FDU 高等线性代数 Homework 01

Due: Sept. 9, 2024 姓名: 雍崔扬 学号: 21307140051

Problem 1

设n 为给定的正整数,求n 阶矩阵A 的所有特征值和特征向量.

$$A = egin{bmatrix} 0 & 1 & & & & \ & 0 & 1 & & & \ & & \ddots & \ddots & & \ & & & 0 & 1 \ 1 & & & & 0 \end{bmatrix}$$

• Insight:

实际上,我们观察到 A 是一个 Frobenius **友型**,故其特征多项式可以一眼看出来: $\det\left(\lambda I-A\right)=\lambda^n-1$. 因此其特征值为 $\lambda_k=\omega^k$,对应的特征向量为 $\left[1,\omega^k,\cdots,\omega^{(n-2)k},\omega^{(n-1)k}\right]^{\mathrm{T}}$,其中 $\omega=\exp\left(2\pi\mathrm{i}/n\right),\ k=0,1,\ldots,n-1$.

一般的 Frobenius **友型**形如:

可以证明其极小多项式 $m_A(t)$ 和特征多项式 $p_A(t)$ 均为 $t^n+a_{n-1}t^{n-1}+a_{n-2}t^{n-2}+\cdots+a_1t+a_0$. 特别地,取第一种形式,可以证明:

若 λ 为 A 的特征值 (即满足 $\lambda^n+a_{n-1}\lambda^{n-1}+a_{n-2}\lambda^{n-2}+\cdots+a_1\lambda+a_0=0$),则 $[1,\lambda,\cdots,\lambda^{n-2},\lambda^{n-1}]^{\mathrm{T}}$ 为对应的特征向量:

$$\begin{bmatrix} 0 & 1 & & & & \\ & 0 & 1 & & & \\ & & \ddots & \ddots & & \\ & & & 0 & 1 \\ -\alpha_0 & -\alpha_1 & \cdots & -\alpha_{n-2} & -\alpha_{n-1} \end{bmatrix} \begin{bmatrix} 1 \\ \lambda \\ \vdots \\ \lambda^{n-2} \\ \lambda^{n-1} \end{bmatrix} = \begin{bmatrix} 1 \\ \lambda \\ \vdots \\ \lambda^{n-2} \\ \lambda^{n-1} \end{bmatrix} \lambda$$

Solution:

(我们这里给出最基础的做法,不使用 Frobenius 友型的结论) 方阵 A 的特征多项式为:

$$\det (\lambda I - A) = \begin{vmatrix} \lambda & -1 \\ & \lambda & -1 \\ & & \ddots & \ddots \\ & & \lambda & -1 \\ -1 & & & \lambda \end{vmatrix}_{n}$$

$$= \lambda \begin{vmatrix} \lambda & -1 \\ & \ddots & \ddots \\ & & \lambda & -1 \\ & & \lambda & -1 \\ & & & \lambda \end{vmatrix}_{n-1} + (-1)^{n+1} \cdot (-1) \begin{vmatrix} -1 \\ \lambda & -1 \\ & \ddots & \ddots \\ & & \lambda & -1 \end{vmatrix}_{n-1}$$

$$= \lambda \cdot \lambda^{n-1} + 1 \cdot (-1)^{n-1}$$

$$= \lambda^{n} - 1$$

令 $\det (\lambda I - A) = \lambda^n - 1 = 0$,可解得 n 个根为:

$$\lambda_k = \sqrt[n]{1} \exp\left\{\mathrm{i}\left(rac{0+2k\pi}{n}
ight)
ight\} = \left(\exp\left(rac{2\pi\mathrm{i}}{n}
ight)
ight)^k \; (k=0,1,\ldots,n-1)$$

若记 $\omega = \exp(2\pi i/n)$,则我们可以将方阵 A 的 n 个特征值写为:

$$\lambda_k = \omega^k \; \left(k = 0, 1, \ldots, n-1
ight)$$

求解 λ_k 对应的特征向量就是要求解方程组:

$$(\lambda_k I_n - A)x = egin{bmatrix} \lambda_k & -1 & & & & \ & \lambda_k & -1 & & & \ & \ddots & \ddots & & \ & & \lambda_k & -1 \ -1 & & & \lambda_k \end{bmatrix} x = 0_n$$
 \updownarrow
 $\begin{cases} x_2 = \lambda_k x_1 & & & \ x_3 = \lambda_k x_2 & & \ dots & & \ x_n = \lambda_k x_{n-1} & & \ x_1 = \lambda_k x_n & & \end{cases}$

我们可以取 $\lambda_k = \omega^k \ (k = 0, 1, \dots, n - 1)$ 对应的特征向量 $x^{(k)}$ 为:

$$x^{(k)} = egin{bmatrix} 1 \ \lambda_k \ dots \ \lambda_{k}^{n-1} \end{bmatrix} = egin{bmatrix} 1 \ \omega^k \ dots \ \omega^{(n-1)k} \end{bmatrix}$$

