# Cadeia Respiratória e Fosforilação Oxidativa

# ETAPAS DA RESPIRAÇÃO CELULAR



### INTRODUÇÃO

 A cadeia transportadora de elétrons (CTE) e a fosforilação oxidativa são processos interligados que ocorrem na membrana mitocondrial interna.

 Esses mecanismos são fundamentais para a geração de ATP a partir da energia armazenada nas moléculas aceptoras de elétrons (NADH e FADH2) provenientes do Ciclo de Krebs e outras vias metabólicas.

# FOSFORILAÇÃO OXIDATIVA

As reações intermediárias do metabolismo produzem NADH+H<sup>+</sup> e FADH<sub>2</sub>.

NADH e FADH<sub>2</sub> doam um par de e' a um conjunto especializado de transportadores denominados cadeia de transporte de elétrons (CTE).

# FOSFORILAÇÃO OXIDATIVA

Os e' fornecem sua energia à medida que atravessam a CTE.

Esta energia é utilizada para produção de ATP a partir de ADP e Pi.

Este processo é denominado fosforilação oxidativa.

#### CADEIA TRANSPORTADORA DE ELETRONS

- Cinco complexos enzimáticos: I, II, III, IV e V.
- Cada complexo recebe ou doa e' para transportadores móveis, como coenzima Q e citocromo c.
- Ao final da cadeia os e' combinam-se com O<sub>2</sub> formando H<sub>2</sub>O.
- O complexo ATP sintase (também chamado de complexo V) catalisa a síntese de ATP.

### **MITOCÔNDRIA**









#### **NADH**



Para cada NADH serão produzidos 2,5 ATPs



#### FADH<sub>2</sub>



Para cada FADH<sub>2</sub> serão produzidos 1,5 ATPs

#### Espaço intermembrana



Cada NADH vai produzir cerca de 2,5 ATP e cada FADH2 vai produzir cerca de 1,5 ATP.

# FOSFORILAÇÃO OXIDATIVA

## REGULAÇÃO DA FOSFORILAÇÃO OXIDATIVA

Como a relação entre ADP e ATP regula a fosforilação oxidativa?

Um aumento nos níveis de ADP sinaliza a necessidade de mais ATP

Isso estimula a atividade da ATP sintase e, consequentemente, a fosforilação oxidativa

As mitocôndrias só podem oxidar NADH e FADH quando têm uma concentração suficiente de ADP e Pi

# Inibidores da cadeia respiratória bloqueiam o fluxo de elétrons e inibem a síntese de ATP

#### **INIBIDORES**

São substâncias que atuam sobre os complexos de proteínas impedindo o transporte de elétrons.

| INIBIDOR             | Local de Atuação         |  |  |  |
|----------------------|--------------------------|--|--|--|
| *Rotenona            | *NADH Complexo I         |  |  |  |
|                      |                          |  |  |  |
|                      |                          |  |  |  |
| *Cianeto             | *Cita1ea3oxidado Comp.IV |  |  |  |
| *Monóxido de Carbono | *Cit a1e a3 reduzido     |  |  |  |

|                   | GLICÓLISE | CICLO DE<br>KREBS | SOMA | CADEIA<br>RESPIRATÓRIA |
|-------------------|-----------|-------------------|------|------------------------|
| NADH              |           |                   |      |                        |
| FADH <sub>2</sub> |           |                   |      |                        |
| ATP               |           |                   |      |                        |

Cada NADH vai produzir cerca de 2,5 ATP e cada FADH2 vai produzir cerca de 1,5 ATP.

Porque cada NADH produz 2,5 ATP e cada FADH2 fornece 1,5 ATP?

Porque cada NADH após doar os elétrons para o complexo I, resulta na liberação de 10H+. Como a cada 4H+ que passam pela a ATPsintase resulta na produção de 1ATP. 10/4 = 2,5, logo um NADH produz 2,5 ATP.

E o FADH2, após doar os elétrons para o complexo II, resulta na liberação de 6H+. Logo: 6/4=1,5 portanto cada FADH2produz 1,5 ATP.

Com isso temos um saldo total de ATP gerado por uma única molécula de glicose equivalente a:

GLICÓLISE: 2ATP + (2 NADH X 2,5) = 7ATP

CONVERSÃO DOS 2 PIRUVATOS A 2 ACETILCOA = 2 NADH X 2,5 =5ATP

CICLO DE KREBS = (3NADH X 2,5) + (1 FADH2 X 1,5) = 7,5 + 1,5 = 9 X 2= 18 +2GTP = 20 ATP

SOMANDO AS ETAPAS I, II E III TEREMOS: 7ATP + 5 ATP + 20 ATP = 32 ATP

# Bibliografia





# Bibliografia

