(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 6. März 2003 (06.03.2003)

PCT

(10) Internationale Veröffentlichungsnummer WO 03/018704 A1

- (51) Internationale Patentklassifikation7: 175/02, C08G 18/61, 77/458
- C09J 183/10,
- (21) Internationales Aktenzeichen:

PCT/EP02/07126

(22) Internationales Anmeldedatum:

27. Juni 2002 (27.06.2002)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität: 101 41 235.5 23. August 2001 (23.08.2001) DE
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): CONSORTIUM FÜR ELEKTROCHEMIS-CHE INDUSTRIE GMBH [DE/DE]; Zielstattstrasse 20, 81379 München (DE).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): SCHINDLER, Wolfram [DE/DE]; Bürgermeister-Prenn-Strasse 8, 82008 Unterhaching (DE). SCHÄFER, Oliver [DE/DE]; Waldfriedhofstrasse 12, 81377 München (DE). CHATZIN-ERANTZIS, Martina [DE/DE]; Haydnstrasse 3a, 82054 Sauerlach (DE). PACHALY, Bernd [DE/DE]; Öd-Utzenstrasse 1, 84561 Mehring (DE).
- (74) Anwälte: FRITZ, Helmut usw.; Wacker-Chemie GmbH, Zentralbereich PML, Hanns-Seidel-Platz 4, 81737 München (DE).
- (81) Bestimmungsstaaten (national): CN, JP, PL, US.
- (84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).
- Veröffentlicht:

mit internationalem Recherchenbericht

[Fortsetzung auf der nächsten Seite]

- (54) Title: MOISTURE CROSS-LINKING ELASTIC COMPOSITION
- (54) Bezeichnung: FEUCHTIGKEITSVERNETZENDE ELASTISCHE ZUSAMMENSETZUNG

$$\Omega - (CH_2)_{e} - Si(R^2)_{3-f}(CH_3)_{f}$$

(3)

(57) Abstract: The invention relates to moisture cross-linking compositions containing (A) 100 parts per weight of a silane-terminated polydiorganosiloxane-urea/urethane copolymer of general formula (1), and (B) between 0.1 and 20 parts per weight of silane of general formula (3): Ω -(CH₂)_e-Si(R²)_{3-f}(CH₃)_f, in which R, X, A, Y, D, B, W, n, a, b, c, d, Ω , R², e and f are defined as per claim 1.

(57) Zusammenfassung: Gegenstand der vorliegenden Erfindung sind feuchtigkeitsvernetzbare Zusammensetungen, enthaltend (A) 100 Gewichtsteile an silanterminiertem Polydiorganosiloxan-Urea/Urethan-copolymer der allgemeinen Formel (1), und (B 0,1 bis 20 Gewichtsteile an Silan der allgemeinen Formel (3): Ω -(CH₂)_e-Si(R²)_{3-f}(CH₃)_f worin R, X, A, Y, D, B, W, n, a, b, c, d, Ω , R², e und f die in Anspruch 1 angegebenen Bedeutungen aufweisen.

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Feuchtigkeitsvernetzende elastische Zusammensetzung

Die Erfindung betrifft eine einkomponentige, reaktive, feuchtigkeitsvernetzende Zusammensetzung auf Basis von Polydimethylsiloxan-Urea/Urethan-Copolymeren mit Alkoxysilanendgruppen und deren Verwendung als Schmelzklebstoff.

Schmelzklebstoffe sind in der Regel physikalisch abbindende Klebstoffe, die bei Raumtemperatur einkomponentig in fester, im wesentlichen lösungsmittelfreier Form vorliegen. In Anlehnung an der angelsächsischen Sprachgebrauch werden diese auch als "hotmelts" bezeichnet.

Die Polymerkomponenten oder Bindemittel derartiger Schmelzkleber haben einen vorwiegend linearen kettenförmigen Aufbau und befinden sich bei Raumtemperatur in einem amorphen, glasartigen oder teilkristallinen Zustand. Zur Erreichung und Einstellung weiterer spezieller Eigenschaften wie z.B. Kohesionsfestigkeit, Viskosität, Erweichungspunkt oder Abbindegeschwindigkeit können in der Klebstoffformulierung weitere Zusätze notwendig sein. Hierzu gehören klebrigmachende Harze zur Verbesserung der Benetzungseigenschaften und Erhöhung der Adhäsion, Weichmacher zur Erhöhung der Flexibilität und Erniedrigung der Schmelzviskosität, Stabilisatoren und Antioxidantien zur Verminderung der oxidativen Veränderung während der Verarbeitung der Schmelze unter Sauerstoffeinfluss, sowie zur Verbesserung des Alterungsverhaltens der geklebten Fuge. Weiterhin können Füllstoffe zur Festigkeitserhöhung und gegebenenfalls zur Kostenreduzierung eingesetzt werden. Die wichtigsten Schmelzkleber basieren auf Bindemittelsystemen wie Polyurethane, Epoxidharze, Polyamide, Ethylen-Vinylacetat-Copolymere, Styrol-Blockcopolymere, gesättigte Polyester, Polyolefin-Copolymere, synthetische Kautschuke und Mischungen dieser Systeme.

Während die amorphen Polymere über einen mehr oder weniger breiten Temperaturbereich erweichen, zeigen die kristallinen oder teilkristallinen einen mehr oder weniger scharfen Schmelzpunkt. Amorphe Systeme von Copolyestern beispielsweise zeigen vielfach selbst bei hohen Molmassen einen noch vorhandenen kalten Fluss und sind daher nur eingeschränkt oder nur in Kombination mit sehr hochmolekularen Copolymeren brauchbar.

Ein Weg um die Kohesionsfestigkeit und Warmformbeständigkeit (Klebeeigenschaften auch bei höherer Gebrauchstemperatur) von Schmelzklebstoffen zu erhöhen ist die Verwendung von reaktiven Klebstoffen. Als besondere Form der Hotmelts sind solche reaktive Formulierungen bekannt, die eine Kombination aus physikalisch abbindenden und chemisch reagierenden Systemen darstellen. Dazu werden in der Regel hydroxyfunktionelle Polyester mit einem Überschuss an Diisocyanaten umgesetzt und daraus isocyanatterminierte Polymere hergestellt. Diese können nun bei Zutritt von Luftfeuchtigkeit unter Vernetzung aushärten. Da die Polyurethan-Hotmelts systembedingt mehrere Schwächen aufweisen wie Isocyanat-Monomer-Emission (monomere aromatische Diisocyanate wie MDI oder TDI, bzw. deren korespondierenden Amine stehen unter Verdacht krebserregend zu sein), CO2-Abspaltung die zur Blasenbildung führt oder die Vergilbungsneigung bei aromatischen Isocyanaten werden derzeit auch viele Systeme auf Basis silanvernetzender Polymere entwickelt, die bezüglich der oben genannten Nachteile eine aussichtsreiche Alternative darstellen. Die Prepolymere werden dabei mit silanfunktionellen Monomeren umgesetzt, so dass daraus ebenso feuchtigkeitsnachvernetzende Schmelzklebstoffe herstellbar sind.

Zur Vereinfachung der Verarbeitung werden einkomponentige Systeme bevorzugt, da sie einfacher applizierbar und automatisierbar sind. Da im Falle von reaktiven Schmelzklebern die Nachhärtungsgeschwindigkeit solcher einkomponentiger Massen meist moderat eingestellt wird, um eine ausreichende Lagerstabilität sicherzustellen, ist die Variation des Eigenschaftsprofils schwieriger. Probleme bei nicht nachvernetzenden Systemen sind hingegen hier meist die Warmformbeständigkeit (kalter Fluss, wieder aufschmelzbar), die mechanischen Eigenschaften und die Haftung auf dem Untergrund. Mit den oben beschriebenen feuchtigkeitshärtenden Systemen werden diese Nachteile weitgehend vermieden. Zweikomponentige Massen zeigen meist ein deutlich besseres Eigenschaftsprofil sind jedoch hinsichtlich der Verarbeitung problematisch. Die Mischung der Komponenten, z.B. über Statikmischer bei der Applikation, muss gleichmäßig sein um eine konstante Verarbeitungszeit und Endqualität sicherzustellen. Meist muss hier ein Kompromiss zwischen Aushärtzeit und Verarbeitungszeit getroffen werden. Der für zweikomponentige Kleber nötige apparative Aufwand ist ebenso deutlich größer und damit die Anwendung meist teurer.

Organosiloxan-Copolymere, speziell Polydiorganosiloxan-Urethanund Polydiorganosiloxan-Urea-Copolymere sind bekannt. Die verschiedenen Systeme sind in der Übersicht von I. Yilgör und J.E. McGrath in Adv. Polym. Sci., 1988, 86, S. 1-86 beschrieben. Eine Vielzahl weiterer Veröffentlichungen und Patente beschäftigit sich mit speziellen Anwendungen von derartigen Blockcopolymeren. Polyurethane und Siliconelastomere sind in weiten Bereichen komplementär. Daher liefert die Kombination beider Systeme Materialien mit neuartigen, ausgezeichneten Eigenschaften. Polyurethane zeichnen sich durch ihre gute mechanische Festigkeit, Elastizität und eine sehr gute Haftung und Abriebfestigkeit aus. Siliconelastomere dagegen besitzen eine ausgezeichnete Temperatur, UV-, Bewitterungsstabilität und speziellen Oberflächeneigenschaften (geringe Oberflächenspannung). Dabei behalten sie ihre elastischen Eigenschaften bei tieferen Temperaturen bei und neigen deshalb auch nicht zur Versprödung.

