Redes de Computadores I

Assis Tiago

assis.filho@unicap.br

OBJETIVOS

- Conhecer os principais
 dispositivos responsáveis por realizar
 interconexões em redes de computadores;
- Entender o funcionamento e qual a melhor utilização de cada dispositivo de interconexão;

ELEMENTOS DE INTERCONEXÃO

- Repetidores
 - Camada Física
- Pontes
 - Camada de Enlace
- Switches
 - Camada de Enlace
- Roteadores
 - Camada de Rede
- Gateways
 - Camadas Superiores

ELEMENTOS DE INTERCONEXÃO

Camadas onde os elementos atuam 4

- São elementos implementados no nível físico;
- Trabalhão na camada física;
- Possibilitam unicamente amplificar
 e retransmitir os sinais elétricos
 representando os bits de dados entre dois
 segmentos de cabos;

- Permitem que se estendam os cabos da rede por meio de sincronização e regeneração do sinal;
 - Possibilitando que os frames possam ser enviados por uma longa distância;
- Soluciona problemas causados pela distorção dos sinais;
 - Ruído, atenuação e eco;

- Um repetidor introduz sempre um retardo na rede;
 - O número de repetidores em uma rede é limitado, no máximo 2;
- Em redes com topologia em barramento devese evitar caminhos fechados, pois os sinais podem ser retransmitidos infinitamente;

HUB(CONCENTRADORES)

- Central de fios (camada física);
- Podem ser de dois tipos:
 - Passivos:
 - Não possuem alimentação;
 - Funcionam como concentrador de fiação;
 - Apenas retransmite os sinais para a rede
 - Ativos:
 - São alimentados;
 - Amplificação do sinal;
 - Repetidor multiporta;

HUB(CONCENTRADORES)

- Implementadas no nível de enlace;
- Se duas subredes apresentam compatibilidade em relação a camada de enlace uma ponte pode ser utilizada;
- Efetuam o armazenamento e retransmissão de quadros entre duas redes locais;

- A retransmissão dos quadros podem ser caracterizadas por algumas modificações no formato dos quadros - se necessário;
 - Suporta diferença entre protocolos de controle de acesso ao meio;
- As pontes são equipamento baseados em microprocessador;

- Divide a rede domínios de colisão em independentes;
- Interligam sistema de cabeamento filtrando o tráfego entre as interligações da rede;
- Utilizam os endereços específicos das estações que são gerados na camada de enlace;

- A operação em uma ponte é baseada na manutenção de uma tabela contendo os endereços dos equipamentos compondo a qual rede ela está associada;
 - Quando um pacote é recebido, esta examina o conteúdo do campo endereço de destino para verificar se ele está endereçado a mesma rede de origem ou não;
 - Caso positivo, o pacote é encaminhado ao respectivo dispositivo;
 - Caso contrario é despachado pela ponte para outra subrede.

MÉTODOS DE CONEXÃO

Cascateamento:

- Os elementos são interconectados um a um seqüencialmente;
- Sobrecarrega os elementos intermediários com o tráfego destinado para aos segmentos nas pontas;
- Backbone: as pontes são interligadas por um cabo (tipo espinha dorsal), distribuindo-se desta forma o tráfego por todo os segmentos.

MÉTODOS DE CONEXÃO

Topologia para Pontes em cascata Estação A Estação B Estação C Segmento 1 **Ponte** Segmento 2 Estação E Estação D Estação F **P**onte Estação G Estação H Estação I Segmento 3

MÉTODOS DE CONEXÃO

Topologia para Pontes tipo Espinha Dorsal (Backbone)

BENEFÍCIOS

- Diminuição do número de colisões da rede
 - diminuição da carga total da rede
 - melhoria no desempenho das aplicações
- Possível solução para o problema da distância entre as estações de uma LAN
 - distância entre a primeira e a última estação é muito grande
- Isolamento de informações (segurança)

BENEFÍCIOS

- filtragem, aprendizagem própria e roteamento próprio;
- aumento do número de estações de trabalho e segmentos de rede ligados;
- bridges são transparentes para os protocolos de nível superior;
- pela subdivisão da rede local dentro de segmentos menores, aumenta a confiabilidade global, facilitando sua manutenção;
- pode reduzir tráfego em outros segmentos.

