Training language GANs from Scratch

Cyprien de Masson d'Autume, Mihaela Rosca, Jack Rae, Shakir Mohamed 2019

Plan for today

- Recap (generative text models)
- Recap (GANs)
- Why do we need GANs for text?
- ScratchGAN architecture & Losses
- Evaluation & findings

Generative text modelling recap

$$p_{\theta}(\mathbf{x}) = \prod_{t=0}^{T} p_{\theta}(x_t|x_1, ..., x_{t-1}) \quad \hat{x}_t \sim p_{\theta}(x_t|\hat{x}_1, ..., \hat{x}_{t-1})$$

t=1

Generative text modelling recap

$$p_{\theta}(\mathbf{x}) = \prod_{t=0}^{T} p_{\theta}(x_t|x_1, ..., x_{t-1}) \quad \hat{x}_t \sim p_{\theta}(x_t|\hat{x}_1, ..., \hat{x}_{t-1})$$

t=1

$$\arg\max_{\boldsymbol{\theta}} \mathbb{E}_{p^*(\mathbf{x})} \log p_{\boldsymbol{\theta}}(\mathbf{x})$$

GANs recap

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi}} \mathbb{E}_{p^*(\mathbf{x})} \left[\log \mathcal{D}_{\boldsymbol{\phi}}(\mathbf{x}) \right] + \mathbb{E}_{p_{\boldsymbol{\theta}}(\mathbf{x})} \left[\log (1 - \mathcal{D}_{\boldsymbol{\phi}}(\mathbf{x})) \right]$$

GANs recap

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi}} \mathbb{E}_{p^*(\mathbf{x})} \left[\log \mathcal{D}_{\boldsymbol{\phi}}(\mathbf{x}) \right] + \mathbb{E}_{p_{\boldsymbol{\theta}}(\mathbf{x})} \left[\log (1 - \mathcal{D}_{\boldsymbol{\phi}}(\mathbf{x})) \right]$$

REINFORCE gradient estimator

$$\nabla_{\theta} \mathbb{E}_{p_{\theta}(\mathbf{x})}[R(\mathbf{x})] = \mathbb{E}_{p_{\theta}(\mathbf{x})} \left[R(\mathbf{x}) \nabla_{\theta} \log p_{\theta}(\mathbf{x}) \right]$$
 From D: $R(\mathbf{x}) = \frac{p^*(\mathbf{x})}{p_{\theta}(\mathbf{x})}$

GANs for text (problems)

Train from scratch:

- gradient estimation
- mode collapse
- overfitting to the training set

GANs for text (problems)

Train from scratch:

- gradient estimation
- mode collapse
- overfitting to the training set

Pretrain with MLE (adversarial fine-tuning):

- limited, close to the original, nothing new
- do not improve over maximum likelihood-trained models

ScratchGAN

ScratchGAN

$$r_t = 2\mathcal{D}_{\phi}(\hat{x}_t | x_{t-1}...x_1) - 1$$

Generator in detail

ScratchGAN

Discriminator in detail

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi}} \mathbb{E}_{p^*(\mathbf{x})} \left[\log \mathcal{D}_{\boldsymbol{\phi}}(\mathbf{x}) \right] + \mathbb{E}_{p_{\boldsymbol{\theta}}(\mathbf{x})} \left[\log (1 - \mathcal{D}_{\boldsymbol{\phi}}(\mathbf{x})) \right]$$

$$\mathbb{E}_{p_{\boldsymbol{\theta}}(\mathbf{x})} \left[\log(1 - \mathcal{D}_{\boldsymbol{\phi}}(\mathbf{x})) \right]$$

$$r_t = 2\mathcal{D}_{\phi}(\hat{x}_t | x_{t-1}...x_1) - 1$$

$$r_t = 2\mathcal{D}_{\phi}(\hat{x}_t | x_{t-1}...x_1) - 1$$
$$R_t = \sum_{s=1}^{T} \gamma^{s-t} r_s$$

$$\begin{split} r_t &= 2\mathcal{D}_{\phi}(\hat{x}_t|x_{t-1}...x_1) - 1 \\ R_t &= \sum_{s=t}^T \gamma^{s-t} r_s \\ L_{ti}^G &= \boxed{-(R_t - b_i) \ln p_{\theta}(x_t)} \\ \end{split} \qquad \begin{array}{l} \nabla_{\theta} \mathbb{E}_{p_{\theta}(\mathbf{x})}[R(\mathbf{x})] = \mathbb{E}_{p_{\theta}(\mathbf{x})}[R(\mathbf{x})\nabla_{\theta} \log p_{\theta}(\mathbf{x})] \\ \end{array}$$

From D: $R(\mathbf{x}) = \frac{p^*(\mathbf{x})}{p_{\theta}(\mathbf{x})}$

$$r_t = 2\mathcal{D}_{\phi}(\hat{x}_t|x_{t-1}...x_1) - 1$$

$$R_t = \sum_{s=t}^T \gamma^{s-t} r_s$$

$$L_{ti}^G = -(R_t - b_i) \ln p_{\theta}(x_t)$$

at training step i is $\sum_{t} L_{ti}^{G}$

$$r_t = 2\mathcal{D}_{\phi}(\hat{x}_t|x_{t-1}...x_1) - 1 \qquad b_i = \lambda b_{i-1} + (1 - \lambda)\bar{R}_i$$

$$R_t = \sum_{s=t}^T \gamma^{s-t} r_s$$

$$L_{ti}^G = -(R_t - b_i) \ln p_{\theta}(x_t)$$
at training step i is $\sum_t L_{ti}^G$

$$r_t = 2\mathcal{D}_{\phi}(\hat{x}_t|x_{t-1}...x_1) - 1 \qquad b_i = \lambda b_{i-1} + (1-\lambda)\bar{R}_i$$

$$R_t = \sum_{s=t}^T \gamma^{s-t} r_s$$

$$L_{ti}^G = -(R_t - b_i) \ln p_{\theta}(x_t)$$
at training step i is $\sum_t L_{ti}^G$

 \bar{R}_i is the mean cumulative reward over all sequence timesteps and over the current batch

D loss is ...

D loss is just Cross Entropy!

D loss is just Cross Entropy!

$$\max_{\phi} \sum_{t=1}^{T} \mathbb{E}_{p^*(x_t|x_1,...,x_{t-1})} \left[\log \mathcal{D}_{\phi}(x_t|x_1,...x_{t-1}) \right] + \sum_{t=1}^{T} \mathbb{E}_{p_{\theta}(x_t|x_1,...,x_{t-1})} \left[\log (1 - \mathcal{D}_{\phi}(x_t|x_1,...x_{t-1})) \right]$$

D loss is just Cross Entropy!

$$\max_{\phi} \sum_{t=1}^{T} \mathbb{E}_{p^*(x_t|x_1,...,x_{t-1})} \left[\log \mathcal{D}_{\phi}(x_t|x_1,...x_{t-1}) \right] + \sum_{t=1}^{T} \mathbb{E}_{p_{\theta}(x_t|x_1,...,x_{t-1})} \left[\log (1 - \mathcal{D}_{\phi}(x_t|x_1,...x_{t-1})) \right]$$

1 step G; 1 step D

- Recurrent D & REINFORCE

- Recurrent D & REINFORCE
- D regularization (L2 & LNs)

- Recurrent D & REINFORCE
- D regularization (L2 & LNs)
- Large batch size ?

