Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° semestre 2020

Ayudantía 22

18 de Junio MAT1106 - Introducción al Cálculo

1) Sea $E \subset \mathbb{R}$. Muestre que E es denso si se cumple la siguiente propiedad: Para todo x en \mathbb{R} y $\varepsilon > 0$, existe un e en E a distancia menor que ε de x.

Demostración. Sea x fijo. Para cada n natural, definimos e_n como el elemento en E que aparece al usar $\varepsilon = \frac{1}{n}$. Notar que esta sucesión cumple que para todo n_0 natural y $n \ge n_0$, se tiene

$$|e_n - x| < \frac{1}{n_0}$$

Sea $\varepsilon > 0$. Por arquimediana existe un n_1 natural tal que $1/n_1 < \varepsilon$. Luego, para todo $n \ge n_1$ se cumple

$$|e_n - x| < \frac{1}{n_1} < \varepsilon$$

Por transitividad se tiene que $e_n \to x$. Como esto funciona para cualquier x, se tiene lo pedido.

- 2) Encuentre cotas superiores e inferiores (si existen) de los siguientes conjuntos:
 - a) $(1,\infty)$.

Solución. Por definición de intervalo, tenemos que 0 es cota inferior. Por arquimediana, se tiene que no hay cotas superiores.

b) $(-\infty, 1)$.

Solución. Por definición de intervalo, 1 es cota suprerior. Supongamos que tiene cota inferior m. Luego, $m \le x$ para todo x en el conjunto. Como m-1 está, se tiene $m \le m-1$, $\rightarrow \leftarrow$. Así, no hay cotas inferiores.

c) \mathbb{Z} .

Solución. Sabemos que no es acotado superiormente (ya que contiene a los naturales). Como contiene a $\{-n:n\in\mathbb{N}\}$, por el mismo argumento no hay cotas inferiores.

d) (-1,1).

Solución. Por definición de intervalo, -1 y 1 son cota inferior y superior respectivamente.

e) [-1,1].

Solución. Por definición de intervalo, -1 y 1 son cota inferior y superior respectivamente.

- 3) Encuentre el supremo de los siguientes conjuntos:
 - a) (-1,1).

Soluci'on. Notar que 1 es cota superior. Supongamos que existe una cota superior M<1. Claramente M>0. Luego, $0< M<\frac{M+1}{2}<1$ por lo que $\frac{M+1}{2}$ está en (-1,1), pero $\frac{M+1}{2}>M,$ $\rightarrow\leftarrow.$

Por lo tanto, 1 es supremo.

b) $\{n^{-1} : n \in \mathbb{N}\}.$

Solución. Notar que 1 es cota superior y pertenece al conjunto, por lo que debe ser supremo.

c) $\{n \in \mathbb{N} : n < 2020\}.$

Solución. Notar que 2020 es cota superior y pertenece al conjunto, por lo que debe ser supremo.

d) $\{n \in \mathbb{N} : n < 2020\}.$

Solución. Notar que $\{n \in \mathbb{N} : n < 2020\}$ es equivalente a $\{n \in \mathbb{N} : n \leq 2019\}$, por lo que 2019 es supremo (usando el argumento de la parte anterior).

e) $\{n \in \mathbb{Q} : n < 2020\}.$

Soluci'on. 2020 es claramente cota superior. Supongamos que existe una cota M<2020. Por taller existe un racional r tal que M< r<2020. Luego, tenemos que

$$M < r < \frac{r + 2020}{2} < 2020,$$

pero $\frac{r+2020}{2}$ está en el conjunto y $M<\frac{r+2020}{2},\,\rightarrow\leftarrow.$

Por lo tanto, 2020 es supremo.

- 4) Sea A un conjunto acotado y no vacío.
 - a) Muestre que si s es cota superior de A y para todo $\varepsilon > 0$ existe un $a \in A$ tal que $s \varepsilon < a$, entonces s es supremo de A.

Demostración. Basta mostrar que s es la cota superior más pequeña. Supongamos que existe una cota superior s' < s. Luego, $s = s' + \varepsilon$, con $\varepsilon > 0$. Usando la propiedad del enunciado, existe un $a \in A$ tal que $s' = s - \varepsilon < a$, $\rightarrow \leftarrow$.

Por lo tanto, s es supremo.

b) Muestre que si s es cota superior de A y existe una sucesión de elementos en A que converge a s, entonces s es supremo de A.

Demostración. Tenemos una sucesión $a_n \to s$. Sea $\varepsilon > 0$. Sabemos que existe un n_0 natural tal que para todo $n \ge n_0$, se cumple

$$|a_n - s| < \varepsilon$$

En particular, para n_0 se cumple

$$-\varepsilon < a_{n_0} - s < \varepsilon$$

Esto implica que $s - \varepsilon < a_{n_0}$, por lo que s es supremo usando la parte a).

c) Concluya que si A es cerrado, el supremo pertenece al conjunto.

Demostraci'on. Sea s el supremo (existe por axioma del supremo). Como es la cota superior más chica, para todo $\varepsilon > 0$ existe un $a \in A$ tal que $s - \varepsilon < a \le s$ (en caso contrario $s - \varepsilon$ sería cota, $\rightarrow \leftarrow$). Luego, para cada n natural, existe un $a_n \in A$ tal que

$$s - \frac{1}{n} < a_n \le s$$

Por Sandwich, $a_n \to s$. Como A es cerrado, esto implica que $s \in A$, que es lo que queríamos probar.