Exploratory Data Analysis

In [1]:

```
!pip install pandas profiling
!pip install sweetviz
Requirement already satisfied: pandas_profiling in c:\users\admin\anacon
da3\lib\site-packages (3.6.6)
Requirement already satisfied: ydata-profiling in c:\users\admin\anacond
a3\lib\site-packages (from pandas_profiling) (4.0.0)
Requirement already satisfied: matplotlib<3.7,>=3.2 in c:\users\admin\an
aconda3\lib\site-packages (from ydata-profiling->pandas profiling) (3.5.
Requirement already satisfied: numpy<1.24,>=1.16.0 in c:\users\admin\ana
conda3\lib\site-packages (from ydata-profiling->pandas profiling) (1.21.
5)
Requirement already satisfied: requests<2.29,>=2.24.0 in c:\users\admin
\anaconda3\lib\site-packages (from ydata-profiling->pandas_profiling)
(2.28.1)
Requirement already satisfied: typeguard<2.14,>=2.13.2 in c:\users\admin
\anaconda3\lib\site-packages (from ydata-profiling->pandas_profiling)
Requirement already satisfied: statsmodels<0.14,>=0.13.2 in c:\users\adm
in\anaconda3\lib\site-packages (from ydata-profiling->pandas profiling)
(0.13.2)
```

In [2]:

```
#load the libraries
import pandas as pd
import numpy as np
import pandas_profiling as pp
import sweetviz as sv
```

C:\Users\Admin\AppData\Local\Temp\ipykernel_12044\4092403677.py:4: Depreca tionWarning: `import pandas_profiling` is going to be deprecated by April 1st. Please use `import ydata_profiling` instead. import pandas profiling as pp

In [4]:

```
data1 = pd.read_csv("data_clean (1).csv")
```

In [5]:

data1

Out[5]:

	Unnamed: 0	Ozone	Solar.R	Wind	Temp C	Month	Day	Year	Temp	Weather
0	1	41.0	190.0	7.4	67	5	1	2010	67	S
1	2	36.0	118.0	8.0	72	5	2	2010	72	С
2	3	12.0	149.0	12.6	74	5	3	2010	74	PS
3	4	18.0	313.0	11.5	62	5	4	2010	62	s
4	5	NaN	NaN	14.3	56	5	5	2010	56	s
	•••		•••	•••	•••	•••			•••	•••
153	154	41.0	190.0	7.4	67	5	1	2010	67	С
154	155	30.0	193.0	6.9	70	9	26	2010	70	PS
155	156	NaN	145.0	13.2	77	9	27	2010	77	s
156	157	14.0	191.0	14.3	75	9	28	2010	75	s
157	158	18.0	131.0	8.0	76	9	29	2010	76	С

158 rows × 10 columns

In [6]:

data1.tail(10)

Out[6]:

	Unnamed: 0	Ozone	Solar.R	Wind	Temp C	Month	Day	Year	Temp	Weather
148	149	30.0	193.0	6.9	70	9	26	2010	70	С
149	150	NaN	145.0	13.2	77	9	27	2010	77	PS
150	151	14.0	191.0	14.3	75	9	28	2010	75	S
151	152	18.0	131.0	8.0	76	9	29	2010	76	PS
152	153	20.0	223.0	11.5	68	9	30	2010	68	S
153	154	41.0	190.0	7.4	67	5	1	2010	67	С
154	155	30.0	193.0	6.9	70	9	26	2010	70	PS
155	156	NaN	145.0	13.2	77	9	27	2010	77	s
156	157	14.0	191.0	14.3	75	9	28	2010	75	S
157	158	18.0	131.0	8.0	76	9	29	2010	76	С

In [7]:

data1

Out[7]:

	Unnamed: 0	Ozone	Solar.R	Wind	Temp C	Month	Day	Year	Temp	Weather
0	1	41.0	190.0	7.4	67	5	1	2010	67	S
1	2	36.0	118.0	8.0	72	5	2	2010	72	С
2	3	12.0	149.0	12.6	74	5	3	2010	74	PS
3	4	18.0	313.0	11.5	62	5	4	2010	62	S
4	5	NaN	NaN	14.3	56	5	5	2010	56	S
	•••	•••	•••	•••	•••	•••	•••	•••	•••	
153	154	41.0	190.0	7.4	67	5	1	2010	67	С
154	155	30.0	193.0	6.9	70	9	26	2010	70	PS
155	156	NaN	145.0	13.2	77	9	27	2010	77	S
156	157	14.0	191.0	14.3	75	9	28	2010	75	S
157	158	18.0	131.0	8.0	76	9	29	2010	76	С

