Measures of distortion for Machine Learning

Leena Chennuru Vankadara

Theory of Machine Learning
Department of Computer Science
University of Tuebingen
&
Department of Computer Science
University of Hamburg

Master thesis
Supervised by Prof.Ulrike von Luxburg

Outline

- Background
- 2 Measures of distortion
- 3 Desirable properties
- Φ σ -distortion
- Experiments

Background

Consider the following problem:

• Let (\mathcal{X}, d_X) be an arbitrary metric space and let (\mathbb{R}^d, I_2) denote the Euclidean space of dimension d. Determine a value of d such that for any finite dataset $X = \{x_1, x_2, ..., x_n\}$ sampled from (\mathcal{X}, d_X) according to some probability distribution \mathcal{P} , there exists a mapping $f: X \to \mathbb{R}^d$ such that the underlying metric is preserved i.e. $\forall i, j \in [n]$, $I_2(f(x_i), f(x_i)) = d_X(x_i, x_i)$.

Background

Consider the following problem:

- Let (\mathcal{X}, d_x) be an arbitrary metric space and let (\mathbb{R}^d, l_2) denote the Euclidean space of dimension d. Determine a value of d such that for any finite dataset $X = \{x_1, x_2, ..., x_n\}$ sampled from (\mathcal{X}, d_x) according to some probability distribution \mathcal{P} , there exists a mapping $f: X \to \mathbb{R}^d$ such that the underlying metric is preserved i.e. $\forall i, j \in [n]$, $l_2(f(x_i), f(x_i)) = d_x(x_i, x_i)$.
- Does there always exist a solution to this problem ?

Example

Example

Let C_4 denote the 4-cycle and let d_G denote the shortest path metric. (C_4, d_G) can not be isometrically embedded into an Euclidean space no matter how high the dimension.

Figure: 4-cycle with the shortest path metric d_G

Example

Example

Let C_4 denote the 4-cycle and let d_G denote the shortest path metric. (C_4, d_G) can not be isometrically embedded into an Euclidean space no matter how high the dimension.

Proof.

$$\begin{split} \|f(v_1) - f(v_2) + f(v_3) - f(v_4)\|_2^2 &\geq 0 \\ l_2(f(v_1), f(v_3))^2 + l_2(f(v_2), f(v_4))^2 &\leq l_2(f(v_1), f(v_2))^2 + \\ l_2(f(v_2), f(v_3))^2 + l_2(f(v_3), f(v_4))^2 + l_2(f(v_1), f(v_4))^2 \\ d_G \text{ on } C_4 \text{ does not satisfy the same inequality!} \end{split}$$

Relaxed formulation

Consider the following relaxed formulation of the problem:

• Let (\mathcal{X}, d_x) be an arbitrary metric space and let (\mathbb{R}^d, I_2) denote the Euclidean space of dimension d. Determine a value of d such that for any finite dataset $X = \{x_1, x_2, ..., x_n\}$ sampled from (\mathcal{X}, d_x) according to some probability distribution \mathcal{P} , there exists a mapping $f: X \to \mathbb{R}^d$ such that the distortion (measured by a meaningful measure of distortion) of the mapping f is bounded.

Relaxed formulation

Consider the following relaxed formulation of the problem:

- Let (\mathcal{X}, d_x) be an arbitrary metric space and let (\mathbb{R}^d, I_2) denote the Euclidean space of dimension d. Determine a value of d such that for any finite dataset $X = \{x_1, x_2, ..., x_n\}$ sampled from (\mathcal{X}, d_x) according to some probability distribution \mathcal{P} , there exists a mapping $f: X \to \mathbb{R}^d$ such that the distortion (measured by a meaningful measure of distortion) of the mapping f is bounded.
- Does there always exist a solution to this problem?

