Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого»

Механико-технологический факультет

Кафедра «Сельскохозяйственные машины»

ПРАКТИЧЕСКИЕ РАБОТЫ по дисциплине «НАДЕЖНОСТЬ МАШИН»

для студентов специальности 1-36 12 01 «Проектирование и производство сельскохозяйственной техники»

Попов В.Б. Голопятин А.В. Шельманова Е.П.

СОДЕРЖАНИЕ

Практическая работа №1. Обработка информации о показателях надёжности	4
Практическая работа №2. Расчёт показателей надёжности при полной информации	14
Практическая работа №3. Определение вероятности появления случайной величины	23
Практическая работа №4. Определение количественных характеристик надёжности по статическим данным об отказах изделий	30
Практическая работа №5. Стендовые и полигонные испытания. Определение коэффициента ускорений.	34
Литература	40
Приложение	41

Практическая работа №1 ОБРАБОТКА ИНФОРМАЦИИ О ПОКАЗАТЕЛЯХ НАДЁЖНОСТИ

Общие сведения

Существует несколько методов обработки информации. Некоторые из них (например, метод максимального правдоподобия) сложны, трудоемки, нуждаются в применении электронно-вычислительной техники. Использование таких методов в хозяйствах и на ремонтных предприятиях для обработки информации о надежности тракторов и сельскохозяйственных машин не только затруднено, но и нецелесообразно, так как их точность превышает точность входной информации. Рекомендуемые ниже методы обработки информации просты и надежны. Их могут применять инженеры сельскохозяйственного производства без использования электронно-вычислительных машин.

После составления сводной таблицы информации в порядке возрастания показателя надежности (табл. 1.1) её обрабатывают в такой последовательности:

- Построение статистического ряда исходной информации и определение величины смещения начала рассеивания t_{cm} .
- Определение среднего значения \bar{t} и среднего квадратического отклонения σ показателя надежности (ПН).
- Проверка информации на выпадающие точки.
- Построение гистограммы, полигона и кривой наклонных опытных вероятностей показателя надежности.
- Определения коэффициента вариации V.
- Выбор теоретического закона распределения (ТЗР), определение его параметров и графическое построение интегральной F(t) и дифференциальной f(t) функций.
- Проверка совпадения опытных и теоретических законов распределения ПН по критериям согласия.
- Определение доверительных границ рассеивания одиночных и средних значений показателя надежности и возможных наибольших ошибок переноса.

Выполнить обработку информационных данных о показателях надёжности на основании экспериментальной информации о доремонтных ресурсах двигателей по варианту.

Пример выполнения задания

Tаблица 1.1 Информация о доремонтных ресурсах двигателя по варианту

№ двигателя	Доремонт- ный ресурс (мото-ч)	№ двигателя	Доремонт- ный ресурс (мото-ч)	№ двигателя	Доремонт- ный ресурс (мото-ч)
1	1450	24	3280	47	4610
2	1510	25	3320	48	4640
3	1560	26	3380	49	4790
4	1670	27	3420	50	4820
5	1680	28	3480	51	4940
6	1750	29	3510	52	4980
7	2010	30	3570	53	5030
8	2140	31	3600	54	5110
9	2290	32	3670	55	5200
10	2350	33	3780	56	5460
11	2410	34	3920	57	5580
12	2550	35	4020	58	5620
13	2690	36	4170	59	5750
14	2720	37	4210	60	6180
15	2880	38	4230	61	6280
16	2900	39	4250	62	6410
17	3040	40	4300	63	6680
18	3070	41	4360	64	6740
19	3100	42	4390	65	6820
20	3150	43	4460	66	7180
21	3180	44	4480	67	7350
22	3210	45	4530	68	7490
23	3250	46	4570	69	7870
				70	8000

- 1. Построение статистического ряда исходной информации и определение величины смещения начала рассеивания.
- 1.1. Количество интервалов статистического ряда n определяем из уравнения:

$$n = \sqrt{N}$$
.

Полученный результат округляем в сторону увеличения до ближайшего целого числа. Количество интервалов не должно выходить за пределы n = 6...20.

$$n = \sqrt{70} \approx 9$$
 интервалов.

1.2. Величину одного интервала A определяем из уравнения:

$$A = \frac{t_{\text{max}} - t_{\text{min}}}{n},$$

где t_{max} и t_{min} — соответственно наибольшее и наименьшее значения показателей надежности в сводной таблице данных.

$$t_{max} = T_{\partial p70} = 8000$$
 мото-ч, $t_{min} = T_{\partial p1} = 1450$ мото-ч.

$$A = \frac{8000 - 1450}{9} \approx 728$$
 мото-ч.

1.3. Определяем границы каждого интервала в единицах показателя надежности по формулам

$$t_{i_{\mathcal{H}}}=t_{(i-1)_{\mathcal{G}}},$$

$$t_{ie} = t_{iH} + A,$$

где t_{iH} и t_{iB} — нижняя и верхняя граница интервала соответственно.

За начало первого интервала t_{1H} следует принимать наименьшее значение показателя надёжности (ПН).

Для первого интервала $t_{1H} = T_{\partial p} = 1450$ мото-ч;

$$t_{1e} = t_{1H} + A = 1450 + 728 = 2178$$
 мото-ч.

Для второго интервала $t_{2\mu} = t_{1\theta} = 2178$ мото-ч;

$$t_{26} = t_{2H} + A = 2178 + 728 = 2906$$
 мото-ч.

Для третьего интервала $t_{3H} = t_{2e} = 2906$ мото-ч;

$$t_{36} = t_{3H} + A = 2906 + 728 = 3634$$
 мото-ч.

Для четвертого интервала $t_{4H} = t_{3e} = 3634$ мото-ч;

$$t_{4e} = t_{4h} + A = 3634 + 728 = 4362$$
 мото-ч.

Для пятого интервала $t_{5H} = t_{4g} = 4362$ мото-ч;

$$t_{5e} = t_{5h} + A = 4362 + 728 = 5090$$
 мото-ч.

Для шестого интервала $t_{6H} = t_{5g} = 5090$ мото-ч;

$$t_{6e} = t_{6\mu} + A = 5090 + 728 = 5818$$
 мото-ч.

Для седьмого интервала $t_{7H} = t_{6e} = 5818$ мото-ч;

$$t_{76} = t_{7H} + A = 5818 + 728 = 6546$$
 мото-ч.

Для восьмого интервала $t_{8H} = t_{7g} = 6546$ мото-ч;

$$t_{8e} = t_{8h} + A = 6546 + 728 = 7274$$
 мото-ч.

Для девятого интервала $t_{9\mu} = t_{8e} = 7274$ мото-ч;

$$t_{96} = t_{9H} + A = 7274 + 728 = 8002$$
 мото-ч.

1.4. Определяем количество случаев (частота *m*) в каждом интервале. Если точка информации попадает на границу между интервалами, то в предыдущий и в последующий интервалы вносят по 0,5 точки.

Для первого интервала $m_1 = 8$. Для второго интервала $m_2 = 8$. $m_3 = 15$. Для третьего интервала Для четвертого интервала $m_4 = 10$. $m_5 = 12$. Для пятого интервала $m_6 = 6$. Для шестого интервала $m_7 = 3$. Для седьмого интервала $m_8 = 4$. Для восьмого интервала $m_9 = 4$. Для девятого интервала

1.5. Определяем опытную вероятность появления показателя надежности в каждом интервале $P_i = m_i / N$.

 $P_1 = 8 / 70 = 0.114$. Для первого интервала $P_2 = 8 / 70 = 0.114$. Для второго интервала $P_3 = 15 / 70 = 0.214$. Для третьего интервала Для четвертого интервала $P_4 = 10 / 70 = 0.143$. Для пятого интервала $P_5 = 12 / 70 = 0.171$. Для шестого интервала $P_6 = 6 / 70 = 0.086$. $P_7 = 3 / 70 = 0.043$. Для седьмого интервала $P_8 = 4 / 70 = 0.057$. Для восьмого интервала $P_9 = 4 / 70 = 0.057$. Для девятого интервала

1.6. Определяем накопленную (интегральную) опытную вероятность $\sum P_i$.

$$\sum P_i = P_i + \sum P_{i-1}$$
If If The Property of the Property

Для первого интервала $\sum P_1 = 0.114$. $\Sigma P_2 = 0.114 + 0.114 = 0.228$. Для второго интервала $\Sigma P_3 = 0.214 + 0.228 = 0.442$. Для третьего интервала $\sum P_4 = 0.143 + 0.442 = 0.585$ Для четвертого интервала $\sum P_5 = 0.171 + 0.585 = 0.756$ Для пятого интервала $\Sigma P_6 = 0.086 + 0.756 = 0.842$ Для шестого интервала $\sum P_7 = 0.043 + 0.842 = 0.885$ Для седьмого интервала $\Sigma P_8 = 0.057 + 0.885 = 0.942$ Для восьмого интервала $\Sigma P_9 = 0.057 + 0.942 = 0.999$ Для девятого интервала

1.7. Определяем смещение начала рассеивания показателя надежности.

При определении величины смещения начала рассеивания t_{c_M} используем практические рекомендации:

• при наличии статистического ряда информации (N > 25) величина смещения $t_{\scriptscriptstyle CM}$ равна:

$$t_{CM} = t_{1H} - 0.5 \cdot A$$

где t_{1H} — значение начала первого интервала;

A — величина одного интервала.

$$t_{CM} = 1450 - 0.5 \cdot 728 = 1086$$

- 2. Определение среднего значения и среднего квадратического отклонения показателя надежности.
- 2.1. Среднее значение является важной характеристикой показателя надежности. Зная средние значения, планируют роботу машины, составляют заявку на запасные части, определяют объем ремонтных работ и т. д.

Среднее значение показателя надежности \bar{t} определяем по уравнению:

$$\bar{t} = \sum_{i=1}^{n} t_{ic} \cdot P_i ,$$

где n – количество интервалов в статистическом ряду;

 t_{ic} – значение середины i-го интервала;

 P_i – опытная вероятность i-го интервала.

Определим значения середины каждого интервала:

$$t_{ic} = \frac{t_{iH} + t_{iB}}{2}.$$

$$t_{1c} = \frac{1450 + 2178}{2} = 1814; \quad t_{2c} = \frac{2178 + 2906}{2} = 2542;$$

$$t_{3c} = \frac{2906 + 3634}{2} = 3270; \quad t_{4c} = \frac{3634 + 4362}{2} = 3998;$$

$$t_{5c} = \frac{4362 + 5090}{2} = 4726; \quad t_{6c} = \frac{5090 + 5818}{2} = 5454;$$

$$t_{7c} = \frac{5818 + 6546}{2} = 6182; \quad t_{8c} = \frac{6546 + 7274}{2} = 6910;$$

$$t_{9c} = \frac{7274 + 8002}{2} = 7638.$$

Среднее значение показателя

$$\bar{t} = \sum_{1}^{9} 1814 \cdot 0,114 + 2542 \cdot 0,114 + ... + 6910 \cdot 0,057 + 7638 \cdot 0,057 = 4144$$

2.2. При определении среднего значения величин \overline{q} , обратных основным показателям надежности \overline{t} , воспользуемся средними гармоническими значениями, определяемыми по уравнению:

$$\overline{q} = \frac{1}{\overline{t}} = \frac{N}{\sum_{i=1}^{N} t_i}.$$

$$\overline{q} = \frac{1}{4144} = 2,4 \cdot 10^{-4}.$$

2.3. Среднее квадратическое отклонение определим по уравнению:

$$\sigma = \sqrt{\sum_{1}^{N} (t_i - \bar{t})^2 \cdot P_i} \ .$$

$$\sigma = \sqrt{(1814 - 4144)^2 \cdot 0,114 + \ldots + (7638 - 4144)^2 \cdot 0,057} = 1612 \text{ мото-ч.}$$

- 3. Проверка информации на выпадающие точки.
- 3.1. Грубую проверку информации проводим по правилу $\bar{t}=\pm 3\sigma$,
- т. е. полученное расчетным путем среднее значение показателя надежности последовательно уменьшаем и увеличиваем на 3σ . Если крайние точки информации не выходят за пределы $\bar{t}=\pm 3\sigma$, все точки информации действительны.

$$4144 - 3.1612 = -692$$
 мото-ч (нижняя граница) $4144 + 3.1612 = 8980$ мото-ч (верхняя граница).

