1.8 Передаточная функция и частотная характеристика ЛС-системы

1.8.1 Понятие собственной функции

Название **собственная функция** происходит от немецкого **eigenfucntion** и соответствует тому. Что в старых английских учебниках называлось характеристической функцией. Рассмотрим произведение матрицы на вектор

$$Ax = v$$

если наложить ограничение $y = \lambda x$, то выходной вектор будет иметь то же направление, что и входной вектор. Т.е. огромная матрица «действует» вдоль этого направление, как простое число. Поэтому такие вектора x называются собственными векторами, а числа λ собственными числами. Чтобы найти собственные вектора нужно решить уравнение

$$Ax = \lambda x$$
$$(A - \lambda I)x = 0$$

Для того, чтобы уравнение имело нетривиальное решение необходимо и достаточно, чтобы определитель системы равнялся нулю:

$$|A - \lambda I| = 0.$$

Этот определитель в развернутой записи становится полиномом от λ степени N, каждый его корень – собственное число для которого существует собственный вектор. 10

Изложенные идеи имеют свое отражение и в теории ЛС-систем.

Комплексные экспоненты являются собственными функциями ЛС-систем, а реакция такой системы на синусоидальную последовательность остается синусоидальной последовательностью с той же частотой, фаза и амплитуда которой полностью определяется системой.

Именно поэтому комплексным экспонентам уделяется такое большое внимание в ЦОС! Треугольный сигнал при пропускании через линейную систему не останется треугольным, пилообразный не останется пилообразным, а синусоида (и комплексная экспонента) останутся сами собой.

1.8.2 Передаточная функция ЛС-системы

Комплексные экспоненты z^n являются собственными функциями ЛС-систем.

$$y(n) = h(n) * z^n = \sum_{m=-\infty}^{\infty} h(m)z^{n-m} = z^n \underbrace{\sum_{m=-\infty}^{\infty} h(m)z^{-m}}_{H(z)}$$
 (1.16)

Сумма $\sum_{m=-\infty}^{\infty}h(m)z^{-m}$ является функцией от z, а не от n. Таким образом,

$$y(n) = H(z)z^{n} = H(z)x(n)|_{x(n)=z^{n}}.$$
(1.17)

Уравнение (1.17) справедливо только для тех значений z при которых сумма в правой части существует (сходится). Для любого заданного z выраже-

¹⁰ Взято из книги Р.В. Хемминг «Цифровые фильтры»

ние H(z) является константой. Таким образом выход и вход совпадают с точностью до мультипликативной константы, в случае, когда входом является вечно длящаяся экспонента z^n .

Перегруппируем выражение (1.17) следующим образом:

$$H(z) = \frac{\text{выход}}{\text{вход}} \Big|_{\text{вход=комплексная экспонента}} = \frac{y(n)}{x(n)} \Big|_{x(n)=z^n}.$$
 (1.18)

Функция H(z) называется передаточной функцией системы и зависит от комплексной переменной z. Понятие передаточной функции имеет смысл только для ЛС-систем.

Пример 1.26 Найти передаточную функцию цифрового дифференциатора

$$y(n+1) = \frac{1}{T}(x(n+1) - x(n)).$$

1.8.3 Частотная характеристика ЛС-системы

Эхо-система

Прежде, чем дать определение частотной характеристики ЛС-системы рассмотрим один важный мотивирующий пример. Представьте, что вы находится в большой пустой комнате (или пещере), в которой есть эхо. Если вы начнете петь или свистеть, то звук вернется к вам с некоторой задержкой τ . Вы заметите, что какие тоны резонируют, а какие-то поглощаются или ослабляются. Происходящий процесс можно описать следующим уравнением:

$$y(t) = x(t) + x(t - \tau).$$

Следует заметить, что эхо-система не пропускает все частоты (тоны) одинаково. Выход будет зависеть от частоты входного сигнала и временной задержки τ , которая соответствует различному сдвигу фазы для различных частот. Когда входной сигнал имеет частоту ω такую что τ в точности соответствует одному периоду (т.е. $\omega \tau = 2\pi$), то общий эффект работы системы состоит в удвоении амплитуды входного сигнала. Если, однако, входной сигнал имеет такую частоту, что τ соответствует половине периода ($\omega \tau = \pi$), то выходом системы будет нулевым. Это и есть причина того, что некоторые частоты «резонируют», а некоторые поглощаются.

