— Inteligencia artificial avanzada para la ciencia de datos I — Equipo 6

TANC

Machine Learning from Disaster

— Reto —

Utilizar machine learning para crear un modelo que prediga qué pasajeros sobrevivieron al choque del Titanic.

Probar las predicciones en Kaggle para medir la precisión.

— Table of contents —

Exploración

Overview del dataset para entender el output esperado.

Limpieza

Preparar los datos de acuerdo al análisis previo.

Construcción del modelo

Seleccionar y poner a prueba modelos.

Pruebas

Realizar pruebas y mejorar el modelo.

— Exploración —

female 0.543351 male -0.543351

Correlación entre survived y sex

1 71.751412 0 28.248588

Probabilidad de sobrevivir o morir para mujeres y niños < 16

— Exploración —

Probabilidad de sobrevivir o morir para hombres edad > 16

0 82.338308 1 17.661692

Media por columna de sobrevivientes y fallecidos

	Pclass	Age	SibSp	Parch	Fare
Survived					
0	2.531876	30.626179	0.553734	0.329690	22.117887
1	1.950292	28.343690	0.473684	0.464912	48.395408

1.00

0.75

- 0.50

0.25

- 0.00

-0.25

-0.50

- -0.75

-1.00

— Limpieza —

1. Checar valores nulos y seleccionar variables relevantes.

	No.	NaN	8
Pclass		0	0.000000
Name		0	0.000000
Sex		0	0.000000
Age		177	0.198653
SibSp		0	0.000000
Parch		0	0.000000
Ticket		0	0.000000
Fare		0	0.000000
Cabin		687	0.771044
Embarked		2	0.002245

- Convertir 'Cabin' a booleano.
- Convertir 'Sex' a booleano.
- Variable dummy para 'Embarked'.
- Promedio para 'Fare'.
- Predicción para 'Age' mediante agrupamiento de edades.
- Eliminar las columnas de:
 - o Ticket.
 - Name

— Age Groups —

- Uso de KMeans para obtener el número óptimo de clusters (age groups) = 4
- Uso de funciones de numpy + Kmeans para obtener rangos
- Age Groups Finales:

```
[ 0. 13.16 27.67 43.52 inf]
```

 Categorizamos los que tienen Age (pd.cut).

— Age Groups —

2. Predicción de edades.

- Combinamos datasets de train.csv y test.csv de Kaggle para más datos y mejor modelo (para ageGroups).
- Utilizamos todos los datos que tuvieran Age y entrenamos nuestro modelo.
- Dividimos entre conjunto de prueba y entrenamiento (70-30).
- Usamos el Decision Tree Classifier para clasificar edades.

withAgesFilled = bothDf[bothDf['Age'].isnull()==False]
withoutAgesFilled = bothDf[bothDf['Age'].isnull()==True]

— Age Groups Métricas —

Se utilizaron las siguientes métricas para medir el éxito del modelo:

- Accuracy_score
- Confusion_matrix

Estas son las mejores métricas para medir rendimiento de modelos con variables *output* categóricas.

Resultados:

- 100% accuracy en train subset
- 100% accuracy en test subset
- Cuando se predice para los datos que no cuentan con edad, no se puede obtener puntaje de accuracy debido a que se desconocen los datos reales

```
[[ 70  0  0  0]

[ 0 279  0  0]

[ 0  0 253  0]

[ 0  0  0 130]]

1.0

[[ 29  0  0  0]

[ 0 126  0  0]

[ 0  0 103  0]

[ 0  0 0 56]]

1.0
```

— Age Groups Métricas —

Convertimos a variable *dummy* ya con los resultados (lo pudimos mantener de 1-4 porque es nominal).

Después de la limpieza, separamos de nuevo los *datasets* de *train.csv* y *test.csv* pero con *ageGroups* y sólo las columnas relevantes para el modelo final.

PassengerId	Survived	Pclass	Sex	SibSp	Parch	Fare	Has_Cabin	emb_C	emb_Q	emb_S	agage1	agage2	agage3	agage4
1	0.0	3	0	1	0	7.2500	0	0	0	1	0	1	0	0
2	1.0	1	1	1	0	71.2833	1	1	0	0	0	0	1	0
3	1.0	3	1	0	0	7.9250	0	0	0	1	0	1	0	0
4	1.0	1	1	1	0	53.1000	1	0	0	1	0	0	1	0
5	0.0	3	0	0	0	8.0500	0	0	0	1	0	0	1	0
									Sex and					
	1 2 3 4	1 0.0 2 1.0 3 1.0 4 1.0	1 0.0 3 2 1.0 1 3 1.0 3 4 1.0 1	1 0.0 3 0 2 1.0 1 1 3 1.0 3 1 4 1.0 1 1	1 0.0 3 0 1 2 1.0 1 1 1 3 1.0 3 1 0 4 1.0 1 1 1	1 0.0 3 0 1 0 2 1.0 1 1 1 0 3 1.0 3 1 0 0 4 1.0 1 1 1 0	1 0.0 3 0 1 0 7.2500 2 1.0 1 1 1 0 71.2833 3 1.0 3 1 0 0 7.9250 4 1.0 1 1 1 0 53.1000	1 0.0 3 0 1 0 7.2500 0 2 1.0 1 1 1 0 71.2833 1 3 1.0 3 1 0 0 7.9250 0 4 1.0 1 1 1 0 53.1000 1	1 0.0 3 0 1 0 7.2500 0 0 2 1.0 1 1 1 0 71.2833 1 1 3 1.0 3 1 0 0 7.9250 0 0 4 1.0 1 1 1 0 53.1000 1 0	1 0.0 3 0 1 0 7.2500 0 0 0 2 1.0 1 1 1 0 71.2833 1 1 0 3 1.0 3 1 0 0 7.9250 0 0 0 4 1.0 1 1 1 0 53.1000 1 0 0	1 0.0 3 0 1 0 7.2500 0 0 0 1 2 1.0 1 1 1 0 71.2833 1 1 0 0 3 1.0 3 1 0 0 7.9250 0 0 0 1 4 1.0 1 1 1 0 53.1000 1 0 0 1	1 0.0 3 0 1 0 7.2500 0 0 0 1 0 2 1.0 1 1 1 0 71.2833 1 1 0 0 0 3 1.0 3 1 0 0 7.9250 0 0 0 1 0 4 1.0 1 1 1 0 53.1000 1 0 0 1 0	1 0.0 3 0 1 0 7.2500 0 0 0 1 0 1 2 1.0 1 1 1 0 71.2833 1 1 0 0 0 0 0 3 1.0 3 1 0 0 7.9250 0 0 0 1 0 1 4 1.0 1 1 1 0 53.1000 1 0 0 1	2 1.0 1 1 1 0 71.2833 1 1 0 0 0 0 1 3 1.0 3 1 0 0 7.9250 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

— Construcción del modelo —

- Como nuestra variable dependiente es categórica, debemos escoger modelos con estas características.
- Como variables independientes tenemos numéricas y categóricas convertidas a dummy.
- Para nosotros fue importante explorar diferentes modelos antes de escoger y optimizar uno.
- Utilizamos las mismas métricas que en nuestro modelo de *ageGroup* para medir el rendimiento de cada uno de nuestros modelos a probar.

	Pclass	Sex	SibSp	Parch	Fare	Has_Cabin	emb_C	emb_Q	emb_S
0	3	0	1	0	7.2500	0	0	0	1
1	1	1	1	0	71.2833	1	1	0	0
2	3	1	0	0	7.9250	0	0	0	1
3	1	1	1	0	53.1000	1	0	0	1
4	3	0	0	0	8.0500	0	0	0	1
	agage	1 ag	age2	agag	e3 aga	age4			
0		Э	1		0	0			
1		Э	0		1	0			
2		9	1		0	0			
3		д	0		1	0			
4		Э	0		1	0			
0	0.0								

— Construcción del modelo —

- Modelos a probar: KNeighbors Classifier, Logistic Regression, Decision Tree Classifier.
- Utilizamos el mismo parámetro random_state y training split para mantener la consistencia y poder comparar.

vs

VS

— KNeighbors Classifier —

Accuracy para todos los KNeighbors

```
[[343 49]
[93 138]]
0.7720706260032103
[[140 17]
[37 74]]
0.7985074626865671
```

Buen modelo, no tanta accuracy como quisiéramos

— Logistic Regression —

```
[[337 55]
[ 69 162]]
0.8009630818619583
[[135 22]
[ 30 81]]
0.8059701492537313
```

Buen modelo, no muestra señales de sobreajuste

— Decision Tree —

- Mejor modelo hasta ahora
- Muestra señales de sobreajuste: accuracy muy alto en training y no muy alto en el test subset, igualmente el árbol de decisiones muestra muchas ramas y profundidad
- Con la optimización podemos incrementar el accuracy.

```
[[387 5]
[ 21 210]]
0.9582664526484751
[[127 30]
[ 35 76]]
0.7574626865671642
```


— Optimización —

En cuanto a Decision Tree Classifier:

Contamos con **sobreajuste**, para esto hay dos hiper parámetros que se pueden modificar para tener un mejor modelo: **Min_Sample_Leaf** y **Max_Depth**.

- Min_Sample_Leaf nos dice que tantos ejemplos una rama debe de tener para generarla. Esto es bueno tenerlo a un nivel bajo para no terminar con ramas con solo 1-3 situaciones.
- Lo mismo va para nuestro hiper parámetro *Max_Depth*, el cual limita la profundidad de las ramas que igualmente puede hacer mucho ruido y causar sobreajuste.

Grid Accuracy Score de Hyperparameters

0.81 - 0.80

— Optimización Min Sample Leaf —


```
{1: 0.7574626865671642,
2: 0.7985074626865671,
3: 0.7611940298507462,
4: 0.7910447761194029,
5: 0.7910447761194029,
6: 0.8097014925373134,
7: 0.8022388059701493,
8: 0.7985074626865671,
9: 0.7910447761194029,
10: 0.7835820895522388,
11: 0.7798507462686567,
12: 0.7798507462686567,
13: 0.7835820895522388,
14: 0.7835820895522388,
15: 0.7835820895522388,
```

Vemos que nuestro mejor accuracy es con 6 de min_sample_leaf. Lo que significa que necesita mínimo 6 ejemplos de ese caso para generar una nueva rama.

— Optimizacion Max Depth —


```
{1: 0.7910447761194029,
2: 0.7723880597014925,
3: 0.8097014925373134.
4: 0.7910447761194029.
5: 0.7910447761194029.
6: 0.8059701492537313,
7: 0.8097014925373134.
8: 0.8097014925373134,
9: 0.8097014925373134,
10: 0.8097014925373134.
11: 0.8097014925373134,
12: 0.8097014925373134,
13: 0.8097014925373134,
14: 0.8097014925373134,
15: 0.8097014925373134,
16: 0.8097014925373134,
17: 0.8097014925373134,
18: 0.8097014925373134,
19: 0.8097014925373134}
```

- Vemos que sube el accuracy, después baja y vuelve a subir
- Tratando de optimizar es el sobreajuste: el mínimo depth que nos de el mejor accuracy score = 3.

— Modelo Final —

#FINAL MODEL
survivedOrNot = DecisionTreeClassifier(random_state=42, min_samples_leaf = 6, max_depth=3)
survivedOrNot.fit(x_train, y_train)


```
[[141 16]
[ 35 76]]
0.8097014925373134
[[351 41]
[ 77 154]]
0.8105939004815409
```

- Terminamos con un modelo más preciso y sin sobreajuste. Como podemos ver en el árbol y los accuracy_scores
- Mejor que cualquiera de los otros modelos que comparamos.

— Pruebas Kaggle —

- Preparamos predicciones y subimos a Kaggle
- Enviamos la de todos nuestros modelos que comparamos
- Nuestro modelo final es el que tiene mejor score

```
forTestModelx = test.drop(['PassengerId', 'Survived'], axis=1)

predictions = survivedOrNot.predict(forTestModelx)

predictDf = pd.DataFrame(predictions, columns=['Survived'])

finalCsv = pd.concat([test.drop(['Survived'], axis=1), predictDf], axis=1)
  finalCsv.head(20)
```

```
finalCsv['Survived'] = finalCsv['Survived'].astype(int)
finalCsv[['PassengerId','Survived']].to_csv('export.csv',index=False)
files.download('export.csv')
```


Score: 0.77990

Conclusion

- 1. Analizamos los datos
- 2. Limpiamos
- 3. Analizamos variables relevantes
- 4. Construimos y comparamos tres modelos
- 5. A partir de esos tres modelos escogimos el mejor y lo optimizamos para mejor resultados
- 6. Exito!

