

2017010698 수학과 오서영

1. Chemical pre-pattern and reaction-diffusion models for pigmentation

System of reacting and diffusing morphogens could generate a chemical pre-pattern to within the developing integument via Turing instability

$$\frac{\partial u}{\partial t} = D_u \nabla^2 u + k_1 \left(v - \frac{uv}{1 + v^2} \right)$$

$$\frac{\partial v}{\partial t} = D_v \nabla^2 v + k_2 - v - \frac{4uv}{1 + v^2},$$

2. Creating the pattern images(2D) based on Lengyel-Epstein model with MATLAB: To classify 3 dissimilar patterns through a Neural Network

% set the initial condition

u=ubar+0.1*(2*rand(nx+2,ny+2)-1);

v=vbar+0.1*(2*rand(nx+2,ny+2)-1);

nu=u; nv=v;

handon

perturbation

3. Gradient Descent

$$\left\{ (\chi^{(1)}, \varphi^{(1)}), (\chi^{(2)}, \varphi^{(2)}), \dots, (\chi^{(n\infty)}, \varphi^{(n\infty)}) \right\}$$

$$= \lim_{n \to \infty} \left\{ \text{training} \quad \text{test} \right\}$$

$$2 \rightarrow 7 = 4 \times 6 \rightarrow g(7) \rightarrow \vec{q}$$
training

Gradient Descent

: want to find w. 6 that minimize J

- J(W.6): convex

4. Single-Layer Neural Network with Softmax

5. CNN

6. Gradient feature

7. ADAM Regularization

2000 iteration

gradient descent

Cost after iteration 0: 1.098536 Cost after iteration 200: 1.098158 Cost after iteration 400: 1.097820 Cost after iteration 600: 1.097515 Cost after iteration 800: 1.097238 Cost after iteration 1000: 1.096985 Cost after iteration 1200: 1.096751 Cost after iteration 1400: 1.096533 Cost after iteration 1600: 1.096329 Cost after iteration 1800: 1.096136

train accuracy : 0.334166666666666667

test accuracy: 0.33

ADAM

Cost after iteration 0: 1.098627 Cost after iteration 200: 0.906004 Cost after iteration 400: 0.831171 Cost after iteration 600: 0.792285 Cost after iteration 800: 0.769404 Cost after iteration 1000: 0.754191 Cost after iteration 1200: 0.743681 Cost after iteration 1400: 0.735736 Cost after iteration 1600: 0.729602 Cost after iteration 1800: 0.725414

train accuracy: 0.86 test accuracy: 0.34

0

non - gradient

Cost after iteration 0: 1.123351
Cost after iteration 200: 3.039338
Cost after iteration 400: 3.039131
Cost after iteration 600: 3.038925
Cost after iteration 800: 3.038720
Cost after iteration 1000: 3.038515
Cost after iteration 1200: 3.038310
Cost after iteration 1400: 3.038107
Cost after iteration 1600: 3.037904
Cost after iteration 1800: 3.037701

gradient

Cost after iteration 0: 1.098627 Cost after iteration 200: 0.906004 Cost after iteration 400: 0.831171 Cost after iteration 600: 0.792285 Cost after iteration 800: 0.769404 Cost after iteration 1000: 0.754191 Cost after iteration 1200: 0.743681 Cost after iteration 1400: 0.735736 Cost after iteration 1600: 0.729602 Cost after iteration 1800: 0.725414

