

PATENT ABSTRACTS OF JAPAN

(11)Publication number: 09-143297 (43)Date of publication of application: 03.06.1997

(51)Int.CI.

CO8J 9/04 // CO8L 23/08

(21)Application number: 07-304661

(71)Applicant : MITSUI PETROCHEM IND LTD

(22)Date of filing:

22.11.1995

(72)Inventor: OKADA KEIJI

KARAIWA MASATO UCHIYAMA AKIRA

(54) OLEFIN-BASED THERMOPLASTIC ELASTOMER FOAM AND ITS PRODUCTION

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain the subject foam high in expansion ratio, excellent in heat resistance, free from chapped skin, useful as a footwear, etc., by heating a composition consisting of a specific partially cross—linked thermoplastic elastomer, an olefin-based plastic and a blowing agent.

SOLUTION: An olefin-based thermoplastic elastomer foam is obtained by heating a foamable composition consisting of (A) 100 pts.wt. of a partially cross-linked thermoplastic elastomer comprising a mixture of 60-95 pts.wt. of a peroxide cross-linking type olefin-based copolymer rubber of ethylene and a 3-20C α -olefin (nonconjugated diene) and 5-40 pts.wt. of a peroxide decomposition type olefin-based plastic composed of a (co) polymer having 5-100mol% of a 3-20C α -olefin content and 5-80g/10minutes MFR, (B) 1-20 pts.wt. of an olefin-based plastic composed of a (co)polymer having a 2-20C α -olefin content and 0.01-2g/10minutes MFR and (C) a blowing agent followed by foaming.

LEGAL STATUS

[Date of request for examination] 11.09.2001 [Date of sending the examiner's decision of rejection] 17.06.2003

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of 2003-13687

rejection]

[Date of requesting appeal against examiner's decision of 17.07.2003 rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(1)を同じナーカー

(11)特許出願公開番号

特開平9-143297

(43)公開日 平成9年(1997)6月3日

(51)Int.Cl. °

識別記号

C08J 9/04

// CO8L 23/08

CES LCD FΙ

C08J 9/04

CES

CO8L 23/08

LCD

審査請求 未請求 請求項の数16 OL (全11頁)

(21)出願番号

特願平7-304661

(22)出願日

平成7年(1995)11月22日

(71)出願人 000005887

三井石油化学工業株式会社

東京都千代田区霞が関三丁目2番5号

(72)発明者 岡 田 圭 司

千葉県市原市千種海岸3番地 三井石油化

学工業株式会社内

(72)発明者 唐 岩 正 人

千葉県市原市千種海岸3番地 三井石油化

学工業株式会社内

(72)発明者 内 山 晃

千葉県市原市千種海岸3番地 三井石油化

学工業株式会社内

(74)代理人 弁理士 鈴木 俊一郎

(54)【発明の名称】オレフィン系熱可塑性エラストマー発泡体およびその製造方法

(57)【要約】

【解決手段】特定のエチレン・αーオレウィン(・非共役ジエン)共重合 体ゴムである<u>ペルオキシド架橋型オレフ心系共重合体ゴム(a)</u> お よび炭素原子数が3~20のα-オレフ{ン含有量が50~100モル% である(共)重合体であり、かつMFRが特定の範囲にあ る<u>べルオシド 分解型れずい系プラスチック(b)</u>を特定割合で含む 混合物を、有機へのおいめの存在下で動的に熱処理して得 られる部分的に架橋された熱可塑性エラストマー組成物(A) と、炭素原子数が2~20のα-オレフィン含有量が50~100ξル% である(共)重合体であり、かるMFRが特定の範囲にあ る<u>オレフィン系プラスチック(B)</u>と、発泡剤(C)とを特定割合で含む 発泡性組成物を加熱して得られるオレフィン系熱可塑性エラストマ -発泡体およびその製造方法。

【効果】上記発泡体は、発泡倍率が2倍以上で脱泡によ る肌荒れがなく、柔軟な感触で、しかも耐熱性、耐候性 に優れている。本発明の製造方法によれば、上記発泡体 を簡略化した工程で生産性よく製造することができる。

新华指记43%

如今 10%以上

資料は行びまれか

基分解形が切ましい 「自解を 特定のメオレアルーまプラスチック(B)を含む

60~11 27 5~80 (2)

20

30

40

【特許請求の範囲】

【請求項1】[I]エチレンと炭素原子数が3~20の α - オレフィンとからなるエチレン・ α - オレフィン共 重合体ゴム、またはエチレンと炭素原子数が3~20の α - オレフィンと非共役ジェンとからなるエチレン・ α - オレフィン・非共役ジエン共重合体ゴムである、ペル オキシド架橋型オレフィン系共重合体ゴム (a) 60~ 95重量部、および炭素原子数が3~20のα-オレフ ィンの含有量が50~100モル%である単独重合体あ るいは共重合体であり、かつ、メルトフローレート (AS 10 TMD-1238-65T, 230℃、2.16kg荷重) か5~8.0 €/1 0分である、ペルオキシド分解型オレフィン系プラスチ ック(b) 5~40重量部 [成分(a) と(b) との合 計量は100重量部とする]からなる混合物を、有機ペ ルオキシドの存在下で動的<u>に熱処理し</u>て得られる部分的 に架橋された熱可塑性エラストマー組成物 (A) 100 重量部と、[II] 炭素原子数が2~20のα- オレフィ ンの含有量が50~100モル%である単独重合体ある いは共重合体であり、かつ、メルトフローレート(ASTM D-1238-65T, 230℃、2.16kg荷重) が 0. 0 1~2 g/ 10分である、オレフィン系プラスチック (B) 1~2 0 重量部と、 [III] 発泡剤 (C) とからなる発泡性組 成物を加熱して得られる発泡体であることを特徴とする オレフィン系熱可塑性エラストマー発泡体。

レ【請求項2】前記ペルオキシド架橋型オレフィン系共重 合体ゴム(a)であるエチレン・α-オレフィン共重合 体ゴム、またはエチレン・α-オレフィン・非共役ジェ ン共重合体ゴムを形成する α- オレフィンが、 プロビレ ンまたは<u>1-ブテン</u>であることを特徴とする請求項1に記 載のオレフィン系熱可塑性エラストマー発泡体。

レ【請求項3】前記ペルオキシド分解型オレフィン系プラ スチック(b)が、アイソタクチックポリプロピレンま たはプロピレン・α-オレフィン共重合体であることを 特徴とする請求項1または2に記載のオレフィン系熱可 塑性エラストマー発泡体。

【請求項4】前記熱可塑性エラストマー組成物 (A) が、有機ペルオキシドおよびジビニルベンゼンの存在下 で熱処理されて部分的に架橋されていることを特徴とす る請求項1~3のいずれかに記載のオレフィン系熱可塑 性エラストマー発泡体。

【請求項5】前記オレフィン系プラスチック (B) が、 Pイソタクチックポリプロピレンまたはプロピレン・ α - オレフィン共重合体であることを特徴とする請求項1 ~4のいずれかに記載のオレフィン系熱可塑性エラスト マー発泡体。

【請求項6】前記発泡剤(C)が、有機あるいは無機系 の熱分解型発泡剤であることを特徴とする請求項1~5 のいずれかに記載のオレフィン系熱可塑性エラストマー 発泡体。

