

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
22 March 2001 (22.03.2001)

PCT

(10) International Publication Number
WO 01/20481 A2

(51) International Patent Classification⁷: G06F 17/00

THURSTON, Nathaniel [US/US]; 68 Pearson Road #2,
Somerville, MA 02144 (US).

(21) International Application Number: PCT/US00/24442

(74) Agents: VALLABH, Rajesh et al.; Hale and Dorr, LLP,
60 State Street, Boston, MA 02109 (US).

(22) International Filing Date:
6 September 2000 (06.09.2000)

(81) Designated States (*national*): AE, AL, AM, AT, AU, AZ,
BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK,
DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,
IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU,
LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT,
RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA,
UG, US, UZ, VN, YU, ZA, ZW.

(30) Priority Data:
60/154,640 17 September 1999 (17.09.1999) US
09/558,755 21 April 2000 (21.04.2000) US

(84) Designated States (*regional*): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (*for all designated States except US*): PREDI-

CITIVE NETWORKS, INC. [US/US]; Suite 200, 689 Mass-

achusetts Avenue, Cambridge, MA 02139 (US).

Published:

— *Without international search report and to be republished upon receipt of that report.*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): HOSEA, Devin,
F. [US/US]; 3 Gloucester Street #10, Boston, MA 02115
(US). RASCON, Arthur, P. [US/US]; 425 Woburn
Street #47, Lexington, MA 02420 (US). ZIMMER-
MAN, Richard, S. [US/US]; 22 Cross Street, Belmont,
MA 024778 (US). ODDO, Anthony, Scott [US/US];
90 Wenham Street #3, Jamaica Plain, MA 02130 (US).

A2

(54) Title: METHOD AND SYSTEM FOR WEB USER PROFILING AND SELECTIVE CONTENT DELIVERY

(57) Abstract: A method and system are provided for accurately and anonymously profiling Web users and for selectively delivering content such as advertisements to users based on their profiles. The system uses behavioral information preferably collected at the users' point of connection to the Internet to anonymously profile their interests and demographics. It accurately matches and delivers content to the users to which they will likely be most receptive. Advertisers can use the system to launch effective advertising campaigns delivering selected Web content to chosen target audiences. The system uses feedback from users to determine the effectiveness of an advertising campaign and allows dynamic modification of the advertising campaign by, e.g., altering the target audience, to optimize results.

WO 01/20481 A2

METHOD AND SYSTEM FOR WEB USER PROFILING AND SELECTIVE CONTENT DELIVERY

Related Application

The present application claims priority on Provisional Application Serial No. 5 60/154,640 filed on September 17, 1999 and entitled "Method and Apparatus for Predictive Marketing."

Background of the Invention

Field of the Invention

The present invention relates generally to methods of profiling Web users 10 and for delivering targeted content to users.

Description of Related Art

Web advertising (typically banner advertisements) directed to Web users is expected to grow rapidly along with the growth of the Internet and E-commerce activity. Traditional methods of Web advertising have been found to be generally 15 ineffective in drawing responses from Web users. For example, research has shown that few online users regularly click through ordinary banner advertisements.

A more effective means of Web advertising is advertising targeted to particular Web users. For example, it is known to profile Web users by determining their demographics and interests, and to selectively transmit advertisements to only 20 those users having particular profiles. Information on users can be obtained, e.g., from the users themselves through questionnaires. However, in these profiling methods, there is no assurance of user privacy or the accuracy of the profiling data. Also, there is no way of accurately matching the advertising to user profiles.

A need exists for a method and system for accurately and anonymously profiling Web users. A need also exists for a method and system for accurately matching users of given profiles to content to which they will likely be most receptive.

Brief Summary of the Invention

The present invention is directed to a method and system for accurately and anonymously profiling Web users and for selectively delivering content such as advertisements to users based on their profiles. The system uses behavioral information preferably collected at the users' point of connection to the Internet to anonymously profile their interests and demographics. It accurately matches and delivers content to the users to which they will likely be most receptive. Advertisers can use the system to launch effective advertising campaigns delivering selected Web content to chosen target audiences. The system uses feedback from users to determine the effectiveness of an advertising campaign and allows dynamic modification of the advertising campaign by, e.g., altering the target audience, to optimize results.

