$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{2ik(t_1\!-\!2t_3)}{(1\!+\!2k^2)(3t_1t_3\!+\!2k^2r_5(t_1\!+\!t_3))}$	$\frac{i\sqrt{2}k(6k^2r_5\!+\!t_1\!+\!4t_3)}{(1\!+\!2k^2)^2(3t_1t_3\!+\!2k^2r_5(t_1\!+\!t_3))}$	0	$\frac{2k^2(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2 k^2) (3t_1t_3+2 k^2 r_5 (t_1+t_3))}$	$\frac{6k^2r_5+t_1+4t_3}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$-\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2r_5(t_1+t_3)}$	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2 k^2) (3 t_1 t_3 + 2 k^2 r_5 (t_1+t_3))}$	0	$\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\tau_{1}^{\#1}{}_{+}\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5 \cdot kt_1)}{(1+k^2)^2t_1^2} \left \frac{-2k^4r_5 + k^2t_1}{(1+k^2)^2t_1^2} \right $	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} \dagger^{\alpha \beta}$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$t_1^{#1} + ^{\alpha\beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_{1}^{#2} +^{\alpha}$

	$\sigma_{0}^{\#1}$	$ au_0^{\#1}$	$ au_0^{\#2}$	$\sigma_0^{\sharp 1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i \sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$-\frac{1}{t_1}$

#	1	1	3	3	3	5
Source constraints	$\tau_{0+}^{\#2} == 0$	$\tau_{0}^{\#1} - 2 \bar{i} k \sigma_{0}^{\#1} == 0$	$\tau_1^{\#2}\alpha + 2ik \sigma_1^{\#2}\alpha = 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$t_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\tau_{2}^{\#1}\alpha\beta - 2ik \sigma_{2}^{\#1}\alpha\beta = 0$

$f_{1}^{\#2}$	0	0	0	$\frac{1}{3}$ \vec{l} k $(t_1 - 2t_3)$	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3} k^2 (t_1 + t_3)$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1+t_3}{3}$	0	$-\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)\Bigg 0$
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{6} (6 k^2 r_5 + t_1 + 4 t_3)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}$ i k (t ₁ - 2 t ₃)
$f_{1}^{\#1}\alpha\beta$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1+}^{\#1}$ $\omega_{1+}^{\#2}$ $\omega_{1}^{\#1}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}$	$^{2}r_{5}-\frac{t_{1}}{^{2}}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0

 $\omega_1^{\#_2} +^{\alpha\beta}$

 $f_1^{\#1} \dagger^{\alpha\beta}$

 $\omega_{1}^{\#1} +^{\alpha}$

 $\omega_{1}^{\#2} \dagger^{lpha}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{lphaeta}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{\scriptscriptstyle 2}^{\scriptscriptstyle \#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{lphaeta\chi}$	0	0	<u>t</u> 1 2
			<u> </u>

$\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{2}{t_1}$	
$ au_2^{\#1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_{2}^{\#1}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_{2}^{\#1} + \alpha \beta$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$	

0

0

 $i\sqrt{2}kt_3$

 $\omega_{0}^{#1} + f_{0}^{#1} + f_{0}^{#1} + f_{0}^{#2} + f_{0}^{#2} + \omega_{0}^{#1} + f_{0}^{#1}$

0

0

0 0

0

 $-i\sqrt{2}kt_3$

*t*³

16

Total #:

? $J^{P} = 1^{-}$? ?

	Massive particle				
?	Pole residue:	$\frac{6t_1t_3(t_1+t_3)-3r_5(t_1^2+2t_3^2)}{2r_5(t_1+t_3)(-3t_1t_3+r_5(t_1+t_3))} > 0$			
<u> </u>	Polarisations:	3			
	Square mass:	$-\frac{3t_1t_3}{2r_5t_1+2r_5t_3} > 0$			
?	Spin:	1			
	Parity:	Odd			

Unitarity conditions

 $r_5 < 0 \&\& (t_1 < 0 \&\& 0 < t_3 < -t_1) || (t_1 > 0 \&\& (t_3 < -t_1) || t_3 > 0))$

(No massless particles)

 $f_{1}^{\#1} +^{\alpha}$ $f_{1}^{\#2} +^{\alpha}$