Cycles Solutions

GSI: Caleb Eades

9/18

1 Looking Forward to Spring(s)?

1.1 Springs and Expansions

Initially, $(P_1 - P_0)A = 0N$, so $P_1 = P_0$ and via the Ideal Gas Law, $P_1V_1 = nRT_1$.

(a) As T increases, P and V will as well, so the spring will start resisting:

$$(P_2 - P_0)A = k(V_2 - V_1)/A$$

 $P_2V_2 = nRT_2 = 3nRT_1 = 3P_1V_1$

Hence $P_2 = 3P_1V_1/V_2$ and

$$\begin{split} V_2 - V_1 &= \frac{A^2}{k} \left(\frac{3P_1V_1}{V_2} - P_1 \right) \\ 0 &= V_2^2 + V_2 \left(\frac{A^2P_1}{k} - V_1 \right) - \frac{3A^2P_1V_1}{k} \\ V_2 &= \frac{1}{2} \left(V_1 - \frac{A^2P_1}{k} \pm \sqrt{\left(\frac{A^2P_1}{k} \right)^2 - 2\left(\frac{A^2P_1}{k} \right) (V_1) + V_1^2 + 12\frac{A^2P_1V_1}{k}} \right) \\ &= \frac{1}{2} \left(V_1 - \frac{A^2P_1}{k} \pm \sqrt{\left(\frac{A^2P_1}{k} \right)^2 + 10\left(\frac{A^2P_1}{k} \right) (V_1) + V_1^2} \right) \end{split}$$

Since the radical will be bigger than $\frac{A^2P_1}{k}$, we choose the addition such that

$$V_2 = \frac{1}{2} \left(V_1 - \frac{A^2 P_1}{k} + \sqrt{\left(\frac{A^2 P_1}{k}\right)^2 + 10\left(\frac{A^2 P_1}{k}\right)(V_1) + V_1^2} \right)$$
(1)

(b) Whatever work the gas did is the negative of what the spring did, which

is
$$-k\frac{\Delta h^2}{2}$$
, so
$$W_{gas} = \frac{k}{2} \left(\frac{V_2}{A} - \frac{V_1}{A} \right)^2$$

$$= \frac{k}{2A^2} \left(V_2 - V_1 \right)^2$$

$$= \frac{k}{8A^2} \left(\left(\frac{A^2 P_1}{k} \right)^2 - 2\frac{A^2 P_1}{k} \sqrt{\left(\frac{A^2 P_1}{k} \right)^2 + 10\frac{A^2 P_1 V_1}{k} + V_1^2} + \left(\frac{A^2 P_1}{k} \right)^2 + 10\frac{A^2 P_1 V_1}{k} + V_1^2 \right)$$

(c) From the first law,

$$\begin{split} Q &= \Delta E_{int} + W_{gas} \\ &= 3nRT_1 \\ &+ \frac{k}{8A^2} \left(\left(\frac{A^2 P_1}{k} \right)^2 - 2 \frac{A^2 P_1}{k} \sqrt{\left(\frac{A^2 P_1}{k} \right)^2 + 10 \frac{A^2 P_1 V_1}{k} + V_1^2} + \left(\frac{A^2 P_1}{k} \right)^2 + 10 \frac{A^2 P_1 V_1}{k} + V_1^2 \right) \end{split}$$

(d) Let's define a new variable V' as

$$V' = \frac{1}{2} \left(V_1 - \frac{A^2 P_1}{k} + \sqrt{\left(\frac{A^2 P_1}{k}\right)^2 + 10 \frac{A^2 P_1 V_1}{k} + V_1^2} \right)$$
 (2)

Then the answers for each of the previous parts are much simplified. (a) $V_2 = V'$. (b) $W_{gas} = \frac{k}{2A^2} \left(V' - V_1\right)^2$. (c) $Q = 3nRT_1 + \frac{k}{2A^2} \left(V' - V_1\right)^2$.