【請求項7】前記発泡性組成物における発泡剤 (C) の 50

含有量が、熱可塑性エラストマー組成物 (A) とオレフ ィン系プラスチック (B) との合計量100重量部に対 して、0.5~20重量部であることを特徴とする請求 項1~6のいずれかに記載のオレフィン系熱可塑性エラ ストマー発泡体。

【請求項8】発泡倍率が2倍以上であることを特徴とす る請求項1~7のいずれかに記載のオレフィン系熱可塑 性エラストマー発泡体。

【請求項9】[I]エチレンと炭素原子数が3~20の α - オレフィンとからなるエチレン・ α - オレフィン共 重合体ゴム、またはエチレンと炭素原子数が3~20の α- オレフィンと非共役ジエンとからなるエチレン・α - オレフィン・非共役ジエン共重合体ゴムである、ペル オキシド架橋型オレフィン系共重合体ゴム (a) 60~ 95重量部、および炭素原子数が3~20のα-オレフ ィンの含有量が50~100モル%である単独重合体あ るいは共重合体であり、かつ、メルトフローレート (AS TMD-1238-65T, 230℃、2.16kg荷重) が5~80g/1 0分である、ペルオキシド分解型オレフィン系プラスチ ック(b) 5~40重量部 [成分(a) と(b) との合 計量は100重量部とする]からなる混合物を、有機ペ ルオキシドの存在下で動的に熱処理して得られる<u>部分的</u> <u>に架橋された</u>熱可塑性エラストマー組成物 (A) 100 重量部と、[II] 炭素原子数が2~20のα-オレフィ ンの含有量が50~100モル%である単独重合体ある いは共重合体であり、かつ、メルトフローレート (ASTM D-1238-65T, 230°C、2.16kg荷重) が 0. 0 1 ~ 2 g/ 10分である、オレフィン系プラスチック(B)1~2 0重量部と、[III] 発泡剤(C)とからなる発泡性組 成物を加熱融解した後、発泡させることを特徴とするオ レフィン系熱可塑性エラストマー発泡体の製造方法。

【請求項10】前記ペルオキシド架橋型オレフィン系共 重合体ゴム(α)であるエチレン・α- オレフィン共重 合体ゴム、またはエチレン・α- オレフィン・非共役ジ エン共重合体ゴムを形成するα- オレフィンが、プロビ レンまたは1-ブテンであることを特徴とする請求項9に 記載の発泡体の製造方法。

【請求項11】前記ペルオキシド分解型オレフィン系プ ラスチック(b)が、アイソタクチックポリプロピレン またはプロピレン・ α - オレフィン共重合体であること を特徴とする請求項9または10に記載の発泡体の製造 方法。

【請求項12】前記熱可塑性エラストマー組成物 (A) が、有機ペルオキシドおよびジビニルベンゼンの存在下 で熱処理されて部分的に架橋されていることを特徴とす る請求項9~11のいずれかに記載の発泡体の製造方

【請求項13】前記オレフィン系プラスチック(B) が、アイソタクチックポリプロピレンまたはプロビレン ·α- オレフィン共重合体であることを特徴とする請求

項9~12のいずれかに記載の発泡体の製造方法。

【請求項14】前記発泡剤(C)が、有機あるいは無機 系の熱分解型発泡剤であることを特徴とする請求項9~ 13のいずれかに記載の発泡体の製造方法。

【請求項15】前記発泡性組成物における発泡剤(C) の含有量が、熱可塑性エラストマー組成物 (A) とオレ フィン系プラスチック (B) との合計量100重量部に 対して、0.5~20重量部であることを特徴とする請 求項9~14のいずれかに記載の発泡体の製造方法。

【請求項16】発泡倍率が2倍以上であることを特徴と 10 する請求項9~15のいずれかに記載の発泡体の製造方 法。

【発明の詳細な説明】

[0001]

【発明の技術分野】本発明は、柔軟な感触で、しかも耐 熱性に優れたオレフィン系熱可塑性エラストマー発泡体 およびその製造方法に関する。

[0002]

【発明の技術的背景】従来よりエラストマーの発泡体を 製造する方法として、天然ゴムあるいは合成ゴムに加硫 20 剤と発泡剤を混練した後、この混練物を所定の形状に成 型して加熱することにより加熱と発泡を行なってエラス トマーの発泡体を得るという方法が知られている。

【0003】しかしながら、上記のような方法では、連 続押出しで上記ゴムを所定の形状に成型する場合、予め 配合物をゴムにバッチ的に練り込んで混練物を得る工程 を、連続押出しする前に行なう必要があり、またこの混 練物を押出機に供給し易くするため、予め混練物をリボ ン状に成型する工程を、連続押出しする前に行なう必要 がある。このように上記のような方法では、製造工程が 30 複雑であり、しかも、加硫および発泡工程にかなりの時 間を要することから工業的生産上不利である。

【0004】このような問題を解決する方法として、軟 質オレフィン系プラスチック、たとえばエチレン・酢酸 ビニル共重合体、低密度ポリエチレン等の熱可塑性樹脂 を用いる方法が既に知られている。このような軟質オレ フィン系プラスチックを用いる方法によれば、上述の工 程を省略することができる。

【0005】しかしながら、軟質オレフィン系プラスチ ックは、基本的に、ゴムに比べて耐熱性に劣るため、得 40 られる発泡体の用途が大きく制限されるという問題があ る。一方、軟質オレフィン系プラスチックと加硫ゴムの 中間の性能を示す材料としてオレフィン系共重合体ゴム とオレフィン系プラスチックとからなる部分架橋された 組成物が熱可塑性エラストマーとして使用できること は、たとえば特開昭48~26838号公報、特開昭5 4-112967号公報により公知である。

【0006】しかしながら、これらの熱可塑性エラスト マーにおいては、オレフィン系プラスチック成分は、ペ 時の張力が劣るため、脱泡しやすく、発泡体が得られて もせいぜい1.5倍程度の発泡倍率で、しかも脱泡によ る肌荒れが顕著であるという問題がある。

【0007】したがって、少なくとも発泡倍率が2倍以 上で脱泡による肌荒れがなく、柔軟な感触で、しかも、 耐熱性に優れたオレフィン系熱可塑性エラストマー発泡 体、およびこのような発泡体を簡略化した工程で生産性 よく製造できる方法の出現が望まれている。

[0008]

【発明の目的】本発明は、上記のような従来技術に伴う 問題を解決しようとするものであって、少なくとも発泡 倍率が2倍以上で脱泡による肌荒れがなく、柔軟な感触 で、しかも耐熱性に優れたオレフィン系熱可塑性エラス トマー発泡体を提供すること、および上記のような発泡 体を簡略化した工程で生産性よく製造できる方法を提供 することを目的としている。

[0009]

【発明の概要】本発明に係るオレフィン系熱可塑性エラ ストマー発泡体は、[I]エチレンと炭素原子数が3~ 20の α - オレフィンとからなるエチレン・ α - オレフ イン共重合体ゴム、またはエチレンと炭素原子数が3~ 20のα-オレフィンと非共役ジエンとからなるエチレ ン・α- オレフィン・非共役ジェン共重合体ゴムであ る、ペルオキシド架橋型オレフィン系共重合体ゴム (a) 60~95重量部、および炭素原子数が3~20 のα- オレフィンの含有量が50~100モル%である 単独重合体あるいは共重合体であり、かつ、メルトフロ ーレート (ASTMD-1238-65T, 230℃、2.16kg荷重) が5 ~80g/10分である、ペルオキシド分解型オレフィ ン系プラスチック (b) 5~40重量部 [成分 (a) と (b) との合計量は100重量部とする] からなる混合 物を、有機ペルオキシドの存在下で動的に熱処理して得 られる部分的に架橋された熱可塑性エラストマー組成物 (A) 100重量部と、[II] 炭素原子数が2~20の α- オレフィンの含有量が50~100モル%である単 独重合体あるいは共重合体であり、かつ、メルトフロー レート (ASTMD-1238-65T, 230°C、2.16kg荷重) が 0. 01~2g/10分である、オレフィン系プラスチック (B) 1~20重量部と、[III] <u>発泡剤(C)</u>とから なる発泡性組成物を加熱して得られる発泡体であること を特徴としている。

