

One Way ANOVA

- Single factor design with non-repeated measurements
- LOM for DV=ration/interval
- Research hypothesis:
 Different treatment would result significantly differences in response outcomes (DV).

Single factor design LOM=ratio/interval

Statistical Hypothesis

$$H_0: \mu_1 = \mu_2 = \dots = \mu_k$$

H_A: at least one equality does not hold

Errors in Making Decision

- Type I Error
 - OReject True Null Hypothesis
 - OHas Serious Consequences
 - OProbability of Type I Error Is α (Alpha)
 - Called Level of Significance
- Type II Error
 - ODo Not Reject False Null Hypothesis
 - OProbability of Type II Error Is β (Beta)

Decision Results

H0: Innocent

	Jury Trial		H₀ Test			
	Actual Si	tuation		Actual Situation		
Verdict	Innocent	Guilty	Decision	H₀ True	H₀ False	
Innocent	Correct	Error	Do Not Reject H₀	1 - α	Type II Error (β)	
Guilty	Error	Correct	Reject H ₀	Type I Error (α)	Power (1 - β)	

α & β Have an Inverse Relationship

Factors Affecting β

- True Value of Population Parameter
 - OIncreases when difference (Effect size) decreases. The *effect size* is the impact made by the independent variable.
- Significance Level, α
 - Oincreases when α decreases
- Sample Size, n
 - OIncreases when *n* decreases

Outline for Power Analysis

- Prior Power Analysis
 Conducting at the planning stage of the research and is typically used to determine an appropriate sample size to achieve adequate power.
- Post Hoc Power analysis
 Conducting after the study is done and uses the obtained samples to determine the power of statistical analysis.
 - -ANOVA (F-test)
 - -t-test

Prior Estimation of Power- Sample Size determination

 It is important to plan the sample size so that needed protection against both Type I and Type II errors can be obtained, or so that the estimates of interest have sufficient precision to be useful.

Effect Size

effect size

- 0.2 small
- 0.5 medium
- >.8 large

A company owning a large fleet of trucks whishes to determine whether or not four different brands of snow tires have the same mean trend life. From previous studies similar to this, we know the effect size is about 0.3. How many tires per brand are necessary to have power=0.7 when $\alpha=0.05$??

- Due to the complex of the calculation of power, there are many power tables available to answer such kind of problem.
- Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. 1988. ISBN 0-8058-0283-5.

TABLE C.3 Power of F Test at u=.05, u=3

Group Size n		f (offect size)										
	.05	.10	.15	.20	.25	.30	.35	.40	.50	.60	.70	.80
4	05	06	07	03	10	12	15	18	27	.38	50	62
5	05	06	07	03	12	15	19	24	36	50	64	76
6	05	06	08	13	13	18	23	29	44	60	75	86
7	05	06	08	11	15	21	27	35	52	69	93	92
8	06	07	09	12	17	24	31	40	59	77	99	96
9	05	07	09	14	19	27	.36	46	66	82	93	98
10	05	07	10	15	21	20	40	51	71	87	96	99
11	06	07	11	18	24	33	44	55	76	91	97	99
12	06	80	11	17	26	36	48	60	81	93	98	
13	08	08	12	19	28	29	52	64	84	95	99	
14	06	08	13	20	30	42	55	68	87	97	99	
15	06	08	13	21	32	45	59	71	90	98		
16	06	09	14	23	34	48	62	75	92	98		
17	06	09	15	24	37	E1	65	78	94	99		
18	06	09	16	26	39	E3	68	80	95	99		
19	08	09	18	27	41	56	71	83	95	99		
20	06	10	17	28	43	69	73	85	97			
22	06	10	18	31	47	63	78	88	98			
24	06	11	20	34	51	68	82	91	99			
26	06	11	22	37	54	72	85	94	99			
28	07	12	23	39	58	75	88	95	5656			
30	07	13	25	42	61	79	90	96				
32	07	13	23	45	65	81	92	97				
34	07	14	23	47	68	84	94	98				
36	07	14	29	50	70	86	95	99				
38	07	15	31	52	73	88	96	99				
40	07	16	32	54	76	50	97	98				
44	08	17	35	59	80	93	98					
48	08	18	39	63	84	95	99	65				
52	08	20	42	67	87	96	99					
56	08	21	45	71	89	97						
60	09	22	47	74	91	98						
54	09	24	53	77	93	99						
68	09	25	53	.00	85	- 33						
72	09	27	58	82	98	99						8
76	10	28	58	84	97							- 1
80	10	29	61	96	57							
100	11	36	71	93	99							
140	14	49	86	99								
200	19	66	96									

- The formulas for sample size vary from problem to problem.
- The sample size needed for a comparison of means from two independent groups is

$$m{n} = rac{\left(\sigma_1^2 + \sigma_2^2
ight) imes \left(z_{1-lpha/2} + z_{1-eta}
ight)^2}{D^2}$$

We use the letter "z" to represent a standard normal distribution. Alpha represents the probability of a Type I error (usually .05). Beta represents the probability of a Type II error (we usually want this to somewhere between .05 and .20). Sigma represents the standard deviation, and this formula allows for the possibility of different standard deviations in group 1 and group 2. Don't forget that the formula requires you to square these standard deviations. Finally, D is the clinically relevant difference.

$$n = \frac{\left(\sigma_1^2 + \sigma_2^2\right) \times \left(z_{.975} + z_{.80}\right)^2}{D^2}$$

$$= \frac{\left(1.5^2 + 1.5^2\right) \times \left(1.96 + 0.84\right)^2}{1^2}$$

$$= 35.3$$

So in order to achieve 80% power for detecting a one unit Oucher score, which has a reported 1.5, we would need to sample 36 patients in

Dichotomous Response Variables

- Two Independent Samples
 - e.g. presence or absence of a virus
 - to calculate the needed N for a trial with dichotomous response variables

$$2N = 4(Z_{\alpha} + Z_{\beta})^{2} \overline{p} (1 - \overline{p}) / (p_{C} - p_{I})^{2}$$

Values of $Z\alpha$ (critical value that corresponds to a given α level) and $Z\beta$ (corresponds to the power $1-\beta$) are provided in tables Formula applies to equal sample sizes in both groups $\overline{p} = (p_C + p_I)/2$

Some quick sample size calculations.

Some quick sample size calculations.

Rule of 15: For a multiple linear regression model, your sample size should be at least 15 times as large as the number of independent variables.

For a multiple logistic regression model, the number of events in your sample should be 15 times as large as the number of independent variables.

Think carefully about how quickly you can recruit patients for a clinical trial. A trial that takes 15 years to complete will be probably be useless.

Try to estimate how many patients will refuse to participate, how many will fail to meet all eligibility requirement, and how many patients will drop out prior to the completion of the study. Adjust your sample size upward to account for these factors.

Remarks

- For sample size calculation, we can estimate the effect size based on prior studies.
- We should generally assume that all levels have equal sample sizes.
- The α level used in the decision rule for determining whether or not the factor level means are equal is often set relatively high (e.g., 0.05 or 0.1 instead of 0.01) so as to increase the power of the test.
- We usually want power > 0.8 for a study.
- When we fail to reject H0 under α = 0.05, we should exam if the test has achieved the desired power.

Biostatistics vs. Lab Research

https://www.youtube.com/watch?v=PbODig CZqL8

Sample Multiple Choice Question

- 1. Which statement about power is NOT TRUE when estimating the sample size for a dichotomous response variable in an RCT?
- (a) The total sample size will need to be lower when fewer events are expected
- (b) The total sample size will need to be lower when a large effect is expected
- (c) The total sample size will need to be higher if the alpha value is set lower