Trénování modelů

Pokyny k online schůzce

- Používejte nejlépe desktopovou aplikaci Teams.
- Pokud nekladete dotaz nebo se neúčastníte diskuze, mějte prosím vypnutý mikrofon.
- Pokud jen trochu můžete, mějte puštěnou kameru. Vás výraz tváře pomůže vyučujícímu :)
- 4. Jak můžete položit dotaz:
 - a. Zapněte si mikrofon a rovnou se zeptejte. nebo:
 - b. Napište dotaz do chatu. nebo:
 - c. Použijte tlačítko zvednout ruku. (Po vyvolání ruku sundejte)

Agenda

- Gradient Descent
- Regularizace
- Logistická regrese
- Softmax regrese

Machine Learning jako blackbox

- ukázali jsme si funkční lineární regresi, rozhodovací stromy nebo SGD klasifikátor aniž bychom pořádně věděli, co se děje uvnitř
 - v řadě případů je to dostačující
- hlubší pochopení, jak modely fungují, však může být klíčové pro dosažení lepších výsledků
 - např. volbou správných hyperparametrů
- vytváření a úspěšné používání neuronových sítí bude vyžadovat pochopení vybraných témat
 - o Gradient Descent, regulariazace apod., aktivační funkce, viz dále

Zpátky k lineární regresi

- dva způsoby jak najít řešení:
 - uzavřený tvar ("closed form") řešení
 - o iterativní optimalizační metoda

- uzavřený tvar řešení
 - o rovnou dokážeme spočítat nejlepší možné parametry modelu
 - tj. takové parametry, které vedou k nejmenší hodnotě nákladové funkce, typicky RMSE, na trénovacích datech
- iterativní optimalizační metoda Gradient Descent
 - o postupně upravuje hodnoty parametrů tak, aby se minimalizovala nákladová funkce
 - o po čase bude konvergovat ke stejnému řešení jako v případě uzavřeného tvaru
 - klíčový přístup pro neuronové sítě i další algoritmy

Obecný tvar lineární regrese

obecný tvar lineární regrese:

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

- predikce je tedy vytvořena jako vážená suma vstupních příznaků plus konstanta
- můžeme zapsat také ve vektorové formě takto:

$$\hat{y} = h_{\mathbf{\theta}}(\mathbf{x}) = \mathbf{\theta} \cdot \mathbf{x}$$

tedy jako skalární součin vektoru parametrů θ a vektoru příznaků x, nebo v maticovém zápisu:

$$\hat{y} = \mathbf{\theta}^{\mathrm{T}} \mathbf{x}$$

kde θ^T je transponovaná matice (resp. řádkový vektor na místo sloupcového vektoru)

Uzavřená forma řešení lineární regrese

vektor parametrů můžeme získat přímým výpočtem dle tohoto vzorce

$$\widehat{\mathbf{\theta}} = \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \quad \mathbf{X}^T \quad \mathbf{y}$$

v Pythonu/Numpy bychom mohli spočítat takto:

```
theta_best = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)
```

- výpočetní náročnost O(n^{2,4}) až O(n³) podle implementace
 - o pokud zdvojnásobíme počet příznaků, zvýší se výpočetní čas až osmkrát
 - o pokud máme hodně příznaků (např. 100k), může být toto řešení už nepoužitelné
 - toto se týká příznaků z hlediska počtu instancí (příkladů) je náročnost lineární, takže si poradí i s velkým datasetem (musí se však celý vejít najednou to paměti)

- zcela jiný přístup k řešení
- vhodný i pro lineární regresi, pokud máme hodně příznaků nebo pokud je dataset příliš velký na to, aby se vešel najednou do paměti
- základní myšlenka: iterativně upravovat hodnoty parametrů modelu tak, aby se postupně minimalizovala nákladová funkce
- pro představu: Jste na horách a chcete se dostat do údolí. Je ale absolutní mlha, takže jen cítíte sklon terénu přímo pod nohama. Dobrá strategie bude jít tím směrem, kde je zrovna sklon dolů největší.
 - o přesně toto dělá metoda Gradient Descent

• princip: Metoda zjišťuje gradient nákladové funkce podle parametrů θ a upravuje jejich hodnoty ve směru klesajícího gradientu. Jakmile je gradient nulový, dosáhli jsme minima.

