Introduction to Cryptography

F. Koeune - O. Pereira

Slides 07

Flipping coins ... over the Internet

Flipping coins ... over the Internet

Tentative solution:

- ▶ How can A know whether B is adapting his answer?
- ▶ A wants B to :
 - flip a coin independently of her bet,
 - answer honestly

Flipping coins ... over the Internet

A solution:

- 1. B sends the outcome of a coin flip to A in a locked box
- 2. A sends her bet
- 3. *B* sends the key of the box

Selecting a random bit

- 1. B sends a bit b_B to A in a locked box
- 2. A sends a bit b_A to B
- 3. B sends the key of the box The outcome is $b_A \oplus b_B$

Commitment schemes

- 1. **Binding** property: once I sent a value locked in the box, I cannot change it anymore
- 2. **Hiding** property: nobody can tell what is inside the box without the key

Commitment schemes

A triple $\langle Gen, Com, Open \rangle$ of PPT algos:

- ► Gen probabilistically selects $pk \leftarrow \text{Gen}(1^n)$ pk is the public key
- ▶ Com provides $(c, d) \leftarrow \text{Com}_{pk}(m)$
- ▶ Open provides $m := \operatorname{Open}_{pk}(c, d)$ (or \bot if c and d do not match)

s.t.,
$$\exists$$
 negl. ϵ : $\forall n$, $pk \leftarrow Gen(1^n)$, and $\forall m$:

$$\Pr[\operatorname{Open}_{pk}(\operatorname{Com}_{pk}(m)) \neq m] < \epsilon(n)$$

Assumptions: $|pk| \ge n$ and pk is always generated correctly

Commitment schemes – Hiding

Hiding property:

Given $\Pi := \langle Gen, Com, Open \rangle$ and adversary \mathcal{A} , define the experiment $Com_{\mathcal{A},\Pi}^{hide}(n)$:

- 1. Generate $pk \leftarrow \text{Gen}(1^n)$
- 2. $\mathcal{A}(pk)$ outputs m_0, m_1
- 3. Choose $b \leftarrow \{0,1\}$, compute $(c,d) \leftarrow \mathrm{Com}_{pk}(m_b)$, and send c to \mathcal{A}
- 4. \mathcal{A} outputs m'
- 5. Define $\mathsf{Com}^{\mathsf{hide}}_{\mathcal{A},\Pi}(n) := 1$ iff m = m'

Commitment schemes – Hiding

 $\Pi := \langle Gen, Com, Open \rangle$ is *perfectly hiding* if $\forall A$:

$$\Pr[\mathsf{Com}^{\mathsf{hide}}_{\mathcal{A},\Pi}(n)] = \frac{1}{2}$$

 $\Pi := \langle Gen, Com, Open \rangle$ is computationally hiding if $\forall \ \mathsf{PPT} \ \mathcal{A}, \ \exists \ \mathsf{negl}. \ \epsilon$:

$$\Pr[\mathsf{Com}^{\mathsf{hide}}_{\mathcal{A},\mathsf{\Pi}}(n)] \leq \frac{1}{2} + \epsilon(n)$$

Commitment schemes – Binding

Binding property:

Given $\Pi := \langle Gen, Com, Open \rangle$ and adversary A, define the experiment $Com_{A}^{bind}(n)$:

- 1. Generate $pk \leftarrow \text{Gen}(1^n)$
- 2. $\mathcal{A}(pk)$ outputs $\langle c, d_0, d_1 \rangle$
- 3. Define $Com_{A}^{bind}(n) := 1$ iff:
 - a. Open_{nk} $(c, d_0) = m_0 \neq \bot$
 - b. Open_{nk} $(c, d_1) = m_1 \neq \bot$
 - c. $m_0 \neq m_1$

Commitment schemes – Binding

 $\Pi := \langle Gen, Com, Open \rangle$ is perfectly binding if $\forall A$:

$$\Pr[\mathsf{Com}^{\mathsf{bind}}_{\mathcal{A},\Pi}(n)] = 0$$

 $\Pi := \langle Gen, Com, Open \rangle$ is computationally binding if \forall PPT \mathcal{A} , \exists negl. ϵ :

$$\Pr[\mathsf{Com}^{\mathsf{bind}}_{\mathcal{A},\Pi}(n)] \leq \epsilon(n)$$

Perfect commitment schemes?

Thm: No commitment scheme is both perfectly binding and hiding.

Intuition:

▶ If the scheme is perfectly binding, then all the information about the message m is included in c. So, it cannot be perfectly hiding.

Consequence:

▶ We always need a security parameter...

