Metric Entropy and its Applications

Presented by Wanteng Ma

Department of Mathematics

Hong Kong University of Science and Technology

March 16, 2022

Metric Entropy

Metric entropy serves as a tool to measure the "size" of a set. It is also a measure of statistical complexity.

- First introduced by Kolmogorov.
- Broadly applied to theoretical statistics
 - nonparametric function estimation¹
 - high-dimensional statistical inference²
 - statistical learning theory³

Generally, it reveals interesting connections between the complexity of the parameter space and the fundamental difficulty of the statistical problem.

¹Yihong Wu and Pengkun Yang. "Minimax rates of entropy estimation on large alphabets via best polynomial approximation". In: *IEEE Transactions on Information Theory* 62.6 (2016), pp. 3702–3720.

²T Tony Cai, Zongming Ma, and Yihong Wu. "Sparse PCA: Optimal rates and adaptive estimation". In: *The Annals of Statistics* 41.6 (2013), pp. 3074–3110.

³Vladimir Koltchinskii. "Local Rademacher complexities and oracle inequalities in risk minimization". In: *The Annals of Statistics* 34.6 (2006), pp. 2593–2656.

Definition

Consider a metric space (\mathbb{T}, ρ) with metric $\rho(\theta, \theta')$ satisfying

- Non-negativity
- Symmetry
- Triangular inequality

e.g.

- (Euclidean metric) $\rho(\theta, \theta') = \|\theta \theta'\|_2$ on $\mathbb{T} = \mathbb{R}^d$
- (Rescaled Hamming metric) $\rho(\theta, \theta') = \frac{1}{d} \sum_{i=1}^{d} \mathbb{1} (\theta_i \neq \theta'_i)$ on $\mathbb{T} = \{0, 1\}^d$
- Function space $\mathcal{L}^2(\mu, [0, 1])$ with metric

$$||f - g||_2 = \left(\int_0^1 (f(x) - g(x))^2 d\mu(x)\right)^{1/2}$$

Definition

Definition (Covering number)

A δ -cover of a set \mathbb{T} with respect to a metric ρ is a set $\{\theta_1, ..., \theta_N\} \subseteq \mathbb{T}$ such that for each $\theta \in \mathbb{T}$, there exists some $i \in \{1, ..., N\}$ such that $\rho(\theta, \theta_i) \leq \delta$. The δ -covering number $N(\delta; \mathbb{T}, \rho)$ is the cardinality of the smallest δ -cover.

Definition (packing number)

A δ -packing of a set \mathbb{T} with respect to a metric ρ is a set $\{\theta_1, ..., \theta_M\} \subseteq \mathbb{T}$ such that for all distinct $i, j \in \{1, ..., M\}$, $\rho(\theta_i, \theta_j) > \delta$. The δ -packing number $M(\delta; \mathbb{T}, \rho)$ is the cardinality of the largest δ -packing.

Visualization

From the definition of covering and packing set, we have

- If M is the cardinality of a δ -packing set, then we need at least M balls with radius $\frac{\delta}{2}$ to cover the space.
- **2** A δ -packing set with the largest cardinality $M(\delta; \mathbb{T}, \rho)$ is also a δ -cover.

Relation

For all $\delta > 0$, the packing and covering numbers are related as follows:

$$M(2\delta; \mathbb{T}, \rho) \le N(\delta; \mathbb{T}, \rho) \le M(\delta; \mathbb{T}, \rho),$$

which indicates

- The packing and covering numbers exhibit the same scaling behavior as $\delta \to 0$
- We can find upper/lower bound of covering/packing numbers by constructing cover set or packing set.
- **3** We can investigate the growth rate of covering/packing numbers by studying metric entropy $\log(N(\delta; \mathbb{T}, \rho))$.

Example 1 (Covering and packing of unit cubes)

Consider the interval [-1,1] in \mathbb{R} , with the metric $\rho(\theta,\theta')=|\theta-\theta'|$.

