Lecture 9-10 WIRELESS NETWORKS

Reference

"INTRODUCTION TO WIRELESS AND MOBILE SYSTEMS". DHARMA ARAWAL"

IT412 - Mobile Computing - Introduction © Assoc Pot None A Hital 2018 2019

4

Contents

- Multiple Radio Access Protocols
- Contention-based Protocols
 - Pure Aloha
 - Slotted Aloha
 - CSMA with CD and with CA

Multiple Radio Access

- Multiple users access the wireless medium (Multiplexing principle)
- We need a control channel to organize use of data channels among multiple users
- Users use the control channel at random times and for random periods TDMA, FDMA, CDMA, OFDM, SDMA

3 IT412 - Mobile Computing - Multiple Radio Access © M. Abu-Elkhelt

Continued

- Frequency Division Multiple Access (FDMA)
 - Allocated frequency band is divided into sub-bands (channels), and each user is assigned a channel
- Time Division Multiple Access (TDMA)
 - One channel is used by many users. BS assigns time slots for users in a round-robin fashion
- Code Division Multiple Access (CDMA)
 - AKA spread-spectrum. Each user is assigned a unique code, Code is mixed with each bit before transmission
- Orthogonal Frequency Division Multiplexing (OFDM)
 - One signal is composed of a number of closely-spaced modulated orthogonal carriers

TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = pkt trans time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle
- A TDMA system may be in either of two modes
 - Frequency Division Duplexing (FDD) <u>uplink/downlink</u> frequencies differ
 - Time Division Duplexing (TDD) uplink/downlink frequencies
 are the same
 6-slot

6-slot frame

Time Division Multiple Access

- A TDMA system may be in either of two modes
 - Frequency Division Duplexing (FDD) uplink/downlink frequencies differ
 - Time Division Duplexing (TDD) uplink/downlink frequencies are the same

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle

Code Division Multiple Access

continued

- OFDM is a broadband multicarrier modulation method that offers superior performance and benefits over traditional single-carrier modulation methods.
- OFDMA allows multiple users to access the same channel at the same time.
- Current WLANs such as IEEE 802.11a/g/n and IEEE 802.16d (fixed service) are based on OFDM, while WiMAX such as IEEE 802.16e (mobile service) uses OFDMA.

Random Access Protocols

- When node has packet to send
 - transmit at full channel data rate R.
 - no a priori coordination among nodes
- two or more transmitting nodes → "collision",
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access MAC protocols:
 - slotted ALOHA
 - = ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Channel Sharing Techniques

- Channelization methods (conflict-free)
 - channel allocation and assignment is done in a <u>pre-defined way</u> and <u>does not</u> change
- Dynamic MAC (contention-based) channel is allocated <u>as needed</u> and allocation <u>changes</u> with time

12 IT412 - Mobile Computing - Multiple Radio Access © M. Abu-Elkheir

Slotted ALOHA

Assumptions:

- all frames same size
- time divided into equal size slots (time to transmit 1 frame)
- nodes start to transmit only slot beginning
- nodes are synchronized
 if 2 or more nodes
 transmit in slot, all nodes
 detect collision

Operation:

- when node obtains fresh frame, transmits in next slot
 - if no collision: node can send new frame in next slot
 - if collision: node retransmits frame in each subsequent slot with prob. p until success

Slotted ALOHA

Pros

- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- simple

Cons

- collisions, wasting slots
- idle slots
- nodes may be able to detect collision in less than time to transmit packet
- clock synchronization

Slotted Aloha efficiency

Efficiency: long-run fraction of successful slots (many nodes, all with many frames to send)

suppose: N nodes with many frames to send, each transmits in slot with probability p prob that given node has success in a slot = p(1-p)^{N-1}

prob that any node has a success = Np(1-p)^{N-1}

- max efficiency: find p* that maximizes Np(1-p)^{N-1}
- for many nodes, take limit of Np*(1-p*)^{N-1} as N goes to infinity, gives:

Max efficiency = 1/e = .37

At best: channel used for useful transmissions 37% of time!

Pure (unslotted) ALOHA

- unslotted Aloha: simpler, no synchronization
- when frame first arrives
 - transmit immediately
- collision probability increases:
 - frame sent at to collides with other frames sent in [to-1,to+1]

Pure Aloha efficiency

P(success by given node) = P(node transmits) -

P(no other node transmits in $[p_0-1,p_0]$ ·
P(no other node transmits in $[p_0-1,p_0]$ $= p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1}$ $= p \cdot (1-p)^{2(N-1)}$

... choosing optimum p and then letting n -> infty ...

$$= 1/(2e) = .18$$

even worse than slotted Aloha!

