目录

1	随机过程的基本概念		
	1.1	随机过程的定义与有穷维分布族	2
	1.2	随机过程的分类	2
2	泊松	·过程	3
	2.1	泊松过程的定义	3
	2.2	泊松过程的性质	3
	2.3	非齐次的泊松过程 3	3
	2.4	复合泊松过程	3
3	离散	(时间的马尔可夫链	1
	3.1	马尔可夫链的基本概念	1
	3.2	马氏链的状态分类	1
	3.3	转移概率的极限状态与平稳分布	1
4	连续	时间的马尔可夫链	5
	4.1	连续时间马氏链的基本定义	5
	4.2	转移率	5
	4.3	Kolmogorov 方程 :	ŏ
	4.4	生灭过程 5	ŏ
5	布朗运动		
	5.1	布朗运动的定义及基本性质 6	3
	5.2	布朗运动的首中时和最大值 6	3
	5.3	布朗运动的推广	3

1 随机过程的基本概念

1.1 随机过程的定义与有穷维分布族

定义 1.1.1 (随机过程). 给定概率空间 (Ω, \mathscr{F}, P) 及指标集 $\mathbb{T} \neq \emptyset$,若 $\forall t, \forall c \in \mathbb{R}, \{\omega | X_t(\omega) \leq c\} \in \mathscr{F}, 则称 \{X_t(\omega), t \in \mathbb{T}\}$ 为随机过程 (Stochastic Process)。

定义 1.1.2 (样本轨道). 随机过程 $\{X_t(\omega), t \in \mathbb{T}\}$ 是关于 $t \in \mathbb{T}$ 和 $\omega \in \Omega$ 的二元函数, 当 ω 固定, $X(\cdot, \omega)$ 是 $t \in \mathbb{T}$ 的函数, 称为样本轨道 (Sample Path)。

定义 1.1.3 (有穷维分布族). 给定实值随机过程 $\{X_t(\omega), t \in \mathbb{T}\}$, 对于 $\forall n \geq 1, \forall \{t_i\}_{i=1}^n \subset \mathbb{T}$, 可得 $(X_{t_1}, \dots, X_{t_n})$ 的联合分布函数为:

$$F_{t_1,\dots,t_n}(x_{t_1},\dots,x_{t_n}) = P\{X_{t_1} \le x_{t_1},\dots,X_{t_n} \le x_{t_n}\}$$

有穷维分布函数族 $\mathcal{D} \triangleq \{F_{t_1,\dots,t_n}(x_{t_1},\dots,x_{t_n})|\forall n\geq 1, \forall \{t_i\}_{i=1}^n\subset \mathbb{T}\}$ 定义 (X_{t_1},\dots,X_{t_n}) 的联合矩母函数为:

$$\varphi_{t_1,\dots,t_n}(u_{t_1},\dots,u_{t_n}) = E\left[e^{\sum_{j=1}^n u_{t_j} \mathbf{X}_{t_j}}\right]$$

有穷维矩母函数族 $\mathscr{C} \triangleq \{\varphi_{t_1,\dots,t_n}(u_{t_1},\dots,u_{t_n})|\forall n\geq 1, \forall \{t_i\}_{i=1}^n\subset \mathbb{T}\}$

定义 1.1.4 (独立随机过程). 随机过程 $\{X_t(\omega), t \in \mathbb{T}\}$ 满足:

$$F_{t_1,\dots,t_n}(x_{t_1},\dots,x_{t_n}) = \prod_{k=1}^n F_{t_k}(x_{t_k}) \quad (\forall n \ge 1, \forall \{t_i\}_{i=1}^n)$$

则称 $\{X_t, t \in \mathbb{T}\}$ 为独立随机过程。

定义 1.1.5 (均值函数). 给定随机过程 $\{X_t(\omega), t \in \mathbb{T}\}$, 定义均值函数为:

$$m(t) = E(\boldsymbol{X}_t)$$

定义 1.1.6 (方差函数). 给定随机过程 $\{X_t(\omega), t \in \mathbb{T}\}$, 定义方差函数为:

$$D(t) = Var(\mathbf{X}_t) = E(\mathbf{X}_t - m(t))^2$$

定义 1.1.7 (自相关函数). 给定随机过程 $\{X_t(\omega), t \in \mathbb{T}\}$, 定义自相关函数为:

$$R(s,t) = E(\boldsymbol{X}_s \boldsymbol{X}_t)$$

定义 1.1.8 (协方差函数). 给定随机过程 $\{X_t(\omega), t \in \mathbb{T}\}$, 定义协方差函数为:

$$k(s,t) = cov(X_sX_t) = E((X_s - m(s))(X_t - m(t))) = R(s,t) - m(s)m(t)$$

1.2 随机过程的分类

定义 1.2.1.

2 泊松过程 3

2 泊松过程

- 2.1 泊松过程的定义
- 2.2 泊松过程的性质
- 2.3 非齐次的泊松过程
- 2.4 复合泊松过程

3 离散时间的马尔可夫链

- 3.1 马尔可夫链的基本概念
- 3.2 马氏链的状态分类
- 3.3 转移概率的极限状态与平稳分布

4 连续时间的马尔可夫链

- 4.1 连续时间马氏链的基本定义
- 4.2 转移率
- 4.3 Kolmogorov 方程
- 4.4 生灭过程

5 布朗运动 6

5 布朗运动

- 5.1 布朗运动的定义及基本性质
- 5.2 布朗运动的首中时和最大值
- 5.3 布朗运动的推广