Appendix A Results per training algorithms, with and without resampling strategies

Tables 1-12 show the mean and standard deviation of the F1-score and SERA metrics per regression algorithms. The best results are highlighted in bold.

Table 1: Mean and standard deviation of the **F1-score** metric obtained for each dataset considering **Bagging** technique. The best results are highlighted in bold.

	None	SMT	RO	RU	GN	sg	WERCS
Dataset				F1-score			
rabe_265	0.097 (0.183)	0.063 (0.122)	0.183 (0.252)	0.079 (0.141)	0.173 (0.190)	0.088 (0.177)	0.162 (0.286)
wine-quality	0.085(0.012)	$0.091\ (0.016)$	$0.096\ (0.010)$	0.097(0.020)	$0.046\ (0.020)$	$0.132\ (0.012)$	0.129(0.019)
analcat-apnea3	0.317(0.245)	$0.345\ (0.211)$	$0.400\ (0.190)$	$0.329\ (0.232)$	$0.404\ (0.215)$	$0.361\ (0.215)$	$0.394\ (0.206)$
cocomo_numeric	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)
abalone	$0.738 \; (0.025)$	0.732(0.024)	0.738(0.016)	$0.730\ (0.020)$	0.724 (0.026)	0.721(0.023)	$0.740\ (0.019)$
a3	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	1e-05 (0.000)	1e-05 (0.000)	1e-05 (0.000)	1e-05 (0.000)	1e-05 (0.000)
forestFires	0.021(0.066)	0.059(0.114)	0.109(0.139)	$0.136 \ (0.167)$	0.129(0.122)	$0.182\ (0.173)$	0.145(0.170)
$sleuth_case1202$	2e-05 (0.000)	2e-05 (0.000)	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	2e-05 (0.000)	$2e-05 \ (0.000)$
a1	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)
a7	0.066 (0.137)	0.178(0.219)	0.297(0.174)	0.295(0.171)	0.300(0.218)	$0.326\ (0.152)$	0.302(0.168)
kidney	1e-05 (0.000)	0.094(0.234)	$0.103 \ (0.258)$	1e-05 (0.000)	0.067(0.211)	$0.200\ (0.315)$	$0.061\ (0.196)$
boston	0.811 (0.039)	0.815(0.038)	$0.844 \ (0.037)$	0.804(0.041)	0.793(0.052)	0.835(0.027)	0.836(0.034)
sensory	2e-05 (0.000)	$0.543 \ (0.079)$	0.658 (0.165)	$0.061\ (0.189)$	0.497(0.230)	0.617(0.054)	$0.672 \ (0.179)$
a2	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	1e-05 (0.000)	1e-05 (0.000)	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	1e-05 (0.000)
triazines	2e-05 (0.000)	0.187(0.312)	0.222(0.337)	2e-05 (0.000)	2e-05 (0.000)	$0.223 \ (0.250)$	$0.353 \ (0.367)$
kdd_coil_1	$0.036\ (0.162)$	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)
mortgage	$0.976 \ (0.008)$	0.975 (0.008)	$0.976 \ (0.008)$	$0.968 \; (0.008)$	$0.975 \ (0.008)$	$0.968 \; (0.010)$	$0.978 \; (0.008)$
treasury	0.975 (0.007)	$0.976 \ (0.008)$	0.977(0.007)	$0.968 \; (0.006)$	0.972 (0.008)	0.973 (0.007)	$0.981\ (0.007)$
debutanizer	$0.756 \ (0.025)$	$0.809 \ (0.033)$	$0.837\ (0.035)$	$0.726 \ (0.046)$	$0.784\ (0.048)$	$0.686 \; (0.042)$	$0.816 \ (0.033)$
fuelCons	$0.886 \ (0.032)$	$0.863 \ (0.032)$	$0.922\ (0.025)$	$0.873 \ (0.034)$	0.862 (0.032)	$0.901 \ (0.025)$	$0.913 \ (0.023)$
heat	$0.963\ (0.006)$	$0.973\ (0.004)$	$0.972 \ (0.004)$	$0.957 \ (0.007)$	$0.971 \ (0.004)$	$0.966 \ (0.004)$	0.969 (0.004)
california	$0.916 \ (0.010)$	0.855 (0.011)	$0.913 \ (0.009)$	$0.911\ (0.009)$	$0.816 \ (0.014)$	$0.892\ (0.012)$	$0.920\ (0.010)$
cpuSm	$0.932 \ (0.045)$	$0.939 \ (0.036)$	$0.942\ (0.031)$	0.139 (0.249)	$0.929 \ (0.059)$	0.807 (0.279)	0.769 (0.333)
compactiv	0.963 (0.004)	$0.965 \ (0.003)$	$0.965 \ (0.004)$	0.962 (0.004)	$0.965 \ (0.003)$	0.962 (0.004)	0.962 (0.004)
availPwr	0.947 (0.009)	$0.920 \ (0.016)$	$0.960\ (0.009)$	0.935 (0.011)	$0.909 \ (0.015)$	$0.946 \; (0.013)$	$0.950 \ (0.009)$
maxTorq	$0.968 \; (0.013)$	0.946 (0.014)	0.975(0.012)	$0.956 \ (0.016)$	0.954 (0.018)	0.964 (0.013)	$0.976 \; (0.011)$
space-ga	0.694 (0.243)	$0.748 \; (0.033)$	$0.756 \ (0.031)$	$0.762 \ (0.058)$	0.712(0.037)	$0.724 \ (0.028)$	$0.782\ (0.028)$
ConcrStr	0.404 (0.459)	$0.808 \; (0.071)$	0.805 (0.285)	0.176(0.294)	$0.724 \ (0.255)$	0.719(0.163)	0.759(0.331)
acceleration	0.934 (0.021)	0.927 (0.026)	$0.951\ (0.017)$	$0.927 \ (0.023)$	$0.925 \; (0.025)$	$0.942 \; (0.015)$	0.947 (0.020)
airfoild	0.488 (0.078)	0.584 (0.120)	0.916 (0.026)	0.424 (0.045)	0.517 (0.085)	0.435 (0.038)	0.514 (0.091)

Table 2: Mean and standard deviation of the **F1-score** metric obtained for each dataset considering **Decision Tree** technique. The best results are highlighted in bold.

	None	SMT	RO	RU	GN	SG	WERCS
Dataset				F1-score			
rabe-265	0.215 (0.299)	0.216 (0.299)	0.166 (0.233)	0.171 (0.226)	0.088 (0.140)	0.145 (0.205)	0.149 (0.220)
wine-quality	0.209(0.028)	0.214 (0.033)	0.280(0.032)	0.228(0.025)	$0.096\ (0.021)$	0.296(0.031)	$0.418\ (0.029)$
analcat-apnea3	0.297 (0.254)	0.383 (0.220)	0.428 (0.195)	0.358 (0.243)	0.387 (0.170)	0.425 (0.183)	$0.442\ (0.192)$
cocomo_numeric	$0.603\ (0.410)$	0.602(0.410)	$0.601\ (0.409)$	0.041 (0.181)	0.592(0.404)	$0.088 \; (0.273)$	$0.603\ (0.410)$
abalone	$0.718 \; (0.014)$	$0.691\ (0.015)$	0.707 (0.016)	$0.711\ (0.022)$	$0.688 \; (0.021)$	0.695 (0.027)	$0.703 \ (0.015)$
a3	1e-05 (0.000)	1e-05 (0.000)	1e-05 (0.000)	$0.013\ (0.040)$	1e-05 (0.000)	$0.010 \ (0.045)$	1e-05 (0.000)
forestFires	$0.056 \ (0.108)$	0.109(0.117)	0.098(0.121)	0.121(0.144)	0.128 (0.152)	0.189(0.170)	$0.215 \ (0.261)$
$sleuth_case1202$	$0.736 \ (0.327)$	$0.736 \ (0.327)$	0.734(0.328)	2e-05 (0.000)	$0.665\ (0.353)$	$0.526 \ (0.408)$	$0.551 \ (0.423)$
a1	$0.359 \; (0.377)$	$0.241 \ (0.317)$	0.313(0.339)	0.091 (0.223)	0.085 (0.212)	0.321(0.311)	2e-05 (0.000)
a7	0.190 (0.203)	0.284(0.240)	0.296(0.193)	0.275(0.183)	$0.350\ (0.211)$	0.311(0.167)	0.338(0.193)
kidney	1e-05 (0.000)	0.051(0.164)	$0.121\ (0.255)$	0.029(0.130)	$0.197\ (0.326)$	0.187(0.310)	0.170(0.303)
boston	$0.841\ (0.055)$	0.829(0.059)	$0.830\ (0.063)$	0.820(0.052)	$0.818\ (0.058)$	$0.822 \ (0.056)$	$0.844 \ (0.056)$
sensory	0.396(0.343)	0.505(0.111)	$0.630\ (0.079)$	0.579(0.061)	0.593(0.094)	$0.636\ (0.085)$	$0.652\ (0.060)$
a2	1e-05 (0.000)	1e-05 (0.000)	1e-05 (0.000)	1e-05 (0.000)	$1e-05 \ (0.000)$	1e-05 (0.000)	1e-05 (0.000)
triazines	$0.325\ (0.384)$	$0.590\ (0.352)$	$0.584\ (0.300)$	$0.101\ (0.251)$	$0.325\ (0.384)$	$0.435\ (0.260)$	$0.660\ (0.238)$
kdd_coil_1	$0.533 \ (0.374)$	0.382(0.402)	0.317(0.372)	0.066(0.208)	0.373(0.395)	$0.350\ (0.400)$	0.103(0.257)
mortgage	$0.980\ (0.005)$	$0.980\ (0.005)$	$0.980\ (0.005)$	0.971(0.013)	0.968(0.010)	0.975(0.007)	0.979(0.008)
treasury	$0.978\ (0.009)$	0.978(0.010)	$0.979\ (0.008)$	0.974(0.008)	$0.968\ (0.017)$	0.975(0.009)	0.973(0.009)
debutanizer	0.812(0.034)	0.854(0.043)	0.858(0.036)	0.779(0.032)	$0.869 \ (0.023)$	0.735(0.039)	$0.830\ (0.025)$
fuelCons	0.897(0.022)	0.870(0.032)	0.917 (0.023)	0.879(0.035)	0.870(0.034)	0.888(0.022)	0.912(0.026)
heat	$0.962\ (0.005)$	$0.973\ (0.003)$	$0.970\ (0.003)$	0.957(0.006)	0.972(0.003)	$0.965\ (0.003)$	$0.968\ (0.004)$
california	$0.906 \ (0.008)$	0.833 (0.011)	$0.906 \ (0.009)$	0.897(0.009)	0.813 (0.013)	0.892(0.011)	0.894(0.011)
cpuSm	$0.958\ (0.023)$	$0.958 \ (0.027)$	$0.958\ (0.027)$	0.439(0.450)	$0.951\ (0.025)$	0.945(0.024)	$0.936\ (0.030)$
compactiv	$0.956\ (0.004)$	$0.949\ (0.009)$	$0.955\ (0.005)$	$0.953\ (0.006)$	0.955(0.005)	$0.954\ (0.006)$	0.942(0.007)
availPwr	$0.959\ (0.007)$	0.922(0.014)	$0.972 \ (0.008)$	0.944(0.016)	$0.930\ (0.030)$	0.957 (0.007)	$0.959\ (0.009)$
$\max Torq$	0.975(0.013)	$0.956\ (0.017)$	$0.982\ (0.008)$	0.967(0.011)	0.939(0.023)	0.973(0.010)	0.978(0.010)
space-ga	0.727(0.038)	$0.718\ (0.026)$	0.697(0.031)	$0.735\ (0.052)$	$0.700\ (0.036)$	$0.675\ (0.036)$	$0.737\ (0.033)$
ConcrStr	$0.898\ (0.053)$	$0.842\ (0.068)$	$0.905\ (0.053)$	$0.878\ (0.077)$	$0.848\ (0.055)$	$0.883\ (0.071)$	0.904 (0.044)
acceleration	0.931 (0.021)	0.927(0.026)	$0.951\ (0.017)$	0.919(0.037)	0.923(0.027)	$0.941\ (0.021)$	$0.945 \ (0.016)$
airfoild	$0.926\ (0.024)$	0.899 (0.040)	$0.928\ (0.021)$	$0.850\ (0.078)$	$0.926\ (0.024)$	$0.828\ (0.076)$	$0.926\ (0.024)$

4

Table 3: Mean and standard deviation of the **F1-score** metric obtained for each dataset considering **MLP** technique. The best results are highlighted in bold.

