Einführung in die Geometrie und Topologie - Definitionen und Sätze -

Vorlesung im Wintersemester 2011/2012

Sarah Lutteropp, Simon Bischof 13. Dezember 2011

Inhaltsverzeichnis

Ι	Definitionen	und	Sätze	aus	$\operatorname{\mathbf{der}}$	Vorlesung	2
II	Definitionen	und	Sätze	aus	der	Übung 1	L6

Zusammenfassung

Dies ist ein Mitschrieb der Vorlesung "Einführung in die Geometrie und Topologie" vom Wintersemester 2011/2012 am Karlsruher Institut für Technologie, die von Herrn Prof. Dr. Wilderich Tuschmann gehalten wird.

Kapitel I

Definitionen und Sätze aus der Vorlesung

Definition I.1 (Topologischer Raum). Ein topologischer Raum X ist gegeben durch eine Menge X und ein System \mathcal{O} von Teilmengen von X, den so genannten offenen Mengen von X, welches unter beliebigen Vereinigungen und endlichen Durchschnitten abgeschlossen ist und X und die leere Menge \emptyset als Elemente enthält.

X Menge, $\mathcal{O} \subset \mathcal{P}(X)$:

(1)
$$O_1, O_2 \in \mathcal{O} \Rightarrow O_1 \cap O_2 \in \mathcal{O}$$

(2)
$$O_{\alpha} \in \mathcal{O}, \alpha \in A, A \ Indexmenge \Rightarrow \bigcup_{\alpha \in A} O_{\alpha} \in \mathcal{O}$$

(3)
$$X, \emptyset \in \mathcal{O}$$

Definition I.2 (Metrischer Raum). Ein <u>metrischer Raum</u> X ist eine Menge X mit einer Abbildung $d: X \times X \to \mathbb{R}$, der <u>"Metrik"</u> auf X, die folgende Eigenschaften erfüllt: $\forall x, y, z \in X$ gilt:

- (1) d(x,y) = d(y,x) "Symmetrie"
- (2) $d(x,y) = 0 \Leftrightarrow x = y, d(x,y) \ge 0$ "Definitheit"
- (3) $d(x,z) \le d(x,y) + d(y,z)$ "Dreiecksungleichung"

Definition I.3 (Stetigkeit). Eine Abbildung $F: X \to Y$ zwischen topologischen Räumen X und Y heißt <u>stetig</u>, falls die F-Urbilder offener Mengen in Y offene Teilmengen von X sind.

Definition I.4 (Homotopie). Eine <u>Homotopie</u> $H: f \simeq g$ zwischen zwei (stetigen) Abbildungen $f, g: X \to Y$ ist eine (stetige) Abbildung

$$H: X \times I \to Y, (x,t) \mapsto H(x,t)$$

mit H(x,0) = f(x) und H(x,1) = g(x) $\forall x \in X$. (Hier ist $I = [0,1] \subset \mathbb{R}$) f und g heißen dann homotop, in Zeichen: $f \simeq g$.

Definition I.5 (Homotope Abbildungen $f, g: X \to Y$). Zwei (stetige) Abbildungen heißen homotop, in Zeichen: $f \simeq g$, falls eine Homotopie mit Anfang f und Ende g existiert.

Definition I.6 (Nullhomotopie). Eine stetige Abbildung $f: X \to Y$ heißt nullhomotop, falls sie homotop zu einer konstanten Abbildung ist.

Korollar I.1. Jede stetige Abbildung $f: X \to \mathbb{R}^n$ ist nullhomotop, d.h. für jeden topologischen Raum X besteht $[X, \mathbb{R}^n]$, n beliebig, nur aus einem Punkt!

Definition I.7 (Teilraumtopologie). Es sei (X, \mathcal{O}) topologischer Raum und $A \subset X$. Die auf A durch

$$\mathcal{O}\Big|_A := \{U \cap A \mid U \in \mathcal{O}\}$$

induzierte Topologie heißt <u>Teilraumtopologie</u> und der dadurch gegebene topologische Raum $(A, \mathcal{O}|_A)$ heißt <u>Teilraum</u> von (X, \mathcal{O}) .

Definition I.8 (Abgeschlossenheit). $A \subset X, X$ topologischer Raum, heißt abgeschlossen

$$:\Leftrightarrow X \setminus A \text{ ist offen.}$$

Definition I.9 (Umgebung). Ist X topologischer Raum und $x \in X$, so heißt jede offene Teilmenge $O \subset X$ mit $x \in O$ eine Umgebung von x.