Notation and definitions

- (X, d_x) arbitrary finite metric space (original space).
- $(\mathcal{Y}, d_{\mathcal{Y}})$ homogeneous and translation invariant metric space (target space).
- $f,g:(X,d_x) \to (\mathcal{Y},d_y)$ injective mappings.
- \mathcal{P} Probability distribution over X.
- $\Pi = \mathcal{P} \times \mathcal{P}$ product distribution over $X \times X$.
- $\bullet \ \rho_f(u,v) = \frac{d_y(f(u),f(v))}{d_x(u,v)} \ \forall (u,v) \in {X \choose 2}.$
- For any $S \subset \binom{X}{2}$,

$$\Phi_{wc}(f_S) = \left(\max_{(u,v) \in S} \rho_f(u,v)\right) \cdot \left(\max_{(u,v) \in S} \frac{1}{\rho_f(u,v)}\right).$$

• $\forall u \in X$, kNN(u) denotes the set of k nearest neighbours of u.

$$\bullet \ \Phi_{wc}(f) := \left(\max_{u,v \in X, u \neq v} \rho_f(u,v)\right) \cdot \left(\max_{u,v \in X, u \neq v} \frac{1}{\rho_f(u,v)}\right)$$

$$\bullet \ \Phi_{wc}(f) := \left(\max_{u,v \in X, u \neq v} \rho_f(u,v) \right) \cdot \left(\max_{u,v \in X, u \neq v} \frac{1}{\rho_f(u,v)} \right)$$

•
$$\Phi_{avg}(f) := \frac{2}{n(n-1)} \sum_{u,v \in X, u \neq v} \rho_f(u,v)$$

$$\bullet \ \Phi_{wc}(f) := \left(\max_{u,v \in X, u \neq v} \rho_f(u,v)\right) \cdot \left(\max_{u,v \in X, u \neq v} \frac{1}{\rho_f(u,v)}\right)$$

•
$$\Phi_{avg}(f) := \frac{2}{n(n-1)} \sum_{u,v \in X, u \neq v} \rho_f(u,v)$$

•
$$\Phi_{navg}(f) := \frac{2}{n(n-1)} \sum_{u \neq v \in X} \frac{\rho_f(u,v)}{\alpha}$$
 with $\alpha = \min_{u,v \in X, u \neq v} \rho_f(u,v)$

$$\bullet \ \Phi_{wc}(f) := \left(\max_{u,v \in X, u \neq v} \rho_f(u,v) \right) \cdot \left(\max_{u,v \in X, u \neq v} \frac{1}{\rho_f(u,v)} \right)$$

•
$$\Phi_{avg}(f) := \frac{2}{n(n-1)} \sum_{u,v \in X, u \neq v} \rho_f(u,v)$$

•
$$\Phi_{navg}(f) := \frac{2}{n(n-1)} \sum_{u \neq v \in X} \frac{\rho_f(u,v)}{\alpha}$$
 with $\alpha = \min_{u,v \in X, u \neq v} \rho_f(u,v)$

•
$$\Phi_{l_q}(f) := \mathbb{E}_{\Pi}(\rho_f(u,v)^q)^{\frac{1}{q}}$$
, (with $1 \le q < \infty$):

$$\bullet \ \Phi_{wc}(f) := \left(\max_{u,v \in X, u \neq v} \rho_f(u,v)\right) \cdot \left(\max_{u,v \in X, u \neq v} \frac{1}{\rho_f(u,v)}\right)$$

•
$$\Phi_{avg}(f) := \frac{2}{n(n-1)} \sum_{u,v \in X, u \neq v} \rho_f(u,v)$$

•
$$\Phi_{navg}(f) := \frac{2}{n(n-1)} \sum_{u \neq v \in X} \frac{\rho_f(u,v)}{\alpha}$$
 with $\alpha = \min_{u,v \in X, u \neq v} \rho_f(u,v)$

•
$$\Phi_{l_q}(f) := \mathbb{E}_{\Pi}(\rho_f(u,v)^q)^{\frac{1}{q}}$$
, (with $1 \le q < \infty$):

$$\bullet \ \Phi_{\epsilon}(f) := \min_{S \subset \binom{X}{2}, |S| \geq (1-\epsilon)\frac{n(n-1)}{2}} \Phi_{\textit{WC}}(f_{S}), \ 0 < \epsilon < 1$$

$$\bullet \ \Phi_{\scriptscriptstyle WC}(f) := \left(\max_{u,v \in X, u \neq v} \rho_f(u,v)\right) \cdot \left(\max_{u,v \in X, u \neq v} \frac{1}{\rho_f(u,v)}\right)$$

•
$$\Phi_{avg}(f) := \frac{2}{n(n-1)} \sum_{u,v \in X, u \neq v} \rho_f(u,v)$$

•
$$\Phi_{navg}(f) := \frac{2}{n(n-1)} \sum_{u \neq v \in X} \frac{\rho_f(u,v)}{\alpha}$$
 with $\alpha = \min_{u,v \in X, u \neq v} \rho_f(u,v)$

•
$$\Phi_{l_q}(f) := \mathbb{E}_{\Pi}(\rho_f(u,v)^q)^{\frac{1}{q}}$$
, (with $1 \le q < \infty$):

$$\bullet \ \Phi_{\epsilon}(f):=\min_{S\subset \binom{X}{2}, |S|\geq (1-\epsilon)\frac{n(n-1)}{2}}\Phi_{wc}(f_S), \ 0<\epsilon<1$$

$$\bullet \ \Phi_{klocal}(f) := \left(\max_{u \in X, v \in kNN(u)} \rho_f(u,v)\right) \cdot \left(\max_{u \in X, v \in kNN(u)} \frac{1}{\rho_f(u,v)}\right)$$

Worstcase distortion

Consider the following problem:

• Let (\mathcal{X}, d_X) be an arbitrary metric space and let (\mathbb{R}^d, l_2) denote the Euclidean space of dimension d. Determine a value of d such that for any finite dataset $X = \{x_1, x_2, ..., x_n\}$ sampled from (\mathcal{X}, d_X) according to some probability distribution \mathcal{P} , there exists a mapping $f: X \to \mathbb{R}^d$ such that the worstcase distortion (Φ_{WC}) of the mapping f is bounded.

Worstcase distortion

Consider the following problem:

- Let (\mathcal{X}, d_X) be an arbitrary metric space and let (\mathbb{R}^d, l_2) denote the Euclidean space of dimension d. Determine a value of d such that for any finite dataset $X = \{x_1, x_2, ..., x_n\}$ sampled from (\mathcal{X}, d_X) according to some probability distribution \mathcal{P} , there exists a mapping $f: X \to \mathbb{R}^d$ such that the worstcase distortion (Φ_{wc}) of the mapping f is bounded.
- Does there always exist a solution to this problem ?

Impossibility results for wc distortion

Theorem (Bourgain 1985, Johnson and Lindenstrauss 1984)

Any finite metric space can be embedded into Euclidean space with dimension $O(\log n)$ and wc distortion $O(\log n)$

Impossibility results for wc distortion

Theorem (Bourgain 1985, Johnson and Lindenstrauss 1984)

Any finite metric space can be embedded into Euclidean space with dimension $O(\log n)$ and wc distortion $O(\log n)$

Theorem (Larsen and Nelson 2016)

For any integers $n, k \geq 2$ and for $1/(\min\{n, k\})^{0.4999} < \epsilon \leq 1$, there exists an n point subset of \mathbb{R}^k such that any embedding in (\mathbb{R}^d, l_2) that has we distortion $1 + \epsilon$ requires that $d = \Omega(\frac{\log(\epsilon^2 n)}{\epsilon^2})$.

