

Aprendizado Supervisionado Parte 2

Árvores de Decisão

Silvia Moraes

Material elaborado pelo prof. **Duncan Ruiz**

Roteiro

Relembrando
Machine Learning: Aprendizado Supervisionado
Tarefas Preditivas
Classificação & Regressão
Árvores de Decisão

Subáreas da Inteligência Artificial

Aprendizado Supervisionado

Exige que os **dados** estejam **rotulados** (anotados com suas respectivas classes/valores de saída)

Os algoritmos que seguem esse tipo de aprendizado recebem pares de valores:

os dados de entrada (x) e os valores de saída (rótulos) correspondentes (y).

Dataset Anotado

Aprendizado Supervisionado

Em um conjunto de dados (exemplos) rotulado:

 Cada dado corresponde a um indivíduo do domínio e é formado por uma tupla contendo características (features).

Atributo de entrada (atributo previsor)

sepal length	sepal width	petal length	petal widt	class
5,1	3,5	1,4	0,2	Iris-setosa
4,9	3,0	1,4	0,2	Iris-setosa
7,0	3,2	4,7	7,1	Iris-versicolor
6,4	3,2	4,5	1,5	Iris-versicolor
6,3	3,3	6,0	2,5	Iris-virginica
5,8	2,7	5,1	1,9	Iris-virginica

Atributo de saída (atributo alvo ou meta)

Rótulo (Classes)

Aprendizado Supervisionado

O objetivo é encontrar um modelo capaz de mapear os valores de entrada (x) nos valores de saída y.

Em outras palavras, que aproxime f, tal que f(x) = y.

Supervisão: ajuste usando o erro em relação à saída esperada.

Dataset Anotado

Aprendizado Supervisionado

Tarefa preditiva: encontra uma função (modelo) a partir dos dados de treino que possa ser usada para prever um rótulo (classe) ou valor de um novo exemplo.

Pode ser:

classificação (rótulos discretos) **regressão** (rótulos contínuos)

Classificação

É o processo de automaticamente atribuir rótulos a dados.

Pode ser do tipo

Binária: possui apenas duas classes

Multiclasse: possui mais de duas classes

Pode atribuir

Um único rótulo (single label) Vários rótulos (multi-label)

Regressão

É o processo de automaticamente predizer novos valores y. Neste caso, os dados são anotados com valores.

Regressão

Dataset Anotado

Classificação & Regressão com Árvores de Decisão

Classificação

Árvores de Decisão

- Método para aproximar funções discretas ou contínuas, representadas por meio de um grafo acíclico direcionado, com vértice inicial único
- Tal grafo pode ser representado por um conjunto de regras "SE...ENTÃO" (Compreensibilidade)
- Amplamente utilizado em aplicações práticas, principalmente em problemas de classificação

Exemplo de Árvore de Decisão

categorico categorico

Ontinu 1855

Tid	Restitui ção	Status Conjugal	Renda	Calote ?
1	S	Solteiro	125K	N
2	N	Casado	100K	N
3	N	Solteiro	70K	N
4	S	Casado	120K	N
5	N	Divorc.	95K	S
6	N	Casado	60K	N
7	S	Divorc.	220K	N
8	N	Solteiro	85K	S
9	N	Casado	75K	N
10	N	Solteiro	90K	S

Conjunto de Treino

Modelo: Árvore de Decisão

Exemplo de Árvore de Decisão

categorico continuo

Tid	Restitui ção	Status Conjugal	Renda	Calote ?
1	S	Solteiro	125K	N
2	N	Casado	100K	N
3	N	Solteiro	70K	N
4	S	Casado	120K	N
5	N	Divorc.	95K	S
6	N	Casado	60K	N
7	S	Divorc.	220K	N
8	N	Solteiro	85K	S
9	N	Casado	75K	N
10	N	Solteiro	90K	S

Conjunto de Treino

Modelo: Árvore de Decisão

Outro exemplo de Árvore de Decisão

categorico categorico continuo

Tid	Restitui ção	Status Conjugal	Renda	Calote ?
1	S	Solteiro	125K	N
2	N	Casado	100K	N
3	N	Solteiro	70K	N
4	S	Casado	120K	N
5	N	Divorc.	95K	S
6	N	Casado	60K	N
7	S	Divorc.	220K	N
8	N	Solteiro	85K	S
9	N	Casado	75K	N
10	N	Solteiro	90K	S

Pode existir mais de uma árvore de decisão adequada para os mesmos dados!