Наименьший доремонтный ресурс двигателя $T_{\partial p1}$ =1450 мото-ч. Следовательно, эта точка информации действительна и должна быть учтена при дальнейших расчетах (1450 > - 692).

Наибольший ресурс двигателя $T_{\partial p70} = 8000$ также не выходит за верхнюю границу достоверности (8000 > 8979 мото-ч). Поэтому она тоже должна учитываться в дальнейших расчетах.

3.2. Проверим смежные точки информации по критерию λ (критерий Ирвина).

Фактическое значение критерия λ_{on} определим по уравнению:

$$\lambda_{on} = \frac{1}{\sigma} \cdot (t_i - t_{i-1}),$$

где t_i и t_{i-1} — смежные точки информации.

 λ_{on} для крайних точек информации:

• для наименьшей точки информации ($T_{\partial p1} = 1450$ мото-ч)

$$\lambda_{on} = \frac{1}{\sigma} (T_{\partial p1} - T_{\partial p2}) = \frac{1510 - 1450}{1612} \approx 0.37;$$

• для наибольшей точки информации ($T_{\partial p70}$ =8000 мото-ч)

$$\lambda_{on} = \frac{1}{\sigma} \left(T_{\partial p70} - T_{\partial p69} \right) = \frac{8000 - 7870}{1612} \approx 0.08.$$

Сравним опытные и теоретические (см. табл. $\Pi.1$) критерии при N=70:

- первая точка информации $T_{\partial p1}$ =1450 мото-ч является достоверной точкой (λ_{on} = 0,37 < λ = 1,1) и её следует учитывать при дальнейших расчетах;
- последняя точка информации $T_{\partial p70}$ =8000 мото-ч является достоверной точкой (λ_{on} =0,08 < λ = 1,1), и её следует учитывать в дальнейших расчетов.

Если проверка исключает точки информации, то необходимо вновь перестроить статистический ряд и пересчитать среднее значение и среднее квадратическое отклонение показателя надежности.

Приведем уточненный статистический ряд распределения доремонтного ресурса двигателя в таблицу.

Таблица 1.2 Уточненный статический ряд распределения

Интервал, мото-ч	m_i	P_i	$\sum P_i$
1450-2178	8	0,114	0,114
2178-2906	8	0,114	0,228
2906-3634	15	0,214	0,442
3634-4362	10	0,143	0,585
4362-5090	12	0,171	0,756
5090-5818	6	0,086	0,842
5818-6546	3	0,043	0,885
6546-7274	4	0,057	0,942
7274-8002	4	0,057	0,999

4. Построение гистограммы, полигона и кривой накопленных опытных вероятностей показателя надежности.

Составленный по данным исходной информации уточненный статистический ряд (табл. 1.2) дает полную характеристику опытного распределения показателя надежности.

По данным статистического ряда можно строим гистограмму,

полигон и кривую накопленных опытных вероятностей (рис. 1.1). По оси абсцисс откладываем в масштабе значение показателя надежности t, а по оси ординат — опытную вероятность P_i (у гистограммы и полигона) и накопленную опытную вероятность $\sum P_i$ (у кривой накопленных вероятностей).

Рис. 1.1. Схема обработки информации о показателях надежности: a — распределение первичной информации; δ — гистограмма распределения; ϵ — полигон распределения; ϵ — кривая накопленных вероятностей

5. Определим значение коэффициента вариации:

$$V = \frac{\sigma}{\bar{t} - t_{\scriptscriptstyle CM}}\,,$$
 где $\bar{t} = 4144$ мото-ч; $\sigma = 1612$ мото-ч; $t_{\scriptscriptstyle CM} = 1086.$
$$v = \frac{1612}{4144 - 1086} = 0{,}527\,.$$

- 6. Определяем параметры закона распределения Вейбулла
- 6.1. По коэффициенту вариации из таблицы П.2. приложения практического руководства выбираем коэффициенты:

$$b = 2$$
; $K_b = 0.886$; $C_b = 0.463$.

6.2. Параметр a находим по уравнению:

$$a = \frac{\sigma}{C_b} = \frac{1612}{0,463} = 3482$$
 мото-ч.

Таблица 1.3 Исходные данные

		Ba	риант	<u> </u>					Ba	ариант	r 2		
1340	2500	3440	3920	4200	4790	5680	1490	3080	3650	4110	4600	5590	6640
1350	2740	3480	3960	4220	4800	5840	1520	3120	3710	4180	4750	5620	6720
1420	2950	3520	4650	4280	4820	5980	1640	3140	3750	4240	4760	5780	6980
1550	3080	3550	3790	4320	4890	6030	1710	3160	3790	4280	4890	5840	6990
1760	3190	3590	3820	4370	4930	6170	2180	3230	3810	4350	4930	5910	7210
2050	3250	3630	3960	4420	5060	6240	2390	3300	3840	4420	4950	5960	7390
2160	3260	3650	4080	4490	5120	6420	2430	3360	3880	4440	4990	6010	7550
2210	3300	3770	4120	4540	5200	6940	2660	3410	3950	4470	5300	6290	7960
2300	3350	3860	4140	4680	5360	7020	2890	3450	4050	4500	5420	6320	8010
2450	3360	3890	4180	4750	5470	7140	3060	3540	4080	4560	5450	6590	8100
		Ba	риант	г 3					Ba	ариант	г 4		
1500	3200	3580	4000	4300	4600	5210	1550	2570	3320	4040	4780	5140	6290
1870	3210	3610	4000	4350	4710	5350	1610	2640	3350	4100	4790	5290	6460
2010	3210	3620	4100	4370	4730	5400	1780	2790	3440	4150	4820	5480	6540
2010	3260	3700	410	4380	4820	5670	1790	2850	3450	4220	4840	5510	7190
2720	3300	3790	410	4420	4850	5790	1880	2900	3510	4330	4860	5740	7500
2900	3300	3810	4180	4470	4910	5840	1920	3060	3560	4380	4870	5830	7680
3020	3300	3900	4210	4470	4930	5900	2100	3110	3680	4450	4930	6010	7800
3060	3420	3920	4230	4490	4990	5950	2210	3190	3770	4510	4940	6080	8000
3060	3460	3940	4260	4490	4990	5970	2340	3240	3810	4680	5010	6120	8210
3180	3480	3970	4300	4570	5100	7800	2450	3310	3940	4700	5080	6160	8300

Продолжение табл. 1.3

		D.	nuou	r 5						<i>рооля</i> ариант			
1600	2260		риан т		5020	6220	1500	2640		-	4340	1050	6120
-	2360	3280	3880	4460	5020	6220	1580	2640	3380	3920		4950	6120
-	2450	3320	3910	4480	5080	6340	1630	2780	3410	3980	4370	5020	6240
-	2560	3380	3970	4510	5120	6450	1740	2900	3450	4020	4420	5120	6350
\vdash	2620	3400	4020	4580	5240	6620	1850	2960	3540	4080	4490	5230	6480
\vdash	3040	3480	4180	4590	5310	6810	1910	3100	3660	4110	4530	5340	6510
2020	3080	3510	4190	4600	5380	6950	2030	3140	3720	4160	4540	5410	6700
2160	3140	3690	4220	4670	5420	7240	2150	3160	3760	4200	4610	5560	7100
2170	3160	3710	4290	4710	5680	7360	2220	3220	3780	4250	4700	5700	7320
2230	3200	3770	4360	4800	5810	7800	2410	3250	3820	4290	4770	5790	7420
2300	3260	3810	4400	4940	5990	8050	2560	3300	3840	4300	4820	5840	7900
		Ba	риант	г 7					Ba	ариант	г 8		
1540	2500	3400	3950	4360	4800	5690	1520	3100	3440	3800	4300	4820	5560
1600	2750	3460	4040	4440	4890	5740	1650	3160	3480	3850	4360	4890	5680
1740	3080	3500	4060	4460	4920	5890	1720	3210	3520	3860	4380	4920	5900
1750	3090	3550	4100	4550	4980	6020	1800	3230	3550	3900	4490	4960	5960
1860	3150	3600	4110	4560	5010	6090	2040	3240	3590	3990	4510	5010	6020
2000	3190	3680	4160	4600	5100	6320	2050	3280	3620	4000	4590	5100	6240
2040	3240	3720	4220	4650	5190	6540	2300	3310	3690	4060	4640	5120	6350
2100	3290	3800	4240	4670	5230	7100	2410	3350	3710	4100	4680	5230	6500
2250	3340	3860	4290	4720	5340	7260	3050	3400	3750	4180	4710	5340	7000
2360	3370	3900	4310	4730	5600	7800	3060	3420	3760	4230	4730	5460	7240
		Ba	риант	г 9					Ba	риант	10		
1510	2860	3380	3720	4310	4790	5920	1540	2530	3320	4110	4500	5100	6260
1620	2980	3410	3780	4360	4860	6080	1560	3000	3450	4120	4510	5160	6380
1740	3000	3470	3810	4420	4890	6150	1650	3050	3560	4150	4540	5240	6470
1800	3180	3490	3950	4430	4950	6250	1740	3060	3640	4160	4560	5380	6700
1940	3200	3520	4060	4460	5030	6320	1750	3110	3780	4200	4690	5450	6840
2100	3220	3580	4080	4510	5140	6450	2060	3160	3850	4260	4730	5670	6920
2220	3250	3610	4120	4520	5260	6780	2140	3190	3910	4310	4800	5800	7320
2330	3290	3640	4150	4560	5340	7200	2200	3200	3950	4350	4850	5900	7450
2560	3300	3700	4210	4610	5490	7340	2320	3220	4060	4360	4890	6120	7500
2640	3340	3710	4280	4720	5670	7540	2440	3250	4100	4420	4930	6180	8120

Окончание табл. 1.3

		Ba	риант	11					Ba	риант	12		
1590	2610	3310	3760	4260	4710	5680	1450	2450	3220	3540	4170	4720	5520
1650	2800	3350	3820	4270	4800	5810	1560	2560	3250	3550	4230	4790	5610
1790	2860	3390	3900	4340	4860	5920	1620	2660	3260	3660	4280	4860	5800
1850	2900	3440	3920	4350	4910	6100	1780	2710	3320	3780	4340	4920	6100
2100	3020	3480	4040	4380	4960	6150	1840	2830	3340	3800	4360	5030	6120
2260	3090	3510	4080	4410	5100	6230	1860	2980	3360	3910	4420	5160	6320
2340	3100	3550	4120	4490	5210	6500	1950	3050	3380	4000	4480	5190	6450
2410	3160	3580	4130	4560	5360	7120	2100	3110	3460	4080	4520	5230	7200
2450	3220	3620	4190	4600	5410	7240	2250	3120	3480	4110	4540	5290	7240
2560	3290	3650	4200	4640	5570	7680	2330	3180	3510	4150	4660	5340	8100
		Ba	риант	13					Ba	риант	14		
1610	2600	3250	3600	4190	4580	5480	1710	3000	3400	4060	4500	5020	6350
1630	2670	3280	3650	4220	4620	5610	1830	3070	3450	4100	4520	5130	6480
1780	2750	3320	3690	4230	4690	5740	1980	3120	3520	4150	4630	5260	6570
2100	3040	3340	3760	4280	4730	5820	2100	3140	3540	4160	4690	5460	6720
2130	3060	3390	3820	4310	4800	6110	2230	3160	3620	4220	4710	5510	6850
2240	3110	3410	3930	4330	4860	6240	2340	3210	3710	4230	4730	5640	7340
2320	3160	3420	4010	4370	4970	6320	2520	3250	3720	4310	4870	5780	7450
2410	3190	3490	4050	4420	5020	6450	2610	3300	3800	4350	4890	5910	7800
2500	3200	3520	4100	4460	5260	7200	2800	3340	3820	4400	4960	6120	8210
2560	3210	3550	4160	4500	5340	7350	2960	3370	3950	4460	5000	6240	8300

Практическая работа №2 РАСЧЁТ ПОКАЗАТЕЛЕЙ НАДЁЖНОСТИ ПРИ ПОЛНОЙ ИНФОРМАЦИИ

Общие сведения

При наличии полной информации расчёт показателей надёжности можно приводить как аналитическим, так и графическим методом на основе дифференциальной или интегральной функции выбранного теоретического закона распределения (закон нормального распределения ЗНР или закон распределения Вейбулла ЗРВ). К преимуществам графического метода расчета относится возможность наложения кривых этих функций соответственно на полигон и кривую накопленных опытных вероятностей и на этой основе визуального определения наиболее совпадаю-

щего с опытной информацией теоретического закона распределения, которым и следует пользоваться при дальнейших расчётах показателей надежности.

