(For candidates admitted from 2022-2023 onwards)

B.Sc. DEGREE EXAMINATION, APRIL 2025.

Part III — Mathematics — Major

INTEGRAL CALCULUS AND FOURIER SERIES

Time: Three hours

Maximum: 75 marks

PART A — (20 marks)

I. (A) Choose the correct answer: $(5 \times 1 = 5)$

$$f(x)$$
 என்பது ஒற்றைச்சார்பு எனில் $\int\limits_{-a}^a f(x)\,dx = 0$

$$(\mathfrak{A}) \quad 2\int_{0}^{a} f(x) dx \qquad (\mathfrak{A}) \quad 0$$

(a)
$$\int_{0}^{2a} f(x) dx$$
 (FF)
$$\frac{1}{2} \int_{0}^{2a} f(x) dx$$

If f(x) is an odd function of n, $\int_{-a}^{a} f(x) dx =$

(a)
$$2\int_{0}^{a}f(x)dx$$

(c)
$$\int_{0}^{2a} f(x) \, dx$$

(d)
$$\frac{1}{2} \int_{0}^{2a} f(x) dx$$

$$2. x=0,$$

$$y = 0$$

மற்றும்

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

ஆகியவற்றிற்குட்பட்ட பரப்பளவு என்பது

$$(3) \frac{\pi ab}{4}$$

(ஆ) πab

$$(\mathfrak{Q}) \quad \frac{\pi \, ab}{2}$$

 $(\pi) \quad \frac{\pi \, ab}{16}$

Area bounded by the lines x = 0, y = 0 and $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is

(a)
$$\frac{\pi ab}{4}$$

(b) π ab

(c)
$$\frac{\pi ab}{2}$$

(d) $\frac{\pi ab}{16}$

$$3. \qquad \int\limits_{1}^{b} \int\limits_{1}^{a} \frac{dx \, dy}{xy} =$$

- (A) Loga Logb
- (ஆ) Loga

 (\mathfrak{Q}) Log b

(FF) O

$$\int_{1}^{b} \int_{1}^{a} \frac{dx \, dy}{xy} =$$

- (a) Log a Log b
- (b) Loga

(c) Log b

(d) 0

$$4. \qquad \int\limits_0^\infty x^2 \, e^{-x} \, dx =$$

(의) 1

(ஆ) 0

(இ) 2

(FF) -1

- $\int_{0}^{\infty} x^2 e^{-x} dx =$
- (a) 1

(b) 0

(c) 2

(d) -1

 $f(x) = \left| x \right| (-\pi < x < \pi)$ எனில் $b_n =$

$$(\mathfrak{P}) \quad \frac{2}{n} (-1)^n \qquad \qquad (\mathfrak{P}) \quad \frac{2}{n}$$

If $f(x) = |x|(-\pi < x < \pi)$ then $b_n =$

(a)
$$\frac{2}{n}(-1)^n$$
 (b) $\frac{2}{n}$

(B) Fill in the blanks:
$$(5 \times 1 = 5)$$

.6. 'u' மற்றும் 'v', x—யை சார்ந்த சார்புகள் எனில், $\int u \, dv =$ ________

If u and v are function of x, $\int u dv =$

The formula for the area under a curve, the y-axis and the lines y = c, y = d is ______.

8.

'V' என்ற வெளியில் பகுதியின் கொள்ளளவு

The volume of a region of space V is _____

9.
$$\frac{1}{2} = \underline{\hspace{1cm}}$$

$$\boxed{\frac{1}{2}} = \underline{\hspace{1cm}}.$$

$$f(x) = ____,$$
 எனில் $f(x)$ என்ப

ஒற்றைச்சார்பு.

If f(x) =_____, then f(x) is said to be a odd function.

 $(5 \times 2 = 1)$

$$11$$
. மதிப்பு காண்க : $\int\limits_0^{\frac{\pi}{2}} \sin^2 x \, dx$.

Evaluate
$$\int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx.$$

12. $y^2 = x^4(x+2)$ என்ற வளையத்தின் பரப்பளவைக் காண்க.

Find the area of the loop of the curve $y^2 = x^4(x+2)$.

13. மதிப்பு காண்க : $\int_{0.1}^{3.2} xy(x+y) dy dx$.

Evaluate: $\int_{0}^{3} \int_{1}^{2} xy(x+y) dy dx.$

14. மதிப்பு காண்க : $\int_{0}^{1} x^{7} (1-x)^{8} dx$.

Evaluate: $\int_{0}^{1} x^{7} (1-x)^{8} dx$.

 $f(x) = egin{cases} 0, & -\pi < x < 0 \ \pi, & 0 < x < \pi \end{cases}$ என்ற சார்பை பூரியர்

தொடராக எழுதுக.

