7. If
$$f(x) = \tan^{-1}(\sec x + \tan x)$$
, $\frac{-\pi}{2} < x < \frac{\pi}{2}$ and $f(0) = 0$, then $f(1) = 0$

- a) $\frac{\pi-1}{4}$
- b) $\frac{\pi+2}{4}$

$$\int \sin \sqrt{x} \ dx = \dots + c$$

a) $2\left(-\cos\sqrt{x} + \sin\sqrt{x}\right)$

b) $2\left(\cos\sqrt{x} + \sqrt{x} \sin\sqrt{x}\right)$

c) $2\left(-\sqrt{x}\cos x + \sin\sqrt{x}\right)$

d) $2\left(\sqrt{x}\cos\sqrt{x}+\sin\sqrt{x}\right)$

9. If
$$\int e^{x^2} dx = e^{x^2} f(x) + c$$
 and $f(1) = 0$, then value of $f(2)$ will be

- (a) $\frac{3}{2}$
- b) $\frac{1}{2}$
- c) $\frac{-3}{2}$
- d) $\frac{-1}{2}$

10.
$$\int \frac{3x-2}{(x+1)(x-2)^2} dx =$$

a)
$$\frac{1}{9} \log (x+1) + \frac{5}{9} \log (x-2) - \frac{4}{3} \times \frac{1}{(x-2)} + C$$

b)
$$\frac{-5}{9} \log (x + 1) + \frac{5}{9} \log (x - 2) - \frac{1}{(x - 2)} + C$$

c)
$$\frac{-5}{9} \log (x + 1) + \frac{1}{9} \log (x - 2) + \frac{1}{x - 2} + C$$

$$\frac{-5}{9} \log (x+1) + \frac{5}{9} \log (x-2) - \frac{4}{3} \frac{1}{(x-2)} + C$$

[MHT-CET 2021] (online shift)

11.
$$\int \tan^{-1}(\sec x + \tan x) dx =$$

- a) $\frac{\pi x}{4} + \frac{x^2}{4} + c$
- b) $\sin x \cos x + c$ c) $\frac{\pi x}{2} + \frac{x^2}{2} + c$
- d) $\sin x + \cos x + c$

12.
$$\int \sec^4 x \cdot \tan^4 x \, dx = \frac{\tan^m x}{m} + \frac{\tan^n x}{n} + c \text{ then } m + n =$$

a) 8

- b) 12
- c) 10
- d) 16

65.
$$\int \frac{x^2}{(x\sin x + \cos x)^2} dx$$
 is equal to

a)
$$\frac{\sin x + \cos x}{x \sin x + \cos x} + c$$

b)
$$\frac{x\sin x - \cos x}{x\sin x + \cos x} + c$$

a)
$$\frac{\sin x + \cos x}{x \sin x + \cos x} + c$$
 b) $\frac{x \sin x - \cos x}{x \sin x + \cos x} + c$ c) $\frac{\sin x - x \cos x}{x \sin x + \cos x} + c$ d) none of these

[MHT-CET 2010]

66.
$$\int e^{\tan x} \left(\sec^2 x + \sec^3 x \sin x \right) dx$$
 is equal to

a)
$$\sec x \cdot e^{\tan x} + c$$
 b) $\tan x \cdot e^{\tan x} + c$

b)
$$\tan x \cdot e^{\tan x} + c$$

c)
$$e^{\tan x} + \tan x + c$$

c)
$$e^{\tan x} + \tan x + c$$
 d) $(1 + \tan x) e^{\tan x} + c$

67.
$$\int \frac{1}{16x^2 + 9} dx$$
 is equal to

a)
$$\frac{1}{3} \tan^{-1} \left(\frac{4x}{3} \right) + c$$

b)
$$\frac{1}{4} \tan^{-1} \left(\frac{4x}{3} \right) + c$$

a)
$$\frac{1}{3} \tan^{-1} \left(\frac{4x}{3} \right) + c$$
 b) $\frac{1}{4} \tan^{-1} \left(\frac{4x}{3} \right) + c$ c) $\frac{1}{12} \tan^{-1} \left(\frac{4x}{3} \right) + c$ d) $\frac{1}{12} \tan^{-1} \left(\frac{3x}{4} \right) + c$

