Matemáticas Actuariales del Seguro de Personas II

Jorge Luis Reyes García

Universidad Nacional Autónoma de México Facultad de Ciencias

jorgeluis.reyes@ciencias.unam.mx

Diciembre 2021

Prólogo

Este trabajo ha sido el resultado de un esfuerzo constante por más 10 años en mi labor como docente impartiendo las materias de Matemáticas Actuariales del Seguro de Personas I y II.

El objetivo de las notas es facilitar la comprensión y entendimiento de las matemáticas actuariales aplicadas los seguros de vida bajo tres enfoques:

- Clásico: a partir de tablas de mortalidad y valores conmutados.
- Probabilístico: Considerando variables aleatorias discretas y continuas.
- Estocástico: a partir de cadenas de Markov en tiempo discreto y tiempo continúo.

En cada capítulo encontrarán explicaciones, demostraciones y aplicaciones.

Contenido

Vidas Múltiples

Estatus de último sobreviviente

Es la combinación de un conjunto de personas y se define que el estatus se mantiene vigente hasta la última muerte del grupo de personas. Es decir, el estatus se rompe cuando muera la última persona.

Definición: El tiempo futro de vida del estatus de ultimo sobreviviente (\overline{xy}) , se define como:

$$T_{(\overline{xy})} = T_{\overline{xy}} = max(T_x, T_y)$$

En general para un conjunto de m vidas.

$$T_{\overline{x_1x_2...x_m}} = \max(T_{x_1}T_{x_2}...T_{x_m})$$

El tiempo futuro de vida del estatus del último sobreviviente puede interpretarse como estadístico de orden máximo.

Nuevamente, si T_x y T_y tienen función de densidad conjunta $f_{TxTy}(s,t)$, nos interesa conocer del estatus de último sobreviviente su densidad, distribución de sobrevivencia y fuerza de mortalidad.

Para función de densidad, tenemos:

$$f_{T_{\overline{xy}}}(t) = \int_0^t f_{TxTy}(t,v)dv + \int_0^t f_{TxTy}(u,t)du$$

Supongamos que T_x y T_y son independientes:

$$f_{T_{\overline{x}\overline{y}}}(t) = \int_{0}^{t} f_{Tx}(t) f_{Ty}(v) dv + \int_{0}^{t} f_{Tx}(u) f_{Ty}(t) du$$

$$= f_{Tx}(t) \int_{0}^{t} f_{Ty}(v) dv + f_{Ty}(t) \int_{0}^{t} f_{Tx}(u) du$$

$$= f_{Tx}(t) F_{Ty}(t) + f_{Ty}(t) F_{Tx}(t)$$

Por lo tanto,

$$f_{T_{\overline{xy}}}(t) = f_{Tx}(t)F_{Ty}(t) + f_{Ty}(t)F_{Tx}(t)$$

En notación actuarial, tenemos:

$$f_{T_{\overline{xy}}}(t) = {}_t p_x \cdot \mu_{x+t} \cdot {}_t q_y + {}_t p_y \cdot \mu_{y+t} \cdot {}_t q_x$$

Además, simplificando tenemos:

$$f_{T_{\overline{xy}}}(t) = {}_{t}\rho_{x}\mu_{x+t}(1 - {}_{t}\rho_{y}) + {}_{t}\rho_{y}\mu_{y+t}(1 - {}_{t}\rho_{x})$$

$$= {}_{t}\rho_{x}\mu_{x+t} + {}_{t}\rho_{y}\mu_{y+t} - {}_{t}\rho_{xt}\rho_{y}\mu_{x+t} - {}_{t}\rho_{xt}\rho_{y}\mu_{y+t}$$

$$= {}_{t}\rho_{x}\mu_{x+t} + {}_{t}\rho_{y}\mu_{y+t} - {}_{t}\rho_{xt}\rho_{y}(\mu_{x+t} + \mu_{y+t})$$

$$= {}_{t}\rho_{x}\mu_{x+t} + {}_{t}\rho_{y}\mu_{y+t} - {}_{t}\rho_{xy}\mu_{x+t:y+t}$$

Por lo tanto,

$$f_{T_{\overline{xy}}}(t) = {}_{t}p_{x}\mu_{x+t} + {}_{t}p_{y}\mu_{y+t} - {}_{t}p_{xy}\mu_{x+t:y+t}$$

