

Classification of biological cells

to cancer and non-cancer ones

by their

Raman scattering

Anastasiia Merdalimova February 2023

Contents

- Introduction to the subject
- Problem statement
- Data research
- Applying machine learning techniques
 - Dimensionality reduction
 - Classification
- Task modification

Contents

- Introduction to the subject
- Problem statement
- Data research
- Applying machine learning techniques
 - Dimensionality reduction
 - Classification
- Task modification

• What? Diagnosing cancer cells at the early stage

A problem of early-stage cancer detection is currently one of hot topics in diagnostics

1 Raman spectroscopy

BUT

Signal intensity is weak:(

How?

Raman spectroscopy is one of methods of noninvasive analysis of substance contents, inter alia cell analysis. However, Raman signal is typically too low...

- 1 Raman spectroscopy
- How? 2 + enhancing gold particles (AuNPs) BUT

Provide enhancement only in their vicinity:(

... Therefore, special enhancing gold or silver nanoparticles may be used to enhance the signal; such approach is called SERS, Surface-Enhanced Raman Spectroscopy.

- 1 Raman spectroscopy
- How? 2 + enhancing gold particles (AuNPs)
 - **3** of three different types!

The 3 types of AuNPs are functionalized with different chemical groups,

- 1 Raman spectroscopy
- How? 2 + enhancing gold particles (AuNPs)
 - 3 of three different types!

The 3 types of AuNPs are functionalized with different chemical groups, therefore bind to different molecules and therefore provide different spectra from their vicinities.

Contents

Introduction to the subject

- Problem statement
- Data research
- Applying machine learning techniques
 - Dimensionality reduction
 - Classification
- Task modification

Task

 To distinguish between healthy and cancer cells by amplified spectra Raman scattering

• There are now 3 types of particles in use. It would be great if it only took 1

Formalized ML task

Classification

• Exploring the quality of the model depending on the input

Data

Particle Coverage

		(COOH)2	СООН	NH2	Total	
	Α	53	53	59	165	
(0	A-S	51	56	50	157	
	DMEM	64	64	65	193	
	DMEM-S	53	52	53	158	
types	G	52	54	51	157	
ty _	G-S	50	51	50	151	_
	HF	56	50	51	157	Healthy cells
	HF-S	50	51	50	151	Cens
	MEL	49	50	50	149	
	MEL-S	50	52	51	153	Camana
	ZAM	50	50	50	150	Cancer cells
	ZAM-S	49	50	52	151	

https://www.kaggle.com/datasets/andriitrelin/cells-raman-spectra Erzina et al. Sensors & Actuators: B. Chemical 308 (2020) 127660

Data

In every

2000

features

Total per sample:

6000

features

Contents

- Introduction to the subject
- Problem statement
- Data research
- Applying machine learning techniques
 - Dimensionality reduction
 - Classification
- Task modification

EDA and cleaning

• Data gaps: no

• Outliers: none

Statistical analysis

• Let's look for spectral components that are different in healthy and sick normalized spectra, aiming to build a model/baseline without using ML.

Expectation:

- 1) Check the distribution in each trait for normality
- 2) Choose the type of test
- 3) Test

Statistical analysis

- Let's look for spectral components that are different in healthy and sick normalized spectra.
 - 1) Let's check the distribution in each trait for normality

Probability that intensities of spectral components are normally distributed

Savitsky-Golay filtering

Trade-off between smoothing and informativity, as some peaks also may be sharp Mean spectrum of filered HF NH2 spectra

Savitsky-Golay filter result

All spectra studied, mean+-std:

Raman spectra, mean+-std, Savitzky-Golay filtered

Statistical analysis

After the Savitsky-Golay filter, again check the distribution in each trait for normality.

Test for normality: p values for spectral components

Again, very different p-values.

But we don't need all of them, we only need them in spades

Looking for regions of interest

• Delta between mean spectra:

Delta for healthy-cancer filtered means

- Let's select those components where abs(delta) > (For UND there are 106 of them.
- Let's check them for normality and get the followin histogram:
- We see that the p-value<0.05 for 30 points out of 106.

Correlation matrix

- We use **Spearman correlation**, since we already know that not all signs have a normal distribution
- We see: the data in one spectrum are correlated with each other
- Conclusion: it is worth trying downsizing

Contents

- Introduction to the subject
- Problem statement
- Data research
- Applying machine learning techniques
 - Dimensionality reduction
 - Classification
- Task modification

Dimensionality reduction: PCA

Thousands of signs

The data is very large!

Just a few components make a difference!

=>
Dimensionality
much less

PCA - Principal Component Analysis

Pre-processing:

- Each spectrum was normalized by the area under its curve
- Then, each trait was standardized across all spectra

On PC3 we can observe almost complete separation of classes

PCA analytics

- all PCA components are orthogonal to each other, their mutual correlations = 0
 - PC3 is strongly correlated with the class label

PCA loadings

Contents

- Introduction to the subject
- Problem statement
- Data research
- Applying machine learning techniques
 - Dimensionality reduction
 - Classification
- Task modification

Logistic Regression

Train set

	precision	recall	f1-score	support
0.0	1.00	1.00	1.00	40
1.0	1.00	1.00	1.00	40
accuracy			1.00	80
macro avg	1.00	1.00	1.00	80
weighted avg	1.00	1.00	1.00	80

Test set

	precision	recall	f1-score	support
0.0	1.00	1.00	1.00	10
1.0	1.00	1.00	1.00	10
accuracy			1.00	20
macro avg	1.00	1.00	1.00	20
weighted avg	1.00	1.00	1.00	20

100% Quality even on the test set

Cross Validation

Train k-fold mean recall: 1.00 Valid k-fold mean recall: 1.00

Train k-fold mean rocauc: 1.00 Valid k-fold mean rocauc: 1.00

Still 100% quality

Feature importances

Contents

- Introduction to the subject
- Problem statement
- Data research
- Applying machine learning techniques
 - Dimensionality reduction
 - Classification
- Task modification

We use only 1 type of particles

It was:

-COOH

-NH2

-COOH

-NH2

6000 features

"... And if there's no difference, why pay more?"

Stal:

0 1000 2000 Raman shift, 1/cm

COOH

3x lessAuNPs and spectra

2000

features

PCA - Principal Component Analysis

PCA analytics

Mutual correlation matrix

- all PCA components are orthogonal to each other,
 their mutual correlations = 0
 - PC2 is strongly correlated with the class label

Logistic Regression

Train set

	precision	recall	f1-score	support
0.0	1.00	1.00	1.00	40
1.0	1.00	1.00	1.00	40
accuracy			1.00	80
macro avg	1.00	1.00	1.00	80
weighted avg	1.00	1.00	1.00	80
Test set	precision	recall	f1-score	support
Test set	precision	recall	f1-score	support 10
0.0	1.00	1.00	1.00	10
0.0 1.0	1.00	1.00	1.00 1.00	10 10
0.0 1.0 accuracy	1.00 1.00	1.00 1.00	1.00 1.00	10 10 20

100% Quality even on the test set

Cross Validation

Train k-fold mean recall: 1.00 Train k-fold mean rocauc: 1.00 Valid k-fold mean rocauc: 1.00

Still 100% quality

Feature importances

Conclusion

- Even with the use of a single particle type, it is quite easy to implement cell classification.
- To check the "suspicious perfection" of the results:
 - The data was examined for leaks no leaks were found
 - Cross-validation was performed quality is still 100%

- ToDo:
 - More measurements

The end

Do you have any questions, feedback or want to stay in touch?

Please contact me:

in linkedin.com/in/anastasiia-merdalimova/

github.com/Asya23/

