Razonamiento en Ontologías: Por qué y Cómo.

Basado en material de Ian Horrocks Dra. Pilar Bulacio bulacio@cifasis-conicet.gov.ar

Bibliografía

- ▶ Comparison of Reasoners for large Ontologies in the OWL 2 EL Profile. Semantic Web – Interoperability, Usability, Applicability an IOS Press Journa. http://www.semantic-web-journal.net/content/comparison-reasoners-large-ontologies-owl-2-el-profile
- A Survey on Ontology Reasoners and Comparison. Int. Journal of Computer App. http://www.ijcaonline.org/archives/volume57/number17/9208-3748
- ▶ Benchmarking OWL Reasoners. Research Center for Information Technologies, Karlsruhe, Germany. http://ceur-ws.org/Vol-350/paper1.pdf
- DL Handbook, Cambridge University Press
 - http://books.cambridge.org/0521781760.htm
- FaCT system (open source)
 - http://www.cs.man.ac.uk/FaCT/
- Protégé
 - http://protege.stanford.edu/plugins/owl/
- W3C Web-Ontology (WebOnt) working group (OWL)
 - http://www.w3.org/2001/sw/WebOnt/

Repaso

Orígenes: Lógicas descriptivas (DL)

- Son una familia de formalismos basados en lógica de primer órden para la Representación de Conocimiento.
 - Describen al dominio en función de conceptos (classes), roles (relationships) e individuos.
 - Describen a la **semántica** que establece equivalencias entre fórmulas lógicas de descripción y expresiones lógicas de predicados.

DL Basics

- Concepts (formulae)
 - **E.g.**, Person, Doctor, HappyParent, (Doctor ⊔ Lawyer)
- Roles (modalities)
 - **E.g.**, hasChild, loves
- Individuals (nominals)
 - **E.g.**, John, Mary, Italy
- Operators (para formar conceptos y roles):
 - Computables y si es posible, de baja complejidad

DL: Ej. de **Constructores** de conceptos y roles

- Restricciones numéricas de cardinalidad sobre roles, e.g., ≥3 hasChild, ≤1 hasMother
- Nominales (conceptos singleton), e.g., {ltaly}
- Dominios concretos (tipos de datos), e.g., hasAge.(≥ 21)
- Roles Inversos, e.g., hasChild- (hasParent)
- Roles Transitivos, e.g., hasChild* (descendant)
- Composición de roles, e.g., hasParent o hasBrother (uncle)

The DL Family (1)

- ▶ Smallest propositionally closed DL is ALC (Attributive Concept Language with Complements)
 - Concepts constructed using booleans
 □, □, ¬
 plus restricted quantifiers
 ∃, ∀
 - Only atomic roles

E.g., Person all of whose children are either Doctors **or** have a child who is a Doctor:

Person □ ∀hasChild.(Doctor ⊔ ∃hasChild.Doctor)
Person ∧ [hasChild](Doctor v ∪hasChild⊎Doctor)

Base de Conocimiento (KB) en LD

F. Baader, W. Nutt

Fig. 2.1. Architecture of a knowledge representation system based on Description Logics.

- •TBox (caja terminológica) contiene sentencias describiendo conceptos generales (i.e., relaciones entre conceptos).
- ABox (caja de aserciones) contiene sentencias "ground" indicando a donde pertenecen los individuos en la jerarquía (i.e., relaciones entre individuos y conceptos). Por ejemplo, las frases:
- •(1) Cada empleado es una persona (pertenece a la TBox),
- •(2) Bob es un empleado (pertenece a la ABox)

Razonamiento: Por qué lo necesitamos?

Philosophical Reasons

- Applications such as the Semantic Web aim at "machine understanding"
- Understanding is closely related to reasoning
 - Recognising semantic similarity in spite of syntactic differences
 - Recognising implicit consequences given explicitly stated facts

Practical Reasons

- Given key role of ontologies in many applications, it is essential to provide tools and services to help users:
 - Design and maintain high quality ontologies, e.g.:
 - Meaningful all named classes can have instances
 - Correct captured intuitions of domain experts
 - Minimally redundant no unintended synonyms
 - ▶ Richly axiomatised (sufficiently) detailed descriptions
 - Answer queries over ontology classes and instances, e.g.:
 - Find more general/specific classes
 - Retrieve individuals/tuples matching a given query
 - Integrate and align multiple ontologies

Why Decidable Reasoning?

- OWL constructors/axioms have been restricted so reasoning is decidable
- Consistent with Semantic Web's layered architecture
 - XML provides syntax transport layer
 - RDF(S) provides basic relational language and simple ontological primitives
 - OWL provides powerful but still decidable ontology language
 - **...**
- W3C requirement for "implementation experience"
 - "Practical" algorithms for sound and complete reasoning

Why Sound & Complete Reasoning?

- Important for ontology design
 - Ontologists need to have complete confidence in reasoner
 - Otherwise they will cease to trust results
 - Doubting unexpected results makes reasoner useless
- Important for ontology deployment
 - Many realistic web applications will be agent ↔ agent
 - No human intervention to spot glitches in reasoning
- • •

Protégé: Pizza

Ontology Reasoning: How do we do it?

Los razonadores DL brindan los siguientes servicios de inferencia

- Validación de la consistencia de una ontología: el razonador puede comprobar si hay hechos contradictorios
- Validación del cumplimiento de los conceptos de la ontología: el razonador determina si es posible que una clase tenga instancias. En el caso de que un concepto no sea satisfecho la ontología será inconsistente.
- Clasificación de la ontología: el razonador computa a partir de los axiomas declarados en el TBox, las relaciones de subclase entre todos los conceptos declarados explícitamente a fin de construir la jerarquía de clases.
- ▶ **Resolución de consultas**: a partir de la jerarquía de clases se pueden formular consultas como conocer todas las subclases de un concepto, inferir nuevas subclases de un concepto, las superclases directas, etc.
- Precisiones sobre los conceptos de la jerarquía: el razonador puede inferir cuáles son las clases a las que directamente pertenece y mediante la jerarquía inferida obtener todas las clases a las cuales indirectamente pertenece una clase o individuo dentro de la ontología.

Usando DL: Estándar DIG, DL Implementation Group

- Smallest propositionally DL (conceptos booleanos + restricciones de existencia) es ALC Attributive Concept Language with Complements
 - \rightarrow ALCR+ (con roles transitivos) ALCH (con roles de inclusión) ALCHR+ es SH conocido como SHOIO.
- \blacktriangleright OWL DL based on \mathcal{SHIQ} Description Logic
 - OWL extends SHIQ with datatypes and nominals $(SHOIN(D_n))$
 - In fact it is equivalent to $\mathcal{SHOIN}(D_n)$ DL
- OWL DL Benefits from many years of DL research
 - Well defined semantics
 - Formal properties well understood (complexity, decidability)
 - Known reasoning algorithms
 - Implemented systems (highly optimised)
- In fact there are three "species" of OWL (!)
 - OWL full is union of OWL syntax and RDF
 - **OWL DL** restricted to FOL fragment (pprox DAML+OIL)
 - OWL Lite is "simpler" subset of OWL DL

Recordemos: OWL Class Constructors

Constructor	DL Syntax	Example	FOL Syntax
intersectionOf	$C_1 \sqcap \ldots \sqcap C_n$	Human □ Male	$C_1(x) \wedge \ldots \wedge C_n(x)$
unionOf	$C_1 \sqcup \ldots \sqcup C_n$	Doctor ⊔ Lawyer	$C_1(x) \vee \ldots \vee C_n(x)$
complementOf	$\neg C$	¬Male	$\neg C(x)$
oneOf	$ \{x_1\} \sqcup \ldots \sqcup \{x_n\} $	{john} ⊔ {mary}	$x = x_1 \lor \ldots \lor x = x_n$
allValuesFrom	$\forall P.C$	∀hasChild.Doctor	$\forall y. P(x,y) \rightarrow C(y)$
someValuesFrom	$\exists P.C$	∃hasChild.Lawyer	$\exists y. P(x,y) \land C(y)$
maxCardinality	$\leqslant nP$	≤1hasChild	$\exists^{\leqslant n} y. P(x,y)$
minCardinality	$\geqslant nP$	≥2hasChild	$\mid \exists^{\geqslant n} y. P(x,y)$

- \blacktriangleright XMLS datatypes as well as classes in $\forall P.C$ and $\exists P.C$
 - Restricted form of DL concrete domains

Recordemos: RDFS Syntax

E.g., Person $\sqcap \forall$ has Child. (Doctor $\sqcup \exists$ has Child. Doctor):

```
<owl:Class>
 <owl:intersectionOf rdf:parseType=" collection">
   <owl:Class rdf:about="#Person"/>
   <owl:Restriction>
     <owl:onProperty rdf:resource="#hasChild"/>
     <owl:toClass>
       <owl:Restriction>
           <owl:onProperty rdf:resource="#hasChild"/>
           <owl:hasClass rdf:resource="#Doctor"/>
         </owl:Restriction>
       </owl:unionOf>
     </owl:toClass>
   </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>
```


Recordemos: OWL Axioms

Axiom	DL Syntax	Example
subClassOf	$C_1 \sqsubseteq C_2$	Human <u></u> Animal ⊓ Biped
equivalentClass	$C_1 \equiv C_2$	Man ≡ Human □ Male
disjointWith	$C_1 \sqsubseteq \neg C_2$	Male ⊑ ¬Female
sameIndividualAs		${President_Bush} \equiv {G_W_Bush}$
differentFrom	$ \{x_1\} \sqsubseteq \neg \{x_2\}$	${john} \sqsubseteq \neg{peter}$
subPropertyOf	$P_1 \sqsubseteq P_2$	hasDaughter ⊑ hasChild
equivalentProperty	$P_1 \equiv P_2$	cost ≡ price
inverseOf	$P_1 \equiv P_2^-$	hasChild ≡ hasParent ⁻
transitiveProperty	$P^+ \sqsubseteq P$	ancestor ⁺ ⊑ ancestor
functionalProperty	$\top \sqsubseteq \leqslant 1P$	$\top \sqsubseteq \leqslant 1$ hasMother
inverseFunctionalProperty	$\top \sqsubseteq \leqslant 1P^-$	⊤ <u></u> ≤1hasSSN ⁻

- ▶ Axioms (mostly) reducible to inclusion (□)
 - $\qquad \qquad C \equiv D \ \ \text{iff} \ \ \text{both} \ C \sqsubseteq D \ \text{and} \ D \sqsubseteq C$
- Obvious FOL (Lógica de Primer Orden) equivalences
 - $\textbf{E.g., } C \equiv D \ \Leftrightarrow \ \forall x.C(x) \leftrightarrow D(x) \text{,} \ C \sqsubseteq D \ \Leftrightarrow \ \forall x.C(x) \rightarrow D(x)$

Basic Inference Tasks

- Kw is correct (captures intuitions)
 - ▶ Does C subsume D w.r.t. ontology \mathcal{O} ? ($\mathbb{C}^{\mathcal{I}} \subseteq \mathbb{D}^{\mathcal{I}}$ in every model \mathcal{I} of \mathcal{O})
- Kw is minimally redundant (no unintended synonyms)
 - Is C equivalent to D w.r.t. \mathcal{O} ? ($C^{\mathcal{I}} = D^{\mathcal{I}}$ in every model \mathcal{I} of \mathcal{O})
- Kw is meaningful (classes can have instances)
 - ▶ Is C is satisfiable w.r.t. \mathcal{O} ? ($\mathbb{C}^{\mathcal{I}} \neq \emptyset$ in some model \mathcal{I} of \mathcal{O})
- Querying Kw
 - Is x an instance of C w.r.t. \mathcal{O} ? ($x^{\mathcal{I}} \in C^{\mathcal{I}}$ in every model \mathcal{I} of \mathcal{O})
 - ▶ Is $\langle x,y \rangle$ an instance of R w.r.t. \mathcal{O} ? $((x^{\mathcal{I}},y^{\mathcal{I}}) \in R^{\mathcal{I}}$ in every model \mathcal{I} of \mathcal{O})
- Above problems can be solved using highly optimised DL reasoners

DL Reasoning: Basics

- Tableau algorithms used to test satisfiability (consistency)
- Decompose C syntactically
 - Infer constraints on elements of model
- ▶ Tableau rules correspond to constructors in logic (\sqcap , \sqcup etc)
- Stop when no more rules applicable or clash occurs
 - Clash is an obvious contradiction, e.g., A(x), $\neg A(x)$
- Cycle check (blocking) may be needed for termination
- C satisfiable iff rules can be applied such that a fully expanded clash free tree is constructed
- Un razonador tableaux posee sólo la funcionalidad de verificar la satisfactibilidad de un ABox con respecto a un TBox. Todas las otras tareas de razonamiento pueden ser reducidas a pruebas de consistencia con la KB mediante la transformación apropiada.

DL Reasoning: Advanced Techniques

- Satisfiability w.r.t. an Ontology O
 - For each axiom $C \sqsubseteq D \in \mathcal{O}$, add $\neg C \sqcup D$ to every node label
- More expressive DLs
 - Basic technique can be extended to deal with
 - Role inclusion axioms (role hierarchy)
 - Number restrictions
 - Inverse roles
 - Concrete domains/datatypes
 - Aboxes
 - etc.

Comparison of Reasoners for large Ontologies in the OWL 2 EL Profile

Reasoning Characteristics

_	CB	CHL.	FaCT++	HermiT	Pellet	RP	SR	TrOWL (REL)
Methodology	consequence- based	completion rules	tableau- base d	hypertableau	tableau- based	tableau- based	completion rules	approximation (completion rules)
Soundness	+	+	+	+	+	+	+	+ (+)
Completeness	+	+	+	+	+	+	+	- (+)
Expressivity	Hom SHIF	EL*	SROIQ(V)	SROIQ(V)	SROIQ(D)	SHIQ(D-)	E£ ⁺	third-party reasoner (approximating SROIQ; subset of \mathcal{EL}^{++})
Incremental Classification (addition/removal)	4-	4-	4-	4-	+/+	4-	+/-	4-
Rule Support	-	-	-	+ (SW RL)	+ (SWRL)	+ (SWRL, nRQL)	-	-
Justifications	-	+	-	-	+	+	-	-
ABox Reasoning	-	+	+	+	+ (SPARQL)	+ (SPARQL, nRQL)	-	+ (SPA RQL)

DL Query:

✓ Show Inferences

Reasoner active

Ejemplos: DL Queries

- hasTopping some MozzarellaTopping
- hasTopping some PeperoniSausageTopping
- hasTopping some TomatoTopping

SPARQL

SPARQL

Form of the query atom	Condition on interpretation
Type(a, C)	$\sigma(a) \in C^{\mathcal{I}}$
Property Value (a, p, v)	$\langle \sigma(a), \sigma(v) \rangle \in p^{T}$
SameAs(a, b)	$\sigma(a) = \sigma(b)$
DifferentFrom (a, b)	$\sigma(a) \neq \sigma(b)$
SubClassOf(C_1, C_2)	$C_1^I \subseteq C_2^I$
EquivalentClass (C_1, C_2)	
DisjointWith (C_1, C_2)	$C_1^T \cap C_2^T = \emptyset$
ComplementOf (C_1, C_2)	$C_1^I = \Delta^I \setminus C_2^I$
SubPropertyOf (p, q)	$p^{\mathcal{I}} \subseteq q^{\mathcal{I}}$
EquivalentProperty (p, q)	$p^{\mathcal{I}} = q^{\mathcal{I}}$
Functional(p)	$\langle x, y \rangle \in p^T$ and $\langle x, z \rangle \in p^T$ implies $y = z$
InverseFunctional (p)	$\langle y, x \rangle \in p^{\mathcal{I}}$ and $\langle z, x \rangle \in p^{\mathcal{I}}$ implies $y = z$
Transitive (p)	$\langle x,y \rangle \in p^{\mathcal{I}}$ and $\langle y,z \rangle \in p^{\mathcal{I}}$ implies $\langle x,z \rangle \in p^{\mathcal{I}}$
Symmetric(p)	$\langle x, y \rangle \in p^T$ implies $\langle y, x \rangle \in p^T$
Annotation (s, p_a, o)	$\langle s, o \rangle \in p_a^{\mathcal{I}}$

Table 2. Satisfaction of a SPARQL-DL query atom w.r.t. an interpretation

```
?C rdfs:subClassOf _:x .
_:x rdf:type owl:Restriction .
_:x owl:onProperty ex:q .
_:x ?p ?C .
```

SPARQL: Ejemplo:

Trabajando sobre el proyecto en formato OWL, formamos las consultas en SPARQL. Las mismas se corresponden a escenarios específico que presentan los problemas anteriores.

Buscar las Personas que hayan creado alguna Pista en el año 1969.

```
PREFIX cla: <a href="http://www.owl-ontologies.com/Ontology1383937954.owl#>">http://www.owl-ontologies.com/Ontology1383937954.owl#>">http://www.owl-ontologies.com/Ontology1383937954.owl#>">
PREFIX ind: <a href="http://www.owl-ontologies.com/">http://www.owl-ontologies.com/>
SELECT DISTINCT ?autor
WHERE {
   ?pista rdf:type cla:Pista .
   ?pista cla:Año_creación_obra ?año .
   ?pista cla:Autores ?autor .
HAVING (?año = 1969)
RESULT:
   Otis_Spann
```

Research Challenges

- Increased expressive power
 - ▶ Existing DL systems implement (at most) SHIQ
 - OWL extends SHIQ with datatypes and nominals $(SHOIN(D_n))$
- Scalability
 - Very large ontologies
 - Reasoning with (very large numbers of) individuals
- Other reasoning tasks (non-standard inferences)
 - Querying
 - Matching
 - Least common subsumer
 - **...**
- Tools and Infrastructure
 - Support for large scale ontological engineering and deployment

Summary

- An Ontology is an engineering artifact consisting of:
 - A vocabulary of terms
 - An explicit specification their intended meaning
- Ontologies are set to play a key role in many applications
 - e-Science, Medicine, Databases, Semantic Web, etc.
- Reasoning is important because
 - Understanding is closely related to reasoning
 - Essential for design, maintenance and deployment of ontologies
- Reasoning support based on DL systems
 - Sound and complete reasoning
 - Highly optimised implementations
- Challenges remain
 - Expressive power; scalability; new reasoning tasks; tools and infrastructure

Select Bibliography

- Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and RDF to OWL: The making of a web ontology language. Journal of Web Semantics, 2003.
- Franz Baader, Ian Horrocks, and Ulrike Sattler. Description logics as ontology languages for the semantic web. In Festschrift in honor of Jörg Siekmann, LNAI. Springer, 2003.
- I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic. In Proc. of IJCAI 2001.

All available from http://www.cs.man.ac.uk/~horrocks/Publications/

