Teoria do Risco

Prof. Ary Elias Sabbag Júnior

$Andry as\ Waurzencz ak$

2017-06-29

Sumário

Pı	Prefácio 2							
1	Conteúdo1.1Teorema da ruína do jogador1.2Equação fundamental da teoria do risco1.3Convolução1.4Preço Comercial1.5Preço Comercial Individual	2 3 3 5 5						
2	Exercício 1 2.1 2.2 2.3 2.4	5 5 6 7						
3	Exercício 2	8						
4	Exercício 3	10						
5	Exercício 4	11						
6	Exercicío 5	12						
7	Trabalho 1 7.1 a 7.2 b 7.3 c 7.4 d 7.5 e 7.6 f 7.7 g 7.8 h	14 14 15 16 16 17 18 18						
8	Trabalho 2 8.1 a 8.2 b 8.3 c 8.4 d 8.5 e 8.6 f 8.7 g 8.8 h 8.9 i 8.10 j	19 20 21 22 22 23 24 24 25						

	8.11																																												
	8.12	I	•	٠	•	•	•	•	•	•	 •	•	٠	•	•	•		•	٠	٠	٠	•	•	•	•	 •	٠	٠	•	•	•	 •	٠	•	٠	•	•		•	٠	•	•	٠	٠	26
9	Pro	va	1																																										27
	9.1																																												
	9.2																																												
	9.3																																												
	9.4																																												
	9.5																																												
	9.6																																												
	9.7																																												
	9.8																																												
	9.9	i															 																												32

Prefácio

Esse gitbook tem como objetivo disponibilizar anotações, exercicíos e trabalhos feitos na disciplina CE072 - Teoria de Risco, ofertada pelo Universidade Federal do Paraná e ministrada pela Prof. Ary Elias Sabbag Júnior.

Repositório: https://github.com/Andryas/CE072

1 Conteúdo

1.1 Teorema da ruína do jogador

Notação

ξ	montante agregado de indenizacao
$E(\xi)$	valor esperado do total de indenizacoes
$\overline{U_0}$	capital de garantia
\overline{P}	premio de risco
PP	premio puro
$\overline{\lambda}$	carregamento de seguranca

Ruína acontecerá quando:

$$\xi \geq U_0 + PP$$

Sendo que:

$$PP = P(1+\lambda)$$

Então temos que:

$$\xi \geq U_0 + P(1+\lambda)$$

Seja ϵ a probabilidade de ruína aceitável

$$P[\xi \ge U_0 + P(1+\lambda)] = \epsilon$$

$$P[\xi \ge \xi_{\epsilon}] = \epsilon$$

$$U_0 + P(1+\lambda) = \xi_{\epsilon}$$

 $\xi = x_1 + x_2 + x_3 + \dots + x_k$

 $\boldsymbol{x}_i = \text{valor pago na i-ésima indenização}$

k = número de sinistros

 $\xi(t) = \text{processo estócastico composto}$

Por que as parcelas das somas são variáveis aleátorias e o número de parcelas (k) é uma variável aleátoria.

1.2 Equação fundamental da teoria do risco

$$U_t = U_0 + (1+\lambda)P - \xi_t \tag{1}$$

Em um momento t o capital vai ser igual a **capital de garantia** mais o **prêmio puro** menos **número de** sinistros.

1.3 Convolução

Seja X_1 uma variável aleátoria com função de densidade de probabilidade f.d.p $f_{X_1}(X_1)$ e seja X_2 uma variável aleátoria (va) com f.d.p $f_{X_2}(X_2)$. Seja $f_{X_1X_2}(x_1x_2) =$ f.d.p conjunta de X_1 e X_2 . Qual a f.d.p de Y_1 = X_2 ?

$$F_{Y_{2}}(y) = \iint_{(X_{1}X_{2})\in\mathbb{R}} f_{X_{1}X_{2}}(x_{1}x_{2}) dx_{1} dx_{2}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{y-x_{2}} f_{X_{1}X_{2}}(x_{1}x_{2}) dx_{1} dx_{2}$$

$$\stackrel{ind}{=} \int_{-\infty}^{\infty} \int_{-\infty}^{y-x_{2}} f_{X_{1}}(x_{1}) f_{X_{2}}(x_{2}) dx_{1} dx_{2} \quad (1)$$

$$f_{Y_2}(y) = \frac{\partial F_{Y_2}(y)}{\partial y} \quad (2)$$

$$= \frac{\partial \int_{-\infty}^{\infty} \int_{-\infty}^{y-x_2} f_{X_1}(x_1) f_{X_2}(x_2) dx_1 dx_2}{\partial y} \quad (1) \quad em \quad (2)$$

$$\int_{-\infty}^{\infty} \frac{\partial \int_{-\infty}^{y-x_2} f_{X_1}(x_1) f_{X_2}(x_2) dx_1 dx_2}{\partial y} \tag{3}$$

$$F_{X_1}(y - x_2) = \int_{-\infty}^{y - x_2} f_{X_1}(x_1) dx_1 \quad (3)$$

$$Substitutindo (3) em (2)$$

$$f_{Y_2}(y) = \int_{-\infty}^{\infty} f_{X_1}(y - x_2) f_{X_2}(x_2) dx_2$$

$$\cdots f_{Y_3}(y) = \int_{-\infty}^{\infty} f_{Y_2}(y - x_3) f_{X_3}(x_3) dx_3$$
(4)

A extensão para a soma de duas variáveis aleatórias discreta é direta. Bastando a substituição da f.d.p pela função de probabilidade. (Integrais por somatórios)

Caso contínuo:

$$f_{Y_N}(y) = \int_{-\infty}^{\infty} f_{Y_{N-1}}(y - x_N) f_{X_N}(x_N) dx_N$$
 (5)

Caso discreto:

$$P[Y_N = y] = \sum_{Y_N} P[Y_{N-1} = Y - X_N] P[X_N = X_N]$$
(6)

Esperança:

$$E[Y_k] = f_k(y) = \sum_{k=0}^{\infty} f_{y,k}(y,k) = \frac{\sum_{k=0}^{\infty} f_{y|k}(y|k)P[Y=y]}{f_{y|k}(y)}$$

Algumas considerações sobre sinistro e custo.

Se o custo do sinistro é constante, então teremos que o montante agregado de indenizações será dado por:

Montante agregado de ξ

$$x_i = x_1 + x_2 + \ldots + x_n$$

c = valor do sinistro

N = número de segurados

$$\xi = cx_1 + cx_2 + \dots + cx_N$$

$$\xi = c(x_1 + x_2 + \dots + x_N)$$

$$\xi = c(x_1 + x_2 + \dots + x_N)$$

$$\xi = cY_N \text{ sendo que } Y_N = \sum_{i=1}^N x_i$$

Temos então que o prêmio de risco será igual à:

$$E(\xi) = E(cY_N) = cE(Y_N) \tag{7}$$

lembrando que é válido somente se o montante a ser pago para cada sinistro for constante.

1.4 Preço Comercial

DA = Despesa Administrativa

CC = Comissão de Corretagem

L = Lucro

$$PC = \frac{PP}{(1 - [DA + CC + L])}$$

Preço Comercial Individual 1.5

m = Número de meses

N = Número de segurados

$$PC_{i,m} = \frac{PC}{m*N}$$

2 Exercício 1

Considere uma carteira em que se tenha o conhecimento que ocorrerão dois sinistros. Não sabemos de antemão, quais serão os montantes. Entretanto, temos conhecimento que esses montantes são independentes e cada um deles segue uma distribuição uniforme no intervalo [0,10].

2.1

A função de densidade de probabilidade da soma desses dois montantes.

$$X_1 \sim U[0, 10] = f_{X_1}(x_1) \begin{cases} \frac{1}{10}; & 0 \le X_1 \le 10 \\ 0 & CC \end{cases}$$

$$X_2 \sim U[0, 10] = f_{X_2}(X_2) \begin{cases} \frac{1}{10}; & 0 \le X_2 \le 10 \\ 0 & CC \end{cases}$$

Como são independentes:

$$f_{X_1X_2}(X_1X_2) = f_{X_1}(X_1)f_{X_2}(X_2)$$

$$f_{X_1X_2}(X_1X_2) = \frac{1}{10}\frac{1}{10} = \frac{1}{100}$$

$$f_{X_1 X_2}(X_1 X_2) = \begin{cases} \frac{1}{100}; & 0 \le X_1 \le 10\\ 0 \le X_2 \le 10\\ 0 & CC \end{cases}$$

Usando o teorema da convolução temos que:

$$f_{Y_2}(y) = \int_{-\infty}^{\infty} f_{Y_1}(y - X_2) f_{X_2}(X_2) dX_2 = \int_{-\infty}^{\infty} \frac{1}{10} * \frac{1}{10} dX_2 = \int_{-\infty}^{\infty} \frac{1}{100} dX_2$$

Com X_2 variando de $0 \le X_2 \le 10$ e $Y_1 = X_1$ variando de $0 \le$ x- $X_2 \le 10$.

O valor mínimo que X_2 pode assumir é 0 e o valor máximo é 10 $X_2 \leq \mathbf{x} \leq 10 + X_2.$

Assim quando $X_2 = 0$, x varia de: $0 \le x \le 10$.

Assim quando $X_2 = 10$, x varia de: $10 \le x \le 20$

$$= \begin{cases} \int_0^x \frac{1}{100} \ ; & 0 \le x \le 10 \\ \int_{x-10}^{10} \frac{1}{100} \ ; & 10 \le x \le 20 \end{cases}$$

Integrando cada uma das partes, temos que:

$$f_{Y_2}(y) = \int_0^x \frac{1}{100} dX_2 = \frac{1}{100} \int_0^x dX_2 = \frac{1}{100} x = \frac{x}{100}$$

$$f_{Y_2}(x) = \int_{x-10}^{10} \frac{1}{100} dX_2 = \frac{1}{100} \int_{x-10}^{10} dX_2 = \frac{1}{100} [X]_{x-10}^{10} = \frac{1}{100} [(10) - (x-10)]$$

$$= \frac{1}{100} (20 - x) = \frac{20 - x}{100}$$

Logo a função de densidade de probabilidade da soma dos dois montantes é:

$$f_{Y_2}(y) \begin{cases} \frac{x}{100} ; & 0 \le x \le 10\\ \frac{20-x}{100} ; & 10 \le x \le 20 \end{cases}$$

2.2

O valor esperado da soma.

$$E[\xi] = \int_0^{10} \frac{x}{100} x dx + \int_{10}^{20} \frac{20 - x}{100} x dx$$

$$= \frac{1}{100} \left[\frac{x^3}{3} \right]_0^{10} + \frac{1}{100} \left(\left[\frac{20x^2}{2} \right]_{10}^{20} - \left[\frac{x^3}{3} \right]_{10}^{20} \right)$$

$$= 3.33333 + \frac{1}{100} (3000 - 2333.3333) = 3.3333 + 6.6667 = 10$$

$$E[Y] = 10$$

2.3

A variância dessa soma.

$$Var[\xi] = E[\xi^2] - (E[\xi])^2$$

$$E[\xi] = 10$$

$$E[\xi^2] = ?$$

$$\begin{split} & \mathrm{E}[\xi^2] = \int_0^{10} \tfrac{x}{100} x^2 dx + \int_{10}^{20} \tfrac{20-x}{100} x^2 dx = \int_0^{10} \tfrac{x^3}{100} dx + \int_{10}^{20} \tfrac{20x^2-x^3}{100} dx = \tfrac{1}{100} [\tfrac{x^4}{4}]_0^{10} + \tfrac{1}{100} ([\tfrac{20x^3}{3}]_{10}^{20} [\tfrac{x^4}{4}]_{10}^{20}) \\ & = 25 + \tfrac{1}{100} (46666.6667 - 37500) = 25 + 92.6667 = 116.6667 \end{split}$$

Logo:

$$Var[\xi] = 116.6667 - (10)^2 = 16.6667.$$

2.4

A seguradora deseja ter uma reserva de forma que haja 1% de chance que ela não possa pagar estes 2 sinistros. Qual é o valor?

$$P[Y_2 \ge Y_{\epsilon}] = \epsilon$$

$$P[Y_2 \ge y_{0.01}] = 0.01$$

Como queremos verificar a chance de 1% de que a seguradora venha a quebrar, vamos então calcular usando $f_{Y_2}(\mathbf{x}) = \int_{y_0.01}^{20} \frac{20-x}{100}$; $10 \le \mathbf{x} \le 20$, pois a outra parte representa 0.5 de probabilidade de que a seguradora venha quebrar. Por esse motivo utilizaremos a outra expressão.

$$\begin{split} &= \int_{y_{0.01}}^{20} f_{Y_2}(y) dx = \int_{y_{0.01}}^{20} \frac{20 - x}{100} dx = \frac{1}{100} ([20x]_{y_{0.01}}^{20} - [\frac{x^2}{2}]_{y_{0.01}}^{20}) \\ &= \frac{1}{100} (400 - 20y_{0.01} - (200 - \frac{y_{0.01}^2}{2})) \\ &= \frac{1}{100} \left(\frac{y_{0.01}^2}{2} - 20y_{0.01} + 200 \right) = \frac{1}{100} \left(\frac{y_{0.01}^2 - 40y_{0.01} + 400}{2} \right) \\ &= \frac{y_{0.01}^2 - 40y_{0.01} + 400}{200} = 0.01 \\ &y_{0.01}^2 - 40y_{0.01} + 400 = 2 \\ &y_{0.01} = 21.41 \text{ ou } y_{0.01} = 18.58 \end{split}$$

Como 21.41 cobre as possibilidades então a resposta é 18.58.

3 Exercício 2

Considere que $X \sim \exp(\lambda)$. Use o teorema da convolução para determinar a função de densidade de probabilidade de $Y = X_1 + X_2 + X_3 + X_4$ sobre a condição de indepêndencia.

$$Y_{1} = X_{1} \sim exp(\lambda); x \geq 0$$

$$X_{2} \sim exp(\lambda); x \geq 0$$

$$X_{3} \sim exp(\lambda); x \geq 0 = f(x) \begin{cases} \lambda e^{\lambda x} & ; x \geq 0 \\ 0 & CC \end{cases}$$

$$X_{4} \sim exp(\lambda); x \geq 0$$

$$(8)$$

Usando o teorema da convolução

$$Y_2 = \int_{-\infty}^{\infty} f_{Y_1}(y - x_2) f_{X_2}(x_2) dx_2$$

$$= \int_{-\infty}^{\infty} \lambda e^{-\lambda(y - x_2)} \lambda e^{-x_2} dx_2$$

$$= \int_{-\infty}^{\infty} \lambda^2 e^{-\lambda y} dx_2$$
(9)

Como $x_2 \ge 0$ e $y - x_2 \ge 0$ temos então que $0 \le x_2 \le y$.

$$Y_2 = \lambda^2 e^{-\lambda y} \int_0^y dx_2$$

$$= \lambda^2 e^{-\lambda y} y \; ; \; y \ge 0$$
(10)

Portanto temos que:

$$Y_2 = \begin{cases} \lambda^2 y e^{-\lambda y} & y \ge 0\\ 0 & cc \end{cases}$$

Para Y_3 .

$$Y_3 = \int_{-\infty}^{\infty} fy_2(y - x_3) fx_3(x_3) dx_3$$

$$= \int_{-\infty}^{\infty} \lambda^2 (y - x_3) e^{-\lambda(y - x_3)} \lambda e^{-\lambda x_3} dx_3$$

$$= \int_{-\infty}^{\infty} \lambda^3 e^{-\lambda y} (y - x_3) dx_3$$
(11)

Como $x_3 \ge 0$ e $y - x_3 \ge 0$ temos então que $0 \le x_3 \le y$.

$$Y_{3} = \int_{0}^{y} \lambda^{3} e^{-\lambda y} y dx_{3} - \int_{0}^{y} \lambda^{3} e^{-\lambda y} x_{3} dx_{3}$$

$$= \lambda^{3} e^{-\lambda y} y \int_{0}^{y} dx_{3} - \lambda^{3} e^{-\lambda y} \int_{0}^{y} x_{3} dx_{3}$$

$$= \lambda^{3} e^{-\lambda y} y y - \lambda^{3} \frac{y^{2}}{2} e^{-\lambda y}$$

$$= \lambda^{3} e^{-\lambda y} y^{2} - \lambda^{3} \frac{y^{2}}{2} e^{-\lambda y}$$

$$= \lambda^{3} \frac{y^{2}}{2} e^{-\lambda y}; y \ge 0$$

$$(12)$$

Portanto temos que:

$$Y_3 = \begin{cases} \lambda^3 \frac{y^2}{2} e^{-\lambda y} & y \ge 0\\ 0 & cc \end{cases}$$

Para Y_4 .

$$Y_{4} = \int_{-\infty}^{\infty} fy_{3}(y - x_{4}) fx_{4}(x_{4}) dx_{4}$$

$$= \int_{-\infty}^{\infty} \lambda^{3} \frac{(y - x_{4})^{2}}{2} e^{-\lambda(y - x_{4})} \lambda e^{-\lambda x_{4}} dx_{4}$$

$$= \int_{-\infty}^{\infty} \lambda^{4} \frac{(y - x_{4})^{2}}{2} e^{-\lambda y} dx_{4}$$
(13)

Como $x_4 \ge 0$ e $y - x_4 \ge 0$ temos então que $0 \le x_4 \le y$.

$$Y_{4} = \int_{0}^{y} \lambda^{4} \frac{(y^{2} - 2yx_{4} + x_{4}^{2})}{2} e^{-\lambda y} dx_{4}$$

$$= \int_{0}^{y} \lambda^{4} e^{-\lambda y} \frac{y^{2}}{2} dx_{4} - 2 \int_{0}^{y} \lambda^{4} e^{-\lambda y} \frac{-yx_{4}}{2} dx_{4} + \int_{0}^{y} \lambda^{4} e^{-\lambda y} \frac{x_{4}^{2}}{2} dx_{4}$$

$$= \lambda^{4} e^{-\lambda y} \frac{y^{2}}{2} \int_{0}^{y} dx_{4} - \lambda^{4} e^{-\lambda y} y \int_{0}^{y} x_{4} dx_{4} + \lambda^{4} e^{-\lambda y} \int_{0}^{y} \frac{x_{4}^{2}}{2} dx_{4}$$

$$= \lambda^{4} e^{-\lambda y} \frac{y^{3}}{2} - \lambda^{4} e^{-\lambda y} \frac{y^{3}}{2} + \lambda^{4} e^{-\lambda y} \frac{y^{3}}{6}$$

$$= \lambda^{4} e^{-\lambda y} \frac{y^{3}}{6}; y \ge 0$$

$$(14)$$

Portanto temos que:

$$Y_4 = \begin{cases} \lambda^4 \frac{y^3}{6} e^{-\lambda y} & y \ge 0\\ 0 & cc \end{cases}$$

4 Exercício 3

Considere 2 segurados independentes os quais desejam fazer um seguro. O limite do número de sinistros para cada um deles é de 2 sinistros no ano. A probabilidade de 1 segurado vir a ter \mathbf{k} sinistros em 1 ano é inversamente proporcional a $\mathbf{k+1}$. Já o 2 segurado a probabilidade de vir a ter \mathbf{k} sinistros em 1 ano é inversamente proporcional a $\mathbf{k+2}$. Qual a distribuição de probabilidade para o número de sinistros destes 2 segurados?

Para o segurado 1:

$$P[X_1 = x_1] = \frac{c_1}{x_1 + 1}; x_1 = 0, 1, 2$$

Para o segurado 2:

$$P[X_2 = x_2] = \frac{c_2}{x_2 + 1}; x_2 = 0, 1, 2$$

$$\begin{array}{ccccc} X_1 & P[X_1=x_1] & X_2 & P[X_2=x_2] \\ 0 & c_1 & 0 & \frac{c_2}{2} \\ 1 & \frac{c_1}{2} & 1 & \frac{c_2}{3} \\ 2 & \frac{c_1}{3} & 2 & \frac{c_2}{4} \end{array}$$

Para descobrir o valor de c_1 e c_2 basta igualarmos a soma das probabilidades a 1.

Para o segurado 1 fica então:

$$c_1 + \frac{c_1}{2} + \frac{c_1}{3} = 1$$

$$c_1 = \frac{6}{11}$$

Para o segurado 2 fica então:

$$\frac{c_2}{2} + \frac{c_2}{3} + \frac{c_2}{4} = 1$$

$$c_2 = \frac{12}{13}$$

Portanto:

$$E[X_1] = 0 * \frac{6}{11} + 1 * \frac{6}{22} + 2 * \frac{6}{33} = 0.63636$$

 $E[X_2] = 0 * \frac{12}{26} + 1 * \frac{12}{39} + 2 * \frac{12}{52} = 0.75923$

Somando a quantidade máxima de sinistros de cada segurado obtemos a quantidade máxima de sinistros que podem ocorrer nesta carteira. O mesmo para a quantidade mínima de sinistros. Sendo assim teremos que usar o teorema da convolução para calcular a probabilidade do acontececimento de 0,1,2,3 e 4 sinistros.

