

W. Theilheimer

Synthetic Methods
of Organic Chemistry

9

Basel - S. Karger Publishers - New York

CFTRI-MYSORE

3706
Synthetic method..

Fury

W. Theilheimer

Synthetic Methods of Organic Chemistry

An Annual Survey

Synthetische Methoden der Organischen Chemie
Jahrbuch

Vol. 9

Mit deutschem Register-Schlüssel

BASEL (Schweiz)

S. KARGER

NEW YORK

For the Western Hemisphere: Interscience Publishers, Inc., New York

For Great Britain: Interscience Publishers, Ltd., London

<i>English Translation</i>		<i>Deutsche Ausgabe</i>
1948 Interscience Publishers	<i>Vol. I</i>	1946 1. Auflage 1948 2. unveränderte Auflage 1950 3. unveränderte Auflage
1949 Interscience Publishers	<i>Vol. II</i>	1948
	<i>Vol. III</i>	1949 Deutsche Ausgabe with English Index Key 1953 2. unveränderte Auflage
	<i>Vol. IV</i>	1950 Deutsche Ausgabe with English Index Key
<i>English Edition</i>	<i>Vol. V</i>	1951 With Reaction Titles Vol.I-V and Cumulative Index. Mit deutschem Register-Schlüssel
<i>English Edition</i>	<i>Vol. VI</i>	1952 Mit deutschem Register-Schlüssel
<i>English Edition</i>	<i>Vol. VII</i>	1953 Mit deutschem Register-Schlüssel
<i>English Edition</i>	<i>Vol. VIII</i>	1954 With Cumulative Index Vol. VI-VIII Mit deutschem Registerschlüssel

3706 ✓

E1,5:4

N48.9

All rights, including that of translation into foreign languages, reserved.
 Photomechanic reproduction (photocopy, microcopy) of this book or
 part of it without special permission of the publishers is prohibited.

Alle Rechte, insbesondere das der Uebersetzung in fremde Sprachen, vorbehalten.
 Ohne ausdrückliche Genehmigung des Verlages ist es auch nicht gestattet, dieses
 Buch oder Teile daraus auf photomechanischem Wege (Photokopie, Mikrokopie)
 zu vervielfältigen.

Copyright 1955 in Switzerland by S. Karger AG., Verlag, Basel

Printed in Switzerland by Friedrich Reinhardt AG., Basel

CFTRI-MYSORE

3706

Synthetic method..

Contents

	<i>Page</i>
From the Prefaces to the Preceding Volumes	IV
Preface to Volume 9	VII
Method of Classification	VIII
Trends in Synth. Organic Chemistry, 1955	XI
<u>Reactions</u>	1-414
<u>Subject Index</u>	415-467
Abbreviations	471
Symbols	472
Journal Abbreviations	472
<u>Systematic Survey</u>	473
<u>Additional Reagents</u>	477
Index of Supplementary References	481

Inhalt

	<i>Seite</i>
Aus den Vorworten zu den vorhergehenden Bänden	V
Vorwort zu Band 9	VII
Systematik	IX
Reaktionen	1-414
Alphabetisches Register	415-467
Deutscher Schlüssel zum Register	468
Abkürzungen	471
Zeichen	472
Zeitschriften-Abkürzungen	472
Systematische Uebersicht	473
Hilfsstoffe	477
Tabelle der Ergänzungss- zitate	481

From the Prefaces to the Preceding Volumes

New methods for the synthesis of organic compounds, improvements of known methods, and also old proved methods scattered in periodicals, are being recorded continuously in this book series.

An attempt has been made to develop the system of Weygand (*Organic Preparations*, Interscience Publishers, Inc., New York, 1945), and to group the reactions on a simple, although purely formal, basis. This has led to the invention of reaction symbols that can be classified systematically so that the methods can be treated without knowledge of the current trivial and author names (e.g., "Oxidation" and "Friedel-Crafts reaction").

Readers accustomed to the common notations will find these in the subject index. In many cases, particularly in searching for complex reactions, use of the classification system may be avoided by consulting the subject index. It is thought that the volumes should be kept close at hand. They should provide a quick survey, and obviate the immediate need for an elaborate library search. Syntheses are therefore recorded in the subject index by starting materials and end products, along with the systematic arrangement for the methods. This makes possible a sub-classification within the reaction symbols by reagents, a further methodical criterion. Starting with Volume 5, a table indicating the sequence of the reagents has been included. It may help the reader to locate reactions in the body of the text, particularly within large chapters. This table also contains such frequently used reagents as NaOH and HCl, which are not included in the subject index. Another innovation is the indexing of complex compounds with cross references under the related simpler compounds. General terms, such as synthesis, replacement, heterocyclics, may also be brought to the special attention of the reader.

The abstracts are limited to the information needed for an appraisal of the applicability of a desired synthesis. This includes the number and nature of the reaction steps, the yield, and the important literature in question. In order to carry out a particular synthesis it is therefore still necessary to have recourse to the original papers or, at least, to an abstract journal. In order to avoid repetition, selections are made on the basis of most detailed description and best yields, whenever the same method is used in similar cases. Continuations of papers already included will not be abstracted, unless they contain

essentially new information. They may, however, be quoted at the place corresponding to the abstracted papers. These supplementary references make it possible to keep abstracts of previous volumes up-to-date.

Furthermore, to avoid a "jungle" of references, the following limitations have been decided on: Papers are not included, if their content does not fit the subject matter of "Synthetic Methods" and if they can be found easily in the indexes of the abstract journals. Less accessible and readable papers, such as the Russian or Japanese ones, are only abstracted, as a rule, if the method in question is described nowhere else. Since publications dealing with organic chemistry are increasing from year to year, some unintentional omissions may occur as well. Therefore, the editor will be grateful if important methods not yet mentioned are brought to his attention.

Syntheses that are split into their various steps, which are recorded in different places, can be followed with the help of the notations *startg. m. f.* (starting material for the preparation of ...) and *prepns. s.* (preparation, see).

Aus den Vorworten zu den vorhergehenden Bänden

In dieser Buchreihe sollen neue Methoden zur Synthese organischer Verbindungen, Verbesserungen bekannter und auch bewährte ältere Methoden, die sich in den in Fachzeitschriften veröffentlichten Originalarbeiten verstreut vorfinden, laufend registriert werden.

Aufbauend auf der Weygandschen Systematik wurde versucht, alle Reaktionen an Hand weniger einfacher, wenn auch rein formaler Richtlinien zu ordnen. Dies führte zur Ausarbeitung von Reaktions-Formelzeichen, die sich im Gegensatz zu den bisherigen Trivial- bzw. Autorennamen, wie Oxydation, Friedel-Crafts-Synthese, systematisch anordnen lassen. Man kann so die Methoden, ohne ihren Namen zu kennen, mittels des Formelzeichens auffinden.

Benutzer, die an die alten Bezeichnungen gewöhnt sind, finden diese im alphabetischen Register, das in vielen Fällen den Gebrauch der Systematik entbehrlich machen und besonders zum Aufsuchen komplizierter Reaktionen mit Vorteil benutzt werden dürfte. Da die Sammlung für die Handbibliothek am Arbeitsplatz im Laboratorium gedacht ist, soll sie eine rasche Orientierung gestatten, ohne daß fürs erste die Literatur der Instituts- oder Werkbibliothek herangezogen werden muß. Neben der systematischen Registrierung der Methoden werden deshalb im alphabetischen Register auch Synthesen durch ihre

Ausgangs- und Endprodukte registriert. Dies ermöglicht es, im Text, innerhalb der Reaktionszeichen, nach einem weiteren methodischen Kriterium, nämlich den Hilfsstoffen einzuteilen. Beginnend mit Band 5 ist eine Tafel aufgenommen worden, die die Reihenfolge der Hilfsstoffe angibt. Sie dürfte zum Aufsuchen von Reaktionen im Text, besonders in großen Kapiteln, nützlich sein. Sie enthält auch so häufig gebrauchte Hilfsstoffe wie NaOH und HCl, die im alphabetischen Register nicht aufgeführt sind. Neuartig ist ferner die Registrierung der komplizierten Verbindungen. Auf Sammelbegriffe wie Aufbau, Austausch, Heterocyclen sei noch besonders hingewiesen.

Die Referate beschränken sich auf das zur Beurteilung der Zweckmäßigkeit einer Synthese Notwendige, wie Zahl und Art der Reaktionsstufen, die Ausbeute, wichtige, die Methode betreffende Literatur usw. Vor Ausführung einer bestimmten Synthese ist es deshalb erforderlich, das chemische Zentralblatt oder ein anderes Referatenblatt und, wenn möglich, auch die Originalarbeit zu Rate zu ziehen. Zur Vermeidung von Wiederholungen wurden bei der Anwendung einer Methode in ähnlichen Fällen diejenigen ausgewählt, die am ausführlichsten beschrieben sind und die besten Ausbeuten geben. Fortsetzungen bereits aufgenommener Arbeiten, die nichts wesentlich Neues bringen, werden nicht mehr referiert, evtl. aber an der Stelle der aufgenommenen Arbeit zitiert. Diese Ergänzungszitate ermöglichen es, Referate aus früheren Bänden auf den neuesten Stand zu bringen.

Um ferner das Material nicht zu sehr auf Kosten der Uebersicht anschwellen zu lassen, werden Veröffentlichungen, die nicht ganz in den Rahmen der «Synth. Meth.» passen und die in den Sachregistern der Referatenblätter leicht aufgefunden werden können, nicht aufgenommen. Arbeiten aus schwerer zugänglichen und lesbaren Zeitschriften, wie z. B. den russischen und japanischen, werden im allgemeinen nur dann referiert, wenn die betreffende Methode sonst nirgends beschrieben ist. Da die Zahl der Veröffentlichungen auf dem Gebiete der organischen Chemie von Jahr zu Jahr zunimmt, unterbleibt die Aufnahme von Arbeiten manchmal auch unabsichtlich. Wir wären deshalb dankbar, wenn wir auf wichtige Methoden aufmerksam gemacht würden, die in unserer Sammlung noch nicht enthalten sind.

Synthesen, die in ihre Stufen zerlegt und an verschiedenen Stellen eingeordnet sind, können mit Hilfe der Vermerke *startg. m. f.* (Ausgangsmaterial für die Darstellung von ...) und *prep. s.* (Darstellung siehe) zusammengesetzt werden.

Preface to Volume 9

Most of the abstracts in this volume are of papers published between 1952 and 1954. As Volume 8 it contains a brief review, Trends in Synthetic Organic Chemistry, stressing some highlights of general interest and calling attention to developments too recent to be included in the body of the text.

The index covers only Volume 9, as the next volume, which concludes the second series, will contain both a cumulative index and arrangement of all titles of Volumes 6 to 10.

I want to thank Dr. John T. Plati once more for having checked the manuscript and Dr. Bernhard Prijs for his thorough proof-reading. I also greatly appreciate the valuable advice they have given me. Thanks are due again to Dr. J. A. Aeschlimann, Vice President of Hoffmann-La Roche, Inc., for liberally providing me with library and office facilities.

Nutley, New Jersey, U.S.A., May 1955.

W. Th.

Vorwort zu Band 9

Der vorliegende Band 9 der «Synthetischen Methoden» bringt hauptsächlich Referate von Arbeiten aus dem Jahren 1952—1954. Auch dieser Band enthält einen kurzen Ueberblick, «Trends in Synthetic Organic Chemistry», der einige der wichtigsten Fortschritte allgemeinen Interesses aufzeigt und auf neue Arbeiten hinweist, die nicht mehr in den Hauptteil des Bandes aufgenommen werden konnten.

Das Register umfaßt diesmal nur einen Band, da der nächste Band, der die zweite Serie abschließt, sowohl ein Generalregister als auch alle Titel der Bände 6—10 enthalten wird.

Nutley, New Jersey, U.S.A., im Mai 1955.

W. Th.

Method of Classification

The following directions serve to explain the system of Classification.

1. Reaction Symbols.

The first part of the symbol refers to the chemical bonds formed during the reaction. These bonds appear in the reaction symbols as the symbols for the two elements that have been linked together (e.g., the bond between hydrogen and nitrogen, as HN). The order of the elements is the same as in *Chemisches Zentralblatt* and in Beilstein's *Handbuch der organischen Chemie*: H, O, N, Hal (Halogen), S, and the remaining elements (Rem). C is always placed last.

The "principle of the latest position" determines the order of the element symbols, and is used whenever possible.

The methods of obtaining a particular chemical bond are subdivided according to methods of formation. Four types are distinguished: addition (\Downarrow), rearrangement (\curvearrowright), exchange (\leftrightarrow), and elimination ($\uparrow\uparrow$). The last part of the symbol refers to the bonds which are destroyed in the reaction or to a characteristic element of that part of the molecule which is eliminated.

The following simplifying stipulations facilitate the use of the reaction symbols: (1) The chemical bond is rigidly classified according to the structure formula without taking the reaction mechanism into consideration. (2) Double or triple bonds are treated as being equivalent to two or three single bonds, respectively. (3) Generally speaking, only stable organic compounds are taken into consideration. Intermediary compounds, such as Grignard compounds and sodiomalonic esters, and anorganic reactants, such as nitric acid, are therefore not expressed in the reaction symbols.

Examples:

see Volume II, page viii (Interscience Publishers)

Systematic Survey

see page 473

2. Reagents.

A further subdivision, not included in the reaction symbols, is made on the basis of the reagents characteristic of the reaction. The order usually follows that of the periodic system. Reagents made up of several components are arranged according to the element significant for the reaction (e.g., KMnO_4 under Mn, NaClO under Cl). When a constituent of the reagent goes into the products of the reaction, the remainder of the reagent, which acts as a carrier of this constituent, is the criterion for the classification; for example, phosphorus is the carrier in a chlorination with PCl_5 and sodium in a nitrosation with NaNO_2 . A table indicating the sequence of the reagents may be found on page 477.

3. The material between the listings of the reagents is arranged with the simple examples first and the more complicated ones following.

4. When changes in more than one chemical bond occur during a reaction, as, for example, in the formation of a new ring, or if the reaction can be carried out in different ways, these reactions are introduced in several places when necessary. The main entry in such cases is placed usually according to the "principle of the latest position"; the other entries are cross-referenced back to it.

Systematik

Für die Reihenfolge der Methoden gelten folgende Richtlinien:

1. Reaktionszeichen.

Die Einteilung erfolgt zuerst nach den Bindungen, die bei einer Reaktion entstehen. Diese erscheinen im Reaktions-Formelzeichen in Gestalt ihrer beiden Elementsymbole, z. B. die Bindung zwischen Wasserstoff und Stickstoff als HN. Die Reihenfolge der Elemente ist die gleiche wie im Chemischen Zentralblatt und in Beilsteins Handbuch der organischen Chemie: H, O, N, Hal (Halogen), S, Rem (Uebige Elemente), C steht an letzter Stelle.

Das «*Prinzip der letzten Stelle*» bestimmt die Reihenfolge der Elementsymbole und ist auch sonst nach Möglichkeit immer angewandt worden.

Die Methoden zur Herstellung einer bestimmten Bindung werden nach ihrer Bildungsweise eingeteilt. Es werden 4 Fälle unterschieden: Aufnahme (\Downarrow), Umlagerung (\cap), Austausch (\leftrightarrow) und Abgabe ($\uparrow\uparrow$).

Der letzte Teil des Reaktionszeichens gibt die Bindung an, die gelöst wird, oder ein charakteristisches Element desjenigen Molekülteils, der abgespalten wird.

Die Bildung des Reaktionszeichens wird durch folgende vereinfachende Annahmen erleichtert:

1. Die Bindungen für die Registrierung ergeben sich rein formal aus den Strukturformeln, ohne daß auf Reaktionsmechanismen Rücksicht genommen wird.

2. Doppel- und Dreifachbindungen werden 2 bzw. 3 Einfachbindungen gleichgesetzt.

3. Es werden in der Regel nur stabile organische Verbindungen berücksichtigt, Zwischenprodukte, wie z. B. Grignard-Verbindungen, Na-Malonester und anorganische Reaktionspartner, wie z. B. Salpetersäure, werden deshalb nicht zur Bildung des Reaktionszeichens herangezogen.

Beispiele

siehe Band 2, Seite VI.

Systematische Uebersicht

siehe Seite 473.

2. Hilfsstoffe.

Eine weitere Unterteilung, die im Reaktionszeichen nicht mehr zum Ausdruck kommt, wird nach den für die Reaktion charakteristischen Hilfsstoffen vorgenommen. Ihre Reihenfolge richtet sich im wesentlichen nach dem periodischen System. Hilfsstoffe, die sich aus mehreren Bestandteilen zusammensetzen, werden nach demjenigen eingeteilt, der für die Reaktion verantwortlich ist, z. B. steht KMnO_4 bei Mn, NaClO bei Cl. Geht ein Bestandteil des Hilfsstoffs in das Reaktionsprodukt ein, dann ist der Rest als Träger dieses Bestandteils für die Einordnung maßgebend; das ist z. B. bei einer Chlorierung mit PCl_5 Phosphor, bei einer Nitrosierung mit NaNO_2 Natrium. Eine Tafel der in diesem Band verwendeten Reihenfolge der Hilfsstoffe befindet sich auf Seite 477.

3. Innerhalb dieser Unterteilung sind die einzelnen Referate von einfachen zu komplizierten Beispielen fortschreitend angeordnet.

4. Treten bei einer Reaktion Veränderungen an mehreren Bindungen ein, wie z. B. bei Ringschlüssen, oder kann sie auf verschiedene Art durchgeführt werden, dann wird sie, falls notwendig an mehreren Stellen eingeordnet. Das Hauptzitat steht in diesen Fällen in der Regel an der letzten Stelle; an den übrigen Stellen befinden sich Hinweise auf dieses.

Trends
in Synthetic Organic Chemistry
 1955

For a number of years, new catalytic high pressure and temperature syntheses have been developed by Reppe et al. (cf. *Synth. Meth.* 3, 588) who used acetylene and carbon monoxide as their principal starting materials. We do not intend to repeat the contents of several comprehensive publications on the subject¹. More processes of this type, however, will eventually find their way into the current literature, and from there into future volumes of *Synthetic Methods*. In this connection, we mention the addition of HCN to unactivated carbon-carbon double bonds², and the preparation of formamides with carbon monoxide³.

Whereas Reppe chemistry is essentially concerned with one-step syntheses of relatively simple compounds, which, in turn, can be used as building blocks for polymers, Woodward et al. have mastered multi-step syntheses of highly intricate compounds. To the synthesis of quinine, patuline, and the total synthesis of the steroid skeleton, they have recently added a 30-step synthesis of the strychnine molecule⁴, which has long engaged the efforts of many investigators. The total synthesis of lysergic acid in 14 steps has been carried out by a group of the Lilly Research Laboratories⁵. The synthesis of morphine by Gates and Tschudi⁶ should also be mentioned at this point. The total steroid synthesis is attracting the attention of several industrial laboratories⁷. An improved oxidation method for obtaining the 17 α -hydroxy-20-keto group of the cortisone side chain⁸ is a result of these experiments. A number of publications deals with ergosterol as a

¹ W. Reppe, *Chemie und Technik der Acetylen-Druck-Reaktionen*, Verlag Chemie, Weinheim, 1951; *A. 560*, 1 (1948) and following papers; J. W. Copenhaver and M. H. Bigelow, *Acetylene and Carbon Monoxide Chemistry*, Reinhold, New York, 1949.

² P. Arthur, J., et al., *Am. Soc.* **76**, 5364 (1954).

³ H. Winteler, A. Bieler, and A. Guyer, *Helv.* **37**, 2370 (1954).

⁴ R. B. Woodward et al., *Am. Soc.* **76**, 4749 (1954).

⁵ E. C. Kornfeld et al., *Am. Soc.* **76**, 5256 (1954).

⁶ M. Gates and G. Tschudi, *Am. Soc.* **74**, 1109 (1952).

⁷ e. g. *Helv.* **36**, 1803 (1953); *Am. Soc.* **76**, 1715 (1954); *Am. Soc.* **76**, 5011, 5014 (1954).

⁸ G. I. Poos et al., *Am. Soc.* **76**, 5031 (1954); R. Tull et al., *Am. Soc.* **77**, 196 (1955).

starting material for a partial synthesis of hormones involving side chain degradation⁹.

The arsenal of peptide chemistry has been further enriched by a variety of new methods including the use of phosphorus compounds such as the so-called phosphazo compounds (9, 468), phosphite amides (9, 543), and pyrophosphites as intermediates. Pyrophosphites have been used in the total synthesis of polypeptides such as oxytocin (9, 464), the first natural polypeptide to be synthesized. Recently, activated esters have been introduced as promising acylating agents in peptide chemistry¹⁰. An interesting application of the Smith reaction in this field is the conversion of subst. acetoacetic esters to α -amino esters¹¹. N-Trifluoroacetyl derivatives may prove helpful in peptide chemistry because they are readily cleaved in alkaline media without damage being done to the peptide bond¹². Carbodiimides can be employed in both the synthesis¹³ and the degradation (9, 277) of peptides.

Protecting or blocking operations hitherto essentially confined to functional groups have been extended to the carbon skeleton itself by the use of *tert*-butyl as a blocking group. This group, of all alkyls, is exceptionally easy to remove from aromatic rings¹⁴. Preferential blocking of keto groups may be achieved by interchange with dioxolanes where direct ketalization is unsuccessful¹⁵. A mild two-step procedure for preparing phthalimides to protect sensitive *prim.* amines¹⁶ and O-alkylation of phenolic N-bases without quaternization¹⁷ have been described by Baker et al. In this connection, the temporary modification of a molecule as a means of boosting its reactivity may be mentioned such as the attachment of oxygen to amine-nitrogen to form the more reactive N-oxides¹⁸.

Transfer-hydrogenation¹⁹ with palladium as catalyst and cyclohexene as hydrogen donor is often remarkably selective and may give

⁹ see D. A. Shepherd et al., Am. Soc. 77, 1212 (1955).

¹⁰ R. Schwyzer, M. Feurer, and B. Iselin, Helv. 38, 83 (1955).

¹¹ D. O. Holland and J. H. C. Nayler, Soc. 1953, 280.

¹² F. Weygand and M. Reiher, B. 88, 26 (1955).

¹³ J. C. Sheehan and G. P. Hess, Am. Soc. 77, 1067 (1955).

¹⁴ M. J. Schlatter, Am. Soc. 76, 4952 (1954); M. Kulka, Am. Soc. 76, 5469 (1954).

¹⁵ Synth. Meth. 9, 352; F. Sondheimer, M. Velasco, and G. Rosenkranz, Am. Soc. 77, 192 (1955).

¹⁶ B. R. Baker et al., J. Org. Chem. 19, 1786 (1954).

¹⁷ B. R. Baker and F. J. McEvoy, J. Org. Chem. 20, 118, 136 (1955).

¹⁸ Synth. Meth. 6, 389; 8, 260; 9, 243; E. C. Taylor, Jr., and A. J. Crovetti, J. Org. Chem. 19, 1633 (1954); R. Adams and S. Miyano, Am. Soc. 76, 3168 (1954).

¹⁹ E. A. Braude, R. P. Linstead et al., Soc. 1954, 3578, 3586, 3595; s. a. Y. Ahmad and D. H. Hey, Soc. 1954, 4516.

higher yields than direct catalytic hydrogenation or other methods of reduction. Phenolic hydroxyl groups may be removed by reducing the corresponding phosphoric esters with sodium or lithium in liquid ammonia²⁰. Reductions with metal hydrides have been performed to advantage in pyridine, which has been used with LiAlH₄ to obtain methylamines from formamides²¹, and with NaBH₄ in the preferential reduction of steroid 3-keto to 3 α -hydroxy groups²². Two new routes from acid derivatives to aldehydes have been found: the reduction of N-methylanilides by LiAlH₄²³, which can also lead to the formation of hydroxymethyl compounds, and, recently, the reduction of amidines and imidazolines with sodium and ethanol in liquid ammonia as carried out by Birch²⁴.

Aromatic aldehydes and alkyl aryl ketones can be synthesized by the reaction of diazonium salts with oximes (9, 868). Mannich bases may be converted into the corresponding aldehydes via nitrones (9, 553) or, directly, with hexamethylenetetramine²⁵. N-Bromoacetamide has proved highly selective in the oxidation of certain sec. hydroxyl groups, e.g. at the 3 position of steroids²⁶. Another way of achieving this oxidation is by catalytic dehydrogenation with platinum and either oxygen or air²⁷. Bachmann et al. convert prim. amines into oxo compounds through N-chloramines and particularly recommend *tert*-butyl hypochlorite for N-chlorination²⁸. Baumgarten and Bower have found a simple preparation of α -aminoketones starting from sec. alkylamines and rearranging the corresponding N,N-dichloroamines²⁹. There is also a convenient new procedure for regenerating oxo compounds from their 2,4-dinitrophenylhydrazones³⁰, derivatives used most frequently for purposes of isolation and characterization.

Alkali sensitive and slow reacting α -diazoketones can be converted successfully into acids and esters by irradiation³¹. N-Methyl-N-cyano-

²⁰ G. W. Kenner and N. R. Williams, Soc. 1955, 522.

²¹ B. R. Baker, R. E. Schaub, and J. P. Joseph, J. Org. Chem. 19, 638 (1954).

²² O. Mancera et al., Am. Soc. 75, 1286 (1953); A. J. Lemire and C. Djerassi, Am. Soc. 76, 5672 (1954).

²³ F. Weygand et al., Ang. Ch. 65, 525 (1953); B. 88, 301 (1955).

²⁴ A. J. Birch, J. Cymerman-Craig, and M. Slaytor, Chem. and Ind. 1954, 1559.

²⁵ 9, 290; s. a. M. M. and B. L. Robison, Am. Soc. 77, 457 (1955).

²⁶ R. E. Jones and F. W. Kocher, Am. Soc. 76, 3682 (1954).

²⁷ R. P. A. Sneeden and R. B. Turner, Am. Soc. 77, 190 (1955).

²⁸ W. E. Bachmann, M. P. Cava, and A. S. Dreiding, Am. Soc. 76, 5554 (1954).

²⁹ H. E. Baumgarten and F. A. Bower, Am. Soc. 76, 4561 (1954).

³⁰ J. Demaecker and R. H. Martin, Nature 173, 266 (1954); s. a. J. J. Beereboom and C. Djerassi, J. Org. Chem. 19, 1196 (1954).

³¹ Synth. Meth. 8, 919/20; A. Roedig and H. Lunk, B. 87, 971 (1954).

aniline has been recommended for the introduction of cyano groups (9, 865).

Previously inaccessible hydroperoxides may be obtained from mesylates (9, 166).

There are several new methods of achieving N-alkylation: Acylamines may be reduced with LiAlH_4 ³¹ (9, 113) or LiBH_4 ³². Methylamines, in particular, can be obtained by LiAlH_4 -reduction of urethans³³ or isocyanates (8, 95). Gerrard and Jeacocke³⁴ obtain subst. anilines by the pyrolysis of anilinophosphates. Selective N-alkylation, especially of amido groups, can be performed in acetone in the presence of KOH.

Chloral has been recommended for the formylation of strong organic bases (9, 545).

A new and stable reagent for making diazomethane, p-toluene-sulfonylmethylnitrosamide³⁵, is already commercially available.

Continuing their work with phosphites, Rydon et al. have published an even simpler method of obtaining halides from alcohols³⁶. Polyphosphoric acid, this very versatile reagent, makes possible the direct conversion of acids to α -bromoacids³⁷. Diiodoacetylene has been recommended for the preparation of iodides³⁸.

A new synthesis of thiophenols using 2,4-dinitrobenzenesulfonyl chloride for the introduction of SH-groups into aromatic nuclei has been found³⁹. S-Thiocarbonic acid esters proved to be convenient intermediates for the preparation of ureas, acylureas, and semicarbazides (9, 536). Stabilized liquid SO_3 , e.g. the commercially available Sulfan, is a promising reagent for sulfonations and sulfations⁴⁰.

In the Friedel-Crafts ketone synthesis, elimination of HCl by a stream of air has been suggested⁴¹. In specific instances, TiCl_4 may be preferable to AlCl_3 ⁴². The alkylation and acylation of ketones via enamines may be applied to compounds with base sensitive groups (9, 912). Amino acids are recommended as catalysts in the Knoevenagel

³² M. Bory and C. Mentzer, Bl. 1953, 814.

³³ Synth. Meth. 8, 95; R. L. Dannley, M. Lukin, and J. Shapiro, J. Org. Chem. 20, 92 (1955).

³⁴ W. Gerrard and G. J. Jeacocke, Chem. & Ind. 1954, 1538.

³⁵ T. J. de Boer and H. J. Backer, Org. Synth. 34, 96, 24 (1954); R. 73, 229, 589 (1954).

³⁶ D. G. Coe, S. R. Landauer, and H. N. Rydon, Soc. 1954, 2281.

³⁷ E. E. Smissman, Am. Soc. 76, 5805 (1954).

³⁸ V. Franzen, B. 87, 1148 (1954).

³⁹ N. Kharasch and R. Swidler, J. Org. Chem. 19, 1704 (1954).

⁴⁰ E. E. Gilbert et al., Ind. Eng. Chem. 45, 2065 (1953).

⁴¹ F. Smeets and J. Verhulst, Bl. Soc. chim. Belg. 61, 694 (1952).

⁴² Synth. Meth. 7, 800; Soc. 1954, 2942.

condensation⁴³. One advantage is that they facilitate the isolation of the product. Intermolecular ring closure can be achieved without using the high dilution technique ordinarily required when polycondensation is inhibited by steric hindrance (9, 513). The use of trichloroacetic esters opens up a new way of synthesizing 3-subst. 2-oxazolidones and related heterocyclics⁴⁴.

Braude et al. tested 11 quinones as dehydrogenation agents and found dicyanoquinone rather than chloranil to be the most effective⁴⁵.

Dehydrations have been carried out with carbodiimides (9, 184), already mentioned as reagents in peptide chemistry. Sulfonic acid anhydrides⁴⁶ and nucleotides⁴⁷ have thus been made readily available. Methoxyacetylene has also been used for dehydrations (9, 261). Alkoxycetylenes⁴⁸, in general, are among the more interesting compounds that recently appeared in the literature. Here are a few others: *tert*-Nitroparaffins⁴⁹, 2,4,6-tri-*tert*-butylphenoxy⁵⁰, a stable oxygen radical, tritium-labeled compounds⁵¹, non-classical aromatic compounds, the best known of which are the ferrocenes⁵², and diketene, which has been the subject of a series of papers⁵³.

Ethylene oxide is a suitable means of removing hydrogen halides⁵⁴.

Resins have been used successfully as reagents by Billimoria and Maclagan⁵⁵. In addition to hydrating the carbon-carbon triple bond with a mercury resin, as was done by Newman (9, 102), they hydrolyze α -ketobromides with a basic ion-exchange resin. Dowex-50 has been used to remove sodium from a liquid ammonia solution (9, 42). Nucleotides have been hydrolyzed with Dowex-50-H⁺⁵⁶.

Future developments will show whether electric discharge as a means of gently initiating reactions will find wider application. 9, 198 illustrates its use in the preparation of phenol from benzene.

⁴³ F. S. Prout, J. Org. Chem. 18, 928 (1953).

⁴⁴ G. Y. Lesher and A. R. Surrey, Am. Soc. 77, 636 (1955).

⁴⁵ E. A. Braude, A. G. Brook, and R. P. Linstead, Soc. 1954, 5369.

⁴⁶ Synth. Meth. 9, 177; s. a. index.

⁴⁷ R. H. Hall and H. G. Khorana, Am. Soc. 76, 5056 (1954).

⁴⁸ G. Eglinton et al., Soc. 1954, 1860; Org. Synth. 34, 46 (1954).

⁴⁹ N. Kornblum and R. J. Clutter, Am. Soc. 76, 4494 (1954).

⁵⁰ C. D. Cook and R. C. Woodworth, Am. Soc. 75, 6243 (1953); E. Müller and K. Ley, B. 87, 922, 1605 (1954).

⁵¹ N. H. Smith, K. E. Wilzbach, and W. G. Brown, Am. Soc. 77, 1033 (1955).

⁵² cf. G. D. Broadhead and P. L. Pauson, Soc. 1955, 367.

⁵³ Synth. Meth. 9, 954; Soc. 1954, 832, 845.

⁵⁴ Synth. Meth. 9, 994; cf. Am. Soc. 77, 704 (1955).

⁵⁵ J. D. Billimoria and N. F. Maclagan, Soc. 1954, 3257.

⁵⁶ J. X. Khym, D. G. Doherty, and W. E. Cohn, Am. Soc. 76, 5523 (1954).

The following references, contained in Vol. 8 under Trends, have been entered in this volume⁵⁷:

4/741; 6/454; 7/452; 8/276; 9/686, 707, 718; 10/169; 11/302; 12/202; 13/735, 737; 14/881; 15/24; 16/44; 17/655; 20/63, 65, 87 a, 112; 21/87; 22/86; 24/363; 27/615; 28/846; 33/749; 34/24; 35/520; 36/968; 37/163; 38/574; 39/897; 40/533.

⁵⁷ The first figure refers to the footnote in Trends, Vol. 8, the second figure to the entry number in this volume.

Formation of H—O Bond

Uptake

Addition to Oxygen

$\text{HO} \downarrow \text{OO}$

Lithium aluminum hydride

LiAlH_4

Diols from peroxides

s. 9, 6

Addition to Oxygen and Carbon

$\text{HO} \downarrow \text{OC}$

Zinc/acetic acid

$\text{Zn}/\text{CH}_3\text{COOH}$

Quinols from quinones

←

1.

2,5-Di-t-butylquinone refluxed with excess Zn-dust and 80% -acetic acid → 2,5-di-t-butylhydroquinone. Y: 95%. H. M. Crawford, M. Lumpkin, and M. McDonald, Am. Soc. 74, 4087 (1952).

Lithium aluminum hydride

LiAlH_4

2-Acylamino-3-aryl-2-propen-1-ols

C

from azlactones

Reductive oxazolone ring opening

2-Phenyl-4-(p-methoxybenzylidene)oxazolone allowed to react with LiAlH₄ in tetrahydrofuran at -65 to -35° → 2-benzoylamino-3-(p-methoxyphenyl)-2-propen-1-ol.—The lower temp. is maintained until the reactants are mixed. Y: 81%. F. e. s. E. Baltazzi and R. Robinson, Chem. and Ind. 1953, 541.

Hydrosulfite

$\text{S}_2\text{O}_4^{--}$

Quinols from quinones

←

s. 5, 3; s. a. G. A. Reynolds and J. A. Van Allan, Org. Synth. 34, 1 (1954)

Sulfuric acid

Glycols from oxido compounds

s. 2, 151; s. a. R. H. Eastman and J. C. Selover, Am. Soc. 76, 4118 (1954)

Rearrangement**Oxygen/Carbon Type**HO \cap OC

Without additional reagents

w.a.r.

Tropolones by enolizationCHCO \rightarrow C:C(OH)

3.

3-Bromo-4,5-benzocyclohepta-4,6-diene-1,2-dione heated at 90-95° \rightarrow 3-bromo-4,5-benzotropolone. Y: ca. 100%. H. Fernholz, E. Hartwig, and J. C. Salfeld, A. 576, 131 (1952).

Hydrobromic acid

HBr

Phenol acetates from dienones**Tropolones from cyclic diene- α -diones** \leftarrow

4.

A mixture of glacial acetic acid satd. with HBr, acetic anhydride, and 2,6-dibenzylidene cyclohexanone heated 12 hrs. at 70° \rightarrow 2,6-dibenzylphenyl acetate. Y: 84%.

3,7-Dibenzylidene-1,2-cycloheptanone and a little benzoyl peroxide added to glacial acetic acid satd. at 30° with HBr, and heated 11 hrs. at 60° \rightarrow crude 3,7-dibenzyltropolone. Y: 46%.—If the benzoyl peroxide is omitted, the crude product is less readily purified. N. J. Leonard and G. C. Robinson. Am. Soc. 75, 2143 (1953); cf. Synth. Meth. 9, 5.

Palladium-carbon

Pd-C

Tropolones from cyclic diene- α -diones

5. The use of Pd-on-charcoal as catalyst and triethylene glycol as solvent gives higher yields and is a more general method than the use of HBr/acetic acid (cf. Synth. Meth. 9, 4).—E: 3,7-Dibenzylidene-1,2-cycloheptanedione \rightarrow 3,7-dibenzyltropolone. Y: 90%. F. e. s. N. J. Leonard and J. W. Berry, Am. Soc. 75, 4989 (1953).

Exchange**Oxygen \downarrow** HO \uparrow O*Lithium aluminum hydride*LiAlH₄**Alcohols from alkyl- and acyl peroxides**

←

Diols from photooxides

6.

Dibenzoyl peroxide in dry ether added slowly with stirring to LiAlH₄ in ether, and refluxed 30 min. \rightarrow benzyl alcohol. Y: 87.5%.—Similarly: Methyl α -tetralyl peroxide refluxed 2.5 hrs. \rightarrow crude α -tetralol. Y: 95%. F. e. s. M. Matic and D. A. Sutton, Soc. 1952, 2679; s. a. G. A. Russell, Am. Soc. 75, 5011 (1953); diols from cyclic peroxides, in particular, s. A. Mustafa, Soc. 1952, 2435.

Nitrogen \downarrow HO \uparrow N*Sodium sulfide*Na₂S**Cleavage of carbohydrate nitrates**ONO₂ \rightarrow OH

7. A soln. of methyl 2-methyl-4,6-propylidene- α -D-glucoside 3-nitrate in alcohol treated with Na₂S at room temp. for 24 hrs. \rightarrow methyl 2-methyl-4,6-propylidene- α -D-glucoside. Y: 78%. E. G. Ansell and J. Honeyman, Soc. 1952, 2778.

Halogen \downarrow HO \uparrow Hal*Sodium*

Na

Ethylenealcohols from cyclic halogenoethers

C

s. 6, 6; introduction of isoprene units s. W. E. Parham and H. E. Holmquist, Am. Soc. 76, 1173 (1954); prim. enynols s. O. Riobè, C. r. 236, 2073 (1953)

Butylsodium

C₄H₉Na

Acetylenealcohols from cyclic halogenoethers

C

8.

3-Bromodihydropyran in petroleum ether added in one portion at 0° to butyl-Na prepared from butyl chloride and Na in the same solvent in the presence of a little 1-butanol, and stirring continued 2.5 hrs. with occasional cooling → 4-pentyn-1-ol. Y: 87%. F. e. s. R. Paul and S. Tchelitcheff, Bl. 1952, 808.

Sodium amide

*N*a*NH*₂

9.

Tetrahydrofurfuryl chloride added with stirring during 25-30 min. to NaNH_2 , prepared from Na and liq. NH_3 in the presence of $\text{Fe}(\text{NO}_3)_3$, and stirring continued for 1 hr. \rightarrow 4-pentyn-1-ol. Y: 75-85%. E. R. H. Jones, G. Eglinton, and M. C. Whiting, Org. Synth. 33, 68 (1953).

Sodium sulfite

Na₂SO₃

Sulfinic acids from sulfonic acid chlorides

$$\text{SO}_2\text{Cl} \rightarrow \text{SO}_2\text{H}$$

s. 2, 5, 581; aliphatic sulfinic acids as Mg-salts s. H. Bredereck and E. Bäder, B. 87, 129 (1954).

Sulfur ↑

HOWS

Sodium amalgam

Na Ha

Detosylation

OT- > OU

s. 2, 6; 4, 4; s. a. P. J. Stoffyn and R. W. Jeanloz, Am. Soc. 76, 563 (1954).

Sodium acetate

$$CH_3COONa$$

Demesylation

QSO GL

Walden inversion of acylaminosugars

10

A soln. of methyl 2-mesyl-3-acetamino-4,6-benzylidene- α -D-altropyranoside and anhydrous Na-acetate in 95% ethanol refluxed 22 hrs. during

which Na-mesylate separates → methyl 3-acetamino-4,6-benzylidene- α -D-allopyranoside. Y: 79% based on startg. m. consumed.—Inversion of the 2-hydroxy analog with SOCl₂ was not successful. F. e., also inversion of two mesoxy groups in 95%-Methyl Cellosolve, s. B. R. Baker and R. E. Schaub, J. Org. Chem. 19, 646 (1954).

Sulfuric acid H_2SO_4

Hydrolysis of sulfuric acid esters $OSO_3^- \rightarrow OH$
s. 9, 176

Hydrochloric acid HCl

s. 9, 203

Carbon + HO₄C

Sodium hydroxide $NaOH$

Hydroxymethylene compounds from alkoxyethylene compounds $C:CHOR \rightarrow C:CHOH$

s. 5, 5; s. a. H. Behringer and H. Weissauer, B. 85, 774 (1952)

Deacetylation $OAc \rightarrow OH$

s. 7, 129; 8, 165; s. a. W. R. Brasen and C. R. Hauser, Org. Synth. 34, 58 (1954)

Hydroxyacetals from acoxyacetals $OAc \rightarrow OH$

Protection of hydroxyl groups

1.2-O-Hexadecylidene-3-monolaurin refluxed 6 hrs. with ethanol containing NaOH → 1.2-O-hexadecylideneglycerol. Y: ca. 100%.—Protection of the hydroxyl group by acetyl or benzoyl in place of lauroyl was not so satisfactory. M. J. Egerton and T. Malkin, Soc. 1953, 2800.

Carboxylic acids from carboxylic acid esters $COOR \rightarrow COOH$
s. 9, 44

Selective hydrolysis

N NaOH soln. added at 0° to a soln. of N-acetyl-O-toluenesulfonylallohydroxy-DL-proline methyl ester in methanol, and the mixture kept 18 hrs. at 0° → N-acetyl-O-toluenesulfonylallohydroxy-DL-proline. Y: 90%. R. Gaudry and C. Godin, Am. Soc. 76, 139 (1954).

**N-Carbalkoxypeptides from
N-carbalkoxypeptide esters**

s. 8, 6; s. a. D. T. Gish and F. H. Carpenter, Am. Soc. 75, 5872 (1953); E. Sondheimer and R. W. Holley, Am. Soc. 76, 2816 (1954)

Potassium hydroxide

KOH

Partial deacetylation of steroids

13.

A soln. of KOH in methanol-water added to an ice-cooled soln. of allo-pregnane- $3\beta,11\alpha,21$ -triol-20-one triacetate in methanol under N₂, and the product isolated after 1 hr. at room temp. → allo pregnane- $3\beta,11\alpha,21$ -triol-20-one 11-monoacetate. Y: 78%. F. e. s. F. Sondheimer et al., Am. Soc. 75, 2601 (1953).

Carboxylic acids from carboxylic acid esters
s. 9, 159

COOR → COOH

**Polycarboxylic acids from
polycarboxylic acid esters**
Mild hydrolysis

Tetraethyl butane-1,1,4,4-tetracarboxylate shaken 12 hrs. with aq. KOH, concentrated under reduced pressure, acidified with HCl, evaporated to dryness in vacuo below 40°, and continuously extracted with ether for 2 days → butane-1,1,4,4-tetracarboxylic acid (startg. m. f. 982). Y: 95%. F. e. s. L. Crombie, J. E. H. Hancock, and R. P. Linstead, Soc. 1953, 3496.

Potassium hydroxide/alcohol

Hydroxymercaptals from acoxymercaptals
Selective hydrolysis

OAc → OH

15.

A soln. of Δ^4 -cholestene- 2α -ol-3-one acetate ethylenethioketal in methanol containing KOH refluxed 1 hr. → Δ^4 -cholestene- 2α -ol-3-one ethylene-

thioketal. Y: 73%. L. F. Fieser and M. A. Romero, Am. Soc. 75, 4716 (1953).

**α -Hydroxyketones from
1-acoxy-1,2-oxido compounds**

s. 9, 202

Carboxylic acids from carboxylic acid esters

s. 9, 892

COOR → COOH

Sodium/alcohol

NaOR

Deacetylation of carbohydrates

s. 9, 229

OAc → OH

Sodium/liq. ammonia

Na/NH₃

Partial cleavage of methyl ethers

ROR → ROH

16.

3,4-Dimethoxyphenethylamine added slowly to a soln. of Na in liq. NH₃, the mixture allowed to stand for 6 hrs. until it reaches room temp., then decomposed by cautious addition of ice → 3-hydroxy-4-methoxyphenethylamine. Y: 85%. K. E. Hamlin and F. E. Fischer, Am. Soc. 75, 5119 (1953).

Sodium carbonate

Na₂CO₃

Partial O-deacetylation

s. 9, 267

OAc → OH

Potassium carbonate

K₂CO₃

Partial hydrolysis

Deacetylation

s. 4, 11; mandelates from acetylmandelates s. V. Prelog and H. L. Meier, Helv. 36, 320 (1953)

Potassium hydrogen carbonate $KHCO_3$ **Masking of hydroxyl groups****Selective hydrolysis of formoxy compounds**

17.

Formates can easily be hydrolyzed and often crystallize better than acetates.—E: 95 mg. methyl 3-keto-11 α -formoxyetianate (from the hydroxy compound with 99% formic acid and acetic anhydride in pyridine) allowed to stand 3 days at 20° with $KHCO_3$ in methanol-water → 79 mg. methyl 3-keto-11 α -hydroxyetianate. F. e. s. F. Reber, A. Lardon, and T. Reichstein, Helv. 37, 45 (1954); use of trifluoroacetyl derivatives s. Helv. 37, 388.

Lithium chloride $LiCl$ **Monodealkylation of phosphoric acid esters**

s. 7, 18; s. a. Soc. 1954, 2381

*Triton B***Carboxylic acids from carboxylic acid esters** $COOR \rightarrow COOH$ **Cinnamylidenemalonic acids**

s. 9, 828

Barium hydroxide $Ba(OH)_2$ **Partial hydrolysis of phosphoric acid esters**

s. 9, 189

Lithium aluminum hydride $LiAlH_4$ **Deacylation** $OAc \rightarrow OH$

s. 7, 20; s. a. W. A. Bonner and C. J. Collins, Am. Soc. 75, 5372 (1953)

Boric acid HBO_2 **Selective hydrolysis****Monoglycerides**

18.

1,3-Benzylidene-2-elaidylglycerol dissolved in triethyl borate, finely powdered boric acid added, heated 3-5 min. at 100° until dissolved, most

of the solvent evaporated in vacuo (2-5 mm.), heating in vacuo at 100° continued for 10 min., cooled, the resulting boric acid ester dissolved in ether, and hydrolyzed by washing with water → 2-monoelaidin. Y: 86%. F. e., also isomerization to 1-monoglycerides, s. J. B. Martin, Am. Soc. 75, 5482 (1953).

Yeast

Disaccharides from trisaccharides

19. An aq. soln. of raffinose pentahydrate treated with Ca-carbonate and a nutrient soln. containing Na-nitrate, Mg-sulfate, and KH_2PO_4 , baker's yeast added, kept 4 days at 37°, then worked up using ion-exchange resins → α -meliobiose. Y: 88%. H. G. Fletcher, Jr., and H. W. Diehl, Am. Soc. 74, 5774 (1952).

Aspergillus oryzae enzyme

Cleavage of glycosides

ROR → ROH

s. 8, 14; s. a. B. 85, 1042, 1103 (1952)

Acetic anhydride/hydriodic acid

• $(\text{CH}_3\text{CO})_2\text{O}/\text{HI}$

s. Hydriodic acid/acetic anhydride

Carboxylic acids and mercaptans

Acidolysis

A mixture of 2-ethoxybenzothiazole (prepn. s. 834) and benzoic acid heated 24 hrs. at 170° with vigorous stirring in a dry N_2 -atmosphere → 2-hydroxybenzothiazole (Y: 85%) and ethyl benzoate (Y: 77%). F. e. s. also thioethers with mercaptans. s. H. Gilman, K. E. Lentz, and J. A. Beel, Am. Soc. 74, 1081 (1952).

Acetic acid

CH_3COOH

Cleavage of acetals

s. 9, 303

$\text{CO} \begin{cases} / \\ \backslash \end{cases} \text{C} \rightarrow \begin{cases} \text{CO} \\ \text{COH} \end{cases}$

21.

Selective hydrolysis. A mixture of 3-acetyl-4,5-isopropylidenedihydroshikimate, acetic acid, methanol, and water refluxed 3 hrs., concentrated in vacuo, and the acetic acid removed by concentrating in vacuo three times after addition of alcohol → methyl 3-acetyldihydroshikimate.

Y: 82%. F. e. s. K. Freudenberg and J. Geiger, A. 575, 145 (1952); s. a. R. Grewe and E. Nolte, A. 575, 1 (1952); carbohydrate derivatives s. S. B. Baker, Am. Soc. 74, 827 (1952).

Hypophosphorous acid/hydrobromic acid
s. *Hydrobromic acid/hypophosphorous acid*

H_3PO_2/HBr

p-Toluenesulfonic acid

$TsOH$

Removal of protective groups

$ROR \rightarrow ROH$

Cleavage of tetrahydro-2-pyranyl ethers

22.

A soln. of 1,10-bis(tetrahydro-2'-pyranyloxy)deca-2,8-diene-4,6-diyne and a small amount of p-toluenesulfonic acid in alcohol refluxed 1 hr. → deca-2,8-diene-4,6-diyne-1,10-diol. Y: almost 100%. F. e. s. R. Ahmad and B. C. L. Weedon, Soc. 1953, 3286.

Sulfuric acid

H_2SO_4

Partial cleavage of methyl ethers

23.

A mixture of 3,4,5-trimethoxybenzaldehyde and concd. H_2SO_4 kept 8 hrs. at 40°, then allowed to stand at room temp. overnight → syringaldehyde. Y: 96%. I. A. Pearl and D. L. Beyer, Am. Soc. 74, 4262 (1952); s. a. K. Aghoramurthy and T. R. Seshadri, Soc. 1954, 3065.

Aldehydes from 1,1-diacoxy compounds

$CH(OAc)_2 \rightarrow CHO$

s. 9, 251

N-Alkylation of oxazolidiones

Blocking of carboxyl groups

by formation of tert-butyl esters

**Hydrolysis of carboxylic acid esters
under anhydrous conditions**

$COOR \rightarrow COOH$

24. C_6H_5CH-CO

Tert-butyl bromoacetate added with swirling during 15 min. to a soln. of the Na-salt of 5-phenyl-2,4-oxazolidione in dimethylformamide, al-

lowed to stand overnight, the resulting crude 3-carbo-*tert*-butoxy-methyl-5-phenyl-2,4-oxazolidione dissolved in concd. H_2SO_4 , then cooled and dil. with water → 3-carboxymethyl-5-phenyl-2,4-oxazolidione. Y: 87.3%. — *Tert*-butyl esters, which can be cleaved under anhydrous conditions, may be used to block carboxyl groups in sensitive compounds. Also hydrolysis with HCl-gas in dioxane s. J. C. Sheehan and G. D. Laubach, Am. Soc. 73, 4752 (1951).

*Hydrochloric acid**HCl***Alcohols from alkoxyethyl ethers** $ROR \rightarrow ROH$

s. 9, 270

Cleavage of acetals

s. 9, 318

**Cleavage of benzylidene derivatives
of carbohydrates**

s. 9, 355

Oxo compounds from acetals $C(OR)_2 \rightarrow CO$

s. 9, 665, 743, 903

Deacetylation $OAc \rightarrow OH$

s. 7, 27; partial deacetylation s. E. P. Oliveto et al., Am. Soc. 75, 5486 (1953); A. Lardon and T. Reichstein, Pharm. Acta Helv. 27, 287 (1952); large batches s. H. H. Inhoffen, H. Jahnke, and P. Nehring, B. 87, 1154 (1954)

**Ethylenecarboxylic acids from
hydroxycarboxylic acid esters** $COOR \rightarrow COOH$

t-Butyl β -hydroxy- β -phenylpropionate refluxed 1.5 hrs. in concd. HCl-dioxane → cinnamic acid. Y: 96%. F. e. s. C. R. Hauser and W. H. Puterbaugh, Am. Soc. 75, 1068 (1953).

Carboxylic acids from carboxylic acid esters**Selective hydrolysis****N-Thiocarbonylaminocarboxylic acids**

A suspension of phenylthiocarbonylglycine ethyl ester in a 1:1 mixture of glacial acetic acid and concd. HCl refluxed 10 min. → phenylthiocarbonylglycine. Y: 89%. F. e. s. A. Lindenmann, N. H. Khan, and K. Hofmann, Am. Soc. 74, 476 (1952).

Carboxylic acids from carboxylic acid esters**Acidolysis**

at room temp. s. 6, 25; at reflux temp. s. K. Schlögl, F. Wessely, and G. Körger, M. 83, 493 (1952)

**Dicarboxylic acid monoesters
from dicarboxylic acid diesters****Acidolysis**

27.

Dimethyl $\beta,\beta,\beta',\beta'$ -tetramethylsuberate refluxed with concd. HCl and an equimolecular quantity of acetic acid, methyl acetate removed as formed through a short column until 0.33 equivalent has distilled, further reaction stopped by adding benzene, the water removed by azeotropic distillation, and the procedure repeated several times with a mixture of tetramethylsuberic acid, obtained as by-product, and unchanged dimethyl ester \rightarrow methyl hydrogen $\beta,\beta,\beta',\beta'$ -tetramethylsuberate. Y: 83%. S. F. Birch et al., Soc. 1952, 1363.

*Hydrobromic acid/hypophosphorous acid**HBr/H₃PO₂***Cleavage of methyl ethers**ROR \rightarrow ROH

28.

1-Isopropyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (prepn. s. 84) heated with 10% excess 48%-HBr containing a little hypophosphorous acid, whereby the temp. reaches 126° after removal of the aq. forerun, and the product isolated after 1-3 hrs. when the evolution of methyl bromide ceases \rightarrow 1-isopropyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline. Y: 90%. F. e. s. P. N. Craig et al., Am. Soc. 74, 1316 (1952).

*Hydriodic acid/acetic anhydride**HI/(CH₃CO)₂O*

29.

HI (d. 1.7) added to a soln. of 0.5 g. 5-methoxy-6-hydroxy-4-methylcoumarin (prepn. s. 199) in acetic anhydride, and refluxed 2 hrs. in an oil bath at 130-140°, then poured into NaHSO₃-soln. \rightarrow 0.4 g. 5,6-dihydroxy-4-methylcoumarin. V. J. Dalvi, R. B. Desai, and S. Sethna, J. Indian Chem. Soc. 28, 366 (1951).

*Palladium**Pd*

**Hydrogenolysis
of benzyl ethers**
s. 9, 303

 $\text{ROR} \rightarrow \text{ROH}$ *Palladium-carbon**Pd-C*

of benzyl esters
s. 9, 118, 434

 $\text{COOR} \rightarrow \text{COOH}$

of trityl ethers
s. 1, 216; s. a. R. 72, 365 (1953)

**Simultaneous cleavage
of carbobenzoxy derivatives of amines
and benzyl esters**
s. 9, 860

Elimination

Oxygen ↓ $\text{HO} \uparrow \text{O}$ *Zinc/acetic acid* $\text{Zn}/\text{CH}_3\text{COOH}$ **Ethylenealcohols from peroxides** C

30.

Zn-dust added in small portions to a boiling soln. of 20 g. 3β -acetoxy- $5\alpha,8\alpha$ -epidioxyergost-9-ene in acetic acid, then refluxed 15 min. \rightarrow 15 g. 3β -acetoxy- 5α -hydroxyergosta-7,9-diene. F. e. s. P. Bladon et al., Soc. 1952, 4883, 4890; 1953, 2916, 2921.

Formation of H—N Bond

Uptake

Addition to Nitrogen

HN \downarrow NN

Without additional reagents

w.a.r.

Sulfonylhydrazomium salts from aminesulfonimides

←

s. 9, 984

Electrolysis

↙

Hydrazines from diazonium salts

$N_2^+ \rightarrow NHNH_2$

Flow electrolysis. Phenyldiazonium chloride in 0.233 M HCl as catholyte passed during 2 hrs. at -15° through a flow electrolysis apparatus (s. original) with Pt-anode, Hg-cathode, 6.0 N H_2SO_4 as anolyte, using a current of 1.0 amp. \rightarrow phenylhydrazine hydrochloride. Y: almost 100%.—By this procedure, an almost complete separation of startg. m. and end product is attained and the side reaction between them avoided. P. Rüetschi and G. Trümpler, Helv. 36, 1649 (1953).

Phenylhydrazine

$C_6H_5NHNH_2$

Hydrazo from azo compounds

$N:N \rightarrow NHNH$

s. 9, 41

Hydrogen sulfide

H_2S

Nitrohydrazo compounds

s. 1, 19; (N-nitro)hydrazo compounds s. R. A. Henry, S. Skolnik, and G. B. L. Smith, Am. Soc. 75, 955 (1953)

Addition to Nitrogen and Carbon

HN \downarrow NC

Electrolysis

↙

Medium-N-heterocyclic alcohols from N-bicyclic ketones

C

32.

6-Keto-1-azabicyclo[5.4.0]hendecane electrolyzed at 60° with a Pb-cathode and 30% H_2SO_4 as catholyte \rightarrow 6-hydroxyazacyclohendecane.

Y: 71%. F. e. s. N. J. Leonard, S. Swann, Jr., and E. H. Mottus, Am. Soc. 74, 6251 (1952).

Phosphorus/hydriodic acid

P/HI

α -Aminocarboxylic acids from oxazolones

Reductive oxazolone ring opening

s. 5, 17; s. a. J. P. Lambooy, Am. Soc. 76, 133 (1954)

Exchange

Oxygen ↓

HN $\ddot{\psi}$ O

Zinc

Zn

Acylamines from nitro compounds

NO₂ → NH

33.

Zn-dust added during 5 min. to a stirred soln. of 1-nitroazulene and Na-acetate in acetic acid-acetic anhydride, and stirred 1 hr. → N-acetyl-1-azulylamine. Y: 90%. F. e. s. A. G. Anderson, Jr., J. A. Nelson, and J. J. Tazuma, Am. Soc. 75, 4980 (1953).

Lithium aluminum hydride

LiAlH₄

**Unsym. hydrazines and amines
from N-nitrosamines**

←

34.

LiAlH₄ in dry ether allowed to react over a period of 1 hr. with nitrosodimethylamine → unsym. dimethylhydrazine. Y: 78% | nitrosodiphenylamine → diphenylamine. Y: 74%. F. W. Schueler and C. Hanna, Am. Soc. 73, 4996 (1951); 74, 3693 (1952).

Stannous chloride

SnCl₂

Partial reduction of dinitro compounds

NO₂ → NH₂

s. 1, 24/5; s. a. L. Sihlbom, Acta Chem. Scand. 6, 1528 (1952)

Hydrazine/potassium hydroxide

H₂N·NH₂/KOH

Amines from nitro compounds

**with simultaneous reduction of oxo to
hydrocarbon groups**

s. 9, 123

Hydrazine/nickel
s. Nickel/hydrazine

$H_2N \cdot NH_2/Ni$

Sodium sulfide/sulfur

Na_2S/S

s. 3, 16; s. a. G. R. Ramage and G. Trappe, Soc. 1952, 4406

Sodium hydrogen sulfide

$NaHS$

Aminoazo from nitroazo compounds

Aq. NaHS added gradually during 30 min. to a boiling suspension of 3-(p-nitrophenylazo)azobenzene in ethanol, and refluxed for an additional hr. → 3-(p-aminophenylazo)azobenzene. Crude Y: 79.0%. F. e. s. K. Ueno, Am. Soc. 74, 4508 (1952); s. a. C. M. Atkinson et al., Soc. 1954, 2023.

Hydrosulfite

$S_2O_4^{--}$

Amines from nitro compounds

$NO_2 \rightarrow NH_2$

s. 1, 26; 4, 25; pyrimidines s. B. R. Baker, J. P. Joseph, and R. E. Schaub, J. Org. Chem. 19, 631 (1954)

Nickel

Ni

Prim. amines from ketones via oximes

$CO \rightarrow C:NOH \rightarrow CHNH_2$

Aq. Na-carbonate added during 15 min. to a stirred mixture of 1-(3',4'-diethoxyphenyl)-2-propanone, water, and hydroxylamine hydrochloride, and stirring continued for an additional 2.5 hrs. → 1-(3',4'-diethoxyphenyl)-2-propanone oxime (Y: 92%) mixed with abs. alcohol, liq. NH_3 , and Raney-Ni, then heated under 200 atm. of H_2 with agitation whereupon reduction takes place between 80 and 120° during 1 hr. → 1-(3',4'-diethoxyphenyl)isopropylamine (Y: 88%). F. e. s. E. R. Shepard et al., Am. Soc. 74, 4611 (1952).

5-Amino- from 5-nitrosopyrimidines

$NO \rightarrow NH_2$

s. 9, 448

Amines from nitro compounds

Aliphatic compounds

$NO_2 \rightarrow NH_2$

s. 7, 39; s. a. Org. Synth. 34, 19 (1954); D. J. Cook, O. R. Pierce, and E. T. McBee, Am. Soc. 76, 83 (1954); C. A. Grob and E. G. Jenny, Helv. 35, 2106 (1952)

*Nickel/hydrazine**Ni/H₂N-NH₂*

37. With the addition of a small amount of Raney-Ni, hydrazine hydrate will selectively reduce an ar. nitro compound to an amine at room or steam-bath temp. To eliminate loss due to foaming a large excess of solvent alcohol is necessary.—E: 2-3 molar ratios of 100%-hydrazine hydrate added to p-nitrobiphenyl ether, placed on a steam bath, when just warm a small amount of Raney-Ni added, when the color has almost disappeared more catalyst added to decompose the excess hydrazine, and the soln. heated to boiling to drive off the dissolved gases → p-aminobiphenyl ether. Y: 96.5%.—Similarly: p-Aminocinnamic acid, m-aminobenzophenone. Y: 80-99%. F. e. s. D. Balcom and A. Furst, Am. Soc. 75, 4334 (1953); s. a. D. S. Tarbell, R. F. Smith, and V. Boekelheide, Am. Soc. 76, 2470 (1954).

*Palladium-carbon**Pd-C* *α -Aminoketones from α -isonitrosoketones**C:NOH → CHNH₂*

38.

A suspension of 6 g. *trans*-1,2,3,4,9,10,11,12-octahydro-4,9-diketo-10-oximinophenanthrene 4-ethylene glycol ketal in alcohol hydrogenated 10 hrs. in the presence of 10%-Pd-charcoal at an initial pressure of 60 lbs./sq. in. → 5.4 g. 10-amino-1,2,3,4,9,10,11,12-octahydro-4,9-diketophenanthrene 4-ethylene glycol ketal. D. Ginsburg and R. Pappo, Soc. 1953, 1524.

 *α -Aminoalcohols from α -isonitrosoketones**COC:NOH**Stereospecific hydrogenation**→ CH(OH)CHNH₂*

s. 9, 74

*Amines from nitro compounds**NO₂ → NH₂*

s. 9, 569

*Platinum oxide**PtO₂*

39.

o-Nitro-N-acetyl diphenylamine dissolved in the minimum volume of warm, aq. 50%-ethanol, and hydrogenated with PtO₂ at 40 p. s. i. →

o-amino-N-acetyl diphenylamine. Y: 76%.—2-Methyl-1-phenylbenzimidazole was obtained in 95%-ethanol. P. A. S. Smith et al., Am. Soc. 75, 6335 (1953).

Hydrazo from azoxy compounds

40.

A mixture of 1 g. diethyl 2,2'-diphenyl-6,6'-azoxycinchoninate and pre-reduced PtO₂ in ethyleneglycol monomethyl ether hydrogenated 30 min. at an initial temp. of ca. 40° → 0.96 g. diethyl 2,2'-diphenyl-6,6'-hydrazocinchoninate. C. M. McCloskey, Am. Soc. 74, 5922 (1952).

Nitrogen ↑

HN↑N

*Lithium aluminum hydride*LiAlH₄

Amines from N-nitrosamines

s. 9, 34

N·NO → NH

*Phenylhydrazine*C₆H₅NHNH₂

Amines from azo compounds via hydrazo compounds

←

41.

Ethyl 2-phenylazo-4-methyl-5-thiazolecarboxylate heated with phenylhydrazine to 170°, and refluxed 5 min. at this temp. → ethyl 2-phenylhydrazo-4-methyl-5-thiazolecarboxylate (Y: 90%) heated with more phenylhydrazine at 200° → ethyl 2-amino-4-methyl-5-thiazolecarboxylate. Over-all Y: 72%. F.e., without isolation of the intermediate, and limitations, s. H. Beyer and G. Wolter, B. 85, 1077 (1952).

Sulfur ↑

HN↑S

Sodium

Na

Cleavage of sulfonic acid amidesN·SO₂R → NH

s. 3, 21; in n-butanol s. H. Stetter, B. 86, 197 (1953)

*Sodium/liq. ammonia*Na/NH₃**N-Detosylation**

N·Ts → NH

42. 24 g. tosyl-L-glutamine (prepn. s. 402) dissolved in liq. NH₃, Na added at the boiling point to give a permanent blue color, then *Dowex-50* resin in the NH₄-form added, whereby the color is discharged instantly, NH₃ evaporated. the flask thoroughly evacuated, water added, and the resin filtered off → 9 g. L-glutamine. A second new isolation technique whereby glacial acetic acid is added to the well-cooled liq. NH₃-soln. and f. e. s. J. M. Swan and V. du Vigneaud. Am. Soc. 76, 3110 (1954).

*Phenol/hydrobromic acid*C₆H₅OH/HBrs. *Hydrobromic acid/phenol**Hydrochloric acid*

HCl

s. 3, 22; s. a. A. Müller et al., M. 83, 386 (1952)

*Hydrobromic acid/phenol*HBr/C₆H₅OH

s. 8, 29; s. a. D. I. Weisblat et al., Am. Soc. 75, 5893 (1953)

Carbon ↑HN^uC*Sodium hydroxide*

NaOH

Partial N-deacylation

NAc → NH

43.

Nitro-2,5-diacetamidobenzene stirred at 85° into aq. 5%-NaOH, and kept 50 min. at 85-90° → 4-acetamido-2-nitroaniline. Crude Y: 78-85% : pure Y: 60-64%. J. B. Polya, J. Applied Chem. 1, 473 (1951).

Selective hydrolysis**Blocking of amino groups**

44. 2 N NaOH added to a soln. of β -O-(2,3,4,6-tetraacetyl-D-glucosido)-N-trifluoroacetyl-3,5-diido-L-thyronine methyl ester in ethanol-acetone, and stirred 5 hrs. → β -O-D-glucosido-3,5-diido-L-thyronine. Y: 91%.—Trifluoroacetyl is an excellent amino blocking group for the preparation of free glucosides and glucuronosides because it is readily removed by treatment with dil. alkali at room temp., a procedure which does not affect the glucoside or glucuronoside linkage. F. e. s. A. Taurog, S. Abraham, and I. L. Chaikoff. Am. Soc. 75, 3473 (1953).

Potassium hydroxide

KOH

Amines from acylamines

NAc → NH

in ethylene glycol s. 8, 195; s. a. W. M. Lauer and R. G. Lockwood, Am. Soc. 76, 3974 (1954)

**2-Aminoalcohols and 2-oxazolidones
from amines via halogenourethans**

←

β -Chloroethyl chlorocarbonate added dropwise to an ice-cold stirred soln. of 2-aminofluorene in pyridine, and stirring continued for 0.5 hr. at 0-10° → β -chloroethyl N-2-fluorenylcarbamate (Y: 95%), 2.88 g. in hot alcohol treated with a soln. of

1.6 g. KOH in ethanol, stirred until a precipitate is formed, cooled to room temp., and stirring continued for 0.5 hr. → 3-(2'-fluorenyl)-2-oxazolidone (Y: 95%).

E. Sawicki, Am. Soc. 75, 4596 (1953).

3.2 g. KOH in ethanol, and vigorously refluxed for 2 hrs. → 2- β -hydroxyethylaminofluorene (Y: 89%).

Sodium/liq. ammonia

Na/NH₃**N-Decarbobenzoylation**

NCOOR → NH

**with simultaneous formation of
mercaptans from benzylthioethers**

s. 9, 56

Ammonium acetate

CH₃COONH₄**N-Deacylation**

NAc → NH

A mixture of N-benzoyllophine, NH₄-acetate, and acetic acid refluxed 1 min. → lophine. Y: ca. 100%.—In acetic acid alone a reflux time of 15 min. is necessary. M. Weiss, Am. Soc. 74, 5193 (1952).

Hog kidney enzyme

Resolution of racemates by enzymic hydrolysis Amines from acylamines

s. 6, 42; s. a. J. P. Greenstein et al., Biochem. Prep. 3, 84 (1953); J. Biol. Chem. 203, 333 (1953)

Phosphonium iodide

PH_4I

Amines from urethans

$\text{NCOOR} \rightarrow \text{NH}$

Cleavage of carbobenzoxy derivatives of amines

s. 2, 138; 3, 25; cf. N. F. Albertson and F. C. McKay, Am. Soc. 75, 5323 (1953)

Phosphoric acid

H_3PO_4

Amines from acylamines

$\text{NAc} \rightarrow \text{NH}$

s. 2, 51; s. a. W. Bradley and J. V. Butcher, Soc. 1954, 2311

Sulfuric acid

H_2SO_4

s. 9, 416; s. a. C. M. Atkinson et al., Soc. 1954, 2023

Sulfuric acid/ammonium chloride

$\text{H}_2\text{SO}_4/\text{NH}_4\text{Cl}$

Selective N-deacylation

47.

A mixture of 5 g. 4-acetyl-4,5-dihydro-9-carbethoxy-10-hydroxyindolo-[4,3-f,g]quinoline, NH_4Cl , alcohol, H_2SO_4 , and water heated 35 min. at 100° in a sealed tube with occasional shaking → 3.5 g. 4,5-dihydro-9-carbethoxy-10-hydroxyindolo[4,3-f,g]quinoline. A. Stoll and T. Petrzelka, Helv. 36, 1137 (1953).

Hydrochloric acid

HCl

Aminosulfonic acid amides from acylaminosulfonic acid amides

s. 9, 392

Aminoalcohols from halogenoacylamines

S. 9, 330

Imidazoles from isoimidazoles with hydrolysis

S. 9, 420

Imidazolidine ring opening

48.

1,3-Bis-(*p*-methoxybenzyl)-2-(3',4'-methylenedioxyphenyl)tetrahydroimidazole shaken ca. 10 min. with 10% HCl followed by extraction with ether → piperonal and 1,2-bis-(*p*-methoxybenzylamino)ethane dihydrochloride. Y of both: ca. 100%. J. H. Billman, J. Y. Chen Ho, and L. R. Caswell, *J. Org. Chem.* **17**, 1375 (1952).

a-Aminocarboxylic acids from 2,5-oxazolidiones

49.

A soln. of N^{ω} -p-nitrobenzyloxycarbonyl-L-arginine-N-carboxylic acid anhydride hydrochloride in dimethylformamide added at 30° during 80 min. with stirring to 0.5 N HCl, and stirring continued for 30 min. → N^{ω} -p-nitrobenzyloxycarbonyl-L-arginine. Y: 83%. D.T.Gish and F.H. Carpenter, Am. Soc. 75, 5872 (1953).

Hydrobromic acid

HBr

Amines from urethans

NCOOR → NH

50.

A stream of HBr bubbled into a suspension of carbobenzoxyglycyl-glycine in warm *nitromethane* for 5 min., then allowed to stand for 3 hrs. → glycylglycine. Y: 81-90%.—Because of the speed and simplicity of this method it should be useful in many cases of peptide synthesis, particularly with compounds containing reducible groups. F. e. s. N. F. Albertson and F. C. McKay, Am. Soc. 75, 5323 (1953).

51.

Selective elimination of N-carbobenzoxy groups. A 33% soln. of HBr in glacial acetic acid added to carbobenzoxyglycyl-L-phenylalanine benzyl ester, and allowed to stand at room temp. with occasional shaking until CO₂-evolution ceases → glycyl-L-phenylalanine benzyl ester hydrobromide. Y: 89%. F. e. s. D. Ben-Ishai, J. Org. Chem. 19, 62 (1954).

Palladium

Pd

N-Decarbobenzoylation of amines and carboxylic acid hydrazides

52.

A suspension of carbobenzoxytriglycine carbobenzoxyhydrazide in aq. 50%-methanol and 3 N HCl hydrogenated with spongy Pd until the evolution of CO₂ ceases → triglycine hydrazide dihydrochloride. Y: 91%. K. Hofmann et al., Am. Soc. 74, 470 (1952).

Palladium-carbon

Pd-C

Hydrogenolysis of amines

NR → NH

53.

N-Methyl-N-benzyl-p-phenylbenzylamine in alcohol hydrogenated 2.5 hrs. with Pd-C at room temp. and atmospheric pressure → p-phenyltoluene (Y: 89%) and N-methylbenzylamine (Y: 70% as the hydrochloride) (35, 1348).—Raney-Ni and PtO₂ tend to ring hydrogenation. Instead of the free bases their salts can be used (35, 1162). The ease of

splitting increases in the following order: methyl < benzyl < p-phenylbenzyl < benzhydryl, 9-fluorenyl, 1- and 2-methylnaphthyl (35, 1348). F. e. s. H. Dahn, U. Solms, and P. Zoller, Helv. 35, 1162, 1348, 2117 (1952); s. a. R. Baltzly and P. B. Russell, Am. Soc. 75, 5598 (1953).

Simultaneous cleavage of carbobenzoxy derivatives of amines and benzyl esters

$$\text{NCOOR} \rightarrow \text{NH}$$

s. 9, 860; s. a. D. Ben-Ishai, J. Org. Chem. 19, 62 (1954).

Palladous oxide

PdO

N-Debenzylation

$$\text{NCH}_2\text{C}_6\text{H}_5 \rightarrow \text{NH}$$

s. 1, 37; s. a. W. G. Finnegan, R. A. Henry, and E. Lieber, J. Org. Chem. 18, 779 (1953).

Cleavage of carbo-p-nitrobenzoyl derivatives of peptides

$$\text{NCOOR} \rightarrow \text{NH}$$

54.

H_2 bubbled through a soln. of carbo-p-nitrobenzyloxyglycyl-L-leucine in methanol in the presence of PdO and acetic acid \rightarrow glycyl-L-leucine. Y: 97%. F. H. Carpenter and D. T. Gish, Am. Soc. 74, 3818 (1952); 75, 5872 (1953).

Formation of H–S Bond

Exchange

Carbon

HSAC

Sodium hydroxide

NaOH

Benz-1,3-oxathiolone ring closure and opening

1

55.

A soln. of 2.2 g. S-2,5-dihydroxyphenylthiouronium chloride and Na-acetate in acetic acid-water refluxed 2 hrs. → 1.3 g. 5-hydroxy-1,3-benzoxathiol-2-one dissolved in O₂-free 2 N NaOH in a N₂-atmosphere.

boiled 1 hr. in a stream of O₂-free N₂, allowed to cool in N₂ to room temp., and acidified with 2 N H₂SO₄, whereupon evolution of some CO₂ occurs → mercaptoquinol (Y: almost 100%). H. Burton and S. B. David, Soc. 1952, 2193.

Sodium/liq. ammonia Na/NH₃

Mercaptans from benzyl thioethers with simultaneous N-decarbobenzoxylation RSCH₂C₆H₅ → RSH

Na added in small pieces with occasional agitation to a suspension of 2-benzylthio-N-(carbobenzoxo-β-alanyl)ethylamine in liq. NH₃ until the blue color is permanent for 45 min., then excess Na destroyed by NH₄-chloride, and the product isolated as the hydrochloride → N-β-alanyl-2-mercaptopethylamine. Y: ca. 100%. J. Baddiley and E. M. Thain, Soc. 1952, 800.

Formation of H—Rem Bond

Exchange

Halogen ↑ **HRem↑Hal**

Sodium carbonate Na₂CO₃

Phosphines from chlorophosphines by disproportionation ←

Remaining Elements ↑ **HRem↑Rem**

Sodium/liq. ammonia Na/NH₃

Selenols from diselenides RSeSeR → 2RSeH

Dimethyl diselenide and Na added alternately to boiling liq. NH₃, then the NH₃ allowed to boil away → methaneselenol. Y: almost 100%. G. E. Coates, Soc. 1953, 2839.

Formation of H-C Bond

Uptake

Addition to Oxygen and Carbon

HC ↓ OC

Irradiation/acetic acid

s. Acetic acid/irradiation

←

Lithium

Li

Ring opening of heterocyclics

C

59.

Dibenzofuran, Li, and dry dioxane gently refluxed 12 hrs. with rapid stirring, filtered, cooled, and treated with water-dioxane → o-hydroxy-diphenyl. Y: 77.2%. F. e. s. H. Gilman and D. L. Esmay, Am. Soc. 75, 2947 (1953).

Lithium iodide/sodium boron hydride

LiI/NaBH₄

s. Sodium boron hydride/lithium iodide

Lithium boron hydride

LiBH₄

Oxido compounds from α-bromoketones via bromohydrins

CO → CHOH

60.

A 2 M soln. of LiBH₄ in tetrahydrofuran added dropwise at 0° with stirring during 1.5 hrs. to a soln. of 11α,23ξ-dibromohecogenin acetate in tetrahydrofuran, and stirring continued for 10.5 hrs. at 0° → crude 3β-acetoxy-11α,23ξ-dibromo-12β-hydroxy-5α,22α-spirostane (Y: 80.6%) dissolved in anhydrous pyridine, shaken 48 hrs. with freshly precipitated dry Ag₂O in the dark, more Ag₂O added, shaking continued for

72 hrs., and the crude product reacetylated \rightarrow 3β -acetoxy- $11\beta,12\beta$ -oxido- 23ξ -bromo- $5a,22a$ -spirostanone (Y from pure bromohydrin 90.2%). Over-all Y: 52.8%. J. Schmidlin and A. Wettstein, Helv. 36, 1241 (1953).

Sodium boron hydride/lithium iodide

$NaBH_4/LiI$

Diols from ketocarboxylic acid esters

s. 9, 876

←

Sodium boron hydride

$NaBH_4$

Alcohols from oxo compounds

$CO \rightarrow CHOH$

61. Slow reacting aldehyde and keto groups in cardioactive glycosides and aglycones can readily be reduced with $NaBH_4$. E. s. A. Hunger and T. Reichstein, B. 85, 635 (1952).

Nitroalcohols. An aq. soln. of $NaBH_4$ containing 1 drop concd. NaOH added dropwise at 20-25° during 1 hr. to a slowly stirred mixture of 5-nitro-2-pentanone and methanol, while the pH is kept at 3.4 by continuous addition of 3 N H_2SO_4 , then allowed to stand for 5 min. \rightarrow 5-nitro-2-pentanol. Y: 86.6%.—In general, use of $NaBH_4$ is to be preferred over Al-isopropoxide for reduction of sensitive compounds. F. e., also with Al-isopropoxide, s. H. Shechter, D. L. Ley, and L. Zeldin, Am. Soc. 74, 3664 (1952).

Special cases—Inverse addition method. Aq. phenylglyoxylic acid neutralized with dil. NaOH, added dropwise during 0.5 hr. at 10-18° to a vigorously stirred aq. soln. of $NaBH_4$, evaporated to dryness under reduced pressure, neutralized with concd. HCl-methanol, excess methanolic 4%-HCl added, the resulting *methyl borate removed* under reduced pressure until a portion of the soln., when ignited, burns with a pale blue flame, the remainder of the methanol evaporated, and the methyl mandelate hydrolyzed by refluxing 1 hr. with excess aq. 10%-NaOH \rightarrow mandelic acid. Y: 76%. F. e., also with addition of $NaBH_4$ to the start. m., s. E. B. Reid and J. R. Siegel, Soc. 1954, 520.

Lithium aluminum hydride

$LiAlH_4$

Sec. alcohols from ketones

s. 9, 109, 352, 951

Stereoisomeric steroids

s. 6, 55; 11-hydroxysteroids s. R. H. Levin et al., Am. Soc. 76, 546 (1954)

64.

Stereochemistry of isosteroids. C_6 -Epimers of 3,5-cyclo-stanols are solely formed from 3,5-cyclo-stanones with excess LiAlH_4 .—E: 21.5 g. i-cholestan-6-one in ether \rightarrow 18.5 g. epi-i-cholesterol. F.e.s. A.F. Wagner, N. E. Wolff, and E. S. Wallis, J. Org. Chem. 17, 529 (1952).

65.

A clear soln. of LiAlH_4 in anhydrous ether added dropwise with stirring to 2-acetylpyrrole in dry ether, and refluxing continued 30 min. on a steam bath \rightarrow 2-pyrrolemethylcarbinol. Y: 80%.—Overreduction is avoided by *inverse addition* of LiAlH_4 . F.e.s. W. Herz and C. F. Courtney, Am. Soc. 76, 576 (1954).

Sec. ethylenealcohols from ethyleneketones

s. 6, 56; s. a. F. Bohlmann, B. 85, 1144 (1952)

Alcohols from oxido compounds

66.

A soln. of 3,4-epoxy-2,5-dimethoxytetrahydrofuran in dry ether added dropwise during 40 min. to a suspension of LiAlH_4 in ether at a rate to maintain reflux temp., and stirring continued for 2 hrs. \rightarrow 3-hydroxy-2,5-dimethoxytetrahydrofuran. Y: 87%. J. C. Sheehan and B. M. Bloom, Am. Soc. 74, 3825 (1952).

Glycols from α -acoxylketones

s. 9, 227

Hydroxyaldehydes from lactones

C

67.

Slightly over $\frac{1}{4}$ mole of a 4% soln. of LiAlH_4 in tetrahydrofuran added slowly at -10 to -15° over a 20 min. period to a soln. of α -methyl- δ -caprolactone in tetrahydrofuran, and stirring continued for 1 hr. while the mixture is allowed to warm to room temp. $\rightarrow \alpha$ -methyl- δ -hydroxycaproaldehyde. Y: 64.5%.—The yields varied between 64 and 84% in ether, tetrahydrofuran, or mixtures of both. F. e. s. G. E. Arth, Am. Soc. 75, 2413 (1953); steric limitations s. M. Hinder and M. Stoll, Helv. 37, 1866 (1954).

Partial reduction of lactams

s. 9, 842

3,1-Benzoxazine ring opening

68.

LiAlH_4 added to a suspension of 2-phenyl-3,1-benzoxazin-4-one in ether, and refluxed 1 hr. \rightarrow o-benzoyleaminobenzyl alcohol. Y: 84%. B. Witkop, J. B. Patrick, and H. M. Kissman, B. 85, 949 (1952).

Lithium aluminum hydride/hydrochloric acid

 $\text{LiAlH}_4/\text{HCl}$

Partial reductive ring opening

of O-heterocyclics

Furostane from spirostanane ring

←

69.

An ethereal soln. of diosgenin satd. at room temp. with anhydrous HCl , LiAlH_4 in pea-size amounts then added with vigorous stirring, sufficient time being allowed for each piece to react before the next piece is added, and gently refluxed for 2 hrs., excess HCl being maintained throughout the reaction \rightarrow dihydrosigenin. Y: 90%. F. e., also with HBr , s. H. M. Doukas and T. D. Fontaine, Am. Soc. 75, 5355 (1953).

Reductions with*Sodium trimethoxyboron hydride* $NaBH(OCH_3)_3$ **Alcohols from oxo compounds** $CO \rightarrow CHOH$

70.

Sodium trimethoxyboron hydride readily reduces aldehyde, ketone, acid chloride, and acid anhydride groups. Ester and nitrile groups are only slowly reduced at elevated temp., whereas the carboxylate group does not appear to react. The nitro group is not reduced at lower temp., but undergoes reaction at 140°. Double bonds appear stable, even when conjugated with a carbonyl group. At low temp. sodium trimethoxyboron hydride in stoichiometric amounts appears to react with acid chlorides to form aldehydes.—E: Cinnamaldehyde added to a mixture of Na-trimethoxyboron hydride and ether, whereby refluxing sets in, which is continued for 4 hrs. by external heating → cinnamyl alcohol. Y: 79%. F. e. s. H. C. Brown and E. J. Mead, Am. Soc. 75, 6263 (1953).

Aluminum alkoxide $Al(OR)_3$ **Meerwein-Ponndorf-Verley reduction****Sec. alcohols from ketones** $CO \rightarrow CHOH$

s. 6, 63, 65; 7, 891; nitroalcohols s. 9, 62; quinoline derivatives s. H. de Diesbach et al., Helv. 35, 2322 (1952); effect of solvent s. E. D. Williams, K. A. Krieger, and A. R. Day, Am. Soc. 75, 2404 (1953)

Yeast

←

Biochemical reduction**Partial reduction of steroid keto groups**

reduction of 17-keto groups s. 8, 51; of 3-keto-groups s. B. Camerino, C. G. Alberti, and A. Vercellone, Helv. 36, 1945 (1953)

Acetic acid/irradiation

←

Sec. alcohols from ketones by photoreduction

s. 9, 731

Phosphorus/iodine

P/I

Carboxylic acids from phthalides

s. 9, 366

C

Phosphorus/hydriodic acid

P/HI

71.

from alkylideneephthalides. A mixture of benzalphthalide, HI, and red P refluxed 9-10 hrs. → dibenzyl-o-carboxylic acid. Y: 75-79%. T. W.

Campbell, R. Ginsig, and H. Schmid, Helv. 36, 1489 (1953); carboxylic acids from phthalides in xylene s. E. Clar and D. G. Stewart, Soc. 1951, 3215.

Nickel

Ni

Prim. alcohols from aldehydes

s. 6, 68; s. a. R. I. Longley, Jr., and W. S. Emerson, Org. Synth. 34, 71 (1954)

Sec. alcohols from ketones

s. 9, 352

Polyalcohols from carbohydrates

72.

D-Mannose refluxed 1.5 hrs. with Raney-Ni in aq. 70%-ethanol → D-mannitol. Y: 79%. F. e. s. J. V. Karabinos and A. T. Ballun, Am. Soc. 75, 4501 (1953).

Partial reduction of steroid keto groups

73.

0.5 g. allopregnane-3,11,20-trione in ethanol hydrogenated 2 hrs. with prereduced Raney-Ni W 2 at room temp. and atmospheric pressure, whereupon slightly more than 1 mole of H₂ is consumed → 0.4 g. allopregn-3β-ol-11,20-dione. F. e. s. C. Djerassi et al., Am. Soc. 75, 3505 (1953).

**Hydroxycarboxylic acid esters
from ketocarboxylic acid esters**

s. 7, 75; s. a. M. Viscontini and H. Köhler, Helv. 37, 41 (1954)

cis-trans-Isomers

s. 9, 76

*Palladium-carbon**Pd-C* **α -Aminoalcohols from α -isonitrosoketones
Stereospecific hydrogenation**

A soln. of 22.1 g. ethyl benzyloximinoacetate in 3 N abs. ethanolic HCl hydrogenated with Pd-on-Nuchar → 15.4 g. *erythro*- β -phenylserine ethyl ester. Yen-tsai Chang and W. H. Hartung, Am. Soc. 75, 89 (1953).

*Platinum oxide**PtO₂***Glycols from acyloins**

6-Hydroxy-2,2,4,9,11,11-hexamethyldodecan-7-one in ethanol hydrogenated with PtO₂ at 20°/3.5 atm. → 2,2,4,9,11,11-hexamethyldodecane-6,7-diol. Y: 81%. E. E. and L. Turner, Soc. 1952, 1761.

*Platinum oxide/acetic acid**PtO₂/CH₃COOH***Hydroxycarboxylic acid esters
from ketocarboxylic acid esters
cis-trans-Isomers**

Ethyl 6,6-dimethyl-2-oxocyclohexanecarboxylate hydrogenated with PtO₂ in acetic acid → | Raney-Ni in methanol →

ethyl 6,6-dimethyl-2-hydroxycyclohexanecarboxylate

3.85 g. *cis* from 3.96 g. | 19.4 g. *trans* from 19.8 g.

R. Helg and H. Schinz, Helv. 35, 2406 (1952).

Addition to Nitrogen and Carbon

HC ↓ NC

Electrolysis
**Reductive ring opening
Medium N-heterocyclics
from N-condensed rings**

77.

8-Ketoöctahydropyrrocoline electrolyzed at ca. 60° with a Pb-cathode in 30%·H₂SO₄ at a current density of 0.05 amp./cm² until 4.5-5.0 F/mole have passed through → 5-hydroxyazacyclononane. Y: up to 73%. F. e. s. N. J. Leonard, S. Swann, Jr., et al., Am. Soc. 74, 4620 (1952); 76, 3193 (1954).

*Sodium/liq. ammonia*Na/NH₃**Thiosemicarbazides from thiosemicarbazones**

C:N → CHNH

78.

Small pieces of Na added to a suspension of 4-acetamidobenzaldehyde thiosemicarbazone in liq. NH₃, then NH₄Cl added to discharge the persistent blue color → 1-(4-acetamidobenzyl)-3-thiosemicarbazide. Y: 47%.—The use of Na/liq. NH₃ might be somewhat preferable to the Na-amalgam method (cf. Synth. Meth. 7, 76; J. Bernstein et al., Am. Soc. 73, 906 (1951)) because it is less likely to hydrolyze alkali-labile groups. R. Duschinsky and H. Gainer, Am. Soc. 73, 4464 (1951).

Zinc

Zn

 **α -Aminocarboxylic acids from
 α -ketocarboxylic acid hydrazones**

in alcohol containing HCl s. 7, 77; in acetic acid s. K. 23, 847 (1953); C. A. 48, 4443 h

Reductive piperidone ring opening

C

79.

Zn-dust added during 1 hr. to a warm mixture of 1-methyl-4,4-diphenyl-3-piperidone methobromide, heated on a steam bath until all of the Zn

has dissolved, and the product isolated as the hydrobromide \rightarrow 3,3-diphenyl-5-dimethylamino-2-pentanone hydrobromide. Y: 79%. F. F. Blicke and J. Krapcho, Am. Soc. 74, 4001 (1952).

Lithium aluminum hydride

LiAlH₄

Prim. amines from nitriles

CN \rightarrow CH₂NH₂

s. 4, 60; s. a. F. F. Blicke and Eu-Phang Tsao, Am. Soc. 75, 5417 (1953)

Sec. amines from azomethines

C:NR \rightarrow CHNHR

80.

6.9 g. o-benzylideneaminophenol in dry ether added during 20 min. to a stirred suspension of LiAlH₄ in dry ether so that gentle refluxing takes place, then heated 1 hr. on a steam bath \rightarrow 6.3 g. o-benzylaminophenol (startg. m. f. 509).—Other methods were not successful. F. e. s. B. Boothroyd and E. R. Clark, Soc. 1953, 1499; s. a. J. Thesing, B. 87, 507 (1954).

**Selective ring hydrogenation
of N-heterocyclics**

C:N \rightarrow CHNH

s. 6, 75; s. a. F. Bohlmann, B. 85, 390 (1952); K. W. Rosenmund, F. Zymalkowski, and N. Schwarte, B. 87, 1229 (1954)

Reductive dianthranilide ring opening

C

81.

N,N'-Bis(benzenesulfonyl)dianthranilide in benzene added portionwise to LiAlH₄ in ether, refluxed 3 hrs., and allowed to stand overnight at room temp. \rightarrow o-(phenylsulfonamido)benzyl alcohol. Y: 87%. F. e. s. A. Mustafa, Soc. 1952, 2435.

Hydrosulfite $S_2O_4^{--}$ **Aminophosphoric acids from inner quaternary ammonium phosphates** \leftarrow

82.

Diphosphopyridine nucleotide (purity 86%) dissolved in 1.3% NaHCO₃, Na-hyposulfite quickly added with swirling, gassed with 95% N₂-5% CO₂, the vessel closed, kept 2 hrs. at 25°, then vigorously gassed with O₂ for 15 min. to oxidize excess hyposulfite, and isolated as the Ba-salt → reduced diphosphopyridine nucleotide. Y: 65-75%; purity 92%. A. L. Lehninger, Biochem. Prep. 2, 92 (1952).

Nickel

Ni

Amines from hydrazonesC:N·NH₂ → CHNH₂

s. 9, 444

Amines from nitrilesCN → CH₂NH₂

s. 9, 270

1,2,3,4-Tetrahydro- from 3,4-dihydro-isoquinolines

C:N → CHNH

s. 9, 84

Palladium-carbon

Pd-C

Indolines from pseudoindoles

C:N → CHNH

83.

2-Phenyl-3,3-dimethylpseudoindole hydrogenated with 10%-Pd-on-carbon in ethyl acetate → 2-phenyl-3,3-dimethylindoline. Y: 98%. B. Witkop, J. B. Patrick, and H. M. Kissman, B. 85, 949 (1952).

**1,2,3,4-Tetrahydro- from
3,4-dihydro-isoquinolines**

s. 9, 84

Platinum oxide PtO_2

Amines from nitriles

 $\text{CN} \rightarrow \text{CH}_2\text{NH}_2$

s. 1, 53; s. a. J. Harley-Mason and A. H. Jackson, Soc. 1954, 1165

**Tert. amines from
quaternary ammonium salts**

s. 9, 949

←

**1,2,3,4-Tetrahydro- from
3,4-dihydro-isoquinolines**

 $\text{C:N} \rightarrow \text{CHNH}$

84.

1-Isopropyl-6,7-dimethoxy-3,4-dihydroisoquinoline hydrogenated 1 hr. with PtO_2 or Pd-on-charcoal in ethanol at 3 atm. → 1-isopropyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (startg. m. f. 28). Y: 95%.— Hydrogenation of the hydrochlorides in ethanol or water requires 4-6 hrs. F. e. s. P. N. Craig et al., Am. Soc. 74, 1316 (1952); with Raney-Ni at 100° and 100 atm. s. A. M. Barbier and P. Rumpf, Bl. 1953, 293.

Addition to Sulfur and Carbon

 $\text{HC}\downarrow\text{SC}$ *Lithium aluminum hydride* LiAlH_4

Mercaptans from ethylenesulfides

C

85.

An ethereal soln. of butylthiacyclopropane added with stirring during 30 min. to a soln. of LiAlH_4 in anhydrous ether, and refluxed 2 hrs. → 2-hexanethiol. Y: 73%. F. e. s. F. G. Bordwell, H. M. Andersen, and B. M. Pitt, Am. Soc. 76, 1082 (1954).

Addition to Carbon

 $\text{HC}\downarrow\text{CC}$ *Sodium*

Na

**Selective hydrogenation
of condensed N-heterocyclic rings**

←

s. 4, 66; s. a. H. de Diesbach et al., Helv. 35, 2322 (1952)

Sodium amalgam

Na,Hg

Hydrogenation of ethylene derivatives

C:C → CHCH

s. 3, 610; s. a. G. R. Clemo and L. K. Mishra, Soc. 1953, 192

Lithium/liq. ammonia

Li/NH₃

Ketones from ethyleneketones

s. 8, 43; 3-ketosteroids from Δ^4 -3-ketosteroids s. D. H. R. Barton, D. A. J. Ives, and B. R. Thomas, Soc. 1954, 903

Lithium/liq. ammonia/alcohol

Li/NH₃/C₂H₅OH

Cyclohexenones from phenolethers

←

Improved Birch reduction

Partial hydrogenation of isocyclics

**Ketones from enolethers, also with migration
of a carbon-carbon double bond**

86.

Liq. NH₃ followed by Li-wire in small pieces added to a soln. of 3,17 β -estradiol 3-methyl ether in ether, 10 min. later abs. alcohol added dropwise over a 10-20 min. period → 1,4-dihydro-3,17 β -estradiol 3-methyl ether (Y: over 90%) dissolved in methanol

mixed with aq. oxalic acid, and allowed to stand 40 min. at 25° → 17 β -hydroxy-5(10)-estren-3-one (Y: 83%).

treated at 60° with 3 N HCl, and kept 15 min. more at the same temp. → 17 β -hydroxy-4-estren-3-one (Y: ca. 88%). Over-all Y: 70-77%.

A. L. Wilds and N. A. Nelson, Am. Soc. 75, 5366 (1953); f. e. of the reduction s. Am. Soc. 75, 5360; s. a. C. Djerassi et al., Am. Soc. 76, 4092 (1954).

Sodium/liq. ammonia/alcohol

Na/NH₃/C₂H₅OH**Cyclohexenones from phenolethers****Birch reduction****Partial hydrogenation
of carbon-carbon bonds and isocyclics****Ketones from enolethers** **α,β - from β,γ -Ethylene ketones**

87.

39 g. 6-(p-Methoxyphenyl)-2-methyl-2,5-heptadiene in abs. alcohol added to liq. NH₃, then 25 g. Na added in small pieces during ca. 2.5 hrs., and stirring continued until the blue color is completely discharged → 6-(p-methoxyphenyl)-2-methyl-2-heptene (Y: 78%), 20 g. reduced with 20 g. Na as before → 6-(4'-methoxy-1',4'-cyclohexadienyl)-2-methyl-2-heptene (Y: 85%) heated 35-40 min. with 5% H₂SO₄ on a steam bath → 6-(4'-keto-1'-cyclohexenyl)-2-methyl-2-heptene (Y: 72%) dissolved in abs. alcohol, added dropwise to a soln. of Na in alcohol, warmed exactly 5 min. at 60°, then poured into crushed ice and acetic acid → 6-(4'-keto-2'-cyclohexenyl)-2-methyl-2-heptene (Y: 78%). S. M. Mukherji and N. K. Bhattacharyya, Am. Soc. 75, 4698 (1953); 3-cyclohexenones from phenolethers s. a. G. Stork, S. S. Wagle, and P. C. Mukherji, Am. Soc. 75, 3197 (1953).

Lithium aluminum hydrideLiAlH₄**Nitroalkanes from nitroolefins**

C:C → CHCH

87a.

By *inverse addition* of LiAlH₄ to nitroolefins, nitroalkanes are obtained.—E: A soln. of LiAlH₄ in anhydrous ether added dropwise below -50° during 1.5 hrs. to a soln. of 3,3,4,4,5,5,5-heptafluoro-1-nitro-1-pentene in anhydrous ether, then allowed to come to room temp. → 1,1,1,2,2,3,3-heptafluoro-5-nitropentane. Y: 51%. F. e. s. D. J. Cook, O. R. Pierce, and E. T. McBee, Am. Soc. 76, 83 (1954); method s. R. T. Gilsdorf and F. F. Nord, Am. Soc. 74, 1837 (1952).

**trans-Ethylene derivatives
from acetylene derivatives**

C:C → CH:CH

s. 7, 91; s. a. K. R. Bharucha and B. C. L. Weedon, Soc. 1953, 1584

**α,β -Ethylenealcohols from
 α,β -acetylenecarboxylic acids**

←

s. 9, 111

Hydrosulfite

S₂O₄⁻⁻

γ -Diketones from α,β -ethylene- γ -diketones

C:C → CHCH

88.

(2-Methylphenoxy)dibenzoylethylene refluxed 45 min. with Na-hydrosulfite in 75% ethanol → (2-methylphenoxy)dibenzoylthane. Y: 93%. F. e. s. R. E. Lutz and S. M. King, J. Org. Chem. 17, 1519 (1952).

Copper chromite

CuCr₂O₄

Ring hydrogenation of isocyclics

s. 2, 72; s. a. D. P. Phillips, Org. Synth. 34, 31 (1954)

Cobaltic oxide/calcium oxide/sodium carbonate

Co₂O₃/CaO/Na₂CO₃

Ring hydrogenation of amines

s. 8, 69; s. a. Am. Soc. 75, 1156 (1953)

Nickel

Ni

Partial hydrogenation of steroid polyenes

89.

A soln. of ergosteryl acetate in sulfur-free benzene treated with a suspension of Raney-Ni W 6 sludge (according to H. R. Billica and H. Adkins, Org. Synth. 29, 25 (1949)) in benzene, and hydrogenated at 17° under slight positive pressure until a little more than the theoretical amount of H₂ has been absorbed → 5-dihydroergosteryl acetate. Y: 92-95%. R. C. Anderson, R. Stevenson, and F. S. Spring, Soc. 1952, 2901.

90.

A soln. of $\Delta^{6,8(14),22}$ -ergostatrien- 3β -ol acetate in dioxane hydrogenated at room temp. and atmospheric pressure with Raney-Ni (s. Synth. Meth. 1, 56) previously satd. with H_2 , until after ca. 3 hrs. the H_2 -uptake ceases $\rightarrow \Delta^{8(14),22}$ -ergostadien- 3β -ol acetate (Y: 98%) dissolved in anhydrous peroxide-free dioxane and hydrogenated with prereduced PtO_2 until after ca. 70 min. 1 mole H_2 has been absorbed $\rightarrow \Delta^{8(14)}$ -ergosten- 3β -ol acetate (Y: ca. 100%). F. reductions with Raney-Ni s. G. D. Laubach and K. J. Brunings, Am. Soc. 74, 705 (1952).

Ring hydrogenation of phenols

s. 4, 76-8; s. a. K. W. Rosenmund and H. Herzberg, B. 87, 1575 (1954)

Nickel-aluminum

Ni,Al

Carboxylic acids from ethylenecarboxylic acids

s. 5, 52; s. a. G. A. Page and D. S. Tarbell, Org. Synth. 34, 8 (1954)

Nickel/chloroform

Ni/CHCl₃

Ketones from ethyleneketones

91.

Benzylideneacetone hydrogenated with Raney-Ni from 50%-alloy in the presence of chloroform (trace of HCl) \rightarrow benzylacetone. Y: 86% as the oxime. R. Cornubert and J. Phélisse, Bl. 1952, 403, 407, 410; prepns. of the catalyst s. Bl. 1952, 399.

Nickel-silica

Ni-SiO₂

Benzene ring hydrogenation

92.

1,6-Diphenylhexane and Ni-kieselguhr catalyst in methylcyclohexane hydrogenated at 180-190° and 1700 p. s. i. \rightarrow 1,6-dicyclohexylhexane. Y: 94%. F. e. s. K. T. Serijan and P. H. Wise, Am. Soc. 73, 5191, 4766 (1951); s. a. J. H. Lamneck, Jr., and P. H. Wise, Am. Soc. 76, 3475 (1954).

Ruthenium dioxide

RuO₂

Ring hydrogenation of amines

93. A mixture of bis-(4-aminophenyl)methane, dioxane, and RuO_2 charged into an autoclave, repeatedly pressured to 200 lbs./sq. in. with H_2 and purged to remove air, then hydrogenated 4 hrs. at 100-120° and 166-200 atm. \rightarrow bis-(4-aminocyclohexyl)methane. Y: 92%. A. E. Barkdoll et al., Am. Soc. 75, 1156 (1953); formulas, cf. Synth. Meth. 8, 69.

Palladium-calcium carbonate

Pd-CaCO₃

Hydrogenation of acetylene derivatives

s. 9, 101

←

Palladium-barium sulfate

Pd-BaSO₄

Hydrogenation of ethylene derivatives

C:C → CHCH

s. 3, 46; of cinnamic acid esters s. J. R. Catch, H. P. W. Huggill, and A. R. Somerville, Soc. 1953, 3028

Palladium-carbon

Pd-C

Ketones from ethyleneketones

Stereochemistry of steroids

94.

A mixture of 0.5 g. Δ^8 -22a-5 α -spirosten-3 β -ol-11-one propionate, 10% Pd-carbon, and ethanol hydrogenated 20 hrs. at room temp. and atmospheric pressure → 0.35 g. 22a-5 α -8-iso(α)-spirostan-3 β -ol-11-one propionate.—Chemical reduction with Li in liq. NH₃ furnishes the trans(8 β ,9 α)-isomer. F. e. s. C. Djerassi et al., Am. Soc. 75, 3496 (1953).

Ethylene from acetylene derivatives

C:C → CH:CH

95.

6-Methoxy-4-methyl-2-hexyn-1,4-diol hydrogenated 2.5-3 hrs. with 17% Pd-on-charcoal in abs. alcohol until 1 equivalent of H₂ has been absorbed → 6-methoxy-4-methyl-2-hexen-1,4-diol. Y: 75-85%. F. e. s. M. S. Newman, I. Waltcher, and H. F. Ginsberg, J. Org. Chem. 17, 962 (1952).

Selective hydrogenation

C:C → CH₂CH₂

96.

of acetylene derivatives. Hydrogenation can be performed selectively by suitable catalyst-solvent combinations.—E: A soln. of ethinyltesto-

sterone in purified dioxane hydrogenated with 5%-Pd-on-charcoal until the H₂-uptake practically ceases after 2 moles have been absorbed → 17-ethyltestosterone. Y: 80%. F. e. s. E. B. Hershberg et al., Am. Soc. 73, 5073 (1951).

Palladium-carbon/sodium hydroxide

Pd-C/NaOH

**Carboxylic acids from
 α,β -ethylenecarboxylic acids**

C:C → CHCH

s. 8, 75; s. a. M. B. Moore et al., Am. Soc. 76, 3656 (1954)

Platinum oxide

PtO₂

Partial hydrogenation of steroid polyenes

C:C → CHCH

s. 9, 90

Hydrogenation of a carbon-carbon double bond with protection of another carbon-carbon double bond

97.

3β-Acetoxy-22,23-dibromo-9β-ergost-7-en-11-one in chloroform-acetic acid shaken 30 min. with PtO₂ under 100 atm. H₂, filtered, stirred and treated with Zn-dust during 1 hr. below 50°, and stirring continued at room temp. for 1 hr. → 3β-acetoxy-9β-ergost-22-en-11-one. Y: 74%. Also dechlorination s. J. Elks et al., Soc. 1953, 2933.

Hydrocarbons from acetylene derivatives

←

s. 9, 101

Selective hydrogenation of carbon-carbon double bonds in N-heterocyclics

C:C → CHCH

98.

1-Benzoyl-1,2-dihydroquinaldonitrile and PtO₂ in 95%-ethanol hydrogenated at atmospheric pressure and room temp. until 1 molar equivalent of H₂ has been absorbed → 1-benzoyl-1,2,3,4-tetrahydroquinal-

donitrile. Y: 69%. F. e. s. W. E. McEwen, R. H. Terss, and I. W. Elliott, Am. Soc. 74, 3605 (1952).

Hydrogenation of benzene rings s. 9, 931

Selective benzene ring hydrogenation of condensed N-heterocyclics

A soln. of 1-(2'-hydroxymethylskatyl)isoquinoline in glacial acetic acid hydrogenated with PtO_2 at room temp. and atmospheric pressure for 3 hrs. until 2 molar equivalents of H_2 have been absorbed → 1-(2'-hydroxymethyl-4',5',6',7'-tetrahydroskatyl)isoquinoline. Y: 79%. V. Boekelheide and Chu-tsin Liu, Am. Soc. 74, 4920 (1952); s. a. H. Schwarz and E. Schlittler, Helv. 34, 629 (1951).

Ring hydrogenation of N-heterocyclics

s. 4, 86; s. a. K. Winterfeld and C. Heinen, A. 578, 171 (1952)

←

Platinum oxide/potassium hydroxide

PtO_2/KOH

Partial and selective hydrogenation of carbon-carbon double bonds

$\text{C:C} \rightarrow \text{CHCH}$

PtO_2 prehydrogenated in alcohol, jervine and KOH in alcohol added, and hydrogenated 24 hrs. until the absorption of H_2 ceases → dihydro-jervine. Y: 75%. R. Anliker, H. Heusser, and O. Jeger, Helv. 35, 838 (1952); f. e. s. Helv. 35, 936.

Via intermediates

v.i.

Hydrogenation of acetylene derivatives

1-Ethoxy-9-o-methoxyphenoxy non-3-yne in ethyl acetate hydrogenated with 10% Pd-on-CaCO₃ at room temp. and atmospheric pressure for 2 hrs. until the H₂-uptake ceases, the catalyst filtered off, PtO₂ added, and hydrogenation continued → 1-ethoxy-9-o-methoxyphenoxy nonane. Y: 91%.—By this two-step procedure, hydrogenolysis of the ethoxy group, which may be caused by PtO₂, is avoided. F. e., in one step with PtO₂, s. A. W. Nineham, Soc. 1953, 2601.

Rearrangement

Hydrogen/Oxygen Type

Dowex-50

Resins as catalysts

α,β-Ethylene ketones and *α*-hydroxyketones
from *α,β*-acetylenic alcohols

102.

A mixture of 1-ethynylcyclohexanol,

Dowex-50 (a sulfonated polystyrene resin), acetic acid, and water refluxed 45 min. → 1-acetylcyclohexene. Y: 83.8-86.7%.

Hg-resin (Dowex-50 stirred into a soln. containing Hg-sulfate in dil. H₂SO₄), methanol, and water refluxed 4 hrs. → crude 1-acetyl-cyclohexanol. Y: 84%.

F. e. s. M. S. Newman, Am. Soc. 75, 4740 (1953); with Zeo-Karb 225-Hg⁺⁺ as Hg-resin s. J. D. Billimoria and N. F. Maclagan, Soc. 1954, 3257.

Formic acid

HCOOH

 α,β -Ethyleneketones from α,β -acetylenalcohols

←

Rupe rearrangement

s. 5, 508; s. a. H. H. Inhoffen and J. Kath, B. 87, 1589 (1954)

Exchange**Oxygen ↑**HC¹⁴O*Sodium*

Na

Alcohols from carboxylic acid estersCOOR → CH₂OH**Hansley modification of the
Bouveault-Blanc reduction**s. 3, 49; choice of reducing alcohol s. a. G. Weitzel and J. Wojahn,
H. 287, 296 (1951)**Lactones from ketocarboxylic acids**

○

103.

2.6 g. 6-keto-2,3-secocholestane-2,3-dicarboxylic acid in isopropyl alcohol treated with Na, whereby the Na-salt separates, ethanol added, and the mixture refluxed 2 hrs. with Na → 1.95 g. 6 α -hydroxy-2,3-secocholestane-2,3-dicarboxylic acid 3 → 6 α -lactone. C. W. Shoppee and G. H. R. Summers, Soc. 1952, 3374; monocarboxylic acid without isopropyl alcohol s. D. Hoch and P. Karrer, Helv. 37, 397 (1954).

Reduction of N-heterocyclics

←

s. 9, 557

*Lithium iodide/sodium boron hydride*LiI/NaBH₄*s. Sodium boron hydride/lithium iodide**Zinc*

Zn

Replacement of acoxy groups by hydrogen

OAc → H

104.

Crude *trans*-1-acetoxy-2-keto-10-methyl- $\Delta^{3,6}$ -hexahydronaphthalene and acetic anhydride heated to boiling by immersion in an oil bath kept at 145-150°, commercial Zn-dust added all at once to the vigorously stirred soln., from which moisture is excluded, refluxing and stirring

continued for 8 min. → *trans*-2-keto-10-methyl- $\Delta^{3,6}$ -hexahydronaphthalene. Y: 63%. R. B. Woodward et al., Am. Soc. 74, 4223 (1952).

Zinc/sodium hydroxide

Zn/*NaOH*

Hydrocarbons from quinones

s. 2, 93; s. a. G. Wolf, Am. Soc. 75, 2673 (1953)

←

Zinc amalgam/platinum oxide

Zn,*Hg/PtO₂*

Hydrocarbons from acyloins

COCH(OH) → CH₂CH₂

s. 9, 931; without subsequent hydrogenation cf. H. H. Günthard, S. D. Heinemann, and V. Prelog, Helv. 36, 1147 (1953)

Zinc/cupric sulfate/ammonia

Zn/CuSO₄/NH₃

Hydrocarbons from ketones

CO → CH₂

105.

Zn-dust and a few drops of an ammoniacal soln. of CuSO₄ added to a soln. of o-(o-methoxybenzoyl)benzoic acid in aq. NH₃ and heated 20 hrs. at 100° with agitation → o-(o-methoxybenzyl)benzoic acid. Y: 75%.—A 2-step procedure (s. 366) is used for compounds containing halogen, which may be eliminated in the above process. F. e. s. E. D. Bergmann and E. Loewenthal, Bl. 1952, 66.

Sodium boron hydride

NaBH₄

**Reductive cleavage of
N-heterocyclic ozonides**

←

106.

An alc. soln. of 500 mg. 2-phenylskatole ozonide slowly added at 0° to NaBH₄ in alcohol, more alcohol added, and refluxed 1 hr. → 440 mg. (o-benzamidophenyl)methylcarbinol. B. Witkop and J. B. Patrick, Am. Soc. 74, 3855 (1952).

Sodium boron hydride/lithium iodide

NaBH₄/LiI

Diols from ketocarboxylic acid esters

←

s. 9, 876

*Lithium aluminum hydride**LiAlH₄***Ethylenimines from 2-alkoxyethylenimines**

OR → H

s. 9, 242

Hydrocarbons from oxo compoundsCO → CH₂

07.

A suspension of 3-(p-dimethylaminobenzoyl)indole in abs. ether stirred and treated with 5 moles 1 M ethereal LiAlH_4 , then refluxed 4 hrs. → N,N-dimethyl-p-skylaniline. Y: 83.4%. J. Thesing, H. Mayer, and S. Klüssendorf, B. 87, 901 (1954); s. a. E. Leete and L. Marion, Can. J. Chem. 31, 457 (1953).

**Hydrocarbons from carboxylic acids
via alcohols and halides**COOH → CH₃

08.

Cholanic acid allowed to react with LiAlH_4 in ether in a Soxhlet apparatus → 24-hydroxycholane (Y: 94%) dissolved in a mixture of benzene and dimethylaniline, SOCl_2 added dropwise, and heated 0.5 hr. on a water bath → 24-chlorocholane (Y: 86%) dissolved in tetrahydrofuran, treated with LiAlH_4 , and refluxed 10 hrs. → cholane (Y: 83%). F. reductions of carboxylic acids s. F. Wessely and W. Swo-boda, M. 82, 437 (1951); via bromides, which are reduced with $\text{Zn}/\text{CH}_3\text{COOH}$, s. S. F. Birch et al., Soc. 1952, 1363; reduction with Raney-Ni s. C. A. Grob and E. Renk, Helv. 37, 1689 (1954).

**Hydrocarbons from
methylsulfonic acid esters
Sec. alcohols from ketones**

←

09.

A soln. of 2-hydroxymethyl-2-methylcyclopentanone mesylate in abs. ether added during 45 min. at 0° to LiAlH_4 , ca. 3/4 of the ether evaporated, then refluxed 3 hrs. → 2,2-dimethylcyclopentanol. Y: 89%. A. Eschenmoser and A. Frey, Helv. 35, 1660 (1952).

**Hydrocarbons from
p-toluenesulfonic acid esters**

OTs → H

s. 6, 47; 8, 88; s. a. P. Karrer and R. Saemann, Helv. 35, 1932 (1952); partial reduction s. P. Karrer and E. Vis, Helv. 37, 378 (1954)

Alcohols from carboxylic acid esters

COOR → CH₂OH

s. 6, 101; s. a. A. Campbell and H. N. Rydon, Soc. 1953, 3002

Hydroxyacetals from carbalkoxyacetals

s. 8, 91; s. a. C. D. Hurd and W. H. Saunders, Jr., Am. Soc. 74, 5324 (1952)

Alcohols from acyl peroxides

(RCOO)₂ → 2 RCH₂OH

s. 9, 6

**Reduction of enolizable β-dioxo compounds
to ethylenealcohols**

←

110.

Solid 2-hydroxymethylenecyclopentanone added to a soln. of LiAlH₄ in dry ether → 2-methylenecyclopentanol. Y: 57%. F. e., also reduction of β-ketocarboxylic acid esters, s. A. S. Dreiding and J. A. Hartman, Am. Soc. 75, 939 (1953).

**2-Ethylenealcohols from
α,β-acetylenecarboxylic acids**

←

111.

An ethereal soln. of acetylenedicarboxylic acid added dropwise with stirring to an ethereal soln. of LiAlH₄ under N₂, and stirring continued 16 hrs. at room temp. → 2-butene-1,4-diol. Y: 84%.—Similarly: Propiolic acid → allyl alcohol. Y: 85%. G. E. Benedict and R. R. Russell, Am. Soc. 73, 5444 (1951).

Diols from carboxylic acid anhydrides

←

s. 7, 105; s. a. W. J. Bailey, J. Rosenberg, and L. J. Young, Am. Soc. 76, 2251 (1954)

**Aldehydes from carboxylic acids and esters
Inverse addition**

COOR → CHO

112.

LiAlH₄ in ether added dropwise with stirring at -70° to perfluoropropionic ester, and the product isolated after 3 hrs. → perfluoropro-

pionaldehyde. Y: 75%. F. e. s. O. R. Pierce and T. G. Kane, Am. Soc. 76, 300 (1954); from carboxylic acids s. M. Braid, H. Iserson, and F. E. Lawlor, Am. Soc. 76, 4027 (1954).

Amines from carboxylic acid amides

s. 9, 524; s. a. O. Klamerth and W. Kutscher, B. 85, 444 (1952); V. M. Mićović and M. L. Mihailović, J. Org. Chem. 18, 1190 (1953); with Soxhlet extractor s. J. Swidinsky, F. H. McMillan, and J. A. King, Am. Soc. 76, 1148 (1954)

Alkylation of amines

N-Methylation

A mixture of 1-n-butylcyclohexylamine and 98%-formic acid heated 2 hrs. at 180-190°, the dry ethereal soln. of the crude product added dropwise to ethereal LiAlH₄, refluxed 6 hrs., and the final product isolated as the sesquioxalate → 1-n-butyl-N-methylcyclohexylamine sesquioxalate. Y: 83%. F. e. and methods s. K. E. Hamlin and M. Freifelder, Am. Soc. 75, 369 (1953); s. a. F. F. Blicke and Chi-Jung Lu, Am. Soc. 74, 3933 (1952).

Cyclic imines from dicarboxylic acid imides

←

s. 6, 103; s. a. D. Hoch and P. Karrer, Helv. 37, 397 (1954); L. M. Rice, E. E. Reid, and C. H. Grogan, J. Org. Chem. 19, 884 (1954)

Methylamines from isocyanates

s. 8, 95; s. a. W. Ried and F. Müller, B. 85, 470 (1952)

Aminoalcohols from dicarboxylic acid monoamides and dicarboxylic acid amide esters

←

23.3 g. N,N-dimethylsuccinamic acid extracted by means of a Soxhlet apparatus into a boiling soln. of LiAlH₄ in dry ether with stirring over a period of 18 hrs. → 11.3 g. 4-dimethylamino-1-butanol. Also from amide esters s. A. W. D. Avison, J. Applied Chem. 1, 469 (1951).

Aluminum alkoxide $Al(OR)_3$
Meerwein-Ponndorf-Verley reduction
Lactones from ketocarboxylic acids

115.

4-Ketopentadecanoic acid and Al-isopropoxide in isopropanol slowly distilled through a Fenske column until no more acetone distills off → 4-hydroxypentadecanoic lactone. Y: 93%. R. E. Bowman and W. D. Fordham, Soc. 1951, 2753.

Formic acid/formaldehyde $HCOOH/H_2CO$ **Methylamines from formamides** $NCHO \rightarrow NCH_3$

116.

A mixture of 4-methylformamido-2,2-diphenyl-3-methylbutanenitrile, trioxane, and 98-100%-formic acid refluxed 112 hrs. → 4-dimethylamino-2,2-diphenyl-3-methylbutanenitrile. Y: 91%. M. Sletzinger, E. M. Chamberlin, and M. Tishler, Am. Soc. 74, 5619 (1952).

Hydrosulfite $S_2O_4^{--}$ **Anthrones from anthraquinones** $CO \rightarrow CH_2$

s. 6, 106; also limitations s. W. Bradley and R. F. Maisey, Soc. 1954, 274

Copper chromite $CuCr_2O_4$ **Alcohols from carboxylic acid esters** $COOR \rightarrow CH_2OH$

selective reduction s. 9, 567; optically active compounds s. E. Segel, Am. Soc. 74, 1096 (1952)

Palladium-barium sulfate $Pd-BaSO_4$ **Hydrocarbons from ketones** $CO \rightarrow CH_2$

117.

A soln. of 4-methyl-5-chloro-1-tetralone in 95%-ethanol hydrogenated with 5%-Pd-BaSO₄ at room temp. and 3 atm. until 2 molar equivalents of H₂ have been absorbed → 1-methyl-8-chloro-1,2,3,4-tetrahydro-naphthalene (startg. m. f. 898). Y: 75%. J. Cason and D. D. Phillips, J. Org. Chem. 17, 298 (1952).

Palladium-carbon (Pd-C)

Pd-C

**Carboxylic acids from
 α,β -ethylene- α -hydroxycarboxylic acid esters**

8.

A soln. of benzyl isatylidenehydroxyacetate in a mixture of glacial acetic acid and coned. H₂SO₄ shaken with 10% Pd-on-charcoal under 3-4 atm. of H₂ until 3 molar equivalents have been absorbed, filtered onto Na-acetate, and the solvent removed in vacuo with mild heating → oxindole-3-acetic acid. Y: 70%. P. L. Julian et al., Am. Soc. 75, 5305 (1953).

*Platinum oxide/zinc amalgam*PtO₂/Zn,Hg*s. Zinc amalgam/platinum oxide**Via intermediates*

v.i.

Hydrocarbons from oxo compoundsCO → CH₂**via hydrazones****Wolff-Kishner reduction****without addition of alkali**

s. 3, 58; 5, 66; in amyl alcohol s. H. Kloosterziel, W. van der Veen, and H. J. Backer, R. 71, 1231 (1952)

Simplified procedure

s. 2, 96; s. a. M. 83, 865 (1952)

Huang-Minlon reduction**with preceding acid cleavage**

s. 9, 228

19.

Acetals from ketoacetals. 4-Ketopentadecan-1-al diethyl acetal, KOH, hydrazine hydrate, and 2,2'-dihydroxydiethyl ether refluxed 1.5 hrs., the temp. raised to 200° by distillation, and kept at that temp. for a further 4 hrs. → n-pentadecanal diethyl acetal. Y: 90%. R. E. Bowman and W. D. Fordham, Soc. 1951, 2758.

LIBRARY

120.

Two-step procedure. 0.73 g. allopregnane- $3\beta,11\alpha,20\beta$ -triol-7-one refluxed 1 hr. with ethylene glycol and hydrazine hydrate, aq. KOH added, heated without condenser until the vapor temp. has reached 190°, then refluxed 4 hrs. → 0.59 g. allopregnane- $3\beta,11\alpha,20\beta$ -triol. C. Djerassi et al., Am. Soc. 75, 3505 (1953).

**Thioökindoles from thianaphthenequinones
via o-mercaptophenylacetic acids**

121.

Hydrazine hydrate added slowly to a boiling soln. of thianaphthenequinone in a minimum of ethanol, and refluxed 15 min. → thianaphthenequinone 3-hydrazone (Y: 67%) dissolved in aq. 25%-KOH, and gently refluxed 16 hrs. → o-mercaptophenylacetic acid (Y: 84%), steam-distilled in aq. HCl → thioökindole (startg. m. f. 857) (Y: 87%). F. e. s. R. H. Glauert and F. G. Mann, Soc. 1952, 2127.

**Simplified Wolff-Kishner reduction
with simultaneous decarbalkoxylation
Decarboxylation by azeotropic distillation
Pyrroles**

CO → CH₂

122.

A mixture of ethyl 3,5-dimethyl-4-acetyl-2-pyrrolecarboxylate, NaOH, hydrazine hydrate, and triethylene glycol refluxed 2 hrs., the alcohol formed distilled off through a column, water added dropwise when the temp. has reached 180°, and the product distilled azeotropically with addition of a trace of Silikon SH (Wacker) to prevent foaming → cryptopyrrole. Y: over 80%.—Also decarbalkoxylation without reduction in the presence of a little hydrazine hydrate to stabilize the pyrrole derivatives, s. A. Treibs and R. Schmidt, A. 577, 105 (1952).

**Reduction of oxo- to hydrocarbon groups
with simultaneous formation of
amines from nitro compounds**

23.

