Correction examen première session 2016-2017

Loan Sens en collaboration avec Robin Petit

23 janvier 2017

Je ne garantit en rien l'exactitude de chacune des réponses qui va suivre, ce corrigé est surtout pour donner une idée générale pour comprendre comment réussir les examens de mod-sim;)

Question 1

Considérons le système non linéaire continu suivant :

$$\begin{cases} \dot{x_1} = x_1^2 + x_2^2 - 1\\ \dot{x_2} = x_1^2 - x_2^2 \end{cases}$$

où
$$x_1 \in [-5, 5]$$
 et $x_2 \in [-5, 5]$

L'étudiant devra

- 1. calculer analytiquement le(s) point(s) d'équilibre
- 2. étudier la stabilité du(des) point(s) d'équilibre (du système non linéaire) par linéarisation
- 3. tracer sur du papier millimétré le portrait de phase avec les isoclines du systèmes & comportement qualitatif des trajectoires autour du(des) point(s) d'équilibre & le comportement qualitatif des 4 trajectoires dont les points initiaux sont : (0,0), (1,1), (-1,-2), (-2,0)

1) calculer analytiquement le(s) point(s) d'équilibre

Pour cela nous analyserons les isoclines du système. Soit :

$$\begin{cases} I_1 \equiv \dot{x_1} = 0 \\ I_2 \equiv \dot{x_2} = 0 \end{cases}$$

En développant :

$$\begin{cases} I_1 \equiv x_1^2 + x_2^2 = 1 \\ I_2 \equiv x_1^2 = x_2^2 \end{cases}$$

La première équation est celle d'un cercle dont le centre est l'origine du repère de rayon 1. La seconde est celle de 2 droites de pentes 1 et -1 se croisant en l'origine.

Il y à 4 points d'intersection entre les 2 isoclines qui seront nos points d'équilibres :

$$I1\cap I2=\{(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}),(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}),(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}),(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2})\}$$

2) étudier la stabilité du(des) point(s) d'équilibre (du système non linéaire) par linéarisation

Pour cela nous avons besoin de la Jacobienne du système :

$$\begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_1} \end{bmatrix} = \begin{bmatrix} 2x_1 & 2x_2 \\ 2x_1 & -2x_2 \end{bmatrix}$$

Pour: $-\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$:

$$\det\left(\begin{bmatrix}2\cdot\frac{\sqrt{2}}{2}-\lambda & 2\cdot\frac{\sqrt{2}}{2}\\2\cdot\frac{\sqrt{2}}{2} & -2\cdot\frac{\sqrt{2}}{2}-\lambda\end{bmatrix}\right) = 0 \Leftrightarrow \left(\left(\sqrt{2}-\lambda\right)*\left(-\sqrt{2}-\lambda\right)\right) - \left(\sqrt{2}*\sqrt{2}\right) = 0 \Leftrightarrow \lambda^2 - 4 = 0$$

Les solutions de ce système sont $\lambda_{1,2} = \pm 2$.

Étant donné que nous avons 2 racines réelles distinctes, c'est une selle.

- $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$:
Même raisonnement...

$$\lambda^{2} + 2\sqrt{2} \cdot \lambda + 4 = 0$$
$$\Delta = -8$$
$$\lambda_{1,2} = -\sqrt{2} \pm i\sqrt{2} \rightarrow \alpha = -\sqrt{2}$$

Comme $\alpha = -\sqrt{2} < 0$, la stabilité en ce point est asymptotiquement stable

- $(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})$: Même raisonnement...

$$\lambda^2 - 2\sqrt{2} \cdot \lambda + 4 = 0$$

$$\Delta = -8$$

$$\lambda_{1,2} = \sqrt{2} \pm i\sqrt{2} \rightarrow \alpha = \sqrt{2}$$

Comme $\alpha = \sqrt{2} > 0$, la stabilité en ce point est asymptotiquement instable

— $\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$: Même raisonnement...

$$\lambda^2 - 4 = 0$$

On trouve le même système qu'au premier point et donc là aussi nous avons une selle.

3) tracer sur du papier millimétré le portrait de phase avec les isoclines du systèmes & comportement qualitatif des trajectoires autour du(des) point(s) d'équilibre & le comportement qualitatif des 4 trajectoires dont les points initiaux sont : (0,0),(1,1),(-1,-2),(-2,0)

Voir schéma ci-bas (dessiné par Liran).

Pour les trajectoires :

$$-(0,0)$$
:

$$\begin{cases} \dot{x_1} = 0^2 + 0^2 - 1 \\ \dot{x_2} = 0^2 - 0^2 \end{cases} = (-1, 0)$$

Remarquons que c'est normal qu'une des 2 composantes valent 0 car $(0,0) \in I2$

$$-(1,1):$$

$$\begin{cases} \dot{x_1} = 1^2 + 1^2 - 1 \\ \dot{x_2} = 1^2 - 1^2 \end{cases} = (1, 0)$$

$$-(-1,-2)$$
:

$$\begin{cases} \dot{x_1} = (-1)^2 + (-2)^2 - 1\\ \dot{x_2} = (-1)^2 - (-2)^2 \end{cases} = (4, -3)$$

$$-(-2,0)$$
:

$$\begin{cases} \dot{x_1} = (-2)^2 + 0^2 - 1 \\ \dot{x_2} = (-2)^2 - 0^2 \end{cases} = (3,4)$$

Question 2

Considérons le système à temps discret décrit par l'équation suivante :

$$E \equiv a \cdot x(k+2) + x(k) = k^2 + k + 1$$
 $a \in \mathbb{R} \setminus \{0, -1\}$

- 1. Donnez la solution générale de l'équation homogène
- 2. Donnez la solution particulière de l'équation de départ
- 3. Donnez la solution générale de l'équation non-homogène sachant que : $a=3,\ x(0)=0,\ x(1)=1$
- 4. Sachant que : $a=3,\ x(0)=0,\ x(1)=1,$ calculez la valeur de x(k) pour $k\in\{0,1,2,3,4\}$

1) Donnez la solution générale de l'équation homogène

L'équation homogène de ce système est donné par :

$$EH \equiv a \cdot x^2 + 1 = 0$$

Trouvons les racines de cette équation en fonctions des valeurs de a:

$$\Delta = -4a$$

$$-\Delta = 0 \Leftrightarrow -4a = 0 \Leftrightarrow a = 0 \text{ or } a \neq 0$$

$$SG_{a=0} \equiv x^{(G)}(k) = \emptyset$$

$$-\Delta > 0 \Leftrightarrow -4a > 0 \Leftrightarrow a < 0$$

$$\lambda_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a} = \pm \frac{\sqrt{-a}}{a}$$

a < 0 donc pas de soucis de racine négatif.

$$SG_{a<0} \equiv x^{(G)}(k) = c_1 \left(\frac{\sqrt{-a}}{a}\right)^k + c_2 \left(-\frac{\sqrt{-a}}{a}\right)^k$$

$$-\Delta > 0 \Leftrightarrow -4a > 0 \Leftrightarrow a > 0$$

$$\lambda_{1,2} = \frac{-b \pm i\sqrt{\Delta}}{2a} = i \pm \frac{\sqrt{a}}{a} \to \alpha = 0 \quad \beta = \frac{\sqrt{a}}{a}$$

a>0 donc pas de soucis de racine négatif.

$$\rho = \sqrt{\alpha^2 + \beta^2} = \frac{\sqrt{a}}{a}$$

$$\begin{cases} \cos(\theta) = \frac{\alpha}{\rho} = 0\\ \sin(\theta) = \frac{\beta}{\rho} = 1 \end{cases} \Leftrightarrow \theta = \pi/2$$

$$SG_{a>0} \equiv x^{(G)}(k) = c_1 \left(\frac{\sqrt{a}}{a}\right)^k \cos(k\frac{\pi}{2}) + c_2 \left(\frac{\sqrt{a}}{a}\right)^k \sin(k\frac{\pi}{2})$$

