

Guía Nº2 Cálculo II Problemas resueltos de *sucesiones* Profesor Patricio Cumsille

1. Considere (a_n) y (b_n) dos sucesiones de números reales definidas, a partir de a_0 y de b_0 , por las relaciones:

$$a_n = \frac{2a_{n-1} + b_{n-1}}{3}, \quad b_n = \frac{a_{n-1} + 2b_{n-1}}{3}, \quad a_0 \text{ y } b_0 \text{ dados, con } a_0 < b_0, \quad \forall n \in \mathbb{N}.$$

- a) Compruebe que $a_n < b_n$ para todo $n \in \mathbb{N}$.
- b) Compruebe que (a_n) es creciente y que (b_n) es decreciente.
- c) Concluya que ambas sucesiones son convergentes y que tienen el mismo límite.
- d) Hallar el límite común de (a_n) y de (b_n) .

Solución:

a) Probaremos que $b_n - a_n > 0$ para todo $n \in \mathbb{N}$, esto es que el signo de $b_n - a_n$ es constante (independiente de n) e igual al signo de $b_0 - a_0$ (el cual es positivo por hipótesis). Usando la definición de (a_n) y (b_n) tenemos que:

$$b_n - a_n = \frac{a_{n-1} + 2b_{n-1}}{3} - \frac{2a_{n-1} + b_{n-1}}{3} = \frac{b_{n-1} - a_{n-1}}{3}$$

Luego el signo de $b_n - a_n$ es igual que el signo de $b_{n-1} - a_{n-1}$ y así el signo de $b_n - a_n$ es constante e igual al signo de $b_0 - a_0$. Como $b_0 - a_0 > 0$ concluimos que $b_n - a_n > 0$ para todo $n \in \mathbb{N}$.

b) Usando la definición de (a_n) y (b_n) tenemos que, para cada $n \in \mathbb{N}$:

$$a_{n+1} - a_n = \frac{2a_n + b_n}{3} - a_n = \frac{b_n - a_n}{3} > 0 \Longrightarrow a_{n+1} > a_n$$
$$b_{n+1} - b_n = \frac{a_n + 2b_n}{3} - b_n = \frac{a_n - b_n}{3} < 0 \Longrightarrow b_{n+1} < b_n$$

Concluimos que (a_n) es creciente y que (b_n) es decreciente.

c) Verifiquemos que (a_n) es acotada superiormente. En efecto, como $a_n < b_n$ y (b_n) es decreciente, tenemos que:

1

$$a_n < b_n < b_{n-1} < b_{n-2} < \ldots < b_0$$

O sea que $a_n < b_0$ para todo $n \in \mathbb{N}$. Lo anterior significa que la sucesión (a_n) es acotada superiormente. Similarmente se verifica que (b_n) es acotada inferiormente. En efecto, como $a_n < b_n$ y (a_n) es creciente, tenemos que:

$$b_n > a_n > a_{n-1} > a_{n-2} > \ldots > a_0$$

O sea que $b_n > a_0$ para todo $n \in \mathbb{N}$. Lo anterior significa que la sucesión (b_n) es acotada inferiormente. Por el criterio de las sucesiones monótonas, concluimos que ambas sucesiones son convergentes. Por último, denotando por a y b al límite de (a_n) y (b_n) respectivamente, y tomando límite en la definición de (a_n) se tiene que:

$$a = \frac{2a+b}{3} \Rightarrow a = b$$

O sea que los límites de ambas sucesiones son iguales.

d) Las definiciones de (a_n) y (b_n) por sí solas no nos darán el valor del límite. Sin embargo, si sumamos las dos fórmulas de a_n y b_n obtenemos que:

$$a_n + b_n = a_{n-1} + b_{n-1}$$

Es decir que la suma de (a_n) y (b_n) es constante. Luego, como ambas sucesiones convergentenemos que:

$$a+b = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n = \lim_{n \to \infty} (a_n + b_n) = a_0 + b_0$$

Y como a = b entonces

$$a = b = \frac{a_0 + b_0}{2}$$

2. Dado $k \in \mathbb{N}$, estudie la convergencia de la sucesión $(n^kq^n)_{n\in\mathbb{N}}$, donde |q|<1.

Indicación: reducir al caso de la sucesión (nq^n) .

Solución: Sabemos que $nq^n \to 0$ cuando $n \to \infty$, si $q \in \mathbb{R}$ es un número fijo (independiente de n) satisfaciendo que |q| < 1 (la demostración de esto fue hecha en clases por el profesor). Observemos que (n^kq^n) se puede escribir en la forma:

$$n^k |q|^n = (n|q|^{n/k})^k = [n(q')^n]^k$$
, donde $q' := |q|^{1/k} = \sqrt[k]{|q|}$.

Luego, si |q|<1 tenemos que 0< q'<1 (q' es la raíz k-ésima de |q|). Entonces, usando la indicación obtenemos que:

$$\lim_{n \to \infty} n(q')^n = 0 \quad \text{si } |q| < 1$$

Como $k \in \mathbb{N}$ es un número fijo, lo anterior implica que:

$$\lim_{n \to \infty} \left[n(q')^n \right]^k = 0 \quad \text{si } |q| < 1$$

O sea que

$$\lim_{n \to \infty} n^k |q|^n = 0 \quad \text{si } |q| < 1$$

En particular se tiene que:

$$\lim_{n \to \infty} n^k q^n = 0 \quad \text{si } |q| < 1$$

3. Dado $k \in \mathbb{N}$, estudie la convergencia de la sucesión $(n^k q_n^n)_{n \in \mathbb{N}}$, donde $q_n \to q$ con |q| < 1. Indicación: usar el ítem anterior.

Solución: Como $q_n \to q$ cuando $n \to \infty$, tenemos que para todo $\varepsilon > 0$ existe al menos un $N \in \mathbb{N}$ tal que:

$$|q_n - q| < \varepsilon \quad \forall n > N$$

Por otro lado, usando la conocida desigualdad

$$||q_n| - |q|| \le |q_n - q|$$

obtenemos que

$$||q_n| - |q|| < \varepsilon \quad \forall n > N \iff -\varepsilon < |q_n| - |q| < \varepsilon \quad \forall n > N$$

O sea que:

$$|q| - \varepsilon < |q_n| < |q| + \varepsilon \quad \forall n > N.$$

Escogiendo $\varepsilon > 0$ de manera tal que $|q| + \varepsilon < 1$ (escojamos por ejemplo $\varepsilon = \frac{1-|q|}{2}$ el cual es positivo para |q| < 1), tenemos que debe existir al menos un $N \in \mathbb{N}$ tal que:

$$\frac{3|q|-1}{2} < |q_n| < \frac{|q|+1}{2} \quad \forall n > N$$

Elevando a n la desigualdad anterior tenemos que:

$$\left(\frac{3|q|-1}{2}\right)^n < |q_n|^n < \left(\frac{|q|+1}{2}\right)^n \quad \forall n > N$$

Multiplicando la desigualdad anterior por n^k obtenemos que:

$$n^k q_1^n < n^k |q_n|^n < n^k q_2^n \quad \forall n > N$$
 (1)

donde
$$q_1 := \frac{3|q|-1}{2}$$
 y $q_2 := \frac{|q|+1}{2}$.

Por otro lado, como q_1 y q_2 son números reales fijos, los cuales verifican que $|q_1| < 1$ y $|q_2| < 1$, entonces usando el ítem anterior tenemos que:

$$n^kq_1^n \to 0$$
 y $n^kq_2^n \to 0$ cuando $n \to \infty$

Por lo tanto, usando el teorema del Sandwich y la desigualdad (1) obtenemos que:

$$\lim_{n \to \infty} n^k |q_n|^n = 0$$

En particular se tiene que:

$$\lim_{n \to \infty} n^k q_n^n = 0$$

Observación: En los dos ítemes anteriores se tiene que si $|q| \ge 1$, entonces la sucesión dada en el enunciado de dichos ítemes resulta ser divergente. Se propone la prueba de esto como ejercicio.

4. Considere la sucesión (a_n) definida, a partir de a_0 y a_1 , por la recurrencia:

$$a_0 = 1, \ a_1 = 1, \quad a_{n+2} = a_{n+1} + a_n \quad \forall n \ge 0$$

Esta sucesión se denomina sucesión de Fibonacci.

a) Compruebe que se verifica:

$$a_n^2 = a_{n+1}a_{n-1} + (-1)^n \quad \forall n \ge 1$$
 (2)

Se define $b_n = \frac{a_{n+1}}{a_n}$ para todo $n \ge 0$.

b) Usando el ítem anterior compruebe que:

$$b_n^2 - b_n - 1 = \frac{(-1)^{n+1}}{a_n^2} \quad \forall n \ge 0$$
 (3)

c) Compruebe que

$$b_{n+1} = 1 + \frac{1}{b_n} \quad \forall n \ge 0 \tag{4}$$

- d) Usando los dos ítemes anteriores pruebe que $(b_{2n})_{n\geq 0}$ es una sucesión creciente y acotada superiormente. Concluya que (b_{2n}) es convergente.
- e) Procediendo como en el ítem anterior pruebe que $(b_{2n+1})_{n\geq 0}$ es una sucesión decreciente y acotada inferiormente. Concluya que (b_{2n+1}) es convergente.

