

Contact: Luis Emilio García-Castillo legcasti@ing.uc3m.es,
Adrián Amor aamor@ing.uc3m.es,
Sergio Llorente sllorent@ing.uc3m.es

uc3m Universidad Carlos III de Madrid



- 1 On the FEM Implementation of TX/RX Conditions in HOFEM
  - Existing FEM Formulation in HOFEM
  - Two-Port Network Parameters

- [Z]/[Y] Approach
  - FEM Formulation
  - Testing
  - HOFEM Implementation



- 1 On the FEM Implementation of TX/RX Conditions in HOFEM
  - Existing FEM Formulation in HOFEM
  - Two-Port Network Parameters

- [Z]/[Y] Approach
  - FEM Formulation
  - Testing
  - HOFEM Implementation



We start considering different alternatives to implement

the TX/RX conditions in the context of the present FEM formulation coded in HOFEM

- On the FEM Implementation of TX/RX Conditions in HOFEM
  - Existing FEM Formulation in HOFEM
  - Two-Port Network Parameters

- [Z]/[Y] Approach
  - FEM Formulation
  - Testing
  - HOFEM Implementation



# **TITULO**

Hola



- ① On the FEM Implementation of TX/RX Conditions in HOFEM
  - Existing FEM Formulation in HOFEM
  - Two-Port Network Parameters

- [Z]/[Y] Approach
  - FEM Formulation
  - Testing
  - HOFEM Implementation



# **TITULO**

Hola



- 1 On the FEM Implementation of TX/RX Conditions in HOFEM
  - Existing FEM Formulation in HOFEM
  - Two-Port Network Parameters

- [Z]/[Y] Approach
  - FEM Formulation
  - Testing
  - HOFEM Implementation



We describe the implementation of the TX/RX conditions uisng the characterization of the material sheet in terms of

its immittance (impedance/admittance) matrix

- On the FEM Implementation of TX/RX Conditions in HOFEM
  - Existing FEM Formulation in HOFEM
  - Two-Port Network Parameters

- [Z]/[Y] Approach
  - FEM Formulation
  - Testing
  - HOFEM Implementation



### Formulation



$$\begin{split} \hat{n}_1 \times \left(\mu_r^{-1} \nabla \times \mathbf{E}_1\right) - \frac{jk_0}{\eta} y_{11} \hat{n}_1 \times \left(\hat{n}_1 \times \mathbf{E}_1\right) - \\ - \frac{jk_0}{\eta} y_{12} \hat{n}_2 \times \left(\hat{n}_2 \times \mathbf{E}_2\right) = 0, \\ \hat{n}_2 \times \left(\mu_r^{-1} \nabla \times \mathbf{E}_2\right) - \frac{jk_0}{\eta} y_{21} \hat{n}_1 \times \left(\hat{n}_1 \times \mathbf{E}_1\right) - \end{split}$$

 $-\frac{jk_0}{n}y_{22}\hat{n}_2\times(\hat{n}_2\times\mathbf{E}_2)=0,$ 

Note that  $y_{xx}$  are relative to the vacuum admittance.

# Formulation (cont.)

Find  $\mathbf{E} \in \mathbf{H}_0(\operatorname{curl}, \Omega)$  such that

$$\begin{split} &\left(\nabla\times\mathbf{w},\mu_{r}^{-1}\nabla\times\mathbf{E}\right)_{\Omega}-k_{0}^{2}\Big(\mathbf{w},\varepsilon_{r}\mathbf{E}\Big)_{\Omega}+jk_{0}\Big\langle\,\hat{n}\times\mathbf{w},\hat{n}\times\mathbf{w}\Big\rangle_{\Gamma_{C}}=\\ &\left(\mathbf{w},\mathbf{F}\right)_{\Omega}-\Big\langle\,\hat{n}\times(\mathbf{w}\times\hat{n}),\mathbf{\Psi}_{N}\Big\rangle_{\Gamma_{N}}-\Big\langle\,\hat{n}\times(\mathbf{w}\times\hat{n}),\mathbf{\Psi}_{C}\Big\rangle_{\Gamma_{C}}\quad\forall\,\mathbf{w}\in\mathbf{H}_{0}(\mathsf{curl},\Omega). \end{split}$$

with

$$\begin{split} \left(\mathbf{w}, \mathbf{v}\right)_{\Omega} &= \int_{\Omega} \mathbf{w}^* \cdot \mathbf{v} d\Omega, \\ \left\langle \mathbf{w}, \mathbf{v} \right\rangle_{\Gamma} &= \int_{\Gamma} \mathbf{w}^* \cdot \mathbf{v} d\Gamma. \end{split}$$



