1 Preliminaries

1.1 Set and Collections

Definition 1.1.1 *Let* \mathcal{D} *be a collection of sets. The union of* \mathcal{C} *, denoted by* $\bigcup \mathcal{C}$ *, is the set defined by*

$$\bigcup \mathcal{C} = \{x | x \in S \text{ for some } S \in \mathcal{C}\}.$$

If C is a non-empty collection, its intersection is the set $\bigcap C$ given by

$$\bigcap \mathcal{C} = \{x | x \in S \text{ for every } S \in \mathcal{C}\}.$$

Here, the generalized union and generalized intersection of sets simply involve performing the union or intersection operation on each element within the set.

Note that if \mathcal{C} and \mathcal{D} are two collections such that $\mathcal{C} \subseteq \mathcal{D}$, then

$$\bigcup \mathcal{C} \subseteq \bigcup \mathcal{D} \text{ and } \bigcap \mathcal{D} \subseteq \bigcap \mathcal{C}$$

Within the framework of collections of subsets of a given set S, we extend the previous definition by taking $\bigcap \emptyset = S$ for the empty collection of subsets of S.

This is consistent with the fact that $\emptyset \subseteq \mathcal{C}$ implies $\bigcap \mathcal{C} \subseteq \mathcal{S}$.

Definition 1.1.2 The symmetric difference of sets denoted by \oplus is defined by $U \oplus V = (U - V) \cup (V - U)$ for all sets U, V.

The symmetric difference operation is easily shown to satisfy symmetry and associativity, and also $U \oplus U = \emptyset$. Next, we will prove the associativity.

Proof 1.1.1

$$LEFT = ((U - V) \cup (V - U)) \oplus T$$

$$= (((U - V) \cup (V - U)) - T) \cup (T - ((U - V) \cup (V - U)))$$

$$= ((U\bar{V} \cup V\bar{U}) \cap \bar{T}) \cup (T \cap (\bar{U}\bar{V} \cup UV))$$

$$= \sum_{i=1,2,4,7} m_i$$

RIGHT = LEFT

However, the above method is rather cumbersome. We can instead adopt the characteristic function approach for the proof. Here, we first supplement the relevant concepts of characteristic functions.

Definition 1.1.3 For any set A, the function

$$\chi_A(x) = \begin{cases} 1, & x \in A, \\ 0, & x \notin A \end{cases}$$

is called the characteristic function of the set A.

The characteristic function has the following properties:

- 1. The necessary and sufficient condition for A = X is $\chi_A(x) \equiv 1$, and the necessary and sufficient condition for $A = \emptyset$ is $\chi_A(x) \equiv 0$;
- 2. The necessary and sufficient condition for $A \subset B$ is

$$\chi_A(x) \leqslant \chi_B(x), (\forall x \in X);$$

- 3. $\chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x) \chi_{A \cap B}(x)$.
- 4. $\chi_{A \cap B}(x) = \chi_A(x) \cdot \chi_B(x)$;
- 5.

$$\chi_{\bigcup_{\alpha \in \Lambda} A_{\alpha}}(x) = \max_{\alpha \in \Lambda} \chi_{A_{\alpha}}(x)$$

$$\chi_{\bigcup_{\alpha \in \Lambda} A_{\alpha}}(x) = \max_{\alpha \in \Lambda} \chi_{A_{\alpha}}(x)$$
$$\chi_{\bigcap_{\alpha \in \Lambda} A_{\alpha}}(x) = \min_{\alpha \in \Lambda} \chi_{A_{\alpha}}(x)$$

6. Let $\{A_k\}$ be an arbitrary sequence of sets, then

$$\chi_{\overline{\lim}_{k\to\infty}A_k}(x) = \overline{\lim}_{k\to\infty}\chi_{A_k}(x)$$

$$\chi_{\underline{\lim}_{k\to\infty}A_k}(x) = \underline{\lim}_{k\to\infty}\chi_{A_k}(x);$$

7. The necessary and sufficient condition for $\lim_{k\to\infty} A_k$ to exist is that $\lim_{k\to\infty} \chi_{A_k}(x)$ exists $(\forall x\in X)$, and when the limit exists, we have

$$\chi_{\lim_{k\to\infty} A_k}(x) = \lim_{k\to\infty} \chi_{A_k}(x) \quad (x\in X).$$

$$\overline{\lim}_{k \to \infty} A_k = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$

The limit superior of a sequence of sets reflects the collection of elements that "repeatedly appear" in the sequence

$$\overline{\lim}_{k\to\infty} A_k = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$$

The limit inferior of a sequence of sets reflects the collection of elements that exhibit "stable membership" within the sequence of sets.

$$\overline{\lim}_{k \to \infty} \chi_{A_k}(x) = \lim_{n \to \infty} (\sup_{k \ge n} \chi_{A_k(x)})$$

$$\overline{\lim_{k \to \infty}} \, \chi_{A_k}(x) = \lim_{n \to \infty} (\sup_{k \geqslant n} \chi_{A_k(x)})$$

$$\underline{\lim_{k \to \infty}} \, \chi_{A_k}(x) = \lim_{n \to \infty} (\inf_{k \geqslant n} \chi_{A_k(x)})$$

Next, we will employ the method of characteristic functions to complete the proof of the associativity of the symmetric difference operation.

Proof 1.1.2

$$\chi_{A \oplus B}(x) = \chi_{(A-B) \cup (B-A)}(x)$$

$$= \chi_{A-B}(x) + \chi_{B-A}(x)$$

$$= \chi_{A}(x) \cdot \chi_{\bar{B}}(x) + \chi_{\bar{A}}(x) \cdot \chi_{B}(x)$$

$$= \chi_{A}(x) + \chi_{B}(x) - 2\chi_{A \cap B}(x)$$

$$LEFT = \chi_{(U \oplus V) \oplus T}(x)$$

$$= \chi_{U}(x) + \chi_{V}(x) + \chi_{T}(x) - 2\chi_{U \cap V}(x) - 2\chi_{V \cap T}(x) - 2\chi_{U \cap T}(x) + 4\chi_{U \cap V \cap T}(x)$$

$$= RIGHT$$

Definition 1.1.4 An ordered pair is a collection of sets $\{\{x,y\},\{x\}\}$. It can be readily verified that x and y are determined uniquely.

Let $\{\{x,y\}, \{x\}\}$ be an ordered pair. Then x is the first component of p and y is the second component of p. Let X, Y be two sets. Their product is the set $X \times Y$ that consists of all pairs of the form (x,y) as an ordered pair on the set S.