# **Ecuaciones lineales**

### 1.1 Cuerpos

Se designa por F el conjunto de los números reales o el conjunto de los números complejos.

1. La adición es conmutativa,

$$x + y = y + x$$

para cualquiera x e y de F.

2. La adición es asociativa,

$$x + (y + z) = (x + y) + z$$

para cualquiera x, y y z de F.

- **3.** Existe un elemento único 0 (cero) de F tal que x + 0 = x, para todo x en F.
- **4.** A cada x de F corresponde un elemento único (-x) de F tal que x+(-x)=0.
- 5. La multiplicación es conmutativa,

$$xy = yx$$
.

6. La multiplicación es asociativa,

$$x(yz) = (xy)z.$$

- 7. Existe un elemento no nulo único de F tal que x1 = x, para todo x en F.
- **8.** A cada elemento no nulo x de F corresponde un único elemento  $x^{-1}$  (o (1/x)) de F tal que  $xx^{-1}=1$ .
- 9. La multiplicación es distributiva respecto de la adición, esto es, x(y+z)=xy+xz, para cualquiera x,y y z de F.

El conjunto *F*, junto con las operaciones de suma y multiplicación, se llama entonces **cuerpo**.

Un **subcuerpo** de un cuerpo C es un conjunto F de números complejos que es a su vez un cuerpo respecto de las operaciones usuales de adición y multiplicación de números complejos. Esto significa que el 0 y el 1 están en el conjunto F, y que si x e y son elementos de F, también lo son (x+y), -x,  $xy-x^{-1}$  si  $(x \ne 0)$ .

**Ejemplo 1.1.** El conjunto de los enteros positivos: 1, 2, 3, ... no es un subcuerpo de C por varias razones. Por ejemplo, 0 no es un entero positivo; para ningún entero positivo n, es -n un entero positivo; para ningún entero positivo n, excepto 1, es 1/n un entero positivo.

**Ejemplo 1.2.** El conjunto de los enteros: ..., -2, -1, 0, 1, 2, ... no es un subcuerpo de C, porque para un entero n, 1/n no es un entero al menos que n sea 1 o -1. Con las operaciones usuales de adición y multiplicación, el conjunto de los enteros satisface todas las condiciones (1)-(9), con excepción de la condición (8).

**Ejemplo 1.3.** El conjunto de los números racionales, esto es, números de la forma p/q, donde p y q son enteros y  $q \neq 0$ , es un subcuerpo del cuerpo de los complejos. La división que no es posible en el conjunto de los enteros es posible en el conjunto de los números racionales.

**Ejemplo 1.4.** El conjunto de todos los números complejos de la forma  $x + y\sqrt{2}$ , donde x e y son racionales, es un subcuerpo de C.

Demostración.- La multiplicación y la suma de un número racional y un número irracional siempre da un irracional. Estos números cumplen las condiciones (1)-(9), por lo que podemos concluir que este conjunto es un subcuerpo de *C*.

#### 1.2 Sistema de ecuaciones lineales

Supóngase que F es un cuerpo. Se considera el problema de encontrar n escalares (elementos de F)  $x_1, \ldots, x_n$  que satisfagan las condiciones

$$A_{11}x_{1} + A_{12}x_{2} + \dots + A_{1n}x_{n} = y_{1}$$

$$A_{21}x_{1} + A_{22}x_{2} + \dots + A_{2n}x_{n} = y_{2}$$

$$\vdots \qquad \vdots$$

$$A_{m1}x_{1} + A_{m2}x_{2} + \dots + A_{mn}x_{n} = y_{m}$$

$$(1.1)$$

donde  $y_1, \ldots, y_m$  y  $A_{ij}$ ,  $1 \le i \le m$ ,  $1 \le j \le n$ , son elementos de F. A (1-1) se le llama un **sistema de** m **ecuaciones lineales con** n **incógnitas**. Todo n-tuple  $(x_1, \ldots, x_n)$  de elementos de F que satisface cada una de las ecuaciones de (1-1) se llama una **solución** del sistema. Si  $y_1 = y_2 = \ldots = y_m = 0$ , se dice que el sistema es **homogéneo**, o que cada una de las ecuaciones es homogénea.

Para el sistema general (1-1), supóngase que seleccionamos m escalares  $c_1, \ldots, c_m$ , que se multiplica la j-ésima ecuación por  $c_j$  y que luego se suma. Se obtiene la ecuación

$$(c_1A_{11} + \ldots + c_mA_{m1})x_1 + \ldots + (c_1A_{1n} + \ldots + c_mA_{mn})x_n = c_1y_1 + \ldots + c_my_m$$

A tal ecuación se le llama **combinación lineal** de las ecuaciones (1-1).