Problem 2

证明: 复数 z_1, z_2, z_3 满足 $|z_1 - z_2| = |z_2 - z_3| = |z_3 - z_1|$ 的充要条件是

$$z_1^2 + z_2^2 + z_3^2 - z_1 z_2 - z_2 z_3 - z_3 z_1 = 0$$

• Lemma 1:

设 $\omega = \exp(2\pi \mathrm{i}/n)$,则我们有:

$$\sum_{k=0}^{n} \omega^{k} = 1 + \omega + \dots + \omega^{n-1}$$

$$= \frac{1 - \omega^{n}}{1 - \omega} \quad \text{(note that } \omega^{n} = \exp\left(\frac{2\pi i}{n} \cdot n\right) = \exp\left(2\pi i\right) = 1\text{)}$$

$$= \frac{1 - 1}{1 - \omega}$$

$$= 0$$

• Lemma 2 (两个非零复数的乘积也不是零):

若 $z_1 z_2 = 0$, 则 z_1 和 z_2 至少有一个是零.

- \circ 当 $z_1=0$ 时,结论成立.
- 。 当 $z_1 \neq 0$ 时,可知逆元 z_1^{-1} 存在,我们有 $z_2 = z_2(z_1z_1^{-1}) = z_1^{-1}(z_1z_2) = z_1^{-1} \cdot 0 = 0$.

Solution:

若 z_1, z_2, z_3 中有任意两个是相等的,

则可根据
$$|z_1-z_2|=|z_2-z_3|=|z_3-z_1|=0$$
 推出 $z_1=z_2=z_3=0$,进而有 $z_1^2+z_2^2+z_3^2-z_1z_2-z_2z_3-z_3z_1=0$ 此时命题成立,

下证 z_1, z_2, z_3 互不相同时命题成立.

• ① 必要性:

若
$$|z_1-z_2|=|z_2-z_3|=|z_3-z_1|$$
,则 z_1,z_2,z_3 三点确定了一个正三角形. 记 $\omega=\exp{(2\pi \mathrm{i}/3)}$,则我们有:

$$egin{cases} z_2 - z_3 = (z_2 - z_1) \omega \ z_1 - z_3 = (z_2 - z_1) \omega^2 \end{cases}$$

于是有:

$$\begin{aligned} z_1^2 + z_2^2 + z_3^2 - z_1 z_2 - z_2 z_3 - z_3 z_1 &= \frac{1}{2} (z_2 - z_1)^2 + \frac{1}{2} (z_2 - z_3)^2 + \frac{1}{2} (z_1 - z_3)^2 \\ &= \frac{1}{2} (z_2 - z_1)^2 (1 + \omega^2 + \omega^4) \quad \text{(note that } \omega^3 = 1) \\ &= \frac{1}{2} (z_2 - z_1)^2 (1 + \omega^2 + \omega) \quad \text{(utilize Lemma 1)} \\ &= \frac{1}{2} (z_2 - z_1)^2 \cdot 0 \\ &= 0 \end{aligned}$$

• ② 充分性:

根据 **Lemma 1** 我们有 $\omega^2+\omega+1=0$,即有 $\omega^2+\omega=-1$. 若 $z_1^2+z_2^2+z_3^2-z_1z_2-z_2z_3-z_3z_1=0$,则我们有:

$$\begin{aligned} 0 &= z_1^2 + z_2^2 + z_3^2 - z_1 z_2 - z_2 z_3 - z_3 z_1 \quad \text{(note that } \omega^3 = 1 \text{ and } \omega^2 + \omega = -1 \text{)} \\ &= z_1^2 + \omega^3 z_2^2 + \omega^3 z_3^2 + (\omega^2 + \omega) z_1 z_2 + (\omega^2 + \omega) z_2 z_3 + (\omega^2 + \omega) z_3 z_1 \\ &= (z_1 + \omega z_2 + \omega^2 z_3) (z_1 + \omega^2 z_2 + \omega z_3) \end{aligned}$$

根据 **Lemma 2** 可知 $z_1 + \omega z_2 + \omega^2 z_3$ 和 $z_1 + \omega^2 z_2 + \omega z_3$ 至少有一个是零. 不失一般性,设 $z_1 + \omega z_2 + \omega^2 z_3 = 0$,则左右同乘 $(\omega^2 - \omega)$ 可得:

$$\begin{aligned} 0 &= (\omega^2 - \omega)(z_1 + \omega z_2 + \omega^2 z_3) \\ &= (\omega^2 - \omega)z_1 + (\omega^3 - \omega^2)z_2 + (\omega^4 - \omega^3)z_3 \\ &= (\omega^2 - \omega)z_1 + (1 - \omega^2)z_2 + (\omega - 1)z_3 \\ &= (\omega - 1)(z_3 - z_1) + (\omega^2 - 1)(z_1 - z_2) \\ &= (\omega - 1)((z_3 - z_1) + (\omega + 1)(z_1 - z_2)) \\ &= (\omega - 1)((z_3 - z_2) + \omega(z_1 - z_2)) \end{aligned}$$