Definition I.10 (Basis). Ist (X, \mathcal{O}) topologischer Raum mit $\mathcal{B} \subset \mathcal{O}$, so heißt \mathcal{B} <u>Basis der Topologie</u> : \Leftrightarrow Jede (nichtleere) offene Menge ist Vereiniqung von Mengen aus \mathcal{B} .

Definition I.11 (Produkt-Topologie). Sind (X, \mathcal{O}_X) und (Y, \mathcal{O}_Y) topologische Räume, so bildet

$$\mathcal{B}_{X\times Y} := \{U\times V\mid U\in\mathcal{O}_X, V\in\mathcal{O}_Y\}$$

die Basis einer Topologie für die Menge $X \times Y$, und diese heißt Produkt-Topologie auf $X \times Y$.

Versehen mit der Produkt-Topologie ist $X \times Y$ sebst ein topologischer Raum und für gegebene X,Y denkt man sich $X \times Y$ stillschweigend mit der Produkt-Topologie versehen.

Definition I.12 (Feiner und gröber). Sind \mathcal{O}_1 und \mathcal{O}_2 Topologien auf X und $\mathcal{O}_1 \subset \mathcal{O}_2$,

so heißt \mathcal{O}_2 feiner als \mathcal{O}_1 und \mathcal{O}_1 gröber als \mathcal{O}_2 .

Definition I.13 (ϵ -Ball, Sphäre). Für einen metrischen Raum (X,d) und $\epsilon > 0$ sei für $p \in X$

- $B_{\epsilon}(p) := \{x \in C \mid d(p, x) < \epsilon\} \text{ der offene } \epsilon\text{-Ball um } p$
- $D_{\epsilon}(p) := \{x \in C \mid d(p,x) \leq \epsilon\}$ der abgeschlossene ϵ -Ball um p
- $S_{\epsilon}(p) := \{x \in C \mid d(p,x) = \epsilon\}$ die $\underline{\epsilon\text{-Sph\"{a}re}}$ um p (oder Sph\"{a}re vom Radius ϵ um p)

Definition I.14 (Metrischer Unterraum). Ist (X,d) metrischer Raum und $A \subset X$, so heißt der metrische Raum $(A,d|_{A\times A})$ (metrischer) Unterraum von X.

Definition I.15 (Beschränktheit, Durchmesser). $A \subset (X,d)$ heißt beschränkt

 $\Leftrightarrow \exists 0 < \rho \in \mathbb{R} \colon d(x,y) < \rho \ \forall x,y \in A$

Das Infimum, diam A, dieser ρ heißt dann <u>Durchmesser von A</u>.

Definition I.16 (Abstand). (X, d) sei metrischer Raum und $A \subset X, p \in X$.

$$d(p, A) := dist(p, A) := \inf\{d(p, a) \mid a \in A\}$$

 $hei\beta t \ Abstand \ von \ p \ und \ A.$

Definition I.17 (Innerer Punkt, äußerer Punkt, Randpunkt). Für $p \in A \subset X$, X topologischer Raum, heißt p

- (1) <u>innerer Punkt</u> von A, falls es eine in A enthaltene Umgebung U um p qibt.
- (2) äußerer Punkt, falls eine zu p disjunkte Umgebung V in X existiert.
- (3) Randpunkt von A, falls jede Umgebung von p nichtleeren Durchschnitt $mit \ A \ und \ X \setminus A \ hat.$

Definition I.18 (Inneres). Für $A \subset X$ heißt die größte in X offene und in A enthaltene Teilmenge \mathring{A} Inneres von A.

Definition I.19 (Abschluss). Der <u>Abschluss</u> \bar{A} von A ist $X \setminus ((X \setminus A))$.

Definition I.20 (Rand). Der Rand ∂A von A ist

$$\partial A := \bar{A} \backslash \mathring{A},$$

 $d.h. Rand A = \{ Randpunkte von A \}.$

Definition I.21 (Stetigkeit). $f: X \to Y$ ist stetig: $\Leftrightarrow \forall$ offenen Mengen in Y ist das Urbild unter f offene Menge in X.

Definition I.22 (Stetigkeit). $f: X \to Y$ ist stetig in $x \in X$

 $:\Leftrightarrow \forall \ Umgebungen \ V \ von \ f(x) \ \exists \ Umgebung \ U \ von \ x \ mit$

$$f(U) \subset V$$
.

Definition I.23 (Isometrische Einbettung, Isometrie). Sind X, Y metrische Räume, so heißt eine Abbildung $f: X \to Y$ isometrische Einbettung $:\Leftrightarrow \forall x, x' \in X$ gilt $d_Y(f(x), f(x')) = d_X(x, x')$. Eine isometrische Einbettung ist immer injektiv. Ist f zusätzlich bijektiv, so heißt f Isometrie.

