

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕ	ET <u>«»</u>		
КАФЕДРА	«»		

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К КУРСОВОЙ РАБОТЕ

HA TEMY:

«Моделирование построения поверхностных и объемных геометрий с помощью операции движения»

СОДЕРЖАНИЕ

B	ВЕД	ЕНИЕ		3			
1	Kpı	ривые и поверхности					
	1.1	Способы описания кривых и поверхностей					
		1.1.1	Явный вид				
		1.1.2	Неявные вид	4			
		1.1.3	Параметрический вид	4			
	1.2	Кривн	ые и поверхности Безье	5			
		1.2.1	Кривые Безье	5			
		1.2.2	Поверхности Безье				
	1.3	Рациональные кривые и поверхности Безье					
		1.3.1	Рациональные кривые Безье				
		1.3.2	Рациональные поверхности Безье				
	1.4	В-спл	айны				
		1.4.1	В-сплайн кривая	11			
		1.4.2	Свойства В-сплайна				
		1.4.3	В-сплайн поверхности				
1.5		NURE	BS				
		1.5.1	Рациональный B-сплайн и NURBS				

ВВЕДЕНИЕ

Для моделирование построения поверхностных и объемных геометрий необходимо использовать методы геометрического моделирования.

Поэтому, прежде, чем мы приступим к описанию построения геометрий с помощью операции движения, рассмотрим основные методы построения поверхностей и кривых, а именно кривые и поверхности Безье, рациональные кривые и поверхности Безье, B-Spline и NURBS.

1 Кривые и поверхности

1.1 Способы описания кривых и поверхностей

Существует три основных подхода к описанию кривых и поверхностей.

1.1.1 Явный вид

Для кривой:

$$y = f(x), z = g(x)$$

Для поверхности:

$$z = f(x, y)$$

Этот метод имеет несколько недостатков:

- Нельзя однозначно описать замкнутые кривые, например, окружности.
- Полученное описание не обладает инвариантностью относительно поворотов.
- При попытке задать кривые с очень большими углами наклона возникают большие вычислительные сложности.

1.1.2 Неявные вид

$$f(x, y, z) = 0$$

Недостатки:

- Кривая в трёхмерном пространстве задаётся как пересечение двух поверхностей, т.е. требуется решать систему алгебраических уравнений.
 - Сложности в процессе объединения неявно заданных фрагментов кривых

1.1.3 Параметрический вид

Параметрическое задание кривой и поверхности преодолевает недостатки явного и неявного способов описания. С его помощью можно задавать многозначные кривые, т.е. такие зависимости, которые могут принимать несколько значений при одном значении аргумента. Для кривой:

$$\begin{cases} x = x(u) \\ y = y(u) \\ a \le u \le b \end{cases}$$
 (1.1)

и также будем пользоваться обозначением

$$\mathbf{C}(u) = (x(u), y(u)), \ a \le u \le b \tag{1.2}$$

Для поверхности:

$$\begin{cases} x = x(u, v) \\ y = y(u, v) \\ z = z(u, v) \\ a \le u \le b \\ c \le v \le d \end{cases}$$
 (1.3)

и также будем пользоваться обозначением

$$\mathbf{S}(u,v) = (x(u,v), y(u,v), z(u,v)), \ a \le u \le b, \ c \le v \le d$$
 (1.4)

1.2 Кривые и поверхности Безье

1.2.1 Кривые Безье

Пусть заданы n+1 точек $\mathbf{P}_i=(x_i,\ y_i,\ z_i)$, называемых контрольными точками. Они определяют форму и пространственное положение кривой.

