Zadanie 1. Rozstrzygnij (z uzasadnieniem), które z podanych zbiorów są ciałami.

b)
$$Q[\sqrt{2}]$$
,

Tu \mathbb{Z}_n to liczby całkowite od 0 do n-1 z dodawaniem i mnożeniem modulo n. W pozostałych zbiorach dodajemy i mnożymy jak zwykle w C.

(Możesz założyć bez dowodu, że działania dodawania i mnożenia w C spełniają oczywiste własności łączności, przemienności i rozdzielności.)

Zadanie 2. Używając jedynie aksjomatów przestrzeni liniowej (i arytmetyki liczb) uzasadnij precyzyjnie, że 5(u+w) + 2w = 7(u+w) + (-2)u.

Zadanie 3. Uzasadnij, że jeśli K jest ciałem, to elementy odwrotny i przeciwny do danego są jedyne, to znaczy:

- a) dla każdych x, y, jeżeli $x + y_1 = x + y_2 = 0$, to $y_1 = y_2$,
- b) dla każdych x, y, jeżeli $xy_1 = xy_2 = 1$, to $y_1 = y_2$.

Zadanie 4. Udowodnij, że w dowolnej przestrzeni liniowej V zachodzi (a, b to skalary, v, w – wektory):

a)
$$-(v-w) = (-v) + w$$
;

b)
$$av = 0 \iff (a = 0 \lor v = 0);$$

c)
$$(a-b)v = av - bv$$
;

d)
$$a(-v) = (-a)v = -av$$
;

c)
$$(a-b)v = av - bv$$
;
e) $av + bw = bv + aw \iff (a = b \lor v = w)$.

Zadanie 5. Znajdź Lin $((1,2,3)^{T},(4,5,6)^{T})$ w \mathbb{R}^{3} (opisz ten zbiór równaniem lub układem równań).

Zadanie 6. Odwołując się do wiedzy z I semestru opisz wszystkie podprzestrzenie R³.

Zadanie 7. Uzasadnij, że jeśli w układzie v_1, \ldots, v_n pewne dwa wektory są równe, to układ ten jest lz. Uzasadnij, że jeśli w układzie v_1, \dots, v_n pewien wektor jest równy 0, to układ ten jest lz.

Zadanie 8. Załóżmy że V jest przestrzenią liniową nad ciałem skończonym K o p^k elementach. Niech $v_1, v_2, v_3 \in V$ będą liniowo niezależne. Ile elementów ma Lin (v_1, v_2, v_3) ?

Zadanie 9. Dla $z \in \mathbb{C}$ spróbuj zdefiniować, czym powinno być $\mathbb{Q}[z]$ (jak wyglądają jego elementy), jeżeli ma być zamknięte na mnożenie i dodawanie, przy założeniu że:

a)
$$z^3 \in \mathbf{Z}$$
.

b)
$$z^2 + z + 1 = 0$$
,

Kiedy $\mathbf{Q}[z]$ jest ciałem? Podaj przykład $z \in \mathbf{C}$, dla którego $\mathbf{Q}[z]$ nie jest ciałem.

¹Można pokazać, że liczba elementów ciała skończonego zawsze jest potęgą liczby pierwszej. Możemy to zrobić na konwersatorium.