2 Test-like and other Interesting Problems

2.1 Interlude on Entropy

(a) For an estimate, we follow the textbook's approach of calculating T_f , Q_{iron} and Q_{water} , and finding entropies from the average temperature over the process:

$$Q_{iron} = m_{iron} c_{iron} \Delta T_{iron}$$

$$= (10kg)(450Jkg^{-1}K^{-1})(T_f - 1000K)$$

$$Q_{water} = (100kg)(4186Jkg^{-1}K^{-1})(T_f - 300K)$$

Setting $Q_{water} = -Q_{iron}$ since all the heat lost by one must be gained by the other, we have

$$4500(1000 - T_f) = 418600(T_f - 300)$$
$$T_f = \frac{4500000 + 418600 * 300}{418600 + 4500}$$
$$\approx 307.4 K$$

Then,

$$Q_{iron} \approx -3.1 \times 10^6 J$$
$$Q_{water} \approx 3.1 \times 10^6 J$$

Hence,

$$\Delta S_{iron} \approx \frac{Q_{iron}}{T_{iron,avg}}$$

$$= \frac{Q_{iron}}{(1000 + T_f)/2}$$

$$\approx -4.7 \times 10^3 J K^{-1} \Delta S_{water} \qquad \approx \frac{Q_{water}}{T_{water,avg}}$$

$$= \frac{Q_{water}}{(300 + T_f)/2}$$

$$\approx 1.0 \times 10^4 J K^{-1}$$

So $\Delta S_{system} \approx 5.3 \times 10^3 J K^{-1}$.

(b) T_f is the same as calculated in part (a), as is Q_{iron} and Q_{water} . But now,

$$\Delta S_{iron} = \int_{1000K}^{307.4K} \frac{(4500JK^{-1})}{T} dT$$
$$= (-4500JK^{-1})ln\left(\frac{1000}{307.4}\right)$$
$$\approx -5.3 \times 10^3 JK^{-1}$$

Similarly,

$$\Delta S_{water} = (418600 J K^{-1}) ln \left(\frac{307.4}{300}\right) \approx 1.0 \times 10^4 J K^{-1}$$

So $\Delta S_{system} \approx 4.7 \times 10^3 J K^{-1}$. This is less that part (a) because first-order log approximations are less accurate when there is a significant difference in the numberator and denominator.

2.2 Derivations

(a) Let the top isotherm be at temperature T_H and the lower one at T_C . We will look at each segment in the cycle.

A to B:
$$\Delta E_{int,A->B} = 0$$
, so

$$\begin{aligned} Q_H &= Q_{A->B} = W_{A->B} \\ &= \int_{V_A}^{V_B} \frac{nRT_H}{V} dV \\ &= nRT_H ln\left(\frac{V_B}{V_A}\right) \end{aligned}$$

B to C: $Q_{B->C}=0$ and $\Delta E_{int,B->C}=\frac{3}{2}nR(T_C-T_H)$. By the first law,

$$W_{B->C} = -\Delta Eint, B->C$$
$$= \frac{3}{2}nR(T_H - T_C)$$

C to D: $\Delta E_{int,C->D} = 0$, so $Q_C = |Q_{C->D}|$ and

$$\begin{aligned} Q_{C->D} &= W_{C->D} \\ &= -nRT_C ln \left(\frac{V_C}{V_D} \right) \\ Q_C &= nRT_C ln \left(\frac{V_C}{V_D} \right) \end{aligned}$$

D to A: $Q_{D->A} = 0$ and $\Delta E_{int,D->A} = \frac{3}{2}nR(T_H - T_C)$. By the first law,

$$W_{D->A} = -\Delta E_{int,D->A}$$
$$= \frac{3}{2} nR(T_C - T_H)$$

Now, putting all these pieces together and looking at the overall cycle,

$$W_{net} = nRT_H ln\left(\frac{V_B}{V_A}\right) - nRT_C ln\left(\frac{V_C}{V_D}\right)$$
(3)

The efficiency is then given by

$$\begin{split} e &= \frac{W_{net}}{Q_H} \\ &= \frac{nRT_H ln\left(\frac{V_B}{V_A}\right) - nRT_C ln\left(\frac{V_C}{V_D}\right)}{nRT_H ln\left(\frac{V_B}{V_A}\right)} \\ &= 1 - \frac{T_C}{T_H} ln\left(\frac{V_C}{V_D}\right) ln\left(\frac{V_B}{V_A}\right) \end{split}$$

Along an adiabat, $PV^{\gamma}=constant$, so $P_BV_B^{\gamma}=P_CV_C^{\gamma}$. Also, from the Ideal Gas Law, $P_BV_B=nRT_H$ while $P_CV_C=nRT_C$, so

$$\begin{split} nRT_H V_B^{\gamma-1} &= nRT_C V_C^{\gamma-1} \\ V_C &= V_B \left(\frac{T_H}{T_C}\right)^{1/(\gamma-1)} \end{split}$$

Similarly,

$$V_D = V_A \left(\frac{T_H}{T_C}\right)^{1/(\gamma - 1)} \tag{4}$$

Hence,

$$\begin{split} e &= 1 - \frac{T_C}{T_H} ln \left(\frac{V_B}{V_A} \frac{(T_H/T_C)^{1/(\gamma-1)}}{(T_H/T_C)^{1/(\gamma-1)}} \right) / ln \left(\frac{V_B}{V_A} \right) \\ &= 1 - \frac{T_C}{T_H} ln \left(\frac{V_B}{V_A} \right) / ln \left(\frac{V_B}{V_A} \right) \\ &= 1 - \frac{T_C}{T_H} \end{split}$$

(b) We again look at each segment in the cycle.

