Math 249 Notes

Henry Yan

March 2024

Notation

Let $\langle x^n \rangle f(x)$ denote the coefficient of x^n in f(x).

Lectures 1-6

Definition - Multinomial Coefficient: Define the *multinomial coefficient* $\binom{n}{r_1,\ldots,r_k}$ to be the number of permutations of $1^{r_1}\ldots k^{r_k}$.

Then consider the $S_n \curvearrowright \{\text{permutations of } 1^{r_1} \dots k^{r_k}\}$, then $\operatorname{Stab}(1^{r_1} \dots k^{r_k}) = S_{r_1} \times \dots \times S_{r_k}$, and so $\operatorname{Stab}(1^{r_1} \dots k^{r_k}) = r_1! \dots r_k!$. Hence, by the Orbit-Stabilizer theorem, the number of orbits (permutations) of $1^{r_1} \dots k^{r_k}$ is $\binom{n}{r_1,\dots,r_k} = \frac{n!}{r_1!\dots r_k!}$.

Theorem - Multinomial Theorem: For intermediates x_1, \ldots, x_k ,

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{r_1, \dots, r_k} \binom{n}{r_1, \dots, r_k} x_1^{r_1} \dots x_1^{r_1} \dots x_k^{r_k}.$$

Definition - Multiset (Coefficient): A multiset is a set with repetition. Define the multiset coefficient $\binom{n}{k} = \binom{n+k-1}{n}$ to be the number of k-element multi-subsets of [n].

Alternatively, the multiset coefficient $\binom{n}{k}$ can be understood as the number of weak compositions of n into k parts, i.e. the number of sequences $(x_1, \ldots, x_k), x_i \geq 0$ such that $x_1 + \cdots + x_k = n$. This is equivalent to placing unlabelled balls into labelled boxes.

Definition - Stirling Numbers of the 2nd Kind: Define Stirling numbers of the 2nd kind S(n,k) to be the number of partitions of [n] into k non-empty subsets. An important property of Stirling numbers is

$$S(n,k) = kS(n-1,k) + S(n-1,k-1).$$

The exponential generating functions for Sterling numbers of the second kind is

$$\sum_{n} S(n,k) \frac{x^n}{n!} = \frac{(e^x - 1)^k}{k!}.$$

Using this, we can derive the closed form

$$S(n,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{k-i} \binom{k}{i} i^{n}.$$

Definition - (Signless) Stirling Numbers of the 1st Kind: Define

$$\sum_{k} s(n,k)x^{k} = (x)_{n} = x(x-1)\dots(x-n+1),$$

where s(n, k) are Stirling numbers of the 1st kind. Similarly,

$$\sum_{k} (-1)^{n-k} s(n,k) x^{k} = x(x+1) \dots (x+n-1).$$

Define the signless Stirling numbers of the first kind to be $c(n,k) = (-1)^{n-k} s(n,k) = |s(n,k)|$. Then

$$c(n,k) = (n-1)c(n-1,k) + c(n-1,k-1).$$

Additionally, signless Stirling numbers of the 1st kind, c(n, k), count the number of permutations $\sigma \in S_n$ with k cycles.

Generating Function for Integer Partitions: The ordinary generating function for integer partitions is

$$\sum_{n} p(n)x^{n} = \prod_{i=1}^{\infty} \frac{1}{1 - x^{i}},$$

where p(n) denotes the number of integer partitions of n.

Partition Identities:

1. The number of partitions with odd parts $p_o(n)$ is equal to the number of partitions with distinct parts $p_d(n)$.

An explicit bijection for showing this identity is

- (a) **Distinct** \to **odd**: Turn each distinct part $r = 2^k l$ (where l is odd) into 2^k copies of l. Then the resulting partition is necessarily composed only of odd parts.
- (b) **Odd** \to **Distinct**: Group like parts together, then if a partition has m parts of size l (l odd), write m in terms of its binary expansion $m = 2^{k_1} + \cdots + 2^{k_j}$, then $ml = 2^{k_1}l + \cdots + 2^{k_j}l$, which are all distinct.
- 2. Let p(n,k) be the number of partitions of n into k non-zero parts, then

$$\sum_{n,k} p(n,k)q^k x^n = \prod_{i=1}^{\infty} \frac{1}{1 - qx^i} = \sum_k \frac{q^k x^k}{(1 - x)\dots(1 - x^k)}.$$

Rogers-Ramanujan Identities:

$$\prod_{i \equiv 1, 4 \pmod{5}} \frac{1}{1 - x^i} = \sum_{k=0}^{\infty} \frac{x^{k^2}}{(1 - x) \dots (1 - x^k)}$$
 (1)

$$\prod_{i \equiv 2, 3 \pmod{5}} \frac{1}{1 - x^i} = \sum_{k=0}^{\infty} \frac{x^{k(k+1)}}{(1 - x) \dots (1 - x^k)}$$
 (2)