- f) Usando (4) concluya que los límites de (b_{2n}) y de (b_{2n+1}) son iguales.
- g) Concluya que (b_n) es convergente y que su límite es igual a $\frac{1+\sqrt{5}}{2}$.

 Indicación: Utilice que (b_n) es convergente si y solamente si (b_{2n}) y (b_{2n+1}) son convergentes y tienen igual límite. En este caso, el límite de (b_n) es igual al límite común de las sucesiones (b_{2n}) y (b_{2n+1}) .

Solución: Los primeros elementos de la sucesión de Fibonacci son $a_0=1, a_1=1, a_2=2, a_3=3,$ $a_4=5, a_5=8, a_6=13, a_7=21, \ldots$

a) Para n=1 y n=2 la igualdad se verifica, pues $a_1^2=1=a_2a_0+(-1)^1=2\cdot 1-1=1$ y $a_2^2=2^2=a_3a_1+(-1)^2=3\cdot 1+1=4$. Comprobemos por inducción que (2) se verifica $\forall n\in\mathbb{N}$. Supongamos (2) cierta para n, probemos que entonces es cierta para n+1. Usando la definición de la sucesión de Fibonacci se tiene que:

$$a_{n+1}^2 = a_{n+1}a_{n+1} = a_{n+1}(a_n + a_{n-1}) = a_{n+1}a_n + a_{n+1}a_{n-1}$$

Por otro lado, usando (2) tenemos que $a_{n+1}a_{n-1}=a_n^2-(-1)^n$. Reemplazando esto último en la igualdad anterior y usando la definición de la sucesión de Fibonacci obtenemos que:

$$a_{n+1}^2 = a_{n+1}a_n + a_n^2 - (-1)^n = (a_{n+1} + a_n)a_n + (-1) \cdot (-1)^n = a_{n+2}a_n + (-1)^{n+1}$$

Esto prueba que

$$a_{n+1}^2 = a_{n+2}a_n + (-1)^{n+1} (5)$$

que es la igualdad (2) escrita para n + 1 en lugar de n.

b) Dividiendo por a_n^2 la desigualdad (2) para n+1 (ver (5)) tenemos que:

$$\frac{a_{n+1}^2}{a_n^2} = \frac{a_{n+2}a_n}{a_n^2} + \frac{(-1)^{n+1}}{a_n^2}$$

Usando la definición de (b_n) y de (a_n) esta última desigualdad se reescribe como:

$$b_n^2 = \frac{a_{n+1} + a_n}{a_n} + \frac{(-1)^{n+1}}{a_n^2} = b_n + 1 + \frac{(-1)^{n+1}}{a_n^2}$$

O sea que:

$$b_n^2 - b_n - 1 = \frac{(-1)^{n+1}}{a_n^2} \quad \forall n \ge 0$$

c) Usando las definiciones de (b_n) y de (a_n) tenemos que:

$$b_{n+1} = \frac{a_{n+2}}{a_{n+1}} = \frac{a_{n+1} + a_n}{a_{n+1}} = 1 + \frac{a_n}{a_{n+1}} = 1 + \frac{1}{\frac{a_{n+1}}{a_n}} = 1 + \frac{1}{b_n}$$

d) La sucesión $(b_{2n})_{n\geq 0}$ consiste de los términos pares de la sucesión (b_n) . Los primeros términos de dicha sucesión son:

$$b_0 = \frac{a_1}{a_0} = 1$$
; $b_2 = \frac{a_3}{a_2} = \frac{3}{2} = 1.5$; $b_4 = \frac{a_5}{a_4} = \frac{8}{5} = 1.6$; $b_6 = \frac{a_7}{a_6} = \frac{21}{13} \approx 1.615$

A simple vista se vé entonces que (b_{2n}) es una sucesión creciente. Probemos entonces que esto es así, es decir que $b_{2n} < b_{2n+2} \ \forall n \geq 0$. Aplicando la identidad (4) del ítem (c) de manera iterada (dos veces) tenemos que:

$$b_{2n+2} = 1 + \frac{1}{b_{2n+1}} = 1 + \frac{1}{1 + \frac{1}{b_{2n}}} = 1 + \frac{b_{2n}}{b_{2n} + 1}$$

Usando lo anterior, tenemos que $b_{2n+2}>b_{2n}$ si y solamente si:

$$1 + \frac{b_{2n}}{b_{2n} + 1} > b_{2n}$$

Usando que $b_{2n} > 0$ (esto es obvio a partir de la definición de (b_n) y de (a_n)) y despejando b_{2n} , la desigualdad anterior se reduce a:

$$b_{2n}^2 - b_{2n} - 1 < 0 (6)$$

Usando la igualdad (3) con n reemplazado por 2n tenemos que:

$$b_{2n}^2 - b_{2n} - 1 = \frac{(-1)^{2n+1}}{a_{2n}^2} = -\frac{1}{a_{2n}^2} < 0 \quad \forall n \ge 0$$

