The Lebesgue-Radon-Nikodym Theorem

In what follows we assume all measures are defined on (X, \mathcal{M}) .

Definition 1. Let μ be a positive measure and $f: X \to [-\infty, \infty]$ a μ -measurable function. We say that f is **extended** μ -integrable if <u>at least</u> one of

$$\int_X f^+ \ d\mu \qquad or \qquad \int_X f^- \ d\mu$$

is finite.

Remarks.

(a) Given μ a positive measure and f an extended μ -integrable function; if we define the 'set function' ν on \mathcal{M} by

$$\nu(E) := \int_{E} f \, d\mu \qquad E \in \mathcal{M}$$

then ν is a signed measure (you had to prove this in the homeworks).

- (b) Recall that f is μ -integrable when **both** are finite; which is the same as saying that $\int_X |f| d\mu < \infty$. In this case we write $f \in L^1(\mu)$.
- (c) If ν is a signed measure and $\nu = \nu^+ \nu^-$ is the decomposition into its positive and negative variations both ν^+ and ν^- are positive measures– then by integration of measurable functions with respect to ν is defined by

$$\int_{X} f \, d\nu := \int_{X} f \, d\nu^{+} - \int_{X} f \, d\nu^{-}.$$

Then the space of ν -integrable functions is defined by

$$L^1(\nu)\,:=\,L^1(\nu^+)\cap L^1(\nu^-)$$

where $L^1(\nu^+)$ and $L^1(\nu^-)$ are defined as in (a).

Definition 2. Let ν and μ be two signed measures. We say that they are **mutually singular** and write $\nu \perp \mu$ or $\mu \perp \nu$ if there exist $E, F \in \mathcal{M}$ such that

- (1) $E \cap F = \emptyset$, $E \cup F = X$.
- (2) E is null for μ and F is null for ν .

Definition 3. Let ν be a signed measure and μ a positive measure. We say that ν is absolutely continuous with respect to μ and write $\nu \ll \mu$ if

$$\nu(E) = 0$$
 for every $E \in \mathcal{M}$ for which $\mu(E) = 0$

Notation. Let μ be a positive measure, f be an extended μ -integrable function. In what follows we shall somehwat abuse notation and simply write $d\nu = f d\mu$ to refer to the signed measure ν defined by $\nu(E) = \int_X f d\mu$, $E \in \mathcal{M}$.

Technical Lemma 1. Let ν and μ be two finite positive measures. Then either

- (i) $\nu \perp \mu$ or
- (ii) There exists $\varepsilon > 0$ and a set $E \in \mathcal{M}$ s.t. $\mu(E) > 0$ and E is a positive set for $\nu \varepsilon \mu$.

Proof. Suppose ν and μ are **not** mutually singular. Then want to show there exists an $\varepsilon > 0$ and a set $E \in \mathcal{M}$ with $\mu(E) > 0$ and E a **positive set** for $\nu - \varepsilon \mu$.

Now, for each $n \in \mathbb{N}$ let $P_n \cup N_n = X$ be a Hahn decomposition for $\nu - \frac{1}{n}\mu$. Define

$$P = \bigcup_{1}^{\infty} P_n$$
 and $N = \bigcap_{1}^{\infty} N_n = P^c$.

Then in particular $X = P \cup N$ and N is a **negative set** for **all** $n \in \mathbb{N}$. But then the latter implies that

$$0 \le \nu(N) \le \frac{1}{n}\mu(N)$$
 for all $n \in \mathbb{N}$.

By the Squeeze theorem we then have that $\nu(N) = 0$.

On the other hand, $\mu(P) \geq 0$. But since we assumed that ν and μ were not mutually singular, $\mu(P) \neq 0$ because we showed $\nu(N) = 0$ and X is the disjoint union of P and N. Hence $\mu(P) > 0$ whence there must exist an $n_0 \in \mathbb{N}$ with $\mu(P_{n_0}) > 0$ and P_{n_0} a **positive set** for $\nu - \frac{1}{n_0}\mu$ by deinition of P_{n_0} .

Let then $\varepsilon := \frac{1}{n_0}$ and $E := P_{n_0}$ to otain the desired conclusion.

Technical Lemma 2. Let ν_1 , ν_2 and η be three signed measures, such that $\nu_1 \perp \eta$ and $\nu_2 \perp \eta$. Then for any $a_1, a_2 \in \mathbb{R}$ for which $a_1 \nu_1 + a_2 \nu_2$ is well defined as a signed measure, we have that $(a_1 \nu_1 + a_2 \nu_2) \perp \eta$.