Exemplo de Classificação

categorico categorico

Ontinu 1855

Tid	Restitui ção	Status Conjugal	Renda	Calote ?
1	S	Solteiro	125K	N
2	N	Casado	100K	N
3	N	Solteiro	70K	N
4	S	Casado	120K	N
5	N	Divorc.	95K	S
6	N	Casado	60K	N
7	S	Divorc.	220K	N
8	N	Solteiro	85K	S
9	N	Casado	75K	N
10	N	Solteiro	90K	S

Exemplo de Classificação

Tid	Restitui ção	Status Conjugal	Renda	Calote ?
1	S	Solteiro	125K	N
2	N	Casado	100K	N
3	N	Solteiro	70K	N
4	S	Casado	120K	N
5	N	Divorc.	95K	S
6	N	Casado	60K	N
7	S	Divorc.	220K	N
8	N	Solteiro	85K	S
9	N	Casado	75K	N
10	N	Solteiro	90K	S

Restitui ção	Status Conjugal	Renda	Calote ?
N	Solteiro	75K	?
S	Casado	50K	?
N	Casado	150K	?
S	Divorc.	90K	?
N	Solteiro	40K	?
N	Casado	80K	?

Teste

Exemplo de Classificação

Tid	Restitui ção	Status Conjugal	Renda	Calote ?
1	S	Solteiro	125K	N
2	N	Casado	100K	N
3	N	Solteiro	70K	N
4	S	Casado	120K	N
5	N	Divorc.	95K	S
6	N	Casado	60K	N
7	S	Divorc.	220K	N
8	N	Solteiro	85K	S
9	N	Casado	75K	N
10	N	Solteiro	90K	S

Restitui ção	Status Conjugal	Renda	Calote ?
N	Solteiro	75K	?
S	Casado	50K	?
N	Casado	150K	?
S	Divorc.	90K	?
N	Solteiro	40K	?
N	Casado	80K	?

Dados de Teste

	Status Conjugal	Renda	Calote ?
N	Casado	80K	?

Indução de Árvores de Decisão

- Descobrir "árvore ótima" é problema NP-Difícil
- Muitas heurísticas para gerar árvores
 - Top-Down
 - Bottom-Up
 - Híbrida
 - Algoritmos Evolutivos
 - etc.

Indução Top-Down

Algoritmo de Hunt

- Assuma que D_t é o conjunto de exemplos de treino que chega ao nó t
- Assuma que $y = \{y_1, ..., y_c\}$ são os rótulos das classes
- Passo 1:
 - Se todas instâncias em D_t pertencem a mesma classe \mathcal{Y}_t , então t é um nó folha rotulado como \mathcal{Y}_t
- Passo 2:
 - Se D_t contém instâncias de mais de uma classe, um teste sobre determinado atributo é selecionado para particionar os registros em sub-conjuntos menores. Um nó é criado para cada resultado do teste e as instâncias em D_t são distribuídas por estes nós de acordo com os resultados. Aplicar algoritmo recursivamente para cada nó gerado.

Algoritmo de Hunt

Tid	Restitui ção	Status Conjugal	Renda	Calote ?
1	S	Solteiro	125K	N
2	N	Casado	100K	N
3	N	Solteiro	70K	N
4	S	Casado	120K	N
5	N	Divorc.	95K	S
6	N	Casado	60K	N
7	S	Divorc.	220K	N
8	N	Solteiro	85K	S
9	N	Casado	75K	N
10	N	Solteiro	90K	S

Indução Top-Down

- Estratégia Recursiva
- Estratégia Gulosa (greedy)
 - Divide os registros com base em teste sobre atributo que <u>otimiza localmente</u> determinado critério
- Questões de Projeto
 - Determinar como particionar os dados
 - Como <u>filtrar os dados</u> com base em um atributo?
 - Como escolher o atributo a ser utilizado?
 - Determinar quando parar de particionar

Como filtrar os dados com base em um atributo?

- Depende do tipo de atributo
 - Nominal
 - Ordinal
 - Contínuo
- Depende do número de divisões desejado
 - Binária
 - Múltipla

Divisão para atributos categóricos nominais

Múltipla: dividir com base no número de categorias

• Binária: agregar categorias em dois sub-conjuntos. Necessário encontrar a divisão ótima.

Divisão para atributos categóricos ordinais

• Múltipla: dvidir com base no número de categorias

Binária: agregar categorias em dois sub-conjuntos. Necessário encontrar a divisão ótima.

Divisão para atributos contínuos

• Múltipla: discretizar os valores em intervalos

• Binária: definir ponto de divisão

Indução Top-Down

- Estratégia Recursiva
- Estratégia Gulosa (greedy)
 - Divide os registros com base em teste sobre atributo que <u>otimiza localmente</u> determinado critério
- Questões de Projeto
 - Determinar como particionar os dados
 - Como <u>filtrar os dados</u> com base em um atributo?
 - Como <u>escolher o atributo</u> a ser utilizado?
 - Determinar quando parar de particionar

Como escolher o atributo?

Antes da divisão: 10 exemplos da classe 0 10 exemplos da classe 1

Qual atributo é melhor para dividir os dados?

Como escolher o atributo?

- Estratégia gulosa
 - Dar preferência a nós com distribuição de classe homogênea
 - Para tanto, precisamos de uma medida para quantificar impureza!

Qual o melhor atributo?

categorico Categorico continuo

Tid	Restitui ção	Status Conjugal	Renda	Calote ?
1	S	Solteiro	125K	N
2	N	Casado	100K	N
3	N	Solteiro	70K	N
4	S	Casado	120K	N
5	N	Divorc.	95K	S
6	N	Casado	60K	N
7	S	Divorc.	220K	N
8	N	Solteiro	85K	S
9	N	Casado	75K	N
10	N	Solteiro	90K	S

Qual o melhor atributo?

categorico Categorico continuo

Tid	Restitui ção	Status Conjugal	Rendim. Tributáv eis	Calote ?
1	S	Solteiro	125K	N
2	N	Casado	100K	N
3	N	Solteiro	70K	N
4	S	Casado	120K	N
5	N	Divorc.	95K	S
6	N	Casado	60K	N
7	S	Divorc.	220K	N
8	N	Solteiro	85K	S
9	N	Casado	75K	N
10	N	Solteiro	90K	S

Qual o melhor atributo?

categorico Categorico continuo

Tid	Restitui ção	Status Conjugal	Rendim. Tributáv eis	Calote ?
1	S	Solteiro	125K	N
2	N	Casado	100K	N
3	N	Solteiro	70K	N
4	S	Casado	120K	N
5	N	Divorc.	95K	S
6	N	Casado	60K	N
7	S	Divorc.	220K	N
8	N	Solteiro	85K	S
9	N	Casado	75K	N
10	N	Solteiro	90K	S

Medidas para Impureza de Nodos

Índice Gini

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

• Entropia

$$Entropy(t) = -\sum_{j} p(j | t) \log p(j | t)$$

• Erros de classificação

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

Índice Gini

• Índice Gini para um nó t:
$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

p(j | t) é a frequência relativa da classe j no nó t

- Valor $\frac{1}{\text{máximo}}$: $1 \frac{1}{\text{máximo}}$ (quando classes forem equiprováveis)
- Valor mínimo: 0 (quando todas instâncias pertencem à mesma classe)

C1	0
C2	6
Gini=	0.000

C1	1
C2	5
Gini=	0.278

C1	2
C2	4
Gini=	0.444

C1	3
C2	3
Gini=	0.500

Índice Gini

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $P(C1) = 0/6 = 0$ $P(C2) = 0/6 = 1$

P(C1) =
$$1/6$$
 P(C2) = $5/6$
Gini = $1 - (1/6)^2 - (5/6)^2 = 0.278$

P(C1) =
$$2/6$$
 P(C2) = $4/6$
Gini = $1 - (2/6)^2 - (4/6)^2 = 0.444$

Computando uma divisão com o Índice Gini

 Quando um nó p é dividido em k partições (filhos), a qualidade dessa divisão é dada por:

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

onde,

 n_i = número de exemplos no filho in = número de exemplos no nó pai p

Computando Índice Gini para Atributos Binários

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

	Pai
C1	6
C2	6
Gini	= 0.500

Gini(N1) = 1 -
$$[(5/7)^2 + (2/7)^2]$$

= 0.4082

Gini(N2) = 1 -
$$[(1/5)^2 + (4/5)^2]$$

= 0.32

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

Árvore elementar: Calculando o Índice GINI

categorico continuo

Tid	Restitui ção	Status Conjugal	Renda	Calote ?
1	S	Solteiro	125K	N
2	N	Casado	100K	N
3	N	Solteiro	70K	N
4	S	Casado	120K	N
5	N	Divorc.	95K	S
6	N	Casado	60K	N
7	S	Divorc.	220K	N
8	N	Solteiro	85K	S
9	N	Casado	75K	N
10	N	Solteiro	90K	S

N
Acertos = 7
Erros = 3
70%

Gini =
$$1 - (7/10)^2 - (3/10)^2$$
Gini = $1 - 49/100 - 9/100$
Gini = $(100 - 49 - 9)/100$
Gini = $0,42$

Atributos Categóricos: Calculando o Índice GINI

categorico categorico

ontill	dasse

Tid	Restitui ção	Status Conjugal	Renda	Calote ?
1	S	Solteiro	125K	N
2	N	Casado	100K	N
3	N	Solteiro	70K	N
4	S	Casado	120K	N
5	N	Divorc.	95K	S
6	N	Casado	60K	N
7	S	Divorc.	220K	N
8	N	Solteiro	85K	S
9	N	Casado	75K	N
10	N	Solteiro	90K	S

Conjunto de Treino

Ginisplit = 0 + 0.34

Ginisplit = 0,34

Atributos Categóricos: Calculando Índice GINI

- Para cada valor distinto, apurar população para cada classe do conjunto de dados
- Usar a matriz com populações para tomar a decisão

Particionamento em n ramos

	TipoVeículo						
	Familiar Esportivo Luxo						
C1	1	2	1				
C2	4 1 1						
Gini	0.393						

Particionamento em 2 ramos (busca pela melhor divisão de valores)

	TipoV	eículo		TipoVeículo		
	{Esportivo , Luxo} {Familiar}			{Esportivo}	{Familiar ,Luxo}	
C1	3	1	C1	2	2	
C2	2 4		C2	1	5	
Gini	0.4	00	Gini	0.419		

Atributos Categóricos: Calculando o Índice GINI

categorico Categorico continuo

Tid	Restitui ção	Status Conjugal	Renda	Calote ?	
1	S	Solteiro	125K	N	
2	N	Casado	100K	N	
3	N	Solteiro	70K	N	
4	S	Casado	120K	N	
5	N	Divorc.	95K	S	
6	N	Casado	60K	N	
7	S	Divorc.	220K	N	
8	N	Solteiro	85K	S	
9	N	Casado	75K	N	
10	N	Solteiro	90K		

Atributos Contínuos: Calculando o Índice GINI

- Para a eficiência computacional: para cada atributo,
 - Classificar valores existentes
 - Pesquisar linearmente estes valores, apurando a população envolvida, e calculando o índice GINI
 - Escolher a posição de particionamento que apresenta o menor índice GINI

Induzindo o 20. Nível da árvore de decisão

categorico categorico continuo

Tid	Restitui ção	Status Conjugal	Renda	Calote ?	
1	S	Solteiro	Solteiro 125K		
2	N	Casada	100K	N	
3	N	Solteiro	70K	N	
4	S	Casado	120K	N	
5	N	Divorc.	95K	S	
0	N	Casado	00K	N	
7	S	Divorc.	220K	N	
8	N	Solteiro	85K	S	
_	N	Canada	75V	N	
10	N	Solteiro	90K	S	

Induzindo o 3o. Nível da árvore de decisão

titui Status Rendim.
Conjugal Tributáv eis

Tid	Restitui ção	Status Conjugal	Rendim. Tributáv eis	Calote ?	
	3	Soliciro	125K		
•		Concilo	12010		
2	N	Casado	100K	N	
3	N	Solteiro	70K	N	
1		Casada	1201/	N	
5	N	Divorc.	95K	S	
0	iv	Casado	OUN	N	
1	3	Divorc.	220K	14	
8	N	Solteiro	85K	S	
		G 1	751/		
10	N	Solteiro	90K	S	

Conjunto de Treino

Ginisplit = 0,0

Comparação entre os critérios de divisão

Para um problema de 2 classes:

Indução Top-Down

- Estratégia Recursiva
- Estratégia Gulosa (greedy)
 - Divide os registros com base em teste sobre atributo que <u>otimiza localmente</u> determinado critério
- Questões de Projeto
 - Determinar como particionar os dados
 - Como <u>filtrar os dados</u> com base em um atributo?
 - Como escolher o atributo a ser utilizado?
 - Determinar quando parar de particionar

Critérios de Parada para Indução Top-Down

- Parar de expandir nós quando:
 - Todas instâncias forem da mesma classe (homogeneidade de classe)
 - Todos valores de atributos forem iguais (homogeneidade de instâncias)
 - Atingir valor satisfatório do critério de divisão (parâmetro)
 - Atingir profundidade máxima (parâmetro)
 - ...

Vantagens e Desvantagens de Árvores de Decisão

- Vantagens:
 - Fácil de compreender (muito utilizadas por médicos!)
 - Possível gerar regras com base nas árvores
 - Custo baixo de geração do modelo: $O(m \cdot N \log N)$
 - Extremamente rápida para classificar novas instâncias

• Desvantagens:

- Podem tornar-se muito grandes
- Sujeitas a *overfitting* (super-ajuste aos dados)
- Geram apenas hiperplanos paralelos aos eixos
 - Logo, não lidam bem com atributos correlacionados (por quê?)
- Solução localmente ótima pode estar longe do ótimo global

Espaço de Hipóteses

 Cada percurso da raiz até o nó folha representa uma regra de classificação

- Cada nó folha
 - Está associado a uma classe
 - Corresponde a uma região do domínio dos atributos
 - Hiper-retângulo
 - Intersecção de hiper-retângulos é vazia
 - União é o espaço total

Espaço de Hipóteses

De árvores para regras

Regras: disjunções de conjunções lógicas

- **1.** Se $A \le a_1$ E $B \le b_2$ Então Classe = Vermelha OU
- 2. Se A > a₁ E B ≤ b₃ Então Classe = Laranja
 OU

Exercício: complete as regras!