Definition - q**-analog**: We define the q-analog

$$\binom{n}{r_1, \dots, r_k}_q = \sum_{w \sim 1^{r_1} \dots k^{r_k}} q^{\operatorname{inv}(w)},$$

where $\operatorname{inv}(w) = \#\{(i,j)|i < j \text{ and } w(i) > w(j)\}$. Then

$$\binom{n}{k}_q = \sum_{w \sim 0^k 1^{n-k}} q^{\text{inv}(w)}.$$

Alternatively, this can be understood as boundary paths of a partition contained inside a box (from the top-left to bottom-right corner), where a line across is a 0 and a line down is a 1. Then

$$\binom{n}{k}_q = \sum_{\substack{l(\lambda) \le k \\ \lambda_1 \le n-k}} q^{\mathrm{inv}(w)}.$$

More explicitly,

$$\binom{n}{r_1,\ldots,r_k}_q = \frac{[n]_q!}{[r_1]_q!\ldots[r_k]_q!},$$

where $[n]_q! = [n]_q[n-1]_q \dots [1]_q$ and $[n]_q = \frac{1-q^n}{1-q} = 1 + q + q^2 + \dots + q^{n-1}$.

Lemma: For permutations w of 1, 2, ..., n (or any word with n distinct totally ordered letters),

$$\sum_{w} q^{\mathrm{inv}(w)} = [n]_q!.$$

Definition - Grassmannian: Define the *Grassmannian* $G_k^n(\mathbb{F}_q)$ as the set of k-subspaces (k-dimensional) of \mathbb{F}^n . This is equivalent (bijective) to reduced $k \times n$ echelon matrices (leading, aka left-most, entry in each row is a 1, and 0's in the column above each 1). Then the number of free entries of each reduced echelon matrix is equal to $\operatorname{inv}(w), w \in S_n$, where we consider a sequence of 1-indexed pivot columns $\{2, 4, 7, 9\}$, where k = 4, n = 9, as w = 010100101. Then

$$\binom{n}{k}_q = |G_k^n(\mathbb{F}_q)|,$$

for q the order of the finite field \mathbb{F} .

Consider k+1 flags $0=V_0\subset V_1\subset \cdots\subset V_k=\mathbb{F}_q^n$, where $\dim V_i/V_{i-1}=r_i$, then

of flags
$$= \binom{n}{r_1}_q \binom{n-r_1}{r_2}_q \cdots = \binom{n}{r_1, r_2, \dots, r_k}_q$$
.

q-Binomial Theorem(s):

1. $\frac{n}{n}$

$$\sum_{k=0}^{n} q^{\binom{k}{2}} \binom{n}{k}_{q} x^{k} = (1+x)(1+qx)\dots(1+q^{n-1}x)$$

2.

$$\sum_{k=0}^{\infty} {n+k-1 \choose n}_q x^k = \frac{1}{(1-x)(1-qx)\dots(1-q^{n-1}x)}$$

Lectures 7-15 (Species and Plethystic Evaluation)

Note that the notes about species are incomplete, as the notes are taken on the document titled "Species and Tree-like Structures Notes."

Definition - Species: A species is essentially a functor $\underline{\underline{E}}: I \to I$, where I = (finite sets, bijections). In words, a species is a "structure" (generally combinatorial in nature) that can be assigned to any finite set.

Examples of species: Some common examples of species that we will use include:

- 1. $\underline{\pi}(S) = \{\text{partitions of } S\};$
- 2. $\underline{L}(S) = \{\text{linear orderings of } S\};$
- 3. $\underline{P}(S) = \{\text{permutations of } S\}, \text{ i.e. bijective maps } S \to S;$
- 4. $\underline{T}(S) = \{\text{labeled trees with vertex set } S\};$
- 5. $\underline{B}(S) = \{\text{subsets of } S\};$
- 6. $\underline{M}_{\underline{A}}(S) = \{ \text{maps } S \to A \};$
- 7. $\underline{O}(S) = \{\text{ordered, rooted trees with labels } [n]\}, \text{ for } |S| = n;$
- 8. $\underline{\underline{x}}_J(S) = \begin{cases} \{\cdot\}, & \text{if } |S| \in J, \\ \emptyset, & \text{otherwise} \end{cases}$, for some $J \subseteq \mathbb{N}$. This is the indicator species.

9.
$$1 = \underline{\underline{x}}_{\{0\}}(S) = \begin{cases} \{\cdot\}, & \text{if } S = \emptyset, \\ \emptyset, & \text{otherwise} \end{cases}$$

10.
$$x = \underline{\underline{x}}_{\{1\}}(S) = \begin{cases} \{\cdot\}, & \text{if } |S| = 1, \\ \emptyset, & \text{otherwise} \end{cases}$$

- 11. $\underline{C}(S) = \{ \text{cyclic orderings (single cycle permutations) of } S \};$
- 12. $\underline{E}(S) = \{\cdot\}$, the trivial species on S, which has exactly 1 structure on every set (including the null set);

Definition - $c_n(p_1, p_2, ...)$: We define

$$c_n(p_1, p_2, \dots) = \sum_{\sigma \in S_n} \prod_k p_k^{\#k-\text{cycles}},$$

where $\underline{\underline{c}}_p$ is the species of cycles, with k-cycles weighted by p_k . Similarly, define

$$C(x;p) = \sum_{k} p_k \frac{x^k}{k}.$$

Definition - z_{λ} : For some partition λ , define

$$z_{\lambda} = \prod_{k} r_{k}! k^{r_{k}},$$

if $\lambda = (1^{r_1}, 2^{r_2}, \dots)$. Another way to understand this is that z_{λ} is the size of the centralizer of a permutation of cycle type λ .

Definition - $\Omega(p;x)$: Define

$$\Omega(p;x) = \sum_{n} c_n(p) \frac{x^n}{n!} = \exp\left(\sum_{k=1}^{\infty} p_k \frac{x_k}{k}\right).$$

As a shorthand, define

$$\Omega(p) = \Omega(p; 1) = \exp\left(\sum_{k=1}^{\infty} \frac{p_k}{k}\right) = \sum_{\lambda} \frac{p_{\lambda}}{z_{\lambda}}.$$

Then

$$\Omega[X+Y] = \Omega[X]\,\Omega[Y] \text{ and } \Omega[-X] = \Omega[X]^{-1}.$$

Additionally, for $X = x_1 + x_2 + \dots$,

$$\Omega[X] = \prod_{i} \frac{1}{1 - x_i}.$$

Additionally, we define XY by element-wise multiplication, for $Y = y_1 + y_2 + \dots$

Definition - Isomorphism of Species: We say species $\underline{\underline{F}},\underline{\underline{G}}$ are isomorphic, i.e. $\underline{\underline{F}}\cong\underline{\underline{G}}$ to mean $\underline{\underline{F}}(S)\cong\underline{\underline{G}}(S)$ for all sets S, or that there exists a natural isomorphism of $\underline{\underline{F}},\underline{\underline{G}}$ as functors.

Definition - Exponential generating function for $\underline{\underline{F}}$: We define the exponential generating function for \underline{F} as

$$F(x) = \sum_{n} |\underline{\underline{F}}([S])| \frac{x^n}{n!},$$

where |S| = n, for each n in the summation.

Theorem - Cayley's Theorem: Let $c_T(i)$ denote the number of children of i in tree T. Then Cayley's theorem states that

$$\sum_{T \in \underline{T}([n])} \prod x_i^{c_T(i)} = (x_1 + \dots + x_n)^{n-1}.$$

Corollary:

1. (Number of trees $T \in \underline{\underline{T}}([n])$ with given $c_T(i) = d_i$, for all $i) = \binom{n-1}{d_1, \dots, d_n}$,

2.

$$\sum_{n} \sum_{T \in \underline{\underline{T}}([n])} \prod_{i} \mu_{c_{T}(i)} \frac{x^{n}}{n!} = \sum_{n} \sum_{d_{1} + \dots + d_{n} = n-1} \binom{n-1}{d_{1}, \dots, d_{n}} \mu_{d_{1}} \dots \mu_{d_{n}} \frac{x^{n}}{n!}$$

$$= \sum_{n} \frac{1}{n} \langle z^{n-1} \rangle H(z)^{n} x^{n}$$

$$= \sum_{n} \left\langle \frac{z^{n-1}}{(n-1)!} \right\rangle H(z)^{n} \frac{x^{n}}{n!},$$

where
$$H(z) = \sum_{k=0}^{\infty} h_k \frac{z^k}{k!}$$
.

Theorem - Lagrange Inversion: The Lagrange inversion formula is (where $f(x)^{\langle -1 \rangle}$ denotes the inverse of f)

$$\left(\frac{x}{H(x)}\right)^{\langle -1\rangle} = \sum_{n} \left(\frac{1}{n} \langle z^{n-1} \rangle H(z)^{n}\right) x^{n}$$
$$= \sum_{n} \left(\left\langle \frac{z^{n-1}}{(n-1)!} \right\rangle H(z)^{n}\right) \frac{x^{n}}{n!},$$

for any formal power series H(x) with invertible constant term H(0).

Definition - Catalan Number: Let the *n*th Catalan number,

 C_n = the number of unlabelled binary trees on n nodes

= the number of unlabelled ordered rooted trees on n+1 nodes

= the number of unlabelled ordered forests on n nodes.

A closed form for Catalan numbers is

$$C_n = \frac{1}{n+1} \binom{2n}{n}.$$

Definition - Z_F : Define

$$Z_F(p_1, p_2, \dots) = \sum_{n} \frac{1}{n!} \sum_{\sigma \in S} |F([n])^{\sigma}| p_{\tau(\sigma)},$$

where the partition $\tau(\sigma)$ is the cycle shape of the permutation σ . Some properties of this function include that

- 1. $Z_F(x,0,...) = F(x),$
- 2. $Z_F(x, x^2, ...)$ is the ordinary generation function for unlabelled F-structures, i.e. this is the type generating series of F,
- 3. $Z_{F+G} = Z_F + Z_G$.

Definition - Plethystic Evaluation: Define the plethystic evaluation $z[A] = z|_{p_k \mapsto p_k[A]}$, where $p_k[A] = A|_{a \mapsto a^k}$ for all variables $a \in A$.

Definition - Decorated F-Structures: Let \mathcal{A} be a set with weight monomials $x_a(a \in \mathcal{A})$ in variables x, then

$$A(x) = \sum_{a \in \mathcal{A}} x.$$

Definition - A-**Decorated Species**: Given a species F, an A-decorated species $F_A(S) = F(S) \times \{\text{maps } \alpha : S \to A\}$. In words, an A-decorated species $F_A(S)$ is an F-structure on S together with a decoration $\alpha : S \to A$.

Proposition: $Z_F[A]$ is the ordinary generating function for unlabelled \mathcal{A} -decorated F-structures, weighted by $\prod_{s \in S} x_{\alpha(s)}$ for decoration $\alpha : S \to \mathcal{A}$, where $A = A(x) = \sum_{a \in \mathcal{A}} x_a$ is the ordinary generating function for \mathcal{A} .

Definition - Plethysm: We define a plethysm to be

$$Z(p_1, p_2, \dots) * W(p_1, p_2, \dots) = Z|_{p_k \mapsto W(p_k, p_{2k}, \dots)}.$$

Some properties of plethysm are that

- 1. Z * W is linear and multiplicative in Z,
- 2. $p_k * W$ is linear and multiplicative in W,
- 3. $p_k * p_l = p_{kl}$.

Lemma: (Z * W)[A] = Z[W[A]], in other words, * is associative.

$$\Omega[A+B] = \Omega[A]\Omega[B]$$

For species F, E, T, if $F = E \circ T$, then $Z_F = Z_E * Z_T$. Additionally, for E the trivial species, $Z_E = \Omega$. For species product, $T = x \cdot F$, we have that $Z_T = Z_x \cdot Z_F$.

Species generating function examples:

- 1. $Z_C[x, 0, \dots] = C(x) = \log \frac{1}{1-x}$,
- $2. \ Z_C[X] = \sum_{n=1}^{\infty} x^n,$

Definition - Composition with Trivial Species: Composition with the trivial species E, for $F = E \circ G$ means that F are disjoint unions of connected components, where G is the species of connected structures. In other words, an F structure is some collection of disjoint unordered G structures on some set.

Definition - Plethystic Logarithm: Define the *Plethystic logarithm* $\Lambda(p_1, p_2, ...)$ by

$$\Omega * \Lambda = 1 + p_1$$

where $\Omega = Z_E$ is the plethystic exponentiation.

Definition - Möbius/Inversion: Define the *Möbius function*

$$\mu(n) = \begin{cases} (-1)^r, & \text{if } n = p_1 \dots p_r, \text{ for distinct primes } p_i, 1 \le i \le r, \\ 0, & \text{otherwise.} \end{cases}$$

Möbius inversion states that

$$f(n) = \sum_{d|n} g(d) \iff g(n) = \sum_{d|n} \mu(n/d) f(d).$$

In particular, taking $g(n) = \delta_{1,n}$

$$\delta_{i,j} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases} ,$$

we get f(n) = 1.

Theorem: The solution of $\Omega * \Lambda = 1 + p_1$ is

$$\Lambda = \sum_{\ell} \frac{\mu(\ell)}{\ell} \log(1 + p_{\ell}).$$

Definition - Euler's Totient Function: Define Euler's totient function

$$\varphi(n) = |\{j \in [n] | \gcd(j, n) = 1\}|.$$

In other words, $\varphi(n)$ is the number of positive integers less than n that are coprime to n. By Möbius inversion, $\frac{\varphi(n)}{n} = \sum_{d|n} \frac{\mu(d)}{d}$.

Lectures 16-24 (Symmetric Functions)

Definition - $\Lambda_R(x_1,\ldots,x_n)$: Denote by $\Lambda_R(x_1,\ldots,x_n)=R[x_1,\ldots,x_n]^{S_n}$ the ring of symmetric polynomials in n variables, for $R=\mathbb{R}$ or \mathbb{Q} .

 $\Lambda_R(x) = \bigoplus_{d \geq 0} \Lambda_R(x)_d$ is graded, where $\Lambda_R(x)_d = \{ f \in \Lambda_R \text{ homogenous of degree } d \}.$

Definition - m_{λ} : In $\Lambda_R(x_1, x_2, x_3)$,

- 1. $m_{\emptyset} = 1$,
- 2. $m_{(1)} = x_1 + x_2 + x_3$,
- 3. $m_{(21)} = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2$

Proposition: $\Lambda_R(x_1, \dots, x_n)_d$ is a free *R*-module with basis $\{m_{\lambda} | \ell(\lambda) \leq n, |\lambda| = d\}$.

To formalize some notations of symmetric functions in finitely many variables, we note some things. Firstly, in infinitely many variables, any non-constant symmetric polynomial is a formal infinite series, but we can think of it as a polynomial if f has bounded degree. Additionally, S_{∞} can be understood as permutations $\mathbb{N} \to \mathbb{N}$, or the subgroup generated by transpositions, i.e. the union of $S_1 \subset S_2 \subset \ldots$ belonging in S_{∞} . Additionally, $\Lambda_R(x_1, x_2, \ldots) \twoheadrightarrow \Lambda_R(x_1, \ldots, x_n)$, define by $f(x) \mapsto f(x_1, \ldots, x_n, 0, 0, \ldots)$ is a surjective R-algebra homomorphism, and bijective on $(\Lambda_R)_d$, for $d \leq n$ (though currently not sure how to prove the bijective part).

Proposition:

- 1. In infinitely many variables, $(\Lambda_R)_d$ is a free R-module with basis $\{m_\lambda \mid |\lambda| = d\}$.
- 2. $\Lambda_R(x_1, x_2, \dots) \to \Lambda_R(x_1, \dots, x_n)$ is $m_{\lambda} \to \begin{cases} m_{\lambda}, \ell(\lambda) \leq n, \\ 0, \text{ otherwise} \end{cases}$ Note that what this is saying is the mapping of functions. In particular, for some $\ell(\lambda) \leq n, m_{\lambda}(x_1, x_2, \dots) \mapsto m_{\lambda}(x_1, \dots, x_n)$.

Definition - e_k, h_k, p_k :

1. Define

$$e_k = m_{(1^k)} = \sum_{i_1 < \dots < i_k} x_{i_1} \dots x_{i_k}$$

to be the kth elementary symmetric function.

2. Define

$$h_k = \sum_{|\lambda|=k} m_{\lambda} = \sum_{i_1 < \dots < i_k} x_{i_1} \dots x_{i_k}$$

to be the kth complete homogenous symmetric function.

3. Define

$$p_k = m_{(k)} = x_1^k + x_2^k + \dots$$

to be the kth power sum symmetric function.

Finally, we define $e_{\lambda} = e_{\lambda_1} \dots e_{\lambda_{\ell}}$, for $\ell = \ell(\lambda)$; h_{λ} and p_{λ} are defined similarly.

Generating functions for the above basis: For e_k ,

$$E(t) = \sum_{i} e_n t^n = \prod_{i} (1 + tx_i).$$

For h_k ,

$$H(t) = \sum_{i} h_n t^n = \prod_{i} \frac{1}{1 - tx_i} = E(-t)^{-1}.$$

Finally, for p_k ,

$$P(t) = \frac{d}{dt} \log \prod_{i>1} (1 - x_i t)^{-1} = \frac{d}{dt} \log H(t) = H'(t)/H(t).$$

Additionally,

$$\Omega[X] = \prod_{i} \frac{1}{1 - x_i}$$
, and $H(t) = \Omega[tX]$.

Proposition: Clearly, H(t)E(-t) = 1, which implies that $h_n - h_{n-1}e_1 + \cdots + (-1)^n e_n = 0$.

Definition - Dominance Partial Ordering on Partitions of n: We say that $\lambda \leq \mu$ if

$$|\lambda| = |\mu|$$
 and $\lambda_1 + \dots + \lambda_k \le \mu_1 + \dots + \mu_k, \forall k \le \max(\ell(\lambda), \ell(\mu)),$

where we pad the shorter partition with 0's. Note that this is a partial ordering, as neither of the following two partitions of 6 are greater than another: (2,2,2) and (3,1,1,1), as $2 \le 3$ but $2+2+2=6 \ge 5=3+1+1$.

