	$\frac{234}{245}$	3.634000e+07	1.218000e+07	3.336000e+07	0.664825	0.766070
$\frac{\mathrm{dwt}}{\mathrm{dwt}}$ 307	307	2.499000e+07	2.276000e+07	2.565000e+07	0.089230	1.154597
$\operatorname{dwt} _310$	310	1.069000e + 07	$5.251000\mathrm{e}{+06}$	$9.304000\mathrm{e}{+06}$	0.508690	1.361014
$\mathrm{dwt}_{-}346$	346	$4.967000\mathrm{e}{+07}$	$4.011000\mathrm{e}{+06}$	$2.357000\mathrm{e}{+07}$	0.919252	1.532717
dwt_361	361	3.879000e+07	$2.166000\mathrm{e}{+07}$	3.706000e+07	0.441465	1.496653
$\frac{\text{dwt}}{400}$	419	2.180000e+07	$1.431000\mathrm{e}{+07}$	2.549000e+07	0.343696	1.682823
$\frac{\mathrm{dwt}}{\mathrm{dwt}} \frac{492}{59}$	$\frac{492}{59}$	3.047000e+07 1.395000e+04	$\substack{1.301000\mathrm{e}+07\\8.580000\mathrm{e}+03}$	2.418000e+07 1.226000e+04	$0.572926 \\ 0.384885$	$\begin{array}{c} 2.487955 \\ 0.157282 \end{array}$
$\frac{\mathrm{dwt}_{-59}}{\mathrm{dwt}_{-66}}$	66	2.234000e+04	1.530000e+03	2.160000e+04	0.304005 0.314936	0.137282 0.146260
$\frac{\mathrm{dwt}}{\mathrm{dwt}}$	72	1.220000e+07	5.763000e+06	9.623000e+06	0.527499	0.149897
dwt_{-87}^{-87}	87	$1.024000\mathrm{e}{+04}$	$5.077000\mathrm{e}{+03}$	$8.223000\mathrm{e}{+03}$	0.504366	0.218176
gent113	113	$3.203000\mathrm{e}{+07}$	$8.757000\mathrm{e}{+06}$	$1.758000\mathrm{e}{+07}$	0.726609	0.259552
${\rm gre}_115$	115	$2.467000\mathrm{e}{+03}$	$1.835000\mathrm{e}{+03}$	$2.332000\mathrm{e}{+03}$	0.256268	0.278696
gre_185	185	1.230000e+06	9.805000e+05	1.313000e+06	0.202757	0.684197
gre_216a	216	1.061000e+04	9.002000e+03	1.145000e+04	0.151722	0.655149
$\frac{\mathrm{gre}}{\mathrm{hor}} \frac{343}{131}$	343 434	$\substack{1.254000\mathrm{e}+04\\4.365000\mathrm{e}+05}$	9.442000e+03 8.362000e+04	$\substack{1.288000\mathrm{e}+04\\3.197000\mathrm{e}+05}$	$\begin{array}{c} 0.246972 \\ 0.808423 \end{array}$	1.478083 3.846565
ibm32	32	1.633000e+05	8.383000e+04	1.248000e+05	0.808423 0.486670	0.131650
illc1033	320	4.540000e+06	2.175000e+06	4.540000e+06	0.520966	1.358549
$impcol_a$	207	$2.233000\mathrm{e}{+07}$	$1.613000\mathrm{e}{+07}$	$1.202000\mathrm{e}{+07}$	0.277622	0.395068
$impcol_b$	59	$3.727000\mathrm{e}{+07}$	$1.754000\mathrm{e}{+06}$	$4.031000\mathrm{e}{+06}$	0.952948	0.167633
$impcol_c$	137	4.736000e+07	3.128000e+04	6.180000e+04	0.999339	0.326395
impcol_d	425	4.250000e+06	4.157000e+05	8.524000e+05	0.902187	2.347745
impcol_e	225	2.384000e+07	2.028000e+01	2.922000e+01	0.999999	0.997038
$ m jgl009$ $ m lshp_265$	$\frac{9}{265}$	3.723000e+07 1.927000e+06	2.892000e+07 1.145000e+06	3.786000e+07 1.804000e+06	$\begin{array}{c} 0.223225 \\ 0.405525 \end{array}$	0.089136 1.256791
lshp_406	406	1.230000e+06 1.230000e+06	9.028000e+05	1.148000e+06	0.405525 0.265790	2.063599
lund_b	147	4.977000e+07	9.277000e+04	1.431000e+05	0.998136	0.775601
$_{\mathrm{mbeacxc}}^{-}$	496	$2.857000\mathrm{e}{+06}$	$2.172000\mathrm{e}{+06}$	$1.894000\mathrm{e}{+07}$	0.239616	5.161266
mbeaflw	496	5.820000e+06	$1.068000\mathrm{e}{+05}$	$3.381000\mathrm{e}{+06}$	0.981656	8.130244
mbeause	496	7.052000e+06	1.249000e+05	4.015000e+06	0.982292	8.919944
nnc261	261	1.652000e+07	3.333000e+06	5.758000e+06	0.798272	1.181010
$ \begin{array}{c} \text{nos}4\\ \text{nos}5 \end{array} $	$\frac{100}{468}$	$\substack{2.492000\text{e}+06\\2.975000\text{e}+07}$	$1.096000\mathrm{e}{+06} \\ 1.447000\mathrm{e}{+06}$	$\begin{array}{c} 1.136000\mathrm{e}{+06} \\ 1.555000\mathrm{e}{+06} \end{array}$	$0.559997 \\ 0.951367$	$0.230104 \\ 7.251103$
plat362	362	5.995000e+05	5.944000e+05	7.967000e+05	0.931367 0.008550	1.877958
P.10002	502	2.000000 00	2.0 110000 00		3.00000	

