

5V 256K X 16 CMOS DRAM (Fast Page Mode)

Features

- Organization: 262,144 words \times 16 bits
- High speed
 - 25/30/35/50 ns \overline{RAS} access time
- 12/16/18/25 ns column address access time
- 7/10/10/10 ns $\overline{\text{CAS}}$ access time
- Low power consumption
- Active: 770 mW max (ASAS4C256K16FO-50)
- Standby: 5.5 mW max, CMOS I/O
- Fast page mode
- AS4C256K16FO-50 timings are also valid for AS4C256K16FO-60.

- Refresh
- 512 refresh cycles, 8 ms refresh interval
- RAS-only or CAS-before-RAS refresh or self-refresh
- Self-refresh option is available for new generation device only. Contact Alliance for more information.
- Read-modify-write
- TTL-compatible, three-state I/O
- JEDEC standard packages
 - 400 mil, 40-pin SOJ
 - 400 mil, 40/44-pin TSOP II
- Single 5V power supply/built-in V_{bb} generator
- Latch-up current > 200 mA

Pin arrangement

Pin designation

Pin(s)	Description
A0 to A8	Address inputs
RAS	Row address strobe
I/O0 to I/O15	Input/output
ŌĒ	Output enable
<u>UCAS</u>	Column address strobe, upper byte
<u>LCAS</u>	Column address strobe, lower byte
WE	Read/write control
V _{CC}	Power (+5V ± 10%)
GND	Ground

Selection guide

	Symbol	-25	-30	-35	-50	Unit
Maximum RAS access time	t _{RAC}	25	30	35	50	ns
Maximum column address access time	t _{CAA}	12	16	18	25	ns
Maximum CAS access time	t _{CAC}	7	10	10	10	ns
Maximum output enable (\overline{OE}) access time	t _{OEA}	7	10	10	10	ns
Minimum read or write cycle time	t _{RC}	40	65	70	85	ns
Minimum EDO page mode cycle time	t _{PC}	12	12	14	25	ns
Maximum operating current	I _{CC1}	200	180	160	140	mA
Maximum CMOS standby current	I _{CC2}	2.0	2.0	2.0	2.0	mA

Functional description

The AS4C256K16FO is a high-performance 4 megabit CMOS Dynamic Random Access Memory (DRAM) device organized as 262,144 words × 16 bits. The AS4C256K16FO is fabricated with advanced CMOS technology and designed with innovative design techniques resulting in high speed, extremely low power and wide operating margins at component and system levels.

The AS4C256K16FO features a high-speed page mode operation in which high speed read, write and read-write are performed on any of the 512×16 bits defined by the column address. The asynchronous column address uses an extremely short row address capture time to ease the system-level timing constraints associated with multiplexed addressing. Output is tri-stated by a column address strobe $\overline{\text{(CAS)}}$ which acts as an output enable independent of $\overline{\text{RAS}}$. Very fast $\overline{\text{CAS}}$ to output access time eases system design.

Refresh on the 512 address combinations of A0-A8 during an 8 ms period is accomplished by performing any of the following:

- RAS-only refresh cycles
- · Hidden refresh cycles
- CAS-before-RAS refresh cycles
- · Normal read or write cycles
- Self-refresh cycles.^{*}

The AS4C256K16FO is available in standard 40-pin plastic SOJ and 44-pin TSOP II packages compatible with widely available automated testing and insertion equipment. System level features include single power supply of $5V \pm 10\%$ tolerance and direct interface with TTL logic families.

Logic block diagram

Recommended operating conditions

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	4.5	5.0	5.5	V
supply voltage	GND	0.0	0.0	0.0	V
Input voltage	V _{IH}	2.4	_	V _{CC} + 1	V
input voltage	V _{IL}	-1.0	_	0.8	V

^{*} Self-refresh option is available for new generation device only. Contact Alliance for more information.

