Feuille 4 : Applications linéaires de \mathbb{R}^n dans \mathbb{R}^m

Exercice 1. Les applications suivantes sont-elles linéaires ?

$$l_1: \mathbb{R}^2 \to \mathbb{R}^2 \qquad l_2: \mathbb{R} \to \mathbb{R}$$

$$(x,y) \mapsto (x-y,x) \qquad x \mapsto x^3$$

$$l_3: \mathbb{R}^2 \to \mathbb{R}^2 \qquad l_4: \mathbb{R}^2 \to \mathbb{R}^3$$

$$(x,y) \mapsto (x-y,x+1) \qquad (x,y) \mapsto (x,y,x+y)$$

Exercice 2. Soit (e_1, e_2, e_3, e_4) la base canonique de \mathbb{R}^4 et f l'application linéaire de \mathbb{R}^4 dans lui-même définie par $f(e_1) = 3e_1 + e_2 + e_3 + e_4$, $f(e_2) = e_1 + e_2 - e_3 + e_4$, $f(e_3) = e_1 - e_2 + e_3 - e_4$ et $f(e_4) = e_1 + e_2 - e_3 + e_4$.

- 1) Calculer f(x, y, z, t) pour $(x, y, z, t) \in \mathbb{R}^4$.
- 2) Déterminer Ker(f) et en donner une base.
- 3) Soit $F = \text{Vect}(e_3, e_4)$. Les sous-espaces vectoriels F et Ker(f) sont-ils supplémentaires?

Exercice 3. Soit l'application linéaire

$$f: \quad \mathbb{R}^3 \quad \to \quad \mathbb{R}^3$$
$$(x, y, z) \quad \mapsto \quad (0, x, z).$$

- a) Déterminer Kerf et Imf. Donner une base de chacun de ces sous-espaces vectoriels.
- b) La somme $\operatorname{Ker} f + \operatorname{Im} f$ est-elle directe?

Exercice 4. 1) Montrer que l'application f de \mathbb{R}^2 dans \mathbb{R}^2 qui à (x,y) associe (2x+y,x-y) est un isomorphisme (c-à-d linéaire bijective).

2) Montrer que $f: \mathbb{R}^2 \to \mathbb{R}^2$, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$ est un isomorphisme si et seulement si $ad - bc \neq 0$.

Exercice 5. Déterminer la matrice de l'application $f : \mathbb{R}^3 \to \mathbb{R}^3$ telle que f(x, y, z) = (x, y + z, 0) relative à la base canonique.

Exercice 6. Soient f et h les applications linéaires de \mathbb{R}^3 dans \mathbb{R}^2 et de \mathbb{R}^2 dans \mathbb{R}^3 représentées par les matrices respectives, dans les bases canoniques :

$$A = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}, B = \begin{pmatrix} 2 & 3 \\ -1 & 0 \\ 1 & 2 \end{pmatrix}.$$

- 1. Calculer l'image par f d'un vecteur (x, y, z) et l'image par h d'un vecteur (a, b).
- 2. Ecrire les matrices dans les bases canoniques des applications suivantes : $f \circ h$; $h \circ f$.

Exercice 7. Montrer que l'image d'une famille libre par une application linéaire injective est une famille libre.

Exercice 8. Soit $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . Soient u_1, u_2, u_3 trois vecteurs de \mathbb{R}^3 définis par leurs composantes (dans la base canonique) : $u_1 = (0, 1, 1), u_2 = (2, 3, 1), u_3 = (5, 0, 1)$.

- 1) Montrer que $C = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 .
- 2) Ecrire la matrice de passage de \mathcal{B} à \mathcal{C} , ainsi que son inverse
- 3) Soit u le vecteur de coordonnées (1,1,1) dans la base (u_1,u_2,u_3) . Quelles sont ses coordonnées dans la base (e_1,e_2,e_3) ?
- 4) Soit v le vecteur de coordonnées (1,1,1) dans la base (e_1,e_2,e_3) . Quelles sont ses coordonnées dans la base (u_1,u_2,u_3) ?