Известно, что применительно к отказам дифференциальная и интегральная функция характеризует количество потерявших работоспособность машин или их элементов, или, что практически одно и тоже, необходимое количество ремонтных воздействий (устранение эксплуатационных отказов и проведение ремонтов).

По дифференциальной функции f(t) удобно определять количество отказов и соответственно количество ремонтных воздействий в любом интервале наработок, а по интегральной функции — суммарное их количество от начала наблюдения за машинами до заданной наработки t.

При наличии статистического ряда (в случае закона нормального распределения) точки дифференциальной кривой определяют по уравнениям (2.1) и (2.2) и по таблице $\Pi.3$.

$$f(t_{ic}) = \frac{A}{\sigma} \cdot f_0 \cdot \left(\frac{t_{ic} - \bar{t}}{\sigma}\right); \quad (2.1)$$
$$f_0(-t) = f_0(+t), \quad (2.2)$$

где t_{ic} — среднее значение показателя надёжности в заданном интервале A (или значение середины интервала статистического ряда).

A — величина заданного интервала значений показателя надёжности (или величина интервала статистического ряда).

Значения интегральной функции F(t) определяют по уравнениям (2.3) и (2.4) и данным таблицы П.1.4 приложения.

$$F(t_{i\theta}) = F_0\left(\frac{t_{i\theta} - \bar{t}}{\sigma}\right), \quad (2.3)$$

где t_{ie} — заданное значение показателя надежности (или верхняя граница i-го интервала статистического ряда).

Из уравнения (2.3) следует, что

$$F_0(-t) = 1 - F_0(t)$$
. (2.4)

Результаты расчёта позволяют заключить, что дифференциальная функция $f(t_{iC})$ в i-ом интервале статистического ряда равна разности интегральных функций в конце и начале этого же интервала:

$$f(t_{ic}) = F(t_{ie}) - F(t_{iH}), \quad (2.5)$$

где t_{ic} , t_{ie} и t_{ih} — значения показателя надёжности соответственно в середине, в конце и начале i-го интервала.

При законе распределения Вейбулла интегральную функцию F(t) определяют по таблице П.5 приложения. Вход в таблицу осуществляется по значению параметра b, указанному в верхней строке таблицы, и по величине отношения

$$\frac{t_{ie}-t_{_{CM}}}{a},$$

где $t_{c_{\mathcal{M}}}$ – смещение начала рассеивания;

а – параметр Вейбулла.

Задание

Рассчитать показатели надежности при полной информации на основе обработки данных, взятых из первой практической работы по вариантам (табл. 1.3).

Пример выполнения задания

- 1. Определяем точки дифференциальной кривой по уравнениям (2.1) и (2.2) и по таблице П.3, используя данные первой практической работы ($\bar{t} = 4144$ мото-ч, $\sigma = 1612$ мото-ч).
 - 1.1. Первый интервал (1450–2178)

абсцисса — значение показателя надёжности в середине первого интервала $t_{1c} = 1814$ мото-ч;

ордината – значение дифференциальной функции (2.1) и (2.2)

$$f(t_{1c}) = \frac{728}{1612} \cdot f_0 \left(\frac{1814 - 4144}{1612} \right) = 0.452 \cdot f_0 \left(-1.44 \right) = 0.452 \cdot f_0 \left(1.44 \right)$$

По таблице П.3 приложения находим $f_0(1,44) = 0,14$, тогда $f(t_{1c}) = 0,452 \cdot 0,14 = 0,063 \ .$

Следовательно, в первом интервале выйдет из строя (ресурсный отказ) и потребует ремонта 6,3% двигателей.

1.2. Второй интервал (2178–2906)

абсцисса $t_{2c} = 2542$ мото-ч;

ордината
$$f(t_{2c}) = \frac{728}{1612} \cdot f_0 \left(\frac{2542 - 4144}{1612} \right) = 0,108,$$

т.е. для 10,8% двигателей в этом интервале наработок потребуется ремонт.

1.3. Третий интервал (2906–3634) абсцисса $t_{3c} = 3270$ мото-ч;

ордината
$$f(t_{3c}) = \frac{728}{1612} \cdot f_0 \left(\frac{3270 - 4144}{1612} \right) = 0,16,$$

т.е. для 16% двигателей в этом интервале наработок потребуется ремонт.

1.4. Четвертый интервал (3634–4362)

абсцисса $t_{4c} = 3998$ мото-ч;

ордината
$$f(t_{4c}) = \frac{728}{1612} \cdot f_0 \left(\frac{3998 - 4144}{1612} \right) = 0,18,$$

т.е. для 18% двигателей в этом интервале наработок потребуется ремонт.

1.5. Пятый интервал (4362–5090)

абсцисса $t_{5c} = 4726$ мото-ч;

ордината
$$f(t_{5c}) = \frac{728}{1612} \cdot f_0 \left(\frac{4726 - 4144}{1612} \right) = 0,167,$$

т.е. для 16,7% двигателей в этом интервале наработок потребуется ремонт.

1.6. Шестой интервал (5090-5818)

абсцисса $t_{6c} = 5454$ мото-ч;

ордината
$$f(t_{5c}) = \frac{728}{1612} \cdot f_0 \left(\frac{5454 - 4144}{1612} \right) = 0,13,$$

т.е. для 13% двигателей в этом интервале наработок потребуется ремонт.

1.7. Седьмой интервал (5818-6546)

абсцисса $t_{7c} = 6182$ мото-ч;

ордината
$$f(t_{7c}) = \frac{728}{1612} \cdot f_0 \left(\frac{6182 - 4144}{1612} \right) = 0,08,$$

т.е. для 8% двигателей в этом интервале наработок потребуется ремонт.

1.8. Восьмой интервал (6546-7274)

абсцисса $t_{8c} = 6910$ мото-ч;

ордината
$$f(t_{8c}) = \frac{728}{1612} \cdot f_0 \left(\frac{6910 - 4144}{1612} \right) = 0,04,$$

т.е. для 4% двигателей в этом интервале наработок потребуется ремонт.

1.9. Девятый интервал (7274–8002) абсцисса $t_{9c} = 7638$ мото-ч;

ордината
$$f(t_{9c}) = \frac{728}{1612} \cdot f_0 \left(\frac{7638 - 4144}{1612} \right) = 0,018,$$

т.е. для 1,8% двигателей в этом интервале наработок потребуется ремонт.

- 2. Определяем точки интегральной кривой по уравнениям (2.3) и (2.4) и по таблице П.4.
 - 2.1. Первый интервал (0-2178)

абсцисса 1-ой точки интегральной кривой $t_{1e} = 2178\,$ мото-ч;

ордината
$$F(t_{16}) = F_0 \left(\frac{2178 - 4144}{1612} \right) = F_0 (-1,22) = 1 - F_0 (1,22)$$

По таблице П.4 приложения $F_0(1,22) = 0.89$.

$$F(t_{16}) = 1 - 0.89 = 0.11$$
.

Следовательно, в интервале наработок от 0 до 2178 мото-ч выйдет из строя около 11% двигателей.

2.2. Второй интервал (0-2906)

абсцисса $t_{2g} = 2906$ мото-ч

ордината
$$F(t_{2g}) = F_0 \left(\frac{2906 - 4144}{1612} \right) = F_0 \left(-0.768 \right) = 1 - F_0 \left(0.768 \right) = 0.22$$

т.е. 22% двигателей потребуется ремонт к наработке 2906 мото-ч.

2.3. Третий интервал (0-3634)

абсцисса $t_{3e} = 3634$ мото-ч

ордината
$$F(t_{3_6}) = F_0 \left(\frac{3634 - 4144}{1612} \right) = F_0 (-0.32) = 1 - F_0 (0.32) = 0.37$$

т.е. 37% двигателей потребуется ремонт к наработке 3634мото-ч.

2.4. Четвертый интервал (0-4362)

абсцисса $t_{46} = 4362$ мото-ч

ордината
$$F(t_{4s}) = F_0 \left(\frac{4362 - 4144}{1612} \right) = F_0(0,13) = 0,55$$
,

т.е. 55% двигателей потребуется ремонт к наработке 4362 мото-ч.

2.5. Пятый интервал (0-5090)

абсцисса $t_{5e} = 5090$ мото-ч

ордината
$$F(t_{5e}) = F_0 \left(\frac{5090 - 4144}{1612} \right) = F_0(0,59) = 0,72$$

т.е. 72% двигателей потребуется ремонт к наработке 5090 мото-ч 2.6. Шестой интервал (0–5818)

абсцисса $t_{6g} = 5818$ мото-ч

ордината
$$F(t_{6s}) = F_0 \left(\frac{5818 - 4144}{1612} \right) = F_0 (1,04) = 0,85$$

т.е. 85% двигателей потребуется ремонт к наработке 5818 мото-ч

2.7. Седьмой интервал (0–6546)

абсцисса $t_{7g} = 6546$ мото-ч

ордината
$$F(t_{7_8}) = F_0 \left(\frac{6546 - 4144}{1612} \right) = F_0(1,49) = 0,93$$

т.е. 93% двигателей потребуется ремонт к наработке 6456 мото-ч

2.8. Восьмой интервал (0-7274)

абсцисса $t_{86} = 7274$ мото-ч

ордината
$$F(t_{8a}) = F_0 \left(\frac{7274 - 4144}{1612} \right) = F_0(1,94) = 0,97$$

т.е. 97% двигателей потребуется ремонт к наработке 7274 мото-ч

2.9. Девятый интервал (0-8002)

абсцисса $t_{9e} = 8002$ мото-ч

ордината
$$F(t_{9_6}) = F_0 \left(\frac{8002 - 4144}{1612} \right) = F_0(2,39) = 0,99$$

- т.е. 99% двигателей потребуется ремонт к наработке 8002 мото-ч
- 3. Определим число вышедших из строя двигателей в каждом интервале наработок, если для выравнивания опытной информации используется закон распределения Вейбулла (V = 0.527; b = 2; a = 3482 мо-

то-ч;
$$t_{c_{M}}$$
= 1086 мото-ч).
 3.1. Для конца первого интервала статистического ряда:
$$\frac{t_{1_{B}}-t_{c_{M}}}{a}=\frac{2178-1086}{3482}=0,3\;.$$

По таблице П.5 приложения $F(t_{1g}) = 0.09$,

- т.е. для 9% двигателей потребуется ремонт в интервале наработок от 0 до 2178 мото-ч.
 - 3.2. Для конца второго интервала статистического ряда:

$$\frac{t_{2_{\mathcal{B}}} - t_{_{CM}}}{a} = \frac{2906 - 1086}{3482} = 0.5.$$

По таблице П.5 приложения $F(t_{2s}) = 0.22$

или для 22% двигателей потребуется ремонт в интервале наработок от 0 до 2906 мото-ч.

