

Learning to Rank

from heuristics to theoretic approaches

Hongning Wang

Congratulations

- Job Offer
 - Design the ranking module for Bing.com

How should I rank documents?

Relevance?!

The Notion of Relevance

Relevance Estimation

- Query matching
 - Language model
 - BM25
 - Vector space cosine similarity
- Document importance
 - PageRank
 - HITS

Did I do a good job of ranking documents?

- IR evaluations metrics how to rank documents
 - Precision
 - MAP
 - NDCG 🐓

www.michaelnielsen.org/.../documents-as-geometric-objects-how-to-...

Jul 7, 2011 – In this post I explain the basic ideas of **how to rank** different **documents** according to their relevance. The ideas used are very beautiful.

[PDF] Information Retrieval: Ranking Documents

ciir.cs.umass.edu/~strohman/slides/IR-Intro-Ranking.pdf

File Format: PDF/Adobe Acrobat - View as HTML

About 128,000,000 results (0.25 seconds)

Web features, implicit relevance indicators. • Evaluating ranking quality. • Test collections. • Quality metrics. • Training systems to **rank documents** better. 10 ...

lucene.net - Lucene: How to rank documents according to the ...

stackoverflow.com/.../lucene-how-to-rank-documents-according-to-t...

1 answer - Mar 3

Top answer: This will require some work, but you can achieve this using payloads. See answers to this very similar question: How to get a better Lucene/Solr score ...

The Anatomy of a Search Engine

infolab.stanford.edu/~backrub/google.html

We use font size relative to the rest of the **document** because when searching, you do not want to **rank** otherwise identical **documents** differently just because ...

CS 6501: Information Retrieval

Take advantage of different relevance estimator?

Ensemble the cues

- Linear?
 - $a_1 \times BM25 + \alpha_2 \times LM + \alpha_3 \times PageRank + \alpha_4 \times HITS$

CS@UVa

CS 6501: Information Retrieval

What if we have thousands of features?

- Is there any way I can do better?
 - Optimizing the metrics automatically!

Rethink the task

• Given: (query, document) pairs represented by a set of relevance estimators, a.k.a., features

DocID	BM25	LM	PageRank	Label
0001	1.6	1.1	0.9	0
0002	2.7	1.9	0.2	1

Needed: a way of combining the estimators

$$-f(q,\{d\}_{i=1}^D) \rightarrow \text{ordered } \{d\}_{i=1}^D$$

- - P@k, MAP, NDCG, etc.

Machine Learning

- Input: $\{(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)\}$, where $X_i \in \mathbb{R}^N, Y_i \in \mathbb{R}^M$
- Object function : O(Y', Y)
- Output: $f(X) \to Y$, such that $f = \operatorname{argmax}_{f' \subset F} O(f'(X), Y)$

NOTE: We will only talk about supervised learning.

Learning to Rank

General solution in optimization framework

- Input:
$$\{((q_i, d_1), y_1), ((q_i, d_2), y_2), \dots, ((q_i, d_n), y_n)\},$$

where $\mathbf{d_n} \in \mathbb{R}^N, y_i \in \{0, \dots, L\}$

- Object: O = {P@k, MAP, NDCG}
- Output: $f(q,d) \rightarrow Y$, s.t., $f = \operatorname{argmax}_{f' \subset F} O(f'(q,d), Y)$

DocID	BM25	LM	PageRank	Label
0001	1.6	1.1	0.9	0
0002	2.7	1.9	0.2	1

Challenge: how to optimize?

- Evaluation metric recap
 - Average Precision

• AveP =
$$\frac{\sum_{k=1}^{n} (P(k) \times rel(k))}{\text{number of relevant documents}}$$

— DCG

• DCG_p =
$$rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2 i}$$
.

- Order is essential!
 - $-f \rightarrow \mathbf{order} \rightarrow \mathbf{metric}$

Not continuous with respect to f(X)!

Approximating the Objects!

- Pointwise
 - Fit the relevance labels individually
- Pairwise
 - Fit the relative orders
- Listwise
 - Fit the whole order

Pointwise Learning to Rank

- Ideally perfect relevance prediction leads to perfect ranking
 - -f → **score** → order → metric
- Reducing ranking problem to
 - Regression
 - $O(f(Q,D),Y) = -\sum_{i} ||f(q_{i},d_{i}) y_{i}||$
 - Subset Ranking using Regression, D.Cossock and T.Zhang, COLT 2006
 - (multi-)Classification
 - $O(f(Q,D),Y) = \sum_{i} \delta(f(q_i,d_i) = y_i)$
 - Ranking with Large Margin Principles, A. Shashua and A. Levin, NIPS 2002

Subset Ranking using Regression

D.Cossock and T.Zhang, COLT 2006

Fit relevance labels via regression

$$- \hat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \left[\sum_{j=1}^{m} (f(x_{i,j}, S_i) - y_{i,j})^2 \right]$$

Emphasize more on relevant documents

•
$$\sum_{j=1}^{n} w(x_j, S)(f(x_j, S) - y_j)^2 + u \sup_j w'(x_j, S)(f(x_j, S) - \delta(x_j, S))_+^2$$

Weights on each document

Most positive document

Ranking with Large Margin Principles

A. Shashua and A. Levin, NIPS 2002

 Goal: correctly placing the documents in the corresponding category and maximize the margin

Fixed-margin

Ranking with Large Margin Principles

A. Shashua and A. Levin, NIPS 2002

Maximizing the sum of margins

Ranking with Large Margin Principles

A. Shashua and A. Levin, NIPS 2002

19

 Ranking lost is consistently decreasing with more training data

CS@UVa

What did we learn

- Machine learning helps!
 - Derive something optimizable
 - More efficient and guided

There is always a catch

- Cannot directly optimize IR metrics
 - $-(0 \rightarrow 1, 2 \rightarrow 0)$ worse than (0->-2, 2->4)
- Position of documents are ignored
 - Penalty on documents at higher positions should be larger
- Favor the queries with more documents

Pairwise Learning to Rank

- Ideally perfect partial order leads to perfect ranking
 - $-f \rightarrow partial order \rightarrow order \rightarrow metric$
- Ordinal regression
 - $-O(f(Q,D),Y) = \sum_{i \neq j} \delta(y_i > y_j) \delta(f(q_i,d_i) > f(q_i,d_i))$
 - Relative ordering between different documents is significant
 - E.g., (0->-2, 2->4) is better than $(0 \to 1, 2 \to 0)$
 - Large body of work

Optimizing Search Engines using Clickthrough Data Thorsten Joachims, KDD'02

Minimizing the number of mis-ordered pairs

Keep the relative orders

RankingSVM

CS@UVa CS 6501: Information Retrieval 23

Optimizing Search Engines using Clickthrough Data Thorsten Joachims, KDD'02

How to use it?

$$-f$$
 → **score** → order

CS@UVa CS 6501: Information Retrieval 24

Optimizing Search Engines using Clickthrough Data Thorsten Joachims, KDD'02

What did it learn from the data?

ar carrolations	weight	feature	_
ear correlations	0.60	query_abstract_cosine	_
	0.48	$top10$ _google	
	0.24	query_url_cosine	
Positive	0.24	$top1count_1$	
	0.24	top10_msnsearch	
correlated	0.22	host_citeseer	
features	0.21	domain_nec	
	0.19	$top10count_3$	
	0.17	top1_google	
	0.17	country_de	
	0.16	abstract_contains_home	
	0.16	$top1_hotbot$	
	0.14	domain_name_in_query	
	-0.13	$domain_tu-bs$	
Negative	-0.15	country_fi	
correlated	-0.16	$top 50 count_4$	
	-0.17	$\operatorname{url_length}$	
teatures _{501:}	Information Retrie 0 a $eta 2$	$top10count_0$	2
	-0.38	$top1count_0$	

Line

Optimizing Search Engines using Clickthrough Data

Thorsten Joachims, KDD'02

How good is it?

Test on real system

An Efficient Boosting Algorithm for Combining Preferences

Y. Freund, R. Iyer, et al. JMLR 2003

Smooth the loss on mis-ordered pairs

$$-\sum_{y_i>y_j} Pr(d_i,d_j) exp[f(q,d_j) - f(q,d_i)]$$

An Efficient Boosting Algorithm for Combining Preferences

Y. Freund, R. Iyer, et al. JMLR 2003

- RankBoost: optimize via boosting
 - Vote by a committee

CS 6501: Information Retrieval

from Pattern Recognition and Machine Learning, P658

An Efficient Boosting Algorithm for Combining Preferences

Y. Freund, R. Iyer, et al. JMLR 2003

How good is it?