# Formulation (cont.)

For *upper* elements on  $\Gamma_{\rm TR}$  (side 1), we have

 $LHS_1$ 

$$+ j \frac{k_0}{\eta} \left\langle \hat{\boldsymbol{n}} \times (\mathbf{w}_1 \times \hat{\boldsymbol{n}}), y_{11} \hat{\boldsymbol{n}} \times (\mathbf{w}_1 \times \hat{\boldsymbol{n}}) \right\rangle_{\Gamma_{TR}} + j \frac{k_0}{\eta} \left\langle \hat{\boldsymbol{n}} \times (\mathbf{w}_1 \times \hat{\boldsymbol{n}}), y_{12} \hat{\boldsymbol{n}} \times (\mathbf{w}_2 \times \hat{\boldsymbol{n}}) \right\rangle_{\Gamma_{TR}} = RHS_1,$$

whereas for lower elements (side 2), we get

$$LHS_2$$

$$+j\frac{k_0}{\eta}\Big\langle \hat{n}\times(\mathbf{w}_2\times\hat{n}),y_{21}\hat{n}\times(\mathbf{w}_1\times\hat{n})\Big\rangle_{\Gamma_{\mathsf{TR}}}+j\frac{k_0}{\eta}\Big\langle \hat{n}\times(\mathbf{w}_2\times\hat{n}),y_{22}\hat{n}\times(\mathbf{w}_2\times\hat{n})\Big\rangle_{\Gamma_{\mathsf{TR}}}=$$
RHS<sub>2</sub>.

GREMA (1)

## FEM implementation

- The DOFs will be doubled for the faces and the interior edges.
- The exterior edges of  $\Gamma_{\rm TR}$  are not doubled.
  - ▶ Identified by code: the edges associated to two faces are interior.
  - $\blacktriangleright$  If the boundaries of the sheet belong to PBC, the edges of  $\Gamma_{\rm TR}$  are also doubled



- On the FEM Implementation of TX/RX Conditions in HOFEM
  - Existing FEM Formulation in HOFEM
  - Two-Port Network Parameters

- [Z]/[Y] Approach
  - FEM Formulation
  - Testing
  - HOFEM Implementation



### Problem to be solved



Simulation of an infinite medium with transmission/reflection sheet that divides the space into two halves.

 Γ<sub>TR</sub>: Transmission/reflection sheet defined with

$$\mathbf{Y} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix}.$$

- $\Gamma_C$ : ABC with excitation with polarization  $E_y$
- The vertical faces are set to PBC

### **Testbench**

- $\mathbf{Y} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ : sanity check, we should get same result as the two halves with a PMC.
- $\bullet$   $\mathbf{Y}=\mathbb{I}:$  sanity check, we should get same result as the two halves with an ABC.
- ullet Change lower  $\Gamma_C$  by PEC and solve analytic problem with four media: final test.
  - ▶ Obtain parameters for **Y** of the equivalent problem.
  - Get same solutions for the electric field.
  - ► Transparent? Puede ser que aproximar con 1e6. Quizás con ABCD.



- On the FEM Implementation of TX/RX Conditions in HOFEM
  - Existing FEM Formulation in HOFEM
  - Two-Port Network Parameters

- [Z]/[Y] Approach
  - FEM Formulation
  - Testing
  - HOFEM Implementation



## **HOFEM** implementation

- New boundary condition: TRBC.
  - ▶ We define a normal,  $\hat{n}_{TRBC}$  to detect lower and upper side. Upper side is the closer to  $\hat{n}_{TRBC}$ .
  - ► Definition of y<sub>11</sub>, y<sub>12</sub>, y<sub>21</sub>, and y<sub>22</sub> as relative values with respect to vacuum admittance.
- Two options for implementation
  - ▶ Integers defined in tetrahedra\_element.
  - ► Allocatable array of 1 × N<sub>elem,TR</sub> where the two positions (stored in boundary conditions module, accessible from mesh\_reordering\_module and elementary\_terms\_3D):
    - **1** 10× Neighbor element identifier (to couple  $\mathbf{w}_2$  and  $\mathbf{w}_1$ ).
    - ② Integer 1,2 (side) (to extract the values of  $y_{11}, y_{12}, y_{21}$ , and  $y_{22}$ ).
- Significant methods involved:
  - ► Postprocessing over reordering\_DOF\_algorithm\_3D.
  - calc\_boundary\_3D\_nxNi\_nxNi\_term\_of\_this\_element.
  - Construction of the MUMPS-related matrix: different number of non-zeros per element, assembly of coupled elements (now single-element assembly).

