Radial Level Planarity Testing and Embedding in Linear Time

Christian Bachmaier bachmaier@fmi.uni-passau.de

Franz J. Brandenburg brandenb@fmi.uni-passau.de

Michael Forster forster@fmi.uni-passau.de

University of Passau, Germany

Idea

- Opposite view
 - Is a graph with vertices fixed to concentric levels planar?

Overview

- Level planarity
 - Definition
 - Level planar graphs
 - Level planarity testing and embedding
- Radial level planarity
 - Definition
 - Concepts
- Radial level planarity testing
 - PQR-tree data structure
 - Merge of PQR-trees
- Summary

1. Level Planarity

Definition, Example, Previous Work

Level Graph

- G = $(V^1 \cup V^2 \cup ... \cup V^k, E)$ is a k-level graph
 - No horizontal edges
- G is proper
 - Each edge between adjacent levels

Level Planar Graph

- G is k-level planar
 - k-level graph
 - Edges drawn strictly downwards
 - Planar

Time Line

- Planarity
 - Lempel, Even, Cederbaum (1966)
 - Booth, Lueker (1976)
 - O(n) running time
 - PQ-trees
 - Chiba, Nishizeki, Abe, Ozawa (1985)
 - Embedding
- Alternative methods
 - Hopcroft, Tarjan (1974)
 - **...**
 - Boyer, Cortese, Patrignani,Di Battista (last Monday)

- Level planarity
 - Di Battista, Nardelli (1988)
 - Edges are not allowed to span more than one level
 - All source vertices must lie on the first level
 - Heath, Pemmaraju (1995)
 - Extension to arbitrary level graphs (merge of PQ-trees)
 - Jünger, Leipert, Mutzel (1998/1999)
 - Adjustments and improvements
 - Embedding

Level Planarity

- Similar to planarity test (vertex addition method, LEC)
- "Sweep line"
 - Traversing the graph level by level
 - Storing "admissible" edge permutations
 - For each vertex: REDUCE
 - Test on planarity
 - Update of permutations
 - For each vertex: REPLACE
 - Insertion of new edges
 - Next level
- Running time: O(n)
- Data structure: PQ-trees
 - Merges

Storing the Permutations

- PQ-trees [Booth and Lueker 1976]
 - Leaves represent edges ("virtual nodes")
 - P-nodes:
 - Correspond to cut vertices
 - Arbitrary permutations of its children
 - Q-nodes:
 - Correspond biconnected components
 - Only reversion

PQ-trees: Operations

- REDUCE
 - Restricts permutation set
 - Leaves of a set S must lie side by side
 - Traversing tree from leaves to the root
 - Templates: P0-P6 and Q0-Q3
 - Failure ⇔ graph not (level) planar
- REPLACE
 - Replaces consecutive leaves

Complexity

- Theorem (JLM)
 - There is an O(n) time algorithm for
 - level planarity testing
 - level planar embedding

2. Radial Level Planarity

Definition, Example, Differences, Concepts

Radial Level Planar Graphs

- Generalisation of level planar graphs
- G is radial k-level planar if it can be drawn such that
 - Vertices of each level lie on a concentric circle
 - Edges drawn strictly outwards
 - Planar

Transformation

- 4-level graph
- Not level planar
- Radial 4-level planar

Transformation

- 4-level graph
- Not level planar
- Radial 4-level planar
- Bend level lines to circles
- Planar possibility to route edge (1, 6)
- Ray through connection points
- Cut edges
- Level planar ⇔ no cut edges
- Test?

Radial Level Planarity Testing

- [Dujmović, Fellows, Hallet, Kitching, Liotta, McCartin, Nishimura, Ragde, Rosamond, Suderman, Whitesides, Wood 01]:
 - Detection of radial level planarity is fixed parameter tractable
 - $k \in O(1) \Rightarrow O(n)$ running time
 - Large constants
- Our algorithm
 - O(n) running time for any k
 - Practical constants, same as in JLM

Concepts

- Differences: level vs. radial
 - Level planar

 each component level planar
 - Not for radial level planarity

Rings

Ring:

- Biconnected component of a level graph
- Not level planar
- Not level planar
- Depends on levelling

Nesting of Rings

- Ring extremes
 - Minimum level
 - Inner radius
 - Outer radius
 - Maximum level

Level graph G with two rings R and S

Lemma

■ G is radial level planar ⇔ R and S are radial planar and R fits in centre face of S or vice versa

Level Optimality

- Depend on embedding
 - Inner radius
 - Outer radius
- For leaving maximum space
 - Maximise inner radius
 - Minimise outer radius
- Level optimal embeddings
 - Existence?
 - Our algorithm computes level optimal embeddings

3. Radial Level Planarity Testing

PQR-trees, Algorithm

R-Nodes

- Wavefront sweep
- New R-nodes in PQ-trees to represent rings
- R-nodes similar to Q-nodes
 - Represent a biconnected component
 - Reverse children

- New
 - Rotate children

Only at the root

New Templates

- PQR-trees
- Additional templates for PQR-trees which treat R-nodes
 - P-templates: P7 P9
 - Q-templates: Q4 Q7
 - R-templates: R0 R4

New Templates...

- Template Q6
 - Grey shading: pertinent leaves or pertinent sequence
 - Grey parts must be made consecutive
 - Applicable to the Q-root of a PQR-tree

- Boundary partial Q-nodes admissible
 - Root is/becomes an R-node during this reduction step
 - Impossible with PQ-tree templates
- Templates which can only be applied to the root

Merge Operations on PQR-trees

- Differences when merging two PQR-trees
 - Additional merge operations C^R and D^R
 - Treating admissible merges into PQR-trees at an R-root
- Example C^R:

Merge of Processed Non-Rings

- Presence of ring R
 - Placing components side by side impossible
 - Other processed components must fit in some face of R
- Check whenever an inner face is closed
- Storing minimum level over all processed components
- Same mechanism as JLM use for v-singular forms

Merge of Processed Rings

- A processed component may contain a ring
- It must fit in centre face of an outer ring
 - Highest jag
- Checked whenever a ring is closed

- Invariant
 - At most one PQR-tree with an R-root

Radial Level Planarity

- Radial level planarity ⇔
 - No REDUCE operation failed
 - No merge operation failed

All remaining components fit in outer face

Summary

Past and Future Work

Results

- Theorem
 - There is an O(n) time algorithm for radial level planarity testing
- Theorem
 - There is an O(n) time algorithm for radial level planar embedding
- Prototypic implementation in C++ using GTL
- Future work
 - Detection of forbidden subgraphs for (radial) level planarity
 - Drawings