【0010】また、本発明に係るオレフィン系熱可塑性 エラストマー発泡体の製造方法は、前記発泡性組成物を 加熱融解した後、発泡させることを特徴としている。本 発明に係るオレフィン系熱可塑性エラストマー発泡体お よびその製造方法において、前記ペルオキシド架橋型オ レフィン系共重合体ゴム (a) であるエチレン・α- オ レフィン共重合体ゴム、またはエチレン・α- オレフィ ン・非共役ジエン共重合体ゴムを形成するα- オレフィ ルオキシドの存在下で動的に熱処理した時に分解し溶融 50 ンは、プロビレンまたは1-プテンであることが好まし

【0011】また、前記ペルオキシド分解型オレフィン系プラスチック(b)としては、アイソタクチックポリプロピレンまたはプロピレン・α-オレフィン共重合体が好ましい。

【0012】前記熱可塑性エラストマー組成物 (A) としては、有機ペルオキシドおよびジビニルベンゼンの存在下で熱処理されて部分的に架橋されている熱可塑性エラストマー組成物が好ましい。

【0013】また、前記オレフィン系プラスチック (B) としては、アイソタクチックポリプロピレンまたはプロピレン・ α - オレフィン共重合体が好ましい。前記発泡性組成物における発泡剤 (C) の含有量は、熱可塑性エラストマー組成物 (A) とオレフィン系プラスチック (B) との合計量 100 重量部に対して、通常 0. 5~20 重量部である。

【0014】本発明に係るオレフィン系熱可塑性エラストマー発泡体は、発泡倍率が2倍以上であることが好ましい。

[0015]

【発明の具体的説明】以下、本発明に係るオレフィン系 熱可塑性エラストマー発泡体およびその製造方法につい て具体的に説明する。

【0016】本発明に係るオレフィン系熱可塑性エラストマー発泡体は、特定の部分的に架橋された熱可塑性エラストマー組成物(A)と、特定のオレフィン系プラスチック(B)と、発泡剤(C)とからなる発泡性組成物を加熱して得られる発泡体である。

【0017】まず、これらの発泡性組成物を形成する成分について説明する。

熱可塑性エラストマー組成物(A)

本発明で用いられる熱可塑性エラストマー組成物 (A) は、部分的に架橋された熱可塑性エラストマー組成物 (以下、部分架橋熱可塑性エラストマー組成物と称する場合がある。)であって、ペルオキシド架橋型オレフィン系共重合体ゴム (a) と、ペルオキシド分解型オレフィン系プラスチック (b) とからなる。

【0018】ここに、部分的に架橋された熱可塑性エラストマー組成物(部分架橋熱可塑性エラストマー組成物)とは、オレフィン系熱可塑性エラストマーをベルオキシドと熱反応させた際に生じる分解反応と架橋反応の競争反応において、架橋反応が多い結果、組成物中の重合体の分子量が増大する成分と、分解反応が多い結果、組成物中の重合体の分子量が減少する成分とが共存する熱可塑性エラストマー組成物をいう。

【0019】 [ペルオキシド架橋型オレフィン系共重合体ゴム(α)] 本発明で用いられるペルオキシド架橋型オレフィン系共重合体ゴム(α) は、エチレンと炭素原子数が $3\sim20$ の α -オレフィンとからなる無定形ランダムな弾性共重合体、またはエチレンと炭素原子数が3 50

~20のα-オレフィンと非典役ジェンとからなる無定 形ランダムな弾性共重合体であって、ペルオキシドと混合し、加熱下で混練することによって、架橋して流動性 が低下するか、あるいは流動しなくなるオレフィン系共 重合体ゴムをいう。このようなオレフィン系共重合体ゴム ム(a)として、具体的には、以下のようなゴムが挙げ られる。

(1) エチレン・α- オレフィン共重合体ゴム [エチレン/α- オレフィン (モル比) =約90/10~50/10 50]

(2) エチレン・ α - オレフィン・非共役ジェン共重合 体ゴム [エチレン/ α - オレフィン (モル比) =約90 /10~50/50]

また、上記非共役ジエンとしては、具体的には、ジシクロペンタジエン、1,4-ヘキサジエン、シクロオクタジエン、メチレンノルボルネン、エチリデンノルボルネンなどが挙げられる。これらのうちでは、エチレン・プロピレン・非共役ジエン共重合体ゴム、エチレン・1-ブテン共重合体ゴム、エチレン・1-ブテン共重合体ゴムが好ましく、特にエチレン・プロピレン・非共役ジエン共重合体ゴム、中でもエチレン・プロピレン・エチリデンノルボルネン共重合体ゴムが、適度な架橋構造を有する熱可塑性エラストマー発泡体が得られる点で特に好ましい。

【0020】このオレフィン系共重合体ゴム (a) のムーニー粘度 [ML_{III} , (100°C)] は、10~25 0、特に30~150の範囲内にあることが好ましい。また、このオレフィン系共重合体ゴム (a) のヨウ素価は、25以下であることが好ましい。オレフィン系共重合体ゴム (a) のヨウ素価がこのような範囲にあると、部分的にバランスよく架橋された熱可塑性エラストマー組成物 (A) が得られる。

【0021】上記のようなペルオキシド架橋型オレフィン系共重合体ゴム(a)は、ペルオキシド架橋型オレフィン系共重合体ゴム(a)とペルオキシド分解型オレフィン系プラスチック(b)との合計量100重量部に対して、60~95重量部、好ましくは70~90重量部の割合で用いられる。

【0022】本発明においては、本発明の目的を損なわるい範囲で、ベルオキシド架橋型オレフィン系共重合体ゴム(a)と、ベルオキシド架橋型オレフィン系共重合体ゴム(a)以外のゴムとを組合わせて用いることもできる。このようなベルオキシド架橋型オレフィン系共重合体ゴム(a)以外のゴムとしては、たとえばスチレン・ブタジエンゴム(SBR)、ニトリルゴム(NBR)、天然ゴム(NR)等のジエン系ゴム、シリコンゴムなどが挙げられる。

【0023】 [ペルオキシド分解型オレフィン系プラスチック(b)] 本発明で用いられるペルオキシド分解型オレフィン系プラスチック(b)とは、炭素原子数が3

る点で好ましい。

~200a-オレフィンの含有量が50~100モル% である単独重合体あるいは共重合体であって、ペルオキ シドと混合し、加熱下で混練することによって、熱分解 して分子量を減じ、樹脂の流動性が増加するオレフィン 系のプラスチックをいう。このようなオレフィン系プラ スチック(b)の具体的な例としては、以下のような単 独重合体または共重合体が挙げられる。

