Benea Lorena Cezara Ștefu Cristi-Ionuț

22 Octombrie 2021

1 Inele pătratice

1.1 Inelul $\mathbb{Z}[\sqrt{d}]$

Fixăm un întreg $d \neq \{0,1\}$ care nu este pătrat perfect. Atunci

$$\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d}| a, b \in \mathbb{Z}\}$$

1.2 Inelul $\mathbb{Z}[\frac{1+\sqrt{d}}{2}]$

Fixăm un întreg $d \neq \{0,1\}$ care nu este pătrat perfect și $d=4k+1, k \in \mathbb{Z}$. Atunci

$$\mathbb{Z}\Big[\frac{1+\sqrt{d}}{2}\Big] = \Big\{a + b\frac{1+\sqrt{d}}{2}\Big| a, b \in \mathbb{Z}\Big\}$$

sau

$$\mathbb{Z}\Big[\frac{1+\sqrt{d}}{2}\Big] = \Big\{\frac{a+b\sqrt{d}}{2}\Big| a,b \in \mathbb{Z}, a \equiv_2 b\Big\}$$

2 Divizibilitate

Fie A un domeniu și $a, b \in A$. Zicem că a divide b (notat a|b) sau b se divide cu a (notat b:a) dacă există un $c \in A$ astfel încât b = ac.

2.1 Proprietățile divizibilității

Fie A un domeniu și $a, b, c \in A$. Atunci:

- 1. $1|u|a|a|0 \quad \forall u \in U(A)$
- 2. $a|b \neq b|c \implies a|c$
- 3. $a|b \neq a|c \implies a|b\alpha + c\beta \quad \forall \alpha, \beta \in A$
- $4. \ a|b \implies ac|bc$
- 5. a|b și $b|a\iff \exists\ u\in U(A)$ astfel încât a=bu

Observații

1. Am notat cu U(A) mulțimea elementelor inversabile ale lui A.

$$U(A) = \{ u \in A | \exists v \in A \text{ a. î. } uv = 1 \}$$

2. Când a|b și b|a spunem că a și b sunt asociați (elemente asociate în divizibilitate) și notăm $a \sim b$

3 Funcția normă

3.1 Norma pentru $\mathbb{Z}[\sqrt{d}]$

$$N: \mathbb{Z}[\sqrt{d}] \to \mathbb{N}, N(a+b\sqrt{d}) = |a^2 - b^2 d|$$

3.2 Norma pentru
$$\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] = \left\{\frac{a+b\sqrt{d}}{2}\middle|a,b\in\mathbb{Z},a\equiv_2 b\right\}$$

$$N: \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] \to \mathbb{N}, N\left(\frac{a+b\sqrt{d}}{2}\right) = \left|\frac{a^2-b^2d}{4}\right|$$

3.3 Norma pentru
$$\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] = \left\{a + b\frac{1+\sqrt{d}}{2}\middle| a, b \in \mathbb{Z}\right\}$$

$$N: \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] \to \mathbb{N}, N\left(a + b\frac{1+\sqrt{d}}{2}\right) = \left|a^2 + ab + b^2\frac{1-d}{4}\right|$$

3.4 Proprietățile funcției normă

Fie $N: \mathbb{Z}[\sqrt{d}] \to \mathbb{N}$ funcția normă. Atunci:

- 1. $N(zw) = N(z)N(w) \ \forall \ z, w \in \mathbb{Z}[\sqrt{d}]$
- 2. $z|w \text{ în } \mathbb{Z}[\sqrt{d}] \implies N(z)|N(w)$
- 3. $U(\mathbb{Z}[\sqrt{d}]) = \{z \in \mathbb{Z}[\sqrt{d}]|N(z) = 1\}$
- 4. Dacă z|w în $\mathbb{Z}[\sqrt{d}]$ și N(z)=N(w) atunci $z\sim w$

Observație. Se poate scrie un rezultat analog și pentru $N : \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] \to \mathbb{N}$.

- 1. Calculați normele pentru fiecare dintre elementele de mai jos în inelele specificate:
- a) 16 + i în $\mathbb{Z}[i]$
- b) $10 + 2\sqrt{3} \text{ în } \mathbb{Z}[\sqrt{3}]$
- c) $\frac{1+\sqrt{13}}{2}$ în $\mathbb{Z}\left[\frac{1+\sqrt{13}}{2}\right]$
- d) $3 + \sqrt{5}$ în $\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$
- 2. Verificați dacă 2+5i divide numerele 7+3i, 7-3i, 7+i în $\mathbb{Z}[i]$.
- 3. Determinați divizorii lui 17 + 9i în $\mathbb{Z}[i]$.
- 4. Verificați dacă $2 + \sqrt{3}$ divide toate numerele în $\mathbb{Z}[\sqrt{3}]$.
- 5. Determinați câte un element inversabil diferit de ± 1 în inelele: $\mathbb{Z}[\sqrt{3}], \mathbb{Z}[\sqrt{5}], \mathbb{Z}[\sqrt{7}], \mathbb{Z}[\sqrt{11}]$.
- 6. Arătați că:
- a) 2-i divide a+bi în $\mathbb{Z}[i] \iff 5$ divide a+2b în \mathbb{Z}
- b) 2 + 3i divide a + bi în $\mathbb{Z}[i] \iff 13$ divide a + 8b în \mathbb{Z}

Benea Lorena Cezara Stefu Cristi-Ionut

29 Octombrie 2021

1 Elemente ireductibile și elemente prime

Fie A un domeniu și fie $\pi \in A$ un element nenul și neinversabil. Atunci:

- a) π este element **ireductibil** (sau **atom**) dacă nu se poate scrie ca un produs de două elemente neinversabile (echivalent: $\pi = ab \implies a \in U(A)$ sau $b \in U(A)$)
- b) π este element **prim** dacă $\pi | ab \implies \pi | a$ sau $\pi | b$.

2 Algoritm de verificare a primalității unui element în $\mathbb{Z}[\sqrt{d}]$

```
Fie \pi=a+b\sqrt{d}\in\mathbb{Z}[\sqrt{d}].

Dacă N(\pi) este număr prim atunci:

\pi este element prim

altfel:

dacă (a,b)=1 atunci:

\pi NU este element prim

altfel:

dacă N(\pi)=p^2,\ p este prim atunci:

dacă \sqrt{\hat{d}}\notin\mathbb{Z}_p atunci:

\pi este element prim

altfel:

\pi NU este element prim
```

3 Observații importante

 π NU este element prim

- $1.\,$ Un element prim este întot deauna ireductibil, dar un element ireductibil poate fi și prim și ne prim.
- 2. Pentru a verfica condiția $\sqrt{\hat{d}} \notin \mathbb{Z}_p$ din algoritmul de mai sus trebuie să verificăm dacă $\exists x \in \mathbb{Z}_p$ cu $x^2 = \hat{d}$. În acest caz, $\sqrt{\hat{d}} \in \mathbb{Z}_p$, iar dacă nu există $\sqrt{\hat{d}} \notin \mathbb{Z}_p$.
- 3. Pentru inelul $\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$ condiția $\sqrt{\hat{d}} \notin \mathbb{Z}_p$ se înlocuiește cu verificarea următoare: ecuația

 $x^2 - x + \frac{1 - d}{4} = \hat{0}$ are sau nu soluții. Cu această înlocuire, algoritmul funcționează și pentru $\mathbb{Z}\left[\frac{1 + \sqrt{d}}{2}\right]$.

- 1. Arătați că în inelul $\mathbb{Z}[\sqrt{6}]$ elementele $1-\sqrt{6}$ și $35+14\sqrt{6}$ sunt prime.
- 2. Arătați că în inelul $\mathbb{Z}[\sqrt{6}]$ elementul $70 + 20\sqrt{6}$ este reductibil.
- 3. Investigați dacă numărul 29 este prim în inelul $\mathbb{Z}[\sqrt{61}].$
- 4. Arătați că în inelul $\mathbb{Z}\left[\frac{1+\sqrt{-15}}{2}\right]$:
- a) 2 este atom neprim
- b) $2 + \sqrt{-15}$ este element prim.
- 5. Verificați dacă în inelul $\mathbb{Z}[\sqrt{10}]$ numerele $2, 3, 7, 21 7\sqrt{10}, 3 2\sqrt{10}$ sunt elemente ireductibile sau prime.

Benea Lorena Cezara Stefu Cristi-Ionut

5 Noiembrie 2021

1 Inele atomice

Definiție Fie A un domeniu. Spunem că A este inel atomic dacă orice element din A care este nenul și neinversabil este produs de atomi.

Teoremă Inelele pătratice (i.e. $\mathbb{Z}[\sqrt{d}]$ și $\mathbb{Z}\left\lceil\frac{1+\sqrt{d}}{2}\right\rceil$) sunt inele atomice.

2 Condiție a lanțurilor de divizori (CLD)

Definiție Fie A un domeniu. Spunem că A verifică CLD dacă:

$$\forall \ b_1,b_2,\cdots,b_n \in \ A \ \text{ cu } \ b_1 \ \vdots \ b_2 \ \vdots \ \cdots b_n \ \implies \exists \ N \ \text{a.i.} \ b_N \sim b_{N+1} \sim \cdots$$

Teoremă Orice inel pătratic verifică CLD.

Teoremă Dacă domeniul A verifică CLD, atunci A este atomic.

3 Inele factoriale

Definiție Un domeniu A se numește inel factorial dacă A este inel atomic și orice element din A care este nenul și neinversabil are o factorizare atomică unică până la ordine și asociați. **Lemă** Un inel atomic cu toți atomii primi este inel factorial.

3.1 Teorema de caracterizare a inelelor factoriale

Pentru un domeniu A, următoarele afirmații sunt echivalente:

- a) A este inel factorial
- b) Orice element din A nenul și neinversabil este produs de elemente prime
- c) A este inel atomic cu toți atomii primi.
- d) A verifică CLD.

Teoremă $\mathbb{Z}[\sqrt{d}]$ inel factorial $\iff \forall p \in \mathbb{Z}$ prim $\implies p$ prim în $\mathbb{Z}[\sqrt{d}]$ sau $\exists z_0 \in \mathbb{Z}[\sqrt{d}]$ cu $N(z_0) = p$

Observație Dacă punem $\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$ în loc de $\mathbb{Z}[\sqrt{d}]$, teorema are loc.

3.2 Exemple uzuale de inele factoriale

$$\mathbb{Z}[i], \mathbb{Z}[\sqrt{2}], \mathbb{Z}[\sqrt{-2}], \mathbb{Z}[\sqrt{3}], \mathbb{Z}[\sqrt{6}], \mathbb{Z}[\sqrt{7}], \mathbb{Z}\Big[\frac{1+\sqrt{5}}{2}\Big], \mathbb{Z}\Big[\frac{1+\sqrt{-7}}{2}\Big]$$

3.3 Exemple uzuale de inele nefactoriale

$$\mathbb{Z}[\sqrt{-3}], \mathbb{Z}[\sqrt{-4}], \mathbb{Z}[\sqrt{-5}], \mathbb{Z}[\sqrt{-6}], \mathbb{Z}[\sqrt{-7}]$$

1

- 1. Sunt $6 = \sqrt{6}^2 = 2 \cdot 3$ factorizări atomice ale lui 6 în inelul $\mathbb{Z}[\sqrt{6}]$? 2. Găsiți o factorizare atomică a lui $335 117\sqrt{2}$ în inelul $\mathbb{Z}[\sqrt{2}]$. 3. Găsiți o factorizare atomică a lui 91 în inelul $\mathbb{Z}\Big[\frac{1+\sqrt{-3}}{2}\Big]$.
- 4. Arătați că inelul $\mathbb{Z}[\sqrt{26}]$ este nefactorial. 5. Arătați că inelul $\mathbb{Z}[\sqrt{82}]$ este nefactorial.
- 6. Arătați că în inelul $\mathbb{Z}[\sqrt{-7}]$ următoarele produse sunt factorizări atomice:

- a) $2^5 = (5 + \sqrt{-7})(5 \sqrt{-7})$ b) $2^6 = (1 + 3\sqrt{-7})(1 3\sqrt{-7})$ c) $2^7 = (11 + \sqrt{-7})(11 \sqrt{-7})$

Benea Lorena Cezara Ștefu Cristi-Ionuț

12 Noiembrie 2021

Cel mai mare divizor comun 1

Definiție Fie A un domeniu. Fie $a, b, d \in A$. Spunem că d este cel mai mare divizor comun al perechii a, b și notăm d = (a, b) dacă următoarele condiții sunt îndeplinite simultan:

a) d|a,d|b

b) dacă $f \in A, f|a, f|b$ rezultă că f|d

2 Cel mai mic multiplu comun

Definiție Fie A un domeniu. Fie $a, b, m \in A$. Spunem că m este cel mai mic multiplu comun al perechii a, b și notăm m = [a, b] dacă următoarele condiții sunt îndeplinite simultan: a) a|m,b|m

b) dacă $g \in A, a|g, b|g$ rezultă că m|g

3 Câteva teoreme, propozitii si observatii

Propoziție Dacă există (a, b) este unic până la o asociere.

Propoziție Dacă există [a, b] este unic până la o asociere.

Teoremă Într-un inel factorial A oricare două elemente $a, b \in A$ au (a, b) si [a, b].

Teoremă Fie A un domeniu și $a, b, c \in A \setminus \{0\}$. Atunci:

a)
$$(a,b) = d \iff (ac,bc) = dc$$

b)
$$(a,b) = d \implies (\underbrace{\frac{a}{d}}, \underbrace{\frac{b}{d}}) = 1$$
 (relativ prime sau coprime)
c) $(a,b) = 1, (a,c) = 1 \implies (a,bc) = 1$

c)
$$(a, b) = 1, (a, c) = 1 \implies (a, bc) = 1$$

d)
$$a|bc,(a,b) = 1 \implies a|c$$

e)
$$(a,b) = 1, a|c,b|c \implies ab|c$$

Observație (a, b)[a, b] = ab

4 Exercitii

- 1. Fie a = 779 247i si b = 817 + 19i. Calculati (a, b) si [a, b] în $\mathbb{Z}[i]$.
- 2. Arătați că în inelul $\mathbb{Z}[\sqrt{-17}]$:
- a) $2 + \sqrt{-17}$ si 7 sunt coprime
- b) $6 + 3\sqrt{-17}$ și 21 nu au un cel mai mare divizor comun
- 3. Arătați că în inelul $\mathbb{Z}[\sqrt{-5}]$ numerele $3+2\sqrt{-5}$ și $3-2\sqrt{-5}$ au un cel mai mic multiplu comun. 4. Calculați $(7+\sqrt{-2},11-4\sqrt{-2})$ în $\mathbb{Z}[\sqrt{-2}]$.
- 5. Calculați (-1 + 7i, 2 + 11i) în $\mathbb{Z}[i]$.

ALGEBRĂ III

Tutoriatul 5

Bemea Louna - Cezara

Stefu Cristi - Jo mut

19 Noiembrie 2021

DEFINITIE

Um demeniu A se numește <u>inel principal</u> dacă toate idealele sale aunt principale.

$$I\subseteq A$$
 se chearmà ideal dacă $\{0\in I \ gi \}$ $\{I-I\subseteq I \ A\cdot I\subseteq I \}$

 $x \in A$, $Ax = \{ \lambda x \mid \lambda \in A^2 = \langle x \rangle \text{ idealul principal generat de } x$.

TEOREMA

Orice inel principal este factorial.

TEOREMA

Fie A un inel factorial.

Atunci A principal (=> + 2 elemente prime p, 2 € A measociate sunt comaximale.

TEOREMA

Z[Id] este inel factorial (=) este inel principal.

DEFINITIE

A domeniu, α , $\beta \in A$. Zicem că ele sunt <u>comaximale</u> dacă $\langle a,b \rangle = A$ echiv. $1 = \alpha \cdot \alpha^{1} + \beta \cdot \beta^{1}$.

EXERCITII

- 1. Anataţi că idealul <2, v6> dim Z[v6] este primcipal.
- 2. Anatoti cà idealul <2, \-6> dim Z (V-6] mu este primcipal.
- 3. Anàtati cà numerele 2-17 gi 3+417 sunt comaximal in 2[17].
- y. Fie numerule

$$\alpha = 18 + 36\sqrt{-2}$$
 $p = 8 + 3\sqrt{-2}$.

Gasiti g ∈ 2 [√-2] ou N (a-bg) < N(b).

Benea Lorena Cezara Stefu Cristi-Ionut

24 Noiembrie 2021

1 Inel euclidian

Definiție Un domeniu A se numește φ — inel euclidian dacă \exists o funcție $\varphi: A \setminus \{0\} \to \mathbb{N}$ cu proprietatea $\forall \ a,b \in A,b \neq 0 \ \exists \ q,r \in A \ \text{astfel}$ încât a=bq+r, unde r=0 sau $r \neq 0$ (în acest caz $\varphi(r) < \varphi(b)$).

2 Câteva teoreme și observații

Observație În cazul inelelor pătratice $(\mathbb{Z}[\sqrt{d}], \mathbb{Z}[\frac{1+\sqrt{d}}{2}])$ un candidat "natural" pentru φ este norma N.

Teoremă $\mathbb{Z}[\sqrt{d}]$ norm-euclidian $\iff \forall \ \alpha \in \mathbb{Q}[\sqrt{d}] \ \exists \ q \in \mathbb{Z}[\sqrt{d}] \ \mathrm{cu} \ N(\alpha - q) < 1.$

Teoremă Pentru d < 0, $\mathbb{Z}[\sqrt{d}]$ este norm-euclidian $\iff d = -1$ sau d = -2. $(\mathbb{Z}[i], \mathbb{Z}[\sqrt{-2}])$

Teoremă Pentru $d < 0, d \equiv_4 1, \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$ este norm-euclidian $\iff d = -3, -7$ sau -11.

Teormă (Chatland-Davenport 1950)

- $\mathbb{Z}[\sqrt{d}]$ cu d > 0 este norm-euclidian $\iff d \in \{2, 3, 6, 7, 11, 19\}.$
- $\mathbb{Z}[\frac{1+\sqrt{d}}{2}]$ cu d>0 este norm-euclidian $\iff d \in \{5,13,17,21,29,33,37,41,57,73\}.$

3 Algoritmul lui Euclid

```
Input: (A, \varphi) inel euclidian. a_0, b_0 \in A.

Output: d = (a_0, b_0)

a := a_0; \ b := b_0; \ d := a;

while b \neq 0:

{

r = a - bq \text{ cu } r = 0 \text{ sau } \varphi(r) < \varphi(b)

a := b; \ b := r;

}

d := a;
```

- 1. Fie $a_0 = 43 81i$, $b_0 = 33 19i$. Calculați (a_0, b_0) în $\mathbb{Z}[i]$ folosind algoritmul lui Euclid. La fiecare parcurgere a buclei "while" scrieți elementele a, b, r sub formă de combinații liniare de a_0 și b_0 .
- 2. Fie A un domeniu și $a, a', b, b', c \in A$ cu proprietatea aa' + bb' = 1. Rezolvați ecuația ax + by = c.
- 3. Rezolvați ecuația (43 81i)x + (33 19i)y = 27 5i în $\mathbb{Z}[i]$.
- 4. Calculați $(11+15\sqrt{2}, 3+13\sqrt{2})$ în $\mathbb{Z}[\sqrt{2}]$ folosind algoritmul lui Euclid.
- 5. În $\mathbb{Z}[\sqrt{2}]$, rezolvați ecuația $(11 + 15\sqrt{2})x + (3 + 13\sqrt{2})y = 5 3\sqrt{2}$.
- 6. Completați tabelul următor cu (nouă) numere din $\mathbb{Z}[\sqrt{-2}]$ astfel încât produsele pe orizontală/verticală să fie numerele indicate

Benea Lorena Cezara Stefu Cristi-Ionut

8 Decembrie 2021

1 Definiții

1.1 Fie A un domeniu si $p \in A$ nenul si neinversabil. p se zice **element prim** dacă:

$$\begin{array}{ll} ab \in pA \implies a \in pA \text{ sau } b \in pA \\ a,b \in A \end{array}$$

1.2 Fie A un inel și P un ideal \neq A. P se zice ideal prim dacă:

$$ab \in P \implies a \in P \text{ sau } b \in P$$

 $a, b \in A$

1.3 Fie S un inel și M un ideal al lui A. Idealul M se zice **ideal maximal** dacă $M \neq A$ și \nexists ideal $M \subset I \subset A$.

