

INSTITUTO SUPERIOR DE ENGENHARIA DE COIMBRA

DEPARTAMENTO DE FÍSICA E MATEMÁTICA

ENGENHARIA INFORMÁTICA – 1º ano /2º Semestre ANÁLISE MATEMÁTICA I

Teste B

27-jun-2013 Duração:2h

Importante:

A resolução completa de cada pergunta inclui a justificação do raciocínio utilizado bem como a apresentação de todos os cálculos efectuados.

- 1. Justificando convenientemente as suas respostas, determine o valor lógico das seguintes afirmações:
 - a) $\sum_{n=0}^{\infty} \frac{1}{n^2 n 2}$ é uma série de Mengoli convergente e a sua soma é igual a $2\frac{1}{4}$;
 - b) $\sum_{n=0}^{\infty} \frac{2^{n-2n}}{3^{n-2}}$ é uma série geométrica convergente e a sua <u>soma</u> é igual a 6;
 - c) Uma das séries $\sum_{n=2}^{\infty} \frac{4}{\sqrt[5]{n^3}}$, $\sum_{n=2}^{\infty} \frac{3n^2+1}{1-5n^2}$ é convergente.
- 2. Determine a seguinte primitiva $\int \frac{e^{2x} + e^{x-1}}{\sqrt{4 e^{2x}}} dx$ aplicando a técnica da decomposição e a primitivação imediata.
- 3. Considere a primitiva $\int \frac{x^3}{\sqrt{9-x^2}} dx$.
 - a) Calcule a primitiva dada utilizando a técnica de primitivação por substituição.
 - b) Utilize a técnica de primitivação por partes para resolver a primitiva.
 - c) Recorrendo à definição de primitiva prove que:

$$\int \frac{x^3}{\sqrt{9-x^2}} dx = -\frac{(x^2+18)\sqrt{9-x^2}}{3} + C, C \in \Re.$$

- 4. Usando a primitivação de funções trigonométricas resolva a primitiva $\int \frac{x \cot g(x^2)}{\cos g(x^2) \tan^2(x^2)} dx.$
- 5. Calcule as seguintes primitivas:

a)
$$\int \frac{\sqrt[3]{x^2} - 2x}{\sqrt{x}} dx$$

b)
$$\int \frac{-3x^2 + x + 1}{(x+1)(x^2 - x - 2)} dx$$
 c) $\int arcsen(2x) dx$ d) $\int \frac{e^{3x} + 2e^x}{e^{2x} + 4} dx$

c)
$$\int arcsen(2x)dx$$

$$d) \int \frac{e^{3x} + 2e^x}{e^{2x} + 4} dx$$

Cotação

				3a							
1,5	1,5	1	1,5	1,5	1,5	1,5	2	2	2	2	2