Typ-3 : REG $[regul\ddot{a}r]$

Erkannt durch **DEA** = **NEA** = **RegEx** (γ) (Robin & Scott, regEx : Kleene)

regEx : Kleene)

Gleichbedeutend : Synt(L) ist endlich.

Bsp : $\{a^nb^m|n,m\in\mathbb{N}\}$

Beweis $w \in REG$: reg
Ex, Automat, Abschlusseigenschaften

Beweis $w \notin REG$: Pumping-Lemma, Myhill-Nerode

 $(u, v) \in P \text{ mit } v \in \Sigma \cup \Sigma V$

$-: ext{DCFL} \ [deterministisch kontext frei]$

Erkannt durch **DPDA** (akzeptierung durch Endzustände) Von jedem Zustand darf nur ein Übergang möglich sein : $\forall a \in \Sigma, \forall z \in Z, \forall A \in \Gamma : |\delta(z, a, A)| + |\delta(z, \epsilon, A| \le 1$

 $Bsp: \{a^nb^n|n \in \mathbb{N}\}, \{w\$w^R|w \in \Sigma^*\}$

Typ-2 : CFL [kontextfrei]

Erkannt durch **PDA** (keine kreuzenden Abhängigkeiten)

 $Bsp: \{ww^R | w \in \Sigma^*\}$

Beweis $w \in CFL: \mathbf{CYK\text{-}Algo},$ Grammatik oder PDA angeben

Beweis $w \notin CFL$: **Pumping-Lemma T2** Chomsky-Normalform (CNF): $A \rightarrow a|AB$

Greibach-Normalform : $A \to aV^*$ (mit V^*, A : Variablen)

 $(u, v) \in P \text{ mit } u \in V$

Typ-1: CSL [nicht-verkürzend]

[kontextsensitiv]

Erkannt durch **LBA** (linear beschränkte Turing-Maschine) (Satz von Kuroda)

Kuroda-Normalform (KNF) : $A \rightarrow a|A|AB \& AB \rightarrow CD$ $(u,v) \in P$ mit $|u| \leq |v|$

$-\,: { m REC}\,\, [entscheidbare\,\, Sprachen]$

Erkannt durch Turing-Maschinen mit ${\bf JA/~NEIN}\textsc{-}{\bf Antwort}$

Typ-0: R.E. [rekursiv aufzählbar]

Erkannt durch Turing-Maschinen mit JA/?-Antwort

 ${\bf Bsp: Halte\text{-}Problem}$

Abzählbar unendlich viele Grammatiken

Abschlusseigenschaften

Typ-3 ist auch unter Homomorphismen abgeschlossen

Grammatiken & Automaten

Grammatik

Allgemein : $G=(V,\Sigma,P,S)$ mit $P\subseteq (V\cup\Sigma)^+\times (V\cup\Sigma)^*$ Beweis L wird von G erzeugt : $L(G)\subseteq L$ und $L\subseteq L(G)$ Eine Grammatik heiSSt mehrdeutig, wenn es ein Wort mit mindestens zwei Syntaxbäumen/Ableitungen gibt.

Automaten

T(M) = L

 $\hat{\delta}(z,w)$ beschreibt in welchen Zustand man kommt, wenn man das ganze Wort w liest

DEA

Allgemein : $M=(Z,\Sigma,\delta,z_0,E)$ Z : Zustände ; z_0 : Startzustand $\in Z$; E : akzeptierende Endzustände $\subseteq Z$; δ : Überführungsfunktion $Z \times \Sigma \to Z$... erzeugt Sprache T(M)

NEA

Allgemein : $M = (Z, \Sigma, \delta, S, E)$ S : Menge an Startzuständen ; δ Überführungsfunktion $\rightarrow \mathcal{P}(Z)$

PDA

$$\begin{split} & \text{Allgemein}: M = (Z, \Sigma, \Gamma, \delta, z_0, \#) \\ & \text{Mit Endzuständen}: M = (Z, \Sigma, \Gamma, \delta, z_0, \#, E) \\ & \Gamma: \text{Kelleralphabet}; \ \delta \ \text{Zustandübernagsfunktion} \ \rightarrow \mathcal{P}_{\text{endlich}}(Z \times \Gamma^*) \\ & \delta(z, a, A) \ni (z', B_1..B_k), \ \text{oder} \ \epsilon\text{-} \ddot{\text{U}}\text{g}: \delta(z, \epsilon, A) \ni (z', B_1..B_k) \\ & \text{Konfiguration} \ (z, \text{ w}, \text{ V}) \ \text{mit} \\ & L(G) = N(M) = \{w \in \Sigma^* \mid \exists z \in Z: (z_0, w, \#) \vdash^* (z, \epsilon, \epsilon)\} \\ & \text{Lemma}: (z, w, V) \vdash^* (z', w', V') \Rightarrow (z, wx, VY) \vdash^* (z', w'x, V'Y) \end{split}$$

