西安交通大学考试题													
课	程	计算方法 A							794.51				
系	别				考计	式 日 其	第 20	02 年	1月16	日			
专业班号													
姓	名	学 号期中 期末											
题号	_	二	三	四	五	六	七	八	九	+			
得分	-												
一. $(10 f)$ 填空: (1) 如果													
(4) 已知方程 $f(x)=0$ 的两个近似解为 x_k , x_{k-1} ,则牛顿弦割法迭代求根公式为													
	误差变 在 <u></u>	型方程或 ² E为 <i>U₀'</i> 时, ,使 ^{天稳} 定。	按某种	中差分格	3 式算出	的U1也	公有误	差,变	成 U_1^{\prime} 。	如果存			

二. (5分)

- (1) 改写 $\sum_{n=1}^{99} \frac{1}{n(n+1)}$, 使运算次数减少;
- (2) 设p > 0, q > 0, $p \gg q$, 使用两种算法计算 $y = -p + \sqrt{p^2 + q}$

算法一:
$$\begin{cases} s = p^2 \\ t = s + q \\ u = \sqrt{t} \\ y = -p + u \end{cases}$$
 算法二:
$$\begin{cases} s = p^2 \\ t = s + q \\ u = \sqrt{t} \\ v = p + u \\ y = q / v \end{cases}$$

试分析两种算法的优劣。

三. $(8 \, \beta)$ 对方程组 Ax = b,设当右端向量发生扰动 δb 时,其解发生扰动 δx ,证明此时有关系:

$$\frac{\left\|\delta x\right\|}{\left\|x\right\|} \le Cond(A) \frac{\left\|\delta b\right\|}{\left\|b\right\|}$$

证明:

四. (8 分)设 x_0, x_1, x_2 是互异实数,二次多项式 $p_2(x)$ 满足 $p_2(x_0) = f_0$, $p_2'(x_1) = f_1'$, $p_2(x_2) = f_2 \text{ , } f_0, f_1', f_2 \text{ 为已知。要使 } p_2(x) \text{ 存在且唯一, } x_0, x_1, x_2 \text{ 应满足什么 }$ 条件?

五. (10 分) 某物质的溶解度 y 和温度 x 的关系可确定为经验曲线 $y=ae^{bx}$,现有如下测量数据:

温度 (F)	77	100	185	239
溶解度(%)	2.4	3.4	7.0	11.0

试确定经验常数 a 和 b.

解:

六. $(8\, \%)$ 证明矩阵 $A=\begin{pmatrix} 1 & a & a \\ a & 1 & a \\ a & a & 1 \end{pmatrix}$ 对 $-\frac{1}{2} < a < 1$ 是正定的,并且仅当 $-\frac{1}{2} < a < \frac{1}{2}$ 是,用 Jacobi 迭代法求解方程组 Ax=b 才是收敛的. 证明:

七. $(8 \, \Im)$ 已知 $\int_0^1 \sqrt{x} f(x) dx = A_0 f(x_0)$ 是一高斯型求积公式. 试确定这一公式及 其截断误差的表达式.

解:

八. (5分)

1.常微分方程初值问题

$$\begin{cases} y'(x) = f(x, y(x)), & a \le x \le b \\ y(a) = y_0 \end{cases}$$

下面给出两种求解方法:

(1)
$$y_{i+1} = y_{i-1} + \frac{h}{3}(f_{i-1} + 4f_i + f_{i+1});$$

(2)
$$y_{i+1} = y_{i-3} + \frac{4h}{3}(2f_i - 4f_{i-1} + 2f_{i-2}).$$

试用它们构造一组预测-校正公式. 解:

2.给出一种求解下面初值问题的求解公式:

$$y' = f(x', y), \quad y(x_0) = y_0, \quad y'(x_0) = y'_0$$

解:

九. (8分) 一阶线性双曲型方程初值问题

$$\begin{cases} \frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0, & t > 0, -\infty < x < +\infty \\ u(x,0) = f(x), & -\infty < x < +\infty \end{cases}$$

有差分格式 $\frac{u_{i,j+1}-u_{i,j}}{\tau}+a\frac{u_{i+1,j}-u_{i-1,j}}{2h}=0$ 或 $u_{i,j+1}=u_{i,j}-\frac{1}{2}ar(u_{i+1,j}-u_{i-1,j})$,其

中 $r=\tau/h$. 试用傅里叶方法讨论此差分格式的稳定性,并说明格式的收敛性如何.

解:

十. (15分)已知对模型问题

$$\begin{cases} -\frac{\partial}{\partial x} \left(p \frac{\partial u}{\partial x} \right) - \frac{\partial}{\partial y} \left(p \frac{\partial u}{\partial y} \right) + qu = f(x, y), & (x, y) \in G \\ u|_{\Gamma_{1}} = \varphi, & \left(p \frac{\partial u}{\partial n} + \alpha u \right)|_{\Gamma_{2}} = \psi \end{cases}$$

用有限元方法求解时,有单元计算式

$$\begin{split} K_{\Delta} = & \begin{pmatrix} k_{ll}^{\Delta} & k_{lm}^{\Delta} & k_{ln}^{\Delta} \\ k_{ml}^{\Delta} & k_{ml}^{\Delta} & k_{ml}^{\Delta} \\ k_{ml}^{\Delta} & k_{ml}^{\Delta} & k_{ml}^{\Delta} \end{pmatrix} = \frac{p}{4\Delta} \begin{pmatrix} a_{l}a_{l} & a_{l}a_{m} & a_{l}a_{n} \\ a_{m}a_{l} & a_{m}a_{m} & a_{m}a_{n} \\ a_{n}a_{l} & a_{n}a_{m} & a_{n}a_{n} \end{pmatrix} + \frac{p}{4\Delta} \begin{pmatrix} b_{l}b_{l} & b_{l}b_{m} & b_{l}b_{n} \\ b_{m}b_{l} & b_{m}b_{m} & b_{m}b_{n} \\ b_{n}b_{l} & b_{n}b_{m} & b_{n}b_{n} \end{pmatrix} \\ + \frac{\Delta}{12q} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \end{split}$$

$$f_{\Delta} = \begin{pmatrix} f_{l}^{(\Delta)} \\ f_{m}^{(\Delta)} \\ f_{n}^{(\Delta)} \end{pmatrix} = \frac{\Delta}{3} f \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$K_{L} = \begin{pmatrix} k_{jj}^{(L)} & k_{jk}^{(L)} \\ k_{kj}^{(L)} & k_{kk}^{(L)} \end{pmatrix} = \frac{1}{6} \alpha l \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

$$f_L = \begin{pmatrix} f_j^{(L)} \\ f_i^{(L)} \end{pmatrix} = \frac{1}{2} \psi l \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

试用有限元法求解下面问题

$$\begin{cases} -\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} + 72u = 1800(x+y), & (x,y) \in G \\ u\Big|_{\Gamma_1} = 0, & \left(\frac{\partial u}{\partial n} + 12u\right)\Big|_{\Gamma_2} = 0 \end{cases}$$

其中,G 为如图所示的正方形区域 $A_1A_2A_4A_3$,边 A_3A_4 为 Γ_1 ,其余各边为 Γ_2 .

求解时,将G分为 Δ_1 和 Δ_2 ,如图所示,且在 Δ_1 中已算得

试完成其余计算.