3.3. Для конца третьего интервала статистического ряда:

$$\frac{t_{3e} - t_{cm}}{a} = \frac{3634 - 1086}{3482} = 0.7.$$

$$F(t_{3e}) = 0.39$$

или для 39% двигателей потребуется ремонт в интервале наработок от 0 до 3634 мото-ч.

3.4. Для конца четвертого интервала статистического ряда:

$$\frac{t_{4B} - t_{CM}}{a} = \frac{4362 - 1086}{3482} = 0.9.$$

$$F(t_{4a}) = 0.56$$

или для 56% двигателей потребуется ремонт в интервале наработок от 0 до 4362 мото-ч.

3.5. Для конца пятого интервала статистического ряда:

$$\frac{t_{5e} - t_{cM}}{a} = \frac{5090 - 1086}{3482} = 1,1.$$

$$F(t_{5e}) = 0,7$$

или для 70% двигателей потребуется ремонт в интервале наработок от 0 до 5090 мото-ч.

3.6. Для конца шестого интервала статистического ряда:

$$\frac{t_{6B} - t_{CM}}{a} = \frac{5818 - 1086}{3482} = 1,4.$$

$$F(t_{6e}) = 0.86$$

или для 86% двигателей потребуется ремонт в интервале наработок от 0 до 5818 мото-ч.

3.7. Для конца седьмого интервала статистического ряда:

$$\frac{t_{7_{6}} - t_{c_{M}}}{a} = \frac{6546 - 1086}{3482} = 1,6.$$

$$F(t_{7_{6}}) = 0,94$$

или для 94% двигателей потребуется ремонт в интервале наработок от 0 до 6546 мото-ч.

3.8. Для конца восьмого интервала статистического ряда:

$$\frac{t_{8e} - t_{cM}}{a} = \frac{7274 - 1086}{3482} = 1.8.$$

$$F(t_{8e}) = 0.97$$

или для 97% двигателей потребуется ремонт в интервале наработок от 0 до 7274 мото-ч.

3.9. Для конца девятого интервала статистического ряда:

$$\frac{t_{9_{\mathcal{B}}} - t_{_{CM}}}{a} = \frac{8002 - 1086}{3482} = 2,0.$$

$$F(t_{9_{\mathcal{B}}}) = 0.98$$

ли для 98% двигателей потребуется ремонт в интервале наработок от 0 до 8002 мото-ч.

4. Пользуясь уравнением (2.5) определим значение дифференциальной функции для ЗРВ $f(t_{ic})$.

$$f(t_{1c}) = 0.09 - 0.0 = 0.09$$
,

т.е. 9% двигателей потребуется ремонт в интервале наработок от 1450 до 2178 мото-ч.

$$f(t_{2c}) = 0.22 - 0.09 = 0.13$$

т.е. 13% двигателей потребуется ремонт в интервале наработок от 2178 до 2906 мото-ч.

$$f(t_{3c}) = 0.39 - 0.22 = 0.17$$
,

т.е. 17% двигателей потребуется ремонт в интервале наработок от 2906 до 3634 мото-ч.

$$f(t_{4c}) = 0.56 - 0.39 = 0.17$$

т.е. 17% двигателей потребуется ремонт в интервале наработок от 3634 до 4362 мото-ч.

$$f(t_{5c}) = 0.7 - 0.56 = 0.14$$

т.е. 14% двигателей потребуется ремонт в интервале наработок от 4362 до 5090 мото-ч.

$$f(t_{6c}) = 0.86 - 0.7 = 0.16$$

т.е. 16% двигателей потребуется ремонт в интервале наработок от 5090 до 5818 мото-ч.

$$f(t_{1c}) = 0.94 - 0.86 = 0.08$$
,

т.е. 8% двигателей потребуется ремонт в интервале наработок от 5818 до 6546мото-ч.

$$f(t_{1c}) = 0.97 - 0.94 = 0.03$$

т.е. 3% двигателей потребуется ремонт в интервале наработок от 6546 до 7274 мото-ч.

4.9. Девятый интервал (7274–8002)
$$f(t_{1c}) = 0.98 - 0.97 = 0.01$$
,

- т.е. 1% двигателей потребуется ремонт в интервале наработок от 7274 до 8002 мото-ч.
- 5. Результаты расчёта интегральных и дифференциальных функций ЗНР и ЗРВ приведены в таблице 2.1.

Таблица 2.1 Сводная таблица опытных и теоретических распределений доремонтных ресурсов двигателей

Интервал, мото-ч	Опытная вероят-	' '	нциальная кция	$\sum P_i$	Интегр: функ	
M010-4	ность	ЗНР	3PB		ЗНР	3PB
1450-2178	0,114	0,063	0,09	0,114	0,11	0,09
2178-2906	0,114	0,108	0,13	0,228	0,22	0,22
2906-3634	0,214	0,16	0,17	0,442	0,37	0,39
3634-4362	0,143	0,18	0,17	0,585	0,55	0,56
4362-5090	0,171	0,167	0,14	0,756	0,72	0,7
5090-5818	0,086	0,13	0,16	0,842	0,85	0,86
5818-6546	0,043	0,08	0,08	0,885	0,93	0,94
6546-7274	0,057	0,04	0,03	0,942	0,97	0,97
7274-8002	0,057	0,018	0,01	0,999	0,99	0,98

- 6. По данным табл. 2.1 строим кривые дифференциальной f(t) и интегральной F(t) функций ЗНР и ЗРВ, наложенные на полигон (рис. 2.1) и кривую накопленных опытных вероятностей (рис. 2.2).
- 7. Анализ данных табл. 2.1 и графиков (рис. 2.1 и 2.2) позволяет сделать рекомендации, имеющие практическое значение:
- Опытная информация отклоняется от теоретических функций и нуждается в выравнивании при помощи теоретического закона распределения.
- В интервале значений коэффициента вариации от 0,3 до 0,5 функции закона нормального распределения и закона распределения Вейбулла незначительно отличаются одна от другой, поэтому визуально трудно выбрать закон распределения для выравнивания опытной информации. В таких случаях рекомендуется выбирать теоретический закон распределения по критерию согласия.
- Интегральную кривую закона нормального распределения при достаточной повторности информации N можно построить по десяти точкам.

 $Puc.\ 2.1.$ Диаграмма дифференциальных f(t) кривых функций ЗНР и ЗРВ, наложенных на полигон распределения: a — полигон распределения; δ — дифференциальная кривая закона нормального распределения; ϵ — дифференциальная кривая закона распределения Вейбулла

 $Puc.\ 2.2.$ Диаграмма интегральных F(t) кривых функций ЗНР и ЗРВ, наложенных на кривую накопленных опытных вероятностей: a — кривая накопленных опытных вероятностей; δ — интегральная кривая закона нормального распределения; ϵ — интегральная кривая закона распределения Вейбулла

Практическая работа №3 ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ ПОЯВЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ

Общие сведения

Опытная вероятность появления случайного события A определяется по формуле

$$P(A) = \frac{m}{N}, (3.1)$$

где P(A) – опытная вероятность появления случайного события A;

- m опытное число благоприятных случаев появления случайного события A;
- N общее количество опытов или повторностей информации или число наблюдаемых машин.

Закон сложения вероятностей независимых событий

В том случае, если интересующее событие A объединяет группу или сумму событий A_1 , A_2 , A_2 и т.д., то вероятность появления этого события A или вероятность суммы событий $A_1 + A_2 + A_2$ и т.д. равно сумме вероятностей этих событий

$$P(A_1 + A_2 + A_3) = P(A_1) + P(A_2) + P(A_3).$$
 (3.2)

Закон умножения вероятностей независимых событий

Вероятность совместного проявления двух и более независимых событий $A,\, E$ и т.д. в полной группе событий равно произведению вероятностей этих событий

$$P(A, B) = P(A) \cdot P(B). \quad (3.3)$$

Закон умножения вероятностей зависимых событий

Вероятность совместного появления двух и более зависимых событий A, E и т.д. в полной группе событий равна произведению вероятности появления первого события на условную вероятность второго события:

$$P(A, E) = P(A) \cdot P(E|A). \quad (3.4)$$

Были проведены испытания N тракторов. При этом установлено, что у m_1 тракторов эксплуатационные отказы появились в интервале наработок $A_1 = 100...200$ моточасов, у m_2 — в интервале $A_2 = 200...300$ моточасов, у m_3 — в интервале $A_3 = 300...400$ моточасов, у m_4 — в интервале $A_4 = 400...500$ моточасов и, наконец, у m_5 — в интервале $A_5 = 500...600$ моточасов.

Требуется определить, чему равна опытная вероятность появления эксплуатационного отказа в каждом интервале наработки трактора. Вариант задания — табл. 3.1.

Исходные данные

Таблица 3.1

Вариант	N	m_1	m_2	m_3	m_4	m_5
1	21	2	3	5	10	1
2	25	3	4	7	8	3
3	30	4	5	9	8	4
4	35	5	6	10	9	5
5	40	6	5	11	12	6
6	19	4	4	6	5	0
7	22	3	4	4	4	7
8	23	4	3	5	6	5
9	32	2	5	9	13	3
10	37	1	8	10	14	4
11	36	3	5	7	16	5
12	27	5	6	9	6	1
13	28	4	7	8	7	2
14	26	3	6	7	8	3

Пример выполнения задания 1

Исходные данные:

Пользуясь формулой (3.1) определим вероятность появления эксплуатационного отказа в каждом интервале наработок тракторов:

$$P(A_1) = \frac{3}{20} = 0,15$$
 или 15%; $P(A_2) = \frac{5}{20} = 0,25$ или 25%; $P(A_3) = \frac{7}{20} = 0,35$ или 35%; $P(A_4) = \frac{3}{20} = 0,15$ или 15%;

$$P(A_5) = \frac{2}{20} = 0,1$$
 или 10%.

Требуется определить, какой процент тракторов в условиях предыдущего задания (табл. 3.1) будет иметь отказы в интервале их средней наработки от 200 до 500 моточасов.

Пример выполнения задания 2

Исходные данные:

$$N=20\,{
m mt};\ m_2=5\,{
m mt};\ m_3=7\,{
m mt};\ m_4=3\,{
m mt}.$$

Решение

Событие A — количество отказов тракторов в интервале наработок от 200 до 500 моточасов определяет три события:

 A_2 – количество отказов в интервале от 200 до 300 моточасов;

 A_3 – количество отказов в интервале от 300 до 400 моточасов;

 A_4 — количество отказов в интервале от 400 до 500 моточасов.

Следовательно, ожидаемое количество отказов в интервале параметров от 200 до 500 моточасов определим по закону сложения вероятностей независимых событий (3.2)

$$P(A) = P(A_2) + P(A_3) + P(A_4) = \frac{5}{20} + \frac{7}{20} + \frac{3}{20} = 0.75$$
.

Т.е. 75% тракторов будут иметь отказы в интервале их наработки от 200 до 500 моточасов.

Задание 3

В двух колхозах работают по N тракторов одной марки, эксплуатационные отказы которых распределены по закону, приведенному в задании 1. Необходимо определить вероятности совместного проявления отказа у трактора A из первого колхоза и у трактора B из второго колхоза в интервале их наработок $A_3 = 300..400$ моточасов.