•••

Busca no Espaço de Hipóteses

- Não há backtracking
 - Impureza é minimizada localmente em cada nó!
 - Suposição: soma dos ótimos locais aproxima bem o ótimo global
- Espaço de hipóteses completo
 - A função objetivo certamente está contida nele
 - Sem *bias* de restrição
 - Proporcionando chances de overfitting
 - Com bias de busca (preferência)
 - Árvores com atributos que geram maior redução de impureza estão acima na árvore
 - Tal bias implica em tendência para árvores mais curtas

Underfitting and Overfitting

Underfitting: quando o modelo é simples demais, ambos erros, de treino e de teste, são grandes.

Regressão

Árvores de Decisão para Problemas de Regressão

- Árvores de Regressão
 - Folha contém **média dos valores** do atributo alvo dos exemplos de treino que chegam até lá

Árvores de Decisão para Problemas de Regressão

Árvores de Modelos

• Folha contém função de regressão (não-)linear calculada sobre as instâncias que

chegam até lá

Exemplo de Árvore de Regressão

categorico Categorico continuo

Tid	Restitui ção	Status Conjugal		Atraso	
1	S	Solteiro	125K	0	
2	N	Casado	100K	1	
3	N	Solteiro	70K	30	
4	S	Casado 120K		2	
5	N	Solteiro	95K	24	
6	N	Casado	Casado 60K 3		
7	S	Solteiro 220K		1	
8	N	Solteiro	85K	36	
9	N	Casado 75K		3	
10	N	Solteiro	Solteiro 90K 30		

Conjunto de Treino

Modelo: Árvore de Regressão

Exemplo de Árvore de Regressão

Tid	Restitui ção	Status Conjugal	Renda	Atraso	Atraso Predito	Diferen ça
1	S	Solteiro	125K	0	1	1
2	N	Casado	100K	1	1	0
3	N	Solteiro	70K	30	30	0
4	S	Casado	120K	2	1	1
5	N	Solteiro	95K	24	30	<mark>6</mark>
6	N	Casado	60K	3	3	0
7	S	Solteiro	220K	1	1	0
8	N	Solteiro	85K	36	30	<mark>6</mark>
9	N	Casado	75K	3	3	0
10	N	Solteiro	90K	30	30	0

Erro médio absoluto:

$$(1+1+6+6)/10=1,4$$

Raiz do erro médio quadrático:

$$SQRT((1+1+36+36)/10) = 2,72$$

Exemplo de Árvore Modelo

Conjunto de Treino

Modelo: Árvore de Regressão

Exemplo de Árvore Modelo

Tid	Restitui ção	Status Conjugal	Renda	Atraso	Atraso Predito	Diferen ça
1	S	Solteiro	125K	0	14,3874	14,3874
2	N	Casado	100K	1	0,1753	0,8247
3	N	Solteiro	70K	30	29,4118	0,5882
4	S	Casado	120K	2	-3,0467	5,0467
5	N	Solteiro	95K	24	25,7668	1,7668
6	N	Casado	60K	3	6,653	3,653
7	S	Solteiro	220K	1	-0,9171	1,9171
8	N	Solteiro	85K	36	27,2248	8,7752
9	N	Casado	75K	3	4,466	1,466
10	N	Solteiro	90K	30	26,4958	3,5042

Erro médio absoluto: 4,193

Raiz do erro médio quadrático: 5,874

Árvores de Decisão para Problemas de Regressão

- Principal mudança: medida de divisão de nós
 - Exemplo: standard deviation reduction (SDR)
 - Mesma fórmula genérica do "ganho"
 - Em vez de entropia ou Gini, apenas calcular o desvio padrão do atributo alvo para as instâncias de cada nó e ponderá-las pelas frequências

$$SDR = SD(v_{pai}) - \mathop{a}\limits_{t=1}^{k} \frac{N(v_t)}{N} SD(v_t)$$

Árvore elementar: Calculando o Índice GINI

categorico categorico continuo

Tid	Restitui ção	Status Conjugal	Renda	Atraso
1	S	Solteiro	125K	0
2	N	Casado	100K	1
3	N	Solteiro	70K	30
4	S	Casado	120K	2
5	N	Solteiro	95K	24
6	N	Casado	60K	3
7	S	Solteiro	220K	1
8	N	Solteiro	85K	36
9	N	Casado	75K	3
10	N	Solteiro	90K	30

