3节/4节串联用电池保护IC

S-8243A/B系列

S-8243A/B系列是锂离子可充电池保护用的IC。A系列保护3节串联,B系列保护4节串联的锂离子电池组不受过充电、过放电、过电流的影响。由高精度的电池保护电路、电池监视放大器构成,内置用于驱动微机或气体计量IC的电压稳压器。通过与微机或气体计量IC的组合,即可简单地显示电池余量。

■ 特点

- (1) 针对各节电池的高精度电压检测功能
 - 过充电检测电压n(n=1~4)

3.9 V~4.4 V(50 mV级进)

精度±25 mV

• 过充电滞后n(n=1~4)

-0.10 V ~ -0.40 V(50 mV 级进)或0 V

精度±50 mV

(过充电解除电压n(=过充电检测电压n+过充电滞后n) 可在3.8 V~4.4 V的范围内选择)

● 过放电检测电压n(n=1~4)

2.0 V ~ 3.0 V(100 mV 级进)

精度±80 mV

● 过放电滞后n(n=1~4)

0.20 V ~ 0.70 V或0 V(100 mV级进)

精度±100 mV

(过放电解除电压n(=过放电检测电压n+过放电滞后n) 可在2.0 V~3.4 V的范围内选择)

(2) 包括短路保护在内的3段过电流检测功能

● 过电流检测电压1 0.05 V ~ 0.3 V(50 mV级进)

精度±25 mV

● 过电流检测电压2 0.5 V

精度±100 mV

过电流检测电压3 V_{DD}/2

精度±15%

- (3) 过充电检测延迟时间、过放电检测延迟时间、过电流检测延迟时间1可通过外接器件的容量来设置 (过电流检测延迟时间2、过电流检测延迟时间3为内部固定)
- (4) 可从控制端子控制充放电

(5) 高精度电池监视放大器

 $GAMP=V_{BATTERY} \times 0.2\pm 1.0\%$

(6) 电压稳压器

V_{OUT}=3.3 V±2.4%(3 mA 最大值)

(7) 采用耐高压元件

绝对最大额定值26 V

(8) 宽工作电压范围

6 V ~ 18 V

(9) 宽工作温度范围

-40°C ~ +85°C

(10) 低消耗电流

• 工作时

120 µA 最大值

• 休眠时

0.1 µA 最大值

(11) 小型封装

16-Pin TSSOP

■ 用途

- 锂离子可充电池电池组
- 锂聚合体可充电池电池组

■ 封装

封装名			图面号码		
	封装图面	:	卷带图面	1 1 1	带卷图面
16-Pin TSSOP	FT016-A	-	FT016-A	į	FT016-A

■ 框图

S-8243A系列

- 备注1. 图中所指示的二极管为寄生二极管。
 - 2. 所记载的数值为标准值。

S-8243B系列

- 备注1. 图中所指示的二极管为寄生二极管。
 - 2. 所记载的数值为标准值。

■ 产品型号的构成

1. 产品名

- *1. 请参阅带卷图。
- *2. 请参阅"2.产品名目录"。

2. 产品名目录

表1 S-8243A系列 (3节串联用)

	型号名称/项目	过充电检测电压	过充电滞后电压	过放电检测电压	过放电滞后电压	过电流检测电压1	向0 V电池
		[V _{cu}]	[V _{HC}]	[V _{DL}]	[V _{HD}]	$[V_{IOV1}]$	充电功能
	S-8243AACFT	4.35 ±0.025 V	$-0.15 \pm 0.05 \text{ V}$	2.40 ±0.08 V	0.20 ±0.10 V	0.20 ±0.025 V	可能
	S-8243AADFT	4.35 ±0.025 V	-0.35 ±0.05 V	2.40 ±0.08 V	0 V	0.20 ±0.025 V	可能

除上述产品以外,检测电压的变更是可能的。请向本公司营业部咨询。

表2 S-8243B系列 (4节串联用)

型号名称 / 项目	过充电检测电压	过充电滞后电压	过放电检测电压	过放电滞后电压	过电流检测电压1	向0 V电池
空写石标/项目	[V _{CU}]	[V _{HC}]	[V _{DL}]	[V _{HD}]	[V _{IOV1}]	充电功能
S-8243BADFT	4.35 ±0.025 V	-0.25 ±0.05 V	2.40 ±0.08 V	0 V	0.25 ±0.025 V	可能
S-8243BAEFT	4.35 ±0.025 V	-0.15 ±0.05 V	2.40 ±0.08 V	0.20 ±0.10 V	0.20 ±0.025 V	可能
S-8243BAFFT	4.25 ±0.025 V	$-0.25 \pm 0.05 \text{ V}$	2.40 ±0.08 V	0 V	0.20 ±0.025 V	可能

除上述产品以外,检测电压的变更是可能的。请向本公司营业部咨询。

■ 绝对最大额定值

表3

(除特殊注明以外: Ta=25°C)

项目	记号	适用端子额定值		单位
VDD输入电压	V_{DS}	_	V_{SS} -0.3 ~ V_{SS} +26	V
输入端子电压	V_{IN}	VC1, VC2, VC3, CCT, CDT	V_{SS} -0.3 ~ V_{DD} +0.3	V
VMP输入端子电压	V_{MP}	VMP	V_{SS} -0.3 ~ V_{SS} +26	V
DOP输出端子电压	V_{DOP}	DOP	V_{SS} -0.3 ~ V_{DD} +0.3	V
COP输出端子电压	V_{COP}	СОР	V_{SS} -0.3 ~ V_{SS} +26	V
VREG输出端子电压	V _{OUT}	VREG	$V_{SS}-0.3 \sim V_{DD}+0.3$	V
CTL1输入端子电压	V _{CTL1}	CTL1	V_{SS} -0.3 ~ V_{DD} +0.3	V
CTL2~4输入端子电压	V_{CTLn}	CTL2, CTL3, CTL4	V_{SS} -0.3 ~ V_{OUT} +0.3	V
电池电压输出端子电压	V_{BATOUT}	VBATOUT	V_{SS} -0.3 ~ V_{OUT} +0.3	V
容许功耗	P_D	_	300	mW
工作周围温度	Topr	_	−40 ~ +85	°C
保存温度	Tstg	_	−40 ~ +125	°C

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品 劣化等物理性损伤。

■ 引脚排列图

表4 端子功能(S-8243A系列)

端子编号	端子名	内容
1	VDD	正电源输入端子、电池1的正电压连接端子
2	DOP	放电控制用FET门极连接端子(CMOS输出)
3	COP	充电控制用FET门极连接端子(Nch开路漏极输出)
4	VMP	VDD~VMP间的电压检测端子(过电流检测端子)
5	VC1	未连接
6	VC2	电池1的负电压、电池2的正电压连接端子
7	VC3	电池2的负电压、电池3的正电压连接端子
8	VSS	负电源输入端子、电池3的负电压连接端子
9	CDT	过放电检测延迟以及过电流检测延迟1用的容量连接端子
10	CCT	过充电检测延迟用的容量连接端子
11	VBATOUT	电池电压以及补偿电压输出端子
12	CTL4	VBATOUT端子的输出选择端子
13	CTL3	VBATOUT端子的输出选择端子
14	CTL2	充电用FET以及放电用FET的控制端子
15	CTL1	充电用FET以及放电用FET的控制端子
16	VREG	电压稳压器的输出端子(3.3 V)

表5 端子功能(S-8243B系列)

端子编号	端子名	内容
1	VDD	正电源输入端子、电池1的正电压连接端子
2	DOP	放电控制用FET门极连接端子(CMOS输出)
3	COP	充电控制用FET门极连接端子(Nch开路漏极输出)
4	VMP	VDD~VMP间的电压检测端子(过电流检测端子)
5	VC1	电池1的负电压、电池2的正电压连接端子
6	VC2	电池2的负电压、电池3的正电压连接端子
7	VC3	电池3的负电压、电池4的正电压连接端子
8	VSS	负电源输入端子、电池4的负电压连接端子
9	CDT	过放电检测延迟以及过电流检测延迟1用的容量连接端子
10	CCT	过充电检测延迟用的容量连接端子
11	VBATOUT	电池电压以及补偿电压输出端子
12	CTL4	VBATOUT端子的输出选择端子
13	CTL3	VBATOUT端子的输出选择端子
14	CTL2	充电用FET以及放电用FET的控制端子
15	CTL1	充电用FET以及放电用FET的控制端子
16	VREG	电压稳压器的输出端子(3.3 V)

■ 电气特性

(1)S-8243A系列

表6 (1/2)

(除特殊注明以外: Ta=25°C)

				(13	末付%不注明 k	<u> </u>	<u>a-23 0)</u>
项目	记号	条件	最小值	典型值	最大值	单位	测定电路
电池保护							
过充电检测电压n		3.9 V ~ 4.4 V,	V_{CUn}	V_{CUn}	V_{CUn}		4
n=1, 2, 3	V_{CUn}	50 mV 级进	-0.025		+0.025	V	4
过充电滞后电压n		-0.10 V ~ -0.40 V,	V_{HCn}	V_{HCn}	V_{HCn}		4
n=1, 2, 3	V_{HCn}	以及OV	-0.05		+0.05	V	4
过放电检测电压	.,	2.0 V ~ 3.0 V,	V_{DLn}	V_{DLn}	V_{DLn}	.,	
n=1, 2, 3	V_{DLn}	100 mV 级进	-0.080		+0.080	V	4
过放电滞后电压	.,	0.20 V ~ 0.70 V,	V_{HDn}	V_{HDn}	V_{HDn}	.,	
n=1, 2, 3	V_{HDn}	以及OV	-0.10		+0.10	V	4
	.,	0.05 V ~ 0.3 V,	V_{IOV1}	V _{IOV1}	V_{IOV1}	.,	
过电流检测电压1	V_{IOV1}	50 mV 级进	-0.025		+0.025	V	4
过电流检测电压2	V_{IOV2}	_	V _{DD} -0.60	V _{DD} -0.50	V _{DD} -0.40	V	4
过电流检测电压3	V _{IOV3}	_	V _{DD} ×0.425	V _{DD} ×0.5	V _{DD} ×0.575	V	4
检测·解除电压温度係数*1	T _{COE1}	Ta= -5°C ~ +55°C	-1.0	0	1.0	mV/°C	4
过电流检测电压温度係数*2	T _{COE2}	Ta= -5°C ~ +55°C	-0.5	0	0.5	mV/°C	4
向0 V电池充电功能(选择向0		电的可否)			I.		ı
向0 V充电开始充电器电压	V _{0CHA}	向0 V充电可能	_	0.8	1.5	V	7
向0 V充电禁止电池电压	V _{OINH}	向0 V充电禁止	0.4	0.7	1.1	V	7
内部电阻	- OINT	170 170 071	<u> </u>	<u> </u>			· ·
VMP-VDD间电阻	R _{VDM}	V1=V2=V3=3.5 V	500	1100	2400	kΩ	8
VMP-VSS间电阻	R _{VSM}	V1=V2=V3=1.8 V	300	700	1500	kΩ	8
电压稳压器	1 (03)01	71 72 70 1.07	000	, 00	1000	1,22	
	1	V _{DD} =14 V,					
输出电压	V_{OUT}	I _{OUT} =3 mA	3.221	3.300	3.379	V	2
		V _{DD} =6 V→18 V,					
输入稳定度	ΔV_{OUT1}	$I_{OUT}=3 \text{ mA}$	_	5	15	mV	2
		V _{DD} =14 V,					
负载稳定度	ΔV_{OUT2}	$I_{OUT}=5 \mu A \rightarrow 3 \text{ mA}$	_	15	30	mV	2
电池监视放大器		1001 0 pr 70 1111			I	1	
输入补偿电压n						1	
n=1, 2, 3	V_{OFFn}	V1=V2=V3=3.5 V	60	165	270	mV	3
<u> </u>							
n=1, 2, 3	GAMPn	V1=V2=V3=3.5 V	0.2×0.99	0.2	0.2×1.01	<u> </u>	3
输入电压、工作电压						1	
VDD-VSS间工作电压	V _{DSOP}		6		18	V	4
CTL1输入H电压		_	V _{DD} ×0.8	_	10	V	6
CTL1输入L电压	V _{CTL1H}		V DD∀0.0		V×0.2	V	6
CTLn输入H电压	V _{CTL1L}		_	_	V _{DD} ×0.2	V	U
	V_{CTLnH}	_	V _{OUT} ×0.9	_	V _{OUT}	V	3, 6
n=2, 3, 4 CTLn输入L电压						-	
	V_{CTLnL}	_	_	_	V _{OUT} ×0.1	V	3, 6
n=2, 3, 4	1						

表6 (2/2)

项目	记号	条件	最小值	典型值	最大值	单位	测定电路
输入电流							
消耗电流 (V _{BATOUT} 电压:未监视时)	I _{OPE}	V1=V2=V3=3.5 V, V _{MP} =V _{DD}	_	65	120	μA	1
休眠时消耗电流	I _{PDN}	V1=V2=V3=1.5 V, V _{MP} =V _{SS}	_	_	0.1	μA	1
VCn端子电流 (V _{BATOUT} 电压:未监视时) n=2, 3	I _{VCnN}	V1=V2=V3=3.5 V	-0.3	0	0.3	μA	3
VC2端子电流 (V _{BATOUT} 电压:监视时)	I _{VC2}	V1=V2=V3=3.5 V		2.0	7.2	μA	3
VC3端子电流 (V _{BATOUT} 电压:监视时)	I _{VC3}	V1=V2=V3=3.5 V		1.0	4.0	μA	3
CTL1端子L电流	I _{CTL1L}	V1=V2=V3=3.5 V, V _{CTL1} =0 V	-0.4	-0.2	_	μΑ	5
CTLn端子H电流 n=2, 3, 4	I _{CTLnH}	V _{CTLn} =V _{OUT}	I	2.5	5	μA	9
CTLn端子L电流 n=2, 3, 4	I _{CTLnL}	V _{CTLn} =0 V	-5	-2.5	_	μA	9
输出电流	_	_					
COP端子泄漏电流	I _{COH}	V _{COP} =24 V		_	0.1	μΑ	9
COP端子吸收电流	I _{COL}	V _{COP} =V _{SS} +0.5 V	10			μΑ	9
DOP端子源极电流	I _{DOH}	$V_{DOP}=V_{DD}-0.5 V$	10	_	_	μΑ	9
DOP端子吸收电流	I _{DOL}	$V_{DOP}=V_{SS}+0.5 V$	10	_	_	μΑ	9
VBATOUT端子源极电流	I _{VBATH}	V _{BATOUT} =V _{DD} -0.5 V	100	_	_	μΑ	9
VBATOUT端子吸收电流	I _{VBATL}	V _{BATOUT} =V _{SS} +0.5 V	100	_	_	μA	9

S-8243AACFT以及S-8243AADFT的情况下

项目	记号	条件	最小值	典型值	最大值	单位	测定电路
延迟时间							
过充电检测延迟时间	t _{CU}	C _{CT} =0.1 μF	0.5	1.0	1.5	s	5
过放电检测延迟时间	t _{DL}	C _{DT} =0.1 μF	50	100	150	ms	5
过电流检测延迟时间1	t _{IOV1}	C _{DT} =0.1 μF	5	10	15	ms	5
过电流检测延迟时间2	t _{IOV2}	_	1.5	2.5	4.0	ms	4
过电流检测延迟时间3	t _{IOV3}	_	100	300	600	μs	4

^{*1.} 检测・解除电压温度係数适用于过充电检测电压n、过充电解除电压n、过放电检测电压n和过放电解除电压n。

^{*2.} 过电流检测电压温度係数适用于过电流检测电压1以及过电流检测电压2。

(2)S-8243B系列

表7 (1/2)

(除特殊注明以外: Ta=25°C)

项目	记号	条件	最小值	典型值	最大值		测定电路
电池保护	L 5	ホロ	取小臣	兴王但	取八旦	十四	州足屯山
过充电检测电压n		3.9 V ~ 4.4 V,	1/	W	17	1	
n=1, 2, 3, 4	V_{CUn}	50 mV级进	V _{CUn} -0.025	V_{CUn}	V _{CUn} +0.025	V	4
过充电滞后电压n		–0.10 V ~ –0.40 V,	V _{HCn}	V _{HCn}	V _{HCn}		
n=1, 2, 3, 4	V_{HCn}	-0.10 V ~ -0.40 V, 以及0 V	V HCn −0.05	V HCn	+0.05	V	4
过放电检测电压		2.0 V ~ 3.0 V,	V _{DLn}	V_{DLn}	V _{DLn}		
n=1, 2, 3, 4	V_{DLn}	100 mV 级进	-0.080	▼ DLn	+0.080	V	4
过放电滞后电压		0.20 V ~ 0.70 V,	V _{HDn}	V_{HDn}	V _{HDn}		
n=1, 2, 3, 4	V_{HDn}	以及0V	-0.10	· Holl	+0.10	V	4
		0.05 V ~ 0.3 V,	V _{IOV1}	V _{IOV1}	V _{IOV1}		_
过电流检测电压1	V_{IOV1}	50 mV 级进	-0.025	1011	+0.025	V	4
过电流检测电压2	V_{IOV2}	_	V _{DD} -0.60	V _{DD} -0.50	V _{DD} -0.40	V	4
计中体控制中区2			V_{DD}	V_{DD}	V_{DD}	\ , <i>'</i>	,
过电流检测电压3	V _{IOV3}	_	×0.425	×0.5	×0.575	V	4
检测·解除电压温度係数*1	T _{COE1}	Ta= -5°C ~ +55°C	-1.0	0	1.0	mV/°C	4
过电流检测电压温度係数*2	T _{COE2}	Ta= -5°C ~ +55°C	-0.5	0	0.5	mV/°C	4
向0 V电池充电功能(选择向0 V		电的可否)					
向0 V充电开始充电器电压	V _{0CHA}	向0 V充电可能	_	0.8	1.5	V	7
向0 V充电禁止电池电压	V_{0INH}	向0 V充电禁止	0.4	0.7	1.1	V	7
内部电阻				•	•		•
VMP-DD间电阻	R_{VDM}	V1=V2=V3=V4=3.5 V	500	1100	2400	kΩ	8
VMP-VSS间电阻	R _{VSM}	V1=V2=V3=V4=1.8 V	300	700	1500	kΩ	8
电压稳压器							
输出电压	V _{OUT}	V _{DD} =14 V, I _{OUT} =3 mA	3.221	3.300	3.379	V	2
給) 投宁庄		V _{DD} =6 V→18 V		-	4.5	>/	0
输入稳定度	ΔV_{OUT1}	I _{OUT} =3 mA		5	15	mV	2
负载稳定度	4)/	V _{DD} =14 V		15	20	m\/	2
贝	ΔV_{OUT2}	$I_{OUT}=5 \mu A \rightarrow 3 mA$	_	15	30	mV	
电池监视放大器							
输入补偿电压n	V_{OFFn}	V1=V2=V3=V4=3.5 V	60	165	270	mV	3
n=1, 2, 3, 4	V OFFn	V 1-V2-V3-V4-3.5 V	00	100	210	IIIV	3
电压增幅率n	GAMPn	V1=V2=V3=V4=3.5 V	0.2×0.99	0.2	0.2×1.01	l	3
n=1, 2, 3, 4	OAWII II	V 1-V2-V0-V 1 -0.0 V	0.2/0.33	0.2	0.2/1.01		J
输入电压、工作电压		T		ı	ı	T	ı
VDD-VSS间工作电压	V_{DSOP}	_	6	_	18	V	4
CTL1输入H电压	V _{CTL1H}	_	$V_{DD} \times 0.8$		_	V	6
CTL1输入L电压	V _{CTL1L}	_		_	$V_{DD} \times 0.2$	V	6
CTLn输入H电压	V_{CTLnH}		V _{OUT} ×0.9		V _{OUT}	V	3, 6
n=2, 3, 4	VOILNH	_	₩ OU1^O.9	_	V OUT		5, 5
CTLn输入L电压	V_{CTLnL}	_	_		V _{OUT} ×0.1	V	3, 6
n=2, 3, 4	• CILIIL				• 001/10.1		0, 0

表7 (2/2)

项目	记号	条件	最小值	典型值	最大值	单位	测定电路
输入电流							
消耗电流 (V _{BATOUT} 电压:未监视时)	I _{OPE}	V1=V2=V3=V4=3.5 V, V _{MP} =V _{DD}		65	120	μA	1
休眠时消耗电流	I _{PDN}	V1=V2=V3=V4=1.5 V, V _{MP} =V _{SS}	_	_	0.1	μA	1
VCn端子电流 (V _{BATOUT} 电压:未监视时) n=2, 3	I _{VCnN}	V1=V2=V3=V4=3.5 V	-0.3	0	0.3	μA	3
VC1端子电流 (V _{BATOUT} 电压:监视时)	I _{VC1}	V1=V2=V3=V4=3.5 V	_	3.2	10.4	μΑ	3
VC2端子电流 (V _{BATOUT} 电压:监视时)	I _{VC2}	V1=V2=V3=V4=3.5 V	_	2.0	7.2	μA	3
VC3端子电流 (V _{BATOUT} 电压:监视时)	I _{VC3}	V1=V2=V3=V4=3.5 V, V _{CTL1} =0 V	_	1.0	4.0	μA	3
CTL1端子L电流	I _{CTL1L}	V1=V2=V3=V4=3.5 V, V _{CTL1} =0 V	-0.4	-0.2	_	μΑ	5
CTLn端子H电流 n=2, 3, 4	I _{CTLnH}	V _{CTLn} =V _{OUT}	_	2.5	5	μA	9
CTLn端子L电流 n=2, 3, 4	I _{CTLnL}	V _{CTLn} =0 V	-5	-2.5	_	μA	9
输出电流							
COP端子泄漏电流	I _{COH}	V _{COP} =24 V	_	_	0.1	μΑ	9
COP端子吸收电流	I _{COL}	V _{COP} =V _{SS} +0.5 V	10	_	_	μΑ	9
DOP端子源极电流	I _{DOH}	V _{DOP} =V _{DD} -0.5 V	10		_	μΑ	9
DOP端子吸收电流	I_{DOL}	V _{DOP} =V _{SS} +0.5 V	10	_	_	μΑ	9
VBATOUT端子源极电流	I _{VBATH}	V _{BATOUT} =V _{DD} -0.5 V	100	_	_	μΑ	9
VBATOUT端子吸收电流	I _{VBATL}	V _{BATOUT} =V _{SS} +0.5 V	100	_		μA	9

S-8243BAEFT以及S-8243BAFFT的情况下

项目	记号	条件	最小值	典型值	最大值	单位	测定电路
延迟时间							
过充电检测延迟时间	t _{CU}	C _{CT} =0.1 μF	0.5	1.0	1.5	s	5
过放电检测延迟时间	t_{DL}	C _{DT} =0.1 µF	50	100	150	ms	5
过电流检测延迟时间1	t _{IOV1}	C _{DT} =0.1 μF	5	10	15	ms	5
过电流检测延迟时间2	t _{IOV2}	_	1.5	2.5	4.0	ms	4
过电流检测延迟时间3	t _{IOV3}	_	100	300	600	μs	4

S-8243BADFT的情况下

项目	记号	条件	最小值	典型值	最大值	单位	测定电路
延迟时间							
过充电检测延迟时间	t _{CU}	С _{СТ} =0.1 µF	0.5	1.0	1.5	s	5
过放电检测延迟时间	t _{DL}	C _{DT} =0.1 μF	55.5	111	222	ms	5
过电流检测延迟时间1	t _{IOV1}	C _{DT} =0.1 μF	3.31	6.62	13.2	ms	5
过电流检测延迟时间2	t _{IOV2}	_	1.5	2.5	4.0	ms	4
过电流检测延迟时间3	t _{IOV3}	_	100	300	600	μs	4

^{*1.} 检测·解除电压温度係数适用于过充电检测电压n、过充电解除电压n、过放电检测电压n和过放电解除电压n。

^{*2.} 过电流检测电压温度係数适用于过电流检测电压1以及过电流检测电压2。

■ 测定电路

本章说明4节电池用S-8243B系列的情况下的测定方法。3节电池用S-8243A系列的情况下,请将电源V2加以短路,V3替换为V2、V4替换为V3。

1. 消耗电流(测定电路1)

 V_{BATOUT} 未监视时的消耗电流 I_{OPE} 为 $V1 = V2 = V3 = V4 = 3.5 V以及<math>V_{MP} = V_{DD}$ 时VSS端子的电流。休眠时的消耗电流 I_{PDN} 为 $V1 = V2 = V3 = V4 = 1.5 V以及<math>V_{MP} = V_{SS}$ 时VSS端子的电流。

2. 电压稳压器(测定电路2)

稳压器的输出电压 V_{OUT} 为 $V_{DD}=V_{MP}=14$ V以及 $I_{OUT}=3$ mA时VREG端子的电压。电压稳压器的输入稳定度 ΔV_{OUT1} 为 $V_{DD}=V_{MP}=6$ V且 $I_{OUT}=3$ mA时输出电压 V_{OUT1} 和 $V_{DD}=V_{MP}=18$ V 且 $I_{OUT}=3$ mA时,从输出电压 V_{OUT2} 利用 $\Delta V_{OUT1}=V_{OUT2}$ V_{OUT1} 公式计算而求出。负载稳定度 ΔV_{OUT2} 是利用 $V_{DD}=V_{MP}=14$ V且 $I_{OUT}=5$ μ A时输出电压 V_{OUT3} ,从 $\Delta V_{OUT2}=V_{OUT3}$ V_{OUT3} $V_{OUT3}=V_{OUT3}$ $V_$

3. 电池监视放大器以及VC1~VC3端子电流(测定电路3)

对于各节电池监视放大器的电压增幅率,在V1 = V2 = V3 = V4 = 3.5 V时,针对下表的CTL3端子以及CTL4端子的组合,可以从VBATOUT端子输出的输入补偿电压和电压测定值中计算求出。此时,流经VC1、VC2、VC3的端子电流 I_{VC0} 以及 I_{VC0N} 被同时地测量。

CTL3端子状态	CTL4端子状态	VBATOUT端子输出	VCn(n=1, 2, 3)端子电流
V _{CTL3H} 最小值	V _{CTL4H} 最小值	V_{OFF1}	VC1端子电流 I _{VC1}
V _{CTL3H} 最小值	Open	V_{BAT1}	_
V _{CTL3H} 最小值	V _{CTL4L} 最大值	V_{OFF2}	VC2端子电流 I _{VC2}
Open	V _{CTL4H} 最小值	V_{BAT2}	_
Open	Open	V_{OFF3}	VC3端子电流 I _{VC3}
Open	V _{CTL4L} 最大值	V_{BAT3}	_
V _{CTL3L} 最大值	V _{CTL4H} 最小值	V _{OFF4}	VCn端子电流 I _{VCnN} (n=1, 2, 3)
V _{CTL3L} 最大值	Open	V_{BAT4}	

表8

4. 过充电检测电压、过充电滞后、过放电检测电压、过放电滞后、以及过电流检测电压(测定电路4)

〈〈过充电检测电压、过充电滞后、过放电检测电压、过放电滞后〉〉

在以下, $V_{MP} = V_{DD}$,CDT端子为开放的前提下。

在V1=V2=V3=V4=3.5 V的情况下,COP端子以及DOP端子输出"L"($V_{DD} \times 0.1$ V以下的电压)。过充电检测电压 V_{CU1} 定义为V1的电压从3.5 V开始缓慢提升,COP端子的电压变为"H"($V_{DD} \times 0.9$ V以上的电压)时的电压。过充电解除电压 V_{CL1} 定义为V1的电压缓慢降低,COP端子的电压变为"L"时的电压。过充电滞后 V_{HC1} 可以从过充电检测电压 V_{CU1} 与过充电解除电压 V_{CL1} 的差中计算求出。

过放电检测电压 V_{DL1} 定义为V1的电压从3.5~V开始缓慢降低,DOP端子的电压变为"H"时的电压。过放解除电压 V_{DU1} 定义为V1的电压缓慢提升,DOP端子的电压变为"L"时的电压。过放电滞后 V_{HD1} 可以从过放解除电压 V_{DU1} 与过放电检测电压 V_{DL1} 的差中计算求出。

其他的过充电检测电压 V_{CUn} 、过充电滞后 V_{HCn} 、过放电检测电压 V_{DLn} 、以及过放电滞后 V_{HDn} ($n=2\sim4$)与n=1的情况相同,可以同样地通过计算而求出。

〈〈过电流检测电压〉〉

初始状态在V1 = V2 = V3 = V4 = 3.5 V、 $V_{MP} = V_{DD}$ 且CDT端子为开放的前提下。DOP端子的输出变为"L"。

过电流检测电压 $1 V_{IOV1}$ 定义为降低VMP端子的电压,DOP端子的电压变为"H"时的 V_{DD} 与 V_{MP} 的电压差 $V_{DD}-V_{MP}$ 。

测量过电流检测电压2以及3的情况下的初始状态在V1 = V2 = V3 = V4 = 3.5 V、 V_{MP} = V_{DD} 且CDT 端子的电压 V_{CDT} = V_{SS} 的前提下。在此状态下DOP端子输出"L"。

过电流检测电压 $2 V_{IOV2}$ 定义为降低VMP端子的电压,DOP端子的电压变为"H"时的 V_{DD} 与 V_{MP} 的电压差 $V_{DD}-V_{MP}$ 。

过电流检测延迟时间2 t_{IOV2} 定义为VMP端子的电压从初始状态的 V_{DD} 开始瞬间变为 V_{IOV2} 最小值 -0.2 V的情况下,DOP端子的输出从"L"变为"H"为止的时间。

过电流检测电压 $3 V_{IOV3}$ 定义为VMP端子的电压以10 V/ms的速度下降,DOP端子的电压变为"H"时的 V_{MP} 的电压 V_{MP} 。

过电流检测延迟时间3 t_{IOV3}定义为VMP端子的电压从初始状态的V_{DD}开始瞬间变为V_{IOV3} 最小值 –0.2 V的情况下,DOP端子的输出从"L"变为"H"为止的时间。

5. CTL1端子电流、过充电检测延迟时间、过充电检测延迟时间、过放电检测延迟时间以及过电流检测延迟时间1(测定电路5)

初始状态为V1 = V2 = V3 = V4 = 3.5 V、 $V_{MP} = V_{DD}$ 。 流经CTL1端子与 V_{SS} 的电流为CTL1的端子电流 I_{CTL1L} 。

过充电检测延迟时间t_{CU}定义为V1的电压从3.5 V瞬间变为4.5 V之后,COP端子的电压从"L"变为"H"为止的时间。

过放电检测延迟时间t_{DL} V1的电压从3.5 V瞬间变为1.5 V之后,DOP端子的电压从"L"变为"H"为止的时间。

过电流检测延迟时间1 t_{IOV1} 定义为在V1 = 3.5 V时,VMP端子的电压从 V_{DD} 变为 V_{DD} -0.35 V之后,DOP端子的电压从"L"变为"H"为止的时间。

6. CTL1以及CTL2端子输入电压(测定电路6)

初始条件为V1 = V2 = V3 = V4 = 3.5 V。

V_{CTL1} = V_{CTL1H} 最小值且CTL2为开放的情况下,COP 端子以及DOP端子的端子电压变为"H"。

 $V_{CTL1} = V_{CTL1}$ 最大值且CTL2为开放的情况下,COP端子以及DOP端子的端子电压变为"L"。

 $V_{CTL1} = V_{CTL1L}$ 最大值且 $V_{CTL2} = V_{CTL2H}$ 最小值的情况下,COP端子的端子电压变为"H",DOP端子的端子电压变为"L"。

V_{CTL1} = V_{CTL1L} 最大值且V_{CTL2} = V_{CTL2L} 最大值的情况下,COP端子的端子电压变为"L",DOP端子的端子电压变为"H"。

7. 向0 V充电开始充电器电压、向0 V充电禁止电池电压(测定电路7)

通过向0 V电池的充电功能,向0 V充电开始充电器电压或者是向0 V充电禁止电池电压的一方适用于各类产品。

在向0 V电池充电可能的情况下的初始状态为V1 = V2 = V3 = V4 = 0 V。 在VMP端子的电压 $V_{MP} = V_{0CHA}$ 最大值的情况下,COP端子的电压变得比 V_{0CHA} 最大值-1 V还低。

在向0 V电池充电被禁止的情况下的初始状态为V1 = V2 = V3 = V4 = V_{OINH} 。 在VMP端子的电压 V_{MP} = 24 V的情况下,COP端子的电压变得 V_{MP} -1 V还高。

8. 内部电阻(测定电路8)

VDD端子与VMP端子之间的电阻为 R_{VDM} 。从初始状态 V1 = V2 = V3 = V4 = 3.5 V且 V_{MP} = V_{DD} 开始,利用 V_{MP} = V_{SS} 时的VMP端子的电流 I_{VDM} , R_{VDM} = V_{DD} / I_{VDM} 中求出。 VSS端子与VMP端子之间的电阻为 R_{VSM} 。 利用初始状态V1 = V2 = V3 = V4 = 1.8 V且 V_{MP} = V_{DD} 时的 VMP端子的电流 I_{VSM} , R_{VSM} = V_{DD} / I_{VSM} 中求出。

9. CTL2~CTL4、COP、DOP以及VBATOUT端子电流(测定电路9)

初始条件为V1 = V2 = V3= V4 = 3.5 V。

CTL2端子为"H"时的电流IcTL2H通过VcTL2 = Vout可以求得。

CTL2端子为"L"时的电流I_{CTL2L}通过V_{CTL2} = V_{SS}可以求得。

CTL3端子以及CTL4端子的端子电流与CTL2端子相同,可同样求得。

COP端子为"H"时的电流 I_{COH} 通过 $V1=V2=V3=V4=6~V~V_{MP}=V_{DD}$ 以及 $V_{COP}=V_{DD}$ 可以求得。 COP端子为"L"时的电流 I_{COL} 通过 $V1=V2=V3=V4=3.5~V~V_{MP}=V_{DD}$ 以及 $V_{COP}=0.5~V$ 可以求得。 DOP端子为"L"时的电流 I_{DOL} 通过 $V1=V2=V3=V4=3.5~V~V_{MP}=V_{DD}$ 以及 $V_{DOP}=0.5~V$ 可以求得。 DOP端子为"H"时的电流 I_{COH} 通过 $V1=V2=V3=V4=3.5~V~V_{MP}=V_{DD}-1~V$ 以及 $V_{DOP}=V_{DD}-0.5~V$ 可以求得。

VBATOUT端子为"H"时的电流I_{VBATH}通过开放CTL3端子和CTL4端子,以及V_{BATOUT} = V_{OFF3}-0.5 V时可以求得。VBATOUT端子为"L"时的电流I_{VBATL}通过V_{BATOUT} = V_{OFF3}+0.5 V可以求得。

测定电路1

测定电路2

测定电路3

R1=1MΩ

测定电路4

测定电路5

测定电路6

测定电路7

测定电路8

测定电路9

图4

■ 工作说明

1. 电池保护电路

电池保护电路从过充电以及过放电中保护电池,从过电流中保护外接FET。

1-1 通常状态

全部电池的电压在 V_{DLn} 与 V_{CUn} 之间,在放电电流比一定值小(VMP端子电压比 V_{IOV1} 低)的情况下,充电用FET以及放电用FET变为ON。

1-2 过充电状态

某个电池的电压比 V_{CUn} 高,这种状态保持在 t_{CU} 以上的情况下,COP端子变为高阻抗。COP端子通过外接电阻上拉至EB+的缘故,充电用FET变为OFF,停止充电。这称为过充电状态。过充电状态在满足下述2个条件中的一方的情况下而被解除。

- a) 全部电池的电压在V_{CUn} + V_{HCn}以下时。
- b) V_{DD}-V_{MP}>V_{IOV1}时(负载被连接,开始放电)。

1-3 过放电状态

某个电池的电压比 V_{DLn} 低,这种状态保持在 t_{DL} 以上的情况下,DOP端子的电压变为 V_{DD} 电位,放电用FET变为OFF,停止充电。这称为过放电状态。

1-4 休眠状态

变为过放电状态,停止了放电时S-8243A/B系列为休眠状态。在这种状态下S-8243A/B系列的几乎全部的电路为了减少消耗电流而停止工作。消耗电流变为 I_{PDN} 以下。在休眠状态下,VMP端子通过内部电阻 R_{VSM} 下拉至 V_{SS} 电位。各输出端子的状态如下所示。

- a) COP V_{SS} 充电用FET变为ON
- b) DOP V_{DD} 放电用FET变为OFF
- c) VREG V_{SS} 电压稳压器电路变为OFF
- d) VBATOUT Vss 电池电压监视放大器电路变为OFF

休眠状态在满足下述条件时被解除。

a) V_{MP}>V_{IOV3}时(负载被连接,开始放电)。

过放电状态在满足下述的条件时被解除。

a) 全部的电池电压变为V_{DLn}以上,并且VDD端子电压变为V_{DD}/2以上时(连接了充电器)。

1-5 过电流状态

S-8243A/B系列备有3种类的过电流检测电位(V_{IOV1} 、 V_{IOV2} 以及 V_{IOV3})以及对应各自的电位的过电流检测延迟时间(t_{IOV1} 、 t_{IOV2} 以及 t_{IOV3})。放电电流比某个值大时(V_{DD} 与 V_{MP} 的电压差比 V_{IOV1} 大时),这种状态保持在 t_{IOV1} 以上时S-8243A/B系列进入过电流状态。在过电流状态下,DOP端子的电压变为 V_{DD} 电位,放电用FET变为OFF而停止放电。另外,COP端子变为高阻抗上拉至EB+的电位缘故,充电用FET变为OFF,不能进行充电。VMP端子通过内部电阻R $_{VDM}$ 上拉至 V_{DD} 的电压。对于其他的2个过电流检测电位以及过电流检测延迟时间(t_{IOV2} 以及 t_{IOV3})的工作与对于 V_{IOV1} 以及 t_{IOV1} 的工作相同。

过电流状态在满足下述条件时被解除。

a) $V_{MP} > \{V_{IOV3} / (1 - V_{IOV3}) \times 3 / 5 - 2 / 5\} \times R_{VDM}$ 时(解除负载,EB-端子与EB+端子之间的阻抗变高)。

1-6 向0 V电池充电功能

有关已自我放电的电池(0 V电池)的充电, S-8243A/B系列可选择2个功能中的一方。

- a) 允许向0 V电池的充电。(可向0 V电池充电) 充电器的电压比V_{OCHA}高的情况下,0 V电池被充电。
- b) 禁止向0 V电池的充电。(不可向0 V电池充电) 某个电池的电压在V_{OINH}以下的情况下,不进行充电。

注意 VDD端子的电压比V_{DSOP}的最小值还低的情况下,不保证S-8243A/B系列的工作。

1-7 延迟时间的设定

过充电检测延迟时间($t_{CU1} \sim t_{CU4}$) 可以通过连接在CCT端子的外接器件的容量来设定。过放电检测延迟时间($t_{DL1} \sim t_{DL4}$)以及过电流检测延迟时间1(t_{IOV1}) 可以通过连接在CDT端子的外接器件的容量来设定。过电流检测延迟时间2以及3($t_{IOV2} \sim t_{IOV3}$)在内部被固定。

S-8243AAC、AAD、BAE、BAF

	最小	值 典型值	重 最大值	
t _{CU} [s] =延迟(係数(5	10	15) $\times C_{CT}$ [μF]
t _{DL} [ms] =延迟(係数(500	1000	1500) $\times C_{DT} [\mu F]$
t _{IOV1} [ms] =延迟(係数(50	100	150) $\times C_{DT} [\mu F]$

S-8243BAD

		最小值	典型值	最大值		
t _{cu} [s]	=延迟係数(5	10	15)	$\times C_{CT}$ [µF]
t _{DL} [ms]	=延迟係数(555	1110	2220)	$\times C_{\text{DT}} \left[\mu F \right]$
t _{IOV1} [ms]	=延迟係数(33.1	66.2	132)	$\times C_{DT} [\mu F]$

2. 电压稳压器

内置的电压稳压器可以为了驱动微机而使用。电压稳压器可供应3.3 V。电流最大为3 mA。需要输出电容。

注意 在休眠状态下,电压稳压器的输出通过内部电阻被下拉至Vss电位。

3. 电池监视放大器电路

电池监视放大器把有关电池的情报送到微机。电池监视放大器的输出通过CTL3端子以及CTL4端子,控制以及选择输出如下的电压。

a) V_{BATn} = GAMPn × V_{BATTERYn} + V_{OFFn} GAMPn为放大器的第n号的电压增幅率,V_{BATTERYn}为第n号的电池电压,V_{OFFn}为放大器的第n号的补偿电压。

b) 第N号的补偿电压V_{OFFn}

各个电池的电压V_{BATTERYn}(n = 1 ~ 4)可按如下的公式来计算。

 $V_{BATTERYn} = \{(V_{BATn} - V_{OFFn}) / GAMPn (n=1, 2, 3, 4)\}$

CTL3端子以及CTL4端子的状态有变化的情况下,电池监视放大器为了稳定需要25 μs至250 μs的时间。

注意 在休眠状态下,电池监视放大器的输出通过内部电阻被下拉至Vss电位。

4. 有关CTL端子

S-8243A/B系列备有4个控制端子。CTL1端子以及CTL2端子是为了控制COP端子以及DOP端子的输出电压而准备的。CTL1端子优先于CTL2端子。CTL2端子优先于电池保护电路。CTL3端子以及CTL4端子是为了控制VBATOUT端子的输出电压而准备的。

In	out	Output		
CTL1端子	CTL2端子	外部放电用FET	外部充电用FET	
High	High	OFF	OFF	
High	Open	OFF	OFF	
High	Low	OFF	OFF	
Open	High	OFF	OFF	
Open	Open	OFF	OFF	
Open	Low	OFF	OFF	
Low	High	通常状态 ^{*1}	OFF ^{*2}	
Low	Open	通常状态 ^{*1}	通常状态 ^{*1}	
Low	Low	OFF	通常状态 ^{*1}	

表9 通过CTL1以及CTL2设定的状态

^{*2.} 经过过电流检测延迟时间tcu后变为OFF状态。

Inp	out	Output		
CTL3端子	CTL4端子	V _{BATOUT} (A系列)	V _{BATOUT} (B系列)	
High	High	V1 Offset	V1 Offset	
High	Open	V1×0.2 + V1 Offset	V1×0.2 + V1 Offset	
High	Low	使用禁止	V2 Offset	
Open	High	使用禁止	V2×0.2 + V2 Offset	
Open*1	Open ^{*1}	V2 Offset	V3 Offset	
Open	Low	V2×0.2 + V2 Offset	V3×0.2 + V3 Offset	
Low	High	V3 Offset	V4 Offset	
Low	Open	V3×0.2 + V3 Offset	V4×0.2 + V4 Offset	
Low	Low	使用禁止 使用禁止		

表10 通过CTL3以及CTL4输出的电压

注意 由于外接滤波器R_{vss}、C_{vss}的存在,当电源突变时,如向CTL端子输入低电位,此低电位与VSS 产生电位差,从而导致错误动作,务请注意。

^{*1.} 状态由电压检测电路控制。

^{*1.} 在不使用微机的情况下,请开放CTL3端子以及CTL4端子。

■ 工作时序图

1. 过充电检测、过放电检测

- *1. 状态由于CTL3以及 CTL4端子的输入电平而不同。请参照图8。
- *2. ①:通常状态、②:过充电状态、③:过放电状态

备注 假想为在定电流时的充电。VEB+表示为充电器的开放电压。

2. 过电流检测

- *1. V_{RETURN} = V_{DD} / 6 (典型值)
- *2. 状态由于CTL3以及 CTL4端子的输入电平而不同。请参照图8。
- *3. ①:通常状态、②:过电流状态

备注 假想为在定电流时的充电。VEB+表示为充电器的开放电压。

3. CTL1、CTL2端子电压

- *1. 状态由于各个电池的电压以及VMP端子的电压而不同。
- *2. 状态由于CTL3以及 CTL4端子的输入电平而不同。请参照图8。

*1. 在(1)的状态下,由于CTL1和CTL2端子的输入电平、各电池的电压以及VMP端子的电压而不同。请参照**图5~7**。

■ 电池保护IC的连接例

1. S-8243A系列

图10

表 11 外接元器件参数

No.	记号	典型值	范围	单位
1	R _{VC2}	1	0.51 ~ 1 ^{*1}	kΩ
2	R _{VC3}	1	0.51 ~ 1 ^{*1}	kΩ
3	R _{vss}	10	2.2 ~ 10 ^{*1}	Ω
4	R_{DOP}	5.1	2 ~ 10	kΩ
5	R _{COP}	1	0.1 ~ 1	МΩ
6	R_{VMP}	5.1	1 ~ 10	kΩ
7	R _{CTL1}	0	0 ~ 100	kΩ
8	R _{CTL2}	0	0 ~ 10	kΩ
9	R _{CTL3}	0	0 ~ 10	kΩ
10	R _{CTL4}	0	0 ~ 10	kΩ
11	R_{VBAT}	0	0 ~ 100	kΩ
12	C _{VC2}	0.047	$0.047 \sim 0.22^{*1}$	μF
13	C _{VC3}	0.047	$0.047 \sim 0.22^{*1}$	μF
14	C _{VSS}	4.7	2.2 ~ 10 ^{*1}	μF
15	C _{CCT}	0.1	0.01 ~	μF
16	C _{CDT}	0.1	0.02 ~	μF
17	C_{VREG}	4.7	0.68 ~ 10	μF

^{*1.} 在设定过滤器参数时,请注意R_{VSS} × C_{VSS} ≥ 22µF·Ω,

 $R_{\text{VC2}} \times C_{\text{VC2}} = R_{\text{VC3}} \times C_{\text{VC3}} = R_{\text{VSS}} \times C_{\text{VSS}} \bullet$

注意 在电源端子VDD与电池之间,请不要放入电阻。

标准电路并不作为保证电路工作的依据,实际的应用电路请在进行 充分的实测基础上设定参数。

2. S-8243B系列

图11

表12 外接元器件参数

No	30 P	曲 刑 /古	4.田	₩ /÷
No.	记号	典型值	范围	单位
1	R _{VC1}	1	0.51 ~ 1 ^{*1}	kΩ
2	R _{VC2}	1	0.51 ~ 1 ^{*1}	kΩ
3	R _{VC3}	1	0.51 ~ 1 ^{*1}	kΩ
4	R _{vss}	10	2.2 ~ 10 ^{*1}	Ω
5	R_{DOP}	5.1	2 ~ 10	kΩ
6	R _{COP}	1	0.1 ~ 1	МΩ
7	R _{VMP}	5.1	1 ~ 10	kΩ
8	R _{CTL1}	0	0 ~ 100	kΩ
9	R _{CTL2}	0	0 ~ 10	kΩ
10	R _{CTL3}	0	0 ~ 10	kΩ
11	R _{CTL4}	0	0 ~ 10	kΩ
12	R_{VBAT}	0	0 ~ 100	kΩ
13	C _{VC1}	0.047	$0.047 \sim 0.22^{*1}$	μF
14	C_{VC2}	0.047	$0.047 \sim 0.22^{*1}$	μF
15	C _{VC3}	0.047	$0.047 \sim 0.22^{*1}$	μF
16	C _{VSS}	4.7	2.2 ~ 10 ^{*1}	μF
17	Ссст	0.1	0.01 ~	μF
18	C _{CDT}	0.1	0.02 ~	μF
19	C_{VREG}	4.7	0.68 ~ 10	μF

^{*1.} 在设定过滤器参数时,请注意 $R_{VSS} \times C_{VSS} \ge 22 \mu F \cdot \Omega$, $R_{VC1} \times C_{VC1} = R_{VC2} \times C_{VC2} = R_{VC3} \times C_{VC3} = R_{VSS} \times C_{VSS} .$

注意 在电源端子VDD与电池之间,请不要放入电阻。 标准电路并不作为保证电路工作的依据,实际的应用电路请在进行充分的实测基础上设定参数。

■ 注意事项

- 请注意输入输出电压、负载电流的使用条件,使IC内的功耗不超过封装的容许功耗。
- 本IC虽内置防静电保护电路,但请不要对IC印加超过保护电路性能的过大静电。
- 使用本公司的IC生产产品时,如在其产品中对该IC的使用方法或产品的规格,或因与所进口国对包括本IC产品在内的制品发生专利纠纷时,本公司概不承担相应责任。

■ 应用电路例

1. S-8243A系列

注意 应用电路并不作为保证电路工作的依据,实际的应用电路请在进行充分的实测基础上设定参数。

各种特性数据(典型数据)

1. 消耗电流 S-8243BAF

S-8243BAF

S-8243BAF

S-8243BAF

2. 过充电检测/解除电压、过放电检测/解除电压、过电流检测电压、以及各延迟时间 S-8243BAF S-8243BAF

3. COP/DOP端子

S-8243BAF

S-8243BAF

S-8243BAF

4. 电压稳压器

S-8243BAF

S-8243BAF

 $V_{OUT} - I_{OUT}$ V1=V2=V3=V4=V_{BAT} S-8243BAF

S-8243BAF

5. 电池监视放大器

S-8243BAF

No. FT016-A-P-SD-1.1

TITLE	TSSOP16-A-PKG Dimensions				
No.	FT016-A-P-SD-1.1				
SCALE					
UNIT	mm				
Seiko Instruments Inc.					

No. FT016-A-C-SD-1.1

TITLE	TSSOP16-A-Carrier Tape			
No.	FT016-A-C-SD-1.1			
SCALE				
UNIT	mm			
Seiko Instruments Inc.				

Enlarged drawing in the central part

No. FT016-A-R-SD-1.1

TITLE	TSSOP16-A- Reel					
No.	F	T016-A-R	R-SD-1.1			
SCALE		QTY. 2,000				
UNIT	mm					
Seiko Instruments Inc.						

- 本资料内容,随产品的改进,可能会有未经预告之更改。
- 本资料所记载设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其责任。另外,应用电路示例为产品之代表性应用说明,非保证批量生产之设计。
- 本资料所记载产品,如属国外汇兑及外国贸易法中规定的限制货物(或劳务)时,基于该法律,需得到日本国政府之出口 许可。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 本资料所记载之产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、瓦斯关联器械、车辆器械、航空器械及车载器械等对人体产生影响的器械或装置部件使用。
- 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社会性损害等,请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。