REPUBLIQUE ISLAMIQUE DE MAURITANIE

Ministère d'Etat à l'Education nationale à l'Enseignement Supérieur et à la Recherche Scientifique Direction des Examens et de l'Evaluation Service des Examens

Hanneur Fratemité Justice

Série : Sciences de la nature Durée : 4H Coefficient : 7

Exercice 1

L'éthanoate de butyle est un composé organique noté E.

- 1 Donner la formule semi-développée de ce composé organique. Quel est le nom de sa fonction chimique?
- 2 Le composé E est obtenu par une réaction entre un acide carboxylique A et un alcool B.
- 2.1 Ecrire les formules semi-développées des composés A et B. Les nommer.
- 2.2 Ecrire l'équation qui permet d'obtenir le composé E, à partir de A et de B.
- 3 On introduit dans un ballon 0,5 mol de A, 0,5 mol de B et 2 mL d'acide sulfurique.

La température du chauffe-ballon est réglée à 65 °C.

- 3.1 Quel est le nom de la réaction chimique réalisée entre A et
- B? Quelles sont ses caractéristiques?
- 3.2 On suit l'évolution temporelle de cette réaction, réalisée à volume constant, en déterminant, la quantité de matière n(E) formée.

On obtient la courbe ci-contre:

- 3.2.1 Définir la vitesse V(t) de formation du composé E. La calculer aux instants t_1 =12 h et t_2 = 25 h, on trouve $V(t_1) > V(t_2)$. Quel est le facteur cinétique responsable de la variation de V(t) au cours du temps ?
- 3.2.2 Calculer le rendement de la réaction entre A et B.
- 3.2.3 La valeur numérique du rendement varie-t-elle (justifier les réponses)

En doublant les quantités de matière initiales des deux réactifs ?

En augmentant la quantité d'acide sulfurique?

4 Lors de la synthèse industrielle de l'éthanoate de butyle, on préfère utiliser un autre réactif organique A' réagissant avec B. Quel est le nom de ce réactif A'? Pourquoi le préfère-t-on?

Exercice 2

On souhaite préparer une solution S_1 aqueuse d'hydroxyde de potassium de concentration molaire volumique C_1 à partir d'une solution S de concentration molaire C = 1 mol/L.

- 1. On dilue S pour obtenir la solution S₁, 10 fois moins concentrée.
- 1.1 Préciser le matériel et les produits nécessaires pour effectuer cette dilution dans les meilleures conditions de sécurité.
- 1.2 Quelle est alors la concentration C_1 de la solution S_1 .
- 2 On prélève V_1 =10ml de la solution S_1 , que l'on dose par une solution d'acide chlorhydrique de concentration C_2 = 0,1mol/L, en présence du bleu de bromothymol. Le virage de cet indicateur coloré a lieu pour V_2 = 10,2ml de solution d'acide versée.
- 2.1 Faire un schéma du dispositif utilisé au cours du dosage en nommant la verrerie.
- 2.2 Ecrire l'équation bilan de la réaction qui a lieu lors du dosage.
- 2.3 Déduire de la mesure V₂ la valeur de la concentration C₁ de la solution S₁.
- 3. A partir de la solution S de concentration C, on prépare un volume V_1 = 250mL de la solution S_1 d'hydroxyde de potassium dans une fiole jaugée à 250mL.

Quel volume V de S doit-on utiliser?

Exercice 3

Un solide S de masse m=500g, abandonné sans vitesse initiale, glisse sur un plan incliné d'un angle $\alpha = 30^{\circ}$ par rapport au plan horizontal. On suppose que le solide S est

soumis à une force de frottement constante $\vec{\mathbf{f}}$ parallèle à la trajectoire de son centre de gravité G. Dans l'exercice on prendra $g=10m/s^2$.

- 1.1 Etablir l'expression de l'accélération a₁ de son centre d'inertie G. En déduire la nature du mouvement.
- 1.2 Dans le repère (x'Ox), établir en fonction de a₁, l'équation horaire du mouvement du centre d'inertie G en prenant comme origine des dates l'instant où le solide S est lâché sans vitesse et comme origine des abscisses la position O.
- 1.3 Calculer la valeur de l'accélération a₁ dans le cas où les frottements sont négligeables.
- 2 Un dispositif expérimental approprié permet d'enregistrer les positions du centre de gravité G de S à des instants régulièrement espacés de $\tau = 60$ ms. Les résultats expérimentaux ont permis d'établir le tableau suivant :

x _i (mm)	0	8,5	33,5	75	133	207,5
$t_i(s)$	0	0,06	0,12	0,18	0,24	0,30

- 2.1 Montrer que les distances parcourues pendant les mêmes intervalles de temps \Box constituent une suite arithmétique de raison r et en déduire la valeur a_2 de l'accélération \vec{a}_2 du mouvement.
- 2.2 Au cours de cette expérience existe-t-il des frottements ? si oui calculer la valeur de $\vec{\mathbf{f}}$.
- 3 Calculer la valeur de la vitesse à la date t=3s.
- 4 Au point B le solide S quitte le plan AB situé à une hauteur h=2m du sol.
- 4.1 Etablir les équations horaires x(t) et y(t) du mouvement de S dans le repère (B ;x ;y). En déduire l'équation de la trajectoire. On prendra pour origine des instants l'instant de passage par B et pour vitesse au point B :V_B=1m/s.

- 4.2 Trouver l'abscisse x_P du point de chute P sur le sol.
- 4.3 Trouver la valeur V_P de la vitesse de S au point P.

Exercice4

Les particules se propagent dans le vide et on néglige leur poids devant les autres forces.

- 1.1 Déterminer le signe de la tension U pour que les ions soient accélérées de P vers P'.
- 1.2 Etablir l'expression de la vitesse de l'ion à son passage par le point O en fonction de m, e et U. la calculer.
- 2 A la sortie de l'accélérateur les ions passent dans un champ magnétique $\overrightarrow{\mathbf{B}}$, perpendiculaire au plan de la figure, crée dans une zone carrée ABCD de coté a.

Les ions pénètrent dans cette zone au point O milieu de AD.

- 2.1 Déterminer le sens du champ magnétique $\vec{\mathbf{B}}$ pour que les ions soient déviés vers le haut.
- 2.2 Montrer que le mouvement, dans le champ magnétique, des ions est uniforme et circulaire.

Déterminer l'expression du rayon de la trajectoire en fonction de e, U, B et m.

Calculer sa valeur.

- 2.3 Calculer la valeur de la déviation angulaire α .
- 3 Calculer la valeur U' de la tension pour que les ions sortent par le trou O' après avoir décrit un quart de cercle de rayon AO=AO'.
- 4 A quelle valeur U'' faut-il régler la tension entre les plaques P et P' pour faire sortir dans les mêmes conditions par la fente O' des ions $^{23}\text{Mg}^{2+}$ isotopes de $^{24}\text{Mg}^{2+}$. Données :a=5cm; B=0,2T; U=5000V. e=1,6.10⁻¹⁹C, m_P=1,67.10⁻²⁷kg.