第一次作业

凌春阳 1801213692

一、问题描述

频繁推导子树挖掘(Frequent induced subtree mining)。参考论文 Lei Zou, Yansheng Lu, Huaming Zhang, Rong Hu: PrefixTreeESpan: A Pattern Growth Algorithm for Mining Embedded Subtrees. WISE 2006: 499-505.

二、算法设计与实现

算法的主要流程如论文中所述。先找到所有一阶频繁的 label,对于每个 label,构造其投影数据库,接下来递归调用过程挖掘高阶频繁子树。

Algorithm PrefixTreeESpan

Input: A tree database D, minimum support threshold min_sup

Output: All frequent subtree patterns

Methods:

- 1) Scan D and find all frequent label b.
- 2) For each frequent label b
- Output pattern tree <b -1>;
- Find all Occurrences of b in Database D, and construct <b -1>-projected database through collecting all corresponding *Project-Instances* in D;
- 5) call Fre(<b -1>, 1, ProDB(D, <b -1>), min_sup).

Function $Fre(S, n, ProDB(D,S), min_sup)$

Parameters: S: a subtree pattern; n: the length of S; ProDB(D,S): the <S>-projected database; min_sup : the minimum support threshold.

Methods:

- 1) Scan *ProDB(D,S)* once to find all frequent *GEs b*.
- 2) For each GE b
- 3) extent S by b to form a subtree pattern S', and output S'.
- Find all Occurrences of b in ProDB(D,S), and construct < S' > -projected database through collecting all corresponding Project- Instances in ProDB(D,S);
- 5) call $Fre(S', n+1, ProDB(D, S'), min_sup)$.

Fig. 5. Algorithm PrefixTreeESpan

在递归函数 Fre 中,首先找到所有频繁的增长因子(GE)。对于每个增长因子,扩充频繁子树,再产生其对应的投影数据库,就得到了更高一阶的频繁模式。

Induced subtree 和 embedded subtree 的不同之处就在于增长因子的选择, induced subtree 只有前缀树上的直接子节点可以作为增长因子, 而

embedded subtree 可以将所有子孙结点都作为增长因子,因此搜索空间会 大一些,产生的频繁模式会更多一些。

在代码实现中,主要用到的一些类包括 Record, ProjectInstance, ProjectDB。

```
| Class Record:
| """ 原始数据库中的一条记录
| 包含原始的一行string表示,including -1 tag. 每个结点用其索引作为id
| 并计算每个结点的partner,用来表示该结点范围
| 每个结点的children,方便进行induced subtree扩展
| """
| 投影数据库类
| pattern_tree: 对应的频繁模式
| instances: 一条ProjectInstance
| GEs: 所有 legal growth elements 及其计数
| """
| 化配象 ProjectInstance:
| """ 投影数据库中的一个实例
| tid: 来自于原始数据库中的哪条记录
| pattern_tree_nodes: 记住产生该模式的所有结点,便于寻找GE
| """
```

三、实验结果

首先构造了论文中简单的测试数据,验证程序的正确执行。

接下来在四个数据上进行了实验。对于 D10, T1M, F5 三个数据集,设置的五组支持度为 1%, 0.8%, 0.6%, 0.4%, 0.2%;对于 CS1og 数据集,由于其频繁模式的支持度都比较高,参考论文中的指标,设置的五组支持度为3.0%, 2.5%, 2.0%, 1.5%, 1.0%。

1) D10

Min_sup(%)	1	0.8	0.6	0.4	0.2
Patterns	176	229	344	563	1487
Time (s)	9. 7	11.2	14. 5	17. 2	21.6

2) T1M

Min_sup(%)	1	0.8	0.6	0.4	0.2
Patterns	85	101	138	227	417
Time (s)	68. 1	77. 0	80. 2	103.3	119.5

3) F5

Min_sup(%)	1	0.8	0.6	0.4	0.2
Patterns	149	176	225	321	649
Time (s)	8.6	9.3	10. 1	11.2	13. 2

4) CS1og

Min_sup(%)	3.0	2.5	2.0	1.5	1.0
Patterns	33	50	74	110	216
Time (s)	8.4	9.0	10. 2	13. 7	26. 2

