Fonction exponentielle

Exercice 1:

Pour $n \in \mathbb{N}^*$, on définit la fonction $f_n(x) = x^n e^x$. La fonction f_n est définie, continue, et dérivable sur \mathbb{R} .

On souhaite démontrer que $f_n(x)$ converge vers 0 quand x tend vers $-\infty$.

- 1. En fonction de si n est pair ou impair, étudiez les variations de la fonction f_n .
- 2. En déduire que $\forall n \in \mathbb{N}^*$, f_n converge vers une valeur réelle quand x tend vers $-\infty$.
- 3. En utilisant le fait que $f_{n+1}(x) = x f_n(x)$, conclure que $f_n(x)$ converge vers 0 en $-\infty$.

Corrigé:

- 1. On a $f_n'(x) = x^n e^x + n x^{n-1} e^x = x^{n-1} e^x (x+n)$. On étudie le signe de chacun des termes de ce produit :
 - $-e^x > 0 \ \forall x \in \mathbb{R},$
 - -(x-n) = 0 ssi x = n, (x+n) > 0 ssi x > -n.
 - si n est pair, $x^{n-1} \ge 0$ ssi $x \ge 0$; si n est impair, $x^{n-1} \ge 0 \ \forall x \in \mathbb{R}$. Quelque soit n, $x^{n-1} = 0$ ssi x = 0.

Enfin, il est clair que $f_n(0) = 0$ pour tout n.

On trace le tableau de signes et le tableau de variations, d'abord pour n pair :

x	$-\infty$	-n		0	+	∞
e^x	+		+		+	
x+n	_	0	+		+	
x^{n-1}	_		_	0	+	
$f_n'(x)$	+	0	_	0	+	
$f_n(x)$		$f_n(-n)$)	→ ₀ /		

puis pour n impair :

Fonction exponentielle

x	$-\infty$		-n		0		$+\infty$
e^x		+		+		+	
x+n		_	0	+		+	
x^{n-1}		+		+	0	+	
$f'_n(x)$		_	0	+	0	+	
$f_n(x)$		•	$f_n(-n)$		0_		→

- 2. Pour n pair, sur l'intervalle $]-\infty, -n[$, $f_n(x) > 0$ et f_n est croissante ; ainsi, lorsque x tend vers $-\infty$, $f_n(x)$ converge forcément vers une valeur réelle, nommons-la l_n . Pour n impair, l'argument est similaire, mais f_n est décroissante et négative sur l'intervalle $]-\infty, -n[$.
- 3. Supposons que $l_n \neq 0$. Étudions alors la limite de $f_{n+1}(x) = x f_n(x)$: informellement, $x f_n(x) \xrightarrow[x \to -\infty]{} (-\infty) l_n$, donc $f_{n+1} \xrightarrow[x \to -\infty]{} \pm \infty$, puisque $l_n \neq 0$. Mais on a montré que la limite de f_{n+1} et $l_{n+1} \neq \pm \infty$! Ainsi, notre hypothèse est absurde; autrement dit, $l_n = 0$.

Soit $n \in \mathbb{N}^*$, on étudie désormais la fonction $g_n(x) = \frac{e^x}{x^n}$. La fonction g_n est définie, continue, et dérivable sur \mathbb{R}^* .

On souhaite montrer que $g_n(x)$ tend vers $+\infty$ quand x tend vers $+\infty$.

- 1. Montrez que $\frac{1}{g_n(x)} = (-1)^n f_n(-x)$.
- 2. Quelle est la limite de $f_n(-x)$ quand x tend vers $+\infty$?
- 3. En déduire la limite de $\frac{1}{g_n(x)}$ puis de $g_n(x)$ en $+\infty$.

Corrigé:

- 1. $(-1)^n f_n(-x) = (-1)^n (-x)^n e^{-x} = \frac{x^n}{e^x} = \frac{1}{g_n(x)}$.
- 2. La limite de $f_n(-x)$ lorsque x tend vers $+\infty$ est égale à la limite de $f_n(x)$ lorsque x tend vers $-\infty$, qui est, d'après l'exercice précédent, 0.
- 3. $\frac{1}{g_n(x)} = (-1)^n f_n(-x) \xrightarrow[x \to +\infty]{} 0$, or, $g_n(x) > 0$ pour x > 0; donc $g_n(x) \xrightarrow[x \to +\infty]{} +\infty$.

Exercice 2:

On souhaite calculer des valeurs approximatives de l'exponentielle. On va utiliser l'approximation de f par sa dérivée.

1. Soit f une fonction dérivable en a. Expliquez pourquoi pour h très petit, $f(a+h) \simeq f(a) + hf'(a)$.

Fonction exponentielle

- 2. En déduire que $e^h \simeq 1 + h$ pour h très petit.
- 3. Soit a>0, on pose $h=\frac{a}{n}$ pour un très grand n. En déduire $e^a\simeq (1+\frac{a}{n})^n$.
- 4. Quelles sont les trois premières décimales de e?

Corrigé:

- 1. Par définition de la dérivée, f'(a) est la limite quand h tend vers 0 de $\frac{f(a+h)-f(a)}{h}$. Donc, lorsque h est très petit, $f'(a) \simeq \frac{f(a+h)-f(a)}{h}$, d'où le résultat.
- 2. Il s'agit de l'inégalité précédente avec $f(x) = e^x$ et a = 0: $e^h = e^{0+h} \simeq e^0 + he^0 = 1 + h$.
- 3. On a $e^a = (e^h)^n \simeq (1+h)^n = (1+\frac{a}{n})^n$.
- 4. En prenant a = 1 et n = 10000, on calcule $e \simeq (1,0001)^10000 \simeq 2,718$.