由于 $\omega - 1 = \exp(2\pi i/3) - 1 = \neq 0$,故根据 Lemma 2 可知:

$$\begin{cases} (z_3 - z_1) + (\omega + 1)(z_1 - z_2) = 0 \\ (z_3 - z_2) + \omega(z_1 - z_2) = 0 \end{cases}$$

注意到:

$$\begin{cases} |\omega+1| = |-\frac{1}{2} + \frac{\sqrt{3}}{2}i + 1| = 1\\ |\omega| = |\exp\left(\frac{2\pi i}{3}\right)| = 1 \end{cases}$$

于是我们有:

$$\begin{aligned} |z_3-z_1| &= |-(\omega+1)(z_2-z_1)| \\ &= |\omega+1|\cdot|z_2-z_1| \\ &= 1\cdot|z_2-z_1| \\ &= |z_2-z_1| \\ \hline |z_3-z_2| &= |-\omega(z_2-z_1)| \\ &= |\omega|\cdot|z_2-z_1| \\ &= 1\cdot|z_2-z_1| \\ &= |z_2-z_1| \end{aligned}$$

因此 $|z_1-z_2|=|z_2-z_3|=|z_3-z_1|$.

综上所述, 命题得证

事实上,下列命题是等价的:

- $|z_1 z_2| = |z_2 z_3| = |z_3 z_1|$
- $z_1^2 + z_2^2 + z_3^2 z_1 z_2 z_2 z_3 z_3 z_1 = \frac{1}{2}[(z_2 z_1)^2 + (z_2 z_3)^2 + (z_1 z_3)^2] = 0$
- $z_1 + \omega z_2 + \omega^2 z_3 = 0$ (其中 $\omega = \exp(2\pi i/3)$)

(2025 补充习题)

已知 $z_1=1-\mathrm{i},\; z_2=2+3\mathrm{i},\;$ 试求复数 z_3 使得 $|z_1-z_2|=|z_2-z_3|=|z_3-z_1|.$

Solution:

根据 $|z_1-z_2|=|z_2-z_3|=|z_3-z_1|$ 可知 z_1,z_2,z_3 在复平面中构成正三角形的顶点. 因此令 z_2-z_1 顺/逆时针旋转 $\pi/3$ 便可得到 z_3-z_1 .

设 $z_3 = \alpha + \beta i$, 令 $z_3 - z_1 = \exp(\pm \pi i/3)(z_2 - z_1)$, 则我们有:

$$egin{aligned} z_3 &= z_1 + \exp{(\pm\pi\mathrm{i}/3)}(z_2 - z_1) \ &= 1 - \mathrm{i} + rac{1}{2}(1 \pm \sqrt{3}\mathrm{i})(2 + 3\mathrm{i} - 1 + \mathrm{i}) \ &= rac{1}{2}(3 \mp 4\sqrt{3} + (2 \pm \sqrt{3})\mathrm{i}) \end{aligned}$$

Problem 3

给定的正整数 m, n, 记 $\omega = \exp(2\pi i/m)$. 试证明对任何 $A, B \in \mathbb{C}^{n \times n}$ 都有:

$$A^m+B^m=rac{1}{m}\sum_{k=0}^{m-1}(A+\omega^k B)^m$$

• Lemma (两个非零复数的乘积也不是零):

若 $z_1 z_2 = 0$, 则 z_1 和 z_2 至少有一个是零.

- \circ 当 $z_1=0$ 时,结论成立.
- 。 当 $z_1 \neq 0$ 时,可知逆元 z_1^{-1} 存在,我们有 $z_2 = z_2(z_1z_1^{-1}) = z_1^{-1}(z_1z_2) = z_1^{-1} \cdot 0 = 0$.

Solution:

注意到 A, B 不一定是可交换的 (即 AB = BA). 因此 $(A+B)^m$ 不能简单展开为 $\sum_{j=0}^m \binom{m}{i} A^{m-j} B^j$.

我们记 $(A+B)^m$ 的展开式中 $\binom{m}{j}$ 个由 m-j 个 A 和 j 个 B 构成的项之和为 $\mathrm{term}(A,B,j)$. 显然我们有 $\operatorname{term}(A, \omega^k B, j) = \omega^{jk} \operatorname{term}(A, B, j)$ 成立.

因为有限求和是可以交换次序的, 所以我们有:

$$\frac{1}{m} \sum_{k=0}^{m-1} (A + \omega^k B)^m = \frac{1}{m} \sum_{k=0}^{m-1} \left\{ \sum_{j=0}^m \operatorname{term}(A, \omega^k B, j) \right\}
= \frac{1}{m} \sum_{k=0}^{m-1} \left\{ \sum_{j=0}^m \omega^{jk} \operatorname{term}(A, B, j) \right\}
= \frac{1}{m} \sum_{j=0}^m \left\{ \left(\sum_{k=0}^{m-1} \omega^{jk} \right) \operatorname{term}(A, B, j) \right\}$$
(3.1)

注意到 $\omega^m = 1$ (即 ω 是 1 的一个 m 次复根).

