Linearization

5.1 Linearization, critical points and equilibrium

- We focus on first order non linear autonomous systems of of the form $\vec{x}=f(\vec{x})$ where f does not explicitly depend on t
- To find critical points we do $f=ec{0}$
- More on critical points in Two Dimensional systems and their vector fields

Linearization

- · Lets consider a two dimensional system
- $ullet egin{bmatrix} x' \ y' \end{bmatrix} = egin{bmatrix} f(x,y) \ g(x,y) \end{bmatrix}$
- Assume that (x_0, y_0) is a critical point, we define the deviation u(t), v(t) as:
- $x=x_0+u, y=y_0+v$ so $u=x-x_0$ and $v=y-y_0$ where x x and y are the solution of the system
- We want to find the ODEs governing the variation of u,v
- Now there is a derivation using the taylor series however this does not concern us

Definition

The linearization of a system is given by:

$$egin{bmatrix} u' \ v' \end{bmatrix} = J_f(x_0,y_0) egin{bmatrix} u \ v \end{bmatrix}$$

Where J_f is the Jacobian matrix evaluated at (x_0, y_0) and defined by:

$$J_f(x_0,y_0) = egin{bmatrix} rac{\partial f}{\partial x}(x_0,y_0) & rac{\partial f}{\partial y}(x_0,y_0) \ rac{\partial g}{\partial x}(x_0,y_0) & rac{\partial g}{\partial y}(x_0,y_0) \end{bmatrix}$$

The linearization is an approximate solution of $ec{x} = f(ec{x})$

Stability of critical points

- A critical point is isolated if it is the only critical point in some sufficiently small open rectangle in 2D
- A system at a critical point is almost linear if the critical point is isolated and the Jacobian matrix at the critical point is invertible i.e. $\det(J_f) \neq 0$

- A critical point is
 - Stable if every real solution that starts with $\vec{x}(t=0)$ sufficiently close to the point remains arbitrarily close to it for all t>0
 - Unstable if at least one solution doesn't satisfy the above
 - Asymptotically stable if it is stable and every solution starts sufficiently close has $\lim_{t \to \infty} \vec{x} = (x_0, y_0)$

Examples

- $\begin{cases} x' = \sin(x+y) \\ y' = e^x 1 \end{cases}$
- The critical points are x=0 $y=\pm n\pi$
- Linearization $\begin{bmatrix} \cos\pm\pi & \cos\pm n\pi \\ 1 & 0 \end{bmatrix}$
- if even $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ the eigenvalues are $\lambda_{+,-}=\frac{1}{2}(1\pm\sqrt{5})$ saddle(source) the eigenvectors are $v_-=\begin{bmatrix} \frac{1}{2}(1-\sqrt{5}) \\ 1 \end{bmatrix}$ and $v_+=\begin{bmatrix} \frac{1}{2}(1+\sqrt{5}) \\ 1 \end{bmatrix}$
- if odd $egin{bmatrix} -1 & -1 \ 1 & 0 \end{bmatrix}$ the eigenvalues are $\lambda=rac{1}{2}(-1\pm i\sqrt{3})$ spiral sink (source)
- Direction $\begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ counterclockwise
- x nullcline $\sin(x+y) = 0 \implies x+y = \pm \pi$
- y nullcline $e^x 1 = 0 \implies x = 0$
- Another example
- Conservative equations, there the energy is a conserved quantity
- $E(x,y) = \frac{1}{2}y^2 + F(x)$
- y "momentum abd y=x' solutions are such that E(x,y)=C
- Differential equation? $\frac{d}{dt}E=0$ apply the chain rule F'+y'=0
- So we get x'' = -f(x) ; f(x) = F'(x) "Newtons equation"
- Equivalently $egin{cases} x' = y \\ y' = -f(x) \end{cases}$ "Hamiltons Equation"
- Critical points are y=0 and f(x)=0
- Take the Jacobian $J = \begin{bmatrix} 0 & 1 \\ -f'(x) & 0 \end{bmatrix}$
- Eigenvalues are $\lambda^2 + f'(x_0) = 0$
- Two possibilities: $f'(x_0)>0$ then $\lambda=\pm i\sqrt{f'(x_0)}$ center; $f'(x_0)\leq_0$ then $\lambda=\pm\sqrt{-f(x_0)}$ saddle
- Another Example!
- $ullet x''+x-x^2=0 \Longleftrightarrow egin{cases} x'=y \ y'=x^2-x \end{cases} f(x)=x-x^2\,E(x,y)=rac{1}{2}y^2+rac{1}{2}x^2-rac{1}{3}x^3 \end{cases}$
- Critical points are (0,0);(1,0)

- The Jacobian $J(x,y)=egin{bmatrix} 0 & 1 \ 2x-1 & 0 \end{bmatrix}$
- At (0,0) $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ eigenvalues are $\lambda=\pm i$ center At (1,0) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ eigenvalues are $\lambda=\pm 1$ saddle $\vec{v_+}=<1,1>$, $\vec{v_-}=<1,-1>$