Homework 4

Problem 1. Express the n^{th} term of the sequences given by the following recurrence relations

1.
$$a_0 = 2$$
, $a_1 = 3$, $a_{n+2} = 3a_n - 2a_{n+1}$ $(n = 0, 1, 2, ...)$.

2.
$$a_0 = 1, a_{n+1} = 2a_n + 3 (n = 0, 1, 2, ...).$$

Solution.

1. Characteristic function is $x^2 + 2x - 3 = (x + 3)(x - 1) = 0$. Let $f_n = a(-3)^n + b \cdot 1^n$. Then $\begin{cases} 2 = a + b \\ 3 = -3a + b \end{cases} \Rightarrow a = -1/4, b = 9/4.$ $\therefore \text{ the } n\text{-th term is } f_n.$

2. Characteristic function for the homogeneous part is x = 2. Take $a_n = p2^n + \lambda$ $a_0 = 1, a_1 = 5$. Now $\begin{cases} 1 & = p + \lambda \\ 5 & = 2p + \lambda \end{cases} \Rightarrow p = 4, \lambda = -3.$

Problem 2. Solve the recurrence relation $a_{n+2} = \sqrt{a_{n+1}a_n}$ with initial conditions $a_0 = 2, a_1 = 8$ and find $\lim_{n\to\infty} a_n$.

Solution. Consider the sequence $b_n = \log_2 a_n$. Then

$$2\log_2 a_{n+2} = \log_2 a_{n+1} + \log_2 a_n$$

i.e. $2b_{n+2} = b_{n+1} + b_n$. $b_0 = 1, b_1 = 3$. One can find $b_n = (-\frac{4}{3})(-\frac{1}{2})^n + \frac{7}{3}$. $\therefore a_n = 2^{(-\frac{4}{3})(-\frac{1}{2})^n + \frac{7}{3}}$. $\lim_{n \to \infty} a_n = 2^{\frac{7}{3}}$.

Problem 3. Fill in the blanks with either true (\checkmark) or false (\times)

f(n)	g(n)	f = O(g)	$f = \Omega(g)$	$f = \Theta(g)$
$2n^3 + 3n$	$100n^2 + 2n + 100$	×	✓	×
$50n + \log n$	$10n + \log \log n$	✓	✓	✓
$50n \log n$	$10n \log \log n$	×	✓	×
$\log n$	$\log^2 n$	✓	×	×
n!	5 ⁿ	×	✓	×

Problem 4. 1. Find two functions f(x) and g(x) such that $f(x) \neq O(g(x))$ and $g(x) \neq O(f(x))$.

2. Furthermore, we say a function $h : \mathbb{R} \to \mathbb{R}$ is monotonically increasing if it satisfies the property ' $x \le y \Rightarrow h(x) \le h(y)$ '. Find two monotonically increasing functions f(x) and g(x) such that $f(x) \ne O(g(x))$ and $g(x) \ne O(f(x))$.

(Please give the detailed proof that your functions satisfy the requirements.)

Solution.

1.
$$\begin{cases} f(x) = \sin(x); \\ g(x) = \cos(x). \end{cases}$$

2.
$$\begin{cases} f(x) = x^{\sin(x)+x}; \\ g(x) = x^{\cos(x)+x}. \end{cases}$$

The detailed proof are omitted. Just stick to the definition of O(-).

Problem 5.

- a) Show that the product of all primes p with $m is at most <math>\binom{2m}{m}$.
- b) Using a), prove the estimate $\pi(x) = O(\frac{x}{\ln x})$, where $\pi(x)$ denote the number of primes not exceeding the number x.

Solution.

1. $B = \binom{2m}{m} = \frac{(m+1)\times(m+2)\times\cdots\times(2m)}{1\times2\times\cdots\times m}$. It is easy to find that if p is a prime number and $p \in (m, 2m]$ then p|B. Thus $\prod_{m . It follows that the upper bound of the products of prime numbers between <math>m$ and 2m is B.

2. There are several ways to prove the second problem.

First proof: Combing a), w.l.o.g. assume n is even and n = 2m. It is obvious that

$$B \le \sum_{i=0}^{2m} \binom{2m}{i} = 4^m$$

With *a*) we have $\prod_{m ($ *p*is prime, as above). It follows that

$$\sum_{m$$

Then count the number of primes between m and 2m, i.e. the number of $p \in (m, 2m]$,

$$\pi(2m) - \pi(m) = \sum_{m$$

For any given x, there exists $k \ge 1$ such that $x \in (2^{k-1}, 2^k]$. Finally with the above analysis

$$\pi(x) \le \pi(2^k) = \sum_{i=1}^k \left(\pi(2^i) - \pi(2^{i-1}) \right) = O\left(\sum_{i=1}^k \frac{2^j}{j}\right) = O\left(\frac{2^k}{k}\right) = O\left(\frac{x}{\ln x}\right).$$

Second proof: Proof by contradiction