

<u>Gameboard</u>

Maths

Straight Lines: Coordinates and Lengths 2i

## Straight Lines: Coordinates and Lengths 2i



The points A, B, and C have coordinates (5,1), (p,7), and (8,2) respectively.

#### 

Given that the distance between the points A and B is twice the distance between points A and C, calculate the possible values of p. Enter the smallest possible value of p.

The following symbols may be useful: p

#### 

Given also that the line passing through A and B has equation y=3x-14, find the coordinates of the midpoint of AB. Enter the x and y coordinates below.

Enter the x coordinate:

The following symbols may be useful: x

Enter the  $\boldsymbol{y}$  coordinate:

The following symbols may be useful: y

Used with permission from UCLES, A Level, January 2006, Paper 4721, Question 9.

Gameboard:

<u>Pure Maths Practice: Straight Lines - Coordinates and Lengths</u>



<u>Gameboard</u>

Maths

Straight Lines: Coordinates and Lengths 1ii

## Straight Lines: Coordinates and Lengths 1ii



#### Part A Find coordinate

The line segment joining the points (-2,7) and (-4,p) has gradient 4. Find the value of p.

The following symbols may be useful: p

### Part B Find coordinates and midpoint

The line segment joining the points (-2,7) and (6,q) has midpoint (m,5). Find m and q. Enter the values of m and q below.

Enter the value of m:

The following symbols may be useful: m

Enter the value of q:

The following symbols may be useful: q

## Part C Find coordinate from length

The line segment joining the points (-2,7) and (d,3) has length  $2\sqrt{13}$ . Find the two possible values of of d. Enter the greatest possible value of d.

The following symbols may be useful: d

Used with permission from UCLES, A Level, January 2013, Paper 4721, Question 6.



<u>Gameboard</u>

Maths

Straight lines: gradients and normals 2i

## Straight lines: gradients and normals 2i



A is the point (2,7) and B is the point (-1,-2).

### Part A Equation of line

Find the equation of the line through A parallel to the line y=4x-5, giving your answer in the form y=mx+c.

The following symbols may be useful: x, y

### Part B Length of AB

Calculate the length of AB, giving your answer in simplified surd form.

### Part C Find equation of line

Find the equation of the line which passes through the midpoint of AB, and which is perpendicular to AB. Give your answer in the form ax + by + c = 0, where a, b, and c are integers.

The following symbols may be useful: x, y

Used with permission from UCLES, A level, January 2007, Paper 4721, Question 9

Gameboard:

Pure Maths Practice: Straight Lines - Gradients and Normals



<u>Gameboard</u>

Maths

Straight lines: gradients and normals 3ii

## Straight lines: gradients and normals 3ii



The points A(1,3), B(7,1), and C(-3,-9) are joined to form a triangle.

## Part A Show right angle

| Show that this triangle is right angled, | and determine whether the | right angle is located at $A$ , $B$ , or |
|------------------------------------------|---------------------------|------------------------------------------|
| C.                                       |                           |                                          |

() C

 $\bigcirc$  B

 $\boldsymbol{A}$ 

### Part B Triangle in circle

The points A, B and C lie on the circumference of a circle.

Find the x coordinate of the centre of the circle.

The following symbols may be useful: x

Find the y coordinate of the centre of the circle.

The following symbols may be useful: y

Gameboard:

Pure Maths Practice: Straight Lines - Gradients and Normals



<u>Home</u> Maths Functions General Functions

Logarithmic Plots 1

## **Logarithmic Plots 1**



The logarithms to base 10 of two variables, x and y, are plotted against each other below.



**Figure 1:** A plot of  $\log_{10} y$  against  $\log_{10} x$ .

Use this plot to determine the relationship between x and y. Give your answer in the form  $y=ax^b$ , where a and b are constants.

The following symbols may be useful: x, y

Adapted for Isaac Physics from NST IA Biology preparation work



Maths

**Functions** 

**General Functions** 

Logarithmic Plots 3

## **Logarithmic Plots 3**



By plotting a graph of  $\ln F$  against  $\ln r$ , a student finds that the relationship between the gravitational force, F, on a pair of objects with fixed masses is given by

$$F=rac{10^8}{r^2}$$

where r is the separation between them.

## Part A Find the gradient

What was the gradient of the graph?

## Part B Find the intercept

What was the intercept of the graph? Give your answer to 2 significant figures.

Adapted for Isaac Physics from NST IA Biology preparation work



Maths

3 Simultaneous Equations 3i

## 3 Simultaneous Equations 3i



The matrix 
$${f B}$$
 is given by  ${f B}=egin{pmatrix} a & 1 & 3 \ 2 & 1 & -1 \ 0 & 1 & 2 \end{pmatrix}$  .

