MA1100(T) - Basic Discrete Mathematics (T) Suggested Solutions

Written by : Maximus Pung Jun Audited by : Teoh Tze Tzun

(Semester 1: AY2022/23)

Question 1

- (a) Proof. Define $g: A \to \operatorname{Maps}(B, C)$ by $g(a) = \{(b, c) \in B \times C : b \in B \text{ and } f(a, b) = c\}$. First, we want to show that g is a function. See that for all $a \in A$ and $b \in B$, f(a, b) is well defined, as f is a function. So, it also follows that g is a function. Now, we want to show that g is unique. So, suppose g_1 and g_2 are functions that map A to $\operatorname{Maps}(B, C)$, such that $g_1(a)(b) = f(a, b)$ and $g_2(a)(b) = f(a, b)$, for all $b \in B$. So, one has $g_1(a) = g_2(a)$. Since both g_1 and g_2 have the same domain, codomain and f(x) = g(x) for all $x \in A$, we conclude that $g_1 = g_2$ as desired.
- (b) Proof. Let f be one-to-one. Now suppose $g(a_1) = g(a_2)$. Fix some $b \in B$. See that $g(a_1)(b) = g(a_2)(b)$. So, $f(a_1, b) = f(a_2, b)$. Since f is one-to-one, one has $a_1 = a_2$ as desired.

Question 2

Proof. (\rightarrow) Suppose $\gcd(a,b)$ divides c. By Bezout's Identity, one can fix integers $n,m\in\mathbb{Z}$ such that $\gcd(a,b)=an+mb$. Now fix some integer $k\in\mathbb{Z}$ such that c=k(an+mb). It follows that -mb=akn-c. Now let x=ak. So, -mb=ax-c. Since $-m\in\mathbb{Z}$, it follows that b divides ax-c for some integer x.

(\leftarrow) Suppose there exists some $x \in \mathbb{Z}$ such that b divides ax - c. Fix some $k \in \mathbb{Z}$ such that kb = ax - c. See that c = ax - kb. Now observe that $\gcd(a, b)$ divides both a and b. Since x and -k are integers, one has $\gcd(a, b)$ divides ax - kb = c as desired.

Question 3

- (a) *Proof.* WLOG, suppose $x \leq y$. Then $n \cdot x \leq n \cdot y$. Observe that $\min\{n \cdot x, n \cdot y\} = n \cdot x$, and $n \cdot \min\{x, y\} = n \cdot x$. So, $\min\{n \cdot x, n \cdot y\} = n \cdot \min\{x, y\}$ as desired.
- (b) Proof. Let $a = \prod \{p^{e_a(p)} : e_a(p) \neq 0\}$ and $b = \prod \{p^{e_b(p)} : e_b(p) \neq 0\}$. So, $a^n = \prod \{p^{n \cdot e_a(p)} : e_a(p) \neq 0\}$ and $b^n = \prod \{p^{n \cdot e_b(p)} : e_b(p) \neq 0\}$.

$$\gcd(a^{n}, b^{n}) = \prod \{p^{\min\{n \cdot e_{a}(p), n \cdot e_{b}(p)\}}\}$$

$$= \prod \{p^{n \cdot \min\{e_{a}(p), e_{b}(p)\}}\}$$

$$= (\prod \{p^{\min\{e_{a}(p), e_{b}(p)\}}\})^{n}$$

$$= (\gcd(a, b))^{n}$$

Question 4

Define $f_b: \mathbb{Z} \to \mathbb{Z}$ by $f_b(a) = a + b$.

- To show that $\pi \circ f_b = \pi$, see that $a \sim f_b(a)$ for all $a \in \mathbb{Z}$. So, $\pi(a) = \pi \circ f_b(a)$. Since the domain of π and $\pi \circ f_b$ are the same, we conclude that $\pi \circ f_b = \pi$ as desired.
- It is clear that $f_b \neq \mathrm{id}_{\mathbb{Z}}$.
- To show that f_b is one-to-one, let $f_b(a_1) = f_b(a_2)$. So, $a_1 + b = a_2 + b$. Thus, one has $a_1 = a_2$ as desired