2'-Nitro-2,3:6,7-dibenzocyclohepta-2,4,6-trien-1-one and hydrazine hydrate added to a soln. of KOH in trimethylene glycol, refluxed 1.5 hrs. under N₂, the condenser removed, heating in a N₂-stream continued until the boiling temp. reaches 200-205°, finally refluxed 5 hrs. at this temp. → 2'-amino-2,3:6,7-dibenzocyclohepta-2,4,6-triene. Y: 79-81%. T. W. Campbell, R. Ginsig, and H. Schmid, Helv. 36, 1489 (1953).

Hydrocarbons from ketones via mercaptals

s. 7, 116; s. a. H. M. Walborsky and E. R. Buchman, Am. Soc. 75, 6339 (1953)

Nitrogen ↑

HC₁₁N

Irradiation/alkyl nitrite

←

s. Alkyl nitrite/irradiation

Sodium

Na

Aldehydes from carboxylic acid hydrazides

CONHNH₂ → CHO

24.

A soln. of crude nicotinyl hydrazide in aq. NH₃ added to a stirred ice-cold soln. of Na-metaperiodate in aq. NH₃ as rapidly as the gas evolution permits, stirring and cooling continued for 5 min., allowed to stand for 15 more min., treated with aq. Ba-acetate, and filtered → nicotinaldehyde. Crude Y: 60-70%. H. N. Wingfield, W. R. Harlan, and H. R. Hanmer, Am. Soc. 74, 5796 (1952).

Sodium amalgam

Na,Hg

**Reductive cleavage of quaternary ammonium salts
Emde degradation**

CH₂N⁺ ← → CH₃

s. 8, 105; s. a. Org. Synth. 34, 56 (1954)

Potassium hydroxide

KOH

**o-Mercaptophenylacetic acids from
thianaphthenequinone 3-hydrazone**

C

s. 9, 121

Zinc

Zn

Hydrocarbons from diazonium fluoborates $N_2^+ \rightarrow H$

s. 9, 129

Zinc/acetic acid

Zn/ CH_3COOH **Tetracycline derivatives** \leftarrow **Simultaneous elimination of
tert-amino- and hydroxyl groups**

125.

Terramycin, Zn, and acetic acid stirred 4 days at 25-30° → desdimethylaminodesoxyterramycin. Y: 50%. F. A. Hochstein et al., Am. Soc. 75, 5455 (1953); **reductive deamination** s. a. J. H. Brewster and M. W. Kline, Am. Soc. 74, 5179 (1952).

Alkyl nitrite/irradiation

 \leftarrow **Replacement of amino groups by hydrogen** $NH_2 \rightarrow H$

126.

Photoreduction. o-Nitraniline diazotized with ethyl nitrite in isopropanol in the presence of a small excess of HCl, then irradiated with UV-light at 0° for 3-4 hrs. → nitrobenzene. Y: 75%. Isopropanol is particularly suitable as medium due to its favorable reduction-oxidation properties. F. e., also with isolation of the diazonium salts, s. L. Horner and H. Stöhr, B. 85, 993 (1952).

Hypophosphorous acid

 H_3PO_2 **Diazotization in the
presence of hypophosphorous acid**

at ca. 5° s. 5, 67; at ca. 35° s. R. A. Henry and W. G. Finnegan, Am. Soc. 76, 290 (1954)

Hypophosphorous acid/cupric sulfate

 $H_3PO_2/CuSO_4$

s. 7, 119

Hydrochloric acid

 HCl **Cleavage of azosulfonylthioethers** $N:NR \rightarrow H$

s. 9, 140

Nickel

Ni

Hydrogenolysis of Mannich basesNR₂ → H

27.

4-Dimethylamino-1,1-diphenyl-2-butanone hydrochloride hydrogenated with Raney-Ni in abs. ethanol at 80° and an initial pressure of 1180 p. s. i. for 2.5 hrs. until 1 molar equivalent of H₂ has been absorbed → 1,1-diphenyl-2-butanone. Y: 72%. F. e. s. E. M. Schultz and J. B. Bicking, Am. Soc. 75, 1128 (1953).

Palladium-carbon

Pd-C

**Amines from diazo compounds
with simultaneous replacement
of halogen by hydrogen**

s. 9, 876

←

Platinum oxide

PtO₂

**Hydrogenolysis of
unsatd. quaternary ammonium salts**

←

128.

14.15 g. 2-n-heptenyltrimethylammonium iodide hydrogenated with PtO₂ in ethanol at 15-19° → 3.2 g. n-heptane.—3-Unsatd. salts are hydrogenated without hydrogenolysis. F. e. s. R. Epsztein, M. Oломucki, and J. Marszak, Bl. 1952, 777.

Via intermediates

v.i.

**Replacement of amino groups by hydrogen
via diazonium fluoborates**

NH₂ → H

129.

m-Chloroaniline diazotized in aq. HBF₄ with NaNO₂, and cooled by addition of Dry Ice before filtration → m-chlorobenzenediazonium fluoborate (Y: 98%) added slowly to abs. ethanol and Zn-dust at a rate to maintain gentle reflux, which is continued 1 hr. after the addition → chlorobenzene (Y: 82.6%). F. e. s. A. Roe and J. R. Graham, Am. Soc. 74, 6297 (1952).

**Carboxylic acids from α-hydroxylactams
via ketocarboxylic acids**

C

s. 9, 744

Halogen ↑**HC ↑ Hal***Sodium iodide/acetic acid**NaI/CH₃COOH***Replacement of halogen by hydrogen***Hal → H*

130.

A soln. of 2-*α*-bromoethyl-4-amino-6-anilino-s-triazine in acetone added to a soln. of NaI in acetone and a little acetic acid, allowed to stand overnight → 2-ethyl-4-amino-6-anilino-s-triazine. Y: 88.7%. F. e. and comparison with Pd-CaCO₃ hydrogenation s. S. L. Shapiro and C. G. Overberger, Am. Soc. 76, 97 (1954); method s. A. H. Blatt and E. W. Tristram, Am. Soc. 74, 6273 (1952).

Copper*Cu***Replacement of chlorine by hydrogen***Cl → H*

s. 6, 118; s. a. E. V. Brown, Am. Soc. 76, 3167 (1954)

*Zinc/acetic acid**Zn/CH₃COOH***Replacement of halogen by hydrogen***Hal → H*

s. 9, 108

**Replacement of chlorine by hydrogen
Activated zinc***Cl → H*

131.

A mixture of 0.257 g. 2-chloro-3-cholestane, activated Zn (prepn. s. original paper), and glacial acetic acid refluxed 10 hrs. → 0.225 g. 3-cholestane.—The reduction was not successful with ordinary Zn-dust or CrCl₂. J. J. Beereboom et al., Am. Soc. 75, 3500 (1953).

*Zinc/hydrochloric acid**Zn/HCl***Selective replacement of iodine by hydrogen***I → H*

132.

1,1,1-Trichloro-4,4,4-trifluoro-3-iodo-2-butene refluxed 3 hrs. with Zn and dil. HCl → 1,1,1-trichloro-4,4,4-trifluoro-2-butene (startg. m. f. 329). Y: 63%. R. N. Haszeldine, Soc. 1953, 922.

Sodium boron hydride

NaBH₄

**Aliphatic nitro compounds
from 1,1-bromonitro compounds**
s. 9, 168

Lithium aluminum hydride

LiAlH₄

Replacement of halogen by hydrogen
s. 9, 108

Hal → H

**2-Ethylenealcohols from
α,β-ethylenecarboxylic acid chlorides**

COCl → CH₂OH

33.

An ethereal soln. of 12% excess *LiAlH₄* added dropwise at -20° to an ethereal soln. of *trans*-2-octadecenoic acid chloride, stirring continued 1 hr. at -16° and 30 min. at 20° → *trans*-2-octadecen-1-ol. Y: 80%.—The free acid and the ester give mostly the saturated alcohol. E. F. Jenny and C. A. Grob, *Helv.* 36, 1936 (1953).

Ethyl alcohol

C₂H₅OH

Disproportionation

←

34.

A soln. of di-(*p*-methoxyphenyl)methyl chloride in 96%-ethanol refluxed 6 hrs. in a slow CO₂-stream → di-(*p*-methoxyphenyl)methane (Y: 80%) and acetaldehyde (Y: 75% as the 2,4-dinitrophenylhydrazone). F. e. with alcohols s. M. P. Balfe, J. Kenyon, and E. M. Thain. *Soc.* 1952, 790.

Chromous chloride

CrCl₂

Replacement of halogen by hydrogen

Hal → H

s. 4, 112; s. a. J. J. Beereboom and C. Djerassi, *J. Org. Chem.* 19, 1196 (1954)

Hydriodic acid

HI

Replacement of chlorine by hydrogen

Cl → H

135.

A soln. of picryl chloride in acetone added to a soln. of NaI in acetone containing acetic acid, allowed to stand 24 hrs. at room temp., then

poured into aq. $\text{NaHSO}_3 \rightarrow$ trinitrobenzene. Y: 60% (crude Y: up to 100%). A. H. Blatt and E. W. Tristram, Am. Soc. 74, 6273 (1952); purine derivatives s. R. K. Robins and B. E. Christensen, Am. Soc. 74, 3624 (1952).

Nickel

Ni

Replacement of iodine by hydrogen $\text{I} \rightarrow \text{H}$

136.

Raney-Ni satd. with H_2 added to a soln. of 3β -acetoxy- 11β -hydroxy- 12α -iodo- $5\alpha,22\alpha$ -spirostane in dioxane-ether and stirred 23 hrs. at $0-5^\circ$ in the dark \rightarrow 3β -acetoxy- 11β -hydroxy- $5\alpha,22\alpha$ -spirostane. Y: 93.0%. J. Schmidlin and A. Wettstein, Helv. 36, 1241 (1953).

*Palladium-calcium carbonate/pyridine**Pd-CaCO₃/C₅H₅N***Hydrocarbons from α,β -ethylenchlorides
Selective hydrogenation** $\text{C:CCl} \rightarrow \text{CHCH}_2$

137.

Ethyl 5-chloro-1,1-dimethyl-3-oxo-4-cyclohexene-2-carboxylate hydrogenated in alcohol with prehydrogenated 2.5%-Pd-CaCO₃ in the presence of pyridine until 10% more than the calculated amount of H_2 has been absorbed \rightarrow ethyl 1,1-dimethylcyclohexan-3-one-2-carboxylate. Y: 90%. U. Steiner and B. Willhalm, Helv. 35, 1752 (1952); f. e. s. H. Favre and H. Schinz, Helv. 35, 2388 (1952).

*Palladium-strontium carbonate**Pd-SrCO₃***Replacement of halogen by hydrogen** $\text{Hal} \rightarrow \text{H}$

s. 7, 128; s. a. B. H. Chase and J. Walker, Soc. 1953, 3548

*Palladium-barium sulfate**Pd-BaSO₄***Aldehydes from carboxylic acid chlorides** $\text{COCl} \rightarrow \text{CHO}$

s. 1, 100/1; s. a. K. Freudenberg and H. H. Hübner, B. 85, 1181 (1952); J. P. Lambooy, Am. Soc. 76, 133 (1954); K. Balenović et al., J. Org. Chem. 18, 297 (1953)

Palladium-barium sulfate/calcium carbonate

Pd-BaSO₄/CaCO₃**Replacement of bromine by hydrogen**

Br → H

38.

H₂ passed at 60° through a mixture of trimethyl δ-bromo-β-carboxyadipate, Pd-BaSO₄, CaCO₃, and 90%-methanol, as long as CO₂ is formed → trimethyl β-carboxyadipate. Y: 85%. K. Freudenberg and J. Geiger, A. 575, 145 (1952).

Palladium-carbon

Pd-C

Replacement of halogen by hydrogen simultaneously amines from diazo compounds

s. 9, 876

←

Sulfur ↑**HC \uparrow S**

Sodium amalgam

Na,Hg

Reductive cleavage of sulfones to hydrocarbons and sulfinic acidsRSO₂R' → RH + HSO₂R'

139.

p-Tolyl 2,4,6-trimethoxydiphenylmethyl sulfone in ethanol refluxed 4 hrs. with 6%-Na,Hg → 2,4,6-trimethoxydiphenylmethane (Y: 88%) and Na-p-toluenesulfinate.—A necessary condition for this reaction seems to be that the SO₂-group is attached to at least one ar. radical. The hydrocarbon is derived from the radical of more pronounced electron-releasing character. F. e. s. R. E. Dabby, J. Kenyon, and R. F. Mason, Soc. 1952, 4881.

Piperidine

C₅H₁₁N

Cleavage of azosulfonylthioethers

←

140.

Phenylazo(methylthio)bis(methylsulfonyl)methane

heated in HCl-alcohol-water → methylthiobis(methylsulfonyl)-methane. Y: 87%.

heated to boiling in piperidine
 \rightarrow phenylazobis(methylsulfonyl)methane. Y: 91 %.

Also removal of a methylsulfonyl group s. H. J. Backer, R. 70, 892 (1951).

Cleavage of sulfonylnitro compounds

141.

1,1-Bis(methylsulfonyl)-1-nitroethane and piperidine in dioxane warmed 1 min. at 70° → 1-methylsulfonyl-1-nitroethane (Y: 86%) and 1-methylsulfonylpiperidine (Y: 75%). H. J. Backer, R. 71, 740 (1952).

Zinc amalgam

Zn-Hg

Ketones from ketothioethers

1

142.

A soln. of thiacycloheptadecane-3,16-dione in acetic acid-concd. HCl refluxed several hrs. with Zn-amalgam on a steam bath, while more HCl is added each hr., until H_2S is no longer evolved, and allowed to stand overnight \rightarrow 2,15-hexadecanedione. Y: 91%.—If the reaction is interrupted at the right time to prevent the diketone from further reduction, the yield is very high. F. e. s. T. Bacchetti and L. Canonica, G. 82, 243 (1952).

Lithium aluminum hydride LiAlH_4 **Methylamines from isothiocyanates** $\text{N:C:S} \rightarrow \text{NHCH}_3$

43.

A soln. of phenylisothiocyanate in abs. ether added dropwise during 40 min. to an ethereal soln. of LiAlH_4 , whereby the ether starts boiling, refluxed 30 min. after the addition \rightarrow crude N-methylaniline. Y: 78%. W. Ried and F. Müller, B. 85, 470 (1952).

Sulfuric acid H_2SO_4 **Desulfonation** $\text{SO}_3\text{H} \rightarrow \text{H}$

s. 9, 306

Nickel Ni **Hydrocarbons from thioethers** $\text{RSR}' \rightarrow \text{RH}$

44.

A soln. of *exo*-5,8-epoxy-9,10-*cis*-di(ethylthiomethyl)-*cis*-2,3-dihydroxy-decalin in 95%-ethanol stirred at reflux with Raney-Ni W 6 (s. Org. Synth. 29, 24 (1949)) under N_2 for 1 hr. \rightarrow *exo*-5,8-epoxy-9,10-*cis*-dimethyl-*cis*-2,3-dihydroxydecalin. Y: 75%. G. Stork et al., Am. Soc. 75, 384 (1953).

Replacement of alkylthio groups by hydrogen in pyrimidines

s. 8, 123; s. a. B. R. Baker, J. P. Joseph, and R. E. Schaub, J. Org. Chem. 19, 631, 638 (1954)

**Hydrocarbons from sulfones and thioethers
Stereochemistry of reductive desulfuration** \leftarrow

145.

The optical activity of sulfones with an asymmetric center adjacent to the S-atom is retained in reductive desulfuration; the respective thioethers, however, are completely racemized.—E:

(+)-2-Phenyl-2-benzenesulfonylpropionamide | (+)-2-Phenyl-2-phenylmercapto-
refluxed 5 hrs. with Mozingo-Raney-Ni in ethanol → topropionamide

(+)-2-phenylpropionamide. | optically inactive 2-phenylpropionamide. Crude Y: 93%.

F. e. s. W. A. Bonner, Am. Soc. 74, 1034 (1952).

Phenanthridines from phenanthrithiones

s. 9, 574

←

Hydrocarbons from 1,1-disulfones

s. 9, 880

$C(SO_2R)_2 \rightarrow CH_2$

Ring opening by desulfuration

C

146.

Thiophene ring opening. 5-Methoxy-2-thenoic acid and $NaHCO_3$ in water shaken with Raney-Ni (Adkins W 7) 5 hrs. at room temp., then heated 30 min. at 75° → 5-methoxyvaleric acid. Y: 82%. J. Sicé, Am. Soc. 75, 3697 (1953).

Thiazole ring opening

s. 8, 124; thiazolidine ring opening s. R. L. Hodgson, J. R. C. Bick, and D. J. Cram, Am. Soc. 76, 1137 (1954)

Remaining Elements ↑

HC↑ Rem

Sodium/alcohol or potassium hydroxide/alcohol

$NaOR$ or KOH/C_2H_5OH

Cleavage of silanes

←

147.

Triphenylmethyltrimethylsilane refluxed 4 hrs. with Na-ethoxide or KOH in ethanol → triphenylmethane. Y: 97%. F. e. s. C. R. Hauser and C. R. Hance, Am. Soc. 73, 5846 (1951).

Potassium acetate

CH_3COOK

s. 9, 316

Nickel

Ni

Deselenization

8.

A mixture of dibenzoselenophene oxide, Raney-Ni, benzene, and ethanol refluxed 5 hrs. in an oil bath → biphenyl. Y: 72%. F. e. s. G. E. Wiseman and E. S. Gould, Am. Soc. 76, 1706 (1954).

Carbon ↑

HC↑ C

Sodium hydroxide

NaOH

Replacement of C-acyl by hydrogen

COR → H

49.

3-(2,5-Dibenesulfonamido-phenyl)-2,4-pentanedione added at 100° to aq. 2.5%-NaOH, and heating continued for 10 min. → crude 2,5-dibenesulfonamido-phenyl-2-propanone. Y: 88%. Also carboxylic acids from β-ketocarboxylic acid esters s. R. Adams and D. C. Blomstrom, Am. Soc. 75, 3403 (1953).

Ketones from
β-ketocarboxylic acid esters

COOR → H

50.

A soln. of crude labeled ethyl geranylacetate in ethanol-water containing NaOH refluxed 48 hrs. → labeled geranylacetone. Y: 90%. —The usual Ba(OH)2-method gives inconsistent results. W. G. Dauben and H. L. Bradlow, Am. Soc. 74, 5204 (1952).

**Replacement of carbalkoxy groups
by hydrogen at low temp.**

Ethyl α -nitro- β -acetylamino- β -phenylpropionate (prepn. s. 841) dissolved in the cold in 10%-NaOH, and allowed to stand 68 hrs. at 0° → α -nitro- β -acetylamino- β -phenylethane. Crude Y: 88%. F. e. s. G. Stefanović, J. Bojanović, and K. Sirotanović, J. Org. Chem. 17, 1110 (1952).

Potassium hydroxide

KOH

Ketones from α -aminomethyleneketones

C:CHNR₂ → CH₂

Blocking of ketone α -positions

s. 9, 769

**γ -Diketones from
 β, γ' -diketocarboxylic acid esters**

COOR → H

s. 9, 892

**α -Acylaminocarboxylic acids from
 α -acylaminomalonic acid esters**

A soln. of diethyl 4-(4'-nitrophenoxy)benzylacetamidomalonate and KOH in 95%-ethanol refluxed 1 hr., most of the ethanol distilled off, the residue dissolved in water, filtered, and acidified with concd. HCl → α -acetamido- β -[4-(4'-nitrophenoxy)phenyl]propionic acid. Y: 87%. P. L. Southwick, G. E. Foltz, and W. E. McIntyre, Jr., Am. Soc. 75, 5877 (1953).

Potassium hydroxide/alcohol

Nitriles from

α -cyanocarboxylic acid esters

s. 5, 608; in ethylene glycol s. F. S. Prout, Am. Soc. 74, 5915 (1952)

Sodium/alcohol

NaOR

Oxo compounds from glycidic acid esters

←

s. 3, 77; decarboxylation with dil. acetic acid instead of HCl s. M. E. Dullaghan and F. F. Nord, J. Org. Chem. 18, 878 (1953)

*Sodium amide**NaN₃***Replacement of cyano groups by hydrogen**

CN → H

s. 5, 81; s. a. F. F. Blicke and Eu-Phang Tsao, Am. Soc. 76, 2203 (1954)

*Calcium oxide**CaO***Hydrocarbons from
carboxylic acid anhydrides**
Benzo[mno]fluoranthenes

←

3.

An intimate mixture of lime and 19 mg. benzo[mno]fluoranthene-3,4-dicarboxylic acid anhydride distilled → 4 mg. benzo[mno]fluoranthene.—This is one of the first examples known of hydrocarbons having 4 ar. nuclei fused directly to a cyclopentane ring. F. e. s. N. Campbell and D. H. Reid, Soc. 1952, 3281.

*Zinc amalgam**Zn,Hg***Hydrocarbons from β-ketocarboxylic acid
esters by Clemmensen reduction**

←

4.

A mixture of ethyl 2-tridecanoyltridecanoate, abs. ethanol, and Zn,Hg satd. twice with HCl, and refluxed 20 hrs. after each introduction of HCl → pentacosane. Y: 87%. D. A. Shirley and G. A. Schmidt, Am. Soc. 73, 5493 (1951).

*Aluminum amalgam**Al,Hg***Reductive cleavage of
pyrimido[4,5-b]pyrazine side chains**

←

55.

Al,Hg added to a soln. of 6-acetylisoxyanthopterin in 5%-NaOH, and heated 10 min. on a steam bath → isoxyanthopterin (Y: 80%) and acetone (Y: 85% as the 2,4-dinitrophenylhydrazone). F. e. s. S. Nawa, S. Matsuura, and Y. Hirata, Am. Soc. 75, 4450 (1953).

Polyphosphoric acid $H(PO_3H)_xOH$ **Replacement of cyano groups by hydrogen** $CN \rightarrow H$

156.

2,3,6,7-Tetramethylnaphthalene-1,4-dinitrile and polyphosphoric acid heated a short time at 200° → 2,3,6,7-tetramethylnaphthalene. Y: good. W. L. Mosby, Am. Soc. 75, 3600 (1953).

p-Toluenesulfonic acid $TsOH$ **Replacement of carbalkoxy groups by hydrogen** $COOR \rightarrow H$ **tert-Butyl esters as intermediates**

s. 3, 703; 9, 881; without solvent s. A. Treibs and K. Hintermeier, B. 87, 1163 (1954)

Sulfuric acid H_2SO_4 **Sulfonylacetic acid esters from sulfonylmalonic acid esters**

s. 9, 669

Replacement of cyano groups by hydrogen $CN \rightarrow H$

s. 8, 130; s. a. Am. Soc. 75, 2986 (1953)

Hydrochloric acid HCl **Hydroxyketones from ketolactones** C

s. 7, 147; s. a. K. Winterfeld and E. Müller, A. 581, 77 (1953)

Hydriodic acid HI **α -Aminocarboxylic acids from acylaminomalonic acid esters with simultaneous cleavage of ethers** \leftarrow

157.

Diethyl α -acetamido- α -2,5-dimethoxybenzylmalonate refluxed 3 hrs. in a mixture of acetic acid and constant-boiling HI under a N_2 -stream, with addition of small crystals of Na-hypophosphite until all iodine

color disappears when necessary → 2,5-dihydroxyphenyl-DL-alanine. Y: 65%.—Hydrolysis with HBr was not successful. F. e. s. A. T. Shulgin and E. M. Gal, Soc. 1953, 1316.

Palladium-carbon

Pd-C

Reductive 2,4-oxazolidione ring opening

C

58.

A soln. of 3-carboxanilidomethyl-5-phenyl-2,4-oxazolidione in dioxane containing 10% Pd-on-Darco catalyst hydrogenated at atmospheric pressure until after 9 hrs. the theoretical amount of H_2 has been absorbed → phenaceturic acid anilide. Y: 91.5%. Also with Al,Hg (Y: 42%) s. J. C. Sheehan and G. D. Laubach, Am. Soc. 73, 4752 (1951).

Via intermediates

v.i.

Hydrolysis and decarboxylation

COOR → H

59.

Ethyl 3-methylcoumarilate (prepn. s. 953) refluxed 1 hr. with aq. 10% KOH, then acidified while hot with a slight excess of concd. HCl → 3-methylcoumarilic acid (Y: 90-95%) distilled in a Wood's metal bath, which is slowly heated to 280° → 3-methylcoumarone (Y: 84-88%). W. R. Boehme, Org. Synth. 33, 43 (1953).

s. a. 9, 122, 884

Elimination

Oxygen ↑

HC ↑ O

Lithium aluminum hydride

LiAlH₄

Aldehydes from carboxylic acids

COOH → CHO

s. 9, 112

Titanium dioxide/formic acid

TiO₂/HCOOH

Aldehydes from carboxylic acids

COOH → CHO

s. 1, 105; negative results s. A. J. Barduhn and K. A. Kobe, Soc. 1954, 1651

Copper chromite $CuCr_2O_4$ **Hydrocarbons from alcohols** $OH \rightarrow H$

s. 3, 85; s. a. J. H. Lamneck, Jr., and P. H. Wise, Am. Soc. 76, 3475 (1954)

Hydriodic acid/acetic anhydride $HI/(CH_3CO)_2O$ **Hydrocarbons from diols** $OH \rightarrow H$

48%-HI added dropwise to a mixture of 1,5-dimesitylpentane-1,5-diol, acetic anhydride, and glacial acetic acid, then refluxed 30 min. \rightarrow 1,5-dimesitylpentane. Y: 81%.—Also reduction of glycols s. R. C. Fuson and H. P. Wallingford, Am. Soc. 75, 5950 (1953).

Via intermediates

v.i.

Hydrocarbons from alcohols via halides

s. 9, 108

s. a. 1, 108; reduction in the presence of NH_3 s. R. H. Mizzoni and P. E. Spoerri, Am. Soc. 76, 2201 (1954)**Sulfur ↑** $HC \uparrow S$ **Nitric acid/nitrous acid** HNO_3/HNO_2 **Replacement of sulfhydryl by hydrogen** $SH \rightarrow H$

s. 6, 142; s. a. R. G. Jones, Am. Soc. 74, 1085 (1952)

Carbon $HC \uparrow C$ **Without additional reagents**

w.a.r.

Decarboxylation $COOH \rightarrow H$

s. 9, 159

by azeotropic distillation

s. 9, 122

Potassium hydroxide KOH **Phthalides** \leftarrow

161.

Benzil-2,2'-dicarboxylic acid (prepn. s. 213) heated with aq. 50%-KOH at 125-130°, kept 2-5 min. at this temp., treated with water and HCl \rightarrow

o-carboxyphenylphthalide. Y: 96%. C. Graebe and P. Juillard, A. 242, 238 (1887); s. a. E. D. Bergmann and Z. Pelchowicz, Am. Soc. 75, 4281, (1953).

Copper-nickel

Cu-Ni

Dehydroxymethylation

$\text{CH}_2\text{OH} \rightarrow \text{H}$

Tetrahydrofurfuryl alcohol allowed to react with a Cu-Ni catalyst, containing 44% Ni, at 250° using H₂ as carrier → tetrahydrofuran. Y: 88%. W. H. Bagnall, E. P. Goodings, and C. L. Wilson, Am. Soc. 73, 4794 (1951).

Dimethylformamide

$\text{HCON(CH}_3)_2$

Decarboxylation

$\text{COOH} \rightarrow \text{H}$

3.

A soln. of 1 g. 5-nitro-1-indenecarboxylic acid in dimethylformamide heated on a water bath whereby CO₂-evolution starts at 45°, the temp. maintained 5 min. at 95° after the CO₂-evolution has subsided → 0.73 g. 5-nitroindene. F. e. s. O. Süs et al., A. 579, 133 (1953).

Enzyme

←

4.

Histidine decarboxylase from *Lactobacilli* added to (radioactive) L-histidine in a Warburg flask, and incubated 65 min. at 30° until CO₂-evolution is complete → (radioactive) histamine. Y: 65% as the dipicrate. R. W. Schayer, Am. Soc. 74, 2440 (1952).

Nickel-copper s. Copper-nickel

Ni-Cu

Nickel-silica

Ni-SiO₂

Dehydroxymethylation

$\text{CH}_2\text{OH} \rightarrow \text{H}$

s. 6, 145; s. a. H. Pines, H. G. Rodenberg, and V. N. Ipatieff, Am. Soc. 75, 6065 (1953); 76, 771 (1954)

Via intermediates

v.i.

Aldehydes from α-ketocarboxylic acids

$\text{COCOOH} \rightarrow \text{CHO}$

s. 2, 689; s. a. R. Schwarz and K. Capek, M. 83, 883 (1952)

Formation of O—O Bond

Uptake

Addition to Oxygen and Carbon

$\text{OO}\downarrow\text{OC}$

Sodium hydroxide

NaOH

Acyl peroxides from carboxylic acid anhydrides

Aq. NaOH added dropwise during 2 hrs. below 0° to a mixture of propionic anhydride and 30%-H₂O₂, stirring continued for 1 hr., then extracted with ether → propionyl peroxide. Y: 90-95%; containing 95-98% peroxide. S. Goldschmidt, W. Leicher, and H. Haas, A. 577, 153 (1952).

Exchange

Sulfur ↑

$\text{OO}\uparrow\text{S}$

Potassium hydroxide

KOH

Hydroperoxides from methylsulfonates

A one-phase reaction mixture prepared by adding aq. 50%-KOH to a chilled soln. of isoamyl methanesulfonate, 30%-H₂O₂, methanol, and water kept 20 hrs. at room temp. in a water bath → isoamyl hydroperoxide. Y: 52.0%.—This method makes potentially available a wide variety of alkyl hydroperoxides previously inaccessible. F. e., with lower yields, s. H. R. Williams and H. S. Mosher, Am. Soc. 76, 2987, 2984 (1954).

Formation of O—N Bond

Uptake

Addition to Nitrogen

$\text{ON}\downarrow\text{N}$

Peracetic acid

CH₃COO₂H

N-Oxides

$\text{N}\Rightarrow\text{O}$

s. 8, 136; 2-aminopyridine 1-oxides s. R. Adams and S. Miyano, Am. Soc. 76, 2785 (1954)

Trifluoroperacetic acid

CF_3COO_2H

N-Nitramines from N-nitrosamines

s. 9, 169

$N \cdot NO \rightarrow N \cdot NO_2$

Perphthalic acid

←

**Azoxy compounds from hydrazones
and reverse reaction**

Perphthalic acid in ether added to benzaldehyde phenylhydrazone, and the product isolated after 2 days → benzylazoxybenzene (Y: 96%), 0.45 g. in dry ether refluxed 8 hrs. with $LiAlH_4$ → 0.35 g. benzaldehyde phenylhydrazone. F. azoxy compounds s. B. M. Lynch and K. H. Pausacker, Soc. 1953, 2517.

Nitrogen dioxide

NO_2

Hydroxyhydrazines from hydrazyl radicals

$N \cdot N(OH)$

s. 9, 988

Nitric acid

HNO_3

Aliphatic nitro compounds from oximes

$NO \rightarrow NO_2$

via 1,1-bromonitroso- and

1,1-bromonitro compounds

An aq. soln. of cyclohexanone oxime and $NaHCO_3$ added as rapidly as possible during ca. 15 min. at about 10° to a vigorously stirred aq. suspension of N-bromosuccinimide, stirring continued for 15 min., extracted with petroleum ether, concentrated, and shaken with HNO_3 (d. 1.42) until the blue color disappears → 1-bromo-1-nitrocyclohexane (Y: 63%) added dropwise to $NaBH_4$ in aq. 75%-methanol—if necessary with external heating to start the reaction—, and the remainder added as rapidly as possible when the solvent is at reflux temp. → nitrocyclohexane (Y: 80%). F. e. s. D. C. Iffland and G. X. Criner, Am. Soc. 75, 4047 (1953); 76, 4083 (1954).

Hydrogen peroxide

H_2O_2

N-Oxides

$N \rightarrow O$

s. 9, 243

Exchange**Hydrogen ↑****ON↑H***Potassium salt* K^+ **O-Azo compounds** $\cdot ON:NR$

s. 9, 419

Trifluoroperacetic acid CF_3COO_2H **Oxidations with trifluoroperacetic acid**

←

Nitro compounds from amines**N-Nitramines from N-nitrosamines**

169.

90% - H_2O_2 added at 20° to trifluoroacetic acid, then p-aminobenzonitrile added in one portion, the temp. allowed to rise to 50° and kept there by intermittent cooling for 1 hr. → p-nitrobenzonitrile. Y: 98%. —Similarly: Dibutylnitrosamine → dibutylnitramine. Y: 77%. W. D. Emmons and A. F. Ferris, Am. Soc. 75, 4623 (1953); 76, 3468, 3470 (1954).

Hydrogen peroxide/sulfuric acid H_2O_2/H_2SO_4 **Nitro compounds from amines** $\text{NH}_2 \rightarrow \text{NO}_2$

s. 7, 160; s. a. E. V. Brown, Am. Soc. 76, 3167 (1954)

Oxygen ↑**ON↑O***Acetic anhydride* $(CH_3CO)_2O$ **Nitric acid esters** ONO_2

s. 3, 101; of glycosides s. D. M. Shepherd, Soc. 1953, 3635

Elimination**Hydrogen ↑****ON↑H***Phenyl iodosoacetate* $C_6H_5I(OAc)_2$ **Benzofuran oxides from o-nitramines**

s. 9, 385

Nitrogen ↑**ON \uparrow N***Without additional reagents*

w.a.r

Isoxazole ring from o-azidoöxo compounds

70.

0.6 g. 3-azidoquinoline-4-aldehyde (prepn. s. 382) and dioxane refluxed 4 hrs. → 0.35 g. quinolino(3',4':3,4)isoxazole. D. W. Ockenden and K. Schofield, Soc. 1953, 1915; s. a. P. A. S. Smith et al., Am. Soc. 75, 6335 (1953).

Formation of O—Hal Bond**Uptake****Addition to Halogen****OHal \downarrow Hal***Nitric acid* HNO_3 **Iodoso compounds from iodides** $I \rightarrow IO$

71.

4,5-Dinitro-2-iodobenzoic acid dissolved in HNO_3 (d. 1.52) and heated 3 min. on a steam bath → 4,5-dinitro-2-iodosobenzoic acid. Y: 92%. H. Goldstein and R. Jaunin, Helv. 34, 2222 (1951).

Hydrogen peroxide H_2O_2 **Iodosoacetates** $I(OAc)_2$

72.

30% - H_2O_2 and acetic anhydride stirred together for 4 hrs. at 40°, 50 g. iodobenzene added, and allowed to stand overnight → 52 g. phenyl iodosoacetate. F. e. by a second method s. K. H. Pausacker, Soc. 1953, 107.

Formation of O—S Bond

Uptake

Addition to Sulfur

OS ↓ S

Perbenzoic acid

$C_6H_5COO_2H$

Sulfones from thioethers

$\rangle S \rightarrow \rangle SO_2$

173.

10-(Methylthio)-10-(methylsulfonyl)thiaxanthene 5,5-dioxide allowed to react with 4 equivalents perbenzoic acid in chloroform at room temp. for 20 hrs. → 10,10-bis(methylsulfonyl)thiaxanthene 5,5-dioxide. Y: 81%. F. e. s. H. Kloosterziel, W. van der Veen, and H. J. Backer, R. 71, 1231 (1952).

1,1-Disulfones from mercaptals

s. 9, 342

Hydrogen peroxide H_2O_2

Sulfoxides and sulfones from thioethers

$R_2S \xrightarrow{\quad} R_2SO$
 $\downarrow \quad \searrow R_2SO_2$

s. 1, 116; 5, 101; s. a. D. Jerchel, L. Dippelhofer, and D. Renner, B. 87, 947 (1954)

Potassium permanganate

$KMnO_4$

s. 6, 148; cyclic sulfones s. A. R. Surrey and R. A. Cutler, Am. Soc. 76, 578 (1954)

Ruthenium tetroxide

RuO_4

174.

Oxydations with ruthenium tetroxide. Methyl benzyl sulfide allowed to react with RuO_4 in CCl_4 → methyl benzyl sulfone. Y: 58%. F. e. s. C. Djerassi and R. R. Engle, Am. Soc. 75, 3838 (1953).

Exchange

Hydrogen †

OS^{II}H

Without additional reagents

w.a.r.

Sulfuric acid monoesters

OSO₃H

An aq. soln. of γ -aminopropanol added dropwise with cooling to H_2SO_4 -water, then distilled under slightly reduced pressure until the temp. of the reaction mixture reaches 190° → crude γ -aminopropyl-sulfuric acid. Y: 90%. H. W. Heine et al., Am. Soc. 75, 2505 (1953).

Resolution of reacemates via salts

Optically active alcohols via sulfuric acid ester salts

Chlorosulfonic acid added with stirring and ice-cooling portionwise to a soln. of **DL**-pantolactone in chloroform, stirring continued 3 hrs. with ice-cooling and 12 hrs. at room temp., extracted with water, small portions of NaHCO₃ added with stirring, adjusted to pH 6 with 2 N NaOH, stirring continued and treated with a warm aq. soln. of strychnine hydrochloride, then allowed to stand 1-2 days at room temp. → strychnine **D**(-)-pantolactone sulfate (Y: 70-80%) dissolved in aq. H₂SO₄ by heating and swirling, refluxing continued for 5 hrs. → crude **D**(-)-pantolactone (Y: ca. 95%). F. Bergel et al., B. 85, 711 (1952).

Thionyl chloride

SOCl₂

Chlorosulfinites

OSOCl

s. 4, 144; s. a. G. Berti, Am. Soc. 76, 1213 (1954)

Oxygen †

OS^{IV}O

Methoxyacetylene

HC≡C-OCH₃

Sulfonic acid anhydrides from sulfonic acids

2 RSO₃H → (RSO₂)₂O

s. 9, 261

Carbodiimides $RN=C=NR$ **Reactions with carbodiimides****Sulfonic acid anhydrides from sulfonic acids**

A soln. of di-p-tolyl carbodiimide in anhydrous benzene added quickly to methanesulfonic acid, and the mixture agitated vigorously for 1 hr. → methanesulfonic anhydride (startg. m. f. 391). Y: ca. 92%. F. e. s. H. G. Khorana, Can. J. Chem. 31, 585 (1953); phosphoric acid derivatives s. Am. Soc. 76, 3517, 3522 (1954).

Phosphorus pentoxide P_2O_5

One-half of a mixture of P_2O_5 , kieselguhr, and asbestos mixed with benzenesulfonic acid sesquihydrate, the hot mixture allowed to stand 0.5 hr., then the remainder of the mixture mixed in as well as possible at 100° during 2 hrs., and heating continued for 5 hrs. with occasional mixing → benzenesulfonic acid anhydride (startg. m. f. 669, 671). Y: 50-60%.—Admixture of kieselguhr and asbestos facilitates subsequent extraction. F. e. s. L. Field, Am. Soc. 74, 394 (1952).

Halogen \ddagger **OS \ddagger Hal***Potassium hydroxide* KOH **Oxime sulfonates** $C:N\text{OSO}_2\text{R}$

p-Toluenesulfonyl chloride added portionwise at 0-7° during 10 min. to a vigorously stirred soln. of p,p'-dichlorodesoxybenzoinoxime and KOH in acetone-water, and stirring continued 25 min. at the same temp. → p,p'-dichlorodesoxybenzoinoxime tosylate (startg. m. f. 242). Y: 72%. F. e. s. M. J. Hatch and D. J. Cram, Am. Soc. 75, 38 (1953).

Pyridine C_5H_5N **p-Toluenesulfonic acid esters
as intermediates** OSO_2R

s. 9, 623

Partial O-tosylation

s. 9, 825; s. a. W. F. Johns, R. M. Lukes, and L. H. Sarett, Am. Soc. 76, 5026 (1954)

γ-Collidine

←

**Sulfonic acid esters
from sulfonic acid chlorides and alcohols**

Benzenesulfonyl chloride added dropwise at -5 to 0° to a mixture of allyl alcohol and γ -collidine, and stirring of the cooled mixture continued for 1 hr. → allyl benzenesulfonate. Y: 66%.—A better yield is obtained with γ -collidine than with pyridine. Apparently the formation of quaternary ammonium salts is minimized by the use of a more sterically hindered base. C. G. Bergstrom and S. Siegel, Am. Soc. 74, 254 (1952).

*Mercuric oxide**HgO***Sulfonic acid anhydrides
from sulfonic acid chlorides**

A mixture of methanesulfonyl chloride, yellow *HgO*, and *sym*-tetrachloroethane refluxed 1.5 hrs. with stirring at 146° under anhydrous conditions until all odor of sulfonyl chloride has disappeared, then for 10 min. more → methanesulfonic anhydride. Y: 67-82%. F. e. s. L. Field and P. H. Settlage, Am. Soc. 76, 1222 (1954).

Formation of O—Rem Bond**Uptake****Addition to Hydrogen and Oxygen****ORem↓ HO***Without additional reagents**w.a.r.***Phosphorylation with subsequent formation
of aldehydes from amines**

←

s. 8, 250; s. a. E. A. Peterson, H. A. Sober, and A. Meister, Biochem. Prep. 3, 29, 34 (1953); Am. Soc. 76, 169 (1954)

**Addition to
Hydrogen and Remaining Elements****ORem↓ HRem***Via intermediates**v.i.***Phosphinic acids from phosphine oxides**

Cl_2 -gas bubbled slowly into a soln. of di-n-octylphosphine oxide (prepn. s. 724) in CCl_4 maintained at $0-9^\circ$ until the color of Cl_2 persists, the

soln. of the phosphinyl chloride then treated with an aq. soln. of K-carbonate, followed by acidification with 15% H_2SO_4 soln. \rightarrow di-n-octylphosphinic acid. Y: 86.6%. Also direct oxidation with H_2O_2 and f. e. by this method s. R. H. Williams and L. A. Hamilton, Am. Soc. 74, 5418 (1952).

Exchange

Hydrogen \downarrow

ORem \uparrow H

Without additional reagents

w.a.r.

Sodio derivatives of carbohydrates

OH \rightarrow ONa

Differential reactivity of hydroxyl groups

183.

A hot soln. of 1.25 molar equivalents of powdered anhydrous NaOH in 1-butanol added with stirring to a warm soln. of dry methyl α -D-glucopyranoside in 1-butanol, and the water formed removed by azeotropic distillation with 1-butanol \rightarrow crude methyl monosodio- α -D-glucopyranoside. Y: 96%. M. L. Wolfrom and M. A. El-Taraboulsi, Am. Soc. 75, 5350 (1953).

Oxygen \uparrow

ORem \uparrow O

Carbodiimides

RN:C:NR

Pyrophosphoric acid esters

$(RO)_2PO \cdot O \cdot OP(OR)_2$

184.

Pyridine followed by dicyclohexylcarbodiimide added to a soln. of dibenzyl hydrogen phosphate in benzene, the dicyclohexylurea formed filtered off after 15 min., and the filtrate evaporated \rightarrow tetrabenzyl pyrophosphate. Y: 93%. F. e., without pyridine, also in the presence of water, and pyrophosphoric acid diesters from phosphoric acid monoesters, s. H. G. Khorana and A. R. Todd, Soc. 1953, 2257.

Mixed phosphites $(RO)_2P(OR')$

A mixture of cyclohexanol, pyridine, and ether added dropwise during 2.5 hrs. to an ice-cooled, well-stirred soln. of diphenyl chlorophosphite and pyridine in ether, then allowed to warm to room temp. overnight with stirring \rightarrow cyclohexyl diphenyl phosphite. Y: 88%. J. P. Forsman and D. Lipkin, Am. Soc. 75, 3145 (1953).

Phosphorylation of hydroxy compounds $OH \rightarrow OPO_3^{--}$

A mixture of anhydrous choline chloride, diphenylchlorophosphate, glass beads, and dry pyridine stirred vigorously at room temp. for 2 days, dissolved in water, filtered, evaporated in vacuo at a bath temp. not higher than 50°, the residue consisting of diphenylphosphoryl-choline chloride and pyridine hydrochloride, dissolved in water, to the soln. added $Ba(OH)_2$, a little octyl alcohol, and a few boiling chips, then refluxed for a total of 1.25 hrs. after boiling commences \rightarrow Ba salt of phosphorylcholine chloride. Y: 39-63%. E. Baer, Biochem. Prep. 2, 96 (1952).

Hydrogenolysis of phosphoric acid esters

s. 6, 158; s. a. J. H. van der Neut, J. H. Uhlenbroek, and P. E. Verkade, R. 72, 365 (1953); C. E. Ballou and H. O. L. Fischer, Am. Soc. 76, 3188 (1954)

Silver oxide Ag_2O **Selenenic acids from selenylbromides** $SeBr \rightarrow SeOH$

1.83 g. 1-anthraquinoneselenenyl bromide refluxed 2 hrs. with freshly prepared moist Ag_2O in dioxane, the hot mixture filtered, cooled, stirred and treated with a large amount of water \rightarrow 0.9 g. crude 1-anthraquinoneselenenic acid. W. Jenny, Helv. 35, 1591 (1952); via selenenyl acetates s. Helv. 35, 1429.

Silver acetate CH_3COOAg **Selenyl acetates from selenyl halides** $SeHal \rightarrow SeOAc$

1.

1.2 g. 1-methoxyanthraquinone-4-selenenyl bromide and Ag-acetate refluxed 2 hrs. in glacial acetic acid in an oil bath \rightarrow 1.03 g. 1-methoxy-anthraquinone-4-selenenyl acetate. W. Jenny, Helv. 35, 1429 (1952).

Methyl Cellosolve $HOCH_2CH_2OCH_3$ **Silanols from halogenosilanes** $SiHal \rightarrow SiOH$

2.

Tri-1-naphthylchlorosilane in Methyl Cellosolve containing water refluxed 30 min. \rightarrow tri-1-naphthylsilanol. Y: ca. 100%. H. Gilman and C. G. Brannen, Am. Soc. 73, 4640 (1951).

Phosphorus oxychloride $POCl_3$ **Phosphoric acid esters** $(RO)_3PO$

s. 1, 127; polyfluoro compounds s. L. C. Krogh, T. S. Reid, and H. A. Brown, J. Org. Chem. 19, 1124 (1954)

Sulfur \ddagger **ORem \ddagger S***Without additional reagents**w.a.r.*

**Dithiophosphoric acid esters
from orthoformic acid esters**

 \leftarrow

A mixture of P_2S_5 and ethyl orthoformate heated 15 min. at 95° , the heat source removed when the exothermic reaction sets in, heating resumed after 15 min., and the temp. raised to 150° over the next 30 min. as distillation progresses \rightarrow crude triethyl dithiophosphate. Y: 92.5%. F. similar reactions s. K. C. Brannock, Am. Soc. 73, 4953 (1951).

Carbon ↑**ORem † C***Without additional reagents**w.a.r.***Cleavage of mixed ethers
Dichloroboric acid esters**

←

Ethyl n-octyl ether added to BCl_3 at -10° → ethyl dichloroboronite (Y: 89%) and n-octyl chloride (Y: 80%). F. e., and different direction of the cleavage with HI, s. W. Gerrard and M. F. Lappert, Soc. 1952, 1486.

Germanecarboxylic acid germyl esters $\text{R}_3\text{GeCOOGerR}_3$ **Triphenylgermanecarboxylic acid (prepn. s. 728)**

slowly heated to 190° , then ca. 5 min. at $190\text{-}210^\circ$ until gas evolution virtually ceases →

treated with aq. NaOH, gently warmed to effect soln., the water removed under reduced pressure, benzene and triphenylbromogermane added, and refluxed 2 hrs. →

Y: 86%. triphenylgermyl triphenylgermanecarboxylate. Y: 81%. A. G. Brook and H. Gilman, Am. Soc. 76, 77 (1954).

Potassium hydroxide*KOH***Phosphine oxides from phosphonium salts**

←

40%-KOH added to an aq. suspension of methyltri-p-tolylphosphonium iodide, and distilled until evolution of toluene is complete → methyldi-p-tolylphosphine oxide (startg. m. f. 255). Y: 80%. F. e. s. P. W. Morgan and B. C. Herr, Am. Soc. 74, 4526 (1952).

Sulfuric acid H_2SO_4 **Siloxanes from methylsilanes**

←

s. 7, 179; s. a. Am. Soc. 75, 2932 (1953)

Hydrochloric acid*HCl***Diboroxides** $\rangle\text{B}\cdot\text{O}\cdot\text{B}\langle$

Na-tetraphenylborate shaken ca. 7 hrs. with aq. HCl until dissolved → tetraphenyldiboroxide. Y: 76%. R. Neu, B. 87, 802 (1954).

Formation of O—C Bond

Uptake

Addition to Hydrogen and Carbon

OC \downarrow HC*Electric discharge*

←

Phenols from hydrocarbons

H → OH

- s. Benzene vapor (2-3 mm. Hg) allowed to react with O₂ (4-8 mm. Hg), which has been passed through a discharge tube at 3000-4000 V → phenol. Y: 10-13% per pass. The only heating needed is for vaporizing the benzene. Ju Chin Chu, H. C. Ai, and D. F. Othmer, Ind. Eng. Chem. 45, 1266 (1953).

Fungi

←

Alcohols from hydrocarbons

11-Hydroxysteroids

Biooxygenation

- s. 7, 181; s. a. Am. Soc. 75, 421 (1953) and other papers of this series; also O. Mancera et al., Am. Soc. 74, 3711 (1952); J. Fried et al., Am. Soc. 74, 3962 (1952); C. Meystre, E. Vischer, and A. Wettstein, Helv. 37, 1548 (1954)

*Persulfate*S₂O₈²⁻

Replacement of hydrogen by hydroxyl

Elbs reaction

9.

with heterocyclics. K-persulfate added gradually with stirring during 3 hrs. below 10° to a soln. of 4.7 g. 5-methoxy-4-methylcoumarin in aq. NaOH, stirring continued for 0.5 hr., allowed to stand overnight, the next day just acidified, and extracted with ether → 2.3 g. 5-methoxy-6-hydroxy-4-methylcoumarin (startg. m. f. 29). F. e. s. V. J. Dalvi, R. B. Desai, and S. Sethna, J Indian Chem. Soc. 28, 366 (1951); s. a. K. Aghoramurthi and T. R. Seshadri, Soc. 1954, 3065.

*Selenium dioxide*SeO₂

1,2,3-Hydroxydiketones from ketones

←

s. 9, 230

Chromic acid CrO_3 **Ketolactols from ketoöxido compounds**

←

200.

A soln. of methyl 3-keto-9 α -11 α -oxidoetiocholanate in acetic acid treated with water and CrO_3 at room temp. for 17 hrs. → methyl 3 β -hydroxy-3 α ,9 α -oxido-11-ketoetiocholanate. Y: 70.5%. H. Heymann and L. F. Fieser, Am. Soc. 74, 5938 (1952).

Potassium manganate and permanganate $K_2\text{MnO}_4$ and KMnO_4 **Tert. hydroxycarboxylic acids
from carboxylic acids** $\text{H} \rightarrow \text{OH}$

201.

An aq. soln. of K-permanganate and KOH added dropwise at ca. 40° during ca. 20 min. to α -phenylpropionic acid in concd. aq. KOH, the resulting green soln. cooled in ice, and shaken with SO_2 until colorless → α -phenyllactic acid. Y: 90%. (Soc. 1953, 2129.)—Optically active acids are completely racemized by this procedure, but retain their optical activity by oxidation with K-manganate in dil. alkaline soln. (Soc. 1953, 3580). The most satisfactory method of preparing tert. γ -hydroxycarboxylic acids is by a combination of the two procedures, whereby by suitable adjustment of the alkali concentration the 2 stages in reduction, $\text{MnO}_4^- \rightarrow \text{MnO}_4^{''} \rightarrow \text{MnO}_2$, are consecutive and not simultaneous (Soc. 1953, 2129). F. e. with both procedures and their combination s. J. Kenyon and M. C. R. Symons, Soc. 1953, 2129, 3580.

Potassium permanganate KMnO_4 **Ketocarboxylic acids from hydroxyaldehydes**

←

s. 9, 364

Via intermediates

v.i.

 **α -Hydroxyketones from ketones via
enolesters and 1-acoxy-1,2-oxido compounds
17 α -Hydroxy-20-ketosteroids** $\text{H} \rightarrow \text{OH}$

202.

3β -Acetoxyallopregnane-11,20-dione in *carbon tetrachloride* treated at room temp. with a little aq. 50% -HClO₄ in acetic anhydride, kept 1.5 hrs. at room temp., the crude enolester taken up in chloroform, treated with ethereal monoperphthalic acid, allowed to stand 3 hrs. at room temp., the crude product treated with hot methanolic 0.8 N KOH, with rapid swirling and further heating until a crystalline material separates → $3\beta,17\alpha$ -dihydroxyallopregnane-11,20-dione. Y: 92%. D. H. R. Barton et al., Soc. 1954, 747; use of commercial peracetic acid and Na-acetate instead of monoperphthalic acid cf. E. P. Oliveto and E. B. Hershberg. Am. Soc. 76, 5167 (1954); f. formulas cf. Synth. Meth. 7, 184.

o-Hydroxylation

s. 6, 162; s. a. Soc. 1954, 1134

o-Aminophenols from ar. amines via o-aminosulfuric acid esters

A satd. aq. soln. of K-persulfate added with stirring during 8 hrs. to dimethylaniline and KOH in acetone-water, and allowed to stand overnight → o-dimethylaminophenyl-K-sulfate (Y: 40%) treated with aq. HCl → o-dimethylaminophenyl hydrogen sulfate (Y: 82%) heated 1 hr. at 100° with concd. HCl → o-dimethylaminophenol (Y: 83%). F. e. s. E. Boyland, D. Manson, and P. Sims. Soc. 1953, 3623.

Addition to Oxygen

OC \downarrow OO

Without additional reagents

w.a.r.

Hydroperoxides from hydrocarbons

H → OOH

s. 1, 132; s. a. H. B. Knight and D. Swern, Org. Synth. 34, 90 (1954)

Platinum oxide

PtO₂

N-Heterocyclic hydroperoxides by catalytic oxidation

←

4.

A soln. of 2-(p-methoxyphenyl)skatole in ethyl acetate added to freshly reduced PtO₂ in ethyl acetate, stirred under O₂, at first slowly, after

5 min. more vigorously, and the product isolated after 80-100 min. → 3-methyl-2-(p-methoxyphenyl)-3-hydroperoxy-3H-pseudoindole. Y: 30 to 60%. B. Witkop, J. B. Patrick, and H. M. Kissman, B.85, 949 (1952).

Addition to Oxygen and Nitrogen

OC↓ON

Sodium hydroxide

NaOH

Isoxazole ring opening

C

205.

0.1 g. 6'-chloroquinolino(3',4':3,4)isoxazole (prepn. s. 375) and 2 N NaOH heated 2 hrs. at 95° → 0.1 g. 3-amino-6-chlorocinchoninic acid. F. e. s. D. W. Ockenden and K. Schofield, Soc. 1953, 1915.

Addition to Oxygen and Carbon

OC↓OC

Without additional reagents

w.a.r.

Epimerization of oxidosteroids

←

Double Walden inversion

Glycol monoesters from oxido compounds

Oxido compounds from glycol monoesters

via glycol acetate methanesulfonates

206.

Methyl 3α -acetoxy-11,12 α -oxidocholanate dissolved in a 0.56 N soln. of trichloroacetic acid in toluene, and allowed to stand 19 hrs. at room temp. → crude methyl 3α -acetoxy-11 β -trichloroacetoxy-12 α -hydroxy-cholanate (Y: 85-90%) allowed to stand with methanesulfonyl chloride in Pyridine at room temp. overnight, the crude product dissolved in ether, added dropwise to a boiling soln. of KOH in methanol, refluxed 1.5 hrs., the resulting crude 3α -hydroxy-11,12 β -oxidocholanic acid allowed to react with diazomethane in ether, and the ester acetylated with acetic anhydride in pyridine → methyl 3α -acetoxy-11,12 β -oxido-cholanate (crude Y: 88%). Over-all Y: 45-55%. A. Fürst and R. Scotoni, Jr., Helv. 36, 1410 (1953).

Irradiation

Quinol monoesters from quinones and aldehydes

07.

Phenanthrenequinone and anisaldehyde in benzene sealed under N_2 in a thin-walled bulb of soda-glass, shaken and irradiated with UV-light for 70 hrs. → 9-anisoyloxy-10-hydroxyphenanthrene. Y: ca. 100%. F. e. s. R. F. Moore and W. A. Waters, Soc. 1953, 238.

Sodium hydroxide

NaOH

Oxazolone ring opening

C

s. 5, 117; also geometric isomers s. J. P. Lambooy, Am. Soc. 76, 133 (1954)

Sodium/alcohol

NaOR

Dicarboxylic acid monoesters from dicarboxylic acid anhydrides

s. 9, 368

Pyridine

C₅H₅N

Glycol monoesters from oxido compounds

08.

A soln. of ethyl N-tosyl-N-(2,3-oxidopropyl)-p-aminobenzoate in glacial acetic acid containing 3 drops of pyridine heated 2 hrs. at 120° → crude ethyl N-tosyl-N-(3-acetoxy-2-hydroxypropyl)-p-aminobenzoate. Y: 88%. F. e. s. D. I. Weisblat et al., Am. Soc. 75, 3625 (1953).

**Carboxyperoxycarboxylic acid esters
from dicarboxylic acid anhydrides
and hydroperoxides**

C

209.

A mixture of 9 g. *tert*-butyl hydroperoxide, 14.8 g. phthalic anhydride, and pyridine allowed to stand 12 hrs. at room temp., finally warmed 10 min. at 65-68° → 20.2 g. 1-*tert*-butyl hydrogen 1-monoperphthalate. F. e. s. A. G. Davies, R. V. Foster, and A. M. White, Soc. 1953, 1541.

Silver oxide Ag_2O

**Hydroxybetaines from
quaternary lactoneammonium salts**

210.

An aq. soln. of α -(1-piperidyl)- β,β -dimethyl- γ -hydroxybutyrolactone methiodide shaken 17 hrs. with Ag_2O at room temp., filtered, and the filtrate shaken 6 hrs. with activated carbon to remove colloidal Ag_2O → α -(1-methyl-1-piperidyl)- β,β -dimethyl- γ -hydroxybutyric acid betaine. Y: 87%. H. Bretschneider and H. Haas, M. 82, 427 (1951).

Aluminum alkoxide Al(OR)_3

**Carboxylic acid esters
from 2 aldehyde molecules
Mixed Tishchenko reaction**

←

211. The mixed ester from the acid of the aldehyde which undergoes the simple Tishchenko reaction most rapidly is formed in largest amounts. E. s. I. Lin and A. R. Day, Am. Soc. 74, 5133 (1952).

*Phosphorus/hydriodic acid
s. Hydriodic acid/phosphorus*

 P/HI

p-Toluenesulfonic acid

TsOH

 β -Ketocarboxylic acid esters from ketenedimers
via 6-keto-1,3-diox-4-enes

←

A mixture of 100 c.c. dry acetone, 100 c.c. diketene, and 0.5 g. p-toluenesulfonic acid refluxed 3 hrs. until the odor of diketene has disappeared \rightarrow 2,2,4-trimethyl-6-keto-1,3-diox-4-ene (Y: 91% based on diketene; the yields are lower with larger amounts of catalyst) heated 3 hrs. at 100° with 1-butanol and a trace of p-toluenesulfonic acid \rightarrow n-butyl acetoacetate (Y: 95%).—The diketene-ketone adducts may conveniently be used in place of diketene in many reactions. F. e. s. M. F. Carroll and A. R. Bader, Am. Soc. 75, 5400 (1953).

Potassium hypobromite

KOBr

Ketocarboxylic acids from lactones

C

Aq. 33%-KOH added to a mixture of α -(o-carboxybenzoyl)phthalide and ethanol heated on a water bath, heating continued until a clear soln. results, more aq. KOH and, with agitation, Br added \rightarrow benzil-2,2'-dicarboxylic acid (startg. m. f. 161). Y: 94%. F. e., with KMnO₄/Na₂CO₃, s. E. D. Bergmann and Z. Pelchowicz, Am. Soc. 75, 4281 (1953).

Hydrochloric acid

HCl

Pyran ring opening

s. 6, 172; s. a. Org. Synth. 34, 71 (1954)

Hydriodic acid/phosphorus

HI/P

Reductive coumarin ring opening

 α -Aminocarboxylic acids from coumarins

A mixture of 3-benzamido-8-methoxycoumarin, glacial acetic acid, HI, and red P refluxed 2.5 hrs. in a stream of H₂ \rightarrow 2,3-dihydroxyphenylalanine. Y: 66-90%. F. e. s. J. P. Lambooy, Am. Soc. 76, 133 (1954).

*Potassium permanganate*KMnO₄**Ketocarboxylic acids from lactones**

s. 9, 213

*Platinum oxide/hydrobromic acid*PtO₂/HBr**Reductive methylation of steroid ketones**

CO → CH(OR)

215.

A suspension of 150 mg. cholestanone in methanol and a little 48% - HBr hydrogenated with PtO₂ until after 4 hrs. 1 mole H₂ has been absorbed → 110 mg. cholestanyl methyl ether. F. e. s. J. C. Babcock and L. F. Fieser, Am. Soc. 74, 5472 (1952).

Addition to Nitrogen and CarbonOC \downarrow NC*Without additional reagents*

w.a.r.

Carboxylic acid amides from nitrilesCN → CONH₂

216.

2-Methyl-4-cyanobenzoxazole heated 3 hrs. in water at 180-190° in a sealed tube → 2-methylbenzoxazole-4-carboxylic acid amide. Y: 80%.— Lower yields are obtained by either a shorter or longer reaction time. C. Sannie and H. Lapin, Bl. 1952, 369.

Pyrido[1,2-a]pyrimid-2-one ring opening
Tert. amines from betaines

C

217.

A soln. of 0.30 g. 3,4-dihydro-2H-pyrido[1,2-a]pyrimidin-2-one in water refluxed 3 hrs. → 0.26 g. 2-imino-1(2H)-pyridinepropionic acid refluxed 2 hrs. in aq. 5% - NaOH → 2-aminopyridine (Y: 85%). R. Adams and I. J. Pachter, Am. Soc. 74, 4906 (1952).

Sodium hydroxide

NaOH

**Dicarboxylic acid monoamides
from dicarboxylic acid imides**

s. 4, 157; s. a. A. Neuberger and J. J. Scott, Soc. 1954, 1820

**Selective hydrolysis with preservation of the
penicillin ring system**

8.

A soln. of 2-phenyl- α -phthalimido-2-thiazolidineacetic acid β -lactam in warm dioxane carefully cooled to room temp. to avoid crystallization, exactly the equivalent amount of 0.1 N NaOH soln. added, and the product isolated after 20 min. \rightarrow α -(o-carboxybenzamido)-2-phenyl-2-thiazolidineacetic acid β -lactam. Y: 74%. J. C. Sheehan and J. J. Ryan, Am. Soc. 73, 4367 (1951).

Nitric acid

HNO₃

**Acylguanylureas and acylbiurets
from acyldicyanodiamides**

←

19.

Benzoyldicyanodiamide (prep. s. 511) and a slight excess of

4-10%·HCl refluxed until dissolved, and heating continued for several min. \rightarrow benzoylguanylurea. Crude Y: 97.2%.

F. e. s. P. Adams et al., J. Org. Chem. 17, 1162 (1952).

HNO₃ refluxed 1 hr. \rightarrow benzoylbiuret (startg. m. f. 560). Crude Y: 77.4%.

Polyphosphoric acid

H(PO₃H)_xOH

Carboxylic acid amides from nitriles

CN \rightarrow CONH₂

20. Simple ar. and aliphatic nitriles are hydrolyzed to the corresponding amides in high yields by reaction with polyphosphoric acid for ca. 1 hr. at 110°.—E: Benzonitrile \rightarrow benzamide. Y: 96%. F. e. s. H. R. Snyder and C. T. Elston, Am. Soc. 76, 3039 (1954).

Sulfuric acid H_2SO_4 **Carboxylic acid amides from nitriles** $CN \rightarrow CONH_2$

221.

2-Cyano-5-phthalimido-4-valerolactone dissolved in concd. H_2SO_4 cooled at 0° , and kept 24 hrs. at room temp. \rightarrow 2-carbamyl-5-phthalimido-4-valerolactone. Y: 93.6%. R. Gaudry and C. Godin, Am. Soc. 76, 139 (1954); s. a. K. Scholz and L. Panizzon, Helv. 37, 1605 (1954).

s. a. 9, 583

**Dicarboxylic acid amide esters
from cyanocarboxylic acid esters**

s. 9, 559

Ureas from cyanamides $>N \cdot CN \rightarrow >NCONH_2$

222.

Concd. H_2SO_4 and a little water added to a soln. of crude N-cyanonorbornane in glacial acetic acid, allowed to stand overnight, the crude sulfuric acid salt dissolved in water, made alkaline with satd. K-carbonate soln., allowed to stand 15 min., and extracted with chloroform \rightarrow N-carbamylnorbornane. Y: 75%. F. e. s. A. Nickon and L. F. Fieser, Am. Soc. 74, 5566 (1952).

**S-Thiocarbamic acid esters
from thiocyanates** $SCN \rightarrow SCONH_2$

s. 7, 196; s. a. R. Riemschneider and G. Orlick, M. 84, 313 (1953)

Hydrochloric acid HCl **Acylguanylureas from acyldicyanodiamides** $CN \rightarrow CONH_2$

s. 9, 219

**Carbalkoxyguanylureas from
carbalkoxydicyanodiamides**

s. 9, 562

Lactam ring opening

C

s. 9, 555

**Aminodithiolcarboxylic acid esters
from thiazolines**

s. 9, 705

Addition to Sulfur and CarbonOC \downarrow SC*Without additional reagents*

W.A.R.

Thiazoline ring opening

C

23.

2-Phenylthiazoline-4-carboxylic acid added to boiling distilled water under N₂, and worked up after 15 min. → N-benzylocysteine. Y: almost 100%. J. C. Crawhall and D. F. Elliott, Soc. 1952, 3094.

Potassium hydroxide

KOH

***o*-Mercaptophenylacetic acids from
thianaphthenequinone 3-hydrzones**

s. 9, 121

Hydrogen peroxide/acetic acidH₂O₂/CH₃COOH**Sulfonic acid esters from thioethers**SR → OSO₂R

24.

H₂O₂ added cautiously to a soln. of 4.5 g. 5-amino-7-methylthio-1,2,4,6-tetraazaindene in hot acetic acid, and heating continued at 90-95° for 1 hr. → 4 g. 5-amino-7-hydroxy-1,2,4,6-tetraazaindene methanesulfonate. F. L. Rose, Soc. 1952, 3448.

Addition to CarbonOC \downarrow CC

NaOH

*Sodium hydroxide***Alkoxyaldehydes from ethylenealdehydes**C:C \rightarrow CHC(OR)

Crotonaldehyde added slowly at -5° to stirred allyl alcohol containing aq. 40% NaOH, acidified with acetic acid and phosphoric acid, then distilled \rightarrow β -allyloxybutaldehyde. Y: 60%. F. e. s. R. H. Hall and E. S. Stern, Soc. 1952, 4083.

Ketocarboxylic acids from cyclic acylketones

C

2-n-Butyrylcyclopentanone dissolved in 1.1 molar equivalents of 5% NaOH soln. and refluxed 2 hrs. \rightarrow δ -n-butyryl-n-valeric acid. Y: 78 to 90%. F. e. s. R. M. Manyik et al., Am. Soc. 75, 5030 (1953).

*Sodium hydroxide/hydrazine*NaOH/H₂N-NH₂*s. Hydrazine/sodium hydroxide**Potassium hydroxide*

KOH

Hydrolytic ring opening of isocyclics

s. 9, 772

Sodium/alcohol

NaOR

Ethers from ethylene derivativesC:C \rightarrow CHC(OR)

s. 7, 200; s. a. B. Englund, Org. Synth. 34, 16 (1954)

Triethylamine(C₂H₅)₃N**O-Acetoacetylation**OH \rightarrow OCOCH₂COCH₃

s. 9, 954

Silver arylcarboxylate/iodine

ArCOOAg/I

trans-Glycols from ethylene derivativesC:C \rightarrow C(OH)C(OH)

s. 6, 183; s. a. G. E. McCasland and E. C. Horswill, Am. Soc. 76, 1654 (1954)

*Barium hydroxide*Ba(OH)₂**Ketocarboxylic acids from cyclic β -diketones**

C

s. 7, 202; s. a. B. 85, 1061 (1952)

Mercuric oxide

HgO

Ketones from acetylene derivativesC≡C → COCH₂

s. 2, 161; s. a. G. W. Stacy and R. A. Mikulec, Am. Soc. 76, 524 (1954); W. J. Hickinbottom, A. A. Hyatt, and M. B. Sparke, Soc. 1954, 2529; D. Papa, H. F. Ginsberg, and F. J. Villani, Am. Soc. 76, 4441 (1954)

*Mercuric oxide/boron fluoride*HgO/BF₃

s. 9, 933

Mercury-resin

←

 α -Hydroxyketones from α,β -acetylenic alcohols

s. 9, 102

Amberlite

←

CyanoethylationH → CH₂CH₂CN

s. 9, 749

*Peracetic acid*CH₃COO₂H**Naphthalene ring opening**

C

s. 4, 168; s. a. G. A. Page and D. S. Tarbell, Org. Synth. 34, 8 (1954)

*Perbenzoic acid*C₆H₅COO₂H**Stereoisomeric glycols from enolesters**

←

via 1-acoxy-1,2-oxido compounds and α -acooxyketones

A soln. of crude $\Delta^{1,3,5,16}$ -estratetraene-3,17-diol diacetate in benzene allowed to react 15 hrs. with perbenzoic acid, the crude epoxide dissolved in cold acetic acid, a cold soln. of 70% -HClO₄ in acetic acid added, allowed to stand 0.5 hr. at room temp., the crude product dissolved in ether-benzene, a soln. of LiAlH₄ in dry ether added dropwise, and refluxed 1 hr. → estriol. Y: 66%.—By alkaline hydrolysis of the α -acooxyketone the procedure can be altered to afford an equally successful synthesis of $16\beta,17\beta$ -ring-D glycols. F. e., also isolation of the intermediates, direct reduction of the 1-acoxy-1,2-oxido compounds, and rearrangement by chromatography or heating above the melting point, s. N. S. Leeds, D. K. Fukushima, and T. F. Gallagher, Am. Soc. 76, 2943 (1954).

Perphthalic acid

α-Hydroxyketones from enoesters
s. 9, 202

C:C(OAc) → C(OH)CO

←

Hydrazine/sodium hydroxide

H₂N·NH₂/NaOH

←

Carboxylic acids from cyclic β-diketones

Acid cleavage

with subsequent Huang-Minlon reduction

Synthesis of long chain carboxylic

and α,ω-dicarboxylic acids

228.

Methylenebisdihydroresorcinol (prepn. s. 806) and 85% hydrazine hydrate added to a soln. of Na or NaOH in diethylene glycol, refluxed 30 hrs. after addition of abs. methanol to adjust the b. p. at 125°, methanol, water, and excess hydrazine hydrate distilled off until the temp. reaches 195°, and refluxing continued for 10-11 hrs. → brassyllic acid. Y: 100%.—High yields are obtained because the hydrazine present reacts with the ketocarboxylic acid formed by acid cleavage, thus preventing side-reactions. Also monocarboxylic acids from 2-alkyl-1,3-cyclohexanediones s. H. Stetter et al., B. 85, 290, 1061 (1952); 87, 869 (1954); aminocarboxylic acids s. B. 87, 1331; cf. H. Lettré and A. Jahn, B. 85, 346 (1952).

Ozone

O₃

Ozonides

←

s. 1, 141/2; 2, 167; s. a. J. E. Richmond and K. J. Altman, Am. Soc. 74, 4368 (1952)

*Removal of a protective group from the hydroxyl groups
at C-atoms 1 and 2 of aldopyranoses*

←

Oxidative ring opening

Deacetylation

229.

An O₂-stream containing 2.3% O₃ passed into a mixture of phenanthrene-hydroquinonetriacetyle-D-glucoside anhydride, ethyl acetate, acetic acid,

and a little water, at -15° for 30 min., finally at 0° for 10 min., and the crude product deacetylated by treating with Na-methoxide soln. in chloroform for 5 hrs. at 0° \rightarrow glucose (Y: 78%) and diphenic acid (after hydrolyzing the resulting ester with KOH in methanol on a water bath) (Y: 75%). B. Helferich and E. v. Gross, B. 85, 531 (1952).

Oxidative indole ring opening

s. 2, 168; s. a. D. W. Ockenden and K. Schofield, Soc. 1953, 3440; J. L. Warnell and C. P. Berg, Am. Soc. 76, 1708 (1954)

Hydrogen peroxide/potassium hydroxide

H_2O_2/KOH

Oxidative ring opening

1,2,3-Hydroxydiketones from ketones

30.

A soln. of 500 mg. acetoxylanostanone in dioxane heated with SeO_2 at 180° in a sealed tube for 4 hrs. \rightarrow 310 mg. dihydroxydiketone mono-acetate, 970 mg. dissolved in methanol, KOH in methanol-water then 30% H_2O_2 added, and the product isolated after 20 hrs. \rightarrow 800 mg. hydroxydiketocarboxylic acid. W. Voser et al., Helv. 35, 2065 (1952).

Sulfuric acid

H_2SO_4

Ethers from ethylene derivatives

C:C \rightarrow CHC(OR)₂

31.

Methyl vinyl ketone in dry methanol added below 30° to a stirred soln. of a small amount of concd. H_2SO_4 in methanol, and the product isolated after 2 hrs. at room temp. \rightarrow 1-methoxy-3-butanone. Y: 83-90%. —Use of $BF_3\text{-HgO}$ catalyst gave erratic yields. M. S. Newman, I. Walther, and H. F. Ginsberg, J. Org. Chem. 17, 962 (1952).

Acoxy compounds from ethylene derivatives
s. 9, 232

C:C → CHC(OCOR)

**Carboxylic acid esters
from ethylene derivatives**

s. 7, 212; s. a. Org. Synth. 34, 26 (1954)

Sulfuric acid/formic acid $H_2SO_4/HCOOH$ **Hydration of ethylene derivatives**

C:C → CHC(OH)

s. 9, 790

Perchloric acid $HClO_4$ **Acoxy compounds from ethylene derivatives**

C:C → CHC(OCOR)

232.

Cyclohexene added to 90%-formic acid containing a little $HClO_4$, and kept 20 min. at 100° → cyclohexyl formate. Y: 90%. F. e. s. G. F. Bloomfield, Soc. 1953, 3329.

H_2SO_4 is a slightly less efficient catalyst when anhydrous formic acid is used but the efficiency of these catalysts is reversed with 90%-formic acid. Acetic acid, catalyzed by $HClO_4$, also adds to the double bond but at a lower rate and less completely than formic acid. E. s. H. B. Knight, R. E. Koos, and D. Swern, Am. Soc. 75, 6212 (1953).

Periodate IO_4^- **Oxidative ring opening**

C

233. Resistance of a compound to periodate oxidation is not in itself proof of the absence of vicinal hydroxyl groups. E. s. B. H. Alexander, R. J. Dimler, and C. L. Mehltretter, Am. Soc. 73, 4658 (1951).

Hydrochloric acid HCl **Protection of hydroxyl groups by formation of tetrahydro-2-pyranyl ethers**

C:C → CHC(OR)

s. 5, 144; steroids s. A. C. Ott, M. F. Murray, and R. L. Pederson, Am. Soc. 74, 1239 (1952); E. Elisberg, H. Vanderhaeghe, and T. F. Gallagher, Am. Soc. 74, 2814 (1952)

Hydrobromic acid HBr **2,3,5-Trialkoxytetrahydrofurans**

C:C → CHC(OR)

234.

1 mole HBr introduced by a stream of N_2 during 3 hrs. into a cooled soln. of 2,5-diethoxy-2,5-dihydrofuran in abs. ethanol → 2,3,5-triethoxytetrahydrofuran (startg. m. f. 381). Y: 68%. F. e. and methods, also with exchange of alkoxy groups, s. A. Stoll, A. Lindenmann, and E. Jucker, Helv. 36, 1500 (1953).

Osmium tetroxide OsO_4 **Glycols from ethylene derivatives** $C:C \rightarrow C(OH)C(OH)$

s. 1, 147·9; 2, 177/8; s. a. R. Hirschmann et al., Am. Soc. 76, 4013 (1954)

Rearrangement

Hydrogen/Oxygen TypeOC \cap HO*Alkali hydroxide* \leftarrow
 \leftarrow **Smiles rearrangement**

5.

A trace of *N* NaOH added at room temp. to an almost satd. soln. of 2-(2"-hydroxy-6"-methylphenoxy)-5-nitrobenzophenone in methanol, and the product allowed to crystallize → 2-(2"-hydroxy-3"-methylphenoxy)-5-nitrobenzophenone. Y: 90%. F. e. s. J. D. Loudon and J. A. Scott, Soc. 1953, 265; with aq. 5%-KOH s. Soc. 1950, 55.

Hydrogen/Carbon TypeOC \downarrow HC*Boron fluoride* BF_3 **Ketones from oxido compounds** $CH-\overset{\backslash}{CH} \rightarrow CH_2CO$

cf. Synth. Meth. 8, 192

36. Epimerization and isomerization can be avoided by stopping the reaction at the optimum time by addition of pyridine, e. g. an 80% Y of 3β -acetoxy-22,23-dibromo-9 β -ergost-7-en-11-one is obtained after 15 min. in toluene at -35°. F. e. s. J. Elks et al., Soc. 1953, 2933.

Formic acid $HCOOH$ **Oxo compounds from glycol monoethers** \leftarrow

s. 7, 750; s. a. S. Winstein, C. R. Lindegren, and L. L. Ingraham, Am. Soc. 75, 155 (1953)

Titanium tetrachloride $TiCl_4$ **α -from β -Glycosides**

s. 6, 193; s. a. R. E. Reeves and L. W. Mazzeno, Jr., Am. Soc. 76, 2219 (1954)

Sulfur

S

Willgerodt reaction**Carboxylic acid amides from ketones**CONH₂

s. 3, 139; with heterocyclics, influence of temp. s. J. A. Blanchette and E. V. Brown, Am. Soc. 74, 1066 (1952)

**Carboxylic acid amides
from oxido compounds**

237.

Styrene oxide, sulfur, yellow NH₄-polysulfide, and dioxane heated 7 hrs. at ca. 170° in a sealed tube → phenylacetamide. Y: 87%. Also from other compound classes s. R. T. Gerry and E. V. Brown, Am. Soc. 75, 740 (1953).

Ammonium polysulfide(NH₄)₂S_x**Carboxylic acid amides
from methyl ketones**

s. 1, 151/2; 2, 180/a; s. a. Yu. A. Baskakov and N. N. Mel'nikov, Ж. 23, 865 (1953); C. A. 48, 4477 a

Hydrochloric acid

HCl

**Formation of α-ketoacetals
with rearrangement**

238.

3 α ,21-Diacetoxy-17 α -hydroxypregnane-11,20-dione in HCl-methanol-chloroform allowed to stand 48 hrs. at room temp., and the crude product reacetylated by keeping 5 hrs. at room temp. with acetic anhydride-pyridine → 3 α -acetoxy-21,21-dimethoxypregnane-11,20-dione

(Y: 87%: from $3\alpha,21$ -dihydroxy- Δ^{16} -pregnene-11,20-dione by similar treatment, Y: 71%) and unconverted startg. m. (Y: 5%). F. e. s. V. R. Mattox, Am. Soc. 74, 4340 (1952); from α -acoxo- α' -hydroxyketones s. a. D. Taub et al., Am. Soc. 76, 4094 (1954).

Hydrobromic acid

HBr

α,β -Ethyleneketones from oxidoalcohols via β -hydroxyketones

 \leftarrow

Partial dehydration

9.

Aq. 48% -HBr added to a soln. of 3β -acetoxy- $7\beta,11\alpha$ -dihydroxy- $8\alpha,9\alpha$ -oxido- Δ^{22} -ergostene, and the product isolated after ca. 45 min. \rightarrow 3β -acetoxy- $9\beta,11\alpha$ -dihydroxy- 7 -oxo- Δ^{22} -ergostene (Y: almost 100%) dissolved in dioxane, treated with aq. 10% -KOH whereby two phases are formed, and refluxed 2.5 days \rightarrow $3\beta,11\alpha$ -dihydroxy- 7 -oxo- $\Delta^{8,22}$ -ergosta-diene (Y: almost 100%). H. Heusser et al., Helv. 35, 936 (1952).

Via intermediates

v.i.

Willgerodt-Kindler reaction

 $\text{COCH}_3 \rightarrow \text{CH}_2\text{COOH}$

cf. Synth. Meth. 3, 141

10. Removal of sulfur. Traces of sulfur may be detrimental in subsequent reactions. However, the acids can be made sulfur-free by heating an alkaline soln. of the acid with Raney-Ni catalyst. E. s. E. R. Shepard et al., J. Org. Chem. 17, 568 (1952). One-step procedure s. J. S. Stinson and R. V. Lawrence, J. Org. Chem. 19, 1047 (1954).

Oxygen/Oxygen Type

OC \cap OO

Acetic anhydride

 $(\text{CH}_3\text{CO})_2\text{O}$

Rearrangement of N-heterocyclic ozonides

 \leftarrow

11.

Concd. H_2SO_4 added dropwise to 2-phenylskatole ozonide until no further precipitation is observed, the ozonide sulfate centrifuged, the

ether decanted, then acetic anhydride added dropwise with cooling and stirring → N-benzoyl-O-acetyl-o-aminophenol. Y: 93%.—Use of propionic anhydride gives the same product. B. Witkop and J. B. Patrick, Am. Soc. 74, 3861 (1952).

Oxygen/Nitrogen Type

Potassium/alcohol

OC \cap ON

KOR

Ethylenimines from oxime sulfonates via Neber rearrangement intermediate

242.

A soln. of K in abs. ethanol added at 0° during 2 min. to a suspension of p,p'-dichlorodesoxybenzoinoxime tosylate (prepn. s. 179) in abs. ethanol, ice-cooled and vigorously beaten for 5 hrs., filtered, the filtrate extracted with ether, and the dry ether soln. reduced with LiAlH₄ → p,p'-dichlorodiphenylethylenimine. Y: 60%. F. e. s. M. J. Hatch and D. J. Cram, Am. Soc. 75, 38 (1953).

Acetic anhydride

(CH₃CO)₂O

N-Heterocyclic carbinols and aldehydes via N-oxides

243.

A mixture of 2-picoline, acetic acid, and aq. 30% H₂O₂ heated 3 hrs. at 70-80°, more H₂O₂ added, and heated another 9 hrs. → 2-picoline N-oxide (Y: 83%) added dropwise to gently boiling acetic anhydride, and refluxing continued for 15 min. → 2-pyridinemethanol acetate (Y: 78%) similarly via the N-oxide in one step → 2-pyridinealdehyde diacetate (Y: 46%). F. e., with and without isolation of the intermediate N-oxide, s. V. Boekelheide and W. J. Linn, Am. Soc. 76, 1286 (1954), s. a. O. H. Bullitt, Jr., and J. T. Maynard, Am. Soc. 76, 1370 (1954).

Polyphosphoric acid $P(PO_3H)_xOH$ **Lactams from oximes** \leftarrow **Ring expansion**

s. 7, 224; s. a. Am. Soc. 76, 3651 (1954)

Sulfuric acid H_2SO_4 **Hydroxyazo from azoxy compounds** \leftarrow **Wallach transformation**

α - or β -p-Dimethylaminoazoxobenzene heated 10 min. in concd. H_2SO_4 in a water bath \rightarrow p'-dimethylamino-p-hydroxyazobenzene. Y: almost 100%. W. Anderson, Soc. 1952, 1722.

Hydrochloric acid HCl **Beckmann rearrangement** \leftarrow **Carboxylic acid amides from oximes**

s. 4, 184; s. a. R. E. and G. G. Lyle, J. Org. Chem. 18, 1058 (1953)

Oxygen/Carbon TypeOC \cap OC*Perchloric acid* $HClO_4$ **Ketones from oxido compounds** \leftarrow **with rearrangement**

s. 9, 227

Nitrogen/Carbon TypeOC \cap NC*Sodium/alcohol* $NaOR$ **Oxazoles and hydantoins** \circlearrowright **from α -ureidonitriles**

N-Carbethoxycyanomethyl-N'- α -naphthylurea

refluxed 2 hrs. with a soln. of Na in dry ethanol \rightarrow ethyl 5-amino-2- α -naphthylaminoazole-4-carboxylate. Y: 94%.

refluxed 1 hr. with ethanolic 10%-HCl \rightarrow 5-carbethoxy-3- α -naphthylhydantoin. Y: 90%.

F. e. also tautomeric oxazolines, s. A. H. Cook and G. D. Hunter, Soc. 1952, 3789.

Hydrochloric acid

HCl

Acyl group migration as used for determination of configuration

NAc \rightarrow OAc

246.

A soln. of N-acetylnorpseudotropine in anhydrous dioxane rapidly satd. with dry HCl, refluxed 8 hrs., and evaporated to dryness with the help of a jet of air \rightarrow O-acetylnorpseudotropine hydrochloride (Y: 87%) dissolved in water, treated with K-carbonate, after 10 min. heated on a steam bath for 15 min. \rightarrow N-acetylnorpseudotropine (Y: 76%).—The migration occurs with retention of configuration. No migration takes place in the transoid tropine analogs. F. e. s. A. Nickon and L. F. Fieser, Am. Soc. 74, 5566 (1952); s. a. G. Fodor et al., Soc. 1953, 721, 724.

 α -Aminoketones from 2-alkoxyethylenimines

C

247.

An ethereal soln. of 2,3-diphenyl-2-ethoxyethylenimine shaken with 2 N HCl, and the product isolated from the aq. layer \rightarrow desylamine hydrochloride. Y: 90%. M. J. Hatch and D. J. Cram, Am. Soc. 75, 38 (1953).

Sulfur/Carbon TypeOC \downarrow SC*Acetic acid*CH₃COOH**O-S Acyl migration**

OAc → SAc

12 g. *trans*-2-acetylthiocyclohexanol heated 13 hrs. at 100° in the presence of a little acetic acid → 11 g. *trans*-2-mercaptopcyclohexyl acetate. L. W. C. Miles and L. N. Owen, Soc. 1952, 817.

Carbon/Carbon TypeOC \downarrow CC*Sodium hydroxide*

NaOH

Ketones from 2-ethylenalcohols

←

Steroids

s. 8, 202; s. a. J. Romo et al., J. Org. Chem. 19, 1509 (1954)

*Mercuric chloride*HgCl₂**Furans from acetyleneglycols**

○

A satd. soln. of 1,2,4-triphenyl-3-butyne-1,2-diol in 96% -alcohol containing HgCl₂ heated 8 hrs. at 100° in a sealed tube → 2,3,5-triphenylfuran. Y: 85-90%. E. D. Venus-Danilova and V. M. Al'bitskaya, Ж. 22, 816 (1952); C. A. 47, 3266 c.

*Sulfuric acid*H₂SO₄ **α,β -Ethylenecarboxylic acid esters
from alkoxyacetylenalcohols**

←

s. 6, 200; s. a. H. Kappeler, Helv. 37, 957 (1954); also α,β -hydroxycarboxylic acid esters s. G. E. Arth et al., Am. Soc. 76, 1715 (1954)**Exchange****Hydrogen ↑**OC \uparrow H*Electrolysis*

↖

Carboxylic acids from alcoholsCH₂OH → COOH

s. 4, 187; acetylenecarboxylic acids s. V. Wolf, B. 87, 668 (1954)

Mercuric acetate $(CH_3COO)_2Hg$ **Acylation oxidation** $H \rightarrow OAc$

s. 5, 162; corrections regarding allyl rearrangement and mechanism s. A. 581, 59 (1953)

Nitrobenzene/chromic acid $C_6H_5NO_2/CrO_3$ s. *Chromic acid/nitrobenzene**Lead tetraacetate* $(CH_3COO)_4Pb$ **Furanones from furans**

250.

2-Acetoxyfuran added at once with stirring to a suspension prepared from red lead oxide, glacial acetic acid, and acetic anhydride, the temp. kept 30 min. at 20-25°, then raised to 40°, and kept 30 min. at 40-45° → 5-acetoxy-2(5H)-furanone. Y: 88%. N. Elming and N. Clauson-Kaas, Acta Chem. Scand. 6, 565 (1952).

Oxidations with*Potassium nitrosodisulfonate* $ON(SO_3K)_2$ **Quinones from phenols**

s. 8, 206; s. a. B. 87, 1236 (1954); cf. B. 87, 1251 (1954)

Potassium persulfate $K_2S_2O_8$ ***o*-Aminosulfuric acid esters
from ar. amines** $H \rightarrow OSO_3K$

s. 9, 203

Selenium dioxide SeO_2 **1,2,3-Hydroxydiketones from ketones**

←

s. 9, 230

Chromic acid CrO_3 **Aldehydes from hydrocarbons
(methyl groups)
via 1,1-diaxoxy compounds** $CH_3 \rightarrow CHO$

251.

2,5-Dichloro-p-xylene dissolved in a stirred mixture of acetic acid, acetic anhydride, and H_2SO_4 , cooled to 5°, CrO_3 added during 2.5 hrs.

at such a rate as to keep the temp. at 5-12°, and stirring continued at 10-15° for 4 hrs. → 2,5-dichloroterephthaldehyde tetraacetate (Y: 37%) added to a mixture of ethanol, water, and H₂SO₄, and refluxed 1.5 hrs. → 2,5-dichloroterephthaldehyde (Y: 86%). F. e. s. J. R. Naylor, Soc. 1952, 4085.

Carboxylic acids from hydrocarbons (methyl groups)

2.

Finely powdered K₂Cr₂O₇ added at 30-50° to a stirred soln. of 6-methyl-3-pyridazone in concd. H₂SO₄, and stirring continued for 2 hrs. → 3-pyridazone-6-carboxylic acid monohydrate. Y: 68-72%. R. F. Homer et al., Soc. 1948, 2195; s. a. J. A. King and F. H. McMillan, Am. Soc. 74, 3222 (1952).

Oxidation of 3-arylfurans

←

3.

A soln. of CrO₃ in glacial acetic acid added dropwise with shaking at room temp. during 15 min. to a soln. of 1-(2-acetoxy-1-naphthyl)-naphtho[2.1-b]furan in glacial acetic acid, and allowed to stand overnight → 1-(2-acetoxy-4-oxo-1(4H)-naphthalidene)naphtho[2.1-b]furan-2(1H)-one. Y: 68%. F. e. s. O. Dischendorfer and H. Lapaine, M. 82, 397 (1951).

Chromic acid/nitrobenzene

CrO₃/C₆H₅NO₂

Quinones from hydrocarbons

←

4.

Na₂Cr₂O₇ in acetic acid added slowly to a warm soln. of tetrabenz[a,c,h,j]anthracene (prep. s. 937) in nitrobenzene, and refluxed 18 hrs. →

tetrabenz[a,c,h,j]anthracene-9,18-dione. Y: 52%. P. Lambert and R. H. Martin, Bl. Soc. chim. Belg. 61, 124 (1952).

tert-Butyl chromate

←

α,β-Ethyleneketones

CH₂ → CO

from ethylene derivatives

s. 8, 208; terpene derivatives s. G. Dupont, R. Dulou, and O. Mondou, Bl. 1953, 60

tert-Butyl hypochlorite

(CH₃)₃C·OCl

**Carboxylic acid esters
from 2 alcohol molecules**

2 RCH₂OH → RCOOCH₂R

s. 9, 363

Potassium permanganate

KMnO₄

Carboxylic acids from alcohols

CH₂OH → COOH

in aq. NaOH s. 3, 153; in acetone-water s. W. R. Brasen and C. R. Hauser, J. Org. Chem. 18, 806 (1953)

Potassium permanganate/pyridine

KMnO₄/C₅H₅N

**Carboxylic acids
from hydrocarbons (methyl groups)**

CH₃ → COOH

255.

Water added to a soln. of methyldi-p-tolylphosphine oxide (prep. s. 196) in pyridine, heated on a steam bath, KMnO₄ added portionwise during 5 hrs. at a rate to maintain refluxing, more water added to keep the mixture from becoming pasty, and heating continued for 2 hrs. → bis-(p-carboxyphenyl)methylphosphine oxide. Y: 88%. F. e. s. P. W. Morgan and B. C. Herr, Am. Soc. 74, 4526 (1952).

Via intermediates

v.i.

α-Acoxyethylenes from ethylene derivatives

←

via glycol monoesters

s. 7, 239; s. a. J. Org. Chem. 19, 1509 (1954)

**Quinones from hydrocarbons
via quinols**

←

256.

A soln. of 2-methylnaphthalene-4-C¹⁴ in CCl₄ oxidized with Na₂Cr₂O₇ in H₂SO₄-water, the CCl₄-layer removed, the aq. layer extracted with

CCl_4 and ether, this CCl_4 -ether layer extracted with aq. NaOH — $\text{Na}_2\text{S}_2\text{O}_4$, the unoxygenated fraction remaining in the CCl_4 reoxidized in the same way, and the hydroquinone from both oxidations oxidized with Ag_2O in the presence of a small amount of anhydrous $\text{MgSO}_4 \rightarrow$ 2-methyl-1,4-naphthoquinone-4-C¹⁴. Y: 48.52%. L. Li and W. H. Elliott, Am. Soc. 74, 4089 (1952); method s. J. Hyman and C. F. Peter, U. S. P. 2,402,226.

Carboxylic acids from methyl groups via styryl derivatives

$\text{CH}_3 \rightarrow \text{COOH}$

s. 3, 156; s. a. M. Häring, B. Prijs, and H. Erlenmeyer, Helv. 37, 1339 (1954)

Oxygen ↑

OC^{IV}O

Without additional reagents

w.a.r.

Carboxylic acid esters from carboxylic acid anhydrides

$(\text{RCO})_2\text{O} \rightarrow \text{RCOOR}$

Trifluoroacetic anhydride added dropwise with stirring at 120° to a slight excess of phenol → phenyl trifluoroacetate. Y: 95%.—Other methods to prepare ar. esters of fluorocarbon acids were not successful. F. e. s. R. F. Clark and J. H. Simons, Am. Soc. 75, 6305 (1953).

Potassium/nickel-silica

K/Ni-SiO₂

s. Nickel-silica/potassium

Methylolithium

CH_3Li

Acylation

$\text{OH} \rightarrow \text{OAc}$

of slow reacting hydroxyl groups

Selective acylation of phenol groups

6-Methyldihydromorphine

allowed to react with acetic anhydride in dry pyridine → 3-acetyl-6-methyldihydromorphone. Y: high.

treated dropwise at 0-5° with excess methyl-Li, then excess acetic anhydride added, refluxed 30 min., and allowed to stand overnight → 3,6-diacetyl-6-methyldihydromorphone. 0.54 g. from 1 g.

H. D. Brown et al., Am. Soc. 75, 6238 (1953); with methyl-Li s. a. T. D. Perrine, J. Org. Chem. 18, 898 (1953).

Potassium acetate**Enoesters from aldehydes**

s. 6, 575; s. a. P. Bladon et al., Soc. 1952, 4890

Ammonium and amine salts**Esterification of acid sensitive compounds**

259. A mixture of NH₄-acetate, either solid or in a concd. aq. soln., and 2.5 moles n-butanol refluxed 7.5 hrs. at 118-122° with a water-separating trap → n-butyl acetate. Conversion: 64%.—This method may be useful for preparing esters from acid-sensitive alcohols and organic acids as well as for preparing esters of certain fermentation acids. F. e., also with amine salts, s. E. M. Filachione, E. J. Costello, and C. H. Fisher, Am. Soc. 73, 5265 (1951); Ind. Eng. Chem. 44, 2189 (1952).

Triethylamine**Carboxylic acid esters from carboxylic acids via mixed carboxylic acid anhydrides**

s. 9, 453

Pyridine**Formoxy compounds**

s. 9, 17

Acetylation of alcohols

s. 2, 194/5; large batches of steroids s. H. H. Inhoffen, H. Jahnke, and P. Nehring, B. 87, 1154 (1954)

Selective acetylation

of sec. hydroxyl groups s. 6, 206; of prim. hydroxyl groups s. Huang-Minlon, R. Tull, and J. Babcock, Am. Soc. 76, 2396 (1954)

of phenol groups

s. 9, 258

Cadmium ion/hydrochloric acid Cd^{++}/HCl **Acetylation of sugar acids**

s. 5, 169; s. a. D. G. Doherty, J. Biol. Chem. 201, 857 (1953)

Boron fluoride BF_3 **Lactolesters from lactols**

s. 9, 272

Aluminum chloride $AlCl_3$ **Enolethers** $CHCO \rightarrow C:C(OR)$

$AlCl_3$ added portionwise to a gently refluxing soln. of oreoselone in anhydrous methanol, then heated 3 hrs. at a bath temp. of 100° \rightarrow peucedanin. Y: high. H. Schmid and A. Ebnöther, Helv. 34, 1982 (1951).

Methoxyacetylene $HC:C \cdot OCH_3$ **Acid anhydrides** \leftarrow

Methoxyacetylene added to phenylacetic acid in methylene dichloride, and allowed to stand 18 hrs. at 20° \rightarrow phenylacetic anhydride. Y: 96%.—Similarly with efficient cooling: p-Toluenesulfonic anhydride. Y: 52%.—This method seems to be the mildest yet devised for converting an acid into its anhydride. F. e. s. G. Eglinton et al., Soc. 1954, 1860.

Phosphorus oxychloride $POCl_3$ **Carboxylic acid phenoesters** $COOH \rightarrow COOR$

s. 8, 223; s. a. G. H. Daub and W. S. Johnson, Org. Synth. 34, 44 (1954).

Thionyl chloride or phosphorus trichloride $SOCl_2$ or PCl_3 **Acylation of alcohols** $OH \rightarrow OAc$ **α -Formoxyketones from α -hydroxyketones**

$SOCl_2$ added portionwise with shaking to a mixture of benzoin and formic acid until the benzoin has dissolved \rightarrow benzoin formate. Y: 91%. F. e. with PCl_3 s. H. Bredereck and R. Gompper, B. 87, 726 (1954).

Thionyl chloride $SOCl_2$ **Carboxylic acid esters from carboxylic acids** $COOH \rightarrow COOR$

s. 9, 344

Thionyl chloride/sodium alkoxide $SOCl_2/NaOR$

263.

$SOCl_2$ added dropwise during 1 hr. with stirring to picolinic acid, refluxed 1 hr. with stirring, allowed to stand overnight, abs. methanol added to the rapidly stirred mixture, then a soln. of commercial 95% Na-methoxide in methanol added slowly, and refluxed 30 min. with stirring \rightarrow methyl picolinate. Y: 73.3-82%. R. Levine and J. K. Snead, Am. Soc. 73, 5614 (1951).

p-Toluenesulfonic acid $TsOH$ **Ethers** ROR

264.

A mixture of thioglycol, 100%-excess isoamyl alcohol, and p-toluenesulfonic acid monohydrate refluxed 4 hrs. with stirring and separation of the water formed \rightarrow bis-(2-isoamyoxyethyl) sulfide. Y: 83%. F. e. s. F. Richter et al., Am. Soc. 74, 4076 (1952).

Enolethers $C:C(OR)$

s. 6, 215; s. a. A. Eschenmoser, J. Schreiber, and S. A. Julia, Helv. 36, 482 (1953)

 **α,β -Ethyleneacetals from
 α,β -ethylenealdehydes**
 $CHO \rightarrow CH(OR)_2$

265.

A soln. containing acrolein, abs. ethanol, Skellysolve F, and a trace of p-toluenesulfonic acid monohydrate refluxed 24 hrs. while the water formed is collected in a water separator \rightarrow acrolein diethyl acetal. Y: 62.6-82%. D. I. Wisblat et al., Am. Soc. 75, 5893 (1953).

**α -Ketoacetals from
 α -hydroxymethyleneketones**

A soln. of 2-hydroxymethylene-3-carbethoxy-4-(3',4'-dimethoxyphe-
nyl)-6,7-dimethoxy-1-tetralone, ethylene glycol, and p-toluenesulfonic
acid in dry toluene refluxed 3 hrs. with separation of the water formed
→ ethylene acetal. Y: 51%. G. N. Walker, Am. Soc. 75, 3393 (1953).

**Blocking of keto groups
by formation of alkylene ketals**

s. 6, 216; s. a. H. H. Inhoffen and J. Kath, B. 87, 1589 (1954)

**Acetylation
Partial-O-deacetylation
 11β -Acetoxysteroids**

A small amount of p-toluenesulfonic acid added to a soln. of pregnan-
 $3\alpha,11\beta,17\alpha$ -triol-20-one in acetic acid-acetic anhydride, the temp. main-
tained at ca. 25°, also during an exothermic reaction occurring after an
induction period of 1-2 hrs., and the product isolated after standing
overnight → pregnan- $3\alpha,11\beta,17\alpha$ -triol-20-one triacetate (Crude Y:
98.4%) refluxed 24 hrs. with Na-carbonate in methanol-water →
pregnan- $3\alpha,11\beta,17\alpha$ -triol-20-one 11-acetate (Crude Y: 97%). E. P. Oli-
veto et al., Am. Soc. 75, 5486 (1953).

Sulfosalicylic acid

**Acetylation of alcohols
with simultaneous formation of
enoesters from ketones**

268.

A mixture of acetic anhydride, toluene, and a little sulfosalicylic acid slowly distilled for ca. 45 min. until all acetic acid has been removed, 17 α -hydroxy-21-acetoxylallopregnane-3,20-dione added, heated 3.5 hrs. with distillation of the resulting acetic acid, of which 1 mole is formed in 10 min., and a second mole in the next 2 hrs. → 3,17 α ,21-triacetoxy-2-allopregn-20-one. Y: 84.4 %. (Am. Soc. 76, 747.)—Sulfosalicylic acid is a stronger catalyst for enol acetylation than toluenesulfonic acid (Am. Soc. 76, 743). F. e. s. H. V. Anderson et al., Am. Soc. 76, 747, 743 (1954).

Sulfuric acid H_2SO_4 **Alkoxyhalides from halogenhydrins**

ROR

269.

A mixture of ethylene chlorohydrin, concd. H_2SO_4 , and benzene warmed on a water bath, a soln. of benzhydrol in benzene added during 30-50 min. with efficient stirring, and refluxed 4 hrs. with stirring → benzhydryl β -chloroethyl ether. Y: 81-88%. S. Sugasawa and K. Fujiwara, Org. Synth. 33, 11 (1953).

**α -Aminoalcohols from cyanohydrins
with protection of the hydroxyl group
by formation of alkoxyethyl ethers**

270.

3-Methoxy-2-hydroxypropionitrile, ethylal, and a little H_2SO_4 refluxed 0.5 hr. → 3-methoxy-2-ethoxymethoxypropionitrile (Y: 95%) hydrogenated 1 hr. with Raney-Ni in the presence of NH_3 at 108-125° and

450-700 atm. \rightarrow 3-methoxy-2-ethoxymethoxypropylamine (Y: 90%) refluxed 15 min. with ethanol and HCl, then the ethanol-ethylal azeotrope and excess ethanol distilled off \rightarrow 3-methoxy-2-hydroxypropylamine (Y: 88%). R. C. Schreyer, Am. Soc. 73, 4404 (1951).

Ethyldene derivatives of carbohydrates

s. 9, 355

Acetals from orthoformic acid esters

s. 9, 743; s. a. E. C. Kornfeld and R. G. Jones, J. Org. Chem. 19, 1671 (1954)

Acetylation of quinols

s. 1, 181; also hydrolysis s. G. A. Reynolds and J. A. Van Allan, Org. Synth. 34, 1 (1954)

Acoxy- from hydroxy-mercaptans

Acetic anhydride added during 10 min. at ca. 40° to 2-mercptoethanol containing acetic acid and a little H_2SO_4 , warmed 1 hr. at 60°, then kept 20 hrs. at room temp. \rightarrow 2-mercptoethyl acetate. Y: 71%. L. W. C. Miles and L. N. Owen, Soc. 1952, 817.

Carboxylic acid esters from carboxylic acids

s. 9, 434

s. 5, 172; s. a. O. Moldenhauer et al., A. 580, 188 (1953)

Perchloric acid

Enolesters from ketones

s. 9, 202

Lactolesters from lactols

\leftarrow

A cooled mixture of acetic anhydride and a little 70%- HClO_4 added to a soln. of methyl 3β-hydroxy-3α,9α-oxido-11β-chlorocholanate (prepn.

s. 596) in acetic acid and acetic anhydride, then allowed to stand 2 hrs. at room temp. → methyl 3β-acetoxy-3α,9α-oxido-11β-chlorocholanate. Y: 80%. F. e. with BF_3 s. H. Heymann and L. F. Fieser, Am. Soc. 73, 5252 (1951).

Ammonium chloride NH_4Cl **Acetals from orthoformic acid esters** $\text{CO} \rightarrow \text{C}(\text{OR})_2$

s. 3, 711; s. a. K. Balenović et al., J. Org. Chem. 18, 297 (1953); method s. L. Claisen, B. 47, 3171 (1914)

Hydrochloric acid HCl **Alkoxyimethylureas from di(ureidomethyl) ethers** \leftarrow

Di-(3-phenylureidomethyl) ether shaken 10 min. at 25° with abs. ethanol containing $\text{HCl} \rightarrow$ 1-ethoxymethyl-3-phenylurea. Y: 90%. G. Zigeuner, M. 83, 1099 (1952).

 β -Ketoacetals from ketones via α -hydroxymethyleneketones \leftarrow

s. 9, 816

Lactolides from lactols $\text{OH} \rightarrow \text{OR}$

s. 9, 596

Acetylation of hydroxy compounds $\text{OH} \rightarrow \text{OAc}$

s. 9, 791

Carboxylic acid esters from carboxylic acids $\text{COOH} \rightarrow \text{COOR}$

Siloxane derivatives. A mixture of 4,4,6,6-tetramethyl-4,6-disila-5-oxanonanedioic acid, abs. alcohol, and concd. HCl refluxed 18 hrs., then the water-alcohol azeotrope slowly distilled during 20 hrs. → diethyl 4,4,6,6-tetramethyl-4,6-disila-5-oxanonanedioate. Y: 90.2 %. L. H. Sommer and R. P. Pioch, Am. Soc. 75, 6337 (1953). S. a. J. Bornstein, W. J. Reid, and D. J. Torres, Am. Soc. 76, 2760 (1954).

Nickel-silica/potassium

Ni-SiO₂/K

Disproportionative condensation
Modified Guerbet condensation

←

A mixture of α -methylbenzyl alcohol and benzyl alcohol, K, and U. O. P. nickel heated 11 min. at 184-207° → 1,3-diphenyl-1-propanol. Y: 84%. F. e., with lower rates and yields, s. E. F. Pratt and D. G. Kubler, Am. Soc. 76, 52 (1954).

Via intermediates

v.i.

Carboxylic acid esters
from carboxylic acids
via mixed alkoxyformic acid anhydrides

COOH → COOR

Ethyl chloroformate added to an ice-cooled soln. of triethylammonium benzylpenicillinate in dry chloroform, after 10 min. 2,4-dichlorophenol and 5 drops of triethylamine added, kept 30 min. at 60° → 2,4-dichlorophenyl benzylpenicillinate. Y: 88%. F. e. s. R. L. Barnden et al., Soc. 1953, 3733.

Nitrogen ↑OC $\ddot{\text{N}}$ *Without additional reagents*

w.a.r.

Enolethers

C:C(OH)

s. 4, 215; s. a. A. Dornow and K. J. Fust, B. 87, 985 (1954)

Carboxylic acid esters
from carboxylic acids

COOH → COOR

s. 9, 476

Orthocarboxylic acid esters
from iminoester hydrochlorides

 $\text{C}\begin{cases} \text{---NH} \\ \text{---OR} \end{cases} \rightarrow \text{C}(\text{OR})_3$

s. 3, 178; s. a. H. Stetter and K. H. Steinacker, B. 87, 205 (1954)

Trialkyl- from dialkyl-oxonium salts
s. 9, 990

Irradiation

**Carboxylic acids from diazo oxides
with ring contraction**
s. 2, 235; s. a. A. 579, 133 (1953)

Sodium hydroxide

NaOH

Aldehydes from nitrones
s. 9, 553

**Degradation of peptides
from the end bearing the free carboxyl group
with carbodiimides via acylureas**

277.

Di-p-tolylcarbodiimide added to a soln. of benzoylglycylglycine in warm anhydrous ethanol, and worked up after 24 hrs. at room temp. → 1-(benzoylglycylglycyl)-1,3-di-p-tolylurea (Y: 80%) dissolved in 75%-ethanol by warming, cooled rapidly, 0.1 N NaOH added with agitation, allowed to stand 10 min., neutralized with dil. HCl to pH 6, the solvent removed in vacuo, and treated with dil. aq. NaHCO₃-soln. → benzoylglycine (Y: 72%) and p-tolylcarbamylglycine p-toluidide (Y: 90%).—Although the method is effective in certain cases, the degraded peptides thus obtained tend to be contaminated with the startg. m. regenerated from the acylureas by simple hydrolysis. F. e. s. H. G. Khorana, Soc. 1952, 2081.

Phenoxazines
s. 9, 509

Pyrrolo(2'3':3,4)isocoumarin ring opening
s. 9, 740

Pyrimido[4,5-b]pyrazine ring opening

2-Amino-4-hydroxy-6-phenylpyridine in 4 N NaOH heated 24 hrs. at 170° in an autoclave → 2-hydroxy-5-phenylpyrazine-3-carboxylic acid. Y: 57%. F. e. s. F. E. King and P. C. Spensley, Soc. 1952, 2144.

Sodium hydroxide/pyridine

NaOH/C₅H₅N

Carboxylic acids from nitriles

CN → COOH

79.

A mixture of 3-cyano-4-methylcoumarin (prepn. s. 814) and pyridine shaken with 4% NaOH soln. at room temp. for 24 hrs. after complete soln. → 3-carboxy-4-methylcoumarin. Y: 78%.—The use of pyridine raised the yield from ca. 30% to 79%. C. H. Schroeder and K. P. Link, Am. Soc. 75, 1886 (1953).

Potassium hydroxide

KOH

**Ethers from
quaternary ammonium salts**
s. 9, 280

←

Oxo compounds from azomethines
s. 9, 857

C:NR → CO

Carboxylic acids from nitriles
s. 9, 769, 866

CN → COOH

Carboxythioethers from halogenonitriles
s. 9, 691

Sodium/alcohol

NaOR

**Replacement of
nitro groups by alkoxyl**

NO₂ → OR

s. 8, 235; s. a. C. K. Bradsher et al., Am. Soc. 74, 4880 (1952); 76, 2357 (1954)

Ethers from quaternary ammonium salts ←

280.

Gramine methiodide added to a soln. of Na in methanol, then a N_2 -stream passed through for 24 hrs. whereby trimethylamine is removed \rightarrow 3-methoxymethylindole. Y: 79%. T. A. Geissman and A. Armen, Am. Soc. 74, 3916 (1952); with KOH s. A. P. Terent'ev, A. N. Kost, and S. M. Gurvich, Ж. 23, 615 (1953).

Rearrangement of isoxazolidones ←

281.

2.2 g. 4-anilinomethylene-3-methylisoxazolid-5-one monohydrate in ethanol containing Na warmed 10 min. at 50° \rightarrow 1 g. 4-acetyl-2-phenylisoxazolid-5-one. F. e. s. G. Shaw, Soc. 1952, 3428.

Enolethers from nitrocyclopropanes C

282.

The solid stereoisomer of 3-phenyl-2-methyl-2-nitro-1-acetylcyclopropane in methanol added dropwise to a soln. of Na in methanol, and the product isolated after 10 min. \rightarrow 5-methoxy-4-phenyl-4-hexene-2-one. Y: 98%.—The keto group is necessary for the reaction. L. I. Smith and J. S. Showell, J. Org. Chem. 17, 827 (1952).

Sodium nitrite

 NaNO_2

Phenols from amines

 $\text{NH}_2 \rightarrow \text{OH}$

s. 3, 183; s. a. H. Gies and E. Pfeil, A. 578, 11 (1952)

Replacement of imino groups by oxygen

 $\text{C:NH} \rightarrow \text{CO}$

283.

2-Imino-1,4-dimethyl-3,3-diphenylpyrrolidine hydrochloride allowed to react with Na-nitrite and dil. HCl \rightarrow 1,4-dimethyl-3,3-diphenylpyrrolidine. Y: ca. 100%. F. e. s. W. Wilson, Soc. 1952, 3524.

Pyrrole ring opening

C

Satd. aq. NaNO_2 added portionwise with vigorous stirring at 80° to a mixture of tetraphenylpyrrole and glacial acetic acid, and stirring continued until a yellow soln. results \rightarrow *cis*-dibenzoylstilbene. Y: 70%. R. Kuhn and H. Kainer, A. 578, 227 (1952).

Sodium nitrite/trifluoroacetic acid $\text{NaNO}_2/\text{CF}_3\text{COOH}$ **Replacement of amino groups by hydroxyl** $\text{NH}_2 \rightarrow \text{OH}$

5. **Diazonium perhalogenocarboxylates.** Diazonium trifluoroacetates are comparatively stable. In aq. soln. they undergo smoothly and with good yields the usual replacement and coupling reactions.—E: Concd. aq. NaNO_2 added at $0-5^\circ$ to aniline in ca. 1.5 N aq. trifluoroacetic acid until a slight excess is present, warmed 75 min. at 50° , then heated 15 min. at $100^\circ \rightarrow$ phenol. Y: 88%. F. e. and use of other perhalogenocarboxylic acids s. M. R. Pettit, M. Stacey, and J. C. Tatlow, Soc. 1953, 3081.

Sodium nitrite/phosphoric acid $\text{NaNO}_2/\text{H}_3\text{PO}_4$

Phenols. 15 g. m-tolidine hydrochloride diazotized at 5° with NaNO_2 in aq. HCl , and the diazonium salt soln. boiled 10 min. with a large amount of dil. $\text{H}_3\text{PO}_4 \rightarrow$ 4,4'-dihydroxy-2,2'-dimethylbiphenyl. Y: 90%. H. Brockmann and A. Dorlars, B. 85, 1168 (1952).

Cupric chloride CuCl_2 **α -Acoxyketones from α -diazoketones** $\text{COCHN}_2 \rightarrow \text{COCH}_2\text{OAc}$ **α -Diazoketones as reagents for the identification of carboxylic acids**

The CuCl_2 -catalyzed decomposition of α -diazoacetophenones in dioxane in the presence of a carboxylic acid yields phenacyl esters. Y: 60-100%. —E: p-Bromo- α -diazoacetophenone and propionic acid \rightarrow p-bromophenacyl propionate. F. e. s. J. L. E. Erickson, J. M. Dechary, and M. R. Kesling, Am. Soc. 73, 5301 (1951).

Barium hydroxide $Ba(OH)_2$

C

 **α -Aminocarboxylic acids
via hydantoins**

s. 9, 832

Zinc

Zn

Ketones from α -nitroethylene derivatives $C:C(NO_2) \rightarrow CHCO$

s. 2, 224; s. a. C. E. Anagnostopoulos and L. F. Fieser, Am. Soc. 76, 532 (1954)

Zinc amalgam

Zn, Hg

C

 **α -Hydroxycarboxylic acids from azlactones
Reductive oxazolone ring opening**

288.

A mixture of 2-methyl-4-benzal-5-oxazolone, amalgamated Zn, and 6*N* HCl refluxed 8 hrs. → phenyllactic acid. Y: good. E. C. Bubl and J. S. Butts, Am. Soc. 73, 4972 (1951).

Zinc chloride $ZnCl_2$

←

**Phenolethers and phenols
from amines
via diazonium chloride-zinc chloride complex**

289.

3-Amino-4'-acetobiphenyl diazotized in aq. HCl with concd. aq. Na-nitrite at 0-5°, then $ZnCl_2$ added with stirring, the resulting diazonium chloride-zinc chloride complex isolated, the crude dry complex added to abs. methanol, and gently heated for 1 hr. until a test with an alkaline soln. of β -naphthol shows that the reaction is complete → 3-methoxy-4'-acetobiphenyl. Y: 68%.—Prepn. of phenols via the ethers using the above procedure may be recommended when the desired phenol is quite reactive and not sufficiently volatile with steam. F. e. s. C. K. Bradsher, F. C. Brown, and H. K. Porter, Am. Soc. 76, 2357 (1954); method s. H. H. Hodgson and C. K. Foster, Soc. 1942, 581.

Hexamethylenetetramine $C_6H_{12}N_4$ **Aldehydes from tert. amines** $CH_2NR_2 \rightarrow CHO$

Powdered hexamethylenetetramine added to a boiling soln. of 2-carbethoxy-3-dimethylaminomethylindole in glacial acetic acid, and refluxed 1 min. \rightarrow 2-carbethoxyindole-3-aldehyde. Y: 68-72%.—Certain phenolic Mannich bases can be converted to aldehydes in the same way, but in poorer yields. Mannich bases derived from ketones evidently do not undergo the reaction. F. e. s. H. R. Snyder, S. Swaminathan, and H. J. Sims, Am. Soc. 74, 5110 (1952).

Amino acid oxidase/catalase/oxygen \leftarrow **α -Ketocarboxylic acids
from α -aminocarboxylic acids** $CH(NH_2) \rightarrow CO$

Catalase and L-amino acid oxidase soln. added successively to an aq. suspension of L-leucine, kept at 37° and pH 7.2 (adjusted by addition of 2 N NaOH) in an O₂-stream, with occasional addition of caprylic alcohol to control foaming, until the oxidation is complete, then the product isolated as the Na-salt \rightarrow Na- α -ketoisopropane. Y: 70-85%. F. e., also from D-amino acids with D-amino acid oxidase, s. A. Meister, Biochem. Prep. 3, 66 (1953).

Streptococcus faecalis \leftarrow **Ureas from guanidines** $NHC(:NH)NH_2 \rightarrow NHC(:O)NH_2$

A cell suspension of Streptococcus faecalis treated with cetyltrimethylammonium bromide, then added to a soln. of L-arginine monohydrochloride and Na-acetate in dil. acetic acid, incubated at 37° until after ca. 1 hr. all the arginine has disappeared, and the product isolated as the Cu-chelate \rightarrow Cu-L-citrulline. Y: 90%. V. A. Knivett, Biochem. Prep. 3, 104 (1953).

Trifluoroacetic acid/sodium nitrite $CF_3COOH/NaNO_2$ *s. Sodium nitrite/trifluoroacetic acid**Nitric acid/ether* $HNO_3/(C_2H_5)_2O$ **Quinones from aminophenols**

293.

1-Amino-2-naphthol-3-sulfonic acid added to an ice-cold soln. of concd. HNO_3 in ether (caution!), and the product isolated after 1-3 hrs. \rightarrow 1,2-naphthoquinone-3-sulfonic acid. Y: almost 100%. F. e. s. W. Langenbeck, H. Le Blanc, and B. Lukowczyk, B. 87, 496 (1954).

Phosphoric acid/sodium nitrite $H_3PO_4/NaNO_2$ *s. Sodium nitrite/phosphoric acid**Nitrosyl sulfate* $ONOSO_3H$
**Subst. carboxylic acid amides
from hydrazones and semicarbazones
by rearrangement**

294.

p-Nitroacetophenone hydrazone added portionwise during 45 min. below 15° to a well-stirred soln. of nitrosyl sulfate (from $NaNO_2$ and 90% H_2SO_4), and the product isolated when the foaming has subsided \rightarrow p-nitroacetanilide. Y: 75%. F. e., also rearrangement of semicarbazones and stereoisomers, s. D. E. Pearson, K. N. Carter, and C. M. Greer, Am. Soc. 75, 5905 (1953).

Sulfuric acid H_2SO_4 **Ketones from imines** $C:NH \rightarrow CO$

295.

1.0 g. 9-iminofluorene refluxed 30 min. with 30% H_2SO_4 \rightarrow 0.87 g. fluorenone. C. L. Arcus and R. J. Mesley, Soc. 1953, 178.

Oxo compounds from acylhydrazones $C:N \cdot NHAc \rightarrow CO$ *s. 9, 431*

α -Hydroxyketones from α -diazoketones $\text{COCHN}_2 \rightarrow \text{COCH}_2\text{OH}$

A mixture of 1-diazo-3,4-bis-(p-methoxyphenyl)-2-hexanone, dioxane, and 2 N H_2SO_4 warmed 0.5 hr. at 60-65° → 1-hydroxy-3,4-bis-(p-methoxyphenyl)-2-hexanone. Y: 82%. J. H. Burckhalter and J. Sam, Am. Soc. 74, 187 (1952).

Sulfuric acid/acetic acid $\text{H}_2\text{SO}_4/\text{CH}_3\text{COOH}$ **Carboxylic acids from nitriles** $\text{CN} \rightarrow \text{COOH}$

o-Chlorophenylacetonitrile refluxed ca. 1 hr. with a mixture of equal volumes concd. H_2SO_4 , glacial acetic acid, and water → *o*-chlorophenylacetic acid. Y: 89%. F. e. s. G. S. Misra and J. S. Shukla, J. Indian Chem. Soc. 28, 480 (1951).

Hydrochloric acid HCl **Replacement of amino groups by hydroxyl** $\text{NH}_2 \rightarrow \text{OH}$

s. 2, 233; s. a. C. F. Koelsch and N. F. Albertson, Am. Soc. 75, 2095 (1953)

Oxo compounds from azomethines $\text{C:NR} \rightarrow \text{CO}$

s. 9, 730

Ketones from enamines $\text{CH:C}\cdot\text{N} \swarrow \rightarrow \text{CH}_2\text{CO}$

s. 7, 217; s. a. G. Shaw and G. Sugowdz, Soc. 1954, 665

Replacement of amino groups by oxygen \leftarrow

A soln. of 4-benzylamino-6,7-diphenylpteridine in 6 N HCl refluxed 0.5 hr. → 6,7-diphenyl-4(3H)-pteridinone. Y: 93%. F. e. s. E. C. Taylor, Jr., J. A. Carbon, and D. R. Hoff, Am. Soc. 75, 1904 (1953).

Carboxylactones from cyanolactones
s. 9, 826

CN → COOH

Cyclohexenones via nitrocyclohexenes
Diene synthesis followed by Nef reaction

299.

A mixture of β -nitrostyrene, butadiene, toluene, and a trace of hydroquinone heated 48 hrs. at 100° in a sealed tube → 4-nitro-5-phenylcyclohexene (Y: 88%) in ethanol treated with a soln. of 2 equivalents of Na in ethanol, allowed to stand 1 hr. under N₂, then added dropwise at 0° under N₂ to a well-stirred mixture of HCl, water, and ethanol, stirring continued 1 hr. at 0°, then at room temp. until the color changes from green to yellow → 6-phenyl-3-cyclohexen-1-one (Y: 76-78%). F. e. s. W. C. and R. B. Wildman, J. Org. Chem. 17, 581 (1952); cf. E. E. van Tamelen and R. J. Thiede, Am. Soc. 74, 2615 (1952).

Hydantoins from α -ureidonitriles

s. 9, 245

300.

1-Subst. hydantoins. HCl added to a soln. of N-cyclohexyl-N-carbamido-glycinonitrile in ethanol, whereupon the product separates after a short time → 1-cyclohexylhydantoin. Y: 90%. E. S. Rothman and A.R. Day, Am. Soc. 76, 111 (1954).

Halogen \downarrow

OC \ddagger Hal

Without additional reagents

w.a.r.

Bromohydrins from 1,2-dibromides

s. 9, 307

CBrCBr → C(OH)CBr

Aminoethers from aminoalcohols

Hal → OR

A soln. of β -methylaminoethanol in benzene added during 1 hr. to a soln. of 1 molar equivalent of α -bromo- α,α -diphenylacetic acid in the same solvent, and refluxed 8 hrs. → α -(β -methylaminoethoxy)- α,α -diphenylacetic acid hydrobromide. Y: 73.5%. H. S. Mosher, M. B. Franklin, and M. Gregory, Am. Soc. 75, 5326 (1953).

**Carboxylic acid esters
from carboxylic acid chlorides**

s. 2, 277; phenol esters s. J. Colonge and R. Chambard, Bl. 1953, 573

Reactions with fluoro compounds

←

**Carboxylic acid amides
from 1,1,1-dihalogenamines**

Polyfluoroalkyl-*tert*-amines are highly reactive in contrast to the corresponding ethers, sulfides, and sulfones (Am. Soc. 74, 749).—E: N-(2-Chloro-1,1,2-trifluoroethyl)diethylamine stirred with excess water → N,N-diethyl- α -chloro- α -fluoroacetamide. Y: ca. 100%. R. L. Pruett et al., Am. Soc. 72, 3646 (1950); reaction with alcohols s. Am. Soc. 74, 749 (1952).

Sodium

Na

1,2-Diglycerides

**Blocking of hydroxyl groups
by formation of benzyl ethers**

Cleavage of acetals

1,2-Isopropylideneglycerol added portionwise with stirring to powdered Na in toluene, refluxed 1 hr. after the vigorous reaction has subsided, ca. 1 molar equivalent benzyl chloride added to the gently refluxing stirred soln. during 0.5 hr., and heating continued for 1 hr. → 3-benzyl-1,2-isopropylideneglycerol (Y: 78%) heated 2 hrs. with 10% acetic acid on a boiling water bath with frequent shaking → 1-benzylglycerol (Y: 87%) and pyridine dissolved in CCl₄, treated with palmitoyl chloride in CCl₄, and kept overnight at 40° → 3-benzyl-1,2-dipalmitoylglycerol (Y: 88%) dissolved with gentle warming in n-hexane, and hydrogenated 2 hrs. with Pd-black until the H₂-uptake has ceased → 1,2-dipalmitin (Y: 93%). F. e. s. R. J. How and T. Malkin, Soc. 1951, 2663.

O-Acylation

OH → OAc

304.

A soln. of 2,6-dibenzoyl-p-cresol in dry benzene treated during 2 hrs. with small pieces of Na with occasional shaking and gentle heating towards the end of the reaction, separated from excess Na, then treated dropwise with acetyl chloride until decolorized → 2,6-dibenzoyl-p-cresol acetate. Y: 99.7%.—Acetylation in the usual way was unsuccessful. M. S. Newman and A. G. Pinkus, J. Org. Chem. 19, 992 (1954).

Potassium

K

**Carbalkoxyenolethers
from β -ketocarboxylic acid esters**

←

s. 6, 243; cf. S. J. Rhoads, R. D. Reynolds, and R. Raulins, Am. Soc. 74, 2889 (1952)

Sodium hydride

NaH

Ethers from halides

Hal → OR

s. 5, 194; methoxylation s. C. D. Hurd and W. H. Saunders, Jr., Am. Soc. 74, 5324 (1952)

Sodium hydroxide

NaOH

Replacement of chlorine by hydroxyl

Cl → OH

305.

A suspension of finely powdered NaOH in benzene added to N-(β -chloroethyl)-2-pyrrolidone, and refluxed 12 hrs. → N-(β -hydroxyethyl)-2-pyrrolidone. Y: 76%. B. Puetzer, L. Katz, and L. Horwitz, Am. Soc. 74, 4959 (1952).

306.

via sulfonic acids. Crude 1,2,4-trichlorobenzene (prepn. s. 973) added with stirring during 10 min. to 25%-oleum, and the product isolated as the Na-salt after several min. more → crude Na-2,4,5-trichlorobenzenesulfonate (Y: 93-95%) heated 2 hrs. with aq. NaOH at 230° and

150-160 lb. pressure \rightarrow Na-2,5-dichloro-4-phenolsulfonate (Y: 86-87%) gently boiled with 70% H_2SO_4 for 2 hrs. \rightarrow 2,5-dichlorophenol (Y: 71-73.5%). A. Galat, Am. Soc. 74, 3890 (1952).

Halogenethers from dihalides

s. 9, 312

Hal \rightarrow OR

Acyl peroxides from carboxylic acid chlorides

$2 RCOCl \rightarrow (RCOO)_2$

s. 5, 95; s. a. J. d'Ans, J. Mattner, and W. Busse, Ang. Ch. 65, 57 (1953)

Oxido compounds and bromohydrins from 1,2-dibromides

$CBrCBr \rightarrow C-O-C$

p-Methoxystyrene dibromide dissolved in dioxane, an equal volume water added in one portion with stirring, and the product isolated after 2-3 min. when the turbid mixture has become clear \rightarrow p-methoxystyrene bromohydrin. Y: 87-100%.

aq. NaOH added in one portion with stirring at room temp., and the product isolated after 10-15 min. \rightarrow p-methoxystyrene oxide. Y: 86.6%.

C. O. Guss, Am. Soc. 74, 2561 (1952); cf. Am. Soc. 75, 3177 (1953).

Carbonic acid esters

←

A soln. of commercial $COCl_2$ in toluene added at 0-5° portionwise with efficient stirring during 60-75 min. to a soln. of catechol in deaerated aq. NaOH under N_2 , stirring continued 1 hr. at 0-5°, then allowed to come to room temp. \rightarrow o-phenylene carbonate. Y: 79-86%. R. S. Hanslick, W. F. Bruce, and A. Mascitti, Org. Synth. 33, 74 (1953).

Potassium hydroxide

KOH

p-Dioxanes by dimerization

309.

A soln. of 10 g. 1-chlorocyclohexyl phenyl ketone in anhydrous ether stirred 24 hrs. in the presence of fused KOH \rightarrow 8 g. 1-hydroxycyclohexyl phenyl ketone dimer (startg. m. f. 796). I. Elphimoff-Felkin and B. Tchoubar, Bl. 1952, 551.

Carboxylic acids from cyclic α -halogenoketones
Ring contraction

310.

Benzene ring from tropone ring. A mixture of 2-chloro-5-phenyltropone and 10% alc. KOH refluxed 10 min. on a steam bath \rightarrow diphenyl-4-carboxylic acid. Y: 97%. F. e. s. W. von E. Doering and L. H. Knox, Am. Soc. 75, 297 (1953).

*Potassium hydroxide/alcohol***Ethers from halides**Hal \rightarrow OR

311.

A soln. of 4,6-dinitro-3-chlorobenzoic acid in methanol added to a soln. of KOH in abs. methanol, and allowed to stand 12 hrs. at room temp. \rightarrow 4,6-dinitro-3-methoxybenzoic acid. Y: 77%. H. Goldstein and R. Stamm, Helv. 35, 1330 (1952); α -alkoxyacetylene derivatives s. A. N. Pudovik, Ж. 21, 1462 (1951); C. A. 46, 4467 b.

Halogenethers from dihalides

312. 4 moles pentamethylene dibromide, 1 mole guaiacol, and methanolic 2.7 N KOH heated 2 hrs. on a steam bath \rightarrow 5- α -methoxyphenoxy-pentyl bromide (startg. m. f. 888). Y: 76%. F. e. s. A. W. Nineham, Soc. 1953, 2601; with aq. NaOH, added slowly, s. P. A. Boivin et al., Can. J. Chem. 30, 994 (1952); cf. Can. J. Chem. 30, 592.

Sodium/alcohol

NaOR

Replacement of chlorine by alkoxyl

2-Chlorobenzothiazole added dropwise during 10 min. at 0° to a soln. of the equivalent amount of Na in abs. ethanol, then refluxed 30 min. → 2-ethoxybenzothiazole (startg. m. f. 20). Y: 93%.—Excess Naethoxide lowers the yield. F. e. s. H. Gilman, K. E. Lentz, and J. A. Beel, Am. Soc. 74, 1081 (1952).

**Simultaneous
O- and C-methylation**

s. 9, 882

**Carboxylic acid esters
from α-halogenoketones**

A soln. of Na in ethanol added to a soln. of α-chloro-α,α-diphenylacetone (prep. s. 626) in abs. ethanol, and the product isolated after a few min. → ethyl β,β-diphenylpropionate. Y: 85%. C. L. Stevens and A. E. Sherr, J. Org. Chem. 17, 1228 (1952).

Potassium/alcohol

KOR

**Aromatization of
α-aminomethyleneketones**

←

0.75 g. 1,2,3,4,5,6-hexahydro-3-keto-10-methoxy-4-N-methylanilinomethylenechrysene in tetrahydrofuran added to a soln. of K in *tert*-butanol under N₂, refluxed 5 min., and methyl iodide added to the boiling soln. to discharge the brown color → 0.52 g. 1,2-dihydro-3,10-dimethoxy-4-N-methylanilinomethylchrysene. A. J. Birch, J. A. K. Quartey, and H. Smith, Soc. 1952, 1768.

*Sodium carbonate*Na₂CO₃**Replacement of bromine by hydroxyl**

Br → OH

s. 3, 207; s. a. R. Grewe, W. Lorenzen, and L. Vining, B. 87, 793 (1954)

<i>Potassium carbonate</i>	K_2CO_3
Alkoxyethylene- from hydroxymethylene compounds	$C:CHOH \rightarrow C:CHOR$
s. 4, 775; s. a. E. Ott and D. S. Tarbell, Am. Soc. 74, 6266 (1952)	
<i>Potassium hydrogen carbonate</i>	$KHCO_3$
Replacement of halogen by acoxy groups	$Hal \rightarrow OAc$
s. 9, 642	
<i>Sodium formate</i>	$HCOONa$
Replacement of halogen by hydroxyl	$Hal \rightarrow OH$
replacement of bromine s. 6, 249; of chlorine s. C. D. Hurd and K. L. Kreuz, Am. Soc. 74, 2965 (1952)	
<i>Potassium acetate</i>	CH_3COOK
Replacement of bromine by acoxy groups in silanes, also cleavage	$Br \rightarrow OAc$

Potassium oxalate $(COOK)_2$

Aldehydes from 1,1-dibromides $CHBr_2 \rightarrow CHO$
s. 7, 292; s. a. J. C. Bill and D. S. Tarbell, Org. Synth. 34, 82 (1954)

Sodium salt Na^+

Arylethers $ArOR$
s. 9, 953

Carboxylic acid anhydrides from carboxylic acid chlorides $RCO \cdot O \cdot OCR'$

317. $C_6H_5CH_2COCl + NaOOC \cdot CH_2C_6H_5 \rightarrow C_6H_5CH_2 \cdot CO \cdot O \cdot OC \cdot CH_2C_6H_5$
1 molar equivalent of phenylacetic chloride added dropwise to a stirred suspension of 1 molar equivalent of Na-phenylacetate in ben-

zene, and stirring continued for 3 hrs. → phenylacetic anhydride. Y: 87%. F. e. s. J. A. King and F. H. McMillan, Am. Soc. 73, 4911 (1951).

Pyridine

C₅H₅N

Glycerides

OH → OAc

Cleavage of acetals

Chaulmoogroyl chloride added with shaking to isopropylideneglycerol and dry pyridine in benzene, and allowed to stand overnight → isopropylideneglycerol chaulmoograte (Y: 83%) in ether cooled in an ice-bath, treated slowly with ice-cold concd. HCl with vigorous shaking and kept 0.5 hr. in the ice-bath with frequent shaking → 1-monochaulmoogrín (Y: 90%). F. e., also di- and tri-glycerides. s. A. Gupta and T. Malkin, Soc. 1952, 2405.

1,2-Diglycerides

s. 9, 303

Selective acylation

Benzoyl chloride added at -10° to ethyl 3β,5,19-trihydroxyetiocholanate in pyridine, and kept overnight at room temp. → ethyl 3β,19-di-benzoxy-5-hydroxyetiocholanate. Y: 86%. P. T. Herzig and M. Ehrenstein, J. Org. Chem. 17, 713 (1952).

O-Carbethoxylation

OH → OCOOC₂H₅

cf. Synth. Meth. 7, 301

Equatorial hydroxyl groups at C₆, C₇, C₁₂, and C₁₇ of steroids are invariably carbethoxylated while polar hydroxyl groups are not. Activation by a double bond overcomes hindrance effects. Carbethoxylation also in dioxane in the presence of pyridine s. L. F. Fieser et al., Am. Soc. 74, 3309 (1952).

**Carboxylic acid anhydrides
from carboxylic acid chlorides
and carboxylic acids**

321. $\text{n-C}_6\text{H}_{13}\text{COCl} + \text{HOOC}\cdot\text{C}_6\text{H}_{13}-\text{n} \rightarrow \text{C}_6\text{H}_{13}\cdot\text{CO}\cdot\text{O}\cdot\text{OC}\cdot\text{C}_6\text{H}_{13}$
 n-Heptanoyl chloride added at -10° to an ethereal soln. of n-heptanoic acid and pyridine \rightarrow n-heptanoic anhydride. Y: 97%. W. Gerrard and A. M. Thrush, Soc. 1953, 2117.

Urethans from phenols

s. 3, 216; s. a. H. Gilman et al., J. Org. Chem. 19, 1067 (1954)

Copper

Diaryl ethers

Ullmann reaction

s. 2, 255; 4, 240; s. a. W. M. Whaley, L. Starker, and M. Meadow, J. Org. Chem. 18, 833 (1953)

Cupric oxide

Ethers from halides

322.

2-Iodothiophene and pulverized CuO added to a soln. of Na in abs. methanol, and gently refluxed 30 hrs. with stirring \rightarrow 2-methoxythiophene. Y: 80%.—Cupric oxide is more satisfactory than cuprous oxide or copper. J. Sicé, Am. Soc. 75, 3697 (1953).

Silver oxide

Methylation of carbohydrates

s. 2, 257/8; s. a. P. J. Stoffyn and R. W. Jeanloz, Am. Soc. 74, 563 (1954)

Silver carbonate

Replacement of bromine by hydroxyl

Carbohydrates

s. 3, 218; s. a. H. G. Fletcher, Jr., Am. Soc. 75, 2624 (1953)

Silver nitrate

Nitric acid esters from halides

323.

The use of Ag-nitrate in acetonitrile is a very convenient method for preparing laboratory quantities of pure nitrates. The reaction may be followed by weighing the Ag-halide precipitate.—E: A soln. of ethyl β -bromopropionate in acetonitrile added to a soln. of Ag-nitrate in acetonitrile, and allowed to stand 3 days at room temp. \rightarrow ethyl hydroxycrylate nitrate. Y: 58%. F. e. s. A. F. Ferris et al., Am. Soc. 75, 4078 (1953).

Silver salt

 Ag^+

Carboxylic acid esters

COOR

4.

A threefold excess of methyl iodide added dropwise to crude Ag-o-acetobenzoate (prepared from a soln. of o-acetobenzoic acid in 2 N NaOH and AgNO_3), and worked up after cooling to room temp. \rightarrow methyl o-acetobenzoate. Y: 88%.—By this procedure, formation of the pseudo-ester is avoided. J. H. Boyer and D. Straw, Am. Soc. 75, 2683 (1953).

Sulfonic acid esters

 \leftarrow

5.

A soln. of Ag-p-toluenesulfonate and methylene iodide in acetonitrile refluxed 24 hrs. \rightarrow methylene bis-tosylate. Y: 87%. F. e. s. W. D. Emmons and A. F. Ferris, Am. Soc. 75, 2257 (1953).

Calcium chloride

 CaCl_2

Acetals from 1,1-acetoxyhalides

 $\text{C}(\text{OAc})\text{Hal} \rightarrow \text{C}(\text{OR})_2$

s. 9, 600

Magnesium oxide

 MgO

Carboxylic acids from carboxylic acid chlorides

 $\text{COCl} \rightarrow \text{COOH}$

s. 9, 402

Mercuric acetate

 $(\text{CH}_3\text{COO})_2\text{Hg}$ Carboxylic acids from cyclic α -halogenoketones \leftarrow

Ring contraction

26.

Mercuric acetate and 1-bromobicyclo[3.3.1]nonan-9-one added to dry *tert*-butanol, refluxed 6 hrs., filtered from traces of a solid, and poured into water \rightarrow bicyclo[3.3.0]octane-1-carboxylic acid. Y: 74%. A. C. Cope and E. S. Graham, Am. Soc. 73, 4702 (1951).

Aluminum halides

 AlHal_3

Acylation of unreactive alcohols

 $\text{OH} \rightarrow \text{OAc}$

s. 8, 286; s. a. Am. Soc. 76, 2329 (1954)

Formamide $HCONH_2$ **Reaction of halides with formamide**

←

Hydrolysis of halides **α -Hydroxy- from α -halogeno-carboxylic acid esters****Carboxylic acids from 1,1,1-trihalides**

327.

Ethyl α -bromobutyrate allowed to react with formamide and the theoretical amount of water at 150° for 5 hrs. with vigorous stirring → ethyl α -hydroxybutyrate. Y: 91%.—Similarly at 100° : Benzotrichloride → benzoic acid. Y: 80%.—Also formoxy compounds and carboxylic acid amides in the absence of water s. H. Bredereck, R. Gompper, and G. Theilig, B. 87, 537 (1954).

Sulfuric acid H_2SO_4 **Partial replacement
of halogen by hydroxyl** $\text{Hal} \rightarrow \text{OH}$

328.

A mixture of 2,6,8-trichloroquinoline and H_2SO_4 -water heated 3.5 hrs. in an oil bath at $170\text{-}210^\circ$ → 6,8-dichloro-2-hydroxyquinoline. Y: almost 100%. F. e. s. C. R. Saunders, C. E. Smith, Jr., and J. D. Capps, Am. Soc. 73, 5910 (1951).

**Selective formation of carboxylic acids
from 1,1,1-trichlorides** $CCl_3 \rightarrow COOH$

329.

1,1,1-Trichloro-4,4,4-trifluoro-2-butene (prepn. s. 132) heated with concd. H_2SO_4 → γ,γ,γ -trifluorocrotonic acid. Y: 68%. R. N. Haszeldine, Soc. 1953, 922.

Hydrochloric acid HCl **Aminoalcohols from acylaminohalides**

←

330.

N-(2-Chloro-1-phenylethyl)acetamide heated 24 hrs. with concd. HCl on a steam bath → β -hydroxy- α -phenylethylamine hydrochloride. Y: 90%. F. e. s. T. L. Cairns et al., J. Org. Chem. 17, 751 (1952).

Sulfur ↑**OC₄S***Without additional reagents**w.a.r.***Ethers from tosylates**

OTs → OR

s. 5, 207; also in the presence of H₂SO₄ s. M. N. Huffman and J. W. Sadler, J. Org. Chem. 18, 919 (1953)*Alkali hydroxide*

←

**Replacement of sulfonic acid groups
by hydroxyl**SO₃H → OH

s. 2, 268; 3, 229; s. a. C. F. Koelsch and N. F. Albertson, Am. Soc. 75, 2095 (1953); comparison of NaOH and KOH s. S. W. Englund, R. S. Aries, and D. F. Othmer, Ind. Eng. Chem. 45, 189 (1953)

Potassium hydroxide

KOH

Ethers from sulfonesSO₂R → OR'

p-Tolyl xanthhydryl sulfone refluxed 4 hrs. with a *N* soln. of KOH in 80% ethanol → ethyl xanthhydryl ether. Y: 74%. F. e. s. M. P. Balfe, J. Kenyon, and E. M. Thain, Soc. 1952, 790.

Sodium/alcohol

NaOR

Ethers

ROR

s. 9, 800

*Potassium carbonate*K₂CO₃

in toluene s. 2, 271; in nitrobenzene s. G. Wolf, Am. Soc. 75, 2673 (1953)

*Sodium acetate*CH₃COONa**Acetoxy compounds from
p-toluenesulfonic acid esters**

OTs → OAc

s. 6, 263; s. a. W. A. Bonner and C. J. Collins, Am. Soc. 75, 5372 (1953)

Nitric acid/sodium nitrite

 $HNO_3/NaNO_2$

Diazoo oxides from sulfamic acids

332.

8.3 g. 5-sulfaminouracil (prepn. s. 675) in 40 c.c. HNO_3 (d. 1.40) heated a short time until reaction sets in and a soln. is obtained, then concentrated in vacuo \rightarrow 5-diazo barbituric acid. Y: 90%. Also with less HNO_3 in the presence of $NaNO_2$ to start the reaction s. F. G. Fischer, W. P. Neumann, and J. Roch, B. 85, 752 (1952).

Phosphorus/hydriodic acid

 P/HI

s. Hydriodic acid/phosphorus

Hydrogen peroxide

 H_2O_2 Arylthiopercarbonic acid esters
from bis(triarylthiomethyl) trisulfides

333.

5 molar equivalents 33% H_2O_2 added to a soln. of bis(trimesitylthiomethyl) trisulfide in acetic acid, then evaporated \rightarrow dimesityl trithiopercarbonate. Y: 71%. F. e. s. H. J. Backer and E. Westerhuis, R. 71, 1071 (1952).

Hydrochloric acid

 HCl

Cleavage of sulfonylthioethers

334.

10-(Methylthio)-10-(methylsulfonyl)thianthrene 5,5-dioxide refluxed 1 hr. with acetic acid and concd. HCl \rightarrow 10-thianthrene 5,5-dioxide. Y: 90%. H. Kloosterziel, W. van der Veen, and H. J. Backer, R. 71, 1231 (1952).

Acetals from sulfurous acid esters

 $CO \rightarrow C(OR)_2$

335.

A mixture of α -bromocinnamaldehyde, dimethyl sulfite, and abs. methanol containing HCl refluxed 8-10 hrs. at a bath temp. of 120-130° until

the SO₂-evolution ceases → α-bromocinnamaldehyde dimethyl acetal. Y: 91%. F. e. s. F. Wille and F. Knörr, B. 85, 841 (1952); method s. W. Voss and E. Blanke, A. 485, 258 (1931).

Hydriodic acid/phosphorus

HI/P

α-Aminocarboxylic acids from aldehydes

via 5-thiazolidone-2-thiones

←

Synthesis with addition of 2 C-atoms

Phthalimidoacetaldehyde and 2 drops of piperidine added to a soln. of 2-mercaptop-5-thiazolidone in hot acetic acid, and allowed to stand 24 hrs. at room temp. → 2-thio-4-(phthalimidoethylidene)thiazolid-5-one (Y: 92%) cleaved with red P and HI (s. Synth. Meth. 6, 269) → α-amino-γ-phthalimidobutyric acid (Y: 90%). F. e. s. K. Balenović, I. Jambrešić, and I. Furić, J. Org. Chem. 17, 1459 (1952).

Remaining Elements ↑

OC ↑ Rem

Without additional reagents

w.a.r.

Hydroperoxides from Grignard reagents

R·MgHal → R·OOH

Carbon ↑

OC ↑ C

Without additional reagents

w.a.r.

Transesterification

COOR → COOR'

s. 7, 312; s. a. A. Nickon and L. F. Fieser, Am. Soc. 74, 5566 (1952)

Mixed dialkyl phosphites. A mixture of diethyl phosphite and n-butanol slowly heated up to a bath temp. of 150°, when a brisk reaction starts, kept 55 min. at 150-155° with distillation of ethanol, then distilled under reduced pressure → ethyl butyl phosphite. Y: 45%. F. e. s. G. M. Kosolapoff, Am. Soc. 73, 4989 (1951).

1,2,4-Trioxolanes from ethylene derivatives

Tetramethylethylene added to formaldehyde in liq. methyl chloride, then ozonized with 6%-O₃ at -80° until a blue color persists → isobutylene ozonide. Y: 55%. F. e. s. R. Criegee, G. Blust, and H. Zinke, B. 87, 766 (1954).

Potassium hydroxide/alcohol

KOH

Hydrolytic cleavage of the carbon chain

s. 9, 797

←
NaOR

Sodium/alcohol

COOR → COOR

Partial transesterification

A mixture of 2 moles diethyl malonate, 1 mole benzyl alcohol, and benzene distilled slowly through a Fenske column until any water present is removed, after slight cooling Na-ethoxide in ethanol added, benzene-ethanol azeotrope then distilled off until interchange is complete → benzyl ethyl malonate. Y: 74%.—The use of less malonic ester gives more dibenzyl ester but causes no difficulty in isolation of the product. R. E. Bowman and W. D. Fordham, Soc. 1951, 2753.

Ammonia

NH₃

Degradation of carbohydrates with loss of 1 C-atom via mercaptals and 1,1-disulfones

342. cf. Synth. Meth. 7, 324.

The procedure has been improved and simplified by oxidizing the unacetylated rather than the acetylated mercaptals with perpropionic acid

instead of monoperphthalic acid and performing the degradation of the resulting 1,1-disulfones with very dil. aq. NH₃. D. L. MacDonald and H. O. L. Fischer, Biochem. et Biophys. Acta 12, 203 (1953).

Benzylidimethylamine

Transesterification

Methyl p-toluate and 33% excess benzylidimethylamine heated 23 hrs. at 170-210° under a slow stream of N₂ until the evolution of trimethylamine ceases → benzyl p-toluate. Y: 96%; conversion 82%. F. e. s. E. L. Eliel and R. P. Anderson, Am. Soc. 74, 547 (1952).

Fehling solution

Aldehydes from hydrobenzoins

s. 9, 732

Barium hydroxide/oxygen s. Oxygen/barium hydroxide

Aluminum alkoxide

Transesterification

Optically active

α -aminocarboxylic acid esters

Carboxylic acid esters from carboxylic acids

SOCl₂ added dropwise below -5° to methanol, then L-leucine added portionwise at the same temp., warmed slowly to 40°, and stirring continued for 2 hrs. → L-leucine methyl ester (Y: 83-86%) added to a soln. of Al-isopropoxide in abs. n-hexanol, warmed 45-50 min. at 55° and 55-60 min. at 65° in a dry, CO₂-free stream of air at 14 mm. → L-leucine n-hexyl ester (Y: 71-72%).—Racemization takes place, when Na-alkoxide is used as a catalyst. M. Brenner and W. Huber, Helv. 36, 1109 (1953).

Nitrobenzene

Oxidative cleavage of ethylene derivatives

s. 4, 259; 7, 321; s. a. I. A. Pearl and D. L. Beyer, Am. Soc. 74, 4263 (1952)

Stannic chloride SnCl_4 **Glycosides** $\text{OAc} \rightarrow \text{OR}$

345.

β -Glucopyranosides. A soln. of SnCl_4 in benzene added at 40° to a soln. of pentaacetyl- β -D-glucopyranose in benzene containing dry methanol, and the product isolated after 1 hr. at the same temp. \rightarrow methyl tetraacetyl- β -D-glucopyranoside. Y: 53-57%. Also phenyl analog s. R. U. Lemieux and W. P. Shyluk, Can. J. Chem. 31, 528 (1953).

Lead tetraacetate $(\text{CH}_3\text{COO})_4\text{Pb}$ **Degradation of carbohydrates** \leftarrow

346.

A soln. of Pb-tetraacetate in glacial acetic acid added with cooling at 20° to a soln. of 2,6-dimethyl-D-glucose in glacial acetic acid, kept 10 min. at room temp., and the resulting 4-formyl-2,5-dimethyl-D-arabinose deacetylated by heating in aq. 0.5 N HCl on a steam bath for 45 min. \rightarrow 2,5-dimethyl-D-arabinose. Y: ca. 100%. J. Fried and D. E. Walz, Am. Soc. 74, 5468 (1952); s. a. A. S. Perlin, Am. Soc. 76, 2595 (1954).

Oxidative cleavage of α -hydroxyketones**and α -ketocarboxylic acids** **α -Diketones from α -hydroxyketones**

347.

Pb-tetraacetate effects quantitative oxidative cleavage of α -hydroxyketones and α -ketocarboxylic acids, in the presence of substances forming pseudoglycols by addition (e.g. water, alcohols, HCN). In their absence, no reaction takes place between Pb-tetraacetate and α -ketocarboxylic acids, whereas α -hydroxyketones are oxidized without cleavage to the respective α -diketones in good yield. Esters in place

of the acids are obtained as degradation products in the presence of alcohols.—E: A soln. of Pb-tetraacetate in benzene added to a soln. of phenylglyoxylic acid in dry benzene-ethanol, and kept 1 hr. at 45° → ethyl benzoate. Y: 80%.—Finely powdered Pb-tetraacetate added to a soln. of anisoin in 90%-acetic acid, kept 20 min. at 50-55° with frequent shaking, then Pb⁺⁺ precipitated as Pb-sulfate by addition of the calculated amount of concd. H₂SO₄ → anisic acid (Y: 76.8%) and anisaldehyde (Y: 83% as the p-nitrophenylhydrazone).—Finely powdered Pb-tetraacetate added to a soln. of benzoin in glacial acetic acid, and kept 24 hrs. at 50° with occasional shaking → benzil. Y: 83.4%. F. e. s. E. Baer, Am. Soc. 62, 1597 (1940); cleavage of α -hydroxyketones s. a. D. Y. Curtin and S. Leskowitz, Am. Soc. 73, 2633 (1951); cleavage of α -ketocarboxylic acids s. a. W. Voser et al., Helv. 35, 2414 (1952).

Sodium bismuthate $NaBiO_3$ **Oxidative degradation**

←

s. 6, 277; steroid derivatives s. F. Ungar and R. I. Dorfman, Am. Soc. 76, 1197 (1954)

Oxygen/barium hydroxide $O_2/Ba(OH)_2$ **Spengler and Pfannenstiel**

COOH

oxidative degradation of carbohydrates

An aq. soln. of 18 g. maltose added with agitation during 2-3 hrs. to aq. Ba(OH)₂ under O₂, and the product isolated after 24-25 hrs. → 17 g. crude 3-[α -D-glucosido]-D-arabonic acid. F. e. s. E. Hardegger, K. Kreis, and H. El Khadem, Helv. 35, 618 (1952).

Ozone/zinc O_3/Zn **Oxo compounds from ethylene derivatives**

CO

s. 6, 280; s. a. A. F. Daglish, J. Green, and V. D. Poole, Soc. 1954, 2627

Ozone/hydrogen peroxide O_3/H_2O_2 **Carboxylic acids from ethylene derivatives**

COOH

A slow stream of O₃ passed through a soln. of 3-allylpyridine in aq. HCl with water-cooling until after 45 min. the theoretical amount of

O_3 has been taken up, then 30% H_2O_2 added to complete the oxidation of the aldehydes formed by ozonolysis to carboxylic acids, and allowed to stand overnight at room temp. \rightarrow 3-pyridineacetic acid hydrochloride. Y: almost 100%. J. P. Wibaut and H. C. Beyerman, R. 70, 977 (1951).

Oxidative ring opening

350.

A soln. of progesterone in 5:4 ethyl acetate-glacial acetic acid ozonized by passing through it 3 molar equivalents of O_3 at a rate of 150 ml./min., 30% H_2O_2 added, and placed in the refrigerator overnight \rightarrow 5,20-diketo-3,5-seco-A-norpregnan-3-oic acid. Y: 79%. G. I. Fujimoto and J. Prager, Am. Soc. 75, 3259 (1953); s. a. M. Gut, Helv. 36, 906 (1953); F. L. Weisenborn, D. C. Remy, and T. L. Jacobs, Am. Soc. 76, 552 (1954).

Hydrogen peroxide/potassium hydroxide

H_2O_2/KOH

Oxidative tropolone ring opening

351.

A soln. of 0.4 g. 4,5-benzotropolone and H_2O_2 in aq. KOH kept 12 hrs. at 50°, then allowed to stand 14 days at room temp. \rightarrow 0.2 g. o-carboxy-cinnamic acid. H. Fernholz, E. Hartwig, and J.-C. Salfeld, A. 576, 131 (1952).

p-Toluenesulfonic acid

$TsOH$

Acoxy compounds from ethers

OR \rightarrow OAc

s. 4, 262; s. a. J. Org. Chem. 18, 919 (1953)

Enol acetates from ketones

s. 8, 307; s. a. C. Djerassi and C. T. Lenk, Am. Soc. 76, 1722 (1954)

β -Ketocarboxylic acid esters from 6-keto-1,3-diox-4-enes

s. 9, 212

←

C

Transdioxolanation
Protection of keto groups
Alcohols from ketones

A soln. of Δ^4 -androstene-3,17-dione and a little p-toluenesulfonic acid monohydrate in 2-methyl-2-ethyl-1,3-dioxolane distilled slowly through a glass helices-packed column over a period of 5.5 hrs. \rightarrow 3-ethylenedioxy- Δ^5 -androsten-17-one (Y: 74%) in abs. ethanol added to pre-hydrogenated W-4 Raney-Ni (cf. Synth. Meth. 7, 39) in ethanol, hydrogenated at atmospheric pressure until after 1 hr. 1 equivalent of H_2 has been absorbed, filtered, 2-methyl-2-ethyl-1,3-dioxolane added, and concentrated under reduced pressure to remove the ethanol \rightarrow 3-ethylenedioxy- Δ^5 -androsten-17 α -ol (Y: 90%) dissolved in anhydrous acetone, a little p-toluenesulfonic acid monohydrate added, and refluxed 14 hrs. \rightarrow crude testosterone (Y: ca. 100%). Over-all Y: 67%.—The same yield was obtained when the reduction was carried out by $LiAlH_4$ in tetrahydrofuran.—Transdioxolanation appears to be more subject to steric and electronic effects than direct dioxolanation, the reactivity order found with steroids being: satd. 3- and 20-ketones $>$ α,β -unsatd. 3- and 20-ketones $>$ 2- or 4-monobromo-3-ketones \gg (no reaction) 17-ketones, 2,4-dibromo-3-ketones. F. transdioxolanations s. H. J. Dauben, Jr., B. Löken, and H. J. Ringold, Am. Soc. 76, 1359 (1954).

Sulfuric acid H_2SO_4 **Acoxy compounds from acetals** \leftarrow

1,3:4,6-Dibenzylidene-2,5-ditosyldulcitol, acetic anhydride, acetic acid, and coned. H_2SO_4 heated 1 hr. on a steam bath until all the solid has been dissolved \rightarrow 1,3,4,6-tetraacetyl-2,5-ditosyldulcitol. Y: 78%. N. K. Matheson and S. J. Angyal, Soc. 1952, 1133.

Enol acetates from ketones

s. 8, 307; s. a. W. R. Vaughan and K. M. Milton, Am. Soc. 74, 5623 (1952); N. S. Leeds, D. K. Fukushima, and T. F. Gallagher, Am. Soc. 76, 2943 (1954)

Chromic acid

CrO_3

Phenanthridones from phenanthridines

354.

1 g. 6-methyl-8-nitrophenanthridine, Na-dichromate, and acetic acid refluxed 2 hrs. \rightarrow 0.85 g. 8-nitrophenanthridone. A. J. Nunn, K. Schofield, and R. S. Theobald, Soc. 1952, 2797.

Periodic acid

HIO_4

Oxidative degradation of side chains

s. 1, 240; s. a. R. Hirschmann et al., Am. Soc. 76, 4013 (1954); cleavage of α -hydroxyketones s. G. W. Stacy and R. A. Mikulec, Am. Soc. 76, 524 (1954)

Osmium tetroxide

OsO_4

α -Hydroxyketones from α,β -ethylenenitriles

$C:C(CN) \rightarrow C(OH)CO$

17α -Hydroxy-20-ketosteroids

s. 4, 268; s. a. Huang-Minlon, R. Tull, and J. Babcock, Am. Soc. 76, 2396 (1954); R. E. Jones and F. W. Kocher, Am. Soc. 76, 3682 (1954)

Via intermediates

v.i.

Transacetalization

*Ethylidene from benzylidene derivatives
of carbohydrates*

355.

A soln. of α -methyl 4,6-benzylidene-2,3-ditosyl-D-glucoside in acetone-water containing HCl left 8 days at room temp. until the optical rotation is constant, neutralized with K-carbonate, acetone evaporated, the residue extracted with chloroform, shaken with NaHSO₃-soln. to remove benzaldehyde, dried, evaporated, and the residue shaken 48 hrs. with paraldehyde containing concd. H₂SO₄ \rightarrow α -methyl 4,6-ethylidene-2,3-ditosyl-D-glucoside. Y: 77%. E. G. Ansell and J. Honeyman, Soc. 1952, 2778.

Elimination

Hydrogen ↑

OC↑H

Silver oxide/magnesium sulfate

Ag₂O/MgSO₄

Quinones from quinols

←

s. 9, 256

Cupric hydroxide/acetic acid

Cu(OH)₂/CH₃COOH

Benzils from hydrobenzoins

CH(OH)CH(OH) → COCO

s. 9, 732

Cupric acetate

(CH₃COO)₂Cu

Osones from carbohydrates

CH(OH)CO → COCO

Methanol and cupric acetate added to an aq. soln. of D-xylose, quickly brought to the boil, and refluxed 10 min. \rightarrow crude D-xylosone. Y: 50-55%. J. K. Hamilton and F. Smith, Am. Soc. 74, 5162 (1952); s. a. L. L. Salomon, J. J. Burns, and C. G. King, Am. Soc. 74, 5161 (1952).

Aluminum alkoxide

Al(OR)₃

Ketones from sec. alcohols with simultaneous migration of the carbon carbon double bond

CHOH → CO

with Al-isopropoxide s. 2, 286; also with isobutyl methyl ketone in the absence of an inert solvent s. A. F. Daglish, J. Green, and V. D. Poole, Soc. 1954, 2627; with Al-tert-butoxide s. F. Johnson, G. T. Newbold, and F. S. Spring, Soc. 1954, 1302

Thallous alkoxide

TlOR

Benzils from benzoins

Excess thallous ethoxide in benzene added to a soln. of anisoin in benzene → anisil. Y: 91%.—Aliphatic acyloins are not oxidized by a similar treatment. F. e. s. L. P. McHatton and M. J. Soulal, Soc. 1952, 2771.

*Thallous alkoxide/nitrobenzene*TlOR/ $\text{C}_6\text{H}_5\text{NO}_2$

A small quantity of a satd. soln. of thallous ethoxide in ethanol added to a mixture of furoin and nitrobenzene in abs. ethanol, and the product isolated after 24 hrs. → furil. Y: 83%. F. e. s. L. P. McHatton and M. J. Soulal, Soc. 1953, 4095.

N-Bromoacetamide CH_3CONHBr **Ketones from sec. alcohols** $\text{CH}(\text{OH}) \rightarrow \text{CO}$

s. 7, 333; 8, 323; s. a. A. R. Hanze et al., Am. Soc. 76, 3179 (1954)

Lead tetraacetate $(\text{CH}_3\text{COO})_4\text{Pb}$ **α -Diketones from α -hydroxyketones**

s. 9, 347

 **α -Keto- from α -hydroxy-
carboxylic acid esters** $\text{CH}(\text{OH})\text{COOR} \rightarrow \text{COCOOR}$

A soln. of $(-)$ menthyl D,L-mandelate in abs. benzene refluxed 8 hrs. with the theoretical amount of finely powdered Pb-tetraacetate, with occasional shaking → $(-)$ menthyl phenylglyoxylate (startg. m. f. 741). Y: 85%. F. e. s. V. Prelog and H. L. Meier, Helv. 36, 320 (1953).

Nitrogen oxides

←

Quinones from quinols

←

s. 1, 161; s. a. A. G. Brook, Soc. 1952, 5040

Sodium dichromate/acetic acid $\text{Na}_2\text{Cr}_2\text{O}_7/\text{CH}_3\text{COOH}$ **Ketones from sec. alcohols** $\text{CHOH} \rightarrow \text{CO}$

2-Thiazolylphenylcarbinol in glacial acetic acid treated with Na-dichromate in water, then refluxed 1 hr. → 2-benzoylthiazole. Y: 95%.

F. e. s. R. P. Kurkjian and E. V. Brown, Am. Soc. 74, 6260 (1952); method s. M. Erne and H. Erlenmeyer, Helv. 31, 652 (1948); partial oxidation of steroids s. S. H. Eppstein et al., Am. Soc. 76, 3174 (1954).

Ketones from acoxy compounds

$\text{CHOAc} \rightarrow \text{CO}$

A soln. of Na-dichromate dihydrate in glacial acetic acid added to a soln. of methyl 3 α -acetoxy-9 α ,11 α -oxidocholanate in the same solvent, and allowed to stand 12 hrs. at room temp. \rightarrow methyl 3-keto-9 α ,11 α -oxidocholanate (startg. m. f. 596). Y: 89%. H. Heymann and L. F. Fieser, Am. Soc. 73, 5252 (1951).

Chromic acid

CrO_3

Ketones from sec. alcohols

$\text{CHOH} \rightarrow \text{CO}$

2.

with protection of carbon-carbon double bonds. A soln. of Br in glacial acetic acid added dropwise to a soln. of 3.8 g. 17 α -methyl-3 β -hydroxy- Δ^5 -eticenic acid in glacial acetic acid containing Na-acetate, then a soln. of CrO_3 in 90%-acetic acid added, after 12 hrs. excess CrO_3 decomposed by cautious addition of methanol, then warmed with Zn-dust at 90° for 20 min. with vigorous agitating \rightarrow 2.52 g. 17 α -methyl-3-keto- Δ^4 -eticenic acid. H. H. Günthard et al., Helv. 35, 2437 (1952).

large batches s. H. H. Inhoffen, H. Jahnke, and P. Nehring, B. 87, 1154 (1954)

with Beckmann mixture s. 1, 167; s. a. R. Grewe, W. Lorenzen, and L. Vining, B. 87, 793 (1954)

Chromic acid-pyridine complex

$\text{CrO}_3\text{-C}_5\text{H}_5\text{N}$

s. 8, 325; s. a. W. F. Johns, R. M. Lukes, and L. H. Sarett, Am. Soc. 76, 5026 (1954); W. S. Allen, S. Bernstein, and R. Littell, Am. Soc. 76, 6116 (1954)

tert-Butyl hypochlorite $(CH_3)_3C\cdot OCl$ **Oxidation of alcohols****Oxo compounds and carboxylic acid esters****from alcohols****Aldehydes from α -hydroxycarboxylic acids**

tert-Butyl hypochlorite is superior to N-chlorosuccinimide. The oxidations proceed smoothly in pyridine. Sec. alcohols are dehydrogenated to ketones, mandelic acid being simultaneously decarboxylated to form benzaldehyde (Y: 99%), which is also obtained from benzyl alcohol. Other prim. alcohols are oxidized to esters of the corresponding acid.—E: Cyclohexanol and pyridine in CCl_4 treated dropwise with *tert*-butyl hypochlorite, cooled to -5° when the temp. starts to rise \rightarrow cyclohexanone. Y: 90.5%.—Similarly at 31° : n-Hexanol \rightarrow n-hexyl caproate. Y: 83%. F. e. s. C. A. Grob and H. Schmid, Helv. 36, 1763 (1953).

Ketones from sec. alcohols $\text{CHOH} \rightarrow \text{CO}$

s. 9, 617

Oxidation-chlorination $\text{CH(OH)CH} \rightarrow \text{COCl}$ **α -Chloroketones from alcohols**

s. 9, 618

Manganese dioxide MnO_2 **Unsatd. oxo compounds from unsatd. alcohols** $\text{CHOH} \rightarrow \text{CO}$

s. 8, 326, 465; steroids in chloroform s. F. Sondheimer, C. Amendolla, and G. Rosenkranz, Am. Soc. 75, 5930, 5932 (1953); Soc. 1954, 1226; in benzene s. D. Taub et al., Am. Soc. 76, 4094 (1954); aliphatic compounds in acetone s. H. H. Inhoffen et al., A. 580, 7 (1953); f. e. and limitations s. D. L. Turner, Am. Soc. 76, 5175 (1954)

Potassium permanganate KMnO_4 **Ketocarboxylic acids from hydroxyaldehydes**

A satd. soln. of KMnO_4 added portionwise with shaking at room temp. to an aq. suspension of δ -phenyl- δ -hydroxyvaleraldehyde containing 2 drops of 10%-NaOH until the permanganate color persists for 30 min. \rightarrow γ -benzoylbutyric acid. Y: 90%. C. W. Smith, D. G. Norton, and S. A. Ballard, Am. Soc. 73, 5273 (1951).

Oxygen †**OC↑O***Potassium hydroxide/alcohol***KOH**

Oxido compounds
from glycol monoesters
via glycol acetate methanesulfonates
 s. 9, 206

*Sodium/alcohol***NaOR****Furan ring from γ -diketones**

5.

Ethyl α -acetyllevulinate added to a cold soln. of Na in abs. ethanol, and worked up after 18 hrs. at room temp. \rightarrow ethyl 2,5-dimethylfuran-3-carboxylate. Y: 83%. R. M. Acheson and R. Robinson, Soc. 1952, 1127.

*Alkali acetate***Oxazolones****Erlenmeyer reaction**

with K-acetate s. 3, 325; with Na-acetate s. J. P. Lambooy, Am. Soc. 76, 133 (1954)

Sodium acetate/acetic anhydride $\text{CH}_3\text{COONa}/(\text{CH}_3\text{CO})_2\text{O}$ **Enollactones from ketocarboxylic acids**

s. 8, 329; s. a. L. B. Barkley et al., Am. Soc. 76, 5014 (1954).

*Zinc amalgam***Zn,Hg**

Carboxylic acids from ketocarboxylic acids
via phthalides

 $\text{CO} \rightarrow \text{CH}_2$

2-Benzoyl-4-bromobenzoic acid refluxed 24 hrs. with Zn-amalgam in aq. HCl and toluene \rightarrow 5-bromo- α -phenylphthalide (Y: 95%) heated 7 hrs. with red P and iodine in propionic acid containing a little water \rightarrow 2-benzyl-4-bromobenzoic acid (Y: 84%). F. e. s. E. D. Bergmann and E. Loewenthal, Bl. 1952, 66; one-step procedure for halogen-free compounds s. Synth. Meth. 9, 105.

*Lithium aluminum hydride**LiAlH₄***O-Heterocyclics from disulfonic acid esters**

367.

A soln. of dimesylate in tetrahydrofuran stirred into a soln. of LiAlH_4 in the same solvent, and refluxed 4 hrs. \rightarrow cyclic oxide. Y: 83%. G. Stork et al., Am. Soc. 75, 384 (1953).

Acetic anhydride $(\text{CH}_3\text{CO})_2\text{O}$
**Dicarboxylic acid monoesters
from dicarboxylic acids
via dicarboxylic acid anhydrides**

368.

β,β -Dimethylglutaric acid refluxed 1 hr. with acetic anhydride \rightarrow β,β -dimethylglutaric anhydride (Y: ca. 100%) finely ground, added slowly at 0° to a well-stirred soln. of Na in methanol, allowed to warm slowly to room temp., and after a further hr. gently refluxed for 1 hr. \rightarrow methyl hydrogen β,β -dimethylglutarate (Y: ca. 100%). S. F. Birch et al., Soc. 1952, 1363; s. a. V. du Vigneaud and G. L. Miller, Biochem. Prep. 2, 79 (1952).

**Oxazolones from
acylaminocarboxylic acids**

369.

2-Benzamido-3-(2,6-dimethoxyphenyl)acrylic acid (m. 246-7°) heated with acetic anhydride 15 min. on a steam bath \rightarrow 4-(2,6-dimethoxybenzylidene)-2-phenyl-5-oxazolone. Y: ca. 100%. Also isomer s. J. P. Lambooy, Am. Soc. 76, 133 (1954).

Formic acid/hydrochloric acid HCOOH/HCl *s. Hydrochloric acid/formic acid*

Oxalic acid $(COOH)_2$ **Furans from γ -diketones**

s. 9, 892

Phosphorus tribromide PBr_3 **N-Carboxyaminocarboxylic acid anhydrides
from N-carbalkoxyaminocarboxylic acids**

PBr_3 added slowly to N-carbethoxy-DL-phenylalanine in anhydrous ether, and kept 12 hrs. at room temp. \rightarrow N-carboxy-DL-phenylalanine anhydride. Y: 82%.—Similarly from N-carbobenzoxyanthranilic acid after 24 hrs. \rightarrow isatoic anhydride. Y: ca. 90%.—The acid bromides cyclize more readily than the acid chlorides. F. e. s. D. Ben-Ishai and E. Katchalski, Am. Soc. 74, 3688 (1952).

Phosphorus oxychloride $POCl_3$ **Dicarboxylic acid anhydrides
from dicarboxylic acids**

s. 9, 650

Potassium hydrogen sulfate $KHSO_4$ **Ring closure to O-heterocyclics**

s. 6, 301; s. a. A. J. Weinheimer, S. W. Kantor, and C. R. Hauser, J. Org. Chem. 18, 801 (1953)

p-Toluenesulfonic acid $TsOH$ **Chromone ring from o-hydroxy- β -diketones**

4-Benzoyloxy-2-hydroxydibenzoylmethane in xylene containing a trace of p-toluenesulfonic acid refluxed 10 hrs. in a Soxhlet apparatus con-

taining anhydrous Mg-sulfate in the thimble → 7-benzyloxyflavone. Y: 79%. F. e. s. W. Baker, W. D. Ollis, and V. D. Poole, Soc. 1952, 1505.

Sulfuric acid

H_2SO_4

Chromans

372.

A soln. of 2-methyl-4-(2-hydroxyphenyl)-2-butanol in acetic acid treated with 20% H_2SO_4 , and refluxed 0.5 hr. → 2,2-dimethylchroman. Y: 85%. M. Hallet and R. Huls, Bl. Soc. chim. Belg. 61, 33 (1952).

Hydrochloric acid

HCl

Cyclic ethers from diols

s. 6, 302; s. a. H. C. Brown and K. LeRoi Nelson, Am. Soc. 75, 24 (1953)

Chromone ring from o-hydroxy- β -diketones

s. 1, 546; s. a. H. Schmid and H. Seiler, Helv. 35, 1990 (1952)

Hydrochloric acid/formic acid

$HCl/HCOOH$

Reformatskii synthesis

with subsequent

Wagner-Meerwein rearrangement

Synthesis of lactones from ketones

373.

2,2-Tetramethylene-1-tetralone allowed to react with granulated Zn and methyl bromoacetate in benzene-ether, containing a crystal of iodine, at reflux temp. for 3.5 hrs., the crude product dissolved in anhydrous formic acid containing 2 drops of concd. HCl, and heated 45 min. on a steam bath → 4a-carboxymethyl-10a-hydroxy-1,2,3,4,4a,9,10,10a-octahydrophenanthrene lactone. Y: 58% based on unrecovered ketone. B. Belleau, Am. Soc. 75, 1159 (1953).

Hydrobromic acid

ИВР

Coumarin ring

Lactones from alkoxycarboxylic acid esters

Chromono(2',3':3,4)coumarins

2-Carbethoxy-5,7-dihydroxy-2'-methoxyisoflavone, acetic acid, and HBr (d. 1.5) heated 2 hrs. at 140° → crude 5',7'-dihydroxychromono-(2'3':3,4)coumarin. Y: 90%. W. Baker, J. B. Harborne, and W. D. Ollis, Soc. 1953, 1860.

Nitrogen ↑

OC↑N

Sodium acetate

$$CH_3COONa$$

Benzothioxol-2-ones

S. 9, 55

Hydrochloric acid

HCF

Isoxazole ring from 1,2,3-triazine ring

0.5 g. 6-chloro-1,2,3,9-tetraazaphenanthrene 3-oxide and concd. HCl left together for 12 hrs., then basified with NH₃ → 0.43 g. 6'-chloro-quinolino(3',4':3,4)isoxazole (startg. m. f. 205). D. W. Ockenden and K. Schofield, Soc. 1953, 1915.

Halogens ↑

OC ↑ Hal

Sodium hydroxide

NaOH

Oxido compounds from halogenhydrins

S. 9, 916

Oxidoketones from halogenolactols

s. 9, 596

Potassium hydroxide

KOH

Cyclic ethers from acoxyhalides

376.

4-Chloro-2-butyl acetate added dropwise with vigorous stirring during 3 hrs. at an oil bath temp. of 120-140° to aq. 90% -KOH with distillation of the product formed, heating continued 30 min. at an oil bath temp. of 160° → 1,3-butylene oxide. Y: 66%. F. Sondheimer and R. B. Woodward, Am. Soc. 75, 5438 (1953).

Potassium carbonate

K₂CO₃

Lactones from halogenocarboxylic acids

s. 4, 281; oxalactones s. M. G. J. Beets and W. Meerburg, R. 72, 411 (1953)

Silver oxide/pyridine

Ag₂O/C₅H₅N

Oxido compounds from bromohydrins

s. 9, 60

Silver acetate

CH₃COOAg

Oxidoketones from halogenolactolides

s. 9, 596

Sulfur ↑

OC↑S

Without additional reagents

w.a.r.

Oxazoline-2-thiols from bishydroxythiuram disulfides

s. 9, 412

Potassium hydroxide

KOH

3,4-Anhydroglycitols

377.

2,5-Methylene-3,4-ditosyl-1,6-ditrityl-D-mannitol refluxed with KOH in ethanol-water on a steam bath for 2 days → 3,4-anhydro-2,5-methylene-1,6-ditrityl-D-talitol. Y: 83%. S. B. Baker and G. Kohanyi, Am. Soc. 75, 2140 (1953).

Nickel

Ni

**γ-Lactones from
γ,γ-disulfonylcarboxylic acids**

4,4-Bis(ethylsulfonyl)-7-methyloctanoic acid in 4% NaOH shaken and heated at 220° with Raney-Ni for 8 hrs. at 2500 p.s.i. H₂ → 4-hydroxy-7-methyloctanoic acid lactone. Y: 87%. Formation of carboxylic acids in other cases s. M. W. Cronyn, Am. Soc. 74, 1225 (1952); cf. 9, 880.

Carbon ↓**OC↑C**

Sodium/alcohol

NaOR

Furan ring from allenes

o-Allenylphenol acetate added to a soln. of Na in abs. methanol, and refluxed 11 hrs. → 2-methylbenzofuran. Y: 81%. R. Gaertner, Am. Soc. 73, 4400 (1951).

Oxalic acid(COOH)₂

Ketones from enolethers

C:C(OR) → CHCO

s. 9, 86

N-Bromosuccinimide

**Oxo compounds from
α-hydroxy carboxylic acids**

C(OH)COOH → CO

Benzilic acid and N-bromosuccinimide refluxed 30 min. in water → benzophenone. Y: 85-90%. F. e. s. M. Z. Barakat and M. F. Abd El-Wahab, Am. Soc. 75, 5731 (1953).

*Ozone/periodate*O₃/IO₄⁻

**Degradation of α,β-ethylene-γ-lactones
to carboxylic acids via α-hydroxyketones**

s. 4, 282; s. a. Pharm. Acta Helv. 27, 287 (1952)

←

Sulfuric acid H_2SO_4 **Ketones from enolethers** $C:C(OR) \rightarrow CHCO$

s. 9, 87; s. a. A. J. Speziale, J. A. Stephens, and Q. E. Thompson, Am. Soc. 76, 5011 (1954).

tert-Butyl hypochlorite $(CH_3)_3C \cdot OCl$ **Aldehydes from** **α -hydroxycarboxylic acids** $CH(OH)COOH \rightarrow CHO$

s. 9, 363

Periodate/ozone s. Ozone/periodate IO_4^- / O_3 *Hydrochloric acid* HCl **Lactones from****halogenocarboxylic acid esters
with simultaneous replacement
of carbalkoxy groups by hydrogen**

s. 9, 607

**Alkoxydialdehydes from
2,3,5-trialkoxytetrahydrofurans**

C

381.

2,3,5-Triethoxycyclotetrahydrofuran (prep. s. 234) dissolved in 0.1 N aq. HCl, and warmed 20 min. at 70-75° → O-ethylmalic dialdehyde (Y: 85.7% as the 4-nitrophenylhydrazone). F. e. s. A. Stoll, A. Lindenmann, and E. Jucker, Helv. 36, 1500 (1953).

Formation of N—N Bond**Exchange****Hydrogen ↑** $NN \uparrow H$ *Sodium nitrite* $NaNO_2$ **Diazonium fluoborates** $\cdot N_2^+ BF_4^-$

s. 9, 129

N-Nitrosation $NH \rightarrow N \cdot NO$

s. 7, 413; 8, 369; s. a. C. M. Samour and J. P. Mason, Am. Soc. 76, 441 (1954)

Azides from amines

s. 8, 363; s. a. Am. Soc. 75, 6335 (1953)

 **α -Azidoaldehydes from
 α -aminomethyl derivatives**

←

1 g. 3-aminolepidine treated with aq. NaNO_2 in HCl, kept overnight at 0°, filtered, and basified → 0.75 g. 3-azidoquinoline-4-aldehyde (startg. m. f. 170). Also isolation of the intermediate (cf. 425) s. D. W. Ockenden and K. Schofield, Soc. 1953, 1915.

Diazo oxides from aminophenols

←

32% - HCl added at 0-5° to a soln. of 400 mg. 1-amino-2-hydroxychrysene in *dimethylformamide*, then aq. NaNO_2 added slowly with vigorous stirring, and allowed to stand 0.5 hr. → 370 mg. 1,2-chrysenequinone-1-diazide. F. e. and methods s. O. Süs et al., A. 579, 133 (1953).

Influence of substituents**on the Widman-Stoermer cinnoline synthesis**

s. 1, 322; s. a. A. J. Nunn and K. Schofield, Soc. 1953, 3700

Sodium nitrite/nitric acid**N-Nitrosourethans from urethans**

Aq. NaNO_2 and ice added to a mixture of N-crotylurethan and ether, then cold 35% - HNO_3 added during 1-1.5 hrs. through a funnel with an extension tube reaching to the bottom of the flask, with occasional swirling and addition of ice to keep the temp. below 15°, allowed to stand 12 hrs., the ether layer separated, washed with water, then with NaHCO_3 → N-nitroso-N-crotylurethan. Y: 75%. F. e. s. D. Y. Curtin and S. M. Gerber, Am. Soc. 74, 4052 (1952); s. a. W. W. Hartman and R. Phillips, Org. Synth. Coll. Vol. 2, 464 (1943).

*Potassium nitrite**KNO₂***Tetrazoles from aminoguanidines**

s. 8, 362; thermal isomerization of 5-aminotetrazoles s. Am. Soc. 76, 88 (1954)

*Phenyl iodosoacetate**C₆H₅I(OAc)₂***Oxidations with phenyl iodosoacetate****Azo compounds from amines****Benzofuran oxides from o-nitramines**

385.

Aniline

| o-Nitraniline

added to a soln. of phenyl iodosoacetate in benzene and allowed to stand 2 days at room temp. →

azobenzene. Y: 95%.

| benzofuran oxide. Y: 81%.

F. e. s. K. H. Pausacker, Soc. 1953, 1989; 1954, 3122.

*Stannous chloride**SnCl₂***Hydrazines from amines***NH₂ → NHNH₂*

s. 9, 569

*Nitrosyl chloride**NOCl***Hydroxyazomethine-oxazolidine**

←

isomerization**3-Nitrosooxazolidines**

NOCl allowed to distill into a mixture of 2-(2-ethylhexylideneamino)-1-butanol, dry pyridine, and ether cooled below 0°, then stirred 20 min. → 2-(3-heptanyl)-3-nitroso-4-ethyloxazolidine. Y: 76%.—2-Amino-alcohol-aldehyde anhydro products, regardless of structure, react with H-replacing reagents in anhydrous media to give derivatives of the oxazolidine form. F. e. and reactions s. E. P. Goldberg and H. R. Nace, Am. Soc. 75, 6260 (1953).

Sulfuric acid H_2SO_4 **N-Nitration** $NH \rightarrow N \cdot NO_2$

N-Nitramines s. 8, 365; N-nitroisothioureas s. L. Fishbein and J. A. Gallagher, Am. Soc. 76, 1877 (1954)

Oxygen ↑NN $\uparrow\downarrow$ O*Acetic acid* CH_3COOH **Azo compounds from nitroso compounds
and amines** $RNO + H_2NR' \rightarrow RN:NR'$

s. 1, 265; 2, 303; 3, 252; s. a. C. M. Atkinson et al., Soc. 1954, 2023

Benzenesulfonyl chloride/pyridine $C_6H_5SO_2Cl/C_5H_5N$ **Azoxy compounds from nitroso compounds** $2 ArNO \rightarrow ArN(O):NAr$

A mixture of p-quinonemonoxime with benzenesulfonyl chloride in pyridine allowed to stand 12 hrs. at 25°, then heated 20 min. on a steam bath, cooled, and acidified with 25%- H_2SO_4 → p-azoxypyrocatechol. Y: 45%. N. J. Leonard and J. W. Curry, J. Org. Chem. 17, 1071 (1952).

Elimination**Hydrogen ↑**NN $\uparrow\downarrow$ H*Silver oxide* Ag_2O **Diazo compounds from hydrazones** $C:N \cdot NH_2 \rightarrow C:N_2$ cf. 3, 255; with Ag_2O in place of HgO s. W. Schroeder and L. Katz, J. Org. Chem. 19, 718 (1954)*Alkyl nitrite*

RONO

Tetrazolium salts from formazans

○

s. 6, 329; f. methods s. J. N. Ashley et al., Soc. 1953, 3881; cf. H. Seiler and H. Schmid, Helv. 37, 1 (1954)

Carbon ↑*Lead tetraacetate***Tetrazoles from
3,6,9-tricarbaundecaz-1,3,8,10-tetraenes**

388.

A soln. of Pb-tetraacetate in chloroform added to a soln. of 6-imino-1,3,9,11-tetr phenyl-3,6,9-tricarbaundecaz-1,3,8,10-tetraene in the same solvent, and warmed gently for a few min. → 2,5-diphenyltetrazole. Y: ca. 100%. F. L. Scott, D. A. O'Sullivan, and J. Reilly, Am. Soc. 75, 5309 (1953).

Formation of N—Hal Bond**Exchange****Hydrogen ↑***Silver trifluoroacetate***N-Halogenation**

Perfluoro-N-halogenodicarboxylic acid imides s. 7, 372; halogenated N-bromoacetamides s. J. D. Park et al., Am. Soc. 74, 2189 (1952)

*Silver salt***N-Iododicarboxylic acid imides**

389.

49.5 g. powdered Ag salt of succinimide added portionwise with stirring at 5-10° to a soln. of iodine in acetone, and the product isolated after 30 min. when the color has disappeared → 43 g. N-iodosuccinimide (startg. m. f. 641). C. Djerassi and C. T. Lenk, Am. Soc. 75, 3493 (1953)

Formation of N—S Bond

Uptake

Addition to Oxygen and Nitrogen

NS \downarrow ON

Without additional reagents

w.a.r.

Sulfamic acids from hydroxylamines

SO₂ passed rapidly into a soln. of N-isopropylhydroxylamine in chloroform for a few min. → isopropylsulfamic acid. Y: 60%. F. e. s. A. I. Ryer and G. B. L. Smith, Am. Soc. 73, 5675 (1951).

Addition to Sulfur

NS \downarrow S

Hydrazoic acid

HN₃

Sulfoximines from sulfoxides

s. 8, 370; s. a. D. Jerchel, L. Dippelhofer, and D. Renner, B. 87, 947 (1954)

Exchange

Oxygen ↓

NS $\uparrow\downarrow$ O

Without additional reagents

w.a.r.

Sulfonic acid amides from sulfonic acid anhydrides

Aniline added to a soln. of methanesulfonic anhydride (prep. s. 177) in benzene whereupon anilinium methanesulfonate separates immediately (Y: 97%), and worked up after 15 min. → methanesulfonic acid anilide. Y: 96%. F. e. s. H. G. Khorana, Can. J. Chem. 31, 585 (1953).

Via intermediates

v.i.

**Aminosulfonic acid amides
from aminosulfonic acids
Protection of amino groups
Selective hydrolysis**

392.

Acetic anhydride poured over dried Na-3-fluoro-4-aminobenzenesulfonate, then heated 1 hr. on a steam bath \rightarrow Na-3-fluoro-4-acetaminobenzenesulfonate (Y: 93%) mixed with PCl_5 , the crude product isolated after 10 min., treated with aq. NH_3 , and warmed on a water bath \rightarrow 3-fluoro-4-acetaminobenzenesulfamide (Y: 81%) refluxed 30 min. with 20% -HCl \rightarrow 3-fluoro-4-aminobenzenesulfamide (Y: 92%). F. e. s. K. Kraft and F. Dengel, B. 85, 577 (1952).

Halogen ↑**NS \ddagger Hal**

w.a.r.

**Sulfonic acid amides
from sulfonic acid chlorides**

s. 9, 392

Sulfidimides

2-Chloroethyl methyl sulfide shaken with an aq. soln. of chloramine-T until precipitation is complete \rightarrow p-toluenesulfonyl-2-chloroethyl-methylsulfidimide. Y: 82%. F. e. s. J. K. Whitehead and H. R. Bentley, Soc. 1952, 1572.

Sodium hydroxide

NaOH

**Sulfonic acid amides from
sulfonic acid chlorides**

 $\text{SO}_2\text{Cl} \rightarrow \text{SO}_2\text{N}^{\text{<}}$

s. 1, 271; 4, 299; N-tosylation s. H. Stetter and E.-E. Roos, B. 87, 566 (1954); P. G. Katsoyannis and V. du Vigneaud, Am. Soc. 76, 3113 (1954)

Selective N-tosylation. Aq. NaOH and p-toluenesulfonyl chloride in ether added dropwise at 65-68° with vigorous stirring during 1 hr. to a soln.

of DL-threonine in aq. NaOH with removal of the ether by a slow stream of air, and stirring continued for 10 min. → N-tosyl-DL-threonine. Y: 78-82%.—A good yield is obtained only under carefully controlled conditions. M. Brenner, K. Rüfenacht, and E. Sailer, Helv. 34, 2102 (1951).

Disulmides(RSO₂)₂NH

s. 1, 273; s. a. O. Süs et al., A. 579, 133 (1953)

PyridineC₅H₅N**Sulfenylureas from sulfenylchlorides**

SCl → SNHCONHR

5.

p-Diphenylylurea allowed to react with o-nitrobenzenesulfenyl chloride (added in 2 portions at 5 min. interval) at 50-40° for 20 min. → N-p-diphenylyl-N'-o-nitrobenzenesulfenylurea. Y: 75%. F. e. and methods s. F. Kurzer, Soc. 1953, 3360.

Carbon †NS^{II}C

Without additional reagents

w.a.r.

Cleavage of sulfonynitro compounds

s. 9, 141

←

Sulfamic acids from isocyanates, urethans, and ureas

←

6.

Ethyl isocyanate added dropwise with stirring and ice-cooling to 20%-oleum, the ice bath removed when ca. half of the isocyanate has been added, after the addition the luke-warm mixture chilled and poured slowly with ice-cooling and shaking into anhydrous ether whereby the product precipitates

Y: 83%
(Am. Soc. 75, 1405)

F. e., also from ureas, s. T. I. Bieber, Am. Soc. 75, 1405, 1409 (1953).

Ethyl ethylcarbamate added with stirring and ice-cooling to 60%-oleum, and slowly warmed on a water bath until at 60° CO₂-evolution occurs

Y: 93%
(Am. Soc. 75, 1409)

Formation of N—Rem Bond Exchange

Hydrogen ↑

NRem H

N-Chloramides

←

Phosphoric from phosphorous acid derivatives

→

397.

N-Chlorosuccinimide added to a soln. of diethyl phosphite in benzene, after 2 hrs. the precipitated succinimide removed by filtration, aniline added to the filtrate, and the product isolated after ca. 2 hrs. → diethyl anilinophosphonate. Y: 87%. Also pyrophosphates and hydrogen phosphates s. G. W. Kenner et al., Soc. 1952, 3675, 3669.

Halogens ↑

NRem ↑ Hal

Silver cyanide

AgCN

Isocyanosilanes

SiNC

398-

Dry Ag-cyanide added with stirring during 1.5 hrs. to a mixture of trimethyliodosilane and benzene, stirring and refluxing continued for 2.5 hrs., cumene added as chaser, and distilled → trimethylisocyano-silane. Y: 80%. F. e. and reactions s. J. J. McBride, Jr., and H. C. Beachell, Am. Soc. 74, 5247 (1952).

Carbon ↑

NRem + C

Without additional reagents

W.G.R.

Cleavage of diarylmercury compounds

←

s. 7, 383; s. a. Sint. Org. 2, 136 (1952); C. A. 48, 624 g.

Formation of N-C Bond

Uptake

Addition to Oxygen and Carbon

NC \downarrow OC*Without additional reagents*

w.a.r.

Aminoalcohols from oxido compounds

Aminosugars

s. 2, 319; s. a. B. R. Baker and R. E. Schaub, J. Org. Chem. 19, 646 (1954)

Subst. halogenaminoalcohols from oxidohalides

399.

A suspension of 4-aminonaphthostyryl in alcohol treated with epichlorohydrin, and refluxed overnight \rightarrow sec. amine. Y: 80%. A. Stoll, T. Petrzilka, and J. Rutschmann, Helv. 35, 1249 (1952).

Hydroxycarboxylic acid amides from lactones

C

s. 7, 386; 8, 384; s. a. J. Swidinsky, F. H. McMillan, and J. A. King, Am. Soc. 76, 1148 (1954)

with pantolactone s. 3, 24; s. a. M. Vernsten, W. C. Braaten, and M. B. Moore, Am. Soc. 76, 5811 (1954)

Hydroxycarboxylic acid hydrazides from lactones

Carbohydrate derivatives

400.

D-Altro-D-manno-heptonic γ -lactone heated 2 hrs. on a steam bath with phenylhydrazine and water \rightarrow D-altro-D-manno-heptonic phenylhydrazone. Y: almost 100%. D. A. Rosenfeld, N. K. Richtmyer, and C. S. Hudson, Am. Soc. 73, 4907 (1951).

Pyridine C_5H_5N **2-(Sulfonylamino)alcohols
from oxido compounds**

s. 6, 348; s. a. D. I. Weisblat et al., Am. Soc. 75, 5893 (1953)

Ethylmagnesium iodide C_2H_5MgI **1,1-Aminoalcohols from oxo compounds**

401.

Acetone in ether added dropwise with stirring and ice-cooling to an ethereal soln. of indolyl-MgI (prepared from indole and ethyl-MgI), allowed to stand 20 min. at room temp., then heated 30 min. on a water bath \rightarrow 1-(1-hydroxy-1-methylethyl)indole. Y: 75%. T. Hoshino, B. 85, 858 (1952).

Addition to Nitrogen and Carbon $\text{NC} \downarrow \text{NC}$

Without additional reagents

w.a.r.

Acylureas from carbodiimides \leftarrow

s. 9, 277

**Subst. carboxylic acid amides and carboxylic acids
from carboxylic acid chlorides
with subsequent lactam ring opening
Glutamylpeptides**

C

402.

1-Tosylpyroglutamyl chloride (prepn. s. 566)

added in portions with vigorous stirring during 15-20 min. at a pH above 8 to a mixture prepared by adding MgO at 50° to aq. L-asparagine and rapidly cooling in an ice-salt bath, allowed to stand 1.5 hrs. at room temp. with intermittent stirring, concd. HCl added, stirring resumed, crude tosyl-L-pyroglutamyl-L-asparagine isolated, dissolved in concd. aq. NH₃, allowed to stand 30-60 min., partially evaporated under reduced pressure to remove most of the NH₃, and acidified with concd. HCl → tosyl-L-glutaminyl-L-asparagine. Y: 83%.

stirred vigorously for 1 hr. with a mixture of MgO, water, and ether, then concd. aq. NH₃ added, stirring continued for 30 min., partly evaporated under reduced pressure to remove most of the NH₃, and acidified → tosyl-L-glutamine (startg. m. f. 42). 24 g. from 33 g.

J. M. Swan and V. du Vigneaud, Am. Soc. 76, 3110 (1954).

Hydantoin ring opening

s. 9, 436

Dianthranilide ring opening

403.

N,N'-Bis-(1-naphthalenesulfonyl)dianthranilide refluxed 3 hrs. with aniline → o-(1-naphthalenesulfonamido)benzanilide. Y: ca. 75%. A. Mustafa, Soc. 1952, 2435.

Sodium hydroxide

NaOH

Ureas from amines and isocyanates

NH₂ → NHCONHR

s. 3, 267; s. a. K. Schlögl, F. Wessely, and G. Korger, M. 83, 845 (1952)

**Hydantoins from α -aminocarboxylic acids
via α -ureidocarboxylic acids**

○

404.

Phenylisocyanate added dropwise at room temp. to a soln. of DL- α -amino- δ -hydroxyvaleric acid in aq. NaOH, vigorously stirred for 15

min., and the resulting α -phenylureido- δ -hydroxyvaleric acid heated 1 hr. with HCl on a steam bath \rightarrow 3-phenyl-5- γ -hydroxypropylhydantoin (startg. m. f. 570). Y: 89%. Also isolation of the intermediate s. R. Gaudry, Can. J. Chem. 29, 544 (1951); in 2 steps s. a. K. Schlögl, F. Wessely, and G. Korger, M. 83, 845 (1952).

KOH

Potassium hydroxide
1,3,5-Triazines from nitriles and dicyanodiamide

405.

Dicyanodiamide and benzonitrile added to a soln. of 85%-KOH in Methyl Cellosolve heated with stirring, refluxing and stirring continued for 5 hrs. after the exothermic reaction, which starts at 90-110°. has subsided \rightarrow 2,4-diamino-6-phenyl-s-triazine. Y: 75-95%. J. K. Simons and M. R. Saxton, Org. Synth. 33, 13 (1953); with dialkoxyacetonitriles s. V. P. Wystrach and J. G. Erickson, Am. Soc. 75, 6345 (1953).

CH₃OH*Methyl alcohol*
Trimerization of nitriles to 1,3,5-triazines

406.

A soln. of benzonitrile in an equal weight of methanol heated 18 hrs. at 125° under an initial pressure of 7500 atm. \rightarrow 2,4,6-triphenyl-s-triazine. Y: 82%. F. e. s. T. L. Cairns, A. W. Larchar, and B. C. McKusick, Am. Soc. 74, 5633 (1952).

*Acetic acid*CH₃COOH
Reactions with cyanogen
Sym. bisoxamidines from amines
 $\text{RNHC}-\text{C}(=\text{O})_2-\text{HN}$

Cyanogen passed at room temp. into a soln. of N-n-butylethylene-diamine in aq. acetic acid at pH 7-8 \rightarrow sym-bis-(2-n-butylaminoethyl)-oxamidine. Y: 67%. F. e. and reactions, with lower yields, s. H. M. Woodburn and R. C. O'Gee, J. Org. Chem. 17, 1235 (1952).

Hydrochlorides

2-Aminothiazoles from 2-ketothiocyanates

C

A mixture of methylamine hydrochloride, water, and 3-thiocyanato-2-butanone refluxed 8 hrs. → 2-methylamino-4,5-dimethylthiazole. Crude Y: 77%. F. e. s. R. A. Mathes and J. T. Gregory, Am. Soc. 74, 3867 (1952).

Hydrochloric acid

HCD

Acylsemicarbazides from carboxylic acid hydrazides

4

409.

A soln. of oxalic acid dihydrazide in HCl treated with aq. KNCO, and allowed to stand a short time → oxalic acid disemicarbazide. Y: 95%. H. Gehlen, A. 577, 237 (1952).

2-Mercaptoimidazoles

6

s. 5, 252; 4,5-imidazoledicarboxylates s. Am. Soc. 74, 1085 (1952)

1,3,5-Triazines from nitriles by trimerization

s. 3, 277; mixed trimerization s. J. Hechenbleikner, Am. Soc. 76, 3032 (1954)

Addition to Halogen and Carbon

NC ↓ HalC

Without additional reagents

w.a.r.

Quaternary ammonium salts from betaineazeniates

1

410

A mixture of 6-(*p*-tolylsulfonamido)quinoline methylbetaine and benzoyl chloride heated 1 hr. at 125-130° → 6-(N-benzoyl-*p*-tolylsulfonamido)quinoline methochloride. Y: 90%. Also with alkyl halides s. A. M. Simonov, Ж. 22, 2006 (1952); C. A. 47, 9328g.

NC \downarrow SC

w.a.r.

 \leftarrow

Addition to Sulfur and Carbon

Without additional reagents

Thiosalicylide ring opening
Thioethers from amines

411.

Tri(thiosalicylide) and benzylamine

in benzene refluxed 7 hrs.
under N₂ → N-benzylthio-salicylamide. Y: 79%.and a trace of NH₄Cl boiled 3 hrs. → N,S-dibenzylthiosalicylamide. Y: 90%.

F. e. s. W. Baker, A. S. El-Nawawy, and W. D. Ollis, Soc. 1952, 3163.

Triethylamine

(C₂H₅)₃NDithiocarbamic acid esters
from aminesNH₂ → NHC(SR)=N

s. 9, 705

Iodine

I

Oxazoline-2-thiols from
2-aminoalcohols
via bishydroxythiuram disulfides

○

412.

CS₂ added in small portions at 0° to a soln. of ethanolamine in methanol, then a methanolic soln. of iodine added to a faint permanent yellow color → bis-(2-hydroxyethyl)thiuram disulfide (Y: 92%) suspended in water and heated to boiling during 1 hr. → oxazoline-2-thiol (Crude Y: 42%).—The method generally employed to prepare these heterocyclics results in some instances in the formation of thiazoline-2-thiols. F. e. s. A. A. Rosen, Am. Soc. 74, 2994 (1952).

Addition to Carbon**NC \downarrow CC***Without additional reagents**w.a.r.***Amines from ethylene derivatives** $C:C \rightarrow CHCN \swarrow$

s. 6, 364; s. a. L. H. Sternbach and S. Kaiser, Am. Soc. 74, 2215 (1952)

1,2-Nitrochlorides from ethylene derivatives $C:C \rightarrow CCIC(NO_2) \swarrow$

s. 1, 289; s. a. H. Shechter et al., Am. Soc. 74, 3052 (1952)

Enamines from acetylene derivatives $C:C \rightarrow CH:CN \swarrow$ s. 7, 217; β -amino- α,β -ethylenealdehydes s. F. Wille and F. Knörr, B. 85, 841 (1953)**1,2-Nitramines** $C(NO_2)C \cdot N \swarrow$ **from α,β -nitroethylene derivatives
and azomethines**

413.

Aniline added to a suspension of α -nitrostilbene in abs. ethanol, and allowed to stand 2 days at room temp.

Phenylnitromethane and a little diethylamine added with ice-cooling to a soln. of benzylideneaniline in abs. ethanol, and allowed to stand 10 days in an ice box

Y: 90.5%

Y: 91%

F. e. s A. Dornow and F. Boberg, A. 578, 94 (1952).

**Aliphatic 1,2-dinitro compounds
from ethylene derivatives** $C:C \rightarrow C(NO_2)C(NO_2) \swarrow$

s. 3, 279; s. a. R. N. Haszeldine, Soc. 1953, 2075

**1,2,3-Triazoles from
acetylene derivatives**

s. 8, 404; with hydrazoic acid s. L. W. Hartzel and F. R. Benson, Am. Soc. 76, 667 (1954)

Sodium

Na

Amines from ethylene derivativesC:C \rightarrow CHCN

s. 6, 367/8; also prim. and sec. amines, addition to ethylene, use of K and NaH s. B. W. Hawk, Am. Soc. 76, 1899 (1954)

Potassium

K

Pyrimidines from nitriles and acetylene

O

414.

Benzonitrile and K treated with acetylene at a gage pressure of 10-15 atm. for 14 hrs. at 180-200° \rightarrow 2,4-diphenylpyrimidine. Y: 51%. F. e., with lower yields, s. T. L. Cairns, J. C. Sauer, and W. K. Wilkinson, Am. Soc. 74, 3989 (1952).

*Sodium azide*NaN₃**Azides from ethylene derivatives**C:C \rightarrow CHC(N₃)

415.

Aq. NaN₃ added to a soln of β -nitrostyrene in glacial acetic acid, and allowed to react at room temp. \rightarrow β -nitro- α -phenyl- α -azidoethane. Y: 69%. F. e. s. J. H. Boyer, Am. Soc. 73, 5248 (1951); cf. S. N. Ege and K. W. Sherk, Am. Soc. 75, 354 (1953).

*Acetic acid*CH₃COOH**N-Cyanoethylation**NH \rightarrow NCH₂CH₂CN

s. 8, 405; of prim. ar. amines, also in the presence of CuCl and other inorganic catalysts, s. J. T. Brauholtz and F. G. Mann, Soc. 1953, 1817

*Hydrazoic acid*HN₃**Schmidt reaction** \leftarrow **Carboxylic acid amides from ketones**

s. 1, 362; α -acylaminocarboxylic acid esters s. D. O. Holland and J. H. C. Nayler, Soc. 1953, 280

*Oxygen*O₂**2-Nitronitric acid esters
from ethylene derivatives**C:C \rightarrow C(NO₂)C(ONO₂)

s. 3, 279; steroid derivatives s. C. E. Anagnostopoulos and L. F. Fieser, Am. Soc. 76, 532 (1954)

Sulfuric acid H_2SO_4

**Amines from
ethylene derivatives and nitriles
via acylamines**

 $C:C \rightarrow CHC(NH_2)$

A vigorously stirred mixture of oleic acid and acetonitrile added during 35 min. at 27-30° to 95- H_2SO_4 , and the product isolated 15 min. after the addition is complete → acetamidostearic acid (Y: 99%) refluxed 6 days with aq. 50%- H_2SO_4 → aminostearic acid sulfate (Y: 93%) dissolved in excess aq. NaOH to pH 12, then stirred and carefully neutralized with dil. aq. HCl to pH 5-6 → aminostearic acid (Y: 80%). F. e. of the first step, also modified procedure, s. E. T. Roe and D. Swern, Am. Soc. 75, 5479 (1953).

Rearrangement

Oxygen/Carbon Type

NC \cap OC*Sodium hydroxide* $NaOH$

**Acyl group migration
N-Acyl from O-acyl**

 $OAc \rightarrow NAc$

s. 5, 261; s. a. J. A. Moore et al., Am. Soc. 76, 2884 (1954)

Ureidocarboxylic acids from hydantoins

C

s. 9, 568

Potassium carbonate K_2CO_3

**as used for
determination of configuration**

s. 9, 246

*n-Butylammonium carboxylate***1,3,5-Triazines from acyldicyanodiamides**

417.

A soln. of benzoyldicyanodiamide (prepn. s. 511) in 37.5%-Cellosolve containing n-butylammonium salicylate or acetate refluxed ca. 8 min. → benzoguanide. Y: 84%. F. e., without catalyst, s. P. Adams et al., J. Org. Chem. 17, 1162 (1952).

Halogen/Carbon TypeNC \cap HalC*Sodium hydrogen carbonate*NaHCO₃**Piperidones from halogenaminoketones via piperidonium salts**

418.

5-Bromo-1-dimethylamino-3,3-diphenyl-4-hexanone hydrobromide dissolved in 50%-ethanol, an equal volume of ether added, neutralized with NaHCO₃-soln. in the cold, shaken, and the ether layer separated quickly → 1,1,2-trimethyl-4,4-diphenyl-3-piperidonium bromide (Y: 95%) distilled in vacuo → 1,2-dimethyl-4,4-diphenyl-3-piperidone (Y: 78.7%). F. e. s. N. R. Easton et al., Am. Soc. 75, 2086 (1953); s. a. F. F. Blicke and J. Krapcho, Am. Soc. 74, 4001 (1952).

Carbon/Carbon TypeNC \cap CC*Without additional reagents*

w.a.r.

Hydrazone via O-azo compounds

←

419.

p-Nitrotribenzoylmethane in ethyl acetate treated 45-90 min. with 2 moles K_2CO_3 , the resulting K-salt extracted with cold water, then coupled with benzenediazonium chloride \rightarrow O-phenylazo-p-nitrotribenzoylmethane (Y: 85%) heated 6 hrs. at 120° \rightarrow p-nitrophenyl phenyl triketone benzoylphenylhydrazone (Y: 84%). F. e. s. D. Y. Curtin and C. S. Russell, Am. Soc. 73, 5160 (1951).

**Imidazoles from isoimidazoles,
also with hydrolysis**

←

420.

2,2-Dibenzyl-4,5-diphenylisoimidazole hydrate (prepn. s. 462)

heated 0.5 hr. at 250° in an oil bath \rightarrow crude 1,2-dibenzyl-4,5-diphenylimidazole. Y: 67%.

dissolved in methanol containing HCl, and refluxed 0.5 hr. \rightarrow crude 2-benzyl-4,5-diphenylimidazole. Y: ca. 100%.

F. e. s. M. Weiss, Am. Soc. 74, 5193 (1952).

Hypobromite BrO^- **tert-Carbinamines** $R_3C \cdot NH_2$

s. 6, 381; also further method s. K. E. Hamlin and M. Freifelder, Am. Soc. 75, 369 (1953)

Exchange**Hydrogen \dagger** **NC \ddagger H**

w.a.r.

Without additional reagents

←

Reactions of nitrogen dioxide with ethers
Nitration

421.

N_2O_4 added at -10° to a soln. of 2-methoxynaphthalene in CCl_4 , and the product isolated after 17 hrs. when the temp. has reached 15° \rightarrow 1-nitro-2-methoxynaphthalene. Y: 96%. F. e. and reactions s. L. Horner and F. Hübenett, B. 85, 804 (1952).

Sodium hydroxide**NaOH****Arylazodisulfonylmethanes****N:N**

422.

Aniline diazotized with aq. $NaNO_2$ -ice water, satd. with Na-acetate, the Na-sulfate which is usually formed removed, cooled in ice-salt mixture, and bis(methylsulfonyl)methane in 2 N NaOH added \rightarrow (phenylazo)-bis(methylsulfonyl)methane. Y: 56%. F. e. s. H. J. Backer, R. 70, 733 (1951).

**Azo compounds by coupling
with simultaneous replacement
of nitro by thiocyanato groups**

s. 9, 681

Sodium acetate **CH_3COONa** **Reaction of active methyl groups
with diazonium salts**

←

423.

Azo coupling is a useful method for determination of activity of H-atoms in methyl groups. Such activity is present in compounds con-

taining directly attached heterocyclic residues or ar. rings with electrophilic groups in o- and p-positions. Nucleophilic groups conjugated with the methyl group strongly reduce the activity of H-atoms in the latter. Transition of the hetero atom into the onium state enhances its electrophilic properties and increases the mobility of H-atoms in methyl groups conjugated with the hetero atom.—E: A soln. of benzenediazonium chloride (prepared from aniline with NaNO_2 in HCl at 0°) added in 2 portions over a period of 28 hrs. to a soln. of 2-acetamido-9-methylacridine and Na-acetate in acetic acid, and the product isolated after 24 hrs. \rightarrow 2-acetamido-9-acridylaldehyde phenylhydrazone. Y: 65.9%. F. e. s. A. A. Kharkharov, Ж. 23, 1175 (1953); C. A. 47, 12390c.

Hydrazones from diazonium salts Hydrolytic ring opening

C

s. 7, 406; also one-step procedure s. V. V. Feofilaktov, Sint. Org. 2, 103 (1952); C. A. 48, 666 g; s. a. Sint. Org. 2, 98; C. A. 48, 668 h

Sodium nitrite NaNO_2

Hydrazones from amines

 $\text{NH}_2 \rightarrow \text{NHN:C}$

s. 3, 290; s. a. V. V. Feofilaktov and N. K. Semenova, Sint. Org. 2, 74 (1952); C. A. 48, 592 d

Indazoles

○

s. 1, 321; s. a. H. R. Snyder and J. K. Williams. Am. Soc. 76, 1298 (1954)

Ring closures with 5-aminopyrimidines 1,2,4,6-Tetraazaindenes

○

424.

4.2 g. 2,5-diamino-4-dimethylamino-6-methylpyrimidine diazotized with NaNO_2 in $N\text{HCl}$, then added to 3 $N\text{NaOH}$ below 10° \rightarrow 4 g. 5-amino-7-dimethylamino-1,2,4,6-tetraazaindene. F. e., also by merely heating the diazonium salt soln., and other ring closures, s. F. L. Rose, Soc. 1952, 3448.

1,2,3-Triazine and pyrazole rings

425.

3-Aminolepidine treated at 0° with aq. NaNO₂

in concd. HCl → 1,2,3,9-tetra-azaphenanthrene 3-oxide. Y: 84%.

in 2 N H₂SO₄ → 3H-1,2,6-triaza-4,5-benzindene. 0.33 g. from 0.5 g.

F. e. s. D. W. Ockenden and K. Schofield, Soc. 1953, 1915.

*Potassium nitrite*KNO₂**Nitration**H → NO₂

426.

Cholesteryl acetate added at 20° with rapid stirring to HNO₃ (d. 1.42), then K-nitrite added, and stirring continued 1 hr. → 3β-acetoxy-6-nitro-5-cholestene. Y: 80%. C. W. Shoppee and G. H. R. Summers, Soc. 1952, 3361.*Potassium nitrate*KNO₃

427.

Labeled compounds. A mixture of a slight excess of N¹⁵-enriched KNO₃, H₂SO₄, and sufficient water to dissolve the salt, added to a soln. of acetyl-p-anisidine in acetic acid containing enough acetic anhydride to

convert the added water to acetic acid, and the product hydrolyzed → 4-methoxy-2-nitraniline. Y: 77%; 70% based on KNO_3 .—When H_2SO_4 alone is used as solvent, or when the startg. m. is added to the nitrating mixture, the nitro group is introduced in the ortho position to the methoxyl group. A. H. Blatt and N. Gross, Am. Soc. 75, 1245 (1953).

Pyridine**Formazans from hydrazones**

s. 8, 421; s. a. J. N. Ashley et al., Soc. 1953, 3881

Cupric nitrate**Nitration**

cf. Synth. Meth. 6, 386.

428. The Cu-nitrate reagent seems to have certain advantages in nitrating organosilanes, possibly because it affords a relatively non-acidic nitrating medium. R. A. Benkeser and P. E. Brumfield, Am. Soc. 73, 4770 (1951).

Nitrates/oxygen**Amination**

429.

2-Aminopyridine added to a soln. of 9-di-n-propylaminobenzo[a]phenoxazonium nitrate in ethanol, gently warmed a few min., then allowed to stand at room temp. in an open beaker for several days → 9-di-n-propylamino-5-(2-pyridylamino)benzo[a]phenoxazonium nitrate. Crude Y: 80%. (Am. Soc. 74, 584.)—In some instances, aeration increases the yield and shortens the reaction time (Am. Soc. 74, 578). F. e. s. M. L. Crossley et al., Am. Soc. 74, 584, 578 (1952).

Sulfuric acid H_2SO_4 **Nitration** $H \rightarrow NO_2$ **N-Oxides as intermediates**

s. 6, 389; s. a. E. C. Taylor, Jr., and A. J. Crovetti, J. Org. Chem. 19, 1633 (1954)

Molybdenum trioxide-alumina $MoO_3-Al_2O_3$ **Nitriles from hydrocarbons** \leftarrow

s. 6, 388; s. a. Ind. Eng. Chem. 45, 282 (1953)

*Via intermediates**v.i.***Aminophenols from phenols via azophenols** $H \rightarrow NH_2$

with aniline s. 5, 267; with sulfanilic acid s. 1, 173; H. E. Albert, Am. Soc. 76, 4985 (1954)

Oxygen ↑**NC \ddagger O***Without additional reagents**w.a.r.***Glycosamines** $OH \rightarrow NHR$ s. 7, 416/7; 8, 85; with aniline in abs. ethanol s. R. W. Jeanloz, Am. Soc. 76, 5684 (1954); also with NH_3 s. F. Micheel et al., B. 85, 1092 (1952) **α -Amino- from α -hydroxy-sulfones** SO_2CH_2NHR

s. 8, 426; s. a. H. Bredereck and E. Bäder, B. 87, 129 (1954)

Quaternary ammonium salts \leftarrow **from sulfonic acid esters****Carbohydrate derivatives**

430.

A soln. of 1,2,3,4-tetraacetyl-6-methanesulfonyl- β -D-glucose in anhydrous pyridine refluxed 2.5 hrs. \rightarrow 1,2,3,4-tetraacetyl-6-pyridinium-6-desoxy- β -D-glucose methanesulfonate (Y: 60%), 1 g. passed through a column containing Amberlite IRA-400 ion exchange resin which has been treated with dil. HBr soln. \rightarrow 520 mg. 1,2,3,4-tetraacetyl-6-pyridinium-6-desoxy- β -D-glucose bromide. B. M. Iselin and J. C. Sowden, Am. Soc. 73, 4984 (1951).

**Aminomethylene from
hydroxymethylene compounds**

s. 7, 419; s. a. H. Davoll and F. B. Kipping, Soc. 1953, 1395

**α -Aminomethyleneketones
from α -hydroxymethyleneketones**

s. 2, 725a; s. a. L. B. Barkley et al., Am. Soc. 76, 5014 (1954)

**Azomethines from
amines and oxo compounds
by azeotropic distillation**

s. 8, 550; s. a. E. P. Goldberg and H. R. Nace, Am. Soc. 75, 6260 (1953); R. B. Moffett, Org. Synth. 34, 64 (1954)

Nitrones from hydroxylamines

s. 8, 429; s. a. Am. Soc. 75, 285 (1953)

Hydrazones

s. 3, 307; 9, 121; s. a. C. L. Arens and R. J. Mesley, Soc. 1953, 178; α -dihydrazone s. A. C. Cope, D. S. Smith, and R. J. Cotter, Org. Synth. 34, 42 (1954)

Acylyhydrazones

s. 5, 273; s. a. H. L. Yale et al., Am. Soc. 75, 1933 (1953)

**Resolution of racemic oxo compounds
via acylhydrazones**

Methanol followed by 8.7 cc. rac-2,6-dimethyloctanal added to an aq. soln. of 7.5 g. D-tartramide acid hydrazide, allowed to stand overnight, the crude product recrystallized 2 times from alcohol \rightarrow 7.5 g. 2,6-dimethyloctanal D-tartrazone, recrystallized a third time, and the first fraction (2.8 g.) hydrolyzed by gently heating with aq. H_2SO_4 on a water bath \rightarrow 1.2 g. (+)-2,6-dimethyloctanal. Optical purity 92%.— The reagent is easily available. F. Nerdel and E. Henkel, B. 85, 1138 (1952).

**Thiosemicarbazones,
also by interchange**

CO → C:N·NHCSNH₂

432.

1-Phenyl-2,3-dimethyl-4-formyl-5-pyrazolone refluxed in alcohol with thiosemicarbazide at 60° for 15 min. → | with acetone thiosemicarbazone for 3 hrs. →

1-phenyl-2,3-dimethyl-4-formyl-5-pyrazolone thiosemicarbazone.
Y: ca. 100%.

Also with thiosemicarbazide hydrochloride and Na-acetate in alcohol-water during 24 hrs. at room temp. in 92% yield, s. J. Ledrut and G. Combes, Bl. 1952, 189; cf. T. S. Gardner et al., J. Org. Chem. 16, 1121 (1951); W.L. Nobles and J.H. Burckhalter, J. Am. Pharm. Assoc. 42, 176 (1953).

**Dithiocarbalkoxyhydrazones
Carbohydrate derivatives**

CO → C:N·NHCS(=S)SR

433.

A mixture of 5.1 g. D-glucose and 3.4 g. dithiocarbomethoxyhydrazine (methyl dithiocarbazinate) refluxed 20 min. in methanol-water (1:1) → 7.7 g. N-dithiocarbomethoxy-N'-D-gluco-pentahydroxyhexylidenehydrazide. F. e., also with diacetyl, s. R. Hull, Soc. 1952, 2959.

Formamides

NCHO

s. 9, 113

Acylation of amines

NH → NAc

s. 9, 392

**Carboxylic acid amides
from carboxylic acid esters**

COOR → CONHR

s. 7, 425; 8, 436; in toluene-1,2,4-trichlorobenzene s. J. Weijlard, G. Purdue, and M. Tishler, Am. Soc. 76, 2505 (1954)

**(Diacylamino)carboxylic acids
from acylaminocarboxylic acids
Protection of carboxyl groups
by formation of benzyl esters**

A mixture of aceturic acid, benzyl alcohol, coned. H_2SO_4 , and toluene refluxed 48 hrs. in a Soxhlet extraction apparatus containing anhydrous BaO in the thimble, the BaO being replaced by fresh oxide after 16 hrs. \rightarrow benzyl aceturate (Y: 91.0%) dissolved in acetic anhydride, and refluxed 5 hrs. \rightarrow N,N-diacetylglycine benzyl ester (Y: 91%) hydrogenated 3 hrs. with Pd-on-Darco in dry dioxane \rightarrow crude N,N-diacetylglycine (Y: 97.2%). F. e. s. J. C. Sheehan and E. J. Corey, Am. Soc. 74, 4555 (1952).

**Dicarboxylic acid imides
from dicarboxylic acids**

s. 8, 439; with NH_3 s. C. A. Miller and L. M. Long, Am. Soc. 75, 6256 (1953); H. L. Lochte and E. N. Wheeler, Am. Soc. 76, 5548 (1954)

**Dicarboxylic acid imides
from dicarboxylic acid esters**

Diethyl methyliminodiacetate methochloride added to a satd. anhydrous alc. NH_3 soln. \rightarrow methyliminodiacetic acid imide methohydroxide. Y: 80-85%. M. Viscontini, J. Bally, and J. Meier, Helv. 35, 451 (1952).

**Dicarboxylic acid imides
from dicarboxylic acid anhydrides**

s. 5, 341; s. a. L. M. Rice, E. E. Reid, and C. H. Grogan, J. Org. Chem. 19, 884 (1954)

**Carboxylic acid hydrazides
from carboxylic acid esters**

s. 7, 426; 8, 515; 9, 476; with 85% hydrazine hydrate s. a. H. L. Yale et al., Am. Soc. 75, 1933 (1953); steroid derivatives, also with anhydrous hydrazine, s. L. F. Fieser and Wei-Yuan Huang, Am. Soc. 75, 6306 (1953)

436.

also with simultaneous hydantoin ring opening

2 moles hydrazine hydrate added to a soln. of ethyl 5-benzylhydantoin-3-acetate in warm abs. ethanol, and the precipitate, initially consisting of a mixture of the product with startg. m.. redissolved several times by warming \rightarrow 5-benzylhydantoin-3-acetic acid hydrazide. Y: 80%.

Ethyl 5-benzylhydantoin-3-acetate or 5-benzylhydantoin-3-acetic acid hydrazide heated 3 hrs. with 5 moles hydrazine hydrate in abs. ethanol \rightarrow carbonyl (glycine hydrazide) (DL-phenylalanine hydrazide). Y: 89%.

F. e. s. K. Schlägl, F. Wessely, and G. Korger, M. 83, 493 (1952).

Diacylhydrazines

AcHNHAc

437.

2 moles of propionic anhydride added slowly with cooling to 1 mole 85%-hydrazine hydrate soln., then heated slowly, and refluxed 1 hr. \rightarrow dipropionylhydrazine. Y: 80%. F. e. s. Du-Yung Wu and R. M. Herbst, J. Org. Chem. 17, 1216 (1952).

N,N'-Dicarbamylformamidines

RNHCON:CH·NHCONHR

438.

A mixture of cyclohexylurea and excess ethyl orthoformate refluxed 12 hrs. \rightarrow N,N'-bis(cyclohexylcarbamyl)formamidine. Y: 82.3%. F. e. s. C. W. Whitehead, Am. Soc. 75, 671 (1953).

Acylguanidines

439.

A soln. of guanidine hydrochloride in abs. alcohol treated with the calculated amount of a soln. of Na in alcohol, the resulting NaCl removed by centrifugation, then the soln. treated with N-dimethylglycine ethyl ester, and refluxed 5 min. \rightarrow (N,N-dimethylglycyl)guanidine. Y: 65-70%. M. Viscontini, J. Bally, and J. Meier, Helv. 35, 451 (1952).

**Replacement of cyclic oxygen
by cyclic nitrogen**
2-Pyridones from 2-pyrones

s. 3, 302; limitations s. R. H. Wiley, P. Beasley, and L. H. Knabeschuh, Am. Soc. 76, 311 (1954); s. a. 76, 625

**Enaminolactams from
ketocarboxylic acids**

440.

The ketoacid derived from cholestenone and benzylamine heated 1 hr. at 180° under N₂ → 4-benzyl-4-azacholestenone-3. Y: 99%. F. e. s. R. B. Woodward et al., Am. Soc. 74, 4223 (1952).

**Reactions with
azeotropic water separation
(1,3-Di-N)-heterocyclics**

s. 6, 405; s. a. H. Zahn, H. Wilhelm, and A. Räuchle, A. 579, 14 (1953)

3,5-Piperazinediones

441.

A mixture of methyliminodiacetic acid and urea heated to ca. 160° until frothing starts, and the temp. raised to 170° during 1 hr. after the gas evolution has subsided → 1-methyl-3,5-piperazinedione. Y: 87%. Also labeled compounds s. B. H. Chase and A. M. Downes, Soc. 1953, 3874.

1-Hydroxy-2-pyrazinones from hydroxamic acids

442.

A mixture of benzil, L-leucinehydroxamic acid, and 50°-ethanol refluxed 17 hrs. → 1-hydroxy-2-keto-3-isobutyl-5,6-diphenyl-1,2-dihydropyrazine. Y: 67%. F. e. s. S. R. Safir and J. H. Williams, J. Org. Chem. 17, 1298 (1952).

←

Pyridine ring from furan ring
3-Hydroxypyridines
Ring expansion

443.

2-n-Butyrylfuran heated 20 hrs. at 165° with 2-3 moles alc. NH_3 in a sealed tube \rightarrow 3-hydroxy-2-n-propylpyridine. Y: 74%. F. e. s. W. Gruber, Can. J. Chem. 31, 564 (1953); f. intermediate formulas s. Synth. Meth. 8, 469.

←

Pyrazoles from O-heterocyclics
Amines from hydrazones

444.

A soln. of γ -pyrone in methanol added dropwise with stirring and cooling at ca. 25° to a soln. of hydrazine hydrate in methanol, when the exothermic reaction is over heated a few min. on a steam bath, cooled, liq. NH_3 added cautiously with stirring, and hydrogenated 1-2 hrs. with Raney-Ni at 90° and 1500 lb. pressure \rightarrow 3- β -aminoethylpyrazole. Y: 81%. F. e. s. R. G. Jones et al., Am. Soc. 75, 4048 (1953); 76, 3172 (1954).

←

Oxazolidines
from oxido compounds

445.

Aq. 29% - NH_3 added with stirring to a soln. of benzaldehyde in ethanol, then epichlorohydrin added in a thin stream with stirring, whereby the temp. rises to $40-45^\circ$ over a period of 2 hrs., then allowed to stand overnight at room temp., finally heated 20 min. on a steam bath \rightarrow 2-phenyl-5-chloromethyloxazolidine. Y: 69%. H. E. Carter and P. K. Bhattacharyya, Am. Soc. 75, 2503 (1953).

Potassium hydroxide

KOH

1,2-Dihydro-3,1-benzoxazines*Sodium/alcohol*

NaOR'

Hydroxamic acids from carboxylic acid esters

COOR → CONHOH

s. 8, 455; s. a. J. Org. Chem. 19, 1140 (1954)

**3,5-Pyrazolidiones
from malonic acid esters**

s. 7, 439; s. a. J. Büchi et al., Helv. 36, 75 (1953); method s. M. Conrad and A. Zart, B. 39, 2282 (1906)

5-Carbethoxyuracils

447.

Phenylurea and diethyl ethoxymethylenemalonate added to a soln. of Na in abs. ethanol, and allowed to stand 3 days at room temp. → 3-phenyl-5-carbethoxyuracil. Y: 88%. F. c. s. C. W. Whitehead, Am. Soc. 74, 4267 (1952).

5-Amino- via 5-nitroso-pyrimidines

448.

Acetamidine hydrochloride condensed with ethyl hydroxyiminocyanacetate by using a soln. of Na in ethanol, the resulting Na-salt of 4-

amino-6-hydroxy-2-methyl-5-nitrosopyrimidine (Y: 79%) dissolved in water, warmed to 70°, wet Raney-Ni added portionwise until no further color change occurs, finally heated 1 hr. on a steam bath → 4,5-diamino-6-hydroxy-2-methylpyrimidine (Y: 72%). F. e. s. P. D. Landauer and H. N. Rydon, Soc. 1953, 3721.

Sodium carbonate

Na_2CO_3

Oximes from ketones

$CO \rightarrow C:NOH$

s. 9, 36

Potassium carbonate

K_2CO_3

Enamines from aldehydes

$CHCHO \rightarrow C:CH(N\langle)$

s. 2, 380; s. a. R. Grewe et al., A. 581, 85 (1953)

Sodium acetate

CH_3COONa

Thiosemicarbazones

$CO \rightarrow C:N \cdot NHCSNH_2$

s. 9, 432

1,2,4-Triazoles from hydrazines
Einhorn-Brunner ring closure

449.

Phenylhydrazine hydrochloride, N-acetylbenzamide, glacial acetic acid, and anhydrous Na-acetate refluxed 10 hrs. → 3-methyl-1,5-diphenyl-1,2,4-triazole. Y: 78%. F. e. s. M. R. Atkinson and J. B. Polya, Soc. 1952, 3418.

Sodium hydrogen sulfite

$NaHSO_3$

N-Acylation with peroxycarboxylic acids

$NH \rightarrow NAc$

450.

Aq. peracetic acid reduced with 10% excess aq. $NaHSO_3$ -soln., cooled in an ice-bath, excess aniline added with swirling, and allowed to stand 1 hr. at room temp. → acetanilide. Y: 86%. F. e. and limitations s. A. H. Soloway and S. L. Friess, Am. Soc. 73, 5000 (1951).

Potassium iodide

KI

Sec. from prim. amines and hydroxy compounds $\text{NH}_2 \rightarrow \text{NHR}$

151.

A mixture of 3-hydroxythieno(3,2-b)pyridine, diethylaminooethylamine, and a little KI heated 72 hrs. at 170-180° in a sealed tube → 3-(diethylaminooethylamino)thieno(3,2-b)pyridine. Y: 58.5%. F e. s. J. T. Sheehan, Am. Soc. 74, 5504 (1952).

Trialkylamine R_3N' **Carboxylic acid amides from carboxylic acids via mixed alkoxyformic acid anhydrides**

CON<

peptides s. 7, 447; s. a. B. F. Erlanger, H. Sachs, and E. Brand, Am. Soc. 76, 1806 (1954); penicillin derivatives s. R. L. Barnden et al., Soc. 1953, 3733

Triethylamine $(\text{C}_2\text{H}_5)_3N$

452.

Dicarboxylic acid amide esters. Ethyl chloroformate added rapidly with continuous agitation to an ice-salt cooled soln. of ethyl hydrogen bicyclo[2.2.2]octane-1,4-dicarboxylate and triethylamine in chloroform, after 15 min. anhydrous NH₃ passed through for 5 min., removed from the cooling bath, stirred 1 hr. at room temp., and allowed to stand overnight → ethyl 4-carboxamidobicyclo[2.2.2]octane-1-carboxylate. Y: 87%. J. D. Roberts, W. T. Moreland, Jr., and W. Frazer, Am. Soc. 75, 637 (1953).

Peptides and carboxylic acid esters via mixed carboxylic acid anhydrides453. $\text{C}_6\text{H}_5\text{CH}_2\text{OCONHCH}_2\text{COOH} + \text{ClCOC}_5\text{H}_{11-i}$ \downarrow

Peptides and carboxylic acid esters. A soln. of carbobenzoxylglycine and triethylamine in dry toluene cooled to 0° and isovaleryl chloride

added, then ethyl DL-phenylalaninate added to the resulting carbo-benzoxyglycyl-isovaleric acid anhydride soln. and kept overnight at 8° → ethyl carbobenzoxyglycyl-DL-phenylalaninate. Y: 86%.—Anhydrides with isovaleric acid have been found particularly advantageous. F. e. s. J. R. Vaughan and R. L. Osato, Am. Soc. 73, 5553 (1951); carboxylic acid esters s. E. D. Nicolaides, R. D. Westland, and E. L. Wittle, Am. Soc. 76, 2887 (1954).

**Carboxylic acid acylthioethylamides
from carboxylic acids
via mixed alkoxyformic acid anhydrides
and carboxylic acid ethylenimides**

Ethyl chloroformate in ethyl acetate added dropwise at -5° to a soln. of triethylammonium pantothenate (prepared from (+)-Ca-pantothenate and triethylamine in water) in dimethylformamide, after 10 min. dropped rapidly with stirring into a soln. of ethylenimine and triethylamine in ethyl acetate, after 20 min. poured into a soln. of thiobenzoic acid in ethyl acetate, and the product isolated after 30 min. at 0° → (+)-S-benzoylpantetheine. Y: ca. 50%. F. e. s. R. Schwyzer, Helv. 35, 1903 (1952).

Piperidine

C₅H₁₁N

Pyrimidines from amidines

Suberodiamidine dihydrochloride, acetylacetone, and piperidine in pyridine refluxed 3 hrs. → hexamethylenebis-2-(4,6-dimethylpyrimidine). Y: 70%. F. e. s. D. D. Libman, D. L. Pain, and R. Slack, Soc. 1952, 2305.

Pyridine/phosphorus trichloride C_5H_5N/PCl_3
s. Phosphorus trichloride/pyridine

Silver acetate CH_3COOAg

N-Acetylation $NH \rightarrow NAc$

s. 9, 876

Magnesium oxide MgO

Carboxylic acid amides from carboxylic acid chlorides $COCl \rightarrow CONHR$

s. 5, 341; s. a. R. E. Bowman and J. F. Cavalla, Soc. 1954, 1171

Alkylmagnesium iodide $RMgI$

Carboxylic acid amides from carboxylic acid esters $COOR \rightarrow CONR$

Bodroux reaction

2 moles aniline in dry ether added slowly to 2 moles methyl-MgI in ether, after the vigorous reaction has subsided, methyl hexanoate in ether added, and refluxed 2 hrs. on a water bath \rightarrow hexanoanilide. Y: 87%. F. e. s. H. L. Bassett and C. R. Thomas, Soc. 1954, 1188.

Magnesium chloride $MgCl_2$

Tert. amines from oxo compounds $CO \rightarrow CHNR_2$
Extension of the Leuckart synthesis

A mixture of propiophenone, dimethylformamide, Mg-chloride hexahydrate, and 85%-formic acid heated with distillation of the volatile constituents until the pot temp. reaches approximately the boiling point of the formamide, then refluxed 8 hrs. with stirring \rightarrow N,N-dimethyl- α -ethylbenzylamine. Conversion: 30%. Y: 79%. F. e., also with α,β -unsatd. carbonyl compounds, s. C. F. Bennett, J. L. Marks, and H. Moe, Am. Soc. 75, 985 (1953).

Zinc chloride/ammonium chloride $ZnCl_2/NH_4Cl$

Imidazolines from nitriles and aminoalcohols ○

NH_4Cl suspended in a soln. of $ZnCl_2$ in benzyl cyanide, then monoethanolamine added dropwise with stirring during 30 min. at 210-220°,

and heating continued for 1.5 hrs. at the same temp. → 2-benzyl-imidazoline. Y: 66%. F. e., with lower yields, s. G. Kubiczek and L. Neugebauer, M. 80, 815 (1949).

Aluminum

AI

Amines from oxo compounds

CO → CHNHR

459

Aq. 30%-methylamine added to a soln. of pinacoline in alcohol, and this mixture added during 1 hr. with stirring and cooling to a suspension of Al (activated with Hg and $HgCl_2$) in 50%-alcohol \rightarrow 2-methyl-amino-3,3-dimethylbutane. Y: 75-80%.—This method is convenient for laboratory preparations. F. e. s. H. Albers and S. Lange, B. 85, 278 (1952); method s. Knoll A. G. and W. Klavehn, D. R. P. 617 536.

Aluminum oxide

Al₂O₃

Replacement of cyclic oxygen by cyclic nitrogen

$\text{Co} \rightarrow \text{C}_{\text{N}}$

s. 1, 328; N-subst. piperidines s. A. N. Bourns, H. W. Embleton, and M. K. Hansuld, Org. Synth. 34, 79 (1954).

Acetic anhydride

$$(CH_3CO)_2O$$

Formylation of amines

$$\text{NH}_2 \rightarrow \text{NHCHO}$$

s. 2, 391; s. a. J. Bornstein, W. J. Reid, and D. J. Torres, Am. Soc. 76, 2760 (1954).

Formic acid

$$\text{HCOOH}$$

Sym. ureas from alcohols and urea

$$(\text{RNH}_2)_2\text{CO}$$

460.

A soln. of 0.2 g. di-(*p*-methoxyphenyl)methanol in formic acid added to 0.06 g. urea in formic acid, and worked up after 20 min. → 0.2 g. bis-[di-(*p*-methoxyphenyl)methyl]urea. M. P. Balfe, J. Kenyon, and E. M. Thain, Soc. 1952, 790.

*Acetic acid***Hydrazones**

s. 2, 396/7; separation of ketosteroids by benzilic acid hydrazide s. L. Velluz et al., Bl. 1953, 409

Phthalimides from amines

s. 1, 331/2; s. a. C. M. Atkinson et al., Soc. 1954, 2023

Pyrroles from 2,5-dialkoxytetrahydrofurans

←

461.

A soln. of 2,5-dimethoxy-3-isopropyltetrahydrofuran and aniline in acetic acid refluxed 1.5 hrs. → crude 1-phenyl-3-isopropylpyrrole. Y: 83%. F. e. s. N. Elming and N. Clauson-Kaas, Acta Chem. Scand. 6, 867 (1952).

Isoimidazoles

○

462.

A mixture of dibenzyl ketone, benzil, NH_4 -acetate, and acetic acid refluxed 1 hr. → 2,2-dibenzyl-4,5-diphenylisoimidazole hydrate (startg. m. f. 420). Y: 80%. M. Weiss, Am. Soc. 74, 5193 (1952).

*Nitrobenzene***N-Subst. 4-aminoquinolines from 4-keto-1,2,3,4-tetrahydroquinolines**

←

463.

A mixture of 4-diethylamino-1-methylbutylamine, 4-keto-7-chloro-1,2,3,4-tetrahydroquinoline, and nitrobenzene heated 5 hrs. in an oil bath at 155-160° under N_2 → crude chloroquine. Y: 92%. F. e., also in phenol-nitrobenzene, s. W. S. Johnson and B. G. Buell, Am. Soc. 74, 4513 (1952).

Hydrazoic acid HN_3 **Nitriles from aldehydes** $\text{CHO} \rightarrow \text{CN}$

s. 4, 380; s. a. W. E. McEwen, W. E. Conrad, and C. A. VanderWerf, Am. Soc. 74, 1168 (1952)

Phosphorus pentoxide P_2O_5 **Aminodesoxybenzoins from benzoins** \leftarrow **Voigt reaction**

s. 4, 382; with heterocyclic sec. amines s. R. V. Heinzelmann and B. D. Aspergren, Am. Soc. 75, 3409 (1953)

Tetraethyl pyrophosphate $(\text{C}_2\text{H}_5\text{O})_2\text{POP}(\text{OC}_2\text{H}_5)_2$ **Subst. carboxylic acid amides** $\text{COOH} \rightarrow \text{CONH}$ **from carboxylic acids****Peptide synthesis**

464.

 $\text{CH}_2\text{C}_6\text{H}_5$ $\text{CH}_2\text{C}_6\text{H}_5$

Carbobenzyloxyglycine and ethyl DL-phenylalaninate added to diethyl phosphite, then tetraethyl pyrophosphate added, and heated 15 min. on a steam bath \rightarrow ethyl carbobenzyloxyglycyl-DL-phenylalaninate. Y: 94%.—No racemization of optically active compounds has been observed when one of the reactants is an acylamino acid. F. e. s. G. W. Anderson, J. Blodinger, and A. D. Welcher, Am. Soc. 74, 5309 (1952); carboxylic acid anilides s. Am. Soc. 74, 5514; oxytocin synthesis s. V. du Vigneaud, Am. Soc. 76, 3115 (1954).

Dialkyl chlorophosphate $(\text{RO})_2\text{POCl}$ **Alkylation of amines** $\text{NH} \rightarrow \text{NR}$

465.

Diphenylamine and diethyl chlorophosphate heated to 140-155° when a vigorous reaction occurs, and the product isolated after 45 min. at 155-165° \rightarrow di(phenyl)ethylamine. Y: 82.7%. F. e. s. B. P. Lugovkin and B. A. Arbuzov, Ж. 22, 2041 (1952); C. A. 47, 9283h.

Phosphoric acid H_3PO_4 **2,4-Dinitrophenylhydrazones** $\text{CO} \rightarrow \text{C:N}\cdot\text{NHR}$

466. A H_3PO_4 -ethanol soln. of 2,4-dinitrophenylhydrazine as reagent has been found to be indefinitely stable and avoids the use of the more reactive H_2SO_4 . E. s. G. D. Johnson, Am. Soc. 73, 5888 (1951).

**Subst. carboxylic acid hydrazides
from carboxylic acid esters**

COOR \rightarrow CONHNHR

Ethyl acetate, phenylhydrazine, and aq. H_3PO_4 gently refluxed for 1 hr. \rightarrow β -acetylphenylhydrazine. Y: 60%.—Other methods were not successful. F. e. s. T. O. Jones, R. E. Halter, and W. L. Myers, Am. Soc. 75, 6055 (1953).

Phosphorus trichloride/pyridine

$\text{PCl}_3/\text{C}_5\text{H}_5\text{N}$

**Carboxylic acid amides from carboxylic acids
and phosphor compounds**

COOH \rightarrow CON<

Peptides

468.

A soln. of PCl_3 in pyridine added to a soln. of glycine ethyl ester in pyridine, after 0.5 hr. heated 3 hrs. with N-carbobenzyloxyglycine on a steam bath \rightarrow N-carbobenzyloxyglycylglycine ethyl ester. Y: 91%.—No racemization takes place in this process. F. e., also with isolation of the intermediate, s. Goldschmidt et al., A. 580, 68 (1953); B. 86, 1116 (1953).

Sulfuric acid

H_2SO_4

N-Acylation

NH \rightarrow NAC

s. 5, 302; s. a. J. R. E. Hoover and A. R. Day, Am. Soc. 76, 4148 (1954)

Pyrimido[4,5-b]pyrazines

○

s. 1, 345; 7, 458; s. a. F. Korte, B. 87, 1062 (1954)

Iodine

I

Sec. from prim. amines and phenols

NH₂ \rightarrow NHR

s. 9, 713

Oxazolidines from 2-aminoalcohols

469.

A mixture of equivalent amounts of 2-(α,γ -dimethylbutyl)amino-3-methyl-3-butanol and butyraldehyde with benzene azeotropically distilled in the presence of a trace of iodine until the theoretical quantity of water has been collected \rightarrow 2-n-propyl-3-(α,γ -dimethylbutyl)-4,5,5-trimethyloxazolidine. Y: 80%. E. D. Bergmann, S. Pinchas, et al., Am. Soc. 73, 5662 (1951); f. e. and limitations s. R. 71, 168, 229, 237 (1952); Am. Soc. 75, 358 (1953).

Ammonium chloride NH_4Cl

Glycosaminides

 $OH \rightarrow N<$

470.

N-Acetylglucosamine, p-toluidine, and NH_4Cl in abs. methanol refluxed 4 hrs. \rightarrow N-acetyl-D-glucosamine-p-toluidide. Y: 89%. F. e. s. A. Bertho and D. Kozollek, B. 87, 934 (1954).

Hydrochlorides

Oxazolidines from 2-aminoalcohols

 \leftarrow

471.

A soln. of l-ephedrine hydrate in acetone mixed with a soln. of l-ephedrine hydrochloride in abs. methanol, and refluxed 4 hrs. \rightarrow acetone-l-ephedrine. Y: 90%. K. Freudenberg and J. Geiger, A. 575, 145 (1952).

Hydrochloric acid

HCl

**Aminodesoxybenzoins from benzoins
Voigt reaction**

←

A mixture of benzoin, 2-aminopyridine, toluene, and concd. HCl refluxed 20 hrs. with a water separator → N-(2-pyridyl)desylamine. Y: 83%. I. A. Kaye, C. L. Parris, and W. J. Burlant. Am. Soc. 75, 746 (1953); cf. Synth. Meth. 4, 382.

2,4-Dinitrophenylhyrazones

CO → C:N·NHR

s. 1, 347/8; of carbohydrates s. L. M. White and G. E. Secor, Am. Soc. 75, 6343 (1953)

Phenoxazine ring

○

173.

5-Di-n-propylamino-2-nitrosophenol hydrochloride and concd. HCl added to a suspension of 1-(N-benzyl)naphthylamine in ethanol, and refluxed 3 hrs. with stirring → 5-benzylamino-9-di-n-propylamino-benzo[a]phenoxazonium chloride. Y: 64%. F. e. and methods s. M. L. Crossley et al., Am. Soc. 74, 573, 578, 584 (1952).

Pyrazine ring synthesis**Pyrimido[4,5-b]pyrazines**

s. 4, 400; s. a. B. J. Magerlein and D. J. Weisblat, Am. Soc. 76, 3033 (1954)

Nickel

Ni

Prim. amines from oxo compoundsCO → CHNH₂

s. 3, 350; s. a. D. G. Norton et al., J. Org. Chem. 19, 1054 (1954)

Via intermediates

v.i.

Sec. amines from oxo compounds via azomethines

$$\text{CO} \rightarrow \text{CHNHR}$$

s. 1, 354; s. a. D. G. Norton et al., J. Org. Chem. 19, 1054 (1954).

Subst. carboxylic acid amides from carboxylic acids via carboxylic acid chlorides

$$\text{COOH} \rightarrow \text{COCl} \rightarrow \text{CONH}_2$$

s. 9, 627

Mixed and partial dicarboxylic acid derivatives. — Avoidance of isomerization. A mixture of methyl β -carboxybutyrate, oxalyl chloride, and dry benzene warmed 3 hrs. at 30-40°, the solvent evaporated at 40°/12 mm, the product taken up in benzene, again evaporated, this operation repeated twice, then dissolved in dry ether, and carefully treated at 0° with aniline in the same solvent → methyl β -phenylcarbamylbutyrate. Y: 79%.—By this mild procedure, isomerization (cf. Synth. Meth. 8, 188 is avoided. Also with the isomer s. J. E. H. Hancock and R. P. Linstead, Soc. 1953, 3490.

Peptides

s. 5, 316; s. a. D. Ben-Ishai, J. Org. Chem. 19, 62 (1954).

Peptide synthesis with chlorophosphites

$$\text{COOH} \rightarrow \text{CONH}_2$$

$$R = C_6H_5CH_2OOCNHCH_2CONHCH-\overset{|}{C}H_2C_6H_5$$

o-Phenylene chlorophosphite added to a soln. of carbobenzoxylglycyl-L-phenylalanine in benzene containing triethylamine, filtered, then refluxed 15 min. with ethyl glycinate → ethyl carbobenzoxylglycyl-L-phenylalanylglycinate. Y: 84%.—This procedure is simple, rapid, and gives good yields, with no apparent racemization of optically active derivatives. F. e. s. G. W. Anderson and R. W. Young, Am. Soc. 74, 5307 (1952).

**Carboxylic acid hydrazides
from carboxylic acids**

COOH → CONHNH₂

via carboxylic acid esters. Excess ethereal diazomethane added to a suspension of 15.3 g. carbobenzoxy-DL-serine in ethyl acetate, after dissolution of the amino acid evaporated in vacuo, dissolved in abs. ethanol, 85% hydrazine hydrate added, and allowed to stand overnight at room temp. → 14.9 g. carbobenzoxy-DL-serine hydrazide. E. A. Poppenoe, D. G. Doherty, and K. P. Link, Am. Soc. 75, 3469 (1953); *estimation of diazomethane* s. R. F. Raffauf, A. L. Farren, and G. E. Ulyot, Am. Soc. 75, 2576 (1953); *relative reactivity of functional groups towards diazomethane*, -COOH > COBr > COCl > OH > COCH₃, s. A. J. Kosak, C. W. Huntington, and J. R. MacGregor, Am. Soc. 76, 4481 (1954).

via carboxylic acid chlorides

s. 9, 503

**Hydantoins from
 α -isocyanatocarboxylic acid esters**

A mixture of ethyl α -isocyanatoisobutyrate and concd. NH₃ vigorously shaken, warmed 1 hr. at 60°, evaporated to dryness, then evaporated twice with aq. HCl to dryness → 5,5-dimethylhydantoin. Y: 86%. F.e.s. S. Goldschmidt and M. Wick, A. 575, 217 (1952).

Nitrogen ↑

NC $\ddot{\text{N}}$

Without additional reagents

w.a.r.

Sec. from prim. amines

NH₂ → NHR

**Exchange of substituents of
pyrimido[4,5-b]pyrazines**

s. 9, 534

**Sec. and tert. amines
from quaternary ammonium salts
by transamination**

NH → NR

478.

Benzylamine added to (3-hydroxy-2-pyridylmethyl)trimethylammonium bromide, then warmed 1.5 hrs. at 50° with stirring, and the product isolated as the dihydrochloride → 2-benzylaminomethyl-3-pyridol dihydrochloride. Y: 71%.—This reaction can be performed with amines which do not undergo the Mannich reaction or might react differently, as in the case of prim. amines. F. e. s. A. Stempel and J. A. Aeschlimann, Am. Soc. 74, 3323 (1952).

Substitution of carboxylic acid amides

CONH₂ → CONHR

479.

Homopiperonylamine and 4-pyridylacetamide in tetralin heated 2 hrs. at 200° → N-(4-pyridylacetyl)homopiperonylamine. Y: 73%. C. R. Noller and E. A. Wunderlich, Am. Soc. 74, 3835 (1952).

**Substitution of carboxylic acid thioamides
Dithiooxamides**

CSNH₂ → CSNHR

480.

A mixture of dithiooxamide and excess aq. 33%-ethylamine refluxed 15 min. on a water bath whereby a vigorous NH₃-evolution takes place after 10 min. → N,N'-diethyldithiooxamide. Y: 88%. F. e. s. H. M. Woodburn and C. E. Sroog, J. Org. Chem. 17, 371 (1952).

Ureas from amines and carboxylic acid azides

←

81.

Hippuryl azide added to a soln. of 1,3,4,6-tetraacetyl- β -D-glucosamine in ethyl acetate, and allowed to stand overnight at room temp. → N-(benzamidomethylcarbamyl)-1,3,4,6-tetraacetyl- β -D-glucosamine. Y: 73%.—No amide is obtained (cf. Synth. Meth. 6, 226; 7, 476/7), since the azide undergoes Curtius rearrangement before reacting with the amine. E. A. Popenoe, D. G. Doherty, and K. P. Link, Am. Soc. 75, 3469 (1953); s. a. J. W. Hinman, E. L. Caron, and H. N. Christensen, Am. Soc. 72, 1620 (1950).

Semicarbazides from ureas

482.

Mesitylurea, a 50%-soln. of hydrazine hydrate, and ethanol refluxed until evolution of NH₃ ceases after ca. 72 hrs. → mesitylsemicarbazide. Y: 87%. J. Packer, J. Vaughan, and T. W. Watts, Soc. 1952, 2654.

Cleavage of N-thioacylamidines
Diamidides

←

483.

N-Thiobenzoylbenzamidine dissolved in 2 N abs. ethanolic NH₃, and evaporated in vacuo after 30 min. → thiobenzamide (Y: 88%) and, after treatment with picric acid, benzamidinium picrate (Y: 74%). Also cleavage with amines, and with amidines to diamidides. ArC(:NH)N:C(NH₂)Ar, s. D. A. Peak, Soc. 1952, 215.

Amine salts of N-nitramines from N-nitrourethans

Ethyl N-nitro-N-isopropylcarbamate (prepn. s. Am. Soc. **73**, 5043 (1951)) allowed to react with cyclohexylamine in ether → cyclohexylamine salt of isopropyl-N-nitramine (Y: 94.5%) and ethyl N-cyclohexylcarbamate (Y: 63%).—The salts may be used for the identification of amines and N-nitramines, and the reaction is also useful for the identification of N-nitrocarbamates. F. e. s. H. M. Curry and J. P. Mason, Am. Soc. **73**, 5041 (1951).

4-Subst. 2-acylimidazoles from α -halogenoketones via α -azidoketones

A cold aq. soln. of NaN_3 added at $0\text{-}5^\circ$ to a soln. of phenacyl bromide in ethanol and glacial acetic acid, and allowed to stand 24 hrs. in the refrigerator with intermittent shaking \rightarrow phenacyl azide ($Y: 93\%$) dissolved in trichlorobenzene, resorcinol dimethyl ether, or diphenyl ether, and heated between 180 and 240° for 30 min. or until no more N_2 and water vapor is evolved \rightarrow 2-benzoyl-4(or 5)-phenylimidazole ($Y: 64\%$). F. e. and limitation s. J. H. Boyer and D. Straw, Am. Soc. **74**, 4506 (1952).

Imidazole ring from carboxylic acid amides Bi(benzimidazoles)

4.4 g. oxamide, 10.8 g. o-phenylenediamine, and ethylene glycol refluxed 3 hrs. → 9.2 g. crude 2,2'-bi(benzimidazolyl). F. e. s. E. S. Lane, Soc. 1953, 2238.

Copazolines

87.

A suspension of 15 g. 3-aminoisonicotinic acid and 12 g. thiourea in mineral oil heated 5 hrs. at 170-180° with stirring → 21 g. 2-thiocopazoline-2,4(1H,3H)dione. H. H. Fox, J. Org. Chem. 17, 547 (1952).

Pyrimido[4,5-b]pyrazines from pyrazines

88.

A soln. of 3-carbethoxyamino-5,6-diphenylpyrazinoic acid piperidide in ethanol satd. with anhydrous NH₃, then heated 6 hrs. at 155° in a sealed tube → 6,7-diphenyllumazine. Y: 90%. F. methods s. E. C. Taylor, Jr., J. A. Carbon, and D. R. Hoff, Am. Soc. 75, 1904 (1953).

Sodium hydroxide

NaOH

Hydroxylamines from quaternary ammonium salts

←

s. 9, 553

Nitrones from pyridinium salts

←

Kröhnke aldehyde synthesis **α -Ketoaldehydes from α -halogenoketones**

s. 1, 198/9; s. a. K. Balenović, D. Cerar, and L. Filipović, J. Org. Chem. 18, 868 (1953)

Potassium hydroxide/alcohol

KOH

Replacement of nitro groups

←

s. 9, 491

Sodium/alcohol

NaOR

Selective N-alkylation

NH → NR

Trimethylphenylammonium p-toluenesulfonate added to a soln. of Na in alcohol, filtered, the filtrate mixed with 6-(p-tolylsulfonamido)quinoline, the ethanol distilled off, and the residue heated 50 min. at 107-112° with occasional stirring → 6-(N-methyl-p-tolylsulfonamido)quinoline. Y: 60%. A. M. Simonov, Ж.22, 2006 (1952); C. A. 47, 9328g.

Phenyllithium

C₆H₅Li

Diazo compounds from sulfonic acid azides

CH₂ → CN₂

A soln. of cyclopentadiene in ether added dropwise with stirring during 30 min. to a cooled soln. of phenyl-Li (from bromobenzene and Li), stirring continued for 1 hr. at room temp., forced under N₂-pressure in a slow, steady stream during 1 hr. into a cooled, stirred soln. of p-toluenesulfonyl azide in dry ether → diazocyclopentadiene (Y: 35%) and p-toluenesulfonamide (Y: 29%). W. von E. Doering and C. H. DePuy, Am. Soc. 75, 5955 (1953).

Potassium carbonate

K₂CO₃

Replacement of nitro groups

←

491.

Partial replacement by amino groups. An intimate mixture of 4,5-dinitro-2-acetamidobenzoic acid and anhydrous K-carbonate added to aniline, and heated 30 min. on a steam bath → 5-nitro-4-anilino-2-acetamido-benzoic acid. Y: 92%. F. e. s. H. Goldstein and R. Jaunin, Helv. 34, 1860 (1951); with KOH/alcohol s. Helv. 34, 2222.

Sodium nitrite $NaNO_2$ **3-Nitrooxazolidines from
2 2-aminoalcohol molecules**

92.

Aq. $NaNO_2$ added dropwise with stirring at $0\text{-}5^\circ$ to a soln. of 2-amino-1-butanol in aq. acetic acid, stirring continued 1 hr. at the same temp., and overnight at room temp. → 2-propyl-4-ethyl-3-nitrooxazolidine. Y: 49-52%. H. R. Nace and M. H. Gollis, Am. Soc. 74, 5189 (1952).

*Copper**Cu* **α -Aminoketones from α -diazoketones** $COCHN_2 \rightarrow COCH_2N^-$

93.

Piperidine dissolved in abs. ethanol, the soln. stirred with Cu-bronze (Naturkupfer C) at 45° , a soln. of α -diazoacetophenone in abs. ethanol added slowly at a rate to maintain the temp. at 50° without external heating → α -(1-piperidyl)acetophenone. Y: 80%. P. Yates, Am. Soc. 74, 5376 (1952).

Silver carbonate Ag_2CO_3 **Substitution of amidines** $NH \rightarrow NR$

94.

Formamidine hydrochloride and Ag-carbonate added to a suspension of 1 g. L-leucine in formamide → 0.85 g. formimino-L-leucine. F. e. s. F. Micheel and W. Flitsch, A. 577, 234 (1952).

Aluminum chloride $AlCl_3$ **Azines from hydrazones**

1 g. benzophenone hydrazone added all at once to boiling aq. $AlCl_3$, and heating continued until the product precipitates \rightarrow 0.8 g. benzophenone azine. D. E. Pearson, K. N. Carter, and C. M. Greer. Am. Soc. 75, 5905 (1953).

Acetic acid CH_3COOH **Pyrazoles from ethyleniminoketones**

cis-1-Cyclohexyl-2-phenyl-3-(p-phenylbenzoyl)ethylenimine warmed 15 min. at 40-50° in an ethanol-chloroform mixture containing glacial acetic acid and phenylhydrazine, until a clear soln. is obtained, then allowed to stand 12 hrs. at room temp. \rightarrow 1,5-diphenyl-3-(p-xenyl)pyrazole. Y: 84%. F. e., pyrazolines from the *trans*-isomers, s. N. H. Cromwell and M. A. Graff, J. Org. Chem. 17, 414 (1952).

Isoalloxazines

s. 4, 418; s. a. E. E. Haley and J. P. Lambooy, Am. Soc. 76, 2926 (1954)

*Sulfate***Labeled purines by transformylation**

4,5,6-Triaminopyrimidine and N-formyl-C¹⁴-morpholine heated 80 min. at 200° in a slow N_2 -stream \rightarrow adenine. Y: 92%. R. Abrams and L. Clark, Am. Soc. 73, 4609 (1951).

Hydrochloric acid

HCl

Benzimidazole derivatives in identification of carbohydrates

7-Desoxy-L-manno-L-gala-heptonic phenylhydrazide allowed to react with o-phenylenediamine in the presence of HCl \rightarrow 2-(L-manno-L-gala-hepto-1,2,3,4,5-pentahydroxyhexyl)benzimidazole. Y: 70%. Also from salts and lactones s. D. A. Rosenfeld et al., Am. Soc. 73, 5907, 4907 (1951); method s. S. Moore and K. P. Link, J. Biol. Chem. 133, 293 (1940).

Oxazolone ring opening with dimerization

C

4 g. 4-aminomethylene-2-phenyl-5-oxazolone added to a soln. of dry HCl in methanol, and allowed to stand 5 days at 18-20° \rightarrow 4 g. dimethyl β,β' -iminodi-(α -benzoylaminoacrylate). I. T. Strukov, Ж. 23, 1344 (1953); C. A. 48, 117b.

Via intermediates

v.i.

**Subst. carboxylic acid amides
from carboxylic acid hydrazides
via carboxylic acid azides
Peptide synthesis**

CONHNH₂ \rightarrow CONHR

s. 7, 476/7; s. a. B. F. Erlanger, H. Sachs, and E. Brand, Am. Soc. 76, 1806 (1954); E. Sondheimer and R. W. Holley, Am. Soc. 76, 2816 (1954)

Halogen ↑**NC↑Hal***Without additional reagents*

w.a.r.

**Partial replacement of halogen
by amino groups**

Hal \rightarrow N<

s. 8, 497; s. a. E. A. Steck, R. P. Brundage, and L. T. Fletcher, Am. Soc. 76, 3225 (1954); also sec. amines s. L. Katz and M. S. Cohen, J. Org. Chem. 19, 767 (1954)

Exchange of substituents of pyrimidines

500.

A mixture of 4,6-dichloro-5-ethyl-2-methylpyrimidine and concd. aq. NH_3 heated 9 hrs. at 132-140° in a sealed tube \rightarrow 4-amino-6-chloro-5-ethyl-2-methylpyrimidine. Y: 88.9%.—At higher temp., both chloro substituents are replaced by amino groups. F. e. s. H. R. Henze, W. J. Clegg, and C. W. Smart, J. Org. Chem. 17, 1320 (1952); s. a. G. B. Brown and V. Spicer Welicky, J. Biol. Chem. 204, 1019 (1953).

**2-Ethyleneamines from β,γ -ethylenehalides
with subsequent N-acylation**

501.

A soln. of γ -bromocrotonic acid in liq. NH_3 allowed to evaporate slowly, water carefully added, evaporated to dryness on a steam bath, 2 equivalents of NaOH added, again evaporated to dryness, taken up in a little water, and treated with 1 equivalent of NaOH and 1 equivalent of phenylacetyl chloride with cooling and stirring \rightarrow crude γ -phenylacetylaminocrotonic acid. Y: 83%.—Treatment with liq. NH_3 in dry dioxane was not successful. D. Todd and S. Teich, Am. Soc. 75, 1895 (1953).

Sec. from prim. amines and halides $\text{Hal} \rightarrow \text{NHR}$

s. 9, 930; α -aminocarboxylic acid s. F. Blicke and P. E. Norris, Am. Soc. 76, 3213 (1954)

**Carboxylic acid amides
from carboxylic acid chlorides
Lower aliphatic amides**
 $\text{COCl} \rightarrow \text{CONH}_2$

502.

A soln. of α -ethylbutyryl chloride in dry benzene added dropwise during 1 hr. to benzene heated on a water bath while a stream of NH_3 is passed through and continued for 20 min. after the addition \rightarrow α -ethylbutyramide. Y: 91%.—If NH_3 is passed directly into the soln. of the acid chloride, large quantities of diamides are formed. F. e. s. G. E. Philbrook, J. Org. Chem. 19, 623 (1954).

**Subst. carboxylic acid amides
from carboxylic acid chlorides**
s. 9, 474

**Carboxylic acid hydrazides
from carboxylic acids
via carboxylic acid chlorides**

03.

A soln. of o-duroylbenzoic acid and SOCl_2 refluxed 1 hr., excess SOCl_2 distilled off, and the resulting acid chloride allowed to stand 24 hrs. with 85% -hydrazine hydrate at room temp. \rightarrow o-duroylbenzoyl-hydrazine. Y: 90%. R. C. Fuson and W. C. Hammann, Am. Soc. 74, 1626 (1952).

Carboxylic acid carbobenzoxyhydrazides $\text{COCl} \rightarrow \text{CONHNHCOR}$

04.

A soln. of phthalylglycyl chloride in ethyl acetate added to an ice-cold soln. of carbobenzoxyhydrazine in the same solvent, and the mixture kept 6 hrs. at room temp. \rightarrow phthalylglycine carbobenzoxyhydrazide. Y: 89%. F. e. s. K. Hofmann et al., Am. Soc. 74, 470, 476 (1952).

Isothiocyanates from amines
s. 1, 464; s. a. Chem. and Ind. 1954, 934

**S-Thiocarbamic acid esters from
amines and phenylthiocarbonyl chloride**
s. 9, 536

Sym. thioureas from amines

505.

A soln. of 10 g. 4,6-diaminocinnoline in 50% aq. acetone refluxed 0.5 hr. with thiocarbonyl dichloride → 13 g. N,N'-di-(4-amino-6-cinnolyl)-thiourea dihydrochloride. F. e. s. J. S. Morley and J. C. E. Simpson, Soc. 1952, 2617.

Lithium

Li

Tert. from prim. amines

s. 3, 366; s. a. J. Org. Chem. 19, 1074 (1954)

Sodium hydroxide

NaOH

Acylation of aminocarboxylic acids

s. 9, 501

**Selective N-acylation
of aminohydroxycarboxylic acids**

506.

An aq. soln. of β -phenylserine and NaOH, and a soln. of benzoyl chloride in benzene stirred together while aq. NaOH is added slowly → N-benzoyl- β -phenylserine. Y: 80%. E. D. Bergmann, H. Bendas, and W. Taub, Soc. 1951, 2673.

Carbalkoxy derivatives of amines

s. 7, 366, 490; carbo-p-nitrobenzoxy derivatives s. D. T. Gish and F. H. Carpenter, Am. Soc. 75, 950 (1953)

Selective N-carbalkoxylation

507.

A soln. of p-nitrobenzyl chloroformate in dioxane and 4 N NaOH added portionwise during ca. 1 hr. to a soln. of L-arginine monohydrochloride

in aq. NaOH-NaHCO₃ of pH 10.0 → Na-p-nitrobenzoxycarbonyl-L-arginine. Y: 88%.—The guanido group is blocked with a proton. N^ω-Isomer s. 49. D. T. Gish and F. H. Carpenter. Am. Soc. 75, 5872 (1953); selective N-carbalkoxylation of aminohydroxycarboxylic acids s. J. A. Moore et al., Am. Soc. 76, 2884 (1954).

Carbalkoxycyanamides

508.

Ethyl chloroformate gradually added with stirring below 20° to cyanamide and NaOH in water, stirring continued 30 min., chloroform added, cooled, and acidified with concd. HCl → carbethoxycyanamide. Y: 88.5%. F. e., and decomposition products. s. D. W. Kaiser and J. T. Thurston, J. Org. Chem. 17, 185 (1952).

Phenoxyazines

509.

A soln. of NaOH in 50% aq. alcohol slowly added to a stirred refluxing soln. of 8.5 g. o-benzylaminophenol (prep. s. 80) and 9 g. 1-chloro-2,4-dinitrobenzene in alcohol, heating continued for 1 hr. → 11.3 g. 10-benzyl-3-nitrophenoxyazine. F. e. s. B. Boothroyd and E. R. Clark, Soc. 1953, 1499.

Potassium hydroxide

KOH

Betaines from aminocarboxylic acids

←

510.

A soln. of methyl iodide in methanol added to an aq. soln. of β-hydroxy-γ-aminobutyric acid and KOH, refluxed slowly for 36 hrs., at a pH of ca. 5.5, and the product purified by extraction with phenol satd. with water from an aq. soln. → DL-carnitine. Y: 78%. H. E. Carter and P. K. Bhattacharyya, Am. Soc. 75, 2503 (1953).

Acyldicyanodiamides

NH → NAc

511.

A mixture of dicyanodiamide, 85%-KOH pellets, and acetone stirred vigorously at 10° for 1 hr., then benzoyl chloride added with stirring at 0.5° → benzoyldicyanodiamide (startg. m. f. 219, 417). Crude Y: 89%. F. e., also with carboxylic acid anhydrides, s. P. Adams et al., J. Org. Chem. 17, 1162 (1952).

Potassium hydroxide/acetone

Selective N-alkylation

NH → NR

Substitution of carboxylic acid amides

512.

Powdered KOH added to p-benzamidodiphenylamine in acetone, the hot mixture refluxed gently while methyl iodide in acetone is added, and the product isolated after 20 min. → p-(N-methylbenzamido)diphenylamine. Y: 90%.—When large differences in proton availability exist, the method may also be applied to the selective methylation of one amino group in the presence of another: p-Amino-p'-nitrodiphenylamine → p-amino-p'-nitrodiphenylmethylamine. Y: 83%. F. e. s. I. J. Pachter and M. C. Kloetzel, Am. Soc. 74, 1321 (1952).

Sodium/alcohol

NaOR

Ring closure due to steric hindrance

513.

N,N'-Ditosyl-o-phenylenediamine added to a refluxing soln. of Na in n-butanol, refluxed until dissolved, 1,4-dibromobutane added, and refluxing continued until alkaline reaction disappears → N,N'-ditosyl-N,N'-tetramethylene-o-phenylenediamine. Y: 91%.—Polycondensation is inhibited by steric hindrance. It is therefore not necessary to apply high dilution (cf. 971). F. e. and limitations s. H. Stetter, B. 86, 197 (1953); dimethylformamide as solvent s. B. 87, 566 (1954).

Lithium amide

LiNH₂

N-Alkylation

NH → NR

Substitution of carboxylic acid amides

514.

A mixture of 2-acetamidothiophene, benzyl chloride, and LiNH₂ in dry toluene refluxed 24 hrs. → N-benzyl-N-(2-thienyl)acetamide. Y: 84%. I. A. Kaye, C. L. Parris, and N. Weiner, Am. Soc. 75, 744 (1953); N-alkylation of 2-aminothiazoles s. Am. Soc. 74, 2921 (1952).

*Sodium amide**NaNH₂* *α,β -Acetylene-prim-amines
from α,β -acetyleneclorides* $\text{Cl} \rightarrow \text{NH}_2$

5.

Methyl-n-amylethynylcarbinyl chloride in anhydrous ether added drop-wise during 1 hr. with stirring to NaNH_2 in liq. NH_3 , and stirring continued for 1 hr. \rightarrow methyl-n-amylethynylcarbinyl amine. Y: 48-70%. F. e. and limitation s. G. F. Hennion and E. G. Teach, Am. Soc. 75, 1653 (1953).

N-Alkylation $\text{NH} \rightarrow \text{NR}$

s. 9, 539; s. a. U. Hörlein, B. 87, 463 (1954)

m-Amines from o-halides with rearrangement \leftarrow

s. 3, 371; s. a. J. F. Nobis and N. W. Burske, Am. Soc. 76, 3034 (1954); also without rearrangement s. R. A. Benkeser and W. E. Buting, Am. Soc. 74, 3011 (1952)

*Potassium amide**KNH₂*

s. 9, 539

*Sodium carbonate**Na₂CO₃***Ketimine methiodides** \leftarrow

16.

A mixture of 5 g. duryl phenyl ketimine, 20 ml. 5% Na-carbonate soln., and 10 g. methyl iodide refluxed 2 hrs. \rightarrow duryl phenyl N-methylketimine methiodide. Y: 80%. F. e. s. R. C. Fuson, W. D. Emmons, and J. P. Freeman, Am. Soc. 75, 5321 (1953).

Selective N-acylation $\text{NH} \rightarrow \text{NAc}$

17.

2 N Na_2CO_3 then in portions benzoyl chloride in chloroform added with shaking to a soln. of L-thyroxine methyl ester in chloroform \rightarrow N-benzoyl-L-thyroxine methyl ester. Y: 82%. F. e. s. A. Taurog, S. Abraham, and I. L. Chaikoff, Am. Soc. 75, 3473 (1953).

Cyclic imines from dihalides

s. 2, 438; from dichlorides s. B. Idson and D. E. Spoerri, Am. Soc. 76, 2902 (1954)

Sodium hydrogen carbonate

NaHCO₃

1,3,5-Triazine derivatives

518. A hot soln. of cyanuric chloride in acetone or dioxane poured in fine stream into water cooled to 0° at such a rate that the temp. does not exceed 5°, to the slurry thus formed 2-aminothiazole added, then excess aq. NaHCO₃ added gradually with stirring, which is continued 0.5-3 hrs. at 0-5° → 2,4-dichloro-6-(2-thiazolylamino)-1,3,5-triazine. Y: 70%.—Diamino derivatives demand a reaction temp. of 40-45°, triamino derivatives 100-125°. F. e. s. W. O. Foye and A. E. Buckpitt, J. Am. Pharm. Assoc. 41, 385 (1952).

Sec. from prim. amines and fluorides

s. 8, 563; 2,4-dinitrophenyl-L-amino acids s. K. R. Rao and H. A. Sober, Am. Soc. 76, 1328 (1954)

Subst. hydrazines

s. 9, 988

Potassium carbonate

K₂CO₃

Urethans from amines

NH₂ → NHCOOR

519. (C₆H₅CH₂OOC)₂CHNH₂ + ClCOOCH₂C₆H₅ → (C₆H₅CH₂OOC)₂CHNHCOOCH₂C₆H₅
- A soln. of benzyl chloroformate in toluene added dropwise over a period of 3 hrs. to a stirred refluxing soln. of dibenzyl aminomalonate in dry benzene containing anhydrous K-carbonate, and refluxing continued 1 hr. → dibenzyl carbobenzoxyaminomalonate. Y: 86% based on benzyl chloroformate. H. M. Kissman and B. Witkop, Am. Soc. 75, 1967 (1953).

Sodium azide

NaN₃

Azides from halides

Hal → N₃

s. 7, 493; s. a. F. R. Benson, L. W. Hartzel, and E. A. Otten, Am. Soc. 76, 1858 (1954)

***a*-Azidoketones**

s. 9, 485; s. a. H. Bretschneider and H. Hörmann, M. 84, 1021 (1953)

Sodium salt

Na $^+$ **N-Alkylation****of 2,4-oxazolidinediones**

NH → NR

s. 9, 24

of sulfimides. Na-Saccharin and NaI added to a soln. of o-chlorobenzyl chloride in dimethylformamide, and heated 30 min. on a steam bath → N-(o-chlorobenzyl)saccharin. Y: 94%.—The less reactive normal and branched chained alkyl chlorides give best yields when the reaction is carried out at 150°. F. e. s. H. L. Rice and G. R. Pettit, Am. Soc. 76, 302 (1954).

(Diacylamino)carboxylic acid esters
from acylaminocarboxylic acid esters
via (carbalkoxyalkylimino)chlorides

←

PCl₅ added to a soln. of benzyl hippurate in dry dioxane, swirled 10 min. until the PCl₅ is dissolved, then evaporated below 50°/25 mm. toluene added, and again evaporated at 25 mm pressure to remove the last traces of POCl₃, the crude imino chloride dissolved in dry dioxane, added to a stirred suspension of dry Na-benzoate in dioxane, warmed 12 hrs. at 65° with stirring, finally refluxed 4 hrs. → N,N-dibenzoyl-glycine benzyl ester. Y: 70%. J. C. Sheehan and E. J. Corey, Am. Soc. 74, 4555 (1952).

Isothiocyanates from halides

Hal → NCS

3-Bromocyclohexene added dropwise with stirring over a period of 2 hrs. to a soln. of Na-thiocyanate in abs. methanol, stirring continued at room temp. for an additional 2 hrs., and worked up with final vacuum distillation → 3-isothiocyanocyclohexene. Y: 76%. F. L. Greenwood and W. J. James, Am. Soc. 73, 4495 (1951); cf. Synth. Meth. 8, 411, 682.

*Pyridine**C₅H₅N***Tritylamines****NH → NR**

A soln. of trityl chloride in pyridine added to a soln. of aniline in pyridine, cooled to keep the mixture at room temp., and the product isolated after 24 hrs. → N-tritylaniline. Y: 88%. F. e. s. P. E. Verkade et al., R. 71, 1007 (1952).

**Tert. from. sec. amines
via carboxylic acid amides**

N-Methylbenzhydrylamine and α -naphthoyl chloride in dry pyridine heated 12 hrs. at 100°, then allowed to stand overnight → N- α -naphthoyl-N-methylbenzhydrylamine (Y: 97%) refluxed 2.5 hrs. with LiAlH₄ in ether, then stirred 12 hrs. at 20°, and the product isolated as the hydrochloride → N-methyl-N- α -methylnaphthylbenzhydrylamine hydrochloride (Y: 83%). F. e. and methods s. H. Dahn, U. Solms, and P. Zoller, Helv. 35, 2117 (1952).

**Sec. and tert. acid amides
Nitriles from carboxylic acid amides**

Pyridine followed by acetamide added with stirring at -75° to a soln. of m-bromobenzoyl chloride in chloroform-methylene chloride, then ethanol added, and the mixture allowed to come to room temp. → di-(m-bromobenzoyl)acetamide. Y: 93%.—In certain cases, dehydration to nitriles occurs instead of acylation. F. e., also acylation of sulfonamides, s. Q. E. Thompson, Am. Soc. 73, 5841 (1951).

Halogenourethans from amines

s. 9, 45

*Copper**Cu***Oxindoles**

s. 9, 527

○

*Cupric oxide**Cu₂O*

Replacement of bromine by amino groups
Sec. from prim. amines and halides

←

26.

p-Bromobenzene phosphonic acid (prep. s. 717) heated 6 hrs. in the presence of fresh Cu₂O in concd. aq. NH₃ at 100° → phosphanilic acid. Y: 80%. V. L. Bell, Jr., and G. M. Kosolapoff, Am. Soc. 75, 4901 (1953); sec. from prim. amines s. G. O. Doak and L. D. Freedman, Am. Soc. 75, 683 (1953).

*Cupric acetate**(CH₃COO)₂Cu***Oxindoles**

○

27.

A mixture of o-chlorophenylacetic acid, Cu-powder or cupric acetate, and concd. aq. NH₃ heated 8 hrs. at 155-165° in a sealed tube → oxindole. Y: 34-43%. A. B. Neill, Am. Soc. 75, 1508 (1953).

*Silver nitrite**AgNO₂***Aliphatic nitro compounds from halides**Hal → NO₂**Victor Meyer reaction****Improved procedure**

28.

5% excess Ag-nitrite added with stirring as rapidly as possible at 3° to n-amyl bromide in petroleum ether (b. p. 45-55°), the ice bath removed, the temp. of the well-stirred mixture allowed to rise to 40° during 0.5 hr. and kept 5.5 hrs. at 38-42° by external cooling → 1-nitropentane. Y: 66.6%. F. e. s. C. W. Plummer and N. L. Drake, Am. Soc. 76, 2720 (1954); in ether at lower temp. s. N. Kornblum, B. Taub, and H. E. Ugnade, Am. Soc. 76, 3209 (1954); *α,ω*-dinitro compounds s. H. Feuer and G. Leston, Org. Synth. 34, 37 (1954).

*Magnesium oxide**MgO*

Subst. carboxylic acid amides
from carboxylic acid chlorides

COCl → CON<

s. 9, 402

Carbobenzoylation of amines $\text{NH}_2 \rightarrow \text{NHCOOR}$

529.

Carbobenzoxy chloride added portionwise during 30 min. with stirring to a mixture of glutamic acid, MgO, water, and ether, stirring continued for 6 hrs. \rightarrow carbobenzoxy-L-glutamic acid. Y: 80%. V. du Vigneaud and G. L. Miller, Biochem. Prep. 2, 79 (1952); s. a. Am. Soc. 76, 6202 (1954).

Alkylmagnesium halide RMgHal **N-Acylation** $\text{NH} \rightarrow \text{NAC}$

s. 7, 494; 1-acylindoles s. G. R. Clemo and J. C. Seaton, Soc. 1954, 2582; 10-acylphenothiazines s. G. Cauquil and A. Casadevall, C. r. 236, 1569 (1953)

Mercuric chloride HgCl_2 **Nucleosides from purines
via mercuripurines** \leftarrow

s. 7, 497; improved procedure by addition of Celite in the second step
s. B. R. Baker et al., J. Org. Chem. 19, 1780, 1786 (1954)

Ethyl alcohol $\text{C}_2\text{H}_5\text{OH}$ **Diglycosamines from acetohalogenosugars** \leftarrow

530.

Finely powdered acetobromocellobiose added with shaking to liq. NH_3 , which is then allowed to evaporate slowly, several times extracted with abs. methanol and evaporated to dryness in vacuo, again dissolved in abs. methanol, precipitated with abs. ether, and recrystallized several times with methanol- NH_3 \rightarrow dicellobiosylimine. Y: 70%. Also isolation of the intermediate glycosamine s. F. Micheel et al., B. 85, 1092 (1952).

Phenol/hydrochloric acid

s. *Hydrochloric acid/phenol*

Hydrochloride

Hydroxylamines from halides

C₆H₅OH/HCl

Hal → NHOH

31.

A soln. of 0.139 mole Na in abs. alcohol added to a warm soln. of 0.147 mole hydroxylamine hydrochloride in abs. alcohol, cooled to 0°, an ethereal soln. of p-chlorophenyldiphenylcarbinyl chloride added, and worked up after 1 hr. → p-chlorophenyldiphenylmethylhydroxylamine. Y: 78%. F. e. s. M. S. Newman and P. M. Hay, Am. Soc. 75, 2322 (1953).

Hydantoins from phosgene

32.

A suspension of glycylglycine ethyl ester hydrochloride in toluene treated with phosgene at an oil bath temp. of 130-160° for 3 hrs. until dissolved → ethyl 3-hydantoinacetate. Y: ca. 100%. S. Goldschmidt and M. Wick, A. 575, 217 (1952).

Hydrochloric acid/phenol

HCl/C₆H₅OH

Sec. from prim. amines and halides

NH₂ → NHR

33.

A mixture of 4-chloro-10-hydroxy-1,7-phenanthroline, 3-diethylamino-2-hydroxypropylamine (prepn. s. 634), phenol, and alc. HCl in isopropanol refluxed 3 hrs. with stirring → 4-(3-diethylamino-2-hydroxypropylamino)-10-hydroxy-1,7-phenanthroline. Y: 87%. F. e. s. A. R. Surrey and R. A. Cutler, Am. Soc. 76, 1109 (1954); role of phenol s. a. A. P. Phillipps, J. Org. Chem. 17, 1456 (1952).

Sulfur ↑**NC[†]S***Without additional reagents*

w.a.r.

Replacement of sulfur by amino groups

←

s. 9, 542

←

Exchange of substituents**of pyrimido[4,5-b]pyrazines****Replacement of sulfhydryl by amino groups****Sec. from prim. amines**

534.

A mixture of 4-amino-2-mercaptop-6,7-diphenylpteridine and ethanolamine refluxed 4 hrs. → 2,4-bis-(2-hydroxyethylamino)-6,7-diphenylpteridine. Y: ca. 100%. F. e. s. E. C. Taylor, Jr., and C. K. Cain, Am. Soc. 73, 4384 (1951).

Amines from thioethersSR → NH₂

535.

5 g. 5-amino-7-methylthio-1,2,4,6-tetraazaindene and aq. NH₃ (d. 0.88) heated 16 hrs. at 150° in a sealed tube → 2.8 g. 5,7-diamino-1,2,4,6-tetraazaindene. F. L. Rose, Soc. 1952, 3448; tert. amines s. C. K. Cain and S. K. Naegele, Am. Soc. 76, 3214 (1954).

**Ureas and semicarbazides
from thiocarbonyl chlorides
via S-thiocarbamic acid esters**

536.

Ethylamine added portionwise over a 3-4 min. interval to an ice-cold and vigorously shaken soln. of phenylthiocarbonyl chloride in abs.

alcohol, and allowed to stand 10 min. at 25° → N-ethyl-S-phenylthiocarbamate (Y: 84%) dissolved in abs. ethanol, ethylamine added to the ice-cold soln. with shaking, and allowed to stand 15 min. at 25° → crude sym-diethylurea (Y: 90%). Also one-step procedure, asym. ureas, and use of triethylamine in the second step, s. W. H. Schuller and C. Niemann, Am. Soc. 75, 3425 (1953); also acylureas and semicarbazides from S-thiocarbamic acid esters and amides or hydrazines respectively s. D. G. Crosby and C. Niemann, Am. Soc. 76, 4458 (1954).

Guanidines from amines and isothioureas

s. 2, 456; 5, 346; nitroguanidines s. L. Fishbein and J. A. Gallagher, Am. Soc. 76, 1877 (1954)

Thionocarbamic acid esters from thionothiodiformic acid esters

37.

Aniline added dropwise with stirring to an alc. soln. of diethyl thiono-thiodiformate cooled in an ice-salt bath, and stirring continued for 3 hrs. → ethyl phenylthionocarbamate. Y: 87%. F. e. s. R. Sayre, Am. Soc. **74**, 3647 (1952).

New synthesis of purines from pyrimidines

38.

A mixture of 2-sulfaminouracil (prepn. s. 675) and urea heated 30 min. at $190-200^{\circ}$ \rightarrow uric acid. Y: 90%. formamide heated to 200° , and kept 40 min. at this temp. \rightarrow acetamide heated 30 min. at 200° \rightarrow 8-methylxanthine. Y: 75%.

F. G. Fischer, W. P. Neumann, and J. Roch, B. 85, 752 (1952).

*Sodium hydroxide**NaOH***N-Alkylation of sulfonylamides** $\text{NH} \rightarrow \text{NR}$

s. 6, 410; s. a. B. R. Baker, R. E. Schaub, and J. P. Joseph, *J. Org. Chem.* 19, 638 (1954)

*Sodium amide**NaNH₂***N-Alkylation of indoles** $\text{NH} \rightarrow \text{NR}$

539.

Indole added with stirring to a soln. of NaNH_2 in *liq. NH₃*, then dimethyl sulfate in abs. ether added dropwise during 30 min., and stirring continued for 1 hr. \rightarrow N-methylindole. Y: 90%.—Other procedures give C-alkylated products. F. e. with halides s. H. Plieninger, B. 87, 127 (1954); s. a. K. T. Potts and J. E. Saxton, Soc. 1954, 2641; with KNH_2 in *liq. NH₃* s. J. W. Cook, J. D. Loudon, and P. McCloskey, Soc. 1952, 3904.

*Sodium hydrogen carbonate**NaHCO₃***Selective N-methylation of ar. amines**

540.

Ar. amines are methylated in the presence of neutral carbonates (NaHCO_3 , KHCO_3 , CaCO_3) under conditions in which phenolic hydroxyl groups are not methylated.—E: A mixture of crude 1-amino-7-naphthol, NaHCO_3 , dimethyl sulfate, water, and ethyl acetate stirred 3 hrs. at 20-23° until the gas evolution ceases, then excess dimethyl sulfate decomposed by treating with concd. aq. NH_3 and stirring 10 min. \rightarrow 1-dimethylamino-7-naphthol. Y: 74%. F. e., also quaternary ammonium salts, s. S. Hünig, B. 85, 1056 (1952).

Triethylamine $(\text{C}_2\text{H}_5)_3\text{N}$ **Disubst. ureas from S-thiocarbamic acid esters**

s. 9, 536

←

*Pyridine**C₆H₅N*

Carboxylic acid anilides from carboxylic acids and sulfamides
Formamidines from sulfamides

←

A mixture of phenylacetic acid, sym. diphenylsulfamide, and dry pyridine heated 4 hrs. at 115-120° → α-phenylacetanilide. Y: 97.1%.—Formic acid reacts with 2 moles giving 87% diphenylformamidine. F. e. s. A. V. Kirsanov and N. L. Egorova, Ж. 22, 1612, 1614 (1952); C. A. 47, 8041b, a.

*Mercuric oxide**HgO*

Replacement of sulfur by amino groups

←

A mixture of 6,7-diphenyl-4(3H)-pteridinethione,

benzylamine, HgO,
and ethanol refluxed
5 hrs. → 4-benzyl-
amino-6,7-diphenyl-
pteridine. Y: 99%.

and abs. ethanol satd. with NH₃ heated 10 hrs. at 130° in a sealed tube → 4-amino-6,7-diphenylpteridine. Y: 84%.—This compound could not be obtained under less strenuous conditions with HgO.

F. e. s. E. C. Taylor, Jr., J. A. Carbon, and D. R. Hoff, Am. Soc. 75, 1904 (1953).

*Sulfur**S*

Sym. thioureas from amines

CS(N<)=

s. 6, 489; f. methods s. S. Hünig, H. Lehmann, and G. Grimmer, A. 579, 77 (1953)

*Hydriodides***Aminoguanidines from isothioureas**SR → NHNH₂

s. 8, 532; also cyclic compounds s. W. G. Finnegan, R. A. Henry, and E. Lieber, J. Org. Chem. 18, 779 (1953)

←

Remaining Elements *NC \ddagger Rem*Without additional reagents*

w.a.r.

Synthesis of peptides with phosphite amides

COOH → CONHR

543.

Methyl L-leucinate diethyl phosphite amide refluxed 1 hr. with carbo-benzoxy-L-leucine in toluene → methyl carbobenzoxy-L-leucyl-L-leucinate. Y: 74%.—This new amide synthesis differs from the usual methods in that the intermediate is a reactive derivative of the amino moiety rather than the carboxylic fragment. Y: 74%. F. e. s. G. W. Anderson et al., Am. Soc. 74, 5304 (1952).

Triethylamine $(\text{C}_2\text{H}_5)_3\text{N}$ **Stepwise degradation of peptides**

○

via 2-thiohydantoins**Modified Schlack-Kumpf degradation**

544.

cf. Synth. Meth. 8, 475.

The following procedure gives high yields of the intermediate acyl-thiohydantoins under mild conditions: Triethylamine, then diphenyl isothiocyanophosphonate added to a soln. of benzoylglycylleucine in dimethylformamide, and kept 2 days at room temp. in a sealed flask → 1-benzoylglycyl-5-isobutyl-2-thiohydantoin. Y: over 90%. F.e., in acetonitrile, s. G. W. Kenner, H. G. Khorana, and R. J. Stedman, Soc. 1953, 673.

Carbon †**NC \ddagger C***Without additional reagents**w.a.r.***Thiosemicarbazones by interchange**
s. 9, 432**Formylation of amines**

45.

Strong organic bases can be easily formylated with chloral in good yield. A rapid reaction takes place at low temp., and chloroform is the only by-product.—E: 1 molar equivalent chloral added dropwise with stirring and ice-cooling to piperidine, stirred several hrs. at room temp., finally heated 0.5 hr. on a steam bath \rightarrow N-formylpiperidine. Y: 90%.—Solid amines are dissolved or suspended in chloroform.—F. e. s. F. F. Blicke and Chi-Jung Lu, Am. Soc. 74, 3933 (1952).

**Carboxylic acid amides
from carboxylic acids and ureas**

s. 2, 461; also dicarboxylic acid imides s. A. Rahman and M.O. Farooq, B. 86, 945 (1953)

1,3,5-Triazines from biguanides

○

46.

Ethyl trichloroacetate added with stirring to a suspension of phenylbiguanide in chloroform, and refluxed 5 hrs. \rightarrow 2-amino-4-anilino-6-hydroxy-1,3,5-triazine. Y: 83.6%. S. L. Shapiro and C. G. Overberger, Am. Soc. 76, 97 (1954).

**v. Braun degradation
of quaternary ammonium salts by transalkylation**

C

47.

Triethylendiamine di(methobromide) heated with dimethylamine and methanol in a sealed tube with shaking at 40° for 1 hr., then at 125° for 7 hrs., cooled and satd. with HCl \rightarrow 1-(2-dimethylaminoethyl)-4-

methylpiperazine hydrochloride. Crude Y: 88%. F. e. s. O. Hromatka and O. Kraupp, M. 82, 880 (1951).

Sodium hydroxide

NaOH

Japp-Klingemann reaction

Hydrazone from diazonium salts

**α -Ketocarboxylic acid ester phenylhydrazone
from β -ketocarboxylic acid esters**

s. 2, 462, 813; s. a. V. V. Feofilaktov and N. K. Semenova, Sint. Org. 2, 63 (1952); C. A. 48, 666c

Sodium/alcohol

NaOR

Azo compounds from N-nitrosoacylamines

N:N

548.

An ice-cold alc. soln. of crude N-nitrosoacetanilide treated with β -naphthol, then with Na-ethoxide in ethanol, after 2 min. at 0° neutralized by dropwise addition of glacial acetic acid → phenylazo-2-naphthol. Y: 98.5%. R. Huisgen, A. 573, 163 (1951).

Sodium amide

NaNH₂

Carboxylic acid amides from phenyl ketones

COC₆H₅ → CONH₂

s. 2, 463, 725; s. a. K. E. Hamlin and M. Freifelder, Am. Soc. 75, 369 (1953)

Pyridine

C₅H₅N

Subst. carboxylic acid amides from isocyanates

N:C:O → NHCOR

Peptide synthesis via

α -isocyanatocarboxylic acid esters

s. 8, 538; s. a. B. 86, 1116 (1953)

Methylmagnesium iodide

CH₃MgI

Replacement of N-acyl by N-alkyl

NAc → NR

549.

N-Benzyl-N-phenylacetamide added in small portions to excess ethereal methyl-MgI, refluxed 1.5 hrs. with stirring, cooled in an ice bath, dimethylaminoethyl chloride hydrochloride added portionwise to the stirred mixture, and refluxed 2 additional hrs. → N,N-dimethyl-N'-benzyl-N'-phenylethylenediamine (Antergan). Y: 53.5%. Limitation s. I. A. Kaye, C. L. Parris, and N. Weiner, Am. Soc. 75, 744 (1953).

Cyanogen bromide CNBr

Cyanamides from tert. amines NR \rightarrow N·CN

s. 8, 540; s. a. A. Nickon and L. F. Fieser, Am. Soc. 74, 5566 (1952)

Hydrazoic acid HN₃

Schmidt reaction COOH \rightarrow NH₂

Amines from carboxylic acids

Degradation with loss of 1 C-atom

s. 5, 354; in 100% H₂SO₄, s. a. M. Fields, S. Rothchild, and M. A. Leaf-fer, Am. Soc. 74, 2435 (1952)

Hydroxylamine/polyphosphoric acid H₂NOH/H(PO₃H)_xOH

Amines from carboxylic acids COOH \rightarrow NH₂

Lossen rearrangement

s. 8, 542; s. a. Am. Soc. 76, 3039 (1954)

Phosphorus oxychloride POCl₃

Exchange of substituents of amines NR \rightarrow NR'

s. 9, 625

Copper-chromium-barium oxide \leftarrow

Transalkylation of tert. amines

A mixture of dodecanol, triethylamine, and Cu-Cr-Ba oxide heated 10 hrs. at 250° and 380 atm. of H₂ \rightarrow diethyldodecylamine. Y: 66%. F. e. s. H. J. Schneider, H. Adkins, and S. M. McElvain, Am. Soc. 74, 4287 (1952).

Via intermediates v.i.

Shortened Curtius degradation COOH \rightarrow NH₂

Amines from carboxylic acids

via acid chlorides, acid azides, and sym. ureas

An aq. soln. of Na-azide added at 0-5° with stirring to a soln. of 2-nitroveratric acid chloride (prepared from the acid with SOCl₂), stir-

ring continued 0.5 hr. at 0°, poured into ice-water, the crude azide dried, dissolved in dry benzene, heated gently at first and then at reflux 4-6 hrs. until N₂-evolution ceases, cooled to room temp., vigorously stirred and treated cautiously with cold 50%-KOH soln., whereby the sym. urea precipitates, then the benzene slowly distilled from the reaction mixture, whereby the urea is hydrolyzed → 4-amino-3-nitroveratrole. Y: 85%. R. C. Elderfield and G. L. Krueger, J. Org. Chem. 17, 358 (1952).

Elimination

Hydrogen ↓

$\text{NC}\uparrow\text{H}$

Tetramethylammonium acetate

$\text{CH}_3\text{COON}(\text{CH}_3)_4$

Indazoles from diazonium salts
or N-nitrosoacylamines.

Intramolecular coupling

552.

o-Toluenediazonium chloride added to a soln. of dry tetramethylammonium acetate in alcohol-free chloroform, and allowed to stand 1 day at room temp. → indazole. Y: 87%.

In alcohol, the yields of indazole are low, and ethyl alcohol is oxidized to acetaldehyde (Y: up to 81%). R. Huisgen and H. Nakaten, A. 573, 181 (1951).

Crude nitrosobenz-o-toluide in dry alcohol-free chloroform allowed to stand several days at room temp. → indazole. Y: 92%.

Nitrobenzene/sodium hydroxide

$\text{C}_6\text{H}_5\text{NO}_2/\text{NaOH}$

Aldehydes from quaternary ammonium salts
via hydroxylamines and nitrones

$\text{CH}_2\text{NR}_3^+ \rightarrow \text{CHO}$

553.

Phenylhydroxylamine added at room temp. to a soln. of gramine methosulfate in methanol, made alkaline with 2 N NaOH, nitrobenzene added,

refluxed 1 hr., more 2 N NaOH added, steam-distilled, and the product isolated from the residue → 3-indolealdehyde. Y: 87.91%. J. Thesing, B. 87, 507 (1954).

Ferric chloride

FeCl₃

**3-Mercapto-1,2,4-triazoles
from thiosemicarbazones
via isothiosemicarbazones**

554.

A mixture of 4-acetamidobenzaldehyde thiosemicarbazone and benzyl chloride refluxed 1.5 hrs. → 4-acetamidobenzaldehyde 3-benzyl-3-thio-pseudosemicarbazone hydrochloride (Y: 73%), the crude compound dissolved in water, and to the boiling soln. aq. 10%-FeCl₃ added portionwise → 3-benzylmercapto-5-(4-acetamidophenyl)-1,2,4-triazole (Y: 73%). F. e. s. R. Duschinsky and H. Gainer, Am. Soc. 73, 4464 (1951).

Oxygen ↑

NC↑O

Without additional reagents

w.a.r.

Lactam ring closure

s. 9, 949

Racemization via lactams

555.

Mono-Na-L-glutamate and solid NH₄Cl thoroughly mixed, heated at 230-235° until evolution of NH₃ and water vapor ceases, heating continued 1 hr. with frequent stirring, refluxed 5 hrs. with 6 N HCl, and the aq. soln. of the crude product adjusted approximately to pH 3 with

concd. aq. NH₃ → DL-glutamic acid monohydrate. Y: 51-53%. —L-Pyrrolidone carboxylic acid racemizes rapidly at 230°. M. S. Dunn and M. P. Stoddard, Biochem. Prep. 2, 69 (1952).

Indazoles from N-nitrosoacylamines

s. 9, 552

2,5-Piperazinediones

556.

A mixture of sarcosylglycine and ethylene glycol refluxed 30 min. → 1-methyl-2,5-piperazinedione. Y: 73%. B. H. Chase and A. M. Downes. Soc. 1953, 3874.

N-Condensed heterocyclics

557.

A soln. of 1-(2'-carbomethoxyskatyl)isoquinoline in α-methylnaphthalene refluxed 20 hrs. → 1,2-benzo-7,8-(2',3'-indolo)-6-quinolizone (Y: 85%), 1 g. suspended in boiling n-butanol, and Na added in small pieces → 0.9 g. 1,2-benzo-7,8-(2',3'-indolo)tetrahydroquinolizine. V. Boekelheide and Chu-tsin Liu, Am. Soc. 74, 4920 (1952); ring closure s. a. Am. Soc. 75, 3679 (1953).

Benzoxazoles

558.

3-Nitro-2-acetamido-1-phenyl acetate heated in an oil bath at 200° until fused, then at 230-240° until no more acetic acid distils → 2-methyl-4-nitrobenzoxazole. Y: 97%. C. Sannie and H. Lapin, Bl. 1952, 369.

*Sodium hydroxide**NaOH*

**Dicarboxylic acid imides
from cyanocarboxylic acid esters
via dicarboxylic acid amide esters**

Ethyl β -cyano- β,β -diphenylpropionate dissolved during 2-3 hrs. in cold 85% H_2SO_4 , the crude ester-amide dissolved in warm alcohol, aq. NaOH added, and immediately acidified with dil. HCl \rightarrow α,α -diphenylsuccinimide. Y: ca. 100%. F. Salmon-Legagneur, Bl. 1952, 580.

*Potassium hydroxide**KOH***1,3,5-Triazines from acylbiurets**

Benzoylbiuret (prepn. s. 219) dissolved in aq. KOH, and acidified 2 hrs. later \rightarrow benzoguanamide. Crude Y: 98%. P. Adams et al., J. Org. Chem. 17, 1162 (1952).

*Sodium/alcohol**NaOR***Pyrimido[4,5-b]pyrazines from pyrazines**

A soln. of N-(n-butyl)-3-carbethoxyamino-5,6-diphenylpyrazinamide in a soln. of Na in abs. ethanol refluxed 10 hrs. \rightarrow 3-(n-butyl)-6,7-diphenyl-2,4(1H,3H)-pteridinedione. Y: 88.8%. F. methods s. E. C. Taylor, Jr., J. A. Carbon, and D. R. Hoff, Am. Soc. 75, 1904 (1953); s. a. W. Pfleiderer and J. Geisler, B. 87, 1274 (1954).

Ammonia

NH₃

**1,3,5-Triazines from
carbalkoxydicyanodiamides
via carbalkoxyguanylureas**

562.

Carbethoxydicyanodiamide added to 18.5%-HCl, heating continued several min. after the exothermic reaction has subsided → carbethoxyguanylurea hydrochloride (Y: 85.5%) suspended in water and the equivalent amount of aq. NH₃ added → carbethoxyguanylurea. (Y: ca. 100%) heated with aq. NH₃ → ammelide (Y: 85%). D. W. Kaiser and J. T. Thurston, J. Org. Chem. 17, 185 (1952).

*Pyridine/carboxylic acid chloride*C₅H₅N/RCOCl*s. Carboxylic acid chloride/pyridine**Alumina-silica*Al₂O₃-SiO₂

Nitriles from carboxylic acid amides

CONH₂ → CN

563.

Isobutyramide passed at 425° over alumina-silica gel → isobutyronitrile. Y: 90%. F. e. s. M. A. Naylor and A. W. Anderson, Am. Soc. 75, 5392 (1953).

Acetic anhydride(CH₃CO)₂O

Dioxindole derivatives

○

564.

A suspension of 0.5 g. o-aminomandelic acid in acetic anhydride allowed to stand 2 days at room temp., then heated 0.5 hr. on a steam bath → 0.45 g. O,N-diacetyl dioxindole. F. e. s. E. J. Alford and K. Schofield, Soc. 1952, 2102.

*Carboxylic acid chloride/pyridine*RCOCl/C₅H₅N

Nitriles from carboxylic acid amides

CONH₂ → CN

s. 9, 525

*Phosphorus trichloride**PCl₃*

Diphenylacetamide refluxed 2.5 hrs. with PCl₃ in benzene on a steam bath → diphenylacetonitrile. Y: 80%. F. Salmon-Legagneur, Bl. 1952, 580.

*Phosphorus pentachloride**PCl₅*

**Lactam ring closure
with simultaneous formation of
carboxylic acid chlorides from carboxylic acids**

PCl₅ added in one portion at 0° to a suspension of tosyl-L-glutamic acid in dry ether, and allowed to warm to room temp. toward the end of the reaction → 1-tosylpyroglutamyl chloride (startg. m. f. 402). Y: 90%. J. M. Swan and V. du Vigneaud, Am. Soc. 76, 3110 (1954).

*Copper chromite**CuCr₂O₄*

**Decahydrodipyrrolo[a,d]pyrazines
Alcohols from carboxylic acid esters**

Butyl pyroglutamate hydrogenated 4 hrs. with CuCr₂O₄ in dioxane at 150°, the catalyst filtered off, the solvent completely removed by vacuum distillation, and the crude 5-hydroxymethyl-2-pyrrolidone (Y: 96% when isolated) hydrogenated 5.5 hrs. with CuCr₂O₄ in dioxane at 250° → decahydrodipyrrolo[a,d]pyrazine (Y from pure 5-hydroxymethyl-2-pyrrolidone almost 100%). Over-all Y: 77%.—Removal of the butanol formed in the first step prevents the formation of N-butyl-2-hydroxymethylpyrrolidine as by-product in the second step. E. Segel, Am. Soc. 74, 851 (1952).

*Hydrochloric acid**HCl***Hydantoins from α-ureidocarboxylic acids**

s. 9, 404

**Hydantoins from N-carbalkoxypeptides
via α -ureidocarboxylic acids
Differentiation between α - and γ -glutamyl-
peptides
Degradation of peptides via hydantoins**

3 moles *N* NaOH added to a soln. of carbobenzoxy- α -D-glutamylglycine diethyl ester in ethanol, refluxed 2 hrs. on a water bath, acidified, evaporated to dryness, and the residue boiled 3 hrs. with concd. HCl \rightarrow 5-(β -carboxyethyl)hydantoin-3-acetic acid. Y: 84%.—No hydantoin is obtained from the γ -isomer. F. Wessely, K. Schlögl, and E. Wawersich, M. 84, 263 (1953); degradation of peptides s. other papers of this series.

Neber-Bossel 3-hydroxycinnoline ring synthesis

o-Nitromandelic acid neutralized with 2.1 *N* NaOH, dil. with water, hydrogenated with 5%-Pd-charcoal for 4 hrs., filtered, the Na-*o*-amino-mandelate (Y of the free acid, when isolated: 85%) soln. concd. to ca. half its volume, treated with NaNO_2 , the resulting soln. added dropwise at 0° to stirred concd. HCl (the acid cannot be diazotized directly because of the rapidity with which dioxindole is formed), stirring continued for a few min., after removal of the freezing bath, then added slowly at 0° to SnCl_2 and concd. HCl, slow stirring continued $\frac{3}{4}$ hr. at room temp., the resulting "tin salt" decomposed with H_2S , and the product boiled 0.5 hr. in HCl \rightarrow 3-hydroxycinnoline. Y: 59.5-61.2%. F. e. s. E. J. Alford and K. Schofield, Soc. 1952, 2102.

**Pyrrolo(2'3':3,4)isocoumarins
as intermediates**

s. 9, 740

**1,3,4-Thiadiazines from
 α -(dithiocarbazyl)oxo compounds**

s. 9, 697

*Hydrobromic acid**HBr***Different reactivity of halides**

570.

3-Phenyl-5-gamma-hydroxypropylhydantoin (prepn. s. 404)

treated at 125° with dry HCl-gas for 2 hrs. → 3-phenyl-5-gamma-chloro-propylhydantoin. Y: 77%.

heated with 48%-HBr 2 hrs. at 90° → 3-phenyl-1,5-trimethylenehydantoin. Y: 71%.

R. Gaudry, Can. J. Chem. 29, 544 (1951); different reactivity of halides s. a. Synth. Meth. 7, 567.

Pyrido[1,2-a]pyrimidin-2-ones

571.

48%-HBr added to 2-imino-1(2H)-pyridinelactic acid in water, and evaporated to dryness at room temp. under a stream of air → 3,4-dihydro-3-hydroxy-2H-pyrido[1,2-a]pyrimidin-2-one hydrobromide. Y: 100%. R. Adams and I. J. Pachter, Am. Soc. 74, 4906 (1952).

*Potassium ferricyanide**K₃[Fe(CN)₆]***Hydroxyindoles**

572.

An aq. soln. of K-ferricyanide and NaHCO₃ added with stirring during 10 min. to an aq. soln. of 2,5-dihydroxyphenylalanine monohydrate and

NaHCO_3 , extracted with peroxide-free ether when the color has become pale yellow \rightarrow 5-hydroxyindole. Y: 85%.—Similarly from 2,5-dihydroxy- β -phenylethylamine. Y: 70%. R. I. T. Cromartie and J. Harley-Mason, Soc. 1952, 2525; 1954, 1165.

*Nickel**Ni***Quinolizidines**

s. 5, 365; s. a. K. Winterfeld and E. Müller, A. 581, 77 (1953)

*Palladium**Pd***Reductive ring closure to N-heterocyclics**

573.

0.5 g. 2-methoxy-6-nitrophenylacetic acid hydrogenated with Pd-black in glacial acetic acid at room temp. \rightarrow 0.38 g. 4-methoxyoxindole. J. W. Cook, J. D. Loudon, and P. McCloskey, Soc. 1952, 3904.

*Via intermediates**v.i.*
**Phenanthridines from phenanthridones
via phenanthrithiones**

574.

A mixture of phenanthridone, P_2S_5 , and pyridine refluxed 2 hrs. \rightarrow phenanthridinethione (Y: 94%) refluxed with Raney-Ni in dimethylformamide-ethanol \rightarrow phenanthridine (Y: 95%). E. C. Taylor, Jr., and A. E. Martin, Am. Soc. 74, 6295 (1952).

Nitrogen ↑**NC ↑ N***Without additional reagents**w.a.r.***Acylamines from carboxylic acid azides** $\text{CON}_3 \rightarrow \text{NHAc}$

s. 3, 408; in benzene without acetic acid s. M. B. Moore et al., Am. Soc. 76, 3656 (1954)

Arylisothiocyanates from arylthioureasNHCSNH₂ → N≡C=S

5.

α-Naphthylthiourea heated 8 hrs. in chlorobenzene at 150° → *α*-naphthylisothiocyanate. Y: 91.5% based on startg. m. consumed. F. e. s. J. N. Baxter et al., Chem. & Ind. 1954, 785.

Irradiation

←

Isatogens from quaternary cyclic hydroxyammonium salts

○

s. 9, 733

Iron

Fe

Indoles

s. 5, 368; s. a. A. Ek and B. Witkop, Am. Soc. 76, 5579 (1954)

Halogen ↑**NC ↑ Hal***Potassium hydroxide*

KOH

2-Oxazolidones from halogenourethans

○

s. 9, 45

*Potassium hydroxide/alcohol***Isocarbostyrls**

6.

0.356 g. o-(1-phenyl-2-chloropropenyl)benzoic acid anilide treated with alc. 8%-KOH, and refluxed 3 hrs. → 0.302 g. 2,4-diphenyl-3-methylisocarbostyryl. F. e. s. G. Berti, G. 81, 868 (1951).

Sulfur ↑**NC ↑ S***Sodium hydroxide**NaOH***2-Thiazolidones from dithiolcarboxylic acid esters**

577.

N NaOH added to a suspension of 2-aminoethyl benzyl dithiolcarbonate hydrochloride (prepn. s. 705) in ethanol, and kept 3 hrs. in a stoppered flask → 2-ketothiazolidine. Y: 98%. F. e. s. J. C. Crawhall and D. F. Elliott, Soc. 1952, 3094.

Lead acetate $(CH_3COO)_2Pb$ **Hydantoins from N-thiocarbonyldipeptides**

578.

Phenylthiocarbonyldiglycine ethyl ester added to a warm soln. of Pb-acetate in 70%-ethanol, and heated 5 min. at 80-85° → ethyl hydantoin-3-acetate. Y: 82%. F. e. s. A. Lindenmann, N. H. Khan, and K. Hofmann, Am. Soc. 74, 476 (1952); s. a. F. Wessely, K. Schlögl, and E. Wawersich, M. 83, 1439 (1952).

1,2,4-Triazines

579.

Phenylthiocarbonylglycine carbobenzoxyhydrazide added to a warm soln. of Pb-acetate in 70%-alcohol, and heated 6 min. at 80-85° → 2-carbobenzoxy-3,6-dioxohexahydro-1,2,4-triazine. Y: 78%. A. Lindenmann, N. H. Khan, and K. Hofmann, Am. Soc. 74, 476 (1952).

Carbon ↑**NC↑C***Sodium hydride**NaH***Rearrangement of Reissert compounds
to o-acyl-N-heterocyclics**

←

80.

A mixture of 1-cyano-2-benzoyl-1,2-dihydroisoquinoline, NaH, and dry xylene refluxed with stirring until the expected amount of H₂ is evolved. then heated an additional 2 hrs. on a steam bath → 1-benzoylisooquinoline. Y: 70%. F. e. s. V. Boekelheide and J. Weinstock, Am. Soc. 74, 660 (1952).

*Potassium hydroxide**KOH***o-Alkyl-N-heterocyclics
from Reissert compounds**

←

81.

Ethereal phenyl-Li added dropwise at -10° under N₂ with stirring to a soln. of 1-cyano-2-benzoyl-1,2-dihydroisoquinoline, then methyl iodide added slowly, stirred 2 hrs. in the cold and overnight at room temp. → 2-benzoyl-1-cyano-1-methyl-1,2-dihydroisoquinoline (Y: 72%) dissolved in ethanol, added to aq. KOH, and refluxed 0.5 hr. → 1-methylisoquinoline (Y: 80%). F. e. s. V. Boekelheide and J. Weinstock, Am. Soc. 74, 660 (1952); second step with aq. 33% H₂SO₄ s. J. Org. Chem. 19, 587 (1954).

*Magnesium**Mg***Imidazole ring closure**

○

imidazolines s. 3, 415; imidazolo(5',4':2,3)pyridines s. F. Korte, B. 85, 1012 (1952)

Ammonium benzenesulfonate

 $C_6H_5SO_3NH_4$

Pyrrolidines from tert-aminonitriles

582.

A mixture of 3-dimethylamino-1,1-diphenylbutyl cyanide and NH_4^+ -benzenesulfonate heated 4 hrs. at 255-260°, and the product isolated as the hydrochloride → 2-imino-1,5-dimethyl-3,3-diphenylpyrrolidinium chloride. Y: 50%. J. Cyberman and W. S. Gilbert, Soc. 1952, 3529; with concd. HCl s. W. Wilson, Soc. 1952, 3524.

Sulfuric acid

 H_2SO_4 o-Alkyl-N-heterocyclics
from Reissert compounds

s. 9, 581

←

Sodium hypochlorite

 $NaOCl$ Amines from nitriles
via carboxylic acid amides
Hofmann degradation $CN \rightarrow NH_2$

583.

97% - H_2SO_4 added with vigorous stirring and cooling to triethyl 5-cyano-6-methyl-2,3,4-pyridinetricarboxylate, and kept 1 hr. at 35-40° with occasional cooling → triethyl 5-carbamyl-6-methyl-2,3,4-pyridinetricarboxylate (Y: 89-95%) added with stirring to a mixture of ice and aq. NaOH into which Cl_2 has been introduced, after 1 hr. when the mixture has reached room temp. heated on a steam bath for 0.5 hr., 12 N HCl added slowly with stirring, and the mixture which should be about pH 2 kept 60 hrs. at 0° → 5-amino-6-methyl-2,3,4-pyridinetricarboxylic acid. Y: 87-91%. R. G. Jones, Am. Soc. 73, 5610 (1951).

Hydrochloric acid

 HCl

Pyrrolidines from tert-aminonitriles

s. 9, 582

○

Via intermediates

v.i.

4-Hydroxypyrrolidine-2-carboxylic acids
Halogenation

←

84.

SO_2Cl_2 added dropwise with stirring to a soln. of 2-carbethoxy-5-phthalimido-4-valerolactone in glacial acetic acid, heated 2 hrs. at 70°, evaporated to dryness in vacuo, washed with water, glacial acetic acid and coned. HCl added, refluxed 3 hrs., again evaporated to dryness under reduced pressure, dissolved in water, phthalic acid filtered off, the filtrate treated with $\text{Ba}(\text{OH})_2$, refluxed 6 hrs., and the product isolated as the Cu-salt → hydroxyproline Cu-salt (Y: 36.4%) and allo-hydroxyproline Cu-salt (Y: 36.4%). F. syntheses s. R. Gaudry and C. Godin, Am. Soc. 76, 139 (1954).

Formation of Hal—Hal Bond

Uptake

Addition to Halogen

HalHal↓Hal

Sodium chloride

 NaCl

Sulfonium polyhalides

←

85.

An aq. soln. of triphenylsulfonium bromide and NaCl treated with Cl_2 —water → triphenylsulfonium dichlorobromide. Y: 78%. F. e. s. W. A. Bonner, Am. Soc. 74, 5078 (1952).

Formation of Hal-S Bond

Exchange

Oxygen ↑

Phosphorus oxychloride

Sulfonic acid chlorides

586.

from potassium sulfonates. Dried crude K-2,4-dimethoxybenzenesulfonate pulverized and treated under reflux with $POCl_3$ for 1.5 hrs. \rightarrow 2,4-dimethoxybenzenesulfonyl chloride. Y: 88%. H. R. Snyder and R. E. Heckert, Am. Soc. 74, 2006 (1952).

Phosphorus pentachloride

from sodium sulfonates

s. 9, 392; s. a. C. S. Rondestvedt, Jr., and F. G. Bordwell, Org. Synth. 34, 85 (1954)

Sulfur ↑

HalS↑S

Without additional reagents

w.a.r.

Sulfur trichlorides from disulfides

587.

A gentle stream of Cl_2 passed through an inlet tube which terminates just above the surface of methyl disulfide dil. with methylene chloride and cooled to -25 to -20° \rightarrow methylsulfur trichloride. Y: almost 100%. K. R. Brower and I. B. Douglass, Am. Soc. 73, 5787 (1951).

Carbon ↑

HalS↑C

Without additional reagents

w.a.r.

Anhydrous chlorination of thiocarboxylic acid esters and related compounds

←

588.

Anhydrous Cl introduced into a soln. of methyl methylxanthate in liq. butane in a bath containing Dry Ice and acetone until no more solid is

formed, centrifuged, and the centrifugate again chlorinated to cause any ester previously trapped in the solid to react → methoxydichloromethanesulfenyl chloride. Y: 70%. F. e. s. I. B. Douglass and C. E. Osborne, Am. Soc. 75, 4582 (1953).

Chlorine

Sulfonic acid chlorides from thiocyanates

s. 4, 469; s. a. A. P. Terent'ev and A. I. Gershenovich. Ж. 23, 204 (1953); C. A. 48, 2568j

Sulfonic acid chlorides from isothiuronium salts

589.

A hot satd. aq. soln. of K-acetate added with stirring at 80° to a hot aq. soln. of 105 g. S-(3-phthalimidopropyl)thiouronium bromide, the resulting thiouronium acetate suspended in water, concd. HCl added, then Cl passed in at 0-5° for 3 hrs. → 64 g. 3-phthalimido-1-propanesulfonyl chloride.—Alkyl bromides react more readily with thiourea than alkyl chlorides (cf. Synth. Meth. 1, 493, 495; 3, 520), and therefore thiouronium bromides are used as intermediates. F. e. s. W. Griffin and D. H. Hey, Soc. 1952, 3334.

Formation of Hal—Rem Bond

Uptake

Addition to Remaining Elements

HalRem ↓ Rem

Without additional reagents

w.a.r.

Selenium dihalides from selenides

dibromides s. 6, 539; also dichlorides s. H. Rheinboldt and M. Perrier. Bl. 1953, 379

Exchange**Oxygen ↑****HalRem ↑ O***Without additional reagents**w.a.r.***Halogeno- from alkoxy-silanes**

←

A mixture of di-n-propyldiethoxysilane and 48% -HF stirred 3 hrs. at 0° in a copper flask → di-n-propyldifluorosilane. Y: 95.5%. F. e. s. N. S. Marans, L. H. Sommer, and F. C. Whitmore, Am. Soc. 73, 5127 (1951).

Fluorosilanes

s. 9, 592

Chlorotitanium alkoxides

←

1 molar equivalent acetyl chloride added slowly with stirring and water cooling to tetra-n-propyl titanate, refluxed 3 hrs., the propyl acetate formed distilled off at ordinary pressure, then the product distilled at reduced pressure → chlorotitanium tri-n-propoxide. Y: 90%. F. e. s. N. M. Cullinane et al., J. Applied Chem. 2, 250 (1952).

Sodium chloride*NaCl***Chloro- from aceto-mercury compounds** $HgOAc \rightarrow HgCl$

s. 9, 712

Halogen ↑**HalRem ↑ Hal***Without additional reagents**w.a.r.***Fluorosilanes***SiF*

Chlorotriethylsilane allowed to react 2 hrs. with HF in alcohol at 75° → fluorotriethylsilane. Y: 85%.—Similarly: Ethoxytriphenylsilane 24 hrs. at 18° → fluorotriphenylsilane. Y: ca. 100%. F. e., also from silanols, disiloxanes, and bromosilanes, s. C. Eaborn, Soc. 1952, 2846.

Sulfur ↑**Silver salt** Ag^+ **Conversion series**

Organosilicon compounds s. 7, 545; extension s. H. H. Anderson and H. Fischer, J. Org. Chem. 19, 1296 (1954); organotin compounds s. H. H. Anderson and J. A. Vasta, J. Org. Chem. 19, 1300 (1954)

Carbon ↓**Without additional reagents***w.a.r.***Cleavage of silanes to halogenosilanes** $SiR \rightarrow SiHai$

593.

Br added slowly with stirring to 1-(triethylsilyl)indene \rightarrow triethylbromosilane. Y: 83.1%. F. e. s. L. H. Sommer and N. S. Marans, Am. Soc. 73, 5135 (1951); s. a. J. J. McBride, Jr., and H. C. Beachell, Am. Soc. 74, 5247 (1952).

Hydrochloric acid HCl **Monoalkyl from dialkyl mercury compounds** $RHgR' \rightarrow RHgCl$

594.

An ethereal soln. of allylethylmercury (prepn. s. 723) warmed with alcohol satd. with HCl \rightarrow ethyl-HgCl. Y: 70%. E. Rothstein and R. W. Saville, Soc. 1952, 2987.

Formation of Hal—C Bond**Uptake****Addition to Oxygen and Carbon****HalC \downarrow OC****Without additional reagents***w.a.r.***Halogenoquinols from quinones** \leftarrow

595.

Dry HCl passed slowly into a soln. of 2,5-toluquinone in chloroform at room temp. with water-cooling for 1 hr. \rightarrow 4-chloro-2,5-toluquinol.

Y: 80%. H. Burton and D. F. G. Praill, Soc. 1952, 755; from o-quinones s. R. R. Holmes et al., Am. Soc. 76, 2400 (1954).

**Halogenolactols from oxidoketones
and reverse reaction**
Lactolides from lactols
Oxidoketones from halogenolactolides

596.

Dry HCl passed for 15 min. into a soln. of methyl 3-keto-9 α ,11 α -oxido-cholanate (prepn. s. 361) in alcohol-free chloroform, and allowed to stand for an additional 20 min. \rightarrow methyl 3 β -hydroxy-3 α ,9 α -oxido,11 β -chlorocholanate (startg. m. f. 272) (Y: 96%)

dissolved in methanol,
0.1 N NaOH and a
drop of phenolphtha-
lein soln. added, then
refluxed ca. 5 min.
until the color dis-
appears (Y: 79%)

a hot soln. of which in 0.1 N meth-
anolic HCl boiled 5 min. \rightarrow methyl 3 β -
methoxy-3 α ,9 α -oxido-11 β -chlorocholanate
(Y: 77.5%) dissolved in glacial acetic acid,
added to Ag-acetate, and warmed 40 min.
on a steam bath with occasional agitation
(Y: 91%)

F. e., lactolides also with 48%-HBr, s. H. Heymann and L. F. Fieser,
Am. Soc. 73, 5252 (1951).

Sulfuric acid

H₂SO₄

Dibromides from cyclic ethers

C

597.

Concd. H₂SO₄ added cautiously to a stirred soln. of tetrahydrosylvan in 40%-HBr heated on a steam bath, heating and stirring continued for 3.5 hrs. \rightarrow 1,4-dibromopentane. Y: 80%. N. J. Leonard and J. Figue-
ras, Jr., Am. Soc. 74, 917 (1952).

*Pyridine hydrochloride**C₅H₅N.HCl***Halogenhydrins from oxido compounds**

8.

A soln. of ethyl N-tosyl-N-(2,3-oxidopropyl)-p-aminobenzoate and pyridine hydrochloride in ethanol-water refluxed 30 min. → ethyl N-tosyl-N-(3-chloro-2-hydroxypropyl)-p-aminobenzoate. Y: 72.6%. D. I. Weisblat et al., Am. Soc. 75, 3625 (1953).

Addition to Nitrogen and Carbon**HalC \downarrow NC***Without additional reagents**w.a.r.***Imine ring opening**

C

s. 4, 478; s. a. Am. Soc. 74, 4451 (1952)

Halogenocyanamides from cyclic imines

C

99. cf. Synth. Meth. 6, 552

The direction of ring opening varies with the substituent on the nitrogen. E., also side reactions, s. R. C. Elderfield and M. Green, J. Org. Chem. 17, 431 (1952).

Addition to Carbon**HalC \downarrow CC***Without additional reagents**w.a.r.***1,2-Dibromides from ethylene derivatives**

C:C → CBrCBr

s. 9, 899, 928

1,2-Nitrochlorides from ethylene derivativesC:C → CCIC(NO₂)

s. 6, 558; at elevated temp. s. R. N. Haszeldine, Soc. 1953, 2075

2-Iodoacetals from enol acetatesC:C(OAc) → CIC(OR)₂0. CH₂=CHCOCH₃ → [ICH₂CHCl(OCOCH₃)] + 2 C₂H₅OH → ICH₂CH(OC₂H₅)₂

A mixture of concd. HCl and ICl added below 5° with gentle stirring to a soln. of vinyl acetate in CCl₄ until, after 20 min., ICl is no longer decolorized, the lower organic layer separated rapidly, added to a mixture of 99.5-100%-ethanol and CaCl₂, then allowed to stand 3 days at 10-15° → iodoacetaldehyde diethyl acetal. Y: 82-85%. S. Akiyoshi and K. Okuno, Am. Soc. 74, 5759 (1952).

←

**1,1,2-Trichlorides from ethylene derivatives
via chlorohydrins and α,β -ethylenechlorides**

601.

Cl-gas introduced into a stirred mixture of crotonaldehyde and water at ca. 10° for ca. 2 hrs. until the temp. does not rise rapidly when the bath is removed, then refluxed 30 min. with slow stirring to dehydrate the chlorohydrin, the α -chlorocrotonaldehyde obtained extracted with chloroform (can be isolated in high yields from this extract), treated at 0-10° with chlorine until 1 mole has been added, stirred 1 hr. longer in the ice bath, and dry CO₂ or N₂ bubbled through the soln. at room temp. to remove excess Cl₂ → α,α,β -trichlorobutyraldehyde. Y: 52-53%. G. A. Ropp, W. E. Craig, and V. Raaen, Org. Synth. 33, 15 (1953).

Halogenosteroids from 3,5-cyclosteroids

C

s. 9, 635

Irradiation
Bromides from ethylene derivatives

C:C → CHCBr

Free radical additions

602.

Trifluoropropene and dry HBr irradiated 18 hrs. at room temp. with UV-light in a sealed silica tube → 3-bromo-1,1,1-trifluoropropane. Y: 97%. No addition takes place in the dark. F. e. s. R. N. Haszeldine, Soc. 1952, 2504, 3490; s. a. A. L. Henne and M. Nager, Am. Soc. 73, 5527 (1951).

Ethylene from acetylene derivatives

←

via 1,2-dibromides
Deutero compounds

603.

A 2:1 mixture of DBr (from D₂O and PBr₃) and acetylene-d₂ containing a little air allowed to react at atmospheric pressure, whereby the reaction sets in after a variable induction period or irradiation for a few. min. with UV-light → 1,2-dibromoethane-d₄ (Y: almost 100%) in dioxane added slowly with stirring to Zn-dust and a crystal of NaI, heated gently at first, then gradually to reflux → ethylene-d₄ (Y: 80-86%). L. C. Leitch and A. T. Morse, Can. J. Chem. 30, 924 (1952).

Sodium acetate
CH₃COONa
1,2-Dibromides from ethylene derivatives

C:C → CBrCBr

s. 9, 362

*Magnesium oxide**MgO***1,2-Alkoxyhalides from ethylene derivatives**C:C \rightarrow C(OR)CH₂Hal

604.

Br₂ introduced at 10° by means of a current of dried air into a well-stirred mixture of β,β -dimethylacrylic acid, methanol, and finely powdered MgO over a period of 4.5 hrs., and stirring continued for 15 min. until the mixture becomes colorless \rightarrow α -bromo- β -methoxyisovaleric acid. Crude Y: 75%. K. Rüfenacht, Helv. 35, 762 (1952).

*Aluminum halide**AlHal₃***Addition of hydrogen halides to acetylene derivatives** \leftarrow

605.

Trifluoropropyne and anhydrous HI allowed to react at room temp. in the presence of AlI₃ \rightarrow 3,3,3-trifluoro-1-iodopropene. Y: 80%. F. e. s. R. N. Haszeldine, Soc. 1952, 3490.

N-Bromosuccinimide and tetraethylammonium bromide \leftarrow **Reaction between ethylene derivatives and N-bromosuccinimide** \leftarrow

606.

Normally, allylic substitution is predominant, but certain structural features and catalysts promote addition to form satd. 1,2-dibromides.—E: A mixture of cyclohexene, N-bromosuccinimide, tetraethylammonium bromide, and chloroform refluxed 20 min. \rightarrow 1,2-dibromocyclohexane. Y: 74%. F. e. s. E. A. Braude and E. S. Waight, Soc. 1952, 1116.

*Sulfuryl chloride**SO₂Cl₂***Halogenolactones** \leftarrow **Lactones from halogenocarboxylic acid esters****with simultaneous replacement of****carbalkoxy groups by hydrogen****Trihalides from ethylene derivatives**

607.

 \downarrow \leftarrow

SO₂Cl₂ added dropwise to cooled diethyl allylmalonate, stirred 1 hr. at room temp., refluxed 20 min., excess SO₂Cl₂ evaporated under re-

duced pressure, the crude ethyl 2-carbethoxy-2,4,5-trichlorovalerate dissolved in glacial acetic acid, HCl added, and refluxed 3 hrs. → 2,5-dichloro-4-valerolactone. Y: 90.5%. F. e., also mixed dihalogenovalerolactones by stepwise introduction of halogen, s. R. Gaudry and C. Godin, Am. Soc. 76, 139 (1954).

Pyridine hydrobromide perbromide

$C_5H_5N \cdot HBr \cdot Br_2$

**1,2-Dibromo-3-alcohols
from 2-ethylenealcohols**

$C:C \rightarrow CBrCBBr$

608.

Pyridine hydrobromide perbromide added portionwise at 12-15° with stirring to a soln. of (\pm)-1-phenylallyl alcohol in glacial acetic acid, and worked up after 45 min. → (\pm)-2,3-dibromo-1-phenylpropanol. Y: 47%.—Use of free bromine was unsuccessful. Also with the (\pm)-compound s. C. L. Arcus and H. E. Strauss, Soc. 1952, 2669.

Rearrangement

Hydrogen/Carbon Type

$HalC \downarrow HC$

Sodium acetate

CH_3COONa

Change in configuration of halogenosteroids

←

609.

A soln. of $5\alpha,6\beta$ -dibromocholestan-3-one in glacial acetic acid and chloroform containing Na-acetate kept 8 hrs. at ca. 40° in a closed flask → $5\beta,6\alpha$ -dibromocholestan-3-one. Y: 75.6%. C. A. Grob and S. Winstein, Helv. 35, 782 (1952).

Exchange

Hydrogen ↓

$HalC \uparrow H$

Without additional reagents

w.a.r.

Halogenofuranones from acoxyfurans

←

610.

Br in CCl_4 added at -5 to -10° during 8 min. to a stirred soln. of 2-acetoxyfuran in CCl_4 → 5-bromo-2(5H)-furanone. Y: 81%. Also chloro

derivatives s. N. Elming and N. Clauson-Kaas, Acta Chem. Scand. 6, 565 (1952).

Irradiation

\leftarrow

Directed halogenation

$H \rightarrow Hal$

Photochlorination of aliphatic compounds

11.

Nitriles, esters, acid chlorides, and alkyl acetates, in which the α -C-atom is generally deactivated for photochlorination, are chlorinated in the *vapor phase*. This procedure gives reproducible yields and reduces polychlorinated products to a minimum. Acids are chlorinated in the liquid phase to avoid dehydrochlorination.—E: Propionitrile chlorinated in the vapor phase with irradiation $\rightarrow \beta$ -chloropropionitrile (Y: ca. 65%) and α -chloropropionitrile (Y: ca. 21%).—Similarly: Propyl acetate $\rightarrow \beta$ -chloropropyl acetate (Y: ca. 50%) and γ -chloropropyl acetate (Y: ca. 20%). F. e. s. A. Bruylants et al., Bull. soc. chim. Belg. 61, 366 (1952); α -chlorination of ketones s. 61, 492; α -bromination of nitriles s. J. Org. Chem. 18, 501 (1953).

Bromination

$H \rightarrow Br$

s. 1, 410, 418; s. a. J. C. Bill and D. S. Tarbell, Org. Synth. 34, 82 (1954); E. F. M. Stephenson, Org. Synth. 34, 100; 1,2-dibromides s. 9, 972; polybromination of steroids s. H. H. Inhoffen, H. Jahnke, and P. Nehring, B. 87, 1154 (1954)

Sodium acetate

CH_3COONa

1,1,1-Trihalides

$CH_3 \rightarrow CHal_3$

s. 3, 155; 7, 560; s. a. R. Roth and H. Erlenmeyer, Helv. 37, 1064 (1954)

Potassium iodide

KI

Iodination

$H \rightarrow I$

612.

2,4-Dimethylpyrrole-5-carboxylic acid anilide dissolved in hot alcohol-water, and treated with a soln. of iodine in K-iodide \rightarrow 3-iodo-2,4-dimethylpyrrole-5-carboxylic acid anilide. Y: 88%. A. Treibs and W. Ott. A. 577, 119 (1952).

Potassium iodide/sodium hydroxide

KI/NaOH

613.

An aq. soln. of KI and iodine added dropwise with stirring to a soln. of 3-hydroxy-N-methylmorphinan in aq. NaOH, and stirring continued for 15 min. → 3-hydroxy-2-iodo-N-methylmorphinan. Y: 85%. R. Grawe, A. Mondon, and E. Nolte, A. 564, 161 (1949); s. a. H. Lettré, H. Fernholz, and E. Hartwig, A. 576, 147 (1952); D. Papa et al., Am. Soc. 75, 1107 (1953); 4-halogeno-5-pyrazolones s. G. Westöö, Acta Chem. Scand. 6, 1499 (1952).

Mercuric oxide

HgO

614.

Yellow mercuric oxide and iodine added alternately in small portions during 1 hr. at 55-65° to a soln. of thianaphthene in benzene → 3-iodothianaphthene. Y: 71% based on converted startg. m. R. Gaertner, Am. Soc. 74, 4950 (1952).

Dioxane

 \leftarrow

Bromination

H \rightarrow Br

615.

The dioxane-bromine complex is suitable for mild direct halogenation of sensitive ar. compounds.—E: Br in dioxane added dropwise during 2 hrs. with good agitation at 5° to a soln. of aniline in dioxane and aq. KOH → p-bromoaniline. Y: 68%. F. e. s. G. M. Kosolapoff, Am. Soc. 75, 3596 (1953); phenols s. L. A. Yanovskaya, A. P. Terent'ev, and L. J. Belen'kii, Ж. 22, 1594 (1952); C. A. 47, 8032 h; aldehydes and ketones s. Ж. 22, 1598; C. A. 47, 9258e; J. D. Billimoria and N. F. Maclagan. Soc. 1954, 3257.

N-Halogenosuccinimide**Halogenation**

16.

Azulenes. A soln. of N-chlorosuccinimide in dry benzene added to a soln. of 1-chloroazulene in petroleum ether, and the product isolated after 12 hrs. when the test with starch-iodide paper is negative \rightarrow 1,3-dichloroazulene. Net Y: 82%. F. e. and brominations with N-bromosuccinimide s. A. G. Anderson, Jr., J. A. Nelson, and J. J. Tazuma, Am. Soc. 75, 4980 (1953).

Chlorination of pyrimidines s. R. A. West und H. W. Barrett, Am. Soc. 76, 3146 (1954).

N-Bromosuccinimide**Halogenation**

s. 9, 640

Directed halogenation

s. 9, 611

Bromination

s. 9, 927

1,1-Bromonitro compounds from oximes

←

s. 9, 168

N-Bromosuccinimide/tetraethylammonium bromide $\xrightarrow{\quad}$

**Reaction between ethylene derivatives
and N-bromosuccinimide**

←

s. 9, 606

Sulfuryl chloride**Halogenation** $H \rightarrow Hal$

s. 9, 584

Trihalides from ethylene derivatives

←

s. 9, 607

Sulfuric acid H_2SO_4 **Bromination** $H \rightarrow Br$

s. 8, 512

p-Toluenesulfonic acid $TsOH$

s. 9, 968

Iodine monochloride/acetic acid ICl/CH_3COOH **Iodination** $H \rightarrow I$

s. 2, 493; 3, 443; s. a. D. Papa et al., Am. Soc. 75, 1107 (1953)

tert-Butyl hypochlorite $(CH_3)_3C \cdot OCl$ **Ketones from sec. alcohols
with subsequent chlorination** $CH(OH)CH \rightarrow COCC$

617.

t-Butyl hypochlorite in CCl_4 added dropwise to a soln. of 5.0 g. cholestan-3 β -ol in CCl_4 , and stirred 4 hrs. at room temp. \rightarrow 3.82 g. cholestan-3-one dissolved in glacial acetic acid, treated at 65° with one portion of t-butyl hypochlorite, and heated 1 hr. on a steam bath \rightarrow 2-chlorocholestan-3-one (Y: 90%). Also one-step procedure and f. e. s. J. J. Beereboom et al., Am. Soc. 75, 3500 (1953).

**Oxidation-chlorination
 α -Chloroketones from alcohols**

618.

3 α ,17 α -Dihydroxy pregnane-11,20-dione dissolved in *tert*-butanol by warming, water and HCl added at 26°, then *tert*-butyl hypochlorite added at 7-10°, and allowed to stand 6 hrs. in the dark \rightarrow 4-chloro-17 α -hydroxypregnane-3,11,20-trione. Y: 72-96.1%. F. e., also chlorination without oxidation, s. R. H. Levin et al., Am. Soc. 76, 546 (1954); other reagents s. Am. Soc. 76, 3179 (1954).

Potassium hypobromite

KOBr

Bromoacetylenes

C:CH → C:CBr

s. 4, 494; s. a. J. D. Billimoria, Soc. 1953, 2626

Via intermediates

v.i.

5-Bromo-2,3-dihydropyrans

H → Br

19.

Br added at -50° to an ethereal soln. of 64 g. 2-methoxymethyl-2,3-dihydropyran, the cooling mixture removed, diethylaniline added during 5 min., and refluxed 5 hrs. → 69 g. 2-methoxymethyl-5-bromo-2,3-dihydropyran. R. Paul and S. Tchelitcheff, Bl. 1952, 808.

Oxygen †HalC \ddagger O*Without additional reagents*

w.a.r.

Halides from alcohols

OH → Hal

s. 9, 108

1,1-Alkoxyhalides from acetalsC(OR)₂ → C(OR)Hal

20.

Dry HBr passed over the surface of a soln. of 3α-acetoxy-21,21-dimethoxypregnane-11,20-dione in chloroform at 0° for 30 min., and kept 4 additional hrs. at 0° → 3α-acetoxy-21-bromo-21-methoxy-17α-pregnane-11,20-dione. Y: ca. 50%. V. R. Mattox, Am. Soc. 74, 4340 (1952).

**Acetobromosugars
with liquid hydrogen bromide**

OAc → Br

21. HBr condensed over β-pentaacetyl-h-galactose, and warmed 15-20 min. at room temp. in a sealed tube until dissolved → β-acetobromo-h-galactose. Crude Y: 87%. H. H. Schlubach and E. Wagenitz, H. 213, 87 (1932); s. a. G. A. Howard, B. Lythgoe, and A. R. Todd, Soc. 1947, 1052; F. Weygand and F. Wirth, B. 85, 1000 (1952).

Dibromides from cyclic ethers

s. 8, 607; s. a. J. Org. Chem. 19, 1449 (1954)

C

*Alkali halides***Halides from
p-toluenesulfonic acid esters**

OTs → Hal

622.

Methyl p-toluenesulfonate, KI, and water heated gradually in an oil bath with distillation → methyl iodide. Y: 94.4%.—Reaction takes place also with sulfonates of sec. hydroxyl groups. F. e. s. F. Drahowzal and D. Klamann, M. 82, 970 (1951).

Sodium bromide

NaBr

**Replacement of hydroxyl by bromine
via p-toluenesulfonic acid esters**

623.

10% excess tosyl chloride added with ice-cooling and occasional swirling during 25 min. to a soln. of 368 g. 1,1-di(hydroxymethyl)cyclohexane in dry pyridine, and allowed to stand overnight at room temp. → 1,1-di(tosyloxymethyl)cyclohexane (Y: 67%; on a smaller scale, nearly 100%) heated 3 hrs. with 20% excess NaBr in diethylene glycol at 150-170° with vigorous stirring → 1,1-di(bromomethyl)cyclohexane (Y: 79%).—A one-step procedure with PBr₃ gave only 27% yield. E. R. Buchman, D. H. Deutsch, and G. I. Fujimoto, Am. Soc. 75, 6228 (1953).

Sodium iodide

NaI

Iodides from p-toluenesulfonic acid esters

s. 2, 121; in diethyl ketone s. S. W. Pelletier and W. A. Jacobs, Am. Soc. 74, 4218 (1952)

624. The replacement of *sec.* tosyloxy groups in open-chain polyhydroxy compounds occurs under conditions comparable with those necessary to replace many prim. tosyloxy groups. The ease of the reaction is dependent on steric factors and is greatly diminished when the tosyl group is attached to a C-atom which is a member of a ring. E. s. N. K. Matheson and S. J. Angyal, Soc. 1952, 1133.

Triethylamine/phosphorus oxychloride $(C_2H_5)_3N/POCl_3$ **Replacement of hydroxyl by chlorine
Exchange of substituents of amines**

←

25.

and a limited amount of triethylamine refluxed 4.5 hrs., excess $POCl_3$ removed on a steam bath under reduced pressure, the remaining sirup poured on ice, allowed to stand 3 hrs. at room temp., refrigerated overnight to complete precipitation, and filtered → 8-chloroxanthine. Y: 85.5%.

and excess triethylamine refluxed 13 hrs., excess $POCl_3$ removed under reduced pressure, the residue poured slowly with vigorous stirring on ice, kept 0.5 hr. at 0° , and filtered → 2,8-dichloro-6-diethylaminopurine. 2.1 g. from 5.0 g.

F. e. s. R. K. Robins and B. E. Christensen, Am. Soc. 74, 3624 (1952).

Pyridine/thionyl chloride $C_5H_5N/SOCl_2$ **Halogenoketones from hydroxyketones** $OH \rightarrow$

$SOCl_2$ in benzene added slowly at 0° to a soln. of α -hydroxy- α,α -diphenylacetone (prepn. s. 743) and pyridine in benzene, and warmed 3 hrs. with stirring at 50-60° → α -chloro- α,α -diphenylacetone (startg. m. f. 314). Y: 83.3%. C. L. Stevens and A. E. Sherr, J. Org. Chem. 17, 1228 (1952).

**Carboxylic acid chlorides
from carboxylic acids** $COOH \rightarrow COCl$

s. 1, 626; s. a. K. Freudenberg and H. H. Hübner, B. 85, 1181 (1952)

**Subst. carboxylic acid amides from
carboxylic acids via carboxylic acid chlorides**

627.

A soln. of 1 mole β -bromobutyric acid and 1 mole pyridine in anhydrous ether cautiously treated with 1 mole SOCl_2 in ether, kept 3 days at room temp., any excess pyridine precipitated as the hydrochloride by adding a small volume of ethereal HCl, filtered, a soln. of phenothiazine in toluene added to the filtrate, the ether evaporated, and the toluene soln. kept 4 hrs. at 85° \rightarrow 10-(β -bromobutyryl)phenothiazine. Y: 81%. F. e., also amide formation at higher temp., s. R. Dahlbom and T. Ekstrand, Acta Chem. Scand. 6, 1285 (1952).

Boron chloride BCl_3 **Cleavage of mixed ethers** $\text{ROR}' \rightarrow \text{RCI}$

s. 9, 194

Acetic anhydride $(\text{CH}_3\text{CO})_2\text{O}$ **Bromides from ethers** $\text{OR} \rightarrow \text{Br}$ **Longchain α,ω -dihalides**

628.

1,18-Di-p-methoxyphenoxyoctadecane refluxed 24 hrs. with a mixture of acetic anhydride and 50% HBr (1:1) \rightarrow octadecamethylene dibromide. Y: 88%. F. e. s. A. W. Nineham, Soc. 1953, 2601.

Acetyl bromide CH_3COBr **Replacement of hydroxyl by bromine** $\text{OH} \rightarrow \text{Br}$

629.

A mixture of 2-methyl-9-fluorenol and acetyl bromide refluxed 10 min. \rightarrow 2-methyl-9-bromofluorene. Y: 90%. F. e. s. E. D. Bergmann et al., Bl. 1952, 78.

Acetobrominolysis of carbohydrates

←

30. Acetates of maltose or of polysaccharides having only α -1,4-glucopyranosidic linkages produce almost quantitatively acetobromoglucose.—E: Octaacetyl- β -maltose allowed to react with HBr-acetic acid-acetyl bromide for 24 hrs. → acetobromoglucose. Y: 82.5%. F. e. s. A. Jeanes, C. A. Wilham, and G. E. Hilbert, Am. Soc. 75, 3667 (1953).

Oxalyl chloride $(COCl)_2$ **Carboxylic acid chlorides
from carboxylic acids**

O C

s. 9, 474, 877

Oxalyl chloride/potassium salt $(COCl)_2/K^+$

31.

Oxalyl chloride in benzene added with ice-cooling to a mixture of K-nicotinate and benzene, stirring continued 15-20 min., allowed to warm to room temp., then gradually heated, and gently refluxed for 30 min. → nicotinyl chloride. Y: at least 85%.—The Na-salt did not give as good results as the K-salt. H. N. Wingfield, Jr., W. R. Harlan, and H. R. Hanmer, Am. Soc. 75, 4364 (1953).

Phosphorus

P

Acetobromosugars

←

s. 6, 582; with glacial acetic acid instead of water and without $HClO_4$
s. P. G. Scheurer and F. Smith, Am. Soc. 76, 3224 (1954)

 **α -Halogenocarboxylic acid halides
from carboxylic acids** $CHCOOH \rightarrow CHalCOHal$

s. 9, 876, 960

Phosphorus pentoxide/phosphoric acid/potassium iodide $P_2O_5/H_3PO_4/KI$ **Iodides from alcohols** $OH \rightarrow I$

32. Finely powdered KI and n-octadecyl alcohol added to a cooled mixture of H_3PO_4 and P_2O_5 , heated 5 hrs. at 110-120° with stirring → n-octadecyl iodide. Y: 85%. G. W. Wood, Soc. 1953, 3327.

Phosphorus tribromide PBr_3 **Replacement of hydroxyl by halogen** $OH \rightarrow Hal$

633.

PBr_3 in CCl_4 added slowly to an ice-cold soln. of 2,5-dimethoxybenzyl alcohol in CCl_4 , and allowed to stand overnight at room temp. protected from moisture \rightarrow 2,5-dimethoxybenzyl bromide. Y: 85%. A. T. Shulgin and E. M. Gal, Soc. 1953, 1316.

Phosphorus oxychloride/triethylamine $POCl_3/(C_2H_5)_3N$ *s. Triethylamine/phosphorus oxychloride**Phosphorus oxychloride/phosphorus pentachloride* $POCl_3/PCl_5$ **Partial replacement of hydroxyl by chlorine** $OH \rightarrow Cl$

634.

A mixture of anhydrous 4,10-dihydroxy-1,7-phenanthroline, PCl_5 , and $POCl_3$ refluxed 20 min. \rightarrow 4-chloro-10-hydroxy-1,7-phenanthroline (startg. m. f. 533). Y: 77%. Also replacement of both hydroxyl groups in the absence of PCl_5 s. A. R. Surrey and R. A. Cutler, Am. Soc. 76, 1109 (1954).

Phosphorus pentachloride PCl_5 **1,1-Alkoxychlorides from acetals** $C(OR)_2 \rightarrow CCl(OR)$

s. 2, 731; 1,2-dialkoxy-1,2-dichloroethanes and their reactions s. H. Fies selmann and F. Hörndl, B. 87, 911 (1954)

**Carboxylic acid chlorides
from carboxylic acids** $COOH \rightarrow COCl$

s. 9, 650

with simultaneous lactam ring closure

s. 9, 566

**(Carbalkoxyalkylimino)chlorides
from acylaminocarboxylic acid esters** $NHCO \rightarrow N:CCl$

s. 9, 521

*Phosphorus pentachloride/calcium carbonate**PCl₅/CaCO₃*

**Halogeno- from
hydroxy- and 3,5-cyclo-steroids
Epimerization**

←

35.

3,5-Cyclocholestan-6-one allowed to react with HCl in acetic acid at 20° → 3β-chlorocholestan-6-one. Y: ca. 100%. (Soc. 1952, 1786.)

PCl₅ added at 0° in small portions during 1.5 hrs. to a soln. of 4 g. 3β-hydroxycholestan-6-one in dry chloroform containing a suspension of CaCO₃, and shaken overnight at 20° → 4.1 g. 3α-chlorocholestan-6-one (Soc. 1952, 1790).

F. e. s. C. W. Shoppee and G. H. R. Summers, Soc. 1952, 1786, 1790; from 3,5-cyclosteroids s. a. Soc. 1952, 3361.

*Thionyl chloride**SOCl₂***Halides from alcohols***OH → Hal*

s. 9, 108

**Carboxylic acid chlorides
from carboxylic acids***COOH → COCl*

s. 9, 503

**Dicarboxylic acid chloride esters
from dicarboxylic acid monoesters**

36.

Monomethyl succinate and 15% excess SOCl₂ allowed to stand 1 hr. at room temp. until the gas evolution subsides, warmed 3 hrs. at 37-42°.

allowed to stand overnight, then distilled → methyl ω -(chloroformyl)-propionate. Y: 85.2%. A. Kreuchunas, Am. Soc. 75, 3339 (1953); method s. P. Ruggli and A. Maeder, Helv. 25, 936 (1942); s. a. A. Neuberger and J. J. Scott, Soc. 1954, 1820.

Thionyl chloride/pyridine s. *Pyridine/thionyl chloride*

$SOCl_2/C_5H_5N$

Sulfuric acid

H_2SO_4

Dibromides from cyclic ethers

C

s. 9, 597

Hydrochloric acid

HCl

Different reactivity of halides

$OH \rightarrow Hal$

s. 9, 570

Nitrogen ↑

HalC \ddagger N

Fluoboric acid

HBF_4

Fluorides from amines

$NH_2 \rightarrow F$

Schiemann reaction

s. 3, 478; 4, 509; 8, 623; fluoroamines s. E. D. Bergmann and M. Bentov, J. Org. Chem. 19, 1594 (1954)

Halogen ↓

HalC \ddagger Hal

Without additional reagents

w.a.r.

Chlorides from bromides

$Br \rightarrow Cl$

s. 5, 413; s. a. Soc. 1953, 2910

Aluminum chloride

$AlCl_3$

Replacement of chlorine by iodine

$Cl \rightarrow I$

A mixture of 0.4 mole ethyldene chloride and 1.2 moles ethyl iodide heated 3 hrs. on a steam bath in the presence of $AlCl_3$, while ethyl chloride bubbles out of the soln. → ethyldene iodide. Y: 60%. R. L. Letsinger and C. W. Kammeyer, Am. Soc. 73, 4476 (1951).

Sulfur ↑**HalC \uparrow S***Without additional reagents**w.a.r.***Halides from disulfides**

38.

Bis-(trifluoromethyl) disulfide and chlorine heated 5 days at 330-360° in a sealed tube → chlorotrifluoromethane. Y: 83%. G. A. R. Brandt, H. J. Emeléus, and R. N. Haszeldine, Soc. 1952, 2198.

Carbon ↑**HalC \uparrow C***Silver salt* Ag^+ **Halides from carboxylic acids**
Hunsdiecker silver salt degradation

39. Portionwise addition of silver salt to the Br-soln. in CCl_4 and maintenance of low temp. are conditions favorable to the reaction. Di- and tri-bromides s. J. C. Conly, Am. Soc. 75, 1148 (1953). Deuterium compounds s. B. Nolin and L. C. Leitch, Can. J. Chem. 31, 153 (1953).

*N-Bromosuccinimide***Replacement of
hydrogen and carbon by halogen**

40.

Antipyrine or antipyric acid heated with N-bromosuccinimide in CCl_4 , and the product isolated after 30 and 15 min. respectively → 4-bromoantipyrine. Y: 92 and 95% respectively.—F. e., also elimination of hydroxymethyl and formyl groups, s. H. de Graef, J. Ledrut, and G. Combes, Bull. soc. chim. Belges 61, 331 (1952).

N-Iodosuccinimide

C:C(OAc) → CICO

α-Iodoöxo compounds from enoesters

641.

Equimolar amounts of 2-hepten-2-ol acetate and *N*-iodosuccinimide (prep. s. 389) heated 15 min. at 120° → 3-iodo-2-heptanone (Y: 82%) and *N*-acetylsuccinimide (Y: 90%). Also *α*-iodoaldehyde and steroid derivative s. C. Djerassi and C. T. Lenk, Am. Soc. 75, 3493 (1953).

*α-Acoxyketones from enoesters
via α-iodoketones*

C:C(OAc) → COC·OAc

642.

A mixture of $\Delta^{5,16,20}$ -pregnatriene- $3\beta,20$ -diol diacetate and *N*-iodosuccinimide in dioxane heated 1 hr. at 85° in a stoppered flask under N_2 , methanol and a large excess of aq. KI added with stirring to the hot soln., the color then discharged by addition of Na-thiosulfate → 21-iodo- $\Delta^{5,16}$ -pregnadien- 3β -ol-20-one acetate (Y: 88%) dissolved in acetone, and refluxed 18 hrs. with a mixture of $KHCO_3$ and acetic acid previously ground in a mortar → $\Delta^{5,16}$ -pregnadiene- 3β -21-diol-20-one diacetate (Y: 90-98%). Over-all Y without purification of the intermediate: 85%. F. e. s. C. Djerassi and C. T. Lenk, Am. Soc. 76, 1722 (1954).

Elimination**Nitrogen ↑****HalC↑N***Sodium nitrite**NaNO₂***Halonium salts**

643.

1 g. 2-amino-2'-chlorobiphenyl hydrochloride in 10% -HCl treated at 0-5° with aq. $NaNO_2$, kept 30 min. at the same temp., treated with urea.

allowed to stand overnight at 5-10°, then gently heated on a steam bath until gas evolution has ceased, cooled to 5-10°, and KI added → 0.4 g. diphenylenechloronium iodide. F. e. s. R. B. Sandin and A. S. Hay, Am. Soc. 74, 274 (1952).

Sulfur

HalC ↑ S

Without additional reagents

w.a.r.

Halides from sulfonic acid halides

SO₂Hal → Hal

Thermal decomposition

Isopropanesulfonyl chloride distilled at an oil bath temp. of 200-220° over a period of 1.5 hrs. → isopropyl chloride. Y: 73.4%.—This method may serve to determine the position of sulfo group. F. e. s. A. P. Terent'ev and A. I. Gershenovich, Ж. 23, 204 (1953); C. A. 48, 2568i.

Formation of S—S Bond

Exchange

Hydrogen ↑

SS↑H

Hydrochloric acid

HCl

Disulfonyl trisulfides and thiolsulfonic acid esters from thiolsulfonic acids

←

Excess concd. HCl added at 35° in one portion to an aq. soln. of Na-p-toluenethiolsulfonate dihydrate, and the products isolated after 3 hrs. → di-p-toluenesulfonyl trisulfide (Y: 88%) and p-tolyl p-toluene-thiolsulfonate (Y: 88%). F. e. s. F. Kurzer and J. R. Powell, Soc. 1952, 3728.

Oxygen ↑

SS↑O

*Pyridine**C₅H₅N***Thiolsulfonic acid esters
from sulfonic acid anhydrides**RSO₂SR'

Dry pyridine added to a soln. of p-toluenesulfonic anhydride in benzene, then p-thiocresol added during ca. 3 hrs. with stirring, and stirring continued for 3 hrs. → p-tolyl p-toluenethiolsulfonate. Y: 71%. F. e. s. L. Field, Am. Soc. 74, 394 (1952).

Formation of S—Rem Bond**Uptake****Addition to Sulfur**

SRem↓SS

Irradiation

←

**Sym. di(alkylthio)mercury
from sym. disulfides**RSSR → (RS)₂Hg

Bis(trifluoromethyl) disulfide and Hg shaken and irradiated 4 days with UV-light in a sealed silica tube → bis(trifluoromethylthio)mercury. Y: 53%. G. A. R. Brandt, H. J. Emeléus, and R. N. Haszeldine, Soc. 1952, 2198.

Exchange**Halogen ↑**

SRem↑Hal

*Sodium salt*Na⁺**Organotellurium compounds**

←

p-Anisyl telluritechloride and finely powdered Na-methanethiosulfonate in ethanol-free chloroform triturated for a few min., first at room temp., then at boiling temp. → p-methoxybenzenetellurenyl methanethiosulfonate. Y: 68%. O. Foss, Acta Chem. Scand. 6, 306 (1952).

Formation of S-C Bond

Uptake

Addition to Oxygen and Carbon

SC \downarrow OC*Without additional reagents*

w.a.r.

Sulfones from quinones

RSO₂R'

s. 2, 542; s. a. I. S. Joffe, HK. 23, 125 (1953); C. A. 48, 1299e

Hydroxythiolic acid esters from oxido compounds

Thiolacetic acid added to cyclohexene oxide, kept 60 hrs. at room temp., then distilled \rightarrow *trans*-2-acetylthiocyclohexanol. Y: 84%. L. W. C. Miles and L. N. Owen, Soc. 1952, 817.

Dithiolic acid esters from dicarboxylic acids via dicarboxylic acid anhydrides, carboxythiolic acid esters, and chlorocarbonylthiolic acid esters

←

Perfluoroglutaric acid heated 8 hrs. with POCl_3 at 150° \rightarrow perfluoroglutaric anhydride (Y: 76.5%) added to ethyl mercaptan at room temp., finally heated several hrs. at 100° \rightarrow monoethyl thiolhexafluoroglutarate (Y: 95.2%) treated with excess PCl_5 \rightarrow monoethyl thiolhexafluoroglutaryl chloride (Y: 83%) allowed to react with ethyl mercaptan \rightarrow diethyl dithiolhexafluoroglutarate (Y: 90%).—It was necessary to employ the anhydride since the dichloride could be obtained only in low yield. M. Hauptchein, C. S. Stokes, and E. A. Nodiff, Am. Soc. 74, 4005 (1952).

Addition to Nitrogen and Carbon

SC ↓ NC

Without additional reagents

w.a.r.

1,1-Aminothioethers from azomethines

N:C → NH·C·SR

651.

Benzalantranilic acid and mercaptoacetic acid added to benzene, then stirred until the product precipitates (0.5-12 hrs.) → carboxymethylthiobenzylanthranilic acid. Y: 92%. F. e. s. G. W. Stacy and R. J. Morath, Am. Soc. 74, 3885 (1952).

Acylguanylthioureas from acyldicyanodiamides

←

652.

A slurry of benzoildicyanodiamide in ethanol treated 9 hrs. with a slow stream of H₂S → benzoylguanylthiourea. Crude Y: 87.5%. P. Adams et al., J. Org. Chem. 17, 1162 (1952).

*n-Butylamine**n-C₄H₉NH₂***Dithiooxaldiiimides from mercaptans**

←

653.

Cyanogen bubbled at 3° through n-amyl mercaptan containing 1 drop of n-butylamine for ca. 25 min. until the temp. decreases again after a rise to 40° → di-n-amyl dithioxaldiiimide. Y: 82%. F. e. s. H. M. Woodburn and C. E. Sroog, J. Org. Chem. 17, 371 (1952).

*Triethylamine**(C₂H₅)₃N***Carboxylic acid acylthioethylamides from carboxylic acid ethylenimides**

←

s. 9, 454

Addition to Carbon**SC ↓ CC***Without additional reagents**w.a.r.***Thiothionophosphoric acid esters**(RO)₂PSSR

Methyl acrylate added dropwise with stirring to O,O-diethyl thiolthionophosphoric acid at such a rate that the temp. does not rise above 100°, then heated at 100-110° with stirring until the acidity of the reaction mixture has decreased to a substantially constant value → S-carbo-methoxyethyl O,O-diethyl thioltionophosphate. Y: 83%. F. e. s. G. R. Norman, W. M. LeSuer, and T. W. Mastin, Am. Soc. 74, 161 (1952); also abnormal addition in the presence of peroxides s. Am. Soc. 76, 670 (1954).

Triton B

←

Thioethers from ethylene derivatives

C:C → CHCSR

s. 4, 540; s. a. Q. F. Soper et al., Am. Soc. 76, 4109 (1954)

PiperidineC₅H₁₁N

**Protection of sulphydryl groups
by addition to ethylene derivatives
Friedel-Crafts ketone synthesis**

←

55.

Thiophenol added to 3-nitrobenzalacetophenone dissolved in the minimum amount of boiling benzene, the heat source removed, piperidine dropped into the soln., then allowed to cool to room temp. → β -(3-nitrophenyl)- β -(phenylthio)propiophenone (Y: 96%) dissolved in acetyl chloride and CS₂, then added dropwise with stirring at -10° to

AlBr₃ in CS₂ → β-(3-nitrophenyl)-β-(4-acetylphenylthio)propiophenone (Y: 86%) dissolved in a mixture of chloroform and ethanol, stirred and treated with aq.-alc. Pb-acetate followed by enough aq. 10%-NaOH to keep the soln. at pH 8-10, the Pb-mercaptide precipitate removed by filtration (3-Nitrobenzalacetophenone can almost completely be recovered from the filtrate), and carefully triturated with dil. HCl at 0° → 4-acetylthiophenol. Over-all Y: 77%.—This is a general method for the prepn. of electrophilically subst. thiophenols. F. reactions with protection of the sulfhydryl group s. A. H. Herz and D. S. Tarbell, Am. Soc. 75, 4657 (1953).

Borax/benzoyl peroxide

Na₂B₄O₇/(C₆H₅COO)₂

Sulfonic acids from ethylene derivatives
β-H-Perfluoroalkanesulfonic acids

C:C → CHC·SO₃H

656.

A mixture of perfluoropropene, NaHSO₃, borax, water, and a little benzoyl peroxide heated 9 hrs. with agitation at 110-120° in an autoclave, the crude Na-salt mixed with 95%-H₂SO₄ and SO₃ (Sulfan β), and distilled under reduced pressure → β-H-perfluoropropanesulfonic acid. Y: 64%; conversion 93%. F. e. s. R. J. Koshar, P. W. Trott, and J. D. LaZerte, Am. Soc. 75, 4595 (1953).

Acetic acid

CH₃COOH

γ-Disulfones

C:C → CHC·SO₂R

657.

Li-2-thiophenesulfinate refluxed in glacial acetic acid until dissolved, methyl vinyl sulfone added slowly, stirring and refluxing continued for 8 hrs. → 1-(2-thiophenesulfonyl)-2-methanesulfonylethane. Y: 46%. F. e. s. W. E. Truce and E. Wellisch, Am. Soc. 74, 5177 (1952).

Rearrangement

Nitrogen/Carbon Type

SC \cap NC

Hydrochloric acid

HCl

Aminodithiolcarbonyc acid esters
from hydroxydithiocarbamic acid esters
s. 9, 705

←

Exchange

Hydrogen ↓

SC \ddagger H

Without additional reagents

w.a.r.

Sulfonylation

$\text{H} \rightarrow \text{SO}_3\text{H}$

s. 9, 306

Extended Willgerodt reaction

←

with activated methyl and methylene groups

Carboxylic acid thioamids from hydrocarbons

Benzothiazole ring synthesis

58.

A suspension of S, aniline, and

α -picoline heated 12 hrs. in an oil bath at 160° → thio-
picolinanilide. Y: 63%.

γ -picoline refluxed 24 hrs. in an oil bath at 180° → 2-(4-pyridyl)-benzothiazole. Y: 53%.

F. e. s. H. D. Porter, Am. Soc. 76, 127 (1954).

Pyridine/sulfur trioxide

$\text{C}_5\text{H}_5\text{N}/\text{SO}_3$

Sulfonylation

$\text{H} \rightarrow \text{SO}_3\text{H}$

of heterocyclics

s. 3, 508; of furans s. a. J. F. Scully and E. V. Brown, J. Org. Chem. 19, 894 (1954)

Dioxane/sulfur trioxide

←

s. 6, 624; s. a. A. P. Terent'ev and G. M. Kadatskii, Ж. 23, 251 (1953); C. A. 48, 3339b

Bromine

Br

←

2-Aminothiazole ring
from amines and o-aminothiocyanates
Replacement of hydrogen by thiocyanato
groups

659.

The reaction of thiocyanogen with a variety of N-heterocyclics shows that thiocyanation can readily occur if there is a sufficient number of strong "electron donating" groups present. By cyclization of o-aminothiocyanato compounds, new or otherwise difficultly accessible ring systems can be obtained.—E: Br₂ in glacial acetic acid added with stirring and ice-cooling over a period of 0.5 hr. to a soln. of 2,6-diaminopyridine and K-thiocyanate in glacial acetic acid-methanol, the ice-bath removed, stirred 40 min., water added at 70°, and heated 15 min. at 100° → 1,7-dithia-2,6-diamino-3,4,5-triaza-s-indacene. Y: 62%. F.e.s. A. Maggiolo, Am. Soc. 73, 5815 (1951).

Oxygen ↑**SC \ddagger O**

Without additional reagents

w.a.r.

Alkylthiomethylene- from hydroxymethylene-
and alkoxymethylene compounds

C: CHSR

660.

3-(Hydroxymethylene)oxindole heated 1 hr. under N₂ with p-thiocresol at 120° → 3-(p-tolylthiomethylene)oxindole. Y: ca. 100%.—1-Acetyl-3-(ethoxymethylene)oxindole heated similarly with benzylmercaptan at 130° → 1-acetyl-3-(benzylthiomethylene)oxindole. Crude Y: ca. 100%. F. e. s. H. Behringer and H. Weissauer, B. 85, 774 (1952).

**Reactions of hydrogen sulfide and mercaptans
at high pressure**

←

Reductive formation of polysulfides

H_2S has greatly increased reactivity at a pressure of 8500 atm. At this pressure it can convert such compounds as methyl formate, ethyl acetate, acetamide, and cyclohexanone oxime to alkyl polysulfides. Moreover, several previously known reactions of H_2S are facilitated by such a pressure.—E.: Ethyl formate allowed to react 14-15 hrs. with H_2S at 125° and 8500 atm. → crude methyl pentasulfide. Y: 70%. F. e. and reactions s. T. L. Cairns, A. W. Larchar, and B. C. McKusick, J. Org. Chem. 18, 748 (1953).

**Thiolic acid esters from
carboxylic acid anhydrides**

RCOSR

s. 9, 686

Aminomethylsulfonic acids from amines $\text{NH}_2 \rightarrow \text{NHCH}_2\text{SO}_3\text{H}$

s. 4, 551; also with sulfonylaminomethylsulfonate groups s. K. Kraft and F. Dengel, B. 85, 577 (1952)

4-Thiazolidones from aldehydes

○

62.

Ethyl ω -formylcaproate and thioglycolamide mixed together in xylene, and refluxed with separation of the water formed → ethyl DL-actithiazate. Y: 44%. F. e. s. R. K. Clark, Jr., and J. R. Schenk, Arch. Biochem. Biophys. 40, 270 (1952); with p-toluenesulfonic acid s. F. C. Pennington et al., Am. Soc. 75, 109 (1953).

2,4-Diaminothiazoles via α -cyanosulfonates

63.

A mixture of benzaldehyde, benzenesulfonyl chloride, NaCN, and water allowed to stand 3 hrs. at $0-5^\circ$ with occasional shaking → α -cyano-benzyl benzenesulfonate (Y: 84%) stirred with thiourea in acetone at room temp. for 15-30 min. until soln. is achieved, and allowed to stand overnight at the same temp. → 2,4-diamino-5-phenylthiazole benzenesulfonate (Y: 80%). R. M. Dodson and H. W. Turner, Am. Soc. 73, 4517 (1951).

←

**Reaction of hydrogen sulfide with amines
in the presence of formaldehyde
Tetrahydro-1,3,5-thiadiazines**

664.

H_2S passed through a mixture of ethanol and 40% formaldehyde until 0.5 mole has been absorbed, this soln. added at 0° to a soln. of aniline in ethanol, and kept overnight at the same temp. \rightarrow 3,5-diphenyltetrahydro-1,3,5-thiadiazine. Y: 75%. F. e. and heterocyclics s. D. Collins and J. Graymore, Soc. 1953, 4089.

Sodium/alcohol

NaOR

**Thioethers from acoxy compounds
Cleavage of acetals**

OAc \rightarrow SR

A soln. of mercaptoacetaldehyde diethylacetal in abs. ethanol added slowly at -10° to a soln. of Na in abs. ethanol, then a soln. of 2-acetoxy-1-nitropropane in ethanol added dropwise with shaking at the same temp., allowed to stand 1 hr. at -10° and 10 hrs. at 20° \rightarrow 2-(1-nitropropyl) 2-(1,1-diethoxyethyl) sulfide (Y: 89%) treated with 1 N HCl and dioxane, then heated ca. 5 min. with vigorous stirring in a stream of CO_2 on a steam bath until dissolved \rightarrow 2-(1-nitropropyl) 2-(1-oxoethyl) sulfide (Y: 95%). C. Grob und H. v. Sprecher, Helv. 35, 902 (1952); f. e. s. 35, 885.

Sodium acetate

 CH_3COONa

Thiazolidines

○

An aq. soln. of DL-penicillamine hydrochloride and Na-acetate added to a hot soln. of methyl α -phthalimidomalonaldehyde in 95%-ethanol, and allowed to stand 12 hrs. at room temp. \rightarrow methyl 4-carboxy-5,5-dimethyl- α -phthalimido-2-thiazolidineacetate. Y: 81%. F.e.s. J.C. Sheehan and D.A. Johnson, Am. Soc. 76, 158 (1954).

Pyrrolo[2,1-b]thiazoles

A soln. of mucochloric acid in 95% ethanol added to a soln. containing penicillamine methyl ester hydrochloride and Na-acetate in water → 4-carbomethoxy-5,5-dimethyl-2-thiazolidine-*a,b*-dichloroacrylic acid γ-lactam. Y: 85%. F. e., with lower yields, s. H. H. Wasserman, F. M. Precopio, and Tien-Chuan Liu, Am. Soc. 74, 4093 (1952).

Potassium thiocyanate*KSCN***Ethylene sulfides from oxido compounds**

s. 8, 662; s. a. C. C. Price and P. F. Kirk, Am. Soc. 75, 2396 (1953)

Pyridine*C₅H₅N***Acylation of 1,1-dithiols***C(SH)₂ → C(SAc)₂*

3,5,5-Trimethyl-1,1-hexanedithiol added at 25° to acetic anhydride in pyridine, and kept 18 hrs. at the same temp. → 3,5,5-trimethyl-1,1-hexanedithiol diacetate. Y: 71%. F. e. s. T. L. Cairns et al., Am. Soc. 74, 3982 (1952).

Pyridine/phosphorus pentasulfide*C₅H₅N/P₂S₅***Thiolactams from lactams***NHCO → NHCS*

s. 9, 574

Magnesium/ethyl alcohol*Mg/C₂H₅OH***Sulfonylacetic acid esters from sulfonic acid anhydrides via sulfonylmalonic acid esters***SO₂CH₂COOR*

Benzenesulfonic anhydride (prepn. s. 178) in benzene added during 1.3 hrs. to a refluxing soln. of diethyl ethoxymagnesiomalonate (pre-

pared from diethyl malonate, Mg, and ethanol in CCl_4 , with subsequent addition of benzene and partial removal of solvent by distillation), and heating continued for 2 hrs. \rightarrow diethyl phenylsulfonylmalonate (Y: 53%) refluxed with 25% H_2SO_4 ca. 3 hrs. until there is no further gas evolution, then for 0.5 hr. more \rightarrow ethyl phenylsulfonylacetate (Y: 82%). L. Field, Am. Soc. 74, 394 (1952).

Boron fluoride BF_3 **Mercaptals** $\text{C}(\text{SR})_2$

s. 8, 667; ethylenethioketals s. a. L. F. Fieser, Am. Soc. 76, 1945 (1954)

Trithioörthocarboxylic acid esters $\text{C}(\text{SR})_3$

Phenyl thiolacetate, thiophenol, and BF_3 allowed to stand 14 hrs. at room temp. \rightarrow phenyl trithioörthoacetate. Y: 71%. F. e., with lower yields, s. D. S. Tarbell and A. H. Herz, Am. Soc. 75, 1668 (1953).

