| TD2 - Charpin                                                                                                                                                          | Pt  |   | A E | 3 C | D Note | e          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|-----|-----|--------|------------|
| 1 Donner le nom de la boucle de régulation.                                                                                                                            | 0,5 | Α |     | Т   | 0      | ,5         |
| 2 Donner le nom de la grandeur réglée.                                                                                                                                 | 0,5 | Α |     |     | 0      | ,5         |
| 3 Donner le nom de l'organe de réglage.                                                                                                                                | 0,5 | Α |     |     | 0      | ,5         |
| 4 Donner le nom de la grandeur réglante.                                                                                                                               | 0,5 | Α |     |     | 0      | ,5         |
| 5 Donner le nom d'une perturbation.                                                                                                                                    | 0,5 | Α |     | T   | 0      | ,5         |
| 6 Donner le nom des éléments intervenants dans la boucle de régulation.                                                                                                | 0,5 | Α |     | L   | 0      | ,5         |
| <b>7</b> Sur la capture d'écran ci-dessus, donner la valeur de la consigne.                                                                                            | 0,5 | Α |     | T   | 0      | ,5         |
| 8 Sur la capture d'écran ci-dessus, donner la valeur de la mesure.                                                                                                     | 0,5 | Α |     |     | 0      | ,5         |
| 9 En déduire la valeur de l'erreur statique.                                                                                                                           | 1   | Α |     |     |        | 1          |
| 10 Enregistrer la réponse du système à un échelon de commande de 5%.                                                                                                   | 1   | Α |     |     |        | 1          |
| 11 Le système est-il stable ?                                                                                                                                          | 1   | Α |     |     |        | 1          |
| 12 Le système est-il intégrateur ?                                                                                                                                     | 1   | В |     |     | 0,7    | <b>′</b> 5 |
| 13 Expliquer l'évolution de la mesure.                                                                                                                                 | 1   | С |     |     | 0,3    | 35         |
| 14 Quelle sera la valeur de l'erreur statique en boucle fermée, pour une régulation proportionnelle ?                                                                  | 1   | D |     |     | 0,0    | )5         |
| 15 Pourquoi ne peut-on pas utiliser une méthode de réglage en boucle ouverte ?                                                                                         | 1   | С |     |     | 0,3    | <b>3</b> 5 |
| <b>16</b> Quel doit être le sens d'action du régulateur ? Justifier votre réponse.                                                                                     | 1   | Α |     |     |        | 1          |
| 17 Enregistrer l'évolution de la mesure pour un gain égal au gain critique Ac.                                                                                         | 1   | С |     |     | 0,3    | 35         |
| 18 Donner la valeur du gain critique ainsi que celle de la période des oscillations.                                                                                   | 1   | С |     |     | 0,3    | 35         |
| 19 En déduire les réglages du régulateur PID.                                                                                                                          | 1   | С |     |     | 0,3    | 55         |
| 20 Enregistrer l'évolution de la mesure en réponse à un échelon de consigne de 5% avec les réglages précédemment déterminés.                                           | 1   | Α |     |     |        | 1          |
| Mesurer les performances (temps de réponse à ±10%, valeur du premier dépassement) de votre réglage. Faire apparaître les constructions sur l'enregistrement précédent. | 1   | С |     |     | 0,3    | 35         |
| 22 Déterminer des réglages du correcteur PID permettant une réponse à ±10% la plus rapide possible.                                                                    | 1   | С |     |     | 0,3    | <b>3</b> 5 |
| 23 Enregistrer l'évolution de la mesure en réponse à un échelon de consigne de 5% avec les réglages précédemment déterminés.                                           | 1   | Α |     |     |        | 1          |
| Mesurer les performances (temps de réponse à ±10%, valeur du premier dépassement) de votre réglage. Faire apparaître les constructions sur l'enregistrement précédent. | 1   |   |     |     |        | 0          |
| 25 Quelles sont les performances améliorées avec votre réglage par rapport à celui proposé par Ziegler&Nichols.                                                        | 1   |   |     | T   |        | 0          |

# Charpin

# TD2 Steamer - Régulation à un élément

Dans un premier temps, installer le logiciel <u>steamer</u> sur votre ordinateur. Lancer le logiciel pour répondre aux questions suivantes :



Le <u>fichier aide</u> pour bien débuter.

