

Learning objective

After this class you will be able to

- Perform statistical hypothesis tests for the mean, under various assumptions.
- Perform statistical hypothesis tests for the difference between the mean of two groups.

Book: Chapters 27 and 28

Statistics

Before this class (week 3.9 lesson 1):

Watch prelecture 'The t-test'

Book: Sections 27.1 and 27.2

Programme

The *t*-test for large samples

The *t*-test in the regression setting

Exercises

Two sample *t*-test

Exercises

Question from prelecture: Test

 H_0 : $\mu = 60$ against H_1 : $\mu < 60$, $\alpha = 99\%$.

The critical value for this test is

- A) -2.787
- B) -2.485
- **C)** -2.492
- D) -2.797

Question from prelecture: Test

 H_0 : $\mu = 60$ against H_1 : $\mu < 60$, $\alpha = 99\%$.

The value of the test statistic is -2. The conclusion of the test is

- A) reject the null hypothesis
- B) do not reject the null hypothesis
- can not be given

Question from prelecture: Test

⇔ Feedback**Fruits**

 H_0 : $\mu = 60$ against H_1 : $\mu \neq 60$, $\alpha = 95\%$.

The value of the test statistic is -2. The critical value for and the conclusion of the test are

- A) $t_{24,0.025}$; reject the null hypothesis
- B) $t_{24,0.025}$; do not reject the null hypothesis
- C) $t_{24,0.05}$; do reject the null hypothesis

D) $t_{24,0.05}$; do not reject the null hypothesis

Normal samples

Definition:

Let X_1, X_2, \cdots, X_n be a sample from a $N(\mu, \sigma^2)$ distribution. To test the null hypothesis $H_0: \mu = \mu_0$, define the <u>t-test statistic</u> T as

$$T = \frac{\bar{X}_n - \mu_0}{S_n / \sqrt{n}}$$

Then the distribution of this statistic under H_0 : $\mu=\mu_0$ is

$$T \sim t(n-1)$$

Normal samples

How to perform a t-test for samples from normal data with unknown variance at significance level α :

- 1. Formulate the hypotheses
- 2. Compute the value of the *t*-test statistic
- 3. Compare this value with the critical values $t_{n-1,\alpha/2}$ or $t_{n-1,\alpha}$ depending on performing a two-sided or one-sided test
- 4. Decide whether to reject the null hypothesis

Large samples

Let X_1, X_2, \dots, X_n be a sample from a $N(\mu, \sigma^2)$ distribution. For large n, the distribution of the t-test statistic can be approximated by the standard Normal distribution.

How to perform a t-test for large samples from normal data with unknown variance at significance level α :

- 1. Formulate the hypotheses
- 2. Compute the value of the *t*-test statistic
- 3. Compare this value with the critical values $Z_{\alpha/2}$ or Z_{α} depending on performing a two-sided or one-sided test
- 4. Decide whether to reject the null hypothesis

Exercises

Book: 27.1

27.3:

The t-test in a regression setting: Model

Data set:
$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$

Model:
$$Y_i = \alpha + \beta x_i + U_i$$
, for $i = 1, 2, \dots, n$

The errors U_i are normally distributed with expectation 0 and constant variance.

The t-test in a regression setting: the slope

Hypothesis of interest: $H_0: \beta = \beta_0$

Test statistic:

$$T_b = \frac{\hat{\beta} - \beta_0}{S_b}$$

where \hat{eta} is the least squares estimator for the slope and

$$S_b^2 = \frac{n}{n \sum x_i^2 - (\sum x_i)^2} \hat{\sigma}^2, \quad \hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n (Y_i - \hat{\alpha} - \hat{\beta} x_i)^2$$

Under H_0 : $\beta = \beta_0$ the test statistic has t-distribution with n-2 degrees of freedom.

The *t*-test in a regression setting: the intercept

Hypothesis of interest: H_0 : $\alpha=\alpha_0$

Test statistic:

$$T_a = \frac{\hat{\alpha} - \alpha_0}{S_a}$$

where \hat{lpha} is the least squares estimator for the intercept and

$$S_a^2 = \frac{\sum x_i^2}{n \sum x_i^2 - (\sum x_i)^2} \hat{\sigma}^2, \qquad \hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n (Y_i - \hat{\alpha} - \hat{\beta} x_i)^2$$

Under H_0 : $\alpha = \alpha_0$ this test statistic has also a t-distribution with n-2 degrees of freedom.

Exercise

Book: 27.6

Comparing two samples

Two examples:
Mean drill time
versus depth
for "dry" and
"wet" drilling

Boxplots:

Testing if the expectations of two samples are equal: set up

Let X_1, X_2, \cdots, X_n and Y_1, Y_2, \cdots, Y_m be two random samples, with expectations μ_X and μ_Y .

Hypotheses:

$$H_0: \mu_X = \mu_Y$$

$$H_1: \mu_X \neq \mu_Y \text{ or } H_1: \mu_X > \mu_Y \text{ or } H_1: \mu_X < \mu_Y$$

Two samples with equal variances: test statistic

Let X_1, X_2, \dots, X_n and Y_1, Y_2, \dots, Y_m be two random samples, with equal variances, that is $\sigma_X^2 = \sigma_Y^2$.

Definition:

The test statistic for the null hypothesis $H_0: \mu_X = \mu_Y$ is defined by

$$T_p = \frac{X_n - Y_m}{S_p}$$

where

$$S_p^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-2} \left(\frac{1}{n} + \frac{1}{m}\right)$$

$$T_p = \frac{\bar{X}_n - \bar{Y}_m - (\mu_X - \mu_Y)}{S_p}$$

is called the pooled studentised mean difference.

Two samples with equal variances: normal case

Let X_1, X_2, \cdots, X_n be a random sample from $N(\mu_1, \sigma^2)$ and let Y_1, Y_2, \cdots, Y_m be a random sample from $N(\mu_2, \sigma^2)$ Then, under the null hypothesis of equal expectations, $H_0: \mu_1 = \mu_2$:

$$T_p = \frac{\bar{X}_n - \bar{Y}_m}{S_p} \sim t(n+m-2)$$

Two samples with equal variances: large samples

Let X_1, X_2, \dots, X_n be a random sample from $N(\mu_1, \sigma^2)$ and let Y_1, Y_2, \dots, Y_m be a random sample from $N(\mu_2, \sigma^2)$. If n and m are large enough, the distribution of T_p can be approximated by the standard Normal distribution.

Two exercises

Book: 28.1 (a)

For next class (week 3.9 lecture 2):

Prepare practice exam

Book: Relevant sections of Chapters 13 - 28

After this class you are

Well prepared for the final exam