Si se tiene otro sistema de ecuaciones lineales

en que cada una de las k ecuaciones sea combinación lineal de las ecuaciones de (1-1), entonces toda solución de (1-1) es solución de este nuevo sistema.

Se dirá que dos sistemas de ecuaciones lineales son **equivalentes** si cada ecuación de cada sistema es combinación lineal de las ecuaciones del otro sistema.

Teorema 1.1. Sistemas equivalentes de ecuaciones lineales tiene exactamente las mismas soluciones.

#### **Ejercicios**

1. Verificar que el conjunto de número complejos descritos en el Ejemplo 4 es un subcuerpo de C.

Demostración.- La multiplicación y la suma de un número racional y un número irracional siempre da un irracional. Estos números cumplen las condiciones (1)-(9), por lo que podemos concluir que este conjunto es un subcuerpo de *C*.

**2.** Sea *F* el cuerpo de los números complejos. ¿Son equivalentes los dos sistemas de ecuaciones lineales siguientes? Si es así, expresar cada ecuación de cada sistema como combinación lineal de las ecuaciones del otro sistema.

$$x_1 - x_2 = 0$$
  $3x_1 + x_2 = 0$   
 $2x_1 + x_2 = 0$   $x_1 + x_2 = 0$ 

Respuesta.- Sí, los sistemas dados son equivalentes ya que cada ecuación en un sistema se puede escribir como una combinación lineal de las ecuaciones del otro sistema.

Sean  $c_1 = 1$  y  $c_2 = -2$  tal que

$$x_1 - x_2 = (c_1 \cdot 3 + c_2)x_1 + (c_1 + c_2)x_2$$
$$= [1 \cdot 3 + (-2)]x_1 + [1 + (-2)]x_2$$
$$= x_1 - x_2$$

Sean  $c_1 = \frac{1}{2}$  y  $c_2 = \frac{1}{2}$  tal que

$$2x_1 + x_2 = (c_1 \cdot 3 + c_2)x_1 + (c_1 + c_2)x_2$$
$$= \left[\frac{1}{2} \cdot 3 + \frac{1}{2}\right]x_1 + \left[\frac{1}{2} + \frac{1}{2}\right]x_2$$
$$= 2x_1 + x_2$$

Por lo que podemos decir que la primera ecuación es combinación lineal de la segunda ecuación. Luego,

Sean 
$$c_1 = \frac{1}{3}$$
 y  $c_2 = \frac{4}{3}$  tal que
$$3x_1 + x_2 = (c_1 + c_2 \cdot 2) x_1 + (c_1 \cdot (-1) + c_2) x_2$$

$$= \left[\frac{1}{3} + \frac{4}{3} \cdot 2\right] x_1 + \left[\frac{1}{3} \cdot (-1) + \frac{4}{3}\right] x_2$$

$$= 3x_1 + 1x_2$$

Sean 
$$c_1 = -\frac{1}{3}$$
 y  $c_2 = \frac{2}{3}$  tal que
$$x_1 + x_2 = (c_1 + c_2 \cdot 2) x_1 + (c_1 \cdot (-1) + c_2) x_2$$

$$= \left[ -\frac{1}{3} + \frac{2}{3} \cdot 2 \right] x_1 + \left[ -\frac{1}{3} \cdot (-1) + \frac{2}{3} \right] x_2$$

$$= 1x_1 + 1x_2$$

Por lo que podemos decir que la segunda ecuación es combinación lineal de la primera ecuación. Así, los sistemas dados son equivalente.

3. Examine los siguientes sistemas como en el ejercicio 2.

$$\begin{array}{rcl}
-x_1 + x_2 + 4x_3 & = & 0 \\
x_1 + 3x_2 + 8x_3 & = & 0 \\
\frac{1}{2}x_1 + x_2 + \frac{5}{2}x_3 & = & 0
\end{array}$$

$$\begin{array}{rcl}
x_1 & -x_3 & = & 0 \\
x_2 + 3x_3 & = & 0$$

Respuesta.- Sean  $c_1 = -1$  y  $c_2 = 1$ . Entonces,

$$-x_1 + x_2 + 4x_3 = (c_1 \cdot 1 + c_2 \cdot 0)x_1 + (c_1 \cdot 0 + c_2 \cdot 1)x_2 + (c_1(-1) + c_2 3)x_3$$

$$= [(-1) \cdot 1 + 1 \cdot 0]x_1 + [(-1) \cdot 0 + 1 \cdot 1]x_2 + [-1(-1) + 1 \cdot 3]x_3$$

$$= -x_1 + x_2 + 4x_3$$

Sean  $c_1 = 1$  y  $c_2 = 3$ . Entonces,

$$x_1 + 3x_2 + 8x_3 = (c_1 \cdot 1 + c_2 \cdot 0)x_1 + (c_1 \cdot 0 + c_2 \cdot 1)x_2 + (c_1(-1) + c_2 3)x_3$$
$$= [1 \cdot 1 + 3 \cdot 0]x_1 + [1 \cdot 0 + 3 \cdot 1]x_2 + [1(-1) + 3 \cdot 3]x_3$$
$$= x_1 + 3x_2 + 8x_3$$

