Circuitos Combinacionales

Fundamentos de Computadores Escuela Politécnica Superior. U.A.M

Índice de la Unidad 2

U2. Circuitos combinacionales

U2.1. Circuitos combinacionales básicos

U2.1.1. Decodificador.

U2.1.2. Multiplexor y Demultiplexor.

U2.1.3. Codificador de prioridad.

U2.1.4. Conversor de código.

U2.1.5. Comparador de bits.

U2.2. Uso de decodificadores y multiplexores como generadores de funciones

Circuitos combinacionales básicos

- Decodificador (n-2ⁿ): n entradas y 2ⁿ salidas (sólo una activa).
- Codificador (2ⁿ-n): n entradas (una o varias activas) y lg₂n salidas.
- Multiplexor (n-1): n entradas, 1 salida y lg₂n señales de control.
- Demultiplexor (1-n): 1 entrada, n salidas y lg₂n señales de control.
- Conversor de código (n-m): n entradas y m salidas, sin relación entre ellas.
- Otros C. combinacionales:
 - Comparadores
 - Semisumadores y Sumadores

- Circuito combinacional con n entradas y 2ⁿ salidas
- Activa una única línea de salida para cada combinación de las líneas de entrada
- Decodificador 2-4. 2 entradas y 2² = 4 salidas
 - Tabla de verdad y ecuaciones:

A_1	A_0	<i>O</i> ₃	O ₂	O_1	<i>O</i> ₀
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

$$O_0 = \overline{A_1} \cdot \overline{A_0}$$
 $O_1 = \overline{A_1} \cdot A_0$
 $O_2 = A_1 \cdot \overline{A_0}$
 $O_3 = A_1 \cdot A_0$

Decodificador 2-4. Circuito lógico:

Circuito esquemático

Esquema de bloque

- Decodificador 2-4 con entrada de habilitación (Enable)
 - Enable activado: El decodificador funciona normalmente
 - Enable desactivado: Ninguna salida activa. Circuito "inhabilitado"
 - Tabla de verdad y ecuaciones:

Е	A_1	A_0	<i>O</i> ₃	O ₂	O_1	<i>O</i> ₀
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0

$$O_0 = \mathbf{E} \cdot \overline{A_1} \cdot \overline{A_0}$$
 $O_1 = \mathbf{E} \cdot \overline{A_1} \cdot A_0$
 $O_2 = \mathbf{E} \cdot A_1 \cdot \overline{A_0}$
 $O_3 = \mathbf{E} \cdot A_1 \cdot A_0$

Decodificador 2-4 con habilitación. Circuito lógico:

Circuito esquemático

Esquema de bloque

Decodificador 3-8. 3 entradas y 2³ = 8 salidas

Tabla de verdad y ecuaciones

A ₂	A_1	A_0	O ₇	O ₆	O ₅	O ₄	O ₃	O ₂	O_1	<i>O</i> ₀
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

$$O_0 = \mathbf{m}_0 = \overline{A_2} \cdot \overline{A_1} \cdot \overline{A_0}$$
 $O_1 = \mathbf{m}_1 = \overline{A_2} \cdot \overline{A_1} \cdot A_0$
 $O_2 = \mathbf{m}_2 = \overline{A_2} \cdot A_1 \cdot \overline{A_0}$
 $O_3 = \mathbf{m}_3 = A_2 \cdot \overline{A_1} \cdot \overline{A_0}$
 \vdots
 $O_7 = \mathbf{m}_7 = A_2 \cdot A_1 \cdot A_0$

- Circuito combinacional con n entradas y log₂n salidas
 - Codificador Elemental: Para una única línea de entrada activa, codifica a la salida un código que la identifica (número de la entrada).
 - Codificador de Prioridad: Dadas varias líneas de entrada activas, codifica a la salida un código (número de la entrada), que identifica a la más prioritaria.

- Codificador de prioridad 8-3 con Enable
 - Entre varias entradas activas, se asigna la mayor prioridad a la entrada con índice más alto.

