Hidráulica Básica [2015961]

Tema # 3: Análisis de sistemas de bombeo

Luis Alejandro Morales (Ph.D)

Profesor Asistente

Universidad Nacional de Colombia-Bogotá Facultad de Ingeniería Departamento de Ingenieria Civil y Agrícola

Contents

1	Generalidades	1
2	Ecuaciones para bombas centrifugas	2
3	Curva característica real de una homba	/

1 Generalidades

Una bomba es una máquina que introduce energía al flujo con el fin de vencer diferencias topográficas o pérdidas de energí por fricción o por accesorios, lo cual permite llevar el flujo de un punto (de menor energía) a otro (de mayor energía). En general, los ingenieros civiles y agrícolas se encargan únicamente de la selección de la bomba más apropiada para el sistema en particular dejando de lado el diseño mecánico (rotor) y eléctrico (motor) a otras disciplinas. Existen varios tipos de bombas, sin embargo las más comunes son las bombas rotodinámicas que trasladan la energía al flujo a través de un sistema de rotación, las cuales analizaremos para fluidos incompresibles y flujo permanente en sistemas de tuberías.

De acuerdo con la forma del rotor o impulsor, las bombas rotodinámicas se pueden clasificar como (ver figura 1)

- Bomba centrifuga o de flujo radial: Se caracterizan por presentar una presión alta para caudales relativamente bajos.
- Bomba de flujo axial: Pueden generar un caudal alto con una baja presión.
- Bomba de flujo mixto: Comportamiento intermedio con respecto a las dos anteriores.

En comparación con las bombas de desplazamiento positívo (PDP, positive displacement pump) (ver figura 2), las bombas rotodinámicas, aunque son capaces de proveer mayores caudales gracias a su mecanismo de impulsión con un moderado aumento de la presión, son ineficaces para fluidos con alta densidades y requieren además la extracción de aire de la tubería de succión (purga de la bomba) antes de su uso. Las PDPs son mas apropiadas para fluidos con altas viscosidades y son capaces de autopurgarse. Sin embargo son capaces de suministrar relativamente bajos caudales y operar a altas presiones.

Las bombas mas comunes son las bombas centrifugas y centraremos la mayoriía de nuestro análisis sobre este tipo de bombas. Una bomba centrifuga (ver figura 3) esta compuesta por:

Figure 1: Tipos de bombas rotodinámicas

- 1. Impulsor o rotor: Es un elemento rotatorio compuesto por *alabes* que gira con una alta velocidad angular gracias al trabajo del *motor*. Los alabes crean canales divergentes a través de los cuales fluye el líquido.
- 2. Carcasa: Estructura en donde se encuentra el impulsor. Esta estructura posse un orificio por donde ingresa el fluido a baja presíon (tubería de succión) y y otro por donde converge el liquido a través de los alabes y luego hacia el espiral en donde el líquido es conducido hacia la tubería tubería de descarga con una mayor presión.
- 3. Eje o flecha: Estructura que transfiere la potencia del motor al impulsor.

2 Ecuaciones para bombas centrifugas

Se puede establecer ecuaciones para el calculo de potencia y de cabeza hidráulica introducida por la bomba a la tubería. Cuando el flujo entra a través de la tubería de succión al impulsor, este llega con una presión relativamente baja, al entrar a los alabes, la velocidad angular ω con la cual se mueven los alabes, le suministra una energía al flujo el cual es expulsado (punto S) hacia la espiral (dentro de la carcasa) con una mayor energía (presión). Teniendo en cuenta que es el impulsor el que le suministra la energía al flujo, este puede considerarse como el volumen de control para el siquiente análisis. Para el análisis se debe considerar lo siguiente:

- flujo permanente e incompresible.
- fricción despreciable.
- infinito número de alabes de espesor infinitesimal en el impulsor.
- La potencia transmitida por el eje al impulsor, es transmitida al flujo en su totalidad.

Analizando el movimiento del flujo en el impulsor, este se desplaza desde el punto e al punto s. La figura 5 muestra los diagramas de los vectores de velocidad en donde U es la velocidad absoluta del fluido, u es la velocidad tangencial en un punto en la perisfería, v es la velocidad relativa del líquido respecto al impulsor y tangente al alabe, r es el radio del impulsor, α es el angulo formado por el vector de velocidad absoluta y el vector de velocidad tangente, β es el angulo del alabe, β' es el angulo suplementario de β , b espesor del impulsor, s punto de salida del flujo y e es el punto de entrada del flujo. Aplicando el principio de conservación de cantidad de movimiento angular al volumen de control:

$$\sum M_{ext} = \frac{\gamma}{g} Q \left[\left(\vec{r} \times \vec{U} \right)_s - \left(\vec{r} \times \vec{U} \right)_e \right]$$
 (1)

donde $\sum M_{ext}$ es la sumatoria de los momento externos al volumen de control; el único momento externo es el par de torsión T_T transmitido al impulsor por el eje. Los vectores posición \vec{r} equivalen en este caso a los radios de entrada r_e y de salida r_s en el impulsor.