These and other features and advantages of the present invention will become readily apparent from the following detailed description wherein embodiments of the invention are shown and described by way of illustration of the best mode of the invention. As will be realized, the invention is capable of other and different embodiments and its several details may be capable of modifications in various respects, all without departing from the invention. Accordingly, the drawings and description are to be regarded as illustrative in nature and not in a restrictive or limiting sense with the scope of the application being indicated in the claims.

Brief Description of the Drawings

For a fuller understanding of the nature and objects of the present invention, reference should be made to the following detailed description taken in connection with the accompanying drawings wherein:

5 FIGURE 1 is a block diagram illustrating of a representative network in which the inventive system is preferably implemented;

FIGURE 2 is a block diagram illustrating the preferred overall architecture of the inventive system;

10 FIGURE 3 is a block diagram illustrating the data collection component of the inventive system;

FIGURE 4 is a block diagram illustrating the client profiling component of the inventive system;

FIGURE 5 is a block diagram illustrating the direct client communications component of the inventive system;

15 FIGURE 6 is a screen shot of an exemplary pop-up advertisement in accordance with the invention;

FIGURE 7 is a block diagram illustrating the master server synchronization component of the inventive system;

20 FIGURE 8 is a block diagram illustrating the dynamic campaign manager of the inventive system;

FIGURE 9 is a block diagram illustrating the data analysis system component of the inventive system;

FIGURE 10 is a block diagram illustrating the billing component of the inventive system; and

25 FIGURE 11 is a block diagram illustrating the data transfer from a ratings service to the inventive system.

Detailed Description of Preferred Embodiments

The present invention is directed to a method and system for profiling Web users or clients based on their surfing habits and for selectively delivering content, e.g., advertising, to the users based on their profiles.

FIGURE 1 illustrates a representative network in which the inventive system can be implemented. The network includes a plurality of client machines 10 operated by various individual users. The client machines 10 connect to multiple servers 12 via a communication channel 14, which is preferably the Internet. It may, however, alternatively comprise an Intranet or other known connections. In the case of the Internet, the servers 12 are Web servers that are selectively accessible by various clients. The Web servers 12 operate so-called "Web sites" and support files in the form of documents and pages. A network path to a Web site generated by the server is identified by a Uniform Resource Locator (URL).

One example of a client machine 10 is a personal computer such as a Pentium-based desktop or notebook computer running a Windows operating system. A representative computer includes a computer processing unit, memory, a keyboard, a mouse and a display unit. The screen of the display unit is used to present a graphical user interface (GUI) for the user. The GUI is supported by the operating system and allows the user to use a point and click method of input, e.g., by moving the mouse pointer on the display screen to an icon representing a data object at a particular location on the screen and pressing on the mouse buttons to perform a user command or selection. Also, one or more "windows" may be opened up on the screen independently or concurrently as desired.

Client machines 10 typically include browsers, which are known software tools used to access the servers 12 of the network. Representative browsers include, among others, Netscape Navigator and Microsoft Internet Explorer. Client

machines 10 usually access servers 12 through some private Internet service provider (ISP) such as, e.g., America Online. Illustrated in FIGURE 1 is the ISP "point-of-presence" (POP), which includes an ISP POP Server 16 linked to the client machines 10 for providing access to the Internet. The POP server 16 is connected to
5 a section of the ISP POP local area network (LAN) that contains the user-to-Internet traffic. As will be discussed in detail below, the ISP POP server 16 captures URL page requests from individual client machines 10 for use in user profiling and also distributes targeted content to users. Also, as will be discussed in detail below, the inventive system also preferably includes a remote master server 18 linked to the
10 ISP POP server 16 through the Internet. The system software is preferably distributed over the network at client machines 10, the ISP POP server 16, and the master server 18 as will be discussed below.

As is well known, the World Wide Web is the Internet's multimedia information retrieval system. In particular, it is a collection of servers of the Internet
15 that use the Hypertext Transfer Protocol (HTTP), which provides users access to files (which can be in different formats such as text, graphics, images, sound, video, etc.) using, e.g., a standard page description language known as Hypertext Markup Language (HTML). HTML provides basic document formatting and allows developers to specify links to other servers and files. These links include
20 "hyperlinks," which are text phrases or graphic objects that conceal the address of a site on the Web.

