Groupes et Anneaux II — Cours

Ivan Lejeune

22janvier2025

Table des matières

Chapitre	1 - qqch									2
1	Exemples importants de groupes.									2
2	Action de groupe									2

Chapitre 1 — qqch

Exemples importants de groupes

(i) L'ensemble A^{\times} des éléments inversibles d'un anneau A est un groupe pour la multiplication. Si $A = \mathbb{K}$ est un corps, alors pour tout $n \in \mathbb{N}$, l'ensemble

$$\mu_n(\mathbb{K}) = \{ z \in \mathbb{K} \mid z^n = 1 \}$$

est un groupe pour la multiplication.

Remarque. On a $\mu_n \simeq \mathbb{Z}/n\mathbb{Z}$ via l'isomorphisme de groupes

$$\mathbb{Z}/n\mathbb{Z} \to \mu_n$$

$$\overline{k} \mapsto e^{2i\pi k/n}$$

(ii) Le groupe général linéaire de degré n de \mathbb{K} $\mathsf{GL}_{\mathsf{n}}(\mathbb{K})$, l'ensemble des matrices carrées inversibles de taille n à coefficients dans \mathbb{K} , est un groupe pour la multiplication des matrices.

Remarque. Si $\mathbb{K} = \mathbb{F}_p$, c'est-à-dire un $\mathbb{Z}/p\mathbb{Z}$ avec p premier, alors $|\mathsf{GL}_n(\mathbb{F}_p)|$ est fini. Pour le calculer, considérons $X \in GL_n(\mathbb{F}_p)$. On a

$$X = \begin{pmatrix} X_1 & X_2 & \cdots & X_n \end{pmatrix}$$

avec $X_i \in \mathbb{F}_p^n$. On a $X_1 \neq 0$, donc on a $p^n - 1$ choix pour X_1 . Ensuite, on a $X_2 \notin \mathbb{F}_p X_1 = \mathsf{Vect}_{\mathbb{F}_p}(X_1)$, donc on a $p^n - p$ choix pour X_2 . En général, on a $p^n - p^{i-1}$ choix pour X_i .

$$|\mathsf{GL}_{\mathsf{n}}(\mathbb{F}_p)| = (p^n - 1)(p^n - p)\cdots(p^n - p^{n-1}) = \prod_{k=0}^{n-1}(p^n - p^k)$$

- (iii) Considérons les éléments suivants :
 - n > 1 un entier naturel,
 - $R \in GL_n(\mathbb{R})$ la rotation d'angle $\frac{2\pi}{n}$ dans le plan (dans le sens anti-horaire),
 - $S \in \mathsf{GL}_{\mathsf{n}}(\mathbb{R})$ la réflexion par rapport à l'axe des abscisses.

Si on identifie \mathbb{R}^2 à \mathbb{C} , alors pour tout $z \in \mathbb{C}$,

$$R(z) = e^{\frac{2i\pi}{n}}z$$
 et $S(z) = \overline{z}$

et alors pour tout $k \in \mathbb{Z}$,

$$SR^kS = R^{-k}$$

Alors, le groupe

$$\mathscr{D}_n = \left\{ \mathsf{Id}, R, \dots, R^{n-1}, S, SR, \dots, SR^{n-1} \right\}$$

est un sous-groupe de $\mathsf{GL}_\mathsf{n}(\mathbb{R})$, c'est le groupe diédral à 2n éléments.

2 Action de groupe

Soit G un groupe et X un ensemble.

Définition 2.1. Une action de G sur X est une application

$$\alpha: G \times X \to X$$

telle que si $g \cdot x := \alpha(g, x)$ alors

- (i) on a $e \cdot x = x$ pour tout $x \in X$,
- (ii) on a $g \cdot (h \cdot x) = (gh) \cdot x$ pour tout $g, h \in G$ et $x \in X$.

Notations

On notera $G \circlearrowleft X$ pour signifier que G agit sur X. Un G-ensemble est un ensemble muni de l'action de G.

On notera aussi \mathfrak{S}_X le groupe des permutations de X.

Définition 2.2. Une représentation de G dans X est un morphisme de groupes $\rho: G \to \mathfrak{S}_X$.

Notation. On notera alors

$$\rho_g \coloneqq \rho(g), \quad \forall g \in G$$

Exercice. Si $\alpha: G \times X \to X$ est une action alors $\rho: G \to \mathfrak{S}_X$ qui pour tout $g \in G$ sur

$$\rho(g): \begin{matrix} X \to X \\ x \mapsto g \cdot x \end{matrix}$$

Réciproquement, si $\rho:G\to\mathfrak{S}_X$ est une représentation alors $\alpha:G\times X\to X$ définie par

$$\alpha(g,x) \coloneqq \rho_q(x), \forall g \in G, \forall x \in X$$

est une action

Exemple. On considère $\mathfrak{S}_n \circlearrowleft \{1,\ldots,n\}$ car $\sigma \cdot k = \sigma(k)$

On considère $GL_n(\mathbb{K}) \circlearrowleft \mathbb{K}^n$ car $A \cdot x = Ax$

On considère $\mathcal{D}_n \circlearrowleft \mu_n$ car $\zeta^n = 1 \Longrightarrow g(\zeta)^n = 1$

En effet il suffit de vérifier pour les générateurs R et S.

Soit H < G (sous-groupe de G). On a

1. L'action par translation à gauche :

$$H \circlearrowleft G \text{ par } \rho^L : H \to \mathfrak{S}_G$$

avec
$$\rho_h^L(g) = hg$$

2. L'action par translation à droite :

$$H \circlearrowleft G \text{ par } \rho^R : H \to \mathfrak{S}_G$$

avec
$$\rho_h^R(g) = gh^{-1}$$

Remarque. Attention en général $h \cdot g = gh$ ne définit pas une action de H sur G.

Définition 2.3. Soient X, Y des G-ensembles. On dit que

$$f: X \to Y$$

est G-équivariante si

$$f(g \cdot x) = g \cdot f(x), \quad \forall g \in G, \forall x \in X$$

Exercice. On considère G un groupe et H un sous-groupe de G. On note G^L (respectivement G^R) l'ensemble G muni de l'action de H par translation à gauche (respectivement à droite). Montrer que

$$_^{-1}:G^L\to G^R$$

$$g \mapsto g^{-1}$$

est une bijection H-équivariante.

Définition 2.4.

(i) Avec $G \circlearrowleft \Gamma$, Γ groupe, on dit que G agit par homomorphismes si

$$g \cdot (\gamma_1 \gamma_2) = (g \cdot \gamma_1)(g \cdot \gamma_2), \quad \forall g \in G, \forall \gamma_1, \gamma_2 \in \Gamma$$

Cela arrive si et seulement si

$$\rho: G \to \operatorname{Aut}(\Gamma) < \mathfrak{S}_{\Gamma}$$

ou si et seulement si ρ_g est un morphisme de groupes pour tout $g \in G$.

(ii) Avec $G \circlearrowright V$, V espace vectoriel sur \mathbb{K} , on dit que l'action est linéaire si

$$g \cdot (\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 (g \cdot v_1) + \lambda_2 (g \cdot v_2), \quad \forall g \in G, \forall v_1, v_2 \in V, \forall \lambda_1, \lambda_2 \in \mathbb{K}$$

Cela arrive si et seulement si

$$\rho: G \to \mathrm{GL}_{\mathbb{K}}(V) < \mathfrak{S}_{V}$$

ou si et seulement si ρ_g est une application linéaire pour tout $g \in G$.

Exemple.

1. Avec H < G, l'action de H par translation à gauche sur G est une action par homomorphismes si et seulement si $H = \{e\}$.

En effet, si $H = \{e\}$, alors l'action est triviale. Réciproquement, si l'action est par homomorphismes, on a

$$h \cdot (gg') = (h \cdot g)(h \cdot g')$$
$$\equiv hgg' = hghg'$$
$$\equiv e = h$$

pour tout $g, g' \in G$, donc $H = \{e\}$.

- 2. L'action de $\mathsf{GL}_\mathsf{n}(\mathbb{K})$ sur \mathbb{K}^n est linéaire.
- 3. L'action par conjugaison : Si H < G alors $H \circlearrowleft G$ par $\rho^C : H \to \operatorname{Aut}(G) < \mathfrak{S}_G$ et $\rho^C_h(g) = hgh^{-1}$. Il s'agit d'une action par homomorphismes.

Théorème. Si G est un groupe d'ordre n, alors il est isomorphe à un sous-groupe de \mathfrak{S}_n .

Démonstration. On sait que G agit sur lui meme par translation à gauche $\rho^L:G\to\mathfrak{S}_G\simeq\mathfrak{S}_n$. Donc

$$g \in \operatorname{Ker}(\rho^L) \implies \rho_q^L(e) = g \cdot e = e \implies g = e$$

Donc ρ^L est injectif et

$$\rho^L: G \to \rho^L(G) < \mathfrak{S}_G$$

est un isomorphisme de groupes.

Exemple. μ_n est isomorphisme au sous-groupe de \mathfrak{S}_n engendré par $(1\ 2\ \cdots\ u)$.

$$\zeta_n = e^{2i\pi/n}, \quad \mu_n = \{\zeta^1, \dots, \zeta^n\} \simeq \{1, 2, \dots, n\}$$

et

$$\rho^{L}: \mu_{n} \to \mathfrak{S}_{\mu_{n}} \simeq \mathfrak{S}_{n}$$
$$\zeta_{n}^{k} \mapsto (1 \ 2 \cdots n)^{k}$$

Définition 2.5. On prend $G \circlearrowleft X$.

1. On dit que $Y \subset X$ est stable par G si

$$G \cdot Y = Y$$

$$\{g \cdot y \mid g \in G, \ y \in Y\} = Y$$

2. L'orbite de $x \in X$ est

$$orb(x) = G \cdot x = \{g \cdot x \mid g \in G\}$$

qui est stable par G.

3. Le stabilisateur de $x \in X$ est

$$\operatorname{st}(x) = G_x = \{g \in G \mid g \cdot x = x\}$$

qui est un sous-groupe de G.

4. On dit que $x \in X$ est un point fixe de $g \in G$ si

$$g \cdot x = x$$

c'est à dire si $g \in \mathsf{st}(x)$. L'ensemble des points fixes de g est noté

$$X^g = \{x \in X \mid g \cdot x = x\}$$

De plus, $x \in X$ est un point fixe de G si et seulement si

$$x \in X^g, \quad \forall g \in G$$

c'est à dire si et seulement si G_X = G. L'ensemble des points fixes de G est noté

$$X^G = \{ x \in X \mid g \cdot x = x, \forall g \in G \}$$

5. L'action est transitive si il existe $x \in X$ tel que $\operatorname{orb}(x) = G \cdot x = X$.