In der Übersicht von I. Yilgör et al. in Polymer, 1984 (25), S. 1800-1816 sind die Eigenschaften von Polydiorganosiloxan-Urea-Copolymeren genauer untersucht. Die Silicon- und Isocyanat-Polymerbausteine sind in einem weiten Bereich problemlos mischbar. Die mechanischen Eigenschaften werden durch das Verhältnis der unterschiedlichen Polymerblöcke bestimmmt. Die Polydiorganosiloxane bilden dabei die sogenannten Weichsegmente

und sind für die Elastizität entscheidend, die Diisocyanate bilden die Hartsegmente und sind für die mechanischen Eigenschaften ausschlaggebend. Durch Ausbildung von Wasserstoffbrückenbindungen zwischen Urethan oder Harnstoff-Bindegruppen werden die mechanischen Eigenschaften bestimmt. Durch die starken Wechselwirkungen der Wasserstoffbrücken zwischen den Harnstoffeinheiten sind diese Massen meist sehr hoch viskos oder fest bei Raumtemperatur.

In den oben genannten Übersichten werden eine Vielzahl von Anwendungen und Anwendungsmöglichkeiten beschreiben und diskutiert. In EP-A-250248 wird die Herstellung und eine mögliche Anwendung dieser Copolymere für Antihaftbeschichtungen und Haftklebstoffe beschrieben. In WO 96/34030 wird ferner eine mögliche Herstellung von Polysiloxan-Urea-Copolymere mit reaktiven und nichtreaktiven Endgruppen beschrieben. Als reaktive Endgruppen werden dabei unter anderem auch Alkoxysilane zur Endterminierung der Polymere eingesetzt.

Gegenstand der vorliegenden Erfindung sind feuchtigkeitsvernetzbare Zusammensetzungen, enthaltend (A) 100 Gewichtsteile an silanterminiertem Polydiorganosiloxan-Urea/Urethan-Copolymer der allgemeinen Formel 1

worin

- R einen einwertigen, gegebenenfalls durch Fluor oder Chlor substituierten Kohlenwasserstoffrest mit 1 bis 20 Kohlenstoffatomen,
- X einen Alkylen-Rest mit 1 bis 20 Kohlenstoffatomen, in dem einander nicht benachbarte Methyleneinheiten durch Gruppen -O- ersetzt sein können,
- A ein Sauerstoffatom oder eine Aminogruppe -NR'-,
- R' Wasserstoff oder einen Alkylrest mit 1 bis 10 Kohlenstoffatomen,
- Y einen gegebenenfalls durch Fluor oder Chlor substituierten Kohlenwasserstoffrest mit 1 bis 20 Kohlenstoffatomen,
- einen gegebenenfalls durch Fluor, Chlor, C₁-C₆-Alkyl- oder, C₁-C₆-Alkylester substituierten Alkylenrest mit 1 bis 700. Kohlenstoffatomen, in dem einander nicht benachbarte Methyleneinheiten durch Gruppen -O-, -COO-, -OCO-, oder OCOO-, ersetzt sein können,
- B einen Rest der allgemeinen Formel 2

$$-Z-Si(R^1)_m(R'')_{3-m}$$

(2),

- z einen Alkylen-Rest mit 1 bis 10 Kohlenstoffatomen,
- R¹ einen einwertigen, gegebenenfalls durch Fluor oder Chlor substituierter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen,
- R'' einen mit Feuchtigkeit reaktiven Rest, der ausgewählt wird aus C_1 - C_4 -Alkoxy-, C_1 - C_20 -Acyl-, C_1 - C_6 -Alkylaminooxy- und C_1 - C_6 -Alkyloximoresten,
- W einen Rest B oder Wasserstoff,
- m den Wert 0, 1 oder 2,
- n eine ganze Zahl von 1 bis 300,
- a eine ganze Zahl von mindestens 1,
- b 0 oder eine ganze Zahl von 1 bis 30,
- c eine ganze Zahl von 1 bis 30 und
- d den Wert 0 oder 1 bedeuten,

mit der Maßgabe, dass die Zusammensetzung der Einheiten so gewählt ist, das das Copolymer einen Schmelzpunkt im Bereich von 30 - 200 °C besitzt und

(B) 0,1 bis 20 Gewichtsteile an Silan der allgemeinen Formel 3

$$\Omega - (CH_2)_e - Si(R^2)_{3-f}(CH_3)_f$$
 (3)

wobei

- Ω eine Gruppe, die ausgewählt wird aus -NHR³, $-NR^3-(CH_2)_g-NHR^3, \ Acryl-, \ Methacryl-, \ OCN-, -SH, \ Glycidoxy-oder Chlorrest,$
- R^3 Wasserstoff oder einen gegebenenfalls halogensubstuierten C_{1-18} -Kohlenwasserstoffrest,
- R^2 eine Methoxy- oder Ethoxygruppe,
- e die Werte 1 oder 3
- f die Werte 0 oder 1 und
- g Werte von 1 bis 10 bedeuten.

Die Zusammensetzungen auf Basis PolydimethylsiloxanUrea/Urethan-Copolymeren sind sehr gut als einkomponentige,
reaktive, über Silanendgruppen feuchtigkeitsvernetzende
Schmelzkleber einsetzbar. Copolymer (A) ist im Schmelzkleber.
Bindemittel und Silan (B) wirkt als Haftvermittler. Durch die
geeignete Wahl der Polymerbausteine bei der Herstellung der
silanterminierten Copolymere sind so Schmelzkleber zugänglich,
die sich durch hervorragende mechanische Eigenschaften und sehr
gute Haftungseigenschaften auszeichen. Ferner können die
Anwendungseigenschaften wie Auftragstemperatur,
Schmelzviskositäten und Verarbeitungseigenschaften in einem
weiten Bereich eingestellt werden.

Der Schmelzklebstoff wird in Form einer einkomponentigen festen Masse verarbeitet und muss somit vor Applikation nicht zusätzlich bei höherer Temperatur mit weiteren Komponenten vermischt werden. Nach dem Heißauftrag bildet der Schmelzkleber nach Abkühlung ein elastisches vorverfestigtes Material. Durch

Zutritt von Luftfeuchtigkeit härtet der Klebstoff unter Ausbildung eines Netzwerks über Silankondensation aus. Aufgrund der hohen mechanischen Festigkeit und der guten Haftungseigenschaften über die Silanendgruppen kann der Schmelzkleber für einen weiten Bereich von elastischen Verbindungen von Formteilen eingesetzt werden.

Vorzugsweise bedeutet R dabei einen einwertigen, Kohlenwasserstoffrest, vorzugsweise Alkylrest mit 1 bis 6 Kohlenstoffatomen, insbesondere nicht substituiert. Besonders bevorzugte Reste R sind Methyl und Phenyl.

Vorzugsweise bedeutet X einen Alkylen-Rest mit 2 bis 10 Kohlenstoffatomen. Vorzugsweise ist der Alkylen-Rest X nicht unterbrochen. Besonders bevorzugt ist X ein n-Propylrest.

Vorzugsweise bedeutet A eine Aminogruppe, d.h. Polysiloxan-Harnstoff-Copolymere sind bevorzugt.

Vorzugsweise bedeutet R' Wasserstoff oder einen Alkylrest mit 1 bis 3 Kohlenstoffatomen, insbesondere Wasserstoff.

Vorzugsweise bedeutet Y einen Kohlenwasserstoffrest mit 3 bis 13, insbesondere 6 Kohlenstoffatomen, der vorzugsweise nicht substituiert ist.

Vorzugsweise bedeutet D einen Alkylenrest mit 2 bis 20, insbesondere 10 Kohlenstoffatomen, besonders bevorzugt ist ein Rest mit vier Kohlenstoffatomen. Ebenfalls vorzugsweise bedeutet D einen Polyoxyalkylenrest, insbesondere Polyoxyethylenrest oder Polyoxypropylenrest mit mindestens 10 höchstens 200 Kohlenstoffatomen.

Vorzugsweise bedeutet Z einen Alkylen-Rest mit 1 bis 6 Kohlenstoffatomen, insbesondere Methylen und Propylen.

R¹ bedeutet vorzugsweise einen unsubstituierten Kohlenwasserstoffrest mit 1 bis 4 Kohlenstoffatomen, insbesondere Methyl.

Vorzugsweise bedeutet R'' einen Methoxy-, Ethoxy oder Acetoxyrest.

n bedeutet vorzugsweise eine ganze Zahl von mindestens 3, insbesondere mindestens 10 und vorzugsweise höchstens 200, insbesondere höchstens 50.

a bedeutet vorzugsweise eine ganze Zahl von mindestens 2, insbesondere mindestens 5 und vorzugsweise höchstens 50, insbesondere höchstens 20.

b bedeutet vorzugsweise ganze Zahl von höchstens 10,

c bedeutet vorzugsweise eine ganze Zahl von mindestens 2, und vorzugsweise höchstens 10.

Die Polydiorganosiloxanabschnitte im Copolymer (A) weisen bevorzugt eine Molekulargewicht Mw von 500 bis 30000, insbesondere 1000 bis 8000, besonders bevozugt 2000 bis 4000 auf.

Die Copolymere (A) der allgemeinen Formel 1 können hergestellt werden durch Umsetzung von aminoalkyl- oder hydroxyalkylterminierten Polydiorganosiloxanen der allgemeinen Formel 4

$$HA-X-\begin{bmatrix} R & R & R \\ I & I & -X-AH \\ Si-O & R & -X-AH \\ R & I & R & (4),$$

mit Diisocyanaten der allgemeinen Formel 5

und Silanen der allgemeinen Formel 6

$$E[-Z-Si(R^1)_m(R'')_{3-m}]_p$$
(6)

und falls b mindestens 1 ist, zusätzlich mit $\alpha, \omega\text{-OH-}$ terminierten Alkylenen der allgemeinen Formel 7

HO-D-OH (7)

wobei R, X, A, R, Y, D, B, Z, R, R, W, m, n, a, b, c und d die bei den allgemeinen Formeln 1 und 2 angegebenen Bedeutungen aufweisen und

- p den Wert 1,
- eine Isocyanatgruppe oder eine Aminogruppe -NHR''', wobei R''' Wasserstoff oder einen einwertigen, gegebenenfalls durch Fluor oder Chlor substituierten Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen bedeutet, oder
- p den Wert 2 und
- E einen -NH-Rest bedeuten.

Die Polydiorganosiloxane der allgemeinen Formel 4 sind vorzugsweise weitgehend frei von Kontaminationen aus höherfunktionellen und monofunktionellen Bestandteilen. Monofunktionelle Bestandteile führen bei der Umsetzung zum Polymer zu nicht reaktiven Endgruppen, die in der Endterminierung durch die Silane nicht mehr umgesetzt werden können. Nicht reaktive Endgruppen führen zur Problemen beim Polymeraufbau während der Umsetzung und ergeben Produkte, die teilweise zu einem unerwünschten Ausbluten aus dem Vulkanisat führen können. Höherfunktionelle Polydiorganosiloxane sind ebenso unerwünscht, da diese bei der Umsetzung mit Diisocyanaten zur Bildung von Vernetzungspunkten führen, die bereits zu einer Verzweigung der Polymerketten bei der Polyadditonsreaktion führen. Derartig vorvernetzte Materialien sind hinsichtlich der Verarbeitung meist unbrauchbar.

Die Herstellung geeigneter Aminoalkylpolydiorganosiloxane ist bekannt und kann beispeilsweise wie von J.J. Hoffmann, C.M. Leir in Polymer Int. 1991 (24), S- 131-138 beschrieben durchgeführt werden. Ebenso bekannt ist die Herstellung von Hydroxyalkylpolydiorganosiloxanen, welche z.B. über Hydrosilylierung von α, ω -Dihydridopolydiorganosiloxane mit α, ω -Hydroxyalkylenen erfolgt. Derartige Produkte sind kommerziell verfügbar.

Die Polydiorganosiloxane der allgemeinen Formel 4 weisen bevorzugt eine Molekulargewicht Mw von 500 bis 30000, insbesondere 1000 bis 8000, besonders bevozugt 2000 bis 4000 auf.

Die α, ω -OH-terminierten Alkylene der allgemeinen Formel 7 sind bevorzugt Polyalkylene oder Polyoxyalkylene. Diese sollten aus den gleichen Gründen, wie bei den Polydiorganosiloxanen beschrieben, weitgehend frei von Kontaminationen aus mono-, tri- oder höherfunktionellen Polyoxyalkylenen sein. Hierbei können Polyetherpolyole, Polytetramethylendiole, Polyesterpolyole, Polycaprolactondiole aber auch α, ω -OH-terminierte Alkyle oder Polyalkylene mit zwei bis 10 Kohlenstoffatomen oder auf Basis von Polyvinylacetat, Polyvinylacetatethylencopolymere, Polyvinylchloridcopolymer, Polyisobutlydiole eingesetzt werden. Bevorzugt werden dabei α, ω -Diole wie Ethandiol, Butandiol oder Hexandiol. Derartige Verbindungen sind ebenfalls kommerziell erhältlich.

Bei der Herstellung des Copolymeren (A) der allgemeinen Formel 1 können Aminoalkylpolydiorganosiloxane der allgemeinen Formel 4, bei der A eine Aminogruppe –NR'- bedeutet, oder Hydroxyalkylpolydiorganosiloxane der allgemeinen Formel 4, bei der A eine Aminogruppe –OH bedeutet oder ein Gemisch von Aminound Hydroxyalkylpolydiorganosiloxan, mit oder ohne α, ω -OH-terminierte Alkylene der allgemeinen Formel 7 eingesetzt werden. Besonders bevorzugt wird nur Aminoalkylpolydiorganosiloxan eingesetzt, wobei durch Zusatz

von α, ω -OH-terminierten Alkylenen, speziell 1,4-Butandiol, die mechanischen Eigenschaften der Vulkanisate noch verbessert werden können.

Beispiele für Diisocyanate der allgemeinen Formel 5 sind aliphatische Verbindungen wie Isophorondiisocyanat, Hexamethylen-1,6-diisocyanat, Tetramethylen-1,4-diisocyanat und Methylendicyclohexy-4,4'-diisocyanat oder aromatische Verbindungen wie Methylendiphenyl-4,4'-diisocyanat, 2,4-Toluoldiisocyanat, 2,5-Toluoldiisocyanat, 2,6-Toluoldiisocyanat, m-Phenylendiisocyanat, p-Phenylendiisocyanat, m-Xyloldiisocyanat, Tetramethyl-m-xyloldiisocyanat oder Mischungen dieser Isocyanate.

Der Schmelzpunkt der Copolymere (A) wird wesentlich durch das verwendete Diisocyanat bestimmt. Vorzugsweise beträgt der Schmelzpunkt des Copolymeren (A) 50 bis 200 °C, insbesondere 60 bis 150 °C, besonders bevorzugt 70 bis 120 °C. Der Schmelzpunkt der Copolymere (A) liegt bei reinen Polydiorganosiloxan-Urea-Copolymeren im Bereich von 50 - 80 °C bei Verwendung von aliphatischen Diisocyanaten zum Polymeraufbau und kann Werte bis 200 °C bei aromatischen Diisocyanaten erreichen. Der Einbau von Urethaneinheiten, beispielsweise über Hydroxyalkylpolydimethylsiloxane oder über α, ω -OH-terminierten Alkylene führt in der Regel zur Absenkung der Schmelzpunkts beziehungsweise zu einer Verbreiterung der Schmelzbereichs.

Die Silane der allgemeinen Formel 6 können reaktive Gruppen tragen, die mit Isocyanatgruppen reagieren. Bevorzugt sind hier entsprechende Aminosilane. Ferner können auch Isocyanatosilane eingesetzt werden, die entsprechend mit den OH- und NH-Funktionen der Präpolymere umgesetzt werden können. Als reaktive Gruppen, die unter Feuchtigkeit aushärten, werden speziell Alkoxygruppen eingesetzt.

In einer weiterhin bevorzugten Ausführungsform weisen die Copolymere (A) Silanendgruppen der allgemeinen Formel 8

$$-CH2-Si(R1)m(R'')3-m$$
 (8)

auf. Diese können durch Umsetzung der Polydiorganosiloxane der allgemeinen Formel 4 mit Diisocyanaten der allgemeinen Formel 5 mit Silanen der allgemeinen Formel 9

$$Z-CH_2-Si(R^1)_m(R'')_{3-m}$$
 (9)

erhalten werden. In den allgemeinen Formeln 8 und 9 haben E, R¹, R' und m die vorstehenden Bedeutungen. Vorzugsweise bedeuted E eine Isocyanatogruppe, R¹ Methyl, R' ein Methoxy- oder Ethoxyrest und m ist gleich 0 oder 1.

Die Silanendgruppen der allgemeinen Formel 8 besitzen eine sehr hohe Reaktivität, bis zum Faktor 100 bezogen auf die Endgruppen der allgemeinen Formel (2) und zeigen daher hervorragende und schnelle Aushärtungseigenschaften der Schmelzkleber unter Luftfeuchtigkeit.

Beispiele für geeignete Silane sind, Aminopropyltriethoxysilan, Aminopropyltrimethoxysilan, Aminopropylmethyldimethoxysilan, Aminopropylmethyldimethoxysilan, Aminopropyldimethylmethoxysilan, Aminopropyldimethylethoxysilan, Aminopropyltri (methylethylketoximo) silan, Aminopropylmethyldi (methylethylketoximo) silan, Bis-(Triethoxysilylproyl) amin, Bis-(Trimethoxysilylproyl) amin, Aminomethyltriethoxysilan, Aminomethyltriethoxysilan, Aminomethylmethyldimethoxysilan, Aminomethylmethyldimethoxysilan, Phenylaminopropyltrimethoxysilan, Bis-(trimethoxysilylpropyl) amin, Isocyanatopropyltriethoxysilan,

Isocyanatopropyltrimethoxysilan,

Isocyanatopropylmethyldiethoxysilan,
Isocyanatopropylmethyldimethoxysilan,
Isocyanatomethyltrimethoxysilan,
Isocyanatomethyltriethoxysilan,
Isocyanatomethylmethyldiethoxysilan,
Isocyanatomethylmethyldimethoxysilan,
Isocyanatomethyldimethylmethoxysilan,
Isocyanatomethyldimethylmethoxysilan,
Isocyanatomethyldimethylethoxysilan.

Besonders bevorzugt ist die Herstellung der Copolymere (A) unter Verwendung von Isocyanatoalkylsilane oder sekundäre Aminosilane, die zur Endterminierung besonders geeignet sind, da nach Umsetzung von OH/NH-terminierten Präpolymeren (erhalten aus der Reaktion der Polydiorganosiloxanen der allgemeinen Formel 4 bzw. α , ω -OH-terminierte Alkyle oder Polyalkylene der allgemeinen Formel 7 mit Diisocyanaten der allgemeinen Formel 5 keine weitere Vernetzungsreaktion mit den aus primären Aminosilanen entstandenen NH-Gruppen möglich ist. Derartige silanterminierte Copolymere sind in der Regel deutlich reproduzierbarer herzustellen.

Die Herstellung Copolymere (A) und die anschließende Endterminierung kann sowohl in Lösung als auch im Extruder erfolgen. Wesentlich dabei ist, dass eine optimale und homogene Durchmischung der Bestandteile erfolgt. Phasenunverträglichkeit zwischen Siloxan und Polyethern können gegebenenfalls durch Lösungsvermittler verhindert werden.

Vorzugsweise werden zur Herstellung der Copolymere (A) die Komponenten im entsprechenden Molverhältnis in einem Reaktionsextruder umgesetzt.

Bei der Herstellung des Copolymers (A) wird vorzugsweise ein NCO/OH(NH)-Verhältnis über die Stöchiometrie von Diisocyanat der allgemeinen Formel 5 und OH/NH-terminiertem Polydimethylsiloxan der allgemeinen Formel 4 und gegebenenfalls von Alkylen der allgemeinen Formel 7 gewählt, das 0,75 bis 1,25, bevorzugt 0,9 bis 1,1, besonders bevorzugt 0,95 bis 1,05

beträgt. Die erforderliche Konzentration an Silan der allgmeinen Formel 6 wird so gewählt, dass im fertigen Copolymer kein Isocyanat mehr nachweisbar ist (bestimmbar über Standardmethoden wir IR-Spektroskopie).

Die Herstellung sollte für eine bessere Reproduzierbarkeit bevorzugt unter Ausschluss von Feuchtigkeit und unter Schutzgas, üblicherweise Stickstoff oder Argon erfolgen, um eine vorzeitige Aushärtung durch Hydrolyse der Silangruppen zu vermeiden. Ferner sollten die eingesetzten Polymerbausteine bevorzugt vorher ausgeheizt werden, um niedermolekuläre Verunreinigungen und Wasserspuren zu entfernen.

Zur Herstellung der Copolymere (A) wird vorzugsweise ein Katalysator eingesetzt. Geeignete Katalysatoren für die Herstellung sind Dialkylzinnverbindungen, wie beispielsweise Dibutylzinndilaurat, Dibutylzinndiacetat, oder tertiäre Amine wie beispielsweise N,N-Dimethylcyclohexanamin, 2-Dimethylaminoethanol, 4-Dimethylaminopyridin. Dieser Katalysator ist gleichzeitig der Katalysator für die Silankondensation zur Vernetzung nach der Applikation. Im Falle der reinen Harnstoff-Copolymere kann die Polymerherstellung auch ohne Katalysator erfolgen, da sich die Amingruppen spontan und sehr rasch mit den Isocyanatgruppen umsetzten. Zur Beschleunigung der Aushärtung muss aber auch hier ein Katalysator in die Masse eingebracht werden. Interessant kann dies aber auch zur Herstellung katalysatorfreier Massen, die sich durch eine überaus gute Lagerstabilität auszeichnen. Im Falle sehr reaktiver Silane oder zur Herstellung schnell vernetzender Massen ist eine Einarbeitung eines reaktiven Katalysators direkt vor der Applikation ebenso denkbar.

Die Reaktionsverfolgung des Copolymeren (A) kann über verschiedene Analysemethoden durchgeführt werden. Die Umsetzung gilt als abgeschlossen, wenn die NCO-Bande im Infrarotspektrum nicht mehr nachweisbar ist.

Die Herstellung der Copolymere (A) erfolgt vorzugsweise in einem geeigneten Lösungsmittel. Dabei werden in einer bevorzugten Ausführungsform Polydiorganosiloxane der allgemeinen Formel 4 und gegebenenfalls Alkylene der allgemeinen Formel 7 mit Diisocyanaten der allgemeinen Formel 5 und Alkoxysilanen der allgemeinen Formel 6 umgesetzt und gegebenenfalls danach mit mit weiteren Bestandteilen versetzt, bevor das Lösungmittels entfernt wird.

Bei den ebenfalls in der Zusammensetzung enthaltenen Silanen (B) bedeutet Ω bevorzugt eine Gruppe, die ausgewählt wird aus einem Rest -NHR³, -NR³-(CH₂)_g-NHR³ und Glycidoxyrest.

 R^3 ist bevorzugt ein C_{1-8} -cyclischer, linearer oder verzweigter Alkylrest oder ein C_{6-18} -Arylrest, insbesondere ein C_{1-6} -Alkylrest.

g bedeutet vorzugsweise den Wert 2, 3, 4 oder 5.

Bevorzugte aminofunktionelle Silane (B) sind
Aminopropyltrimethoxysilan, Aminopropyltriethoxysilan,
Aminopropylmethyldimethoxysilan,
Aminopropylmethyldiethoxysilan,
Aminoethylaminopropyltrimethoxysilan,
Aminoethylaminopropyltriethoxysilan,
Bis(trimethoxysilylpropyl)amin oder epoxyfunktionelle Silane wie
Glycidoxypropyltrimethoxysilan, Glycidoxypropyltriethoxysilan

In einer weiterhin bevorzugten Ausführungsform erfolgt die Herstellung der Copolymere (A) in einem Extruder ohne Zusatz von weiteren Lösungsmitteln. Bei der Herstellung der Zusammensetzung werden dann in einem zweiten Schritt Silan (B) und gegebenenfalls weitere Zusätze in das Copolymer (A) im Extruder eingearbeitet. Die extrudierte Zusammensetzung wird vorzugsweise unter Luftauschluss durch Abkühlen verfestigt und zerkleinert, beispielsweise granuliert.

Zur Verbesserung der Haftungseigenschaften und der Oberflächenbenetzung kann die Zusammensetzung, speziell für den Einsatz als Schmelzklebstoff noch weitere klebrigmachende Harze enthalten, speziell Siliconharze die freie OH-Gruppen oder reaktive Alkoxygruppen enthalten. Vorzugsweise enthält die Zusammensetzung 5 - 20 Gewichtsteile eines klebrigmachenden Siliconharzes.

Gegebenenfalls können auch noch weitere Silane wie Methyltrimethoxysilan oder Vinyltrimethoxysilane oder andere übliche Wasserfänger enthalten sein.

Daneben können weitere übliche Additive enthalten sein.
Füllstoffe wie Calciumcarbonat, Magnesiumcarbonat, Zinkcarbonat oder auch Metalloxide wie Titandioxid oder Aluminiumoxid.
Ferner verstärkende Füllstoffe wie pyrogene oder gefällte Kieselsäuren und weiterhin UV-Absorber. Weiterhin können in den Zusammensetzungen zur Einstellung der Verarbeitungseigenschaften übliche Weichmacher, Antioxidantien und Pigmente enthalten sein. Vorzugsweise enthält die Zusammensetzung 5 - 20 Gewichtsteile eines Weichmachers.

Alle vorstehenden Symbole der vorstehenden Formeln weisen ihre Bedeutungen jeweils unabhängig voneinander auf. In allen Formeln ist das Siliciumatom vierwertig.

In den folgenden Beispielen sind, falls jeweils nicht anders angegeben, alle Mengen- und Prozentangaben auf das Gewicht bezogen und alle Drücke 0,10 MPa (abs.). Die Bestimmung der Viskositäten wurde an einem luftgelagerten Kegel-Platte Rheometer (CVO 75, Fa. Bohlin) durchgeführt. Der verwendete Messkegel hat einen Durchmesser von 1 bzw. 2 cm mit einem Kegelwinkel von 1°. Es wurden mit einer Oszillationsfrequenz von 0 - 10 Hz gemessen. Die Viskosität bei vorgebener Temperatur wurde aus der Steigung im Schubspannung-Scherraten-Diagramm bestimmt. Die Temperaturabhängigkeit der Viskosiät wurde bei einer konstanten Schubspannung von 5000 Pa bestimmt.

Die Bestimmung der Molekularmassen wurde mittels GPC (HP1090) in Toluol (0,5 ml/min) bei 23 °C bestimmt; Säule: PLgel Mixed C + PLgel 100 A; Detektor: RI ERC7515.

Beispiele

Herstellung von Isocyanatomethyl-trimethoxysilan:

Ausgehend von Chlormethyltrimethoxysilan wird Methylcarbamatomethyl-trimethoxysilan gemäß bekannter Verfahren (US 3,494,951) synthetisiert.

Dieses wird in ein Quarz-Pyrolyserohr, das mit Quarzwolle gefüllt ist, im Argon-Gasstrom eingepumpt. Die Temperatur im Pyrolyserohr beträgt zwischen 420 und 470 C. Das Rohprodukt wird am Ende der beheizten Strecke mit Hilfe eines Kühlers auskondensiert und gesammelt. Die farblose Flüssigkeit wird durch Destillation unter reduziertem Druck gereinigt. Über Kopf geht bei ca. 88-90 C (82 mbar) das gewünschte Produkt in über 99 %-iger Reinheit über, während im Sumpf das nicht umgesetzte Carbamat reisoliert werden kann. Dieses wird der Pyrolyse direkt wieder zugeführt.

Ausgehend von 56,9 g (273 mmol) Methylcarbamatomethyltrimethoxysilan werden so 33,9 g (191 mmol) des gewünschten Produkts Isocyanatomethyl-trimethoxysilan in einer Reinheit > 97 % enthalten. Dies entspricht einer Ausbeute von 70 % d. Th.

Beispiel la:

250 g (66 mmol) α,ω-Bisaminpropylpolydimethylsiloxan mit einem mittleren Molekulargewicht von 3800 werden bei 80 °C 0,5 h im Vakuum ausgeheizt, auf 60 °C abgekühlt und anschließend mit 250 ml trockenem THF versetzt. Zu der Lösung wird rasch ein Gemisch aus 11,2 g (52 mmol) Isophorondiisocyanat und 6,0 g (3,1 mmol) Isocyanatopropyltrimethoxysilan (erhältlich von CK-Witco unter Silquest® Y-5187) zudosiert. Die Umsetzung läßt sich an der Zunahme der Viskosität der Lösung und mittels FT-IR verfolgen. Die Lösung wird weiter 1 h bei 60 °C gerührt. Die Umsetzung ist abgeschlossen, wenn im FI-IR keine NCO-Bande mehr sichtbar ist.

Anschließend wird das THF im Vakuum abgezogen. Man erhält ein farbloses Polymer mit einem Erweichungsbereich von 85 - 95 °C und einer Viskosität von 70 Pas bei 90°C.

Untersuchung des Aushärtverhaltens:

Im wesentlichen werden zwei Tests zur Charakterisierung der Aushärtung durchgeführt. Die Polymerlösung in THF wird mit 200 ppm Dibutylzinndilaurat versetzt und im Vakuum eingedampft. a) Qualitativer Test zur Bestimmung des Schmelzbereichs Von der eingedampften Polymerlösung werden 50 - 100 mg Substanz auf einer Glasplatte (76 x 26 mm) aufgetragen und mit einer zweiten Glasplatte (im Winkel von 90°) abgedeckt. Der Sandwich wird auf einer Heizplatte mit 2 °C pro Minute aufgeheizt. Das Aufschmelzen wird durch Scherung der beiden Platten gegeneinander bei verschiedenen Temperaturen verfolgt. Der Schelzvorgang ist abgeschlossen, wenn sich die beiden Platten leicht gegeneinander verschieben lassen. Man erhält einen kontinuierlichen Anstieg der Erweichungstemperatur von etwa 105 °C nach 2 h, auf 150 °C nach 5 h und 240 °C nach 24 h. Nach 48 h ist ein Aufschmelzen nur noch unter teilweiser Zersetzung bei Temperaturen über 250 °C möglich. Die Aushärtung kann durch Verwendung unterschiedlicher Alkoxysilane und Katalysatormengen deutlich beschleunigt oder verlangsamt werden. Für das Silan Isocyanatopropyl-trimethoxysilan ist die Aushärtung bei allen Beispielen vergleichbar schnell, lediglich die Viskositäten und Schmelztemperaturen unterscheiden sich in Abhängigkeit von der Polymerzusammensetzung. Auf die genauere Auswertung der anderen Beispiele wurde daher verzichtet. Im Falle des Silans Isocyanatomethyl-trimethoxysilan ist die Probe bereits nach 2 h nicht mehr aufschmelzbar.

b) Bestimmung der Schmelzviskosität
Eingedampfte und mit Katalysator versetzte Proben (wie oben
beschrieben) können mittels Viskosimetrie ebenso in der
Aushärtung untersucht werden. Dabei wird die Viskosität
temperaturabhängig in Abhängigkeit von der Härtungszeit an Luft
untersucht. Im vorliegenden Beipiel steigt die Viskosität nach
2 h auf 15 kPas bei 110 °C an.

Herstellung von Prüfkörpern für die Zugprüfung:
Die Polymerlösung in THF wird mit 200 ppm Dibutylzinndilaurat
versetzt und in Teflonschalen (10 x 10 cm, 5 mm Schichtdicke)
ausgegossen und im Vakuum langsam bei 25 - 60 °C eingedampft.
Die so erhaltenen Prüfplatten werden bei Raumtemperatur 14 Tage
an Luft gelagert und anschließend Prüfkörper ausgestanzt. Die
Ergebnisse der Zugprüfung (Reißfestigkeit, Reißdehnung und
Modul) sind in Tabelle 1 zusammengestellt.

Herstellung von Prüfkörpern für Haftungstest:

Das oben beschriebene eingedampfte und mit 200 ppm versetzte

Produkt wird auf gereinigte Prüfkörper (Glas, Aluminium und

PVC, 90 x 30 mm) aus der Schmelze aufgetragen und nach

Abkühlung bei Raumtermperatur 14 Tage gelagert. Die Haftung

wird qualitativ durch Ablösungsversuche mittels eines

Metallspatels untersucht. Die Bewertung erfolgt qualitativ mit

folgender Einstufung: Haftung (+), Teilhaftung (O), keine

Haftung (-). Die Ergebnisse sind ebenso in Tabelle 1

zusammengestellt.

Beispiel 1b:

250 g (66 mmol) α,ω-Bisaminpropylpolydimethylsiloxan mit einem mittleren Molekulargewicht von 3800 werden bei 80 °C 0,5 h im Vakuum ausgeheizt, auf 60 °C abgekühlt und anschließend mit 250 ml trockenem THF versetzt. Zu der Lösung wird rasch ein Gemisch aus 11,2 g (52 mmol) Isophorondiisocyanat und 5,5 g (31 mmol) Isocyanatomethyl-trimethoxysilan zudosiert. Die Umsetzung läßt sich an der Zunahme der Viskosität der Lösung und mittels FT-IR verfolgen. Die Lösung wird weiter 1 h bei 60 °C gerührt. Die Umsetzung ist abgeschlossen, wenn im FI-IR keine NCO-Bande mehr sichtbar ist. Anschließend wird das THF im Vakuum abgezogen. Man erhält ein farbloses Polymer mit einem Erweichungsbereich von 90 - 100 °C und einer Viskosität von 80 Pas bei 90°C.

Beispiel 2:

400 g (110 mmol) α, ω -Bisaminpropylpolydimethylsiloxan mit einem mittleren Molekulargewicht von 3800 werden bei 80 °C 0,5 h im

Vakuum ausgeheizt, auf 60 °C abgekühlt und anschließend mit 550 ml trockenem THF versetzt. Zu der Lösung wird rasch ein Gemisch aus 24,0 g (96 mmol) Diphenylmethyl-4,4°-diisocyanat und 6,4 g (31 mmol) Isocyanatopropyltrimethoxysilan in 50 ml trockenem THF zudosiert. Die Umsetzung läßt sich an der Zunahme der Viskosität der Lösung und mittels FT-IR verfolgen. Die Lösung wird weiter 1 h bei 60 °C gerührt. Die Umsetzung ist abgeschlossen, wenn im FI-IR keine NCO-Bande mehr sichtbar ist. Anschließend wird das THF im Vakuum abgezogen. Man erhält ein farbloses bis leicht gelbliches Polymer mit einem Erweichungsbereich von 145 - 155 °C und einer Viskosität von 45 Pas bei 150 °C.

Beispiel 3:

beschrieben durchgeführt.

500 g (300 mmol) α , ω -Bisaminpropylpolydimethylsiloxan mit einem mittleren Molekulargewicht von 1600 werden bei 80 °C 0,5 h im Vakuum ausgeheizt, auf 60 °C abgekühlt und anschließend mit 400 ml trockenem THF versetzt. Zu der Lösung wird rasch ein Gemisch aus 55,6 g (260 mmol) Isophorondiisocyanat und 18,0 g (88 mmol) Isocyanatopropyltrimethoxysilan zudosiert. Die Umsetzung läßt sich an der Zunahme der Viskosität der Lösung und mittels FT-IR verfolgen. Die Lösung wird weiter 1 h bei 60 °C gerührt. Die Umsetzung ist abgeschlossen, wenn im FI-IR keine NCO-Bande mehr sichtbar ist. Anschließend wird das THF im Vakuum abgezogen. Man erhält ein farbloses Polymer mit einem Erweichungsbereich von 80 - 90 °C und einer Viskosität von 85 Pas bei 90 °C. Die Haftungs- und Zugdehnungsversuche werden wie in Beispiel 1 beschrieben durchgeführt.

Haftung: Glas (+), Aluminium (O), PVC (-) Reißfestigkeit: 3,10 MPas, Reißdehnung: 178 %, 100 % Modul: 1,46 MPas, Härte: 48 ShoreA.

Beispiel 4:

600 g (85 mmol) α, ω -Bisaminpropylpolydimethylsiloxan mit einem mittleren Molekulargewicht von 6860 werden bei 80 °C 0,5 h im

Vakuum ausgeheizt, auf 60 °C abgekühlt und anschließend mit 600 ml trockenem THF versetzt. Zu der Lösung wird rasch ein Gemisch aus 15,0 g (70 mmol) Isophorondiisocyanat und 6,8 g (33 mmol) Isocyanatopropyltrimethoxysilan zudosiert. Die Umsetzung läßt sich an der Zunahme der Viskosität der Lösung und mittels FT-IR verfolgen. Die Lösung wird weiter 1 h bei 60 °C gerührt. Die Umsetzung ist abgeschlossen, wenn im FI-IR keine NCO-Bande mehr sichtbar ist. Anschließend wird das THF im Vakuum abgezogen. Man erhält ein farbloses Polymer mit einem Erweichungsbereich von 75 - 85 °C und einer Viskosität von 55 Pas bei 80 °C. Die Haftungs- und Zugdehnungsversuche werden wie in Beispiel 1 beschrieben durchgeführt.

Haftung: Glas (+), Aluminium (O), PVC (-)
Reißfestigkeit: 1,68 MPas, Reißdehnung: 263 %,
100 % Modul: 0,86 MPas, Härte: 21 ShoreA.

Beispiel 5:

400 g (110 mmol) α,ω-Bisaminpropylpolydimethylsiloxan mit einem mittleren Molekulargewicht von 3800 werden bei 80 °C 0,5 h im Vakuum ausgeheizt, auf 60 °C abgekühlt und anschließend mit 600 ml trockenem THF und 2,0 g (22 mmol) 1,4-Butandiol und 200 ppm Dibutylzinndilaurat versetzt. Zu der Lösung wird rasch ein Gemisch aus 24,5 g (115 mmol) Isophorondiisocyanat und 7,8 g (38 mmol) Isocyanatopropyltrimethoxysilan zudosiert. Die Umsetzung läßt sich an der Zunahme der Viskosität der Lösung und mittels FT-IR verfolgen. Die Lösung wird weiter 1 h bei 60 °C gerührt. Die Umsetzung ist abgeschlossen, wenn im FI-IR keine NCO-Bande mehr sichtbar ist. Anschließend wird das THF im Vakuum abgezogen. Man erhält ein farbloses bei Raumtemperatur festes Polymer mit einem Erweichungsbereich von 90 - 100 °C und einer Viskosität von 65 Pas bei 95 °C.

Die Haftungs- und Zugdehnungsversuche werden wie in Beispiel 1 beschrieben durchgeführt.

Haftung: Glas (+), Aluminium (+), PVC (-); Reißfestigkeit: 3,43 MPas, Reißdehnung: 473 %, 100 % Modul: 1,21 MPas, Härte: 45 ShoreA.

Beispiel 6:

In einem Zweiwellenkneter der Firma Collin, Ebersberg, mit 4 Heizzonen wurde unter Stickstoffatmosphäre in der ersten Heizzone das Aminoproylterminierte Siliconöl dosiert. Das Temperaturprofil der Heizzonen war wie folgt programmiert: Zone 1 30°C, Zone 2 90°C, Zone 3 150°C und Zone 4 140°C.

Drehzahl: 90 min-1

Eduktdosierung:

7,6 g/min (2 mmol/min) α, ω -Bisaminpropylpolydimethylsiloxan (Mn = 3800)

356 mg/min (1,6 mmol/min) Isophorondiisocyanat

100 mg/min (0,5 mmol/min) Isocyanatopropyltrimethoxysilan

Ein Gemisch aus Isophorondiisocyanat und Isocyanatopropyltrimethoxysilan - vorher mit Stickstoff gesättigt - wird bei 40 °C am Anfang der Extruderschnecken über eine Dosierpumpe aufgegeben. Das Isocyanatgemisch wird dann in der zweiten Heizzone auf 90 °C erwärmt und der Reaktionsextruder mit den oben eingestellten Temperaturen wenige Minuten mit den beiden Isocyanaten gespült. Bei 90°C wird das α, ω -Bisaminpropylpolydimethylsiloxan - welches zuvor 0,5 h im Vakuum bei 80 °C ausgeheizt und mit Stickstoff gesättigt wurde - über eine Dosierpumpe zudosiert und das Gemisch im Extruder auf 150 °C geheizt und damit vollständig umgesetzt. Das Produkt wird über eine Auslassdüse bei 140 °C extrudiert und anschließend im Stickstoffstrom gekühlt. Nach ca. 30 Min. hat sich die Reaktion und die Produktqualität gleichmäßig eingestellt. Das erhaltene Vorprodukt wird verworfen. Man erhält dann ein farbloses Polymer mit einem Erweichungsbereich von 80 - 90 °C und einer Viskosität von 75 Pas bei 90°C. Zur einfacheren Handhabung wird das Produkt granuliert.

Die Haftungs- und Zugdehnungsversuche werden wie in Beipiel 1 beschrieben durchgeführt.

Haftung: Glas (+), Aluminium (O), PVC (-)

Reißfestigkeit: 2,75 MPas, Reißdehnung: 243 %,

100 % Modul: 1,62 MPas, Härte: 42 ShoreA

Beispiel 7:

Zu den nach Beispiel 1 (Beispiel 7a), 3 (Beispiel 7b) und 4 (Beispiel 7c) hergestellten Polymeren werden nach der Umsetzung 4,0 Gew. % Aminoethylaminopropyltrimethoxysilan zugesetzt und anschließend das THF im Vakuum bei 25 °C langsam abgedampft. 7a) hat einen Erweichungsbereich von 80 - 90 °C und eine Viskosität von 60 Pas bei 90°C.

- 7b) hat einen Erweichungsbereich von 85 95 °C und eine Viskosität von 90 Pas bei 90 °C.
- 7c) hat einen Erweichungsbereich von 75 85 °C und eine Viskosität von 35 Pas bei 90 °C.

Die Haftungs- und Zugdehnungsversuche werden wie in Beispiel 1 beschrieben durchgeführt und die Ergebnisse in Tabelle 1 zusammengefasst.

Beispiel 8:

Zu dem nach Beispiel 4 hergestellten Polymer werden nach der Umsetzung 20 Gew. % Siliconharz (MQ) zugesetzt und anschließend das THF im Vakuum bei 60 - 90 °C abgezogen.

Das farblose Produkt hat einen Erweichungsbereich von 80 - 90 °C und eine Viskosität von 35 Pas bei 90°C.

Die Haftungs- und Zugdehnungsversuche werden wie in Beispiel 1 beschrieben durchgeführt und die Ergebnisse in Tabelle 1 zusammengefasst.

Beispiel 9:

Zu dem nach Beispiel 3 hergestellten Polymer werden nach der Umsetzung 20 Gew.% eines trimethylsilylterminierten Siliconöls mit einer Viskosität von 100 mPas zugesetzt und anschließend das THF im Vakuum bei 60 - 90 °C abgezogen.

Das farblose, leicht trübe Produkt hat einen Erweichungsbereich von 75 - 85 °C und eine Viskosität von 20 Pas bei 90°C.

Die Haftungs- und Zugdehnungsversuche werden wie in Beispiel 1 beschrieben durchgeführt und die Ergebnisse in Tabelle 1 zusammengefasst.

Tabelle 1: Eigenschaften von feuchtigkeitshärtenden Zusammensetzungen nach Beispiel 1

Beispiel	ъ П	H B	7	7a	. 7b	. 7c	. α	6
Katalysator DBTL / ppm	200	200	200	200	200	200	200	200
Schmelzpunkt °C	85 - 95	90 - 100	145-155	80 - 90	85 - 95	75 - 85	80 - 90	75 - 85
Viskosität Pas (°C)	70 (90)	(06) 08	45(150)	(06) 09	(06) 06	35 (90)	35. (90)	20 (90)
Reißfestigkeit Mpas, DIN 53504	2,62	2,87	4,25	2,95	3,64	2,07	2,24	3,47
Reißdehnung %, DIN 53504	216	208	383	164	134	164	170	ī8ī
Modul MPas/%, DIN 53504	1,46	1,65	1,71	2,12	2,96	1,51	1,35	2,18
Härte [ShoreA], DIN 53505	8 °	42	48	26	40	25	38	53
Haftung/Glas	+	+	+	+	+	+	+	+
Haftung/Alu	0	+	0	+	+	+	0	0
Haftung/PVC	I	0	1	+	+	+	0	ł

Patentansprüche

- 1. Feuchtigkeitsvernetzbare Zusammensetzungen, enthaltend
- (A) 100 Gewichtsteile an silanterminiertem Polydiorganosiloxan-Urea/Urethan-Copolymer der allgemeinen Formel 1

worin

5

- R einen einwertigen, gegebenenfalls durch Fluor oder Chlor substituierten Kohlenwasserstoffrest mit 1 bis 20 Kohlenstoffatomen,
- X einen Alkylen-Rest mit 1 bis 20 Kohlenstoffatomen, in dem einander nicht benachbarte Methyleneinheiten durch Gruppen -O- ersetzt sein können,
- A ein Sauerstoffatom oder eine Aminogruppe -NR'-,
- R' Wasserstoff oder einen Alkylrest mit 1 bis 10
 Kohlenstoffatomen,
- Y einen gegebenenfalls durch Fluor oder Chlor substituierten Kohlenwasserstoffrest mit 1 bis 20 Kohlenstoffatomen,
 - D einen gegebenenfalls durch Fluor, Chlor, C₁-C₆-Alkyl- oder C₁-C₆-Alkylester substituierten Alkylenrest mit 1 bis 700 Kohlenstoffatomen, in dem einander nicht benachbarte Methyleneinheiten durch Gruppen -O-, -COO-, -OCO-, oder -OCOO-, ersetzt sein können,

B einen Rest der allgemeinen Formel 2

$$-Z-Si(R^1)_m(R'')_{3-m}$$
 (2),

- z einen Alkylen-Rest mit 1 bis 10 Kohlenstoffatomen,
- R1 einen einwertigen, gegebenenfalls durch Fluor oder Chlor substituierter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen,
- R'' einen mit Feuchtigkeit reaktiven Rest, der ausgewählt wird aus C_1 - C_4 -Alkoxy-, C_1 - C_20 -Acyl-, C_1 - C_6 -Alkylaminooxy- und C_1 - C_6 -Alkyloximoresten,
- W einen Rest B oder Wasserstoff,
- m den Wert 0, 1 oder 2,
- n eine ganze Zahl von 1 bis 300,
- a eine ganze Zahl von mindestens 1,
- b 0 oder eine ganze Zahl von 1 bis 30,
- c eine ganze Zahl von 1 bis 30 und
- d den Wert 0 oder 1 bedeuten,
 mit der Maßgabe, dass die Zusammensetzung der Einheiten so
 gewählt ist, das das Copolymer einen Schmelzpunkt im
 Bereich von 30 200 °C besitzt und
- (B) 0,1 bis 20 Gewichtsteile an Silan der allgemeinen Formel 3

$$\Omega - (CH_2)_e - Si(R^2)_{3-f}(CH_3)_f$$
 (3)

wobei

- Ω eine Gruppe, die ausgewählt wird aus -NHR³, -NR³-(CH₂)_g-NHR³, Acryl-, Methacryl-, OCN-, -SH, Glycidoxy-oder Chlorrest,
- ${\tt R}^{3}$ Wasserstoff oder einen gegebenenfalls halogensubstuierten ${\tt C}_{1-18} ext{-}{\tt Kohlenwasserstoffrest},$
- R² eine Methoxy- oder Ethoxygruppe,
- e die Werte 1 oder 3
- f die Werte 0 oder 1 und
- g Werte von 1 bis 10 bedeuten.

2. Feuchtigkeitsvernetzbare Zusammensetzungen nach Anspruch 1, bei denen die Copoylmere (A) Endgruppen der allgemeinen Formel 8

$$-CH2-Si(R1)m(R'')3-m$$
 (8)

aufweisen, worin R^1 , $R^{\prime\prime}$ und m die in Anspruch 1 angegebenen Bedeutungen aufweisen.

- 3. Feuchtigkeitsvernetzbare Zusammensetzungen nach Anspruch 1 oder 2, bei denen die Polydiorganosiloxanabschnitte im Copolymer (A) ein Molekulargewicht Mw von 500 bis 30000 aufweisen.
- 4. Feuchtigkeitsvernetzbare Zusammensetzungen nach Anspruch 1 bis 3, bei denen R Methyl oder Phenyl bedeutet.
- 5. Feuchtigkeitsvernetzbare Zusammensetzungen nach Anspruch 1 bis 4, bei denen A eine Aminogruppe bedeutet.
- 6. Feuchtigkeitsvernetzbare Zusammensetzungen nach Anspruch 1 bis 5, bei denen R'' einen Methoxy- oder Ethoxyrest bedeuten.
- 7. Feuchtigkeitsvernetzbare Zusammensetzungen nach Anspruch 1 bis 6, bei denen Ω eine Gruppe bedeutet, die ausgewählt wird aus einem Rest -NHR³, -NR³-(CH₂)_g-NHR³ und Glycidoxyrest.
- 8. Verwendung der Zusammensetzung gemäß Anspruch 1 bis 8 als einkomponentigen, über Silanendgruppen feuchtigkeitsvernetzenden Schmelzklebstoff.

INTERNATIONAL SEARCH REPORT

In tional Application No PCI/EP 02/07126

A. CLASSII IPC 7	FICATION OF SUBJECT MATTER C09J183/10 C09J175/02 C08G18/6	1 C08G77/458			
According to	International Patent Classification (IPC) or to both national classifica	tion and IPC	<u> </u>		
	SEARCHED				
IPC 7	cumentation searched (classification system followed by classification ${\tt C09J-C08G}$				
·	ion searched other than minimum documentation to the extent that s		ed		
Electronic d	ata base consulted during the international search (name of data bas	e and, where practical, search terms used)			
EPO-Internal, WPI Data, PAJ					
			<u> </u>		
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT				
Category °	Citation of document, with indication, where appropriate, of the rele	evant passages	Relevant to daim No.		
X	WO 98 12075 A (MINNESOTA MINING & 26 March 1998 (1998-03-26) example 32	MFG)	1-8		
A	WO 96 34030 A (MINNESOTA MINING & SHERMAN AUDREY A (US); ROMANKO W (U) 31 October 1996 (1996-10-31) cited in the application claims 1,2; examples 73-77	MFG ALTER R	1-8		
А	EP 0 250 248 A (MINNESOTA MINING 23 December 1987 (1987-12-23) cited in the application page 6, line 29-33; claim 1	& MFG)	1-8		
	•				
Furti	ner documents are listed in the continuation of box C.	X Patent family members are listed in an	nex.		
° Special ca	tegories of cited documents :	"T" later document published after the internation	nnal filing date		
A docume consid	ent defining the general state of the art which is not ered to be of particular relevance	or priority date and not in conflict with the a cited to understand the principle or theory invention "X" document of particular relevance; the claims	application but underlying the		
filing d		cannot be considered novel or cannot be considered novel or cannot be considered novel or cannot be converted involve an inventive step when the docume	onsidered to		
which citation	is cited to establish the publication date of another n or other special reason (as specified)	"Y" document of particular relevance; the claime cannot be considered to involve an inventive document is combined with one or more of	d invention re step when the		
other i	ant published prior to the international filing date but	ments, such combination being obvious to in the art.	a person skilled		
later th	an the priority date claimed	*&* document member of the same patent family			
	actual completion of the international search	Date of mailing of the international search r $04/11/2002$. - Εμυίτ		
	3 October 2002				
Name and r	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk	Authorized officer			
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Lanz, S			

INTERNATIONAL SEARCH REPORT

Information on patent family members

In---tional Application No Ful/EP 02/07126

	Patent document cited in search report		Publication date		Patent family member(s)		Publication date	
	WO 9812075	Α.	26-03-1998	AU	4353997	Α	14-04-1998	•
	NO 3012070	,••	20 00 1330	WO		A1	26-03-1998	
			•	WO	9914082		25-03-1999	
] 1	WO 9634030	Α	31-10-1996	WO	9634030	A1	31-10-1996	
				AU	5668396	Α	18-11-1996	
				BR	9608034	Α .	12-01-1999	
				CA	2218363	A1	31-10-1996	
•			•	CN	1186505	Α	01-07-1998	
				EP	0822952		11-02-1998	
	•		· · · · · ·	ĴΡ	11504373		20-04-1999	
								
·	EP 0250248	Α	23-12-1987	AU .	591989	B2	21-12-1989	
				AU	7447487	Α .	24-12-1987	
				BR	8703101	Α	08-03-1988	•
				CA	1339226	A1	05-08-1997	
	•			DE	3752135	D1	11-12-1997	
•				- DE	3752135	T2	16-04-1998	
			• •	EP	0250248	A 2	23-12-1987	
				EP	0737700	A2	16-10-1996	
				ES	2110391	T3	16-02-1998	
			e e	HK	1011036	A1	22-09-2000	
.•	•		•	JP	2901236	B2 -	07-06-1999	
	•		•	JP	10310628	Α	24-11-1998	
		1		JP	3075470	B2	14-08-2000	
				JP '	10279915	Α	20-10-1998	
	•		,	JP	2799381	B2	17-09-1998	
	*			JP	8231726		10-09-1996	
				JP	3024678	B2	21-03-2000	
				JP.	10060386	Α	03-03-1998	
:	•			JP	2784761	B2	06-08-1998	.
				JP	63003029	Α	08-01-1988	
			er e	KR	9609692	B1	23-07-1996	
				KR	9609691	B1	23-07-1996	
		•		TR	24305	Α -	01-08-1991	
		•		US	5512650	Α	30-04-1996	
				US		Α	24-10-1995	
				US	5214119	Α .	25-05-1993	
,				US		.A	01-03-1994	
•		6.5		ZA	8704414	Α	22-02-1989	