Obs:
$$X_1 = Y_1$$
.

$$P[Y_2 = y_2] = \sum_{Y_2} P[X_1 = y - x_2] P[X_2 = x_2]$$

$$P[Y_2 = 0] = \sum_{0}^{2} P[X_1 = -x_2] P[X_2 = x_2]$$

$$\begin{split} &= \mathrm{P}[X_1 = 0] \mathrm{P}[X_2 = 0] + \mathrm{P}[X_1 = -1] \mathrm{P}[X_2 = 1] + \mathrm{P}[X_1 = -2] \mathrm{P}[X_2 = 2] \\ &= \mathrm{P}[X_1 = 0] \mathrm{P}[X_2 = 0] = \frac{6}{11} \cdot \frac{6}{13} = 0.25175 \\ &\mathrm{P}[Y_2 = 1] = \sum_0^2 P[X_1 = 1 - x_2] \mathrm{P}[X_2] \\ &= \mathrm{P}[X_1 = 1] \mathrm{P}[X_2 = 0] + \mathrm{P}[X_1 = 0] \mathrm{P}[X_2 = 1] + \mathrm{P}[X_1 = -1] \mathrm{P}[X_2 = 2] \\ &= \mathrm{P}[X_1 = 1] \mathrm{P}[X_2 = 0] + \mathrm{P}[X_1 = 0] \mathrm{P}[X_2 = 1] \backslash \\ &= \frac{3}{11} \cdot \frac{6}{13} + \frac{6}{11} \cdot \frac{4}{13} = 0.29371 \\ &P[Y_2 = 2] = \sum_0^2 P[X_1 = 2 - x_2] P[X_2 = x_2] \\ &= P[X_1 = 2] P[X_2 = 0] + P[X_1 = 1] P[X_2 = 1] + P[X_1 = 0] P[X_2 = 2] \\ &= \frac{2}{11} \cdot \frac{6}{13} + \frac{3}{11} \cdot \frac{4}{13} + \frac{6}{11} \cdot \frac{3}{13} = 0.29371 \\ &P[Y_2 = 3] = \sum_0^2 P[X_1 = 3 - x_2] P[X_2 = x_2] \\ &= P[X_1 = 3] P[X_2 = 0] + P[X_1 = 2] P[X_2 = 1] + P[X_1 = 1] P[X_2 = 2] \\ &= P[X_1 = 2] P[X_2 = 1] + P[X_1 = 1] P[X_2 = 2] = \frac{2}{11} \cdot \frac{4}{13} + \frac{3}{11} \cdot \frac{3}{13} = 0.11888 \\ &P[Y_2 = 4] = \sum_0^2 P[X_1 = 4 - x_2] P[X_2 = x_2] \\ &= \mathrm{P}[X_1 = 4] \mathrm{P}[X_2 = 0] + \mathrm{P}[X_1 = 3] \mathrm{P}[X_2 = 1] + \mathrm{P}[X_1 = 2] \mathrm{P}[X_2 = 2] \\ &= \mathrm{P}[X_1 = 4] \mathrm{P}[X_2 = 0] + \mathrm{P}[X_1 = 3] \mathrm{P}[X_2 = 1] + \mathrm{P}[X_1 = 2] \mathrm{P}[X_2 = 2] \\ &= \mathrm{P}[X_1 = 4] \mathrm{P}[X_2 = 2] = \frac{2}{11} + \frac{3}{13} = 0.04196 \end{split}$$

$$\begin{array}{ccc} Y_2 & P[Y_2=y] \\ 0 & 0.251785 \\ 1 & 0.29371 \\ 2 & 0.29371 \\ 3 & 0.11888 \\ 4 & 0.04196 \end{array}$$

Prêmio de Risco

$$E[Y_2] = 0 * 0.25175 + 1 * 0.29371 + 2 * 0.29371 + 3 * 0.11888 + 4 * 0.04196$$

Teorema

$$E[Y_2] = E[X_1] + E[X_2]$$

$$\begin{array}{cccc} Y_2 & P[Y_2 \leq y] & P[Y_2 \geq y] \\ 0 & 0.2517 & 0.7483 \\ 1 & 0.5454 & 0.4536 \\ 2 & 0.8391 & 0.1609 \\ 3 & 0.9580 & 0.0420 \\ 4 & 1 & 0 \end{array}$$

5 Exercício 4

Considere 2 segurados independetes onde cada um deles poder ter no máximo 1 sinistro no período de 1 ano. O custo do sinistro é igual a **c** e a probabilidade de ocorrêcia de sinistro para cada um é igual a **p**. Qual o prêmio de risco da carteira com estes 2 segurados?

$$E[\xi] = E[cX_1] + E[cX_2] = cE[X_1] + cE[X_2] = cE[X_2]$$

$$X_i = \begin{cases} 1 \to & p \\ 0 \to & 1 - p \end{cases}$$

Usando o teorema da convolução:

$$P[Y_N = y] = \sum_{Y_N} P[Y_{N-1} = x - X_N] P[X_N = X_N]$$

Temos então que:

$$P[Y_2 = 0] = P[X_1 = 0 - 0]P[X_2 = 0] + P[X_1 = 0 - 1]P[X_2 = 1] = (1 - p) * (1 - p) = (1 - p)^2$$

$$P[Y_2 = 1] = P[X_1 = 1 - 0]P[X_2 = 0] + P[X_1 = 1 - 1]P[X_2 = 1] = p * (1 - p) + (1 - p) * p = 2p(1 - p)$$

$$P[Y_2 = 2] = P[X_1 = 2 - 0]P[X_2 = 0] + P[X_1 = 2 - 1]P[X_2 = 1] = p * p = p^2$$

$$Y_2$$
 $P[Y_2 = y]$
0 $(1-p)^2$
1 $2p(1-p)$
2 p^2

$$E[Y_2] = 0 * (1-p)^2 + 1 * 2p(1-p) + 2 * p^2 = 2p(1-p) + 2p^2 = 2p((1-p) + p) = 2p(1-p) + 2p^2 = 2p(1-p) +$$

Logo o prêmio de risco da carteira é:

$$E[\xi] = cE[Y_2] = c2p$$

Se estendermos o número de segurados chegaremos ao seguinte resultado:

$$Y \sim Bin(n, p)$$

6 Exercicío 5

Considere um produto composto por N segurados independetes que fazem a contratação de um seguro por um período de um ano. A condição do contrato determina que cada segurado poderá ter no máximo 1 sinistro por ano. Seja $\bf p$ a probabilidade de ocorrência do sinistro, a qual é a mesma para todos segurados. Considere ainda que quando ocorre o sinistro o valor a ser indenizado, $\bf c$, será igual e constante para todos os sinistros. Seja $\bf \lambda$ o carregamento de segurança adotado pela segurado e seja $\bf U_0$ o capital de garantia disponível. Ainda, seja $\bf \epsilon$ a probabilidade de ruína aceitável pela seguradora. Com base nessas informações determina a equação fundamental da teoria do risco.

