Organização de Computadores

Barramentos do Sistema

Prof. José Paulo G. de Oliveira Engenharia da Computação, UPE jpgo@ecomp.poli.br

Índice

- Estruturas de Interconexão
 - Conexão de Memória
 - Conexão de E/S
 - Conexão da CPU
- Barramento de Dados
- Barramento de Endereços
- Barramento de Controle
- Esquema de interconexão de barramento
- Problemas do barramento único
- Tipos de barramentos
- Arbitragem de barramentos
- Temporização

Barramento

"É um caminho de comunicação entre dois ou mais dispositivos"

- É um meio compartilhado
 - Diversos dispositivos podem se conectar
 - Um sinal enviado por um dispositivo é recebido por todos

- É um meio compartilhado
 - Diversos dispositivos podem se conectar
 - Um sinal enviado por um dispositivo é recebido por todos
 - Transmissões simultâneas irão se sobrepor
 - Informação pode ser corrompida...
 - ...se n\(\tilde{a}\)o houver mecanismos de controle

- Todas as unidades devem ser conectadas
- Diferentes requisitos de conexão para diferentes tipos de unidades
 - Memória
 - E/S
 - CPU

- Recebe e envia dados
- Recebe endereços das localizações
- Recebe sinais de controle
 - Leitura
 - Escrita
 - Temporização

- Recebe e envia dados
- Recebe endereços das localizações
- Recebe sinais de controle
 - Leitura
 - Escrita
 - Temporização

- Recebe e envia dados
- Recebe endereços das localizações
- Recebe sinais de controle
 - Leitura
 - Escrita
 - Temporização

- Do ponto de vista da operação, é similar à de memória
- Saída
 - Recebe dados do computador
 - Envia dados a periféricos
- Entrada
 - Recebe dados dos periféricos
 - Envia dados ao computador

- Recebe sinais de controle do computador
- Envia sinais de controle a periféricos
 - Ex.: giro do disco
- Recebe endereços do computador
 - Ex.: número da porta que identifica um periférico
- Envia sinais de interrupção (controle) à CPU

Conexão de CPU

Conexão da CPU

- Lê instruções e dados
- Escreve dados de saída (geralmente, após o processamento)
- Envia sinais de controle a outras unidades
- Envia endereços a outras unidades
- Recebe e reconhece interrupções

Conexão da CPU

De volta aos Barramentos

- Existem diversos sistemas de interconexão
- As estruturas de barramento (único ou múltiplos barramentos) são as mais comuns
 - Ex.: Barramento de dados, endereço e controle (PC)
 - Ex.: Omnibus (DEC-PDP)

O que é um barramento?

- "É uma via de comunicação que conecta dois ou mais dispositivos"
- Composto quase sempre de linhas em paralelo*
- Quase sempre agrupadas
 - Uma certa quantidade de linhas em um único barramento
 - Ex.: um barramento de 32 bits de dados é composto de 32 canais separados de 1 bit
- As linhas de alimentação não são explícitas

Barramento de Dados

- Transporta dados
 - É importante lembrar que, neste nível, não há diferença entre "dados" e "instrução"
- O tamanho do barramento é um fator determinante para o desempenho do computador
 - Ex.: 8, 16, 32, 64 bits

Barramento de Dados

Barramento de Endereços

- Identifica a origem ou o destino dos dados
 - Ex.: a CPU necessita ler uma instrução (dados) a partir de uma determinada posição de memória
- A largura do barramento determina a máxima capacidade de memória do sistema
 - Ex.: o processador 8080 tem um barramento de endereços de 16 bits, resultando um espaço de endereços de 64k

Barramento de Endereços

Barramento de Controle

- Controle e temporização da informação
 - Sinal de escrita/leitura de memória
 - Pedido de interrupção
 - Sinais de relógio (Clock)
 - Gerência da operação de transferência

Barramento de Controle

- Start
- Stop
- R/W#
- ck
- IRQ
- |A|
- Ack

Evolução do barramento

x86

Evolução do barramento

35

8 bits dados

16

x86

Esquema de interconexão

Como reconhecer um barramento?

