Séminaire de Master 2:

David Kolar Sous la direction de Bernard Le Stum

Introduction aux ∞-catégories stables

S. Eilenberg

Définition (2-catégorie)

Une 2-catégorie $\mathcal C$ est la donnée de

- Une collection de 0-cellules;
- Une collection de 1-cellules pour chaque paire d'objets;
- Une collection de 2-cellules entre chaque paire de morphismes parallèles;

tels que

- i) Les 0-cellules et 1-cellules forment une catégorie;
- ii) Pour chaque paire de 0-cellules, les 1-cellules et 2-cellules forment une catégorie;
- iii) Les 0-cellules et 2-cellules forment une catégorie:
 - Toute paire de 2-cellules admet une composée horizontale

• La 2-cellule identité de la 1-cellule identité est l'identité de la 0-cellule associée:

iv) La composition horizontale est fonctorielle par rapport à la composition verticale:

$$a \underbrace{\iint_{f} \operatorname{id}_{f}}_{f} b \underbrace{\iint_{g} \operatorname{id}_{g}}_{g} c = a \underbrace{\iint_{g} \operatorname{id}_{gf}}_{gf} c \qquad (\delta * \beta) \circ (\gamma * \alpha) = (\delta \circ \gamma) * (\beta \circ \alpha)$$

Catégories triangulées

Catégories triangulées

Définition A.1 (Catégorie triangulée)

Une catégorie additive $\mathcal A$ est triangulée lorsqu'elle admet un foncteur additif $X\mapsto X[1]$ et une collection de triangles distingués $X\to Y\to Z\to X[1]$ vérifiants les axiomes suivants:

- (TR0) Les triangles $X \xrightarrow{id} X \rightarrow 0 \rightarrow X[1]$ sont distingués;
- (TR1) Tout morphisme $X \xrightarrow{f} Y$ s'étend en un triangle distingué $X \xrightarrow{f} Y \to Z \to X[1]$;
- (TR2) $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$ est distingué si et seulement si $Y \xrightarrow{g} Z \xrightarrow{h} X[1] \xrightarrow{f[1]} Y[1]$ l'est;
- (TR3) Dans le diagramme à lignes distinguées suivant, il existe un morphisme $Z \to Z'$

(TR4) Pour des triangles distingués

$$X \xrightarrow{f} Y \xrightarrow{u} Y/X \xrightarrow{d} X[1] \qquad Y \xrightarrow{g} Z \xrightarrow{v} Z/Y \xrightarrow{d'} Y[1] \qquad X \xrightarrow{g \circ f} Z \xrightarrow{w} Z/X \xrightarrow{d''} X[1]$$

il existe un triangle distingué $Y/X \xrightarrow{\phi} Z/X \xrightarrow{\psi} Z/Y \xrightarrow{\theta} Y/X[1]$ vérifiant les relations octaédriques.

Catégories triangulées

Catégories triangulées: exemple

Définition A.3 (Catégorie dérivée)

Pour une catégorie abélienne $\mathcal A$, la catégorie dérivée $\mathrm D(\mathcal A)$ est la catégorie des complexes de co-chaînes de $\mathcal A$ localisée au quasi-isomorphismes.

Définition A.4 (Cône)

Pour un morphisme $f^{ullet}:A^{ullet}\to B^{ullet}$ de $\mathrm{D}(\mathcal{A})$, le cône de f est le complexe défini par

$$cone(f)^n = A^{n+1} \oplus B^n$$

avec la différentielle

$$d_f^n = \begin{pmatrix} -d_A^{n+1} & 0\\ f^{n+1} & d_b^n \end{pmatrix}$$

Catégories triangulées: un exemple

Théorème A.5

La catégorie dérivée $D(\mathcal{A})$ d'une catégorie abélienne \mathcal{A} est triangulée.

DÉMONSTRATION:

Le foncteur de translation décale les indices d'un degré.

Les triangles distingués sont de la forme

$$X \xrightarrow{f} Y \to \operatorname{cone}(f) \to X[1]$$

 \neg

Catégories triangulées: le problème

Soit R un anneau unitaire.

La catégorie **Mod**_R des R-modules est abélienne.

Dans la catégorie dérivée $D(\mathbf{Mod}_R)$ on considère le diagramme

Donc la construction des catégories triangulées (et surtout du cône) n'est pas fonctorielle!

∞-Catégories

∞-Catégories: Ensembles simpliciaux

On note Δ la catégorie des ensembles ordonnées finis et des applications croissantes.

Définition 1.1 (Ensemble simplicial)

Un ensemble simplicial X est un foncteur $\Delta^{\text{op}} \to \mathbf{Set}$. Un n-simplexe de X est un élément de $X_n = X([n])$.

On note Δ^n le simplexe standard, représenté par [n].

