VISVESVARAYA TECHNOLOGICAL UNIVERSITY

JNANA SANGAMA, BELAGAVI-590 018

A Project Report on

"AGRO SHAKTI"

Submitted in partial fulfillment of the requirements for the VII/VIII

Semester of Bachelor of Engineering in Computer Science & Engineering

Submitted by:

Mr. Ansar H.

2AV21CS030

Under the Guidance of

Dr. Surekha Pinnapati

Associate Professor Dept of CSE AGMRCET, Varur

Department of Computer Science and Engineering

A.G.M Rural College of Engineering &

Technology, Varur-581 207

2024-2025

VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELGAVI

A.G.M Rural College Engineering & Technology Varur Hubbali-581207 Dist- Dharwad APPROVED BY AICTE, NEW DELHI. Accredited by NAAC with "B++" Grade

Department of Computer Science and Engineering

This is to certify that **Mr. Mohammed Ansar.**, bearing USN **2AV21CS030** respectively have satisfactorily completed the Project Work entitled "**AGRO SHAKTI**" in partial fulfillment for the VII/VIII semester of Bachelor of Engineering in Computer Science and Engineering of Visvesvaraya Technological University Belagavi, during the year 2024-25. The project report has been approved, as it satisfies the academic requirements in respect of the project work prescribed for the said degree.

Project Guide	HOD	Principal/Director
Dr. Surekha Pinnapati	Mr. Shantabhushana B. M.	
	External Viva	
Name of the Examiners:		Signature with Date:
1.		

2.

ACKNOWLEDGEMENT

The satisfaction and euphoria that accompany the successful completion of any task would be incomplete without the mention of the people who made it possible, whose constant guidance and encouragement crowned our efforts with success.

We would like to take this opportunity thank our Project Guide **Dr. Surekha Pinnapati,** Associate Professor Department of Computer Science and Engineering, without his immense guidance and support the work would have been unthinkable.

Also, we would like to thank our Project Coordinator **Mr.Vinaykumar Beelagi,** Assistant Professor, Department of Computer Science and Engineering, who helped us in the completion of project work

We deeply thank our HOD Mr. Shantabhushana B M, Department of Computer Science and Engineering, for his unstinted support.

We extend our gratitude to the Principal **Dr. Sandeep Kyatanavar**, **AGMRCET**, **Varur** for his generous support in all regards.

We extend our heartfelt thanks to all the faculty members, Teaching and Non-Teaching Staff of the Department of Computer Science and Engineering, **AGMRCET**, **Varur** who have helped us directly or indirectly. We are very much indebted to our **parents** and **friends** for their unquestioning best cooperation and support.

Mr. Ansar H (2AV21CS030)

ABSTRACT

Agriculture is essential for human survival, providing food, raw materials, and employment. However, modern farming faces major challenges such as unpredictable weather, soil degradation, pests, diseases, and inefficient resource use. These issues can reduce crop yields, increase costs, and harm the environment. Traditional techniques often fall short in addressing these complex problems, highlighting the need for innovative, technology-driven solutions to improve productivity and sustainability. This project proposes a smart farming system that integrates Internet of Things (IoT) and Artificial Intelligence (AI) technologies to address these challenges. IoT sensors will be deployed in agricultural fields to monitor key environmental parameters such as soil moisture, temperature, humidity, and light intensity in real time. The collected data will be transmitted to a centralized platform for processing and analysis. AI and machine learning algorithms will analyze the data to detect anomalies, predict potential crop diseases, and assess overall crop health. Predictive analytics will also be used to estimate crop yields, helping farmers plan harvests, manage inventory, and optimize marketing strategies. These AI-driven insights will enable farmers to make timely, data-informed decisions, enhancing the efficiency and productivity of their operations. By leveraging IoT and AI, this smart farming solution aims to minimize waste, improve crop yields, and promote sustainable agriculture. The system will bridge the gap between traditional farming and modern technology, contributing to food security and economic resilience. Ultimately, the project seeks to empower farmers with advanced tools to meet current and future agricultural challenges effectively.