A user of a client machine having an HTML-compatible browser (e.g., Netscape Navigator) can retrieve a Web page (namely, an HTML formatted document) of a Web site by specifying a link via the URL (e.g.,
25 www.yahoo.com/photography). Upon such specification, the client machine makes a transmission control protocol/Internet protocol (TCP/IP) request to the

server identified in the link and receives the Web page in return.

The inventive system profiles Web users based on their surfing habits and also selectively and intelligently delivers content such as advertising to users based on their profiles. FIGURE 2 is a general overview of a preferred system architecture illustrating the interaction of the various system components. For convenience of illustration, selected components of the system are described below with respect to FIGURES 3-5 and 7-11.

FIGURE 3 illustrates the data collection component of the system, which resides at the POP server 16 and gathers data used in user profiling. The data collection component captures URL requests from clients, associates the requests with particular clients, and stores the data in a database (the UserID and URL database 30). The data collection component includes a sniffer 31 that monitors user-to-Internet traffic. When the sniffer 31 detects an outgoing Web page request from a client 10, it captures the associated packets, extracts the actual URL request, and stores it in the database 30 along with the client's IP address. Because IP addresses are typically assigned dynamically, they are not necessarily the same every time a client logs into the ISP. To correlate an IP address with the associated client, the data collection component queries an IP address to anonymous user ID (AID) cross-reference table stored in another database at the ISP POP. It then stores the User ID and URL information in the database 30.

FIGURE 4 illustrates the client profiling component of the inventive system, which extracts, derives and updates individual user (i.e., client) profiles based on their behavior on the Internet as indicated by the data found in the browsed URL database (i.e., the UserID and URL database 30). User profile information may contain, but is not limited to, demographic data (such as, e.g., the user's age, gender, income, and highest attained education level) and psychographic data, which

reflects the user's interests or content affinity (such as, e.g., sports, movies, music, travel, and finance). The client profiling component first extracts data stored in the User ID and URL database 30. Next, it cross-references the URL strings with data in a local categorized URL database 32, which contains demographic information on a 5 large number of Internet URLs available from entities such as Nielsen (through a service called Nielsen NetRatings) that profile Web sites using panels of users having known demographic characteristics. The client profiling component extracts a set of demographic data associated with a particular Web site URL from the database 32. The profiling component also extracts content affinity or 10 psychographic data from a categorized listing of URLs that translate an address into a content preference for the profile also from database 32.

Next, an existing user profile is pulled from a user profile database 34. Then, using a hybrid averaging algorithm, the URL demographic and content affinity data for URL requests made by a user and the user profile are combined to create an 15 updated inferred user profile. One example of such an algorithm is an algorithm that provides a weighted average of the existing user profile data and the data gathered in the current Web browsing session. For example, the new user profile data equals the existing user profile data multiplied by the number of prior user sessions plus the new user profile data gathered in the current session, all divided 20 by the sum of the number of prior sessions plus one. This is represented in the following equation:

$$\text{new user profile} = (\text{existing user profile} \times \text{number of prior sessions} + \text{new user profile}) / (\text{number of prior sessions} + 1).$$

This updated profile is stored back to the local user profile database 34. (If 25 the user is new and no user profile exists, a profile is created using URL and content affinity data for URL requests made by the user.)

In addition to updating (or creating) the demographic and psychographic profile of the user, the client profiling component will preferably parse through requested URL strings to search for keywords (e.g., keywords that may have been entered into a particular search engine). If such key words are found, they are
5 stored along with the user profile in the user profile database.

