Apunte único: Algoritmos y estructura de datos

Nad Garraz y comunidad (ojalá) Facultad de Ciencias Exactas y Naturales UBA

Choose your destiny:

(dobleclick en los ejercicio para saltar)

• Notas teóricas

• Ejercicios de la guía:

1.	5.	9.
2.	6.	10.
3.	7.	11.
4.	8.	12.

El repo en github para descargar las guías con los últimos updates.

La Guía 1 se actualizó por última vez: 27/08/24 @ 23:13

Si querés mandar un ejercicio o avisar de algún error, lo más fácil es por Telegram \bigcirc .

Notas teóricas:

□ Términos:

Son objetos. Devuelven un tipo.

■ Fórmulas:

Denotan valores de verdad. Devuelven un booleano.

- ☐ Cuantificadores: ¡Importantes para deducir y escribir predicados!
 - □ Cuantificador universal generaliza la conjunción (∧):

$$(\forall n : \mathbb{Z})(P(n)) \leftrightarrow (\cdots \land P(-N) \land P(-N+1) \land \cdots \land P(0) \land P(1) \land \cdots \land P(N) \land \cdots)$$

□ Cuantificador existencial generaliza la disyunción (∨):

$$(\exists n : \mathbb{Z})(P(n)) \leftrightarrow (\cdots \lor P(-N) \lor P(-N+1) \lor \cdots \lor P(0) \lor P(1) \lor \cdots \lor P(N) \lor \cdots)$$

型 Un ejemplo de predicado:

$$(\exists n : \mathbb{Z})(\underbrace{n=2})$$
 formula: $P(n)$

En lenguaje natural podría ser:

- □ Existe un número natural que vale 2.
- □ En el conjunto de los naturales por lo menos hay un elemento igual a 2.

Si bien es un ejemplo muy sencillo, el predicado "abierto" es aún más simple de leer:

$$(\exists n : \mathbb{Z})(P(n)) \leftrightarrow \overbrace{(\cdots \vee P(-N) \vee P(-N+1) \vee \cdots \vee P(0) \vee P(1) \vee P(2) \vee \cdots \vee P(N) \vee \cdots)}^{\text{verdadero}}$$

Esto es obvio pero <u>importante</u>: El resultado final de la concatenación de todas esas disyunciones tiene que ser <u>verdadero</u>, porque el <u>predicado</u> lo es!, y ese predicado no depende del valor de n. Por si no lo notaste hay un \leftrightarrow conectando el <u>predicado</u> y las conjunciones.

Ejercicios de la guía:

Ejercicio 1 @... hay que hacerlo! @

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 5$.

Ejercicio 2 @... hay que hacerlo! @

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en LATEX $\rightarrow \bigcirc$.

Ejercicio 3 @... hay que hacerlo! @

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

Ejercicio 4 @... hay que hacerlo! @

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

Ejercicio 5 @... hay que hacerlo! @

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

Ejercicio 6 Asumiendo que el valor de b y c es verdadero, el de a es falso y el de x e y es indefinido, indicar cuáles de los operadores deben ser operadores "luego" para que la expresión no se indefina nunca:

- a) $(\neg x \lor b)$
- b) $((c \lor (y \land a)) \lor b)$
- c)
- d)
- e)
- f) $(((c \lor y) \land (a \lor b)) \leftrightarrow (c \lor (y \land a) \lor b))$
- g)
- a) $(\neg x \lor b)$.

Tengo que evaluar de *izquierda a derecha* y se cortocircuita si el resultado de la fórmula es independiente de lo que resta leer. Cuando hay un disyunción con tener x = F, de manera que $\neg x = T$ ya puedo parar de evaluar. Pero si x está indefinida, no hay nada que peuda hacer.

- b) $((c \lor (y \land a)) \lor b)$
- c)
- d)

e)

f) Para que la disyunción seguro no se indefina, necesito que el primer predicado sea *verdadero* y la conjunción eso sucede si el primer predicado es *falso*.

$$(((c \lor y) \land (a \lor b)) \leftrightarrow (c \lor (y \land a) \lor b))$$

$$c \rightarrow \text{verdadero}$$
No se indefine

g)

Ejercicio 7 Sean p, q y r tres variables de las que se sabe que:

- lacksquare p y q nunca están indefinidas
- lacktriangledownr se indefine si
iqes verdadera

Proponer una fórmula que nunca se indefina, utilizando siempre las tres variables y que sea verdadera si y solo si se cumple que:

a) Al menos una es verdadera.

d) Solo p y q son verdaderas.

b) Ninguna es verdadera.