Sean  $c_1 = \frac{1}{2}$  y  $c_2 = 1$  Entonces,

$$\frac{1}{2}x_1 + x_2 + \frac{5}{2}x_3 = (c_1 \cdot 1 + c_2 \cdot 0)x_1 + (c_1 \cdot 0 + c_2 \cdot 1)x_2 + (c_1(-1) + c_2 3)x_3$$

$$= \left[\frac{1}{2} \cdot 1 + 1 \cdot 0\right]x_1 + \left[\frac{1}{2} \cdot 0 + 1 \cdot 1\right]x_2 + \left[\frac{1}{2}(-1) + 1 \cdot 3\right]x_3$$

$$= \frac{1}{2}x_1 + x_2 + \frac{5}{2}x_3$$

Luego. Sean 
$$c_1 = -\frac{3}{4}$$
,  $c_2 = \frac{1}{4}$  y  $c_3 = 0$ . Entonces,

$$x_{1} - x_{3} = \left[c_{1}(-1) + c_{2} \cdot 1 + c_{3} \cdot \frac{1}{2}\right] x_{1} + \left(c_{1} \cdot 1 + c_{2} \cdot 3 + c_{3} \cdot 1\right) x_{2} + \left(c_{1} \cdot 4 + c_{2} \cdot 8 + c_{3} \cdot \frac{5}{2}\right) x_{3}$$

$$= \left[-\frac{3}{4}(-1) + \frac{1}{4} \cdot 1 + 0 \cdot \frac{1}{2}\right] x_{1} + \left[-\frac{3}{4} \cdot 1 + \frac{1}{4} \cdot 3 + 0 \cdot 1\right] x_{2} + \left(-\frac{3}{4} \cdot 4 + \frac{1}{4} \cdot 8 + 0 \cdot \frac{5}{2}\right) x_{3}$$

$$= x_{1} - x_{3}$$

Por último, sean  $c_1 = c_2 = \frac{1}{4}$ ,  $c_3 = 0$ . Entonces,

$$x_{2} + 3x_{3} = \left[c_{1}(-1) + c_{2} \cdot 1 + c_{3} \cdot \frac{1}{2}\right] x_{1} + (c_{1} \cdot 1 + c_{2} \cdot 3 + c_{3} \cdot 1) x_{2} + \left(c_{1} \cdot 4 + c_{2} \cdot 8 + c_{3} \cdot \frac{5}{2}\right) x_{3}$$

$$= \left[\frac{1}{4}(-1) + \frac{1}{4} \cdot 1 + 0 \cdot \frac{1}{2}\right] x_{1} + \left[\frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 3 + 0 \cdot 1\right] x_{2} + \left(\frac{1}{4} \cdot 4 + \frac{1}{4} \cdot 8 + 0 \cdot \frac{5}{2}\right) x_{3}$$

$$= x_{2} + 3x_{3}$$

Por lo tanto las dos ecuaciones dadas son equivalentes.

4. Examine los siguientes sistemas como en el ejercicio 2.

$$2x_1 + (-1+i)x_2 + x_4 = 0$$

$$3x_2 - 2ix_3 + 5x_4 = 0$$

$$\left(1 + \frac{i}{2}\right)x_1 + 8x_2 - ix_3 - x_4 = 0$$

$$\frac{2}{3}x_1 - \frac{1}{2}x_2 + x_3 + 7x_4 = 0$$

Respuesta.- Ya que  $c_1$  y  $c_2$  no existen, para

$$2x_1 + (-1+i)x_2 + x_4 = \left[c_1\left(1+\frac{i}{2}\right) + c_2 \cdot \frac{2}{3}\right]x_1 + \left[c_1 \cdot 8 + c_2 \cdot \left(-\frac{1}{2}\right)\right]x_2 + \left[c_1 \cdot (-1) + c_2\right]x_3 + \left[c_1 \cdot (-1) + c_2 \cdot 7\right]x_4$$

Entonces, las ecuaciones no son equivalentes.

**5.** Sea *F* un conjunto que contiene exactamente dos elementos, 0 y 1. Se define una adición y multiplicación por las tablas:

Verificar que el conjunto F, juntamente con estas operaciones, es un cuerpo.