- (1)プロピレン単独重合体
- (2) プロピレンと10モル%以下の他のα-オレフィ ンとのランダム共重合体
- (3) プロピレンと30モル%以下の他のα-オレフィ ンとのブロック共重合体
- (4)1-ブテン単独重合体
- (5) 1-ブテンと 10 モル%以下の他の α オレフィン とのランダム共重合体
- (6) 4-メチル-1- ペンテン単独重合体
- (7) 4-メチル-1- ペンテンと 2 0 モル%以下の他のα - オレフィンとのランダム共重合体

上記の α - オレフィンとしては、具体的には、エチレ・ ン、プロピレン、1-ブテン、4-メチル-1- ペンテン、1- 20 ヘキセン、1-オクテンなどが挙げられる。上記のオレフ イン系プラスチック (b) の中でも、プロピレン単独重 合体と、プロピレン含量が50モル%以上のプロピレン ・α- オレフィン共重合体が好ましく、中でも、アイソ タクチックポリプロピレン、プロピレン・α- オレフィ ン共重合体、たとえばプロピレン・エチレン共重合体、・ プロピレン・1-プテン共重合体、プロピレン・1-ヘキセ ン共重合体、プロピレン・4-メチル-1- ペンテン共重合 体などが特に好ましい。

【0024】ペルオキシド分解型オレフィン系プラスチ 30 ック (b) のメルトフローレート (ASTM D-12 38-65T, 230℃、2.16kg荷重) は、5~ 80g/10分、特に5~20g/10分の範囲にある ことが好ましい。

【0025】本発明においては、ペルオキシド分解型オ レフィン系プラスチック (b) は、組成物の流動性の向 上、および耐熱性を向上させる役割をもつ。上記ペルオ キンド分解型オレフィン系プラスチック (b) は、上述 したペルオキシド架橋型オレフィン系共重合体ゴム

- (a) とペルオキシド分解型オレフィン系プラスチック
- (b) との合計量100重量部に対して、5~40重量 部、好ましくは10~30重量部の割合で用いられる。 ペルオキシド分解型オレフィン系プラスチック (b) を 上記割合で用いると、柔軟性に優れた発泡体を提供し得 る、流動性が良好な発泡性組成物が得られる。

【0026】 [その他の成分] 本発明で用いられる発泡 性組成物は、上述したペルオキシド架橋型オレフィン系 共重合体ゴム (a) とペルオキシド分解型オレフィン系 プラスチック(b)の他に、ペルオキシド非架橋型ゴム 状物質(c)を含んでいてもよい。

【0027】このペルオキシド非架橋型ゴム状物質 (c) は、ペルオキシドと混合し、加熱下で混練しても 架橋せず、流動性が低下しない炭化水素系のゴム状物質 であり、具体的には、ポリイソブチレン、ブチルゴム、 プロピレン含量が70モル%以上のプロピレン・エチレ ン共重合体ゴム、プロピレン・1-プテン共重合体ゴムな どが挙げられる。これらの内では、ポリイソブチレン、 ブチルゴムが性能および取扱い上好ましい。特にムーニ 一粘度 [ML,,, (100°C)] が60以下であるポリ 10 イソブチレン、ブチルゴムが、組成物の流動性を改善す

【0028】なお、本発明において「架橋する」とは、 重合体をペルオキシドと熱反応させた際に生じる分解反 応と架橋反応の競争反応において、架橋反応が多い結 果、組成物中の重合体の見かけの分子量が増大する現象 をいい、また、「分解する」とは、分解反応が多い結 果、重合体の見かけの分子量が減少する反応現象をい う。

【0029】上記のペルオキシド非架橋型ゴム状物質 (c) は、必要に応じて、ペルオキシド架橋型オレフィ ン系共重合体ゴム (a) およびペルオキシド分解型オレ フィン系プラスチック (b) の合計量100 重量部に対 して、5~100重量部、好ましくは5~30重量部の 割合で用いられる。

【0030】また、本発明で用いられる発泡性組成物 は、ペルオキシド架橋型オレフィン系共重合体ゴム

- (a)、ペルオキシド分解型オレフィン系プラスチック (b) およびペルオキシド非架橋型ゴム状物質 (c) の 他に、鉱物油系軟化剤 (d) を含んでいてもよい。
- 【0031】このような鉱物油系軟化剤(d)として は、通常ゴムをロール加工する際ゴムの分子間力を弱 め、加工を容易にするとともにカーブンブラック、ホワ イトカーボン等の分散を助け、あるいは加硫ゴムの硬度 を低下せしめて柔軟性を増す目的で使用されている高沸 点の石油留分が挙げられる。この石油留分は、パラフィ ン系、ナフテン系、あるいは芳香族系等に区分されてい る。

【0032】この鉱物油系軟化剤(d)は、ペルオキシ ド架橋型オレフィン系共重合体ゴム (a) およびペルオ キシド分解型オレフィン系プラスチック (b) の合計量 100重量部に対して、5~100重量部、好ましくは 5~80重量部、さらに好ましくは20~40重量部の 割合で用いられる。上記のような割合で鉱物油系軟化剤 (d) を用いると、発泡体の耐熱性、引張特性等の物性 を低下させることなく、発泡性組成物の流動性を十分に 改善することができる。

【0033】本発明においては、上記鉱物油系軟化剤 (d) の他に、本発明の目的を損なわない範囲で、必要 に応じて、他の軟化剤を用いることができる。本発明に 50 おいて必要に応じて用いられる鉱物油系軟化剤 (d) 以

外の軟化剤としては、通常ゴムに使用される軟化剤が適 当であり、具体的には、プロセスオイル、潤滑油、パラ フィン、流動パラフィン、ポリエチレンワックス、ポリ プロピレンワックス、石油アスファルト、ワセリン等の 合成石油系物質;コールタール、コールタールピッチ等 のコールタール類;ヒマシ油、アマニ油、ナタネ油、大 豆油、椰子油等の脂肪油;トール油、蜜ロウ、カルナウ バロウ、ラノリン等のロウ類;リシノール酸、パルミチ ン酸、ステアリン酸、12- 水酸化ステアリン酸、モンタ ン酸、オレイン酸、エルカ酸等の脂肪酸またはその金属 10 塩;石油樹脂、クマロンインデン樹脂、アタクチックポ リプロピレン等の合成高分子;ジオクチルフタレート、 ジオクチルアジペート、ジオクチルセバケート等のエス テル系可塑剤;その他マイクロクリスタリンワックス、 液状ポリブタジエンまたはその変性物あるいは水添物、 液状チオコールなどが挙げられる。

【0034】さらに、本発明で用いられる部分架橋熱可塑性エラストマー組成物(A)中に、必要に応じて、従来公知の耐熱安定剤、耐候安定剤、老化防止剤、帯電防止剤、充填剤、着色剤、滑剤など添加剤を、本発明の目 20的を損なわない範囲で配合することができる。

【0035】 [部分架橋熱可塑性エラストマー組成物

(A) の調製方法] 本発明で用いられる部分架橋熱可塑性エラストマー組成物(A) は、上述したペルオキシド架橋型オレフィン系共重合体ゴム(a) と、ペルオキシド分解型オレフィン系プラスチック(b) と、必要に応じペルオキシド非架橋型ゴム状物質(c)、鉱物油系軟化剤(d)等とを含有するブレンド物を、有機過酸化物の存在下で、動的に熱処理することにより得ることができる。

