For plug flow:
$$\frac{C_A}{C_{A0}} = 1 - X_A = 0.2 = 1 - \frac{kT}{C_{A0}}$$
 or $\frac{kT}{C_{A0}} = 0.8$

For convective flow Eq 9 gives

$$\frac{C_{A}}{C_{A0}} = \left(1 - \frac{kT}{2C_{A0}}\right)^{2} = \left(1 - \frac{0.8}{2}\right)^{2} = 0.36 \quad \text{$^{\circ}_{A}$} \times_{A} = 0.64$$

for second order and plug flow 15.3

and because
$$C_A = 0.04$$
 kCAOT = $25 - 1 = 24$) convection model $X_A = 0.04$ For the convection model $104 = 100$ 100 10

For the convection model let y = KCAOP

then Eq 11 gives

	40		
XA	1 - CA	y[1-4]n(1+	2 = 0.96

	guess	calculate
2.7	9	XA
5) =096	24	0.9477
A second contract of the second contract of t	36	0,9644
solve by	30	0.9577
trial 8 error	32	0.9602

A -> R -
$$\Gamma_A = k C_A^2$$

 $Q = 1000 \, kg/m^3$
 $Q = 10^9 \, m^2/s$
 $k = 10^{-3} \, m^3/mol.s$

$$C = 1000 \text{ kg/m}^3$$
 $C_{A0} = 50 \frac{\text{mol}}{\text{m}^3}$ $C_{A0} = 50 \frac{\text{mol}}{\text{m}^3}$ $C_{A0} = 50 \frac{\text{mol}}{\text{m}^3}$ $C_{A0} = 50 \frac{\text{mol}}{\text{m}^3}$ $C_{A0} = 70 \frac{\text{mol}}{\text{mol}}$ C_{A0}

First find which regime applies (see Fig 2)

Re =
$$\frac{\partial u\rho}{\partial t} = \frac{0.01(0.01)1000}{10^{-3}} = 100$$
 Fig 2 shows that the reactor is in the intermediate regime between the convection and dispersion models.

$$\frac{L}{dt} = \frac{20}{0.01} = 2000$$

 $Re = \frac{dup}{\mu l} = \frac{0.01(0.01)1000}{10^{-3}} = 100$ Fig 2 shows that the reactor So average the results.

Dispersion model

$$D = \frac{u^2 d_t^2}{192 \theta} = \frac{(0.01)^2 (0.01)^2}{192 (10^9)} = 5.21 \times 10^2 \frac{m^2}{s}$$

$$\frac{D}{uL} = \frac{5.21 \times 10^{-2}}{(0.01)(20)} = 0.26$$

$$\frac{C_A}{C_{A0}T} = (10^{-3} \times 50)(20/0.01) = 100$$

$$+ C_{A0}T = (10^{-3} \times 50)(20/0.01) = 100$$

$$+ C_{A0}T = (10^{-3} \times 50)(20/0.01) = 100$$

Convection model

$$\frac{C_{A}}{C_{AD}} = 1 - kC_{AD}T \left[1 - \frac{kC_{AD}T}{2} ln \left(1 + \frac{2}{kC_{AD}T} \right) \right] = 1 - 100 \left[1 - \frac{100}{2} ln \left(1 + \frac{2}{100} \right) \right]$$

$$= 0.013$$

$$^{\circ}_{5}X_{A}=0.987$$
Queraging gives $X_{A}=\frac{0.978+0.987}{2}=0.983$