• $\exists j \ni m$ 的整数倍 (即 $j \ni 0$ 或 m) 时,我们有:

$$\sum_{k=0}^{m-1} \omega^{jk} = \sum_{k=0}^{m-1} 1 = m$$

• 当 j 不为 m 的整数倍 (即 j = 1, ..., m - 1) 时,我们有:

$$\begin{split} \omega^j \sum_{k=0}^{m-1} \omega^{jk} &= \omega^j (1 + \omega^j + \dots + \omega^{(m-2)j} + \omega^{(m-1)j}) \\ &= \omega^j + \omega^{2j} + \dots + \omega^{(m-1)j} + \omega^{mj} \quad \text{(note that } \omega^m = 1) \\ &= \omega^j + \omega^{2j} + \dots + \omega^{(m-1)j} + 1 \\ &= \sum_{k=0}^{m-1} \omega^{jk} \end{split}$$

于是有 $(\omega^j-1)\sum_{k=0}^{m-1}\omega^{jk}=0$ 成立. 由于 $\omega^j-1=\exp{(\frac{2j\pi \mathrm{i}}{m})}-1\neq 0$,故根据 **Lemma** 可知 $\sum_{k=0}^{m-1}\omega^{jk}=0$.

综上所述, 我们有:

$$\sum_{k=0}^{m-1}\omega^{jk}=egin{cases} m,& ext{if }j=0,m\ 0,& ext{if }j=1,\ldots,m-1 \end{cases}$$

将上述结果代入(3.1)式中我们有:

$$egin{aligned} rac{1}{m} \sum_{k=0}^{m-1} (A + \omega^k B)^m &= rac{1}{m} \sum_{j=0}^m \left\{ \left(\sum_{k=0}^{m-1} \omega^{jk} \right) ext{term}(A, B, j)
ight\} \ &= rac{1}{m} (mA^m + mB^m) \ &= A^m + B^m \end{aligned}$$

命题得证.

Problem 4

以下内容均来自 Complex Variables and Applications (9th Edition J. Brown, R. Churchill) Chaper 6

(Complex Variables and Applications 第 74 节)

若函数在简单闭围道 C 的内部除了有限多个奇点以外处处解析,则这些奇点必定是孤立奇点. 特殊地,有理函数(即两个多项式函数的商)的奇点总是孤立奇点,因为分母中的多项式函数仅有有限个零点

(Complex Variables and Applications 第 75 节)

若 z_0 是函数 f 的孤立奇点,则存在正数 R>0 使得 f 在 $0<|z-z_0|< R$ 中的任意一点 z 处解析 因此函数 f 关于 z_0 的 Laurent 级数展开式为:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$
 $a_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^{n+1}} dz \quad (n = 0, 1, \ldots)$ $b_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^{-n+1}} dz \quad (n = 1, 2, \ldots)$

其中C为 $0<|z-z_0|< R$ 中任意围绕 z_0 的简单正向闭围道.

特别地, b_1 的表达式为 $b_1=\frac{1}{2\pi \mathrm{i}}\int_C f(z)\mathrm{d}z$ 我们称其为函数 f 在孤立奇点 z_0 处的**留数** (residue),记为 $\mathop{\mathrm{Res}}_{z=z_0} f(z)$

干是我们有:

$$\int_C f(z) \mathrm{d}z = 2\pi \mathrm{i} \cdot \underset{z=z_0}{\mathrm{Res}} f(z)$$

(Cauchy 留数定理, Complex Variables and Applications 第 76 节)

若函数 f 在 C 及其内部除了有限多个奇点 z_k $(k=1,\ldots,n)$ 以外处处解析 (自然是孤立奇点), 则我们有:

$$\int_C f(z) \mathrm{d}z = 2\pi \mathrm{i} \sum_{k=1}^n \mathop{\mathrm{Res}}_{z=z_k} f(z)$$

即 f 沿 C 的积分值 $\int_C f(z) dz$ 为其内部有限个奇点处的留数之和的 $2\pi i$ 倍.

下面的定理仅仅涉及一个留数, 故运用起来有时比 Cauchy 留数定理更加方便:

(Complex Variables and Applications 第 77 节 定理)

若函数 f 在有限平面上除了有限多个奇点以外处处解析,且这些奇点落在一条正向简单闭围道 C 的内部, 则我们有:

$$\int_{C} f(z) dz = 2\pi i \cdot \operatorname{Res}_{z=0} \left\{ \frac{1}{z^{2}} f\left(\frac{1}{z}\right) \right\}$$

计算复积分:

$$\int_{|z|=4} \frac{1}{z^2 - 3z + 2} \mathrm{d}z$$

Solution:

记围道 C 为 |z|=4 确定的正向圆周 (即逆时针方向).

