Principle of Mathematical Induction

- Suppose there is a given statement P(n) involving the natural number n such that
- i. The statement is true for n = 1, i.e., P(1) is true, and
- ii. If the statement is true for n = k (where k is some positive integer), then the statement is also true for n = k + 1, i.e., truth of P(k) implies the truth of P(k + 1). Then, P(n) is true for all natural numbers n

Example 1

For all $n \ge 1$, prove that $1^2 + 2^2 + 3^2 + 4^2 + ... + n^2 = n(n+1)(2n+1)/6$

Let the given statement be P(n), i.e., $P(n): 1^2 + 2^2 + 3^2 + 4^2 + ... + n^2 = n(n+1)(2n+1)/6$ For n = 1, P(1): 1 = 1(1+1)(2*1+1)/6 = 1*2*3/6 = 1

Assume that P(k) is true for some positive integer k, i.e.,

$$1^2 + 2^2 + 3^2 + 4^2 + ... + k^2 = k(k+1)(2k+1)/6$$
 ... (1)

We shall now prove that P(k + 1) is also true.

which is true.

Now, we have
$$(1^2 + 2^2 + 3^2 + 4^2 + ... + n^2) + (k + 1)^2$$

= $(k(k+1)(2k+1)/6) + (k + 1)^2$ [Using (1)]
= $k(k+1)(2k+1) + 6(k+1)^2/6$
= $(k+1)(2k^2 + 7k+6)/6$
= $(k+1)(k+1+1)\{2(k+1)+1\}/6$

Thus P(k + 1) is true, whenever P(k) is true. Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers n.

Prove that 2n > n for all positive integers n.

Let $P(n): 2^n > n$

When $n = 1, 2^1 > 1$.

Hence P(1) is true.

Assume that P(k) is true for any positive integer k, i.e.,

$$2^k > k \dots (1)$$

We shall now prove that P(k + 1) is true whenever P(k) is true.

Multiplying both sides of (1) by 2,

we get $2^* 2^k > 2^k$ i.e.,

$$2^{k+1} > 2k = k + k > k + 1$$

Therefore, P(k + 1) is true when P(k) is true. Hence, by principle of mathematical induction, P(n) is true for every positive integer n.

Questions

- 1. For every positive integer n, prove that $7^n 3^n$ is divisible by 4.
- 2. Prove that $(1 + x)^n \ge (1 + nx)$, for all natural number n. where x > -1.