2 Câteva teoreme, observații și corolare

Observație Pentru A domeniu, $p \in A \setminus \{0\}$, avem: p element prim $\iff pA$ ideal prim.

Teoremă (Lema lui Krull) În orice inel există cel puțin un ideal maximal.

Teoremă Fie A un ideal și M un ideal propriu al lui A. Atunci:

- i) M ideal prim $\iff A/M$ domeniu.
- ii) M ideal maximal $\iff A/M$ corp.

Corolar 1 Orice ideal maiximal este prim.

Corolar 2 $\{0\}$ maximal \iff A corp.

 $\{0\}$ ideal prim (în A) \iff A domeniu.

Teoremă Dacă A este un inel principal care nu e corp \implies idealele prime ale lui A sunt:

- $\{0\}$ nemaximal.
- pA, p element prim \leftarrow maximale.

Teoremă Idealele prime nenule din $\mathbb{Z}[\sqrt{d}]$ sunt:

• unde $p \in \mathbb{N}$ prim cu $p \nmid x^2 - d \ \forall \ x \in \mathbb{Z}$

sau

 $\bullet < p, a - \sqrt{d} >$ unde $p \in \mathbb{N}$ prim cu $p \mid a^2 - d$. (Sunt de fapt ideale maximale)

3 Exerciții

1. Verificați dacă următoarele ideale din $\mathbb{Z}[\sqrt{79}]$ sunt prime:

$$<11>,\ <13>,\ <3+\sqrt{79}>,\ <6+\sqrt{79}>,\ <80+9\sqrt{79}>.$$

2. Verificați dacă următoarele ideale din $\mathbb{Z}[\sqrt{79}]$ sunt prime:

$$<13,1+\sqrt{79}>, <7,3+\sqrt{79}>, <3,17+2\sqrt{79}>, <7,1+\sqrt{79}>.$$

3. Arătați că în $\mathbb{Z}[\sqrt{-6}]$ avem egalitățile:

$$<5,2+\sqrt{-6}>=\{5x+2y+y\sqrt{-6}\mid x,y\in\mathbb{Z}\}$$

și

$$<11,4-\sqrt{-6}>=\{11x+7y+y\sqrt{-6}\mid x,y\in\mathbb{Z}\}$$

- 4. Arătați că în $\mathbb{Z}[\sqrt{-6}]$ idealul $<7+\sqrt{-6}>$ este intersecția idealelor prime $<5,2+\sqrt{-6}>$ și $<11,4-\sqrt{-6}>$. 5. Verificați dacă $\{21x+(11-\sqrt{2})y\mid x,y\in\mathbb{Z}\}$ este ideal în $\mathbb{Z}[\sqrt{2}]$.

Benea Lorena Cezara Ștefu Cristi-Ionuț

10 Decembrie 2021

Definiție 1

 $f = a_0 + a_1 x + \dots + a_n x^n \in A[x], A \text{ factorial.}$

• Numim conținutul lui f (notat Cont(f))

$$Cont(f) = (a_0, a_1, \dots, a_n)$$

• f primitiv dacă Cont(f) = 1. $\iff \nexists p \in A$ cu $p \mid f$ element prim.

2 Teoreme, corolare, propoziții

Teoremă (Gauss) A inel factorial \implies A[x] factorial.

Lemă Dacă A domeniu și $p \in A$ element prim, atunci p prim și în A[x].

Teoremă (Lema lui Gauss) Fie A inel factorial și $f, g \in A[x] \setminus \{0\}$. Atunci:

1)
$$f \cdot g$$
 primitive $\iff f \neq g$ sunt primitive.

2)
$$Cont(f \cdot g) \sim Cont(f) \cdot Cont(g)$$

Propoziție Fie A inel factorial cu c.f.(A) = K unde $c.f. = \text{corpul de fracții și fie } f \in A[x]$ reductibil în K[x]. Atunci $f = g \cdot h$ cu $g, h \in A[x]$ de grad ≥ 1 .

Corolar Fie A inel factorial și $f \in A[x] \setminus \{0\}$. Atunci f primitiv (în A[x]) și ireductibil în $K[x] \iff f$ element prim în A[x].

Teoremă (Criteriul lui Eisenstein)

Fie A inel factorial, K = c.f.(A) și $f = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \in A[x]$.

Presupunem că $\exists p \in A$ element prim cu:

1)
$$p \nmid a_n$$

2) $p \mid a_{n-1}, a_{n-2}, \dots, a_1, a_0$
3) $p^2 \nmid a_0$

Atunci f este ireductibil în K[x]. (f se zice p-Eisenstein)

Teoremă (Criteriul reducerii)

Fie A inel factorial, $K = c.f.(A), p \in A$ element prim, $f = a_n x^n + \cdots + a_1 x + a_0 \in A[x]$. Notăm $\hat{b} \in A/pA$ pentru $b \in A$. Dacă $\hat{a}_n x^n + \cdots + \hat{a}_1 x + \hat{a}_0 \in (A/pA)[x]$ are $\hat{a}_n \neq \hat{0}$ și este ireductibil în A/pA[x] atunci f este ireductibil în K[x].

3 Exercitii

- 1. Calculați conținutul polinomului $(3+i)X^3+(7+i)X-10\in\mathbb{Z}[i][X]$. 2. Arătați că $33X^6+84X^5-273X^3+147X^2+168$ ireductibil în $\mathbb{Q}[X]$.
- 3. Arătați că $3X^5 + 2X^4 5X^3 4X^2 + 7$ este ireductibil în $\mathbb{Q}[X]$ reducându-l mod 2.
- 4. Fie polinomul

$$w = 3X^7 + 1067X^6 + 1261X^5 + 1358X^4 + 1455X^3 + 1649X^2 + 1843X + 2037$$

- a) Arătați că w este ireductibil în $\mathbb{Q}[X]$ folosind Criteriul lui Eisenstein.
- b) Arătați căw este ireductibil în $\mathbb{Q}[X]$ reducându-l mod 2.
- 5. Factorizați polinoamele $(3+i)X^4 (3+i)$ și $(5-i)X^6 (5-i)$ în $\mathbb{Z}[i][X]$ și calculați cmmdc al lor.

(Fr A) tainedul

Det: Rinel unitary, (M, +) grup abelian. Spunem ei (M, +) este R-modul insolit du operatie externe .: RXM->M ((n,m) -rm) dacia: ta, se R, mem

1) (a+b) .m = a.m + b.m

, tack, m, m'em 2) a(m+m') = a-m+a-m'

, ta, b & R, mem 3) (ab) m = a.(bm) cm GR GM GR GREM

N 1·W = w , 4w ∈ W

(M,+) grup abelion on a stand. de In modul (=) (-) N.X = 0 + LGW (N.X = X + -1x)

(OT. X = OM AKEM) $\sim 10^{-1} \text{ cm}^{-1}$ $n^0 = \times \cdot \hat{\sigma} = \times \cdot \hat{\sigma}$ -Un Q=3 ~ · × = 0 = 0 - W = (Ty 7 - Ty $\hat{y} \cdot \mathbf{x} = (\hat{y} + \hat{y} + \hat{y}) \cdot \mathbf{x} = \hat{y} \cdot \mathbf{x} + \hat{y} \cdot \mathbf{x} = \mathbf{x} + \mathbf{x} + \mathbf{x} + \mathbf{x} + \mathbf{x} = \mathbf{x} + \mathbf{x} + \mathbf{x} + \mathbf{x} + \mathbf{x} = \mathbf{x} + \mathbf{x}$ C= NX=0 AKEWINES Juden no (4,4) de mort · : Z × M -> M (M,+) grup abelian => (M,+) Z modul K.M EM
(M & modul) - (m+ - + m)

Vrem 5= def. * - In *M \$ 4(x) =x bune | K + m = : x · m & M

| Sine | $(M_{1}+,*)$ Zn modul: amodul: def.* $(A+b) \times m = (a+b) \cdot m = a \cdot m + b \cdot m = \hat{a} \times m + \hat{b} \times m$ 2) à (mun') = a.(m+m') = a.m +am' = â.m + â.m' V 3) $(\hat{a}b) = (ab) = a \cdot (b \cdot m) = a \cdot (\hat{b} \cdot m) = \hat{a} \cdot (\hat{b} \cdot m) \vee$ => M, +, = / Zn modul

