Deletion from Red-Black Trees

Setting Up Deletion

As with binary search trees, we can always delete a node that has at least one external child

If the key to be deleted is stored at a node that has no external children, we move there the key of its inorder predecessor (or successor), and delete that node instead

Example: to delete key 7, we move key 5 to node u, and delete node v

12.236

Deletion Algorithm

- 1. Remove *v* with a removeAboveExternal operation
- 2. If *v* was red, color *u* black. Else, color *u* double black.

3. While a *double black* edge exists, perform one of the following actions ...

How to Eliminate the Double Black Edge

- The intuitive idea is to perform a "color compensation"
- Find a red edge nearby, and change the pair (red, double black) into
 (black, black)
- As for insertion, we have two cases:
 - restructuring, and
 - *recoloring* (*demotion*, inverse of promotion)
- Restructuring resolves the problem locally, while recoloring may propagate it two levels up
- Slightly more complicated than insertion, since two restructurings may occur (instead of just one)

12.238

Case 1: black sibling with a red child

 If sibling is black and one of its children is red, perform a restructuring

12.239

(2,4) Tree Interpretation

Case 2: black sibling with black childern

- If sibling and its children are **black**, perform a *recoloring*
- If parent becomes **double black**, *continue* upward

12.241

(2,4) Tree Interpretation

12.242

Case 3: red sibling

- If sibling is red, perform an adjustment
- Now the sibling is black and one the of previous cases applies
- If the next case is recoloring, there is no propagation upward (parent is now red)

12.243

How About an Example?

Example

What do we know?

• Sibling is black with black children

What do we do?

Recoloring

Example

Delete 8

• no double black

Example Delete 7 • Restructuring

Time Complexity of Deletion

Take a guess at the time complexity of deletion in a red-black tree . . .

What else could it be?!

Colors and Weights

Color Weight

red 0

black 1

double black 2

Every root-to-leaf path has the same weight

There are no two consecutive red edges

• Therefore, the length of any root-to-leaf path is at most twice the weight

Bottom-Up Rebalancing of Red-Black Trees

- An insertion or deletion may cause a local perturbation (two consecutive red edges, or a double-black edge)
- The perturbation is either
 - resolved locally (restructuring), or
 - *propagated* to a higher level in the tree by recoloring (promotion or demotion)
- O(1) time for a restructuring or recoloring
- At most one restructuring per insertion, and at most two restructurings per deletion
- O(log N) recolorings
- Total time: O(log N)

Red-Black Trees

Operation Time

Search O(log N)

Insert O(log N)

Delete O(log N)