A to B:

$$Q_{A->B} = 0$$

$$\Delta E_{int,A->B} = \frac{3}{2}nR(T_B - T_A)$$

$$W_{A->B} = -\Delta E_{int,A->B} = \frac{3}{2}nR(T_A - T_B)$$

B to C:

$$\Delta E_{int,B->C} = \frac{3}{2}nR(T_C - T_B)$$

$$W_{B->C} = 0$$

$$Q_{B->C} = \Delta E_{int,B->C} = \frac{3}{2}nR(T_C - T_B)$$

C to D:

$$Q_{C->D} = 0$$

$$\Delta E_{int,C->D} = \frac{3}{2}nR(T_D - T_C)$$

$$W_{A->B} = -\Delta E_{int,C->D} = \frac{3}{2}nR(T_C - T_D)$$

D to A:

$$\Delta E_{int,D->A} = \frac{3}{2}nR(T_A - T_D)$$

$$W_{D->A} = 0$$

$$Q_{D->A} = \Delta E_{int,D->A} = \frac{3}{2}nR(T_A - T_D)$$

Overall in the cycle then,

$$W_{net} = \frac{3}{2}nR(T_A + T_C - T_B - T_D)$$
$$Q_H = \frac{3}{2}nR(T_A - T_D)$$

Again we resort to the $PV^{\gamma} = constant$ relation for adiabats to get

$$\begin{split} P_A V_A^{\gamma} &= P_B V_B^{\gamma} \\ T_A V_A^{\gamma-1} &= T_B V_B^{\gamma-1} \\ T_B &= T_A \left(\frac{V_A}{V_B}\right)^{\gamma-1} \end{split}$$

Similarly, $T_C=T_D\left(\frac{V_D}{V_C}\right)^{\gamma-1}$. However, we can observe that $V_A=V_D$ and $V_B=V_C$, so

$$e = 1 - \frac{T_A \left(\frac{V_A}{V_B}\right)^{\gamma - 1} - T_D \left(\frac{V_A}{V_B}\right)^{\gamma - 1}}{T_A - T_D}$$

$$= 1 - \frac{T_A - T_D}{T_A - T_D} \left(\frac{V_A}{V_B}\right)^{\gamma - 1}$$

$$= 1 - \left(\frac{V_A}{V_B}\right)^{\gamma - 1}$$

2.3 Net Efficiency of Two Engines

(a) We define efficiency as $e = \frac{W_{net}}{Q_{in}} = 1 - \frac{Q_{out}}{Q_{in}}$, so

$$W_A = Q_{in,A}e_A$$
$$Q_{out,A} = Q_{in,A}(1 - e_A)$$

(b)

$$W_B = Q_{in,A}(1 - e_A)e_B$$

 $Q_{out,B} = Q_{in,A}(1 - e_A)(1 - e_B)$

(c)

$$W_{total} = W_A + W_B$$
$$= Q_{in,A}(e_A + e_B - e_A e_B)$$

(d)

$$e_C = \frac{W_{total}}{Q_{in,A}}$$
$$= e_A + e_B - e_A e_B$$

(e) Observe that $\frac{\partial e_C}{\partial e_A}=1-e_B$ and $\frac{\partial e_C}{\partial e_B}=1-e_A$. These have critical points at $e_B=1$ and $e_A=1$, respectively. So e_C is maximized when $e_A=e_B=1$, so $e_C=1$. Hence, for $e_A<1$ and $e_B<1$, $e_C<1$.

$$\begin{split} ({\bf f}) \ \ e_A &= 1 - \frac{T_M}{T_H} \ {\rm and} \ e_B = 1 - \frac{T_C}{T_M}, \ {\rm so} \\ \\ e_C &= 1 - \frac{T_M}{T_H} + 1 - \frac{T_C}{T_M} - \left(1 - \frac{T_M}{T_H}\right) \left(1 - \frac{T_C}{T_M}\right) \\ &= 2 - \frac{T_M}{T_H} - \frac{T_C}{T_M} - 1 + \frac{T_M}{T_H} + \frac{T_C}{T_M} - \frac{T_C}{T_H} \\ &= 1 - \frac{T_C}{T_H} \end{split}$$