Variable Pre-Selection Ridge Regression Lasso Regression

# Supervised Learning: Regression, Part II

Noah Simon & Ali Shojaie

Jul 31-Aug, 2023 Summer Institute in Statistics for Big Data University of Washington

#### Linear Models in High Dimensions

► When *p* is large, least squares regression will lead to very low training error but terrible test error.

#### Linear Models in High Dimensions

- ▶ When *p* is large, least squares regression will lead to very low training error but terrible test error.
- ▶ We will now see some approaches for fitting linear models in high dimensions,  $p \gg n$ .
- ▶ These approaches also work well when  $p \approx n$  or n > p.

▶ We would like to build a model to predict survival time for breast cancer patients using a number of clinical measurements (tumor stage, tumor grade, tumor size, patient age, etc.) as well as some biomarkers.

- We would like to build a model to predict survival time for breast cancer patients using a number of clinical measurements (tumor stage, tumor grade, tumor size, patient age, etc.) as well as some biomarkers.
- ► For instance, these biomarkers could be:

- We would like to build a model to predict survival time for breast cancer patients using a number of clinical measurements (tumor stage, tumor grade, tumor size, patient age, etc.) as well as some biomarkers.
- ► For instance, these biomarkers could be:
  - ▶ the expression levels of genes measured using a microarray.

- We would like to build a model to predict survival time for breast cancer patients using a number of clinical measurements (tumor stage, tumor grade, tumor size, patient age, etc.) as well as some biomarkers.
- ► For instance, these biomarkers could be:
  - ▶ the expression levels of genes measured using a microarray.
  - protein levels.

- We would like to build a model to predict survival time for breast cancer patients using a number of clinical measurements (tumor stage, tumor grade, tumor size, patient age, etc.) as well as some biomarkers.
- ► For instance, these biomarkers could be:
  - ▶ the expression levels of genes measured using a microarray.
  - protein levels.
  - mutations in genes potentially implicated in breast cancer.

- We would like to build a model to predict survival time for breast cancer patients using a number of clinical measurements (tumor stage, tumor grade, tumor size, patient age, etc.) as well as some biomarkers.
- ► For instance, these biomarkers could be:
  - the expression levels of genes measured using a microarray.
  - protein levels.
  - mutations in genes potentially implicated in breast cancer.
- ► How can we develop a model with low test error in this setting?

#### Remember

- ► We have *n* training observations.
- Our goal is to get a model that will perform well on future test observations.
- ▶ We'll incur some bias in order to reduce variance.

#### Variable Pre-Selection

The simplest approach for fitting a model in high dimensions:

- 1. Choose a small set of variables, say the q variables that are most correlated with the response, where q < n and q < p.
- 2. Use least squares to fit a model predicting *y* using only these *q* variables.

This approach is simple and straightforward.

#### Variable Pre-Selection in R

```
xtr <- matrix(rnorm(100*100),ncol=100)
beta <- c(rep(1,10),rep(0,90))
ytr <- xtr%*%beta + rnorm(100)
cors <- cor(xtr,ytr)
whichers <- which(abs(cors)>.2)
mod <- lm(ytr~xtr[,whichers])
print(summary(mod))</pre>
```

► We need a way to choose *q*, the number of variables used in the regression model.

- ▶ We need a way to choose *q*, the number of variables used in the regression model.
- $\blacktriangleright$  We want q that minimizes the test error.

- ► We need a way to choose *q*, the number of variables used in the regression model.
- ► We want *q* that minimizes the test error.
- ► For a range of values of *q*, we can perform the validation set approach, leave-one-out cross-validation, or *K*-fold cross-validation in order to estimate the test error.

- ▶ We need a way to choose *q*, the number of variables used in the regression model.
- ► We want *q* that minimizes the test error.
- ► For a range of values of q, we can perform the validation set approach, leave-one-out cross-validation, or K-fold cross-validation in order to estimate the test error.
- ► Then choose the value of *q* for which the estimated test error is smallest.

### Estimating the Test Error For a Given q

This is the right way to estimate the test error using the validation set approach:

- 1. Split the observations into a training set and a validation set.
- 2. Using the training set only:
  - a. Identify the q variables most associated with the response.
  - b. Use least squares to fit a model predicting *y* using those *q* variables
  - c. Let  $\hat{\beta}_1, \dots, \hat{\beta}_q$  denote the resulting coefficient estimates.
- 3. Use  $\hat{\beta}_1, \dots, \hat{\beta}_q$  obtained on training set to predict response on validation set, and compute the validation set MSE.

