

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Информационная безопасность» (ИУ8)

Отчёт по лабораторной работе № 2

по дисциплине «Аппаратные средства вычислительной техники»

Tema: «Автомобильная индикация»

Вариант 3.

Преподаватель: Рафиков А.Г.

Студент: Веденеев А.А.

Группа: ИУ8-72

Цель работы:

Изучение основ реализации таймера и освоение работы с прерываниями на микроконтроллере серии 8051 в рабочей среде Proteus.

Задание:

Реализовать схему автомобильной световой индикации по следующим требованиям:

- Имеется 6 ламп (выходные сигналы) левая и правая лампы, указатели на панели, и задние.
- Имеется 5 входных сигналов педаль тормоза, аварийный сигнал, сигнал парковки, переключатель правого и левого поворота.
- Нажатие тормозной педали включает немигающий задний свет (BREAK -> L_REAR and R_REAR).
- Нажатие аварийного переключателя включает мигание всех шести ламп.
- Нажатие переключателя парковки включает приглушенные задние лампы.
- Замыкание контакта поворота включает мигание левых/правых ламп (L DASH/R DASH).

Вариант 3:

- Отобразить на дисплее перегоревшие лампы.
- Скважность при парковке 30%.

ПРАКТИЧЕСКАЯ ЧАСТЬ

Рисунок 1 - Схема в Proteus

Код микроконтроллера:

\$NOMOD51 \$INCLUDE (8051.MCU)

; INPUTS BRAKE BIT P1.0 EMERG BIT P1.1 PARK BIT P1.2 L_TURN BIT P1.3 R_TURN BIT P1.4

; OUTPUTS L_FRNT BIT P2.0 R_FRNT BIT P2.1 L_DASH BIT P2.2

```
R DASH BIT P2.3; ПРАВЫЙ ИНДИКАТОР НА ПАНЕЛИ
L REAR BIT P2.4
R REAR BIT P2.5
; LCD
RS BIT P2.6
E BIT P2.7
DD DATA P3
F DATA 21h
: ИСПОЛЬЗУЮТСЯ ДЛЯ ПОЛУЧЕНИЯ ЧАСТОТ
SUB DIV DATA 20H; ДЕЛИТЕЛЬ ЧАСТОТЫ ПРЕРЫВАНИЙ
HI FREQ BIT SUB DIV.0 ; БИТ ГЕНЕРАТОРА ВЫСОКОЙ ЧАСТОТЫ - ДЛЯ СТОЯНКИ
;ME FREQ BIT SUB DIV.5
LO FREQ BIT SUB DIV.7; БИТ ГЕНЕРАТОРА НИЗКОЙ ЧАСТОТЫ - ДЛЯ МИГАНИЯ
; RESET
ORG 0000H
ACALL INIT
JMP MAIN
; ОБРАБОТЧИК ПРЕРЫВАНИЯ ТАЙМЕРА 0
ORG 000BH; ПО ЭТОМУ АДРЕСУ РАСПОЛАГАЕТСЯ ПОДПРОГРАММА ОБР-КИ ПРЕ-ИЯ
ACALL TMR0 PROCCESING
RETI
; ОСНОВНАЯ ПРОГРАММА
ORG 150H
MAIN:
 SJMP $ ; jump to currentline
; ПОДПРОГРАММЫ
ORG 200H
INIT:
;- регистр режимов - TMOD - от английского "Timer MODe";
;- регистр управления/статуса - TCON - от "Timer CONtrol"
 MOV TMOD, #00000001B; ТАЙМЕР(С/Т0 = 0) В 1 РЕЖИМ М1.0=0 М0.0=1
 MOV TL0, #0; ИНИЦИАЛИЗАЦИЯ РЕГИСТРОВ ТАЙМЕРА
 MOV THO, #-16; ИНИЦИАЛИЗАЦИЯ РЕГИСТРОВ ТАЙМЕРА
 MOV SUB DIV, #244; ДЕЛЕНИЕ ЧАСТОТЫ ПРЕРЫВАНИЯ НА 244
 MOV R5, #61
 SETB ET0 ; РАЗРЕШИТЬ ПРЕРЫВАНИЕ ОТ ТАЙМЕРА 0
 SETB EA ; РАЗРЕШИТЬ ОБЩЕЕ ПРЕРЫВАНИЕ
 SETB TR0 : CTAPT ТАЙМЕРА
 CLR RS
 CLR E
 CLR F0
 MOV R7, #14
 MOV F, #255
 MOV R6, #24
 RET
TMR0 PROCCESING:
 MOV TL0, #0
 МОУ ТНО, #-16; ВНОВЬ ЗАПИСАТЬ ЧИСЛО, ЧТОБЫ ОН МОГ СНОВА СЧИТАТЬ
 DJNZ SUB DIV, T0 SERV; уменьшение SUB DIV на 1
 MOV SUB DIV, \#244; если стал 0, то снова записать 244
; это как раз и нужно для генерации сигнала высокой частоты SUB DIV.0
TO SERV:
 CLR E
 MOV A, R7
 JNZ INIT LCD1
 DJNZ R5, NEXT
 MOV R5, #61
CHECK00:
```

CLR L_FRNT

CLR R_FRNT

CLR L_DASH

CLR R_DASH

CLR L_REAR

CLR R_REAR

MOV F, P0

NEXT:

DJNZ R6, CHECK

MOV R6, #24

CHECK:

MOV A, R6

ANL A, #00010000B

JNZ CHECK_456

CHECK_123:

MOV A, R6

ANL A, #00001000B

JNZ CHECK 23

CHECK 1:

MOV A, R6

ANL A, #00000010B

JNZ SET_ADDR1

JB F.0, PRINT_PLUS

JMP PRINT_MINUS

SET_ADDR1:

MOV A, #10000000B

JMP SET ADDR

CHECK_23:

MOV A, R6

ANL A, #00000100B

JNZ CHECK_3

CHECK_2:

MOV A, R6

ANL A, #00000010B

JNZ SET_ADDR2

JB F.1, PRINT_PLUS

JMP PRINT_MINUS

SET ADDR2:

MOV A, #10000010B

JMP SET_ADDR

INIT_LCD1:

LJMP INIT_LCD

CHECK_3:

MOV A, R6

ANL A, #00000010B

JNZ SET_ADDR3

JB F.2, PRINT_PLUS

JMP PRINT MINUS

SET_ADDR3:

MOV A, #10000100B

JMP SET_ADDR

CHECK_456:

MOV A, R6

ANL A, #00001000B

JNZ CHECK_6

CHECK 45:

MOV A, R6

ANL A, #00000100B

JNZ CHECK 5

CHECK_4:

MOV A, R6

ANL A, #00000010B

JNZ SET_ADDR4

JB F.3, PRINT_PLUS

JMP PRINT_MINUS

SET_ADDR4:

MOV A, #10000110B

JMP SET_ADDR

CHECK 5:

MOV A, R6

ANL A, #00000010B

JNZ SET_ADDR5

JB F.4, PRINT_PLUS

JMP PRINT_MINUS

SET_ADDR5:

MOV A, #10001000B

JMP SET_ADDR

CHECK_6:

MOV A, R6

ANL A, #00000010B

JNZ SET ADDR6

JB F.5, PRINT_PLUS

JMP PRINT_MINUS

SET_ADDR6:

MOV A, #10001010B

JMP SET_ADDR

PRINT_PLUS:

SETB RS

MOV DD, #00101011B

MOV A, R6

ANL A, #00000001B

JNZ SAVE

JMP DEC1

PRINT_MINUS:

SETB RS

MOV DD, #00101101B

MOV A, R6

ANL A, #00000001B

JNZ SAVE

JMP DEC1

SET_ADDR:

CLR RS

MOV DD, A

MOV A, R6

ANL A, #00000001B

JNZ SAVE

JMP DEC1

SAVE:

SETB E

DEC R6

DEC1:

; включение парковых огней при парковке

PARK_SCRIPT:

JNB PARK, ORDINARY_MODE

CLR L_DASH

CLR R_DASH

CLR L_FRNT

CLR R_FRNT

; скважность 10

MOV C, SUB_DIV.0

ANL C, SUB_DIV.1

ANL C, SUB_DIV.2

ANL C, SUB_DIV.3

ORL C, SUB_DIV.4

ANL C, SUB_DIV.1

ANL C, SUB_DIV.2

ANL C, SUB_DIV.3

MOV L_REAR, С; на заднюю лампочку

MOV R_REAR, С; на заднюю лампочку

JMP STOP_SCRIPT

ORDINARY_MODE:

; выдать левый поворот, если он нажат

MOV C, L_TURN

ORL C, EMERG

ANL C, LO_FREQ

MOV L_DASH, С; на панель

MOV L_FRNT, С; на переднюю лампочку

MOV L REAR, С; на заднюю лампочку

; выдать правый поворот, если он нажат

MOV C, R_TURN

ORL C, EMERG

ANL C, LO_FREQ

 $MOV\ R_DASH,\ C$; на панель

MOV R_FRNT, С; на переднюю лампочку

MOV R_REAR, С; на заднюю лампочку

; выдать стоп, если он нажат

STOP_SCRIPT:

MOV C, BRAKE

JNC BRAKE_PRESSED

SETB L REAR

SETB R_REAR

BRAKE_PRESSED:

RET

INIT_LCD: ;настройка экрана вывод плюсов

MOV A, R7

XRL A, #00001110B

JZ S0

MOV A, R7

XRL A, #00001101B

JZ S1

MOV A, R7

ANL A, #00000001B

JZ SPACE

MOV A, R7

XRL A, #00001011B

JZ S3

MOV A, R7

XRL A, #00001001B

JZ S5

MOV A, R7

XRL A, #00000111B

JZ S7

MOV A, R7

XRL A, #00000101B

JZ S9

MOV A, R7

XRL A, #00000011B

JZ S11

MOV A, R7

XRL A, #00000001B

JZ S13

BYE:

RET

SPACE:

SETB RS

```
MOV A, #00100000B
 MOV DD, A
 JNB HI_FREQ, BYE
 JMP LCD_CMD
S0:
MOV A, #00111100B
MOV DD, A
 JNB HI_FREQ, BYE
 JMP LCD_CMD
S1:
 MOV A, #00001100B
 MOV DD, A
 JNB HI_FREQ, BYE
 JMP LCD_CMD
S3:
 MOV A, #00110001B
 MOV DD, A
 JNB HI FREQ, BYE
 JMP LCD_CMD
S5:
 MOV A, #00110010B
 MOV DD, A
 JNB HI_FREQ, BYE
 JMP LCD_CMD
S7:
 MOV A, #00110011B
 MOV DD, A
 JNB HI_FREQ, BYE
 JMP LCD_CMD
 MOV A, #00110100B
 MOV DD, A
 JNB HI_FREQ, BYE
 JMP LCD_CMD
S11:
 MOV A, #00110101B
 MOV DD, A
 JNB HI_FREQ, BYE
 JMP LCD_CMD
S13:
 MOV A, #00110110B
 MOV DD, A
 JNB HI_FREQ, BYE
 JMP LCD_CMD
LCD_CMD:
 SETB E
 DEC R7
 RET
```

END

Вывод

В ходе выполнения данной лабораторной работы продолжилось изучение микроконтроллера модели 8051, а также была разработана схема управления автомобильной индикации, а также контроля работы внешних и внутренних ламп автомобиля.

Во время работы были изучены способ использования таймера и прерываний для данного микроконтроллера.