DPDA

Akzeptiert durch Endzustände; Immer max. ein Übergang möglich

Diverses

Pumping-Lemma

Sei n gegeben. Wähle Wort $z \in L$ mit |z| > n

 $\mathbf{Typ\text{-}3}$

Seien $u,v,w \in \Sigma^*$ beliebig in Zerlegung z = uvw (wo gilt : $|v| \geq 1$ & |uv| < n)

Beweis, dass $uv^iw \not\in L$ für ein $i \geq 0 \Rightarrow L$ nicht Typ-3

Typ-2

Seien $u,v,w,x,y\in \Sigma^*$ beliebig in Zerlegung z=uvwxy (wo gilt : $|vwx|\leq n$ & $|vx|\geq 1$)

Meist Fallunterscheidung für vx enthält

Beweis, dass $uv^iwx^iy \notin L$ für ein $i > 0 \Rightarrow L$ nicht Typ-2

Äquivalenzen

Myhill-Nerode R_L

 $xR_ry \iff [\forall w \in \Sigma^* : xw \in L \Leftrightarrow yw \in L]$ - hinten anhängen.

Beweis Sprache L nicht regulär :

Menge $M \subseteq \Sigma^*$ finden, mit $|M| = \infty$, für die gilt :

z.Z. : $\forall x, y \in M : x \neq y \Longrightarrow x \not R_L y$ (Mit w ist $xw \in L$, aber $yw \notin L$)

Dann L nicht regulär, da Index von M-N-Aquivalenz $|\Sigma^*/R_L| = \infty$

wird durch **Relation** R_M verfeinert.

(Auf gegebenem Automaten definiert - Muss nicht minimal sein) $xR_r y \iff \hat{\delta}(z_o, x) = \hat{\delta}(z_o, y)$ Alle Wörter in selber Klasse, die im selben Automat-Zustand sind.

 $\Rightarrow xR_My \Longrightarrow xR_Ly \Longrightarrow |R_L| \le |R_M|$

Syntaktische Kongruenz \equiv_L

 $x\equiv_L y \Longleftrightarrow [\forall w_1,w_2\in \Sigma^*:w_1xw_2\in L\Leftrightarrow w_1yw_2\in L]$ - auf beiden Seiten anhängen.

Monoide

- Abgeschlossenheit
- Assoziativ $\forall a, b, c \in M : (a * b) * c = a * (b * c)$
- neutrales Element $e: \forall a \in M: e*a = a*e = a$
- ightarrow syntaktisches Monoid Synth(L) Σ^*/\equiv_L

Erkennung durch Monoide

Monoid M erkennt L, wenn $A\subseteq M, \varphi=\Sigma^*\mapsto M$ und $L=\varphi^{-1}(A)$ (bzw. $w\in L\Leftrightarrow \varphi(w)\in A$) mit φ ist Homomorphismus. Eine Sprache ist erkennbar, wenn sie von einem endlichen Monoid erkannt wird.

Homomorphismus

Abbildung φ : Monoid $M \to N$ Monoid. Mit Eigenschaften: $\forall a, b \in M : f(a \circ_1 b) = f(a) \circ_2 f(b)$ und $\varphi(\text{neutrE}_1) = \text{neutrE}_2$

Nützlich für Beweise. Z.B. : $\varphi(a) = a$, $\varphi(b) = b$, $\varphi(c) = \epsilon$ $L' = \Sigma^* \{c\} \Sigma^* \cap \varphi^{-1}(L)$ beschreibt Sprache L' in Bezug auf L mit zusätzlichem c an spezieller Stelle (nur über reguläre Abschlüsse).

Chomsky-Normalform

- Ringleitung entfernen (jeweils alle beteiligten Variablen zu neuer ändern)
- Variablen anordnen & Kettenregeln entfernen
- Pseudoterminale einführen
- Abkürzungen einführen

Minimierung DEA

z1			
z2			
z3			
	z_0	z1	z2

- Paare mit **einem** Endzustand markieren.
- Wiederholt alle Paare markieren, die für $\exists a \in \Sigma$ in Markierung landen.
- nicht markierte Zustandspaare verschmelzen.