As previously discussed, Web site profiles available from, e.g., Nielsen NetRatings are stored in the local categorized URL database 32. These Web site profiles are classified along multiple psychographic and demographic categories. As an example, the following 84 psychographic and 37 demographic categories can
10 be used:

Demographic Categories

Gender:

Male

Female

15 Age:

0 – 11

12 – 17

18 – 20

21 – 24

20 25 – 34

35 – 49

50 – 54

55 – 64

10

65 - 99

Income:

0 - 24,999

25,000 - 49,999

5 50,000 - 74,999

75,000 - 99,999

100,000 - 149,000

150,000 and up

Education:

10 Some High School

High School Graduate

Some College

Associates Degree

Bachelor's Degree

15 Post Graduate

Occupation:

Administrative or Clerical

Craftsman

Educators

20 Executive

Laborer

Homemaker

Military

Professional

Sales

Service

Student

5 Technical

Self-employed

Retired

Race:

Hispanic

10 Non-Hispanic

African American

Caucasian

Asian

Native American

15

Psychographic Categories

Travel:

Air

Car Rental

20 Lodging

Reservations

Maps

Finance/Investments:

Banking
Brokers
Quotes
5 Insurance
Mortgage

Sports:

Auto Racing
Baseball
10 Basketball
Fantasy Sports
Football
Hockey
Soccer
15 Golf
Tennis

Recreation & Hobbies:

Cycling
Golf
20 Hiking
Sailing
Snow Sports
Surfing

13

Tennis

Home & Garden

Pets

Genealogy

5 Photography

Games

Toys

Entertainment:

Movies/Film

10 Music

Theater

TV/Video

Sci-Fi

Humor

15 Games

Toys

Auto:

Trucks

SUV

20 Sports car

News and Information:

Magazines

Weather

Politics:

Democrat

Republican

E-shopping:

5 Groceries

Furniture

Auctions

Cards/Gifts

Apparel

10 Books

Music

TV/Video

Software

E-purchasing

15 Computers

Software

Science

Employment

Education

20 Health & Fitness

Medical

Pharmacy

Dating/Single

Advice
Beauty
Weddings
Maternity
5 Spirituality/Religion
Astrology
Discount
Luxury
Child
10 Teens
College Age
Over 18
Spanish Language

For each visit to a Web site having a stored profile, the Web site profile is
15 averaged or combined into the user's profile as previously discussed. The profiles
include a rating in each category that reflects the interest in the category of persons
who access the Web site.

Each rating is accompanied by a confidence measure, which is an estimate of
the accuracy of the rating. The confidence number is determined by analyzing the
20 Web site and rating it on the type and specificity of content, with narrower and
more singular content providing a higher confidence number. When the confidence
measure in a particular category is below a predetermined threshold, information
from other user profiles is preferably used to provide a more accurate rating in a
process referred to as "profile completion."

An example of a user's profile is shown below. The first number in each category indicates the rating for that category. The ratings number is a percentage of a maximum rating, representing the degree of the user's affinity to the category. In the example below, the ratings number ranges from 0 to 100 with higher numbers indicating greater affinity. The second number in each category (in parenthesis) represents the confidence level in the rating for that category.

User Profile									
User ID	Sports	Finance	Movies	Music	TV	...	Health	Gardening	
1	10.0 (.75)	25.0 (.15)	0.0 (1.00)	0.0 (.28)	0.0 (1.00)	...	50.0 (.77)	85.0 (.82)	

Suppose the confidence threshold is defined to be .50 such that confidence is insufficient in any rating that has a confidence measure less than .50. For the user profile in the example table shown above, there is insufficient confidence in the ratings for the finance and music categories. In this situation, the system examines profiles of users with similar profiles to improve the accuracy of the ratings in those categories with low confidence measures.

A clustering algorithm can be used to find profiles that are similar to the profile of the current user. In judging the similarity between profiles, the confidence measures are ignored and the profiles are treated as n dimensional ratings vectors. A simple clustering algorithm is used based on the distance between vectors wherein all users whose profiles are within a certain distance of the subject user profile are collected. Then, the weighted average of all of the profiles in the collection is calculated to get an ideal profile for comparing to the subject user profile. If the ideal profile has a rating for the category in question that has an acceptable confidence measure, then this rating (and the accompanying confidence measure) replaces the corresponding rating in the subject user profile. In this way, parts of the user profile that have low confidence ratings are "completed" or "filled-in." An example is shown below.

