Problem Session 1

Probability and Martingales, 1MS045

16 September 2024

Note: If not specified otherwise, all random variables are finite and real-valued, with the usual σ -algebra of Borel sets.

- 1. Show that the two operations Δ (symmetric difference), defined by $A\Delta B = (A \setminus B) \cup (B \setminus A)$, and \cap (intersection) satisfy the following properties:
 - (a) Δ and \cap are both commutative and associative.
 - (b) They satisfy the distributive law: $(A\Delta B) \cap C = (A \cap C)\Delta(B \cap C)$.
- 2. Which of the following statements are true for all possible sequences A_n, B_n of sets?
 - (a) $\limsup_{n\to\infty} (A_n \cap B_n) = (\limsup_{n\to\infty} A_n) \cap (\limsup_{n\to\infty} B_n)$
 - (b) $\limsup_{n\to\infty} (A_n \cup B_n) = (\limsup_{n\to\infty} A_n) \cup (\limsup_{n\to\infty} B_n)$
 - (c) $\liminf_{n\to\infty} (A_n \cap B_n) = (\liminf_{n\to\infty} A_n) \cap (\liminf_{n\to\infty} B_n)$
 - (d) $\liminf_{n\to\infty} (A_n \cup B_n) = (\liminf_{n\to\infty} A_n) \cup (\liminf_{n\to\infty} B_n)$
- 3. Prove: if $f: S \to \mathbb{R}$ is a measurable function on some measure space S with σ -algebra Σ , then so is |f|. Show by means of a counterexample that the converse is not necessarily true.
- 4. Let $\{A_n, n \geq 1\}$ be a sequence of events in a probability space.
 - (a) Suppose that $\lim_{n\to\infty} P(A_n) = 1$. Prove that there exists an increasing subsequence $\{n_k, k \geq 1\}$ such that

$$P\left(\bigcap_{k\geq 1} A_{n_k}\right) > 0.$$

- (b) Give an example of a sequence of events (in a probability space of your choice) with $P(A_n) \ge \frac{1}{2}$ for all $n \ge 1$ for which there is no such subsequence.
- 5. Let A_1, A_2, \ldots, A_n be events in a probability space. Prove the following inequalities:
 - (a) $P(\bigcup_{k=1}^{n} A_k) \ge \sum_{k=1}^{n} P(A_k) \sum_{1 \le j < k \le n} P(A_j \cap A_k)$.
 - (b) $P(\bigcup_{k=1}^{n} A_k) \leq \sum_{k=1}^{n} P(A_k) \sum_{1 \leq j < k \leq n} P(A_j \cap A_k) + \sum_{1 \leq i < j < k \leq n} P(A_i \cap A_j \cap A_k).$
- 6. Let X be a random variable. Show: for every $\epsilon > 0$, there exists a bounded random variable X_{ϵ} (i.e., there exists a constant M such that $|X_{\epsilon}| \leq M$ holds almost surely) such that $P(X \neq X_{\epsilon}) < \epsilon$.

1

7. Suppose that X is an integer-valued random variable, and let m be a positive integer. Prove that

$$\sum_{n = -\infty}^{\infty} P(n < X \le n + m) = m.$$

- 8. Prove: if $\{X_n, n \geq 1\}$ is a sequence of independent random variables, then the following two statements are equivalent:
 - $P\left(\sup_{n>1} X_n < \infty\right) = 1$,
 - there exists an a > 0 such that $\sum_{n=1}^{\infty} P(X_n > a) < \infty$.
- 9. Let $\{A_n, n \geq 1\}$ be a sequence of independent events in a probability space, and suppose that $P(A_n) < 1$ for all n. Prove that the following two statements are equivalent:
 - $P(A_n \text{ occurs for at least one } n) = 1$,
 - $P(A_n \text{ occurs for infinitely many } n) = 1.$

Why is $P(A_n) = 1$ forbidden?

10. Let X_1, X_2, \ldots be independent random variables, where X_n follows a uniform distribution on the interval $\left[0, \frac{1}{n}\right]$ (equivalently, $X_n = \frac{Y_n}{n}$, where Y_n follows a uniform distribution on [0,1]). Prove that $X = \sup_n X_n$ has the distribution function

$$F(x) = \lfloor \frac{1}{x} \rfloor ! \cdot x^{\lfloor \frac{1}{x} \rfloor}, \quad 0 < x \le 1.$$

(For $x \le 0$, F(x) = 0, and for x > 1, F(x) = 1.) Here, $\lfloor a \rfloor$ is the greatest integer $\le a$.