



Nagalikhitha Reddipalli



**Institute of Medical Technology and Intelligent Systems** 

Relapse Prediction of Prostate Cancer with Histopathology Images using Vision Transformers



#### **Introduction: Prostate cancer**





## Data acquisition





#### Introduction: Relapse prediction



- Gleason grade is subjective
- High interrater variability between pathologists ambiguity in diagnosis and therapy
- Biochemical relapse prediction has objective endpoint
- Generate binary label
  - If event occurs before 60 months : positive
  - If event does not occur : negative

# **RESEARCH QUESTIONS**

#### **Research questions**



- R1: How well can state-of-the-art vision transformers (ViT) predict relapse of prostate cancer on our in-house data?
- R2: Does pre-training ViT on domain-specific images improve the performance of the model?
- R3: How good are hierarchical vision transformers on our in-house prostate cancer data?

# **DATASETS**

#### **Datasets**



- PANDA challenge for cancer detection
  - Prostate cANcer graDe Assessment
  - Size: 5,000 to 40,000 pixels per dimension
  - 10,616 images









#### **Datasets**



- UKE dataset for relapse prediction
  - TMA spots
  - Size: 2048 x 2048 pixels
  - 8536 images





# **METHODS**

## Vision transformers with multiple instance learning







2048 x 2048 x 3 16 x 256 x 256 x 3 16 x 768 1 x 768 1 x 1

## ViT on single patch





Patch

## ViT encoder





### ViT for TMA spot





**Patches** 

# Pre-training of ViT on cancer detection







PANDA image

# Relapse prediction on PANDA pre-trained ViT







#### **Hierarchical ViT**





• As UKE dataset is of size 2048 x 2048, the intended approach has two levels of hierarchy



#### **Hierarchical ViT**



• Two pre-trainings: viT<sub>256-16</sub>, viT<sub>1024-256</sub>





#### **Methods**



- Baseline model: CNN combined with MIL
- ViT+MIL: mean and max pooling for ImageNet and PANDA pre-training
- Hierarchical ViT

# **RESULTS**

## Results of CNN+MIL and ViT+MIL (ImageNet weights)









## Results of ViT+MIL (ImageNet and PANDA weights)









## Results of HViT









#### **Summary**



- R1: ViT outperformed CNN by 10 percent on AUROC and F1-score
- R2: Pre-training of ViT on domain-specific data did not have significant impact
- R3: Hierarchical ViT provided similar results compared to ViT+MIL

#### **Further work**



- Pre-train on more data
- Decrease model complexity (e.g. less encoder layers)
- Finetuning in multiple layers instead of only classification layer
- Other pre-training strategies (e.g. self supervised)



# Thank you

#### **Results of cancer detection**









ViT CNN

# Results of CNN+MIL and ViT+MIL (ImageNet weights)





| Model   | Pooling strategy | AUROC      | F1-score   |
|---------|------------------|------------|------------|
| CNN+MIL | mean             | 0.64±0.008 | 0.46±0.005 |
| CNN+MIL | max              | 0.63±0.008 | 0.44±0.014 |
| ViT+MIL | mean             | 0.72±0.005 | 0.56±0.009 |
| ViT+MIL | max              | 0.73±0.014 | 0.45±0.009 |

# Results of ViT+MIL (ImageNet and PANDA weights)





| Model   | Pretraining | Pooling strategy | AUROC      | F1-score   |
|---------|-------------|------------------|------------|------------|
| ViT+MIL | ImageNet    | mean             | 0.72±0.005 | 0.56±0.009 |
| ViT+MIL | ImageNet    | max              | 0.73±0.014 | 0.45±0.009 |
| ViT+MIL | PANDA       | mean             | 0.74±0.009 | 0.59±0.004 |
| ViT+MIL | PANDA       | max              | 0.73±0.009 | 0.56±0.008 |