Kiran Shahi

Lab Assignment # 7 - Nonlinear Regression and Decision Trees

Input

Graph 1- Underfitted: The model doesn't have sufficient degree of freedom to capture the underlying trend of the data.

Graph 2: Good Fit: The model hasn't captured any single noise of data and it fits too well. The model is unaffected by the noise in the data.

Graph 3: Overfitted: The model is better predicting from its training data but losing its ability to generalize to new data that it hasn't seen before.

The overfitting is an issue in ML because the model learns all the detail and noise from the training data which will deteriorate the prediction performance of the model.

#3. # Read the CSV file

Iris<-read.csv("C:/Users/minti/Documents/McMaster/DataModelling/Lab Assignment/Week 7/Iris.csv") print(Iris)

Load the caret package to partition the data

```
library(caret)
library(ggplot2)
# Split the data into training and testing data
# Use the dataset to create the partition (70% training, 30% testing)
index<-createDataPartition(Iris$Species, p=0.70, list=FALSE)</pre>
# Select 30% of the data for testing
testset <- Iris[-index,]</pre>
# Select 70% of the data to train the models
trainset <- Iris[index,]</pre>
# Summarize the data
summary(trainset)
# Use level function of the prediction column
levels(trainset$Species)
# Plot using ggplot2
# Use scatter plot
g <- ggplot(data=trainset, aes(x = SepalLengthCm, y = SepalWidthCm))+ geom_point()
print(g)
g <-g + geom_point(aes(color=Species, shape=Species)) + xlab("SepalLengthCm") +
ylab("SepalWidthCm") +ggtitle("SepalLengthCm-WidthCm")+geom_smooth(method="lm")
```

```
print(g)
## Box Plot
box <- ggplot(data=trainset, aes(x=Species, y=PetalLengthCm)) + geom_boxplot(aes(fill=Species)) +
ylab("PetalLengthCm") + ggtitle("Iris Boxplot") +stat_summary(fun=mean, geom="point", shape=7,
size=5)
print(box)
## Histogram
histogram <- ggplot(data=trainset, aes(x=PetalWidthCm)) + geom_histogram(binwidth=0.6,
color="green", aes(fill=Species)) + xlab("PetalWidthCm") + ylab("Frequency") + ggtitle("Histogram of
Petal Width")
histogram
library(rpart)
library(rpart.plot)
set.seed(500)
?rpart
# Fit the model
fit <- rpart(Species ~SepalLengthCm + SepalWidthCm + PetalLengthCm + PetalWidthCm,
method="class", data=trainset)
fit
# Displaying the results
printcp(fit)
```

```
# Visualizing cross-validation results
plotcp(fit)
# Summary of splits
summary(fit)
# plot tree
plot(fit, uniform=TRUE, main="Classification Tree for trainset")
text(fit, use.n=TRUE, all=TRUE, cex=0.8)
## Using rattle, tibble, and bitops package to produce some attractive tree plots
library(rattle)
library(tibble)
library(bitops)
fancyRpartPlot(fit)
# Use different colours
fancyRpartPlot(fit, palettes=c("Greens", "Reds"))
## Add a main title to the plot.
fancyRpartPlot(fit, main="Classification Tree for trainset", tweak=0.6)
# Checking how the tree performs on the training data
```

```
pred<-table(predict(fit,newdata = trainset,type="class"))</pre>
pred
# 4.
# Check the accuracy on the testset data
pred_test<-predict(object = fit,newdata = testset,type="class")</pre>
table(testset$Species)
table(pred_test)
# The training set accuracy is differ than test set accuracy by a lot due to overfitting. It means that the
model is losing its ability to generalize to new data (testing data) that it hasn't seen before.
Output
# 2. Load the library imager
> library(imager)
> im <-
load.image("C:/Users/minti/Documents/McMaster/DataModelling/Threegraph
s.PNG")
> plot(im)
> Iris<-read.csv("C:/Users/minti/Documents/McMaster/DataModelling/Lab
Assignment/Week 7/Iris.csv")
> print(Iris)
   Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                                               Species
1
  1
            5.1
                     3.5
                                1.4
                                         0.2 Iris-setosa
   2
                                         0.2
            4.9
                     3.0
                                1.4
                                               Iris-setosa
3
   3
            4.7
                     3.2
                                1.3
                                         0.2 Iris-setosa
```

4	4	4.6	3.1	1.5	0.2	Iris-setosa
5	5	5.0	3.6	1.4	0.2	Iris-setosa
6	6	5.4	3.9	1.7	0.4	Iris-setosa
7	7	4.6	3.4	1.4	0.3	Iris-setosa
8	8	5.0	3.4	1.5	0.2	Iris-setosa
9	9	4.4	2.9	1.4	0.2	Iris-setosa
10	10	4.9	3.1	1.5	0.1	Iris-setosa
11	11	5.4	3.7	1.5	0.2	Iris-setosa
12	12	4.8	3.4	1.6	0.2	Iris-setosa
13	13	4.8	3.0	1.4	0.1	Iris-setosa
14	14	4.3	3.0	1.1	0.1	Iris-setosa
15	15	5.8	4.0	1.2	0.2	Iris-setosa
16	16	5.7	4.4	1.5	0.4	Iris-setosa
17	17	5.4	3.9	1.3	0.4	Iris-setosa
18	18	5.1	3.5	1.4	0.3	Iris-setosa
19	19	5.7	3.8	1.7	0.3	Iris-setosa
20	20	5.1	3.8	1.5	0.3	Iris-setosa
21	21	5.4	3.4	1.7	0.2	Iris-setosa
22	22	5.1	3.7	1.5	0.4	Iris-setosa
23	23	4.6	3.6	1.0	0.2	Iris-setosa
24	24	5.1	3.3	1.7	0.5	Iris-setosa
25	25	4.8	3.4	1.9	0.2	Iris-setosa
26	26	5.0	3.0	1.6	0.2	Iris-setosa
27	27	5.0	3.4	1.6	0.4	Iris-setosa

28	28	5.2	3.5	1.5	0.2	Iris-setosa
29	29	5.2	3.4	1.4	0.2	Iris-setosa
30	30	4.7	3.2	1.6	0.2	Iris-setosa
31	31	4.8	3.1	1.6	0.2	Iris-setosa
32	32	5.4	3.4	1.5	0.4	Iris-setosa
33	33	5.2	4.1	1.5	0.1	Iris-setosa
34	34	5.5	4.2	1.4	0.2	Iris-setosa
35	35	4.9	3.1	1.5	0.1	Iris-setosa
36	36	5.0	3.2	1.2	0.2	Iris-setosa
37	37	5.5	3.5	1.3	0.2	Iris-setosa
38	38	4.9	3.1	1.5	0.1	Iris-setosa
3 9	39	4.4	3.0	1.3	0.2	Iris-setosa
40	40	5.1	3.4	1.5	0.2	Iris-setosa
41	41	5.0	3.5	1.3	0.3	Iris-setosa
42	42	4.5	2.3	1.3	0.3	Iris-setosa
43	43	4.4	3.2	1.3	0.2	Iris-setosa
44	44	5.0	3.5	1.6	0.6	Iris-setosa
45	45	5.1	3.8	1.9	0.4	Iris-setosa
46	46	4.8	3.0	1.4	0.3	Iris-setosa
47	47	5.1	3.8	1.6	0.2	Iris-setosa
48	48	4.6	3.2	1.4	0.2	Iris-setosa
49	49	5.3	3.7	1.5	0.2	Iris-setosa
50	50	5.0	3.3	1.4	0.2	Iris-setosa
51	51	7.0	3.2	4.7	1.4 Ir	ris-versicolor

52	52	6.4	3.2	4.5	1.5 Iris-versicolor
53	53	6.9	3.1	4.9	1.5 Iris-versicolor
54	54	5.5	2.3	4.0	1.3 Iris-versicolor
55	55	6.5	2.8	4.6	1.5 Iris-versicolor
56	56	5.7	2.8	4.5	1.3 Iris-versicolor
57	57	6.3	3.3	4.7	1.6 Iris-versicolor
58	58	4.9	2.4	3.3	1.0 Iris-versicolor
59	59	6.6	2.9	4.6	1.3 Iris-versicolor
60	60	5.2	2.7	3.9	1.4 Iris-versicolor
61	61	5.0	2.0	3.5	1.0 Iris-versicolor
62	62	5.9	3.0	4.2	1.5 Iris-versicolor
63	63	6.0	2.2	4.0	1.0 Iris-versicolor
64	64	6.1	2.9	4.7	1.4 Iris-versicolor
65	65	5.6	2.9	3.6	1.3 Iris-versicolor
66	66	6.7	3.1	4.4	1.4 Iris-versicolor
67	67	5.6	3.0	4.5	1.5 Iris-versicolor
68	68	5.8	2.7	4.1	1.0 Iris-versicolor
69	69	6.2	2.2	4.5	1.5 Iris-versicolor
70	70	5.6	2.5	3.9	1.1 Iris-versicolor
71	71	5.9	3.2	4.8	1.8 Iris-versicolor
72	72	6.1	2.8	4.0	1.3 Iris-versicolor
73	73	6.3	2.5	4.9	1.5 Iris-versicolor
74	74	6.1	2.8	4.7	1.2 Iris-versicolor
75	75	6.4	2.9	4.3	1.3 Iris-versicolor

