- 1. Un rectángulo tiene 20 m de perímetro. Expresar el área del rectángulo como función de la longitud de uno de sus lados.
- 2. Dar el área de la superficie de un cubo como función de su volumen.
- 3. Encontrar el dominio de las funciones definidas por las siguientes fórmulas:
 - (a) $f(x) = \sqrt{1 x^2}$.

(d) $f(x) = (\sqrt{x})^2$.

- (b) $f(x) = \sqrt{1 \sqrt{1 x^2}}$.
- (c) $f(x) = \frac{1}{x-1} + \frac{1}{x-2}$.

- (e) $f(x) = \begin{cases} 0 & \text{si } |x| > 1, \\ \sqrt{1 x^2} & \text{si } |x| \le 1. \end{cases}$
- 4. Encontrar el dominio y la imagen de las siguientes funciones:
- (a) $f(x) = \frac{1}{x+3}$. (b) $g(x) = \frac{1}{x^2+1}$. (c) $h(x) = \frac{1}{x^2-1}$.
- **5.** Sea f(x) = 1/(1+x). Interpretar lo siguiente:
 - (a) f(f(x)) (¿Para cuáles x tiene sentido?).
 - (b) f(1/x).
 - (c) f(cx) para un número real $c \neq 0$.
- **6.** Sean $C(x) = x^2$, $H(x) = \frac{1}{x}$ y S(x) = sen(x).
 - (a) Determinar:
 - (I) $(C \circ H)(y)$.

- (II) $(C \circ H \circ S)(t) + (S \circ H)(t)$.
- (b) Expresar cada una de las siguientes funciones en términos de C, H y S.
 - (I) $f(x) = \frac{1}{\text{sen}(x^2)}$. (II) f(t) = sen(sen(t)). (III) $f(u) = \text{sen}^2\left(\frac{1}{u}\right)$.
- (a) Para cada conjunto $A \subseteq \mathbb{R}$ definimos la función C_A como sigue: 7.

$$C_A(x) = \begin{cases} 1 & \text{si } x \in A, \\ 0 & \text{si } x \notin A. \end{cases}$$

- Si A y B son dos subconjuntos arbitrarios de los números reales, encontrar expresiones para $C_{A\cap B}$, $C_{A\cup B}$ y $C_{\mathbb{R}\setminus A}$, en términos de C_A y C_B .
- (b) Probar que si f es una función tal que f(x) = 0 ó 1 para todo x, entonces existe un conjunto A tal que $f = C_A$.
- (c) Demostrar que $f = f^2$ si y sólo si $f = C_A$ para algún conjunto A.
- 8. Una función $f: \mathbb{R} \to \mathbb{R}$ se dice par si para todo x, f(-x) = f(x); e impar si para todo x, f(-x) = -f(x). Decir si las siguientes afirmaciones son verdaderas o falsas, donde f, g y h son funciones definidas en todo \mathbb{R} .
 - (a) $f(x) = x^2$ es par.
 - (b) $f(x) = x^3$ es impar.
 - (c) Si f no es par, entonces es impar.

- (d) Si f y g son pares, entonces f + g es par.
- (e) Si f es par y g es impar, entonces f + g es impar.
- (f) Si f y g son impares, entonces fg es par.
- (g) Si f y g son impares, entonces $f \circ g$ es par.
- (h) La función |f| es par.
- (i) La función f(|x|) es par.
- (j) $f \circ (g+h) = f \circ q + f \circ h$.
- (k) $\frac{1}{f \circ g} = \frac{1}{f} \circ g$.
- (a) Sea f(x) = x + 1. ¿Existe una función g tal que $f \circ g = g \circ f$?
 - (b) Sea f una función constante. ¿Para qué funciones g se cumple $f \circ g = g \circ f$?
 - (c) Supongamos que f es una función tal que $f \circ g = g \circ f$ para toda función g. Demostrar que f es la función identidad.
- **10.** Sea

$$f(x) = \begin{cases} x+1 & 0 \le x < 1, \\ -x+3 & 1 \le x < 4, \\ \frac{1}{2}x-3 & 4 \le x \le 6. \end{cases}$$

Graficar la función g, donde:

(a)
$$g(x) = f(x)$$
.

(d)
$$g(x) = 2f(x)$$
.

(d)
$$g(x) = 2f(x)$$
.
(e) $g(x) = -f(x)$.
(f) $g(x) = f(\frac{1}{2}x)$.
(h) $g(x) = f(-x)$.

(b)
$$g(x) = f(x) - 1$$
.

(e)
$$g(x) = -f(x)$$

(h)
$$g(x) = f(-x)$$

(c)
$$q(x) = f(x+2)$$
.

(f)
$$q(x) = f(2x)$$
.

(i)
$$g(x) = |f(x)|$$
.

11. Esbozar la gráfica de las siguientes funciones, dar el dominio, y analizar si son inyectivas y/o survectivas, donde tanto el conjunto de salida como el de llegada es \mathbb{R} .

(a)
$$a(t) = 5t - 2$$

(d)
$$d(t) = |t - 3|$$

(f)
$$V(x) = |\sin(x)|$$
.

(a)
$$a(t) = 5t - 2$$
.
(b) $b(x) = 3x^2 + 2x - 1$.
(c) $c(t) = -t^2 + 1$
(d) $d(t) = |t - 3|$.
(e) $X(t) = \frac{t}{|t|}$.
(f) $V(x) = |\operatorname{sen}(x)|$
(g) $W(t) = \operatorname{sen}^2(t)$.

(e)
$$X(t) = \frac{t}{|t|}$$
.

(g)
$$W(t) = \operatorname{sen}^2(t)$$

(c)
$$c(t) = -t^2 + 1$$
.

(h)
$$f(x) = \sqrt{x+1}$$
.

12. Para cada una de las siguientes funciones, escoger un intervalo cerrado [a,b] de tal manera que la función restringida a tal intervalo sea inyectiva. Dar en cada caso la función inversa restringida a la imagen.

(a)
$$f(x) = -x^2$$
.

(b)
$$f(x) = 1/x^2$$

13. Hallar f^{-1} para cada una de las siguientes funciones, e indicar su dominio.

(a)
$$f(x) = x^3 + 1$$
.

(b) $f(x) = (x-1)^3$.

(e)
$$f(x) = \begin{cases} -\frac{1}{x-2} & \text{si } x \neq 2, \\ 0 & \text{si } x = 2. \end{cases}$$

(c)
$$f(x) = \begin{cases} x & \text{si } x \in \mathbb{Q}, \\ -x & \text{si } x \notin \mathbb{Q}. \end{cases}$$

(f)
$$f(x) = \begin{cases} -x^2 & \text{si } x \ge 0, \\ 1 - x^3 & \text{si } x < 0. \end{cases}$$

(d)
$$f(x) = \begin{cases} \frac{1}{2}x & \text{si } x < 0, \\ 2x & \text{si } x \ge 0. \end{cases}$$