### Estimating the Test Error For a Given q

This is the wrong way to estimate the test error using the validation set approach:

- 1. Identify the *q* variables most associated with the response on the full data set.
- 2. Split the observations into a training set and a validation set.
- 3. Using the training set only:
  - a. Use least squares to fit a model predicting y using those q variables.
  - b. Let  $\hat{\beta}_1, \dots, \hat{\beta}_q$  denote the resulting coefficient estimates.
- 4. Use  $\hat{\beta}_1, \dots, \hat{\beta}_q$  obtained on training set to predict response on validation set, and compute the validation set MSE.

### Frequently Asked Questions

▶ **Q:** Does it really matter how you estimate the test error?

A: Yes.

#### Frequently Asked Questions

▶ **Q:** Does it really matter how you estimate the test error?

A: Yes.

▶ **Q:** Would anyone make such a silly mistake?

A: Yes.

► The variable pre-selection approach is simple and easy to implement — all you need is a way to calculate correlations, and software to fit a linear model using least squares.

- ► The variable pre-selection approach is simple and easy to implement — all you need is a way to calculate correlations, and software to fit a linear model using least squares.
- ▶ But it might not work well: just because a bunch of variables are correlated with the response doesn't mean that when used together in a linear model, they will predict the response well.

- ► The variable pre-selection approach is simple and easy to implement — all you need is a way to calculate correlations, and software to fit a linear model using least squares.
- ▶ But it might not work well: just because a bunch of variables are correlated with the response doesn't mean that when used together in a linear model, they will predict the response well.
- ▶ What we really want to do: pick the *q* variables that best predict the response.

- ► The variable pre-selection approach is simple and easy to implement all you need is a way to calculate correlations, and software to fit a linear model using least squares.
- ▶ But it might not work well: just because a bunch of variables are correlated with the response doesn't mean that when used together in a linear model, they will predict the response well.
- ▶ What we really want to do: pick the *q* variables that best predict the response.
- ► Many methods have been developed to achieve this over the past 10-20 years! We cover few of them in this module.

▶ Ideally, we would like to consider all possible models using a subset of the *p* predictors.

- ▶ Ideally, we would like to consider all possible models using a subset of the *p* predictors.
- $\blacktriangleright$  In other words, we'd like to consider all  $2^p$  possible models.

- ▶ Ideally, we would like to consider all possible models using a subset of the *p* predictors.
- ▶ In other words, we'd like to consider all  $2^p$  possible models.
- ► This is called best subset selection.

- ▶ Ideally, we would like to consider all possible models using a subset of the *p* predictors.
- ▶ In other words, we'd like to consider all  $2^p$  possible models.
- ► This is called best subset selection.
- ► Unfortunately, this is computationally intractable:
  - ► When p = 3,  $2^p = 8$ .
  - ▶ When p = 6,  $2^p = 64$ .
  - When p = 250, there are  $2^{250} \approx 10^{80}$  possible models. According to www.universetoday.com, this is around the number of atoms in the known universe.
  - ► Not feasible to consider so many models!

- ▶ Ideally, we would like to consider all possible models using a subset of the *p* predictors.
- ▶ In other words, we'd like to consider all  $2^p$  possible models.
- ► This is called best subset selection.
- ► Unfortunately, this is computationally intractable:
  - ► When p = 3,  $2^p = 8$ .
  - ▶ When p = 6,  $2^p = 64$ .
  - When p = 250, there are  $2^{250} \approx 10^{80}$  possible models. According to www.universetoday.com, this is around the number of atoms in the known universe.
  - ► Not feasible to consider so many models!

#### Ridge Regression and the Lasso

▶ Best subset selection does a discrete search through model space, considering subsets of the predictors, and fitting each of the resulting models using least squares. Model complexity is controlled by using subsets of the predictors.

#### Ridge Regression and the Lasso

- ▶ Best subset selection does a discrete search through model space, considering subsets of the predictors, and fitting each of the resulting models using least squares. Model complexity is controlled by using subsets of the predictors.
- Ridge regression and the lasso instead control model complexity by using an alternative to least squares, by shrinking the regression coefficients.

#### Ridge Regression and the Lasso

- Best subset selection does a discrete search through model space, considering subsets of the predictors, and fitting each of the resulting models using least squares. Model complexity is controlled by using subsets of the predictors.
- ► Ridge regression and the lasso instead control model complexity by using an alternative to least squares, by shrinking the regression coefficients.
- ► This is known as regularization or penalization.