Definition I.24 (Homöomorphismus). Eine invertierbare Abbildung $f \colon X \to Y$ topologischer Räume heißt <u>Homöomorphismus</u>, falls f und f^{-1} stetig sind.

Definition I.25 (homöomorph). Zwei topologische Räume X und Y heißen homöomorph oder vom gleichen Homöomorphietyp, in Zeichen $X \cong Y$, falls es einen Homöomorphismus $f: X \to Y$ gibt.

Definition I.26. Einbettung $f: X \to Y$ stetig heißt Einbettung

$$:\Leftrightarrow X \xrightarrow{f} f(X) \subset Y \ Hom\"{o}omorphismus.$$

Definition I.27. Äquivalenz von Einbettungen Zwei Einbettungen $f,g\colon X \to Y$ heißen äquivalent $\Leftrightarrow \exists$ Homöomorphismen $h_X\colon X \to X, h_Y\colon Y \to Y$ mit $g \circ h_X = h_Y \circ f$, d.h. dass das Diagramm

kommutiert

Definition I.28. Knoten Eine Einbettung $S^1 \to \mathbb{R}^3$ heißt Knoten.

Definition I.29. zusammenhängend Ein topologischer Raum heißt zusammenhängend : \Leftrightarrow Die einzigen in X gleichzeitig offenen und abgeschlossenen Teilmengen sind \emptyset und X.

Ansonsten heißt X <u>un-</u> oder nicht zusammenhängend.

Definition I.30. Überdeckung Eine Familie $\mathcal{U} = \{U_{\alpha} \mid \alpha \in A\}^1$ von Teilmengen von X heißt Überdeckung von X: $\Leftrightarrow X = \bigcup_{\alpha \in A} U_{\alpha}$.

 \mathcal{U} heißt <u>offene</u> beziehungsweise <u>abgeschlossene</u> Überdeckung \Leftrightarrow alle U_{α} sind offen beziehungsweise abgeschlossen.

Für $X' \subset X$ heißt eine Familie $\mathcal{U} = \{U_{\alpha}\}$ wie oben Überdeckung von X': $\Leftrightarrow X' \subset \bigcup_{\alpha \in A} U_{\alpha}$.

Definition I.31. Partition Eine <u>Partition</u> oder <u>Zerlegung</u> einer Menge ist eine Überdeckung dieser Menge durch paarweise disjunkte, nichtleere Teilmengen.

Definition I.32. Zusammenhangskomponente Eine <u>Zusammenhangskomponente</u> eines topologischen Raumes X ist eine im Sinne der Inklusion von Mengen maximale zusammenhängende Teilmenge von X.

Satz I.1. Stetige Bilder zusammenhängender Mengen sind zusammenhängend.

(D.h.: Ist $f: X \to Y$ stetig und X zusammenhängend, so auch $f(X) \subset Y$.)

Korollar I.2. Zusammenhang bleibt unter Homöomorphismen erhalten, und ebenso die Zahl der Zusammenhangskomponenten.

Korollar I.3. Zwischenwertsatz: Eine stetige Funktion $f: [a,b] \to \mathbb{R}$ nimmt jeden Wert zwischen f(a) und f(b) an.

Definition I.33. Weg, Anfangspunkt, Endpunkt ein Weg in einem topologischen Raum X ist eine stetige Abbildung $\gamma \colon [0,1] \xrightarrow{} X$, und $\gamma(0)$ heißt Anfangs-, $\gamma(1)$ Endpunkt.

Definition I.34. Wegzusammenhang X heißt wegzusammenhängend

$$:\Leftrightarrow \ \textit{Zu je zwei Punkten} \ x,x'\in X \quad \exists \ \textit{Weg} \ \gamma\colon [0,1]\to X$$

$$mit \ \gamma(0) = x, \gamma(1) = x'.$$

Definition I.35. Kompaktheit Ein topologischer Raum X heißt <u>kompakt</u>, falls jede offene Überdeckung von X eine endliche Teilüberdeckung enthält.

 $^{^{1}}A$ Indexmenge

Definition I.36. T_1 -Raum Ein topologischer Raum X heißt $\underline{T_1$ -Raum bzw. erfüllt das erste Trennungsaxiom : \Leftrightarrow Für je zwei verschiedene Punkte von X existiert für jeden dieser Punkte eine Umgebung in X, die den anderen nicht enthält.

 $\forall x \neq y \in X \exists U = U_X \colon y \notin U_X$

Definition I.37. T_2 -Raum X heißt <u>Hausdorff</u>- oder $\underline{T_2$ -Raum bzw. <u>erfüllt das zweite Trennungsaxiom</u> : \Leftrightarrow Je zwei verschiedene Punkte in X besitzen disjunkte Umgebungen.

 $\forall x \neq y \in X \exists U_x \ni x, U_y \ni y \ mit \ U_x \cap U_y = \emptyset$

Definition I.38. Grenzwert Ist $(x_n)_{n\in\mathbb{N}}$ eine Folge von Punkten in einem topologischen Raum X, so heißt $x\in X$ <u>Grenzwert</u> der Folge (x_n) genau dann, wenn zu jeder Umgebung U von x ein $N\in\mathbb{N}$ existiert mit $x_n\in U$ $\forall n\geq N$.

Definition I.39. Umgebungsbasis Ist X topologischer Raum und $x \in X$, so ist eine <u>Umgebungsbasis</u> oder <u>Basis von X in x</u> eine Familie von Umgebungen von x, sodass <u>jede</u> Umgebung von x eine <u>U</u>mgebung aus der Familie enthält.

Definition I.40. Abzählbarkeitsaxiome, Separabilität X <u>erfüllt das erste Abzählbarkeitsaxiom</u> : \Leftrightarrow jeder Punkt $x \in X$ besitzt eine abzählbare Basis.

X <u>erfüllt das zweite Abzählbarkeitsaxiom</u> : $\Leftrightarrow X$ selbst besitzt eine abzählbare Basis.

X heißt $\underline{separabel} :\Leftrightarrow X$ enthält eine abzählbare und dichte $(\bar{A} = X)$ Menge A.

Definition I.41. Lokale Kompaktheit X heißt \underline{lokal} kompakt : \Leftrightarrow Jeder Punkt $x \in X$ besitzt eine Umgebung \overline{U} , sodass $\overline{\overline{U}}$ kompakt ist.

Definition I.42. Lokale Endlichkeit Eine Familie Γ von Teilmengen eines topologischen Raumes X heißt <u>lokal endlich</u>: $\Leftrightarrow \forall x \in X \quad \exists U = U(x) \colon A \cap U = \emptyset \quad \forall A \in \Gamma$ bis auf endlich viele A.

Definition I.43. Verfeinerung Γ, Δ Überdeckungen von X. Δ heißt Verfeinerung von Γ

 $\Rightarrow \forall A \in \Delta \exists B \in \Gamma : A \subset B.$

Definition I.44. Parakompaktheit X heißt <u>parakompakt</u>: \Leftrightarrow Jede offene Überdeckung besitzt eine lokal endliche offene Verfeinerung.

Definition I.45. Mannigfaltigkeit, Karte Ein topologischer Raum M heißt n-dimensionale (topologische) Mannigfaltigkeit, wenn gilt:

1. M ist ein Hausdorff-Raum mit abzählbarer Basis der Topologie

2. M ist lokal homöomorph zu \mathbb{R}^n , d.h. zu jedem $p \in M$ existieren eine Umgebung $U = U(p) \subset_{offen} M$ und ein Homöomorphismus $\varphi \colon U \to V, V \subset_{offen} \mathbb{R}^n$.

Jedes solche Paar (U, φ) heißt eine <u>Karte</u> oder ein <u>lokales Koordinatensystem</u> um p.

Definition I.46. Atlas Ein <u>Atlas</u> für eine topologische n-Mannigfaltigkeit M ist eine Menge $\mathcal{A} = \{(\varphi_{\alpha}, U_{\alpha}) \mid \alpha \in \Lambda\}^2 \text{ von Karten } \varphi_{\alpha} \colon U_{\alpha} \to V_{\alpha} = \varphi(U_{\alpha}) \subset \mathbb{R}^n, \text{ so dass } M = \bigcup_{\alpha \in \Lambda} U_{\alpha}$

Definition I.47. C^k -Atlas, Kartenwechsel Ein Atlas heißt <u>differenzierbar</u> <u>von der Klasse C^k </u> (oder: C^k -Atlas von M), wenn für alle $\alpha, \beta \in \Lambda$ mit $U_{\alpha} \cap U_{\beta} \neq \emptyset$ der <u>Kartenwechsel</u> $\varphi_{\beta} \circ \varphi_{\alpha}^{-1} \colon \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ eine C^k -Abbildung, also k-mal stetig differenzierbar ist. $(k = 0, 1, 2, ..., \infty, \omega)$

Definition I.48. Verträglichkeit, differenzierbare Struktur Ist M topologische Mannigfaltigkeit und $\mathcal{A} = \{(\varphi_{\alpha}, U_{\alpha}) \mid \alpha \in \Lambda\}$ ein C^k -Atlas von M, so heißt eine Karte (φ, U) von M mit \mathcal{A} verträglich, falls $\mathcal{A}' := \mathcal{A} \cup \{(\varphi, U)\}$ ebenfalls C^k -Atlas ist. Ein C^k -Atlas heißt maximal (oder differenzierbare Struktur (der Klasse C^k)), falls \mathcal{A} alle mit \mathcal{A} verträglichen Karten enthält.

Definition I.49. C^k -Mannigfaltigkeit, glatt Eine differenzierbare Mannigfaltigkeit der Klasse C^k (kurz: C^k -Mannigfaltigkeit) ist ein Paar (M, \mathcal{A}) bestehend aus einer topologischen Mannigfaltigkeit M und einer C^k -Struktur auf M. Eine C^{∞} -Mannigfaltigkeit heißt auch glatt.

Definition I.50. C^l -Abbildung Es seien (M, A) eine n-dimensionale C^k -Mannigfaltigkeit, (M', A') eine n'-dimensionale $C^{k'}$ -Mannigfaltigkeit und $l \leq \min(k, k')$. Eine stetige Abbildung $f: M \to M'$ heißt differenzierbar (von der Klasse C^l) oder kurz: C^l -Abbildung, falls gilt:

$$\forall (\varphi, U) \in \mathcal{A} \ und \ (\varphi', U') \in \mathcal{A}' \ mit \ f(U) \cap U' \neq \emptyset \ ist$$

$$\varphi' \circ f \circ \varphi^{-1} \colon \varphi(U \cap f^{-1}(U')) \to \varphi'(f(U) \cap U')$$

eine C^l -Abbildung im üblichen Sinn.

Satz I.2 (Äquivalente Beschreibungen einer Untermannigfaltigkeit von \mathbb{R}^{n+l}). Für Teilmengen $M \subset \mathbb{R}^{n+l}$ sind äquivalent:

 $^{^2\}Lambda$ Indexmenge

(a) $\forall x_0 \in M \exists \ Umgebung \ U = U(x_0) \subset_{offen} \mathbb{R}^{n+l} \ und$ $f \in C^{\infty}(U, \mathbb{R}^l) := \{g \colon U \to \mathbb{R}^l \mid g \ ist \ C^{\infty}\} \ mit \ Rang \ Df(x) = l \quad \forall x \in U$ $^3 \ dergestalt, \ dass \ U \cap M = f^{-1}(0) = \{x \in U \mid f(x) = 0\}$

- (b) $\forall x_0 \in M \exists U = U(x) \subset_{offen} \mathbb{R}^{n+l} \text{ und } \varphi \colon U \to \mathbb{R}^{n+l} \text{ mit folgenden}$ Eigenschaften: $\varphi(U) \subset \mathbb{R}^{n+l} \text{ ist offen},$ $\varphi \text{ ist } C^{\infty}\text{-Diffeomorphismus } U \to \varphi(U) \text{ und}$ $\varphi(U \cap M) = \varphi(U) \cap (\mathbb{R}^n \times \{0\}) = \{(y_1, \dots, y_{n+l}) \in \varphi(U) \mid y_{n+1} = \dots = y_{n+l} = 0\}$
- (c) $\forall x_0 \in M \exists U = U(x_0) \subset_{offen} \mathbb{R}^{n+l}, W \subset \mathbb{R}^n \text{ offen } und \ \psi \in C^{\infty}(W, U)$ mit
 - ψ ist Homöomorphismus $W \to U \cap M$
 - $D\psi(w)$ ist injektiv für alle $w \in W$

(Jedes solche ψ heißt lokale Parametrisierung von M).

Definition I.51. Untermannigfaltigkeit Eine Menge $M \subset \mathbb{R}^{n+l}$, die eine der Bedingungen (a), (b) oder (c) erfüllt, heißt dann <u>n-dimensionale</u> (glatte/differenzierbare) Untermannigfaltigkeit von \mathbb{R}^{n+l} .

Satz I.3. Äquivalente Beschreibung einer glatten Untermannigfaltigkeit von \mathbb{R}^{n+l} Es sei $M \subseteq \mathbb{R}^{n+l}$. Es sind äquivalent:

(a) $\forall x_0 \in M \exists U = U(x_0) \subseteq_{offen} \mathbb{R}^{n+l} \ und \ f \in C^{\infty}(U, \mathbb{R}^l)$ $mit \ Rang \ Df(x) = l \ f\"{u}r \ alle \ x \in U \ dergestalt, \ dass \ U \cap M = f^{-1}(0).$

