运筹

讲者: 顾乃杰 教授、 黄章进 副教授

排队论

Chap. 13 Queueing Theory

13. 排队论

- 13.1 基本概念
- 13.2 到达间隔的分布和服务时间的分布
- 13.3 单服务台负指数分布排队系统的分析
- 13.4多服务台负指数分布排队系统的分析
- · 13.5 一般服务时间 M/G/1 模型
- 13.6 经济分析—系统的最优化

- SC
 - 服务时间是任意分布的情形
 - 任何情形下列关系都成立:

刀机空位

E[系统中顾客数] = E[队列中顾客数] + E[服务机构中顾客数]

E[在系统中逗留时间] = E[排队等候时间] + E[服务时间]其中 $E[\cdot]$ 表示求期望值,用符号表示即:

$$L_s = L_q + L_{se}$$
, $W_s = W_q + E[T]$ (13.37)

T表示服务时间(随机变量),当T服从负指数分布时, $E[T]=1/\mu$ 。

- 结合Little公式中的 $L_s = \lambda W_s$, $L_q = \lambda W_q$ Ls, La, Ws, Wa, Lse, ELT), λ
 - 上述七个指标中只要知道3个就可求出其余的指标;
 - 在有限源或者队长有限制的情况下, λ 要换成有效到达率 λ_{eff} 。

- Pollaczek-Khintchine(P-K)公式
 - 对于M/G/1模型,服务时间 T 的分布是一般的(但要求期望值E[T]和方差Var[T]都存在),其他条件和标准的M/M/1型相同。为了达到稳态,要求 ρ=λE[T]<1。满足上述条件下有:

$$L_{s} = \rho + \frac{\rho^{2} + \lambda^{2} Var[T]}{2(1-\rho)}$$
 (13.38)

Pollaczek-Khintchine(P-K) 公式

- 不管T是什么分布,只要知道 λ , E[T]和 Var[T],就可以求出 L_s ,并根据各项指标之间的关系式求出 L_q 、 W_q 和 W_s 。
- 需要注意的是因为有方差项的存在,所以若在研究各期望值时不考虑概率性质,会得出错误结果,仅当 Var[T]=0时,随机性的波动才不会影响 L_s。要想改进各指标,除考虑期望值外,还可以从改变方差来考虑。

例9: 有一售票口,已知顾客按平均为2分30秒的时间间隔的负指数分布到达,顾 客在售票口前服务时间平均为2分钟。在下面两种情况下求顾客购票的平均逗留 Ws 时间和等待时间以(1)服务时间也服从负指数分布,求顾客为购票所需平均逗留时 间和等待时间;; (2)经过调查, 顾客在售票窗口至少要占用1分钟, 服从以下概率 密度分布:

密度分布: $f(y) = \begin{cases} e^{-y+1}, & y \ge 1 \\ 0, & y < 1 \end{cases}$ - 分析: (1) 是典型的M/M/1模型, $\lambda = 1/2.5 = 0.4$, $\mu = 1/2 = 0.5$,

$$\rho = \lambda / \mu = 0.8, \qquad W_s = \frac{1}{\mu - \lambda} = 10 \, \text{ft}, \qquad W_q = \frac{\rho}{\mu - \lambda} = 8 \, \text{ft}$$

(2) 令y为服务时间,那么
$$y = 1 + x$$
,代入概率密度函数,得: $f(x) = \begin{cases} e^{-x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$ 可见 x 服从均值为 1 的负指数分布,则:

$$E[y] = 2$$
, $Var[y] = Var[1 + x] = Var[x] = 1$, $\rho = \lambda E[y] = 0.8$,

代入
$$P-K$$
公式得: $L_s = 0.8 + \frac{0.8^2 + 0.4^2 \times 1}{2 \times (1 - 0.8)} = 2.8$, $L_q = L_s - \rho = 2$, $W_s = L_s / \lambda = 7$ 分, $W_q = L_q / \lambda = 5$ 分

定长服务时间M/D/1模型

- 服务时间是确定的常数,此时:

$$L_{s} = \rho + \frac{\rho^{2} + \lambda^{2} Var[T]}{2(1-\rho)}$$
 (13.38)

 $T = 1/\mu$, Var[T] = 0, $L_s = \rho + \frac{\rho^2}{2(1-\rho)}$ (13.39)

- 例10: 某实验室有一台自动检验机器性能的仪器,检验机器的顾客按泊松分布到达,每小时平均4个顾客,检验每台机器需要6分钟。
- 分析: $\lambda = 4$, E[T] = 1/10(小时), $\rho = 4/10$, Var[T] = 0
 - 在检验室内机器台数期望值:
 - 等候检验的机器台数期望值:
 - 每台机器在室内逗留时间期望值:
 - 每台机器平均等待检验时间期望值:

$$L_s = 0.4 + \frac{(0.4)^2}{2(1-0.4)} = 0.533$$
 (\(\frac{1}{2}\)

$$L_a = 0.533 - 0.4 = 0.133$$
 (台)

$$W_s = \frac{0.533}{4} = 0.133$$
 小时

$$W_q = \frac{0.133}{4} = 0.033$$
 小时

爱尔朗服务时间 M/E_k/1 模型

- 如果顾客必须经过 k 个服务站,在每个服务站的服务时间 T_i 相互独立并服从相同的负指数分布(参数为 $k\mu$),则: $T = \sum_{i=1}^k T_i$ 服从k 阶爱尔朗分布。

- 代入P-K公式,该模型的各项指标如下:

$$L_{s} = \rho + \frac{\rho^{2} + \frac{\lambda^{2}}{k\mu^{2}}}{2(1-\rho)} = \rho + \frac{(k+1)\rho^{2}}{2k(1-\rho)}, \qquad L_{q} = \frac{(k+1)\rho^{2}}{2k(1-\rho)}$$

$$W_{s} = L_{s} / \lambda, \qquad W_{q} = L_{q} / \lambda$$
(13.40)

- 例11: 某单人裁缝店做西服,每套需经过4个不同的工序,4个工序完成后才能开始做另一套。每一个工序的时间服从负指数分布,期望值为2小时。顾客到来服从泊松分布,平均订货率为5.5套/周(设一周6天为工作日,每天8小时)。顾客为等到做好一套西服的期望时间有多长?
- 分析: $\lambda = 5.5$ 套/周,1/(4 μ) = 2小时, $\mu = \frac{1}{8}$ 套/小时 = 6套/周, ρ = 5.5/6

$$E[T_i] = 2, \quad Var[T_i] = \left(\frac{1}{4 \times 6}\right)^2$$

$$E[T] = 8$$
, $Var[T] = \frac{1}{4 \times 6^2}$

$$L_s = \frac{5.5}{6} + \frac{\left(\frac{5.5}{6}\right)^2 + (5.5)^2 \times \frac{1}{4 \times 6^2}}{2\left(1 - \frac{5.5}{6}\right)} = 7.2188$$

顾客为等到做好一套西服的期望时间: $W_s = L_s / \lambda = 1.3$ 周

- 排队系统的最优化问题
 - 系统设计的最优化
 - 称为静态问题,目的在于使设备达到最大效益,在一定的质量指标下要求机构最为经济。
 - 系统控制的最优化
 - 称为动态问题,是指给定一个系统,如何运营可使某个目标函数得到最优。

- □ 在一般情形下,提供服务水平(数量、质量)自然会降低顾客的等待费用(损失),但却常常增加了服务机构的成本。
- □最优化的目标之一是使二者费用之和为最小;另一个常用的目标函数是使纯收入或使 利润(服务收入与服务成本之差)最大。

- 费用

• 各种费用在稳态情形下都是按单位时间来考虑的,一般情形,服务费用(成本)可以确切计算或估计,但是顾客的等待费用(损失)有许多不同情况。

- 服务水平

- 平均服务率µ(代表服务机构的服务能力和经验等);
- 服务设备,如服务台个数c;
- 由队列所占空间大小所决定的队列最大限制数N;
- 服务水平也可以通过服务强度p来表示。

- 常用的求解方法:

- 对于离散变量常用边际分析法;
- 对于连续变量常用经典的微分法;
- 对于复杂的问题,也可以使用非线性规划或动态规划方法。

· M/M/1模型中最优服务率µ

- 标准的M/M/1模型

取目标函数 z 为单位时间服务成本与 顾客在系统逗留费用之 和的期望值:

$$z = c_s \mu + c_w L_s \tag{13.41}$$

其中 c_s 为当 $\mu=1$ 时服务机构单位时间的费用,

 c_w 为每个顾客在系统停留单位时间的费用。

又
$$L_s = \frac{\lambda}{\mu - \lambda}$$
, 因此 $z = c_s \mu + c_w \cdot \frac{\lambda}{\mu - \lambda}$, 求极小值,

令:
$$\frac{dz}{d\mu} = c_s - c_w \cdot \frac{\lambda}{(\mu - \lambda)^2} = 0$$
, 解得:

$$\mu^* = \lambda + \sqrt{\frac{c_w}{c_s}\lambda}$$
 (为了保证 $\rho < 1$, $\mu > \lambda$, 根号前取 + 号)