【0036】上記有機過酸化物としては、具体的には、ジクミルペルオキシド、ジーtert-ブチルペルオキシド、2,5-ジメチル-2,5-ジー(tert-ブチルペルオキシ) ヘキサン、2,5-ジメチル-2,5-ジー(tert-ブチルペルオキシ) ヘキシン-3、1,3-ピス(tert-ブチルペルオキシイソプロピル) ベンゼン、1,1-ピス(tert-ブチルペルオキシー3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ピス(tert-ブチルペルオキシ) パレレート、ベンゾイルペルオキシド、p-クロロベンゾイルペルオキシド、2,4-ジクロロベンゾイルペルオキシド、tert-ブチルペルオキシベンゾエート、tert-ブチルペルオキシイソプロピルカーボネート、ジアセチルペルオキシド、ラウロイルペルオキシド、tert-ブチルペルオキシド、ラウロイルペルオキシド、tert-ブチルペルオキシド、ちゃなどが挙げられる。

【0037】これらの内では、臭気性、スコーチ安定性 の点で、2,5-ジメチル-2,5- ジ- (tert-ブチルベルオギ シ) ヘキサン、2,5-ジメチル-2,5- ジ- (tert-ブチルペ ルオキシ) ヘキシン-3、1,3-ピス (tert- ブチルペルオ キシイソプロビル) ベンゼン、1,1-ピス (tert- ブチル 50

ペルオキシ) -3,3,5- トリメチルシクロヘキサン、n-ブチル-4,4- ピス (tert- ブチルペルオキシ) バレレートが好ましく、中でも、1,3-ピス (tert- ブチルペルオキシイソプロビル) ベンゼンが最も好ましい。

【0038】本発明においては、有機過酸化物は、ペルオキシド架橋型オレフィン系共重合体ゴム (a) とペルオキシド分解型オレフィン系プラスチック (b) との合計量 100 重量%に対して、 $0.05\sim3$ 重量%)好ましくは $0.1\sim2$ 重量%の割合で用いられる。

【0039】本発明においては、上記有機過酸化物による部分架橋処理に際し、硫黄、p-キノンジオキシム、p, p'-ジベンゾイルキノンジオキシム、N-メチル-N-4-ジニトロソアニリン、ニトロソベンゼン、ジフェニルグアニジン、トリメチロールプロパン-N,N'-m-フェニレンジマレイミドのようなペルオキシ架橋用助剤、あるいはジビニルベンゼン、トリアリルシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロバントリメタクリレート、アリルメタクリレートのような多官能性メタクリレートモノマー、ビニルブチラート、ビニルステアレートのような多官能性ビニルモノマーを配合することができる。

【0040】上記のような化合物を用いることにより、 均一かつ緩和な架橋反応が期待できる。特に、本発明に おいては、ジビニルベンゼンが最も好ましい。ジビニル ベンゼンは、取扱い易く、上記の被架橋処理物の主成分 であるペルオキシド架橋型オレフィン系共重合体ゴム (a)、ペルオキシド分解型オレフィン系プラスチック (b)との相溶性が良好であり、かつ、有機過酸化物を 可溶化する作用を有し、有機過酸化物の分散剤として働

可溶化する作用を有し、有機過酸化物の分散剤として働くため、熱処理による架橋効果が均質で、流動性と物性とのバランスのとれた部分架橋熱可塑性エラストマー組成物(A)が得られる。

【0041】本発明においては、上記のような架橋助剤もしくは多官能性ビニルモノマーは、上記の被架橋処理物全体に対して、0.1~3重量%、特に0.3~2重量%の割合で用いるのが好ましい。架橋助剤もしくは多官能性ビニルモノマーの配合割合が上記範囲にあると、得られる部分架橋熱可塑性エラストマー組成物(A)

は、架橋助剤および多官能性ビニルモノマーがエラストマー中に未反応のモノマーとして残存することがないため、加工成形の際に熱履歴による物性の変化が生じることがなく、しかも、流動性に優れている。

【0042】上記の「動的に熱処理する」とは、上記のような各成分を融解状態で混練することをいう。動的な熱処理は、解放型のミキシングロール、非解放型のバンバリーミキサー、ニーダー、一軸または二軸押出機、連続ミキサーなどの混練装置を用いて行なわれるが、非開放型の混練装置中で行なうことが好ましい。また、動的な熱処理は、窒素、炭酸ガス等の不活性ガス雰囲気下で

行なうことが好ましい。

【0043】また、混練は、使用する有機ペルオキシドの半減期が1分未満となる温度で行なうのが望ましい。 混練温度は、通常 $150\sim280$ で、好ましくは、 $170\sim240$ でであり、混練時間は、 $1\sim20$ 分間、好ましくは $1\sim5$ 分間である。また、混練の際に加えられる剪断力は、通常、剪断速度で $10\sim10$ 'sec'、好ましくは10 '10 'sec'、好ましくは10 '10 'sec'の範囲内で決定される

【0044】本発明において前記各成分を混合および混 10 練する際の好ましい方法としては、ペルオキシド架橋型オレフィン系共重合体ゴム(a)と、ペルオキシド分解型オレフィン系プラスチック(b)と、必要に応じてペルオキシド非架橋型ゴム状物質(c)、鉱物油系軟化剤

(d)等とを予め混合し、均一に混練してベレット化して後、得られたペレットと、ジビニルベンゼンに溶解させた有機ベルオキシドと、必要であれば、更に架橋助剤、加硫促進剤等とをタンブラー型ブラベンダー、ソ型ブラベンダー、ヘンシェルミキサー等の公知の混練機で好ましくは50℃以下の温度で均一に混合し、次に前記 20所定の条件下で混練する方法を採用することが望ましい。

【0045】上記のようにしてベルオキシド架橋型オレフィン系共重合体ゴム(a)が部分的に架橋された熱可塑性エラストマー組成物(A)が得られる。なお、本発明において、熱可塑性エラストマー組成物が部分的に架橋されたとは、下記の方法で測定したゲル含量が10重量%以上、好ましくは20~97重量%、特に好ましくは30~97重量%の範囲内にある場合をいう。

[ゲル含量の測定法] 熱可塑性エラストマー組成物の試 30 料を約100mg秤量し、これを0.5mm×0.5m m×0.5mmの細片に裁断し、次いで、得られた細片 を密閉容器中にて30mlのシクロへキサンけ、23℃ で48時間浸漬する。

【0046】次に、この試料を濾紙上に取り出し、室温で72時間以上、恒量になるまで乾燥する。この乾燥残渣の重量から、ポリマー成分以外のシクロヘキサン不溶性成分(繊維状フィラー、充填剤、顔料等)の重量を減じた値を、「補正された最終重量(Y)」とする。

【0047】一方、試料の重量から、ポリマー成分以外 40 のシクロヘキサン可溶性成分 (たとえば軟化剤) の重量、およびポリマー成分以外のシクロヘキサン不溶性成分 (繊維状フィラー、充填剤、顔料等) の重量を減じた値を、「補正された初期重量 (X)」とする。

【0048】ここに、ゲル含量 (シクロヘキサン不溶解分) は、次の式で求められる。

ゲル含量 [重量%] = [補正された最終重量 (Y) /補正された初期重量 (X)] \times 100

<u>オレフィン系プラスチック(B)</u>

本発明で用いられるオレフィン系プラスチック (B)

は、炭素原子数が $2\sim20$ の α - オレフィンの含有量が $50\sim100$ モル%である単独重合体あるいは共重合体 であって、具体的には、以下のような単独重合体または 共重合体が挙げられる。