∞-Catégories: Ensembles simpliciaux

∞-Catégories: nerfs, frontières et cornes

Définition 1.3 (Nerf)

Le foncteur nerf sur la catégorie Cat est défini par

$$\begin{array}{cccc} \mathrm{N} & : & \mathbf{Cat} & \to & \mathbf{sSet} \\ & \mathcal{C} & \mapsto & [n] \mapsto \mathrm{Hom}_{\mathbf{Cat}}([n], \mathcal{C}) \end{array}$$

Définition 1.4 (Frontière)

La frontière d'une simplexe standard Δ^n est l'ensemble simplicial

$$\partial \Delta^n = \bigcup_{E \subset [n]} N(E)$$

Définition 1.5 (Corne)

La k^e corne d'un simplexe standard Δ^n est l'ensemble simplicial

$$\Lambda_k^n = \bigcup_{\substack{E \subsetneq [n] \\ k \in E}} N(E)$$

∞-Catégories: nerfs, frontières et cornes

∞-Catégories

Définition 1.9 (∞-Catégorie)

Une ∞ -catégorie est un ensemble simplicial X vérifiant, pour toute corne intérieure, la propriété de relèvement

Un complexe de Kan est un ensemble simplicial vérifiant cette propriété de relèvement pour toute corne.

Définition 1.10 (∞-Foncteur)

Un ∞-foncteur est un morphisme d'ensembles simpliciaux.

On note $\operatorname{Fun}_0(\mathcal{C},\mathcal{D})$ l'ensemble des foncteurs. L'ensemble simplicial $\operatorname{Fun}(\mathcal{C},\mathcal{D})$ est un complexe de Kan, donc une ∞ -catégorie.

∞-Catégories: catégorie d'homotopie

Définition 1.12 (Catégorie d'homotopie)

La catégorie d'homotopie h $\mathcal C$ d'une ∞ -catégorie $\mathcal C$ est l'image de $\mathcal C$ par l'adjoint à gauche du foncteur de nerf.

∞-Catégories: catégorie d'homotopie

∞-Catégories: catégorie d'homotopie

Définition 1.13 (Isomorphisme)

Un morphisme $f:X\to Y$ dans une ∞ -catégorie $\mathcal C$ est un isomorphisme lorsque son image dans h $\mathcal C$ en est un.

On parle aussi d'équivalence d'homotopie.

Constructions ∞-catégoriques

Limites et colimites

On note \underline{X} le foncteur constant envoyant tout objet sur X.

Définition 2.1 (Limite

Soit $F:\mathcal{C}\to\mathcal{D}$ un foncteur. Un objet $Y\in\mathcal{D}$ est une limite de F s'il existe une transformation naturelle $\alpha:\underline{Y}\to F$ telle que, pour tout objet $X\in\mathcal{D}$, α induit un isomorphisme

$$\operatorname{Hom}_{\mathcal{D}}(X,Y) \cong \operatorname{Hom}_{\operatorname{Fun}(\mathcal{C},\mathcal{D})}(\underline{X},F)$$

dans la catégorie d'homotopie hKan des complexes de Kan.

Dans ce cas, Y est unique à unique isomorphisme près.

Limites et colimites: exemples

Définition 2.3 (Objet zéro

Un objet $X \in \mathcal{C}$ est initial lorsqu'il est colimite du diagramme vide. C'est un objet terminal lorsque c'est une limite du diagramme vide. C'est un objet zéro lorsqu'il est initial et terminal.

Définition 2.4 ((co-)Produit)

Un (co-)produit dans un ∞ -catégorie est une (co-)limite d'un diagramme discret.

Limtes et colimites: exemples

Définition 2.5 et 2.6 (Produit fibré et somme amalgamée)

Un produit fibré est une limite d'un diagramme de la forme $\bullet \to \bullet \leftarrow \bullet$. Une somme amalgamée est une colimite d'un diagramme de la forme $\bullet \leftarrow \bullet \to \bullet$.

Définition 2.7 et 2.8 (Triangle, suite fibrée et suite co-fibrée)

Un triangle est un diagramme de la forme

$$\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow & & \downarrow g \\
0 & \longrightarrow & Z
\end{array}$$

C'est une suite fibrée lorsque c'est un produit fibré, f est alors une fibre de g. C'est une suite co-fibrée lorsque c'est une somme amalgamée, g est alors une co-fibre de f.

On note
$$X = fib(g)$$
 et $Z = cofib(f)$.

Stabilité

Définition 3.1 (∞-Catégorie stable)

Une ∞-catégorie est stable lorsque

- Elle admet un objet zéro;
- Tout morphisme admet une fibre et une co-fibre;
- Un triangle est une suite fibrée si et seulement si c'est une suite co-fibrée.

Théorème 3.2

Soient $\mathcal C$ une ∞ -catégorie stable et K un ensemble simplicial. Alors l' ∞ -catégorie $\operatorname{Fun}(K,\mathcal C)$ est stable.

DÉMONSTRATION:

Les fibres et co-fibres se calculent point par point.

