ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO

Aula 6 Últimas observações sobre autômatos e Cap. 2.1 – Gramáticas Livres de Contexto

Profa. Ariane Machado Lima ariane.machado@usp.br

Últimas observações sobre autômatos

- Máquinas de Mealy: aceitam símbolos na transição (autômatos tradicionais)
- Máquinas de Moore: aceitam símbolos nos estados (HMM – modelo oculto de Markóv)
- Transdutores: geram uma cadeia de saída

Transdutor finito do tipo Máquina de Mealy

- $T_{Mealy} = (Q, \Sigma, \Delta, \delta, \lambda, q_0, F)$ sobre um autômato finito $M = (Q, \Sigma, \delta, q_0, F)$
 - Δ é o alfabeto de saída
 - λ : Q x $\Sigma \rightarrow \Delta^*$ é a função de transdução

Transdutor finito do tipo Máquina de Mealy

- Exemplo: $T_{Mealy} = (Q, \Sigma, \Delta, \delta, \lambda, q_0, F)$ onde:
 - $Q = \{q_0, q_1\}$
 - $\Sigma = \{a, b, c\}$
 - $\Delta = \{a, b, c\}$
 - $\delta = \{(q_0, a) \rightarrow q_1, (q_1, b) \rightarrow q_1, (q_1, c) \rightarrow q_0\}$
 - $\lambda = \{(q_0,a) \rightarrow ab, (q_1,b) \rightarrow \epsilon, (q_1,c) \rightarrow c\}$
 - $F = \{q_1\}$

Transdutor finito do tipo Máquina de Moore

- $T_{\text{Moore}} = (Q, \Sigma, \Delta, \delta, \lambda, q_0, F)$ sobre um autômato finito $M = (Q, \Sigma, \delta, q_0, F)$
 - Δ é o alfabeto de saída
 - λ: Q → Δ* é a função de transdução

Transdutor finito do tipo Máquina de Moore

- Exemplo: $T_{Moore} = (Q, \Sigma, \Delta, \delta, \lambda, q_0, F)$ onde:
 - $Q = \{q_0, q_1\}$
 - $\Sigma = \{a, b, c\}$
 - $\Delta = \{1\}$
 - $\delta = \{(q_0,a) \to q_1, (q_1,b) \to q_1, (q_1,c) \to q_0\}$
 - $\lambda = \{q_0 \rightarrow 1, q_1 \rightarrow \epsilon\}$
 - $F = \{q_1\}$

Equivalência dos transdutores

 Teorema: Toda Máquina de Mealy pode ser simulada por uma Máquina de Moore, e viceversa.

Minimização de autômatos finitos

- Vários autômatos podem gerar a mesma linguagem
- Cada linguagem regular é reconhecida por um autômato finito determinístico mínimo (com relação ao número de estados) e único
 - Utilidades:
 - Gerar um reconhecedor o mais compacto e eficiente possível
 - Comparar se duas linguagens são equivalentes

Minimização de autômatos finitos

Processo:

- Eliminação de estados inacessíveis
 - Não há caminho de q₀ até ele
- Eliminação de estados inúteis
 - Não conduzem a um estado final
- Agrupamento e fusão de estados equivalentes

• Ex:

- $\delta = \{(q_0, a) \rightarrow q_3, (q_0, a) \rightarrow q_4, (q_0, b) \rightarrow q_2, (q_1, c) \rightarrow q_3\}$
- $F = \{q_3, q_4\}$

Perigo das transições no vazio

- M = ...
 - $\delta = \{(q_0, \epsilon) \rightarrow q_1, (q_0, a) \rightarrow q_2, (q_1, \epsilon) \rightarrow q_0, (q_2, b) \rightarrow q_3\}$
 - $F = \{q_1, q_3\}$

Perigo das transições no vazio

- M = ...
 - $\delta = \{(q_0, \epsilon) \rightarrow q_1, (q_0, a) \rightarrow q_2, (q_1, \epsilon) \rightarrow q_0, (q_2, b) \rightarrow q_3\}$
 - $F = \{q_1, q_3\}$

O autômato não pára!

 Felizmente há um algoritmo para eliminação de transições no vazio

Referências (complementares)

RAMOS, M. V. M.; NETO, J. J.; VEGA, I. S. Linguagens Formais. Ed. Bookman,

HMM:

RABINER, L. R. A tutorial on hidden Markov models and selected applications in speech recognition. **Proceedings of the IEEE**, v. 77, n. 2, p. 257-286 1989

Cap 2 – Linguagens livres de contexto

2.1 – Gramáticas Livres de Contexto

2.2 – Autômato com Pilha

2.3 – Linguagens não-livres de contexto

2.1 – Gramáticas Livres de Contexto

Hierarquia de Chomsky

 $\alpha \rightarrow \beta$

Gramáticas Livres de Contexto

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

Por exemplo, a gramática G_1 gera a cadeia 000#111.

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000#111$$

Árvore sintática ou Árvore de derivação

Dicas para projetar gramáticas livres de contexto

• É a união de linguagens mais simples?

Por exemplo, para obter uma gramática para a linguagem $\{0^n 1^n | n \ge 0\} \cup \{1^n 0^n | n \ge 0\}$, primeiro construa a gramática

$$S_1 \rightarrow 0S_11 \mid \varepsilon$$

para a linguagem $\{0^n 1^n | n \ge 0\}$ e a gramática

$$S_2 \rightarrow 1S_20 \mid \varepsilon$$

para a linguagem $\{1^n0^n | n \ge 0\}$ e então adicione a regra $S \to S_1 | S_2$ para dar a gramática

$$S \rightarrow S_1 \mid S_2$$

 $S_1 \rightarrow 0S_1 1 \mid \varepsilon$
 $S_2 \rightarrow 1S_2 0 \mid \varepsilon$.

Dicas para projetar gramáticas livres de contexto

Definições recursivas

```
Considere a gramática G_3=(\{S\},\{\mathtt{a},\mathtt{b}\},R,S). O conjunto de regras, R, é S\to\mathtt{a}S\mathtt{b}\mid SS\mid\varepsilon.
```