Probabilités

William Hergès ¹

21 mars 2025

Table des matières

1	Espace probabilisé	2
2	Probabilités conditionnelles	3
3	Événements indépendants	4

1. Espace probabilisé

Les probabilités sont très semblables à la théorie des ensembles.

Définition 1

On note Ω l'ensemble des issues possibles d'une expérience aléatoire. Ω est l'univers

Dictionnaire des probabilités

Cette petite partie est piquée de mon cours de maths au CPES (créé par M. Kerner et M. Cote, deux professeurs de mathématiques au Lycée Henri-IV).

Table 1 – Dictionnaire

TABLE 1 Dictionnanc			
Théorie des ensembles	Probabilités		
$w \in \Omega$	issue de l'expérience		
$A \in \mathcal{P}(\Omega)$	événement		
$\mathcal{P}(\Omega)$ ou l'ensemble des parties	tribu		
$\bar{A} = \Omega \backslash A$ ou complémentaire	contraire		
$A \cup B$	A ou B		
$A \cap B$	A et B		
$B \setminus A$	B mais pas A		
$A \subset B$	A implique B		
$A \cap B = \emptyset$ ou A et B sont disjoints	A et B sont incompatibles		
$A \sqcup B$	A ou bien B		
$E_1 \sqcup E_2 \sqcup \ldots \sqcup E_n = \Omega$ ou un partage	système complet d'évènements (s.e.c.)		

Définition 2

Un espace probabilisé est un univers Ω possédant une fonction $\mathbb P$ de $\mathcal P(\Omega)$ dans [0;1] tel que

- 1. $\mathbb{P}(\Omega) = 1$
- 2. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$, où A et B sont deux événements de Ω incompatibles.

Un espace probabilisé est donc un univers avec une fonction assignant une probabilité à tous les événements de l'univers!

Proposition 2.1

On a:

$$\mathbb{P}(\varnothing) = 0$$

 $\hfill \square$ Démonstration. On a :

$$\mathbb{P}(\Omega) = \mathbb{P}(\varnothing \cup \Omega) = \mathbb{P}(\varnothing) + \mathbb{P}(\Omega) = 1$$

Donc $\mathbb{P}(\emptyset) = 0$, car, par définition, $\mathbb{P}(\Omega) = 1$.

Proposition 2.2

On a pour tous événements A et B de Ω , un espace probabilisé :

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(A \cap B)$$

☐ Démonstration. AQT

3

2. Probabilités conditionnelles

Définition 3

On dit que $A\subset\Omega$ est certain si et seulement si $\mathbb{P}(A)=1.$

On dit que $B\subset\Omega$ est impossible si et seulement si $\mathbb{P}(B)=0.$

Proposition 3.1

À partir d'un événement ${\cal B}$ non-impossible, on peut définir un espace probabilisé.

Soit (Ω, \mathbb{P}) un espace probabilisé. Soit B un événement non-impossible de (Ω, \mathbb{P}) (i.e. $\mathbb{P}(B) \neq 0$). On a que (Ω, \mathbb{P}_B) est un espace probabilisé avec \mathbb{P}_B de $\mathcal{P}(\Omega)$ dans [0;1] tel que :

$$\mathbb{P}_B(A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

où A est un événement de Ω . $\mathbb{P}_B(A)$ est la probabilité de A sachant B.

☐ Démonstration. AQT

On peut aussi dire que $\mathbb{P}_B(A)$ est la probabilité de A conditionnelle à B.

On peut aussi noter $\mathbb{P}_B(A) = \mathbb{P}(A|B)$.

Événements indépendants

Définition 4

Soient A et B deux événements de l'espace probabilisé $(\Omega,\mathbb{P}).$

On dit qu'ils sont indépendants si et seulement si :

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B)$$

Proposition 4.1

Si A et B sont indépendants et si B n'est pas impossible, alors

$$\mathbb{P}_B(A) = \mathbb{P}(A)$$

☐ Démonstration. AQT

Théorème de Bayes

On note R un événement de Ω sachant $\mathbb{P}_{C_i}(R)$ pour tout i dans [|i,n|]. On a :

$$\forall i \in [|1, n|], \quad \mathbb{P}_R(C_i) = \frac{\mathbb{P}_{C_i}(R)\mathbb{P}(C_i)}{\sum_{i=1}^n \mathbb{P}_{C_i}(R)\mathbb{P}(C_i)}$$

Exemple 1

On veut $\mathbb{P}_D(I)$. On sait que :

Donc:

Donc :
$$\begin{split} \mathbb{P}_D(I) &= \frac{\mathbb{P}_I(D)\mathbb{P}(I)}{\mathbb{P}_F(D)\mathbb{P}(F) + \mathbb{P}_I(D)\mathbb{P}(I) + \mathbb{P}_A(D)\mathbb{P}(A)} \\ &= \frac{\frac{3}{4} \cdot \frac{1}{4}}{\frac{1}{4} \cdot \frac{1}{4} + \frac{3}{4} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{1}{2}} \\ &= \frac{3}{7} \end{split}$$