INTERNATIONALER RECHERCHENBERICHT

In itionales Aktenzeichen
Ful/EP 02/07126

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C09J183/10 C09J175/02 C08G18/61 C08G77/458 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C09J C08G Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, WPI Data, PAJ C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. X WO 98 12075 A (MINNESOTA MINING & MFG) 1-8 26. März 1998 (1998-03-26) Beispiel 32 WO 96 34030 A (MINNESOTA MINING & MFG 1-8 ;SHERMAN AUDREY A (US); ROMANKO WALTER R (U) 31. Oktober 1996 (1996-10-31) in der Anmeldung erwähnt Ansprüche 1,2; Beispiele 73-77 EP 0 250 248 A (MINNESOTA MINING & MFG) 1-8 23. Dezember 1987 (1987-12-23) in der Anmeldung erwähnt Seite 6, Zeile 29-33; Anspruch 1 Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie Besondere Kategorien von angegebenen Veröffentlichungen *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der 'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen Im Recherchenbericht genannten Veröffentlichung belegt werden Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung soll oder die aus einem anderen besonderen Grund angegeben ist (wie verörientlichung von besonderer Bedeutung; die beanspruchte Erfindu kann nicht als auf erfinderischer Tätigkeit beruhend betrachte werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist ausgeführt) *O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 23. Oktober 2002 04/11/2002 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Lanz, S

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichtigen, die zur selben Patentfamilie gehören

In tionales Aktenzeichen

	Recherchenbericht ihrtes Patentdokume	nt	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
W(9812075	A	26-03-1998	AU	4353997 A	14-04-1998
				WO	9812075 A1	26-03-1998
•				WO	9914082 A1	25-03-1999
 W(9634030	A	31-10-1996	. WO	9634030 A1	31-10-1996
	5 500 1000	• •	;	ΑU	5668396 A	18-11-1996
				BR	9608034 A	12-01-1999
				CA	2218363 A1	31-10-1996
				CN	1186505 A	01-07-1998
	•			EP	0822952 A1	11-02-1998
			•	JP	11504373 T	20-04-1999
 F!	 P 0250248	Α	23-12-1987	 AU	591989 B2	21-12-1989
_,	0200210			ΑU	7447487 A	24-12-1987
•	•			BR	8703101 A	08-03-1988
				CA	1339226 A1	05-08-1997
				DE	3752135 D1	11–12–1997
				DE	3752135 T2	16-04-1998
				EP	0250248 A2	23-12-1987
	•			EP	0737700 A2	16-10-1996
				ES	2110391 T3	16-02-1998
		•		HK	1011036 A1	22-09-2000
•				JP	2901236 B2	07-06-1999
			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	JP	10.310628 A	24-11-1998
i				JP	3075470 B2	14-08-2000
i				JP	10279915 A	20-10-1998
				JP	2799381 B2	17-09-1998
				JP ·	8231726 A	10-09-1996
ı				JP	3024678 B2	21-03-2000
				JP	10060386 A	03-03-1998
				JP	2784761 B2	06-08-1998
				JP	63003029 A	08-01-1988
				KR	9609692 B1	23-07-1996
				KR	9609691 B1	23-07-1996
:		•	• .	TR	24305 A	01-08-1991
				บร	5512650 A	30-04-1996
				US	5461134 A	24-10-1995
		•		US	5214119 A	25-05-1993
	•			US	5290615 A	01-03-1994
				ZA	8704414 A	22-02-1989

Mis page Blank (Uspto)

STN Karlsruhe

L3 ANSWER 1 OF 1 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN

ACCESSION NUMBER: 2003-312878 [30] WPIDS

DOC. NO. CPI: C2003-082031

TITLE: Moisture crosslinking composition containing a

siloxane-urea/urethane copolymer and silane useful as a single component adhesive melt moisture crosslinking via

silane end groups.

DERWENT CLASS: A25 A26 A81 G03

INVENTOR(S): CHATZINERANTZIS, M; PACHALY, B; SCHAEFER, O; SCHINDLER,

W; SCHAFER, O

PATENT ASSIGNEE(S): (CONE) CONSORTIUM ELEKTROCHEM IND GMBH; (CHAT-I)

CHATZINERANTZIS M; (PACH-I) PACHALY B; (SCHA-I) SCHAFER

O; (SCHI-I) SCHINDLER W

COUNTRY COUNT: 24

PATENT INFORMATION:

PATENT NO	KIN	D DATE	WEEK	LA	PG I	MAIN IE	?C			
WO 2003018704 RW: AT BE CH	A1 I CY	20030306 DE DK ES	(200330) FI FR GB	* GE .GR IE	31 IT	C09J18 LU MC	33-10< NL PT	SE	TR	
W: CN JP PI DE 10141235	US A1	20030327	(200330)			C08G01	L8-61			
EP 1419208 R: AT BE CH	I CY	DE DK ES	FI FR GB	GR IE			MC NL	PT	SE	TR
EP 1419208 R: BE DE FF	R GB			GE		C09J18				
US 2004260037 DE 50201697	G	20041223 20050105	(200505)			C08G07	33-10	٠		
JP 2005501165	W	20050113	(200500)		50	COOMO.	. 5 .50			

APPLICATION DETAILS:

PATENT NO	KIND	APPLICATION	DATE
WO 2003018704	A1	WO 2002-EP7126	20020627
DE 10141235	A1	DE 2001-10141235	20010823
EP 1419208	A1	EP 2002-760201	20020627
HI 1415200	•••	WO 2002-EP7126	20020627
EP 1419208	В1	EP 2002-760201	20020627
DI 1415200		WO 2002-EP7126	20020627
US 2004260037	A1	WO 2002-EP7126	20020627
05 200120000		US 2004-485668	20040203
DE 50201697	G	DE 2002-00201697	20020627
DB 3020103.	J	EP 2002-760201	20020627
		WO 2002-EP7126	20020627
JP 2005501165	W	WO 2002-EP7126	20020627
01 2000001100		JP 2003-523556	20020627

FILING DETAILS:

PATENT NO	KIND	PATENT NO
EP 1419208 EP 1419208 DE 50201697 JP 2005501165	A1 Based on B1 Based on G Based on Based on W Based on	WO 2003018704 WO 2003018704 EP 1419208 WO 2003018704 WO 2003018704

PRIORITY APPLN. INFO: DE 2001-10141235 20010823

STN Karlsruhe

INT. PATENT CLASSIF .:

MAIN:

C08G018-61; C08G077-458; C08L075-00; C09J183-10

SECONDARY:

C08K005-541; C09D175-04; C09J175-02; C09J175-04

GRAPHIC INFORMATION:

$$--z$$
-Si(R¹)_m (R ")_{9-m} (2)

omega $(CH_2)_{\sigma}$ SI $(R^2)_{\sigma-f}(CH_2)_f$ (3)

BASIC ABSTRACT:

WO2003018704 A UPAB: 20030513

NOVELTY - A moisture crosslinking composition containing (A) 100 parts by wt. of silane-terminated polydiorganosiloxane-urea/urethane copolymer and (B) 20 parts by wt. of a silane is new.

DETAILED DESCRIPTION - A moisture crosslinking composition containing (A) 100 parts by wt. of silane-terminated polydiorganosiloxane-urea/urethane copolymer of formula (1):

R = a monovalent, optionally fluorine or chlorine substituted 1-20C hydrocarbon,

X = 1-20C alkylene, in which non-adjacent methylene units can be substituted by -0-,

A = 0 or amino group -NR-,

R' = H or 1-10C alkyl,

Y = 1-20C hydrocarbon optionally substituted by F or Cl,

D = 1-700C alkylene, optionally substituted by F, Cl, 1-6C alkyl or 1-6C alkyl ester, in which non-adjacent methylene units can be substituted by: -O-, COO-, -OCO-, or OCOO-, B = a residue of formula (2): ,

Z = 1-10C alkylene,

R1 = monovalent, optionally F or Cl substituted 1-12C hydrocarbon, R'' = a moisture reactive residue selected from: 1-4C alkoxy, 1-20C

acyl, 1-6C alkylaminooxy, and 1-6C alkoxime,

W = B or H,

m = 0, 1, or 2,

n = 1-300,

STN Karlsruhe

a = at least 1, b = 0 or 1-30,

c = 1-30,

d=0 or 1, with the proviso that the units of the composition are selected so that the copolymer has a melting point of 30-200 deg. C, and (B) 0.1-20 parts by wt. of a silane of formula (3): where omega = a group selected from: NHR3, NR3, (CH2)g-NHR3, (meth)acryl, OCN, SH, glycidoxy, or Cl,

R3 = H, or optionally halogen substituted 1-18C hydrocarbon, R2 = methoxy or ethoxy,

e = 1 or 3

f = 0 or 1,

q = 1-10.

USE - The composition is useful as a single component moisture crosslinking via silane end groups adhesive melt (claimed).

ADVANTAGE - The silane end groups (formula 8) have very high reactivity, 100-fold higher than the end groups of formula (2), and thus give the adhesive melt outstanding and quick curing properties in the presence of atmospheric moisture.

Dwg.0/0

TECHNOLOGY FOCUS:

WO 2003018704 AlUPTX: 20030513

TECHNOLOGY FOCUS - POLYMERS - Preferred Components: The copolymer A has end groups of formula (8):

R1, R'', and m = as above. The polyorganosiloxane portion of copolymer A has a mol. wt. of 500-30000. R in the above formula = Me or phenyl, A = amino, R'' = methoxy or ethoxy, and approximatelyW = NHR3, NR3,

(CH2)g-NHR3, or glycidoxy.

FILE SEGMENT:

CPI

FIELD AVAILABILITY:

AB; GI

MANUAL CODES:

CPI: A05-G01E; A05-J04; A06-A00E1; A08-D06; A11-C02;

A12-A05F; G03-B01; G03-B02E4

This Page Blank (usptc)