- Com o quê os barramentos se parecem?
 - Linhas paralelas* em placas de circuito
 - Cabos tipo fita
 - Conectores em placas mãe
 - Ex.: PCI
 - Conjuntos de fios

Como reconhecer um barramento?

Hierarquia de Barramentos

Problemas do barramento único

- Muitos dispositivos conectados em um único barramento levam a atrasos de propagação:
 - Caminhos longos para os dados podem afetar negativamente o desempenho
 - As "longas" distâncias a serem percorridas pelo sinal de relógio produzem atrasos de propagação

Problemas do barramento único (atrasos)

Problemas do barramento único

- Muitos dispositivos conectados em um único barramento levam a atrasos de propagação:
 - Caminhos longos para os dados podem afetar negativamente o desempenho
 - As "longas" distâncias a serem percorridas pelo sinal de relógio produzem atrasos de propagação
 - Gargalo do sistema quando
 - a demanda por transferência de dados MAIOR que a capacidade do barramento

Problemas do barramento único

- Muitos dispositivos conectados em um único barramento levam a atrasos de propagação:
 - Caminhos longos para os dados podem afetar negativamente o desempenho
 - As "longas" distâncias a serem percorridas pelo sinal de relógio produzem atrasos de propagação
 - Gargalo do sistema quando
 - a demanda por transferência de dados MAIOR que a capacidade do barramento
- A maioria dos sistemas utiliza múltiplos barramentos para superar essas limitações

1 - Tradicional (Standard)

2 - Barramento de Alto Desempenho

Barramento de Alto Desempenho

Exemplo:

Elementos de Projeto de Barramentos

Tipo

Dedicado

Multiplexado

Método de arbitração

Centralizado

Distribuído

Temporização

Síncrona

Assíncrona

Largura do barramento

Endereço

Dados

Tipo de transferência de dados

Leitura

Escrita

Leitura-modificação-escrita

Leitura-após-escrita

Em bloco

Elementos de Projeto de Barramentos

Tipo

Dedicado

Multiplexado

Método de arbitração

Centralizado

Distribuído

Temporização

Síncrona

Assíncrona

Largura do barramento

Endereço

Dados

Tipo de transferência de dados

Leitura

Escrita

Leitura-modificação-escrita

Leitura-após-escrita

Em bloco

Tipos de barramentos

- Dedicados
 - Linhas de dados e de endereços separadas
- Multiplexados

Tipos de barramentos

- Dedicados
 - Linhas de dados e de endereços separadas
- Multiplexados
 - Linhas compartilhadas
 - Linha de controle de endereço válido ou de dado válido
 - Vantagem
 - Menos linhas
 - Desvantagens
 - Controle mais complexo
 - Menor suporte ao paralelismo: queda do desempenho

Implementação física

Elementos de Projeto de Barramentos

Tipo

Dedicado

Multiplexado

Método de arbitração

Centralizado

Distribuído

Temporização

Síncrona

Assíncrona

Largura do barramento

Endereço

Dados

Tipo de transferência de dados

Leitura

Escrita

Leitura-modificação-escrita

Leitura-após-escrita

Em bloco

Arbitração de barramentos

- Motivação: mais de um módulo utiliza o barramento
 - CPU, dispositivos de E/S e memória
 - Apenas um módulo pode acessar o barramento de cada vez
 - Para iniciar uma transação com outro módulo
- O controle de acesso pode ser centralizado ou distribuído

Arbitragem Centralizada

- Um único dispositivo de hardware controlando o acesso ao barramento
 - Controlador do barramento
 - Árbitro
- Pode ser uma parte da CPU ou estar separada desta