Proof. First note that we only need to consider $a_j \neq 0$ and since $\nu_j \perp \eta$ then implies $a_j \nu_j \perp \eta$, for j = 1, 2 we can further assume WLOG that $a_j = \pm 1 for j = 1, 2$. In any of such cases we proceed as follows.

By definition of mutually singular we have that $X = A_1 \cup A_1^c$ and $X = A_2 \cup A_2^c$ where $A_i \in \mathcal{M}$ be such that A_i is η -null for i = 1, 2 and A_i^c is ν_i -null for i = 1, 2.

We want to show that there exists a set $A \in \mathcal{M}$ such that $X = A \cup A^c$, a is η -null and A^c $(\nu_1 + \nu_2)$ -null.

Set $A := A_1 \cup A_2$. Then clearly $A^c = A_1^c \cap A_2^c$; $A^c \subset A_i^c$, i = 1, 2. Hence A^c is null for both ν_1 and ν_2 thus it is also null for $\nu_1 + \nu_2$ so long as the latter makes sense as a signed measure (which we are assuming).

It remains to show that A is still a null set for η . For example we rewrite

$$A = (A_1 \setminus A_2) \cup (A_2 \setminus A_1) \cup (A_1 \cap A_2).$$

Then given any $F \subset A$; we use the additivity of the measure to write

$$\eta(F) = \eta(F \cap (A_1 \setminus A_2)) + \eta(F \cap (A_2 \setminus A_1)) + \eta(F \cap (A_1 \cap A_2))$$

= 0

because each term on the right hand side vanishes since A_i are null sets for η and each set on the right hand side is a subset of A_1 or A_2 . Thus concluding the proof.

Technical Lemma 3. Let μ be a positive measure and $f_1, f_2 : X \to [-\infty, \infty]$ be extended μ -integrable functions such that

$$|f_1| d\mu$$
 and $|f_2| d\mu$ are σ -finite
$$\int_X f_1^- d\mu < \infty \quad and \quad \int_X f_2^- d\mu < \infty$$
$$\int_A f_1 d\mu = \int_A f_2 d\mu \quad \text{for all } A \in \mathcal{M}.$$

Then $f_1(x) = f_2(x) \mu - a.e.$

Proof. By the σ -finiteness of the measures we have that

$$X = \bigcup X_i$$
, $\int_{X_i} |f_1| d\mu < \infty$ and $X = \bigcup X'_j$ $\int_{X'_j} |f_2| d\mu < \infty$.

Let $Z_{i,j} := (X_i \cap X'_j)$ $i, j \in \mathbb{N}$. Since $\mathbb{N} \times \mathbb{N} \sim \mathbb{N}$, we can relabel $Z_{i,j} =: Z_k$; then $X = \bigcup_n (\bigcup_{k=1}^n Z_k) := \bigcup_n Y_n$; $Y_n \subset Y_{n+1}$. We have that

$$\int_{Y_n} |f_1| \, d\mu < \infty \quad \int_{Y_n} |f_2| \, d\mu < \infty \quad \text{for all } n \in \mathbb{N}.$$

In other words $\chi_{Y_n} f_1$ and $\chi_{Y_n} f_2$ are in $L^1(\mu)$. On the other hand by assumption we have,

$$\int_A \chi_{Y_n}(x) f_1(x) = \int_{A \cap Y_n} f_1(x) d\mu = \int_{A \cap Y_n} f_2(x) d\mu = \int_A \chi_{Y_n}(x) f_2(x) \quad \text{for all } A \in \mathcal{M}$$

Then by Proposition 2.23 b. $\chi_{Y_n}(x)f_1(x) = \chi_{Y_n}(x)f_2(x)$, $\mu - a.e$ in x. Thus $|\chi_{Y_n}(x)f_1(x) - \chi_{Y_n}(x)f_2(x)$, |= 0 $\mu - a.e$ in x. By Proposition 2.16 we then have

(1)
$$\int \chi_{Y_n} |f_1(x) - f_2(x)| d\mu = \int_{Y_n} |f_1(x) - f_2(x)| d\mu = 0 \quad \text{for all } n \in \mathbb{N}$$

Then by the MCT letting $n \to \infty$ in (1) we can conclude that $f_1(x) = f_2(x)$, $\mu - a.e.$ in $x \in X$.