Тогда кривую Безье п-ой степени можно задать с помощью уравнения:

$$\mathbf{C}(u) = \sum_{i=0}^{n} B_{i,n}(u)\mathbf{P}_{i}, \quad 0 \le u \le 1$$

$$(1.5)$$

где $B_{i,n}$ - полиномы Бернштейна.

$$B_{i,n}(u) = C_n^i u^i (1 - u)^{n-i} = \frac{n!}{i!(n-i)!} u^i (1 - u)^{n-i}$$
(1.6)

Для вычисления точек кривой Безье удобно использовать алгоритм де Кастельжо:

Листинг 1.1 – Псевдокод алгоритма де Кастельжо

```
deCasteljau(P, n, u, C)
   {
2
       /*Вычисление точки на кривой Безье*/
3
       /*[in]: P, n, u*/
4
       /*[out]: С (точка)*/
5
       for(i=0; i<=n; i++) /* Используем локальный массив, */
6
                             /* чтобы не изменить исходный массив
            Q[i] = P[i]
               контрольных точек */
       for (k=1; k<=n; k++)</pre>
8
            for (i=0; i<=n-k; i++)</pre>
9
                Q[i] = (1.0-u)*Q[i] + u*Q[i+1]
10
       C = Q[0]
11
12
  }
```

Например, на рисунке 1.1 показана кривая Безье для контрольных точек $P_1 = (0, 0), P_2 = (0, 1), P_3 = (1, 2), P_4 = (3, 0).$

Рисунок 1.1 – Пример кривой Безье

1.2.2 Поверхности Безье

Пусть заданы контрольные точки $\mathbf{P}_{i,j}$, где $0 \le i \le n$ и $0 \le j \le m$. Тогда nosepxhocmb Beзbe можно задать с помощью следующего уравнения:

$$\mathbf{S}(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} B_{i,n}(u) B_{j,m}(v) P_{i,j}, \quad 0 \le u, v \le 1$$
(1.7)

Аналогично кривым Безье, точки поверхности Безье можно находить с помощью алгоритма де Кастельжо из листинга 1.1.

Листинг 1.2 – Псевдокод алгоритма де Кастельжо для поверхности

```
deCasteljauForSurface(P, n, m, u0, v0, S)
  {
2
       /*Вычисление точки на повехности Безье*/
3
       /*[in]: P, n, m, u0, v0*/
4
       /*[out]: S (точка)*/
5
       if (n <= m)
6
       {
           for(j=0; j<=m; j++) /* P[j][] - j-as строка */
8
                deCasteljau(P[j][], n, u0, Q[j]);
9
           deCasteljau(Q, m, v0, S);
10
       }
11
       else
12
       {
13
           for(i=0; i<=n; i++)</pre>
14
                deCasteljau(P[][i], m, v0, Q[i]);
15
           deCasteljau(Q, n, u0, S);
16
       }
17
  }
18
```

На рисунке 1.2 показан пример поверхности Безье для 15 контрольных точек.

Рисунок 1.2 – Пример поверхности Безье

1.3 Рациональные кривые и поверхности Безье

1.3.1 Рациональные кривые Безье

Так как кривые Безье - полиномиальные кривые, они имеют существенный недостаток, а именно с их помощью невозможно задать некоторые виды кривых, такие как окружности, эллипсы, гиперболы и прочие. Данные виды кривых можно задать с помощью рациональных функций, то есть как частное двух полиномов.

$$x(u) = \frac{X(u)}{W(u)}$$
 $y(u) = \frac{Y(u)}{W(u)}$, (1.8)

где $X(u),\,Y(u)$ и W(u) - полиномы.

Заметим также, что каждая координатная функция имеет одинаковый знаменатель W(u).

Рациональные кривые с координатными функциями в виде (1.8) имеют элегантную геометрическую интерпретацию, которая дает эффективные методы построения этих кривых и небольшие требования к памяти компьютера.

Оказывается, что можно использовать однородные координаты, чтобы задать рациональные кривые в n-мерном пространстве с помощью полиномиальной кривой в (n+1)-мерном пространстве.

