# FastCampus Pytorch Ch8. Recurrent Neural Networks **HARRY KIM**

# **Lecture Content**

- 1 Sequential Data
- 2 RNN
- 3 LSTM
- 4 GRU
- 5 Applications



RNN

**LSTM** 

GRU

**Applications** 

#### ■ 강의 자료

- Books
  - Pattern Classification Second Edition [Duda, 2001]
  - Pattern Recognition And Machine Learning [Bishop, 2006]
- Online
  - UVA DEEP LEARNING COURSE [University of Amsterdam, 2018]



RNN

LSTM

GRU

**Applications** 



#### **Sequential Data**

RNN

**LSTM** 

GRU

**Applications** 

- 우리가 살고 있는 세상?
- 공간만이 있는 것이 아니다!
- **시간(Time)**도 존재





#### **Sequential Data**

RNN

**LSTM** 

GRU

**Applications** 

- 다음 데이터가 이전 데이터에 영향을 받는 것
- $Pr(x_{t+1}) = Pr(x_{t+1}|x_t)$



#### **Sequential Data**

**RNN** 

**LSTM** 

**GRU** 

**Applications** 

- 언어
- 주식 가격
- 날씨
- ..









**Sequential Data** 

Sequential Data

RNN

LSTM

GRU





**Sequential Data** 

Sequential Data

RNN

**LSTM** 

GRU





**Sequential Data** 

RNN

**LSTM** 

GRU





#### **Sequential Data**

**RNN** 

**LSTM** 

GRU

**Applications** 

- NN/CNN에서는..?
- 시간을 고려할만한 요소가 없음





RNN

LSTM

GRU

**Applications** 

## 2. RNN

RNN

**LSTM** 

**GRU** 

**Applications** 

- 기존 NN에서의 순전파
- $x_{t+1} = h(x_t; \theta)$
- 이전 결과들을 반영하기 위해서는 기억(Memory,  $c_t$ )이 필요
- 또한 새로운 데이터 $(x_{t+1})$ 로 새로운 결과를 도출하는 과정에서 또 새로운 기억 $(c_{t+1})$ 이 생성
- $c_{t+1} = h(x_{t+1}, c_t; \theta)$
- $c_{t+1} = h(x_{t+1}, h(x_t, h(x_{t-1}, ..., h(x_1, c_0; \theta); \theta); \theta); \theta)$
- **RNN에서는**  $\theta$ 가 공유



**Sequential Data** 

RNN

**LSTM** 

GRU

**Applications** 

- Input Parameters : U
- Memory Parameters : W
- Output Parameters : V





#### Sequential Data

RNN

**LSTM** 

GRU

**Applications** 

- Input Parameters : U
- Memory Parameters : W
- Output Parameters : V





#### **Sequential Data**

RNN

**LSTM** 

GRU

**Applications** 

- Input Parameters : U
- Memory Parameters : W
- Output Parameters : V





#### **Sequential Data**

RNN

**LSTM** 

GRU

**Applications** 

- Input Parameters : U
- Memory Parameters : W
- Output Parameters : V



**RNN(Recurrent Neural Network)** 

RNN

**LSTM** 

GRU



#### **Sequential Data**

**RNN** 

**LSTM** 

**GRU** 

**Applications** 

- Input Parameters : U
- Memory Parameters: W
- Output Parameters : V

$$c_t = h(Ux_t + Wc_{t-1})$$

$$y_t = h'(Vc_t)$$

$$y_t = h'(Vc_t)$$



#### **Sequential Data**

RNN

**LSTM** 

**GRU** 

**Applications** 

- $c_t = h(\mathbf{U}x_t)$
- $c_{t+1} = h(\mathbf{U}x_{t+1} + \mathbf{W}c_t) = h(\mathbf{U}x_{t+1} + \mathbf{W}h(\mathbf{U}x_t))$
- $c_{t+2} = h(\mathbf{U}x_{t+2} + \mathbf{W}c_{t+1}) = h(\mathbf{U}x_{t+2} + \mathbf{W}h(\mathbf{U}x_{t+1} + \mathbf{W}h(\mathbf{U}x_t)))$
- $y = h'(Vc_{t+2}) = h'(Vh(Ux_{t+2} + Wh(Ux_{t+1} + Wh(Ux_t))))$

