Example 4.3: Plane truss with temperature change (p. 233)

All members have the same cross-sectional area A = 1/2 in² and are of the same material E = 29, 000 ksi and $\alpha = 6.5 \times 10^{-6}$ /°F. The first element undergoes a temperature rise of 100°F. The dimensions are shown in the figure.

For numerical calculations the k – in units are used.

Global equations at start of the element assembly process

Equations for element 1

$$E = 29000 \qquad A = \frac{1}{2}$$

$$\alpha = 6.5 \times 10^{-6} \qquad \Delta T = 100 \qquad \epsilon_0 = 0.00065$$

$$Element \ node \qquad Global \ node \ number \qquad x \qquad y \\ 1 \qquad \qquad 1 \qquad \qquad 0 \qquad 144.$$

$$2 \qquad \qquad 3 \qquad \qquad 192. \qquad 0$$

$$x_1 = 0 \qquad y_1 = 144. \qquad x_2 = 192. \qquad y_2 = 0$$

$$L = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = 240.$$

Direction cosines:
$$\ell_s = \frac{x_2 - x_1}{L} = 0.8$$

$$m_s = \frac{y_2 - y_1}{L} = -0.6$$

Substituting into the truss element equations we get

$$\begin{pmatrix} 38.6667 & -29. & -38.6667 & 29. \\ -29. & 21.75 & 29. & -21.75 \\ -38.6667 & 29. & 38.6667 & -29. \\ 29. & -21.75 & -29. & 21.75 \end{pmatrix} \begin{pmatrix} u_1 \\ v_1 \\ u_3 \\ v_3 \end{pmatrix} = \begin{pmatrix} -7.54 \\ 5.655 \\ 7.54 \\ -5.655 \end{pmatrix}$$

The element contributes to {1, 2, 5, 6} global degrees of freedom.

Adding element equations into appropriate locations we have

Equations for element 2

$$E = 29000$$
 $A = \frac{1}{2}$

Element node Global node number
$$x$$
 y 1 1 0 144. 2 2 192. 144. $x_1 = 0$ $y_1 = 144$. $x_2 = 192$. $y_2 = 144$.

$$x_1 = 0$$
 $y_1 = 144$. $x_2 = 192$. $y_2 = 144$

$$L = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = 192.$$

Direction cosines:
$$\ell_s = \frac{x_2 - x_1}{L} = 1$$
. $m_s = \frac{y_2 - y_1}{L} = 0$.

Substituting into the truss element equations we get

$$\begin{pmatrix} 75.5208 & 0. & -75.5208 & 0. \\ 0. & 0. & 0. & 0. \\ -75.5208 & 0. & 75.5208 & 0. \\ 0. & 0. & 0. & 0. \end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{v}_1 \\ \mathbf{u}_2 \\ \mathbf{v}_2 \end{pmatrix} = \begin{pmatrix} 0. \\ 0. \\ 0. \\ 0. \\ 0. \end{pmatrix}$$

The element contributes to {1, 2, 3, 4} global degrees of freedom.

Adding element equations into appropriate locations we have

Equations for element 3

$$\begin{split} E &= 29000 & A = \frac{1}{2} \\ & & \text{Element node} & \text{Global node number} & x & y \\ & 1 & 2 & 192. & 144. \\ & 2 & 4 & 384. & 0 \\ & x_1 &= 192. & y_1 &= 144. & x_2 &= 384. & y_2 &= 0 \\ & L &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} &= 240. \\ & \text{Direction cosines: } \ell_s &= \frac{x_2 - x_1}{L} &= 0.8 & m_s &= \frac{y_2 - y_1}{L} &= -0.6 \end{split}$$

Substituting into the truss element equations we get

$$\begin{pmatrix} 38.6667 & -29. & -38.6667 & 29. \\ -29. & 21.75 & 29. & -21.75 \\ -38.6667 & 29. & 38.6667 & -29. \\ 29. & -21.75 & -29. & 21.75 \end{pmatrix} \begin{pmatrix} u_2 \\ v_2 \\ u_4 \\ v_4 \end{pmatrix} = \begin{pmatrix} 0. & 0. \\ 0. & 0. \\ 0. & 0. \\ 0. & 0. \end{pmatrix}$$

The element contributes to {3, 4, 7, 8} global degrees of freedom.

Adding element equations into appropriate locations we have

$$\begin{pmatrix} 114.188 & -29. & -75.5208 & 0 & -38.6667 & 29. & 0 & 0 \\ -29. & 21.75 & 0 & 0 & 29. & -21.75 & 0 & 0 \\ -75.5208 & 0 & 114.188 & -29. & 0 & 0 & -38.6667 & 29. \\ 0 & 0 & -29. & 21.75 & 0 & 0 & 29. & -21.75 \\ -38.6667 & 29. & 0 & 0 & 38.6667 & -29. & 0 & 0 \\ 29. & -21.75 & 0 & 0 & -29. & 21.75 & 0 & 0 \\ 0 & 0 & -38.6667 & 29. & 0 & 0 & 38.6667 & -29. \\ 0 & 0 & 29. & -21.75 & 0 & 0 & -29. & 21.75 \end{pmatrix} \begin{pmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 \\ u_4 \\ v_4 \end{pmatrix} = \begin{pmatrix} -7.54 \\ 5.655 \\ 0 \\ 0 \\ 7.54 \\ -5.655 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Equations for element 4

$$\begin{split} E &= 29000 & A = \frac{1}{2} \\ & & \text{Element node} & \text{Global node number} & x & y \\ & 1 & 3 & 192. & 0 \\ & 2 & 4 & 384. & 0 \\ & x_1 &= 192. & y_1 &= 0 & x_2 &= 384. & y_2 &= 0 \\ & L &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} &= 192. \\ & \text{Direction cosines: } \ell_s &= \frac{x_2 - x_1}{L} &= 1. & m_s &= \frac{y_2 - y_1}{L} &= 0 \end{split}$$

Substituting into the truss element equations we get

$$\begin{pmatrix} 75.5208 & 0. & -75.5208 & 0. \\ 0. & 0. & 0. & 0. \\ -75.5208 & 0. & 75.5208 & 0. \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} u_3 \\ v_3 \\ u_4 \\ v_4 \end{pmatrix} = \begin{pmatrix} 0. \\ 0. \\ 0. \\ 0. \\ 0. \end{pmatrix}$$

The element contributes to {5, 6, 7, 8} global degrees of freedom.

Adding element equations into appropriate locations we have

$$\begin{pmatrix} 114.188 & -29. & -75.5208 & 0 & -38.6667 & 29. & 0 & 0 \\ -29. & 21.75 & 0 & 0 & 29. & -21.75 & 0 & 0 \\ -75.5208 & 0 & 114.188 & -29. & 0 & 0 & -38.6667 & 29. \\ 0 & 0 & -29. & 21.75 & 0 & 0 & 29. & -21.75 \\ -38.6667 & 29. & 0 & 0 & 114.188 & -29. & -75.5208 & 0 \\ 29. & -21.75 & 0 & 0 & -29. & 21.75 & 0 & 0 \\ 0 & 0 & -38.6667 & 29. & -75.5208 & 0 & 114.188 & -29. \\ 0 & 0 & 29. & -21.75 & 0 & 0 & -29. & 21.75 \end{pmatrix} \begin{pmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 \\ u_4 \\ v_4 \end{pmatrix} = \begin{pmatrix} -7.54 \\ 5.655 \\ 0 \\ 0 \\ 7.54 \\ -5.655 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Equations for element 5

$$\begin{split} E &= 29000 \qquad A = \frac{1}{2} \\ & & \text{Element node} \qquad \text{Global node number} \qquad x \qquad y \\ & 1 \qquad \qquad 2 \qquad \qquad 192. \qquad 144. \\ & 2 \qquad \qquad 3 \qquad \qquad 192. \qquad 0 \\ & x_1 &= 192. \qquad y_1 &= 144. \qquad x_2 &= 192. \qquad y_2 &= 0 \\ & L &= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} &= 144. \\ & \text{Direction cosines: } \ell_s &= \frac{x_2 - x_1}{L} &= 0. \qquad m_s &= \frac{y_2 - y_1}{L} &= -1. \end{split}$$