Absolute maximum ratings

Parameter	Symbol	Min	Max	Unit
Input voltage	V _{IN}	-1.0	+7.0	V
Output voltage	V _{OUT}	-1.0	+7.0	V
Power supply voltage	V _{CC}	-1.0	+7.0	V
Operating temperature	T _{OPR}	0	+70	°C
Storage temperature (plastic)	T _{STG}	-55	+150	°C
Soldering temperature × time	T _{SOLDER}	_	260 × 10	°C × sec
Power dissipation	P_{D}	_	1	W
Short circuit output current	I _{OUT}	_	50	mA
Latch-up current		200	_	mA

Note: Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC electrical characteristics

 $(V_{CC} = 5 \pm 10\%, GND = 0V, T_a = 0^{\circ} C \text{ to } +70^{\circ} C)$

				25	-3	30	-3	35	_!	50		
Parameter	Symbol	Test conditions	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Note
Input leakage current	I_{IL}	$0V \le V_{IN} \le + 5.5V$ pins not under test = $0V$	-10	10	-10	10	-10	10	-10	10	μА	
Output leakage current	I _{OL}	D_{OUT} disabled, $0V \le V_{OUT} \le + 5.5V$	-10	10	-10	10	-10	10	-10	10	μА	
Operating power supply current	I _{CC1}	\overline{RAS} , \overline{UCAS} , \overline{LCAS} , address cycling; $t_{RC} = \min$	-	200	_	180	_	160	_	140	mA	1,2
TTL standby power supply current	I _{CC2}	$\overline{RAS} = \overline{UCAS} = \overline{LCAS} = VIH$	I	2.0	_	2.0	_	2.0	_	2.0	mA	
Average power supply current, RAS refresh mode	I_{CC3}	$\frac{\overline{RAS} \text{ cycling,}}{\overline{UCAS} = \overline{LCAS} = V_{IH},}$ $t_{RC} = \min$	1	120	_	200	_	190	_	140	mA	1
Fast page mode average power supply current	I _{CC4}	$\overline{RAS} = \overline{UCAS} = \overline{LCAS} = V_{IL},$ address cycling: $t_{SC} = \min$	_	130	_	190	_	180	_	70	mA	1,2
CMOS standby power supply current	I _{CC5}	$\overline{RAS} = \overline{UCAS} = \overline{LCAS} = V_{CC} - 0.2V$	_	0.60	_	1.0	_	1.0	_	1.0	mA	
CAS-before-RAS refresh power supply current	I _{CC6}	\overline{RAS} , \overline{UCAS} , \overline{LCAS} , cycling; $t_{RC} = \min$	-	120	_	200	_	190	_	140	mA	1
Output voltage	V_{OH}	$I_{OUT} = -5.0 \text{ mA}$	2.4	_	2.4	_	2.4	_	2.4	_	V	
Sarpar voitage	V_{OL}	$I_{OUT} = 4.2 \text{ mA}$	ı	0.4	_	0.4	_	0.4	_	0.4	V	
Self refresh current	I _{CC7}	$\begin{split} \overline{RAS} &= \overline{UCAS} = \overline{LCAS} = V_{IL}, \overline{WE} \\ &= \overline{OE} = A0 - A8 = V_{CC} - 0.2 \text{V}, \\ DQ0 - DQ15 &= V_{CC} - 0.2 \text{V}, 0.2 \text{V} \\ &\text{are open} \end{split}$	1	2.0	_	2.0	_	2.0	_	2.0	mA	

AC parameters common to all waveforms

 $(V_{CC} = 5V \pm 10\%, GND = 0V, T_a = 0^{\circ} C \text{ to } +70^{\circ} C)$

Standard		-25		-3	30	-3	35	-50			
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
t _{RC}	Random read or write cycle time	45	_	65	_	70	_	85	_	ns	
t _{RP}	RAS precharge time	15	_	25	_	25	_	25	_	ns	
t _{RAS}	RAS pulse width	25	75K	30	75K	35	75K	50	75K	ns	
t _{CAS}	CAS pulse width	4	_	5	_	6	_	10	_	ns	
t _{RCD}	RAS to CAS delay time	10	17	15	20	16	24	15	35	ns	6
t _{RAD}	RAS to column address delay time	8	13	10	14	11	17	15	25	ns	7
t _{RSH(R)}	CAS to RAS hold time (read cycle)	7	_	10	_	10	_	10	_	ns	
t _{CSH}	RAS to CAS hold time	20	_	30	_	35	_	50	_	ns	
t _{CRP}	CAS to RAS precharge time	5	_	5	_	5	_	5	_	ns	
t _{ASR}	Row address setup time	0	_	0	_	0	_	0	_	ns	
t _{RAH}	Row address hold time	5	_	5	_	6	_	9	_	ns	
t _T	Transition time (rise and fall)	1.5	50	1.5	50	1.5	50	3	50	ns	4,5
t _{REF}	Refresh period	_	8	_	8	_	8	_	8	ms	3
t _{CLZ}	CAS to output in low Z	0	_	0	_	0	_	3	_	ns	8

