This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT SPECIFICATION

(11) 1 591 741

(22) Filed 24 Oct. 1977 (21) Application No. 44077/77

(31) Convention Application No. 742023

(32) Filed 15 Nov. 1976 in

(33) United States of America (US)

(44) Complete Specification published 24 June 1981

(51) INT CL3 C08F 2/50 C08K 3/34

(52) Index at acceptance

C3V BF C3W 201 225

C3Y B120 B123 B230 B248 H660

10

15

20

25

30

35

40

45

(54) IMPROVEMENTS IN OR RELATING TO PASTE-LIKE, PHOTOPOLYMERIZABLE, DENTAL RESTORATIVE COMPOSITIONS

(71) We, SYBRON CORPORATION, of 1100 Midtown Tower, Rochester, New York 14604, United States of America, a corporation organized and existing under the laws of the State of New York, United States of America, do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:-

This invention relates to paste-like, photopolymerizable, dental restorative

compositions.

5

10

15

20 -

.25

30

35

40

45

Known photopolymerizable, dental restorative compositions have contained thermosetting acrylic esters of bis-phenolic compounds, an acrylic monomer diluent and a combination of a photopolymerization initiator and an accelerator. As a rule, compositions of this nature are two-part systems. U.S. Patent Specification 3,709,866 describes one such system, where one component containing the initiator is kept separate from the rest of the composition and the two components are mixed by the dentist in a definite proportion just prior to use. This procedure is necessary in order to maintain a certain shelf life for these dental materials. With such a mix, homogeneity is almost impossible to achieve when, in use, a drop of the component containing the initiator is mixed with an almost solid composite component containing the rest of the composition. Failure to produce a homogenous mix may create irregularities within the restoration. U.S. Patent Specification 3,759,807 discloses the use of a combination of an organic carbonyl compound and an amine, more particularly, the combination of benzophenone and a tertiary amine as the initiator and accelerator, respectively. Although these compositions are polymerizable, they cannot be used as filling material for dental cavities because of their slow curing. Dental composite systems, containing a derivative of the diglycidyl ether of bisphenol A, an acrylic binder and a filler, which in use are cross-linked with benzoyl peroxide or some other suitable catalyst, are disclosed in U.S. Patent Specification 3,539,533. The resultant compositions are stated to have a compression strength of only 26000 psi, however. Further, currently available dental composite materials are characterized by being systems having two part, for instance, paste-paste, paste-liquid, liquid-liquid or power-liquid. The two parts are mixed together in certain prescribed proportions. The properties of the final product depend upon how well and how fast the mixing is carried out. In mixing the two parts, air becomes incorporated into the composition. This air acts as a polymerization inhibitor, produces mechanical flaws in the restorative material and also is slow curing. Further, non-uniform mixing may lower the quality of the fillings. This deficiency is completely eliminated by the present invention, which

provides a one part system. It has now been found that uniform one-part photopolymerizable, dental restorative compositions can be made, which are highly suitable for use as dental filling compositions and which furthermore have the considerable additional advantages of a long shelf life and of not requiring hand mixing or activation by the

According to this invention, there is provided a one part, paste-like, photopolymerizable, dental restorative composition which comprises:

(a) an ethylenically unsaturated monomer;

5

10

15

20

25

30

35

40

45

5

10

15

20

25

30

35

40

45

(b) a diluent monomer copolymerizable with the ethylenically unsaturated monomer;

(c) a photo-initiator for photo-initiating the copolymerization of the ethylenically unsaturated and diluent monomers;

(d) an accelerator for accelerating the photo-initiation of the copolymerization of the ethylenically unsaturated and diluent monomers; and

(e) an inorganic filler comprising barium aluminium silicate and/or lithium aluminium silicate.

The composition can be used as a pit and fissure sealant, a bonding agent, a cavity liner and a restoration glaze.

According to a preferred embodiment of such a composition, the filler advantageously represents up to 85% by weight of the composition.

