

Facial Expression Recognition Using Eigenface Method

Fei Yan 2014-04-23

Contents

- Introduction
- Related Work
- Implementation Results and Discussion
- On-site Demo

Facial Expression

6 basic expressions, FACS and AU

6 basic expressions, FACS and AU

AU1	AU2	AU4	AU5	AU6
100	@ @	3 E	6 6	9 9
Inner brow miser	Outer brow raiser	Brow Lowerer	Upper lid miser	Cheek raiser
AU7	AU9	AU12	AU15	AU17
	6		3	3
Lid tighten	Nose wrinkle	Lip corner puller	Lip corner depressor	Chin raiser
AU23	AU24	AU25	AU26	AU27
3/	10	E	=	(a)
Lip tighen	Lip presser	Lips part	Jaw drop	Mouth stretch

Two types of Facial Expression Recognition

- Single Static Image Based
 - Relatively simple
 - Light computation
- Dynamic image Sequence Based
 - Consider the face movement and time information
 - Heavy computation

The Basic Working Flow

^{*} Figure Cited from the handbook of face recognition, 2nd Edition by Stan Z. Li and Anil K. Jain

Face Detection

- Global consideration
 - template based
 - skin color based
- Feature analysis
 - detecting important features such as eyes and mouth and then calculating the face

Facial Feature Extraction

- Geometric feature extraction
 - Data size would be compressed
 - Some important facial expression changing features may be lost
- Statistical feature extraction
 - Requires large size of sample training
 - The eigenface method belongs to this category
- The Gabor filter frequency domain feature extraction
- The movement feature extraction
 - Optical Flow and Feature points tracking

Recognition Method

- Expert rules
- Neural Network
- Support vector machines (SVM)
- Hidden Markov model (HMM)

The major steps of this project

The eigenface method

- The training images were generated a low dimensional face space and also the projected versions of all these training images.
- The captured image was also projected onto the face space, which means that the captured image was represented by the selected principal components
- The Euclidian distance of the projected test image from each projected training image was calculated.
- The minimum Euclidian distance represented that the right training image was the most similar one to the captured image

Result

- The same face, and with good light condition, the recognition result was optimized.
- Different faces, it would influence the recognition rate.
- The size of face in the image would affect the result.

Discussion

- The Eigenface method is a classical method
- The basic concept of the eigenface method is Principal Component Analysis and distance calculation.
- It depended on the gray level similarity of the training image set and the given test image
- It would be influenced greatly while the light, angle, face size and face color

On-site Demo

Q & A