Ex.:DEC PDP-8

Ex.: Chipset do PCI

Arbitragem Distribuída

- Cada módulo pode requisitar e assumir o controle do barramento de forma independente
- Necessário → lógica de controle em todos os módulos

Ex.: CAN – Controller Area Network

Ex.: CAN – Controller Area Network

Figure 12-1: A CAN bus

Carrier Sense Multi-Acess with Determinstic Collision Resolution (CSMA/DCR)

Ex.: CAN – Controller Area Network

	Start bit	ID bits											Restante do
		10	9	8	7	6	5	4	3	2	1	0	quadro
Nó 15	0	0	0	0	0	0	0	0	0	1	1	1	1
Nó 16	0	0	0	0	0	0	0	0	1	Para a transmissão			

Algoritmos de Arbitragem

- Se o algoritmo de arbitragem não é bom o suficiente, pode acontecer de uma requisição de uso do barramento nunca ser atendida:
 - STARVATION (inanição)

Algoritmos de Arbitragem

- Ex. de algoritmo: Round Robin
 - Para 4 unidades conectadas ao barramento
 - Varre todas as unidades procurando requisições
 - Inicia nova varredura a partir da última atendida

Elementos de Projeto de Barramentos

Tipo

Dedicado

Multiplexado

Método de arbitração

Centralizado

Distribuído

Temporização

Síncrona

Assíncrona

Largura do barramento

Endereço

Dados

Tipo de transferência de dados

Leitura

Escrita

Leitura-modificação-escrita

Leitura-após-escrita

Em bloco

Temporização

- Coordenação dos eventos no barramento
 - Síncrona
 - Assíncrona

Temporização

- Síncrona
 - Eventos determinados por um sinal especial
 - O Barramento de Controle inclui uma linha de relógio (ck)
 - Todos os dispositivos podem ler a linha de relógio
 - Um ciclo de barramento é composto por um ou mais períodos do relógio (transição de 1 para 0 ou o contrário)
 - Sincronismo associado à transição (↑ e/ou ↓) do sinal de relógio

Ciclo de barramento – tempo necessário para transferir um grupo de bits (quantidade definida, entre outros fatores, pela largura do barramento)

Temporização

- Assíncrona
 - Evento depende de evento anterior
 - Requer sinais de sincronismo

Diagrama de Temporização Assíncrona

Comparação

- Síncrona
 - Mais simples de implementar e testar
 - Menos flexível
 - Velocidade máxima limitada pelo dispositivo mais lento

Questão:

 Comparando-se as transações em sistemas síncronos e assíncronos, qual sinal presente na transação assíncrona tem o mesmo papel do sinal Aknowledge na transação síncrona?

Elementos de Projeto de Barramentos

Tipo

Dedicado

Multiplexado

Método de arbitração

Centralizado

Distribuído

Temporização

Síncrona

Assíncrona

Largura do barramento

Endereço

Dados

Tipo de transferência de dados

Leitura

Escrita

Leitura-modificação-escrita

Leitura-após-escrita

Em bloco

- O tamanho do barramento é um fator determinante para seu desempenho
 - Ex.: 8, 16, 32, 64 bits

Barramento de Endereços

- A largura do barramento determina a máxima capacidade de memória do sistema
 - Ex.: o processador 8080 tem um barramento de endereços de 16 bits, resultando um espaço de endereços de 64k

Tipo

Dedicado

Multiplexado

Método de arbitração

Centralizado

Distribuído

Temporização

Síncrona

Assíncrona

Largura do barramento

Endereço

Dados

Tipo de transferência de dados

Leitura

Escrita

Leitura-modificação-escrita

Leitura-após-escrita

Em bloco

Operação de escrita (multiplexada)

Tempo — Dados
(primeiro ciclo) (segundo ciclo)

Operação de escrita (multiplexada)

Tempo — Dados
(primeiro ciclo) (segundo ciclo)

Operação de escrita (multiplexada)

