

Upina TEMA 4: EVALUACIÓN DE Universidad Pública de Navarra MODELOS, BIAS/VARIANZA

Mikel Galar Idoate mikel.galar@unavarra.es Ciencia de datos con técnicas inteligentes Experto Universitario en Ciencia de Datos y Big Data

Índice

- 1. Análisis y evaluación de algoritmos de aprendizaje
 - Conjuntos train / test
- 2. Selección de modelos
 - Conjuntos de train / val / test
- 3. Bias / varianza
- 4. Análisis del error

Índice

- 1. Análisis y evaluación de algoritmos de aprendizaje
 - Conjuntos train / test
- 2. Selección de modelos
 - Conjuntos de train / val / test
- 3. Bias / varianza
- 4. Análisis del error

 Supongamos que tenemos un modelo de regresión lineal con regularización para la valoración de bienes inmuebles

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

- Sin embargo, al aplicarlo sobre nuevas casas produce errores inaceptables, ¿qué podemos hacer?
 - Añadir más ejemplos de entrenamiento
 - Utilizar menos características
 - Añadir nuevas características
 - Añadir características polinomiales $(x_1^2, x_2^2, x_1x_2, \text{ etc.})$
 - \square Aumentar λ
 - \square Decrecer λ

- Nuestra hipótesis no generaliza bien ejemplos que no están en el conjunto de entrenamiento
 - Con una variable podemos verlo gráficamente
 - ¿Pero con 100?
 - Los resultados en train son optimistas

- Necesitamos conocer cómo de bien es capaz de clasificar nuevos ejemplos nuestro algoritmo
 - □ Conjunto de test (≠ train)

_	iamano	Precio			
	2104	400]	$(\chi(1),\chi(1))$	
	1600	330		$(x^{(1)}, y^{(1)})$ $(x^{(2)}, y^{(2)})$	
70%	2400	369	Conjunto de train	(x , y)	
	1416	232	├	:	
	3000	540		$\left(x^{(m)},y^{(m)}\right)$	
	1985	300			
	1534	315	<u></u>	((1),(1))	
	1427	199	Conjunto de test	$egin{pmatrix} \left(x_{test}^{(1)},y_{test}^{(1)} \ \left(x_{test}^{(2)},y_{test}^{(2)} ight) & m_{test} \end{pmatrix}$	_{st} Número de
30%	1380	212		$(x_{test}^{(2)}, y_{test}^{(2)})$	ejemplos en el
	1494	243		$ (x_{test}^{(m_{test})}, y_{test}^{(m_{test})}) $	conjunto de test
		-	-	(x_{test}, y_{test})	

- Proceso de aprendizaje y evaluación:
 - 1. Aprender los parámetros θ usando los ejemplos en el conjunto de train (minimizando el error en entrenamiento $J(\theta)$)
 - 2. Calcular el error en el conjunto de test

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} \left(h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)} \right)^{2}$$

- □ En clasificación el proceso es equivalente
 - 1. Aprender los parámetros hetacon el conjunto de train
 - 2. Calcular el error en test
 - Regresión logística:

$$J(\theta) = -\frac{1}{m_{test}} \sum_{i=1}^{m_{test}} y_{test}^{(i)} \log\left(h_{\theta}\left(x_{test}^{(i)}\right)\right) + \left(1 - y_{test}^{(i)}\right) \log\left(1 - h_{\theta}\left(x_{test}^{(i)}\right)\right)$$

- Más general:
 - Error 0/1 = porcentaje de fallos en test

Índice

- 1. Análisis y evaluación de algoritmos de aprendizaje
 - Conjuntos train / test
- 2. Selección de modelos
 - Conjuntos de train / val / test
- 3. Bias / varianza
- 4. Análisis del error

- □ ¿Qué grado de polinomio debemos utilizar?
- □ ¿Qué valor del parámetro de regularización debemos utilizar?

