3.1.2 Metal Nitride CVD - Conductive Diffusion Barriers

- Introduction Challenges
- Comparison of diffusion barrier deposition techniques status
- Metal and metal nitride CVD precursors
- CVD of TiN
- CVD of WN

Application of (transistion) metal nitride films:

- Gate electrode work function adjustment
- Barrier/liner for W-CVD
- ➤ Barrier/liner for Cu damascene interconnects (may also act as CMP stop layer depending on material)

TECHNISCHE UNINERSOTÄT

Advanced Integrated Circuit Technology

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited. Chapter 3.1.5 - 1

Status: 01.04.2014

Thin CVD films in copper Damascene metallization

Conducting barriers (PVD, CVD, ALD): (Ta, TaN/Ta, TiN, WN)

Diffusion barrier against Cu diffusion and drift

- CMP stop for Cu CMP
- Liner for Cu deposition (adhesion, low interface diffusion EM)

Line resistance: impact of barrier resistivity and thickness

- Impact of barrier thickness significant
- 1/5 of barrier thickness → decreases line resistance by half
- Thickness impact increases with further scaling (not shown here)
- Resistivity of barrier negligible

Via resistance: impact of barrier resistivity

- Impact of barrier resistivity and thickness significant for both technology nodes
- •Impact increases with further scaling

Node	via	via	barrier thickness		
	diameter	height	side	bottom	
130	170	255	8	16	
65	93	135	4	9	

Chapter 3.1.5 - 3

Requirements for conducting CVD barriers in copper interconnects

Unauthorized copying and distribution is prohibited

Diffusion Barriers:

- <u>Ultrathin</u>, but nevertheless <u>very</u> <u>stable</u>
 - High density / no or stuffed diffusion paths
 - Low defect level
 - Thermodynamically stable
- Good adhesion to underground and Cu
- Low stress
- Low resistivity:
 e.g. < (1000... 300) μΩcm
- Conformal (may cause CMP rework: if stop on barrier is used)

1. 1. SEM image of copper interconnects on Intel's 90 nm process generation. The liner film consumes ~15% of the interconnect crosssectional area. (Source: Intel)

Advanced Integrated Circuit Technology

Deposition techniques for barriers

CVD	ALD	Electroless	
	Atomic layer deposition	•Use as cap layer: CoWP for better interface Cu/cap electromigration	
• Industrial standard: TiN (e.g. for W-CVD)	•Research focus: different materials (TiN, WCN; TaN and others)		
Adva	ntages		
 Good process control High step coverage 	Potential of 100% step coverageVery thin closed layers	 Selective Self aligned → no texturing step 	
Disadva	antages		
 Partly high deposition Partly use of toxic reactants Risk of particle formation using NH₃ 	•Nucleation strongly depends on surface state	 Cleaning step of the Cu and ILD surface Activation step of Cu surface to improve catalytic nature 	
	Chemical vapour deposition Industrial standard: TiN (e.g. for W-CVD) Adva Good process control High step coverage Partly high deposition T Partly use of toxic reactants Risk of particle	Chemical vapour deposition Industrial standard: TiN (e.g. for W-CVD) Advantages Good process control High step coverage Partly high deposition T Partly use of toxic reactants Risk of particle Atomic layer deposition Research focus: different materials (TiN, WCN; TaN and others) Potential of 100% step coverage Very thin closed layers Nucleation strongly depends on surface state	

Advanced Integrated Circuit Technology

Unauthorized copying and distribution is prohibited

Chapter 3.1.5 - 5

Precursors for barrier CVD

Precursors

Metal organic compounds

• Carbonyls, alkenes, alkynes, arenes, cyclopentadienyls, β-diketonates

- Big diversity of compounds and properties
- Big effort in design of new precursors
- Often not available commercially
- High C and O contaminations in the
- Vapour pressure of at least 13 Pa essential
 - → for a sufficiently high deposition rate
 - → excludes many potential precursors because thermal decomposition before reaching a sufficiently high vapour pressure

