Rotation Motion Equations Review:

A: Angular Velocity:

1 Revolution = 2π radians.

$$\omega = \frac{\Delta \theta}{\Delta t}$$

 $\omega = \text{Rotational Velocity}$

 $\Delta\theta$ = Angular Displacement

- 1. An object makes half a revolution in a time of 50 seconds. What is its angular velocity?
- 2. An object makes 4 revolutions in a time of 3 minutes. What is its angular velocity?

B: Angular Acceleration:

$$\alpha = \frac{\Delta \omega}{\Delta t} = \frac{\omega_f - \omega_i}{\Delta t}$$

 $\alpha = \text{Angular Acceleration}$

- 3. A wheel is not spinning at all. After a time fo 50 seconds, it can complete 2 revolutions in 3 seconds.
- a. What is its initial angular velocity?
- b. What is its final angular velocity?
- c. What is its angular acceleration?

4. A wheel is able to spin 5 revolutions in 20 seconds.After a time of 3 minutes,It can complete 6 revolutions in 20 seconds.
a. What is its initial angular velocity?
b. What is its final angular velocity?
c. What is its angular acceleration?
C: Rotational Inertia
$I = mr^2$
I= rotational inertia of a point mass $m=$ mass
r = moment arm (the distance from the point to the axis of rotation)
5. A 55 kg person on a spinning amusement park ride is located 8 meters from the axis of rotation. What is their rotational inertia?
6. A 65 kg big dog is on a spinning amusement part ride and is located 6 meters from the axis of rotation. What is its rotational inertia?

•
$\Sigma \tau = I\alpha$
$\Sigma au =$ net torque
I= rotational inertia
$lpha = ext{angular acceleration}$
7. An object with a rotational inertia of 80 kg m^2 accelerates at a rate of 4 radians/sec^2. What is the net torque acting on that object?

D: Torque

8. An object with a rotational inertia of 120 kg m 2 accelerates at a rate of 2 radians/sec 2 . What is the net torque acting on that object?