#### **Crazy Coefficients**

▶ When p > n, some of the variables are highly correlated.

#### **Crazy Coefficients**

- ▶ When p > n, some of the variables are highly correlated.
- ► Why does correlation matter?
  - ▶ Suppose that  $X_1$  and  $X_2$  are highly correlated with each other... assume  $X_1 = X_2$  for the sake of argument.
  - ► And suppose that the least squares model is

$$\hat{y} = X_1 - 2X_2 + 3X_3.$$

► Then this is also a least squares model:

$$\hat{y} = 10000001X_1 - 100000002X_2 + 3X_3.$$

#### **Crazy Coefficients**

- ▶ When p > n, some of the variables are highly correlated.
- ► Why does correlation matter?
  - ▶ Suppose that  $X_1$  and  $X_2$  are highly correlated with each other... assume  $X_1 = X_2$  for the sake of argument.
  - And suppose that the least squares model is

$$\hat{y} = X_1 - 2X_2 + 3X_3.$$

► Then this is also a least squares model:

$$\hat{y} = 10000001X_1 - 100000002X_2 + 3X_3.$$

- ▶ Bottom Line: When there are too many variables, the least squares coefficients can get crazy!
- ► This craziness is directly responsible for poor test error.
- ▶ It amounts to too much model complexity.

#### A Solution: Don't Let the Coefficients Get Too Crazy

lacktriangledown Recall that least squares involves finding eta that minimizes

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$
.

# A Solution: Don't Let the Coefficients Get Too Crazy

lacktriangle Recall that least squares involves finding eta that minimizes

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$
.

 $\blacktriangleright$  Ridge regression involves finding  $\beta$  that minimizes

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \sum_i \beta_j^2.$$

# A Solution: Don't Let the Coefficients Get Too Crazy

ightharpoonup Recall that least squares involves finding eta that minimizes

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$
.

ightharpoonup Ridge regression involves finding  $\beta$  that minimizes

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \sum_i \beta_j^2.$$

ightharpoonup Equivalently, find  $\beta$  that minimizes

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$

subject to the constraint that

$$\sum_{j=1}^p \beta_j^2 \le s.$$

# Ridge Regression

► Ridge regression coefficient estimates minimize

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \sum_{i} \beta_j^2.$$

- ▶ Here  $\lambda$  is a nonnegative tuning parameter that shrinks the coefficient estimates.
- ▶ When  $\lambda = 0$ , then ridge regression is just the same as least squares.
- As  $\lambda$  increases, then  $\sum_{j=1}^{p} (\hat{\beta}_{\lambda,j}^{R})^2$  decreases i.e. coefficients become shrunken towards zero.
- ▶ When  $\lambda = \infty$ ,  $\hat{\boldsymbol{\beta}}_{\lambda}^{R} = 0$ .

# Ridge Regression As $\lambda$ Varies





# Ridge Regression In Practice

- ▶ Perform ridge regression for a very fine grid of  $\lambda$  values.
- Use cross-validation or the validation set approach to select the optimal value of λ — that is, the best level of model complexity.
- ▶ Perform ridge on the full data set, using that value of  $\lambda$ .

# Example in R

```
xtr <- matrix(rnorm(100*100),ncol=100)
beta \leftarrow c(rep(1,10), rep(0,90))
vtr <- xtr%*%beta + rnorm(100)</pre>
library(glmnet)
cv.out <- cv.glmnet(xtr,ytr,alpha=0,nfolds=5)</pre>
print(cv.out$cvm)
plot(cv.out)
cat("CV Errors", cv.out$cvm,fill=TRUE)
cat("Lambda with smallest CV Error",
cv.out$lambda[which.min(cv.out$cvm)],fill=TRUE)
cat("Coefficients", as.numeric(coef(cv.out)),fill=TRUE)
cat("Number of Zero Coefficients",
sum(abs(coef(cv.out))<1e-8),fill=TRUE)</pre>
```

# R Output



▶ Ridge regression is a simple idea and has a number of attractive properties: for instance, you can continuously control model complexity through the tuning parameter  $\lambda$ .

- ▶ Ridge regression is a simple idea and has a number of attractive properties: for instance, you can continuously control model complexity through the tuning parameter  $\lambda$ .
- ▶ But it suffers in terms of model interpretability, since the final model contains all *p* variables, no matter what.