76	76	6.6	3.0	4.4	1.4 Iris-versicolor
77	77	6.8	2.8	4.8	1.4 Iris-versicolor
78	78	6.7	3.0	5.0	1.7 Iris-versicolor
7 9	79	6.0	2.9	4.5	1.5 Iris-versicolor
80	80	5.7	2.6	3.5	1.0 Iris-versicolor
81	81	5.5	2.4	3.8	1.1 Iris-versicolor
82	82	5.5	2.4	3.7	1.0 Iris-versicolor
83	83	5.8	2.7	3.9	1.2 Iris-versicolor
84	84	6.0	2.7	5.1	1.6 Iris-versicolor
85	85	5.4	3.0	4.5	1.5 Iris-versicolor
86	86	6.0	3.4	4.5	1.6 Iris-versicolor
87	87	6.7	3.1	4.7	1.5 Iris-versicolor
88	88	6.3	2.3	4.4	1.3 Iris-versicolor
89	89	5.6	3.0	4.1	1.3 Iris-versicolor
90	90	5.5	2.5	4.0	1.3 Iris-versicolor
91	91	5.5	2.6	4.4	1.2 Iris-versicolor
92	92	6.1	3.0	4.6	1.4 Iris-versicolor
93	93	5.8	2.6	4.0	1.2 Iris-versicolor
94	94	5.0	2.3	3.3	1.0 Iris-versicolor
95	95	5.6	2.7	4.2	1.3 Iris-versicolor
96	96	5.7	3.0	4.2	1.2 Iris-versicolor
97	97	5.7	2.9	4.2	1.3 Iris-versicolor
98	98	6.2	2.9	4.3	1.3 Iris-versicolor
99	99	5.1	2.5	3.0	1.1 Iris-versicolor

100 100	5.7	2.8	4.1	1.3 Iris-versicolor
101 101	6.3	3.3	6.0	2.5 Iris-virginica
102 102	5.8	2.7	5.1	1.9 Iris-virginica
103 103	7.1	3.0	5.9	2.1 Iris-virginica
104 104	6.3	2.9	5.6	1.8 Iris-virginica
105 105	6.5	3.0	5.8	2.2 Iris-virginica
106 106	7.6	3.0	6.6	2.1 Iris-virginica
107 107	4.9	2.5	4.5	1.7 Iris-virginica
108 108	7.3	2.9	6.3	1.8 Iris-virginica
109 109	6.7	2.5	5.8	1.8 Iris-virginica
110 110	7.2	3.6	6.1	2.5 Iris-virginica
111 111	6.5	3.2	5.1	2.0 Iris-virginica
112 112	6.4	2.7	5.3	1.9 Iris-virginica
113 113	6.8	3.0	5.5	2.1 Iris-virginica
114 114	5.7	2.5	5.0	2.0 Iris-virginica
115 115	5.8	2.8	5.1	2.4 Iris-virginica
116 116	6.4	3.2	5.3	2.3 Iris-virginica
117 117	6.5	3.0	5.5	1.8 Iris-virginica
118 118	7.7	3.8	6.7	2.2 Iris-virginica
119 119	7.7	2.6	6.9	2.3 Iris-virginica
120 120	6.0	2.2	5.0	1.5 Iris-virginica
121 121	6.9	3.2	5.7	2.3 Iris-virginica
122 122	5.6	2.8	4.9	2.0 Iris-virginica
123 123	7.7	2.8	6.7	2.0 Iris-virginica

124 124	6.3	2.7	4.9	1.8 Iris-virginica
125 125	6.7	3.3	5.7	2.1 Iris-virginica
126 126	7.2	3.2	6.0	1.8 Iris-virginica
127 127	6.2	2.8	4.8	1.8 Iris-virginica
128 128	6.1	3.0	4.9	1.8 Iris-virginica
129 129	6.4	2.8	5.6	2.1 Iris-virginica
130 130	7.2	3.0	5.8	1.6 Iris-virginica
131 131	7.4	2.8	6.1	1.9 Iris-virginica
132 132	7.9	3.8	6.4	2.0 Iris-virginica
133 133	6.4	2.8	5.6	2.2 Iris-virginica
134 134	6.3	2.8	5.1	1.5 Iris-virginica
135 135	6.1	2.6	5.6	1.4 Iris-virginica
136 136	7.7	3.0	6.1	2.3 Iris-virginica
137 137	6.3	3.4	5.6	2.4 Iris-virginica
138 138	6.4	3.1	5.5	1.8 Iris-virginica
139 139	6.0	3.0	4.8	1.8 Iris-virginica
140 140	6.9	3.1	5.4	2.1 Iris-virginica
141 141	6.7	3.1	5.6	2.4 Iris-virginica
142 142	6.9	3.1	5.1	2.3 Iris-virginica
143 143	5.8	2.7	5.1	1.9 Iris-virginica
144 144	6.8	3.2	5.9	2.3 Iris-virginica
145 145	6.7	3.3	5.7	2.5 Iris-virginica
146 146	6.7	3.0	5.2	2.3 Iris-virginica
147 147	6.3	2.5	5.0	1.9 Iris-virginica

148 148	6.5	3.0	5.2	2.0 Iris-virginica
149 149	6.2	3.4	5.4	2.3 Iris-virginica
150 150	5.9	3.0	5.1	1.8 Iris-virginica

- > # Load the caret package to partition the data
- > library(caret)
- > library(ggplot2)
- > # Use the dataset to create the partition (70% training, 30% testing)
- > index<-createDataPartition(Iris\$Species, p=0.70, list=FALSE)
- > # Select 30% of the data for testing
- > testset <- Iris[-index,]</pre>
- > # Select 70% of the data to train the models
- > trainset <- Iris[index,]
- > # Summarize the data
- > summary(trainset)
- Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species

Min.: 1.00 Min.: 4.400 Min.: 2.00 Min.: 1.200 Min.: 0.100 Length: 105

1st Qu.: 36.00 1st Qu.:5.100 1st Qu.:2.80 1st Qu.:1.600 1st Qu.:0.300 Class :character

Median: 75.00 Median: 5.800 Median: 3.00 Median: 4.300 Median: 1.300 Mode: character

Mean: 75.21 Mean: 5.809 Mean: 3.05 Mean: 3.728 Mean: 1.191

3rd Qu.:113.00 3rd Qu.:6.300 3rd Qu.:3.30 3rd Qu.:5.100 3rd Qu.:1.800

Max. :150.00 Max. :7.700 Max. :4.40 Max. :6.700 Max. :2.500

> # Use level function of the prediction column

> levels(trainset\$Species)

NULL

> # Use scatter plot

> g <- ggplot(data=trainset, aes(x = SepalLengthCm, y = SepalWidthCm))+
geom_point()</pre>

> print(g)

> g <-g + geom_point(aes(color=Species, shape=Species)) +
xlab("SepalLengthCm") + ylab("SepalWidthCm") +ggtitle("SepalLengthCmWidthCm")+geom_smooth(method="Im")</pre>

> print(g)

`geom_smooth()` using formula 'y ~ x'

> ## Box Plot

> box <- ggplot(data=trainset, aes(x=Species, y=PetalLengthCm)) +
geom_boxplot(aes(fill=Species)) + ylab("PetalLengthCm") + ggtitle("Iris
Boxplot") +stat_summary(fun=mean, geom="point", shape=7, size=5)</pre>

> print(box)

> ## Histogram

> histogram <- ggplot(data=trainset, aes(x=PetalWidthCm)) +
geom_histogram(binwidth=0.6, color="green", aes(fill=Species)) +
xlab("PetalWidthCm") + ylab("Frequency") + ggtitle("Histogram of Petal
Width")</pre>

> histogram

- > library(rpart)
- > library(rpart.plot)
- > set.seed(500)
- > ?rpart
- > fit <- rpart(Species ~SepalLengthCm + SepalWidthCm + PetalLengthCm + PetalWidthCm, method="class", data=trainset)

> fit

n= 105

node), split, n, loss, yval, (yprob)

- * denotes terminal node
- 1) root 105 70 Iris-setosa (0.33333333 0.3333333 0.33333333)
 - 2) PetalLengthCm< 2.6 35 0 Iris-setosa (1.00000000 0.00000000 0.00000000) *

- 3) PetalLengthCm>=2.6 70 35 Iris-versicolor (0.00000000 0.50000000 0.50000000)
- 6) PetalLengthCm< 4.75 33 1 Iris-versicolor (0.00000000 0.96969697 0.03030303) *
- 7) PetalLengthCm>=4.75 37 3 Iris-virginica (0.00000000 0.08108108 0.91891892) *
- > # Displaying the results
- > printcp(fit)

Classification tree:

```
rpart(formula = Species ~ SepalLengthCm + SepalWidthCm + PetalLengthCm + PetalWidthCm, data = trainset, method = "class")
```