Рассмотрим точку в евклидовом пространстве ${\bf P}=(x,y,z)$. Затем запишем точку ${\bf P}$ как ${\bf P}^\omega=(\omega x,\omega y,\omega z,\omega)=(X,Y,Z,W)$ в четырех-мерном пространстве, причем $\omega\neq 0$. Тогда ${\bf P}$ можно получить из ${\bf P}^\omega$ делением всех координат на четвертую координату W, то есть с помощью отображения P^ω на гиперплоскость W=1

Рисунок 1.3 – Представление точки евклидова пространства в однородной форме для двумерного случая

Данное отображение H является перспективной проекцией с центром в начале координат:

$$\mathbf{P} = H\{\mathbf{P}^{\omega}\} = H\{(X, Y, Z, W)\} = \left(\frac{X}{W}, \frac{Y}{W}, \frac{Z}{W}\right)$$
(1.9)

Тогда для множества контрольных точек $\{\mathbf{P_i}\}$ и множества весов $\{\omega_i\}$ зададим множество взвешенных контрольных точек $\mathbf{P}_i^{\omega} = (\omega_i x_i, \omega_i y_i, \omega_i z_i, \omega_i)$. Тогда нерациональная (полиномиальная) кривая Безье в 4-х мерном пространстве

$$\mathbf{C}^{\omega}(u) = \sum_{i=0}^{n} B_{i,n}(u) \mathbf{P}_{i}^{\omega}$$
(1.10)

Уравнение (1.10) в координатном виде:

$$X(u) = \sum_{i=0}^{n} B_{i,n}(u)\omega_i x_i \qquad Y(u) = \sum_{i=0}^{n} B_{i,n}(u)\omega_i y_i$$

$$Z(u) = \sum_{i=0}^{n} B_{i,n}(u)\omega_i z_i \qquad W(u) = \sum_{i=0}^{n} B_{i,n}(u)\omega_i$$

Заметим, что $W \neq 0$ поскольку мы выбираем $\omega_i > 0$.

Применяя к (1.10) отображение (1.9), получим искомую рациональную кривую Безье в 3-х мерном пространстве, задающуюся формулами

$$x(u) = \frac{X(u)}{W(u)} = \frac{\sum_{i=0}^{n} B_{i,n}(u)\omega_{i}x_{i}}{\sum_{i=0}^{n} B_{i,n}(u)\omega_{i}}$$

$$y(u) = \frac{Y(u)}{W(u)} = \frac{\sum_{i=0}^{n} B_{i,n}(u)\omega_{i}y_{i}}{\sum_{i=0}^{n} B_{i,n}(u)\omega_{i}}$$

$$z(u) = \frac{Z(u)}{W(u)} = \frac{\sum_{i=0}^{n} B_{i,n}(u)\omega_{i}z_{i}}{\sum_{i=0}^{n} B_{i,n}(u)\omega_{i}}$$

или в векторной записи

$$\mathbf{C}(u) = \frac{\sum_{i=0}^{n} B_{i,n}(u)\omega_i \mathbf{P}_i}{\sum_{i=0}^{n} B_{i,n}(u)\omega_i}$$
(1.11)

Например, если взять $\mathbf{P}_0=(1,0),\,\mathbf{P}_1=(1,1),\,\mathbf{P}_2=(0,1)$ и $\omega_i=(1,1,2),$ получим дугу окружности(рисунок 1.4).

Рисунок 1.4 – Дуга окружности, построенная с помощью рациональной кривой Безье

Если веса всех вершин равны, то получим обычную кривую Безье, поскольку в таком случае знаменатель в уравнение (1.19) - это просто сумма полиномов Бернштейна, которая равна 1. Таким образом, рациональные кривые Безье являются обобщением полиномиальных кривых Безье.

1.3.2 Рациональные поверхности Безье

Аналогично рациональным кривым Безье, рациональные поверхности Безье можно представить как перспективную проекцию 4-х мерной полиномиальной поверхности Безье

$$\mathbf{S}^{\omega}(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} B_{i,n}(u) B_{j,m}(v) \mathbf{P}_{i,j}^{\omega}$$

$$\mathbf{S}(u,v) = H\{\mathbf{S}^{\omega}(u,v)\} = \frac{\sum_{i=0}^{n} \sum_{j=0}^{m} B_{i,n}(u)B_{j,m}(v)\omega_{i,j}\mathbf{P}_{i,j}}{\sum_{i=0}^{n} \sum_{j=0}^{m} B_{i,n}(u)B_{j,m}(v)\omega_{i,j}} = \sum_{i=0}^{n} \sum_{j=0}^{m} R_{i,j}(u,v)\mathbf{P}_{i,j}, \quad (1.12)$$

где

$$R_{i,j}(u,v) = \frac{B_{i,n}(u)B_{j,m}(v)}{\sum_{r=0}^{n} \sum_{s=0}^{m} B_{r,n}(u)B_{s,m}(v)\omega_{r,s}}$$
(1.13)

На рисунке 1.5 изображена цилиндрическая поверхность, построенная с помощью рациональной поверхности Безье. Она представляет собой поверхность, полученную движением дуги окружности из рисунка 1.4.

