







**EESTech Challenge Final Round 2025** 

# Touch to Grasp: Smart Grippers with Infineon Magnetic Sensing and Motor Control

14.05.2025 Linjing Zhang





# **EESTech Challenge Final Round 2025**



# You'll build something that adapts intelligently – like a human hand.

The robotic gripper can detect contact, measure force, adjust grip automatically, responds to human actions...

That's not just cool – it's the future of human-robot interaction!







# **Project Overview**

Design and implement a control system a smart robotic gripper equipped with soft silicon skin embedded with magnetic sensors. Use a Brushless DC (BLDC) motor to actuate the gripper, ensuring precise control for grasping, holding, and releasing objects of varying sizes and weights. The gripper should automatically adjust its grip to handle both soft objects and hard object without damage.







# **Key Features**

- Compliant gripping using tactile feed back
- Magnetic sensing silicon skin
- Field Oriented Control of BLDC motor
- Real-time adaption: Don't break balloons or let heavy pieces of metal fall
- Bonus: UI, object classification, auto grip tuning....



Image generated by DALL-E (OpenAI) via ChatGPT





# **System Components**

With pre-assembled hardware and ready-made libraries, you can skip the boring stuff and dive straight into solve real robotics problem.



# **System Components**



#### Hardware

A ready-to-use robotic gripper

- Soft 3D Magnetic Sensor TPU Skin
- Actuators: a BLDC Motor
- BLDC Shield and angle sensor
- Control Board XMC4700

#### Software

Arduino capatible BSP and libraries

- XMC4Arduino
- Simple FOC library
- 3D Magnetic library
- Integration template





TPU + magnet













- Star/stop command
- **Button**
- **UI** optional







#### **Motor Control Module**

- Field-oriented-control (position/speed/current control)
- Dynamically adjust torque or postion based on object











#### **Main Control loop**

- Force control based on sensor feedback
- close-and-stop and reopen



### **Data Processing**

- Filtering
- Contact detection
- Force estimation





#### **Some Hints**



- Explore Freely: In addition to tune the PID and build the smart control loop, each team is encouraged to explore more inonovation solution and additional feature: such as user Interaction, mechanical tweaks, adding more sensor/cameras... You are not limited (only by physics)!
- The provided example is meant as reference only and should help you get start. Your solution does not have to be based on this example.
- You may use any code you find in the Internet, but please provide the source.







# **Challenge Description**

#### **Challenge 1: Control Tuning**

It's hard to manually tune PID values for optimal torque in BLDC motors.

Find the **best PID values** for speed and position control by maximizing pressure using feedback from the 3D magnetic sensor, to improve smoothness, accuracy and stability of control loop.

Think about automating this fine-tuning process.

#### **Challenge 2: Smart Control**

Go beyond simple control loop, implement a smarter, adaptive control strategy using sensor feed back.

- Adjust grip force dynamically
- Identify object softness/hardness
- smart grip and release

- ....

#### **Submission**



- Submission happens on Google Drive
  - Each team must submit a single-page PDF before the the submission deadline, that includes
    - GitHub Repository Link
    - Brief Project Description
  - Please make sure:
    - Your GitHub repo is public or access is shared with judges for submission.
    - Your PDF file name follows this format TeamName ProjectName.pdf

#### **Deliverables**

- Single-page PDF
  - No content restrictions, as long as GitHub link is clearly visible
- GitHub Repository
  - Contain full project code and documentation
  - All commits must be made before deadline

- Live Demonstration of the Smart Gripper
- A 5-10 minute pitch presentation
  - Idea description
  - Overview of project outcome
  - Including graphics/pictures is appreciated
  - Outlook for future improvement
  - Please upload the presentation file afterwards
- Your Feedback about the challenge: What did you like? What would you do differently?
  - enter #1238795 on <u>Slido</u> and note your group name in Feedback







| Criteria              | Comment                                                                                                                                                                                                                                                                   | Weight   |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Challenge Completion  | <ul> <li>Challenge 1 (PID fine-tune) (20%)         Smooth and precise control         Automatic tuning         Challenge 2 (Smart control) (40%)         Adaptive control: Hard /Light and fragile/heavy/ round object         Smart Response and Control     </li> </ul> | 60%      |
| Algorithm             | <ul><li>Code Quality (5%)</li><li>Documentation (10%)</li></ul>                                                                                                                                                                                                           | 15%      |
| Innovative Techniques | <ul> <li>How innovative is the implementation and use of technologie</li> <li>How challenging is the technical implementation</li> </ul>                                                                                                                                  | 10%      |
| Presentation & Demo   | <ul> <li>Lead us through your team's journey during the Hackathon</li> <li>Explain the outcome, implementation and its value</li> <li>Show us a live demo!</li> </ul>                                                                                                     | 15%      |
| Feedback              | <ul><li>Provide feedback about the challenge</li><li>and about the organisation</li></ul>                                                                                                                                                                                 | Extra 5% |



## Let's Get Started!





# github.com/Infineon/hackathon





#### **Hints**

- Install the beta version for better performance UART communication: <a href="https://github.com/LinjingZhang/XMC-for-Arduino/releases/download/V3.5.3-beta/package\_infineon\_index.json">https://github.com/LinjingZhang/XMC-for-Arduino/releases/download/V3.5.3-beta/package\_infineon\_index.json</a>
- Move the angle sensor wrapper class in SimpleFOC library path:



Check the README/ comments in sketch for more details of how to run the example code.



# **(infineon**

#### Reference

- Meta Al Reskin : <a href="https://ai.meta.com/blog/reskin-a-versatile-replaceable-low-cost-skin-for-ai-research-on-tactile-perception/">https://ai.meta.com/blog/reskin-a-versatile-replaceable-low-cost-skin-for-ai-research-on-tactile-perception/</a>
- ReSkin: versatile, replaceable, long-lasting tactile skins, Bhirangi et al., 2021
- SimpleFOC: <a href="https://docs.simplefoc.com/">https://docs.simplefoc.com/</a>
- Soft Robotics Toolkit: <a href="https://softroboticstoolkit.com/">https://softroboticstoolkit.com/</a>
- In-Hand Slip-Aware Object Manipulation with Parallel Grippers, Waltersson et al. 2024

