PyCon PL 2019-09-13

Biohack

Jacek Śmietański Kraków

Bioinformatics

Image source: https://blog.f1000.com/wp-content/uploads/2017/01/Header-Image-crop-1024x559.jpg

data challenges applications

DNA sequence

> AY169899.1 Morelia viridis strain ABTC66386 cytochrome b gene, partial cds; mitochondrial gene for mitochondrial product

TTCGGCTCAATATTATTAACATGTTTAGCCCTACAAGTACTACCGGC
TTCTTCTTAGCCGTCCACTACACAGCAAACATCAACCTAGCATTCT
CATCCATTATCCATATCACTCGAGATGTCCCATACGGCTGAATAATA
CAAAACCTACACGCCATCGGAGCATCCATATTCTTCATTTGCATTTA
CATCCACATCGCACGAGGACTATACTACGGATCCTACCTCAACAAA
GAGACTTGAATATCCGGTATCACCCTACTCATCACATTAATAGCAAC
CGCCTTCTTTG

Data visualisation

Sequence → Structure → Function

Data availability

- Over 1500 bioinformatics databases listed by Nucleic Acid Research journal
- Main databases connected in network (meta-database)

- Corectness and reliability
- Inconsistency of data formats
- Outdated databases

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS.

SITUATION: THERE ARE 15 COMPETING STANDARDS.

Challenge: next generation sequencing (NGS)

https://singularityhub.com/wp-content/uploads/2019/01/3d-illustration-dna-sequencing_shutterstock_430949605-1068x601.jpg

- sequence assembly
 - data storage
 - variations

Application example: drug design

- target identification
- structure determination
- lead search
- pharmacokinetics
- response prediction (ADME & toxicology)

Biohack

Boinformatics hackathons

Hosted worldwide by several organisations.

Eg.: http://biohackathon.org (annual event since 2008)

https://biohackathons.github.io

https://www.biohackathon-europe.org

Biohack (past editions: 2018, 2019)

http://biohack.com.pl/

Bioninja (upcoming, 4-6.10.2019, registration still active ©)

http://www.bioninjachallenge.eu

- onsite (Łódź)
- free participation
- 4-5 people interdisciplinaty teams
 (if you are alone, orga team creates team for you)
- task are selected randomly
- 24 h for coding
- integration part, board games, pizza, etc...

- The analysis of bacteriophage genomes considering their lytic/lysogenic potential
- 2. Implementation of balance tree algorithm for abundance difference analysis in metagenomic research
- 3. Analysis of GWAS data using machine learning algorithms
- 4. Development of algorithm for translation of common names of disease entities into ICD-10 units (NLP approach preferred)
- 5. Development of local tool for annotation of bacteriophage genomes
- 6. Development of method for ordered storage of NGS-obtained data

Tasks 2019

- 1. Immunogenicity prediction of viral neoantigens in murine hosts.
- Feature space engineering for optimal classification of virome dataset.
- 3. Predicting response to cancer immunotherapy

http://biohack.com.pl/biohack-ii-exemplary-tasks/

Our challenge

Predicting response to cancer immunotherapy

Treatment method:

the patient's immune system is stimulated to destroy tumor cells.

Only 20-40% of patients respond to immunotherapy.

Making prediction which patients will be responders is one of the challenges in cancer research.

Provided data

A dataset related to patients who underwent cancer immunotherapy:

- patients' clinical information
- RNA sequencing data
- response status

```
In [1]: import pandas as pd
In [2]: df_cv = pd.read_csv("..//data//X_covariates.tsv", sep="\t")
    df_genes = pd.read_csv("..//data//X_genes.tsv", sep="\t")
    df_y = pd.read_csv("..//data//y.tsv", sep="\t", header=None)
```

Clinical information

17 parameters regarding patient interview, diagnosis results and treatment history.

```
In [3]: df_cv.shape
Out[3]: (200, 17)
In [4]: df_cv.head()
```

Out[4]:

	FMOne mutation burden per MB	Neoantigen burden per MB	Enrollment IC	IC Level	TC Level	Immune phenotype	Sex	TCGA Subtype	Lund	Lund2	Received platinum	Met Disease Status	Sample age	Sample collected pre- platinum	Intravesical BCG administered	Baselir ECO Scoi
0	8.0	0.803922	IC2	IC2+	TC0	inflamed	М	IV	MS2b1	Infiltrated	N	LN Only	(less than) 1 year	NaN	N	
1	4.0	0.764706	IC0	IC0	TC0	desert	F	III	MS2b2.2	Basal/SCC- like	N	NaN	1-2 years	NaN	N	
2	5.0	0.117647	IC1	IC1	TC0	desert	М	Ш	MS2b2.2	Basal/SCC- like	Y	Visceral	(less than) 1 year	N	N	
3	4.0	0.294118	IC2	IC2+	TC2+	excluded	М	III	MS2b1	Infiltrated	N	Visceral	more than 2 years	NaN	Y	
4	10.0	NaN	IC1	IC1	TC0	desert	М	IV	MS2b1	Infiltrated	Y	Visceral	(less than) 1 year	NaN	N	

RNA sequencing data

Expression level for 31085 genes.

```
In [6]: df_genes.shape
Out[6]: (200, 31085)
In [9]: df_genes.head(12)
Out[9]:
```

	TPM_hugo_A1BG	TPM_hugo_A1BG- AS1	TPM_hugo_A1CF	TPM_hugo_A2M	TPM_hugo_A2M- AS1	TPM_hugo_A2ML1	TPM_hugo_A2MP1	TPM_hugo_A3GALT2	TPM
0	1.564289	2.711834	0.000000	599.387994	2.354073	43.245808	0.0	0.000000	
1	3.487859	1.717013	0.000000	222.711937	2.288359	5.718716	0.0	0.564476	
2	0.613334	0.508520	0.000000	204.222937	0.627338	300.472716	0.0	0.000000	
3	2.385017	1.600782	0.000000	1851.589619	3.301540	1.346349	0.0	0.000000	
4	1.964353	0.791064	0.000000	982.752783	0.589165	85.088254	0.0	0.096887	
5	0.907173	0.349210	0.000000	684.072973	0.654054	113.067767	0.0	0.223721	
6	1.703079	1.925504	0.040575	1077.182707	0.625106	48.229871	0.0	0.000000	
7	0.476492	0.395063	0.000000	210.165565	0.128256	511.146137	0.0	0.091396	
8	0.633058	0.224946	0.000000	137.755978	0.219083	5.613576	0.0	0.000000	
9	1.047450	0.651337	0.009150	729.116811	0.380617	12.210105	0.0	0.000000	
10	0.636399	0.296799	0.013898	668.243637	1.252610	6.273756	0.0	0.137326	
11	2.505328	2.945830	0.039792	924.930657	1.177047	202.212006	0.0	0.000000	
12 r	ows × 31085 colur	mns							

Response status

```
Binary.
```

"1" – response for treatment was observed "0" – no response for treatment

```
In [31]: df y.shape
Out[31]: (200, 1)
In [32]:
         df y.head()
Out[32]:
          2 0
          3 0
          4 1
In [33]: df_y[df_y[0]==0].count()
Out[33]: 0
              154
         dtype: int64
In [34]: df y[df y[0]==1].count()
Out[34]:
              46
         dtype: int64
```

Our team

Dealing with incomplete data

```
In [11]: df cv.apply(lambda x: 200 - x.count(), axis=0)
Out[11]: FMOne mutation burden per MB
                                            45
         Neoantigen burden per MB
                                            57
         Enrollment IC
                                             0
         IC Level
         TC Level
         Immune phenotype
                                            34
                                             0
         Sex
         TCGA Subtype
                                             0
         Lund
                                             0
         Lund2
                                             0
         Received platinum
         Met Disease Status
                                            17
         Sample age
                                             0
         Sample collected pre-platinum
                                            49
         Intravesical BCG administered
                                             0
         Baseline ECOG Score
         Tobacco Use History
         dtype: int64
In [13]: df cv.dropna().shape
Out[13]: (68, 17)
```

Remove incomplete records?
Fill with artificial value?
Try to estimate?

Use clinical data? Genes? Both? Are some columns more important?

Chen et al., 2017

Literature research

Immune checkpoints	DNA repair	Suppression cytokines	Inflammatio cytokines	n Intereferon genes	Peptide binding complex	MHC class I	MHC class II		- Chemokine- s related gene	Growth s factor receptors	Chaperones	Autophagy- related gene	Extracellular s matrix	Other	Clinical
PDCD1	MLH1	IL4	IL1A	IFNA1	TAP1	HLA-A	HLA-DPA1	MSR1	CCL4	FGFR1	HSP90AA1	ATG10	FN1	FASLG	Mutation burden
CD274	MSH2	IL10	IL1B	IFNA2	TAP2	HLA-B	HLA-DPB1	CD58	CCL8	FGFR2	HSP90AB1	ATG101		DPP4	Neoantigen burden
CD276	MSH6	IL13	NOD1	IFNA4	B2M	HLA-C	HLA-DPB2	CLEC7A	CXCL9	EGFR	HSP90AB4P	ATG12		MARCH1	Immune phenotype
CTLA-4	PMS2	IL17A	NOD2	IFNA5	TAPBP	HLA-E	HLA-DQA1	FCGR1A	CXCL10	ERBB2	HSP90B1	ATG13		PDCD1LG2	
IDO1		TGFB	IL12A	IFNA6	CALR	HLA-F	HLA-DQA2	FCGR1B	CXCL11	ERBB3	HSP90B2P	ATG14		TIGIT	Met <u>disease</u> status
LAG3			IL23A	IFNA7	CANX	HLA-F-AS1	HLA-DQB1	FCGR1C	GZMA	ERBB4	HSPA12A	ATG16L1		CD27	
VTCN1			TNF	IFNA8	ERAP1	HLA-G	HLA-DQB1- AS1	FCGR3A	GZMB	VEGFA	HSPA12B	ATG16L2		CCL5	
HAVCR2			IL2	IFNA10	ERAP2	HLA-L	HLA-DQB2		CXCR6	VEGFB	HSPA13	ATG2A		PSMB10	
TNFRSF4				IFNA13		HLA-H	HLA-DRA				HSPA14	ATG2B		STAT1	
IDO2				IFNA14		HLA-J	HLA-DRB1				HSPA1A	ATG3		NKG7	
TDO2				IFNA16			HLA-DRB3				HSPA1B	ATG4A		CMKLR1	
CD80				IFNA17			HLA-DRB4				HSPA1L	ATG4B			
CD86				IFNA21			HLA-DRB5				HSPA2	ATG4C			
CD8A				IFNA22P			HLA-DRB6				HSPA4	ATG4D			
				IFNB1			HLA-DMA				HSPA4L	ATG5			
				IFNE			HLA-DMB				HSPA5	ATG7			
				IFNG			HLA-DOA				HSPA6	ATG9A			
				IFNG-AS1			HLA-DOB				HSPA7	ATG9B			
				IFNK							HSPA8				
				IFNL1							HSPA9				
				IFNL2							HSPB1				
				IFNL3							HSPB11				
				IFNL4											
				IFNW1											

166 genes

117 directly involved in immune regulation

4 clinical features

Statistics revealed best markers

2 genes

IFNG TGFB1

3 clinical features

MTB

Neoantigen burden Met disease status

Basic neural network 10x cross-validated

Average accuracy: 0.76 Average ROC: 0.81

Area under ROC

```
In [24]: # Scoring
    score = roc_auc_score(y_test[0], predictions[1])
    print("ROC AUC score: ", score)

fpr, tpr, thresholds = roc_curve(y_test[0], predictions[1], pos_label=1)

# ROC curve graph
    plt.plot(fpr, tpr)
    plt.show()
```

ROC AUC score: 0.8955773955773956

Thank you for your attention

jacek.smietanski@ii.uj.edu.pl

Thank you for your attention

jacek.smietanski@ii.uj.edu.pl

