Shanghai Jiao Tong University CS241 Fall 2019

Assignment 7

Ziqi Zhao October 30, 2019

7.1. Collision Resolution.

(a) Hash table using separate chaining.

(b) Hash table using linear probing.

	1979	5671	1999	133	173	444				8899
•	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]

(c) Hash table using quadratic probing.

ſ	1979	5671		133	173	444			1999	8899
,	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]

(d) Hash table using double hashing, with the second hash function as g(x) = (7-x)%7.

	5671	1999	133	444	173		1979		8899
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]

7.2. Hash Table Size.

Define the load factor as L, the expected number of comparisons in an unsuccessful search as U(L), and the expected number of comparisons in a successful search as S(L).

Then in linear probing, we have:

$$U(L) = \frac{1}{2} \left[1 + \left(\frac{1}{1 - L} \right)^2 \right]$$
$$S(L) = \frac{1}{2} \left[1 + \frac{1}{1 - L} \right]$$

According to the requirements:

$$\begin{cases} U(L) \le 13 \\ S(L) \le 10 \end{cases}$$

We have:

$$L=\frac{1000}{n}\leq \frac{4}{5}$$

Pick n as a prime number, then we obtain the minimum of table size n:

$$n_{min} = 1259$$

7.3. Rehashing.

(a) Hash table using separate chaining.

(b) Hash table using linear probing.

133	3	173	1979	1999			444	8899	5671
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
10	[11]	[12]	[13]	[14]	[15]	[16]	[17]	[18]	

(c) Hash table using quadratic probing.

133		173	1979	1999			444	8899	5671
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
$\boxed{10}$	[11]	[12]	[13]	[14]	[15]	[16]	[17]	[18]	

(d) Hash table using double hashing, with the second hash function as g(x) = (7-x)%7.

133		173	1979	1999			444		5671
[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
		8899							
[10]	[11]	[12]	[13]	[14]	[15]	[16]	[17]	[18]	