

Introduction

■ We set out to:

- Analyze pothole data across all 77 community areas in the city of Chicago
- Compare to census data to discover patterns in demographic/economic variables
- Create predictive models to forecast pothole metrics for a given geographic area

Data sets

- City of Chicago's 311 Service Request database from January 2011 to June 2017
 - More than 477,000 pothole reports
 - Includes creation and completion date, number of potholes found on block when crew arrives, physical address of request
- Chicago Metropolitan Agency for Planning (CMAP)'s Community Snapshot data:
 - 77 community areas
 - Sourced from U.S. Census Bureau's 2010-14 American Community Survey, Longitudinal Employment-Household Dynamics data for 2014, and 2014/2015 data from the Illinois Department of Employment Security and the Illinois Department of Revenue
 - 155 metrics in total (median income, percent vacant housing, etc.)

DATA EXPLORATION

Service requests by community area

- Linear relationship between total population and the annual number of pothole repair requests
- Slope of regression line indicates 2.1 requests are submitted per 100 residents, regardless of community area

Service requests over time

- Spike in requests in early 2014 aligns with winter vortex
- Regular increase in springtime months
 - 43.5% of all requests occur in spring

Pothole metrics vs. census data

- Analyzed relationships between the following:
 - Pothole metrics
 - Number of potholes found by the DoT per block
 - Number of annual pothole repair requests
 - Response time to repair request

- Census data
 - Median income
 - Percent of land defined as roadways
 - Commuting transportation method (public transit, carpool, etc.)
 - Percent of land as commercial
 - Percent of land as residential
 - Percent of land as industrial

Pothole metrics vs. census data

- Correlations found between all three pothole metrics:
 - Number of potholes found is negatively correlated with both response time and annual requests
 - Fewer potholes are discovered with more frequent and prompt service
 - Response time is positively correlated with annual requests
 - DoT does not respond as quickly to CA's filing more repair requests OR CA's file more repair requests when the DoT responds slowly

Other relationships found

- As median income 1, annual repair requests 1
- \blacksquare As median income $\hat{\mathbb{T}}$, number of potholes found $\hat{\mathbb{L}}$
- lacktriangle As percent of land zoned as residential $\hat{\ }$, annual requests $\hat{\ }$
 - Tied to correlation with total population
- As percent of land zoned as commercial 1, annual requests 1
- lacktriangle As percent of land zoned as commercial $\hat{lacktriangle}$, response time $\hat{lacktriangle}$
- lacksquare As percent of land zoned as commercial $\hat{lacksquare}$, number of potholes found lacksquare

North vs. South

- Southern community areas typically see more potholes per block than northern areas
 - Southern average: 13.1 holes
 - Northern average: 9.0 holes
- Northern areas wait longer on average for pothole repair than southern community areas
 - Southern average: 21.1 days
 - Northern average: 36.4 days

PREDICTIVE MODELS

Linear regression

- Selected 19 features from the census data covering:
 - Median age
 - Median income
 - Race
 - Mode of transport for commuting
 - Percent of land used as industrial, commercial, residential, & transportation
 - Percent of owner-occupied housing
- Correlation matrix shows some relationships but none strong enough to skew the model

Linear regression on response time

- Model explains 37% of the variance in the data – a moderate value for fit
- Large increase in error from training set to test data, indicating an overfit model that does not generalize well
- Linear regression is not a good choice for this data set

Linear regression on number of holes

- Model explains 65% of the variance in the data – a much better fit than the response model
- Small error on both training and test data
- Linear regression models the number of holes found per block very well

Random tree regression on response time

- Model explains 89% of data's variance but does not generalize well to the test set
- Percentage of land zoned as commercial and percent of vacant land are most important features during training

Random tree regression on number of holes

- Model explains 90% of the variance in the data
- Error on the training and test set is remarkably low
- Percentage of black residents is by far the most important feature

Clustering

- Combined census features from regression models and pothole data into one dataset and reduced to 2 dimensions
- Trained clustering model around 2 clusters to explore northsouth relationships in community areas
 - Cluster 1: 12 northern CA's and 2 southern ones
 - <u>Cluster 2</u>: 5 northern CA's and 27 southern ones
- Clustering model then applied to test data
 - Cluster 1: 3 northern CA's and 0 southern ones
 - Cluster 2: 0 northern CA's and 15 southern ones
- Very accurate generalization

Recommendations and future work

- Use censusreporter.org to gather census data on smaller geographies
- For the City:
 - Conduct a study to determine the root cause of the north/south divide in 311 service request response time
- For Chicago residents:
 - Lobby your alderman if your community area has a longer than average response time for pothole repair requests or if a large number of potholes are expected per block in your neighborhood.
 - Plot your daily commute to determine if those streets are pothole-ridden and route a new course on smoother roads.