Aluminum chloride AlCl_3 **Sulfones from sulfonic acid anhydrides** $\text{RSO}_2\text{R}'$

AlCl_3 added with stirring at ca. 30° during 0.5 hr. to benzenesulfonic anhydride (prep. s. 178) in bromobenzene, warmed briefly when it becomes γ -latinous until it can be stirred, then stirred 1 hr. without heating and 4 hrs. at 75-85° \rightarrow phenyl p-bromophenyl sulfone. Y: 74%. F. e. s. L. Field, Am. Soc. 74, 394 (1952); 76, 1222 (1954).

Ammonium carbonate $(\text{NH}_4)_2\text{CO}_3$ **4-Thiazolidones from oxo compounds**

○

A mixture of 3,4-dichlorobenzaldehyde, NH_4 -carbonate, thioglycolic acid, and benzene refluxed 8 hrs. with separation of the water formed \rightarrow 2-(3,4-dichlorophenyl)-4-thiazolidone. Y: 72.6%. F. e. s. A. R. Survey and R. A. Cutler, Am. Soc. 76, 578 (1954).

Formic or acetic acid

HCOOH or CH₃COOH

Sulfones from sulfinic acids and alcohols

RSO₂R'

Alkyl-oxygen fission

673.

1,2,3,4-Tetrahydro-1-naphthol and its derivatives tend to react by alkyl-oxygen fission.—E: A soln. of 1,2,3,4-tetrahydro-1-naphthyl hydrogen phthalate in a little acetone added to a soln. of Na-p-toluenesulfinate in 98% formic acid, heated 15 min. at 100°, then kept 48 hrs. at 20° → 1,2,3,4-tetrahydro-1-naphthyl p-tolyl sulfone. Y: 75%. A. G. Davies and A. M. White, Soc. 1952, 3300; in glacial acetic acid s. M. P. Balfe, J. Kenyon, and E. M. Thain, Soc. 1952, 790.

Lead salt

Pb⁺⁺

**Thiolic acid esters
from carboxylic acid anhydrides**

RCOSR'

674.

m-Tolyl lead mercaptide (prepared by adding excess lead acetate in 50%-alcohol to m-thiocresol) dissolved in dry pyridine, acetic anhydride added slowly, and heated 10 min. on a steam bath after the yellow color has disappeared → m-tolyl thiolacetate. Y: 80%.—The preparation from acetyl chloride gave low yields. D. S. Tarbell and A. H. Herz, Am. Soc. 75, 1668 (1953).

Phosphorus pentasulfideP₂S₅

**Selective replacement of oxygen by sulfur
in O-heterocyclics**

←

s. 8, 669; s. a. A. Schönberg, M. M. Sidky, and G. Aziz, Am. Soc. 76, 5115 (1954)

Phosphorus pentasulfide/pyridineP₂S₅/C₅H₅N*s. Pyridine/phosphorus pentasulfide*

Hydrosulfite $S_2O_4^{2-}$ **Sulfamic acids from nitro compounds** $NO_2 \rightarrow NHSO_3H$

675.

5-Nitouracil stirred with 3 N NaOH, the slurry of the resulting di-Na salt treated with small portions of $Na_2S_2O_4$ alternately with NaOH in such a way that the soln. remains alkaline all the time and the $Na_2S_2O_4$ is consumed before more is added, finally the alkaline soln. containing a little unchanged $Na_2S_2O_4$ warmed to 50° and filtered → 5-sulfamino-uracil (startg. m. f. 332, 538). Y: 85-90%. F. G. Fischer, W. P. Neumann, and J. Roch, B. 85, 752 (1952).

*p-Toluenesulfonic acid**TsOH***1,3-Oxathiolane ring**

676.

A mixture of 2-mercaptoethanol and cyclohexanone distilled azeotropically with benzene in the presence of a little p-toluenesulfonic acid → 2-pentamethylene-1,3-thioxolane. Y: 70%. E. D. Bergmann, D. Lavie, and S. Pinchas, Am. Soc. 73, 5662 (1951).

4-Thiazolidones from aldehydes

s. 9, 662

Hydrochlorides

←

Thiazolidines

s. 2, 543; s. a. B. E. Leach and J. H. Hunter, Biochem. Prep. 3, 111 (1953)

*Hydrochloric acid**HCl***Mercaptals**

in xylene s. 6, 643; cyclic mercaptals in dioxane s. K. Balenović, D. Cerar, and L. Filipović, J. Org. Chem. 18, 868 (1953)

of carbohydrates

s. 1, 469; isolation as $HgCl_2$ addition compounds s. Zaki El Hweihi, B. 86, 781 (1953)

Stilbenes from aldehydes via s-trithianes

←

677.

A soln. of o-chlorobenzaldehyde in ethyl acetate satd. at 2° with dry HCl, then H₂S passed in for 2 hrs. with continued introduction of HCl → α and β (*cis-cis* and *cis-trans*) o-chlorothiobenzaldehyde trimers (Y: 98.7%) and freshly prepared Cu-powder heated 1 hr. with stirring under N₂ so that the temp. is not higher than 20° above the m. p. of the startg. m. → 2,2'-dichlorostilbene (Y: 78.2%). F. e. s. J. A. Stanfield and L. B. Reynolds, Jr., Am. Soc. 74, 2878 (1952).

*Hydrobromic acid/sodium sulfate**HBr/Na₂SO₄*

Thiolactolides from lactolides

OR → SR'

678.

6 drops of 30% -HBr in acetic acid and a little Na₂SO₄ added to a soln. of methyl 3β-methoxy-3α,9α-oxido-11-ketocholanate in ethyl mercaptan, and allowed to stand 12 hrs. at room temp. → methyl 3β-ethylthio-3α,9α-oxido-11-ketocholanate. Y: 73% based on converted startg. m. H. Heymann and L. F. Fieser, Am. Soc. 73, 5252 (1951).

*Via intermediates**v.i.*Thiolic acid esters from carboxylic acids
via mixed alkoxyformic acid anhydrides

COOH → COSR

s. 8, 528; s. a. R. L. Barnden et al., Soc. 1953, 3733

Nitrogen ↑

SCN

*Without additional reagents**w.a.r.*

γ-Ketothioethers from tert. amines

NR₂ → SR

S-β-Acylethylation

679. C₆H₅COCH₂CH₂N(CH₃)₂ + HSCH₂C₆H₅ → C₆H₅COCH₂CH₂SCH₂C₆H₅
 β-Dimethylaminopropiophenone and benzyl mercaptan heated 5-10 min. at 130-135° until evolution of volatile base ceases → 1,5-diphenyl-2-thiapentan-5-one. Y: 87%. F. e. s. N. S. Gill et al., Am. Soc. 74, 4923 (1952).

Sulfonic acid amides from diazo compounds

680.

Excess piperidine added to a soln. of diphenyldiazomethane in anhydrous ether, then SO_2 introduced with ice-salt cooling until the red color is discharged \rightarrow diphenylmethanesulfonic acid piperidide. Y: 70%. F. e., also with NH_3 , s. H. Kloosterziel, M. H. Deinema, and H. J. Backer, R. 71, 1228 (1952).

Sodium nitrite

Replacement of amino by thiocyanato groups
Replacement of nitro by thiocyanato groups
with simultaneous formation
of azo compounds by coupling

681.

2,4-Dinitroaniline slowly added at 35° to nitrosulfuric acid (from NaNO_2 and concd. H_2SO_4), stirred 2 hrs., poured on ice, and the mixture then added to aq. K -thiocyanate \rightarrow 2,4-dinitrothiocyanatobenzene. Y: almost 100%.

1-Nitro-2-naphthylamine in ethanol added to aq. H_2SO_4 , quickly diazotized with NaNO_2 in a small amount of water, after 5 min. urea added, the diazonium soln. poured into aq. NH_4 -thiocyanate, set aside for 5 min., filtered, and added to a soln. of β -naphthol, NaOH , and Na_2CO_3 in ice-water \rightarrow 2-(2-hydroxy-1-naphthylazo)-1-thiocyanatonaphthalene. Y: almost 100%.

A. Burawoy and C. Turner, Soc. 1953, 959.

Copper*Cu* **β -Ketothioethers from α -diazo ketones**

682.

Cu-bronze (Naturkupfer C) added at 70° to a soln. of α -diazoacetophenone and thiophenol in abs. ethanol until no further gas evolution occurs, then stirred 7 hrs. at $70-75^\circ$ \rightarrow α -phenylmercaptoacetophenone. Y: 67%. P. Yates, Am. Soc. 74, 5376 (1952).

Thioacetamide CH_3CSNH_2 **Sym. thioethers from tert. amines**2 RNR'₂ → R₂S

683.

A mixture of β -dimethylaminopropiophenone and thioacetamide heated 15 min. at 140-145° → 1,7-diphenyl-4-thiaheptane-1,7-dione. Y: 62%. N. S. Gill et al., Am. Soc. 74, 4923 (1952).

Ammonium chloride NH_4Cl **Thioethers from amines**

←

s. 9, 411

Via intermediates

v.i.

Mercaptans from amines $NH_3 \rightarrow SH$

s. 3, 517; s. a. D. Greenwood and H. A. Stevenson, Soc. 1953, 1514

Halogen †**SC \ddagger Hal***Without additional reagents*

w.a.r.

Thioethers from halides

Hal → SR

684.

A mixture of 1.57 g. 2-chloronicotinic acid and 2 cc. thiophenol heated at 140° until a clear soln. results, then 1 hr. at 185-190° → 1.58 g. 2-(3-carboxypyridyl) phenyl sulfide.—Considerable decomposition occurs, when the Na-derivative of thiophenol is used; apparently, an acid media is necessary for the reaction. F. e. s. F. G. Mann and J. A. Reid, Soc. 1952, 2057.

Sym. disulfides from halides

2 RHal → RSSR

685.

Trifluoriodomethane and sulfur in an autoclave filled with N₂ to atmospheric pressure, and heated 30 hrs. at 220° and 24 hrs. at 265° → bis(trifluoromethyl) disulfide. Y: 60%. G. A. R. Brandt, H. J. Emeléus, and R. N. Haszeldine, Soc. 1952, 2198.

**Thiolic acid esters
from carboxylic acid chlorides**

s. 9, 650

686.

and carboxylic acid anhydrides. Ethyl mercaptan treated at room temp. with 20-30% excess n-heptafluorobutyryl chloride, then heated several hrs. at 100° to complete the reaction → ethyl n-thiolheptafluorobutyrate. Y: 90%.—Similarly with trifluoroacetic anhydride → ethyl thioltrofluoroacetate. Y: 84%. F. e. s. M. Hauptschein, C. S. Stokes, and E. A. Nodiff, Am. Soc. 74, 4005 (1952); aminothiolic acid esters from carboxylic acid chlorides s. M. Kopp and B. Tchoubar, Bl. 1952, 84.

Thiocyanates from mercaptans

687.

Cyanogen bromide and 4(5)-methyl-2-mercaptoimidazole thoroughly mixed, then warmed 0.5-1 hr. at 45-55° → 4(5)-methyl-2-thiocyanatoimidazole. Y: 59%. F. e. s. R. E. Koeppe and J. L. Wood, Am. Soc. 75, 4655 (1953).

**Identification of mercaptans
as saccharin derivatives**

688.

Saccharin chloride and a slight excess n-heptyl mercaptan warmed 10 min. on a steam bath until the HCl-evolution ceases → S-n-heptylthiosaccharin. Y: 70%. F. e. s. J. R. Meadow and J. C. Cavagnol, J. Org. Chem. 17, 488 (1952).

S-Alkylation of thiourea derivatives

of thiosemicarbazones s. 9, 554; of other thiourea derivatives s. E. S. Scott and L. F. Audrieth, J. Org. Chem. 19, 1231 (1954)

Isothiouronium salts

s. 9, 589

Lithium

Li

Mercaptans from halides**Ethylene derivatives from ethylenesulfides**

689.

An ethereal soln. of cyclohexene sulfide added during 0.5 hr. with gentle refluxing to a soln. of n-butyl-Li, prepared from n-butyl bromide and Li in ether, stirring continued for 2 hrs., allowed to stand overnight, then poured on ice-water → 1-butanethiol (Y: 63%) and cyclohexene (Y: 67%).

The reaction of aryllithium reagents and the readily available propylene sulfide constitutes a new method for preparing thiophenols. It serves as an alternative to the reaction of aryl Grignard reagents and sulfur (S_8), which is awkward due to the insolubility of sulfur in ether, and usually gives very poor yields.—E: Phenyl-Li from bromobenzene and propylene sulfide → thiophenol. Y: 81%. F. e. s. F. G. Bordwell, H. M. Andersen, and B. M. Pitt, Am. Soc. 76, 1082 (1954).

Sodium hydride

NaH

**Xanthates and trithiocarbonic acid esters
from halides**

690.

A mixture of cholesterol and NaH in dry benzene refluxed 24 hrs. with stirring, with addition of a trace of ethanol to start the reaction if no H_2 -evolution takes place, allowed to cool to room temp., dry CS_2 added, refluxed again 24 hrs. with stirring, cooled to room temp., methyl iodide added, stirring and refluxing continued for 24 hrs. → cholesteryl-S-methyl xanthate Y: 85%. F. e. s. G. L. O'Connor and H. R. Nace, Am. Soc. 74, 5454 (1952); also trithiocarbonic acid esters from mercaptans s. Am. Soc. 75, 2118 (1953).

Potassium hydroxide

KOH

Carboxythioethers from halogenonitriles

0.5 mole aq. KOH, 0.3 mole 1-butanethiol, and 0.3 mole γ -chlorobutyronitrile added consecutively to alcohol, refluxed 1.5 hrs., more aq. KOH added, and refluxing continued for 3 hrs. \rightarrow γ -(butylmercapto)butyric acid. Y: 76%. F. G. Bordwell, H. M. Andersen, and B. M. Pitt, Am. Soc. 76, 1082 (1954).

Potassium carbonate

K_2CO_3

Carboxythioethers

Allyl bromide added dropwise to a vigorously stirred suspension of K_2CO_3 and thiosalicylic acid in methyl ethyl ketone and acetone, stirring continued 3 hrs. during which reflux temp. is gradually reached, more allyl bromide and water added, refluxing continued for 15 hrs., concentrated under reduced pressure, 15%-NaOH soln. added, and refluxed 1 hr. \rightarrow crude S-allylthiosalicylic acid. Y: 93%. D. S. Tarbell and M. A. McCall, Am. Soc. 74, 48 (1952).

Potassium thiocyanate

$KSCN$

Thiocyanates from halides

Hal \rightarrow SCN

s. 3, 566; s. a. A. H. Schlesinger and D. T. Mowry, Am. Soc. 76, 585 (1954); from bromides s. 4, 566; from chlorides s. A. P. Terent'ev and A. I. Gershcnovich, Ж. 23, 204 (1953); C. A. 48, 2568i

Sodium sulfide

Na_2S

Cyclic thioethers

○

s. 1, 484; s. a. S. F. Birch, R. A. Dean, and E. V. Whitehead, J. Org. Chem. 19, 1449 (1954)

Potassium hydrogen sulfide

KHS

Mercaptans from halides

Hal \rightarrow SH

s. 3, 522; s. a. H. Zinner, B. 86, 825 (1953)

Sodium sulfite Na_2SO_3 **Reactions with iodonium salts**
Sulfonic acids from iodonium salts \leftarrow

693.

A mixture of diphenyliodonium bromide, Na-sulfite, and water refluxed 1 hr. \rightarrow Na-benzenesulfonate. Y: 95%. F. e. and reactions s. F. M. Beringer et al., Am. Soc. 75, 2708 (1953).

Sodium salt Na^+ **Alkylthiomethylsilanes** $\text{Hal} \rightarrow \text{SR}$

694.

Bromomethyltrimethylsilane added dropwise with stirring during 15 min. to a soln. of Na-n-butylmercaptide in abs. ethanol, then refluxed 2 hrs. \rightarrow trimethylsilylmethyl n-butyl sulfide. Y: 92.5%. F. e. s. D. C. Noller and H. W. Post, J. Org. Chem. 17, 1393 (1952).

Xanthates from halides $\text{Hal} \rightarrow \text{SCS(OR)}$

695.

1,3-Dibromopropane allowed to react with Na-isoamylxanthate in acetone at 20° 1 hr. \rightarrow crude trimethylenebis(isoamylxanthate). Y: 90%. F. e. s. D. Lefort and G. Hugel, Bl. 1952, 172.

Bis(triarylthiomethyl) trisulfides \leftarrow

696.

An ethereal soln. of trichloromethylsulfenyl chloride added at -12° to an alc. soln. of Na-phenylmercaptide (prepared from phenylmercaptan and Na-ethoxide) \rightarrow bis(triphenylthiomethyl) trisulfide. Y: 66.5%. F. e. s. H. J. Backer and E. Westerhuis, R. 71, 1071 (1952); f. method s. R. 71, 1082.

Potassium and ammonium salts

K⁺ and NH₄⁺

1,3,4-Thiadiazines via *a*-(dithiocarbazyl)oxo compounds

697.

A 20% aq. soln. of K-phenyldithiocarbazate added at 5-9° during 30 min. to a well-stirred mixture of 3-chloro-2-butanone and 50%-ethanol → crude 3-(2-phenyldithiocarbazyl)-2-butanone (Y: 92%) added to HCl, and heated to 70° with stirring → 5,6-dimethyl-2-mercapto-4-phenyl-1,3,4,4H-thiadiazine (Y: 86%). F. e., also one-step procedure and with NH₄-salts, s. R. A. Mathes, J. Org. Chem. 17, 877 (1952).

Pyridine

C₆H₅N

Hydroxythioethers from hydroxymercaptans

$\text{SH} \rightarrow \text{SR}$

698

A mixture of *trans*-2-hydroxycyclohexanethiol and 1 mole 2,4-dinitro-chlorobenzene dissolved in pyridine heated 1 hr. on a steam bath → 2,4-dinitrophenyl *trans*-2-hydroxycyclohexyl sulfide. Y: 87%. F. e. s. E. G. Bordwell and H. M. Andersen, Am. Soc. 75, 4959 (1953).

Thiolic acids from carboxylic acid chlorides

$$\text{COCl} \rightarrow \text{COSH}$$

s. 1, 491; s. a. C. S. Marvel and E. A. Kraiman, J. Org. Chem. 18, 707 (1953).

Calcium carbonate

CaCO₃

Thioethers from halides

Hal → SR

699.

A mixture of 4 g. 3α -acetoxy-11-keto-12,21-dibromo-24,24-diphenyl- $\Delta^{20,22;23}$ -choladiene (prepn. s. 927), CaCO_3 , and ethyl mercaptan shaken 16 hrs. at room temp. \rightarrow 3.9 g. crude 3α -acetoxy-11-keto-12-bromo-21-

thioethyl-24,24-diphenyl- $\Delta^{20,22;23}$ -choladiene. J. Heer and A. Wettstein, Helv. 36, 891 (1953).

Magnesium

Mg

Mercaptans from bromides

Br → SH

700.

Powdered S added to ethereal 2-thienyl-MgBr (prepared from 2-thienyl bromide and Mg-turnings in the presence of a crystal of iodine) at a rate to maintain gentle refluxing, which is continued for 1 hr. after the addition → crude 2-thiophenethiol. Y: 67%. W. H. Houff and R. D. Schuetz, Am. Soc. 75, 6316 (1953).

Zinc chloride/sodium sulfate

ZnCl₂/NaSO₄

Mercaptals

$\text{C}\begin{cases} \diagdown \\ \diagup \end{cases}\text{S}-\text{S}-$

s. 7, 116; cyclic mercaptals s. C. R. Engel and G. Just, Am. Soc. 76, 4909 (1954)

Via intermediates

v.i.

**Replacement of hydrogen by sulfhydryl
via oxazolones**

H → SH

s. 5, 450; s. a. B. E. Leach and J. H. Hunter, Biochem. Prep. 3, 111 (1953)

Sulfur †

SC \ddagger S

Without additional reagents

w.a.r.

S-Acylation

SH → SAc

701.

Thiolacetic acid added to aq. pantetheine, and the mixture stirred overnight at room temp. → S-acetyl pantetheine. Y: ca. 100%. E. Walton et al., Am. Soc. 76, 1146 (1954).

Sodium/alcohol

NaOR

Replacement of hydrogen by alkylthio groups

H → SR

s. 5, 453; s. a. Bl. Soc. chim. Belg. 62, 3 (1953)

Remaining Elements ↑**SC↑ Rem***Sodium/alcohol**NaOR***Thioethers from thioltionophosphoric acid esters and alcohols**

←

O,O-Diethyl S-(2-octyl) phosphorodithioate added dropwise during 20 min. to a refluxing soln. of Na in abs. methanol, then refluxed 6 hrs., cooled to 30°, and blown with CO₂ for 1 hr. → methyl 2-octyl sulfide (Y: 65%) and Na-O,O-diethyl phosphorothioate (Y: 63%). F. e. s. W. E. Bacon and W. M. LeSuer, Am. Soc. 76, 670 (1954).

Elimination**Oxygen ↑****SC↑O***Sodium hydrogen carbonate**NaHCO₃***Cyclic thioethers by deacylation**

○

2,3-Bis(thioacetyl)propyl 1-acetate added to a warm aq. NaHCO₃-soln., then steam-distilled at 60°/150 mm for 3 hrs. → 3-acetylthiopropylene sulfide. Y: 80%. F. e. from partially acetylated hydroxymercaptans, s. L. W. C. Miles and L. N. Owen, Soc. 1952, 817.

Acetic anhydride(CH₃CO)₂O**5-Thiazolones**

α -(Thiobenzamido)cinnamic acid heated 20 min. with acetic anhydride → 2-phenyl-4-benzylidene-5(4H)-thiazolone. Y: 85%. S. I. Lur'e and L. G. Gatsenko, Ж. 22, 262 (1952); C. A. 47, 2168c.

Thionyl chloride or hydrochloric acid

SOCl₂ or HCl

Aminodithiolcarboxylic acid esters via hydroxydithiocarbamic acid esters and thiazolines

605.

Triethylamine and CS₂ added with water-cooling to ethanolamine in pyridine, cooled to 0°, kept 1 hr. at this temp., benzyl chloride added, and the soln. kept at 0° overnight → 2-N-dithiocarbobenzoyloxyamino-ethanol (Y: 90%) treated with cold SOCl₂ or HCl → 2-benzylthio-4-thiazoline hydrochloride (Y: 82%), 12 g. refluxed 4 hrs. with 6 N HCl → 11.35 g. 2-aminoethyl benzyl dithiolcarbonate hydrochloride (startg. m. f. 577). F. e., also without isolation of the thiazoline, s. J. C. Crawhall and D. F. Elliott, Soc. 1952, 3094.

Hydrochloric acid

HCl

Thiooxindoles from o-mercaptophenylacetic acids

S. 9, 121

Halogens

SC ↑ Hal

Aluminum chloride

$$AlCl_3$$

Cyclic sulfones from sulfonic acid chlorides

○

706.

A soln. of 3-phenyl-1-propanesulfonyl chloride in nitrobenzene added with stirring to a cold soln. of AlCl_3 in the same solvent, the ice bath removed, and the reaction allowed to proceed at 87-90° for 2.5 hrs. →

thiachroman 1,1-dioxide. Y: 76.2%. F. e., with lower yields, s. W. E. Truce et al., Am. Soc. 74, 974 (1952); 75, 3359 (1953).

Carbon ↑

SC ↑ C

Sodium hydroxide

NaOH

1,2-Dihydro-1-keto-2-thianaphthalenes from rhodanines

←

s. 8, 693; s. a. Soc. 1952, 4397

Formation of Rem—Rem Bond

Exchange

Halogen ↑

Rem Rem ↑ Hal

Sodium, potassium

Na,K

Disilanes from halogenosilanes

s. 8, 695; with Na and a trace of K s. R. A. Benkeser and D. J. Foster, Am. Soc. 74, 5314 (1952)

Mercury

Hg

Biarsines

707.

Iodobis(trifluoromethyl)arsine gently shaken with Hg in a sealed tube, and the product isolated after 2 days at room temp. → tetrakis(trifluoromethyl)biarsine. Y: 91%. G. R. A. Brandt, H. J. Emeléus, and R. N. Haszeldine, Soc. 1952, 2552 (1952).

Remaining Elements ↑

Rem Rem ↑ Rem

Sodium, potassium

Na,K

Disilanes by interchange

s. 8, 695; s. a. Am. Soc. 76, 278 (1954)

Formation of Rem—C Bond

Uptake

Addition to Oxygen and Carbon

RemC \downarrow OC

Without additional reagents

w.a.r.

**α -Hydroxyphosphonic acid esters
from oxo compounds**

08.

Benzaldehyde in anhydrous ether added to the bromomagnesium derivative of diethyl phosphite, and refluxed 3 hrs. \rightarrow crude diethyl α -hydroxybenzylphosphonate. Y: 61.5%. F. e. s. O. Gawron et al., Am. Soc. 75, 3591 (1953).

Sodium/alcohol

NaOR

**1-Hydroxy-2-ethylenephosphonic acid esters
from α,β -ethylenealdehydes**

s. 9, 710

Addition to Carbon

RemC \downarrow CC

Without additional reagents

w.a.r.

Cyanoethylation of phosphines

709.

Diphenylphosphine (prep. s. 57) and acrylonitrile added in turn to a glass tube cooled in Dry Ice and filled with N₂, the tube sealed, and heated 7 hrs. at 130° \rightarrow 2-cyanoethyldiphenylphosphine. Y: 71%.—The reaction proceeds readily without a catalyst, whereas that with aniline and with diphenylamine is vigorously promoted by an acidic catalyst, and that with phenylarsine by a basic catalyst. F. e. s. F. G. Mann and I. T. Millar, Soc. 1952, 4453.

Sodium/alcohol

NaOR

Reactions with dialkyl phosphites**3-Ketophosphonic acid esters****from α,β -ethyleneketones****1-Hydroxy-2-ethylenephosphonic acid esters****from α,β -ethylenealdehydes**

A soln. of Na-methoxide in methanol added dropwise to a mixture of dimethyl phosphite and 3-penten-2-one at such a rate as to keep the temp. at 60-70° → 4-(dimethylphosphono)-2-pantanone. Y: 69%. (Ж. 22, 462.)

F. e. s. A. N. Pudovik and Y. P. Kitaev, Ж. 22, 462, 467 (1952); C. A. 47, 2686f/7a.

A soln. of Na-ethoxide in ethanol added dropwise to a mixture of diethyl phosphite and acrolein → diethyl 1-hydroxy-2-propene-1-phosphonate. Y: 77% (Ж. 22, 467.)

Rearrangement**Oxygen/Carbon Type**RemC \downarrow OC**Ethyl iodide**C₂H₅I**Phosphonic acid esters from phosphites**

←

s. 8, 696; with ethyl tosylate instead of ethyl iodide s. T. C. Myers, S. Preis, and E. V. Jensen, Am. Soc. 76, 4172 (1954)

Exchange**Hydrogen \uparrow** RemC \uparrow H*Without additional reagents*

w.a.r.

Phosphonyl dichlorides from alcoholsOH → POCl₂

Finely powdered tri-p-tolylcarbinol added at 0° during 0.5 hr. in small portions with frequent shaking to PCl₃, allowed to reach room temp., then heated 4-5 hrs. at 60-70° → tri-p-tolylmethylphosphonyl dichloride. Y: 75%. F. e. and hydrolysis s. D. V. N. Hardy and H. H. Hatt, Soc. 1952, 3778.

Mercyrypyrans
Chloro- from aceto-mercury compounds

12.

A suspension of mercuric acetate in 2,6-dimethyl-2-hepten-6-ol vigorously shaken for 3 hrs., excess dimethylheptenol distilled molecularly at 35-50°/10⁻³ mm, the residue dissolved in aq. 10%-NaOH, treated with satd. NaCl, then with excess CO₂-gas → 2,2,6,6-tetramethyl-3-chloromercuritetrohydropyran. Y: 91%.—Reaction with mercuric acetate in water gives a lower yield. A. G. Brook, A. Rodgman, and G. F. Wright, J. Org. Chem. 17, 988 (1952).

Phenarsazine ring
Sec. from prim. amines and phenols

13.

A mixture of 3 g. 3-ethyl-2,5-dimethylaniline, 7.5 g. β-naphthol, and a little iodine heated 12 hrs. at 190-200° → 4 g. N-(3-ethyl-2,5-dimethylphenyl)-β-naphthylamine, 2 g. refluxed 1 hr. with AsCl₃ in o-dichlorobenzene → 1.8 g. 12-chloro-9-ethyl-8,11-dimethyl-7,12-dihydrobenzo-[\alpha]phenarsazine. Ng. Ph. Buu-Hoi, B. Eckert, and R. Royer, J. Org. Chem. 17, 1000 (1952).

Oxygen \downarrow **RemC \uparrow O***Without additional reagents*

w.a.r.

Organotin compounds $\text{SnOH} \rightarrow \text{SnCN}$ **Cyanides from hydroxides**

Pure triphenyltin hydroxide allowed to stand some time with a large excess of anhydrous HCN (from KCN and concd. H_2SO_4), with occasional shaking \rightarrow triphenyltin cyanide. Y: 95%. H. Zimmer and K. Lübke, B. 85, 1119 (1952).

Lithium**Li****Synthesis of silanes from alkoxy silanes** \leftarrow

An ethereal soln. of di-1-naphthyldiethoxysilane added to excess phenyl-Li, and refluxed 1 hr. \rightarrow di-1-naphthyldiphenylsilane. Y: 97%. F. e. s. H. Gilman and C. G. Brannen, Am. Soc. 73, 4640 (1951).

Nitrogen \downarrow **RemC \uparrow N***Without additional reagents*

w.a.r.

**Organometallic compounds
from diazo compounds** \leftarrow

716.

A soln. of diazoethane in benzene added dropwise 1 hr. at 0-5° to a soln. of AsCl_3 in dry benzene, and allowed to stand overnight \rightarrow di-(α -chloroethyl)chlorarsine. Y: 40%. F. e. s. A. Y. Yakubovich et al., Ж. 22, 1528 (1952); C. A. 47, 8010c; Ж. 22, 1534 (1952); C. A. 47, 9254g, and further papers of this series.

Sodium nitrite NaNO_2 **Selenocyanates from amines** $\text{NH}_2 \rightarrow \text{SeCN}$

s. 7, 664; s. a. L. Chierici and R. Passerini, Soc. 1954, 3249

*Cuprous bromide**CuBr*

**Phosphonic and phosphinic acids
from stable diazonium salts**

←

PCl_3 and CuBr added to a stirred suspension of p-bromobenzene-diazonium fluoborate in ethyl acetate, when the N_2 -evolution has ceased water added, and the product isolated → p-bromobenzene-phosphonic acid (startg. m. f. 526). Y: 61%.—Diarylphosphinic acids may be formed as by-products. G. O. Doak and L. D. Freedman, Am. Soc. 75, 683 (1953); 73, 5658 (1951); also in dioxane s. E. C. Ashby and G. M. Kosolapoff, Am. Soc. 75, 4903 (1953); unsym. diarylphosphinic acid s. L. D. Freedman et al., Am. Soc. 75, 1379 (1953).

Approximately the same yields are obtained with diazonium fluosilicates, but the reactions are less vigorous, and the products purified with less difficulty. L. D. Freedman and G. O. Doak, Am. Soc. 75, 4905 (1953).

Halogen ↑**RemC↑Hal***Without additional reagents**w.a.r.***Tert. arsines** R_3As

Finely ground arsenic and trifluoriodomethane heated 48 hrs. at 220° in a sealed tube → tris(trifluoromethyl)arsine. Y: 70%. G. R. A. Brandt, H. J. Emeléus, and R. N. Haszeldine, Soc. 1952, 2552 (1952).

*Lithium**Li*

Organobismuth compounds

←

1 N phenyl-Li soln. added dropwise with shaking at -75° under N_2 to a suspension of triphenyl-BiCl₂ in abs. ether, kept 1 hr. in the cooling bath, then allowed to come to room temp. with shaking, a few more drops of phenyl-Li soln. added, and the product isolated after 1 hr. → pentaphenylbismuth. Y: 81%. F. e. s. G. Wittig and K. Clauss, A. 578, 136 (1952).

*n-Butyllithium**n-C₄H₉Li***Silanes from halogenosilanes**

SiHal → SiR

Halogen-metal interconversion

720.

An ethereal soln. of n-butyl-Li followed after 2 min. by an ethereal soln. of trimethylsilyl chloride added at 5° under N₂ to 3-bromodibenzothiophene in dry ether, then refluxed 2 hrs. with stirring → 3-trimethylsilyldibenzothiophene. Y: 80%. F. e. s. H. Gilman et al., Am. Soc. 73, 5887, 4640 (1951).

Phosphines

s. 1, 503; phenoxphosphine ring s. F. G. Mann and I. T. Millar, Soc. 1953, 3746

Arsines

s. 1, 504; s. a. J. Org. Chem. 19, 1067 (1954)

*Phenyllithium**C₆H₅Li***Prim. phosphines from halides**Hal → PH₂

721.

Benzyl chloride added slowly with vigorous stirring and cooling to a suspension of monolithium phosphide, prepared from phenyl-Li and PH₃ in ether (Y: 98%) and cooled with Dry Ice-methanol, then allowed to warm to room temp. → benzylphosphine. Y: 75%. F. e. s. N. Kreutzkamp, B. 87, 919 (1954).

*Triphenylmethylsodium**(C₆H₅)₃C·Na***Silico-alkylation of carboxylic acid esters**CH → CSi $\begin{array}{c} \diagdown \\ \text{C} \\ \diagup \end{array}$

722.

Ethyl isobutyrate in ether, followed after 15 min. by trimethylchlorosilane in ether, added at room temp. to a stirred soln. of triphenylmethyl-Na in ether, stirring continued 1 hr., then allowed to stand for 12 hrs. → ethyl trimethylsilylisobutyrate. Y: 65% based on unrecovered ester. F. e. s. C. R. Hance and C. R. Hauser, Am. Soc. 75, 994 (1953).

*Magnesium**Mg***Unsym. organomercury from monoorganomercury compounds** $\text{RHgHal} \rightarrow \text{RHgR}'$

723.

Ethyl-HgBr added below 5° in small portions with vigorous stirring to allyl-MgBr, and worked up when soln. is complete → allylethylmercury (startg. m. f. 594). Y: up to 60%. E. Rothstein and R. W. Saville, Soc. 1952, 2987.

Phosphine oxides from halides

←

724.

Di-n-butyl phosphite in dry ether added at 15° with stirring during ca. 50 min. to n-octyl-MgI in ether, then the temp. raised to the reflux point to complete the reaction → di-n-octylphosphine oxide (startg. m. f. 182). Y: 70%. F. e., with lower yields, s. R. H. Williams and L. A. Hamilton, Am. Soc. 74, 5418 (1952).

*Magnesium/zinc chloride**Mg/ZnCl₂***Di- and mono-chlorophosphines**

←

725.

A soln. of freshly molten ZnCl₂ in ether added slowly in a N₂-stream with vigorous stirring to phenyl-MgBr in ether, stirring continued 15 min. at room temp., this mixture gradually driven by N₂ into a stirred soln. of PCl₃ in boiling ether, and refluxed 1 hr. with stirring → phenyldichlorophosphine. Y: 32.5%. F. e. s. T. Weil, B. Prijs, and H. Erlenmeyer, Helv. 35, 1412 (1952); 36, 1314 (1953); monochlorophosphines in low yields s. Helv. 37, 654 (1954).

*Phenylmagnesium bromide**C₆H₅MgBr***1,4-Azaphosphorines**

○

726.

In a N₂-atmosphere maintained throughout the reaction, a soln. of phenylphosphine in benzene added during 15 min. to ethereal phenyl-MgBr, refluxed 2.5 hrs. with stirring, whereby the ether is replaced by

benzene, to the resulting soln. of phenylphosphinebis(magnesium bromide) di-2'-bromoethylaniline in benzene added at 30° with vigorous stirring, and refluxed 2 hrs. → hexahydro-1,4-diphenyl-1,4-azaphosphorine. Y: 55%. F. G. Mann and I. T. Millar, Soc. 1952, 3039.

Organomercury compounds

**Synthesis of chlorophosphines
from dichlorophosphines**

PCI → PR

A mixture of phenyldichlorophosphine and pure dry diphenyl-Hg heated 90 min. at 200° in an oil bath under a slow N₂-stream with occasional vigorous shaking, light petroleum (b.p. 60-80°) added, boiled 10 min., the petroleum decanted, the viscous residue mixed with half its bulk of dry sand, and the petroleum extraction continued → diphenylchlorophosphine (startg. m. f. 57). Y: 54%.—Omission of the treatment with sand gives lower yields, because the reaction product is not readily wetted by petroleum. F. G. Mann and I. T. Millar, Soc. 1952, 4453.

Tetraalkyllead

R₄Pb

Dichlorophosphines

RPCl₂

s. 5, 464; P³²-labeled compounds s. B. C. Saunders and T. S. Worthy, Soc. 1953, 2115

Remaining Elements ↑

RemC $\uparrow\downarrow$ Rem

Potassium, sodium

K, Na

Germanecarboxylic acids from digermanes

$\text{R}_3\text{GeGeR}_3 \rightarrow 2 \text{R}_3\text{GeCOOH}$

5:1 K-Na alloy followed by 25 drops of tetrahydrofuran added to a slowly stirred suspension of hexaphenyldigermane in ether, stirred 5-10 min., ether added, stirring continued for 24 hrs., then treated with Dry Ice-ether slurry → triphenylgermanecarboxylic acid (startg m. f. 195). Y: 83%. A. G. Brook and H. Gilman, Am. Soc. 76, 77 (1954).

Mercuric chloride

HgCl₂

Diarylmercury from aryllithium

←

s. 6, 677; Hg-heterocyclics s. G. Wittig and W. Herwig, B. 87, 1511 (1954)

Formation of C—C Bond

Uptake

Addition to Hydrogen and Carbon

CC \downarrow HC

Potassium hydroxide

KOH

1,3-Diols from aldehydes

←

Tollens condensation

s. 4, 613; also with CaO s. O. C. Dermer and P. W. Solomon, Am. Soc. 76, 1697 (1954)

Triphenylmethylsodium

$(C_6H_5)_3C \cdot Na$

Introduction of labeled carboxyl-C

$H \rightarrow COOH$

**Malonic acid monoesters
from carboxylic acid esters**

29.

Dimethyl marrianolate methyl ether dissolved in ether under N_2 in a special closed apparatus, treated successively with ethereal triphenyl-Na and $C^{14}O_2$ (generated from $BaC^{14}O_3$ with $HClO_4$), the crude product refluxed 2 hrs. with KOH in water-methanol, decarboxylated at 180° for 1 hr. in a slow N_2 -stream, refluxed 1.5 hrs. with KOH in water-methanol to hydrolyze the anhydride formed during decarboxylation, and the diacid esterified with diazomethane in ether → labeled dimethyl marrianolate methyl ether. Y: 83% based on $BaC^{14}O_3$. M. Levitz, Am. Soc. 75, 5352 (1953); introduction of labeled carboxyl-C s. a. C. J. Collins and B. M. Benjamin, Am. Soc. 75, 1644 (1953).

Potassium carbonate

K_2CO_3

Phenolcarboxylic acids from phenols

Marassé modification

of the Kolbe-Schmitt synthesis

s. 4, 615; s. a. O. Baine et al., J. Org. Chem. 19, 510 (1954)

Addition to Oxygen and Carbon

CC↓OC

Without additional reagents

w.a.r.

Synthesis of sec. alcohols from aldehydes

CHO → CH(OH)R

s. 9, 848

***α*-Amino-*β*-hydroxycarboxylic acid esters
from aldehydes
Cleavage of azomethines**

←

A soln. of glycine ethyl ester in anhydrous methanol added to a soln. of p-nitrobenzaldehyde in warm methanol, kept 15 min. at 45°, then allowed to stand 48 hrs. at room temp. → ethyl N-p-nitrobenzylidene-*β*-(p-nitrophenyl)serinate (Y: 45.5%) suspended in abs. alcohol, then alcohol satd. with HCl-gas added, gently refluxed until soln. is complete, and allowed to stand 1 hr. at room temp. → ethyl *erythro*-*β*-(p-nitrophenyl)serinate hydrochloride (Y: 89.5%). G. Carrara et al., G. 82, 325 (1952).

Irradiation/acetic acid

←

**Pinacols and sec. alcohols from ketones
by photoreduction**

←

731.

↓

↓

Phenyl 3-pyridyl ketone | Phenyl 4-pyridyl ketone

dissolved in 2-propanol, a drop of acetic acid added, and exposed in a sealed tube to direct sunlight for

1 month → 1,2-di-(3-pyridyl)-1,2-diphenyl-ethane-1,2-diol (startg. m. f. 797). Y: 68%.

2 months → phenyl-4-pyridylcarbinol. Y: 77%.—Although hydroxyls are the expected products of photochemical reduction in the presence of alkali, they have not been reported in its absence, as is the case here.

M. R. Kegelman and E. V. Brown, Am. Soc. 75, 4649 (1953).

Electrolysis

Benzils from aldehydes via hydrobenzoins
Aldehydes from hydrobenzoins

32.

A soln. of vanillin in aq. NaOH as catholyte electrolyzed 8.5 hrs. with Pb-electrodes using aq. NaOH as anolyte and a current of 3.6 amp. → hydrovanilloin (Y: 78%) mixed with Cu(OH)₂ and glacial acetic acid, then refluxed 1 hr. → vanillil (Y: 68%).—Oxidation in alkaline soln. gives vanillin, e.g. with Fehling soln. in quantitative yield. I. A. Pearl, Am. Soc. 74, 4260 (1952).

Sodium hydroxide

NaOH

α-Hydroxymethylketones from ketones

H → CH₂OH

s. 4, 621; monohydroxymethylation s. a. D. D. Evans et al., Soc. 1954, 1687

α-Amino-β-hydroxycarboxylic acids from aldehydes

←

s. 6, 682; stereoisomers s. G. Ehrhart and J. Hennig, B. 87, 892 (1954); K. N. F. Shaw and S. W. Fox, Am. Soc. 75, 3421 (1953); with alc. KOH cf. W. A. Bolhofer, Am. Soc. 76, 1322 (1954); in KOH-melt s. T. Wieland, H. Cords, and E. Keck, B. 87, 1312 (1954)

○

**Isatogens from o-nitroaldehydes via
quaternary cyclic β -hydroxyammonium salts**

733.

10 N NaOH in 10 parts alcohol added at 0° to a soln. of p-iodobenzyl-pyridinium bromide and 2 moles o-nitrobenzaldehyde in a mixture of ethyl and methyl alcohols, and allowed to stand 12 hrs. at 3° in the dark → α -(p-iodophenyl)- β -(o-nitrophenyl)- β -hydroxyethylpyridinium bromide (Y: 95%) dissolved in 50%-acetic acid, and irradiated 2 hrs. with UV-light → 2-(p-iodophenyl)isatogen (Y: 93%). F. e. s. F. Kröhnke and I. Vogt, B. 85, 368, 376 (1952).

Potassium hydroxide/acetal

KOH/RCH(OR')₂

**Acetylenealcohols from oxo compounds
Syntheses with potassium hydroxide
in solvents of the acetal type**

$\text{CO} \rightarrow \text{C(OH)R}$

734.

cf. Synth. Meth. 7, 718

Acetylene passed at -10° into a suspension of KOH in methylal, then acetone added with continued introduction of acetylene whereby the temp. is allowed to rise to 20°, agitation continued for 5 hrs. → 2,5-dimethylhex-3-yne-2,5-diol. Y: 82%. F. e. s. E. D. Bergmann, M. Sulzbacher, and D. F. Herman, J. Appl. Chem. 3, 39 (1953).

Sodium/alcohol

NaOR

α -Nitroalcohols from ketones

$\text{CO} \rightarrow \text{C(OH)CH(NO}_2\text{)R}$

s. 7, 685; s. a. Org. Synth. 34, 19 (1954)

Potassium tert-pentoxide

KOR

Ethynealcohols from oxo compounds

$\text{CO} \rightarrow \text{C(OH)C:CH}$

s. 2, 593; s. a. C. Djerassi et al., Am. Soc. 76, 4092 (1954)

Phenyllithium C_6H_5Li **Synthesis of alcohols from oxo compounds**

35.

An ethereal soln. of phenyl-Li added dropwise at 0° to an ethereal soln. of 2-methyl-1-tetrahydro-2'-pyranyloxy pent-2-en-4-yne, after stirring at 0° for 7 hrs. acetone in ether added during 15 min., the temp. allowed to rise to 20° during 8 hrs., finally refluxed for 10 min. \rightarrow 2,6-dimethyl-7-tetrahydro-2'-pyranyloxy hept-5-en-3-yn-2-ol. Y: 80%.—Lower yields were obtained with Mg. Also sec. alcohols from aldehydes s. R. Ahmad and B. C. L. Weedon, Soc. 1953, 3286.

Lithium amide $LiNH_2$ **Synthesis of acetylenic alcohols from oxo compounds and α,β -ethylenebromides**

36.

2-Bromo-3-diethylamino-1-propene added to a soln. of 2 moles $LiNH_2$ (from Li in the presence of ferric nitrate) in liq. NH_3 , stirred 4 hrs., a soln. of cycloheptanone in dry ether then added dropwise during 30 min., stirring continued for a further 4 hrs., NH_4Cl added, and the NH_3 allowed to evaporate \rightarrow 1-(3-diethylamino-1-propynyl)-1-cycloheptanol. Y: 72%. Also from acetylene derivatives s. A. M. Islam and R. A. Raphael, Soc. 1953, 2247.

Synthesis of prim. acetylenic alcohols from oxido compounds $CH \rightarrow C\cdot CH_2CH_2OH$

37.

An ethereal soln. of 4-(tetrahydro-2-pyranyloxy)-1-butyne added dropwise during 15 min. to a stirred soln. of $LiNH_2$ (from Li in the presence of ferric nitrate catalyst) in liq. NH_3 , stirring continued 40 min..

then ethylene oxide added all at once, and stirred 9 hrs. → 6-(tetrahydro-2-pyranloxy)-3-hexyn-1-ol. Y: 77%. R. A. Raphael and C. M. Roxburgh, Soc. 1952, 3875.

Sodium/liq. ammonia

Na/NH₃

Ethynealcohols from oxo compounds

$\text{CO} \rightarrow \text{C(OH)R}$

s. 4, 624; s. a. D. Papa, F. J. Villani, and H. F. Ginsberg, Am. Soc. 76, 4446 (1954)

Sodium amide

NaNH₂

Tert. alcohols from ketones

$\text{CO} \rightarrow \text{C(OH)R}$

738.

2-Picoline added during 5 min. to a suspension of NaNH_2 in liq. NH_3 , stirred 15 min., 2-amino-4'-methoxybenzophenone in 2-picoline and dry ether added during 10 min., and stirred 4 hrs. → 1-o-aminophenyl-1-p-methoxyphenyl-2,2'-pyridylethanol. Y: 49.6%. F. e. s. A. J. Nunn and K. Schofield, Soc. 1953, 716.

Ethynealcohols from oxo compounds

s. 2, 590; s. a. G. W. Stacy and R. A. Mikulec, Am. Soc. 76, 524 (1954)

Potassium carbonate

K₂CO₃

Diene synthesis with lactones

←

739.

β -Propiolactone can be used in place of acrylic acid as the dienophile component. K-carbonate, known to aid conversion of the lactone into acrylic acid is used as catalyst.—E: A mixture of β -propiolactone, butadiene, K-carbonate, and hydroquinone heated whereby exothermic reactions take place at ca. 100 and at ca. 200°, the temp. rising finally to 270° for a short time, the reaction completed by heating at 200° for 1.5 hrs. → cyclohexene-4-carboxylic acid. Y: 96%. F. e. s. T. L. Gresham, J. E. Jansen, and F. X. Werber, Am. Soc. 76, 609 (1954).

Sodium cyanide

NaCN

α -Cyanosulfonates from aldehydes

$\text{CHO} \rightarrow \text{CH(CN)OSO}_2\text{R}$

s. 9, 663

Potassium cyanide

KCN

Subst. homophthalic acids from phthalides
via o-carboxyphenylacetonitriles and
pyrrolo(2',3':3,4)isocoumarins

 \leftarrow

40.

Na-acetate added to a soln. of 6,7-dimethoxy-3-(4-methoxyphenacyl)-phthalide in boiling 2-methoxyethanol, KCN in water added during 2 min. below the surface of the soln. heated in a boiling water bath, and heating continued 10 min. with gentle stirring every min. \rightarrow α -(2-carboxy-3,4-dimethoxyphenyl)- β -(p-methoxybenzoyl)propionitrile (crude Y: 70%) dissolved in boiling glacial acetic acid, the source of heat removed, concd. HCl added, and heated 10 min. on a water bath \rightarrow 7,8-dimethoxy-5'-(p-methoxyphenyl)pyrrolo(2',3':3,4)isocoumarin (3.4 g. from 5 g. phthalide), 5 g. heated 1.5 hrs. on a water bath with 10% NaOH, then refluxed ca. 30 min. until NH₃-evolution ceases \rightarrow 4.9 g. α -(2-carboxy-3,4-dimethoxyphenyl)- β -(p-methoxybenzoyl)propionic acid. F. e. s. A. S. Bailey and R. S. Staunton, Soc. 1952, 2153.

Magnesium

Mg

Asym. synthesis by Grignard reaction

 \leftarrow

41.

An ethereal soln. of (-)menthyl phenylglyoxylate (prepn. s. 359) added dropwise to ice-cooled ethereal methyl-MgI, allowed to stand 1 hr. at room temp., then gently refluxed for 30 min., and the crude product hydrolyzed by refluxing with KOH in methanol-water for 5 hrs. \rightarrow (-)atrolactic acid. Y: 92%; optical Y: 25%. F. e. and theory s. V. Prelog et al., Helv. 36, 320, 308, 325 (1953); s. a. C. F. Huebner and H. L. Troxell, J. Org. Chem. 18, 736 (1953).

Tert. alcohols from ketones
s. 9, 981

Alkoxyacetylenealcohols

s. 5, 474; s. a. G. E. Arth et al., Am. Soc. 76, 1715 (1954); H. Kappeler et al., Helv. 37, 957 (1954)

Sec. alcohols from oxido compounds

s. 5, 476; s. a. P. Cagniant, Bl. 1952, 970

Amino-tert-alcohols

from aminocarboxylic acid esters

Use of Trilon B in Grignard reactions

742.

Methyl 13-dimethylaminotetradecanoate allowed to react with methyl-MgI, then an aq. soln. of Trilon B (Na-ethylenediamine-N,N,N',N'-tetraacetate) added at 40° → 14-dimethylamino-2-methyl-2-pentadecanol. Y: 78-85%.—The use of NH₄Cl for the removal of magnesium gives greatly lowered yields. J. Métivier, Bl. 1952, 965.

Synthesis of hydroxyketones
from ketocarboxylic acid esters
Blocking of keto groups
by formation of acetals

743.

A mixture of ethyl pyruvate, ethyl orthoformate, abs. ethanol, and 5 drops concd. H₂SO₄ allowed to stand 24 hrs., then refluxed 8 hrs. → ethyl α,α -diethoxypropionate (Y: 79%) added slowly with stirring and cooling during 2 hrs. to ethereal phenyl-MgBr, refluxed 2 hrs., and hydrolyzed with satd. NH₄Cl soln. → 1,1-diphenyl-2,2-diethoxy-1-propanol (Y: 61.5%) refluxed 3 hrs. with HCl in ethanol-water → α -hydroxy- α,α -diphenylacetone (Y: 98%) (startg. m. f. 626). C. L. Stevens and A. E. Sherr, J. Org. Chem. 17, 1228 (1952).

Synthesis of long-chain α,ω -dicarboxylic acids
 Carboxylic acids from
 dicarboxylic acid imides
 via α -hydroxylactams and ketocarboxylic acids

←

44.

α,ω -Decyl-di(MgBr) from α,ω -dibromodecane and Mg in abs. ether allowed to react with N-methylglutarimide \rightarrow 1,10-bis-(1'-methyl-2'-hydroxy-6'-oxo-2'-piperidyl)-n-decane (Y: 26%) allowed to react with 100%-hydrazine hydrate in a soln. of Na in ethyleneglycol \rightarrow octadecane-1,18-dicarboxylic acid. Y: 25%. F. e. s. R. Lukeš and K. Bláha. Collection Czechoslov. Chem. Communs. 18, 804 (1953).

Synthesis of diols from lactones

C

s. 5, 477; s. a. G. Gamboni, H. Schinz, and A. Eschenmoser, Helv. 37, 964 (1954)

Ethylmagnesium bromide

$\text{C}_2\text{H}_5\text{MgBr}$

Acetylenealcohols from oxo compounds

$\text{CO} \rightarrow \text{C}(\text{OH})\text{C}:\text{CR}$

in benzene s. 2, 599; s. a. K. R. Bharucha and B. C. L. Weedon, Soc. 1953, 1584

Synthesis of hydroxysulfones
 from oxo compounds

$\text{CO} \rightarrow \text{C}(\text{OH})\text{R}$

45. $\text{C}_6\text{H}_5\text{SO}_2\text{CH}_3 \rightarrow [\text{C}_6\text{H}_5\text{SO}_2\text{CH}_2\text{MgBr}] + \text{OHC-C}_6\text{H}_5 \rightarrow \text{C}_6\text{H}_5\text{SO}_2\text{CH}_2\text{CH}(\text{OH})\text{C}_6\text{H}_5$

A soln. of methyl phenyl sulfone in dry benzene added during 10 min. to ethereal ethyl-MgBr, stirred 10 min., dil. with benzene, heated rapidly to the reflux temp. at which it is held for 3 min., cooled quickly, a soln. of benzaldehyde in dry benzene added with stirring during 1 hr. at 20-35°, and stirring continued 2 hrs. at room temp. \rightarrow β -phenyl- β -hydroxyethyl phenyl sulfone. Y: 73-90%.—The hydroxysulfone could be converted in good yields to the corresponding keto, chloro, unsatd., and satd. sulfones. L. Field, Am. Soc. 74, 3919 (1952); f. e. s. Am. Soc. 75, 5582 (1953).

Phenylmagnesium bromide C_6H_5MgBr

Tert. alcohols from ketones
Polyfluoro compounds

746.

A soln. of phenyl-MgBr and a soln. of acetone both in anhydrous ether added simultaneously during 4 hrs. with ice-water cooling to an ethereal soln. of 1-iodoheptafluoropropane, and stirring continued for 8 hrs. at ice bath temp. \rightarrow 3,3,4,4,5,5,5-heptafluoro-2-methyl-2-pentanol. Y: 65%. O. R. Pierce, A. F. Meiners, and E. T. McBee, Am. Soc. 75, 2516 (1953).

Diethylaminomagnesium bromide $(C_2H_5)_2MgBr$ **β -Hydroxycarboxylic acid esters from ketones** CO \rightarrow C(OH)CH₂COOR

747.

A soln. of benzophenone and isopropyl acetate in ether added dropwise at -5° with vigorous stirring to diethylamino-MgBr prepared from ethyl-MgBr and diethylamine, the temp. raised gradually to that of boiling, and refluxing continued 2 hrs. \rightarrow isopropyl β,β -diphenylhydrcrylate. Y: 86% based on benzophenone consumed. F. e. s. K. Sisido, H. Nozaki, and O. Kurihara, Am. Soc. 74, 6254 (1952).

Zinc**Zn****Reformatskii synthesis** \leftarrow

s. 9, 373

 γ -Lactones from γ -ketocarboxylic acid esters \bigcirc

s. 5, 479; s. a. A. S. Dreiding and A. J. Tomasewski, Am. Soc. 76, 540 (1954)

Aluminum chloride $AlCl_3$ **Prim. alcohols from oxido compounds** C

748.

Benzene treated with anhydrous AlCl₃, then ethylene oxide diluted with dry N₂ introduced at 6° with stirring at such a rate that 7-8 g./hr. are converted \rightarrow β -phenethyl alcohol. Y: over 70%.—Solid hydrocarbons are dissolved in 4 parts methylene chloride or tetrachloroethane. F. e. s. H. Hopff and K. Koulen, B. 85, 897 (1952).

**Friedel-Crafts syntheses
with succinic anhydride**

←

s. 1, 519; 3, 566; 4, 635a: with unsym.-subst. succinic anhydrides s. E. N. Marvell and A. O. Geiszler, Am. Soc. 74, 1259 (1952); characterization of arenes s. J. D. Reinheimer and S. Taylor, J. Org. Chem. 19, 802 (1954)

Amberlite

←

**Catalysis with anion exchange resins
Nitroalcohols from
nitroparaffins and aldehydes
Cyanoethylation**

←

749.

A mixture of propionaldehyde, nitromethane, and ethanol passed during 3 hrs. at 27-30° through a column of Amberlite IRA-400 (hydroxyl form) → 1-nitro-2-butanol. Y: 70%.

Ethanol allowed to react with acrylonitrile in the presence of dry Amberlite IRA-400 → β-ethoxypropionitrile. Y: 90-93%. F. e. s. C. J. Schmidle and R. C. Mansfield, Ind. Eng. Chem. 44, 1388 (1952).

Dicobalt octacarbonyl

 $\text{Co}_2(\text{CO})_8$

Homologation of alcohols

←

750.

p-Methoxybenzyl alcohol and dicobalt octacarbonyl in benzene heated under an initial pressure of 238 atm. of synthesis gas (2 H₂: 1 CO), whereby gas absorption starts at ca. 70° and is essentially complete 35 min. later at 130° → 2-(p-methoxyphenyl)ethanol (Y: 44%) and p-methoxytoluene (Y: 16%). F. e. s. I. Wender et al., Am. Soc. 74, 4079 (1952).

Addition to Nitrogen and CarbonCC \downarrow NC*Without additional reagents*

w.a.r.

Reactions of nitroacetic acid ester

s. 9, 856

←

 α -Cyanohydrazines from hydrazones

N:C → NHC·CN

A mixture of acetone isonicotinylhydrazone and liq. HCN kept 4 days at room temp. → 1-isonicotinyl-2-(1,1-dimethyl-1-cyanomethyl)hydrazine. Y: 72%. H. L. Yale et al., Am. Soc. 75, 1933 (1953).

Potassium hydroxide

KOH

Quinoline from isatin ring

←

Pfitzinger-Borsche synthesis

s. 1, 555; 2, 603, 761; s. a. Soc. 1953, 3768; H. R. Henze and D. W. Carroll, Am. Soc. 76, 4580 (1954)

 n -Butyllithium $n\text{-}C_4H_9Li$ **Synthesis of (hindered) ketamines
from nitriles**

CN → C(:NH)R

752.

Veratrole in ether added to ethereal n -butyllithium (from Li and n -butyl chloride), refluxed 24 hrs., a soln. of duronitrile in ether added, heating continued overnight, and the product isolated as the hydrochloride → duryl 2,3-dimethoxyphenyl ketimine hydrochloride. Y: 77%. R. C. Fuson, W. D. Emmons, and J. P. Freeman, Am. Soc. 75, 5321 (1953).

Potassium carbonate K_2CO_3 **α -Nitrocarboxylic acid amides
from isocyanates**

N:C:O → NHCOR

753.

 NO_2

A mixture of ethyl nitroacetate, phenyl isocyanate, anhydrous K-carbonate, and dry benzene refluxed 3 hrs. → N-phenyl- α -carbethoxy- α -nitro-

acetamide. Y: 31%. F. e. s. R. N. Boyd and R. Leshin, Am. Soc. 75, 2762 (1953).

Potassium cyanide

KCN

Hydantoins from imines

○

54.

Camphorimine nitrate, KCN, and NH₄-carbonate in 50%-ethanol warmed 5 hrs. at 52° → spiro(camphane-2,5'-hydantoin). Y: 86%.—The prepn. from camphor was unsuccessful. E. S. Rothman and A. R. Day, Am. Soc. 76, 111 (1954).

Diethylamine

(C₂H₅)₂NH

1,2-Nitramines from azomethines

N:C → NHCR

s. 9, 413

Magnesium

Mg

Sec. amines from azomethines

C:NR → C(NHR)R'

s. 4, 643; s. a. Org. Synth. 34, 64 (1954)

Synthesis of azomethines from nitriles

←

s. 9, 756

Endopyrimidine ring from α,β -ethylenenitriles

○

755. 2 C₆H₅CH=CHCN + 2 CH₂=CHCH₂MgBr

↓

Cinnamonnitrile added to allyl-MgBr, hydrolyzed with NH₄Cl-soln., and the product isolated as the hydrochloride → allyl styryl ketimine dimer dihydrochloride. Y: 88%. F. e. s. H. R. Henze and L. R. Swett, Am. Soc. 73, 4918 (1951).

Magnesium/lithium aluminum hydride

 $Mg/LiAlH_4$

←

**Synthesis of amines and azomethines
from nitriles**

Propionitrile added dropwise with stirring to phenyl-MgBr from bromobenzene and Mg in ether, refluxed 2 hrs.,

a slurry of $LiAlH_4$ in tetrahydrofuran added slowly, refluxed 18 hrs.,

then decomposed with cooling by careful addition of water and aq. NaOH

→ 1-phenylpropylamine. Y: 80%.

1-phenylpropylamine added dropwise, refluxed 3 hrs. with stirring,

→ N-(1-phenylpropyl)-1-phenylpropylidenimine. Y: 74%.

F. e. s. A. Pohland and H. R. Sullivan, Am. Soc. 75, 5898 (1953).

Sulfuric acid

H_2SO_4

○

**3,4-Dihydroisoquinolines from nitriles
New synthesis**

Veratronitrile added portionwise with rapid stirring to concd. H_2SO_4 in an ice bath, which is removed after the addition, methyleugenol then added during 2 min. whereby the rapidly rising temp. is maintained around 80° by intermittent cooling, allowed to stand 3 days at room

temp. → 1-(3',4'-dimethoxyphenyl)-3-methyl-6,7-dimethoxy-3,4-dihydroisoquinoline. Y: 53%. F. e. s. J. J. Ritter and F. X. Murphy, Am. Soc. 74, 763 (1952).

Addition to Carbon

CC \downarrow CC

Without additional reagents

w.a.r.

Synthesis of polyhalides

←

758.

Pentafluoroiodoethane heated with 20% excess acetylene at 220-260° for 15-20 hrs. in a sealed tube → 3,3,4,4,4-pentafluoro-1-iodo-1-butene. Y: 72%.—Trifluoroiodomethane heated with ethylene at 275° for 15 hrs. in an autoclave → 1,1,1-trifluoro-3-iodopropane. Y: 82% based on startg. m. consumed. R. N. Haszeldine and K. Leedham, Soc. 1952, 3483; 1953, 1548; 1954, 2040.

Reaction of oxalyl chloride with unsatd. compounds α,β -Ethylenecarboxylic acids from ethylene derivatives

←

759. $(\text{C}_6\text{H}_5)_2\text{C}=\text{CH}_2 + (\text{COCl})_2 \rightarrow [(\text{C}_6\text{H}_5)_2\text{C}=\text{CHCOCl}] \rightarrow (\text{C}_6\text{H}_5)_2\text{C}=\text{CHCOOH}$

Diphenylethylene and oxalyl chloride gently refluxed for 3-4 hrs., dil. with benzene, and extracted with Na-carbonate soln. → β -phenylcinnamic acid. Y: 50%. F. e. and limitations s. M.S. Kharasch, S.S. Kane, and H. C. Brown, Am. Soc. 64, 333 (1942); s. a. W. Tadros, Y. Akhnooh, and G. Aziz, Soc. 1953, 186.

Diene synthesis Diels-Alder reaction

○

760.

Linear annulation. A soln. of 1,2-dimethylenecyclohexane and benzoquinone in dioxane refluxed 2 hrs. until a precipitate is formed, then refluxed an additional hr. → 6,13-diketo-4a(14a),7a(11a)-octadecahydro-pentacene. Y: 77%. W. J. Bailey and M. Madoff, Am. Soc. 75, 5603 (1953).

Isocyclics from acetylene derivatives

s. 7, 712; 8, 735; s. a. W. J. Bailey, J. Rosenberg, and L. J. Young, Am. Soc. 76, 2251 (1954)

with furan

s. 3, 704; s. a. G. Stork et al., Am. Soc. 75, 384 (1953)

with nitro compounds

s. 9, 299

**Dihydropyrans from
α,β-ethyleno oxo compounds**

s. 6, 696; s. a. Am. Soc. 75, 1312 (1953)

**Pyrazolines from ethylene derivatives
and diazo compounds**

s. 5, 490; 7, 713; 8, 737; steroid derivatives s. G. P. Mueller and B. Riegel, Am. Soc. 76, 3686 (1954)

Irradiation**Free radical additions
Synthesis of polyhalides**

C:C → CHalCR

A mixture of 1,1,1-trifluoro-2-propene and bromotrichloromethane irradiated 24 hrs. with a mercury flood lamp in a quartz ampule held horizontally to permit irradiation of both liquid and vapor phases → 2-bromo-4,4,4-trichloro-1,1,1-trifluorobutane. Y: 76%. F. e. s. A. L. Henne and M. Nager, Am. Soc. 73, 5527 (1951); s. a. R. N. Haszeldine, Soc. 1952, 2504.

Electrolysis**Alkoxylation of furans**

762.

A mixture of furan, methanol, and NH_4Br electrolyzed ca. 16 hrs. at -22° with a brass-nickel cathode, a Pt-anode, a current of 3.0-2.3 amp., and a potential of 4.6-5.3 v. → 2,5-dimethoxy-2,5-dihydrofuran. Y: 73%. N. Clausen-Kaas, Acta Chem. Scand. 6, 531 (1952); f. e. s. the following papers of this series.

Sodium

Na

C-CyanoethylationH \rightarrow CH₂CH₂CN

763.

Na added to phenylacetone, stirred and heated at 95° until the Na melts, then the reaction allowed to proceed without external heating for ca. 5 min. until the Na has dissolved, at 80° acrylonitrile added dropwise with water cooling during 15 min., and stirring continued for 15 min. \rightarrow γ -phenyl- γ -acetobutyronitrile. Y: 80%. E. D. Bergmann and J. Szmuszkovicz, Am. Soc. 75, 3226 (1953); esters s. V. Boekelheide et al., Am. Soc. 75, 3243 (1953).

Pyridylethylation \leftarrow

764.

2-Vinylpyridine added dropwise with stirring at 150-160° to phenylacetonitrile containing Na, and stirring continued 5 hrs. at 160-170° \rightarrow α -phenyl- γ -(2-pyridyl)butyronitrile. Y: 77%. F. e. s. V. Boekelheide et al., Am. Soc. 75, 3243 (1953).

s. 7, 716; s. a. Am. Soc. 75, 1368 (1953)

Sodium hydroxide

NaOH

C-Cyanoethylation of aldehydesH \rightarrow CH₂CH₂CN

s. 9, 768

Sodium/alcohol

NaOR

Michael addition \leftarrow

s. 5, 493; s. a. H. Kappeler et al., Helv. 37, 957 (1954)

C-CyanoethylationH \rightarrow CH₂CH₂CN

γ -Cyanoketones and δ -ketocarboxylic acids
from β -ketocarboxylic acid esters via
 α -cyanoethyl- β -ketocarboxylic acid esters

765.

Acrylonitrile added with rapid stirring to a soln. of Na and ethyl 2-thenoylacetate in 95%-ethanol at a rate to keep the temp. at 40-45°, then

allowed to cool to room temp. during 30-60 min. → ethyl α -(β -cyanoethyl)-2-thenoylacetate. Y: 64%. F. e., also hydrolysis to γ -cyano-ketones and δ -ketoacids, s. C. W. Yoho and R. Levine, Am. Soc. 74, 5597 (1952); C-cyanoethylation of α -cyanocarboxylic acid esters s. M. S. Newman and J. L. McPherson, J. Org. Chem. 19, 1717 (1954).

Michael addition

Cyclohexanediones

s. 6, 703; s. a. K. W. Rosenmund, H. Herzberg, and H. Schütt, B. 87, 1258 (1954)

Cyclopentanones from cyclopropanes

Ethyl malonate added to a stirred soln. of Na in alcohol, refluxed 0.5 hr., ethyl 2-vinylcyclopropane-1,1-dicarboxylate added, and heating continued overnight → ethyl 2-keto-4-vinylcyclopentane-1,3-dicarboxylate. Y: 54%. R. W. Kierstead, R. P. Linstead, and B. C. L. Weedon, Soc. 1952, 3616.

Potassium hydroxide/alcohol

KOH

C-Cyanoethylation of 1,1-disulfones

H → $\text{CH}_2\text{CH}_2\text{CN}$

1,1-Bis(ethylsulfonyl)-4-methylpentane (prepn. s. 880) added to *tert*-butanol containing KOH and acrylonitrile, whereupon the temp. rises to 40-45°, allowed to stand 6 hrs. at this temp. → 4,4-bis(ethylsulfonyl)-7-methyloctanonitrile. Y: 95%. F. e. s. M. W. Cronyn, Am. Soc. 74, 1225 (1952).

Potassium cyanide

KCN

C-Cyanoethylation of aldehydes

25%-KCN soln. added dropwise during 1 hr. with vigorous stirring to a mixture of isobutyraldehyde and acrylonitrile containing a little hydroquinone heated at 80° under a slight N₂ pressure, which is then

slowly released while heating is continued for 1 hr. at 80-90° → *a,a*-dimethyl- γ -cyanobutyraldehyde. Y: 79%. D. Hoch and P. Karrer, Helv. 37, 397 (1954); with NaOH in lower yields s. H. Born, R. Pappo, and J. Szmuszkowicz, Soc. 1953, 1779.

Subst. succinic acids

s. 6, 705; s. a. C. A. Miller and L. M. Long, Am. Soc. 75, 373, 6256 (1953)

Triton B

C-Cyanoethylation

Carboxylic acids from nitriles
Blocking of ketone α -positions

69.

A ca. 3.5% soln. of Triton B in t-butanol containing some water added to a soln. of 2-methylanilinomethylene-6-methylcyclohexanone in t-butanol, then acrylonitrile and a trace of hydroquinone added, allowed to stand 22 hrs. at room temp. under N_2 , and the crude product heated 7 hrs. with aq. KOH under N_2 → 2-(β -carboxyethyl)-2-methylcyclohexanone. Y: 81%.—By the addition of water, the polymerization of acrylonitrile is suppressed. F. e. s. R. B. Woodward et al., Am. Soc. 74, 4223 (1952).

Pyridylethylation

with Na s. 7, 716; also with Triton B. s. Am. Soc. 75, 1368 (1953)

Diethylamine

Synthesis of aliphatic nitro compounds from ethylene derivatives

s. 4, 656; s. a. A. Dornow and F. Boberg, A. 578, 101 (1952)

Calcium carbide/nickel acetylacetoneate

s. Nickel acetylacetoneate/calcium carbide

Magnesium

Mg

**Addition of Grignard reagents
to carbon-carbon double bonds**

C:C → CHCR

770.

A soln. of ethyl 2-methylbenzalmalonate in ether added dropwise during 1 hr. at 0-5° to a well-stirred soln. of o-tolyl-MgBr in ether, and stirring continued 2 hrs. at room temp. → ethyl 2,2'-dimethylbenzylmalonate. Y: 72%. F. e. s. M. S. Newman and M. Wolf, Am. Soc. 74, 3225 (1952).

**Synthesis of β,γ -ethylenecarboxylic acids
from α -allenecarboxylic acids
and of carboxylic acids
from α,β -ethylenecarboxylic acids**

771.

A soln. of 1,2-heptadiene-3-carboxylic acid in dry ether added with shaking to 2.5 moles ethyl-MgBr in ether, the resulting soln. poured on Dry Ice, and upon coming to room temp. hydrolyzed with satd. NH₄Cl-soln. → 2-butyl-3-ethyl-3-butenoic acid. Y: 85%. J. H. Wotiz and J. S. Matthews, Am. Soc. 74, 2559 (1952); carboxylic acids from α,β -ethylenecarboxylic acids, in lower yields, s. Am. Soc. 75, 6342 (1953).

**Hydrolytic ring opening of isocyclics
with simultaneous formation of
ethylene derivatives from sulfonic acid esters**

←

772.

2-Hydroxymethyl-2-methylcyclopentanone mesylate

refluxed 0.5 hr. at 125-130° with aq. 40% KOH, water added and boiling continued for 3 hrs. → 5-methylenehexanoic acid. Y: 82%.

dissolved in ether-tetrahydrofuran, added dropwise with vigorous stirring and ice-cooling to ethereal methyl-MgI, and refluxed 3 hrs. → 2-methyl-6-methylene-2-heptanol. Y: 81%.

A. Eschenmoser and A. Frey, Helv. 35, 1660 (1952).

Aluminum amalgam

Al,Hg

Reductive dimerization

←

Amalgamated Al-foil covered with ether, diethyl ethylenemalonate added with stirring during 30 min., water added when the vigorous reaction has subsided, and stirred overnight → tetraethyl 2,3-dimethylbutane-1,1,4,4-tetracarboxylate. Y: 81%. L. Crombie, J. E. H. Hancock, and R. P. Linstead, Soc. 1953, 3496.

Boron fluoride

BF₃

1,3-Diol ethers from ethylene derivatives and acetals

←

A large excess of methylal treated with BF₃, then styrene added with vigorous stirring, and the product isolated after 1 hr. at 25° → 1,3-dimethoxy-1-phenylpropane. Y: 72%.—Orientation corresponds to that in the analogous Prins reaction of aldehydes and olefins. F. e., with lower yields, s. O. C. Dermer and J. J. Hawkins, Am. Soc. 74, 4595 (1952).

Aluminum chloride

AlCl₃

**Synthesis of hydrocarbons from ethylene derivatives
Eijkman reaction**

C:C → CHCR

s. 4, 659; s. a. S. M. Mukherji, V. S. Gaind, and P. N. Rao, J. Org. Chem. 19, 328 (1954); naphthalene derivatives s. J. Colonge and R. Domenech, Bl. 1952, 1000

*Diethylamine acetate***Benzene ring by trimerization**

775.

Butinone heated 10 min. on a water bath with diethylamine acetate → sym-triacetylbenzene. Y: 34%. F. Wille and F. Knörr, B. 85, 841 (1952).

*Acetic anhydride***Nitriles from ethylene derivatives**

776.

An aq. soln. of 2 moles KCN added dropwise with stirring to a soln. of 1 mole 2-vinylpyridine and 2 moles acetic anhydride at a rate to maintain gentle boiling, then heated 16 hrs. with stirring on a steam bath → β -(2-pyridyl)propionitrile. Y: 67%. V. Boekelheide et al., Am. Soc. 75, 3243 (1953).

*Benzoyl peroxide***Free radical reactions****Synthesis of ketones****from aldehydes and ethylene derivatives**

s. 8, 745; s. a. Org. Synth. 34, 51 (1954); Ng. Ph. Buu-Hoï, R. 72, 84 (1953)

*Sulfuric acid***Alkylation with ethylene derivatives****Isocyclics**

s. 5, 506, s. a. W. L. Lenneman, R. D. Hites, and V. I. Komarewsky, J. Org. Chem. 19, 463 (1954)

*Chromium oxide/alumina***Pyridine ring from dienes**

777.

Benzonitrile and butadiene passed at 400° during 4 sec. over a 4% $\text{Cr}_2\text{O}_3/\text{Al}_2\text{O}_3$ catalyst → 2-phenylpyridine. Y: 60%. G. J. Janz, W. J. G. McCulloch, and E. F. Timpane, Ind. Eng. Chem. 45, 1343 (1953).

Nickel acetylacetonate/calcium carbide

**Subst. cyclooctatetraenes
by copolymerization**

78.

A mixture of 1-pentyne, dry tetrahydrofuran, Ni-acetylacetonate, and powdered Ca-carbide heated 7-12 hrs. at 70-90° and an acetylene pressure of 300-150 p. s. i. → n-propylcyclooctatetraene. Y: 25%. F. e., with lower yields, s. A. C. Cope and H. C. Campbell, Am. Soc. 74, 179 (1952).

Nickel carbonyl

$\text{Ni}(\text{CO})_4$

Carbonylation

s. 3, 588; s. a. A. 582, 1-116 (1953)

Via intermediates

v.i.

**Cyanoethylation of ketones
via enamines**

$\text{H} \rightarrow \text{CH}_2\text{CH}_2\text{CN}$

s. 9, 912

Rearrangement

Hydrogen/Carbon Type

CC \cap HC

Without additional reagents

w.a.r.

**Isomerization of cyclic sulfones
Aromatization by migration
of a carbon-carbon double bond**

79.

A suspension of tetraphenylthiirane 1,1-dioxide in CS_2 refluxed 15 min. → 1,1,3-triphenyl-1,7a-dihydroisothianaphthene 2,2-dioxide (Y: 75%) dissolved in acetone, and treated with 3 drops of pyridine → 1,1,3-triphenyl-1,3-dihydroisothianaphthene 2,2-dioxide (Y: 90%). H. Kloosterziel and H. J. Backer, R. 71, 1235 (1952).

9, 780-782 CC \downarrow HC

Potassium hydroxide

KOH

Epimerization of steroids

780.

A soln. of 3.5 g. Δ^8 -22a- 5α -spirosten- 3β -ol-11-one propionate refluxed 1 hr. with methanolic 5% KOH \rightarrow 2.8 g. Δ^8 -22a- 5α -14-iso(β)-spirosten- 3β -ol-11-one. C. Djerassi et al., Am. Soc. 75, 3496 (1953); 9α - from 9β -H-atoms s. J. Elks et al., Soc. 1953, 2933.

Sodium/alcohol

NaOR

Migration of
carbon-carbon double bonds

781.

Allyl phenyl sulfide refluxed 12 hrs. in a soln. of Na in abs. alcohol under N_2 \rightarrow propenyl phenyl sulfide (mixture of cis- and trans-isomers). Y: 95%. F. e. s. D. S. Tarbell and M. A. McCall, Am. Soc. 74, 48 (1952).

 α,β - from β,γ -Ethylene ketones

s. 9, 87

Pyridine

 $\text{C}_5\text{H}_5\text{N}$ Aromatization by migration
of carbon-carbon double bonds

s. 9, 779

Cuprous bromide

CuBr

Allenes from acetylene derivatives

782.

3-Bromopropyne stirred with solid CuBr while it is slowly distilled through a good fractionating column \rightarrow bromopropadiene. Y: 55-65%. T. L. Jacobs and W. F. Brill, Am. Soc. 75, 1314 (1953).

Aluminum oxide

Al₂O₃

783.

1-(p-Bromophenyl)-3-(β-naphthyl)-1-propyne adsorbed from its soln. in n-heptane on a column containing dry, activated alumina, the adsorbent covered with a little n-heptane, the column stoppered and allowed to stand 8 hrs. at room temp. → 1-(p-bromophenyl)-3-(β-naphthyl)allene. Y: 50%.—This is the first example of a 1,3-diarylallene to appear in the literature. T. L. Jacobs and S. Singer, J. Org. Chem. 17, 475 (1952).

Boron fluoride

*BF₃**a,b-* from *β,γ*-Ethyleneketones

←

Steroids

784.

80 mg. 3β-acetoxy-7-oxo-Δ⁹⁽¹¹⁾,22-ergostadiene refluxed 2 hrs. with BF₃-ether complex in benzene → 64 mg. 3β-acetoxy-7-hydroxy-Δ^{8,22}-ergostadiene. H. Heusser et al., Helv. 35, 936 (1952); 11-oxo-Δ⁸-steroids, also by additional methods, s. P. Bladon, J. Elks et al., Soc. 1953, 2921.

Aluminum chloride/sodium chloride

AlCl₃/NaCl

Alkyl migration

←

s. 9, 940

Ring closure by isomerization

○

785.

2-(s-Octahydro-9-phenanthroyl)acrylic acid added at 100° to AlCl₃-NaCl → 1,2,3,4,5,6,7,8-octahydro-5'-keto-9,10-cyclopentenophenanthrene-3'-carboxylic acid. Y: 90%. F. isomerizations s. G. Baddeley and R. Williamson, Soc. 1953, 2120.

Buffer pH 7.8

←
←

**Rearrangement of
N-condensed heterocyclics**

786.

α-Tripiperideine added rapidly with shaking at 25° to an aq. phosphate buffer soln. of pH 7.8 whereby the pH increases to 9.1, kept 5 hrs. at the same temp., then ice-cooled, satd. with K-carbonate, and extracted with ether → iso-tripiperideine. Y: 83.4-84.2%. C. Schöpf, H. Arm, and F. Braun, B. 85, 937 (1952).

*Formic acid/sulfuric acid**HCOOH/H₂SO₄**s. Sulfuric acid/formic acid**Acetic acid**CH₃COOH*

←

cis from trans Condensed rings

787.

β-Thebainone-2,4-dinitrophenylhydrazone in glacial acetic acid heated 6 hrs. on a steam bath → thebainone-2,4-dinitrophenylhydrazone. Crude Y: 78%. F. methods s. M. Gates and R. Helg, Am. Soc. 75, 379 (1953).

*Phosphorus pentoxide**P₂O₅*

←

Isotopic position isomerization

788.

743 mg. 1,1,2-triphenylethylene-1-C¹⁴ refluxed 30 min. with P₂O₅ in xylene → 362 mg. 50:50 mixture of startg. m. and 1,1,2-triphenylethylene-2-C¹⁴. C. J. Collins and W. A. Bonner, Am. Soc. 75, 5379 (1953).

Phosphoric acid H_3PO_4 **Ring closure to isocyclics**

s. 5, 515; s. a. H. R. Vogt and H. Schinz, Helv. 37, 2196 (1954)

Sulfur dioxide SO_2 **Migration of double bonds**

←

789.

Commercial *liq. SO₂* added to ergosteryl acetate in a tube cooled to -60°, the tube sealed and heated 18 hrs. in a water bath → ergosteryl B₁ acetate. Y: 86%. F. e. s. A. W. D. Hudgell, J. H. Turnbull, and W. Wilson, Soc. 1954, 814.

Sulfuric acid/formic acid $H_2SO_4/HCOOH$ **Ring closure by isomerization**

○

with simultaneous hydration**Stereospecific reactions**

790.

A mixture of 98-100% formic acid and concd. H_2SO_4 added to 1.1 g. 7-methyl-2,6-octadienoic acid, and allowed to stand overnight at room temp. → 0.88 g. 6,6-dimethyl-2-hydroxycyclohexanecarboxylic acid. R. Helg and H. Schinz, Helv. 35, 2406 (1952); without hydration s. Helv. 34, 1168 (1951); stereospecificity s. Helv. 37, 964 (1954).

Iodine

I

cis-trans-Rearrangement

←

s. 4, 669; s. a. W. Oroshnik and A. D. Mebane, Am. Soc. 76, 5719 (1954)

Hydrochloric acid HCl **Ketones from enolethers
with migration of a
carbon-carbon double bond**

←

s. 9, 86

←

**Migration of
carbon-carbon double bonds
and acetylation
Steroids**

791.

A soln. of crude 7-dehydrocholesterol in acetic acid-benzene containing 36% -HCl heated and the benzene allowed to evaporate, then treated slowly with a mixture prepared by adding cautiously a little 36% -HCl to acetic anhydride, refluxed 1 hr., then Na-acetate added to neutralize the mineral acid → $\Delta^{8,14}$ -cholestadienyl acetate. Y: 80%. L. F. Fieser and G. Ourisson, Am. Soc. 75, 4404 (1953).

**Naphthalene- from indole ring
by migration of carbon-carbon double bonds,
with simultaneous esterification**

792.

1 g. rac. lysergic acid dissolved in alcohol which has been satd. with HCl at 0°, heated 20 min. on a steam bath in a sealed tube, and the product isolated as the 4-acetyl derivative → 0.9 g. 4-acetyl-4,5,7,8,9,10-hexahydro-7-methyl-9-carbethoxyindolo[4,3-f,g]quinoline.—At 0°, esterification takes place without rearrangement. A. Stoll and T. Petrzilka, Helv. 36, 1125 (1953).

Oxygen/Carbon Type

CC \downarrow OC

Without additional reagents

w.a.r.

**Allylphenols from allyl ethers
Claisen rearrangement**

s. 2, 621; 4, 671; s. a. R. Schwarz and K. Capek, M. 84, 595 (1953)

Potassium hydroxide

KOH

Spiroindoxyls from carbazole ring

s. 7, 742; s. a. R. J. S. Beer et al., Soc. 1952, 4351

*Potassium hydroxide/pyridine*KOH/C₅H₅N**Baker-Venkataraman transformation**

←

s. 6, 868; s. a. K. M. Gallagher et al., Soc. 1953, 3770

*Potassium amide*KNH₂**Alcohols from ethers with rearrangement****Wittig rearrangement**s. 7, 746; also isoecyclic alcohols from O-heterocyclics and limitations
s. J. Org. Chem. 18, 801 (1953)*Dialkylaniline*C₆H₅NR₂**Allyl phenols from allyl ethers**

←

Claisen rearrangementwith diethylaniline s. 4, 674; with dimethylaniline, also ortho-para
migration, s. E. N. Marvell and R. Teranishi, Am. Soc. 76, 6165 (1954)*Boron fluoride*BF₃ **β -Ketoaldehydes from α,β -oxidoketones**

←

A soln. of *trans*-chalcone oxide in abs. ether treated with ethereal 45% BF₃, refluxed 30 min., and the product isolated as the Cu-salt → Cu-salt of formyldesoxybenzoin. Y: ca. 100%. F. e. s. H. O. House, Am. Soc. 76, 1235 (1954).

 ψ -Oxindoles from ψ -indoxyls

←

0.5 g. 2,2-diphenyl-1-methyl- ψ -indoxyl refluxed 10 min. with BF₃-etherate → 0.44 g. 3,3-diphenyl-1-methyl- ψ -oxindole. F. e. s. B. Witkop and A. Ek, Am. Soc. 73, 5664 (1951).

Aluminum chloride

 $AlCl_3$

Furostenes from spirostanes

C

795.

A soln. of 20 g. 22-iso-5-spirosten-3 β -ol acetate in acetic anhydride treated with $AlCl_3$, and refluxed 4 hrs. \rightarrow 17 g. crude 5,20(22)-furostadiene-3 β ,26-diol diacetate.—Catalysts of the Lewis acid type permit this isomerization at the boiling point of acetic anhydride rather than at 200° (cf. Synth. Meth. 7, 749). D. H. Gould, H. Staeudle, and E. B. Hershberg, Am. Soc. 74, 3685 (1952).

Formic acid

 $HCOOH$ α -Acoxyketones from p-dioxanes

796.

5 g. 1-hydroxycyclohexyl phenyl ketone dimer (prepn. s. 309) refluxed 12 hrs. with anhydrous formic acid \rightarrow 3.3 g. 1-benzoylcyclohexyl 1-phenylcyclohexanecarboxylate. I. Elphimoff-Felkin and B. Tchoubar, Bl. 1952, 551.

Acetyl chloride

 CH_3COCl

**Pinacol rearrangement
with subsequent hydrolytic cleavage
of the carbon chain**

 \leftarrow

797.

A mixture of dry benzene, glacial acetic acid, and acetyl chloride added to 1,2-di-(3-pyridyl)-1,2-diphenylethane-1,2-diol (prepn. s. 731), refluxed 44 hrs. at 90°, the bulk of the volatile material removed in vacuo at 90°,

the residue freed of the last of the acetic acid by storage in a vacuum desiccator over KOH, and the resulting pinacolone residue refluxed with a soln. of KOH in methanol → crude 3-pyridylidiphenylmethane (Y: 62%) and nicotinic acid (Y: 79% by potentiometric titration). F. e. s. M. R. Kegelman and E. V. Brown, Am. Soc. 75, 4649, 5961 (1953).

Sulfuric acid

Phenol acetates from dienones

s. 3, 597; 6, 720; s. a. C. Djerassi and T. T. Grossnickle, Am. Soc. 76, 1741 (1954); unusual dienone-phenol rearrangement s. E. N. Marvell and A. O. Geiszler, Am. Soc. 74, 1259 (1952)

Ring expansion

s. 6, 720; s. a. R. H. Burnell and W. J. Taylor, Soc. 1954, 3486

Steroids from 3,5-cyclosteroids

Concd. H_2SO_4 added to a soln. of epi-i-cholesterol in glacial acetic acid, warmed 1 hr. at 50-55°, poured into water, extracted with ether, and the resulting crude acetate hydrolyzed by treating with ethanolic 10%-KOH at 45° for 1 hr. → 3β -cholesterol. Y: ca. 98%. F. e. s. A. F. Wagner, N. E. Wolff, and E. S. Wallis, J. Org. Chem. 17, 529 (1952).

Hydroxyenolethers from inner acetals

5.2 g. inner acetal of bis-(4-bromo-2-hydroxy-1-naphthyl)acetaldehyde boiled 2 hrs. in glacial acetic acid containing H_2SO_4 and a little water → 5.2 g. 5-bromo-1-(4-bromo-2-hydroxy-1-naphthyl)naphtho[2.1-b]furan. F. e. s. O. Dischendorfer and H. Lapaine, M. 82, 397 (1951).

**Ring expansion
by pinacol rearrangement**

s. 7, 753; also different product with $ZnCl_2$ -acetic anhydride s. R. E. and G. G. Lyle, Am. Soc. 76, 3536 (1954)

Hydrochloric acid

HCl

Anionotropic rearrangement

s. 8, 765; in side-chains of heterocyclics s. Soc. 1952, 4155, 4158

Hydrobromic acid

HBr

Aromatization by enolization

Ethers

800.

5 drops of a soln. of HBr in glacial acetic acid added with stirring in a N_2 -stream to a soln. of 6-chloro-5,8,4a,8a-tetrahydro-1,4-naphthoquinone in benzene, refluxed 15 min., treated with a soln. of Na in methanol under N_2 , then cooled and treated with dimethyl sulfate and more Na-methoxide soln., stirred 2 hrs. at room temp. \rightarrow 2-chloro-5,8-dimethoxy-1,4-dihydronaphthalene. Y: 80%. C. A. Grob and W. Jundt, Helv. 35, 2111 (1952).

Nitrogen/Carbon Type

CC \cap NC

Lithium methylanilide

(C_6H_5)(CH_3) $N \cdot Li$

Cyclic iminonitriles from dinitriles

Ziegler cyclization

s. 5, 525; N-heterocyclics from cyanamides s. H.-J. Nitzschke and G. Faerber, B. 87, 1635 (1954)

Sodium amide

$NaNH_2$

Migration into the ring

α -Methylaryl compounds s. 8, 769; s. a. Org. Synth. 34, 61 (1954); also other alkylaryl compounds s. Am. Soc. 76, 1264 (1954)

Zinc

Zn

Nitriles from formamides via isonitriles

NHCHO → CN

01.

2-Methyl-6-*tert*-butylformanilide refluxed 1 hr. with excess Zn-dust → 2-methyl-6-*tert*-butylbenzonitrile. Y: 52%. P. J. C. Fierens and J. van Rysselberge, Bull. soc. chim. Belges 61, 215 (1952).

Carbon/Carbon TypeCC \cap CC

Sodium nitrite

NaNO₂**Cyclic alcohols from aminomethylcycloalkanes**

←

Demyanov ring expansion

s. 1, 540; s. a. P. A. S. Smith, D. R. Baer, and S. N. Ege, Am. Soc. 76, 4564 (1954)

Cyclic ketones from cyclic aminomethylalcohols**Tiffeneau ring expansion**

s. 1, 539, 541; s. a. F. F. Blicke, N. J. Doorenbos, and R. H. Cox, Am. Soc. 74, 2924 (1952); H. J. Dauben et al., Org. Synth. 34, 19 (1954)

ExchangeCC \uparrow H**Hydrogen ↑**

w.a.r.

Cyanogenation

H → CN

02.

Benzene allowed to react with a twofold excess of cyanogen in a vertical silica tube at 745° and 2-3 sec. contact time → benzonitrile. Y: 42%; conversion ca. 46%. F. e. s. G. J. Janz, Am. Soc. 74, 4529 (1952).

Phenyllithium

C₆H₅Li**Carboxylic acid esters from hydrocarbons**

H → COOR

Synthesis with addition of 1 C-atom

03.

2-Picyllithium prepared from 2-picoline and phenyllithium (from Li-ribbon and bromobenzene) in ether added with rapid stirring during

5 hrs. to an ice-salt cooled soln. of diethyl carbonate in ether, heated to reflux, then poured onto ice → ethyl 2-pyridylacetate. Y: 44.5%. N. N. Goldberg, B. M. Perfetti, and R. Levine, Am. Soc. 75, 3843 (1953).

Cuprous chloride

CuCl

Diacetylene derivatives

RH + HR' → R·R'

by coupling of acetylene derivatives

s. 4, 687; s. a. B. L. Shaw and M. Whiting, Soc. 1954, 3217

Sulfur

S

Ethylene derivatives by dimerization2 RCH₃ → RCH:CHR

A mixture of p-toluic acid and S heated 2 hrs. at 271° → 4,4'-stilbenedicarboxylic acid. Y: 57.3% based on startg. m. converted. W. G. Toland Jr., J. B. Wilkes, and F. J. Brutschy, Am. Soc. 75, 2263 (1953); 76, 307 (1954).

*Persulfate*S₂O₈²⁻**Oxidative dimerization
of aliphatic nitro compounds**

2 RH → R·R

A mixture of NH₄-persulfate and Na-acetate in water added at 0-5° to a soln. of 2-nitropropane in 10%-NaOH, and the product isolated after 6 hrs. → 2,3-dimethyl-2,3-dinitrobutane. Y: 53-62%. F. e. s. H. Shechter and R. B. Kaplan, Am. Soc. 75, 3980 (1953).

Via intermediates

v.i.

 **α,β -Ethylenenitriles
from ethylene derivatives**

H → CN

s. 9, 899

Oxygen ↑CC \ddagger O*Without additional reagents*

w.a.r.

Methylene bridge2 RH → R·CH₂·R

A 40%-formalin soln. added to an aq. soln. of 1,3-cyclohexanedione, cautiously heated until the soln. becomes turbid, heating stopped, and

the mixture allowed to stand 12 hrs. at room temp. → methylenebisdi-hydroresorcinol (startg. m. f. 228). Y: ca. 100%. H. Stetter and W. Die-richs, B. 85, 290 (1952).

Mannich reaction Aminomethylation

with N-heterocyclics

s. 3, 608; s. a. J. Thesing and H. Mayer, B. 87, 1084 (1954); J. H. Burekhalter, W. H. Edgerton, and J. H. Durden, Jr., Am. Soc. 76, 6089 (1954).

**Salts of aci- α,γ -dinitroglutaric acid esters
from aldehydes and nitroacetic acid ester
s. 9, 856**

→

2,3-Pyrrolidiones

s. 3, 611; s. a. W. Ried and H. Gutjahr, B. 86, 1096 (1953).

Pyridine ring from enamines

○

Ethyl β -aminocrotonate added to a soln. of diethyl ethoxymethylene-oxalacetate in anhydrous ether \rightarrow triethyl 6-methyl-2,3,5-pyridinetrifluoroacetate. Y: 86%. F. e. s. E. M. Bottorff et al., Am. Soc. 73, 4380 (1951); s. a. R. G. Jones, Am. Soc. 73, 5610 (1951).

4-Piperidones

n-Propylamine added dropwise to a mixture of diethyl acetonedi-carboxylate and benzaldehyde → diethyl 1-propyl-2,6-diphenyl-4-piperidone-3,5-dicarboxylate. Y: 82.5%. F. e. s. P. Soni and G. S. Sidhu, J. Indian Chem. Soc. 28, 405 (1951).

4-Hydroxycarbostyrls

809.

Equimolecular amounts of diethyl n-butylmalonate and p-anisidine refluxed 8 hrs. with Dowtherm A → 3-n-butyl-4-hydroxy-6-methoxy-carbostyryl. Y: 91%. R. R. Holmes et al., Am. Soc. 76, 2400 (1954); method s. R. H. Baker, G. R. Lapin, and B. Riegel, Am. Soc. 68, 1284 (1946).

Lithium

Li

Ketones form carboxylic acids

COOH → COR

810.

Ethereal methyl-Li, prepared from methyl iodide and Li, added dropwise during 3.5 hrs. with vigorous stirring at 15° under N₂ to 1-hydroxyhexane-1-carboxylic acid in ether → 1-acetylhexanol. Y: 73%.—By other procedures, a partial conversion of the carboxyl group to a tert. alcohol occurs. J. D. Billimoria and N. F. MacLagan, Soc. 1951, 3067; f. e. s. C. Tegner, Acta Chem. Scand. 6, 782 (1952); H. Kappeler et al., Helv. 37, 957 (1954).

Sodium hydride

NaH

β-Ketocarboxylic acid estersCOCH₂COOR**from carboxylic acid esters****Mixed ester condensation**

s. 6, 738; 7, 434; fluorine-containing compounds s. E. T. McBee et al., Am. Soc. 75, 3152 (1953)

Sodium hydroxide

NaOH

Subst. phthalides

←

from o-aldehydocarboxylic acids

811.

Methanol added to a suspension of 16 g. p-methoxyacetophenone and 21 g. opianic acid in 10% NaOH until a homogeneous soln. is obtained, then kept 24 hrs. at room temp. → 29.5 g. 6,7-dimethoxy-3-(4-methoxyphenacyl)phthalide. F. e. s. A. S. Bailey and R. S. Staunton, Soc. 1952, 2153.

Potassium hydroxide

KOH

α,β-Ethylenenitriles from aldehydes

CHO → CH:C≡CN

s. 7, 271; also with Na-ethoxide, pyridine, and other condensing agents

s. A. Schonne, E. Braye, and A. Bruylants, Bl. Soc. chim. Belg. 62, 155 (1953)

Condensed cyclohexenolones

312.

Acenaphthenequinone and benzyl methyl ketone in methanolic KOH stirred 3 hrs. at room temp. → condensed cyclohexenolone. Y: 78%. F. e. s. C. F. H. Allen and J. A. Van Allan, J. Org. Chem. 17, 845 (1952).

Sodium/alcohol

NaOR

Oxalic ester synthesis

H → COCOR

s. 3, 620; 5-tetrazolylpyruvates s. C. R. Jacobsen and E. D. Amstutz, J. Org. Chem. 18, 1183 (1953)

s. 4, 703; s. a. Org. Synth. 34, 13 (1954)

α-Cyanoketones from nitriles

CHCN → C(CN)COR

s. 2, 645; s. a. W. Logemann, L. Almirante, and L. Caprio, B. 87, 435 (1954)

4-Pyrones

313.

A soln. of Na in abs. ethanol added to a mixture of acetone and ethyl oxalate, when the soln. becomes turbid more ethyl oxalate and Na-ethoxide soln. added, the crude chelidonic ester isolated after ca. 10 min. and hydrolyzed by heating 20 hrs. with concd. HCl on a steam bath → chelidonic acid. Y: 72%. R. F. Toomey and E. R. Riegel, J. Org. Chem. 17, 1492 (1952).

Coumarin ring

814.

A mixture of o-hydroxyacetophenone, ethyl cyanoacetate, and some Na-ethoxide in abs. ethanol refluxed 2 hrs. after the appearance of needle-shaped crystals \rightarrow 3-cyano-4-methylcoumarin (startg. m. f. 279). Y: 79%.—Na-ethoxide catalyzes the aldol condensation better than pyridine and piperidine. C. H. Schroeder and K. P. Link, Am. Soc. 75, 1886 (1953).

Pyridine ring synthesis

815.

A mixture of isobutoxymethylenephenoxyacetonitrile, cyanoacetamide, and a soln. of Na in abs. ethanol refluxed 6 hrs. in a slow stream of N₂ \rightarrow 2-amino-5-cyano-6-hydroxypyridine. Y: 81%. F. e. s. B. H. Chase and J. Walker, Soc. 1953, 3548.

*Sodium methoxide*NaOCH₃ **β -Ketoacetals from ketones
via α -hydroxymethyleneketones**COCH₃ \rightarrow COCH₂CH(OR)₂

816.

A mixture of isobutyl methyl ketone and methyl formate added with stirring to a slurry of Na-methoxide in abs. ether at a rate to maintain gentle reflux, stirring continued 1 hr., most of the ether removed without stirring under reduced pressure, methanol added to the solid Na-hydroxymethyleneketone followed by a soln. of anhydrous HCl in methanol, stirring continued 1-2 hrs. at 20°, and made just alkaline to litmus with satd. methanolic KOH \rightarrow 1,1-dimethoxy-5-methyl-3-hexanone. Y: 69.4%. F. e. s. E. E. Royals and K. C. Brannock, Am. Soc. 75, 2050 (1953).

Dienollactones

17.

A mixture of methyl oxalate, Na-methoxide, and benzene refluxed 10 min. under N₂, a soln. of 2 g. *trans*-1,2,3,4,9,10,11,12-octahydro-4-keto-phenanthrene in benzene added, stirred 5 hrs. at room temp. under N₂, the crude solid Na-salt thus obtained suspended in dioxane, and HCl added to just neutral reaction → 1.8 g. lactone. F. e. s. D. Ginsburg and R. Pappo, Soc. 1953, 1524.

2,3-Pyrrolidiones

18.

Methyl oxalate followed by a soln. of methyl β-benzylaminopropionate in anhydrous ether added to a well-stirred suspension of Na-methoxide in ether, and refluxed 0.5 hr. with stirring → 4-carbomethoxy-1-benzyl-2,3-dioxopyrrolidine. Y: 75%. F. e. s. P. L. Southwick and R. T. Crouch, Am. Soc. 75, 3413 (1953).

Potassium tert-butoxide

KOR

Subst. unsatd. succinic acid monoesters

←

Stobbe condensation

s. 2, 647; s. a. G. Büchi and J. J. Pappas, Am. Soc. 76, 2963 (1954); G. N. Walker, Am. Soc. 75, 3387 (1953)

*n-Butyllithium*C₄H₉Li**Synthesis of sym. ketones**2 RH + CO₂ → R₂CO**with carbon dioxide****Metalation of thiophenes**

19.

Thiophene allowed to react with n-butyl-Li in ether under N₂, gently refluxed for an additional 15 min., then CO₂ in place of N₂ bubbled into the soln. for 10 hrs. until the test for organo-Li compound is negative → di-2-thienyl ketone. Y: 67%. N. M. Löfgren and C. Tegner, Acta Chem. Scand. 6, 1020 (1952).

Sodium/liq. ammonia

Na/NH₃**Synthesis of acetylene derivatives**

CH → CR

Mono-Na-diacetylide prepared from diacetylene and Na in liq. NH₃ allowed to react with diethyl sulfate → 1,3-hexadiyne. Y: almost 100%. F. e. s. T. Herbertz, B. 85, 475 (1952).

Sodium amide

NaNH₂**Alkylation of nitriles
with p-toluenesulfonic acid esters**

A soln. of diphenylacetonitrile in dry toluene added to a slurry of NaNH₂ in toluene, heated with stirring to 106° under N₂, heating and stirring continued until 95% or more of the theoretical amount of NH₃ is evolved, cooled to 65°, 1-chloro-2-propyl p-toluenesulfonate added slowly with stirring below 80°, and refluxed 18 hrs. with stirring → 4-chloro-2,2-diphenyl-3-methylbutanenitrile. Y: 65%.—The sec. tosyl ester group is more reactive than the prim. chlorine atom. M. Sletzinger, E. M. Chamberlin, and M. Tishler, Am. Soc. 74, 5619 (1952).

**Synthesis of dihydrofurans
from γ -lactones**

822.

Isobutyl methyl ketone added dropwise during 20-30 min. to NaNH₂ in ether, agitated for an additional 10 min., γ -valerolactone in anhydrous ether added during 30 min., and refluxed 8 hrs. on a water bath → 5-methyl-2-(2'-hydroxy-4'-methyl-1'-pentenyl)-4,5-dihydrofuran. Y: 59.3%. F. e., with lower yields, s. G. W. Cannon, J. J. Casler, Jr., and W. A. Gaines, J. Org. Chem. 17, 1245 (1952).

Sodium carbonate

Na₂CO₃
**3,4-Dihydroxy-2-imino-2,5-dihydrofurans
from aldehydes**

823.

Glyoxal hydrogen sulfite dihydrate and a soln. of benzaldehyde in dioxane added with stirring in a N₂-stream to a soln. of KCN in aq. 2 N Na-carbonate, after 30 min. adjusted with glacial acetic acid to pH 6, and stirring continued for 3 hrs. → 4-phenyl-2-hydroxytetronimide. Y: 93%. F. e. s. H. Dahn et al., Helv. 37, 1309 (1954).

Sodium cyanide

NaCN
 **α -prim-Aminonitriles from aldehydes
Synthesis with addition of 1 C-atom**

824.

β -Methylthiopropionaldehyde added dropwise with stirring during 30 min. at 15-20° to a mixture of NH₄Cl, NaCN, concd. aq. NH₃, and alcohol satd. with NH₃, stirring continued overnight → α -amino- γ -methylthiobutyronitrile. Y: 95.5%. D. O. Holland and J. H. C. Nayler, Soc. 1952, 3403.

Potassium cyanide

KCN
**Nitriles from p-toluenesulfonic acid esters
Partial tosylation**

825.

A soln. of acetone quinalecohol in abs. pyridine mixed at -40° in a closed apparatus (s. original paper) with a soln. of p-toluenesulfonyl chloride in chloroform, and allowed to stand 3 days at -20° → crude monotosyl derivative (Y: ca. 85%) dissolved in alcohol, treated with KCN, and kept 16 hrs. at 40° with occasional shaking → isopropylidene-homoquinononitrile (Y: ca. 75%). Overall Y: 64%. F. e. for the second step s. R. Grewe and E. Nolte, A. 575, 1 (1952).

α -Aminonitriles from oxo compounds $\text{CO} \rightarrow \text{C}(\text{CN})\text{N}$ s. 6, 752; 7, 777; bis-(α -aminonitriles) s. H. Zahn and H. Wilhelm, A. 579, 1 (1953)**Hydantoins from oxo compounds**

s. 1, 568; 5-pyridylhydantoins s. H. R. Henze and M. B. Knowles, J. Org. Chem. 19, 1127 (1954)

Potassium cyanide/hydrochloric acid

KCN/HCl

**Carboxylactones from ketocarboxylic acids
via cyanolactones**

826.

Cold aq. levulinic acid added with stirring during 30 min. to cold aq. KCN, stirred 24 hrs. at 0°, acidified by slow addition of concd. HCl, stirred at 0° for another 24 hrs., then heated 10 min. at 100° → DL- γ -cyano- γ -valerolactone (Y: 55.8%) refluxed 21 hrs. with 20.8% HCl → DL- γ -carboxy- γ -valerolactone (Y: 94%). F. e. s. R. Adams and F. Haussman, Am. Soc. 74, 694 (1952).

*Sodium salt*Na⁺**Kostanecki-Robinson reaction
Coumarin ring from o-hydroxyketones**

827.

A mixture of 1 mole 1-butyl-2-naphthol, 6.5 moles propionic anhydride, and 4.5 moles Na-propionate heated 6 hrs. in an oil bath at 160°, cooled, then boiled 2 hrs. with water to decompose the excess acid anhydride → 3-methyl-4-propynylnaphthocoumarin. Y: 88%.—Depending on the startg. m., coumarins or chromones, or mixtures thereof are obtained. F. e. s. A. B. Sen and T. N. Kakaji, J. Indian Chem. Soc. 29, 127, 950 (1952).

Triton B

←

**Cinnamylidenemalonic acids
from aldehydes**

828.

Methanolic 35%-benzyltrimethylammonium hydroxide added to a mixture of 3,4,5-trimethoxybenzaldehyde, ethyl ethylenemalonate, and abs. ethanol, allowed to stand 24-48 hrs. at room temp., and the ester hydrolyzed by addition of water and refluxing 30-60 min. → 3,4,5-trimethoxycinnamylidenemalonic acid. Y: 86%. F. e. s. P. D. Gardner et al., Am. Soc. 74, 5527 (1952).

Methylamine **β,γ -Nitroethylene derivatives
from ketones**

←

829.

Anhydrous liq. methylamine added at 5° to a mixture of cyclohexanone and nitromethane, and kept 17 days at 8-10° → 1-nitromethyl-1-cyclohexene. Y: 48%. With piperidine, only 26% yield was obtained. F. e. s. D. V. Nightingale, F. B. Erickson, and J. M. Shackelford, J. Org. Chem. 17, 1005 (1952).

Aniline **α,β -Nitroethylene derivatives
from aldehydes**

830.

A mixture of 4-hydroxybenzaldehyde, nitromethane, and aniline heated 1 hr. on a water bath → 4-hydroxy- β -nitrostyrene. Y: 79%. F. e. and methods s. O. Schales and H. A. Graefe, Am. Soc. 74, 4486 (1952).

*Aniline, pyridine**C₆H₅NH₂, C₅H₅N*

**α,β -Ethylenecarboxylic acids
from aldehydes**
Synthesis with addition of 2 C-atoms

 $\text{CHO} \rightarrow \text{CH:CHCOOH}$

831.

Several drops of aniline added to a soln. of acetyltsringaldehyde and malonic acid in warm pyridine, kept 4 hrs. at 20° and 6 hrs. at 50° → acetyltsinapic acid. Y: 84%. K. Freudenberg and H. H. Hübner, B. 85, 1181 (1952).

*Triethylamine**(C₂H₅)₃N***Thiomethylation** $\text{H} \rightarrow \text{CH}_2\text{SR}$

s. 9, 844

**α -Aminocarboxylic acids
from oxo compounds
via hydantoins**

←

Triethylamine followed by β -methylthiopropionaldehyde added with stirring to a mixture of NaCN and $(\text{NH}_4)_2\text{CO}_3$ in 50% aq. alcohol, after 1 hour's stirring kept overnight, dil. with alcohol, after ca. 15 min. the precipitated Na-carbonate removed and washed with alcohol, water and $\text{Ba}(\text{OH})_2$ added to the aq. alc. filtrate, boiled to remove alcohol and triethylamine, then refluxed 36 hrs. → methionine. Y: 79-82%. Also isolation of te intermediate s. D. O. Holland and J. H. C. Nayler, Soc. 1952, 3403.

*Piperidine**C₅H₁₁N***10-Arylideneanthrones** $\text{CHO} + \text{H}_2\text{C}\backslash \rightarrow \text{CH:CH}$

833.

A mixture of anthrone, o-chlorobenzaldehyde, and several drops of piperidine heated 10 min. at 150-160° → 10-(o-chlorobenzylidene)-anthrone. Y: ca. 100%. E. D. Bergmann, Y. Hirshberg, and D. Lavie. Bl. 1952, 268.

α,β -Ethylene- α -cyanocarboxylic acid esters CHO → CH:C(CN)COOR
from aldehydes

s. 7, 781; s. a. J. Harley-Mason and A. H. Jackson, Soc. 1954, 1165

β -Subst. glutaric acids from aldehydes
via arylmethylene-bis-acetoacetates

s. 6, 759; s. a. Am. Soc. 76, 2731 (1954)

Eneheterocyclics

s. 9, 336

Tetrahydrothio-4-pyrone

1 mole piperidine added dropwise at -15 to -10° to a soln. of diethyl acetonedicarboxylate in ethanol, then acetaldehyde in ethanol added, and H₂S introduced at the same temp. for 25 min. → 2,6-dimethyl-3,5-dicarbethoxytetrahydrothio-4-pyrone. Y: 36.7%. V. Horák and M. Černý, Collection Czechoslov. Chem. Communs. 18, 379 (1953).

Pyridine

C₅H₅N

Ketones from carboxylic acids

COOH → COR

A mixture of α -2-(6-methyl-3-pyridazonyl)propionic acid, acetic anhydride, and pyridine refluxed 2 hrs., during which time CO₂ is freely evolved → methyl 1-[2-(6-methyl-3-pyridazonyl)]ethyl ketone. Y: 78%. F. e. s. J. A. King and F. H. McMillan, Am. Soc. 74, 3222 (1952).

Cuprous cyanide

CuCN

Nitriles from alcohols

OH → CN

s. 7, 787; s. a. Am. Soc. 74, 2987 (1952)

Zinc

Zn

Knorr pyrrole synthesis

s. 1, 587; also with benzyl instead of ethyl acetoacetate s. S. F. Mac-Donald, Soc. 1952, 4176

*Ethylmagnesium bromide**C₂H₅MgBr***Synthesis of hydrocarbons
from p-toluenesulfonic acid esters**

836.

The Grignard reagent obtained by refluxing β -naphthylacetylene with an equivalent amount of ethyl-MgBr in ether-benzene for 7 hrs. added dropwise with stirring to a refluxing soln. of p-bromobenzyl p-toluenesulfonate in benzene-ether, and refluxed 8 hrs. with stirring \rightarrow 1-(p-bromophenyl)-3-(β -naphthyl)-2-propyne. Crude Y: 66%. T. L. Jacobs and S. Singer, J. Org. Chem. 17, 475 (1952).

**Acetals from orthoformic acid esters
Synthesis with addition of 1 C-atom** $\text{CH} \rightarrow \text{C}\cdot\text{CH}(\text{OR})_2$

837.

1,5-Octadiyne in ether added during 5 min. to an ethereal soln. of ethyl-MgBr, refluxed 2 hrs. with stirring under N₂, ethyl orthoformate added, heating under N₂ continued for 6 hrs., the ether distilled off, and the residue heated 1 hr. on a steam bath \rightarrow 2,6-nonadiynal diethyl acetal. Y: 81%. F. Sondheimer, Am. Soc. 74, 4040 (1952).

*Dialkylaminomagnesium bromide**R₂NMgBr* **β -Ketocarboxylic acid esters
from carboxylic acid esters***COCHRCOOR'*

with diethylamino-magnesium bromide s. 3, 638; with diisopropylaminomagnesium bromide s. L. H. Sommer et al., Am. Soc. 75, 2932 (1953)

*Boron fluoride**BF₃***Ketones from carboxylic acid anhydrides** $\text{CO}\cdot\text{O}\cdot\text{OC} \rightarrow \text{COR}$

s. 4, 725; s. a. G. Tsatsas and J. Hoch, C. r. 236, 494 (1953)

 β -Diketones from carboxylic acid anhydrides $\cdot\text{COCH}_2\text{CO}\cdot$

s. 1, 579; improved procedures s. R. M. Manyik et al., Am. Soc. 75, 5030 (1953)

Acetoacetylation

A mixture of mesitylene and acetic anhydride satd. with BF_3 at $0\text{-}10^\circ$ in 2-3 hrs., stirring continued to make a total reaction time of 4 hrs. \rightarrow mesitoylacetone. Y: 57%. F. e. s. H. G. Walker, Jr., J. J. Sanderson, and C. R. Hauser, Am. Soc. 75, 4109 (1953).

*Aluminum chloride***Synthesis of hydrocarbons
from p-toluenesulfonic acid esters**

n-Octadecyl p-toluenesulfonate followed by AlCl_3 added to dry benzene, stirred 15 hrs. at room temp., 10 hrs. at $50\text{-}55^\circ$, finally 14 hrs. again at room temp. \rightarrow n-octadecylbenzene. Y: 73%. D. A. Shirley and J. R. Zietz, Jr., Am. Soc. 75, 6333 (1953).

1,1-Diaryl derivatives from oxo compounds $\text{CO} + 2 \text{HAr} \rightarrow \text{C}(\text{Ar})_2$
s. 2, 664; 5, 548; s. a. E. F. Rogers et al., Am. Soc. 75, 2991 (1953)*Ammonium acetate***Alkylidenecyanoacetic acid esters** $\text{C:C}(\text{CN})\text{COOR}$
s. 6, 770; s. a. C. S. Rondestvedt, Jr., and A. H. Filbey, J. Org. Chem. 19, 119 (1954)**Pyridine ring**

A mixture of benzaldehyde, acetophenone, $\text{NH}_4\text{-acetate}$, and glacial acetic acid refluxed 1 hr. \rightarrow 2,4,6-triphenylpyridine. Y: 68%.—In the more sluggish reactions, acetic acid is replaced by acetamide. F. e. s. M. Weiss, Am. Soc. 74, 200 (1952).

Acetic anhydride

**Synthesis of
ethylene derivatives from aldehydes**

s. 9, 848

**α -Nitro- β -acylaminoacid esters
from nitroacetic acid ester and aldehydes
or 1,1-di(acylamino) compounds**

NH_4 -acetate added to a mixture of acetic anhydride, ethyl nitroacetate, and benzaldehyde,

Ethyl nitroacetate and benzylidene-bisacetamide added to acetic anhydride,

then heated 7 hrs. on a water bath \rightarrow ethyl α -nitro- β -acetylamino- β -phenylpropionate (startg. m. f. 151).

Y: 63%.

Y: 85%.

G. Stefanović and J. Bojanović, J. Org. Chem. 17, 816 (1952); f. reactions with nitroacetic acid ester s. A. Dornow and A. Frese, A. 578, 122 (1952).

Citrate/hydrochloric acid buffer

**Synthesis of aminoketones
via partially reduced lactams**

2-Oxoindolizidine allowed to react with $\frac{1}{4}$ mole + ca. 20% excess $LiAlH_4$ in abs. ether, treated with a soln. of neutralized benzoylacetic acid in citrate/HCl buffer of pH 4, the ether removed in vacuo, the aq.

soln. allowed to stand 40 hrs. at 20°, acidified to congo red reaction, and heated 20 min. on a steam bath to eliminate CO₂ → ω -(2-indolizidyl)acetophenone. Crude Y: 64%. F. e. s. F. Galinovsky, R. Weiser et al., M. 83, 114 (1952); 82, 551 (1951).

Formic acid

**Cleavage of formaldehyde derivatives
with 2,4-dimethylphenol**

43.

Bis(phenylcarbamidomethyl) ether and 2,4-dimethylphenol in formic acid kept 2 hrs. at 50° → N-(2-hydroxy-3,5-dimethylbenzyl)-N'-phenylurea. Crude Y: 90%. F. e. s. G. Zigeuner et al., M. 82, 847 (1951).

Acetic acid

**Thiomethylation
with formaldehyde and mercaptans
or hydroxymethyl thioethers**

44.

A mixture of antipyrine,

phenyl mercaptan, paraformaldehyde, acetic acid, and water heated 23 hrs. on a steam bath

phenylthiomethanol, acetic acid, and water heated 23 hrs. at 100°

Y: 80%.

4-phenylthiomethylantipyrine.

Y: 78%.

F. e. and methods, thiomethylation of phenols in the presence of triethylamine, s. F. Poppeldorf and S. J. Holt, Soc. 1954, 1124.

Phosphate buffer

Endimine ring system

s. 8, 816; s. a. K. Zeile and A. Heusner, B. 87, 439 (1954)

Phosphoric acid H_3PO_4 **Ketones from carboxylic acid anhydrides** $CO \cdot O \cdot OC \rightarrow COR$

845.

Guaiacol added to a mixture of acetic anhydride and concd. H_3PO_4 (d. 1.75), refluxed 5 hrs. \rightarrow acetylisoacetovanillone. Y: 28%; 67% based on startg. m. consumed.—By this procedure, the acetyl group is directed into the position para to the methoxyl group, also in the presence of a free phenolic hydroxyl group. R. Schwarz and K. Capek, M. 83, 883 (1952).

p-Toluenesulfonic acid $TsOH$ **Reactions with** \leftarrow **azeotropic water separation****Baeyer condensation****Triarylmethanes**

846.

The Baeyer condensation proceeds smoothly in 80-90% yield when a benzene soln. of an activated ar. compound, an ar. aldehyde, and p-toluenesulfonic acid is refluxed in an apparatus equipped with a Dean-Stark water trap. The amount of water collected indicates the progress of the reaction.—E: p-Nitrobenzaldehyde and dimethylaniline \rightarrow p-nitro-p',p''-tetramethyldiaminotriphenylmethane. Y: 89%. F. e. s. E. F. Pratt and L. Q. Green, Am. Soc. 75, 275 (1953).

Sulfuric acid H_2SO_4 **Alkylation of isocyclics
with alcohols** $RH + HOR' \rightarrow R \cdot R'$

s. 2, 678; diphenylcarbinylation s. D. G. Kundiger and E. B. W. Ovist, Am. Soc. 76, 2501 (1954)

Synthesis of nitriles from cyanohydrins $CH(CN)OH \rightarrow CH(CN)R$

847.

A suspension of 12 g. 3,4-dimethoxymandelonitrile in 15 ml. veratrole mixed with 74%- H_2SO_4 , warmed very gradually to 70° in a water bath

with occasional stirring, and kept 30-40 min. at this temp. after complete dissolution → 18 g. bis-(3,4-dimethoxyphenyl)acetonitrile. A. Müller and M. Vajda, J. Org. Chem. 17, 800 (1952).

**Synthesis of
hydrocarbons, ethylene derivatives,
and sec. alcohols from aldehydes**

←

8.

6-Methylphenanthridine and 6-phenanthridinealdehyde

(2 g. and 1 g.) heated 1.5 hrs. at a bath temp. of 145° with concd. $H_2SO_4 \rightarrow 2.1$ g. 1,2,3- tri-(6-phenanthridi- nyl)propane.	(500 mg. each) reflux- ed 10 min. in acetic anhydride → 800 mg. 1,2-di-(6-phenanthri- dinyloxy)ethane.	(1.5 g. each) reflux- ed 3.5 hrs. in 80% alcohol → 1.95 g. 1,2-di-(6-phenan- thridinyl)ethanol,
--	--	---

F. e. s. A. G. Caldwell, Soc. 1952, 2035.

Iodine

I

C-Acylation

$H \rightarrow COR$

of heterocyclics s. 3, 651; of alkyl aryl ethers s. X. A. Dominguez et al., Am. Soc. 76, 5150 (1954)

Perchloric acid

$HClO_4$

**Ketones from
carboxylic acids — anhydrides**

COR

9.

0.05 mole anisole mixed at 0° with 0.025 mole $HClO_4$, 0.2 mole propionic acid, and 0.3 mole propionic anhydride, then allowed to stand 2 hrs. at the same temp. → p-methoxypropiophenone. Y: 71%.—Somewhat lower yields, compared with other methods, are offset by the ease of operation. The reaction does not take place with acylated phenols, ar. hydrocarbons, nitrobenzene, or pyridine, nor with guaiacol. F. e. s. H. Kuhn and R. Daxner, M. 83, 689 (1952).

Hydrochloric acid

HCl

Benzene ring by trimerization

O

850.

p-tert-Butylacetophenone added to abs. ethanol satd. with HCl, and allowed to stand 30 days \rightarrow 1,3,5-(p-tert-butylphenyl)benzene. Y: 74%. F. e. s. R. E. Lyle et al., Am. Soc. 75, 5959 (1953).

Quinaldines**Döbner-Miller synthesis**

851.

β -Naphthylamine added with stirring to crude concd. HCl, heated on a steam bath, paraldehyde added dropwise with vigorous stirring, whereby the steam bath is removed temporarily to moderate the reaction, stirring continued for 7 hrs. \rightarrow 5,6-benzoquininaldine. Y: 70%. M. Häring, B. Prijs, and H. Erlenmeyer, Helv. 37, 1339 (1954).

Dihydropyrimidines

852.

A mixture of urea, benzaldehyde, ethyl acetoacetate, ethanol, and 16 drops HCl refluxed 3 hrs. \rightarrow ethyl 2-hydroxy-4-methyl-6-phenyl-dihydropyrimidinecarboxylate. Y: 84.5%. F. e. s. N. V. Khromov-Borisov and A. M. Savchenko, Ж. 22, 1680 (1952); C. A. 47, 933d.

Iron/cupric sulfate/sulfuric acid

Fe/CuSO₄/H₂SO₄

Isocyclics from quinones

53.

Glycerol and Fe-filings added uniformly over a period of 3 hrs. at 110-117° to a soln. of thiophanthraquinone in 82.5%-H₂SO₄ containing CuSO₄, and the reaction temp. maintained 1 hr. longer → 4,5-benzothiophanthrone. Y: 63.5%. V. Weinmayr, F. S. Palmer, and A. A. Ebert, Jr., Am. Soc. 74, 4361 (1952).

Via intermediates

v.i.

