Useful formulas

 $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ — number of ways to choose k objects out of n

 $\binom{n+k-1}{k-1}$ — number of ways to choose k objects out of n with repetitions

 $\begin{bmatrix} n \\ m \end{bmatrix}$ — Stirling numbers of the first kind; number of permutations of n elements with k cycles

$${\binom{n+1}{m}} = n {\binom{n}{m}} + {\binom{n}{m-1}}$$
$$(x)_n = x(x-1)\dots x - n + 1 = \sum_{k=0}^n (-1)^{n-k} {\binom{n}{k}} x^k$$

 $\binom{n}{m}$ — Stirling numbers of the second kind; number of partitions of set $1, \ldots, n$ into k disjoint subsets.

$${n+1 \choose m} = k {n \choose k} + {n \choose k-1}$$

$$\sum_{k=0}^{n} {n \choose k} (x)_k = x^n$$

$$C_n = \frac{1}{n+1} {n \choose n} - \text{Catalan numbers}$$

$$C(x) = \frac{1-\sqrt{1-4x}}{2x}$$

Binomial transform

If
$$a_n = \sum_{k=0}^n \binom{n}{k} b_k$$
, then $b_n = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} a_k$

•
$$a = (1, x, x^2, ...), b = (1, (x+1), (x+1)^2, ...)$$

$$\bullet \ a_i = i^k, b_i = \begin{Bmatrix} n \\ i \end{Bmatrix} i!$$

Burnside's lemma

Let G be a group of *action* on set X (Ex.: cyclic shifts of array, rotations and symmetries of $n \times n$ matrix, ...)

Call two objects x and y equivalent if there is an action f that transforms x to y: f(x) = y.

The number of equivalence classes then can be calculated as follows: $C = \frac{1}{|G|} \sum_{f \in G} |X^f|$, where X^f is the set of fixed points of $f: X^f = \{x | f(x) = x\}$

Generating functions

Ordinary generating function (o.g.f.) for sequence $a_0,a_1,\ldots,a_n,\ldots$ is $A(x)=\sum\limits_{n=0}^{\infty}a_ix^i$

Exponential generating function (e.g.f.) for sequence $a_0, a_1, \ldots, a_n, \ldots$ is $A(x) = \sum_{n=0}^{\infty} a_i x^i$ $B(x) = A'(x), b_{n-1} = n \cdot a_n$

$$c_n = \sum_{k=0}^n a_k b_{n-k}$$
 (o.g.f. convolution)
 $c_n = \sum_{k=0}^n \binom{n}{k} a_k b_{n-k}$ (e.g.f. convolution, compute with FFT using $\widetilde{a_n} = \frac{a_n}{n!}$)

General linear recurrences

If $a_n = \sum_{k=1}^n b_k a_{n-k}$, then $A(x) = \frac{a_0}{1-B(x)}$. We also can compute all a_n with Divide-and-Conquer algorithm in $O(n \log^2 n)$.

Inverse polynomial modulo x^l

Given A(x), find B(x) such that $A(x)B(x) = 1 + x^l \cdot Q(x)$ for some Q(x)

- 1. Start with $B_0(x) = \frac{1}{a_0}$
- 2. Double the length of B(x): $B_{k+1}(x) = (-B_k(x)^2 A(x) + 2B_k(x)) \mod x^{2^{k+1}}$

Fast subset convolution

Given array a_i of size 2^k , calculate $b_i = \sum_{j \& i=i} b_j$

for
$$b = 0..k-1$$

for $i = 0..2^k-1$
if $(i & (1 << b)) != 0:$
 $a[i + (1 << b)] += a[i]$

Hadamard transform

Treat array a of size 2^k as k-dimentional array of size $2 \times 2 \times \ldots \times 2$, calculate FFT of that array: