Artificial Neural Network

Abdessalam Bouchekif

abdessalam.bouchekif@epita.fr

Artificial Neural Network

 An artificial neural network (or neural network for short) is a predictive model motivated by the way the brain operates.

synapses

Perceptron

Perceptron is a linear model used for binary classification

Perceptron Training

- 1. Initialize weights with random values.
- 2. Do

$$w_i = w_i + \eta (y_t - \widehat{y}_i) x_i$$

3. Repeat until no errors are made (or other convergence heuristics)

 w_i is the connection weight between the i^{th} input neuron and the output neuron.

 x_i is the i^{th} input value of the current training instance.

 \hat{y} is the output of the j^{th} output neuron for the current training instance

y is the target output of the j^{th} output neuron for the current training instance

 η is the learning rate,

Example of processing one sample

$$\eta = 0.1
y_i - \hat{y}_i = 1
\eta(y_i - \hat{y}_i)x_{i1} = 0.1
\eta(y_i - \hat{y}_i)x_{i2} = 0.0
\eta(y_i - \hat{y}_i)x_{i3} = 0.1$$

If
$$y_i = \widehat{y_i}$$

 $y_i - \widehat{y}_i = 1$

 $y_i - \widehat{y}_i = 1$

 $y_i - \widehat{y}_i = -1$

then

 x_i small positive

 x_i large negative

 x_i large negative

no update

 w_j increased by small amount

 w_i decreased by large amount

 w_i increased by large amount

XOR function

			2	\mathcal{C}_{1}				
x_1	x_2	$x_1 XOR x_2$		•	X	OR		
0	0	0				($\overline{}$	
0	1	1				Ì		
1	0	1			?			
1	1	0		_		 ()	-> x

Single neuron is only able to draw one single line through input space

Multi Layer Perceptron (MLP)

- □ David Rumelhart, Geoffrey Hinton and Ronald Williams published a paper "*Learning representations by back-propagating errors*" (1986), which introduced:
 - Hidden Layers
 - Backpropagation

☐ MLPs are composed of the **input layer**, a number of **hidden layers**, and an **output layer**.

MLP for XOR function

- ☐ Determine the transformation that will be applied to the **weighted** sum of a **neuron** inputs.
- \Box The **activation** of a **perceptron** is the threshold (step) function producing (0,1) or (-1,+1).
- ☐ In the case of modern networks, the **activation** is generally a *continuous* function
- ☐ Activation function will decide whether neuron should *activated or not*

Linear (identity) function

Hyperbolic sine
$$\sinh x = \frac{e^x - e^{-x}}{2}$$

Hyperbolic cosine
$$\cosh x = \frac{e^x + e^{-x}}{2}$$

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$$

Softmax function

- o Outputs interpretable as posterior probabilities for a categorical target variable
- Network with *K* outputs

$$z_i = \sum (weight_{ji} * input) + bias_i$$

$$f(x) = \frac{e^{x_i}}{\sum_{k=1}^K e^{x_o}}$$

The Backprogation Algorithm

Random initialization of weights

for each example in training do

forward stage error computation backward stage

epoch

Input \rightarrow Forward \rightarrow Loss function \rightarrow backpropagation of errors

The Backprogation Algorithm

- o Propagating the inputs through each layer until the output layer
- o Generate predictions during training that will need to calculate the loss

• Compute the gradient of this error as a function of the neuron's weights, and adjust its weights in the direction that most decreases the error

For every weight w_{ij}^l and every bias b_i^l

$$w_{ij}^{l} = w_{ij}^{l} - \alpha \frac{\partial J(w, b)}{\partial w_{ij}^{l}}$$
$$b_{i}^{l} = b_{i}^{l} - \alpha \frac{\partial J(w, b)}{\partial b_{i}^{l}}$$

o Propagate these errors backward to infer errors for the hidden layer's

A Step by Step Backpropagation algorithm

Forward pass: hidden layer no 1

$$[\ h1_{in1},\ h1_{in2},\ h1_{in3}] = \ [i_1 \quad i_2 \quad \ i_3\] \times \begin{bmatrix} w_{i_1j_1} & w_{i_1j_2} & w_{i_1j_3} \\ w_{i_2j_1} & w_{i_2j_2} & w_{i_2j_3} \\ w_{i_3j_1} & w_{i_3j_2} & w_{i_3j_3} \end{bmatrix} + [b_{j_1} \ b_{j_2} \ b_{j_3}]$$

$$[h1_{out1}, h1_{out2}, h1_{out3}] = [\max(0, h1_{in1}) \ \max(0, h1_{in2}) \ \max(0, h1_{in3})$$