Demostración.- Para verificar que F es un cuerpo, demostraremos las distintas operaciones de suma y multiplicación (Pag. 1.).

1. La conmutatividad para la adición es cierta, ya que

$$\begin{array}{rcl} 0+0 & = & 0+0 \\ 0+1 & = & 0+1 \\ 1+0 & = & 1+0 \\ 1+1 & = & 1+1 \end{array}$$

2. La adición es asociativa, ya que

$$\begin{array}{lll} 0+(0+1) & = & (0+0)+1 \\ 0+(0+0) & = & (0+0)+0 \\ 0+(1+1) & = & (0+1)+1 \\ 0+(1+0) & = & (0+1)+0 \\ 1+(0+1) & = & (1+0)+1 \\ 1+(1+0) & = & (1+1)+0 \\ 1+(1+1) & = & (1+1)+1 \\ 1+(0+0) & = & (1+0)+0 \end{array}$$

- 3. Ya que 0 + 0 = 0 y 0 + 1 = 1. Entonces, existe un elemento único 0 de F tal que x + 0 = x, para todo x en F.
- 4. Ya que el inverso aditivo de 0 es 0 y el inverso aditivo de 1 es 1. Entonces, a cada x en F, corresponde un elemento único -x de F tal que x + (-x) = 0.
- 5. La multiplicación es conmutativa, ya que

$$\begin{array}{rcl} 0 \cdot 0 & = & 0 \cdot 0 \\ 0 \cdot 1 & = & 1 \cdot 0 \\ 1 \cdot 0 & = & 0 \cdot 1 \\ 1 \cdot 1 & = & 1 \cdot 1 \end{array}$$

6. La multiplicación es asociativa, ya que

$$\begin{array}{rclcrcl} 0\cdot (0\cdot 1) & = & (0\cdot 0)\cdot 1 \\ 0\cdot (0\cdot 0) & = & (0\cdot 0)\cdot 0 \\ 0\cdot (1\cdot 1) & = & (0\cdot 1)\cdot 1 \\ 0\cdot (1\cdot 0) & = & (0\cdot 1)\cdot 0 \\ 1\cdot (0\cdot 1) & = & (1\cdot 0)\cdot 1 \\ 1\cdot (1\cdot 0) & = & (1\cdot 1)\cdot 0 \\ 1\cdot (1\cdot 1) & = & (1\cdot 1)\cdot 1 \\ 1\cdot (0\cdot 0) & = & (1\cdot 0)\cdot 0 \end{array}$$

- 7. Ya que  $1 \cdot 0 = 0$  y  $1 \cdot 1 = 1$ . Entonces, existe un elemento no nulo único de F tal que x1 = x, para todo x en F.
- 8. Ya que  $1 \neq 0 \in F$ . El inverso multiplicativo de 1 es 1.
- 9. La multiplicación es distributiva respecto de la adición, ya que

$$\begin{array}{lll} 0\cdot (0+1) & = & (0\cdot 0) + (0\cdot 1) \\ 0\cdot (0+0) & = & (0\cdot 0) + (0\cdot 0) \\ 0\cdot (1+1) & = & (0\cdot 1) + (0\cdot 1) \\ 0\cdot (1+0) & = & (0\cdot 1) + (0\cdot 0) \\ 1\cdot (0+1) & = & (1\cdot 0) + (1\cdot 1) \\ 1\cdot (1+0) & = & (1\cdot 1) + (1\cdot 0) \\ 1\cdot (1+1) & = & (1\cdot 1) + (1\cdot 1) \\ 1\cdot (0+0) & = & (1\cdot 0) + (1\cdot 0) \end{array}$$

Por lo tanto, el conjunto *F* es un cuerpo.

**6.** Demostrar que si dos sistemas homogéneos de ecuaciones lineales con dos incógnitas tienen las mismas soluciones, son equivalentes.

Demostración.- Consideremos los dos sistemas homogéneos con dos incógnitas  $(x_1, x_2)$ .

$$\begin{cases} a_{11}x_1 + a_{12}x_2 &= 0 \\ a_{21}x_1 + a_{22}x_2 &= 0 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 &= 0 \end{cases}$$

$$\begin{cases} b_{11}x_1 + b_{12}x_2 &= 0 \\ b_{21}x_1 + b_{22}x_2 &= 0 \\ \vdots \\ b_{m1}x_1 + b_{m2}x_2 &= 0 \end{cases}$$

Se dirá que dos sistemas de ecuaciones lineales son equivalentes si cada ecuación de cada sistema es combinación lineal de las ecuaciones del otro sistema. Por lo que por definición de combinación lineal se tiene m escalares  $c_1, \ldots, c_m$  que se multiplica la j-ésima ecuación por  $c_i$  y que luego se suma.