 ${\bf Table~3.~Suites parse~Matrix~Collection~(Left)}$

	La					
$\frac{\text{Mat}}{\text{plskz362}}$	Size 362	$\frac{\text{Cbef}}{7.743000\text{e}+05}$	$\frac{\text{Caft}}{6.933000\text{e}+05}$	$\begin{array}{c} \text{Cdiag} \\ 8.058000\text{e}{+05} \end{array}$	Reduce 0.104524	Time 1.290407
pores_1	302	2.774000e+05	4.481000e+06	7.514000e+06	0.104524 0.838435	0.128902
str 0	363	7.511000e+04	1.470000e+04	4.686000e+03	0.804285	0.788147
str_200	363	$1.371000\mathrm{e}{+07}$	$4.065000\mathrm{e}{+05}$	7.715000e + 05	0.970347	2.368018
$\operatorname{str} = 400$	363	$1.912000\mathrm{e}{+07}$	$5.322000\mathrm{e}{+06}$	$1.067000\mathrm{e}{+06}$	0.721693	0.836974
${ m str}_600$	363	$1.184000\mathrm{e}{+07}$	$4.537000\mathrm{e}{+05}$	$1.212000\mathrm{e}{+06}$	0.961681	2.305290
west0067	67	1.696000e+04	5.903000e+03	7.326000e+03	0.651885	0.160354
$\begin{array}{c} west0132 \\ west0167 \end{array}$	$\frac{132}{167}$	4.772000e+07 4.772000e+07	4.199000e+02 8.476000e+02	7.208000e+02 1.147000e+03	0.999991 0.999982	$0.278596 \\ 0.396684$
west0381	381	2.245000e+07	2.068000e+02	4.687000e+03	0.999991	3.711164
west0479	479	$4.737000\mathrm{e}{+07}$	$1.252000\mathrm{e}{+03}$	$2.064000\mathrm{e}{+03}$	0.999974	2.245246
west0497	497	$5.540000\mathrm{e}{+07}$	$2.286000\mathrm{e}{+03}$	$4.163000\mathrm{e}{+03}$	0.999959	2.031159
will199	199	1.926000e+07	1.085000e+07	$1.553000\mathrm{e}{+07}$	0.436279	0.502647
will57	57	3.781000e+07	2.533000e+07	6.034000e+07	0.330104	0.141474
$rac{ m wm1}{ m wm2}$	$\frac{277}{260}$	2.135000e+07 1.244000e+07	7.922000e+03 8.332000e+05	6.662000e+04 5.324000e+06	0.999629 0.933019	2.268211 1.470060
wm2	260	9.514000e+06	9.065000e+05	$1.103000\mathrm{e}{+07}$	0.904718	1.571223
bfwa398	398	$8.959000\mathrm{e}{+06}$	$1.682000\mathrm{e}{+06}$	$1.791000\mathrm{e}{+06}$	0.812196	3.615892
bfwa62	62	$3.059000\mathrm{e}{+05}$	$5.152000\mathrm{e}{+04}$	$5.508000\mathrm{e}{+04}$	0.831580	0.174470
bfwb398	398	4.465000e+02	1.565000e+02	2.912000e+01	0.649453	3.353016
$\frac{bfwb62}{bwm200}$	62	2.958000e+02 5.820000e+06	2.676000e+01	2.729000e+01	0.909552 0.434761	0.246814
$\frac{6 \text{km} 200}{\text{ck} 104}$	$\frac{200}{104}$	2.987000e+06	3.290000e+06 1.143000e+06	3.292000e+06 1.406000e+06	0.434761 0.961728	0.546737 0.203493
ck400	400	3.284000e+07	1.001000e+06	1.2100000e+06	0.969527	1.006684
lop163	163	$1.281000\mathrm{e}{+06}$	$5.703000\mathrm{e}{+05}$	$7.108000\mathrm{e}{+05}$	0.554680	0.470454
mhda416	416	$2.466000\mathrm{e}{+07}$	$3.819000\mathrm{e}{+05}$	$1.990000\mathrm{e}{+06}$	0.984513	3.291940
mhdb416	416	4.824000e+06	5.071000e+01	6.303000e+01	0.999989	1.188644
odepa400	400	2.504000e+07	1.593000e+07	${1.601000\mathrm{e}{+07}\atop 1.000000\mathrm{e}{+00}}$	0.363637	0.933260
m odepb400 $ m olm100$	400 100	$\substack{1.000000\text{e}+00\\4.480000\text{e}+07}$	$\substack{1.000000\text{e}+00\\3.092000\text{e}+07}$	5.322000e+07	0.000000 0.309857	0.330884 0.243572
olm 500	500	3.185000e+07	3.146000e+07	6.098000e+07	0.012234	2.274321
pde225	225	$1.526000\mathrm{e}{+03}$	$9.913000\mathrm{e}{+02}$	$1.009000\mathrm{e}{+03}$	0.350364	1.132055
rbsa480	480	$5.333000\mathrm{e}{+06}$	$7.129000\mathrm{e}{+05}$	$1.213000\mathrm{e}{+06}$	0.866327	9.633158
rbsb480	480	1.038000e+07	2.140000e+06	3.135000e+06	0.793806	9.278184
m rw136 $ m rw496$	136 496	$\begin{array}{c} 1.302000\mathrm{e}{+06} \\ 1.315000\mathrm{e}{+06} \end{array}$	5.420000e+05 8.306000e+05	$8.482000\mathrm{e}{+05} \ 1.325000\mathrm{e}{+06}$	0.583550 0.368444	0.342707 3.604414
tub100	100	4.427000e+07	4.254000e+07	$4.311000\mathrm{e}{+07}$	0.039051	0.226566
cavity01	317	3.947000e+07	6.467000e+04	1.104000e+05	0.998361	2.054133
cavity02	317	$1.823000\mathrm{e}{+07}$	$3.743000\mathrm{e}{+04}$	6.269000e+04	0.997946	1.405985
cavity03	317	1.709000e+07	5.320000e+04	1.010000e+05	0.996887	2.020333
cavity04	317	1.966000e+07	9.305000e+04	1.743000e+05	0.995268	1.563758
$\begin{array}{c} \mathrm{ex1} \\ \mathrm{ex5} \end{array}$	$\frac{216}{27}$	$\substack{1.695000\mathrm{e}+04\\3.457000\mathrm{e}+07}$	7.532000e+01 3.443000e+07	$\begin{array}{c} 8.818000\mathrm{e}{+01} \\ 7.392000\mathrm{e}{+07} \end{array}$	0.995556 0.004130	0.926692 0.102971
$b1_s$	7	3.896000e+04	7.115000e+01	7.581000e+01	0.998174	0.102371 0.107598
d_{dyn}	87	$4.941000\mathrm{e}{+07}$	$2.718000\mathrm{e}{+07}$	$5.370000\mathrm{e}{+07}$	0.449806	0.154185
d_{dyn1}	87	$3.799000\mathrm{e}{+07}$	$2.324000\mathrm{e}{+07}$	$4.598000\mathrm{e}{+07}$	0.388401	0.212365
$_{ m d_ss}$	53	7.596000e+07	3.611000e+07	3.591000e+07	0.524657	0.174045
$ m lp_adlittle \ lp_afiro$	138 51	2.077000e+07 2.299000e+07	${1.976000\mathrm{e}{+07}\atop 1.711000\mathrm{e}{+07}}$	$5.740000\mathrm{e}{+07} \ 2.240000\mathrm{e}{+07}$	$0.048207 \\ 0.255975$	$0.248500 \\ 0.129797$
lp_anro lp_bandm	472	1.055000e+07	4.584000e+06	1.481000e+07	0.255975 0.565650	3.579121
lp beaconfd	295	8.045000e+06	5.414000e+06	3.167000e+07	0.327030	2.481520
$l_{\rm p}$ _blend	114	$1.085000\mathrm{e}{+07}$	2.700000e+06	$4.689000\mathrm{e}{+06}$	0.751234	0.229854
lp_bore3d	334	$5.691000\mathrm{e}{+06}$	$1.693000\mathrm{e}{+06}$	$1.527000\mathrm{e}{+07}$	0.702497	1.908079
lp_brandy	303	1.268000e+07	2.525000e+06	9.341000e+06	0.800858	2.202008
$ m lp_capri \ lp_e226$	$482 \\ 472$	$\begin{array}{c} 1.781000\mathrm{e}{+07} \\ 7.518000\mathrm{e}{+06} \end{array}$	3.544000e+06 2.876000e+06	$\begin{array}{c} 9.499000\mathrm{e}{+06} \\ 7.345000\mathrm{e}{+07} \end{array}$	$\begin{array}{c} 0.801002 \\ 0.617431 \end{array}$	2.749435 5.803117
lp_israel	316	2.213000e+07	1.540000e+07	8.211000e+07	0.303837	1.090616
lp_kb2	68	$2.378000\mathrm{e}{+07}$	$1.584000\mathrm{e}{+07}$	$3.134000\mathrm{e}{+07}$	0.333936	0.396778
lp_lotfi	366	$3.101000\mathrm{e}{+06}$	$1.475000\mathrm{e}{+06}$	$2.984000\mathrm{e}{+07}$	0.524448	3.473910
lp_recipe	204	2.359000e+07	9.999000e+06	9.718000e+06	0.576179	0.563452
$\frac{10}{100}$	163	1.681000e+07	1.418000e+07	1.942000e+07	0.155977	0.320327
$ m lp_sc205 \ lp_sc50a$	317 78	${1.682000\mathrm{e}{+07}\atop 1.676000\mathrm{e}{+07}}$	${1.424000\mathrm{e}{+07}\atop 1.390000\mathrm{e}{+07}}$	${1.949000\mathrm{e}{+07}\atop 1.908000\mathrm{e}{+07}}$	$0.153231 \\ 0.170654$	0.804767 0.150149
lp_sc50b	78	1.505000e+07	1.227000e+07	1.694000e+07	0.184765	0.148078
lp_scagr7	185	$1.053000\mathrm{e}{+07}$	$1.761000\mathrm{e}{+06}$	$2.693000\mathrm{e}{+06}$	0.832777	0.393990
$lp_scorpion$	466	$7.188000\mathrm{e}{+06}$	$5.136000\mathrm{e}{+06}$	$8.973000\mathrm{e}{+06}$	0.285497	1.739667
lp_share1b	253	1.991000e+07	1.298000e+07	1.077000e+08	0.348287	1.026345
$ m lp_share2b$ $ m lp_stocfor1$	$\frac{162}{165}$	$2.101000\mathrm{e}{+07} \ 1.460000\mathrm{e}{+07}$	$\begin{array}{c} 1.321000\mathrm{e}{+07} \\ 9.642000\mathrm{e}{+06} \end{array}$	2.775000e+07 2.154000e+07	$\begin{array}{c} 0.371176 \\ 0.339626 \end{array}$	0.472567 0.431685
lp_stocior1 lp_vtp_base	346	1.460000e+07 2.890000e+07	6.588000e+06	5.285000e+05	0.339626 0.997720	0.431685 2.345079
lpi_bgprtr	40	2.497000e+07	6.505000e+05	1.091000e+06	0.973943	0.147450
$\mathrm{lpi}_\mathrm{box}1$	261	$3.616000\mathrm{e}{+07}$	$2.108000\mathrm{e}{+07}$	$4.128000\mathrm{e}{+07}$	0.416908	0.692226
$ m lpi_cplex2$	378	1.344000e+07	8.448000e+06	$1.189000\mathrm{e}{+07}$	0.371548	1.543225
$\frac{\text{lpi}}{\text{ex}72a}$	215	8.578000e+06	5.964000e+06	9.181000e+06	0.304744	0.449019
lpi_ex73a lpi_forest6	211 131	$\begin{array}{c} 8.578000\mathrm{e}{+06} \\ 7.137000\mathrm{e}{+06} \end{array}$	$\begin{array}{c} 5.968000\mathrm{e}{+06} \\ 7.003000\mathrm{e}{+06} \end{array}$	$8.855000\mathrm{e}{+06} \ 8.160000\mathrm{e}{+06}$	0.304278 0.018793	$0.398350 \\ 0.217445$
lpi_galenet	14	5.895000e+06	5.324000e+06	6.323000e+06	0.018793	0.217445 0.107415
lpi_itest2	13	1.786000e+07	5.946000e+06	$6.415000\mathrm{e}{+06}$	0.667043	0.109737
lpi_itest6	17	$1.124000\mathrm{e}{+07}$	$6.547000\mathrm{e}{+06}$	$7.369000\mathrm{e}{+06}$	0.417575	0.115537
lpi_klein1	108	1.431000e+07	2.869000e+06	5.145000e+06	0.799539	0.444161

Table 4. Suitesparse Matrix Collection (Left)