 $\begin{array}{lll} \xi = & \text{montante agregado} \\ N = & \text{numero de segurados} \\ p = & \text{probabilidade de sinistro} \\ c = & \text{indenizacoes} \\ \epsilon = & \text{probabilidade de ruina} \\ U_0 = & \text{capital de garantia} \end{array}$

Independentes e 1 seguro por 1 ano.

$$X_N \in [0, 1, ...N]$$

$$x_i = \begin{cases} 1 \to & \text{se o i-esimo segurado tem sinistro} \\ 0 \to & \text{se o i-esimo segurado nao tem sinistro} \end{cases}$$

$$X_i \sim \text{Bernoulli(p) onde p} = P[Z_i = \frac{1}{p}]$$

$$Y_N \sim Bin(N, p)$$

Para isso utilizaremos o resultado (1)

$$P[U_t < 0] = \epsilon$$

$$P[U_0 + PP - \xi < 0] = \epsilon$$

$$P[U_0 + P(1 + \lambda) - \xi < 0] = \epsilon$$

$$P[\xi > U_0 + P(1 + \lambda)] = \epsilon$$
(15)

O prêmio (P) é dado por:

$$P = E[\xi] = E[cY_N] = cE[Y_N] = cNp$$

Logo temos que:

$$P[cY_N > U_0 + cNp(1+\lambda)] = \epsilon$$

$$P[Y_N > \frac{U_0}{c} + Np(1+\lambda)] = \epsilon$$
(16)

$$P[Y_N = y] = \binom{N}{y} p^y (1-p)^{N-y}$$

$$P[Y_N \le y_{1-\epsilon}] = \sum_{y=0}^{y_{1-\epsilon}} \binom{N}{y} p^y (1-p)^{N-y}$$

$$P[Y_N \ge y_{1-\epsilon}] \cong 1 - P[Y_N \le y_{1-\epsilon}]$$

$$(17)$$

igualando (16) com (17)

 $y_{\epsilon} = \text{soma da probabilidade de } \epsilon$

Temos então os seguintes resultados:

$$y_{\epsilon} = \frac{U_0}{c} + Np(1+\lambda) \to \text{Determina a probabilidade de ruína}$$
 (18)

$$U_0 = [y_{\epsilon} - (1+\lambda)P]c \to \text{Determina o capital de garantia.}$$
 (19)

Se λ cresce enta
o U_0 diminui. (Quanto o acionista tem que por de dinheiro)

$$\lambda = \frac{y_{\epsilon} - \frac{U_0}{c}}{Np} - 1 \to \text{ Determina o carregamento de segurança.}$$
 (20)

Se c
 cresce então λ diminui.

$$c = \frac{U_0}{y_{\epsilon} - (1+\lambda)Np} \rightarrow \text{Determina o valor da indenização}$$
 (21)

Se U_0 cresce então c diminui.

OBS

Os resultados devem ser apresentados com das casas decimais, com excessão da distribuição de probabilidade de X que deve ser apresentada com 5 casas decimais.

7 Trabalho 1

Considere que você precisa estabelecer o valor da aposta em um jogo que tem as seguites características. O jogador escolhe 3 números, dentre 100 números possíveis. O jogo consiste no sorteio de 3 números sem reposição. No caso do jogador acertar 1 número ele ganha um prêmio de R\$ 10,00. No caso de acertar 2 números ele ganha R\$ 100,00. Se ele acertar os 3 números ele recebe um prêmio R\$ 100000,00. Se não houver o acerto de nenhum dos números ele nada recebe.

7.1 a

[1] 0.0017

Defina X como sendo a variável aleatória "valor pago para um jogador em uma rodada do jogo". Com base nesta definição calcule a distribuição de probabilidade de X, o valor esperado e a variância desta variável aleatória.

$$Y \sim Hiper(m, n, r) = \frac{\binom{m}{y} \binom{n-m}{r-y}}{\binom{n}{r}}$$

```
k~\epsilon~\mathbb{I}~e~\max\{0,r\text{-}(n\text{-}m)\} \leq k \leq \min\{r,m\}
```

Para as condições desse jogo temos então:

```
n = 100
m = 3
r = 3
y = número de acertos
n <- 100
m < -3
r < -3
y <- 0
p0 <- round(dhyper(y,m,n,r),5)</pre>
p0
## [1] 0.91433
y <- 1
p1 <- round(dhyper(y,m,n,r),5)
р1
## [1] 0.08397
y <- 2
p2 <- round(dhyper(y,m,n,r),5)</pre>
```

```
y <- 3
p3 <- round(dhyper(y,m,n,r),5)
p3</pre>
```

[1] 0.00001

$$\begin{array}{cccc} k & P[Y=y] & Ganho \\ 0 & 0.91433 & 0 \\ 1 & 0.08397 & 10 \\ 2 & 0.0017 & 100 \\ 3 & 0.00001 & 100000 \end{array}$$

7.1.1

 $X \in \{0,10,100,100000\}$

$$P[X = x] = P[Y = y | m = 3, n = 100, r = 3] = \frac{\binom{3}{y} \binom{97}{3-y}}{\binom{100}{3}}$$

7.1.2

```
ex <- round(p0 * 0 + p1 * 10 + p2 * 100 + p3 * 100000,2)
ex
```

[1] 2.01

$$E[X] = \sum_{i=1}^{4} p_i x_i = 0 * 0.91433 + 10 * 0.08397 + 100 * 0.0017 + 100000 * 0.00001 = 2.01.$$

7.1.3

```
ex2 <- round(p0 * 0^2 + p1 * 10^2 + p2 * 100^2 + p3 * 100000^2,2)
ex2
```

[1] 100025

```
varX <- round(ex2 - (ex^2),2)
varX</pre>
```

[1] 100021

$$\begin{split} \mathbf{E}[X^2] &= \sum_{i=1}^4 p_i x_i^2 = 0^2 * 0.91433 + 10^2 * 0.08397 + 100^2 * 0.0017 + 100000^2 * 0.00001 = 100025.4. \\ \mathbf{Var}[\mathbf{X}] &= \mathbf{E}[X^2] - (E[X])^2 = 100021.36 \end{split}$$

7.2 b

Considere que este jogo é jogado 10000 vezes por ano. Qual o valor esperado a ser pago, pela banca de premiação?

$$E[X] * n$$

```
\begin{array}{l} n <- 10000 \\ n * ex \end{array}
```

7.3 c

Defina-se um jogo como sendo justo, como sendo aquele em que o valor esperado do lucro da banca é igual a zero. Neste caso qual seria o valor da aposta a ser paga pelo jogador em jogo justo?

Seria o valor esperado de X.

$$E[X] = 2.01$$

7.4 d

Considere que um órgão legislador regulamente que o cassino deve ter um capital disponível U que permita garantir que haja uma probabilidade igual a 0,025 que ele venha a quebrar. A definição de "quebra" corresponde a situação em que o cassino não dispõem de capital para pagar o valor dos prêmios, no período de um ano, para o público alvo almejado de 10000 jogos. Se o valor dos prêmios a serem pagos for superior a soma de U com o valor arrecadado de apostas considera-se que houve quebra do cassino.

Assim sendo, se o cassino cobra o valor de aposta individual de R\$ 1,64 qual deve ser o valor do capital disponível U para que a probabilidade de quebra seja igual a 0,025 nos 100000 jogos?

Pelo Teorema Central do Limite temos:

$$\frac{Sn - n\mu}{\sqrt{\sigma^2 n}} \stackrel{dist}{\to} N(0, 1)$$

Sendo:

 $\mathrm{Sn} = \mathrm{U}$ - c * n , onde c é o valor da aposta.

$$\mu = E[X]$$

$$\sigma = \sqrt{Var[X]}$$

temos então:

nu

$$\frac{(U+c*n)-n\mu}{\sqrt{Var[X]n}}=z$$

$$U=z\sqrt{Var[X]n}+n\mu-cn$$

```
c <- 1.64 # aposta
z <- round(qnorm(1 - 0.025),2) # probabilidade de ruína de 0.025

# A valor da aposta em n jogos
A <- c * n
A

## [1] 16400
nu <- n*ex</pre>
```

```
## [1] 20100
nsign <- sqrt(varX*n)
nsign

## [1] 31626

# Logo o capital de garantia é igual a
Ud <- z * nsign + nu - A
# Ud = U da questão d
Ud</pre>
```

$$U = 1.96 * 31626.15373 + 20100 - 16400$$

Temos então que para satisfazer a probabilidade de 0.025, com uma aposta de R\$ 1.64 em 10000 jogos, temos que ter um capital disponível de R\$ 65687.26132.