Main Theorem. Let ν be a σ -finite signed measure and let μ be a σ -finite positive measure on (X, \mathcal{M}) . Then there exist unique σ -finite signed measures λ and ρ on (X, \mathcal{M}) such that

$$\lambda \perp \mu$$
, $\rho \ll \mu$, and $\nu = \lambda + \rho$

Moreover, there is an extende μ -integrable function $f: X \to \mathbb{R}$ such that

$$d\rho = f d\mu$$

and any two such functions are equal μ -a.e.

Proof.

CASE I: Assume ν and μ are both finite and positive measures.

Existence Define

$$\mathcal{F} := \{ f : X \to [0, \infty] : \int_E f \, d\mu \le \nu(E), \text{ for all } E \in \mathcal{M} \}.$$

Then

- (1) $\mathcal{F} \neq \emptyset$ since $f \equiv 0 \in \mathcal{F}$.
- (2) If $f, g \in \mathcal{F}$ then $h(x) := \max(f(x), g(x)) \in \mathcal{F}$. Indeed,

$$\int_{E} h(x)d\mu = \int_{E \cap \{x: f(x) > g(x)\}} f(x) d\mu + \int_{E \setminus \{x: f(x) > g(x)\}} g(x) d\mu$$

$$\leq \nu(E \cap \{x: f(x) > g(x)\}) + \nu(E \setminus \{x: f(x) > g(x)\})$$

$$= \nu(E)$$

where the second inequality holds since $f, g \in \mathcal{F}$.

Let $\mathbf{a} := \sup_{f \in \mathcal{F}} \{ \int_X f d\mu \}$. Then $\mathbf{a} \le \nu(X) < \infty$.

By definition of supremum there must exist a sequence $\{f_n\}_{n\geq 1}\subset \mathcal{F}$ such that

$$\int_x f_n \, d\mu \, \to \, \mathbf{a} \qquad \text{as} \quad n \to \infty$$

For each $n \ge 1$ define a new sequence

$$g_n := \max (f_1, f_2, \dots, f_n)$$
 and a function $f(x) := \sup_n f_n(x)$.

Then

- (1) $g_n \in \mathcal{F}$
- (2) $g_n(x) \le g_{n+1}$ and $g_n(x) \to f(x)$ as $n \to \infty$
- (3) $\mathbf{a} \ge \int g_n d\mu \ge \int f_n d\mu$ by (1) and the definition of g_n .

From (3) and the Squeeze theorem (for sequences of real numbers) we then have that

$$\lim_{n\to\infty}\int g_n\,d\mu\,\to\,\mathbf{a}.$$

Moreover, by (2) and the MCT (all functions are in L^+) we can conclude that

$$f \in \mathcal{F}$$
 and $\int f \, d\mu = \mathbf{a}$

Since $\mathbf{a} < \infty$ and $f \in L^+$ the latter implies in particular that $f(x) < \infty \ \mu - a.e.$. Define λ so that $d\lambda := d\nu - f d\mu$. Then since $f \in \mathcal{F}$ we have

$$\nu(E) - \int_E f \, d\mu \ge 0$$
 for all $E \in \mathcal{M}$.

Hence λ is a positive (and finite) measure.

Next, we need to show that $\lambda \perp \mu$. We do this by contradiction. Assume λ and μ are **not** mutually singular. By the Technical Lemma 1, there exist a set $E_0 \in \mathcal{M}$ and an $\varepsilon_0 > 0$ with $\mu(E_0) > 0$ and E_0 a positive set for $\lambda - \varepsilon_0 \mu$. But then

$$\varepsilon_0 \chi_{E_0} d\mu \le \chi_{E_0} d\lambda \le d\lambda = d\nu - f d\mu \longrightarrow \int_E (f + \varepsilon_0 \chi_{E_0}) d\mu \le \int_E d\nu = \nu(E) \text{ for any } E \in \mathcal{M}$$

Thus, $(f + \varepsilon_0 \chi_{E_0}) \in \mathcal{F}$ and

$$\int_X (f + \varepsilon_0 \chi_{E_0}) d\mu = \mathbf{a} + \varepsilon_0 \mu(E_0) > \mathbf{a}$$

which contradicts the fact that **a** was the supremum of \mathcal{F} . We must then have that $\lambda \perp \mu$ as desired. This concludes the existence of λ , f and $d\rho := fd\mu$.

<u>Uniqueness</u> Suppose there exist another μ -integrable function f', and λ' another positive finite measure such that $d\nu = d\lambda' + f'd\mu$ as well.