Gränacher synthesis via rhodanine

CHO → CH₂CN

s. 3, 662; s. a. M. F. Grundon and H. J. H. Perry, Soc. 1954, 3531

Nitrogen ↑

CC \ddagger N

Without additional reagents

w.a.r.

Tert. amines from diazo compounds

←

54.

9-Diazofluorene added portionwise to 9-fluorenyldimethylamine at ca. 150° so that a steady reaction is maintained without further external heating → 9-dimethylamino-9,9'-bifluorene. Y: 45%. F. e. s. W. R. Bamford and T. S. Stevens, Soc. 1952, 4675.

C-Cyanomethylation

H → CH₂CN

55.

A mixture of indole and diethylaminocetonitrile heated 6 hrs. at ca. 170° under N₂ → indole-3-acetonitrile. Y: 33-44%. E. L. Eliel and N. J. Murphy, Am. Soc. 75, 3589 (1953).

←

**Reactions of nitroacetic acid ester
Salts of aci- α - γ -dinitroglutaric acid esters
from nitroacetic acid ester and azomethines
or aldehydes**

856.

Benzylideneaniline allowed to react for a few hrs. with 2 moles nitroacetic acid ester and diethylamine in a mixture of abs. alcohol and ether → diethylammonium salt of *aci*- α , γ -dinitro- β -phenylglutaric acid ester. Y: 94-98%. F. e., also isolation of the intermediates, s. A. Dornow and A. Frese, A. 578, 122 (1952); from aldehydes s. A. 578, 113; f. reactions s. a. A. 578, 101.

**Synthesis of oxo compounds
from hydrocarbons and amidines
via azomethines**

 $\text{CH} \rightarrow \text{C}\cdot\text{COR}$

857.

A mixture of thioxindole (prepn. s. 121) and N,N'-diphenyl-formamidine in ethanol refluxed 15 min. → thioxindole-3-aldehyde anil (Y: 70-78%) refluxed 1 hr. in aq.-alc. KOH → thioxindole-3-aldehyde (Y: 72%). With N,N'-diphenylacetamidine at 140-150° without solvent → anil (Y: 64%) hydrolyzed as above → 3-acetylthioxindole (Y: 88-96%). F. e. s. R. H. Glauert and F. G. Mann, Soc. 1952, 2127.

**α,β -Ethylene- α -cyanocarboxylic acid esters $\text{C}(\text{NHAc})_2 \rightarrow \text{C}:\text{C}(\text{CN})\text{COOR}$
from 1,1-di(acylamino) compounds**

858.

3,4-Methylenedioxybenzylidenebisacetamide and ethyl cyanoacetate heated 8 hrs. in an oil bath at 140-150° → ethyl α -cyano- β -(3,4-methylenedioxyphenyl)acrylate. Crude Y: 90.8%. F. e., with lower yields, s. G. Stefanović and Z. Nikić, J. Org. Chem. 17, 1305 (1952).

Irradiation

Two-step azulene synthesis
Ring expansion of isocyclics
Dehydration

359.

Nitrosomethylurea added in several portions over a period of 1 hr. to a mixture of indane and aq. 50%-KOH, stirred another hr., the organic layer separated and irradiated 24 hrs. with sun lamps \rightarrow trimethylene-tropilidene dropped on a column of 5%-Pd on coconut charcoal at 340°/20 mm. during 1 hr. \rightarrow azulene. Y: 6.7% based on indane consumed. W. von E. Doering, J. R. Mayer, and C. H. DePuy, Am. Soc. 75, 2386 (1953).

Sodium hydride

NaH

Synthesis of α -aminocarboxylic acids $\text{CH}_2\text{N}(\text{R})_2 \rightarrow \text{CH}_2\text{CH}(\text{NH}_2)\text{COOH}$
with tert. amines

**Simultaneous cleavage
of carbobenzoxy derivatives of amines
and benzyl esters**

360.

A soln. of dibenzyl carbobenzoxyaminomalonate and 2-carbethoxy-3-diethylaminomethylindole in dry xylene containing a trace of NaH refluxed, while a stream of N_2 is bubbling through, until after 3.5 hrs. the theoretical amount of diethylamine has been given off \rightarrow condensation product (Y: 89%) hydrogenated with 10%-Pd-on-charcoal in dry methanol for 3 hrs., and a soln. of the crude product in benzene evaporated three times to dryness \rightarrow 2-carbethoxytryptophan (Y: 76%). F. e. s. H. M. Kissman and B. Witkop, Am. Soc. 75, 1967 (1953).

Sodium hydroxide

NaOH

Syntheses with tert. amines

←

s. 6, 789; s. a. H. Hellmann and E. Brendle, H. 287, 235 (1951); with diethyl formamidomalonate s. a. A. Ek and B. Witkop, Am. Soc. 76, 5579 (1954)

C- β -Acylethylation **γ -Nitroketones from tert. amines** $H \rightarrow CH_2CH_2COR$

A soln. of β -dimethylaminopropiophenone in excess 2-nitropropane containing solid NaOH refluxed 6.5 hrs. in an N_2 -atmosphere until evolution of volatile base ceases \rightarrow 2-methyl-2-nitro-5-phenyl-5-pentanone. Y: 82%. F. e. s. N. S. Gill et al., Am. Soc. 74, 4923 (1952).

Sodium/alcohol

NaOR

Isatylidene compounds

Oxindole dissolved in a soln. of Na in abs. alcohol, α -acetamidoacrylic acid added, and refluxed 6 hrs. under N_2 \rightarrow Na-isatylidenemethylacetate. Y: 97%. F. e. s. P. L. Julian et al., Am. Soc. 75, 5305 (1953).

Potassium tert-butoxide

KOR

Cyclohexenones from β -aminoketones

A mixture of β -dimethylamino-p-hydroxypropiophenone hydrochloride, ethyl α -ethylacetooacetate, and K-tert-butoxide in dioxane refluxed 24 hrs. \rightarrow 3-(p-hydroxyphenyl)-6-ethyl-2-cyclohexen-1-one. Y: 71.4%.—If the product does not crystallize, it is saponified with aq. alkali for 2 hrs. to eliminate the carbalkoxy group completely. F. e. s. F. C. Novello, M. E. Christy, and J. M. Sprague, Am. Soc. 75, 1330, 5431 (1953).

Phenyllithium C_6H_5Li **Introduction of aldehyde groups
into ar. nuclei** $H \rightarrow CHO$

864.

A soln. of 5-methoxy-2-thienyl-Li prepared from 2-methoxythiophene and phenyl-Li (from Li and bromobenzene) in ether added in a slow stream with efficient stirring to an ice-cold soln. of a slight excess of dimethylformamide in ether, and left at room temp. overnight \rightarrow 5-methoxy-2-thienaldehyde. Y: 67%.—The secondary products (dimethylamine and unreacted dimethylformamide) are water soluble, which simplifies the isolation of the aldehyde. J. Sicé, Am. Soc. 75, 3697 (1953).

s. 2, 694; s. a. J. P. Lambooy, Am. Soc. 76, 133 (1954)

**Nitriles from organometallic compounds
Replacement of hydrogen by cyano groups**

←

865.

Collidine treated under N_2 at room temp. with an ethereal N phenyl-Li soln., allowed to stand 1 hr. at room temp., then treated at -15° with an ethereal soln. of N -methyl-N-cyanoaniline, and the product isolated after 24 hrs. \rightarrow (4,6-dimethyl-2-pyridyl)malondinitrile. Y: 70%.—Compared with cyanogen chloride, N -methyl-N-cyanoaniline has the advantage of easier handling and dosage. F. e., also mononitriles, s. H. Lettré, P. Jungmann, and J.-C. Salfeld, B. 85, 397 (1952).

Alkali cyanide

←

**Carboxylic acids from
quaternary ammonium salts via nitriles
Synthesis with addition of 1 C-atom**
 $\text{NR}_3^+ \rightarrow \text{COOH}$

866.

Grainine methiodide added to a soln. of KCN in 60% aq. ethanol, then a N_2 -stream passed through for 24 hrs. whereby trimethylamine is removed, aq. 20% KOH added, and refluxed 10 hrs. \rightarrow 3-indoleacetic acid.

Y: 76%. T. A. Geissman and A. Armen, Am. Soc. **74**, 3916 (1952); without KOH in an autoclave at 150-160° s. A. P. Terent'ev, A. N. Kost, and S. M. Gurvich, Ж. 23, 615 (1953); with NaCN s. J. Thesing and F. Schüilde, B. **85**, 324 (1952); phthalimidoacetonitriles s. H. Hellmann, J. Löschmann, and F. Lingens, B. **87**, 1691 (1954).

Copper

***α,β-Ethylene-γ-diketones
from α-diazoketones
Dimerization***

α-Diazoacetophenone in benzene treated with Cu-bronze (Naturkupfer C) at 65-70° → *trans*-1,2-dibenzoylethylene. Y: 70%. P. Yates, Am. Soc. **74**, 5376 (1952).

*Cuprous cyanide**CuCN*

Replacement of amino by cyano groups

s. 3, 666; s. a. R. H. Miller and O. Gisvold, J. Am. Pharm. Assoc. **42**, 367 (1953)

*Cupric sulfate**CuSO₄*

**Synthesis of oxo compounds
from amines and oximes**

A soln. of p-chlorobenzenediazonium chloride, prepared from p-chloroaniline, HCl, and ice-water by treatment with aq. NaNO₂ at 0-5°, neutralized towards Congo-red by addition of aq. Na-acetate, introduced at 10-15° with stirring below the surface of aq. formaldoxime to which has been added Cu-sulfate, some Na-sulfite, and Na-acetate, stirring continued for 1 hr., acidified with excess HCl, then refluxed 2 hrs. → p-chlorobenzaldehyde. Y: 60%. F. e. s. W. F. Beech, Soc. 1954, 1297.

*Cupric chloride**CuCl₂*

**Diazo coupling
1,4-Addition**

s. 4, 760; s. a. E. A. Braude, J. S. Fawcett, and A. A. Webb, Soc. 1954, 1049

Acetic anhydride $(CH_3CO)_2O$ **Syntheses with 1,1-di(acylamino) compounds**

s. 9, 841; s. a. J. Org. Chem. 17, 1114 (1952)

Formic acid $HCOOH$ **Cleavage of formaldehyde derivatives
with 2,4-dimethylphenol**

869.

Methylenebis(phenylurea) and 2,4-dimethylphenol in formic acid kept 2 hrs. at 50° → N-(2-hydroxy-3,5-dimethylbenzyl)-N'-phenylurea. Y: 95%. F. e. s. G. Zigeuner et al., M. 82, 494 (1951).

Polyphosphoric acid $H(PO_3H)_xOH$ **Fischer indole ring synthesis**

870.

Polyphosphoric acid added to a mixture of acetophenone and phenylhydrazine, stirred and warmed gently until a sudden rise of temp. indicates beginning of the reaction, then the temp. kept at 180° by water-cooling → 2-phenylindole. Y: 76%. F. e. s. H. M. Kissman, D. W. Farnsworth, and B. Witkop, Am. Soc. 74, 3948 (1952); from hydrazones s. J. Org. Chem. 19, 1824 (1954).

Phosphorus oxychloride $POCl_3$ **Aldehyde synthesis** $H \rightarrow CHO$ **with dimethylformamide**

871.

$POCl_3$ added dropwise with stirring and cooling to dimethylformamide, then technical dimethylaniline added dropwise with stirring, and heated 2 hrs. with stirring on a steam bath → p-dimethylaminobenzaldehyde. Y: 70.5%.—Dimethylformamide gives somewhat lower yields than N-methylformanilide but has the advantage of being inexpensive. F. e. s. E. Campagne and W. L. Archer, Am. Soc. 75, 989 (1953); s. a. Org. Synth. 33, 27 (1953); F. T. Tyson and J. T. Shaw, Am. Soc. 74, 2273 (1952); W. E. Parham and V. J. Traynelis, Am. Soc. 76, 4960 (1954).

**Synthesis of ketones
from carboxylic acid amides**

 $H \rightarrow COR$

872.

A mixture of julolidine, benzanilide, and POCl₃ heated 1 hr. at 120°, then boiled a short time with concd. HCl → 9-benzoyl julolidine. Y: 70%.—Friedel-Crafts synthesis was not successful. F. e. s. P. A. S. Smith and Tung-Yin Yu, J. Org. Chem. 17, 1281 (1952).

*Hydrochloric acid**HCl*

Fischer-Zerweck aldehyde synthesis

 $H \rightarrow CHO$

873.

A slow current of HCl passed for 2 hrs. with ice-salt cooling and frequent shaking into a soln. of ethyl 4-carbethoxymethyl-2-methylpyrrole-5-carboxylate in dry ether-chloroform-HCN, HCl passed in at an increased rate, while crystals separate and for 2 hrs. thereafter, the aldimine hydrochloride filtered off, washed with ether, dried in vacuo, dissolved in ice-water, quickly filtered, and the pH brought to 4 → 5-carbethoxy-4-carbethoxymethyl-2-methylpyrrole-3-aldehyde. Y: 97%. S. F. MacDonald, Soc. 1952, 4184.

Halogen ↑

CC \ddagger Hal*Without additional reagents**w.a.r.*

1,1,2,2-Tetraarylethanes

 $Ar_2CHCHAr_2$

874.

2 g. α,α,β -trichloroethyl phenyl ether and 3.8 g. o-cresol allowed to react at 50° for 3 hrs. → 3 g. 1,1,2,2-tetrakis-(3-methyl-4-hydroxy-

phenyl)ethane. E. Ziegler, W. Kaufmann, and N. Kreisel, M. 83, 1274 (1952).

**Synthesis of α,β -ethyleneketones
from carboxylic acid chlorides**

75.

A mixture of 1,1-diphenylethylene and benzoyl chloride heated 30 hrs. at 190-200° while dry N₂ is bubbled through → 1-benzoyl-2,2-diphenylethylene. Y: 46%.—The condensation could not be performed with satd. aliphatic acyl chlorides because of their thermal instability. F. e. s. F. Bergmann, S. Israelashvili, and D. Gottlieb. Soc. 1952, 2522.

**2-Acylamino-1,3-diols from carboxylic acids
via α -bromocarboxylic acid bromides,
 α -diazo- β -keto- γ -bromocarboxylic acid esters,
and α -amino- β -ketocarboxylic acid esters**

←

76.

Palmitic acid allowed to react with dry red P and Br → crude α -bromo-palmitoyl bromide (Y: 96.5%) added at 15-18° with vigorous stirring during 3.5-4 hrs. to crude ethyl diazoacetate, stirring continued 3 hrs. at 20°, allowed to stand overnight at the same temp., then warmed at 30-35° with stirring until N₂-evolution ceases → crude ethyl DL-2-diazo-3-oxo-4-bromostearate (Y: 72.8%) hydrogenated with prehydrogenated Pd-on-carbon in alcohol containing HCl → crude ethyl DL-2-amino-3-oxostearate hydrochloride shaken 5 hrs. with acetic anhydride and Ag-acetate in methanol at room temp. in the dark → ethyl DL-2-acetamino-3-oxostearate dissolved in abs. tetrahydrofuran, added dropwise with vigorous stirring at 20-30° during 15 min. to a soln. containing NaBH₄ and LiI in tetrahydrofuran, stirring continued 5 hrs. at 20°, then allowed to stand overnight → mixture of racemates of 2-acetaminooctadecane-1,3-diols (Y: 89%). Over-all Y: 26%. I. Sallay, F. Dutka, and G. Fodor, Helv. 37, 778 (1954); reduction with NaBH₄/LiI s. a. J. Kollontitsch, O. Fuchs, and V. Gábor, Nature 173, 125 (1954).

**α -Diazoketones from carboxylic acids
via carboxylic acid chlorides**

COOH → COCHN₂

877.

Abs. benzene poured over 3-keto-4-eticenic acid, then oxalyl chloride added at 0° under anhydrous conditions, kept 20 min. at 20° with occasional swirling until dissolved, then an additional 20 min. at the same temp., evaporated in vacuo, dissolved in benzene, added at -10° to ethereal diazomethane (prep. s. original), and allowed to stand 1 hr. at 20° → 21-diazoprogesterone. Y: 75%.—Neither use of the Na-salt of the acid, nor addition of pyridine (cf. Synth. Meth. 7, 583) was advantageous for the preparation of the acid chloride. F. e. s. F. Reber, A. Lardon, and T. Reichstein, Helv. 37, 45 (1954).

Arndt-Eistert synthesis

COOH → CH₂COOR

s. 2, 771; 1, 190; with α -aminoacids s. K. Balenović and D. Dvornik. Soc. 1954, 2976

Lithium

Li

**Synthesis of hydrocarbons from halides
Inverse addition of organometallic reagents**

RHal + HalR' → R·R'

p-Methoxyphenyl-Li, prepared from p-methoxyphenyl bromide and Li in ether under N₂, added dropwise to a vigorously stirred ethereal soln. of 3-bromocyclohexene, and refluxing continued for 2 hrs. → 3-(p-methoxyphenyl)cyclohexene. Y: 71%.—Inverse addition of the organometallic compound gives better yields, an effect particularly marked with Grignard reagents. F. e. s. W. R. Biggerstaff, A. P. Mendiff, and I. Yokoyama, J. Org. Chem. 19, 934 (1954).

Sodium/potassium isopropoxide

Na/KOR

Synthesis of hydrocarbons

RHal + HR' → R·R'

K-isopropoxide added to Na-sand in sulfur-free toluene, then n-amyl chloride added dropwise with vigorous stirring and cooling at 20°, and stirring continued for 45 min. → n-hexylbenzene. Y: 76%. F. additional reagents s. A. A. Morton and A. E. Brachman, Am. Soc. 73, 4363 (1951); 76, 2980 (1954).

Sodium hydride

NaH

**Synthesis of hydrocarbons
via 1,1-disulfones**

Molar equivalents of Na-bis(ethylsulfonyl)methane and isoamyl bromide thoroughly mixed in dimethylformamide, and stirring continued at 80-90° for 1 hr. → 1,1-bis(ethylsulfonyl)-4-methylpentane (startg. m. f. 767) (Y: 85%) added to an ice-cooled suspension of NaH in dimethylformamide, the ice bath removed after 5 min., stirred 2-3 hrs., isoamyl bromide added, and stirring continued at 90-95° for 18 hrs. → 5,5-bis(ethylsulfonyl)-2,8-dimethylnonane (Y: 72%) heated 36 hrs. with Raney-Ni in cyclohexane at 250° and 2500 p. s. i. H₂ → 2,8-dimethylnonane (Y: 78%). F. e., also without isolation of the monoalkylated bis(ethylsulfonyl)methane, and partial desulfuration, s. M. W. Cronyn, Am. Soc. 74, 1225 (1952); J. Org. Chem. 19, 139 (1954); hydrogenation cf. Synth. Meth. 9, 378.

**Synthesis of ketones
from carboxylic acid chlorides
with t-butyl malonates
Alkylation of malonic acid esters
Blocking of carboxyl groups**

A soln. of benzyl chloride in dry t-butyl alcohol added to a soln. of di-t-butyl sodiomalonate prepared from di-t-butyl malonate and NaH in t-butyl alcohol, and stirred 1.5 hrs. at ca. 65° → di-t-butyl benzylmalonate (Y: 80%) dissolved in dry benzene, treated with NaH, gently stirred and heated ca. 2.5 hrs. at ca. 80° until gas evolution ceases, a soln. of benzoyl chloride in benzene added, heating and stirring continued for 1 hr., cooled to room temp., excess NaH destroyed by the addition of anhydrous p-toluenesulfonic acid, filtered, washed with benzene, benzene evaporated, and the residue refluxed 1 hr. with an-

hydrous p-toluenesulfonic acid in glacial acetic acid containing ca. 2% acetic anhydride → phenyl β -phenylethyl ketone (Y: 80%). F. e. s. G. S. Fonken and W. S. Johnson, Am. Soc. 74, 831 (1952).

Synthesis of α -aminocarboxylic acids

s. 8, 841; s. a. Am. Soc. 76, 3484 (1954)

Potassium hydroxide

KOH

s. Potassium iodide/potassium hydroxide

and copper/potassium hydroxide

Sodium/alcohol

NaOR

Simultaneous C- and O-methylation

882.

A soln. of 0.5 g. 5,7-dihydroxy-2-methylchromone in methanol and methyl iodide containing Na refluxed 12 hrs. → 0.4 g. 5-hydroxy-7-methoxy-2,6-dimethylchromone. W. B. Whalley, Am. Soc. 74, 5795 (1952).

Synthesis of dicarboxylic acid esters from cyclic β -ketocarboxylic acid esters Hydrolytic ring opening of isocyclics

C

883.

47.5 g. methyl 2-ketocyclopentanecarboxylate added rapidly to a soln. of Na in anhydrous methanol, stirred for a few min., 60.5 g. methyl 4-bromobutyrate added, refluxed 3 hrs., and allowed to stand overnight → 56 g. trimethyl δ -carboxyazelate (Y: 70%) and 19 g. methyl adipate. J. F. Tinker, Am. Soc. 73, 4493 (1951).

Sodium compound

Synthesis of hydrocarbons via 1,1-disulfones

s. 9, 880

Potassium isobutoxide

KOR

**Cycloalkanecarboxylic acids
by malonic acid synthesis**

Ethyl malonate followed by 1,3-diido-2,2-dimethylpropane (prepn. s. Synth. Meth. 8, 616) added to a soln. of K in anhydrous isobutanol, refluxed with stirring for 100 hrs., aq.-alc. (1:1) KOH added, refluxing continued for 8 hrs., and the isolated crude 3,3-dimethylcyclobutane-1,1-dicarboxylic acid decarboxylated at 180° for 1 hr. → 3,3-dimethylcyclobutanecarboxylic acid. Y: 73%; average for 4 runs, 61%.—Substitution of tert-butanol for isobutanol reduced the yield to 11%. A. Campbell and H. N. Rydon, Soc. 1953, 3002; cf. V. P. Gol'mov, Ж. 23, 1162 (1953); C. A. 47, 12255e; H. Pommer, A. 579, 47 (1953); with dibromides cf. S. F. Birch, R. A. Dean, and E. V. Whitehead, J. Org. Chem. 19, 1449 (1954).

*Potassium tert-butoxide***Alkylation of** **β -ketocarboxylic acid esters**

s. 3, 677/8; s. a. H. Plieninger and C. E. Castro, B. 87, 1760 (1954)

Potassium isopropoxide/sodium

KOR/Na

*s. Sodium/potassium isopropoxide**Butyllithium* $\text{C}_4\text{H}_9\text{Li}$ **Synthesis of hydrocarbons from halides****Metalation of thiophenes**

85.

Thiophene allowed to react with n-butyll-Li in ether under N_2 , then α -chloromethylthiophene added slowly to the cooled soln., and refluxed

40 hrs. until the test of organo-Li compounds is negative → 2,2'-methylenedithiophene. Y: 66%. N. Löfgren and C. Tegner, Acta Chem. Scand. 6, 1020 (1952).

Syntheses with lithium alkenyls

α,β-Acetylenecarboxylic acids from α,β-ethylenehalides. A soln. of butyl-Li in ether added at -35° over a period of 4.5 min. to a mixture of *cis*- and *trans*-ω-bromostyrene dissolved in ether, after an additional 1.5 min. poured onto Dry Ice, and the product isolated as the anilinium salt → anilinium phenylpropiolate. Y: 45%. F. syntheses without dehydrohalogenation s. D. Y. Curtin and E. E. Harris, Am. Soc. 73, 4519 (1951). *trans* and *cis* ethylene derivatives with Li cf. A. S. Dreiding and R. J. Pratt, Am. Soc. 76, 1902 (1954).

Phenyllithium

C_6H_5Li

Synthesis of hydrocarbons from halides Metalation

$RHal + HR' \rightarrow \cdot RR'$

887.

6.0 g. 2,2'-dipyridylmethane added slowly at 0° to ethereal phenyl-Li (from bromobenzene and Li), after stirring for 30 min. ethyl bromide in ether added, and stirred 6 hrs. at room temp. → 5.9 g. 1,1-di-2-pyridyl-propane. F. e. s. E. Leete and L. Marion, Can. J. Chem. 30, 563 (1952); 4-alkylpyridines s. J. P. Wibaut and J. W. Hey, R. 72, 513 (1953).

Alkylation of Reissert compounds

$H \rightarrow R$

s. 9, 581

Dimerization of halides Isocyclics from halides

s. 9, 966

Sodium amide

 $NaNH_2$

**Synthesis of acetylene derivatives
from halides**

←

8.

Na (> 2 moles) converted into a suspension of Na-acetylidyne in liq. NH_3 in the presence of a little $Fe(NO_3)_3$, then treated dropwise with stirring during 1.5 hrs. with 5-o-methoxyphenoxypentyl bromide (prep. s. 312) in twice its bulk of dry ether, more ether added to replace the liq. NH_3 lost by evaporation, allowed to warm to room temp. overnight, finally gently refluxed 1.5 hrs. on a steam bath \rightarrow 7-o-methoxyphenoxyhept-1-yne (Y: 93% based on startg. m. consumed) in twice its bulk of dry ether added during 1 hr. to $NaNH_2$ prepared from Na in liq. NH_3 , with stirring, which is continued for a further hr., then 5-o-methoxyphenoxypentyl bromide in twice its volume of ether run in during 30 min., stirred overnight, and refluxed 4 hrs. \rightarrow 1,12-di-o-methoxyphenoxydodec-6-yne (Y: ca. 100%).—In general, it is advantageous to use 2-2.2 times the calculated amount of $NaNH_2$, whereby the product is obtained purer and in better yield. F. e. s. A. W. Nineham, Soc. 1953, 2601.

Alkylation

of ketones

 $COCH \rightarrow COCR$

s. 1, 655; s. a. K. E. Hamlin and M. Freifelder, Am. Soc. 75, 369 (1953)

of nitriles

 $CHCN \rightarrow CRCN$

s. 1, 656; 3, 680; 4, 774; s. a. N. Sperber and R. Fricano, Am. Soc. 75, 2986 (1953); F. B. Tutwiler, R. G. Child, and S. N. Wrenn, J. Org. Chem. 19, 910 (1954)

α -Side chain alkylation of pyridines

s. 8, 851; s. a. H. L. Lochte and E. N. Wheeler, Am. Soc. 76, 5548 (1954)

*Potassium amide*KNH₂**Polymethylenebipyridines**

4-Picoline added with stirring at -80° to liq. NH₃ containing KNH₂, stirring continued for 10 min., trimethylene dibromide in ether slowly added, and stirred for 3 more hrs. at -80° → 4,4'-pentamethylenebipyridine. Y: 64%. F. e. s. L. M. Jampolsky et al., Am. Soc. 74, 5222 (1952).

**Selective alkylation of ketones
via α -alkoxymethyleneketones**

s. 4, 775; s. a. V. Sýkora et al., Collection Czechoslov. Chem. Communs. 19, 566 (1954)

*Potassium carbonate*K₂CO₃

**Alkylation of
 α -cyanocarboxylic acid esters**

s. 6, 802; s. a. P. E. Gagnon, G. Nadeau, and R. Côté, Can. J. Chem. 30, 592 (1952)

Sodium cyanide

NaCN

Replacement of halogen by cyano groups

Hal → CN

890. n-Butyl bromide stirred and refluxed 1 hr. with NaCN in *ethylene glycol* → valeronitrile. Y: 90%. F. e., also from sec. and tert. halides, s. R. N. Lewis and P. V. Susi, Am. Soc. 74, 840 (1952).

s. 3, 682; s. a. E. B. Reid and T. E. Gumpf, J. Org. Chem. 18, 661 (1953)

Potassium cyanide

KCN

**Carboxylic acids from halides
Labeled compounds**

Hal → COOH

891. R·Br → [R·C¹³N] → R·C¹³OOH

1-Bromo-8,9-dihydroxyheptadecane and KC¹³N refluxed 48 hrs. in ethanol-water (10:1), KOH added, and refluxing continued for a further 48 hrs. → dihydroxystearic acid-1-C¹³. Y: 85%. S. Bergström, K. Pääbo, and M. Rottenberg, Acta Chem. Scand. 6, 1127 (1952).

Sodium iodide/sodium compound

Synthesis of γ -diketones

from β -ketocarboxylic acid esters
via β,γ' -diketocarboxylic acid esters

Furans from β -diketones

Sodioacetoacetic ester and a little NaI dissolved at 60-70° in dry acetone, chloroacetone added dropwise with stirring during 20 min., refluxing and stirring continued for 1 hr., acetone distilled off,

and the product isolated → crude α -acetonyl-acetoacetic ester (Y: 89%) refluxed 75 min. with finely powdered crystalline oxalic acid, and the resulting ester hydrolyzed by refluxing 45 min. with methanolic KOH → 2,5-dimethylfuran-3-carboxylic acid (Y: 91%).—Ring closure occurs also during distillation of α -acetonylacetoacetic ester.

and the resulting mixture of α -acetonylacetoacetic ester and NaCl refluxed 1 hr. with aq. 3%-KOH → acetonylacetone (Y: 65-70%).

O. Dann, H. Distler, and H. Merkel, B. 85, 457 (1952).

Potassium iodide/potassium hydroxide and copper/potassium hydroxide

KI/KOH and Cu/KOH

Alkylation of β -diketones

CO·CH·CO → CO·CR·CO

Allyl bromide and Cu-powder added to a soln. of dihydroresorcinol in aq. 20%-KOH, and stirred 5 hrs. at room temp. → 2-allyl-1,3-cyclohexanedione. Y: 75%. F. e., also from chlorides in the presence of KI. s. H. Stetter et al., B. 85, 1061 (1952); 87, 1331, 1617 (1954).

*Choline***Ethylene derivatives from halides
by dimerization**

894.

A 50% soln. of choline in methanol added to a soln. of 2,7-dimethyl-9-bromofluorene in acetone, and the product isolated after 30 min. → 2,2',7,7'-tetramethyl-4,9,9'-bifluorene. Y: 75.5%. F. e. s. E. D. Bergmann et al., Bl. 1952, 78.

*Triethylamine***Penicilline ring system**

895.

Succinimidioacetyl chloride in methylene chloride added to a soln. of 2-phenyl-2-thiazoline in methylene chloride, stirred rapidly and a dil. soln. of triethylamine in methylene chloride added over a 6 hr. period through a high-dilution cycle (s. Am. Soc. 73, 4367 (1951)) → 2-phenyl- α -succinimidio-2-thiazolidineacetic acid β -lactam. Crude Y: 56%; pure Y: 30%. F. e. s. J. C. Sheehan et al., Am. Soc. 73, 4376, 4752, 4756 (1951).

*Pyridine***Isoflavones**

896.

Ethoxalyl chloride added at 0° with shaking to a soln. of 2-methoxybenzyl 2,4,6-trihydroxyphenyl ketone in pyridine, and the product isolated after 24 hrs. → 2-carbethoxy-5,7-dihydroxy-2'-methoxyisoflavone. Y: 84%. (Soc. 1953, 1860.)—This method is particularly suited for the preparation of polyhydroxy- and partly alkoxylated hydroxyisoflavones (Soc. 1953, 1852). W. Baker et al., Soc. 1953, 1860; f. e. s. Soc. 1953, 1852.

*Copper**Cu***Diaryls from aryl halides
by dimerization** $2 \text{ArHal} \rightarrow \text{Ar}\cdot\text{Ar}$

97. cf. Synth. Meth. 1, 660-2.

Dimethylformamide is a good solvent for this reaction. It offers, however, no advantage with those halides which are inert under the usual conditions. E. s. N. Kornblum and D. L. Kendall. Am. Soc. 74, 5782 (1952).

*Cuprous cyanide**CuCN***Nitriles from halides** $\text{Hal} \rightarrow \text{CN}$ s. 2, 728; also with $\text{Zn}(\text{CN})_2$ s. G. Lock and V. Rieger, B. 86, 74 (1953)

98.

Rosenmund-von Braun nitrile synthesis. A mixture of 0.39 mole 1-methyl-8-chloro-1,2,3,4-tetrahydronaphthalene (prepn. s. 117), 0.44 mole dry CuCN, acetonitrile, and pyridine heated 33 hrs. at 240-250° with shaking → 1-methyl-8-cyano-1,2,3,4-tetrahydronaphthalene. Y: 81%. F. e. s. J. Cason and D. D. Phillips, J. Org. Chem. 17, 298 (1952); in boiling quinoline s. J. H. Burckhalter et al., Am. Soc. 76, 4112 (1954).

Carboxylic acids from halides $\text{Hal} \rightarrow \text{COOH}$

s. 8, 856; furan derivatives s. O. Moldenhauer, G. Trautmann, and R. Pfluger, A. 580, 188 (1953)

 α,β -Ethylenenitriles $\text{C:CH} \rightarrow \text{C:C}(\text{CN})$ **from ethylene derivatives****via 1,2-dibromides and α -bromonitriles**

99.

Br added at -50° to an ethereal soln. of 2-methoxymethyl-2,3-dihydropyran, then dry powdered CuCN added, refluxed 4 hrs., cooled, extracted with ether, finally piperidine added, and refluxed 2 hrs. → 2-methoxymethyl-6-cyano-2,3-dihydropyran. Y: 60%. R. Paul and S. Tchelitchew, Bl. 1952, 808.

Silver perchlorate AgClO_4 **Ketones from carboxylic acid chlorides** $\text{COCl} \rightarrow \text{COR}$

s. 7, 838; s. a. Soc. 1953, 827

Magnesium Mg **Replacement of alkoxy by alkyl** $\text{OR} \rightarrow \text{R}'$

s. 5, 596; partial replacement s. Am. Soc. 74, 1624 (1952)

Synthesis of hydrocarbons from halides $\text{RHal} + \text{HalR}' \rightarrow \text{R} \cdot \text{R}'$

Ethylenesilanes. An ethereal soln. of allyl bromide added to the Grignard reagent from α -bromobenzyltrimethylsilane in ether, and refluxed 4.5 hrs. \rightarrow 4-trimethylsilyl-4-phenyl-1-butene. Y: 74%. F. e. s. C. R. Hauser and C. R. Hance, Am. Soc. 74, 5091 (1952).

3-Pyridyl compounds. Allyl bromide added with cooling to an ethereal soln. of 3-pyridyl-MgBr, prepared from 3-bromopyridine and Mg by the entrainment method with the use of ethyl bromide as activator, allowed to stand 12 hrs., then heated for another hr. \rightarrow 3-(3-pyridyl)propene. Y: 79%. F. e. s. J. P. Wibaut and H. G. P. van der Voort, R. 71, 798 (1952); methyl iodide as activator s. P. Cagniant, Bl. 1953, 62.

**Selective replacement
of chlorine**

s. 6, 806; s. a. O. Riobè, C. r. 236, 2073 (1953)

**Inverse addition
of organometallic reagents**

s. 9, 878

**Synthesis of hydrocarbons from halides
and acoxy compounds** $\text{RHal} + \text{AcOR}' \rightarrow \text{R} \cdot \text{R}'$

s. 4, 781; also hydrogenolysis s. R. C. Fuson et al., Am. Soc. 76, 499 (1954)

Sec. alcohols from carboxylic acid esters

s. 7, 841; use of isopropyl-MgBr as reducing agent s. O. R. Pierce, J. C. Siegle, and E. T. McBee, Am. Soc. 75, 6324 (1953)

Synthesis of ethers from acetals

02.

N-(Di-n-butyl)aminoacetaldehyde diethylacetal added to ethereal phenyl-MgBr, heated with stirring while most of the ether is removed by distillation, xylene added, distillation continued until the temp. of the reaction mixture reaches 135-140°, then refluxed 4 hrs. with stirring → (β -phenyl- β -ethoxyethyl)di-n-butylamine. Y: 80%.—This method has serious limitations as to yield and purity of product. F. e. s. I. A. Kaye and I. C. Kogon, Am. Soc. 73, 4893 (1951).

Aldehydes from halides**via acetals****Synthesis with addition of 1 C-atom**

03.

A mixture of 3-bromopyridine and ethyl bromide as activator allowed to react with Mg, the ether replaced by benzene, then ethyl orthoformate added, refluxed 1 hr., then allowed to stand 12 hrs. → nicotinaldehyde diethyl acetal (Y: 50-58%) refluxed 2 hrs. with 10%-HCl under N₂, allowed to stand 12 hrs. at room temp. under N₂, made alkaline with concd. aq. NaOH, and extracted with chloroform → nicotinaldehyde (Y: 82-86%). Over-all Y: 42-49%. F. e., also n-butyl bromide as activator (R. 71, 798), s. J. P. Wibaut, R. Huls, and H. G. P. van der Voort, R. 71, 1021, 798 (1952).

Magnesium/alcohol**C-Acylation**

04.

Mg allowed to react at room temp. with abs. ethanol, the reaction being initiated by addition of a little CCl₄, dry ether added when the reaction subsides, stirred 2-3 hrs. until the reaction stops, acetoacetic ester in dry ether added slowly with ice-cooling and vigorous stirring, then phenacyl chloride added dropwise with ice-salt cooling and vigorous stirring, which is continued for 1 hr. at room temp., then allowed to stand overnight → α -phenacylacetoacetic ester. Y: 85%. F. e. s. M. Viscontini et al., Helv. 35, 2280 (1952); 37, 41 (1954).

Zinc/acetic anhydride

 $Zn/(CH_3CO)_2O$ **Dimerization of halides** $2 RHal \rightarrow R \cdot R$

905.

A mixture of n-perfluoropropyl iodide, granular Zn, acetic anhydride, and methylene chloride refluxed 24 hrs. at 40-45° → n-perfluorohexane. Y: 77%; conversion: 74%. F. e. s. A. L. Henne et al., Am. Soc. 75, 5750 (1953).

Alkylmagnesium halide $RMgHal$ **Synthesis of hydrocarbons from halides** $RH + HalR' \rightarrow R \cdot R'$

906.

Indole in benzene added slowly with stirring to 20% excess ethereal ethyl-MgBr, stirring continued for 20 min., allyl bromide in benzene added slowly, and stirred overnight at 20° → 3-allylindole. Y: 70%. J. B. Brown, H. B. Henbest, and E. R. H. Jones, Soc. 1952, 3172.

Cadmium chloride $CdCl_2$ **Ketones from carboxylic acid chlorides** $COCl \rightarrow COR$

s. 3, 694; s. a. M. Renson and R. Huls, Bl. Soc. chim. Belg. 61, 599 (1952)

**Diketodicarboxylic acid esters
from dihalides**

907.

10% excess anhydrous CdCl₂ added with rapid stirring to a cooled Grignard reagent prepared from 1,10-dibromodecane and Mg in anhydrous ether under N₂ in the presence of a small crystal of iodine, the ice bath removed after 5 min., allowed to warm to room temp. during 10 min., refluxed 45 min. on a steam bath, the ether replaced by benzene, refluxed several min., transferred during 15 min. by means of low pressure N₂ to a rapidly stirred and refluxing soln. of ethyl ω-(chloroformyl)valerate in benzene, refluxed 2 hrs. with stirring, and allowed to stand overnight → diethyl 6,17-diketodocosane-1,22-dioate. Y: 39.1%. F. e. with lower yields s. A. Kreuchunas, Am. Soc. 75, 3339 (1953).

Aluminum chloride

 $AlCl_3$

Friedel-Crafts ketone syntheses

 $RH \rightarrow RCOR'$

908.

3-Methylfilicinic acid and $AlCl_3$ covered with a layer of CS_2 , then nitrobenzene added dropwise, refluxed 15 min., acetyl chloride added, and refluxing continued for 1 hr. \rightarrow 5-acetyl-3-methylfilicinic acid. Y: 64%. W. Riedl and K. H. Risso, B. 87, 865 (1954); method s. A. 585, 38 (1954).

 α,β -Ethyleneketones

s. 6, 814; vinyl ketones s. M. W. Bullock et al., Am. Soc. 76, 1828 (1954); Q. F. Soper et al., Am. Soc. 76, 4109 (1954)

909.

Ketothioethers

Acetyl chloride added at 0-10° to a well stirred slurry of anhydrous $AlCl_3$ and dry chloroform, then methyl phenyl sulfide added dropwise at 0-5°, the cooling bath removed, stirring continued and the reaction mixture allowed to warm to 20° \rightarrow p-methylmercaptoacetophenone. Y: 98%. F. e. s. R. A. Cutler, R. J. Stenger, and C. M. Suter, Am. Soc. 74, 5475 (1952).

Improved Zincke-Suhl synthesis
of cyclohexadienones

←

Synthesis of ketones from 1,1,1-trichlorides

910.

A soln. of p-cresol in CS_2 added dropwise during 10-15 min. to a stirred suspension of $AlCl_3$ in CS_2 , then CCl_4 added in one portion, and warmed 2 hrs. at 45° \rightarrow 4-methyl-4-trichloromethyl-2,5-cyclohexadienone. Y: 60.3%. (J. Org. Chem. 19, 978.)—Similarly with phenol and benzotrichloride at 0° \rightarrow p-hydroxybenzophenone. Y: 90.2%. (J. Org. Chem. 19, 985.) F. e. s. M. S. Newman and A. G. Pinkus, J. Org. Chem. 19, 978, 985, and f. papers of this series.

This mild method can be applied to compounds with base sensitive groups. F. e. s. G. Stork, R. Terrell, and J. Szmuszkowicz. Am. Soc. 76, 2029 (1954).

Sulfur \dagger

CC \ddagger S

Zinc chloride/acetic anhydride

ZnCl₂/(CH₃CO)₂O

**Alkylthiomethylene compounds
from orthotrichioformic acid esters**

C:CHSR

A mixture of triethyl orthotrichioformate, diethyl malonate, acetic anhydride, and anhydrous ZnCl₂ refluxed 10 hrs. at 130-140° → diethyl ethylmercaptomethylenemalonate. Y: 49%. K.-D. Gundermann, A. 578, 48 (1952).

Carbon \dagger

CC \ddagger C

Electrolysis

Kolbe synthesis

RCOOH + HOOCR' → R·R'

s. 1, 715; s. a. D. G. Bounds, R. P. Linstead, and B. C. L. Weedon, Soc. 1953, 2393; use of different monoesters of two dicarboxylic acids s. L. Dolejš and L. Novotný, Collection Czechoslov. Chem. Communs. 19, 716 (1954)

Sodium compound

Robinson cyclohexenone ring synthesis

s. 1, 606; cf. A. V. Logan et al., Am. Soc. 76, 4127 (1945)

Pyridine

C₅H₅N

**Ketones, also sym.,
from carboxylic acid anhydrides
Selfcondensation of carboxylic acid
anhydrides
Decarboxylative acylation**

A mixture of phenylacetic acid, acetic anhydride, and pyridine refluxed 6 hrs. → phenylacetone. Y: 56%. F. e., also self-condensation of anhydrides to sym. diarylacetones, s. J. A. King and F. H. McMillan, Am. Soc. 73, 4911 (1951).

Silver salt Ag^+

**Hydrocarbons from carboxylic acids
by dimerization**

s. 8, 873; s. a. R. N. Haszeldine and K. Leedham, Soc. 1953, 1548

Magnesium oxide MgO

**Sym. ketones
from 2 carboxylic acid molecules**

 $2 \text{RCOOH} \rightarrow \text{RCOR}$

915.

A mixture of stearic acid and MgO heated in a Wood's metal bath at 335-340°, after 1 hr. more stearic acid added in portions during 6 hrs., and heating continued until the total reaction time is 10 hrs. → stearone. Y: 81-87%.—This is a general method for the preparation of higher aliphatic ketones. A. G. Dobson and H. H. Hatt, Org. Synth. 33, 84 (1953).

Aluminum chloride AlCl_3

**Synthesis of lactones
from halogenhydrins
via oxido compounds**

916.

A soln. of malonic ester in abs. chloroform added slowly to AlCl_3 , then ethylene oxide, generated by dropping ethylene chlorohydrin on powdered NaOH under abs. toluene, passed into the stirred mixture at such a rate as to maintain refluxing, acidified with 5 N HCl, and refluxed 5 hrs. → γ -butyrolactone. Y: ca. 100% based on ethylene chlorohydrin consumed. C. Raha, Am. Soc. 75, 4098 (1953).

Thorium oxide ThO_2 **Ketones from 2 carboxylic acid molecules**

s. 4, 803; s. a. G. Weitzel and J. Wojahn, H. 287, 296 (1951)

*Via intermediates**v.i.*

**Sym. ketones from carboxylic acid chlorides
via ketene dimers**

 $2 \text{RCOCl} \rightarrow \text{RCOR}$ s. 7, 862; sym. keto- α,ω -dicarboxylic acids s. A. T. Blomquist et al., Am. Soc. 74, 4203 (1952)

Acetylenedicarboxylic acid esters synthesis**Alder-Rickert synthesis****Valence tautomerism**

17.

1,3,5-Cyclooctatriene regenerated from the Ag-nitrate complex with aq. NH_3 , taken up in benzene, dried over silica gel, added to dimethyl acetylenedicarboxylate, and warmed 24 hrs. at 60° under N_2 → adduct (Y: 77%) heated 20 min. under N_2 $200^\circ/100$ mm. → cyclobutene (Y: 95%) and dimethyl phthalate.—1,3,5-Cyclooctatriene is in mobile equilibrium with bicyclo[4.2.0]octa-2,4-diene. A. C. Cope et al., Am. Soc. 74, 4867 (1952).

Elimination**Hydrogen \uparrow** **CC \uparrow H***Calcined magnesite* MgO **α,β -Ethylenearenes
by dehydrogenation** $\text{CHCH} \rightarrow \text{C:C}$

18. Ethylnaphthalene (ca. 50:50 mixture of α - and β -isomers) passed at $600^\circ/100$ mm over calcined magnesite for 3 hrs. with a contact time of 1 sec. → vinylnaphthalene. Y per pass: 44.7%; ultimate Y: 90.3%.—In general, the yield is benefited by low temp., low pressure, short contact time, and high ratio of diluent to startg. m. in the feed stock. Steam is superior to benzene as diluent because of the greater ease of final separation. F. catalysts s. J. E. Nickels and B. B. Corson, Ind. Eng. Chem. 43, 1685 (1951).

Zinc oxide-alumina-calcium oxide $\text{ZnO}, \text{Al}_2\text{O}_3, \text{CaO}$ **Dehydrogenation
in the vapor phase**

19.

A mixture of acenaphthene and steam as diluent passed at ca. $600-650^\circ$ through a $\text{ZnO}, \text{Al}_2\text{O}_3, \text{CaO}$ -catalyst → acenaphthylene. Y: 90%; purity

up to 98%. M. Kaufman and A. F. Williams, J. Applied Chem. 1, 489 (1951).

Quinones

Bianthrone from bianthronyls

920.

2,2'-Dimethylbianthronyl enolized by refluxing with anhydrous alc. KOH for 10 min., filtered, poured into a mixture of ice and concd. HCl, filtered, the residue dissolved in acetone, p-benzoquinone in acetone added, and kept 12 hrs. in the dark → 2,2'-dimethylbianthrone. Y: 90%. F. e. s. E. D. Bergmann and E. Loewenthal, Bl. 1952, 66; Soc. 1953, 2572.

Chloranil

Dehydrogenation

921. Of several quinones tested as dehydrogenation agents, chloranil seems to be the most suitable. N. Dost, R. 71, 857 (1952); s. a. J. Swidinsky, F. H. McMillan, and J. A. King, Am. Soc. 76, 1148 (1954).

Oxygen/potassium hydroxide

 O_2/KOH

to quinones

s. 3, 705; s. a. E. A. Braude, J. S. Fawcett, and A. A. Webb, Soc. 1954, 1049

Sulfur

S

Aromatization

s. 9, 923

Selenium dioxide

 SeO_2

Ene-1,4-diones from 1,4-diketones

922.

7,11-Diketo-8α-ergost-22-en-3β-yl acetate refluxed 30 min. with SeO_2 in abs. alcohol → 7,11-diketoergosta-8,22-dien-3β-yl acetate. Y: excellent.—

Ready conversion requires a *cis*-relation for the eliminated H-atoms.
C. S. Barnes and D. H. R. Barton, Soc. 1953, 1419.

Bromine

Br

Stepwise aromatization Phenanthrene derivatives

23.

Br in a little acetic acid added to a soln. of dodecahydrophenanthrene-9,10-dicarboxylic acid anhydride in glacial acetic acid, allowed to stand 24 hrs., the precipitated product separated (Y: 56.3%), and a further quantity obtained by passing a vigorous N₂-stream through the boiling mother liquor for 16 hrs. to remove HBr → 1,2,3,4,5,6,7,8-octahydrophenanthrene-9,10-dicarboxylic acid anhydride (over-all Y: 78.3%) heated 20 min. with S at 300-330° in a metal bath → phenanthrene-9,10-dicarboxylic acid anhydride (Y: 77.6%). Over-all Y: 60%. P. Lambert and R. H. Martin, Bull. soc. chim. Belges 61, 513 (1952).

Dehydrogenation

of (o-di-N)-heterocyclics

s. 6, 835; pyrazoles s. W. E. Parham and W. R. Hasek, Am. Soc. 76, 799 (1954); pyridazones in acetic acid s. 7, 866; s. a. E. A. Steck, R. P. Brundage, and L. T. Fletcher, Am. Soc. 75, 1117 (1953)

Palladium-carbon

Pd-C

s. 9, 859, 931

Azulenes

s. 2, 612, 764; 9, 859; s. a. H. Pommer, A. 579, 47 (1953)

Palladium-carbon-magnesium oxide

Pd-C-MgO

24.

1,2,3,4,5,6-Hexahydroazulene passed at 320-330° through a catalyst of 5%-Pd-charcoal suspended on 40% MgO and 60% Norite, in a special apparatus (s. original) → azulene. Y: 32%. A. G. Anderson, Jr., J. A. Nelson, and J. J. Tazuma, Am. Soc. 75, 4980 (1953).

Palladium, platinum-carbon

Pd,Pt-C

925.

in the vapor phase. 2,7-Dimethyltetrahydronaphthalene allowed to react at 440° with a charcoal catalyst containing 0.5% each of Pd and Pt → 2,7-dimethylnaphthalene. Y: 86%. W. Baker, J. F. W. McOmie, and W. K. Warburton, Soc. 1952, 2991.

926.

A 2% soln. of decahydroazulene in decalin passed at ca. 380° through a Pyrex tube filled with a Pd-Pt-charcoal catalyst → azulene. Y: 24%.—The yield could be improved by the use of a large amount of *decalin* as carrier. W. Baker, W. K. Warburton, and L. J. Breddy, Soc. 1953, 4149.

Via intermediates

v.i.

β,γ-Ethylenebromides from hydrocarbons
Dehydration via bromides

927.

A soln. of

A mixture of

3α-acetoxy-11-keto-12-bromo-24,24-diphenyl-Δ²³-cholene

in allyl bromide stirred and gently refluxed while treated with 2.2 molar equivalents of N-bromosuccinimide, and the product isolated after 12 min. → 3α-acetoxy-11-keto-12,21-di-bromo-24,24-diphenyl-Δ^{20,22;23}-choladiene (startg. m. f. 699). Y: at least 70%.

and ca. 1 molar equivalent of N-bromosuccinimide in CCl₄ boiled 8 min. over a 500 Watt lamp, evaporated in vacuo, then boiled 10 min. in allyl bromide → 3α-acetoxy-11-keto-12-bromo-24,24-diphenyl-Δ^{20,22;23}-choladiene (400 mg. from 620 mg.).

J. Heer and A. Wettstein, Helv. 36, 891 (1953).

Dehydrogenation

CHCH → C:C

Bromine in CS_2 added dropwise at 0° during 1 min. to a soln. of 3,6-dihydrodibenzopentalene in CS_2 , a rapid stream of N_2 bubbled through the liquid until no more HBr is evolved, the solvent distilled off in vacuo, the residue dissolved in dry benzene, $\text{Ag}\text{-acetate}$ added, and the suspension refluxed 2 hrs. \rightarrow 1,2:4,5-dibenzopentalene. Y: 59%. C. T. Blood and R. P. Linstead, Soc. 1952, 2263.

Oxygen ↓

CC↑O

Without additional reagents

w.a.r.

Enolethers from acetalsCHC(OR)₂ → C:C(OR)

3.7 g. 5,8-dimethoxy-2-keto-1,2,3,4-tetrahydropthalene dimethyl ketal refluxed 2 hrs. in abs. xylene \rightarrow 3.4 g. 1,4,6-trimethoxy-7,8-dihydro-naphthalene. C. A. Grob and W. Jundt, Helv. 35, 2111 (1952).

Hydroxyindoles

○

A mixture of isopropylidene-3,4-dihydroxyaniline and dimethyl bromomalonate refluxed 4 hrs. in benzene \rightarrow dimethyl (isopropylidene-3,4-dihydroxyanilido)malonate (Y: 72%) added at $240\text{-}245^\circ$ during 10 min. to paraffin oil \rightarrow methyl isopropylidene-5,6-dihydroxyindoxyl-2-carboxylate (Y: 74%). R. W. Balsiger et al., Helv. 36, 708 (1953).

Phenanthrolines**EMME method**

s. 3, 715; s. a. A. R. Surrey and R. A. Cutler, Am. Soc. 76, 1109 (1954)

Sodium

Na

Acyloin condensation

s. 4, 816; s. a. A. T. Blomquist and Liang Huang Liu, Am. Soc. 75, 2153 (1953)

Paracyclophanes**Hydrogenation of benzene rings****Acyloin condensation****Hydrocarbons from acyloins****Dehydrogenation**

931.

p-Carbomethoxymethyl-p'-(β-carbomethoxyethyl)-1,5-diphenylpentane hydrogenated in acetic acid with PtO₂ at 25° and atmospheric pressure → p-carbomethoxymethyl-p'-(β-carbomethoxyethyl)-1,5-dicyclohexylpentane (Y: 88%) in xylene added during 12 hrs. to Na in xylene (apparatus with high speed stirrer, and high dilution technique s. Am. Soc. 73, 5691 (1951)), then heated an additional hr. → crude 2(3)-hydroxy-3(2)-keto-p,p'-pentamethylene-1,5-dicyclohexylpentane (Y: 62%) added along with concd. HCl and acetic acid to Zn-amalgam, refluxed 40 hrs. with addition of more concd. HCl at 12-hr. intervals and the crude product containing olefins hydrogenated with PtO₂ in acetic acid-ethyl acetate → diastereomeric mixture of p-p'-pentamethylene-1,5-dicyclohexylpentanes (Y: 76%) heated with 10%-Pd-on-charcoal at 240-320° for 1.5 hrs. → p,p'-pentamethylene-1,5-diphenylpentane (Y: 96%).—Ring closure can be achieved only when the benzene rings are hydrogenated. F. e. s. N. L. Allinger and D. J. Cram, Am. Soc. 76, 2362 (1954).

*Sodium hydride**NaH***Dieckmann condensation**

○

Cyclic β -diketones

s. 8, 885; s. a. H. Conroy, Am. Soc. 74, 3046 (1952)

*Potassium hydroxide**KOH***Partial dehydration** $\text{CH}_3\text{C}(\text{OH}) \rightarrow \text{C}:\text{C}$

s. 9, 239

Elimination reaction of esters

←

 **α,β -Ethylenecarboxylic acid esters
from β -acoxycarboxylic acid esters**

β -Acoxyesters can be dehydrated by alkali under conditions where the parent β -hydroxyesters do not give this reaction. The proportion of elimination to hydrolysis at the β -C atom increases with the strength of the acid of the β -acoxyl group. The proportion of elimination is also greater when the resulting unsatd. acid is highly conjugated.—E: Methyl β -nitroxybutyrate and KOH in doxane-water refluxed 2 hrs. → crotonic acid. Y: 80%. F. e. s. R. P. Linstead, L. N. Owen, and R. F. Webb. Soc. 1953, 1211; elimination reactions of esters s. a. the following papers of this series.

**Cycloalkenone ring from diketones
with simultaneous decarbalkoxylation**
Alkylation of β -ketocarboxylic acid esters
Ketones from acetylene derivatives

○

A mixture of Na-ethoxide soln. and ethyl 2-ketocyclohexane-1-carboxylate refluxed 30 min., propargyl bromide added to the boiling soln. during 1 hr., and heating continued for 2 hrs. → ethyl 2-keto-1-propargylcyclohexane-1-carboxylate (Y: 83%) dissolved in methanol, added slowly to a catalyst soln. prepared by warming together red HgO , FB_3 -ether complex, trichloroacetic acid, and methanol, and shaken 2

hrs. at room temp. after the exothermic reaction has ceased → ethyl 1-acetonyl-2-ketocyclohexane-1-carboxylate (Y: 75%) refluxed 6 hrs. with aq. 5% KOH under N₂, cooled, acidified with dil. H₂SO₄, extracted with ether, evaporated, and distilled → bicyclo[4.3.0]-6-nonene-8-one (Y: 73%). A. M. Islam and R. A. Raphael, Soc. 1952, 4086; ring closure s. a. Soc. 1953, 3718.

**Ethylene derivatives
from sulfonic acid esters**
Hydrolytic ring opening of isocyclics
s. 9, 772

Potassium hydroxide/alcohol

**Cyclohexenone ring from enollactones
via enollactols**

s. 8, 884; s. a. L. B. Barkley et al., Am. Soc. 76, 5014 (1954)

Potassium-tert-butoxide

Dieckmann cyclization

KOR

934.

A soln. of ethyl N-(δ -carbethoxybutyl)-1,2,3,4-tetrahydroisoquinoline-3-carboxylate in xylene added during 17 hrs. under N₂ with stirring at reflux temp. to K-tert-butoxide in xylene, with periodical removal of the alcohol formed, then poured into 6 N HCl, heated 12 hrs. with stirring on a steam bath until the FeCl₃-test is negative, the HCl-layer separated from the xylene layer and concentrated in vacuo → benzo[i]-6-keto-1-azabicyclo[5.4.0]hendecane. Y: 69%. F. e. s. N. J. Leonard et al., Am. Soc. 76, 3193 (1954); also high dilution apparatus s. Am. Soc. 74, 1704 (1952).

Sodium/liq. ammonia

Na/NH₃

Stereospecific acyloin condensation

—CH(OH)—CO—

935.

A soln. of dimethyl marrianolate methyl ether in dry ether added during 1.5 hrs. with efficient stirring under N₂ to a soln. of Na in liq.

NH_3 -ether, stirring continued as the flask is allowed to come slowly to room temp. in a slow N_2 -stream, and the product isolated after 4 hrs. \rightarrow 16-keto-17 β -estradiol-3-methyl ether. Y: 96%. J. C. Sheehan, R. A. Coderre, and P. A. Cruickshank, Am. Soc. 75, 6231 (1953).

Potassium carbonate

$K_2\text{CO}_3$

α, β -Ethyleneketones from β -hydroxyketones

$\text{CHC(OH)} \rightarrow \text{C:C}$

6.

3-Keto-5-hydroxysteroids are as β -hydroxyketones easily dehydrated in alkaline medium.—E: 40 mg. 3-keto-5-hydroxy-17 β -acetoxyandrostane allowed to stand 5 days at room temp. in methanol-water containing K-carbonate \rightarrow 20 mg. testosterone. F. e. s. S. A. Julia, P. A. Plattner, and H. Heusser, Helv. 35, 665 (1952).

Pyridine with P_2O_5 , PBr_3 , $POCl_3$, $SOCl_2$

C_5H_5N

s. under the latter reagents

Collidine

\leftarrow

Ethylene derivatives from tosylates

$\text{CHC(OTs)} \rightarrow \text{C:C}$

s. 2, 805; s. a. G. Rosenkranz, O. Mancera, and F. Sondheimer, Am. Soc. 76, 2227 (1954)

Cupric sulfate

$CuSO_4$

Dehydration of alcohols

$\text{CHC(OH)} \rightarrow \text{C:C}$

s. 8, 889; s. a. M. J. Schlatter, Am. Soc. 76, 4952 (1954)

Zinc

Zn

Isocyclics from ketones

\bigcirc

Elbs pyrolysis

7.

A mixture of 10-methyl-9-phenanthryl 9-phenanthryl ketone and Zn-powder heated 30 min. at 400-410° \rightarrow tetrabenz[a,c,h,j]anthracene (startg. m. f. 254). Y: 47%. P. Lambert and R. H. Martin, Bull. soc. chim. Belges 61, 124 (1952).

Methylmagnesium bromide CH_3MgBr **Ethylene derivatives from sulfonic acid esters**
Hydrolytic ring opening of isocyclics

s. 9, 772

←

Zinc chloride $ZnCl_2$ **N-Heterocyclics from**
hydroxycarboxylic acid amides

s. 9, 956

○

Lithium aluminum hydride $LiAlH_4$ **Indoles from oxindoles**

938.

A suspension of 5 g. 4-methoxy-1-methyloxindole in dry ether stirred and treated portionwise during 20 min. with $LiAlH_4$, and stirring continued for 20 min. → 3 g. 4-methoxy-1-methylindole and 0.5 g. startg. m. J. W. Cook, J. D. Loudon, and P. McCloskey, Soc. 1952, 3904.

Boric acid HBO_2 **Anthraquinone ring closure**

s. 5, 481; s. a. G. Wolf, Am. Soc. 75, 2673 (1953)

Alumina Al_2O_3 **Dehydration of alcohols** $CHC(OH) \rightarrow C:C$

s. 9, 981

Aluminum chloride $AlCl_3$ **Cyclodehydration****Isocyclics from ketones**

939.

3.1 moles $AlCl_3$ added to a soln. of 2-(2',5'-dimethylbenzyl)cyclohexanone in petroleum ether, and heated ca. 4 hrs. on a water bath with stirring until the HCl-evolution ceases → 1,4-dimethyl-5,6,7,8-tetrahydrofluorene. Y: 65%. F. e., with lower yields, s. J. Colonge and J. Sibeud, Bl. 1953, 75.

Aluminum chloride/sodium chloride

 $AlCl_3/NaCl$
Anthraquinones
Alkyl migration

40.

o-(2,5-Diethylbenzoyl)benzoic acid, $AlCl_3$, and $NaCl$ powdered together, then heated 2 hrs. at 160° \rightarrow 1,3-diethylanthraquinone. Y: 90%. F. e., also without migration, s. G. Baddeley, G. Holt, and S. M. Makar, Soc 1952, 2415.

Carbon

C

Ketenes from carboxylic acid anhydrides $(RCH_2CO)_2O \rightarrow 2 RCH:C=O$

41.

Propionic anhydride dropped at ca. 150° into a flask and the vapor passed through a quartz tube, having a thin carbon coating over the inner surface, at ca. $550^\circ/5$ mm. and a contact time of ca. 10^{-2} sec. \rightarrow methylketene. Conversion up to 90%. Y: 90%. A. D. Jenkins, Soc. 1952, 2563.

Piperidinium acetate

←

Cyclic α,β -ethylenaldehydes
from dialdehydes

○

42.

Piperidine acetate in benzene added with stirring under N_2 to a soln. of dialdehyde in benzene, and warmed 1 hr. at $60-70^\circ$ \rightarrow *exo*-1-formyl-4,7-epoxy-8,9-*cis*-dimethyl-4,5,6,7,8,9-hexahydroindene. Y: 75%. G. Stork et al., Am. Soc. 75, 384 (1953).

Acetic anhydride

 $(CH_3CO)_2O$
Ring closure with acetic anhydride

43.

cf. Synth. Meth. 2, 776/7

Anthrone were obtained directly instead of the expected anthranol acetates by J. Cason and D. D. Phillips, J. Org. Chem. 17, 298 (1952).

Acetic acid

 CH_3COOH

Partial dehydration

 $CHC(OH) \rightarrow C:C$

944.

A soln. of 3 g. methyl strophantidin-19-ate in glacial acetic acid heated 10 min. at an oil bath temp. of 125° \rightarrow 2.1 g. methyl 5-anhydrostrophantidin-19-ate. A. Stoll, A. von Wartburg, and J. Renz, Helv. 36, 1557 (1953).

Phenols by dehydration
with rearrangement

←

945.

2,5-Di-t-butyl-1,4-diphenyl-2,5-cyclohexadiene-1,4-diol refluxed 2 hrs. with glacial acetic acid \rightarrow 2,4-diphenyl-3,6-di-t-butylphenol. Y: ca. 100%. H. M. Crawford, M. Lumpkin, and M. McDonald, Am. Soc. 74, 4087 (1952).

Dienes from alkoxyethylene derivatives

←

s. 9, 950

Stannic chloride/phosphorus pentachloride
s. *Phosphorus pentachloride/stannic chloride*

 $SnCl_4/PCl_5$ *Phosphorus pentoxide* P_2O_5

3,4-Dihydroisoquinolines

○

s. 5, 621; s. a. A. R. Battersby, H. T. Openshaw, and H. C. S. Wood, Soc. 1953, 2463

Phosphorus pentoxide/pyridine

P₂O₅/C₅H₅N

Enolethers from acetals

$$\text{CHC(OR)}_2 \rightarrow \text{C:C(OR)}$$

P_2O_5 added to a soln. of ethyl α,α -diethoxypropionate in pyridine, and refluxed 2 hrs. \rightarrow ethyl α -ethoxyacrylate. Y: 85%. C. L. Stevens and A. E. Sherr, J. Org. Chem. 17, 1177 (1952).

Polyphosphoric acid

$$H(PO_3H)_xOH$$

Cyclization

s. a. 8, 899; s. a. F. Uhlig, Ang. Ch. 66, 435 (1954).

Isocyclics from oxo compounds

from ketones s. 8, 899; also from aldehydes s. J. Koo and J. L. Hartwell, Am. Soc. 75, 1625, 1889 (1953).

Cyclic ketones from carboxylic acids

47. cf. Synth. Meth. 6, 854

Temp. and time of reaction have to be carefully controlled to obtain an optimum yield. E. s. H. Schmid and M. Burger, Helv. 35, 928 (1952).

Phosphorus tribromide/pyridine

PBr₃/C₅H₅N

1,2,3-Trienes from 2-acetylene-1,4-diols $\text{C(OH)} \cdot \text{C} \equiv \text{C} \cdot \text{C(OH)} \rightarrow \text{C=C=C}$

PBr₃ in pyridine added with shaking and cooling to a soln. of 1,4-di-phenyl-1,4-dibiphenyl-2-butin-1,4-diol in pyridine, after 5 min. some alcohol cautiously added followed by water, and the product isolated after several hrs. → 1,4-diphenyl-1,4-dibiphenylbutatriene. Y: 64%. F. e., with lower yields, s. R. Kuhn and J. Jahn, B. 86, 759 (1953).

Phosphorus oxychloride

$$POCl_3$$

Bischler-Napieralski ring closure

3,4-Dihydroisoquinolines

○

s. 2, 788; s. a. A. M. Barbier and P. Rumpf, Bl. 1953, 293

Benzo[a]quinolizine ring
Lactam ring closure
Tert. amines from
quaternary ammonium salts

949.

10.2 g. dimethyl β -(2-homoveratrylaminooethyl)glutarate heated 2 hrs. at 190-200°/1 mm. → 7.2 g. methyl 1-(3,4-dimethoxyphenethyl)-2-oxo-4-piperidineacetate, 0.75 g. dissolved in toluene, treated with POCl_3 , refluxed several min., evaporated in vacuo, the residue dissolved in a little water, buffered with Na-acetate, and treated with concd. HI soln. → 0.98 g. 2-(carbomethoxymethyl)-1,2,3,4,6,7-hexahydro-9,10-dimethoxybenzo[a]quinolizinium iodide, 12.8 g. treated repeatedly with AgCl in water, hydrogenated with PtO_2 at 18° for 2 hrs., and hydrolyzed by boiling with 5% -HCl for 1 hr. → 9.2 g. 2-(carboxymethyl)-1,2,3,4,6,7-hexahydro-9,10-dimethoxy-11bH-benzo[a]quinolizine hydrochloride. M. Pailer and H. Strohmayer, M. 83, 1198 (1952).

Phosphorus oxychloride/pyridine

$\text{POCl}_3/\text{C}_5\text{H}_5\text{N}$

Dehydration of alcohols

$\text{CHC(OH)} \rightarrow \text{C:C}$

s. 7, 883; s. a. W. Oroshnik and A. D. Mebane, Am. Soc. 76, 5719 (1954)

Dienes from 3-alkoxyethylene derivatives

950.

A soln. of 3β -acetoxy- 7α -ethoxy- $4^{8(14)},22$ -ergostadiene in benzene-pyridine treated at 0° with POCl_3 in benzene and let stand overnight at 25° → ergosterol-B₃ acetate. Crude Y: 80%. Also with acetic acid s. L. F. Fieser and G. Ourisson, Am. Soc. 75, 4404 (1953).

Phosphorus pentachloride PCl_5 **Bischler-Napieralski
isoquinoline ring closure**

s. 2, 793; s. a. M. B. Moore et al., Am. Soc. 76, 3656 (1954)

Dehydration with ring contraction

s. 8, 901; s. a. D. H. R. Barton, D. A. J. Ives and B. R. Thomas, Soc. 1954, 903

Phosphorus pentachloride/stannic chloride $PCl_5/SnCl_4$ **Cyclic ketones from carboxylic acids**

s. 7, 325; s. a. P. Cagniant, Bl. 1952, 970

Thionyl chloride/pyridine $SOCl_2/C_5C_5N$ **Dehydration of alcohols** $CHC(OH) \rightarrow C:C$

s. 7, 239; s. a. Soc. 1954, 1226

Potassium hydrogen sulfate $KHSO_4$ **Ethylene derivatives
from ketones via sec. alcohols**

1.

Δ^9 -Octahydro-1-keto-3-methylazulene reduced with $LiAlH_4$ in ether at 0° \rightarrow Δ^9 -octahydro-1-hydroxy-3-methylazulene (Y: 83%) mixed with $KHSO_4$ and rapidly distilled at ca. 0.5 mm \rightarrow 1,4,5,6,7,8-hexahydro-1-methylazulene (Y: 84%). F. e. s. E. A. Braude and W. F. Forbes, Soc. 1953, 2208.

Potassium hydrogen sulfate/acetic anhydride $KHSO_4/(CH_3CO)_2O$ **Dehydration of alcohols**

2.

Fused $KHSO_4$ added to a soln. of 2 g. 3β -acetoxy- 14α -hydroxy-5-androstan-17-one in acetic anhydride, and heated 15 min. at $95-100^\circ$ \rightarrow 1.38 g. 3β -acetoxy-5,14-androstadien-17-one.—Other methods were not successful. A. F. St. André et al., Am. Soc. 74, 5506 (1952).

p-Toluenesulfonic acid

TsOH

s. 7, 891; s. a. A. Eschenmoser, J. Schreiber, and S. A. Julia, Helv. 36, 482 (1953)

Dehydration-rearrangement

s. 9, 958

*Sulfuric acid*H₂SO₄**Dehydration of alcohols**

CHC(OH) → C:C

s. 5, 627; s. a. K. W. Rosenmund and H. Herzberg, B. 87, 1575 (1954)

Isocyclics from alcohols

s. 2, 794; 4, 832; s. a. F. E. and T. J. King, Soc. 1954, 1373

Benzofurans**Aryl ethers**

953.

Ethyl α -chloroacetoacetate added with stirring to a suspension of Na-phenolate in dry benzene at such a rate as to maintain gentle refluxing, which is continued with stirring for 4 hrs. → crude ethyl α -phenoxy-acetoacetate (Y: 85-90%) added with stirring during 1 hr. below 5° to concd. H₂SO₄, and allowed to stand in the ice bath for 1 hr. longer → ethyl 3-methylcoumarilate (startg. m. f. 159) (Y: 35-42%). W. R. Boehme, Org. Synth. 33, 43 (1953).

Synthesis of O-heterocyclics with diketene**4-Methylcoumarins from phenols and diketene****via arylacetoacetic acid esters****O-Acetoacetylation**

954.

Diketene added during 1 hr. to an agitated suspension of resorcinol in boiling benzene containing a little triethylamine, and heating continued for 0.5 hr. → m-hydroxyphenyl acetoacetate (Y: 99%) added during 15 min. with agitation and cooling at 70° to 98%-H₂SO₄, and kept a further 0.5 hr. at the same temp. → 7-hydroxy-4-methylcoumarin (Y: 85%). —The yields, in general, run parallel to those obtained from the Pechmann reaction (cf. Synth. Meth. 1, 591; 2, 673, 682). F. e. s. R. N. Lacey, Soc. 1954, 854; O-acetoacetylation and f. O-heterocyclics s. a. other papers of this series.

Pyridine ring from enamines

5.

97%-H₂SO₄ added to diethyl [(1-methyl-3-oxo-1-butenylamino)methylene]oxalacetate, cooled with ice to keep the temp. at ca. 50-55°, and allowed to stand 2 hrs. at room temp. after the exothermic reaction has subsided → 5-acetyl-3-carbethoxy-6-methyl-4-pyridinecarboxylic acid. Y: 70%. F. e. s. R. G. Jones, Am. Soc. 73, 5244 (1951).

N-Heterocyclics from hydroxycarboxylic acid amides

6.

Concd. H₂SO₄ added to a soln. of N-(α -methylbenzyl)benzilamide in glacial acetic acid, and the product isolated after disappearance of a red-brown color → 1-methyl-4,4-diphenyl-3-oxo-1,2,3,4-tetrahydroisoquinoline. Y: 91.55%. —Amides of aliphatic α -hydroxyacids do not undergo this reaction, neither do the amides of α -hydroxyacids in which the carbinol C-atom carries but 1 aryl group. None of these amides give a color with H₂SO₄. F. e. s. P. A. Petyunin, Ж. 22, 700 (1952); oxindoles with ZnCl₂ s. Ж. 22, 697; C. A. 47, 5385e,a; limitations s. a. Ж. 22, 1187; C.A. 47, 7490b.

*Selenium dioxide**SeO₂***Dehydration of alcohols** $\text{CHC(OH)} \rightarrow \text{C:C}$

957.

A soln. of 900 mg. 1,2-di-(6-phenanthridinyl)ethanol in dioxane containing a little water refluxed 4 hrs. with SeO_2 → 600 mg. 1,2-di-(6-phenanthridinyl)ethylene. A. G. Caldwell, Soc. 1952, 2035.

*Hydrochloric acid**HCl*

s. 6, 862; s. a. 9, 601; P. L. Pauson, Am. Soc. 76, 2187 (1954)

Dehydration-rearrangement

←

958.

An alc. soln. of 1.7 g. 2,2-dimethyl-1,1-diphenylpropan-1-ol refluxed 3 hrs. during the passage of dry HCl-gas → 1.35 g. 2-methyl-3,3-diphenyl-1-butene. F. e., also with p-toluenesulfonic acid as reagent, s. E. J. Skerrett and D. Woodcock, Soc. 1952, 2804.

**Ethlenecarboxylic acids
from hydroxycarboxylic acid esters**

←

s. 9, 25

**Aromatization
by elimination of an oxygen bridge**

←

959.

1,4-Diphenyl-2-nitro-1,4-epoxy-1,2,3,4-tetrahydronaphthalene refluxed 15 min. in alcohol containing HCl → 1,4-diphenyl-2-nitronaphthalene. Y: ca. 100%. F. e. s. A. Etienne, A. Spire, and E. Toromanoff, Bl. 1952, 750.

Via intermediates

v.i.

**Ketenes from carboxylic acids
via α -bromocarboxylic acid bromides**

Br added dropwise with stirring to a mixture of isobutyric acid and red P, then heated 6 hrs. at 100° → α -bromoisobutyryl bromide (Y: 75-83%) added dropwise to Zn-turnings and ethyl acetate under a slow dry N₂-stream at such a rate that the ethyl acetate boils gently → dimethylketene (Y: 46-54% as a 9-10% soln. in ethyl acetate). C. W. Smith and D. G. Norton, Org. Synth. 33, 29 (1953).

Nitrogen ↑*Without additional reagents*

w.a.r.

**Sym. α -dinitriles from ketones
via sym. hydrazo- and azo-dinitriles
Dimerization**

←

s. 6, 869; ring-strain determination s. Am. Soc. 75, 2078 (1953)

**Hoffmann degradation
to ethylene derivatives**

s. 8, 917; stereochemical specificity s. R. D. Haworth, J. McKenna, and R. G. Powell, Soc. 1953, 1110

Potassium hydroxide/platinized asbestos

←

*s. Platinized asbestos/potassium hydroxide**Sodium/ethylene glycol*

**Alkaline decomposition
of p-toluenesulfonylhydrazones**

←

p-Toluenesulfonylhydrazones give diazo compounds or products of their decomposition: olefins, sometimes with rearrangement of the carbon skeleton, triazole derivatives from bis-p-toluenesulfonylhydrazones of some 1,2-diketones.—E: Cyclohexanone-p-toluenesulfonylhydrazone refluxed 1.5 hrs. with a 1.3 N soln. of Na in ethylene glycol → cyclohexene. Y: ca. 100%. F. e. s. W. R. Bamford and T. S. Stevens, Soc. 1952, 4735.

*Mercuric oxide***Acetylene derivatives from osazones**

s. 8, 924; s. a. A. C. Cope, D. S. Smith, and R. J. Cotter, Org. Synth. 34, 42 (1954)

Sulfuric acid H_2SO_4 **Fischer indole synthesis**

s. 8, 740, 926; s. a. V. V. Feofilaktov, Sint. Org. 2, 98, 103 (1952); C. A. 48, 668h, 666g.

Hydrochloric acid HCl

962. **with aldehyde hydrazones.** n-Butyraldehyde p-nitrophenylhydrazone dissolved in a suspension of p-nitrophenylhydrazine in concd. HCl, a layer of benzene added, stirred 3 hrs. at room temp., benzene replaced with fresh solvent for a second 3 hrs., and the crude product chromatographed → 3-ethyl-5-nitroindole. Y: 20-25%. F. e. s. E. Shaw and D. W. Woolley, Am. Soc. 75, 1877 (1953).

Platinized asbestos/potassium hydroxide \leftarrow

**Cyclopropanes from
 α,β -ethyleneoxo compounds
via 2-pyrazolines**

s. 8, 927; pyrolysis with KOH and other catalysts cf. S. G. Beech, J. H. Turnbull, and W. Wilson, Soc. 1952, 4686

Halogen ↑**CC↑Hal***Potassium hydroxide/toluene* KOH **Ethylene derivatives from halides** $CHCHal \rightarrow C:C$

Potassium hydroxide vigorously stirred under refluxing toluene, ethyl 1-bromo-3,3-dimethylcyclobutanecarboxylate added dropwise without external heating, which is then resumed for a further 40 min., cooled, and water added → crude 3,3-dimethylcyclobut-1-enecarboxylic acid. Y: 97%.—More conventional methods were not successful. F. e. s. A. Campbell and H. N. Rydon, Soc. 1953, 3002.

Potassium hydroxide/alcohol

Ethylenehalides. 10% excess alc. 10%-KOH slowly run into a soln. of 1,1,1,4,4,4-hexafluoro-2-iodobutane at 10°, and after 20 min. allowed to warm to 25° → *trans*-1,1,1,4,4,4-hexafluoro-2-butene. Y: 95%. F. e. s. R. N. Haszeldine, Soc. 1952, 2504; s. a. V. Prey and H. Berbalk, M. 82, 990 (1951); also with aq. KOH s. A. L. Henne, J. W. Shepard, and E. J. Young, Am. Soc. 72, 3577 (1950).

Benzene ring from
cyclohepta-4,6-diene-1,2-diones
Ring contraction

5.

0.5 g. 3,5,7-tribromo- | 0.3 g. 3,3,5,7-tetrabromo-
cyclohepta-4,6-diene-1,2-dione dissolved in methanol
cooled with ice-salt mixture, and 3 N methanolic KOH
added slowly with stirring →

0.3 g. methyl 3,5-dibromosalicy- | 0.18 g. 2,4,6-tribromophenol.
late.

H. Fernholz, E. Hartwig, and C.-J. Salfeld, A. 576, 131 (1952).

Potassium hydroxide/quinoline

Polyaryl condensation

s. 1, 768; s. a. E. Clar, W. Kelly, and J. W. Wright, Soc. 1954, 1108

Phenyllithium

C₆H₅Li

Isoyclics from dihalides

6.

An ethereal soln. of phenyl-Li from bromobenzene and Li added dropwise with stirring under N₂ during 15 min. to a soln. of 2,2'-di(bromoethyl)-1,1'-dinaphthyl in benzene, stirring continued 1 hr. at room temp., benzene added, and refluxed 1 hr. → 9,10-dihydro-3,4,5,6-dibenzphenanthrene. Y: 80%. E. D. Bergmann et al., Am. Soc. 73, 5153 (1951); J. Org. Chem. 19, 1383, 1387 (1954); cyclobutane ring from diiodides s. K. Alder and H. A. Dörrmann, B. 87, 1492 (1954); intermolecular ring closure s. W. Baker, J. F. McOmie, and W. K. Warburton, Soc. 1952, 2991; also dimerization of halides s. E. D. Bergmann and Z. Pelchowicz, Am. Soc. 75, 4281 (1953).

*Lithium amide**LiNH₂*

**Acetylene derivatives
from α,β -ethylenehalides
with subsequent synthesis
of acetylenealcohols**

 $\text{CH:CHal} \rightarrow \text{C:C}$

s. 9, 736

*Sodium amide/aniline**NaNH₂/C₆H₅NH₂*

**Sensitive acetylene derivatives
by dehydrohalogenation**

←

967.

A soln. of 2-(2-bromovinyl)thiophene in abs. ether containing a little aniline added during 15-30 min. to NaNH_2 prepared from Na in the presence of $\text{Fe}(\text{NO}_3)_3$ in liq. NH_3 , and stirring continued for 0.5 hr. \rightarrow 2-thienylacetylene. Y: 65%. F. e. s. A. Vaitiekunas and F. F. Nord, J. Org. Chem. 19, 902 (1954).

*Potassium carbonate**K₂CO₃*

**α,β -Ethylenehalides
from α,β -dihalogenocarboxylic acids**

 $\text{CHHalCHHalCOOH} \rightarrow \text{CH=CHHal}$

s. 6, 880; stereoisomers cf. S. J. Cristol and W. P. Norris, Am. Soc. 75, 2645 (1953)

*Lithium chloride**LiCl*

**Δ^4 -3-Ketosteroids
via 4-halogeno-3-ketosteroids**

 $\text{CHCHal} \rightarrow \text{C:C}$

968.

A soln. of Br in *dimethylformamide* added during 7-9 hrs. at room temp. to a soln. of 17 α -hydroxy-21-acetoxy pregnane-3,11,20-trione and a little p-toluenesulfonic acid monohydrate in *dimethylformamide*, then water added over a 20-min. period \rightarrow 4-bromo-17 α -hydroxy-21-acetoxy-pregnane-3,11,20-trione (Y: 70-85%) dissolved with anhydrous LiCl in *dimethylformamide*, and heated 2 hrs. at 100° under N_2 \rightarrow cortisone acetate (Y: 73%). F. e. s. R. P. Holysz, Am. Soc. 75, 4432 (1953).

*Aniline/sodium amide*s. *Sodium amide/aniline* $C_6H_5NH_2/NaNH_2$ *Diethylaniline* $C_6H_5N(C_2H_5)_2$ **Dehydrobromination** $CHCBr \rightarrow C:C$

s. 9, 619

Ring closure to N-heterocyclics

Startg. m. refluxed 3 hrs. in cyclohexanol containing diethylaniline → 1,2,3,4-tetrahydroquinoline derivative. Y: 75%. A. Stoll, T. Petrzilka, and J. Rutschmann, Helv. 35, 1249 (1952).

Piperidine $C_5H_{11}N$ **α,β -Ethylenenitriles from α -bromonitriles** $CHCBr \rightarrow C:C$

s. 9, 899

Silver acetate CH_3COOAg **Ethylene derivatives
from 1,2-dibromides** $CBrCBr \rightarrow C:C$

s. 9, 928

Zinc Zn

s. 9, 362

Acetylenehalides $CBr:CBr \rightarrow C:C$

2,3-Dibromo-1,1,1,4,4,4-hexafluoro-2-butene treated with Zn in abs. alcohol with vigorous stirring under reflux for 4 hrs. → 1,1,1,4,4,4-hexafluoro-2-butyne. Y: 90%. F. e. s. R. N. Haszeldine, Soc. 1952, 2504, 3483.

Ketenes from α -halogenocarboxylic acid halides

CHalCOHal \rightarrow C:C:O

s. 9, 960

Zinc/sodium iodide

Zn/NaI

Ethylene derivatives from 1,2-dibromides

CBrCBr \rightarrow C:C

s. 9, 603

Zinc/acetic acid

Zn/CH₃COOH

s. 9, 97

Aluminum chloride

AlCl₃

Cyclic ketones from carboxylic acid chlorides Ruggli-Ziegler dilution principle

971.

45.6 g. ε -phenylcaproyl chloride in 1250 c.c. CS₂ added dropwise through the condenser during 40 hrs. with stirring and vigorous refluxing to 100 g. AlCl₃ in 1750 c.c. CS₂ so that the acid chloride soln. is further diluted by the refluxing solvent \rightarrow 1,2-benzo-1-cycloocten-3-one. Y: 68%.—Intramolecular ring closure is facilitated by high dilution (Ruggli-Ziegler dilution principle). R. Huisgen and W. Rapp, B. 85, 826 (1952).

Trimethylene glycol

OH[CH₂]₃OH

Dehydrogenation via 1,2-dibromides

CBrCBr \rightarrow C:C

972.

2',2''-Dinitro-2,3:6,7-dibenzocyclohepta-2,6-dien-1-one refluxed 8-10 hrs. with bromine and CCl₄, with irradiation by 4 100-W-lamps, evaporated to dryness, and the residue refluxed $\frac{3}{4}$ hr. with trimethylene glycol \rightarrow 2',2''-dinitro-2,3:6,7-dibenzocyclohepta-2,4,6-trien-1-one. Y: 83-85%. F. e. s. T. W. Campbell, R. Ginsig, and H. Schmid, Helv. 36, 1489 (1953).

*Amberlite***Aromatization**

3.

A mixture of α - and β -isomers of benzene hexachloride and Amberlite IRA-400 base refluxed 30-40 min. at 240°, then distilled \rightarrow 1,2,4-trichlorobenzene (startg. m. f. 306). Y: 85%. A. Galat, Am. Soc. 74, 3890 (1952).

*Acetic acid***Mattox-Kendall reaction** **α,β -Ethylenehydrazones from α -halogenoketones**

4.

To a hot soln. of 0.5 g. 2-chlorocholestane-3-one in glacial acetic acid added 2,4-dinitrophenylhydrazine in acetic acid, and refluxed 3 min. under N₂ \rightarrow 0.57 g. Δ^1 -cholestene-3-one 2,4-dinitrophenylhydrazone. F. e. s. J. J. Beereboom et al., Am. Soc. 75, 3500 (1953).

*Allyl bromide***Ethylene derivatives from bromides**

s. 9, 927

Sulfuric acid H_2SO_4

**N-Heterocyclics from
halogenocarboxylic acid amides
Oxindoles**

975.

Concd. H_2SO_4 added to a soln. of diphenylchloroacetanilide in glacial acetic acid, and warmed 5-10 min. at 60° until the red color disappears \rightarrow 3,3-diphenyloxindole. Y: 96.7%. F. e. s. P. A. Petyunin, Ж. 22, 975, (1952); C. A. 47, 7489g.

*Via intermediates**v.i.*

**α,β -Ethyleneketones from α -halogenoketones
Mattox-Kendall reaction**

 $CHCHHal \rightarrow C:C$

from α -bromoketones s. 6, 891; also from α -chloroketones s. R. H. Levin et al., Am. Soc. 76, 546 (1954)

Sulfur ↑**CC↑S***Without additional reagents**w.a.r.*

**7-Bicyclo[2.2.2]octene-2,3,5,6-tetracarboxylic
acid anhydrides
from thiophene 1,1-dioxides**

976.

2,5-Dimethylthiophene 1,1-dioxide and maleic anhydride heated 5 min. at 150° in a small tube \rightarrow 1,4-dimethylbicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic acid anhydride. Y: 71%. F. e., also in benzene, s. J. L. Melles, R. 71, 869 (1952).

*n-Butyllithium**n-C4H9Li*

**Ethylene derivatives
from ethylene sulfides**

 $C-S-C \rightarrow C:C$

s. 9, 689

*Copper**Cu***Stilbenes from s-trithianes***C*

s. 9, 677

Lead acetate $(CH_3COO)_2Pb$ **Ethylene derivatives and mercaptans
from thioethers** $CHC(SR) \rightarrow C:C$

s. 9, 655

Carbon ↑**CC ↑ C .***Without additional reagents**w.a.r.***Thermal decomposition
of subst. 9,10-dihydroanthracenes** \leftarrow

77.

9,10-Di-(2'-cyano-2'-propyl)-9,10-dihydroanthracene heated 4 hrs. at 250-260° in a N₂-filled sealed tube → anthracene (Y: 92%) and tetramethylsuccinonitrile (Y: 62%). A. F. Bickel and E. C. Kooyman, R. 71, 1137 (1952).

Reverse diene synthesis \leftarrow

s. 3, 704; s. a. J. A. Berson and R. Swidler, Am. Soc. 76, 2835 (1954)

*Sodium hydroxide/potassium hydroxide**NaOH/KOH***Ethylene derivatives
by C-elimination** \leftarrow

78.

3-Bromo-2,2-dimethyl-1-propanol added dropwise at 200° to a stirred molten mixture of KOH and NaOH → isobutylene. Y: 77%. S. Searles and M. J. Gortatowski, Am. Soc. 75, 3030 (1953).

Potassium hydroxide

KOH

Benzene ring

from cyclohepta-4,6-diene-1,2-diones

s. 9, 965

←

Alkali salt

←

Ethylene derivatives from

salts of halogenocarboxylic acids

Degradation with loss of 1 C-atom

s. 8, 944; cation specificity s. Am. Soc. 75, 2698 (1953)

Barium hydroxide/iron

Ba(OH)₂/Fe

Cyclic ketones from dicarboxylic acids

○

s. 4, 857; s. a. H. Pommer, A. 579, 47 (1953)

Lead tetraacetate

(CH₃COO)₄Pb

Carboxylic acids from α -ketocarboxylic acids RCOCOOH → RCOOH

s. 9, 347

Potassium hydrogen sulfate

KHSO₄

Cleavage of di-tert-1,3-diols

←

A mixture of 1,1,3,3-tetraphenyl-1,3-propanediol and fused KHSO₄ heated 3-4 hrs. at 150-180° → 1,1-diphenylethylene (Y: 56%) and benzophenone (Y: 61-79%). F. e. and methods s. J. English, Jr., and F. V. Brutcher, Jr., Am. Soc. 74, 4279 (1952).

Sulfuric acid

H₂SO₄

α,β -Ethyleneketones

←

from 3-alkoxy-2-ethylenealcohols

980.

2 N H₂SO₄ added to a soln. of crude solid *trans*-1,4-dihydroxy-2-methoxy-10-methyl- $\Delta^{2,6}$ -hexahydronaphthalene in dioxane, and allowed to stand 24 hrs. at room temp. → crude *trans*-1-hydroxy-2-keto-10-methyl- $\Delta^{3,6}$ -hexahydronaphthalene. Y: 99%. F. e. s. R. B. Woodward et al., Am. Soc. 74, 4223 (1952).

Chromium oxide-alumina $Cr_2O_3-Al_2O_3$ **Synthesis of alkylbenzenes****Dehydration and aromatization**

31.

Isophorone added to ethereal methyl-MgCl₁, and allowed to stand several hrs. → 1,3,5,5-tetramethyl-2-cyclohexen-1-ol (Y: 83%) passed at 275° through a Pyrex-tube filled with activated alumina → 1,3,5,5-tetramethyl-1,3-cyclohexadiene (Y: ca. 90%) passed at 450-500° through a vertical tube filled with chromia-alumina catalyst (prepn. s. original) → 1,3,5-trimethylbenzene. Over-all Y: 65%. F. e. s. J. P. Ferrin et al., J. Org. Chem. 19, 923 (1954).

*Hydrobromic acid**HBr***Cyclic ketones from polycarboxylic acids**

32.

A mixture of butane-1,1,4,4-tetracarboxylic acid (prepn. s. 14) and 48%-HBr heated in an oil bath and stirred by a fine stream of N₂ which carries the steam-volatile product out continuously → cyclopentanone. Y: 79% as the 2,4-dinitrophenylhydrazone.—Lower yields are obtained when less carboxyl groups are present. Also esters and nitriles, which give free carboxyl groups in the process, can be used as startg. m. The reaction is largely specific for the formation of a 5-membered ring. F. e. s. L. Crombie, J. E. H. Hancock, and R. P. Linstead, Soc. 1953, 3496.

*Palladium-carbon**Pd-C***Aromatization**

33.

A mixture of 4a-methyl-6-ethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene and 5%-Pd-on-charcoal heated 12 hrs. at 300-320° → 3-ethylphenanthrene. Y: 92.3%. R. A. Barnes and R. T. Gottesman, Am. Soc. 74, 35 (1952).

Formation of Electron Pair on Nitrogen

Elimination

Hydrogen ↑

Sodium hydroxide

EIN ↑ H

NaOH

**Aminesulfonimides
from sulfonylhydrazone salts
and reverse reaction**

N,N,N-Trimethyl-N'-p-toluenesulfonylhydrazone iodide triturated with 10% -NaOH → trimethylamine-p-toluenesulfonimide (Y: 87%) dissolved in water, stirred and treated slowly with HI (d. 1.50), then allowed to stand for 20 hrs. → N,N,N-trimethyl-N'-p-toluenesulfonylhydrazone iodide (Y: 96.1%). S. Wawzonek and D. Meyer, Am. Soc. 76, 2918 (1954).

Potassium hydroxide

KOH

**Bases from their hydrochlorides
C-Aminosilanes**

Aq. β-(trimethylsilyl)ethylamine hydrochloride added dropwise under N₂ to KOH-pellets → β-trimethylsilyl)ethylamine. Y: 83.5%. F. C. aminosilanes s. L. H. Sommer and J. Rockett, Am. Soc. 73, 5130 (1951).

Oxygen ↑

EIN ↑ O

Aniline

C₆H₅NH₂

Reduction of N-oxides

$\begin{matrix} \nearrow \\ \text{N} \end{matrix} \rightarrow \text{O} \rightarrow \begin{matrix} \nearrow \\ \text{N} \end{matrix}$

Aniline added to 2-chlorophenazine 5-oxide, and gently refluxed 3 hrs. → 2-chlorophenazine. Y: 96%. F. e. s. I. J. Pachter and M. C. Kloetzel, Am. Soc. 74, 971 (1952).

Lithium aluminum hydride $LiAlH_4$ **Hydrazone from azoxy compounds**

s. 9, 167

Carbon ↓**EIN \uparrow C***Without additional reagents**w.a.r.***Tert. amines from
quaternary ammonium salts**

s. 9, 418; s. a. C. A. Grob and E. Renk, Helv. 37, 1681 (1954)

Sodium hydroxide $NaOH$ **Tert. amines from betaines**

s. 9, 217

 \leftarrow

Formation of Electron Pair on Sulfur

Elimination

Oxygen ↓**EIS \uparrow O***Zinc/hydrochloric acid* Zn/HCl **Thiophenes from
thiophene 1,1-dioxides**

87.

Zn-dust and concd. HCl added to a warm soln. of tetraphenylthiophene 1,1-dioxide in acetic acid, and the product isolated when the color has disappeared → tetraphenylthiophene. Y: 76%. F. e. s. J. L. Melles, R. 71, 869 (1952).

Nitrogen Radicals

Elimination

Hydrogen ↑

PbO₂

Lead dioxide

**Oxyhydrazyl radicals from hydrazines
via hydrazyl radicals and hydroxyhydrazines**

988.

A soln. of *unsym*-diphenylhydrazine hydrochloride in abs. ethanol treated at room temp. first with $NaHCO_3$, then with picryl chloride, and gently boiled 15 min. after the CO_2 -evolution has subsided $\rightarrow \alpha,\alpha$ -diphenyl- β -picrylhydrazine (Y: 97%) shaken 2 hrs. with PbO_2 and anhydrous Na-sulfate in benzene $\rightarrow \alpha,\alpha$ -diphenyl- β -picrylhydrazyl (crude Y: 95-97%) dissolved in benzene, and treated 30 min. with NO_2 gas (prepared by heating gradually a mixture of Pb-nitrate and sand to 360°) $\rightarrow \alpha,\alpha$ -diphenyl- β -picryl- β -hydroxyhydrazine (crude Y: 89%) allowed to react with a slurry of PbO_2 and anhydrous Na-sulfate in chloroform $\rightarrow \alpha,\alpha$ -diphenyl- β -picryl- β -oxyhydrazyl (Y: 77%). R. H. Poirier, E. J. Kahler, and F. Benington, J. Org. Chem. 17, 1437 (1952).

Halogen ↑

RadN ↑ Hal

Na₂SnO₂

Tetrazolium radicals

989.

Aq. Na-stannite soln. (prepared from $SnCl_2$ and $NaOH$) added with vigorous stirring to an aq. soln. of 60 mg. 2,3-diphenylene-5-phenyl-

tetrazolium chloride and benzene, worked up after 10 min. \rightarrow 40 mg. 2,3-diphenylene-5-phenyltetrazolium radical. R. Kuhn and D. Jerchel, A. 578, 1 (1952).

Heteropolar Bond

Uptake

Addition to Oxygen

Het \downarrow O

Without additional reagents

w.a.r.

Trialkyl- via dialkyl-oxonium salts

\leftarrow

SbCl₅ added dropwise at -70° to dry dimethyl ether which is vigorously agitated by a dry N₂-stream, and allowed to stand 0.5 hr. \rightarrow antimony pentachloride dimethyl etherate (Y: almost 100%) dissolved at -70° in liq. SO₂ with stirring by a slow N₂-stream, then satd. with HCl \rightarrow dimethyloxonium hexachloroantimonate (Y: almost 100%) dissolved in a minimum amount of ethylene chloride, treated with a concd. soln. of diazomethane in ethylene chloride, and the product isolated after 1.5 hrs. \rightarrow trimethyloxonium hexachloroantimonate (Y: 65%). F. e. s. F. Klages and H. Meuresch, B. 85, 863 (1952).

Addition to Nitrogen

Het \downarrow N

Without additional reagents

w.a.r.

Hydrochlorides

s. 2, 829; s. a. R. B. Moffett, Org. Synth. 34, 64 (1954)

Resolution of stereoisomers via salts

\leftarrow

s. 5, 666; s. a. B. E. Leach and J. H. Hunter, Biochem. Prep. 3, 111 (1953); B. R. Baker et al., J. Org. Chem. 18, 178 (1953); W. Theilacker and H.-G. Winkler, B. 87, 690 (1954); amines with L-glutamic acid s. C. A. Grob and E. F. Jenny, Helv. 35, 2106 (1952)

**Quaternary ammonium salts
from tert. amines**

991.

The formation of quaternary salts is faster in *polar solvents*.—E: A mixture of 1,4-dimethylpiperazine, ethylene bromide, and ethylene glycol heated slowly to 100°, and kept 1.5 hrs. at this temp. → triethylene-diamine di(methobromide). Y: 70%. O. Hromatka and O. Kraupp, M. 82, 880 (1951); s. a. W. R. Brasen and C. R. Hauser, Org. Synth. 34, 58, 61 (1954).

Acetic acid CH_3COOH

**Pure quaternary ammonium salts
from tert. amines
Methosulfates**

992.

A soln. of gramine added dropwise at 10-15° during 0.5 hr. to a soln. of dimethyl sulfate, both in abs. tetrahydrofuran containing glacial acetic acid, and allowed to stand 3 hrs. at room temp. → trimethylskatylammonium methosulfate. Y: 80%. C. Schöpf and J. Thesing, Ang. Ch. 63, 377 (1951).

Triphenyl phosphite methiodide $(\text{C}_6\text{H}_5\text{O})_3\text{PCH}_3\text{I}$

**Quaternary ammonium salts
from alcohols**

993.

A mixture of triphenyl phosphite methiodide, abs. ethanol, and dimethylaniline heated 15 min. on a steam bath → ethyldimethylphenylammonium iodide. Y: 88%. S. R. Landauer and H. N. Rydon, Soc. 1953, 2224.

Addition to Sulfur**Het \Downarrow S***Without additional reagents**w.a.r.***Sulfonium salts**

s. 2, 836; 6, 910; s. a. C. T. Bahner, P. P. Neblett, Jr., and H. A. Rutter, Jr., Am. Soc. 74, 3453 (1952); also without solvent s. H. Böhme and P. Heller, B. 86, 785 (1953)

Addition to Remaining Elements**Het \Downarrow Rem***Without additional reagents**w.a.r.***Phosphonium salts**

s. 6, 911; in benzene s. G. Wittig and U. Schöllkopf, B. 87, 1318 (1954)

Exchange**Het \Updownarrow**
**Exchange of anions
of quaternary ammonium salts**
 \leftarrow **Silver chloride***AgCl***Chlorides from iodides**

s. 9, 949; in the presence of HCl s. H. Gilman et al., J. Org. Chem. 19, 1067 (1954)

Ethylene oxide

4. **New method.** Halogen anions in quaternary ammonium salts can be replaced by other anions by the use of the appropriate acid and ethylene oxide, the latter serving to remove the hydrogen halide. This procedure is particularly advantageous in the case of sensitive amino derivatives like choline.—E: Acetylcholine hydrogen sulfate. F. e. s. O. Sackur, Bl. 1952, 796.

Amberlite**Bromides from methanesulfonates**

s. 9, 430

2,4-Diguanidinophenyl lauryl ether

995.

Chlorides from picrates of sensitive bases. An intimate mixture of urocanyl choline dipicrate and 2,4-diguanidinophenyl lauryl ether dihydrochloride added portionwise with stirring to boiling water, boiling continued for 15 min., cooled, filtered, and the filtrate worked up → urocanyl choline chloride hydrochloride. Y: 90%. C. Pasini, A. Vercellone, and V. Erspamer, A. 578, 6 (1952).

Other Reactions

Oth

Without additional reagents

w.a.r.

Pyridinium bromide perbromides

←

s. 8, 586; s. a. H. Baganz, B. 87, 1373 (1954)

Index

Volume 9

(Cumulative Index, Volumes 1–5, see Volume 5, page 503;
Volumes 6–8, see Volume 8, page 387)

The subject index lists the names of the methods, types of compounds, reagents, etc. For specific compounds and for authors (when a method is not named after them) the reader may be referred to the indexes of abstract journals. Complex compounds, as those with several functional groups, are referred to under the related simpler compounds, under *special s.* E.g. aminocarboxylic acids are found under carboxylic acids. Only compounds beginning with letters other than those of the parent or main compounds are listed under this subentry, and entry numbers are omitted because they are specified when the compound is given as a main entry. Derivatives used for characterization, identification, or separation are listed under the subentry *derivatives*. Methods of synthesis for a given substance are indexed under the name of this substance and the subentry *from*, e.g. carboxylic acids from alcohols, hydrocarbons. Syntheses carried out from a particular starting material are indexed under the starting material and the subentry *startg. m. f.* (starting material for the preparation of . . .), e.g. alcohols, startg. m. f. carboxylic acids, ketones.

Classes of compounds may be designated merely by the functional group that is changed during the reaction. Ring compounds may also refer to the corresponding hydrogenated rings, unless the latter are listed specifically. If that be the case, then, as in several other cases, the *inversion* has been made use of that is customary in the indexes of Chemical Abstracts. Dihydrofurans, e.g., may be found under Furans, dihydro-. All single letters, which are separated from the name by a hyphen, are being ignored in regard to alphabetic arrangement, e.g., 'O-Acetyl derivatives' are listed under A.

Register

Band 9

(Generalregister Band 1–5 siehe Band 5, Seite 503;
Band 6–8 siehe Band 8, Seite 387)

Im alphabetischen Register finden sich als Schlagworte Methoden, Verbindungsklassen, Reagenzien u. dgl.; Einzelverbindungen und Autoren, soweit nicht eine Methode nach ihnen benannt ist, sind, wie

bisher, in den Registern der Referatenblätter zu suchen. Auf kompliziertere Verbindungen, z. B. mit mehreren funktionellen Gruppen, ist bei den entsprechenden einfacheren Verbindungen unter *special s.* (spezielle siehe) hingewiesen, z. B. bei Carbonsäuren auf Aminocarbonsäuren. Es wird hier jedoch nur auf Verbindungen hingewiesen, die einen anderen Wortanfang haben und deshalb an anderer Stelle im Register stehen. Derivate, die zur Charakterisierung, Identifizierung, oder Trennung dienen, sind unter *derivatives* aufgeführt. Methoden zur Synthese eines bestimmten Endprodukts findet man beim Schlagwort dieses Endprodukts unter *from* (aus) registriert, z. B. Carbonsäuren aus Alkoholen, Kohlenwasserstoffen. Synthesen, die sich mit einem bestimmten Ausgangsmaterial ausführen lassen, sind bei dem Schlagwort des Ausgangsmaterials unter *startg. m. f.* (Ausgangsmaterial für die Darstellung von ...) zu suchen, z. B. Alkohole, Ausg. f. Ketone, Carbonsäuren.

Die Bezeichnung der Verbindungsklassen kann sich auf funktionelle Gruppen beschränken, die bei der Reaktion verändert werden. Ringbezeichnungen können sich auch auf die entsprechenden hydrierten Ringe beziehen. Sind hydrierte Ringe aber besonders aufgeführt, dann ist bei ihnen, wie auch in einigen anderen Fällen, von der Inversion Gebrauch gemacht worden, wie sie in den Sachregistern der «Chemical Abstracts» üblich ist. Z. B. stehen Dihydrofurane unter Furane, Dihydro-. Griechische Buchstaben und Einzelbuchstaben, die vom eigentlichen Namen durch Bindestrich getrennt sind, werden bei der alphabetischen Anordnung nicht berücksichtigt. z. B. stehen «O-Acetyl-derivate» unter A.

Index

- Acetals** 9, 355
 —, cleavage 9, 21, 303, 318, 355, 665, 743, 903
 — from
 1,1-acoxyhalides 9, 600
 halides, synthesis with addition of 1 C-atom 9, 903
 ketoacetals 9, 119
 orthoformic acid esters 9, 743
 — — —, synthesis with addition of 1 C-Atom 9, 837, 903
 sulfurous acid esters 9, 335
 — special s.
 α,β -ethylene-acetals
 halogen-
 hydroxy-
 keto-
 — startg. m. f.
 1,1-alkoxyhalides 9, 620
 1,3-diol ethers 9, 774
 enoethers 9, 929, 946
 ethers, synthesis 9, 902
 —, cyclic
 — special s.
 m-dioxanes
 1,3-dioxolanes
 —, inner
 — startg. m. f.
 hydroxyenolethers 9, 799
Acetamide as additional reagent 7, 785
Acetates s. Acylation
Acetic anhydride as additional reagent $\text{CC}\uparrow\text{O}$; 9, 29, 160, 241, 243, 368/9, 564, 628, 704, 776, 905, 913, 943, 952
Acetoacetic ester s. β -Ketocarboxylic acid esters
C-Acetoacetylation 9, 838
O-Acetoacetylation 9, 954
Acetobrominolysis of carbohydrates 9, 630
Acetohalogenosugars 9, 621
 — startg. m. f.
 diglycosamines 9, 530
Acetonitrile as solvent 9, 325
 — in the Rosenmund-von Braun nitrile synthesis 9, 898
- Acetoxy compounds** s. Acoxy ...
Acetyl s. Acyl
Acetylation s. Acylation
Acetyl bromide as additional reagent 9, 629/30
 — chloride — — — 9, 797
Acetyl derivatives s. Acylation
Acetylene
 — startg. m. f.
 pyrimidines 9, 414
Acetylenealcohols
 — from
 α,β -ethylenehalides 9, 736
 halogenethers, cyclic 9, 8/9
 oxo compounds $\text{CC}\downarrow\text{OC}$
 —, prim.
 — from
 oxido compounds, synthesis 9, 737
 α,β -Acetylenealcohols
 — startg. m. f.
 α,β -ethyleneketones 9, 102
 α -hydroxyketones 9, 102
 α,β -Acetylene-prim-amines
 — from
 α,β -ethylenehalides 9, 515
 α,β -Acetylenecarboxylic acids
 — from
 α,β -ethylenehalides 9, 886
 — startg. m. f.
 2-ethylenalcohols 9, 111
Acetylene derivatives
 —, addition of hydrogen halides 9, 605
 — by dehydrohalogenation 9, 967
 — from
 α,β -ethylenehalides 9, 736
 halides 9, 888
 —, hydrogenation $\text{HC}\downarrow\text{CC}$
 —, —, selective 9, 96
 — startg. m. f.
 allenes 9, 782/3
 ethylene derivatives 9, 95, 603
 ketones 9, 933
 —, synthesis 9, 820
Acetylenedicarboxylic acid ester syntheses 9, 917

2-Acetylene-1,4-diols
 — startg. m. f.
 1,2,3-trienes 9, 948
Acetylenehalides 9, 970
 α,β -Acetylenehalides
 — startg. m. f.
 α,β -acetylene-prim-amines 9, 515
Acid amides, sec. and tert. 9, 525
Acid anhydrides 9, 261
Acid cleavage with subsequent
 Huang-Minlon reduction 9, 228
Acid derivatives s. a. Carboxylic —
 —, Sulfonic acid derivatives
Acidolysis 9, 20, 27
Acoxyacetals
 — startg. m. f.
 hydroxyacetals 9, 11
 β -Acoxy carboxylic acid esters
 — startg. m. f.
 α,β -ethylenecarboxylic acids
 9, 932
Acoxy compounds (s. a. Acylation,
 Carboxylic acid esters)
 — from
 acetals 9, 353
 1,1-acoxyhalides 7, 126
 ethylene derivatives 9, 232
 — startg. m. f.
 ketones 9, 361
Acoxyfurans
 — startg. m. f.
 halogenofuranones 9, 610
Acoxyhalides
 — startg. m. f.
 ethers, cyclic 9, 376
1,1-Acoxyhalides
 — startg. m. f.
 acetals 9, 600
 α -Acoxyketones
 — from
 α -diazoketones 9, 287
 p-dioxanes 9, 796
 enoesters 9, 642
 — startg. m. f.
 glycols 9, 227
Acoxymercaptals
 — startg. m. f.
 hydroxymercaptals 9, 15
Acoxymercaptans
 — from
 hydroxymercaptans 9, 271
1-Acoxy-1,2-oxido compounds
 — startg. m. f.
 α -hydroxyketones 9, 202
Acoxysilanes
 — from
 halogenosilanes 9, 186
11 β -Acoxysteroids 9, 267

Acrylic acids s.

α,β -Ethylenecarboxylic acids
Acrylonitrile s. Cyanoethylation
Activator in Grignard reactions
 9, 901, 903
Acyl s. Replacement
Acylamines (s. a. Carboxylic acid
 amides)
 — alkylation s. Carboxylic acid
 amides, substitution
 — from
 amines s. Acylation
 nitro compounds 9, 33
 — special s.
 2-acyl-1,2-dihydroisoquinaldo-1-
 nitriles
 1-acyl-1,2-dihydroquinaldo-2-
 nitriles
 formamides
 N-nitrosoacylamines
 α -Acylaminoalcohols s. 2-Acylamino-
 3-aryl-2-propen-1-ols, Acylamino-
 sugars
2-Acylamino-3-aryl-2-propen-1-ols
 — from
 azlactones 9, 2
Acylaminocarboxylic acid esters
 — startg. m. f.
 (carbalkoxyalkylimino)halides
 9, 521
 (diacylamino)carboxylic acid
 esters 9, 521
 β -Acylaminocarboxylic acid esters
 s. α -Nitro- β -acylaminocarboxylic
 acid esters
Acylaminocarboxylic acids
 — startg. m. f.
 (diacylamino)carboxylic acids
 9, 434
 oxazolones 9, 369
 α -Acylaminocarboxylic acids
 — from
 acylaminomalonic acid esters
 9, 152
2-Acylamino-1,3-diols
 — from
 carboxylic acids 9, 876
Acylaminohalides
 — startg. m. f.
 aminoalcohols 9, 330
Acylaminomalonic acid esters
 — startg. m. f.
 α -acylaminocarboxylic acids
 9, 152
 α -aminocarboxylic acids 9, 157
Acylaminosugars, Walden inversion
 9, 10

Acylaminosulfonic acid amides

- startg. m. f.
- aminosulfonic acid amides 9, 392
- Acylation* (s. a. Acoxy...)
- of
 - amines 9, 392
 - aminocarboxylic acids 9, 501
 - dithiols 9, 668
 - hydroxy compounds $\text{OC}\ddagger\text{O}$; $\text{OC}\ddagger\text{Hal}$
- , *decarboxylative* 9, 914
- , *oxidative* s. Oxidation, acylating
- , *selective* 9, 319
- , —, of phenol groups 9, 258

C-Acylation s. Ketones

- N-Acylation* 9, 876
- with peroxy carboxylic acids 9, 450
- , *selective* 9, 517
- , —, of aminohydroxycarboxylic acids 9, 506

S-Acylation 9, 701*Acyliurets*

- from
 - acyldicyanodiamides 9, 219
- startg. m. f.
- 1,3,5-triazines 9, 560

Acyldicyanodiamides 9, 511

- startg. m. f.
 - acylbiurets 9, 219
 - acylguanylthioureas 9, 652
 - acylguanylureas 9, 219
 - 1,3,5-triazines 9, 417
- 2-Acyl-1,2-dihydroisoquinaldo-1-nitriles* and
- 1-Acyl-1,2-dihydroquinaldo-2-nitriles* s. Reissert compounds

C- β -Acylethylation 9, 861*S- β -Acylethylation* 9, 679*Acy group, migration*

- , —, N-acyl from O-acyl 9, 246
- , —, O-acyl from N-acyl 9, 246
- , —, O-acyl from S-acyl 9, 248

Acylguanidines 9, 439*Acylguanylthioureas*

- from
 - acyldicyanodiamides 9, 652

Acylguanylureas

- from
 - acyldicyanodiamides 9, 219

Acyhalogenosugars s.*Acetohalogenosugars**O-Acyl-N-heterocyclics*

- from
 - Reissert compounds,
 - rearrangement 9, 580

Acyhydrazones

- from
 - oxo compounds 9, 431

— startg. m. f.

 oxo compounds 9, 431

2-Acylimidazoles, 4-subst.

— from

α -azidoketones 9, 485

α -halogenoketones 9, 485

Acylketones, cyclic

— startg. m. f.

 ketocarboxylic acids 9, 226

Acyloin condensation 9, 931

—, —, stereospecific 9, 935

Acyloins (s. a. Benzoins,

α -Hydroxyketones)

— startg. m. f.

 glycols 9, 75

 hydrocarbons 9, 931

Acyl peroxides

— as additional reagents s.

 Benzoyl peroxide

— from

 carboxylic acid anhydrides 9, 165

— startg. m. f.

 alcohols 9, 6

Acylsemicarbazides

— from

 carboxylic acid hydrazides 9, 409

Acylsulfides s. Thiolic acid esters*Acylureas*

— from

 carbodiimides 9, 277

Adams catalyst (platinum oxide)

 s. Platinum catalysts

Addition

— to carbon-carbon double bonds of Grignard reagents 9, 770/1

— to carbon-carbon triple bonds s. Acetylene derivatives

Alcohols

—, derivatives s. Acylation

— from

 acyl peroxides 9, 6

 alkoxymethyl ethers 9, 270

 carboxylic acid esters by

 hydrolysis $\text{HO}\ddagger\text{C}$

 — — — by reduction (prim.

 alcohols) 9, 567

 — acids (prim. alcohols) 9, 108

 ethylene derivatives 9, 790

 oxido compounds 9, 66

 — — — synthesis, prim. alcohols

 9, 748

 oxo compounds 9, 61, 63, 70

 ketones (sec. alcohols)

$\text{HC}\ddagger\text{OC}$

 — — — synthesis 9, 735

 aldehydes (sec. alcohols)

 9, 848

 ketones (tert. alcohols) 9, 738,

 peroxides 9, 6 [746, 981]

(*Alcohols*)
 —, homologation 9, 750
 —, oxidation with tert-butyl hypochlorite 9, 363
 — special s.
 acetylene-alcohols
 α -acylaminoo-
 amino-
 carbinols
 carbohydrates
 cyanohydrins
 1,2-dihalogen-3-alcohols
 diols
 glycols
 halogenhydrins
 nitroalcohols
 oxidoalcohols
 pinacols
 polyalcohols
 — startg. m. f.
 aldehydes (from prim. alcohols)
 $\text{OC}\uparrow\text{H}$
 ammonium salts, quaternary 9, 993
 carboxylic acid esters (from 2 molecules) 9, 363
 ethylene derivatives $\text{CC}\uparrow\text{O}$
 halides $\text{HalC}\uparrow\text{O}$
 α -halogenoketones 9, 618
 ketones (from sec. alcohols)
 $\text{OC}\uparrow\text{H}$
 phosphonyl dichlorides 9, 711
 thioethers 9, 702
 ureas, sym. 9, 460
 —, *medium-N-heterocyclic*
 — from
 ketones, N-bicyclic 9, 32
Alcoholysis s. Transesterification
Aldehyde acetates s. 1,1-Di(acoxy) compounds
Aldehyde group, introduction into ar. nuclei 9, 864, 871, 873
Aldehydes (s. a. Hydroxymethylene . . .)
 — from
 amines, tert. 9, 290
 ammonium salts, quaternary 9, 553
 carboxylic acid esters 9, 112
 — hydrazides 9, 124
 1,1-diacoxy compounds 9, 251
 halides, synthesis with addition of 1 C-atom 9, 903
 hydrobenzoins 9, 732
 hydrocarbons (methyl groups) 9, 251
 α -hydroxycarboxylic acids 9, 363
 nitrones 9, 553

— special s.
 alkoxy-aldehydes
 di-
 ethylene-
 hydroxy-
 α -keto-
 o-nitro-
 — startg. m. f.
 alcohols, sec. 9, 848
 α -aminocarboxylic acids,
 synthesis with addition of 2 C-atoms 9, 832
 α -amino- β -hydroxycarboxylic acid esters 9, 730
 α -prim-aminonitriles, synthesis with addition of 1 C-atom benzils 9, 732 [9, 824]
 carboxylic acid esters (from 2 aldehyde molecules) 9, 211
 cinnamylidenemalonic acids 9, 828
 α -cyanosulfonates 9, 663
 aci- α , γ -dinitroglutaric acid esters, salts of — 9, 856
 α , β -ethylenecarboxylic acids, synthesis with addition of 2 C-atoms 9, 831
 ethylene derivatives, synthesis 9, 848
 furans, 2,5-dihydro-3,4-dihydroxy-2-imino- 9, 823
 hydrobenzoins 9, 732
 hydrocarbons, synthesis 9, 848
 β -hydroxyammonium salts, quaternary, cyclic 9, 733
 α -nitro- β -acylaminocarboxylic acid esters 9, 841
 nitroalcohols 9, 749
 nitroethylene derivatives 9, 830
 quinol monoesters 9, 207
 stilbenes 9, 677
 4-thiazolidones 9, 662
 s-trithianes 9, 677
 —, *N-heterocyclic*
 — from
 N-oxides 9, 243
o-Aldehydocarboxylic acids
 — startg. m. f.
 phthalides, subst. 9, 811
Alder s. Diene synthesis
Alder-Rickert synthesis 9, 917
Aldoximes s. Oximes
Alicyclic compounds s. Isocyclics
Alkali cyanides (s. a. Potassium —, Sodium cyanide) 9, 866
 — halides (s. a. under individual elements) 9, 622
 — salts (s. a. under individual elements) 8, 944

Alkene oxides s. Orido compounds
Alkenes s. Ethylene derivatives
Alkenyls s. Lithium alkenyls
N-Alkoximes s. Nitrones
Alkoxyaldehydes
— from
 ethylenealdehydes 9, 225
Alkoxyamines s. Aminoethers
Alkoxy carboxylic acid esters
— startg. m. f.
 lactones 9, 374
Alkoxydialdehydes
— from
 furans, 2,3,5-trialkoxytetrahydro-
 9, 381
3-Alkoxy-2-ethylenalcohols
— startg. m. f.
 α,β -ethyleneketones 9, 980
3-Alkoxyethylene derivatives
— startg. m. f.
 dienes 9, 950
2-Alkoxyethylenimines
— from
 oxime sulfonates 9, 242
— startg. m. f.
 α -aminoketones 9, 247
 ethylenimines 9, 242
Alkoxyformic acid anhydrides,
 mixed
— as intermediates 9, 454
— startg. m. f.
 carboxylic acid amides 9, 452
 — esters 9, 276
 thiolic acid esters 8, 528
Alkoxyhalides s. Halogenethers
1,1-Alkoxyhalides
— from
 acetals 9, 620
1,2-Alkoxyhalides
— from
 ethylene derivatives 9, 604
Alkoxymethylene compounds
— startg. m. f.
 alkylthiomethylene compounds
 9, 660
Alkoxymethyl ... s.a. Formaldehyde
 derivatives
Alkoxymethyl ethers
— protection of hydroxyl groups
 9, 270
— startg. m. f.
 alcohols 9, 270
Alkoxymethylureas
— from
 di(ureidomethyl) ethers 9, 273
Alkoxysilanes
— startg. m. f.
 halogenosilanes 9, 590
 silanes, synthesis 9, 715

Alkyl-oxygen fission 9, 673
Alkylation, α -side chain — of
 pyridines 8, 851
—, selective, of ketones 4, 775
C-Alkylation of phenols 9, 882
N-Alkylation 9, 113, 514
— of
 carboxylic acid amides 9, 512
 indoles 9, 539
 2,4-oxazolidiones 9, 24
 sulfimides 9, 520
—, selective 9, 489, 512, 540
O-Alkylation, reductive
— of
 steroid ketones 9, 215
Alkylbenzenes, synthesis 9, 981
Alkylene oxides s. Orido compounds
Alkyl halides s. Halides
o-Alkyl-N-heterocyclics
— from
 Reissert compounds 9, 581
Alkyl hypochlorites s. tert-Butyl
 hypochlorite
Alkylidene ... s.a. Methylene ...
Alkylidenephthalides
— startg. m. f.
 carboxylic acids 9, 71
a-Alkyl- β -ketocarboxylic acid esters
— from
 β -ketocarboxylic acid esters
 9, 933
Alkyl magnesium halides s.
 Magnesium
Alkylmercapto ... s. Alkylthio ...
Alkyl migration 9, 940
Alkyl nitrite as additional reagent
 9, 126
Alkylthiomethylene compounds
— from
 hydroxymethylene compounds
 9, 660
 orthotriithioformic acid esters
 9, 913
Alkylthiomethylsilanes 9, 694
S-Alkylthiosemicarbazones s.
 Isothiosemicarbazones
 α -Allenecarboxylic acids
— startg. m. f.
 β,γ -ethylenecarboxylic acids,
 synthesis 9, 771
Allenes
— from
 acetylene derivatives 9, 782/3
— startg. m. f.
 furan ring 9, 379
Allyl bromide as additional reagent
 9, 927
Aluminum 9, 459
— nickel s. Nickel-aluminum

- (*Aluminum*)
- *alkoxide* 9, 115, 211, 344
 - *amalgam* 9, 155, 773
 - *bromide* 9, 655, 911
 - *chloride* $\text{CC}\ddagger\text{O}$; $\text{CC}\ddagger\text{Hal}$; 9, 260, 495, 637, 671, 706, 748, 795, 916, 939, 971
 - — */sodium chloride* 9, 785, 940
 - *halides* 9, 605
 - *hydride* s. *Lithium aluminum hydride*
 - *oxide* 9, 783, 981
 - — */silica* 9, 563
 - Ambelite* 9, 430, 749, 973
 - Amides* s. *Carboxylic acid amides, Sulfonic* —
 - Amidines*
 - *special s.*
 - formamidines
 - oxamidines
 - N-thioacylamidines
 - *startg. m. f.*
 - azomethines, synthesis 9, 857
 - oxo compounds, synthesis 9, 857
 - pyrimidines 9, 455
 - , *substitution* 9, 494
 - Amination* 9, 429
 - Amines* (s. a. *Amines, ar., cyclic, prim., sec., tert.*)
 - , *alkylation* 9, 465
 - , *exchange of substituents* 9, 625
 - *from*
 - acylaminies $\text{HN}\ddagger\text{C}$ (s. a. *N-Deacylation*)
 - azo compounds 9, 41
 - carboxylic acid amides, by reduction 9, 113, 524
 - — —, Hoffmann degradation 9, 583
 - acids 9, 551
 - diazo compounds 9, 876
 - hydrazo compounds 9, 41
 - hydrazone 9, 444
 - nitriles, degradation with loss of 1 C-atom 9, 583
 - , synthesis 9, 756
 - nitro compounds $\text{HN}\ddagger\text{O}$
 - N-nitrosamines 9, 34
 - oximes 9, 36
 - oxo compounds 9, 459
 - thioethers 9, 535
 - urethans 9, 50, 54, 56, 860 (s. a. *N-Decarbalkoxylation*)
 - , *hydrogenolysis* 9, 53
 - , *reaction with formaldehyde and hydrogen sulfide* 9, 664
 - *special s.*
 - *ethylene-amines*
 - halogen-

- methyl-nitramines
(triphenylmethyl)amines
- *startg. m. f.*
 - acylaminies s. *N-Acylation*
 - azo compounds, oxidation 9, 385
 - bisoxamidines, sym. 9, 407
 - bisthiuram disulfides 9, 412
 - dithiocarbamic acid esters 9, 705
 - hydrazines 9, 569
 - nitro compounds 9, 169
 - oxo compounds, synthesis 9, 868
 - phenolethers 9, 289
 - phenols 9, 289
 - thiazole ring, 2-amino- 9, 659
 - S-thiocarbamic acid esters 9, 536
 - thioethers 9, 411
 - thioureas, sym. 9, 505
 - ureas 9, 404, 481
 - , *disubst.* 9, 536
 - urethans 9, 519
 - , *ar.*
 - , *direct halogenation* 9, 615
 - *startg. m. f.*
 - o-aminophenols 9, 203
 - o-amino sulfuric acid esters 9, 203
 - , *cyclic* s. *Imines, cyclic*
 - , *prim.*
 - *from*
 - ketones 9, 36
 - *startg. m. f.*
 - amines, sec. s. below
 - *sec.*
 - *from*
 - amines, prim. 9, 534
 - — and halides $\text{NC}\ddagger\text{Hal}$
 - — — hydroxy compounds 9, 451
 - — — phenols 9, 713
 - ammonium salts, quaternary, transamination 9, 478
 - azomethines 9, 80
 - *startg. m. f.*
 - amines, tert. s. below
 - *tert.*
 - *from*
 - amines, sec. 9, 524
 - ammonium salts, quaternary 9, 418, 949
 - — —, transamination 9, 478
 - betaines 9, 217
 - diazo compounds 9, 854
 - oxo compounds 9, 457
 - *startg. m. f.*
 - aldehydes 9, 290
 - a-aminocarboxylic acids,* synthesis 9, 860
 - ammonium salts, quaternary 9, 991/2

- hydrocarbons 9, 127
- γ -ketothioethers 9, 679
- γ -nitroketones 9, 861
- , transalkylation 9, 550
- Aminesulfonimides*
- from
 - sulfonylhydrazone salts 9, 984
- startg. m. f.
 - sulfonylhydrazone salts 9, 984
- Amino acid oxidase* 9, 291
- Aminoacids* s. Aminocarboxylic acids
- Aminoalcohols*
 - from
 - acylaminohalides 9, 330
 - dicarboxylic acid amide esters 9, 114
 - monoamides 9, 114
 - special s.
 - halogenaminoalcohols
 - startg. m. f.
 - aminoethers 9, 301
 - , *tert. alcohols*
 - from
 - aminocarboxylic acid esters 9, 742
- 1,1-Aminoalcohols*
 - from oxo compounds 9, 401
- 2-Aminoalcohols*
 - from
 - amines 9, 45
 - cyanohydrins 9, 270
 - halogenourethans 9, 45
 - α -isonitrosoketones 9, 74
 - 2-oxazolidones 9, 45
 - startg. m. f.
 - oxazolidines 9, 469, 471
 - oxazoline-2-thiols 9, 412
- Aminoazo compounds*
 - from
 - nitroazo compounds 9, 35
- α -Aminocarboxylic acid esters* (s. a.
 - α -Amino- β -hydroxycarboxylic acid esters)
- startg. m. f.
 - aminoalcohols (*tert. alcohols*) 9, 742
- Aminocarboxylic acids*
 - startg. m. f.
 - betaines 9, 510
 - imidocarboxylic acid chlorides 5, 341
 - imidocarboxylic acids 5, 341
- α -Aminocarboxylic acids*
 - from
 - acylaminomalonic esters 9, 157
 - aldehydes, synthesis with addition of 2 C-atoms 9, 832
 - amines, *tert.*, synthesis 9, 860
 - coumarins 9, 214
 - 2,5-oxazolidiones 9, 49
- oxo compounds, synthesis with addition of 1 C-atom* 9, 832
- 5-thiazolidone-2-thiones 9, 336
- startg. m. f.
 - hydantoins 9, 404
 - α -ketocarboxylic acids 9, 291
- via hydantoins 9, 832
- Aminodesoxybenzoins*
 - from
 - benzoins 9, 472
- Aminodithiolcarbonic acid esters*
 - from
 - hydroxydithiocarbamic acid esters 9, 705
 - thiazolines 9, 705
- Aminoethers*
 - from
 - aminoalcohols 9, 301
- Amino groups* s. Replacement
- Aminohalides* s. Halogenamines
- α -Amino- β -hydroxycarboxylic acid esters*
 - from
 - aldehydes 9, 730
- Aminohydroxycarboxylic acids*
 - , N-acylation, selective 9, 506
- Aminoketones* (s. a. Halogenamino-ketones)
 - from
 - lactams, synthesis 9, 842
- α -Aminoketones* (s. a. Aminodesoxybenzoins)
 - from
 - 2-alkoxyethylenimines 9, 247
 - α -diazoketones 9, 493
 - α -isonitrosoketones 9, 38
- β -Aminoketones*
 - startg. m. f.
 - cyclohexenone ring 9, 863
- o -Aminomethyl derivatives*
 - startg. m. f.
 - o -azidoaldehydes 9, 382
- α -Aminomethyleneketones*
 - , aromatization 9, 315
 - startg. m. f.
 - ketones 9, 769
- α -prim-Aminonitriles*
 - from
 - aldehydes, synthesis with addition of 1 C-atom 9, 824
- tert-Aminonitriles*
 - startg. m. f.
 - pyrrolidines 9, 582
- Aminophenols*
 - startg. m. f.
 - diazo oxides 9, 383
 - quinones 9, 293

- o*-Aminophenols
 - from
 - amines, ar. 9, 203
- Aminophosphoric acids
 - from
 - ammonium phosphates, quaternary, inner 9, 82
- 5-Aminopyrimidines
 - , ring closures with — 9, 424
 - via 5-nitrosopyrimidines 9, 448
- 4-Aminoquinolines, *N*-subst.
 - from
 - 4-ketoquinolines, 1,2,3,4-tetrahydro- 9, 463
- C-Aminosilanes 9, 985
- Aminosugars s. Glycosamines
- α -Aminosulfones (s. a. Amino-methylsulfones)
 - from
 - α -hydroxysulfones 8, 426
- Aminosulfonic acid amides
 - from
 - acylaminosulfonic acid amides 9, 392
 - aminosulfonic acids 9, 392
- Aminosulfonic acids
 - startg. m. f.
 - aminosulfonic acid amides 9, 392
- o*-Aminosulfuric acid esters
 - from
 - amines, ar. 9, 203
- o*-Aminothiocyanates
 - startg. m. f.
 - thiazole ring, 2-amino- 9, 659
- Aminothioethers
 - from
 - azomethines 9, 651
- Ammonium acetate 9, 46, 840
 - benzenesulfonate as additional reagent 9, 582
 - carbonate 9, 672
 - chloride 9, 47, 411, 458, 470
 - phosphates, quaternary, inner
 - startg. m. f.
 - aminophosphoric acids 9, 82
 - salts as additional reagents 9,
 - —, quaternary [259, 697]
 - as additional reagents s.
 - Tetraethylammonium acetate, — bromide
 - , v. Braun degradation by trans-alkylation 9, 547
 - , exchange of anions 9, 994
 - bromides from methane-sulfonates 9, 430
 - chlorides from iodides 9, 949
 - from
 - alcohols 9, 993
 - amines, tert. 9, 991/2
- betaineazzeniates 9, 410
- sulfonic acid esters 9, 430
- special s.
- ammonium phosphates
- betaineazzeniates
- betaines
- hydroxyammonium salts
- lactoneammonium —
- startg. m. f.
 - aldehydes 9, 553
 - amines, sec. and tert., trans-amination 9, 478
 - , tert. 9, 418, 949
- carboxylic acids, synthesis with addition of 1 C-atom 9, 866
- ethers 9, 280
- hydroxylamines 9, 553
- nitriles, synthesis with addition of 1 C-atom 9, 866
- —, —, cyclic
- special s.
 - β -hydroxyammonium salts, quaternary, cyclic
 - piperidonium —, —, —
- —, —, inner s. Betaines
- —, —, unsatd., hydrogenolysis 9, 128
- Anhydro-*N*-carboxy- α -amino-carboxylic acids s.
- 2,5-Oxazolidiones
- 3,4-Anhydroglycitals 9, 377
- Aniline as additional reagent 9, 830/1, 967, 986
- Anils s. Azomethines
- Anion exchange resins, catalysis by 9, 749
- Annulization, linear 9, 760
- Anthracenes
 - special s.
 - anthraquinones
 - anthrones
 - , 9,10-dihydro-, subst., decomposition, thermal 9, 977
- Anthraquinone ring closure 5, 481
- Anthraquinones 9, 940
- Anthrones s. Arylideneanthrones, Bianthrones, Bianthronyls
- Arenes s. Aryl derivatives
- Aromatization (s. a. Dehydrogenation) 9, 981, 983
 - by
 - elimination of an oxygen bridge 9, 959
 - enolization 9, 800
 - migration of a carbon-carbon double bond 9, 779
 - of
 - α -aminomethyleneketones 9, 315
 - polyhalides 9, 973

- , stepwise 9, 923
- Arsines** (s. a. Biarsines)
- , tert. 9, 718
- Arylacetoacetic acid esters**
- startg. m. f.
- coumarins, 4-methyl- 9, 954
- Arylazodisulfonylmethanes** 9, 422
- Aryl derivatives** (s. a. Isocyclics, Heterocyclics, Rings)
 - special s.
 - 1,1-diaryl derivatives
 - α,β -ethylenearenes
 - triarylmethanes
- 3-Arylfurans**, oxidation 9, 253
- 10-Arylideneanthrones** 9, 833
- Arylmethane derivatives** s. Triaryl-methanes
- 1,4-Azaphosphorines** 9, 726
- Azeotropic** s. Water separation
- Azetidinones** s. Penicillin ring system
- Azides**
 - from ethylene derivatives 9, 415
- o-Azidoaldehydes**
 - from o-aminomethyl derivatives 9, 382
- a-Azidoketones**
 - from α -halogenoketones 9, 485
 - startg. m. f.
 - 2-acylimidazoles, 4-subst. 9, 485
- o-Azido ω o compounds**
 - startg. m. f.
 - isoxazole ring 9, 170
- Azines**
 - from hydrazones 9, 495
- Aziridines** s. Ethylenimines
- Azlactones** (s. a. Oxazolones)
 - startg. m. f.
 - 2-acylamino-3-aryl-2-propen-1-ols 9, 2
 - α -hydroxycarboxylic acids 9, 288
- Azo compounds**
 - by coupling 9, 681
 - from
 - amines by oxidation 9, 385
 - O-azo compounds 9, 419
 - N-nitrosoacylamines 9, 548
 - special s.
 - aminoazo compounds
 - arylazodisulfonylmethanes
 - nitroazo compounds
 - startg. m. f.
 - amines 8, 27; 9, 41
 - hydrazo compounds 9, 41
 - hydrazones 9, 419
- O-Azo compounds** 9, 419
 - startg. m. f.
 - azo compounds 9, 419
- Azomethines** (s. a. Imines)
 - cleavage 9, 730
 - from
 - hydrocarbons and amidines, synthesis 9, 857
 - nitriles, synthesis 9, 756
 - special s.
 - hydroxyazomethines
 - startg. m. f.
 - aminothioethers 9, 651
 - aci- α,γ -dinitroglutaric acid esters, salts of — 9, 856
 - 1,2-nitramines 9, 413
 - oxo compounds 9, 857
- Azosulfonylthioethers**, cleavage 9, 140
- Azoxy compounds**
 - from
 - hydrazones 9, 167
 - nitroso compounds 9, 387
 - startg. m. f.
 - hydrazo compounds 9, 40
 - hydrazones 9, 167
 - hydroxyazo compounds 9, 244
- Azulenes** 9, 859
- Baeyer condensation** 9, 846
- Barbituric acid derivatives** s. Pyrimidines
- Barium hydroxide** 9, 189, 348, 832
 - oxide 9, 434 (s. a. Copper-chromium-barium oxide)
- Bases**
 - from
 - hydrochlorides 9, 985
 - Beckmann mixture** 1, 167
 - Benzene ring** (s. a. Aryl derivatives, Cyclohexa...)
 - by trimerization 9, 775, 850
 - from
 - cyclohepta-4,6-diene-1,2-diones 9, 965
 - tropone ring 9, 310
 - Benzenesulfonyl chloride** as additional reagent 9, 387
 - Benzils**
 - from
 - aldehydes 9, 732
 - benzoins 9, 357/8
 - hydrobenzoins 9, 732
 - Benzimidazoles** (s. a. Imidazoles)
 - identification of carbohydrates 9, 498
 - Benzofurans** 9, 953

Benzofurazan oxides, Benzofuroxans
 — from
 o-nitramines 9, 385
Benzoin (s. a. Acyloins)
 — startg. m. f.
 aminodesoxybenzoins 9, 472
 benzils 9, 357/8
Benz[a]quinolizine ring 9, 949
Benzothiazole ring 9, 658
Benz-1,3-oxathiol-2-one ring opening
 9, 55
Benz-1,3-oxathiol-2-ones 9, 55
Benz-3,1-oxazine ring opening 9, 68
Benz-3,1-oxazines, 1,2-dihydro-
 9, 446
Benzoxazoles 9, 558
Benzylation s. Acylation
Benzoyl peroxide as additional
 reagent 9, 656
Benzylidemethylamine as additional
 reagent 9, 343
Benzyltrimethylammonium . . . s.
 Trimethylbenzylammonium . . .
Betaineazenates
 — startg. m. f.
 ammonium salts, quaternary
 9, 410
Betaines
 — from
 aminocarboxylic acids 9, 510
 — special s.
 hydroxybetaines
 — startg. m. f.
 amines, tert. 9, 217
Bi- s. a. Di-
Bianthrone
 — from
 bianthroneyls 9, 920
Bianthronyls
 — startg. m. f.
 bianthrone 9, 920
Biarsines 9, 707
7-Bicyclo[2.2.2]octene-2,3,5,6-tetracarboxylic acid anhydrides
 — from
 thiophene 1,1-dioxides 9, 976
Biguanides
 — startg. m. f.
 1,3,5-triazines, 1,2-dihydro- 9, 546
Birch reduction 5, 47; 9, 87
 —, improved 9, 86
Bis(acylamidomethyl) ethers
 — startg. m. f.
 (hydroxybenzyl)acylamines 9, 843
Bisamides s. 1,1-Di(acylamino)
 compounds
Bishydroxythiuram disulfides
 — startg. m. f.
 oxazoline-2-thiols 9, 412

Bismuth compounds, organo 9, 719
Bisoxamidines, sym.
 — from
 amines 9, 407
Bisthiuram disulfides (s. a.
 Bishydroxythiuram disulfides)
 — from
 amines 9, 412
Bis(triarylthiomethyl) trisulfides
 — from [9, 696]
 trichloromethylsulfenyl chloride
 9, 696
 — startg. m. f.
 trithiopercarbonic acid esters
 9, 333
Biurets s. Acylbiurets
Blocking s. Protection
 — groups s. Protective groups
Bodroux reaction 9, 456
Borax 9, 656
Boric acid 9, 18
 — — esters s. Chloroboric acid
 esters
Boron chloride 9, 194
 — fluoride 9, 236, 272, 670, 774, 784,
 793/4, 838, 933
 — hydride s. Lithium boron
 hydride, Sodium — —
Boroxides s. Diboroxides
Bossel s. Neber
v. Braun degradation of ammonium
 salts, quaternary, by trans-
 alkylation 9, 547
Bromides s. Halides, Replacement
Bromination s. Halogenation,
 Replacement of hydrogen by
 halogen
Bromine 9, 659, 923
 —/dioxane 9, 615
α-Bromoacetyl compounds s.
 α-Halogenoketones
N-Bromosuccinimide (s. a.
 N-Halogenosuccinimide) 9, 168,
 380, 611, 627, 640
 —, reaction with ethylene
 derivatives 9, 606
Brunner s. Einhorn
Buffer (s. a. Citrate/hydrochloric
 acid buffer)
 —, pH 7.8 9, 786
n-Butylamine as additional reagent
 9, 653
n-Butylammonium carboxylate as
 additional reagent 9, 417
tert-Butyl esters as intermediates
 9, 24, 881
 — hypochlorite as additional
 reagent 9, 362/3, 617/8
Butyl nitrite s. Alkyl nitrite

- Cadmium chloride* 9, 907
Calcium carbide 9, 778
 — *carbonate* 9, 635, 699
 — *chloride* 9, 600
 — *oxide* (s. a. Zinc oxide) 9, 153
Carbalkoxy- s. a. *Carbethoxy-*,
Carbobenzoxy-
N-Carbalkoxy- s. a. *Urethans*
(Carbalkoxyalkylimino)halides
 — from
 acylaminocarboxylic acid esters
 9, 521
 — startg. m. f.
 (diacylamino)carboxylic acid
 esters 9, 521
N-Carbalkoxyaminocarboxylic acids
 — startg. m. f.
 N-carboxyaminocarboxylic acid
 anhydrides 9, 370
Carbalkoxycyanamides 9, 508
Carbalkoxy derivatives of amines
 s. *N-CARBONYLATION*
Carbalkoxydicyanodiamides
 — startg. m. f.
 carbalkoxyguanylureas 9, 562
 1,3,5-triazines 9, 562
Carbalkoxyguanylureas
 — from
 carbalkoxydicyanodiamides 9,
 562
 — startg. m. f.
 1,3,5-triazines 9, 562
Carbalkylation s. a.
 Carbethoxylation,
 Carbobenzoxylation
N-Carbalkylation (s. a. *Urethans*)
 from amines)
 —, selective 9, 507
N-Carbalkoxypeptides
 — startg. m. f.
 hydantoins 9, 568
 α-ureidocarboxylic acids 9, 568
Carbamates, Carbamic acid esters s.
Urethans
Carbamyl derivatives s. *Ureas*
Carbamylformamidines s.
 N,N'-Dicarbamylformamidines
Carbamylmercapto compounds s.
 Thiourethans
O-Carbethoxylation 9, 320
Carbinols (s. a. *Alcohols*)
 —, *N-heterocyclic* from *N-oxides*
 9, 243
N-CARBOBENZOXY group, elimination,
 selective 9, 51
N-Carbobenzylation 9, 529
Carbodiimides
 — as additional reagents 9, 177, 184
 — startg. m. f.
 acylureas 9, 277
Carbohydrates
 —, acetobrominolysis 9, 630
 —, deacylation HO↑C
 —, degradation with loss of
 1 C-atom, via 1,1-disulfones 9, 342
 —, —, oxidative 9, 348
 —, derivatives
 benzimidazoles 9, 498
 —, reactivity, differential, of the
 hydroxyl groups 9, 183
 —, sodio derivatives 9, 183
 — s. a. *acylaminosugars*
 glycosamines
 glycosides
 osones
 saccharides
 — startg. m. f.
 osones 9, 356
 polyalcohols 9, 72
Carbon as additional reagent 9, 941
Carbon dioxide, synthesis of ketones,
 sym. 9, 819
Carbonic acid esters, cyclic 9, 308
Carbon monoxide, elimination of —
 s. *Carboxylic acids* from
 α-ketocarboxylic acids
Carbonylation 3, 588
Carbon tetrachloride as solvent
 9, 202
Carbonyl compounds s. *oxo*
 compounds
Carbostyrls s. *Hydroxycarbostyrls*;
 s. a. *Isocarbostyrls*
Carboxyaldehydes s.
 Aldehydocarboxylic acids
N-Carboxyaminoacarboxylic acid
 anhydrides (s. a.
 2,5-Oxazolidiones)
 — from
 N-carbalkoxyaminocarboxylic
 acids 9, 370
Carboxylactones
 — from
 cyanolactones 9, 826
 ketocarboxylic acids 9, 826
Carboxylation 2, 750; 6, 747, 763
Carboxylic acid acylthioethylamides
 — from
 carboxylic acid ethylenimides
 9, 454
 carboxylic acids 9, 454
Carboxylic acid amides
 — from
 carboxylic acid chlorides 9, 502
 — — — (subst. amides) 5, 341;
 9, 402, 474
 — — esters 9, 456

(Carboxylic acid amides)

- from
 - carboxylic acids 9, 425
 - (subst. amides) 7, 447; 8, 528; 9, 464, 474, 541, 627
 - — and phosphazo compounds (subst. amides) 9, 468
 - 1,1,1-dihalogenamines 9, 302
 - hydrazones, rearrangement 9, 294
 - nitriles 9, 216, 220/1, 583
 - and ethylene derivatives (subst. amides) 9, 416
 - oxido compounds 9, 237
 - phosphazo compounds (subst. amides) 9, 468
 - semicarbazones, rearrangement 9, 294
 - sulfamides (subst. amides) 9, 541
- special s.
- carboxylic acid acylthioethyl-amides
 - ethylenimides
 - dicarboxylic acid amide esters
 - monoamides
 - halogenocarboxylic acid amides
 - hydroxycarboxylic — —
 - lactams
 - a*-nitrocarboxylic acid amides
 - peptides
- startg. m. f.
 - amines, by reduction 7, 106, 461; 9, 113, 524
 - , Hofmann degradation 9, 583
 - imidazole ring 9, 486
 - ketones, synthesis 9, 872
 - nitriles 9, 525, 563, 565
 - , substitution 9, 479, 514
 - , cyclic s. Lactams
 - , sec. and tert. 9, 525
- Carboxylic acid anhydrides* (s. a. Dicarboxylic acid anhydrides)
 - from
 - carboxylic acid chlorides 9, 317, 321
 - acids 9, 261
 - , self-condensation 9, 914
 - startg. m. f.
 - acyl peroxides 9, 165
 - carboxylic acid esters 9, 257
 - hydrocarbons 9, 153
 - ketenes 9, 941
 - ketones 9, 845, 849, 914
 - , sym. 9, 914
 - thiolic acid esters 9, 674, 686
 - , mixed (s. a. Alkoxyformic acid anhydrides, mixed)
 - startg. m. f.
 - carboxylic acid amides 9, 453
 - — esters 9, 453

Carboxylic acid azides

- startg. m. f.
 - ureas 9, 481
- Carboxylic acid*
 - carbobenzoxyhydrazides 9, 504
- startg. m. f.
 - carboxylic acid hydrazides 9, 52
- Carboxylic acid chlorides*
 - as additional reagents 9, 525
 - from
 - carboxylic acids $\text{HalC}\ddot{\text{O}}$
 - special s.
 - ethylenecarboxylic acid chlorides
 - imidocarboxylic — —
 - startg. m. f.
 - carboxylic acid amides 9, 502
 - — —, subst. 5, 341; 9, 402, 474
 - — — anhydrides 9, 317, 321
 - — — hydrazides 9, 503
 - acids 9, 402
 - α,β -ethyleneketones 9, 875
 - ketones 9, 904, 908
 - with tert-butyl malonates 9, 881
 - with 2-tetrahydropyranyl malonates 8, 839
 - , cyclic 9, 971
 - thiolic acid esters 9, 650, 686
- Carboxylic acid esters* (s. a. Acylation, Carbalkoxy . . ., Dicarboxylic acid . . .)
 - from
 - alcohols (from 2 molecules) 9, 363
 - aldehydes (from 2 molecules) 9, 211
 - carboxylic acid anhydrides 9, 257
 - — —, mixed 9, 453
 - acids $\text{OC}\ddot{\text{O}}$; 9, 324, 476
 - α -halogenoketones 9, 314
 - hydrocarbons, synthesis with addition of 1 C-atom 9, 803
 - oxo compounds s. Reformatskii synthesis
 - hydrolysis $\text{HO}\ddot{\text{C}}$
 - silico-alkylation 9, 722
 - special s.
 - acetohalogenosugars
 - acooxy compounds
 - acylaminocarboxylic acid esters
 - alkoxycarboxylic — —
 - aminocarboxylic — —
 - tert-butyl esters
 - carboxylic acid phenolesters
 - cyanocarboxylic acid esters
 - dicarboxylic — —
 - diglycerides
 - hydroxycarboxylic acid esters
 - isocyanatocarboxylic — —
 - keto carboxylic — —

- lactones
- nitrocarboxylic acid esters
- polycarboxylic —
- sulfonylacetic —
- N-thiocarbonylaminocarboxylic —
- startg. m. f.
- alcohols, prim., reduction 9, 567
- aldehydes 9, 112
- carboxylic acid amides 9, 456
 - — hydrazides 9, 436, 476
 - — —, subst. 9, 467
- hydrocarbons $\text{HC}\ddot{\text{C}}$
- malonic acid monoesters 9, 729
- via alkoxyformic acid
- anhydrides, mixed 9, 276
- Carboxylic acid halides*
 - special s.
 - carboxylic acid chlorides
 - halogenocarboxylic acid halides
- startg. m. f.
- α -diazo- β -ketocarboxylic acid esters 9, 876
- Carboxylic acid ethylenimides*
 - from carboxylic acids 9, 454
- startg. m. f.
- carboxylic acid acylthioethyl-amides 9, 454
- Carboxylic acid hydrazides* (s. a. Carboxylic acid carbobenzoxy-hydrazides)
 - from carboxylic acid carbobenzoxy-hydrazides 9, 52
 - — chlorides 9, 503
 - — esters 9, 436, 476
 - — — (subst. hydrazides) 9, 467
 - acids 9, 476, 503
- special s.
- diacylhydrazines
- startg. m. f.
- acylsemicarbazides 9, 409
- aldehydes 9, 124
- Carboxylic acid phenoesters* 8, 223
- Carboxylic acids* (s. a. Carboxy ...)
- as additional reagents 9, 20
- from alkylidenephthalides 9, 71
- ammonium salts, quaternary, synthesis with addition of 1 C-atom 9, 866
- carboxylic acid chlorides 9, 402
- — esters $\text{HO}\ddot{\text{C}}$
- dicarboxylic acid imides, synthesis 9, 744
- β -diketones, cyclic 9, 228
- α,β -ethylenecarboxylic acids, synthesis 9, 771
- ethylene derivatives 9, 349
- α,β -ethylene- α -hydroxycarboxylic acid esters 9, 118
- halides 9, 891
- α -halogenoketones, cyclic 9, 310, 326
- hydrocarbons, synthesis with addition of 1 C-atom s.
- Carboxylation
- (methyl groups), oxidation 9, 252, 255
- α -hydroxylactams 9, 744
- ketocarboxylic acids 9, 366, 744
- α -ketocarboxylic acids, degradation with loss of 1 C-atom 9, 347
- nitriles 9, 279, 297, 769, 866
- oxo compounds s. Reformatskii synthesis
- phthalides 9, 366
- 1,1,1-trihalides 9, 327
- , selective formation 9, 329
- , identification with α -diazoketones 9, 287
- special s.
- acetylene-carboxylic acids
- α -acylamino-
- α -allene-
- amino-
- ciano-
- di-
- $\gamma\gamma$ -disulfonyl-
- ethylene-
- hydroxy-
- imido-
- keto-
- mercapto-
- poly-
- propionic acid
- N-thiocarbonylaminocarboxylic acids
- α -ureidocarboxylic —
- startg. m. f.
- 2-acylamino-1,3-diols 9, 876
- alcohols, prim. 9, 108
- amines 9, 551
- carboxylic acid acylthioethyl-amides 9, 454
 - — amides 9, 452
 - — —, subst. 7, 447; 8, 528; 9, 464, 476, 541, 627
 - — anhydrides 9, 261
 - — chlorides $\text{HalC}\ddot{\text{O}}$
 - — esters $\text{OC}\ddot{\text{O}}$; 9, 324, 476
 - — ethylenimides 9, 454
 - — hydrazides 9, 476, 503

- (*Carboxylic acids*)
- startg. m. f.
 - α-halogenocarboxylic acid
 - halides 9, 876, 960
 - hydrocarbons, decarboxylation
 - $\text{HC} \uparrow \text{C}$
 - , reduction 9, 108
 - tert-hydroxycarboxylic acids
 - ketenes 9, 960 [9, 201]
 - ketones 9, 810, 835, 849, 915
 - , cyclic 9, 947
 - —, long-chain, synthesis 9, 228
- Carboxylic acid-sulfonic acid derivatives* s. Sulfocarboxylic acid derivatives
- Carboxylic acid thioamides* (s. a. Dithiooxamides)
- from
 - hydrocarbons 9, 658
 - , substitution 9, 480
- Carboxyperoxydicarboxylic acid esters*
- from
 - dicarboxylic acid anhydrides and hydroperoxides 9, 209
- o-Carboxyphenylacetonitriles*
- startg. m. f.
 - homophthalic acids, subst. 9, 740
- Carboxysulfonic acid* ... s. Sulfocarboxylic acid ...
- Carboxythioethers* 9, 692
- from
 - halogenonitriles 9, 691
- Carboxythiolic acid esters*
- from
 - dicarboxylic acid anhydrides 9, 650
- Carrier*, in dehydrogenations 9, 926
- Catalase* 9, 291
- Catalysts* s. Activator, Chromite, Nickel, Palladium, Platinum
- Cation exchange resins* s. Amberlite
- Cetavlon* s. Trimethylhexadecyl-ammonium bromide
- Chain lengthening* (s. a. Synthesis) $\text{CC} \downarrow$, $\text{CC} \uparrow$
- Characterization of compounds* s. subentry *derivatives*
- N-Chloramides* as additional reagents 9, 397
- Chloranil* as additional reagent 9, 921
- Chlorides* s. Halides, Replacement
- Chlorination* (s. a. Halogenation, Replacement of hydrogen by halogen)
- , anhydrous, of thiocarboxylic acid esters and related compounds 9, 588
- Chlorine* as additional reagent 9, 589
- Chloroboric acid esters* s.
- Dichloroboric acid esters
- Chlorophosphines* 9, 725
- from
 - dichlorophosphines, synthesis 9, 727
 - startg. m. f.
 - phosphines, disproportionation 9, 57
- Chlorophosphites*
- , peptide synthesis with — 9, 475
- Chlorophosphonic* ... s. Chlorophosphoric ...
- Chlorophosphoric acid esters* s. Dialkyl chlorophosphate
- N-Chlorosuccinimide* (s. a. N-Halogenosuccinimide)
- as additional reagent 9, 363
- Chlorotitanium alkoxides* 9, 591
- Choline* as additional reagent 9, 894
- Chromans* 9, 372
- Chromic acid* 9, 200, 251-4, 354, 362
- Chromite catalysts* s. under Copper
- Chromium oxide* s. Copper-chromium-barium oxide
- Chromium oxide-alumina* 9, 777, 981
- Chromium trioxide* s. Chromic acid
- Chromone ring* (s. a. Isoflavones)
- from
 - o-hydroxy-β-diketones 9, 371
- Chromono(2',3':3,4)coumarins* 9, 374
- Cinnamylidenemalonic acids*
- from
 - aldehydes 9, 828
- Cinnolines*, 3-hydroxy- 9, 569
- cis*- s. Isomers
- Citrate/hydrochloric acid buffer* 9, 842
- Claisen* s. Perkin
- Cleavage* (s. a. Acid cleavage, Hydrolysis)
- of ethers $\text{HO} \uparrow \text{C}$
 - , hydrolytic, of the carbon chain 8, 298; 9, 797
 - , partial, of ethers 9, 16, 23
 - , reductive, of pyrimido[4,5-b]-pyrazine side chains 9, 155
- Clemmensen reduction*
- , hydrocarbons from β-keto-carboxylic acid esters 9, 154
- Cobalt carbonyl* 9, 750
- γ-Collidine* as additional reagent 9, 180
- Compounds, labeled* (s. a. Deutero-carboxylic acids from halides 9, 891)
- nitration 9, 427

- purines by transformylation
 9, 497
 —, —, introduction of labeled
 carboxyl-C 9, 729
 —, —, position isomerization,
 isotopic 9, 788
Compounds, optically active s.
 Stereoisomers
 —, *organometallic s.* Organometallic
 compounds
 —, *unsaturated s.* Acetylene —,
 Ethylene —
Condensation
 — with elimination of hydrogen
 halides 9, 875
 —, *disproportionative* 9, 275
Configuration
 —, *change in* — (s. a. Epimerization,
 Walden inversion)
 —, —, —, halogenosteroids 9, 609
 —, *retention of* — 9, 344
Copazolines 9, 487
Copolymerization
 —, cyclooctatetraenes, subst. by —
 9, 778
Copper 9, 493, 527, 677, 682, 867, 893,
 897
 — acetate 9, 356, 527
 —(I) bromide 9, 717, 782
 —(II) chloride 9, 287
 — chromite 9, 567
 — chromium-barium oxide 9, 550
 —(I) cyanide $\text{CC} \uparrow \text{Hal}$
 —(II) hydroxide 9, 732
 — nickel 9, 162
 — nitrate 9, 428
 —(II) oxide 9, 322, 526
 — sulfate 9, 105, 853, 868
Coumarin ring 9, 374, 814
 — from
 o-hydroxyketones 9, 827
 — — opening, reductive 9, 214
Coumarins
 — startg. m. f.
 α-aminocarboxylic acids 9, 214
 —, 4-methyl-
 — from
 arylacetoacetic acid esters 9, 954
 phenols and diketene 9, 954
Coumarones s. Benzofurans
Cumulenes s. 1,2,3-Trienes
Curtius degradation, shortened
 9, 551
Cyanamides
 — special s.
 carbalkoxy-cyanamides
 halogeno-
 — startg. m. f.
 ureas 9, 222
- Cyanamines* s. Aminonitriles
Cyanides s. Nitriles, Replacement
Cyanoalkylation s. Cyano-ethylation,
 -methylation
Cyanocarboxylic acid esters
 — special s.
 ethylene-α-cyanocarboxylic acid
 esters
 — startg. m. f.
 dicarboxylic acid imides 9, 559
Cyanocarboxylic acids s.
 o-Carboxyphenylacetonitriles
Cyanoethylation 9, 749
 — of phosphines 9, 709
C-Cyanoethylation 9, 763, 769
 — of
 aldehydes 9, 768
 1,1-disulfones 9, 767
 β-ketocarboxylic acid esters
 9, 765
 ketones via enamines 9, 912
Cyanogen, reaction with mercaptans
 9, 653
 —, reactions with — 9, 407
Cyanogenation s. Replacement of
 hydrogen by cyano groups
α-Cyanohydrazines
 — from
 hydrazones 9, 751
Cyanohydrins
 — startg. m. f.
 2-aminoalcohols 9, 270
 nitriles, synthesis 9, 847
γ-Cyanoketones 9, 765
Cyanolactones
 — from
 ketocarboxylic acids 9, 826
 — startg. m. f.
 carboxylactones 9, 826
C-Cyanomethylation 9, 855
α-Cyanosulfonates
 — from
 aldehydes 9, 663
 — startg. m. f.
 thiazoles, 2,4-diamino- 9, 663
Cyclization s. Ring closure
Cyclo- s. a. Ring-
Cycloalkanecarboxylic acids
 — by malonic ester synthesis 9, 884
Cycloalkenone ring (s. a. Cyclo-
 hexenone ring)
 — from
 diketones 9, 933
Cyclodehydration 9, 939
Cyclohepta-4,6-diene-1,2-diones
 — startg. m. f.
 benzene ring 9, 965
Cyclohexadienones 9, 910
Cyclohexenolones, condensed 9, 812

- Cyclohexenone ring**
- from
 - β -aminoketones 9, 863
- Cyclohexenones**
- from
 - phenoethers 9, 86/7
- via
 - nitrocyclohexenes 9, 299
- Cyclooctatetraenes, subst.**
- by copolymerization 9, 778
- Cyclopentanones**
- from
 - cyclopropanes 9, 766
- Cyclopropane ring**
- from
 - α,β -ethyleneoxo compounds 8, 927
- Cyclopropanes (s. a. Nitrocyclopropanes)**
- startg. m. f.
 - cyclopentanones 9, 766
- 3,5-Cyclosteroids**
- startg. m. f.
 - halogenosteroids 9, 635
 - steroids 9, 798
- , stereochemistry 9, 64

- Darzens synthesis of unsatd. ketones** 2, 751
- Deacylation (s. a. Hydrolysis)**
- , partial
- of
 - carbohydrates 9, 229
 - steroids 9, 13
- N-Deacylation** 9, 46
- , partial 9, 43
- , selective 9, 47
- O-Deacylation, partial** 9, 267
- Dealkylation s. a. Monodealkylation**
- O-Dealkylation s. a. Cleavage of ethers**
- Deamination s. a. Replacement of amino groups by hydrogen**
- , reductive 9, 125
- Debenzylation of carboxylic acid esters** 9, 118, 434
- N-Debenzylation** 1, 37
- Decarbalkoxylation (s. a. Replacement of carbalkoxy groups by hydrogen)**
- with simultaneous Wolff-Kishner reduction 9, 122
- N-Decarbalkoxylation (s. a. Amines from urethans, N-carbobenzoxy group, elimination)** 9, 118
- Decarboxylation (s. a. Acylation, decarboxylative) $\text{HC}\uparrow\text{C}$** ; 9, 884

- Degradation (s. a. Hofmann degradation)**
- of carbohydrates 9, 346
- — — with loss of 1 C-atom 9, 342
- , oxidative
- of carbohydrates 9, 348
- Dehydration**
- of alcohols $\text{CC}\uparrow\text{O}$
- , partial 9, 239, 944
- Dehydration-rearrangement** 9, 958
- Dehydrohalogenation $\text{CC}\uparrow\text{Hal}$**
- , acetylene derivatives by — 9, 967
- Dehydrogenation $\text{CC}\uparrow\text{H}$** ; 9, 972
- to
 - α,β -ethylenearenes 9, 918
 - quinones 3, 705
- Dehydroxymethylation** 9, 162
- Demyanov ring expansion** 1, 540
- Deselenization** 9, 148
- Desulfonation** s. Replacement of sulfonic acid groups by hydrogen
- Desulfuration, reductive (s. a. Replacement of sulfur by hydrogen)**
- , stereochemistry 9, 145
- N-Detosylation** s. Amines from sulfonic acid amides
- Deutero compounds** 9, 603
- Di- s. a. Bi-**
- 1,1-Diacetates s. 1,1-Diacoxy compounds**
- 1,1-Diacoxy compounds**
- from
 - hydrocarbons (methyl groups) 9, 251
- startg. m. f.
 - aldehydes 9, 251
- (Diacylamo)carboxylic acid esters**
- from
 - acylaminocarboxylic acid esters 9, 521
 - (carbalkoxyalkylimino)halides 9, 521
- (Diacylamo)carboxylic acids**
- from
 - acylaminocarboxylic acids 9, 434
- 1,1-Di(acylamo) compounds**
- startg. m. f.
 - α,β -ethylene- α -cyanocarboxylic acid esters 9, 858
 - α -nitro- β -acylaminocarboxylic — — 9, 841
- , synthesis with — 9, 841
- Diacylhydrazines** 9, 437
- Dialdehydes (s. a. Alkoxy-dialdehydes)**

- startg. m. f.
 α,β -ethylenaldehydes, cyclic
9, 942
- Dialkyl chlorophosphate* as additional reagent 9, 465
- Dialkyloxonium salts* 9, 990
 - startg. m. f.
 trialkyloxonium salts 9, 990
- Dialkyl phosphites*
 - startg. m. f.
 1-hydroxy-2-ethylenephosphonic acid esters 9, 710
 α -hydroxyphosphonic — — 9, 708
 3-ketophosphonic — — 9, 710
 phosphonic — — 4, 604
 — — mixed 9, 339
- Di(alkylthio)mercury, sym.*
 - from disulfides, sym. 9, 647
- Diamidides* 9, 483
- Dianthranilide ring opening* 9, 403
 - — —, reductive 9, 403
- 1,1-Diaryl derivatives*
 - from oxo compounds 2, 664; 5, 548
- Diaryls*
 - from halides 9, 897
- Diazoacetyl compounds* s.
 α -Diazoketones
- Diazo anhydrides* s. Diazo oxides
- Diazo compounds*
 - from sulfonic acid azides 9, 490
 - startg. m. f.
 amines 9, 876
 —, tert. 9, 854
 organometallic compounds 9, 716
 sulfonic acid amides 9, 680
- α -Diazo- β -ketocarboxylic acid esters*
 - from carboxylic acid halides 9, 876
- α -Diazoketones*
 - as reagents for the identification of carboxylic acids 9, 287
 - startg. m. f.
 α -acooxyketones 9, 287
 α -aminoketones 9, 493
 carboxylic acids 9, 877
 α,β -ethylene- γ -diketones, dimerization 9, 867
 α -hydroxyketones 9, 296
 β -ketothioethers 9, 682
- Diazomethane*
 - estimation 9, 476
 - relative reactivity of functional groups towards — 9, 476
 - syntheses $CC\ddagger Hal. w.a.r.$

- Diazonium chloride-zinc chloride complex*
 - as intermediate 9, 289
- Diazonium fluoborates* 9, 129
 - startg. m. f.
 hydrocarbons 9, 129
- Diazonium perhalogenocarboxylates* 9, 285
- Diazonium salts*
 - coupling (s. a. Azo compounds)
 - — innermolecular 9, 552
 - reaction with active methyl groups 9, 423
 - startg. m. f.
 hydrazines 9, 31
 indazoles 9, 552
 - stable
 - startg. m. f.
 phosphinic acids 9, 717
 phosphonic acids 9, 717
- Diazo oxides*
 - from aminophenols 9, 383
 sulfamic acids 9, 332
- Diazotization* s. Sodium nitrite
- Diboroxides* 9, 197
- N,N'-Dicarbamylformamidines* 9, 438
- Dicarboxylic acid amide esters*
 - from dicarboxylic acid monoesters 9, 452
 - startg. m. f.
 aminoalcohols 9, 114
- Dicarboxylic acid anhydrides*
 - from dicarboxylic acids 9, 368, 650
 - startg. m. f.
 carboxyperoxycarboxylic acid esters 9, 209
 carboxythiolic acid esters 9, 650
 dicarboxylic acid monoesters 9, 368
- Dicarboxylic acid chloride esters*
 - from dicarboxylic acid monoesters 9, 636
- Dicarboxylic acid derivatives, mixed and partial*
 - avoidance of isomerization 9, 474
- Dicarboxylic acid esters*
 - from β -ketocarboxylic acid esters, cyclic, synthesis 9, 883
 - special s.
 diketodicarboxylic acid esters
 - startg. m. f.
 dicarboxylic acid imides 9, 435

(Dicarboxylic acid esters)

- startg. m. f.
- dicarboxylic acid monoesters, s
- Hydrolysis, partial
- β -ketocarboxylic acid esters,
- ring closure s. Dieckmann cyclization
- a-Dicarboxylic acid esters* s. Malonic acid esters
- Dicarboxylic acid imides* (s. a. N-Halogenodicarboxylic acid imides)
- from
- cyanocarboxylic acid esters
- 9, 559
- dicarboxylic acid esters 9, 435
- ureas 2, 461
- startg. m. f.
- carboxylic acids, synthesis 9, 744
- dicarboxylic acid monoamides
- 9, 218
- N-halogenodicarboxylic acid imides 9, 389
- Dicarboxylic acid monoamides*
- from
- dicarboxylic acid imides 9, 218
- startg. m. f.
- aminoalcohols 9, 114
- Dicarboxylic acid monoesters* (s. a. Malonic acid monoesters)
- from
- dicarboxylic acid anhydrides
- 9, 368
- esters s. Hydrolysis, partial
- acids 9, 368
- startg. m. f.
- dicarboxylic acid amide esters
- 9, 452
- — chloride esters 9, 636
- Dicarboxylic acids*
- special s.
- homophthalic acids
- startg. m. f.
- dicarboxylic acid anhydrides
- 9, 368, 650
- — monoesters 9, 368
- dithiolic acid esters 9, 650
- a-Dicarboxylic acids* s.
- Cinnamylidenemalonic acids
- α,ω -Dicarboxylic acids*, long-chain, synthesis 9, 228, 744
- Dichloroboric acid esters* 9, 194
- Dichlorophosphines* 9, 725
- startg. m. f.
- chlorophosphines, synthesis
- 9, 727

Dicyanodiamide

- startg. m. f.
- 1,3,5-triazines 9, 405
- Dicyanodiamides* s. Acyldicyanodiamides, Carbalkoxydicyanodiamides
- Dieckmann cyclization* 9, 934
- Diene-a-diones*
- startg. m. f.
- tropolones 9, 4, 5
- Diels-Alder reaction* s. Diene syntheses
- Dienes* (s. a. Cinnamylidenemalonic acids)
- from
- 3-alkoxyethylene derivatives
- 9, 950
- startg. m. f.
- pyridine ring 9, 777
- Diene syntheses* $CC \Downarrow CC$
- with
- lactones 9, 739
- acetylene derivatives s. Alder-Rickert synthesis
- reverse 3, 704
- Dienolactones* 9, 817
- Dienone-phenol rearrangement*, ring expansion by — 6, 720
- Dienones*
- startg. m. f.
- phenol acetates 9, 4
- Diethylamine* as additional reagent
- 9, 413
- Diethylamine acetate* as additional reagent 9, 775
- Diethylaniline* as additional reagent
- 9, 619, 969
- Digermanes*
- startg. m. f.
- germanecarboxylic acids 9, 728
- 1,2-Diglycerides* 9, 303
- Dglycosamines*
- from
- acetohalogenosugars 9, 530
- Diguanides* s. Biguanides
- 2,4-Diguanidinophenyl lauryl ether* as additional reagent 9, 995
- Dihalides*
- from
- ethers, cyclic 9, 597
- startg. m. f.
- diketodicarboxylic acid esters
- 9, 907
- halogenethers 9, 312
- imines, cyclic 2, 438
- isocyclics 9, 966
- 1,2-Dihalides*
- from
- ethylene derivatives $HalC \Downarrow CC$

- startg. m. f.
ethylene derivatives CC ↑Hal
halogenhydrins 9, 307
 α -halogenonitriles 9, 899
- α,ω -Dihalides*, long chain 9, 628
- 1,2-Dihalogen-3-alcohols*
- from
2-ethylenealcohols 9, 608
- 1,1,1-Dihalogenamines*
- startg. m. f.
carboxylic acid amides 9, 302
- Diketene*
- startg. m. f.
coumarins, 4-methyl- 9, 954
O-heterocyclics 9, 954
- Diketenes* s. Ketenedimers
- β,γ' -Diketocarboxylic acid esters*
- from
 β -ketocarboxylic acid esters
9, 892
- startg. m. f.
 γ -diketones 9, 892
- Diketodicarboxylic acid esters*
- from
dihalides 9, 907
- Diketones* s. Acylketones, cyclic,
Enediones
- α -Diketones* (s. a. Benzils,
Diene- α -diones)
- , derivatives s. α -Isonitrosoketones
- from
 α -hydroxyketones 9, 347
- β -Diketones*
- , alkylation 9, 893
- special s.
 α -hydroxy- β -diketones
- , cyclic
- startg. m. f.
carboxylic acids 9, 228
- γ -Diketones*
- from
 β,γ' -diketocarboxylic acid esters
9, 892
 α,β -ethylene- γ -diketones 9, 88
 β -ketocarboxylic acid esters,
synthesis 9, 892
- startg. m. f.
ene-1,4-diones 9, 922
furans 9, 855, 892
- Dilution principle* s. Ruggli-Ziegler
- technique 9, 931, 934
- Dimerization*
- of
 α -diazoketones to α,β -ethylene- γ -diketones 9, 867
halides 9, 897, 905
— to ethylene derivatives 9, 894
- to
p-dioxanes 9, 309
- with oxazolone ring opening
9, 499
- , oxidative, of aliphatic nitro
compounds 9, 805
- , reductive 9, 773
- Dimethylformamide*
- , aldehyde synthesis 9, 871
- as solvent 9, 24, 49, 163, 383, 454,
520, 574, 880, 897, 968
- 2,4-Dimethylphenol*, cleavage of
formaldehyde derivatives 9, 843,
869
- aci- α,γ -Dinitroglutaric acid esters,*
salts of —
- from
aldehydes and nitroacetic acid
esters 9, 856
azomethines — — — 9, 856
- 2,4-Dinitrophenylhydrazones* 9, 466
- 1,3-Diol ethers*
- from
ethylene derivatives and acetals
9, 774
- Diols*
- from
ketocarboxylic acid esters 9, 876
peroxides 9, 6
- special s.
acetylenediols
- startg. m. f.
hydrocarbons 9, 160
- 1,2-Diols* s. Glycols
- 1,3-Diols* (s.a. 2-Acylamino-1,3-diols)
- , di-tert-, cleavage 9, 979
- Dioxane*
- as additional reagent 9, 615
—/bromine 9, 615
- m-Dioxanes* s. Acetals, 6-Keto-1,3-diox-4-enes
- p-Dioxanes*
- by dimerization 9, 309
- startg. m. f.
 α -acoxyketones 9, 796
- Dioxindole derivatives* 9, 564
- β -Dioxo compounds*
- startg. m. f.
ethylenealcohols 9, 110
- 1,3-Dioxolanes*, transdioxolanation
9, 352
- Dipyrrrolo[a,d]pyrazines, decahydro-*
9, 567
- Disaccharides*
- from
trisaccharides 9, 19
- Discharge, electric* 9, 198
- Disiloxanes* s. Siloxanes
- Dismutation* s. Disproportionation
- Displacement* s. Migration,
Rearrangement

- Disproportionation* 9, 57, 134
Distillation, azeotropic (s. a. Water separation, azeotropic)
 —, decarboxylation by — 9, 122
Disulfides (s. a. Bisthiuram disulfides)
 — startg. m. f.
 halides 9, 638
 sulfur trichlorides 9, 587
 —, *sym.*
 — from
 halides 9, 685
 — startg. m. f.
 di(alkylthio)mercury, *sym.* 9, 647
1,1-Disulfones, β -disulfones
 — alkylation 9, 880
 — C-cyanoethylation 9, 767
 — from
 mercaptals 9, 342
 — special s.
 arylazodisulfonylmethanes
 — startg. m. f.
 carbohydrates, degradation with loss of 1 C-atom 9, 342
 hydrocarbons 9, 880
 γ -Disulfones 9, 657
Disulfonic acid esters
 — startg. m. f.
 O-heterocyclics 9, 367
 γ,γ -Disulfonylcarboxylic acids
 startg. m. f.
 γ -lactones 9, 378
Disulfonyltrisulfides
 — from
 thiolsulfonic acids 9, 645
Dithiocarbamic acid esters (s. a. Hydroxydithiocarbamic acid esters)
 — from
 amines 9, 705
Dithiocarbalkoxyhydrazones 9, 433
 α -(Dithiocarbazyl)oxo compounds
 — startg. m. f.
 1,3,4-thiadiazines 9, 697
Dithiolcarbonic acid esters (s. a. Aminodithiolcarbonic acid esters)
 — startg. m. f.
 2-thiazolidones 9, 577
Dithiolic acid esters
 — from
 dicarboxylic acids 9, 650
1,1-Dithiols, acylation 9, 668
Dithionite s. Hydrosulfite
Dithioökaldilimides
 — from
 mercaptans 9, 653
Dithioökxamides 9, 480
- Dithiophosphoric acid esters* (s. a. Thiolthionophosphoric acid esters)
 — from
 orthoformic acid esters 9, 193
Di(ureidomethyl)ethers
 — startg. m. f.
 alkoxymethylureas 9, 273
Döbner-Miller quinoline synthesis, modified 9, 851
Double bond s. Ethylene derivatives
Dowex-50 (sulfonated polystyrene resin) 9, 42, 102
Drierite s. Calcium sulfate
- Einhorn-Brunner reaction* 9, 449
Elbs pyrolysis 9, 307
Electrolysis (s. a. Flow electrolysis) 9, 77, 732, 762
Elimination ↑
 — of
 tert-amino- and hydroxyl groups 9, 125
 carbon dioxide, decarboxylation HC ↑C
 — monoxide s. under Carbon monoxide
 hydrogen halide s.
 Dehydrohalogenation
 — with formation of unsatd. carbon-carbon bonds CC ↑↑
Elimination reactions of esters 9, 932
Enamines (s. a. α -Aminomethylene ...)
 — startg. m. f.
 pyridine ring 9, 807, 955
 —, substitution of ketones via — 9, 912
Enaminolactams
 — from
 ketocarboxylic acids 9, 440
Endopyrimidine ring
 — from
 α,β -ethylenenitriles 9, 755
Ene-1,4-diones
 — from
 1,4-diketones 9, 922
Enolesters
 — from
 ketones 9, 202, 268
 — startg. m. f.
 α -acooxyketones 9, 642
 glycols, stereoisomeric 9, 227
 α -halogenoxo compounds 9, 641
 α -halogenoketones 9, 642
 2-iodoacetals 9, 600

- Enolethers** 9, 260
 — from
 acetals 9, 929, 946
 nitrocyclopropanes 9, 282
 — special s.
 3-alkoxy-2-ethylenealcohols
 alkoxymethylene compounds
 hydroxyenolethers
 — startg. m. f.
 ketones 9, 86/7
- Enollactones** s. Dienollactones
- Enols** s. Hydroxymethylene compounds, 3-Keto-1,2-enols
- Entrainment method** for the prepn. of Grignard reagents s. Activator
- Enzymes** as additional reagents (s. a. Amino acid oxidase, Catalase, Streptococcus faecalis, Yeast) 9, 164
- Epimerization**
 — of
 oxidosteroids 9, 206
 steroids 9, 635, 780
- Episulfides** s. Ethylenesulfides
- Epoxydes** s. Orido compounds
- Ester condensation** s. Dieckmann cyclization
- Esterification** s. Carboxylic acid esters, Sulfonic — — from their acids
- Esters**, elimination reactions 9, 932
- Ethane derivatives** s. 1,1,2,2-Tetraarylethanes
- Ethers** (a. cyclic; s. a. Alkoxy-, O-Heterocyclics) 9, 264, 800
 —, cleavage HO $\ddot{\text{C}}$
 —, — (mixed ethers) 9, 194
 —, —, partial 9, 16
 — from
 acetals, synthesis 9, 902
 acooxyhalides (cyclic ethers) 9, 376
 ammonium salts, quaternary 9, 280
 ethylene derivatives 9, 231
 halides OC $\ddot{\text{C}}$ Hal
 sulfones 9, 331
 — special s.
 amino-ethers
 1,3-diol-
 enol-
 1,2-glycol mono-halogen-
 phenol-
 — startg. m. f.
 dihalides (from cyclic ethers) 9, 597
 halides 9, 628
- Ethyl alcohol** as additional reagent 9, 134, 530
- α,β -Ethyleneacetals**
 — from
 α,β -ethylenealdehydes 9, 265
- Ethylenealcohols**
 — from
 β -dioxo compounds 9, 110
 ethylenecarboxylic acid chlorides
 peroxides 9, 30 [9, 133]
- 2-Ethylenealcohols**
 — from
 α,β -acetylenecarboxylic acids 9, 111
 — special s.
 2-acylamino-3-aryl-2-propen-1-ols
 3-alkoxy-2-ethylenealcohols
 — startg. m. f.
 1,2-dihalogen-3-alcohols 9, 608
- Ethylenealdehydes**
 — startg. m. f.
 alkoxyaldehydes 9, 225
- α,β -Ethylenealdehydes**
 — startg. m. f.
 α,β -ethyleneacetals 9, 265
 1-hydroxy-2-ethylenephosphonic acid esters 9, 710
- , cyclic
 — from
 dialdehydes 9, 942
- Ethyleneamines** s. a. Enamines
- 2-Ethyleneamines**
 — from
 β,γ -ethylenehalides 9, 501
- α,β -Ethylenearenes** by dehydrogenation 9, 918
- Ethylenecarboxylic acid chlorides**
 — startg. m. f.
 ethylenealcohols 9, 133
- α,β -Ethylenecarboxylic acid esters**
 — special s.
 α,β -ethylene- α -cyanocarboxylic acid esters
 α,β -ethylene- α -hydroxycarboxylic — —
- Ethylenecarboxylic acids** (s. a. Cinnamylidenemalonic acids)
 — from
 hydroxycarboxylic acid esters 9, 25
- α,β -Ethylenecarboxylic acids**
 — from
 β -acoxycarboxylic acid esters 9, 932
 aldehydes, synthesis with addition of 2 C-atoms 9, 831
 ethylene derivatives 9, 759
- startg. m. f.
 carboxylic acids, synthesis 9, 771

- β,γ-Ethylenecarboxylic acids*
 - from
 - a-allenecarboxylic acids,
synthesis 9, 771
- α,β-Ethylene-a-cyanocarboxylic acid esters*
 - from
 - 1,1-di(acylamino) compounds
9, 858
- Ethylene derivatives*
 - by
 - dehydrogenation $\text{CC} \uparrow\!\!\downarrow \text{H}$
 - dimerization 9, 804, 894
 - C-elimination 9, 978
 - from
 - acetylene derivatives 9, 95, 603
 - alcohols $\text{CC} \uparrow\!\!\downarrow \text{O}$
 - aldehydes, synthesis 9, 848
 - 1,2-dihalides $\text{CC} \uparrow\!\!\downarrow \text{Hal}$
 - ethylenesulfides 9, 689
 - halides $\text{CC} \uparrow\!\!\downarrow \text{Hal}$
 - , dimerization 9, 894
 - ketones 9, 951
 - sulfonylhydrazones 9, 961
 - thioethers 9, 655
 - , hydrogenation $\text{HC} \downarrow\!\!\uparrow \text{CC}$
 - special s.
 - alkoxyethylene derivatives
 - alkylidene . . .
 - arylideneanthrones
 - cumulenes
 - dienes
 - dienones
 - enediones
 - enol . . .
 - nitroethylene derivatives
 - thioenolethers
 - trienes
 - ureidoethylenes
 - vinyl . . .
 - startg. m. f.
 - acooxy compounds 9, 232
 - alcohols 9, 790
 - azides 9, 415
 - carboxylic acid amides, subst.
9, 416
 - acids 9, 349
 - 1,2-dihalides $\text{HalC} \downarrow\!\!\uparrow \text{CC}$
 - 1,3-diol ethers 9, 774
 - ethers 9, 231
 - α,β-Ethylenecarboxylic acids*
9, 759
 - α,β-Ethyleneenitriles* 9, 899
 - halogenhydrins 9, 601
 - nitriles 9, 776
 - oxido compounds 9, 227
 - oxo compounds 6, 280
 - sulfonic acids 9, 656
 - thioethers 9, 655
- trihalides 9, 607
- 1,2,4-trioxolanes 9, 340
- α,β-Ethylene-γ-diketones*
 - from
 - a-diazoketones, dimerization
9, 867
 - startg. m. f.
 - γ-diketones 9, 88
- Ethylene glycol* (s. a. Sodium/
ethylene glycol)
 - as solvent 9, 890
- Ethylenehalides* 9, 964
- α,β-Ethylenehalides*
 - startg. m. f.
 - acetylenealcohols 9, 736
 - α,β-Acetylenecarboxylic acids*
9, 886
 - acetylene derivatives 9, 736
 - hydrocarbons 9, 137
- β,γ-Ethylenehalides*
 - from
 - hydrocarbons 9, 927
 - startg. m. f.
 - 2-ethyleneamines 9, 501
- α,β-Ethylenehydrazones*
 - from
 - α-halogenoketones 9, 974
- α,β-Ethylene-a-hydroxycarboxylic acid esters*
 - startg. m. f.
 - carboxylic acids 9, 118
- Ethyleneketones*
 - startg. m. f.
 - ketones, hydrogenation 9, 91, 94
- α,β-Ethyleneketones*
 - from
 - α,β-Acetylenealcohols* 9, 102
 - 3-alkoxy-2-ethylenealcohols
9, 980
 - carboxylic acid chlorides 9, 875
 - β,γ-Ethyleneketones* 9, 87, 784
 - β-hydroxyketones* 9, 936
 - oxidoalcohols 9, 239
 - startg. m. f.
 - α,β-Ethyleneketones* 9, 87, 784
- α,β-Ethyleneenitriles*
 - from
 - ethylene derivatives 9, 899
 - α-halogenonitriles* 9, 899
 - startg. m. f.
 - endopyrimidine ring 9, 755
- Ethylene oxide* s. a. Orido
compounds
 - as additional reagent 9, 994
- α,β-Ethyleneoxo compounds*
 - startg. m. f.
 - cyclopropane ring 8, 927
 - 2-pyrazolines 8, 927

Ethylenephosphonic acid esters

s. 1-Hydroxy-2-ethylene-phosphonic acid esters

Ethylenesulfides

— startg. m. f.

ethylene derivatives 9, 689

mercaptans 9, 85

Ethylenimines (s. a. 2-Alkoxyethylenimines, Imines, cyclic)

— from

2-alkoxyethylenimines 9, 242

oxime sulfonates 9, 242

Ethyleniminoketones

— startg. m. f.

pyrazoles 9, 496

Ethyngyl derivatives s. Acetylene derivatives*Exchange* (s. a. Replacement) ↑↑

— of substituents of

amines 9, 625

pyrimidines 9, 500

pyrimido[4,5-b]pyrazines 9, 534

Fehling soln. 9, 732*Ferri-, Ferro-* s. Iron*Fischer indole synthesis* 9, 870

— with aldehyde hydrazones 9, 962

*Fischer-Zerweck aldehyde synthesis**Fission* s. Cleavage [9, 873]*Flow electrolysis* 9, 31*Fluorides* s. Halides, Replacement*Fluoro...* s. Trifluoro...*Fluorosilanes* 9, 592*Formaldehyde* (s. a. Methylene bridge, Thiomethylation)

— as additional reagent 9, 116

— reaction with amines and hydrogen sulfide 9, 664

— derivatives (s. a. Alkoxymethyl . . ., Di(ureidomethyl) ethers)

— cleavage with 2,4-dimethylphenol 9, 843, 869

Formals, mixed s. Alkoxymethyl ethers*Formamide*

— as additional reagent 9, 327

— reaction with halides 9, 327

Formamides (s. a. N-Formylation)

— startg. m. f.

methylamines 9, 116

nitriles 9, 801

Formamidines (N,N'-Dicarbamyl-formamidines)

— from

sulfamides 9, 541

Formates s. Formoxy compounds*Formazans* s. 3,6,9-Tricarbaundecaz-1,3,8,10-tetraenes*Formic acid as additional reagent*

9, 116, 373, 460, 673, 790, 796, 843, 869

Formoxy compounds 9, 17

— hydrolysis 9, 17

 α -Formoxyketones

— from

α -hydroxyketones 9, 262

N-Formylation 9, 113, 545*Friedel-Crafts ketone synthesis*, ketothioethers 9, 655*Furanones* (s.a. Halogenofuranones)

— from

furans 9, 250

Furan ring

— from

allenes 9, 379

γ -diketones 9, 365, 892

— startg. m. f.

pyridine ring 9, 443

Furans

—, alkoxylation 9, 762

— from

acetyleneglycols 9, 249

— special s.

acoxyfurans

3-arylfurans

benzofurans

— startg. m. f.

furanones 9, 250

—, dihydro- (s. a. Furanones, Furostenes)

— from

γ -lactones, synthesis 9, 822

—, 2,5-dihydro-3,4-dihydroxy-2-imino-

— from

aldehydes 9, 823

—, tetrahydro-, 2,5-dialkoxy-

— startg. m. f.

pyrroles 9, 461

—, —, 2,3,5-trialkoxy-

— startg. m. f.

alkoxydialdehydes 9, 381

Furostane ring

— from

spirostane ring 9, 69

Furostenes

— from

spirostanes 9, 795

*gem- (geminal) s. 1,1-**Germanecarboxylic acid germyl esters* 9, 195*Germanecarboxylic acids*

— from

digermanes 9, 728

Germanes s. a. Digermanes

Glutamylpeptides 9, 402
 —, differentiation between α - and β -
 9, 568
Glutaric acid esters s. aci- α,γ -
 Dinitroglutaric acid esters
Glycerides s. Mono-, Di-glycerides
Glycol acetate methanesulfonates
 — startg. m. f.
 oxido compounds 9, 206
Glycolic acids s.
 α -Hydroxycarboxylic acids
Glycol methanesulfonate acetates
 s. Glycol acetate methane-
 sulfonates
Glycol monoesters
 — from
 oxido compounds 9, 206, 208
 — startg. m. f.
 oxido compounds 9, 206
Glycol monoethers
 — special s.
 Methyl Cellosolve (glycol
 monomethyl ether)
 — startg. m. f.
 oxo compounds 7, 750
Glycols (s. a. Diols)
 — from
 α -acooxyketones 9, 227
 acyloins 9, 75
 — special s.
 hydrobenzoins
 pinacols
 —, stereoisomeric
 — from
 enolesters 9, 227
Glycosamines s. Diglycosamines
Glycosaminides 9, 470
Glycosides (s. a. Carbohydrates,
 Ethers) 9, 345
N-Glycosides s. Glycosamines
Glyoxalines s. Imidazoles
Glyoxylic acids s. α -Ketocarboxylic
 acids
Grignard reaction
 —, entrainment method s. Activator
 — —, inverse s. Reagents, organo-
 metallic, inverse addition
 — reagents
 —, addition to carbon-carbon double
 bonds 9, 770/1
 — startg. m. f.
 hydroperoxides 9, 337
 — syntheses (s. a. Magnesium,
 Lithium)
 — —, asym. 9, 741
Groups, protective s. Protective
 groups

Guanidines (s. a. Acylguanidines)
 — startg. m. f.
 ureas 9, 292
Guanylureas s. Carbalkoxy-
 guanylureas
Guerbet condensation, modified
 9, 275

Halides (s. a. Replacement)
 — from
 alcohols $\text{HalC}\uparrow\downarrow\text{O}$
 disulfides 9, 638
 ethers 9, 628
 ethylene derivatives $\text{HalC}\downarrow\text{CC}$
 sulfonic acid halides 9, 644
 p-toluenesulfonic acid esters
 9, 622
 — (iodides) 9, 624
 —, reaction and hydrolysis with
 formamide 9, 327
 —, reactivity, difference in — 9, 570
 — special s.
 acetohalogenosugars
 acetylene-halides
 acoxy-
 acylamino-
 alkoxy-
 di-
 ethylene-
 oxido-
 poly-
 tri-
 — startg. m. f.
 acetals, synthesis with addition
 of 1 C-atom 9, 903
 acetylene derivatives 9, 888
 aldehydes, synthesis with
 addition of 1 C-atom 9, 903
 carboxylic acids 9, 891
 diaryls 9, 897
 disulfides, sym. 9, 685
 ethylene derivatives, dimerization
 9, 894
 hydrocarbons, synthesis 9, 878,
 885, 887, 900/1, 906, 911
 hydroxylamines 9, 531
 nitric acid esters 9, 323
 nitro compounds, aliphatic 9, 528
 phosphine oxides 9, 724
 phosphines, prim. 9, 721
 sulfonic acid esters 9, 325
 thioethers 9, 684, 699
 xanthates 9, 690, 695
Halogen
 — as additional reagent s. under
 individual halogens
 — addition $\text{HalC}\downarrow\text{CC}$
 — elimination $\text{CC}\uparrow\text{Hal}$

— metal interconversion 9, 720
 — replacement s. under
 Replacement
Halogenacetals s. 2-Iodoacetals
Halogenacetylenes s. Acetylene-
 halides
Halogenalcohols s. Halogenhydrins
Halogenamines s. Dihalogenamines
Halogenaminooalcohols, N-subst.
 — from
 oxidoaldehydes 9, 399
Halogenaminoketones
 — startg. m. f.
 piperidones 9, 418
 piperidonium salts 9, 418
Halogenation (s. a. Chlorination)
 $\text{HCl} \rightleftharpoons \text{H}$
 —, directed 9, 611
Halogenethers (s. a. Alkoxyhalides)
 — from
 dihalides 9, 312
 halogenhydrins 9, 269
 —, cyclic
 — startg. m. f.
 acetylenealcohols 9, 8, 9
Halogenhydrins
 — from
 1,2-dihalides 9, 307
 ethylene derivatives 9, 601
 halogenoketones, reduction 9, 60
 — startg. m. f.
 halogenethers 9, 269
 lactones, synthesis 9, 916
 oxido compounds 9, 60, 916
Halogenocarboxylic acid amides
 — startg. m. f.
 N-heterocyclics 9, 975
Halogenocarboxylic acid esters
 — startg. m. f.
 lactones 9, 607
 α -Halogenocarboxylic acid esters
 — startg. m. f.
 α -hydroxycarboxylic acid esters
 9, 327
 α -Halogenocarboxylic acid halides
 — from
 carboxylic acids 9, 876, 960
 — startg. m. f.
 ketenes 9, 960
 α -Halogenocarboxylic acids
 — startg. m. f.
 α -aminocarboxylic acids 1, 364
Halogenocyanamides
 — from
 imines, cyclic 9, 599
N-Halogenodicarboxylic acid imides
 — from
 dicarboxylic acid imides 9, 389

Halogenofuranones
 — from
 acooxyfurans 9, 610
Halogeno-O-heterocyclics s.
 Halogenethers, cyclic
Halogenohydrins s. Halogenhydrins
Halogenoketones (s. a. Halogen-
 aminoketones)
 — from
 hydroxyketones 9, 626
 — startg. m. f.
 halogenhydrins, reduction 9, 60
 α -Halogenoketones
 — from
 alcohols 9, 618
 enoesters 9, 642
 — startg. m. f.
 2-acylimidazoles, 4-subst. 9, 485
 α -azidoketones 9, 485
 carboxylic acid esters 9, 314
 α,β -ethylenehydrazones 9, 974
 oxido compounds 9, 60
 —, cyclic
 — startg. m. f.
 carboxylic acids 9, 310, 326
4-Halogeno-3-ketosteroids
 — startg. m. f.
 Δ^4 -3-ketosteroids 9, 968
Halogenolactolides
 — startg. m. f.
 oxidoketones 9, 596
Halogenolactols
 — from
 oxidoketones 9, 596
 — startg. m. f.
 oxidoketones 9, 596
Halogenolactones 9, 607
Halogenonitriles
 — startg. m. f.
 carboxythioethers 9, 691
 α -Halogenonitriles
 — from
 1,2-dihalides 9, 899
 — startg. m. f.
 α,β -ethylenenitriles 9, 899
1,1-Halogenonitro compounds
 — from
 1,1-halogenonitroso compounds
 9, 168
 oximes 9, 168
 — startg. m. f.
 nitro compounds, aliphatic
 9, 168
1,1-Halogenonitroso compounds
 — from
 oximes 9, 168
 — startg. m. f.
 1,1-halogenonitro compounds
 9, 168

- Halogenophosphoric acid esters* s.
 Chlorophosphoric acid esters
Halogenoquinols
 — from
 quinones 9, 595
Halogenosilanes (s. a. Fluorosilanes)
 — from
 alkoxy silanes 9, 590
 — startg. m. f.
 silanes 9, 720
 silanols 9, 187, 192
 siloxanes 9, 187
 siloxanol 9, 187
Halogenosteroids 9, 635
 —, change in configuration 9, 609
 — from
 3,5-cyclosteroids 9, 635
N-Halogenosuccinimide
 — as additional reagent 9, 616
 — special s.
 N-bromo-succinimide
 N-chloro-
 N-iodo-
Halogenothioethers s. Chlorothioethers
Halogenoxido compounds s. Oxido-halides
α-Halogenoxo compounds
 — from
 enolesters 9, 641
Halogenourethans
 — from
 amines 9, 45
 — startg. m. f.
 2-aminoalcohols 9, 45
 2-oxazolidones 9, 45
Halonium salts 9, 643
Hansley modification of the Bouveault-Blanc reduction 3, 49
Hemiacetals and hemiketals, cyclic s. Lactols
Heterocyclics
 — special s.
 with 1 O-atom
 benzofurans
 chromones
 coumarins
 furans
 pyrans
 with 1 N-atom
 benzo[a]quinolizines
 indoles
 isoquinolines
 phenanthridines
 (9-azaphenanthrenes)
 pyridines
 pyrroles
 quinolines
 with 1 hetero atom other than O or N
 thianaphthalenes (benzo-thiophenes)
 thiophenes
 with 2 O-atoms
 chromono(2',3':3,4)coumarins
 m-dioxanes
 p-dioxanes
 1,3-dioxolanes
 with 2 N-atoms
 cinnolines (1,2-diazanaphthalenes)
 dianthranilides
 dipyrrolo[a,d]pyrazines
 endopyrimidine ring
 imidazoles (glyoxalines)
 indazoles
 pyrazines
 pyrazoles
 2(H)-pyrido[1,2-a]pyrimidines
 pyrimidines
 with 2 different hetero atoms
 1,4-azaphosphorines
 benz-1,3-oxathioles
 benz-3,1-oxazines
 benzoxazoles
 isoxazoles
 1,3-oxathioles
 oxazoles
 penicillin ring system
 phenarsazines
 phenoxazines
 pyrrolo(2',3':3,4)isocoumarins
 pyrrolo[2,1-b]thiazoles
 thiazoles
 with 3 or more hetero atoms
 benzofurazans
 copazolines (2,4,6-triazanaphthalenes)
 purines
 pyrimido[4,5-b]pyrazines (1,3,5,8-tetraazanaphthalenes)
 tetraazaindenes
 tetrazoles
 triazines
 triazoles
 with an undefined number of hetero atoms
 thiosalicylides
O-Heterocyclics
 — from
 diketene 9, 954
 disulfonic acid esters 9, 367
 —, ring closure 6, 301
 — startg. m. f.
 pyrazoles 9, 444
 —, alicyclic s. Ethers (cyclic), Halogenethers, cyclic

N-Heterocyclics

- from
 - halogenocarboxylic acid amides 9, 975
 - hydroxycarboxylic acid amides 9, 956
- , reduction 9, 557
- special s.
 - α -acyl-N-heterocyclics
 - alcohols, medium-N-heterocyclic aldehydes, N-heterocyclic
 - α -alkyl-N-heterocyclics
 - carbinols, N-heterocyclic
 - oxo-N-heterocyclics
 - (s. a. under Heterocyclics, special)

N-Heterocyclics, condensed

- , hydrogenation, selective, of benzene rings 9, 99

N-Heterocyclics, N-condensed (s. a. Ketones, N-bicyclic) 9, 557

- , rearrangement 9, 786
- startg. m. f.

N-heterocyclics, medium 9, 77

N-Heterocyclics, medium

- from
 - N-heterocyclics, N-condensed 9, 77

Hexamethylenetetramine as additional reagent 9, 290*High dilution* s. Dilution*High pressure reactions* 9, 661*Hindrance, steric, ring closure due to* — 9, 513*Hofmann degradation* of carboxylic acid amides 9, 583*Homophthalic acids, subst.*

- from [9, 740]
 - α -carboxyphenylacetonitriles
 - phthalides 9, 740

Huang-Minlon reduction s. Wolff-Kishner reduction, simplified*Hunsdiecker silver salt degradation* 9, 639*Hydantoin ring opening* 9, 436*Hydantoins* (s. a. Thiohydantoins)

- from
 - α -aminocarboxylic acids 9, 404
 - N-carbalkoxypeptides 9, 568
 - imines 9, 754
 - α -isocyanatocarboxylic acid esters 9, 477
 - oxo compounds 1, 568
 - phosgene 9, 532
 - N-thiocarbonyldipeptides 9, 578
- startg. m. f.
 - α -aminocarboxylic acids 9, 832
 - α -ureidocarboxylic — 9, 568
- , 1-subst. 9, 300

Hydration s. Alcohols from ethylene derivatives*Hydrazides* s. Carboxylic acid hydrazides*Hydrazine* 9, 37, 123, 228

- as stabilizer of pyrrole derivatives 9, 122

Hydrazines (s. a. α -Cyano-hydrazines)

- from
 - amines 9, 569
 - diazonium salts 9, 31
 - N-nitrosamines 9, 34
- startg. m. f.
 - 1,2,4-triazoles 9, 449
- , substitution 9, 988

Hydrazo compounds

- from
 - azo compounds 9, 41
 - azoxy compounds 9, 40
- startg. m. f.
 - amines 9, 41

Hydrazones 9, 121

- from
 - azo compounds 9, 419
 - azoxy compounds 9, 167
- special s.
 - acyl-hydrazone
 - 2,4-dinitrophenyl-
 - dithiocarbalkoxy-
 - α,β -ethylene-
 - sulfonyl-
- startg. m. f.
 - amines 9, 444
 - azines 9, 495
 - azoxy compounds 9, 167
 - carboxylic acid amides, rearrangement 9, 294
 - α -cyanohydrazines 9, 751

Hydrazonium salts s. Sulfonyl-hydrazone salts*Hydrazyl radicals*

- from
 - hydrazines 9, 988
- startg. m. f.
 - hydroxyhydrazines 9, 988

Hydrides s. under Lithium and Sodium*Hydriodic acid* s. Hydrogen iodide*Hydrobenzoins*

- from
 - aldehydes 9, 732
- startg. m. f.
 - aldehydes 9, 732
 - benzils 9, 732

Hydrocarbons, hydrocarbon groups (s. a. Methyl groups)

- from
 - acyloins 9, 931

(Hydrocarbons, Hydrocarbon groups)

- from
 - aldehydes, synthesis 9, 848
 - amines, tert. 9, 127
 - carboxylic acid anhydrides 9, 153
 - esters $\text{HC}\ddot{\text{C}}$
 - acids, decarboxylation $\text{HC}\dot{\text{C}}$
 - , reduction 9, 108
 - diazonium fluoborates 9, 129
 - diols 9, 160
 - 1,1-disulfones 9, 880
 - α,β -ethylenehalides 9, 137
 - halides, synthesis 9, 878, 885, 887, 900/1, 906, 911
 - hydroxy compounds $\text{HC}\dot{\text{O}}$
 - β -ketocarboxylic acid esters 9, 154
 - oxo compounds by reduction $\text{HC}\ddot{\text{O}}$
 - sulfones, cleavage, reductive 9, 139
 - , desulfuration, — 9, 145, 880
 - sulfonic acid esters 9, 109
 - thioethers s. Replacement of alkylthio groups by hydrogen
 - p-toluenesulfonic acid esters, synthesis 9, 836, 839
- startg. m. f.
 - azomethines, synthesis 9, 857
 - carboxylic acid esters, synthesis with addition of 1 C-atom 9, 803
 - acids, oxidation (from methyl groups) 9, 252, 255
 - , synthesis with addition of 1 C-atom s. Carboxylation
 - acid thioamides 9, 658
 - 1,1-diaxoy compounds (from methyl groups) 9, 251
 - β,γ -ethylenehalides 9, 927
 - oxo compounds
 - aldehydes (from methyl groups) 9, 251
 - quinones 9, 254, 256
 - , synthesis 9, 857
 - phenols 9, 198
- Hydrochlorides*
 - from
 - picrates 9, 995
- Hydrogenation* HO , HN , HC
 - of
 - acetylene derivatives, carbon-carbon triple bond 9, 101
 - ethylene derivatives, carbon-carbon double bond $\text{HC}\dot{\text{C}}\text{CC}$ rings s. Ring hydrogenation
 - , partial

- of
 - carbon-carbon double bonds 9, 87
 - isocyclics 9, 86/7
 - steroid polyenes 9, 90

- , selective 9, 96, 100, 137
- of
 - carbon-carbon double bonds 9, 98, 100
 - , stereospecific 9, 74
- Hydrogen iodide* 9, 29, 135, 157, 160
- /phosphorus s. Phosphorus/hydrogen iodide

Hydrogenolysis

- of
 - amines, tert. s. Hydrocarbons from amines, tert.
 - ammonium salts, quaternary, unsatd. 9, 128
 - benzyl esters s. Debenzylation

Hydrogen peroxide 9, 172, 224, 230, 243, 333, 349/51

Hydrogen sulfide

- , reaction at high pressure 9, 661
- , — with amines and formaldehyde 9, 664

Hydrolysis (s. a. Cleavage, Deacylation) $\text{HO}\ddot{\text{C}}$; $\text{HN}\ddot{\text{C}}$

- of carboxylic acid esters under anhydrous conditions 9, 24
- , mild, of polycarboxylic acid esters 9, 14
- , partial, of carboxylic acid esters 9, 27, 160
- , selective
 - cleavage of acetals 9, 18, 21
 - deacylation 9, 44
 - O-deacylation 9, 11

- of
 - carboxylic acid esters 9, 12, 26
 - formoxy compounds 9, 17
 - halides with formamide 9, 327

Hydroperoxides

- , by catalytic oxidation 9, 204
- from
 - Grignard reagents 9, 337
 - methylsulfonic acid esters 9, 166
- startg. m. f.
 - carboxyperoxycarboxylic acid esters 9, 209

Hydroquinones s. Quinols

Hydrosulfite 9, 82, 88, 675

Hydroxamic acids

- startg. m. f.
 - 2-pyrazinones, 1-hydroxy- 9, 442

Hydroxyacetals

- from
 - acooxyacetals 9, 11

Hydroxyaldehydes

- from
 - lactones 9, 67
 - startg. m. f.
 - ketocarboxylic acids 9, 364
- Hydroxyamines* s. Aminoalcohols, Aminohydroxy compounds
- Hydroxyamino-* s. Aminohydroxy- β -Hydroxyammonium salts, quaternary, cyclic
- from
 - aldehydes 9, 733
 - startg. m. f.
 - isatogens 9, 733
- Hydroxyazo compounds*
 - from
 - azoxy compounds 9, 244
- Hydroxyazomethine-oxazolidine isomerization* 9, 386
- Hydroxybetaines*
 - from
 - lactoneammonium salts, quaternary 9, 210
- 4-Hydroxycarbostyrils* 9, 809
- Hydroxycarboxylic acid amides*
 - startg. m. f.
 - N-heterocyclics 9, 956
- Hydroxycarboxylic acid esters*
 - from
 - ketocarboxylic acid esters 9, 76
 - startg. m. f.
 - ethylenecarboxylic acids 9, 25
 - α -Hydroxycarboxylic acid esters* (s. a. α,β -Ethylene- α -hydroxy-carboxylic acid esters)
 - from
 - α -halogenocarboxylic acid esters
 - startg. m. f. [9, 327]
 - α -ketocarboxylic acid esters 9, 359
 - β -Hydroxycarboxylic acid esters* (s. a. α -Amino- β -hydroxy-carboxylic acid esters)
 - from
 - oxo compounds 9, 747 (s. a. Reformatskii synthesis).
 - startg. m. f.
 - ketones 8, 298
 - Hydroxycarboxylic acid hydrazides*
 - from
 - lactones 9, 400
 - Hydroxycarboxylic acids* s. Aminohydroxycarboxylic acids
 - α -Hydroxycarboxylic acids*
 - from
 - azlactones 9, 288
 - startg. m. f.
 - oxo compounds 9, 380
 - aldehydes 9, 363

 β -Hydroxycarboxylic acids

- from
 - oxo compounds s. Reformatskii synthesis $\text{CC}\downarrow\text{OC}.\text{Zn}$
- tert-Hydroxycarboxylic acids*
 - from
 - carboxylic acids 9, 201
- Hydroxy compounds*
 - special s.
 - alcohols
 - aminohydroxy compounds
 - phenols
 - startg. m. f.
 - amines, sec. 9, 451
 - oxo compounds $\text{OC}\uparrow\text{H}$
- 1,2,3-Hydroxydiketones*
 - from
 - ketones 9, 230
- α -Hydroxy- β -diketones*
 - startg. m. f.
 - chromone ring 9, 371
- Hydroxygenolethers*
 - from
 - acetals, inner 9, 799
- Hydroxydithiocarbamic acid esters*
 - startg. m. f.
 - aminodithiolcarbonic acid esters 9, 705
 - thiazolines 9, 705
- 1-Hydroxy-2-ethylenephosphonic acid esters*
 - from
 - α,β -ethylenealdehydes and dialkylphosphites 9, 710
- Hydroxyhalides* s. Halogenhydrins
- Hydroxyhydrazines*
 - from
 - hydrazyl radicals 9, 988
- Hydroxyindoles* 9, 572, 930
- Hydroxyketones*
 - from
 - ketocarboxylic acid esters, synthesis 9, 743
 - special s.
 - α -hydroxy- β -diketones
 - α -hydroxymethyleneketones
 - startg. m. f.
 - halogenoketones 9, 626
- α -Hydroxyketones* (s. a. Acyloins)
 - from
 - α,β -acetylenealcohols 9, 102
 - 1-acoxy-1,2-oxido compounds 9, 202
 - α -diazoketones 9, 296
 - enoesters 9, 202
 - α,β -ethylenenitriles 8, 317
 - ketones 9, 202
 - oxidative cleavage 9, 347

- (α -Hydroxyketones)
 - startg. m. f.
 - α -diketones 9, 347
 - α -formoxyketones 9, 262
- β -Hydroxyketones
 - from
 - oxidoalcohols 9, 239
 - startg. m. f.
 - α,β -ethyleneketones 9, 936
- σ -Hydroxyketones
 - startg. m. f.
 - coumarin ring 9, 827
- 17 α -Hydroxy-20-kestosteroids 9, 202
- α -Hydroxylactams
 - startg. m. f.
 - carboxylic acids 9, 744
 - ketocarboxylic acids 9, 744
- Hydroxylamines
 - from
 - ammonium salts, quaternary 9, 553
 - halides 9, 531
 - startg. m. f.
 - nitrone 9, 553
 - sulfamic acids 9, 390
- σ -Hydroxylation 6, 162
- Hydroxyl groups (s. a. Hydroxy compounds)
 - , differential reactivity 9, 183
- Hydroxymercaptals
 - from
 - acoxymercaptals 9, 15
- Hydroxymercaptans
 - startg. m. f.
 - acoxymercaptans 9, 271
 - hydroxythioethers 9, 698
- Hydroxymethylene compounds (s. a. Aldehydes, Enols)
 - startg. m. f.
 - alkylthiomethylene compounds 9, 660
- α -Hydroxymethyleneketones
 - startg. m. f.
 - ketoacetals 9, 266
- Hydroxymethyl thioethers
 - , thiomethylation with — 9, 844
- Hydroxynitriles s. Cyanohydrins
- α -Hydroxyphosphonic acid esters
 - from
 - dialkyl phosphites and oxo compounds 9, 708
- 4-Hydroxypyrrolidine-2-carboxylic acids 9, 584
- Hydroxysulfones
 - from
 - oxo compounds, synthesis 9, 745
- α -Hydroxysulfones
 - startg. m. f.
 - α -aminosulfones 8, 426

- Hydroxythioethers
 - from
 - hydroxymercaptans 9, 698
 - oxido compounds 9, 649
- Hypochlorous acid s. Hypohalites
- Hypohalites 9, 213, 583
- Hypophosphorous acid 9, 28
- Hyposulfite s. Hydrosulfite
-
- Imidazole ring
 - from
 - carboxylic acid amides 9, 486
- Imidazoles
 - special s.
 - 2-acylimidazoles
 - benzimidazoles
- Imidazolidine ring opening 9, 48
- Imidazolines
 - from
 - nitriles 9, 458
- Imidazo[4,5-d]pyrimidines s. Purines
- Imides s. Dicarboxylic acid imides
- Imidocarboxylic acid chlorides
 - from
 - aminocarboxylic acids 5, 341
 - imidocarboxylic acids 5, 341
- Imidocarboxylic acids
 - from
 - aminocarboxylic acids 5, 341
 - startg. m. f.
 - imidocarboxylic acid chlorides 5, 341
- Imine methiodides 9, 516
- Imines (s. a. Azomethines)
 - startg. m. f.
 - hydantoins 9, 754
 - oxo compounds 9, 295
 - , cyclic (s. a. Ethylenimino compounds)
 - from
 - dihalides 2, 438
 - startg. m. f.
 - halogenocyanamides 9, 599
- Iminohalides s. (Carbalkoxy-alkylimino)halides
- Iminothiolic esters s. Thioimidooesters
- Indazoles
 - from
 - diazonium salts 9, 552
 - N-nitrosoacylamines 9, 552
- Indole ring
 - startg. m. f.
 - naphthalene ring 9, 792
- Indoles (s. a. Pseudoindoles)
 - from
 - oxindoles 9, 938

- special s.
dioxindole derivatives
hydroxyindoles
isatogens
oxindoles
- synthesis s. Fischer indole synthesis
- Indolines*
- from
pseudoindoles 9, 83
- ψ-Indoxyls*
- startg. m. f.
 ψ -oxindols 9, 794
- Interchange* s. Trans-
- Interesterification* s. Trans-esterification
- Introduction of functional groups*
 s. Aldehyde group, Replacement of hydrogen
- Inversion* s. Configuration
- Iodides* (s. a. Halides, Replacement)
- startg. m. f.
 iodoso compounds 9, 171
- Iodination* s. Halogenation,
 Replacement of hydrogen by halogen
- Iodine* 9, 412, 469, 713
- /phosphorus s. Phosphorus/iodine
- 2-Iodoacetals*
- from
 enoesters 9, 600
- Iodonium salts*
- reactions with — 9, 693
- startg. m. f.
 sulfonic acids 9, 693
- Iodosoacetates* 9, 172
- Iodoso compounds*
- from
 iodides 9, 171
- N-Iodosuccinimide* 9, 641/2
- Ion exchange resins* s. Amberlite,
 Anion exchange resin
- Iron* 9, 853
- (III) chloride 9, 554
- Irradiation* 9, 126, 207, 602/3, 647,
 731, 733, 761, 859, 911, 972
- Isatogens*
- from
 β -hydroxyammonium salts,
 quaternary, cyclic 9, 733
 o-nitroaldehydes 9, 733
- Isatyldiene compounds* 9, 862
- Isocyanates*
- startg. m. f.
 lactams 5, 526
 α -nitrocarboxylic acid amides
 9, 753
 sulfamic acids 9, 396
 ureas 9, 404
- α-Isocyanatocarboxylic acid esters*
- startg. m. f.
 hydantoins 9, 477
- Isocyanosilanes* 9, 398
- Isocyclics* (s. a. Aryl derivatives)
- from
 dihalides 9, 966
 oxo compounds 8, 899
 ketones 9, 937, 939
 quinones 9, 853
- special s.
 alkylbenzenes
 anthracenes
 benzene ring
 bicyclooctanes
 cyclo-octanes
 —-pentanes
 —-propanes
 ketones, cyclic
 naphthalenes
 tropolones
- Isoflavones* 9, 896
- Isoimidazoles* 9, 462
- startg. m. f.
 imidazoles 9, 420
- Isoindazoles* s. Indazoles
- Isomerization* (s. a. Rearrangement)
- of
 sulfones, cyclic 9, 779
- , ring closure by — s. under Ring closure
- , position —, isotopic 9, 788
- cis-trans-Isomers* 9, 76
- Isonitriles* s. Isocyano ...
- Isonitroso compounds* s. a. Oximes
- α-Isonitrosoketones*
- startg. m. f.
 α -aminoketones 9, 38
- Isoquinolines*, 3,4-dihydro-
- from
 nitriles 9, 757
- Isospirostanes* s. Spirostanes
- Isosteroids* s. 3,5-Cyclosteroids
- Iothiocyanates*
- from
 halides 9, 522
 thioureas 9, 575
- startg. m. f.
 methylamines 9, 143
- Iothiocyanophosphonates*
- startg. m. f.
 2-thiohydantoins 9, 544
- Iothiosemicarbazones*
- from
 thiosemicarbazones 9, 554
- startg. m. f.
 1,2,4-triazoles, 3-mercaptop- 9, 554

- Isothiouronium salts* 9, 589
 — startg. m. f.
 sulfonic acid chlorides 9, 589
- Isotopes* s. Compounds, labeled
- Isoxazole ring*
 — from
 o-azido-oxo compounds 9, 170
 1,2,3-triazine ring, 9, 375
 — — opening 9, 205
- Isoxazolidones*, rearrangement 9, 281
- Isoximes* s. Nitrones
- Kendall* s. Mattox
- Ketals* s. Acetals
- Ketenedimers*
 — startg. m. f.
 β -ketocarboxylic acid esters 9, 212
- Ketenes*
 — from
 carboxylic acid anhydrides 9, 941
 — acids 9, 960
 α -halogenocarboxylic acid halides 9, 960
- Ketimines* (s. a. Imines)
 — from
 nitriles, synthesis 9, 752
- Ketoacetals*
 — from
 α -hydroxymethyleneketones 9, 266
 — startg. m. f.
 acetals 9, 119
- α -Ketoacetals* with rearrangement 9, 238
- β -Ketoacetals*
 — from
 ketones 9, 816
- Ketoalcohols* s. Hydroxyketones
- β -Ketoaldehydes*
 — from
 α,β -oxidoketones 9, 793
- Ketoamines* s. Aminoketones
- Ketocarboxylic acid esters*
 — special s.
 diketocarboxylic — —
 diketodicarboxylic — —
 — startg. m. f.
 diols 9, 876
 hydroxycarboxylic acid esters 9, 76
 hydroxyketones, synthesis 9, 743
- α -Ketocarboxylic acid esters*
 — from
 α -hydroxycarboxylic acid esters 9, 359
- β -Ketocarboxylic acid esters*
 — C-cyanoethylation 9, 765
 — from
 dicarboxylic acid esters, ring closure, s. Dieckmann cyclization
 ketenedimers 9, 212
 6-keto-1,3-diox-4-enes 9, 212
 — special s.
 α -alkyl- β -ketocarboxylic acid esters
 arylacetoacetic — —
 α -diazo- β -ketocarboxylic — —
 — startg. m. f.
 α -alkyl- β -ketocarboxylic acid esters 9, 933
 β,γ' -diketocarboxylic acid esters 9, 892
 γ -diketones, synthesis 9, 892
 hydrocarbons 9, 154
 — cyclic
 — startg. m. f.
 dicarboxylic acid esters, synthesis 9, 883
- Ketocarboxylic acids*
 — from
 acylketones, cyclic 9, 226
 hydroxyaldehydes 9, 364
 hydroxylactams 9, 744
 lactones 9, 213
 — startg. m. f.
 carboxylactones 9, 826
 carboxylic acids 9, 366, 744
 cyanolactones 9, 826
 enaminolactams 9, 440
 lactones 9, 103, 115
 phthalides 9, 366
- α -Ketocarboxylic acids*
 — from
 α -aminocarboxylic acids 9, 291
 — startg. m. f.
 carboxylic acids, degradation with loss of 1 C-atom 9, 347
- δ -Ketocarboxylic acids* 9, 765
- 6-Keto-1,3-diox-4-enes*
 — from
 ketenedimers 9, 212
 — startg. m. f.
 β -ketocarboxylic acid esters 9, 212
- 3-Keto-1,2-en-2-ols* s. Tropolones
- Ketolactols*
 — from
 ketoöido compounds 9, 200
- Ketols* s. Hydroxyketones
- Ketomercaptans*, synthesis 9, 655
- Ketones* (s. a. Oxo compounds)
 — cleavage s. Replacement of C-acyl by hydrogen

- from
 - acetylene derivatives 9, 933
 - acooxy compounds 9, 361
 - alcohols, sec., by oxidation
 $\text{OC}\uparrow\text{H}$
 - α -aminomethyleneketones 9, 769
 - carboxylic acid amides, synthesis
9, 872
 - — anhydrides 9, 845, 849, 914
 - — — (sym. ketones) 9, 914
 - — chlorides 9, 904, 908
 - — — with tert-butyl
 - malonates 9, 881
 - acids 9, 810, 835, 849, 915
 - enoylethers 9, 86/7
 - ethyleneketones, hydrogenation
9, 91, 94
 - β -ketocarboxylic acid esters
9, 150
 - ketothioethers 9, 142
 - oxido compounds 9, 227, 236
- special s.
 - acooxy-ketones
 - amino-
 - α -aminomethylene-
 - cyano-
 - α -diazo-
 - dienones
 - di-ketones
 - ethylene-
 - ethylenimino-
 - formoxy-
 - halogeno-
 - hydroxy-
 - nitro-
 - α,β -oxido-
 - steroid keto groups
- startg. m. f.
 - alcohols, sec. $\text{HC}\downarrow\text{OC}$
 - , tert. 9, 738, 746, 981
 - amines, prim. 9, 36
 - enoylesters 9, 202, 268
 - ethylene derivatives 9, 951
 - β -hydroxycarboxylic acids,
Reformatskii synthesis
 $\text{CC}\downarrow\text{OC.Zn}$
 - 1,2,3-hydroxydiketones 9, 230
 - α -hydroxyketones 9, 202
 - isocyclics 9, 937, 939
 - β -ketoacetals 9, 816
 - β,γ -nitroethylene derivatives
9, 829
 - oximes 9, 36
 - substitution via enamines 9, 912
 - synthesis with carbon dioxide
(sym. ketones) 9, 819
 - N*-bicyclic
- startg. m. f.
 - alcohols, medium-N-heterocyclic
9, 32
- , cyclic (s. a. Acylketones)
- from
 - carboxylic acid chlorides 9, 971
 - acids 9, 947
 - polycarboxylic acids 9, 982
- Ketonitriles s. Cyanoketones
- Keto $\ddot{\text{O}}$ ido compounds
 - startg. m. f.
 - ketolactols 9, 200
- 3-Ketophosphonic acid esters
 - from
 - α,β -ethyleneketones and
dialkylphosphites 9, 710
- 4-Ketoquinolines, 1,2,3,4-tetrahydro-
 - startg. m. f.
 - 4-aminoquinolines, N-subst.
9, 463
- Δ^4 -3-Ketosteroids
 - from
 - 4-halogeno-3-ketosteroids 9, 968
- 2-Ketothiocyanates
 - startg. m. f.
 - thiazoles, 2-amino- 9, 408
- Ketothioethers
 - from
 - thioethers, synthesis 9, 909
 - startg. m. f.
 - ketones 9, 142
- β -Ketothioethers
 - from
 - α -diazoketones 9, 682
- γ -Kethothioethers
 - from
 - amines, tert. 9, 679
- Kishner s. Wolff-Kishner
- Knoevenagel synthesis s. Perkin-Claisen-Knoevenagel synthesis
- Knorr pyrrole synthesis 1, 587
- Kostanecki-Robinson reaction 9, 827
- Lactam ring closure 9, 566, 949
 - — opening 9, 402, 555
- Lactams
 - from
 - isocyanates 5, 526
 - , racemization via — 9, 555
 - , reduction, partial 9, 842
 - special s.
 - enaminolactams
 - α -hydroxylactams
 - startg. m. f.
 - aminoketones, synthesis 9, 842
 - thiolactams 9, 574
 - β -Lactams s. Azetidinones

- Lactolesters*
- from
 - lactols 9, 272
- Lactolethers* s. *Lactolides*
- Lactolides* (s. a. *Halogenolactolides*)
- from
 - lactols 9, 596
 - startg. m. f.
 - thiolactolides 9, 678
- Lactols*
- special s.
 - halogeno-lactols
 - keto-
 - startg. m. f.
 - lactolesters 9, 272
 - lactolides 9, 596
- Lactoneammonium salts, quaternary*
- startg. m. f.
 - hydroxybetaines 9, 210
- Lactones*
- diene synthesis with — 9, 739
 - from
 - alkoxycarboxylic acid esters 9, 374
 - halogenhydrins, synthesis 9, 916
 - halogenocarboxylic acid esters 9, 607
 - ketocarboxylic acids 9, 103, 115
 - oxido compounds, synthesis 9, 916
 - special s.
 - carboxy-lactones
 - cyno-
 - enol-
 - halogeno-
 - phthalides
 - startg. m. f.
 - hydroxyaldehydes 9, 67
 - hydroxycarboxylic acid hydrazides 9, 400
 - ketocarboxylic acids 9, 213
- γ -*Lactones*
- from
 - γ,γ -disulfonylcarboxylic acids
 - startg. m. f. [9, 378]
 - furans, dihydro-, synthesis 9, 822
- Lead acetate* 9, 578/9, 655
- dioxide 9, 988
 - salt 9, 674
 - tetraacetate 9, 250, 346/7, 359, 388
- Leuchs anhydrides* s.
- 2,5-Oxazolidiones
- Linear annulization* s. *Annulization*
- Lithium* 9, 59, 689, 715, 719, 810, 878
- /liq. ammonia/alcohol 9, 86
 - alkenyls, syntheses with — 9, 886
 - aluminum hydride $\text{HC}\downarrow\text{OC}$; $\text{HC}\downarrow\text{CC}$; $\text{HC}\downarrow\text{O}$; 9, 2, 6, 34, 80/1, 85, 133, 143, 167, 367, 756, 938
 - , inverse addition 9, 87a, 112
 - , Soxhlet extractor technique 9, 114
 - — —/hydrochloric acid 9, 69
 - amide 9, 514, 736/7
 - boron hydride 9, 60
 - chloride 9, 968
 - compounds, organo, as additional reagents
 - butyl-lithium 9, 689, 720, 752, 819, 885/6
 - methyl- 9, 258
 - phenyl- 9, 490, 581, 721, 735, 803, 864/5, 887, 966
 - iodide 9, 876
- Magnesium* (s. a. *Grignard . . .*)
- $\text{CC}\downarrow\text{OC}$; $\text{CC}\downarrow\text{NC}$; $\text{CC}\uparrow\text{Hal}$; 9, 700, 723-5, 770-2
- /alcohol 9, 669, 904
- , alkyl — halides as additional reagents 9, 401, 456, 549, 745, 772, 836/7, 906
 - chloride 9, 457
 - , dialkylamino — bromide as additional reagent 3, 638; 9, 747
 - oxide (s. a. *Palladium-carbon-magnesium oxide*) 9, 402, 529, 604, 915, 918
 - , phenyl — bromide as additional reagent 9, 726, 746
 - sulfate 9, 256, 371
- Malonic acid esters* (s. a. *Sulfonylmalonic acid esters*)
- , alkylation 9, 881
 - startg. m. f.
 - 3,5-pyrazolidiones 7, 439
- Malonic acid ester synthesis*
- , cycloalkanecarboxylic acids by— 9, 884
- Malonic acid monoesters*
- from
 - carboxylic acid esters 9, 729
- Malonic acids* s. *α -Dicarboxylic acids*
- Mannich bases, hydrogenolysis* 9, 127
- Marassé modification of the Kolbe-Schmitt synthesis* 4, 615
- Masking* s. *Protection*
- Mattox-Kendall reaction* 9, 974
- Meerwein-Ponndorf-Verley* reduction $\text{HC}\downarrow\text{OC}.\text{Al}(\text{OR})_3$; 9, 115
- Mercaptals*
- special s.
 - acoxy-mercaptals
 - hydroxy-

- Mercaptans** (s. a. sulfhydryl under Replacement)
 - as additional reagents 9, 20
 - derivatives
 - saccharin derivatives 9, 688
 - from
 - ethylene sulfides 9, 85
 - thioethers 9, 56, 655
 - , reaction at high pressure 9, 661
 - special s.
 - acooxy-mercaptans
 - hydroxy-
 - keto-
 - startg. m. f.
 - dithiooxalidimides 9, 653
 - thiocyanates 9, 687
 - trithiocarbonic acid esters 9, 690
 - , thiomethylation with — 9, 844

Mercaptocarboxylic acids s.

 - o-Mercaptophenylacetic acids
 - o-Mercaptophenylacetic acids
 - from
 - thianaphthenequinones 9, 121
 - startg. m. f.
 - thiooxindoles 9, 121

Mercuration s. Mercury compounds, organo

Mercury 9, 707

 - (II) acetate 5, 162; 9, 326
 - (II) chloride 9, 249

Mercury compounds, organo (s. a. Thiomercury compounds)

 - as additional reagents 9, 727
 - Diorganomercury compounds, unsym.
 - from monoorganomercury compounds 9, 723
 - Monoalkylmercury compounds
 - from dialkylmercury compounds 9, 594
 - Monoorganomercury compounds
 - Chloro- from acetoxy-mercury compounds 9, 712

Mercury oxide 9, 181, 542, 614, 933

 - pyrans 9, 712
 - resin 9, 102

Mesyl- s. Methylsulfonic-

Metalation 9, 887

 - of thiophenes 9, 819, 885

Methane derivatives
 - special s.
 - arylazodisulfonylmethanes
 - aryl methane derivatives
 - triarylmethanes

Methanol s. Methyl alcohol

Methoxyacetylene as additional reagent 9, 261

Methyl alcohol as additional reagent 9, 406

Methylamine as additional reagent 9, 829

Methylamines
 - from
 - formamides 9, 116
 - isothiocyanates 9, 143

Methylation s. Esters, Ethers

Methyl Cellosolve as additional reagent 9, 192

Methylene bridge 9, 806

Methylene derivatives s. Formals

Methylene groups, active s. Methyl groups

Methyl groups (s. a. Hydrocarbons)

 - Methyl and methylene groups, active
 - , reaction with diazonium salts 9, 423

o-Methyl groups, introduction of — 1, 672; 8, 769

Methylsulfonic acid esters
 - startg. m. f.
 - hydroperoxides 9, 166

Meyer s. Victor Meyer

Michael addition 9, 764

Microorganisms s. Streptococcus faecalis

Migration
 - of
 - acyl s. Acyl group
 - alkyl s. Alkyl migration
 - carbon-carbon double bonds (s. a. Aromatization) 9, 86, 781, 789, 791

Miller s. Döbner

Monodealkylation of phosphoric acid esters 7, 18

Monoglycerides 9, 18

Monoperphthalic acid s. Perphthalic acid

Mozingo's nickel as used for desulfuration $\text{HC}\uparrow\text{S.Ni}$

Naphthalene ring
 - from
 - indole ring 9, 792

Neber-Bosel 3-hydroxyquinoline ring synthesis 9, 569

Neber rearrangement intermediate s. 2-Alkoxyethylenimines

Nef reaction
 - , oxo compounds from aliphatic nitro compounds 9, 299

Nickel $\text{HN}\uparrow\text{O}$; $\text{HC}\uparrow\text{NC}$; $\text{HC}\uparrow\text{CC}$; $\text{HC}\uparrow\text{S}$; 9, 72/3, 76, 127, 136, 148, 352, 378

- (*Nickel*)
 —, Raney nickel W 2 9, 73
 —, — W 4 9, 352
 —, — W 6 9, 89, 144
 —, — W 7 9, 146
 —, removal of sulfur with — 9, 240
 —/chloroform 9, 91
 —/copper s. Copper-nickel
 —/silica 9, 92, 275
 — acetylacetone 9, 778
Nitramines s. a. Nitroacylamines
1,2-Nitramines
 — from
 azomethines 7, 703; 9, 413
 α,β -nitroethylene derivatives
 9, 413
o-Nitramines
 — startg. m. f.
 benzofurazan oxides 9, 385
N-Nitramines
 — from
 N-nitrosamines 9, 169
 —, amine salts of —
 — from
 N-nitrourethans 9, 484
Nitrates (s. a. Nitric acid esters)
 — as additional reagents 9, 429
Nitration $\text{NC}\uparrow\text{H}$
 —, labeled compounds 9, 427
N-Nitration 8, 365
Nitric acid 9, 168, 171, 219, 293, 332,
 384
Nitric acid esters
 —, cleavage 9, 7
 — from
 halides 9, 323
Nitriles
 —, alkylation with p-toluenesulfonic
 acid esters 9, 821
 — from
 ammonium salts, quaternary
 9, 866
 carboxylic acid amides 9, 525,
 563, 565
 cyanohydrins, synthesis 9, 847
 ethylene derivatives 9, 776
 formamides 9, 801
 organometallic compounds 9, 865
 p-toluenesulfonic acid esters
 9, 825
 — special s.
 cyano . . .
 α -halogenonitriles
 Reissert compounds
 ureidonitriles
 — startg. m. f.
 amines, degradation with loss of
 1 C-atom 9, 583
 —, synthesis 9, 756
 azomethines, synthesis 9, 756
 carboxylic acid amides 9, 216,
 220/1, 416, 583
 — acids 9, 279, 297, 769, 866
 imidazolines 9, 458
 isoquinolines, 3,4-dihydro-
 9, 757
 ketimines, synthesis 9, 752
 pyrimidines 9, 414
Nitrites s. Alkyl nitrites
Nitroacetic acid ester
 —, reactions with — 9, 856
 — startg. m. f.
 aci- α,γ -dinitroglutaric acid esters,
 salts of — 9, 856
 α -nitro- β -acylaminocarboxylic
 acid esters 9, 841
*a-Nitro- β -acylaminocarboxylic acid
 esters*
 — from
 nitroacetic acid ester and
 aldehydes 9, 841
 — and 1,1-di(acylamino)
 compounds 9, 841
Nitroalcohols
 — from
 nitroöxo compounds 9, 62
 nitroparaffins and aldehydes
 9, 749
o-Nitroaldehydes
 — startg. m. f.
 isatogens 9, 733
Nitroamines s. Nitramines
Nitroazo compounds
 — startg. m. f.
 aminoazo compounds 9, 35
Nitrobenzene as additional reagent
 9, 254, 358, 463, 553
a-Nitrocarboxylic acid amides
 — from
 isocyanates 9, 753
Nitrocarboxylic acid esters
 — special s.
 nitroacetic acid ester
 α -nitro- β -acylaminocarboxylic
 acid esters
Nitro compounds
 — from
 amines 9, 169
 nitroethylene derivatives 9, 87a
 — special s.
 dinitro compounds
 sulfonylnitro —
 — startg. m. f.
 acylamines 9, 33
 amines $\text{HN}\uparrow\text{O}$
 sulfamic acids 9, 675
aci-Nitro compounds s. aci- α,γ -
 dinitroglutaric acid esters

Nitro compounds, aliphatic
 —, dimerization, oxidative 9, 805
 — from
 halides 9, 528
 1,1-halogenonitro compounds
 9, 168
 oximes 9, 168
 — special s.
 1,1-halogenonitro compounds
 nitroparaffins
Nitrocyclopropanes
 — startg. m. f.
 enoethers 9, 282
Nitroethylene derivatives
 — startg. m. f.
 nitro compounds 9, 87a
α,β-Nitroethylene derivatives
 — from
 aldehydes 9, 830
 — startg. m. f.
 1,2-nitramines 9, 413
β,γ-Nitroethylene derivatives
 — from
 ketones 9, 829
Nitrogen dioxide
 — as additional reagent 9, 988
 —, reactions with ethers 9, 421
Nitrogen oxides s. Nitrogen dioxide, N-Oxides
Nitro groups s. under Replacement
Nitrohalides s. Halogenonitro compounds
Nitrohydrocarbons s. Nitroparaffins
γ-Nitroketones
 — from
 amines, tert. 9, 861
Nitromethane as solvent 9, 50
Nitronates s. aci-Nitro compounds
Nitrones (s. a. N-Oxides)
 — from
 hydroxylamines 9, 553
 — startg. m. f.
 aldehydes 9, 553
Nitroolefins s. Nitroethylene derivatives
Nitroparaffins (s. a. Nitro compounds, aliphatic)
 — startg. m. f.
 nitroalcohols 9, 749
N-Nitrosamines
 — startg. m. f.
 amines 9, 34
 hydrazines 9, 34
 N-nitramines 9, 169
Nitrosation (s. a. Isonitroso compounds)
 — of ketones s. α-Isonitrosoketones
N-Nitrosation s. N-Nitrosamines

N-Nitrosoacylamines
 — startg. m. f.
 azo compounds 9, 548
 indazoles 9, 552
Nitroso compounds (s. a.)
 1,1-Halogenonitroso compounds)
 — startg. m. f.
 azoxy compounds 9, 387
Nitrosohalides s. Halogenonitroso compounds
5-Nitrosopyrimidines 9, 448
 — startg. m. f.
 5-aminopyrimidines 9, 448
N-Nitrosouethans
 — from
 urethans 9, 384
Nitrosyl chloride 9, 386
Nitrosyl sulfate 9, 294
N-Nitrourethans
 — startg. m. f.
 N-nitramines 9, 484
Nitrous acid esters s. Alkyl nitrites
Nuclei s. Heterocyclics, Isocyclics, Rings

Olefins s. Ethylene derivatives
Organometallic compounds (s. a.)
 — under individual metals)
 — from
 diazo compounds 9, 716
 — startg. m. f.
 nitriles 9, 865
Orthoformic acid esters
 — startg. m. f.
 acetals 9, 743
 —, synthesis with addition of 1 C-atom 9, 837, 903
 dithiophosphoric acid esters 9, 193
Orthotitanic acid esters s. Titanic acid esters
Orthothioformic acid esters
 — startg. m. f.
 alkylthiomethylene compounds 9, 913
Osones
 — from
 carbohydrates 9, 356
Oxalic acid as additional reagent 9, 86, 892
Oxalyl chloride 9, 474, 631, 877
 — reaction with unsatd. compounds 9, 759
Oxamidines s. Bisoxamidines
1,3-Oxathiolane ring 9, 676
Oxazoles
 — from
 α-ureidonitriles 9, 245

- Oxazolidines**
- from
 - 2-aminoalcohols 9, 469, 471
 - , hydroxyazomethine-oxazolidine
 - isomerization 9, 386
 - , 3-nitroso- 9, 386
 - from
 - 2-aminoalcohols (2 molecules) 9, 492
- 2,4-Oxazolidione ring opening,**
reductive 9, 158
- 2,5-Oxazolidiones** (s. a. N-Carboxy-aminocarboxylic acid anhydrides)
- startg. m. f.
 - α -aminocarboxylic acids 9, 49
- 2-Oxazolidones**
- from
 - halogenourethans 9, 45
 - startg. m. f.
 - 2-aminoalcohols 9, 45
- Oxazoline-2-thiols**
- from
 - 2-aminoalcohols 9, 412
 - bishydroxythiuram disulfides 9, 412
- Oxazolone ring opening**
- , with dimerization 9, 499
 - — —, reductive 9, 2, 288
- Oxazolones**
- from
 - acylaminocarboxylic acids 9, 369
- Oxidation OH; ON; OS; OC**
- , acylating 5, 162
 - -halogenation 9, 618
- N-Oxides** (s. a. Nitrones)
- , reduction 9, 986
 - startg. m. f.
 - aldehydes, N-heterocyclic 9, 243
 - carbinols, — 9, 243
- Oxidoalcohols**
- startg. m. f.
 - α,β -ethyleneketones 9, 239
 - β -hydroxyketones 9, 239
- Oxido compounds** (s. a. Ethers)
- from
 - 1,2-dihalides 9, 307
 - ethylene derivatives 9, 227
 - glycol acetate methanesulfonates 9, 206
 - monoesters 9, 206
 - halogenhydrins 9, 60, 916
 - α -halogenoketones 9, 60
 - special s.
 - acoxido compounds
 - keto $\ddot{\text{O}}$ xido —
 - startg. m. f.
 - acetylenealcohols, prim. 9, 737
 - acoxyhalides 7, 550
 - alcohols 9, 66
- , synthesis (prim. alcohols) 9, 748
- carboxylic acid amides 9, 237
- glycol monoesters 9, 206, 208
- hydroxythiolic acid esters 9, 649
- ketones 9, 227, 236
- lactones, synthesis 9, 916
- oxazolidines 6, 354
- Oxidothalides**
- startg. m. f.
 - halogenaminoalcohols, N-subst. 9, 399
- Oxidoketones**
- from
 - halogenolactolides 9, 596
 - halogenolactols 9, 596
 - startg. m. f.
 - halogenolactols 9, 596
- α,β -Oxidoketones**
- startg. m. f.
 - β -ketoaldehydes 9, 793
- Oxidosteroids**, epimerization 9, 206
- Oximes** (s. a. Isonitroso . . ., Nitrones)
- from
 - ketones 9, 36
 - startg. m. f.
 - amines 9, 36
 - 1,1-halogenonitroso compounds 9, 168
 - nitro compounds, aliphatic 9, 168
 - oxo compounds, synthesis 9, 868
- Oxime sulfonates** 9, 179
- startg. m. f.
 - 2-alkoxyethylenimines 9, 242
 - ethylenimines 9, 242
- Oxindoles** 9, 527
- startg. m. f.
 - indoles 9, 938
- ψ -Oxindoles**
- from
 - ψ -indoxyls 9, 794
- Oxo compounds**
- derivatives s.
 - hydrazones
 - oximes
 - semicarbazones
 - thiosemicarbazones
 - from
 - acylhydrazones 9, 431
 - alcohols $\text{OC} \uparrow \text{H}$
 - amines and oximes, synthesis 9, 868
 - azomethines 9, 857
 - ethylene derivatives 6, 280
 - glycol monoethers 7, 750
 - hydrocarbons and amidines, synthesis 9, 857
 - α -hydroxycarboxylic acids 9, 380

- hydroxy compounds $\text{OC}\uparrow\text{H}$
- imines 9, 295
- special s.
- aldehydes
- α -azido $\ddot{\text{o}}$ compounds
- carbohydrates
- dioxo compounds
- α,β -ethyleneoxo —
- halogenoxo —
- ketones
- quinones
- startg. m. f.
- acetylenealcohols $\text{CC}\downarrow\text{OOC}$
- acylhydrazones 9, 431
- alcohols 9, 61, 63, 70
 - synthesis 9, 735
- amines 9, 459
 - , tert. 9, 457
- 1,1-aminoalcohols 9, 401
- α -aminocarboxylic acids,
 - synthesis with addition of 1 C-atom 9, 832
- carboxylic acids and esters s.
- Reformatskii synthesis
- 1,1-diaryl derivatives 2, 644; 5, 548
- hydantoins 1, 568
- hydrocarbons $\text{HC}\uparrow\text{O}$
- β -hydrocarboxylic acid esters
 - (s. a. Reformatskii synthesis) 9, 747
- α -hydroxyphosphonic acid esters 9, 708
- hydroxysulfones, synthesis 9, 745
- isocyclics 8, 899
- 4-thiazolidones 9, 672
- Oxo-N-heterocyclics* s.
- Phenanthridones
- α -*Oxo-N-heterocyclics* s.
- Carbostyrils, Isocarbostyrils
- Oxonium salts* s. Dialkyl-, Trialkyl-oxonium salts
- Oxygen* 9, 291, 348, 429
- Oxykydrayl radicals*
 - from hydroxyhydrazines 9, 988
- Ozone* 9, 229, 349/50
- Ozonides* (s. a. 1,2,4-Trioxolanes)
 - , *N*-heterocyclic
 - , cleavage, reductive 9, 106
 - , rearrangement 9, 241
- Palladium* 9, 52, 303, 573
 - /platinum-carbon 9, 925/6
 - , barium sulfate 9, 117
 - , barium sulfate/calcium carbonate 9, 138
- , calcium carbonate 9, 101, 137
- , carbon $\text{HC}\uparrow\text{O}$; $\text{HC}\uparrow\text{Hal}$; 9, 5, 38, 53, 74, 83/4, 94-6, 118, 158, 434, 569, 859/60, 876, 931, 983
- , carbon-magnesium oxide 9, 924
- , oxide 9, 54
- Paracyclophanes* 9, 931
- Penicillin ring system* 9, 895
- , selective hydrolysis with preservation of the — — — 9, 218
- Peptides*
 - , degradation
 - , —, from the carboxylic end 9, 277
 - , —, via hydantoins 9, 568
 - , —, stepwise, via 2-thiohydantoins 9, 544
 - , special s.
 - N-carbalkoxy peptides
 - glutamyl peptides
 - N-thiocarbonyldipeptides
 - , synthesis with
 - chlorophosphites 9, 475
 - phosphazo compounds 9, 468
 - phosphite amides 9, 543
 - tetraethyl pyrophosphite 9, 464
 - , synthesis via carboxylic acid anhydrides, mixed 9, 453
- Peracetic acid* s. Trifluoroperacetic acid
- Perbenzoic acid* 9, 173, 227, 342
- Perbromides* s. Pyridine hydrobromide perbromide
- Perchloric acid* 9, 202, 227, 232, 272, 849
- Perfluoro . . .* s. Trifluoro . . .
- Periodate and Periodic acid* 9, 233
- Perkin-Claisen-Knoevenagel condensation* to α,β -ethylene derivatives $\text{CC}\uparrow\text{O}$
- Permanganate* 9, 201, 213, 255, 364
- Peroxides* (s. a. Acyl peroxides, Hydroperoxides)
 - as additional reagents s. Benzoyl peroxide
 - startg. m. f.
 - alcohols 9, 6
 - diols 9, 6
 - ethylenealcohols 9, 30
- Peroxycarboxylic acid esters* s.
 - Carboxyperoxy carboxylic acid esters
- Peroxycarboxylic acids, N-acylation* with — 9, 450
- Peroxytrifluoroacetic acid* s.
 - Trifluoroperacetic acid
- Perphthalic acid* as additional reagent 9, 167, 202

Persulfate 9, 199, 203, 805
Pfannenstiel s. Spengler
Phenanthridines
 — from
 phenanthridones 9, 574
 phenanthrithiones 9, 574
 — startg. m. f.
 phenanthridones 9, 354
Phenanthridones
 — from
 phenanthridines 9, 354
 — startg. m. f.
 phenanthridines 9, 574
 phenanthrithiones 9, 574
Phenanthrithiones
 — from
 phenanthridones 9, 574
 — startg. m. f.
 phenanthridines 9, 574
Phenarsazine ring 9, 713
Phenol as additional reagent 9, 533
Phenol acetates
 — from
 dienones 9, 4
Phenoesters s. Phenol acetates
Phenoethers
 — from
 amines 9, 289
 — startg. m. f.
 cyclohexenones 9, 86/7
Phenols
 — by
 dehydration 9, 945
 o-hydroxylation 6, 162
 — from
 amines 9, 289
 hydrocarbons 9, 198
 — special s.
 aminophenols
 2,4-dimethylphenol
 quinols
Phenoxazine ring 9, 473
Phenoxazines 9, 509
Phenylhydrazine as additional reagent 9, 41
*Phenylhydrazone*s. *Hydrazones*
Phenyl iodosoacetate, oxidations with — 9, 385
Phenylmagnesium bromide s. under Magnesium
Phosgene
 — startg. m. f.
 hydantoins 9, 532
Phosphazo compounds
 — startg. m. f.
 carboxylic acid amides, subst. 9, 468

Phosphine oxides
 — from
 halides 9, 724
 phosphonium salts 9, 196
 — startg. m. f.
 phosphinic acids 9, 182
Phosphines
 —, cyanoethylation 9, 709
 — from
 chlorophosphines by disproportionation 9, 57
 halides (prim. phosphines) 9, 721
 — special s.
 chloro-phosphines
 dichloro-
Phosphinic acids
 — from
 diazonium salts, stable 9, 717
 phosphine oxides 9, 182
Phosphite amides, peptide synthesis with — 9, 543
Phosphites
 — special s.
 chlorophosphites
 dialkyl phosphites
 —, mixed 9, 188
Phosphonates s. Isothiocyanophosphonates
Phosphonic acid esters
 — from
 dialkylphosphites and halides 4, 604
 — special s.
 1-hydroxy-2-ethylenephosphonic acid esters
 α-hydroxyphosphonic — —
 3-ketophosphonic — —
Phosphonic acids
 — from
 diazonium salts, stable 9, 717
Phosphonium salts
 — startg. m. f.
 phosphine oxides 9, 196
Phosphonyl chlorides s. Phosphonyldichlorides
Phosphonyl dichlorides
 — from
 alcohols 9, 711
Phosphoric acid (s. a.)
 Polyphosphoric acid) 9, 286, 466/7, 632, 845
Phosphoric acid derivatives
 — from
 phosphorous acid derivatives 9, 397
Phosphoric acid esters (s. a.)
 Pyrophosphoric acid esters)
 — special s.
 chlorophosphoric acid esters

- Phosphoric acids* (s. a. Amino-phosphoric acids) 9, 189
 — from phosphoric acid esters 9, 189
- Phosphorous acid derivatives*
 — startg. m. f. phosphoric acid derivatives 9, 397
- Phosphorus* 9, 876, 960
 —/hydrogen iodide 9, 71, 214, 336
 —/iodine 9, 366
 — (III) compounds s. Phosphorus (V) compounds
 — (V) compounds
 — from phosphorus(III) compounds 9, 397
 — halides $\text{HalC}\ddot{\text{O}}$; $\text{CC}\ddot{\text{O}}$; 9, 262, 370, 392, 468, 565/6, 586, 625, 650, 871/2
 — pentasulfide 9, 574
 — pentoxide 9, 178, 632, 788, 946
- Phosphorylation* of hydroxy compounds 9, 189
- Photohalogenation* of aliphatic compounds 9, 611
- Photooxides* s. Peroxides
- Photoreactions* s. a. Irradiation
- Photoreduction* 9, 126, 731
- Phthalides* 9, 161
 — from o-aldehydocarboxylic acids (subst. phthalides) 9, 811
 ketocarboxylic acids 9, 366
 — special s. alkylidenephthalides
 — startg. m. f. carboxylic acids 9, 366
 homophthalic acids, subst. 9, 740
- Picrates*
 — startg. m. f. hydrochlorides 9, 995
- Pinacol rearrangement* 9, 797
- Pinacols* 9, 731
- 2,5-Piperazinediones* 9, 556
- 3,5-Piperazinediones* 9, 441
- Piperidinium acetate* as additional reagent 9, 942
- Piperidone ring opening*, reductive 9, 79
- Piperidones*
 — from halogenaminoketones 9, 418
- 4-Piperidones* 9, 808
- Piperidonium salts*
 — from halogenaminoketones 9, 418
- Platinum catalysts* $\text{HC}\ddot{\text{N}}\text{C}$; $\text{HC}\ddot{\text{N}}\text{CC}$; 9, 39/40, 75/6, 84, 128, 204, 215, 949 —/palladium-carbon s. Palladium, platinum-carbon
- Polyalcohols* (s. a. Anhydroglycitals)
 — from carbohydrates 9, 72
- Polyaryls* s. Diaryls
- Polycarboxylic acid esters*
 — startg. m. f. polycarboxylic acids 9, 14
- Polycarboxylic acids*
 — from polycarboxylic acid esters 9, 14
 — startg. m. f. ketones, cyclic 9, 982
- Polyhalides* (s. a. Sulfonium polyhalides)
 — synthesis 9, 758, 761
- Polymethylenebipyridines* 9, 889
- Polyphosphoric acid* 9, 156, 220, 870, 947
- Polysulfides*, reductive formation
- Ponndorf* s. Meerwein [9, 661]
- Potassium* 9, 275, 414
 —/sodium 9, 728
 — amide 9, 539, 889
 — tert-butoxide 9, 863, 934
 — cyanide 9, 740, 754, 768, 825/6, 891
 — dichromate s. Chromic acid
 — ferricyanide 9, 572
 — hydrogen sulfate 9, 951/2, 979
 — hydroxide/acetal 9, 734
 — hydroxideacetone 9, 512
 — hypoiodite s. Hypohalites
 — iodide 9, 451, 612/3, 632, 893
 — isopropoxide 9, 879
 — manganate 9, 201
 — nitrate 9, 427
 — nitrite 9, 426
 — permanganate s. Permanganate
 — persulfate s. Persulfate
 — salt 9, 419, 631, 697
- Pressure, high* s. High pressure reactions
- Promoters* s. Activator
- Propionic acid* as reaction medium 9, 366
- Protection*, blocking, masking
 — of amino groups 9, 44, 392
 carbon-carbon double bonds 9, 97, 362
 carbonyl groups 9, 743
 keto groups by trans-dioxolanation 9, 352
 carboxyl groups 9, 24, 434
 hydroxyl groups 9, 11, 270, 303
 ketone α -positions 9, 769
 sulfhydryl groups 9, 655

- Protective groups, removal, from**
- hydroxyl groups 9, 22, 229
- Pseudoindoles**
- startg. m. f.
- indolines 9, 83
- Pseudothiouronium salts** s. Iso-thiouronium salts
- Pteridines** s. Pyrimido[4,5-b]-pyrazines
- Purines**
- by transformylation 9, 497
- from
- pyrimidines 9, 538
- Pyrans** s. a. Mercurypyrans
- , 2,3-dihydro-5-bromo- 9, 619
- Pyrazines** (s. a. Pyrimido[4,5-b]-pyrazines)
- startg. m. f.
- pyrimido[4,5-b]pyrazines
9, 488, 561
- 2-Pyrazinones, 1-hydroxy-**
- from
- hydroxamic acids 9, 442
- Pyrazoles**
- from
- ethyleniminoketones 9, 496
- O-heterocyclics 9, 444
- 3,5-Pyrazolidiones**
- from
- malonic acid esters 7, 439
- Pyrazolines**
- from
- α,β -ethyleneoxo compounds
8, 927
- Pyridine hydrobromide perbromide**
- as additional reagent 9, 608
- **hydrochloride** as additional reagent 9, 598
- Pyridine ring** (s. a. Quinoline ring)
9, 815, 840
- from
- dienes 9, 777
- enamines 9, 807, 955
- furan ring 9, 443
- Pyridines** (s. a. 3-Pyridyl compounds)
- alkylation, α -side chain — 8, 851
- , 3-hydroxy- 9, 443
- Pyrido[1,2-a]pyrimid-2-one ring**
- opening 9, 217
- Pyrido[1,2-a]pyrimid-2-ones** 9, 571
- 3-Pyridyl compounds** 9, 764
- Pyridylethylation** 9, 764
- Pyrimidines**
- , exchange of substituents 9, 500
- from
- amidines 9, 455
- nitriles and acetylene 9, 414
- special s.
- 5-amino-pyrimidines
- 5-nitroso-uracils
- , dihydro- 9, 852
- Pyrimido[4,5-b]pyrazine ring**
- opening 9, 278
- Pyrimido[4,5-b]pyrazines**
- , cleavage, reductive, of side chains 9, 155
- from
- pyrazines 9, 488, 561
- Pyrolysis** s. Decarboxylation, dehydrogenation
- 4-Pyrones** 9, 813
- Pyrophosphite, tetraethyl-** as additional reagent 9, 464
- Pyrophosphoric acid esters** 9, 184
- Pyrrole ring opening** 9, 284
- Pyrroles**
- from
- furans, tetrahydro-2,5-dialkoxy- 9, 461
- Pyrrolidines** (s. a. 4-Hydroxy-pyrrolidine-2-carboxylic acids)
- from
- tert-aminonitriles 9, 582
- 2,3-Pyrrolidiones** 9, 818
- Pyrrolo(2',3':3,4)isocoumarin**
- ring opening 9, 740
- Pyrrolo(2',3':3,4)isocoumarins**
- as intermediates 9, 740
- Pyrrolo[2,1-b]thiazoles** 9, 667
- Quinaldines** s. 1-Acyl-1,2-dihydro-quinaldonitriles
- Quinoline** as additional reagent 9, 898
- Quinoline ring**
- from
- amines according to Döbner-Miller 9, 851
- Quinolines**
- special s.
- 4-aminoquinolines, N-subst. carbostyrils
- quinaldines
- , 1,2,3,4-tetrahydro s.
- 4-Ketoquinolines
- Quinol monoesters**
- from
- quinones and aldehydes 9, 207
- Quinolones** s. Carbostyrils
- Quinols** (s. a. Halogenoquinols)
- , acylation 1, 181
- from
- quinones 9, 1
- startg. m. f.
- quinones 9, 256

Quinones (s. a. Thianaphthene-quinones)

- as additional reagents 9, 920
- from
 - aminophenols 9, 293
 - hydrocarbons 9, 254, 256
 - quinols 9, 256
- startg. m. f.
 - halogenoquinols 9, 595
 - isocyclics 9, 853
 - quinol monoesters 9, 207
 - quinols 9, 1

Racemates s. Resolution. *Stereoisomers***Racemization** via lactams 9, 555**Radicals**

- , reactions with — 9, 602, 761
- special s.
 - hydrazyl radicals
 - oxyhydrazyl —

Raney nickel s. Nickel**Reactions**

- at high pressure s. High pressure reactions
- , stereospecific s. Stereospecific reactions

Reagents, organometallic, inverse addition 9, 878**Rearrangement** (s. a. Isomerization)

- of
 - heterocyclics, N-condensed 9, 786
 - Reissert compounds 9, 580
- special s.
 - configuration, change in —
 - dehydration-rearrangement
 - epimerization
 - migration
- to conjugated unsatd. bonds and ar. systems s. Migration of carbon-carbon double bonds

Reduction (s. a. Hydrogenation)

- , partial, of steroid keto groups 9, 73
- , selective, of carboxylic acid esters to alcohols 9, 567
- , stereospecific 8, 43

Reformatskii synthesis 9, 373**Reissert compounds**

- , alkylation 9, 581
- startg. m. f.
 - α -acyl-N-heterocyclics 9, 580
 - α -alkyl-N-heterocyclics 9, 581

Removal s. Elimination**Replacement**

- of *acoxyl* groups by
 - hydrogen 9, 104

- of *C-acyl* by
 - hydrogen 9, 149
- of *N-acyl* by
 - N-alkyl 9, 549
- of *alkylthio* groups by
 - hydrogen 9, 144/5
- of *amino* groups by
 - hydrogen (s. a. Deamination) 9, 126, 129
 - hydroxyl 9, 285/6
 - oxygen 9, 298
 - thiocyanato groups 9, 681
- of *carbalkoxy* groups by
 - hydrogen (s. a. Decarbalkoxylation) 9, 151, 159, 607, 881
- of *carbon* by
 - halogen 9, 640
- of *cyano* groups by
 - hydrogen 9, 156
- of *halogen* by
 - acooxy groups 9, 316, 642
 - alkoxyl 9, 313
 - alkyl s. Hydrocarbons from halides, synthesis
 - amino groups $\text{NC} \leftrightarrow \text{Hal}$
 - cyano groups 9, 890, 898
 - hydrogen $\text{HC} \leftrightarrow \text{Hal}$
 - , selective replacement 9, 132
 - hydroxyl 9, 305/6
 - , partial replacement 9, 328
 - sulphydryl 9, 689, 700
 - of *hydrogen* by
 - aldehyde groups in ar. rings s. aldehyde groups
 - cyano groups 9, 802, 865
 - halogen $\text{HalC} \leftrightarrow \text{H}$; $\text{NHal} \leftrightarrow \text{H}$
 - hydroxyl 9, 199
 - sulfonic acid groups 9, 306
 - thiocyanato groups 9, 659
 - of *hydroxyl* by
 - halogen $\text{HalC} \leftrightarrow \text{O}$
 - , partial replacement 9, 634
 - of *imino* groups by
 - oxygen 9, 283
 - of *nitro* groups 9, 491
 - — — by thiocyanato groups 9, 681
 - of *sulphydryl* by
 - amino groups 9, 534
 - of *sulfonic acid* groups by
 - hydrogen 9, 306
 - of *sulfur* by
 - amino groups 9, 542
- of *acoxyl* groups by
 - hydrogen 9, 104

Resins (s. a. Dowex-50, Ion exchange resins, Mercury-resin)

- as catalysts 9, 102

- Resolution of racemates**
- via
 - acylhydrazones (of oxo compounds) 9, 431
 - salts 9, 176
- Rhodanides s. Thiocyanates**
- Rickert s. Alder**
- Ring closure ○**
- by isomerization 9, 785, 790
 - to
 - O-heterocyclics 6, 301
 - N-heterocyclics 9, 969
 - with acetic anhydride 9, 943
 - —, reductive
 - to
 - N-heterocyclics 9, 573
- Ring contraction**
- of isocyclics 9, 310, 326, 965
- Ring expansion (s. a. Demyanov)**
- by dienone-phenol rearrangement 6, 720
 - of
 - O-heterocyclics to
 - N-heterocyclics 9, 443
 - isocyclics with diazo compounds 9, 859
- Ring hydrogenation**
- of
 - amines 9, 93
 - benzene ring 9, 92, 931
 - —, selective
 - of
 - N-heterocyclics 9, 84
 - , condensed, benzene rings of
 - 9, 99
- Ring opening C**
- of heterocyclics 9, 59
 - —, hydrolytic of isocyclics 9, 883
 - —, oxidative 9, 229/30, 233, 350/1
 - —, reductive 9, 77
 - of
 - oxazolones 9, 288
 - piperidones 9, 79
 - —, —, partial, of O-heterocyclics 9, 69
- Rings (s. a. Heterocyclics, Isocyclics)**
- exchange of substituents s. Replacement
 - introduction of substituents s. Replacement of hydrogen
 - , condensed, cis from trans 9, 787
- Robinson s. a. Kostanecki**
- Robinson-Mannich base procedure, cyclohexenone ring synthesis 1, 606**
- Ruff degradation 6, 323**
- Ruggli-Ziegler dilution principle 4, 281; 9, 971**
- Ruthenium dioxide 9, 93**
- Ruthenium tetroxide, oxidations with — 9, 174**
- Saccharides s. Carbohydrates, Di-, Tri-saccharides**
- Sand as extraction aid 9, 727**
- Saponification s. Hydrolysis**
- Schiff bases s. Azomethines**
- Schlack-Kumpf degradation, modified 9, 544**
- Selenenic acids**
- from
 - selenylhalides 9, 190
- Selenium dioxide 9, 230, 922, 957**
- Selenols**
- from
 - diselenides 9, 58
- Selenyl acetates**
- from
 - selenylhalides 9, 191
- Selenylhalides**
- startg. m. f.
 - selenenic acids 9, 190
 - selenyl acetates 9, 191
- Self-condensation of carboxylic acid anhydrides 9, 914**
- Semi- s. a. Hemim-**
- Semicarbazides (s. a. Acylsemicarbazides)**
- from
 - S-thiocarbamic acid esters 9, 536
 - thiocarbonyl chlorides 9, 536
 - ureas 9, 482
- Semicarbazones**
- startg. m. f.
 - carboxylic acid amides, rearrangement 9, 294
- Shift s. Migration**
- Side chains, degradation, oxidative OC $\uparrow\downarrow$ C**
- Silanes**
- , cleavage 9, 147, 316, 593
 - from
 - alkoxysilanes, synthesis 9, 715
 - halogenosilanes 9, 720
 - special s.
 - acooxy-silanes
 - alkoxy-
 - alkylthiomethyl-
 - amino-
 - halogeno-
 - isocyano-
- Silanols (s. a. Siloxanols)**
- from
 - halogenosilanes 9, 187, 192
- Silico-alkylation of carboxylic acid esters 9, 722**

Siloxanes

- from halogenosilanes 9, 187

Siloxanols

- from halogenosilanes 9, 187

Silver acetate 9, 191, 596, 876, 928

- carbonate 9, 494

- chloride 9, 949

- cyanide 9, 398

- nitrate 9, 323

- nitrite 9, 528

- oxide 9, 60, 190, 210, 256

- salt 9, 324/5, 389, 639

- — degradation s. Hunsdiecker

Smiles rearrangement 9, 235*Sodium* 9, 103, 124, 303/4, 557, 764, 879, 931

- /ethylene glycol 9, 961

- /liq. ammonia 9, 16, 42, 56, 58, 78, 820, 935

- /—/alcohol 9, 87

- amalgam 9, 139

- amide $\text{CC}\ddagger\text{Hal}$; 9, 9, 515, 539, 738, 821/2

- azide 9, 415, 485

- boron hydride 9, 61-3, 106, 168, 876

- inverse addition 9, 63

- butyl- as additional reagent 9, 8

- chloride (s. a. Aluminum

- chloride/—) 9, 585, 712

- cyanide 9, 663, 824, 890

- dichromate 9, 360/1

- ethylenediaminetetraacetate s.

