BASS demo

Faustine Ginoux. Gautam Sridhar

1. Dataset

Ensure that the data set is in the right format. dataname_dataset_condition{n}.npy

e.g. phtaxis_dataset_condition0.npy
phtaxis_dataset_condition1.npy

Matrix shape: n_bouts x n_features

phtaxis tailangles condition \rightarrow n bouts x n frames x n points

n_points: number of points on the fish tail that are tracked

Features of the tail angle you find interesting: e.g. delta heading, speed... Can also use the principal components.

In phtaxis: features = [delta_heading, speed, PC1, PC2, PC3, PC4] /!\ The more PCs you keep, the longer the computation.

If the experiment was repeated several times, n_bouts is the total sum of bouts of all experiments. **dataname_lengths_condition{n}.npy** is an array describing the length of each experiment (i.e. $sum(dataname\ lengths\ condition\{n\}) = n\ bouts$)

e.g. phtaxis_lengths_condition0.npy phtaxis_lengths_condition1.npy

2. Learn GMM on full phtaxis dataset

python learn_gmm.py --help [you can do that for all scripts to find the arguments]

'val' mode - to find the best number of clusters (it takes a long time). n_clust = 7 python learn_gmm.py -t train -c 0 1 -n 7 -dN phtaxis -gN phtaxis

-t: type = train (default)

-c: conditions = 0 and 1

-n: number of clusters = 7 (default)

-dN: data name = phtaxis (use full dataset to learn gmm)

-gN: GMM name (choose what you want e.g. phtaxis)

OUTPUT: GMM that will be used with BASS.

3. Analyze GMM (jupyter notebook)

See clusters, in 2D e.g. with PCA.

See figures of tail angles / speed / heading to determine classes of bouts and update **phtaxis_class_names** file (in Data folder).

For n_clust = 7 on phtaxis:

- two forward classes (fast **F** & slow **f**)
- three turn classes (small t, mid T, large L)
- one burst class b
- and the class "other" O.

→ My phtaxis_class_names: L, F, O, T, t, b, f

/!\ The order of classes will change every time you run learn_gmm again.

How to find the classes: large first peak \rightarrow large turn (same for medium turn but slightly smaller)

How to differentiate burst and slow turn? burst should have a higher frequency (and more peaks) \rightarrow not very clear in this phtaxis dataset

O - the noisiest

Slow forward → the flattest

Fast forward → similar to **f** but larger amplitude

4. Run bass on phtaxis 1 one condition at a time

Run on phtaxis1 because phtaxis is too large.

Each condition should take around 10 minutes.

python run_bass.py -c 0 -dN phtaxis1 -gN phtaxis -x phtaxis1 python run_bass.py -c 1 -dN phtaxis1 -gN phtaxis -x phtaxis1

-c: condition = 0 or 1 (unlike learn_gmm, each condition must be run separately with BASS)

-dN: data name = phtaxis1 (subset of phtaxis ~10 000 bouts)

-gN: GMM name = phtaxis (GMM learned on full dataset of ~80 000 bouts)

-x: name of result file (e.g. phtaxis1)

OUTPUT: BASS dictionary (csv) and comparison to HMM (csv).

5. Compare datasets

Compare the two conditions.

python compare_datasets.py -cn 0 -ch 1 -t 0.1 -dN phtaxis1 -gN phtaxis -x phtaxis1

- **-cn:** condition to use as null hypothesis (here: 0)
- **-ch:** condition to use as the test case (here: 1)
- -t: threshold on the log p value to select relevant motifs (default = 0.1)
- -dN: data name = phtaxis1 (subset of phtaxis ~10 000 bouts)
- -gN: GMM name = phtaxis (GMM learned on full dataset of ~80 000 bouts)
- -x: name of result file (e.g. phtaxis1)

OUTPUT: comparison - phtaxis1_Comparisons_cond0vcond1 (csv).

6. Decode

python decode.py -c 0 -dN phtaxis1 -gN phtaxis -x phtaxis1 python decode.py -c 1 -dN phtaxis1 -gN phtaxis -x phtaxis1

OUTPUT: npy files - segmented lengths and segmented words (and segmented bout types).

7. Analyze decoded