Inverse og invertible matricer, Afsnit 2.2-2.3

19. februar 2021

SLIAL

Forår 2021

Del I Repetition

Lineær (u)afhængighed

Definition

Mængden af vektorer $\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_s\}$ i \mathbb{R}^n siges at være lineært uafhængig, hvis

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_s\mathbf{v}_s = \mathbf{0} \tag{1}$$

medfører $c_1 = c_2 = \cdots = c_s = 0$.

Hvis der eksisterer konstanter c_1, c_2, \ldots, c_s ikke alle lig nul, så (1) er opfyldt, kaldes $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_s\}$ i \mathbb{R}^n lineært afhængig.

Standardmatrix

$$T(x+y) \pm T(x) + T(y)$$

 $T(c \cdot x) = cT(x)$

Sætning

Lad $T: \mathbb{R}^n \to \mathbb{R}^m$ være en lineær transformation. Da eksisterer en entydig $m \times n$ -matrix A, sådan at

$$T(\mathbf{x}) = A\mathbf{x}$$
 for alle $\mathbf{x} \in \mathbb{R}^n$.

Yderligere gælder, at

$$A = [T(\mathbf{e}_1) T(\mathbf{e}_2) \cdots T(\mathbf{e}_n)].$$

Matricen A i sætningen kaldes standardmatricen for T

Billedmængden af en transformation

For en transformation T betegner $\operatorname{range}(T)$ mængden af alle billeder under T

"alt det, vi rammer, når vi bruger alle mulige vektorer som input"

Hvis
$$T(\mathbf{x}) = A\mathbf{x}$$
 er lineær, er

$$T(\mathbf{x}) = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \cdots + x_n \mathbf{a}_n$$

Det vil sige, at range(
$$T$$
) = { $y: y=A*J= Span {a, -a, }$

Sammensætning av afbildninger

Antager:

- ▶ $T_1: \mathbb{R}^n \to \mathbb{R}^m$: lineær transformation med $m \times n$ standardmatrix A
- ▶ $T_2: \mathbb{R}^m \to \mathbb{R}^s$: lineær transformation med $s \times m$ standardmatrix B

Lad oss betragte sammensætningen $T(x) = T_2(T_1(x)); T : \mathbb{R}^n \to \mathbb{R}^s$. T er lineær fordi både T_1 og T_2 er:

$$T(x+y) = T_2(T_1(x+y)) = T_2(T_1(x)+T_2(x)) = T_2(T_1(x))+T_2(T_1(x))$$

$$= T(x) + T(y) \qquad \forall x, y \in \mathbb{R}^n$$

$$T(cx) = T_2(T_1(cx)) = T_2(cT_1(x)) = cT_2(T_1(x))$$

Hvad er standardmatrix for sammensætningen?

t(2)= B=

T har standardmatrix

$$C = [T(e_1), T(e_2), \dots, T(e_n)] = \begin{bmatrix} T_2 \left(T_1(e_1) \right) & \dots & T_2 \left(T_1(e_n) \right) \end{bmatrix}$$

Dvs:
$$C = \mathbf{B} \cdot \mathbf{A}$$

F.eks: sammensætning af rotationer

Den lineære transformation $T_{90^{\circ}}: \mathbb{R}^2 \to \mathbb{R}^2$, der drejer en vektor 90° i positiv omløbsretning har standardmatrix $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ $AA = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ ٤ [-١ ٥] Tgo (Tgo (1))

Passer det?

Sammensætning $T_{90^{\circ}} \circ T_{90^{\circ}}$ må være en rotation med 180° (Dette er en lineær tranformation)

Standardmatricen for denne er

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = ch \text{ matrix}$$

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} ch \\ ch \end{bmatrix}$$

Identitetsafbildning

I(x) = x; lineær transformation. Hvad er standardmatricen til /?

$$\begin{bmatrix} I(e_1) & I(e_2) & \dots & I(e_n) \\ \vdots & \vdots & \vdots & \vdots \\ I_n \times = \times \end{bmatrix} = \begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & \vdots & \ddots \\ \vdots & \vdots & \ddots \\ \vdots & \vdots & \ddots \\ \end{bmatrix} = I_n$$

Matrixinvers

Hvornår betyder AB = AC, at B = C?

Vi vil på én eller anden måde gerne "dividere" med en matrix Men hvad betyder det?

For brøker gælder: At dividere med 2 er det samme som... $\Rightarrow \hat{2}' = \frac{1}{2}$

Matrixinvers

Definition

En $n \times n$ -matrix A kaldes *inverterbar*, hvis der eksisterer en matrix

 A^{-1} , som opfylder

$$AA^{-1} = I_n$$
 og $A^{-1}A = I_n$.

