

ESCOLA DE PRIMAVERA DA MARATONA SBC DE PROGRAMAÇÃO

PROMOÇÃO:

APOIO:

Grupo de Computação Competitiva

MENOR ANCESTRAL COMUM

Por: Eloy Ribeiro Maciel

CONTEÚDOS

- 01 Conceito
- 02 Aplicações
- 03 Solução ingênua
- 04 Escalada Binária
- 05 Redução para RMQ
- 06 Sparse Table
- 07 Algoritmo da redução
- 08 Problema
- 09 Fontes

01 - CONCEITO

Dado um vértice \mathbf{v} de uma árvore \mathbf{T} de raiz \mathbf{r} , existe um único caminho conectando \mathbf{r} e \mathbf{v} . Qualquer vértice contido nesse caminho é considerado ancestral de \mathbf{v} . Dado dois vértices \mathbf{u} e \mathbf{v} de \mathbf{T} , o menor ancestral comum (Lowest Common Ancestor - LCA) desses vértices é o vértice mais distante da raiz e que pertence ao conjunto de ancestrais de \mathbf{u} e \mathbf{v} .

No exemplo ao lado m é o menor ancestral comum de u e v.

02 - APLICAÇÕES

Uma das principais utilidades de descobrir o LCA de dois vértices está calcular a menor distância entre esses dois vértices. Isso ocorre porque só precisamos saber as profundidades de u, v e do lca(u, v). Com esses dados é possível descobrir a distância entre u e v em O(1).

Inclusive, a fórmula para calcular a distância tendo o Ica(u, v) é:

 $\operatorname{profundidade}(u) + \operatorname{profundidade}(v) - 2 \cdot lca(u, v)$

Outras possíveis aplicações estão aliadas ao uso de Árvore de Sufixos e são:

- Encontrar palíndromos maximais/repetições em um texto;
- buscas de padrões em textos admitindo erros em um ou nos dois textos comparados;
- Encontrar textos em que um padrão aparece ao menos uma vez.

03 - SOLUÇÃO INGÊNUA

A primeira solução é passar pelos ancestrais de ambos os vértices até encontrarmos algum vértice já visitado, ou seja, um vértice comum.

Para isso, é necessário um pré-processamento que registra a profundidade e o pai de cada vértice, esse pré-processamento tem uma complexidade O(n), algo que será similar para todas as soluções.

Já as consultas também possuem complexidade O(n), algo que não é bom. A ideia do algoritmo é sempre passar para o pai do vértice mais baixo ou de ambos os vértices até que se encontre um vértice comum.

ALGORITMO INGÊNUO

```
void dfs(int v, int d) {
       vis[v] = 1;
       depth[v] = d;
       for (int u : adj[v]) if (!vis[u]) {
           parent[u] = v;
           dfs(u, d + 1);
    int lca(int v, int u) {
       if(depth[u] < depth[v]) swap(u, v);
       while(depth[v] < depth[u]) v = parent[v];
       while (v != u) {
           v = parent[v];
           u = parent[u];
       return v;
```


04 - ESCALADA BINÁRIA

A solução da escalada binária é semelhante à uma busca binária. Dado todos os antecessores de dois vértices v e u, queremos encontrar, primeiro, o vértice que é o último ancestral não comum, ou o ancestral não comum mais próximo da raiz. Sabendo esse vértice, teremos que o pai dele é o ancestral comum mais baixo.

Qual o Ica de 7 e 8?

Esquerda = 1 (menor profundidade) Direita = 7

Esquerda = 1 (menor profundidade)

Meio = 2

Direita = 7

2 será a nova esquerda

Esquerda = 2 (menor profundidade)

Meio = 4

Direita = 7

4 é o último ancestral não comum e o pai dele é a resposta do lca dos vértices 7 e 8, ou seja, é o vértice 2

Todavia, salvar todos os ancestrais de todos os vértices é muito caro em termos de memória, já percorrer todos eles é muito caro em termos de tempo. Para contornar isso usamos Programação Dinâmica para construir uma tabela onde salvaremos apenas os antecessores em distâncias logaritmicas de cada vértice.

A relação de construção da tabela é a seguinte:

$$pai(u,0) = p[u] \ pai(u,k) = pai(pai(u,k-1),k-1)$$

Abaixo mostro como o 8° pai de u é o 4° pai do 4° pai de u

Na construção da árvore é necessário apenas implementar essa pd em complemento à dfs. Feito o pré-processamento, cada consulta será semelhante a solução ingênua, mas tomada em intervalos logarítmicos. Todavia buscamos o último ancestral não comum de ambos os vértices, após isso retornamos o pai desse vértice encontrado.

O pré-processamento é feito em O(nlog n) já o processamento é feito em O(log n), algo bem menor que a solução ingênua considerando que temos apenas um préprocessamento para várias consultas.

ALGORITMO DA ESCALADA

```
class EscaladaBinaria {
private:
    int n, log max;
    vector<int> depth, vis;
    vector<vector<int>>> adj_list, parents;
    void dfs(int v, int p) {
        parents[v][0] = p;
        vis[v] = 1;
        for(int k {1}; k <= log max; k++)</pre>
            parents[v][k] = parents[parents[v][k-1]][k-1];
        for (int u : adj list[v]) if (!vis[u]) {
            depth[u] = depth[v] + 1;
            dfs(u, v);
```

```
public:
        EscaladaBinaria(vector<vector<int>> adj list, int root) {
            n = adj list.size();
            log max = log2(n);
            adj list = adj list;
            vis = vector<int>(n, 0);
            depth = vector<int>(n, 0);
            parents = vector<vector<int>>(n, vector<int>(log max + 1, -1));
            dfs(root, root);
        int lca(int v, int u) {
            if(depth[u] < depth[v]) swap(u, v);
            for (int i {log max}; i >= 0; i--) {
                if ((depth[v] - (1 << i)) >= depth[u])
                    v = parents[v][i];
            if (u == v) return v;
            for (int i {log max}; i >= 0; i--) {
                if (parents[v][i] != parents[u][i]) {
                    v = parents[v][i];
                    u = parents[u][i];
            return parents[v][0];
34 };
```


05 - REDUÇÃO PARA RMQ

Uma estratégia interessante para lidar com o problema é transforma-lo em um problema menor (reduzi-lo) e com soluções melhores. Seguindo essa ideia, é possível transformar uma consulta de um lca em uma consulta de valor minimo em um intervalo (Range Minimum Query - RMQ), problema com solução possível mais rápida.

O problema de RMQ busca, em um vetor de valores, o valor mínimo entre dois índices válidos. Há algumas estratégias para resolver esse problema, dentre elas está usar uma Árvore de Segmentos e usar Sparse Table, sendo que essa segunda permite resolver em O(1).

06 - SPARSE TABLE

Temos que qualquer número inteiro não negativo pode ser representado pela soma de potências decrescentes de 2 (base binária).

• Ex:
$$13 = 1101(2) = 8+4+1$$

E podemos representar qualquer intervalo como a união de intervalos menores com comprimento em potências de 2.

- Intervalo $[2,8] = [2,5] \cup [6,7] \cup [8,8]$
- |[2,5]| = 4
- |[6,7]| = 2
- |[8,8]| = 1

0	1	2	3	4	5	6	7	8
0	1	2	3	4	5	6	7	8

A ideia por trás de uma sparse table é pré-calcular os resultados de uma função aplicada a todos os intervalos com tamanho em potência de 2. Para intervalos distintos, consultamos dividindo em intervalos com valores já conhecidos. Como para um número n há no máximo log n potências de 2 somando, um intervalo de tamanho n será dividido no máximo em log n subintervalos.

Para implementar essa estrutura, usaremos uma tabela st onde a posição st[i][j] armazena o valor do intervalo $[i, i + 2^{(j-1)}]$. Ai está a mágica dessa estrutura, para um vetor de tamanho n teremos uma tabela n*log n, não uma com tamanho n*n.

Para construção, usaremos a seguinte relação, onde a função f é a função que desejamos aplicar (soma, mínimo, máximo, etc):

$$st(i,j) = egin{cases} f(v[i]) & ext{se } j = 0 \ f(st(i,j-1), st(i+2^{j-1}, j-1)) & c. \ c. \end{cases}$$

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

	0	1	2	3
0	3			
1	1			
2	5			
3	3			
4	4			
5	7			
6	6			
7	1			

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

	0	1	2	3
0	3	4		
1	1			
2	5			
3	3			
4	4			
5	7			
6	6			
7	1			

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

	0	1	2	3
0	3	4		
1	1	6		
2	5			
3	3			
4	4			
5	7			
6	6			
7	1			

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

	0	1	2	3
0	3	4		
1	1	6		
2	5	8		
3	3			
4	4			
5	7			
6	6			
7	1			

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

	0	1	2	3
0	3	4		
1	1	6		
2	5	8		
3	3	7		
4	4			
5	7			
6	6			
7	1			

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

	0	1	2	3
0	3	4		
1	1	6		
2	5	8		
3	3	7		
4	4	11		
5	7			
6	6			
7	1			

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

	0	1	2	3
0	3	4		
1	1	6		
2	5	8		
3	3	7		
4	4	11		
5	7	13		
6	6			
7	1			

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

	0	1	2	. 3
0	3	4		
1	1	6		
2	5	8		
3	3	7		
4	4	11		
5	7	13		
6	6	7		
7	1			

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

	0	1	2	3
0	3	4	12	
1	1	6		
2	5	8		
3	3	7		
4	4	11		
5	7	13		
6	6	7		
7	1			

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

	0	1	2	
0	3	4	12	
1	1	6	13	
2	5	8		
3	3	7		
4	4	11		
5	7	13		
6	6	7		
7	1			

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

	0	1	2	3
0	3	4	12	
1	1	6	13	
2	5	8	19	
3	3	7		
4	4	11		
5	7	13		
6	6	7		
7	1			

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

	0	1	2	3
0	3	4	12	
1	1	6	13	
2	5	8	19	
3	3	7	20	
4	4	11		
5	7	13		
6	6	7		
7	1			

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

	0	1	2	3
0	3	4	12	
1	1	6	13	
2	5	8	19	
3	3	7	20	
4	4	11	18	
5	7	13		
6	6	7		
7	1			

0	1	2	3	4	5	6	7
3	1	5	3	4	7	6	1

	0	1	2	3
0	3	4	12	30
1	1	6	13	
2	5	8	19	
3	3	7	20	
4	4	11	18	
5	7	13		
6	6	7		
7	1			

Para realizar uma consulta no intervalo [L,R], encontramos a primeira potência que tem um comprimento igual ou menor que o intervalo (começamos da maior possível), ao encontrar processamos a parte encontrada (aplicamos f com o valor salvo anteriormente e salvamos) e continuamos para o intervalo que restou.

Essa consulta apresentada é realizada em tempo $O(\log n)$, como você deve ter notado na explicação, mencionei a possibilidade de realizar ela em O(1). Isso é possível quando a função f não sofre influencia com as sobreposições de subsequências, ou seja, quando não precisamos ter conjuntos disjuntos. Esse é o caso de consultar um RMQ uma vez que a função minimo é idempotente (f(x,x)=x)

Nesses casos a relação da pesquisa é: $\,min(st[L][j],st[R-2^j+1][j])\,$

Onde
$$j = \lfloor log_2(R-L+1)
floor$$


```
class SparseTable {
  private:
    int n, k;
    vector<vector<int>> tab;
    vector<int> log;
    function<int(int, int)> f;

    void computar() {
        for(int j{1}; j <= k; j++) {
            for(int i{0}; i + (1 << j) <= n; i++)
            tab[i][j] = f(tab[i][j-1], tab[i + (1 << (j - 1))][j - 1]);
    }
}
</pre>
```

```
public:
        SparseTable() {}
        SparseTable(vector<int> &arr, function<int(int, int)> f) {
            n = arr.size();
            f = f;
            log = vector < int > (n + 1);
            log[1] = 0;
            for(int i = 2; i < n + 1; ++i) log[i] = log[i / 2] + 1;
            k = log[n];
            tab = vector<vector<int>>(n, vector<int>(k + 1));
            for(int i = 0; i < n; ++i) tab[i][0] = arr[i];
            computar();
        int consultar(int left, int right) {
            int j = log[right - left + 1];
            return f(tab[left][j], tab[right - (1 << j) + 1][j]);</pre>
25 };
```


07 - ALGORIMO COM RMQ

Com a sparse table pronta, precisamos fazer um pré-processamento da árvore salva um tour de Euler, a profundidade de cada nó e primeira vez que passamos por ele.

Com isso note que para calcular o lca(v,u) entre dois vértices basta calcular o vértice de menor altura no tour de Euler que está entre a primeira visita de v e u. Para isso usamos uma sparse table com consultas em O(1).

Construir um tour de Euler é salvar em um vetor o vertice atual sempre, independente se está voltando para ele ou passando pela primeira vez.

Vértices	1	2	3	4
Profundidade	0	1	1	2
Primeira	0	1	5	2

	0	1	2	3	4	5	6
Tour de Euler	1	2	4	2	1	3	1


```
class LCATree {
    private:
        int n;
       vector<int> vis, depth, first, euler tour;
        SparseTable sp;
        void dfs(int v, int d, vector<vector<int>> &adj) {
           vis[v] = 1;
           depth[v] = d;
           first[v] = euler tour.size();
           euler_tour.push_back(v);
           for(auto u : adj[v]) {
               if(!vis[u]) {
                   dfs(u, d + 1, adj);
                   euler tour.push back(v);
        int lca(int v, int u) {
           int left = first[v], right = first[u];
           if(left > right)
               swap(left, right);
           return sp.consultar(left, right);
        int rmq(int v, int u) {
           int lca v u = lca(v, u);
           return depth[v] + depth[u] - 2 * depth[lca v u];
```

```
public:
        LCATree(vector<vector<int>> &g) {
            int n = g.size();
            vis = vector < int > (n, 0);
            depth = vector<int>(n);
            first = vector<int>(n);
            euler tour = vector<int>();
            for(int i = 0; i < n; ++i) if(!vis[i]) dfs(i, 0, g);
            auto f = [\&](int a, int b){
                if(depth[a] < depth[b]) return a;</pre>
                return b;
            };
            sp = SparseTable(euler_tour, f);
        int query(int v, int u) {
            return rmq(v, u);
22 };
```


08 - PROBLEMA

Agora que conhecemos o tema podemos praticar com problemas. Para servir de exemplo, irei resolver o probelema 2470 do beecrowd.

- Problema: https://judge.beecrowd.com/pt/problems/view/2470.
- Link da solução: https://gist.github.com/El0y-COSM0/1f099b8e91a71825a1ad2860b1425ea7

09 - FONTES

- O problema do Menor Ancestral Comum, USP, disponivel em: https://bccdev.ime.usp.br/ tccs/2005/daniel/poster.pdf
- Menor Ancestral Comum (LCA Lowest Common Ancestor), disponivel em: https://youtu.be/bs10hR0Kdyw?si=SnF46VEIXXXxjTpo
- Sparse Table, disponivel em: https://youtu.be/inAZoc5K9jo?si=INS6-dx6R-MKyTYB

OBRIGADO PELA ATENÇÃO

Grupo de Computação Competitiva