	None	SMT	RO	RU	GN	SG	WERCS
Dataset				F1-score			
rabe-265	0.051 (0.104)	0.024 (0.065)	0.044 (0.139)	0.069 (0.164)	0.041 (0.089)	0.079 (0.166)	0.037 (0.096)
wine-quality	0.115(0.025)	0.116(0.034)	$0.143\ (0.045)$	0.085(0.032)	0.035(0.026)	$0.120\ (0.035)$	0.105(0.035)
analcat-apnea3	0.313(0.234)	0.339 (0.205)	0.379(0.188)	$0.361 \ (0.208)$	$0.380 \ (0.175)$	$0.400\ (0.180)$	0.379(0.208)
cocomo_numeric	0.555 (0.433)	0.478(0.447)	0.559 (0.426)	0.571 (0.433)	0.558 (0.429)	$0.596\ (0.407)$	$0.531\ (0.419)$
abalone	0.407(0.280)	$0.406\ (0.277)$	$0.396\ (0.276)$	0.354 (0.197)	0.400(0.142)	$0.603\ (0.069)$	0.525(0.192)
a3	0.023(0.060)	$0.034\ (0.084)$	$0.021\ (0.048)$	$0.031\ (0.070)$	$0.018 \; (0.052)$	0.029(0.077)	0.012(0.039)
forestFires	0.061(0.114)	$0.040\ (0.100)$	0.060(0.133)	0.087(0.138)	0.099(0.148)	$0.188 \ (0.197)$	$0.061\ (0.136)$
$sleuth_case1202$	0.104(0.187)	$0.061\ (0.180)$	$0.168 \ (0.274)$	0.126(0.253)	$0.164\ (0.226)$	$0.134\ (0.262)$	0.133(0.234)
a1	0.454(0.231)	0.528(0.184)	0.528(0.188)	0.510(0.197)	0.452(0.239)	$0.553\ (0.221)$	0.349(0.194)
a7	0.087(0.097)	0.102(0.098)	0.120(0.104)	0.091(0.105)	0.088(0.132)	$0.116\ (0.111)$	$0.138 \ (0.109)$
kidney	$0.097\ (0.191)$	$0.109\ (0.203)$	$0.091\ (0.180)$	$0.058\ (0.119)$	$0.141\ (0.258)$	$0.135\ (0.215)$	0.092(0.160)
boston	0.210(0.103)	$0.330\ (0.086)$	0.314(0.076)	0.168(0.103)	0.276(0.102)	0.271(0.130)	$0.264 \ (0.117)$
sensory	0.028(0.124)	0.423(0.089)	$0.523\ (0.156)$	0.468(0.072)	0.474(0.070)	$0.525 \ (0.079)$	$0.491\ (0.136)$
a2	0.010(0.043)	0.011 (0.048)	0.015(0.048)	0.019(0.059)	0.015(0.049)	$0.025\ (0.078)$	0.010(0.034)
triazines	$0.324\ (0.193)$	$0.452\ (0.212)$	0.434~(0.211)	$0.329\ (0.197)$	$0.321\ (0.224)$	$0.376\ (0.230)$	$0.387\ (0.126)$
kdd_coil_1	0.167(0.306)	0.223(0.323)	0.294(0.344)	$0.319 \ (0.245)$	0.313(0.303)	0.242(0.307)	0.222(0.293)
mortgage	0.546(0.274)	0.549(0.354)	$0.621\ (0.307)$	0.520(0.279)	0.654(0.287)	$0.616\ (0.305)$	$0.726 \ (0.193)$
treasury	$0.512\ (0.304)$	0.632(0.344)	$0.681\ (0.274)$	$0.403\ (0.347)$	$0.727\ (0.283)$	0.724~(0.203)	$0.646\ (0.274)$
debutanizer	$0.450\ (0.205)$	0.567(0.049)	$0.574\ (0.050)$	0.387(0.236)	0.550(0.045)	0.557(0.047)	0.536(0.044)
fuelCons	0.306(0.137)	0.392(0.150)	0.340(0.149)	0.274(0.157)	$0.453 \ (0.145)$	0.381(0.176)	0.405(0.167)
heat	$0.652\ (0.345)$	$0.779\ (0.272)$	0.693(0.312)	0.672(0.310)	$0.771\ (0.202)$	$0.747\ (0.214)$	$0.785\ (0.190)$
california	$0.766\ (0.035)$	0.742(0.026)	$0.765 \ (0.053)$	0.732(0.041)	0.687(0.041)	0.749(0.047)	0.758(0.034)
cpuSm	0.502(0.128)	0.670(0.167)	$0.720 \ (0.127)$	0.493(0.248)	0.639(0.176)	0.606(0.193)	0.670(0.156)
compactiv	$0.343\ (0.173)$	0.307(0.133)	0.198(0.197)	$0.311\ (0.127)$	$0.304\ (0.130)$	$0.380\ (0.135)$	$0.395\ (0.174)$
availPwr	0.733(0.321)	0.836(0.033)	$0.883 \ (0.023)$	$0.830\ (0.056)$	0.833(0.053)	$0.860\ (0.032)$	$0.880\ (0.021)$
$\max Torq$	0.679(0.201)	0.727(0.189)	$0.755\ (0.132)$	0.545(0.323)	0.697(0.180)	0.743(0.142)	0.712(0.195)
space-ga	0.191(0.205)	0.255(0.212)	0.222(0.220)	0.151 (0.125)	0.189(0.150)	$0.300 \ (0.174)$	0.266(0.173)
ConcrStr	$0.433\ (0.410)$	$0.778\ (0.101)$	0.562(0.383)	$0.563\ (0.383)$	$0.792\ (0.084)$	$0.807\ (0.070)$	$0.709\ (0.259)$
acceleration	0.376(0.082)	0.365(0.210)	0.384(0.170)	0.347(0.065)	$0.405 \ (0.064)$	0.388(0.068)	$0.408 \; (0.082)$
airfoild	0.247(0.033)	$0.127 \ (0.038)$	$0.130\ (0.023)$	$0.243\ (0.035)$	$0.252\ (0.037)$	$0.291\ (0.030)$	$0.217\ (0.036)$

 σ

Table 4: Mean and standard deviation of the **F1-score** metric obtained for each dataset considering **RF** technique. The best results are highlighted in bold.

	None	SMT	RO	RU	GN	SG	WERCS
Dataset				F1-score			
rabe-265	0.081 (0.138)	0.101 (0.165)	0.100 (0.171)	0.114 (0.166)	0.147 (0.255)	0.135 (0.220)	$0.152 \ (0.215)$
wine-quality	0.113(0.017)	$0.116\ (0.017)$	0.169(0.024)	$0.146 \ (0.025)$	0.069(0.041)	$0.164\ (0.018)$	$0.254\ (0.027)$
analcat-apnea3	$0.426 \ (0.195)$	0.444(0.170)	0.394(0.187)	0.428 (0.194)	$0.423 \ (0.158)$	$0.448 \; (0.166)$	$0.400 \ (0.207)$
cocomo_numeric	0.394 (0.451)	0.391 (0.448)	$0.433 \ (0.449)$	0.372(0.429)	0.392(0.450)	0.374(0.399)	0.395 (0.453)
abalone	0.744(0.020)	0.742(0.020)	0.744(0.020)	0.742 (0.020)	$0.740 \ (0.022)$	0.735 (0.021)	$0.751\ (0.019)$
a3	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$
forestFires	$0.091 \ (0.152)$	0.108(0.176)	0.115(0.177)	0.195 (0.206)	0.116(0.165)	$0.225\ (0.205)$	0.137 (0.169)
$sleuth_case1202$	$0.636 \; (0.430)$	0.589 (0.446)	0.499(0.465)	0.044(0.195)	0.505 (0.470)	0.586 (0.444)	0.473(0.444)
a1	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$
a7	0.125 (0.165)	0.177(0.188)	0.184 (0.178)	0.325(0.177)	0.217(0.187)	$0.342\ (0.171)$	0.322(0.179)
kidney	1e-05 (0.000)	0.157(0.324)	0.209(0.374)	0.182(0.326)	0.168(0.345)	$0.226\ (0.362)$	0.224(0.398)
boston	$0.834\ (0.035)$	$0.843 \ (0.033)$	0.845 (0.031)	$0.832\ (0.035)$	$0.831\ (0.032)$	$0.850\ (0.035)$	0.847 (0.033)
sensory	0.218(0.311)	0.393(0.306)	0.508(0.309)	0.672(0.063)	0.410(0.330)	0.673 (0.061)	$0.677 \ (0.173)$
a2	1e-05 (0.000)	1e-05 (0.000)	1e-05 (0.000)	1e-05 (0.000)	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	$1e-05\ (0.000)$
triazines	2e-05 (0.000)	0.041(0.185)	0.073(0.191)	0.009(0.042)	0.041(0.184)	0.052(0.141)	$0.159\ (0.289)$
kdd_coil_1	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$
mortgage	$0.990 \ (0.003)$	$0.990\ (0.003)$	$0.990\ (0.003)$	0.987 (0.004)	0.985 (0.014)	0.987 (0.004)	0.989(0.004)
treasury	$0.986\ (0.005)$	$0.986\ (0.005)$	$0.986\ (0.005)$	$0.985\ (0.006)$	$0.986\ (0.005)$	0.985(0.005)	$0.985 \ (0.006)$
debutanizer	$0.854 \ (0.026)$	$0.885\ (0.031)$	$0.878 \; (0.024)$	0.844(0.029)	0.878 (0.039)	$0.780 \ (0.039)$	$0.880 \ (0.017)$
fuelCons	0.932(0.019)	$0.913\ (0.019)$	0.945 (0.017)	0.929 (0.019)	0.924 (0.024)	0.938 (0.015)	$0.946 \; (0.018)$
heat	0.988(0.002)	$0.990\ (0.002)$	0.988(0.002)	0.982(0.004)	$0.984\ (0.003)$	$0.986\ (0.003)$	0.987(0.002)
california	$0.925 \ (0.008)$	0.877(0.022)	$0.923 \ (0.008)$	$0.918 \; (0.008)$	0.912(0.030)	$0.903 \; (0.008)$	0.919(0.010)
cpuSm	$0.900 \ (0.056)$	$0.903 \ (0.053)$	$0.915 \; (0.040)$	0.877(0.061)	0.899(0.047)	0.877 (0.055)	0.822(0.202)
compactiv	$0.965 \ (0.003)$	$0.965 \ (0.003)$	$0.965\ (0.003)$	$0.964\ (0.003)$	$0.965 \ (0.003)$	$0.963\ (0.003)$	$0.964\ (0.004)$
availPwr	0.976 (0.007)	0.957 (0.030)	$0.980\ (0.007)$	$0.968 \; (0.008)$	$0.970 \ (0.016)$	0.971 (0.008)	$0.978 \; (0.006)$
$\max Torq$	$0.981\ (0.009)$	0.973(0.012)	0.983 (0.009)	0.967 (0.014)	$0.980\ (0.010)$	0.972(0.012)	$0.986\ (0.008)$
space-ga	$0.802\ (0.042)$	$0.786 \ (0.048)$	0.775(0.044)	0.794(0.044)	$0.740 \ (0.047)$	$0.740\ (0.033)$	0.796 (0.040)
ConcrStr	$0.795\ (0.344)$	$0.792\ (0.278)$	$0.798\ (0.346)$	0.788(0.341)	$0.761\ (0.336)$	$0.872\ (0.211)$	$0.837\ (0.289)$
acceleration	$0.956 \ (0.016)$	$0.952 \ (0.019)$	$0.964 \ (0.014)$	$0.950 \ (0.018)$	$0.954 \ (0.019)$	0.959 (0.013)	$0.965 \; (0.015)$
airfoild	$0.952 \ (0.016)$	$0.951 \ (0.016)$	$0.962\ (0.014)$	$0.935 \ (0.021)$	$0.952 \ (0.015)$	$0.925 \ (0.033)$	$0.951 \ (0.015)$

