Binaires X de forte masse - Le flot d'accrétion

El Mellah, Sundqvist & Keppens, A&A 2019

- → Nouveau mécanisme de transfert de masse accéléré dans les systèmes binaires
 - ⇒ les sources X ultra-lumineuses ne nécessitent pas de remplissage de lobe de Roche (eg M101 ULX-1)

Contreparties électromagnétiques de la coalescence d'objets compacts

ONDES GRAVITATIONNELLES

- → coalescenced'étoiles à neutrons
- → nature du reliquat?

SURSAUT GAMMA COURT

Emission transitoire (<2s)

Mécanisme

- → jet relativiste
- → chocs internes
- => émission γ focalisée

30 -20 -10 0 LIGO / Virgo collaboration (2017) Temps (secondes)

KILONOVA

Pic après ~ 1 semaine Optique → proche infra-rouge

Sources de chauffage

- → capture de neutrons
- → retombées d'accrétion

RÉMANENCE

Emission synchrotron Rayons X → radio
Choc externe

"We should not expect the first [...] GW chirps from NS-NS/BH-NS mergers to be accompanied by a GRB [because] the jetted GRB emission will be relativistically beamed out of our line of sight"

Metzger 2017

Kilonova bleue et lumineuse avec sursaut gamma ténu

Troja+2018

Synthèse du projet de recherche

Parcours

Travaux

Projet de recherche

Enseignement

Formation du disque et lancement du jet

BH-NS/NS-NS

DISQUE D'ACCRÉTION

Masse & propriétés?

Vent de disque

- → absorption UV
- → clumps

JET RELATIVISTE

Chocs internes

- → Frédéric Daigne
- → Robert Mochkovitch

Chauffage magnétique de la kilonova & équation d'état

NS-NS

Moens, El Mellah, Meliani & Sundqvist