Impossibility results for wc distortion

Theorem (Bourgain 1985, Johnson and Lindenstrauss 1984)

Any finite metric space can be embedded into Euclidean space with dimension $O(\log n)$ and wc distortion $O(\log n)$

Theorem (Larsen and Nelson 2016)

For any integers $n, k \geq 2$ and for $1/(\min\{n, k\})^{0.4999} < \epsilon \leq 1$, there exists an n point subset of \mathbb{R}^k such that any embedding in (\mathbb{R}^d, l_2) that has we distortion $1 + \epsilon$ requires that $d = \Omega(\frac{\log(\epsilon^2 n)}{\epsilon^2})$.

Theorem (Linial, London, and Rabinovich 1995)

Any embedding of an n vertex constant degree expander into Euclidean space requires that $\Phi_{wc} = \Omega(\log n)$.

Other measures of distortion

Theorem (Abraham, Bartal, and Neiman 2006)

For any arbitrary finite metric space there exists an embedding into (\mathbb{R}^d, l_2) with average distortion O(1), where $d = O(\log n)$. The worstcase distortion of this embedding is $O(\log n)$.

 Its probably unsurprising since we imposed no restrictions on the underlying metric space. For instance, if we consider worstcase distortion as our measure of distortion, we are essentially expecting bi-lipschitz equivalence between any discrete metric space and Euclidean space.

Growth restricted metrics

- Metric spaces of bounded intrinsic dimension.
- Dispels the volume argument.
- Doubling property is preserved under bi-lipschitz maps.
- Its a necessary condition for bi-lipschitz equivalence to Euclidean space.

Figure: Equilateral space and the volume argument.

Doubling metrics

Theorem (Gupta, Krauthgamer, and Lee 2003)

There exists a family of metrics (L_k, d_G) which are uniformly doubling such that the minimum distortion required for an embedding f of (L_k, d_G) into any Euclidean space requires that the worst case distortion incurred by f is $\Omega(\sqrt{\log |L_k|})$.

Theorem (Abraham, Bartal, and Neiman 2006)

For any arbitrary finite doubling space (X, d_X) with cardinality n and doubling dimension λ , there exists an embedding $f: (X, d_X) \to (\mathbb{R}^d, l_2)$, where $d = O(\lambda \log \lambda)$ such that $\Phi_{avg} = O(1)$.

Summary so far and further questions...

- It is possible to achieve constant dimensional embeddings of uniformly doubling spaces with bounded average distortion but it is not possible to find such embeddings which can achieve bounded worstcase distortion.
- Similar results exist for other measures of distortion.
- Which of these results/measures of distortion are meaningful in the context of ML?
- Rephrasing this, what are some of the properties that a measure of distortion needs to satisfy in order to be deemed as meaningful in the context of ML?

Properties of distortion measures

Guiding principle

A good embedding preserves **most** distances as well as possible while better preserving the distances between pairs of points which could be critical for a given task.

- Basic properties
 - For any distortion function, irrespective of the context.
- Advances properties
 - Necessary characteristics of distortion measures in the context of MI.

Basic properties

Definition (Scale invariance)

Let $f:(X,d_X) \to (Y,d_Y)$ and $g:(X,d_X) \to (Y,d_Y)$ be two injective mappings. A distortion measure Φ is said to be scale invariant if $\exists \alpha \in \mathbb{R}, \forall u \in X, f(u) = \alpha g(u) \implies \Phi(f) = \Phi(g)$.

