Discrete Mathematics: Lecture 5. Set theory

- a set is an unordered collection of zero or more distinct objects.
- this object is called an element or a member of the set
- \blacksquare a \in A: a is an element of the set A, A = $\{a\}$
- \blacksquare a $\not\in$ B: a is not an element of the set B
- \blacksquare A = B: two sets are equal iff $\forall x (x \in A \longleftrightarrow x \in B)$
- \blacksquare empty set, null set $\emptyset = \{\}, \neg \exists x \ x \in \emptyset$

- a set V is denoted by listing all of its elements in curly braces
 - \blacksquare V = {1, 3, 5, 7, 9}
- set builder notation
 - $= \{x \mid P(x)\}$ is the set of all x such that P(x)
 - $V = \{x \mid x \text{ is an odd positive integer less than } 10\}$
 - $V = \{x \in Z^+ \mid x \text{ is odd and } x < 10\}$
- sets are unordered
 - \blacksquare {1, 3, 5} = {3, 5, 1}
- all elements are distinct.
 - \blacksquare {3, 5, 1} = {1, 3, 3, 5, 5, 5}

- set equality
 - two sets are equal if and only if they contain exactly the same elements
 - \blacksquare {1, 2, 3, 4}
 - = $\{x \mid x \text{ is an integer where } x>0 \text{ and } x<5 \}$
 - = $\{x \mid x \text{ is a positive integer whose square is } > 0 \text{ and } < 25\}$
- infinite set
 - \blacksquare **N** = {0, 1, 2, ...} the natural numbers.
 - **Z** $= {..., -2, -1, 0, 1, 2, ...} the integers$
 - **R** = the "real" numbers, such as 374.18284719294981819172...

Venn Diagrams

subsets

- the set A is a subset of B iff every element of A is also an element of B A \subseteq B: $\forall x (x \in A \rightarrow x \in B)$
- for every set $S, \emptyset \subseteq S$ and $S \subseteq S$
- A \subset B: A is a proper subset of B $\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A)$
- $A = \{\emptyset \{a\}, \{b\}, \{a,b\}\} = \{x \mid x \text{ is a subset of the set } \{a,b\}\}$
- \blacksquare a \neq {a} \neq {{a}}}

size of a set

- when a set S has n distinct elements,
 - S is a finite set
 - n is the cardinality of S
 - |S| = n

$$A = \{x \mid x \text{ is odd positive integers, } x < 10\}, |A| = 5$$

$$|\emptyset| = 0$$

 $|\{\{a,b,c\}, \{d,e,f\}\}| = 2$

power sets

- \blacksquare P(S): the power set of S is the set of all subsets of the set S
- $P(S) = \{x \mid x \subseteq S \}$
- $|P(S)| = 2^{|S|}$

$$p({0, 1, 2}) = {\emptyset, {0}, {1}, {2}, {0, 1}, {1, 2}, {2,0}, {0,1,2}}$$

$$p(\emptyset) = \{\emptyset\}$$

$$p(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$$

$$p(\{1\}) = \{\emptyset, \{1\}\}$$

Cartesian products

- ordered n-tuple $(a_1, a_2, ..., a_n)$ is the ordered collection that has a_1 as its first element, a_2 as its second element,... and a_n as its nth element
- ordered 2-tuples are called ordered pairs (a, b) = (c, d) iff a=c and b=d
- A × B: Cartesian product of A and B A × B = $\{(a, b) \mid a \in A \land b \in B\}$
- $A^2 = A \times A$
- Cartesian product is not commutative.

$$\neg \forall A, B, A \times B = B \times A$$

Cartesian product of $A = \{1, 2\}$ and $B = \{a, b, c\}$

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$$

set with quantifiers, truth sets, ...