Halide chemistry

- MeF_x, MeCl_x, MeBr_x Mel_x
- Available commercially
- Mostly solids → low volatility
- Generally no thermal decomposition below 500°C
- Halogen-contaminated films
- Corrosive products → e.g. HF (addition of reducing agents H₂ or SiH₄)
- Toxic

Titanium nitride CVD

- Application and integration aspects
- Precursors and reactions
- Example:

MOCVD of TiN using TDMAT precursor

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 3.1.5 - 7

TiN CVD: Application and integration aspects

TiN: A multi functional material in semiconductor industry

Deposition techniques: PVD (reactive sputtering), ALD and CVD (Variety of processes commercially available for different applications)

Fields of application:

- Improving electromigration performance of Al interconnects as base and cap layer
- Glue layer / liner for metal deposition (e.g. for W on dielectric = adhesion promoter)
- Lithography: Anti reflective coating (ARC)
 Hard mask (HM) material in adv. patterning schemes
- Barrier layer to prevent undesired material interactions, e.g. between:
 - Cu and dielectrics: on-chip interconnects and through silicon vias (TSVs)
 - WF₆ or HF in W-CVD and other materials (Si, Ti silicide, Al) protect contact from aggressive fluorine chemistry during W-CVD
- High aspect ratio contacts, combination of TiSi₂ and TiN liner for tungsten plugs – CVD: use of TiCl₄ precursor
- Metallization of Ta₂O₅-capacitors (DRAM) CVD: use of TiCl₄ or metal organic precursor
- Barrier layer in Cu or Al metallization schemes, favourable for damascene architectures – CVD: use of metal organic precursors TDMAT or TDEAT

TIN CVD:

Application and integration aspects

Why CVD?

Good step coverage in case of high aspect ratios (W contacts, vias)

Technical requirements for use:

- State of the art single wafer cluster tool with CVD-chamber (e.g. Applied Materials P 5000 with TxZTM-chamber, Novellus PRISMTM)
- · Delivery system for liquid precursor
 - -bubbler or liquid inject for TDMAT and TDEAT
 - -vapour MFC for TiCl₄

Thermal budget:

- TiCl₄: < 5 min & 550°C ... 630°C
- MOCVD: < 5 min & 300°C ... 400°C

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 3.1.5 - 9

TIN CVD:

Precursors and reactions

inorganic

$$TiCl_4 + NH_3 + \frac{1}{2}H_2$$

reduction of metal halide

TiN + 4HCl

reaction I

organic

$$R_2N$$
 NR_2 + N

NH₃

transaminiation

 $TiN + 4HNR_2$

reaction II

 R_2N NR_2

pyrolytic decomposition

TiN + amines + TiC + ...

reaction III

- R ... alkyl group
- $R = CH_3$ tetrakis dimethyl amino titanium; is the favourite for reaction III
- $R = C_2H_5$ tetrakis diethyl amino titanium; is the favourite for reaction II
- R determines vapour pressure and reactivity of the precursor

Processes commercially available for all of the three reactions (e.g. Novellus, AMAT)

additional organic precursors

 $\text{Ti}(OC_2H_5)_4$, $\text{Ti}(Bu^tN = CHCH = NBu^t)_2$, $\text{Ti}(acetylacetonat)_3$

Advanced Integrated Circuit Technology

Precursors and reactions TIN CVD:

Comparison of TiCl, and TDMAT process

Ticl TDMAT					
	TiCl ₄	TDMAT			
Precursor					
vapour pressure	40 Torr @ 50°C	0.6 Torr @ 50°C			
precursor delivery	vapour MFC	bubbler, direct liquid inject			
commercially available	yes	yes			
Process characteristics					
temperature range	500°C 800°C	350°C 400°C			
additional source gases	NH_3, H_2	Ar, N_2 or He as carrier gas			
byproducts	corrosive	non corrosive, toxic amins			
particle behaviour	NH ₄ Cl salt formation	o.k.			
application of plasma	to reduce Cl at lower	as post deposition treatment			
	deposition temperatures	to reduce impurities			
Film properties					
resistivity (lowest	100 μΩcm with plasma	170 μΩcm with plasma			
reported values)	treatment	treatment			
conformality	near 100%	near 100%			
impurity	chlorine, hydrogen	carbon, hydrogen; oxygen			
		uptake if exposed to air			

CVD of Copper diffusion barriers: TiN by CVD

Ti based barrier

Only for internal use at TU Chemnitz for study purposes.