Find the Fourier series expansion of $f(x) = \begin{cases} 0, & -\pi < x < 0 \\ \pi, & 0 < x < \pi \end{cases}$

PART B —
$$(5 \times 5 = 25)$$

Answer ALL questions.

16. (அ) மதிப்பு காண்க : $\int x e^{3x} dx$.

Evaluate: $\int x e^{3x} dx$.

Or

(ஆ) மதிப்பு காண்க : $\int x \log(x+1) dx$.

Evaluate: $\int x \log(x+1) dx$.

 $y^2 = 2x$ மற்றும் $x^2 = 3y$ ஆகிய பரவளையங்களுக்குட்பட்ட பரப்பளவைக் காண்க.

Find the area bounded by $y^2 = 2x$ and $x^2 = 3y$.

Or

(ஆ) $r^2 = 4\cos 2\theta$ -ன் பரப்பளவைக் காண்க.

Find the area of $r^2 = 4\cos 2\theta$.

$$18.$$
 (அ) மதிப்பு காண்க : $\iiint \frac{dx\,dy\,dz}{\sqrt{1-x^2-y^2-z^2}}$, x,y மற்றும் z ஆகியவை நேர் மதிப்புகள்.

Evaluate $\iiint \frac{dx \, dy \, dz}{\sqrt{1-x^2-y^2-z^2}}$ for all positive values of x,y,z for which the integral is real.

Or

(ஆ)
$$x^2+y^2=a^2$$
 -ன் நேர் கால் பகுதியின் வழியாக
$$\iint xy\,dx\,dy$$
 -ன் மதிப்பை காண்க.

Evaluate $\iint xy \, dx \, dy$ taken over the positive quadrant of the circle $x^2 + y^2 = a^2$.

19. (அ) நிறுவுக:
$$n+1=n$$
 n .

Prove:
$$n+1=n$$
 n .

Or

(ஆ)
$$\int_0^1 x^m (1-x^n)^p \, dx$$
 -யை காமா சார்பு கொண்டு எழுதுக. $\int_0^1 x^5 (1-x^3)^{10} \, dx$ -ன் மதிப்பு காண்க.

Express $\int_{0}^{1} x^{m} (1-x^{n})^{p} dx$ in terms of Gamma function and evaluate the integral $\int_{0}^{1} x^{5} (1-x^{3})^{10} dx$.

20. (அ) $x\sin x$ என்ற சார்புக்கு $(0,\pi)$ என்ற இடைவெளியில் பூரியர் கொசைன் தொடரைக் காண்க.

$$\frac{1}{2} + \frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots$$
 - யை வருவி.

Expand $x \sin x$ as a Fourier cosine series in the range $0 < x < \pi$.

Deduce that
$$\frac{1}{2} + \frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \cdots$$

Or

(ஆ)
$$f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} < x < \pi \end{cases}$$
 என்ற சார்புக்கு

பூரியர் சைன் தொடரைக் காண்க.

Find a Fourier sine series for π

$$f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} < x < \pi \end{cases}.$$

PART C —
$$(3 \times 10 = 30)$$

Answer any THREE questions.

21. மதிப்பு காண்க : $\int \cos^n x \, dx$. $\int \int \cos^n x \, dx$ -யை வருவி.

Evaluate $\int \cos^n x \, dx$ and hence deduce

$$\int_{0}^{\frac{\pi}{2}} \cos^n x \, dx \, .$$

- 22. y=mx என்ற கோடு $y^2=4ax$ என்ற பரவளையத்தை வெட்டும் போத் உருவாகும் பரப்பளவைக் காண்க. Find the area cut off from the parabola $y^2=4ax$ by the straight line y=mx.
 - 23. வரிசையை மாற்றி மதிப்பு காண்க : $\int\limits_{0}^{1}\int\limits_{y}^{2-y}xy\,dx\,dy$.

Change the order of integration in $\int_{0}^{1} \int_{y}^{2-y} xy \, dx \, dy$ and evaluate it.

24. நிறுவுக : $\beta(m,n) = 2\int\limits_0^{\frac{n}{2}} \sin^{2m-1}_{\theta} \cos^{2n-1}_{\theta} d\theta$. மதிப்பு

unition is
$$\int_{0}^{\frac{\pi}{2}} \sqrt{\tan \theta} \, d\theta.$$

Prove that $\beta(m,n) = 2\int_{0}^{\frac{\pi}{2}} \sin^{2m-1}_{\theta} \cos^{2n-1}_{\theta} d\theta$ and

hence evaluate
$$\int_{0}^{\frac{\pi}{2}} \sqrt{\tan \theta} d\theta$$
.

$$f(x) = x + x^2$$
 என்ற சார்புக்கு $(-\pi, \pi)$ என்ற இடைவெளியில் பூரியர் தொடரைக் காண்க.
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
-யை வருவி.

Find the Fourier series expansion of $f(x) = x + x^2$ in $-\pi < x < \pi$. Deduce that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.