Substituting into the truss element equations we get

$$\begin{pmatrix} 0. & 0. & 0. & 0. \\ 0. & 100.694 & 0. & -100.694 \\ 0. & 0. & 0. & 0. \\ 0. & -100.694 & 0. & 100.694 \end{pmatrix} \begin{pmatrix} u_2 \\ v_2 \\ u_3 \\ v_3 \end{pmatrix} = \begin{pmatrix} 0. \\ 0. \\ 0. \\ 0. \end{pmatrix}$$

The element contributes to {3, 4, 5, 6} global degrees of freedom.

Adding element equations into appropriate locations we have

$$\begin{pmatrix} 114.188 & -29. & -75.5208 & 0 & -38.6667 & 29. & 0 & 0 \\ -29. & 21.75 & 0 & 0 & 29. & -21.75 & 0 & 0 \\ -75.5208 & 0 & 114.188 & -29. & 0 & 0 & -38.6667 & 29. \\ 0 & 0 & -29. & 122.444 & 0 & -100.694 & 29. & -21.75 \\ -38.6667 & 29. & 0 & 0 & 114.188 & -29. & -75.5208 & 0 \\ 29. & -21.75 & 0 & -100.694 & -29. & 122.444 & 0 & 0 \\ 0 & 0 & -38.6667 & 29. & -75.5208 & 0 & 114.188 & -29. \\ 0 & 0 & 29. & -21.75 & 0 & 0 & -29. & 21.75 \end{pmatrix} \begin{pmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 \\ u_4 \\ v_4 \end{pmatrix} = \begin{pmatrix} -7.54 \\ 5.655 \\ 0 \\ 0 \\ 7.54 \\ -5.655 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Essential boundary conditions

$$\begin{array}{cccc} Node & dof & Value \\ 1 & u_1 & 0 \\ v_1 & 0 \\ & u_4 & 0 \\ v_4 & 0 \end{array}$$

Remove {1, 2, 7, 8} rows and columns.

After adjusting for essential boundary conditions we have

$$\begin{pmatrix} 114.188 & -29. & 0 & 0 \\ -29. & 122.444 & 0 & -100.694 \\ 0 & 0 & 114.188 & -29. \\ 0 & -100.694 & -29. & 122.444 \end{pmatrix} \begin{pmatrix} u_2 \\ v_2 \\ u_3 \\ v_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 7.54 \\ -5.655 \end{pmatrix}$$

Solving the final system of global equations we get

$$\{u_2=-0.0308148,\ v_2=-0.121333,\ u_3=0.0308148,\ v_3=-0.138667\}$$

Complete table of nodal values

Computation of reactions

Equation numbers of dof with specified values: {1, 2, 7, 8}

Extracting equations {1, 2, 7, 8} from the global system we have

$$\begin{pmatrix} 114.188 & -29. & -75.5208 & 0 & -38.6667 & 29. & 0 & 0 \\ -29. & 21.75 & 0 & 0 & 29. & -21.75 & 0 & 0 \\ 0 & 0 & -38.6667 & 29. & -75.5208 & 0 & 114.188 & -29. \\ 0 & 0 & 29. & -21.75 & 0 & 0 & -29. & 21.75 \end{pmatrix} \begin{pmatrix} u_1 \\ v_2 \\ v_2 \\ u_3 \\ v_3 \\ u_4 \\ v_4 \end{pmatrix} = \begin{pmatrix} R_1 - 7.54 \\ R_2 + 5.655 \\ R_3 + 0. \\ R_4 + 0. \end{pmatrix}$$

