Tackling the Problem of Cover Song Similarity Metric Design

Overview

The goal is to design a similarity metric that quantifies the relationship between original songs and their cover versions. The proposed metric should minimize distances between cover songs (same "work") and maximize distances otherwise. Since the **Da-TACOS dataset** provides pre-extracted features, our proposed approach leverages these features for accurate and efficient similarity computation.

The **8 transformation metrics** (timbre, tempo, timing, structure, key, harmonization, lyrics, and noise) outlined in the research paper are adapted based on the features available. Additionally, recommendations for future expansions (e.g., raw audio and lyrics) are provided.

Step-by-Step Methodology

1. Understanding the Available Features

The dataset contains two main components:

1. Metadata:

- o Performance title, performance artist, work title, work artist, release year, etc.
- Useful for capturing high-level structural or contextual similarity.

2. Pre-Extracted Features:

- Chroma Features (e.g., chroma_cens, HPCP): Capture harmonic and melodic content (key and harmonization).
- MFCC (Mel-Frequency Cepstral Coefficients): Represent timbre-related characteristics.
- Key Extractor: Provides key, scale, and key strength.
- Madmom Features: Include tempo, onset, and novelty curves for rhythmic analysis.
- o **Tags**: Provide genre, style, or instrumentation information.

2. Mapping Features to the 8 Metrics

We propose the mapping of the 8 transformation metrics to the features provided:

Metric	Relevant Features	Explanation
Timbre	MFCC	Models the spectral envelope, capturing timbral changes due to instrumentation or production.
Tempo	Madmom tempo	Captures variations in speed or tempo between original and cover songs.
Timing	Madmom onsets and novelty curves	Analyzes rhythmic patterns and timing differences.
Structure	Metadata (tags, artists, titles, release year)	Metadata provides context on stylistic and structural similarities.
Key	Key extractor (key, scale, strength)	Measures pitch and tonality similarity.
Harmonization	Chroma Features (HPCP, chroma_cens)	Captures harmonic relationships and melodic similarities.
Lyrics	Not available	Future expansion: add lyrics data to enhance similarity metrics.
Noise	Tags (genre, instrumentation)	Tags provide insights into noise-related variations due to production techniques or environments.

3. Feature Engineering

Implementing feature engineering will optimize the provided features to align with the similarity task. We propose the following processes:

1. Dimensionality Reduction:

• The use of **Principal Component Analysis (PCA)** on high-dimensional features (e.g., chroma_cens, HPCP, MFCC) to retain only the most relevant components.

2. Standardization:

• The standardization of numerical features (e.g., MFCC, tempos), to have zero mean and unit variance for consistent scaling.

3. **Key Transposition Invariance**:

• The normalization of chroma features (HPCP, chroma_cens) to account for key shifts (e.g., transposing all tracks to the same reference key).

4. Temporal Aggregation:

• The aggregation of temporal features (e.g., MFCC, onset curves) into summary statistics (mean, variance) to reduce sequence complexity.

5. Tag Encoding:

 The tag conversion into a numerical format using one-hot encoding for similarity comparisons.

4. Developing the Similarity Metric

The proposed similarity metric combines multiple feature-based comparisons into a single distance measure.

1. Pairwise Feature Similarity:

- o Timbre (MFCC):
 - Cosine similarity or dynamic time warping (DTW) on MFCC sequences.
- Harmonic Content (Chroma, Key):
 - Cosine similarity on chroma features and penalize large differences in key/scale values.
- Tempo and Timing (Madmom):
 - DTW application on tempo curves and onset features.
- Metadata (Tags):
 - Jaccard similarity use on genre/style tags.
- Overall Similarity:

$$S = w1 \cdot S_{timbre} + w2 \cdot S_{harmonization} + w3 \cdot S_{tempo} + \cdots$$

• Weights (w1,w2,...w 1, w 2, \ldots) are tuned based on validation data.

2. Validation:

- We propose using the dataset's WID and PID labels for validation:
 - Cover songs (same WID) should have high similarity.
 - Non-related songs (different WIDs) should have low similarity.

3. Clustering/Ranking:

- o Implementing clustering (e.g., K-means) to group songs by similarity.
- o Using ranking metrics like Mean Reciprocal Rank (MRR) to evaluate performance.

5. Evaluation

We propose the evaluation the effectiveness of the similarity metric using:

- Precision and Recall: For classifying covers vs. non-covers.
- MRR: For ranking covers higher than unrelated songs.
- Qualitative Analysis: Review top matches for interpretability.

Recommendations for Future Expansions

1. Incorporation of Raw Audio Data

While the proposed approach is based on pre-extracted features, adding raw audio would enable:

- **End-to-End Learning**: Using deep learning models (e.g., CNNs) to learn representations directly from audio.
- **Fine-Grained Features**: Extracting more nuanced audio features beyond what's preextracted.

2. Adding Lyrics Data

Including lyrics for analyzing semantic and stylistic similarity. Tools like **NLTK** or **transformers** (e.g., BERT) can be used for text analysis.

3. Cross-Dataset Validation

Validation of the metric on other datasets to ensure generalizability.

4. Scalability

Optimize feature extraction and similarity computation by employing approximate nearest neighbor search for faster similarity lookups.