Proposition: \leq is the transitive closure of the raising operator relation $\lambda \to \mu$ if $\mu - \lambda = \epsilon_i - \epsilon_j$, for i < j, where $\epsilon_i = (0, \dots, 0, 1, 0, \dots, 0)$ is the *i*th standard basis vector.

Corollary: $\lambda \leq \mu \iff \lambda^* \geq \mu^*$, where $|\lambda| = |\mu|$.

Proposition: $\ell_{\lambda} = \sum a_{\lambda\mu} m_{\mu}$, where a = # 0-1 matrices with row sum λ and column sum μ .

Proposition: $a_{\lambda\mu} \neq 0 \iff \mu \leq \lambda^*(\mu^* \geq \lambda)$, and $a_{\lambda\lambda^*} = 1$.

Corollary:

- (a). $e_{\lambda} = m_{\lambda^*} + \sum_{\mu < \lambda^*} a_{\lambda\mu} m_{\mu}$.
- (b). $\{e_{\lambda}\}$ is a graded R-basis of Λ_R . Similarly, $\{e_{\lambda}|\lambda_1 \leq n\}$ is a graded R-basis of $\Lambda_R(x_1,\ldots,x_n)$. Additionally, $e_k(x_1,\ldots,x_n)=0$ for k>n.
- (c). $\Lambda_R \cong R[e_1, e_2, \dots]$ as a graded R-algebra, with $\deg e_k = k$.
- (d). There is a unique R-algebra homomorphism

$$w: \Lambda_R \to \Lambda_R$$

 $e_k \mapsto h_k$,

where $w^2 = id$ (hence w is an isomorphism).

(e). $\Lambda_R \cong R[h_1, h_2, \dots]; \{h_{\lambda}\}$ is a graded R-basis.

Proposition: $h_{\lambda} = \sum b_{\lambda\mu} m_{\mu}$ where $b_{\lambda\mu} = \#$ of N-matrices with row sums λ and column-sums μ .

Definition/Corollary - Hall Inner Product:

$$\langle m_{\lambda}, h_{\mu} \rangle = \delta_{\lambda,\mu}$$

is symmetric, graded, and is a perfect pairing on each $(\Lambda_R)_d$.

Using the fact that $\Omega = \sum_{\lambda} \frac{p_{\lambda}}{z_{\lambda}}$, we know that $h_n = \sum_{|\lambda|=n} \frac{p_{\lambda}}{z_{\lambda}}$.

Corollary: $\{p_{\lambda} : |\lambda| = d\}$ is a basis of $(\Lambda_R)_d$ if $\mathbb{Q} \subseteq R$.

Corollary: Any polynomial or power series $Z(p_1, p_2, ...)$ in variables p_k is determined by the symmetric polynomial of series Z[X], where $x = x_1 + x_2 + ...$

Definition - ϵ : Define

$$\epsilon f[-x] = wf[X],$$

where
$$\epsilon f[X] = f(-x_1, -x_2, \dots) = (-1)^d f(x)$$
 for $f \in \Lambda_d$.

Corollary:

$$wp_k = \epsilon p_k[-X] = -\epsilon p_k[X] = (-1)^{n-1} p_k$$

$$wp_\lambda = (-1)^{n-\ell(\lambda)} p_\lambda, \quad |\lambda| = n,$$

where $(-1)^{n-\ell(\lambda)}$ is the sign of $\sigma \in S_n$ if $\tau(\sigma) = \lambda$.

Proposition - Cauchy Formula, Dual Basis: Let $\{u_{\lambda}\}, \{v_{\lambda}\}$ be graded basis of Λ . Then

$$\langle u_{\lambda}, v_{\mu} \rangle = \delta_{\lambda \mu} \iff \Omega[XY] = \sum_{\lambda} u_{\lambda}(x) v_{\lambda}(y),$$

where $\delta_{\lambda\mu}$ is the Kronecker Delta (= 1 if $\lambda = \mu$, and 0 otherwise). $\{u_{\lambda}\}$ is the dual basis of $\{v_{\lambda}\}$. This also implies that $\langle f[X], \Omega[XY] \rangle_x = f[Y]$.

Theorem:

$$\langle u_{\lambda}(x)\rangle\Omega[XY]=\langle u_{\lambda}(x),\Omega[XY]\rangle_{X}=v_{\lambda}(y), \text{ i.e. } \Omega[XY]=\sum_{\lambda}u_{\lambda}(x)v_{\lambda}(y).$$

We also have that $\langle p_{\lambda}, p_{\mu} \rangle = \delta_{\lambda \mu} z_{\lambda}$.

