All Contests > Goldman Sachs CodeSprint > Transaction Certificates

Transaction Certificates

Problem

Submissions

Leaderboard

Discussions

Security is a major concern in the world of finance. In this challenge, the goal is to break up a fairly naive system which tries to encode transactions' history.

The system uses a hash value denoting the certificate of a chain of n-1 transactions between bank accounts. A chain of n bank accounts $a_0, a_1, \ldots, a_{n-1}$ denotes that the first transaction was made between accounts with numbers a_0 and a_1 , the second transaction between accounts with numbers a_1 and a_2 , and so on. The same bank account can appear multiple times in the transaction chain.

The system computes the certificate as:

$$\left(\sum_{i=0}^{n-1}a_i\cdot p^{n-1-i}\right)\bmod m$$

For the given values n, k, p and m, the task is to find out two different chains consisting of $c \cdot n - 1$ transactions, for some integer $c \ge 1$ such that $c \cdot n \le 10^5$, between accounts numbered with integers in the range [1, k] such that these two chains have the same certificates.

It is guaranteed that for the given input, there always exist at least two different chains with the same certificates.

Input Format

In the first and only line, there are $\bf 4$ space-separated integers $\bf n, k, p, m$.

Constraints

- $1 \le n \le 10^3$
- $2 \le k \le 10^3$
- $2 \le p \le 10^5$
- p is prime number
- $2 \le m \le 2^{32}$
- *m* is a power of 2

Output Format

Print exactly two lines, each denoting one of the chains in the answer. In the first line, print $c \cdot n$ space-separated integers denoting the first of the chains. In the second line, print $c \cdot n$ space-separated integers denoting the second of the chains.

Sample Input 0

3 4 3 16

Sample Output 0

1 2 4

4 4 3

Explanation 0

8

9

10

11

12 13 int p;

int m;

return 0;

```
For n=3, k=4, p=3 and m=16,
```

- For the numbers 1, 2 and 4, the certificate value equates to $(1 \times 3^{3-1} + 2 \times 3^{3-2} + 4 \times 3^{3-3}) \mod 16 = 3$.
- For the numbers 4, 4 and 3, the certificate value equates to $(4 \times 3^{3-1} + 4 \times 3^{3-2} + 3 \times 3^{3-3}) \mod 16 = 3$.

So, the two chains leads to same certificate value.

```
f y in
                                                                                                                          Contest ends in 9 hours
                                                                                                                          Submissions: 437
                                                                                                                          Max Score: 60
                                                                                                                          Difficulty: Hard
                                                                                                                          Rate This Challenge:
                                                                                                                          \triangle \triangle \triangle \triangle \triangle
                                                                                                                          More
                                                                                                          C++
Current Buffer (saved locally, editable) & •
1 ▼ #include <bits/stdc++.h>
3
   using namespace std;
4
5 ▼ int main() {
6
        int n;
7
        int k;
```

Test against custom input **1** Upload Code as File

cin >> n >> k >> p >> m;

Run Code

Submit Code

Line: 1 Col: 1

Join us on IRC at #hackerrank on freenode for hugs or bugs.

Contest Calendar | Interview Prep | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature