EE185523

Control of Mobile Robots

Yurid Eka Nugraha
TSP DTE FTEIC ITS

Proximity-graph

 \triangleright We will focus on the case when the graph is a Δ -disk proximity graph, that is, where

$$\{i,j\} \in E \leftrightarrow x_i - x_j \le \Delta$$

- ➤ If the robots are equipped with omnidirectional range sensors, they can only detect neighboring robots that are close enough
- ➤ Naturally, graphs are *dynamic*

- ➤ What makes the multirobot problem challenging is that the agents' movements can no longer be characterized by purely combinatorial interaction conditions
- \triangleright Suppose single integrator $\dot{x}_i(t) = u_i(t)$
- \succ Control law in the form of $u_i(t) = \sum_{j \in N_{\sigma}(i)} f(x_i(t) x_j(t))$
- > Static interaction graph?

Subset of neighbors

Values of information

- > Not all information has to be considered
- \triangleright Symmetric indicator function $\sigma(i,j) = \sigma(j,i) \in \{0,1\}$
- Suppose antisymmetric control law

$$f\left(x_i(t) - x_j(t)\right) = -f\left(x_j(t) - x_i(t)\right), \forall \{v_i, v_j\}$$

> Range-based sensors: only based on relative-states

Cooperative robotics

 \triangleright p-dimensional position of agent i be given by

$$x_i(t) = [x_{i,1}(t), \dots, x_{i,p}(t)]^T, i = 1, \dots, n$$

- ➤ If (interaction) graphs are always connected **in each time**, then consensus problem is solved
- > However, this is not always the case

Dynamic interaction graphs

EE185523 2022E - 7

EE185523

Control of Mobile Robots

Weighted graph-based feedback

Yurid Eka Nugraha
TSP DTE FTEIC ITS

Nonlinear edge weight

- > How nonlinear edge weights affect some properties
- Suppose

Edge tension

- > Assumption: static interaction graph
- \triangleright Edge vector between agents i and j: $l_{ij}(x) = x_i x_j$
- \triangleright Suppose ϵ -interior of a δ -constrained realization:

$$D_{G,\delta}^{\epsilon} = \{ x \in \mathbb{R}^{pn} | \| l_{ij} \| \le \delta - \epsilon, \forall \{i,j\} \in E \}$$

 \triangleright An edge tension $\mathcal{V}_{ij}(\delta, x)$ is defined as (one example of 'consensus')

$$\mathcal{V}_{ij}(\delta, x) := \begin{cases} \frac{\left\|l_{ij}(x)\right\|^2}{\delta - \left\|l_{ij}(x)\right\|}, & \text{if } \{i, j\} \in E\\ 0, & \text{otherwise} \end{cases}$$

Edge tension $\mathcal{V}_{ij}(\delta, x)$

$$\mathcal{V}_{ij}(\delta, x) = \begin{cases} \frac{\left\|l_{ij}(x)\right\|^2}{\delta - \left\|l_{ij}(x)\right\|}, & \text{if } \{i, j\} \in E\\ 0, & \text{otherwise} \end{cases}$$

$$\frac{\partial \mathcal{V}_{ij}(\delta, x)}{\partial x_i} = \begin{cases} \frac{\left(2\delta - \left\|l_{ij}(x)\right\|\right)(x_i - x_j)}{\left(\delta - \left\|l_{ij}(x)\right\|\right)^2}, & \text{if } \{i, j\} \in E\\ 0, & \text{otherwise} \end{cases}$$

Edge tension $\mathcal{V}_{ij}(\delta, x)$

$$\mathcal{V}_{ij}(\delta, x) = \begin{cases} \frac{\left\|l_{ij}(x)\right\|^2}{\delta - \left\|l_{ij}(x)\right\|}, & \text{if } \{i, j\} \in E\\ 0, & \text{otherwise} \end{cases}$$

- $\triangleright \mathcal{V}_{ij}(\delta, x)$ will be infinite if (when) $||l_{ij}(x)|| = \delta$
- > However, we can prevent the function from reaching infinity
- "All other edges have length zero"
- > Total edge tension: $\mathcal{V}(\delta, x) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathcal{V}_{ij}(\delta, x)$
- \succ As ${\mathcal V}$ decreases, no edge distances will tend to δ

Main SIG theorem

Theorem 7.2:

Consider a connected SIG with initial condition $x_0 \in \mathcal{D}_{G,\delta}^{\epsilon}$. Then the multiagent system under control law

$$\dot{x}_{i} = -\sum_{j \in \mathcal{N}_{i}} \frac{\left(2\delta - \left\|l_{ij}(x(t))\right\|\right)}{\left(\delta - \left\|l_{ij}(x(t))\right\|\right)^{2}} (x_{i}(t) - x_{j}(t))$$

converges to static value \bar{x}

Main SIG theorem

'Connectivity maintenance':

$$\dot{x}_{i} = -\sum_{j \in \mathcal{N}_{i}} \frac{\left(2\delta - \left\|l_{ij}(x(t))\right\|\right)}{\left(\delta - \left\|l_{ij}(x(t))\right\|\right)^{2}} (x_{i} - x_{j})$$

EE185523

Control of Mobile Robots

Dynamic graphs

Yurid Eka Nugraha
TSP DTE FTEIC ITS

- ➤ Let's continue using tension energy
- ➤ However, we cannot allow infinite tension energies in the definition of control laws
- > Have to introduce 'hysteresis': note the one-way arrow
- \triangleright Done through indicator function $\sigma(i,j)$

EE185523 2022E - 7

- Let's continue using tension energy
- ➤ However, we cannot allow infinite tension energies in the definition of control laws

$$\sigma(i,j)[t^{+}] = \begin{cases} 0, & \text{if } \sigma(i,j)[t^{-}] = 0 \text{ and } ||l_{ij}|| > \Delta - \epsilon, \\ 1, & \text{otherwise.} \end{cases}$$

$$f(x_i - x_j) = \begin{cases} 0, & \text{if } \sigma(i,j) = 0, \\ -\frac{\partial \mathcal{V}_{ij}(\Delta, x)}{\partial x_i}, & \text{otherwise.} \end{cases}$$

Theorem 7.3:

- \succ Consider an initial position $x_0 \in \mathcal{D}^{\epsilon}$, where $\epsilon > 0$ is the switching threshold
- \triangleright Assume that the initial graph G_0 is connected
- > Then, by control law $u_i = -\sum_{j \in N(i)} \frac{\partial \mathcal{V}_{ij}(\Delta,x)}{\partial x_i}$, it is guaranteed that agents converge

Dynamic graphs w/ weight and $f(x_i - x_j) = \frac{\partial v_{ij}(\delta, x)}{\partial x_i}$

Agents still converges

Agents still converges w/ vertex-weight matrix

EE185523 2022E - 7

EE185523

Control of Mobile Robots

Formation control: revisited

Yurid Eka Nugraha
TSP DTE FTEIC ITS

Formation control?

➤ Previously: showed a procedure for synthesizing control laws that preserve connectedness while **solving the rendezvous problem**

Goal:

Find a feedback law such that:

- F1: DIG converges to a graph that is a subgraph of the desired graph G_d in finite time. In other words, what we want is that $E_d \subseteq E(t)$ for all $t \ge T$, for some finite $T \ge 0$.
- F2: Pairwise distance $||l_{ij}(t)|| = ||x_i(t) x_j(t)||$ converges to d_{ij} for $(i,j) \in E_d$
- > F3: Feedback law utilizes only local information

Main result

Lemma 7.5:

Given an initial condition x_0 such that $y_0=(x_0-\tau_0)\in\mathcal{D}^\epsilon_{G_d,\Delta-\|d\|}$, the mobile agents adopting the decentralized control law

$$\dot{x}_{i} = -\sum_{j \in \mathcal{N}_{(G_{d})}(i)} \frac{2(\Delta - ||d_{ij}||) - ||l_{ij}(t) - d_{ij}||}{(\Delta - ||d_{ij}|| - ||l_{ij}(t) - d_{ij}||)^{2}} (x_{i}(t) - x_{j}(t) - d_{ij})$$

are guaranteed to satisfy $x_i(t) - x_i(t) = l_{ij}(t) < \Delta$ for all $\{i, j\} \in E_d$.

Theorem 7.6:

For all i, j, the pairwise relative distances $||l_{ij}(t)|| = ||x_i(t) - x_j(t)||$ asymptotically converge to $||d_{ij}||$ for $\{i,j\} \in E_d$.

Formation control v2

Another version:

$$\dot{x}_i = -\sum_{j \in \mathcal{N}_{(G_d)}(i)} \frac{\|l_{ij}(t) - d_{ij}\|}{\|l_{ij}(t)\|} (x_i(t) - x_j(t))$$

Hybrid rendezvous-to-formation strategies

- Switching based on agents' neighbors
- ➤ Notation:
 - $ightharpoonup G_d = (V, E_d)$: graph of desired formation
 - $\succ K_n^{\epsilon}$: complete graph w/ ϵ -disk proximity graph

Formation control revisited

Desired formation: Pentagonal w/ $G_d = C_5$ Desired agent distances $\delta = 3.2 \ \forall (i,j) \in E_d$

EE185523

Control of Mobile Robots

Coverage problem

Yurid Eka Nugraha
TSP DTE FTEIC ITS

Coverage problem

- Focus on the concern that ensures a collection of mobile robot are placed in such a way that the area under consideration is completely covered
- > Geometry will be important
 - > of sensing areas,
 - > of areas in which sensor nodes are deployed

EE185523 2022E - 7

Coverage problem

Triangulation

- Help understand how areas are contained by edges
- Triangular subgraph: any subgraph composed of three fully connected vertices
- \triangleright Planar embedding: there exist ζ: V → \mathbb{R}^2 such that **no edges intersect**
- ➤ Perfect planar triangulation: Outer face is a cycle, inner face are all triangles

Perfect planar triangulation

Imperfect planar triangulation

Gabriel graphs

- The idea: to generate a proximity graph that is, to a large degree, a nearest neighbor interaction graph
- Gabriel graph: G = (V, E), where $\{i, j\} \in E$ if and only if the interior angle $\angle(x_i, x_k, x_j)$ is **acute** for all other points x_k

Some results on Gabriel graphs

Lemma:

Nearest neighbor edge is always present in the Gabriel graph, i.e., if $||x_i - x_j|| < ||x_i - x_k|| \ \forall k$, then $(i, j) \in E$

Lemma:

If $(i,j) \notin E$, then there exists v_k such that x_k is closer to both x_i and x_j than x_i and x_j are to each other, i.e., $||x_i - x_k|| < ||x_i - x_j||$ and $||x_j - x_k|| < ||x_i - x_j||$.

Some results on Gabriel graphs

Theorem:

- > Any Gabriel graph is planar
- ➤ Any Gabriel graph is connected

As a consequence, we have obtained a combinatorial structure with **almost** the correct topology for achieving combinatorial coverage, that is, perfect, planar triangulations.

EE185523 2022E - 7

Gabriel graphs

➤ Corresponding control law:

$$\dot{x}_{i}(t) = -\sum_{j \in N_{i}} \nabla_{xi} U_{ij}$$

$$= \sum_{j \in N_{i}} \frac{(\|x_{i}(t) - x_{j}(t)\| - \Delta)(x_{i}(t) - x_{j}(t))}{\|x_{i}(t) - x_{j}(t)\|}$$

Edge potential:
$$U_{ij} := \frac{1}{2} (||x_i - x_j|| - \Delta)^2$$

(Gabriel graphs associated with 20 randomly placed nodes)

Voronoi-based coverage algorithm

- ➤ What was needed to produce these structures was the ability to go beyond close-range interactions and incorporate longer-range interactions if needed
- These **longer-range** interactions were based on the relative placements of the nodes
- ➤ One can adjust this viewpoint by basing the longer-range interactions on the areas covered by the sensor nodes directly

Voronoi-based coverage algorithm

••

- Tessellation: a shape is repeated over and over again covering a plane without any gaps or overlaps
- Tesselation of Ω by Voronoi partition $\mathcal{V} = \{V_i(x)\}: V_i(x) = \{q \in \Omega | \|q x_i\| \le \|q x_j\| \ \forall j \ne i\}$

• • •

Voronoi-based locational cost function

Optimization problem:

$$H_V = H(x, V(x))$$

$$= \int_{\Omega} \min_{i \in \{1, \dots, n\}} ||q - x_i||^2 dq$$

Initial placement of agents (Voronoi partition: (a), associated graph: (b))

Voronoi-based locational cost function

After running gradient descent method

Some notes:

- For its computation, the Voronoi region $V_i(x)$ must be computed.
- Thus, agent i needs also to know the relative location of all agents whose Voronoi cells are adjacent to V_i .
- This is where the long range interactions may needed since there are no guarantees that, e.g., these agents are within a certain distance of each other.