CHURN PREDICTION

Marketing Data Science

Prof: Repoussis Panagiotis

Student: Chalkiopoulos Georgios

TABLE OF CONTENTS

01

PROBLEM DESCRIPTION

General info regarding the problem

02

PROCESS

Approach and course of action

RESULTS

Results presentation and discussion

PROBLEM DESCRIPTION

01

Dataset

Each row represents a customer, each column contains customer's attributes described on the column Metadata.

The data set includes information about:

- Customers who left within the last month the column is called Churn
- Services that each customer has signed up for
- Customer account information

The Dataset is available here.

Goal & Approach

Our target is to build a classification model which will predict customer's churn.

We will use RapidMiner: "a powerful data mining tool that enables everything from data mining to model deployment, and model operations"

Software

- RapidMiner for academics was downloaded which offers a free license for students
- The software uses Operators which have to be downloaded from the extension menu
- The data, mentioned previously, was downloaded and saved locally
- Processes for each step are presented in the Appendix while the process file is available in the submission files

Steps

The process is split into the steps presented below

- Data Import
- Data Exploration
- First approach AutoModel
 - We will get a quick result of the most famous models which will guide the development
- Model Train and Optimization
 - Feature engineering/Selection
 - Model Comparison/ Model selection
 - Grid Search/CrossValidation
 - Model Combination

Data Import

- Data was imported using the Read CSV Operator, which was piped to the Statistics Operator
- This allowed to get a first view of the data, and investigate, potential, issues presented in the following slides

 Target label (Churn) is unbalanced

The only variable
 with missing values is
 TotalCharges, having
 11 missing values
 (0.16%)

The missing
 TotalCharges values
 have 0 tenure. We
 will impute the
 missing value with
 the MonthlyCharges
 one

Correlation Matrix:
 There seems to be a strong correlation between
 TotalCharges and Tenure with a smaller one between
 TotalCharges and MonthlyCharges

Attributes	SeniorCitizen	MonthlyCharges	tenure	TotalCharges ↑
SeniorCitizen	1	0.220	0.017	0.102
MonthlyCharges	0.220	1	0.248	0.651
tenure	0.017	0.248	1	0.826
TotalCharges	0.102	0.651	0.826	1

The Results Tab gives the option of generating various visualizations, to get insight of the data.

- It seems that Churn is related to Tenure:
 - New customers tend to leave early

Some interesting plots are presented below.

First approach - AutoModel

Using the AutoModel feature, we performed a run with the parameters set as below:

First approach – AutoModel

The Results Tab gives the option of generating various visualizations, to get insight of

the data.

We can see that the
Gradient Boosted Trees,
Generalized Linear Model
and Logistic Regression
Model performed well

 Detailed results are included in the submission file

First approach - AutoModel

The Auto Model process did not take into consideration the unbalanced data which, generally, resulted in low recall scores

- We build a process in order to validate and/or improve the results provided by the Auto Model Pipeline
- Auto Model did not generate any new features, during feature engineering

	Model			
Criterion	Gradient Boosted Trees	Generalized Linear Model	Logistic Regression	
Ассигасу	81.21%	80.72%	78.23%	
Classification Error	18.79%	19.28%	21.77%	
Auc	84.77%	83.89%	83.74%	
Precision	69.14%	70.48%	80.52%	
Recall	49.30%	44.75%	22.65%	
F Measure	57.49%	54.69%	35.29%	
Sensitivity	49.30%	44.75%	22.65%	
Specificity	92.30%	93.35%	98.11%	

We tried various pre-processing steps and executed runs to see if the change would improve the results. An example of such a run is shown below

 As shown in the Two tables, by converting the nominal values to Numerical (One Hot Encoding) the results were better

Description	Nominal (Base model)			
Accuracy	76.97%			
	true No	class precision		
pred. No	4042	490	89.19%	
pred. Yes	1132	1379	54.92%	
class recall	78.12%	7 3. 78 %		

Description	Numerical (Base model)		
Accuracy	77.51%		
	true No true Yes class precision		
pred. No	4115	525	88.69%
pred. Yes	1059	1344	55.93%
class recall	79.53%	71.91%	

Various additional steps were tested, which are mentioned below. By using breakpoints and tables, likes the one presented in the previous slide, we build the final model.

- Feature Engineering:
 - All metrics were worse when we used the automatic feature engineering
 - Results were better by manually generating features
- Correlated values: All metrics were worse when we removed the TotalCharges variable (highly correlated with Tenure)
- Upsampling: Better results were achieved using upsampling of the "yes" label.
- Normalization: Better results were achieved using normalization (0-1 norm and SeniorCitizen column not included)

RapidMiner provides two types of parameter search, the GridSearch and Evolutionary rearch

- Grid Search: By using the GridSearch operator we were able to further improve the results
- Evolutionary Search: the results were worse compared to Grid Search

Auto Model - Gradient Boosted Trees

Accuracy: 81.2%

	true No	true Yes	class precision
pred. No	1377	263	83.96%
pred. Yes	115	257	69.09%
class recall	92.29%	49.42%	

Model Parameters:

- maximal_depth = 2
- Learning_rate = 0.1
- Number_of_trees = 90

Accuracy: 84.24%*

accuracy: 84.24% +/- 1.15% (micro average: 84.24%)				
	true No	true Yes	class precision	
pred. No	4348	805	84.38%	
pred. Yes	826	4369	84.10%	
class recall	84.04%	84.44%		

Model Parameters:

- maximal_depth = 15
- Learning_rate = 0.034
- Number_of_trees = 510

Accuracy: 77.35%*

accuracy: 77.36%				
	true No	true Yes	class precision	
pred. No	830	114	87.92%	
pred. Yes	205	260	55.91%	
class recall	80.19%	69.52%		

Model Parameters:

- maximal_depth = 15
- Learning_rate = 0.034
- Number_of_trees = 510

Generated features:

Attribute Name	Function Expression
Tenure*charges	tenure*TotalCharges
TotalCharges/MonthlyCharges	TotalCharges/if(MonthlyCharges > 0, MonthlyCharges, 1)
TotalCharges/tenure	TotalCharges/if(tenure > 0, tenure, 1)

Feature importance:

Attribute	weight
Contract = Month-to-month	0.193
Contract = Two year	0.129
OnlineSecurity = No	0.124
TechSupport = No	0.119
TotalCharges/MonthlyCharges	0.107
tenure	0.106
InternetService = Fiber optic	0.091
PaymentMethod = Electronic check	0.087
tenure*charges	0.075

04 Appendix

The following setup was used in RapidMiner for the Data Exploration part.

The following setup was used in RapidMiner for the Feature Engineering part. The results were better with the original data.

The following setup was used in RapidMiner to compare the Nominal vs Numerical dataset. The One-Hot Encoded Dataset was better.

The following setup was used in RapidMiner to evaluate the up-sampling performance dataset. Upsampling resulted in higher scores.

The following setup was used in RapidMiner to compare the Nominal vs Numerical dataset. The One-Hot Encoded Dataset was better.

Final Pipeline

THANK YOU

Questions?

Contact: gchalkiopoulos@aueb.gr