《云数据管理II -- 智能数据分析与决策支持》

2015080121 软工52 李在弦

文件目录

实验环境

操作系统: Windows

IDE: PyCharm

编程语言: Python 3.6

运行设置

2015080121_李在弦/src/input/ 路径下放diabetic_data.csv

运行顺序 preprocess.py o classification.py o kafang.py o rlr.py o statistic.py

任务1 - preprocess.py

同一个病人仅保留第一次入院记录

先从 diabetic_data.csv 获取所有信息,并存储成字典(dict)形式。数据总共有 101766条。有一些同一个 patient_nbr 会带着多个 encounter_id,其中 encounter_id 数字小的就是第一次入院记录。所以建立一个以 patient_nbr 为 key 的字典,然后每次发现同一个 patient_nbr 就比较它俩的 encounter_id 值,然后只保存 encounter_id 较小的数据。 这样删除的数据有30248条。剩下的有71518条数据。

移除导致临终关怀或病人死亡的记录 (discharge disposition id)

仔细看 IDs_mapping.csv 文件之后发现导致临终关怀或病人死亡的情况有

discharge disposition id = 11 (Expired),

discharge disposition id = 13 (Hospice / home),

discharge_disposition_id = 14 (Hospice / medical facility),

discharge disposition id = 19 (Expired at home. Medicaid only, hospice.),

discharge_disposition_id = 20 (Expired in a medical facility. Medicaid only, hospic e.),

discharge_disposition_id = 21 (Expired, place unknown. Medicaid only, hospice.) 删除包含这些值的数据。剩下有69973条数据

缺失值处理

- 1. patient nbr 和 encounter id 属性对30天内再入院情况没有影响力,直接删除。
- 'payer_code', 'medical_specialty', 'weight' 这三个属性的缺失率太高,超过50%。
 直接删除
- 3. diag_1, diag_2, diag_3的属性值种类太多,用深度学习填充缺失值的效率太低 (10% 左右)。直接删除缺失这三个字段的数据 (1284条数据)
- 4. 用深度学习处理缺失值之前,先筛选包含缺失值的数据(包含缺失值的数据有 12603 条,不包含的有56086条)
- 5. 为了用深度学习的方法处理缺失值,把Nominal形式的字段转换成布尔形式 (比如, gender字段有 male 和 female, 那么male是 [1, 0], female是 [0, 1])
- 6. 用tensorflow建立模型,对 "admission_type_id" " discharge_disposition_id" " admission source id" " race" " gender" 这五个字段做深度学习。

adm_type_acc : 0.610483042137/184 disch_acc : 0.6183651804670913 adm_sour_acc : 0.5693698414777938 race_acc : 0.8068414203383528 gender_acc : 0.5487301587301587

图表统计

time_in_hospital

任务2 - classification.py

划分训练集和测试集

为了合理划分训练集和测试集,建立了各个 race, gender, age的决策树。然后用这三个决策树来建立一个划分训练集和测试集的决策树,这个决策树的根节点是race, 然后中间节点是gender, 最底层节点是age。建立决策树之后在叶节点存储相应的数据。存储所有数据之后把各个叶节点分成7:3比例。其中70%的数据是训练集,30%的数据是测试集。

Bayesian分类

首先建立每个字段的决策树,然后把它们保存到C1 (<30) 和C2 (>30, NO) 相应的列表中。 遍历所有训练集之后,在各个决策树的叶节点保存 P(X|Ci)值。用这个决策树列表计算 P(C1|X) 和 P(C2|X)值。比较它们两个值的大小,做Bayesian分类。

Neural Network Model分类

为了用深度学习的方法分类,把Nominal形式的字段转换成布尔形式。Numeric形式的字段直接使用数字值。为了更准确地做分类,label用三个类型, "<30" ">30" "NO"。用tensorflow建立深度学习模型。

比较分析各算法精度

Bayesian

→ **<30** accuracy : 0.056162246489859596

→ **Not <30** accuracy: 0.9757497719834755 check <30 accuracy: 0.056162246489859596

check <30 accuracy: 0.006162246469609096 check no <30 accuracy: 0.9757497719834755

Neural Network

→ **<30** accuracy: 0.08268330733229329

→ **Not <30** accuracy: 0.9590106765384409 check <30 accuracy: 0.08268330733229329

check no <30 accuracy: 0.06266330733223323 check no <30 accuracy: 0.9590106765384409

发现Bayesian算法对'Not <30'情况的分类效果比Neural Network算法的好一些,但是Neural Network算法对'<30'情况的分类效果更好。Bayesian算法的分类效率比Neural Network算法稍微偏在'Not <30'情况。所以觉得Neural Network算法的效率更好

任务3 - kafang.py, rlr.py, statistic.py

卡方检验分析 (单因素分析)

用 sklearn库的 SelectKBest 和 chi2。

单因素特征选择能够对每一个特征进行测试,衡量该特征和响应变量之间的关系,根据得分扔掉不好的特征,通过卡方检验分析获得25个最挂特征(k_score最高,k_p最小的25个因素)。卡方分析的结果中p值越小,置信度越高。

prop	value	<30	>30	NO	k_score	k_p	r_score	k_valid	r_valid
age	[50-60)	873	3703	7587	51.42141	7.45E-13	0.495	TRUE	TRUE
age	[80-90)	1185	3835	6000	39.22408	3.78E-10	0	TRUE	FALSE
diabetesMed	No	1249	4596	10563	40.79928	1.69E-10	0.47	TRUE	TRUE
diag_1	250.7	87	189	243	37.61645	8.61E-10	0.225	TRUE	FALSI
diag_1	434	246	414	848	96.9283	7.19E-23	0.44	TRUE	TRUE
diag_1	786	155	963	1886	55.05417	1.17E-13	0.325	TRUE	TRUE
diag_1	820	120	209	455	37.40192	9.61E-10	0	TRUE	FALSI
diag_1	V58	45	32	38	126.5834	2.29E-29	0.925	TRUE	TRUE
diag_2	250	301	1153	3102	32.85922	9.91E-09	0.035	TRUE	FALS
diag_2	342	40	39	104	36.54456	1.49E-09	0.19	TRUE	FALS
diag_2	440	52	79	127	38.7396	4.84E-10	0.37	TRUE	TRUI
diag_3	250	647	2453	5865	36.31455	1.68E-09	0.15	TRUE	FALS
discharge_disposition_id	1	3265	14604	28135	211.6015	6.14E-48	1	TRUE	TRUI
discharge_disposition_id	15	18	12	10	62.8828	2.19E-15	0.565	TRUE	TRUI
discharge_disposition_id	2	210	437	884	40.67222	1.80E-10	0.21	TRUE	FALS
discharge_disposition_id	22	381	338	721	531.0696	1.65E-117	1	TRUE	TRUI
discharge_disposition_id	28	33	18	40	81.98837	1.37E-19	0.66	TRUE	TRUI
discharge_disposition_id	3	1207	2783	4986	211.7454	5.72E-48	0.66	TRUE	TRUI
discharge_disposition_id	5	185	247	467	145.4696	1.70E-33	0.87	TRUE	TRUI
num_lab_procedures	1	6211	21944	40534	625.3501	5.13E-138	0.375	TRUE	TRUI
num_medications	1	6211	21944	40534	352.0806	1.49E-78	0.1	TRUE	FALS
number_emergency	0	6211	21944	40534	132.8575	9.71E-31	0.27	TRUE	TRUI
number_inpatient	0	6211	21944	40534	1403.438	3.76E-307	1	TRUE	TRU
time_in_hospital	1	6211	21944	40534	415.6618	2.15E-92	0.5	TRUE	TRUI

logistic回归分析 (多因素分析)

用 sklearn库的 RandomizedLogisticRegression, LogisticRegression 使用随机特征选择方法,通过打乱设计的矩阵或者子采样的数据并,多次重新估算稀疏模型,并且统计有多少次一个特定的回归量是被选中。

通过logistic回归分析获得大概25个最挂特征 (r score大于0.25的因素)。

1	prop	value	<30	>30	NO	k_score	k_p	r_score	k_valid	r_valid
2	age	[50-60)	873	3703	7587	51.42141	7.45E-13	0.495	TRUE	TRUE
3	age	[70-80)	1807	6089	9714	31.81706	1.69E-08	0.285	FALSE	TRUE
4	diabetesMed	No	1249	4596	10563	40.79928	1.69E-10	0.47	TRUE	TRUE
5	diabetesMed	Yes	4962	17348	29971	12.80455	0.000346	0.485	FALSE	TRUE
6	diag_1	428	443	1655	1772	27.21217	1.82E-07	0.355	FALSE	TRUE
7	diag_1	434	246	414	848	96.9283	7.19E-23	0.44	TRUE	TRUE
8	diag_1	786	155	963	1886	55.05417	1.17E-13	0.325	TRUE	TRUE
9	diag_1	V58	45	32	38	126.5834	2.29E-29	0.925	TRUE	TRUE
10	diag_2	440	52	79	127	38.7396	4.84E-10	0.37	TRUE	TRUE
11	diag_2	500	2	1	0	12.11214	0.000501	0.28	FALSE	TRUE
12	diag_3	250.6	95	263	299	23.44459	1.29E-06	0.3	FALSE	TRUE
13	diag_3	403	171	521	566	31.67684	1.82E-08	0.33	FALSE	TRUE
14	diag_3	V60	2	1	0	12.11214	0.000501	0.275	FALSE	TRUE
15	discharge_disposition_id	1	3265	14604	28135	211.6015	6.14E-48	1	TRUE	TRUE
16	discharge_disposition_id	15	18	12	10	62.8828	2.19E-15	0.565	TRUE	TRUE
17	discharge_disposition_id	22	381	338	721	531.0696	1.65E-117	1	TRUE	TRUE
18	discharge_disposition_id	28	33	18	40	81.98837	1.37E-19	0.66	TRUE	TRUE
19	discharge_disposition_id	3	1207	2783	4986	211.7454	5.72E-48	0.66	TRUE	TRUE
20	discharge_disposition_id	5	185	247	467	145.4696	1.70E-33	0.87	TRUE	TRUE
21	num_lab_procedures	1	6211	21944	40534	625.3501	5.13E-138	0.375	TRUE	TRUE
22	number_diagnoses	3	6211	21944	40534	57.32508	3.69E-14	0.53	TRUE	TRUE
23	number_emergency	0	6211	21944	40534	132.8575	9.71E-31	0.27	TRUE	TRUE
24	number_inpatient	0	6211	21944	40534	1403.438	3.76E-307	1	TRUE	TRUE
25	time_in_hospital	1	6211	21944	40534	415.6618	2.15E-92	0.5	TRUE	TRUE