Corollary: $\langle wf, wg \rangle = \langle f, g \rangle$.

$$\Omega[AX]^{\perp}g[X] = g[A+X].$$

Vandermonde's Identity: Vandermonde's Identity states that

$$\Delta(x_1, \dots, x_n) = \prod_{i < j} (x_i - x_j) = \det \begin{pmatrix} x_1^{n-1} & \dots & x_1 & 1 \\ x_2^{n-1} & \dots & x_2 & 1 \\ \vdots & \ddots & \vdots & \vdots \\ x_n^{n-1} & \dots & x_n & 1 \end{pmatrix}$$

Definition - a_{μ} : Define

$$a_{\mu} = \det \begin{pmatrix} x_1^{\mu_1} & \dots & x_1^{\mu_n} \\ x_2^{\mu_1} & \dots & x_2^{\mu_n} \\ \vdots & \ddots & \vdots \\ x_n^{\mu_1} & \dots & x_n^{\mu_n} \end{pmatrix} = \sum_{w \in S_n} \epsilon(w) w(x^{\mu}),$$

where $\mu_1 > \cdots > \mu_n$, then $\Delta(x_1, \ldots, x_n) = a_p$, for $p = (n - 1, \ldots, 1, 0)$. Note that $a_{\mu} = 0$ if μ is not a strictly decreasing partition.

Schur Functions: The Schur function

$$s_{\lambda} = s_{\lambda}(x_1, \dots, x_n) = \frac{a_{\lambda+p}(x)}{a_n(x)} \in \mathbb{Z}[x_1, \dots, x_n]^{S_n} = \Lambda_{\mathbb{Z}}(x_1, \dots, x_n).$$

 $\{a_{\lambda+p}\}$ forms a \mathbb{Z} -basis of $\mathbb{Z}[X]^{\epsilon} = \Delta(x)\mathbb{Z}[X]^{S_n}$, the anti-symmetric polynomials, and thus $\{s_{\lambda}\}$ forms a basis of $\Lambda(x_1,\ldots,x_n)$.

Properties of Schur Functions:

1.
$$s_{\lambda}(x_1, \dots, x_n, 0 \dots, 0) = \begin{cases} s_{\lambda}(x_1, \dots, x_n), & \text{if } \ell(\lambda) \leq n, \\ 0, & \text{if } \ell(\lambda) > n. \end{cases}$$

2.
$$s_{(1^k)}(x_1,\ldots,x_n) = e_k(x_1,\ldots,x_n)$$

3.
$$s_{(k)}(x_1,\ldots,x_n)=h_k(x_1,\ldots,x_n)$$

Corollary/Definition: There exists a unique Schur function $s_{\lambda}(x_1, x_2, \dots) \in \Lambda$ such that for all n:

$$s_{\lambda}(x_1, \dots, x_n, 0, \dots) = \begin{cases} s_{\lambda}(x_1, \dots, x_n), & \text{if } \ell(\lambda) \leq n, \\ 0, & \text{if } \ell(\lambda) > n. \end{cases}$$

and $\{s_{\lambda}\}$ is a graded basis of Λ . Explicitly, $\langle m_{\mu}\rangle s_{\lambda} = \langle x^{\mu}\rangle s_{\lambda}(x_1,\ldots,x_n)$ for any $n \geq \ell(\mu), \ell(\lambda)$, independent of n.

Weyl Character Formula:

$$s_{\lambda}(x_{1},...,x_{n}) = \sum_{w \in S_{n}} \frac{\epsilon(w)w(x^{\lambda+p})}{\Delta(x)}$$

$$= \sum_{w \in S_{n}} w\left(\frac{x^{\lambda+p}}{\prod_{i < j}(x_{i} - x_{j})}\right)$$

$$= \sum_{w \in S_{n}} w\left(\frac{x^{\lambda}}{\prod_{i < j}(1 - x_{j}/x_{i})}\right)$$

$$= x_{\lambda}(x_{1},...,x_{n}) = \operatorname{tr}_{v_{\lambda}} \begin{pmatrix} x_{1} & ... & 0\\ \vdots & \ddots & \vdots\\ 0 & ... & x_{n} \end{pmatrix} = \sum_{i \in S_{n}} \dim(v_{\lambda})_{\mu}x^{\mu},$$

where v_{λ} is the irreducible representation of $GL_n(\mathbb{C})$ with highest weight λ .

Definition - Pieri Rule, Skew Diagram, Horizontal/Vertical Strips: A skew diagram λ/μ is the difference of partition diagrams. A horizontal strip is a skew diagram with no 2 blocks with one above the other. Similarly, a vertical strip is a skew diagram with no 2 blocks with one to the right of the other. Then λ/μ is a vertical strip $\iff \lambda - \mu$ is a 0,1 vector ϵ_I , which is the sum of all the e_i standard basis vectors, for $i \in I$. But $\lambda = \mu + \epsilon_I$ is only a partition of $\mu_{i-1} > \mu_i$, or i = 1, for all $i \in I$.

