

OOO «Сербалаб» Лицензия ЛО-78-01-007244
Адрес г.Санкт-Петербург, Большой пр. ВОд.90, к.2, лит «З»
8 (812) 602-93-38
Info-cerbalab.ru
Cerbalab.ru

Молекулярно-генетическое тестирование по профилю «Костный метаболизм»

Лабораторный номер:

Ф.И.О.:

Дата рождения:

Πολ:

Направляющее учреждение:

Дата выдачи результата:

Результаты генетического тестирования

Ген	Кодируемый белок	RS	Нуклеотидная замена	Локализация	Результат				
Метаболизм витамина D									
GC	Переносчик витамина D	rs2282679	T>G	intronvariant	T/T				
VDR	рецептор витамина Д	rs7975232	C>A	Intronvariant	C/C				
VDR	рецептор витамина Д	rs731236	A>G	lle352	A/A				
VDR	рецептор витамина Д	rs2228570	G>A	Met1Thr	G/A				
VDR	рецептор витамина Д	rs1544410	C>T	polyAsite	C/C				
VDR	рецептор витамина Д	rs11568820	C>T	Promotor	C/C				
	Метаболизл	л стероидных г	ормонов						
CYP19A1	цитохром 19А1 (ароматаза)	rs2470152	A>G	Intron1	A/G				
ESR1	рецептор эстрогена	rs2234693	T>C	Intronvariant	C/C				
Соединительная ткань									
CALCR	Рецептор кальцитонина	rs1801197	A>G	Pro447Leu	G/G				
COL1a1	альфа-1 цепь белка коллагена 1 типа	rs1800012	C>A	Intron 1	C/C				
Col1A2	альфа-2 цепь белка коллагена 1 типа	rs412777	A>C	Pro482Pro	A/C				

Общая информация

В создании костей нашего организма принимает участие огромное количество веществ. В их числе кальций, фосфор, коллаген, витамин D и несколько гормонов. Но кости — это не только основа нашего скелета. Костная ткань принимает активное участие в обмене минеральных веществ в организме. Кальций и фосфор — важные элементы нормальной работы абсолютно всех органов и тканей. Когда этих элементов не хватает в крови, они начинают поступать туда из костей. Кости при этом становятся мягким, могут деформироваться и ломаться. Если же кальция в крови много, он начинает откладываться в сосудах, почках (в виде камней), в других тканях. Даже для костей избыток кальция вреден и вызывает их хрупкость.

Коллаген — самый распространенный белок в организме. Волокнистый коллаген является основным компонентом хрящевой ткани, входит в состав большинства других соединительных тканей и составляет основу белковой структуры наших костей. Известны как минимум 9 типов молекул коллагена, волокна которых кодируются как минимум 17-ю генами.

Гены, регулирующие обмен этих важных веществ могут обеспечивать как нормальное состояние их обмена, так и очень тяжелые нарушения.

Генетическая предрасположенность к нарушению костного метаболизма

Ген	Ваш	Функция кодируемого белка	Интерпретация					
161	генотип	Функция кодируемого белка	(ассоциировано с)					
	Остеогенез							
CALCR rs1801197	G/G	Ген кодирует рецепторы к гормону под названием кальцитонин. Этот гормон вырабатывается щитовидной железой и обеспечивает поступление кальция в кости. Кальций — основной минеральный элемент костной ткани. Он обеспечивает ее прочность. Так же кальций костей служит запасом этого элемента на случай его недостатка в пище. Кроме тогокальцитонин снижает уровень кальция в крови, блокируя его всасывание в кишечнике и повышая выведение с мочой.	Популяционный вариант.					
COL1A1 rs1800012	C/C	Ген COL1A1 кодирует две из трех нитей, переплетенных между собой, из которых состоит молекула коллагена.Коллаген — основа соединительной ткани костей, роговицы, кожи, сухожилий и других органов.	Популяционный вариант.					
COL1A2 rs412777	A/C	Ген COL1A2 кодирует одну из трех нитей, переплетенных между собой, из которых состоит молекула коллагена.Коллаген — основа соединительной ткани костей, роговицы, кожи, сухожилий и других органов.	Ухудшение механических свойств соединительной ткани (в том числе костей, хрящей и сухожилий). Определяет показание к приему препаратов, стимулирующих образование коллагена в организме					
CYP19A1 rs60271534	A/G	Ген кодирует фермент ароматазу, которая обеспечивает последние стадии синтеза женских половых гормонов. Такой синтез происходит во многих органах человека. Женские половые гормоны в небольшом количестве вырабатываются и у мужчин.	Увеличенный синтез эстрогенов, обладающих защитным действием по отношению к костной ткани.					
ESR1 rs2234693	C/C	Рецептор к эстрогенам первого типа.	Риск снижения костной плотности					
VDR rs731236	A/A		Популяционный вариант.					
VDR rs2228570	G/A	Функция гена заключается в том, что он кодирует рецептор, который связывает витамин D3 (кальцитриол) и регулирует активность генов минерального обмена и	Сниженная усвояемость витамина D за счёт меньшей восприимчивости рецептора к нему.					
VDR rs11568820	C/C	секрецию паращитовидного гормона, контролируя, таким образом, обмен кальция	Популяционный вариант.					
VDR rs1544410	C/C	и фосфора.	Снижение риска уменьшения костной плотности					
VDR Rs7975232	C/C		Популяционный вариант.					
CG rs2282679	T/T	Поддержание концентрации 25 (ОН)D в крови	Популяционный вариант.					