Selección de modelos

□ Problema de sobre-aprendizaje

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

- Parámetros ajustados al conjunto de train
 - $\square J(\theta) < J_{test}(\theta)$
 - $\square J(\theta)$ resulta una estimación **OPTIMISTA**
 - Ocurre lo mismo con cualquier conjunto de datos utilizado en el ajuste de parámetros

Selección del grado del polinomio

$$\begin{array}{lll} & \mathrm{d} = 1 & h_{\theta}(x) = \theta_0 + \theta_1 x & \mathrm{Calcular} \ J_{test}(\theta) \\ & \mathrm{d} = 2 & h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 & \mathrm{Calcular} \ J_{test}(\theta) \\ & \mathrm{d} = 3 & h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 & \mathrm{Calcular} \ J_{test}(\theta) \\ & \vdots & \\ & \mathrm{d} = 10 & h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10} & \mathrm{Calcular} \ J_{test}(\theta) \\ \end{array}$$

- $_{f \square}$ Seleccionar el grado que obtiene el menor $J_{test}(heta)$
- ¿Cómo generaliza este modelo?
 - lacksquare Reportamos $J_{test}(heta)$
 - ¡NO SIRVE! Es un estimador optimista del error de generalización
 - Ha sido utilizado para ajustar el parámetro d a los datos de test

□ Particiones de train / cv / test

- □ Error en train / validación / test
 - Error en train

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 = J(\theta)$$

Error en validación

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} \left(h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)} \right)^2$$

Error en test

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} \left(h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)} \right)^{2}$$

Selección del grado del polinomio

- $d = 1 \quad h_{\theta}(x) = \theta_0 + \theta_1 x$
- d = 2 $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$
- d = 3 $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$
- $d = 10 h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$
- Seleccionar el grado que obtiene el menor $I_{cv}(\theta)$
- ¿Cómo generaliza este modelo?
 - Reportamos $J_{test}(\theta)$
 - Podemos utilizarlo como estimador porque no hemos ajustado los parámetros con el conjunto de test

Calcular $J_{cv}(\theta)$

Calcular $J_{cv}(\theta)$

Calcular $J_{cv}(\theta)$

Calcular $J_{cv}(\theta)$

- \square El mismo proceso es válido para seleccionar λ
 - 1. Probar diferentes valores de λ
 - 2. Elegir aquel que obtenga el menor $J_{cv}(heta)$
 - 3. Reportar $J_{test}(heta)$ como error de generalización

Índice

- 1. Análisis y evaluación de algoritmos de aprendizaje
 - Conjuntos train / test
- 2. Selección de modelos
 - Conjuntos de train / val / test
- 3. Bias / varianza
- 4. Análisis del error

- □ Si un modelo no generaliza bien
 - □ Puede ser debido a:
 - Bias
 - Varianza

Bias alto (no se ajusta)

Buen ajuste

Varianza alta (sobre-aprendizaje)

- □ Error en train: $J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) y^{(i)} \right)^2$ □ Error en validación: $J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} \left(h_{\theta}(x_{cv}^{(i)}) y_{cv}^{(i)} \right)^2$

□ ¿Por qué con valores extremos del grado no generaliza bien?

 \square ¿Qué ocurre si jugamos con λ ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2$$

 λ alto Bias alto (no se ajusta)

 λ intermedio Buen ajuste

 λ pequeño Varianza alta (sobre-aprendizaje)

lacksquare Bias / varianza en función de λ

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^{2} + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

$$Varianza$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} \left(h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)}\right)^{2}$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} \left(h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)}\right)^{2}$$

$$J_{train}(\theta)$$
Buen ajuste
$$J_{train}(\theta)$$

- Curvas de aprendizaje:
 - Error vs. Número ejemplos (p.e.)