- postup: vektor parametrů
 ø se naplní náhodnými hodnotami a postupně ho po malých krocích upravujeme tak, abychom snížili hodnotu nákladové funkce, dokud nedosáhneme minima
- důležitý hyperparametr této metody: velikost jednoho kroku
 - označováno jako rychlost učení (learning rate)
 - pokud je hodnota příliš malá, může trvat mnoho iterací (a mnoho času) než metoda dosáhne optima
 - pokud je hodnota příliš velká, může být krok natolik velký, že "překročí údolí" a metoda bude divergovat

Zdroj: (Géron 2019)

Nepravidelné tvary nákladové funkce

- ne všechny nákladové funkce mají konvexní tvar (tvar mísy nebo údolí)
- mohou se v nich vyskytovat díry, hřebeny, roviny, obecně jakákoliv nepravidelnost
 - o díky tomu může být konvergence k minimu velmi obtížná

- dva nejčastější problémy
 - uvíznutí v lokálním minimu (které je horší než globální minimum)
 - o uvíznutí na rovině (trvalo by příliš dlouho rovinu překročit, takže algoritmus ukončí optimalizaci)

Gradient Descent u lineární regrese

- RMSE (resp. MSE) nákladová funkce je konvexní (spojnice dvou bodů na křivce nikdy neprotne samotnou křivku)
 - o nejsou žádná lokální minima, pouze jedno globální minimum
 - o sklon této funkce se nikdy nemění náhle
- metoda Gradient Descent tak garantuje nalezení optimálního řešení v případě lin.reg.

- pro lineární regresi má nákladová funkce tvar mísy, nicméně záleží na tom, v
 jakých škálách se pohybují jednotlivé příznaky
 - o proto je nutné hodnoty příznaků normalizovat/standardizovat, abychom dosáhli dobrého řešení

- pokud jsou hodnoty škálované, jde Gradient Descent rovnou směrem optimálního řešení
- pokud škálované nejsou, může se metoda nejdříve vydat směrem, který má k optimálnímu řešení daleko
- trénování modelu tedy znamená hledání hodnot parametrů minimalizujících nákladovou funkci
 - o čím více parametrů model má, tím více dimenzí má prostor, který prohledáváme

- pro implementaci Gradient Descent potřebujeme znát gradienty nákladové funkce pro každý parametr modelu θ_i
 - \circ tedy jak moc se změní nákladová funkce při drobné změně parametru θ_i (= parciální derivace)
 - "Jaký je sklon svahu pod nohama, když se díváme na sever? Jaký je sklon svahu pod nohama, když se díváme na západ?"

Parciální derivace nákladové funkce MSE:

$$\frac{\partial}{\partial \theta_i} \text{MSE}(\mathbf{\theta}) = \frac{2}{m} \sum_{i=1}^{m} \left(\mathbf{\theta}^T \mathbf{x}^{(i)} - y^{(i)} \right) x_j^{(i)}$$

Vektor gradientu ∇_{θ} MSE(θ):

$$\nabla_{\boldsymbol{\theta}} \operatorname{MSE}(\boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial}{\partial \theta_0} \operatorname{MSE}(\boldsymbol{\theta}) \\ \frac{\partial}{\partial \theta_1} \operatorname{MSE}(\boldsymbol{\theta}) \\ \vdots \\ \frac{\partial}{\partial \theta_n} \operatorname{MSE}(\boldsymbol{\theta}) \end{pmatrix} = \frac{2}{m} \mathbf{X}^T (\mathbf{X} \boldsymbol{\theta} - \mathbf{y})$$

 vektor gradientu směřuje nahoru, my ale chceme hodnotu minimalizovat, proto nám stačí odečíst ∇_θMSE(θ) od θ

$$oldsymbol{ heta}^{(ext{next step})} = oldsymbol{ heta} - \eta
abla_{oldsymbol{ heta}} ext{MSE} ig(oldsymbol{ heta} ig)$$
 η (éta) představuje rychlost učení (learning rate)

Zdroj: (Géron 2019)

Batch Gradient Descent

- batch = v tomto významu celá dávka dat najednou (X), při každém kroku
- pokud máme velký dataset, bude tato metoda velmi pomalá
- výhodou ale je, že dokáže dobře pracovat s velkým množstvím příznaků (i stovky tisíc)

Stochastic Gradient Descent

- opačný extrém než Batch Gradient Descent v každém kroku se vybere právě jedna (náhodná) instance z datasetu
- algoritmus je tak pochopitelně mnohem rychlejší
- zároveň je možné ho použít i na obrovské datasety (v paměti stačí aby byla jedna instance)
- nevýhodou je, že vzhledem k prvku náhody se nákladová funkce mění velmi nepravidelně oběma směry a klesá pouze v průměru, nikoliv v každém kroku
- jakmile algoritmus skončí (po určitém počtu iterací), tak finální hodnoty parametrů jsou v průměru dobré, ale nikoliv optimální

