Прямые суммы модулей

1) Внешняя прямая сумма

$$M,N$$
 - ${f R}$ - модули

$$M\oplus N=\{(m,n)\mid m\in M,\, n\in N\}$$
 - R - модуль с операциями:

$$(m,n) + (m',n') = (m+m',n+n')$$

$$\forall r \in R : r \cdot (m, n) = (rm, rn)$$

Пусть $M_i, i \in I \implies \bigoplus_{i \in I} M_i = \{(\dots, m_i, \dots) \mid m_i \in M_i$ и почти все $m_i = 0\}$

2) Внутренняя прямая сумма

М - R - модуль, N_1, N_2 - подмодуль в М (обозн $N_1, N_2 \leq M$)

$$N_1 + N_2 = \{n_1 + n_2 \mid n_1 \in N_1, n_2 \in N_2\} \le M$$

$$N_1 + N_2 = N_1 \oplus N_2$$
, если $N_1 \cap N_2 = \{0\}$

 $\underline{\text{Упр.}}$ $N_1 \oplus N_2 = M \iff \forall m \in M \exists ! n_1 \in N_1, n_2 \in N_2 \mid m = n_1 + n_2$ Пусть $N_i, i \in I$ - подмодуль в М

$$\oplus_{i \in I} N_i = \{n_{i_1} + \dots + n_{i_k} \mid n_{i_j} \in N_{i_j}\} \text{ if } N_j \cap (\sum_{i \neq j} N_i) = \{0\}$$

$$m = n_{i_1} + \dots + n_{i_k} = n_{j_1} + \dots + n_{j_s}$$

Если
$$n_{i_1} \notin N_{j_1}, \dots, N_{j_s} \implies n_{i_1} = n_{j_1} + \dots + n_{j_s} - n_{i_2} - \dots - n_{i_k} \implies n_{i_1} \in N_{i_1} \cap \sum_{i \neq i_s} N_i$$

Тогда
$$m = n_{i_1} + \cdots + n_{i_k} = n'_{i_1} + \cdots + n'_{i_k}$$

$$(n_{i_1} - n'_{i_1}) + \dots + (n_{i_k} - n'_{i_k}) = 0 \implies -\tilde{n} = (n_{i_2} - n'_{i_2}) + \dots + (n_{i_k} - n_{i_k}) \in \sum_{i \neq i_1} N_i \implies \tilde{n} \in N_{i_1} \cap \left(\sum_{i \neq i_1} N_i\right) = 0$$

$$(n_{i_1} - n'_{i_1}) = \tilde{n}$$

 $1) \iff 2$

Циклические модули

 $\underline{\mathrm{Def}}\ _RM$ - кон/пор, если $_RM=< m_1,\dots m_k>=Rm_1+\dots+Rm_k=\{r_1m_1+\dots+r_km_k\mid r_i\in R, m_i\in M\}$ - циклический, если $_RM=_R< m>=Rm$

 $\underline{\mathrm{Th}}\ _RM$ - циклический \iff $^R/_I$, где I - левый идеал в R $\underline{\mathrm{Proof}}\implies$:

$$_{R}M = \langle m \rangle = Rm$$

 $\phi:R o M=< m>:r\mapsto rm$ - R - гомо-зм сюрьективный

$$\forall r' \in R : \phi(r'r) = (r'r)m = r'(rm) = r'\phi(r)$$

 $\stackrel{\text{1 th iso}}{\Longrightarrow} M \cong {}^{R}/\ker \phi$, где $\ker \phi \leq_{R} R \implies \ker \phi$ - левый идеал

___ .

$$_{RR}/I=\{r+I\mid r\in R\}=<1+I>=R(1+I)$$
 - циклич $\Longrightarrow M$ - циклический
$$\forall r+I\in {}^{_{R}R}/I:\ r+I=r(1+I)\in R(1+I)$$

Example Найдём все циклические Z - модули (абелевы группы)

$$R=\mathbb{Z},\; n\mathbb{Z}$$
 - все идеалы в \mathbb{Z}

$$A$$
 - цикл $\Longrightarrow A \cong {\mathbb Z}^Z/nZ \implies A \cong Z_n \vee A \cong Z$

Свободные модули

 $\underline{\mathrm{Def}}$ Пусть M - R - модуль; $\{f\}_{i\in I}$ - мн-во элем-ов из M называется базисом, если:

$$\forall m \in M \; \exists ! \; r_{i_1}, \dots, r_{i_k} \in R \; | \; m = r_{i_1} f_{i_1} + \dots + r_{i_k} f_{i_k}$$

R - модуль F называется свободным, если он имеет базис

Example Векторное пространство

 $\overline{\mathrm{Def}\ f_1,\dots}f_k\in_R M$ - лнз над R, если из $r_1f_1+\dots r_kf_k=0\Longrightarrow r_i=0$ $\{f_i\}_{i\in I}$ - лнз, если лнз любая её конечная подсистема

 $\underline{\mathrm{Упр}}\ \{f_i\}_{i\in I}$ - базис \iff 1) $M=< f_i>_{i\in I}$ 2) $\{f_i\}_{i\in I}$ - лнз

 $\underline{\operatorname{Th}}$ R - модуль F свободен $\iff F = \bigoplus_{i \in I} {}_RR$