A Regression Framework for Learning Ranking Functions Using Relative Relevance Judgments Zheng et al. SIRIG'07

Non-linear ensemble of features

- Object:
$$\sum_{y_i > y_j} (\max\{0, f(q, d_j) - f(q, d_i)\})^2$$

- Gradient descent boosting tree
 - Boosting tree
 - Using regression tree to minimize the residuals

$$-r^{t}(q,d,y) = O^{t}(q,d,y) - f^{(t-1)}(q,d,y)$$

CS@UVa

A Regression Framework for Learning Ranking Functions Using Relative Relevance Judgments

Zheng et al. SIRIG'07

- Non-linear v.s. linear
 - Comparing with RankingSVM

Where do we get the relative orders

www.ebizmba.com/articles/search-engines >

CS 6501: Juditemmatiani di detrievai

Here are the 15 Most Popular Search Engines ranked by a combination of constantly

- Human annotations
 - Small scale, expensive to acquire
- Clickthroughs

Large amount,

Accurately Interpreting Clickthrough Data as Implicit Feedback

Thorsten Joachims, et al., SIGIR'05

Position bias

Your click is not because

Table 2: Percentage of times the user viewed an abstract at a particular rank before he clicked on a link at a particular rank.

Viewed	Clicked Rank							
Rank	1	2	3	4	5	6		
1	90.6%	76.2%	73.9%	60.0%	54.5%	45.5%		
2	56.8%	90.5%	82.6%	53.3%	63.6%	54.5%		
3	30.2%	47.6%	95.7%	80.0%	81.8%	45.5%		
4	17.3%	19.0%		93.3%	63.6%	45.5%		
5	8.6%	14.3%	21.7%	53.3%	100.0%	72.7%		
6	4.3%	4.8%	8.7%	33.3%	18.2%	81.8%		

Accurately Interpreting Clickthrough Data as Implicit Feedback

Thorsten Joachims, et al., SIGIR'05

- Controlled experiment
 - Over trust of the top ranked positions

"normal"	l_1^-, l_2^-	l_1^+, l_2^-	l_1^-, l_2^+	l_1^+, l_2^+	total
$\operatorname{rel}(l_1) > \operatorname{rel}(l_2)$	15	19	1	1	36
$\operatorname{rel}(l_1) < \operatorname{rel}(l_2)$	11	5	2	2	20
$\operatorname{rel}(l_1) = \operatorname{rel}(l_2)$	19	9	1	0	29
total	45	33	4	3	85

"swapped"	l_1^-, l_2^-	l_1^+, l_2^-	l_1^-, l_2^+	l_1^+, l_2^+	total
$rel(l_1) > rel(l_2)$	11	15	1	1	28
$rel(l_1) < rel(l_2)$	17	10	7	2	36
$rel(l_1) = rel(l_2)$	36	11	3	0	50
total	64	36	11	3	114

Accurately Interpreting Clickthrough Data as Implicit Feedback

Thorsten Joachims, et al., SIGIR'05

- Pairwise preference matters
 - Click: examined and clicked document
 - Skip: examined but non-clicked document

Explicit Feedback		Pages				
Data	Phase I	Phase II			Phase II	
Strategy	"normal"	"normal" "swapped" "reversed" all				all
Inter-Judge Agreement	89.5	N/A	N/A	N/A	82.5	86.4
Click > Skip Above	80.8 ± 3.6	88.0 ± 9.5	79.6 ± 8.9	83.0 ± 6.7	83.1 ± 4.4	78.2 ± 5.6
Last Click > Skip Above	83.1 ± 3.8	89.7 ± 9.8	77.9 ± 9.9	84.6 ± 6.9	83.8 ± 4.6	80.9 ± 5.1
Click > Earlier Click	67.2 ± 12.3	75.0 ± 25.8	36.8 ± 22.9	28.6 ± 27.5	46.9 ± 13.9	64.3 ± 15.4
Click > Skip Previous	82.3 ± 7.3	88.9 ± 24.1	80.0 ± 18.0	79.5 ± 15.4	81.6 ± 9.5	80.7 ± 9.6
Click > No Click Next	84.1 ± 4.9	75.6 ± 14.5	66.7 ± 13.1	70.0 ± 15.7	70.4 ± 8.0	67.4 ± 8.2

Click > Skip

What did we learn

- Predicting relative order
 - Getting closer to the nature of ranking
- Promising performance in practice
 - Pairwise preferences from click-throughs

CS@UVa CS 6501: Information Retrieval 36

Listwise Learning to Rank

- Can we directly optimize the ranking?
 - -f → order → metric
- Tackle the challenge
 - Optimization without gradient

Christopher J.C. Burges, 2010

 Minimizing mis-ordered pair => maximizing IR metrics?

Mis-ordered pairs: 6

AP: $\frac{5}{8}$

DCG: 1.333

Mis-ordered pairs: 4

AP: $\frac{5}{12}$

DCG: 0.931

Position is crucial!

Christopher J.C. Burges, 2010

Christopher J.C. Burges, 2010

- Lambda functions
 - Gradient?
 - Yes, it meets the sufficient and necessary condition of being partial derivative
 - Lead to optimal solution of original problem?
 - Empirically

Christopher J.C. Burges, 2010

Evolution

	RankNet
Object	Cross entropy over the pairs
Gradient (λ function)	Gradient of cross entropy
Optimization method	neural network

Christopher J.C. Burges, 2010

A Lambda tree

```
<tree id="8" weight="0.1">
 <split>
                                    splitting
   <feature> 811 </feature>
   <threshold> 5.0 </threshold>
   <split pos="left">
     <feature> 33 </feature> <
                                         Combination of
     <threshold> 20.0 </threshold>
     <split pos="left">
                                         features
       <feature> 589 </feature>
       <threshold> 43493.125 </threshold>
       <split pos="left">
         <feature> 1094 </feature>
         <threshold> 302.73438 </threshold>
         <split pos="left">
           <feature> 108 </feature>
           <threshold> 9881.824 </threshold>
           <split pos="left">
             <output> -0.66917753 </output>
           </split>
           <split pos="right">
             <feature> 151 </feature>
             <threshold>
```

AdaRank: a boosting algorithm for information retrieval

Jun Xu & Hang Li, SIGIR'07

Loss defined by IR metrics

$$-\sum_{q\in Q} Pr(q) exp[-O(q)].$$

Optimizing by boosting

Target metrics: MAP, NDCG, MRR

committee member (ranking feature)

$$Y_M(\mathbf{x})$$
6501Sign hat on Rewign (\mathbf{x})

from Pattern Recognition and Machine Learning, P658

Yisong Yue, et al., SIGIR'07

RankingSVM

Minimizing the pairwise loss

$$\begin{aligned} & \textit{minimize:} & V(\vec{w}, \vec{\xi}) = \frac{1}{2} \, \vec{w} \cdot \vec{w} + C \, \sum \xi_{i,j,k} \\ & \textit{subject to:} \\ & \underline{\forall (d_i, d_j) \in r_1^* : \vec{w} \Phi(q_1, d_i) \geq \vec{w} \Phi(q_1, d_j) + 1 - \xi_{i,j,1}}}_{\dots} \\ & \underline{\qquad \qquad \qquad } \\ & \forall (d_i, d_j) \in r_n^* : \vec{w} \Phi(q_n, d_i) \geq \vec{w} \Phi(q_n, d_j) + 1 - \xi_{i,j,n}}_{\forall i \forall j \forall k : \xi_{i,j,k} \geq 0} \end{aligned}$$

Loss defined on the number of mis-ordered document pairs

SVM-MAP

Minimizing the structural loss

$$\min_{\mathbf{w}, \xi \geq 0} \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{n} \sum_{i=1}^n \xi_i$$

$$s.t. \ \forall i, \underline{\forall \mathbf{y} \in \mathcal{Y} \setminus \mathbf{y}_i} :$$

$$\mathbf{w}^T \Psi(\mathbf{x}_i, \mathbf{y}_i) \geq \mathbf{w}^T \Psi(\mathbf{x}_i, \mathbf{y}) + \Delta(\mathbf{y}_i, \mathbf{y}) - \xi_i$$

Loss defined on the quality of the whole list of ordered documents

Yisong Yue, et al., SIGIR'07

- Max margin principle
 - Push the ground-truth far away from any mistakes you might make
 - Finding the most violated constraints

CS@UVa CS 6501: Information Retrieval 45

Yisong Yue, et al., SIGIR'07

- Finding the most violated constraints
 - MAP is invariant to permutation of (ir)relevant documents

Maximize MAP over a series of swaps between

Yisong Yue, et al., SIGIR'07

Experiment results

	TF	REC 9	TR	REC 10
Model	MAP	W/L	MAP	W/L
SVM_{map}^{Δ}	0.290	_	0.287	_
SVM_{roc}^{Δ}	0.282	29/21	0.278	35/15 **
SVM_{acc}	0.213	49/1 **	0.222	49/1 **
SVM_{acc2}	0.270	34/16 **	0.261	42/8 **
SVM_{acc3}	0.133	50/0 **	0.182	46/4 **
SVM_{acc4}	0.233	47/3 **	0.238	46/4 **

CS@UVa CS 6501: Information Retrieval 47

Other listwise solutions

- Soften the metrics to make them differentiable
 - Michael Taylor et al., SoftRank: optimizing nonsmooth rank metrics, WSDM'08
- Minimize a loss function defined on permutations
 - Zhe Cao et al., Learning to rank: from pairwise approach to listwise approach, ICML'07

What did we learn

- Taking a list of documents as a whole
 - Positions are visible for the learning algorithm
 - Directly optimizing the target metric
- Limitation
 - The search space is huge!

Summary

- Learning to rank
 - Automatic combination of ranking features for optimizing IR evaluation metrics
- Approaches
 - Pointwise
 - Fit the relevance labels individually
 - Pairwise
 - Fit the relative orders
 - Listwise
 - Fit the whole order

Experimental Comparisons

Ranking performance

Table 7.5 Results on the TD2003 dataset

Algorithm	N@1	N@3	N@10	P@1	P@3	P@10	MAP
Regression	0.320	0.307	0.326	0.320	0.260	0.178	0.241
RankSVM	0.320	0.344	0.346	0.320	0.293	0.188	0.263
RankBoost	0.280	0.325	0.312	0.280	0.280	0.170	0.227
FRank	0.300	0.267	0.269	0.300	0.233	0.152	0.203
ListNet	0.400	0.337	0.348	0.400	0.293	0.200	0.275
AdaRank	0.260	0.307	0.306	0.260	0.260	0.158	0.228
SVM^{map}	0.320	0.320	0.328	0.320	0.253	0.170	0.245

Experimental Comparisons

Winning count

Over seven different data sets

Table 7.12 Winner Number of Each Algorithm

Algorithm	N@1	N@3	N@10	P@1	P@3	P@10	MAP
Regression	4	4	4	5	5	5	4
RankSVM	21	22	22	21	22	22	24
RankBoost	18	22	22	17	22	23	19
FRank	18	19	18	18	17	23	15
ListNet	29	31	33	30	32	35	33
AdaRank	26	25	26	23	22	16	27
SVM^{map}	23	24	22	25	20	17	25

Experimental Comparisons

- My experiments
 - 1.2k queries, 45.5K documents with 1890 features
 - 800 queries for training, 400 queries for testing

	MAP	P@1	ERR	MRR	NDCG@5
ListNET	0.2863	0.2074	0.1661	0.3714	0.2949
LambdaMART	0.4644	0.4630	0.2654	0.6105	0.5236
RankNET	0.3005	0.2222	0.1873	0.3816	0.3386
RankBoost	0.4548	0.4370	0.2463	0.5829	0.4866
RankingSVM	0.3507	0.2370	0.1895	0.4154	0.3585
AdaRank	0.4321	0.4111	0.2307	0.5482	0.4421
pLogistic	0.4519	0.3926	0.2489	0.5535	0.4945
Logistic	0.4348	0.3778	0.2410	0.5526	0.4762

Analysis of the Approaches

- What are they really optimizing?
 - Relation with IR metrics

CS@UVa CS 6501: Information Retrieval 54

Pointwise Approaches

Regression based

$$1 - NDCG(f) \leq \frac{1}{Z_m} \left(2\sum_{j=1}^m \eta_j^{\varepsilon} \right)^{1/\alpha} \left(\sum_{j=1}^m \left(f(x_j) - y_j \right)^{\beta} \right)^{1/\beta}$$

Discount coefficients Regression loss

in DCG

Classification based

$$1 - NDCG(f) \le \frac{15}{Z_m} \sqrt{2 \left(\sum_{j=1}^m \eta_j^2 - m \prod_{j=1}^m \eta_j^{\frac{2}{m}} \right) \cdot \sum_{j=1}^m I_{\{y_j \ne f(x_j)\}}}$$

Discount coefficients in DCG

Classification loss

Pointwise Approach

 Although it seems the loss functions can bound (1-NDCG), the constants before the losses seem too large.

$$Z_{m} \approx 21.4 \qquad X_{i}, f(x_{i})$$

$$\begin{pmatrix} x_{1}, 4 \\ x_{2}, 3 \\ x_{3}, 2 \\ x_{4}, 1 \end{pmatrix} \qquad DCG(f) \approx 21.4 \qquad \begin{pmatrix} x_{1}, 3 \\ x_{2}, 2 \\ x_{3}, 1 \\ x_{4}, 0 \end{pmatrix}$$

$$\frac{15}{Z_{m}} \sqrt{2} \left(\sum_{j=1}^{m} \left(\frac{1}{\log(j+1)} \right)^{2} - m \sum_{j=1}^{m} \left(\frac{1}{\log(j+1)} \right)^{\frac{2}{m}} \right) \cdot \sum_{j=1}^{m} I_{\{y_{j} \neq f(x_{j})\}} \approx 1.15 > 1$$

4/20/2009

From Tie-Yan Liu @ WWW 2009 Tutorial on Learning to Rank

Pairwise Approach

(W. Chen, T.-Y. Liu, et al. 2009)

- Unified loss vs. (1-NDCG) Discount coefficients in DCG
 - When $\beta_t = \frac{G(t)\eta(t)}{Z_m}$, L(f) is a tight bound of (1-NDCG).
- Surrogate function of Unified loss
 - After introducing weights β_t, loss functions in Ranking SVM, RankBoost, RankNet are Costsensitive Pairwise Comparison surrogate functions, and thus are consistent with and are upper bounds of the unified loss.
 - Consequently, they also upper bound (1-NDCG).

4/20/2009

Listwise Approaches

- No general analysis
 - Method dependent
 - Directness and consistency

Connection with Traditional IR

- People have foreseen this topic long time ago
 - Nicely fit in the risk minimization framework

CS@UVa CS 6501: Information Retrieval 59

Applying Bayesian Decision Theory

Metric to be optimized Available ranking features

$$(D^*, \pi^*) = \underset{\Theta}{\operatorname{arg \, min}} \int_{\Theta} L(D, \pi, \theta) p(\theta \mid q, U, C, S) d\theta$$

$$\underset{D, \pi}{\longrightarrow} \underset{\text{loss}}{\longrightarrow} \underset{\text{hidden observed}}{\longleftarrow}$$

RISK MINIMIZATION

Bayes risk for choice (D, π)

Traditional Solution

 Set-based models (choose D) • Ranking models (choose π) Independent loss ← Pointwise
 Relevance-based loss → Probabilistic relevance model Generative Relevance Tolory Distance-based loss divergence model Dependent loss MMR loss Subtopic retrieval model MDR loss Pairwise/Listwise

Traditional Notion of Relevance

Broader Notion of Relevance

- Traditional view
 - Content-driven
 - Vector space model
 - Probability relevance model
 - Language model

Query-Document specific Unsupervised

Modern view

- Anything related to the quality of the document
 - Clicks/views
 - Link structure
 - Visual structure
 - Social network

•

Query, Document, Query-Document specific Supervised

Broader Notion of Relevance

CS@UVa CS 6501: Information Retrieval 64

Future

- Tigh
- Fast
- Larg
- Wid

Resources

Books

- Liu, Tie-Yan. Learning to rank for information retrieval. Vol. 13.
 Springer, 2011.
- Li, Hang. "Learning to rank for information retrieval and natural language processing." Synthesis Lectures on Human Language Technologies 4.1 (2011): 1-113.
- Helpful pages
 - http://en.wikipedia.org/wiki/Learning to rank
- Packages
 - RankingSVM: http://svmlight.joachims.org/
 - RankLib: http://people.cs.umass.edu/~vdang/ranklib.html
- Data sets
 - LETOR http://research.microsoft.com/en-us/um/beijing/projects/letor//
 - Yahoo! Learning to rank challenge
 http://learningtorankchallenge.yahoo.com/

References

- Liu, Tie-Yan. "Learning to rank for information retrieval." Foundations and Trends in Information Retrieval 3.3 (2009): 225-331.
- Cossock, David, and Tong Zhang. "Subset ranking using regression." *Learning theory* (2006): 605-619.
- Shashua, Amnon, and Anat Levin. "Ranking with large margin principle: Two approaches." Advances in neural information processing systems 15 (2003): 937-944.
- Joachims, Thorsten. "Optimizing search engines using clickthrough data."
 Proceedings of the eighth ACM SIGKDD. ACM, 2002.
- Freund, Yoav, et al. "An efficient boosting algorithm for combining preferences." The Journal of Machine Learning Research 4 (2003): 933-969.
- Zheng, Zhaohui, et al. "A regression framework for learning ranking functions using relative relevance judgments." Proceedings of the 30th annual international ACM SIGIR. ACM, 2007.