CONTENTS

Acknowledgment		i
Abstract		ii
Contents		iii
List of Figures		v
List of Tables		vi
Chapter 1	INTRODUCTION	1
	1.1 Motivation	1
	1.2 Existing Model	1
	1.3 Proposed Model	2
	1.4 Problem Statement	3
	1.5 Objectives	3
	1.6 Challenges	3
	1.7 Scope	4
Chapter 2	LITERATURE SURVEY	5
	2.1 Introduction to Smart Farming	5
	2.2 IoT in Smart Farming	5
	2.3 LoRaWAN in Agriculture	6
	2.4 ML and Anomaly Detection	6
	2.5 Big Data, Deep Learning, Blockchain	7
	2.6 Challenges in Smart Farming	7
	2.7 Case Studies and Implementations	8
	2.8 Gaps and Solutions	10
Chapter 3	DOMAIN ANALYSIS	11
	3.1 IoT in Agriculture	11
	3.2 Cloud Computing in Agriculture	13
	3.3 Combined Impact of IoT and Cloud	14
Chapter 4	METHODOLOGY	16
	4.1 Overview of the System	16
	4.2 System Architecture	16
	4.3 Step-by-Step Working	17
	4.4 ML Model (Random Forest)	18
	4.5 Key Innovations	20
	iv	

Chapter 5	REQUIREMENT SPECIFICATION	21
	5.1 Hardware Requirements	21
	5.2 Software Requirements	28
	5.3 Functional Requirements	30
	5.4 Non-Functional Requirements	31
Chapter 6	RESULTS AND DISCUSSION	32
	6.1 Experimental Setup	32
	6.2 Data Collected	32
	6.3 Model Performance	33
	6.4 Smart Irrigation Results	33
	6.5 Crop Recommendation Results	34
	6.6 Energy Consumption	34
	6.7 System Response Time	34
	6.8 Discussion	34
Chapter 7	CONCLUSION & FUTURE SCOPE	39
	REFERENCES	41

LIST OF FIGURES

Figure No.	Figure Name	Page No.
Figure 3.1.4	Architecture Overview	12
Figure 4.1	System Architecture	16
Figure 5.1.1.1	ESP32 Microcontroller	22
Figure 5.1.1.2	ESP32 Microcontroller Pinout	23
Figure 5.1.2.1	Power Supply Circuit Diagram	26
Figure 5.1.3.1	Pin Description of L293D Motor Driver	26
Figure 5.1.4.1	Block Diagram of LCD	27
Figure 5.1.4.2	Electro-mechanical Buzzer	28
Figure 5.2.1.1	Software Architecture	29
Figure 5.2.2.1	Flowchart of Crop Prediction Model	30
Figure 6.2.1	Sample Data Collected	32
Figure 6.8.1	Humidity Graph	35
Figure 6.8.2	Soil pH levels	36
Figure 6.8.3	Rainfall Analysis	36
Figure 6.8.4	Temperature Variation	37
Figure 6.8.5	IOT Monitoring Setup	37
Figure 6.8.6	Output Prediction Result	38
Figure 6.8.7	Server Monitoring Dashboard	38

LIST OF TABLES

Figure No.	Figure Name	Page No.
Figure 2.7	Summary of Research Papers	8
Figure 2.8	Identified Gaps and Solutions	10
Figure 3.1.3.1	Components of IOT	11
Figure 3.2.4.1	Benefits of Cloud Computing	14
Figure 4.3.1.1	Data Acquisition Devices	17
Figure 4.3.4.1	Machine Learning Algorithms Used	18
Figure 4.3.4.2	Benefits of Random Forest Model	18
Figure 4.5.1	Summary of Innovations	20
Figure 5.1.1	Hardware Requirements	21
Figure 5.1.1.2	ESP32 Specifications	24
Figure 5.2.1	Software Requirements	28
Figure 5.3.1	Functional Requirements	30
Figure 5.4.1	Non-Functional Requirements	31
Figure 6.3.1	Algorithm Analysis	33
Figure 6.3.2	Performance Model	33
Figure 6.8.1	Limitations & Improvements	35
Figure 7.1	Future Enhancements	39