Survival Modelling for Titanic passengers

SIDIBE Moussa CULPIN Alexis

Feature engineering

Data spliting

3 Modelisation

Model evaluation

Feature engineering

Age

Missing values

Filling with nearest value by interpolation

Feature engineering

Embarked

Missing values

Filling with high mode value

Feature engineering

Cabin

Get Cabin labels for each unique values of Fare

Cabin is calculated with based on the most neighbor fare for defined cabin

Converting Fare to integer and unique values

Separate Fares with Cabin label and others without label

Taking the first character of cabin label

To avoid high dimensionality and mismatching with test cabin labels

Data split

Data modelling

Method

LDA

Logistic Regression

KNN

GridSearchCV

Accuracy on this data set is used to rank models

Logistic regression

<pre>y_predict=logreg_cv.predict(X_valid)</pre>						
	class	ification_r	eport(y_v	alid,y_pre	dict))	
✓ 0.7s		precision	recall	f1-score	support	
		precision	recare	11-30010	Suppor t	
	0	0.76	0.93	0.84	44	
	1	0.92	0.72	0.80	46	
accur	асу			0.82	90	
macro	avg	0.84	0.82	0.82	90	
weighted	avg	0.84	0.82	0.82	90	

y_predict=grid_search_knn.predict(X_valid)								
<pre>print(classification_report(y_valid,y_predict))</pre>								
0	0.57	0.93	0.71	44				
1	0.83	0.33	0.47	46				
accuracy			0.62	90				
macro avg	0.70	0.63	0.59	90				
weighted avg	0.70	0.62	0.59	90				

print(clas	sification r	eport(v v	alid.v pre	dict))		
<pre>print(classification_report(y_valid,y_predict))</pre>							
		precision	recall	f1-score	support		
	Θ	0.74	0.89	0.80	44		
	1	0.86	0.70	0.77	46		
accura	асу			0.79	96		
macro a	avg	0.80	0.79	0.79	90		
weighted a	ava	0.80	0.79	0.79	90		

LR get an accuracy of 79.44% with STD 7.05%

Summary

KNN get an accuracy of 63.33% with STD 7.11%

LDA get an accuracy of 79.17% with STD 10.52%

Important variable

LR get an accuracy of 76.315%

Summary

KNN get an accuracy of 62.918%

LDA get an accuracy of 77.751%

Thank you for your attention

