CS F364: Design & Analysis of Algorithm

Mimimum Spanning Tree Matroids Application

Dr. Kamlesh Tiwari

Assistant Professor, Department of CSIS, BITS Pilani, Pilani Campus, Rajasthan-333031 INDIA

ONLINE Feb 07, 2021

(Campus @ BITS-Pilani Jan-May 2021)

http://ktiwari.in/algo

Graphic Matroid $extcolor{M}_{\!G} = (S_{\!G}, I_{\!G})$

Defined in terms of a given undirected graph G = (V, E)

- 1. S = E2. If A is a subset of E, then $A \in I_G$ if and only of A is acyclic. So (V, A) is a forest

For G=(V,E) a undirected graph $M_G=(S_G,I_G)$ is a matroid

Proof:

- S_G is finite
- Hereditary property: subset of a forest is a forest
- Exchange property:

Number of trees in a forest (V, E_f) is $|V| - |E_f|$ For $A, B \in I$ if |A| < |B| then B has fewer trees \rightarrow Consider and edge $x \in B$ that links two trees in A

Extention: x extends A

Maximal independent set: set that can not be extended

-09(Feb 07, 2021) 3/11

Weighted matroid

- \bullet M=(S,I) is weighted if it is associated with weight function $\mathit{w}(x)$ for all $x\in S$
 - w(A) is defined as

$$w(A) = \sum_{x \in A} w(x)$$

- One example of w be the weight of the edge
- w(e) $w'(e)=w_0$

 $(|V|-1)w_0 - \sum_{\theta \in A} w(\theta)$ $(|V|-1)w_0 - w(A)$ $\sum_{e \in A} w'(e)$ $\sum_{e \in A} (w_0 - w(e))$ $(|V|-1)w_0$

Matroids

Theory for some situations in which the greedy yields optimal solutions

- ordered pair M = (S, I) satisfying the following Matroids:
- 1. S is a finite set 2. Hereditary property: I is a nonempty family of subsets of S, called the independent subsets of S, such that $B \in I$ and $A \subseteq B$, then $A \in I$. (Question: is ϕ a member of I? Y) 3. **Exchange property:** If $A \in I$, $B \in I$, and |A| < |B| then there exists some element $x \in B A$ such that $A \cup \{x\} \in I$.

Lecture-09(Feb 07, 2021) 2/11

All maximal independent set have same size

Suppose to the contrary that A is a maximal independent subset of M and there exists another larger maximal independent subset B of M

- Then due to exchange property $\exists x \in B A$ so that A could be extended
- so A is not maximal independent set
- Contradiction

Minimum Spanning Tree Problem

- Subset of the edges that connects all of the vertices together and has minimum total length
 - \bullet It is like finding maximal independent set in $M_{\rm G}$

```
1 \overline{A} = \phi
2 sort M. S in decreasing order of weight w
3 for x \in M. S take in order \mathbf{do}
4 if A \cup \{x\} \in M. I then
5 A = A \cup \{x\}
Algorithm 1: Greedy( M, w
```

Complexity $O(n \log n + nf(n))$

Lecture-09(Feb 07, 2021) 6/11

Matroids exhibit the greedy-choice property

Consider M=(S,I) with weight function w. Let S sorted in decreasing order. Consider x, the the first element of S such that $\{x\}$ is independent. if \exists x then there exists an optimal subset A containing x

Let B be any nonempty optimal subset with $x \notin$

•

- No element of B has weight greater then w(x)
- Construct A by taking x and then items from B
- В Ψ A and B are of same size differing on only one item y

$$w(A) = w(B) - w(Y) + w(X)$$

$$\geq w(B)$$

Contradiction. As B was optimal

Lecture-09(Feb 07, 2021) 7/11 Matroids exhibit the optimal-substructure property

Let Let x be the first element of S chosen by GREEDY for the weighted matroid M=(S,I). We can reduce the problem to M'=(S',I').

- $S' = \{ y \in S : \{x, y\} \in I \}$ $I' = \{ B \subseteq S \{x\} : B \cup \{x\} \in I \}$

This is because $A' = A - \{x\}$ is an independent subset of M'

Lecture-09(Feb 07, 2021) 9/11 Thank You!

Thank you very much for your attention! (Reference1)

Queries

¹(I) Book - Introduction to Algorithm, By THOMAS H, CORMEN, CHARLES E, LEISERSON, RONALD L. RIVEST, CLIFFORD STEIN

Matroids exhibit the greedy-choice property

Let M=(S,I) be any matroid. If x is an element of S that is an extension of some independent subset A of S, then x is also an extension of ϕ

Since x is an extension of A, we have that $A \cup \{x\}$ is independent. Since I is hereditary, $\{x\}$ must be independent. Thus, x is an extension of ϕ . Let M=(S,I) be any matroid. If x is an element of S such that x is not an extension of ϕ , then x is not an extension of any independent subset A of S

contrapositive of above

Any elements that GREEDY passes over initially because they are not extensions of ϕ can be forgotten about, since they can never be useful

e-09(Feb 07, 2021) 8/11 Correctness of the greedy algorithm on matroids

If M=(S,I) is a weighted matroid with weight function w, then GREEDY(M,w) returns an optimal subset

- Any elements that GREEDY passes over initially because they are not extensions of ϕ can be forgotten about, since they can never be useful. •
- Once GREEDY selects the first element x, the algorithm does not err by adding x to A, since there exists an optimal subset containing x.
- Finally, the remaining problem is one of finding an optimal subset in the matroid M' that is the contraction of M by ${\bf x}$. •