- e) No todas al mismo tiempo son verdaderas.
- c) Exactamente una de las tres es verdadera.
- f) r es verdadera.

a) Al menos una es verdadera.

$$(p \vee q) \vee_{\mathbf{L}} r$$

Preguntar por solución del apunte, pqr=100?

b) Ninguna es verdadera. En este caso r no se indefine.

$$\neg (p \land q \land r)$$

Preguntar por solución del apunte, pqr=100?

c) Exactamente una de las tres es verdadera.

$$(p \vee q) \vee_{\mathbf{L}} r$$

d) Solo p y q son verdaderas. r debe ser 0 cuando q=0

$$(p \vee q) \vee_{\mathbf{L}} \neg r$$

solo p y q?

- e) No todas al mismo tiempo son verdaderas.
- f) r es verdadera. Preguntar por solución del apunte, pqr=100?

Ejercicio 8 Determinar, para cada aparición de variables, si dicha aparición se encuentra libre o ligada. En caso de estar ligada, aclarar a qué cuantificador lo está. En los casos en que sea posible, porponer valores para las variables libres de modo tal que las expresiones sean verdaderas.

- a) $(\forall x : \mathbb{Z})(0 \le x \le n \to x + y = z)$
- b) @... hay que hacerlo! 60

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

c) 🕯... hay que hacerlo! 🔞

Si querés mandarlo: Telegram $\to \emptyset$, o mejor aún si querés subirlo en $\LaTeX \to \emptyset$.

- d) $(\forall j : \mathbb{Z})(j \leq 0 \rightarrow P(j)) \land P(j)$
- a) $(\forall x : \mathbb{Z})(0 \le x < n \to x + y = z)$
- b) ②... hay que hacerlo! 🔞

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

c) ②... hay que hacerlo! 😚

Si querés mandarlo: Telegram $\rightarrow \bigcirc 3$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc 3$.

d) $(\forall j : \mathbb{Z})(j \leq 0 \rightarrow P(j)) \land P(j)$.

Las jotas están ligadas al cuantificador universal, pero la j está libre.

Ejercicio 9 Sea $P(x : \mathbb{Z})$ y $Q(x : \mathbb{Z})$ dos predicados cualquiera. Explicar cuál es el error de traducción a fórmulas de los siguientes enunciados. Dar un ejemplo en el cuál sucede el problema y luego corregirlo.

a) "Todos los naturales menores a 10 cumplen P":

$$(\forall i : \mathbb{Z})((0 \le i < 10) \land P(i))$$

b) "Algún natural menor a 10 cumple P":

$$(\exists\, i: \mathbb{Z})((0\leq i<10)\,{\rightarrow}\,P(i))$$

c) "Todos los naturales menores a 10 que cumplen $P\ y\ Q$ ":

$$(\forall x : \mathbb{Z})((0 \le x < 10) \to (P(x) \land Q(x)))$$

d) "No hay ningún natural menor a 10 que cumpla P y Q":

$$(\forall\,x:\mathbb{Z})((0\leq x<10)\,{\to}(P(x)\wedge Q(x)))$$

a) "Todos los naturales menores a 10 cumplen P":

$$(\forall i : \mathbb{Z}) \underbrace{(0 \leq i < 10)}_{R(i)} \land P(i)) \leftrightarrow (\forall i : \mathbb{Z})(R(i))$$

Como el cuantificador \forall generaliza la conjunción. Suponiendo que P(i) no se indefine:

$$(\forall i: \mathbb{Z})(R(i)) \leftrightarrow R(-N) \land R(-N+1) \land \cdots \land R(0) \land \ldots \land R(9) \land R(10) \land \cdots \land R(N)$$

Obtengo un resultado donde sé que los $R(0), \ldots, R(9)$ van a tener un valor verdadero, pero el resto de los R(i) van a tener un valor de falso, ya que no cumplen f(i).

Por lo tanto busco una solución para que esos R(i) no sean moscas en mi sopa, con " \rightarrow " dado que:

Entonces cambio ese \wedge por un \rightarrow_L , donde me aseguro de lidiar con potenciales indefiniciones de P(i) que harían que todo explote:

$$(\forall i : \mathbb{Z}) \underbrace{(0 \leq i < 10)}_{S(i)} \rightarrow_{L} P(i)) \leftrightarrow (\forall i : \mathbb{Z})(S(i))$$

Ahora la situación es más feliz:

$$(\forall i: \mathbb{Z})(S(i)) \leftrightarrow S(-N) \land S(-N+1) \land \cdots \land S(0) \land \ldots \land S(9) \land S(10) \land \cdots \land S(N)$$

Todos los S(i) son verdaderos y no se indefinen por el \rightarrow_L

b) "Algún natural menor a 10 cumple P":

$$(\exists i : \mathbb{Z})((0 \le i < 10) \to P(i))$$

c) "Todos los naturales menores a 10 que cumplen P y Q":

$$(\forall x : \mathbb{Z})((0 \le x < 10) \rightarrow (P(x) \land Q(x)))$$

d) "No hay ningún natural menor a 10 que cumpla P y Q":

$$(\forall x : \mathbb{Z})((0 \le x < 10) \rightarrow (P(x) \land Q(x)))$$

Propongo

$$(\forall x : \mathbb{Z}) \left(\underbrace{0 \le x < 10}_{f(x)} \right) \to_{\mathbf{L}} \underbrace{\neg (P(x) \land_{\mathbf{L}} Q(x))}_{g(x)} \right)$$

Con el \to_L mato los casos que no cumplen f(x). Luego g(x) solo toma valor falso cuando P(x) y Q(x) son ambas verdadero.

Ejercicio 10 Sean $P(x : \mathbb{Z})$ y $Q(x : \mathbb{Z})$ dos predicados que nunca se indefinen. Escribir al predicado asociado a cada uno de los siguientes enunciados:

- "Existe un único natural menor a 10 que cumple P"
- "Existen al menos dos números naturales menores a 10 que cumplen P"
- 😝 "Existen exactamente dos números naturales menores a 10 que cumplen P"
- "Todos los enteros pares que cumplen P, no cumplen Q"
- \mathbf{o}_{5} "Si un entero cumple P y es impar, no cumple Q"
- "Todos los enteros pares cumplen P, y todos los enteros impares que no cumplen P cumplen Q"
- "Si hay un número natural menor a 10 que no cumple P entonces ninfuno natural menor a 10 cumple Q; y si todos los naturales menores a 10 cump, en P entonces hay al menos dos naturales menores a 10 que cumplen Q"
- "Existe un único natural menor a 10 que cumple P"

$$(\exists n : \mathbb{Z}) \bigg(\big(0 \le n < 10 \land P(n) \big) \land (\forall m : \mathbb{Z}) \big(0 \le m < 10 \rightarrow (m = n \rightarrow P(m)) \big) \bigg)$$

• "Existen al menos dos números naturales menores a 10 que cumplen P"

$$[\exists n : \mathbb{Z}] \underbrace{\left[0 \le n < 10 \land P(n)\right]}_{f_1(n)} \land [\exists m : \mathbb{Z}] \underbrace{\left[0 \le m < 10 \land P(m) \land m \ne n\right]}_{f_2(n,m)}$$

• El cuantificador existencial me generaliza la disyunción:

$$\cdots \vee f_1(-N) \vee f_1(-N+1) \vee \cdots \vee f_1(0) \vee \cdots \vee f_1(9) \vee \cdots \vee f_1(N-1) \vee f_1(N) \vee \cdots$$

Los $f_1(n)$ azules, tienen valores de verdadero, para la primera condición de f_1 , los demás son falsos. Como tengo concatenación de disyunciones, con que una de las azules cumpla también P(n), listo tengo un f_1 verdadero para algún n.

$$f_1(0) \lor \cdots \lor f_1(9)$$

Esos valores son los que me sirven para calcular los valores de verdad que hay en $f_1 \wedge f_2$.

 \bullet Muy parecido ahora con f_2

$$\cdots \lor f_2(-N,n) \lor f_2(-N+1,n) \lor \cdots \lor f_2(0,n) \lor \cdots \lor f_2(9,n) \lor \cdots \lor f_2(N-1,n) \lor f_2(N,n) \lor \cdots$$

Nuevamente alguno de los m, van a cumplir las condiciones $f_1(m,n)$

- \bullet Por lo tanto obtengo siempre valores verdaderos en la expresión final f_3 .
- 3 "Existen exactamente dos números naturales menores a 10 que cumplen P"
- "Todos los enteros pares que cumplen P, no cumplen Q"

②₅ "Si un entero cumple P y es impar, no cumple Q"

$$(\forall n : \mathbb{Z}) ((P(n) \land n \mod 2 \neq 0) \rightarrow \neg Q(n))$$

- **a**₆ "Todos los enteros pares cumplen P, y todos los enteros impares que no cumplen P cumplen Q"
- "Si hay un número natural menor a 10 que no cumple P entonces ninfuno natural menor a 10 cumple Q; y si todos los naturales menores a 10 cump, en P entonces hay al menos dos naturales menores a 10 que cumplen Q"

Ejercicio 11 @... hay que hacerlo! 6

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.

Ejercicio 12 @... hay que hacerlo! @

Si querés mandarlo: Telegram $\rightarrow \bigcirc$, o mejor aún si querés subirlo en $\LaTeX \rightarrow \bigcirc$.