#### **Sequential Data**

**RNN** 

**LSTM** 

GRU

**Applications** 

- NN과 어떻게 다른가?
  - Weight이 공유된다는 점이 가장 다름
  - Weight이 공유되지 않는다면 서로 같게 구성 가능







**Sequential Data** 

RNN

**LSTM** 

GRU

**Applications** 





**Sequential Data** 

**RNN** 

**LSTM** 

GRU

**Applications** 





**Sequential Data** 

**RNN** 

**LSTM** 

GRU

**Applications** 





**Sequential Data** 

RNN

**LSTM** 

GRU

**Applications** 





**Sequential Data** 

RNN

**LSTM** 

GRU

**Applications** 





**Sequential Data** 

RNN

**LSTM** 

GRU

**Applications** 

RNN Training Process - Backward





**Sequential Data** 

RNN

**LSTM** 

GRU

**Applications** 

RNN Training Process - Backward





**Sequential Data** 

RNN

**LSTM** 

GRU

**Applications** 

RNN Training Process – Backward



**Sequential Data** 

**RNN** 

**LSTM** 

GRU

**Applications** 



**Sequential Data** 

**RNN** 

**LSTM** 

GRU

**Applications** 



**Sequential Data** 

**RNN** 

**LSTM** 

GRU

**Applications** 



**Sequential Data** 

**RNN** 

**LSTM** 

GRU

**Applications** 



**LSTM** 

GRU

**Applications** 

RNN Training Process - Backward (Backpropagation Through Time)



**Sequential Data** 

**RNN** 

**LSTM** 

GRU

**Applications** 

RNN Training Process – Backward (Backpropagation Through Time)



**Sequential Data** 

**RNN** 

**LSTM** 

GRU

**Applications** 

RNN Training Process – Backward (Backpropagation Through Time)



**RNN** 

**LSTM** 

**GRU** 

**Applications** 



$$\frac{\partial E_{t+1}}{\partial W} = \frac{\partial E_{t+1}}{\partial c_{t+1}} * \frac{\partial c_{t+1}}{\partial W}$$

**RNN** 

**LSTM** 

GRU

**Applications** 



**RNN** 

**LSTM** 

GRU

**Applications** 



**RNN** 

**LSTM** 

GRU

**Applications** 



**RNN** 

**LSTM** 

GRU

**Applications** 



**Sequential Data** 

**RNN** 

**LSTM** 

**GRU** 

**Applications** 



**Sequential Data** 

**RNN** 

**LSTM** 

**GRU** 

**Applications** 



**Sequential Data** 

**RNN** 

**LSTM** 

**GRU** 

**Applications** 



**RNN** 

**LSTM** 

GRU

**Applications** 



**Sequential Data** 

**RNN** 

**LSTM** 

GRU

**Applications** 



**Sequential Data** 

**RNN** 

**LSTM** 

**GRU** 

**Applications** 



**RNN** 

**LSTM** 

**GRU** 

**Applications** 

• 
$$c_t = h(\mathbf{U}x_t)$$

• 
$$c_{t+1} = h(\mathbf{U}x_{t+1} + \mathbf{W}c_t) = h(\mathbf{U}x_{t+1} + \mathbf{W}h(\mathbf{U}x_t))$$

• 
$$c_{t+2} = h(\mathbf{U}x_{t+2} + \mathbf{W}c_{t+1}) = h(\mathbf{U}x_{t+2} + \mathbf{W}h(\mathbf{U}x_{t+1} + \mathbf{W}h(\mathbf{U}x_t)))$$

• 
$$y = h'(Vc_{t+2}) = h'(Vh(Ux_{t+2} + Wh(Ux_{t+1} + Wh(Ux_t))))$$

$$\bullet \quad \frac{\partial c_{t+1}}{\partial W} = \frac{\partial h}{\partial (Ux_{t+1} + Wc_t)} \frac{\partial (Ux_{t+1} + Wc_t)}{\partial W} = \frac{\partial h}{\partial (Ux_{t+1} + Wc_t)} c_t$$

$$\bullet \quad \frac{\partial c_{t+2}}{\partial W} = \frac{\partial h}{\partial (Ux_{t+2} + Wc_{t+1})} \frac{\partial (Ux_{t+2} + Wc_{t+1})}{\partial W} = \frac{\partial h}{\partial (Ux_{t+2} + Wc_{t+1})} \frac{\partial (Wc_{t+1})}{\partial W} = \frac{\partial h}{\partial (Ux_{t+2} + Wc_{t+1})} \left( c_{t+1} + \frac{\partial c_{t+1}}{\partial W} \right)$$

$$\frac{\partial E_{t+2}}{\partial W} = \sum_{k=t}^{t+2} \frac{\partial E_{t+2}}{\partial c_{t+2}} * \frac{\partial c_{t+2}}{\partial c_k} * \frac{\partial c_k}{\partial W}$$



#### **Sequential Data**

**RNN** 

**LSTM** 

**GRU** 

**Applications** 

#### RNN Training Process

- $h = \tanh(x)$
- $c_t = h( Ux_t + Wc_{t-1} )$
- $y_t = h'(Vc_t)$





http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/

**RNN** 

**LSTM** 

**GRU** 

**Applications** 

#### RNN Training Problem

• 
$$\mathcal{L} = L(c_T(c_{T-1}(...(c_1(x_1, c_0; W); W); W); W))$$

$$\frac{\partial \mathcal{L}}{\partial c_t} \frac{\partial c_t}{\partial c_\tau} = \frac{\partial \mathcal{L}}{\partial c_t} \cdot \frac{\partial c_t}{\partial c_{t-1}} \cdot \frac{\partial c_{t-1}}{\partial c_{t-2}} \cdot \dots \cdot \frac{\partial c_{\tau+1}}{\partial c_\tau}$$

