PROJECT WORK

"Verilog Implementation of Digital Circuit Designs on FPGA using Vivado"

Topic: Traffic Light Controller Design using Verilog

PROBLEM STATEMENT

The aim of the project is to design a traffic controller for a T-intersection.

Let's understand the problem statement through the image given below.

The six cases present here eventually turn to the six states.

This is the state diagram:

From the state diagram we for the state table:

resent state ABC	Input	NS At Btc+		MI RY4	M 2 RY 9	T R79	S R14	100	3714
		•			1				
001	TMG	001	1	001	100	100	100	0	
001	TMG	010]			1			
010	Ty	010	3	001	010	100	10	6	
011	TT4	011	7	001	100	00	11	00	AND THE
	TT4	100	1	777	18			4-11	200
100	TY	100	7	010	100		010 100		
	TY	101	J		2			-	
	TS 4	101	3	100	10	0	100	001	1
101	TSG	110	7					010	
110	TY	110	3	100	10	00	100	010	100
	TY	001		-		000	000	000	
111	_	000	-	000	1		10.000		1

```
VERILOG CODE
`timescale 1ns / 1ps
// Module Name: Traffic Light Controller // Project Name:
module Traffic_Light_Controller(
 input clk,rst, output reg
[2:0]light_M1,
            output reg
[2:0]light_S, output reg
[2:0]light_MT,
            output reg
[2:0]light M2
 );
 parameter S1=0, S2=1, S3 =2, S4=3, S5=4,S6=5;
[3:0]count; reg[2:0] ps;
                   parameter
sec7=7,sec5=5,sec2=2,sec3=3;
 always@(posedge clk or posedge rst)
   begin
```

if(rst==1)

 $ps \le S1$;

begin

```
count<=0; end
else
case(ps)
         S1:
if(count<sec7)
begin
       ps<=S1;
count<=count+1;</pre>
end
             else
begin
         ps \le S2;
count \le 0;
                    end
       S2: if(count<sec2)
       ps<=S2;
begin
count <= count +1;
                         end
          else
begin ps<=S3;
count \le 0;
                    end
       S3: if(count<sec5)
begin
      p_{S} \leq S_{3};
count<=count+1;</pre>
                         end
          else
begin ps<=S4;
count \le 0;
                    end
       S4:if(count<sec2)
begin
          ps \le S4;
```

count<=count+1;</pre>

end

```
else
begin
                   ps \le S5;
count <= 0;
                         end
         S5:if(count<sec3)
begin
                   ps \le S5;
count<=count+1;</pre>
                               end
            else
begin
                   ps \le S6;
count <= 0;
                         end
         S6:if(count<sec2)
begin
                   ps \le S6;
count<=count+1;
                               end
            else
begin
ps<=S1;
count<=0;
             default:
end
ps \le S1;
endcase
               end
always@(ps)
begin
               case(ps)
                         S1:
                   light M1<=3'b001;
begin
light M2<=3'b001;
light MT<=3'b100;
```

light S<=3'b100;

begin

S2:

end

```
light_M1<=3'b001;
light_M2<=3'b010;
light_MT<=3'b100;
light_S<=3'b100;
                           end
S3:
              begin
light M1<=3'b001;
light M2<=3'b100;
light MT<=3'b001;
light S<=3'b100;
                           end
S4:
              begin
light M1<=3'b010;
light M2<=3'b100;
light_MT<=3'b010;
light_S<=3'b100;
                           end
S5:
              begin
light_M1<=3'b100;
light M2<=3'b100;
light MT<=3'b100;
light_S<=3'b001;
                           end
S6:
              begin
light_M1<=3'b100;
light_M2<=3'b100;
light_MT<=3'b100;
light_S<=3'b100;
                           end
default:
                  begin
light_M1<=3'b000;
light M2<=3'b000;
light MT<=3'b000;
```

light S<=3'b010;

end

endcase

end

endmodule

RTL-SCHEMATIC

TESTBENCH 'timescale 1ns / 1ps

```
module Traffic_Light_Controller_TB;
reg clk,rst; wire [2:0]light_M1; wire
[2:0]light S; wire [2:0]light MT; wire
[2:0]light_M2;
Traffic_Light_Controller dut(.clk(clk), .rst(rst), .light_M1(light_M1), .light_S(light_S)
,.light M2(light M2),.light MT(light MT) );
              clk=1'b0;
initial begin
                           forever
#(100000000/2) clk=~clk; end initial begin
                                              rst=0;
  #100000000;
                   rst=1;
                   rst=0;
  #100000000;
  #(1000000000*200);
  $finish;
            end
endmodule
```

SIMULATED WAVEFORM

Upon analysing the waveform we can clearly see that the FSM works perfectly.

The ports are assigned from the ucf file.

SCHEMATIC AFTER SYNTHESIS

DEVICE LAYOUT AFTER IMPLEMENTATION

REPORTS AFTER SYNTHESIS

TIMING REPORT

Messages (1) I/O Bank Details	Name	Port	I/O Std	Vcco	Slew	Drive Strength (Off-Chip Termina	Remaining Margin	Notes
Links	🔊 I/O Bank 0 (0)								
	∨ 🔊 I/O Bank 14 (9)		LVCMOS33	3.30	SLOW	12	FP_VTT_50		
	₽ V17	light_M2[0]	LVCMOS33	3.30	SLOW	12	FP_VTT_50	83.71	
	₽ R18	light_M2[1]	LVCMOS33	3.30	SLOW	12	FP_VTT_50	93.97	
	₽ N14	light_M2[2]	LVCMOS33	3.30	SLOW	12	FP_VTT_50	96.99	
	₽ T15	light_MT[0]	LVCMOS33	3.30	SLOW	12	FP_VTT_50	84.59	
	₽ V16	light_MT[1]	LVCMOS33	3.30	SLOW	12	FP_VTT_50	73.29	
	₽ U17	light_MT[2]	LVCMOS33	3.30	SLOW	12	FP_VTT_50	72.46	
	₽ V15	light_S[0]	LVCMOS33	3.30	SLOW	12	FP_VTT_50	73.62	
	₽ T16	light_S[1]	LVCMOS33	3.30	SLOW	12	FP_VTT_50	73.06	
	₽ U14	light_S[2]	LVCMOS33	3.30	SLOW	12	FP_VTT_50	90.26	
	∨ 🔊 I/O Bank 15 (3)		LVCMOS33	3.30	SLOW	12	FP_VTT_50		
	△ J13	light_M1[0]	LVCMOS33	3.30	SLOW	12	FP_VTT_50	88.79	
	₽ K15	light_M1[1]	LVCMOS33	3.30	SLOW	12	FP_VTT_50	91.60	
	₽ H17	light_M1[2]	LVCMOS33	3.30	SLOW	12	FP_VTT_50	91.35	
	" I/O Bank 16 (0)								
	🔊 I/O Bank 34 (0)								
	xxx I/O Bank 35 (0)								

UTILIZATION REPORT

POWER REPORT

Github Link: https://github.com/Jidnyesh-Chaudhari-2004/Traffic-LightController-System-Verilog.git