Sean los escalares  $c_1, c_2, \dots c_m$ . De donde multiplicamos m ecuaciones del primer sistemas por  $c_m$  y sumamos por columnas,

$$(c_1a_{11} + \ldots + c_ma_{m1}) x_1 + (c_1a_{12} + \ldots + c_ma_{m2}) x_2 = 0$$

Luego comparando esta ecuación con todas las ecuaciones del segundo sistema y utilizando también el hecho de que ambos sistemas tiene las mismas soluciones, obtenemos

$$b_{11}x_1 + b_{12}x_2 = (c_1a_{11} + \ldots + c_ma_{m1}) x_1 + (c_1a_{12} + \ldots + c_ma_{m2}) x_2.$$

Lo mismo ocurre con las demás ecuaciones del segundo sistema. Sean otros escalares  $c_1, c_2, \dots, c_m$ , tal que

$$b_{21}x_1 + b_{22}x_2 = (c_1a_{11} + \ldots + c_ma_{m1})x_1 + (c_1a_{12} + \ldots + c_ma_{m2})x_2$$

Así, sucesivamente hasta

$$b_{m1}x_1 + b_{m2}x_2 = (c_1a_{11} + \ldots + c_ma_{m1})x_1 + (c_1a_{12} + \ldots + c_ma_{m2})x_2$$

con m escalares  $c_1, c_2, \ldots, c_m$ . Por lo que demostramos que el segundo sistema es una combinación lineal del primer sistema.

De manera similar podemos demostrar que el primer sistema es una combinación lineal del segundo sistema. Sean los escalares  $c_1, c_2, \dots c_m$ , entonces

$$a_{11}x_1 + a_{12}x_2 = (c_1b_{11} + \ldots + c_mb_{m1}) x_1 + (c_1b_{12} + \ldots + c_mb_{m2}) x_2.$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 = (c_1b_{11} + \ldots + c_mb_{m1}) x_1 + (c_1b_{12} + \ldots + c_mb_{m2}) x_2.$$

Así concluimos que ambos sistemas son equivalentes.

7. Demostrar que todo subcuerpo del cuerpo de los números complejos contiene a todo número racional.

Demostración.- Sea F un subcampo en  $\mathbb{C}$ , por este hecho, tenemos  $0 \in F$  y  $1 \in F$ . Luego ya que F es un subcampo y cerrado bajo la suma, se tiene

$$1 + 1 + \ldots + 1 = n \in F$$
.

De este modo  $\mathbb{Z} \subseteq F$ . Ahora, sabiendo que F es un subcampo, todo elemento tiene un inverso multiplicativo, por lo tanto  $\frac{1}{n} \in F$ . Por otro lado vemos también que F es cerrado bajo la multiplicación. Es decir, para  $m, n \in \mathbb{Z}$  y  $n \neq 0$  tenemos

$$m \cdot \frac{1}{n} \in F \quad \Rightarrow \quad \frac{m}{n} \in F.$$

Así, concluimos que  $\mathbb{Q} \subseteq F$ .

8. Demostrar que todo cuerpo de características cero contiene una copia del cuerpo de los números racionales.

Demostración.- Sea F cualquier campo de caracterización cero. Ahora,  $0 \in F$  y  $1 \in F$ . Ya que la caracteristica de F es cero, se tiene

Ahora, F es un campo y por ende cerrado bajo la suma, se obtiene

$$1+1+\ldots+1=n\in F \text{ con } n\neq 0.$$

De este modo,  $\mathbb{Z} \subseteq F$ . Ahora, dado que F es un cuerpo, todo elemento tiene un inversio multiplicativo, por lo tanto  $\frac{1}{n} \in F$ . Además, F es cerrado bajo la multiplicación, así, para  $m, n \in \mathbb{Z}$  y  $n \neq 0$ , tenemos

$$m \cdot \frac{1}{n} \in F \quad \Rightarrow \quad \frac{m}{n} \in F.$$

Por lo que  $Q \in F$ . Concluimos que F contiene una copia del campo de número racional.

#### 1.3 Matrices y operaciones elementales de fila

El sistema (1-1) se abreviará ahora así:

$$AX = Y$$

donde

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$

A se llama **matriz de los coeficientes** del sistema.

Una **matriz**  $m \times n$  **sobre el cuerpo** F es una función A del conjunto de los pares enteros (i, j),  $1 \le i \le m$ ,  $1 \le j \le n$ , en el cuerpo F.

Los **elementos** de la matriz A son los escalares  $A(i,j) = A_{ij}$ , con frecuencia, suele ser más conveniente describir la matriz disponiendo sus elementos en un arreglo rectangular con m filas y n columnas.