- Divide the interval into $L = \lfloor \frac{1}{\delta} \rfloor + 1$ sub-intervals, with each one centered at $\theta = -1 + (2i 1)\delta$
- By construction, for any point $\theta \in [-1, 1]$, there is some $j \in [L]$ such that $|\theta_j \theta| \leq \delta$, i.e., $N(\delta, [-1, 1], |\cdot|) \leq \frac{1}{\delta} + 1$. Generalize this analysis to higher dimensions we can show $N(\delta, [-1, 1]^d, ||\cdot||_{\infty}) \leq (\frac{1}{\delta} + 1)^d$.
- Consider $\{\theta_i : i \in [L-1]\}$. Any two elements θ_i, θ_j in this set have the separation $|\theta_i \theta_j| \geq 2\delta$, which implies $M(2\delta, [-1, 1], |\cdot|) \geq \lfloor \frac{1}{\delta} \rfloor$. This also means $M(2\delta, [-1, 1]^d, ||\cdot||_{\infty}) \geq \lfloor \frac{1}{\delta} \rfloor^d$
- Combined with the relation of packing number and covering number, we have

$$\log N\left(\delta; [0,1]^d, \|\cdot\|_{\infty}\right) \simeq d\log(1/\delta)$$

Volume ratios

Lemma (Volume ratios and metric entropy)

Consider a pair of norms $\|\cdot\|$ and $\|\cdot\|'$ on \mathbb{R}^d , and let \mathbb{B} and \mathbb{B}' be their corresponding unit balls (i.e., $\mathbb{B} = \{\theta | \|\theta\| \le 1\}$, with \mathbb{B}' similarly defined). Then we have

$$\left(\frac{1}{\delta}\right)^{d} \frac{\operatorname{vol}(\mathbb{B})}{\operatorname{vol}(\mathbb{B}')} \stackrel{(a)}{\leq} N\left(\delta; B, \|\cdot\|'\right) \stackrel{(b)}{\leq} \frac{\operatorname{vol}\left(\frac{2}{\delta}\mathbb{B} + \mathbb{B}'\right)}{\operatorname{vol}\left(\mathbb{B}'\right)}.$$

Proof:

- For (a), if $\{\theta_1, ..., \theta_N\}$ a δ -covering of \mathbb{B} , then $\mathbb{B} \subseteq \bigcup_{j=1}^N \{\theta_j + \delta \mathbb{B}'\}$, which implies that $\operatorname{vol}(\mathbb{B}) \leq N \operatorname{vol}(\delta \mathbb{B}') = N \delta^d \operatorname{vol}(\mathbb{B}')$
- For (b), let $\{\theta_1, ..., \theta_M\}$ be a maximal δ -packing of \mathbb{B} in the $\|\cdot\|'$ -norm; by maximality, this set must also be a δ -covering. The balls $\{\theta_j + \frac{\delta}{2}\mathbb{B}'|j \in [M]\}$ are all disjoint and contained within $\mathbb{B} + \frac{\delta}{2}\mathbb{B}'$.

Volume ratios

- This indicates that $M \operatorname{vol}(\frac{\delta}{2}\mathbb{B}') \leq \operatorname{vol}(\mathbb{B} + \frac{\delta}{2}\mathbb{B}')$. Taking $\frac{\delta}{2}$ out we have $\operatorname{vol}(\frac{\delta}{2}\mathbb{B}') = (\frac{\delta}{2})^d \operatorname{vol}(\mathbb{B}')$, which justifies (b).
- A special case: when $\mathbb{B}' \subseteq \mathbb{B}$, we have:

$$\operatorname{vol}\left(\frac{2}{\delta}\mathbb{B} + \mathbb{B}'\right) \le \operatorname{vol}\left(\left(\frac{2}{\delta} + 1\right)\mathbb{B}\right) = \left(\frac{2}{\delta} + 1\right)^d \operatorname{vol}(\mathbb{B})$$

• If further we take $\mathbb{B}' = \mathbb{B}$, then we have the following bounds for metric entropy of a unit ball.

$$d\log(1/\delta) \le \log N(\delta; \mathbb{B}, \|\cdot\|) \le d\log\left(1 + \frac{2}{\delta}\right)$$

Example 2 (Lipschitz functions on the unit interval)

Now consider the class of Lipschitz functions $\mathcal{F}_L :=$

$$\{g: [0,1] \to \mathbb{R} \mid g(0) = 0, \text{ and } |g(x) - g(x')| \le L |x - x'|, \forall x, x' \in [0,1]\}.$$

Lipschitz functions on the unit interval

The metric entropy of \mathcal{F}_L with respect to the sup-norm scales as

$$\log N_{\infty}(\delta, \mathcal{F}_L) \simeq (L/\delta)$$

Proof:

• Prove the lower bound by constructing a sufficiently large packing of the set \mathcal{F}_L . For any ϵ , define $M = \lfloor \frac{1}{\epsilon} \rfloor$, consider the points in [0, 1] given by

$$x_i = (i-1)\epsilon$$
, for $i \in [M]$, and $x_{M+1} = M\epsilon$.

• We construct a set of segmented functions that each function is piecewise linear over the intervals $[x_{i-1}, x_i]$ with slope either L or -L.

Example 2 (Lipschitz functions on the unit interval)

- Define the unit function: $\phi(u) := \begin{cases} 0 & \text{for } u < 0 \\ u & \text{for } u \in [0,1] \\ 1 & \text{otherwise} \end{cases}$
- For each binary sequence $\beta \in \{-1,1\}^M$, define $f_{\beta}(y) = \sum_{i=1}^M \beta_i L\epsilon \phi\left(\frac{y-x_i}{\epsilon}\right)$.

• We can check that $\{f_{\beta} \mid \beta \in \{-1,1\}^M\} \subseteq \mathcal{F}_L$

Example 2 (Lipschitz functions on the unit interval)

• From the construction of f_{β} we know that for any distinct $i, j \in \{-1, 1\}^M$, $||f_i - f_j||_{\infty} \ge 2L\epsilon$, showing that $\{f_{\beta}|\beta \in \{-1, 1\}^M\}$ is a $2L\epsilon$ -packing with cardinality 2^M . Thus

$$\log N\left(\delta; \mathcal{F}_L, \|\cdot\|_{\infty}\right) \succsim L/\delta$$

- For the upper bound, we show that $\{f_{\beta} \mid \beta \in \{-1,1\}^M\}$ is also a δ -covering of set \mathcal{F}_L , which can be justified by induction.
- An extension of this argument shows that

$$\log N_{\infty}\left(\delta, \mathcal{F}_L([0,1]^d)\right) \asymp (L/\delta)^d$$

Gaussian and Rademacher complexity

Metric entropy plays a fundamental role in understanding the behavior of stochastic processes. Define the Gaussian and Rademacher complexity as following:

Definition (Gaussian complexity)

Given a set $\mathbb{T} \in \mathbb{R}^d$, the random variable w follows d-dimensional standard Gaussian distribution, then the Gaussian complexity of \mathbb{T} is defined as

$$\mathcal{G}(\mathbb{T}) := \mathbb{E}\left[\sup_{\theta \in \mathbb{T}} \langle \theta, w \rangle\right].$$

Definition (Rademacher complexity)

Given a set $\mathbb{T} \in \mathbb{R}^d$, ε is a d-dimensional Rademacher variable, then the Rademacher complexity of \mathbb{T} is defined as

$$\mathcal{R}(\mathbb{T}) := \mathbb{E}\left[\sup_{ heta \in \mathbb{T}} \langle heta, arepsilon
angle
ight].$$

Gaussian and Rademacher complexity

Trivial relation between Rademacher/Gaussian complexity:

$$\mathcal{R}(\mathbb{T}) \leq \sqrt{\frac{\pi}{2}} \mathcal{G}(\mathbb{T})$$

Proof:

• Consider a fixed $\varepsilon \in \{-1,1\}^d$. For $\forall \theta \in \mathbb{T}$, integrate $\langle \theta, w \rangle$ over the corresponding $\frac{1}{2^d}$ -half space:

$$\int_{R(\varepsilon)} \langle \theta, w \rangle f(w) dw = \frac{1}{2^{d-1} \sqrt{2\pi}} \langle \theta, \varepsilon \rangle$$

ullet Taking supremum and Summing all the arepsilon

$$\mathbb{E}\left[\sup_{\theta\in\mathbb{T}}\langle\theta,\varepsilon\rangle\right] = \frac{1}{2^d} \sum_{\varepsilon} \sup_{\theta\in\mathbb{T}}\langle\theta,\varepsilon\rangle \le \sqrt{\frac{\pi}{2}} \sum_{\varepsilon} \sup_{\theta\in\mathbb{T}} \int_{R(\varepsilon)}\langle\theta,w\rangle f(w) dw$$
$$\le \sqrt{\frac{\pi}{2}} \int \sup_{\theta\in\mathbb{T}}\langle\theta,w\rangle f(w) dw = \sqrt{\frac{\pi}{2}} \mathcal{G}(\mathbb{T}).$$