Unauthorized copying and distribution is prohibited

- inorganic route: TiCl₄ + NH₃
- → T>600°C, and formation of HCl

• metalorganic route:

Fraunhofer

$$R = CH_3$$

• higher vapour pressure

Pyrolysis

• more reactive

 $R \rightarrow$ affects vapour pressure and reactivity

favoured reaction

TDEAT

$$R =_2 HC-CH_2$$

• lower vapour pressure

Chapter 3.1.5 - 11

• less reactive

reaction with NH₃ or plasma activated with H₂/N₂

Multistep process for high quality TiN

Method was introduced by M. Danek and coworkers (Applied Materials), 1995

Only for internal use at TU Chemnitz for study purposes.

Unauthorized copying and distribution is prohibited.

Chapter 3.1.5 - 13

CVD of Copper diffusion barriers: TiN by CVD

Deposition process with TDMAT

plasma parameters determine the film properties → resistivity and its change

- long plasma treatment → higher stability
 - → higher density
 - → lower resistivity
 - lower impurity level
- drawback: plasma treatment 6 times longer than deposition step
- H₂/N₂ plasma → replacement of C → volatile CH₄
 N₂ essential for a stable film → introduction of additional N

Film properties

	without plasma treatment	multi step process with plasma treatment
Spec. el. resistivity	\approx 8000 μ Ω cm	170 μΩcm
Stability of resistivity if exposed to air	increase ≈ 200%	increase < 2%
Density (bulk value = 5.2 g/cm³)	2.2 g/cm³	4.8 g/cm ³
Film stress (all compressive)	- 300 MPa (as dep.) - 500 MPa (after air exp.)	- 1400 MPa (as dep.), no change after air exp.
Microstructure	amorphous like	polycrystalline
Impurities	≈ 25 at.% C, ≈ 25 at.% O if exposed to air	6 at.% C, 5 at.% O if exposed to air
Barrier stability against copper diffusion (electrically tested with diodes)	·	stable up to 450°C

T:N. 01/D

Fraunhofer

Only for internal use at TU Chemnitz for study purposes.

Unauthorized copying and distribution is prohibited.

Chapter 3.1.5 - 15

TiN-CVD: Examp

Example MOCVD of TiN using TDMAT precursor

Micro structure of MOCVD TiN

without plasma treatment

TiN

SiO₂ (naturally grown)

20 nm

multi step process with plasma treatment

SiO₂ (thermal)

20 nm

- XRD amorphous
- small regions (3 nm) with ordered structure visible in high resolution TEM, embedded in amorphous material
- polycrystalline (one/get (111) and (200) TiN peak in XRD)
- wide grain size distribution
 grains reaching through the entire film
 small grains

TiN-CVD: Example MOCVD of TiN using TDMAT precursor

Step coverage

CVD-TiN in a 0.3 µm oxide trench with an aspect of ration 3.5

Without plasma treatment

Multi step process with plasma treatment

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 3.1.5 - 17

CVD of Copper diffusion barriers: WN by CVD and PECVD

W based Barriers

 $WF_6 \rightarrow$ Gas at room temperature with high vapour pressure of 133 kPa @25°C

- Also use of WCl₆ (solid)
- Metalorganic W precursors mostly solid

WN_x Deposition

- Thermal CVD with WF₆ and NH₃
- → salt formation NH₄F
- ullet Thermal CVD with metalorganic precursor ullet high deposition temperature $> 500^{\circ}\text{C}$
- PECVD with WF₆/NH₃/H₂

→ salt formation NH₄F, reduced step coverage

PECVD with WF₆/N₂/H₂

→ low deposition temperatures, reduced step coverage, amorphous or crystalline films

CVD of Copper diffusion barriers: WN by PECVD

PECVD process for amorphous ultrathin WN_x films

PRECISION 5000TM configuration Chemistry: WF₆(Ar)/N₂/H₂

Steps of the process

H₂ + N₂ plasma treatment of substrate before deposition step uniform smooth film

Deposition parameters:

- T = 380-400°C
- rf power = 50 W
- $H_2/WF_6 = 50-80$
- $N_2/WF_6 = 80-110$
- p = 340-430 Pa

H₂ plasma treatment of the film after deposition

reduction of F level

without H₂+N₂ plasma treatment of SiO₂ surface

RMS: 0.86 nm R_a : 0.652 nm R_{max} : 4.818 nm

with H₂+N₂ plasma

RMS: 0.378 nmR_a: 0.296 nm

R_{max}: 1.945 nm

Chapter 3.1.5 - 19

Only for internal use at TU Chemnitz for study purposes Unauthorized copying and distribution is prohibited.

CVD of Copper diffusion barriers: WN by PECVD

Influence of process conditions on the deposition rate

RF power

- Deposition mainly driven by plasma
- Decrease of deposition rate by 50 % between 200 - 50 W
- Slight increase of electrical resistivity
- → low RF power for low deposition rates

WF₆ partial pressure

- Low p_{WF6} results in low deposition rate
- Low p_{WF6} with rf power of 55 W leads to further decrease of the deposition rate

 $(T = 400^{\circ}C, p = 670 \text{ Pa}, p_{H2} = 530 \text{ Pa}, p_{N2} = 125 \text{ Pa})$

Influence of the Gas Mixture on the Electrical Resistivity

- Extreme nitrogen and hydrogen content within the gas mixture moderately influences the electrical resistivity
- Low gas flow ratios for H₂/WF₆ → higher resistivity no effective removal of fluorine

Only for internal use at TU Chemnitz for study purposes Unauthorized copying and distribution is prohibited

Chapter 3.1.5 - 21

CVD of Copper diffusion barriers: WN by PECVD

Microstructural investigations

- Amorphous microstructure in the as-deposited state
- Remain of amorphous microstructure after heat treatment in vacuum at 400°C/100h
- Composition of WN_x: $x=0.25 \rightarrow W_{80}N_{20}$
- Commencing crystallization at 600°C/1h in vacuum and progressive with longer exposure time
 - → high amorphous amount

Only for internal use at TU Chemnitz for study Unauthorized copying and distribution is pro PRECISION 5000TM

Fraunhofer

(Lamp heated WCVD chamber)

CVD of Copper diffusion barriers: WN by PECVD

Impact of spacing on step coverage: WN_x in 0.4 µm wide trenches (AR ~ 2.5) after deposition at *different spacings between shower head and wafer surface*

250 mils

	film	conformality	film	conformality	film	conformality
	thickness		thickness		thickness	
	[nm]	[%]	[nm]	[%]	[nm]	[%]
top	138	100	128	100	181	100
wall at the half	59	43	45	36	54	30
trench height	39	43	43	30	34	30
wall near the	50	36	36	28	45	25
bottom						
bottom	67	49	53	42	67	37

EMBISCHE UNINERSITÄT CHEMISTIZ

K. Richter et al. (TU Chemnitz), AMC 2000, MRS Conf. Proc. ULSI XVI, MRS Warrendale, PA, 2001, p. 301-306.

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 3.1.5 - 23

SEM of a contact structure with 0.35 µm opening and 5:1 aspect ratio

- ⇒ up to 60 % step coverage at optimal process conditions
- Applied Materials Centura[™] WxZ chamber
- reactive gases: WF₆, N₂, H₂
 and Ar as diluent

