

Programación III Escuela de Producción, Tecnología y Medio Ambiente Ingeniería en Computación - 2024

<u>Trabajo Práctico Nº 1 – Lógica Proposicional (repaso)</u>

1) Indique cuáles de las frases son proposiciones.

V/F	Frases
	¡Fuera!
	¿Qué día es hoy?
	El mes actual es junio
	En Argentina hay 10 empleos de programador
	¿Quiénes aprobarán el primer parcial?
	Ayúdame a bajar del auto
	Dos a la cuarta (2 ⁴) es 64
	Nieva
	Si tengo dinero y paso por una chocolatería entonces me compro chocolates
	Dos a la quinta (2 ⁵) es 32

- 2) Asigne variables proposicionales a las frases Verdaderas del punto 1).
- 3) Formalice en el lenguaje del cálculo proposicional las siguientes frases en lenguaje natural:

Frases en lenguaje natural	
1) Llueve	
2) Llueve y no me mojo	
3) No llueve y me mojo	
4) Llueve o nieva y no hay sol	
5) Llueve, graniza y nieva	
6) Si entro a una farmacia entonces debo sacar turno y debo esperar a que me llamen	
7) En invierno iremos al cine si y sólo si proyectan una película nueva	
8) Si Lalo va al aeropuerto o Lala va a la terminal, entonces llamaremos un taxi	
9) Si no llueve y no nieva entonces hay sol o hay niebla	
10) Lalo esquía si y sólo si hay nieve en la pista	
11) Si Lala desea construir un modelo entonces necesita un informático o un matemático	

Programación III Escuela de Producción, Tecnología y Medio Ambiente Ingeniería en Computación - 2024

- 4) Construya las tablas de verdad de los ejercicios 1), 2) y 3).
- 5) Formalice y pruebe la validez de los siguientes argumentos:
- 1) O no estudio lógica o el examen era conocido de antemano. Si el examen era conocido de antemano, entonces aprobaré lógica. Si apruebo lógica, apruebo programación III. Luego si estudio lógica, apruebo programación III.
- 2) Si Lala estudia, sacará el curso. Si no estudia, se divierte en clase. Si no saca el curso, no se divierte en clase. Así pues, Lala sacará el curso.
- 3) A los ggs les gustan los berberechos, pero no les gusta la carne o beben ginebra. Si beben ginebra, entonces se emborrachan o comen flan de postre. Por lo tanto, si a los ggs les gusta la carne, entonces si no se emborrachan comen flan de postre.
- 4) Si Lalo lleva pareja de ases, lleva poker o gana; si lleva poker, no lleva pareja de ases; si no sabe jugar al poker, no gana. Luego, si Lalo lleva pareja de ases, sabe jugar al poker.
- 6) Construya las tablas de verdad de los razonamientos del ejercicio 5) y diga qué tipo de fórmulas son desde el punto de vista semántico.
- 7) Construya la tabla de verdad de los teoremas siguientes y verifique si son tautologías:

$$p \to (p \lor p)$$

$$(p \to (q \to r)) \to (q \to (p \to r))$$

$$(\neg p \to p) \to \neg p$$

$$(p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$$

$$(p \to \neg p) \to \neg p$$