STA13: Elementary Statistics Lecture 10 Book Sections 4.4 - 4.5

Dmitriy Izyumin

February 5 2018

STA13: Elementary Statistics

Dmitriy Izyumin

Discrete vs.
Continuous

Random Variables

vormai Distribution

Discrete Random Variables

 Generic discrete distribution (values and probabilities in a table)

- Binomial
- others we won't cover
 - Poisson
 - Geometric
 - Hypergeometric
 - Negative Binomial
 - ... many others

STA13: Elementary Statistics

Dmitriy Izyumin

Discrete vs.

Continuous Random Variables

ivormai Distributio

Continuous Random Variables

STA13: Elementary Statistics

Dmitriy Izyumin

Discrete vs.

Continuous Random Variables

distribution

Standard Norma

Continuous random variables have (uncountably) infinitely many possible values.

Examples:

- Height, weight, blood pressure
- Laboratory measurement error
- Lifetime of an appliance component

Continuous

Discrete Random Variables

- ► Finitely or countably many values
- We can find P(X = k) for any possible value k
- It is sometimes possible to put all the probabilities in a table (like in the generic case)
- It is sometimes possible to express all probabilities using a single formula (like for a Binomial r.v.)

Continuous

Continuous Random Variables

- Uncountably many values
- The probability that X equals any k is 0: P(X = k) = 0 for any specific k
- ▶ We can find the probability that X is between a and b: $P(a \le X \le b)$
- Probabilities are summarized using a smooth function known as the probability density function (pdf)

Discrete vs. Continuous

Dmitriy Izyumin

Discrete vs.

Continuous Random Variables

Distribution

Standard Normal

We use a curve to model the distribution of a continuous r.v.

The pdf of a continuous r.v. X has the following properties.

- ▶ Denoted by $f_X(x)$, or simply f(x)(Note that the big X denotes the random variable, and the little x denotes the value plugged into the function)
- Does not have to be symmetric
- Can not have any negative values (curve is never below the x-axis)
- Total area under the curve is 1

Continuous

Computing probabilities, mean and variance directly from the pdf requires calculus.

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

$$Var[X] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

$$P(a \le X \le b) = \int_a^b f(x) dx$$

We will not be using calculus at all.

Suppose X is a continuous random variable with pdf f(x).

- ▶ P(X = a) = 0
- ► $P(X \le a) = P(X < a)$ (similarly for \ge and >)
- ▶ $P(X \ge a) = 1 P(X < a)$
- ▶ If $a \le b$, then

$$P(a \le X \le b) = P(X \le b) - P(X \le a)$$

Continuous Random Variables

STA13: Elementary Statistics

Dmitriy Izyumin

Discrete vs.

Continuous Random Variables

istribution

- ► There are many, many types of continuous random variables with different density functions.
- ▶ We will only cover a few of them.
- ► A very important continuous distribution is the normal distribution.

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$
 for $-\infty < x < \infty$

The normal distribution has the recognizable bell shape:

STA13: Elementary Statistics

Dmitriy Izyumin

Discrete vs. Continuous

Random Variables

Normal Distribution

Spread and Center

 μ determines the center of the curve σ determines the spread, or width

STA13: Elementary Statistics

Dmitriy Izyumin

iscrete vs.

ontinuous

Normal Distribution

Mean and Variance

STA13: Elementary Statistics

Dmitriy Izyumin

Discrete vs. Continuous

Continuous Random Variables

Normal Distribution

- If X is distributed Normal(μ , σ), then
 - $\blacktriangleright \mu$ is the mean of X
 - $\triangleright \sigma$ is the standard deviation of X
 - $ightharpoonup \sigma^2$ is the variance of X
 - We write $X \sim N(\mu, \sigma)$

Standard Normal

The N(0,1) distribution is the standard normal distribution.

STA13: Elementary Statistics

Dmitriy Izyumin

Discrete vs.

Continuous Random Variables

ormal

STANDARD NORMAL DISTRIBUTION: Table	Values Represent AREA to the LEFT of the Z

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295

- ▶ Has probabilites of the form P(Z < a)
- ► Can help us get probabilites like P(Z > a) or $P(a \le Z < b)$
- ▶ Full table is on Canvas

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295

Example 1: Find $P(Z \le 0.43)$.

- ► Find 0.4 and 0.03 in the margins
- ► The corresponding cell says 0.66640
- ► So $P(Z \le 0.43) = 0.66640$

Some tricks:

- ▶ $P(Z < a) = P(Z \le a)$ (because Z is continuous)
- ► P(Z > a) = 1 P(Z < a) (complement rule)
- $P(a \le Z \le b) = P(Z \le b) P(Z \le a)$
- ► P(Z < a) = P(Z > -a) (symmetry of N(0,1))

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295

Example 2: Find P(Z > 0.43).

- Rewrite P(Z > 0.43) = 1 P(Z < 0.43)
- Get P(Z < 0.43) = 0.66640 as before
- ► So P(Z > 0.43) = 1 0.66640 = 0.33360

Using the Standard Normal Table

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	

Example 3: Find $P(0.1 \le Z \le 0.43)$.

- ► $P(0.1 \le Z \le 0.43) = P(Z \le 0.43) P(Z \le 0.1)$
- ► Get $P(Z \le 0.43) = 0.66640$ as before
- ▶ Get $P(Z \le 0.1) = 0.53983$ as before
- ► So $P(0.1 \le Z \le 0.43) = 0.66640 0.53983 = 0.12657$

STA13: Elementary Statistics

Dmitriy Izyumin

iscrete vs ontinuous

Continuous Random Va

Normal Distributio

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295

Example 4: Find P(Z > -0.43).

- Using symmetry, P(Z > -0.43) = P(Z < 0.43)
- Get P(Z < 0.43) = 0.66640 as before
- ► So P(Z > -0.43)) = 0.66640

Using the Standard Normal Table

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	

Example 5: Find the 87th percentile of N(0,1)

- ► Look in the table (not in margins!) for the number closest to 0.87.
- ▶ It is 0.87076
- ► Corresponding percentile (in margins) is 1.13.

STA13: Elementary Statistics

Dmitriy Izyumin

Discrete vs Continuous

Continuous

Normal

DISTRIBUTION