 $^{^3}Df$ ist die Jacobi-Matrix von f

- (b) $\forall x_0 \in M \exists U = U(x) \subseteq_{offen} \mathbb{R}^{n+l} \ und \ \varphi \colon U \to \mathbb{R}^{n+l} \ mit \ folgenden \ Eigenschaften:$
 - $\varphi(U) \subseteq \mathbb{R}^{n+l}$ ist offen
 - φ ist C^{∞} -Diffeomorphismus $U \to \varphi(U)$
 - $\varphi(U \cap M) = \varphi(U) \cap (\mathbb{R}^n \times \{0\}) = \{(y_1, \dots, y_n) \in \varphi(U) \mid y_{n+1} = \dots = y_{n+l} = 0\}$
- (c) $\forall x_0 \in M \exists U = U(x_0) \subseteq_{offen} \mathbb{R}^{n+l}, W \subseteq \mathbb{R}^n \text{ offen und } \psi \in C^{\infty}(W, U)$ mit folgenden Eigenschaften:
 - ψ ist Homöomorphismus $W \to U \cap M$
 - $D\psi(w)$ ist injektiv für alle $w \in W$.

Satz I.4. $(C^{\infty}$ -Untermannigfaltigkeiten von \mathbb{R}^{n+l} sind C^{∞} -Mannigfaltigkeiten) Es sei $M \subseteq \mathbb{R}^{n+l}$ n-dimensionale C^{∞} -Untermannigfaltigkeit von \mathbb{R}^{n+l} und $\{\psi_{\alpha} \colon W_{\alpha} \to U_{\alpha} \cap M \mid \alpha \in \Lambda\}$ eine Menge lokaler Parametrisierungen (wie in (c)) mit $M \subseteq \bigcup_{\alpha \in \Lambda} U_{\alpha}$. Dann ist $\mathcal{A} = \{(\psi_{\alpha}^{-1}, U_{\alpha} \cap M) \mid \alpha \in \Lambda\}$ ein C^{∞} -Atlas und M eine C^{∞} -Mannigfaltigkeit.

Definition I.52. Quotienten(raum)topologie Eine Teilmenge $U \subset X/S$ heißt offen : $\Leftrightarrow \pi^{-1}(U)$ ist offen in X

Definition I.53. Quotientenabbildung Ist S eine Partition von X in nichtleere disjunkte Teilmengen und $f: X \to Y$ eine Abbildung, die auf jedem Element von S konstant ist, so existiert eine Abbildung $X/S \to Y$, die jedes Element A von S auf $f(a), a \in A$, abbildet.

Diese heißt dann Quotientenabbildung von f nach S, in Zeichen f/S.

Korollar I.4. X kompakt, Y Hausdorffsch und $f: X \to Y$ sei stetig \Rightarrow Der injektive Quotient $f/_{S(f)}$ ist Homöomorphismus $X/_{S(f)} \to f(X)$

Definition I.54. injektiver Quotient $\underline{\underline{Jede}}$ Abbildung $f: X \to Y$ definiert eine Partition S = S(f) von X, und \overline{zwar} in die nichtleeren Urbilder der Elemente von Y unter f.

Die induzierte Abbildung $f/_{S(f)} \colon X/_{S(f)} \to Y$ ist dann <u>injektiv</u> und heißt injektiver Quotient von f.

Definition I.55. Kontraktion Die Quotientenmenge eines topologischen Raumes X bzgl. einer Partition S von X, welche aus einer Teilmenge A von X und allen Einpunktmengen aus $X \setminus A$ besteht,

$$S = A \cup \{\{x\} \mid x \in X \backslash A\}$$

heißt <u>Kontraktion</u> (<u>von X bzgl. $X \setminus A$ </u>), und für X/S schreibt man einfach X/A.

Definition I.56. Verkleben Sind A und B disjunkte Teilräume eines topologischen Raumes X und ist $f: A \rightarrow B$ ein Homöomorphis-

mus, so heißt der Übergang zum Quotientenraum, der durch die Partition von X in die Einpunktmengen von $X \setminus (A \cup B)$ und die Zweipunktmengen $\{x, f(x)\}, x \in A$ gegeben ist, <u>Verkleben (von X längs A und B via des Homöomorphismus f) und dieser Prozess einfach auch <u>Verkleben von A und B.</u></u>

Notation:

$$X/_{[a \sim f(a)]}$$
 (mit $a \in A$)

Definition I.57. n-dimensionaler projektiver Raum Der n-dimensionale reell-projektive Raum⁴ ist

$$\mathbb{RP}^n := S^n/_{[x \sim -x]}$$

und der n-dimensionale komplex-projektive Raum ist

$$\mathbb{CP}^n := \underbrace{S^{2n+1}}_{\subset \mathbb{C}^{n+1}}/_{[v \sim \lambda v, \lambda \in S^1]}$$