Forward pass: hidden layer no 2 and output layer

Hidden layer n°2

$$f(x) = \frac{1}{1 + e^{-x}}$$

$$\left[\begin{array}{cccc} h2_{in1}, h2_{in2}, h2_{in3} \end{array}\right] = \left[\begin{matrix} j_1 & j_2 & j_3 \end{array}\right] \times \left[\begin{matrix} w_{j_1k_1} & w_{j_1k_2} & w_{j_1k_3} \\ w_{j_2k_1} & w_{j_2k_2} & w_{j_2k_3} \\ w_{j_3k_1} & w_{j_3k_2} & w_{j_3k_3} \end{matrix}\right] + \left[\begin{matrix} b_{k_1} & b_{k_2} & b_{k_3} \end{matrix}\right]$$

$$[h2_{out1}, h2_{out2}, h2_{out3}] = [1/(1 + e^{-h2_{in1}}) \quad 1/(1 + e^{-h2_{in2}}) \quad 1/(1 + e^{-h2_{in1}})]$$

Output layer

Softmax

$$[O_{in1}O_{in2}O_{in3}] = [h2_{out1} \ h2_{out2} \ h2_{out3}] \times \begin{bmatrix} w_{k_1l_1} & w_{k_1l_2} & w_{k_1l_3} \\ w_{k_2l_1} & w_{k_2l_2} & w_{k_2l_3} \\ w_{k_3l_1} & w_{k_3l_2} & w_{k_3l_3} \end{bmatrix} + [b_{l_1} \ b_{l_2} \ b_{l_3}]$$

$$O_{out1} \ O_{out2} \ O_{out3} = [e^{O_{in1}}/(\sum_{a=1}^{3} e^{O_{ina}}) \quad e^{O_{in2}}/(\sum_{a=1}^{3} e^{O_{ina}}) \quad e^{O_{in3}}/(\sum_{a=1}^{3} e^{O_{ina}})]$$

Error computation

 $Output = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ $Output = \begin{bmatrix} out_1, out_2, out_3 \end{bmatrix}$

Cross-Entropy:

$$error = -\frac{1}{3} \left(\sum_{i=1}^{3} (y_i \times \log(O_{out_i})) + ((1 - y_i) \times \log((1 - O_{out_i}))) \right)$$

- ☐ Backpropagation require the use of the chain rule
 - Let *x* be a real number
 - Let f and g be functions mapping from a real number to a real number
 - If y = g(x) and z = f(g(x)) Then the chain rule states that $\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$
- ☐ Backpropagation is obtained recursively by applying the chain rule

$$\frac{\partial E_1}{w_{k_1l_1}} = \frac{\partial E_1}{\partial O_{out1}} \times \frac{\partial O_{out1}}{\partial O_{in1}} \times \frac{\partial O_{in1}}{\partial W_{k1l1}}$$

Applying the chain rule $\frac{\partial E_1}{w_{k_1 l_1}} = \frac{\partial E_1}{\partial O_{out1}} \times \frac{\partial O_{out1}}{\partial O_{in1}} \times \frac{\partial O_{in1}}{\partial W_{k1 l1}}$

Cross Entropy =
$$-(y_i log(O_{out_i}) + (1 - y_i)log(1 - O_{out_i})$$

$$\begin{bmatrix} \frac{\partial E_1}{\partial O_{out1}} \\ \frac{\partial E_2}{\partial O_{out2}} \\ \frac{\partial E_3}{\partial O_{out3}} \end{bmatrix} = \begin{bmatrix} -((y_1 * 1/O_{out1}) + (1 - y_1) * (1/(1 - O_{out1}))) \\ -((y_1 * 1/O_{out2}) + (1 - y_2) * (1/(1 - O_{out2}))) \\ -((y_1 * 1/O_{out3}) + (1 - y_2) * (1/(1 - O_{out3}))) \end{bmatrix}$$

$$\frac{\partial E_1}{w_{k_1 l_1}} = \frac{\partial E_1}{\partial O_{out1}} \times \underbrace{\left(\frac{\partial O_{out1}}{\partial O_{in1}}\right)}_{} \times \underbrace{\left(\frac{\partial O_{out1}}{\partial W_{k1 l_1}}\right)}_{} \times \underbrace{\left(\frac{\partial O_{out1}}{\partial W_{out1}}\right)}_{} \times \underbrace{\left(\frac{\partial$$

$$Softmax = \frac{e^{x_a}}{\sum_{a=1}^{n} e^{x_a}} \rightarrow \frac{\partial (softmax)}{\partial x_1} = \frac{(e^{x_1} \times (e^{x_2} + e^{x_3}))}{(e^{x_1} + e^{x_2} + e^{x_3})^2}$$

 $\begin{bmatrix} \frac{\partial O_{out1}}{\partial O_{in1}} \\ \frac{\partial O_{out2}}{\partial O_{in2}} \\ \frac{\partial O_{out3}}{\partial O_{out3}} \end{bmatrix} = \begin{bmatrix} e^{0in1}(e^{0in2} + e^{0in3})/(e^{0in1} + e^{0in2} + e^{0in3})^2 \\ e^{0in2}(e^{0in1} + e^{0in3})/(e^{0in1} + e^{0in2} + e^{0in3})^2 \\ e^{0in3}(e^{0in1} + e^{0in2})/(e^{0in1} + e^{0in2} + e^{0in3})^2 \end{bmatrix}$

$$\frac{\partial E_1}{w_{k_1 l_1}} = \frac{\partial E_1}{\partial O_{out1}} \times \frac{\partial O_{out1}}{\partial O_{in1}} \times \frac{\partial O_{in1}}{\partial W_{k1 l1}}$$

$$\frac{\partial O_{in1}}{\partial w_{k1l1}} = \frac{\partial ((h2_{out1} * W_{k1l1}) + (h2_{out2} * w_{k2l1}) + (h2_{out3} * w_{k3l1}) + b_{l1})}{\partial w_{k1l1}} = h2_{out1}$$

$$\begin{bmatrix} \frac{\partial O_{in1}}{\partial w_{k1l1}} \\ \frac{\partial O_{in1}}{\partial w_{k2l1}} \\ \frac{\partial O_{in1}}{\partial w_{in1}} \end{bmatrix} = \begin{bmatrix} h2_{out1} \\ h2_{out2} \\ h2_{out3} \end{bmatrix}$$

$$\begin{bmatrix} \frac{\partial O_{in1}}{\partial w_{k1l2}} \\ \frac{\partial O_{in1}}{\partial w_{k2l2}} \\ \frac{\partial O_{in1}}{\partial w_{k2l2}} \end{bmatrix} = \begin{bmatrix} h2_{out1} \\ h2_{out2} \\ h2_{out3} \end{bmatrix}$$

$$\begin{bmatrix} \frac{\partial O_{in1}}{\partial w_{k1l3}} \\ \frac{\partial O_{in1}}{\partial w_{k2l3}} \\ \frac{\partial O_{in1}}{\partial O_{in1}} \end{bmatrix} = \begin{bmatrix} h2_{out1} \\ h2_{out2} \\ h2_{out3} \end{bmatrix}$$

$$w'_{k_i l_j} = w_{k_i l_j} - \alpha * \frac{\partial E}{k_i l_j}$$

$$\delta w_{kl} ?$$

$$\frac{\partial E_j}{w_{k_i l_j}} = \frac{\partial E_j}{\partial O_{out_j}} \times \frac{\partial O_{out_j}}{\partial O_{in_j}} \times \frac{\partial O_{in_j}}{\partial W_{k_i l_j}}$$

$$\delta w_{kl} = \begin{bmatrix} \frac{\partial E_1}{\partial w_{k1l1}} & \frac{\partial E_2}{\partial w_{k1l2}} & \frac{\partial E_2}{\partial w_{k1l2}} \\ \frac{\partial E_1}{\partial w_{k2l1}} & \frac{\partial E_2}{\partial w_{k2l2}} & \frac{\partial E_3}{\partial w_{k2l2}} \\ \frac{\partial E_1}{\partial w_{k3l1}} & \frac{\partial E_2}{\partial w_{k3l2}} & \frac{\partial E_3}{\partial w_{k3l2}} \end{bmatrix} = \begin{bmatrix} \frac{\partial E_1}{\partial O_{out1}} * \frac{\partial O_{out1}}{\partial O_{in1}} * \frac{\partial O_{in1}}{\partial W_{k1l1}} & \frac{\partial E_2}{\partial O_{out2}} * \frac{\partial O_{out2}}{\partial O_{out2}} * \frac{\partial O_{in2}}{\partial W_{k1l2}} & \frac{\partial E_3}{\partial O_{out3}} * \frac{\partial O_{out3}}{\partial O_{out3}} * \frac{\partial O_{in3}}{\partial W_{k1l3}} \\ \frac{\partial E_1}{\partial O_{out1}} * \frac{\partial E_2}{\partial O_{in1}} * \frac{\partial O_{in1}}{\partial O_{in1}} * \frac{\partial E_2}{\partial O_{in1}} * \frac{\partial O_{out2}}{\partial O_{out2}} * \frac{\partial O_{out2}}{\partial O_{in2}} * \frac{\partial O_{in2}}{\partial O_{in2}} * \frac{\partial E_3}{\partial O_{out3}} * \frac{\partial O_{out3}}{\partial O_{out3}} * \frac{\partial O_{in3}}{\partial O_{in3}} * \frac{\partial O_{in3}}{\partial W_{k2l3}} \\ \frac{\partial E_1}{\partial O_{out1}} * \frac{\partial O_{out1}}{\partial O_{out1}} * \frac{\partial O_{in1}}{\partial O_{in1}} * \frac{\partial E_2}{\partial O_{out2}} * \frac{\partial O_{out2}}{\partial O_{out2}} * \frac{\partial O_{in2}}{\partial O_{in2}} * \frac{\partial E_1}{\partial O_{out3}} * \frac{\partial O_{out3}}{\partial O_{out3}} * \frac{\partial O_{in3}}{\partial O_{in3}} * \frac{\partial O_{in3}}{\partial W_{k2l3}} \\ \frac{\partial E_1}{\partial O_{out1}} * \frac{\partial O_{out1}}{\partial O_{out1}} * \frac{\partial O_{in1}}{\partial O_{in1}} * \frac{\partial E_2}{\partial O_{out2}} * \frac{\partial O_{out2}}{\partial O_{out2}} * \frac{\partial O_{in2}}{\partial O_{in2}} * \frac{\partial E_1}{\partial O_{out3}} * \frac{\partial O_{out3}}{\partial O_{out3}} * \frac{\partial O_{in3}}{\partial O_{in3}} * \frac{\partial O_{in3}}{\partial W_{k2l3}} \\ \frac{\partial E_1}{\partial O_{out1}} * \frac{\partial O_{out1}}{\partial O_{out1}} * \frac{\partial O_{out1}}{\partial O_{out1}} * \frac{\partial E_2}{\partial O_{out2}} * \frac{\partial O_{out2}}{\partial O_{out2}} * \frac{\partial O_{in2}}{\partial O_{in2}} * \frac{\partial O_{in2}}{\partial O_{out3}} * \frac{\partial O_{out3}}{\partial O_{out3}} * \frac{\partial O_{out3}}{\partial O_{out3}} * \frac{\partial O_{in3}}{\partial O_{out3}} * \frac{\partial O_{in3}}{\partial O_{out3}} * \frac{\partial O_{in3}}{\partial O_{out3}} * \frac{\partial O_{out3}}{\partial O_{out3}}$$

