Relacion Masa Radio para exoplanetas

Calculos para reproducir resultados de https://arxiv.org/abs/2311.12593v2

In[*]:= header = exopl[[1]]

Out[*]= {rowid, pl_name, hostname, pl_letter, hd_name, hip_name, tic_id, gaia_id, default_flag, sy_snum, sy_pnum, sy_mnum, cb_flag, discoverymethod, disc_year, disc_refname, disc_pubdate, disc_locale, disc_facility, disc_telescope, disc_instrument, rv_flag, pul_flag, ptv_flag, tran_flag, ast_flag, obm_flag, micro_flag, etv_flag, ima_flag, dkin_flag, soltype, pl_controv_flag, pl_refname, pl_orbper, pl_orbpererr1, pl_orbpererr2, pl_orbperlim, pl_orbsmax, pl_orbsmaxerr1, pl_orbsmaxerr2, pl_orbsmaxlim, pl_rade, pl_radeerr1, pl_radeerr2, pl_radelim, pl_radj, pl_radjerr1, pl_radjerr2, pl_radjlim, pl_masse, pl_masseerr1, pl_masseerr2, pl_masselim, pl_massj, pl_massjerr1, pl_massjerr2, pl_massjlim, pl_msinie, pl_msinieerr1, pl_msinieerr2, pl_msinielim, pl_msinij, pl_msinijerr1, pl_msinijerr2, pl_msinijlim, pl_cmasse, pl_cmasseerr1, pl_cmasseerr2, pl_cmasselim, pl_cmassj, pl_cmassjerr1, pl_cmassjerr2, pl_cmassjlim, pl_bmasse, pl_bmasseerr1, pl_bmasseerr2, pl_bmasselim, pl_bmassj, pl_bmassjerr1, pl_bmassjerr2, pl_bmassjlim, pl_bmassprov, pl_dens, pl_denserr1, pl_denserr2, pl_denslim, pl_orbeccen, pl_orbeccenerr1, pl_orbeccenerr2, pl_orbeccenlim, pl_insol, pl_insolerr1, pl_insolerr2, pl_insollim, pl_eqt, pl_eqterr1, pl_eqterr2, pl_eqtlim, pl_orbincl, pl_orbinclerr1, pl_orbinclerr2, pl_orbincllim, pl_tranmid, pl_tranmiderr1, pl_tranmiderr2, pl_tranmidlim, pl_tsystemref, ttv_flag, pl_imppar, pl_impparerr1, pl_impparerr2, pl_impparlim, pl_trandep, pl_trandeperr1, pl_trandeperr2, pl_trandeplim, pl_trandur, pl_trandurerr1, pl_trandurerr2, pl_trandurlim, pl_ratdor, pl_ratdorerr1, pl_ratdorerr2, pl_ratdorlim, pl_ratror, pl_ratrorerr1, pl_ratrorerr2, pl_ratrorlim, pl_occdep, pl_occdeperr1, pl_occdeperr2, pl_occdeplim, pl_orbtper, pl_orbtpererr1, pl_orbtpererr2, pl_orbtperlim, pl_orblper, pl_orblpererr1, pl_orblpererr2, pl_orblperlim, pl_rvamp, pl_rvamperr1, pl_rvamperr2, pl_rvamplim, pl_projobliq, pl_projobliqerr1, pl_projobliqerr2, pl_projobliqlim, pl_trueobliq, pl_trueobliqerr1, pl_trueobliqerr2, pl_trueobliqlim, st_refname, st_spectype, st_teff, st_tefferr1, st_tefferr2, st_tefflim, st_rad, st_raderr1, st_raderr2, st_radlim, st_mass, st_masserr1, st_masserr2, st_masslim, st_met, st_meterr1, st_meterr2, st_metlim, st_metratio, st_lum, st_lumerr1, st_lumerr2, st_lumlim, st_logg, st_loggerr1, st_loggerr2, st_logglim, st_age, st_ageerr1, st_ageerr2, st_agelim, st_dens, st_denserr1, st_denserr2, st_denslim, st_vsin, st_vsinerr1, st_vsinerr2, st_vsinlim, st_rotp, st_rotperr1, st_rotperr2, st_rotplim, st_radv, st_radverr1, st_radverr2, st_radvlim, sy_refname, rastr, ra, decstr, dec, glat, glon, elat, elon, sy_pm, sy_pmerr1, sy_pmerr2, sy_pmra, sy_pmraerr1, sy_pmraerr2, sy_pmdec, sy_pmdecerr1, sy_pmdecerr2, sy_dist, sy_disterr1, sy_disterr2, sy_plx, sy_plxerr1, sy_plxerr2, sy_bmag, sy_bmagerr1, sy_bmagerr2, sy_vmag, sy_vmagerr1, sy_vmagerr2, sy_jmag, sy_jmagerr1, sy_jmagerr2, sy_hmag, sy_hmagerr1, sy_hmagerr2, sy_kmag, sy_kmagerr1, sy_kmagerr2, sy_umag, sy_umagerr1, sy_umagerr2, sy_gmag, sy_gmagerr1, sy_gmagerr2, sy_rmag, sy_rmagerr1, sy_rmagerr2, sy_imag, sy_imagerr1, sy_imagerr2, sy_zmag, sy_zmagerr1, sy_zmagerr2, sy_w1mag, sy_w1magerr1, sy_w1magerr2, sy_w2mag, sy_w2magerr1, sy_w2magerr2, sy_w3mag, sy_w3magerr1, sy_w3magerr2, sy_w4mag, sy_w4magerr1, sy_w4magerr2, sy_gaiamag, sy_gaiamagerr1, sy_gaiamagerr2, sy_icmag, sy_icmagerr1, sy_icmagerr2, sy_tmag, sy_tmagerr1, sy_tmagerr2, sy_kepmag, sy_kepmagerr1, sy_kepmagerr2, rowupdate, pl_pubdate, releasedate, pl_nnotes, st_nphot, st_nrvc, st_nspec, pl_nespec, pl_ntranspec, pl_ndispec}

```
In[@]:= Position[header, "pl_masse"]
Out[\circ]= \{ \{ 51 \} \}
In[*]:= header [51]
Out[*]= pl_masse
In[*]:= Position[header, "pl_rade"]
      posición
Out[*]= { {43}}
In[*]:= header [43]
Out[*]= pl_rade
In[*]:= datMR = Select[Rest@exopl, (NumberQ[#[43]]] && NumberQ[#[51]]]) &] [All, {51, 43}]];
               Lselecc· · Ltodos excepto e· · L¿número?
In[ • ]:= Length@datMR
      longitud
Out[*]= 2798
In[*]:= ListLogLogPlot[datMR, Frame → True]
      representación log log de lista marco
       50
Out[ • ]=
             0.1
                                  10
                                            100
                                                      1000
                                                                10^{4}
```

Masa Baja

Masa Intermedia

```
ln[*]:= interMR = Select[datMR, 4.4 \leq \#[1] \leq 127. \&];
                  selecciona
In[@]:= Length@bajaMR
      longitud
Out[*]= 290
```

Out[-]= 0.437083 x

 $log[*] = grFlog1 = Plot[lmf, {x, Log10[4.4], Log10[127.]}, PlotStyle <math>\rightarrow$ Magenta]; _representación ··· _logaritmo en ··· _logaritmo en bas··· _estilo de repr··· _magenta

In[*]:= Show[grdatos2, grFlog1]

In[*]:= Log10[Normal[nlf]] // Simplify logar ··· normal simplifica

Out[*]= 0.212349 Log[x]

 $log[-]:= grFlog2 = Plot[0.21234945770404773` x, {x, Log10[4.4], Log10[127.]}, PlotStyle <math>\rightarrow$ Red] Logaritmo en ··· Logaritmo en bas··· Lestilo de repr··· Lrojo

In[@]:= Show[grdatos2, grFlog1, grFlog2]

$ln[\cdot\cdot]:=$ grinter = ListPlot[Log10@{interMR}, Frame \rightarrow True, PlotStyle \rightarrow Orange] represent··· logaritmo en base 10 marco

In[*]:= Show[grinter, grFlog1, grFlog2]


```
In[@]:= FindFormula[Log10@interMR, x]
      encuentra fór··· logaritmo en base 10
Out[*]= 0.436211 x
ln(x) = grFlog3 = Plot[0.4362107191209601^x, \{x, Log10[4.4], Log10[127.]\}, PlotStyle <math>\rightarrow Cyan];
                  representación gráfica
                                                           logaritmo en ··· logaritmo en bas··· lestilo de repr··· lcian
In[@]:= Show[grbaja, grFlog1, grFlog2, grFlog3]
       1.0
       0.5
Out[ • ]=
      -0.5
          0.6
                  0.8
                          1.0
                                  1.2
                                          1.4
                                                  1.6
                                                          1.8
                                                                  2.0
In[*]:= FindFormula[bajaMR, x]
      encuentra fórmula
Out[]= 1.67006
```

Localizaciones

```
ln[\cdot]:= dist = NormalDistribution [\mu, \sigma]
                distribución normal
Out[\sigma]= NormalDistribution[\mu, \sigma]
In[*]:= Mean[dist]
       media
Out[\circ]= \mu
In[*]:= Expectation[x, x ≈ dist]
       expectación
Out[\circ]= \mu
ln[a] = Integrate[x PDF[dist, x], \{x, -\infty, \infty\}, Assumptions \rightarrow \sigma > 0]
                       función de densidad de probabili··· asunciones
Out[•]= μ
In[*]:= Median[dist]
       mediana
Out[*]= \(\mu\)
```

In[*]:= StandardDeviation[dist]

desviación estándar

Out[•]= 0

In[*]:= Variance[dist]

varianza

 $Out[\circ] = \sigma^2$

In[*]:= Moment[dist, #] & /@ Range[5]

momento

rango

Out[*]=
$$\{\mu$$
, $\mu^2 + \sigma^2$, $\mu(\mu^2 + 3\sigma^2)$, $\mu^4 + 6\mu^2\sigma^2 + 3\sigma^4$, $\mu(\mu^4 + 10\mu^2\sigma^2 + 15\sigma^4)\}$

In[*]:= Kurtosis[dist]

apuntamiento

Out[*]= 3

In[@]:= CentralMoment[dist, #] & /@ Range[5]

momento central

rango

Out[*]=
$$\{0, \sigma^2, 0, 3\sigma^4, 0\}$$

In[*]:= PDF [dist, x]

función de densidad de probabilidad

Out[
$$\sigma$$
]=
$$\frac{e^{-\frac{(\mathbf{x}-\mu)^2}{2\sigma^2}}}{\sqrt{2\pi}}$$

In[@]:= Plot[PDF[NormalDistribution[], x], {x, -5, 5}]

repr··· fun·· distribución normal

$$ln[\cdot]:=$$
 Probability[x > 0, x \approx NormalDistribution[]]

probabilidad

distribución normal

Out[*]=

$ln[\cdot]:=$ Probability[-1 < x < 1, x \approx NormalDistribution[]]

probabilidad

distribución normal

Out[*]=
$$\operatorname{Erf}\left[\frac{1}{\sqrt{2}}\right]$$

valor numérico

Out[*]= 0.682689

$ln[\cdot]:=$ Probability [-2 < x < 2, x \approx NormalDistribution[]]

probabilidad

distribución normal

Out[
$$\circ$$
]= Erf $\left[\sqrt{2}\right]$

valor numérico

Out[*]= 0.9545

In[*]:= dat = RandomVariate[NormalDistribution[], 50];

variable aleatoria distribución normal

In[*]:= BoxWhiskerChart[dat]

diagrama de cajas y bigotes

In[⊕]:= BoxWhiskerChart[dat, BarOrigin → Left] diagrama de cajas y bigotes origen de barra izquierd Out[•]= In[*]:= Quartiles[dat] cuartiles $Out[*]= \{-0.733161, 0.0167232, 0.780258\}$ In[*]:= Quantile[dat, {.25, .5, .75}] cuantil $Out[*] = \{-0.733161, 0.00792299, 0.780258\}$ InterquartileRange[dat] rango intercuartil $Out[\ \ \ \] = 1.51342$ In[@]:= Quartiles[dat][[3]] - Quartiles[dat][[1]] cuartiles Out[*]= 1.51342 In[*]:= Quantile[dat, {.025, .975}] cuantil

DatosMeteorologicos

 $Out[\bullet] = \{-2.36203, 2.19646\}$

```
In[@]:= WeatherData["SCSN", "Temperature"]
     datos meteorológicos
Out[*]= 8.6 °C
```

verdade

representación ··· datos meteorológicos

20 5 Mar 06 Mar 13 Mar 20 Mar 27

In[@]:= WeatherData["SCSN", "Properties"]

datos meteorológicos

propiedades

outs = {AlternateStandardNames, CloudCoverFraction, CloudHeight, CloudTypes, Conditions, Coordinates, DewPoint, Elevation, Humidity, Latitude, Longitude, MaxTemperature, MaxWindSpeed, MeanDewPoint, MeanHumidity, MeanPressure, MeanStationPressure, MeanTemperature, MeanVisibility, MeanWindChill, MeanWindSpeed, Memberships, MinTemperature, NCDCID, PrecipitationAmount, PrecipitationRate, PrecipitationTypes, Pressure, PressureTendency, SnowAccumulation, SnowAccumulationRate, SnowDepth, StationName, StationPressure, Temperature, TotalPrecipitation, Visibility, WBANID, WindChill, WindDirection, WindGusts, WindSpeed, WMOID}

In[*]:= DateListPlot[WeatherData["SCEL", "Temperature", {2023}], Joined → True]

representación · · datos meteorológicos

unido verdade

ln[*]:= datT = WeatherData["SCEL", "Temperature", {2023}] [2, 1, 1, All, 1] // Flatten datos meteorológicos todo

In[*]:= Dimensions@datT

dimensiones

Out[*]= {8613}

In[*]:= SmoothHistogram@datT

