Mechatronics (ROB-GY 5103 Section A)

- Today's lecture:
 - Multivibrator (555 timer)
- (See Topics #4 from Main Text for details)

Review of RC Circuit

- What is the time constant?
- Why does 63.2% mean?

Two-state devices

- Button/switch provides digital (two-state) inputs
- Comparator produces digital output
- Deceptively simple:
 - Pull-up/pull-down and active-high/active/low
 - Use hysteresis to remove chattering in a comparator

Two-state devices

- Button/switch provides digital (two-state) inputs
- Comparator produces digital output
- Deceptively simple:
 - Pull-up/pull-down and active-high/active/low
 - Use hysteresis to remove chattering in a comparator

SR Latch (Set-Reset Latch)

• Simple active two-state device with two NOR gates

SR Latch (Set-Reset Latch)

• Simple active two-state device with two NOR gates

S	R	Q	Q
0	0	latch	latch
0	1	0	1
1	0	1	0
1	1	0	0

SR Latch (Set-Reset Latch)

- Simple active two-state device with two NOR gates
- System has memory!

S	R	Q	Q
0	0	latch	latch
0	1	0	1
1	0	1	0
1	1	0	0

Multivibrator

- Astable multivibrator circuit
 - Oscillates between two states
 - No trigger input
- Monostable multivibrator circuit (one-shot circuit)
 - Stable in one state (transient in the other state)
 - One trigger input
- Bistable multivibrator circuit
 - Stable in either state
 - Two trigger inputs (on/off) or toggle
 - Building block for memory

555 timer

- Highly stable device for generating accurate time delay or oscillation.
- Not programmable.
 - Controlled by resistors and capacitors.
- Applications
 - Pulse generation
 - PWM
 - Time delay generation

Pinout Diagram

555 Timer: Block Diagram

- Contains control flip-flop
 - Same truth table as SR Latch
- Voltage divider formed by three 5K ohm resistors
- Two comparators
- Two transistors

555 Timer: Monostable Mode Implementation

555 Timer: Monostable Mode Output

555 Timer: Monostable Circuit Operation

- On power-up or after reset: Q=low \to output low, \overline{Q} =high \to transistor Q₁ in saturation \to capacitor C is shorted
 - o Threshold comparator: $V_{-}=(2/3)V_{cc}$ and $V_{+}=0 \rightarrow$ comparator o/p low (R=0)
 - o Trigger comparator: $V_=$ High and $V_+=(1/3)V_{cc} \rightarrow$ comparator o/p low (S=0)
 - o R=0, S=0 \rightarrow Q and \overline{Q} maintain their initial state

Truth table for the RS flip-flop

Inputs		Outputs	
S	R	Q	\bar{Q}
0	0	Q_0	$\overline{Q_0}$
1	0	1	0
0	1	0	1
1	I	NA	

- S: set i/p
- R: reset i/p
- ullet Q, $\overline{\mathbf{Q}}$ complementary o/ps

555 Timer: Monostable Circuit Operation

- When trigger pulse goes low (below (1/3)V_{cc}), momentarily,
 - o Trigger comparator: $V_{-}=low$ and $V_{+}=(1/3)V_{cc}\rightarrow$ comparator o/p high (S=1)
 - o Threshold comparator: $V_{-}=(2/3)V_{cc}$ and $V_{+}=$ voltage across capacitor which charges from 0V initial state towards $(2/3)V_{cc} \rightarrow$ comparator o/p low (R=0)
 - o R=0, S=1 \rightarrow Q =1 (output high) and \overline{Q} =0 transistor stops conducting
 - o This state persists until threshold comparator: $V_{+}=(2/3)V_{cc}$ then R=1 and S=0 (since trigger goes low only momentarily) \rightarrow Q=0 (output low) and $\overline{Q}=1$ so transistor conducts again and causes the capacitor to be shorted.
 - o Note that the capacitor charges from 0V initial state towards (2/3)V $_{cc}$ with time constant R $_{1}$ C

555 Timer: Monostable Circuit Operation

- This circuit has only one stable state.
- The o/p resets at 0V, until a negative-going trigger pulse is applied to the trigger lead: pin 2.
- After trigger pulse is applied, the o/p will go high (around $V_{\rm cc}$ -1.5V) for the duration set by R₁C network.
- The width of the high output pulse is: $V_c(t) = V_{cc}(1-e^{-t/\tau}) \mid_{t=1.1\tau}$ $V_c(1.1\tau) = \frac{2}{3} V_{cc}$
- For reliable operation, R₁ should be between 10kW and 14MW and the capacitor should be from around 100pF to 1000mF.

555 Timer: Monostable Circuit Operation—IV

- Note capacitor at pin 5
 - Buffer to stabilize voltage at the pin
- In general, pin 5 is used to override voltage of 2/3 Vcc

$$t_{width} = 1.10 R_1 C$$

 $t_{width} = 1.10 (15K)(1 \mu F) = 16.5 ms$

555 Timer: Monostable Mode Application: Delay Timer for Relay

- Delay timer to actuate a relay for a given duration
- When the push-button is momentarily closed, the 555 begins its timing cycle; the output goes high (in this case, ~10.5V) for a duration of

$$t_{width} = 1.10R_1C$$

- The relay is actuated for the same time duration.
- Diodes prevent inductive kickback from damaging the 555 IC and the switch contacts of relay

Recall: Switch Bounce

- Mechanical switches often suffer from switch bounce.
 - switch chatters with multiple low-high transitions
- Debouncing removes bounce
 - Hardware: RC circuit can be used
 - Code: BS2 command "Button" can be used to eliminate switch bounce in software (needs 250 μsec)

Contact bounce when turning on a switch.

Simple debouncing.

This circuit may cause time delay.

Another Hardware Solution for Debouncing

- Monostable circuit (one-shot circuit)
 - Function is to produce a single output pulse which goes from low to high and back to low once the switch is pressed
 - If a switch closing happens too quickly for BS2 to register, then the monostable circuit can be quite useful
 - Duration for high pulse output is controlled by appropriate selection of R and
 - not useful for monitoring the current state in real time

555 Timer: Monostable Mode Application: Debouncing

• Uses a 555 timer

555 Timer: Astable Mode

555 Timer: Astable Mode Operation

- On power-up: C is discharged, so pin 2 is low (0V), Comp2: V₋=0, V₊=(1/3)Vcc
 → S=1, Comp1: V₊=0, V₋=(2/3)Vcc → R=0, So → Q =1 and Q = 0 → output is
 high, transistor not conducting, capacitor C charges via R₁+R₂
 - o Capacitor gets to $(1/3)V_{cc}$, Comp2: $V_{-}=(1/3)V_{cc}$, $V_{+}=(1/3)V_{cc}$, $V_{+}=(1/3)V_{cc}$, $V_{-}=(1/3)V_{cc}$, $V_{-}=($
 - o Capacitor gets to $(2/3)V_{cc}$, Comp2: $V_{-}=(2/3)V_{cc}$, $V_{+}=(1/3)Vcc \rightarrow S=0$, Comp1: $V_{+}=(2/3)V_{cc}$, $V_{-}=(2/3)Vcc \rightarrow R=1$, So $\rightarrow Q=0$ and $\overline{Q}=1 \rightarrow$ output is low, transistor conducts, capacitor C discharges via R_{2}

Inputs		Outputs	
S	R	Q	\bar{Q}
0	0	Q_0	\overline{Q}_0
1	0	1	0
0	1	0	1
1	1	NA	

555 Timer: Astable Mode Output

555 Timer: Astable Mode Duty Cycle

$$t_{low} = 0.693R_{2}C$$

$$t_{high} = 0.693(R_{1} + R_{2})C$$

$$Duty\ cycle = \frac{t_{high}}{t_{high} + t_{low}}$$

$$f = \frac{1}{t_{high} + t_{low}}$$

555 Timer: Astable Mode Duty Cycle

$$t_{low} = 0.693 (20K) (680nF) = 9.6ms$$

 $t_{high} = 0.693 (10K + 20K) (680nF) = 14.1ms$

$$Duty\ cycle = \frac{14.1ms}{14.1ms + 9.6ms} = 0.6$$

$$f = \frac{1}{14.1ms + 9.6ms} = 42Hz$$

555 Timer: Astable Mode Frequency vs. C, R₁, and R₂

Measuring an Analog Value using Astable LM555 Timer

- The astable LM555 timer and the pulsin command of BS2 can be employed to measure the linear travel of a machine tool slide
- A pot is mechanically coupled to the arm undergoing linear motion via a rubber wheel.
- The translation motion of the arm changes the pot resistance.
- The pot resistance forms the "R1" resistor of the astable LM555 timer.

Figure
Using pulse-width modulation for linear movement detection

Pulsin 0, 1, Highdura

Will give time over which 555 outputs "high" pulse.

Simple Multivibrator

- Consider a comparator with the given schematic.
 - Both positive and negative feedback
 - RC circuit that generates the inverting input V-.

Simple Multivibrator

- Consider a comparator with the given schematic.
 - Both positive and negative feedback
 - RC circuit that generates the inverting input V-.

Simple Multivibrator Output

Multivibrator inverting terminal voltage

Multivibrator output waveform

Additional Reference

- Mathematical Details: Topic 4 of main text details the computations for resistances and capacitances required for exact timing
- https://www.youtube.com/watch?v=qfWljb48mjE

Hands-on Exercises: Digital Input

BASIC Stamp Syntax and Reference Manual 2.2 RCTIME	pp. 363 – 368
What's a Microcontroller? Potentiometer (Activities #1-#3)	Chapter 5
Basic Analog and Digital 555 Timer	Chapter 6