

Potentiometry

Potential is measured under the conditions of no current flow

The measured potential is proportional to the concentration of some component of the analyte

The potential that develops in the *electrochemical cell* is the result of the *free energy change* that would occur if the chemical phenomena were to proceed until the *equilibrium condition* has been satisfied.

$$\Delta G_{\rm rxn} = -nFE_{\rm rxn}$$

Basic Principles of Potentiometry

- Combining two half-cells (two half-redox reactions) and measuring the potential difference between them that gives E_{cell}
- If the potential of one haf-cell (one-half reaction) is held constant then the potential of the other half (half cell or half reaction) will be known and consequently the concentration of the species on this side can be measured.

Electrode Potentials:

Standard potential for cell, E⁰_{cell}, follows Nernst Equation:

 $E_{\text{cell}}^0 = (RT/nF) \ln K$

R is gas law constant, T is temperature, K is equilibrium constant, F is the Faraday, and n is number of equivalents of electricity

Electrode potential is sum of two half-reactions.

Cannot determine potential of a single electrode, measure differences in potential.

Potentiometric Methods:

To perform potentiometry, the following is needed:

- •Reference Electrode
- •Indicator Electrode
- Potential Measuring Device

Potentiometric methods

Reference electrode

The part
of the cell
that is held
constant

Indicating electrode

The part of the cell that contains the solution we are interested in measuring

Schematic Representation of ells

- Cd| Cd²⁺ ([Cd²⁺]=0.010 M)||AgNO₃(0.50 M)|Ag
- Cd| Cd²⁺ ([Cd²⁺]=0.010 M)||(AgCl satud)| Ag
- Cd| Cd²⁺ ([Cd²⁺]=0.010 M)|| H⁺, H₂ (g) | Pt

PUACP

• Cd| Cd²⁺ ([Cd²⁺]=0.010 M)|| Fe³⁺, Fe²⁺ | Pt

Electrode Potentials

- The electrode potentials represent a measure of the driving force for the two half-reactions of the electrochemical cell.
 - By convention, all reactions are written as reductions.
 - The potential of an electrochemical cell is the difference between the potential of the cathode and that of the anode.
 - No method exists for determining the absolute value of the potential of a single electrode, since all voltage-measuring devices determine only the difference in potential as defined in this manner.
 - BUT... a relative half-cell potential can be measured against a common reference electrode.

The Standard Hydrogen Electrode (SHE)

- Hydrogen gas electrodes were widely used in early electrochemistry studies and by convention the potential of this electrode is assigned the value of exactly zero volt at all temperatures.
- It can act as an anode or a cathode, depending upon the half-cell with which it is coupled.
 - Hydrogen is oxidized to hydrogen ions when the electrode is anode.
 - Hydrogen ions are reduced to hydrogen gas when the electrode is the cathode.

- Electrode potentials are defined as cell
 potentials for a cell consisting of the electrode
 in question acting as a cathode and the SHE
 acting as an anode.
- •In this case, the standard electrode potential for $M^{2+}(aq) + 2e^- = M(s) \text{ is } 0.337 \text{ V given by the}$ symbol E^0 .

NOTE: the standard electrode potential for a half reaction is the electrode potential when the reactants and products are all at unit activity.

Standard Electrode Potentials

Reaction	E ⁰ at 25°C, V
$Cl_2(g) + 2e^- \rightleftharpoons 2Cl^-$	+1.359
$O_2(g) + 4H^+ + 4e^- \rightleftharpoons 2H_2O$	+1.229
$Br_2(aq) + 2e^- \rightleftharpoons 2Br^-$	+1.087
$Br_2(l) + 2e^- \rightleftharpoons 2Br^-$	+1.065
$Ag^+ + e^- \rightleftharpoons Ag(s)$	+0.799
$Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+}$	+0.771
$I_3^- + 2e^- \rightleftharpoons 3I^-$	+0.536
$Cu^{2+} + 2e^{-} \rightleftharpoons Cu(s)$	+0.337
$Hg_2Cl_2(s) + 2e^- \rightleftharpoons 2Hg(l) + 2Cl^-$	+0.268
$AgCl(s) + e^- \rightleftharpoons Ag(s) + Cl^-$	+0.222
$Ag(S_2O_3)_2^{3-} + e^- \rightleftharpoons Ag(s) + 2S_2O_3^{2-}$	+0.010
$2H^+ + 2e^- \rightleftharpoons H_2(g)$	0.000
$AgI(s) + e^{-} \rightleftharpoons Ag(s) + I^{-}$	-0.151
$PbSO_4(s) + 2e^- \rightleftharpoons Pb(s) + SO_4^{2-}$	-0.350
$Cd^{2+} + 2e^{-} \rightleftharpoons Cd(s)$	-0.403
$Zn^{2+} + 2e^- \rightleftharpoons Zn(s)$	-0.763

- The magnitudes of these standard electrode potentials show the relative strengths of the ionic species as electron acceptors (oxidizing agents).
 - The larger the value, the larger the oxidizing power.
- What if the value is negative?
 - The agent is a poor oxidizer, but product is a good reducing agent.

Nernst Equation

- The standard electrode potential for a half reaction is the electrode potential when the reactants and products are all at unit activity.
 - What if the activity is not unity?
 - Use the Nernst Equation which accounts for the effect of activity on the electrode potential.

Nernst Equation

$$Ox + ne^- \rightleftarrows Red \tag{2.4}$$

the potential is given by the generalized form of the Nernst equation

$$E = E^{0} - \frac{RT}{nF} \ln \frac{a_{\text{Red}}}{a_{\text{Ox}}} = E^{0} - \frac{RT}{nF} \ln \frac{(\text{Red})}{(\text{Ox})} = E^{0} - \frac{2.303RT}{nF} \log \frac{(\text{Red})}{(\text{Ox})}$$
 (2.5)

where

 E^0 = standard electrode potential in volts

R = molar gas constant (8.314 J/K-mole)

T = absolute temperature in kelvins

(Red) or a_{Red} = activity of the reduced form

(Ox) or a_{Ox} = activity of the oxidized form

If numerical values are inserted for the constants and the temperature is 25°C, the Nernst equation becomes

$$E = E^{0} - \frac{0.05916}{n} \log \frac{a_{\text{Red}}}{a_{\text{Ox}}}$$
 (2.6)

The departure of activity from concentration for charged species is a function of the ionic strength, I, of the solution:

assumption that ions do not interact in solution (a reasonable approximation for I < 0.01), and a solvent of water at 25°C, the Debye-Hückel limiting law can be used to estimate f_i :

$$-\log f_{\rm i} = 0.5 z_{\rm i}^2 I^{1/2} \tag{2.10}$$

For solutions of higher ionic strength, the form

$$-\log f_{\rm i} = \frac{0.5z_{\rm i}^2 I^{1/2}}{1 + I^{1/2}} \tag{2.11}$$

$$I = \frac{1}{2} \sum_{i=1}^{\infty} c_i z_i^2$$

Example of Activity vs. Concentration Discrepancy:

Examples of Nernst Equation

What is the electrode potential for a half-cell consisting of a cadmium electrode immersed in a solution that is 0.0150 M in Cd²⁺?

Reaction	E ⁰ at 25°C, V
$Cl_2(g) + 2e^- \rightleftharpoons 2Cl^-$	+1.359
$O_2(g) + 4H^+ + 4e^- \rightleftharpoons 2H_2O$	+1.229
$Br_2(aq) + 2e^- \rightleftharpoons 2Br^-$	+1.087
$Br_2(l) + 2e^- \rightleftharpoons 2Br^-$	+1.065
$Ag^+ + e^- \rightleftharpoons Ag(s)$	+0.799
$Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+}$	+0.771
$I_3^- + 2e^- \rightleftharpoons 3I^-$	+0.536
$Cu^{2+} + 2e^{-} \rightleftharpoons Cu(s)$	+0.337
$Hg_2Cl_2(s) + 2e^- \rightleftharpoons 2Hg(l) + 2Cl^-$	+0.268
$AgCl(s) + e^{-} \rightleftharpoons Ag(s) + Cl^{-}$	+0.222
$Ag(S_2O_3)_2^{3-} + e^- \rightleftharpoons Ag(s) + 2S_2O_3^{2-}$	+0.010
$2H^+ + 2e^- \rightleftharpoons H_2(g)$	0.000
$AgI(s) + e^{-} \rightleftharpoons Ag(s) + I^{-}$	-0.151
$PbSO_4(s) + 2e^- \rightleftharpoons Pb(s) + SO_4^{2-}$	-0.350
$Cd^{2+} + 2e^{-} \rightleftharpoons Cd(s)$	-0.403
$Zn^{2+} + 2e^- \rightleftharpoons Zn(s)$	-0.763

وَرُقِلَ لَ إِنْ الْمُعْلِينَ الْمُعْلِينِ الْمُعْلِينَ الْمُعْلِينِ الْمُعْلِينَ الْمُعْلِينَ الْمُعْلِينَ الْمُعْلِينَ الْمُعْلِينَ الْمُعْلِينَ الْمُعْلِينَ الْمُعْلِينَ الْمُعْلِينِ الْمُعْلِينَ الْمُعْلِينَ الْمُعْلِينَ الْمُعْلِينِ الْمُعِلِينِ الْمُعْلِينِ الْمُعْلِينِ الْمُعِلِينِ الْمُعْلِينِ الْمُعْلِينِ الْمُعْلِينِ الْمُعْلِينِ الْمُعِلِينِ الْمُعْلِينِ الْمُعْلِينِ الْمُعْلِينِ الْمُعْلِينِ الْمِعِلِينِ الْمُعْلِينِ الْمُعِلِي الْمُعْلِينِ الْمُعْلِينِ الْمُعِلِي الْمُعْلِينِ الْمُعْلِينِ الْمُعْلِينِ الْمُعِلِي الْمُعِينِ الْمُعِلِي الْمُعِلِي الْمُعِلِي الْمُعِلِي الْمُعِلِي الْمُع

A bare metal in contact with a solution of it's cation.

PUACP

$$E_{ind} = E^{\circ} - \frac{0.0592}{n} \log \frac{1}{[M^{n+}]}$$

indicating electrode

ور ال المال المالة

Example: Silver sensing electrode.

= 0.800 V - 0.0592 pAg

If we use a SCE then

 $\rho A_9 = (0.800V - 0.244V - E_{oll}) / 0.0592$

Example

A silver wire is dipped into a silver nitrate solution. A potential of 0.450 V was measured vs. SCE.

PUACP

What is [Ag*] for the unknown solution?

PAg = (0.800V-0.244V - E.) / 0.0592

Example

PA9 = (0.800V-0.244V - E) / 0.0592

E_{cell} = 0.450 V

PUACP

PA9 = (0.800V-0.244V - 0.450V) / 0.0592 = 1.791

 $[Ag+] = 1.618 \times 10^2 M$

Metal electrodes are also sensitive to anions that form low solubility precipitates with metal cations.

PUACP

ويقا ن الله الله

Example: Ct with a silver electrode.

end up with

Example: Ct with a silver electrode.

This is obtained by substituting [CI-]

K_{SPAgCI}

for [Ag*] because $K_{SP} = [Ag*][Ct]$

Example: CI with a silver electrode.

We can express the E_{coll} as

ويوا رب زدند، علا

We're really measuring a decrease in [Ag*]. ρCl goes down as ρAg goes up.

For some metals, a good electrode can't be made or no metal is involved - just ions.

An inert indicating electrode like Pt can be used. This type of electrode only measures the ratios of the ions.

No quantitation but suitable for titrations.

Examples of Nernst Equation

Calculate the platinum electrode potential for a immersed in a solution prepared by saturating a 0.0150 M solution of KBr with Br₂.

$$Br_2 + 2e \longrightarrow 2Br$$

PUACP

Calculate the potential for a platinum electrode immersed in the same solution with the unsaturated concentration of $Br_2 = 1.00 \times 10^{-3} M$.

Reaction	E ⁰ at 25°C, V
$Cl_2(g) + 2e^- \rightleftharpoons 2Cl^-$	+1.359
$O_2(g) + 4H^+ + 4e^- \rightleftharpoons 2H_2O$	+1.229
$Br_2(aq) + 2e^- \rightleftharpoons 2Br^-$	+1.087
$Br_2(l) + 2e^- \rightleftharpoons 2Br^-$	+1.065
$Ag^+ + e^- \rightleftharpoons Ag(s)$	+0.799
$Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+}$	+0.771
$I_3^- + 2e^- \rightleftharpoons 3I^-$	+0.536
$Cu^{2+} + 2e^{-} \rightleftharpoons Cu(s)$	+0.337
$Hg_2Cl_2(s) + 2e^- \rightleftharpoons 2Hg(I) + 2Cl^-$	+0.268
$AgCl(s) + e^{-} \rightleftharpoons Ag(s) + Cl^{-}$	+0.222
$Ag(S_2O_3)_2^{3-} + e^- \rightleftharpoons Ag(s) + 2S_2O_3^{2-}$	+0.010
$2H^+ + 2e^- \rightleftharpoons H_2(g)$	0.000
$AgI(s) + e^{-} \rightleftharpoons Ag(s) + I^{-}$	-0.151
$PbSO_4(s) + 2e^- \rightleftharpoons Pb(s) + SO_4^{2-}$	-0.350
$Cd^{2+} + 2e^{-} \rightleftharpoons Cd(s)$	-0.403
$Zn^{2+} + 2e^- \rightleftharpoons Zn(s)$	-0.763

Examples of Nernst Equation

Calculate the potential of a silver electrode in a solution that is saturated with silver iodide and has an iodide ion activity of exactly 1.00.

(Ksp for AgI= 8.3×10^{-17})

Reaction	E ⁰ at 25°C, V
$Cl_2(g) + 2e^- \rightleftharpoons 2Cl^-$	+1.359
$O_2(g) + 4H^+ + 4e^- \rightleftharpoons 2H_2O$	+1.229
$Br_2(aq) + 2e^- \rightleftharpoons 2Br^-$	+1.087
$Br_2(l) + 2e^- \rightleftharpoons 2Br^-$	+1.065
$Ag^+ + e^- \rightleftharpoons Ag(s)$	+0.799
$Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+}$	+0.771
$I_3^- + 2e^- \rightleftharpoons 3I^-$	+0.536
$Cu^{2+} + 2e^{-} \rightleftharpoons Cu(s)$	+0.337
$Hg_2Cl_2(s) + 2e^- \rightleftharpoons 2Hg(l) + 2Cl^-$	+0.268
$AgCl(s) + e^- \rightleftharpoons Ag(s) + Cl^-$	+0.222
$Ag(S_2O_3)_2^{3-} + e^- \rightleftharpoons Ag(s) + 2S_2O_3^{2-}$	+0.010
$2H^+ + 2e^- \rightleftharpoons H_2(g)$	0.000
$AgI(s) + e^{-} \rightleftharpoons Ag(s) + I^{-}$	-0.151
$PbSO_4(s) + 2e^- \rightleftharpoons Pb(s) + 5O_4^{2-}$	-0.350
$Cd^{2+} + 2e^{-} \rightleftharpoons Cd(s)$	-0.403
$Zn^{2+} + 2e^{-} \rightleftharpoons Zn(s)$	-0.763

Effect of Complexation on Electrode potential

$$Cu^{2+} + EDTA^{4-} \rightleftarrows CuEDTA^{2-}$$
 (2.14)

(where EDTA⁴⁻ is the basic form of the tetra-acid), for which the formation constant is written as

$$K_{\rm f} = \frac{({\rm CuEDTA}^{2-})}{({\rm Cu}^{2+})({\rm EDTA}^{4-})} = 6.17 \times 10^{18}$$
 (2.15)

For the half-reaction involving copper ions and copper (Equation 2.2), the Nernst equation is expressed by $Cu^{2+} + 2e$ Cu

$$E = E_{\text{Cu}^{2+},\text{Cu}}^{0} - \frac{RT}{nF} \ln \frac{1}{(\text{Cu}^{2+})}$$
 (2.16)

Combining Equation 2.15 with 2.16 yields the potential of a copper electrode in aqueous EDTA⁴⁻ systems:

$$E_{\text{Cu}} = E_{\text{Cu}^{2+},\text{Cu}}^{0} + \frac{RT}{nF} \ln \frac{1}{K_{\text{f}}(\text{EDTA}^{4-})} + \frac{RT}{nF} \ln (\text{CuEDTA}^{2-})$$
 (2.17)

Liquid Junction Potential

- The interface between two solutions containing different electrolytes or different concentrations of the same electrolyte is called a liquid junction.
 - These are designated by | in shorthand notation.
- A junction potential occurs at every liquid junction.
 - This puts a fundamental limitation on the accuracy of direct potentiometric measurements, because we usually don't know the contribution of the junction to the measured voltage.
- The junction potential is caused by <u>unequal</u> mobilities of the + and - ions.

NaCl Na+ Water Solution Cl Water Solution Region rich in Na+ in Cl

- Consider a solution of NaCl in contact with distilled water.
- The chloride ions have a greater mobility when the sodium and chloride ions begin to diffuse from the NaCl solution.
 - Chloride is less attracted to the water molecules.
- This causes a two regions to form, one rich in Cl⁻ and one rich in Na⁺.
- The result is a potential difference at the junction of the NaCl and H₂O phase.

Liquid Junction Potential Example

 A 0.1 M NaCl solution was placed in contact with a 0.1 M NaNO₃ solution. Which side of the junction will be positive and which will be negative?

Solution:

- [Na+] is equal on both sides, so there is no net diffusion of Na+ across the junction.
- Cl⁻ will diffuse into the NaNO₃ and NO₃⁻ will diffuse into the NaCl.
 - But the mobility of Cl⁻ is greater than NO₃⁻ (because it's smaller).
- The NaCl region will be depleted of Cl⁻ faster than the NaNO₃ region will be depleted of NO₃⁻.
- The NaNO₃ side will become negative and the NaCl side will become positive.

Calculation of Cell Potentials

$$E_{cell} = E_{right} - E_{left} + E_{lj}$$

 $E_{cell} = E_{cathode} - E_{anode}$

What is the cell potential of

$$Zn|ZnSO_4(a_{Zn2+}=1.00)||CuSO_4(a_{Cu2+}=1.00)||Cu?$$

- The activities are unity so the standard potentials are also the electrode potentials.
- What happens when the above is run in reverse?

Calculation of Cell Potentials

- Calculate the cell potential for Zn|ZnSO₄(c_{ZnSO4}=5.00x10⁻⁴ M),PbSO₄(sat,d)|Pb
 - E⁰ and the cell voltage do NOT depend on how you write the cell reaction.
 - Will this cell be galvanic or electrolytic?

Calculation of Cell Potentials

Calculate the cell potential for

 $Cd|Cd(NO_3)_2(c_{ZnSO4}=0.010 M)||AgNO_3(0.50 M)|Ag$

Potentiometric Methods:

To perform potentiometry, the following is needed:

- •Reference Electrode
- •Indicator Electrode
- Potential Measuring Device

Reference Electrodes

Characteristics of Ideal Reference Electrode:

- 1) Reversible and follow Nernst equation
- 2) Potential should be constant with time
- 3) Should return to original potential after being subjected to small currents
- 4) Little hysteresis with temperature cycling
- 5) Should behave as ideal nonpolarized electrode

Reference Electrodes

- Hydrogen Gas Electrode
- Pt (H₂ (1 atm), H⁺ (1M)

PUACP

Reference electrodes

Calomel electrode (SCE)

A much more common reference electrode.

PUACP

Hg / Hg2Cl2(sot), KCI //

Chloride is used to maintain constant ionic strength.

$$Hg_2Cl_2 + 2e \longrightarrow 2Hg + 2Cl^2$$

Reference electrodes

Calomel electrode

Different KCI concentrations can be used.

0.1 M - least temperature sensitive

Saturated - easier to make and maintain.

E = 0.2444V 25°C

The electrode may be separate or built into the sensing electrode - combination electrode.

Example of typical calomel reference electrodes

PUACP

Reference electrodes

Ag/AgCI

Another common reference electrode.

PUACP

Easier to produce a combination electrode.

saturated AgCI/KCI

Operational definition of pH

$$pH = pH_s + \frac{(E - E_s)F}{RT \ln 10}$$
 (2.29)

where

E = electromotive force of a cell containing the unknown solution

 E_s = electromotive force of a cell containing a standard reference buffer solution of known or defined pH, that is, pH_s

In actual practice, the NBS pH standards were assigned pH_s values from measurements of a hydrogen gas-silver/silver chloride cell without liquid junction,

Indicator Electrodes used in Potentiometry

PUACP

Metallic Indicator electrodes

Uses of metallic electrodes

- Using a silver and calomel electrode allows for the direct determination of [Ag+].
- Can also be used for indirect determination of halide concentrations through the solubility product constant.
 - Consider the titration of 100 mL of 0.100
 M NaCl solution w/ 0.100 M AgNO₃.

Ion-Selective Membrane Electrodes

- An ion-selective electrode consists of a thin membrane across which only the intended ion can migrate.
 - Ideally, other ions cannot cross the membrane.
- Just like a junction potential, an electric potential develops across the membrane due to the difference in concentration (actually activity) of the ion on the two sides of the membrane.
- The electric potential difference is Nernstian:

$$E = Constant + \frac{0.0592}{n} log (M^n)$$

 For every factor-of-10 difference in activity of a +1 charged ion, a difference of 0.0592 V builds up across a membrane

Electrode Potential and Interference Effect

$$E_{\text{cell}} = E_{\text{constant}} + E_{\text{ISE}} = E'_{\text{constant}} + 0.0591\log a_i$$

ور ان الله الله

$$E_{cell} = E'_{constant} + 0.0591 log(a_i + k_{ij}a_j^{n/z})$$

 a_i = activity of the interferent ion ogf charge z

 k_{ij} = selectivity coefficient

FIGURE 2.5. Response of a calcium ion-selective electrode to pure CaCl₂ solutions, and to CaCl₂ solutions with 0.2 or 1 M NaCl also present. Redrawn

Membrane Electrodes:

Two types:

- 1) Responsive to ionic species
- 2) Applied to determination of molecular analytes
 - a) gas-sensing probes
 - b) enzymatic electrodes

Properties of Ion-Selective Electrodes:

Minimal solubility of ion-selective medium in analyte solution

Electrical conductivity

PUACP

Selective reactivity with analyte, usually ion-exchange, crystallization, or complexation.

Types of Ion-selective Electrodes

There is four classes of ion-selective electrodes:

1. Glass membranes

 These are selective to H⁺ and certain monovalent cations.

2. Solid-state electrodes

- These are made of inorganic salt crystals.
- The inorganic salt is made such to have vacancies in its lattice structure.
- The vacancies allow the ion (needed to fill the vacancy) to migrate through the salt.

3. Liquid-based electrodes

 A mobile carrier transports the selected ion across a membrane impregnated with a liquid solution of the carrier.

4. Molecular (Compound) Electrodes

- 1. These contain a conventional electrode surrounded by a membrane that isolates (or generates) the analyte to which the electrode responds.
- 2. For example, a CO_2 electrode responds the change in pH due to the presence of the CO_2 .

Glass Electrodes for measuring pH

- These consists of thin glass bulb at the bottom that is selective to H⁺.
- Two reference electrodes (usually Ag/AgCl) measure the potential difference across the membrane.

Typical pH Electrode

Calibrating Glass Electrodes

- Glass electrodes must always be calibrated because the concentration of H+ inside the glass is always changing.
- Must also account for junction potentials.
- Calibration is done using standard buffer solutions.

Errors in pH measurement

- Standards: The pH measurement cannot be any more accurate than the standards (typically +0.01 pH unit).
- Junction potential: Changing the ionic composition of the analyte (compared to standard), changes the junction potential that exists at the porous plug. Gives an uncertainty of at least 0.01 pH unit.
- Junction potential drift: The presence of a reducing agent in the analyte can causes Ag(s) to be precipitated inside the plug, changing the junction potential.

- •Alkaline error: the electrode also responds to alkaline ions (Li⁺, Na⁺). Having high concentrations of these causes the apparent pH to be lower than the true pH.
- •Acid error: The measured pH is always higher than the actual pH in strong acid solutions because the glass surface becomes saturated with H+ and cannot be protonated at anymore sites.
- •Equilibration time: Electrode must equilibrate with the solution.
- •Hydration of glass: A dry electrode don't work.
- •Temperature: this affects ion mobility and consequently the pH measurement.

Membrane electrodes Potential

A potential difference is created across a membrane that can be measured.

There is no change in the solution or actual contact.

pH electrode

- first discovered
- still the most significant
- relies on a glass membrane.

$$E_{mem} = (constant) - \frac{RT}{z_i F} ln(a_i)$$

$$E_{cell} = K + 0.0591/n \log a_i$$

Membrane electrodes

H₃O' partially populates both the inner and outer SiO₂ surfaces.

The concentration difference results in a potential across the glass membrane.

A special glass is used: 22% No₂O, 6% CaO, 72% SiO₂

Membrane electrodes

pH electrodes

In order to work, the glass must be hydrated already have partial silkate production

ويوا در المالية

This explains why electrodes are always kept moist or in a solution.

While the electrode is reasonable selective of H_3O^* , other ions can cause a response.

Selectivity Coefficient

No electrode responds exclusively to one kind of ion. •

The glass pH electrode is among the most selective, but it also responds to high concentration of Na⁺.

When an electrode used to measure ion A, also responds to ion X, the selectivity coefficient gives the relative response of the electrode to the two different species.

$$k_{A,X} = \frac{\text{responseto X}}{\text{responseto A}}$$

The smaller the selectivity coefficient, the less interference – by X.

Solid state electrodes

A very popular type of ion specific electrode.

As easy to maintain as a pH electrode.

F electrode

The original solid state

Works by aeating defects in a LaF₃ aystal.

Other solid state electrodes work based on the presence of a primary absorbed ion.

و وال المالية

Cl electrode

Solid state electrodes

The Ct electrode will produce a concentration dependent response for both Ct and Ag*

Both can be primary absorbed ions.

PUACP

Interferences are observed for S², Br, I, CN and ammonia.

Solid-State Electrodes (F- selective electrode)

- A LaF₃ is doped with EuF₂.
- Eu²⁺ has less charge than the La³⁺, so an anion vacancy occurs for every Eu²⁺.
- A neighboring F can jump into the vacancy, thereby moving the vacancy to another site.
- Repetition of this process moves F⁻ through the lattice.

Fluoride Electrode

Solid-state Electrodes

- Another common inorganic crystal electrode uses Ag₂S as the membrane.
- The crystal lattice is made to have vacancies which allow Ag⁺ and S²⁻ to migrate through.
- The silver sulfide membrane can be doped with copper sulfide, cadmium sulfide, or lead sulfide making the electrode sensitive to Cu²⁺, Cd²⁺, or Pb²⁺ respectively.

Typical Properties of Some Commercial Ion-Selective Electrodes

	Concentration	
<u> Electrode</u>	Range, M	Princip a l Interfere <mark>nce</mark> s ^a
Liquid-Liquid Ion Exchange Electrodes		
Ca ²⁺	100-10-5	$Zn^{2+}(3)$; $Fe^{2+}(0.8)$; $Pb^{2+}(0.6)$; $Mg^{2+}(0.1)$; $Na^{+}(0.003)$
C1-	10-1-10-5	$I^{-}(17)$; $NO_{3}^{-}(4)$; $Br^{-}(2)$; $HCO_{3}^{-}(0.2)$; SO_{4}^{2-} , $F^{-}(0.1)$
Divalent Cation	100-10-8	Fe ²⁺ , Zn ²⁺ (3.5); Cu ²⁺ (3.1); Ni ²⁺ (1.3); Ca ²⁺ , Mg ²⁺ (1); Ba ²⁺ (0.94); Sr ²⁺ (0.54); Na ⁺ (0.015)
BF ₄	10 ⁻¹ -10 ⁻⁵	NO ₃ (0.1); Br ⁻ (0.04); OAc ⁻ , HCO ₃ (0.004); Cl ⁻ (0.001)
NO ₃	10 ⁻¹ -10 ⁻⁵	$CIO_4^-(1000); I^-(20); Br^-(0.1); NO_2^-(0.04); Cl^-(0.004); CO_3^2^-(0.0002); F^-(0.00006); SO_4^2^-(0.00003)$
CIO ₄	10 ⁻¹ -10 ⁻⁵	I ⁻ (0.01); NO ₃ ⁻ ; OH ⁻ (0.0015); Br ⁻ (0.0006); F ⁻ , CI ⁻ (0.0002)
K ⁺	$10^{0} - 10^{-5}$	Cs ⁺ (1); NH ₄ ⁺ (0.03); H ⁺ (0.01); Na ⁺ (0.002); Ag ⁺ , Li ⁺ (0.001)
Solid-State Electrodes ^b		
F-	$10^{0}-10^{-6}$	Maximum level: OH ⁻ < 0.1 F ⁻
Ag ⁺ or S ²⁻	100-10-7	$Hg^{2+} < 10^{-7} M$

[&]quot;Number in parentheses is the relative selectively for the interfering ion over the test ion (see "The Selectivity Ratio" below.

bInterference concentrations given represent maximum tolerable concentrations.

Liquid membrane electrodes

- Similar to a pH electrode except the membrane is an organic polymer saturated with a liquid ion exchanger.
- Interaction of this exchanger with target ions results is a potential across the membrane that can be measured.
- The Ca²⁺ electrode is one of the best examples.

Liquid membrane electrodes

ويعا ن الله الله

The reservoir forces exchanger into the membrane.

The exchanger forms complexes with the species of interest.

This
The results in a
concentration
difference and a
resulting ΔV that
we can measure.

Liquid membrane electrodes

ويُعلِينَ فِي اللهِ اللهِ اللهُ الله

-			- 41	-
CO	nce	ΠĽ	ατι	on

Range, M

10° - 5 x10-7

CF 100 - 5 x106

lon

Ca2+

NO₃ 100 - 7 x106

CIO4 100 - 7 x104

K* 100 - 1 x10-7

Major

Interferences

Pb2+, Fe2+, Ni2+, Hg2+, Sr2+

1, OH, SO42

1, CIO, CIO, Br, CN

I, CIO, Br, CN

Cs', NH4', TI'

Ion-Selective Electrode Technology

Conventional ISE Technology Advanced ELIT ISE Technology

Conventional PVC Membrane Type ELIT Crystal Membrane Type ELIT All Solid State PVC Electrode

Molecular-Selective Electrodes:

Gas-Sensing Probes: Examples, hydrophobic membranes for CO₂ and NH₃

Enzyme Substrate Electrodes: Example, urease membrane for blood urea

The CO₂ gas-sensing electrode

- When CO₂ diffuses throug the semi-permeable membrane, the pH is lowered in the electrolyte compartment.
- This compartment is in contact with the glass pH electrode.
- Other acidic or basic gase (NH₃, SO₂, H₂S, NO_x) can be detected in a similar manner.

Gas sensing electrodes

Examples

CO2 = H2CO3 = H. + HCO3.

pH electrode is used for indicating.

2HCN = 2HCN = 2CN + Ag' = Ag(CN)2

Silver electrode is used for indicating.

TABLE 23-5 Commercial Gas-Sensing Probes

Gas	Equilibrium in Internal Solution	Sensing Electrode
NH ₃	$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$	Glass, pH
CO ₂	$CO_2 + H_2O \rightleftharpoons HCO_3 + H^+$	Glass, pH
HCN	$HCN \rightleftharpoons H^+ + CN^-$	Ag ₂ S, pCN
HF	$HF \rightleftharpoons H^+ + F^-$	LaF ₃ , pF
H_2S	$H_2S \rightleftharpoons 2H^+ + S^{2-}$	Ag ₂ S, pS
SO ₂	$SO_2 + H_2O \rightleftharpoons HSO_3^- + H^+$	Glass, pH
NO ₂	$2NO_2 + H_2O \rightleftharpoons NO_2^- + NO_3^- + 2H^+$	Immobilized ion exchange, pNO ₃

Enzyme electrodes

In this example, a normal pH electrode is coated with a urease impregnated gel.

Urea will permeate the gel where the enzyme will attack it, resulting in the formation of ammonium.

The resulting change in pH can be measured.

Enzyme electrodes

Advantages

The potential exists for developing electrodes for any permeable species where a pH dependent reaction results.

Disadvantages

PUACP

Gels must be replaced regularly

Each measurement results in a cumulative response.

The response is time dependent.

$$CO(NH_2)_2 + 2H_2O \xrightarrow{Urease} 2NH_4^+ + HCO_3^-$$

Using Ion-Selective Electrodes

Advantages of ion-selective electrodes

- Linear response to log A over a wide range.
- Don't consume unknown.
- Don't contaminate unknown.
- Have short response time.
- Color and turbidity do not hinder the electrode.

Disadvantages

- •Respond to the activity (not concentration).
- Only responds to uncomplexed analyte ions.
- •Precision is rarely better than 1%.
- •Certain ions interfere with or poison particular electrodes which leads to sluggish, drifting response.
- •Some are fragile and have limited shelf life.

Example of Activity vs. Concentration Discrepancy:

Potential measuring device

- •The indicator electrode produces a voltage that is proportional to the concentration of the M± concentration, and the measurement is made by a pH meter
- •The indictor electrode is attached to control electronics which convert the voltage to a pH (in case of a pH electrode) reading and displays it on a meter

というこうによる しゅっ

Four general dasses

Direct application of Nernst equation

- simply calculate [] based on E_{cell}.
- not very good must have ideal behavior and know all properties of the electrode.
- seldom done.

Standard-Curve method

Measure a range of standards and produce a calibration curve.

Since the response is log based, you should use standards that vary by a factor of 10 (Example:

1,10,100, 1000 ppm)

Standard addition

Significant problems can occur with using an ISE at low concentrations.

PUACP

ويوا ن الله المالية

Long time to reach equilibrium Large relative error.

Standard addition offers a way around these problems.

Standard addition

With this approach, an increasing amount of standard is added to your unknown.

PUACP

ويوا رب زدند، علا

A standard addition plot is then produced.

The |X intercept| represents your unknown concentration.