Definition I.58. homotop bezüglich der Endpunkte Zwei Wege $u, v: I \to X$, X topologischer Raum, heißen homotop (bezüglich der Endpunkte): \Leftrightarrow

1.
$$u(0) = v(0), u(1) = v(1)$$

2. \exists Homotopie $H: u \simeq v \ (mit \ H(0,t) \equiv u(0), H(1,t) \equiv u(1))$

 $^{^4}$ Anschaulich (projektive Geometrie): Die Menge aller Geraden durch den Ursprung im \mathbb{R}^{n+1}

Definition I.59. Produkt von Wegen Sind u, v Wege in X mit u(1) = v(0), so heißen u und v zusammensetzbar oder aneinanderfügbar und ihr <u>Produkt</u> $u \cdot v$ ist definiert als

$$(u \cdot v)(s) := \begin{cases} u(2s) & 0 \le s \le \frac{1}{2} \\ v(2s-1) & \frac{1}{2} \le s \le 1 \end{cases}$$

Definition I.60. Konstanter Weg, Inverser Weg, Geschlossener Weg

- Für $x \in X$ sei $c_x \colon I \to X$ mit $c_x \equiv x$ der konstante Weg in $x \in X$.
- Für einen Weg $u: I \to X$ sei $u^{-1}: I \to X, s \mapsto u(1 s)$, der zu u <u>inverse</u> (oder: umgekehrt durchlaufene) Weg.

• $u: I \to X$ heißt geschlossener Weg (oder: Schleife) $\underline{in \ x \in X}$

$$\Rightarrow u(0) = x = u(1)$$

Definition I.61. nullhomotop, einfach zusammenhängend

- Ein geschlossener Weg u in x heißt $\underline{nullhomotop}$: $\Leftrightarrow [u] = [c_x]$
- X heißt <u>einfach zusammenhängend</u>: \Leftrightarrow X ist wegzusammenhängend und jeder geschlossene Weg u in X ist nullhomotop (zu $c_{u(0)}$).

Lemma I.1. Für Wege $u, v, w: I \rightarrow X$

$$\label{eq:mit} \begin{split} \min u(0) = x, u(1) = y = v(0), \quad v(1) = z = w(0) \\ gilt \end{split}$$

1.
$$[u] \cdot [u^{-1}] = [u \cdot u^{-1}] = [c_x]$$

2.
$$[u^{-1}] \cdot [u] = [u^{-1} \cdot u] = [c_y]$$

3.
$$[u] \cdot [c_y] = [u] = [c_x] \cdot [u]$$

4.
$$[u] \cdot ([v] \cdot [w]) = ([u] \cdot [v]) \cdot [w]$$

Satz I.5. Für einen topologischen Raum X und $x_0 \in X$ ist

$$\pi_1(X, x_0) := \{[u] \mid u \colon I \to X \text{ geschlossener Weg in } x_0\}$$

bezüglich $[u] \cdot [v] := [u \cdot v]$ eine Gruppe, die sogenannte Fundamentalgruppe

oder <u>erste Homotopiegruppe</u> von X in x_0 . Neutrales <u>Element</u> ist $1 = 1_{x_0} := [c_{x_0}]$ und <u>Inverses</u> zu $\alpha = [u]$ ist $\alpha^{-1} = [u^{-1}]$.

Satz I.6 (Unabhängigkeit vom Basispunkt). Ist $w: I \to X$ Weg von x_0 nach x_1 , so ist die Abbildung

$$w_{\#} \colon \pi_1(X, x_0) \to \pi_1(X, x_1), \quad [u] \mapsto [w^{-1} \cdot u \cdot w]$$

 $ein\ Gruppen\hbox{-} Isomorphismus.$

Definition I.62. Schleife Es sei $S^1 = \{x \in \mathbb{R}^2 \mid ||x|| = 1\} = \{z \in \mathbb{C} \mid |z| = 1\}$ und $1 := (1,0) \in S^1$

Eine stetige Abbildung $\gamma\colon S^1\to X,X$ topologischer Raum, $x_0\in X$, mit $\gamma(1)=x_0$, heißt Schleife in x_0 .

Definition I.63. schleifenhomotop Zwei Schleifen γ, γ' in x_0 heißen (schleifen-)homotop, falls es eine Homotopie zwischen ihnen gibt, die auf $1 \in S^1$ stationär ist, also $\gamma(1) = x_0 = \gamma'(1)$ die ganze Zeit festhält.

Korollar I.5. Ist $s \colon I \to X$ Weg und Γ offene Überdeckung von X, so

existiert eine Folge von Punkten $a_1, \ldots, a_N \in I$ mit $0 = a_1 < \ldots < a_{N-1} < a_N = 1$ mit $s([a_i, a_{i+1}])$ ist in einem Element von Γ enthalten.