train accuracy : 0.335 test accuracy : 0.32666666666666666 train accuracy: 0.86

8. U-U^3

9. the number of training data can affect accuracy

10. Compare 10 cases

Dissimilar	train :100		train : 250		train : 500		train :1000	
	all : 144		all : 360		all : 720		all : 1440	
1) Cnn	100 /	1.0 1.0	100 /	1.0 1.0	100 /	1.0 1.0	100 /	1.0 1.0
2) 1-layer with GD	2000/	0.99	2000/	0.78	2000/	0.67	2000/	0.60
	0.005/	0.43	0.005/	0.36	0.004/	0.36	0.004/	0.43
3) 1layer with Adam	2000/	1.0	2000/	1.0	2000/	0.79	2000/	0.71
	0.1/	0.47	0.1/	0.40	0.03/	0.36	0.01/	0.43
4) Derivative layer with GD	2000/	1.0	2000/	1.0	2000/	1.0	2000/	0.96
	10/	0.36	10/	0.37	10/	0.40	10/	0.34
5) Derivative layer with Adam	2000/	1.0	2000/	1.0	2000/	1.0	2000/	1.0
	1/	0.31	0.9/	0.37	0.9/	0.36	0.9/	0.34
6) 2weight with GD	2000/	1.0	2000/	0.79	2000/	0.68	2000/	0.58
	0.005/	0.43	0.005/	0.43	0.004/	0.42	0.004/	0.43
7) 2weight with Adam	2000/	1.0	2000/	1.0	2000/	1.0	2000/	0.96
	0.07/	0.38	0.06/	0.41	0.06/	0.44	0.06/	0.40
8) 2weight & u-u^3	2000/	1.0	2000/	0.96	2000/	0.95	2000/	0.94
with GD	0.001/	0.77	0.001/	0.82	0.001/	0.90	0.001/	0.89
9) 2weight & u-u^3	600/	1.0	600/	1.0	600/	1.0	600/	1.0
with Adam	0.04/	0.88	0.04/	0.90	0.04/	0.90	0.04/	0.90

Similar	train :100		train : 250		train : 500	
	all : 144		all : 360		all : 720	
1) Cnn	100 /	1.0 0.54	100 /	1.0 0.65	100 /	1.0 0.65
2) 1-layer with GD	2000/	1.0	2000/	0.96	2000/	0.86
	0.005/	0.22	0.005/	0.34	0.005/	0.33
3) 1layer with Adam	2000/	1.0	2000/	1.0	2000/	1.0
	0.08/	0.34	0.08/	0.36	0.08/	0.31
4) Derivative layer with GD	2000/	1.0	2000/	1.0	2000/	1.0
	10/	0.36	10/	0.32	10/	0.37
5) Derivative layer with Adam	2000/	1.0	2000/	1.0	2000/	1.0
	1/	0.34	1/	0.32	1/	0.42
6) 2weight with GD	2000/	1.0	2000/	0.97	2000/	0.86
	0.005/	0.40	0.005/	0.33	0.005/	0.36
7) 2weight with Adam	2000/	1.0	2000/	1.0	2000/	1.0
	0.07/	0.38	0.07/	0.37	0.07/	0.46
8) 2weight & u-u^3	2000/	1.0	2000/	0.97	2000/	0.82
with GD	0.001/	0.36	0.001/	0.24	0.001/	0.32
9) 2weight & u-u^3	2000/	1.0	2000/	1.0	2000/	1.0
with Adam	0.04/	0.31	0.04/	0.37	0.04/	0.37

11. Classification of all patterns

12. Complex Pattern in a simple system : Pearson's Classification of Gray-Scott System Parameter Values

Reaction - Diffusion equations

$$\frac{\partial U}{\partial t} = D_u \nabla^2 U - U V^2 + F(1 - U)$$

$$\frac{\partial V}{\partial t} = D_{\nu} \nabla^2 V + U V^2 - (F + k) V$$

The Two Parameters *F* and *k*

: Describes the parameters F and k as "feed rate" and "kill rate".

Feed-Rate Spectrum: Stability/Oscillation/Chaos

- Varying the parameter F while keeping k constant causes the system to move vertically
- in the parameter map at the top of this page.
- Varying k in such a way as to follow the "crescent-shaped" contour will reveal a spectrum of phenomena distinguished by the amount and type, if any, of oscillation.

Kill-Rate Spectrum: Soliton Type and Shape

- Varying just the parameter k while keeping F constant reveals a second spectrum
- distinguished by the presence or absence of large solid regions, stripes, and/or spots.
- This spectrum does not appear in the lower *F* values where the system is too chaotic.

12. Clustering - k-means

- Clustering Assignment Step
 - : It's going to assign each of the data points one of the two cluster cluster centroids (depending on whether it is closer to them)
- 2 Move Centroid Step
 - : We are going to move two centroids to the average of the points colored the same colour.
 - 3 Go to back ② (depending on whether it's closer red or blue)
 - : If cluster centroids do not change and the colours of the points will not change then at this point k-means has converged