Definition (**Translation invariance**)

A measure of distortion Φ is said to be translation invariant if $\exists \alpha \in \mathbb{R}, \forall u \in X, f(u) = g(u) + \alpha; \implies \Phi(f) = \Phi(g).$

Basic properties

Definition (Monotonicity)

Let $f:(X,d_X) \to (Y,d_Y)$ and $g:(X,d_X) \to (Y,d_Y)$ be embeddings. Define $\alpha(f) = (\frac{2}{n(n-1)}) \sum_{u \neq v \in X} \rho_f(u,v)$ as the scaling constant of f. Then a measure of distortion Φ is said to be

constant of f. Then a measure of distortion Φ is said to be monotonic if $\forall u, v \in X$:

$$\left(\left(\frac{\rho_f(u,v)}{\alpha(f)} \le \frac{\rho_g(u,v)}{\alpha(g)} \le 1\right) \text{ or } \left(\frac{\rho_f(u,v)}{\alpha(f)} \ge \frac{\rho_g(u,v)}{\alpha(g)} \ge 1\right)\right)$$

$$\Longrightarrow \Phi(f) \ge \Phi(g)$$

Advanced properties - Robustness to outliers

Definition (Robustness to outliers in data)

Let $I:(X,d_X)\to (X,d_X)$ be an isometry. Fix arbitrary $x_0,x^*\in X$ and $\beta>0$. For any $n\in\mathbb{N}$, let $X_n=\{x_1,x_2,...,x_n\}\subset X\setminus B(x_0,\beta)$. Let $f_n:X_n\cup\{x_0\}\to X$ such that

$$f_n(x) = \begin{cases} x^*, & \text{if } x = x_0. \\ x, & \text{otherwise.} \end{cases}$$
 (1)

We say that a measure of distortion Φ is not robust to outliers if $\lim_{n\to\infty} \Phi(f_n) \neq \lim_{n\to\infty} \Phi(I_n)$, where I_n denotes the restriction of the mapping I to $X_n \cup \{x_0\}$.

• Can be extended to distorting a constant order of the points.

Advanced properties - Robustness to outliers

Definition (Robustness to outliers in distances)

Let $I:(X,d_X) \to (X,d_X)$ be an isometry. Let $X_D = \{x_1,x_2,....,\} \subset X$. Let $f:X_D \to X$ be an injective mapping such that there exists a $K \in \mathbb{N}$ such that |G| < K, where $G = \{(u,v) \in X_D \times X_D : d_X(f(u),f(v)) \neq d_X(u,v)\}$. For any $n \in \mathbb{N}$, let f_n and I_n denote the restriction of the mappings f and f respectively, to f to f is not robust to outliers if f to f the proof f is not robust to outliers if f to f the proof f the proof f to f the proof f to f the proof f the proof f the proof f to f the proof f to f the proof f the proof

Advanced Properties

Definition (Incorporation of a probability measure)

Let (X, d_X) be an arbitrary metric space. Let $X_n = \{x_1, x_2, ..., x_n\}$ be a finite subset of X. Let P_n denote a probability distribution on X_n . Fix arbitrary $x^*, y^* \in X_n$ such that $P_n(x^*) > P_n(y^*)$. Let $x', y' \in X$ such that $\forall i \in [n], d_X(x_i, x') = \alpha_i d_X(x_i, x^*)$ and $d_X(x_i, y') = \alpha_i d_X(x_i, y^*)$. Let $f, g: X_n \to X$ be two embeddings such that:

$$f(x) = \begin{cases} x', & \text{if } x = x^*. \\ x, & \text{otherwise.} \end{cases}, \quad g(x) = \begin{cases} y', & \text{if } x = y^*. \\ x, & \text{otherwise.} \end{cases}$$

Then a measure of distortion Φ is said to incorporate the probability distribution P_n if $\Phi(f) > \Phi(g)$.

Properties of existing distortion measures

Theorem (Properties of existing distortion measures)

For all choices of the parameters $1 \le q < \infty$, $0 < \epsilon < 1$, $1 \le k \le n$, the following statements are true:

- (a) Φ_{wc} , Φ_{avg} , Φ_{navg} , Φ_{l_q} , Φ_{ϵ} and Φ_{klocal} satisfy the property of translation invariance.
- (b) Φ_{wc} , Φ_{navg} , Φ_{ϵ} , Φ_{klocal} satisfy the properties of scale invariance and monotonicity. Φ_{avg} and Φ_{l_q} fail to satisfy these properties.
- (c) Φ_{ϵ} , Φ_{avg} , Φ_{l_q} satisfy the property of robustness to outliers. The measures Φ_{wc} , Φ_{navg} , Φ_{klocal} fail to do so.
- (d) The distortion measures Φ_{wc} , Φ_{avg} , Φ_{navg} , Φ_{l_q} , Φ_{ϵ} , Φ_{klocal} fail to incorporate a probability distribution defined on the data space.

