Ant Colony Optimization project report

Swarm Intelligence INFO-H-414
Aldar Saranov
Université libre de Bruxelles

```
1 procedure HAS-QAP
                                                                           Initial solution generation
2 generate m random permutations \psi^1, \ldots, \psi^m.
 3 [optional] improve \psi^1, \ldots, \psi^m by local search
                                                                                 Local search
4 let pi^* be the best solution
 5 initialize the pheromone trail matrix T
6 activate intensification
   while (there is time left)
      for k from 1 to m
                                                                            Solution modification
        \hat{\psi}^k = \text{PheromoneTrailSwaps}(\psi^k)
10
        [optional] improve \hat{\psi}^k by local search to get \tilde{\psi}^k
11
12
     end
13
      for k from 1 to m
14
        if intensification is active then
15
          \psi^k = \text{best}(\psi^k; \tilde{\psi}^k)
16
                                                                    Applying intensification if necessary
          if none of \psi^k changed then
             disable intensification
        else
19
        \psi^k = \tilde{\psi}^k
^{21}
      end
      if exists \tilde{\psi}^k better then \psi^*
                                                                     Pheromone update (EAS and RAS)
        update the new best \psi^* = \tilde{\psi}^k
        activate intensification
     end
26
^{27}
     update the pheromone trail matrix
^{28}
^{29}
      if S iterations in a row are not improving then
                                                                               Diversification
        perform diversification
32 end
```

Initial Solution Generation

In out implementation, the algorithm takes the facilities one by one and assigns it to one of the free locations according to random uniform rule. This is an exploration step.

Local Search

- May be applied to the initial solutions before setting the pheromone matrix and in each iteration.
- Delta value of objective values are used. They can be compute in O(n).

$$\Delta(\psi, i, j) = (b_{ij} - b_{ji}) \times (a_{\pi_i \pi_j} - a_{\pi_j \pi_i}) + \sum_{k=1}^{n} [b_{ik} \times (a_{\pi_i \pi_k} - a_{\pi_j \pi_k}) + b_{ki} \times (a_{\pi_k \pi_i} - a_{\pi_k \pi_j}) + b_{jk} \times (a_{\pi_j \pi_k} - a_{\pi_i \pi_k}) + b_{kj} \times (a_{\pi_k \pi_j} - a_{\pi_k \pi_i})]$$

Listing 2: Local Search pseudo-code

```
1 procedure LocalSearch (solution \psi)
2 I = \emptyset
3 while (|I| < n)
4 pick i uniformly randomly, i \notin I
5 J = \{i\}
6 while (|J| < n)
7 pick j uniformly randomly, j \notin J
8 if (\Delta(\psi, i, j) < 0)
9 exchange \psi_i and \psi_j
10 J = J \cup \{j\}
11 end
12 I = I \cup \{i\}
13 end
14 end
```

Pheromone Trail Swaps

Location					
Facility	1	 pi_s		pi_r	
1		 			
		 *			
r	2	 9		6	
S	3	 3		9	
		 / !	j		

Exploiting policy with probability Q

$$au_{r\pi_s}^k + au_{s\pi_r}^k$$

Exploring policy with probability 1 - Q

$$\tau^{k}_{r\pi_{s}} + \tau^{k}_{s\pi_{r}} \qquad P(s) = \frac{\tau^{k}_{r\pi_{s}} + \tau^{k}_{s\pi_{r}}}{\sum_{j \neq r} (\tau^{k}_{r\pi_{j}} + \tau^{k}_{j\pi_{r}})}$$

Intensification

```
for k from 1 to m  \begin{aligned} &\text{if intensification is active then} \\ &\psi^k = \text{best}(\psi^k; \tilde{\psi}^k) \\ &\text{if none of } \psi^k \text{ changed then} \\ &\text{disable intensification} \end{aligned}  else  \psi^k = \tilde{\psi}^k  end
```

Pheromone update rule

$$\tau(i+1) = \rho \times \tau(i) + \Delta \tau(i)$$

Rank-based Ant System

Elitist Ant System

$$\Delta \tau_{ij} = \sum_{r=1}^{w-1} (w - r) \times \Delta \tau_{ij}^r + w \times \Delta \tau_{ij}^{bs}$$

$$\Delta \tau_{ij}^r = \begin{cases} \frac{Q}{L^r} & \text{if } \operatorname{arc}(i,j) \in S \\ 0 & \text{otherwise} \end{cases}$$

$$\Delta \tau_{ij}^{bs} = \begin{cases} \frac{Q}{L^{bs}} & \text{if } \operatorname{arc}(i,j) \in S^{bs} \\ 0 & \text{otherwise} \end{cases}$$

$$\Delta \tau_{ij} = \sum_{k=1}^{m} \Delta \tau_{ij}^{k} + \sigma \times \Delta \tau_{ij}^{bs}$$

$$\Delta \tau_{ij}^{bs} = \begin{cases} \frac{Q}{L^{bs}} & \text{if } \operatorname{arc}(i,j) \in S^{bs} \\ 0 & \text{otherwise} \end{cases}$$

Diversification

Diversification is applied if during S iterations in a row there were no improvement. Pheromone trail values are reset. It promotes exploration.

$$\tau_0 = \frac{1}{f(S^{bs})}$$

Automatic tuning

The program was tuned in irace. The overall parameters description is as follows.

Name	Values	Description		
localSearch	local-search-idsia, local-search-nonet	Whether local search is used or omitted		
m	1-100	Number of ants		
ρ	0.0-1.0	Weakness of evaporation		
roundsReinitialize	100-10000	Numbers of non-improving rounds in a row to diversify		
q	0.0-1.0	Probability of using exploiting policy		
k	0.2-3.0	Selection power		
factorQ	0.2-5.0	Deposit factor		
σ	1-100	Number of depositing for Elitist Ant System		
w	1-20	Number of depositing for Rank-based Ant System		

Experimental - performance

- **Not tuned.** EAS showed slightly better results with average relative solution quality 3.75%, however, it also had larger variation coefficient (meaning that some concrete instances may be solved by EAS worse than by RAS).
- Local Search without tuning. The configurations, however, were inherited from the previous series. RAS showed much better results with average relative solution quality 0.2% and best quality 0.17%. There is a significant improvement for both EAS and RAS if local search is added.
- Local Search with tuning. The results here are ambiguous, because the average relative quality of RAS is equal to 0:24% which is better than 0.66% of EAS, however, in the worst case EAS has 0:89%, whereas RAS has 1.01%.
- In all cases Wilcoxon test cannot firmly reject that the mean of the performances of these algorithms is different.

Experimental - convergence