Group similar profiles to generate an ideal profile to be used to complete the user's profile	
User ID	Profile
1	10.0 (.89), 21.0 (.75), 0.0 (1.00), 17.0 (.74), 0.0 (1.00),, 52.0 (.64), 95.0 (.90)
2	12.0 (.77), 5.0 (.15), 0.0 (1.00), 12.0 (.85), 0.0 (1.00),, 40.0 (.84), 90.0 (.75)
3	11.0 (.81), 20.0 (.77), 0.0 (1.00), 0.0 (1.00), 0.0 (1.00),, 75.0 (.77), 81.0 (.73)
4	10.0 (.56), 25.0 (.68), 4.0 (.27), 11.0 (.77), 0.0 (1.00),, 55.0 (.80), 85.0 (.85)
5	12.0 (.75), 22.0 (.77), 0.0 (1.00), 10.0 (.83), 2.0 (.30),, 60.0 (.41), 80.0 (.45)
Ideal profile	11.0 (.76), 21.1 (.62), 0.9 (.85), 9.4 (.84), 0.5 (.86),, 55.8 (.69), 87.1 (.74)

- In the example above, the ideal profile is calculated in the following manner. The rating for each category in the ideal profile is calculated by multiplying the rating times the confidence measure for each user. These products are then added across users in each category. This sum is then divided by the sum of the confidence measures added across users in the category. In mathematical terms,
- 5 $R_{ideal,j} = \sum R_{ij} C_{ij} / \sum C_{ij}$, where $R_{ideal,j}$ is the rating for the ideal profile in category j, R_{ij} is the rating in category j for user i, C_{ij} is the confidence measure in category j for user i and the sum is taken over i as i ranges from 1 to n, which is 5 in this example.
- The confidence measure for each category in the ideal profile is calculated by taking the average of the confidence measure across users in the same category,
- 10 $C_{ideal,j} = \sum C_{ij} / n$, where $C_{ideal,j}$ is the confidence measure for category j in the ideal profile, C_{ij} is the confidence measure in category j for user i, and the sum is taken over i as i ranges from 1 to n, which is 5 in this example.

15 The ideal profile is used to complete the subject user profile. In the example described above, there was insufficient confidence in the ratings for the user in the

finance and music categories. Users having similar profile ratings to the user were found to have a finance category rating of 21.1 with a confidence measure of .62. Since the confidence threshold was defined to be .50, it is possible to use the ideal profile finance rating of 21.1 (.62) to replace the user's finance category rating of 25 (.15). Similarly, the music category rating for similar user profiles was found to have a rating of 9.4 with a confidence measure of .84. This is greater than the threshold and is used to complete the subject user profile. The music category computation illustrates how the system is able to advantageously infer that the user may have an interest in the category despite the fact that he or she has not visited any Web sites related to that category. The completed subject user profile now appears as follows:

'Completed' User Profile								
User ID	Sports	Finance	Movies	Music	TV	...	Health	Gardening
1	10.0 (.75)	21.1 (.62)	0.0 (1.00)	9.4 (.84)	0.0 (1.00)	...	50.0 (.77)	85.0 (.82)

In order to protect the privacy of users, the system does not keep data on which sites have been visited by users for any long term period. Once data in the User ID and URL database 30 has been used for updating a user profile, it is erased. Thereafter, it is not possible to match users with particular Web sites visited.

In accordance with the invention, the system selectively delivers content, e.g., advertising, to users based on profiles inferred in the manner described above. The system includes a direct client communication component preferably residing at the ISP POP server 16 and a URL display component preferably residing at the client machine 10.

As illustrated in FIGURE 5, the direct client communications component selectively retrieves selected content preferably in the form of URLs from a local

advertisement database 40, and sends the it to client machines 10 using the ISP POP server 16. The content is displayed on the client machine 10 using the URL display component as will be described below.

5 The direct client communications associates a client's permanent anonymous user ID and the currently assigned IP address and stores the data in the IP address to AID cross-reference table.

10 The direct client communications component also optionally communicates to the ISP POP server 16 the details of a given client's computer configuration (e.g., which multimedia plug-ins are installed, the bandwidth of the Internet connection, etc.). This information can be used by the system to help ensure that rich-media content is delivered preferably only to those client machines that have the ability to easily and quickly display such content.

15 The direct client communications component also preferably communicates to the client machine the availability of any new versions of URL display software and indicates how they can be downloaded. The URL display component can then initiate an automated download/install process for the software update if desired by the user.

