

Beyond the Numbers

Discovering the fascinating history of data science

Learning Outcomes

- Comprehend what data science and analytics means
- O Understand the idea of data-driven decision making
- Illustrate how data science has evolved over the past century
- Identify the difference approaches within data science

Guidelines

Listen only mode

Ask questions at the interest of the larger audience

Questions in the O&A Box

Thank you

Meet Your Speaker

Dr. Abhinanda Sarkar Academic Director at Great Learning

- Alumnus Indian Statistical Institute, Stanford University
- Faculty MIT, Indian Institute of Management, Indian Institute of Science
- Experienced in applying probabilistic models, statistical analysis and machine learning to diverse areas
- Certified Master Black Belt in Lean Six Sigma and Design for Six Sigma in GE

Origin of Decisions

Decisions were always data-driven

Let's consider few situations that early civilizations might have faced

Decisions are made today by businesses the same way - but the methods have become more **accurate** and **faster** owing to the evolution of **statistical techniques** & **computing capabilities**This file is meant for personal use by nehakinjal@gmail.com only.

Paradigms in data science

Inferential

Computational

Make predictions on population based on sample data

Leverage computational methods and technology to scale insight generation

Methods

Use statistical methods to draw conclusions / infer from data

Implement algorithms and computational methods to analyse data

Limitations

Representativeness of data

Complexity of algorithms and cost of training large models

Examples

- 1. Effectiveness of a new medication through randomized trial
- 2. Impact of a new policy on citizens

- 1. Weather forecasting based on historical and weather patterns
- 2. Optimize routing of vehicles to minimize costs mail.com only.

Evolution of Data Science (Early Stats & Computing)

Evolution of Data Science (1940s to 1950s)

Bayesian Statistics

Use prior knowledge to predict future uncertainties

- Control Chart Theory Dr. Walter @ Bell Labs
- Telephone manufacturing Quality Control Process
- Led to economic benefits high quality with efficiency
- Lower wastage + Higher product quality

Sampling Theory

Make inferences about a population, using a sample

- Frederick Taylor Father of Scientific Management
- Manpower Productivity Assessments
- To improve manufacturing processes + efficiency
- Now advertising by Google/Meta target audiences

ANOVA

Compare the means of 3+ groups - Evidence of difference

- Ronald A Fisher statistician & geneticist
- Analyze experiments in Agriculture
- Effect of different fertilizers >> differences in yields
- Now market research, finance guality realited resonal use by nenakira மிரும் முரும் கூறு munication & learning

Digital Computers

Electronic device which can do math and logical calculations

- Electronic Numerical Integrator & Computer (ENIAC)
- Developed in US World War II Artillery Firing Tables
- Finding trajectories for different types of guns
- Type of ammo + external conditions (temp & wind)

Monte Carlo Methods

Run simulations with random inputs to arrive at conclusions

- Origin Monte Carlo Casino chance based games
- Developed during the Manhattan Project 1940s
- Simulate behavior of neutrons in nuclear reactor
- Now Predict weather patterns, financial markets

Programming Languages

To have a computer understand instructions & execute them

- Fortran the 1st programming language created
- Made for scientific and engineering calculations
- Led to the development of World Wide Web

Sharing or publishing the contents in part or full is liable for legal action.

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Evolution of Data Science (1960s-1970s)

Non-Parametric Methods

Rely on ranking / ordering of data rather than the distribution

- Frank Wilcoxon Wilcoxon Rank-sum test
- Fffect of store ambience on customer behaviour
- Sales difference b/w 2 groups in 2 different stores
- More effective marketing and pricing strategies

Decision Theory

Assian probabilities to different outcomes to make a decision

- Howard Raiffa Economist Negotiation Processes
- Government agencies achieve favorable outcomes
- Identify optimal strategies using decision trees
- Improved negotiation labor, international trade

Robust Statistics

Provide accurate results despite outliers/extreme values

- John W Tukey Statistician Contributed to EDA
- Improve QC process Identify and remove outliers
- Box plots identify outliers and variation

Operating Systems

A software that manages resources & apps in a computer

- General Motors are responsible for creating the 1st OS
- GM-NAA I/O designed for their IBM 704 mainframe
- To manage hardware and use them efficiently
- Today Windows, MAC, Android, Linux are everywhere

Databases & Storage

Store, Organize & Query large amounts of data quickly

- Charles Bachman IBM 1st DBMS ever created
- Businesses wanted databases to be standardized
- Common Business Oriented Language COBOL
- Laid the roots for the creation of MySQL in 1995

Time Sharing Systems

Many users can access a computer at the same time!

- Compatible Time-Sharing System (CTSS)
- Created by MIT to access one IBM computer
- The seed thought for modern networking systems

Manufacturing better products lessers defeats or personal use by nenakir laplay in silough exists because of the experiment!

Evolution of Data Science (1980s-1990s)

Resampling Methods

Simulate multiple datasets from original data for analysis

- Bradley Efron-Bootstrap technique
- Market Research survey calculate uncertainty of data
- Estimate sampling distribution + hypothesis testing
- More accurate estimates + better decision making

Generalized Linear Models

Analyze data where outcome is not normally distributed

- John Nelder + Robert Wedderburn
- Insurance claim modeling identify risk exposure
- Model different types of response variables
- More accurate + flexible modeling of several data types

Model Selection Techniques

Selecting best mathematical model for a process

- Akaike Akaike Information Criterion (AIC)
- Demand forecasting accurate predictions
- AIC Evaluate model fit, explainability, accuracy

Personal Computers

Small, lightweight, affordable - used by a single person

- Altair 8880 1st PC 1975 company called MITS
- This was primitive Apple II in 1977 made PCs popular
- Mostly used by hobbyists & technicians
- You could work & collaborate from anywhere

Object-Oriented Programming

An abstract entity with its own set of properties & functions

- Popularized by C++ and Java
- Revolutionized software development
- Flexible, Modular, Reusable & Easy to maintain codes
- Browsers, apps, games Impossible w/o OOP

Advanced Programming Languages

High level - data structures - loops - objects - conditions

- Earliest was Fortran created in the mid 50s
- Laid the foundation for Java, Ruby, and Python
- Able to create complex applications at scale

Better model selection, improved prediction are by nenakir and properties of programming - Anybody can Code!

Evolution of Data Science (2000s-2010s)

Bayesian Networks & Graphical Models

Relationship b/w variables in a dataset using graphs

- Judea Pearl Directed Acyclic Graphs Turing award
- Healthcare chances of patient having a disease
- Easily interpret complex relationship b/w variables
- Accurate diagnosis + improved outcomes, decisions

Causal Inference

Is change in one variable changing the other?

- Rubin Rubin Causal Model
- Education Summer program on student outcomes
- Using outcomes to represent causal relationship
- Better understanding of variables + decision making

Open Science Movement

Making research accessible, collaborative, transparent

- Eli Lilly Open Innovation Drug Discovery (OIDD)
- Pharma Develop new drugs and treatments
- Greater collaboration, transparency, reproducibility
- Faster drug development + the rapides meant for personal use by nenaki fo

Artificial Intelligence & Machine Learning

Machines responding/doing tasks at human level intelligence

- Alan Turing Machine Intelligence Imitation Game
- Frank Rosenblatt "Built the Perceptron" late 50s
- 2012: Geoffrey Hinton "Deep Neural Networks"
- 2016: AlphaGo defeats Human Go Champion

Big Data

Massive digital information generated every second

- Nutch Search Engine Optimize speed of search
- Doug Cutting, 2005: Hadoop (son's toy elephant)
- Paved the way for in-memory computing: Spark
- Big Data Analytics started with Google & Facebook

Cloud Computing

Computing power & resources for everyone, on-demand

- Coined by Eric Schmitt 2006, Google CEO
- 2006: Amazon Web Services, the 1st cloud provider
- Followed by Microsoft Azure and Google Cloud

Sharing or publishing the contents in part or full is liable for legal action.

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Evolution of Data Science (2020s+)

Interdisciplinary Approaches

Knowledge from multiple disciplines for problem solving

- Tesla advances in battery + electric motor tech
- Model S range of 400 km in a single charge
- Accelerated transition from fossil fuels
- Innovative solutions to complex problems

Newer Causal Inference methods

Making causal inference accurate and reliable

- Amazon Personalized Marketing Campaigns
- Recommend products likely to be purchased
- Causal Inference methods analyse user behavior
- Increased sales, customer satisfaction

Natural Experiments

Observe events naturally occuring w/o manipulating factors

- Journal of Public Economics study of policy impact
- Effectiveness of Public health interventions
- Impact of business closure due to pandemic on jobs
- on Investigate complex phenometries the register appellusion of the last of th

Blockchain

Share information - secure, transparent, & tamper-proof

- Created for the proposal of a Virtual Currency System
- 2008: BitCoin underlying tech was Blockchain
- The concept is a threat for Traditional Banking Systems
- Extreme Security + Low Fees (No Central Authority)

Edge Computing

Compute directly at the source of data, instead of remote

- Took shape in the early 2000s Internet of Things (IoT)
- Tesla's advancements with Autonomous Vehicles
- Opportunities: Real time monitoring & analysis (Medical Devices, Defence, Smart Homes)

Quantum Computing

Use the principles of quantum physics to compute

- 1st built in 1998 Los Alamos Laboratory New Mexico
- Impact areas: Cryptography, Chemistry & Optimization
- In early stages, a lot of opportunities are still theoretical

Sharing or publishing the contents in part or full is liable for legal action.

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Programming

Languages

Audio Tapes

Computing

Inferential Interdisciplinary Resampling Non-Parametric **Bayesian Networks Approaches Central Tendency Bayesian Statistics** Methods Methods Causal Inference **Newer Causal Expected Values** Sampling Theory Generalized Linear **Decision Theory** Inference Models Open Science **Probability Theory** ANOVA **Robust Statistics** Movement Natural Model Selection **Experiments** < 1940s 1940s - 50s 1980s - 90s 2000s - 10s 2020+ 1960s - 70s **Digital Computers Operating Systems** Personal Artificial Blockchain Telegraph Computers Intelligence Monte Carlo Databases & **Edge Computing Difference Engine Object Oriented** Methods Storage Big Data **Programming** Quantum Time-sharing

Systems

Adv. Programming

Cloud Computing

Questions?

Let's conclude by defining data science...

This file is meant for personal use by nehakinjal@gmail.com only.

Sharing or publishing the contents in part or full is liable for legal action. Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Happy Learning!

Appendix

Summary - mind map of the history

Evolution of Data Science (1940s-1950s)

Inferential

Bayesian Statistics

- Analysis of data and the inference of probabilities
- **How?** Using Bayes' theorem

Sampling Theory

- Challenges will large populations
- **How?** Drawing inferences from small subsets

ANOVA

- Test for significant differences between groups
- **How?** variability within and between the groups

Computational

Digital Computers

- First electronic digital computers
- How? Developments in electronic computing technology

Monte Carlo Methods

- To simulate the behavior of the process
- How? Model is created using probability distributions

Programming Languages

- Automate complex calculations and tasks
- **How?** Fortran & COBOL were discovered

Evolution of Data Science (1960s-1970s)

Inferential

Non-parametric methods

- When data do not meet the standard assumptions
- How? by using techniques like ranking

Decision Theory

- Framework for making decisions under uncertainty
- How? evaluating and choosing best alternatives

Robust Statistics

- Methods less sensitive to violations of assumptions
- **How?** resisting to outliers & other non-normality

Computational

Operating systems

- Manages hardware and software resources
- How? using device drivers, system libraries, and system utilities

Databases

- Tool for managing/analyzing large data.
- **How?** using tables, queries, indexes

Time-sharing systems

- System to access computer simultaneously
- **How?** by dividing the computing resources

Evolution of Data Science (1980s-1990s)

Inferential

Resampling Methods

- To evaluate the performance of a statistical model
- How? Using Bootstrap/Cross validation resampling

Generalized Linear Models

- To handle variety of variables & error distributions
- How? connecting predictor function to the expected value of the response variable

Model Selection Techniques

- To select the best statistical model
- How? using techniques like AIC and BIC

Computational

Personal computers

- Computer designed for use by an individual
- How? using small, programmable computing devices

Object-Oriented Programming

- "objects" to represent data and functionality
- **How?** using blueprints of behaviors of the objects

Advanced Programming Languages

- Address the limitations of earlier languages
- How? C++, Python, and Java

Evolution of Data Science (2000s-2010s)

Inferential

Bayesian Networks & graphical Models

- Probabilistic representation of complex relationships
- **How?** Using graphs to represent the relationships

Causal Inference

- Analyzing how one event/action leads to another
- How? Using techniques like DID & IV

Open Science Movement

- emphasizing transparency, and community-driven innovation
- **How?** by making things freely available

Computational

Artificial Intelligence and Machine Learning

- Enables to make predictions/decisions
- How? Utilizing large amounts of data

Big Data

- Large and complex data sets
- **How?** generated by digital systems & applications

Cloud Computing

- Delivery of on-demand computing services
- How? through service based model

Evolution of Data Science (2020+)

Inferential

Interdisciplinary Approaches

- Pandemic highlighted the need for collaboration
- Healthcare, data science, Epidemiology, genetics, etc.

Newer Causal Inference Methods

- Developing new causal inference methods
- COVID-19 pandemic / new data sources

Natural Experiments

- Brought inferential statistics into public eye
- Understanding the spread of virus/predicting trends

Computational

Blockchain technology

- Secure & transparent storage/transfer of data
- How? creating a digital ledger that records transactions

Edge Computing

- Computing directly at the source of data
- How? Deploy resources within the product

Quantum Computing

- Providing more processing power
- **How?** use quantum bits or qubits

Why data science?

