Методы оптимизации. Семинар 9. Двойственная задача

Корнилов Никита Максимович

Московский физико-технический институт

29 октября 2024г

Задача оптимизации с ограничениями

Начнем с рассмотрения постановки задачи оптимизации стандартной формы:

$$\min_{x} f_{0}(x)
s.t. f_{i}(x) \leq 0, i = 1,..., m
h_{j}(x) = 0, j = 1,..., n,$$
(1)

с прямой переменной $x \in \mathbb{R}^d$. Также мы скажем, что множество допустимых точек $\mathbf{D} = \cap_{i=0}^m \mathbf{dom} \ f_i \cap_{j=1}^n \mathbf{dom} \ h_j$ является непустым множеством.

< ロ ト ∢ @ ト ∢ 重 ト ∢ 重 ト → 重 → か Q (~)

Лагранжиан

Definition (Лагранжиан)

Лагранжиан L относительно задачи оптимизации (1) задается следующим образом:

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{j=1}^{n} \nu_i h_i(x).$$
 (2)

Лагранжиан

Definition (Лагранжиан)

Лагранжиан L относительно задачи оптимизации (1) задается следующим образом:

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{j=1}^{n} \nu_i h_i(x).$$
 (2)

 $\lambda \in \mathbb{R}^m$ и $\nu \in \mathbb{R}^n$ мы будем называть двойственными переменными, в то время как x - первичной или прямой.

Н. М. Корнилов 29 октября 2024г 3 / 19

Двойственная функция

Definition (Двойственная функция по Лагранжу)

Определим двойственную функцию по Лагранжу (или просто двойственную функцию) $g:\mathbb{R}^m imes \mathbb{R}^n o \mathbb{R}$ следующим образом:

$$g(\lambda,\nu) = \inf_{\mathbf{x} \in \mathbf{D}} L(\mathbf{x},\lambda,\nu) = \inf_{\mathbf{x} \in \mathbf{D}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}) + \sum_{j=1}^n \nu_i h_i(\mathbf{x}) \right). \tag{3}$$

Двойственная функция

Definition (Двойственная функция по Лагранжу)

Определим двойственную функцию по Лагранжу (или просто двойственную функцию) $g:\mathbb{R}^m imes \mathbb{R}^n o \mathbb{R}$ следующим образом:

$$g(\lambda,\nu) = \inf_{\mathbf{x} \in \mathbf{D}} L(\mathbf{x},\lambda,\nu) = \inf_{\mathbf{x} \in \mathbf{D}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}) + \sum_{j=1}^n \nu_i h_i(\mathbf{x}) \right). \tag{3}$$

- ullet Если при $(\lambda,
 u)$ лагранжиан L является неограниченным снизу по переменной x, то значение $g(\lambda,
 u) = -\infty$.
- $g(\lambda, \nu)$ всегда является вогнутой по переменным (λ, ν) .

Нижняя оценка

Proposition

Обозначим оптимальное значение задачи (1) как p^* . Тогда, для любого $\lambda \succeq 0$ и любого ν выполняется

$$g(\lambda,\nu) \le p^*$$
 (4)

Получили нижнюю оценку на оптимальное значение задачи (1).

Двойственная задача

Нижняя оценка $g(\lambda, \nu)$ зависит напрямую от λ и ν . А какова **лучшая** оценка на p^* снизу?

$$\max_{\lambda,\nu} g(\lambda,\nu)$$
 s.t. $\lambda \succeq 0$. (5)

Двойственная задача

Нижняя оценка $g(\lambda, \nu)$ зависит напрямую от λ и ν . А какова **лучшая** оценка на p^* снизу?

$$\max_{\lambda,\nu} g(\lambda,\nu)$$
s.t. $\lambda \succeq 0$. (5)

Такая задача называется **двойственной задачей** к задаче (1). Эта задача является задачей выпуклой оптимизации, так как максимизация вогнутой функции, а также функции, ограничивающие λ , тоже являются выпуклыми.

(□▶ ◀鬪▶ ◀필▶ ◀필▶ · 필 · 쒸익()

Классические примеры

Example (Задача линейного программирования)

Рассмотрим следующую задачу оптимизации

min
$$c^T x$$

s.t. $Ax = b$,
 $x \succeq 0$,

где $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^m$.

Это классика, это решать надо

Example (Задача разбиения)

Рассмотрим следующую задачу оптимизации

$$\min x^T Wx$$

s.t.
$$x_i^2 = 1$$
, $i = 1, ... n$,

где $W \in \mathbb{S}^n_+$.