Table 5: Mean and standard deviation of the $\mathbf{F1}$ -score metric obtained for each dataset considering \mathbf{SVM} technique. The best results are highlighted in bold.

	None	SMT	RO	RU	GN	$_{ m SG}$	WERCS
Dataset				F1-score			
rabe-265	2e-05 (0.000)	0.040 (0.178)	0.019 (0.060)	0.126 (0.232)	0.148 (0.234)	0.119 (0.193)	0.038 (0.093)
wine-quality	$0.103 \ (0.014)$	$0.100 \ (0.012)$	$0.112\ (0.015)$	0.111(0.024)	$0.054 \ (0.017)$	$0.148\ (0.014)$	0.097(0.013)
analcat-apnea3	0.248 (0.060)	$0.257 \; (0.064)$	$0.240 \ (0.085)$	0.199(0.119)	0.199(0.121)	0.228(0.100)	$0.253 \ (0.063)$
cocomo_numeric	$0.636\ (0.429)$	0.607(0.412)	$0.601\ (0.411)$	0.504 (0.429)	0.448(0.422)	0.497(0.424)	$0.636\ (0.429)$
abalone	$0.605 \; (0.028)$	$0.572 \ (0.028)$	0.479 (0.037)	$0.562 \ (0.026)$	$0.538 \ (0.029)$	$0.554 \ (0.036)$	$0.532 \ (0.034)$
a3	1e-05 (0.000)	0.019(0.086)	1e-05 (0.000)	0.016 (0.072)	$0.044\ (0.139)$	0.024 (0.109)	1e-05 (0.000)
forestFires	$0.211\ (0.181)$	$0.163 \ (0.146)$	0.155 (0.125)	0.134(0.173)	$0.160 \ (0.150)$	0.186 (0.171)	0.144(0.153)
$sleuth_case1202$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$
a1	2e-05 (0.000)	$0.013\ (0.057)$	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)
a7	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)	0.015 (0.067)	$0.314\ (0.183)$	$0.016 \; (0.072)$
kidney	$0.166 \ (0.342)$	$0.153 \ (0.283)$	0.166 (0.342)	$0.171 \ (0.353)$	$0.173 \ (0.356)$	$0.224\ (0.330)$	0.172(0.354)
boston	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)	0.042(0.130)	2e-05 (0.000)	$0.215\ (0.205)$	2e-05 (0.000)
sensory	2e-05 (0.000)	0.588 (0.060)	0.593 (0.033)	0.515 (0.054)	$0.614\ (0.069)$	0.569 (0.056)	0.575 (0.063)
a2	1e-05 (0.000)	1e-05 (0.000)	1e-05 (0.000)	1e-05 (0.000)	1e-05 (0.000)	$0.027 \ (0.120)$	1e-05 (0.000)
triazines	0.139 (0.293)	0.436 (0.237)	0.373(0.240)	0.149(0.241)	0.139 (0.293)	0.356 (0.245)	$0.473\ (0.241)$
kdd_coil_1	0.193(0.317)	$0.311\ (0.237)$	2e-05 (0.000)	2e-05 (0.000)	$0.040 \ (0.123)$	0.258 (0.258)	$0.014\ (0.063)$
mortgage	$0.967 \; (0.013)$	0.966 (0.013)	$0.967 \; (0.013)$	0.952 (0.016)	0.945 (0.019)	0.947 (0.016)	0.964 (0.014)
treasury	$0.967\ (0.011)$	$0.966 \ (0.011)$	$0.967\ (0.011)$	$0.952 \ (0.017)$	$0.966 \ (0.010)$	0.955 (0.014)	$0.964 \ (0.014)$
debutanizer	$0.610 \ (0.044)$	0.676 (0.044)	$0.679 \; (0.044)$	0.600 (0.050)	0.626 (0.043)	$0.638 \ (0.050)$	0.626 (0.045)
fuelCons	0.614 (0.212)	0.579 (0.252)	0.614 (0.212)	0.545 (0.281)	$0.622\ (0.170)$	$0.611\ (0.212)$	0.615 (0.212)
heat	0.997 (0.001)	0.993 (0.001)	$0.998 \; (0.000)$	$0.991 \ (0.003)$	$0.994 \ (0.002)$	0.992(0.001)	$0.996 \; (0.002)$
california	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$
cpuSm	$0.314\ (0.324)$	$0.310 \ (0.320)$	$0.314\ (0.325)$	$0.060 \ (0.186)$	0.308 (0.294)	0.193 (0.277)	0.155 (0.276)
compactiv	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)	$0.241\ (0.017)$	2e-05 (0.000)
availPwr	$0.966\ (0.012)$	$0.928 \ (0.023)$	$0.966\ (0.012)$	0.945 (0.021)	0.882 (0.029)	0.939 (0.021)	$0.950 \ (0.017)$
$\max Torq$	$0.940 \ (0.039)$	0.902 (0.045)	$0.941\ (0.038)$	0.876 (0.047)	0.809 (0.043)	0.859 (0.062)	$0.932 \ (0.036)$
space-ga	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$
ConcrStr	$0.797 \ (0.195)$	$0.817\ (0.045)$	0.797 (0.195)	$0.718 \; (0.254)$	$0.765 \ (0.082)$	$0.711\ (0.252)$	$0.751 \ (0.264)$
acceleration	$0.832 \ (0.054)$	$0.801 \ (0.059)$	$0.835 \; (0.055)$	$0.782 \ (0.057)$	0.797 (0.064)	$0.771 \ (0.066)$	$0.829 \ (0.055)$
airfoild	$2e-05 \ (0.000)$	2e-05 (0.000)	$2e-05 \ (0.000)$	$2e-05 \ (0.000)$	2e-05 (0.000)	$0.345\ (0.037)$	2e-05 (0.000)

Table 6: Mean and standard deviation of the $\bf F1$ -score metric obtained for each dataset considering $\bf XG$ technique. The best results are highlighted in bold.

	None	SMT	RO	RU	GN	SG	WERCS
Dataset				F1-score			
rabe-265	0.009 (0.040)	0.009 (0.040)	0.010 (0.043)	0.010 (0.046)	0.009 (0.040)	$0.020\ (0.062)$	0.010 (0.043)
wine-quality	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)	$0.011 \ (0.027)$	2e-05 (0.000)	2e-05 (0.000)
analcat-apnea3	$0.150 \ (0.164)$	0.235 (0.174)	0.236 (0.143)	0.273(0.179)	0.161 (0.164)	$0.308 \; (0.218)$	0.274 (0.175)
cocomo_numeric	0.664 (0.400)	$0.667 \; (0.401)$	$0.667 \; (0.401)$	2e-05 (0.000)	0.649 (0.393)	$0.616 \ (0.423)$	$0.664\ (0.400)$
abalone	$0.521 \ (0.016)$	$0.532 \ (0.017)$	0.505 (0.015)	0.545 (0.018)	$0.560\ (0.019)$	$0.540 \ (0.019)$	$0.532\ (0.017)$
a3	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$
forestFires	$0.060 \ (0.138)$	$0.066 \ (0.137)$	0.098(0.161)	0.107(0.178)	0.062 (0.155)	$0.165\ (0.237)$	$0.084 \ (0.156)$
$sleuth_case1202$	$0.678 \; (0.406)$	0.715 (0.372)	$0.726 \ (0.378)$	0.317(0.444)	$0.723\ (0.374)$	$0.720 \ (0.379)$	$0.727 \; (0.377)$
a1	2e-05 (0.000)	2e-05 (0.000)	$0.077 \; (0.237)$	2e-05 (0.000)	2e-05 (0.000)	0.069 (0.220)	2e-05 (0.000)
a7	0.018 (0.080)	0.077(0.142)	0.065 (0.134)	0.105 (0.188)	0.118(0.194)	$0.284\ (0.184)$	0.129(0.217)
kidney	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$
boston	$0.648 \ (0.058)$	$0.655 \; (0.052)$	$0.654 \ (0.057)$	$0.644 \ (0.057)$	$0.651 \ (0.055)$	$0.652 \ (0.057)$	$0.620 \ (0.055)$
sensory	0.104 (0.021)	0.109(0.029)	0.078(0.017)	0.105 (0.022)	$0.130\ (0.034)$	$0.081\ (0.019)$	0.090(0.020)
a2	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$	$1e-05 \ (0.000)$
triazines	$2e-05 \ (0.000)$	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)	2e-05 (0.000)	$0.043 \ (0.155)$	$0.164\ (0.313)$
kdd_coil_1	2e-05 (0.000)	2e-05 (0.000)	0.037 (0.167)	2e-05 (0.000)	2e-05 (0.000)	$0.167\ (0.343)$	0.038(0.171)
mortgage	$0.674 \ (0.012)$	0.675 (0.012)	$0.676 \; (0.012)$	$0.673 \ (0.012)$	$0.674\ (0.012)$	0.675 (0.014)	$0.674\ (0.015)$
treasury	$0.652 \ (0.017)$	0.652 (0.017)	0.652 (0.017)	$0.655 \; (0.021)$	0.652 (0.018)	$0.653 \ (0.017)$	$0.652 \ (0.017)$
debutanizer	$0.743 \ (0.031)$	$0.753\ (0.032)$	0.747 (0.041)	$0.734\ (0.041)$	0.747 (0.036)	0.688 (0.042)	0.742(0.034)
fuelCons	0.572(0.042)	$0.582\ (0.039)$	0.573 (0.039)	0.573(0.042)	0.579 (0.038)	0.570 (0.039)	0.573(0.037)
heat	0.934 (0.012)	0.937(0.011)	$0.938\ (0.011)$	0.933 (0.011)	0.936 (0.011)	0.935 (0.011)	0.930 (0.011)
california	$0.866 \ (0.004)$	$0.858 \ (0.006)$	$0.858 \; (0.005)$	$0.867 \; (0.005)$	$0.858 \ (0.006)$	$0.863 \ (0.005)$	$0.853 \ (0.005)$
cpuSm	$0.810 \ (0.038)$	0.802(0.036)	0.803 (0.035)	$0.852 \ (0.056)$	0.802(0.038)	0.803 (0.043)	$0.816 \ (0.046)$
compactiv	$0.489\ (0.029)$	$0.489 \ (0.030)$	$0.486 \ (0.029)$	0.487 (0.029)	$0.489\ (0.029)$	$0.482 \ (0.028)$	0.487 (0.029)
availPwr	0.678 (0.019)	$0.691\ (0.017)$	0.680 (0.019)	0.687 (0.024)	$0.692\ (0.017)$	0.685 (0.021)	$0.683\ (0.020)$
$\max Torq$	0.690 (0.018)	0.693(0.016)	0.692(0.017)	$0.698 \; (0.019)$	$0.694\ (0.016)$	$0.698 \; (0.019)$	$0.691\ (0.017)$
space-ga	$0.480 \ (0.036)$	0.479 (0.035)	0.471 (0.031)	$0.510 \ (0.036)$	$0.480 \ (0.036)$	$0.470 \ (0.031)$	0.487 (0.032)
ConcrStr	$0.808 \; (0.083)$	$0.833\ (0.077)$	0.827 (0.069)	$0.810 \ (0.078)$	0.825 (0.080)	$0.821\ (0.080)$	$0.813 \ (0.075)$
acceleration	$0.670 \ (0.031)$	$0.675 \ (0.028)$	$0.675 \ (0.028)$	$0.670 \ (0.030)$	$0.678 \; (0.026)$	$0.674 \ (0.029)$	$0.653 \ (0.028)$
airfoild	0.377 (0.037)	0.378 (0.037)	0.397 (0.042)	0.388 (0.042)	0.377 (0.037)	0.391 (0.042)	0.377 (0.037)

