Math 417 Problem Set 6 Solutions

Starred (*) problems were due Friday, March 4.

(*) 45. (Gallian, p.220, # 10) Suppose that G is a dihedral group (i.e., a group of symmetries of some regular n-gon), and define the function $\varphi: G \to H = (\{-1,1\}, *, 1)$ to the group H (isomorphic to \mathbb{Z}_2) by $\varphi(\text{rotation}) = 1$ and $\varphi(\text{reflection}) = -1$. Show that φ is a homomorphism.

We need to show that for $g, g' \in G$, we have $\varphi(gg') = \varphi(g)\varphi(g')$. This amounts to showing that:

If
$$\varphi(g)$$
, $\varphi(g') = 1$, then $\varphi(gg') = 1$, and if $\varphi(g) = 1$, $\varphi(g') - 1$, then $\varphi(gg') = -1$, and if $\varphi(g) = -1$, $\varphi(g') = 1$, then $\varphi(gg') = -1$, and if $\varphi(g)$, $\varphi(g') = -1$, then $\varphi(gg') = 1$.

This translates to:

If g and g' are rotations, then gg' is a rotation, and if g is a reflection and g' is a reflection, then gg' is a reflection, and if g is a reflection and g' is a rotation, then gg' is a reflection, and If g and g' are reflections, then gg' is a rotation.

But this is precisely (except for the first case?) exactly what one of our previous problems, problem # 1, showed! And a routine calculation with their matrix representations will show that the composition of two rotations is a rotation (by the sum of the angles that the two elements rotate by). So every case behaves the way it should, and so φ is a homomorphism.

(*) 47. (Gallian, p.140, # 30) Suppose that $\varphi: (\mathbb{Z}_{50}, +, 0) \to (\mathbb{Z}_{50}, +, 0)$ is an isomorphism and $\varphi(11) = 13$. Show that, for all $x, \varphi(x) = kx$ for a certain k, and find k!

Because φ is a homomorphism and \mathbb{Z}_{50} is cyclic (generated, when written additively, by 1), we know that $\varphi(x) = \varphi(x \cdot 1) = x\varphi(1) = xk = kx$, where $k = \varphi(1)$. Note that this calculation is making some conceptual shifts: $\varphi(x \cdot 1) = x\varphi(1)$ is interpreting x (in \mathbb{Z}_{50}) as an integer, and $x \cdot 1$ means an x-fold sum of 1's, and employs induction (or really, our result that $\varphi(a^n) = (\varphi(a))^n$ in an additive setting) to show that $\varphi(x \cdot 1) = x\varphi(1)$. Also, xk = kx reinterprets x as first in \mathbb{Z} and then in \mathbb{Z}_{50} , while k shifts from \mathbb{Z}_{50} to \mathbb{Z} . This really uses the fact that multiplication is well-defined in the ring \mathbb{Z}_{50} ! The result of these computations is that φ is multiplication by (some) integer k, modulo 50. [Note, also, that this didn't really use the hypothesis that φ is an isomorphism; but the fact that $\varphi(11) = 13$, will imply this, once we figure out what k needs to be.]

Once we know that $\varphi(x) = kx$ for some k, we can use $\varphi(11) = 13 = k \cdot 11$ to determine k, by solving 13 = 11k in (the ring) \mathbb{Z}_50 . We can do this by using the Euclidean algorithm to find the inverse of 11 modulo 50, $11n \equiv_{50} 1$ and then $k \equiv k(11n) \equiv (11k)n \equiv 13n$.

Since $50 = 4 \cdot 11 + 6$ and $11 = 1 \cdot 6 + 5$ and $6 = 1 \cdot 5 + 1$, we can reverse engineer this to get $1 = 6 - 1 \cdot 5 = 6 - 1 \cdot (11 - 1 \cdot 6) = 2 \cdot 6 - 1 \cdot 11 = 2 \cdot (50 - 4 \cdot 11) - 1 \cdot 11 = 2 \cdot 50 - 9 \cdot 11$, and so $11^{-1} = -9 \equiv 41$. So $k = 13n \equiv 13 \cdot 41 = 533 \equiv 33$. So our homomorphism φ is $\varphi(x) = 33x \pmod{50}$.

As a check of this, we have $\varphi(11) = 11 \cdot 33 \equiv 363 = 7 \cdot 50 + 13 \equiv 13$, as desired.

(*) 48. (Gallian, p.141, #42) Suppose that G is a finite *abelian* group, and that no element of G has order 2. Show that the function $\varphi: G \to G$ given by $\varphi(g) = g^2$ is an isomorphism. Show that if G is infinite then φ is a homomorphism, but <u>need not</u> be an isomorphism.

