Image Dataset:

https://www.kaggle.com/datasets/gunavenkatdoddi/eye-diseases-classification/data

Glaucoma Retinal Image

Proposed Methodology

A. IMAGE ENHANCEMENT method using Gaussian-CLAHE

CODE:

import cv2
import numpy as np
from IPython.display import display, Image
import matplotlib.pyplot as plt

```
# Load the glaucoma eye color image
image = cv2.imread('left eye.jpg')
# Convert the image to grayscale for processing
gray = cv2.cvtColor(image, cv2.COLOR BGR2GRAY)
# Noise Reduction: Apply Gaussian filtering to reduce noise
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
# CLAHE (Contrast Limited Adaptive Histogram Equalization)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
# Apply CLAHE independently to each color channel
enhanced channels = [clahe.apply(image[:, :, i]) for i in range(3)]
enhanced image = cv2.merge(enhanced channels)
# Display the original and enhanced images in the Jupyter Notebook
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.title('Original Image')
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.axis('off')
plt.subplot(1, 2, 2)
plt.title('Enhanced Image')
plt.imshow(cv2.cvtColor(enhanced image, cv2.COLOR BGR2RGB))
plt.axis('off')
plt.show()
```

OUTPUT:

B. IMAGE SEGMENTATION method with CDOD-Glaucoma

CODE:

import cv2
import numpy as np
from IPython.display import display, Image
import matplotlib.pyplot as plt

original_image = cv2.imread('left_eye.jpg', cv2.IMREAD_COLOR)
image = cv2.imread('left_eye.jpg', cv2.IMREAD_COLOR)

Convert the image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

We will use a circular Hough transform to detect the optic disc.
circles = cv2.HoughCircles(
 gray,
 cv2.HOUGH GRADIENT,

```
dp=1,
  minDist=30,
  param1=100,
  param2=30,
  minRadius=10,
  maxRadius=50
)
if circles is not None:
  circles = np.uint16(np.around(circles))
  for i in circles[0, :]:
     # circle around the optic disc in red
     cv2.circle(image, (i[0], i[1]), i[2], (0, 0, 255), 2)
, binary vessels = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
# Combine the optic disc and blood vessel segmentation for glucoma detection.
glaucoma regions = cv2.bitwise and(image, image, mask=binary vessels)
# Display the original color image, segmented optic disc, and detected
glaucoma regions
plt.figure(figsize=(15, 5))
plt.subplot(1, 4, 1)
plt.title('Original Color Image')
plt.imshow(cv2.cvtColor(original image, cv2.COLOR BGR2RGB))
plt.axis('off')
plt.subplot(1, 4, 2)
plt.title('Optic Disc Segmentation')
```

plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.axis('off')

plt.subplot(1, 4, 3)
plt.title('Glaucoma-affected Regions')
plt.imshow(cv2.cvtColor(glaucoma_regions, cv2.COLOR_BGR2RGB))
plt.axis('off')
plt.show()

OUTPUT:

IMAGE ENHANCEMENT:

Existing Output:

Proposed Output:

IMAGE SEGMENTATION:

Existing Output:

Proposed Output:

Comparison Table

Proposed vs Existing (Enhancement)

Criteria	Proposed Approach (Gaussian-CLAHE)	Existing Approach (Contrast Stretching)
Contrast	Uses CLAHE for adaptive	Utilizes linear contrast
Enhancement	contrast enhancement,	stretching to expand the
	improving visibility of details	entire intensity range,
	in both dark and bright regions.	enhancing global contrast.
Detail	Preserves fine details in the	May lead to some loss of
Preservation	image while enhancing	fine details as it stretches the
	contrast, maintaining intricate	entire intensity range
	features.	uniformly.
Adaptability to	Adapts to local contrast,	Applies a global contrast
Variance	making it suitable for images	adjustment, less suitable for
	with non-uniform illumination	images with non-uniform
	and varying contrast.	illumination.
Risk of Over-	Less prone to over-	Prone to over-enhancement
Enhancement	enhancement, as CLAHE	in bright regions, potentially
	limits contrast enhancement in	causing clipping and loss of
	local areas, reducing the risk of	information.
	artifacts.	
Dynamic Range	Effectively extends the	Extends the dynamic range
Adjustment	dynamic range in a balanced	but may not balance it as
	manner, improving visibility of	effectively, leading to a
	a wide range of intensities.	wider but less balanced
		range.

Proposed vs Existing (Segmentation)

Criteria	Proposed Approach (CDOD- Glaucoma)	Existing Approach (Thresholding)
Detail Preservation	The CDOD-Glaucoma approach aims to preserve fine details in retinal images.	Thresholding may not effectively preserve fine details and can lead to information loss.
Adaptability	CDOD-Glaucoma adapts to the local characteristics of retinal images, making it suitable for images with varying features and illumination.	Thresholding is a global approach and may not adapt well to images with non-uniform illumination.
Segmentation Complexity	The proposed approach involves multiple steps and techniques, potentially offering more sophisticated segmentation.	Thresholding is a straightforward technique that may not handle complex images as effectively.
Theoretical Benefits	Theoretical benefits of CDOD-Glaucoma include improved accuracy, detail preservation, adaptability, and complex image handling.	Thresholding provides basic segmentation but may not meet the demands of complex medical image analysis.
Typical Applications	CDOD-Glaucoma is well-suited for medical images, including retinal images, and any images requiring accurate glaucoma segmentation.	Thresholding is a basic technique used for simpler segmentation tasks.

Enhancement Implementation link:

https://colab.research.google.com/drive/1mVy0FXMcZ9Yl2xNAE3QmGj746ZCtrLR7?usp=sharing

Segmentation Implementation link:

https://colab.research.google.com/drive/1Kb-GqGcZXexsUNk5lQaOfkJVLh3Wds4g?usp=sharing