Then $d\lambda - d\lambda' = (f' - f) d\mu$. On the other hand, by Technical Lemma 2 $\lambda - \lambda' \perp \mu$ and by definition $(f' - f) d\mu << d\mu$ with $(f' - f) \in L^1(\mu)$. Hence we must have that

$$d\lambda - d\lambda' = (f' - f)d\mu = 0 \longrightarrow \lambda = \lambda'$$
 and by Prop. 2.23 b. $f = f'\mu - a.e$

CASE II: Assume ν and μ are both σ - finite positive measures.

<u>Existence</u> Let $X = \bigcup X_i$ $\mu(X_i) < \infty$ and $X = \bigcup Y_j$ $\nu(Y_j) < \infty$. For each $k \in \mathbb{N}$ define $A_{i,j} = X_i \cap Y_j$ then $\mu(A_{i,j}) = \nu(A_{i,j}) < \infty$ and since $\mathbb{N} \times \mathbb{N} \sim \mathbb{N}$, by relabeling we can simply write $X = \bigcup_k A_k$.

Define

$$\mu_k(E) = \mu(E \cap A_k)$$
 $\nu_k(E) = \nu(E \cap A_k); k \in \mathbb{N}.$

By Case I, for each $k \in \mathbb{N}$ there exist unique λ_k , f_k such that

$$d\nu_k = d\lambda_k + f_k d\mu_k \qquad \lambda_k \perp \mu_k.$$

Since $\mu_k(A_k^c) = \nu_k(A_k^c) = 0$ we have that $\lambda_k(A_k^c) = \nu_k(A_k^c) - \int_{A_k^c} f_k d\mu_k = 0$. Hence we may, in particular, assume that $f_k = 0$ on A_k^c .

Define

$$\lambda = \sum_{k} \lambda_{k} \qquad f = \sum_{k} f_{k}.$$

Then $d\nu = d\lambda + f d\mu$, $\lambda \perp \mu$ (you proved this in Exercise 9) and $d\lambda, d\rho := f d\mu$ are σ -finite as desired. Note that since $f: X \to [0, \infty]$, $\int_X f^- d\mu < \infty$ hence f is extended μ -integrable.

<u>Uniqueness</u> Follows along the same lines of Case I in conjunction with Technical Lemma 3 to conclude f = f' μ -a.e in x from $d\rho = f d\mu$ and $d\rho' = f' dmu$ are σ -finite and $f, f' : X \to [0, \infty]$ extended μ -integrable.

CASE III: Assume ν is signed σ -finite and μ is σ -finite and positive

<u>Existence</u> Let $\nu = \nu^+ - \nu^-$ be the Jordan decomposition of ν ; where ν^+ and ν^- are positive measures. Then since ν is *signed* and σ -finite WLOG we can assume $\nu^+(X) < \infty$ and ν^- is σ -finite. Then by the previous case there exist positive functions f_+ and $f_-: X \to [0, \infty]$ and measures λ_+, λ_- such that if $d\rho_+ = f_+ d\mu$ and $d\rho_- = f_- d\mu$,

$$\nu^+ = \lambda_+ + \rho_+, \quad \nu^- = \lambda_- + \rho_-, \quad \lambda_+ \perp \mu \text{ and } \lambda_- \perp \mu$$

Since

$$\infty > \nu^+(X) = \int_X f_+ d\mu + \lambda_+(X)$$

we have that $f_+ \in L^1(\mu)$ and $\lambda_+(X) < \infty$ so that $f = f_+ - f_-$ is extended μ -integrable, $d\rho := f d\mu$ and $\lambda_+ - \lambda_-$ are signed measures, $\lambda_+ - \lambda_- \perp \mu$. This concludes the existence since,

$$\nu = \rho_+ + \lambda_+ - (\rho_- + \lambda_-)$$

<u>Uniqueness</u> Follows along the same lines of uniqueness in Case II.

Remark The deomposition $\nu = \lambda + \rho$ where $\lambda \perp \mu$ and $\rho << \mu$ is called the **Lebesgue** decomposition of ν w.r.t. μ .

In the case where $\nu << \mu$ the theorem says that $d\nu = f\,d\mu$ for some extended μ -integrable function f. In this case such f is called the **Radon-Nikodym derivative** of ν w.r.t. μ and it is <u>denoted</u> by $\frac{d\nu}{d\mu}$.