Matricen A^{-1} kaldes den *inverse* af A.

Eksempel A A:

$$\begin{bmatrix}
1 & 2 \\
1 & 1
\end{bmatrix}$$
den inverse til $\begin{bmatrix}
-1 & 2 \\
1 & -1
\end{bmatrix}$?

$$A^{1}A = \begin{bmatrix}
1 & 2 \\
1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
1 & -1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
1 & -1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A = \begin{bmatrix}
-1 & 2 \\
-1 & 1
\end{bmatrix}$$

$$A =$$

Matrixinvers

Hvis A er inverterbar, og AB = AC, får vi...

$$\frac{A}{A} = I_{n}$$

$$\frac{A}$$

Egenskaber

$$(A^{-1})A = I_n$$

$$A(A^{-1}) = I_n$$

$$A(A^{-1}) = I_n$$

$$A(A^{-1}) = I_n$$

$$A(A^{-1}) = I_n$$

Hvis A og B er inverterbare, gælder

$$(A^{-1})^{-1} = A$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

Bemærk desuden, at den inverse er entydig

$$(AB)(R^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AI_{n}A^{-1} = AA^{-1} = I_{n}$$

Hvordan udregnes A^{-1} ?

For 2 × 2-matricer har vi følgende resultat:

Sætning

Matricen
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 er inverterbar, hvis og kun hvis det $A = ad - cb \neq 0$.

Hvis A er inverterbar, er dens inverse givet ved

$$A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & \mathbf{Q} \end{bmatrix}$$

A^{-1} for 2 \times 2-matricer

Eksempel

$$\operatorname{Er} \begin{bmatrix} 3 & 6 \\ 2 & 4 \end{bmatrix}$$
 inverterbar?

$$\begin{bmatrix} \frac{1}{5} & \frac{2}{3} \end{bmatrix}$$
 inverterbar? $\begin{bmatrix} \frac{1}{5} & \frac{2}{3} \end{bmatrix}$

$$\bar{A}A: \bar{1}\begin{bmatrix}3 & -1\\5 & 1\end{bmatrix}\begin{bmatrix}4 & 2\\5 & 1\end{bmatrix}$$

Elementærmatricer

En matrix kaldes en *elementærmatrix*, hvis den kan dannes ved at lave én rækkeoperation på identitetsmatricen.

Eksempel
$$I_3 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad I_1 \leftarrow I_2$$

$$E = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$I_2 = I_2 + 2 \cdot I_1$$

$$I_3 = I_2 + 2 \cdot I_2$$

$$I_4 = I_2 + 2 \cdot I_3$$

$$I_5 = I_4 + 2 \cdot I_4$$

$$I_7 = I_7 + 2 \cdot I_7$$

Elementærmatricer

Hvis E er en elementærmatrix, er EA matricen, hvor den tilsvarende rækkeoperation er udført på A.

Eksempel

$$E = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ og } A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}.$$

$$Da \text{ er } EA = \begin{bmatrix} 4 & 5 & 6 \\ 2 & 3 & 3 \end{bmatrix}.$$

Elementærmatricer

Alle elementærmatricer er inverterbare: Brug bare den "omvendte" rækkeoperation

Brug bare den "omvendte" rækkeoperation

$$Eksempel$$

$$E = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ har invers } E^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

$$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Elementærmatricer og invers

Antag, at $A \sim I$

Der eksisterer rækkeoperationer, så A reduceres til identitetsmatricen Dermed eksisterer også tilhørende elementærmatricer E_1, E_2, \dots, E_s

Algoritme til at finde A^{-1}

- ► Opskriv matricen [A | I], og rækkereducer til [R | B]
- ► Hvis...
 - ightharpoonup ...R = I, er A inverterbar, og $A^{-1} = B$
 - $ightharpoonup ...R \neq I$, er A ikke inverterbar

Eksempel

$$\begin{bmatrix} 2 & 4 & 1 & 1 & 0 & 0 \\ 1 & 4 & 2 & 0 & 1 & 0 \\ 1 & 4 & 1 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & -\frac{1}{4} & -\frac{1}{4} & \frac{3}{4} \\ 0 & 0 & 1 & 0 & 1 & -1 \end{bmatrix}$$

Algoritme til at finde A^{-1}

Eksempel

$$\left[\begin{array}{ccc|c}
2 & 4 & 2 & 1 & 0 & 0 \\
1 & 4 & 3 & 0 & 1 & 0 \\
1 & 4 & 3 & 0 & 0 & 1
\end{array}\right] \sim \left[\begin{array}{ccc|c}
1 & 0 & -1 & 1 & 0 & -1 \\
0 & 1 & 1 & -\frac{1}{4} & 0 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 1 & -1
\end{array}\right]$$

Sammenhæng med matrixligning

Vi har ofte set på matrixligningen $A\mathbf{x} = \mathbf{b}$

Hvad kan vi konkludere, hvis A er inverterbar?