$$w'_{kl} = \begin{bmatrix} w_{k1l1-(\alpha*\delta w_{k1l1})} & w_{k1l2-(\alpha*\delta w_{k1l2})} & w_{k1l3-(\alpha*\delta w_{k1l3})} \\ w_{k2l1-(\alpha*\delta w_{k2l1})} & w_{k2l2-(\alpha*\delta w_{k2l2})} & w_{k2l3-(\alpha*\delta w_{k2l3})} \\ w_{k3l1-(\alpha*\delta w_{k3l1})} & w_{k3l2-(\alpha*\delta w_{k3l2})} & w_{k3l3-(\alpha*\delta w_{k3l3})} \end{bmatrix}$$

 $\overline{\partial h}2_{in3}$

hidden layer $2 \rightarrow hidden$ layer 1

$$\frac{\partial E_{total}}{\partial W_{j3k1}} = \frac{\partial E_{total}}{\partial h 2_{out1}} * \frac{\partial h 2_{out1}}{\partial h 2_{in1}} * \frac{\partial h 2_{in1}}{\partial W_{j3k1}}$$

$$Sigmoid(x) = \frac{1}{(1+e^{-x})} \longrightarrow \frac{\partial Sigmoid}{\partial x} = \frac{e^{-x}}{(1+e^{-x})^2} = \frac{1}{1+e^{-x}} \times (1 - \frac{1}{1+e^{-x}})$$

$$\partial Sigmoid$$

$$\begin{bmatrix} \frac{\partial h2_{out1}}{\partial h2_{in1}} \\ \frac{\partial h2_{out2}}{\partial h2_{in2}} \\ \frac{\partial h2_{in2}}{\partial h2_{out3}} \end{bmatrix} = \begin{bmatrix} Sigmoid(h2_{in1}) * (1 - Sigmoid(h2_{in1})) \\ Sigmoid(h2_{in2}) * (1 - Sigmoid(h2_{in2})) \\ Sigmoid(h2_{in3}) * (1 - Sigmoid(h2_{in3})) \end{bmatrix}$$

$$\frac{\partial E_{total}}{\partial W_{j3k1}} = \frac{\partial E_{total}}{\partial h 2_{out1}} * \frac{\partial h 2_{out1}}{\partial h 2_{in1}} * \frac{\partial h 2_{in1}}{\partial W_{j3k1}}$$

$$\frac{\partial h2_{in1}}{\partial W_{j_1k_1}} = \frac{\partial \left((h1_{out1} * W_{j_1k_1}) + (h1_{out2} * W_{j_2k_1}) + (h1_{out3} * W_{j_3k_1}) + b_{k1} \right)}{\partial W_{j_1k_1}} = h1_{out1}$$

$$\begin{bmatrix} \frac{\partial h2_{in1}}{\partial W_{j1k1}} \\ \frac{\partial h2_{in1}}{\partial W_{j2k1}} \\ \frac{\partial h2_{in1}}{\partial W_{i3k1}} \end{bmatrix} = \begin{bmatrix} h1_{out1} \\ h1_{out2} \\ h1_{out3} \end{bmatrix}$$

