

INFO20003 Database Systems

Dr Renata Borovica-Gajic

Lecture 22
Adaptive databases for the future
Introducing research avenues (non-examinable)

Data, data everywhere...

[The Economist]

http://reportlogix.com/reporting.html

50-fold from 2010-2020*

* "The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East", 2012, IDC

Finding useful information

Equals to finding the needle in a haystack

Data analysis with databases

Database systems (DB):

4 decades of research, predominant data analysis tool

From data to knowledge

The luxury is long gone

Unless.....

Data analysis with databases

Store data carefully

[VLDB'16, ADMS'17]

Storage tiering in private and public clouds

Store data carefully

[VLDB'16, ADMS'17]

Storage tiering in private and public clouds

Embrace new technology

Cost benefit without performance penalty

Setting: multitenant enterprise datacenter, clients: TPCH 50, Q12, CSD: shared, layout: one client per group

Skipper to the rescue

Lesson #1

Embrace new HW technology

Data analysis

Choose access strategy on-the-fly

[DBTest'12, ICDE'15, VLDBJ'18]

Adapt to data

Morphing mechanism

Modes:

- Index Access: Traditional index access
- 2. Entire Page Probe: Index access probes entire page
- 3. Gradual Flattening Access: Probe adjacent region(s)

Smooth Scan in action

Setting: Micro-benchmark, 25GB table, Order by, Selectivity 0-100%

Near-optimal over entire selectivity range

Lesson #2

Learn from data

Data analysis with databases

Process instantly

[SIGMOD'12, VLDB'12, CACM'15]

Adapt to queries

PostgresRaw: NoDB from idea to practice

PostgresRaw in action

Setting: 7.5M tuples, 150 attributes, 11GB file

Queries: 10 arbitrary attributes per query, vary selectivity

Data-to-insight time halved with PostgresRaw Per query performance comparable to traditional DBMS

Lesson #3

Learn from queries

Self-designing systems for data analysis

"It is not the strongest species that survive, nor the most intelligent, but the ones most responsive to change." Charles Darwin

Queries [SIGMOD'12]

[VLDB'12]

[CACM'15]

Data

[DBTest'12]

[ICDE'15]

[VLDBJ'18]

Hardware

[VLDB'16]

[ADMS'17]

Fast response

DB System

Thank you!

Anyone can be a data scientist with self-driving DB 23