Perfectly binding commitment schemes

Define (Gen, Com, Open):

- Gen(1ⁿ) sets pk as (\mathbb{G}, q, g, h), where
 - \blacktriangleright (\mathbb{G} , q, g) is provided by $\mathcal{G}(1^n)$
 - \blacktriangleright the DDH problem is hard with respect to \mathcal{G}
 - ▶ h is a random element of G
- ▶ $Com_{pk}(m)$ with $m \in \mathbb{Z}_q$ provides (c, d) where:
 - $ightharpoonup c := (g^y, g^m h^y) \text{ with } y \leftarrow \mathbb{Z}_q$
 - ightharpoonup d := (y, m)
- ▶ Open_{pk}(c,d) outputs m if it can recompute c from d and pk, or \perp otherwise

Observe:

- Perfectly binding: only one possible "decryption"
- Computationally hiding: breaking DDH reveals m

Perfectly hiding commitment schemes

Attempt:

Define (Gen, Com, Open):

- Gen(1ⁿ) selects pk randomly in $\{0,1\}^n$
- ▶ $Com_{pk}(m)$ provides (c, d) where:
 - $ightharpoonup c := m \oplus k \text{ with } k \leftarrow \{0,1\}^n$
 - ightharpoonup d := (k, m)
- ▶ Open_{pk}(c, d) outputs m if it can recompute c from d, or \bot otherwise

Observe:

- Perfectly hiding: one-time pad
- ▶ Binding???

Perfectly hiding commitment schemes

Define $\langle Gen, Com, Open \rangle$:

- ▶ $Gen(1^n)$ sets pk as (\mathbb{G}, q, g, h) , where
 - $ightharpoonup (\mathbb{G},q,g)$ is provided by $\mathcal{G}(1^n)$
 - ightharpoonup the DL problem is hard with respect to ${\cal G}$
 - ▶ h is a random generator of \mathbb{G} ($\log_{g}(h)$ is unknown)
- ▶ $Com_{pk}(m)$ provides (c, d) where:
 - $ightharpoonup c := g^m h^y \text{ with } y \leftarrow \mathbb{Z}_q$
 - ightharpoonup d := (y, m)
- ▶ Open_{pk}(c, d) outputs m if it can recompute c from d and pk, or \bot otherwise

Observe:

- ▶ Perfectly hiding: h^y is a random element of \mathbb{G}
- ► Computationally binding: If $g^{m_1}h^{y_1} = g^{m_2}h^{y_2}$ and $m_1 \neq m_2$ then $h = g^{(m_1 m_2)(y_2 y_1)^{-1}}$.

So,

- We are looking for x so that $h = g^x$
- We have:

$$g^{b_1}h^{y_1} = g^{b_2}h^{y_2}$$

$$\Rightarrow g^{b_1}g^{xy_1} = g^{b_2}g^{xy_2}$$

$$\Rightarrow g^{b_1+xy_1} = g^{b_2+xy_2}$$

$$\Rightarrow b_1 + xy_1 \equiv b_2 + xy_2 \qquad \text{mod } q$$

$$\Rightarrow x \equiv (b_2 - b_1)(y_1 - y_2)^{-1} \qquad \text{mod } q$$

Quiz

Who should choose the public key?

- ▶ In the perfectly binding scheme
 - 1. The committer?
 - 2. The receiver?
- In the perfectly hiding scheme
 - 1. The committer?
 - 2. The receiver?

Zero-knowledge proofs

The identification problem:

The identification problem

"I am the only one who knows this secret"

How do I prove that?

- 1. Send the secret?
 - No: then the verifier also know my secret...
- 2. Take a private key as secret, and show that I can decrypt a message?

Could be too much: offers a decryption oracle to the verifier. . .

The identification problem

I want to prove that I am the one who knows this secret, without offering any other knowledge . . .

Idea: Make sure that the verifier already knows my answer!

- ▶ *P* proves that he knows the *sk* matching his public key *pk*
- ▶ $(c,d) \leftarrow \text{Com}(m)$
- ▶ d is sent only if m = m'

Proofs

"Traditional" mathematical proofs:

"A list of reasons that shows a statement to be true"

- Non interactive
- ► No unique verifier in mind

Interactive proofs

Three ingredients:

- 1. A prover P, possibly unbounded
- 2. A verifier V, PPT bounded
- 3. A language $L \subset \{0,1\}^*$ defining a set of true statements

Motivations:

- Even if P is unbounded, he should not be able to prove wrong things
- V must be able to perform his task effciently
- L can be a lot of things:
 - ▶ set of DH tuples $\langle g, g^x, g^y, g^{xy} \rangle$
 - set of pairs of isomorphic graphs
 - set of true theorem statements