MALEFÍCIOS

- a bufferização de quadros introduz retardos na rede;
- broadcasts são seguidos para todos os segmentos;
- não são eficientes com redes complexas;
- bridges podem se tornar sobrecarregadas durante períodos de tráfego alto.

SWITCH

- Possibilita a troca de informações entre várias estações simultaneamente;
- Ponte com múltiplas portas;
- Velocidade interna bastante elevada;
- Suporte a diversos tipos de interfaces;

SWITCH

Switch: Dispositivo da camada 2

SWITCH

- Realiza comutação de quadros;
- Segmentação da rede;
- Implementado no nível da camada de enlace;
- Implementação por software e hardware;
- Pode-se interligar várias tecnologias de transmissão;

- Cut-Trough:
 - Comutação entre varias portas examinando apenas o endereço MAC;
 - O quadro completo nunca é armazenado, a menos que ocorra uma contenção na porta;
 - Baixa latência;

- Store-and-Forward:
 - Armazena todo o quadro, examina o endereço MAC, avalia o CRC e reencaminha o quadro.

RESUMINDO OS SWITCHES

- No modo store-and-forward, os switches recebem e armazenam todo o quadro antes de tomar qualquer decisão operacional.
 - Essa abordagem é boa para manter a integridade e a validade dos quadros, mas cria latência de rede adicional.
- No modo de comutação cut-through, os switches recebem apenas uma fração do quadro e imediatamente começam a tomar uma decisão de encaminhamento.
 - Nesta abordagem, os switches não descartam quadros inválidos, mas os encaminham para o próximo nó. No entanto, a latência da rede é menor do que na abordagem store-and-forward.

CENÁRIO

HUB X SWITCH

ROUTERS (ROTEADORES)

- Implementado no nível de rede;
- Retransmite pacotes entre várias redes;
- Filtragem e retransmissão baseada em endereço de rede(Ex: IP);
- Utiliza protocolo de roteamento para construir a tabela de roteamento;
- Fundamental para conexões WAN;
- Permite interligar redes com diferentes tecnologias;

ROUTERS (ROTEADORES)

CENÁRIO

GATEWAYS

- São elementos de interconexão de concepção mais complexa;
- Compatibiliza diferenças estruturais e de protocolos existentes entre duas redes;
- Os gateways devem possuir duas pilhas de protocolos: uma baseada no modelo OSI de 7 camadas e outra baseada na arquitetura proprietária;

GATEWAYS

REDE OSI

Aplicação
Apresentação
Sessão
Transporte
Rede
Enlace
Física

GATEWAY

TRAD	UTOR	L
Aplicação	Usuário	
A <i>presentação</i>	serviços NAU	
Sessão	Fluxo Dados	
Transporte	Controle Transmissão	
Rede	Controle Caminho	
Enlace	Controle Enlace	
Física	Ligação Física	

REDE SNA

7	
Usuário	
serviços NAU	
Fluxo Dados	
Controle Transmissão	
Controle Caminho	
Controle Enlace	
Ligação Física	
i i	

CONSIDERAÇÕES FINAIS

- Fundamental conhecer cada dispositivo de interconexão;
- Saber aplicar cada dispositivo na melhor situação;

REFERÊNCIA

- SOARES, Luiz F.; LEMOS, Guido e COLCHER, Sérgio. Redes de Computadores: Das LANs, MANs e WANs às Redes ATM, Ed. Campus.
- ROSS, Keith e KUROSE, JAMES. Redes de Computadores e a Internet: Uma nova abordagem, Ed. Addison Wesley.
- TORRES, Gabriel. Redes de Computadores, Ed. Nova Terra.
- TENENBAUM, Andrew. S.. Redes de computadores, Ed. Campus. 4ª Edição.