$$\frac{1}{12} \tan^{-1} \left(\frac{3x}{4} \right) +$$

68.
$$\int [\sin(\log x) + \cos(\log x)] dx \text{ is equal to}$$

a)
$$x \cos(\log x) + c$$
 b) $\cos(\log x) + c$

b)
$$\cos(\log x) + c$$

c)
$$x \sin(\log x) + c$$
 d) $\sin(\log x) + c$

d)
$$\sin(\log x) + c$$

69.
$$\int e^x \frac{(x-1)}{x^2}$$
 is equal to

a)
$$\frac{e^x}{x^2} + c$$

b)
$$\frac{-e^x}{x^2} + c$$

c)
$$\frac{e^x}{x} + c$$

d)
$$\frac{-e^x}{x} + c$$

70.
$$\int x \log x \, dx$$
 is equal to

a)
$$\frac{x^2}{4} (2 \log x - 1) + c$$
 b) $\frac{x^2}{2} (2 \log x - 1) + c$ c) $\frac{x^2}{4} (2 \log x + 1) + c$ d) $\frac{x^2}{2} (2 \log x + 1) + c$

$$\frac{x^2}{4} (2 \log x + 1) + c$$

$$\frac{x^2}{2}$$
 (2 log x+1) + c

[MHT-CET 2008]

71.
$$\int \frac{x^{e-1} + e^{x-1}}{x^e + e^x} dx$$
 is equal to

a)
$$\log(x^e + e^x) + c$$

b)
$$e \log (x^e + e^x) + c$$

a)
$$\log (x^e + e^x) + c$$
 b) $e \log (x^e + e^x) + c$ c) $\frac{1}{e} \log (x^e + e^x) + c$ d) none of the above

72. The value of
$$\int x \sin x \sec^3 x \, dx$$
 is

a)
$$\frac{1}{2} \left[\sec^2 x - \tan x \right] + c$$

b)
$$\frac{1}{2} \left[x \sec^2 x - \tan x \right] + c$$

c)
$$\frac{1}{2} \left[x \sec^2 x + \tan x \right] + c$$

d)
$$\frac{1}{2} \left[\sec^2 x + \tan x \right] + c$$

[MHT-CET 2007]

73.
$$\int \frac{x + \sin x}{1 + \cos x} dx$$
 is equal to

a)
$$x \tan \frac{x}{2} + c$$

b)
$$\log (1 + \cos x) + c$$
 c) $\cot \frac{x}{2} + c$

d)
$$\log(x + \sin x) + c$$

113.
$$\int e^x \left(\frac{x+3}{(x+4)^2} \right) dx =$$

a)
$$\frac{1}{(x+4)^2} + c$$
 b) $\frac{e^x}{(x+4)^2} + c$

b)
$$\frac{e^x}{(x+4)^2} + e^x$$

c)
$$\frac{e^x}{x+4} + c$$

d)
$$\frac{e^x}{x+3} + c$$

114.
$$\int e^x (\cot x - 1 - \cot^2 x) dx =$$

a)
$$e^x \cot x + c$$

b)
$$-e^x \cot x + c$$

c)
$$e^x \cot^2 x + c$$

d)
$$-e^x \cot^2 x + c$$

115.
$$\int \frac{x^2+1}{x(x^2-1)} dx =$$

a)
$$\log |x| + \log |x-1| + \log |x+1| + c$$
 b) $\log |x| - \log |x-1| + \log |x+1| + c$ c) $\log |x| + \log |x-1| - \log |x+1| + c$ d) $-\log |x| + \log |x-1| + \log |x+1| + c$

c)
$$\log |x| + \log |x-1| - \log |x+1| + c$$

c)
$$\log |x| + \log |x-1| + \log |x+1| + c$$
 b) $\log |x| - \log |x-1| + \log |x+1| + c$ c) $\log |x| + \log |x-1| - \log |x+1| + c$ d) $-\log |x| + \log |x-1| + \log |x+1| + c$

