МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Программирование»

Тема: Обзор стандартной библиотеки

Студент гр. 0382	Павлов С.Р
Преподаватель	Берленко Т.А

Санкт-Петербург 2021

Цель работы.

Изучить и освоить функционал стандартной библиотеки языка Си.

Задание.

Напишите программу, на вход которой подается массив целых чисел длины 1000.

Программа должна совершать следующие действия:

- посчитать время, за которое будет совершена сортировка, используя при этом функцию стандартной библиотеки
- отсортировать массив с помощью алгоритма "сортировка пузырьком"
- отсортировать массив с помощью алгоритма "быстрая сортировка" (quick sort), используя при этом функцию стандартной библиотеки
- посчитать время, за которое будет совершена сортировка, используя при этом функцию стандартной библиотеки
- вывести отсортированный массив (элементы массива должны быть разделены пробелом)
- вывести время, за которое была совершена сортировка пузырьком
- вывести время, за которое была совершена быстрая сортировка

Отсортированный массив, время сортировки пузырьком, время быстрой сортировки должны быть выведены с новой строки, при этом элементы массива должны быть разделены пробелами.

Выполнение работы.

В главной функции *int main()*, инициализируются переменные horal_1 и horal_2 типа *float*, затем целочисленый массив *array* и переменна *i* типа *int*. Затем пользователю предлагается ввести массив 1000-и целочисленный чисел. Затем функция *float bubble_sort(int* array)*, производит сортировку пузырьком, данного масива, и возвращает время в секундах, на исполнее данной

сортировки, это реализуется с помощью функции clock(), начало и конец отчета времени соответственно записываются в переменные start и end типа $clock_t$ их разница является кол-вом тактов для выполнения сортировки. Далее полученное кол-во тактов делится на $clocks_per_sec$, и затем функция возвращает число типа float, являющиеся кол-вом времени затраченым на сортировку в секундах.

Следующая функция быстрой сортировки *qsort*, реализуется с помощью функции стандартной библиотеки (*stdlib.h*), на вход функция получает полученый копию изначального не отсортированого массива, его размер, размер целочисленого типа, и функцию компоратора *qsort_compare(const void *pa, const void *pb)*. Далее с помощью выше описаного метода, измеряется время работы быстрой сортировки. Затем функция выводит отсортированый массив, затем время пузырьковой и быстрой сортировок в секундах.

Разработанный программный код смотрите в приложении А.

Тестирование.

Результаты тестирования представлены в табл. 1.

Таблица 1 — Результаты тестирования.

	Входные данные	Выходные данные	Коментарии
1.	827 888 915 488 (далее	2 3 3 3 4 5 (далее	Программа
	случайно сгенерирование	отсортированый массив чисел)	работает верно
	остальные 1000 чисел)	0.002563	
		0.000092	
3.	261 84 934 896 929 551 457 396 624	261 84 934 896 929 551 457 396	Программа
	668	624 668	работает верно
		0.000001	
		0.000001	

Выводы.

Была изучена стандартная библиотека языка Си.

Разработана программа использующая функции библиотеки для сортировки и посчитывания времени сортировки.

Так же в ходе работы было выявлено значительное опережение в скорости алгоритма функции быстрой сортировки над сортировкой пузырьком.