Stochastic Gradient Descent

- pokud má nákladová funkce velmi nepravidelný tvar, může tento přístup naopak pomoci "vyskočit" z lokálního minima a směřovat ke globálnímu minimu
- aby se mohl algoritmus ustálit u optimální cílové hodnoty parametrů, je možné postupně snižovat rychlost učení
 - začne se vysokými hodnotami (rychlý postup vpřed, opuštění lokálních minim)
 - postupně se snižuje
 - o nakonec se algoritmus ustálí u globálního minima
- při trénování je třeba, aby dataset byl náhodně zamíchán
 - o pokud by byl seřazen podle labelů, tak by implementace SGD brala jednu instanci za druhou a nejdříve optimalizovala pro jednu třídu, pak pro druhou atd, což by nevedlo k úspěchu

Mini-batch Gradient Descent

- na rozdíl od Batch a Stochastic GD se v tomto případě v každém kroku bere mini-dávka trénovacích dat (náhodně vybraná), pro kterou se provádí optimalizace
- hlavní výhoda oproti SGD spočívá v tom, že lze dosáhnout vyšší rychlosti díky využití maticových operací (zejména pokud je k dispozici GPU)

 postup tohoto algoritmu je méně rozptýlený než v případě SGD, ale zase je menší šance na opuštění lokálního minima

Regularizace

- na příkladu lineární a polynomiální regrese (1. cvičení) jsme si ukazovali problém přeučení
 - (pokud má model velkou kapacitu, dokáže se naučit komplexní vztahy v trénovacích datech, ale ve validačních/testovacích datech tyto vztahy reálně nejsou)
- regularizace je jeden z hlavních způsobů, jak omezit problém přeučení
- pro lineární modely se využívají tyto způsoby regularizace:
 - Ridge regrese
 - Lasso regrese
 - Elastic Net
- jejich společným cílem je omezit váhy (parametry modelu), aby nedošlo k přeučení

Ridge regrese

- k nákladové funkci (MSE) je přidán regularizační výraz $\alpha \Sigma \theta^2$
 - tedy druhá mocnina jednotlivých vah (parametrů)
 - (L2-norma vektoru parametrů)
- díky tomu se model trénuje jednak na to, aby vystihl vstupní data, ale zároveň se snaží držet hodnoty parametrů nízké
 - hyperparametr α udává míru regularizace
- regularizační výraz se přidává jen při trénování, při validaci a testování se vynechává
 - nákladová funkce pro trénování může být jiná než pro testování (pro trénování potřebujeme funkci, která jde derivovat)
- nutné data škálovat před regularizací

Příklad Ridge regrese

- polynomická regrese
- degree=10
- různé hodnoty α

V Pythonu/sklearn:

```
>>> sgd_reg = SGDRegressor(penalty="12")
>>> sgd_reg.fit(X, y)
>>> sgd reg.predict([[1.5]])
```


Lasso regrese

- obdobně jako v případě Ridge regrese i Lasso regrese přidává k nákladové funkci regularizační výraz, ale v tomto případě vycházející z L1-normy vektoru parametrů: αΣΙΘΙ
- důležitá vlastnost Lasso regrese: méně důležité příznaky jsou zcela vynechány (mají nulové váhy)
 - Lasso regrese tedy vede k selekci nejdůležitějších příznaků

Příklad Lasso regrese

- polynomická regrese
- degree=10
- různé hodnoty α

V Pythonu/sklearn:

```
>>> sgd_reg = SGDRegressor(penalty="11")
>>> sgd_reg.fit(X, y)
>>> sgd reg.predict([[1.5]])
```


Elastic Net

- kombinace Ridge a Lasso regularizace
- regularizační výraz je tedy mix obou regularizačních výrazů v nastavitelném poměru

kdy co použít:

- o určitá míra regularizace je doporučována vždy s tím, že se dá začít s Ridge regularizací
- pokud předpokládáme, že jen některé příznaky jsou důležité, pak Lasso neno Elastic Net je vhodnější volba, protože nám dokážou vybrat jen užitečné příznaky
- Elastic Net je vhodnější než Lasso, pokud je počet příznaků větší než počet příkladů (pak se Lasso může chovat chybně), nebo pokud jsou některé příznaky silně korelované

Early Stopping

- metoda včasného zastavení je zcela jiný přístup k regularizaci
 - o použitelná jen u iterativních algoritmů (což GD je)
- po každé epoše (epocha = balíček několika iterací) se kromě testovací chyby spočítá i validační chyba
- testovací chyba s každou další iterací klesá, zatímco validační chyba do určité doby v průměru klesá a pak začne zase růst jako důsledek přeučení
- metoda early stopping dělá to, že jakmile dosáhne validační chyba minima, trénování se ukončí
- velmi účinná a přitom jednoduchá metoda regularizace
- prakticky si ji vyzkoušíme u trénování neuronových sítí

