ECONOMISTA RAESENDOR

MOETAE&ZO

анжной вханм

Otvoreno računarstvo

Sigurnost

- Uvod osnovni pojmovi
- Napadi i metode zaštite
- Primjena i primjeri

Mario Žagar

Predgovor

 Želite li vjerovati da su Vaši podaci 100% sigurni, nedostupni drugima, nepromjenljivi, ...

...NEMOJTE NIKADA, NIGDJE, NIZAŠTO, KORISTITI RAČUNALO, Internet,...!

 Ako gornji postotak (100%) zamijenimo s nekim drugim postotkom (10%,...50%,..., 99%, ...99,9%...),

možemo nastaviti!

Vaš sveučilišni profesor računarstva Mario Žagar

Uvod - Sigurnost (Security)

- Široko dostupne računalne mreže
 - Javne informacije
 - Privatne informacije
 - Kako ih odvojiti i zaštititi?
 - Sve više i više različitih podataka na Mreži
 - Sintagma: "Ako nešto nije na Internetu NE POSTOJI!"
 - Kako kontrolirati dostupnost/nedostupnost,....?
- Sigurnosni zahtjevi ciljevi:
 - Povjerljivost, tajnost (confidentiality, secrecy)
 - Cjelovitost, očuvanost (integrity)
 - Izvornost, ovjera (authenticity)
 - Neporicljivost (nonrepudiation)
 - Dostupnost (availability)
 - Kontrola pristupa (access control)

- Povjerljivost, tajnost (confidentiality, secrecy)
 - Očuvanje tajnosti poruke
 - Treba biti razumljiva samo pošiljatelju i namjeravanom primatelju

- Cjelovitost, očuvanost (integrity)
 - Sadržaj poruke ne smije se mijenjati prilikom prijenosa
 - Zbog grješaka u prijenosu
 - Namjernom promjenom napadom
 - Svaku promjenu poruke treba moći primijetiti

- Izvornost, ovjera (authenticity)
 - Sposobnost određivanja izvornosti (autentičnosti, ovjere) partnera u komunikaciji
 - Mogućnost otkrivanja promjene sugovornika

- Neporicljivost (nonrepudiation)
 - Nemogućnost poricanja slanja poslane poruke
 - Za svaku poslanu poruku moguće utvrditi autora

- Dostupnost (availability)
 - Osiguranje dostupnosti usluge aktivnim sprječavanjem napada

- Kontrola pristupa (access control)
 - Sposobnost dodjele ili zabrane prava pristupa i korištenja resursa na pouzdan način

Osnovni pojmovi

- Kriptologija (*Cryptology*)
 - Kriptografija (*Cryptography*) umijeće čuvanja tajnih informacija
 - Nešto kao iu9o5gfmxcv[grs
 - Umjetnost pretvaranja razumljivog u nerazumljivo svima osim nekolicini
 - Nešto što malo ljudi potpuno razumije, ali svi možemo koristiti.
 - Kriptoanaliza (Cryptanalysis) umijeće otkrivanja (tuđih) tajnih informacija
- Izvorni tekst (clear-text, plain-text)
- Šifrirani, kriptirani tekst (cypher-text, cipher-text)
- Šifriranje, kriptiranje, dešifriranje, dekriptiranje (encryption/decryption)

Osnovni pojmovi

Ključ (key)

 Informacija koja se koristi u postupku kriptiranja i/ili dekriptiranja i jednoznačno određuje postupak kriptiranja i/ili dekriptiranja

Šifra (cypher, cipher)

- Par algoritama koji se koriste za pretvorbu iz izvornog u kriptirani oblik i natrag
- Katkad može imati značenje ključa

Kôd (code)

- Zamjena jedinice izvornog teksta kodnom riječi
- Bilo koja metoda skrivanja izvornog značenja

Aktivni napadi

- Lažno predstavljanje
 - Korisnika impersonation
 - Usluge phishing
- Ubacivanje u komunikaciju (man in the middle)
- Uskraćivanje usluge (denial of service, DOS/DDOS)
- Napad lažnim porukama
 - Ponavljanjem poruka (replay attack)
 - Zamjenom poruka (substitution attack)

Pasivni napadi

- Prisluškivanje (eavesdropping, tapping)
- Pogađanje ključeva ili lozinki
 - Grubom silom (brute force)
 - Napad rječnikom (dictionary attack)
 - Odabranim porukama (chosen cipher-/plain-text)
 - Kriptoanaliza, statističke metode