CYK-Algo

Länge	w1	w2		$T_{i,j} = \{ A \in V A \Rightarrow_G^* a_i \dots a_{i+j-1} \}$
1	T1,1	T2,1		
2	T2,1	T2,2		
			•	

whrschl. Irrelevant

Kardinalität = Mächtigkeit endlich, abzählbar (bijektive Abbildung auf \mathbb{N}), überabzählbar

Logik

Kontraposition : $A \Rightarrow B = \neg B \Rightarrow \neg A$ DeMorgan : $\neg (A \land B) = (\neg A \lor \neg B)$

Linksrekursion Entfernen (vgl. GNF)

 $A \to A\alpha_1 |A\alpha_2| \dots |\beta_1|\beta_1| \dots$ ersetzen durch : $A \to \beta_1 |\beta_2| \dots |\beta_1 B|\beta_2 B| \dots$ $B \to \alpha_1 |\alpha_2| \dots |\alpha_1 B|\alpha_2 B| \dots$

Relationen

für $m, m'^{(')} \in M$:

Ordnungsrelationen

Reflexivität : $m\ R\ m$

$$\begin{split} & \text{Identit"at}: (m'\ R\ m) \wedge (m\ R\ m') \Rightarrow (m'=m) \\ & \text{Transitivit"at}: (m'\ R\ m) \wedge (m\ R\ m'') \Rightarrow (m\ R\ m') \end{split}$$

Symmetrie : $(m' R m) \Leftrightarrow (m R m')$

Kongruenz : $[w_1 \equiv z_1 \text{ und } w_2 \equiv z_2] \Rightarrow w_1 w_2 \equiv z_1 z_2$

Formale Sprachen und Alphabet

Alphabet Σ : Nichtleere, endliche Menge Formale Sprache : Teilmenge von Σ^*

Eine Typ-2 Sprache ist mehrdeutig, wenn jede Typ-2 Grammatik, die diese Sprache erzeugt, mehrdeutig ist.

Random Beweise

Beweis Pumping-Lemma T3

L beliebige T3-Sprache. \Rightarrow DEA M. n=|Z|. Mit $x \in L, |x| \ge n \Rightarrow x = x_1x_2x_3...x_ny \ (y \in \Sigma^*). \ Q \subseteq Z$ mit $Q = \{\hat{\delta}(z_0, x_1...x_n)\} \Rightarrow |Q| \le n$.

\equiv_L ist Kongruenzrelation auf (Σ^*, \cdot)

Seien $x,x',y,y'\in \Sigma^*$ mit $x\equiv_L x'$ und $y\equiv_L y'$. Dann gilt für $u,u',v,v'\in \Sigma^*:uxv\in L\Leftrightarrow ux'v\in L$ und $uyv\in L\Leftrightarrow uy'v\in L$ Zu zeigen ist $xy\equiv_L x'y'$. Seien $u'',v''\in \Sigma^*:uxvy\in L\Leftrightarrow ux'yv\in L\Leftrightarrow ux'y'v\in L$

Beweise mit Abschlusseigenschaften

 $A=\{w\in\{a,b\}^*|\ |w|_a=|w|_b\}$ ist nicht regulär. Beweis durch Widerspruch : $A\cap L(a^*b^*)=\{a^nb^n|n\in\mathbb{N}\}$

 $B = \left\{ a^k b^l c^m | \ k = 0 \lor l = m \right\} \text{ ist nicht regulär.}$ Beweis durch Widerspruch : $L = C \cap L(aa^*b^*c^*) = \left\{ a^n b^m c^m \mid n, m \in \mathbb{N} \land n \ge 1 \right\}$

L = C++L(ab b c) = $\{a \ b \ c \ | n, m \in \mathbb{N} \land n \geq 1\}$ Betrachte den Homomorphismus $\varphi : \{a, b, c\}^* \to \{b, c\}^*$, der durch $\varphi(a) = \epsilon, \ \varphi(b) = a, \ \varphi(c) = b$ definiert ist. Da die Klasse REG unter Homo. abgeschlossen ist, ist auch $\varphi(L) = \{a^n b^n \mid n \in \mathbb{N}\}$ regulär. Widerspruch!

Exponentieller Blow-Up

 $L_k = \{xay \mid x, y \in \{a, b\}^* \land |y| = k - 1\}$

Jeder DEA hat min 2^k Zustände:

Bei Länge k
 existieren 2^k Wörter. Z.z. : Zwei Wörter
 w,w'enden nie in gleichem Zustand : $\hat{\delta}(z_0,w)\neq\hat{\delta}(z_0,w')$

Sei $w=xay_1,\,w'=xby_2$ Beweis durch Widerspruch : Wenn eine Gleichheit existieren würde, müsste : $\hat{\delta}(z_0,w)=\hat{\delta}(z_0,w')$ gelten.

Aber dann ist:

 $\hat{\delta}(z_0, wx) = \hat{\delta}(\hat{\delta}(z_0, w), x) = \hat{\delta}(\hat{\delta}(z_0, w'), x) = \hat{\delta}(z_0, w'x)$

Widerspruch, da $wx \in L_k$, aber $w'x \notin L_k$