Stabilité: foncteurs exacts

Définition 3.3 (Foncteur exact)

Un foncteur est exact s'il préserve les objets zéros, les suites fibrées et les suites co-fibrées.

Théorème 3.4

Un produit d'∞-catégories stables est stable.

Un foncteur $\prod_i C_i \to \mathcal{D}$ est exact si et seulement si ses composantes le sont.

DÉMONSTRATION:

Les limites et colimites se calculent composante par composante.

Triangulation

Triangulation: suspension et lacets

Définition 4.1 (Foncteur de suspension)

Soit $\mathcal C$ une ∞ -catégorie stable. Alors le foncteur de suspension de $\mathcal C$ est défini par

Définition 4.1 (Foncteur de lacets)

Soit $\mathcal C$ une ∞ -catégorie stable. Alors le foncteur de lacets de $\mathcal C$ est défini par

Triangulation: suspension et lacets

Théorème 4.3

Les foncteurs Σ et Ω sont pleinement fidèles et essentiellement surjectifs, et sont quasi-inverses mutuels.

DÉMONSTRATION:

Soit $X \in \mathcal{C}$. Par propriété universelle, X détermine un unique carré

$$\begin{array}{ccc}
X & \longrightarrow & 0 \\
\downarrow & & \downarrow \\
0' & \longrightarrow & \Sigma X
\end{array}$$

Comme $\mathcal C$ est stable, ce carré est également un produit fibré, donc $\Omega\Sigma X\simeq X$. De même, $\Sigma\Omega X\simeq X$.

Pour
$$n \in \mathbf{Z}$$
, on note $X[n] = \begin{vmatrix} \Sigma^n X & \sin n \ge 0 \\ \Omega^{-n} X & \sin n < 0 \end{vmatrix}$.

Triangulation

Théorème 4.5

Soit $\mathcal C$ une ∞ -catégorie stable. Alors la catégorie d'homotopie h $\mathcal C$ est triangulée.

Lemme

Soit $\mathcal C$ une ∞ -catégorie stable. Alors la catégorie d'homotopie h $\mathcal C$ est additive.

- Le foncteur de translation de h \mathcal{C} est $X \mapsto X[1] = \Sigma X$.
- Un triangle $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$ de h $\mathcal C$ est distingué s'il existe dans $\mathcal C$ un diagramme

$$\begin{array}{ccc}
X & \xrightarrow{f} & Y & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow \\
0' & \longrightarrow & Z & \xrightarrow{\tilde{h}} & W
\end{array}$$

Où les deux carrés sont des sommes amalgamées et \widetilde{h} est le composé de h et de l'isomorphisme $W\simeq X[1]$ déterminé par le rectangle extérieur.

TRO

Les triangles $X \xrightarrow{\text{id}} X \to 0 \to X[1]$ sont distingués.

$$\begin{array}{ccc} X \stackrel{\mathrm{id}}{\longrightarrow} X & \longrightarrow & 0 \\ \downarrow & & \downarrow & & \downarrow \\ 0' & \longrightarrow & 0'' & \longrightarrow & X[1] \end{array}$$

TR1

Tout morphisme $X \xrightarrow{f} Y$ s'étend en un triangle distingué $X \xrightarrow{f} Y \to Z \to X[1]$.

$$\begin{array}{ccc}
X & \xrightarrow{f} & Y & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow \\
0' & \longrightarrow & Z & \longrightarrow & W
\end{array}$$

TR2

 $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[1]$ est distingué si et seulement si $Y \xrightarrow{g} Z \xrightarrow{h} X[1] \xrightarrow{f[1]} Y[1]$ l'est.

TR3

Dans le diagramme à lignes distinguées suivant, il existe un morphisme $Z \to Z'$

$$\begin{array}{c} X \stackrel{f}{\longrightarrow} Y \\ \downarrow \\ X' \stackrel{f'}{\longrightarrow} Y' \end{array}$$

TR4

Pour des triangles distingués

$$X \xrightarrow{f} Y \xrightarrow{u} Y/X \xrightarrow{d} X[1] \qquad Y \xrightarrow{g} Z \xrightarrow{v} Z/Y \xrightarrow{d'} Y[1] \qquad X \xrightarrow{g \circ f} Z \xrightarrow{w} Z/X \xrightarrow{d''} X[1]$$

il existe un triangle distingué $Y/X \xrightarrow{\phi} Z/X \xrightarrow{\psi} Z/Y \xrightarrow{\theta} Y/X[1]$ vérifiant les relations octaédriques.

Merci de votre attention

Bibliographie

- Jean-Louis VERDIER: Des catégories dérivées des catégories abéliennes. SMF, 1996.
- Emily Riehl et Dominic Verity: Elements of ∞-Category Theory. Cambridge, 2022.
- Jacob Lurie: Higher Topos Theory. Princeton, 2009.
- Kerodon et nLab.