Lemma I.2. $\forall n \geq 2$ gilt: \forall Wege $s: I \rightarrow S^n$ existiert eine endliche Unterteilung von I in Teilintervalle, so dass die Einschränkung von s auf jedes der Teilintervalle homotop zu einer Abbildung mit nirgendwo dichtem Bild ist, und zwar durch eine Homotopie, die auf den Endpunkten des Intervalls fixiert ist. (TODO: Bild 12)

Kapitel II

Definitionen und Sätze aus der Übung

Definition II.1. Induzierte Topologie Sei X eine Menge. Sei $d: X \times X \to \mathbb{R}$ eine Metrik. Diese Metrik d definiert durch folgende Bedingung eine Topologie \mathcal{O} auf X:

 $O \subseteq X$ ist genau dann offen (d.h. $O \in \mathcal{O}_d$), wenn für alle $x \in O$ ein $\epsilon > 0$ existiert mit

$$B_{\epsilon}(x) := \{ y \in X \mid d(x, y) < \epsilon \} \subseteq O.$$

 $(B_{\epsilon} nennt man offenen \epsilon - Ball.)$

Definition II.2. Basis der von der Standardmetrik auf dem \mathbb{R}^n definierten Topologie

$$\mathcal{B} = \{ B_{\frac{1}{m}}(x) \mid x \in \mathbb{Q}^n, m \in \mathbb{N} \}$$

Diese Basis ist abzählbar.

Definition II.3. Homotopieäquivalenz Seien X, Y topologische Räume. X heißt homotopieäquivalent zu Y, falls es stetige Abbildungen $f: X \to Y$ und $g: Y \xrightarrow{} X$ gibt, so dass $f \circ g \simeq id_Y$ und $g \circ f \simeq id_X$.

Definition II.4. Überdeckung

- Eine Familie $\{U_{\alpha} \mid \alpha \in A\}$ von Teilmengen von X heißt $\underline{\ddot{U}}$ berdeckung von X, falls gilt: $X = \bigcup_{\alpha \in A} \mathcal{U}_{\alpha}$.
- Eine Überdeckung heißt offen (bzw. abgeschlossen), falls alle $\mathcal{U}_{\alpha}(\alpha \in A)$ offen (bzw. abgeschlossen) sind.
- Es heißt X kompakt, falls jede offene Überdeckung $\mathcal{U} = \{U_{\alpha}, \alpha \in A\}$ eine endliche Teilüberdeckung \mathcal{U}' besitzt, d.h. es existiert $A' \subset A$ endlich, so dass $\mathcal{U}' = \{\mathcal{U}_{\alpha} \mid \alpha \in A'\}$ eine offene Überdeckung von X ist.

Definition II.5. Kompakte Menge Eine <u>kompakte Menge</u> ist eine Teilmenge eines vom Kontext her klaren topologischen Raumes, die bezüglich der Teilraumtopologie kompakt ist.

Definition II.6. Wegzusammenhang

- Ein Weg in X ist eine stetige Abbildung γ : $I(=[0,1]) \to X$ mit Anfangspunkt $\gamma(0)$ und Endpunkt $\gamma(1)$.
- Man nennt X wegzusammenhängend, falls für alle $x, y \in X$ ein Weg $\gamma \colon [0,1] \to X$ in X existiert mit $\gamma(0) = x, \gamma(1) = y$.
- Eine Wegzusammenhangskomponente von X ist eine wegzusammenhängende Teilmenge von X, die in keiner echt größeren solchen Teilmenge enthalten ist.

Definition II.7. Homotopieäquivalenz Für zwei topologische Räume X, Y heißt eine stetige Abbildung $f: X \to Y$ Homotopieäquivalenz, falls es ei- $f \in C(X,Y)$

ne stetige Abbildung $g: Y \to X$ gibt, sodass $g \circ f \simeq id_x$ und $f \circ g \simeq id_Y$ gilt.

Definition II.8. homotop Es seien X, Y topologische Räume, $A \subseteq X$. Seien $f, g \in C(X, Y)$. Es heißt \underline{f} relativ \underline{A} homotop zu \underline{g} (in Zeichen $\underline{f} \simeq \underline{g}$ rel \underline{A}), falls eine Homotopie $\underline{H} : X \times I \to Y$ von \underline{f} nach \underline{g} existiert, so dass $\underline{H}(a, t) = \underline{H}(a, 0)$ für alle $\underline{a} \in A, t \in I$.

Definition II.9. kontrahierbar Man nennt X kontrahierbar, falls gilt: $X \simeq \{pt\}.$