

Кривые α_u и α_c являются важнейшими элементами для построения областей значений α и γ , определяющих устойчивость нулевого решения краевой задачи. Так область S соответствует случаю устойчивого нулевого состояния равновесия, U — неустойчивых, симметричных относительно нуля состояний равновесия, а в области параметров C наблюдается возникновение цикла вокруг нулевого решения краевой задачи.

Кривые α_u и α_c пересекаются в точке с отрицательным значением ординаты и абсциссой $\gamma=\gamma_*$. Для $x_0=0.0$ $\gamma_*\approx 4.116$. С ростом величины x_0 наблюдается увеличение значения γ_* . Так для $x_0=0.33$ $\gamma_*\approx 4.896$. Помимо этого на кривой α_u можно найти значение $\hat{\gamma}<\gamma_*$ такое, что для значений $\hat{\gamma}<\gamma<\gamma_*$ $d_0>0$, что говорит о грубой потере устойчивости нулевого решения. Для $x_0=0.0$ $\hat{\gamma}\approx 4.039$, а для $x_0=0.33$ $\hat{\gamma}\approx 4.772$.

Для значений $\gamma > \gamma_*$ сохраняется только кривая α_u , а нулевое состояние равновесия останется неустойчивым.

Критические зависимости параметра α для $x_0 \in [x_1, x_2],$ где $x_2 \approx 0.45$

Рис. 1: $x_0 = 0.0$