#### Part A

Find the value of a in exact form, given that  ${\bf B}$  is singular.

The following symbols may be useful: a

### Part B $\mathbf{B}^{-1}$

$${f B}^{-1}$$
 can be written in the form  ${f B}^{-1}=egin{pmatrix} lpha & eta & \gamma \ \delta & \epsilon & \zeta \ \eta & heta & \iota \end{pmatrix}$  . You are given that  ${f B}$  is non-singular.

Give an expression for  $\alpha-\beta+\gamma-\delta+\epsilon-\zeta+\eta-\theta+\iota$  in terms of a.

The following symbols may be useful: a

## Part C Simultaneous equations

x, y and z satisfy the following simultaneous equations

$$-x + y + 3z = 1$$

$$2x + y - z = 4$$

$$y+2z=-1$$

Use matrix methods to solve this question only.

Find x in exact form.

The following symbols may be useful:  $\times$ 

Find y in exact form.

The following symbols may be useful: y

Find z in exact form.

The following symbols may be useful: z

Adapted with permission from UCLES, A Level, June 2005, Paper 4725, Question 7.



Maths

Algebra

Matrices - intersecting lines

# Matrices - intersecting lines

Matrices



Two lines are described by

$$3x - 4y - 1 = 0$$

$$2x + py - 10 = 0.$$

where p is a constant. Use matrix notation to find the coordinates of the point of intersection of these two lines.

### Part A Write in matrix form

Write these equations in matrix form  $\mathbf{A}\mathbf{x} = \mathbf{b}$ .

If the matrix A is written in the form

$$\mathbf{A} = egin{pmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{pmatrix}$$

give the values of these matrix elements.

- (a) Give the value of  $a_{11}$ .
- (b) Give the value of  $a_{12}$ .
- (c) Give the value of  $a_{21}$ .
- (d) Give the value of  $a_{22}$ .

The following symbols may be useful: p

#### Part B Condition for no intersection

Use the matrix to find the value of p for which the lines do not intersect. Give your answer as an improper fraction.

The following symbols may be useful: p

#### Part C The inverse matrix

Find  $\mathbf{A}^{-1}$ , the inverse of  $\mathbf{A}$ .

If the matrix  $\mathbf{A}^{-1}$  is written in the form

$$\mathbf{A}^{-1} = egin{pmatrix} lpha_{11} & lpha_{12} \ lpha_{21} & lpha_{22} \end{pmatrix}$$

give the values of these matrix elements

(a) Give an expression for  $\alpha_{11}$ .

The following symbols may be useful: p

(b) Give an expression for  $\alpha_{12}$ .

The following symbols may be useful: p

(c) Give an expression for  $\alpha_{21}$ .

The following symbols may be useful: p

(d) Give an expression for  $\alpha_{22}$ .

The following symbols may be useful: p

## Part D Components of point of intersection

Using  ${f A}^{-1}$  obtain expressions for the x and y components for the point of intersection.

(a) Give an expression for the x-component of the point of intersection.

The following symbols may be useful: p

(b) Give an expression for the y-component of the point of intersection.

The following symbols may be useful: p

## Part E A value for p

If the y-component of the point of intersection is equal to 2, find the value of p.

Created for isaacphysics.org by Julia Riley



Maths

Algebra

Matrices - linear equations 2

# Matrices - linear equations 2

Matrices



Use matrix notation to solve the following set of three equations for x, y and z:

$$x+cy=c \ x-y+3z=-c \ 2x-2y-z=2.$$

### Part A Determinant of the matrix

Write these equations in matrix form  $\mathbf{R}\mathbf{x} = \mathbf{p}$ . Hence deduce the determinant of  $\mathbf{R}$  and find the value of c for which there is no unique solution.

(a) Find the determinant of  ${f R}$ .

The following symbols may be useful: c

(b) Deduce the value of c for which there is no unique solution.

### Part B The inverse matrix

Find the inverse matrix  $\mathbf{R}^{-1}$ .

If the matrix  $\mathbf{R}^{-1}$  is written in the form

$$\mathbf{R}^{-1} = egin{pmatrix} 
ho_{11} & 
ho_{12} & 
ho_{13} \ 
ho_{21} & 
ho_{22} & 
ho_{23} \ 
ho_{31} & 
ho_{32} & 
ho_{33} \end{pmatrix}$$

give expressions for the elements of  ${f R}^{-1}$  on the leading diagonal i.e.  $ho_{11}$ ,  $ho_{22}$  and  $ho_{33}$ .

