Lesson in Explain why any function F(x) is a sum of an even function and an odd function in just one way. Hint: $F_+(x) = \frac{F(x) + F(-x)}{2}$ is even. What is the even part of e^x ? What is the odd part?

First,
$$F_{+}(x)$$
 is even: $F_{+}(-x) = \frac{F(-x) + F(x)}{2} = F_{+}(x)$.

Now notice that
$$F(x) = F_{+}(x) + F_{-}(x)$$
 where $F_{-}(x) = \frac{F(x) - F(-x)}{2}$. I claim that $F_{-}(x)$ is odd: $F_{-}(-x) = \frac{F(-x) - F(x)}{2} = -F_{-}(x)$.

So F(x) is the sum of an even function and an odd function.

To show that this decomposition is unique, we suppose we have another decomposition $\tilde{F}_{+}(x) + \tilde{F}_{-}(x) = F(x)$, where $\tilde{F}_{+}(x)$ is even and $\tilde{F}_{-}(x)$ is odd.

Then $F_+(x) + F_-(x) = \tilde{F}_+(x) + \tilde{F}_-(x)$, so $F_+(x) - \tilde{F}_+(x) = \tilde{F}_-(x) - F_-(x)$. But the left hand side is even and the right hand side is odd, so they both must be zero, which says that $F_+(x) = \tilde{F}_+(x)$ and $F_-(x) = \tilde{F}_-(x)$.

This decomposition might seem familiar from hyperbolic trig function formulas: The even part of e^x is $\frac{e^x + e^{-x}}{2} = \cosh x$, and the odd part of e^x is $\frac{e^x - e^{-x}}{2} = \sinh x$.

Fig. 13-7

Period = $2L = 2\pi$ and $L = \pi$. Choosing c = 0, we have

$$a_n = \frac{1}{L} \int_c^{c+2L} f(x) \cos \frac{n\pi x}{L} dx = \frac{1}{\pi} \int_0^{2\pi} x^2 \cos nx dx$$

$$= \frac{1}{\pi} \left\{ (x^2) \left(\frac{\sin nx}{n} \right) - (2x) \left(\frac{-\cos nx}{n^2} \right) + 2 \left(\frac{-\sin nx}{n^3} \right) \right\} \Big|_0^{2\pi} = \frac{4}{n^2}, \qquad n \neq 0$$

If
$$n = 0$$
, $a_0 = \frac{1}{\pi} \int_0^{2\pi} x^2 dx = \frac{8\pi^2}{3}$.

$$b_n = \frac{1}{L} \int_c^{c+2L} f(x) \sin \frac{n\pi x}{L} dx = \frac{1}{\pi} \int_0^{2\pi} x^2 \sin nx dx$$
$$= \frac{1}{\pi} \left\{ (x^2) \left(-\frac{\cos nx}{n} \right) - (2x) \left(-\frac{\sin nx}{n^2} \right) + (2) \left(\frac{\cos nx}{n^3} \right) \right\} \Big|_0^{2\pi} = \frac{-4\pi}{n}$$

Then
$$f(x) = x^2 = \frac{4\pi^2}{3} + \sum_{n=1}^{\infty} \left(\frac{4}{n^2} \cos nx - \frac{4\pi}{n} \sin nx \right).$$

This is valid for $0 < x < 2\pi$. At x = 0 and $x = 2\pi$ the series converges to $2\pi^2$.

- If the period is not specified, the Fourier series cannot be determined uniquely in general.
- Using the results of Problem 13.6, prove that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots = \frac{\pi^2}{6}$.

At x = 0 the Fourier series of Problem 13.6 reduces to $\frac{4\pi^2}{3} + \sum_{n=0}^{\infty} \frac{4}{n^2}$.

By the Dirichlet conditions, the series converges at x = 0 to $\frac{1}{2}(0 + 4\pi^2) = 2\pi^2$.

Then
$$\frac{4\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4}{n^2} = 2\pi^2$$
, and so $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Expand f(x) = x, 0 < x < 2, in a half range (a) sine series, (b) cosine series.

(a) Extend the definition of the given function to that of the odd function of period 4 shown in Fig. 13-12 below. This is sometimes called the *odd extension* of f(x). Then 2L = 4, L = 2.

Fig. 13-12

Thus $a_n = 0$ and

$$b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx = \frac{2}{2} \int_0^2 x \sin \frac{n\pi x}{2} dx$$
$$= \left\{ (x) \left(\frac{-2}{n\pi} \cos \frac{n\pi x}{2} \right) - (1) \left(\frac{-4}{n^2 \pi^2} \sin \frac{n\pi x}{2} \right) \right\} \Big|_0^2 = \frac{-4}{n\pi} \cos n\pi$$

Then

$$f(x) = \sum_{n=1}^{\infty} \frac{-4}{n\pi} \cos n\pi \sin \frac{n\pi x}{2}$$
$$= \frac{4}{\pi} \left(\sin \frac{\pi x}{2} - \frac{1}{2} \sin \frac{2\pi x}{2} + \frac{1}{3} \sin \frac{3\pi x}{2} - \cdots \right)$$

(b) Extend the definition of f(x) to that of the even function of period 4 shown in Fig. 13-13 below. This is the even extension of f(x). Then 2L = 4, L = 2.

Fig. 13-13

Thus $b_n = 0$,

$$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx = \frac{2}{2} \int_0^2 x \cos \frac{n\pi x}{2} dx$$

$$= \left\{ (x) \left(\frac{2}{n\pi} \sin \frac{n\pi x}{2} \right) - (1) \left(\frac{-4}{n^2 \pi^2} \cos \frac{n\pi x}{2} \right) \right\} \Big|_0^2$$

$$= \frac{4}{n^2 \pi^2} (\cos n\pi - 1) \quad \text{If } n \neq 0$$

If
$$n = 0$$
, $a_0 = \int_0^2 x \, dx = 2$.

Then

$$f(x) = 1 + \sum_{n=1}^{\infty} \frac{4}{n^2 \pi^2} (\cos n\pi - 1) \cos \frac{n\pi x}{2}$$
$$= 1 - \frac{8}{\pi^2} \left(\cos \frac{\pi x}{2} + \frac{1}{3^2} \cos \frac{3\pi x}{2} + \frac{1}{5^2} \cos \frac{5\pi x}{2} + \cdots \right)$$

It should be noted that the given function f(x) = x, 0 < x < 2, is represented equally well by the two different series in (a) and (b).