## I. Analyse de la boucle

| Q1 : Donner le nom de la boucle de régulation.                             | 0.5 |
|----------------------------------------------------------------------------|-----|
| Régulation de niveaux                                                      |     |
| Q2 : Donner le nom de la grandeur réglée.                                  | 0.5 |
| Le niveaux de la cuve                                                      |     |
| Q3 : Donner le nom de l'organe de réglage.                                 | 0.5 |
| c'est la vanne LV                                                          |     |
| Q4 : Donner le nom de la grandeur réglante.                                | 0.5 |
| c'est le débit FT2                                                         |     |
| Q5 : Donner le nom d'une perturbation.                                     | 0.5 |
| Le débit FT2 ou FT1 peut etre une perturbation                             |     |
| Q6 : Donner le nom des éléments intervenants dans la boucle de régulation. | 0.5 |
| La vanne LV, le régulateur LIC, et le transmetteur LT                      |     |



| Q7 : Sur la capture d'écran ci-dessus, donner la valeur de la consigne. | 0.5 |
|-------------------------------------------------------------------------|-----|
| La consigne est de 50%                                                  |     |
| Q8 : Sur la capture d'écran ci-dessus, donner la valeur de la mesure.   | 0.5 |
| La mesure est de 50%                                                    |     |
| Q9 : En déduire la valeur de l'erreur statique.                         | 1   |
| L'erreur statique est de o                                              |     |

#### II. Boucle ouverte

Attendre que la mesure se stabilise vers 50%, puis mettre le système dans l'état initial et manuel en cliquant sur les boutons :



On pourra régler le défilement sur 4s/carreau.



On pourra réinitialiser le graphe.

Clear

#### Q10: Enregistrer la réponse du système à un échelon de commande de 5%.



Q11: Le système est-il stable?

1

Non le système est instable car la mesure ne s'arrête pas d'augmenter

Q12 : Le système est-il intégrateur ?

1

Le systeme est intégrateur car quand l'entre e est constante et que la mesure est une droite croissante

Q13 : Expliquer l'évolution de la mesure.

1

On voit que la mesure augmente jusqua saturation après une légère diminution du niveaux

Q14 : Quelle sera la valeur de l'erreur statique en boucle fermée, pour une régulation proportionnelle ?

1

La valeur de l'erreur statique est nulle, car T(p=a)-->infini

Q15 : Pourquoi ne peut-on pas utiliser une méthode de réglage en boucle ouverte ?

1

On ne peut pas car le systeme est integrateur, il n'y à donc pas de réponse du procédé stable

### III. Réglage de la boucle - Méthode de Ziegler&Nichols

Q16 : Quel doit être le sens d'action du régulateur ? Justifier votre réponse.

Le procédé est direct, quand on ouvre la vanne le niveaux augmente.. Le régulateur est donc inverse

Q17 : Enregistrer l'évolution de la mesure pour un gain égal au gain critique A<sub>c</sub>.



Q18 : Donner la valeur du gain critique ainsi que celle de la période des oscillations.

le gain critique est de 30%, la période est d'environ 20s

Q19: En déduire les réglages du régulateur PID.

Xp= 14%, Ti= 45s, Td= 0.5s

**Q20**: Enregistrer l'évolution de la mesure en réponse à un échelon de consigne de 5% avec les réglages précédemment déterminés.

1

1

1



Q21: Mesurer les performances (temps de réponse à  $\pm 10\%$ , valeur du premier dépassement) de votre réglage. Faire apparaître les constructions sur l'enregistrement précédent.

1

premier depassement = 120%, temps de réponse est de : 40s

Q22 : Déterminer des réglages du correcteur PID permettant une réponse à  $\pm 10\%$  la plus rapide possible.

xp= 14% Ti= 40s Td= 0.5s

?

Q23 : Enregistrer l'évolution de la mesure en réponse à un échelon de consigne de 5% avec les réglages précédemment déterminés.



**Q24**: Mesurer les performances (temps de réponse à  $\pm 10\%$ , valeur du premier dépassement) de votre réglage. Faire apparaître les constructions sur l'enregistrement précédent.

1

1

1

Q25 : Quelles sont les performances améliorées avec votre réglage par rapport à celui proposé par Ziegler&Nichols.

1