

# FCC Part 15B **Measurement and Test Report**

## For

## NumWorks SAS

Romain Goyet 24 rue Godot de Moroy, 75009, Paris France

FCC ID: 2ALWP-N0110

FCC Rule(s): FCC Part 15 Subpart B

**Product Description:** Numworks Graphing Calculator

Tested Model: N0110

Report No.: WTX19X05030862W

Sample Receipt Date: 2019-05-16

Tested Date: 2019-05-16 to 2019-06-25

**Issued Date:** 2019-06-25

Mike Shi Fili-Chen Jundyso Mike Shi / Engineer Tested By:

Silin Chen / EMC Manager Reviewed By:

Approved & Authorized By: Jandy So / PSQ Manager

Prepared By:

Shenzhen SEM Test Technology Co., Ltd.

1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road,

Bao'an District, Shenzhen, P.R.C. (518101)

Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen SEM Test Technology Co., Ltd.





# TABLE OF CONTENTS

| 1. GENERAL INFORMATION                                                                                                                                                                                              | 3        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT). 1.2 TEST STANDARDS 1.3 TEST METHODOLOGY 1.4 TEST FACILITY 1.5 EUT SETUP AND OPERATION MODE 1.6 MEASUREMENT UNCERTAINTY 1.7 TEST EQUIPMENT LIST AND DETAILS. |          |
| 2. SUMMARY OF TEST RESULTS                                                                                                                                                                                          | 7        |
| 3. CONDUCTED EMISSIONS                                                                                                                                                                                              | 8        |
| 3.1 TEST PROCEDURE 3.2 BASIC TEST SETUP BLOCK DIAGRAM 3.3 ENVIRONMENTAL CONDITIONS 3.4 SUMMARY OF TEST RESULTS/PLOTS 3.5 CONDUCTED EMISSIONS TEST DATA                                                              | 8<br>8   |
| 4. RADIATED EMISSION                                                                                                                                                                                                | 13       |
| 4.1 TEST PROCEDURE                                                                                                                                                                                                  | 14<br>14 |
| 4.4 ENVIRONMENTAL CONDITIONS                                                                                                                                                                                        |          |





## 1. GENERAL INFORMATION

# 1.1 Product Description for Equipment Under Test (EUT)

**Client Information** 

Applicant: NumWorks SAS

Address of applicant: Romain Goyet 24 rue Godot de Moroy, 75009, Paris

France

Manufacturer: NumWorks SAS

Address of manufacturer: Romain Goyet 24 rue Godot de Moroy, 75009, Paris

France

| General Description of EU          | Т                                                      |
|------------------------------------|--------------------------------------------------------|
| Product Name:                      | Numworks Graphing Calculator                           |
| Trade Name:                        | Numworks                                               |
| Model No.:                         | N0110                                                  |
| Adding Model(s):                   | 1                                                      |
|                                    |                                                        |
| Note: The test data is gathered fi | rom a production sample, provided by the manufacturer. |

| Technical Characteristics of EUT |                           |  |  |
|----------------------------------|---------------------------|--|--|
| Rated Voltage:                   | DC 5V; DC 3.7V by Battery |  |  |
| Rated Capacity:                  | 1450mAh                   |  |  |
| Rated Power:                     | 5.365Wh                   |  |  |
| Power Adapter Model:             | 1                         |  |  |
| Highest Internal Frequency:      | 192MHz                    |  |  |
| Classification of ITE:           | Class B                   |  |  |



TEST Model: N0110

#### 1.2 Test Standards

The tests were performed according to following standards:

FCC Rules Part 15 Subpart B: Unintentional Radiators.

<u>ANSI C63.4-2014</u>: American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

**Maintenance of compliance** is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

#### 1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2014, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

#### 1.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### FCC - Registration No.: 125990

Shenzhen SEM Test Technology Co., Ltd. Laboratory has been recognized to perform compliance testing on equipment subject to the Commissions Declaration Of Conformity (DOC). The Designation Number is CN5010, and Test Firm Registration Number is 125990.

#### Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Shenzhen SEM Test Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

# 1.5 EUT Setup and Operation Mode

The equipment under test (EUT) was configured to measure its highest possible emission. The test modes were adapted according to the operation manual for use, more detailed description as follows:

#### Test Mode List:

| Test Mode | Description          | Remark                    | Power Supply Mode                      |
|-----------|----------------------|---------------------------|----------------------------------------|
| TM1       | Working and charging | Micro usb connect Adapter | DC 5V(Input with adapter AC 120V/60Hz) |
| TM2       | Connect to PC update | Micro usb connect PC      | /                                      |

#### **EUT Cable List and Details**

| Cable Description | Length (M) | Shielded/Unshielded | With Core/Without Core |
|-------------------|------------|---------------------|------------------------|
| Micro USB         | 1.2        | Shielded            | Without Core           |

## Auxiliary Equipment List and Details

| Description | Manufacturer | Model      | Serial Number |
|-------------|--------------|------------|---------------|
| Adapter     | /            | HJ-0501000 | /             |

## Special Cable List and Details

| Cable Description | Length (M) | Shielded/Unshielded | With Core/Without Core |
|-------------------|------------|---------------------|------------------------|
| /                 | /          | /                   | /                      |

# 1.6 Measurement Uncertainty

| Measurement uncertainty |            |                                         |  |  |
|-------------------------|------------|-----------------------------------------|--|--|
| Parameter               | Conditions | Uncertainty                             |  |  |
|                         |            | 9-150kHz ±3.74dB                        |  |  |
| Conducted Emissions     | Conducted  | $0.15-30 \text{MHz} \pm 3.34 \text{dB}$ |  |  |
| Radiated Emissions      | Radiated   | $30-200 \text{MHz} \pm 4.52 \text{dB}$  |  |  |
|                         |            | 0.2-1GHz ±5.56dB                        |  |  |
|                         |            | 1-6GHz ±3.84dB                          |  |  |
|                         |            | 6-18GHz ±3.92dB                         |  |  |

Report No.: WTX19X05030862W Page 5 of 22 FCC Part 15B





# 1.7 Test Equipment List and Details

| Description       | Manufacturer    | Model     | Serial No. | Cal Date   | <b>Due Date</b> |
|-------------------|-----------------|-----------|------------|------------|-----------------|
| Spectrum Analyzer | Agilent         | E4407B    | MY41440400 | 2019-04-30 | 2020-04-29      |
| Spectrum Analyzer | Rohde & Schwarz | FSP30     | 836079/035 | 2019-04-30 | 2020-04-29      |
| EMI Test Receiver | Rohde & Schwarz | ESVB      | 825471/005 | 2019-04-30 | 2020-04-29      |
| Amplifier         | Agilent         | 8447F     | 3113A06717 | 2019-04-30 | 2020-04-29      |
| Amplifier         | C&D             | PAP-1G18  | 2002       | 2019-04-30 | 2020-04-29      |
| Broadband Antenna | Schwarz beck    | VULB9163  | 9163-333   | 2019-05-05 | 2021-05-04      |
| Horn Antenna      | ETS             | 3117      | 00086197   | 2019-05-05 | 2021-05-04      |
| Loop Antenna      | Schwarz beck    | FMZB 1516 | 9773       | 2019-05-05 | 2021-05-04      |
| EMI Test Receiver | Rohde & Schwarz | ESPI      | 101611     | 2019-04-30 | 2020-04-29      |
| L.I.S.N           | Schwarz beck    | NSLK8126  | 8126-224   | 2019-04-30 | 2020-04-29      |
| Pulse Limiter     | Rohde & Schwarz | ESH3-Z2   | 100911     | 2019-04-30 | 2020-04-29      |



# 2. SUMMARY OF TEST RESULTS

| Description of Test           | Result    |
|-------------------------------|-----------|
| §15.107(a) Conducted Emission | Compliant |
| §15.109(a) Radiated Emission  | Compliant |

## 3. Conducted Emissions

#### 3.1 Test Procedure

Test is conducting under the description of ANSI C63.4-2014, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

## 3.2 Basic Test Setup Block Diagram



#### 3.3 Environmental Conditions

| Temperature:       | 26 °C     |
|--------------------|-----------|
| Relative Humidity: | 60%       |
| ATM Pressure:      | 1011 mbar |

## 3.4 Summary of Test Results/Plots

According to the data in section 3.5, the EUT <u>complied with the FCC Part 15.107(a)</u> conducted margin for a Class B device, with the *worst* margin reading of:

**-6.04 dB** at **0.1580 MHz** in the Line, QP detector, 0.15-30 MHz



# 3.5 Conducted Emissions Test Data

| Test mode: | TM1 | Polarity: | Line |
|------------|-----|-----------|------|
|------------|-----|-----------|------|



| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Detector |
|-----|-----------|---------|---------|--------|--------|--------|----------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV) | (dBuV) | (dB)   |          |
| 1*  | 0.1580    | 49.43   | 10.10   | 59.53  | 65.57  | -6.04  | QP       |
| 2   | 0.1660    | 25.01   | 10.11   | 35.12  | 55.16  | -20.04 | AVG      |
| 3   | 0.2540    | 44.24   | 10.16   | 54.40  | 61.63  | -7.23  | QP       |
| 4   | 0.5660    | 37.47   | 10.32   | 47.79  | 56.00  | -8.21  | QP       |
| 5   | 0.5660    | 29.51   | 10.32   | 39.83  | 46.00  | -6.17  | AVG      |
| 6   | 1.1580    | 18.11   | 10.52   | 28.63  | 46.00  | -17.37 | AVG      |



| Test mode: | TM1 | Polarity: | Neutral | l |
|------------|-----|-----------|---------|---|
|            |     |           |         |   |



| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Detector |
|-----|-----------|---------|---------|--------|--------|--------|----------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV) | (dBuV) | (dB)   |          |
| 1*  | 0.1548    | 48.40   | 10.10   | 58.50  | 65.74  | -7.24  | QP       |
| 2   | 0.1620    | 23.54   | 10.10   | 33.64  | 55.36  | -21.72 | AVG      |
| 3   | 0.2701    | 43.18   | 10.17   | 53.35  | 61.11  | -7.76  | QP       |
| 4   | 0.4700    | 35.76   | 10.28   | 46.04  | 56.51  | -10.47 | QP       |
| 5   | 0.5620    | 22.25   | 10.32   | 32.57  | 46.00  | -13.43 | AVG      |
| 6   | 1.4580    | 13.00   | 10.55   | 23.55  | 46.00  | -22.45 | AVG      |



|      | Test mode: | TM2                    | Polarity: | Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------|------------|------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 80.0 | dBu∀       |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |            |                        |           | Limit1: —<br>Limit2: —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 70   |            |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 60   |            |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 50   | 2          |                        | 5         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 40   | 2 1 MM     | Addition of the second |           | willing the state of the state |
| 30   |            |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20   | www trully |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10   |            |                        |           | <b>                                     </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0  |            |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.   | 150        | 0.5                    | 5         | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Detector |
|-----|-----------|---------|---------|--------|--------|--------|----------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV) | (dBuV) | (dB)   |          |
| 1   | 0.2020    | 44.03   | 10.12   | 54.15  | 63.53  | -9.38  | QP       |
| 2   | 0.2100    | 32.72   | 10.13   | 42.85  | 53.21  | -10.36 | AVG      |
| 3*  | 1.1860    | 27.16   | 10.52   | 37.68  | 46.00  | -8.32  | AVG      |
| 4   | 3.8340    | 35.50   | 10.71   | 46.21  | 56.00  | -9.79  | QP       |
| 5   | 5.4420    | 38.73   | 10.78   | 49.51  | 60.00  | -10.49 | QP       |
| 6   | 5.4420    | 30.87   | 10.78   | 41.65  | 50.00  | -8.35  | AVG      |



|      | Test mode: | TM2 | Polarity: | Neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------|------------|-----|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 80.0 | dBuV       |     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 70   |            |     |           | Limit1: —<br>Limit2: —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 60   | A. 0       |     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50   | 2          |     | 4 5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40   | 1 1 1      |     |           | Manufacture of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 30   |            |     |           | Hand to be the state of the sta |
| 20   |            |     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0  |            |     |           | <u>П. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.   | .150       | 0.5 | 5         | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Detector |
|-----|-----------|---------|---------|--------|--------|--------|----------|
|     | (MHz)     | (dBuV)  | (dB/m)  | (dBuV) | (dBuV) | (dB)   |          |
| 1   | 0.1540    | 47.88   | 10.10   | 57.98  | 65.78  | -7.80  | QP       |
| 2   | 0.2100    | 34.03   | 10.13   | 44.16  | 53.21  | -9.05  | AVG      |
| 3*  | 2.3020    | 30.89   | 10.63   | 41.52  | 46.00  | -4.48  | AVG      |
| 4   | 3.8340    | 36.70   | 10.71   | 47.41  | 56.00  | -8.59  | QP       |
| 5   | 5.5100    | 38.12   | 10.78   | 48.90  | 60.00  | -11.10 | QP       |
| 6   | 5.7180    | 29.90   | 10.79   | 40.69  | 50.00  | -9.31  | AVG      |



# 4. RADIATED EMISSION

#### **4.1 Test Procedure**

The setup of EUT is according with per ANSI C63.4-2014 measurement procedure. The specification used was with the FCC Part 15.109 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.