Potentiometric Titration

First derivative plot of a potentiometric titration curve

Second derivative plot of potentiometric titration curve

Practical Applications of Potentiometry with Ion-Selective Electrodes

- ISE are unique in determining:
- 1. Free ions (good for toxicity)
- 2. Determination of anions.
- 3. Monitoring toxic gases e.g., SO₂, H₂S,
 NH₃, CN⁻.
- 4. Accessible to automated continues.

Scope of Applications

- 1. Water analysis:
 - Surface, Sea, ground, potable, and waste water.
- 2. Atomospheric analysis:
 - Gases are absorbed in solutions aerosol is deposited on filters.
- 3. Sedimented dust and soil are tedious to prepare.
- 4. Analysis of foodstuffs.
- 5. Clinical analysis.

Requirements for Measurements with ISE's

- Constant temperature.
- Constant and relatively high ionic strength.
- A pH value lying within the optional of the electrode and the analyte.
- A suitable composition of the test solution considering the selectivity, precision, accuracy and sensitivity.

Determination of N-Compounds

- NH₃ gas probe has been used for determination of ammoniacal nitrogen in various types of water
- NH₄/NH₃
 Ammonia gas sensor
 5X10⁻⁶ → 2 M NH₃
- NOx 1 μ gm-3 \rightarrow 100 μ gm-3 NO₂ gas probe.
- NOx content in combustion products of oil and gases
 NO₃ ISE
- NO_3^- in water $NO_3^- ISE$
- *Total nitrogen → NH₃ → How?

Determination of Sulfur and others

- S^{2-} & H_2S S^{2-} - $ISE(Ag_2S - ISE)$ can be used
- SO₂ & SO₃
 SO₂ gas sensor may be used
- SO₃²⁻ added to the foodstuff as conserving agent.
 SO₂ probe may be used

- SO₄²⁻
 Ba electrode; Pb electrode
- Total sulfur
 SO₂ probe or others
- Residual chlorine in waters.
 Cl₂, HOCl⁻, OCl⁻
 (ability to oxidize l₋ is measured using\lambda I-ISE)
- Determination of HF & F⁻ using F⁻ ISE

Determination of Heavy Metals

- Cu²⁺: Good for trace analysis
- Pb²₊, Cd²⁺ : Poor reproducibility, good for potentiometric titrations
- Ag+: Not good for traces, since they are reduced and metal
- They cannot compete with voltammetry or spectroscopy
- They are used for studying the distribution of metals among
- various chemical forms in solution (Fe²⁺, Fe³⁺)

Applications

Pollution Monitoring: CN, F, S, Cl, NO₃ etc., in effluents, and natural waters.

Agriculture: NO₃, CI, NH₄, K, Ca, I, CN in soils, plant material, fertilisers and feedstuffs.

Food Processing: NO₃, NO₂ in meat preservatives.

Salt content of meat, fish, dairy products, fruit juices, brewing solutions.

F in drinking water and other drinks.

Ca in dairy products ?

K in fruit juices

Corrosive effect of NO₃ in canned foods.

Detergent Manufacture: Ca, Ba, F for studying effects on water quality.

Paper Manufacture: S and CI in pulping ε

Explosives: F, Cl, NO₃ in explosive materials and combustion products.

Electroplating: F and CI in etching baths; S in anodising baths.

Biomedical Laboratories: Ca, K, Cl in body fluids (blood, plasma, serum, sweat).

F in skeletal and dental studies.

Education and Research: Wide range of applications.

Advantages of Ion-selective electrodes

- 1) When compared to many other analytical techniques, lon-Selective Electrodes are relatively inexpensive and simple to use and have an extremely wide range of applications and wide concentration range.
- 2) The most recent plastic-bodied all-solid-state or gel filled models are very robust and durable and ideal for use in either field or laboratory environments.
- 3) Under the most favorable conditions, when measuring ions in relatively dilute aqueous solutions and where interfering ions are not a problem, they can be used very rapidly and easily (e.g. simply dipping in lakes or rivers, dangling from a bridge or dragging behind a boat).
- 4) They are particularly useful in applications where only an order of magnitude concentration is required, or it is only necessary to know that a particular ion is below a certain concentration level.

- 5) They are invaluable for the continuous monitoring of changes in concentration: e.g. in potentiometric titrations or monitoring the uptake of nutrients, or the consumption of reagents.
- 6) They are particularly useful in biological and medical applications because they measure the activity of the ion directly, rather than the concentration.
- 7) In applications where interfering ions, pH levels, or high concentrations are a problem, then many manufacturers can supply a library of specialized experimental methods and special reagents to overcome many of these difficulties.
- 8) With careful use, frequent calibration, and an awareness of the limitations, they can achieve accuracy and precision levels of 2 or 3% for some elements and thus compare favorably with analytical techniques which require far more complex and expensive instrumentation.
- 9) ISEs are one of the few techniques which can measure both positive and negative ions.
- 10) ISEs can be used in aqueous solutions over a wide temperature range. Crystal membranes can operate in the range 0°C to 80°C and plastic membranes from 0°C to 50°C.