$$\begin{bmatrix} \frac{\partial h2_{in2}}{\partial W_{j1k2}} \\ \frac{\partial h2_{in2}}{\partial W_{j2k2}} \\ \frac{\partial h2_{in2}}{\partial W_{i3k2}} \end{bmatrix} = \begin{bmatrix} h1_{out1} \\ h1_{out2} \\ h1_{out3} \end{bmatrix}$$

$$\begin{bmatrix} \frac{\partial h2_{in3}}{\partial W_{j1k3}} \\ \frac{\partial h2_{in3}}{\partial W_{j2k3}} \\ \frac{\partial h2_{in3}}{\partial W_{i2k3}} \end{bmatrix} = \begin{bmatrix} h1_{out1} \\ h1_{out2} \\ h1_{out3} \end{bmatrix}$$

$$\frac{\partial E_{total}}{w_{j_n k_m}} = \frac{\partial E_{total}}{\partial h 2_{out_m}} \times \frac{\partial h 2_{out_m}}{\partial h 2_{in_j}} \times \frac{\partial h 2_{in_m}}{\partial W_{j_n k_m}}$$

$$\frac{\partial E_{total}}{\partial h2_{out1}} = \frac{\partial E_1}{\partial h2_{out1}} + \frac{\partial E_2}{\partial h2_{out1}} + \frac{\partial E_3}{\partial h2_{out1}}$$

$$\frac{\partial E_1}{\partial h 2_{out1}} = \frac{\partial E_1}{\partial O_{out1}} * \frac{\partial O_{out1}}{\partial O_{in1}} * \frac{\partial O_{in1}}{\partial h 2_{out1}}$$

$$\frac{\partial E_2}{\partial h 2_{out1}} = \frac{\partial E_2}{\partial O_{out2}} * \frac{\partial O_{out2}}{\partial O_{in2}} * \frac{\partial O_{in2}}{\partial h 2_{out1}}$$

$$\frac{\partial E_3}{\partial h2_{out1}} = \frac{\partial E_3}{\partial O_{out3}} * \frac{\partial O_{out3}}{\partial O_{in3}} * \frac{\partial O_{in3}}{\partial h2_{out1}}$$

$$w'_{j_n k_m} = w_{j_n k_m} - \alpha * \frac{\partial E_{total}}{j_n k_m}$$

$$\frac{\partial E_{2}}{\partial h 2_{out1}} = \frac{\partial E_{2}}{\partial O_{out2}} * \frac{\partial O_{out2}}{\partial O_{in2}} * \frac{\partial O_{in2}}{\partial h 2_{out1}}$$

$$\frac{\partial E_{total}}{\partial h 2_{out1}} = \frac{\partial E_{1}}{\partial h 2_{out1}} + \frac{\partial E_{2}}{\partial h 2_{out1}} + \frac{\partial E_{3}}{\partial h 2_{out1}}$$

$$\frac{\partial E_{total}}{\partial h 2_{out2}} * \frac{\partial O_{out2}}{\partial O_{in2}} * \frac{\partial O_{in2}}{\partial W_{j1k2}} \frac{\partial E_{total}}{\partial h 2_{out3}} * \frac{\partial h 2_{out3}}{\partial O_{in3}} * \frac{\partial O_{in3}}{\partial W_{j1k3}}$$

$$\frac{\partial E_{total}}{\partial E_{total}} * \frac{\partial O_{out2}}{\partial O_{out2}} * \frac{\partial O_{in2}}{\partial O_{in2}} * \frac{\partial E_{total}}{\partial E_{total}} * \frac{\partial h 2_{out3}}{\partial O_{out3}} * \frac{\partial h 2_{in3}}{\partial D_{in3}}$$

 $\frac{\partial E_{total}}{w_{j_n k_m}} = \frac{\partial E_{total}}{\partial h 2_{out_m}} \times \frac{\partial h 2_{out_m}}{\partial h 2_{in_j}} \times \frac{\partial h 2_{in_m}}{\partial W_{j_n k_m}}$

