

6.6.2All-pairs shortest path

PANOI GHUMF edge 4Htol zith,

Now, consider the following graph and its distance matrix:

In general, we consider a graph G whose vertices are $1,2,\ldots,n,$ and will consider a sequence of matrices $D = D^{(0)}, D^{(1)}, D^{(2)}, \ldots, D^{(n)},$

where $D^{(k)}$ is the k-distance matrix, that is, its (i,j)th entry $D_{i,j}^{(k)}$ is the length of the shortest path from vertex i to j, using only vertices $1, 2, \dots, k$. (In short, k-distance between i and j.) Make sure that $D^{(0)} = D$ makes sense, since $D_{i,j}$ is the distance between i and j without using any other vertices as intermediates, i.e., only the edge (i, j). The matrix $D^{(n)}$ contains the information that we are seeking, i.e., the shortest distances between two vertices.

Recursive structure of optimality Note that we are using $1, 2, \ldots, n$ as vertices. In the following, v_i 's are variables that take a value from $1, \ldots, n$.

Proposition 17. If $v_1v_2 \dots v_m \dots v_l$ be a shortest path from v_1 to v_l , then the subpaths $v_1 \dots v_m$ and $v_m \dots v_l$ are shortest paths. Also, the same thing holds for paths that uses only $1, \dots, k$ as intermediates.

Proof. Suppose that $v_1v_2 \dots v_{m-1}v_m$ is not shortest and there is a shorter path from $v_1v_2'\dots v_{m-1}'v_m$. Then there is a shorter path $v_1v_2' \dots v_{m-1}'v_m \dots v_l$, a contradiction. Therefore, $v_1v_2 \dots v_{m-1}v_m$ is the shortest, and the same argument holds for $v_m \dots v_l$. Also, the claim about paths using only $1, \ldots, k$ as intermediates is proved similarly.

By definition of $D^{(k)}$ and the above observations, the following holds.

Proposition 18.

oposition 18.
$$D_{i,j}^{(k)} = \min \left(D_{i,j}^{(k-1)} \middle/ D_{i,k}^{(k-1)} + D_{k,j}^{(k-1)} \middle) \right)$$
 This (recursive) equation itself says how to compute $D^{(n)}$: use $D^{(k-1)}$ to compute $D^{(k)}$, for

 $k=1,\ldots,n-1$. So we have a dynamic programming algorithm that computes $D^{(n)}$.