Read cycle

 $(V_{CC} = 5V \pm 10\%, GND = 0V, T_a = 0^{\circ} C \text{ to } + 70^{\circ} C)$

Standard		-2	25	-3	30	-3	35	-!	50		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
t _{RAC}	Access time from RAS	_	25	-	30	_	35	_	50	ns	6
t _{CAC}	Access time from CAS	_	7	1	10	1	10	-	10	ns	6,13
t _{AA}	Access time from address	_	12	-	16	-	18	_	25	ns	7,13
t _{AR(R)}	Column add hold from RAS	19	_	26	_	28	_	30	_	ns	
t _{RCS}	Read command setup time	0	_	0	_	0	_	0	_	ns	
t _{RCH}	Read command hold time to CAS	0	_	0	-	0	-	0	_	ns	9
t _{RRH}	Read command hold time to RAS	0	_	0	_	0	_	0	_	ns	9
t _{RAL}	Column address to RAS Lead time	12	_	16	_	18	_	25	_	ns	
t _{CPN}	CAS precharge time	4	_	3	-	4	_	5	_	ns	
t _{OFF}	Output buffer turn-off time	0	6	0	8	0	8	0	8	ns	8,10

Write cycle $(V_{CC} = 5V \pm 10\%, GND = 0V, T_a = 0^{\circ} C \text{ to } +70^{\circ} C)$

Standard		-7	-25		30	-3	35	-50			
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
t _{ASC}	Column address setup time	0	_	0	_	0	_	0	_	ns	
t _{CAH}	Column address hold time	5	_	5	_	5	_	9	_	ns	
t _{AWR}	Column address hold time to RAS	19	_	26	_	28	_	30	_	ns	
t _{WCS}	Write command setup time	0	_	0	_	0	_	0	_	ns	11
t _{WCH}	Write command hold time	5	_	5	_	5	_	9	_	ns	11
t _{WCR}	Write command hold time to \overline{RAS}	19	_	26	_	28	_	30	_	ns	
t _{WP}	Write command pulse width	5	_	5	_	5	_	9	_	ns	
t _{RWL}	Write command to \overline{RAS} lead time	7	_	10	_	11	_	12	_	ns	
t _{CWL}	Write command to CAS lead time	5	_	10	_	11	_	12	_	ns	
t _{DS}	Data-in setup time	0	_	0	_	0	_	0	_	ns	12
t _{DH}	Data-in hold time	5	_	5	_	5	_	9	_	ns	12
t _{DHR}	Data-in hold time to RAS	19	-	26	_	28	_	30	_	ns	

Read-modify-write cycle $(V_{CC} = 5V \pm 10\%, GND = 0V, T_a = 0^{\circ} C \text{ to } +70^{\circ} C)$

Standard		-2	25	-3	30	-3	35	-!	50		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
t _{RWC}	Read-write cycle time	100	-	100	_	105	_	120	_	ns	
t_{RWD}	RAS to WE delay time	34	-	50	_	54	-	60	-	ns	11
t _{CWD}	CAS to WE delay time	17	-	26	_	28	_	30	_	ns	11
t _{AWD}	Column address to WE delay time	21	-	32	_	35	_	40	_	ns	11
t _{RSH(W)}	$\overline{\text{CAS}}$ to $\overline{\text{RAS}}$ hold time (write)	7	_	10	_	10	1	12		ns	
t _{CAS(W)}	CAS pulse width (write)	15	-	15	_	15	_	15	_	ns	

Fast page mode cycle $(V_{CC} = 5V \pm 10\%, GND = 0V, T_a = 0^{\circ} C \text{ to } +70^{\circ} C)$

Standard		-7	25	-3	30	-3	35	-!	50		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
t _{PC}	Read or write cycle time	8	-	12	-	14	-	25	-	ns	14
t_{CAP}	Access time from CAS precharge	_	14	_	19	-	21	1	23	ns	13
t _{CP}	CAS precharge time	3	_	3	_	4	_	5	_	ns	
t _{PCM}	Fast page mode RMW cycle	56	-	56	_	58	_	60	_	ns	
t_{CRW}	Page mode $\overline{\text{CAS}}$ pulse width (RMW)	44	_	44	_	46	_	50	-	ns	
t _{RASP}	RAS pulse width	25	75K	30	75K	35	75K	50	75K	ns	

Refresh cycle

$(V_{CC} = 5V \pm 10\%, GND = 0V, T_a = 0^{\circ} C \text{ to } +70^{\circ} C)$

Standard		-7	25	-3	30	-3	35	-!	50		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
t _{CSR}	$\overline{\text{CAS}}$ setup time ($\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$)	10	-	10	-	10	-	10	_	ns	3
t _{CHR}	CAS hold time (CAS-before-RAS)	7	_	7	_	8	1	10	_	ns	3
t _{RPC}	RAS precharge to CAS hold time	0	_	0	_	0	-	0	_	ns	
t _{CPT}	CAS precharge time (CAS-before-RAS counter test)	8	_	8	_	8	_	8	_	ns	

Output enable

$(V_{CC} = 5V \pm 10\%, GND = 0V, T_a = 0^{\circ} C \text{ to } +70^{\circ} C)$

									a		,
Standard		-7	25	-3	30	7	35	-	50		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
t _{ROH}	RAS hold time referenced to OE	5	_	5	_	5	_	5	_	ns	
t _{OEA}	OE access time	_	8	_	10	-	10		10	ns	
t _{OED}	OE to data delay	5	_	5	_	5	_	8	_	ns	
t _{OEZ}	Output buffer turnoff delay from $\overline{\text{OE}}$	_	6	_	8	_	8	-	8	ns	8
t _{OEH}	OE command hold time	5	_	8	_	8	_	8	_	ns	

Self refresh cycle

$(V_{CC} = 5V \pm 10\%, GND = 0V, T_a = 0^{\circ} C \text{ to } +70^{\circ} C)$

Standard	andard		-25		-30		-35		-50		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
t _{RASS}	RAS pulse width (CBR self refresh)	100K	_	100K	_	100K	_	100K	_	ns	
t _{RPS}	RAS precharge time (CBR self refresh)	85	_	85	_	85	_	85	-	ns	
t _{CHS}	CAS hold time (CBR self refresh)	30	_	30	ı	30	ı	30	I	ns	

Notes

- 1 I_{CC1} , I_{CC3} , I_{CC4} , and I_{CC6} depend on cycle rate.
- 2 I_{CC1} and I_{CC4} depend on output loading. Specified values are obtained with the output open.
- An initial pause of 200 μs is required after power-up followed by any 8 RAS cycles before proper device operation is achieved. In the case of an internal refresh counter, a minimum of 8 CAS-before-RAS initialization cycles instead of 8 RAS cycles are required. 8 initialization cycles are required after extended periods of bias without clocks (greater than 8 ms).
- 4 AC characteristics assume $t_T = 5$ ns. All AC parameters are measured with a load equivalent to two TTL loads and 100 pF, V_{IL} (min) \geq GND and V_{IH} (max) \leq V_{CC} .
- 5 V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Transition times are measured between V_{IH} and V_{IL}
- 6 Operation within the t_{RCD} (max) limit insures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only. If t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- 7 Operation within the t_{RAD} (max) limit insures that t_{RAC} (max) can be met. t_{RAD} (max) is specified as a reference point only. If t_{RAD} is greater than the specified t_{RAD} (max) limit, then access time is controlled exclusively by t_{AA}.
- 8 Assumes three state test load (5 pF and a 380 Ω Thevenin equivalent).
- 9 Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 10 t_{OFF} (max) defines the time at which the output achieves the open circuit condition; it is not referenced to output voltage levels.
- 11 t_{WCS} , t_{WCH} , t_{RWD} t_{CWD} and t_{AWD} are not restrictive operating parameters. They are included in the datasheet as electrical characteristics only. If $t_{WS} \ge t_{WS}$ (min) and $t_{WH} \ge t_{WH}$ (min), the cycle is an early write cycle and data out pins will remain open circuit, high impedance, throughout the cycle. If t_{RWD} (min), $t_{CWD} \ge t_{CWD}$ (min) and $t_{AWD} \ge t_{AWD}$ (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell. If neither of the above conditions is satisfied, the condition of the data out at access time is indeterminate.
- 12 These parameters are referenced to \overline{CAS} leading edge in early write cycles and to \overline{WE} leading edge in read-write cycles.
- 13 Access time is determined by the longest of t_{CAA} or t_{CAC} or t_{CAP}
- 14 $t_{ASC} \ge t_{CP}$ to achieve t_{PC} (min) and t_{CAP} (max) values.
- 15 These parameters are sampled, but not 100% tested.

