YAMAHA L 5 I

YMZ284

Software-controlled Sound Generator (SSGL)

OVERVIEW

The YMZ284(SSGL) is a melody and effect sound generator LSI, having square wave, noise and envelope generators.

The YMZ284 is packaged in 16-pin DIP with easy control, eliminating the I/O port and improving CPU interface from the YM2149 (SSG).

FEATURES

- Three sequence square wave generators and one noise generator, software-compatible with the YM2149(SSG)
- 3 built-in 5-bit D/A convertors and mixed output
- CPU interface through / CS, / WR control signal and 8 bit data bus
- Wide voicing range of 8 octaves
- Smooth attenuation by wide dynamic range envelope generator
- Power down mode
- +5V single power supply, silicon gate CMOS process
- 16-pin plastic DIP(YMZ284-D) or 16-pin plastic SOP (YMZ284-M).

■ PIN OUT DIAGRAM

Top View (16pin DIP, 16pin SOP)

■ PIN DESCRIPTION

No	Name	I/O	Function
1	/WR	I	CPU interface Write enable
2	/cs	I	CPU interface Chip select
3	A 0	I	CPU interface Address/Data select
4	VDD	_	+5V power supply
5	SO	О	D/A convertor output for SSG
6	GND	_	Ground
7	φM	I	Master clock input
8	/IC	I+	Initial clear input
9	D 7	I	CPU interface data bus (MSB)
10	D 6	I	CPU interface data bus
11	D 5	I	CPU interface data bus
12	D 4	I	CPU interface data bus
13	D 3	I	CPU interface data bus
14	D 2	I	CPU interface data bus
15	D 1	I	CPU interface data bus
16	D 0	I	CPU interface data bus (LSB)

Note) I+: Built-in pull-up registor

■BLOCK DIAGRAM

FUNCTIONS

1. ϕM

Master clock input pin.

Frequency is 1MHz to 4MHz.

2. D0~D7

8 bit data bus.

3. /CS · /WR · A 0

Control write address and data from 8 bit data bus.

/cs	/WR	A 0	Function	
L	L	L	Address write mode	
L	L	Н	Data write mode	

4. /IC

'L' level resets the system clearing all register values.

5. SO

Analog output pin

6. VDD

+5V power supply pin

7. GND

Ground pin

IFUNCTION DESCRIPTION

All functions of SSGL are controlled by the 15 internal registers.

Music generatorGenerates square waves of a different frequencies for each channel (A, B, and C).
Noise generatorGenerates pseudo-random waveforms (variable frequency).
MixerMixes 3-channels (A, B, and C) music and 1-channel noise generator output.
Volume controlConstant level or variable level is given for each of the three channels (A, B, and C).
Constant levels are controlled by the CPU, and variable levels by the envelope generator.
Envelope generatorGenerates various types of attenuation.
D/A convertorOutputs mixed analog signal.

REGISTER ARRAY

ADDR	Function	D7	D 6	D 5	D 4	D3	D2	D1	D 0		
\$ 00	Channel A forman		•	81	bit fine to	ne adjustm	ent	•			
\$ 01	Channel A frequency					4 bit rough tone adjustment					
\$ 02	Channel D for			8 1	bit fine to	ne adjustm	ent				
\$ 03	Channel B frequency					4 bi	t rough to	t rough tone adjustment			
\$ 04	Charact C for any			8 1	oit fine to	ne adjustm	ent				
\$ 05	Channel C frequency					4 bi	t rough to	ne adjusti	nent		
\$ 06	Noise frequency	5 bit noise frequency									
\$ 07	Miyor ootting		Noise			Tone					
φ 07	Mixer setting			С	В	Α	С	В	А		
\$ 08	Channel A level				M	L3	L2	L1	LO		
\$ 09	Channel B level				M	L3	L2	L1	LO		
\$ 0A	Channel C level				М	L3	L2	L1	LO		
\$ 0B	E-valore frances				8 bit fine	adjustment	t		•		
\$ 0C	Envelope frequency	8 bit rough adjustment									
\$ 0D	Envelope shape					CONT	ATT	ALT	HOLD		
\$ 0F	Control power	'0'	'0'	'0'	'0'				•		

Note) 1: D7, D6, D5, and D4 bit of register \$0F must be '0'.

REGISTER FUNCTION

Music frequency setting (\$00~\$05)

The frequency f_{τ} of the square wave generated by each music generator (A, B, and C) is calculated by the following equation.

$$f_T = \frac{f_{\text{Master}}}{32TP}$$

	D7	D6	D 5	D4	D3	D 2	D1	D 0
\$ 00 (CH-A)								
\$ 02 (CH-B)	TP 7	TP 6	TP 5	TP 4	TP 3	TP 2	TP 1	TP 0
\$ 04 (CH-C)								

	D7	D 6	D 5	D4	D3	D2	D1	D 0
\$01 (CH-A)								
\$ 03 (CH-B)					TP11	TP10	TP 9	TP8
\$ 05 (CH-C)								

f_{Master} is the frequency of master clock.

$$TP = TP11 * 2^{11} + TP10 * 2^{10} + TP9 * 2^{9} + TP8 * 2^{8} + TP7 * 2^{7} + TP6 * 2^{6} + TP5 * 2^{5} + TP4 * 2^{4} + TP3 * 2^{3} + TP2 * 2^{2} + TP1 * 2 + TP0$$

Noise generator setting (\$06)

The noise frequency f_N is calculated by the following equation.

$$f_N = \frac{f_{Master}}{32NP}$$

	D 7	D6	D 5	D 4	D3	D2	Dl	D 0
\$ 06				NP 4	NP 3	NP 2	NP 1	NP 0

f_{Master} is the frequency of the master clock.

$$NP=NP4*2^4+NP3*2^3+NP2*2^2+NP1*2+NP0$$

Mixer setting (\$07)

Setting '0' enables sound output. Mixed sound is output when both Noise and Tone outputs are set for the same channel.

	D7	D6	D 5	D4	D3	D2	D1	D 0	
				Noise			Tone		
\$ 07			С	В	A	С	В	A	

Volume control and D/A convertor (\$08~\$0A)

The audio output level from the D/A convertors for the three channels (A, B, and C) is controlled as follows.

When M=0, the output level is determined by the 4 bits of L3, L2, L1 and L0.

	D7	D6	D 5	D4	D3	D2	D1	D 0
\$ 08 (CH-A)								
\$ 09 (CH-B)				M	L3	L2	LI	LO
\$ 0A (CH-C)								

When M=1, the output level is determined by the 5 bits of E4, E3, E2, E1 and E0 of the envelope generator of the SSGL. (This output level is variable as $E4 \sim E0$ change over time.)

When the maximum amplitude of the 5-bit D/A convertor is normalized to 1V, the output levels shown in Fig.1 are obtained.

Fig.1 Output level of D/A convertor

The left half of the diagram shows fixed levels set by L3, L2, L1 and L0 bits. The right half of the diagram shows output levels set by E4, E3, E2, E1 and E0 bits.

● Envelope frequency setting (\$0B~\$0C)

The envelope repetition frequency f_{E} is calculated by the following equation.

	D7	D6	D 5	D 4	D3	D 2	D1	D 0
\$ 0B	EP 7	EP 6	EP 5	EP 4	EP3	EP 2	EP 1	EP 0

$$f_E = \frac{f_{Master}}{512EP}$$

	D 7	D 6	D 5	D 4	D3	D 2	D1	D 0
\$ 0C	EP15	EP14	EP13	EP12	EP11	EP10	EP 9	EP8

f_{Master} is the frequency of the master clock.

 $EP = EP15 * 2^{15} + EP14 * 2^{14} + EP13 * 2^{13} + EP12 * 2^{12} + EP11 * 2^{11} + EP10 * 2^{10} + EP9 * 2^{9} + EP8 * 2^{8} + EP7 * 2^{7} + EP6 * 2^{6} + EP5 * 2^{5} + EP4 * 2^{4} + EP3 * 2^{3} + EP2 * 2^{2} + EP1 * 2 + EP0$

The period of the actual frequency fea used for the nvelope generated is 1/32 of the envelope repetition period (1/fe).

Envelope shape control (\$0D)

The envelope generator counts the envelope clock f_{EA} 32 times for each envelope pattern cycle. The envelope level is determined by the 5 bit output (E4 \sim E0) of the counter.

	D 7	D 6	D 5	D 4	D3	D 2	D1	D 0
\$ 0D					CONT	АТТ	ALT	HOLD

The shape of this envelope is created by increasing, decreasing, stopping, or repeating this counter.

Volume control and D/A convertor (\$08~\$0A)

The audio output level from the D/A convertors for the three channels (A, B, and C) is controlled as follows.

When M=0, the output level is determined by the 4 bits of L3, L2, L1 and L0.

	D7	D 6	D 5	D 4	D3	D2	D1	D 0
\$ 08 (CH-A) \$ 09 (CH-B)				М	L3	L2	Li	LO
\$0A (CH-C)								

When M=1, the output level is determined by the 5 bits of E4, E3, E2, E1 and E0 of the envelope generator of the SSGL. (This output level is variable as $E4 \sim E0$ change over time.)

When the maximum amplitude of the 5-bit D/A convertor is normalized to 1V, the output levels shown in Fig.1 are obtained.

Fig.1 Output level of D/A convertor

The left half of the diagram shows fixed levels set by L3, L2, L1 and L0 bits. The right half of the diagram shows output levels set by E4, E3, E2, E1 and E0 bits.

Below envelope types are selected by CONT, ATT, ALT and HOLD setting.

D_3	D_2	D ₁	D_0	Envelope shape
CONT	ATT	ALT	HOLD	Envelope shape
0	0	×	×	
0	1	×	×	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

 \rightarrow 1 / f_E \leftarrow Repetition period of envelope

ELECTRICAL CHARACTERISTICS

1. Absolute maximum ratings

Item	Symbol	mbol Rating	
Power supply voltage	V_{DD}	$-0.3 \sim 7.0$	V
Input voltage	V_1	$V_{SS} - 0.3 \sim V_{DD} + 0.3$	V
Storage temperature	Tstg	$-50 \sim 125$	°C

2. Recommended operating conditions

Item	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	$V_{ exttt{DD}}$	4.75	5	5.25	V
Operation temperature	Тор	0	25	70	°C

3. DC Characteristics (Conditions : Ta = $0 \sim 70$ °C, $V_{DD} = 5.0 \pm 0.25 V$)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Input highlevel voltage	V _{IH}	*1	2.2			V
Input lowlevel voltage	V _{IL}	*1			0.8	V
Input highlevel voltage	VIH	*2	3.5			V
Input lowlevel voltage	VIL	*2			1.0	V
Input leak current	ILI	$V_1 = 0 \sim 5V$, *1	-10		10	μА
Pull-up registance	Ru	*2	60	250	600	kΩ
Input capacity	Cı	*3			10	pF
Power supply current	IDD				10	mA

Note) *1: Applied to all input pins except /IC.

*2: Applied to /IC.

*3: Applied to all input pins.

4. Analog Characteristics (Conditions: Ta=0~70°C, VDD=5.0±0.25V)

Item	Symbol	Condition	Min.	Typ.	Max.	Unit
Analog output voltage	VOA	*1	1.50	1.70	1.90	V

Note) *1: Applied to SO pin. Maximum volume, $R_L=1k\Omega$, peak to peak.

5. AC Characteristics (Conditions : $Ta = 0 \sim 70^{\circ}\text{C}$, $V_{DD} = 5.0 \pm 0.25 \text{V}$)

Item	Symbol	Min.	Typ.	Max.	Unit
Master clock frequency	fc	1		4	MHz
Master clock duty	D	40		60	%
Master clock rise time	t _R			20	ns
Master clock fall time	tr			20	ns
Reset pulse width	ticw	5			μS
Address setup time	tas	20			ns
Address hold time	tah	10			ns
Chip select write width	tcsw	30			ns
Write pulse write width	tws	0			ns
Write data hold time	twн	0			ns
Write data setup time (Address)	twdsa	10			ns
Write data setup time (Data)	twdsd	10			ns
Write data hold time (Address)	twdha	10			ns
Write data hold time (Data)	twohd	10			ns

6. Timing diagram

(1) Master clock timing

(2) Reset timing

(3) CPU interface timing

■ EXTERNAL DIMENSIONS

YMZ284-D

YMZ284-M

The specifications of this product are subject to improvement changes without prior notice.

-AGENCY-

- YAMAHA CORPORATION

Address inquiries to : Semi-conductor Sales Department

■ Head Office

203, Matsunokijima, Toyooka-mura. Iwata-gun, Shizuoka-ken, 438-01 Electronic Equipment business section Tel. 0539-62-4918 Fax. 0539-62-5054 2-17-11, Takanawa, Minato-ku,

■ Tokyo Office

Tokyo, 108 Tel. 03-5488-5431 Fax. 03-5488-5088

■ Osaka Office 3-12-9, Minami Senba, Chuo-ku,

Osaka City, Osaka, 542 Shinsaibashi Plaza Bldg, 4F Tel. 06-252-7980 Fax. 06-252-5615

YAMAHA Systems Technology. 981 Ridder Park Drive San Jose, CA95131 ■ U.S.A. Office Tel. 408-437-3133 Fax. 408-437-8791