In general, when G is abelian,

$$\varphi(qq') = (qq')^2 = qq'qq' = qqq'q' = q^2(q')^2 = \varphi(q)\varphi(q'),$$

so φ will always be a homomorphism. If, in addition, G is finite, and has no element of order 2, then for $g \neq e$ we will always have $g^2 \neq e$. Then if we have $g, h \in G$ with $\varphi(g) = g^2 = h^2 = \varphi(h)$, then $e = g^2(h^2)^{-1} = g^2(h^{-1})^2 = (gh^{-1})^2$ [where this last equality is because G is abelian], and so by our hypothesis we have $gh^{-1} = e$, i.e., g = h. So $\varphi(g) = \varphi(h)$ implies that g = h, and so φ is an injective function. But since φ maps from G to G, it is an injective map from a set of n elements to a set of n elements, and so the Pigeonhole Principle tells us that φ is also surjective. So φ is a bijective homomorphism; that is, φ is an isomorphism.

When G is infinite, most of what we did goes through; if G has no elements of order 2 then $\varphi(g) = g^2$ is an injective homomorphism. But since G is infinite we have no Pigeonhole Principle to tell us that φ is surjective, and, in fact, it doesn't need to be. For example, in $G = (\mathbb{Q}^*, \cdot, 1)$ (the group of non-zero rational numbers under multiplication), $\varphi(x) = x^2$ is not surjective since, e.g., there is no rational x with $x^2 = 2$. A more down-to-earth example is $G = (\mathbb{Z}, +, 0)$, with $\varphi(x) = 2x$ [since the group is written additively]. Since there is no integer x with 2x = 1, the map is not surjective.

A selection of further solutions.

44. Show that if G_1, G_2 are groups, $H_1 \leq G_1$ is a subgroup of G_1 , and $\varphi : G_1 \to G_2$ is a homomorphism, then $H_2 = \{\varphi(h) : h \in H_1\}$ (the *image* of H_1) is a subgroup of G_2 .

To show that H_2 is a subgroup we need to show three things: closure under multiplication, e_{G_2} lives in H_2 , and closure under inversion. But:

If $a, b \in H_2$ then $a = \varphi(c)$ and $b = \varphi(d)$ for some $c, d \in H_1$. Then $cd \in H_1$ since H_1 is a subgroup, and $\varphi(cd) = \varphi(c)\varphi(d) = ab$, so $ab \in \varphi(H_1) = H_2$. Also, since $e_{G_1} \in H_1$ since H_1 is a subgroup, and $\varphi(e_{G_1}) = e_{G_2}$, we have $e_{G_2} \in H_2$. Finally, if $a \in H_2$ then $a = \varphi(b)$ for some $b \in H_1$. Then since H_1 is a subgroup, $b^{-1} \in H_1$, and then $a^{-1} = (\varphi(b))^{-1} = \varphi(b^{-1}) \in H_2$, so H_2 is closed under inversion, as well.

So since H_2 is closed under multiplication, inversion, and contains he identity element of G_2 , H_2 is a subgroup of G_2 .

46. (Gallian, p.139, # 26) Show that the function $\varphi: \mathbb{Z}_{16}^* \to \mathbb{Z}_{16}^*$ given by $\varphi(a) = a^3$ is an isomorphism. What about $a \mapsto a^5$? Or $a \mapsto a^7$?

First, φ is a homomorphism, since it is well-defined [if $a \equiv_{16} b$ then 16|b-a, so b-a=16k, and then $\varphi(b)-\varphi(a)=b^3-a^3=(b-a)(b^2+ab+a^2)=16(k(b^2+ab+a^2))$ is also divisible by 16; also, if $\gcd(a,16)=1$ then $\gcd(a^3,16)=1$ (why?).], and we have $\varphi(ab)=(ab)^3=a^3b^3=\varphi(a)\varphi(b)$. To show that φ is an isomorphism, we need to show that it is a bijection; since \mathbb{Z}_{16}^* is finite, it is enough to show that φ is either an injection or a surjection.

We could show either if these by brute force: $\mathbb{Z}_{16}^* = \{1, 3, 5, 7, 9, 11, 13, 15\}$, and we could cube them to get our answer. A more roundabout way is to show that $16|a^3-b^3|$ implies 16|a-b|, provided $a,b\in\mathbb{Z}_{16}^*$. This is because, as we saw above, $a^3-b^3=(a-b)(a^2+ab+b^2)$; but since a and b are both odd, a^2+ab+b^2 is odd, and therefore $\gcd(16,a^2+ab+b^2)=1$. Consequently, $16|(a-b)(a^2+ab+b^2)|$ does imply that 16|a-b|, as desired!.

The maps $a\mapsto a^5$ and $a\mapsto a^7$ are, for the same reasons, homomorphisms from \mathbb{Z}_{16}^* , and are, for the same reasons, injections and therefore bijections. We need $a^4+a^3b+a^2b^2+ab^3+b^4$ and $a^6+a^5b+a^4b^2+a^3b^3+a^2b^4+ab^5+b^6$ both odd whenver a and b are odd, but they both are the sum of an odd number of odd numbers!.