实验报告:集成运算放大器在信号运算方面的应用谢悦

晋 提高2201班 U20221033

华中科技大学 电子信息与通信学院 Oct 31st, 2023

目录

1	实验名称								
2	实验	目的		2					
3	实验	元器件		2					
4		任务		2					
	4.1		ET输出特性曲线仿真	3					
	4.2		ET转移特性曲线仿真	3					
	4.3	MOSF	ET共源放大电路安装、调试及测试	4					
5	实验	原理		6					
	5.1	MOSF	ET共源放大电路安装、调试及测试	6					
	5.2	Multis	im的使用和学习	7					
6	实验	过程		7					
	6.1	Multis	im 仿真	7					
		6.1.1	DC Operating Point 模拟直流静态工作点	7					
		6.1.2	Single frequency ac analysis 得到输入输出电压曲线	7					
		6.1.3	AC Analysis 得到幅频特性曲线	7					
		6.1.4	AC 模式测量输入阻抗	7					
		6.1.5	AC 模式测量输出阻抗	7					
		6.1.6	MOSFET 输出特性仿真	7					
		6.1.7	MOSFET 转移特性仿真	7					
	6.2	单极 N	MOSFET 共源放大电路插板实验	7					
		6.2.1	测试静态工作点	7					
		6.2.2	测试放大电路的输入、输出波形和通带电压增益	8					
		6.2.3	测试放大电路的输入电阻	8					
		6.2.4	测试放大电路的输出电阻	9					
		6.2.5	测试放大电路的通频带	9					
7	实验	小结		9					

1 实验名称

共源放大电路设计、仿真与实现

2 实验目的

- 学习共源放大电路工作原理
- 掌握金属-氧化物-半导体场效应管的主要性能参数及其测试方法
- 掌握共源放大电路参数调整方法
- 掌握共源放大电路的基本原理与参数测量方法
- 掌握MOSFET共源极放大电路的安装与测试技术
- 掌握Multisim软件的使用,实现共源放大电路的仿真实现

3 实验元器件

名称	型号/参数	数量
场效应管	2N7000	1
	4.7 µ F	1
电容	47 µ F	1
	1 µ F	1
电位器	500k Ω	1
	100k Ω	2
电阻	5.1k Ω	1
	51k Ω	1
	1kΩ	1

4 实验任务

主要为以下三个实验任务: MOSFET输出特性曲线仿真、MOSFET转移特性曲线仿真、MOSFET共源放大电路安装、调试及测试

4.1 MOSFET输出特性曲线仿真

使用 OrCAD/Spice 分析绘制 MOSFET (2N7000) 的共源极输出特性曲线。实验步骤与要求如下:

(1)建立新项目,绘出电路图。

首先新建一个工程项目,然后放置元器件(M2N7000、Vdc、0 (GRD)等)、连线,画出如图 3.3.5 所示的电路,并在 MOSFET 的漏极放置电流测试探针

- (2)设置仿真简表。
- ① 新建仿真简表 (New Simulation Profile),设置直流扫描分析(DC Sweep) 的主扫描(Primary Sweep),扫描变量为VDD,采用线性扫描,由OV开始至8V结束,步进为0.01V。
- ② 设置直流扫描分析(DC Sweep)中的二级扫描(Secondray Sweep),扫描变量为 VGG,采用线性扫描,由1.7V开始至2.05V结束,步进为0.05V。

图 1: 特性曲线仿真电路

- (3)保存文档、执行仿真(Run)。运行后自动打开结果显示窗,显示输出特性曲线(i_D v_{DS})。多根曲线对应 v_{GS} 的间隔为 0.05 V。
 - (4)将仿真结果反映至实验报告中。
 - ① 选中仿真电路图,复制粘贴到实验报告文档中。
- ② 在结果显示窗中,选择 Window\Copy to Clipboard...将曲线复制到剪贴板,期间最好选择"change all colors to black"将所有曲线都变为黑色。然后粘贴至实验报告文档。

4.2 MOSFET转移特性曲线仿真

使用 OrCAD/Spice 分析绘制 MOSFET (2N7000) 的共源极转移特性曲线。实验步骤与要求如下:

- (1)修改电路参数,将vop电压改为8V。
- (2)设置仿真简表。新建仿真简表(New Simulation Profile), 设置直流扫描分析(DC Sweep) 的主扫描 (Primary Sweep), 扫描变量为 V_{GG} , 采用线性扫描,由 OV 开始至 4V 结束,步进为0.01V。
- (3)保存文档、执行仿真 (Run)。运行后自动打开结果显示窗,显示转移特性曲线 $(i_D v_{GS})$.
 - (4) 将仿真结果复制粘贴到实验报告文档中。

4.3 MOSFET共源放大电路安装、调试及测试

图 2: 共源极放大电路

实验步骤与要求如下:

- (1)测试电路的静态工作点。
- ① 按照图3.3.6在面包板上组装电路, v_{DD} 的 12V 取自直流稳压电源。安装电阻前先用万用表测试电阻值,填入表 3.3.2 相应栏中。检查无误后接通电源。用数字万用表的直流电压挡测量电路的 V_G (栅极对地电压)、 V_S (源极对地电压)和 V_D (漏极对地电压),计算静态工作点 $Q(I_DQ,V_{GSQ},V_{DSQ})$ 。将结果填入表 3.3.2 相应栏中。
- ②关闭电源,将 $R_{\rm gl}$ 改为 100k, 检查无误后接通电源,再次测量 $V_{\rm G}$ 、 $V_{\rm s}$ 和 $V_{\rm D}$,计算静态工作点 $\rho(I_{\rm bO},V_{\rm GSO},V_{\rm DSO})$ 。将结果填入表 3.3.2 相应栏中。
- ③ 关闭电源,将 R_{gl} 恢复为 240k, 而将 R_{g2} 改为 33k, 检查无误后接通电源,测量 $V_{\rm G}$ 、 $V_{\rm S}$ 和 $V_{\rm D}$,计算静态工作点 $Q(I_{\rm DQ}$ 、 $V_{\rm GSQ}$ 、 $V_{\rm DSQ}$)。完成表 3.3.2 的内容。 (2)测试放大电路的输入、输出波形和通带电压增益。参考上节的图 3.2.7,搭建放大电路实验测试平台。关闭电源,将电阻参数恢复为 $R_{g1}=240k$, $R_{g2}=100k$,检查无误后接通电源。调整信号源,使其输出峰-峰值为 30mV、频率为1kHz 的正弦波,作为放大电路的 $v_{\rm i}$ 。分别用示波器的两个通道同时测试 $v_{\rm i}$ 和 $v_{\rm o}$,在实验报告上定量画出 $v_{\rm i}$ 和 $v_{\rm o}$ 的波形(时间轴上下对齐),分别测试负载开路和 $R_{\rm L}=5.1$ k Ω 两种情况下的 $v_{\rm T}$ 和 $v_{\rm O}$,完成表 3.3.3。

		实测值			MOSFET处于						
	V_G/V	V _S /V	V_D/V	$I_{DQ} = V_S/R_S/\text{mA}$	$V_{GSQ} = (V_G - V_S)/V$	$V_{DSQ} = (V_D - V_S)/V$	哪个工作区				
$R_{g1} = 240k$											
$R_{g2} = 100k$											
$R_{g1} = 100k$											
$R_{g2} = 100k$											
$R_{g1} = 240k$											
$R_{g2}=33k$											
实测电阻值		$R_{g1} = $ $,R_{g2} = $ $,R_d = $ $,R_s = $									

表 1: 静态工作点

(3)测试放大电路的输入电阻。采用在输入回路串入已知电阻的方法测量输入电阻。由于 MOSFET 放大电路的输入电阻较大,所以当测量仪器的输入电阻不够大时,采用如图 3.2.8 所示的方法可能存在较大误差,改用如图 3.3.7 所示的测量输出电压的方法更好。R 取值尽量与 R_i 接近(此处可取 $R=51k\Omega$)。信号源仍旧输出峰-峰值 30mV、1kHz 正弦波,用示波器的一个通道始终监视 v_i 波形,用另个通道先后测量开关 S 闭合和断开时对应的输出电压 v_{ol} 和 v_{o2} ,则输入电阻为

$$R_{\rm i} = \frac{v_{\rm o2}}{v_{\rm ol} - v_{\rm o2}} \cdot R \tag{4.3.1}$$

测量过程要保证火。不出现失真现象

负载 情况	v _i 峰-峰 值V _{ipp} /mV	v _o 峰-峰值 V _{opp} /mV	$ A_{v} = V_{opp}/V_{ipp}$	<i>A_v</i> 的 理论值	相对 误差
负载开路	30				
$R_L = 5.1 \text{k}\Omega$	30				

表 3:电压增益(f=1kHz)

图 4: 高输入电阻测试局部示意图

(4)测试放大电路的输出电阻。

采用改委负载的方法测试输出电阻。分别测试负载开路输出电压 v_o 和接入已知负载 R_L 时的输出电压 v_o ,测量过程同样要保证 v_o 不出现失真现象。实际上在表 3.3.3 中已得到 v_o' 和 v_o ,则输出电阻为

$$R_{\rm o} = \frac{v_{\rm o}' - v_{\rm o}}{v_{\rm o}'} \times R_{\rm L} \tag{4.3.2}$$

 $R_{\rm L}$ 越接近 R_0 误差越小。

(5)测试放大电路的通频带。在图3.3.6中,输入v_i为峰-峰值30mV、1kHz的正弦波,用示波器的一个通道始终监视输入波形的峰-峰值,用另一个通道测出输出波形的峰-峰

值。保持输入波形峰-峰值不变,调节信号源的频率,逐渐提高信号的频率,观测输出波形的幅值变化,并相应适时调节示波器水平轴的扫描速率,保证始终能清晰观测到正常的正弦波。持续提高信号频率,直到输出波形峰峰值降为 1kHz 时的 0.707 倍,此时信号的频率即为上限频率 f_H ,记录该频率;类似地,逐渐降低信号频率,直到输出波形峰-峰值降为 1kHz 时的 0.707 倍,此时的频率即为下限频率 f_L ,记录该频率,完成表 3.3.4。要特别注意,测试过程必须时刻监视输入波形峰-峰值,若有变化,需调整信号源的输出幅值,保持 v_i 的峰-峰值始终为 30mV。

通频带(带宽)为:

$$BW = f_{H} - f_{L} \tag{4.3.3}$$

信号频率f	f_L	-	f_H
		1kHz	
输出波形 峰-峰值V _{opp}			
$ A_v $			

表 2: 通频带($V_{ipp} = 30 \text{mV}$)

5 实验原理

5.1 MOSFET共源放大电路安装、调试及测试

图 3.3.6 为 N 沟道增强型 MOSFET 共源极放大电路,其静态工作点可由式(4.3.1) 估算

$$V_{\rm GSQ} = \frac{R_{\rm g2}}{R_{\rm g1} + R_{\rm g2}} \times V_{\rm DD} - I_{\rm DQ} R_{\rm s}$$
 (5.1.1a) 470k Ω 5.1k C_2 C_2 C_2 C_3 C_4 C_4 C_5 C_6 C_6 C_7 C_8 C_8 C_8 C_8 C_8 C_8 C_8 C_8 C_8 C_9 C_9

$$R_{\rm i} = R_{\rm g1} / / R_{\rm g2}$$
 (5.1.2b) \sim R_o = R_d (5.1.2c)

图 5: 共源极放大电路

数据手册通常会给出 v_{TN} 和某工作点下的 g_{m} 。由表 3.3.1 看出,对于 MOS 管 2N7000, I_{D} = 200mA 时, g'_{m} = 100mS,可得 $K_{n}=(g'_{m}/2)^{2}/I_{\text{D}}=12.5$ mA/ V^{2} 式(3.3.4a)中的 g_{m} 是图 3.3.6 电路静态工作点下 MOS 管的互导,同样可得

$$g_m = g_m' \sqrt{I_{\rm DQ}/I_{\rm D}} \tag{5.1.3}$$

$$g_{\rm m} = 10\sqrt{I_{\rm DQ}/2} \text{mS} \tag{5.1.4}$$

由数据表可知 V_{TN} 在0.8-3V之间,这里取 $V_{TN} = 1.75V$

- 5.2 Multisim的使用和学习
- 6 实验过程
- 6.1 Multisim 仿真
- 6.1.1 DC Operating Point 模拟直流静态工作点
- 6.1.2 Single frequency ac analysis 得到输入输出电压曲线
- 6.1.3 AC Analysis 得到幅频特性曲线
- 6.1.4 AC 模式测量输入阻抗
- 6.1.5 AC 模式测量输出阻抗.
- 6.1.6 MOSFET 输出特性仿真
- 6.1.7 MOSFET 转移特性仿真
- 6.2 单极 MOSFET 共源放大电路插板实验
- 6.2.1 测试静态工作点

实验中数据记录表格如下:

		实测值			MOSFET处于		
	V_G/V	V _S /V	V_D/V	$I_{DQ} = V_S/R_S/\text{mA}$	$V_{GSQ} = (V_G - V_S)/V$	$V_{DSQ} = (V_D - V_S)/V$	哪个工作区
$R_{g1} = 240k$ $R_{g2} = 100k$	3.45174	1.85189	2.59015				
$R_{g1} = 100k$ $R_{g2} = 100k$	5.99462	1.97318	1.98032				
$R_{g1} = 240k$ $R_{g2} = 33k$	1.44178	0.163566	11.4622				
实测电阻值	$R_{g1} =$	= 241.87kΩ,	97.839kΩ	$R_{g2} = 98.232k$	Ω ,33.132k Ω , R_d	$=5.0156\Omega$, $R_s = 98$	33.44Ω

表 3: 静态工作点

6.2.2 测试放大电路的输入、输出波形和通带电压增益

输入、输出波形如下:

实验数据记录表格如下:

负载	v _i 峰-峰	vo峰-峰值	$ A_v =$	$ A_{\nu} $ 的	相对
情况	值V _{ipp} /mV	V_{opp} /mV	V_{opp}/V_{ipp}	理论值	误差
负载开路	30(39.20)	1304			
$R_L = 5.1 \text{k}\Omega$	30(38.40)	222.0			

表 4::电压增益(f=1kHz)

6.2.3 测试放大电路的输入电阻

测量得到此时的R = 50.914k Ω ,接入电路后,输出波形如下:根据公式(4.3.1)可以计算输入电阻为: $R_i =$

6.2.4 测试放大电路的输出电阻

根据表4以及公式(4.3.2)可以计算输出电阻为: $R_o = \mathbf{k}\Omega$

6.2.5 测试放大电路的通频带

下表记录了通频带的测量数据:

f/Hz	5	10	15	20	30	40	50	70	100	200	500	2k	30k
V _{opp} /mV	420.0	260.0	600.0	700.0	920.0	1040	1120	1180	1240	1280	1288	1288	1288
100k	200k	250k	260k	270k	275k	280k	285k	290k	300k	310k	330k	350k	370k
1240	1080	960.0	940.0	920.0	920.0	912.0	900.0	880.0	860.0	840.0	820.0	780.0	760.0
400k	450k	500k	600k	800k	1M								
700.0	680.0	640.0	560.0	440.0	360.0								

表 5: 通频带($V_{ipp} = 30 \text{mV}$)

7 实验小结