= $f_{T_{x}}(t) + f_{T_{y}}(t) - f_{T_{xy}}(t)$

Relación de equivalencia:

$$f_{T_{\overline{xy}}}(t) = f_{T_x}(t) + f_{T_y}(t) - f_{T_{xy}}(t)$$
 $T_{(\overline{xy})} = T_x + T_y - T_{xy}$

Para la función de distribución tenemos:

$$F_{T_{\overline{x}\overline{y}}}(t) = F_{T \times T y}(t,t) = \mathbb{P}(T_x < t, T_y < t) = \int_0^t \int_0^t f_{T \times T y}(u,v) du dv$$

Supongamos que T_x y T_y son independientes:

$$F_{T_{\overline{XY}}}(t) = \int_{0}^{t} \int_{0}^{t} f_{Tx}(u) f_{Ty}(v) du dv = \int_{0}^{t} f_{Ty}(v) \int_{0}^{t} f_{Tx}(u) du dv$$
$$= \int_{0}^{t} f_{Ty}(v) F_{Tx}(t) dv = F_{Tx}(t) \int_{0}^{t} f_{Ty}(v) dv$$
$$= F_{Tx}(t) F_{Ty}(t)$$

Por lo tanto

$$F_{T_{\overline{x}\overline{y}}}(t) = F_{Tx}(t) F_{Ty}(t)$$

En notación actuarial,

$$F_{T_{\overline{x}\overline{y}}}(t) = {}_t q_{\overline{x}\overline{y}} = {}_t q_{xt} q_y$$

Otra forma de encontrar la función de densidad del estatus de último sobreviviente es derivar la función de distribución.

$$egin{aligned} f_{T_{\overline{xy}}}(t) &= rac{d}{dt} F_{T_{\overline{xy}}}(t) = rac{d}{dt} \ _t q_{\overline{xy}} \ &= rac{d}{dt} \ _t q_{xt} q_y = (rac{d}{dt} \ _t q_x)(_t q_y) + (_t q_x)(rac{d}{dt} \ _t q_y) \ &=_t p_x \ \mu_{x+t} \ _t q_y + _t p_y \ \mu_{y+t} \ _t q_x \end{aligned}$$

Por lo tanto,

$$f_{T_{\overline{x}\overline{y}}}(t) = {}_{t}p_{x}\mu_{x+t}{}_{t}q_{y} + {}_{t}p_{y}\mu_{y+t}{}_{t}q_{x}$$

Para la funcion de sobrevivencia, tenemos:

$$S_{T_{\overline{xy}}(t)} = 1 - F_{T_{\overline{xy}}(t)}$$

Supongamos que T_x y T_y son independientes.

$$S_{T_{\overline{x}\overline{y}}(t)} = 1 - F_{T_{\overline{x}}(t)}F_{T_{\overline{x}}(t)}$$

En notacion actuarial, tenemos:

$$egin{aligned} S_{T_{\overline{xy}}(t)} &=_t
ho_{\overline{xy}} = 1 -_t q_{\overline{xy}} = 1 -_t q_{xt} q_y \ &= 1 - (1 -_t p_x)(1 -_t p_y) = 1 - (1 -_t p_x -_t p_y +_t p_{xt} p_y) \ &=_t p_x +_t p_y -_t p_{xy} \end{aligned}$$

Por lo tanto.

$$_{t}p_{\overline{xy}} =_{t} p_{x} +_{t} p_{y} -_{t} p_{xy}$$

Finalmente, podemos calcular su funcion de mortalidad

$$\mu_{\overline{xy}}(t) = \mu_{\overline{x+t:y+t}} = \frac{-d}{dt} ln(t_t p_{\overline{xy}}) = \frac{f_{T_{\overline{xy}}(t)}}{t_t p_{T_{\overline{xy}}}}$$

$$= \frac{t_t p_x \cdot \mu_{x+t} \cdot t_t q_y + t_t p_y \cdot \mu_{y+t} \cdot t_t q_x}{t_t p_x + t_t p_y - t_t p_{xy}}$$

$$= \frac{t_t p_x \cdot \mu_{x+t} + t_t p_y \cdot \mu_{y+t} + t_t p_{xy} \cdot \mu_{x+t:y+t}}{t_t p_x + t_t p_y - t_t p_{xy}}$$

Por lo tanto,

$$\mu_{\overline{x+t:y+t}} = \frac{t p_x \cdot \mu_{x+t} \cdot t \ q_y +_t p_y \cdot \mu_{y+t} \cdot t \ q_x}{t p_x +_t p_y -_t p_{xy}}$$

