Bk1139

HW₆

Question 5:

- a. $5n^3 + 2n^2 + 3n = \Theta(n^3)$
 - 1. To prove this, we will show that $5n^3 + 2n^2 + 3n = \Theta(n^3)$, if there exist positive real constants c_1 , c_2 , and a positive integer constant n_0 such that $c_2*n^3 \le 5n^3 + 2n^2 + 3n \le c_1*n^3$ for all $n \ge n_0$
 - 2. Let's address c₁

i.
$$5n^3 + 2n^2 + 3n \le c_1 * n^3$$

ii.
$$5n^3 + 2n^2 + 3n \le 5n^3 + 2n^3 + 3n^3$$

iii.
$$5n^3 + 2n^2 + 3n \le 10n^3$$

- iv. This inequality will hold true for all $n \ge n_0$ where $n_0 = 1$
- 3. Let's address c₂

i.
$$c_2*n^3 \le 5n^3 + 2n^2 + 3n$$

ii.
$$5n^3 \le 5n^3 + 2n^2 + 3n$$

- iii. This inequality will hold true for all $n \ge n_0$ where $n_0 = 1$
- 4. Therefore, there exist positive real constants c_1 , c_2 , and a positive integer constant n_0 such that $c_2*n^3 \le 5n^3 + 2n^2 + 3n \le c_1*n^3$ for all $n \ge n_0$ where

i.
$$c_1 = 10$$

ii.
$$c_2 = 5$$

iii.
$$n_0 = 1$$

5. Graphical support in screenshots below

- b. $\sqrt{7n^2 + 2n 8} = \Theta(n)$
 - 1. To prove this, we will show that $\sqrt{7n^2 + 2n 8} = \Theta(n)$, if there exist positive real constants c_1 , c_2 , and a positive integer constant n_0 such that $c_2 * n \le \sqrt{7n^2 + 2n 8} \le c_1 * n$ for all $n \ge n_0$
 - 2. In order to simplify the proof, let us square each expression in the inequality
 - i. We are not concerned with accounting for the squaring of negative values as we are looking to see if there exist **positive** real constants c₁, c₂, and a **positive** integer constant n₀ which would not be negative
 - 3. The revised inequality can be stated as follows:

i.
$$c_2^{2*}n^2 \le 7n^2 + 2n - 8 \le c_1^{2*}n^2$$
 for all $n \ge n_0$

- 4. Let's address c₁
 - i. $7n^2 + 2n 8 \le c_1^{2*}n^2$
 - ii. $7n^2 + 2n 8 \le 7n^2 + 2n^2$
 - iii. $7n^2 + 2n 8 \le 9n^2$
 - iv. $c_1^2 = 9$
 - v. This inequality will hold true for all $n \ge n_0$ where $n_0 = 1$
- 5. Let's address c₂
 - i. $c_2^{2*}n^2 \le 7n^2 + 2n 8$
 - ii. $n^2 < 7n^2 + 2n 8$
 - iii. $c_2^2 = 1$
 - iv. This inequality will hold true for all $n \ge n_0$ where $n_0 = 1$
- 6. There do exist positive real constants c_1 , c_2 , and a positive integer constant n_0 such that $c_2^{2*}n^2 \le 7n^2 + 2n 8 \le c_1^{2*}n^2$ for all $n \ge n_0$
 - i. If we now take the square root of each expression in the inequality
 - 1. $\sqrt{n^2} \le \sqrt{7n^2 + 2n 8} \le \sqrt{9n^2}$ for all $n \ge n_0$
 - 2. $c_1^2 = 9$, so $\sqrt{9n^2} = 3n$ and $c_1 = 3$
 - a. Take the positive root
 - 3. $c_2^2 = 1$, so $\sqrt{n^2} = n$ and $c_2 = 1$
 - a. Take the positive root
 - ii. $n_0 = 1$
- 7. Therefore, $n \le \sqrt{7n^2 + 2n 8} \le 3n$ for all $n \ge 1$ and $\sqrt{7n^2 + 2n 8} = \Theta(n)$
- 8. Graphical support in screenshots below