注意到多项式函数 $p(z)=z^2-3z+2$ 在整个复平面都是解析的,且仅有 z=1,2 两个零点。

因此 f(z)=1/p(z) 在复平面上仅有 z=1,2 两个孤立奇点,且都落在围道 C 的内部.

下面我们计算 $\frac{1}{z^2}f(\frac{1}{z})$ 在 z=0 处的留数.

定义 $g(z) := \frac{\tilde{1}}{z^2} f(\frac{\tilde{1}}{z})$, 则我们有:

$$g(z) = \frac{1}{z^2} f\left(\frac{1}{z}\right)$$

$$= \frac{1}{z^2} \cdot \frac{z^2}{1 - 3z + 2z^2}$$

$$= \frac{1}{(1 - 2z)(1 - z)}$$

根据 **Lemma** 可知 g(z) 的 Laurent 级数中 1/z 项的系数即为所求留数. 注意到 g(z) 在 z=0 处是解析的,其 Laurent 级数展开即为 Taylor 级数展开,

因此没有 1/z 项,于是有:

$$\operatorname{Res}_{z=0}\left\{\frac{1}{z^2}f\left(\frac{1}{z}\right)\right\} = 0$$

因此 f 在 C 上的积分为:

$$\int_C f(z)\mathrm{d}z = \int_C rac{1}{z^2-3z+2}\mathrm{d}z = 2\pi\mathrm{i}\cdot\mathop{\mathrm{Res}}_{z=0}\left\{rac{1}{z^2}f\left(rac{1}{z}
ight)
ight\} = 2\pi\mathrm{i}\cdot 0 = 0$$

Problem 5

试证明任何复方阵都可以在复数域上相似上三角化,

即对于任意复方阵 $A\in\mathbb{C}^{n imes n}$ 总存在非奇异阵 P 使得 $P^{-1}AP$ 为上三角矩阵.

Solution:

当 n=1 时,命题显然成立.

当 n > 2 时,假设对于所有维数小于 n 的复方阵,上述命题都成立

下面对n维复方阵证明该命题.

设 (λ_1,x_1) 是 $A\in\mathbb{C}^{n\times n}$ 的一个特征对,即满足 $A_1x_1=x_1\lambda_1$.

将 x_1 扩充为 \mathbb{C}^n 的一组基 x_1, v_2, \ldots, v_n ,

定义非奇异阵 $P_1 := [x_1, v_2, \dots, v_n] = [x_1, V]$,则我们有:

$$\begin{split} AP_1 &= A[x_1,V] \\ &= [Ax_1,AV] \\ &= [x_1\lambda_1,AV] \\ &= [x_1,V][\lambda_1e_1,P_1^{-1}AV] \quad (\text{denote } P_1^{-1}AV = \begin{bmatrix} * \\ A_2 \end{bmatrix} \in \mathbb{C}^{n\times(n-1)}) \\ &= [x_1,V] \begin{bmatrix} \lambda_1 & * \\ & A_2 \end{bmatrix} \\ &= P_1 \begin{bmatrix} \lambda_1 & * \\ & A_2 \end{bmatrix} \end{split}$$

根据归纳假设可知,存在非奇异阵 $\widetilde{P}_2\in\mathbb{C}^{(n-1)\times(n-1)}$ 使得 $T_2:=\widetilde{P}_2^{-1}A_2\widetilde{P}_2$ 为上三角阵。 定义 $P_2:=1\oplus\widetilde{P}_2$ 和 $P=P_1P_2$ 可知:

$$P^{-1}AP = P_2^{-1}P_1^{-1}AP_1P_2$$

$$= \begin{bmatrix} 1 & & \\ & P_2^{-1} \end{bmatrix} \begin{bmatrix} \lambda_1 & * \\ & A_2 \end{bmatrix} \begin{bmatrix} 1 & \\ & P_2 \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 & * \\ & P_2^{-1}A_2P_2 \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 & * \\ & T_2 \end{bmatrix}$$

因此 $T := P^{-1}AP$ 为上三角阵.

根据数学归纳法, 命题得证.

Problem 6 (optional)

设n为正整数.

已知 n 次系数多项式 $f(z) = \sum_{k=0}^n a_k z^k$ 的系数满足 $a_0 > \cdots > a_n > 0$ 证明: f(z) 的所有复根都在单位圆外.

