CHAPTER 11

LATCHES AND FLIP-FLOPS

Contents

- 11.1 Introduction
- 11.2 Set-Reset Latch
- 11.3 Gated D Latch
- 11.4 Edge-Triggered D Flip-Flop
- 11.5 S-R Flip-Flop
- 11.6 J-K Flip-Flop
- 11.7 T Flip-Flop
- 11.8 Flip-Flop with Additional Inputs
- 11.9 Summary

Objectives

- 1. Explain in words the operation of S-R and gated D latches
- 2. Explain in words the operation of D, D-CE, S-R, J-K and T flip-flops
- 3. Make a table and derive the characteristic (next-state) equation for such latches and flip-flops. State any necessary restrictions on the input signals
- 4. Draw a timing diagram relating the input and output of such latches flip-flops
- 5. Show how latches and flip-flops can be constructed using gates. Analyze the operation of a flip-flop that is constructed of gates and latches

11.1 Introduction

To construct a switching circuit has a memory, must introduce *feedback* to circuit

Fig 11-1.

(a) Inverter with feedback

Fig 11-2.

→ Stable state

Fig 11-3. $S=R=0 (Q=0) \rightarrow S=1, R=0$

Fig 11-4.

 $S=R=0 (Q=1) \rightarrow S=0, R=1$

Fig 11-5. S-R Latch(cross-coupled structure)

Fig 11-6. Improper S-R Latch Operation (S=R=1; prohibited)

Fig 11-7. Timing Diagram for S-R Latch

Table 11-1. S-R Latch Operation

	_	$Q(t+\varepsilon)$	Q(t)	R(t)	S(t)
	-	0	0	0	0
		1	1	0	0
		0	0	1	0
		0	1	1	0
		1	0	0	1
		1 (1	0	1
act allowed	Innute no	- (0	1	1
iot allowed	ilibate 110	- ∫	1	1	1
not allowe	Inputs no	1 0 0 1 1 - -	1 0 1 0 1 0	0 1 1 0 0 1	0 0 0 1 1 1

Fig 11-8. Map for $Q(t+\varepsilon)$

Fig 11-9. Switch Debouncing with an S-R Latch

Fig 11-10. \overline{S} - \overline{R} Latch

S	R	Q	$Q^{\scriptscriptstyle +}$	
1	1	0	0	
1	1	1	1	
1	0	0	0	
1	0	1	0	
0	1	0	1	
0	1	1	1	
0	0	0	_	Inputs not
0	0	1	_	Inputs not allowed
		(c)		

11.3 Gated D Latch

Figure 11-11. Gated D Latch

Figure 11-12. Symbol and Truth Table for Gated Latch

11.4 Edge-Triggered D Flip-Flop

Figure 11-13. D Flip-Flops

D	Q	$Q^{\scriptscriptstyle +}$
0	0	0
0	1	0
1	0	1
1	1	1

$$Q^+ = D$$

- (a) Rising-edge trigger
- (b) Falling-edge trigger
- (c) Truth table

Figure 11-14. Timing for D Flip-Flop (Falling-Edge Trigger)

11.4 Edge-Triggered D Flip-Flop

Figure 11-15. D Flip-Flop (Rising-Edge Trigger)

Figure 11-16. Setup and Hold Times for an Edge-Triggered D Flip-Flop

 t_{su} : the setup time

 t_h : the hold time

 t_n : the propagation delay

11.4 Edge-Triggered D Flip-Flop

Figure 11-17. Determination of Minimum Clock Period

(a) Simple flip-flop circuit

(b) Setup time not satisfied

Setup

(d) Minimum clock period

11.5 S-R Flip-Flop

Figure 11-18. S-R Flip-Flop

Operation summary:

S=R=0 No state change

S=1, R=0 Set Q to 1 (after active Ck edge) S=0, R=1 Reset Q to 0 (after active Ck edge)

S=R=1 Not allowed

Figure 11-19. S-R Flip-Flop Implementation and Timing

11.6 J-K Flip-Flop

Figure 11-20. J-K Flip-Flop (Q Changes on the Rising Edge)

(a) J-K flip-flop

J	K	Q	$Q^{\scriptscriptstyle +}$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

 $Q^+ = JQ' + K'Q$

(c) J-K flip-flop timing

11.6 J-K Flip-Flop

Figure 11-21. Master-Slave J-K Flip-Flop (Q Changes on Rising Edge)

11.7 T Flip-Flop

 $Q^+ = T'Q + TQ' = T \oplus Q$

Figure 11-22. T Flip-Flop

Figure 11-23. Timing Diagram for T Flip-Flop (Falling-Edge Trigger)

11.7 T Flip-Flop

Figure 11-24. Implementation of T Flip-Flop

- (a) Conversion of J-K to T
- (b) Conversion of D to T

$$Q^+ = JQ' + K'Q = TQ' + T'Q$$

11.8 Flip-Flops with Additional Inputs

Figure 11-25. D Flip-Flop with Clear and Preset

Figure 11-26. Timing Diagram for D Flip-Flop with Asynchronous Clear and Preset

11.8 Flip-Flops with Additional Inputs

Figure 11-27. D Flip-Flop with Clock Enable

The characteristic equation : $Q^+ = Q \cdot CE' + D \cdot CE$

The MUX output: $Q^+ = D = Q \cdot CE' + D_{in} \cdot CE$

11.9 Summary

$$Q^+ = S + R'Q \quad (SR = 0)$$

$$Q^+ = GD + G'Q$$

$$Q^+ = D$$

$$Q^+ = D \cdot CE + Q \cdot CE'$$

$$Q^+ = JQ' + K'Q$$

$$Q^+ = T \oplus Q = T'Q + TQ'$$

(S-R latch or flip-flop)

(gated D latch)

(D flip-flop)

(D-CE flip-flop)

(J-K flip-flop)

(T flip-flop)