7 Limit theorems

- Define sample mean
- Calculate expected value and variance of it
- Prove Law of Large Numbers
- Draw graph of a roll with a fair die

Proposition 2.14. (Chebyshevs ulighed). Let X be any random variable with mean μ and variance σ^2 . For any constant c > 0, we have

$$P(|X - \mu| \ge c\sigma) \le \frac{1}{c^2} \tag{1}$$

Bevis

The continuous case. Fix c and let $B = \{x \in \mathbb{R} : |x - \mu| \ge c\sigma\}$. We get

$$\sigma^{2} = E[(X - \mu)^{2}] = \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx$$
$$\geq \int_{B} (x - \mu)^{2} f(x) dx \geq c^{2} \sigma^{2} \int_{B} f(x) dx = c^{2} \sigma^{2} P(X \in B)$$

Sample mean

$$\overline{X} = \frac{1}{n} \sum_{k=1}^{n} X_k \tag{2}$$

Expectance and variance of sample mean Let X_k have mean μ and variance σ^2 .

$$E[\overline{X}] = E\left[\frac{1}{n}\sum_{k=1}^{n} X_k\right] = \frac{1}{n}\sum_{k=1}^{n} E[X_k] = \mu$$
$$\operatorname{Var}[\overline{X}] = \operatorname{Var}\left[\frac{1}{n}\sum_{k=1}^{n} X_k\right] = \sum_{k=1}^{n} \frac{1}{n^2} \operatorname{Var}[X_k] = \frac{\sigma^2}{n}$$

Theorem 4.1. (The Law of Large Numbers) Let $X_1, X_2,...$ be a sequence of i.i.d. random variables with mean μ , and let \overline{X} be their sample mean. Then, for every $\varepsilon > 0$

$$P(|\overline{X} - \mu| > \varepsilon) \to 0 \text{ as } n \to \infty$$
 (3)

Bevis

Assume X_k has finite variance $\sigma^2 < \infty$. Apply Chebyshev's to \overline{X} and let $c = \varepsilon \sqrt{n}/\sigma$. Since $E[\overline{X}]$ and $Var[\overline{X}] = \sigma^2/n$, we get

$$P(|\overline{X} - \mu| > \varepsilon) \le \frac{\sigma^2}{n\varepsilon^2} \to 0 \text{ as } n \to \infty$$
 (4)

We say that \overline{X} converges in probability to μ and write (med et P over pilen)

$$\overline{X} \to \mu \text{ as } n \to \infty$$
 (5)

Corollary 4.1 Experiment with event A occurring with probability p. Repeat and let S_n be times we get A in n trials and let $f_n = S_n/n$. Then

$$f_n \to p \text{ as } n \to \infty \text{ (in probability)}$$
 (6)

Bevis

Define indicators

$$I_k = \begin{cases} 1 & \text{if we get } A \text{ in the } k \text{th trial} \\ 0 & \text{otherwise} \end{cases} \quad \text{for } k = 1, 2, \dots, n$$
 (7)

The I_k are i.i.d. and they have mean $\mu = p$ (Bernoulli distribution). Since f_n is the sample mean, the law of large numbers gives

$$f_n \to p \text{ as } n \to \infty \text{ (in probability)}$$
 (8)