Analizando el diagrama de vectores de la figura 5, la ecuación 1 se transforma en:

$$T_T = \frac{\gamma}{g} Q \left[(rU \cos \alpha)_s - (rU \cos \alpha)_e \right]$$
 (2)

La ecuación 2 permite calcular el par de torsión teorico transmitido por el eje al impulsor. Multiplicando la ecuación 2 por la velocidad angular ω , se obtiene la potencia mecánica teórica:

$$P_T = T_T \omega = \frac{\gamma}{q} Q \left[(r\omega U \cos \alpha)_s - (r\omega U \cos \alpha)_e \right]$$
(3)

donde $r\omega$ es la velocidad tangencial u. Reemplazando en la ecuación anterior:

$$P_T = \frac{\gamma}{g} Q \left[(uU \cos \alpha)_s - (uU \cos \alpha)_e \right]$$
 (4)

Teniendo en cuenta que no se consideran pérdidas en el sistema, la potencia mecánica teórica debe ser igual a la potencia hidráulica teórica $P_H = \gamma Q h_b \ (P_T = P_H)$. Teniendo en cuenta esto, la ecuación 4, queda:

$$\frac{\gamma}{q}Q\left[\left(uU\cos\alpha\right)_{s}-\left(uU\cos\alpha\right)_{e}\right]=\gamma Qh_{b}\tag{5}$$

simplificando y despejando para h_b , se tiene:

$$h_b = \frac{1}{q} \left[(uU \cos \alpha)_s - (uU \cos \alpha)_e \right]$$
(6)

Las ecuaciones 2, 4 y 6 se conocen como las ecuaciones de Euler para el cálculo del par de torsión, de la potencia y de la cabeza teórica de una bomba centrifuga. De estas ecuaciones, es interesante anotar que mientras la pontecia (P_T) y el par de torsión (T_T) teóricos en este tipo de bombas depende del tipo de fluido $(\gamma \text{ en las ecuaciones})$, la cabeza (h_b) es independiente del fluido.

Teniendo en cuenta que los impulsores se diseñan de manera óptima, el término en la ecuación 6 $(uU\cos\alpha)_e$ debe ser igual a cero con el fin de que h_b no se disminuya en dicha cantidad. Para lograr esto, es necesario que $\cos\alpha_e$ sea igual a cero, lo cual se logra si $\alpha_e = 90^o$. Esto se logra si el vector U_e forma un angulo de 90^o con la horizontal logrando que no exista momento de remolino a la entrada del impulsor. Para un diseño óptimo del impulsor, la ecuación 6 se convierte en:

$$h_b = \frac{1}{g} \left(u_s U_s \cos \alpha_s \right) \tag{7}$$

De acuerdo al diagrama de vectores de la figurarefbom2, la ecuación 7 se puede escribir también como:

$$h_b = \frac{1}{a} \left[u_s \left(u_s - v_s \cos \beta_s \right) \right] \tag{8}$$

Teniendo en cuenta que el caudal que sale del impulsor lo hace de forma radial, para luego ser canalizado por la espiral en la carcasa y dirigido hacia la tubería de descarga, dicho caudal se puede expresar como $Q = U_{rs}A_{Ls}$, donde U_{rs} es la componente radial de U en s y A_{Ls} es el área lateral del impulsor en la salida. De acuerdo con esto, Q se puede expresar como:

$$Q = U_{rs} 2\pi r_s b_s \tag{9}$$

donde b_s es el espesor del impulsor a la salida. De la figura 5, se puede demostrar que $U_{rs} = v_s \cos \beta_s \tan \beta_s$. Reemplazando en la ecuación anterior y despejando para $v_s \cos \beta_s$, se tiene:

$$v_s \cos \beta_s = \frac{Q}{2\pi r_s b_s \tan \beta_s} \tag{10}$$

Reemplazando la ecuación 10 en la ecuación 8, queda una expresión de h_b en función de Q como:

$$h_b = \frac{u_s^2}{g} - \left(\frac{u_s Q}{2\pi g r_s b_s \tan \beta_s}\right) \tag{11}$$

La ecuación 11 tiene la forma de una ecuación lineal $h_b = f(Q) = A - BQ$, donde A y B son constantes. Note que la ecuación 11 representa una familia de rectas que se denominan la curva característica de la bomba. Note que la ecuación 11 depende de β_s por lo tanto la familia de curvas tiene el comportamiento mostrado en la figura 6. El mejor comportamiento de la bomba se da cuando $0 < \beta_s < 90$ (alabe tirado hacia atrás) ya que la carga de la bomba aumenta en la medida que disminuya el caudal.

