Mecânica e Campo Electromagnético

- Força magnética entre correntes.
- · Lei de Biot-Savart. Linhas de campo.
- · Resolução de exercícios.

1

3

Maria Rute André rferreira@ua.pt

Campo Magnético

Assim como estudámos na electrostática, cargas em repouso geram campo eléctrico, agora correntes estacionárias geram campos magnéticos.

Uma barra magnética é formada por dois pólos, designados por Norte (N) e Sul (S)

Pólos opostos atraem-se

S N F F S N

Pólos idênticos repelem-se

F S N S

Campo magnético é mais intenso próximo dos pólos.

Campo Magnético: definição

Consideremos uma partícula de carga q que se move com uma velocidade v.

- A magnitude da força magnética, F_b , exercida na carga é proporcional a q e do vector v:
- A magnitude e direcção da força magnética, F_b , depende dos vectores v e B;
- -A força magnética, F_b , desaparece se o vector v é paralelo ao vector B. Quando o vector v faz um ângulo θ com o vector B, a direcção da força magnética é perpendicular ao plano formado pelo vectores v e B e o módulo de F_b é proporcional ao sen θ .
- $\, \cdot \,$ Quando o sinal da carga é alterado (+ para -, ou vice-versa) a direcção de F_b , também, é invertida.

 $\vec{\mathbf{F}}_{\!\scriptscriptstyle B} = q\vec{\mathbf{v}} \times \vec{\mathbf{B}}$

 $F_{\mathcal{B}} = |q| vB \sin \theta$ Em módulo

Campo Magnético

2

4

 $1Tesla = 1T = 1 \frac{Newton}{(Coulomb)(metro / segundo)} = 1 \frac{N}{C(m/s)} = 1 \frac{N}{Am}$

Unidades não SI: Gauss (G)

 $1Tesla = 1T = 10^4 G$

Nota: O vector F_b é sempre perpendicular aos vectores v e B e não altera a velocidade (energia cinética) da partícula; consequentemente, F_b não realiza trabalho sobre a partícula

$$dW = \vec{\mathbf{F}}_B \cdot d \; \vec{\mathbf{s}} = q(\vec{\mathbf{v}} \times \vec{\mathbf{B}}) \cdot \vec{\mathbf{v}} \, dt = q(\vec{\mathbf{v}} \times \vec{\mathbf{v}}) \cdot \vec{\mathbf{B}} \, dt = 0$$

A direcção do vector velocidade pode, no entanto, ser alterada pela força magnética

Força Magnética

Sabemos que uma partícula carregada que se move num campo magnético B, está sujeita a uma F_b . Como a corrente eléctrica é formada por várias cargas em movimento, um fio atravessado por uma corrente, também, sofrerá os efeitos de uma F_B .

Campo Magnético perpendicular á folha e "aponta para fora".

Força Magnética
1. exercida num fio de comprimento *I* e secção *A*.

 $\vec{\mathbf{F}}_{B} = Q_{\rm tot}\vec{\mathbf{v}}_{d} \times \vec{\mathbf{B}} = qnA\ell(\vec{\mathbf{v}}_{d} \times \vec{\mathbf{B}}) = I(\vec{\ell} \times \vec{\mathbf{B}})$

I=nqv_dA e o vector I tem módulo I e direcção ao longo da corrente eléctrica.

5

Força Magnética

2. exercida num fio com forma arbitrária, há que somar as várias contribuições:

3. exercida num fio que encerra uma superfície fechada

Campo Magnético

6

Devido a uma carga em movimento

CARGA POSITIVA

CARGA NEGATIVA

7 8

Campo Magnético Lei de Biot-Savat

9

Cargas em movimento num fio produzem uma corrente l, tal que o campo B em qualquer ponto P pode ser estimado através da soma das várias contribuições $d\bar{B}$ dos vários segmentos dS.

A lei de Biot-Savat dá-nos o campo $\it B$ devido a um elemento $\it IdI$ a uma distância $\it r.$

Campo Magnético: devido a um fio rectilíneo

 $d\vec{\mathbf{B}} = \frac{\mu_0 I}{4\pi} \frac{d\vec{\mathbf{s}} \times \hat{\mathbf{r}}}{r^2} = \frac{\mu_0 I}{4\pi} \frac{dx \sin \theta}{r^2} \hat{\mathbf{k}}$

10

Campo Magnético:

2. Se o fio é infinito, então $(\theta_1, \theta_2) = (0, 0)$

11