Question 5

- (a) Proof. To show that G is well defined, one can fix some $f \in \bigcup_{n \in \mathbb{N}} \operatorname{Maps}([n], \mathbb{N})$. So, there exists some $n \in \mathbb{N}$ such that $f \in \operatorname{Maps}([n], \mathbb{N})$. So, $f : [n] \to \mathbb{N}$. Thus, $\operatorname{range}(f) \subseteq \mathbb{N}$ and is finite. So, G is well defined. To show that G is onto, fix some $s \in \mathcal{P}_{\operatorname{fin}}(\mathbb{N})$. Since s is finite, we can fix some $m \in \mathbb{Z}$ such that $s \approx [m]$. Fix bijection $g : [m] \to s$. We know that $s \subseteq \mathbb{N}$ and that s is finite. Thus, $g \in \operatorname{Maps}([m], \mathbb{N})$. Since $m \in \mathbb{N}$, one has $g \in \bigcup_{n \in \mathbb{N}} \operatorname{Maps}([n], \mathbb{N})$ as desired.
- (b) Proof. Since $\bigcup_{n\in\mathbb{N}} \operatorname{Maps}([n],\mathbb{N})$ is countably infinite, one can fix a bijection $B:\mathbb{N}\to\bigcup_{n\in\mathbb{N}}\operatorname{Maps}([n],\mathbb{N})$. Observe that $G\circ B:\mathbb{N}\to\mathcal{P}_{\operatorname{fin}}(\mathbb{N})$ is onto. So, $\mathcal{P}_{\operatorname{fin}}(\mathbb{N})$ is countably infinite.
- (c) Proof. Since A is countably infinite, one can fix a bijection $h: \mathbb{N} \to A$. Now, define $j: \mathcal{P}_{\text{fin}}(\mathbb{N}) \to \mathcal{P}_{\text{fin}}(A)$ by $j(X) = \{y \in A : h(n) = y, n \in X\}$. To show that j is onto, consider some $Y \in \mathcal{P}_{\text{fin}}(A)$. Now let $X = \{n \in \mathbb{N} : h^{-1}(y) = n, y \in Y\}$. Clearly $X \in \mathcal{P}_{\text{fin}}(\mathbb{N})$. So, j is onto. Since $\mathcal{P}_{\text{fin}}(\mathbb{N})$ is countably infinite, fix bijection $k: \mathbb{N} \to \mathcal{P}_{\text{fin}}(\mathbb{N})$. Observe that $j \circ k: \mathbb{N} \to \mathcal{P}_{\text{fin}}(A)$ is onto. So, $\mathcal{P}_{\text{fin}}(A)$ is countably infinite as desired.

Question 6

- (a) Proof. The Axiom of Choice states that there is a function $F: P \to \bigcup P$ such that for every $S \in P$, $F(S) \in S$. We know this as $\phi \notin P$. We will show that F is an injection. Let $F(S_1) = F(S_2)$. So, $F(S_1) \in S_1$ and $F(S_2) \in S_2$. So, we have $F(S_1) \in S_1$ and $F(S_1) \in S_2$. Since P is a partition, it must be the case that $S_1 = S_2$. So, F is an injection from P to $\bigcup P$. Thus, $P \preceq \bigcup P$ as desired. \square
- (b) Proof. Let $X = \{\{1\}, \{2\}, \{1,2\}\}$. Observe that $\bigcup X = \{1,2\}$. Now, $|X| = 3 > 2 = |\bigcup X|$. By the pigeonhole principle, $X \not\preceq \bigcup X$.

Question 7

Proof. Fix some $x \in \mathbb{R}$. Now define $A = \{y \in \mathbb{Q} : y \leq x\}$. We claim that $\sup(A) = x$. By the definition of A, see that $y \leq x$ for all $y \in A$. So, x is clearly an upper bound of A. We will now show that x is the **least** upper bound of A, i.e. the supremum of A. For the sake of a contradiction, fix $s \in \mathbb{R}$ such that $\sup(A) = s < x$. Since $s, x \in \mathbb{R}$, there exists a rational r such that s < r < x. By the definition of A, one has $r \in A$. However, we know that s < r. So s cannot possibly be an upper bound of A. Thus, $\sup(A) = x$ as desired.