project_1

November 11, 2019

1 Investigate the TMDB Movies Dataset

by Kruthika Krishnamurthy

1.1 Table of Contents

```
Introduction
       Data Wrangling
       Exploratory Data Analysis
       Conclusions
       ## Introduction
[67]: # Import the necessary packages
     import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     %matplotlib inline
[68]: # Create the DataFrame frm the CSV file
     tmdb = pd.read_csv("tmdb_movies.csv")
[69]: # See the first 5 rows the of the DF
     tmdb.head(1)
[69]:
                  imdb_id popularity
                                           budget
                                                               original_title \
            id
                                                      revenue
     0 135397 tt0369610
                            32.985763 150000000 1513528810 Jurassic World
                                                      cast \
     O Chris Pratt|Bryce Dallas Howard|Irrfan Khan|Vi...
                             homepage
                                               director
                                                                   tagline
     0 http://www.jurassicworld.com/ Colin Trevorrow The park is open.
                                                  overview runtime
     O Twenty-two years after the events of Jurassic ...
                                                               124
                                           genres
       Action | Adventure | Science Fiction | Thriller
```

```
production_companies release_date vote_count \
0 Universal Studios|Amblin Entertainment|Legenda... 6/9/2015 5562 \
vote_average release_year budget_adj revenue_adj \
0 6.5 2015 137999939.3 1.392446e+09 \
[1 rows x 21 columns] \
## Data Wrangling
```

1.1.1 General Properties

Cross check the datatypes of each columns

```
[70]: tmdb.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10866 entries, 0 to 10865
Data columns (total 21 columns):
id
                         10866 non-null int64
imdb id
                         10856 non-null object
popularity
                         10866 non-null float64
budget
                         10866 non-null int64
revenue
                         10866 non-null int64
                         10866 non-null object
original_title
cast
                         10790 non-null object
                        2936 non-null object
homepage
director
                         10822 non-null object
                         8042 non-null object
tagline
keywords
                        9373 non-null object
overview
                         10862 non-null object
                         10866 non-null int64
runtime
                         10843 non-null object
genres
                        9836 non-null object
production_companies
release_date
                         10866 non-null object
vote count
                         10866 non-null int64
                         10866 non-null float64
vote_average
release_year
                         10866 non-null int64
budget_adj
                         10866 non-null float64
                         10866 non-null float64
revenue_adj
dtypes: float64(4), int64(6), object(11)
memory usage: 1.7+ MB
```

Here we can see that "Homepage", "id", "imdb_id" "tagline" columns are not required for our analysis.

So we will drop these columns in the following steps.

Check for number of null value in each columns

```
[71]: tmdb.isnull().sum()
```

71]:	id	0
	imdb_id	10
	popularity	0
	budget	0
	revenue	0
	original_title	0
	cast	76
	homepage	7930
	director	44
	tagline	2824
	keywords	1493
	overview	4
	runtime	0
	genres	23
	<pre>production_companies</pre>	1030
	release_date	0
	vote_count	0
	vote_average	0
	release_year	0
	budget_adj	0
	revenue_adj	0
	dtype: int64	

Here we can see that a number of columns have null values in them. Since these columns are of no relevance to us we will not alter them.

Check if duplicate entry present

```
[72]: tmdb.duplicated().sum()
```

[72]: 1

We can see that one of the row is duplicated. We will remove this duplicate in the following steps.

1.1.2 Data Cleaning

In the General Properties we saw that the following 4 columns were not required. So they are being removed here.

```
[73]: tmdb.drop(['homepage','id','imdb_id','tagline'],axis=1,inplace = True)
     tmdb.head(1)
[73]:
       popularity
                      budget
                                           original_title
                                 revenue
        32.985763
                  150000000 1513528810
                                          Jurassic World
                                                                  director
                                                                           \
                                                     cast
       Chris Pratt|Bryce Dallas Howard|Irrfan Khan|Vi... Colin Trevorrow
                                                 keywords \
     O monster|dna|tyrannosaurus rex|velociraptor|island
```

```
overview runtime \
     O Twenty-two years after the events of Jurassic ...
                                                                124
                                           genres
     O Action|Adventure|Science Fiction|Thriller
                                     production_companies release_date vote_count \
                                                               6/9/2015
     O Universal Studios | Amblin Entertainment | Legenda...
                                                                               5562
        vote_average release_year
                                     budget_adj
                                                   revenue_adj
     0
                 6.5
                                    137999939.3 1.392446e+09
                              2015
       Drop the duplicate columns
[74]: tmdb.drop_duplicates(inplace = True)
     tmdb.duplicated().sum().any()
[74]: False
```

Cross check the duplicate values after removing.

```
[75]: tmdb.duplicated().sum()
```

[75]: 0

The duplicates are removed.

This marks the end of the Data Wrangling phase. ## Exploratory Data Analysis

In this phase we will answer couple of research questions that are relevant to this Data.