Logistická regrese

- ačkoliv je v názvu slovo regrese, používá se tento přístup pro klasifikaci
- používá se k odhadu pravděpodobnosti, že instance patří k určité třídě
 - o jaká je pravděpodobnost, že tato zpráva je spam?
 - o pokud je pravděpodobnost vyšší než 50 %, tak se instance přiřadí k cílové třídě a naopak
 - binární klasifikace
- stejně jako lineární regrese i logistická regrese počítá váženou sumu příznaků (plus konstanta), ale výstup je navíc zpracován tzv. logistickou funkcí
 - sigmoidní funkce (tvar S), která vrací hodnotu 0 až 1

$$\sigma(t) = \frac{1}{1 + \exp(-t)}$$

Logistická funkce

Pokud t je větší než 0, tak $\sigma(t) > 0,5$ a model predikuje příslušnost k pozitivní třídě. Výsledkem výrazu log(p/1-p) je hodnota t pro dané p (tj. inverzní funkce k logistické funkci)

Trénování logistické regrese

- potřebujeme nákladovou funkci, která zajistí vektor parametrů θ tak, že výsledné predikované pravděpodobnosti budou vysoké pro pozitivní instance (y=1) a nízké pro negativní instance (y=0)
- nákladová funkce pro jednu instanci:

$$c(\mathbf{\theta}) = \begin{cases} -\log(\hat{p}) & \text{if } y = 1 \\ -\log(1 - \hat{p}) & \text{if } y = 0 \end{cases}$$

Graf funkce -log(p̂):

Trénování logistické regrese

nákladová funkce pro celý trénovací set:

$$J(\mathbf{\theta}) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} log(\hat{p}^{(i)}) + (1 - y^{(i)}) log(1 - \hat{p}^{(i)}) \right]$$

- vlastnosti:
 - o není známa žádná uzavřená forma řešení, které by určilo optimální hodnoty parametrů
 - o nákladová funkce je ovšem konvexní, proto metoda Gradient Descent dokáže s jistotou najít optimální řešení (globální minimum nákladové funkce)

Ukázka logistické regrese

- dataset Iris
 - o rostliny rodu kosatec
 - tři různé třídy (druhy kosatců)

obsahuje data o délce a šířce okvětních a kališních lístků 150 rostlin a jejich příslušnost ke

konkrétnímu druhu

viz Jupyter

Zdroj: (Géron 2019)

Ukázka logistické regrese

Zdroj: (Géron 2019)

Ukázka logistické regrese - nyní dva příznaky

Softmax regrese

- logistická regrese může být zobecněna do podoby, která přímo umožňuje klasifikaci do více tříd
 - o není tedy třeba trénovat více binárních klasifikátorů
- model softmax regrese nejdříve spočítá skóre (vážený součet příznaků, stejně jako v případě lineární regrese nebo logistické regrese) pro každou třídu, na toto skóre následně aplikuje softmax funkci
 - každá třída má tedy vlastní vektor parametrů
- softmax funkce
 - pro každou třídu spočte hodnotu exponenciální funkce jejího skóre a znormalizuje ji (tj. vydělí součtem exp. hodnot všech tříd)
 - součet pravděpodobností jednotlivých tříd je tak pochopitelně roven 1
 - o používá se často také jako poslední vrstva v neuronových sítích

Softmax regrese - trénování

- potřebujeme opět vhodnou nákladovou funkci
- používá se tzv. křížová entropie (cross entropy)
 - o říká, jak dobře odhadované pravděpodobnosti pro jednotlivé třídy odpovídají skutečným třídám
 - y_k je cílová pravděpodobnost příslušnosti k dané třídě (tedy typicky jedna hodnota 1 a ostatní 0)
 a -log(p) jsme si už ukazovali

$$J(\mathbf{\Theta}) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log(\hat{p}_k^{(i)})$$

ukázka softmax regrese viz Jupyter

Zdroje

- Coelho, L. P.; Richert, W. (2013) Building machine learning systems with Python. Birmingham: Packt Publishing. ISBN 978-1-78216-140-0.
- Géron, A. (2019) Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition. O'Reilly Media, Inc. ISBN 9781492032649.
- Chollet, F. (2019) Deep Learning v jazyku Python. Knihovny Keras, TensorFlow. Grada Publishing, a.s. ISBN 978-80-247-3100-1.
- Segaran, T. (2007) Programming collective intelligence: building smart web 2.0 applications. Beijing: O'Reilly Media. ISBN 0-596-52932-5.