Связь с сопряженными функциями

$$f^*(y) = \sup_{x \in \mathbf{dom} \ f} (y^T x - f(x)).$$

Для нахождения связи рассмотрим следующую задачу

min
$$f(x)$$

s.t. $Ax \leq b$,
 $Cx = d$.

Связь с сопряженными функциями

$$f^*(y) = \sup_{x \in \mathbf{dom} \ f} (y^T x - f(x)).$$

Для нахождения связи рассмотрим следующую задачу

min
$$f(x)$$

s.t. $Ax \leq b$,
 $Cx = d$.

$$g(\lambda, \nu) = -\lambda^T b - \nu^T d - f^*(-A^T \lambda - C^T \nu).$$

Для задач с линейными ограничениями, можно выписать двойственную задачу, зная лишь сопряженную функцию относительно целевой.

H. М. Корнилов 29 октября 2024г 9 / 19

Примеры на сопряженные функции

Example (Решение СЛАУ с наименьшей нормой общего вида)

Рассмотрим задачу

$$\min \|x\|$$

s.t.
$$Ax = b$$
,

где $\|\cdot\|$ - любая норма.

Пример на сопряженные функции

Example (Максимизация энтропии)

Рассмотрим следующую задачу

$$\min \sum_{i=1}^{d} x_i \log x_i$$

s.t.
$$Ax \leq b$$
,

$$\mathbf{1}^T x = 1,$$

где $\operatorname{\mathsf{dom}} f = \mathbb{R}^d_{++}$.

Интересные примеры

Example (Кусочно-линейная оптимизация)

Рассмотрим следующую задачу оптимизации

$$\min \max_{i=1,\ldots,m} (a_i^T x + b_i)$$

Сильная и слабая двойственности

Обозначим оптимальное значение двойственной задачи относительно начальной как d^* . Поскольку $g(\lambda, \nu) \leq p^*$, то в силу произвольности выбора двойственных переменных выполняется

$$d^* \leq p^*$$
.

Заметим, что такое неравенство выполняется всегда. Такое свойство называется слабой двойственностью. В частности, когда

$$d^*=p^*,$$

то будем говорить, что выполняется свойство сильной двойственности.

Разрешимость и неограниченность

Proposition

Если прямая задача **неограниченна снизу** $(p^* = -\infty)$, то двойственная задача **не имеет допустимых двойственных точек**.

Proposition

Если двойственная задача **неограниченна сверху** $(d^* = +\infty)$, то прямая задача **не имеет допустимых прямых точек**.

При выполнении сильной двойственности утверждения верны и в обратную сторону.

Условие Слейтера

Рассмотрим задачу с выпуклыми функциями f_0,\ldots,f_m :

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$. (6)

Proposition (Условие Слейтера)

Будем говорить, что для задачи (6) выполняется условие Слейтера, если существует допустимая $x_0 \in \textbf{relint} \ \mathbf{D}$, такой что

$$f_i(x_0) < 0, i = 1, \ldots, m, Ax = b.$$

Ослабленное условие: $f_i(x) < 0$ только у не аффинных f_i .

Theorem (**Теорема Слейтера**)

Если для задачи (6) выполняется условие Слейтера, то тогда выполняется свойство сильной двойственности.

Другие условия сильной выпуклости

$$\min_{x} f_{0}(x)$$
s.t. $f_{i}(x) \leq 0, i = 1,..., m$

$$h_{j}(x) = 0, j = 1,..., n,$$

- $oldsymbol{0}$ Функции ограничений f_i и h_i являются аффинными.
- ② Для точки глобального минимума x^* градиенты всех ограничений равенств и всех *активных* ограничений неравенств (выполняется равенство нулю) линейно независимы.

Пример на сильную двойственность

Example (Решение СЛАУ минимальной нормы)

$$\min x^T x$$

s.t. Ax = b.

На практике

На практике методы работают следующим образом - происходит инициализация x^0, λ^0, ν^0 , и итеративным алгоритмом меняются сразу как прямые, так и двойственные методы. В качестве критерия остановы берут $f(x^k)-g(\lambda^k, \nu^k) \leq \epsilon$.

Поэтому, когда будет исследоваться график невязки между прямой и двойственной функцией, то станет понятно, выполняется сильная двойственность, или же нет: $f(x^k) - g(\lambda^k, \nu^k)$ должно стремиться к $p^* - d^*$ – так называемому **оптимальному двойственному зазору**, и если выполняется свойство сильной двойственности, то этот зазор на графике будет стремиться к нулю.

В следующих сериях

• Условия оптимальности Каруша-Куна-Таккера.