Operasi dan Rangkaian Aritmatika Kuliah#9 TKC205 Sistem Digital - TA 2013/2014

Eko Didik Widianto

Sistem Komputer - Universitas Diponegoro

21 Maret 2014

@2014,Eko Didik Widianto

Rangkaian Aritmetika

Review Kuliah

- Di kuliah sebelumnya dibahas tentang:
 - Representasi bilangan biner untuk bilangan bulat dan pecahan, baik tak bertanda maupun bertanda
 - ▶ Bilangan bertanda dinyatakan dalam sign-magnitude, 1's complement dan 2's complement
 - Bilangan pecahan dinyatakan dengan fixed-point, floating-point 32-bit dan 64-bit
- Selanjutnya akan dibahas tentang:
 - Operasi penjumlahan dan pengurangan bilangan biner serta unit penjumlah/pengurang
 - Rangkaian unit penjumlah/pengurang (ALU, Arithmetic Logic Unit)
 - Penyusun: HA (half-adder), FA (full-adder)
 - Susunan rangkaian penjumlah ripple-carry (RCA)
 - Rangkaian RCA mempunyai kekurangan terkait delay yang ditimbulkan
 - Rangkaian fast adder CLA (carry-lookahead adder) sebagai pengganti RCA

@2014,Eko Didik Widianto

Operasi Aritmetika

Rangkaian Aritmetika

Review Kuliah: Operasi Bilangan

Operasi: penjumlahan dan pengurangan

- Penjumlahan A+B menghasilkan hasil jumlah (Sum) dan simpanan (Carry)
- ▶ Pengurangan A-B = A+(-B). (-B) dinyatakan dengan 2's complement
- Rangkaian penjumlah/pengurang n bit dapat diwujudkan dengan n buah FA (full adder, penjumlah penuh)
- Kondisi overflow terjadi jika hasil operasi berada di luar jangkauan bilangan
 - Perlu rangkaian detektor overflow

@2014.Eko Didik Widianto

Operasi Aritmetika Rangkaian Aritmetika

Tentang Kuliah

- unit penjumlah 1 bit
- operasi penjumlahan dan pengurangan bilangan biner
- kondisi overflow dalam operasi aritmetika
- unit penjumlah/pengurang n bit
- rangkaian penjumlah/pengurang dengan deteksi overflow
- ▶ desain penjumlah cepat *n* bit
- desain dan simulasi penjumlah cepat 32 bit

Operasi dan langkaian Aritmatika

@2014,Eko Didik Widianto didik@undip.ac.id)

Unit Penjumlah 1 B

Operasi Aritmetika Biner Rangkajan Aritmetika

Biner

Overflow Aritmatika

Rangkaian Komparato Biner

Rangkaian Penjumlah Cepat

Rangkalah Penjumlai Bilangan Lainnya

nplementasi angkaian Aritmetika

Penutu

Kompetensi Dasar

- Setelah mempelajari bab ini, mahasiswa akan mampu:
 - 1. [C3] melakukan operasi penjumlahan dan pengurangan bilangan biner
 - 2. [C5] menganalis rangkaian penjumlah/pengurang bilangan biner
 - [C5] mampu menganalisis kondisi overflow dalam suatu operasi aritmetika
 - 4. [C5] menganalisis rangkaian penjumlah/pengurang n-bit dengan deteksi overflow
 - 5. [C6] mendesain dan menganalisis rangkaian penjumlah cepat n-bit
- Link
 - Website: http://didik.blog.undip.ac.id/2014/02/25/ tkc205-sistem-digital-2013-genap/
 - Email: didik@undip.ac.id

@2014,Eko Didik Widianto

Riner Rangkaian Aritmetika

Bahasan

Unit Penjumlah 1 Bit

Operasi Aritmetika Biner

Rangkaian Aritmetika Biner

Overflow Aritmatika

Rangkaian Komparator Biner

Rangkaian Penjumlah Cepat

Rangkaian Penjumlah Bilangan Lainnya

Implementasi Rangkaian Aritmetika

Penutup

Lisensi

@2014,Eko Didik Widianto

Rangkaian Aritmetika

Overflow Aritmatika

Unit Penjumlah

 Komputer mempunyai unit aritmetik dan logika (ALU, arithmetic logic unit) untuk menjalankan operasi aritmetika dan logika dari bilangan biner n bit

- Operasi aritmetika penjumlahan dan pengurangan dilakukan oleh rangkaian penjumlah/pengurang
- Rangkaian penjumlah/pengurang ini tersusun atas unit terkecil, yaitu unit penjumlah 1 bit
 - Unit penjumlah 1 bit dapat diwujudkan dengan rangkajan penjumlah setengah (HA, half-adder); dan/atau
 - rangkaian penjumlah penuh (FA, full-adder).

@2014.Eko Didik Widianto

Unit Penjumlah 1 Bit

Operasi Aritmetika

Rangkaian Aritmetika

Operasi Bilangan Unsigned

- Operasi penjumlahan 2 bilangan 1-bit memberikan 4 kombinasi yang mungkin
 - Terdapat 2 masukan: x dan y
 - Menghasilkan Sum dan Carry-out
- Diimplementasikan dengan HA (Half-Adder)
 - Disebut HA karena tidak ada carry-in yang berasal dari unit penjumlah sebelumnya

										^	y	C	3	
	X		0		0		1		1	0	0	0	0	
+	У	+	0	+	1	+	0	+	1	0	1	0	1	
С	S	0	0	0	1	0	1	1	0	1	0	0	1	
1	*		-		_		_	_		1	1	1	0	
carry	sum			c =	х.	У								

Operasi dan angkaian Aritmatika

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 Bit

Biner

Rangkaian Aritmetika

Biner

Overflow Aritmatika

Rangkaian Komparato Biner

Rangkaian Penjumlah Depat

Bilangan Lainnya

Rangkaian Aritmetika

Penutur

Lisen

VIOLO

Rangkaian Half-Adder (HA)

$$c = x \cdot y$$

$$s = \overline{x} \cdot y + x \cdot \overline{y}$$

$$= x \oplus y$$

@2014,Eko Didik Widianto

Unit Penjumlah 1 Bit

Operasi Full-Adder (FA)

- Rangkaian FA menyertakan carry-in yang berasal dari carry-out FA sebelumnya
 - ► Terdapat 3 masukan: x, y dan carry-in. Selanjutnya dinotasikan dengan x_i , y_i dan c_i
 - ► Menghasilkan 2 keluaran: sum dan carry-out. Selanjutnya dinotasikan dengan s_i dan c_{i+1}

	ci	$\mathbf{x}_{\mathbf{i}}$	Уi	c _{i+1}	si
Ci	0	0	0	0	0
X _i	0	0	1	0	1
· ·	0	1	0	0	1
<u>+ y_i</u>	0	1	1	1	0
c _{i+1} s _i	1	0	0	0	1
y k	1	0	1	1	0
carry sum	1	1	0	1	0
	1	1	1	1	1

c _{i+1} x _i y _i	00	01	11	10	s _{i xi yi}	00	01	11	10
0	0	0	1	0	0	0	1	0	1
1	0	1	1	1	1	1	0	1	0

@2014,Eko Didik Widianto

Unit Penjumlah 1 Bit

Rangkaian Aritmetika

Rangkaian Full-Adder (FA)

$$c_{i+1} = \sum_{x_i y_i + c_i x_i + c_i y_i} m(3, 5, 6, 7)$$

$$\begin{array}{rcl} s_i & = & \sum_{i} m(1,2,4,7) \\ & = & \overline{c}_i \overline{x}_i y_i + \overline{c}_i x_i \overline{y}_i + c_i \overline{x}_i \overline{y}_i + c_i x_i y_i \\ & = & c_i \oplus x_i \oplus y_i \\ & \otimes 2^{14} \mathbb{C}^{k_0} \text{ Didik Widianto (didik@undip.ac.id)} \end{array}$$

Operasi dan Rangkajan Aritmatika

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 Bit

Operasi Aritmetika Biner

Biner

Overflow Aritmatika

Rangkaian Komparato Biner

Rangkaian Penjumlah Cepat

Rangkaian Penjuml Bilangan Lainnya

Implementasi Rangkaian Aritmetika

Penut

Lisens

O (didik@undip.ac.id) 11 □ ▶ 4 🗗 ▶ 4 🖹 ▶ 4 🗏 ▶ 📜 🔣 ♀ ○ ○

Rangkaian Dekomposisi FA

$$c_{i+1} = x_i y_i + c_i (x_i \oplus y_i)$$

$$= x_i y_i + c_i \overline{x}_i y_i + c_i x_i \overline{y}_i$$

$$s_i = c_i \oplus x_i \oplus y_i$$

Operasi dan

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 Bit

Operasi Aritmetika Biner

Rangkaian Aritmetik Biner

Overflow Aritmatika

Rangkaian Komparato Biner

Rangkaian Penjumlah Cepat

Rangkaian Penjuml Bilangan Lainnya

> nplementasi Iangkaian Aritmetika

Penutur

Fungsi Full-Adder (Dekomposisi Lain)

Persamaan:

- $c_{i+1} = x_i y_i + x_i c_i + y_i c_i = x_i y_i + (x_i + y_i) c_i$
- \triangleright $S_i = X_i \oplus V_i \oplus C_i$
- ▶ Anggap $g_i = x_i y_i$ dan $p_i = x_i + y_i$, maka $c_{i+1} = g_i + p_i c_i$
 - Struktur ini akan digunakan untuk mengurangi delay rangkaian di rangkaian adder n-bit, terutama propagasi nilai simpan (*Carry*)
 - Digunakan di struktur CLA (carry look-ahead)

Operasi dan langkaian Aritmatika

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 Bit

Operasi Aritmetika Biner Rangkaian Aritmetika

Biner

Overflow Aritmatika

Rangkaian Komparato Biner

Rangkaian Penjumlah Cepat

Rangkaian Penjumlah Bilangan Lainnya

nplementasi angkaian Aritmetika

Penutu

Operasi Penjumlahan

- Operasi penjumlahan 2 bilangan dengan n-bit (n>1)
 - Tiap pasang bit ditambahkan
 - Untuk tiap posisi bit i, operasi penjumlahannya mungkin melibatkan sebuah carry-in dari bit posisi (i-1)

S=s3s2s1s0	1011	(11)
	100	Carry-in
	0011	Sum
$Y=y_3y_2y_1y_0$	0110	(6)
$X=x_3x_2x_1x_0$	0101	(5)

@2014,Eko Didik Widianto

Operasi Aritmetika Biner Rangkaian Aritmetika

Operasi Bilangan Bertanda

Sign-magnitude

- ► Misalnya: operasi 5-2=? ekivalen dengan 5+(-2)=3. Bagaimana implementasinya, apakah 0101+1010?
- Perlu rangkaian logika untuk membandingkan dan mengurangkan bilangan
- 1's complement
 - ► Misalnya: (-5)+(-2)=(-7). Ekivalen dengan 1010+1101=(1)0111. Carry 1 harus ditambahkan ke 0111 agar menghasilkan 1000 (=-7)
 - Perlu koreksi untuk mendapatkan hasil yang benar
- 2's complement
 - penjumlahan selalu benar

@2014.Eko Didik Widianto

Operasi Aritmetika Riner

Rangkaian Aritmetika

Operasi Sign-Magnitude

- Hitung operasi pengurangan X-Y jika X=5 dan Y=2
- ► **Solusi**. X = 0101 dan Y = 0010. Nilai (-Y) = -2 = 1010
- ▶ Operasi X+(-Y), harusnya menghasilkan 3 atau 0011

 Perlu rangkaian logika untuk membandingkan dan mengurangkan bilangan Operasi dan langkaian Aritmatika

@2014,Eko Didik Widianto didik@undip.ac.id)

Unit Penjumlah 1 Bi

Operasi Aritmetika Biner

Rangkaian Aritmetika Biner

Overflow Aritmatik

Rangkaian Komparato Biner

Rangkaian Penjumlah Cepat

Bilangan Lainnya

Rangkaian Aritmetika

Penutu

Operasi 1's Complement

- ▶ Hitung operasi pengurangan X-Y jika X=5 dan Y=2
- ► **Solusi**. X = 0101 dan Y = 0010. Nilai (-Y) = -2 = 1101
- ▶ Operasi X+(-Y), harusnya menghasilkan 3 atau 0011

▶ Untuk mengoreksi hasil penjumlahan, nilai simpan C_4 yang bernilai 1 perlu ditambahkan di S, sehingga menghasilkan hasil akhir S = 0011

Operasi dan langkaian Aritmatika

@2014,Eko Didik Widianto didik@undip.ac.id)

Unit Penjumlah 1 B

Operasi Aritmetika Biner

Rangkaian Aritmetika Biner

Overflow Aritmatika

Rangkaian Komparato Biner

Rangkalan Penjumlah Cepat

Bilangan Lainnya

Rangkaian Aritmetik

Penutu

Operasi 2's Complement

Penjumlahan

(+5) +(+2)	0 1 0 1 + 0 0 1 0	(-5) +(+2)	1 0 1 1 + 0 0 1 0
(+7)	0 1 1 1	(-3)	1101
(+5) + (-2)	0 1 0 1 + 1 1 1 0	(-5) + (-2)	1 0 1 1 + 1 1 1 0
(+3)	10011	(-7)	11001
Ab	aikan		Abaikan

@2014,Eko Didik Widianto

Operasi Aritmetika Biner

Operasi 2's Complement

Pengurangan

Operasi dan langkaian Aritmatika

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 Bi

Operasi Aritmetika Biner

Biner

Overflow Aritmatika

Rangkaian Komparato Biner

Rangkalan Penjumlah Cepat

Rangkaian Penjumla Bilangan Lainnya

Implementasi Rangkaian Aritmetika

Penutu

Licone

Penjumlahan Fixed-Point

- ▶ Diketahui bilangan *fixed-point* Q(3,4), A = -1, 625 dan B = 38h. Tentukan hasil dari operasi berikut: A + B dan A B
- Solusi. −A = 1,625 = 0001_1010, sehingga A = 1110_0110 Nilai B = 0011_1000 atau bernilai pecahan B = 3,5. Nilai −B = 1100_1000

625)
500 -
375

▶ Operasi pengurangan A - B = A + (-B):

bi	b_4	b_3	b_2	b_1	b_0	b_{-1}	b_{-2}	b_{-3}	b_4			
C_i	1	1	0	0	0	0	0	0				
A_i		1	1	1	0	0	1	1	0		(-1,625)	
B_i		1	1	0	0	1	0	0	0	+	(-3,500)	+
S_i		1	0	1	0	1	1	1	0	•	(-5,125)	-

Operasi dan angkajan Aritmatika

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 Bi

Operasi Aritmetika Biner

Rangkaian Aritmetika Biner

Overflow Aritmatika

Biner

Cepat

Bilangan Lainnya Implementasi

Rangkaian Aritmetika

Penutup

Recall:Operasi Penjumlahan

- Operasi penjumlahan 2 bilangan dengan n-bit (n>1)
 - Tiap pasang bit ditambahkan
 - Untuk tiap posisi bit i, operasi penjumlahannya mungkin melibatkan sebuah carry-in dari bit posisi (i-1)

.1)
arry-in
um
6)
5)

