ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 4.2.1 **Кольца Ньютона.**

Цель работы: познакомиться с явлением интерференции в тонких плёнках (полосы равной толщины) на примере колец Ньютона и с методикой интерференционных измерений кривизны стеклянной поверхности.

Оборудование: измерительный микроскоп с опак-иллюминатором, плоско-выпуклая линза; пластинка из чёрного стекла, ртутная лампа типа ДРШ, щель, линзы, призма прямого зрения, объектная шкала.

1 Теоретическое введение

Рис. 1: Экспериментальная установка

Этот классический опыт используется для определения радиуса кривизны сферических поверхностей линз. В этом опыте наблюдается интерференция волн, отражённых от границ тонкой воздушной прослойки, образованной сферической поверхностью линзы и плоской стеклянной пластиной. При нормальном падении света (рис. 1) интерференционные полосы локализованы на сферической поверхности и являются полосами равной толщины.

Геометрическая разность хода между интерферирующими лучами равна удвоенной толщине воздушного зазора 2d в данном месте. Для точки на сферической поверхности, находящейся на расстоянии r от оси системы, имеем $r^2 = R^2 - (R - d)^2 = 2Rd - d^2$, где R — радиус кривизны сферической поверхности (рис. 1).

При $R\gg d$ получим $d=r^2/2R$. С учётом изменения фазы на π при отражении волны от оптически более плотной среды

(на границе воздух-стекло) получим оптическую разность хода интерферирующих лучей:

$$\Delta = \frac{\lambda}{2} + 2d = \frac{r^2}{2R} + \frac{\lambda}{2} \tag{1}$$

Из условия интерференционного минимума $\Delta=\frac{(2m+1)\lambda}{2},\ m=0,1,2..$ получим радиусы темных колец r_m , а из аналогичного условия максимума $\Delta=m\lambda$ радиусы светлых r_m' :

$$r_m = \sqrt{m\lambda R}, \qquad r'_m = \sqrt{\frac{(2m-1)m\lambda R}{2}}$$
 (2)

Биения — это периодическое изменение амплитуды колебаний, возникающее при сложении двух гармонических колебаний с близкими частотами. Для простоты рассмотрим случай, когда амплитуды складываемых колебаний равны A, а начальные фазы обоих колебаний равны нулю. Частоты складываемых колебаний равны, соответственно, ω и $\Delta\omega$. Итак,

$$x_1 = A\cos\omega t \tag{3}$$

$$x_2 = A\cos(\omega + \Delta\omega)t\tag{4}$$

Складываем эти выражения и учитываем известную формулу тригонометрии:

$$x = \left(2A\cos\frac{\Delta\omega}{2}t\right) \cdot \left(\cos\left(\omega + \frac{\Delta\omega}{2}\right)t\right) \tag{5}$$

Работа 4.2.1 3 Ход работы

Тогда если $\Delta \omega \ll \omega$ то в аргументе второго косинуса мы можем пренебречь сдвигом частоты:

$$x \approx \left(2A\cos\frac{\Delta\omega}{2}t\right)\cos\omega t\tag{6}$$

Кроме того, множитель в скобках меняется медленно по сравнению с $\cos \omega t$ Поэтому результирующее колебание х можно рассматривать как модулированное гармоническое колебание с частотой ω , эффективная амплитуда $A_{\text{эфф}}$ которого изменяется со временем по закону:

$$A_{9\phi\phi} = \left| 2A\cos\frac{\Delta\omega}{2}t \right| \tag{7}$$

Подчеркием, что в строгом смысле такое колебание не является гармоническим.

2 Экспериментальная установка

Схема экспериментальной установки приведена на рис. 2. Опыт выполняется с помощью измерительного микроскопа. На столик микроскопа помещается держатель с полированной пластинкой из чёрного стекла. На пластинке лежит исследуемая линза.

Источником света служит ртутная лампа, находящаяся в защитном кожухе. Для получения монохроматического света применяется призменный монохроматор, состоящий из конденсора К, коллиматора (щель S и объектив О) и призмы прямого зрения П. Эти устройства с помощью рейтеров располагаются на оптической скамье. Свет от монохроматора попадает на расположенный между объективом и окуляром микроскопа опак-иллюминатор (ОИ) специальное устройство, служащее для освещения объекта при работе в отражённом свете. Внутри опак-иллюминатора находится полупрозрачная стеклянная пластинка Р, наклоненная под

Рис. 2: Экспериментальная установка

углом 45° к оптической оси микроскопа. Свет частично отражается от этой пластинки, проходит через объектив микроскопа и попадает на исследуемый объект. Пластинка может поворачиваться вокруг горизонтальной оси X, опак-иллюминатор вокруг вертикальной оси.

Столик микроскопа может перемещаться в двух взаимно перпендикулярных направлениях помощью винтов препаратоводителя. Отсчетный крест окулярной шкалы перемещается перпендикулярно оптической оси с помощью микрометрического винта M.

Оптическая схема монохроматора позволяет получить в плоскости входного окна опак-иллюминатора достаточно хорошо разделённые линии спектра ртутной лампы. Изображение щели S фокусируется на поверхность линзы объективом микроскопа, т.е. точка источника и точка наблюдения спектра совпадают. Интерференционная картина не зависит от показателя преломления линзы и определяется величиной зазора между линзой и пластинкой (кольца равной толщины).

Сначала микроскоп настраивается на кольца Ньютона в белом свете (свете ртутной лампы), затем при помощи монохроматора выделить из спектра яркую зелёную линию и провести измерения диаметров колец в монохроматическом свете.

3 Ход работы

После настройки микроскопа проведем измерения диаметров колец Ньютона. Измерения будем проводить в безразмерных единицах окулярной шкалы, переведённых затем в реальную величину с

Работа 4.2.1 3 Ход работы

m	Темные кольца			Светлые кольца		
	l_1	l_2	r_m^2	l_1	l_2	$(r'_m)^2$
0	4.71	3.72	0.25	4.15	4.15	0
1	5	3.24	0.77	4.78	3.43	0.46
2	5.45	2.92	1.6	5.16	3.08	1.08
3	5.59	2.65	2.16	5.44	2.79	1.76
4	5.83	2.42	2.91	5.7	2.54	2.5
5	6.02	2.23	3.59	5.91	2.32	3.22
6	6.17	2.06	4.22	6.09	2.11	3.96
7	6.47	1 20	5 24	6.25	1.07	150

Таблица 1: Измерение диаметров колец Ньютона

помощью калиброванной объектной шкалы.

Оценим систематическую погрешность измерения величин на окуляре как $\sigma_l = 0.02$ (из-за цены деления).

С помощью призмы разобьем свет ртутной лампы на зеленый ($\lambda_{\rm s}=546$ нм) и желтый ($\lambda_{\rm s}=578$ нм).

Будем последовательно измерять расстояния l_1 от верхнего края 6-ого «набора» колец до нуля до центра, затем аналогично будем измерять расстояния l_2 от нижнего края до нуля. Результаты занесем в таблицу.

Рис. 3: График зависимости r_m^2 и $(r_m^\prime)^2$ от номера m

Построим график зависимости радиусов колец от их номера.

Работа 4.2.1 *4 Вывод*

Таблица 2: Расчет апроксимированной прямой y = ax + b для темных колец

	Estimate	Standart Error
b	0.13	0.08
a	0.70	0.01

Таблица 3: Расчет апроксимированной прямой y = ax + b для светлых колец

	Estimate	Standart Error
\overline{b}	-0.17	0.06
a	0.67	0.01

Теперь определим калибровку окулярной шкалы. Она равна k=0,1 мм. При биениях мы наблюдали следующее количество полос между центрами четких систем $\Delta m=12$. Вычислим отсюда разность длин волн желтого и зеленого света ртутной лампы $\Delta \lambda = \lambda_{\rm ж} - \lambda_{\rm 3}$:

$$(\Delta m + 1)\lambda_3 = \Delta m \lambda_{\mathsf{xK}} \Delta \lambda = \frac{\lambda_3}{\Delta m} \approx 45 \; \mathsf{HM}$$
 (8)

Определим радиус кольца. Так как $\frac{r_m^2}{m} = k^2 a_{\scriptscriptstyle
m T},$ отсюда

$$R = \frac{r_m^2}{m\lambda} = (1.28 \pm 0.02) \; ; \; \text{cm}$$
 (9)

4 Вывод

Таким образом, мы получили, что их экспериментального периода биений разница длин волн желтого и зеленого света ртутной лампы примерно равна $\Delta \lambda = 45$ нм, в то время как табличный результат — 33 нм. Это может быть объяснено большой неточностью определения числа Δm .

Также мы построили графики зависимости радиусов колец Ньютона от их номеров. Полученный результат позволил нам рассчитать радиус линзы — $R = (1.28 \pm 0.02) \text{ см}$.