Kriterier for invertibilitet

Vi har set, at vi kan finde den inverse, hvis den eksisterer.

Kan vi sige noget generelt om, hvornår den inverse eksisterer?

En LAAANG sætning

Sætning (side 130)

Lad A være en $n \times n$ -matrix. Følgende udsagn er ækvivalente.

- 1. A er inverterbar
- $\stackrel{\checkmark}{\searrow}$ 2. A er rækkeækvivalent til I_n
- 3. A har n pivotsøjler
- $ilde{>}$ 4. Ligningen $A\mathbf{x} = \mathbf{0}$ har kun den trivielle løsning
 - 5. Søjlerne i A er lineært uafhængige
 - 6. Den lineære transformation $\mathbf{x} \mapsto A\mathbf{x}$ er injektiv
 - 7) Ligningen $A\mathbf{x} = \mathbf{b}$ har mindst én løsning for hvert \mathbf{b} i \mathbb{R}^n
 - 8. Søjlerne i A udspænder \mathbb{R}^n
 - 9. Den lineære afbildning $\mathbf{x} \mapsto A\mathbf{x}$ afbilder \mathbb{R}^n surjektivt til \mathbb{R}^n
 - 10) Der eksisterer en $n \times n$ -matrix B, så $BA = I_n$
- T1.) Der eksisterer en $n \times n$ -matrix C, så $AC = I_n$
- (12.) A^T er en inverterbar matrix

Lang sætning, korte eksempler

Eksempel

$$Er A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 3 & 1 & -2 \end{bmatrix}$$
 inverterbar?
$$\mathbf{\alpha}_1 \ \mathbf{\alpha}_2 \ \mathbf{\alpha}_3$$

$$a_1 + a_3 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

$$= \begin{bmatrix} 2 \\ 1 \end{bmatrix} = a_2$$

$$a_1 - a_2 + a_3 = 0$$

$$=) sqiplent or line afthory
$$=) A er ilde (hc.$$$$

Eksempel

En $n \times n$ -matrix B er inverterbar, og $\mathbf{b} \in \mathbb{R}^n$. Har ligningen $B\mathbf{x} = \mathbf{b}$ en lagning?

løsning?

Inverterbare lineære afbildninger

Vi siger, at en lineær afbildning $T: \mathbb{R}^n \to \mathbb{R}^n$ er inverterbar, hvis der eksisterer en afbildning $S: \mathbb{R}^n \to \mathbb{R}^n$, sådan at

$$S(T(x))=(S\circ T)(x)=x$$
 for alle $x\in \mathbb{R}^n$

og
$$\mathsf{T}\left(\mathsf{S}\left(\mathsf{M}\right) = (\mathcal{T} \circ \mathcal{S})(\mathsf{x}) = \mathsf{x} \text{ for alle } \mathsf{x} \in \mathbb{R}^n$$

I stil med matricer, kaldes S den inverse til T og den noteres $S = T^{-1}$

Sammenhæng med standardmatricer

Sætning

Lad $T: \mathbb{R}^n \to \mathbb{R}^n$ være en lineær afbildning med standardmatrix A. Da er T inverterbar, <u>hvis og kun hvis</u> A er inverterbar.

Når T er inverterbar gælder desuden, at T^{-1} har standardmatrix A^{-1} .

Sammenhæng med standardmatricer

Eksempel

Den lineære afbildning $R_{\frac{\pi}{4}}: \mathbb{R}^2 \to \mathbb{R}^2$ er en rotation med $\frac{\pi}{4}$ radianer omkring Origo. Dens standardmatrix er

$$A_{\frac{\pi}{4}} = \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$$

I kan tjekke, at $A_{\frac{\pi}{4}}^{-1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$, som svarer til rotationen

 $(R_{\frac{\pi}{4}})^{-1} = R_{\frac{-\pi}{4}}$ i modsat retning

$$\frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 & -1 \\ 1 & 1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 & 1 \\ 1 & 1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array} \right) = \frac{1}{\sqrt{n}} \left(\begin{array}{c} 1 + (-1)(-1) \\ 1 & -1 \end{array}$$