Operasi dan angkaian Aritmatika

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 Bi

Operasi Aritmetika Biner Rangkajan Aritmetika

Biner

Overflow Aritmatika

Rangkaian Komparator Biner

Rangkalan Penjumlan Depat

Bilangan Lainnya

Rangkaian Aritmetika

Penutur

Rangkaian Ripple Carry Adder (RCA)

- Operasi penjumlahan dimulai dari pasangan digit paling kanan (LSB) sampai ke paling kiri (MSB)
- Jika sebuah carry dihasilkan dalam suatu posisi bit i, maka carry tersebut ditambahkan ke operasi penjumlahan di digit dengan posisi i+1
- Operasi ini dapat diwujudkan dengan sebuah rantai full-adder (FA) yang dihubungkan seri
 - Konfigurasi ini disebut sebagai penjumlah ripple-carry
 - Sinyal carry 'ripple' dari FA satu ke FA berikutnya
 - RCA ini mempunyai kelemahan, yaitu adanya delay untuk meripple carry
 - Akan diperbaiki dengan struktur CLA

Operasi dan angkajan Aritmatika

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 Bi

Biner

Rangkaian Aritmetika

Biner

Overflow Aritmatika

Rangkaian Komparator Biner

Cepat Penjumlah

Implementasi

Rangkaian Aritmetika

Toriate

Operasi Rangkaian Penjumlah 4 Bit

- masukan X[3:0] = 0101 dan Y[3:0] = 0110
- $\,\blacktriangleright\,$ FA $_0$ mendapatkan masukan $x_0=1$ dan $y_0=0$ serta nilai $c_0=0$ sebagai nilai awalnya
 - Keluaran dari FA₀ adalah s₀ = 1
 - ightharpoonup membawa simpanan $c_1 = 0$ ke FA₁
 - Demikian seterusnya sampai FA₃
- ▶ Rangkaian menghasilkan keluaran S[3:0] = 1011 dan C[4:1] = 0100

Operasi dan Rangkajan Aritmatika

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 B

Operasi Aritmetika Biner

Rangkaian Aritmetika Biner

Overflow Aritmatika

Biner

Rangkaian Penjumla Cepat

Rangkaian Penjum Bilangan Lainnya

mplementasi Rangkaian Aritmetika

Penutup

Unit Penjumlah dan Pengurang

- Operasi pengurangan dapat direalisasikan sebagai operasi penjumlahan dengan menggunakan 2's complement di pengurangnya (baik positif maupun negatif)
 - Ini memungkinkan menggunakan rangkaian adder untuk melakukan penjumlahan dan pengurangan sekaligus
- ▶ Note: (2's complement) = (1's complement) + 1
- 1's complement dapat diimplementasikan dengan menggunakan XOR
 - $ightharpoonup x \oplus 1 = \overline{x} \operatorname{dan} x \oplus 0 = x$
 - Jika operasi pengurangan dilakukan, 1's complementkan bilangan kedua dengan meng-XOR-kan semua bit dengan 1

Operasi dan langkaian Aritmatika

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 Bi

Operasi Aritmetika Biner Rangkajan Aritmetika

Biner

Biner

Cepat

Implementasi

Rangkaian Aritmetik

Penutup

isensi

Unit Penjumlah dan Pengurang

Menggunakan 2's complement di bilangan pengurang

@2014,Eko Didik Widianto

Rangkaian Aritmetika

Biner

Overflow Aritmatika

- ▶ Jika n-bit digunakan untuk merepresentasikan bilangan signed, maka hasil penjumlahan atau pengurangan harus dalam jangkauan -2^{n-1} sampai $+2^{n-1}-1$
- Jika hasil operasi tidak dalam jangkauan ini, maka telah terjadi overflow aritmatika

#Bit, n	Nama	Jangkauan
4	nible, semioctet	signed: $-(2^3)$ s/d $2^3 - 1$
		<i>unsigned</i> : 0 s/d $2^4 - 1$
8	byte, octet	signed: $-(2^7)$ s/d $2^7 - 1$
		<i>unsigned</i> : 0 s/d 2 ⁸ - 1
16	half-word, word, short	signed: $-(2^{15})$ s/d $2^{15} - 1$
		<i>unsigned</i> : 0 s/d 2 ¹⁶ – 1
32	word, long, doubleword, int	signed: $-(2^{31})$ s/d $2^{31} - 1$
		<i>unsigned</i> : 0 s/d 2 ³² — 1
64	doubleword, int64	signed: $-(2^{63})$ s/d $2^{63}-1$
		<i>unsigned</i> : 0 s/d 2 ⁶⁴ — 1
n	Integer n-bit (bentuk	signed: $-(2^{n-1})$ s/d $2^{n-1} - 1$
	umum)	
		<i>unsigned</i> : 0 s/d $2^{n} - 1$

Operasi dan

@2014,Eko Didik Widianto didik@undip.ac.id)

Unit Penjumlah 1 Bi

Operasi Aritmetika Biner

Rangkaian Aritmetika Biner

Overflow Aritmatika

Rangkaian Komparator Biner

Rangkaian Penjumlah Cepat

Bilangan Lainnya

lanykalan Ami

Penutur

2.001.0

Overflow Aritmatika

- Untuk memastikan rangkaian aritmatika beroperasi dengan benar, perlu pendeteksi kejadian overflow
 - ► Hasil operasi jika overflow, tidak valid

 Untuk operasi 4-bit, jika c3 dan c4 mempunyai nilai yang sama, maka tidak terjadi overflow Operasi dan langkaian Aritmatika

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 Bi

Operasi Aritmetika Biner

Rangkaian Aritmetika Biner

Overflow Aritmatika

Rangkaian Komparator Biner

Cepat

Implementasi

Rangkaian Aritmetika

enutup

isensi

Rangkaian Overflow Aritmatika

- Overflow dapat dideteksi dengan:
 - ▶ overflow = $c3 \oplus c4$
- Untuk bilangan n-bit
 - ▶ overflow = $c_{n-1} \oplus c_n$

Operasi dan Jangkajan Aritmatika

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 Bi

Biner

Rangkaian Aritmetika Biner

Overflow Aritmatika

Rangkaian Komparato Biner

Rangkaian Penjumlah Cepat

Bilangan Lainnya

mplementasi Rangkaian Aritmetika

Penutu

Contoh Overflow

Diketahui bilangan fixed-point Q(3,4), A = -4,625 dan B = 38h. Tentukan hasil dari operasi A + B dan A - B serta status overflow dari operasi tersebut

bi	b_4	b_3	b_2	b_1	b_0	b_{-1}	b_{-2}	b_{-3}	b_4			
C_i	0	0	1	1	0	0	0	0				
A_i		1	0	1	1	0	1	1	0		(-4,625)	
B_i		0	0	1	1	1	0	0	0	+	3,500	+
S_i		1	1	1	0	1	1	1	0		-1,125	-

$$OV = C_3 \oplus C_4 = 0 \oplus 1 = 1$$

Operasi dan angkajan Aritmatika

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 Bi

Operasi Aritmetika Biner

Rangkaian Aritmetika Biner

Overflow Aritmatika

Rangkaian Komparator Biner

Rangkaian Penjumlah Cepat

Rangkaian Penjumlah Bilangan Lainnya

mplementasi Rangkaian Aritmetika

Penutup

Rangkaian Komparator Bilangan

- Misalnya: Bandingkan dua bilangan $X = x_3x_2x_1x_0$ dan $Y = y_3y_2y_1y_0$
 - ► Bisa diimplementasikan dengan rangkaian pengurang (X-Y)
 - ► Terdapat 3 output: Z, N, V
 - ► Z=1 jika (X-Y)=0, hasil lainnya Z=0
 - ► N=1 jika (X-Y)<0, hasil lainnya N=0
 - V=1 jika terjadi overflow aritmatika, kalau tidak ada overflow V=0
 - ► Tunjukkan bagaimana Z, N, V digunakan untuk menentukan X=Y, X<Y, X<Y, X>Y dan X>Y

Operasi dan angkaian Aritmatika

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 Bi

Operasi Aritmetika Biner Rangkajan Aritmetika

Biner

Overflow Aritmat

Rangkaian Komparator Biner

Cepat

Bilangan Lainnya

Rangkaian Aritmetika

Penutup

isensi

Solusi

- Misalnya X < Y, kemungkinan yang akan terjadi
 - Jika X dan Y mempunyai tanda yang sama, tidak akan terjadi overflow, sehingga V=0. Dan untuk semua nilai X dan Y (positif/negatif) menghasilkan nilai negatif N=1
 - Saat X negatif dan Y positif, maka (X-Y) akan negatif (N=1) jika tidak ada overflow (V=0) dan (X-Y) akan positif (N=0) iika terdapat overflow (V=1)
 - Sehingga jika X<Y maka N ⊕ V = 1</p>
- Hasil
 - X=Y terdeteksi saat 7=1
 - X<Y terdeteksi jika N ⊕ V = 1. X<Y terdeteksi jika</p> $Z + (N \oplus V) = 1$
 - ► X>Y terdeteksi jika $\overline{Z + (N \oplus V)} = 1$. X≥Y terdeteksi jika $(N \oplus V) = 1$

@2014.Eko Didik Widianto

Operasi Aritmetika Rangkaian Aritmetika

Rangkaian Komparator Biner

Rangkaian Komparator 4-bit

Operasi dan Rangkajan Aritmatika

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 B

Operasi Aritmetika Biner

Biner

Overnow Antiniatika

Rangkaian Komparator Biner

Cepat Penjumian

Rangkaian Penjuml Bilangan Lainnya

mplementasi Rangkaian Aritmetika

Penutu

Licane

Isu Performansi

- Penjumlahan dan pengurangan merupakan operasi dasar di sistem komputer sebagai perangkat komputasi
 - Performansi operasi ini (mis: kecepatan) membawa pengaruh signifikan terhadap performansi keseluruhan
 - Meningkatkan performansi dapat menggunakan rangkaian yang lebih cepat
 - Menggunakan teknologi terbaru yang mengurangi delay gerbang dasar
 - Performansi bisa diperoleh dengan mengubah struktur rangkaian fungsional

Operasi dan angkajan Aritmatika

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 Bi

Operasi Aritmetika Biner Rangkaian Aritmetika

Biner

Overflow Aritmatika

Rangkaian Komparator Biner

Rangkaian Penjumlah Cepat

Bilangan Lainnya

Rangkaian Aritme

Penutu

Kekurangan Ripple Carry Adder

- Tiap FA mempunyai delay tertentu sebelum keluaran s_i dan c_{i+1} valid
 - disebut delay propagasi FA dari input ke output
- Misalnya, delay propagasi Δt
 - Carry dari FA pertama, c₁, akan sampai di FA kedua dalam waktu Δt setelah input x_0 dan y_0
 - \triangleright Carry dari FA kedua, c_2 , akan sampai di FA ketiga dalam waktu Δt setelah input x_1 , y_1 dan c_1 atau total $2\Delta t$
 - ▶ Dan seterusnya. Sinyal c_{n-1} valid setelah $(n-1) \Delta t$, dan jumlah total akan tersedia setelah delay $(n) \Delta t$
- Delay total tersebut semakin besar seiring semakin banyak jumlah bit bilangan yang harus ditambahkan
 - Penjumlahan bilangan n-bit akan membutuhkan waktu $(n) \Delta t$ dari bit-bit masukan tersedia sampai keluaran valid
- Delay terbesar dalam rangkaian disebut critical-path delay
 - Jalur yang menyebabkan delay ini disebut critical path

@2014.Eko Didik Widianto

Rangkaian Aritmetika

Riner

Biner

Rangkaian Penjumlah Cepat

Performansi Adder/Subtractor

- Identifikasi jalur yang menyebabkan delay terbesar (critical path)
- ► Recall critical path di RCA:

Operasi dan langkaian Aritmatika

@2014,Eko Didik Widianto didik@undip.ac.id)

Unit Penjumlah 1 Bit

Operasi Aritmetika Biner Rangkaian Aritmetika

Biner

Overflow Aritmatika

Rangkaian Komparato Biner

Rangkaian Penjumlah Cepat

Bilangan Lainnya

Rangkaian Aritmetika

Penutu

Carry-lookahead Adder/CLA

- Untuk mengurangi delay akibat propagasi carry di RCA (critical-path-delay)
 - Evaluasi tiap stage FA apakah carry-in dari stage sebelumnya akan mempunyai nilai 0 atau 1
 - Jika evaluasi dapat dilakukan dengan cepat, performasi adder dapat ditingkatkan
- Recall FA yang ada di tiap stage:

C V V	6	ا د	c, X,	y _i 00	01	11	10	c, X	^y i00	01	11	10
$\begin{array}{c cccc} c_i & x_i & y_i \\ \hline 0 & 0 & 0 \end{array}$	0	<i>s</i> _i	0	0	1	0	1	0	0	0	1	0
0 0 1	0	1	1	1	0	1	0	1	0	1	1	1
0 1 0	0	1										
0 1 1	1	0			$S_i = X_i$	θy _i ⊕c	i		C _{i+1} =	$x_i y_i +$	$y_i c_i +$	$X_i C_i$
1 0 0	0	1	X					-1	_			
1 0 1	1	0	^/					씯	\mathcal{F}	— s	1	
1 1 0	1	0	y_i	-	-	7	_					
1 1 1	1	1	C_i	\Box		-/_						
)—)—)—	<u>_</u>	>	— (Çi+1	

Operasi dan angkaian Aritmatika

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 Bit

Operasi Aritmetika Biner

Rangkaian Aritmetika Biner

Overflow Aritmatika

Rangkaian Komparato Biner

Rangkaian Penjumlah Cepat

Rangkalan Penjumla Bilangan Lainnya

Implementasi Rangkaian Aritmetika

Penutu

Carry-lookahead Adder (CLA)

- Fungsi carry-out dari stage i (satu FA) adalah
 - $C_{i+1} = X_i Y_i + X_i C_i + Y_i C_i = X_i Y_i + (X_i + Y_i) C_i$
- Anggap $g_i = x_i y_i$ dan $p_i = x_i + y_i$, maka $c_{i+1} = g_i + p_i c_i$
 - Fungsi $g_i = 1$ jika $x_i = 1$ dan $y_i = 1$, tanpa pengaruh c_i . Stage i pasti membangkitkan carry-out, sehingga g disebut fungsi **generate**
 - Fungsi $p_i = 1$ jika salah satu $x_i = 1$ atau $y_i = 1$ atau keduanya 1. Stage *i* membangkitkan carry-out jika $c_i = 1$. Nilai $c_i = 1$ ini dipropagasikan lewat FA di stage i, sehingga p disebut fungsi propagate

@2014.Eko Didik Widianto

Operasi Aritmetika Rangkaian Aritmetika

Riner

Biner

Carry-lookahead Adder

Ekspansi persamaan $c_{i+1} = g_i + p_i c_i$. Dengan $c_i = g_{i-1} + p_{i-1}c_{i-1}$, akan menghasilkan

$$c_{i+1} = g_i + p_i (g_{i-1} + p_{i-1} c_{i-1})$$

= $g_i + p_i g_{i-1} + p_i p_{i-1} c_{i-1}$

Ekspansi sampai stage 0:

$$c_{i+1} = g_i + p_i g_{i-1} + p_i p_{i-1} g_{i-2} + \dots + p_i p_{i-1} \dots p_2 p_1 g_0 + p_i p_{i-1} \dots p_2 p_1 p_0 c_{i-1}$$

- Ekspresi tersebut menggambarkan rangkaian AND-OR 2-level yang memungkinkan c_{i+1} dapat dihasilkan dengan cepat
 - Ini disebut carry-lookahead adder

@2014.Fko Didik Widianto

Operasi Aritmetika

Biner

Critical Path CLA

Operasi dan

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 Bi

Operasi Aritmetika Biner

Rangkaian Aritmetik

Overflow Aritmati

Rangkaian Komparato Biner

Rangkaian Penjumlah Cepat

Rangkaian Penjuml

Implementasi Rangkaian Aritmetika

Penutur

Keterbatasan CLA

- Persamaan carry-out di CLA menghasilkan solusi adder yang cepat karena hanya merupakan fungsi AND-OR 2-level
- Namun, batasan fan-in dapat membatasi kecepatan CLA
 - FA₀: AND dan OR 2-input, $c_1 = g_0 + \rho_0 c_0$
 - ► FA₁: AND dan OR 3-input, $c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$
 - FA₂: AND dan OR 4-input,

$$c_3 = g_2 + p_2g_1 + p_2p_1g_0 + p_2p_1p_0c_0$$

- ► FA_n: AND dan OR (n+2)-input
- Device seperti FPGA seringkali menggunakan rangkaian khusus untuk implementasi fast adder
- Kompleksitas CLA n-bit akan bertambah jika n bertambah
 - Untuk menguranginya, digunakan pendekatan hirarki untuk mendesain adder yang lebih besar

@2014.Eko Didik Widianto

Riner

Biner

Desain Adder 32-bit

- Misalnya diinginkan rangkaian penjumlah 32-bit
- Bagi adder ini menjadi 4 blok sehingga
 - ▶ Blok 0 untuk operasi bit $b_7 b_0$
 - ▶ Blok 1 untuk operasi bit $b_{15} b_{8}$
 - ▶ Blok 2 untuk operasi bit b₂₃ − b₁₆
 - ▶ Blok 3 untuk operasi bit b₃₁ − b₂₄
- Tiap blok dibangun dengan adder CLA 8-bit
 - Carry-out untuk tiap blok adalah c₈, c₁₆, c₂₄ dan c₃₂
- Terdapat 2 pendekatan untuk menghubungkan ke-empat blok
 - Ripple-carry
 - Carry-lookahead level-2

@2014.Eko Didik Widianto

Rangkaian Aritmetika

Riner

Biner

Ripple-Carry Antar Blok

Operasi dan

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 B

Operasi Aritmetika Biner

Biner

Overflow Aritmatil

Rangkaian Komparato Biner

Rangkaian Penjumlah Cepat

Bilangan Lainnya Implementasi

Rangkaian Aritmetika

Penutu

Carry-lookahead Level-2

Operasi dan Rangkajan Aritmatika

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 B

Operasi Aritmetil Biner

Biner

Overflow Aritmat

Rangkaian Komparato Biner

Rangkaian Penjumlah Cepat

Rangkaian Penjumlal Bilangan Lainnya

mplementasi Rangkaian Aritmetika

Penutu

Carry-lookahead Level-2

Persamaan CLA level-2

$$P_0 = p_7 p_6 p_5 p_4 p_3 p_2 p_1 p_0$$

$$G_0 = g_7 + p_7 g_6 + p_7 p_6 g_5 + \dots + p_7 p_6 p_5 p_4 p_3 p_2 p_1 g_0$$

$$c_8 = G_0 + P_0 c_0$$

$$c_{16} = G_1 + P_1 c_8 = G_1 + P_1 G_0 + P_1 P_0 c_0$$

$$c_{24} = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 c_0$$

$$c_{32} = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 c_0$$

Operasi dan Rangkaian Aritmatika

@2014,Eko Didik Widianto didik@undip.ac.id)

Unit Penjumlah 1 Bi

Operasi Aritmetika Biner

Rangkaian Aritmetika Biner

Overflow Aritmatik

Rangkaian Komparator Biner

Rangkaian Penjumlah Cepat

Rangkaian Penjumlah Bilangan Lainnya

nplementasi langkaian Aritmetik

Penuti

Analisis Rangkaian CLA Hirarki

- Asumsi konstrain fan-in adalah 4 masukan, waktu yang diperlukan untuk melakukan operasi penambahan 2 bilangan 32-bit meliputi:
 - ► Lima delay gerbang untuk membentuk term G_i dan P_i, 3 delay gerbang untuk CLA level-2, dan satu delay untuk menghasilkan bit sum akhir
 - Sebenarnya bit sum final diperoleh setelah 8 delay karena c₃₂ tidak digunakan untuk menghitung bit sum
 - ▶ Operasi lengkap, termasuk deteksi overflow ($c_{31} \oplus c_{32}$), membutuhkan 9 delay gerbang
 - Bandingkan 65 delay di ripple-carry adder

@2014.Eko Didik Widianto

Operasi Aritmetika

Riner

Biner

Rangkaian Penjumlah BCD

Operasi dan Rangkajan Aritmatika

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 B

Operasi Aritmetika Biner

Biner

Overflow Aritmatik

Rangkaian Komparato Biner

Rangkaian Penjumlah Cepat

Rangkaian Penjumlah Bilangan Lainnya

Implementasi Rangkaian Aritmetika

Penutu

Operasi Penjumlah BCD

- ▶ Diketahui bilangan BCD X = 6 dan Y = 5. Nyatakan hasil penjumlahan BCD X + Y.
- ▶ **Solusi**. Bilangan BCD X = 0110 dan Y = 0101. Operasi penjumlahannya adalah sebagai berikut:

► Hasil penjumlahan lebih dari 9, sehingga perlu ditambahan dengan 6 atau 0110 untuk menghasilkan nilai jumlah S = 10001 yang merupakan bilangan BCD dari desimal 11

Operasi dan angkaian Aritmatika

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 Bi

Operasi Aritmetika Biner Rangkaian Aritmetika

Biner

Overnow Antinatika

Biner

Cepat

Rangkaian Penjumlah

Bilangan Lainnya Implementasi

Rangkaian Aritmetik

Penutur

Rangkaian Penjumlah BCD 1 Digit

@2014,Eko Didik Widianto

Biner

Biner

Rangkaian Penjumlah Bilangan Lainnya

IC TTL untuk Operasi Aritmetika

@2014,Eko Didik Widianto

Biner

epat

Implementasi

Rangkaian Aritmetika

IC TTL	Deskripsi	Contoh	С
7480	Penjumlah penuh (FA) 1 bit	SN7480 (Texas Instrum	B
7482	Penjumlah penuh (FA) 2 bit	NTE7482 (NTE Electro	5
7483/74283	Penjumlah penuh (FA) 4 bit (CLA)	74HC283 (Philips)	
74385	Quad penjumlah/pengurang serial 4-bit	74LS385 (Texas Instrui	R

IC 74283

Struktur CLA, 4 bit

Operasi dan langkaian Aritmatika

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 B

Operasi Aritmetika Biner

Biner

Overflow Aritmatika

Biner

Cepat

Implementasi

Rangkaian Aritmetika

Penutup

Struktur IC 74283

Operasi dan Rangkaian Aritmatika

@2014,Eko Didik Widianto (didik@undip.ac.id)

Unit Penjumlah 1 B

Operasi Aritmetika Biner

Biner

Overflow Aritmatika

Rangkaian Komparato Biner

Rangkaian Penjumlah Cepat

Rangkaian Penjumla

Implementasi Rangkaian Aritmetika

Penutup

Lisensi

Sumber: datasheet Philips 74HC283

Implementasi Rangkaian Penjumlah 4 Bit

- Implementasikan rangkaian penjumlah/pengurang 4 bit menggunakan 74HC283. Gunakan masukan kontrol Add/Sub untuk mengeset operasi rangkaian sebagai penjumlah atau pengurang
 - (Petunjuk: -B diperoleh dengan menggunakan 4 gerbang)

@2014.Eko Didik Widianto

Operasi Aritmetika Riner

Rangkaian Aritmetika

Overflow Aritmatika

Biner

Implementasi Rangkaian Aritmetika

 $\overline{\text{XOR-2}}$ dan mengeset $C_{in}=1$) ndin.ac.id @2014,Eko Didik Widianto (didik@undip.ac.id) http://didik.blog.undip.ac.id

Ringkasan Kuliah

- Yang telah kita pelajari hari ini:
 - Operasi penjumlahan bilangan biner 1 bit dengan HA dan FΑ
 - Operasi penjumlahan/pengurangan bilangan tak bertanda dan bertanda
 - Rangkaian penjumlah n bit dengan RCA
 - Overflow dan rangkaian detektornya
 - Rangkaian penjumlah cepat dengan CLA dan performansinya
 - Rangkaian penjumlah BCD
 - Implementasi rangkaian penjumlah dengan IC 7400
- Bab berikutnya akan operasi aritmetika dan rangkaiannya, meliputi penjumlahan dan pengurangan, menggunakan format bilangan yang telah dijabarkan di bab ini
- ▶ Pelajari: http://didik.blog.undip.ac.id/2014/02/25/ tkc205-sistem-digital-2013-genap/

@2014,Eko Didik Widianto

Riner

Rangkaian Aritmetika

Biner

Penutup

Lisensi

Creative Common Attribution-ShareAlike 3.0 Unported (CC **BY-SA 3.0)**

Anda bebas:

- untuk Membagikan untuk menyalin, mendistribusikan, dan menyebarkan karya, dan
- untuk Remix untuk mengadaptasikan karya

Di bawah persyaratan berikut:

- Atribusi Anda harus memberikan atribusi karya sesuai dengan cara-cara yang diminta oleh pembuat karya tersebut atau pihak yang mengeluarkan lisensi. Atribusi yang dimaksud adalah mencantumkan alamat URL di bawah sebagai sumber.
- ▶ **Pembagian Serupa** Jika Anda mengubah, menambah, atau membuat karya lain menggunakan karya ini, Anda hanya boleh menyebarkan karya tersebut hanya dengan lisensi yang sama, serupa, atau kompatibel.
- ▶ Lihat: Creative Commons Attribution-ShareAlike 3.0 Unported License
- ► Alamat URL: http://didik.blog.undip.ac.id/2014/02/25/tkc205-sistemdigital-2013-genap/

@2014,Eko Didik Widianto

Operasi Aritmetika Rangkaian Aritmetika

Biner