18 IT412 - Mobile Computing - Multiple Radio Access © M. Abu-Elkin

CSMA (Carrier Sense Multiple Access)

- MSs compete for control channel access
- If more than one MS attempts to use the same channel at one time to transmit information, collision occurs

Receiver cannot interpret signal

CSMA: listen before transmit:

If channel sensed idle: transmit entire frame

- If channel sensed busy, defer transmission
- Improve throughput of ALOHA and slotted ALOHA

CSMA collisions spatial layout of nodes

collisions can still occur.

propagation delay means two nodes may not hear each other's transmission

collision:

entire packet transmission time wasted

note

role of distance & propagation delay in determining collision probability Collision detection Collision prevention

Contention-based Methods

- Random access protocols allow an MS to retransmit a collided message only after a random delay (Nonpersistent CSMA)
- Scheduled protocols follow scheduling schemes to control retransmission of collided messages

(Persistent CSMA)

CSMA/CD (Collision Detection)

CSMA/CD: carrier sensing, deferral as in CSMA

- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: received signal strength overwhelmed by local transmission strength
- human analogy: the polite conversationalist

CSMA/CD collision detection

"Taking Turns" MAC protocols

channel partitioning MAC protocols:

- share channel efficiently and fairly at high load
- inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!

Random access MAC protocols

- efficient at low load: single node can fully utilize channel
- high load: collision overhead

"taking turns" protocols

look for best of both worlds!

"Taking Turns" MAC protocols

Polling:

- master node "invites" slave nodes to transmit in turn
- typically used with "dumb" slave devices
- concerns:
 - polling overhead
 - latency
 - single point of failure (master)

slaves

"Taking Turns" MAC protocols

Token passing:

- control token passed from one node to next sequentially.
- token message
- concerns:
 - o token overhead
 - o latency
 - single point of failure (token)

1-persistent CSMA

- When MS has packet to send, it senses channel
- If channel is busy, MS keeps listening to the medium and transmits packet immediately after channel becomes idle
- MS transmits with a probability of 1 when medium idle
- Collision will happen if two or more MSs have ready packets and are waiting for channel to become free

28 IT 412 - Mobile Computing - Multiple Radio Access @ M. Abu-Elkheli

p-persistent CSMA

- When MS has packet to send, it senses channel
- If channel is busy, MS waits until next time slot and checks channel again
- If channel is idle, MS transmits packet with probability p or defers transmission to next time slot with probability 1 – p
- If collision occurs, MS waits for a random amount of time then starts again
- Selection of p is crucial

p-persistent CSMA

30 IT412 - Mobile Computing - Multiple Radio Access © M. Abu/Elkher

CSMA/CA

CSMA with Collision Avoidance

Hidden Terminal Problem

- MSs that are out of each other's radio transmission range, and thereby carrier sensing range
- Happens when two or more hidden terminals send packets simultaneously

32 IT412 - Mobile Computing - Multiple Radio Access © M. Abu-Elkheir

Hidden Terminal Problem

hidden terminal

Hidden Terminal Problem

- When A and C start transmitting to node B simultaneously, collision is undetected
 - Neither A nor C can sense the ongoing transmission on the other side
- Solution: CSMA/CA with RTS/CTS
 - CSMA/CA with Request to Send/Clear to Send
- Uses handshake frames exchange at the beginning of transmission

34 IT 412 - Mobile Computing - Multiple Radio Access © M. Abu-Elkheir

CSMA/CA with RTS/CTS

- If A is ready for transmission to B, it broadcasts a RTS frame
- B receives the RTS frame and replies with a CTS frame to A
- Since C is in the transmission range of B, C can also receive the CTS packet
- Now C knows that B is in communication with another node and it will refrain from transmission

35 IT412 - Mobile Computing - Multiple Radio Access © M. Abu-Elkhe

Exposed Terminal Problem

CSMA/CA with RTS/CTS solves hidden terminal problem but creates exposed terminal problem!

36 IT412 - Mobile Computing - Multiple Radio Access © M. Abu/Elimer

Exposed Terminal Problem

- A and B can communicate with each other. So are B and C, and C and D
- A cannot hear C and D, while node D cannot hear B and A
- B requests sending data to A by broadcasting an RTS packet
- Although the RTS packet is not for C, C will receive the packet because it's within B's range
- C will enter a delayed access state and refrain from transmitting to D
 - Although transmission between C and D will not interfere with data reception at A!

Summary of MAC protocols

- channel partitioning, by time, frequency or code
 - Time Division, Frequency Division
- random access (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11
- taking turns
 - polling from central site, token passing
 - Bluetooth, FDDI, IBM Token Ring

5: DataLink Layer

5-39

Thanks- Questions!

iT412 - Nobile Computing - Introduction © Assoc Pot None AHRel 2019 2019 30