116.
$$\int \frac{\cos x}{5 + 7\sin x - 2\cos^2 x} \, dx =$$

a)
$$\frac{1}{5} \log \left| \frac{2 \sin x + 1}{\sin x + 3} \right| + c$$

b)
$$\frac{1}{5} \log \left| \frac{\sin x + 3}{2 \sin x + 1} \right| + c$$

c)
$$\frac{2}{5} \log \left| \frac{2 \sin x + 1}{\sin x + 3} \right| + c$$

d)
$$\frac{2}{5} \log \left| \frac{\sin x + 3}{2 \sin x + 1} \right| + c$$

117.
$$\int \frac{8}{(x+2)(x^2+4)} dx =$$

a)
$$\log |x+2| + \frac{1}{2} \log |x^2+4| - \tan^{-1} \left(\frac{x}{2}\right) + c$$
 b) $\log |x+2| - \frac{1}{2} \log |x^2+4| + \tan^{-1} \left(\frac{x}{2}\right) + c$

c)
$$\log |x+2| - \frac{1}{2} \log |x^2+4| - \tan^{-1} \left(\frac{x}{2}\right) + c$$
 d) $\log |x+2| + \frac{1}{2} \log |x^2+4| + \tan^{-1} \left(\frac{x}{2}\right) + c$

[MHT - CET 2024]

118.
$$\int \frac{x^4 + x^2 + 1}{x^2 - x + 1} dx =$$

a)
$$\frac{x^3}{3} + \frac{x^2}{2} + x + c$$
 b) $\frac{x^3}{3} + \frac{x^2}{2} - x + c$ c) $\frac{x^3}{3} - \frac{x^2}{2} + x + c$ d) $\frac{x^3}{3} - \frac{x^2}{2} - x + c$

b)
$$\frac{x^3}{3} + \frac{x^2}{2} - x + c$$

c)
$$\frac{x^3}{3} - \frac{x^2}{2} + x + c$$

d)
$$\frac{x^3}{3} - \frac{x^2}{2} - x + 6$$

119.
$$\int \frac{x^3 - 7x + 6}{x^2 + 3x} dx =$$

a)
$$\frac{x^2}{2} + 3x + 2\log x + c$$

b)
$$\frac{x^2}{2} + 3x - 2\log x + c$$

c)
$$\frac{x^2}{2} - 3x + 2\log x + c$$

d)
$$\frac{x^2}{2} - 3x - 2\log x + c$$

120. If
$$f(x) = \frac{x}{x+1}$$
, $x \neq -1$ and (fof) $f(x) = F(x)$, then $\int F(x) dx = \int F(x) dx$

a)
$$\frac{x}{2} - \frac{1}{2} \log |2x + 1| + c$$

b)
$$\frac{x}{2} + \frac{1}{2} \log |2x + 1| + c$$

c)
$$\frac{x}{2} - \frac{1}{4} \log |2x+1| + c$$

d)
$$\frac{x}{2} + \frac{1}{4} \log |2x+1| + c$$

$$\int \frac{\log \sqrt{x}}{3x} \, dx =$$

a)
$$\frac{1}{12} (\log x)^2 + c$$

b)
$$\frac{2}{3} (\log x)^2 + c$$

c)
$$\frac{1}{3}\log\sqrt{x} + c$$

a)
$$\frac{1}{12}(\log x)^2 + c$$
 b) $\frac{2}{3}(\log x)^2 + c$ c) $\frac{1}{3}\log\sqrt{x} + c$ d) $\frac{2}{3}(\log\sqrt{x})^2 + c$

146. If
$$\int \frac{\log(x+\sqrt{1+x^2})}{\sqrt{1+x^2}} dx = \frac{1}{2} (f(x))^2 + c$$
, then $f(x) = \frac{1}{2} (f(x))^2 + c$

a)
$$\log(\sqrt{1+x^2})$$

b)
$$-\log\left(\sqrt{1+x^2}\right)$$

a)
$$\log(\sqrt{1+x^2})$$
 b) $-\log(\sqrt{1+x^2})$ c) $\log(x+\sqrt{1+x^2})$ d) $-\log(x+\sqrt{1+x^2})$