Table 7: Mean and standard deviation of the $\bf SERA$ metric obtained for each dataset considering $\bf BG$ technique. The best results are highlighted in bold.

	None	SMT	RO	RU	$_{ m GN}$	$_{ m SG}$	WERCS
Dataset				F1-score			
rabe-265	4.27e+3 (7.95e+3)	4.41e+3 (7.91e+3)	4.52e+3 (7.66e+3)	4.40e+3 (7.04e+3)	3.63e+3 (5.27e+3)	4.49e+3 (7.82e+3)	4.31e+3 (7.65e+3)
wine-quality	1.03e+2(1.53e+1)	1.09e+2(1.64e+1)	1.19e + 2 (1.78e + 1)	8.19e+1 (1.46e+1)	1.57e+2 (1.85e+1)	1.32e+2(2.60e+1)	7.86e+1 (1.83e+1)
analcat-apnea3	5.15e+7 (4.33e+7)	5.02e+7 (4.14e+7)	4.85e+7 (3.88e+7)	5.55e+7 (4.83e+7)	4.54e+7(3.97e+7)	4.68e+7 (3.95e+7)	4.90e+7 (3.99e+7)
cocomo_numeric	5.87e + 5 (1.06e + 6)	4.61e+5 (9.33e+5)	3.88e + 5 (6.96e + 5)	2.40e+6 (1.59e+6)	4.33e+5 (6.79e+5)	7.91e+5 (8.52e+5)	3.62e+5 (6.39e+5)
abalone	1.35e+3 (2.87e+2)	1.30e+3 (2.45e+2)	1.18e + 3 (2.59e + 2)	1.28e+3 (2.83e+2)	1.36e+3 (2.25e+2)	1.39e+3 (2.67e+2)	1.13e+3 (2.32e+2)
a3	5.60e+2 (4.76e+2)	6.67e+2 (4.91e+2)	8.10e+2 (5.56e+2)	8.01e+2 (4.11e+2)	7.29e+2(3.98e+2)	1.25e+3 (6.86e+2)	1.07e+3 (5.99e+2)
forestFires	2.10e+5 (3.73e+5)	2.11e+5 (3.68e+5)	2.81e+5 (3.74e+5)	2.17e+5 (3.51e+5)	2.66e+5 (3.39e+5)	3.19e+5 (3.32e+5)	2.52e+5 (3.64e+5)
sleuth_case1202	1.05e+4 (1.01e+4)	7.68e+3 (6.42e+3)	6.75e+3 (4.39e+3)	2.01e+4 (1.09e+4)	7.48e+3 (4.62e+3)	9.08e+3 (5.98e+3)	1.01e+4 (7.86e+3)
a1	1.36e+3 (7.45e+2)	1.52e+3 (7.18e+2)	1.76e + 3 (9.21e + 2)	1.37e + 3 (6.80e + 2)	2.23e+3 (1.19e+3)	2.38e+3 (1.13e+3)	2.69e+3 (9.42e+2)
a7	4.53e+2 (3.31e+2)	4.07e+2 (3.17e+2)	3.30e+2 (1.82e+2)	4.61e+2 (2.46e+2)	3.83e+2 (2.50e+2)	6.16e+2 (2.11e+2)	4.35e+2 (2.11e+2)
kidney	1.72e+0 (1.53e+0)	1.14e+0 (8.87e-01)	1.14e+0 (1.02e+0)	1.41e+0 (9.62e-01)	1.09e + 0 (7.99e - 01)	1.40e+0 (8.93e-01)	1.49e+0 (1.34e+0)
boston	5.08e+2 (2.01e+2)	4.73e+2 (2.06e+2)	3.56e+2 (1.57e+2)	5.20e+2 (2.80e+2)	5.50e+2 (2.94e+2)	3.64e+2 (1.67e+2)	3.75e+2 (1.67e+2)
sensory	1.73e+1 (3.81e+0)	2.84e+1 (1.02e+1)	1.32e+1 (2.55e+0)	2.26e+1 (5.57e+0)	2.01e+1 (5.30e+0)	2.31e+1 (6.54e+0)	1.41e+1 (3.36e+0)
a2	9.82e+2 (1.52e+3)	1.17e+3 (1.30e+3)	1.18e + 3 (1.26e + 3)	2.33e+3 (1.10e+3)	1.32e+3 (1.27e+3)	4.88e+3 (1.75e+3)	1.73e+3 (1.24e+3)
triazines	2.30e-01 (1.80e-01)	1.68e-01 (7.80e-02)	1.98e-01 (8.50e-02)	2.47e-01 (1.36e-01)	2.33e-01 (1.92e-01)	5.07e-01 (1.64e-01)	1.86e-01 (1.35e-01)
kdd_coil_1	1.54e + 3 (7.94e + 2)	2.08e+3 (9.81e+2)	1.93e + 3 (8.35e + 2)	5.81e+3 (2.80e+3)	2.15e+3 (1.06e+3)	2.39e+3 (1.26e+3)	2.31e+3 (8.01e+2)
mortgage	3.04e+0 (1.06e+0)	2.61e+0 (1.44e+0)	1.45e + 0 (5.38e - 01)	3.45e+0 (1.05e+0)	1.85e + 0 (6.41e - 01)	2.01e+0 (4.84e-01)	$1.87e + 0 \ (7.54e - 01)$
treasury	4.18e+0 (4.09e+0)	3.56e+0 (2.99e+0)	2.98e+0 (2.33e+0)	5.44e+0 (5.10e+0)	8.45e+0 (9.99e+0)	3.37e+0 (2.73e+0)	3.22e+0 (2.51e+0)
debutanizer	1.39e + 0 (3.46e - 01)	8.66e-01 (1.73e-01)	7.30e-01 (1.91e-01)	1.49e+0 (3.30e-01)	1.07e + 0 (3.15e - 01)	1.49e + 0 (2.35e - 01)	8.89e-01 (2.72e-01)
fuelCons	3.89e+1 (2.40e+1)	3.94e+1 (1.74e+1)	2.59e+1 (1.76e+1)	4.29e+1 (2.25e+1)	5.37e+1 (2.62e+1)	3.25e+1 (1.59e+1)	2.80e+1 (1.73e+1)
heat	1.11e+4 (2.96e+3)	4.06e+3 (5.94e+2)	3.91e+3 (5.23e+2)	1.24e+4 (3.16e+3)	5.61e+3 (2.77e+3)	5.86e+3 (8.45e+2)	6.38e+3 (1.19e+3)
california	2.10e+12 (2.13e+11)	3.62e+12 (3.36e+11)	1.92e+12 (2.75e+11)	2.12e+12 (2.24e+11)	4.88e+12 (4.29e+11)	2.72e+12 (2.82e+11)	2.45e+12 (2.47e+11)
cpuSm	9.62e+4 (1.83e+5)	4.52e+4 (1.08e+5)	3.51e+4 (6.23e+4)	1.30e+5 (2.44e+5)	3.90e+4 (7.11e+4)	4.30e+4 (8.49e+4)	4.43e+4 (9.54e+4)
compactiv	1.32e+3 (4.50e+2)	1.92e+3 (6.02e+2)	1.30e + 3 (8.26e + 2)	1.43e+3 (6.05e+2)	1.60e+3 (1.27e+3)	1.34e+3 (8.70e+2)	1.47e + 3 (8.29e + 2)
availPwr	1.19e+4 (5.47e+3)	3.46e+4 (1.36e+4)	6.92e+3 (6.30e+3)	1.31e+4 (6.61e+3)	3.82e+4 (1.32e+4)	8.56e+3 (5.59e+3)	9.05e+3 (4.73e+3)
maxTorq	3.36e+4 (3.04e+4)	8.48e+4 (3.32e+4)	1.17e+4 (1.30e+4)	3.58e+4 (2.64e+4)	7.03e+4 (4.75e+4)	1.46e+4 (1.40e+4)	1.70e+4 (1.99e+4)
space-ga	2.40e+0 (1.65e+0)	2.29e+0 (1.41e+0)	2.25e+0 (1.45e+0)	2.34e+0 (1.49e+0)	2.57e+0 (1.65e+0)	$2.67e + 0 \ (1.33e + 0)$	2.05e+0 (1.42e+0)
ConcrStr	1.73e+3 (6.44e+2)	2.14e+3 (6.69e+2)	1.47e + 3 (5.67e + 2)	1.61e+4 (2.29e+4)	2.44e+3 (8.13e+2)	1.57e+4 (1.99e+4)	1.67e+3 (5.12e+2)
acceleration	6.92e+1 (5.25e+1)	8.86e+1 (5.23e+1)	5.18e+1 (3.83e+1)	8.74e+1 (6.53e+1)	8.31e+1 (4.55e+1)	5.63e+1 (2.79e+1)	5.77e+1 (4.37e+1)
airfoild	2.99e+10 (1.10e+10)	2.03e+10 (1.43e+10)	9.76e + 8 (6.93e + 8)	4.16e+10 (1.29e+10)	2.70e+10 (1.09e+10)	3.73e+10 (8.93e+9)	1.36e+11 (4.60e+10)

Table 8: Mean and standard deviation of the $\bf SERA$ metric obtained for each dataset considering $\bf DT$ technique. The best results are highlighted in bold.