Пример выполнения задания 3

Исходные данные:

$$N = 20 \, \text{шт}; \ m_3 = 7 \, \, \text{шт}.$$

Решение

Эти два события не связаны между собой, т.к. вероятность появления одного из них не зависит от того, произошло или не произошло второе событие. Поэтому применяется уравнение (3.3)

$$P(A(A_3); E(A_3)) = P(A(A_3)) \cdot P(E(A_3)) = \frac{7}{20} \cdot \frac{7}{20} = 0,1225$$

По данным табл. 3.1 определить вероятность совместного появления отказов у тракторов A и B, работающих в одном колхозе, при их средней наработке $A_3 = 300..400$ моточасов.

Пример выполнения задания 4

Исходные данные:

N = 20 шт; $m_3 = 7$ шт.

Решение

Эти два события связаны между собой, т.к. вероятность появления одного из них зависит от того, произошло или нет второе событие (появление отказа у трактора \mathcal{E}). Поэтому вероятность появления одного из них зависит от того, произошло или нет второе событие (появление отказа у трактора \mathcal{E}). Поэтому вероятность совместного появления отказов у тракторов \mathcal{E} 0 и \mathcal{E} 0 определяется по закону умножения вероятностей зависимых событий (3.4)

$$P(A(A_3); B(A_3)) = P(A) \cdot P(B|A) = \frac{7}{20} \cdot \frac{6}{19} = 0.112$$
.

Задание 5

Из условий по табл. 3.1 определить полную группу событий всех возможных вариантов совместного появления отказов у тракторов A и B, работающих в разных колхозах и при их разных наработках.

Пример выполнения задания 5

Исходные данные:

$$N=20\,\mathrm{imt};\ m_1=3\,\mathrm{imt};\ m_2=5\,\mathrm{imt};\ m_3=7\,\mathrm{imt};\ m_4=3\,\mathrm{imt};\ m_5=2\,\mathrm{imt}.$$
 Решение

1. Определим количество событий в полной группе: трактор A отказал в интервале наработок $A_1 = 100...200$ моточасов, а трактор B соответственно $A_1 = 100...200$, $A_2 = 200...300$, $A_3 = 300...400$, $A_4 = 400...500$ и $A_5 = 500...600$ моточасов, всего 5 событий. Аналогично по 5 событий произойдёт при отказе трактора A в интервале $A_2 = 200...300$, $A_3 = 300...400$, $A_4 = 400...500$ и $A_5 = 500...600$ моточасов. Таким образом, полная группа событий состоит из 25 отдельных событий;

2. Определим вероятность всех событий в полной группе (события несвязанные):

$$\sum_{1}^{25} P(A, B) = \frac{3}{20} \cdot \frac{3}{20} + \frac{3}{20} \cdot \frac{5}{20} + \frac{3}{20} \cdot \frac{7}{20} + \frac{3}{20} \cdot \frac{3}{20} + \frac{3}{20} \cdot \frac{2}{20} + \frac{5}{20} \cdot \frac{3}{20} + \frac{5}{20} \times \frac{3}{20} \times \frac{5}{20} \times \frac{5}{20} \times \frac{5}{20} \times \frac{7}{20} \times \frac{5}{20} \times \frac{7}{20} \times \frac{5}{20} \times \frac{7}{20} \times$$

Задание 6

Для условий задания 1 (табл. 3.1) (N тракторов работают в одном хозяйстве) определить полную группу событий всех возможных вариантов совместного появления отказов у тракторов A и B при всех возможных вариантах их наработок.

Пример выполнения задания 6

Исходные данные:

$$N=20\,{
m шт};\ m_1=3\,{
m шт};\ m_2=5\,{
m \ шт};\ m_3=7\,{
m \ шт};\ m_4=3\,{
m \ шт};\ m_5=2\,{
m \ шт}.$$

Решение

- 1. Определим количество событий в полной группе рассуждая так же, как в предыдущем задании, определяем, что число событий полной группы равно 25.
- 2. Определим вероятность всех событий в полной группе (события связанные):

$$\sum_{1}^{25} P(A, E) = \frac{3}{20} \cdot \frac{2}{19} + \frac{3}{20} \cdot \frac{5}{19} + \frac{3}{20} \cdot \frac{7}{19} + \frac{3}{20} \cdot \frac{3}{19} + \frac{3}{20} \cdot \frac{2}{19} + \frac{5}{20} \cdot \frac{3}{19} + \frac{5}{20} \cdot \frac{3}{19} + \frac{5}{20} \cdot \frac{3}{19} + \frac{5}{20} \cdot \frac{3}{19} + \frac{7}{20} \cdot \frac{3}{19} + \frac{7}{20} \cdot \frac{6}{19} + \frac{7}{20} \cdot \frac{3}{19} + \frac{7}{20} \cdot \frac{3}{19} + \frac{7}{20} \cdot \frac{6}{19} + \frac{7}{20} \cdot \frac{3}{19} + \frac{7}{20} \cdot \frac{3}{19} + \frac{7}{20} \cdot \frac{3}{19} + \frac{7}{20} \cdot \frac{3}{19} + \frac{3}{20} \cdot \frac{3}{19} + \frac{3}{20} \cdot \frac{3}{19} + \frac{3}{20} \cdot \frac{2}{19} + \frac{3}{20} \cdot \frac{2}{19} + \frac{3}{20} \cdot \frac{2}{19} + \frac{3}{20} \cdot \frac{3}{19} + \frac{2}{20} \cdot \frac{3}{19} + \frac{3}{20} \cdot \frac{3}{19} +$$

Задание 7

На складе готовой продукции ремонтного предприятия имеется

N двигателей, из которых m_1 отремонтированных и m_2 новых (из обменного фонда) (табл. 3.2). Заказчик получает со склада 2 двигателя. В этом случае полную группу событий образуют следующие четыре события:

- 1. оба двигателя новые;
- 2. оба двигателя отремонтированные;
- 3. первый двигатель отремонтированный, второй новый;
- 4. первый двигатель новый, второй отремонтированный.

Требуется определить:

- а) Вероятность того, что оба двигателя окажутся новыми.
- б) Вероятность того, что хотя бы один двигатель из двух окажется новым.

События связанные.

3

26

21

Таблица 3.2 Исходные данные

5	6	7	8	9	10	11	12	13	14
30	32	31	29	27	25	23	21	20	19
24	28	27	24	21	20	20	18	16	16
6	4	4	5	6	5	3	3	4	3

Пример выполнения задания 7

22

Исходные данные

$$N = 25$$
; $m_1 = 20$; $m_2 = 5$

Решение

2

24

20

No

N

 m_1

 m_2

22

19

3

Для решения воспользуемся уравнением связанных событий

$$P(\mathcal{A}_{H}, \mathcal{A}_{H}) = P(\mathcal{A}_{H}) \cdot P(\mathcal{A}_{H} | \mathcal{A}_{H}) = \frac{5}{25} \cdot \frac{4}{24} = 0.0333$$
.

Условиям задачи соответствует 1, 3 и 4-ое события. Вероятность появления каждого события определяется по закону умножения зависимых событий, а вероятность получения хотя бы одного нового двигателя по закону сложения вероятностей трёх этих событий

$$P(\mathcal{A}_{H}u32\mathcal{A}) = P(\mathcal{A}_{H}, \mathcal{A}_{H}) + P(\mathcal{A}_{p}, \mathcal{A}_{H}) + P(\mathcal{A}_{H}, \mathcal{A}_{p}) = P(\mathcal{A}_{H}) \cdot P(\mathcal{A}_{H}|\mathcal{A}_{H}) + P(\mathcal{A}_{p}, \mathcal{A}_{H}) + P(\mathcal{A}_{p}, \mathcal{A}_{$$

Решение этого задания может быть упрощено применением противоположных событий. В данном случае противоположным событием является получение двух отремонтированных двигателей. Вероятность такого события определяется по уравнению

$$P(\mathcal{I}_p, \mathcal{I}_p) = P(\mathcal{I}_p) \cdot P(\mathcal{I}_p | \mathcal{I}_p) = \frac{20}{25} \cdot \frac{19}{24} = \frac{380}{600} \approx 0.63.$$

Вероятность получения хотя бы одного нового двигателя из двух определяется по уравнению

$$P(\mathcal{I}_{H}u32\mathcal{I}) = 1 - P(\mathcal{I}_{D}, \mathcal{I}_{D}) = 1 - 0.63 = 0.37$$
.

Правильность решения этого примера может быть проверена по сумме вероятностей полной группы событий, которая должна быть равна единице.

$$P = \frac{220}{600} + \frac{380}{600} = \frac{380}{380} = 1.$$

Практическая работа №4 ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВЕННЫХ ХАРАКТЕРИСТИК НАДЁЖНОСТИ ПО СТАТИЧЕСКИМ ДАННЫМ ОБ ОТКАЗАХ ИЗДЕЛИЙ

Общие сведения

Вероятность безотказной работы – это вероятность того, что в пределах заданной наработки отказ объекта не возникнет.

Вероятность безотказной работы может применяться как количественный показатель надежности для восстанавливаемых и невосстанавливаемых объектов.

Вероятность безотказной работы P(t) представляет собой безусловную вероятность того, что в интервале от 0 до t не наступит отказ, т. е. вероятность того, что отказ наступит в интервале от t до ∞ .

Вероятность безотказной работы по статистическим данным об отказах оценивается выражением:

$$\widehat{P}(t) = \frac{N_0 - n(t)}{N_0} = 1 - \frac{n(t)}{N_0}, (4.1)$$

где $\widehat{P}(t)$ – статистическая оценка вероятности безотказной работы;

 N_0 — число объектов в начале испытания;

n(t) — число отказавших объектов за время t.

Вероятность отказа – это вероятность того, что при определен-

ных условиях эксплуатации в заданном интервале времени или в пределах заданной наработки возникнет хотя бы один отказ.

$$Q(t) = 1 - P(t).$$

Для статистического определения

$$\widehat{Q}(t) = 1 - \widehat{P}(t) = 1 - \frac{N_0 - n(t)}{N_0} = \frac{n(t)}{N_0}. \quad (4.2)$$

Интенсивность отказов — это условная плотность вероятности возникновения отказа невосстанавливаемого объекта, определяемая для рассматриваемого момента времени при условии, что до этого момента отказ не возник.

Интенсивность отказов определяется по приближенной статистической формуле как отношение числа отказавших изделий в единицу времени к среднему числу изделий, работоспособных в данный момент времени

$$\widehat{\lambda}(t) = \frac{n(\Delta t)}{\Delta t \cdot N_{cp}(t)}, (4.3)$$

где $n(\Delta t)$ – число объектов отказавших за время Δt ;

 N_{cp} — среднее число изделий, работоспособных в данный момент времени.

Задание 1

На испытания представлена опытная партия зерноуборочных комбайнов N_0 . За время t нормативной работы отказало n комбайнов. Определить вероятность безотказной работы и вероятность отказа комбайнов в течение времени t (табл. 4.1).

Исходные данные

Таблица 4.1

№	1	2	3	4	5	6	7
N_0	1550	1600	1650	1700	1750	1800	1850
t	260	270	300	320	340	350	370
n	105	110	116	125	120	115	125
No	8	9	10	11	12	13	14
N_0	1900	1950	2000	2500	2550	2600	2650
t	380	400	410	430	440	470	500
n	130	150	135	145	155	130	100

Пример выполнения задания 1

Исходные данные:

$$N_0 = 2000$$
 шт; $t = 250$ часов; $n = 150$ шт.

Решение

По формулам (4.1) и (4.2) определим вероятность безотказной работы и вероятность отказа комбайнов в течение времени t=250 часов.

$$P(250) = \frac{N_0 - n(t)}{N_0} = \frac{2000 - 150}{2000} = 0,925;$$
 $Q(250) = \frac{n(t)}{N_0} = \frac{150}{2000} = 0,075$
или $\overline{Q}(250) = 1 - P(250) = 1 - 0,925 = 0,075.$

Задание 2

На испытание было представлено N_0 однотипных комбайнов. За первые 110 часов отказало n_1 комбайнов, а за последующий интервал времени Δt отказало ещё n_2 комбайнов. Определить интенсивность отказов комбайнов в промежутке времени Δt (табл. 4.2).

Исходные данные

3	4	5	6	7
1650	1700	1750	1800	1850
300	320	340	350	370
55	70	80	40	25
25	35	45	55	30
10	11	12	13	14
2000	2500	2550	2600	2650
410	430	440	470	500

Таблииа 4.2

Пример выполнения задания 2

Исходные данные

 $\frac{N_0}{N_0}$

 Δt

 n_1

 n_2

 $\frac{N_{0}}{N_{0}}$

 Δt

 n_1

 n_2

$$N_0 = 1500$$
шт; $n_1 = 75$ шт; $\Delta t = 190$ часов; $n_2 = 65$ шт.

Решение

Интенсивность отказов определяется по формуле (4.3)

$$\widehat{\lambda}(t) = \frac{n(\Delta t)}{\Delta t \cdot N_{cp}(t)}, \quad n(\Delta t) = n_2 = 65 \text{ mT};$$

$$\begin{split} N_{cp}(t) &= \frac{\left(N_0 - n_1\right) + \left(N_0 - n_1 - n_2\right)}{2} = \frac{\left(1500 - 75\right) + \left(1500 - 75 - 65\right)}{2} = \\ &= 1405 \, \text{IIIT.} \\ \lambda \big(300\big) &= \frac{65}{190 \cdot 1405} = 0.00024 \quad \text{1/vac.} \end{split}$$

На испытание представлено $N_0 \;$ жаток. За время $\; t \;$ отказало $n_1 \;$ изделий, за интервал времени Δt отказало n_2 жаток. Требуется определить вероятность безотказной работы за время t и $t+\Delta t$, а также интенсивность отказов в интервале времени $t + \Delta t$ (табл. 4.3).

Таблииа 4.3 Исходные данные

No	1	2	3	4	5	6	7
N_0	520	540	550	560	570	580	590
t	210	220	230	240	250	260	270
Δt	90	100	110	120	130	140	150
n_1	165	170	175	180	185	190	195
n_2	45	50	55	60	65	70	75
No	8	9	10	11	12	13	14
N_0	600	610	630	650	670	690	700
t	280	290	300	310	320	330	340
Δt	160	170	180	190	200	210	220
n_1	200	205	210	215	220	225	230
n_2	80	85	90	95	100	105	110

Пример выполнения задания 3

Исходные данные:

$$N_0 = 500$$
 шт; $t = 200$ часов; $n_1 = 160$ шт; $\Delta t = 80$ часов; $n_2 = 40$ шт.

Решение

Находим вероятность безотказной работы по формуле (4.1):

Для t = 200 часов:

$$P(200) = \frac{N_0 - n_1}{N_0} = \frac{500 - 160}{500} = 0,68.$$

Для
$$t + \Delta t = 200 + 80 = 280$$
 часов:
$$P(280) = \frac{N_0 - (n_1 + n_2)}{N_0} = \frac{500 - 200}{500} = 0.6.$$

Определим среднее число работоспособных изделий в интервале $t + \Delta t$:

$$N_{cp} = \frac{N_0 + (N_0 - n_1 - n_2)}{2} = \frac{500 + (500 - 160 - 40)}{2} = 400.$$

Определим интенсивность отказа по формуле 4.3:

$$\lambda(280) = \frac{n(t + \Delta t)}{(t + \Delta t) \cdot N_{cp}} = \frac{200}{280 \cdot 400} = 0,0018$$
 1/4ac.

Практическая работа №5 СТЕНДОВЫЕ И ПОЛИГОННЫЕ ИСПЫТАНИЯ. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА УСКОРЕНИЙ

Основные сведения

Стендовые и полигонные испытания проводят для получения информации о надежности объектов в более короткие сроки, чем в условиях эксплуатации. Такие испытания называются ускоренными.

Ускоренные испытания можно подразделить на два вида:

уплотненные (по времени);

ужесточенные (по факторам нагружения).

При уплотненных по времени испытаниях ускоренное получение информации достигается без интенсификации (в сравнении с эксплуатацией) физико-химического процесса разрушения (без увеличения нагружения). Уплотнение временем достигается круглосуточными испытаниями. Это позволяет увеличить наработку в сравнении с нормальной эксплуатацией.

Большое достоинство уплотненных испытаний — достижение эффекта ускорения без искажения физической картины потери объектом работоспособности.

При оценке уплотненных по времени испытаний следует отличать граничные испытания от учащенных в части определения по их результатам действительной надежности объекта в эксплуатации.

Если при учащенных испытаниях известно, что частота приложения нагрузки увеличена в $K_{\rm n}$ раз или объект реализовал наработку в $K_{\rm n}$ раз большую за календарное время, чем в эксплуатации, то средний ресурс, полученный при ускоренных испытаниях $T_{\rm y}$, пересчитывается на ожидаемый средний ресурс в эксплуатации $T_{\rm 3}$:

$$T_9 = K_{\rm II} T_{\rm y}$$
, (5.1)

где K_{Π} – коэффициент перехода (ускорения).

При граничных испытаниях получают минимальный ресурс, возможный с определенной вероятностью в эксплуатации при неблагоприятном сочетании условий. Задача состоит в том, чтобы по этим результатам рассчитать средний гамма-процентный ресурс объектов в эксплуатации.

Коэффициент ускорения испытания при граничных испытаниях:

$$K_{\Pi} = \alpha \sqrt{\frac{\upsilon_{\gamma}}{\upsilon_{50}}}, (5.2)$$

где α — неслучайный и постоянный для определенного объекта показатель степени;

 u_{γ} – параметр, характеризующий работоспособность объекта, при определенном гамма-процентном ресурсе;

 u_{50} — параметр, характеризующий работоспособность объекта, при 50-процентном ресурсе.

Ужесточенными по нагружению испытаниями называют такие испытания, при которых ускоренное получение информации достигается с интенсификацией физико-химического процесса разрушения.

Чтобы обеспечить эффективность ужесточенных испытаний, необходимо соблюдать их подобие с эксплуатационными испытаниями.

С физической точки зрения подобие состоит в том, чтобы физическая картина отказа при ужесточенных и эксплуатационных испытаниях была одинаковой по характеру и виду разрушения.

Математическое подобие состоит в том, чтобы вероятности безотказной работы объекта при ужесточенных и эксплуатационных испытаниях были одинаковы: $P(t_v) = P(t_0)$.

Если коэффициент перехода K_{Π} для любого t будет постоянным, то условие равенства вероятностей приведет к равенству коэффициентов вариации времени безотказной работы при ускоренных испытаниях и в эксплуатации: $\nu_{\rm y} = \nu_{\rm 3}$.

Коэффициенты вариации при соответствующем испытании определяются выражениями:

$$v_{y} = \frac{\sigma_{y}}{T_{y}}, \quad v_{3} = \frac{\sigma_{3}}{T_{3}}, \quad (5.3)$$

где $\sigma_{\rm y}$, $\sigma_{\rm 9}$ – среднеквадратичные отклонения ресурсов при ускоренных и эксплуатационных испытаниях соответственно.

При расчете должно удовлетворяться условие неравенства

$$\frac{\left|v_{3}-v_{y}\right|}{\sqrt{\frac{v_{3}^{2}}{2n_{3}}+\frac{v_{y}^{2}}{2n_{y}}}} < 3, (5.4)$$

где n_3 , $n_{\rm y}$ – количество объектов, подвергающихся эксплуатационным и ускоренным испытаниям соответственно.

Если это неравенство удовлетворено, то условие подобия эксплуатационных и ужесточенных ускоренных испытаний выполняется.

Задание 1

Определить коэффициент перехода по результатам испытаний ножей свеклокомбайна в условиях стенда (ужесточенные испытания) и эксплуатации и проверить условия подобия.

Количество ножей при ужесточенных испытаниях $n_{\rm y}$, при эксплуатации $n_{\rm 3}$. Время испытаний $T_{\rm y}$, время эксплуатации $T_{\rm 3}$. Среднеквадратичные отклонения ресурсов при ускоренных испытаниях $\sigma_{\rm y}$ и эксплуатации $\sigma_{\rm 3}$ (табл. 5.1).

Таблица 5.1 Исходные данные

№	1	2	3	4	5	6	7
$n_{ m y}$, шт	40	41	42	43	44	45	46
$n_{\scriptscriptstyle \Im}$, шт	10	11	12	13	14	15	17
$T_{ m y}$, ч	30	32	34	36	38	40	41
$T_{\mathfrak{I}}$, ч	250	255	260	265	270	275	280
$\sigma_{ m y}$, ч	8	9	10	11	12	13	15
$\sigma_{\scriptscriptstyle 3}$, ч	101	102	103	104	105	106	107
No	8	9	10	11	12	13	14
$n_{ m y}$, шт	47	49	50	51	52	53	54
$n_{\scriptscriptstyle \Im}$, шт	18	19	20	21	22	23	24
$T_{ m y}$, ч	43	44	40	39	37	35	31
$T_{\mathfrak{I}}$, ч	285	290	295	300	305	310	315
$\sigma_{ m y}$, ч	16	17	18	19	20	21	22
$\sigma_{\scriptscriptstyle 9}$, ч	109	110	111	112	113	114	115

Пример выполнения задания 1

Исходные данные:

$$n_{\rm y} = 48\,{\rm mr};\ n_{\rm y} = 16\,{\rm mr};\ T_{\rm y} = 42\,{\rm y};\ T_{\rm y} = 276\,{\rm y};\ \sigma_{\rm y} = 14\,{\rm y};\ \sigma_{\rm y} = 108\,{\rm y}.$$

Решение

По формулам (5.3) определим коэффициенты вариации при ускоренных испытаниях и эксплуатации

$$v_{\rm y} = \frac{\sigma_{\rm y}}{T_{\rm y}} = \frac{14}{42} = 0.33,$$

$$v_9 = \frac{\sigma_9}{T_9} = \frac{108}{276} = 0.39$$
.

Коэффициент перехода (ускорения) определим из формулы (5.1)

$$K_{\rm II} = \frac{T_9}{T_{\rm V}} = \frac{276}{42} = 6,57$$

Проверяем условие подобия (5.4)

$$\frac{\left|v_{3}-v_{y}\right|}{\sqrt{\frac{v_{3}^{2}}{2n_{3}}+\frac{v_{y}^{2}}{2n_{y}}}} = \frac{0.39-0.33}{\sqrt{\frac{0.39^{2}}{2\cdot16}+\frac{0.33^{2}}{2\cdot48}}} = 0.782 < 3$$

Условие подобия выполняется.

Задание 2

Число циклов N резьбового соединения до 50%-ого падения усилия начальной затяжки Q_3 (предельное состояние) связано с параметрами соединения и характеристиками нагрузки зависимостью:

$$N = \left(\frac{F \cdot Q_3 \cdot \sigma_{\text{np}}}{K \cdot \chi_p \cdot P_a^2}\right)^m \cdot N_0,$$

где F – площадь поперечного сечения болта;

 $\sigma_{\mathrm{пp}}$ – предел стабильности затяжки;

 $\chi_{\rm p}$ – расчетный коэффициент основной нагрузки;

K – эмпирический коэффициент;

 $P_{\rm a}$ – амплитуда циклической нагрузки, действующей на один болт соединения;

m — показатель степени;

 N_0 — базовое число циклов.

