CRC GENERATION AT SENDER SIDE

- 1. Find the length of the divisor 'L'.
- 2. Append 'L-1' bits to the original message.
- 3. Perform binary division operation.
- 4. Remainder of the division = CRC.

Note:

The CRC must be of L-1 bits.

Α	В	A XOR B
0	0	0
0	1	1
1*	0	1
1	1	0

QUESTION

The message 11001001 is to be transmitted using CRC polynomial x^3+1 to protect it from errors. The message that should be transmitted is:

[GATE CS 2007]

- A. 11001001000
- B. 11001001011
- C. 11001010
- D. 110010010011

4

CRC GENERATION AT SENDER SIDE

- 1. Find the length of the divisor 'L'.
- 2. Append 'L-1' bits to the original message.
- 3. Perform binary division operation.
- 4. Remainder of the division = CRC.
- 5. Message to be transmitted = Message + CRC

Note:

The CRC must be of L-1 bits.

Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0 4

We have basically five steps for solving this problem.

NESO ACADEMY

CRC GENERATION

IESO ACADEMY

It has to be L minus one bits,

MESSAGE TO BE TRANSMITTED

Message to be transmitted = Original Message + CRC

Message to be transmitted = 11001001 011

4