

Al-Powered Crop Disease Management

Crop diseases pose a significant threat to global food security, leading to substantial financial losses for farmers. Early detection and timely intervention are crucial for mitigating these risks. This presentation outlines a revolutionary AI-driven system designed to empower farmers with proactive disease management strategies.

vurvik(1602-22-737-146) Saida(1602-22-737-169) Karthik(1602-22-737-144)

The Problem: Crop Diseases

Yield Losses

Crop diseases cause substantial yield reductions, impacting food security and farmers' livelihoods.

Research indicates that diseases contribute to an average annual yield loss of 10% globally.

Economic Impact

Farmers experience financial losses due to disease management costs, reduced yields, and potential crop failure.

In the U.S. alone, annual losses from crop diseases are estimated to exceed \$20 billion.

Existing Systems – Limitations

Manual Dependency

- Most current systems rely on manual inspections
- Require experts to assess plant health accurately
- Not scalable or efficient for large farms

Mobile Apps – Limited Use

- Apps like Plantix and LeafSnap exist
- Often lack accuracy and need highspeed internet
 - Not optimized for local crops or native languages

Missing Features

- No treatment recommendation integration
- No image-based history tracking for monitoring disease recurrence
- Cannot support long-term crop health management

Our Solution: Al-Powered Crop Disease Management

Proactive Detection

The system analyzes images and environmental data to detect early signs of disease.

Targeted Treatment

Actionable insights guide farmers in choosing the most effective treatments.

Real-Time Insights

Farmers receive timely alerts and recommendations based on disease predictions.

Preventive Measures

The system provides strategies to prevent outbreaks and minimize future risks.

Key Features

9

Environmental Monitoring

The system integrates real-time data on temperature, humidity, and rainfall.

Treatment Recommendations

The system suggests specific treatments and preventive measures.

.000

Disease Prediction

Machine learning models predict potential outbreaks based on collected data.

Tech Stack

Frontend

ReactJS will be used to create a user-friendly and interactive web and mobile application.

Backend

Django framework will power the server-side logic, handling data storage and processing.

Machine Learning

TensorFlow or PyTorch will be leveraged for building powerful AI models.

Database

PostgreSQL will provide a robust and scalable database to store and manage vast amounts of data.

Benefits for Farmers

Increased Yields Early disease detection and intervention lead to higher crop production. **Reduced Costs** Targeted treatments and preventive measures minimize unnecessary expenses. Improved Sustainability The system encourages responsible use of pesticides and other resources. **Enhanced Profitability** Higher yields and reduced costs contribute to increased farm profitability.

Impact on the Agricultural Industry

Crop	Class Labels	No. of Images	Dataset Source(s)
Corn	Common Rust, Gray Leaf Spot, Healthy, Northern Leaf Blight	3,852	PlantVillage [1]
Potato	Early Blight, Healthy, Late Blight	2,152	PlantVillage [1]
Rice	Brown Spot, Healthy, Leaf Blast, Neck Blast	4,078	Dhan-Shomadhan [2], Rice Leafs [4], CC BY 4.0 [3]
Wheat	Brown Rust, Healthy, Yellow Rust	2,942	Wheat Disease Detection [5]
Sugarcane	Red Rot, Healthy, Bacterial Blight	300	Sugarcane Disease Dataset [6]

• Total Classes: 17

• Total Images: 13,324

• Combined Size: ~2.7 GB+

Architecture diagram

Class Diagram

Weather for Hyderabad, IN

Precipitation: 0.09375mm (Chance: 20%)

Tomorrow Broken clouds Temp: 32.3°C (Min: 27.5°C, Max: 38.2°C)

Precipitation: 0.54296875mm (Chance: 15%)

Broken clouds Temp: 32.5°C (Min: 27.4°C, Max: 37.6°C)
 A Thursday 1786
 Temp: 32.5°C (Min: 27.4°C, Max: 37.6°C)
 Temp: 32.5°C (Min: 27.4°C)
 Temp: 32.5°C (Min: 27.6°C)
 Temp: 32.5°C (Min: 27 Precipitation: 0.2734375mm (Chance: 10%)

Day 3

▲ Generate Management Recommendations

∆ Commendations ∴ Commendations ∴ Commendations ∴

Crop Information

Name: Rice

Scientific Name: Oryza sativa

ĕ Disease Information

Name: Rice Blast

Scientific Name: Magnaporthe oryzae

A fungal disease that affects all above-ground parts of the rice plant, causing

lesions on leaves, stems, and panicles.

Favorable Conditions:
Temperature: 24-28°C
Humidity: Above 90%
Rainfall: Frequent light rain

Current Risk Assessment

Risk Level: Low

Current Weather: Not optimal for disease development

Risk Trend: Stable

Temperature: 31.4°C

Humidity: 51%

Precipitation Chance: 20%

*** Treatment Recommendations**

▲ Chemical Control Options

Trifloxystrobin + Tebuconazole

Application: Apply at early signs of infection

Effectiveness: 85%

Notes: Systemic fungicide with protective and curative properties. Apply during cooler parts of the day to prevent plant stress

Azoxystrobin

Application: 10-14 day intervals

Effectiveness: 80%

Notes: Broad-spectrum fungicide. Apply during cooler parts of the day to prevent plant stress

✓ Organic Control Options

Bacillus subtilis

Application: Apply weekly as preventive measure

Effectiveness: 70%

Notes: Biological fungicide that colonizes leaf surface. Avoid application during peak heat to prevent burning

Neem Oil

Application: 7-10 day intervals

Effectiveness: 65%

Notes: Plant-based fungicide with multiple modes of action. Avoid application during peak heat to prevent burning

ŏ Cultural Practices

Field Sanitation

Remove and destroy infected plant debris

Effectiveness: 70%

Crop Rotation

Rotate with non-host crops for 2-3 seasons

Effectiveness: 75%

Adjust Planting Density

Ensure adequate spacing for air circulator

Effectiveness: 65%

FUTURE SCOPE

This system demonstrates how AI can be applied to real-world agricultural problems. By combining deep learning with an easy-to-use interface, the solution bridges the gap between high-tech diagnostics and accessible agricultural support. It not only improves early disease detection but also enables smarter decision-making for crop management.

Future enhancements include:

- Multilingual support to assist farmers across different regions
- Offline detection via mobile apps for use in low-connectivity zones
- Integration with drones and IoT sensors for large-scale and automated crop health monitoring
- Expansion of the disease database to cover more crops and region-specific plant conditions
- Incorporating real-time weather data to provide context-aware treatment recommendations

REFERENCES

- 1. Mohanty, S. P., Hughes, D. P., & Salathé, M. (2016). Using Deep Learning for Image-Based Plant Disease Detection. Frontiers in Plant Science.
- 2.Kaggle: PlantVillage Dataset https://www.kaggle.com/datasets/emmarex/plantdisease
- 3. TensorFlow Documentation https://www.tensorflow.org/
- 4.Django REST Framework Docs https://www.django-rest-framework.org/
- 5. Research Gate and IEEE Xplore papers on Agri-Al systems
- 6. Five Crop Disease Detection Dataset https://www.kaggle.com/datasets/shubham2703/five-crop-diseases-dataset/data
- 7. Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556 17

Conclusion

This AI-powered crop disease management system represents a significant advancement in agricultural technology. By empowering farmers with data-driven insights and proactive solutions, the system aims to revolutionize crop disease management, leading to increased yields, reduced costs, and a more sustainable future for agriculture.