Examen de Teoría de Percepción - Recuperación Primer Parcial

ETSINF, Universitat Politècnica de València, Junio de 2018

Apellidos:				Nombre:		
-	☐ Jorge Ci	$\overline{\operatorname{carlos}}$	Martínez	1		
Cuestiones	s (2 puntos	$,\ 30\ \mathrm{minutos},\ \mathrm{si}$	in apuntes))		
B Dado un cl que no se	lasificador definid corresponda a un	o por $c(x) = \arg \max_{c=1}^{n}$ clasificador de mínimo	$g_c(x)$. Indicerror:	ca cuál de las sigu	ientes definiciones	de $g_c(x)$ hace
B) $g_c(x)$	=P(x,c)					
M y media modelo M el conjunto	ante la realimenta $^\prime$ que combina T yo de correos TRE0 pondera igualitar	e de un conjunto de mue ción del usuario se gener T'. Considera la tarea C06 y T' , un conjunto de riamente todas las mue	ra un nuevo conju de clasificación o le correos propios	unto de entrenami de correos electrós s que tú mismo ha	ento T' que da lugnicos en $spam$ y ha as etiquetado, ¿qu	gar a un nuevo am donde T es é combinación
B) Suma C) Suma	ar las probabilidad ar las probabilidad	rreos spam y ham en T les a priori calculadas a les a priori calculadas a rreos spam y ham en T	partir de T y las partir de T y las	s calculadas a par s calculadas a par		
empleando	la menor memo	lasificación de imágener ria posible. Teniendo e resentados hace que la 1	en cuenta que se	han definido 102	4 niveles de gris,	¿qué tamaño
A) 500 p B) 1000 C) 1500 D) 2000	píxeles píxeles					
		íal de ancho de banda ; é proceso debe seguirse				ecuencia en el
B) Aplica C) Aplica	ar un filtro para c	>7000 Hz que pasen frecuencias \le que pasen frecuencias er que pasen frecuencias \le que pasen frecuencias	n el rango $3500\pm$	f_M Hz, donde f_M	es la frecuencia o	lel ruido
	oken que aparece o signaría el menor	con una frecuencia const valor?	tante k > 0 en too	dos los documento	os de una colección	ı, ¿qué función
A) La fu	nción Normal $G(t)$	$(x) = \left(\sum_{d} x_{dt}^2\right)^{-\frac{1}{2}}$				
B) La fu	nción GfIdf $G(t)$ =	$= \frac{\sum\limits_{d} x_{dt}}{\sum\limits_{d: x_{dt} > 0} 1}$				
	nción Idf $G(t) = 1$					
	s le asignan el mis					

$$\left(\begin{array}{ccccc} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ -1 & 0 & -1 & 0 \end{array}\right)$$

- C) 3
- D) 4

D Dada la matriz de covarianzas de los datos originales $\Sigma_{\mathcal{X}} \in \mathbb{R}^{D \times D}$, la matriz de proyección PCA $W \in \mathbb{R}^{D \times k}$ donde \mathbf{w}_j es el j-ésimo vector de proyección (de mayor a menor valor propio asociado) y la matriz de covarianzas diagonalizada de los datos originales $\Delta \in \mathbb{R}^{D \times D}$, ¿cuál de las siguientes expresiones caracteriza el error de reconstrucción de los datos de \mathcal{X} al proyectarlos de \mathbb{R}^D a \mathbb{R}^k con W?

A)
$$\sum_{j=1}^{k} \mathbf{w}_{j}^{t} \Sigma_{\mathcal{X}} \mathbf{w}_{j} - \sum_{j=1}^{k} \Lambda_{jj}$$

B)
$$\sum_{j=1}^{k} \mathbf{w}_{j}^{t} \Lambda_{jj} \mathbf{w}_{j} - \sum_{j=1}^{D} \Lambda_{jj}$$

C)
$$\sum_{j=1}^{D} \mathbf{w}_{j}^{t} \Lambda_{jj} \mathbf{w}_{j} - \sum_{j=1}^{D} \Lambda_{jj}$$

D)
$$\sum_{j=1}^{D} \mathbf{w}_{j}^{t} \Sigma_{\mathcal{X}} \mathbf{w}_{j} - \sum_{j=1}^{k} \Lambda_{jj}$$

A | Indica la característica de LDA que la distingue de PCA

- A) Es una técnica de reducción de dimensionalidad supervisada.
- B) Su resolución se basa en un problema de optimización.
- C) Emplea las covarianzas de los datos.
- D) Requiere el cálculo de vectores propios.

Examen de Teoría de Percepción - Recuperación Primer Parcial ETSINF, Universitat Politècnica de València, Junio de 2018

Apellidos:	Nombre:
Profesor: □Jorge Civera □Carlos Martí	ínez
Problemas (4 puntos, 90 minutos, con apu	untes)

- 1. (1 punto) Calcula el espacio en memoria de las siguientes representaciones:
 - a) Representación global de una imagen en color RGB, con 256 niveles por cada color, de 45 × 45 píxeles, con representación directa. (0.2 puntos)
 - b) Representación por características locales de una imagen de niveles de gris, con 256 niveles, de tamaño 45×45 con ventanas de 15×21 y desplazamiento unitario en ambas coordenadas, con representación por histograma. (0.3 puntos)
 - c) Representación de una señal de audio de 5 minutos de alta fidelidad (muestreada a 44100Hz, muestras de 16 bits) en un sistema 2.1. (0.2 puntos)
 - d) Representación de una señal de audio monocanal con ancho de banda 5KHz, muestreada con la frecuencia mínima para mantener todas sus frecuencias representativas, de duración 1 minuto y representada por 1 byte por muestra.
 (0.3 puntos)

Solución:

- a) 6075 bytes
- b) 396800 bytes
- c) 79380000 bytes
- d) 600000 bytes
- 2. (1 punto) Sea el siguiente conjunto de documentos de texto:

Doc	Texto
1	Pedro Sánchez se compromete a gobernar para los que no le votaron y para los que tampoco le votarán
2	Mariano Rajoy ya ha cambiado la dirección de la suscripción al Marca
3	Pedro Sánchez ha envejecido diez años desde que es presidente
4	Aparece a lápiz "P. Sánchez" en los papeles de Bárcenas
5	Las 25 frases más míticas de Mariano Rajoy durante su presidencia del Gobierno
6	Pedro Sánchez preguntará a las bases si debe dimitir por haberse ido a vivir a La Moncloa
7	Pedro Sánchez prometió su cargo sin Biblia y Dios sigue pensando que el presidente de España es Rajoy
8	Albert Rivera solo ve "españoles traidores" desde que hicieron a Pedro Sánchez presidente

Se pide:

- a) Calcular la representación bag-of-words para las palabras correspondientes a nombres propios: Pedro, Sánchez, Mariano, Rajoy, Marca, Bárcenas, Gobierno, Moncloa, Biblia, Dios, España, Albert, Rivera. (0.3 puntos)
- b) Calcular las funciones globales normal, GfIdf e Idf para los términos: para, los, la, que, a, en, de, más (0.5 puntos)
- c) A la vista de los resultados del apartado previo, ¿qué característica de Idf se confirma? (0.2 puntos)

Solución:

	t/d	1	2	3	4	5	6	7	8
	Pedro	1	0	1	0	0	1	1	1
	Sánchez	1	0	1	1	0	1	1	1
	Mariano	0	1	0	0	1	0	0	0
	Rajoy	0	1	0	0	1	0	1	0
	Marca	0	1	0	0	0	0	0	0
<i>a</i>)	Bárcenas	0	0	0	1	0	0	0	0
	Gobierno	0	0	0	0	1	0	0	0
	Moncloa	0	0	0	0	0	1	0	0
	Biblia	0	0	0	0	0	0	1	0
	Dios	0	0	0	0	0	0	1	0
	España	0	0	0	0	0	0	1	0
	Albert	0	0	0	0	0	0	0	1
	Rivera	0	0	0	0	0	0	0	1