Metode zaštite

Zaštita na više razina

- Sustav
 - Arhitektura mreže (demilitarizirane zone, DMZ)
 - Vatrozid (firewall)
 - Antivirusna zaštita
 - Sigurnosni alati
- Komunikacijski kanal
 - Secure Sockets Layer (SSL)
 - IPSEC
 - Kriptiranje komunikacije (sklopovsko)
- Poruke
 - Digitalni potpis
 - Digitalna omotnica

- Protokol telnet ne koristi zaštitu prilikom prijenosa osjetljivih informacija
 - Korisničko ime

- Protokol telnet ne koristi zaštitu prilikom prijenosa osjetljivih informacija
 - Lozinka

```
TELNET: ---- TELNET: ----
TELNET: "123456"

TELNET: "123456"

TELNET: 0:0800 200e 1a39 0060 9795 628d 0800 4500 ....9.`..b...E.
16:0029 2b00 4000 8006 06fe a135 4364 a135 .)+.@.....5Cd.5
32:4302 0404 0017 0023 1801 3ac5 4c07 5018 C....#..:.L.P.
48:21be b530 0000 3132 3334 3536 !..0..123456
```

Algoritmi

- Tajni algoritmi
 - Neprikladni za ozbiljnu primjenu
- Javni algoritmi
 - Sažetak (digest, hash)
 - Digitalni otisak prsta (fingerprinting)
 - S ključem
 - Tajni ključ (secret key) simetrični algoritmi
 - Šifriranje blokova (block cipher)
 - Šifriranje toka (stream cipher)
 - Javni ključ (public key) asimetrični algoritmi
 - Steganografija
 - Digitalni vodeni žig (watermarking)

Svojstva algoritama

- Sažetak (digest, hash)
 - Cjelovitost
 - (Izvornost)
- Šifriranje (cipher, cypher) s ključem
 - Povjerljivost
 - (Cjelovitost)
 - (Izvornost)
- Steganografija
 - Povjerljivost

Algoritmi sažetaka (hash)

- Prevode sadržaj poruke u jedinstveni sažetak
- Funkcija generiranja sažetka
 - Jednosmjerna (gubitak informacija)
 - Prevodi izvorni tekst u sažetak fiksne duljine
 - Različiti izvorni tekstovi mogu imati iste sažetke
 - Nije moguće odrediti koje dvije poruke imaju isti sažetak
 - Generirani sažetak treba sličiti slučajno generiranim podacima
 - Minimalna promjena ulaza velika promjena izlaza
- Sažetak poruke odgovara digitalnom otisku prsta poruke
- Algoritmi: MD5, SHA-1, SHA-3 (dolazi)

Algoritmi s tajnim ključem

- Isti ključ za kriptiranje i dekriptiranje simetrični
 - Tajni ključ, dijeljeni ključ
- Sigurnost ovisi o:
 - Ključu (duljini ključa)
 - Mehanizmu dogovora ključa među sugovornicima

Osnovne grupe

- Blokovske šifre najčešće
 - Ulaz u funkciju blok podataka stalne duljine
- Šifre tôka
 - Ulaz u funkciju bit po bit iz tôka podataka koji se šifrira

Gradivni blokovi

- S (supstitucijske) i P (permutacijske) kutije
- Sklopovske implementacije brzina!

Simetrični algoritmi

Tajni (dijeljeni) ključ

 Početni problem sigurnog prenošenja poruke (veća količina podataka) prevodimo u problem sigurnog prenošenja ključa (mala količina podataka)

Dogovor o ključu

 Dogovor dviju strana o zajedničkom (dijeljenom) ključu putem nesigurnog kanala

Simetrični algoritmi

Simetrični algoritmi

- AES (Rijndael)
- Serpent
- Twofish
- Blowfish
- IDEA
- 3DES
- DES

Ilustracija AES/Rijndael algoritma, John Savard

1

Primjer: probijanje ključa (DES) sirovom snagom

Napadač	Proračun	Alat	Vrijeme i troškovi za svaki ključ		Duljina ključa koja jamči sigurnost	
			40 bitova	56 bitova	1996.	2015.
Haker vulgaris	Mali	PC	1 tjedan	Nepraktično	45	59
	\$400	FPGA	5 sati \$0.08	38 godina \$5000	50	64
Malo poduzeće	\$10.000	FPGA	12 min \$0.08	556 dana \$5.000	55	69
Korporacijski odjel	\$300.000	FPGA	24 sec \$0.08	19 dana \$5000	60	74
		ASIC	0.18 s \$0.001	3 sata \$38		
Velika kompanija	\$10.000. 000	FPGA	0.7 s \$0.08	13 sati \$5.000	70	84
		ASIC	0.005 s \$0.001	6 min \$38		
Obavještajna agencija	\$300.000. 000	ASIC	0.0002s \$0.001	12 s \$38	75	89