Det: M, M'R-module, f: M > M' sn. montism de module dace:

1) I monfism de grupuri I (x+y) = F(x) + F(y)

2) f(a x) = a.f(x)
er en

(Ex2 (M,+) grap abelian, [[i] modul (-) Fg:M>M monf.

de grupmi en p=-idm

=> M Z[i] modul

m C Mx[x] T:

2-0-15 [(9,5EZ)

(Q+bi)
$$\times = Q-X + (bi) \times = Q \times + b \cdot (i \times)$$
 $= Q(X) = Q(X)$
 $= Q(X) = Q(X) =$

. $\varphi(a \times) = i \cdot (a \times) - \alpha \cdot (i - x)$

=) & mont de module

$$(\varphi \cdot \varphi)(x) = \varphi((\varphi(x))) = \varphi((i \cdot x)) = i \cdot (i \cdot x) = (i \cdot i) \cdot x = -1 \cdot x = -x$$

$$= i \cdot (i \cdot x) = (i \cdot i) \cdot x = -1 \cdot x = -x$$

$$= i \cdot (i \cdot x) = (i \cdot i) \cdot x = -1 \cdot x = -x$$

$$= i \cdot (i \cdot x) = (i \cdot i) \cdot x = -1 \cdot x = -x$$

$$= i \cdot (i \cdot x) = (i \cdot i) \cdot x = -1 \cdot x = -x$$

E' Fix p: M > M montism de module ai p=-idm (M, +) grup abelian -> Z modul ... Z ×M -> M (produsul de suelani) JE KIZ, KEZ, JEM Exhinden "." pt. ZriJ la un produs *: ZriJ×M -> M J*w = (a+w) *w = a·w +p·b(w) : Subom [iss (*,+,M) 1) [(a+mi)+(c+di)]*m=(a+c)·m+(b+d)·e(m) = a.m + b. e(m) + c.m + d. e(m) =(0+0)+(0+d)i = (a+pi/+ m + (c+di)=m

2)
$$(a+bi) + (m+m')^{2} = (a+bi) + m + (a+bi) + m'$$

$$= (a+bi) + p = a \cdot p + b \cdot p(p) = a \cdot (m+m') + b \cdot p(m+m')$$

$$= (a+bi) + p + b \cdot p(m) + b \cdot p(m')$$

$$= (a+bi) + m + (a+bi) + m'$$

$$= (a+bi) + (a+bi) + m$$

$$= (a+bi) + (a$$

Benea Lorena Cezara Ștefu Cristi-Ionuț

7 Ianuarie 2022

Exerciții 1

- 1. Verificați dacă $4+10\sqrt{38}$ se divide cu $6-\sqrt{38}$ în inelul $\mathbb{Z}[\sqrt{38}]$. 2. Găsiți o factorizare atomică a lui $5+3\sqrt{-5}$ în inelul $\mathbb{Z}[\sqrt{-5}]$ argumentând că factorii sunt întradevăr atomi (nu uitați că un atom x are factorizarea x = x).
- 3. Verificați dacă numărul 29 este prim în inelul $\mathbb{Z}[\sqrt{61}]$.
- 4. Găsiți factorizarea atomică a lui 8+12i în inelul $\mathbb{Z}[i]$ argumentând că factorii sunt într-adevăr elemente prime.
- 5. Fie numerele

$$a = 18 + 36\sqrt{-2}$$
 și $b = 8 + 3\sqrt{-2}$.

Găsiți $q \in \mathbb{Z}[\sqrt{-2}]$ cu N(a - bq) < N(b).

6. Fie polinomul

$$f = 9 + 4X + 3X^2 + 5X^3 + 4X^4 + 3X^5.$$

Modificați cel mult doi coeficienți ai lui f pentru a obține un polinom ireductibil peste $\mathbb Q$ de gradul 5 (justificați ireductibilitatea).

7. Calculati

cmmdc
$$(15 + 38i, 9 + 4i)$$

în inelul $\mathbb{Z}[i]$.