	None	SMT	RO	RU	$_{ m GN}$	$_{ m SG}$	WERCS
Dataset				F1-score			
rabe-265	4.23e+3 (7.24e+3)	3.90e+3 (7.24e+3)	4.95e+3 (7.46e+3)	4.64e+3 (7.06e+3)	4.45e+3 (6.65e+3)	4.96e+3 (6.63e+3)	4.58e+3 (7.29e+3)
wine-quality	1.12e+2 (1.59e+1)	1.18e+2 (2.07e+1)	1.17e+2 (1.88e+1)	9.61e+1 (1.72e+1)	3.30e+2 (4.65e+1)	1.69e+2 (2.96e+1)	1.18e+2 (2.47e+1)
analcat-apnea3	4.86e+7 (4.22e+7)	5.64e+7 (6.79e+7)	6.04e+7 (6.08e+7)	4.79e+7 (4.14e+7)	5.17e+7 (4.13e+7)	4.48e+7 (5.20e+7)	5.16e+7 (6.24e+7)
cocomo_numeric	3.99e+5 (7.02e+5)	4.82e+5 (9.48e+5)	2.48e+5 (3.91e+5)	3.97e + 5 (7.39e + 5)	3.98e+5 (5.89e+5)	2.27e+5 (3.72e+5)	3.99e+5 (7.02e+5)
abalone	1.49e+3 (2.92e+2)	1.51e+3 (3.22e+2)	1.52e+3 (3.25e+2)	1.46e+3 (2.76e+2)	1.80e+3 (3.11e+2)	1.74e+3 (2.73e+2)	1.55e+3 (2.95e+2)
a3	8.06e+2 (5.83e+2)	9.96e+2 (6.38e+2)	8.04e+2 (6.53e+2)	1.41e+3 (1.16e+3)	9.13e+2 (5.70e+2)	9.39e+2 (8.06e+2)	1.00e+3 (6.47e+2)
forestFires	2.06e+5 (3.56e+5)	2.46e+5 (3.65e+5)	2.44e+5 (3.30e+5)	4.01e+5 (4.97e+5)	3.85e+5 (4.06e+5)	3.98e+5 (4.10e+5)	2.71e+5 (3.85e+5)
$sleuth_case1202$	8.80e+3 (4.91e+3)	8.67e+3 (5.58e+3)	8.77e+3 (6.88e+3)	5.63e+4 (5.51e+4)	7.96e+3 (5.66e+3)	9.96e+3 (6.95e+3)	7.28e+3 (4.49e+3)
a1	1.92e + 3 (1.57e + 3)	2.35e+3 (2.08e+3)	2.29e+3 (2.00e+3)	1.95e+3 (1.37e+3)	2.72e+3 (1.54e+3)	2.83e+3 (2.31e+3)	4.53e+3 (2.54e+3)
a7	3.75e+2 (2.61e+2)	3.93e+2 (3.23e+2)	4.02e+2 (2.80e+2)	5.27e+2 (2.85e+2)	4.77e+2 (3.08e+2)	7.43e+2 (3.93e+2)	3.50e+2 (2.50e+2)
kidney	1.51e+0 (1.66e+0)	1.88e+0 (1.92e+0)	1.50e+0 (1.57e+0)	1.64e+0 (1.48e+0)	1.57e+0 (1.44e+0)	$1.68e + 0 \ (1.47e + 0)$	$1.38e+0 \ (1.22e+0)$
boston	5.13e+2 (2.58e+2)	5.55e+2 (3.07e+2)	5.77e+2 (3.33e+2)	5.40e+2 (2.62e+2)	6.41e+2 (3.06e+2)	5.74e+2 (3.21e+2)	4.65e+2 (2.60e+2)
sensory	1.45e+1 (3.84e+0)	3.82e+1 (3.13e+1)	1.67e+1 (4.69e+0)	2.88e+1 (7.95e+0)	2.00e+1 (5.39e+0)	1.55e+1 (4.05e+0)	1.65e+1 (4.22e+0)
a2	1.09e+3 (1.47e+3)	1.09e+3 (1.37e+3)	1.54e+3 (1.76e+3)	2.88e + 3 (2.38e + 3)	1.62e+3 (1.68e+3)	5.51e+3 (3.02e+3)	2.29e+3 (2.03e+3)
triazines	2.10e-01 (1.80e-01)	$1.42e-01 \ (8.30e-02)$	1.76e-01 (1.18e-01)	4.15e-01 (1.73e-01)	2.12e-01 (1.82e-01)	4.61e-01 (2.12e-01)	1.78e-01 (1.33e-01)
kdd_coil_1	1.71e+3 (8.43e+2)	2.68e+3 (2.08e+3)	3.36e+3 (2.81e+3)	5.41e+3 (3.17e+3)	3.15e+3 (2.74e+3)	2.58e+3 (1.83e+3)	3.30e+3 (1.78e+3)
mortgage	2.43e+0 (1.15e+0)	2.10e+0 (9.85e-01)	$1.66e + 0 \ (7.35e - 01)$	3.16e+0 (1.27e+0)	3.56e+0 (2.79e+0)	3.56e+0 (1.24e+0)	3.04e+0 (1.27e+0)
treasury	5.50e+0 (3.46e+0)	$6.02e+0 \ (7.56e+0)$	4.01e+0 (3.05e+0)	4.62e+0 (2.65e+0)	1.69e+1 (3.02e+1)	4.22e+0 (3.12e+0)	6.07e+0 (4.18e+0)
debutanizer	1.35e+0 (4.44e-01)	8.50e-01 (3.63e-01)	1.12e+0 (4.42e-01)	1.34e+0 (5.01e-01)	9.59e-01 (4.43e-01)	1.83e + 0 (4.91e - 01)	1.17e + 0 (4.05e - 01)
fuelCons	3.73e+1 (2.29e+1)	4.87e+1 (2.30e+1)	3.34e+1 (2.27e+1)	4.47e+1 (2.13e+1)	6.54e+1 (3.39e+1)	4.13e+1 (2.12e+1)	3.45e+1 (2.45e+1)
heat	1.16e+4 (2.37e+3)	3.76e+3 (5.62e+2)	4.05e+3 (5.73e+2)	1.31e+4 (2.61e+3)	3.93e+3 (4.81e+2)	6.17e+3 (6.86e+2)	6.09e+3 (9.34e+2)
california	2.39e+12 (2.55e+11)	5.52e+12 (5.37e+11)	2.70e+12 (3.59e+11)	2.53e+12 (3.06e+11)	6.71e+12 (7.51e+11)	3.65e+12 (3.32e+11)	2.98e+12 (3.71e+11)
cpuSm	3.45e+4 (4.76e+4)	3.79e+4 (9.16e+4)	3.14e+4 (5.36e+4)	3.49e+4 (4.72e+4)	3.06e+4 (4.84e+4)	2.94e+4 (4.46e+4)	3.03e+4 (4.87e+4)
compactiv	1.97e + 3 (1.45e + 3)	2.73e+3 (7.69e+2)	1.74e + 3 (1.89e + 2)	2.02e+3 (1.49e+3)	1.95e+3 (1.38e+3)	2.13e+3 (1.55e+3)	2.55e+3 (1.68e+3)
availPwr	8.87e + 3 (3.79e + 3)	4.46e+4 (1.57e+4)	5.81e+3 (5.63e+3)	1.01e+4 (4.80e+3)	4.35e+4 (3.75e+4)	8.51e+3 (7.67e+3)	9.77e+3 (7.56e+3)
maxTorq	2.31e+4 (2.54e+4)	7.91e+4 (4.87e+4)	8.10e+3 (1.06e+4)	1.94e+4 (1.59e+4)	9.81e+4 (4.57e+4)	1.82e+4 (3.15e+4)	1.34e+4 (1.86e+4)
space-ga	2.83e+0 (1.73e+0)	$2.67e+0 \ (1.42e+0)$	2.77e+0 (1.41e+0)	2.85e+0 (1.62e+0)	2.90e+0 (1.61e+0)	3.53e+0 (1.28e+0)	2.68e+0 (1.58e+0)
ConcrStr	1.75e+3 (1.14e+3)	2.14e+3 (1.12e+3)	1.53e+3 (6.53e+2)	2.09e+3 (1.05e+3)	2.45e+3 (1.07e+3)	1.96e+3 (7.60e+2)	1.43e+3 (5.38e+2)
acceleration	7.84e+1 (5.68e+1)	9.03e+1 (7.29e+1)	5.24e+1 (3.27e+1)	1.12e+2 (8.39e+1)	1.04e+2 (6.08e+1)	6.46e+1 (4.14e+1)	6.37e+1 (5.46e+1)
airfoild	4.47e + 8 (9.51e + 7)	2.17e+9 (3.68e+9)	4.94e+8 (1.52e+8)	6.02e+9 (7.31e+9)	4.47e+8 (9.51e+7)	8.40e+9 (9.12e+9)	4.47e+8 (9.51e+7)

Table 9: Mean and standard deviation of the $\bf SERA$ metric obtained for each dataset considering $\bf MLP$ technique. The best results are highlighted in bold.

	None	SMT	RO	RU	$_{ m GN}$	$_{ m SG}$	WERCS
Dataset				F1-score			
rabe-265	6.44e+4 (1.27e+5)	4.76e+4 (1.09e+5)	1.63e+5 (2.27e+5)	2.24e+5 (4.83e+5)	1.02e+5 (3.35e+5)	8.87e+4 (1.91e+5)	1.88e+5 (3.22e+5)
wine-quality	1.81e+2 (6.93e+1)	1.97e+2 (3.43e+1)	3.71e+2 (1.21e+2)	1.16e+2 (6.39e+1)	1.35e+2 (6.22e+1)	2.21e+2 (9.31e+1)	1.49e+2 (8.55e+1)
analcat-apnea3	5.78e + 7 (4.48e + 7)	5.59e+7 (5.78e+7)	5.31e+7 (4.80e+7)	5.41e+7 (4.83e+7)	5.44e+7 (5.69e+7)	6.36e+7 (6.44e+7)	5.29e+7 (4.68e+7)
cocomo_numeric	5.61e+4 (9.27e+4)	8.10e+4 (1.05e+5)	7.61e+4 (1.37e+5)	8.19e+4 (1.82e+5)	4.74e+4 (8.38e+4)	6.34e+4 (1.28e+5)	6.83e+4 (1.34e+5)
abalone	2.46e+3 (5.36e+2)	2.42e+3 (9.50e+2)	2.57e+3 (7.33e+2)	7.12e+3 (6.04e+3)	3.23e+3 (1.32e+3)	2.00e+3 (5.12e+2)	2.29e+3 (5.64e+2)
a3	1.05e+7 (2.74e+7)	1.31e+5 (3.77e+5)	4.51e+5 (8.65e+5)	2.74e+7 (7.06e+7)	2.17e+6 (5.49e+6)	1.85e + 8 (6.32e + 8)	2.40e+6 (6.80e+6)
forestFires	2.04e+5 (3.72e+5)	1.99e + 5 (3.52e + 5)	1.99e + 5 (3.59e + 5)	2.08e+5 (3.56e+5)	2.17e+5 (3.44e+5)	2.55e+5 (3.15e+5)	2.03e+5 (3.53e+5)
$sleuth_case1202$	4.47e+5 (6.19e+5)	1.89e + 5 (4.08e + 5)	2.81e+5 (5.39e+5)	1.23e+6 (2.34e+6)	1.51e+6 (2.59e+6)	8.01e+5 (1.37e+6)	2.31e+5 (3.21e+5)
a1	1.94e+7 (5.53e+7)	1.30e+6 (2.98e+6)	1.88e + 6 (4.25e + 6)	3.47e+7 (9.20e+7)	5.74e+7 (1.82e+8)	4.25e+6 (1.25e+7)	2.28e+8 (6.19e+8)
a7	1.58e + 7 (4.85e + 7)	2.32e+7 (7.55e+7)	3.30e+5 (7.56e+5)	1.15e+8 (2.13e+8)	3.46e+6 (1.22e+7)	1.23e+9 (5.15e+9)	3.91e+6 (1.22e+7)
kidney	6.12e+1 (1.77e+2)	9.55e+0 (1.30e+1)	2.65e+1 (6.04e+1)	6.65e+1 (2.14e+2)	3.83e+1 (7.18e+1)	7.40e+1 (1.70e+2)	6.68e+1 (1.59e+2)
boston	4.44e+5 (8.96e+5)	9.49e+4(2.58e+5)	1.87e + 5 (7.41e + 5)	2.77e+6 (6.96e+6)	1.13e+6 (4.71e+6)	4.29e+5 (1.21e+6)	1.96e+5 (6.33e+5)
sensory	2.74e+1 (7.38e+0)	7.93e+1 (5.17e+1)	2.78e+1 (1.25e+1)	5.10e+1 (2.85e+1)	4.45e+1(1.75e+1)	2.60e+1 (7.87e+0)	2.94e+1 (1.62e+1)
a2	4.62e+7 (1.20e+8)	7.59e+6 (3.35e+7)	1.64e+5 (3.95e+5)	1.75e + 8 (7.73e + 8)	8.73e+6 (3.87e+7)	4.64e+7(1.04e+8)	8.14e+6 (1.66e+7)
triazines	1.01e+0 (1.23e+0)	3.88e-01 (2.16e-01)	3.90e-01 (1.70e-01)	5.63e-01 (3.66e-01)	8.82e-01 (1.14e+0)	1.09e+0 (2.11e+0)	5.34e-01 (2.33e-01)
kdd_coil_1	1.81e+3 (1.04e+3)	2.26e+3 (1.44e+3)	2.32e+3 (1.50e+3)	1.12e+4 (9.72e+3)	3.52e+3 (2.18e+3)	3.30e+3 (1.89e+3)	2.59e+3 (1.17e+3)
mortgage	8.37e+2 (1.91e+3)	6.88e + 2 (1.43e + 3)	6.22e+2(1.19e+3)	9.71e+3(4.04e+4)	2.63e+2 (5.02e+2)	5.20e+2 (8.02e+2)	3.40e+2 (7.35e+2)
treasury	5.03e+3 (2.00e+4)	2.91e+2 (4.92e+2)	2.44e+3 (7.07e+3)	4.43e+3 (1.38e+4)	7.59e+2(1.77e+3)	2.20e+2 (6.10e+2)	7.93e+2(1.48e+3)
debutanizer	3.79e+0 (4.88e-01)	3.54e + 0 (6.13e - 01)	3.45e+0 (5.24e-01)	3.74e+0 (5.28e-01)	3.90e+0 (5.44e-01)	3.97e+0 (6.07e-01)	3.62e+0 (6.71e-01)
fuelCons	7.11e+3 (1.38e+4)	1.73e+4 (6.61e+4)	4.75e+3(1.35e+4)	3.87e+4 (1.53e+5)	1.79e + 3(2.49e + 3)	4.08e+3(1.05e+4)	1.38e + 3 (1.09e + 3)
heat	1.93e+5 (2.30e+5)	1.28e+5 (2.80e+5)	1.61e+5 (2.41e+5)	1.52e+5 (1.77e+5)	9.19e+4(1.72e+5)	1.64e+5 (2.97e+5)	8.97e+4 (1.51e+5)
california	4.28e+12 (4.93e+11)	6.23e+12 (1.27e+12)	4.18e+12 (9.55e+11)	4.66e+12 (3.30e+11)	8.67e+12 (1.75e+12)	4.74e+12 (7.15e+11)	4.43e+12 (3.56e+11)
cpuSm	4.42e+5 (7.14e+5)	2.09e+5 (3.88e+5)	6.40e+4 (1.09e+5)	8.56e+5 (2.24e+6)	3.00e+5 (5.42e+5)	2.37e+5 (4.12e+5)	1.22e+5 (3.05e+5)
compactiv	1.43e+7 (3.86e+7)	5.22e+7 (1.81e+8)	4.29e+5 (3.43e+5)	2.34e+7 (8.53e+7)	4.93e+6 (9.92e+6)	1.11e+6 (1.20e+6)	4.15e+6 (1.56e+7)
availPwr	9.91e+4 (1.45e+5)	6.51e+6 (2.89e+7)	4.15e+6 (1.35e+7)	5.12e+5 (1.17e+6)	3.73e+6 (1.13e+7)	3.33e+6 (1.33e+7)	5.27e+5 (1.90e+6)
maxTorq	1.08e+6 (1.39e+6)	3.09e+5 (3.25e+5)	4.50e+5(7.04e+5)	1.11e+6 (1.24e+6)	1.33e+6 (2.27e+6)	4.56e+5(7.19e+5)	6.95e+5 (8.24e+5)
space-ga	1.13e+9 (4.95e+9)	1.44e+8 (6.44e+8)	4.38e+9 (1.96e+10)	7.71e+9 (2.47e+10)	4.25e + 8 (1.39e + 9)	3.03e+13 (1.35e+14)	4.31e+7 (1.70e+8)
ConcrStr	7.55e+3 (1.09e+4)	4.92e+3(2.12e+3)	3.31e+3 (1.42e+3)	3.41e+3 (1.23e+3)	3.69e+3(2.12e+3)	4.06e+3 (1.21e+3)	3.22e+3 (9.60e+2)
acceleration	5.79e+3(4.17e+3)	3.10e + 3 (2.68e + 3)	6.02e+3 (1.25e+4)	2.81e+5 (8.02e+5)	1.39e + 5 (6.03e + 5)	1.17e + 5 (4.90e + 5)	4.35e+3 (2.78e+3)
airfoild	2.02e+11 (4.58e+10)	1.88e+11 (2.98e+10)	1.87e+11 (2.82e+10)	1.95e+11 (4.22e+10)	1.98e+11 (4.21e+10)	4.35e+11 (4.96e+10)	2.21e+11 (5.46e+10)

Table 10: Mean and standard deviation of the $\bf SERA$ metric obtained for each dataset considering $\bf RF$ technique. The best results are highlighted in bold.