(a) Give an expression for  $ho_{11}$ 

The following symbols may be useful: c

(b) Give an expression for  $ho_{22}$ 

The following symbols may be useful: c

(c) Give an expression for  $\rho_{33}$ .

The following symbols may be useful: c

## Part C Solution to the set of equations if $c=1\,$

Using  ${f R}^{-1}$ , find the solutions for x, y and z if c=1.

(a) Find the value of x.

(b) Find the value of y.

(c) Find the value of z.

Created for isaacphysics.org by Julia Riley



Maths

Algebra

Matrices

Matrices - linear equations 3

## Matrices - linear equations 3



A system consists of three masses  $m_1$ ,  $m_2$  and  $m_3$  in a line; they each have the same mass m. The mass  $m_2$  is in the centre and connected by springs of spring constant k to  $m_1$  on the left and  $m_3$  on the right. The masses are all performing simple harmonic motion at the same angular frequency  $\omega$  such that their equations of motion are

$$-kx_1+kx_2=-m\omega^2x_1 \ kx_1-2kx_2+kx_3=-m\omega^2x_2 \ kx_2-kx_3=-m\omega^2x_3.$$

where  $x_1$ ,  $x_2$  and  $x_3$  are the displacements of  $m_1$ ,  $m_2$  and  $m_3$  respectively.

These equations can be written in matrix form

$$egin{aligned} \mathbf{A}\mathbf{x} &= -m\omega^2\mathbf{x} \ &= -m\omega^2\mathbf{I}\mathbf{x} \ \Rightarrow (\mathbf{A} + m\omega^2\mathbf{I})\mathbf{x} = 0 \end{aligned}$$

A matrix equation of this sort only has solutions if  $|\mathbf{A} + m\omega^2\mathbf{I}| = 0$ . Use this to find the possible values of  $\omega^2$ . For each value of  $\omega$  find the relationship between  $x_1$ ,  $x_2$  and  $x_3$ .

#### Part A The matrix A

If the matrix  $\mathbf{A}$  is written in the form

$$\mathbf{A} = egin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

deduce the expressions for the following elements of  ${\bf A}$ .

(a) Give the expression for  $a_{11}$ .

The following symbols may be useful: k, m

(b) Give the expression for  $a_{21}$ .

The following symbols may be useful: k,  $\ m$ 

(c) Give the expression for  $a_{22}$ .

The following symbols may be useful:  ${\tt k}\,,\,\,{\tt m}$ 

(d) Give the expression for  $a_{31}$ .

The following symbols may be useful: k, m

## Part B The possible values of $\omega^2$

Write down the matrix  $\mathbf{A} + m\omega^2\mathbf{I}$ . Using the fact that solutions to the equation  $\mathbf{A} + m\omega^2\mathbf{I} = 0$ , require that  $|\mathbf{A} + m\omega^2\mathbf{I}| = 0$  deduce the three values of  $\omega^2$ . The three values,  $\omega_1^2$ ,  $\omega_2^2$  and  $\omega_3^2$ , are such that  $\omega_1^2 < \omega_2^2 < \omega_3^2$ .

(a) Give an expression for the 11 component (i.e. the component in row 1, column 1) of  ${\bf A} + m\omega^2 {\bf I}$ .

The following symbols may be useful: k, m, omega

(b) Find an expression for  $\omega_1^2$ .

The following symbols may be useful: k, m

- (c) Find an expression for  $\omega_2^2$ .
- (d) Find an expression for  $\omega_3^2$ .

The following symbols may be useful: k, m

## Part C The relationship between $x_1$ , $x_2$ and $x_3$

Since the determinant of the matrix is zero there are no unique solutions to the set of three equations; however, for each value of  $\omega^2$ ,  $x_1$ ,  $x_2$  and  $x_3$  have a fixed relationship to each other. On the assumption that  $x_1=1$ , find  $x_2$  and  $x_3$  for each of the three frequencies deduced in Part B. Give your answers using the format 1,a,b with no spaces, where  $x_1=1$ ,  $x_2=a$  and  $x_3=b$ .

- (a) Given that  $x_1=1$ , find  $x_2$  and  $x_3$  for  $\omega_1^2$ .
- (b) Given that  $x_1=1$ , find  $x_2$  and  $x_3$  for  $\omega_2^2$ .
- (c) Given that  $x_1=1$ , find  $x_2$  and  $x_3$  for  $\omega_3^2$ .

Created for isaacphysics.org by Julia Riley