Interactive proofs

The pair (P, V) is an interactive proof system for L if:

- 1. **Completeness**: If $x \in L$ then the probability that P does not convince V is negligible in |x|
- 2. **Soundness**: If $x \notin L$ then the probability that any P^* convinces V is negligible in |x|

Observations:

- Proofs are probabilistic
- V can be convinced even if P* is unbounded.
- Examples:
 - For the set of DH-tuples: send x
 - For the set of isomorphic graphs: send an isomorphism

Zero-knowledge proofs

Motivation:

▶ Protect the prover: the verifier should not learn anything but the fact that $x \in L$

Idea:

- ▶ Let trans be the discussion between P and any PPT V* on input x.
- It should be feasible to produce something indistinguishable from trans just from x

Observations:

- ► This "simulator" can build trans in any order! (So could the verifier if he tries to produce trans)
- No verifier can convince that a transcript is "real": he could have produced it himself

Zero-knowledge proofs

(P, V) is a perfect zero-knowledge interactive proof system for L if \forall PPT V^* , \exists a PPT simulator S_{V^*} s.t. $\forall \mathcal{E}$:

$$Pr[\mathcal{E}(trans_{(P,V^*)}(x)) = 1] = Pr[\mathcal{E}(trans_{\mathcal{S}_{V^*}}(x)) = 1]$$

where:

- $ightharpoonup trans(P,V^*)(x)$ is the transcript of the interaction of P and V^* on input x
- $trans_{S_{V}*}(x)$ is the output of $S_{V}*$ on input x
- \triangleright \mathcal{E} is anyone who tries to distinguish the two transcripts

Remark:

- One could define computational zero-knowledge:
 - \triangleright \mathcal{E} must be PPT
 - the probabilities can have a negligible difference

Graph isomorphism

Two graphs $G := (G_V, G_E)$ and $H := (H_V, H_E)$ are isomorphic if

- ▶ \exists a bijection $f: G_V \to H_V$ and
- \bullet $(g_1,g_2) \in G_F \Leftrightarrow (f(g_1),f(g_2)) \in H_F$

Are these two graphs isomorphic?

No known algorithm allows deciding in PPT whether two graphs are isomorphic

Graph isomorphism

Two graphs $G := (G_V, G_E)$ and $H := (H_V, H_E)$ are isomorphic if

- ▶ \exists a bijection $f: G_V \to H_V$ and
- $(g_1,g_2) \in G_E \Leftrightarrow (f(g_1),f(g_2)) \in H_E$

Example:

On input $G := (G_V, G_E)$ and $H := (H_V, H_E)$ (isomorphic):

- 1. P computes (or knows) a bijection $f: G_V \to H_V$
- 2. P repeats n times:
 - a. P publishes a graph (I_V, I_E) built as follows:
 - ▶ select a random bijection $g: G_V \to I_V$,
 - ▶ build I_E s.t. (G_V, G_E) and (I_V, I_E) are isomorphic
 - b. V sends a random bit b to P
 - c. P answers with h where:
 - ► $h := g^{-1}$ if b = 0
 - ▶ $h := fg^{-1}$ if b = 1
- 3. V accepts the proof if, every time, h witnesses that:
 - $ightharpoonup (I_V, I_E)$ is isomorphic to (G_V, G_E) when b = 0
 - $ightharpoonup (I_V, I_E)$ is isomorphic to (H_V, H_E) when b=1

Completeness:

▶ P can answer all challenges

Soundness:

- ▶ If G and H are not isomorphic, then P has a probability $\frac{1}{2}$ of not being able to answer the challenge
- ▶ That makes a probability 2^{-n} of being able to convince P

Perfect zero-knowledge: Build S_{V^*} as follows:

- 1. Start V^* and feed it with G and H
- 2. Repeat until $trans_{S_{V^*}}$ contains n transcripts:
 - a. Flip a coin c
 - b. Build a graph I, as in the normal proof, but
 - ightharpoonup isomorphic to G if c=0
 - ightharpoonup isomorphic to H if c=1
 - c. Send I to V^* and wait for b
 - d. If $c \neq b$ then rewind V^* where it was when entering this iteration and retry
 - e. If c = b then compute the permutation h that would be provided in the protocol, and append $\langle I, c, h \rangle$ to $trans_{S_{V*}}$
- 3. Output $trans_{S_{V^*}}$

Observations:

- \triangleright S_{V^*} tries to guess b, and restart/reboot V^* when he fails
- ▶ Failure probability is $\frac{1}{2}$ each time
- If S_{V^*} makes up to n^2 attempts, he wins excepted with negligible probability
- ▶ The simulated transcript is distributed as the real one

Σ -protocols

A family of:

- efficient,
- ▶ 3-moves,
- honest-verifier

zero-knowledge protocols.