Ammonium NH₄⁺ Barium Ba⁺⁺ Bromide Br Cadmium Cd++

Calcium Ca++

Carbonate CO₃-

Chloride Cl⁻

Copper Cu++

Cyanide CN⁻

<u>Fluoride</u>

F-

lodide |-

SCN-

Lead Pb++ PUA

Mercury Hg⁺⁺ Nitrate NO₃ Nitrite NO₂-

Perchlorate CLO₄-

Potassium K+

Silver Ag⁺ Sodium Na⁺ Sulphide Sulfide S--

Thiocyanate

(Sulphate)

SO₄--

Using Ba electrode

ORDER NUMBER	directION ELECTRODE	CONCENTRATION RANGE (Mol/L)	LIMITS (ppm)	pH RANGE	TEMP RANGE (°C)	MAIN INTERFERENCES	ISAB
3051	Ammonium (NH ₄ +)	5 x 10 ⁻¹ - 5 x 10 ⁻⁵	9000 - 0.09	1 - 8.6	0 - 50	K+, Na+	CH ₃ COOH
3061	Barium (Ba ²⁺)	10 ⁻¹ - 10 ⁻⁵	1.4 - 13,700	3 - 10	0 - 50	Sr ²⁺ , K ⁺ , Na ⁺	CuSO ₄
3271	Bromide (Br-)	10 ⁰ - 5 x 10 ⁻⁵	0.4 - 80,000	1 - 12	0 - 50	I-, CN-, S ²⁻	5M KNO ₃
3241	Cadmium (Cd ²⁺)	10 ⁻¹ - 1 x 10 ⁻⁵	0.1 - 11,200	3 - 7	0 - 50	Hg ²⁺ , Ag ⁺ , Cu ²⁺ Pb ²⁺ , Fe ³⁺	5M KNO ₃
3041	Calcium (Ca ²⁺)	10 ⁻¹ - 5 x 10 ⁻⁷	4,010 - 0.02	3.5 - 11	0 - 50	Ba ²⁺ , Al ³⁺ , Sr ²⁺	KCI
3091	Carbonate (CO ₃ ²⁻)	10 ⁻³ - 10 ⁻⁷	0.008 - 80	6.6 - 9.6	0 - 50	SCN ⁻ , I ⁻ , NO ₃ ⁻ NO ₂ ⁻ , CH ₃ COO ⁻	NaHCO ₂
3261	Ch <mark>loride</mark> (Cl ⁻)	10 ⁰ - 3 x 10 ⁻⁶	35,500 - 1	1 - 12	0 - 50	I ⁻ , Br ⁻ , CN ⁻ , S ²⁻	5M KNO ₃
3227	Cupric (Cu ²⁺)	10 ⁰ - 1 x 10 ⁻⁷	0.008 - 84,000	2 - 7	0 - 50	Hg ²⁺ , Ag ⁺ , S ²⁻ Cl ⁻ , Br ⁻	5M KNO ₃
3291	Cyanide (Cn ⁻)	10 ⁻² - 1 x 10 ⁻⁵	0.03 - 260	11 - 13	0 - 50	I ⁻ , S ²⁻	10M NaOH
3221	Fluoride (F)	10 ⁻¹ - 1 x 10 ⁻⁸	1,900 - 0.02	4 - 8	0 - 50	OH-	TISAB
3281	lodide (I ⁻)	10 ⁰ - 5 x 10 ⁻⁷	0.06 - 127,000	2 - 12	0 - 50	CN-, S ²⁻	5M KNO ₃
3231	Lead (Pb ²⁺)	10 ⁻¹ - 1 x 10 ⁻⁵	0.2 - 20,800	3 - 7	0 - 50	S ²⁻ , Hg ²⁺ , Ag ⁺ Cu ²⁺ , Fe ³⁺ , Cd ²⁺	5M NaCIO ₄
3261	Mercury (Hg ²⁺)	10 ⁰ - 1 x 10 ⁻⁶	0.2 - 201,000	0 - 2	0 - 50	Ag+, S ²⁻	5M NaCIO ₄
3021	Nitrate (NO ₃ -)	10 ⁰ - 7 x 10 ⁻⁶	62,000 - 0.4	2 - 11	0 - 50	CI-, NO ²⁻	4M (NH ₄) ₂ SO ₄
3061	Perchlorate (CIO ₄ -)	10 ⁰ - 2 x 10 ⁻¹	0.2 - 99,500	0 - 11	0 - 50	I-, SCN-, NO ₃ -	CH ₃ COONa
3401	рН	-	-	2 - 12	5 - 45	C ₂ H ₃ O ₄ , CIO ₄ -	-
3031	Potassium (K+)	10 ⁰ - 10 ⁻⁵	0.04 - 39,000	1 - 9	0 - 50	Cs+, NH ₄ +	4M KCI
3211	Silver (Ag+)	10 ⁰ - 1 x 10 ⁻⁷	0.01 - 107,900	1 - 9	0 - 50	S ²⁻ , Hg ²⁺	5M KNO ₃
3315	Sodium (Na+)	Sat - 10 ⁻⁶	1 ppb	9 - 12	0 - 50	Ag+, NH ₄ +, Li+, K+	SISAB
3226	Sulphide (S ²⁻)	10 ⁰ - 1 x 10 ⁻⁷	0.003 - 32,000	13 - 14	0 - 50	Ag+, Hg ²⁺	10M NaOH
3229	Thiocyanate (SCN ⁻)	10 ⁻¹ - 2 x 10 ⁻⁶	1 - 5,800	2 - 12	0 - 50	I- ,CI-, S ²⁻	5M KNO ₃
3100	Water Hardness	2 x 10 ⁻¹ - 5 x 10 ⁻⁵	-	4.5 - 10	0 - 50	Ba ²⁺ , Sr ²⁺ , Cd ²⁺ Cu ²⁺ , Na ⁺ , K ⁺ , NH ₄ ⁺	LiAC

- Ammonia (NH₃) Copper (Cu⁺²)
- Ammonium (NH4+) Cyanide (CN-)
- Bromide (Br-) Flouride (F-)
- <u>Cadmium</u> (Cd+2) <u>Fluoroborate</u> (BF4-) <u>Calcium</u> (Ca⁺²) <u>lodide</u> (I⁻)
- Carbon Dioxide (CO₂) Lead (Pb⁺²
- Chloride (Cl⁻) Nitrate (NO₃⁻)
- Water Hardness (Ca⁺²/Mg⁺²)

Nitrogen Oxide (NO_x)

Perchlorate (ClO₄-)

Potassium (K+)

Silver/Sulfide (Ag+/S²⁻)

Sodium (Na+)

)Surfactant (X+, X-)