TD1

Suites Numériques¹

(révisions des méthodes de calcul des limites et des équivalents)

Pour chacune des suites dont le terme général est donné ci-dessous, déterminer son éventuelle limite. Lorsque cette limite vaut 0^+ ou $+\infty$, donner un équivalent simple.

Outils : croissances comparées, développements limités, équivalences, notations o,...

$$u_{n} = \frac{n - 2020}{n + 2020}, \quad u_{n} = \frac{n^{3} + 3n + 5}{n^{2} + 2}, \quad u_{n} = \frac{(n + 2) + 10n}{n(n + 2) - 3}, \quad u_{n} = \frac{n + \sqrt{n}}{n^{3/2} - n}, \quad u_{n} = \frac{2^{n}}{3^{n} + 5^{n}},$$

$$u_{n} = \frac{e^{n} + 1}{e^{n} + e^{-n}}, \quad u_{n} = \frac{\ln(3n)}{\ln n^{3}}, \quad u_{n} = \frac{(n + 2)!}{n! + 2}, \quad u_{n} = \ln(1 + \frac{1}{n}), \quad u_{n} = \operatorname{sign}(\frac{1}{n}), \quad u_{n} = e^{\frac{2n}{n + \sqrt{3n}}},$$

$$(*)u_{n} = \tan(\frac{\pi}{2}\cos(\frac{1}{n})), \quad u_{n} = n\ln(1 + \frac{(-1)^{n}}{n}), \quad u_{n} = \frac{n\sin\frac{1}{n}}{1 + \sin\frac{1}{n}}, \quad u_{n} = n^{4}(\cos\frac{1}{n} - 1 + \frac{1}{2n^{2}}),$$

$$(*)u_{n} = \frac{\sin(\cos\frac{1}{n} - 1)}{\cos\frac{1}{n} - 1}, \quad u_{n} = \left(1 - \frac{1}{n}\right)^{\frac{n+1}{n}}, \quad u_{n} = \left(1 - \frac{1}{3n}\right)^{n+2}, \quad (*)u_{n} = \frac{n + \cos(n) + e^{n}}{n^{100} + 2^{n}},$$

$$u_{n} = \frac{\ln^{2}(n)}{\sqrt{n}}, \quad (*)u_{n} = \left(\ln(n^{2020}) + n^{2}\right)(1 - \cos\frac{1}{n}), \quad (*)u_{n} = \frac{\ln(1 + 2^{-n}) + e^{-\frac{1}{n^{2}}} - \cos\frac{1}{n}}{\sin^{2}\frac{1}{n}}$$

2 Vérifier si les affirmations suivantes sont vraies au fausses lorsque $n \to +\infty$:

$$n^3 = \mathcal{O}(n^3), \quad n^2 = \mathcal{O}(n^3), \quad n^5 = \mathcal{O}(n^3), \quad n^3 = o(n^3), \quad n^2 = o(n^3), \quad n^5 = o(n^3),$$

$$\frac{1}{n^4} = o\left(\frac{1}{n^3}\right), \quad \frac{1}{n^2} = \mathcal{O}\left(\frac{1}{n^3}\right), \quad \frac{1}{n^5} = \mathcal{O}\left(\frac{1}{n^3}\right), \quad \ln n = o\left(\ln(n^7)\right), \quad e^n = o(e^{3n}), \quad \frac{1}{e^{2n}} = \mathcal{O}(e^{-n}).$$

- Soient f, g, h trois fonctions à valeurs réelles *positives* définies au voisinage de $+\infty$. Justifier les règles suivantes du langage o, \mathcal{O}, \sim :
 - (a) $f \sim_{+\infty} g \implies fh \sim_{+\infty} gh$.
 - (b) si $f = o_{+\infty}(g)$ et $h = o_{+\infty}(g)$, alors $f \pm h = o_{+\infty}(g)$ [ce qui se lit: " $o(g) \pm o(g) = o(g)$ "].
 - (c)* si $f = \mathcal{O}_{+\infty}(g)$ et $g = \mathcal{O}_{+\infty}(h)$, alors $f = \mathcal{O}_{+\infty}(h)$ [ce qui se lit: " $\mathcal{O}(\mathcal{O}(h)) = \mathcal{O}(h)$ "].
 - (d)* si $f = \mathcal{O}_{+\infty}(gh)$, alors $f = g\mathcal{O}_{+\infty}(h)$ [ce qui se lit : " $\mathcal{O}(gh) = g\mathcal{O}(h)$ "]
- **4** (équivalences et leur composition avec des fonctions non linéaires)
- 1) Soit u_n, v_n deux suites positives, de limite $+\infty$ et $u_n \underset{+\infty}{\sim} v_n$. Montrer que $\ln(u_n) \underset{+\infty}{\sim} \ln(v_n)$.

¹Les questions ou exercices étiquetés avec * sont ceux d'entraînement ou d'approfondissement

- 2) Montrer les caractérisations suivantes :
 - (a) $u_n \underset{+\infty}{\sim} v_n \iff u_n = v_n + o_{+\infty}(v_n).$
 - (b) $e^{u_n} \underset{+\infty}{\sim} e^{v_n} \iff \lim_{n \to +\infty} (u_n v_n) = 0.$
- 3) Est-il vrai que $u_n \underset{+\infty}{\sim} v_n \implies e^{u_n} \underset{+\infty}{\sim} e^{v_n}$? Répondre par une preuve ou un contrexemple.
- (exercice composite type concours : un peu de ε , un peu de récurrence, et de la réflexion) Soit (x_n) une suite de réels strictement positifs qui vérifie $\lim_{n\to+\infty}\frac{x_{n+1}}{x_n}=0$.
- 1) Montrer qu'il existe un entier n_0 tel que pour tout $n \ge n_0$, on a $x_{n+1} \le \frac{1}{2}x_n$.
- 2) En déduire que pour tout $n \ge n_0$, on a $x_n \le \left(\frac{1}{2}\right)^{n-n_0} x_{n_0}$. En déduire que $\lim_{n \to +\infty} x_n = 0$.
- 3) Application : Soit $a \in \mathbb{R}^*$. Montrer que $a^n = o(n!)$.
- (sous-suites, prise ne main des notions \liminf , \limsup , risques de confusion avec \inf , \sup) On rappelle que $\pi=3,14159265358979...$ et e=2,71828182845904... On note $\operatorname{Ent}(x)$ la partie entière de x; $\operatorname{sign}(x)$ vaut ± 1 si $\pm x>0$ et 0 si x=0. Pour les suites suivantes, donner :

les valeurs d'adhérence; lim inf et lim sup; inf et sup.

On demande des explications mais pas de preuve.

- (a) $u_0 = 3$, $u_1 = 1$, $u_2 = 4$, $u_3 = 1$, $u_4 = 5$, ..., les décimales successives de π
- (b) $u_0 = 2$, $u_2 = 27$, $u_3 = 271$, $u_4 = 2718$,..., $u_n = \text{Ent}(10^n \times e)$
- (c) pour chaque $n \in \mathbb{N}$, u_n une valeur entiere choisie au hasard entre 0 et 1000
- (d) $u_0=1000$ et pour $n\in\mathbb{N}^*$, u_n une valeur entière choisie au hasard entre 0 et u_{n-1}
- (e) Même question pour les suites de terme général donne par les formules suivantes: $u_n = \cos(n\pi)$; $u_n = n(-1)^n$; $u_n = \sin(\frac{2^n\pi}{4})$; $u_n = \frac{(-1)^n}{3n}$; $u_n = \cos(\frac{n\pi}{3})$; $u_n = \text{sign}(\sin n)$.
- **7** (cas important: distinction des termes pairs/impairs) Soit $(u_n)_{n\in\mathbb{N}}$ une suite dans \mathbb{R} .
- 1. Que pensez-vous des propositions suivantes (donner un contrexemple ou une preuve) :
- (i) $\widetilde{\operatorname{Si}}(u_n)_n$ converge vers un réel ℓ alors $(u_{2n})_n$ et $(u_{2n+1})_n$ convergent vers ℓ ?
- (ii) Si $(u_{2n})_n$ et $(u_{2n+1})_n$ sont convergentes, il en est de même de $(u_n)_n$?
- (iii) Si $(u_{2n})_n$ et $(u_{2n+1})_n$ sont convergentes, de même limite ℓ , alors aussi $(u_n)_n$ converge?
- **2.** Montrer en utilisant **1.** que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=\left(\frac{1}{n}\right)^{2-\cos(n\pi)}$ est convergente.
- **8** (*révision: étude des suites récurrentes*) Soit la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_0 \in [0, +\infty[$$
 et $\forall n \in \mathbb{N}, \quad u_{n+1} = \sqrt{2u_n + 3}.$

On définit la fonction $f: \mathbb{R}^+ \to \mathbb{R}$ par $f(x) = \sqrt{2x+3}$.

- 1) Déterminer les ponts fixes de f et étudier le signe de f(x)-x.
- 2) Montrer que $(u_n)_{n\in\mathbb{N}}$ est monotone ; trouver son sens de variation selon la valeur de u_0 .
- 3) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente et déterminer sa limite.

- Soit la suite récurrente définie par $u_0 = 2022$ et pour $n \in \mathbb{N}^*$, $u_n = cu_{n-1}$. Trouver $\lim_{n \to \infty} \inf u_n$ et $\lim_{n \to \infty} \sup u_n$ lorsque c = 0, lorsque c = -1, lorsque c = 1/2 et lorsque c = 2.
- **10** * Soit $(u_n)_n$ la suite récurrente obtenue de façon suivante: on se donne une valeur u_0 et au rang n, on prend pour u_n la $n^{\text{ème}}$ décimale de $\sin(u_{n-1})$.
- (i) Montrer que, quel que soit u_0 , la suite $(u_n)_n$ admet une sous-suite convergente.
- (ii)* Montrer que si $\lim_{n\to\infty} \inf u_n = 0$, alors $(u_n)_n$ est convergente.
- 11 * Soit $f: x \mapsto \sqrt{1+e^{-x}}$, et $(u_n)_n$ la suite réelle définie par : $u_0 = 0$ et $u_{n+1} = f(u_n)$.
- 1) Montrer que $u_n \geq 0$, $\forall n \in \mathbb{N}$.
- 2) Etudier les variations de f. En déduire que l'équation f(x)=x admet une unique solution qu'on note α .
- 3) Montrer que f est dérivable sur \mathbb{R} et on a $|f'(x)| \leq \frac{1}{2}$, $\forall x \in [0, +\infty[$.
- 4) a) Montrer que pour tout $n \in \mathbb{N}$ on a $|u_{n+1} \alpha| \leq \frac{1}{2}|u_n \alpha|$. En déduire que

$$\forall n \in \mathbb{N}, \quad |u_n - \alpha| \le \left(\frac{1}{2}\right)^n |u_0 - \alpha|.$$

- b) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente et déterminer sa limite.
- **12** * Soit $f: x \mapsto x x^2$, et $(u_n)_n$ la suite réelle définie par : $u_0 \in]0, 1[$ et $u_{n+1} = f(u_n)$.
- 1) Etudier les variations de f sur [0,1].
- 2) Montrer par récurrence que, pour tout $n \in \mathbb{N}$, $0 < u_n < \frac{1}{n+1}$.
- 3) Pour tout entier $n \in \mathbb{N}$, on pose $v_n = nu_n$.
- Montrer que la suite $(v_n)_n$ est croissante et admet une limite ℓ appartenant à]0,1].
- 4) On pose $w_n = n(v_{n+1} v_n)$. Montrer que la suite $(w_n)_n$ converge vers $\ell(1 \ell)$.
- 5) (question indépendante de 1)–4)) Soit $(t_n)_n$ une suite réelle vérifiant la propriété suivante :

il existe
$$a > 0$$
 tel que pour $n \ge n_0$, on a $t_{n+1} - t_n \ge a/n$.

Montrer que $t_{2n} - t_n \ge a/2$ pour $n \ge n_0$. En déduire que $\lim_{n \to +\infty} t_n = +\infty$.

6) Montrer que si $\ell \neq 1$, la suite (v_n) vérifie les conditions imposées sur la suite (t_n) de la question précédente. En déduire la valeur de ℓ .