147.
$$\int \frac{x^8 - x^2}{\left(x^{12} + 3x^6 + 1\right) \tan^{-1} \left(x^3 + \frac{1}{x^3}\right)} dx =$$

a)
$$\log \left(\left| \tan^{-1} \left(x^3 + \frac{1}{x^3} \right) \right| \right)^{\frac{1}{3}} + c$$

b)
$$\log \left(\left| \tan^{-1} \left(x^3 + \frac{1}{x^3} \right) \right| \right)^{\frac{1}{2}} + c$$

c)
$$\log \left(\left| \tan^{-1} \left(x^3 + \frac{1}{x^3} \right) \right| \right)^3 + c$$

d)
$$\log \left(\left| \tan^{-1} \left(x^3 + \frac{1}{x^3} \right) \right| \right) + c$$

148. If $\int \tan(x-\alpha)\tan(x+\alpha)\tan 2x \, dx = p \log |\sec 2x| + q \log |\sec (x+\alpha)| + r \log |\sec x|$ $(x-\alpha)$ | + c, then p+q+r=

a)
$$-\frac{5}{2}$$

b)
$$-\frac{3}{2}$$

c)
$$\frac{5}{2}$$

d)
$$\frac{3}{2}$$

149. $\int \csc(x-a) \csc x \, dx =$

- a) $\csc a \log |\sin (x-a) \csc x| + c$
- b) cosec $a \log |\sin(x-a)\sin x| + c$
- c) $\csc a \log |\csc (x-a) \sin x| + c$
- d) $\sin a \log |\sin (x-a) \sin x| + c$

150. If $\int \frac{2-\tan x}{3+\tan x} dx = \frac{1}{2} (\alpha x + \log |\beta \sin x + \gamma \cos x|) + c$, where c is a constant of integration, then $\alpha + \frac{\gamma}{\beta} =$

a) $\frac{1}{6}$

b) 3

c) 4

d) 7

151. If $\int \frac{4e^x - 25}{2e^x - 5} dx = Ax + B \log |2e^x - 5| + c$, then

- a) A = 5, B = 3
- b) A = 5, B = -3
- c) A = -5, B = 3
- d) A = -5, B = -3

177.
$$\int \frac{e^{\tan^{-1}x}}{1+x^2} \left(\left(\sec^{-1} \sqrt{1+x^2} \right)^2 + \cos^{-1} \left(\frac{1-x^2}{1+x^2} \right) \right) dx =$$

a)
$$e^{\tan^{-1}x} (\tan^{-1}x)^2 + c$$

c)
$$e^{\tan^{-1}x} (\cot^{-1}x)^2 + c$$

c)
$$e^{\tan^{-1}x} (\cot^{-1}x)^2 + c$$

d)
$$e^{\tan^{-1}x}$$
 (cot-1x) + c

$$178. \int \frac{1+\sin(\log x)}{1+\cos(\log x)} dx =$$

a)
$$x \tan \left(\log \left(\frac{x}{2} \right) \right) + c$$

b)
$$x \tan\left(\frac{\log x}{2}\right) + c$$

c)
$$x^2 \tan\left(\frac{\log x}{2}\right) + c$$

d)
$$x^3 \log \left(\frac{\tan x}{2}\right) + c$$

179.
$$\int \left(1 + x - \frac{1}{x}\right) e^{x + \frac{1}{x}} dx =$$

a)
$$(x-1)e^{x+\frac{1}{x}}+c$$
 b) $xe^{x+\frac{1}{x}}+c$

b)
$$xe^{x+\frac{1}{x}} + c$$

c)
$$(x+1)e^{x+\frac{1}{x}}+c$$
 d) $-xe^{x+\frac{1}{x}}+c$

d)
$$-xe^{x+\frac{1}{x}}+c$$

180.
$$\int \frac{2x^2 - 1}{\left(x^2 + 4\right)\left(x^2 - 3\right)} dx =$$

a)
$$\frac{9}{7} \tan^{-1} \left(\frac{x}{2} \right) + \frac{5}{7\sqrt{3}} \log \left(\frac{x - \sqrt{3}}{x + \sqrt{3}} \right) + c$$

b)
$$\frac{9}{7} \tan^{-1} \left(\frac{x}{2} \right) - \frac{5}{7\sqrt{3}} \log \left(\frac{x - \sqrt{3}}{x + \sqrt{3}} \right) + c$$

c)
$$\frac{9}{14} \tan^{-1} \left(\frac{x}{2} \right) + \frac{5}{7\sqrt{3}} \log \left(\frac{x - \sqrt{3}}{x + \sqrt{3}} \right) + c$$

d)
$$\frac{9}{14} \tan^{-1} \left(\frac{x}{2} \right) + \frac{5}{14\sqrt{3}} \log \left(\frac{x - \sqrt{3}}{x + \sqrt{3}} \right) + c$$

181.
$$\int \frac{x}{(x-1)^2(x+2)} dx =$$

a)
$$\frac{2}{9} \log |x-1| - \frac{1}{3(x-1)} - \frac{2}{9} \log |x+2| + c$$

b)
$$\frac{2}{9} \log |x-1| - \frac{1}{3(x-1)} + \frac{2}{9} \log |x+2| + c$$

c)
$$\frac{2}{9}\log|x-1| + \frac{1}{3(x-1)} - \frac{2}{9}\log|x+2| + c$$
 d) $\frac{2}{9}\log|x-1| + \frac{1}{3(x-1)} + \frac{2}{9}\log|x+2| + c$

d)
$$\frac{2}{9} \log |x-1| + \frac{1}{3(x-1)} + \frac{2}{9} \log |x+2| + c$$

182.
$$\int \frac{x+1}{x(1+xe^x)^2} \, dx =$$

a)
$$\log \left| \frac{xe^x}{1+xe^x} \right| + \frac{1}{1+xe^x} + c$$

b)
$$\log \left| \frac{xe^x}{1+xe^x} \right| - \frac{1}{1+xe^x} + \varepsilon$$

c)
$$-\log \left| \frac{xe^x}{1+xe^x} \right| + \frac{1}{1+xe^x} + c$$

d)
$$-\log \left| \frac{xe^x}{1+xe^x} \right| - \frac{1}{1+xe^x} + c$$

$$\int \frac{x}{(x-1)(x-2)} \, dx =$$

a)
$$\log \left| \frac{x-1}{x-2} \right| + c$$

b)
$$\log \left| \frac{x-2}{x-1} \right| +$$

a)
$$\log \left| \frac{x-1}{x-2} \right| + c$$
 b) $\log \left| \frac{x-2}{x-1} \right| + c$ c) $\log \left| \frac{x-2}{(x-1)^2} \right| + c$ d) $\log \left| \frac{(x-2)^2}{x-1} \right| + c$

d)
$$\log \left| \frac{(x-2)^2}{x-1} \right| + c$$

206. If
$$\int \frac{2x^2 + 3}{(x^2 - 1)(x^2 - 4)} dx = \log\left(\left(\frac{x - 2}{x + 2}\right)^a \left(\frac{x + 1}{x - 1}\right)^b\right) + c$$
, then

a)
$$a = \frac{11}{12}$$
, $b = \frac{5}{6}$

b)
$$a = \frac{11}{12}$$
, $b = -\frac{5}{6}$

c)
$$a = -\frac{11}{12}$$
, $b = \frac{5}{6}$

a)
$$a = \frac{11}{12}$$
, $b = \frac{5}{6}$ b) $a = \frac{11}{12}$, $b = -\frac{5}{6}$ c) $a = -\frac{11}{12}$, $b = \frac{5}{6}$ d) $a = -\frac{11}{12}$, $b = -\frac{5}{6}$

