Листок 1. Разнобой по анализу

Задача 1.1. Вычислить
$$\lim_{x\to\infty}\frac{1}{\sqrt{n}}\int\limits_1^n\ln(1+\frac{1}{\sqrt{x}})\,dx$$

Задача 1.2. Вычислить
$$\lim_{x\to 0} \frac{x^2 \cdot \cos \frac{1}{x^2}}{\sin x}$$

Задача 1.3. Вычислить
$$\lim_{x \to \infty} e^{-x^2} \int_{0}^{x} e^{t^2} dt$$

Задача 1.4. Вычислить
$$\int_{0}^{n} \arcsin x \cdot \arccos x \, dx$$

Задача 1.5. Решить уравнение
$$\lim_{n\to\infty} \underbrace{x_{n}^{x^{x^{\cdot}}}_{pa3}}^{x} = 2$$

Задача 1.6. Вычислить
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{n}{n^2 + k^2}$$

Задача 1.7. Вычислить
$$\sum_{n=1}^{\infty} \frac{\sin nx}{n!}$$

Задача 1.8. Если
$$f(x) = \sum_{k=1}^{\infty} \frac{\cos kx}{k!}$$
, а $g(x) = \sum_{k=1}^{\infty} \frac{\sin kx}{k!}$ Докажите, что $\frac{g(x)}{f(x)} > 1991$

Задача 1.9. Вычислить
$$\lim_{n\to\infty}\frac{n!^{\frac{1}{n}}}{n}$$

Задача 1.10. Вычислить
$$\lim_{n\to\infty}\frac{\pi}{2n}(1+\cos\frac{\pi}{2n}+\cos2\frac{\pi}{2n}+...+\cos(n-1)\cdot\frac{\pi}{2n})$$

Задача 1.11. Вычислить
$$\lim_{n \to \infty} \sum_{n=1}^{\infty} \frac{x^2}{1 + n^2 \cdot x^2}$$

Задача 1.12. Вывести формулу для
$$P_n = 1 + 2x + 3x^2 + ... + nx^{n-1}$$

Задача 1.13. Решить уравнение
$$(x+1)^5 + (x+2)^5 + \dots + (x+1999)^5 = 0$$