Substituting the nodal values and re-arranging

$$\begin{pmatrix} R_1 \\ R_2 \\ R_3 \\ R_4 \end{pmatrix} =$$

$$\begin{pmatrix} 114.188 & -29. & -75.5208 & 0 & -38.6667 & 29. & 0 & 0 \\ -29. & 21.75 & 0 & 0 & 29. & -21.75 & 0 & 0 \\ 0 & 0 & -38.6667 & 29. & -75.5208 & 0 & 114.188 & -29. \\ 0 & 0 & 29. & -21.75 & 0 & 0 & -29. & 21.75 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ -0.0308148 \\ -0.121333 \\ 0.0308148 \\ -0.138667 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -7.54 \\ 5.655 \\ 0. \\ 0 \\ 0 \end{pmatrix}$$

Carrying out computations, the reactions are as follows.

Label	dof	Reaction
R_1	$\mathbf{u_1}$	4.65432
R_2	\mathbf{v}_1	-1.74537
R_3	$\mathbf{u_4}$	-4.65432
R_4	V_4	1.74537

Sum of Reactions

$$\begin{array}{ll} dof: u & 0 \\ dof: v & 0 \end{array}$$

Solution for element 1

Nodal coordinates

Element nodal displacements in global coordinates,
$$\mathbf{d} = \begin{pmatrix} u_1 \\ v_1 \\ u_3 \\ v_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0.0308148 \\ -0.138667 \end{pmatrix}$$

Element nodal displacements in local coordinates, $d_{\ell} = T d = \begin{pmatrix} 0.\\ 0.107852 \end{pmatrix}$

Axial displacements at element ends, $d_1 = 0$. $d_2 = 0.107852$

Axial strain, $\epsilon = (d_2 - d_1)/L - \epsilon_0 = 0.000449383$

Axial stress, $\sigma = \text{E}\epsilon = -5.8179$ Axial force = $\sigma A = -2.90895$

Solution for element 2

Nodal coordinates

Element node Global node number
$$x$$
 y
$$1 & 1 & 0 & 144.$$

$$2 & 2 & 192. & 144.$$

$$x_1 = 0 & y_1 = 144. & x_2 = 192. & y_2 = 144.$$

$$L = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = 192.$$

Direction cosines:
$$\ell_s = \frac{x_2 - x_1}{L} = 1.$$

$$m_s = \frac{y_2 - y_1}{L} = 0.$$

Global to local transformation matrix, $T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

Element nodal displacements in global coordinates, $\mathbf{d} = \begin{pmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -0.0308148 \\ -0.121333 \end{pmatrix}$

Element nodal displacements in local coordinates, $d_{\ell} = T d = \begin{pmatrix} 0. \\ -0.0308148 \end{pmatrix}$

Axial displacements at element ends, $d_1 = 0$. $d_2 = -0.0308148$

$$E = 29000$$
 $A = \frac{1}{2}$

Axial strain, $\epsilon = (d_2 - d_1)/L = -0.000160494$

Axial stress,
$$\sigma = \text{E}\epsilon = -4.65432$$

Axial force =
$$\sigma A = -2.32716$$

Solution for element 3

Nodal coordinates

Element node	Global node nur	nber x	y
1	2	192.	144.
2	4	384.	0
$x_1 = 192.$	$y_1 = 144.$ x	$x_2 = 384.$	$y_2 = 0$

$$L = \sqrt{\left(x_2 - x_1\right)^2 + \left(y_2 - y_1\right)^2} \ = 240.$$

Direction cosines:
$$\ell_s = \frac{x_2 - x_1}{L} = 0.8$$

$$m_s = \frac{y_2 - y_1}{L} = -0.6$$

Global to local transformation matrix,
$$T = \begin{pmatrix} 0.8 & -0.6 & 0 & 0 \\ 0 & 0 & 0.8 & -0.6 \end{pmatrix}$$

Element nodal displacements in global coordinates,
$$\mathbf{d} = \begin{pmatrix} u_2 \\ v_2 \\ u_4 \\ v_4 \end{pmatrix} = \begin{pmatrix} -0.0308148 \\ -0.121333 \\ 0 \\ 0 \end{pmatrix}$$