3 Curva característica real de una bomba

Las deducciones de las ecuaciones en la sección anterior se hicieron bajo supuestos teóricos que en la práctica no obedecen a la comportamiento real de una bomba si se tiene en cuenta lo siguiente:

- El número de alabes en el impulsor es finito y el espesor de cada uno de estos es diferente de cero. Esto resulta en que los alabes no son una guia perfecta para transportar el flujo (flujo circulatorio) lo que resulta en valores menores de β_s y por lo tanto en menores valores de la componente $U_s \cos \alpha_s$. Esto significa que la carga real es menor a la teórica definida en la ecuación 11. Esto quiere decir que la curva característica teórica sufre un abatimiento tal y como se muestra en la figura 7.
- Teniendo en cuenta que existe fricción debido a la rugosidad en el impulsor y que se presenta turbulencia a la salida del impulsor, dichos aspectos generan una disipación de energía que es proporcional a Q^2 . Esto quiere decir que h_b disminuye aún más cuando Q aumenta.

Lo anterior quiere decir que la curva característica real presenta un comportamiento no lineal $(h_b = A - BQ^C)$ similar al mostrado en la figura 7.

En las tuberías de succión (entrada a la bomba) donde la presión suele ser baja y en la tubería de descarga (salida de la bomba) en donde la presión es alta, es común instalar manómetros o sensores para determinar la presión en estos dos puntos. Aplicando la ecuación de Bernoulli entre la ubicación de estos dos manómetros, se puede determinar la cabeza útil del flujo:

$$h_m = \left(\frac{p}{\gamma} + \frac{V^2}{2g} + z\right)_{sc} - \left(\frac{p}{\gamma} + \frac{V^2}{2g} + z\right)_d + h_e \tag{12}$$

donde los subindices sc indican tubería de succión y d tubería de descarga. De acuerdo con la ecuación 12, la potencia se expresa como $P_u = \gamma Q h_m$. La eficiencia de una bomba definida por el diseño de los alabes, de la carcasa y de las condiciones de operacón, se puede determinar como la relación de la potencia útil (P_u) y la potencia que aplica el motor a la bomba (P_T) :

$$\eta_b = \frac{P_u}{P_T} = \frac{\gamma Q h_m}{T_T \omega} \tag{13}$$

donde T_T es el torque teórico (ver ecuación 3). La eficiencia del motor se puede definir como la potencia que aplica el motor a la bomba (P_T) y la potencia de salida del motor (o potencia al freno, bhp) (P_m) :

$$\eta_m = \frac{P_T}{P_m} = \frac{T_T \omega}{P_m} \tag{14}$$

La eficiencia global de todo el sistema (motor, flecha y bomba) queda definida como:

$$\eta = \eta_b \eta_m = \frac{\gamma Q h_m}{P_m} \tag{15}$$

Se pueden definir otras curvas características como potencia al freno o potencia de salida del motor P_m vs Q o eficiencia de la bomba η_b vs Q como se muestra en la figura 8.

Nótese que en la figura 8, P_m aumenta a medida que Q aumenta, mientras que la eficiencia de la bomba η_b aumenta hasta alcanzar un máximo y luego disminuye. Este punto de máxima eficiencia define el caudal (Q_o) con el cual debería operar la bomba, lo cual se da rara vez.

En la practica, estas curvas características son construidas por el fabricante de la bomba en laboratorios de hidráulica equipados con instrumentos de alta presición. Lo más común es encontrar las curvas para una velocidad constante de rotación de la flecha de la bomba y para diferentes diámetros del impulsor (ver figura 12). También es común encontrar las curvas características de la bomba para un impulsor variando la velocidad de rotación (ver figura 11). Estas curvas que son presentadas por el fabricante en manuales, se pueden construir para diferentes tipos de bombas usando análisis dimensional. Es posible encontrar curvas características de h_m vs Q para diferentes bombas (diferentes diámetros del impulsor) representadas en el mismo sistema de referencia, con el fin seleccionar más de una bomba para valor de Q_o . Esto se hace con el fin de determinar la mejor opción entre las posible bombas con base en análisis de costos de operación de estas.

References

- [1] Yunus Cengel and John Cimbala. *Ebook: Fluid mechanics fundamentals and applications (si units)*. McGraw Hill, 2013.
- [2] CA Duarte Agudelo. *Mecánica de fluidos e hidráulica*. Universidad Nacional de Colombia. Facultad de Ingeniería., 2011.

Figure 2: Tipos de bombas de desplazamiento positivo: bomba de tubo flexible, bomba de lobulo rotacional, bomba de engranáges y bomba de doble tornillo.

Figure 3: Bombas centrifugas.

Figure 4: Impulsor y carcasa de una bomba centrifuga (tomado de [1]).

Figure 5: Diagramas de velocidad en el impulsor (tomado de [2]).

Figure 6: Familia de curvas características teóricas para diferentes rangos de β_s (tomado de [2]).

Figure 7: Curva característica real (tomado de [2]).

Figure 8: Otras curvas características (tomado de [2]).

Figure 9: Curvas características y best efficiencie point (BEP) para una bomba centrifuga (tomado de [1]).

Figure 10: Punto de operación (caudal) de la bomba para un sistema de tuberías (tomado de [1]).

Figure 11: Curva caracteristica para D constante (tomado de [1]).

Figure 12: Curva caracteristica para ω constante (tomado de [1]).