Explorative Datenanalyse und Punktvorhersage von Windenergie

Basis

- SCADA-Daten aus Windparks in Großbritannien (Kelmarsh und Penmanshiel)
- Zeitraum: 2016 Mitte 2021, 10-Minuten-Auflösung
- Enthaltene Daten:
 - Meteorologische Daten (Windgeschwindigkeit, Windrichtung)
 - Technische Daten (Rotordrehzahl, Öltemperatur)
 - Statusmeldungen (Wartungen, Ausfälle)

Aufbereitung

- Fehlende Werte naiv interpoliert (linear)
- Negative Leistungswerte auf null gesetzt
- Ausfälle und Wartungen bereinigt
- Diskrepanz zwischen Windrichtung und Ausrichtung der Windturbine bereinigt

Aufbereitung

Analyse

- Nichtlinearer Zusammenhang
- Grund:
 - Gegebenheiten der Windturbine
 - Einschaltgeschwindigkeit
 - Nenngeschwindigkeit
 - Abschaltgeschwindigkeit

Daten Analyse

Analyse

Modelle

- Forecasts
 - Zeitreihenvorhersagen
 - Zukünftige Leistung vorhersagen anhand von historischen Leistungsdaten
 - 6 Schritte (1 Stunde) wurden vorhergesagt
- Nowcasts
 - Leistung anhand der Windgeschwindigkeit zum selben Zeitpunkt bestimmen

Modelle

- Forecasts:
 - ARIMA, Prophet, Random Forest und XGBoost
- Nowcasts:
 - SARIMAX, GAM, Random Forest, Gradient Boosting und XGBoost
 - An Leistungskurve angepasste S-Kurve als Baselinemodell

Baselinemodell

- Logistische Funktion
- Maximalwert auf 2050 kW festgelegt
- Restlichen Parameter mit SciPy-Bibliothek angepasst

Nowcast Ergebnisse

Nowcast Ergebnisse

Nowcasts

Modell	RMSE	MAD	SMAPE (%)	Bias
SARIMAX	247.65	119.74	58.6	49.93
GAM	138.53	30.77	39.99	-2.46
Random Forest	142.37	31.58	41.26	-5.43
Gradient Boosting	141.25	32.51	40.67	-5.18
XGBoost	141.24	31.76	40.64	-5.33
S-Kurve	147.13	41.63	42.29	12.18

Forecast Ergebnisse

Forecast Ergebnisse

Forecasts

Model	RMSE	MAD	SMAPE (%)	Bias
ARIMA	143.61	124.68	44.39	6.66
Prophet	190.93	165.18	68.79	80.81
XGBoost	201.36	169.83	63.51	-4.2
Random Forest	208.22	178.07	64.35	-11.18

Diskussion

Erkenntnisse

- SCADA-Daten sehr hilfreich um ein besseres Verständnis der Daten zu erlangen und Ausreißer bereinigen zu können
- Nowcasts funktionieren sehr gut (Modelle lernen den Zusammenhang zwischen Leistung und Windgeschwindigkeit gut)
 - Nur Probleme bei Ausfällen der Windturbinen
- Forecasts anhand der historischen Leistungsdaten sind, aufgrund der stochastischen Natur des Windes, in der Genauigkeit begrenzt

Diskussion

Ausblick

- Weitere Datenbereinigung durch Methoden wie "Edge Detection" um alle Ausreißer zu bereinigen
- Berücksichtigung von regelmäßigen Wartungen für die Nowcasts
- Forecasts mit hybriden Ansätzen
- Physikalische Modelle verwenden (Numerische Wettermodelle)

Vielen Dank für Eure Aufmerksamkeit!