

· 1876年

FIG.1B

Nucleotide Sequence of RCR Amplified dE7 from HPV-16

5' KR Primer→

		2/11		
GITAGAITTG	AGATGGTCCA	TTGCAAGIGL	TITGGAAGAC	ATAAGTCGAC
ATGAATATAT	AGGATGAAAT	TAACCITITIG	ACAITICGIAC	CTCAGAAACC
ccrpacarrac	TCAGAGGAGG	TACAATATTG	ACACACGITAG	CCCATCTGTT
TGGAGATACA	GAATGACAGC	CAGAGCCCAT	CGTACAAAGC	AATTGTGTGC
CTAGCATGCA	CAACTCAATT	CAGAACCGGA	TICGGIIGIG	GCACACTAGG
CTCCAGCAGG	CAACCAGAGA	GCTGGACAAG	GACTCTACGC	CIGITAAIGG

3/11

pCMV-3 vector containing CMV promoter, Bovine Growth Hormone polyA and Kanamycin resistance

FIG.2

THE RAIN SALE STATE OF THE STATE OF

5/11

Transformation, use Kan ^R plates

pCMV3

pEN - 3: cloning of bGHpA into
pEN-1
pCMV2K is pCMV2 Amp R
replaced with Kan R
pCMV2: pEN-1
with cmv insert
oligo linker

* see pEN-1 diagram (Fig.4)

FIG.3B

bGHpA Xhol pCMV3 4.4K KanB 145 Kpnl is gone — Xhol—

SUBSTITUTE SHEET (RULE 26)

The Control of the Co

PCT/CA99/00807

6/11

PCT/CA99/00807-

7/11

pCM/3-HPVT#1

FIG.5A

0.491 UG/UL, 50UL

stop E7: 49-57, 11-20, 82-90, 86-93, and E6: 29-38. Three alanines were introduced between the polylinker between Sall and EcoRl of the CMV3 vector resulting in pCMV3-HPVI#1. The gene encodes a protein consisting of five HPV16 T-cell epitopes (From NHZ-io COOH terminus), epitopes. The start codon is in bold letters, the Kozak sequence underlined, and the Construction: A synthetic mini-gene with the following sequence was cloned into the codons in bolded italic letters.

-- TCGACGCCGCCACCATGACAGCCCATTACAATATTGTTACCTTTTGCCGCCCCCCTATATGTTA GATITIGCAACCAGAGACAACTGCAGCCGCTCTGTTAATGGGGCACACTAGGAATTTGTGGCCCG CGGCCACACTAGGAAITIGTGTGCCCCATCGCAGCAGCCACTATACATGATATAATATTAGA ATGIGIGIAATAGIGAGAATTC

SCOR!

Translation of coding sequence:

E Met Arg Ala Mis Tyr Asn Ile Val Thr Phe Ala Ala Ala Tyr Met Leu Asp Leu TAT ATG TTA ATG AGA GCC CAT TAC AAT ATT GTT ACC TTT GCC GCC GCC 36 1

PCT/CA99/00807

FIG.5A'

8/11

100 GTG GCC Val Ala	162 GAT ATA Asp 11e	
AIT Ile	CAT His	
99 GGA Gly	153 ATA Ile	
CTA Leu	ACT Thr	
ACA Thr	GCC 	
90 GGC ACA Gly Thr	ATC GCA GCA GCC Ile Ala Ala Ala	
ATG Met	GCA Ala	
TTA Leu		
81 CTG	135 CCC 	
GCT Ala	TGC	
300 Ala	GIG 	ž
72 GCA (126 CTA GGA ATT Leu Gly Ile	180 TAA
ACT Thr	9GA 	GIG
ACA 	CTA (TGT
63 GAG 	117 ACA 	171 3AA 3AA 31u
63 CAA CCA GAG GIn Pro Glu	GCG Ala	171 ATA TTA GAA Ile Leu Glu
63 CAA CCA GAG Gln Pro Glu	117 GCG GCG ACA CTA Ala Ala Thr Leu	ATA Ile

N HAW SI

FIG.5B

A Synthetic HFV Epitopes Mini Gene 49-57 E7 Sall Kozak Met(Arq Ala His Tvr A

GCGGCGCTGCTACTCCGGGTAATGTTATAACAATGG TCGACGCCGCCACCATGAGAGCCCCATTACAATATTGTTACC Met (Arg Ala His Tyr Asn Ile Val Thr

III

TITGCCGCCGCCTATATGITTAGATTTGCAACCAGAGACAACT AAACGGCGGCATATACAATCTAAACGTTGGTCTCTGTTGA Phe)Ala Ala Ala (Tyr Met Leu Asp Leu Gin Pro Glu Thr Thr) 11-20 E7

9/11

GCAGCCGCTCTGTTAATGGGCACACTAGGAATTTGTGGCCGCG CGICGGCGAGACAAITIACCCGIGIGAICCITIAACACCGGCGC Ala Ala Ala (Leu Leu Met Gly Thr Leu Gly Ile Val)Ala Ala

82-90 E7

PCT/CA99/00807 -

10/11

GTACTATATATAATCTTACACACATTATCACTCTTAA CATGATATATATAGAATGTGTGTAATAGTGAG His Asp Ile Ile Leu Glu Cys Val) * * * 29-38 E6

CGGTGTGATCCTTAACACACGGGGTAGCGTCGTCGGTGATAT

GCGACACTAGGAATTGTGTGCCCCATCGCAGCAGCCACTATA

Ala(Thr Leu Gly Ile Val Cys Pro Ile)Ala Ala Ala(Thr Ile

86-93 E7

FIG.5B'

start codon ATG is in bold letters; the Kozak sequence, underlined: the stop codons, The mini-gene was assembled using five synthetic oligonucleotides (I-V, divided by arrows), The epitope sequences and the three alanine spacers are indicated.

PCT/CA99/00807

11/11

pCMV3-HPVT#1

SUBSTITUTE SHEET (RULE 26)