20 The URL display component, which resides on individual client machines 10, periodically connects to the direct client communications component and downloads a list of URLs (linked to content such as advertisements) to be displayed on the client machines 10. The URL display component then uses the URLs to retrieve the actual content pointed to by the URL, and displays the content on the client machine display. The content is preferably displayed in a non-obtrusive manner. The content can, e.g., be displayed in a separate pop-up window. FIGURE 25 6 is a screen shot 50 of a sample banner ad pop-up. The pop-up window preferably

includes a "close" button, which allows a user to dismiss the window if desired. The window size, position, and order in the window stack are preferably remotely configurable. If the user clicks on the banner or some link therein (i.e., click-through), that destination is brought up in a browser window, and the user is
5 transferred to the site of interest.

The URL display component records feedback information on the user's response to the delivered content. This data can include, e.g., how long the advertisement was displayed and whether there was a click-through. This data is sent to the direct client communications component, which stores it in a local client
10 response database 42. This data can be used for billing advertisers and/or for advertising campaign result tracking will be discussed below.

Since the URL display component resides on the client machine, it is preferable that it make limited resource demands (e.g., on the client machine memory, CPU time and monitor space, Internet bandwidth, etc.). Accordingly, it is
15 preferred that the URL display component monitors the Internet connection and only downloads the actual content data (pointed to by the URLs) when the connection is idle. Software updates are also preferably downloaded only when the connection is idle. Also, the URL display component preferably monitors the client machine CPU usage, the unused real estate on the display, the currently active application and any other relevant parameters to ensure that the content placement
20 (i.e., the pop-up advertisement) and timing is both effective and not intrusive or annoying to the user. The URL display component also preferably monitors the versioning of the files required for software updates and downloads only the software files that have changed.

25 The data collection, delivery and display components residing at the ISP POP server 16 and individual client machines 10 described above are preferably

designed to operate "stand-alone," i.e., independently of and without interaction with the master server 18 for at least some period of time. The inventive system however preferably synchronizes data between the master server 18 and the POP server 16 from time to time as illustrated in FIGURE 7. A master server synchronization component residing at the master server 18 and at the POP server 16 periodically retrieves the local client profile database 34 and integrates the data into the master client profile database 50 located at the master server 18. It also retrieves the local client response database 42 and integrates the data into the master client response database 52. The master server synchronization component also parses through a master advertisement delivery database 54 looking for anonymous user IDs that correspond to the local POP and creates the local advertisement delivery database 40 on the ISP POP. It also replicates a master categorized URL database 56 on the local categorized URL database 32.

This distributed architecture greatly reduces the bandwidth requirements of the individual ISP POP server 16 as well as the master server 18. In addition, it significantly enhances the scalability of the overall system. Also, it increases the fault tolerance of the overall system. Furthermore, it allows for rapid deployment, easy debug and monitoring, resulting in a very robust system.

A dynamic campaign manager component shown in FIGURE 8 resides on the master server 18 and provides a portal to the system for advertisers (i.e., ad buyers) to select a targeted audience for a particular advertising campaign. In choosing the target audience, the advertiser is given various options regarding the demographic and psychographic characteristics of the audience. The dynamic campaign manager component takes information entered by an advertiser and creates an advertisement profile and stores this data in an Ad Campaign database 60. This profile is used by a data analysis system component (shown in FIGURE 10)

to identify users who are most likely to respond to the content. The data analysis system takes advertising profile data from the ad campaign database 60 and matches it to user profiles from the master user profile database 50. (In addition, during the course of an advertising campaign, the data analysis system takes data 5 from the master client response database 52 to refine the user profiles selection.) It writes results of match to the advertisement database 62. The master scheduler takes data from the advertisement database 62, resolves any conflicts, and writes to the master advertisement delivery database 54.

The advertiser can check on the success of a current campaign through the 10 dynamic campaign manager. For example, the advertiser can monitor the number of times content has been delivered as well as the number of click-throughs on that content. The system is adaptive in that the advertiser preferably can, if desired, change its marketing strategy (e.g., by adjusting the profile of the targeted audience) at various points in the campaign to optimize results. Thus, campaigns can be 15 altered dynamically based on changing requirements from the advertiser or feedback provided by the system.