Trilon B

- hydride 9, 580, 690, 860, 880/1

- hydrogen sulfide 9, 35

- — sulfite 9, 450

- hypochlorite s. Hypohalites

- iodide 9, 130, 520, 603, 624, 892

- methoxide 9, 816-8

- nitrite $\text{OC}\ddagger\text{N}$; 9, 129, 332, 384, 492, 643, 681

- salt 9, 24, 317, 520-2, 648, 694-6, 827, 953

- stannite 9, 989

- sulfate 9, 678

- sulfide 9, 7

- sulfite 9, 693

- trimethoxyboron hydride, reductions with — 9, 70

Soxhlet extractor technique s.

Lithium aluminum hydride

Spengler-Pfannenstiel degradation, oxidative, of carbohydrates 9, 348*Spirostane ring*

- startg. m. f.

- furostane ring 9, 69

Spirostanes

- startg. m. f.

- furostenes 9, 795

Stereochemistry of steroids s.*Steroids**Stereoisomers* (s. a. Configuration, Racemates)

- special s.

- glycols, stereoisomeric

Stereospecific reactions (s. a.

- Hydrogenation, stereospecific, Reduction —) 9, 790, 935

Steroid keto groups

- , O-alkylation, reductive 9, 215

- , reduction, partial 9, 73

- polyenes, hydrogenation, partial 9, 90

Steroids

- , epimerization 9, 780

- from 3,5-cyclosteroids 9, 798

- special s.

- 11 β -acooxy-steroids

- 3,5-cyclo-

- 4-halogeno-3-keto-

- 17 α -hydroxy-20-keto-

- Δ^4 -3-keto-

- oxido-

- stereochemistry 9, 94

Stilbenes

- from

- aldehydes 9, 677

- s-trithianes 9, 677

Streptococcus faecalis 9, 292*Substituents* s. Exchange*Substitution* s. Replacement*Sugars* s. Carbohydrates*Suhl* s. Zincke*Sulfamic acids*

- from

- hydroxylamines 9, 390

- isocyanates 9, 396

- nitro compounds 9, 675

- ureas 9, 396

- urethans 9, 396

- startg. m. f.

- diazo oxides 9, 332

Sulfamides

- startg. m. f.

- carboxylic acid amides, subst.

- 9, 541

- formamidines 9, 541

Sulfates s. Sulfuric acid esters*Sulfenylchlorides*

- startg. m. f.

- sulfenylureas 9, 395

Sulfenylureas

- from

- sulfenylchlorides 9, 395

- Sulfides**
- special s.
 - acyl-sulfides
 - di-
 - poly-
 - thioethers
 - trisulfides
- Sulfidimides** 9, 393
- Sulfido compounds** s.
- Ethylenesulfides
- Sulfimides**, N-alkylation 9, 520
- Sulfinic acids**
- startg. m. f.
 - sulfones 9, 673
- Sulfites** s. Sulfurous acid esters
- Sulfocarboxylic acid imides** s.
- Sulfimides
- Sulfochlorides** s. Sulfonic acid chlorides
- Sulfonamides** s. Sulfonic acid amides
- Sulfonation** s. Replacement of hydrogen by sulfonic acid groups
- Sulfones** (s. a. Sulfonyl...)
- , cleavage, reductive 9, 139
 - from
 - sulfinic acids and alcohols 9, 673
 - sulfonic acid anhydrides 9, 671
 - — chlorides (cyclic sulfones) 9, 706
 - thioethers 9, 173/4
 - special s.
 - α -amino-sulfones
 - 1,1-di-
 - hydroxy-
 - startg. m. f.
 - ethers 9, 331
 - hydrocarbons, cleavage, reductive 9, 139
 - , desulfuration, reductive 9, 145, 880
 - , cyclic, isomerization 9, 779
- Sulfonic acid amides** (s. a. Acylaminosulfonic acid amides)
- from
 - diazo compounds 9, 680
 - sulfonic acid anhydrides 9, 391
 - — chlorides (s. a. N-Tosylation) 9, 392
 - startg. m. f.
 - amines 9, 42
- Sulfonic acid anhydrides** 9, 178
- from
 - sulfonic acid chlorides 9, 181
 - acids 9, 177, 261
 - startg. m. f.
 - sulfones 9, 671
 - sulfonic acid amides 9, 391
 - sulfonylacetic acid esters 9, 669
- sulfonylmalonic — — 9, 669
- thiolsulfonic — — 9, 646
- Sulfonic acid azides**
- startg. m. f.
 - diazo compounds 9, 490
- Sulfonic acid chlorides** (s. a. Sulfonic acid halides)
- from
 - isothiouronium salts 9, 589
 - sulfonic acids 9, 392, 586
 - startg. m. f.
 - sulfones, cyclic 9, 706
 - sulfonic acid amides 9, 392
 - — anhydrides 9, 181
 - — esters 9, 180
- Sulfonic acid esters**
- from
 - halides 9, 325
 - sulfonic acid chlorides and alcohols 9, 180
 - thioethers 9, 224
 - special s.
 - α -cyanosulfonates
 - disulfonic acid esters
 - methylsulfonic — —
 - p-toluenesulfonic — —
 - startg. m. f.
 - hydrocarbons 9, 109
- Sulfonic acid halides** (s. a. Sulfonic acid chlorides)
- startg. m. f.
 - halides 9, 644
- Sulfonic acids** (s. a. sulfonic acid groups under Replacement)
- as additional reagents s. p. Toluenesulfonic acid
 - from
 - ethylene derivatives 9, 656
 - iodonium salts 9, 693
 - special s.
 - aminosulfonic acids
 - startg. m. f.
 - sulfonic acid anhydrides 9, 177, 261
- Sulfonic carboxylic acid derivatives** s. Sulfocarboxylic acid derivatives
- Sulfonimides** s. Aminesulfonimides
- Sulfonium polyhalides** 9, 585
- Sulfonyl... s. a. Sulfones**
- Sulfonylacetic acid esters**
- from
 - sulfonic acid anhydrides 9, 669
 - sulfonylmalonic acid esters 9, 669
- Sulfonylhydrazones**
- , decomposition, alkaline 9, 961
 - startg. m. f.
 - ethylene derivatives 9, 961

- Sulfonylhydrazone salts**
 — from
 aminesulfonimides 9, 984
- startg. m. f.
 aminesulfonimides 9, 984
- Sulfonylmalonic acid esters**
 — from
 sulfonic acid anhydrides 9, 669
- startg. m. f.
 sulfonylacetic acid esters 9, 669
- Sulfonylnitro compounds**, cleavage 9, 141
- Sulfonylsulfides** s. Thiolsulfonic acid esters
- Sulfonylthioethers** (s. a. Azo-sulfonylthioethers)
 —, cleavage 9, 334
- Sulfosalicylic acid** as additional reagent 9, 268
- Sulfur** CC ↑ H; 9, 237
 —, removal 9, 240
- Sulfur dioxide**, liq. 9, 789, 990
- Sulfuric acid esters**, hydrolysis 9, 176, 203
 — — monoesters 9, 175/6
- Sulfurous acid esters**
 — startg. m. f.
 acetals 9, 335
- Sulfur trichlorides**
 — from
 disulfides 9, 587
- Sulfuryl chloride** 9, 584, 607
- Synthesis** (s. a. Condensation)
 — by selective replacement of halogen 6, 806
 — with addition of 1 C-atom
 acetals from orthoformic acid esters 9, 837
 aldehydes from halides 9, 903
 carboxylic acid esters from hydrocarbons 9, 803
 — acids from ammonium salts.
 quaternary 9, 866
- with addition of 2 C-atoms
 α-aminocarboxylic acids from oxo compounds 9, 336
- , asym. 9, 741
- Tautomerism** s. Valence tautomerism
- Tellurium compounds, organo** 9, 648
- 1,1,2,2-Tetraarylethanes** 9, 874
- 1,2,4,6-Tetraazaindenes** 9, 424
- Tetracycline derivatives** 9, 125
- Tetraethylammonium bromide** as additional reagent 9, 606
- Tetramethylammonium acetate** as additional reagent 9, 552
- Tetrazoles**
 — from
 3,6,9-tricarbaundecaz-1,3,8,10-tetraenes 9, 388
- Tetrazolium radicals** 9, 989
- Thallous alkoxide** 9, 357/8
- Thermolysis** s. Pyrolysis
- Thia-** s. a. Thio-
- Thiacylamines** s. Carboxylic acid thioamides
- 1,3,4-Thiadiazines**
 — via α-(dithiocarbazyl)oxo compounds 9, 697
- 1,3,5-Thiadiazines, tetrahydro-** 9, 664
- Thianaphthenequinones**
 — startg. m. f.
 o-mercaptophenylacetic acids 9, 121
 thiooxindoles 9, 121
- Thianaphthenes** s. a. Thiooxindoles
- Thiazole ring, 2-amino-**
 — from
 amines 9, 659
 o-aminothiocyanates 9, 659
- Thiazoles**
 —, 2-amino-
 — from
 2-ketothiocyanates 9, 408
- , 2,4-diamino-
 — from
 α-cyanosulfonates 9, 663
- Thiazolidines** 9, 666
- 2-Thiazolidones**
 — from
 dithiolcarbonic acid esters 9, 577
- 4-Thiazolidones**
 — from
 oxo compounds 9, 672
 aldehydes 9, 662
- 5-Thiazolidone-2-thiones**
 — startg. m. f.
 α-aminocarboxylic acids 9, 336
- Thiazolidone ring opening** 9, 223
- Thiazolines**
 — from
 hydroxydithiocarbamic acid esters 9, 705
- startg. m. f.
 aminodithiolcarbonic acid esters 9, 705
- 5-Thiazolones** 9, 704
- Thio-** s. a. Alkylthio-, Sulfenyl-, Thia-
- Thioacetals** s. Mercaptals
- Thioacetamide** as additional reagent 9, 683
- N-Thioacylamidines**, cleavage 9, 483

- Thioaldehyde trimers* s. s-Trithianes
Thioamides s. Carboxylic acid
 — thioamides
Thiocarbamic acid esters s. Thiono-carbamic acid esters
S-Thiocarbamic acid esters
 — from
 thiocarbonyl chlorides 9, 536
 — startg. m. f.
 semicarbazides 9, 536
 ureas 9, 536
Thiocarbazyl compounds s.
 α-(Dithiocarbazyl)oxo
 compounds
Thiocarbimides s. Isothiocyanates
Thiocarbonic acid esters s. Trithio-carbonic acid esters
N-thiocarbonylaminocarboxylic acids from their esters 9, 26
Thiocarbonyl chlorides
 — startg. m. f.
 semicarbazides 9, 536
 S-thiocarbamic acid esters
 9, 536
 ureas 9, 536
Thiocarbonyl dichloride
 — startg. m. f.
 thioureas, sym. 9, 505
N-Thiocarbonyldipeptides
 — startg. m. f.
 hydantoins 9, 578
Thiocarboxylic acid esters s. a.
 Thiolic acid esters
 — — — and related compounds,
 chlorination 9, 588
Thiocyanates
 — from
 mercaptans 9, 687
 — special s.
 o-amino-thiocyanates
 2-keto-
Thiocyanation s. Replacement of
 hydrogen by thiocyanato groups
Thiodiformic acid esters s.
 Thionothiodiformic acid esters
Thienolethers s. Alkylthiomethylene
 compounds
Thioethers (s. a. Alkylthio . . .,
 Thiomethylation)
 — from
 acoxy compounds 9, 665
 amines 9, 411
 ethylene derivatives 9, 655
 halides 9, 684, 699
 thiolthionophosphoric acid esters
 and alcohols 9, 702
 — special s.
 amino-thioethers
 carboxy-
- ethylenesulfides
 halogeno-thioethers
 hydroxymethyl-
 hydroxy-
 keto-
 sulfonyl-
 thienolethers
 — startg. m. f.
 amines 9, 535
 ethylene derivatives and
 mercaptans 9, 655
 hydrocarbons s. Replacement of
 alkylthio groups by hydrogen
 ketothioethers, synthesis 9, 909
 mercaptans 9, 56, 655
 sulfones 9, 173/4
 sulfonic acid esters 9, 224
 —, cyclic (s. a. Ethylenesulfides)
 —, by deacylation 9, 703
 —, sym.
 — from
 amines, tert. 9, 683
Thioformic acid esters s. Ortho-trithioformic acid esters
2-Thiohydantoins 9, 544
Thioimidoesters s.
 Dithioökaldiiimidates
Thiolactams
 — from
 lactams 9, 574
Thiolactolides
 — from
 lactolides 9, 678
Thiolcarbonic acid esters s. Dithiol-carbonic acid esters
Thiolic acid esters (s. a. S-Acylation)
 — from
 carboxylic acid anhydrides
 9, 674, 686
 — — chlorides 9, 650, 686
 — special s.
 carboxylic acid
 acylthioethylamides
 carboxythiolic acid esters
 dithiolic — —
 hydroxythiolic — —
Thiolsulfonic acid esters
 — from
 sulfonic acid anhydrides 9, 646
 thiolsulfonic acids (2 molecules)
 9, 645
Thiolsulfonic acids
 — startg. m. f.
 disulfonyl trisulfides and
 thiolsulfonic acid esters 9, 645
Thiolthionophosphoric acid esters
 9, 654
 — startg. m. f.
 thioethers 9, 702

Thiolurethans s. S-Thiocarbamic acid esters
Thiomercury compounds, organo s. Di(alkylthio)mercury
Thiomethylation 9, 844
Thionocarbamic acid esters
 — from thionothiodiformic acid esters 9, 537
Thionothiodiformic acid esters
 — startg. m. f. thionocarbamic acid esters 9, 537
Thionyl chloride HgCl_2O ; 9, 262/3, 344, 705
Thioorthocarboxylic acid esters s. Trithioorthocarboxylic acid esters
Thiooxindoles
 — from o-mercaptophenylacetic acids 9, 121 thiophenequinones 9, 121
Thiophene 1,1-dioxides
 — startg. m. f. 7-bicyclo[2.2.2]octene-2,3,5,6-tetracarboxylic acid anhydrides 9, 976 thiophenes 9, 987
Thiophene ring opening, by desulfuration 9, 146
Thiophenes
 — from thiophene 1,1-dioxides 9, 987
Thiophosphoric acid esters s. Dithiophosphoric acid esters
Thio-4-pyrone, tetrahydro- 9, 834
Thiosalicylide ring opening 9, 411
Thiosemicarbazides
 — from thiosemicarbazones 9, 78
Thiosemicarbazones 9, 432
 —, S-alkylation 9, 554
 — by interchange 9, 432
 — startg. m. f. isothiosemicarbazones 9, 554 thiosemicarbazides 9, 78
Thiosulfonic . . . s. Thiolsulfonic . . .
Thioureas
 — startg. m. f. isothiocyanates 9, 575
 —, sym.
 — from amines 9, 505
Thiourethans s. S-Thiocarbamic acid esters, N-Thiocarbonyl . . .
Thiouronium salts s. Isothiouronium salts
Thiuram- s. Bisthiuram-

Tin(II) chloride 9, 569
 — (IV) chloride 9, 345
 — compounds, organo cyanides from hydroxides 9, 714
Tishchenko reaction, mixed 9, 211
Titanic acid esters 9, 185, 338
Titanium alkoxides s. Chlorotitanium alkoxides
Titanium tetrachloride 6, 193
Tollens condensation 4, 613; 5, 469
p-Toluenesulfonic acid as additional reagent 9, 22, 212, 264-7, 352, 371, 662, 676, 846, 881, 958, 968
p-Toluenesulfonic acid esters (s. a.)
 Tosylation)
 —, alkylation of nitriles 9, 821
 — as intermediates 9, 623
 — startg. m. f. hydrocarbons, synthesis 9, 836, 839
 iodides 9, 624
 nitriles 9, 825
p-Toluenesulfonyl- s. a. Tosyl-Tosylation, partial 9, 825
N-Tosylation, selective 9, 394
trans- s. Isomers, Rearrangement
Transacetalization 9, 355
Transacylation s. Acidolysis
Transamination
 —, amines, sec. and tert., from ammonium salts, quaternary 9, 478
Transdioxolanation 9, 352
Transesterification 9, 343, 338/9
 —, retention of configuration 9, 344
 —, partial 9, 341
Transformation s. Rearrangement
Transformylation 9, 497
Transposition s. Rearrangement
Trialkylamines s. Triethylamine
Trialkyloxonium salts
 — via dialkyloxonium salts 9, 990
Triarylmethanes 9, 846
1,3,5-Triazine derivatives 9, 518
1,2,3-Triazine ring 9, 425
 — startg. m. f. isoxazole ring 9, 375
1,2,4-Triazines 9, 579
1,3,5-Triazines
 — from acylbiurets 9, 560 acyldicyanodiamides 9, 417 carbalkoxydicyanodiamides 9, 562 carbalkoxyguanylureas 9, 562 nitriles, trimerization 9, 406 — and dicyanodiamide 9, 405

- 1,3,5-Triazines, dihydro-*
- from
biguanides 9, 546
- 1,2,4-Triazoles*
- from
hydrazines 9, 449
- , 3-*mercapto-*
- via isothiosemicarbazones
9, 554
- 3,6,9-Tricarbaundecaz-1,3,8,10-tetraenes*
- startg. m. f.
tetrazoles 9, 388
- Trichloromethylsulfenyl chloride*
- startg. m. f.
bis(triarylthiomethyl) trisulfides
9, 696
- 1,2,3-Trienes*
- from
2-acetylene-1,4-diols 9, 948
- Triethanolamine* as additional reagent 9, 186
- Triethylamine* as additional reagent
9, 452-4, 475, 536, 544, 625, 705,
832, 844, 895, 954
- Trifluoroacetic acid* as additional reagent 9, 285
- Trifluoroacetyl derivatives*
- , masking of hydroxyl groups
9, 17
- Trifluoroperacetic acid*, oxidations with — 9, 169
- Trihalides*
- from
ethylene derivatives 9, 607
- 1,1,1-Trihalides*
- startg. m. f.
carboxylic acids 9, 327
— —, selective conversion 9, 329
- 1,1,2-Trihalides*
- from
ethylene derivatives 9, 601
- Trilon B* in Grignard reactions 9, 742
- Trimethylbenzylammonium hydroxide* as additional reagent 9, 769, 828
- Trimethylene glycol* as additional reagent 9, 972
- Trimethylhexadecylammonium bromide* as additional reagent 9, 292
- 1,2,4-Trioxolanes* (s. a. Ozonides)
- from
ethylene derivatives 9, 340
- Triphenylmethane derivatives* s. Triarylmethanes
- (*Triphenylmethyl)amines* 9, 523
- Triphenylmethyl sodium* as additional reagent 9, 722, 729
- Triphenyl phosphite methiodide* as additional reagent 9, 993
- Triple bond s.* Acetylene derivatives
- Trisaccharides*
- startg. m. f.
disaccharides 9, 19
- Trisulfides* s. Bis(triarylthiomethyl) trisulfides, Disulfonyl-s-Trithianes
- from
aldehydes 9, 677
- startg. m. f.
stilbenes 9, 677
- Trithiocarbonic acid esters*
- from
mercaptans 9, 690
- Trithioorthocarboxylic acid esters*
9, 670
- Trithiopercarbonic acid esters*
- from
bis(triarylthiomethyl) trisulfides
9, 333
- Triton B* s. Trimethylbenzyl-ammonium hydroxide
- Trityl* s. Triphenylmethyl...
- Tropolone ring opening*, oxidative 9, 351
- Tropolones*
- by enolization 9, 3
- from
diene- α -diones 9, 4, 5
- Tropone ring*
- startg. m. f.
benzene ring 9, 310
- Uracils, 5-carbethoxy-* 9, 447
- Ureas*
- from
amines and carboxylic acid azides 9, 481
— and isocyanates 9, 404
cyanamides 9, 222
guanidines 9, 292
S-thiocarbamic acid esters 9, 536
thiocarbonyl chlorides 9, 536
- special s.
acyl-ureas
alkoxymethyl-sulfenyl- α -ureidocarboxylic acids
- startg. m. f.
dicarboxylic acid imides 2, 461
semicarbazides 9, 482
sulfamic acids 9, 396
- , sym.
- from
alcohols and urea 9, 460

- α-Ureidocarboxylic acids*
- from hydantoins 9, 568
- startg. m. f. hydantoins 9, 404, 568
- α-Ureidonitriles*
- startg. m. f. hydantoins 9, 245
- oxazoles 9, 245
- Urethans* (s. a. N-carbalkoxy-)
- from amines (s. a. N-Carbobenzoylation) 9, 519
- special s. halogeno-urethans
- N-nitroso-
- startg. m. f. amines (s. a. N-Decarbalkoxylation) 9, 50, 54, 56, 860
- N-nitrosourethans 9, 384
- sulfamic acids 9, 396
- , cyclic s. 2-Oxazolidones

- Valence tautomerism* 9, 917
- Verley* s. Meerwein
- Victor Meyer reaction* 1, 372; 6, 476; 9, 528
- Vinyl alcohols* s. Aldehydes
- Vinyl cyanide* s. Cyanoethylation
- Voigt reaction* 9, 472

- Wagner-Meerwein rearrangement* 9, 373
- Walden inversion* (s. a. Configuration, change in —)
- of acylaminosugars 9, 10
- —, double 9, 206
- Wallach transformation* 9, 244

- Water separation, azeotropic* 9, 183, 259, 264/5, 469, 472, 846
- —, —, in a Soxhlet apparatus 9, 371
- Willgerodt reaction* 9, 237
- —, extended 9, 658
- Willgerodt-Kindler reaction* 2, 181; 3, 141; 9, 240
- Wolff-Kishner reduction* $\text{HC}\uparrow\text{O}$ v.i.
- , two-step procedure 9, 120
- with preceding acid cleavage 9, 228
- with simultaneous decarbalkoxylation 9, 122
- , simplified 9, 119
- Wurtz reaction*, modified 9, 879

- Xanthamic acid esters* s. Thionocarbamic acid esters
- Xanthates*
- from halides 9, 690, 695
- Xanthogenamides* s. Thiocarbamic acid esters

- Yeast* as additional reagent 9, 19

- Zerweck* s. Fischer
- Ziegler* s. Ruggli
- Zinc* $\text{HC}\uparrow\text{O}$; $\text{CC}\downarrow\text{OC}$; $\text{CC}\uparrow\text{Hal}$; 9, 1, 30, 33, 79, 125, 129, 131/2, 801, 905, 937, 987
- , activated 9, 131
- amalgam $\text{HC}\uparrow\text{O}$; 9, 142, 154, 288, 366
- chloride $\text{CC}\uparrow\text{Hal}$; $\text{CC}\uparrow\text{O}$; 9, 289, 458, 725, 913
- oxide-alumina-calcium oxide 9, 919
- Zincke-Suhl synthesis* 9, 910

Deutscher Schlüssel zum Register (Index)

Band 1-9

siehe unter

Abbau	Degradation
Abspaltung	Elimination
Acylessigester	Acylacetic esters
Acylhydrochinonäther	Acylquinol ethers
Acylierung	Acylation
Aether	Ethers
Aethyl-	Ethyl-
Alkoholate	Alkoxides
Alkohole	Alcohols
Alkylideneacetessigester	Alkylideneacetoacetic esters
Alkylierung	Alkylation
Allylumlagerung	Allyl rearrangement
Ameisensäure	Formic acid
Amidosulfonsäure	Sulfamic acid
Anhydrozucker	Anhydrosugars
Anlagerung	Addition
Arylierung	Arylation
Asparaginsäuren	Aspartic acids
Aufbau	Synthesis
Austausch	Replacement

Benzolringssystem	Benzene ring system
Benzopersäure	Perbenzoic acid
Bernsteinsäure	Succinic acid
Bimsstein	Pumice
Blei	Lead
Bor	Boron
Borsäure	Boric acid
Borsäureanhydrid	Boron trioxide
Brenztraubensäure	Pyruvic acid
Brom	Bromine
Brom-	Bromo-
Bromcyan	Cyanogen bromide
Bromjod	Iodine bromide

Carbäthoxylierung	Carbethoxylation
Carbonsäure-	Carboxylic acid-
Carbonsäuren, verzweigte	Carboxylic acids, branched
Chlor	Chlorine
Chlor-	Chloro-
Chloressigsäure	Chloroacetic acid
Chlorjod	Iodine monochloride
Chlorschwefel	Sulfur monochloride
Chrom	Chromium
Chin-	Quin-
Cumarin	Coumarin

siehe unter

Dehydratisierung	Dehydration
Dehydrierung	Dehydrogenation
Diazokupplung	Diazo coupling
Dithiocarbonsäuren	Carbodithioic acids
Einführung von funktionellen Gruppen	Replacement of hydrogen
Eisen	Iron
Erdalkalien	Earths, alkaline
Erden, seltene	Earths, rare
Fluorwasserstoffsäure	Hydrogen fluoride
Gallensäurederivate	Bile acid derivatives
Glycerine	Glycerols
Halbacetale	Hemiacetals
Halogenide	Halides
Halogenwasserstoff	Hydrogen halide
Harnsäuren	Uric acids
Harnstoff	Urea
Heterocyclen	Heterocyclics
Holzkohle	Charcoal
Hydrierung	Hydrogenation
Hypohalogenite	Hypohalites
Isocyclen	Isocyclics
Isothioharnstoffe	Iothioureas
Jod	Iodine
Jod-	Iodo-
Jodwasserstoffsäure	Hydrogen iodide
Kalium	Potassium
Kern	Nucleus
Kettenverlängerung	Chain lengthening
Kohlehydrate	Carbohydrates
Kohlendioxid	Carbon dioxide
Kohlensäure	Carbonic acid
Kohlenwasserstoffe	Hydrocarbons
Kugelmühlenreaktor	Ball mill reactor
Kunstharz-Base	Resin base
Kupfer	Copper
Kupplung	Coupling
Mangan	Manganese
Molekülverbindungen	Molecular compounds
Natrium	Sodium
Natriumäthylat	Sodium ethoxide
Oxy-	Hydroxy-
Oxydation	Oxidation
Peressigsäure	Peracetic acid
Phenyljodidchlorid	Iodobenzene dichloride
Phosphinsäuren	Phosphonic acids
Polymerisierung	Polymerization

siehe unter

Quecksilber

Razemate
 Reduktions-Tropfverfahren
 Rhodanid
 Ringerweiterung
 Ringöffnung
 Ringschluß
 Ringverengung

Salpetrigsäureester
 Salpetersäure
 Schutz
 Schwefel
 Schwefelchloride
 Schwefelwasserstoff
 Seitenketten
 Senföle
 Silicium
 Siliciumdioxyd
 Spaltung
 Stellungswechsel
 Stickstoff
 Stickstoffwasserstoffsäure
 Sulfaminsäuren
 Sulfopersäure

Thiohalogenide
 Thioharnstoff
 Thiokohlensäuredisulfide
 Tschitschibabin
 Tschugaeff

Umacylierung
 Umesterung
 Umkehrung
 Umlagerung
 Unterphosphorigsäure

Verbindungen
 Veresterung
 Verseifung

Wanderung
 Wasserstoffperoxyd
 Wismutverbindungen
 Wolframsäure

Zinn
 Zuckersäuren

Mercury

Racemates
 Dropping reduction
 Thiocyanate
 Ring enlargement
 Ring opening
 Ring closure
 Ring contraction

Nitrous acid esters
 Nitric acid
 Protection
 Sulfur
 Sulfur chlorides
 Hydrogen sulfide
 Side chains
 Isothiocyanates
 Silicon
 Silica
 Cleavage
 Position shift
 Nitrogen
 Hydrazoic acid
 Sulfamic acids
 Peroxymonosulfuric acid

Sulfenylhalides
 Thiourea
 Disulfurdicarbothionates
 Chichibabin
 Chugaeff

Transacylation
 Transesterification
 Inversion
 Rearrangement
 Hypophosphorous acid

Compounds
 Esterification
 Hydrolysis

Migration
 Hydrogen peroxide
 Bismuth compounds
 Tungstic acid

Tin
 Saccharic acids

Abbreviations - Abkürzungen

abs.	absolute	absolut
alc.	alcoholic	alkoholisch
aq.	aqueous	wäßrig
ar.	aromatic	aromatisch
atm.	atmosphere(s)	Atmosphäre(n)
cf.	compare	vergleiche
conc'd.	concentrated	konzentriert
d.	density	Dichte
dil.	diluted	verdünnt
et al.	and others	und andere
E.	example	Beispiel
e.g.	for example	zum Beispiel
F. e. s.	Further example(s) see	weitere(s) Beispiel(e) siehe
hr(s).	hour(s)	Stunde(n)
liq.	liquid	flüssig
min.	minutes	Minuten
N.	normal	normal
prep'n.	preparation	Darstellung
prim.	primary	primär
s.	see	siehe
s. a.	see also	siehe auch
satd.	saturated	gesättigt
sec.	secondary	sekundär
soln.	solution	Lösung
startg. m. f.	starting material for (the preparation of...)	Ausgangsmaterial für die Darstellung von...
subst.	substituted	substituiert
sym.	symmetrical	symmetrisch
temp.	temperature(s)	Temperatur(en)
tert.	tertiary	tertiär
v.i.	via intermediates	über Zwischenprodukte
w.a.r.	without additional reagents	ohne Hilfsstoffe
Y*)	yield	Ausbeute

*) When yields are listed in parentheses, the yields so designated refer to the immediately preceding step of a multi-step reaction.

Bei mehrstufigen Synthesen beziehen sich eingeklammerte Ausbeuteangaben auf die unmittelbar vorhergehende Stufe.

Symbols - Zeichen

(on the right half of the page)

(auf der rechten Hälfte der Seite)

Electrolysis		Elektrolyse
Ring closure		Ringschluß
Ring opening		Ringöffnung
'see title on the left half of the page'		«siehe Titel auf der linken Seite»

Journal Abbreviations - Zeitschriften-Abkürzungen

A.	Liebig's Annalen der Chemie
A. ch.	Annales de Chimie
Am. Soc.	Journal of the American Chemical Society
Ar.	Archiv der Pharmazie und Berichte der Deutschen Pharmazeutischen Gesellschaft
Ark. Kemi	Arkiv för Kemi, Mineralogi och Geologi
B.	Chemische Berichte
Biochem. Prep.	Biochemical Preparations
Bl.	Bulletin de la Société Chimique de France
C. A.	Chemical Abstracts
C. r.	Comptes rendus (Paris)
G.	Gazzetta Chimica Italiana
H.	Hoppe Seyler's Zeitschrift für physiologische Chemie
Helv.	Helvetica Chimica Acta
J. Org. Chem.	Journal of Organic Chemistry
J. pr.	Journal für praktische Chemie
M.	Monatshefte für Chemie
Org. Synth.	Organic Syntheses
R.	Recueil des Travaux Chimiques des Pays-Bas
Ж	Journal of General Chemistry (Russia)
Soc.	Journal of the Chemical Society
Synth. Meth.	Synthetic Methods of Organic Chemistry

For other journal abbreviations see Beilstein, Handbuch der organischen Chemie or Chemical Abstracts.

Die übrigen Zeitschriften-Abkürzungen siehe Beilsteins Handbuch der organischen Chemie oder Chemical Abstracts

Systematic Survey

Volumes 6-9

(Volumes 1-5 see Volume 5, page 602)

Systematische Uebersicht

Band 6-9

(Band 1-5 siehe Band 5, Seite 602)

Reaction symbol Reaktionszeichen	6	Vol. - Bd. page - Seite	7	8	9	Reaction symbol Reaktionszeichen	6	Vol. - Bd. page - Seite	7	8	9
HO \downarrow OO		1			1	HC \downarrow SC		29			36
HO \downarrow OC		1	1			HC \downarrow CC		29	32	28	36
HO \cap HC	2	2	1			HC \downarrow HO		36		36	44
HO \cap OC		2	1	2		HC \cap OC				37	
HO $\uparrow\uparrow$ H				2		HC $\uparrow\uparrow$ O		36	39	37	45
HO $\uparrow\uparrow$ O		3			3	HC $\uparrow\uparrow$ N		43	48	45	53
HO $\uparrow\uparrow$ N				2	3	HC $\uparrow\uparrow$ Hal		44	48	46	56
HO $\uparrow\uparrow$ Hal	2			2	3	HC $\uparrow\uparrow$ S		46	53	51	59
HO $\uparrow\uparrow$ S	3			3	4	HC $\uparrow\uparrow$ Rem			55		62
HO $\uparrow\uparrow$ Rem	4			3		HC $\uparrow\uparrow$ C		47	55	52	63
HO $\uparrow\uparrow$ C	4	4	3	5		HC $\uparrow\uparrow$ O		52	59	56	67
HO $\uparrow\uparrow$ O		14	10	13		HC $\uparrow\uparrow$ S		53	62	57	68
HN \downarrow ON	10			10		HC $\uparrow\uparrow$ C		54	62	58	68
HN \downarrow NN	10				14	OO \downarrow HO			64	59	
HN \downarrow NC		14	10	14		OO \downarrow OC					70
HN \cap HO	11					OO $\uparrow\uparrow$ S					70
HN $\uparrow\uparrow$ O	11	15	11	15		ON \downarrow N		55	65	59	70
HN $\uparrow\uparrow$ N	14	19	13	18		ON $\uparrow\uparrow$ H			65	60	72
HN $\uparrow\uparrow$ S	14	21	14	18		ON $\uparrow\uparrow$ O			65	60	72
HN $\uparrow\uparrow$ C	14	21	14	19		ON $\uparrow\uparrow$ N			66		
HN $\uparrow\uparrow$ O		24				ON $\uparrow\uparrow$ H					72
HN $\uparrow\uparrow$ C				17		ON $\uparrow\uparrow$ N					73
HS $\uparrow\uparrow$ O				18		OHal \downarrow Hal					73
HS $\uparrow\uparrow$ Hal	18			18		OHal $\uparrow\uparrow$ H					61
HS $\uparrow\uparrow$ S	18			19		OS \downarrow HO		55	66	61	
HS $\uparrow\uparrow$ C	18			19	24	OS \downarrow S		56	66	61	74
HS $\uparrow\uparrow$ S		25				OS $\uparrow\uparrow$ H		56		63	75
HS $\uparrow\uparrow$ C				19		OS $\uparrow\uparrow$ O					75
H Rem $\uparrow\uparrow$ Hal	20	25	20	25		OS $\uparrow\uparrow$ Hal		56	67	63	76
H Rem $\uparrow\uparrow$ Rem					25	OS $\uparrow\uparrow$ S		57			
H Rem $\uparrow\uparrow$ C		25				OS $\uparrow\uparrow$ O		58			
HC \downarrow OC	20	26	20	26		O Rem \downarrow HO			68	64	
HC \downarrow NC	26	30	26	33		O Rem \downarrow H Rem					77

Reaction symbol Reaktionszeichen	6	Vol. - Bd. 7 page - Seite	8	9	Reaction symbol Reaktionszeichen	6	Vol. - Bd. 7 page - Seite	8	9
O Rem \Downarrow OC	58	68			NN \uparrow O				148
O Rem \Downarrow Rem	58	68	65		NN \uparrow C				149
O Rem $\uparrow\downarrow$ H	59	69	65	78	NHal $\uparrow\downarrow$ H			145	149
O Rem $\uparrow\downarrow$ O		69	65	78	NS \Downarrow ON				163
O Rem $\uparrow\downarrow$ Hal	59	69	66	79	NS \Downarrow NC			146	
O Rem $\uparrow\downarrow$ S	61	71		81	NS \Downarrow S				149
O Rem $\uparrow\downarrow$ C		72		82	NS \Downarrow SC	123			
OC \Downarrow HO		73	68		NS $\uparrow\downarrow$ H	124	146	150	
OC \Downarrow HC	61	73	68	83	NS $\uparrow\downarrow$ O				163
OC \Downarrow OO			70	85	NS $\uparrow\downarrow$ Hal	124		150	164
OC \Downarrow ON				86	NS $\uparrow\downarrow$ S		147	152	
OC \Downarrow OC	63	75	70	86	NS $\uparrow\downarrow$ C		147		165
OC \Downarrow NC	66	78		90	NS \uparrow H	125			
OC \Downarrow SC	67	80		93	NS \uparrow S	125			
OC \Downarrow CC	68	80	75	94	NRem $\uparrow\downarrow$ H		148	152	166
OC \cap HO	72	88	81	99	NRem $\uparrow\downarrow$ O	125			
OC \cap HC	72	88	82	99	NRem $\uparrow\downarrow$ N		148	153	
OC \cap OO				101	NRem $\uparrow\downarrow$ Hal	126	148	153	166
OC \cap ON		89	84	102	NRem $\uparrow\downarrow$ S				153
OC \cap OC	74	90	85	103	NRem $\uparrow\downarrow$ Rem	126			
OC \cap NC	74	90	85	103	NRem $\uparrow\downarrow$ C		149	154	166
OC \cap SC				105	NC \Downarrow HN				149
OC \cap CC	75	91	86	105	NC \Downarrow OC	126	150	154	167
OC \nwarrow H	76	93	87	105	NC \Downarrow NN				152
OC \nwarrow O	78	97	92	109	NC \Downarrow NC	130	152	157	168
OC \nwarrow N	84	101	98	117	NC \Downarrow HalC				171
OC \nwarrow Hal	91	110	106	126	NC \Downarrow SC	134	155	161	172
OC \nwarrow S	98	120	119	137	NC \Downarrow CC	135	156	161	173
OC \nwarrow Rem	101			139	NC \cap HN	138			
OC \nwarrow C	101	123	122	139	NC \cap HC				163
OC $\uparrow\downarrow$ H	109	129	130	147	NC \cap ON			157	
OC $\uparrow\downarrow$ O	111	134	133	151	NC \cap OC	138	158	163	175
OC $\uparrow\downarrow$ N	113	138	138	155	NC \cap NN			158	
OC $\uparrow\downarrow$ Hal	113	139	139	155	NC \cap NC				164
OC $\uparrow\downarrow$ S	115			156	NC \cap HalC				176
OC $\uparrow\downarrow$ Rem		139			NC \cap SC	139			165
OC $\uparrow\downarrow$ C	116	140	141	157	NC \cap CC	140	158	166	177
NN \Downarrow NC		141			NC \cap EIN				167
NN \cap NC	120				NC $\uparrow\downarrow$ H	141	159	167	178
NN $\uparrow\downarrow$ H	120	141	145	158	NC $\uparrow\downarrow$ O	144	163	171	182
NN $\uparrow\downarrow$ O	122	143	147	161	NC $\uparrow\downarrow$ N	161	180	195	201
NN $\uparrow\downarrow$ S		144			NC $\uparrow\downarrow$ Hal	164	187	197	209
NN $\uparrow\downarrow$ C		144	148		NC $\uparrow\downarrow$ S	173	195	207	222
NN \uparrow H	123	145		161	NC $\uparrow\downarrow$ Rem				226

Reaction symbol Reaktionszeichen	6	Vol. - Bd. page - Seite	7	8	9	Reaction symbol Reaktionszeichen	6	Vol. - Bd. page - Seite	7	8	9
NC ↑ C	177	198	211	227		SRem ↑ Hal	216	234	253	268	
NC ↑ H	182	199	215	230		SRem ↑ S			253		
NC ↑ O	182	201	217	231		SRem ↑ C			253		
NC ↑ N	189	206	223	238		SC ↓ OS		217			
NC ↑ Hal	189	207	224	239		SC ↓ OC		217	234	254	269
NC ↑ S	190	208	225	240		SC ↓ NC		218	235	255	270
NC ↑ C	190	209	225	241		SC ↓ HalS		219			
HalN ↓ N		210				SC ↓ SC		220		255	
HalHal ↓ Hal				243		SC ↓ CC		220	237	256	271
HalHal ↑ Hal	192					SC ↓ NC				272	
HalS ↑ H	192		226			SC ↓ CC			239		
HalS ↑ O	193	211	227	244		SC ↑ H		224	239	258	273
HalS ↑ N		211	227			SC ↑ O		225	241	260	274
HalS ↑ S	194		227	244		SC ↑ N		231	244	265	281
HalS ↑ C			244			SC ↑ Hal		231	245	267	283
HalRem ↓ Rem	194			245		SC ↑ S		236	251	270	289
HalRem ↑ H	194		228			SC ↑ Rem			270	290	
HalRem ↑ O	195	211	228	246		SC ↑ C		237	251	271	
HalRem ↑ Hal	195		229	246		SC ↑ H		238		271	
HalRem ↑ S	196	212	229	247		SC ↑ O		238		272	290
HalRem ↑ Rem		212	229			SC ↑ N		239	252		
HalRem ↑ C	196	212	230	247		SC ↑ Hal			252		291
HalC ↓ OC	197	213	230	247		SC ↑ S			252	272	
HalC ↓ NC	198	215	231	249		SC ↑ C			253	273	292
HalC ↓ CC	199	215	232	249		RemRem ↑ Hal		254	274	292	
HalC ↓ HC	201			252		RemRem ↑ S	239				
HalC ↑ H	201	217	235	252		RemRem ↑ Rem			274	292	
HalC ↑ O	207	224	241	257		RemRem ↑ C	254				
HalC ↑ N	212	229	246	264		RemC ↓ OC				293	
HalC ↑ Hal	213	230	248	264		RemC ↓ HalC			275		
HalC ↑ S		231		265		RemC ↓ CC			275	293	
HalC ↑ Rem			249			RemC ↓ OC			275	294	
HalC ↑ C	214	231	249	265		RemC ↑ H	240	256	275	294	
HalC ↑ O		232				RemC ↑ O	241	257		296	
HalC ↑ N				266		RemC ↑ N	241	257		296	
HalC ↑ S				267		RemC ↑ Hal	241	258	276	297	
SS ↑ H	215		250	267		RemC ↑ S			261		
SS ↑ O	215		251	268		RemC ↑ Rem	243	261	278	300	
SS ↑ Hal	215	232	252			RemC ↑ C	244	262			
SS ↑ S	216	233	252			RemC ↑ O		262	279		
SS ↑ Rem		233				RemC ↑ C			262		
SS ↑ C			252			CC ↓ HC	244	263	279	301	
SRem ↓ SS				268		CC ↓ OC	244	264	279	302	
SRem ↑ H	234					CC ↓ NC	250	272	288	312	

Reaction symbol Reaktionszeichen	6	Vol. - page	Bd. Seite	9	Reaction symbol Reaktionszeichen	6	Vol. - page	Bd. Seite	9
CC $\downarrow\downarrow$ SC	251		290		CC $\uparrow\uparrow$ N	325	347	368	397
CC $\downarrow\downarrow$ CC	251	275	291	315	CC $\uparrow\uparrow$ Hal	328	349	372	398
CC \cap HO			298		CC $\uparrow\uparrow$ S			378	404
CC \cap HC	259	284	298	323	CC $\uparrow\uparrow$ C	334	353	379	405
CC \cap OC	262	286	301	328	E1N $\uparrow\uparrow$ H	338	355	381	408
CC \cap NN	263		304		E1N $\uparrow\uparrow$ O	338		382	408
CC \cap NC	264	292	305	332	E1N $\uparrow\uparrow$ C				409
CC \cap HalC			306		E1S $\uparrow\uparrow$ O	339	356		409
CC \cap SC	265		307		E1 Rem $\uparrow\uparrow$ O	339			
CC \cap CC	266	292	308	333	E1 Rem $\uparrow\uparrow$ Hal	340			
CC $\uparrow\uparrow$ H	266	293	308	333	RadN $\uparrow\uparrow$ H				410
CC $\uparrow\uparrow$ O	267	295	310	334	RadN $\uparrow\uparrow$ Hal				410
CC $\uparrow\uparrow$ N	290	314	328	353	Het $\downarrow\downarrow$ O				411
CC $\uparrow\uparrow$ Hal	294	317	332	360	Het $\downarrow\downarrow$ N	340	356	383	411
CC $\uparrow\uparrow$ S	306		345	377	Het $\downarrow\downarrow$ S	341		384	413
CC $\uparrow\uparrow$ Rem			346		Het $\downarrow\downarrow$ SC		357		
CC $\uparrow\uparrow$ C	306	331	347	377	Het $\downarrow\downarrow$ Rem	342		384	413
CC $\uparrow\uparrow$ H	310	333	350	379	Het $\uparrow\uparrow$	342	357	385	413
CC $\uparrow\uparrow$ O	313	336	351	383	Oth				414

Reagents - Hilfsstoffe

Volume 1-9

Band 1-9

<i>w.a.r.(heat, irradiation, γ, electric discharge)</i>	<i>K-xanthate</i>	<i>CuCN</i>
<i>Li, Na, Na/K, K</i>	<i>Na₂S, Na₂S₂, Na₂S_x, NaHS</i>	<i>CuSCN</i>
<i>LiH, NaH</i>	<i>Na₂Se_x</i>	<i>Cu(I,II) sulfite</i>
<i>Na,Hg</i>	<i>KHS</i>	<i>CuCl, CuBr/Mg, CuI/Mg, CuCl₂</i>
<i>Bases</i>	<i>Na₂S₂O₃</i>	<i>Cu⁺, Cu⁺⁺</i>
<i>Alkalies</i>	<i>Na₂SO₃, K₂SO₃, NaHSO₃</i>	<i>C₆H₅COOAg</i>
<i>Alkali hydroxide</i>	<i>NaF, KF, KHF₂</i>	<i>AgCN</i>
<i>Aq. alkali hydroxide</i>	<i>LiCl</i>	<i>AgN₃</i>
<i>NaOH, KOH</i>	<i>Alkali iodides, NaI, KI</i>	<i>AgNO₂</i>
<i>Alkali in water a. alcohol</i>	<i>Alkali salts</i>	<i>AgNO₃</i>
<i>NaOH/alcohols</i>	<i>Alkaloid-alkali salts</i>	<i>AgF-Cu</i>
<i>KOH/alcohols</i>	<i>Na⁺, K⁺</i>	<i>Ag⁺</i>
<i>Na/alcohol, NaOR, (Sodium compound)</i>	<i>NH₃</i>	<i>CaH₂</i>
<i>NaOCH₃, NaOC₂H₅, NaOC₄H_{9-n}</i>	<i>Organic bases</i>	<i>CaO, BaO, BaO-SiO₂</i>
<i>K/alcohol, KOR</i>	<i>Resin base</i>	<i>Ca(OH)₂, Ba(OH)₂</i>
<i>K-isopropoxide, K-tert-butoxide</i>	<i>Triton B, Choline, BTAB</i>	<i>Ba(OR)₂</i>
<i>n-C₄H₉Li, C₆H₅Li</i>	<i>Amines, prim., Alkylamines</i>	<i>CaC₂, Ca/NH₃</i>
<i>(C₆H₅)₃C-Na</i>	<i>Methyl-, n-Butyl-, Benzyl-amine</i>	<i>(CH₃COO)₂Ba</i>
<i>Alkali amide</i>	<i>Diethylamine, Morpholine</i>	<i>CaCO₃, BaCO₃</i>
<i>Li/liq. NH₃,</i> <i>Li/liq. NH₃/alcohol,</i> <i>LiNH₂, (C₂H₅)₂NLi,</i> <i>Li-methylanilide</i>	<i>Tert. amines, Trialkylamines, Trimethylamine, Triethylamine</i>	<i>CaSO₄, BaCl₂-C</i>
<i>Na/liq. NH₃, NaNH₂,</i> <i>Na-anilide</i>	<i>Piperidine, N-Ethyl-piperidine, N-Methyl-morpholine</i>	<i>Mg, Mg,Hg, Mg/Mgl₂</i>
<i>K/liq.NH₃, KNH₂</i>	<i>Aniline</i>	<i>Zn, Zn,Cu, Zn,Hg</i>
<i>Alkali in pyridine</i>	<i>Dialkyl-, Dimethyl-, Diethylaniline</i>	<i>Cd, Hg</i>
<i>Na₂O₂</i>	<i>Pyridine, Lutidine, Collidine, Quinoline</i>	<i>HgO, MgO</i>
<i>Na₂CO₃, NaHCO₃, K₂CO₃, KHCO₃</i>	<i>Cu, Ag, Ag-Cu, Cu,Mg</i>	<i>Mg(OH)₂</i>
<i>HCOONa</i>	<i>Copper oxide, Cu₂O, CuO</i>	<i>Mg(OR)₂</i>
<i>CH₃COONA, CH₃COOK</i>	<i>Cu(OH)₂</i>	<i>RMgHal, CH₃Mgl, C₆H₅MgBr</i>
<i>Na-citrate</i>	<i>AgOH</i>	<i>R₂NMgBr, C₆H₅N(CH₃)-MgBr</i>
<i>Alkali cyanide, NaCN, KCN</i>	<i>Cu·C₂C₆H₆</i>	<i>Zinc alkyls, Zinc alkyl halides</i>
<i>KOCN</i>	<i>Ag₂CO₃</i>	<i>Organomercury compounds</i>
<i>NaSCN, KSCN</i>	<i>CH₃COOAg, CF₃COOAg</i>	<i>CdCO₃</i>
<i>NaN₃</i>	<i>Cupric carbonate, basic</i>	<i>Mercury resin</i>
<i>NaNO₂, KNO₂</i>	<i>(CH₃COO)₂Cu</i>	<i>(CH₃COO)₂Hg</i>
<i>NaNO₃, KNO₃</i>	<i>Fehling solution</i>	<i>Zn(CN)₂, Hg(CN)₂</i>
<i>KH₂PO₄</i>	<i>Copper borate</i>	<i>Hg(ONC)₂ (fulminate)</i>
		<i>Mg(NO₃)₂</i>
		<i>BeSO₄, MgSO₄, HgSO₄</i>
		<i>MgCl₂, MgBr₂</i>
		<i>ZnCl₂, ZnCl₂·2NH₃</i>

$CdCl_2$	<i>Salts of organic bases</i>	$HCOO_2H, CH_3COO_2H$
$HgCl/CdCO_3$	<i>Acetates of organic bases</i>	CF_3COO_2H
$HgHal_2, HgCl_2, HgBr_2,$ HgJ_2	<i>Diethylamine acetate</i>	$C_6H_5COO_2H, Perphthalic$
$Mg^{++}, Ca^{++}, Zn^{++}, Hg^{++}$	<i>Tetramethylammonium</i>	<i>acid</i>
$Al, Al_{2}Cu, Al_{2}Hg$	<i>acetate</i>	<i>Thiourea</i>
$NaBH_4, LiBH_4$	<i>Piperidinium acetate</i>	<i>Thioureas</i>
$LiAlH_4$	<i>Diazomethane</i>	<i>Thiocyanates</i>
$NaBH(OCH_3)_3$	<i>Hexamethylenetetramine</i>	<i>Dimethyl sulfate</i>
$Na_2B_4O_7$	$HCONH_2, CH_3CONH_2$	<i>Sulfonamides</i>
B_2O_3, HBO_2	$HCON(CH_3)_2$	<i>Amyl disulfide</i>
$B(OR)_3$	$CO(NH_2)_2$	<i>Methyl tetrasulfide</i>
<i>Sodium perborate</i>	<i>Phenyl isocyanate</i>	C_6H_5IO
Al_2O_3	<i>Carbodiimides</i>	$C_6H_5I(OAc)_2$ (<i>phenyl</i> <i>iodosoacetate</i>)
$TiOH$	<i>2,4-Diguanidinophenyl</i>	<i>Alkyl iodide, </i> CH_3I, C_2H_5I
$TlOR$	<i>lauryl ether</i>	<i>Allyl bromide</i>
$Al(OR)_3$	<i>Fungi (Mold), Yeast</i>	<i>Polyhalogenoalkanes</i>
<i>Al-isopropoxide, Al-tert-</i> <i>butoxide, Al-phenoxide</i>	<i>Aspergillus oryzae en-</i>	CCl_3H, CCl_3Br
<i>Al silicate</i>	<i>zyme, Chymotrypsin,</i>	<i>Benzotrifluoride</i>
<i>Clay, Superfiltrol</i>	<i>Emulsin, Hog kidney</i>	<i>Iodobenzene dichloride</i>
<i>Pumice</i>	<i>enzyme, Papain</i>	$BrCN$
<i>Glass powder</i>	<i>Acetobacter suboxydans,</i>	<i>Bromoacetamide</i>
$AlPO_4$ /water glass	<i>Streptococcus faecalis</i>	<i>Chlorourea</i>
BF_3	<i>Cyanohydrins</i>	<i>N-Halogenosuccinimide</i>
HBF_4	<i>Nitrosobenzene</i>	<i>N-Chloro-, N-Bromo,</i>
$Al(Hal)_3, AlCl_3, AlBr_3$	<i>Nitrosodimethylaniline</i>	<i>N-Iodosuccinimide</i>
Al^{+++}	<i>Isonitrosocyanooacetic</i>	<i>Bromophthalimide</i>
<i>Ce and rare earths</i>	<i>esters</i>	<i>Chloramin-T</i>
<i>C</i>	<i>Isopropane nitronate</i>	<i>Chloranil</i>
<i>p-Cymene</i>	<i>Nitro compounds, ar.</i>	$COCl_2$
CH_3OH, C_2H_5OH	<i>Nitrobenzene</i>	$RCOCl, CH_3COCl$
<i>Trimethylene glycol</i>	<i>Ethyl malonate</i>	$(COCl)_2$
<i>Glycerol</i>	$(CH_3CO)_2O, (C_2H_5CO)_2O,$	C_6H_5COCl, C_6H_5COBr
$HOCH_2CH_2OCH_3$ <i>(Methyl Cellosolve)</i>	$(CF_3CO)_2O$	$(CH_3)_2CHCHBrCOBr$
<i>Methoxyacetylene</i>	<i>Ascaridole</i>	$SiO_2, SiO_2-Al_2O_3$
<i>Ethylene oxide</i>	<i>Acyl peroxides</i>	$TiO_2/HCOOH$
<i>Glucose</i>	<i>Acetyl-, Benzoyl peroxide</i>	$SiCl_4, TiCl_4$
<i>Hydroquinone</i>	<i>Ion exchange resin,</i>	<i>Sn</i>
<i>Oxo compounds</i>	<i>Anion --, Cation --</i>	$SnCl_2, SnCl_4$
<i>Formaldehyde, Benz-</i>	<i>Amberlite, Duolite</i>	PbR_4
<i>aldehyde, Acetone</i>	<i>Dowex-50</i>	PbO, Pb_3O_4, PbO_2
<i>Benzophenone</i>	<i>Phenol, Resorcinol,</i>	$Pb(OH)_2$
<i>Quinones</i>	<i>Pyrogallol</i>	$Pb(OH)_2 \cdot PbCO_3, PbCO_3$
<i>Ketene</i>	$HCOOH, CH_3COOH,$	$(CH_3COO)_2Pb$
<i>D-Lactose hydrate</i>	CH_3CH_2COOH	$(CH_3COO)_4Pb$
<i>Pyruvic acid</i>	<i>Salicylic acid</i>	$Pb(NO_3)_2$
<i>Acetals</i>	H_2NCH_2COOH	Pb^{++}
$(NH_4)_2CO_3$	<i>Thioacetic acid</i>	ThO_2
$HCOONH_4, CH_3COONH_4$	$ClCH_2COOH, CCl_3COOH$	<i>Dicyanodiamide</i>
NH_4SCN	$(COOH)_2, CH_2(COOH)_2,$	<i>Phenylhydrazine</i>
	<i>Phthalic acid</i>	$H_2N \cdot NH_2, C_6H_5NHNH_2$
	CO_3^{--}	N_3^-, HN_3
	<i>Peroxy acids</i>	

NH_2OH	$S_2O_4^{--}$	SeO_2
<i>Nitrogen oxides</i>	<i>Tetrathionate</i>	$Cr-Cu-C$
N_2O_3, N_2O_4, N_2O_5	$SO(NH_2)_2$	<i>Chromite</i>
NH_4NO_3	RSO_2NH_2	$CuCr_2O_4, CuCr_2O_4-C$
<i>Alkyl-, Butyl-, Amyl nitrite</i>	$SOCl_2, SOBr_2$	$(Ca,Cu)Cr_2O_4,$
	RSO_2Cl	$(Ba,Cu)Cr_2O_4$
NO_2^-	<i>Arylsulfonyl chloride</i>	Cr_2O_3, Al_2O_3
$NOCl, NOBr$	<i>Benzene-, p-Toluene-, p-Acetylaminobenzene-sulfonyl chloride</i>	MoO_x, MoO_3
<i>Alkyl nitrate</i>		$CrO_4^{--}, Cr_2O_7^{--}, CrO_3,$
<i>Acetyl nitrate</i>		$CrO_3-C_5H_5N$
<i>Nitrates</i>	SO_2Cl_2	<i>t-Butyl chromate</i>
HNO_3	SO_2	$CrCl_2$
P	$S_2O_5^{--}$	CrO_2Cl_2
<i>Phosphorus compounds</i>	SO_3	MoS_2
PH_4I	$(NH_4)_2SO_3$	I_3^-
$(C_6H_5)_3P$	$(NH_4)_2SO_4$	<i>Halogen, Cl, Br, I</i>
<i>Phosphazo compounds</i>	<i>Sulfates of org. bases</i>	$BrCN$
<i>Trichlorophosphazo-sulfonyl compounds</i>	$Pyridine-SO_3,$	IF_5, ICl, ICl_3, IBr
	$Dioxane-SO_3$	<i>Alkyl hypochlorite, tert-C_4H_9OCl</i>
P_2O_5	$HCON(CH_3)_2-SO_3$	$CF_3COOHal$
<i>Tetraethyl pyrophosphate</i>	$NaHSO_4, KHSO_4,$	$HalO^-, ClO^-$
$H_2PO_2^-$	NH_4HSO_4	$NaOCl, KOBr, KOI,$
H_3PO_2	<i>Sulfonates</i>	$Ca(OCl)_2, Ba(OI)_2$
<i>Quinoline phosphate</i>	<i>Alkanesulfonic acids,</i>	$HOCl$
<i>Dialkyl chlorophosphate</i>	<i>Ethanethiolsulfonic acid</i>	ClO_3^-, BrO_3^-
H_3PO_4	<i>Benzene-, p-Toluene-, m-Xylene-, Napthalene-β-sulfonic acid</i>	$KClO_3, NaBrO_3, KIO_3$
P_2S_3, P_2S_5	$Na-m-nitrobenzene-sulfonate$	HIO_3
$PHal_3, PCl_3, PBr_3$	$HOOC-CH_2-SO_2H$	$HClO_4, AgClO_4$
<i>Phenylphosphoryl dichloride</i>	$(sulfuric acid)$	IO_4^-, HIO_4
$POCl_3, POBr_3$	<i>Sulfosalicylic acid</i>	Cl^-, I^-
$PSCl_3$	<i>Sulfanilic acid</i>	NH_4F, NH_4Cl, NH_4I
$PHal_5, PCl_5$	$HOCH_2SO_4Na$ (<i>hydroxy-methylenesulfonate</i>)	<i>Hydrochlorides, Hydrobromides, Hydriodides</i>
As_2O_3, As_2O_5	$H_2NSO_3^-, H_2NSO_3H$	<i>Trimethylamine hydrochloride, Pyridine-</i>
$AsCl_3$	NH_2OSO_3H (<i>hydroxyl-amine-O-sulfonic acid</i>)	<i>Acetylpyridinium chloride</i>
$SbF_3, SbCl_3, SbCl_5$	$ONOSO_3H$ (<i>nitrosyl sulfate</i>)	<i>Tetraethylammonium bromide</i>
Bi	$ON(SO_3K)_2$ (<i>nitrosodisulfonate</i>)	<i>Pyridinium ethiodide</i>
Bi_2O_3	H_2SO_4	$(CH_3)_4NBr\cdot Br_2$
BiO_3^-	H_2SO_5	$C_5H_5N\cdot Br_2$
<i>Bismuth carbonate</i>	S_2O_3	<i>Pyridine hydrobromide-perbromide</i>
NH_4 -vanadate	$(NH_4)_2S_2O_8$	<i>Triphenyl phosphite methiodide</i>
V_2O_5	$S_2O_8^{--}$	<i>Acids/metal chlorides</i>
V_2O_5, Al_2O_3	$FSO_3H, ClSO_3H$	<i>Mineral acids</i>
O_2, O_3	<i>Sulfur chlorides, S_2Cl_2, SCl_2</i>	<i>Hydrogen halides, HF, HCl, HBr, HI</i>
H_2O_2	Se	$MnCO_3$
<i>Peroxide</i>		$(CH_3COO)_2Mn$
S		
$S^{--}, S_2^{--}, S_x^{--}$		
$(NH_4)_2S, (NH_4)_2S_x$		
SH^-, SH_2		
<i>Na-formaldehyde-sulfoxylate</i>		

MnO_2	Cr_2O_3 -cobalt hydrate-	$NiSO_4$
K_2MnO_4	$CaCO_3$	$Ru-C$
MnO_4^-	$Cu-Co-Cr$ -asbestos	RuO_2, RuO_4
$NaMnO_4, KMnO_4$	$Co(CO)_4$	Pd
$Ba(MnO_4)_2$	$(CH_3COO)_2Co$	$Pd-CaCO_3, Pd-SrCO_3,$
Fe	Co nitrite	$Pd-BaCO_3$
Fe/Fe^{++}	Co -polysulfide	$Pd-BaSO_4$
FeS/Al_2O_3	$CoCl_2$	$Pd-C$
$FeSO_4$	CoF_3	$Pd-pumice$
$Fe_2(SO_4)_3$	Ni	PdO
$FeCl_2, FeCl_3$	$Ni-Al$	OsO_4
Fe^{+++}	$Ni/Pt, Ni/PtCl_4$	Pt
$Na_3[Fe(CN)_5NH_3]$	Ni,Cr_2O_3	$Pt-C$
$K_3[Fe(CN)_6]$	<i>Nickel-zinc chromite</i>	PtO_2
Co	$Ni(CO)_4$	<i>v.i.</i>
Co/Al_2O_3	<i>Ni-acetylacetoneate</i>	

Supplementary References

in Volumes 6–9

(in former volumes, see Vol. 5, p. 607)

Ergänzungszitate

in den Bänden 6–9

(in früheren Bänden s. Bd. 5, S. 607)

Vol. 1 Bd.	Suppl. Ref. (Volume, page)	Vol. 1 Bd.	Suppl. Ref. (Volume, page)	Vol. 1 Bd.	Suppl. Ref. (Volume, page)
No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)
1	6, 5	168	8, 89	338/9	6, 180; 7, 199
4	6, 7	171	8, 90	342	8, 191
6/7	7, 8; 8, 7	173	9, 182	343	8, 171
9	7, 11; 8, 8	177	6, 80	345	9, 197
11/2	6, 9	181	9, 115	347/8	9, 199
19	9, 14	187	7, 101	351	6, 161
24/5	9, 15	190	8, 101; 9, 362	354	9, 200
26	7, 16; 9, 16	195	7, 105	359	6, 164; 7, 141
28/9	6, 12	198/9	9, 205	360	6, 12
32	8, 15	201	7, 110	362	7, 157; 8, 163;
37	9, 24	207	7, 113		9, 174
38	8, 19	211	6, 94	363	6, 133
44	7, 29	214	7, 118	366/7	8, 197
52	7, 32	216	9, 13	368	7, 189
53	9, 36	217	6, 95; 8, 116	372	7, 192
59/60	6, 33	218-20	6, 95	374/5	6, 170
68	8, 38	221	6, 95; 7, 120	385	6, 173; 8, 206
99	6, 45	224	8, 117	390	6, 181
100	8, 51, 245; 9, 58	233	7, 67; 8, 63	394	8, 219
101	6, 45; 8, 51; 9, 58	234	6, 7	395	7, 204
105	9, 67	235	8, 124	400	6, 279
108	9, 68	237	6, 107; 8, 127	402	7, 211
112	7, 63; 8, 58	240	9, 146	403/4	7, 215
113	6, 54	246	6, 113	408	7, 217
116	9, 74	261	6, 122	410	8, 236; 9, 253
117	6, 56	262-4	6, 120; 7, 141	417	6, 205
122	7, 66	265	8, 148; 9, 161	418	8, 236; 9, 253
125	7, 67; 8, 63	271	9, 164	419	6, 206
127	9, 81	273	9, 165	421	6, 207
128/9	7, 73; 8, 68	277/8	6, 128	426	6, 165
131	6, 62; 7, 74	289	8, 162; 9, 173	427	8, 243
132	9, 85	290	6, 136	435	8, 245
140	8, 77	292	6, 139; 7, 158	437	6, 211; 7, 225,
141/2	9, 96	298	6, 146		227
147	7, 87; 9, 99	305	6, 146	438	6, 212
148/9	9, 99	314	7, 171; 8, 182	441-3	7, 229
151/2	6, 73; 7, 88; 9, 100	315/6	8, 184	446	7, 230
154	8, 86	321	6, 142; 9, 179	450	6, 213
157/8	6, 109	322	8, 169; 9, 159	452	7, 230
161	9, 148	327	7, 175	453/4	6, 214; 7, 232
162	6, 76	328	7, 175; 9, 194	459	6, 221
164	6, 76	330	6, 142	460/1	8, 259
167	6, 110; 9, 149	331/2	9, 195	464	9, 211

Vol. 1 Bd.	Suppl. Ref. (Volume, page)	Vol. 1 Bd.	Suppl. Ref. (Volume, page)	Vol. 1 Bd.	Suppl. Ref. (Volume, page)
No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)
467	8, 263	570/1	6, 279	668	6, 300
469	6, 231; 7, 243; 9, 280	572	7, 304	669	7, 34
470	6, 231	579	9, 346	672	7, 325; 8, 341
472/3	6, 231; 7, 246	582	7, 307	679	6, 248
480-3	8, 267	586	6, 284	682	7, 269
484	7, 248; 8, 268; 9, 286	587	8, 318; 9, 345	683	6, 300
		588	7, 310; 8, 325	689	6, 249
		592	6, 288	690-3	7, 270
487	8, 268	593-5	6, 289; 7, 312	713	6, 221
488	6, 233	597	6, 289; 7, 312	715	6, 306; 7, 331;
489	6, 233; 8, 241	603	6, 289		8, 347; 9, 377
491	9, 288	606	9, 377	716	6, 306; 7, 331;
493-5	6, 235; 7, 245	607	6, 120; 8, 330		8, 347
498-500	6, 240; 7, 255	608	6, 292	720	7, 334
503/4	9, 298	610	7, 11, 63; 8, 8	724/5	7, 334
510	7, 265; 8, 280	612	8, 332	726	6, 310; 7, 334
511	8, 283	613	7, 317	728	7, 335
513	7, 267	615	7, 165	729-31	6, 312
519	6, 250; 8, 287; 9, 311	616	8, 330	741	7, 338
		617	7, 317; 8, 38	744	6, 317; 7, 340
523/4	7, 273; 8, 289	618	6, 251	748	8, 361
526-9	6, 251; 7, 275	621	6, 293	751	8, 358
534	6, 324	626	9, 259	752	7, 269
535	7, 278	633	6, 296	758-60	6, 322; 8, 366
537/8	7, 289; 8, 302	634	8, 336	761	6, 312, 322;
		637	6, 296; 8, 335		8, 366
539-41	9, 333	639	7, 319	764	6, 324
542	6, 269; 7, 200,	643/4	8, 336	768	9, 399
545	6, 269 [296	645	7, 351	770	6, 49
546	6, 113; 9, 154	649	6, 49	774	8, 375
548	7, 297	655	9, 367	775	8, 376
549	6, 271; 7, 297; 8, 313	656	6, 297; 7, 321;	778-80	6, 333; 8, 378
555	7, 273; 8, 288;		8, 338; 9, 367	787	7, 357; 8, 383,
556	6, 273 [9, 312	660-2	6, 298	789	6, 101 [384
568	9, 342	666	7, 324	791	6, 342; 8, 386

Vol. 2 Bd.	Suppl. Ref. (Volume, page)	Vol. 2 Bd.	Suppl. Ref. (Volume, page)	Vol. 2 Bd.	Suppl. Ref. (Volume, page)
No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)
3	8, 2	74	6, 34; 7, 34	141	7, 73; 8, 68
5/6	9, 4	77	6, 12	143	8, 68
18	7, 8; 8, 7	93	9, 46	151	7, 77; 8, 72; 9, 2
20/1	7, 11; 8, 8	96	6, 42; 9, 51	152	7, 85
28	7, 11	103	6, 43	154	7, 79
29	6, 8	111	6, 47; 7, 245	156	7, 79
31	6, 9	119	7, 59	160	6, 68
48	6, 12	121	9, 258	161	9, 95
51	9, 21	122	7, 48	167	9, 96
55	6, 20	124/5	8, 58	168	6, 70; 9, 97
61	8, 25	127	7, 63	177/8	7, 87; 9, 99
63	8, 25	134	7, 67; 8, 63	180/a	6, 73; 7, 88;
71	6, 30	138	6, 16; 9, 21		9, 100
72	9, 39	140	7, 73	181	6, 73

Vol. 2 Bd.	Suppl. Ref. (Volume, page)	Vol. 2 Bd.	Suppl. Ref. (Volume, page)	Vol. 2 Bd.	Suppl. Ref. (Volume, page)
No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)
186	6, 76	395	8, 190	605	7, 273; 8, 289
190	6, 77	396/7	9, 195	606/7	6, 251
193	6, 78	409	7, 181; 8, 195	609/11	6, 251; 7, 275
194/5	9, 110	416	8, 197	612	7, 277; 9, 381
198	6, 79	426	6, 179; 7, 189; 8, 199	615	7, 317
200	7, 98	435	7, 191	616	6, 256
202	6, 80	438	9, 216	621	9, 328
205	6, 83	439	7, 192	623	7, 289; 8, 302
209/10	7, 100	447	8, 205	624/5	6, 262
215	8, 98	454	7, 192, 194	633	8, 310
216	8, 37	456	9, 223	635	6, 269
223	7, 103	461	8, 212; 9, 227	638	7, 296
224	9, 122	462	9, 228	642	6, 269
233	9, 125	463	9, 228	643	6, 272
235	9, 118	464	6, 191	645	6, 272; 7, 298; 9, 337
236	8, 105	466	6, 181	647	6, 274; 9, 339
238	6, 91	472	8, 219	648	7, 56
238.3	7, 111	475/6	6, 191	651	8, 313
248	6, 94	479	7, 211	657	6, 279
255	9, 134	484	7, 215	664	9, 347
257/8	9, 134	486	7, 215	665	7, 307
260	7, 120	488	8, 234	667	7, 307
261	6, 95; 7, 120	490	7, 217; 8, 236	670	6, 285
264	6, 67; 8, 119	491	8, 238	677	7, 310; 8, 325
268	6, 99; 9, 137	493	6, 206; 9, 256	678	8, 325; 9, 350
269	8, 133	501	8, 241	680	7, 310
271	9, 137	502-4	7, 225	689	9, 69
277	9, 127	514	8, 245	690	7, 326
278	7, 125	515	7, 227	694	9, 357
286	6, 109; 9, 147	518	8, 95	697	6, 323
287	6, 109	522	6, 212	699	7, 273; 8, 289
288	8, 132	532	6, 218	701	6, 293
301	8, 169	538	6, 224; 7, 239	708	8, 37
303	8, 148; 9, 161	540	6, 224	710/a	6, 296; 7, 318
304	6, 121	542	6, 56; 9, 269	710b	6, 296
317/8	6, 128	543	9, 280	714	6, 296; 7, 319; 8, 335
319	9, 167	549	7, 242	716	7, 319
320	8, 154	550	7, 245	717/8	6, 296
321	7, 74	552-4	6, 231; 7, 246	719	7, 319
324	7, 154	556	6, 232	721	8, 336
326	6, 132	558	6, 56	723/4	8, 337
328/9	6, 135; 7, 156	571	7, 253	725	7, 321; 9, 228
337	8, 167	576	8, 276	725a	6, 146; 9, 183
341	7, 159	581	9, 4	727	7, 323
342	6, 142	585	7, 265	728	9, 371
352	7, 176; 8, 189	590	9, 306	731	8, 376; 9, 262
363	6, 146	593	6, 246; 9, 304	737	7, 270
372	6, 152; 7, 171	597	7, 267	738	8, 342
380	9, 190	598	7, 265	740	7, 271
384	8, 186	599	7, 265; 9, 309	747	8, 343
387	7, 175	601	6, 250; 7, 40	748	6, 302
390	6, 154	603	7, 273; 8, 288; 9, 312	751	7, 330; 9, 376
391	6, 154; 9, 194				
392	6, 155				

Vol. 2 Bd.	Suppl. Ref. (Volume, page)	Vol. 2 Bd.	Suppl. Ref. (Volume, page)	Vol. 2 Bd.	Suppl. Ref. (Volume, page)
No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)
752a	8, 172	783	6, 318	808	6, 333
755/6	7, 334	784	7, 341	810	6, 326
757/8	6, 310; 7, 334	788	6, 319; 8, 361; 9, 391	813	9, 228
761	7, 273; 8, 288; 9, 312	789	7, 343	817	6, 315
764	9, 381	793	9, 393	818	7, 85
765	6, 312	794	9, 394	823	7, 353
767	8, 351	796/7	6, 320	827	6, 296; 7, 270; 8, 335
768	6, 313; 7, 336	800	7, 269	829	6, 340; 7, 356:
771	9, 362	801	6, 322; 7, 270; 8, 366	830	7, 356 [9, 411]
778	6, 323			833	6, 101
780	8, 358	805	8, 375; 9, 387	836	9, 413
Vol. 3 Bd.	Suppl. Ref. (Volume, page)	Vol. 3 Bd.	Suppl. Ref. (Volume, page)	Vol. 3 Bd.	Suppl. Ref. (Volume, page)
No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)
8/9	7, 10	125	7, 79	252	8, 148; 9, 161
11	7, 10	127	7, 79	255	7, 145; 9, 161
14	6, 11	135	7, 85	267	6, 131; 9, 169
16	8, 11; 9, 16	139	7, 88; 8, 83; 9, 100	277	9, 171
17-9	6, 12	141	6, 73	279	9, 173, 174
21	9, 18	149	7, 95	290	9, 179
22	9, 19	151	8, 89	291	6, 142; 7, 161; 8, 169
24	8, 154; 9, 167	153	9, 108	299	8, 171
25	6, 16; 9, 21	155	6, 203; 8, 236; 9, 253	302	9, 187
26	8, 16			303	8, 177
32	6, 20	156	9, 109	307	7, 165; 9, 183
36	6, 24	158	6, 78	323	7, 172
38	7, 32	162	7, 98; 8, 94	325	9, 151
39	6, 28	163	6, 288	327	8, 186
40	7, 32	169	6, 112; 7, 138	330	6, 154; 7, 175; 8, 188
46	8, 33; 9, 41	171	6, 83; 8, 97		
49	9, 45	173	7, 100	332	7, 176
52	6, 38; 8, 40	178	9, 117	335	6, 155
56	7, 45	183	8, 100; 9, 120	339	8, 190
57	6, 43; 7, 46	189	6, 16	341	8, 190
58	8, 44; 9, 51	196	6, 88; 7, 107	350	6, 160; 9, 199
60	6, 44	200	6, 90	353	8, 17
63	6, 44	203	6, 92	361	7, 188
68	7, 189	206	7, 113	362	6, 128
72	6, 46	207	9, 131	366	9, 212
77	9, 64	208	6, 94	367	7, 191
85	9, 68	211	8, 113	368	6, 92, 167; 7, 111; 8, 110, 201
86	7, 61	216	9, 134		
95a	6, 55; 7, 65	218	7, 119; 9, 134	371	9, 215
98/9	8, 60	220	6, 98	385	7, 194
101	9, 72	225	7, 120	402	6, 181; 8, 203
108	8, 66	226	6, 67; 8, 119	403	6, 182
112	6, 62; 7, 73; 8, 68	227	6, 94	405/6	8, 219
114	6, 63	229	6, 99; 9, 137	407	6, 186
115	7, 75	238	6, 107	408	9, 238
124	7, 78	251	6, 122		

Vol. 3 Bd.	Suppl. Ref. (Volume, page)	Vol. 3 Bd.	Suppl. Ref. (Volume, page)	Vol. 3 Bd.	Suppl. Ref. (Volume, page)
No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)
413	7, 208	579	7, 335	671	6, 296
415	9, 241	583	6, 255; 7, 279	674	6, 296; 7, 320;
418	6, 192	585/6	6, 257		8, 336
430	8, 237	587	6, 257; 7, 281	677/8	9, 365
432	7, 217	588	9, 323	679	6, 297; 7, 321
443	6, 206; 9, 256	589	8, 298	680	6, 297; 7, 321;
457	7, 225	597	6, 263; 7, 291;		8, 338; 9, 367
458	6, 207		9, 331	682	9, 368
459	7, 225	603	8, 310	686	7, 324
465	7, 227	606/7	7, 295	694	6, 302; 7, 328;
470	6, 210	608	6, 268; 7, 295;		8, 342; 9, 374
478	6, 213; 9, 264		8, 171, 310; 9, 335	695	7, 226
480	8, 248	610	6, 30; 7, 32, 103;	697	6, 302
485	7, 230		9, 37	703	9, 66
489	6, 214; 7, 232	611	9, 335	704	9, 316, 405
502	6, 56	613	7, 336	705	6, 311; 8, 350;
506/7	8, 259	618	6, 272; 7, 298		9, 380
508	6, 224; 7, 250; 9, 273	620	9, 337	711	9, 116
511	6, 224; 7, 239	622	6, 274	712	8, 352
517	8, 266; 9, 283	628	7, 301	713	6, 314
518	8, 266	632	6, 279	714	7, 336
522	9, 286	633	7, 303	715	6, 314; 7, 336;
523	6, 233	635/6	8, 318		8, 352; 9, 384
524	7, 249	640	7, 305	717	6, 315
526	7, 245	643	6, 286; 7, 309	719	7, 338
534/5	6, 240	644/5	8, 324	722	7, 339
537	8, 11	651	6, 282; 9, 351	725	7, 339
542	6, 241; 7, 258	653	6, 289; 7, 312	726	6, 316
544	6, 242	656	6, 289; 7, 313	730/1	6, 317; 7, 340
552	6, 246	657	6, 289	733	7, 98; 8, 94
554	6, 246	662	6, 290; 9, 353	734	6, 318
559	6, 247	665	6, 291; 7, 315	736	8, 360
562	7, 269	666	6, 293; 8, 330;	745	7, 348
566	6, 250; 8, 287; 9, 286, 311	667/8	9, 358	748	6, 328
568	7, 272	669	6, 293	749	7, 350
576	6, 251; 8, 291		6, 296	756	8, 376
			6, 296; 7, 319;	763	6, 339
			8, 335		

Vol. 4 Bd.	Suppl. Ref. (Volume, page)	Vol. 4 Bd.	Suppl. Ref. (Volume, page)	Vol. 4 Bd.	Suppl. Ref. (Volume, page)
No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)
4	9, 4	71	6, 11	127	8, 17
11	9, 7	76-8	9, 40	129	6, 110
13	7, 8	81	6, 34; 7, 37	130	8, 58
14	6, 7	86	6, 35; 9, 43	132	7, 63; 8, 58
16	8, 7	94	8, 41	143	6, 57
18	6, 9	97	6, 40; 7, 44	144	6, 56; 8, 63; 9, 75
19	7, 12	98	6, 33	147	6, 60
25	7, 16; 9, 16	107	7, 48	149	7, 71
55	6, 26	112	6, 45; 9, 57	154	7, 76
60	6, 26; 8, 27; 9, 34	119	7, 56	155	8, 73
66	9, 36	122	6, 49	157	9, 91

Vol. 4 Bd.	Suppl. Ref. (Volume, page) No. Erg.-Zitate (Band, Seite)	Vol. 4 Bd.	Suppl. Ref. (Volume, page) No. Erg.-Zitate (Band, Seite)	Vol. 4 Bd.	Suppl. Ref. (Volume, page) No. Erg.-Zitate (Band, Seite)
159	6, 67	407	8, 194	635a	6, 250; 8, 287; 9, 311
168	8, 76; 9, 95	413	6, 161		8, 324
169	6, 70; 7, 82; 8, 76	418	7, 184; 9, 208	636	8, 288
170	6, 70; 7, 84	428	7, 190	638	7, 273; 9, 313
173	6, 71	443	8, 210	643	7, 273; 8, 289
178	8, 82	451	6, 181	644/5	7, 276
184	9, 103	460	6, 132	651	9, 319
185	7, 141	465/6	6, 190	656	7, 279
187	9, 105	469	9, 245	657	7, 281; 8, 295;
190	6, 76; 7, 94	475	6, 197	659	9, 321
201	6, 83	476	7, 215		6, 257; 8, 295
212	6, 57; 7, 211	478	9, 249	660	6, 257; 7, 281
215	8, 98; 9, 117	484	6, 201	665	6, 258; 7, 283;
224	6, 88	489	6, 203; 8, 236	667	8, 297
231	7, 111	491	7, 221		6, 261; 7, 285;
240	9, 134	492	6, 206; 7, 222	669	9, 327
243	8, 118	494	9, 257		6, 266
244	6, 97; 8, 118	495	7, 223	671	8, 309
259	8, 298; 9, 141	496	8, 276	674	8, 309; 9, 334
262	9, 144	497	6, 207	676	6, 277
263	6, 103	501	8, 245	683	6, 278
266	8, 127	509	6, 213; 9, 264	686	6, 279
268	8, 129; 9, 146	511	8, 248	687	6, 289; 8, 302
269	6, 110; 8, 131	512	6, 213	698	6, 298
279	8, 140	514	6, 213	700	6, 312
281	9, 156	517	6, 214; 7, 232	701	6, 317
282	8, 143; 9, 157	519	8, 250	703	7, 298; 9, 337
283	7, 140; 8, 143	526	7, 234	705	6, 277
290	6, 122	532	6, 219	707	6, 274
292	6, 122; 8, 147	535	6, 221; 7, 237	711	6, 274
299	9, 164	538	8, 16	713	6, 275
303	7, 148	539	6, 135; 7, 156,	715	6, 277; 7, 301
305	8, 153	540	9, 271 [237]	717	6, 278; 8, 317
306	7, 149	551	9, 275	719	7, 301; 8, 318
308	6, 127; 7, 151	553	7, 242	720	6, 279
309	7, 151	563	7, 247	724	7, 305
316	6, 133; 7, 154	565	7, 248	725	6, 283; 7, 305;
326	6, 137; 7, 157; 8, 163	566	7, 247; 9, 286		9, 346
332/3	8, 167	581	7, 72	729	7, 309
335	7, 159	589	7, 256	731	8, 324
337	6, 142; 7, 161; 8, 169	597	6, 241; 8, 276	754	6, 291; 7, 315
357	6, 148; 7, 167	599	7, 258	756	6, 272; 7, 157;
364	8, 180	604	6, 242; 7, 259		298
367	6, 152	613	9, 301	757	6, 292
370	6, 154	614	6, 244	760	6, 293; 7, 317;
378	8, 189	615	6, 244; 8, 279;		9, 358
380	8, 190; 9, 196	621	9, 301	767	8, 337
382	8, 196	622	8, 280; 9, 303	768	6, 295; 7, 272;
390	6, 187	623	8, 280		318
397	6, 133	624	6, 246	774	6, 297; 7, 321;
400	9, 199	625	9, 306		8, 338; 9, 367
401	6, 160	626	6, 247	775	9, 132, 368
406	6, 160	628	8, 283	779	6, 298
		631	7, 268	780	6, 300
			8, 286	781	8, 341; 9, 372

Vol. 4 Bd.	Suppl. Ref. (Volume, page)	Vol. 4 Bd.	Suppl. Ref. (Volume, page)	Vol. 4 Bd.	Suppl. Ref. (Volume, page)
No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)
783	8, 342	811	6, 312	835	6, 321
790	8, 343	812	6, 330	841	6, 333
795	8, 344	814	6, 313; 7, 336	852	6, 333
799	8, 347	816	6, 314; 7, 336;	853	6, 312; 8, 379
803	9, 378		8, 352; 9, 384	855	6, 336
805	7, 334	818	8, 352	857	9, 406
807	6, 311; 7, 335;	831	7, 338		
809	7, 335 [8, 350	832	9, 394		
Vol. 5 Bd.	Suppl. Ref. (Volume, page)	Vol. 5 Bd.	Suppl. Ref. (Volume, page)	Vol. 5 Bd.	Suppl. Ref. (Volume, page)
No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)
3	9, 1	162	9, 106	354	6, 180; 7, 199;
5	9, 5	166	6, 78	355	6, 314; 8, 352
6	7, 5; 8, 4	168	8, 93	359	8, 220
14	6, 8	169	9, 111	365	8, 222; 9, 238
17	8, 10; 9, 15	171	7, 97; 8, 95	368	9, 239
20	6, 11	172	9, 115	374	6, 191
25	8, 11	179/80	7, 103	379	7, 212
27	6, 13	185	8, 102	389	6, 200
28	6, 14	192	6, 91	395	6, 203
40	6, 20; 8, 22	194	7, 111; 9, 128	398	7, 223
47	6, 30	198	6, 93	402	6, 207
52	8, 32; 9, 40	202	6, 96	404	7, 225
56	6, 34; 7, 37	207	9, 137	405	6, 208
60	6, 38; 8, 40	214	7, 27	409	7, 229
65	6, 41	218	8, 69	411	7, 230
66	8, 44; 9, 51	222	7, 34; 8, 42	413	6, 213; 7, 230;
67	9, 54	233	7, 141	423	7, 238 [9, 264
69	8, 47	249	8, 160	430	6, 228
72	8, 49	252	6, 134; 9, 171	442	6, 233; 7, 247
77	6, 46	258	6, 137; 8, 163	444	7, 249
79	6, 47	261	7, 158; 9, 175	446	7, 246
80	6, 48	263	6, 140; 7, 158	448	6, 235
81	6, 49; 7, 56; 9, 65	267	6, 144; 8, 145,	450	9, 289
82	6, 49		171; 9, 182	453	7, 251; 9, 289
85	8, 55	273	9, 183	464	9, 300
87	7, 5; 8, 4	276	6, 146	465	7, 263
91	6, 53	279	8, 177	473	8, 286
95	9, 129	288	6, 152	474	9, 308
96	7, 65	300	7, 176	476	7, 269; 9, 308
101	6, 56; 9, 74	302	7, 178; 9, 197	477	6, 248; 8, 285;
105	9, 79	313	6, 160		9, 309
108	6, 61; 7, 71; 8, 67	314	7, 179	479	7, 271; 9, 310
117	7, 75; 9, 87	316	8, 195; 9, 200	481	8, 287; 9, 388
121/2	6, 64	325	6, 164	487	6, 251
125	6, 67	338	7, 192	490	9, 316
133	6, 69	339	8, 204	491	6, 32; 8, 292
138	6, 69	341	7, 166; 8, 245;	493	9, 317
144	8, 80; 9, 98		9, 185, 193	494	6, 254; 7, 278
149	6, 72	346	6, 133; 7, 155;	497	6, 256; 7, 279
154	6, 73; 7, 89		9, 223	506	6, 258; 7, 283;
158	7, 90	350	8, 195		8, 296; 9, 322
160	7, 92	352	8, 212 [9, 229	507	6, 258; 8, 296

Vol. 5 Bd.	Suppl. Ref. (Volume, page)	Vol. 5 Bd.	Suppl. Ref. (Volume, page)	Vol. 5 Bd.	Suppl. Ref. (Volume, page)
No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)
508	8, 298; 9, 45	571	6, 291	617	8, 357
511	6, 260	577	6, 294; 8, 332	621	9, 390
513	7, 88	578	8, 37	622	6, 318
515	6, 260; 8, 300; 9, 327	581	6, 296	623	8, 360
		585	8, 336	625	8, 362
517	6, 261	587	8, 336	627	6, 320; 8, 363; 9, 394
518	8, 300	588	6, 296	642	6, 324; 7, 345
525	9, 332	590	7, 323	648	6, 327
532	6, 269	593	7, 323	650	7, 351
541	6, 280	594	6, 298	652	7, 352; 8, 377
545	7, 305	596	7, 325; 9, 372	654	6, 333
548	9, 347	597	7, 326	660	6, 337
557	8, 325	600	6, 301	666	8, 383; 9, 411
562	6, 289	607	6, 303	670	6, 7
563	6, 289; 7, 313	608	9, 64		
566	6, 209	614	6, 314		
Vol. 6 Bd.	Suppl. Ref. (Volume, page)	Vol. 6 Bd.	Suppl. Ref. (Volume, page)	Vol. 6 Bd.	Suppl. Ref. (Volume, page)
No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)
6	9, 3	142	9, 68	265	7, 122
11	7, 4	145	7, 64; 9, 69	268	7, 122
22	7, 16	146	7, 66	276	8, 124
25	9, 12	148	6, 56; 9, 74	277	9, 143
27	7, 12	149	7, 67	280	6, 332; 7, 352; 9, 143
33	7, 16	152	7, 68		
35	7, 51	156	7, 69; 8, 65	291	6, 7
42	8, 16; 9, 21	157	8, 67	293	8, 131
47	6, 18; 7, 41; 8, 19; 9, 48	158	7, 71; 8, 9, 67; 9, 80	294	7, 130
52	7, 25	161	7, 74	301	9, 153
54	7, 28	162	9, 85	302	9, 154
55/6	7, 28; 9, 28	172	9, 89	325	8, 145
60	8, 23	182	6, 320	326	7, 142
63	9, 30	183	9, 94	327	7, 142; 8, 146
65	9, 30	190	7, 85	329	9, 161
68	8, 25; 9, 31	191	7, 87	331	8, 150
75	9, 34	193	9, 99	341	7, 151
83	7, 32	200	8, 87; 9, 105	342	7, 151; 8, 155
87	8, 31	202	8, 90	344	8, 155
100	7, 40	206	7, 97; 8, 93; 9, 110	345	7, 150
101	7, 41; 8, 40; 9, 48	209	8, 94	346	7, 151
102	8, 41	211	8, 94	347	7, 152
103	8, 41; 9, 49	215	9, 112	348	9, 168
104	8, 41	216	8, 96; 9, 113	358	7, 154; 8, 160
106	9, 50	218	7, 100	364	7, 24, 156; 8, 161; 9, 173
107	6, 24; 8, 24, 57	220	7, 99; 8, 94	365	8, 162
116	8, 44	226	6, 164; 8, 197	366	7, 156; 8, 75
117	7, 46	237	7, 108	367/8	9, 174
118	8, 46; 9, 56	241	8, 106	371	8, 162
121	8, 51	243	7, 111; 9, 128	381	9, 177
122	8, 46	249	9, 132	388	9, 182
130	7, 57	255	8, 118	389	8, 171; 9, 182
137	8, 55	263	9, 137	403	8, 189

Vol. 6 Bd.	Suppl. Ref. (Volume, page)	Vol. 6 Bd.	Suppl. Ref. (Volume, page)	Vol. 6 Bd.	Suppl. Ref. (Volume, page)
No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)
404	8, 177	620	7, 237	764	7, 268
405	9, 187	622	7, 239; 8, 260	768	7, 305
410	7, 195; 9, 224	623	7, 240	770	7, 307; 9, 347
424	7, 176	624	8, 260; 9, 273	779	7, 310
432	8, 190	636/7	7, 242	789	9, 355
441	8, 195	643	7, 243; 9, 280	790	8, 329
461	8, 201	646	8, 267	797	7, 318
479	7, 194; 8, 205	658	7, 251	799	8, 338
485	7, 195	660	8, 270	802	9, 368
489	9, 225	677	9, 300	803	7, 323
497	8, 212	678	7, 262	806	9, 372
502	7, 21; 8, 15	679	8, 280	812	7, 225
505	8, 217	680	7, 265	814	7, 329; 9, 375
509	8, 218	682	9, 303	820	6, 12; 8, 11
519	8, 168	686	7, 269; 8, 285,	826	8, 353
520	8, 221	689	6, 84 286	835	7, 335; 9, 381
522	7, 205	696	9, 316	840	8, 238
539	9, 245	699	8, 292	847	7, 340
545	7, 213	700	6, 48; 8, 100	858	6, 274, 311
548	7, 214; 8, 231	703	9, 318	861	8, 366
556	8, 234	705	6, 51; 7, 279;	862	9, 396
558	9, 249		8, 294; 9, 319	868	7, 346; 9, 329
563	8, 237	708	7, 279	869	7, 145, 300, 347;
565	8, 238	719	7, 291; 8, 303		8, 316; 9, 397
566	7, 220; 8, 238	720	9, 331	875	8, 373
571/2	8, 239	731	6, 88; 7, 295	878/9	7, 350
573	7, 221; 8, 239	738	9, 336	880	9, 400
574	8, 240	741	8, 173	882	8, 374
575	9, 110	749	8, 283	891	7, 353; 9, 404
582	9, 261	752	9, 342	906	6, 213
585	6, 211; 7, 227; 8, 245	755	8, 316	910	9, 413
594	8, 249	756	8, 317	911	8, 384; 9, 413
599	7, 232; 8, 252	759	9, 345	912	7, 358
		761	6, 33		

Vol. 7 Bd.	Suppl. Ref. (Volume, page)	Vol. 7 Bd.	Suppl. Ref. (Volume, page)	Vol. 7 Bd.	Suppl. Ref. (Volume, page)
No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)
18	9, 8	116	9, 53, 289	200	9, 94
20	8, 7; 9, 8	118	8, 96	202	9, 94
27	9, 11	128	9, 58	205	8, 76
31	8, 9	129	9, 5	209	8, 78
35	8, 11	145	8, 54	212	9, 98
39	9, 16	147	9, 66	217	7, 156; 9, 125, 173
47	8, 12	159	8, 59		
62	8, 17	160	9, 72	224	8, 84; 9, 103
75	9, 31	176	8, 67	236	8, 88
77	9, 33	179	9, 82	239	8, 362; 9, 108, 393
78	8, 11	181	8, 68; 9, 83		
91	8, 30; 9, 39	188	8, 72	241	8, 88
95	8, 34	191	8, 74	252	8, 100
105	9, 48	195	8, 74	254	8, 100
106/7	8, 41	196	9, 92	271	9, 337

Vol. 7 Bd.	Suppl. Ref. (Volume, page)	Vol. 7 Bd.	Suppl. Ref. (Volume page)	Vol. 7 Bd.	Suppl. Ref. (Volume, page)
No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)
289	8, 112	485	8, 200	701	8, 286
292	9, 132	490	8, 201; 9, 212	712/3	9, 316
312	8, 122; 9, 139	493	8, 203; 9, 216	714	8, 292
321	9, 141	494	9, 220	716	9, 319
325	7, 344; 8, 362; 9, 393	497	8, 205; 9, 220	721	8, 294
		512	8, 215	725	8, 296
331	8, 130	517	7, 78	730	8, 37, 296
333	8, 131; 9, 148	520	8, 219	742	9, 329
351	8, 135	545	9, 247	746	9, 329
366	8, 201; 9, 212	546	8, 229	750	9, 99
372	9, 162	547	8, 20	753	8, 303; 9, 332
383	9, 166	549	8, 230	777	9, 342
386	9, 167	555	8, 234	781	9, 345
398	8, 186	560	9, 253	782	8, 317
406	8, 168; 9, 179	563/4	8, 237	787	9, 345
413	9, 158	566	8, 238	798	8, 322
416	9, 182	580	8, 242	811	7, 347, 356
417	7, 104; 9, 182	583	8, 243	827	7, 100
419	9, 183	594	7, 249	838	9, 372
421	8, 173	618	8, 260	841	9, 373
423	8, 195	627	8, 265	842	8, 341
425	9, 184	647	8, 266	856	9, 376
426	9, 185	656	8, 275	862	9, 378
434	9, 336	660	8, 276	864	8, 350
439	9, 189	664	9, 296	869	7, 298; 8, 314
445	8, 185	680	8, 280	872	8, 354
447	8, 186; 9, 191	684	8, 282	883	8, 361; 9, 392
458	9, 197	685	9, 304	884	8, 361
461	8, 41	687	8, 283, 373	891	7, 29, 345; 9, 30,
476/7	8, 197; 9, 209	691	8, 284	915	8, 383 [394]
				917	8, 384

Vol. 8 Bd.	Suppl. Ref. (Volume, page)	Vol. 8 Bd.	Suppl. Ref. (Volume, page)	Vol. 8 Bd.	Suppl. Ref. (Volume, page)
No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)
6	9, 6	130	9, 66	325	9, 149
14	9, 9	134a	8, 245	326	9, 150
18	8, 116	136	9, 70	329	9, 151
29	9, 19	143	8, 227	349	8, 238
43	9, 37	152	9, 79	362	9, 160
51	9, 30	159	8, 238	363	9, 159
65	8, 300	165	9, 5	365	9, 161
69	9, 39	195	8, 15, 184; 9, 20	369	9, 158
75	9, 42	202	9, 105	370	9, 163
84	8, 385	206	9, 106	384	9, 167
85	9, 182	208	9, 108	404	9, 173
88	9, 48	223	9, 111	405	9, 174
91	9, 48	235	9, 119	421	9, 181
95	9, 49	250	8, 64; 9, 77	426	9, 182
104	8, 49, 245	251	8, 75	429	9, 183
105	9, 53	263	8, 70	436	9, 184
116	8, 376	286	9, 135	439	9, 185
123	9, 61	307	9, 144, 146	455	9, 189
124	9, 62	323	9, 148	465	9, 150

Vol. 8 Bd.	Suppl. Ref. (Volume, page)	Vol. 8 Bd.	Suppl. Ref. (Volume, page)	Vol. 8 Bd.	Suppl. Ref. (Volume, page)
No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)
497	9, 209	667	9, 278	856	9, 371
511	8, 204	669	9, 279	870	8, 276
512	8, 236	693	9, 292	873	9, 378
515	9, 185	695	9, 292	884	9, 386
528	9, 281	696	9, 294	885	9, 385
532	9, 226	735	9, 316	889	9, 387
538	9, 228	737	9, 316	899	9, 391
540	9, 229	740	9, 398	901	9, 393
542	9, 229	745	9, 322	903	8, 303
550	8, 173; 9, 183	765	9, 332	916	8, 376
563	8, 202; 9, 216	769	9, 332	917	9, 397
586	9, 414	807	8, 314	924	9, 397
594	8, 275	816	9, 349	926/7	9, 398
607	8, 230; 9, 258	832	8, 103	944	9, 406
623	9, 264	841	9, 364	946	8, 351
662	9, 277	851	9, 367		

Vol. 9 Bd.	Suppl. Ref. (Volume, page)	Vol. 9 Bd.	Suppl. Ref. (Volume, page)	Vol. 9 Bd.	Suppl. Ref. (Volume, page)
No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)	No.	Erg.-Zitate (Band, Seite)
62	9, 30	524	9, 49	859	9, 859
87	9, 158	539	9, 215	860	9, 24
121	9, 183	554	9, 284	881	9, 66
392	9, 244	567	9, 50	930	9, 210
416	9, 21	601	9, 396	931	9, 46
418	9, 409	743	9, 115	949	9, 413
476	9, 185	825	9, 76	972	9, 253
485	9, 216	841	9, 359		

HELVETICA CHIMICA ACTA

EDENDA CURAT SOCIETAS CHIMICA HELVETICA

Since 1918 the Swiss Chemical Society has been editing its own periodical for Pure Chemistry which is published under the title «HELVETICA CHIMICA ACTA». It is the primary aim of this periodical to publish the results of researches carried out by all chemists living in Switzerland and by Swiss chemists residing abroad. The publications are in German, French, or Italian.

«HELVETICA CHIMICA ACTA» are published yearly in 8 numbers with a total of approximately 2,300 pages, the year beginning on the 1st February. The subscription for the current volume is Swiss frs. 80.–, plus postage (abroad frs. 7.50). Back volumes can be supplied as follows: reprint volumes, I–XIV, set \$ 350.–; single volumes, paper bound, \$ 25.– each, plus postage; from Vol. XXVI, Swiss frs. 80.– each, plus postage. The price for single numbers is Swiss frs. 12.–, plus postage.

Please send your order to Messrs.

SCHWEIZERISCHE CHEMISCHE GESELLSCHAFT

VERLAG HELVETICA CHIMICA ACTA, BASEL 7 (Schweiz)

Synthetic Methods

of Organic Chemistry

Semimonthly
ABSTRACT SERVICE
for Research Laboratories

For information write to:

Wm. Theilheimer

18 Laura Avenue

NUTLEY, N.J., USA.

CHIMIA

Herausgeber: Schweizerischer Chemiker-Verband

Die Fachzeitschrift für den Chemiker

Aktuelle Veröffentlichungen über Forschung und Fortschritte in Wissenschaft und Technik

Redaktionskommission: P.-D. Dr. H. Ammann, Fribourg; Prof. Dr. E. Brandenberger, Zürich; Prof. E. Cherbiliez, Dr. ès sc., Genève; Prof. Dr. W. Feitknecht, Bern; Dr. E. Jaag, Biel; G. Malet, Dr. ès sc., Petit-Lancy (GE); Prof. Dr. G. Schwarzenbach, Zürich; Prof. Dr. R. Signer, Bern; Dr. E. Stirnemann, Basel; Dr. P. Urech, Neuhausen

Alle Zuschriften an die Redaktion sind erbeten an:

P.-D. Dr. H. Ammann, Postanschrift: Buchdruckerei H.R. Sauerländer & Co., Aarau

Abonnementspreise: Schweiz Fr. 24.-, Ausland Fr. 26. - pro Jahr (12 Hefte); Einzelh. Fr. 3.

Zu beziehen

durch die Buchdruckerei H.R. Sauerländer & Co., Aarau, oder durch den Buchhandel
Anzeigenverwaltung: Mosse-Annoncen AG., Zürich-Basel

Kartothek der Thiazolverbindungen

Zusammengestellt von

Bernhard Prijs

Wissenschaftlicher Assistent an der Universität Basel

1352 Blatt in 4 Ringbüchern, 1951. sFr. 166.40

Aus dem Vorwort

Die letzte vollständige Zusammenfassung der Thiazolverbindungen stammt aus dem Jahre 1919 (Beilstein, 4. Aufl.). Die seit diesem Zeitpunkt stark angewachsene Literatur auf diesem intensiv bearbeiteten Gebiet machte es erwünscht, die Literatur über diese Verbindungsklasse erneut zusammenzustellen.

Um zu vermeiden, daß eine solche Sammlung rasch veraltet oder in eine Reihe von Ergänzungsbänden zersplittert wird, haben wir uns für die Form einer Kartothek entschieden, die es erlaubt, neue Verbindungen oder neue Angaben über bereits registrierte Verbindungen mit Hilfe periodisch erscheinender Ersatz- und Nachtragsblätter am richtigen Platz einzuordnen und so das Werk stets dem jeweiligen Stand des Wissens anzupassen.

Auf den einzelnen Kartothekblättern findet man die Angaben über Synthese, Eigenschaften und Reaktionen der einzelnen Verbindungen; darüber hinaus erlaubt es das ausführliche Sachregister, sich über bestimmte Verbindungstypen oder Reaktionen innerhalb der Thiazolreihe leicht zu orientieren.

Basel - Verlag von S. Karger - New York

Just out (April 1955)

Quantitative Methods in Histology and Microscopic Histochemistry

By

OLAVI ERÄNKÖ, Helsinki

In statistical collaboration with JAAKKO KIHLBERG, Helsinki

160 pages, 49 figures. 1955. sFr. 19.75

PREFACE

This book is addressed to those who would like to use quantitative methods in the study of microscopical specimens but do not know how to do it. The constantly increasing number of microscopical investigations dealing with quantitative aspects mirrors the growing interest in the quantitative methods, and many of such studies have disclosed unforeseen, interesting realms in the properties of tissues and cells. However, no systematic introduction to the quantitative methods in histology and microscopic histochemistry is available, although much valuable information in this respect is scattered in recent literature. This little book is a humble effort to fill the need of such a guide. It is hoped that it will prove useful in the hands of histologists and histochemists who are not familiar with the possibilities for quantitative work in their field and also to the students of various branches of experimental biology who would welcome the addition of quantitative microscopical methods to their armament.

CONTENTS

Variability and its Measures — Animal Experiments — Preparations of Microscopical Specimens — Specimen Thickness — Microscopic Demonstration of Tissue Details — Estimation of Relative Volumes — Counting, Sizing and Various Quantitative Criteria — Absorption Measurements — Equipment for Absorption Measurements — Measurement of the Intensity of Light—Statistical Analysis of Results—References—Subject Index.

BASEL (Switzerland)

S. KARGER

NEW YORK

Antibiotica et Chemotherapia

Fortschritte / Advances / Progrès

herausgegeben von – edited by – dirigé par

H. BLOCH
New York

O. GSELL
Basel

E. LANGER
Berlin

VOL. 1

X+378 p., 113 fig., 1 col. plate, 1954. sFr. 52.—

INDEX

Die neuere Entwicklung der Antibiotica als Arzneimittel. Von J. BÜCHI, Zürich. Die Behandlung der Endocarditis lenta mit Antibiotica. Von H. BARTELHEIMER und W. ENGERT, Berlin. Sulfonamide Combinations. By S. HELANDER, Stockholm. Les accidents provoqués par les Antibiotiques. Par P. RENTCHNICK, Genève. Antibiotica und Pilzerkrankungen der Haut und Schleimhaut. Von H. GRIMMER, Berlin. Pilzerkrankungen der inneren Organe als Folge von Behandlung mit Antibiotica, unter besonderer Berücksichtigung des Respirationstraktes. Von T. WEGMANN, Zürich. Wirkung der Antibiotica, insbesondere des Penicillin, auf das vegetative Nervensystem und das Endokrinium. Von W. BLAICH, Münster. Antibiotica in der Pädiatrie. Von E. ROSSI, Zürich.

In Vorbereitung

VOL. 2

ca. 350 p., 150 fig., 1955. ca. sFr. 52.—

La résistance microbienne aux antibiotiques. Par M. WELSCH, Liège. Wirkungsweise der Antibiotica auf die Zellen. Von L. ETTLINGER, Zürich. Chemotherapie – Immunität – Prophylaxe. Von G. HENNEBERG, Berlin. Oral-Penicillin. Von J. SPITZY, Wien. Sero- und Cutireaktionen der Antibiotica- und Chemotherapie. Von V. PIRILÄ, Helsinki. Treatment of Syphilitic Heart Disease. By J. EDEIKEN and H. BEERMAN, New York. Heutiger Stand der Therapie der Geschlechtskrankheiten. Von E. FISCHER, Zürich. Allergy and Antibiotics. By P. KALLOS, Helsingborg.

BASEL (Switzerland)

S. KARGER

NEW YORK

Heckel by
K.S. Chidkera
26.7.57

GÜNTHER BUGGE

Das Buch der großen Chemiker

Herausgegeben von GÜNTHER BUGGE unter Mitwirkung namhafter Gelehrter

Unveränderter Nachdruck 1955

Band I: Von Zosimos bis Schönbein

Band II: Von Liebig bis Arrhenius

68 Biographien und eine ausführliche Bibliographie. XXII, 1054 Seiten mit 146 Abbildungen auf Tafeln und im Text. Band I und II (nur zusammen lieferbar) in Ganzleinen im Schutzhülle DM 80.—

ERNST EBERIUS

Wasserbestimmung mit Karl-Fischer-Lösung

Monographie Nr. 65 zu «Angewandte Chemie» und «Chemie-Ingenieur-Technik». 1954. 138 Seiten mit 38 Abbildungen und 83 Tabellen. Kart. DM 12.80

ERICH HECKER

Verteilungsverfahren im Laboratorium

Monographie Nr. 67 zu «Angewandte Chemie» und «Chemie-Ingenieur-Technik». 1955. 229 Seiten mit 89 Abbildungen sowie 74 Tabellen im Text und einem Tabellenheft. Kart. DM 19.—

Prospekte auf Wunsch

VERLAG CHEMIE, GMBH.
WEINHEIM / BERGSTR.