References

- Joachims, Thorsten, et al. "Accurately interpreting clickthrough data as implicit feedback." Proceedings of the 28th annual international ACM SIGIR. ACM, 2005.
- Burges, C. "From ranknet to lambdarank to lambdamart: An overview." Learning 11 (2010): 23-581.
- Xu, Jun, and Hang Li. "AdaRank: a boosting algorithm for information retrieval." Proceedings of the 30th annual international ACM SIGIR. ACM, 2007.
- Yue, Yisong, et al. "A support vector method for optimizing average precision." Proceedings of the 30th annual international ACM SIGIR. ACM, 2007.
- Taylor, Michael, et al. "Softrank: optimizing non-smooth rank metrics." Proceedings of the international conference WSDM. ACM, 2008.
- Cao, Zhe, et al. "Learning to rank: from pairwise approach to listwise approach." Proceedings of the 24th ICML. ACM, 2007.

CS@UVa CS 6501: Information Retrieval 68

Thank you!

Q&A

Recap of last lecture

- Goal
 - Design the ranking module for Bing.com

Basic Search Engine Architecture

Learning to Rank

 Given: (query, document) pairs represented by a set of relevance estimators, a.k.a., features

QueryID	DocID	BM25	LM	PageRank	Label
0001	0001	1.6	1.1	0.9	0
0001	0002	2.7	1.9	0.2	1

Needed: a way of combining the estimators

$$-f(q,\{d\}_{i=1}^D) \rightarrow \text{ordered } \{d\}_{i=1}^D$$

- - P@k, MAP, NDCG, etc.

Challenge: how to optimize?

- Order is essential!
 - $-f \rightarrow \text{order} \rightarrow \text{metric}$
- Evaluation metrics are not continuous and not differentiable

Approximating the Objects!

- Pointwise
 - Fit the relevance labels individually
- Pairwise
 - Fit the relative orders
- Listwise
 - Fit the whole order

Pointwise Learning to Rank

- Ideally perfect relevance prediction leads to perfect ranking
 - -f → **score** → order → metric
- Reduce ranking problem to
 - Regression

- Classification

Deficiency

- Cannot directly optimize IR metrics
 - $-(0 \rightarrow 1, 2 \rightarrow 0)$ worse than (0->-2, 2->4)
- Position of documents are ignored
 - Penalty on documents at higher positions should be larger d_2
- Favor the queries with more documents $\frac{d_1}{d_1'}$

Pairwise Learning to Rank

- Ideally perfect partial order leads to perfect ranking
 - $-f \rightarrow partial order \rightarrow order \rightarrow metric$
- Ordinal regression
 - $-O(f(Q,D),Y) = \sum_{i \neq j} \delta(y_i > y_j) \delta(f(q_i,d_i) < f(q_i,d_i))$
 - Relative ordering between different documents is significant

RankingSVM

Thorsten Joachims, KDD'02

Minimizing the number of mis-ordered pairs

CS@UVa CS 6501: Information Retrieval 78

RankingSVM

Thorsten Joachims, KDD'02

Minimizing the number of mis-ordered pairs

CS@UVa

$$\begin{aligned} &\textit{minimize:} \qquad V(\vec{w}, \vec{\xi}) = \frac{1}{2} \; \vec{w} \cdot \vec{w} + C \; \sum \xi_{i,j,k} \\ &\textit{subject to:} \\ &\forall (d_i, d_j) \in r_1^* : \vec{w} \Phi(q_1, d_i) \geq \vec{w} \Phi(q_1, d_j) + 1 - \xi_{i,j,1} \\ & \dots \\ &\forall (d_i, d_j) \in r_n^* : \vec{w} \Phi(q_n, d_i) \geq \vec{w} \Phi(q_n, d_j) + 1 - \xi_{i,j,n} \\ &\forall i \forall j \forall k : \xi_{i,j,k} \geq 0 \end{aligned}$$

General Idea of Pairwise Learning to Rank

• For any pair of $y_i > y_j$