Campaign management by an advertiser is preferably accomplished through a browser-based console. The advertiser can use it to define campaigns, provide content, and alter target groups. Feedback as to the success rate of their campaigns 20 in progress is also accessible using the console.

FIGURE 10 illustrates the billing component of the system. The billing component also preferably resides on the master server 18 and monitors the status of an advertising/content campaign, recognizes whether certain billing milestones have been met (e.g., whether an ad has been displayed a given number of times), 25 and generates actual invoice information to be sent to advertisers. The billing component periodically queries the master client response database 52 to determine

the current status of a particular campaign. If predefined billing milestones have been reached, the billing component retrieves specific customer (i.e., advertiser) information from the advertisement campaign database 60 to generate formatted invoices for billing purposes.

5 As previously discussed, in developing user profiles, the system uses data associating URL character strings selected by users on their client machines with a set of demographic and other information. Such data is available from, e.g., Nielsen NetRatings. The system preferably periodically queries a NetRatings or similar database 70 containing the data through XML to build a version of that database on
10 the master server (the master categorized URL database 56) as shown in FIGURE 11. The master server synchronization component will periodically then replicate this database 56 on the local categorized URL database 32.

15 While in the system illustrated above, the advertising delivery channel is through an ISP, the system could be configured such that targeted advertisements are delivered through ordinary Web pages (using banner advertisements, etc.).

Also, in the system described above, Web site classification or profile data is obtained from third party vendors such as Nielsen NetRatings. However, this data may be alternatively generated by the system. By adding a number of users of known demographics, the system could be configured to generate the Web site
20 profile data. Furthermore, the overall demographics generated for the other anonymous users in the system could be used to fill out gaps in the URL database, i.e., for Web sites having no classification data.

Having described preferred embodiments of the present invention, it should be apparent that modifications can be made without departing from the spirit and
25 scope of the invention.

18. The method of Claim 17 wherein said average rating is determined using a clustering algorithm.

19. The method of Claim 1 further comprising erasing records of which Web sites said user has visited after developing the user's profile to protect user privacy.

20. The method of Claim 1 further comprising delivering selective advertising to said user based on his or her profile.

21. The method of Claim 20 wherein delivering selective advertising comprises transmitting a pop-up advertisement to a display of a computer operated by the user.

22. A computer for profiling a Web user, comprising:
a memory for storing a program; and
a processor operative with the program to:
(a) monitor which of a plurality of Web sites the user accesses; and
(b) develop a profile of the user based on predetermined profiles of the Web sites accessed by the user.

23. The computer of Claim 22 wherein said computer comprises an ISP point of presence server.

24. The computer of Claim 22 further comprising a database associating each of said plurality of Web sites with demographic characteristics of persons accessing said sites, said persons having known demographic characteristics.

25. The computer of Claim 22 wherein the program includes a sniffer for identifying URL requests made by the user while Web surfing.

26. The computer of Claim 22 further comprising a database in which the URL requests and associated user information are stored.

27. The computer of Claim 22 wherein said processor includes means for erasing records of which Web sites said user has visited after developing the user's profile to protect user privacy.

28. The computer of Claim 22 wherein said processor further transmits selective advertising to said user based on his or her profile.

29. The computer of Claim 22 wherein said advertising comprises a pop-up advertisement to be displayed on a display of a computer operated by the user.

30. The computer of Claim 22 wherein said computer cooperates with a computer operated by the user to display an advertisement on a display of the computer operated by the user, said advertisement being selected from a plurality of advertisements based on the profile of the user.

31. A system for profiling a Web user and delivering selective advertising to the user, comprising:

a database containing profile data on a plurality of Web sites;

means for monitoring which of said plurality of Web sites the user accesses;

means for developing a profile of the user using profile data of the Web sites accessed by the user;

means for matching the user with an advertisement based on the developed user profile; and

means for delivering said advertisement to the user.