Algoritmi s javnim ključem

- Različiti ključevi za šifriranje i dešifriranje
 - Asimetrični
 - Tajni ključ šifriranje / dešifriranje
 - Javni ključ šifriranje / dešifriranje
- Temeljeni na NP-teškim matematičkim problemima
 - Nema poznatog algoritma polinomne (P) složenosti za poznate NP-teške probleme i vjeruje se da takvi algoritmi ne postoje
- Sigurnost ovisi o:
 - Odabranom problemu
 - Ključu (duljini ključa)
 - Zaštiti tajnog ključa

Asimetrični algoritmi

- Kako izgraditi algoritam?
 - Uzeti težak problem (NP-težak) s posebnim slučajem koji se može riješiti u P (polinomne složenosti)
 - Šifriranje pretvoriti poruku u poseban slučaj problema, zatim javnim ključem pretvoriti jednostavan problem u težak
 - Dešifriranje korištenjem privatnog ključa pretvoriti težak problem u jednostavan i riješiti ga

Primjeri problema

- Faktorizacija brojeva (RSA, Rabin)
- Diskretni logaritmi (Diffie-Hellman, DSS, El-Gamal)
- Eliptičke krivulje (LUC, XTR)

Asimetrični algoritmi (svojstvo)

Steganografija

- Skrivanje poruke
 - Nitko osim pošiljatelja i primatelja nije svjestan postojanja poruke
- Primjer
 - Skrivanje tajne slike u niže bitove kamuflažne slike

Najniža 2 bita svakog piksela

Izvor: Wikipedia: Steganography

 Primjena: vodeni žig u multimedijalnim sadržajima (©, DRM)

Usporedba algoritama

Simetrični algoritmi

Prednosti

- Velika raznolikost algoritama
- Brzina
 - Manja računska složenost
 - Jednostavna sklopovska implementacija

Mane

- Distribucija ključeva
 - Razgovor N sugovornika zahtijeva n·(n-1)/2 ključeva
 - Problem razmjene ključa

Usporedba algoritama

Asimetrični algoritmi

Mane

- Sporost
 - Velika računska složenost
 - Složena implementacija

Prednosti

- Distribucija ključeva
 - Javni ključ se može slobodno dijeliti
- Idealni algoritam imao bi dobra svojstva obje grupe
 - Brzinu simetričnih
 - Rukovanje ključevima asimetričnih

Primjena algoritama

- Šifriranje podataka (npr. na disku)
 - Cjelovitost
 - Tajnost
- Digitalni potpis
 - Ovjera izvornosti
 - Cjelovitost
 - Neporicljivost
- Digitalna omotnica
 - Ovjera izvornosti
 - Cjelovitost
 - Neporicljivost
 - Tajnost

Ključevi

- Što sve može biti ključ?
- Vrste ključeva
 - Kratki (pamtljivi)
 - Alfanumerički
 - Lozinke
 - TAN (transakcijski broj, varijanta ključa za jednokratnu uporabu)
 - Token sklopovska izvedba TAN-a
 - Dugi
 - Sažetak
 - Certifikat
 - Pametna kartica
 - Biometrijski
 - Otisak prsta
 - Uzorak šarenice
 - Slika lica

Važnost ključa

- Sigurnost ovisi o kvaliteti ključa
 - Idealan ključ slučajni broj velike duljine
- Ključevi za simetrične kriptosustave
 - (Pseudo)slučajni brojevi
 - Bitna kvaliteta generatora slučajnih brojeva
 - Predvidivost generatora = predvidivost ključa
- Ključevi za asimetrične sustave
 - Posebna svojstva
 - Npr. umnožak dva velika prosta broja (RSA)
 - Potrebna veća duljina ključa za istu razinu sigurnosti

Pohrana ključeva

- Tajni ključ (simetrični i asimetrični algoritmi)
 - Sigurnosni standardi zahtijevaju pohranu unutar uređaja
 - Pametne kartice (ključ, certifikat)
 - Kripto-uređaji (ključ, certifikat)
 - Ključ ne može (ne smije) napustiti uređaj
 - Pokušaj otvaranja uređaja rezultira uništenjem ključa

Slično je i s biometrijskim ključevima :)

Digitalni potpis

- Generiramo sažetak poruke S
- Sažetak šifriramo ključem Pk (Privatni ključ)
 - Ključ (Pk) ostaje u našem posjedu
- Dodajemo šifrirani sažetak na poruku
- Sugovornik ključem Jk (Javni ključ) dešifrira sažetak S
 - Ovjera (autentičnost)
 - Neporicljivost
- Sugovornik generira sažetak primljene poruke S'
 - Ako je S = S', primljena poruka je istovjetna originalu
 - Očuvanost (integritet)

Digitalni potpis

Digitalna omotnica

- Poruku šifriramo simetričnim algoritmom ključem K
 - Ključ K je generiran slučajno
 - Brzina
- Ključ K šifriramo asimetričnim algoritmom
 - Javnim ključem Jk (Pk je kod vlasnika ključa)
 - Nema problema distribucije ključeva
- Sugovornik ključem Pk dešifrira ključ K
- Ključem K dešifrira poruku
 - Tajnost

Digitalna omotnica

Pitanje: Je li ovo ispravno???

- Zakon o elektroničkom potpisu, 2002.
 - Osigurava zakonsku istovjetnost naprednog elektroničkog potpisa sa ručnim potpisom, odnosno potpisom i pečatom
 - Razrađuje zakonske podakte za definiranje uloge države u procesu
 - Definira tko može postati CA (Certificate Authority)
 - Vrlo strogi kriteriji, među strožima u svijetu

- Zakon o elektroničkom potpisu, 2002.
- Elektronički potpis
 - Skup podataka u elektroničkom obliku koji su pridruženi ili su logički povezani s drugim podacima u elektroničkom obliku i koji služe za identifikaciju potpisnika i vjerodostojnosti potpisanoga elektroničkog dokumenta
- Našom terminologijom
 - Ovjera (identifikacija potpisnika)
 - Očuvanost (vjerodostojnost)

- Napredan elektronički potpis
 - Elektronički potpis koji pouzdano jamči identitet potpisnika i koji
 - je povezan isključivo s potpisnikom
 - nedvojbeno identificira potpisnika
 - nastaje korištenjem sredstava kojima potpisnik može samostalno upravljati i koja su isključivo pod nadzorom potpisnika
 - sadržava izravnu povezanost s podacima na koje se odnosi i to na način koji nedvojbeno omogućava uvid u bilo koju izmjenu izvornih podataka
 - Neporicljivost (povezan isključivo s potpisnikom)
 - Ovjera (identificira potpisnika)
 - Očuvanost (vjerodostojnost)

Kako to izvesti?

- Potpis dijeljenim (simetričnim) ključem
 - Potreba za središnjim autoritetom koji ovjerava naš potpis simetričnim ključem
 - Komunikacija sa središnjim autoritetom zaštićena je simetričnom kriptografijom
 - Autoritet označava vrijeme primitka poruka
 - Zaštita od napada ponavljanjem poruka
 - Problem:
 - Ključevi za komunikaciju sa središnjim autoritetom
 - Moraju biti tajni
 - Velika količina tajnih informacija koja se čuva u središnjem autoritetu i kod svakog sugovornika
 - Središnji autoritet može čitati sve poruke
 - Središnji autoritet ovjerava svaku poruku

Kako to izvesti?

- Potpis javnim (asimetričnim) ključem
 - Poruku potpisujemo našim tajnim ključem
 - Sugovornik provjerava potpis našim javnim ključem
 - Nužno da su operacije šifriranja (potpisa) i dešifriranja (provjere) međusobno inverzne
 - Nema potrebe za središnjim autoritetom koji ovjerava svaku poruku
 - Problem:
 - Kako vjerovati da je javni ključ sugovornika baš njegov?
 - Središnji autoritet jamči ispravnost ključa
 - Potvrda o valjanosti ključa = certifikat

Certifikati

- Zakon: potvrda u elektroničkom obliku koja povezuje podatke za verificiranje elektroničkog potpisa s nekom osobom i potvrđuje identitet te osobe
- Certifikat
 - Potvrda o vezi između identiteta i javnog ključa
 - Javan
 - Norma za certifikate ITU X.509 v3
 - Sadrži
 - Identifikaciju izdavatelja i subjekta
 - Oznaku algoritma potpisa i javni ključ
 - Razdoblje važenja
 - Potpis

Izdavatelj certifikata

- Davatelj usluga certificiranja
 - pravna ili fizička osobu koja izdaje certifikate ili daje druge usluge povezane s elektroničkim potpisima
- CA Certificate Authority
 - Izdaje certifikate
 - Moguće ostvarenje hijerarhije CA
 - Lanac povjerenja, staza certificiranja
 - Stablo certifikata od korijenskog CA do našeg certifikata
 - Ne postoji jedinstvena hijerarhija
 - Internet niz CA
 - GTE CyberTrust Global Root
 - CyberTrust Educational CA
 - ahyco.fer.hr

C=HR/S=Zagreb/L=Zagreb/O=FER/OU=ZPR/CN=ahyco.fer.hr

Primjer

Certifikat www.fer.hr

- CN = www.fer.hr
- OU = www.fer.hr
- O = Fakultet
 elektrotehnike i
 racunarstva
- L = Zagreb
- C = HR

Povlačenje certifikata

- Certifikat potvrđuje vezu između javnog ključa i osobe
 - · Javni ključ nećemo izgubiti, ne može biti ukraden
 - Što ako izgubimo privatni ključ ili je ukraden?
- Certifikat sadrži razdoblje valjanosti
 - Što kad to razdoblje istekne?
- CA održava mehanizme provjere valjanosti certifikata
 - Provjera potpisa
 - Održavanje popisa povučenih certifikata (CRL)

Potpisnik

 koji izgubi ili mu je otuđeno sredstvo za izradu elektroničkog potpisa te u slučajevima kada mu je onemogućen pristup podacima za izradu elektroničkog potpisa, dužan je o tome odmah obavijestiti davatelja usluga certificiranja

Davatelj usluga certificiranja

 koji je zaprimio obavijest ... provodi uvid u postupak opoziva izdatog certifikata i dalje postupa po utvrđenim pravilima opozivanja izdatih certifikata

Popis povučenih certifikata

- CRL Certificate Revocation List
- Popis povučenih certifikata
 - Ne uključuje certifikate kojima je automatski istekla valjanost
- Provjera valjanosti certifikata
 - Provjera digitalnih potpisa certifikata
 - Provjera razdoblja valjanosti certifikata
 - Provjera popisa povučenih certifikata
 - Adresa CRL upisana u certifikat
 - Certifikat može biti označen kao non-critical
 - Ako pristup popisu (CRL) nije moguć, smatramo da je sigurnost dovoljna
 - Npr. nedostupna mrežna veza, ...

Značaj CA

- CA
 - Ovjerava certifikate
 - Održava popise povučenih certifikata
- Kompromitirani CA unosi veliku štetu
 - Cijela hijerarhija od tog CA na niže postaje nevažeća
 - Sigurna komunikacija s članovima hijerarhije nije moguća
 - Uskraćivanje usluge DOS

Norme

Public Key Cryptography Standards (PKCS)

- RSA Security definirao niz normi
 - PKCS #1 RSA Cryptography Standard
 - PKCS #3 Diffie-Hellman Key Agreement Standard
 - PKCS #7 Cryptographic Message Syntax Standard
 - PKCS #8 Private-Key Information Syntax Standard
 - PKCS #10 Certification Request Standard
 - PKCS #11 Cryptographic Token Interface (programsko sučelje)
 - PKCS #12 Personal Information Exchange Syntax Standard

X.509

- ITU-T norme za ostvarenje PKI
- Oblik certifikata

Norme

- FIPS Federal Information Processing Standards
 - Između ostalog DES i AES
- W3C
 - Struktura XML-a s digitalnim potpisom
 - XML DSig, XML AdES
- Problem
 - XML istog značenja može biti zapisan na više načina
 - Razmaci u oznakama elemenata
 - Redoslijed atributa, elemenata, ...

```
<SignatureValue>C7di9 .... ligw+o=</SignatureValue>
<X509SubjectName>Ivo Ivić #BrojCertifikata</X509SubjectName>
<X509Certificate>
MIIEazCCA .... iG9w0BA
</X509Certificate>
```

Primjeri

- Zaštita lozinki
- Jedinstvena autentikacija na različitim sjedištima
- Kreditne kartice
- Elektronički potpis

Primjer: Zaštita lozinki

- Čuvanje lozinki u operacijskom sustavu ili aplikacijama?
 - Pohranom lozinki u izvornom obliku odgovornost za sigurnost lozinke prelazi na aplikaciju
 - Uspjeli napad na aplikaciju lozinke svih korisnika

Rješenje

- Pohrana šifriranog oblika lozinke
- Je li nam potrebna mogućnost povrata u izvorni oblik?
 - Ne, samo želimo znati je li unesena lozinka istovjetna pohranjenoj
 - Treba nam samo sažetak lozinke

Lozinke

Realizacija

- Sažeci generirani varijacijom DES-a (Unix, Windows)
- MD5 sažeci lozinki (Linux, Unix, PHP)
- SHA sažeci lozinki (Unix, Linux, PHP)
- Sažeci generirani varijacijom Blowfisha

Primjer (PHP)

```
<?php
     $lozinka = crypt('tajna');

if (crypt($ulaz, $lozinka) == $lozinka) {
     echo "Dobrodošli!";
   }
?>
```

Primjer: Generiranje SHA-1

- Java i .Net sadrže implementacije algoritama
- Primjer (Java):

```
String plaintext = new String("Napad u zoru!");
java.security.MessageDigest md = null;

md = MessageDigest.getInstance("SHA1");
md.update(plaintext.getBytes("UTF-8"));

byte sha1[] = md.digest();
```

Izostavljeno je rukovanje iznimkama

Primjer: Zaštita komunikacije

- Secure Socket Layer (SSL)
- HTTPS SSL umjesto TCP-a kao transportni protokol
- Možemo iskoristiti i za vlastite potrebe
 - Klijent SSH npr. PuTTY
 - Stvaranje tunela kroz SSL
 - Sigurni kanal povezuje port na lokalnom i port na udaljenom računalu

Primjer: Jedinstvena autentikacija

- Jedinstvena prijava (Single Sign-On)
 - Olakšava rad korisniku
 - Pamti samo jednu lozinku može biti kvalitetnija
 - Uspostavlja mrežu povjerenja između pružatelja usluga

Sugovornici

- IdP *Identity Provider* provjerava identitet korisnika
- SP Service Provider pruža uslugu korisniku
- Preglednik (podržava kolačiće)
 - Sučelje prema korisniku
 - Komunicira sa poslužiteljima

Jedinstvena autentikacija

- Preglednik pristupa SP-u
 - Google Apps
- SP provjerava koji je IdP za tog korisnika
 - FER CMS
- SP preusmjerava (HTTP Location) prijavu na IdP
 - Kao parametar šalje vlastiti URL
- IdP provjerava identitet korisnika
 - Prijavljuje korisnika ako nije prijavljen
- IdP preusmjerava (HTTP Location) korisnika na SP
 - Adresu za preusmjeravanje je dobio od SP

Jedinstvena autentikacija

Jedinstvena autentikacija

- Iza svega leži SAML
 - Security Assertion Markup Language (SAML)
 - Zasnovan na XML-u
 - Protokol provjere autentikacije između IdP i SP
 - Struktura poruka
 - Digitalno potpisani XML

Kritika

- Presložen za jednostavnije primjene
- Identitet pod kontrolom *Identity Provider*-a, ne korisnika

Primjer: Zaštita e-pošte

- OpenPGP (RFC 4880)
 - PGP, GnuPG (GPG), ...
- Digitalni potpis, digitalna omotnica
- Problem
 - Nema središnjeg autoriteta, korisnik ima kontrolu
 - Kako vjerovati da javni ključ zaista pripada osobi?

```
----BEGIN PGP SIGNED MESSAGE----

Pozdrav posjetiteljima zainteresiranim za kriptografsku zastitu podataka :-)

----BEGIN PGP SIGNATURE----

Version: 2.6.3i

iQB1AwUBMn81FeLAsiJAX7ttAQHYsQMAnT216JJG569K49w7mZa0S40aMtUzRSwm dh9ijMpJR0dOEneUMF6G722oCcJli81V9pLIo12Lon5cElZRP5emx+n9DckRAU0w q++v1cGYsIJUa7/LUEtHLMyvXEp2JkRL =dtfP
----END PGP SIGNATURE----
```

Primjer: Plaćanje karticama

- EMV Europay, MasterCard, Visa
 - Fizička i električka izvedba čipa na kreditnim karticama
 - Podaci i sučelje za rad s čipom
 - Koriste se algoritmi sažetaka, simetrični i asimetrični
 - SHA-1, DES, RSA
- SET Secure Electronic Transaction
 - Sigurno plaćanje kreditnim karticama na webu
 - Unos broja kreditne kartice
- 3-D Secure
 - Evolucija SET-a
 - Uvodi treću domenu sigurnosti (3-D)

Plaćanje karticama

SET – sudionici

- Acquirer stjecatelj banka koja naplaćuje trošak kartice za račun trgovca
- Merchant trgovac fizička ili web-trgovina
- Banka stjecatelj provjerava karticu postojećim kanalom

3-D Secure – sigurnosne domene

- Acquirer stjecatelj banka koja naplaćuje trošak kartice za račun trgovca
- Interoperability podrška kartične kuće
 - Imenički poslužitelj koji provjerava je li kartica važeća i koja banka ju je izdala
 - Prosljeđuje zahtjev za kupnju izdavatelju
- Issuer izdavatelj banka koja je izdala karticu

Plaćanje karticama

Dodatna sigurnost

- Kartična kuća omogućava korisniku kartice da registrira karticu i pridijeli joj lozinku za plaćanje putem weba
- Stroži zahtjevi na implementaciju protokola
 - Prebacivanje dijela odgovornosti na banku izdavatelja

Kritika

- Prilikom postupka plaćanja karticom, korisniku se prikazuju prozori s različitih web sjedišta
 - Može zbuniti korisnika
 - Sumnja na lažno predstavljanje poslužitelja phishing
- Primjeri implementacije
 - Ouroboros Payment Gateway, T-Com PayWay

Primjer: Potpis dokumenata

- Kratki pregled stanja u Hrvatskoj
- Zakon o elektroničkom potpisu
 - Istovjetnost naprednog elektroničkog potpisa i ručnog potpisa
- Zašto?
 - Ubrzanje birokratskih procedura
 - Smanjivanje papirologije
 - Revizija administrativnih procesa
 - Efikasnije poslovanje
 - Smanjenje troškova papira, transporta, vremena
 - Obavljen isti posao u kraće vrijeme

Trenutno stanje (sredina 2008.)

- Jedini certificirani CA Financijska Agencija (FINA)
 - Registar Digitalnih Certifikata (RDC)
- Postoje nekvalificirani CA
 - Za potrebe poslovanja preko interneta
 - Banke svaka za sebe osnovale interni CA
 - Nisu ovjerovljeni od države
 - Nemaju ispunjene sve zakonom propisane uvjete
- Nije uspostavljena hijerarhija CA
 - Jedini pravi CA FINA-in CA
- Većina pravnih i fizičkih osoba nije educirana
 - Ne zna se za postojanje ni za vjerodostojnost digitalnog potpisa

Trenutno stanje (sredina 2008.)

- Počeo razvoj usluga zasnovanih na digitalnom potpisu
 - Uglavnom u segmentu B2G (Business to Government)
- FINA-in CA prihvaćen kao jedini autoritet za izdavanje i provjeru digitalnog potpisa
 - Uglavnom među poslovnim subjektima gdje FINA ionako ima autoritet
 - Izdaje autentikacijske i potpisne certifikate
 - Potpisni osigurava neporicljivost
 - Certifikati namijenjeni osobama, poslovnim subjektima i tijelima državne uprave

Ponuđene usluge

- FINA (Financijska Agencija)
 - Predaja periodičkih statističkih izvještaja
 - Izdavanje potvrda o bonitetu poslovnih subjekata
 - NKS (Nacionalni Klirinški Sustav)
 - Sve transakcije između banaka digitalno potpisane
 - Elektroničko plaćanje
 - eRegos (registar osiguranika drugog stupa mirovinskog osiguranja)

Banke

Internet bankarstvo za poslovne subjekte

Ponuđene usluge - državna uprava

- PU MFIN (Porezna Uprava Ministarstva financija)
 ePorezna:
 - Uvid u PKK (poreznu knjigovodstvenu karticu)
 - Predaja obrazaca za PDV, prijave poreza na dobit, izvještaja o isplaćenim plaćama
- HZZO (Hrvatski Zavod za Zdravstveno Osiguranje) eZdravstveno:
 - Prijava i odjava radnika na zdravstveno osiguranje
 - Promjena podataka o zdravstvenom osiguranju radnika
- HZMO (Hrvatski Zavod za Mirovinsko Osiguranje) eMirovinsko:
 - Prijava i odjava radnika na mirovinsko osiguranje
 - Promjena podataka o mirovinskom osiguranju radnika

ePorezna

HZZO e-Zdravstveno	
OMOĆ (F1) (F2) KRAJ (F3) (F4) OPOZIV (F5) (F6) (F7) (F8	(F9) DODAJ + (F10)
Izbornik : e-Zdravstveno	_OX
5.01 Prijava osigurane osobe 5.02 Promjena podataka osigurane osobe	
5.03 Odjava osigurane osobe	
. 2	
PRILAYA OCICHRANE OCORE	
PRIJAVA OSIGURANE OSOBE	_1
Prijava radnika(R) ili člana(C) :	
PRIJAVA POSLANI PRILOZI	
Prezime :	Ime :
MBG/MB osig. osobe : /	Datum rođenja : Spol :
Ranija prezimena :	Ime roditelja:
Adresa prebivališta :	
Poštanski broj:	Poštanski broj :
Ulica:	Ulica :
Kuéni broj :	Kućni broj :
Naselie:	Naselje :
	Transfer.
Datum stjecanja statusa osigurane osobe :	
Stručna sprema nakon završ. školovanja (iz radne knjižice) :	
Stručna sprema na koju se osigurana osoba prijavljuje :	
Naziv radnog mjesta :	
Puno ili nepuno radno vrijeme (P/N) : Sati :	Minute: Datum podnošenja prijave: 25.04.2008
	Status priinus (P /71)
Digitalei petaia	Status prijave (R/Z) :
Digitalni potpis :	Potpiši
Obvezník uplate : 114 / 456111 BETA TAU BETA tr	rgovina i usluge,d.o.o.

eMirovinsko

Cijena?

Fizičke osobe

- Registracija 20,00 kn jednokratno
- Godišnja pretplata za pametnu karticu s jednim certifikatom – osobni certifikat 139,00 kn godišnje

Što se dobije?

- Digitalno potpisivanje dokumenata (ugovora, računa, ponuda, dopisa, itd.)
- Razmjena podataka između pravnih subjekata sa osiguranjem vjerodostojnosti i neporicljivosti podataka

Mogućnosti

- Digitalno potpisivanje bilo kakvih dokumenata (ugovora, računa, ponuda, dopisa itd.)
- Razmjena digitalnih podataka između pravnih subjekata (firmi) sa osiguranjem vjerodostojnosti i neporicljivosti podataka

• Budućnost?

 Svaka fizička osoba ima svoj digitalni potpis pohranjen u osobnoj iskaznici (kao što na iskaznici ima klasični ručni potpis)

Problemi

- Fizičke i pravne osobe su nepovjerljive
 - Firma XY šalje digitalno potpisani račun za usluge računovodstvo traži papirnatu veziju
- Tijela državne uprave nedovoljno organizirana za prihvat, obradu, arhiviranje digitalnih dokumenata čak kad i priznaju digitalni potpis
- Država treba financirati izgradnju digitalne infrastrukture
 - Definirati pravila koja bi zakonski poticala uporabu digitalnih dokumenata
 - Organizirati državne sustave za upravljanje i razmjenu digitalnih dokumenata
 - Document Management System (DMS)

I za kraj...

- Primjer
 - Izgradili smo portal predmeta Otvoreno računarstvo
 - Zahtijevamo sigurni pristup (HTTPS)
 - Pazimo da ne čuvamo osjetljive informacije u nesigurnom obliku (lozinke, JMBG korisnika, ...)
 - Provjeravamo digitalne potpise pri predaji vježbe
- Stranici pregleda bodova prenosimo JMBAG studenta kao parametar (GET)
 - JMBAG koristimo za pristup bazi podataka

http://otvoreno.rasip.fer.hr/pregled.php?jmbag=0036...

I za kraj...

U kôdu – SQL

```
SELECT * FROM student
WHERE jmbag = \'$_REQUEST['jmbag']\';
```

• Što će se desiti ako netko pozove

```
...pregled.php?jmbag=1';%20delete%20from %20student;select%20*%20from%20bodovi%20where %20ime%20like%20'%25
```

I za kraj...

Izvršit će se SQL

```
SELECT * FROM student WHERE jmbag='1';
delete from student; select * from bodovi where ime like '%'
```

- Ovo je napad umetanjem SQL-a (SQL injection)
 - Ne provjeravamo podatke koji dolaze od korisnika mrežom
- Kad se štitimo od velikih prijetnji ne smijemo zaboraviti na male!

Pitanja

Zahvaljujemo Branku
Šlivariću za pregled stanja u
Hrvatskoj i primjer
digitalnog potpisivanja
dokumenta