Key to switching waveforms

Read cycle waveform

Upper byte read waveform

Lower byte read waveform

Early write waveform

Upper byte early write waveform

Lower byte early write waveform

Write waveform

Upper byte write waveform

Lower byte write waveform

Read-modify-write waveform

Upper byte read-modify-write waveform t_{RWC} t_{RAS} t_{RP} RAS t_{CSH} t_{RCD} t_{CAS} t_{CRP} t_{RSH} t_{CRP} UCAS t_{CRP} t_{RPC} **LCAS** t_{RAD} t_{ACS} t_{ASR} t_{RAH} - t_{CAH} Address Column Address Row t_{CWL} t_{RWD} t_{RWL} t_{AWD} t_{CWD} t_{RCS} t_{WP} WE ⋆ t_{OEA} OE ⋆ t_{DS} t_{OED} Upper Input t_{CLZ} Data In 🗕 t_{CAC} t_{AA} → t_{OEZ} t_{RAC} Upper Output

Data Out

Data Out

► t_{OED}

Lower Input Lower Output

Lower byte read-modify write waveform

Fast page mode read waveform

Fast page mode byte read waveform

Fast page mode early write waveform

Fast page mode byte early write waveform

Fast page mode read-modify-write waveform

CAS-before-RAS refresh waveform

 $(\overline{WE} = V_{IH})$

RAS-only refresh waveform

 $(\overline{WE} = \overline{OE} = V_{IH} \text{ or } V_{IL})$

Fast page mode byte read-modify-write waveform

Hidden refresh waveform (read)

Hidden refresh waveform (write)

CAS before RAS refresh counter test waveform

CAS-before-RAS self refresh cycle

Typical AC and DC characteristics

Package dimensions

	44-pin TSOP II				
	Min	Max			
	(mm)	(mm)			
A		1.2			
A_1	0.05				
A_2	0.95	1.05			
b	0.30	0.45			
С	0.127 ((typical)			
D	18.28	18.54			
Е	10.03	10.29			
H _e	11.56	11.96			
e	0.80 (1	ypical)			
l	0.40	0.60			
	40-pi	n SOJ			
	400 mil				
	Min	Max			
A	0.128	0.148			
A_1	0.026	-			
A_2	1.105	1.115			
В	0.026	0.032			
b		0.020			
С	0.007	0.013			

1.020

0.395

0.435

0.370 (typical)

0.050 (typical)

1.035

0.405

0.445

Capacitance

(f = 1 MHz, T_a = Room Temperature, V_{CC} = 5V ±10%)

D

Е

 E_1

 E_2

<u> </u>		\			/
Parameter	Symbol	Signals	Test conditions	Max	Unit
	C _{IN1}	A0 to A8	$V_{IN} = 0V$	5	pF
Input capacitance	C _{IN2}	RAS, UCAS, LCAS, WE, OE	$V_{IN} = 0V$	7	pF
I/O capacitance	C _{I/O}	I/O0 to I/O15	$V_{IN} = V_{OUT} = 0V$	7	pF

Ordering codes

-25 ns	-30 ns	-35 ns	-50 ns	
AS4C256K16F0-25JC	6K16F0-25JC AS4C256K16F0-30JC AS4C256K16F0-35JC		AS4C256K16FO-50JC	
AS4C256K16F0-25JI	AS4C256K16F0-30JI	AS4C256K16F0-35JI	AS4C256K16FO-50JI	
AS4C256K16F0-25TC	AS4C256K16F0-30TC	AS4C256K16F0-35TC	AS4C256K16FO-50TC	
AS4C256K16F0-25TI	AS4C256K16F0-30TI	AS4C256K16F0-35TI	AS4C256K16FO-50TI	

Part numbering system

AS4C	256K16F0	-XX	X	C/I
DRAM prefix	Device number	RAS access time	Package: J = Plastic SOJ, 400 mil, 40-pin T = TSOP II, 400 mil, 40/44-pin	Temperature Range: C= Commercial (0 °C to 70 °C) I= Industrial (-40°C to 85°C)