Key ScratchGAN component is large batch size

$$\nabla_{\theta} = \sum_{n=1}^{N} \sum_{t=1}^{T} (R_t^n - b_t) \nabla_{\theta} \log p_{\theta}(\hat{x}_t^n | \hat{x}_{t-1}^n ... \hat{x}_1^n), \qquad \hat{x}_t^n \sim p_{\theta}(x_t^n | \hat{x}_{t-1}^n ... \hat{x}_1^n)$$

G optimization

Key ScratchGAN component is large batch size

$$\nabla_{\theta} = \sum_{n=1}^{N} \sum_{t=1}^{T} (R_t^n - b_t) \nabla_{\theta} \log p_{\theta}(\hat{x}_t^n | \hat{x}_{t-1}^n ... \hat{x}_1^n), \qquad \hat{x}_t^n \sim p_{\theta}(x_t^n | \hat{x}_{t-1}^n ... \hat{x}_1^n)$$

G optimization

Evaluation difficulties

Perplexity

	Model	World level perplexity		
	Random	5725		
	ScratchGAN	154		
	MLE	42		
Table 2: EMNLP2017 News perplexity.				
LSTM				

Evaluation difficulties

Diversity and quality

BLEU

- local consistency and detect
 relatively simple problems with
 syntax
- DOES NOT capture semantic variation

BLEU

- local consistency and detect
 relatively simple problems with
 syntax
- DOES NOT capture semantic variation

(a) Negative BLEU-5 versus Self-BLEU-5.

Evaluation difficulties

Diversity and quality

- Local and global consistency

Fréchet Embedding Distance (FED)

Universal Sentence Encoder

 Distance between two Gaussian distributions fitted to data embeddings

Fréchet Embedding Distance (FED)

Universal Sentence Encoder

 Distance between two Gaussian distributions fitted to data embeddings

- Global consistency
- Both quality and diversity
- Correlates with human evaluation
- Less sensitive to word order than BLEU metrics
- FID proven useful for images.

Evaluation difficulties

- Diversity and quality
- Local and global consistency
- Generalization beyond the training set

strongly in Florida, where he can be 100 percent away.				
0.77	His name, of course, is Donald Trump, the billionaire businessman who leads most national polls for the Republican nomination.	0.13	It's like the situation in Florida, where he didn't pay taxes on his golf course.	
0.75	But to get there, Rubio believes he needs to cut significantly into Cruz's support in Iowa, a state dominated by social conservatives.	0.12	Donald Trump is spending his third straight day in Florida, where he's already made six campaign stops since Sunday.	
0.72	On the Republican side, the Iowa poll shows Ted Cruz leading Donald Trump by four points	0.10	He has long been mentioned as a possible can- didate for governor in Florida, where he has a	

Sample: A nice large part of Trump has to plan exactly what Pence would worth, for Trump to choose him

3-gram

Nearest Neighbours

age children.

home in Miami with his wife and four school -

EMNLP2017 News

shire.

Nearest Neighbours

strongly in Florida whom he can be 100 noncont away

, but Trump has a 16 - point lead in New Hamp-

USE

Evaluation difficulties

- Diversity and quality
- Local and global consistency
- Generalization beyond the

training set

Training stability

Table 4: FED sensitivity on EMNLP2017 News.

Variation	FED	
Hyperparameters	0.021 ± 0.0056	
Seeds (best hypers)	0.018 ± 0.0008	

Ablation study

(c) ScratchGAN ablation study.

C Negative results

Here we list some approaches that we tried but which proved unsuccessful or unnecessary:

- Using a Wasserstein Loss on generator logits, with a straight-through gradient. This was unsuccessful.
- Using ensembles of discriminators and generators. The results are on par with those obtained by a single discriminator-generator pair.
- Training against past versions of generators/discriminators. Same as above.
- Using bi-directional discriminators. They can work but tend to over-fit and provide less useful feedback to the generator.
- Using several discriminators with different architectures, hoping to have the simple discriminators capture simple failure modes of the generators such as repeated words. It did not improve over single discriminator-generator pair.
- Training on small datasets such as Penn Tree Bank. The discriminator quickly over-fit to the training data. This issue could probably be solved with stronger regularization but we favoured larger datasets.
- Using a Hinge loss [44] on the discriminator. This did not improve over the cross-entropy loss.
- Using a hand-designed curriculum, where the generator is first trained against a simple discriminator, and later in training a more complex discriminator is substituted. This was unsuccessful. We suspect that adversarial training requires a difficult balance between discriminator quality and generator quality, which is difficult to reach when either component has been trained independently from the other.

Thanks for your attention!