# MA 1140: Lecture 4 Basis and Dimension of Vector Spaces

Dipankar Ghosh (IIT Hyderabad)

February 15, 2019

#### Let us recall the 1st lecture

- We discussed vector space with some examples.
- Linear combinations of vectors.
- Subspace of a vector space.
- One question: For a subspace W of V, is it true that  $0 \in W$ ?
- Subspace spanned by a subset *S*.

## Linearly dependent or independent

Throughout, let V be a vector space over  $\mathbb{R}$ .

#### Definition

A subset S of vectors in V is said to be **linearly dependent** if there exists vectors  $v_1, v_2, \ldots, v_r$  in S and scalars  $c_1, c_2, \ldots, c_r$  in  $\mathbb{R}$ , NOT ALL of which are 0, such that

$$c_1v_1+\cdots+c_rv_r=0.$$

#### Definition

A set S which is not linearly dependent is called **linearly independent**.

If  $S = \{v_1, \dots, v_n\}$ , we say that  $v_1, \dots, v_n$  are linearly dependent (or independent) instead of saying that S is so.



## Remarks on linearly dependent vectors

- Any set containing the 0 vector is linearly dependent.
- 2 A set *S* of vectors is linearly dependent if and only if there exists a non-trivial relation of vectors of *S*:

$$c_1v_1 + \cdots + c_rv_r = 0$$
, where at least one  $c_i \neq 0$ .

This is equivalent to say that there exists at least one vector  $v \in S$  which belongs to the subspace spanned by  $S \setminus \{v\}$ .

Any set containing a linearly dependent subset is again linearly dependent.

## Remarks on linearly independent vectors

- Every non-zero vector v in V is linearly independent.
- **2** A finite set  $\{v_1, \dots, v_r\}$  is linearly independent if and only if  $c_1v_1 + \dots + c_rv_r = 0 \implies c_i = 0$  for all  $1 \le i \le r$ .
- **3** A set S of vectors is linearly independent if and only if every finite subset of S is linearly independent, i.e., if and only if for every subset  $\{v_1, \ldots, v_r\} \subseteq S$ ,

$$c_1v_1 + \cdots + c_rv_r = 0 \implies c_i = 0 \text{ for all } 1 \le i \le r.$$

 Any subset of a linearly independent set is linearly independent.



## Adjoining a vector to a linearly independent set

#### Lemma

Let S be a linearly independent subset of a vector space V.  $Suppose \ v \notin \mathrm{Span}(S) := \{c_1v_1 + \cdots + c_rv_r : v_i \in S\}$ . Then  $S \cup \{v\}$  is linearly independent.

#### Proof.

Let  $c_1v_1 + \cdots + c_rv_r + cv = 0$  for some vectors  $v_1, \ldots, v_r \in S$  and scalars  $c_1, \ldots, c_r, c$ .

If  $c \neq 0$ , then it follows that  $v \in \operatorname{Span}(S)$ , which is a contradiction. Therefore c = 0, and hence  $c_1v_1 + \cdots + c_rv_r = 0$ . Since S is linearly independent, it follows that  $c_i = 0$  for all  $1 \leq i \leq r$ .

## Vectors in $\mathbb{R}^2$ plane



### Basis of a vector space

#### Definition

A set S of vectors in V is called a **basis** of V if

- (i) S is linearly independent, and
- (ii) it spans the space V (i.e., the subspace spanned by S is V).

The space V is said to be **finite dimensional** if it has a finite basis. If V does not have a finite basis, then V is said to be **infinite dimensional**.

#### Every vector space has a basis

What is the guarantee that a basis exists?

We can prove the existence at least when V is generated (or spanned) by finitely many vectors. How?

Start with a finite spanning set S. Then check whether it is linearly independent. If S is linearly dependent, then there is  $v \in S$  such that v belongs to the subspace spanned by  $S \setminus \{v\}$ . One can prove that  $S \setminus \{v\}$  spans V. Repeat the process till we get a linearly independent subset of S which spans V.

For vector space which is not finitely generated, we need the axiom of choice. We will not do that in this course.

## An example of a basis of $\mathbb{R}^2$

The set 
$$\left\{ u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, v = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$$
 forms a basis of  $\mathbb{R}^2$ .

Indeed, geometrically, it can be observed that u, v are linearly independent, and  $\{u, v\}$  spans  $\mathbb{R}^2$ .

Or directly, we see that for EVERY vector  $egin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$ , the system

$$x \begin{pmatrix} 1 \\ 2 \end{pmatrix} + y \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$$
 i.e.,  $\begin{cases} x + 2y = a \\ 2x + y = b \end{cases}$  or  $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$ 

has a UNIQUE solution in x,y because the coefficient matrix  $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$  is invertible.

So every vector in  $\mathbb{R}^2$  can be written as a linear combination of  $\{u, v\}$ , hence it spans the space  $\mathbb{R}^2$ .

Moreover, when a=b=0, then the system has THE trivial solution x=y=0. Thus  $\{v,v\}$  is linearly independent as well.



#### Standard basis of $\mathbb{R}^n$

In  $\mathbb{R}^n$ , let S be the subset consisting of the vectors:

$$e_1 = (1,0,0...,0)$$
  
 $e_2 = (0,1,0,...,0)$   
 $\vdots$   
 $e_n = (0,0,0,...,1).$ 

Note that any vector  $v=(x_1,\ldots,x_n)\in\mathbb{R}^n$  can be written as a linear combination  $x_1e_1+\cdots+x_ne_n$ . So S spans  $\mathbb{R}^n$ .

Is S linearly independent? Answer: Yes.

Why? (Because  $x_1e_1 + \cdots + x_ne_n = 0 \implies \text{every } x_i = 0.$ )

Therefore S is a basis of  $\mathbb{R}^n$ .

This particular basis is called the **standard basis** of  $\mathbb{R}^n$ .



# Basis of $\mathbb{R}[x]$

For  $\mathbb{R}[x]$ , the set of all polynomials over  $\mathbb{R}$ , the subset

$$S = \{x^n : n = 0, 1, 2, \ldots\}$$

forms a basis.

## Dimension of a vector space

- Our aim is to prove that if V is a finite dimensional vector space, then any two bases of V have the same number of elements.
- That unique number (for V) is called the **dimension** of V.

## On spanning set of V

#### Lemma

Suppose  $\{v_1, v_2, \ldots, v_n\}$  spans V. Let  $u \neq 0$  is a vector in V. Then some  $v_i$  can be replaced by u to get another spanning set of V, i.e., if necessary, then after renaming the vectors  $\{v_1, v_2, \ldots, v_n\}$ , we obtain that  $\{u, v_2, \ldots, v_n\}$  spans V.

*Proof.* Since  $\{v_1, v_2, \dots, v_n\}$  spans V, u can be written as

$$u = c_1 v_1 + c_2 v_2 + \dots + c_n v_n \text{ for some } c_1, \dots, c_n \in \mathbb{R}.$$
 (1)

Since  $u \neq 0$ , at least one  $c_i \neq 0$ . So (1) yields that  $v_i =$ 

$$(1/c_i)u+(c_1/c_i)v_1+\cdots+(c_{i-1}/c_i)v_{i-1}+(c_{i+1}/c_i)v_{i+1}+\cdots+(c_n/c_i)v_n.$$

Since every  $v \in V$  is a linear combination of  $v_1, v_2, \ldots, v_n$ , using the expression of  $v_i$  in that linear combination, it follows that v can be written as a linear combination of  $v_1, \ldots, v_{i-1}, u, v_{i+1}, \ldots, v_n$ .

# Thank You!