158 rows × 10 columns

In [8]:

```
#Data Structure
type(data1)
data1.shape
```

Out[8]:

(158, 10)

In [9]:

```
#data types
data1.dtypes
```

Out[9]:

Unnamed: 0	int64
Ozone	float64
Solar.R	float64
Wind	float64
Temp C	object
Month	object
Day	int64
Year	int64
Temp	int64
Weather	object

dtype: object

Data type conversion

In [10]:

data1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 158 entries, 0 to 157
Data columns (total 10 columns):
 # Column Non-Null Count Dtype

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	158 non-null	int64
1	Ozone	120 non-null	float64
2	Solar.R	151 non-null	float64
3	Wind	158 non-null	float64
4	Temp C	158 non-null	object
5	Month	158 non-null	object
6	Day	158 non-null	int64
7	Year	158 non-null	int64
8	Temp	158 non-null	int64
9	Weather	155 non-null	object
dtyp	es: float64(3), int64(4), ob	ject(3)

In [11]:

memory usage: 12.5+ KB

data1

Out[11]:

0 1 41.0 190.0 7.4 67 5 1 2010 67 1 2 36.0 118.0 8.0 72 5 2 2010 72 2 3 12.0 149.0 12.6 74 5 3 2010 74 F	her
	S
2 3 12.0 149.0 12.6 74 5 3 2010 74 F	С
	PS
3 4 18.0 313.0 11.5 62 5 4 2010 62	S
4 5 NaN NaN 14.3 56 5 5 2010 56	S
	•••
153 154 41.0 190.0 7.4 67 5 1 2010 67	С
154 155 30.0 193.0 6.9 70 9 26 2010 70 F	PS
155 156 NaN 145.0 13.2 77 9 27 2010 77	S
156 157 14.0 191.0 14.3 75 9 28 2010 75	S
157 158 18.0 131.0 8.0 76 9 29 2010 76	С

158 rows × 10 columns

In [12]:

data2=data1.iloc[:,1:]

In [13]:

data2

Out[13]:

	Ozone	Solar.R	Wind	Temp C	Month	Day	Year	Temp	Weather
0	41.0	190.0	7.4	67	5	1	2010	67	S
1	36.0	118.0	8.0	72	5	2	2010	72	С
2	12.0	149.0	12.6	74	5	3	2010	74	PS
3	18.0	313.0	11.5	62	5	4	2010	62	S
4	NaN	NaN	14.3	56	5	5	2010	56	S
•••	***	•••	•••	•••	•••	•••	•••	***	
153	41.0	190.0	7.4	67	5	1	2010	67	С
154	30.0	193.0	6.9	70	9	26	2010	70	PS
155	NaN	145.0	13.2	77	9	27	2010	77	S
156	14.0	191.0	14.3	75	9	28	2010	75	S
157	18.0	131.0	8.0	76	9	29	2010	76	С

158 rows × 9 columns

In [14]:

#The method .copy() is used here so that any changes made in new DataFrame don't get refl
data=data2.copy()

In [15]:

```
data['Month']=pd.to_numeric(data['Month'],errors='coerce')
data['Temp C']=pd.to_numeric(data['Temp C'],errors='coerce')# coerce will introduce NA vo
data['Weather']=data['Weather'].astype('category') #data['Wind']=data['Wind'].o
```

In [16]:

data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 158 entries, 0 to 157
Data columns (total 9 columns):
              Non-Null Count Dtype
 #
     Column
              120 non-null
                               float64
 0
     0zone
 1
     Solar.R
              151 non-null
                               float64
                               float64
 2
     Wind
              158 non-null
 3
     Temp C
              157 non-null
                               float64
 4
     Month
              157 non-null
                               float64
 5
                               int64
     Day
              158 non-null
 6
     Year
              158 non-null
                               int64
 7
              158 non-null
                               int64
     Temp
                               category
     Weather
              155 non-null
dtypes: category(1), float64(5), int64(3)
memory usage: 10.3 KB
```

Duplicates

