AMENDMENTS TO THE CLAIMS

1	1. (Cancelled)				
2	2. (Cancelled)				
1	3. (Previously Presented) An integrated circuit, comprising:				
2	a sensor operable to detect performance variations of an individual circuit in said				
3	integrated circuit, wherein the individual circuit comprises a phase-locked				
4	loop, and wherein said performance variation is related to aging of said				
5	integrated circuit; and				
-6	a compensation circuit operable to change the operating characteristics of said				
7	individual circuit to compensate for said performance variation in				
8	accordance with an aging-versus time performance curve, wherein the				
9	compensation circuit comprises a charge pump having multiple legs that can				
10	be selectively enabled to change the performance characteristics of said				
11	phase-locked loop.				
1	4. (Previously Presented) The integrated circuit of claim 3, wherein said				
2	compensation circuit comprises a power supply controlled by digital control words to				
3	selectively change the operating characteristics of said phase-locked loop.				
1	5. (Previously Presented) The integrated circuit of claim 3, comprising a				
2	ring oscillator operable to approximate the effects of NBTI and to generate a compensation				
3	signal corresponding thereto.				
1	6. (Original) The integrated circuit of claim 5, wherein said compensation				
2	signal is used to generate digital control words to control operation of a power supply.				

1	7. (Original) The in	tegrated circuit of claim 6, wherein said power supply		
2	is operable to contro	l operation of a volt	age controlled oscillator in said phase-locked loop.		
1	8. (1	Previously Presented	d) The integrated circuit of claim 3, wherein said		
2	individual circuit is	a delay-locked loop.			
1	9. (Original) The in	tegrated circuit of claim 8, wherein the compensation		
2	circuit comprises:				
3	a dummy	delay line operable	to generate a dummy delay line clock signal;		
4	a referen	ce source operable to	o generate a reference clock signal; and		
5	a compa	ator operable to con	npare the dummy delay line clock signal and the		
6	re	eference clock signal	l and to generate a control signal therefrom.		
1	10. (6	Original) The in	tegrated circuit of claim 9, further comprising a power		
2	supply controller op	erable to control ope	eration of the delay line of said delay-locked loop in		
3	response to said con	trol signal.			
1	11. (0	Original) The int	tegrated circuit of claim 10, wherein said power supply		
2	controller controls operation of said delay line by generating a digital power supply control				
3	word (VDD_DLL).				
1	12. (0	Cancelled)			
1	13. ((Cancelled)			
1	14. (I	Previously Presented	l) A method for controlling operation of an		
2	integrated circuit co	mprising:			

3	detecting performance variations of an individual circuit in said integrated circuit,				
4	wherein the individual circuit comprises a phase-locked loop and wherein				
5	said performance variation is related to aging of said integrated circuit; and				
6	generating a compensation signal to change the operating characteristics of said				
7	individual circuit to compensate for said performance variation in				
8	accordance with an aging-versus time performance curve, wherein said				
9	compensation signal is generated by a charge pump having multiple legs that				
10	can be selectively enabled to change the performance characteristics of said				
11	phase-locked loop.				
1	15. (Previously Presented) The method of claim 14, wherein				
_2	compensation signal is generated by a power supply controlled by digital control words to				
3	selectively change the operating characteristics of said phase-locked loop.				
-					
1	16. (Previously Presented) The method of claim 14, wherein said				
2	compensation signal is generated by a ring oscillator operable to approximate the effects of				
3	NBTI and to generate a compensation signal corresponding thereto.				
1	17. (Original) The method of claim 16, wherein said compensation signal is				
2	used to generate digital control words to control operation of a power supply.				
1	18. (Original) The method of claim 17, wherein said power supply is				
2	operable to control operation of a voltage controlled oscillator in said phase-locked loop.				
1	19. (Previously Presented) The method of claim 14, wherein said				
2	individual circuit is a delay-locked loop.				
1	20. (Original) The method of claim 19, wherein the compensation circuit				
2	comprises:				
3	a dummy delay line operable to generate a dummy delay line clock signal;				

a reference source operable to generate a reference clock signal; and
a comparator operable to compare the dummy delay line clock signal and the
reference clock signal and to generate a control signal therefrom.