Deseamos ahora considerar operaciones sobre las filas de la matriz A que corresponden a la formación de combinaciones lineales de las ecuaciones del sistema AX = Y. Se limitará nuestra atención a **tres operaciones elementales de filas** en una matriz  $m \times n$ , sobre el cuerpo F:

- **1.** Multiplicación de una fila de *A* por un escalar *c* no nulo;
- **2.** Remplazo de la r-ésima fila de A por la fila r más c veces la fila s, donde c es cualquier escalar y  $r \neq s$ ;
- **3.** Intercambio de dos filas de *A*.

Una operación elemental de filas es, pues, un tipo especial de función (regla) e que asocia a cada matriz  $m \times n$ , A, una matriz  $m \times n$ , e(A). Se puede describir e en forma precisa en los tres casos como sigue:

- **1.**  $e(A)_{ij}$  si  $i \neq r$ ,  $e(A)_{rj} = cA_{rj}$ .
- **2.**  $e(A)_{ij}$  si  $i \neq r$ ,  $e(A)_{rj} = A_{rj} + cA_{sj}$ .
- **3.**  $e(A)_{ij}$  si i es diferente de r y s,  $e(A)_{rj} = A_{sj}$ ,  $e(A)_{sj} = A_{rj}$ .

Una función e particular estpa definida en la clase de todas las matrices sobre F que tiene m filas.

**Teorema 1.2.** A cada operación elemental de filas e corresponde una operación elemental de filas  $e_1$ , del mismo tipo de e, tal que  $e_i(e(A)) = e(e_1(A)) = A$  para todo A. Es decir, existe la operación (función) inversa de una operación elemental de filas y es una operación elemental de filas del mismo tipo.

Demostración.- (1) Supóngase que e es la operación que multiplica la r-ésima fila de una matriz por un escalar no nulo c. Sea  $e_1$  la operación que multiplica la fila r por  $c^{-1}$ . (2) Supóngase que e sea la operación que remplaza la fila r por la misma fila r a la que le sumo la fila s multiplicada por s, s sea s la operación que reemplaza la fila s por la fila s a la que se le ha sumado la fila s multiplicada por s sea s la operación que reemplaza la fila s sea s sea s la que se le ha sumado la fila s multiplicada por s sea s la para todo s.

**Definición 1.1.** Si A y B son dos matrices  $m \times n$  sobre el cuerpo F, se dice que B es equivalente por filas a A si B se obtiene de A por una sucesión finita de operaciones elementales de filas.

**Teorema 1.3.** Si A y B son matrices equivalentes por filas, los sistemas homogeneos de ecuaciones lineales AX = 0 y BX = 0 tienen exactamente las mismas soluciones.

Demostración.- Supóngase que se pasa de *A* a *B* por una sucesión finita de operaciones elementales de filas:

$$A = A_0 \rightarrow A_1 \rightarrow \ldots \rightarrow A_k = B.$$

Basta demostrar que los sistemas  $A_j X = 0$  y  $A_{j+1} X = 0$  tienen las mismas soluciones, es decir, que una operación elemental por filas no altera el conjunto de soluciones.

así, supóngase que B se obtiene de A por una sola operación elemental de filas. Sin que importe cuál de los tres tipos (1), (2) o (3) de operaciones sea, cada ecuación del sistema BX = 0 será combinación lineal de las ecuaciones del sistema AX = 0. Dado que la inversa de una operación elemental de filas es una operación elemental de filas, toda ecuación de AX = 0 será también combinación lineal de las ecuaciones de BX = 0. Luego estos dos sistemas son equivalente y, por el teorema 1, tienen las mismas soluciones.

**Definición 1.2.** Una matriz  $m \times n$ , R, se llama **reducida por filas** si:

- (a) el primer elemento no nulo de cada fila no nula de *R* es igual a 1;
- (b) cada columna de *R* que tiene el primer elemento no nulo de alguna fila tiene todos sus otros elementos 0.

**Teorema 1.4.** Toda matriz  $m \times n$  sobre el cuerpo F es equivalente por filas a una matriz reducida por filas.

Demostración.- Sea A una matriz  $m \times n$  sobre F. Si todo elemento de la primera fila A es 0, la condición (a) se cumple en lo que concierne a la fila 1. Si la fila 1 tiene un elemento no nulo, sea k el menor entero positivo j para el que  $A_{1j} \neq 0$ . Multiplicando la fila 1 por  $A_{1k}^{-1}$  la condición (a) se cumple con

respecto a esa fila. Luego, para todo  $i \ge 2$ , se suma  $(-A_{ik})$  veces la fila 1 a la fila i. Y ahora el primer elemento no nulo de la fila 1 está en la columna k, ese elemento es 1, y todo otro elemento de la columna k es 0.