- 26	La				-	T
Mat lpi qual	Size 464	$\frac{\text{Cbef}}{2.440000\text{e}+07}$	$\frac{\text{Caft}}{1.233000\text{e}+05}$	CDiag 4.093000e+05	Reduce 0.994946	Time 2.865512
lpi refinery	464	2.440000e+07 2.440000e+07	1.253000e + 05 1.154000e + 05	3.669000e+05	0.994940 0.995271	2.687036
lpi vol1	464	2.440000e+07	1.233000e+05	4.093000e+05	0.994946	2.806833
lpi_woodinfe	89	8.685000e + 06	$8.619000\mathrm{e}{+06}$	$1.008000\mathrm{e}{+07}$	0.007664	0.156514
lp_nug05	225	9.453000e+06	9.445000e+06	$1.167000\mathrm{e}{+07}$	0.000832	0.484108
lp_nug06	486	5.863000e+06	5.862000e+06	8.000000e+06	0.000082	2.855134
utm300 pivtol	$\frac{300}{102}$	$\begin{array}{c} 5.520000\mathrm{e}{+06} \\ 1.201000\mathrm{e}{+04} \end{array}$	$\substack{2.591000\text{e}+06\\6.731000\text{e}+02}$	$\begin{array}{c} 5.520000\mathrm{e}{+06} \\ 6.756000\mathrm{e}{+02} \end{array}$	0.530525 0.943974	$\begin{array}{c} 1.371771 \\ 0.181140 \end{array}$
$\frac{prvtor}{mesh1e1}$	48	2.756000e+01	1.500000e+01	1.832000e+01	0.945974 0.455693	0.131140 0.141812
${ m mesh1em1}$	48	3.609000e+02	$1.553000\mathrm{e}{+02}$	1.634000e+02	0.569767	0.187848
${ m mesh1em6}$	48	$3.731000e{+01}$	$2.348000\mathrm{e}{+01}$	$2.422000\mathrm{e}{+01}$	0.370796	0.149999
mesh2e1	306	8.431000e+04	1.934000e+04	2.331000e+04	0.770582	1.767308
$\frac{\text{mesh2em5}}{\text{mesh2e1}}$	306	6.085000e+04	2.221000e+04	2.448000e+04	0.635019	2.033301
$ooknote{mesh3e1} \\ ooknote{mesh3em5}$	289 289	7.970000e+01 2.466000e+01	7.367000e+01 2.383000e+01	7.371000e+01 2.384000e+01	0.075652 0.033547	0.948502 0.649657
sphere2	66	4.729000e+07	2.1000000e+07	4.810000e+07	0.555919	0.143261
$_{ m sphere3}$	258	$2.431000\mathrm{e}{+07}$	$2.246000\mathrm{e}{+07}$	$2.439000\mathrm{e}{+07}$	0.075870	0.741558
cage3	5	$3.552000\mathrm{e}{+02}$	$2.324000\mathrm{e}{+02}$	$2.826000\mathrm{e}{+02}$	0.345737	0.090801
cage 4	9	3.749000e+02	2.332000e+02	2.662000e+02	0.378129	0.092323
$\begin{array}{c} { m cage 5} \\ { m cage 6} \end{array}$	37 93	2.377000e+02 1.305000e+02	1.446000e+02 5.598000e+01	$\begin{array}{c} 1.623000\mathrm{e}{+02} \\ 6.216000\mathrm{e}{+01} \end{array}$	0.391509 0.571133	$\begin{array}{c} 0.142229 \\ 0.275322 \end{array}$
cage7	340	1.709000e+02	7.342000e+01	9.425000e+01	0.571133 0.570302	2.882972
problem1	415	4.188000e+07	2.802000e+07	3.407000e+07	0.330968	1.394374
$oscil_dcop_01$	430	$5.827000\mathrm{e}{+07}$	$5.820000\mathrm{e}{+07}$	$1.423000\mathrm{e}{+08}$	0.001128	1.636190
$oscil_dcop_02$	430	$5.827000\mathrm{e}{+07}$	5.820000e+07	$1.403000\mathrm{e}{+08}$	0.001128	1.494037
oscil_dcop_04	430	5.827000e+07	5.820000e+07	1.421000e+08	0.001128	1.794565
$ oscil_dcop_05 $ $ oscil_dcop_07 $	$430 \\ 430$	5.827000e+07 5.827000e+07	$5.820000\mathrm{e}{+07} \ 5.820000\mathrm{e}{+07}$	${1.422000\mathrm{e}{+08}\atop 1.415000\mathrm{e}{+08}}$	0.001128 0.001128	$1.636854 \\ 1.642650$
oscil_dcop_08	430	5.827000e+07 5.827000e+07	5.820000e+07 5.820000e+07	1.413000e+08 1.421000e+08	0.001128 0.001128	1.559731
oscil_dcop_09	430	5.827000e+07	5.820000e+07	1.423000e+08	0.001128	1.601949
$oscil_dcop_10$	430	$5.827000\mathrm{e}{+07}$	$5.820000\mathrm{e}{+07}$	$1.423000\mathrm{e}{+08}$	0.001128	1.537608
$oscil_dcop_11$	430	5.827000e+07	5.820000e+07	$1.424000\mathrm{e}{+08}$	0.001128	1.542233
oscil_dcop_14	430	5.827000e+07	5.820000e+07	1.424000e+08	0.001128	1.672371
$ oscil_dcop_15 $ $ oscil_dcop_17 $	$430 \\ 430$	5.827000e+07 5.827000e+07	$5.820000\mathrm{e}{+07} \ 5.820000\mathrm{e}{+07}$	$1.424000\mathrm{e}{+08} \ 1.424000\mathrm{e}{+08}$	0.001128 0.001128	$1.729068 \\ 1.650611$
oscil_dcop_18	430	5.827000e+07 5.827000e+07	5.820000e+07 5.820000e+07	$1.424000\mathrm{e}{+08} \\ 1.424000\mathrm{e}{+08}$	0.001128 0.001128	1.560618
$oscil_dcop_20$	430	$5.827000\mathrm{e}{+07}$	$5.820000 \mathrm{e}{+07}$	$1.424000\mathrm{e}{+08}$	0.001128	1.698881
$oscil_dcop_21$	430	$5.827000\mathrm{e}{+07}$	$5.820000\mathrm{e}{+07}$	$1.424000\mathrm{e}{+08}$	0.001128	1.614070
$oscil_dcop_22$	430	5.827000e+07	5.820000e+07	1.424000e+08	0.001128	1.569110
