USACH - FAE

MAGÍSTER EN CIENCIAS ECONÓMICAS

TEORÍA ECONOMÉTRICA I

Tarea #5

(Fecha de Entrega: Miércoles 12 de agosto)

- 1) Suponga que una variable aleatoria X tiene una distribución normal con media 0
 - a) Si σ es una desviación estándar desconocida, ¿cuál es la Información de Fisher $I(\sigma)$ en X?
 - b) Si $\sigma^2 > 0$ una varianza desconocida, ¿cuál es la Información de Fisher $I(\sigma^2)$ en X?
- 2) Sea $X_1, ..., X_n$ una muestra aleatoria de una distribución de Poisson con media θ . Sea $Y = \sum_{i=1}^n X_i$.
 - a) Prueba que no existe un estimador insesgado de $1/\theta$.
 - b) Suponga que deseamos estimar $1/\theta$. Considere r(Y) = n/(Y+1) como un estimador de θ . Encuentre el sesgo de r(Y) y demuestre que el sesgo tiende a 0 cuando $n \to \infty$. (Sugerencia: libérese de la sumatoria)
 - c) Use el método delta para encontrar la distribución asintótica de r(Y).
- 3) Suponga que se quieren estimar dos regresiones

$$y = \beta X_y + \epsilon_y \tag{*}$$

$$z = \delta X_z + \epsilon_z \tag{**}$$

Donde X_y y X_z son las matrices de las variables explicativas y ϵ_y y ϵ_z son sus respectivos errores. Considere la regresión

$$\binom{y}{z} = \binom{\beta}{\delta} \binom{X_y}{0} \frac{0}{X_z} + \binom{\epsilon_y}{\epsilon_z}$$
 (***)

Es el estimador de β y δ más eficiente en (***) que en (*) y (**) respectivamente? Explique.

4) Considere la regresión $y = \beta X + \epsilon$. Suponga que el valor esperado de ϵ es cero. Pruebe que el estimador del método de momentos de la media y la varianza de una distribución normal es también el estimador de máxima verosimilitud.