Média 13,00
Desvio Padrão 14,93

Conjunto de Treino

Atributos Categóricos: Calculando o Índice GINI

categorico Categorico continuo

Tid	Restitui ção	Status Conjugal	Renda	Atraso
1	S	Solteiro	125K	0
2	N	Casado	100K	1
3	N	Solteiro	70K	30
4	S	Casado	120K	2
5	N	Solteiro	95K	24
6	N	Casado	60K	3
7	S	Solteiro	220K	1
8	N	Solteiro	85K	36
9	N	Casado	75K	3
10	N	Solteiro	90K	30

Conjunto de Treino

Atributos Categóricos: Calculando o Índice GINI

categorico categorico continuo

Tid	Restitui ção	Status Conjugal	Renda	Atraso
1	S	Solteiro	125K	0
2	N	Casado	100K	1
3	N	Solteiro	70K	30
4	S	Casado	120K	2
5	N	Solteiro	95K	24
6	N	Casado	60K	3
7	S	Solteiro	220K	1
8	N	Solteiro	85K	36
9	N	Casado	75K	3
10	N	Solteiro	90K	30

Conjunto de Treino

Média	20,17	Média	2,25
Desvio Padrão	15,70	Desvio Padrão	0,96
Número valores	6	Número valores	4

$$SDR = 14,93 - 6/10*15,7 - 4/10*0,96$$

$$SDR = 14,93 - 9,42 - 0,38$$

$$SDR = 5,13$$

Considere a seguinte árvore de regressão e a tabela logo a seguir, cujo atributo alvo é Rendimento_Anual.

Considere a seguinte árvore de regressão e a tabela logo a seguir, cujo atributo alvo é Rendimento_Anual.

Considere a seguinte árvore de regressão e a tabela logo a seguir, cujo atributo alvo é Rendimento_Anual.

Considere a seguinte árvore de regressão e a tabela logo a seguir, cujo atributo alvo é Rendimento_Anual.

Considere a seguinte árvore de regressão e a tabela logo a seguir, cujo atributo alvo é Rendimento_Anual.

Considere a seguinte árvore de regressão e a tabela logo a seguir, cujo atributo alvo é Rendimento_Anual.

Considere a seguinte árvore de regressão e a tabela logo a seguir, cujo atributo alvo é Rendimento_Anual.

Considere a seguinte árvore de regressão e a tabela logo a seguir, cujo atributo alvo é Rendimento_Anual.

Exemplos de Algoritmos

- ID3 (Quinlan 1986)
 - Iterative Dichotomiser 3
 - Lida apenas com atributos nominais
 - Medida de impureza: ganho de informação
 - Tipo de poda: pré-poda (limite de instâncias)
- C4.5 (Quinlan 1993)
 - J48 (Weka), C5.0 (comercial)
 - Atributos discretos e contínuos
 - Medida de impureza: gain ratio
 - Tipo de poda: pós-poda (error-based pruning)

Exemplos de Algoritmos

- CART (Breiman et al. 1984)
 - Classification and Regression Trees
 - Árvores de Classificação e Regressão
 - Atributos discretos e contínuos
 - Divisões sempre binárias (agrega categorias)
 - Medida de impureza: índice Gini / twoing / sum of squares
 - Tipo de poda: pós-poda (cost-complexity pruning)

Exemplos de Algoritmos

- M5 (Quinlan 1992)
 - M5P (Weka)
 - Árvores de Regressão e Árvores de Modelos
 - Atributos discretos e contínuos
 - Medida de impureza: SDR
 - Tipo de poda: erro corrigido (leva em conta o número de parâmetros dos modelos lineares)