Preferably, also, the composition is polymerizable by radiation of a wavelength in the range from 3600 to 4500 Å. The compositions of the invention thus have the highly desirable and advantageous characteristic that in use, which involves no mixing or measuring of separate components, the only operations needed are, essentially, application and illumination with radiation of the appropriate wavelength.

Advantageously, the photo-initiator comprises an alpha-diketone or a derivative thereof, and the accelerator, an amine.

Photopolymerizable compositions have been used increasingly in recent years as restorative materials for filling dental cavities. The present invention can be regarded as providing improved compositions of this general class, which are of a one part form and so provide all the attendant advantages, while at the same time being curable in essentially the same way as other, more complex photopolymerizable systems.

In the one part compositions of the invention, the ethylenically unsaturated monomer typically comprises unsaturated sites which are capable of undergoing polymerization, while the main purpose of the diluent monomer is to control the viscosity of the other monomer.

The purpose of the photo-initiator is to produce free radicals in the composition, on exposure to radiation, which then react with the double bonds of the monomer unsaturation to initiate polymerization, while the accelerator is, of course, present for the purpose of increasing the speed of photopolymerization of the composition. The filler or filler combination is selected so as to give the composition the desired physical characteristics and other properties, particularly after use and particularly in relation to appearance.

The ethylenically unsaturated monomer preferably used in the preparation of a one part, paste-like composition of this invention, advantageously is derived from the reaction of the diglycidyl ether of bisphenol A with methacrylic acid or acrylic acid, which, in the case of the methacrylic monomer, may be represented as:

$$\mathsf{CH}_2 = \overset{\mathsf{CH}_3}{\mathsf{C}} \overset{\mathsf{O}}{=} \overset{\mathsf{H}}{\mathsf{H}} \overset{\mathsf{H}} \overset{\mathsf{H}}} \overset{\mathsf{H}}{\mathsf{H}} \overset$$

The resulting glycidyl methacrylate derivative of bisphenol A is known as bisphenol A - bis(3 - methacrylate - 2 - hydroxypropyl)ether. In relation to the present invention, this monomer serves as a binder for the photopolymerizable dental composition and for convenience it is referred to below as "bis-GMA". modifications of this monomer can also be used in carrying out this invention.

