

9. Multi Layer Perceptron

Course: Introduction to AI

Instructor: Saumya Jetley

Teaching Assistant(s): Raghav Awasty & Subhrajit Roy

October 4, 2022

Genesis of neural networks

- Mathematical model of a Neuron
 - Understanding the mechanics of a single neuron
- Building of a perceptron
- Single to Multi-layer perceptrons

Neuron - A physical model¹

The simplest functional unit in the human brain that,

- Fires at a certain pattern of values at its input
- Passes this information to its neighbours

Image courtesy of Khan Academy

Neuron - A physical model¹

Hubel and Weisel (1962)

- Early neurons in the visual cortex fire at simpler patterns
- Later neurons in the visual cortex fire at more complex patterns

Image courtesy of Khan Academy

Neuron - A mathematical model (McCulloch-Pitts Neuron)

A computational primitive that:

- Accepts multiple inputs each of which is modelled as an analog signal (≥ 0)
- Performs a weighted combination of the inputs
- Applies a non-linear activation function
- Passes the output signal to a downstream neuron

Neuron - A mathematical model

Parameters of this model?

$$\mathbf{x}_{i}^{T} = [x_{1i}, x_{2i}, x_{3i}, \dots x_{ni}]$$

$$\mathbf{w}_i^T = [w_{1i}, w_{2i}, w_{3i}, \dots W_{ni}]$$

$$y_i = \mathbf{w}_i^T \mathbf{x}_i$$

$$z_i = max(y_i, 0)$$

Genesis of neural networks

- Mathematical model of a Neuron
- Building of a perceptron
 - Building a network of neurons one input layer and one output layer
- Single to Multi-layer perceptrons

Building of a perceptron

■ **Aim**: To use the network of neurons to perform mathematical operations

■ Context:

- Early computers (and modern too) are based on binary logic
- Are neural networks able to implement logical operations?

■ Todo:

- Implement elementary logic gates AND, OR and NOT
- Any gate can be implemented using the 3 gates above

input1	input2	input3
0	0	0
0	1	1
1	0	1
1	1	1

input1	input2	input3
0	0	0
0	1	1
1	0	1
1	1	1

input1	input2	input3
0	0	0
0	1	1
1	0	1
1	1	1

input1	input2	input3
0	0	0
0	1	1
1	0	1
1	1	1

OR Gate

Decision boundary defined by,

$$ax + by = c$$

a = scaling of input 1

b = scaling of input 2

c = threshold of the activation function

Or

$$y = \left(-\frac{a}{b}\right)x + \frac{c}{b}$$

OR Gate

Sample decision boundary as per,

$$y = \left(-\frac{a}{b}\right)x + \frac{c}{b}$$

OR Gate

Sample decision boundary as per,

$$y = \left(-\frac{a}{b}\right)x + \frac{c}{b}$$
$$-\frac{a}{b} = -1; \frac{c}{b} = 0.5$$

OR Gate

Sample decision boundary as per,

$$y = \left(-\frac{a}{b}\right)x + \frac{c}{b}$$
$$-\frac{a}{b} = -1; \frac{c}{b} = 0.5$$

Solution space:

$$(a, b, c) = (b, b, 0.5b)$$

OR Gate

Solution space: (a, b, c) = (b, b, 0.5b)

AND Gate

input1	input2	input3
0	0	0
0	1	0
1	0	0
1	1	1

AND Gate

Sample decision boundary as per,

$$y = \left(-\frac{a}{b}\right)x + \frac{c}{b}$$
$$-\frac{a}{b} = -1; \frac{c}{b} = 1.5$$

AND Gate

Sample decision boundary as per,

$$y = \left(-\frac{a}{b}\right)x + \frac{c}{b}$$
$$-\frac{a}{b} = -1; \frac{c}{b} = 1.5$$

Solution space:

$$(a, b, c) = (b, b, 1.5b)$$

AND Gate

Solution space: (a, b, c) = (b, b, 1.5b)

NOT Gate

input1	input2
0	1
1	0

Sample decision boundary as per,

$$y = \left(-\frac{a}{b}\right)x + \frac{c}{b}$$
$$-\frac{a}{b} = -1; \frac{c}{b} = 0.5$$

Solution space:

$$(a, b, c) = (b, b, 0.5b)$$

Task of learning the model is equivalent to:

- (a) Finding the weights on the incoming lines Axis of projection
- (b) Finding the appropriate threshold for a linear separation Threshold along the axis

Task of learning the model is equivalent to:

- (a) Finding the weights on the incoming lines
- (b) Finding the appropriate threshold for a linear separation

Task of learning the model is equivalent to:

- (a) Finding the weights on the incoming lines
- (b) Finding the appropriate threshold for a linear separation
 - 1. Initialise parameters with random values
 - 2. Calculate the error e or loss l
 - 3. Update parameter $p = p \frac{de}{dp}$

Loss function description: Map to Categorical distribution + Measure loss

1. Step function - Non-continuous and Non-differentiable

$$f(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

2. Piecewise linear - Continuous and Non-differentiable

$$f(x) = \begin{cases} 1 & \text{if } x \ge 0.5 \\ x + 0.5 & \text{if } -0.5 \le x \le 0.5 \\ 0 & \text{if } x \le 0.5 \end{cases}$$

3. Sigmoid - Continuous and differentiable

$$f(x) = \frac{1}{1 + e^{-x}}$$

Loss function description: Map to Categorical distribution + Measure loss

input1	input2	input3
0	0	0
0	1	1
1	0	1
1	1	0

1. Complexify the activation function

- 1. Complexify the activation function
- 2. Complexify the mapping/projection

Single to Multi-layer perceptrons

Genesis of neural networks

- Mathematical model of a Neuron
- Building of a perceptron
- Single to Multi-layer perceptrons
 - Limitations of single layer network and introduction of hidden layers
 - Complexify the mapping/projection
 - More general than adapting number of threshold to unknown settings

Single to Multi-layer perceptrons

Figure: Left: Single layer perceptron; Middle: Multi layer perceptron; Right: Recurrent/ feedback perceptron

Overview

- 1 Genesis of neural networks
 - Mathematical model of a Neuron
 - Building of a perceptron
 - Single to Multi-layer perceptrons