• Hint: 考察 g(z) = (1-z)f(z)

Solution:

当 $|z| \leq 1$ 时,我们有:

$$\begin{split} |g(z)| &= |(1-z)f(z)| \\ &= \left| (1-z) \sum_{k=0}^n a_k z^k \right| \\ &= \left| a_0 + \sum_{k=1}^n (a_k - a_{k-1}) z^k - a_n z^{n+1} \right| \quad \text{(triangle inequality)} \\ &\geq |a_0| - \left| \sum_{k=1}^n (a_k - a_{k-1}) z^k - a_n z^{n+1} \right| \quad \text{(triangle inequality and } |z_1 z_2| = |z_1| |z_2| \text{ for all } z_1, z_2 \in \mathbb{C} \text{)} \\ &\geq |a_0| - \sum_{k=1}^n |a_k - a_{k-1}| |z|^k - |a_n| |z|^{n+1} \quad \text{(note that } a_0 > \dots > a_n > 0 \text{)} \\ &= a_0 - \sum_{k=1}^n (a_{k-1} - a_k) |z|^k - a_n |z|^{n+1} \quad \text{(note that } |z| \leq 1 \text{)} \\ &\geq a_0 - \sum_{k=1}^n (a_{k-1} - a_k) \cdot 1 - a_n \cdot 1 \\ &= a_0 - (a_0 - a_n) - a_n \\ &= 0 \end{split}$$

上述三个不等号同时取等的充要条件是:

- ① $\sum_{k=1}^n (a_k-a_{k-1})z^k-a_nz^{n+1}$ 与 a_0 反方向 (即与 1 反方向) (注意 a_0 是正实数,而 $a_k - a_{k-1} < 0$ (k = 1, ..., n))
- ② z, z^2, \ldots, z^{n+1} 同方向
- (|z| = 1)

容易验证这样的 z 只能是 $z=e^{2m\pi \mathrm{i}}=1 \ (m\in\mathbb{Z}).$

因此当 $|z| \leq 1$ 且 $z \neq 1$ 时,我们都有 |g(z)| > 0 成立,表明这样的 z 不是 g(z) 的根。

于是 g(z) 的根要么是 z=1,要么满足 |z|>1.

注意到 g(z)=(1-z)f(z) 的复根除了额外的 1 以外,其余复根都与 f(z) 的相同.

而根据 $f(1) = \sum_{k=0}^{n} a_k > 0$ 可知 z = 1 不是 f(z) 的根.

因此 f(z) 的所有根都满足 |z|>1,即都落在单位圆周 |z|=1 的外部.

Problem 7 (optional)

证明下面的函数不是解析函数,但在复平面上处处满足 Cauchy-Riemann 方程

$$f(z) = egin{cases} \exp\left(-z^{-4}
ight), & z
eq 0, \ 0, & z = 0. \end{cases}$$

- (极坐标下可导的充分条件, Complex Variables and Applications 第 24 节) 若函数 $f(z)=u(
 ho, heta)+\mathrm{i}v(
 ho, heta)$ 在非零点 $z_0=
 ho_0\mathrm{e}^{\mathrm{i} heta_0}$ 的某个邻域内有定义,且满足:
 - 。 函数 u,v 在 $z_0=
 ho_0\mathrm{e}^{\mathrm{i} heta_0}$ 的该邻域内可偏导
 - \circ 函数 u,v 的一阶偏导数在 $(
 ho_0, heta_0)$ 处连续且满足**极坐标形式的** Cauchy-Riemann **方程**:

$$\begin{cases} \rho u_{\rho}(\rho_0, \theta_0) = v_{\theta}(\rho_0, \theta_0) \\ u_{\theta}(\rho_0, \theta_0) = -\rho v_{\rho}(\rho_0, \theta_0) \end{cases}$$

则 f 在 $z_0=
ho_0\mathrm{e}^{\mathrm{i} heta_0}$ 处可导,且导数 $f'(z_0)=\mathrm{e}^{-\mathrm{i} heta}(u_
ho(
ho_0, heta_0)+\mathrm{i}v_
ho(
ho_0, heta_0)$

当 $z \neq 0$ 时,我们有:

$$f(z) = \exp\left(-z^{-4}\right)$$

$$= \exp\left(-\rho^{-4}e^{-4i\theta}\right)$$

$$= \exp\left(-\rho^{-4}(\cos\left(-4\theta\right) + i\sin\left(-4\theta\right)\right)\right)$$

$$= \exp\left(-\rho^{-4}\cos\left(-4\theta\right)\right) \cdot \exp\left(i\cdot\left(-\rho^{-4}\sin\left(-4\theta\right)\right)\right)$$

$$= \exp\left(-\rho^{-4}\cos\left(-4\theta\right)\right) \cdot \left(\cos\left(-\rho^{-4}\sin\left(-4\theta\right)\right) + i\sin\left(-\rho^{-4}\sin\left(-4\theta\right)\right)\right)$$

$$= u(\rho, \theta) + iv(\rho, \theta)$$

其中我们记:

$$\begin{split} u(\rho,\theta) &= \exp\left(-\rho^{-4}\cos\left(-4\theta\right)\right)\cos\left(-\rho^{-4}\sin\left(-4\theta\right)\right) = g(\rho,\theta)\cos\left(h(\rho,\theta)\right) \\ v(\rho,\theta) &= \exp\left(-\rho^{-4}\cos\left(-4\theta\right)\right)\sin\left(-\rho^{-4}\sin\left(-4\theta\right)\right) = g(\rho,\theta)\sin\left(h(\rho,\theta)\right) \\ \text{where } \begin{cases} g(\rho,\theta) &= \exp\left(-\rho^{-4}\cos\left(-4\theta\right)\right) \\ h(\rho,\theta) &= -\rho^{-4}\sin\left(-4\theta\right) \end{cases} \Rightarrow \begin{cases} g_{\rho}(\rho,\theta) &= 4\rho^{-5}\cos\left(-4\theta\right)g(\rho,\theta) \\ g_{\theta}(\rho,\theta) &= -4\rho^{-4}\sin\left(-4\theta\right)g(\rho,\theta) \\ h_{\rho}(\rho,\theta) &= 4\rho^{-5}\sin\left(-4\theta\right) \\ h_{\theta}(\rho,\theta) &= 4\rho^{-4}\cos\left(-4\theta\right) \end{cases} \end{split}$$

经计算可得:

$$u_{\rho}(\rho,\theta) = g_{\rho}(\rho,\theta)\cos(h(\rho,\theta)) + g(\rho,\theta)[-\sin(h(\rho,\theta))h_{\rho}(\rho,\theta)]$$

$$= 4\rho^{-5}\cos(-4\theta)g(\rho,\theta)\cos(h(\rho,\theta)) - g(\rho,\theta)\sin(h(\rho,\theta))4\rho^{-5}\sin(-4\theta)$$

$$= 4\rho^{-5}g(\rho,\theta)\cos(h(\rho,\theta) - 4\theta)$$

$$u_{\theta}(\rho,\theta) = g_{\theta}(\rho,\theta)\cos(h(\rho,\theta)) + g(\rho,\theta)[-\sin(h(\rho,\theta))h_{\theta}(\rho,\theta)]$$

$$= -4\rho^{-4}\sin(-4\theta)g(\rho,\theta)\cos(h(\rho,\theta)) - g(\rho,\theta)\sin(h(\rho,\theta))4\rho^{-4}\cos(-4\theta)$$

$$= -4\rho^{-4}g(\rho,\theta)\sin(h(\rho,\theta) - 4\theta)$$

$$v_{\rho}(\rho,\theta) = g_{\rho}(\rho,\theta)\sin(h(\rho,\theta)) + g(\rho,\theta)\cos(h(\rho,\theta))h_{\rho}(\rho,\theta)$$

$$= 4\rho^{-5}\cos(-4\theta)g(\rho,\theta)\sin(h(\rho,\theta)) + g(\rho,\theta)\cos(h(\rho,\theta))4\rho^{-5}\sin(-4\theta)$$

$$= 4\rho^{-5}g(\rho,\theta)\sin(h(\rho,\theta) - 4\theta)$$

$$v_{\theta}(\rho,\theta) = g_{\theta}(\rho,\theta)\sin(h(\rho,\theta)) + g(\rho,\theta)\cos(h(\rho,\theta))h_{\theta}(\rho,\theta)$$

$$= -4\rho^{-4}\sin(-4\theta)g(\rho,\theta)\sin(h(\rho,\theta)) + g(\rho,\theta)\cos(h(\rho,\theta))4\rho^{-4}\cos(-4\theta)$$

$$= 4\rho^{-4}g(\rho,\theta)\cos(h(\rho,\theta) - 4\theta)$$

因此对于任意 $\rho > 0$ 和 $\theta \in \mathbb{R}$ 我们都有:

$$\begin{cases} \rho u_{\rho}(\rho, \theta) = v_{\theta}(\rho, \theta) \\ u_{\theta}(\rho, \theta) = -\rho v_{\rho}(\rho, \theta) \end{cases}$$

这表明 f(z) 在复平面上处处满足 Cauchy-Riemann 方程.

Problem 8 (optional)

对于欧式平面 \mathbb{R}^2 内的任意三角形 $\triangle ABC$ 向外作 $\angle ABR$, $\angle BCP$, $\angle CAQ$ 使得 $\begin{cases} \angle CBP = \angle CAQ = 45^\circ \\ \angle BCP = \angle ACQ = 30^\circ . \\ \angle ABR = \angle BAR = 15^\circ \end{cases}$ 试利用复数证明 $\angle QRP = 90^\circ$ 且 |QR| = |RP|.

Solution:

记 \vec{OA} , \vec{OB} , \vec{OC} , \vec{OR} , \vec{OP} , \vec{OQ} 的复数表示为 a,b,c,z_1,z_2,z_3

根据 $1-2\sin^2(\frac{\pi}{12})=\cos\left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$ 可解得 $\sin\left(\frac{\pi}{12}\right)=\frac{\sqrt{6}-\sqrt{2}}{4}$,进而有 $\cos\left(\frac{\pi}{12}\right)=\frac{\sqrt{6}+\sqrt{2}}{4}$ 根据正弦定理可知:

$$\frac{|BR|}{|BA|} = \frac{|AR|}{|AB|} = \frac{\sin\left(\frac{\pi}{12}\right)}{\sin\left(\frac{5\pi}{6}\right)} = \frac{\frac{\sqrt{6} - \sqrt{2}}{4}}{\frac{1}{2}} = \frac{\sqrt{6} - \sqrt{2}}{2}$$
$$\frac{|BP|}{|BC|} = \frac{|AQ|}{|AC|} = \frac{\sin\left(\frac{\pi}{6}\right)}{\sin\left(\frac{7\pi}{12}\right)} = \frac{\frac{1}{2}}{\frac{\sqrt{6} + \sqrt{2}}{4}} = \frac{\sqrt{6} - \sqrt{2}}{2}$$