$$\delta w_{jk} = \begin{bmatrix} \frac{\partial E_{total}}{\partial w_{j1k1}} & \frac{\partial E_{total}}{\partial w_{j1k2}} & \frac{\partial E_{total}}{\partial w_{j1k2}} & \frac{\partial E_{total}}{\partial w_{j1k3}} \\ \frac{\partial E_1}{\partial w_{j2k1}} & \frac{\partial E_2}{\partial w_{j3k2}} & \frac{\partial E_3}{\partial w_{j3k3}} \end{bmatrix} = \begin{bmatrix} \frac{\partial E_{total}}{\partial h2_{out1}} * \frac{\partial h2_{out1}}{\partial h2_{in1}} * \frac{\partial h2_{out1}}{\partial w_{j1k1}} & \frac{\partial E_{total}}{\partial h2_{out2}} * \frac{\partial O_{out2}}{\partial O_{in2}} * \frac{\partial O_{in2}}{\partial w_{j1k2}} & \frac{\partial E_{total}}{\partial h2_{out3}} * \frac{\partial h2_{out3}}{\partial O_{in3}} * \frac{\partial O_{in3}}{\partial w_{j1k3}} \\ \frac{\partial E_{total}}{\partial h2_{out1}} * \frac{\partial E_{total}}{\partial h2_{out1}} * \frac{\partial h2_{out1}}{\partial h2_{in1}} * \frac{\partial h2_{in1}}{\partial w_{j2k1}} & \frac{\partial E_{total}}{\partial h2_{out2}} * \frac{\partial O_{out2}}{\partial O_{in2}} * \frac{\partial O_{in2}}{\partial w_{j2k2}} & \frac{\partial E_{total}}{\partial h2_{out3}} * \frac{\partial h2_{out3}}{\partial h2_{out3}} * \frac{\partial h2_{in3}}{\partial w_{j2k3}} \\ \frac{\partial E_{total}}{\partial h2_{out1}} * \frac{\partial h2_{out1}}{\partial h2_{in1}} * \frac{\partial h2_{out1}}{\partial w_{j3k1}} * \frac{\partial E_{total}}{\partial h2_{out2}} * \frac{\partial O_{out2}}{\partial O_{in2}} * \frac{\partial O_{in2}}{\partial w_{j3k2}} & \frac{\partial E_{total}}{\partial h2_{out3}} * \frac{\partial h2_{out3}}{\partial h2_{out3}} * \frac{\partial h2_{in3}}{\partial w_{j3k3}} \\ \frac{\partial E_{total}}{\partial h2_{out1}} * \frac{\partial h2_{out1}}{\partial h2_{in1}} * \frac{\partial h2_{out1}}{\partial w_{j3k1}} * \frac{\partial E_{total}}{\partial h2_{out2}} * \frac{\partial O_{out2}}{\partial O_{in2}} * \frac{\partial O_{in2}}{\partial w_{j3k2}} * \frac{\partial E_{total}}{\partial h2_{out3}} * \frac{\partial h2_{out3}}{\partial h2_{out3}} * \frac{\partial h2_{in3}}{\partial w_{j3k3}} \\ \frac{\partial E_{total}}{\partial h2_{out1}} * \frac{\partial h2_{out1}}{\partial h2_{out1}} * \frac{\partial h2_{out1}}{\partial w_{j3k1}} * \frac{\partial E_{total}}{\partial h2_{out2}} * \frac{\partial O_{out2}}{\partial O_{in2}} * \frac{\partial O_{in2}}{\partial w_{j3k2}} * \frac{\partial E_{total}}{\partial h2_{out3}} * \frac{\partial h2_{out3}}{\partial h2_{out3}} * \frac{\partial H2_{in3}}{\partial w_{j3k3}} \\ \frac{\partial E_{total}}{\partial h2_{out1}} * \frac{\partial E_{total}}{\partial h2_{out1}} * \frac{\partial E_{total}}{\partial h2_{out1}} * \frac{\partial O_{out2}}{\partial w_{j3k1}} * \frac{\partial O_{out2}}{\partial v_{j3k2}} * \frac{\partial O_{in2}}{\partial v_{j3k2}} * \frac{\partial O_{in2}}{\partial w_{j3k2}} * \frac{\partial E_{total}}{\partial h2_{out3}} * \frac{\partial E_{total}}{\partial h2_{out3}} * \frac{\partial E_{total}}{\partial h2_{out3}} * \frac{\partial O_{out2}}{\partial w_{j3k3}} * \frac{\partial O_{out3}}{\partial w_{j3k2}} * \frac{\partial O_{out3}}{\partial v_{j3k3}} * \frac$$

$$\begin{bmatrix} \frac{\partial E_{total}}{\partial h 2_{out1}} \\ \frac{\partial E_{total}}{\partial h 2_{out1}} \\ \frac{\partial E_{total}}{\partial h 2_{out2}} \end{bmatrix} = \begin{bmatrix} \left(\frac{\partial E_1}{\partial O_{out1}} * \frac{\partial O_{out1}}{\partial h 2_{out1}} * \frac{\partial O_{in1}}{\partial h 2_{out1}} \right) + \left(\frac{\partial E_2}{\partial O_{out2}} * \frac{\partial O_{out2}}{\partial h 2_{out1}} \right) + \left(\frac{\partial E_3}{\partial O_{out3}} * \frac{\partial O_{out3}}{\partial h 2_{out1}} \right) \\ \left(\frac{\partial E_1}{\partial O_{out1}} * \frac{\partial O_{out1}}{\partial O_{in1}} * \frac{\partial O_{in1}}{\partial h 2_{out2}} \right) + \left(\frac{\partial E_2}{\partial O_{out2}} * \frac{\partial O_{out2}}{\partial O_{in2}} * \frac{\partial O_{in2}}{\partial h 2_{out2}} \right) + \left(\frac{\partial E_3}{\partial O_{out3}} * \frac{\partial O_{out3}}{\partial O_{in3}} * \frac{\partial O_{in3}}{\partial h 2_{out2}} \right) \\ \left(\frac{\partial E_1}{\partial O_{out1}} * \frac{\partial O_{out1}}{\partial O_{in1}} * \frac{\partial O_{in1}}{\partial h 2_{out3}} \right) + \left(\frac{\partial E_2}{\partial O_{out2}} * \frac{\partial O_{out2}}{\partial O_{in2}} * \frac{\partial O_{in2}}{\partial h 2_{out3}} \right) + \left(\frac{\partial E_3}{\partial O_{out3}} * \frac{\partial O_{out3}}{\partial O_{in3}} * \frac{\partial O_{in3}}{\partial h 2_{out3}} \right) \\ \left(\frac{\partial E_1}{\partial O_{out1}} * \frac{\partial O_{out1}}{\partial O_{in1}} * \frac{\partial O_{in1}}{\partial h 2_{out3}} \right) + \left(\frac{\partial E_2}{\partial O_{out2}} * \frac{\partial O_{out2}}{\partial O_{in2}} * \frac{\partial O_{in2}}{\partial h 2_{out3}} \right) + \left(\frac{\partial E_3}{\partial O_{out3}} * \frac{\partial O_{out3}}{\partial O_{in3}} * \frac{\partial O_{in3}}{\partial h 2_{out3}} \right) \\ \left(\frac{\partial E_1}{\partial O_{out1}} * \frac{\partial O_{out1}}{\partial O_{in1}} * \frac{\partial O_{in1}}{\partial h 2_{out3}} \right) + \left(\frac{\partial E_2}{\partial O_{out2}} * \frac{\partial O_{out2}}{\partial O_{in2}} * \frac{\partial O_{in2}}{\partial h 2_{out3}} \right) + \left(\frac{\partial E_3}{\partial O_{out3}} * \frac{\partial O_{out3}}{\partial O_{in3}} * \frac{\partial O_{in3}}{\partial O_{in3}} * \frac{\partial O_{in3}}{\partial O_{in3}} * \frac{\partial O_{out3}}{\partial O_{in3}} * \frac{\partial O_{out3}}{\partial O_{out3}} *$$

$$w'_{j_n k_m} = w_{j_n k_m} - \alpha * \frac{\partial E_{total}}{j_n k_m}$$

$$\begin{bmatrix} \frac{\partial O_{inl}}{\partial h 2_{out1}} & \frac{\partial O_{in2}}{\partial h 2_{out1}} & \frac{\partial O_{in3}}{\partial h 2_{out1}} \\ \frac{\partial O_{inl}}{\partial h 2_{out2}} & \frac{\partial O_{in2}}{\partial h 2_{out2}} & \frac{\partial O_{in3}}{\partial h 2_{out2}} \\ \frac{\partial O_{inl}}{\partial h 2_{out2}} & \frac{\partial O_{in2}}{\partial h 2_{out2}} & \frac{\partial O_{in3}}{\partial h 2_{out2}} \end{bmatrix} = \begin{bmatrix} W_{k1l1} & W_{k1l2} & W_{k1l3} \\ W_{k2l1} & W_{k2l2} & W_{k2l3} \\ W_{k3l1} & W_{k3l2} & W_{k3l3} \end{bmatrix}$$

$$\begin{bmatrix} \frac{\partial E_{total}}{\partial h 2_{out1}} \\ \frac{\partial E_{total}}{\partial h 2_{out2}} \\ \frac{\partial E_{total}}{\partial h 2_{out3}} \end{bmatrix} = \begin{bmatrix} \left(\frac{\partial E_1}{\partial O_{out1}} * \frac{\partial O_{out1}}{\partial O_{in1}} * W_{k1l1} \right) + \left(\frac{\partial E_2}{\partial O_{out2}} * \frac{\partial O_{out2}}{\partial O_{in2}} * W_{k1l2} \right) + \left(\frac{\partial E_3}{\partial O_{out3}} * \frac{\partial O_{out3}}{\partial O_{in3}} * W_{k1l3} \right) \\ \left(\frac{\partial E_1}{\partial O_{out1}} * \frac{\partial O_{out1}}{\partial O_{in1}} * W_{k2l1} \right) + \left(\frac{\partial E_2}{\partial O_{out2}} * \frac{\partial O_{out2}}{\partial O_{in2}} * W_{k2l2} \right) + \left(\frac{\partial E_3}{\partial O_{out3}} * \frac{\partial O_{out3}}{\partial O_{in3}} * W_{k2l3} \right) \\ \left(\frac{\partial E_1}{\partial O_{out1}} * \frac{\partial O_{out1}}{\partial O_{in1}} * W_{k3l1} \right) + \left(\frac{\partial E_2}{\partial O_{out2}} * \frac{\partial O_{out2}}{\partial O_{in2}} * W_{k3l2} \right) + \left(\frac{\partial E_3}{\partial O_{out3}} * \frac{\partial O_{out3}}{\partial O_{in3}} * W_{k2l3} \right) \end{bmatrix}$$

...

Exploding and Vanishing Gradients

- ☐ Concerns neural networks with several hidden layers (deep neural networks)
- ☐ Gradients propagated over many stages tend to vanish.

Why Vanishing Gradients?

derivative close to 0 no gradient to propagate back through the network

Avoiding Vanishing Gradients

□ *ReLU* have been shown to ameliorate the vanishing gradient problem

Problem during training, some neurons effectively die, meaning they stop outputting anything other than 0 (problem is known as the *dying ReLUs*.

- ☐ Solution: Nonsaturating Activation Functions
 - *LeakyReLU* (variant of the *ReLU*)
 - o Exponential Lineaire Units
 - Scaled ELU

Leaky ReLUs

$$LeakyReLU_{\alpha}(x) = \max(\alpha x, x)$$

■ small gradient when the unit is not active

With $\alpha = 0.01$ the neuron can go a long coma but never die.

Exponential Linear Units

$$ELU_{\alpha} = \begin{cases} \alpha(e^{x} - 1) & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$

Avoiding Overfitting

□ Neural network with many hidden layers (deep learning) have a large number of parameters ➤ large amount of data, else overfitting

Data Augmentation

- ☐ Artificially boosting the size of the training set.
- ☐ Generating new training instances from existing ones (shifting, rotating, resizing, adjusting, contrast, ...)

Transfer Learning

of data

☐ Transferring the knowledge learned on one task (source task) to a second related task (target task).

☐ Instead of training a deep network from scratch for your task

Transfer Learning

 \square Transfert learning = train a base network and then copy its first n layers to the first n layers of a target network

Bottom n layers can be frozen or fine tuned

- Forzen not updated during backprop
 Target task labels are scarce, number of parameters is large and we want to avoid overfetting
 - Fine-tuned updated during backprop

 Target task labels are more peintiful

 If the target dataset is small, fine-tuning may result in overfitting

Dropout

 \square Randomly and temporary *drops* units from a layer on each training step

- \square Choise of units to drop is random, determined by a probability p (*dropout rate*)
 - Creating sub-architectures within the model

- □ Variables which determines the network structure and the variables which determine how the network is trained.
- ☐ Number of Hidden Layers

Adding layers until the test error does not improve anymore.

☐ Number of neurons

o *Input and output layers* determined by the type of input and output

For MNIST handwritten digit recognition task (0 to 9)

- **784** input neurons (each image in MNIST has 28 × 28 pixels= 784 features)
- **10** output neurons (one neuron per class)

- o Hidden layers
 - Increasing the number of neurones gradually until the network starts overfitting.

- ☐ Number of hidden layers
 - Keep adding layers until the test error does not improve anymore.
- ☐ Dropout
 - Overfitting increase the *dropout rate*
 - Underfitting \longrightarrow decrease the *dropout rate*
 - Dropout rate = 0.5 usually works well
- ☐ Activation fuction
 - Hidden layers: no saturating function (*ELU*, *Leaky ReLU*, ...)
 - Output layer: Softmax (multi-class predictions) or Sigmoid (binary predictions)

- ☐ Learning Rate
 - o **Low learning rate** slows down the learning process but converges smoothly.
 - Larger learning rate speeds up the learning but may not converge.
 - Usually a decaying Learning rate is preferred.
- ☐ Loss function
- ☐ Number of epochs
 - 1 epoch = one forward pass and one backward pass off all the training examples
 - Increase the number of epochs until the validation accuracy starts decreasing even when training accuracy is increasing(overfitting).

- ☐ Batch size
 - o Total number of training examples in one forward/backward
 - o Typically chosen between 1 and a few hundreds.
- ☐ Number of iterations
 - o Number of batches needed to complete one epoch.

Example: with 55000 training data, 100 batch size \Rightarrow 1 epoch = 550 iterations

- ☐ Momentum
 - Helps accelerate gradients vectors in the right directions, thus leading to faster converging

Deep learning algorithms

Autoencoders

- \square An autoencoder is a feed-forward neural net whose job it is to take an input x and predict x
- ☐ To make this non-trivial, we need to add a bottleneck layer whose dimension is much smaller than the input.

Why Autoencoders

- ☐ Dimensionality reduction
- ☐ Feature extraction (Unsupervised pretraining)