Variables actually used in tree construction:

[1] PetalLengthCm

Root node error: 70/105 = 0.66667

n= 105

CP nsplit rel error xerror xstd

1 0.50000 0 1.000000 1.214286 0.057482

3 0.01000 2 0.057143 0.085714 0.033978

> # Visualizing cross-validation results

> plotcp(fit)

> # Summary of splits

> summary(fit)

Call:

rpart(formula = Species ~ SepalLengthCm + SepalWidthCm + PetalLengthCm +
PetalWidthCm, data = trainset, method = "class")
n= 105

CP nsplit rel error xerror xstd

 $2\ 0.4428571 \qquad 1\ 0.50000000\ 0.82857143\ 0.07278975$

3 0.0100000 2 0.05714286 0.08571429 0.03397821

Variable importance

PetalLengthCm PetalWidthCm SepalLengthCm SepalWidthCm

34 31 22 13

Node number 1: 105 observations, complexity param=0.5

predicted class=Iris-setosa expected loss=0.6666667 P(node) =1

class counts: 35 35 35

probabilities: 0.333 0.333 0.333

left son=2 (35 obs) right son=3 (70 obs)

Primary splits:

PetalLengthCm < 2.6 to the left, improve=35.00000, (0 missing)

PetalWidthCm < 0.8 to the left, improve=35.00000, (0 missing)

SepalLengthCm < 5.45 to the left, improve=25.25684, (0 missing)

SepalWidthCm < 3.25 to the right, improve=11.46552, (0 missing)

Surrogate splits:

PetalWidthCm < 0.8 to the left, agree=1.000, adj=1.000, (0 split)

SepalLengthCm < 5.45 to the left, agree=0.933, adj=0.800, (0 split)

SepalWidthCm < 3.25 to the right, agree=0.810, adj=0.429, (0 split)

Node number 2: 35 observations

predicted class=Iris-setosa expected loss=0 P(node) =0.3333333

class counts: 35 0 0

probabilities: 1.000 0.000 0.000

Node number 3: 70 observations, complexity param=0.4428571

predicted class=Iris-versicolor expected loss=0.5 P(node) =0.6666667

class counts: 0 35 35

probabilities: 0.000 0.500 0.500

left son=6 (33 obs) right son=7 (37 obs)

Primary splits:

PetalLengthCm < 4.75 to the left, improve=27.547090, (0 missing)

PetalWidthCm < 1.75 to the left, improve=24.346570, (0 missing)

SepalLengthCm < 5.75 to the left, improve= 7.329060, (0 missing)

SepalWidthCm < 2.45 to the left, improve= 3.123862, (0 missing)

Surrogate splits:

PetalWidthCm < 1.55 to the left, agree=0.914, adj=0.818, (0 split)

SepalLengthCm < 5.75 to the left, agree=0.757, adj=0.485, (0 split)

SepalWidthCm < 2.65 to the left, agree=0.671, adj=0.303, (0 split)

Node number 6: 33 observations

predicted class=Iris-versicolor expected loss=0.03030303 P(node) =0.3142857

class counts: 0 32 1

probabilities: 0.000 0.970 0.030

Node number 7: 37 observations

predicted class=Iris-virginica expected loss=0.08108108 P(node) =0.352381

class counts: 0 3 34

probabilities: 0.000 0.081 0.919

> plot(fit, uniform=TRUE, main="Classification Tree for trainset")

Classification Tree for trainset

> text(fit, use.n=TRUE, all=TRUE, cex=0.8)

Classification Tree for trainset

> ## Using rattle, tibble, and bitops package to produce some attractive tree plots

- > library(rattle)
- > library(tibble)
- > library(bitops)
- > fancyRpartPlot(fit)

- > # Use different colours
- > fancyRpartPlot(fit, palettes=c("Greens", "Reds"))

> fancyRpartPlot(fit, main="Classification Tree for trainset", tweak=0.6)

- > # Checking how the tree performs on the training data
- > pred<-table(predict(fit,newdata = trainset,type="class"))
- > pred

Iris-setosa Iris-versicolor Iris-virginica 35 33 **37** > # 4. > # Check the accuracy on the testset data > pred_test<-predict(object = fit,newdata = testset,type="class") > table(testset\$Species) Iris-setosa Iris-versicolor Iris-virginica 15 **15 15** > table(pred_test) pred_test Iris-setosa Iris-versicolor Iris-virginica **15** 12 18

>

> # The training set accuracy is differ than test set accuracy by a lot due to overfitting. It means that the model is losing its ability to generalize to new data (testing data) that it hasn't seen before.