1.1.3 Which year has the highest number of movie releases?

We will group the dataset by the release_year and use an arbitrary index popularity to count the number of movie releases per year.

```
[76]: df_movie_count = tmdb.groupby('release_year').count().popularity
     df_movie_count[:6]
[76]: release_year
     1960
             32
     1961
             31
     1962
             32
     1963
             34
     1964
             42
     1965
             35
     Name: popularity, dtype: int64
```

Here we see the number of movies released every year from 1960 through 2015. We will plot this out below.

```
[109]: df_movie_count.plot(kind = 'bar', figsize=[10,10])
      plt.xlabel('Year')
      plt.ylabel('Number of movies')
```

```
plt.title('Movie released per Year')
plt.grid(False)
```


CONCLUSION - 700 movies were produced in 2014 which was the highest.

1.1.4 What is the average runtime of the movies which are sorted based on their ratings?

Let us first split the ratings into 4 categories 1. Below Average (*Rating* <= 5) 2. Average (*Rating between 5 and 7*) 3. Good (*Rating of 7 or 8*) 4. Highly Recommended (*Rating > 8*)

```
[78]: bin_edges = [1,5,7,8,10] bin_names = ['below_average', 'average', 'good', 'highly_recommended']
```

Add movie column name as Highly_recommended

```
[94]: tmdb['Movie_Recomandation']=pd.cut(tmdb['vote_average'

→],bin_edges,labels=bin_names)
```

Plot a graph for Movie_Recommendation VS Runtime Movie_Recommendation is based on Ratings by viewers

```
[128]: tmdb_runtime=tmdb.groupby('Movie_Recomandation').mean().runtime
  tmdb_runtime.plot(kind='bar',figsize=(8,8))
  plt.xlabel('Movie Recommendation')
  plt.ylabel('Runtime')
  plt.title('Average runtime of movies based on their Rating Groups')
```

[128]: Text(0.5, 1.0, 'Average runtime of movies based on their Rating Groups')

CONCLUSION - Highly rated movie by viewers will always run longer in theaters ie, those movies which are rated above 8 have an average runtime of 139 days.

1.1.5 Which genres are most liked by viewers?

Create a dataframe copy to work with.

```
[99]: df1 = tmdb.copy()
```

Creating a function to split genres seperated by ' I ' and create new column in a seperate data frame

```
[101]: def getGenre():
    new = []
    for c in df1.index:
        a = str(df1['genres'][c]).split('|')
        for d in a:
            new.append(d)
    temp = pd.Series(new)
    count = temp.value_counts(ascending=False)
    genres = list(dict.fromkeys(new))

    return [genres, count]
```

The Function *getGenre* returns 2 lists ie - 1. A list of all Genres 2. A list of counts for all Genres This can be seen in the following 2 blocks

```
[114]: # List of all genres (sample 3 elements)
      getGenre()[0][:3]
[114]: ['Action', 'Adventure', 'Science Fiction']
[113]: # Count of movies per genre (sample 3 elements)
      getGenre()[1][:3]
[113]: Drama
                  4760
      Comedy
                  3793
      Thriller
                  2907
      dtype: int64
[104]: votes = np.array(df1['vote_average'])
      genres = getGenre()[0]
      genres_list = list(map(str, df1['genres']))
      votes_df = pd.DataFrame(index = genres, columns = ['sum', 'avg'])
      votes_df.fillna(0, inplace = True)
      for i in genres_list:
              a = i.split('|')
              votes_df.loc[a,"sum"] = votes_df.loc[a,"sum"] + votes[j]
              j += 1
```

Created a seperate Dataframe *votes_df* having three colums - 1. **Genres** have 20 unique flavors of movies, 2. **Sum** is the addition of votes for each flavor of movies, 3. **Avg** = (the total votes per geners) / (No of movies in each genres)

```
Science Fiction 6963.0 5.665582
```

Calculate the *avg* field as follows

```
[105]: votes_df["avg"] = votes_df["sum"] / getGenre()[1]
```

Plotting graph for highest liked genres on basis of viewer's votes

```
[126]: votes_df['avg'].plot(kind ='barh',figsize=(8,8))
    plt.xlabel('Genres')
    plt.ylabel('Ratings')
    plt.title('Highest liked Genres by people')
    plt.grid(False)
```


CONCLUSION - Documentaries are the most liked genre by viwers.

1.1.6 Which flavor of movies have the most number of releases?

Let us use the *getGenre* function again and this time use the counts to plot the number of movie releases by genre.

Highest movie releases by genre

CONCLUSION - Drama is the highest released genre having 4760 movie releases. ## Conclusions

700 movies were produced in 2014 which was the highest.

Highly rated movie by viewers will always run longer in theaters ie, those movies which are rated above 8 have an average runtime of 139 days.

Documentaries are the most liked genre by viwers.

Drama is the highest released genre having 4760 movie releases.

[]: