Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

DEPARTMENT OF MATHEMATICS

Course: Fundamentals of Linear Algebra, Calculus and Statistics	CIE-II	Maximum marks: 50
Course code: MAT211CT	First semester 2023-2024 Chemistry Cycle Branch: AI, BT, CS, CD, CY, IS, SPARK C	Time: 2:00PM-3:30PM Date: 27-12-2023

Sl. No.	Solutions and Scheme	Marks
1	$\frac{dx}{d\theta} = a(1 - \cos\theta)$ and $\frac{dy}{d\theta} = a\sin\theta$	1
	$\frac{dy}{dx} = \cot\left(\frac{\theta}{2}\right) \Rightarrow \left(\frac{dy}{dx}\right)_{\theta=\pi} = 0$	2
	$\frac{d^2y}{dx^2} = -\frac{1}{4a}cosec^4\left(\frac{\theta}{2}\right) \Rightarrow \left(\frac{d^2y}{dx^2}\right)_{\theta=\pi} = -\frac{1}{4a}$	2
	$\rho = -4a$	2 2
	$\bar{x} = a\pi$ and $\bar{y} = -2a$	2
	$(x - a\pi)^2 + (y + 2a)^2 = 16a^2$	1
2	$y = e^{\tan^{-1}x} \Rightarrow y(0) = 1$ $(1 + x^{2})y_{1} = y \Rightarrow y_{1}(0) = 1$ $(1 + x^{2})y_{2} + 2xy_{1} = y_{1} \Rightarrow y_{2}(0) = 1$ $(1 + x^{2})y_{3} + 4xy_{2} + 2y_{1} = y_{2} \Rightarrow y_{3}(0) = -1$ $(1 + x^{2})y_{4} + 6xy_{3} + 6y_{2} = y_{3} \Rightarrow y_{4}(0) = -7$	1 2 2 2 2
	$(1+x^{2})y_{5} + 8xy_{4} + 12y_{3} = y_{4} \Longrightarrow y_{5}(0) = 5$ $e^{\tan^{-1}x} = 1 + x + \frac{x^{2}}{2} - \frac{x^{3}}{6} - \frac{7x^{4}}{24} + \frac{x^{5}}{24} + \cdots$	2
3. (a)	$u_x = \frac{1}{\sqrt{y^2 - x^2}} - \frac{y}{x^2 + y^2} \Longrightarrow xu_x = \frac{x}{\sqrt{y^2 - x^2}} - \frac{xy}{x^2 + y^2}$	2
	$u_y = \frac{1}{\sqrt{y^2 - x^2}} \left(-\frac{x}{y} \right) + \frac{x}{x^2 + y^2} \Longrightarrow y u_y = -\frac{x}{\sqrt{y^2 - x^2}} + \frac{xy}{x^2 + y^2}$	2
	$xu_x + yu_y = 0$	1
3. (b)	$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial r} = \frac{\partial z}{\partial x}\cos\theta + \frac{\partial z}{\partial y}\sin\theta$	1
	$\frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial \theta} = \frac{\partial z}{\partial x} (-r \sin \theta) + \frac{\partial z}{\partial y} (r \cos \theta)$	1
	$\frac{1}{r}\frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x}(-\sin\theta) + \frac{\partial z}{\partial y}(\cos\theta)$	1

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

	$\left[\left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2 = \left(\frac{\partial z}{\partial r} \right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta} \right)^2$	2
4. (a)	$f_x = 2y \sin x$, $f_y = 2y - 2\cos x$, $f_{xx} = 2y \cos x$, $f_{xy} = 2\sin x$, $f_{yy} = 2\sin x$	2
	$f_x = 0$ and $f_y = 0$ gives the stationary points (0,1) and $\left(\frac{\pi}{2}, 0\right)$	1
	$\operatorname{At}\left(\frac{\pi}{2},0\right), f_{xx}f_{yy} - f_{xy}^2 = -4 < 0 \text{ (Saddle point)}$	1
	At (0,1), $f_{xx}f_{yy} - f_{xy}^2 = 4 > 0$ (Minimum point) and minimum value is -1 .	1
4. (b)	$A = \frac{1}{2}xy$	
	$dA = \frac{\partial A}{\partial x}dx + \frac{\partial A}{\partial y}dy = \frac{1}{2}(ydx + xdy) = \frac{1}{2}[12(0.002) + 5(0.002)] = 0.017$	2
	$z = \sqrt{x^2 + y^2}$	1
	$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = \frac{x}{\sqrt{x^2 + y^2}}dx + \frac{y}{\sqrt{x^2 + y^2}}dy = \frac{5}{13}(0.002) + \frac{12}{13}(0.002)$	2
	dz = 0.0026	_
5. (a)	$F = 8x^2 + 4yz - 16z + 600 + \lambda(4x^2 + y^2 + 4z^2 - 16)$	1
	$\frac{\partial F}{\partial x} = 0 \implies 16x + 8\lambda x = 0 \implies x = 0 \text{ or } \lambda = -2$ $\frac{\partial F}{\partial y} = 0 \implies 4z + 2\lambda y = 0 \implies 4z - 4y = 0 \implies z = y$	Derivatives 2
	$\frac{\partial F}{\partial z} = 0 \Longrightarrow 4y - 16 + 8\lambda z = 0 \Longrightarrow -16 - 12y = 0 \Longrightarrow y = -\frac{4}{3} = z$	
	$4x^2 + y^2 + 4z^2 = 16 \Longrightarrow x = \pm \frac{4}{3}$	y and z 2
	Hottest point $\left(\pm \frac{4}{3}, -\frac{4}{3}, -\frac{4}{3}\right)$	1
5. (b)	$J = \begin{vmatrix} 3 & 2 & -1 \\ 1 & -2 & 1 \\ 2x + 2y - z & 2x & -x \end{vmatrix}$	2
	J = 3(2x - 2x) - 2(-3x - 2y + z) - 1(6x + 4y - 2z) = 0	2