2) Donnez la solution particulière de l'équation de départ

Nous devons donc trouver une équation $x^{(P)}(k)$ tel que $a \cdot x^{(P)}(k+2) + x^{(P)}(k) = k^2 + k + 1$. Cette équation doit nécessairement être de même degré que la partie de droite (donc de degré 2), posons :

$$x^{(P)}(k) = \alpha_1 \cdot k^2 + \alpha_2 \cdot k + \alpha_3$$

et donc:

$$x^{(P)}(k+2) = \alpha_1 \cdot (k+2)^2 + \alpha_2 \cdot (k+2) + \alpha_3$$
$$x^{(P)}(k+2) = \alpha_1 k^2 + 4\alpha_1 k + 4\alpha_1 + \alpha_2 k + 2\alpha_2 + \alpha_3$$

Injectons dans l'équation de départ :

$$a \cdot x^{(P)}(k+2) + x^{(P)}(k) = k^2 + k + 1$$
$$a \cdot (\alpha_1 k^2 + 4\alpha_1 k + 4\alpha_1 + \alpha_2 k + 2\alpha_2 + \alpha_3) + (\alpha_1 \cdot k^2 + \alpha_2 \cdot k + \alpha_3) = k^2 + k + 1$$

Maintenant nous devons rassembler tout les termes de même degrés de k ensemble en mettant en évidence.

$$a \cdot (\alpha_1 k^2 + 4\alpha_1 k + 4\alpha_1 + \alpha_2 k + 2\alpha_2 + \alpha_3) + (\alpha_1 \cdot k^2 + \alpha_2 \cdot k + \alpha_3) = k^2 + k + 1$$

$$k^2 \cdot (a \cdot \alpha_1 + \alpha_1) + k \cdot (4a \cdot \alpha_1 + a \cdot \alpha_2 + \alpha_2) + (4a \cdot \alpha_1 + 2a \cdot \alpha_2 + \alpha_3) = 1 \cdot k^2 + 1 \cdot k + 1$$

$$\begin{cases} a \cdot \alpha_1 + \alpha_1 = 1 \\ 4a \cdot \alpha_1 + a \cdot \alpha_2 + \alpha_2 = 1 \\ 4a \cdot \alpha_1 + 2a \cdot \alpha_2 + \alpha_3 = 1 \end{cases} \Leftrightarrow \begin{cases} \alpha_1 = \frac{1}{a+1} \\ \alpha_2 = \frac{-3a+1}{(a+1)^2} \\ \alpha_3 = \frac{3a^2 - 4a + 1}{(a+1)^2} \end{cases}$$

Notre solution particulière est donc :

$$x^{(P)}(k) = \frac{1}{a+1} \cdot k^2 + \frac{-3a+1}{(a+1)^2} \cdot k + \frac{3a^2 - 4a + 1}{(a+1)^2}$$

Remarquons que $a \neq -1$ d'après l'énoncé, donc pas de soucis de divisions par 0.

3) Donnez la solution générale de l'équation non-homogène sachant que : $a=3,\ x(0)=0,\ x(1)=1$

La solution générale non-homogène à pour équation :

$$x^{(S)}(k) = x^{(G)}(k) + x^{(P)}(k)$$

$$x^{(S)}(k) = \left(c_1\left(\frac{\sqrt{a}}{a}\right)^k \cos(k\frac{\pi}{2}) + c_2\left(\frac{\sqrt{a}}{a}\right)^k \sin(k\frac{\pi}{2})\right) + \left(\frac{1}{a+1} \cdot k^2 + \frac{-3a+1}{(a+1)^2} \cdot k + \frac{3a^2 - 4a + 1}{(a+1)^2}\right)$$

Car a=3>0, il nous faut maintenant remplacer les valeurs de a dans l'équation. Pour a=3:

$$\begin{cases} \alpha_1 = \frac{1}{4} \\ \alpha_2 = \frac{-1}{2} \\ \alpha_3 = 1 \end{cases}$$
$$x^{(S)}(k) = \left(c_1 \left(\frac{\sqrt{3}}{3} \right)^k \cos(k\frac{\pi}{2}) + c_2 \left(\frac{\sqrt{3}}{3} \right)^k \sin(k\frac{\pi}{2}) \right) + \left(\frac{1}{4} \cdot k^2 - \frac{1}{2} \cdot k + 1 \right)$$

On va maintenant utiliser les 2 égalités afin de déterminer les valeurs de c_1 et c_2 :

$$\begin{cases} x^{(S)}(0) = 0 \\ x^{(S)}(1) = 1 \end{cases} \Leftrightarrow \begin{cases} c_1 = -1 \\ c_2 = \frac{\sqrt{3}}{4} \end{cases}$$

Ce qui nous donne comme équation finale:

$$x^{(S)}(k) = \left(-\left(\frac{\sqrt{3}}{3}\right)^k \cos(k\frac{\pi}{2}) + \frac{\sqrt{3}}{4} \left(\frac{\sqrt{3}}{3}\right)^k \sin(k\frac{\pi}{2})\right) + \left(\frac{1}{4} \cdot k^2 - \frac{1}{2} \cdot k + 1\right)$$

4) Sachant que : $a=3,\ x(0)=0,\ x(1)=1,$ calculez la valeur de x(k) pour $k\in\{0,1,2,3,4\}$

Pour:

- k = 0

Déjà donné dans l'énoncé (x(0) = 0), mais vérifions quand même au cas ou :) :

$$x^{(S)}(0) = \left(-\left(\frac{\sqrt{3}}{3}\right)^{0} \cos(0 \cdot \frac{\pi}{2}) + \frac{\sqrt{3}}{4} \left(\frac{\sqrt{3}}{3}\right)^{0} \sin(0 \cdot \frac{\pi}{2})\right) + \left(\frac{1}{4} \cdot 0^{2} - \frac{1}{2} \cdot 0 + 1\right)$$
$$x^{(S)}(0) = (-1 + 0) + (1)$$
$$x^{(S)}(0) = 0$$

- k = 1:

Déjà donné dans l'énoncé (x(1)=1), mais vérifions quand même au cas ou une nouvelle fois :

$$x^{(S)}(1) = \left(-\left(\frac{\sqrt{3}}{3}\right)^1 \cos(1 \cdot \frac{\pi}{2}) + \frac{\sqrt{3}}{4} \left(\frac{\sqrt{3}}{3}\right)^1 \sin(1 \cdot \frac{\pi}{2})\right) + \left(\frac{1}{4} \cdot 1^2 - \frac{1}{2} \cdot 1 + 1\right)$$
$$x^{(S)}(1) = (0 + \frac{3}{12}) + (\frac{3}{4})$$
$$x^{(S)}(1) = 1$$

- k = 2:

$$\dots \Leftrightarrow x^{(S)}(2) = \frac{4}{3}$$

- k = 3:

$$\dots \Leftrightarrow x^{(S)}(3) = \frac{5}{3}$$

- k = 4:

$$\ldots \Leftrightarrow x^{(S)}(4) = \frac{26}{9}$$

Question 3

Considérons les deux systèmes à temps discret :

$$E_1 \equiv x(k+1) = 3 + x^2(k) - 5x(k)$$

$$E_2 \equiv x(k+1) = x^3(k) + 2x^2(k) - 2$$

Pour chacun des deux systèmes l'étudiant devra :

- 1. trouver les points d'équilibre du système (Aide : $x^3 + 2x^2 x 2 = (x-1)(x^2 + 3x + 2)$),
- 2. étudier la stabilité,
- 3. simuler numériquement les trois premières étapes d'une trajectoire qui démarre dans $\bar{x}_m + \delta(0)$ où \bar{x}_m est le plus petit des points d'équilibre du système et $\delta(0) = 0.0001$.
- 4. trouver par linéarisation l'équation de la dynamique de $\delta(k)$ et montrer qu'elle est compatible avec les résultats numériques des points 2 et 3.

1) trouver les points d'équilibre du système

Pour E_1

Soit $f_1 = 3 + x^2 - 5x$ la fonction associée à notre équation E_1 .

$$f_1 = x$$
$$x^2 - 6x + 3 = 0$$
$$\lambda_{1,2} = 3 \pm \sqrt{6}$$

Pour E_2

Soit $f_2 = x^3 + 2x^2 - 2$ la fonction associée à notre équation E_2 .

$$f_2 = x$$

$$x^3 + 2x^2 - x - 2 = 0$$

$$(x - 1)(x^2 + 3x + 2) = 0$$

$$(x - 1)(x + 1)(x + 2) = 0$$

$$\lambda_1 = -2 \quad \lambda_2 = -1 \quad \lambda_3 = 1$$

2) étudier la stabilité

Pour E_1

Soit $f'_1 = (3 + x^2 - 5x)' = 2x - 5$ la dérivée de la fonction associée à notre équation E_1 . Calculons la stabilité pour les points d'équilibres :

$$-\bar{x} = 3 + \sqrt{6}$$
:

$$|f_1'(3+\sqrt{6})| = |6+2\sqrt{6}-5| \approx |5.9| > 1 \Rightarrow \text{instable}$$
 — $\bar{x}=3-\sqrt{6}$:

$$|f_1'(3-\sqrt{6})| = |6-2\sqrt{6}-5| \approx |-3.9| > 1 \Rightarrow \text{instable}$$

Pour E_2

Soit $f_2' = (x^3 + 2x^2 - 2)' = 3x^2 + 4x$ la dérivée de la fonction associée à notre équation E_2 . Calculons la stabilité pour les points d'équilibres :

$$-\bar{x}=-2$$
:

$$|f_2'(-2)| = |4| > 1 \Rightarrow \text{instable}$$

$$- \bar{x} = -1$$
 :

$$|f_2'(-1)| = |-1| = 1 == 1 \Rightarrow \text{aucune information}$$

$$-\bar{x}=1$$
:

$$|f_2'(1)| = |7| > 1 \Rightarrow \text{instable}$$

Remarque préliminaire: nul n'a réellement compris quel était la bonne réponse à la question qui va suivre, un seul étudiant (sur les 50 qui ont passé l'examen) à réussi à avoir tout les points à cette question et il n'a pas voulu nous partager son secret...

Demander aux assistants ne serai du coup sans-doute pas une mauvaise idée.

Question Orale (facultative et dispensatrice)

Considérons les système dynamique à temps continu d'ordre 1

$$\dot{x} = K \cdot x, \quad x \in \mathbb{R}$$

où x(0) = 0.1 et K est distribué selon la densité de probabilité :

Soit U = [0.15, 0.6, 0.53, 0.9, 0.34, 0.17, 0.82, 0.08, 0.507, 0.03] une séquence de 10 nombres aléatoires tirés à partir d'une distribution uniforme entre 0 et 1.

L'étudiant devra :

- estimer en utilisant la séquence U par Monte Carlo la probabilité que x(5) > 0.001,
- justifier de manière théorique (c.à-d. en utilisant les propriétés du système dynamique) le résultat du point précédent.

(Proposition de) réponse

Avant de partir plus loin il faut déjà qu'on comprenne le concept de "Monte Carlo".

On à ici une liste U de nombres aléatoires compris uniformément entre 0 et 1 et on nous demande de "transformer" ses nombres pour qu'il respecte la fonction de densité ci-haut. Vue l'allure de cette fonction nos nombres "transformés" seront uniformément compris entre $[-2, -1] \cup [1, 2]$, puis que notre fonction de densité est une uniforme définie dans cet intervalle.

Comme c'est une fonction de densité, on peux en calculer sa fonction de distribution (voir cours de Statistiques) :

$$F(x) = \begin{cases} 0 & \text{if } x < -2\\ \frac{x+2}{2} & \text{if } -2 \le x \le -1\\ \frac{1}{2} & \text{if } -1 < x < 1\\ \frac{x}{2} & \text{if } 1 \le x \le 2\\ 1 & \text{if } x > 2 \end{cases}$$

La droite bleue représente le graphique de la fonction F(x), la ligne rouge en pointillée est d'ordonnée la valeur du premier élément de U:0.15.

Faisons remarquer que les valeurs de U sont toutes comprises entre 0 et 1, ce qui est également le cas de notre fonction de répartition (en ordonnée), pour en déduire notre nouvelle liste U' de nombre "transformé" il nous suffit donc de trouver le bon intervalle de la fonction de répartition, ce qui n'est en soit pas très compliqué car elle ne décroit jamais.

Par exemple reprenons le premier point de U:0.15, il se trouve dans le 2ème intervalle, ici on le remarque facilement grâce au graphique. On doit maintenant calculer $0.15=\frac{x+2}{2} \Leftrightarrow x=-1.7$ qui est bien compris dans les bornes de notre intervalle ($-2 \le x \le -1$), donc tout vas bien.

A titre de contre-exemple, si on avait essayé avec le 4ème intervalle pour cette même valeur : $0.15 = \frac{x}{2} \Leftrightarrow x = 0.3$, qui n'est pas compris entre $1 \le x \le 2$.

En pratique on est censé calculer la fonction réciproque de F(x): $F^{-1}(x)$ et du coup trouver les valeurs devient plus simple, mais c'est parfois pas évident de trouver la réciproque. On appelle ça la méthode de la transformée inverse.

Une fois tout les points transformés un à un on obtient :

$$U' = [-1.7, 1.2, 1.06, 1.8, -1.32, -1.66, 1.64, -1.84, 1.014, -1.94]$$

Reprenons notre système initiale:

$$\dot{x} = K \cdot x$$

$$\frac{\partial x}{\partial t}(t) = K \cdot x(t)$$

$$x(t) = x(0) \cdot e^{K \cdot t}$$

$$x(t) = 0.1 \cdot e^{K \cdot t}$$

On en déduit que $x(t=5)=0.1\cdot e^{5K}$. Il nous reste à calculer P(x(5)>0.001)

$$P(x(5) > 0.001)$$

$$P(0.1 \cdot e^{5K} > 0.001)$$

$$P(e^{5K} > 0.0001)$$

$$P(K > -\frac{3}{5} \cdot \ln(10) \approx -1.38)$$

$$F(-1.38) = \frac{-1.38 + 2}{2} \approx 0.31$$

$$P(U > 0.31) = 1 - 0.31 = 0.69 = 69\%$$

Attention le U de la dernière ligne de calcul désigne la loi Uniforme sur [0,1] et non la liste U de nombre donnée dans l'énoncé.

Nous devrions donc avoir en toute logique dans notre liste U, 69% des éléments qui sont supérieur à 0.31, dans notre cas nous en avons 6 sur les 10 éléments, soit 60% ce qui n'est pas très loin du compte étant donné le petit jeu de données que nous avons.

Si l'on reprends la liste U' trouvés précédemment, on remarque qu'il y à également 6 éléments parmi les 10 qui sont supérieur à -1.38 (4ème ligne de calcul). Ce qui n'est pas une coïncidence.