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} \left(h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)} \right)^2$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

□ Bias alto

- Más ejemplos no mejoran el ajuste
 - Por sí mismos

Varianza alta

Más ejemplos

Probablemente ayudarán

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{100} x^{100}$$

 Supongamos que tenemos un modelo de regresión lineal con regularización para la valoración de bienes inmuebles

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

- Sin embargo, al aplicarlo sobre nuevas casas produce errores inaceptables, ¿qué podemos hacer?
 - Añadir más ejemplos de entrenamiento > mejora varianza alta
 - Utilizar menos características mejora varianza alta
 - Añadir nuevas características → mejora bias alto
 - Añadir características polinomiales $(x_1^2, x_2^2, x_1x_2, \text{ etc.})$ → $\frac{\text{mejora}}{\text{bias alto}}$
 - \blacksquare Aumentar $\lambda \rightarrow$ mejora varianza alta
 - lacktriangle Decrecer $\lambda \rightarrow$ mejora bias alto

Índice

- 1. Análisis y evaluación de algoritmos de aprendizaje
 - Conjuntos train / test
- 2. Selección de modelos
 - Conjuntos de train / val / test
- 3. Bias / varianza
- 4. Análisis del error

- Supongamos que disponemos de un detector de spam
 - Pero necesitamos reducir su error
 - □ ¿Cómo lo hacemos?
 - Recolectar más datos de entrenamiento
 - Desarrollar nuevas características
 - Routing
 - Cuerpo del mensaje
 - Usos de puntuación
 - Detección de fallos de escritura
 - • •

Estudiar los datos

- Crear un modelo rápido y simple
 - Testearlo en los datos de validación
- Pintar las gráficas de aprendizaje
 - ¿Algo que pueda ayudar?
- Análisis del error
 - Estudiar manualmente los ejemplos fallados
 - ¿Falla sistemáticamente algún tipo de ejemplos?
 - ¿Mejorará tratando esos ejemplos?
 - Inviable para muchos ejemplos/posibilidades
 - Hay que probar la solución y evaluarla → MEDIDAS

- Ratio de clasificación
 - □ Porcentaje de aciertos (fallos)
 - Útil en muchos problemas
 - Permite establecer si ha habido mejoras al añadir una nueva características o nuevos ejemplos
 - □ Pero...
 - No tiene en cuenta el número de ejemplos de cada clase

- Clasificación de cáncer
 - 1% de error en test (99% de aciertos)
 - ¡Solo el 0.5% de los pacientes tienen cáncer!
 - Prediciendo siempre "no cáncer"
 - ■99.5% de acierto
 - En este marco
 - El ratio de clasificación no refleja la calidad del clasificador
 - Se hacen necesarias otras medidas de evaluación

□ Precisión / Recall

- Clase positiva o minoritaria y = 1
- $lue{}$ Clase negativa o mayoritaria y=0
- Matriz de confusión

 Predicción positiva Predicción

Clase positiva

Clase negativa

True Positive (TP)

False Negative (FN)

False Positive (FP)

True Negative (TN)

Predicción

Precisión (de todos los predichos como y = 1, ¿qué porcentaje tienen cáncer?)

Recall (de todos los que tienen cáncer, ¿qué porcentaje se ha detectado correctamente?)

- Balance entre precisión y recall
- Regresión logística $0 \le h_{\theta}(x) \le 1$
 - □ Predecir 1 si $h_{\theta}(x) \ge 0.5$
 - Predecir O si $h_{\theta}(x) < 0.5$

 $precision = \frac{True \ Positives}{N^{\circ} \ Predichos \ positivos}$ $recall = \frac{True \ Positives}{N^{\circ} \ Positivos \ reales}$

 \square Cambiar 0.5 por otro umbral, predecir 1 si $h_{\theta}(x) \geq umbral$

Precisión / Recall

$$Precision = \frac{TP}{TP + FP} = \frac{True \ positives}{N^{\circ} \ predichos \ positivos}$$

$$Precision = \frac{TP}{TP + FP} = \frac{True \ positives}{N^{\circ} \ predichos \ positivos}$$

□ Precisión / Recall

Casos extremos

Predecimos todo como de la clase positiva (umbral muy bajo)

		Predicción	
		+ (y = 1) - (y = 0)	
Clase real	+ (y = 1)	3	0
	- (y = 0)	3	0

$$Precision = \frac{3}{3+3} = 0.5$$

$$Recall = \frac{3}{3+0} = 1$$

En este caso concreto y al ser un problema balanceado la precisión se mantiene alta. Veamos qué ocurre en un caso con muchos más ejemplos de la clase negativa...