$$< 1$$
  $< 1$   $< 1$   $\rightarrow$  Vanishing gradient



**RNN** 

**LSTM** 

**GRU** 

**Applications** 

### **RNN**

### RNN Training Problem

- $h = \tanh(x)$
- 기울기가 0~1의 값만 출력
  - 따라서 점점 0으로 수렴
- Gradient Vanishing 문제 발생
  - 일반적으로 RNN은 깊음



http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/



RNN

LSTM

GRU

**Applications** 

3. LSTM



**Sequential Data** 

RNN

**LSTM** 

GRU

**Applications** 

- How to fix gradient vanishing?
  - 기울기가 너무 작지도(<1) 크지도(>1) 않게?
  - "기울기 = 1"로 하면 되겠다!



**Sequential Data** 

RNN

**LSTM** 

GRU

**Applications** 

### LSTM Structure





Sequential Data

RNN

**LSTM** 

GRU

**Applications** 

LSTM Structure







**Sequential Data** 

RNN

**LSTM** 

GRU

**Applications** 

LSTM Structure







**Sequential Data** 

**RNN** 

**LSTM** 

**GRU** 

**Applications** 

#### LSTM Structure





#### <Forget Gate Layer>

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

Input과 이전 Hidden State으로 이전의 Cell State의 전달 정도 결정



**Sequential Data** 

**RNN** 

**LSTM** 

**GRU** 

**Applications** 

#### LSTM Structure





#### <Input Gate Layer>

$$i_t = \sigma \left( W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Input과 이전 Hidden State으로 이전 State의 정보와 반영비율 결정



**Sequential Data** 

**RNN** 

**LSTM** 

**GRU** 

**Applications** 

#### LSTM Structure





#### <New Cell State>

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

이전 단계에서 결정된 정보를 바탕으로 새로운 Cell State를 생성



**Sequential Data** 

**RNN** 

**LSTM** 

**GRU** 

**Applications** 

#### LSTM Structure





#### <Final>

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

앞서 생성된 Cell State와 새롭게 비중을 곱하여 새로운 Hidden State를 생성



**Sequential Data** 

**RNN** 

**LSTM** 

**GRU** 

**Applications** 

#### LSTM Structure Variation

- Peephole connections
- Gers & Schmidhuber (2000)



$$f_t = \sigma \left( W_f \cdot [C_{t-1}, h_{t-1}, x_t] + b_f \right)$$

$$i_t = \sigma \left( W_i \cdot [C_{t-1}, h_{t-1}, x_t] + b_i \right)$$

$$o_t = \sigma \left( W_o \cdot [C_t, h_{t-1}, x_t] + b_o \right)$$

**Sequential Data** 

**RNN** 

**LSTM** 

GRU

**Applications** 

#### LSTM Structure Variation

- Coupled forget and input gates
- Only forget when we're going to input something in its place



$$C_t = f_t * C_{t-1} + (1 - f_t) * \tilde{C}_t$$



RNN

LSTM

GRU

**Applications** 

4. GRU



# **GRU**

**Sequential Data** 

RNN

LSTM

GRU

**Applications** 

LSTM v.s. GRU



**RNN** 

**LSTM** 

**GRU** 

**Applications** 

GRU Structure



<Update Gate>

$$z_t = \sigma\left(W_z \cdot [h_{t-1}, x_t]\right)$$

Forget Gate + Input Gate



## **GRU**

**Sequential Data** 

**RNN** 

**LSTM** 

**GRU** 

**Applications** 

#### GRU Structure



<Reset Gate>

$$r_t = \sigma\left(W_r \cdot [h_{t-1}, x_t]\right)$$

0이면 과거 정보 모두 잊음 1이면 과거 정보 모두 기억

**RNN** 

**LSTM** 

**GRU** 

**Applications** 

GRU Structure



$$\tilde{h}_t = \tanh\left(W \cdot [r_t * h_{t-1}, x_t]\right)$$

Reset Gate 값을 통해 과거 정보 반영 비중 결정



### **GRU**

**Sequential Data** 

**RNN** 

**LSTM** 

**GRU** 

**Applications** 

#### GRU Structure



$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

최종적으로 새로운 Hidden State 결정 0이면 과거 정보 모두 기억, 현재 정보 무시 1이면 과거 정보 모두 무시, 현재 정보 기억



RNN

**LSTM** 

GRU

**Applications** 

# 5. Applications



# **Applications**

**Sequential Data** 

RNN

**LSTM** 

**GRU** 

**Applications** 

#### Applications

Language Translation





# **Applications**

**Sequential Data** 

RNN

**LSTM** 

GRU

**Applications** 

### Applications

- Language Translation
- Image Captioning





# **Applications**

**Sequential Data** 

**RNN** 

**LSTM** 

GRU

**Applications** 

### Applications

- Language Translation
- Image Captioning
- Video Classification
- **.**..

one to one one to many many to one many to many

many to many



RNN

LSTM

GRU

**Applications** 

