

Name:

Student number

Computational Science 260

Midterm Exam

Fill in answers in space provided. Use back of page for draft.

Oct. 27

Marks

1. Use a truth table to prove that $(P \wedge Q_1) \vee (\neg P \wedge Q_2)$ is logically equivalent to $(P \Rightarrow Q_1) \wedge (\neg P \Rightarrow Q_2)$. 15

P	Q ₁	Q ₂	$\neg P \wedge Q_1$	$\neg P \wedge Q_2$	$P \wedge Q_1 \vee (\neg P \wedge Q_2)$	$P \Rightarrow Q_1$	$\neg P \Rightarrow Q_2$	$(P \Rightarrow Q_1) \wedge (\neg P \Rightarrow Q_2)$
T	T	T	F	F	F	T	T	T
T	T	F	F	F	F	T	T	T
T	F	T	F	F	F	T	F	F
T	F	F	F	F	F	T	F	F
F	T	T	T	T	T	T	T	T
F	T	F	F	F	F	T	F	F
F	F	T	F	T	T	F	T	T
F	F	F	F	F	F	F	F	F

Since, therefore equivalent.

2. Children dance at nursery school, and each child has exactly one partner. Let $P(x, y)$ be true if x is the partner of y , or if y is the partner of x . Express the fact that each child has exactly one partner in predicate calculus. 12

$$\forall x \exists y (P(x, y) \wedge \forall z (P(x, z) \Rightarrow x = y))$$

3. Given $\forall y(P(y) \vee Q(y))$ and $\exists z\neg P(z)$, give a derivation to show 14
 $\exists zQ(z)$.

$\forall y(P(y) \vee Q(y))$		
1. $\forall y(P(y) \vee Q(y))$	P. comsc.	
2. $\exists z\neg P(z)$	P. comsc.	
3. $\neg P(a)$	2, EI	
4. $P(a) \vee Q(a)$	1, S ^y _a	
5. $Q(a)$	3, 4, D.S.	
6. $\exists zQ(z)$	5, EG	

4. Let P stand for "The new year starts October 21", Q for "4 is even" 12
and R for "Canada is a tropical country". Assign the appropriate
truth values to all these propositions. Translate $(P \wedge Q) \vee (Q \Rightarrow R)$
into English. Moreover, find the truth value of this expression.

The new year starts Oct. 25 and 4 is even,
or 4 is even implies Canada is a tropical country,
 P : The new year starts Oct. 25: F T
 Q : 4 is even T
 R : Canada is a tropical country F

$$\frac{\begin{array}{c} (P \wedge Q) \vee (Q \Rightarrow R) \\ F \quad F \end{array}}{F}$$

Statement false

5. Consider the following Prolog data base

15

```
abc(X,Y) :- cde(X,U), efg(V,U), hij(V,Y).  
cde(a,b).  
cde(a,c).  
efg(d,b).  
efg(h,c).  
hij(h,b).
```

Suppose the query is $\text{abc}(a,b)$. Trace the execution of the query $\text{abc}(a,b)$. The trace should indicate in which order the different goals are attempted, together with an indication whether or not they succeed. Use S for succeed and F for fail.

TRACE

Abda.b
cde(a,b) S
efg(d,b) S
hij(d,b) F for details
efg(v,b) F true ??
cde(a,c) S
efg(h,c) S
hij(h,b) S
abc(a,b) S.

6. In a Prolog data base, there is a fact for each English word, indicating whether it is a noun, a verb, an article, and so on. For instance, there is a fact `noun(dog)` to indicate that "dog" is a noun, there is a fact `verb(run)` to indicate that "run" is a verb, and there is a fact `article(the)` to indicate that "the" is an article. Design a rule `sentence(X, Y, Z)` which must succeed if X is an article, Y is a noun,

Ppt 05

and Z is a verb.

Sentence (X, Y, Z): - Article (X), noun (Y), verb (Z),

7. Let A be a set, and let $\#A$ be the number of elements in the set. 10
Show that $\#(A \cup B) \leq \#A + \#B$. Moreover, give an example where
 $\#(A \cup B) = \#A + \#B$.

Elements appearing in both A and B
are counted twice in $\#A + \#B$, but only
once in $\#(A \cup B)$.

$$A = \{1, 2, 3\} \quad B = \{4\}$$

$$A \cup B = \{1, 2, 3, 4\}$$

8. Let $f(n) = 2 - f(n-1)/2$, with $f(0) = 0$. Find $f(3)$ by replacing $f(m)$ 12
with a proper expression.

$$\begin{aligned} f(3) &= 2 - \frac{f(2)}{2} \\ &= 2 - \frac{2 - f(1)/2}{2} \\ &= 2 - \frac{2 - (2 - f(0)/2)/2}{2} \\ &= 2 - \frac{2 - (2)/2}{2} = 1 \frac{1}{2} \end{aligned}$$