7.5 e

Se o valor da aposta individual for igual a R\$ 1,64 e o capital disponível U for igual a R\$ 52820,48, qual será a probabilidade de quebra da banca em 10000 jogos?

Pelo Teorema Central do Limite temos:

$$\frac{Sn - n\mu}{\sqrt{\sigma^2 n}} \stackrel{dist}{\to} N(0, 1)$$

temos então:

$$\frac{(U+c*n)-n\mu}{\sqrt{Var[X]n}}=z$$

```
# Ue = U da questão e
Ue <- 52820.48

# ze = z da questão e
ze <- round(((Ue + A) - nu) / nsign,2)
ze</pre>
```

 $z = \frac{(52820.48 + 16400) - 20100}{\sqrt{31626.15373}}$

```
p <- round(1 - pnorm(ze),2)
p</pre>
```

[1] 0.06

[1] 1.55

Logo a probabilidade de quebra é 0.06.

7.6 f

Se o capital for R\$ 52820,48 qual deve ser o valor da aposa individual a ser cobrada de forma que se mantenha a probabilidade de quebra igual a 0,025 em 10000 jogos?

Pelo Teorema Central do Limite temos:

$$\frac{Sn - n\mu}{\sqrt{\sigma^2 n}} \stackrel{dist}{\to} N(0, 1)$$

temos então:

$$\frac{(U+c*n)-n\mu}{\sqrt{Var[X]n}}=z$$

$$c = \frac{z\sqrt{Var[X]n} + n\mu - U}{n}$$

```
cf <- round((z * nsign + nu - Ue) / n,2)
cf</pre>
```

[1] 2.93

Logo o preço para que as condições sejam satisfeitas tem que ser de R\$ 2.93.

7.7 g

Qual a probabilidade de lucro nos 10000 jogos, se o valor cobrado da aposta for de R\$ 3,55?

$$z = \frac{A - n\mu}{\sqrt{\sigma^2 n}}$$

```
# cg = aposta da questão g
cg <- 3.55

zg <- (cg*n - nu ) / nsign

probL <- pnorm(zg)
probL</pre>
```

[1] 0.68685

Portanto a probabilidade de lucro é igual a 0.68685.

7.8 h

Com o valor da aposta individual a R\$ 3,55 qual deve ser o capital disponível U, de forma que a probabilidade de "quebra" seja igual a 0.025 em 10000 jogos?

Pelo Teorema Central do Limite temos:

$$\frac{Sn - n\mu}{\sqrt{\sigma^2 n}} \stackrel{dist}{\to} N(0, 1)$$

$$\frac{(U+c*n)-n\mu}{\sqrt{Var[X]n}}=z$$

$$U = z\sqrt{Var[X]n} + n\mu - cn$$

Para satisfazer as condições o capital disponível deve ser de R\$ 46587.26132.

8 Trabalho 2

Um plano de saúde deseja precificar um particular tipo de exame, para uma carteira composta por 25000 pessoas. O custo de cada exame é igual a R\$ 1.500,00 e cada segurado não tem limite de realização de exames no período contratado do seguro. O período de contratação é por 1 ano. Para avaliação da taxa de utilização deste exame, o estatístico fez o levantamento da utilização deste exame junto a um laboratório que atua na prestação deste tipo de serviço e que tem 12.000 clientes cadastrados. No levantamento efetuado observou-se o número de credenciados no laboratório e o número de exames realizados. Na tabela abaixo é apresentada a distribuição destes resultados.

Considerando que estas informações são uma base fidedigna para a precificação de uma carteira com 25.000 segurados, responda as questões abaixo. Para resolução das questões considere que a seguradora trabalha com uma despesa administrativa de 20%, comissão de corretagem de 15% e margem de lucro de 5%. A probabilidade de ruína adotada é de 0,01. Para solução considere a aproximação pelo Teorema Central do Limite

Número de exames
0
1
2
3
4
5
Total

INFORMAÇÕES IMPORTANTES:

$$N = 25000$$
 $n = 12000$
 $c = R$1.500,00$
 $DA = 20\%$ $\epsilon = 0.01$
 $L = 5\%$ $CC = 15\%$

8.1 a

Determine a taxa de utilização por segurado por ano.

Para determin a taxa de utilização por segurado vamos usar o levantamento feito pelo estatístico.

A taxa de utilização será dada pela esperança sobre o número de segurados.

```
n0 <- 4900
n0
## [1] 4900
n1 <- 4402
n1
## [1] 4402
n2 <- 1950
## [1] 1950
n3 <- 590
n3
## [1] 590
n4 <- 135
n4
## [1] 135
n5 <- 23
n5
## [1] 23
ey < -0 * n0 + 1 * n1 + 2 * n2 + 3 * n3 + 4 * n4 + 5 * n5
n <- 12000
taxa_utilizacao <- ey / n
taxa_utilizacao
## [1] 0.89392
```

$$\frac{E[X]}{n} = \frac{\sum_{i=0}^{5} 0*4900 + 1*4402 + 2*1950 + 3*590 + 4*135 + 5*23}{12000}$$

Logo temos que a taxa de utilização é igual a 0.89392.

dt\$Prob_Poisson <- dpois(dt\$NEX,taxa_utilizacao)</pre>

8.2 b

Avalie a hipótese de que o número de utilizações por segurado, por ano, segue uma distribuição Poisson (use para tanto o nível de significância igual a 0,05)

```
H_0: A variável X segue uma dist \sim \operatorname{Pois}(\lambda)
H_1: A variável X não segue uma dist \sim \operatorname{Pois}(\lambda)
\alpha = 5\%
\hat{\lambda} = 0.89392
# Tabela 1 NEX = Número de exames e NSO = Número de Segurados Observados dt <- data.frame(NEX = 0:5,NSO = c(4900,4402,1950,590,135,23))
# Probabilidade Poisson
```

```
# NSE = Número de Segurados Esperados
dt$NSE <- dt$Prob_Poisson * n
knitr::kable(dt)</pre>
```

NEX	NSO	Prob_Poisson	NSE
0	4900	0.40905	4908.606
1	4402	0.36566	4387.885
2	1950	0.16343	1961.202
3	590	0.04870	584.384
4	135	0.01088	130.598
5	23	0.00195	23.349

NEX = Número de exames

NSO = Número de Segurados Observados

NSE = Número de Segurados Esperados

```
t <- chisq.test(dt$NSO,dt$NSE)
```

```
## Warning in chisq.test(dt$NSO, dt$NSE): Chi-squared approximation may be
## incorrect
t
```

```
##
## Pearson's Chi-squared test
##
## data: dt$NSO and dt$NSE
## X-squared = 30, df = 25, p-value = 0.22
```

Com um p-value maior que 0,05, optamos por não rejeitar H_0 e concluímos que os dados provavelmente seguem uma distribuição Poisson.

8.3 c

Considerando a taxa calculada em **a**, na carteira com 25000 segurados, qual o número esperado de segurados com nenhuma utilização em um ano? Qual o número esperado de segurados com mais de 3 utilizações em 1 ano?

Vamos calcular a probabilidade de P[X=0] e P[X>3].

```
p0 <- dpois(0,taxa_utilizacao)
p0

## [1] 0.40905
p3 <- 1 - ppois(3,taxa_utilizacao)
p3</pre>
```

```
## [1] 0.01316
```

Obtemos os seguites resultados.

```
Para P[X=0]
```

```
N <- 25000
rc1 <- N * p0
rc1
```

```
Para P[X>3] = 1 - P[X \le 3]
```

```
rc2 <- N * p3 rc2
```

[1] 329.01

Temos então que o número esperado na carteira de 25000 com nenhuma utilização é igual a 10226.26242 segurados e com mais de três utilizações 329.00861 segurados.

8.4 d

Qual a taxa de utilização do exame, na carteira por ano?

$$N * \lambda$$

```
mu <- N * taxa_utilizacao
mu</pre>
```

[1] 22348

Logo, esperamos que na carteira, no período de um ano, ocorram em média 22347.91667 sinistros.

8.5 e

Qual o prêmio de risco da carteira?

Utilizando o resultado em (7).

Temos então:

```
c <- 1500
ex <- c * N * taxa_utilizacao
ex</pre>
```

[1] 33521875

Logo o prêmio de risco da carteira é R\$ 33521875.

8.6 f

Se não for adotado capital de garantia, qual o carreamento de segurança a ser praticado e qual o prêmio puro a ser considerado, com a probabilidade de ruína adotada no enunciado?

Aproximando uma Poisson para uma Normal temos que:

$$\mu = \lambda$$

$$\sigma^2 = \lambda$$

$$\xi_{\epsilon} = 0.01$$

Média

mu

Temos então que o prêmio puro é igual a:

$$PP = cY_{\epsilon} - U_0$$

Como $U_0 = 0$

```
pp <- c * ye
pp
```

[1] 34043531

$$PP = 34043531.27855$$

E o carregamento de segurança é igual a:

$$PP = P(1 + \lambda)$$
$$\lambda = \frac{PP - P}{P}$$

 $Com U_0 = 0.$

```
# lembrando que ex é igual o prêmio de risco
lcar <- (pp - ex) / ex
lcar
```

[1] 0.015562

Temos então que:

$$\lambda = 0.01556$$

8.7 g

Neste caso, qual o prêmio comercial individual mensal, considerando um parcelamento em 12 meses, sem adotar-se juros?

$$PC = \frac{PP}{1 - [DA + L + CC]}$$

```
da <- 0.2

1 <- 0.05

cc <- 0.15

pc <- pp / (1 - (da + 1 + cc))

pc
```

$$PC_{i,m} = \frac{PC}{m*N}$$

```
m <- 12
pci <- pc / (m * N)
pci
```

[1] 189.13

$$PC_{i,m} = \frac{56739218.79758}{12 * 25000} = 189.13073$$

Logo temos que o Prêmio Individual Mensal é igual a R\$ 189.13073.

8.8 h

Se for praticado um prêmio comercial individual mensal igual a R\$ 150,00 qual deve ser o capital de garantia a ser adotado para manutenção da probabilidade de ruína almejada?

$$PC_{i,m} = \frac{PC}{mN} = \frac{\frac{PP}{1 - [DA + L + CC]}}{mN} = \frac{PP}{(1 - [DA + CC + L])mN} = \frac{cY_{\epsilon} - U_0}{(1 - [DA + CC + L])Mn}$$

$$PC_{i,m}(1 - [DA + L + CC])nM - cY_{\epsilon} = -U_0$$

$$U_0 = cY_{\epsilon} - PC_{i,m}(1 - [DA + L + CC])nM$$

```
# preço comercial individual da questão h
pci_h <- 150

U <- c * ye - pci_h * (1 - (da + l + cc)) * m * N
U</pre>
```

[1] 7043531

Logo o capital de garantia que deve ser adotado para se manter as mesmas condições tem que ser igual a R\$ 7043531.27855.

8.9

Ao se praticar um prêmio comercial individual mensal de R\$ 160,00 e um capital de garantia de R\$ 5000000. Qual será a probabilidade de ruína que a seguradora estará incorrendo?

Utilizando o desenvolvimento de $PC_{i,m}$ da questão anterior, só que ao invez de isolarmos U_0 vamos isolar Y_{ϵ} .

$$PC_{i,m}(1-[DA+L+CC])nM = cY_{\epsilon}-U_0$$

$$Y_{\epsilon} = \frac{PC_{i,m}(1 - [DA + L + CC])nM + U_0}{c}$$

```
pci_i <- 160
U_i <- 5000000
ye_i <- (pci_i * (1 - (da + 1 + cc)) * m * N + U_i) / c
ye_i</pre>
```

Encontrando a probabilidade de ruína para $Y_{\epsilon}=22533.33333$.

```
to <- mu + 6 * sigma
curve(dnorm(x,mean = mu,sd = sigma ),from = mu - 6 * sigma ,to = to ,xlab = "Número de Sinistros", ylab
cord.x <- c(ye_i,seq(ye_i,to,0.01),to)
cord.y <- c(0,dnorm(seq(ye_i,to,0.01),mu,sigma),0)
polygon(cord.x,cord.y,col = 'skyblue')</pre>
```

```
ee <- round(1 - pnorm(ye_i, mu , sigma),2)
ee</pre>
```

[1] 0.11

Logo a probabilidade de ruína fica igual a 0.11.

8.10 j

Adotando-se o capital de garantia de R\$ 400000 e a probabilidade de ruína de 0.01, qual deve ser o prêmio comercial individual a ser cobrado do segurado?

Calculando o novo prêmio puro.

```
u_j <- 400000
pp_j <- c * ye - u_j
# Novo prêmio puro
pp_j

## [1] 33643531
pc_j <- pp_j / (1 - (da + 1 + cc))
# Novo prêmio comercial
pc_j

## [1] 56072552
pci_j <- pc_j / (m * N)
# Prêmio comercial individual
pci_j</pre>
```

[1] 186.91

Logo o novo prêmio comercial individual mensal é de R\$ 186.90851.

8.11 k

Com o prêmio comercial definido em **j** qual fica sendo a probabilidade de lucro com a subscrição? Vamos verificar quanto o montante agregado pode pagar.

$$\xi = \frac{PP}{c}$$

```
xi <- pp_j / c
xi
```

[1] 22429

Agora vamos ver qual a probabilidade de P(Y < 22429.02085).

```
to <- mu + 6 * sigma
from <- mu - 6 * sigma

curve(dnorm(x,mean = mu,sd = sigma ),from = from ,to = to ,xlab = "Número de Sinistros", ylab = "")

cord.x <- c(from,seq(from,xi,0.01),xi)
cord.y <- c(0,dnorm(seq(from,xi,0.01),mu,sigma),0)
polygon(cord.x,cord.y,col = 'skyblue')</pre>
```

```
l_k <- round(pnorm(xi, mu , sigma),2)
l_k</pre>
```

[1] 0.71

Logo a probabilidade de lucro é igual a 0.71.

8.12 l

Com a especificação do prêmio comercial definido em \mathbf{j} qual a distribuição do prêmio comercial para despesas administrativas, comissão de corretagem, margem de lucro e pagamento de sinistros.

PCim	VL
Despesas Administrativas	R\$ 11214510.426182
Comissão de Corretagem	R\$ 8410882.81963651
Margem de Lucro	R\$ 2803627.6065455
Pagamento de Sinistros	R\$ 33643531.278546

9 Prova 1

Considere que se deseja estabelecer o prêmio comercial individual mensal em uma carteira composta por 5000 segurados independentes, onde cada segurado terá no máximo 1 sinistro por ano. Considere ainda que o valor de cada sinistro é igual a R\$ 10000,00 e que a probabilidade de ocorrência de sinistro para um particular segurado no ano é igual a 0,02. Adicionalmente a companhia seguradora tem um capital de garantia de R\$ 100000,00 e adota uma probabilidade de ruína igual a 0,03. Sabendo que a despesa administrativa adotada pela companhia é igual a 15%, que a despesa de comercialização praticada é igual a 20% e que a margem de lucro orçada para o acionista é igual a 10%, responda as questões, considerando o quadro abaixo.

Y	P[Y=y]	$P[Y \ge y]$	$P[Y \le y]$
0	0	0	1
1	0	0	1
2	0	0	1
	•••		
101	0.0399	0.5664	0.434
102	0.0391	0.6055	0.394
103	0.0379	0.6434	0.357
104	0.0364	0.6799	0.32
105	0.0347	0.7146	0.285
106	0.0327	0.7472	0.253
107	0.0305	0.7777	0.222
108	0.0282	0.806	0.194
109	0.0258	0.8318	0.168
110	0.0234	0.8552	0.145
111	0.0211	0.8763	0.124
112	0.0188	0.8951	0.105
113	0.0166	0.9117	0.088
114	0.0145	0.9262	0.074
115	0.0126	0.9387	0.061
116	0.0108	0.9495	0.05
117	0.0092	0.9587	0.041
118	0.0078	0.9665	0.033
119	0.0065	0.973	0.027
120	0.0054	0.9784	0.022
	•••		
5000	0	1	0

9.1 a

Determine o prêmio de risco.

Como o valor pago pela ocorrência de sinistros é constante e os segurados são independentes então utilanzo o resultado de (7).

```
c <- 10000 # valor do sinistro
N <- 5000 # Número de segurados
p <- 0.02 # probabilidade de ocorrer o sinistro

premiorisco <- c * N * p
premiorisco</pre>
```

Logo o prêmio de risco da carteira é igual a R\$ 1000000.

9.2 b

Para as condições definidas no enunciado determine o prêmio puro da carteira e o carregamento de segurança adotado.

$$PP = \xi_{\epsilon} - U_0$$

```
U <- 100000 # capital de garantia
y <- 119

pp <- c * y - U
pp
```

[1] 1090000

$$PP = 1090000$$

$$PP = P(1 + \lambda)$$

$$\lambda = \frac{PP}{P} - 1$$

```
1 <- (pp / premiorisco) - 1
```

[1] 0.09

$$\lambda = 0.09$$

9.3 c

Determine o prêmio comercial individual mensal (parcelamento em 12 meses).

DA = 0.15

CC = 0.2

L = 0.1

$$PC = \frac{PP}{1 - [DA + CC + L]}$$

```
da <- 0.15
da # despesa administrativa
## [1] 0.15
cc <- 0.2
cc # comissão de corretagem
## [1] 0.2
1 <- 0.1
1 # lucro por subscrição
## [1] 0.1
# preço comercial
pc \leftarrow pp / (1 - (da + cc + 1))
## [1] 1981818
                                       PC = 1981818.18182
Como estamos interessados em saber o preço comercial invidual mensal em 1 ano, temos então que:
m = 12
N = 5000
                                          PC_{i,m} = \frac{PC}{mN}
m < -12
m # meses
## [1] 12
N # número de segurados
## [1] 5000
```

[1] 33.03

pci <- pc / (m * N)

Preço comercial individual

 $PC_{i,m} = 33.0303$

9.4 d

pci

Nas condições do prêmio estabelecido na questão c) determine a probabilidade de lucro com a subscrição (lucro com os riscos, não envolvendo o lucro do acionista)

Vamos verificar quantos sinistros podemos pagar.

$$\xi = \frac{PP}{c}$$

```
pp # prêmio puro
```

c # custo do sinistro

```
## [1] 10000
```

[1] 109

Olhamos na tabela, e concluímos que a probabilidade de lucro é de 0,8318.

9.5 e

Se for desejado um prêmio comercial com valor de 5% menor do que o calculado na quesao c) qual será a probabilidade de ruína se for mantida o capital de garantia de R\$ 100000,00.

Vamos calcular o prêmio comercial atualizado.

$$PC * 0.95 = \bar{PC}$$

$$\bar{PC} = \frac{c * Y_{\epsilon} - U_0}{1 - [DA + CC + L]}$$

$$Y_{\epsilon} = \frac{\bar{PC}(1 - [DA + CC + L]) + U_0}{c}$$

```
pce <- 0.95 * pc
pce
```

[1] 1882727

ye <- (pce *
$$(1 - (da + cc + 1)) + U) / c$$
 ye

[1] 113.55

Verificando na tabela, concluímos que a probabilidade de ruína passa a ser de 0,088.

9.6 f

Em relação à questão e) se for mantidade a probabilidade de ruína de 0.03 qual deverá ser o capital de garantia a ser adotado?

$$\bar{PC} = \frac{cY_{\epsilon} - U_0}{1 - [DA + CC + L]}$$

$$U_0 = cY_{\epsilon} - \bar{PC}(1 - [DA + CC + L])$$

y # número de sinistros para a probabilidade de 0,03

[1] 119

[1] 154500

$$U_0 = 154500$$

Logo o capital de garantia necessário para que se mantenha as condições estabelecidas é de R\$ 154500.

9.7 g

Se a companhia mantiver o cpaital de garantia de R\$ 100000,00, mantiver a probabilidade de ruína em 0,03 e praticar o prêmio comercial individual mensal igual a R\$ 31,00, qual deverá ser a comissão de corretagem a ser adotada se forem mantidos os carregamentos de despesas administrativas em 15% e a margem de lucro em 10%?

$$PC_{i,m} = \frac{PP}{(1 - [DA + CC + L])mN}$$

$$PC_{i,m} = \frac{PP}{(1 - [DA + L])mN - CCmN}$$

$$CC = \frac{PC_{i,m}(1 - [DA + L]mN) - PP}{PC_{i,m}mN}$$

[1] 0.16398

$$CC = 0.16398$$

9.8 h

Nas condições da questão g) qual o carregamento de segurança que está sendo adotado e qual a probabilidade de lucro com a subscrição (lucro com risco, não envolvendo o lucro do acionista)?

$$\lambda = \frac{PC_{i,m}(1 - [DA + CC + L])mN}{P} - 1$$

[1] 0.023

9.9 i

Nas condições da questão g) preencha o quadro abaixo:

Conta	Valor Arrecadado
Despesa administrativa	R\$ 279000
Comissão de corretagem	R\$ 372000
Lucro do acionista	R\$ 186000
Valor para pagamento de sinistros	R\$ 1090000