	None	SMT	RO	RU	GN	$_{ m SG}$	WERCS
Dataset				F1-score			
rabe-265	3.94e+3 (7.01e+3)	3.98e+3 (7.01e+3)	4.07e+3 (7.00e+3)	4.32e+3 (5.84e+3)	4.03e+3 (6.53e+3)	4.23e+3 (6.61e+3)	4.32e+3 (7.17e+3)
wine-quality	7.80e+1 (1.40e+1)	7.94e+1 (1.37e+1)	7.35e+1 (1.40e+1)	6.07e+1 (1.27e+1)	1.09e+2(1.77e+1)	7.00e+1 (1.46e+1)	6.54e+1 (1.45e+1)
analcat-apnea3	3.87e+7 (2.93e+7)	4.55e+7 (4.09e+7)	4.63e+7 (4.10e+7)	3.76e+7 (2.83e+7)	4.12e+7 (2.96e+7)	3.67e + 7 (3.05e + 7)	4.17e+7(3.37e+7)
cocomo_numeric	5.60e+5 (8.45e+5)	5.26e+5 (7.77e+5)	4.51e+5 (6.46e+5)	5.75e+5 (8.00e+5)	5.32e+5 (7.33e+5)	5.40e+5 (7.02e+5)	5.59e+5 (8.40e+5)
abalone	1.24e+3 (2.68e+2)	1.22e+3 (2.63e+2)	1.17e+3 (2.49e+2)	1.13e+3 (2.36e+2)	1.26e+3 (2.52e+2)	1.27e+3 (2.50e+2)	1.09e + 3 (2.28e + 2)
a3	5.83e+2 (5.09e+2)	6.26e+2 (5.01e+2)	6.40e+2 (5.29e+2)	8.90e+2 (4.63e+2)	6.74e+2 (4.81e+2)	9.55e+2 (3.81e+2)	7.30e+2 (4.21e+2)
forestFires	2.12e+5 (3.69e+5)	2.18e+5 (3.72e+5)	2.25e+5 (3.71e+5)	2.43e+5 (3.42e+5)	2.17e+5 (3.65e+5)	2.59e+5 (3.45e+5)	2.39e+5 (3.57e+5)
$sleuth_case1202$	6.77e+3 (4.95e+3)	6.00e+3 (5.02e+3)	6.56e+3 (4.16e+3)	1.62e+4 (1.51e+4)	6.40e+3 (4.60e+3)	6.50e+3 (5.99e+3)	6.87e + 3 (4.89e + 3)
a1	1.31e+3 (7.18e+2)	1.34e+3 (6.43e+2)	1.37e+3 (6.26e+2)	1.49e+3 (7.39e+2)	1.98e + 3 (9.39e + 2)	1.89e + 3 (8.15e + 2)	2.59e+3 (9.28e+2)
a7	3.80e+2 (2.69e+2)	3.77e+2(2.64e+2)	3.36e+2(2.17e+2)	3.88e+2(2.12e+2)	3.65e+2(2.37e+2)	4.31e+2(1.79e+2)	3.50e+2(1.77e+2)
kidney	8.12e-01 (6.81e-01)	6.62e-01 (4.37e-01)	6.46e-01 (6.96e-01)	8.46e-01 (6.43e-01)	7.14e-01 (6.18e-01)	9.74e-01 (7.46e-01)	8.00e-01 (5.73e-01)
boston	3.89e+2 (1.91e+2)	3.67e+2 (1.90e+2)	3.37e+2 (1.69e+2)	3.96e+2 (2.04e+2)	3.89e+2(2.09e+2)	3.18e+2(1.55e+2)	3.05e+2(1.34e+2)
sensory	1.46e+1 (3.19e+0)	1.63e+1 (4.75e+0)	1.39e+1 (3.21e+0)	1.67e+1 (4.29e+0)	1.60e+1 (2.98e+0)	1.94e+1 (5.12e+0)	1.45e+1 (2.75e+0)
a2	9.52e+2 (1.46e+3)	9.96e+2 (1.42e+3)	9.94e+2(1.44e+3)	2.15e+3 (1.22e+3)	9.80e+2 (1.30e+3)	3.64e+3 (1.50e+3)	1.54e+3 (1.25e+3)
triazines	2.12e-01 (1.76e-01)	2.03e-01 (1.54e-01)	2.02e-01 (1.51e-01)	3.92e-01 (1.04e-01)	2.11e-01 (1.74e-01)	4.24e-01 (1.60e-01)	2.01e-01 (1.56e-01)
kdd_coil_1	1.34e+3 (6.70e+2)	1.44e+3 (6.51e+2)	1.36e+3 (6.75e+2)	4.76e+3 (2.24e+3)	1.52e+3 (7.39e+2)	1.72e+3 (7.64e+2)	2.05e+3 (6.50e+2)
mortgage	7.74e-01 (3.66e-01)	8.27e-01 (3.77e-01)	6.96e-01 (3.20e-01)	8.84e-01 (3.53e-01)	5.03e+0 (1.20e+1)	8.45e-01 (3.40e-01)	7.26e-01 (3.17e-01)
treasury	2.50e+0 (2.94e+0)	2.53e+0 (3.37e+0)	2.37e+0 (2.87e+0)	2.57e+0 (3.06e+0)	2.40e+0 (2.94e+0)	2.06e+0 (2.82e+0)	2.62e+0 (2.91e+0)
debutanizer	6.63e-01 (2.39e-01)	4.74e-01 (2.01e-01)	5.07e-01 (2.01e-01)	6.86e-01 (2.13e-01)	5.62e-01 (2.68e-01)	9.30e-01 (2.23e-01)	5.33e-01 (2.30e-01)
fuelCons	1.74e+1 (1.26e+1)	1.95e+1 (1.24e+1)	1.46e+1 (9.90e+0)	1.98e+1(1.14e+1)	2.06e+1 (1.59e+1)	1.74e+1 (1.02e+1)	1.33e+1 (9.22e+0)
heat	1.04e+3 (2.80e+2)	6.28e+2 (2.13e+2)	9.07e+2 (2.07e+2)	1.36e+3 (3.54e+2)	1.07e+3 (1.89e+2)	9.62e+2 (2.29e+2)	1.00e+3 (1.93e+2)
california	1.78e+12 (1.91e+11)	2.71e+12 (4.29e+11)	1.74e + 12 (1.94e + 11)	1.76e+12 (1.92e+11)	2.05e+12 (7.24e+11)	2.22e+12 (1.96e+11)	2.31e+12 (2.12e+11)
cpuSm	5.63e+4 (1.20e+5)	4.65e+4 (1.03e+5)	3.36e+4 (8.05e+4)	5.58e+4 (1.20e+5)	4.10e+4 (8.81e+4)	4.44e+4 (1.03e+5)	3.89e+4 (8.59e+4)
compactiv	1.15e+3 (3.59e+2)	1.46e+3 (6.62e+2)	1.10e + 3 (3.59e + 2)	1.17e+3 (3.80e+2)	1.15e+3 (3.62e+2)	1.11e+3 (4.20e+2)	1.20e+3 (3.51e+2)
availPwr	4.67e+3 (5.39e+3)	2.17e+4(2.78e+4)	4.34e+3 (5.63e+3)	5.07e+3 (5.27e+3)	9.61e+3 (1.55e+4)	5.03e+3 (5.67e+3)	4.38e+3 (5.09e+3)
maxTorq	1.20e+4 (1.51e+4)	2.81e+4 (2.30e+4)	1.02e+4 (1.60e+4)	1.38e+4 (1.61e+4)	1.30e+4 (1.63e+4)	1.32e+4 (1.88e+4)	1.10e+4 (1.55e+4)
space-ga	2.17e+0 (1.62e+0)	2.14e+0 (1.56e+0)	2.10e+0 (1.45e+0)	2.16e+0 (1.57e+0)	2.31e+0 (1.56e+0)	2.49e+0 (1.56e+0)	1.98e+0 (1.43e+0)
ConcrStr	8.89e+2 (5.36e+2)	1.33e+3 (8.40e+2)	8.53e+2 (5.52e+2)	1.10e+3 (4.71e+2)	1.33e+3 (1.17e+3)	1.07e+3(4.93e+2)	8.73e+2(4.33e+2)
acceleration	3.32e+1(2.24e+1)	3.77e+1 (2.20e+1)	2.82e+1 (1.76e+1)	4.03e+1(2.42e+1)	3.43e+1(2.35e+1)	3.38e+1 (2.21e+1)	2.57e+1 (1.35e+1)
airfoild	2.05e+8 (1.49e+8)	3.73e+8 (4.78e+8)	1.32e + 8 (6.70e + 7)	4.51e+8 (6.08e+8)	1.94e+8 (1.27e+8)	8.90e+8 (9.20e+8)	2.16e+8 (1.83e+8)

Table 11: Mean and standard deviation of the $\bf SERA$ metric obtained for each dataset considering $\bf SVM$ technique. The best results are highlighted in bold.

	None	$_{\mathrm{SMT}}$	RO	RU	GN	$_{ m SG}$	WERCS
Dataset				F1-score			
rabe-265	4.84e+3 (8.19e+3)	4.88e+3 (8.17e+3)	4.45e+3 (7.84e+3)	4.07e+3 (6.64e+3)	4.27e+3 (6.54e+3)	4.12e+3 (5.91e+3)	4.85e+3 (7.61e+3)
wine-quality	1.37e + 2 (2.13e + 1)	1.37e+2 (2.15e+1)	1.66e+2 (4.05e+1)	6.77e+1 (1.45e+1)	3.79e+2(4.75e+1)	3.54e+2 (5.31e+1)	1.42e+2 (3.39e+1)
analcat-apnea3	4.74e + 8 (4.08e + 8)	4.55e+8 (3.96e+8)	4.55e + 8 (3.95e + 8)	4.60e + 8 (3.99e + 8)	4.39e + 8 (3.85e + 8)	4.50e + 8 (3.92e + 8)	4.53e + 8 (3.96e + 8)
cocomo_numeric	1.07e+6 (1.87e+6)	6.50e+5 (1.22e+6)	7.59e+5 (1.49e+6)	9.12e+5 (1.65e+6)	5.87e + 5 (1.07e + 6)	6.55e+5 (1.23e+6)	1.07e+6 (1.87e+6)
abalone	2.52e+3 (4.20e+2)	2.48e + 3 (4.25e + 2)	3.11e+3 (4.60e+2)	2.61e+3 (4.05e+2)	2.76e+3 (3.78e+2)	2.66e+3 (4.11e+2)	2.69e+3 (4.02e+2)
a3	5.66e+2 (5.07e+2)	7.04e+2 (4.10e+2)	5.60e+2 (4.79e+2)	5.59e+2 (4.85e+2)	8.19e+2 (3.78e+2)	1.32e+3 (4.14e+2)	7.75e+2 (3.87e+2)
forestFires	2.09e+5 (3.80e+5)	2.08e+5 (3.71e+5)	2.45e+5 (3.81e+5)	2.07e + 5 (3.78e + 5)	2.17e+5 (3.53e+5)	2.11e+5 (3.58e+5)	2.13e+5 (3.56e+5)
$sleuth_case1202$	2.89e+4 (1.85e+4)	4.43e+4 (2.47e+4)	3.35e+4 (1.79e+4)	8.28e+4 (6.71e+4)	4.53e+4 (2.08e+4)	3.93e+4 (1.90e+4)	4.02e+4 (1.75e+4)
a1	2.25e+3 (8.27e+2)	4.57e+3 (2.12e+3)	2.46e+3 (7.65e+2)	2.39e+3 (1.07e+3)	6.42e+3 (2.00e+3)	4.90e+3 (1.48e+3)	4.65e+3(1.19e+3)
a7	4.92e+2(3.85e+2)	4.39e+2(2.93e+2)	4.76e+2(3.72e+2)	4.39e+2 (3.02e+2)	4.44e+2(2.74e+2)	6.33e+2(1.99e+2)	4.47e+2(2.87e+2)
kidney	1.36e+0 (1.14e+0)	2.17e+0 (2.74e+0)	1.36e+0 (1.14e+0)	$1.27e + 0 \ (8.08e - 01)$	1.33e+0 (1.11e+0)	2.01e+0 (1.61e+0)	$1.33e + 0 \ (8.79e - 01)$
boston	3.66e+3 (8.02e+2)	3.72e+3(7.82e+2)	3.64e+3 (7.79e+2)	4.82e+3 (1.41e+3)	4.83e+3 (9.41e+2)	5.39e+3(1.77e+3)	3.62e+3 (7.31e+2)
sensory	2.14e+1 (5.39e+0)	2.28e+1 (6.21e+0)	1.97e+1 (5.08e+0)	4.14e+1 (1.42e+1)	1.96e+1 (4.15e+0)	2.37e+1 (5.76e+0)	2.16e+1 (6.47e+0)
a2	1.04e + 3 (1.44e + 3)	1.70e+3 (1.24e+3)	1.07e+3 (1.35e+3)	1.04e + 3 (1.37e + 3)	2.08e+3 (1.05e+3)	1.95e+3 (1.07e+3)	1.63e+3 (1.04e+3)
triazines	2.55e-01 (1.97e-01)	2.55e-01 (1.57e-01)	$2.22e-01 \ (1.27e-01)$	4.37e-01 (1.16e-01)	2.55e-01 (1.97e-01)	5.63e-01 (1.68e-01)	2.64e-01 (1.45e-01)
kdd_coil_1	1.80e + 3 (1.22e + 3)	3.71e+3 (1.63e+3)	2.42e+3 (8.03e+2)	1.06e+4 (3.46e+3)	3.88e+3 (1.02e+3)	3.16e+3 (1.79e+3)	5.35e+3 (9.42e+2)
mortgage	2.04e+0 (1.14e+0)	2.62e+0 (1.52e+0)	2.04e+0 (1.14e+0)	4.74e+0 (3.22e+0)	6.03e+0 (3.26e+0)	6.96e+0 (3.26e+0)	5.06e+0 (2.36e+0)
treasury	2.88e+0 (2.22e+0)	3.27e+0 (1.49e+0)	2.87e + 0 (2.22e + 0)	5.69e+0 (2.61e+0)	3.83e+0 (2.52e+0)	5.55e+0 (2.29e+0)	5.83e+0 (2.85e+0)
debutanizer	3.14e+0 (5.01e-01)	2.69e+0 (3.80e-01)	2.68e + 0 (3.81e - 01)	3.46e+0 (4.54e-01)	2.86e+0 (3.25e-01)	3.06e+0 (3.31e-01)	2.70e + 0 (3.56e - 01)
fuelCons	3.17e+2(7.78e+1)	3.16e+2 (7.42e+1)	3.17e+2(7.78e+1)	3.34e+2(7.34e+1)	4.40e+2 (8.65e+1)	3.53e+2(1.00e+2)	3.28e+2(7.07e+1)
heat	1.19e+2 (6.93e+1)	5.99e+2 (1.31e+2)	2.78e+1 (1.64e+1)	2.98e+2 (1.62e+2)	4.42e+2(2.59e+2)	8.42e+2 (1.94e+2)	2.09e+2 (5.35e+2)
california	1.47e + 13 (5.30e + 11)	4.11e+13 (1.30e+12)	4.09e+13 (1.30e+12)	1.47e + 13 (5.25e + 11)	4.41e+13 (1.41e+12)	4.14e+13 (1.33e+12)	1.47e + 13 (5.20e + 11)
cpuSm	3.57e+5 (5.38e+5)	3.45e+5 (4.89e+5)	3.02e+5 (4.56e+5)	3.77e+5 (4.56e+5)	3.51e+5 (4.43e+5)	3.55e+5 (4.20e+5)	3.51e+5 (4.85e+5)
compactiv	2.43e+5 (3.37e+4)	2.94e+5 (1.79e+4)	2.43e+5 (3.37e+4)	2.38e + 5 (3.09e + 4)	2.43e+5 (3.37e+4)	5.49e+5 (2.83e+4)	2.38e + 5 (3.03e + 4)
availPwr	3.73e+4 (3.49e+4)	7.05e+4 (3.88e+4)	3.73e+4 (3.49e+4)	4.32e+4 (3.48e+4)	9.47e+4(4.16e+4)	4.80e+4 (3.51e+4)	4.38e+4 (3.74e+4)
maxTorq	1.97e + 5 (1.59e + 5)	3.85e+5 (1.86e+5)	1.96e + 5 (1.57e + 5)	2.83e+5 (1.57e+5)	7.61e+5 (1.46e+5)	5.95e+5 (1.96e+5)	2.18e+5 (1.56e+5)
space-ga	7.63e+0 (2.41e+0)	8.74e+0 (2.76e+0)	7.63e+0 (2.43e+0)	9.52e+0 (1.90e+0)	1.36e+1 (3.66e+0)	1.05e+1 (2.85e+0)	7.65e+0 (2.39e+0)
ConcrStr	3.82e+3 (1.72e+3)	3.61e+3 (1.44e+3)	3.82e+3 (1.72e+3)	5.90e+3 (1.95e+3)	4.73e+3(1.98e+3)	5.74e+3 (1.99e+3)	4.14e+3 (1.69e+3)
acceleration	4.81e+2 (1.80e+2)	8.10e+2 (2.43e+2)	4.82e+2 (1.81e+2)	6.48e+2 (2.23e+2)	8.22e+2 (2.74e+2)	8.06e+2 (2.57e+2)	5.19e+2 (1.76e+2)
airfoild	2.05e+11 (5.15e+10)	1.77e+11 (4.11e+10)	1.74e+11 (4.00e+10)	2.03e+11 (5.13e+10)	2.05e+11 (5.15e+10)	5.93e+11 (6.36e+10)	2.05e+11 (5.15e+10)