Considérese ahora la matriz que resultó de lo anterior. Si todo elemento de la fila 2 es 0, se deja tal cual. Si algún elemento de la fila 2 es diferente de 0, se multiplica esa fila por un escalar de modo que el primer elemento no nulo sea 1. En caso de que la fila 1 haya tenido un primer elemento no nulo en la columna k, este primer elemento no nulo de la fila 2 no puede estar en la columna k, supóngase que esté en la columna  $k_r \neq k$ . Sumando múltiplos apropiados de la fila 2 a las otras filas, se puede lograr que todos los elementos de la columna  $k_r$  sean 0, excepto el 1 en la fila 2. Lo que es importante observar es lo siguiente: Al efectuar etas operaciones, no se alteran los elementos de la fila 1 el alas columnas  $1, \ldots, k$  ni ningún elemento de la columna k. Es claro que, si la fila 1 era idénticamente nula, las operaciones con la fila 2 no afecta la fila 1. Si se opera, como se indicó, con una fila cada vez, es evidente que después de un número finito de etapas se llegará a una matriz reducida por filas.

#### **Ejercicios**

#### 1.4 Matrices escalón reducida por filas

**Definición 1.3.** Una matriz  $m \times n$ , R, se llama matriz escalón reducida por filas si:

- (a) R es reducida por filas;
- (b) toda fila de *R* que tiene todos los elementos 0 está debajo de todas las filas que tienen elementos no nulos;
- (c) si las filas 1, ..., r son las filas no nulas de R, y si el primer elemento no nulo de la fila i está en la columna  $k_i$ , i = 1, ..., r, entonces  $k_1 < k_2 < ..., k_r$ .

Se puede describir también una matriz escalón R reducida por filas como sigue. Todo elemento de R es 0, o existe un número positivo r,  $l \le r \le m$ , y r entero positivo  $k_1, \ldots, k_r$  con  $1 \le k_i \le n$  y

- (a)  $R_{ij} = 0$  para i > r, y  $R_{ij} = 0$  si  $j < k_i$ .
- (b)  $R_{ik_i} = \delta_{ij}$ ,  $1 \le i \le r$ ,  $1 \le j \le r$ .
- (c)  $k_1 < \ldots < k_r$ .

**Teorema 1.5.** Toda matriz  $m \times n$ , A, es equivalente por filas a una matriz escalón por filas.

Demostración.- Sabemos que *A* es equivalente por filas a una matriz reducida por filas. Todo lo que se necesita observar es que, efectuando un número finito de intercambios de filas en una matriz reducida por filas, se la puede llevar a la forma escalón reducida por filas.

**Teorema 1.6.** Si A es una matriz  $m \times n$  con m < n, el sistema homogéneo de ecuaciones lineales AX = 0 tiene una solución trivial.

Demostración.- Sea R una matriz escalón reducida por fila que sea equivalente por fila a A. Entonces los sistemas AX = 0 y RX = 0 tienen las mismas soluciones por el teorema 3. Si r es el número de filas no nulas de R, entonces ciertamente  $r \le m$ , y como m < n tenemos que r < n. Se sigue inmediatamente de las observaciones anteriores que AX = 0 tiene una solución trivial.

**Teorema 1.7.** Si A es una matriz  $n \times n$  (cuadrada), A es equivalente por filas a la matriz identidad  $n \times n$ , si, y sólo si, el sistema de ecuaciones AX = 0 tiene solamente la solución trivial.

Demostración.- Si A es equivalentes por filas a I, entonces AX = 0 e IX = 0 tienen las mismas soluciones. Recíprocamente, supóngase que AX = 0 tiene solamente la solución trivial X = 0. Sea R una matriz escalón reducida por filas  $n \times n$ , que es equivalente por filas a A, y sea r el número de filas no nulas de R. Entonces RX = 0 carece de solución no trivial. Con lo que  $r \ge n$ . Pero como R tiene un 1 como primer elemento no nulo en cada una de sus R filas y como estos 1 están en las diferentes columnas R0, R1 debe ser la matriz identidad R2.

Se construye la matriz aumentada A' del sistema AX = Y. Esta es la matrix  $m \times (n+1)$  cuyas primeras n columnas son las columnas de A y cuya última columna es Y; más precisamente,

$$A'_{ij} = A_{ij}$$
, si  $j \le n$ .  
 $A'_{i(n+1)} = y_i$ .

#### **Ejercicios**

#### 1.5 Multiplicación de matrices

**Definición 1.4.** Sea A una matriz  $m \times n$  sobre el cuerpo F y sea B una matriz  $n \times p$  sobre F. El producto AB es la matriz  $m \times p$ , C, cuyos elementos i, j son

$$C_{ij} = \sum_{r=1}^{n} A_{ir} B_{rj}.$$

El producto está definido si, y sólo si, el número de columnas de la primera matriz coincide con el número de filas de la segunda.