- (1) エチレン単独重合体(製法は、低圧法、高圧法のいずれでも良い)
- (2) エチレンと、10 モル%以下の他の α オレフィンまたは酢酸ビニル、エチルアクリレート等のビニルモノマーとの共重合体
- (3) プロピレン単独重合体
- (4) プロピレンと 10 モル%以下の他の α オレフィンとのランダム共重合体
- (5) プロピレンと 30 モル%以下の他の α オレフィンとのブロック共重合体
- (6) 1-ブテン単独重合体
- (7) 1-ブテンと 1 0 モル%以下の他の α オレフィン とのランダム共重合体
- (8) 4-メチル-1- ペンテン単独重合体
- (9) 4-メチル-1- ペンテンと 2 0 モル%以下の他のαオレフィンとのランダム共重合体

上記の α - オレフィンとしては、具体的には、エチレン、プロピレン、1-ブテン、4-メチル-1- ペンテン、1- ヘキセン、1-オクテンなどが挙げられる。

【0049】上記のオレフィン系プラスチックの中でも、プロビレン単独重合体と、プロビレン含量が50モル%以上のプロビレン・ α -オレフィン共重合体が特に好ましい。

【0050】上記のようなオレフィン系プラスチック (B) は、単独で、あるいは組合わせて用いることができる。オレフィン系プラスチック (B) は、メルトフローレート (MFR; ASTMD 1238、230℃、2.16kg荷重)が好ましくは $0.01\sim28/10$ 分、さらに好ましくは $0.02\sim28/10$ 分の範囲にある。

【0051】上記のようなメルトフローレートを有するオレフィン系プラスチック(B)を用いると、得られる発泡性組成物のメルトテンションを向上させことができ、高発泡倍率の発泡体を得ることができる。

【0052】オレフィン系プラスチック(B)は、前記部分架橋熱可塑性エラストマー組成物(A)100重量部に対して、 $1\sim20$ 重量部、好ましくは $1\sim10$ 重量部の割合で用いられる。上記のような割合でオレフィン系プラスチック(B)を用いると、柔軟性に優れた高発泡倍率の発泡体が得られるため好ましい。

【0053】また、本発明においては、オレフィン系プラスチック(B)は、部分架橋熱可塑性エラストマー組成物(A)を調製した後、添加するのが特徴である。部分架橋熱可塑性エラストマー組成物(A)の調製の際に、この組成物(A)を構成するペルオキシド架橋型オレフィン系共重合体ゴム(a)等の諸成分に、オレフィ

ン系プラスチック (B) を添加して、ペルオキシドと混合し、加熱下で混練すると、オレフィン系プラスチック

- (B) の種類によっては、オレフィン系プラスチック
- (B) が熱分解して分子量を減じ、または熱により架橋 してゲル化し、目的とする発泡体が得られない。 【0054(発泡剤(C)

本発明で用いられる発泡剤(C)としては、有機系および無機系の熱分解型発泡剤;水;炭化水素系、フロン系等の溶剤(窒素、二酸化炭素、プロパン、ブタン等の気体があるが、熱分解型発泡剤が好ましい。

【0055】熱分解型の発泡剤としては、具体的には、炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素アンモニウム、炭酸アンモニウム、亜硝酸アンモニウム等の無機発泡剤;N,N'-ジメチル-N,N'-ジニトロソテレフタルアミド、N,N'-ジニトロソペンタメチレンテトラミン等のニトロソ化合物;アゾジカルボンアミド、アゾピスイソブチロニトリル、アゾシカロヘキシルニトリル、アゾジアミノベンゼン、バリウムアゾジカルボキシレート等のアゾ化合物;ベンゼンスルホニルヒドラジド、P,p'-オキシピス(ベンゼンスルホニルヒドラジド、p,p'-オキシピス(ベンゼンスルホニルヒドラジド等のスルホニルヒドラジド化合物;カルシウムアジド、4,4'-ジフェニルジスルホニルアジド、p-トルエンスルホニルアジド等のアジド化合物などが挙げられる。

【0056】これらの発泡剤(C)は、部分架橋熱可塑性エラストマー組成物(A)とオレフィン系プラスチック(B)との合計量100重量部に対して、 $0.5\sim2$ 0重量部、好ましくは $1\sim10$ 重量部の割合で用いられる。

【0057】また、必要に応じて発泡助剤を加えることもでき、発泡助剤としては、亜鉛、カルシウム、鉛、鉄、バリウム等の金属化合物、サリチル酸、フタル酸、ステアリン酸等の有機酸、あるいは尿素またはその誘導体などが用いられる。発泡助剤は、発泡剤の分解温度の低下、分解促進、気泡の均一化などの働きを示す。

【0058】その他の成分

本発明においては、発泡性組成物中に、必要に応じて、 公知の充填剤、耐熱安定剤、老化防止剤、耐候安定剤、 帯電防止剤、金属セッケン、ワックス等の滑剤、顔料、 染料、核剤、難燃剤、ブロッキング防止剤などの添加剤 を、本発明の目的を損なわない範囲で、添加することが できる。

【0059】上記充填剤としては、通常ゴムに使用される充填剤が適当であり、具体的には、炭酸カルシウム、珪酸カルシウム、クレー、カオリン、タルク、シリカ、けいそう土、雲母粉、アスベスト、硫酸バリウム、硫酸アルミニウム、硫酸カルシウム、炭酸マグネシウム、二硫化モリブデン、ガラス繊維、ガラス球、シラスバルーン、グラファイト、アルミナなどが挙げられる。

【0060】これらの充填剤は、部分架橋熱可塑性エラストマー組成物(A)とオレフィン系プラスチック

(B) との合計量100重量部に対して、 $0\sim40$ 重量部、好ましくは $1\sim30$ 重量部の割合で用いられる。

【0061】また、本発明において必要に応じて用いられる公知の耐熱安定剤、老化防止剤、耐候安定剤としては、フェノール系、サルファイト系、フェニルアルカン系、フォスファイト系、アミン系安定剤などが挙げられる。

10 【0062】<u>オレフィン系熱可塑性エラストマー発泡体</u> の調製

本発明に係るオレフィン系熱可塑性エラストマー発泡体を調製するに際して、まず、ペルオキシド架橋型オレフィン系共重合体ゴム(a) およびペルオキシド分解型オレフィン系プラスチック(b) 等の各成分を特定の割合で配合した混合物を、有機ペルオキシドの存在下で動的に熱処理して部分架橋熱可塑性エラストマー組成物

(A)を調製する。この組成物(A)の調製方法の詳細は、既に上述した通りである。次に、上記のようにして 得られた部分架橋熱可塑性エラストマー組成物(A) に、オレフィン系プラスチック(B)および発泡剤

(C)を上述した特定の割合で、および必要であれば更に発泡助剤、湿潤剤等の配合物を配合し、発泡性組成物を調製する。

【0063】ここで、オレフィン系プラスチック(B)と発泡剤(C)は別々に混合してもよく、まず部分架橋熱可塑性エラストマー組成物(A)にオレフィン系プラスチック(B)を配合し、その後発泡剤(C)を混合することができるし、またこの混合の順序を逆にしてもよ30い。

【0064】なお、熱可塑性エラストマー組成物(A)を調製する際にオレフィン系プラスチック(B)および/または発泡剤(C)を混合すると、目的とする発泡体を得ることはできない。熱可塑性エラストマー組成物

(A) を調製する際に、オレフィン系プラスチック

(B) および/または発泡剤(C) を混合すると、オレフィン系プラスチック(B)の種類によっては動的に熱処理する際にオレフィン系プラスチック(B)が分解またはゲル化し、目的の発泡体を得るために必要な溶融粘 度が大きく外れたり、発泡剤(C)が分解してガス抜けしたりする。

【0065】熱可塑性エラストマー組成物(A)、オレフィン系プラスチック(B)および発泡剤(C)を配合する際の方法としては、たとえば熱可塑性エラストマー組成物(A)のペレット、オレフィン系プラスチック

(B) および発泡剤(C) を一旦タンブラー型ブラベンダー、V型ブラベンダー、リボンブレンダー、ヘンシェルミキサー等で混練した後、必要であれば解放型のミキシングロールや非解放型のバンバリーミキサー、押出50 機、ニーダー、連続ミキサー等で混練する方法を挙げる

15 يم نصب

ことができる。

【0066】耐候安定剤、耐熱安定剤、老化防止剤、着色剤等は、前記工程のいずれの段階において配合してもよい。次に、上記のようにして得られた発泡性組成物から発泡体を調製する方法としては、従来より発泡成形品を得るために用いられている押出成形、プレス成形、射出成形、カレンダー成形等の各種の成形方法を採用することができる。

【0067】 押出成形方法 より発泡体を調製する方法としては、たとえば上述した発泡性組成物を押出機で溶 10融し、ダイから押し出すとともに発泡させて発泡体を成形したり、あるいは押出機中で発泡させた組成物をダイから押し出して発泡体を成形する方法がある。押出時の樹脂温度は110~250℃の範囲が好ましい。

【0068】また、グレス成形方法により発泡体を調製する方法としては、たとえば上述した発泡性組成物のペレットをプレス成形機の加熱した金型内に挿入し、型圧をかけながら、もしくは型圧をかけることなく、組成物を溶融させた後発泡せしめて発泡体を成形する方法がある。金型の温度は110~250℃の範囲が好ましい。【0069】射出成形方法により発泡体を調製する方法としては、たとえば上述した発泡性組成物を射出成形機で加熱溶融した後、ノズル先端部で発泡せしめるようして金型内に射出し、発泡体を成形する方法がある。射出時の樹脂温度は110~250℃の範囲が好ましい。

【0070】上記のような本発明に係る製造方法により得られた発泡体は、ペルオキシド架橋型オレフィン系共重合体ゴム(a)部が部分的に架橋されているため、耐熱性、引張特性、柔軟性、耐候性、反発弾性等のゴム的性質が優れており、また加硫ゴムに較ベリサイクルにも30適している。

[0071]

【発明の効果】本発明に係るオレフィン系熱可塑性エラストマー発泡体は、発泡倍率が2倍以上で脱泡による肌荒れがなく、柔軟な感触で、しかも耐熱性、耐候性に優れている。

【0072】本発明に係るオレフィン系熱可塑性エラストマー発泡体の製造方法によれば、上記のような効果を有するオレフィン系熱可塑性エラストマー発泡体を簡略化した工程で生産性よく製造することができる。

【0073】本発明に係るオレフィン系熱可塑性エラストマー発泡体の用途としては、ウェザーストリップスポンジ、ボディバネル、ステアリングホイール、サイドシールド等の自動車部品;靴底、サンダル等の履物;電線被覆、コネクター、キャッププラグ等の電気部品;上水板、騒音防止壁等の土木資材;ゴルフクラブグリップ、野球バットグリップ、水泳用フィン、水中眼鏡等のレジャー用品;ガスケット、防水布、ガーデンホース、ベルト等の雑品が挙げられる。

【0074】以下、本発明を実施例により説明するが、

本発明は、これらの実施例に限定されるものではない。 なお、実施例における発泡体の成形および基礎物性の評 価は、以下の方法により行った。

16

(試験方法)

【0075】(1)押出成形

下記の装置条件でチューブ状発泡体および平板状発泡体を押出成形した。

成形機: 40mm ø押出機 [東芝機械 (株) 製]

シリンダー最高温度:200℃

10 ダイ温度:150℃

ダイ:ストレートダイ

・チューブ状発泡体:ダイ/コア=12.5mm/10.0mm

·平板状発泡体:縱/橫=2mm/15mm

引き取り速度:8 m/分

【0076】(2)基本物性

上記(1)押出成形法によって得たチューブ状発泡体および平板状発泡体から試験片を切削し、発泡倍率を下記の方法により求めるとともに、これらの発泡体の外観、 20 感触および発泡の均一性を下記の方法により評価した。

a) 発泡倍率:未発泡品の密度0.88g/cm'を、 発泡体の見かけ密度で除した値を発泡倍率とした。

【0077】b) 発泡体外観(表面肌):脱泡による表面の凹凸の有無について観察し、発泡体の外観の評価を次の5段階で評価した。表面が殆ど平滑なものを5、表面の凹凸が散在するものを3、表面が脱泡により著しく荒れているものを1とし、表面の状態が5と3の中間にあるものを4、表面の状態が3と1の中間にあるものを2で示した。

【0078】c) 感触:チューブ状の発泡体を押してみて加硫ゴムスポンジライクな柔軟な感触が得られたものを5、樹脂ライクな硬い感触が得られたものを1とし、その中間の感触が得られたものを柔軟な感触が得られたものからそれぞれ4、3、2で示した。

【0079】d)発泡の均一性:発泡体の切断面を目視観察し、泡の大きさと形のバラツキで評価した。泡の大きさと形が共に極めて均一なものを◎とし、泡がつながって大きくなった泡や、泡中のガスが抜けて偏平形状となったりして泡の大きさと形が共に極めてバラツキの大もいものを×とし、中間のものを○、△の順序で示した。

[0080]

【実施例1】エチレン含量が63モル%、ヨウ素価が13、ムーニー粘度[ML,, (100℃)が100であるエチレン・プロピレン・5-エチリデン-2-ノルボルネン共重合体ゴム(a)(以下、EPDM(a)と略す)70重量部と、メルトフローレート(ASTM-D-1238-65, T,230℃、2.16kg荷重)が50g/10分、密度が0.91g/cm³であるポリプロピレン(b)(以下、PP-10(b)と略す)30重量部と、不飽和度が0.