Испытывается соединение с болтами М10, имеющее параметры: $F = 0.55 \text{ cm}^2$; K = 2.8; $\chi_p = 0.3$; m = 8; $\sigma_{np} = 15 \text{ kg/cm}^2$;

$$N_0 = 2 \cdot 10^5$$
 циклов.

Из результатов обследования в условиях эксплуатации известно, что величины $P_{\rm a}$ и $Q_{\rm 3}$ имеют логарифмически нормальное распределение. При этом $\ln P_{\rm a}$ и $\ln Q_{\rm 3}$ распределены нормально. Их средние значения и среднеквадратические отклонения соответственно равны \overline{P}_{a} = 100 H; \overline{Q}_{3} = 770 H; $\sigma_{P_{a}}$ = 30 H; $\sigma_{Q_{3}}$ = 154 H (табл. 5.2).

Необходимо определить коэффициент ускорения при оценке 80%-ого ресурса.

Таблица 5.1 Исходные данные

исходиые данные												
№	1	2	3	4	5	6	7					
$\overline{P}_{\! m a}$, кг	80	85	90	95	105	110	115					
$\overline{Q}_{\!\scriptscriptstyle 3}$, кг	700	710	720	730	740	750	760					
$\sigma_{P_{ m a}}$, кг	15	20	25	35	40	45	50					
σ_{Q_3} , кг	120	125	130	135	140	145	150					
N₂	8	9	10	11	12	13	14					
$\overline{P}_{\! m a}$, кг	120	125	130	135	140	145	150					
$\overline{Q}_{\!\scriptscriptstyle 3}$, кг	780	790	800	810	820	830	840					
$\sigma_{P_{ m a}}$, кг	55	60	65	70	75	80	85					
σ_{Q_3} , кг	155	160	165	170	175	180	185					

Решение

Введём меру повреждения за один цикл нагружения:

$$D_1=1/N.$$

По достижении предельного состояния, т.е. за N циклов, мера повреждения равна единице:

$$D_N = D_1 \cdot N = \frac{1}{N} \cdot N = 1.$$

Определим величину
$$\widetilde{D}$$
, равную:
$$\widetilde{D} = \ln D_1 = m \cdot \ln \frac{K \cdot \chi_{\mathrm{p}}}{F \cdot \sigma_{\mathrm{np}} \cdot N_0^{1/m}} + 2 \cdot m \cdot \ln P_{\mathrm{a}} - m \cdot \ln Q_3.$$

Так как $\ln P_{\rm a}$ и $\ln Q_{\rm 3}$ распределены нормально, то можно считать, что нормально распределена и величина $\ln D_1$.

Параметры нормального распределения $a_{\rm p}$ и $b_{\rm p}^2$ (среднее и дисперсия) величины $\ln P_{\rm a}$ можно определить, используя зависимости:

$$\overline{P}_{a} = e^{a_{P} + \frac{b_{P}^{2}}{2}};$$

$$\sigma_{P_{a}} = \overline{P}_{a} \cdot \sqrt{e^{b_{P}^{2}} - 1}.$$

Откуда получим

$$b_P^2 = \ln\left(\left(\frac{\sigma_{P_a}}{\overline{P_a}}\right)^2 + 1\right) = \ln\left(\left(\frac{30}{100}\right)^2 + 1\right) = 0,086,$$

$$a_P = \ln\left(\overline{P_a} - e^{\frac{b_P^2}{2}}\right) = \ln\left(100 - e^{\frac{0,086}{2}}\right) = 4,562.$$

Аналогично определяются a_O и b_O^2 для величины $\ln Q_3$.

$$b_{Q}^{2} = \ln\left(\left(\frac{\sigma_{Q_{3}}}{\overline{Q}_{3}}\right)^{2} + 1\right) = \ln\left(\left(\frac{154}{770}\right)^{2} + 1\right) = 0,039,$$

$$a_{Q} = \ln\left(\overline{Q}_{3} - e^{\frac{b_{Q}^{2}}{2}}\right) = \ln\left(770 - e^{\frac{0,086}{2}}\right) = 6,645.$$

Моменты (средние и дисперсия) распределения величины $\ln D_1$, определяются по формулам:

$$M[\ln D_1] = m \cdot \ln \frac{K \cdot \chi_p}{F \cdot \sigma_{np} \cdot N_0^{\frac{1}{m}}} + 2 \cdot m \cdot a_P - m \cdot a_Q;$$

$$D[\ln D_1] = 4 \cdot m^2 \cdot b_P^2 + m^2 \cdot b_Q^2.$$

Расчёт по этим формулам даёт:

$$M[\ln D_1] = 8 \cdot \ln \frac{2.8 \cdot 0.3}{0.55 \cdot 15 \cdot (2 \cdot 10^5)^{0.125}} + 2 \cdot 8 \cdot 4.562 - 8 \cdot 6.645 = -10.65.$$

$$D[\ln D_1] = 4 \cdot 8^2 \cdot 0.086 + 8^2 \cdot 0.039 = 24.51.$$

Соответствующее значение среднего числа циклов рассчитывается с помощью формулы

$$N_{0.5} = e^{-M[\ln D_1]}$$
.

$$N_{0.5} = e^{10,65} = 42000$$
.

Среднеквадратическое отклонение

$$\ln D_1 = \sqrt{D[\ln D_1]} = 4.95.$$

Величину $\ln D_1$, соответствующую $\gamma=0.8$, определим по формуле:

$$\widetilde{D}_{0.8} = M[\ln D_1] + \mathcal{U}_{\gamma} \cdot \sigma_{\ln D_1},$$

 $\sigma_{\ln D_1}$ — среднеквадратическое отклонение.

Получаем

$$\widetilde{D}_{0,8} = -10,503 + 0,84 \cdot 4,95 = -6,34$$
.

Соответственно $N_{0.8} = e^{-\widetilde{D}_{0.8}} = 567$ циклов.

Коэффициент ускорения при испытаниях равен:

$$K_{II} = \frac{N_{0.5}}{N_{0.8}} = \frac{42000}{567} = 74.$$

Литература

- 1. Ермолов, Л.С. Повышение надежности сельскохозяйственной техники (Основы теории и практики)/ Л.С. Ермолов.— М.: Колос, 1979.
- 2. Проников, А.С. Надежность машин/ А.С. Проников. М.: Машиностроение, 1978.
- 3. Кряжков, В.М., Ермолов Л.С. Основы надежности сельскохозяйственной техники/ В.М. Кряжков, Л.С. Ермолов. М.: Колос, 1982.

ПРИЛОЖЕНИЕ

Таблица П.1

Коэффициенты Ирвина λ_T

Повторность информации N	λ при $a = 0.95$	λ при $a = 0.99$
2	2,8	3,7
3	2,2	2,9
10	1,5	2,0
20	1,3	1,8
30	1,2	1,7
50	1,1	1,6
100	1,0	1,5
400	0,9	1,3

Таблица П.2

Параметры и коэффициенты закона распределения Вейбулла (ЗРВ)

	закона распределения беноулла (эг б)											
b	K_b	C_b	V	S_b	P_{on}							
0,800	1,133	1,428	1,261	2,815	0,669							
0,900	1,052	1,171	1,113	2,345	0,649							
1,000	1,000	1,000	1,000	2,000	0,632							
1,100	0,959	0,858	0,894	1,688	0,615							
1,200	0,941	0,787	0,837	1,521	0,605							
1,300	0,921	0,704	0,765	1,314	0,592							
1,400	0,911	0,660	0,724	1,198	0,584							
1,500	0,903	0,613	0,679	1,072	0,576							
1,600	0,897	0,574	0,640	0,962	0,568							
1,700	0,892	0,540	0,605	0,865	0,561							
1,800	0,889	0,511	0,575	0,779	0,555							
1,900	0,887	0,486	0,547	0,701	0,549							
2,000	0,886	0,463	0,523	0,631	0,544							
2,100	0,886	0,443	0,500	0,567	0,539							
2,200	0,886	0,425	0,480	0,509	0,535							
2,300	0,886	0,408	0,461	0,455	0,531							
2,400	0,886	0,393	0,444	0,405	0,527							
2,500	0,887	0,380	0,428	0,359	0,524							
2,600	0,888	0,367	0,413	0,315	0,520							
2,700	0,889	0,355	0,399	0,275	0,517							
2,800	0,890	0,344	0,387	0,237	0,514							
2,900	0,892	0,334	0,375	0,202	0,512							
3,000	0,893	0,325	0,363	0,168	0,509							
3,100	0,894	0,316	0,353	0,136	0,507							
3,200	0,896	0,307	0,343	0,106	0,505							
3,300	0,897	0,299	0,334	0,078	0,503							
3,400	0,898	0,292	0,325	0,051	0,501							
3,500	0,900	0,285	0,316	0,025	0,499							

Окончание табл. П.2

3,600	0,901	0,278	0,308	0,001	0,497
3,700	0,902	0,272	0,301	-0,023	0,495
3,800	0,904	0,266	0,294	-0,045	0,494
3,900	0,905	0,260	0,287	-0,067	0,493
4,000	0,906	0,254	0,280	-0,087	0,491

Таблица П.3 Дифференциальная функция (функция плотности вероятности) закона нормального распределения (ЗНР)

$f_{o}\left(\frac{t_{ic}-\bar{t}}{c}\right)$			<u> </u>		Соты	е доли	`			
$f_0\left(\frac{\iota_{ic}-\iota}{\sigma}\right)$	0	1	2	3	4	5	6	7	8	9
0,0	0,40	0,40	0,40	0,40	0,40	0,40	0,40	0,40	0,40	0,40
0,1	0,40	0,40	0,40	0,40	0,40	0,40	0,39	0,39	0,39	0,39
0,2	0,39	0,39	0,39	0,39	0,39	0,39	0,39	0,39	0,38	0,38
0,3	0,38	0,38	0,38	0,38	0,38	0,38	0,37	0,37	0,37	0,37
0,4	0,37	0,37	0,37	0,36	0,36	0,36	0,36	0,36	0,36	0,35
0,5	0,35	0,35	0,35	0,35	0,35	0,34	0,34	0,34	0,34	0,34
0,6	0,33	0,33	0,33	0,33	0,33	0,32	0,32	0,32	0,32	0,31
0,7	0,31	0,31	0,31	0,31	0,30	0,30	0,30	0,30	0,29	0,29
0,8	0,29	0,29	0,29	0,29	0,28	0,28	0,28	0,27	0,27	0,27
0,9	0,27	0,26	0,26	0,26	0,26	0,25	0,25	0,25	0,25	0,24
1,0	0,24	0,24	0,24	0,24	0,23	0,23	0,23	0,23	0,22	0,22
1,1	0,22	0,22	0,21	0,21	0,21	0,21	0,20	0,20	0,20	0,20
1,2	0,19	0,19	0,19	0,19	0,19	0,18	0,18	0,18	0,18	0,17
1,3	0,17	0,17	0,17	0,17	0,16	0,16	0,16	0,16	0,15	0,15
1,4	0,15	0,15	0,15	0,14	0,14	0,14	0,14	0,14	0,13	0,13
1,5	0,13	0,13	0,13	0,12	0,12	0,12	0,12	0,12	0,12	0,11
1,6	0,11	0,11	0,11	0,11	0,10	0,10	0,10	0,10	0,10	0,10
1,7	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,08	0,08	0,08
1,8	0,08	0,08	0,08	0,08	0,07	0,07	0,07	0,07	0,07	0,07
1,9	0,07	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06
2,0	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
2,1	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04
2,2	0,04	0,04	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03
2,3	0,03	0,03	0,03	0,03	0,03	0,03	0,02	0,02	0,02	0,02
2,4	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
2,5	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,01	0,01
2,6	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
2,8	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
3,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