В общем случае мы можем найти частотную характеристику эхо-системы. Для этого предположим, что на вход подается синусоида $\sin \omega t$:

$$\sin \omega t + \sin(\omega(t-\tau)) = 2\cos\left(\frac{\omega\tau}{2}\right)\sin\left(\omega\left(t-\frac{\tau}{2}\right)\right) = H(\omega)\sin(\omega t + \varphi(\omega)).$$

где $H(\omega)=2\cos(\omega\tau/2)$ — определяет амплитуду, а $\varphi(\omega)=-\omega\tau/2$ — начальную фазу выходного сигнала. Графики $H(\omega)$ $\varphi(\omega)$, иллюстрирующие работу эхо-системы, приведены рисунке 1.9 (на графиках вместо круговой частоты ω отображена линейная частота f).

Рисунок 1.9 – Зависимость амплитуды (слева) и фазы (справа) выходного сигнала эхо-системы (au=0.25 с) от частоты входного синусоидального сигнала $\sin 2\pi f t$

Таким образом можно сделать вывод, что в ответ на каждый синусоидальный сигнал с частотой ω будет получаться синусоидальный выход той же частоты, но с линейным фазовым сдвигом $\varphi(\omega)$ и измененной амплитудой $H(\omega)$. Амплитуда будет максимальной для всех $\omega \tau = 2k\pi$ и будет равна нулю для $\omega \tau = \pi(2k+1)$. Частоты, которые подавляются системой называются нулями системы.

Комплексная частотная характеристика ЛС-системы

Для описания линейных систем в частотной области используется специальный входной сигнал:

$$x(n) = e^{j\omega n}, -\infty < n < \infty. \tag{1.19}$$

Если такая последовательность поступает на вход линейной системы с uмпульсной характеристикой h(n), то на выходе появится последовательность

$$y(n) = \sum_{m=0}^{M} h(m) \cdot e^{j\omega(n-m)} = e^{j\omega n} \sum_{m=0}^{M} h(m) \cdot e^{-j\omega m} = x(n)H(e^{j\omega}).$$

Таким образом, при подаче на вход сигналов вида (1.19) выходной сигнал совпадает со входным с точностью до множителя $H(e^{j\omega})$, который называется комплексной частомной характеристикой (КЧХ) системы или просто частомной характеристикой и выражается через ее импульсную характеристику следующим образом:

$$H(e^{j\omega}) = \sum_{m=0}^{M} h(m) \cdot e^{-j\omega m}.$$
 (1.20)

Частотная характеристика является периодической функцией ω , причем ее период равен 2π . Эта периодичность связана со спецификой дискретного колебания: входная последовательность с частотой($\omega + 2m\pi$) ($m = \pm 1, \pm 2, ...$) не отличается от входной последовательности с частотой ω , т.е.

$$\tilde{x}(n) = e^{j(\omega + 2m\pi)n} = e^{j\omega n} = x(n).$$

Поскольку $H(e^{j\omega})$ — периодическая функция, то для полного описания достаточно задать ее на любом интервале длиной 2π . Обычно для этой цели используют интервал $0 \le \omega \le 2\pi$.

Поскольку в общем случае $H(e^{j\omega})$ комплексная, её можно представить в алгебраической форме, но чаще всего используется показательный вид (или полярная система координат) в терминах модуля и аргумента (фазы):

$$H(e^{j\omega}) = |H(e^{j\omega})|e^{\arg H(e^{j\omega})}.$$

Пример 1.27 Найти КЧХ идеальной системы задержки, определённой формулой

$$y(n) = x(n - n_d),$$

где n_d – фиксированное целое число.

Решение.