Schnorr's protocol [1988]

Let $\mathbb G$ be a group of prime order q with generator g

P proves knowledge of x to V who has g^x

- 1. P chooses $r \leftarrow \mathbb{Z}_q$ and commits through g^r
- 2. *V* challenges with a random $e \leftarrow \mathbb{Z}_{2^n}$
- 3. P responds with $f := r + e \cdot x \mod q$
- 4. V accepts if $g^f = g^r \cdot (g^x)^c$

Schnorr's protocol

Completeness: obvious

Soundness:

- ▶ In order to reply with non-negligible probability, *P* must be able to respond to more than 2 challenges, say *e* and *e'*
- ► Then $g^f/(g^x)^e = g^{f'}/(g^x)^{e'}$ and $x = \frac{f-f'}{e-e'}$

Honest verifier zero-knowledge:

► Choose e, f at random and compute $g^r := g^f/(g^x)^e$ (This does not works if, say, V computes $e := \mathcal{H}^s(g^r)$)

Σ -protocols

 Π is a Σ -protocol for relation R if:

- It is a 3-move protocol with completeness, made of a commitment, followed by a random challenge, and ending with a response
- For any pair (a, e, f) and (a, e', f') of accepting conversations on input x where $e \neq e'$, one can efficiently compute $w:(x,w)\in R$
- ▶ There is an efficient simulator that, on input x, e, produces (a, f) such that (a, e, f) is distributed as in a normal proof.

Not just proof that $x \in L = \{x : \exists w \text{ s.t. } (x, w) \in R\}$, but **proof of knowledge** of a witness $w:(x,w)\in R$.

Non-interactive 7.K

Honest verifier 7K can be useful!

Let \mathcal{H} be a random function:

▶ Compute $e := \mathcal{H}(a,x)$ and send *non-interactive* proof (a, e, f)!

Intuition:

 \triangleright H makes sure that you pick a and x before seeing e: the only way of seeing the right e is to evaluate \mathcal{H} on a, x!

Challenge:

- ▶ We cannot use a random function! (Too big.)
- ▶ We cannot use a PRF: the prover needs to evaluate it, so he needs k, which makes it not random

The Random Oracle Model (ROM)

Solution:

- ▶ make "as if" a random function were available as an oracle for everyone
- assume that, in reality, it will work to replace it with a good hash function

Is it a sound methodology? Of course not!

- ▶ A real hash function has all its I/Os defined in advance A RO has its I/Os unknown as long as it has not been queried
- ► A real hash function might be computed in different ways The output of a RO can only be known by querying the RO

The Random Oracle Model

Why do we use it, then?

- Many standardized and convincing schemes can only be proven using the ROM (or a similar model)
- ▶ In practice, good hash functions give a random-looking output for any fresh input (of a given length)

What do we have, then?

- ▶ A "not-too-bad" methodology for arguing that a scheme is secure
- Something that is believed to be better than no proof at all

Non-interactive ZK in the ROM

Make a Σ -protocol (a, e, f) non interactive:

► Compute $e := \mathcal{H}(a, x)$ and send *non-interactive* proof (a, e, f)!

The resulting protocol is ZK in the ROM.

The NI simulator S:

- needs to produce trans distributed as in a real execution
- ightharpoonup can control the RO ${\cal H}$ that ${\cal E}$ uses

Strategy for S to build trans = (a, e, f)

- 1. pick random e,
- 2. run the Σ -protocol simulator, and get (a, e, f)
- 3. decide that $\mathcal{H}(a,x) = e$

This works since: e is uniformly random, the simulator works, and a is a fresh value, unlikely to have been queried to \mathcal{H} before.

Non-interactive ZK in the ROM

Make a Σ -protocol (a, e, f) non interactive:

▶ Compute $e := \mathcal{H}(a, x)$ and send *non-interactive* proof (a, e, f)!