Gaussian and Rademacher complexity

Some prerequisite knowledge on Gaussian variables sequences: Suppose $X \in \mathbb{R}^n$ and $\{X_i\}_{i=1}^n$ is an i.i.d. sequence of $N(0, \sigma^2)$ variables, then we have

• (Concentration bounds on χ^2) The growth of $||X||_2$ follows

$$\frac{\mathbb{E}||X||_2}{\sigma\sqrt{n}} = 1 - o(1).$$

with upper bound $\mathbb{E}||X||_2 \leq \sigma \sqrt{n}$.

• (Gaussian maxima) The Gaussian maxima $Z_n := \max_{i=1,\dots,n} |X_i| = ||X||_{\infty}$ follows

$$\frac{\mathbb{E}[Z_n]}{\sqrt{2\sigma^2 \log n}} \to 1 \text{ as } n \to +\infty.$$

with upper bound $\mathbb{E}Z_n \leq 2\sigma\sqrt{\log n}$.

Example 3 (Rademacher/Gaussian complexity of unit balls)

Compute the Rademacher and Gaussian complexities of the Euclidean ball of unit norm \mathbb{B}_2^d .

• Rademacher complexity:

$$\mathcal{R}\left(\mathbb{B}_{2}^{d}\right) = \mathbb{E}\left[\sup_{\|\theta\|_{2} \leq 1} \langle \theta, \varepsilon \rangle\right] = \mathbb{E}\left[\left(\sum_{i=1}^{d} \varepsilon_{i}^{2}\right)^{1/2}\right] = \sqrt{d}$$

• Gaussian complexity: we have $\mathcal{G}\left(\mathbb{B}_2^d\right) = \mathbb{E}\left[\|w\|_2\right]$, and preliminary knowledge of Gaussian distribution shows

$$\frac{\mathcal{G}\left(\mathbb{B}_{2}^{d}\right)}{\sqrt{d}} = 1 - o(1).$$

Example 3 (Rademacher/Gaussian complexity of unit balls)

Compute the Rademacher and Gaussian complexities of the ball of unit l_1 norm \mathbb{B}_1^d .

• Rademacher complexity:

$$\mathcal{R}\left(\mathbb{B}_{1}^{d}\right) = \mathbb{E}\left[\sup_{\|\theta\|_{1} \leq 1} \langle \theta, \varepsilon \rangle\right] = \mathbb{E}\|\varepsilon\|_{\infty} = 1.$$

• Gaussian complexity: we have $\mathcal{G}\left(\mathbb{B}_1^d\right) = \mathbb{E}\left[\|w\|_{\infty}\right]$, and preliminary knowledge of Gaussian distribution shows

$$\frac{\mathcal{G}\left(\mathbb{B}_{1}^{d}\right)}{\sqrt{2\log d}} = 1 \pm o(1).$$

Metric entropy and sub-Gaussian processes

Definition

A collection of zero-mean random variables $\{X_{\theta} | \theta \in \mathbb{T}\}$ is a sub-Gaussian process with respect to a metric ρ_X if

$$\mathbb{E}\left[e^{\lambda(X_{\theta}-X_{\bar{\theta}})}\right] \leq e^{\frac{\lambda^2 \rho_X^2(\theta,\tilde{\theta})}{2}}, \text{ for all } \theta, \widetilde{\theta} \in \mathbb{T}, \text{ and } \lambda \in \mathbb{R}$$

For the sub-Gaussian process, we have the famous Massart's finite class lemma:

Lemma (Massart's)

Let A be some finite set with $\operatorname{Diam}(A) = \sup_{\theta, \theta' \in \mathbb{T}} \rho_X(\theta, \theta') \leq R$, then

$$\sup_{\theta \in \mathbb{T}} X_{\theta} \le R\sqrt{2\log|A|}.$$

Massart's finite class lemma

Proof:

• Denote $\mu = \mathbb{E} \sup_{\theta \in \mathbb{T}} (X_{\theta} - X_{\theta'})$, we have

$$e^{\lambda\mu} \le \mathbb{E} \sup_{\theta \in \mathbb{T}} e^{\lambda(X_{\theta} - X_{\theta'})} \le \mathbb{E} \sum_{\theta \in A} e^{\frac{\lambda^2}{2}\rho_X^2(\theta, \theta')} \le |A| e^{\frac{\lambda^2}{2}R^2}, \text{ for } \forall \lambda$$