Если $x(n) = e^{j\omega n}$ – сигнал, поданный на вход системы, то и по формуле из условия получаем:

$$y(n) = e^{j\omega(n-n_d)} = e^{-j\omega n_d} e^{j\omega n}.$$

Таким образом видно, что при любом значении ω выходной сигнал пропорциональн входному. Причём комплексный коэффициент пропорциональности зависит от частоты ω и величины задержки n_d . Следовательно, КЧХ ИСЭ равна

$$H(e^{j\omega})=e^{-j\omega n_d}.$$

Можно и по-другому определить КЧХ системы, для чего напомним, что $h(n) = \delta(n - n_d)$ – импульсная характеристика ИСЗ. Учитывая (1.20) имеем:

$$H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \delta(n - n_d) e^{-j\omega n} = e^{-j\omega n_d}.$$

Вещественная и мнимая части КЧХ определяются по формулам Эйлера:

$$H_R(e^{j\omega}) = \cos(\omega n_d)$$
.

$$H_I(e^{j\omega}) = -\sin(\omega n_d).$$

Её модуль и фаза равны: $|H(e^{j\omega})| = 1$, $\arg H(e^{j\omega}) = -\omega n_d$.

1.8.4 Синусоидальное представление ЛС-систем

Поскольку синусоидальную последовательность легко записать как линейную комбинацию показательных, рассмотрим синусоидальный вход:

$$x(n) = \cos(\omega_0 n + \phi) = \frac{A}{2} e^{j\phi} e^{j\omega_0 n} + \frac{A}{2} e^{-j\phi} e^{-j\omega_0 n}.$$

Согласно ... реакцией системы на сигнал $x_1(n) = \frac{A}{2}e^{j\varphi}e^{j\omega_0 n}$ служит

$$y_1(n) = H(e^{j\omega_0}) \frac{A}{2} e^{j\phi} e^{j\omega_0 n}$$

а на сигнал $x_2(n) = \frac{A}{2}e^{-j\phi}e^{j\omega_0 n}$ —

$$y_2(n) = H(e^{-j\omega_0}) \frac{A}{2} e^{-j\phi} e^{-j\omega_0 n}.$$

Следовательно, выходная последовательность имеет вид:

$$y(n) = \frac{A}{2} \left(H(e^{j\omega_0}) e^{j\phi} e^{j\omega_0 n} + H(e^{-j\omega_0}) e^{-j\phi} e^{-j\omega_0 n} \right).$$

Если отчёты последовательности h(n) вещественны, $\text{то}H(e^{-j\omega_0}) = H^*(e^{j\omega_0})$. Следовательно,

$$y(n) = A |H(e^{j\omega_0})| \cos(\omega_0 n + \phi + \theta),$$

где $\theta = \arg H(e^{j\omega_0})$ – фаза КЧХ системы при частоте ω_0 , или значение фазочастотной характеристики (ФЧХ) при $\omega = \omega_0$.

В случае идеальной задержки имеем $|H(e^{j\omega 0})|=1$ и $\theta=-\omega_0 n_d$, (пример 2.17). Следовательно, $y(n)=A\cos(\omega_0 n+\phi-\omega_0 n_d)=A\cos(\omega_0 (n-n_d)+\phi)$, что согласуется с результатом, непосредственно полученным из определения ИСЗ.

Так как функция $H(e^{j\omega})$ 2π -периодична, а частоты ω и $\omega+2\pi$ неотличимы друг от друга, то достаточно определить значения $H(e^{j\omega})$ на полуинтервале длины 2π , например $0 \le \omega < 2\pi$ или $-\pi \le \omega \le \pi$, и по периодичности определить КЧХ всюду вне указанного полуинтервала. Для простоты и согласованности с непрерывным случаем функцию $H(e^{j\omega})$ удобно задавать на полуинтервале $-\pi \le \omega \le \pi$. При таком выборе периода нижними частотами называются частоты, близкие к нулю, а верхними – частоты, лежащие около $\pm \pi$. Учитывая, что частоты, отличающиеся на величины, кратные 2π , неотличимы друг от друга, предыдущее утверждение можно сформулировать следующим образом: нижние частоты близки чётным кратным π , в то время как верхние — к нечётным кратным π .