STATS 230: Computational Statistics Some Preliminary Concepts

Babak Shahbaba

Department of Statistics, UCI

Inference in the frequentist framework

- We typically start statistical inference by defining the underlying mechanism that generates data, y, using a probability model, $P(y|\theta)$, which depends on the unknown parameter of interest, θ .
- The likelihood function is defined by plugging-in the observed data in the probability distribution and expressing it as a function of model parameters: $f(\theta; y)$.
- To estimate model parameters, we can find their values such that the probability of the observed data is maximum.
- For this, we maximize the likelihood function with respect to model parameters.
- Of course, it is easier to maximize the log of likelihood function, i.e., $L(\theta) = log(f(\theta))$.

Score function and information

For single parameter exponential family,

$$L(\theta) = g(\theta)s(y) - c(\theta)$$

• The first derivative of log-likelihood function, $L(\theta)$, is called the *score function*

$$u(\theta) = \frac{\partial L(\theta)}{\partial \theta}$$

For single parameter exponential family,

$$u(\theta) = s(y) \frac{\partial g(\theta)}{\partial \theta} - \frac{\partial c(\theta)}{\partial \theta}$$

To find MLE, we set

$$u(\theta) = 0$$

Maximum likelihood estimation

- Under weak regularity conditions, the MLE demonstrates attractive properties as $n \to \infty$: the asymptotic distribution of MLE is normal, MLE is asymptotically consistent and efficient.
- Under some regularity conditions (Rao, 1973), the asymptotic covariance matrix for MLE, $Cov(\hat{\theta})$, is the inverse of Fisher information matrix, $i(\theta)$, where the (j,k) element of $i(\theta)$ is

$$Cov[\frac{\partial L(\theta)}{\partial \theta_j}, \frac{\partial L(\theta)}{\partial \theta_k}]$$

which is equal to the following (assuming that we can take differentiate twice inside integral)

$$E\Big(-\frac{\partial^2 L(\theta)}{\partial \theta_i \partial \theta_k}\Big)$$

Bayesian inference

- In Bayesian statistics, besides specifying a model $P(y|\theta)$ for the observed data, we specify our prior $P(\theta)$ for the model parameters.
- Then, we make probabilistic conclusions regarding the unobserved quantity θ conditional on the observed data y.
- That is, we are interested in $P(\theta|y)$, which is called *posterior distribution*.
- Bayes' theorem provides a mathematical formula for obtaining $P(\theta|y)$ based on $P(\theta)$ and $P(y|\theta)$:

$$P(\theta|y) = \frac{P(\theta)P(y|\theta)}{P(y)}$$

$$\propto P(\theta)P(y|\theta)$$

Bayesian inference

- Inference in the Bayesian framework is based on $P(\theta|y)$.
- For example, we can predict future observations, \tilde{y} , given the observed data y:

$$P(\tilde{y}|y) = \int_{\theta} P(\tilde{y}|\theta)P(\theta|y)d\theta$$

ullet This is a simple concept; however, finding $P(\theta|y)$ in practice is challenging.

Conjugate priors

- In some cases, we can limit our choice of prior to a specific class of distributions such that the posterior distribution has a closed form.
- This is called "conjugacy" and the prior is called a "conjugate" prior.
- Conjugacy is informally defined as a situation where the prior distribution $P(\theta)$ and the corresponding posterior distribution, $P(\theta|y)$ belong to the same distributional family.
- Using conjugate priors makes Bayesian inference easier.

Conjugate priors

Recall that the exponential family has the following form:

$$P(y|\theta) \propto \exp\{g(\theta)s(y) - nc(\theta)\}$$

Now if we define the prior as follows:

$$P(\theta) \propto \exp\{g(\theta)\nu - \eta c(\theta)\}$$

• Then the posterior would have a similar form:

$$P(\theta|y) \propto \exp\{g(\theta)(\nu + s(y)) - (n+\eta)c(\theta)\}$$

Poisson model

- Poisson model is another member of exponential family and is commonly used for count data.
- Assume we have observed $y = (y_1, y_2, ..., y_n)$:

$$P(y|\theta) \propto \exp(\log(\theta) \sum y_i - n\theta)$$

• The conjugate prior would have the following form:

$$P(\theta) \propto \exp(\log(\theta)\nu - \eta\theta)$$

 $\propto \exp(-\eta\theta)\theta^{\nu}$

• Using $P(\theta) \propto \exp(-\beta \theta) \theta^{\alpha-1}$, which is a Gamma (α, β) distribution,

$$\theta|y \sim \operatorname{Gamma}(\alpha + \sum_{i=1}^{n} y_i, \beta + n)$$

Computation in statistics

- In general, finding MLE and posterior distribution analytically is difficult.
- Therefore, we almost always rely on computational methods.
- In this course, we will discuss a variety of computational techniques for numerical optimization and integration
- Optimization methods are mainly discussed within the frequentist framework.
- Numerical integration methods are mainly discussed with respect to their application in Bayesian inference.
- We will also discuss a variety of other computational methods (e.g., numerical linear algebra, bootstrap) that are commonly used in modern statistics.

What's next?

- Please read Chapter II.1 from "Handbook of Computational Statistics," by Gentle et al. to learn some basic concepts about computer arithmetic and algorithms.
- Also, read Chapter 1 from "Computational Statistics," by Givens and Hoeting for a review of notation and background materials in statistics and probability.
- We will start our lectures by numerical linear algebra.
- We then spend several lectures on optimization methods
- Next, we will discuss a variety of methods for numerical integration and approximation.
- The last several lectures are devoted to more advanced topics including bootstrap, EM, and advanced sampling algorithms.