σ -distortion and properties

Definition (σ -distortion)

Let X_n be a finite subset of X. Given a distribution P_n over X_n , let $\Pi = P_n \times P_n$ denote the distribution on the product space $X_n \times X_n$. For any embedding f, let $\widetilde{\rho}_f(u,v)$ denote the normalized ratio of distances given by $\rho_f(u,v)/\sum_{(u,v)\in X\times X, u\neq v}\rho_f(u,v)$. The σ -distortion is then defined as

$$\mathbb{E}_{\Pi}(\widetilde{\rho}_f(u,v)-1)^2. \tag{2}$$

σ -distortion and properties

Definition (σ -distortion)

Let X_n be a finite subset of X. Given a distribution P_n over X_n , let $\Pi = P_n \times P_n$ denote the distribution on the product space $X_n \times X_n$. For any embedding f, let $\widetilde{\rho}_f(u,v)$ denote the normalized ratio of distances given by $\rho_f(u,v)/\sum_{(u,v)\in X\times X, u\neq v}\rho_f(u,v)$. The σ -distortion is then defined as

$$\mathbb{E}_{\Pi}(\widetilde{\rho}_f(u,v)-1)^2. \tag{2}$$

Theorem (Basic and advanced properties of σ -distortion)

The σ - distortion (a) is invariant to scale and translations (b) satisfies the property of monotonicity. (c) is robust to outliers in data and outliers in distances (d) incorporates a probability distribution into its evaluation.

Euclidean representation with bounded σ -distortion

Consider the following problem:

• Let (\mathcal{X}, d_X) be an arbitrary metric space and let (\mathbb{R}^d, l_2) denote the Euclidean space of dimension d. Determine a value of d such that for any finite dataset $X = \{x_1, x_2, ..., x_n\}$ sampled from (\mathcal{X}, d_X) according to some probability distribution \mathcal{P} , there exists a mapping $f: X \to \mathbb{R}^d$ such that the σ -distortion (Φ_{σ}) of the mapping f is bounded.

Euclidean representation with bounded σ -distortion

Consider the following problem:

- Let (\mathcal{X}, d_X) be an arbitrary metric space and let (\mathbb{R}^d, l_2) denote the Euclidean space of dimension d. Determine a value of d such that for any finite dataset $X = \{x_1, x_2, ..., x_n\}$ sampled from (\mathcal{X}, d_X) according to some probability distribution \mathcal{P} , there exists a mapping $f: X \to \mathbb{R}^d$ such that the σ -distortion (Φ_σ) of the mapping f is bounded.
- Does there always exist a solution to this problem ?

Euclidean representation with bounded σ -distortion

Theorem (**General metric spaces: constant distortion,** $\log n$ **dimensions**)

Given any finite sample $X_n = \{x_1, x_2, ..., x_n\}$ generated by a probability distribution \mathcal{P} on a metric space (X, d_X) , for any $1 \leq p < \infty$ there exists an embedding $f: (X_n) \to I_p^D$, where $D = O(\log n)$ with σ -distortion = O(1).

Euclidean representation with bounded σ -distortion

Theorem (**General metric spaces: constant distortion,** $\log n$ **dimensions**)

Given any finite sample $X_n = \{x_1, x_2, ..., x_n\}$ generated by a probability distribution \mathcal{P} on a metric space (X, d_X) , for any $1 \leq p < \infty$ there exists an embedding $f: (X_n) \to I_p^D$, where $D = O(\log n)$ with σ -distortion = O(1).

Theorem (**Doubling metric spaces: constant distortion, constant dimensions**)

Given any finite sample $X_n = \{x_1, x_2, ..., x_n\}$ generated by a probability distribution \mathcal{P} on a doubling metric space (X, d_X) , for any $1 \leq p < \infty$ there exists an embedding $f: (X_n) \to l_p^D$, where D = O(1) with σ -distortion = O(1).

Experiments

Experiments

ackground Measures of distortion Desirable properties σ -distortion **Experiments** Contributions

Distortion vs Embedding dimension

Figure: x-axis-dimension of the embedding space. Y-axis -distortion. Curves represent embeddings of normally distributed data in dimensions 10:10:100 generated by Isomap.

ackground Measures of distortion Desirable properties σ -distortion Experiments Contributions

Distortion vs Original dimension

Figure: x-axis-dimension of the original space. Y-axis -distortion. Curves represent embeddings of gamma distributed data($a=1.5,\,b=4$) from dimensions 10:10:100 generated by Isomap into a fixed dimension.

Effect of Noise

Figure: **Left**:Variance of noise(x-axis) vs distortion measures(y-axis). **Right**: Variance of noise(x-axis) vs classification error(y-axis).

Distortion vs Classification accuracy

Figure: **Left**:SVM Classification error(x-axis) vs distortion measures(y-axis), **Right**: Knn Classification error(x-axis) vs distortion measures(y-axis).

• Initiated a systematic study of the desirable properties of distortion measures in the context of ML.

- Initiated a systematic study of the desirable properties of distortion measures in the context of ML.
- Showed that the existing measures of distortion are not well suited for our purpose.

- Initiated a systematic study of the desirable properties of distortion measures in the context of ML.
- Showed that the existing measures of distortion are not well suited for our purpose.
- Proposed a new measure of distortion which arguably is more suitable.

- Initiated a systematic study of the desirable properties of distortion measures in the context of ML.
- Showed that the existing measures of distortion are not well suited for our purpose.
- Proposed a new measure of distortion which arguably is more suitable.
- Showed that σ -distortion satisfies all the necessary properties.

- Initiated a systematic study of the desirable properties of distortion measures in the context of ML.
- Showed that the existing measures of distortion are not well suited for our purpose.
- Proposed a new measure of distortion which arguably is more suitable.
- ullet Showed that σ -distortion satisfies all the necessary properties.
- Proved that given any doubling space, we can always find a Euclidean space such that any finite subset of the doubling space can be embedded into the Euclidean space with bounded σ -distortion.

- Initiated a systematic study of the desirable properties of distortion measures in the context of ML.
- Showed that the existing measures of distortion are not well suited for our purpose.
- Proposed a new measure of distortion which arguably is more suitable.
- Showed that σ -distortion satisfies all the necessary properties.
- Proved that given any doubling space, we can always find a Euclidean space such that any finite subset of the doubling space can be embedded into the Euclidean space with bounded σ -distortion.
- Provided with experimental evidence to support our theoretical results.

For Further Reading I

Jean Bourgain. "On Lipschitz embedding of finite metric spaces in Hilbert space". In: *Israel Journal of Mathematics* 52.1 (1985), pp. 46–52.

Anupam Gupta, Robert Krauthgamer, and James R Lee. "Bounded geometries, fractals, and low-distortion embeddings". In: Foundations of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium on. IEEE. 2003, pp. 534–543.

For Further Reading II

Nathan Linial, Eran London, and Yuri Rabinovich. "The geometry of graphs and some of its algorithmic applications". In: *Combinatorica* 15.2 (1995), pp. 215–245.

Kasper Green Larsen and Jelani Nelson. "Optimality of the Johnson-Lindenstrauss Lemma". In: arXiv preprint arXiv:1609.02094 (2016).