Instrukcja do programy:

- 1. Zainstalować python: https://www.python.org/downloads/
- 2. Zainstalować biblioteki NumPy: pip install numpy
- 3. Wpisać do terminalu: python "FileName"

Wstęp:

Musiałem znaleźć i wykreślić wielomiany interpolacyjne stopnia **n**, **W**_n(**x**), na przedziale x ϵ [-1,1], dla funkcji $y(x) = \frac{1}{1+25x^2}$ dla $x_i = -1 + 2\frac{i}{n+1} \text{ (i = 0,....,n)}$ $x_i = \cos(\frac{2i+1}{2(n+1)}\pi) \text{ (i = 0,....,n)}$

$$x_i = -1 + 2\frac{i}{n+1}$$
 (i = 0,....,n)

$$x_i = \cos(\frac{2i+1}{2(n+1)}\pi)$$
 (i = 0,....,n)

Wybrałem kilka wartości **n** i porównałem zachowanie się tych wielomianów. Także zrobiłem to dla funkcji $y=\frac{1}{1+x^2}$. Wszystkie wyniki sprawdzałem przez użycie bibliotek algebraicznych.

Wyniki:

Przedyskutowanie wyników:

Wykres interpolacji jest podobny do wykresu funkcji jak dla pierwszej funkcji $y(x)=\frac{1}{1+25x^2}$ tak i dla drugiej $y=\frac{1}{1+x^2}$. Także z wykresów dla $x_i=-1+2\frac{i}{n+1}$ widać, że jakość interpolacji na brzegach przedziału jest gorzej im większe **n**.

Dla drugie funkcji $y=\frac{1}{1+x^2}$ i $x_i=\cos(\frac{2i+1}{2(n+1)}\pi)$ takiego już nie widać, czyli jakość interpolacji jest większa.