□ Precisión / Recall

Casos extremos

Predecimos todo como de la clase positiva (umbral muy bajo)

		Predicción	
		+ (y = 1)	- (y = 0)
Clase real	+ (y = 1)	10	0
	- (y = 0)	500	0

$$Precision = \frac{10}{10 + 500} = 0.0196$$

$$Recall = \frac{10}{10 + 0} = 1$$

La precisión se ve reducida a casi 0

□ Precisión / Recall

Casos extremos

Predecimos todo como de la clase negativa (umbral muy alto)

		Predicción	
		+ (y = 1) - (y = 0)	
Clase real	+ (y = 1)	0	3
	- (y = 0)	0	3

$$Precision = \frac{0}{0+0} = Indefinido$$

$$Recall = \frac{0}{0+3} =$$

La precisión no se puede calcular porque todo se predice como negativo Veamos qué pasa con un caso un poco menos extremo...

Precisión / Recall

Casos extremos

Predecimos todo como de la clase negativa (umbral muy alto)

		Predicción	
		+ (y = 1) - (y = 0)	
Clase real	+ (y = 1)	1	2
	- (y = 0)	0	3

$$Precision = \frac{1}{1+0} = 1$$

$$Recall = \frac{1}{1+2} = 0.333$$

La predicción de los ejemplos positivos se obtiene con mucha fiabilidad y aunque pocos sean predichos como positivos, realmente lo son

□ Precisión / Recall

Casos extremos

Predecimos todo como de la clase negativa (umbral muy alto)

		Predicción	
		+ (y = 1) - (y = 0)	
Clase real	+ (y = 1)	1	9
	- (y = 0)	0	500

$$Precision = \frac{1}{1+0} = 1$$

$$Recall = \frac{1}{1+9} = 0.1$$

Con más ejemplos podemos observar mejor el balance entre precisión y recall (comparando con la otra tabla con el mismo caso)

Balance entre precisión y recall

- lacktriangledown Queremos predecir y=1 (cáncer) con **mucha fiabilidad**
 - Queremos estar seguros de que los que predecimos como cáncer realmente lo tienen
- □ Umbral alto → ↑ precisión ↓recall
 - Al aumentar el umbral, solo predecimos como positivos unos pocos casos → probablemente cáncer Umbral = 0.99
 - Buena precisión (no tenemos falsos positivos)
 - A cambio perdemos en recall
 - Más falsos negativos
 - Tienen cáncer y decimos que no

		Predicción	
		+ (y = 1)	- (y = 0)
Clase real	+ (y = 1)	1	9
	- (y = 0)	0	500

$$Precision = \frac{1}{1+0} = 1$$

$$Recall = \frac{1}{1+9} = 0.1$$

Balance entre precisión y recall

- Queremos evitar pasar por alto casos de cáncer
 - Queremos predecir todos los que tienen cáncer aunque haya algunos que no lo tienen y les digamos que lo tienen
- □ Umbral bajo → ↑ recall ↓ precisión
 - Conseguiremos predecir todos los positivos correctamente (recall)
 - A cambio nos llevaremos unos cuantos falsos positivos
 - Pérdida en precisión

$$Precision = \frac{10}{10 + 500} = 0.0196$$

$$Recall = \frac{10}{10 + 0} = 1$$

□ ¿Cómo comparamos la precisión (P) / recall (R) de dos algoritmos?

$$\blacksquare F_1 Score F_{score} = 2 \frac{P \cdot R}{P + R}$$

- Media armónica en vez aritmética
- Mejor balance entre precisión y recall

■ Si
$$P = 0$$
 o $R = 0 \rightarrow F_1$ Score = 0

■ Si P = 1 y R = 1
$$\rightarrow$$
 F₁Score = 1

	Precisin(P)	Recall (R)	Media	F ₁ Score
Algoritmo 1	0.5	0.4	0.45	0.444
Algoritmo 2	0.7	0.1	4	0.175
Algoritmo 3	0.02	1.0	0.51	0.0392

iiiiSiempre predice y = 1!!!!