Chapter 09 Unconstrained minimization

Last update on 2024-05-14 09:54

Table of contents

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton's method

Self-concordant functions

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton's metho

Self-concordant function

Unconstrained minimization

unconstrained minimization problem

minimize
$$f(x)$$

- ightharpoonup f convex, twice continuously differentiable (hence $\operatorname{dom} f$ open)
- lacktriangle assume optimal value $p^* = \inf_x f(x)$ is finite and attained

optimality condition (review)

$$x^*$$
 is optimal \iff $x^* \in \operatorname{dom} f$, $\nabla f(x^*) = 0$

Unconstrained minimization methods

lacktriangle produce sequence of points $x^{(k)} \in \operatorname{\mathbf{dom}} f$, $k=0,1,\ldots$, with

$$f(x^{(k)}) \longrightarrow p^*$$

▶ can be interpreted as iterative methods for solving optimality condition

$$\nabla f(x^*) = 0$$

Initial point and sublevel set

algorithms in this chapter require a starting point $x^{\left(0\right)}$ such that

- $ightharpoonup x^{(0)} \in \operatorname{dom} f$
- ▶ sublevel set $S = \{x \mid f(x) \le f(x^{(0)})\}$ is closed

second condition hard to verify, except when all sublevel sets are closed (i.e. f is closed)

- \triangleright equivalent to condition that epi f is closed
- ightharpoonup true if $\operatorname{\mathbf{dom}} f = \mathbb{R}^n$
- ▶ true if $f(x) \to \infty$ as $x \to \mathbf{bd}(\mathbf{dom} f)$

examples of differentiable functions with closed sublevel sets

$$f(x) = \log \left(\sum_{i=1}^{m} e^{a_i^T x + b_i} \right), \qquad f(x) = -\sum_{i=1}^{m} \log \left(b_i - a_i^T x \right)$$

Strong convexity and implications

f is strongly convex on S if there exists an m > 0 such that

$$\nabla^2 f(x) \succeq mI \qquad \text{for all} \qquad x \in S$$

implications

- $p^* > -\infty$
- ightharpoonup for $x,y\in S$

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} ||y - x||_2^2$$

hence S is bounded

$$f(x) - p^* \le \frac{1}{2m} \|\nabla f(x)\|_2^2$$

useful as stopping criterion (if you know m)

Descent methods

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)} \qquad \text{with} \qquad f(x^{(k+1)}) < f(x^{(k)})$$

- other notations: $x^+ = x + t\Delta x$, or $x := x + t\Delta x$
- $ightharpoonup \Delta x$ is the step, or search direction; t is the step size, or step length
- from convexity, $f(x^+) < f(x)$ implies $\nabla f(x)^T \Delta x < 0$ (Δx is a descent direction)

general descent method

 $\mbox{ given } \mbox{ a starting point } x \in \mbox{ dom}\, f$ $\mbox{ repeat }$

- 1. Determine a descent direction Δx
- 2. Line search. Choose a step size t > 0
- 3. Update. $x := x + t\Delta x$

until stopping criterion is satisfied

Line search types

exact line search

$$t = \operatorname*{argmin}_{t>0} f(x + t\Delta x)$$

backtracking line search (with parameters $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$)

ightharpoonup starting at t=1, repeat $t\coloneqq \beta t$ until

$$f(x + t\Delta x) \le f(x) + \alpha t \nabla f(x)^T \Delta x$$

lacktriangle graphical interpretation: backtrack until $t \le t_0$

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton's method

Self-concordant functions

Gradient descent method

gradient descent direction $\Delta x = -\nabla f(x)$

$$\Delta x = -\nabla f(x)$$

given a starting point $x \in \operatorname{dom} f$ repeat

- 1. $\Delta x := -\nabla f(x)$
- 2. Line search. Choose step size t via exact or backtracking line search
- 3. Update. $x := x + t\Delta x$

until stopping criterion is satisfied

- \blacktriangleright general descent method with $\Delta x = -\nabla f(x)$
- stopping criterion usually of the form

$$\|\nabla f(x)\|_2 \le \epsilon$$

convergence result: for strongly convex f

$$f(x^{(k)}) - p^* \le c^k \left(f(x^{(0)}) - p^* \right)$$

- $c \in (0,1)$ depends on m, $x^{(0)}$, line search type
- very simple, but often very slow; rarely used in practice