Exercice 9. 1) Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ une application linéaire donnée dans les bases canoniques par

$$A = \left(\begin{array}{rrr} 1 & 2 & -5 \\ -1 & 0 & 3 \end{array}\right)$$

Montrer que les vecteurs (1,1,1), (0,1,1), et (-1,2,3) forment une base \mathcal{B} de \mathbb{R}^3 . Ecrire la matrice de passage P de la base canonique vers cette nouvelle base.

- 2) Montrer que (1,1) et (2,1) forment une base \mathcal{B}' de \mathbb{R}^2 puis écrire la matrice de passage de Q de la base canonique de \mathbb{R}^2 vers cette nouvelle base.
- 3) Calculer la matrice B de f dans les bases \mathcal{B} et \mathcal{B}' (utiliser la formule de changement de base).

Exercice 10. Soit l'application $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par

$$f(x, y, z) = (-2x + 5y - z, -2x + 2y + 2z, -2x + 5y - z).$$

- 1) Vérifier que f est linéaire et déterminer la matrice A de f dans la base canonique.
- 2) Montrer que dim(Kerf) = 1 et donner une base de Ker(f).
- 3) Déterminer dim(Imf) et donner une base de Im(f). Donner également une équation cartésienne de Im(f) (méthode du pivot).
- 4) Soit $v_2 = (1, 1, 1)$ et $v_3 = (1, 0, 1)$. Calculer $f(v_1)$ et $f(v_2)$ et en déduire que $\{v_1, v_2, v_3\}$ est une base de \mathbb{R}^3 . Donner la matrice de f dans cette nouvelle base.

Exercice 11. Dans \mathbb{R}^3 muni de la base canonique \mathcal{B} , soit $f \in \mathcal{L}(\mathbb{R}^3)$ dont la matrice dans \mathcal{B} est

$$A = \left(\begin{array}{ccc} 9 & -6 & 10 \\ -5 & 2 & -5 \\ -12 & 6 & -13 \end{array}\right)$$

Soit

$$u_1 = (2, -1, -2)$$
; $u_2 = (1, 0, -1)$; $u_3 = (-2, 1, 3)$.

- 1) Montrer que $\mathcal{B}' := \{u_1, u_2, u_3\}$ est une base de \mathbb{R}^3 .
- 2) Calculer la matrice de f dans \mathcal{B}' (utiliser les formules du cours!)

Exercice 12. Dans \mathbb{R}^3 , on considère l'endomorphisme f représenté dans la base canonique $\{e_1, e_2, e_3\}$ par la matrice

$$A = \frac{1}{6} \left(\begin{array}{rrr} 5 & -2 & 1 \\ -2 & 2 & 2 \\ 1 & 2 & 5 \end{array} \right).$$

- 1) Calculer $f(e_1 + 2e_2)$ et trouver un élément non nul de Ker(f).
- 2) Déterminer dim(Kerf), rg(f), une base \mathcal{B}' de Ker(f), et une base \mathcal{B}'' de Im(f).
- 3) Montrer que $\mathcal{B} = \mathcal{B}' \cup \mathcal{B}''$ est une base de \mathbb{R}^3 et écrire la matrice D de f dans \mathcal{B}
- 4) Donner la matrice de passage P de la base canonique de \mathbb{R}^3 vers \mathcal{B} , puis donner une relation entre les trois matrices A, D, et P.

Exercice 13. Soit $f \in \mathcal{L}(\mathbb{R}^2)$ dont la matrice dans la base canonique de \mathbb{R}^2 , $\{e_1, e_2\}$ est donnée par

$$A = \left(\begin{array}{cc} 5 & 1 \\ -4 & 0 \end{array}\right).$$

Soit $f_1=(1,-4)$ et $f_2=(1,-1)$. Montrer que $\{f_1,f_2\}$ est une base de \mathbb{R}^2 . Calculer la matrice de changement de base P de $\{e_1,e_2\}$ à $\{f_1,f_2\}$, puis P^{-1} , puis $P^{-1}AP$. En déduire A^n pour tout $n \in \mathbb{N}$.