```
In [17]:
```

#Count of duplicated rows
data[data.duplicated()].shape

Out[17]:

(1, 9)

In [18]:

data

Out[18]:

	Ozone	Solar.R	Wind	Temp C	Month	Day	Year	Temp	Weather
0	41.0	190.0	7.4	67.0	5.0	1	2010	67	S
1	36.0	118.0	8.0	72.0	5.0	2	2010	72	С
2	12.0	149.0	12.6	74.0	5.0	3	2010	74	PS
3	18.0	313.0	11.5	62.0	5.0	4	2010	62	s
4	NaN	NaN	14.3	56.0	5.0	5	2010	56	S
•••	•••	•••		•••	•••	•••			•••
153	41.0	190.0	7.4	67.0	5.0	1	2010	67	С
154	30.0	193.0	6.9	70.0	9.0	26	2010	70	PS
155	NaN	145.0	13.2	77.0	9.0	27	2010	77	S
156	14.0	191.0	14.3	75.0	9.0	28	2010	75	s
157	18.0	131.0	8.0	76.0	9.0	29	2010	76	С

158 rows × 9 columns

In [19]:

```
#Print the duplicated rows
data[data.duplicated()]
```

Out[19]:

	Ozone	Solar.R	Wind	Temp C	Month	Day	Year	Temp	Weather
156	14.0	191.0	14.3	75.0	9.0	28	2010	75	S

In [20]:

```
data_cleaned1=data.drop_duplicates()
```

```
In [21]:
```

```
data_cleaned1.shape
```

Out[21]:

(157, 9)

Drop columns

In [22]:

```
data_cleaned2=data_cleaned1.drop('Temp C',axis=1)
```

In [23]:

data_cleaned2

Out[23]:

	Ozone	Solar.R	Wind	Month	Day	Year	Temp	Weather
0	41.0	190.0	7.4	5.0	1	2010	67	s
1	36.0	118.0	8.0	5.0	2	2010	72	С
2	12.0	149.0	12.6	5.0	3	2010	74	PS
3	18.0	313.0	11.5	5.0	4	2010	62	s
4	NaN	NaN	14.3	5.0	5	2010	56	S
•••	***	•••	•••	***	•••	•••	•••	
152	20.0	223.0	11.5	9.0	30	2010	68	S
153	41.0	190.0	7.4	5.0	1	2010	67	С
154	30.0	193.0	6.9	9.0	26	2010	70	PS
155	NaN	145.0	13.2	9.0	27	2010	77	s
157	18.0	131.0	8.0	9.0	29	2010	76	С

157 rows × 8 columns

Rename the columns

In [24]:

```
#rename the Solar column
data_cleaned3 = data_cleaned2.rename({'Solar.R': 'Solar'}, axis=1)
```

In [25]:

data_cleaned3

Out[25]:

	Ozone	Solar	Wind	Month	Day	Year	Temp	Weather
0	41.0	190.0	7.4	5.0	1	2010	67	S
1	36.0	118.0	8.0	5.0	2	2010	72	С
2	12.0	149.0	12.6	5.0	3	2010	74	PS
3	18.0	313.0	11.5	5.0	4	2010	62	s
4	NaN	NaN	14.3	5.0	5	2010	56	s
•••					•••			•••
152	20.0	223.0	11.5	9.0	30	2010	68	S
153	41.0	190.0	7.4	5.0	1	2010	67	С
154	30.0	193.0	6.9	9.0	26	2010	70	PS
155	NaN	145.0	13.2	9.0	27	2010	77	S
157	18.0	131.0	8.0	9.0	29	2010	76	С

157 rows × 8 columns

Outlier Detection

In [26]:

```
# histogram of Ozone
data_cleaned3['Ozone'].hist()
```

Out[26]:

<AxesSubplot:>

In [27]:

```
#Box plot
data_cleaned3.boxplot(column=['Ozone'])
```

Out[27]:

<AxesSubplot:>

In [28]:

```
#Descriptive stat
data_cleaned3['Ozone'].describe()
```

Out[28]:

count	119.000000
mean	41.815126
std	32.659249
min	1.000000
25%	18.000000
50%	31.000000
75%	62.000000
max	168.000000

Name: Ozone, dtype: float64

In [29]:

data_cleaned3

Out[29]:

	Ozone	Solar	Wind	Month	Day	Year	Temp	Weather
0	41.0	190.0	7.4	5.0	1	2010	67	S
1	36.0	118.0	8.0	5.0	2	2010	72	С
2	12.0	149.0	12.6	5.0	3	2010	74	PS
3	18.0	313.0	11.5	5.0	4	2010	62	S
4	NaN	NaN	14.3	5.0	5	2010	56	S
•••	***	•••	•••	•••	•••	•••	•••	•••
152	20.0	223.0	11.5	9.0	30	2010	68	S
153	41.0	190.0	7.4	5.0	1	2010	67	С
154	30.0	193.0	6.9	9.0	26	2010	70	PS
155	NaN	145.0	13.2	9.0	27	2010	77	S
157	18.0	131.0	8.0	9.0	29	2010	76	С

157 rows × 8 columns

In [30]:

```
#Bar plot
data['Weather'].value_counts().plot.bar()
```

Out[30]:

<AxesSubplot:>

Missing Values and Imputation

In [31]:

Out[31]:

<AxesSubplot:>

In [32]:

```
data_cleaned3[data_cleaned3.isnull().any(axis=1)].head()
```

Out[32]:

	Ozone	Solar	Wind	Month	Day	Year	Temp	Weather
4	NaN	NaN	14.3	5.0	5	2010	56	S
5	28.0	NaN	14.9	5.0	6	2010	66	С
9	NaN	194.0	8.6	5.0	10	2010	69	S
10	7.0	NaN	6.9	5.0	11	2010	74	С
23	32.0	92.0	12.0	NaN	24	2010	61	С

In [33]:

```
data_cleaned3.isnull().sum()
```

Out[33]:

Ozone 38 Solar 7 0 Wind Month 1 0 Day Year 0 Temp Weather 3 dtype: int64

In [34]:

```
#Mean Imputation
mean = data_cleaned3['Ozone'].mean()
print(mean)
```

41.81512605042017

In [35]:

```
data_cleaned3['Ozone'] = data_cleaned3['Ozone'].fillna(mean)
```

In [36]:

data_cleaned3

Out[36]:

	Ozone	Solar	Wind	Month	Day	Year	Temp	Weather
0	41.000000	190.0	7.4	5.0	1	2010	67	S
1	36.000000	118.0	8.0	5.0	2	2010	72	С
2	12.000000	149.0	12.6	5.0	3	2010	74	PS
3	18.000000	313.0	11.5	5.0	4	2010	62	S
4	41.815126	NaN	14.3	5.0	5	2010	56	S
***		•••		•••	•••	•••	•••	
152	20.000000	223.0	11.5	9.0	30	2010	68	S
153	41.000000	190.0	7.4	5.0	1	2010	67	С
154	30.000000	193.0	6.9	9.0	26	2010	70	PS
155	41.815126	145.0	13.2	9.0	27	2010	77	S
157	18.000000	131.0	8.0	9.0	29	2010	76	С

157 rows × 8 columns

```
In [37]:
#Missing value imputation for categorical vlaue
#Get the object columns
obj_columns=data_cleaned3[['Weather']]
In [38]:
obj_columns.isnull().sum()
Out[38]:
Weather
dtype: int64
In [39]:
#Missing value imputation for categorical vlaue
obj_columns=obj_columns.fillna(obj_columns.mode().iloc[0])
In [40]:
obj_columns.isnull().sum()
Out[40]:
Weather
dtype: int64
In [41]:
data_cleaned3.shape
Out[41]:
(157, 8)
In [42]:
obj_columns.shape
Out[42]:
(157, 1)
In [43]:
```

#Join the data set with imputed object dataset

data_cleaned4=pd.concat([data_cleaned3,obj_columns],axis=1)

```
In [44]:
```

```
data_cleaned4.isnull().sum()
Out[44]:
Ozone
           0
Solar
           7
Wind
           0
Month
           1
           0
Day
Year
Temp
Weather
           3
Weather
dtype: int64
```

Scatter plot and Correlation analysis

In [45]:

```
# Seaborn visualization library
import seaborn as sns
# Create the default pairplot
sns.pairplot(data_cleaned3)
```

Out[45]:

<seaborn.axisgrid.PairGrid at 0x1da1f8a6e50>

In [46]:

```
#Correlation
data_cleaned3.corr()
```

Out[46]:

	Ozone	Solar	Wind	Month	Day	Year	Temp
Ozone	1.000000	0.308687	-0.520004	0.132860	-0.021916	NaN	0.606500
Solar	0.308687	1.000000	-0.057407	-0.094012	-0.155663	NaN	0.273558
Wind	-0.520004	-0.057407	1.000000	-0.166216	0.029900	NaN	-0.441228
Month	0.132860	-0.094012	-0.166216	1.000000	0.050055	NaN	0.398516
Day	-0.021916	-0.155663	0.029900	0.050055	1.000000	NaN	-0.122787
Year	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Temp	0.606500	0.273558	-0.441228	0.398516	-0.122787	NaN	1.000000

Transformations

Dummy Variable

In [47]:

```
#Creating dummy variable for Weather column
data_cleaned4=pd.get_dummies(data,columns=['Weather'])
```

In [48]:

data_cleaned4

Out[48]:

	Ozone	Solar.R	Wind	Temp C	Month	Day	Year	Temp	Weather_C	Weather_PS	Weath
0	41.0	190.0	7.4	67.0	5.0	1	2010	67	0	0	
1	36.0	118.0	8.0	72.0	5.0	2	2010	72	1	0	
2	12.0	149.0	12.6	74.0	5.0	3	2010	74	0	1	
3	18.0	313.0	11.5	62.0	5.0	4	2010	62	0	0	
4	NaN	NaN	14.3	56.0	5.0	5	2010	56	0	0	
•••	•••	•••	•••	***	•••	•••	•••	***			
153	41.0	190.0	7.4	67.0	5.0	1	2010	67	1	0	
154	30.0	193.0	6.9	70.0	9.0	26	2010	70	0	1	
155	NaN	145.0	13.2	77.0	9.0	27	2010	77	0	0	
156	14.0	191.0	14.3	75.0	9.0	28	2010	75	0	0	
157	18.0	131.0	8.0	76.0	9.0	29	2010	76	1	0	

158 rows × 11 columns

```
In [49]:
```

```
data_cleaned4=data_cleaned4.dropna()
```

Normalization of the data

```
In [50]:
```

```
#Normalization of the data

from numpy import set_printoptions
from sklearn.preprocessing import MinMaxScaler
```

In [51]:

```
data_cleaned4.values
```

Out[51]:

```
array([[ 41. , 190. , 7.4, ...,
                                        0.,
                                              1.],
                                0.,
                                1.,
      [ 36. , 118. ,
                    8. , ...,
                                        0.,
                                              0.],
      [ 12. , 149. , 12.6, ...,
                                0.,
                                        1.,
                                              0.],
      . . . .
      [ 30. , 193. , 6.9, ...,
                                 0.,
                                        1.,
                                              0.],
                                 0.,
                                        0.,
      [ 14. , 191. , 14.3, ...,
                                              1. ],
      [ 18. , 131. , 8. , ...,
                                 1.,
                                        0.,
                                              0.]])
```

In [52]:

```
array = data_cleaned3.values

scaler = MinMaxScaler(feature_range=(0,1))
rescaledX = scaler.fit_transform(array[:,0:5])

#transformed data
set_printoptions(precision=2)
print(rescaledX[0:5,:])
```

```
[[0.24 0.56 0.3 0. 0. ]

[0.21 0.34 0.33 0. 0.03]

[0.07 0.43 0.57 0. 0.07]

[0.1 0.94 0.52 0. 0.1 ]

[0.24 nan 0.66 0. 0.13]]
```

In [53]:

```
# Standardize data (0 mean, 1 stdev)
from sklearn.preprocessing import StandardScaler
```

```
In [54]:
```

```
array = data_cleaned4.values
scaler = StandardScaler().fit(array)
rescaledX = scaler.transform(array)
# summarize transformed data
set_printoptions(precision=2)
print(rescaledX[0:5,:])
[[-0.02 0.05 -0.71 -1.15 -1.53 -1.7
                                   0.
                                       -1.15 -0.64 -0.68 1.28]
 [-0.17 -0.75 -0.54 -0.62 -1.53 -1.59 0.
                                       -0.62 1.57 -0.68 -0.78]
[-0.9 -0.41 0.77 -0.4 -1.53 -1.48 0.
                                       -0.4 -0.64 1.47 -0.78]
 [-0.72 1.43 0.45 -1.69 -1.53 -1.36 0.
                                                        1.28]
                                       -1.69 -0.64 -0.68
 -1.37 -0.64 1.47 -0.78]]
```

Speed up the EDA process ¶

In [55]:

```
EDA_report= pp.ProfileReport(data)
EDA_report.to_file(output_file='report.html')
```

Summarize dataset: 55/55 [00:10<00:00, 4.57it/s,

100% Completed]

Generate report structure: 1/1 [00:05<00:00,

100% 5.05s/it]

Render HTML: 1/1 [00:02<00:00,

100% 2.02s/it]

Export report to file: 1/1 [00:00<00:00,

100% 16.71it/s]

In [56]:

```
sweet_report = sv.analyze(data)
sweet_report.show_html('weather_report.html')
```

Done! Use 'show' commands to display/save.

[100%] 00:01 -> (00:00 left)

Report weather_report.html was generated! NOTEBOOK/COLAB USERS: the web browser MAY not pop up, regardless, the report IS saved in your notebook/colab files.

In []:

In []:			
In []:			