STATISTICS

(SESSION-4)

DATA DISPERSION:

- 1.Range
- 2.Mean deviation
- 3. Absolute Mean Deviation
- 4.Variance
- 5.Standard Deviation

Range:

- Range will give how a data distributed from starting point to ending point.
- Let us, consider student marks starting with 1 mark and ending with 99 marks.
- so that data is flowing from 1mark to 99marks.
- lowest = 1 , Highest = 99
 - Range = high low = 99 – 1 = 98

Therefore, the Range of data flowing from 1mark to 99marks is '98'.

Drawback:

- It will not consider middle values.

Mean Deviation:

- Mean Deviation means how much an observation is deviated from mean point.
- Assume that, we have points 1, 2, 3, 4, 5.
 - Mean value $\bar{x} = 3$

Let
$$x_1 = 1$$
, $x_2 = 2$, $x_3 = 3$, $x_4 = 4$, $x_5 = 5$

- The deviation of x_1 from $\bar{x} = (x_1 \bar{x}) = 1 3 = -2$
- The deviation of x_2 from $\bar{x} = (x_2 \bar{x}) = 2 3 = -1$
- The deviation of x_3 from $\bar{x} = (x_3 \bar{x}) = 3 3 = 0$
- The deviation of x_4 from $\bar{x} = (x_4 \bar{x}) = 4 3 = 1$
- The deviation of x_5 from $\bar{x} = (x_5 \bar{x}) = 5 3 = 2$
- - 2 of x_1 has 2 units below from the mean point
- 2 of x_5 has 2 units ahead from the mean point

Total deviation = sum of all deviations

Total no . of deviations

- sum of all deviations =
$$(x_1-\bar{x})$$
 + $(x_2-\bar{x})$ + $(x_3-\bar{x})$ + $(x_4-\bar{x})$ + $(x_5-\bar{x})$

- Total number of deviations = 5

Total Deviation =
$$\frac{1}{5} \times \sum_{i=1}^{5} (x_i - \bar{x})$$

- if there are N points

Mean deviation =
$$\frac{1}{N} \times \sum_{i=1}^{N} (x_i - \overline{x})$$

Drawback

- we are seeing individual observations has deviation
- But, when we add all the deviations it might becomes 'zero'

$$- = \frac{1}{5} \times [(x_1 - \bar{x}) + (x_2 - \bar{x}) + (x_3 - \bar{x}) + (x_4 - \bar{x}) + (x_5 - \bar{x})]$$
$$= \frac{1}{5} \times [-2 - 1 + 0 + 1 + 2] = 0$$

- Here, we are seeing the total deviation is 0(zero).
- Maths fails.

Absolute Mean Deviation:

- Doing Module to the 'X'
- Where X becomes |X|
 - If X = -2 becomes |-2| = 2
- Absolute Mean deviation shows how much a point is deviated from Mean.
- Assume that , 1,2,3,4,5 are the values
 - Mean value $\bar{x} = 3$

Let
$$x_1 = 1$$
, $x_2 = 2$, $x_3 = 3$, $x_4 = 4$, $x_5 = 5$

- The deviation of x_1 from $\bar{x} = |(x_1 \bar{x})| = |1 3| = 2$
- The deviation of x_2 from $\bar{x} = |(x_2 \bar{x})| = |2 3| = 1$
- The deviation of x_3 from $\bar{x} = |(x_3 \bar{x})| = |3-3| = 0$
- The deviation of x_4 from $\bar{x} = |(x_4 \bar{x})| = |4 3| = 1$
- The deviation of x_5 from $\bar{x} = |(x_5 \bar{x})| = |5 3| = 2$

$$- = \frac{1}{5} \times [|(x_1 - \bar{x})| + |(x_2 - \bar{x})| + |(x_3 - \bar{x})| + |(x_4 - \bar{x})| + |(x_5 - \bar{x})|]$$

Total Deviation =
$$\frac{1}{5} \times \sum_{i=1}^{5} |(x_i - \bar{x})|$$

- if there are N points

Absolute Mean deviation =
$$\frac{1}{N} \times \sum_{i=1}^{N} |(x_i - \overline{x})|$$

Drawback:

Х	Y= x	points
-3	3	(-3,3)
-2	2	(-2,2)
-1	1	(-1,1)
0	0	(0,0)
1	1	(1,1)
2	2	(2,2)
3	3	(3,3)

• |x| : power = -1 ---> line as straight line : linear

Thumb rule:

- |x| is not continuous at point = 0, we are stopping at zero.
 - o At any math fails because of non continuous.
 - o If you take differentiate of |x| = x / |x|.
 - \circ X = 0 / |0| is indterminant (not defined).
- Continuous equations are good
- Differentiate is not possible on discontinuous curves / graphs.

