$Miniexam \ 5 \ (8 \ Points \ Total)$

MATH 141, SUMMER 2016

NAME:

Problem 1 Express $f(x) = \frac{x}{x+3}$ as a power series.

(a)
$$\frac{x}{3} - \frac{x^2}{9} + \frac{x^3}{27} - \frac{x^4}{81} \cdots$$

(b)
$$-x + \frac{x^2}{3} - \frac{x^3}{9} + \frac{x^4}{27} \cdots$$

(c)
$$1 - \frac{x}{3} + \frac{x^2}{9} - \frac{x^3}{27} \cdots$$

(d)
$$-3x + x^2 - \frac{x^3}{3} + \frac{x^4}{9} \cdots$$

(e)
$$3x - x^2 + \frac{x^3}{3} - \frac{x^4}{9} \cdots$$

Problem 2 Find the Taylor series of $f(x) = e^x$ centered at a = 3.

(a)
$$\sum_{n=0}^{\infty} \frac{e^n (x-3)^n}{n!}$$

(b)
$$\sum_{n=0}^{\infty} \frac{e^3(x-3)^n}{n!}$$

(c)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

(d)
$$\sum_{n=0}^{\infty} \frac{(x-3)^n}{n!}$$

(e)
$$\sum_{n=0}^{\infty} \frac{ex^n}{n!}$$

Problem 3 Find the interval of convergence for the power series $\sum_{n=0}^{\infty} \frac{(x-3)^n}{n+1}$

- (a) [2,4)
- (b) (2,4]
- (c) (-1,1]
- (d) [-1,1)
- (e) [-3,3)

Problem 4 Evaluate the indefinite integral $\int \frac{t}{1-t^2} dt$ as a power series.

- (a) $\sum_{n=0}^{\infty} \frac{t^{2n+1}}{2n+1} + C$
- (b) $\sum_{n=1}^{\infty} t^{2n} + C$
- (c) $\sum_{n=0}^{\infty} \frac{t^{2n+2}}{2n+2} + C$
- (d) $\sum_{n=1}^{\infty} \frac{t^n}{n+1} + C$
- $(e) \sum_{n=0}^{\infty} \frac{t^{2n}}{2n} + C$

Feedback:

1. Any comments (on lectures, homework, quizzes, course, me, etc.)?