Quadratic example in \mathbb{R}^2

$$f(x_1, x_2) = (1/2)(x_1^2 + \gamma x_2^2) \qquad (\gamma > 0)$$

with exact line search, starting at $x^{(0)} = (\gamma, 1)$

$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, \qquad x_2^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k$$

very slow if $\gamma\gg 1$ or $\gamma\ll 1$, following example for $\gamma=10$

Nonquadratic example in \mathbb{R}^2

$$f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$

backtracking line search

Example in \mathbb{R}^{100}

$$f(x) = c^T x - \sum_{i=1}^{500} \log (b_i - a_i^T x)$$

"linear" convergence (straight line on a semilog plot)

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton's method

Self-concordant functions

Steepest descent method

 $\textbf{normalized steepest descent direction} \qquad (\text{for norm } \|\cdot\|)$

$$\Delta x_{\text{nsd}} = \operatorname{\mathbf{argmin}} \{ \nabla f(x)^T v \mid ||v|| = 1 \}$$

- for small v we have $f(x+v) \approx f(x) + \nabla f(x)^T v$
- lacktriangle direction $\Delta x_{
 m nsd}$ is unit-norm step with most negative directional derivative

unnormalized steepest descent direction

$$\Delta x_{\rm sd} = \|\nabla f(x)\|_* \Delta x_{\rm nsd}$$

satisfies
$$\nabla f(x)^T \Delta x_{\rm sd} = -\|\nabla f(x)\|_*^2$$

• general descent method with $\Delta x = \Delta x_{\rm sd}$

convergence properties similar to gradient descent

Examples

▶ Euclidean norm $||x||_2$

$$\Delta x_{\rm sd} = -\nabla f(x)$$

same as gradient descent

 \blacktriangleright quadratic norm $\|x\|_P = (x^T P x)^{1/2}$ for $P \in \mathbb{S}^n_{++}$

$$\Delta x_{\rm sd} = -P^{-1}\nabla f(x)$$

gradient descent after change of variables $\bar{x} = P^{1/2}x$

 $ightharpoonup \ell_1$ -norm

$$\Delta x_{\rm sd} = -(\partial f(x)/\partial x_i)e_i$$

where $|\partial f(x)/\partial x_i| = ||\nabla f(x)||_{\infty}$

unit balls and normalized steepest descent directions

steepest descent with backtracking line search for two quadratic norms

- lacktriangle dashed lines are contour lines of f(x)
- ellipses show $\{x \mid ||x x^{(k)}||_P = 1\}$
- ▶ choice of *P* has strong effect on speed of convergence

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton's method

Self-concordant functions

Newton step

$$\Delta x_{\rm nt} = -\nabla^2 f(x)^{-1} \nabla f(x)$$

 $ightharpoonup x + \Delta x_{\rm nt}$ minimizes second order approximation

$$f(x+v) \approx \widehat{f}(x+v) = f(x) + \nabla f(x)^T v + (1/2)v^T \nabla^2 f(x)v$$

 $ightharpoonup x + \Delta x_{
m nt}$ solves linearized optimality condition

$$\nabla f(x+v) \approx \nabla \widehat{f}(x+v) = \nabla f(x) + \nabla^2 f(x)v = 0$$

 $ightharpoonup \Delta x_{\rm nt}$ is steepest descent direction at x in local Hessian norm

$$||u||_{\nabla^2 f(x)} = (u^T \nabla^2 f(x)u)^{1/2}$$

ellipse is $\{x + v \mid v^T \nabla^2 f(x) v = 1\}$, arrow shows $-\nabla f(x)$

Newton decrement

$$\lambda(x) = \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)\right)^{1/2}$$

lacktriangle gives an estimate of $f(x)-p^*$, using quadratic approximation $\widehat{f}(x)$

$$f(x) - \inf_{y} \widehat{f}(y) = (1/2)\lambda(x)^{2}$$

equal to the norm of the Newton step in the quadratic Hessian norm

$$\lambda(x) = \left(\Delta x_{\rm nt}^T \nabla^2 f(x) \Delta x_{\rm nt}\right)^{1/2}$$

directional derivative in Newton direction

$$\nabla f(x)^T \Delta x_{\rm nt} = -\lambda(x)^2$$

properties

ightharpoonup a measure of proximity of x to x^*

▶ an affine invariant (independent of linear change of coordinates, unlike $\|\nabla f(x)\|_2$)

 $\mbox{ given } \qquad \mbox{ a starting point } x \in \mbox{ dom}\, f \mbox{, tolerance } \epsilon > 0$ $\mbox{ repeat }$

► Compute Newton step and decrement.

$$\Delta x_{\rm nt} := -\nabla^2 f(x)^{-1} \nabla f(x); \qquad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)$$

- Stopping criterion. quit if $\lambda^2/2 \le \epsilon$
- ightharpoonup Line search. Choose step size t by backtracking line search
- ▶ Update. $x := x + t\Delta x_{\rm nt}$

affine invariance

Newton iterates for

$$\widetilde{f}(y) = f(Ty)$$

with starting point

$$y^{(0)} = T^{-1}x^{(0)}$$

$$y^{(k)} = T^{-1} x^{(k)}$$

Classical convergence analysis

assumptions

• f strongly convex on S with constant m > 0

$$\nabla^2 f(x) \succeq mI$$

 $ightharpoonup
abla^2 f$ Lipschitz continuous on S with constant L>0

$$\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \le L\|x - y\|_2$$

constant L measures how well f can be approximated by a quadratic function

outline

there exist constants $\eta \in (0, m^2/L)$ and $\gamma > 0$ such that

$$|\nabla f(x)||_2 > n$$
 then

$$\eta$$
, then

$$\|\nabla f(x)\|_2 < \eta$$
, then

ightharpoonup if $\|\nabla f(x)\|_2 < \eta$, then

$$J$$
 (

ightharpoonup if $\|\nabla f(x)\|_2 \geq \eta$, then

 $\frac{L}{2m^2} \left\| \nabla f\left(x^{(k+1)}\right) \right\|_2 \le \left(\frac{L}{2m^2} \left\| \nabla f\left(x^k\right) \right\|_2 \right)^2$

damped Newton phase $\|\nabla f(x)\|_2 > \eta$

$$\|\nabla f(x)\|_2 \geq \eta$$

- most iterations require backtracking steps
- \triangleright function value decreases by at least γ
- ▶ if $p^* > -\infty$, this phase ends after at most $(f(x^{(0)}) p^*) / \gamma$ iterations

quadratically convergent phase $\|\nabla f(x)\|_2 < \eta$

$$\|\nabla f(x)\|_2 < \eta$$

- \triangleright all iterations use step size t=1
- $\|\nabla f(x)\|_2$ converges to zero quadratically

$$\frac{L}{2m^2} \left\| \nabla f\left(x^l\right) \right\|_2 \le \left(\frac{L}{2m^2} \left\| \nabla f\left(x^k\right) \right\|_2 \right)^{2^{l-k}} \le \left(\frac{1}{2} \right)^{2^{l-k}}$$

holds for l > k if $\|\nabla f(x^{(k)})\|_2 < n$

 $\mbox{ conclusion } \qquad \mbox{ number of iterations until } f(x) - p^* \leq \epsilon \mbox{ is bounded above by }$

$$\frac{f\left(x^{(0)}\right) - p^*}{\gamma} + \log_2 \log_2 \left(\frac{\epsilon_0}{\epsilon}\right)$$

- $ightharpoonup \gamma$, ϵ_0 are constants that depend on m, L, $x^{(0)}$
- ▶ second term is small and almost constant for practical purposes (say 5 or 6)
- ightharpoonup constants m, L are usually unknown in practice
- provides qualitative insight in convergence properties

Example in
$$\mathbb{R}^2$$

$$f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$

- \blacktriangleright backtracking parameters $\alpha=0.1,~\beta=0.7$
- converges in only 5 steps
- clearly shows quadratic convergence

$$f(x) = c^T x - \sum_{i=1}^{333} \log (b_i - a_i^T x)$$

- \blacktriangleright backtracking parameters $\alpha=0.01$, $\beta=0.5$
- backtracking line search almost as fast as exact line search (and much simpler)
- clearly shows two phases in algorithm