$ oscil_dcop_24 $ $ oscil_dcop_25 $	430 430	5.827000e+07 5.827000e+07	$5.820000\mathrm{e}{+07} \ 5.820000\mathrm{e}{+07}$	$\begin{array}{c} 1.424000\mathrm{e}{+08} \\ 1.424000\mathrm{e}{+08} \end{array}$	0.001128 0.001128	$1.664884 \\ 1.571597$
oscil dcop 26	430	5.827000e+07 5.827000e+07	5.820000e+07 5.820000e+07	1.424000e+08 1.424000e+08	0.001128 0.001128	1.731916
$\frac{\text{oscil_dcop_25}}{\text{oscil_dcop_27}}$	430	5.827000e+07	5.820000e+07	1.424000e+08	0.001128	1.561578
$\operatorname{oscil_dcop_28}$	430	$5.827000\mathrm{e}{+07}$	$5.820000\mathrm{e}{+07}$	$1.424000\mathrm{e}{+08}$	0.001128	1.513176
$oscil_dcop_29$	430	5.827000e+07	5.820000e+07	$1.424000\mathrm{e}{+08}$	0.001128	1.681639
oscil_dcop_30	430	5.827000e+07	5.820000e+07	1.424000e+08	0.001128	1.649562
$ \begin{array}{c} \operatorname{oscil_dcop_31}\\ \operatorname{oscil_dcop_33} \end{array} $	430 430	5.827000e+07 5.827000e+07	5.820000e+07 5.820000e+07	1.424000e+08 1.424000e+08	0.001128 0.001128	$1.530307 \\ 1.698440$
oscil_dcop_34	430	5.827000e+07 5.827000e+07	5.820000e+07 5.820000e+07	1.424000e+08 1.424000e+08	0.001128 0.001128	1.518571
$\operatorname{oscil_dcop_35}$	430	$5.827000\mathrm{e}{+07}$	$5.820000 \mathrm{e}{+07}$	$1.424000\mathrm{e}{+08}$	0.001128	1.531322
$oscil_dcop_36$	430	$5.827000\mathrm{e}{+07}$	5.820000e+07	$1.424000\mathrm{e}{+08}$	0.001128	1.541858
$oscil_dcop_37$	430	5.827000e+07	5.820000e+07	1.424000e+08	0.001128	1.746573
$ oscil_dcop_38 $ $ oscil_dcop_39 $	$430 \\ 430$	5.827000e+07 5.827000e+07	5.820000e+07 5.820000e+07	$\begin{array}{c} 1.424000\mathrm{e}{+08} \\ 1.424000\mathrm{e}{+08} \end{array}$	0.001128 0.001128	$1.583039 \\ 1.658675$
oscil_dcop_41	430	5.827000e+07 5.827000e+07	5.820000e+07 5.820000e+07	1.424000e+08 1.424000e+08	0.001128 0.001128	1.543861
$oscil_dcop_42$	430	$5.827000\mathrm{e}{+07}$	5.820000e+07	$1.424000\mathrm{e}{+08}$	0.001128	1.567391
$oscil_dcop_43$	430	$5.827000\mathrm{e}{+07}$	$5.820000\mathrm{e}{+07}$	$1.424000\mathrm{e}{+08}$	0.001128	1.526917
$oscil_dcop_45$	430	5.827000e+07	5.820000e+07	1.424000e+08	0.001128	1.595076
oscil_dcop_46	430	5.827000e+07	5.820000e+07	1.424000e+08	0.001128	1.632486
oscil_dcop_47 oscil_dcop_48	430 430	5.827000e+07 5.827000e+07	5.820000e+07 5.820000e+07	$\begin{array}{c} 1.424000\mathrm{e}{+08} \\ 1.424000\mathrm{e}{+08} \end{array}$	0.001128 0.001128	$1.656462 \\ 1.532556$
oscil_dcop_49	430	5.827000e+07	5.820000e+07	1.424000e+08	0.001128	1.836070
$\operatorname{oscil_dcop_51}$	430	$5.827000\mathrm{e}{+07}$	5.820000e+07	$1.424000\mathrm{e}{+08}$	0.001128	1.569916
$oscil_dcop_52$	430	$5.827000\mathrm{e}{+07}$	5.820000e+07	$1.424000\mathrm{e}{+08}$	0.001128	1.580255
oscil_dcop_53	430	5.827000e+07	5.820000e+07	1.424000e+08	0.001128	1.494891
oscil_dcop_54 oscil_dcop_56	430 430	5.827000e+07 5.827000e+07	5.820000e+07 5.820000e+07	$\begin{array}{c} 1.424000\mathrm{e}{+08} \\ 1.424000\mathrm{e}{+08} \end{array}$	0.001128 0.001128	$\begin{array}{c} 1.566526 \\ 1.589872 \end{array}$
oscil_dcop_57	430	5.827000e+07 5.827000e+07	5.820000e+07 5.820000e+07	1.424000e+08 1.424000e+08	0.001128 0.001128	1.548615
oscil_trans_01	430	5.827000e+07	5.562000e+07	7.219000e+07	0.045355	0.800879
Harvard500	500	$1.830000\mathrm{e}{+07}$	$1.673000\mathrm{e}{+07}$	$9.449000\mathrm{e}{+07}$	0.085593	3.517279
lap_25	25	2.786000e+07	2.436000e+07	2.985000e+07	0.125389	0.108474
rajat05	301	1.466000e+07	1.316000e+06	5.248000e+06	0.910252	0.894197
rajat11 rajat14	135 180	7.500000e+07 5.543000e+07	$\begin{array}{c} 9.077000\mathrm{e}{+05} \\ 1.563000\mathrm{e}{+06} \end{array}$	3.267000e+06 7.485000e+06	0.987897 0.971808	$0.284779 \\ 1.454099$
Hamrle1	32	4.796000e+07	3.333000e+05	5.875000e+05	0.993051	0.134966
robot	120	$4.407000\mathrm{e}{+07}$	$1.020000\mathrm{e}{+04}$	$1.204000\mathrm{e}{+04}$	0.999769	0.335016
rotor1	100	3.726000e + 07	$1.869000\mathrm{e}{+06}$	$2.374000\mathrm{e}{+06}$	0.949828	0.305103
LF10	18	5.170000e+07	4.958000e+04	6.238000e+04	0.999041	0.135056
Cities divorce	46 9	4.291000e+04 3.760000e+02	1.275000e+04 1.794000e+02	$\begin{array}{c} 1.996000\mathrm{e}{+04} \\ 4.251000\mathrm{e}{+02} \end{array}$	0.702834 0.522869	$\begin{array}{c} 0.121651 \\ 0.093020 \end{array}$
divorce	Э	J.10000000+02	1.1340000+02	1.2010000+02	0.044009	0.000020

