Lista 5

Zadanie 1. Wyznacz bazę jądra przekształcenia liniowego zadanego przez macierz (o wyrazach rzeczywistych):

$$\begin{bmatrix} 1 & 0 & 3 & 2 & 0 \\ 2 & 1 & -3 & -3 & 1 \\ 3 & -2 & -1 & 0 & 1 \\ 0 & 3 & 1 & -1 & 0 \end{bmatrix}.$$

Zadanie 2. Znajdź rząd podanej poniżej macierzy (o wartościach w \mathbb{R}) w zależności od parametru $p \in \mathbb{R}$

$$\begin{bmatrix} 5 & p & 5 & p \\ 1 & 1 & 1 & 1 \\ p & p & 2 & 2 \end{bmatrix} .$$

Zadanie 3. Niech M będzie macierzą wymiaru $n \times n$ postaci:

$$M = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 3 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & n-1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{bmatrix} .$$

Oblicz rząd macierzy M^k dla każdego $k \geq 1$. Uzasadnij odpowiedź.

Wskazówka: Zastanów się, jak wygląda $M^k \vec{E}_i$. A jeszcze lepiej: LIN $(M^k \vec{E}_i)$.

Zadanie 4. Niech A,B będą macierzami kwadratowymi tego samego rozmiaru. Pokaż, że

- Jeśli AB jest odwracalna to A i B również są odwracalne.
- Jeśli A, B są odwracalne, to AB też jest odwracalne i $(AB)^{-1} = B^{-1}A^{-1}$.
- Jeśli A jest odwracalna, to A^T jest odwracalna i zachodzi $(A^T)^{-1} = (A^{-1})^T$.
- Jeśli A jest odwracalna, to A^{-1} jest odwracalna i zachodzi $(A^{-1})^{-1} = A$.

Zadanie 5 (* Nie liczy się do podstawy). Pokaż, że każdą macierz odwracalną A wymiaru $n \times n$ można przedstawić jako iloczyn (pewnej liczby) macierzy elementarnych. Co więcej, macierze $D_{i\alpha}$ mogą być ostatnie lub pierwsze.

Pokaż też, że każdą macierz A wymiaru $n \times n$ można przedstawić jako iloczyn (pewnej liczby) macierzy elementarnych oraz (jednej) macierzy przekątniowej (może ona mieć zera na przekątnej).

postępuj podobnie.

Wskazówka: Skorzystaj z faktu, że używając eliminacji Gaussa można sprowadzić macierz odwracalną do macierzy diagonalnej. Zinterpretuj te operacje jako mnożenie macierzy i odwróć kolejne operacje. Dla macierzy nieodwracalnej skorzystaj z faktu używającego jednocześnie eliminacji na kolumnach i wierszach, potem rzy nieodwracalnej skorzystaj z faktu używającego jednocześnie eliminacji na kolumnach i wierszach, potem

Zadanie 6. Podaj macierz odwrotną do macierzy (o wyrazach rzeczywistych):

$$\begin{bmatrix} -3 & 0 & -3 & 0 & 1 \\ 0 & 1 & 0 & 2 & 0 \\ 2 & 0 & -1 & 0 & 0 \\ -4 & 3 & -3 & 4 & 1 \\ 4 & 0 & 3 & 0 & -1 \end{bmatrix}.$$

Zadanie 7. Niech M będzie odwracalną macierzą dolnotrójkątną/górnotrójkątną/diagonalną. Pokaż, że M^{-1} również jest dolnotrójkątna/górnotrójkątna/diagonalna.

Zadanie 8. Sprawdź, czy podane poniżej macierze są odwracalne i podaj ich macierze odwrotne:

$$\begin{bmatrix} \alpha & 1 \\ 1 & \alpha \end{bmatrix}, \qquad \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}^2, \qquad \begin{bmatrix} 3 & 0 & 2 \\ 0 & 1 & 3 \\ 2 & 2 & 0 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & -1 & 2 \\ 2 & -1 & 1 & 2 \\ 2 & 1 & 1 & 2 \end{bmatrix} .$$

Zadanie 9. Wyznacz macierze poniższych przekształceń w bazie standardowej odpowiedniego \mathbb{R}^n :

- $(x_1, x_2, x_3) \mapsto (x_1, x_1 + 2x_2, x_2 + 3x_3);$
- obrót przestrzeni \mathbb{R}^2 o kat α (w lewo, tj. przeciwnie do ruchu wskazówek zegara);
- symetrii \mathbb{R}^2 względem prostej zadanej równaniem y=2x.

Zadanie 10. Niech $\mathbb V$ będzie przestrzenią wielomianów o współczynnikach z $\mathbb R$ i stopnia najwyżej 3. Rozważmy układy wektorów x^0, x^1, x^2, x^3 oraz $x^0, x^0 + x^1, x^0 + x^1 + x^2, x^0 + x^1 + x^2 + x^3$. Udowodnij, że są one bazami. Zapisz macierz przejścia między tymi bazami.

Rozważmy przekształcenie $F: \mathbb{V} \to \mathbb{V}$ zadane jako F(f) = f' + 2f'' + f''', gdzie ' oznacza pochodną. Wyznacz macierz tego przekształcenia w dwóch podanych powyżej bazach.

Zadanie 11. Podaj macierze zmiany bazy pomiędzy każdą z par poniższych baz:

- baza standardowa w \mathbb{R}^3 ;
- $[1, 1, 1]^T$, $[1, 1, 0]^T$, $[1, 0, 0]^T$;
- $[1, 1, -1]^T$, $[1, -1, 1]^T$, $[-1, 1, 1]^T$.