Таблица П.4 Интегральная функция закона нормального распределения (ЗНР)

in ter pas		T J					- Parer	тредел		()
$F_0\left(\frac{t_{ie}-\bar{t}}{T}\right)$		<u> </u>	ı	<u> </u>	СОТЫ	е доли	<u> </u>			
$F_0\left(\frac{\iota_{is}-\iota}{\sigma}\right)$	0	1	2	3	4	5	6	7	8	9
0,0	0,50	0,50	0,51	0,51	0,52	0,52	0,52	0,53	0,53	0,54
0,1	0,54	0,54	0,55	0,55	0,56	0,56	0,56	0,57	0,57	0,58
0,2	0,58	0,58	0,59	0,59	0,60	0,60	0,60	0,61	0,61	0,61
0,3	0,62	0,62	0,63	0,63	0,63	0,64	0,64	0,64	0,65	0,65
0,4	0,66	0,66	0,66	0,67	0,67	0,67	0,68	0,68	0,68	0,69
0,5	0,69	0,70	0,70	0,71	0,71	0,71	0,71	0,72	0,72	0,72
0,6	0,73	0,73	0,73	0,74	0,74	0,74	0,75	0,75	0,75	0,75
0,7	0,76	0,76	0,76	0,77	0,77	0,77	0,78	0,78	0,78	0,79
0,8	0,79	0,79	0,79	0,80	0,80	0,80	0,81	0,81	0,81	0,81
0,9	0,82	0,82	0,82	0,82	0,83	0,83	0,83	0,83	0,84	0,84
1,0	0,84	0,84	0,85	0,85	0,85	0,85	0,86	0,86	0,86	0,86
1,1	0,86	0,87	0,87	0,87	0,87	0,88	0,88	0,88	0,88	0,88
1,2	0,89	0,89	0,89	0,89	0,89	0,89	0,90	0,90	0,90	0,90
1,3	0,90	0,91	0,91	0,91	0,91	0,91	0,91	0,92	0,92	0,92
1,4	0,92	0,92	0,92	0,92	0,93	0,93	0,93	0,93	0,93	0,93
1,5	0,93	0,94	0,94	0,94	0,94	0,94	0,94	0,94	0,94	0,94
1,6	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,96
1,7	0,96	0,96	0,96	0,96	0,96	0,96	0,96	0,96	0,96	0,96
1,8	0,96	0,97	0,97	0,97	0,97	0,97	0,97	0,97	0,97	0,97
1,9	0,97	0,97	0,97	0,97	0,97	0,97	0,98	0,98	0,98	0,98
2,0	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98
2,1	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,99	0,99	0,99
2,2	0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,99
2,3	0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,99
2,4	0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,99
2,5	0,99	0,99	0,99	0,99	0,99	1,00	1,00	1,00	1,00	1,00

Tаблица $\Pi.5$ Интегральная функция (функция распределения) $F(t_{is}-t_{cm})$ закона распределения Вейбулла (ЗВР)

Tuesday and the same and the sa	34110	1 1	реден		on of the	(-)						
$t_{ie} - t_{cm}$		Параметр в										
а	0,9	1,0	1,1	1,2	1,3	1,4	1,5	1,6				
0,1	0,12	0,10	0,08	0,06	0,05	0,04	0,03	0,03				
0,2	0,21	0,18	0,16	0,14	0,12	0,10	0,09	0,07				
0,3	0,29	0,26	0,23	0,21	0,19	0,17	0,15	0,14				
0,4	0,35	0,33	0,31	0,28	0,26	0,24	0,22	0,21				
0,5	0,41	0,39	0,37	0,35	0,33	0,32	0,30	0,28				
0,6	0,47	0,45	0,43	0,42	0,40	0,39	0,37	0,36				
0,7	0,52	0,50	0,49	0,48	0,47	0,46	0,44	0,43				
0,8	0,56	0,55	0,54	0,54	0,53	0,52	0,51	0,50				

Продолжение табл. П.5

	·			1		<u> 2000лж</u>	1	1
0,9	0,60	0,59	0,59	0,59	0,58	0,58	0,57	0,57
1,0	0,63	0,63	0,63	0,63	0,63	0,63	0,63	0,63
1,1	0,66	0,67	0,67	0,67	0,68	0,68	0,68	0,69
1,2	0,69	0,70	0,71	0,71	0,72	0,73	0,73	0,74
1,3	0,72	0,73	0,74	0,75	0,76	0,76	0,77	0,78
1,4	0,74	0,75	0,77	0,78	0,79	0,80	0,81	0,82
1,5	0,76	0,78	0,79	0,80	0,82	0,83	0,84	0,85
1,6	0,78	0,80	0,81	0,83	0,84	0,86	0,87	0,88
1,7	0,80	0,82	0,83	0,85	0,86	0,88	0,89	0,90
1,8	0,82	0,84	0,85	0,87	0,88	0,90	0,91	0,92
1,9	0,83	0,85	0,87	0,89	0,90	0,91	0,93	0,94
2,0	0,85	0,87	0,88	0,90	0,92	0,93	0,94	0,95
2,1	0,86	0,88	0,90	0,91	0,93	0,94	0,95	0,96
2,2	0,87	0,89	0,91	0,92	0,94	0,95	0,96	0,97
2,3	0,88	0,90	0,92	0,93	0,95	0,96	0,97	0,98
2,4	0,89	0,91	0,93	0,94	0,96	0,97	0,98	0,98
2,5	0,90	0,92	0,94	0,95	0,96	0,97	0,98	0,99
2,6	0,91	0,93	0,94	0,96	0,97	0,98	0,99	0,99
2,7	0,91	0,93	0,95	0,96	0,97	0,98	0,99	0,99
2,8	0,92	0,94	0,96	0,97	0,98	0,99	0,99	0,99
2,9	0,93	0,95	0,96	0,97	0,98	0,99	0,99	1,00
3,0	0,93	0,95	0,97	0,98	0,99	0,99	0,99	1,00
3,5	0,95	0,96	0,98	0,99	0,99	0,99	1,00	1,00
4,0	0,97	0,98	0,98	1,00	1,00	1,00	1,00	1,00
$t_{i\theta} - t_{CM}$				Парам	<u>иетр \overline{b} </u>			
$\frac{16}{a}$	1,7	1,8	1,9	2,0	2,1	2,2	2,3	2,4
0,1	0,02	0,02	0,01	0,01	0,01	0,01	0,00	0,00
0,2	0,06	0,05	0,05	0,04	0,03	0,03	0,02	0,02
0,3	0,12	0,11	0,10	0,09	0,08	0,07	0,06	0,05
0,4	0,19	0,18	0,16	0,15	0,14	0,12	0,11	0,10
0,5	0,27	0,25	0,24	0,22	0,21	0,20	0,18	0,17
0,6	0,34	0,33	0,32	0,30	0,29	0,23	0,27	0,25
0,7	0,43	0,41	0,40	0,39	0,38	0,37	0,36	0,35
0,8	0,50	0,49	0,48	0,47	0,46	0,43	0,45	0,44
0,9	0,57	0,56	0,56	0,56	0,55	0,55	0,54	0,54
1,0	0,63	0,63	0,63	0,63	0,63	0,63	0,63	0,63
1,1	0,69	0,70	0,70	0,70	0,71	0,71	0,71	0,72
1,2	0,74	0,75	0,76	0,76	0,77	0,78	0,78	0,79
1,3	0,79	0,80	0,81	0,82	0,82	0,83	0,84	0,85
1,4	0,83	0,84	0,85	0,86	0,87	0,88	0,89	0,89
1,5	0,86	0,87	0,89	0,90	0,90	0,91	0,92	0,93
1,6	0,89	0,90	0,91	0,92	0,93	0,94	0,95	0,95
1,7	0,92	0,93	0,94	0,94	0,95	0,96	0,97	0,97
1,8	0,93	0,94	0,95	0,97	0,97	0,97	0,98	0,98
1,9	0,95	0,96	0,97	0,97	0,98	0,98	0,99	0,99
2,0	0,96	0,97	0,98	0,98	0,99	0,99	0,99	0,99
-,∨	٠,٠٠	٠,٧١	٠,,, ٥			7,77		· · · · · ·

Продолжение табл. П.5

						рооолж		
2,1	0,97	0,98	0,98	0,99	0,99	0,99	1,00	1,00
2,2	0,98	0,98	0,99	0,99	0,99	1,00	1,00	1,00
2,3	0,99	0,99	0,99	1,00	1,00	1,00	1,00	1,00
2,4	0,99	0,99	1,00	1,00	1,00	1,00	1,00	1,00
2,5	0,99	0,99	1,00	1,00	1,00	1,00	1,00	1,00
2,6	0,99	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2,7	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2,8	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2,9	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
3,0	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
3,5	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
4,0	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
$t_{ie} - t_{cm}$				Парам	иетр <i>b</i>			
	2,5	2,6	2,7	2,8	2,9	3,0	3,1	3,2
0,1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,2	0,02	0,02	0,01	0,01	0,01	0,01	0,01	0,01
0,3	0,05	0,04	0,04	0,03	0,03	0,03	0,02	0,02
0,4	0,10	0,09	0,08	0,07	0,07	0,06	0,06	0,05
0,5	0,16	0,015	0,14	0,13	0,13	0,12	0,11	0,10
0,6	0,24	0,23	0,22	0,21	0,20	0,19	0,19	0,18
0,7	0,34	0,33	0,32	0,31	0,30	0,29	0,28	0,27
0,8	0,44	0,43	0,42	0,41	0,41	0,40	0,39	0,39
0,9	0,54	0,53	0,53	0,53	0,52	0,52	0,51	0,51
1,0	0,63	0,63	0,63	0,63	0,63	0,63	0,63	0,63
1,1	0,72	0,72	0,73	0,73	0,73	0,74	0,74	0,74
1,2	0,79	0,80	0,81	0,81	0,82	0,82	0,83	0,84
1,3	0,85	0,86	0,87	0,88	0,88	0,89	0,90	0,90
1,4	0,90	0,91	0,92	0,92	0,93	0,94	0,94	0,95
1,5	0,94	0,95	0,95	0,96	0,96	0,97	0,97	0,97
1,6	0,96	0,97	0,97	0,98	0,98	0,98	0,99	0,99
1,7	0,98	0,98	0,98	0,99	0,99	0,99	0,99	1,00
1,8	0,99	0,99	0,99	0,99	1,00	1,00	1,00	1,00
1,9	0,99	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2,0	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
$t_{ie} - t_{cm}$				Парам		T	T	
a	3,3	3,4	3,5	3,6	3,7	3,8	3,9	4,0
0,1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,2	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,3	0,02	0,02	0,02	0,02	0,01	0,01	0,01	0,01
0,4	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
0,5	0,10	0,09	0,09	0,08	0,07	0,07	0,06	0,06
0,6	0,17	0,16	0,15	0,15	0,14	0,13	0,13	0,12
0,7	0,27	0,26	0,25	0,24	0,23	0,23	0,22	0,21
0,8	0,38	0,37	0,37	0,36	0,35	0,35	0,34	0,34
0,9	0,51	0,50	0,50	0,50	0,49	0,49	0,48	0,48

Окончание табл. П.5

1,0	0,63	0,63	0,63	0,63	0,63	0,63	0,63	0,63
1,1	0,75	0,75	0,75	0,76	0,76	0,76	0,77	0,77
1,2	0,84	0,84	0,85	0,85	0,86	0,865	0,87	0,87
1,3	0,91	0,91	0,92	0,92	0,93	0,93	0,94	0,94
1,4	0,95	0,96	0,96	0,97	0,97	0,97	0,98	0,98
1,5	0,98	0,98	0,98	0,99	0,99	0,99	0,99	0,99
1,6	0,99	0,99	0,99	1,00	1,00	1,00	1,00	1,00
1,7	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1,8	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1,9	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2,0	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00