TEST Model: N0110

#### 4.2 Test Receiver Setup

Frequency:9kHz-30MHz Frequency:30MHz-1GHz Frequency:Above 1GHz

RBW=10KHz, RBW=120KHz, RBW=1MHz,

VBW=30KHz VBW=300KHz VBW=3MHz(Peak), 10Hz(AV)

Sweep time= Auto Sweep time= Auto Sweep time= Auto
Trace = max hold Trace = max hold Trace = max hold

Detector function = peak, QP Detector function = peak, AV

## 4.3 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading – Corr. Factor

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of  $-6dB\mu V$  means the emission is  $6dB\mu V$  below the maximum limit for a Class B device. The equation for margin calculation is as follows:

#### 4.4 Environmental Conditions

| Temperature:       | 22 °C     |
|--------------------|-----------|
| Relative Humidity: | 54 %      |
| ATM Pressure:      | 1011 mbar |

## 4.5 Summary of Test Results/Plots

According to the data, the EUT complied with the FCC Part 15.109(a) rule, and had the worst margin of:

-3.13 dB at 480.5276 MHz in the Vertical polarization, Below 1GHz, 30 MHz to 1 GHz, 3 Meters



## **Below 1GHz**





| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 63.3132   | 45.38    | -11.79  | 33.59    | 40.00    | -6.41  | 205    | 100    | QP     |
| 2   | 172.5988  | 50.54    | -15.86  | 34.68    | 43.50    | -8.82  | 95     | 100    | QP     |
| 3   | 287.9904  | 48.29    | -9.93   | 38.36    | 46.00    | -7.64  | 80     | 100    | QP     |
| 4   | 443.2943  | 45.95    | -6.95   | 39.00    | 46.00    | -7.00  | 264    | 100    | QP     |
| 5   | 480.5276  | 48.92    | -6.32   | 42.60    | 46.00    | -3.40  | 336    | 100    | QP     |
| 6   | 574.6258  | 44.80    | -4.57   | 40.23    | 46.00    | -5.77  | 213    | 100    | QP     |



| Test mode: | TM1 | Polarity: | Vertical | l |
|------------|-----|-----------|----------|---|
|------------|-----|-----------|----------|---|



| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 65.8031   | 47.08    | -12.53  | 34.55    | 40.00    | -5.45  | 72     | 100    | QP     |
| 2   | 109.4116  | 47.02    | -14.43  | 32.59    | 43.50    | -10.91 | 112    | 100    | QP     |
| 3   | 287.9904  | 48.37    | -9.93   | 38.44    | 46.00    | -7.56  | 97     | 100    | QP     |
| 4   | 431.0316  | 45.08    | -7.01   | 38.07    | 46.00    | -7.93  | 95     | 100    | QP     |
| 5   | 480.5276  | 49.19    | -6.32   | 42.87    | 46.00    | -3.13  | 359    | 100    | QP     |
| 6   | 576.6443  | 42.78    | -4.51   | 38.27    | 46.00    | -7.73  | 307    | 100    | QP     |



## Above 1GHz



| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 1187.688  | 53.93    | -13.96  | 39.97    | 74.00    | -34.03 | 127    | 100    | peak   |
| 2   | 1285.113  | 41.81    | -13.76  | 28.05    | 54.00    | -25.95 | 95     | 100    | AVG    |
| 3   | 2717.743  | 53.33    | -6.31   | 47.02    | 74.00    | -26.98 | 88     | 100    | peak   |
| 4   | 3020.782  | 40.43    | -5.86   | 34.57    | 54.00    | -19.43 | 107    | 100    | AVG    |
| 5   | 5595.042  | 53.09    | -1.87   | 51.22    | 74.00    | -22.78 | 360    | 100    | peak   |
| 6   | 5872.370  | 39.84    | -1.15   | 38.69    | 54.00    | -15.31 | 343    | 100    | AVG    |



| Test mode: TMI Polarity: Vertical |
|-----------------------------------|
|-----------------------------------|



| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 1343.987  | 41.80    | -13.61  | 28.19    | 54.00    | -25.81 | 96     | 100    | AVG    |
| 2   | 1351.230  | 53.92    | -13.59  | 40.33    | 74.00    | -33.67 | 180    | 100    | peak   |
| 3   | 2337.996  | 41.77    | -7.62   | 34.15    | 54.00    | -19.85 | 109    | 100    | AVG    |
| 4   | 2397.385  | 54.10    | -7.26   | 46.84    | 74.00    | -27.16 | 116    | 100    | peak   |
| 5   | 5768.089  | 40.14    | -1.42   | 38.72    | 54.00    | -15.28 | 207    | 100    | AVG    |
| 6   | 5840.889  | 52.55    | -1.23   | 51.32    | 74.00    | -22.68 | 255    | 100    | peak   |



## **Below 1GHz**





| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 59.8588   | 49.73    | -13.32  | 36.41    | 40.00    | -3.59  | 145    | 100    | QP     |
| 2   | 155.9100  | 53.63    | -16.80  | 36.83    | 43.50    | -6.67  | 226    | 100    | QP     |
| 3   | 360.4476  | 46.61    | -7.16   | 39.45    | 46.00    | -6.55  | 136    | 100    | QP     |
| 4   | 480.5276  | 48.41    | -5.77   | 42.64    | 46.00    | -3.36  | 178    | 100    | QP     |
| 5   | 672.8445  | 44.75    | -2.47   | 42.28    | 46.00    | -3.72  | 360    | 100    | QP     |
| 6   | 866.0878  | 37.80    | 0.28    | 38.08    | 46.00    | -7.92  | 113    | 100    | QP     |



| Test mode: | TM2 | Polarity: | Vertical |  |
|------------|-----|-----------|----------|--|
|------------|-----|-----------|----------|--|



| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 58.8185   | 37.01    | -13.22  | 23.79    | 40.00    | -16.21 | 180    | 100    | QP     |
| 2   | 168.4138  | 42.76    | -16.19  | 26.57    | 43.50    | -16.93 | 176    | 100    | QP     |
| 3   | 295.1469  | 39.62    | -8.17   | 31.45    | 46.00    | -14.55 | 335    | 100    | QP     |
| 4   | 399.0302  | 37.81    | -6.79   | 31.02    | 46.00    | -14.98 | 260    | 100    | QP     |
| 5   | 526.3967  | 35.76    | -5.05   | 30.71    | 46.00    | -15.29 | 180    | 100    | QP     |
| 6   | 827.4934  | 42.45    | -0.29   | 42.16    | 46.00    | -3.84  | 25     | 100    | QP     |



## **Above 1GHz**

| lest mode: IM2 Polarity: Horizontal |
|-------------------------------------|
|-------------------------------------|



| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 1062.896  | 42.24    | -14.04  | 28.20    | 54.00    | -25.80 | 134    | 100    | AVG    |
| 2   | 1172.022  | 57.69    | -13.92  | 43.77    | 74.00    | -30.23 | 255    | 100    | peak   |
| 3   | 1625.631  | 41.20    | -12.36  | 28.84    | 54.00    | -25.16 | 162    | 100    | AVG    |
| 4   | 1707.635  | 53.55    | -11.17  | 42.38    | 74.00    | -31.62 | 33     | 100    | peak   |
| 5   | 1898.684  | 40.79    | -8.11   | 32.68    | 54.00    | -21.32 | 256    | 100    | AVG    |
| 6   | 1909.242  | 53.60    | -8.27   | 45.33    | 74.00    | -28.67 | 113    | 100    | peak   |



| Test mode:  | TM2 | Polarity:  | Vertical     | l |
|-------------|-----|------------|--------------|---|
| Tobt Incae. |     | 1 0101109. | , 01 01 0001 | 1 |



| No. | Frequency | Reading  | Correct | Result   | Limit    | Margin | Degree | Height | Remark |
|-----|-----------|----------|---------|----------|----------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV/m) | dB/m    | (dBuV/m) | (dBuV/m) | (dB)   | ( )    | (cm)   |        |
| 1   | 1182.631  | 57.16    | -13.90  | 43.26    | 74.00    | -30.74 | 225    | 100    | peak   |
| 2   | 1194.991  | 42.54    | -13.89  | 28.65    | 54.00    | -25.35 | 164    | 100    | AVG    |
| 3   | 1339.784  | 56.46    | -13.61  | 42.85    | 74.00    | -31.15 | 331    | 100    | peak   |
| 4   | 1368.884  | 42.81    | -13.59  | 29.22    | 54.00    | -24.78 | 152    | 100    | AVG    |
| 5   | 1625.631  | 43.96    | -12.36  | 31.60    | 54.00    | -22.40 | 156    | 100    | AVG    |
| 6   | 1862.190  | 53.48    | -8.42   | 45.06    | 74.00    | -28.94 | 246    | 100    | peak   |

\*\*\*\*\* END OF REPORT \*\*\*\*\*