5%、ムーニー粘度 [M L,,, (100℃)] が40で あるブチルゴム (c) (以下、IIR (c) と略す) 3 0重量部と、ナフテン系プロセスオイル (d) (以下、 オイル (d) と略す;商品名 サンセン4240、日本 サンオイル社製]50重量部とを、バンバリーミキサー により窒素雰囲気下、180℃で5分間混練した後、シ ーティングロールに通し、シートカッターによりペレッ トを製造した。

【0081】次いで、上記のようにして得られたペレッ ト180重量部と、1,3-ビス (tert- ブチルペルオキシ 10 イソプロビル)ベンゼン0.3重量部をジビニルベンゼ ン0.5重量部に溶解分散させた溶液とをタンプラーブ レンダーにより混合し、この溶液をペレット表面に均一 に付着させた。

【0082】次いで、このペレットを、押出機を用いて 窒素雰囲気下21.0℃で押し出して動的な熱処理を行な い、ゲル含量が32%である部分架橋熱可塑性エラスト マー組成物(み)を得た。

【0083】上記のようにして得られた部分架橋熱可塑 性エラストマー組成物 (A) 100重量部と、メルトフ ローレート (ASTM-D-1238-65T, 230℃、2.16kg荷重) が 0.3g/10分、密度が0.91g/cm¹ であるポ リプロビレン (B) (以下、PP-20 (B) と略す) 5重量部と、アゾジカルボンアミド(C)1.5重量部 とを、タンブラーブレンダーにより混合した後、前記 (1) の方法により押出成形し、得られた発泡体の評価 を上述した方法に従って行なった。結果を第1表に示

[0084]

【実施例2】実施例1において、実施例1で用いたEP 30 DM(a)の代わりにエチレン含量が72モル%、ムー 二一粘度 「M L₁₁, (100°C)] が80であるエチレ ン・プロピレン共重合体ゴム(a)(以下、EPM (a) と略す) を70重量部用いた以外は、実施例1と 同様に行なった。上記のようにして得られた部分架橋熱 可塑性エラストマー組成物 (A) のゲル含量は35%で あった。結果を第1表に示す。

[0085]

【実施例3】実施例1において、実施例1で用いたPP - 10 (b) の代わりにメルトフローレート (ASTM-D-1 40) 238-65T, 230℃、2.16kg荷重) が10g/10分、密度 が0.91g/cm'であるポリプロピレン(b)(以 下、PP-11 (b)と略す)を30重量部用いた以外 は、実施例1と同様に行なった。上記のようにして得ら れた部分架橋熱可塑性エラストマー組成物(A)のゲル 含量は34%であった。結果を第1表に示す。

[0086]

【実施例4】実施例1において、実施例1のEPDM (a)、PP-10(b) およびをIIR(c) の配合 量をそれぞれ85重量部、15重量部、0重量部とした 50 -1238-65T, 230℃、2.16kg荷重)が4.0g/10分、

以外は、実施例1と同様に行なった。上記のようにして 得られた部分架橋熱可塑性エラストマー組成物(A)の ゲル含量は48%であった。結果を第1表に示す。

[0087]

【実施例5】実施例1において、実施例1のPP-20 (B) の配合量を15重量部とした以外は、実施例1と 同様に行なった。結果を第1表に示す。

[0088]

【実施例6】実施例1において、実施例1で使用したP P-20 (B) の代わりにメルトフローレート (ASTM-D -1238-65T, 230℃、2.16kg荷重) が1.0g/10分、 密度が0.91g/cm'であるポリプロピレン(B) (以下、PP-21 (B) と略す) を5重量部用いた以 外は、実施例1と同様に行なった。結果を第1表に示 す。

[0089]

【実施例7】実施例1において、実施例1で使用したP P-20 (B) 5重量部の代わりにメルトフローレート (ASTM-D-1238-65T, 230℃、2.16kg荷重) が 0.05g /10分、密度が0.91g/cm¹ であるポリプロビ レン (B) (以下、PP-22 (B) と略す) を1.5 重量部用いた以外は、実施例1と同様に行なった。結果 を第1表に示す。

[0090]

【実施例8】実施例1において、実施例1で使用したP P-20 (B) の代わりにメルトフローレート (ASTM-D -1238-65T, 230℃、2.16kg荷重)が0.2g/10分、 密度が0.91g/cm'のポリブテン(B)(以下、 PB(B)と略す)を5重量部用いた以外は、実施例1 と同様に行なった。結果を第1表に示す。

[0091]

【実施例9】実施例1において、実施例1で使用したア ゾジカルボンアミド (C) 1.5重量部の代わりに炭酸 水素ナトリウム (C) を2.0重量部用いた以外は、実 施例1と同様に行なった。結果を第1表に示す。

[0092]

【実施例10】実施例1において、実施例1で使用した アゾジカルボンアミド (C) 1.5重量部の代わりに炭 酸水素ナトリウム (C) を1.0重量部用いた以外は、 実施例1と同様に行なった。結果を第1表に示す。

[0093]

【比較例1】実施例1において、実施例1のEPDM (a) およびPP-10 (b) の配合量をともに50重 量部とした以外は、実施例1と同様に行なった。上記の ようにして得られた部分架橋熱可塑性エラストマー組成 物のゲル含量は2.3%であった。結果を第1表に示す。 [0094]

【比較例2】実施例1において、実施例1で使用したP P-20 (B) の代わりにメルトフローレート (ASTM-D

. . . 19

密度が0.91g/cm² のポリプロピレン (B) (以下、PP-23 (B) と略す)を5重量部用いた以外は、実施例1と同様に行なった。結果を第1表に示す。【0095】

【比較例3】実施例1において、実施例1で使用したPP-20(B)を用いなかった以外は、実施例1と同様に行なった。結果を第1表に示す。

[0096]

【比較例4】実施例1において、実施例1で使用したP P-20(B)の配合量を30重量部にした以外は、実 10 施例1と同様に行なった。結果を第1表に示す。

[0097]

【比較例5】実施例1において、実施例1で使用したPP-20(B)5重量部を、部分架橋熱可塑性エラストマー組成物(A)を調製する際の動的な熱処理を行なう前の混合物に加え、かつ、熱可塑性エラストマー組成物調製後はPP-20(B)を使用しなかった以外は、実施例1と同様に行なった。上記のようにして得られた部分架橋熱可塑性エラストマー組成物のゲル含量は32%であった。結果を第1表に示す。

[0098]

【表1】

第1岁

	56 T 5K														
		2	3	実		E C	M					比	較	69	r =
(37) A (34)	 	<u> </u>	3	4	5	в	7	8	9	10	1	2	3	4	5
<配合 [重量部] > 熱可塑性15ストマー組成物(A) EPDM(a)	70		70	85	70	70	70	70	70	70	50	70	70	70	70
EPH(a)	'`	70	,,,		. "	10	'*	'"	"	10	טט	10	70	10	"
PP-10(b)	30	30		15	- 30	30	30	30	30	30	50	30	30	30	30
PP-11(b)			30			, , -			"-	**	"	"		00	"
1 IR(c)	30	30	30		30	30	30	30	30	30	30	30	30	30	30
11h(d)	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
オレフィン系プラスチック PP-20(B)															5
オレフィン系プラスチック(B) PP−20(B)	5	5	5	5.	15				5	5	5			30	
PP-21 (B) PP-22 (B)						5	1.5								
PP-23(B) PB(B)					.,		1, 0	- 5				5			
発泡剤(C)		F			<u></u>			9		 -					L
7ツ゚シ゚カル ホ ゚ンアミド(C)	1. 5	1.5	1. 5	1.5	1. 5	1.5	1.5	1.5			1.5	1.5	1. 5	1.5	1.5
皮酸水渠ナトリウム(C)	ļ								2.0	1.0		•			
<評価結果>								1							
発泡倍率 [倍]	26	2. 3	2. 5	2.7	2.9	2. 0	2. 5	2. 2	2.3	2.1	1.6	1.4	1. 4	2. 2	1.5
表面肌	4	4	5	4	5	3	5	4	4	5	2	2	2	4	2
	4	4	4	5	3	3	5	5	4	4	1	2	3	1	3
発泡の均一性	0		Q	<u> </u>	0	Q_	0	Q	LQ.	Q	×		Δ	0	Δ

(註) 比較例5: PP-20(B)は熱可塑性エラストマー組成物中に配合した。

THIS PAGE BLANK (USPTO)