Интерпретация результатов молекулярно-генетического тестирования предрасположенности к нарушению костного метаболизма

Уровень риска по отношению к среднепопуляционному	Ниже	среднепопуля ционный	превышает	значительно превышает
Предрасположенность к коллагенопатиям			✓	
Предрасположенность к нарушению работы рецепторного аппарата витамина D		✓		
Риск остеопороза или остеопенического синдрома		√		
Риск травм опорно-двигательного аппарата (переломы)		√		
Риск травм опорно-двигательного аппарата (вывихи, растяжения, разрывы мышц, сухожиий)		√		

Рекомендации:

<u>Лабораторные исследования</u>

Кальций, магний, фосфор

В-кросс-лепс

Витамин D

Общий анализ мочи

Питание

Продукты с повышенным содержанием коллагена

Коллаген в виде биологически активной добавки (сочетать с физической нагрузкой)

ЛИТЕРАТУРА

- 1. Genetic Variation in CYP2R1 and GC Genes Associated With Vitamin D Deficiency Status. Slater NA, Rager ML, Havrda DE, Harralson AFJ Pharm Pract. 2017 Feb;30(1):31-36
- 2. Vitamin D pathway gene polymorphisms influenced vitamin D level among pregnant women. Shao B1, Jiang S1, Muyiduli X1, Wang S1, Mo M1, Li M1, Wang Z1, Yu Y2. ClinNutr. 2018 Dec;37(6 Pt A):2230-2237
- 3. Ahn, Jiyoung et al. "Genome-wide association study of circulating vitamin D levels." Humanmoleculargenetics vol. 19,13 (2010): 2739-45. doi:10.1093/hmg/ddq155
- 4. Dabirnia, Raheleh et al. "The relationship between vitamin D receptor (VDR) polymorphism and the occurrence of osteoporosis in menopausal Iranian women." Clinical cases in mineral and bone metabolism: the official journal of the Italian Society of Osteoporosis, Mineral Metabolism, and Skeletal Diseasesvol. 13,3 (2016): 190-194. doi:10.11138/ccmbm/2016.13.3.190
- 5. Jia, F., Sun, R.-F., Li, Q.-H., Wang, D.-X., Zhao, F., Li, J.-M., ...Xiong, Y. (2013). Vitamin D Receptor Bsml Polymorphism and Osteoporosis Risk: A Meta-Analysis from 26 Studies. Genetic Testing and Molecular Biomarkers, 17(1), 30–34. doi:10.1089/gtmb.2012.0267
- 6. Karuwanarint, P., Phonrat, B., Tungtrongchitr, A., Suriyaprom, K., Chuengsamarn, S., Schweigert, F. J., &Tungtrongchitr, R. (2018). Vitamin D-binding protein and its polymorphisms as a predictor for metabolic syndrome. BiomarkersinMedicine, 12(5), 465–473. doi:10.2217/bmm-2018-0029
- 7. Kwak, S.-Y., Yongjoo Park, C., Jo, G., Yoen Kim, O., & Shin, M.-J. (2018). Association among genetic variants in the vitamin D pathway and circulating 25-hydroxyvitamin D levels in Korean adults: results from the Korea National Health and Nutrition Examination Survey 2011–2012. Endocrine Journal.doi:10.1507/endocrj.ej18-0084
- 8. Luo, L., Xia, W., Nie, M., Sun, Y., Jiang, Y., Zhao, J., ... Xu, L. (2014). Association of ESR1 and C6orf97 gene polymorphism with osteoporosis in postmenopausal women. MolecularBiologyReports, 41(5), 3235–3243.doi:10.1007/s11033-014-3186-6

- 9. Mai, X.-M., Videm, V., Sheehan, N. A., Chen, Y., Langhammer, A., & Sun, Y.-Q. (2018). Potential causal associations of serum 25-hydroxyvitamin D with lipids: a Mendelian randomization approach of the HUNT study. EuropeanJournalofEpidemiology. doi:10.1007/s10654-018-0465-x
- 10. Marozik, Pavel M et al. "Association of Vitamin D Receptor Gene Variation With Osteoporosis Risk in Belarusian and Lithuanian Postmenopausal Women." Frontiers in endocrinology vol. 9 305. 5 Jun. 2018, doi:10.3389/fendo.2018.00305
- 11. Wu, F.-Y., Liu, C.-S., Liao, L.-N., Li, C.-I., Lin, C.-H., Yang, C.-W., ... Lin, C.-C. (2014). Vitamin D receptor variability and physical activity are jointly associated with low handgrip strength and osteoporosis in community-dwelling elderly people in Taiwan: the Taichung Community Health Study for Elders (TCHS-E). Osteoporosis International, 25(7), 1917–1929. doi:10.1007/s00198-014-2691-8

Анализ проводили:

Биолог:

Врач-генетик

Рук. Лаб. Службы:

