Wann ist eine linearer Operator aus \mathcal{H} dicht definiert?	Wenn $D(A)$ Definitionsbereich dicht in $\mathcal H$ ist.
Wie ist ein beschränkter Operator definiert?	Sei $A:D(A)\to \mathcal{H}$ ein linearer Operator. A heißt beschränkt, falls für jede beschränkte Menge $M\subset D(A)$ gilt, dass $A[M]$ beschränkt ist.
Sei $A:D(A)\to \mathcal{H}$ ein linearer Operator. A heißt stetig, falls	für jede Folge (φ_n) in $D(A)$ mit $\varphi_n \to \varphi \in D(A)$ gilt, dass $A\varphi_n \to A\varphi$
Sei $A:D(A)\to \mathcal{H}$ ein linearer Operator. Welche Aussagen sind äquivalent zu • A ist beschränkt?	 ∃c > 0 : ∀φ ∈ D(A) Aφ ≤ c phi , A ist stetig, A ist stetig in 0.

Wann lässt sich ein linearer Operator A auf ganz $\mathcal H$ fortsetzen?	Falls $D(A)$ dicht in $\mathcal H$ und A stetig, lässt sich A stetig auf $\mathcal H$ fortsetzen.
Was ist $B(\mathcal{H})$?	$B(\mathcal{H})$ ist der Vektorraum aller beschränkten linearen Operatoren auf \mathcal{H} . Es ist ein Vektorraum ,da für ein skalar c und zwei beschränkte Operatoren $A_1, A_2, A_1 + A_2$ und cA auch beschränkt sind.
Wie ist die Operatornorm auf $B(\mathcal{H})$ definiert?	$ T := \inf\{c > 0 \mid \forall \varphi \in \mathcal{H} : T\varphi \le c \varphi \}$
Was besagt der Satz Norm auf $B(\mathcal{H})$, außer dass die definierte Operatornorm tatsächlich einer Norm auf (\mathcal{H}) ist?	$(B(\mathcal{H}), \ \cdot\)$ ist ein Banach-Raum. Es gilt die Submultiplikativität der Norm, also $\ AB\ \le \ A\ \ B\ $.

Welche äquivalente zu $\ T\ := \inf \big\{ c < 0 \mid \forall \varphi \in \mathcal{H} \ T\varphi\ \leq \ \varphi\ \big\}$ Charakterisierungen der Operatornorm auf $B(\mathcal{H})$ gibt es (Es sind 4.)?	$ T = \sup\{ T\varphi \mid \varphi \in \mathcal{H}, \varphi \le 1\}$ $ T = \sup\{ T\varphi \mid \varphi \in \mathcal{H}, \varphi = 1\}$ $ T = \sup\{ T\varphi \mid \varphi \in \mathcal{H}, \varphi < 1\}$ $ T = \sup\{ \langle \psi, T\varphi \rangle \mid \psi, \varphi \in \mathcal{H}, (\psi \le 1 \land \varphi \le 1)\}$
Ein Operator aus $B(\mathcal{H})$ heißt $endlich$ -dimensional, wenn	der Bildbereich von diesem Operator endlich-dimensional ist.
Wann existiert der inverse Operator zu einem linearen Operator A ?	Falls $A:D(A)\to \mathrm{im} A$ injektiv. Dann ist A^{-1} auch linear.
Was besagt der Satz über den inversen Operator?	Wenn $A \in B(\mathcal{H})$, im $A = \mathcal{H}$ und A^{-1} existiert, dann ist $A^{-1} \in B(\mathcal{H})$.

Was besagt der Sagt über den adjungierten Operator?	Zu jedem $T\in B(\mathcal{H})$ existiert genau ein $T^*\in B(\mathcal{H})$ mit folgender Eigenschaft: $\forall \varphi,\psi\in\mathcal{H}: \langle\varphi,T\psi\rangle=\langle T^*\varphi,\psi\rangle$ T^* heißt der zu T adjungierte Operator. Es gilt: $\ T\ =\ T^*\ $
$(B(\mathcal{H}),\ \cdot\)$ ist eine C^* -Algebra mit Eins-Element, d.h	 i) B(H) ist ein C-Vektorraum mit einer Multiplikation (assoziative, bilineare Abbildung) B(H) × B(H) ∋ (S,T) → S ∘ T Als Vektorraum mit assoziativer bilinearer Abbildung ist B(H) eine Abbildung. Das Eins-Element dieser Algebra ist Einheitsoperator 1. ii) (B(H), ·) ist eine normierte Algebra, d.h. · ist submultiplikativ: ∀S, T ∈ B(H) : ST ≤ S T Es ist eine Banach-Algebra (also vollständig und normiert). iii) B(H) ist eine *-Algebra. iv) Die Norm erfüllt die C*-Algebra, d.h. ∀T ∈ B(H) : T*T = T ².
$B(\mathcal{H})$ ist eine *-Algebra, d.h	es gibt eine Abbildung $*:B(\mathcal{H})\to B(\mathcal{H}),\ T\mapsto T^*$ mit $\forall S,T\in B(\mathcal{H}), \forall \lambda\in\mathbb{C}:$ $1.\ (\lambda S+T)^*=\bar{\lambda}S^*+T^*,$ $2.\ (ST)^*=T^*S^*,$ $3.\ S^{**}=S$ Eine solche Abbildung heißt $Involution.$
Wie lautet der Satz über das orthogonale Komplement des Bildes?	Sei $T \in B(\mathcal{H})$. Dann gilt $ (\mathrm{im} T)^\perp = \mathrm{ker} T^* $ $ (\mathrm{im} T^*)^\perp = \mathrm{ker} T $

Ein Operator $T \in B(\mathcal{H})$ heißt $selbstadjungiert$, wenn	$\dots T = T^*$
Ein Operator $T \in B(\mathcal{H})$ heißt $positiv$, wenn	$\forall \varphi \in \mathcal{H}: \langle T\varphi, \varphi \rangle \geq 0$
Ein Operator $T \in B(\mathcal{H})$ heißt $unit \ddot{a}r$, wenn	$\dots T^{-1} = T^*$
Ein Operator $T \in B(\mathcal{H})$ heißt $normal$, wenn	$\dots T^*T = TT^*$

Ein Operator $T \in B(\mathcal{H})$ heißt <i>Projektion</i> , wenn	$\dots T^2 = T$
Ein Operator $T \in B(\mathcal{H})$ heißt , wenn	
Ein Operator $T \in B(\mathcal{H})$ heißt $Orthogonal projektion$, wenn	T Projektion ist und $T = T^*$
Ein Operator $T \in B(\mathcal{H})$ heißt $isometrich$, wenn	$\dots \forall \varphi \in \mathcal{H} : \ T\varphi\ = \ T\ $

Ein Operator $T \in B(\mathcal{H})$ heißt $partiell\ isometrisch,$ wenn	eine Zerlegung $\mathcal{H}=\mathcal{H}_1\oplus\mathcal{H}_2$ existiert mit $T:\mathcal{H}_1\to\mathcal{H}$ ist isometrisch und $\mathcal{H}_2=\ker T.$ $\mathcal{H}_1 \text{ ist der } An fangsbereich \text{ und im } T \text{ der } Endbereich \text{ der partiellen Isometrie.}$
Wann existiert ein - zum unbeschränkten Operator - adjungierte Operator?	Wenn der Operator dicht definiert ist.
Sei $T:D(T)\to\mathcal{H}$ ein dicht definierter Operator. Es existiert also der zu T adjungierte Operator $T^*:D(T^*)\to\mathcal{H}.$ Wie ist T^* definiert?	$D(T*) = D^* := \left\{ \psi \in \mathcal{H} \mid D(T) \ni \mapsto \langle \psi, T\varphi \rangle \in \mathbb{C} \text{ ist stetig} \right\}$ $\forall \varphi \in D(T) \forall \psi \in D^* : \langle T^*\psi, \phi \rangle = \langle \psi, T\phi \rangle$

Welche wichtige Bemerkungen gibt es zu unbeschränkten

adjungierten Operatoren?

- Aus "T dicht definiert "folgt **nicht**, dass auch T^* dicht

- Falls T^{\ast} nicht dicht definiert ist, kann man $T^{\ast\ast}$ nicht

Auch wenn $D(T^*)$ dicht in \mathcal{H} gilt nicht unbedingt, dass $T^{**} = T!!$

definiert!

eindeutig definieren.

Was bedeuten (und was sind die Unterschiede): hermitesch, symmetrich und selbstadjungiert, für unbeschränkte Operatoren?	• hermitesch oder formal adjungiert: $\forall \varphi, \psi \in D(T)$: $\langle T\psi, \varphi \rangle = \langle \psi, T\varphi \rangle$. T muss hier nicht dicht definiert sein!
	• $symmetrisch$: T hermitesch und dicht definiert. Also es gilt insbesondere $T \subset T^*$.
	• $selbstadjungiert: T$ dicht definiert und sowohl $D(T) \subset D(T^*)$, als auch $D(T^*) \subset D(T)$, also $T^* = T$ gilt. Insbesondere $D(T^*) = D(T)$ und T $symmetrisch$.

Wie ist die *Resolventenmenge* un das *Spektrum* eines beschränkten Operators definiert?

Sei $T \in B(\mathcal{H})$,

i) Die Menge

$$\varrho(T) \coloneqq \left\{ \lambda \in C \mid \exists (T - \lambda \mathbb{1})^{-1} \in B(\mathcal{H}) \right\}$$

heißt Resolventenmenge von T, für $\lambda \in \varrho(T)$ gilt also: $(T - \lambda \mathbb{1}) : \mathcal{H} \to \mathcal{H}$ ist bijektiv.

Der Operator $R_{\lambda}(T) := (T - \lambda \mathbb{1})^{-1}$ heißt Resolvente von T im Punkt λ .

ii) Die Menge $\sigma(T) := \mathbb{C} \setminus \varrho(T)$ heißt Spektrum von T.

Was sind die Aussagen des Satzes über die Eigenschaften der Resolventenmenge?

i) Für $\lambda, \mu \in \varrho(T)$ kommutieren die Operatoren $R_{\lambda}(T)$ und $R_{\mu}(T)$ und es gilt die Resolventengleichung

$$R_{\lambda}(T) - R_{\mu}(T) = (\lambda - \mu)R_{\lambda}(T) \cdot R_{\mu}(T)$$

ii) Für λ mit $|\lambda|<\|T\|$ gilt $\lambda\in\varrho(T).$ $R_\lambda(T)$ wird durch die $\it Neumannsche$ $\it Reihe$ beschrieben

$$R_{\lambda}(T) = -\sum_{k=0}^{\infty} \frac{T^k}{\lambda^{k+1}}$$

Es gilt die Abschätzung $\left\| (T - \lambda \mathbb{1})^{-1} \right\| \leq \frac{1}{|\lambda| - \|T\|}$.

iii) Für $\lambda_0 \in \varrho(T)$ gilt: $\lambda \in \mathbb{C}, |\lambda - \lambda_0| < \|R_{\lambda_0}\|^{-1} \Rightarrow$ die Reihe

$$R_{\lambda_0}(T)\left[\mathbb{1} + \sum_{k=0}^{\infty} (\lambda = \lambda_0)^k \left(R_{\lambda_0}(T)\right)^k\right]$$

konvergiert und es ist gleich $R_{\lambda}(T)$. Also $\lambda \in \varrho(T)$ und $\varrho(T)$ ist offen.

Was besagt der Satz über die Kompaktheit des Spektrums?

Sei $T \in B(\mathcal{H})$. Das Spektrum $\sigma(T)$ ist eine kompakte, nichtleere Teilmenge von \mathbb{C} . Es gilt $\sigma(T) \subset \lambda \in \mathbb{C} \mid \left| \lambda \leq \|T\| \right|$

Wie ist ein Punktspektrum σ_p definiert?	
	$\sigma_p := \{ \lambda \in \mathbb{C} \mid (T - \lambda \mathbb{1}) \text{ nicht injektiv} \}$ $:= \{ \lambda \in \mathbb{C} \mid \exists \varphi \in \mathcal{H} \setminus \{0\} : T\varphi = \lambda \varphi \}$

Wie ist das stetige Spektrum eines Operators
$${\cal T}$$
 definiert?

$$\begin{split} \sigma_c(T) \coloneqq & \big\{ \lambda \in \mathbb{C} \mid (T - \lambda \mathbb{1}) \text{ injektiv, nicht surjektiv,} \\ & (T - \lambda \mathbb{1})[\mathcal{H}] \text{ dicht in } \mathcal{H} \big\} \\ \coloneqq & \big\{ \lambda \in \mathbb{C} \mid D \coloneqq (T - \lambda \mathbb{1})[\mathcal{H}] \text{ dicht in } \mathcal{H}, \\ & \exists (T - \lambda \mathbb{1})^{-1} : D \to \mathcal{H}, \text{ nicht dicht in } \mathcal{H} \big\} \end{split}$$

Wie ist das Restspektrum von einem Operator T definiert?

 $\sigma_c(T) := \{ \lambda \in \mathbb{C} \mid (T - \lambda \mathbb{1}) \text{ injektiv,}$ $(T - \lambda \mathbb{1})[\mathcal{H}] \text{ nicht dicht in } \mathcal{H} \}$ $:= \{ \lambda \in \mathbb{C} \mid \lambda \notin \sigma_p, (T - \lambda \mathbb{1})[\mathcal{H}] \text{ nicht dicht in } \mathcal{H} \}$

Zusammenhang Spektrum adjungierter und nicht adjungier-

ter beschränkten Operatoren:

$$\sigma(T^*) = \overline{\sigma(T)}$$

$$\varrho(T^*) = \overline{\varrho(T)}$$

hier — c.c. der Elemente.

$$R_{\bar{\lambda}}(T^*) = R_{\lambda}(T)$$

$$\lambda \in \sigma_p \Rightarrow \bar{\lambda} \in \sigma_p(T^*) \cup \sigma_r(T^*)$$
$$\lambda \in \sigma_r(T) \Rightarrow \bar{\lambda} \in \sigma_p(T^*)$$
$$\lambda \in \sigma_c(T) \Rightarrow \bar{\lambda} \in \sigma_c(T^*)$$

Was gilt für Spektrum im Spezialfall der selbstadjungierten beschränkten Operatoren?	Sei $T = T^* \in B(\mathcal{H})$. Dann gilt: i) $\sigma_r(T) = \emptyset$, ii) für $\lambda \in \mathbb{C}$ gilt: $\lambda \in \varrho(T) \Leftrightarrow \exists c > 0 : \forall \varphi \in \mathcal{H} : \ (T - \lambda \mathbb{1}) \varphi \ \ge c \ \varphi \ $ iii) Weylsches Kriterium: Für $\lambda \in \mathbb{C}$ gilt: $\lambda \in \sigma(T) \Leftrightarrow \exists \text{ Folge } (\varphi_n) \in \mathcal{H} \big(\text{ mit } \forall n \in \mathbb{N} : \ \varphi_n \ = 1 \big)$ $\text{und } \ (T - \lambda \mathbb{1}) \varphi_n \ \stackrel{n \to \infty}{\to} 0$ iv) $\sigma(T) \subset \mathbb{R}$ und die Eigenvektoren zu paarweise verschiedenen Eigenwerten stehen orthogonal aufeinander.
Wie lautet der Satz über den Rand des Spektrums?	Sei $T=T^*\in B(\mathcal{H}).$ Dann gilt $\ T\ \in\sigma(T)$ oder $-\ T\ \in\sigma(T).$

Seit $T = T^* \in B(\mathcal{H})$. Dann gilt: Wie lautet das Lemma über die Darstellung von |T|, falls T

ein selbstadjungierter Operator? $\|T\| = \sup \Bigl\{ \bigl| \langle \varphi, T\varphi \rangle \bigr| \mid \|\varphi\| \leq 1 \Bigr\}$

jede Folge $(\psi_n)_{n\in\mathbb{N}}$ in m ein Teilfolge $(\psi_n k)_{k\in\mathbb{N}}$ enthält, die gegen ein Element aus M konvergiert. Sei ${\mathcal H}$ ein Hilbertraum. Eine Menge $M\subset {\mathcal H}$ heißt (folgen-) kompakt, wenn

Sei $\mathcal H$ ein Hilbertraum. Eine Menge $M\subset \mathcal H$ heißt relativ kompakt, wenn	der Abschluss \overline{M} kompakt ist, mit anderen Worten, jde Folge in M enthält eine Teilfolge die gegen ein Element aus $\mathcal H$ konvergiert.
Ein linearer Operator $T:\mathcal{H} \to \mathcal{H}$ heißt kompakt,	wenn für jede beschränkte Menge $M\subset\mathcal{H}$ gilt, dass $T[M]$ eine relativ kompakte Menge ist.
$K(\mathcal{H})$ ist ein in $B(\mathcal{H})$.	abgeschlossenes zwei-seitiges *-Ideal
$K(\mathcal{H})$ ist eine abgeschlossenes zwe-seitiges *-Ideal, d.h	a) $K(\mathcal{H})$ ist ein Vektorraum. b) $\forall (T_n) \in K(\mathcal{H})$ mit $\exists T \in B(\mathcal{H}), T_n \to T$ (bzgl. der Operatornorm) gilt: $T \in K(\mathcal{H})$. c) Idealeigenschaft: $\left(T \in K(\mathcal{H}) \land S \in B(\mathcal{H})\right) \Rightarrow \Rightarrow \left(ST \in K(\mathcal{H}) \land TS \in K(\mathcal{H})\right)$. d) $T \in K(\mathcal{H}) \Rightarrow T^* \in K(\mathcal{H})$ Ideal = a + c; *-Ideal = Ideal + d; Abgeschlossenheit = b, Zwei-Seitigkeit = c für TS und ST.

endlich-dimensionalen Operatoren, und $K(\mathcal{H})$?	• $F(\mathcal{H})$ liegt dicht in $K(\mathcal{H})$
Was besagt der Satz über das Spektrum der kompakten selbstadjungierten Operatoren?	Sie \mathcal{H} ein unendlich-dimensionaler Hilbertraum und $T=T^*\in K(\mathcal{H})$. Dann gilt: i) $0\in\sigma(T)$, ii) jedes $\lambda\in\sigma(T)$ ist ein Elgenwert endlicher Vielfachheit, iii) ist T nicht von endlichem Rang, so bilden die Eigenwerte von T eine Nullfolge.
Was besagt der Spektraltheorem für kompakte selbstadjungierte Operatoren?	Sei $T=T^*>\in K(\mathcal{H}), \lambda_1\lambda_2\cdots$ seien die von Null verschiedenen Eigenwerte. Sei $ \lambda_1 \geq \lambda_2 \geq \ldots$ Seien P_i die (endlich-dimensionalen) orthogonalen Projektionen auf die Eigenräume zu λ_i . Dann gilt: $T=\sum_j \lambda_j P_j$ Falls T nicht endlich-dimensional ist (d.h. abzählbar viele Eigenwerte ungleich Null), dann konvergiert die unendliche Reihe bzgl. der Operatornorm.
Wie lautet der Hilbert-Schmidtscher Entwicklungssatz?	Sei $T=T^*\in K(\mathcal{H})$. Dann existiert eine Folge (μ_i) in \mathbb{R} (endlich oder Nullfolge) und ein Orthonormalsystem (ϕ_i) in \mathcal{H} so, dass $\forall \varphi in \mathcal{H}: T\varphi = \sum_i \mu_i \langle \varphi_i, \varphi \rangle \varphi_i$

• $F(\mathcal{H}) \subseteq K(\mathcal{H})$

Welche bezielhung gilt zwischen $F(\mathcal{H})$, also den Raum der

Wie ist ein Spurklassenoperator definiert?	Ein kompakter, positiver, selbstadjungierter Operator $T: \mathcal{H} \to \mathcal{H}$ heißt $nuklear$ oder $Spurklassenoperator$, wenn für eine ONB (ψ_k) von \mathcal{H} gilt: $\sum_{k=1}^{\infty} \langle \psi_k, T\psi_k \rangle < \infty$
Ein Spurklassenoperator heißt Dichteoperator, wenn:	$\sum_{k=1}^{\infty} \langle \psi_k, T \psi_k \rangle = 1$ (ψ_k) eine ONB.