**Teorema 1.8.** Si A, B, C son matrices sobre el cuerpo F, tales que los productos BC y A(BC) están definidos, entonces también lo están los productos AB, (AB)C y

$$A(BC) = (AB)C.$$

Demostración.- Supóngase que B es una matriz  $n \times p$ . Como BC está definida, C es una matriz con p filas y BC tiene p filas. Como p filas. Como p está definida, se puede suponer que p es una matriz p existe y es una matriz p existe y es una matriz p existe y es una matriz p existe. Para ver que p existe y es debe demostrar que

$$[A(BC)]_{ij} = [(AB)C]_{ij}$$

Para todo los *i*, *j*. Por definición

$$[A(BC)]_{ij} = \sum_{r} A_{ir} (BC)_{rj} = \sum_{r} A_{ir} \sum_{s} B_{rs} C_{sj}$$
$$= \sum_{s} \sum_{r} A_{ir} B_{rs} C_{sj} = \sum_{r} \sum_{s} A_{ir} B_{rs} C_{sj}$$
$$= \sum_{r} \left( \sum_{s} A B_{ir} \right) C_{sj} = \sum_{r} (AB)_{is} C_{sj}$$
$$= [(AB)C]_{ij}$$

Si A es una matriz cuadrada  $n \times n$ , el producto AA está definido. Esta matriz se representa por  $A^2$ . En general el producto  $AA \cdots A$  (k veces) está definido y se representará por  $A^k$ .

**Definición 1.5.** Una matriz  $m \times m$  se dice matriz elemental si se puede obtener de la matriz identidad  $m \times m$  por medio de una sola operación elemental simple por filas.

**Teorema 1.9.** Sea e una operación elemental de fila y sea E la matriz elemental  $m \times m$ , E = e(I). Entonces para toda matriz  $m \times n$ , A

$$e(A) = EA$$
.

Demostración.- La clave de la demostración radica en que el elemento de la i-ésima fila y la j-ésima columna de la matriz producto EA se obtiene de la i-ésima fila de E y de la j-ésima columna de A. Los tres tipos de operaciones elementales de fila deben ser estudiados separadamente. Se dará una demostración detallada para una operación tipo (ii) . Los otros dos casos, ,más fáciles de estudiar se dejan como ejercicios. Supóngase que  $r \neq s$  y que e es una operación que remplaza la fila e por la fila e más e0 veces la fila e8. Entonces

$$E_{ik} = \begin{cases} \delta_{ik}, & i \neq r \\ \delta_{rk} + c\delta sk, & i \neq r. \end{cases}$$

Luego

$$(EA)_{ij} = \sum_{k=1}^{m} E_{ik} A_{kj} = \begin{cases} A_{ij}, & i \neq r \\ A_{ij} + cA_{sj}, & i = r. \end{cases}$$

Es decir, EA = e(A).

**Corolario 1.1.** Sean A y B dos matrices  $m \times n$  sobre el cuerpo F. Entonces B es equivalente por filas a A si, y sólo si, B = PA, donde P es un producto de matrices elementales  $m \times m$ .

Demostración.- Supóngase que B = PA, donde  $P = E_s \cdots E_2 E_1$  y los  $E_i$  son matrices elementales  $m \times m$ . Entonces  $E_iA$  es equivalente por filas a  $A_1$  y  $E_2(E_1A)$  es equivalente por filas a  $E_1A$ . Luego  $E_2E_1A$  es equivalente por filas a  $E_1A$ . Sean  $E_1, E_2, \dots E_s$  a matrices elementales correspondientes a cierta sucesión de operaciones elementales de filas que lleva  $E_1A$ 0. Entonces  $E_2A$ 1 es  $E_3A$ 2 es equivalente por filas a  $E_1A$ 3. Entonces  $E_1A$ 4 es equivalente por filas a  $E_1A$ 5 es equivalente por filas a  $E_1A$ 6.

#### **Ejercicios**

1.

2.

3. Encontrar dos matrices  $2 \times 2$ , A diferentes tales que  $A^2 = 0$  pero  $A \neq 0$ .

Respuesta.-

4. Para cada A del ejercicio 2, hallar matrices elementales  $E_1, E_2, \ldots, E_k$  tal que

$$E_k \cdot E_2 E_1 A = 1.$$

Respuesta.-

5.

6.

7. Sean A y B matrices  $2 \times 2$  tales que AB = I. Demostrar que BA = I.

Demostración.-

8.

## 1.6 Matrices inversibles