若记 $\omega=e^{i\frac{\pi}{12}}$,则我们有:

$$\begin{cases} z_1 - b = \vec{BR} = \frac{\sqrt{6} - \sqrt{2}}{2} \omega \vec{BA} = \frac{\sqrt{6} - \sqrt{2}}{2} \omega(a - b) \\ z_1 - a = \vec{AR} = \frac{\sqrt{6} - \sqrt{2}}{2} \vec{\omega} \vec{AB} = \frac{\sqrt{6} - \sqrt{2}}{2} \vec{\omega}(b - a) \\ z_2 - b = \vec{BP} = \frac{\sqrt{6} - \sqrt{2}}{2} \vec{\omega}^3 \vec{BC} = \frac{\sqrt{6} - \sqrt{2}}{2} \vec{\omega}^3 (c - b) \end{cases} \text{ where } \begin{cases} \omega = \cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4} + \frac{\sqrt{6} - \sqrt{2}}{4} i \\ \vec{\omega} = \cos\left(-\frac{\pi}{12}\right) + i\sin\left(-\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4} - \frac{\sqrt{6} - \sqrt{2}}{4} i \\ \vec{\omega}^3 = \cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} i \\ \vec{\omega}^3 = \cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} i \end{cases}$$

要证明 " $\angle QRP=90$ " 且 |QR|=|RP|",即要证 $\vec{RQ}=e^{\frac{i\pi}{2}}\vec{RP}$ 也就等价于证明 $z_3-z_1=i(z_2-z_1)$

$$\begin{split} z_3 - z_1 - i(z_2 - z_1) &= \left[(z_3 - a) - (z_1 - a) \right] - i \left[(z_2 - b) - (z_1 - b) \right] \\ &= \left[\frac{\sqrt{6} - \sqrt{2}}{2} \omega^3(c - a) - \frac{\sqrt{6} - \sqrt{2}}{2} \bar{\omega}(b - a) \right] - i \left[\frac{\sqrt{6} - \sqrt{2}}{2} \bar{\omega}^3(c - b) - \frac{\sqrt{6} - \sqrt{2}}{2} \omega(a - b) \right] \\ &= \frac{\sqrt{6} - \sqrt{2}}{2} \{ \omega^3(c - a) - \bar{\omega}(b - a) - i \bar{\omega}^3(c - b) + i \omega(a - b) \} \end{split}$$

因此要证明 $z_3-z_1-i(z_2-z_1)=0$,等价于证明 $\omega^3(c-a)-\bar{\omega}(b-a)-i\bar{\omega}^3(c-b)+i\omega(a-b)=0$ 也就等价于证明 a,b,c 项的系数分别为 0:

a 的系数为:

$$\begin{split} -\omega^3 + \bar{\omega} + i\omega &= -\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) + \left(\frac{\sqrt{6} + \sqrt{2}}{4} - \frac{\sqrt{6} - \sqrt{2}}{4}i\right) + i\left(\frac{\sqrt{6} + \sqrt{2}}{4} + \frac{\sqrt{6} - \sqrt{2}}{4}i\right) \\ &= \left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{6} + \sqrt{2}}{4} - \frac{\sqrt{6} - \sqrt{2}}{4}\right) + i\left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{6} - \sqrt{2}}{4} + \frac{\sqrt{6} + \sqrt{2}}{4}\right) \\ &= 0 \end{split}$$

• b 的系数为:

$$\begin{split} -\bar{\omega} + i\bar{\omega}^3 - i\omega &= -\left(\frac{\sqrt{6} + \sqrt{2}}{4} - \frac{\sqrt{6} - \sqrt{2}}{4}i\right) + i\left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right) - i\left(\frac{\sqrt{6} + \sqrt{2}}{4} + \frac{\sqrt{6} - \sqrt{2}}{4}i\right) \\ &= \left(-\frac{\sqrt{6} + \sqrt{2}}{4} + \frac{\sqrt{2}}{2} + \frac{\sqrt{6} - \sqrt{2}}{4}\right) + i\left(\frac{\sqrt{6} - \sqrt{2}}{4} + \frac{\sqrt{2}}{2} - \frac{\sqrt{6} + \sqrt{2}}{4}\right) \\ &= 0 \end{split}$$

c 的系数为:

$$\omega^{3} - i\overline{\omega}^{3} = \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) - i\left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)$$
$$= \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\right) + i\left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\right)$$
$$= 0$$

命题得证.

The End