- ▶ Ridge regression is a simple idea and has a number of attractive properties: for instance, you can continuously control model complexity through the tuning parameter  $\lambda$ .
- ► But it suffers in terms of model interpretability, since the final model contains all *p* variables, no matter what.
- ▶ Often want a simpler model involving a subset of the features.

- ▶ Ridge regression is a simple idea and has a number of attractive properties: for instance, you can continuously control model complexity through the tuning parameter  $\lambda$ .
- ▶ But it suffers in terms of model interpretability, since the final model contains all *p* variables, no matter what.
- ▶ Often want a simpler model involving a subset of the features.
- ► The lasso involves performing a little tweak to ridge regression so that the resulting model contains mostly zeros.

- ▶ Ridge regression is a simple idea and has a number of attractive properties: for instance, you can continuously control model complexity through the tuning parameter  $\lambda$ .
- ► But it suffers in terms of model interpretability, since the final model contains all *p* variables, no matter what.
- ▶ Often want a simpler model involving a subset of the features.
- ► The lasso involves performing a little tweak to ridge regression so that the resulting model contains mostly zeros.
- ► In other words, the resulting model is sparse. We say that the lasso performs feature selection.

- ▶ Ridge regression is a simple idea and has a number of attractive properties: for instance, you can continuously control model complexity through the tuning parameter  $\lambda$ .
- ► But it suffers in terms of model interpretability, since the final model contains all *p* variables, no matter what.
- ▶ Often want a simpler model involving a subset of the features.
- ► The lasso involves performing a little tweak to ridge regression so that the resulting model contains mostly zeros.
- ► In other words, the resulting model is sparse. We say that the lasso performs feature selection.
- ► The lasso is a very active area of research interest in the statistical community!

lacktriangle The lasso involves finding eta that minimizes

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \sum_i |\beta_i|.$$

lacktriangle The lasso involves finding eta that minimizes

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \sum_{i} |\beta_{i}|.$$

ightharpoonup Equivalently, find  $\beta$  that minimizes

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$

subject to the constraint that

$$\sum_{j=1}^p |\beta_j| \le s.$$

lacktriangle The lasso involves finding eta that minimizes

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \sum_{i} |\beta_{i}|.$$

ightharpoonup Equivalently, find  $\beta$  that minimizes

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$

subject to the constraint that

$$\sum_{j=1}^p |\beta_j| \le s.$$

▶ So lasso is just like ridge, except that  $\beta_j^2$  has been replaced with  $|\beta_i|$ .

Variable Pre-Selection Ridge Regression Lasso Regression

## The Lasso

► Lasso is a lot like ridge:

- ► Lasso is a lot like ridge:
  - $ightharpoonup \lambda$  is a nonnegative tuning parameter that controls model complexity.

- ► Lasso is a lot like ridge:
  - $\blacktriangleright \ \lambda$  is a nonnegative tuning parameter that controls model complexity.
  - ▶ When  $\lambda = 0$ , we get least squares.

- ► Lasso is a lot like ridge:
  - $ightharpoonup \lambda$  is a nonnegative tuning parameter that controls model complexity.
  - ▶ When  $\lambda = 0$ , we get least squares.
  - When  $\lambda$  is very large, we get  $\hat{\beta}_{\lambda}^{L} = 0$ .

- Lasso is a lot like ridge:
  - $ightharpoonup \lambda$  is a nonnegative tuning parameter that controls model complexity.
  - ▶ When  $\lambda = 0$ , we get least squares.
  - ▶ When  $\lambda$  is very large, we get  $\hat{\beta}_{\lambda}^{L} = 0$ .
- ▶ But unlike ridge, lasso will give some coefficients exactly equal to zero for intermediate values of  $\lambda$ !

## Lasso As $\lambda$ Varies





#### Lasso In Practice

- ▶ Perform lasso for a very fine grid of  $\lambda$  values.
- Use cross-validation or the validation set approach to select the optimal value of λ — that is, the best level of model complexity.
- $\blacktriangleright$  Perform the lasso on the full data set, using that value of  $\lambda$ .

