Simulation des variables aléatoires

Prof. Mohamed El Merouani http://elmerouani.jimdo.com e-mail: m_merouani@yahoo.fr

.

Simulation par la méthode d'inversion

Introduction:

 on suppose que l'on dispose d'un bon générateur de nombres pseudo-aléatoires et on se demande comment à partir d'une suite (U_i)_{i≥1} de variables aléatoires indépendantes et identiquement distribuées suivant la loi uniforme sur [0, 1] construire une variable aléatoire de loi donnée, avec une attention particulière pour les lois usuelles continues et discrètes.

3

Plan

- Simulation des v.a. continues
- Simulation des v.a. discrètes

Fonction de répartition (Rappels):

5

Fonction de répartition d'une v.a. discrète:

- La probabilité pour que la variable aléatoire X prenne une valeur inférieure ou égale à x est une fonction F(x).
- Cette fonction est appelée fonction de répartition de x.

$$F(x)=P(X\leq x) = \sum P(X=y)$$

• La fonction $F(x)^{y \le x}$ est une fonction en escalier, croissante de 0 à 1.

Exemple de fonction de répartition:

• Pour l'expérience de lancement d'une pièce de monnaie, on a la loi de probabilité de X est résumée par le tableau suivant:

Xi	0	1	Σρί
p _i	1/2	1/2	1

• Sa fonction de répartition sera:

$$F(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1/2 & \text{si } 0 \le x < 1 \\ 1 & \text{si } x \ge 1 \end{cases}$$

7

Représentation graphique de F(x):

Fonction de répartition d'une v.a. continue:

- On définit la fonction de répartition F d'une v. a. continue X de la même manière que pour une v.a. discrète, c'est-à-dire $F(x)=P(X \le x)$.
- La fonction continue $F(x) = \int_{-\infty}^{x} f(t) dt$ est croissante de 0 à 1 lorsque x varie de $-\infty$ à $+\infty$.
- Par conséquent, une v.a. continue est une v.a. dont la fonction de répartition est continue.
- La fonction de densité f d'une v.a. continue X est la dérivée de da fonction de répartition F, c'est-à-dire F'(x)=f(x).

9

Prof. Mohamed El Merouani

Simulation des v.a. continues

11

Méthode d'inversion (Théorème):

Proposition:

Supposons que la v.a. X a pour fonction de répartition F **continue** et **strictement croissante**, toujours que 0 < F(x) < 1.

Soit U v.a. $\rightarrow \mathcal{U}(0,1)$.

Alors, la v.a. $F^{\text{-1}}(U)$ a pour fonction de répartition F.

Méthode d'inversion (dém):

Démonstration:

Soit G la fonction de répartition de $F^{-1}(U)$.

Alors:
$$G(x)=P(F^{-1}(U) \le x)$$

= $P(F(F^{-1}(U)) \le F(x))$. (par la monotonie de F)
= $P(U \le F(x))=F(x)$. (car $U \to \mathcal{U}(0,1)$)

13

Méthode d'inversion (algorithme):

- Cette méthode suggère que pour générer des échantillons d'une v.a. X pour laquelle F^{-1} est connue, on peut générer des nombres aléatoires U uniformes sur (0,1) et faire $X=F^{-1}(U)$.
- Nous avons alors l'algorithme général d'inversion suivant:

Générer $U \rightarrow \mathcal{U}(0,1)$ Faire $X=F^{-1}(U)$ Sortir X

Méthode d'inversion (Remarques):

- Une condition minime pour l'application de cette méthode est de connaître la forme explicite de F^{-1} .
- Cela est vérifié pour plusieurs lois de probabilités, comme l'uniforme, l'exponentielle, de Weibull, de Cauchy,...
- Remarquons qu'une telle condition n'est pas suffisante, par exemple, pour la loi beta, il est possible théoriquement de la simuler par inversion, mais elle peut résulter très couteuse.
- Parfois, nous disposons d'une bonne approximation de F^{-1} , d'où on peut utiliser la méthode par approximation.

15

Méthode d'inversion-Exemples:

1. Simulation d'une v.a. $\mathcal{U}(a,b)$:

Sa fonction de répartition est:

$$F(x) = \begin{cases} 0 & six < a \\ \frac{x-a}{b-a} & sia \le x < b \\ 1 & six \ge b \end{cases}$$

Dans l'algorithme général, il suffit de faire:

$$X = F^{-1}(U) = a + (b-a)U$$

Méthode d'inversion-Exemples:

2. Simulation d'une v.a. de Weibull $\mathcal{W}(\alpha,1)$:

Sa fonction de répartition est:

$$F(x) = \begin{cases} 0 & si \ x < 0 \\ 1 - \exp(-x^{\alpha}) & si \ x \ge 0 \end{cases}$$

Nous faisons $X = F^{-1}(U) = [-Ln(1-U)]^{\frac{1}{\alpha}}$

ou bien $X = [-LnU]^{\frac{1}{\alpha}}$ puisque (1-U) $\rightarrow \mathcal{U}(0,1)$

17

Méthode d'inversion-Exemples:

2. Simulation d'une v.a. exponentielle $\mathcal{E}_{xp}(\lambda)$:

Sa fonction de répartition est:

$$F(x) = \begin{cases} 0 & si \ x < 0 \\ 1 - \exp(-\lambda x) & si \ x \ge 0 \end{cases}$$
Nous faisons
$$X = F^{-1}(U) = \left[-\frac{Ln(1-U)}{\lambda} \right]$$

Ainsi pour générer un n-echantillon selon une $\mathcal{E}_{xp}(\lambda)$ on pose puisque $(1-U) \rightarrow \mathcal{U}(0,1)$

$$(X_1, \dots, X_n) = \left(-\frac{\ln U_1}{\lambda}, \dots, -\frac{\ln U_n}{\lambda}\right)$$

Vérification par histogramme:

 Quand on simule une variable aléatoire réelle à l'aide d'une des méthode (inversion ou rejet), on peut vérifier empiriquement que la loi simulée est bien celle que l'on voulait.

19

Simulation d'une v.a. exponentielle $\mathcal{E}_{xp}(\lambda)$ et vérification par histogramme::

• Voici une implémentation en R:

myrexp<-function(n,lambda) + return(-log(runif(n))/lambda) ##Simulation d'une Exp(5) lambda<- 5 x<- myrexp(500, lambda)

Comparaison histogramme / densité hist(x, freq=FALSE)##freq=FALSE pour aire=1 curve(dexp(x, lambda), xlim=c(0, max(x)), col="red", add=TRUE)

Exemple:

•
$$F(x) = \begin{cases} 0 & si \ x \le 0 \\ \frac{x}{3} & si \ 0 \le x < 1 \\ \frac{x}{3} + \frac{1}{3} & si \ 1 \le x < 2 \\ 1 & si \ x \ge 2 \end{cases}$$

$$f^{-1}(y) = \begin{cases} 3y & \text{si } 0 \le y < \frac{1}{3} \\ 3y - 1 \text{ si } \frac{2}{3} \le y < 1 \\ 1 & \text{si } \frac{1}{3} \le y < \frac{2}{3} \end{cases}$$

Exemple:

• Donc, dans l'algorithme général on fait:

```
Générer U \rightarrow \mathcal{U}(0,1)

Si U < 1/3

Faire X=3U

Si U < 2/3

Faire X=1

Autrement

Faire X=3U-1

Sortir X
```

23

Exemple:

 Voici le code R qui simule par inversion de la fonction F de cet exemple:

```
> finv<-function(u)
+ {
    + if (u<1/3)
{z=3*u}
If (u<2/3)
+ {z=1}
+ else
+ {z=3*u-1}
+ return(z)
+ }
>u=runif(1,0,1) #simulation d'une variable uniforme U(0,1)
>print(finv(u))
```

Simulation des v.a. discrètes

25

Les lois de probabilités discrètes:

- On considère une variable aléatoire discrète X qui peut prendre les valeurs $x_1, x_2, ..., x_n$.
- Soit $P(X=x_i)=p_i$, i=1,2,...,n avec $p_i \ge 0$ et $\sum p_i=1$
- Sa loi de probabilité est donnée par:

x_{i}	$ x_1 $	$ x_2 $	$ x_3 $	x_4	••••	x_{n}	$\sum p_{i}$
p_{i}	p_1	p_2	p_3	p_4		p_{n}	1

Fonction de répartition d'une loi de probabilité discrète:

• Sa fonction de répartition $F(x_i) = F_i = P(X \le x_i) = \sum_{j < i} p_j$

$$F(x) = \begin{cases} 0 & si \ x < x_1 \\ p_1 & si \ x_1 \le x < x_2 \\ p_1 + p_2 & si \ x_2 \le x < x_3 \\ p_1 + p_2 + p_3 & si \ x_3 \le x < x_4 \\ & M \\ 1 & si \ x \ge x_n \end{cases}$$

27

Fonction de répartition (inverse) d'une loi de probabilité discrète:

• On définit la fonction \overline{F}

$$\overline{F}(u) = \begin{cases} x_1 & si & 0 < u < F(x_1) \\ x_2 & si & F(x_1) \le u < F(x_2) \\ x_3 & si & F(x_2) \le u < F(x_3) \\ x_4 & si & F(x_3) \le u < F(x_4) \\ & & M \\ x_n & si & F(x_{n-1}) \le x < F(x_n) = 1 \end{cases}$$

Fonction de répartition (inverse) d'une loi de probabilité discrète:

$$\bar{F}(u) = \begin{cases} x_1 & si & 0 \leq u < p_1 \\ x_2 & si & p_1 \leq u < p_1 + p_2 \\ x_3 & si & p_1 + p_2 \leq u < p_1 + p_2 + p_3 \\ x_4 & si & p_1 + p_2 + p_3 \leq u < p_1 + p_2 + p_3 + p_4 \\ \vdots & \vdots & \vdots \\ x_n & si & p_1 + \dots + p_{n-1} \leq u < 1 \end{cases}$$

29

Méthode d'inversion pour les lois discrètes (Théorème):

- Soit $\overline{F}(u) = \min\{x : u \le F(x)\}$
- Si $U \rightarrow \mathcal{U}([0,1])$, alors la v.a. $X = \overline{F}(U)$ a pour fonction de répartition F.
- Donc, dans ces conditions \overline{F} joue le rôle de F^{-1}

Méthode d'inversion-Dém:

Remarquons le minimum est atteint parce que F est continue à droite, alors \overline{F} est bien définie.

En plus,
$$F(\overline{F}(u)) \ge u$$

et $\overline{F}(F(x)) = \min\{y : F(y) \ge F(x)\} \le x$
D'où l'égalité des ensembles:

$$\{(u,x):\overline{F}(u)\leq x\}=\{(u,x):u\leq F(x)\}$$

et des probabilités:

$$P(X \le x) = P(\overline{F}(U) \le x) = P(U \le F(x)) = F(x)_{31}$$

Algorithme de la méthode d'inversion pour les lois discrètes:

- Pour une loi discrète générale, on a $\overline{F}(u) = i$ avec $F_{i-1} < u \le F_i$, donc la méthode d'inversion est équivalente à chercher l'indice i convenable dans la liste des F_i .
- En général:

$$\overline{F}(u) = x_i$$
 $si \ F(x_{i-1}) = F_{i-1} \le u < F_i = F(x_i)$

• Algorithme:

Générer $U \rightarrow \mathcal{U}(0,1)$ Tant que $F_i \leq U$, Faire i=i+1Sortir X=i

Simulation d'une loi de Bernoulli de paramètre p ∈ [0, 1]:

• La loi de probabilité de X suivant une loi de Bernoulli est:

x_{i}	0	1	Σp _i
p _i	q=1-p	р	1

• Sa fonction de répartition est:

$$F(x) = \begin{cases} 0 & si \ x < 0 \\ q = 1 - p & si \ 0 \le x < 1 \\ 1 & si \ x \ge 1 \end{cases}$$

33

Simulation d'une loi de Bernoulli de paramètre p ∈ [0, 1]:

• Sa fonction de répartition inverse sera:

$$\overline{F}(u) = \begin{cases} 0 & si \ 0 < u < q = 1 - p \\ 1 & si \ q = 1 - p \le u < 1 \end{cases}$$

• D'où l'algorithme:

Générer
$$U \rightarrow \mathcal{U}(0,1)$$

Si U ≥ 1 -p, sortir $X=1$
Autrement, Sortir $X=0$

Simulation d'une loi uniforme discrète:

 Une v.a. X suivant une loi de probabilité uniforme discrète prend les valeurs entiers naturelles i=1,2,...,n avec la même probabilité

$$P(X = i) = \frac{1}{n}, \forall i = 1, 2, ..., n$$

• Sa fonction de répartition est:

$$F(x) = P(X \le i) = \sum_{j \le i} p_j = \frac{i}{n}$$
 $si \ i \le x < i + 1$

35

Simulation d'une loi uniforme discrète:

• Sa fonction de répartition inverse est:

$$\overline{F}(u) = X = i \quad si \ F(x_{i-1}) = F_{i-1} = \frac{i-1}{n} \le u < \frac{i}{n} = F_i = F(x_i)$$

$$\Rightarrow i - 1 \le nu \le i$$
ou encore $X = ent(nu) + 1$

Exemple:

- Supposons que l'on veuille simuler le résultat d'un dé équilibré:
- La méthode précédente s'applique, mais on aura plus vite fait de considérer

$$X=ent(6U)$$
,

• où *ent*() désigne la partie entière, ce qui donne en R

x<-ceiling(6*runif(1))