#### Aula 07 – Redes Neurais

1001524 – Aprendizado de Máquina I 2023/1 - Turmas A, B e C Prof. Dr. Murilo Naldi

## Agradecimentos

- Parte do material utilizado nesta aula foi cedido pelos professores André Carvalho, Ricardo Campello, Diego Silva e Alan Valejo
- Parte do material utilizado nesta aula foi disponibilizado por M. Kumar no endereço:
  - www-users.cs.umn.edu/~kumar/dmbook/index.php
- Agradecimentos a Intel Software e a Intel IA Academy pelo material disponibilizado e recursos didáticos

#### **Redes Neurais**

- Origens
  - Inspiração biológica
    - Sistema visual humano
      - Reconhece rosto familiar em ambiente estranho
    - Sonar de morcegos
      - Reconhece alvos e barreiras a distância e velocidade

"I do not see why [the computer] should not enter any one of the fields normally covered by the human intellect, and eventually compete on equal terms."

Alan Turing (1949)

#### **Redes Neurais**

- Uma rede neural é um processador massivamente distribuído e paralelo feito de unidades de processamento simples:
  - Neurônios
- Armazena conhecimento experimental
  - Utilizado para induzir um modelo

### Neurônio

Biológico



## Conjunto de Sinapses

Cada sinapse é caracterizada por um peso



## Junção de Sinais

 Somatório dos sinais multiplicados pelos pesos das Sinapses



### **Bias**

 Bias é utilizados para gerar transformação afim no potencial de ativação do neurônio



$$u_k = \sum_{j=1}^m w_{kj} x_j$$

$$v_k = u_k + b_k$$

### Como bias funciona?

• Combinação linear  $(u_k)$  + Translação  $(b_k)$ 



## Função de ativação

• Determina se o potencial de ativação  $(v_k)$  é suficiente para ativar o neurônio



#### Limiar

$$\varphi(v_k) = \begin{cases} y_k = 1 & se & v_k \ge 0 \\ y_k = 0 & se & v_k < 0 \end{cases}$$



### Linear

$$\varphi(v_k) = \begin{cases} y_k = 1 & se & v_k \ge \frac{1}{2} \\ y_k = v_k & se & \frac{1}{2} > v_k > -\frac{1}{2} \\ y_k = 0 & se & v_k \le -\frac{1}{2} \end{cases}$$

## Sigmoidal

$$\varphi(v_k) = \frac{1}{1 + \exp(-av_k)}$$



## Tangente Hiperbólica

$$tanh z = \frac{\sinh z}{\cosh z}$$



## Rectified Linear Activation Function (Relu)

$$f(x) = x^+ = \max(0, x) = \frac{x + |x|}{2} = \begin{cases} x & \text{if } x > 0, \\ 0 & \text{otherwise.} \end{cases}$$



Considere o conjunto de dados a seguir:

|                   | Atributo 1 | Atributo 2 |
|-------------------|------------|------------|
| Amostra Minério 1 | 0.3        | 0.2        |
| Amostra Minério 2 | 0.2        | 0.3        |
| Amostra Minério 3 | 0.5        | 0.7        |
| Amostra Minério 4 | 0.6        | 0.6        |
| Amostra Minério 5 | 0.6        | 0.7        |
| Amostra Minério 6 | 0.2        | 0.2        |
| Amostra Minério 7 | 0.5        | 0.6        |

# Exemplo – dados gráfico



# Exemplo - classes



# Exemplo - classificador



# Exemplo - classificação



# Exemplo - resultado



### Exercício



- Utilize a rede neural:
  - $w_{k1} = -1, w_{k2} = -1, b_k = 0.6$
  - ativação limiar

|                   | Atributo 1 | Atributo 2 |
|-------------------|------------|------------|
| Amostra Minério 1 | 0.3        | 0.2        |
| Amostra Minério 2 | 0.2        | 0.3        |
| Amostra Minério 3 | 0.5        | 0.7        |
| Amostra Minério 4 | 0.6        | 0.6        |
| Amostra Minério 5 | 0.6        | 0.7        |
| Amostra Minério 6 | 0.2        | 0.2        |
| Amostra Minério 7 | 0.5        | 0.6        |
|                   |            |            |

## Resultado

|                   | classe |
|-------------------|--------|
| Amostra Minério 1 | 1      |
| Amostra Minério 2 | 1      |
| Amostra Minério 3 | 2      |
| Amostra Minério 4 | 2      |
| Amostra Minério 5 | 2      |
| Amostra Minério 6 | 1      |
| Amostra Minério 7 | 2      |



#### **Treinamento**

- Perceptron
  - Conjunto de dados é utilizado para treinar
  - Cada objeto é apresentado a rede
  - Calcula-se o erro:

$$e_k(n) = d_k(n) - y_k(n)$$

#### **Treinamento**

Atualiza os pesos:

$$\Delta w_{kj}(n) = \eta e_k(n) x_j(n)$$

$$w_{kj}(n+1) = w_{kj}(n) + \Delta w_{kj}(n)$$

 Se os dados são linearmente separáveis, o algoritmo converge

 Treinar um perceptron para executar AND com função de ativação limiar

| Entrada<br>1 | Entrada<br>2 | Saída |
|--------------|--------------|-------|
| 0            | 0            | 0     |
| 1            | 0            | 0     |
| 0            | 1            | 0     |
| 1            | 1            | 1     |



