Homework

Jon Allen

September 10, 2014

1.1 14. For what positive integers n is it true that (n, n+2) = 2? Prove your claim.

claim

The statement is true for all even integers.

proof

First lets note that by the definition of even and odd integers, two does not divide an odd integer. Because two is not a divisor of an odd integer, it cannot be a greatest common divisor with any other integer. It follows then that n must be even. That is to say there exists some $k \in \mathbb{Z}$ such that n = 2k.

Now we show that the fact that n is even is enough for $\gcd(n,n+2)=2$. Let's take an integer $d\neq 2$ where $d=\gcd(n,n+2)$. Now by definition d|n. Because n is even we have d|2k. Because $d\neq 2$ there must exist some integer a such that k=ad and then d|2ad. Now because d also divides n+2 we have d|2ad+2 which is to say there exists some integer b such that bd=2ad+2. This is true only if d|2. Because $d\neq 2$ we see that d=1 However we defined $d=\gcd(n,n+2)$ and we know that 2|n and 2|(n+2) and obviously 2>1 so we have a contradiction. Therefore if n is even, then $\gcd(n,n+2)=2$. \square

- 16. Let a, b, c be integers, with b > 0, c > 0, and let q be the quotient and r the remainder when a is divided by b.
 - (a) Show that q is the quotient and rc is the remainder when ac is divided by bc

proof

We observe that dividing a by b we are guaranteed to be able to find a = bq + r such that $0 \le r < b$. Let's multiply this by c. We get c(a) = c(bq + r). Now distributing and rearranging we see that ac = (bc)q + rc. We see from this that q is a quotient and rc is a remainder. Observe however that these may not be the quotient and remainder that are guaranteed by the division algorithm.

To guarantee this, we must show that rc < bc. Note that c > 0 and $0 \le r < b$. Again multiplying by c we have $0 \le rc < bc$ and therefore rc is the remainder guaranteed by the division algorithm. By extension q must also be the quotient guaranteed by the division algorithm. \square

(b) Show that if q' is the quotient when q is divided by c then q' is the quotient when a is divided by bc. (Do not assume that the remainders are zero.)

proof

We let q = cq' + r' where r' is the remainder when q is divided by c. Let us multiply both sides of the equation by b to get bq = bcq' + br'. We note that a = bq + r and substitute in

bq to obtain a = bcq' + br' + r. Now we see that q' is a quotient when a is divided by bc. We must show that $0 \le br' + r < bc$ to prove that br' + r is the remainder guaranteed by the division algorithm and by extension, q' is the quotient guaranteed by the division algorithm. We know $0 \le r' < c$ and $0 \le r < b$ so r' is at most c - 1 and r is at most b - 1. This means that $br' + r \le b(c - 1) + b - 1$. Simplifying we have $br' + r \le bc - 1$ or br' + r < bc. Similarly $0 \le b(0) + 0 = 0$ so $0 \le br' + r < bc$ and we have our result. \square

21. Prove that the sum of the cubes of any three consecutive positive integers is divisible by 3.

proof

Let $a \in \mathbb{Z}^+$. We seek to show that there exists some integer b such that $3b = a^3 + (a+1)^3 + (a+2)^3$.

$$3b = a^{3} + (a+1)^{3} + (a+2)^{3}$$

$$= a^{3} + a^{3} + 3a^{2} + 3a + 1 + a^{3} + 3 \cdot 2a^{2} + 3 \cdot 2^{2}a + 2^{3}$$

$$= 3a^{3} + 9a^{2} + 15a + 9$$

$$= 3(a^{3} + 3a^{2} + 5a + 3)$$

$$b = a^{3} + 3a^{2} + 5a + 3$$

Note that this works with all $a \in \mathbb{Z}$, it does not require $a \in \mathbb{Z}^+$. \square

1.2 12. Let a, b, c be nonzero integers. Show that gcd(a, b) = 1 and gcd(a, c) = 1 if and only if gcd(a, lcm[b, c]) = 1

proof

I could prove this using the $a=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_n^{\alpha_n}$ representation of prime factorizations used in the book, but I think it will be easier to see if we think of prime factorizations as sets instead. If we have some integer $a=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_n^{\alpha_n}$ where p_i is prime and α_i is the number of times that factor occurs in the prime factorization, then we can imagine some set $F(a)=\{p_{ij}:1\leq i\leq n,1\leq j\leq\alpha_i\}$. For example $F(8)=\{2_1,2_2,2_3\}, F(12)=\{2_1,2_2,3_1\}$. Now we reformulate Proposition 1.2.10 to say that $\gcd(a,b)$ is the intersection of the sets of prime factors for a and b. We see this as $\min\{\alpha_i,\beta_i\}$ will only include elements that are in both F(a) and F(b). That is to say $\gcd(a,b)=F(a)\cap F(b)$. Similarly $\lim_i a_i b_i$ is the union of i and i and i but the elements in i but th

$$\gcd(a,b) = F(a) \cap F(b) = \emptyset$$
$$\gcd(a,c) = F(a) \cap F(c) = \emptyset$$
$$\gcd(a, \operatorname{lcm}[b,c]) = F(a) \cap (F(b) \cup F(c))$$
$$= (F(a) \cap F(b)) \cup (F(a) \cap F(c))$$
$$= \emptyset \cup \emptyset$$

Since the set of prime factors is empty, we see that gcd(a, lcm[b, c]) = 1. \square

23. Show that if n is a positive integer such that $2^n + 1$ is prime, then n is a power of 2.

proof

Because n is a power of two, it's prime factorization is 2^m for some integer $m \ge 0$ and all of its factors are therefore even. Let us assume that n is not a power of two, then it must have some odd prime factor p = 2k + 1. We'll say that n = (2k + 1)q.

$$2^n + 1 = 2^{q(2k+1)} + 1$$

$$= (2^q)^{2k+1} + 1$$

= $(2^q + 1)(2^{q2k} - 2^{q(2k-1)} + \dots + 1)$

Now because we defined p to be prime we know that $p \ge 2$ and therefore $k \ge 1$. This means that we have found a factor for $2^n + 1$ when n is not a power of two. Therefore, if n is a power of two, then $2^n + 1$ must not have any factors and is therefore prime. \square