3 1,591,741

	dimethacrylates, trimethacrylates, alkyl acrylates, alkylene diacrylates and
5	triacrylates. Especially suitable diluent monomers include: methylmethacrylate
•	ethylmethacrylate
	butylmethacrylate
	n - propylmethacrylate
10	isopropylmethacrylate 1,3 - butylenedimethacrylate
10	ethyleneglycolmonomethacrylate
	ethyleneglycoldimethacrylate
	triethyleneglycoldimethacrylate
	1,6 - hexaneglycoldiacrylate
15	tetraethyleneglycoldiacrylate and tetramethyleneglycoldimethacrylate.
	One or more of these monomers can be used in formulating a photopolymerizable
	composition. The diluent monomers copolymerize with the bis-GMA or other
	ethylenically unsaturated monomer on exposure to radiation in the presence of the
20	photo-initiator and accelerator.
	Another component desirably present in the composition is a polymerization inhibitor, which prevents premature polymerization of the bis-GMA or other
	ethylenically unsaturated monomer and the diluent monomer and is present only
	in small quantities. Suitable polymerization inhibitors include hydroquinone (HQ),
25 .	the methyl ether of hydroguinone (MEHO), butylated hydroxytoluene (BHI) and
	triphenvistyrene Desirably the polymerization inhibitor is present and it is
	preferable for obvious reasons for such a material to be incorporated in both monomers before either is used in formulating the one part paste-like compositions
	of the invention. References to both the monomers are to be taken as meaning
30	(unless otherwise specified) either the respective ingredient per se or such
	ingredient in admixture with any appropriate polymerization inhibitor. Where
	either of the polymerizable ingredients contains MEHQ or some other polymerization inhibitor, it is present in small quantities, for instance 100 ppm, 200
•	ppm or some lesser or greater effective amount, and thus becomes incoproated in
35 -	the photonolymerizable composition of the invention.
	Photo-initiators generally are photosensitive carbonyl compositions. The
	initiators most preferably used in this invention are alpha-diketones and their derivatives, particularly those having the general formula:
	R—COCO—R'
40 ·	where R and R' are the same or different and each represents an aliphatic or aromatic group and their derivatives. Examples of suitable photo-initiators are:
	Formula
	biacetyl CH,COCOCH, CH
	2,3 - pentanedione CH ₃ COCOCH ₂ CH ₃ benzil C ₆ H ₅ COCOC ₆ H ₅
.45 .	4.4' - dimethoxybenzil CH ₂ OC ₆ H ₄ COCOC ₆ H ₄ OCH ₃
	4,4' - oxydibenzil (C _B H ₅ COCOC ₆ H ₅) ₂ O
	These photo-initiators are slightly yellow in colour. Since they are present in small
	quantities however the final polymerized product is almost colourless.
50	Photo-accelerators are chemical compounds which, in the presence of an
	initiator, accelerate the photoreaction. In practice, therefore, an accelerator helps
٠.	the polymerization to penetrate throughout a restoration, even one which is placed in a deep cavity. The preferred accelerators, in the context of this invention, are
	amines whether primary secondary or tertiary with the latter being those most
55	preferred, and also, diamines. Examples of preferred amines include
JJ	preferred, and also, diamines. Examples of preferred amines include dimethylparatoluidine, N,N' - dimethylbenzylamine, N - methyldibutylamine,
	triethylamine and triberylamine Framples of preferred diamines include
	N,N,N',N' - tetraethyl - ethylenediamine and N,N,N',N' - tetramethyl - 1,6 -
	hexanediamine.
60	In the absence of the previously-mentioned photo-initiators, these amines do
60	In the absence of the previously-mentioned photo-initiators, these amines do not function to induce photopolymerization. Even though all amines, in combination

27,000 to 33,000 psi. The strength increased to 40,000 if the cured sample was aged

for two weeks. On prolonged ageing, the strength reached 45,000 psi.

5

. : -

This composition was treated in the same way as before. On exposure to a

"Spectroline B-100" lamp for a total of one minute the material had a crushing

55

barium aluminium silicate lithium aluminium silicate

strength of 31,500 psi.

55

1,591,741 EXAMPLE XII

EXAMPLE XII

The most suitable formulation for dental filling material is given below:

	The most bandot formation to be a second to the second to	D	
		Percent by weight	
5	bis-GMA monomer (including MEHQ 200 ppm)	18	5
	1,6 - hexanedioldiacrylate (including MEHQ 100 ppm)	2.8	
	benzil trihexylamine	0.08 0.2	
	barium aluminium silicate	23	
10	lithium aluminium silicate	55.82	10
	Five pounds of the above mixture was made using a mechanical tested in the same way as before. The polymerized material was crushing strength of 32,000 psi, after exposure to a "Spectroline B-total of 1 minute.	found to have a 100" lamp for a	
15	The latter composition was aged in the dark for more than three temperature and tested again. It duplicated the curing and strength of the fresh material. This confirmed the long shelf life of the pa- Since dentists can use the compositions of the invention witho	n characteristics roduct.	. 15
20	or mixing steps, restorations essentially free of occluded air bubb This eliminates a great deal of mechanical defects and improves restoration to give a smoother solid surface. A smooth surface staining as well as bacterial accumulation and gives a smooth feel	les are possible. finishing of the is less prone to	20
25	Radiation of a wavelength from 2970 to 3200 Å is capable of ca sunburn and of carcinogenesis. This narrow band is responsib "photo-toxic reactions". The polymerization reaction was repeate the radiation completely up to 3200 Å. No change in strength of tobserved.	using cutaneous le for so-called ed after filtering	25
30	By interposing different optical filters between the lamp and was found that the most effective polymerization occurred with wavelength of 4000—4500 Å, i.e. the visible region. The cure test was repeated with a tungsten-halogen lamp as a light, manufacturated by General Electric Co. The light was f	light having a source of visible	30
35	material through a 6" fibre bundle. It was found that the material through the tungsten-halogen lamp than with a mercury Though the best modes are described herein, variations in the possible. An increase in the quantity of diluent reduces the viscosity	rial cured more lamp. he formulae are y. An increase in	35
40	the filler quantity increases the strength, but thickens the paste. increased, with increase in the quantity of benzil. Too much be avoided, since it imparts a yellow colour and may cause polyn material if exposed to incident light. The initiator and accelerate described can be used to photopolymerize a variety of ethylenic monomers.	enzil should be nerization if the tor composition	40
45	Thus, the composition of the invention gives an option to sufficiently powerful visible light to polymerize the material and potential risk involved in using ultraviolet light (Journal of A Association, Vol. 92, April 1976).	so to avoid the	45
50	WHAT WE CLAIM IS:— 1. A one part, paste-like, photopolymerizable, dental restorate comprising: (a) an ethylenically unsaturated monomer; (b) a diluent monomer copolymerizable with the ethylenic monomer:		50
55	(c) a photo-initiator for photo-initiating the copolymerethylenically unsaturated and diluent monomers; (d) an accelerator for accelerating the photo-initiation of the cof the ethylenically unsaturated and diluent monomers; and (e) an inorganic filler comprising barium aluminium silicate aluminium silicate.	opolymerization	.55
60	 A composition according to Claim 1, wherein the inorganic at least 6.5%, by weight of the composition, of barium oxide. A composition according to Claim 1 or 2, wherein the comprises up to 85% by weight of the composition. 		60

. 🖓

	 4. A composition according to Claim 1, 2 or 3, when unsaturated monomer is bis-GMA. 5. A composition according to any preceding claim monomer is a mono-, di- or trifunctional acrylate or methal 	wherein the diluent	
5	 A composition according to Claim 5, wherein the diluntary hexanegly coldiacrylate. A composition according to any preceding claim, 	ent monomer is 1,6	5
10	initiator is an alpha-diketone or a derivative thereof. 8. A composition according to Claim 7, wherein the alp 9. A composition according to any preceding claim, whe an amine.	rein the accelerator is	10
15	10. A composition according to Claim 9, wherein the adamine. 11. A composition according to Claim 10, wherein trihexylamine. 12. A composition according to Claim 1 or any of Claim 1.	the tertiary amine is	15
Siri +	dependent upon Claim 1, wherein the proportions by weight Ethylenically unsaturated monomer	of the ingredients are:	
20	Diluent monomer Photo-initiator Accelerator Barium aluminium silicate Lithium aluminium silicate	25 0.0011 0.012 085 085	20
	13. A composition according to Claim 12, comprising:		
25	bis-GMA resin (including MEHQ 200 ppm) 1,6 - hexanedioldiacrylate (including MEHQ 100 ppm) benzil trihexylamine barium aluminium silicate	18 2.8 0.08 0.2 23	25
30	lithium aluminium silicate	55.82	30
	14. A composition according to any preceding claim whi radiation of a wavelength in the range from 3600 to 4500 at 15. A composition according to any of Claims 1 to 13 was by actinic radiation.	۸.	
35	16. A composition according to Claim 15, wherein the a wavelength in the range from 3200 to 4200 Å. 17. A composition according to any preceding polymerization inhibitor.	claim comprising a	35
40	18. A composition according to any preceding claim, is silanated form. 19. A one part, paste-like photopolymerizable dental reaccording to Claim 1, substantially as described with reforegoing Examples I to IV, VI and VIII to XII.	storative composition	40

POLLAK, MERCER & TENCH,
Chartered Patent Agents,
Eastcheap House,
Central Approach,
Letchworth,
Hertfordshire SG6 3DS
and
High Holborn House,
52—54 High Holborn,
London WCIV 6RY.
Agents for the Applicants.

Printed for Her Majesty's Stationery Office, by the Courier Press, Leamington Spa, 1981 Published by The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.