Modeling approach(es) for multivariate binary response

Steve and Jonathan

2019-09-27

► Longitudinal (2003 - 2015) NUHDSS covering Korogocho and Viwandani

- ► Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors

- Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - ► Slum area

- Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - Slum area
 - Interview year

- ► Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - Slum area
 - Interview year
 - Age

- Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - Slum area
 - Interview year
 - Age
 - ▶ Gender

- ► Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - Slum area
 - Interview year
 - Age
 - ▶ Gender
 - Ethnicity

- Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - Slum area
 - Interview year
 - Age
 - Gender
 - Ethnicity
 - Household size

- Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - Slum area
 - Interview year
 - Age
 - Gender
 - Ethnicity
 - Household size
 - ► Wealth index

- Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - Slum area
 - ► Interview year
 - Age
 - Gender
 - Ethnicity
 - Household size
 - ► Wealth index
 - ► Household expenditure

- Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - Slum area
 - Interview year
 - Age
 - Gender
 - Ethnicity
 - Household size
 - Wealth index
 - Household expenditure
- Response(s): Three WaSH variables were created as per WHO definition

- Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - Slum area
 - Interview year
 - Age
 - Gender
 - Ethnicity
 - Household size
 - Wealth index
 - Household expenditure
- Response(s): Three WaSH variables were created as per WHO definition
 - Drinking water source

- Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - Slum area
 - Interview year
 - Age
 - Gender
 - Ethnicity
 - Household size
 - Wealth index
 - Household expenditure
- Response(s): Three WaSH variables were created as per WHO definition
 - Drinking water source
 - Toilet facility type

- Longitudinal (2003 2015) NUHDSS covering Korogocho and Viwandani
- Predictors
 - Slum area
 - Interview year
 - Age
 - Gender
 - Ethnicity
 - Household size
 - Wealth index
 - Household expenditure
- Response(s): Three WaSH variables were created as per WHO definition
 - Drinking water source
 - Toilet facility type
 - Garbage disposal method

Problems

- ► How do we account for the repeated measurements within the households across the years?
 - Model the WaSH variables separately
 - Pick one of the WaSH indicator and treat the remaining two as fixed covariates
- ► The two approaches are not accounting for the unmeasured variations and correlation among the WaSH variables

Problems

- ► How do we account for the repeated measurements within the households across the years?
 - ► Model the WaSH variables separately
 - Pick one of the WaSH indicator and treat the remaining two as fixed covariates
- ► The two approaches are not accounting for the unmeasured variations and correlation among the WaSH variables
- We want explore modeling approaches, but we need to understand what we think is working.

Problems

- ► How do we account for the repeated measurements within the households across the years?
 - Model the WaSH variables separately
 - Pick one of the WaSH indicator and treat the remaining two as fixed covariates
- ► The two approaches are not accounting for the unmeasured variations and correlation among the WaSH variables
- We want explore modeling approaches, but we need to understand what we think is working.
 - Simulation-based validation

Objective

► The aim is to investigate the contribution of demographic, social and economic factors to improved water, sanitation and hygiene (WaSH) among the urban poor.

Data exploration

- ▶ WaSH variables (services) are binary (0 = unimproved and 1
 - = improved)
 - Each household was surveyed once per year
 - For some HH, the services have improved or unimproved for different years
- Aggregated by year, all HH have varying wealth_index

Simulations

Assumptions

- ► Each household has its own year effect on the intercepts (random-intercept)
 - ► These are correlated
- ► There is a single measured covariate (corresponding to wealth)

$$y_{hts} = \beta_{0ts} + \beta_{xs} x_{ht} + \epsilon_{hs}$$

 \triangleright y_{hts} is the simulated value of household h in year t of service s

$$y_{hts} = \beta_{0ts} + \beta_{xs} x_{ht} + \epsilon_{hs}$$

- \triangleright y_{hts} is the simulated value of household h in year t of service s
 - ▶ *h* goes from 1 to the number of households

$$y_{hts} = \beta_{0ts} + \beta_{xs} x_{ht} + \epsilon_{hs}$$

- \triangleright y_{hts} is the simulated value of household h in year t of service s
 - ▶ *h* goes from 1 to the number of households
 - ▶ $t = 1, 2, \dots, 30$ years

$$y_{hts} = \beta_{0ts} + \beta_{xs} x_{ht} + \epsilon_{hs}$$

- \triangleright y_{hts} is the simulated value of household h in year t of service s
 - ▶ *h* goes from 1 to the number of households
 - ▶ $t = 1, 2, \dots, 30$ years
 - ightharpoonup s = 1, 2, 3 indexes the services

$$y_{hts} = \beta_{0ts} + \beta_{xs} x_{ht} + \epsilon_{hs}$$

- \triangleright y_{hts} is the simulated value of household h in year t of service s
 - ▶ *h* goes from 1 to the number of households
 - ▶ $t = 1, 2, \dots, 30$ years
 - ightharpoonup s = 1, 2, 3 indexes the services
- \blacktriangleright β_{0ts} is the effect of year and service type on the response

$$y_{hts} = \beta_{0ts} + \beta_{xs} x_{ht} + \epsilon_{hs}$$

- \triangleright y_{hts} is the simulated value of household h in year t of service s
 - ▶ *h* goes from 1 to the number of households
 - ▶ $t = 1, 2, \dots, 30$ years
 - ightharpoonup s = 1, 2, 3 indexes the services
- \blacktriangleright β_{0ts} is the effect of year and service type on the response
 - these are correlated

$$y_{hts} = \beta_{0ts} + \beta_{xs} x_{ht} + \epsilon_{hs}$$

- \triangleright y_{hts} is the simulated value of household h in year t of service s
 - h goes from 1 to the number of households
 - ▶ $t = 1, 2, \dots, 30$ years
 - ightharpoonup s = 1, 2, 3 indexes the services
- \blacktriangleright β_{0ts} is the effect of year and service type on the response
 - these are correlated

$$y_{hts} = \beta_{0ts} + \beta_{xs} x_{ht} + \epsilon_{hs}$$

- \triangleright y_{hts} is the simulated value of household h in year t of service s
 - h goes from 1 to the number of households
 - ▶ $t = 1, 2, \dots, 30 \text{ years}$
 - ightharpoonup s = 1, 2, 3 indexes the services
- \triangleright β_{0ts} is the effect of year and service type on the response
 - these are correlated
 - $ightharpoonup eta_{0ts} \sim MVN(\mu_0, \Sigma_0)$
- \triangleright β_{xs} is the (fixed) effect of x on service s

$$y_{hts} = \beta_{0ts} + \beta_{xs} x_{ht} + \epsilon_{hs}$$

- \triangleright y_{hts} is the simulated value of household h in year t of service s
 - h goes from 1 to the number of households
 - ▶ $t = 1, 2, \dots, 30$ years
 - ightharpoonup s = 1, 2, 3 indexes the services
- \triangleright β_{0ts} is the effect of year and service type on the response
 - these are correlated
 - $ightharpoonup eta_{0ts} \sim MVN(\mu_0, \Sigma_0)$
- \triangleright β_{xs} is the (fixed) effect of x on service s
 - $\beta_{ss} \sim (\beta_{1s}); s = 1, \cdots, 3$

$$y_{hts} = \beta_{0ts} + \beta_{xs} x_{ht} + \epsilon_{hs}$$

- \triangleright y_{hts} is the simulated value of household h in year t of service s
 - h goes from 1 to the number of households
 - ▶ $t = 1, 2, \dots, 30$ years
 - ightharpoonup s = 1, 2, 3 indexes the services
- \triangleright β_{0ts} is the effect of year and service type on the response
 - these are correlated
 - $ightharpoonup eta_{0ts} \sim MVN(\mu_0, \Sigma_0)$
- \triangleright β_{xs} is the (fixed) effect of x on service s
 - $\beta_{ss} \sim (\beta_{1s}); s = 1, \cdots, 3$
- $ightharpoonup \epsilon_{hs}$ is the household-level random effect

$$y_{hts} = \beta_{0ts} + \beta_{xs} x_{ht} + \epsilon_{hs}$$

- y_{hts} is the simulated value of household h in year t of service s
 - h goes from 1 to the number of households
 - ▶ $t = 1, 2, \dots, 30$ years
 - ightharpoonup s = 1, 2, 3 indexes the services
- \triangleright β_{0ts} is the effect of year and service type on the response
 - these are correlated
 - $ightharpoonup eta_{0ts} \sim MVN(\mu_0, \Sigma_0)$
- \triangleright β_{xs} is the (fixed) effect of x on service s
- $ightharpoonup \epsilon_{hs}$ is the household-level random effect
 - $ightharpoonup \epsilon_{hs} \sim MVN(\mathbf{0}, \Sigma)$

$$y_{hts} = \beta_{0ts} + \beta_{xs} x_{ht} + \epsilon_{hs}$$

- y_{hts} is the simulated value of household h in year t of service s
 - h goes from 1 to the number of households
 - ► $t = 1, 2, \dots, 30$ years
 - ightharpoonup s = 1, 2, 3 indexes the services
- \triangleright β_{0ts} is the effect of year and service type on the response
 - these are correlated
 - $ightharpoonup eta_{0ts} \sim MVN(\mu_0, \Sigma_0)$
- \triangleright β_{xs} is the (fixed) effect of x on service s
 - $\beta_{\mathsf{xs}} \sim (\beta_{\mathsf{1s}}); \mathsf{s} = 1, \cdots, 3$
- $ightharpoonup \epsilon_{hs}$ is the household-level random effect
 - $ightharpoonup \epsilon_{hs} \sim MVN(\mathbf{0}, \Sigma)$
- ▶ Observed values ($\{0, 1\}$) are drawn from binomial distribution with probability plogis(y_{hts})

Results

► The results are here