Element nodal displacements in local coordinates, $d_{\ell} = T d = \begin{pmatrix} 0.0481481 \\ 0. \end{pmatrix}$

Axial displacements at element ends, $d_1 = 0.0481481$ $d_2 = 0$

$$E = 29000$$
 $A = \frac{1}{2}$

Axial strain, $\epsilon = (d_2 - d_1)/L = -0.000200617$

Axial stress,
$$\sigma = \text{E}\epsilon = -5.8179$$
 Axial force = $\sigma A = -2.90895$

Solution for element 4

Nodal coordinates

Global to local transformation matrix, $T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

Element nodal displacements in global coordinates, $\mathbf{d} = \begin{pmatrix} \mathbf{u}_3 \\ \mathbf{v}_3 \\ \mathbf{u}_4 \\ \mathbf{v}_4 \end{pmatrix} = \begin{pmatrix} 0.0308148 \\ -0.138667 \\ 0 \\ 0 \end{pmatrix}$

Element nodal displacements in local coordinates, $d_{\ell} = T d = \begin{pmatrix} 0.0308148 \\ 0. \end{pmatrix}$

Axial displacements at element ends, $d_1 = 0.0308148$

$$E = 29000$$
 $A = \frac{1}{2}$

Axial strain, $\epsilon = (d_2 - d_1)/L = -0.000160494$

Axial force = σ A = -2.32716Axial stress, $\sigma = E\epsilon = -4.65432$

Solution for element 5

Nodal coordinates

Element node Global node number
$$x$$
 y 1 2 192 . 144 2 3 192 . 0 $x_1 = 192$. $y_1 = 144$. $x_2 = 192$. $y_2 = 0$ $L = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = 144$. Direction cosines: $\ell_s = \frac{x_2 - x_1}{1} = 0$. $m_s = \frac{y_2 - y_1}{1} = -1$.

$$-\sqrt{(y-y)^2+(y-y)^2}-144$$

Direction cosines:
$$\ell_s = \frac{x_2 - x_1}{L} = 0.$$

$$m_s = \frac{y_2 - y_1}{L} = -1.$$

Global to local transformation matrix, $T = \begin{pmatrix} 0. & -1. & 0 & 0 \\ 0 & 0 & 0. & -1. \end{pmatrix}$

Element nodal displacements in global coordinates, $\mathbf{d} = \begin{pmatrix} u_2 \\ v_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} -0.0308148 \\ -0.121333 \\ 0.0308148 \\ 0.129967 \end{pmatrix}$

Element nodal displacements in local coordinates, $\mathbf{d}_{\ell} = \mathbf{T} \mathbf{d} = \begin{pmatrix} 0.121333 \\ 0.138667 \end{pmatrix}$

Axial displacements at element ends, $d_1 = 0.121333$ $d_2 = 0.138667$

$$E = 29000$$
 $A = \frac{1}{2}$

Axial strain, $\epsilon = (d_2 - d_1)/L = 0.00012037$

Axial stress, $\sigma = \text{E}\epsilon = 3.49074$

Axial force = σ A = 1.74537

Solution summary

Nodal solution

	x-coord	y-coord	u	\mathbf{v}
1	0	144.	0	0
2	192.	144.	-0.0308148	-0.121333
3	192.	0	0.0308148	-0.138667
4	384.	0	0	0

Element solution

	Stress	Axial force
1	-5.8179	-2.90895
2	-4.65432	-2.32716
3	-5.8179	-2.90895
4	-4.65432	-2.32716
5	3.49074	1.74537

Support reactions

Node	dof	Reaction
1	$\mathbf{u_1}$	4.65432
1	\mathbf{v}_1	-1.74537
4	$\mathbf{u_4}$	-4.65432
4	V ₄	1.74537

Sum of applied loads \rightarrow (0 0)

Sum of support reactions \rightarrow (0 0)