Grading Criteria

- Ability to successfully achieve the objectives (40%)
- Repeatability and robustness of unlock sequence (via video demo) (20%)
- Ease of use (10%)
- Creativity (10%)
- Well written code (10%)
- Complexity (10%)

Github

https://github.com/VeronicaGupta/Sentry

Functionality

- 1. Data collection (hand movement data)
 - a. Accelerometer
 - b. Gyro
- 2. Events
 - a. Sequence/Key/Password storage
 - i. Start Record Key
 - ii. Stop Enter Key .
 - 1. Successful- LED GREEN
 - 2. Failed- LED RED
 - iii Remove/Add Sequence: Long press "Record Key" to reset blink Red

LED twice.

- iv Recording: Blink Green LED during recording
- 3. Event handling
 - a. At start event
 - b. At stop event
- 4. Re-record Gesture Functionality
 - a. Reset button or long press on the Record Key to overwrite the saved gesture
- 5. Re-lock: Auto-lock after 10 seconds or button press

Gestures and Data Collection

a. Define how gestures will be captured

Resources Enforced

1. Board: STM32F429ZI

Coding framework: PlatformIO
 Functions: Mbed drivers/HAL

4. Sensors: STM32 integrated sensors

- 5. Sensor must be held close to the fist while performing the gesture sequence
- 6. "Enter key" for unlocking and "Record Key" for recording the sequence should be used

Decide-

- 1. Sequence format?
- 2. Remove and add sequence ??
- 3. How to show the unlock event?
- 4. Once unlocked, how to lock again?
- 5. Axis and rotations to use for unlocking?

Class notes about project from prof:

- 1. Preventing access and granting access
- 2. Get a complex 3sec gesture and board in hand required
- 3. Train against the gesture and then lock and unlock
- 4. Put board on learn mode
- 5. Get a test function
- 6. One team person trains and other will demonstrate the lock and unlock
- 7. Get information from gyro through SPI
- 8. Deliverable is folder and demo
- 9. One submission per group video and folder
- 10. One person from group uploads the submission

Tasks

4 Dec 2024

- 1. Individual
 - a. Download- Recitation 3 to 7
 - b. Implement on board
 - c. Theory
 - i. Timers,
 - ii. teleplot,
 - iii. Communication protocol (SPI),
 - iv. State machines
 - v. Filters
 - vi. LCD screen
- 2. Gyro and accelerometer (see recitation)
 - a. Process
 - i. Gyro
 - 1. X
 - 2. Y
 - 3. Z
 - ii. Accelerometer
 - 1. X
 - 2. Y
 - 3 *7*
 - b. Show in teleplot
- 3. Recording Process Collected Data (Sample from file, independent of MC)
 - a. Send record/data in file (txt, excel, json)
 - b. Receive record/data that recording
- 4. Filtering into a struct- gesture
 - Research, attend office hours for same, mail TA, averaging, low pass, high pass-> decision
 - b. Threshold setting
- 5. Add Events to Trigger functions
 - Saving action
 - i. Start button
 - ii. Stop button
 - b. Unlocking action
 - i. Successful- LED GREEN
 - ii. Failed- LED RED
 - c. Locking action
 - i. Successful LCD Screen
 - ii. Failed- LCD Screen
- 6. Event handling

- a. Saving action
 - Delete old records
 - ii. Save new record
- b. Unlocking action (algo):
 - i. Check if new record matches to saved record
 - 1. Research, github, neha's algo
 - 2. Basic implementation POC
 - 3. Add POC algo to our code

10 Dec 2024

- 1. State Diagram- Deterministic solution
 - a. Each critical code in different functions
- 2. Psuedo Code
 - a. Recording and Retrieving data (independent of hardware) (Gx, Gy, Gz, Ax, Ay, Az)
 - b. Collection, Filtering and add new parameters (based on Gx, Gy, Gz, Ax, Ay, Az) algo
 - i. Study how to capture this data<-
 - ii. Finalise the filter (combination of filters)
 - iii. Try 5 gestures
 - c. Recognition algo->(base maths-> if and else/ ml algo)
 - i. Study (ml/if else)

ii. Hal library (what add for ml)

12 Dec 2024-Task

- 1. Showing something christmassy on LCD for output- Neha (3 screens-> unlocked (success), failure reaction, locked screen and idle (something moving))
- 2. Recognition Algo (projects)- Sharmitha
- 3. Record parameters to file (json) (Take sample values) 3 seconds, retrieve them back in a structure- Sharmitha
- 4. Filtering (types of gestures best filtering)-Parnika
- 5. Interrupt from button to lock again- Parnika

Suggestion-TA

The techniques you used should show promise and might get you your solution! Memory constraints are tricky, but here are some ideas to think about:

- 1. Reduce Data: Instead of storing every sensor point, you could extract key points (like peaks/valleys) or downsample the data.
- 2. Sliding Window: Can use buffers to store only the last few sensor points and compare incrementally.
- 3. Memory-Efficient DTW: Use a method to limit the DTW matrix or process it incrementally.
- 4. Use CMSIS-DSP: Functions in this library can reduce computation and memory overhead.
- 5. Simplify Comparison: Instead of comparing full gestures, use a summary (like an average or key features) and compare those.

 Links:

Touch Screen Demo --> https://os.mbed.com/teams/ST/code/DISCO-F429ZI_LCDTS_demo/

LCD Demo --> https://os.mbed.com/teams/ST/code/DISCO-F429ZI_LCD_demo/

Gyro Demo --> https://os.mbed.com/teams/ST/code/DISCO-F429ZI Gyro demo/

14 Dec 2024-Task