CSCI 3401 Algorithms

recitation 1: introduction to algorithm notations and proofs University of Colorado, Boulder, CO

Jon Z. Cai

[jon.z.cai@colorado.edu]

1 Asymptotic Analysis

1.1 Definition

We use $\mathcal{O}(*)$ notation to bound a function from above, which is all called **asymptotic upper bound**.

Definition 1 (big \mathcal{O}) $\mathcal{O}(g(n)) = \{f(n) \mid \exists c > 0, n_0 > 0 \text{ s.t. } \forall n \geq n_0, 0 \leq f(n) \leq cg(n)\}$

Similarly, we use Ω to denote **asymptotic lower bound**.

Definition 2 (big Ω) $\Omega(g(n)) = \{f(n) \mid \exists c > 0, n_0 > 0 \text{ s.t. } \forall n \geq n_0, 0 \leq cg(n) \leq f(n)\}$

If we can bound a function from both above and below, we got our **asymptotic tight bound** Θ .

Definition 3 (big Θ) $\Theta(g(n)) = \{f(n) \mid \exists c_1 > 0, c_2 > 0, n_0 > 0 \text{ s.t. } \forall n \geq n_0, 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \}$

1.2 Examples

 er bound of $f(n)$, , ,		

2. Prove the lower bound of $f(n) = 2^n$ can be $g(n) = n^2$ by definition.

2 Proof Techniques

2.1 Proof by contradiction

In logic, proof by contradiction is a form of proof that establishes the truth or validity of a proposition by first assuming that the opposite proposition is true, and then shows that such an assumption leads to a contradiction General steps:

- 1. P is assumed to be false.
- 2. It is shown that $\neg P$ implies P.
- 3. Since P and $\neg P$ cannot both be true, the assumption must be wrong and P must be true.

2.2 Loop invariant

- 1. **Initialization**: It is true prior to the first iteration of the loop.
- 2. Maintenance: If it is true before an iteration of the loop, it remains true before the
- 3. **Termination**: When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.

2.3 Solve Recurrences

- Substitution method
 - 1. Guess the form of the solution.
 - 2. Use mathematical induction to find the constants and show that the solution works.
- Recursion Tree method
- Master theorem: T(n) = aT(n/b) + f(n)

2.4 Examples

1.	Prove:	$\forall a, b \in \mathbb{Z},$	$a^2 - 4b \neq 2$.

2.	Prove:	There	are no	non-zero	natural	${\rm number}$	solutions	to the	equation	x^2 —	$y^2 =$	1.

3. Prove the iterative implementation of the Fibonacci sequence with a loop invariant.

4.	Prove linear search algorithm is correct with a loop invariant.
	Input : A sequence of n number $A = [a_1, a_2, \dots, a_n]$ and a value v . Output : An index i such that $v = A[i]$ or the special value NIL if v does not appear in A.
	Input : A sequence of n number $A = [a_1, a_2, \dots, a_n]$ and a value v . Output : An index i such that $v = A[i]$ or the special value NIL if v does not appear in A.
	Input : A sequence of n number $A = [a_1, a_2, \ldots, a_n]$ and a value v . Output : An index i such that $v = A[i]$ or the special value NIL if v does not appear in A.
	Input: A sequence of n number $A = [a_1, a_2, \dots, a_n]$ and a value v . Output: An index i such that $v = A[i]$ or the special value NIL if v does not appear in A.

5. Solve recurrence: T(n) = 3T(n-2) + n, where T(1) = 3, T(0) = 3.

ovide upper	bound of run	time recursion	$T(n) = T(\lceil$	$\left(\frac{n}{2}\right) + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	$T(n) = T(\lceil n \rceil)$	$\left(\frac{n}{2}\right) + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	n: $T(n) = T(\lceil$	$\left(\frac{n}{2}\right) + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	n: $T(n) = T(\lceil$	$\left(\frac{n}{2}\right) + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	n: $T(n) = T(\lceil$	$\left(\frac{n}{2}\right) + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	$n: T(n) = T(\lceil$	$\left(\frac{n}{2}\right) + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	$n: T(n) = T(\lceil$	$\left(\frac{n}{2}\right) + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	$n: T(n) = T(\lceil$	$\left(\frac{n}{2}\right) + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	n: $T(n) = T(\lceil$	$\lfloor \frac{n}{2} \rfloor + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	n: $T(n) = T(\lceil$	$\left(\frac{n}{2}\right) + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	n: $T(n) = T(\lceil$	$\left(\frac{n}{2}\right) + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	$n: T(n) = T(\lceil$	$\left(\frac{n}{2}\right) + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	$n: T(n) = T(\lceil$	$\left(\frac{n}{2}\right) + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	n: $T(n) = T(\lceil$	$\left(\frac{n}{2}\right) + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	n: $T(n) = T(\lceil$	$\left(\frac{n}{2}\right) + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	n: $T(n) = T(\lceil$	$\left(\frac{n}{2}\right) + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	n: $T(n) = T(\lceil$	$\left(\frac{n}{2}\right) + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	n: $T(n) = T(\lceil \frac{1}{n} \rceil)$	$\left(\frac{n}{2}\right) + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	n: $T(n) = T(\lceil$	$\left(\frac{n}{2}\right) + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	n: $T(n) = T(\lceil$	$\left(\frac{n}{2}\right) + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	n: $T(n) = T(\lceil$	$\left(\frac{n}{2}\right) + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	n: $T(n) = T(\lceil \frac{1}{n} \rceil)$	$\left\lfloor \frac{n}{2} \right\rfloor + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	n: $T(n) = T(\lceil \frac{1}{n} \rceil)$	$\left(\frac{n}{2}\right) + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	n: $T(n) = T(\lceil \frac{1}{n} \rceil)$	$\left(\frac{n}{2}\right) + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	n: $T(n) = T(\lceil$	$\left(\frac{n}{2}\right) + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	n: $T(n) = T(\lceil$	$\left\lfloor \frac{n}{2} \right\rfloor + 1$ to be	$\mathcal{O}(\log(n))$	
ovide upper	bound of run	time recursion	n: $T(n) = T(\lceil$	$\left\lfloor \frac{n}{2} \right\rfloor + 1$ to be	$\mathcal{O}(\log(n))$	