Cálculo de Probabilidades I

Cuaderno de Ejercicios

Laboratorio

David López, Jordán Linares y Ernesto Barrios 29 de abril de 2022

Versión 0.01

Índice

Prefacio	2
1. Introducción	3
Referencias	4
Respuestas	6
1 Introducción	6

Prefacio

Hace dos años se iniciaron las sesiones de ejercicios que llaman laboratorios de los cursos de Cálculo de Probabilidades I y II. Los encargados de los laboratorios fueron David I. López Romero y L. Jordán L. Linares Pérez, alternándose los cursos. Cada uno de ellos colectó los ejercicios para sus sesiones. Ahora hemos empezado a recuperar las respuestas de los ejercicios y resolveremos una selección de ellos. Este cuaderno es el resultado de ellos.

Cualquier error que identifique, comentario y/o sugerencia serán bienvenido. Diríjalo a Ernesto Barrios <ebarrios at itam.mx>.

Ciudad de México, 2 de mayo de 2022

1. Introducción

1. Sean A y B subconjuntos de Ω . Demuestre que

$$A \subseteq B \iff B^c \subseteq A^c$$

2. Demuestre que si A y B son conjuntos, entonces

$$\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$$

3. Demuestre las leyes (o fórmulas) de De Morgan. Si $\{A_i|i\in I\}$ es una colección arbitraria de subconjuntos de Ω , entonces

$$a) \left(\bigcup_{i} A_{i}\right)^{c} = \bigcap_{i} A_{i}^{c}$$

$$b) \left(\bigcap_{i} A_{i}\right)^{c} = \bigcup_{i} A_{i}^{c}$$

4. Demuestre que si \mathcal{F} es una σ -álgebra de subconjuntos de Ω si, y solo si, se satisfacen las siguientes propiedades:

$$a) \emptyset \in \mathcal{F}$$

b)
$$A \in \mathcal{F} \Longrightarrow A^c \in \mathcal{F}$$

$$c) (A_n)_{n=1}^{+\infty} \in \mathcal{F} \Longrightarrow \bigcap_{n=1}^{\infty} A_n \in \mathcal{F}$$

5. Pruebe que el conjunto potencia de $\Omega \neq \emptyset$ arbitrario es una σ -álgebra.

6. Sea $\Omega = \{a, b, c, d\}$ y sean $A = \{a, b\}$ y $B = \{b, c\}$. Defina la familia $\mathcal{A} = \{A, B\}$. Determine si \mathcal{A} es σ -álgebra. Encuentre la mínima σ -álgebra que contiene a \mathcal{A} , que se define por:

$$\sigma\{\mathcal{A}\} = \bigcap_{i} \{\mathcal{F}_i | \mathcal{F}_i \supset \mathcal{A}\}$$

7. Sean \mathcal{F}_i para $i=1,\dots,n$ una colección de $\sigma\text{-}$ álgebras. Defina a

$$\mathcal{F} = \bigcap_{i=1}^{n} \mathcal{F}_i$$

Pruebe que \mathcal{F} es σ -álgebra.

(Observación: La demostración en versión infinita es análoga.)

- 8. Sean \mathcal{F}_1 y \mathcal{F}_2 dos σ álgebras de subconjuntos de Ω . Pruebe que $\mathcal{F}_1 \cup \mathcal{F}_2$ no necesariamente es una σ -algebra. Para ello considere el espacio $\Omega = \{1, 2, 3\}$ y las σ -álgebras $\mathcal{F}_1 = \{\emptyset, \{1\}, \{2, 3\}, \Omega\}$ y $\mathcal{F}_2 = \{\emptyset, \{1, 2\}, \{3\}, \Omega\}$.
- 9. Sea \mathcal{F} una σ -álgebra de subconjuntos de Ω . Pruebe que la colección $\mathcal{F}^C = \{A^c | A \in \mathcal{F}\}$ es una σ -álgebra. Compruebe que \mathcal{F}^C y \mathcal{F} coinciden
- 10. (**Opcional**:) Sean Ω y Ω' conjuntos arbitrarios y $f: \Omega \to \Omega'$ una función. Si $B \subset \Omega'$, la imagen inversa de B con respecto a f será

$$f^{-1}(B) = \{ \omega \in \Omega | f(\omega) \in B \}$$

Si \mathcal{C} es una familia de subconjuntos Ω' , entonces

$$f^{-1}(\mathcal{C}) = \{ f^{-1}(B) | B \in \mathcal{C} \}$$

Demuestre:

- a) $f^{-1}(\Omega') = \Omega$.
- b) Si B y C son subconjuntos de Ω' entonces $f^{-1}(C-B)=f^{-1}(C)-f^{-1}(B)$. En particular, $f^{-1}(B^c)=[f^{-1}(B)]^c$ y $f^{-1}(\emptyset)=\emptyset$.
- c) Si $\{B_i, i \in I\}$ es una familia arbitraria de subconjuntos de Ω' , entonces

$$f^{-1}\Big(\bigcup_{i} B_i\Big) = \bigcup_{i} f^{-1}(B_i) \quad \text{y} \quad f^{-1}\Big(\bigcap_{i} B_i\Big) = \bigcap_{i} f^{-1}(B_i)$$

d) Si \mathcal{F}' es una σ -álgebra de Ω' , entonces la familia

$$f^{-1}(\mathcal{F}') = \{f^{-1}(B) | B \in F'\}$$

es una σ -álgebra de Ω .

Textos de apoyo.

Bartle (1966); Blitzstein and Hwang (2014); Hoel, Port, and Stone (1971); Rincón (2014); Ross (2018).

Referencias

- Bartle, R. G. (1966). The Elements of Integration and Lebesgue Measure. New York, NY: John Wiley & Sons.
- Blitzstein, J. K. and J. Hwang (2014). *Intorduction to Probability*. Boca Raton, FL: CRC Press.
- Hoel, P. G., S. C. Port, and C. J. Stone (1971). *Introduction to Probability Theory*. Boston: Houghton Miffling Company.
- Rincón, L. (2014). Introducción a la Probabilidad. https://lya.fciencias.unam.mx/lars/Publicaciones/Prob1-2016.pdf. 18/01/2022.
- Ross, S. (2018). A First Course in Probability (9th ed.). Boston, MA: Pearson.

Respuestas

1. Introducción

- 1:1. —
- 1:2. —
- 1:3. —
- 1:4. —
- 1:5. —
- 1:6. —
- 1:7. —
- 1:8. —