• Taking logarithm we have

$$\mu \le \frac{1}{\lambda} \log |A| + \frac{\lambda}{2} R^2$$

• Taking minimum value of RHS, we have

$$\sup_{\theta \in \mathbb{T}} X_{\theta} \le R\sqrt{2\log|A|}.$$

From this argument we can also derive the Gaussian maxima, together with bound of $\sup_{\theta \in \mathbb{T}} |X_{\theta}|$ or $\sup_{\theta \in \theta' \in \mathbb{T}} (X_{\theta} - X_{\theta'})$.

Upper bound by one-step discretization

One-step discretization

Consider the zero-mean sub-Gaussian process X_{θ} with $Diam(\mathbb{T}) \leq D$. For any appropriate δ , we have

$$\mathbb{E}\left[\sup_{\theta,\widetilde{\theta}\in\mathbb{T}}\left(X_{\theta}-X_{\widetilde{\theta}}\right)\right] \leq 2\mathbb{E}\left[\sup_{\substack{\gamma,\gamma'\in\mathbb{T}\\ \rho_X(\gamma,\gamma')\leq\delta}}\left(X_{\gamma}-X_{\gamma'}\right)\right] + 4\sqrt{D^2\log N_X(\delta;\mathbb{T})}$$

Proof:

• For a given δ and associated δ -covering $\{\theta_1, ..., \theta_N\}$ with $N = N_X(\theta, \mathbb{T})$. For any θ we can find some θ_j such that $\rho_X(\theta, \theta_j) \leq \delta$. Then

$$X_{\theta} - X_{\theta_1} = X_{\theta} - X_{\theta_j} + X_{\theta_j} - X_{\theta_1}$$

$$\leq \sup_{\substack{\gamma, \gamma' \in \mathbb{T} \\ \rho_X(\gamma, \gamma') \leq \delta}} (X_{\gamma} - X_{\gamma'}) + \max_{i=1, 2, \dots, N} |X_{\theta_i} - X_{\theta_1}|$$

• the same upper bound also holds for $X_{\theta_1} - X_{\widetilde{\theta}}$.

One-step discretization

• By Massart's lemma we have

$$\mathbb{E}\left[\max_{i=1,\dots,N}|X_{\theta_i}-X_{\theta_1}|\right] \le 2\sqrt{D^2\log N},$$

which yields the claim.

Rmk

Since the zero-mean condition means that

$$\mathbb{E}\left[\sup_{\theta\in\mathbb{T}}X_{\theta}\right] = \mathbb{E}\left[\sup_{\theta\in\mathbb{T}}\left(X_{\theta} - X_{\theta_{0}}\right)\right] \leq \mathbb{E}\left[\sup_{\theta,\widetilde{\theta}\in\mathbb{T}}\left(X_{\theta} - X_{\widetilde{\theta}}\right)\right]$$

We can also use this one-step discretization to bound $\mathbb{E}\left[\sup_{\theta\in\mathbb{T}}X_{\theta}\right]$, e.g., Rademacher/Gaussian complexity. In this case, the factor 2 is not needed because we can fix the $X_{\widetilde{\theta}}$.

One-step discretization

In the l_2 norm, if we define $\widetilde{\mathbb{T}}(\delta) := \{ \gamma - \gamma' \mid \gamma, \gamma' \in \mathbb{T}, \|\gamma - \gamma'\|_2 \leq \delta \}$, then the Gaussian complexity follows

$$\mathcal{G}(\mathbb{T}) \leq \min_{\delta \in [0,D]} \left\{ \mathcal{G}(\widetilde{\mathbb{T}}(\delta)) + 2\sqrt{D^2 \log N_2(\delta;\mathbb{T})} \right\}.$$

Here $\mathcal{G}(\widetilde{\mathbb{T}}(\delta))$ is referred to as a localized Gaussian complexity, and probably can be controlled by δ .

If \mathbb{T} is a subset of \mathbb{R}^d , we have

$$\mathcal{G}(\widetilde{\mathbb{T}}(\delta)) = \mathbb{E}\left[\sup_{\theta \in \widetilde{\mathbb{T}}(\delta)} \langle \theta, w \rangle\right] \leq \delta \mathbb{E}\left[\|w\|_{2}\right] \leq \delta \sqrt{d}$$

Thus we have naive discretization bound

$$\mathcal{G}(\mathbb{T}) \le \min_{\delta \in [0,D]} \left\{ \delta \sqrt{d} + 2\sqrt{D^2 \log N_2(\delta;\mathbb{T})} \right\}.$$

Example 3 (l_2 norm of sub-Gaussian random matrix)

Let $W \in \mathbb{R}^{x \times d}$ be a random matrix with zero-mean i.i.d. entries W_{ij} , each sub-Gaussian with parameter $\sigma = 1$. Then we have

$$\mathbb{E}\left[\|\mathbf{W}\|_2/\sqrt{n}\right] \lesssim 1 + \sqrt{\frac{d}{n}}$$

Proof:

• Define matrix class $\mathbb{M}^{n,d}(1) := \{ \Theta \in \mathbb{R}^{n \times d} \mid \operatorname{rank}(\Theta) = 1, \|\Theta\|_F = 1 \}$. First prove the variational representation:

$$\|W\|_2 = \sup_{\Theta \in \mathbb{M}(1)} X_{\Theta}, \text{ where } X_{\Theta} = \langle W, \Theta \rangle = \sum_{i,j} W_{ij} \Theta_{ij}$$

• Apply the discretization bound

$$\mathbb{E}\left[\|\mathbf{W}\|_{2}\right] \leq 2\mathbb{E}\left[\sup_{\substack{\text{mank}(\mathbf{\Gamma}) = \text{rank}(\mathbf{\Gamma}') = 1\\ \|\mathbf{\Gamma} - \mathbf{\Gamma}'\|_{F} \leq \delta}} \langle \mathbf{\Gamma} - \mathbf{\Gamma}', \mathbf{W} \rangle\right] + 6\sqrt{\log N_{F}\left(\delta; M^{n,d}(1)\right)}$$

One-step discretization

• Use SVD of rank 2 matrix to prove the local complexity bound

$$\mathbb{E}\left[\sup_{\substack{\operatorname{rank}(\mathbf{\Gamma})=\operatorname{rank}(\mathbf{\Gamma}')=1\\ \|\mathbf{\Gamma}-\mathbf{\Gamma}'\|_{F}\leq \delta}} \langle \mathbf{\Gamma}-\mathbf{\Gamma}', \mathbf{W} \rangle\right] \leq \sqrt{2}\delta \mathbb{E}\left[\mathbf{W}\|_{2}\right].$$

• Use upper bound of metric entropy on unit ball to prove

$$\log N_F\left(\delta; \mathbb{M}^{n,d}(1)\right) \le (n+d)\log\left(1+\frac{2}{\delta}\right)$$

Recall the metric entropy on Lipschitz function class \mathcal{F}_L . Given sample x_1^n , we have $\log N_{\infty}(\delta, \mathcal{F}_L) \leq \frac{cL}{\delta}$, thus

$$\mathcal{G}\left(\mathcal{F}_{L}\left(x_{1}^{n}\right)/n\right) \leq \frac{1}{\sqrt{n}} \inf_{\delta \in (0,\delta_{0})} \left\{\delta\sqrt{n} + 3\sqrt{\frac{cL}{\delta}}\right\}$$

Choose $\delta = \frac{1}{n^3}$, we have

$$\mathcal{G}\left(\mathcal{F}_L(x_1^n)/n\right) \lesssim n^{-1/3}$$

Chaining and Dudley's entropy integral

Define the Dudley's entropy integral $\mathcal{J}(\delta; D) := \int_{\delta}^{D} \sqrt{\log N_X(u; \mathbb{T})} du$. We have

Dudley's

$$\mathbb{E}\left[\sup_{\theta,\widetilde{\theta}\in\mathbb{T}}\left(X_{\theta}-X_{\widetilde{\theta}}\right)\right] \leq 2\mathbb{E}\left[\sup_{\substack{\gamma,\gamma'\in\mathbb{T}\\ \rho_{X}(\gamma,\gamma')\leq\delta}}\left(X_{\gamma}-X_{\gamma'}\right)\right] + 32\mathcal{J}(\delta/4;D)$$

• we pursue a more refined chaining argument. Denote $\mathbb{U} = \{\theta^1, \dots, \theta^N\}$