٠

En conclusion, siempre y cuando T_x y T_y sean independientes:

•
$$f_{T_{\overline{xy}}(t)} = {}_t p_x \cdot \mu_{x+t} \cdot {}_t q_y + {}_t p_y \cdot \mu_{y+t} \cdot {}_t q_x$$

$$\bullet _t q_{\overline{xy}} = _t q_x _t q_y$$

$$\bullet _t p_{\overline{xy}} = _t p_x + _t p_y - _t p_{xy}$$

$$\bullet \ \mu_{\overline{x+t}:y+t} = \frac{tp_x \cdot \mu_{x+t} \cdot t \ q_y +_t p_y \cdot \mu_{y+t} \cdot t \ q_x}{tp_x +_t p_y -_t p_{xy}}.$$

Resultados importantes:

$$_{t|u}q_{\overline{x}\overline{y}}={}_{t}p_{\overline{x}\overline{y}}$$
 - $_{t+u}p_{\overline{x}\overline{y}}$

Nota: Las siguientes igualdades no son ciertas:

$$t+uP_{\overline{x}\overline{y}} \neq tP_{\overline{x}\overline{y}} \ uP_{\overline{x}+t:y+\overline{t}}$$
$$t+uQ_{\overline{x}\overline{y}} \neq tP_{\overline{x}\overline{y}} \ uQ_{\overline{x}+t:y+\overline{t}}$$

Ahora nos interesa conocer las caraceristicas de la variable aleatoria $T_{\overline{xy}}$ como son: esperanza, varianza y desviacion estandar.

$$\mathring{e}_{\overline{xy}} = \mathrm{E}(T_{\overline{xy}}) = \int_{0}^{\infty} {}_{t} p_{\overline{xy}} dt = \int_{0}^{\infty} {}_{t} p_{x} + {}_{t} p_{y} - {}_{t} p_{xy} dt = \int_{0}^{\infty} {}_{t} p_{x} dt + \int_{0}^{\infty} {}_{t} p_{y} dt - \int_{0}^{\infty} {}_{t} p_{xy} dt \\
= \mathring{e}_{x} + \mathring{e}_{y} - \mathring{e}_{xy}$$

Otra forma de ver este resultado es:

$$\mathrm{E}(\mathit{T}_{\overline{\mathsf{x} \mathsf{y}}}) = \mathrm{E}(\mathit{T}_{\mathsf{x}} + \mathit{T}_{\mathsf{y}} - \mathit{T}_{\mathsf{x} \mathsf{y}}) = \mathrm{E}(\mathit{T}_{\mathsf{x}}) + \mathrm{E}(\mathit{T}_{\mathsf{y}}) - \mathrm{E}(\mathit{T}_{\mathsf{x} \mathsf{y}}) = \mathring{e}_{\mathsf{x}} + \mathring{e}_{\mathsf{y}} - \mathring{e}_{\mathsf{x} \mathsf{y}}$$

Por lo tanto¹:

$$\mathring{e}_{\overline{XY}} = \mathring{e}_X + \mathring{e}_Y - \mathring{e}_{XY}$$

¹El inifito de la integral va hasta min(w - x, w - y)

Para el segundo momento, tenemos:

$${}^{2}\mathring{e}_{xy} = E(T_{xy}^{2}) = \int_{0}^{\infty} 2t_{t} p_{xy} dt = \int_{0}^{\infty} 2t(_{t}p_{x} +_{t}p_{y} -_{t}p_{xy}) dt$$
$$= \int_{0}^{\infty} 2t_{t}p_{x} dt + \int_{0}^{\infty} 2t_{t}p_{y} dt - \int_{0}^{\infty} 2t_{t}p_{xy} dt = {}^{2}\mathring{e}_{x} + {}^{2}\mathring{e}_{y} - {}^{2}\mathring{e}_{xy}$$

Por lo tanto.

$$^{2}\mathring{e}_{xy} = ^{2}\mathring{e}_{x} + ^{2}\mathring{e}_{y} - ^{2}\mathring{e}_{xy}$$

Finalmente, para la varianza tenemos:

•
$$Var(T_{\overline{xy}}) = {}^2\mathring{e}_{\overline{xy}} - (\mathring{e}_{\overline{xy}})^2$$

$$\bullet \ \sigma_{T_{\overline{xy}}} = \sqrt{{}^2\mathring{e}_{\overline{xy}} - \mathring{e}_{\overline{xy}}^2}$$

Para la esperanza temporal n años, tenemos:

•
$$\mathring{e}_{\overline{xy}:\overline{n}|} = \mathrm{E}(\min(n, T_{\overline{xy}})) = \int_0^n {}_t p_{\overline{xy}} dt = \mathring{e}_{x:\overline{n}|} + \mathring{e}_{y:\overline{n}|} - \mathring{e}_{xy:\overline{n}|}$$

•
$$^2\mathring{e}_{\overline{xy}:\overline{n}|} = \mathbb{E}(\min(n, T_{\overline{xy}})^2) = \int_0^n (2t)_t \rho_{\overline{xy}} dt = ^2\mathring{e}_{x:\overline{n}|} + ^2\mathring{e}_{y:\overline{n}|} - ^2\mathring{e}_{xy:\overline{n}|}$$

•
$$Var(min(T_{\overline{xy}}, n)^2) = {}^2\mathring{e}_{\overline{xy}:\overline{n}|} - (\mathring{e}_{\overline{xy}:\overline{n}|})^2$$

•
$$\sigma_{\min(T_{\overline{xy}},n)} = \sqrt{2\mathring{e}_{\overline{xy}:\overline{n}|} - (\mathring{e}_{\overline{xy}:\overline{n}|})^2}$$

Para la esperanza truncada, tenemos:

•
$$e_{\overline{xy}} = \mathrm{E}(K_{\overline{xy}}) = \sum_{k=1}^{\infty = max(w-x,w-y)} {}_k p_{\overline{xy}} = e_x + e_y - e_{xy}$$

•
$${}^{2}e_{\overline{xy}} = \mathrm{E}(K_{\overline{xy}}^{2}) = \sum_{k=1}^{\infty = max(w-x,w-y)} (2k-1)_{k}p_{\overline{xy}} = {}^{2}e_{x} + {}^{2}e_{y} - {}^{2}e_{xy}$$

•
$$Var(K_{\overline{xy}}) = {}^2e_{\overline{xy}} - e_{\overline{xy}}^2$$

$$\bullet \ \sigma_{K_{\overline{xy}}} = \sqrt{{}^2e_{\overline{xy}} - e_{\overline{xy}}^2}$$

Para la esperanza truncada, temporal n años, tenemos:

•
$$e_{\overline{xy}:\overline{n}|} = E[min[K_{\overline{xy}}, n]] = \sum_{k=1}^{n} {}_k p_{\overline{xy}} = e_{x:\overline{n}|} + e_{y:\overline{n}|} - e_{xy:\overline{n}|}$$

•
$${}^{2}e_{\overline{xy}:\overline{n}|} = E[min[K_{\overline{xy}}, n]^{2}] = \sum_{k=1}^{n} (2k-1)_{k} p_{\overline{xy}} = {}^{2}e_{x:\overline{n}|} + {}^{2}e_{y:\overline{n}|} - {}^{2}e_{xy:\overline{n}|}$$

•
$$Var[min[K_{\overline{xy}}, n]] = {}^{2}e_{\overline{xy}:\overline{n}} - [e_{\overline{xy}:\overline{n}}]^{2}$$

•
$$\sigma_{min(K_{\overline{x}\overline{y}},n)} = \sqrt{2e_{\overline{x}\overline{y}:\overline{n}} - [e_{\overline{x}\overline{y}:\overline{n}}]^2}$$

Contenido

Vidas Múltiples

Bibliografia

- Título: Models for Quantifying Risk. Autor: Stephen Camilli
- Título: Actuarial Mathematics for Life Contingent Risks. Autor: David Dickson
- Título: Actuarial Mathematics. Autor: Newton Bowers
- Título: Basic Life Insurance Mathematics Autor: Ragnar Norberg
- Título: Actuarial Mathematics and Life-Table Statistics Autor: Eric Slud
- Título: Life Contingencies Autor: Chester Wallace Jordan
- Título: Matemáticas Actuariales y Operaciones de Seguros Autor: Sandoya

Matemáticas Actuariales del Seguro de Personas II

Jorge Luis Reyes García

Universidad Nacional Autónoma de México Facultad de Ciencias

jorgeluis.reyes@ciencias.unam.mx

Diciembre 2021