



# Open-Source, Cross-Platform Workflow for MRI Data Acquisition and Image Reconstruction Based on the Pulseg Framework

Team Name: Pulseq Rocks

**Abstract**: #0948 **Original authors**:

 Qingping Chen, Frank Zijlstra, Patrick Hucker, Sebastian Littin, and Maxim Zaitsev, from University Medical Center Freiburg, Freiburg, Germany

#### Reproducers:

 Amaya Murguia, Andrea Jacobson, David Frey, Scott Peltier, and Jon-Fredrik Nielsen, from the University of Michigan, Michigan, USA

 Pengcheng Xu and Berkin Bilgic, from Massachusetts General Hospital, Boston, USA





# Declaration of Financial Interests or Relationships

Speaker Name: Qingping Chen

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.



#### Introduction

- Motivation
  Data comparison & pooling
- Open-source, vendorindependent, easy-to-learn workflow
  - Data acquisition Pulseq<sup>1</sup>
  - Image reconstruction ISMRMRD<sup>2</sup> Gadgetron<sup>3,4</sup>



Challenge 2024



#### Methods





#### Sequences

- MPRAGE with 2-fold GRAPPA and noise scan
- Multi-slice EPI with 3-echo navigator and ramp sampling
- Objects: phantom & human brain







#### • Measurements:

| center   | vendor  | scanner      | version      | # coil<br>channel |
|----------|---------|--------------|--------------|-------------------|
| Freiburg | Siemens | Trio 3T      | VB19A        | 12                |
|          |         | Prisma 3T    | VE11C, XA60A | 20                |
|          |         | Cima.X 3T    | XA61A        | 20                |
| Boston   | Siemens | Prisma 3T    | XA30A        | 20                |
| Michigan | GE      | SIGNA UHP 3T | -            | 32                |

#### Evaluation

- > Pulseq- vs. vendor-based sequence
- Gadgetron- vs. vendor-based reconstruction



# Networking phase









# Results: phantom @Siemens, Freiburg









# Results: in vivo @Siemens, Freiburg









### Results: @Siemens, Boston









### Results: @Siemens, Boston









### Results: @GE, Michigan







**MPRAGE:** 

GE: 256\*256\*192

Pulseq: 256\*240\*192

EPI:

GE: 128\*128\*48 (Interpolated)

Pulseq: 80\*80\*48

GE = GE-provided sequence GT = Gadgetron online = GE-provided online recon



#### Results: @GE, Michigan







**MPRAGE:** 

GE: 256\*256\*192

Pulseq: 256\*240\*192

EPI:

GE: 128\*128\*48 (Interpolated)

Pulseq: 80\*80\*48

GE = GE-provided sequence GT = Gadgetron online = GE-provided online recon



#### Conclusion





# Successful replication

- across system versions
  (VB17A, VE11C, XA30A, XA60A, XA61A)
- across research centers (Freiburg, Boston, Michigan)
- across vendors (Siemens, GE)
- Learned a lot about different systems and setups



#### References



- [1] Van Horn JD, Toga AW. Multisite neuroimaging trials. Curr Opin Neurol. 2009;22(4):370-378.
- [2] Layton KJ, Kroboth S, Jia F, et al. Pulseq: A rapid and hardware-independent pulse sequence prototyping framework. Magn Reson Med. 2017;77(4):1544-1552.
- [3] Nielsen JF, Noll DC. TOPPE: A framework for rapid prototyping of MR pulse sequences. Magn Reson Med. 2018;79(6):3128-3134.
- [4] Hansen MS, Sørensen TS. Gadgetron: An open source framework for medical image reconstruction. Magn Reson Med. 2013;69(6):1768-1776.
- [5] Xue H, Inati S, Sørensen TS, Kellman P, Hansen MS. Distributed MRI reconstruction using Gadgetron-based cloud computing. Magn Reson Med. 2015;73(3):1015-1025.
- [6] Inati SJ, Naegele JD, Zwart NR, et al. ISMRM Raw data format: A proposed standard for MRI raw datasets. Magn Reson Med. 2017;77(1):411-421. doi:10.1002/mrm.26089
- [7] Mugler JP. Rapid Three-dimential T1-weighted MR Imaging with the MP-RAGE sequence. J Magn Reson Imaging. 1991;1(561-567).
- [8] Stehling MK, Turner R, Mansfield P. Echo-planar imaging: Magnetic resonance imaging in a fraction of a second. Science (80-). 1991;254(5028):43-50.
- [9] Griswold MA, Jakob PM, Heidemann RM, et al. Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA). Magn Reson Med. 2002;47(6):1202-1210.
- [10] GitHub. Accessed November 8 2023. <a href="https://github.com/pulseq/Pulseq-Rocks-2023-24-ISMRM-Reproducibility-Challenge/tree/main">https://github.com/pulseq/Pulseq-Rocks-2023-24-ISMRM-Reproducibility-Challenge/tree/main</a>.







#### **Acknowledgements:**

Berkin Bilgic Frank Zijlstra Jon-Fredrik Nielsen

Moritz Zaiss

Qiang Liu

Sebastian Littin

Borjan Gagoski Imam Shaik

Juergen Hennig

Naveen Murthy

Maxim Zaitsev

Will Grissom

Douglas Noll

Jeff Fessler

Mojtaba Shafiekhani

Niklas Wehkamp

Scott Peltier

Yogesh Rathi



### THANK YOU FOR YOUR ATTENTION!