 ${\bf Table~5.~Suitesparse~Matrix~Collection~(Left)}$

Mat	Size	Cbef	Caft	CDiag	Reduce	Time
Erdos971	472	1.551000e+07	5.380000e+05	2.309000e+06	0.965319	4.721765
Erdos981	485	8.499000e+06	3.420000e+05	1.411000e+06	0.959761	4.921555
Erdos 991	492	$1.629000\mathrm{e}{+07}$	$4.908000\mathrm{e}{+05}$	1.898000e+06	0.969878	5.481967
football	35	$2.949000\mathrm{e}{+07}$	$2.832000\mathrm{e}{+05}$	$6.804000\mathrm{e}{+05}$	0.990395	0.120533
$\mathrm{GD00}_{-\mathrm{a}}$	352	$2.508000\mathrm{e}{+07}$	3.0000000e+06	$6.857000\mathrm{e}{+06}$	0.880374	0.661116
$_{\mathrm{GD01}}$ _a	311	1.366000e + 07	3.107000e+06	8.453000e+06	0.772548	0.734467
$^{ m GD01}_{ m cp}$	18	5.560000e+06	3.200000e+06	3.701000e+06	0.424463	0.116826
$^{ m GD01_c}_{ m GD02}$	33	2.196000e+07	1.630000e+07	2.732000e+07	0.257784	0.123902
$\begin{array}{c} \mathrm{GD02_a} \\ \mathrm{GD02_b} \end{array}$	23 80	3.395000e+07	7.171000e+06	2.294000e+07	0.788756 0.575957	0.102567
$\frac{\text{GD02}_{-6}}{\text{GD95}}$ a	36	$\substack{1.332000\mathrm{e}+07\\1.267000\mathrm{e}+07}$	5.650000e+06 5.950000e+06	9.786000e+06 1.001000e+07	0.575957 0.530236	0.170013 0.116576
$\frac{\mathrm{GD}95}{\mathrm{GD}95}$ b	73	2.298000e+07	1.856000e+07	2.752000e+07	0.192322	0.141816
$\mathrm{GD95_c}$	62	2.651000e+03	1.348000e+03	2.033000e+03	0.491426	0.163867
$\mathrm{GD96}_{-}\mathrm{b}$	111	7.440000e + 07	4.0000000e+06	5.630000e+06	0.946239	0.146740
$\mathrm{GD96}^{-}\mathrm{c}$	65	$1.715000\mathrm{e}{+07}$	1.190000e + 07	$1.496000\mathrm{e}{+07}$	0.306075	0.158284
$\mathrm{GD}96\mathrm{_d}$	180	$1.200000\mathrm{e}{+07}$	1.200000e + 07	$2.293000\mathrm{e}{+07}$	0.000000	0.242795
$\frac{\text{GD97}}{\text{a}}$	84	1.574000e+07	1.431000e+07	1.587000e + 07	0.090610	0.162372
$\frac{\mathrm{GD}97}{\mathrm{D}}$	47	3.079000e+07	8.795000e+05	2.226000e+06	0.971436	0.199645
GD98_b	121	8.121000e+06	3.000000e+06	7.573000e+06	0.630570	0.178936
$\begin{array}{cc} \mathrm{GD98_c} \\ \mathrm{GD99} \end{array}$ b	112 64	9.0000000e+06 1.586000e+07	8.000000e+06 1.582000e+07	$\begin{array}{c} 9.000000\mathrm{e}{+06} \\ 1.783000\mathrm{e}{+07} \end{array}$	$\begin{array}{c} 0.111111\\ 0.002693 \end{array}$	0.163736 0.138254
GD99_b GD99_c	105	7.112000e+06	5.978000e+06	9.988000e+06	0.002093 0.159504	0.138234 0.167981
GlossGT	72	2.923000e+07	3.664000e+01	4.711000e+01	0.9999999	0.142222
Journals	124	4.054000e+07	2.532000e+02	7.139000e+02	0.999994	0.142222 0.455923
Ragusa16	24	$2.873000\mathrm{e}{+07}$	$1.965000\mathrm{e}{+06}$	4.607000e+06	0.931590	0.129047
Ragusa18	23	$4.879000\mathrm{e}{+07}$	$5.236000\mathrm{e}{+06}$	$9.244000\mathrm{e}{+06}$	0.892675	0.120835
$Sandi_authors$	86	$1.464000\mathrm{e}{+07}$	$8.518000\mathrm{e}{+05}$	$3.801000\mathrm{e}{+06}$	0.941830	0.181722
$Sandi_sandi$	360	$1.641000\mathrm{e}{+07}$	$1.454000\mathrm{e}{+07}$	$2.865000\mathrm{e}{+07}$	0.113784	0.758051
SmallW	396	8.277000e + 06	7.182000e+06	2.307000e+07	0.132287	2.267629
Stranke94	10	2.676000e+03	2.339000e+03	2.444000e+03	0.125874	0.096110
Tina_AskCal	11 11	1.257000e+07	$\substack{4.445000\mathrm{e}+06\\2.427000\mathrm{e}+02}$	$\substack{6.519000\mathrm{e}+06\\2.900000\mathrm{e}+02}$	0.646435 0.380019	0.108352 0.095339
$egin{array}{ll} ext{Tina}_{-} ext{AskCog} \ ext{Tina}_{-} ext{DisCal} \end{array}$	11	3.914000e+02 2.291000e+07	2.427000e+02 2.018000e+02	2.900000e+02 2.855000e+02	0.380019 0.999991	0.09339 0.093890
Tina DisCog	11	2.707000e+07 2.707000e+07	1.267000e+07	2.163000e+02 2.163000e+07	0.532024	0.093330 0.091150
USAir97	332	8.933000e+06	3.113000e+05	7.933000e+05	0.965153	2.799760
WorldCities	100	$4.356000\mathrm{e}{+03}$	1.020000e+03	$1.525000\mathrm{e}{+03}$	0.765829	0.320696
rdb200	200	$1.191000\mathrm{e}{+05}$	$6.547000\mathrm{e}{+04}$	7.544000e+04	0.450363	0.784539
rdb200l	200	$1.760000\mathrm{e}{+04}$	$1.357000\mathrm{e}{+04}$	$1.416000\mathrm{e}{+04}$	0.228670	0.579784
rdb450	450	$4.695000\mathrm{e}{+05}$	$2.508000\mathrm{e}{+05}$	$2.886000\mathrm{e}{+05}$	0.465713	3.113745
rdb450l	450	4.395000e+04	2.760000e+04	2.882000e+04	0.372054	2.883685
tols340	340	7.624000e+07	3.353000e+04	2.349000e+05	0.999560	1.283393
$ m tols 90 \ gams 10 am$	$\frac{90}{171}$	$\substack{4.323000\mathrm{e}+07\\8.804000\mathrm{e}+06}$	$3.128000e+05 \\ 8.724000e+06$	${4.833000\mathrm{e}{+05}\atop 1.122000\mathrm{e}{+07}}$	$\begin{array}{c} 0.992764 \\ 0.009127 \end{array}$	$\begin{array}{c} 0.242690 \\ 0.274860 \end{array}$
farm	17	3.835000e+07	3.314000e+07	6.213000e+07	0.003127 0.135843	0.096673
gams10a	171	8.804000e+06	8.722000e+06	$1.137000\mathrm{e}{+07}$	0.009334	0.281274
p0033	48	$3.108000\mathrm{e}{+07}$	3.074000e+07	2.802000e+07	0.010914	0.156589
p0201	334	$5.041000\mathrm{e}{+06}$	$4.148000\mathrm{e}{+06}$	$5.636000\mathrm{e}{+07}$	0.177139	1.831204
$_{ m refine}$	62	$1.723000\mathrm{e}{+07}$	$1.583000\mathrm{e}{+06}$	$7.113000\mathrm{e}{+06}$	0.908088	0.145843
zed	142	$2.064000\mathrm{e}{+07}$	$8.385000\mathrm{e}{+05}$	1.969000e+06	0.959375	0.389350
Chebyshev1	261	4.901000e+07	2.200000e+05	4.092000e+05	0.995511	1.807577
Maragal_1	14	3.520000e+07	2.234000e+07	3.125000e+07	0.365176	0.097431
${ m Maragal_2} \\ { m photogrammetry}$	350 390	${1.766000\mathrm{e}{+07}\atop 1.031000\mathrm{e}{+00}}$	$\begin{array}{c} 9.033000\mathrm{e}{+06} \\ 1.028000\mathrm{e}{+00} \end{array}$	3.983000e+07 1.030000e+00	0.488638 0.002058	1.285429 1.937134
bibd_9_5	126	$1.944000\mathrm{e}{+07}$	1.944000e+07	1.944000e+07	0.002038	0.209351
bibd_11_5	462	$1.273000\mathrm{e}{+07}$	$1.273000\mathrm{e}{+07}$	$1.273000\mathrm{e}{+07}$	0.000000	2.089555
$bibd_15_3$	455	1.300000e+07	1.300000e+07	1.300000e+07	0.000000	1.726315
${ m CAG_mat364}$	364	$6.786000\mathrm{e}{+06}$	$1.797000\mathrm{e}{+06}$	$1.720000\mathrm{e}{+06}$	0.735207	3.660491
CAG_mat72	72	$1.212000\mathrm{e}{+07}$	$1.897000\mathrm{e}{+06}$	$2.485000\mathrm{e}{+06}$	0.843493	0.173381
TF10	107	2.582000e+07	2.211000e+07	4.054000e+07	0.143588	0.247850
TF11	236	2.087000e+07	1.930000e+07	3.385000e+07	0.075111	0.975731
$rac{ ext{IG5-6}}{ ext{IG5-7}}$	77 150	$\substack{1.221000\mathrm{e}+07\\6.989000\mathrm{e}+06}$	${4.284000\mathrm{e}{+06}\atop 1.813000\mathrm{e}{+06}}$	$\substack{6.447000\mathrm{e}+06\\4.883000\mathrm{e}+06}$	0.649147 0.740603	$\begin{array}{c} 0.153150 \\ 0.302618 \end{array}$
IG5-7 IG5-8	$\frac{150}{292}$	6.989000e+06 7.668000e+06	7.368000e+06	4.883000e+06 1.040000e+06	0.740603	0.302618 1.099848
GL6 D 6	201	1.688000e+07	1.748000e+05	2.323000e+05	0.903910 0.989642	0.641649
$\mathrm{GL6}_{-}\mathrm{D}_{-}^{-3}$	470	1.328000e+07	3.259000e+06	2.562000e+06	0.754489	4.150725
$GL6_D_{10}$	341	3.541000e+06	3.193000e+06	1.099000e+07	0.098214	2.102879
$\overline{\mathrm{GL7d10}}$	60	$4.300000\mathrm{e}{+07}$	$2.344000\mathrm{e}{+07}$	$5.358000\mathrm{e}{+07}$	0.454839	0.113081
$\mathrm{GL7d11}$	60	$4.905000\mathrm{e}{+07}$	7.101000e+06	8.036000e+06	0.855245	0.160249
robot24c1_mat5	302	2.019000e+07	2.160000e+05	1.265000e+06	0.989300	3.638249
robot24c1_mat5_J	404	5.047000e+06	4.816000e+06	6.752000e+06	0.045855	4.246780
klein-b1	10	1.000000e+07	8.529000e+06	8.738000e+06	0.147110	0.092226
n3c5-b4 n3c5-b6	210 210	${1.000000\mathrm{e}{+07}\atop 1.000000\mathrm{e}{+07}}$	${1.000000\mathrm{e}{+07}\atop 1.000000\mathrm{e}{+07}}$	${1.000000\mathrm{e}{+07}\atop 1.000000\mathrm{e}{+07}}$	0.000000 0.000000	0.399479 0.387011
n4c5-b11	$\frac{210}{120}$	1.000000e+07 1.200000e+07	1.2000000e+07 1.200000e+07	1.000000e+07 1.200000e+07	0.000000	0.387011 0.139600
Trec3	2	1.000000e+06	1.000000e+00	1.000000e+00	0.999999	0.088600
Trec4	3	1.332000e+07	3.491000e+00	3.491000e+00	1.000000	0.088323
${ m Trec}5$	7	$3.019000\mathrm{e}{+07}$	2.920000e+07	$4.502000\mathrm{e}{+07}$	0.032668	0.089553
${ m Trec} 6$	15	$3.675000\mathrm{e}{+07}$	$3.037000\mathrm{e}{+07}$	$4.349000\mathrm{e}{+07}$	0.173730	0.093844
$\frac{\text{Trec}7}{\text{Trec}7}$	36	$1.302000\mathrm{e}{+07}$	1.298000e+07	4.709000e+07	0.002424	0.101188
Trec8	84	8.417000e + 06	7.976000e+06	5.023000e+07	0.052324	0.169217

 ${\bf Table~6.~Suites parse~Matrix~Collection~(Left)}$

Mat	Size	Cbef	Caft	CDiag	Reduce	Time
Trec10	478	2.717000e+06	2.704000e+06	3.618000e+07	0.005090	11.140717
$\frac{\text{cat}}{\text{ears}} = \frac{2}{3} = \frac{1}{1}$	85	1.174000e+07	1.104000e+07	1.174000e+07	0.059091	0.175820
$\frac{\text{cat}}{\text{ears}} = \frac{3}{4} = \frac{1}{1}$	181 313	1.238000e+07 1.264000e+07	$\begin{array}{c} 1.142000\mathrm{e}{+07} \\ 1.159000\mathrm{e}{+07} \end{array}$	${1.238000\mathrm{e}{+07}\atop 1.264000\mathrm{e}{+07}}$	0.077634 0.082703	0.368041 0.785780
$\begin{array}{ccc} \mathrm{cat}_\mathrm{ears}_4_1 \\ \mathrm{flower} & 4 & 1 \end{array}$	129	1.245000e+07 1.245000e+07	1.139000e + 07 1.222000e + 07	1.247000e+07 1.247000e+07	0.082703	0.783780
flower 5 1	201	1.235000e+07 1.235000e+07	1.178000e+07 1.178000e+07	1.247000e+07 1.237000e+07	0.018032 0.045937	0.255295
flower $7 ext{1}$	393	1.232000e+07 1.232000e+07	1.178000e+07 1.178000e+07	1.237000e+07 1.233000e+07	0.0433444	1.074669
wheel 3 1	25	1.104000e+07	1.100000e+07	1.108000e+07	0.003901	0.109810
$\frac{1}{2}$ wheel $\frac{1}{4}$ $\frac{1}{1}$	41	1.135000e+07	1.126000e+07	$1.137000\mathrm{e}{+07}$	0.008292	0.119916
wheel $5 1$	61	$1.203000\mathrm{e}{+07}$	$1.158000\mathrm{e}{+07}$	$1.204000\mathrm{e}{+07}$	0.036723	0.139474
${\rm wheel_6_1}$	85	$1.283000\mathrm{e}{+07}$	$1.200000\mathrm{e}{+07}$	$1.284000\mathrm{e}{+07}$	0.065284	0.163871
${\rm wheel}_{7}_{1}$	113	$1.373000\mathrm{e}{+07}$	$1.216000\mathrm{e}{+07}$	$1.374000\mathrm{e}{+07}$	0.114714	0.204933
rel3	5	3.6000000e+07	3.200000e+07	$3.6000000\mathrm{e}{+07}$	0.111110	0.102103
rel4	12	2.788000e+07	2.434000e+07	$2.677000\mathrm{e}{+07}$	0.126844	0.109623
rel5	35	2.673000e+07	2.127000e+07	2.669000e+07	0.204316	0.119203
rel6	157	1.657000e+07	1.300000e+07	1.543000e+07	0.215519	0.386222
$ m relat 3 \\ m relat 4$	$\begin{array}{c} 5 \\ 12 \end{array}$	4.800000e+07	4.267000e+07	4.800000e+07 3.868000e+07	0.110944 0.093784	0.099093 0.111163
relat5	35	3.616000e+07 2.125000e+07	3.277000e+07 1.906000e+07	2.560000e+07	0.093784 0.103153	0.111103 0.117217
relat6	157	1.114000e+07	8.926000e+06	1.1890000e+07	0.103133 0.199069	0.117217 0.368550
D 5	115	1.812000e+07	2.917000e+06	4.093000e+06	0.839033	0.305395
D 6	435	1.688000e+07	2.862000e+05	$3.427000\mathrm{e}{+05}$	0.983046	4.289448
D_11	461	2.952000e+06	2.897000e+06	7.732000e+06	0.018640	3.942477
$08 \overline{\mathrm{blocks}}$	300	2.749000e+07	$5.771000\mathrm{e}{+05}$	$5.714000\mathrm{e}{+06}$	0.979006	0.672977
abtaha2	331	$1.493000\mathrm{e}{+02}$	$1.038000\mathrm{e}{+02}$	$1.059000\mathrm{e}{+02}$	0.304608	4.116590
abtaha1	209	$1.495000\mathrm{e}{+02}$	$6.776000\mathrm{e}{+01}$	$8.511000\mathrm{e}{+01}$	0.546865	1.368067
${ m Trefethen} _20{ m b}$	19	9.212000e+02	$8.697000\mathrm{e}{+00}$	9.290000e+00	0.990559	0.106288
$Trefethen_20$	20	3.980000e+03	2.859000e+01	3.175000e+01	0.992817	0.109017
Trefethen_150	150	5.928000e+05	3.893000e+01	4.359000e+01	0.999934	0.964683
Trefethen_200b	199	2.723000e+05	1.102000e+01	1.187000e+01	0.999960	1.485429
$rac{ ext{Trefethen}_200}{ ext{Trefethen}}$	$\frac{200}{300}$	$\begin{array}{c} 1.190000\mathrm{e}{+06} \\ 3.142000\mathrm{e}{+06} \end{array}$	3.893000e+01 4.213000e+01	$\substack{4.359000\mathrm{e}+01\\4.722000\mathrm{e}+01}$	0.999967 0.999987	$1.684266 \\ 3.809453$
Trefethen 500	500	1.015000e+07	4.213000e+01 4.213000e+01	4.722000e+01 4.722000e+01	0.999996	12.866715
$ww_36_pmec_36$	66	2.185000e+07	6.710000e+06	4.396000e+07	0.692865	0.172951
adjnoun	112	1.729000e+07	$8.143000\mathrm{e}{+05}$	3.057000e+06	0.952909	0.397979
celegansneural	297	$8.250000\mathrm{e}{+06}$	$1.025000\mathrm{e}{+05}$	$3.380000\mathrm{e}{+05}$	0.987573	2.235483
$\operatorname{dolphins}$	62	$5.175000\mathrm{e}{+07}$	$2.005000\mathrm{e}{+06}$	$7.399000\mathrm{e}{+06}$	0.961257	0.174200
football	35	$2.949000\mathrm{e}{+07}$	$2.832000\mathrm{e}{+05}$	$6.804000\mathrm{e}{+05}$	0.990395	0.000000
karate	34	2.262000e+07	9.819000e+06	$2.047000\mathrm{e}{+07}$		0.104732
lesmis	77	1.639000e+07	1.024000e+05	4.294000e+05	0.993754	0.220944
$\operatorname*{polbooks}_{\cdot}$	105	5.187000e+05	1.738000e+05	2.650000e+05	0.664881	0.287798
jazz	198	9.052000e+06	4.181000e+06	6.374000e+06	0.538160 0.979966	1.262591
$ m celegans_metabolic \\ m grid1$	$453 \\ 252$	${0.408000\mathrm{e}{+06}\atop 1.534000\mathrm{e}{+07}}$	$\begin{array}{c} 1.284000\mathrm{e}{+05} \\ 7.319000\mathrm{e}{+06} \end{array}$	3.022000e+05 1.418000e+07	0.979966 0.522949	$13.988976 \\ 0.655047$
$\operatorname{grid}1_\operatorname{dual}$	$\frac{232}{224}$	1.519000e+07 1.519000e+07	$1.393000\mathrm{e}{+00}$	1.519000e+07 1.519000e+07	0.082991	0.595398
chesapeake	39	4.405000e+07	5.447000e+06	4.493000e+07	0.876353	0.109485
cz148	148	6.113000e+06	5.732000e+06	5.936000e+06	0.062333	0.402147
cz308	308	$5.391000\mathrm{e}{+07}$	$5.058000\mathrm{e}{+07}$	$5.249000\mathrm{e}{+07}$	0.061743	1.103020
${\rm hangGlider}_1$	360	$2.570000\mathrm{e}{+07}$	$8.973000\mathrm{e}{+02}$	$1.765000\mathrm{e}{+03}$	0.999965	3.854804
$orbit Raising_1$	442	$1.881000\mathrm{e}{+07}$	$9.431000\mathrm{e}{+03}$	$1.696000\mathrm{e}{+04}$	0.999499	2.991966
$spaceStation_1$	99	4.896000e+07	2.515000e+06	4.150000e+04	0.948639	0.278097
$spaceStation_2$	329	1.259000e+07	4.514000e+06	$1.414000\mathrm{e}{+07}$	0.641467	5.425566
spaceStation_3	467	1.721000e+07	7.925000e+06	1.286000e+07	0.539570	4.392964
tumorAntiAngiogenesis_1 tumorAntiAngiogenesis_2	$\frac{205}{305}$	8.470000e+06	8.110000e+04	7.955000e+05	0.990425	1.249378
mycielskian2	2	3.091000e+07 1.000000e+00	$\substack{2.387000\mathrm{e}+00\\1.000000\mathrm{e}+00}$	2.789000e+00 1.000000e+00	1.000000 0.000000	$\begin{array}{c} 2.574419 \\ 0.087407 \end{array}$
mycielskian4	11	9.391000e+01	8.476000e+01	8.728000e+01	0.097455	0.096446
mycielskian5	23	7.641000e+02	6.110000e+01	6.455000e+02	0.200423	0.114535
mycielskian6	47	5.863000e+03	4.139000e+03	4.451000e+03	0.293979	0.119011
mycielskian7	95	$4.337000\mathrm{e}{+04}$	$2.700000\mathrm{e}{+04}$	$2.937000\mathrm{e}{+04}$	0.377367	0.219110
mycielskian8	191	$3.132000\mathrm{e}{+05}$	$1.727000\mathrm{e}{+05}$	$1.882000\mathrm{e}{+05}$	0.448534	0.993721
mycielskian9	383	$2.227000\mathrm{e}{+06}$	$1.072000\mathrm{e}{+06}$	$1.181000\mathrm{e}{+06}$	0.518610	3.751622
$breasttissue_10NN$	106	$4.147000\mathrm{e}{+05}$	$4.605000\mathrm{e}{+04}$	$6.414000\mathrm{e}{+04}$	0.888958	0.300496
$dermatology_5NN$	366	8.770000e+06	9.134000e+05	1.660000e+06	0.895847	2.231720
Ecoli_10NN	336	5.181000e+06	5.434000e+05	8.016000e+05	0.895106	2.496580
Glass_10NN	214	1.473000e+07	3.134000e+05	4.625000e+05	0.978730	1.019550
$iris_dataset_30NN$ $Olivetti norm 10NN$	150	$\substack{4.617000\mathrm{e}+05\\3.756000\mathrm{e}+06}$	2.363000e+05	3.373000e+05	0.488167	0.523400
YaleA 10NN	$\frac{400}{165}$	3.756000e+06 2.198000e+06	$3.668000\mathrm{e}{+05} \ 1.707000\mathrm{e}{+05}$	$\substack{6.221000\mathrm{e}+05\\2.648000\mathrm{e}+05}$	0.902332 0.922321	$\begin{array}{c} 6.360955 \\ 0.703458 \end{array}$
TaleA_101VIV	100	2.10000000000000	1.1010006+00	<u>2.040000€</u> +00	0.022021	0.109490

 Table 7. Suitesparse Matrix Collection (Left)