Table 12: Mean and standard deviation of the $\bf SERA$ metric obtained for each dataset considering $\bf XG$ technique. The best results are highlighted in bold.

	None	SMT	RO	RU	GN	$_{ m SG}$	WERCS
Dataset				F1-score			
rabe-265	1.11e+4 (1.46e+4)	1.09e+4 (1.47e+4)	1.15e+4 (1.50e+4)	1.02e+4 (1.44e+4)	1.06e+4 (1.41e+4)	1.05e+4 (1.44e+4)	1.04e+4 (1.43e+4)
wine-quality	1.17e+3 (1.01e+2)	9.33e+2 (1.32e+2)	1.10e+3 (9.40e+1)	9.92e+2 (8.73e+1)	6.44e+2 (6.69e+1)	1.05e+3 (9.26e+1)	9.66e+2 (8.20e+1)
analcat-apnea3	1.32e+8 (1.27e+8)	1.30e + 8 (1.25e + 8)	1.24e+8 (1.20e+8)	1.27e+8 (1.23e+8)	1.32e+8 (1.27e+8)	1.12e + 8 (1.09e + 8)	1.21e+8 (1.14e+8)
cocomo_numeric	8.36e+5 (1.36e+6)	9.16e+5 (1.35e+6)	6.48e + 5 (1.12e + 6)	1.02e+6 (1.48e+6)	8.55e+5 (1.35e+6)	7.46e+5 (1.23e+6)	8.36e+5 (1.36e+6)
abalone	3.79e+3 (6.46e+2)	3.59e+3 (6.68e+2)	3.55e+3 (6.12e+2)	3.42e+3 (6.14e+2)	3.13e+3 (5.81e+2)	3.43e+3 (6.17e+2)	3.09e+3 (5.58e+2)
a3	5.71e+2 (5.58e+2)	5.67e+2 (5.45e+2)	5.65e+2 (5.38e+2)	5.76e+2 (4.94e+2)	5.56e+2 (5.04e+2)	6.01e+2 (4.51e+2)	6.32e+2 (4.61e+2)
forestFires	2.04e+5 (3.72e+5)	2.07e+5 (3.79e+5)	2.17e+5 (3.75e+5)	2.05e+5 (3.60e+5)	2.09e+5 (3.73e+5)	2.23e+5 (3.64e+5)	2.00e+5 (3.51e+5)
$sleuth_case1202$	1.59e+4 (1.55e+4)	1.34e+4 (1.24e+4)	1.35e+4 (1.23e+4)	2.39e+4 (1.68e+4)	1.34e+4 (1.31e+4)	1.49e+4 (1.55e+4)	1.50e+4 (1.49e+4)
a1	1.35e+3 (8.39e+2)	1.36e+3 (7.37e+2)	1.32e+3 (8.44e+2)	1.39e+3 (8.09e+2)	1.49e+3 (5.76e+2)	1.87e + 3 (7.69e + 2)	1.65e+3 (8.22e+2)
a7	4.82e+2 (3.66e+2)	4.21e+2 (3.37e+2)	4.21e+2 (3.33e+2)	4.31e+2 (3.00e+2)	4.02e+2 (3.02e+2)	4.08e+2 (2.71e+2)	3.62e+2 (2.75e+2)
kidney	1.83e+0 (1.90e+0)	1.57e+0 (1.45e+0)	1.43e+0 (1.47e+0)	1.56e+0 (1.51e+0)	1.49e+0 (1.41e+0)	$1.23e+0 \ (1.16e+0)$	1.52e+0 (1.47e+0)
boston	2.67e+3 (6.20e+2)	2.46e+3 (6.38e+2)	2.40e+3 (5.75e+2)	2.58e+3 (6.29e+2)	2.55e+3 (6.43e+2)	2.34e+3 (5.88e+2)	2.47e+3 (6.03e+2)
sensory	5.14e+2 (4.26e+1)	4.48e+2 (3.41e+1)	5.12e+2 (3.85e+1)	5.13e+2 (4.35e+1)	4.42e+2 (3.95e+1)	5.12e+2 (3.99e+1)	5.15e+2 (4.04e+1)
a2	9.48e+2 (1.47e+3)	9.80e+2 (1.54e+3)	1.02e+3 (1.55e+3)	1.10e+3 (1.22e+3)	9.85e+2 (1.54e+3)	1.65e+3 (1.17e+3)	9.89e+2 (1.45e+3)
triazines	2.38e-01 (1.26e-01)	2.10e-01 (9.30e-02)	2.25e-01 (1.08e-01)	3.59e-01 (9.30e-02)	2.38e-01 (1.26e-01)	3.78e-01 (1.05e-01)	1.98e-01 (8.20e-02)
kdd_coil_1	1.74e+3 (1.12e+3)	1.64e+3 (1.09e+3)	1.68e+3 (1.02e+3)	2.29e+3 (1.03e+3)	1.68e+3 (1.10e+3)	2.45e+3 (1.20e+3)	1.85e+3 (1.05e+3)
mortgage	2.70e+2 (4.58e+1)	2.54e+2 (4.14e+1)	2.55e+2 (3.97e+1)	2.69e+2 (4.58e+1)	2.37e+2 (5.19e+1)	2.52e+2 (4.04e+1)	2.70e+2(4.28e+1)
treasury	3.30e+2 (7.38e+1)	3.12e+2 (7.15e+1)	3.14e+2 (6.77e+1)	3.29e+2 (7.43e+1)	3.18e+2 (8.14e+1)	3.16e+2 (6.87e+1)	3.19e+2 (6.84e+1)
debutanizer	1.75e + 0 (2.32e - 01)	1.72e+0 (2.48e-01)	$1.76e + 0 \ (2.81e - 01)$	$1.83e + 0 \ (2.37e - 01)$	$1.74e + 0 \ (2.46e - 01)$	2.15e+0 (3.18e-01)	$1.70e+0 \ (2.34e-01)$
fuelCons	4.44e+2 (1.03e+2)	4.04e+2 (9.23e+1)	4.07e+2 (8.63e+1)	4.29e+2 (9.89e+1)	4.16e+2 (9.06e+1)	3.95e+2 (8.39e+1)	4.08e+2 (8.53e+1)
heat	1.78e + 5 (3.37e + 4)	1.54e+5 (3.66e+4)	1.39e+5 (2.61e+4)	1.69e+5 (3.26e+4)	1.45e + 5 (2.68e + 4)	1.59e + 5 (2.81e + 4)	1.57e + 5 (3.06e + 4)
california	7.42e+12 (3.12e+11)	4.80e+12 (2.65e+11)	6.68e+12 (3.07e+11)	7.03e+12 (3.06e+11)	4.74e+12 (2.78e+11)	6.27e+12 (2.36e+11)	8.52e+12 (3.76e+11)
cpuSm	1.51e+5 (2.63e+5)	1.37e+5 (2.36e+5)	1.11e+5 (1.98e+5)	1.72e+5 (2.94e+5)	1.18e + 5 (2.07e + 5)	1.11e+5 (1.97e+5)	1.28e+5 (2.13e+5)
compactiv	2.37e + 5 (9.84e + 3)	2.38e+5 (9.97e+3)	2.39e+5 (9.79e+3)	2.40e+5 (1.00e+4)	2.37e + 5 (9.84e + 3)	2.41e+5 (9.86e+3)	2.38e+5 (9.71e+3)
availPwr	1.65e+5 (3.91e+4)	1.12e+5 (3.34e+4)	1.54e+5 (3.59e+4)	1.62e+5 (3.72e+4)	1.07e + 5 (2.69e + 4)	1.51e+5 (3.61e+4)	1.60e + 5 (3.69e + 4)
maxTorq	5.12e+5 (1.55e+5)	3.71e+5 (1.27e+5)	4.46e+5 (1.27e+5)	4.93e+5 (1.55e+5)	3.60e + 5 (9.84e + 4)	4.34e+5 (1.27e+5)	4.76e+5 (1.36e+5)
space-ga	1.73e+1 (3.72e+0)	1.70e+1 (3.35e+0)	1.63e+1 (3.13e+0)	1.07e+1 (3.05e+0)	1.73e+1 (3.72e+0)	1.54e+1 (3.10e+0)	1.57e+1 (3.39e+0)
ConcrStr	9.83e+3 (3.27e+3)	8.44e+3 (3.18e+3)	8.17e+3 (2.54e+3)	9.63e+3 (3.12e+3)	8.67e + 3 (2.75e + 3)	8.57e+3 (2.91e+3)	8.74e+3 (2.83e+3)
acceleration	1.07e+3 (3.17e+2)	9.39e+2 (2.36e+2)	9.29e+2 (2.01e+2)	1.05e+3 (3.10e+2)	8.90e+2 (2.49e+2)	9.31e+2 (2.15e+2)	9.93e+2 (2.58e+2)
airfoild	9.32e+10 (1.01e+10)	9.32e+10 (1.01e+10)	$9.12e+10 \ (1.05e+10)$	$1.31e+11 \ (1.41e+10)$	9.32e+10 (1.01e+10)	9.52e+10 (1.14e+10)	9.32e+10 (1.01e+10)