Endereço

Endereço

Dados e endereço enviados pelo mestre no mesmo ciclo, em linhas distintas do barramento

Operação de escrita (não-multiplexada)

Endereço Tempo de acesso Dados

Operação de leitura (multiplexada)

Tempo — Dados
(primeiro ciclo) (segundo ciclo)

Operação de escrita (multiplexada)

Endereço Tempo de acesso Dados

Operação de leitura (multiplexada)

Endereço Escrita de dados Leitura de dados

Operação leitura-após-escrita

Endereço Escrita de dados Leitura de dados

Operação leitura-após-escrita

Endereço Dados Dados

Transferência de dados em bloco

Exercícios

- 3.3 Considere um microprocessador hipotético que gera um endereço de 16 bits (suponha, por exemplo, que o contador de programa e os registradores de endereço tenham 16 bits) e que possua um barramento de dados de 16 bits.
 - a. Qual é o maior espaço de endereçamento à memória que o processador pode acessar diretamente, se estiver conectado a uma "memória de 16 bits"?
 - b. Qual é o maior espaço de endereçamento à memória que o processador pode acessar diretamente, se estiver conectado a uma "memória de 8 bits"?

d. Se um número de porta de E/S de 8 bits pode ser especificado em uma instrução de E/S, quantas portas de 8 bits o microprocessador pode usar? Quantas portas de E/S de 16 bits? Explique sua resposta.

Resposta

3 Nos casos (a) e (b), o microprocessador será capaz de acessar 2¹⁶ = 64 k; com uma memória de 8 bits cada acesso vai transferir um byte, enquanto com uma memória de 16 bits um acesso pode transferir uma palavra de 2 bytes.

Para o caso (d), ele pode suportar $2^8 = 256$ portas de E/S com 1 byte . E o mesmo número de portas de 16 bits de entrada e saída.

Em ambos os casos, a distinção entre uma porta de entrada e uma porta de saída é definida pelo sinal de controle diferente que as instruções de entrada ou saída geraram.

Exercícios

3.4 Considere um microprocessador de 32 bits, com um barramento de dados externo de 16 bits, dirigido por um relógio externo de 8 MHz. Suponha que esse microprocessador tenha um ciclo de barramento cuja duração mínima é de quatro ciclos de relógio. Qual é a taxa máxima de transferência de dados que esse microprocessador pode sustentar?

Resposta

Ciclo de relógio (*clock*) = 1 / 8 MHz = 125 ns Ciclo do barramento (bus) = 4 x 125 ns = 500 ns 2 bytes transferidos a cada 500 ns, portanto a taxa de transmissão = 4 Mbytes/s

Exercícios

3.4 Considere um microprocessador de 32 bits, com um barramento de dados externo de 16 bits, dirigido por um relógio externo de 8 MHz. Suponha que esse microprocessador tenha um ciclo de barramento cuja duração mínima é de quatro ciclos de relógio. Qual é a taxa máxima de transferência de dados que esse microprocessador pode sustentar? Para aumentar seu desempenho, seria melhor aumentar a largura do seu barramento de dados externo de 16 para 32 bits ou dobrar a freqüência do relógio externo fornecido ao microprocessador? Enuncie qualquer suposição que você precise fazer e explique sua resposta.

Fonte: Alexandridis (1993).

Resposta

Dobrar a frequência pode significar a adoção de uma nova tecnologia (assumindo que cada instrução apresente o mesmo número de ciclos de relógio);

Dobrar o barramento (*bus*) de dados externo significa alargar (talvez novos) *latches* e *drivers* do barramento (*bus*) e fazer modificações na lógica de controle do barramento.

No primeiro caso, a velocidade dos *chips* de memória também precisará ser dobrada para não diminuir a velocidade de operação do microprocessador; no segundo caso, o tamanho da palavra da memória terá que dobrar para poder ser capaz de enviar e receber quantidades de 32 bits.