Exercice 14. Soit $\{e_1, e_2, e_3\}$ la base canonique de \mathbb{R}^3 . Soit $a_1 = e_1 + e_2 - e_3$, $a_2 = e_1 - e_2 + e_3$, $e_3 = -e_1 + e_2 + e_3$. Montrer que $\{a_1, a_2, a_3\}$ est une base de \mathbb{R}^3 . Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base $\{e_1, e_2, e_3\}$ est

$$\frac{1}{2} \left(\begin{array}{cccc} a - b & a + c & c - b \\ b - a & c - a & b + c \\ a + b & a - c & b - c \end{array} \right).$$

Calculer la matrice de f dans la base $\{a_1, a_2, a_3\}$.

Exercice 15. Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par

$$f(x, y, z) = (x + y + z, -x + 2y + 2z)$$

Donner une base et la dimension de Ker(f). Même chose pour Im(f)

Exercice 16. Soit $\{e_1, e_2, e_3, e_4\}$ et $\{f_1, f_2, f_3\}$ les bases canoniques de \mathbb{R}^4 et \mathbb{R}^3 respectivement. Soit $f: \mathbb{R}^4 \to \mathbb{R}^3$ définie par

$$f(e_1) = f_1 - f_2 + 2f_3$$
; $f(e_2) = 2f_1 + f_2 - 3f_3$; $f(e_3) = 3f_1 - f_3$; $f(e_4) = -f_1 - 2f_2 + 5f_3$

Donner l'image par f d'un vecteur $x = (x_1, x_2, x_3, x_4)$ et la matrice de f dans les deux bases $\{e_1, e_2, e_3, e_4\}$ et $\{f_1, f_2, f_3\}$. Déterminer une base et la dimension de Ker(f). Même question pour l'image.

Exercice 17. Soit $f \in \mathcal{L}(\mathbb{R}^n)$. Montrer que $Ker(f) \cap Im(f) = \{0\}$ si et seulement si $Ker(f) = Ker(f \circ f)$.

Exercice 18. (plus difficile / hors programme) Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ une application linéaire non nulle telle que $f^2 = 0$ (c.a.d. pour tout $x \in \mathbb{R}^3$, on a f(f(x)) = 0). Montrer que $Im(f) \subset Ker(f)$ puis que rg(f) = 1 et dim(Kerf) = 2. En déduire qu'il existe une base de \mathbb{R}^3 telle que la matrice de f dans cette base soit de la forme

$$\left(\begin{array}{ccc}
0 & 0 & a \\
0 & 0 & b \\
0 & 0 & 0
\end{array}\right)$$

Exercice 19. (Plus difficile / hors programme). Soit $f: \mathbb{R}^n \to \mathbb{R}^p$ une application linéaire telle que :

$$\forall x \in \mathbb{R}^n, \ \exists \alpha_x \in \mathbb{R}, \ f(x) = \alpha_x x. \tag{0.1}$$

- 1) Soit x, y deux vecteurs de \mathbb{R}^n tels que $\{x, y\}$ est libre. Montrer que $\alpha_{x+y}(x+y) = \alpha_x x + \alpha_y y$. En déduire que $\alpha_{x+y} = \alpha_x = \alpha_y$ puis que $f(x) = \alpha_x x$ et $f(y) = \alpha_x y$.
- 2) Soit x, y deux vecteurs de \mathbb{R}^n tels que $\{x, y\}$ est liée. Démontrer qu'il existe $\lambda \in \mathbb{R}$ tel que $y = \lambda x$. En déduire que $f(y) = \alpha_x y$.
- 3) Grâce aux questions 1) et 2), démontrer que (0.1) implique

$$\exists \alpha \in \mathbb{R}, \ \forall y \in \mathbb{R}^n, \ f(y) = \alpha y.$$