CLASSIFICATION OF FORD GO BIKE TRAFFIC IN SAN FRANCISCO

MOTIVATION

Bay Area Bike share is rapidly growing with over 300 stations and 3600 bikes

Problem: Imbalanced Traffic

Solution:
Build model to predict
cautionary levels of traffic
using classification
Identify bottlenecks and plan
for future rebalancing

DATA COLLECTION

Ford GoBike

Over 500,000 trips collected for 2017. Dock capacity data collected using Ford Go station information API and station region API

Weather data collected using python-forecast.io wrapper for Dark Sky API using lat and long coordinates for San Francisco

METHODOLOGY

DATA CLEANING AND FEATURE ENGINEERING

Created Target Label:Flux
0: Normal Traffic
1: Cautionary
inflow/Surplus>0.15
capacity
2: Cautionary
outflow/Shortage

BALANCE CLASSES

Highly Imbalanced data: Applied SMOTE ENN to balance classes (94% majority class)

BEST MODELS

Gradient Boosting Random Forest

HEATMAP

2017 Ford Go Bike Stations Traffic by Hour

RESULTS

FINAL MODEL:RANDOM FOREST, STRATIFIED 3 FOLD CV, RANDOMIZED SEARCH

CLASS	PRECISIO N	RECALL	F1
Normal	0.96	0.90	0.93
Cautionary Surplus	0.13	0.38	0.19
Cautionary Shortage	0.23	0.29	0.26

ROC CURVE

Minimize FP for Class 0: Normal traffic Maximize Recall for all classes, Minimize FN on Class 1 and 2

FUTURE WORK

- Gather realtime-data for bike availability to calculate flux
- Use Poisson regression to predict bike counts
- Further tune hyperparameters for random forest, gradient boosting model
- Use only Features with high importance and add more relevant features
- Build a flask app to classify hourly bike traffic for every station
- Try other models like adaptive gradient boosting, Xgboost

THANK YOU!

APPENDIX

Variable Importance

PARAMS:min_samples_I eaf=9,n_estimators=150, max_depth=5

GRADIENT BOOSTING

		precision	recall	f1-score
	0.0	0.97	0.84	0.90
	1.0	0.11	0.36	0.17
	2.0	0.15	0.35	0.21
micro	avg	0.81	0.81	0.81
macro	avg	0.41	0.52	0.42