Example in \mathbb{R}^{10000}

$$f(x) = -\sum_{i=1}^{10000} \log(1 - x_i^2) - \sum_{i=1}^{100000} \log(b_i - a_i^T x)$$

- backtracking parameters $\alpha = 0.01$, $\beta = 0.5$
- performance similar as for small examples

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton's method

Self-concordant functions

Self-concordance

shortcomings of classical convergence analysis

- ightharpoonup depends on unknown constants (m, L, ...)
- bound is not affine invariant, although Newton's method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

- does not depend on any unknown constants
- gives affine invariant bound
- applies to special class of convex functions ('self-concordant' functions)
- developed to analyze polynomial-time interior-point methods for convex optimization

Self-concordant functions

ightharpoonup convex function $f\colon \mathbb{R} \to \mathbb{R}$ is self-concordant if

$$|f'''(x)| \le 2f''(x)^{3/2}$$

for all $x \in \operatorname{\mathbf{dom}} f$

• function $f: \mathbb{R}^n \to \mathbb{R}$ is self-concordant if

$$g(t) = f(x + tv)$$

is self-concordant for all $x \in \operatorname{\mathbf{dom}} f$ and $v \in \mathbb{R}^n$

examples on $\ensuremath{\mathbb{R}}$

- ► linear and quadratic functions
- negative logarithm

$$f(x) = -\log x$$

negative entropy plus negative logarithm

$$f(x) = x \log x - \log x$$

affine invariance

$$f\colon \mathbb{R} \to \mathbb{R}$$
 is self-concordant \Longrightarrow $\widetilde{f}(y) = f(ay+b)$ is self-concordant

$$\tilde{f}'''(y) = a^3 f'''(ay + b), \qquad \tilde{f}''(y) = a^2 f''(ay + b)$$

Self-concordant calculus

properties

- ightharpoonup preserved under sum and positive scaling $\alpha \geq 1$
- preserved under composition with affine function
- ightharpoonup if g is convex with

$$\operatorname{dom} g = \mathbb{R}_{++} \quad \text{and} \quad |g'''(x)| \le 3g''(x)/x$$

then

$$f(x) = \log(-g(x)) - \log x$$

is self-concordant

examples

$$f(x) = -\sum_{i=1}^{m} \log \left(b_i - a_i^T x\right)$$
 on $\{x \mid a_i^T x < b_i, i = 1, \cdots, m\}$

$$f(X) = -\log \det X \qquad \qquad \text{on} \quad \mathbb{S}^n_{++}$$

$$f(x,y) = -\log(y^2 - x^T x)$$
 on $\{(x,y) \mid ||x||_2 < y\}$

Convergence analysis for self-concordant functions

summary there exist constants $\eta \in (0, 1/4]$, $\gamma > 0$ such that

• if $\lambda(x) > \eta$, then

$$f\left(x^{(k+1)}\right) - f\left(x^{(k)}\right) \le -\gamma$$

▶ if $\lambda(x) \leq \eta$, then

$$2\lambda(x^{(k+1)}) \le \left(2\lambda(x^{(k)})\right)^2$$

where η and γ only depend on backtracking parameters α and β

complexity bound

number of Newton iterations bounded by

$$\frac{f(x^{(0)}) - p^*}{\gamma} + \log_2 \log_2 (1/\epsilon)$$

for $\alpha=0.1$, $\beta=0.8$, $\epsilon=10^{-10}$, bound evaluates to

$$375\left(f(x^{(0)}) - p^*\right) + 6$$

minimize
$$f(x) = -\sum_{i=1}^{m} \log (b_i - a_i^T x)$$

O:
$$m = 100$$
, $n = 50$
 \Box : $m = 1000$, $n = 500$
 \diamondsuit : $m = 1000$, $n = 50$

- ▶ number of iterations much smaller than $375 (f(x^{(0)}) p^*) + 6$
- **b** bound of the form $c(f(x^{(0)}) p^*) + 6$ with smaller c (empirically) valid