Variance:

- Squaring the x ==> x becomes x^2 .
- Assume that the values are 1, 2, 3, 4, 5.
 - Mean value $\bar{x} = 3$

Let
$$x_1 = 1$$
, $x_2 = 2$, $x_3 = 3$, $x_4 = 4$, $x_5 = 5$

- The deviation of x_1 from $\bar{x} = (x_1 \bar{x})^2 = (1 3)^2 = 4$
- The deviation of x_2 from $\bar{x} = (x_2 \bar{x})^2 = (2-3)^2 = 1$
- The deviation of x_3 from $\bar{x} = (x_3 \bar{x})^2 = (3 3)^2 = 0$
- The deviation of x_4 from $\bar{x} = (x_4 \bar{x})^2 = (4-3)^2 = 1$
- The deviation of x_5 from $\bar{x} = (x_5 \bar{x})^2 = (5-3)^2 = 4$

$$- = \frac{1}{5} \times \left[(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + (x_3 - \bar{x})^2 + (x_4 - \bar{x})^2 + (x_5 - \bar{x})^2 \right]$$

Total Deviation =
$$\frac{1}{5} \times \sum_{i=1}^{5} (x_i - \bar{x})^2$$

Suppose we have N points.

Variance =
$$\frac{1}{N} \times \sum_{i=1}^{N} (x_i - \overline{x})^2$$

X	Y= x ²	points
-3	9	(-3,9)
-2	4	(-2,4)
-1	1	(-1,1)
0	0	(0,0)
1	1	(1,1)
2	4	(2,4)
3	9	(3,9)

- X²: Power = 2 ===> Parabola: Non linear.
- Graph is parabola, which means Continuous.

Drawback:

- The values are increasing because of square terms.
- Not only values , but also units are increasing.

EXAMPLE:

Taking some distances 1km, 2km, 3km, 4km, 5km.

Distance (x)	$x-\bar{x}$	$(x-\bar{x})^2$
1km	1km – 3km = -2km	$(-2km)^2 = 4km^2$
2km	2km – 3km = -1km	$(-1km)^2 = 1km^2$
3km	3km – 3km = 0km	$(0km)^2 = 0km^2$
4km	4km – 3km = 1km	$(1km)^2 = 1km^2$
5km	5km – 3km = 2km	$(2km)^2 = 4km^2$
Average = $3 \text{km} (\bar{x})$		10km²

Variance =
$$\frac{1}{N} \times \sum_{i=1}^{N} (x_i - \bar{x})^2$$

= $\frac{1}{5} \times [(4\text{km}^2 + 1\text{km}^2 + ^2 + 0\text{km}^2 + 1\text{km}^2 + 4\text{km}^2)]$
= $\frac{10\text{km}^2}{5} = 2\text{km}^2$

- In the above calculation the variance = $2km^2$.
- It is not only increasing the values, but also it is changing the units into square terms.
- we will not able to do proper Interpretation.

Standard Deviation:

- Standard deviation is denoted with ' σ '

$$\sigma = \sqrt{variance}$$

Variance =
$$\frac{1}{N} \times \sum_{i=1}^{N} (x_i - \bar{x})^2$$

Standard deviation
$$\sigma = \sqrt{\frac{1}{N} \times \sum_{i=1}^{N} (x_i - \overline{x})^2}$$

Let the Distance Hyderabad to Banglore = 600km
 How much a data point is deviated from mean point.

Standard deviation
$$\sigma = \sqrt{2 \text{km}^2} = 1.41 \text{km}$$

Drawbacks in Data Dispersion:

Range: It will not consider the middle value.

Mean deviation: The sum of total deviations becomes zero.

Absolute Mean Deviation : |x| has discontinuous at zero.

Variance: The values are increasing and units are also increasing because of square.

Formulas covered:

- Range = high low
- Mean deviation = $\frac{1}{N} \times \sum_{i=1}^{N} (x_i \bar{x})$
- Absolute Mean deviation = $\frac{1}{N} \times \sum_{i=1}^{N} |(x_i \bar{x})|$
- Variance = $\frac{1}{N} \times \sum_{i=1}^{N} (x_i \bar{x})^2$
- Standard deviation $\sigma = \sqrt{\frac{1}{N} \times \sum_{i=1}^{N} (x_i \bar{x})^2}$