The resulting protocol is sound in the ROM. Sketch:

- Let P^* output valid (a, e, f) with non negl. proba
- ▶ P^* must have made a (a, x) query to \mathcal{H} otherwise, unlikely to have $\mathcal{H}(a,x)=e$
- ▶ Since P^* outputs (a, e, f), he must be able to do so on a non-negligible number of outputs of $\mathcal{H}(a,x)$
- ► So:
 - 1. Start P^* , play the \mathcal{H} honestly, get (a, e, f)
 - 2. Restart P^* , answer the \mathcal{H} in the same way until (a, x)query sent to \mathcal{H} , answer that one with rand. $e' \neq e$
 - 3. With non negligible probability, receive (a, e', f')

Non-interactive ZK in the ROM

Conclusion:

- We can transform any HVZK Σ-protocol into a NIZK protocol
- ▶ But security only holds in the ROM

This is the basis of most signature schemes used today (Stay tuned...)

Proving statements about ElGamal ciphertexts

ElGamal encryption in prime-order group:

- ▶ Public key: $(g, h) := (g, g^x)$
- ightharpoonup Ciphertext: $(c_1, c_2) := (g^y, m \cdot g^{xy})$

Statement:

- $ightharpoonup (c_1, c_2)$ is an encryption of m under (g, h)
- witness: either x or y

Reformulation:

L contains all (g_1, g_2, g_3, g_4) s.t. $\log_{g_1}(g_2) = \log_{g_3}(g_4)$

- Either $(g_1, g_2, g_3, g_4) := (g, g^x, g^y, g^{xy})$ (witness is x)
- Or $(g_1, g_2, g_3, g_4) := (g, g^y, g^x, g^{xy})$ (witness is y)

Chaum-Pedersen protocol

Let \mathbb{G} be a group of prime order q with generator g

P proves that $\log_{g_1}(g_2) = \log_{g_3}(g_4)(=x)$

- 1. P chooses $r \leftarrow \mathbb{Z}_q$ and commits through g_1^r, g_2^r
- 2. V challenges with a random $e \leftarrow \mathbb{Z}_{2^n}$
- 3. P responds with $f := r + e \cdot x \mod q$
- 4. V accepts if $g_1^f = g_1^r \cdot (g_2)^e$ and $g_3^f = g_3^r \cdot (g_4)^e$

Chaum-Pedersen protocol

Let \mathbb{G} be a group of prime order q with generator g

Completeness: obvious

Soundness:

▶ If P can prove with $((a_1, a_3), e, f)$ and $((a_1, a_3), e', f')$ then $\log_{g_1}(g_2) = \log_{g_3}(g_4) = \frac{f - f'}{e - e'}$

Honest verifier zero-knowledge:

▶ Choose e, f at random and compute $g_1^r := g_1^f/(g_2)^e$ and $g_3^r := g_3^f/(g_4)^e$

Proving OR statements

Suppose we have:

- ▶ a Σ -protocol Π_0 for proving that $x_0 \in L_0$
- ▶ a Σ -protocol Π_1 for proving that $x_1 \in L_1$

Combining proofs:

- ▶ Proving that $x_0 \in L_0 \land x_1 \in L_1$ is trivial
- ▶ Can we prove that $x_0 \in L_0 \lor x_1 \in L_1$?

Applications:

- ▶ I know one of the DL of (h_1, \ldots, h_n) in base g (anonymous authentication)
- ► This is an encryption of 0 or 1 (election)

Disjunctive proofs [CDS94]

Suppose prover has $w_i : (x_i, w_i) \in R_i$ (but not w_{1-i})

- 1. P selects random e_{1-i} and runs S_{1-i} to get a proof $(a_{1-i}, e_{1-i}, f_{1-i})$
- 2. P selects a_i as from Π_i 's definition
- 3. P commits on (a_0, a_1) to V
- 4. V challenges with e
- 5. P computes $e_i = e e_{1-i} \mod 2^n$ and f_i from (w_i, a_i, e_i)
- 6. V accepts if (a_0, e_0, f_0) and (a_1, e_1, f_1) check for Π_0 and Π_1 and $e_0 + e_1 = e \mod 2^n$

Disjunctive proofs

Completeness: obvious

Soundness:

 \triangleright P^* has to follow either Π_0 or Π_1

Honest verifier zero-knowledge:

- ▶ Choose (e_0, e_1) at random, run S_0 , S_1 to get (a_0, e_0, f_0) and (a_1, e_1, f_1)
- \blacktriangleright Simulated transcript is $(a_0, a_1, e_0 + e_1 \mod 2^n, e_0, f_0, e_1, f_1)$

Conclusions

Zero-knowledge proof systems

- ▶ I convince you that this statement is true
- ► This is the only thing you learn
- You cannot use my proof to convince anyone else (interactive case)

References (see Moodle or search online):

- Ivan Damgård and Jesper Buus Nielsen: Commitment Schemes and Zero-Knowledge Protocols
- Ivan Damgård: On Σ-protocols