Definition - Semi-standard Young Tableaux, $K_{\lambda\mu}$: A semi-standard Young tableaux is a map T: $\lambda/\mu \to \mathbb{Z}_+$. Additionally, let $K_{\lambda\mu} = |SSYT(\lambda,\mu)|$ denote the number of semi-standard Young tableau's of shape λ of digits $1^{\mu_1}, 2^{\mu_2}, \ldots$

Proposition:

$$e_k \cdot s_{\lambda} = \sum_{\substack{|\mu/\lambda| = k \text{vertical strip}}} s_{\mu}$$

Corollary:

$$e_{\mu} = \sum_{\lambda} K_{\lambda^* \mu} s_{\lambda},$$

where μ does not have to be in decreasing order; $K_{\lambda\mu}$ is constant with respect to permuting μ .

Bernstein Operators:

$$B_m f(x_1, \dots, x_{n-1}) = \sum_{w \in S_n / S_1 \times S_{n-1}} w \left(\frac{x_1^m f(x_2, \dots, x_n)}{\prod_{j \neq 1} (1 - x_j / x_i)} \right),$$

for some symmetric polynomial f.

By the Weyl character formula,

$$s_{\lambda}(x_1,\ldots,x_n)=B_{\lambda_1}\ldots B_{\lambda_n}(1).$$

Stable Formula:

$$B_m f[X] = \sum_{i} \frac{x_i^m f[X - x_i]}{\prod_{j \neq i} (1 - x_j / x_i)},$$

for $X = x_1 + \dots + x_n$.

 $\langle z^0 \rangle \Omega[X/z] z^m f[X-z] = B_m f[X]$, for $m \ge 0$, then

$$B_m = \langle z^{-m} \rangle \Omega[X/z]^{\bullet} \Omega[-zX]^{\perp},$$

using the fact that $f[X + A] = \Omega[AX]^{\perp}$.

Lemma - Dual Pieri Rule: $\Omega[AX]^{\perp}\Omega[BX]^{\bullet} = \Omega[AB]\Omega[BX]^{\bullet}\Omega[AX]^{\perp}$.

Proposition:

1. $e_k^{\perp} B_m = B_m e_k^{\perp} + B_{m-1} e_{k-1}^{\perp}$

2. $B_r B_{s+1} = -B_s B_{r+1}$ (= 0 if r = s)

Proposition:

$$e_k^{\perp} s_{\lambda} = \sum_{\substack{|\lambda/\mu|=k \text{vertical strip}}} s_{\mu}$$

Proposition: Schur functions are orthonormal, i.e. $\langle s_{\lambda}, s_{\mu} \rangle = \delta_{\lambda\mu}$.

Lemma: $K_{\lambda\mu} = 0$ if $\mu \not\leq \lambda$; $K_{\lambda\lambda} = 1$.

Proposition: $ws_{\lambda} = s_{\lambda^*}$.

Corollary:

$$s_{\lambda} = \sum_{\mu} K_{\lambda\mu} m_{\mu} = \sum_{T \in SSYT(\lambda)} x^{T},$$

where $x^T = \sum_{c \in \lambda} x_{T(c)}$.

Corollary: Pieri rules

$$h_k s_\lambda = \sum_{\substack{|\mu/\lambda|=k \ ext{horizontal strip}}} s_\mu \ h_k^\perp s_\lambda = \sum_{\substack{|\lambda/\mu|=k \ ext{horizontal strip}}} s_\mu$$

Corollary: $h_{\mu} = \sum_{\lambda} K_{\lambda\mu} s_{\lambda}$.

Definition - Schur Functor: For $|\lambda| = d$, V a vector space, the Schur functor

$$S_{\lambda}(V) = V_{\lambda} = \operatorname{Im} \psi,$$

for
$$\psi: \Lambda^{\lambda_1^*}(V) \otimes \cdots \otimes \Lambda^{\lambda_k^*}(V) \mapsto S^{\lambda_1}(V) \otimes \cdots \otimes S^{\lambda_\ell}(V)$$
.

Example: For $V = \mathbb{C}^n$, $S(V) = \mathbb{C}[x_1, \dots, x_n]$, and $S^d(V)$ be the ring of homogenous polynomials of degree d,

$$S(V) \otimes \cdots \otimes S(V) = \mathbb{C}[x] \otimes \cdots \otimes \mathbb{C}[x] = \mathbb{C}[x_1^{(1)}, \dots, x_n^{(1)}, \dots, x_1^{(\ell)}, \dots, x_n^{(\ell)}],$$

where $x^{(j)}$ denotes the jth tensor factor.