# Example in R

```
xtr <- matrix(rnorm(100*100),ncol=100)
beta \leftarrow c(rep(1,10), rep(0,90))
ytr <- xtr%*%beta + rnorm(100)</pre>
library(glmnet)
cv.out <- cv.glmnet(xtr,ytr,alpha=1,nfolds=5)</pre>
print(cv.out$cvm)
plot(cv.out)
cat("CV Errors", cv.out$cvm,fill=TRUE)
cat("Lambda with smallest CV Error",
cv.out$lambda[which.min(cv.out$cvm)],fill=TRUE)
cat("Coefficients", as.numeric(coef(cv.out)),fill=TRUE)
cat("Number of Zero Coefficients", sum(abs(coef(cv.out))<1e-8),
fill=TRUE)
```

# R Output



# Ridge and Lasso: A Geometric Interpretation



# Let's Try It Out in R!

# Chapter 6 R Lab, Part 2 www.statlearning.com

# Pros/Cons of Each Approach

| Approach      | Simplicity?* | Sparsity?** | Predictions?*** |
|---------------|--------------|-------------|-----------------|
| Pre-Selection | Good         | Yes         | So-So           |
| Ridge         | Medium       | No          | Great           |
| Lasso         | Bad          | Yes         | Great           |

<sup>\*</sup> How simple is this model-fitting procedure? If you were stranded on a desert island with pretty limited statistical software, could you fit this model?

<sup>\*\*</sup> Does this approach perform feature selection, i.e. is the resulting model sparse?

<sup>\*\*\*</sup> How good are the predictions resulting from this model?

# No "Best" Approach

▶ There is no "best" approach to regression in high dimensions.

# No "Best" Approach

- ► There is no "best" approach to regression in high dimensions.
- ► Some approaches will work better than others. For instance:
  - ► Lasso will work well if it's really true that just a few features are associated with the response.
  - ► Ridge will do better if all of the features are associated with the response.

# No "Best" Approach

- ► There is no "best" approach to regression in high dimensions.
- ► Some approaches will work better than others. For instance:
  - Lasso will work well if it's really true that just a few features are associated with the response.
  - ► Ridge will do better if all of the features are associated with the response.
- ► If somebody tells you that one approach is "best"... then they are mistaken. Politely contradict them.
- ► While no approach is "best", some approaches are wrong (e.g.: there is a wrong way to do cross-validation)!

# Predicting Age Using DNA Methylation Data

- ► Comparison on 6 data sets
- ► SPC: A method based on dimension reduction (not discussed here).
- ► Elastic Net: A hybrid between ridge and lasso.
- ► SVM: We'll see it next lecture in the classification context.
- ► Citation: Zhuang et al., BMC Bioinformatics, 2012

#### Didn't I Tell You? No Best Method!



High C-index indicates a low test error.

#### **Bottom Line**

Much more important than what model you fit is how you fit it.

- ► Was cross-validation performed properly?
- ▶ Did you select a model (or level of model complexity) based on an estimate of test error?

Variable Pre-Selection Ridge Regression Lasso Regression

# **Discussion Questions**

A collaborator comes to you and says:

I really don't like this LASSO thing; I tried it on my data and it the resulting model only explained 15% of the variability in my data... Then I tried variable pre-selection, and I was able to get it to explain 95%! Why would anyone ever use the LASSO???

What do you think is happening?

Variable Pre-Selection Ridge Regression Lasso Regression

# **Discussion Questions**

What if instead they said:

I really don't like this variable pre-selection thing; I tried it on my data and it the resulting model only explained 15% of the variability in my data... Then I tried the LASSO, and I was able to get it to explain 95%! Why would anyone ever use variable pre-selection???

# **Discussion Questions**

Finally, what if they said:

I really love the LASSO. I was originally just using standard linear regression and the resulting model only explained 15% of the variability in my data... Then I tried the LASSO, and I was able to get it to explain 95%!

What do you think is happening here?

# **Discussion Questions**

A collaborator came to me and said:

"I am reviewing a paper where the authors claim to be able to predict the flu, by looking at serum gene expression values 3 weeks before symptom onset. This seems impossible, but I can't find an obvious error in the paper"

# **Discussion Questions**

Looking at the paper, the authors had used the following pipeline:

- ► Took banked blood from 100 patients (50 subsequently diagnosed with flu, 50 were not).
- ► They separately looked at the correlation of expression of each gene with flu-status, and selected the 70 top genes
- ► They split into a training and test set.
- On the training set they ran 5-fold cross validation to come up with an optimal aggregation of kernel-SVM, logistic regression, and boosted classification trees
- ► They evaluated this on the test set, and found almost perfect classification.

Variable Pre-Selection Ridge Regression Lasso Regression

# **Discussion Questions**

What is going on???

Did they go on to create an enormously successful biotech company?