A.2.2 Right Pre-conditioning

Mat	Size	Cbef	Caft	Rdc	Time	Mat	Size	Cbef	Caft	Rdc	Time
ash219	219	9.150000e+00	$4.580000\mathrm{e}{+00}$	0.499389	0.487467	cage4	9	3.749000e + 02	7.511000e+01	0.799676	0.095057
ash331	331	$9.588000\mathrm{e}{+00}$	$3.618000\mathrm{e}{+00}$	0.622636	0.730943	cage 5	37	$2.377000\mathrm{e}{+02}$	$3.664000\mathrm{e}{+01}$	0.845852	0.155320
ash608	608	$1.138000\mathrm{e}{+01}$	3.789000e+00	0.666922	2.025805	cage 6	93	$1.305000\mathrm{e}{+02}$	$2.312000\mathrm{e}{+01}$	0.822845	0.292317
ash85	85	$2.151000\mathrm{e}{+05}$	$1.283000\mathrm{e}{+05}$	0.403496	0.204215	cage7	340	$1.709000\mathrm{e}{+02}$	$2.372000\mathrm{e}{+01}$	0.861186	2.630823
ash958	958	$1.025000\mathrm{e}{+01}$	3.702000e+00	0.638750	3.816961	poisson 2D	367	$1.762000\mathrm{e}{+04}$	$1.298000\mathrm{e}{+04}$	0.263418	1.461464
bcspwr01	39	$2.756000\mathrm{e}{+03}$	$1.676000\mathrm{e}{+03}$	0.391882	0.129029	Cities	55	$4.291000\mathrm{e}{+04}$	$2.032000\mathrm{e}{+04}$	0.526343	0.461808
bcspwr03	118	$2.514000\mathrm{e}{+05}$	$1.137000\mathrm{e}{+05}$	0.547642	0.253503	$\mathrm{GD95}_\mathrm{c}$	62	$2.651000\mathrm{e}{+03}$	$1.357000\mathrm{e}{+03}$	0.488034	0.157926
bcsstk02	66	$1.871000\mathrm{e}{+07}$	$2.973000\mathrm{e}{+06}$	0.841082	0.864357	Journals	124	$9.629000\mathrm{e}{+07}$	$2.666000\mathrm{e}{+02}$	0.999997	4.078209
bcsstm02	66	$7.660000\mathrm{e}{+01}$	$1.000000\mathrm{e}{+00}$	0.986945	0.108913	Stranke 94	10	$2.676000\mathrm{e}{+03}$	$2.339000\mathrm{e}{+03}$	0.125982	0.098082
bcsstm05	153	$1.612000\mathrm{e}{+02}$	$1.000000\mathrm{e}{+00}$	0.993798	0.148165	$Tina_AskCog$	11	$3.914000\mathrm{e}{+02}$	$2.897000\mathrm{e}{+02}$	0.259784	0.100079
bcsstm07	420	$5.799000\mathrm{e}{+07}$	$4.737000\mathrm{e}{+04}$	0.999183	4.507644	rdb200	200	$1.191000\mathrm{e}{+05}$	$4.472000\mathrm{e}{+04}$	0.624532	0.642029
bcsstm22	138	$8.860000\mathrm{e}{+05}$	$8.336000\mathrm{e}{+02}$	0.999059	0.175163	rdb200l	200	$1.760000\mathrm{e}{+04}$	$9.535000\mathrm{e}{+03}$	0.458098	0.650536
$\operatorname{can}_{-}161$	161	$4.940000\mathrm{e}{+04}$	$3.960000e{+04}$	0.198256	0.413971	rdb450	450	$4.695000\mathrm{e}{+05}$	$1.842000\mathrm{e}{+05}$	0.607593	2.102066
$\operatorname{can}_2 4$	24	$6.046000\mathrm{e}{+03}$	$4.025000\mathrm{e}{+03}$	0.334338	0.132879	rdb450l	450	$4.395000\mathrm{e}{+04}$	$1.820000\mathrm{e}{+04}$	0.585936	2.126565
$\operatorname{can}_{-}62$	62	$3.646000\mathrm{e}{+05}$	$2.100000\mathrm{e}{+05}$	0.423995	0.156431	CAG_{mat72}	72	$7.720000\mathrm{e}{+07}$	$1.707000\mathrm{e}{+07}$	0.778920	0.316561
can_{-73}	73	$1.270000\mathrm{e}{+03}$	$1.053000\mathrm{e}{+03}$	0.170424	0.180774	08blocks	300	$2.749000\mathrm{e}{+07}$	$7.380000\mathrm{e}{+02}$	0.999973	0.454232
$\operatorname{can} = 96$	96	$2.104000\mathrm{e}{+04}$	$1.733000\mathrm{e}{+04}$	0.176483	0.209492	$Trefethen_20b$	19	$9.212000\mathrm{e}{+02}$	$8.697000\mathrm{e}{+00}$	0.990559	0.150969
$\mathrm{dwt} \overline{234}$	234	$1.042000\mathrm{e}{+05}$	$4.006000\mathrm{e}{+04}$	0.615561	0.595150	$Trefethen_20$	20	$3.980000\mathrm{e}{+03}$	$2.859000\mathrm{e}{+01}$	0.992817	0.165166
dwt_310	310	$1.069000\mathrm{e}{+07}$	$5.251000\mathrm{e}{+06}$	0.508682	1.314032	Trefethen 150	150	$5.928000\mathrm{e}{+05}$	$3.893000\mathrm{e}{+01}$	0.999934	0.581308
dwt_59	59	$1.395000\mathrm{e}{+04}$	$8.580000\mathrm{e}{+03}$	0.384885	0.164891	Trefethen 200b	199	$2.723000\mathrm{e}{+05}$	$1.102000\mathrm{e}{+01}$	0.999960	0.905146
dwt_66	66	$2.234000\mathrm{e}{+04}$	$1.530000\mathrm{e}{+04}$	0.314936	0.182006	$Trefethen_200$	200	$1.190000\mathrm{e}{+06}$	$3.893000\mathrm{e}{+01}$	0.999967	0.843932
dwt_87	87	$1.024000\mathrm{e}{+04}$	$5.077000\mathrm{e}{+03}$	0.504366	0.207312	$Trefethen_300$	300	$3.142000\mathrm{e}{+06}$	$4.213000\mathrm{e}{+01}$	0.999987	1.942225
gre 115	115	$2.467000\mathrm{e}{+03}$	$9.975000\mathrm{e}{+02}$	0.595714	0.236888	Trefethen 500	500	$1.015000\mathrm{e}{+07}$	$4.213000\mathrm{e}{+01}$	0.999996	6.035735
gre 216a	216	$1.061000\mathrm{e}{+04}$	$7.721000\mathrm{e}{+03}$	0.272449	0.617148	$\overline{\mathrm{polbooks}}$	105	$5.187000\mathrm{e}{+05}$	$1.738000\mathrm{e}{+05}$	0.664881	0.329573
gre 343	343	$1.254000\mathrm{e}{+04}$	$9.115000\mathrm{e}{+03}$	0.273061	1.331253	jazz	198	$9.052000\mathrm{e}{+06}$	$4.180000\mathrm{e}{+06}$	0.538207	3.676270
ibm32	32	$1.633000\mathrm{e}{+05}$	$1.052000\mathrm{e}{+05}$	0.355548	0.131495	cz148	148	$6.113000\mathrm{e}{+06}$	$6.738000\mathrm{e}{+05}$	0.889768	0.485724
impcol d	425	$4.250000\mathrm{e}{+06}$	$2.025000\mathrm{e}{+05}$	0.952340	1.603679	mycielskian2	2	1.000000e+00	1.000000e+00	0.000000	0.087618
lshp 265	265	$1.927000\mathrm{e}{+06}$	$1.145000\mathrm{e}{+06}$	0.405524	1.129425	mycielskian4	11	$9.391000\mathrm{e}{+01}$	$8.476000\mathrm{e}{+01}$	0.097455	0.093933
lshp 406	406	$1.230000\mathrm{e}{+06}$	$9.028000\mathrm{e}{+05}$	0.265790	2.036749	mycielskian5	23	$7.641000\mathrm{e}{+02}$	$6.110000\mathrm{e}{+02}$	0.200423	0.140891
	100	$2.492000\mathrm{e}{+06}$	1.096000e + 06	0.559996	0.285999	mycielskian6	47	$5.863000\mathrm{e}{+03}$	$4.139000\mathrm{e}{+03}$	0.293979	0.198246
$\operatorname{str} 0$	363	$7.511000\mathrm{e}{+04}$	$3.707000\mathrm{e}{+03}$	0.950651	2.102136	mycielskian7	95	$4.337000\mathrm{e}{+04}$	2.700000e+04	0.377367	0.419387
$\operatorname{str} \operatorname{\underline{\hspace{1ex}}} \operatorname{400}$	363		$5.383000\mathrm{e}{+05}$			mycielskian8	191	$3.132000\mathrm{e}{+05}$	$1.717000\mathrm{e}{+05}$	0.451873	1.543068
$\overline{\text{west0067}}$	67		$3.618000\mathrm{e}{+03}$			mycielskian9	383	$2.227000\mathrm{e}{+06}$	$1.072000\mathrm{e}{+06}$	0.518613	15.107065
bfwa398	398	$8.959000\mathrm{e}{+06}$	$1.552000\mathrm{e}{+06}$	0.826792	1.788203	breasttissue	106	$4.147000\mathrm{e}{+05}$	$4.605000\mathrm{e}{+04}$	0.888958	0.439709
bfwa62	62	$3.059000\mathrm{e}{+05}$	$4.735000\mathrm{e}{+04}$	0.845202	0.185078	dermatology	366	$8.770000\mathrm{e}{+06}$	$9.132000\mathrm{e}{+05}$	0.895866	1.544294
bfwb398	398	$4.465000\mathrm{e}{+02}$	$2.887000\mathrm{e}{+01}$	0.935330	1.681382	Ecoli 10NN	336	$9.637000\mathrm{e}{+07}$	$9.046000\mathrm{e}{+06}$	0.906131	2.456245
bfwb62	62		$2.676000\mathrm{e}{+01}$			$iris_dataset$	150		$2.363000\mathrm{e}{+05}$		3.225024
bwm200	200	$5.820000\mathrm{e}{+06}$	$4.045000\mathrm{e}{+06}$	0.304993	0.478939	Olivetti norm	400	$3.756000\mathrm{e}{+06}$	$3.668000\mathrm{e}{+05}$	0.902332	5.556022
ck104	104	$2.987000\mathrm{e}{+07}$	$1.103000\mathrm{e}{+07}$	0.630594	0.285076	${ m Yale A_10NN}$	165	$7.517000\mathrm{e}{+07}$	$4.723000\mathrm{e}{+06}$	0.937167	0.911497
pde225	225		$1.056000\mathrm{e}{+03}$			$\overline{\mathrm{mesh2e1}}$	306		$1.934000\mathrm{e}{+04}$		1.267981
$b1_s$	7		$2.977000\mathrm{e}{+04}$			$\mathrm{mesh2em5}$	306		$2.221000\mathrm{e}{+04}$		1.188451
pivtol	102		$1.045000\mathrm{e}{+01}$			${ m mesh3e1}$	289		$7.367000\mathrm{e}{+01}$		0.685717
	48		$1.500000\mathrm{e}{+01}$			${ m mesh3em5}$	289		$2.383000\mathrm{e}{+01}$		0.713168
${ m mesh1em1}$	48		$1.553000\mathrm{e}{+02}$			cage3	5		$8.697000\mathrm{e}{+01}$		0.091601
mesh1em6	48		$2.348000\mathrm{e}{+01}$			J					