Esto demuestra (6) y por lo tanto la sucesión (b_{2n}) es creciente. Por otro lado, resolviendo la inecuación (6) tenemos que:

$$b_{2n} \in \left(\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right) \tag{7}$$

En efecto, la solución de la inecuación $x^2-x-1<0$ se obtiene resolviendo la ecuación $x^2-x-1=0$, la cual tiene por raíces $x_1:=\frac{1-\sqrt{5}}{2}$ y $x_2:=\frac{1+\sqrt{5}}{2}$, y notando que la cuadrática x^2-x-1 será negativa si $x\in (x_1,x_2)$. Así obtenemos que $b_{2n}\in (x_1,x_2)$ que corresponde exactamente a (7). Pero, como $b_{2n}>0$ y $x_1<0$, lo anterior se reduce a $0< b_{2n}< x_2$. O sea que la sucesión $(b_{2n})_{n\geq 0}$ es acotada superiormente. Como además es creciente, de acuerdo al criterio de las sucesiones monótonas, concluimos que (b_{2n}) es convergente.

e) Similarmente al ítem anterior, usando la identidad (4) del ítem (c) de manera iterada (dos veces) tenemos que $b_{2n+3} < b_{2n+1}$ si y solamente si:

$$b_{2n+3} = 1 + \frac{1}{b_{2n+2}} = 1 + \frac{1}{1 + \frac{1}{b_{2n+1}}} < b_{2n+1}$$

lo cual equivale a:

$$b_{2n+1}^2 - b_{2n+1} - 1 > 0 (8)$$

lo cual es cierto, ya que de (3) (con n reemplazado por 2n + 1), se tiene que:

$$b_{2n+1}^2 - b_{2n+1} - 1 = \frac{(-1)^{2n+2}}{a_{2n+1}^2} = \frac{1}{a_{2n+1}^2} > 0 \quad \forall n \ge 0$$

Luego $(b_{2n+1})_{n\geq 0}$ es una sucesión decreciente. Por otro lado, resolviendo la inecuación (8), se obtiene que:

$$b_{2n+1} \in (-\infty, x_1) \cup (x_2, +\infty),$$

donde x_1 y x_2 son las raíces de la ecuación $x^2-x-1=0$. Pero como $b_{2n+1}>0 \ \forall n\geq 0$, y dado que $x_1=\frac{1-\sqrt{5}}{2}<0$, entonces lo anterior se reduce a $b_{2n+1}>x_2$. Así $(b_{2n+1})_{n\geq 0}$ es una sucesión acotada inferiormente. Como además es decreciente, de acuerdo al criterio de las sucesiones monótonas, concluimos que (b_{2n+1}) es convergente.

f) Usando (4) tenemos que:

$$b_{2n+2} = 1 + \frac{1}{b_{2n+1}} \quad \forall n \ge 0$$

Como las sucesiones (b_{2n}) y (b_{2n+1}) son ambas convergentes podemos tomar límite cuando $n \to \infty$ en la igualdad anterior. Denotando por b_1 el límite de (b_{2n}) y por b_2 el límite de (b_{2n+1}) tenemos que:

$$b_1 = 1 + \frac{1}{b_2}$$

Aplicando el mismo argumento para la igualdad $b_{2n+1} = 1 + \frac{1}{b_{2n}}$ obtenemos que:

$$b_2 = 1 + \frac{1}{b_1}$$

De las dos últimas igualdades obtenemos que $b_1 = b_2$ (multiplicar la primera por b_2 , la segunda por b_1 e igualar b_1b_2 en ambas igualdades).

g) Usando la indicación y el ítem anterior obtenemos que la sucesión $(b_n)_{n\geq 0}$ es convergente y que su límite es igual al límite común de (b_{2n}) y (b_{2n+1}) . Calculemos este límite (denotado por b). Tomando límite cuando $n\to\infty$ en (4) obtenemos que:

$$b = 1 + \frac{1}{b}$$

Despejando b tenemos que $b^2-b-1=0$, es decir b es solución de la ecuación $x^2-x-1=0$. O sea $b=x_1$ ó $b=x_2$ donde

$$x_1 = \frac{1 - \sqrt{5}}{2}$$
 y $x_2 = \frac{1 + \sqrt{5}}{2}$

Ahora bien como (b_{2n}) es una sucesión de términos positivos, entonces su límite $b_1=b$ debe ser mayor o igual que cero. Como $x_1<0$, concluimos que $b=x_2=\frac{1+\sqrt{5}}{2}$.