Рисунок 1.5 – Цилиндрическая поверхность, построенная с помощью рациональной поверхности Безье

1.4 В-сплайны

1.4.1 В-сплайн кривая

У кривых заданных полиномами или рациональными функциями есть несколько минусов.

- Для большого числа точек требуется полиномы большой степени. Так для того, чтобы построить кривую через n точек, требуется полином n-1 степени. Кривые, заданные полиномами с большими степенями, тяжело обрабатывать, а также они численно неустойчивы.
 - Для сложных кривых также требуется большая степень полинома.
- Полиномиальные кривые не очень подходят для проектирования кривой. Хотя в кривых Безье и можно менять форму кривой, изменяя контрольные точки и значения весов в них, кривая меняется нелокально, т.е. изменение параметров одной точки меняет всю кривую.

В-сплайны лишены этих недостатков: степень полинома В-сплайна можно задать независимо от числа контрольных точек, а также они В-сплайны допускают локальный контроль над формой кривой.

Поставим задачу следующим образом. Пусть даны контрольные точки \mathbf{P}_i . Определим кривую по формуле

$$C(u) = \sum_{i=0}^{n} N_i(u) \mathbf{P_i}, \quad u_{min} \le u \le u_{max}$$
(1.14)

где $N_i(u)$ - набор кусочно-полиномиальных функций, таких, что

- 1. $N_i(u) = 0$ при $u \notin [a_i, b_i] \subset [u_{min}, u_{max}];$
- 2. $N_i(u)$ линейно независимы и образуют базис;
- 3. $\sum_{i=0}^{n} N_i(u) = 1$ для каждого $u \in [u_{min}, u_{max}].$

Решение поставленной задачи даётся *B-сплайнами* (сокр. от basis). Общее выражение для расчёта координат точек *B-сплайна*:

$$C(u) = \sum_{i=0}^{n} N_{i,p}(u)\mathbf{P}_i$$

$$(1.15)$$

В 1972 году Кокс и де Бур предложили использовать функции $N_{i,p}$, определяемые рекурсивно. Пусть $U=\{u_0,\ldots,u_m\}$ - неубывающая последовательно вещественных чисел, т.е. $u_i\leq u_{i+1}, i=0,\ldots,m-1$. u_i называют

узлами (knot), а U - вектором узлов (knot vector). Тогда i-тая базисная функция B-сплайна p-ой степени, обозначаемая $N_{i,p}(u)$, выражается следующим образом:

$$N_{i,0}(u) = \begin{cases} 1, u \in [u_i, u_{i+1}] \\ 0, u \notin [u_i, u_{i+1}] \end{cases}$$
 (1.16)

$$N_{i,p}(u) = \frac{u - u_i}{u_{i+p} - u_i} N_{i,p-1}(u) + \frac{u_{i+p+1} - u}{u_{i+p+1} - u_{i+1}} N_{i+1,p-1}(u)$$
(1.17)

В силу свойств базисных функций В-сплайна в любом заданном промежутке $[u_i,u_{i+1}]$ могут быть отличны от нуля только p+1 функций: $N_{i-p,p},\ldots,N_{i,p}$. Например, единственные кубические функции, отличные от нуля на $[u_3,u_4]$ - это функции N_0^3,\ldots,N_3^3 . Поэтому при вычислении базисных функций N^k в точке u, важно уметь находить индекс i в векторе узлов, при котором выполняется соотношение $u_i \leq u \leq u_{i+1}$. Для этого например можно использовать алгоритм бинарного поиска:

Листинг 1.3 – Алгоритм бинарного поиска индекса i

```
int FindSpan(n, p, u, U)
2
       /* Поиск і-го индекса в векторе узлов*/
3
       /*[in]: n, p, u, U*/
4
       /*[out]: i*/
5
       if(u == U[n+1]) return n; /*Специальный случай*/
6
       low = p; high = n+1; /*Бинарный поиск*/
7
       mid = (low+high)/2;
8
       while (u < U[mid] \mid \mid u >= U[mid+1])
9
10
            if(u < U[mid]) high = mid;</pre>
11
            else
                              low = mid;
12
            mid = (low+high)/2;
13
14
       return mid;
15
16
  }
```

Также, по этой же причине следует, что чтобы находить значение сплайна для любого u из отрезка $[u_i, u_{i+1}]$, необходимо иметь не менее p дополнительных узлов до и после него. На практике этого обычно достигают, дублируя первый и последний узел нужное число раз. Например, если p=3 и даны узлы в точках $\{0,1,2\}$, то расширенный массив узлов будет иметь вид:

```
\{0,0,0,0,1,2,2,2,2\}.
```

Для вычисления ненулевых базисных функций $N_{i-p,p},\ldots,N_{i,p}$ можно использовать следующий алгоритм:

Листинг 1.4 – Алгоритм вычисления базисных функций $N_{i-p,p},\ldots,N_{i,p}$

```
BasicFunc(i, u, p, U, N)
2
   {
       /*Вычисление ненулевых базисных функций*/
3
       /*[in]: i, u, p, U*/
4
       /*[out]: N*/
5
       N[0] = 1.0;
6
       for(j=1; j<=p; j++){</pre>
            left[j] = u-U[i+1-j];
            right[j] = U[i+j]-u;
9
            saved = 0.0;
10
            for (r=0; r<j; r++)</pre>
11
12
            {
                 temp = N[r]/(right[r+1]+left[j-r]);
13
                N[r] = saved+right[r+1]*temp;
14
                 saved = left[j-r]*temp;
15
            }
16
            N[j] = saved;
17
       }
18
19 }
```

Также следует заметить, что существуют разные подходы к заданию узлового вектора. Разные методы задания узловых значений позволяют получить разные функции сопряжения и, соответственно, разные кривые. Если расстояние между значениями в узлах постоянно, получающаяся в результате кривая называется равномерным В-сплайном. Например, можно задать следующий равномерный вектор узлов:

$$\{-1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0\}$$

Часто значения узлов нормируются в диапозон от 0 до 1.

Аналогично, если допускается выбор одинаковых внутренних значений узлов и неравномерное размещение значений узлов, то такое В-сплайн называется *неравномерным*.

Так, например, для контрольных точек $\mathbf{P}_0=(0,0), \mathbf{P}_1=(0,1), \mathbf{P}_2=(1,2), \mathbf{P}_3=(3,0)$ и узлового вектора $U=\{0,0,0,\frac{1}{4},1,1,1\}$ В-сплайн 2-степени

будет иметь вид:

Рисунок 1.6 – Пример В-сплайн кривой

1.4.2 Свойства В-сплайна

В-сплайн имеет следующие свойства:

- полиномиальная кривая имеет степень p и непрерывность $C^{p-1};$
- диапазон параметра u делится на n+p+1 подынтервалов n+p+2 значениями, заданными в векторе узлов;
- если значения узлов обозначить $\{u_0,u_1,\ldots,u_{n+p+1}\}$, получающийся Всплайн определяется только в промежутке $[u_p,u_{n+1})$, т.к. только в этом промежутке $\sum_{i=0}^n N_{i,p}=1$;
 - каждый участок сплайна определяется p+1 контрольными точками;
- локальная коррекция: любая контрольная точка \mathbf{P}_i может влиять на форму кривой $\mathbf{C}(u)$ только на интервале $[u_i,u_{i+p+1});$
- при движении вдоль кривой, функции $N_{i,p}$ действуют подобно переключателям. Когда u проходит мимо узла u_{i+p+1} в векторе узлов, функция $N_{i,p}$ (и, соответственно, точка \mathbf{P}_i) выключаются, поскольку становится равной нулю, и включаются следующие;
- чем меньше степень кривой, тем ближе она подходит к контрольным точкам. Кривые высоких порядков более гладкие;

