Logic Synthesis

Virendra Singh

Professor

Department of Electrical Engineering & Dept. of Computer Science & Engineering Indian Institute of Technology Bombay http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in viren@cse.iitb.ac.in

EE-677: Foundations of VLSI CAD

Lecture 18 on 20 Sep 2021

CADSL

Midsem = Comonicel.

Logic Design > Representation | Non-comonicel.

Optimization | Area (Cost)

Performance.

Power:

2 level implementation] = (a+5+c) (a+4) (5+c+d) 3 level implementation) 40-50 levels.] Muth-level =

Two-level Logic Optimization Motivation

- con soppos
- Reduce size of the representation
- Direct implementation
 - PLAs reduce size and delay
- Other implementation styles
 - Reduce amount of information
 - Simplify local functions and connections

Programmable Logic Arrays

FPGA

- Macro-cells with rectangular structure
 - Implement any multi-output function
 - Layout generated by module generators
 - Fairly popular in the seventies/eighties
- Advantages
 - Simple, predictable timing
- Disadvantages
 - Less flexible than cell-based realization
- Open issue
 - Will PLA structures be useful with new nanotechnologies? (e.g., nanowires)

Programmable Logic Array

• $f_1 = a'b' + b'c + ab$; $f_2 = b'c$

00X 10
X01 11
11X 10
a
b
c
f₁
f₂
(c)

Two-Level Minimization

Assumptions

- Primary goal is to reduce the number of implicants
- All implicants have the same cost
- Secondary goal is to reduce the number of literals
- Rationale
 - Implicants correspond to PLA rows
 - Literals correspond to transistors

" abt bed tedes Area (Cost) & abdab+ bcd+aef = Min (# literals: + # terms.) delay
= Min (Max Eliteralon) + #terms)
terms. 10)n # terms = implicants)

20 Sep 2021

f=

Definitions

Minimum cover

- f: ab+ab+ab+ab+cd
 b+cd

 = b+acd. = b+cd
- Cover of a function with minimum number of implicants $\, m
 u \,$
- Global optimum ✓
- Minimal cover or irredundant cover
 - Cover of the function that is not a proper superset of another cover
 - No implicant can be dropped
 - Local optimum
- Minimal w.r.to 1-implicant containment
 - No implicant contained by another one
 - Weak local optimum

Example

f2 (a,5,c)

• $f_1 = a'b'c' + a'b'c + ab'c + abc + abc'$; $f_2 = a'b'c + ab'c$

CADSL

Definitions

- Prime implicant
 - Implicant not contained by any other implicant
- Prime cover
 - Cover of prime implicants
- Essential prime implicant
 - There exist some minterm covered only by that prime implicant
 - Needs to be included in the cover

PT s P23

CADSL

Two-level Logic Minimization

- Exact methods
 - Compute minimum cover
 - Often difficult/impossible for large functions
 - Based on Quine-McCluskey method
 - Heuristic methods
 - Compute minimal covers (possibly minimum)
 - Large variety of methods and programs
 - MINI, PRESTO, ESPRESSO

Exact Logic Minimization

- Quine's theorem:
 - There is a minimum cover that is prime
- Consequence
 - Search for minimum cover can be restricted to prime implicants
- Quine-McCluskey method
 - Compute prime implicants
 - Determine minimum cover

Prime Implicant Table

- Rows: minterms
- Columns: prime implicants
- Exponential size
 - 2ⁿ minterms
- Remarks
 - Some functions have much fewer primes
 - Minterms can be grouped together
 - Implicit methods for implicant enumeration

Example

• f = a'b'c' + a'b'c + ab'c +abc +abc'

• Primes:

: +a	bc	+6	abc′ ′		15.0)	1
=	\prec	•	CtB.	(B+1).	(8+1).8	- 1

•Table:

α	00*	1	
β	*01	1	
γ	1*1	1	
δ	11*	1	ر

	317			
	α	β	γ	δ
000 001	1	0	0	0
001	1	1	0	0
101	0	1	1	0
111	0	0	1	1

110

Prime implicants of f

Minimum cover of f

Minimum Cover: Early Methods

Reduce table

QM.

- Iteratively identify essentials,
 save them in the cover.
 Remove covered minterms
- Petrick's method
 - Write covering clauses in pos form
 - Multiply out pos form into sop form
 - Select cube of minimum size
- Remark
 - Multiplying out clauses has exponential cost

Thank You