32. A system for inferring a profile of a person using a client computer for Web surfing, and delivering selective advertising to the person based on his or her profile, comprising:

a local server computer linked to said client computer for providing Internet access, said local computer including means for monitoring which of said plurality of Web sites the person accesses, means for developing a profile of the person based on predetermined profile data of the Web sites accessed by the person, and means for delivering an advertisement to the client computer; and

a remote server computer linked to said local server computer and including means for matching an advertisement received from an advertiser to said person based on his or her profile, and means for transmitting said advertisement to said local server computer for eventual transfer to the client computer.

33. The system of Claim 32 wherein said local server computer includes a local database containing data associating a plurality of Web sites with predetermined profile data on said sites.

34. The system of Claim 33 wherein said remote server computer includes a master database containing data associating a plurality of Web sites with predetermined profile data on said sites, and wherein data in said master database is periodically synchronized with said local database.

35. The system of Claim 32 wherein said local server computer and said remote server computer are linked by an Internet connection.

36. The system of Claim 32 wherein said means for delivering an advertisement comprises means for delivering a URL string pointing to the advertisement.

37. The system of Claim 32 wherein the profile of the person contains demographic data.

38. The system of Claim 37 wherein said demographic data includes data on the person 's age.

39. The system of Claim 37 wherein said demographic data includes data on the person 's gender.

40. The system of Claim 37 wherein said demographic data includes data on the person 's income.

41. The system of Claim 37 wherein said demographic data includes data on the person 's highest attained education level.

42. The system of Claim 32 wherein the profile of the person contains psychographic data.

43. The system of Claim 42 wherein said psychographic data indicates the person's interests.

44. The system of Claim 32 wherein said means of monitoring which of said plurality of Web sites the person accesses comprises identifying URL requests made by the person while Web surfing.

45. The system of Claim 32 wherein said local server computer is located at an Internet Service Provider (ISP) point of presence.

46. The system of Claim 32 wherein the means for developing a profile of a person comprises means for combining the profiles of the Web sites accessed by the person to an existing profile using an averaging algorithm.

47. The system of Claim 46 wherein said profile includes data on a plurality of demographic categories, each associated with a rating, and the system further comprises means for filling in a value for the rating for any demographic category having a low confidence measure.

48. The system of Claim 47 wherein filling in a value comprises using an average rating of persons having similar profiles to that of said person for a category having a low confidence measure.

49. The system of Claim 48 wherein said average rating is determined using a clustering algorithm.

50. The system of Claim 32 further comprising means for erasing records of which Web sites said person has visited after developing the person's profile to protect user privacy.

51. The system of Claim 32 further comprising means for monitoring how long the advertisement is displayed to the user.

52. The system of Claim 32 further comprising means for monitoring whether the user has clicked-through the advertisement.

53. A computer readable medium comprising a program for profiling a Web user by performing the steps of:

monitoring which of a plurality of Web sites having predetermined profiles the user accesses; and

developing a profile of the user based on the profiles of the Web sites accessed by the user.

54. The computer readable medium of Claim 53 wherein the medium comprises a removable memory.

55. The computer readable medium of Claim 53 wherein the medium comprises a signal transmission.

56. A computerized method of profiling Web users and selectively delivering content to said users, comprising:

providing profiles of a plurality of Web sites, said profiles including demographic data of persons known to have visited said sites;

monitoring which of said plurality of Web sites each of said users visits;

inferring a profile of each user based on the profiles of the Web sites visited by the user;

identifying a target group of said users who would be receptive to receiving certain content based on their profiles; and

selectively delivering the content to users of that target group.

57. The computerized method of Claim 56 wherein said content comprises advertisements.

58. The computerized method of Claim 57 wherein said advertisements comprises a pop-up advertisements.

59. The computerized method of Claim 58 wherein said advertisements comprises a banner advertisements.

60. The computerized method of Claim 58 further comprising monitoring how long the content is displayed to the user.

61. The computerized method of Claim 60 further comprising monitoring whether the user has clicked-through the content.

62. The computerized method of Claim 56 further comprising adjusting the target group to optimize user responsiveness to the content.

63. The computerized method of Claim 62 wherein said content comprises an advertisement, and determining user responsiveness to the content comprises determining how many users have clicked-through the advertisement.

FIG. 1

3/7

4/7

FIG. 5

FIG. 6

) 50

FIG. 7

6/7

FIG. 8

FIG. 9

7/7

FIG. 10

FIG. 11