Floating point and ODEs

Number representations in computers

```
0.1 + 0.2 == 0.3
```

False

• What's going on?

Integers

• Something simpler

```
1 + 1 == 2
```

True

• Integers can be represented in binary

```
3 == 0b11 # Ooctal `Oo` or hexadecimal `Oh`
```

True

• Binary string representation using bin function

```
bin(-2)
```

'-0b10'

- Python allows for arbitrarily large integers
- No possibility of overflow or rounding error

```
2**100
```

1267650600228229401496703205376

- Only limitation is memory!
- Numpy integers are a different story

```
import numpy as np
np.int64(2**100)
```

OverflowError: Python int too large to convert to C long

- Since NumPy is using C the types have to play nicely
- Range of integers that represented with 32 bit numpy.int32s is $\approx \pm 2^{31} \approx \pm 2.1 \times 10^9$ (one bit for sign)
- 64 bit numpy.int64s lie in range $\approx \pm 2^{63} \approx \pm 9.2 \times 10^{18}$
- Apart from the risk of overflow when working NumPy's integers there are no other gotchas to worry about

Floating point numbers

- $0.1 + 0.2 \neq 0.3$ in Python is that specifying a real number exactly would involve an infinite number of bits
- Any finite representation necessarily approximate
- Representation for reals is called floating point arithmetic
- Essentially scientific notation

 $significand \times exponent$

- Named *floating point* because number of digits after decimal point not fixed
- Requires choice of base, and Python's floating point numbers use binary
- Numbers with finite binary representations behave nicely

```
0.125 + 0.25 == 0.375
```

True

• For decimal numbers to be represented exactly we'd have to use base ten. Can be achieved with decimal module:

```
from decimal import *
Decimal('0.1') + Decimal('0.2')
```

Decimal('0.3')

- But: there's nothing to single out decimal representation in physics (as opposed to, say, finance)
- A specification for floating point numbers must give
 - 1. Base (or radix) b
 - 2. Precision p, the number of digits in the significand c. Thus $0 \le c \le b^p 1$.
 - 3. A range of exponents q specifed by emin and emax with emin $\leq q + p 1 \leq \text{emax}$.
- With one bit s for overall sign, a number then has form $(-1)^s \times c \times b^q$.
- Smallest positive nonzero number that can be represented is $b^{1+\text{emin}-p}$ (corresponding to the smallest value of the exponent) and largest is $b^{1+\text{emax}} 1$.

$(-1)^s \times c \times b^q$

 Representation isn't unique: (sometimes) could make significand smaller and exponent bigger

- A unique representation is fixed by choosing the exponent to be as small as possible.
- Representing numbers smaller than b^{emin} involves a loss of precision, as number of digits in significand < p and exponent takes its minimum value (subnormal numbers)
- If we stick with normal numbers and a p-bit significand, leading bit will be 1 and so can be dropped from the representation: only requires p-1 bits.
- Specification for floating point numbers used by Python (and many other languages) is contained in the IEEE Standard for Floating Point Arithmetic IEEE 754
- Default Python float uses 64 bit binary64 representation (often called double precision)
- Here's how those 64 bits are used:
 - -p = 53 for the significand, encoded in 52 bits
 - 11 bits for the exponent
 - 1 bit for the sign
- Another common representation is 32 bit binary 32 (single precision) with:
 - -p = 24 for the significand, encoded in 23 bits
 - 8 bits for the exponent
 - 1 bit for the sign

Floating point numbers in NumPy

• NumPy's finfo function tells all machine precision

```
np.finfo(np.float64)
```

finfo(resolution=1e-15, min=-1.7976931348623157e+308, max=1.7976931348623157e+308, dtype=floating=1e-15, min=-1.7976931348623157e+308, dtype=floating=1e-15, min=-10.7976931348623157e+308, dtype=floating=1e-15, min=-10.7976931348623157e+308, dtype=floating=1e-15, min=-10.7976931348623157e+308, dtype=floating=1e-15, min=-10.7976931348623157e+308, dtype=floating=1e-15, dtype=float

- Note that $2^{-52} = 2.22 \times 10^{-16}$ which accounts for resolution 10^{-15}
- This can be checked by finding when a number is close enough to treated as 1.0.

```
x=1.0
while 1.0 + x != 1.0:
x /= 1.01
```

```
print(x)
```

1.099427563084686e-16

• For binary 32 we have a resolution of 10^{-6} .

```
np.finfo(np.float32)
```

finfo(resolution=1e-06, min=-3.4028235e+38, max=3.4028235e+38, dtype=float32)

• Taking small differences between numbers is a potential source of rounding error

A3 The Apollo 11 spacecraft took 76 hours to travel from the Earth to the Moon, a distance of 384,400 km. Estimate the difference between the Earth-Moon distance as measured in the rest frame of the spacecraft during the transit and the Earth-Moon distance as measured in the Earth's rest frame. You may assume the spacecraft moves with constant velocity and you may ignore the Moon's motion relative to the Earth.

• Solution: $x - x' = x(1 - \gamma^{-1}) \sim x\beta^2/2 \sim 4.2$ mm.

```
import numpy as np
from scipy.constants import c
beta = 384400e3 / (76 * 3600) / c
gamma = 1/np.sqrt(1 - beta**2)
print(1 - np.float32(1/gamma), 1 - np.float64(1/gamma))
```

0.0 1.0981660025777273e-11

The dreaded NaN

• As well as a floating point system, IEEE 754 defines Infinity and NaN (Not a Number)

```
np.array([1, -1, 0]) / 0

/var/folders/9y/4kfs30yd1rz
```

/var/folders/9y/4kfs30yd1rz98737_h9jpn9h0000gn/T/ipykernel_13279/2604490398.py:1: RuntimeWar: np.array([1, -1, 0]) / 0
/var/folders/9y/4kfs30yd1rz98737_h9jpn9h0000gn/T/ipykernel_13279/2604490398.py:1: RuntimeWar: np.array([1, -1, 0]) / 0

```
array([ inf, -inf, nan])
```

• They behave as you might guess

```
2 * np.inf, 0 * np.inf, np.inf > np.nan
```

• NaNs propagate through subsequent operations

```
2 * np.nan
```

(inf, nan, False)

nan

- If you get a NaN somewhere in your calculation, you'll probably end up seeing it somewhere in the output
- (this is the idea)

Differential equations with SciPy

Newton's fundamental discovery, the one which he considered necessary to keep secret and published only in the form of an anagram, consists of the following: Data aequatione quoteunque fluentes quantitates involvente, fluxiones invenire; et vice versa. In contemporary mathematical language, this means: "It is useful to solve differential equations".

Vladimir Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations

 $\bullet\,$ Solving differential equations is not possible in general

$$\frac{dx}{dt} = f(x, t)$$

- Cannot be solved for general f(x,t)
- Formulating a system in terms of differential equations represents an important first step
- Numerical analysis of differential equations is a colossal topic in applied mathematics
- Important thing is to access existing solvers (and implement your own if necessary) and to understand their limitations
- Basic idea is to discretize equation and solution $x_j \equiv x(t_j)$ at time points $t_j = hj$ with some step size h

Figure 1: Taraji P. Henson as Katherine Johnson in ${\it Hidden\ Figures}$

Euler's method

$$\frac{dx}{dt} = f(x, t)$$

• Simplest approach: approximate LHS of ODE

$$\left. \frac{dx}{dt} \right|_{t=t_j} \approx \frac{x_{j+1} - x_j}{h}$$

$$x_{j+1} = x_j + hf(x_j, t_j)$$

$$\boxed{x_{j+1} = x_j + hf(x_j, t_j)}$$

- Once $initial\ condition\ x_0$ is specified, subsequent values obtained by iteration

The Euler method approximates the function as a straight line over the distance h.

Illustrated for the ODE: $y'\,=\,-2\,x\,y$ (which has a solution $A\exp(-x^2))$

There is a "truncation error" associated with the finite step size

A Taylor expansion yields

$$y(x_i + h) = y(x_i) + h y'(x_i) + \frac{h^2}{2}y''(x_i) + \mathcal{O}(h^3)$$

In Euler's method we **truncate** the series after the linear term. The **truncation error** is $\mathcal{O}(h^2)$ in each step.

How many steps do we need?

- If we want to integrate over a range of order unity (x = 0 to 1 for example), then we need $\mathcal{O}(h^{-1})$ steps, so the **total truncation error** is $\mathcal{O}(h)$ if we assume (pessimistically) that the errors accumulate.
- So an accuracy of 1 part in 1 million needs of order a million steps. (Of course this is not true if the function is actually a straight line...)
- Euler's Method is called **first order** since its error over a finite scale goes as h^1 . An n^{th} order method has a truncation error per step $\mathcal{O}(h^{n+1})$.

Can we take an infinite number of small steps and get a perfect answer?

- No, because round-off error due to finite precision arithmetic also occurs. At each step we get a round-off error of some value ϵ , which depends on the computer's binary representation of numbers.
- Integrating over a finite range we accumulate a total round-off error $\sim \epsilon/h$, for a total error of

$$E \sim \frac{\epsilon}{h} + h$$

• Moral: if we use small steps, round-off error dominates, but if we use large steps, truncation error dominates

Higher order methods

• More sophisticated methods typically higher order: the SciPy function scipy.integrate.solve_ivp uses fifth order method by default

Midpoint method

• Midpoint method is a simple example of a higher-order integration scheme

$$\begin{aligned} k_1 &\equiv hf(x_j,t_j) \\ k_2 &\equiv hf(x_i+k_1/2,t_j+h/2) \\ x_{j+1} &= x_j+k_2+O(h^3) \end{aligned}$$

- $\mathcal{O}(h^2)$ error cancels!
- Downside is that we have two function evaluations to perform per step, but this is often worthwhile

We can achieve much higher accuracy in many fewer steps by using higher-order methods

The total error E in an $n^{\rm th}$ order method is

$$E \sim \frac{\epsilon}{h} + h^n$$

for which h is minimised for

$$h_{\min} = \left(\frac{\epsilon}{n}\right)^{1/(n+1)}$$

The minimum error is then

$$E_{\min} \sim \left(\frac{\epsilon}{n}\right)^{n/(n+1)}$$

- For a fourth-order method and double precision arithmetic we get a step size of $h_{\rm min} \sim 6 \times 10^{-4}$ and a corresponding error of $E_{\rm min} \approx 6 \times 10^{-13}$.
- Compare this with the values of $h\sim 10^{-8}$ (implying 10^4 times as many steps) and $E\sim 10^{-8}$ we obtain for a first-order method like Euler's method.

Stability

- Euler method may be unstable, depending on equation
- Simple example:

$$\frac{dx}{dt} = kx$$

```
import numpy as np
import matplotlib.pyplot as plt
def euler(h, t_max, k=1):
    Solve the equation x' = k x, with x(0) = 1 using
    the Euler method.
    Integrate from t=0 to t=t_max using stepsize h for
    num_steps = t_max / h.
    Returns two arrays of length num_steps: t, the time coordinate, and x_0, the position.
   num_steps = int(t_max / h)
   # Allocate return arrays
   x = np.zeros(num_steps, dtype=np.float32)
   t = np.zeros(num_steps, dtype=np.float32)
    x[0] = 1.0 # Initial condition
    for i in range(num_steps - 1):
        x[i+1] = x[i] + k * x[i] * h
        t[i+1] = t[i] + h # Time step
    return t, x
```

Plot the result as a function of step size

```
k = -2.3
t_max = 5
t, x = euler(1, t_max, k)
plt.plot(t, x, label="h=1 Euler")
t, x = euler(0.7, t_max, k)
plt.plot(t, x, label="h=0.7 Euler")
t = np.linspace(0, t_max, 100)
plt.plot(t, np.exp(k * t), label="exact solution")
plt.title("k=-2.3")
plt.legend()
plt.show()
```

```
k = -2.3
t_max = 5
t, x = euler(1, t_max, k)
plt.plot(t, x, label="h=1 Euler")
t, x = euler(0.7, t_max, k)
plt.plot(t, x, label="h=0.7 Euler")
t = np.linspace(0, t_max, 100)
plt.plot(t, np.exp(k * t), label="exact solution")
plt.title("k=-2.3")
plt.legend()
plt.show()
```


• For a linear equation, the Euler update is a simple rescaling

$$x_{j+1} = x_j(1 + hk)$$

- Region of stability is $|1 + hk| \le 1$
- In general, numerical methods need to be tested for both accuracy and stability.

Using SciPy

- Coming up with integration schemes is best left to the professionals
- Try integrate module of the SciPy library
- scipy.integrate.solve_ivp provides a versatile API

Reduction to first order system

- All these integration schemes apply to systems of first order differential equations
- Higher order equations can always be presented as a first order system
- We are often concerned with Newton's equation

$$m\frac{d^2\mathbf{x}}{dt^2} = \mathbf{f}(\mathbf{x}, t)$$

which is three second order equations

• Turn this into a first order system by introducing the velocity $\mathbf{v} = \dot{\mathbf{x}}$, giving six equations

$$\begin{split} \frac{d\mathbf{x}}{dt} &= \mathbf{v} \\ m\frac{d\mathbf{v}}{dt} &= \mathbf{f}(\mathbf{x},t) \end{split}$$

Worked example: spinning ring in a magnetic field

Old IB problem:

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -\frac{2}{\tau} \sin^2 \theta \, \frac{\mathrm{d}\theta}{\mathrm{d}t}$$

with approximate solution (for light damping)

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} \approx \omega_0 e^{-t/\tau}$$

We set

$$Y_0 \equiv \theta, Y_1 \equiv \dot{\theta}$$

to obtain

$$\begin{split} \dot{Y_0} &= & Y_1 \\ \dot{Y_1} &= & -\frac{2}{\tau} \sin^2(Y_0) \, Y_1 \end{split}$$

• Solving using SciPy requires defining a function which returns the RHS of the equations

```
import scipy.integrate

def derivatives(t, y, tau):
    """
    Return the derivatives for the spinning ring equation at t,y

The equation is
    d^2 theta/dt^2 = - (2/tau) * sin^2(theta) * d theta/dt
    and we work in the transformed variables y[0] = theta, y[1] = d(theta)/dt
    """
    return [y[1], -(2.0 / tau) * np.sin(y[0]) ** 2 * y[1]]
```

Then call solve_ivp

```
solution = scipy.integrate.solve_ivp(
   fun=derivatives,
```

```
t_span=(0, 20),
  y0=(0.0, 10.0),
  args=(2.0,),
  t_eval=np.linspace(0, 20, 100),
)
x, y, dydx = solution.t, solution.y[0], solution.y[1]
```

We can now plot the results

```
fig, ax1 = plt.subplots()
ax1.plot(x, dydx, label="angular speed")
ax1.plot(x, 10 * np.exp(-x / 2.0), label="approximation")
ax1.set_xlabel("Time/s")
ax1.set_ylabel("Angular Speed (rad/s)")
ax1.set_title("Evolution of a spinning ring in a magnetic field")
ax1.legend(loc="lower right", bbox_to_anchor=(0.95, 0.1))
ax2 = ax1.twinx() # Use second set of axes for angular position
ax2.plot(x, y, label="angle", color="red")
ax2.set_ylabel("Angle (radians)")
ax2.legend(loc="upper right", bbox_to_anchor=(0.95, 0.9));
```

```
fig, ax1 = plt.subplots()
ax1.plot(x, dydx, label="angular speed")
ax1.plot(x, 10 * np.exp(-x / 2.0), label="approximation")
ax1.set_xlabel("Time/s")
ax1.set_ylabel("Angular Speed (rad/s)")
ax1.set_title("Evolution of a spinning ring in a magnetic field")
ax1.legend(loc="lower right", bbox_to_anchor=(0.95, 0.1))
ax2 = ax1.twinx() # Use second set of axes for angular position
ax2.plot(x, y, label="angle", color="red")
ax2.set_ylabel("Angle (radians)")
ax2.legend(loc="upper right", bbox_to_anchor=(0.95, 0.9));
```


- We did not have to specify a time step
- This is determined *adaptively* by solver to keep estimate of local error below atol + rtol * abs(y)
- Default values of 10^{-6} and 10^{-3} respectively
- Monitoring conserved quantities (e.g. energy, momentum, angular momentum) is a good experimental method for assessing the accuracy of integration