## Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

| <b>~</b> | Congra               | atulations! You passed!                                                                                                                                                    | Next Item     |
|----------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|          |                      |                                                                                                                                                                            |               |
|          | <b>~</b>             | 1 / 1<br>points                                                                                                                                                            |               |
|          |                      | notation would you use to denote the 3rd layer's activates the 7th example from the 8th minibatch?                                                                         | ions when the |
|          | 0                    | $a^{[3]\{8\}(7)}$                                                                                                                                                          |               |
|          | Corr                 | ect                                                                                                                                                                        |               |
|          |                      | $a^{[8]\{7\}(3)}$                                                                                                                                                          |               |
|          |                      | $a^{[3]\{7\}(8)}$                                                                                                                                                          |               |
|          |                      | $a^{[8]\{3\}(7)}$                                                                                                                                                          |               |
|          | <b>~</b>             | 1 / 1<br>points                                                                                                                                                            |               |
|          | 2.<br>Which<br>with? | of these statements about mini-batch gradient descent                                                                                                                      | do you agree  |
|          |                      | You should implement mini-batch gradient descent wi<br>explicit for-loop over different mini-batches, so that th<br>processes all mini-batches at the same time (vectoriza | e algorithm   |

Training one epoch (one pass through the training set) using minibatch gradient descent is faster than training one epoch using

batch gradient descent.

One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient

### Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

Correct





1/1 points 4.

Suppose your learning algorithm's cost J, plotted as a function of the  $Optimization_{u}$  algorithm's, looks like this:

10/10 points (100%)

Quiz, 10 questions



Which of the following do you agree with?

| 0     | If you're using mini-batch gradient descent, this looks acceptable But if you're using batch gradient descent, something is wrong.     |  |  |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Corre | Correct                                                                                                                                |  |  |  |  |
|       |                                                                                                                                        |  |  |  |  |
|       | If you're using mini-batch gradient descent, something is wrong.<br>But if you're using batch gradient descent, this looks acceptable. |  |  |  |  |
|       | Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.                                        |  |  |  |  |
|       | Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.                                     |  |  |  |  |
|       |                                                                                                                                        |  |  |  |  |



1/1 points

5.

# Suppose the temperature in Casablanca over the first three days of January Optimization algorithms 10/10 points

10/10 points (100%)

Quiz, 10 questions

Jan 1st: 
$$heta_1=10^oC$$

Jan 2nd: 
$$heta_2 10^o C$$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with  $\beta=0.5$  to track the temperature:  $v_0=0$ ,  $v_t=\beta v_{t-1}+(1-\beta)\theta_t$ . If  $v_2$  is the value computed after day 2 without bias correction, and  $v_2^{corrected}$  is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=7.5$$
,  $v_2^{corrected}=7.5$ 

$$v_2=7.5$$
,  $v_2^{corrected}=10$ 

Correct

$$v_2=10$$
,  $v_2^{corrected}=10$ 

$$igcup v_2=10$$
,  $v_2^{corrected}=7.5$ 



1/1 points

6

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\bigcirc \quad \alpha = \frac{1}{\sqrt{t}} \, \alpha_0$$

$$igcap lpha = e^t lpha_0$$

Correct

$$igcap lpha = rac{1}{1+2*t}\,lpha_0$$

# Optimization algorithms

10/10 points (100%)

Quiz, 10 questions



1/1 points

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature:  $v_t = \beta v_{t-1} + (1-\beta)\theta_t$ . The red line below was computed using  $\beta = 0.9$ . What would happen to your red curve as you vary  $\beta$ ? (Check the two that apply)



Decreasing  $\beta$  will shift the red line slightly to the right.

**Un-selected is correct** 

Increasing eta will shift the red line slightly to the right.

### Correct

True, remember that the red line corresponds to  $\beta=0.9$ . In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

 $Optimization algorithms {\beta } \mbox{ will create more oscillation within the red line.}$ 

10/10 points (100%)

Quiz, 10 questions

#### Correct

True, remember that the red line corresponds to  $\beta=0.9$ . In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.



Increasing  $\beta$  will create more oscillations within the red line.

**Un-selected** is correct



1/1 points

8.

Consider this figure:



These plots were generated with gradient descent; with gradient descent with momentum ( $\beta$  = 0.5) and gradient descent with momentum ( $\beta$  = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent with momentum (small  $\beta$ ), (2) is gradient descent with momentum (small  $\beta$ ), (3) is gradient descent
- (1) is gradient descent. (2) is gradient descent with momentum (large  $\beta$ ) . (3) is gradient descent with momentum (small  $\beta$ )
- (1) is gradient descent. (2) is gradient descent with momentum (small  $\beta$ ). (3) is gradient descent with momentum (large  $\beta$ )

Correct

Optimization algorithm descent with momentum (small  $\beta$ ). (2) is gradient descent. (3) is gradient descent with momentum (large  $\beta$ )

10/10 points (100%)

Quiz, 10 questions



1/1 points

9

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function  $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$ . Which of the following techniques could help find parameter values that attain a small value for  $\mathcal{J}$ ? (Check all that apply)

| Corre | Try better random initialization for the weights |
|-------|--------------------------------------------------|
| Corre | Try using Adam                                   |
| Corre | Try tuning the learning rate $lpha$              |
| Corre | Try mini-batch gradient descent                  |
| Un-se | Try initializing all the weights to zero         |

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

10.

Which of the following statements about Adam is False?

- Adam combines the advantages of RMSProp and momentum
- We usually use "default" values for the hyperparameters  $eta_1,eta_2$  and arepsilon in Adam ( $eta_1=0.9$ ,  $eta_2=0.999$ ,  $arepsilon=10^{-8}$ )
- Adam should be used with batch gradient computations, not with mini-batches.

Correct