Table 8. SuiteSparse Matrix Collection (Right)

A.2.3 Two-sided Pre-conditiong

We run two-sided pre-conditioning and compare it with Ruiz-scaling using $\|\cdot\|_{\infty}$ norm.

Mat	Size	Cbef	Caft	Cruiz	Rdc
ash85	85	2.151000e+05	85960.000	215100.000	0.600319
bcspwr01	39	$2.756000\mathrm{e}{+03}$	1268.000	2756.000	0.539942
bcsstk02	66	$1.871000\mathrm{e}{+07}$	2634000.000	3284000.000	0.859207
bcsstm02	66	$7.660000\mathrm{e}{+01}$	1.000	1.000	0.986945
$\operatorname{can}_2 4$	24	$6.046000\mathrm{e}{+03}$	3329.000	6046.000	0.449461
can 62	62	$3.646000\mathrm{e}{+05}$	137100.000	364600.000	0.624077
can 73	73	$1.270000\mathrm{e}{+03}$	836.300	1270.000	0.341394
can 96	96	2.104000e+04	16020.000	21040.000	0.238647
dwt 59	59	$1.395000\mathrm{e}{+04}$	6595.000	13950.000	0.527201
dwt 66	66	$2.234000\mathrm{e}{+04}$	11710.000	22340.000	0.475913
dwt 87	87	$1.024000\mathrm{e}{+04}$	5506.000	10240.000	0.462443
$ibm\overline{32}$	32	$1.633000\mathrm{e}{+05}$	47620.000	163300.000	0.708381
nos4	100	$2.492000\mathrm{e}{+06}$	971500.000	990300.000	0.610091
west0067	67	$1.696000\mathrm{e}{+04}$	2716.000	11630.000	0.839843
bfwa62	62	$3.059000\mathrm{e}{+05}$	38680.000	44500.000	0.873542
bfwb62	62	$2.958000\mathrm{e}{+02}$	23.070	23.620	0.922010
$b1_s$	7	$3.896000\mathrm{e}{+04}$	9.353	115.000	0.999760
$\overline{\mathrm{mesh1e1}}$	48	$2.756000\mathrm{e}{+01}$	14.320	17.270	0.480193
$\mathrm{mesh1em1}$	48	$3.609000\mathrm{e}{+02}$	130.000	134.600	0.639854
mesh1em6	48	$3.731000\mathrm{e}{+01}$	23.220	23.940	0.377637
cage3	5	$3.552000\mathrm{e}{+02}$	86.280	150.300	0.757053
cage4	9	$3.749000\mathrm{e}{+02}$	69.170	96.440	0.815512
cage5	37	$2.377000\mathrm{e}{+02}$	31.790	66.640	0.866242
cage6	93	$1.305000\mathrm{e}{+02}$	21.990	32.650	0.831528
Cities	55	$4.291000\mathrm{e}{+04}$	5647.000	32020.000	0.868394
divorce	50	$3.760000\mathrm{e}{+02}$	1.749	376.000	0.995349
$\mathrm{GD}95_\mathrm{c}$	62	$2.651000\mathrm{e}{+03}$	684.700	2651.000	0.741688
Stranke94	10	$2.676000\mathrm{e}{+03}$	1993.000	2499.000	0.255379
$Tina_AskCog$	11	$3.914000\mathrm{e}{+02}$	165.500	391.400	0.577112
CAG_{mat72}	72	$7.720000\mathrm{e}{+07}$	1098000.000	9330000.000	0.985779
${\rm Trefethen}_{20b}$	19	$9.212000\mathrm{e}{+02}$	6.245	6.665	0.993221
$Trefethen_20$	20	$3.980000\mathrm{e}{+03}$	17.110	19.040	0.995700
mycielskian2	2	$1.0000000\mathrm{e}{+00}$	1.000	1.000	0.000000
mycielskian4	11	$9.391000\mathrm{e}{+01}$	42.200	93.910	0.550610
mycielskian5	23	$7.641000\mathrm{e}{+02}$	161.800	764.100	0.788202
mycielskian6	47	$5.863000\mathrm{e}{+03}$	424.000	5863.000	0.927676
mycielskian7	95	$4.337000\mathrm{e}{+04}$	4753.000	43370.000	0.890389
ash219	219	$9.150000\mathrm{e}{+00}$	3.124	9.150	0.658522
WorldCities	315	$4.356000\mathrm{e}{+03}$	197.900	3283.000	0.954574
ash331	331	$9.588000\mathrm{e}{+00}$	2.954	9.588	0.691895
ash608	608	$1.138000\mathrm{e}{+01}$	3.012	11.380	0.735293
ash958	958	$1.025000\mathrm{e}{+01}$	4.811	10.250	0.530549
bcspwr03	118	$2.514000\mathrm{e}{+05}$	79480.000	251400.000	0.683878
bcsstm05	153	$1.612000 \mathrm{e}{+02}$	1.000	1.000	0.993798

Table 9. SuiteSparse Matrix Collection (Two-sided)

Remark 2. When doing two-sided pre-conditioning, M has no perturbation on the diagonal.

A.2.4 Random Sampling

For regression datasets that enjoy statistical properties, we consider the following randomized pre-conditioning method. Given $X \in \mathbb{R}^{M \times n}$, the randomized method

- Samples $m = \rho M$ rows of X without replacement and get $X' \in \mathbb{R}^{m \times n}$
- Run pre-conditioning algorithm on X' (i.e., $X'{D'}^{1/2}$)
- Apply D' as a pre-conditioner for X

We use very large regression datasets from ${\tt LIBSVM}$ and ${\tt OPENMP}$

Dataset	Number of samples
YearPredictionMSD	463715
YearPredictionMSD-t	51630
MNIST	70000
creditcard	284807
IMDB	120919

Table 10. Datasets used for randomized pre-conditioning

 $\begin{tabular}{ll} \textbf{Figure 3.} & \textbf{Pre-conditioning by randomly sampling} \\ \end{tabular}$

B LIBSVM Dataset

	Mat	Size	Cbef	Caft	Reduce
0	YearPredictionMSD	90	5233000.00	470.20	0.999910
1	Year Prediction MSD.t	90	5521000.00	359900.00	0.934816
2	$abalone_scale.txt$	8	2419.00	2038.00	0.157291
3	$bodyfat_scale.txt$	14	1281.00	669.10	0.477475
4	cadata.txt	8	8982000.00	7632.00	0.999150
5	$cpusmall_scale.txt$	12	20000.00	6325.00	0.683813
6	eunite2001.t	16	52450000.00	8530.00	0.999837
7	eunite2001.txt	16	67300000.00	3591.00	0.999947
8	housing_scale.txt	13	153.90	83.22	0.459371
9	$mg_scale.txt$	6	10.67	10.03	0.059988
10	$mpg_scale.txt$	7	142.50	107.20	0.247842
11	$pyrim_scale.txt$	27	49100000.00	3307.00	0.999933
12	$space_ga_scale.txt$	6	1061.00	729.60	0.312041
13	${\tt triazines_scale.txt}$	60	24580000.00	15460000.00	0.371034

Table 11. LIBSVM Dataset

C Randon Instances

	Mat	Size	Cbef	Caft	Reduce
0	${\it diag-bench-100-1.000e-01}$	100	4261000.0	1888000.0	0.557008
1	${\it diag-bench-500-1.000e-01}$	500	2152000.0	1460000.0	0.321581
2	diag-bench-1000-1.000e-02	1000	5127000.0	1713000.0	0.665939
3	${\it diag-bench-2000-1.000e-03}$	2000	12510000.0	5396000.0	0.568675

Table 12. Random instances

 $\mathbf{Remark\ 3.\ Randomly\ generated\ instances\ are\ named\ by\ \mathtt{diag-bench-\#size\#-\#sparsity\#}.}$