Tabla de verdad

Е	I_7	I_6	I_5	I_4	I_3	I_2	I_1	Io	A ₂	A_1	A_0
0	X	X	X	X	X	X	X	X	0	0	0
1	1	X	X	X	X	X	X	X	1	1	1
1	0	1	X	X	X	X	X	X	1	1	0
1	0	0	1	X	X	X	X	X	1	0	1
1	0	0	0	1	X	X	X	X	1	0	0
1	0	0	0	0	1	X	X	X	0	1	1
1	0	0	0	0	0	1	X	X	0	1	0
1	0	0	0	0	0	0	1	X	0	0	1
1	0	0	0	0	0	0	0	1	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0

Codificador de prioridad 8-3 con Enable

Ecuaciones:

$$A_{0} = (I_{7} + \overline{I_{7}} \overline{I_{6}} I_{5} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} I_{3} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} I_{3} \overline{I_{2}} I_{1}) E$$

$$A_{1} = (I_{7} + \overline{I_{7}} I_{6} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} I_{3} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} \overline{I_{4}} \overline{I_{3}} I_{2}) E$$

$$A_{2} = (I_{7} + \overline{I_{7}} I_{6} + \overline{I_{7}} \overline{I_{6}} I_{5} + \overline{I_{7}} \overline{I_{6}} \overline{I_{5}} I_{4}) E$$

• Codificador de prioridad 8-3 con Enable

Circuito:

- Realiza la transmisión de datos desde una entrada seleccionable hacia una salida única
- Se caracteriza por tener n líneas de control que seleccionan (multiplexan) una de las 2ⁿ líneas de entrada y la transmiten a la salida
- Cada combinación de las líneas de control activa una puerta
- Hay dos tipos de entradas:
 - Entradas de datos
 - Entradas de control

Multiplexor 4-1. 4 entradas (datos), 2 entradas (control) y 1 salidaTabla de verdad, ecuación y circuito:

S ₁	S ₀	Salida (Z)
0	0	Io
0	1	\mathtt{I}_1
1	0	I_2
1	1	I_3

Circuito esquemático

ANDS

Esquema de bloque

 Multiplexor 8-1 con entrada de habilitación. 8 entradas (datos), 4 entradas (control) y 1 salida

Tabla de verdad y ecuación

E	S ₂	S ₁	S ₀	Z
0	X	X	X	0
1	0	0	0	Io
1	0	0	1	I_1
1	0	1	0	I_2
1	0	1	1	I_3
1	1	0	0	I ₄
1	1	0	1	I_5
1	1	1	0	I ₆ I ₇
1	1	1	1	I ₇

$$Z = (S_2 S_1 S_0 I_7 + S_2 S_1 \overline{S_0} I_6 + S_2 \overline{S_1} S_0 I_5 + S_2 \overline{S_1} \overline{S_0} I_4 + \overline{S_2} S_1 S_0 I_3 + \overline{S_2} S_1 \overline{S_0} I_2 + \overline{S_2} \overline{S_1} S_0 I_1 + \overline{S_2} \overline{S_1} \overline{S_0} I_0) E$$

Multiplexor 8-1 con entrada de habilitación

Demultiplexor

- Realizan la función inversa del multiplexor
- Puede seleccionarse la transmisión de un dato desde una única línea de entrada hacia una de las posibles líneas de salida
- Utilizando n líneas de control, transmite (demultiplexa) la información de su única línea de entrada por cualquiera de sus 2ⁿ líneas de salida
- Es lo mismo que un decodificador con enable, siendo la línea de datos equivalente al enable

Demultiplexor

- Demultiplexor 1-4. 1 entrada (dato), 2 entradas (control) y 4 salidas
 - Tabla de verdad y ecuaciones:

S ₁	S ₀	O ₃	O ₂	O_1	<i>O</i> ₀
0	0	0	0	0	I
0	1	0	0	I	0
1	0	0	I	0	0
1	1	I	0	0	0

$$O_0 = \overline{S_1} \cdot \overline{S_0} \cdot I$$
 $O_1 = \overline{S_1} \cdot S_0 \cdot I$
 $O_2 = S_1 \cdot \overline{S_0} \cdot I$
 $O_3 = S_1 \cdot S_0 \cdot I$

Demultiplexor

• Demultiplexor 1-4. Circuito:

Circuito esquemático

Esquema de bloque

- Dada una palabra de n bits a la entrada se convierte o traduce a otra palabra de m bits a la salida.
- No existe una relación entre el número de líneas de entrada y de salida.
- Ambas palabras representan la misma información en distintos códigos.

- Conversor BCD a 7 segmentos
 - Acepta código BCD (0..9) en sus 4 entradas y proporciona 7 salidas capaces de excitar un display de 7 segmentos que indican el dígito decimal de la entrada.
 - Diagrama de bloques de la lógica:

- Conversor BCD a 7 segmentos
 - Segmentos activados para cada dígito decimal

Dígito	Segmentos activados
0	a,b,c,d,e,f
1	b,c
2	a,b,d,e,g
3	a,b,c,d,g
4	b,c,f,g
5	a,c,d,f,g
6	a,c,d,e,f,g
7	a,b,c
8	a,b,c,d,e,f,g
9	a,b,c,d,f,g

- Conversor BCD a 7 segmentos
 - Tabla de verdad:

Digito		Entr	adas		Salidas de segmentos						
Decimal	D	С	В	Α	а	Ь	С	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
10	1	0	1	0	X	X	X	X	X	X	X
11	1	0	1	1	X	X	X	X	X	X	X
12	1	1	0	0	X	X	X	X	X	X	X
13	1	1	0	1	X	X	X	X	X	X	X
14	1	1	1	0	X	X	X	X	X	X	X
15	1	1	1	1	X	X	X	X	X	X	X

Comparador de bits

- Comparador de bits: circuito con 2 entradas y 3 salidas que se utiliza para comparar bits
- Comparador de 2 bits. Tabla de verdad, ecuaciones y circuito

A	В	A>B	A=B	A <b< th=""></b<>
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

$$A > B = A\overline{B}$$
 $A = B = \overline{A} \oplus B$
 $A < B = \overline{A}B$

Funciones lógicas con DEC o MUX

Ejemplo:

A) Diseñar F mediante un Decodificador 4-16 y una puerta OR

Α	В	С	D	F
0	0	0	0	1
0	0	0		$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0 1
0	1	1	0	0
0	1	1	1 0	0
1	0 0	0	0	1 0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	1 0 1 0	1
1	1	0	1	0
O O O O O O O O O O O O O O O O O O O	1	1	0	1 0 1 0 0 0
1	1	1	1	o

Eicuela

Politécni a Superior

- Asociar las variables de la función lógica a las entradas del decodificador.
- Equivalente a suma de productos.

Funciones lógicas con DEC o MUX

Ejemplo: | B) Diseñar F mediante un Multiplexor 8-1

Α	В	С	D	F	B—
0	0	0	0	1	Un
0	0	0	1	1	Si es 11, se pone 1 en su entrada
0	0	1	0	0	
0	0	1	1	1	Si es 01, se pone D en su entrada
0	1	0	0	0	$0 \longrightarrow 3$
0	1	0	1	1	/D ——— 4
0	1	1	0	0	Si og 00 ga nana 0 an gu antrada /D — 5
0	1	1	1	0	$\left.\right\}$ Si es 00, se pone 0 en su entrada $\left.\right\rangle$ $\left.\right\rangle$
1	0	0	0	1	0 — /
1	0	0	1	0	
1	0	1	0	1	Si es 10, se pone /D en su entrada
1	0	1	_1_	0	
1	1	0	0	1	A
1	1	0	_1_	0	1. Asociar variables (A,B,C,D,) a las entradas de contro
1	1	1	0	0	2. Las variables no asociadas al control, forman parte de
1	1	1	1 1	\square	

- ol $(S_{n}...S_{2},S_{1},S_{0})$.
- e las entrada del MUX
- 3. Las variables asociadas al control, NUNCA forman parte las entrada del MUX
- 4. Algunas entradas al MUX pueden ser '0' ó '1'