- $\exists x \in S \ (P(x)): \forall x \ (x \in S \to P(x))$ $\exists x \in S \ (P(x)): \exists x \ (x \in S \land P(x))$
- \blacksquare given a predicate P, and a domain D, the truth set of P is the set of elements x in D for which p(x) is true

what are the truth sets of the predicates P(x), Q(x), and R(x)?

the domain is the set of integers

P(x):
$$|x| = 1$$

Q(x): $x^2 = 2$
R(x): $|x| = x$
P = $\{x \in Z | |x| = 1\} = \{-1, 1\}$
Q = $\{x \in Z | x^2 = 2\} = \{\}$
R = $\{x \in Z | |x| = x\} = \{y \in N\}$

set operations

- union: $A \cup B = \{x \mid x \in A \lor x \in B\}$
- intersection: $A \cap B = \{x \mid x \in A \land x \in B\}$
- disjoint: $A \cap B = \emptyset$
- difference of A and B: A B = $\{x \mid x \in A \land x \notin B\}$
- complement of A with respect to U: $\overline{A} = U A = \{x \in U \mid x \notin A\}$
- inclusion-Exclusion: $|A \cup B| = |A| + |B| |A \cap B|$

$A \cap U = A$ $A \cup \emptyset = A$	identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	domination laws
$A \cup A = A$ $A \cap A = A$	idempotent laws
$\overline{\left(\overline{A} ight)}$	complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	commutative laws

set identity

$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	associative laws distributive laws De Morgan's laws absorption laws	
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$		
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$		
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$		
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	complement laws	

Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$

I)
$$A \cap B \subseteq \overline{A} \cup \overline{B}$$

if $x \in \overline{A \cap B}$, then $x \in (\overline{A} \cup \overline{B})$
 $x \notin (A \cap B) \Rightarrow \neg ((x \in A) \land (x \in B)) \Rightarrow \neg (x \in A) \lor \neg (x \in B)$
 $\Rightarrow (x \notin A) \lor (x \notin B) \Rightarrow (x \in \overline{A}) \lor (x \in \overline{B}) \Rightarrow x \in (\overline{A} \cup \overline{B})$

2)
$$\overline{A \cap B} \supseteq \overline{A} \cup \overline{B}$$

if
$$x \in (\overline{A} \cup \overline{B})$$
 then $x \in \overline{A \cap B}$
 $x \in (\overline{A} \cup \overline{B}) \Longrightarrow ((x \not\in A) \lor (x \not\in B)) \Longrightarrow \neg (x \in A) \lor \neg (x \in B)$
 $\Rightarrow \neg ((x \in A) \land (x \in B)) \Longrightarrow \neg (x \in (A \cap B)) \Longrightarrow x \in (\overline{A \cap B})$

proving set identity

use a membership table to show that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Α	В	С	B ∪ C	A ∩ (B ∪ C)	A ∩ B	A ∩ C	(A ∩ B) ∪ (A ∩ C)
I	-	ı	I	I	_	I	I
I	I	0	I	I	-	0	I
I	0	I	I	I	0	I	I
I	0	0	0	0	0	0	0
0	I	I	I	0	0	0	0
0	I	0	I	0	0	0	0
0	0	I	I	0	0	0	0
0	0	0	0	0	0	0	0

generalized unions and intersections

the union of a collection of sets is the set that contains those elements that are members of at least one set in the collection

$$A_1 \cup A_2 \cup \ldots \cup A_n = \bigcup_{i=1}^n A_i$$

the intersection of a collection of sets is the set that contains those elements that are members of all the sets in the collection

$$A_1 \cap A_2 \cap \ldots \cap A_n = \bigcap_{i=1}^n A_i$$

representation of sets with bit strings

 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, and the ordering of elements of U has the elements in increasing order; that is, $a_i = i$.

a bit string that represents the set of all odd integers in U 10101010

a bit string that represents the set of integers not exceeding 5 in U

1111100000

representation of sets with bit strings

the sets $\{1, 2, 3, 4, 5\}$ and $\{1, 3, 5, 7, 9\}$ use bit string to find the union and intersection of these sets

 $\{1, 2, 3, 4, 5, 7, 9\}$

intersection