- помимо локального контроля В-сплайны позволяют варьировать число контрольных точек, используемых в разработке кривой, без изменения степени полинома;
- кривые на базе B-сплайнов аффинно инвариантны. Для преобразования B-сплайн кривой мы просто преобразуем каждую контрольную точку и генерируем новую кривую;
- В-сплайн кривая является выпуклой комбинацией своих контрольных точек и поэтому лежит внутри их выпуклой оболочки. Возможно более сильное утверждение: при любом значении $u \in [u_p, u_{n+1}]$ только p+1 функций В-сплайна «активны» (то есть отличны от нуля). В этом случае кривая должна лежать внутри выпуклой оболочки не более p+1 последовательных активных контрольных точек;
- В-сплайн кривые обеспечивают линейную точность: если p+1 последовательных контрольных точек коллинеарны, то их выпуклая оболочка будет прямой линией, и кривая будет захвачена внутрь её;
- В-сплайн кривые уменьшают колебания: В-сплайн кривая не пересекает никакую линию чаще, чем её контрольный полигон.

1.4.3 В-сплайн поверхности

В-сплайн поверхность задается с помощью контрольных точек и двух векторов узлов. Ее точки можно найти с помощью формулы:

$$S(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} N_{i,p}(u) N_{j,q}(v) \mathbf{P_{i,j}}$$
(1.18)

Например, для набора контрольных точек

$$\begin{aligned} \mathbf{P_{0,0}} &= (0,0,0), & \mathbf{P_{0,1}} &= (1,0,0), & \mathbf{P_{0,2}} &= (2,0,0), \\ \mathbf{P_{1,0}} &= (0,0.5,1.3), & \mathbf{P_{1,1}} &= (1,0.5,1.2), & \mathbf{P_{1,2}} &= (2,0.5,1.3), \\ \mathbf{P_{2,0}} &= (0,1,0), & \mathbf{P_{2,1}} &= (1,1,0), & \mathbf{P_{2,2}} &= (2,1,0), \\ \mathbf{P_{3,0}} &= (0,1.5,1.3), & \mathbf{P_{3,1}} &= (1,1.5,1.2), & \mathbf{P_{3,2}} &= (2,1.5,1.3), \\ \mathbf{P_{4,0}} &= (0,2,0), & \mathbf{P_{4,1}} &= (1,2,0), & \mathbf{P_{4,2}} &= (2,2,0), \end{aligned}$$

векторов узлов $U=\{0,0,0,1/2,1/2,1,1,1\},\ V=\{0,0,0,1,1,1\}$ и p=q=2 получим следующую В-сплайн поверхность:

Рисунок 1.7 – Пример В-сплайн поверхности

1.5 NURBS

1.5.1 Рациональный B-сплайн и NURBS

Аналогично случаю рациональных кривых Безье, контрольные точки рационального В-сплайна указываются с использованием однородных координат. Функции сопряжения применяются именно к этим однородным координатам. Координаты точки рационального В-сплайна в однородном пространстве получаются по формулам:

$$X(u) = \sum_{i=0}^{n} N_{i,p}(u)\omega_i x_i \qquad Y(u) = \sum_{i=0}^{n} N_{i,p}(u)\omega_i y_i$$
$$Z(u) = \sum_{i=0}^{n} N_{i,p}(u)\omega_i z_i \qquad W(u) = \sum_{i=0}^{n} N_{i,p}(u)\omega_i$$

Тогда уравнение сплайна в трехмерном пространстве в вектором виде примет вид:

$$\mathbf{C}(u) = \frac{\sum_{i=0}^{n} N_{i,p}(u)\omega_i \mathbf{P}_i}{\sum_{i=0}^{n} N_{i,p}(u)\omega_i} = \sum_{i=0}^{n} R_{i,p} \mathbf{P}_i,$$
(1.19)

где

$$R_{i,p} = \frac{N_{i,p}(u)\omega_i}{\sum_{j=0}^{n} N_{j,p}(u)\omega_j}$$

— базисные функции рационального В-сплайна.