$$207. \int \frac{x^3}{x^4 + 5x^2 + 4} \, dx =$$

a)
$$\frac{1}{3} \log \left(\frac{(x^2 + 4)^2}{\sqrt{x^2 + 1}} \right) + c$$

b)
$$\log\left(\frac{\left(x^2+4\right)^2}{\sqrt{x^2+1}}\right) + c$$

c)
$$3\log\left(\frac{(x^2+4)^2}{\sqrt{x^2+1}}\right) + c$$

d)
$$\frac{2}{3} \log \left(\frac{(x^2 + 4)^2}{\sqrt{x^2 + 1}} \right) + c$$

$$208. \int \frac{dx}{2e^{2x} + 3e^x + 1} =$$

a)
$$x + \log(e^x + 1) - 2\log(2e^x + 1) + c$$

b)
$$x - \log(e^x + 1) + 4 \log(2e^{x} + 1) + c$$

c)
$$x + \log(e^x + 1) - 4\log(2e^x + 1) + c$$

d)
$$x - \log(e^x + 1) + 2\log(2e^x + 1) + c$$

209.
$$\int \frac{x^3}{(x+1)^2} \, dx =$$

a)
$$\frac{x^2}{2} - 2x + 3\log(x+1) + \frac{1}{x+1} + c$$

b)
$$\frac{x^2}{2} + 2x - 3\log(x+1) + \frac{1}{x+1} + c$$

c)
$$\frac{x^2}{2} - 2x + 3\log(x+1) - \frac{1}{x+1} + c$$

d)
$$\frac{x^2}{2} - 2x - 3\log(x+1) - \frac{1}{x+1} + c$$

210. If
$$\int \frac{x^4+1}{x(x^2+1)^2} dx = a \log x + \frac{b}{1+x^2} + c$$
, then $a-b = a \log x + \frac{b}{1+x^2} + c$

$$a) - 1$$

211. If
$$\int \frac{2x+3}{(x-1)(x^2+1)} dx = \log \left| (x-1)^{\frac{5}{2}} (x^2+1)^a \right| - \frac{1}{2} \tan^{-1} x + c$$
, then $a = 1$

a)
$$\frac{5}{4}$$

b)
$$-\frac{5}{3}$$

c)
$$-\frac{5}{6}$$

d)
$$-\frac{5}{4}$$

212. Let I =
$$\int \frac{dx}{(x-1)^{\frac{11}{13}}(x+15)^{\frac{15}{13}}}$$
, then I is

a)
$$\frac{13}{32} \left(\frac{x-1}{x+15} \right)^{\frac{2}{13}} + c$$
 b) $\frac{32}{13} \left(\frac{x-1}{x+15} \right)^{\frac{2}{13}} + c$ c) $\frac{1}{32} \left(\frac{x+15}{x-1} \right)^{\frac{2}{13}} + c$ d) $\frac{13}{32} \left(\frac{x+15}{x-1} \right)^{\frac{15}{13}} + c$

b)
$$\frac{32}{13} \left(\frac{x-1}{x+15} \right)^{\frac{2}{13}} + c$$

$$rac{1}{32} \left(\frac{x+15}{x-1} \right)^{\frac{2}{13}} + c$$

d)
$$\frac{13}{32} \left(\frac{x+15}{x-1} \right)^{\frac{15}{13}}$$

 $_{190.} \int \sin^5 x \, dx =$

a)
$$\cos x + \frac{2}{3}\cos^3 x - \frac{1}{5}\cos^5 x + c$$

c)
$$-\cos x + \frac{2}{3}\cos^3 x - \frac{1}{5}\cos^5 x + c$$

b)
$$\cos x + \frac{2}{3}\cos^3 x + \frac{1}{5}\cos^5 x + c$$

d)
$$\cos x - \frac{2}{3} \cos^3 x + \frac{1}{5} \cos^5 x + c$$

191. $\int \sec^{\frac{2}{3}} x \cdot \csc^{\frac{4}{3}} x \, dx =$

a)
$$3 \tan^{-\frac{1}{3}} x + c$$

b)
$$-3\tan^{-\frac{1}{3}}x + c$$

c)
$$-3\cot^{-\frac{1}{3}}x+c$$

a)
$$3\tan^{-\frac{1}{3}}x + c$$
 b) $-3\tan^{-\frac{1}{3}}x + c$ c) $-3\cot^{-\frac{1}{3}}x + c$ d) $-\frac{3}{4}\tan^{-\frac{4}{3}}x + c$

 $192. \int \frac{\sqrt{\tan x}}{\sin x \cos x} dx =$

a)
$$2\sqrt{\sec x} + c$$

b)
$$2\sqrt{\tan x} + c$$

c)
$$\frac{2}{\sqrt{\tan x}}$$
+

a)
$$2\sqrt{\sec x} + c$$
 b) $2\sqrt{\tan x} + c$ c) $\frac{2}{\sqrt{\tan x}} + c$ d) $\frac{2}{\sqrt{\sec x}} + c$

193. If $\int \tan^4 x \, dx = a \tan^3 x + b \tan x + cx + k$, where k is the constant of integration, then a

a)
$$\frac{7}{3}$$

b)
$$\frac{5}{3}$$

c)
$$\frac{4}{3}$$

d)
$$\frac{1}{3}$$

194. $\int \frac{(5\sin x - 2)\cos x}{5 - 4\sin x - \cos^2 x} dx =$

a)
$$\log (5 \sin x - 2) + c$$

b)
$$5\log(5\sin x - 2) + \frac{8}{\sin x - 2} + c$$

c)
$$\log(5\sin x - 2) + \frac{8}{\sin x - 2} + c$$

d)
$$\log(5\sin x - 2) + \frac{1}{\sin x - 2} + c$$

 $195. \int \frac{\sin 2x}{(a+h\cos x)^2} dx =$

a)
$$\frac{2}{a^2} \left(\log (a + b \cos x) - \frac{a}{a + b \cos x} \right) + c$$

b)
$$-\frac{1}{a^2} \left(\log (a + b \cos x) + \frac{a}{a + b \cos x} \right) + c$$

c)
$$-\frac{2}{b^2} \left(\log (a + b \cos x) + \frac{a}{a + b \cos x} \right) + c$$

c)
$$-\frac{2}{b^2} \left(\log(a + b\cos x) + \frac{a}{a + b\cos x} \right) + c$$
 d) $-\frac{2}{b^2} \left(\log(a + b\cos x) - \frac{a}{a + b\cos x} \right) + c$

196. If $A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$, where $a = 7^x$, $b = 7^{7^x}$, $c = 7^{7^{7^x}}$, then $\int |A| dx = 1$

a)
$$\frac{7^{7^x}}{(\log 7)^3} + k$$
 b) $\frac{7^{7^{7^x}}}{\log 7} + k$

b)
$$\frac{7^{7^{2^{x}}}}{\log 7} + k$$

c)
$$\frac{7^{7^{7^x}}}{(\log 7)^3} + k$$

c)
$$\frac{7^{7^{7^x}}}{(\log 7)^3} + k$$
 d) $7^{7^{7^x}} (\log 7)^3 + k$

 $^{197}, \quad \int \frac{dx}{e^x + 1} =$

b)
$$x - \log |e^x + 1| + c$$

a)
$$x + \log |e^x + 1| + c$$

c) $\log |e^x - 1| + x + c$

b)
$$x - \log |e^x - 1| - x + c$$

d) $\log |e^x - 1| - x + c$

$$\int \frac{x^2 + 1}{(x+1)^2} \, dx =$$

a)
$$x - 2\log|x + 1| - \frac{1}{x+1} + c$$

b)
$$x - \log |x+1| - \frac{2}{x+1} + c$$

c)
$$x - \log |x+1| - \frac{x}{x+1} + c$$

d)
$$x-2\log|x+1|-\frac{2}{x+1}+c$$

131.
$$\int \frac{x^2}{(a+bx)^2} \, dx =$$

a)
$$\frac{1}{b^3} \left(a + bx + 2a \log |a + bx| + \frac{a^2}{a + bx} \right) + c$$
 b) $\frac{1}{b^3} \left(a + bx - 2a \log |a + bx| + \frac{a^2}{a + bx} \right) + c$