	Término	Normal	GfIdf	Idf
<i>b</i>)	para	$\frac{1}{2}$	2	$\log 8$
	los	$\frac{1}{\sqrt{5}}$	$\frac{3}{2}$	$\frac{\log 8}{\log 4}$
	la	$\frac{1}{2}$	2	$\frac{\log 8}{\log 2}$
	que	$\frac{1}{\sqrt{7}}$	$\frac{5}{4}$	$\log 2$
	a	$\frac{1}{\sqrt{12}}$	$\frac{3}{2}$	$\log 2$
	en	1	1	$\frac{\log 8}{\log 2}$
	de	$\frac{1}{2}$	1	$\log 2$
	más	1	1	$\log 8$

- c) Se confirma que Idf atenúa más los tokens que aparecen en más documentos; así, los tokens "que", "a" y "de", que aparecen en 4 documentos de los 8, presentan el menor valor de la colección.
- 3. (2 puntos) Se dispone de un conjunto de muestras en \mathbb{R}^3 clasificadas en cuatro clases:

Por otra parte se ha calculado LDA, obteniéndose los siguientes vectores de proyección ordenados por valor propio generalizado de mayor (w_1) a menor (w_3) :

$$\begin{array}{c|cccc} & W_{\rm LDA} \\ \hline w_1 & 0 & 0 & 1 \\ w_2 & 1 & 0 & 0 \\ w_3 & 0 & 1 & 0 \\ \hline \end{array}$$

Se pide:

- a) Calcula los vectores de proyección PCA del conjunto de muestras (1 punto).
- b) Calcula la proyección de las muestras mediante PCA a \mathbb{R}^2 (0.4 puntos).
- c) Calcula la proyección de las muestras mediante LDA a \mathbb{R}^2 (0.4 puntos).
- d) ¿Qué proyección (PCA o LDA) consideras más adecuada para minimizar el error de clasificación? (0.2 puntos)
- a) Para calcular los vectores de proyección PCA primero es necesario obtener la matriz de covarianzas de los datos. En este caso, como $\bar{\mathbf{x}} = (0\ 0\ 0)^t$, la matriz de covarianzas es:

$$\Sigma = \frac{1}{8} \begin{pmatrix} 4 & 4 & -2 & 2 & -2 & 2 & -4 & -4 \\ 4 & 4 & 2 & -2 & 2 & -2 & -4 & -4 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & 4 & 1 \\ 4 & 4 & -1 \\ -2 & 2 & -1 \\ 2 & -2 & 1 \\ -2 & 2 & 1 \\ 2 & -2 & -1 \\ -4 & -4 & -1 \\ -4 & -4 & 1 \end{pmatrix} = \begin{pmatrix} 10 & 6 & 0 \\ 6 & 10 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Calculamos los valores propios de la matriz de covarianzas

$$\begin{vmatrix} 10 - \lambda & 6 & 0 \\ 6 & 10 - \lambda & 0 \\ 0 & 0 & 1 - \lambda \end{vmatrix} = 0 \quad \text{donde} \quad \lambda_1 = 16, \quad \lambda_2 = 4 \quad \text{y} \quad \lambda_3 = 1.$$

Los vectores propios asociados son

$$\lambda_1 = 16 \quad \to \quad w_1 = \left(\frac{\sqrt{2}}{2} \quad \frac{\sqrt{2}}{2} \quad 0\right)^t$$

$$\lambda_2 = 4 \quad \to \quad w_2 = \left(-\frac{\sqrt{2}}{2} \quad \frac{\sqrt{2}}{2} \quad 0\right)^t$$

$$\lambda_3 = 1 \quad \to \quad w_3 = (0 \quad 0 \quad 1)^t.$$

b) Proyectamos sobre los dos vectores propios de mayor valor propio asociado

n	1	2	3	4	5	6	7	8
x_1	$4\sqrt{2}$	$4\sqrt{2}$	0	0	0	0	$-4\sqrt{2}$	$-4\sqrt{2}$
x_2	0	0	$2\sqrt{2}$	$-2\sqrt{2}$	$-2\sqrt{2}$	$-2\sqrt{2}$	0	0
c	A	В	D	A	$^{\mathrm{C}}$	В	D	\mathbf{C}

c) Proyectamos sobre los dos vectores LDA

d) A diferencia de la proyección PCA que asigna al mismo punto datos de diferentes clases, la proyección LDA separa los datos de diferentes clases, y por tanto es más adecuada.