INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA PARAÍBA	Engenharia de Computação Disciplina: Algoritmos e Computação Semestre Letivo: 2016 Professor: Marcelo Siqueira / Henrique Cunha	
Assunto:	WHILE e FOR	
Objetivos:	 Analisar a sintaxe de códigos escritos em Python Observar o comportamento da estrutura de repetição FOR Resolver problemas usando estrutura de repetição 	

ROTEIRO DE AULA 7 – 21/06/2016 (REVISÃO)

- 1. Suponha que uma rua tenha 10 residências. Escreva um algoritmo que leia para cada uma o número da residência, a renda da família, o valor do consumo de água, energia elétrica e o valor de IPTU pago e informe na saída padrão o seguinte:
 - o número casa que consome mais energia;
 - o IPTU mais baixo;
 - a média de consumo de água da rua;
 - o somatório da renda de toda a rua.
- 2. Modifique o programa anterior para que ele informe se quem pagou o maior IPTU é a residência que consumiu mais água.
- 3. Suponha que o salário de um vendedor é calculado mediante a soma de todas as vendas que ele realiza ao longo do mês. O vendedor recebe uma comissão pela venda total (cujo valor é 10%). Escreva um programa que calcule o salário do vendedor. A quantidade de vendas é informada pelo usuário no início da execução do programa.
- 4. Escreva um programa que leia um conjunto de 10 números inteiros positivos e realize o somatório de todos os números ímpares. O programa deve exibir o valor do somatório na saída padrão.
- 5. Escreva um programa que leia da entrada padrão um valor maior do que zero e imprima todos os inteiros de zero até esse número. Se um valor menor do que zero for informado, uma mensagem de erro deverá ser exibida. Exemplo:

```
> Informe um valor positivo inteiro não-nulo:
4
> Os 4 valores maiores do que zero são: 1 2 3 4
> Informe um valor positivo inteiro não-nulo:
0
> Valor inválido.
```

```
> Informe um valor positivo inteiro não-nulo:
6
> Os 6 valores maiores do que zero são: 1 2 3 4 5 6
> Informe um valor positivo inteiro não-nulo:
-1
> Execução finalizada.
```

6. Escreva um programa que leia da entrada padrão um número e depois pergunte se o usuário deseja continuar ("S/N"). Enquanto o usuário responder "S" o algoritmo deve somar os valores lidos. Quando o usuário responder "N" o algoritmo deve exibir os valores lidos.

7. Escreva um programa que simule um TPDV (Terminal de Ponto de Venda): para cada cliente, leia a quantidade e o tipo do produto (o preço deve ser definido pelo programa). Em seguida, o programa deve calcular o TOTAL conforme o exemplo na tabela abaixo. O programa deve perguntar se deseja continuar. Ao final, o programa deve informar a quantidade de clientes atendidos e o total de vendas.

QUANTIDADE	TIPO	PREÇO INDIVIDUAL	SUBTOTAL
1	A	10,00	10,00
5	В	2,00	10,00
3	С	8,00	24,00
2	D	100,00	200,00
2	E	80,00	160,00
	TOTAL		404,00

8. Escreva um programa que calcule os N termos da série S abaixo:

9. Escreva um programa que calcule os N termos da série S abaixo:

$$S = (\sqrt{1}/3) + (4/6) + (\sqrt{3}/9) + (16/12) + (\sqrt{5}/15) + (64/18) + \dots$$