系统中顾客最大限制数为N的情形

- 系统中若有N个顾客,则后来的顾客被拒绝。 P_N 即为被拒绝的概率(呼损率), $1-P_N$ 即为能接受服务的概率, $\lambda(1-P_N)$ 即为单位时间实际进入服务机构顾客的平均数(有效到达率),在稳定状态下,等于单位时间内实际服务完成的平均顾客数。
- 解:

设每服务 1 人能收入 G元,于是单位时间收入的期望值是 $\lambda(1-P_n)G$ 元,纯利润是:

$$z = \lambda (1 - P_n)G - c_s \mu$$

$$= \lambda G \cdot \frac{1 - \rho^N}{1 - \rho^{N+1}} - c_s \mu = \lambda \mu G \cdot \frac{\mu^N - \lambda^N}{\mu^{N+1} - \lambda^{N+1}} - c_s \mu$$

令
$$\frac{dz}{d\mu} = 0$$
, 得 $\rho^{N+1} \cdot \frac{N - (N+1)\rho + \rho^{N+1}}{(1-\rho^{N+1})^2} = \frac{c_s}{G}$

最优的 μ^* 应满足上式,其中 c_s 、G、 λ 、N都是给定的,通常通过数值计算来求出 μ^* ,或将上式左方(对一定的N)作为 ρ 的函数做出图形,对于给定的 G/c_s ,根据图形可求出 μ^*/λ 。

顾客源为有限的情形 (以机器故障问题为例)

共有机器 m 台以及1个修理工人,各台连续运转时间和修理时间均服从负指数分布。当服务率 μ=1 的时的修理费用 c_s,单位时间每台机器运转可得收入G元。平均运转台数为 m-L_s,所以单位时间纯利润为:

$$L_s = m - \frac{\mu}{\lambda} (1 - P_0)$$

上曲 (13-28) 和 (13-27) 式知道:
$$L_s = m - \frac{\mu}{\lambda} (1 - P_0)$$

$$P_0 = \frac{1}{\sum_{i=0}^m \frac{m!}{(m-i)!} (\frac{\lambda}{\mu})^i}$$

$$\Leftrightarrow \rho = \frac{m\lambda}{\mu}, \quad E_m(x) = \sum_{k=0}^m \frac{x^k}{k!} e^{-x}$$
 得:

$$z = (m - L_s)G - c_s \mu = \frac{\mu}{\lambda} (1 - P_0)G - c_s \mu = \frac{mG}{\rho} (1 - \frac{1}{\sum_{i=0}^{m} \frac{m!}{(m-i)!} (\frac{\lambda}{\mu})^i}) - c_s \mu$$

$$= \frac{mG}{\rho} \cdot \frac{\sum_{i=1}^{m} \frac{m!}{(m-i)!} (\frac{\lambda}{\mu})^{i}}{\sum_{i=0}^{m} \frac{m!}{(m-i)!} (\frac{\lambda}{\mu})^{i}} - c_{s}\mu = \frac{mG}{\rho} \cdot \frac{\sum_{i=1}^{m} \frac{1}{(m-i)!} (\frac{\lambda}{\mu})^{i}}{\sum_{i=0}^{m} \frac{1}{(m-i)!} (\frac{\lambda}{\mu})^{i}} - c_{s}\mu = \frac{mG}{\rho} \cdot \frac{\sum_{k=0}^{m-1} \frac{1}{k!} (\frac{\lambda}{\mu})^{m-k}}{\sum_{k=0}^{m} \frac{1}{k!} (\frac{\lambda}{\mu})^{m-k}} - c_{s}\mu$$

$$=\frac{mG}{\rho}\cdot\frac{\sum_{k=0}^{m-1}\frac{1}{k!}(\frac{\lambda}{\mu})^{-k}}{\sum_{k=0}^{m}\frac{1}{k!}(\frac{\lambda}{\mu})^{-k}}-c_{s}\mu=\frac{mG}{\rho}\cdot\frac{E_{m-1}\left(\frac{m}{\rho}\right)}{E_{m}\left(\frac{m}{\rho}\right)}-c_{s}\frac{m\lambda}{\rho}$$

顾客源为有限的情形(以机器故障问题为例)

• 共有机器 m 台以及1个修理工人,各台连续运转时间和修理时间均服从负指 数分布。当服务率 $\mu=1$ 的时的修理费用 c_s , 单位时间每台机器运转可得收入 G元。平均运转台数为 m-L_s, 所以单位时间纯利润为:

$$z = (m - L_s)G - c_s \mu = \frac{mG}{\rho} \cdot \frac{E_{m-1}\left(\frac{m}{\rho}\right)}{E_m\left(\frac{m}{\rho}\right)} - c_s \mu$$

其中 $E_m(x) = \sum_{k=0}^m \frac{x^k}{k!} e^{-x}$ 称为泊松部分和;

为了求得最优的 μ^* , 令 $\frac{dz}{dx} = 0$, 整体对 $\frac{m}{\rho}$ 求导

利用 $\frac{d}{dx}E_m(x)=E_{m-1}(x)-E_m(x)$, 得:

$$\frac{E_{m-1}\left(\frac{m}{\rho}\right)E_{m}\left(\frac{m}{\rho}\right) + \frac{m}{\rho}\left[E_{m}\left(\frac{m}{\rho}\right)E_{m-2}\left(\frac{m}{\rho}\right) - E_{m-1}^{2}\left(\frac{m}{\rho}\right)\right]}{E_{m}^{2}\left(\frac{m}{\rho}\right)} = \frac{c_{s}\lambda}{G}$$

给定m、G、 c_s 、 λ ,求解 μ^* 很困难,通常利用泊松分布表通过数值计算获得,或将上式左方(对一定的m)作为 ρ 的函数做出图形,对于给定的 $\frac{c_s\lambda}{G}$ 根据图形可求出 μ^*/λ 。

M/M/c 模型中最优的服务台数 c

- 标准的M/M/c模型在稳态情形下单位时间全部费用(服务成本与等待费用之和)的期望值:

$$z = c'_s \cdot c + c_w \cdot L \tag{13.43}$$

- 其中

c: 服务台数;

 c'_{s} : 每服务台单位时间的成本;

 c_w : 为每个顾客在系统停留单位时间的费用;

L: 系统中顾客平均数 L_s 或 队列中等待的顾客平均数 L_q (它们随 z 值的不同而不同)

因为 c'_s 和 c_w 都是给定的,唯一可能变动的是服务台数c,所以z是c的函数z(c)。

- 因为c只取整数值, z(c) 不是连续变量的函数, 采用边际分析法 (Marginal Analysis), 根据 z(c*) 最小的特点:

$$\begin{cases} z(c^*) \le z(c^* - 1) \\ z(c^*) \le z(c^* + 1) \end{cases} \Rightarrow \begin{cases} c'_s \cdot c^* + c_w L(c^*) \le c'_s (c^* - 1) + c_w L(c^* - 1) \\ c'_s \cdot c^* + c_w L(c^*) \le c'_s (c^* + 1) + c_w L(c^* + 1) \end{cases}$$
$$\Rightarrow L(c^*) - L(c^* + 1) \le c'_s / c_w \le L(c^* - 1) - L(c^*)$$

- 依次求 $c=1,2,3,\cdots$ 时L的值,并作两相邻的L值之差,因 c'_s/c_w 是已知数,根据这个数落在哪个不等式区间里就可以确定出 c^* 。

- 例12: 某检验中心为各工厂服务,要求做检验的工厂的到来服从泊松流,平均到达率 λ 为每天48次,每次来检验由于停工等原因损失为6元。服务时间服从负指数分布,平均服务率 μ 为每天25次,每设置一个检验员服务成本为每4元,其他条件符合标准 M/M/c 模型。问应设置几个检验员才能使总费用的期望值最小?
- 分析: $c'_s = 4\pi$ /每检验员, $c_w = 6\pi$ /次, $\lambda = 48$, $\mu = 25$, $\lambda/\mu = 1.92$ 设检验员数为c,令 c 依次为 1、2、3、4、5,根据已有的计算表求出 L_s :

С	1	2	3	4	5
λ /cμ	1.92	0.96	0.64	0.48	0.38
查多服务台的W _q · μ计算表	-	10.2550	0.3961	0.0772	0.0170
$L_s = \frac{\lambda}{\mu} (W_q \cdot \mu + 1)$	-	21.610	2.680	2.068	1.952

- 将 Ls 代入得表:

检验员数	来检验顾客数	L(c)-L(c+1)~	总费用(每天)	
С	L _s (c)	L(c)-L(c-1)	z(c)	
1	∞		∞	
2	21.610	18.930~ ∞	154.94	
3	2.680	0.612~18.930	27.87	
4	2.068	0.116~0.612	28.38	
5	1.952		31.71	

$$\frac{c'_s}{c_w} = 0.66$$
,落在区间 (0.612 ~ 18.930) 内

所以
$$c^* = 3$$

即设 3 个检验员使总费用最小,此时 $z(c^*)=27.87(元)$

本章完 The end