- Entrada: x = [0,0]
- Teste:

$$0*0.6+0*0.6-0.3=-0.3=>\varphi(-0.3)=>y=0$$

$$d = 0 = e = 0 - 0 = 0$$

Como e=0, não há correção



- Entrada: x = [1,0]
- Teste:

$$-1*0.6+0*0.6-0.3=0.3=>\varphi(0.3)=>y=1$$

- d = 0 = e = 0 1 = -1
- Atualiza pesos

$$- w_{1(n+1)} = 0.6 + 0.2 * - 1 * 1 = 0.4$$

$$- w_{2(n+1)} = 0.6 + 0.2 * - 1 * 0 = 0.6$$

$$b_{(n+1)} = -0.3 + 0.2 * -1 * 1 = -0.5$$



- Entrada: x = [0,1]
- Teste:

$$0*0.4+1*0.6-0.5=0.1=>\varphi(0.1)=>y=1$$

$$d = 0 = e = 0 - 1 = -1$$

Atualiza pesos

$$- w_{1(n+1)} = 0.4 + 0.2 * - 1 * 0 = 0.4$$

$$- w_{2(n+1)} = 0.6 + 0.2 * - 1 * 1 = 0.4$$

$$b_{(n+1)} = -0.5 + 0.2 * -1 * 1 = -0.7$$



- Entrada: x = [1,1]
- Teste:

$$-1*0.4+1*0.4-0.7=0.1=>\varphi(0.1)=>y=1$$

$$d = 1 = e = 1 - 1 = 0$$

Como e=0, não há correção

O perceptron convergiu



#### Exercícios

- Treinar perceptrons para executar:
  - as funções OR e NAND
- Induza um perceptron para classificar as classes de minério 1 e 2 abaixo

|           | Atributo 1 | Atributo 2 | Classe |
|-----------|------------|------------|--------|
| Amostra 1 | 0,1        | 0,5        | 1      |
| Amostra 2 | 0,7        | 0,2        | 2      |
| Amostra 3 | 0,2        | 0,6        | 1      |

A qual classe pertence a amostra 4?

|           | Atributo 1 | Atributo 2 | Classe |
|-----------|------------|------------|--------|
| Amostra 4 | 0,2        | 0,4        | ?      |

### Problema

 Como treinar uma rede para executar a função XOR?



## Redes neurais de múltiplas camadas

- Neurônios organizados em camadas
- Contém camadas escondidas atuam como extratores de estatísticas de mais alta ordem
- Neurônios de uma camada têm como entradas sinais provenientes apenas dos neurônios das camadas anteriores

## Linearidade e generalização

- A rede neural é construída por meio da interconexão de neurônios. A não linearidade é distribuída por toda a rede.
- Generalização: produção de saídas razoáveis para entradas não encontradas durante o treinamento.
- A não linearidade é importante para generalização.

### Redes Multicamadas



## Redes Multicamadas











#### Estrutura Genérica



## Conexões

Completamente conectada



## Conexões

Parcialmente conectada



#### Conexões

- Excitatória
  - Quando o valor do peso é positivo
- Inibitória
  - Quando o valor do peso é negativo
- Aprendizado
  - Por meio do algoritmo retropropagação (backpropagation)
    - Ver nas referências bibliográficas

# Topologia



#### Redes Neurais Recorrentes

- Diferenciam-se das outras arquiteturas por possuírem retroalimentação
- Saídas de neurônios podem servir de entrada para outros neurônios e também para o próprio neurônio (auto retroalimentação)
- Podem ou n\(\tilde{a}\) ter neur\(\tilde{o}\) nios escondidos



## Arquiteturas Redes Neurais Recorrentes

- Redes neurais recorrentes
- Sem neurônios escondidos
- Sem auto retroalimentação



## Arquiteturas Redes Neurais Recorrentes

- Redes neurais recorrentes
- Com neurônios escondidos
- Com auto retroalimentação
- z<sup>-1</sup> é chamado de operador de atraso



#### Modelo de Kohenen

- Queremos construir mapas artificiais que aprendem por meio de autoorganização, de maneira neurobiologicamente inspirada
- Princípio da formação do mapa topográfico:
  - A localização espacial de um neurônio de saída em um mapa topográfico corresponde a um domínio particular ou característica dos dados de entrada



Grid

#### Modelo Kohonen

 Neurônio vencedor é estimulado junto aos neurônios vizinhos



## Mapa Auto-Organizável (SOM)

 Transformar um padrão de entrada de dimensão arbitrária em um mapa bidimensional, de maneira adaptativa e ordenada topologicamente



### Diversos outros tipos de NN

- Radial Basis Function
- Redes de Hopfield
- Redes de Boltzmann
- Aprendizado Profundo
  - Redes Convolutivas
  - Variational Autoencoder
  - etc
- Diversos tipos

#### Exercício

- Qual a função implementada pela rede abaixo?
- Entrada: 2 bits
- Saída: 3 bits
- Ativação limiar
  - c. saída:
    - bias -0.5
  - c. intermediária:
    - bias -1.5



## Bibliografia





STEINBACH, M., KUMAR, V. TAN, P. Introdução ao Data Mining (Mineração de Dados). Edição 1. Ciência Moderna 2009. ISBN 9788573937619.



Inteligência Artificial - Uma Abordagem de Aprendizado de Máquina. Katti Faceli, Ana Carolina Lorena, João Gama, André C. P. L. F. de Carvalho. Grupo Gen 2011