b)
$$\frac{1}{b^3}\left(a+bx-2a\log\left|a+bx\right|+\frac{a^2}{a+bx}\right)+c$$

c)
$$\frac{1}{b^3} \left(a + bx + 2a \log |a + bx| - \frac{a^2}{a + bx} \right) + c$$

c)
$$\frac{1}{b^3} \left(a + bx + 2a \log |a + bx| - \frac{a^2}{a + bx} \right) + c$$
 d) $\frac{1}{b^3} \left(a + bx - 2a \log |a + bx| - \frac{a^2}{a + bx} \right) + c$

132.
$$\int \frac{dx}{\left((x-1)^3(x+2)^5\right)^{\frac{1}{4}}} =$$

a)
$$\frac{4}{3} \left(\frac{x-1}{x+2} \right)^{\frac{1}{4}} + c$$

b)
$$\frac{4}{3} \left(\frac{x+1}{x+2} \right)^{\frac{1}{4}} + c$$

c)
$$\frac{4}{3} \left(\frac{x+1}{x-2} \right)^{\frac{1}{4}} + c$$

a)
$$\frac{4}{3} \left(\frac{x-1}{x+2} \right)^{\frac{1}{4}} + c$$
 b) $\frac{4}{3} \left(\frac{x+1}{x+2} \right)^{\frac{1}{4}} + c$ c) $\frac{4}{3} \left(\frac{x+1}{x-2} \right)^{\frac{1}{4}} + c$ d) $\frac{4}{3} \left(\frac{x-1}{x+3} \right)^{\frac{1}{4}} + c$

133.
$$\int \frac{dx}{x^2 \left(x^4 + 1\right)^{\frac{3}{4}}} =$$

a)
$$\left(1 + \frac{1}{x^4}\right)^{\frac{1}{4}} + c$$

b)
$$\left(1 + \frac{1}{x^4}\right)^{-\frac{1}{4}} + c$$

c)
$$-\left(1+\frac{1}{x^4}\right)^{\frac{1}{4}}+c$$

a)
$$\left(1+\frac{1}{x^4}\right)^{\frac{1}{4}}+c$$
 b) $\left(1+\frac{1}{x^4}\right)^{-\frac{1}{4}}+c$ c) $-\left(1+\frac{1}{x^4}\right)^{\frac{1}{4}}+c$ d) $-\left(1+\frac{1}{x^4}\right)^{-\frac{1}{4}}+c$

134.
$$\int \frac{2x^3 - 1}{x^4 + x} dx =$$

a)
$$\log\left(x^2 + \frac{1}{x}\right) + c$$

b)
$$-\log\left(x^2 + \frac{1}{x}\right) + c$$

a)
$$\log\left(x^2 + \frac{1}{x}\right) + c$$
 b) $-\log\left(x^2 + \frac{1}{x}\right) + c$ c) $\frac{1}{2}\log\left(x^2 + \frac{1}{x}\right) + c$ d) $-\frac{1}{2}\log\left(x^2 + \frac{1}{x}\right) + c$

135.
$$\int \frac{\csc x}{\cos^2 \left(1 + \log \left(\tan \left(\frac{x}{2}\right)\right)\right)} dx$$

a)
$$\tan\left(1+\log\left(\tan\left(\frac{x}{2}\right)\right)\right)+c$$

b)
$$2\tan\left(1+\log\left(\tan\left(\frac{x}{2}\right)\right)\right)+c$$

c)
$$\tan\left(\tan\left(\frac{x}{2}\right)\right) + c$$

d)
$$2\tan\left(\tan\left(\frac{x}{2}\right)\right)+c$$

136. If
$$f(x) = \sqrt{\tan x}$$
 and $g(x) = \sin x \cos x$, then $\int \frac{f(x)}{g(x)} dx =$

a)
$$\sqrt{\tan x} + c$$

b)
$$2\sqrt{\tan x} + c$$

c)
$$-\sqrt{\tan x} + c$$

d)
$$-2\sqrt{\tan x} + c$$