Combinatorics

Lukas Prokop

22. Januar 2014

Inhaltsverzeichnis

	0.1	Literature	2				
1	Elei	mentary combinatorics	2				
	1.1	Permutations	2				
2	Cyc		4				
	2.1	Stirling cycle numbers	4				
	2.2	Second proof: polynomial method	7				
	2.3	Beispiel, $n = 9$, $x = 4$	8				
3	Bei	spiel	9				
4	\mathbf{Erz}	eugende Funktionen	10				
	4.1	Beweis.	10				
	4.2	1.3 q-Analog q	11				
	4.3	Property 1.5	11				
5	8. 0	Oktober 2013	12				
6	Siebmethoden						
7	15th of Oct 2013						
8	18.	Oktober 2013	14				
	8.1	Involution principle	15				
	8.2	Rotation of a cube	17				
		8.2.1 Listing of all rotations	17				
9	Rar	nsey Theory with graphs	21				
	9.1	Remarks to the proof of the theorem of Turán	21				
	9.2	Second approach for proof	22				
10	Jen	sen's inequality	23				

Date. 1st of Oct 2013

These are mad lecture notes. Some of them where taken on hand-written sheets and some having been put directly onto the handout. All the others can be found in this document. Also I mixed up English and german.

0.1Literature

- Richard Stanley, Enumerate Combinatorics I
- Martin Aigner, A Course in Enumeration

Elementary combinatorics 1

Permutations 1.1

Notation:

$$S_n = \text{ set of permutations of n elements}$$

$$S_n = \text{ set of permutations of n elements}$$

$$S_n = \left\{ \underbrace{\Pi}_{\text{permutation}} : \{1, \dots, n\} \underset{\text{mapping}}{\longrightarrow} \{1, \dots, n\} \mid \Pi \text{ is bijective} \right\}$$

and
$$[k; l] = \{k, k + 1, ..., l\}$$
 with $k \le l, k, l \in \mathbb{Z}$.

$$[1, n] = [n] = \{1, \dots, n\}$$

$$\pi: 1 \rightarrow 4, 2 \rightarrow 3, 3 \rightarrow 1, 4 \rightarrow 5, 5 \rightarrow 2$$

As a cycle:

(1 4 5 2 3) cycle representation 4,3,1,5,2 word representation

$$(12)(34) = (34)(12)$$
$$(123) = (231)$$

Permutations of disjoint cycles are equivalent. Cycles in disjoint representation can be swapped.

This is the standard representation.

Rule. Greatest number first. Cycles shall be ordered by the left-most number ascending.

Without parentheses:

5.9 are from left to right maxima.

Definition 1.1. (cycle type) A cycle type (c_1, \ldots, c_n) of a permutation π with c_j is the number of j-cycles (cycles of length j) in the cycle representation of π (disjoint).

 $(5312\ 94678)$ has cycle type (0,0,0,1,1)

2 Cycles

Proposition 1.1. (permutations of a cycle type) $(c_1, \ldots, c_n) \in \mathbb{N}_0^n$ is a fixed cycle type.

The number of permutations $\pi \in S_n$ of this given cycle type is:

$$\frac{n!}{1^{c_1}c_1!2^{c_2}c_2!\dots n^{c_n}c_n!}$$

Proof.

- There are n! possibilities to distribute $1, \ldots, n$ to the position.
- Swapping of cycles of same length corresponds dividing by c_i !.
- There are j cyclic permutation within a j-cycle. Division by j^{c_j} .

2.1 Stirling cycle numbers

Definition 1.2. (as defined by Don Knuth) The number of permutations $\pi \in S_n$ with exactly k cycles is called stirling number of first order.

$$\begin{bmatrix} n \\ k \end{bmatrix}$$

Proposition 1.2. (recursive definition)

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1 \qquad \begin{bmatrix} 0 \\ k \end{bmatrix} = 0 \qquad \begin{bmatrix} n \\ 0 \end{bmatrix} = 0 \qquad k > 0, n > 0$$

n	0	1	2	3
0	1	0	0	0
1	0	1	0	0
2	0	1	1	0
3	0	2	3	1
	0	6	11	1

$$\begin{bmatrix} n \\ k \end{bmatrix} = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix} + (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix}$$

Proof. We add an element n:

- 1. n is an own cycle: (n) thus $\begin{bmatrix} n-1\\k-1 \end{bmatrix}$ possibilities.
- 2. n is added to one of the k cycles. There are n-1 positions and $\begin{bmatrix} n-1 \\ k \end{bmatrix}$ arrangements of the n-1 numbers with k cycles.

$$\binom{u}{k}, \binom{0}{0}=1, \binom{0}{k}=0, \binom{11}{0}=0, \binom{11}{k}=\binom{n-1}{k-1} \bot (n-1) \binom{n-1}{k}$$

Proposition 1.3.

$$\sum_{k=0}^{\infty} \binom{u}{k} x^k = x(x+1) \dots (x+n-1) = x^{\overline{n}}$$
 "ascending factorial"

Approach for proof.

- Induction
- Evaluate

3 points are necessary to describe a polynomial unambiguous.

Proof. (induction with recursion)

$$f(x) = \sum_{k=0}^{\infty} \binom{n}{k} x^k$$

Base with n = 0

$$\binom{0}{0}x^0 = 1 = \underbrace{1}_{\text{empty product}}$$

For x=0 we get an empty product in the formula. Therefore it is by definition 1.

Induction step $n-1 \to n$:

$$f(x) = \sum_{k=0}^{\infty} \binom{n}{k} x^k = \sum_{k=1}^{\infty} \binom{n}{k} x^k$$

$$= \sum_{k=1}^{\infty} \left(\binom{n-1}{k-1} + (n-1) \binom{n-1}{k} \right) x^k$$

$$= x \sum_{k=1}^{\infty} \binom{n-1}{k-1} x^{k-1} + (n-1) \sum_{k=1}^{\infty} \binom{n-1}{k} x^k$$

$$= x \sum_{k=1}^{\infty} \binom{n-1}{k-1} x^{k-1} + (n-1) f_{n-1}(x)$$

$$= x \sum_{k=0}^{\infty} \binom{n-1}{k} x^k + (n-1) f_{n-1}(x)$$

$$= x f_{n-1}(x) + (n-1) f_{n-1}(x)$$

$$= x f_{n-1}(x) \cdot (x+n-1)$$

$$= x \cdot (x+1) \cdot \ldots \cdot (x+n-2) \cdot (x+n-1) = x^{\overline{n}}$$

2.2 Second proof: polynomial method

Script reference. Seite 5

$$\sum \binom{n}{k} x^k = x(x+1)\dots(x+n-1)$$

Es reicht dies für n + 1 viele Werte zu zeigen. $x \in \mathbb{N}$.

$$\sum_{k \ge 0} \binom{n}{k} x^k = \sum_{\pi \in S_n} x^{\text{Zahl der Zyklen von } \pi}$$

Wir zählen die (π, f) mit f: Zyklen $\to [x]$ wobei x eine Abkürzung für $\{1, \dots, x\}$ mit $x \in \mathbb{N}$ ist.

$$x(x+1)\dots(x+n-1)$$

 (a_1,\ldots,a_n) in $\mathbb{Z}^n \cap \text{Trapez}$ ist $(x)(x+1)\ldots(x+n-1)$.

- Falls a_i im Rechteck liegt $(a_i \le x 1)$, beginne einen neuen Zyklus mit i $f(Zyklus) = a_i$
- Falls a_i nicht im Rechteckt liegt $(a_i = x 1 + k, 1 \le k \le n 1)$, platziere i so, dass genau k Zahlen größer als i links von i sind.

Abbildung 1: Polynommethode

2.3 Beispiel, n = 9, x = 4

$$(a_1, a_2, \dots, a_9) = (4, 8, 5, 0, 7, 5, 2, 4, 1)$$

$$n = 9: a_9 = 1 \in \text{Rechteck}$$

 $n - 1 = 8: a_8 = 4, 4 \le x - 1 = 3 \Rightarrow \text{im Rechteck}$
 $4 = 3 + 1 \Rightarrow k = 1(98)$
 $n - 2 = 7: a_7 = 2 \in \text{Rechteck}, (7)(98)$
 $n - 3 = 6: a_6 = 5 \notin \text{Rechteck}, 5 = 3 + 2, k = 2, (7)(968)$
...
$$(41)(73)(96285)$$

$$f(41) = a_4 + 1$$

$$f(73) = a_7 + 1 = 3$$

$$f(96285) = a_9 + 1 = 2$$

Idee:

$$x(x+1)\dots(x+n-1)$$

Kombinatorisch interpretieren als (a_1, \ldots, a_n) -Folgen und bijektiv mit Permutationen verhindern.

Spezialfall x = 1: Permutationen von $S_n : [0, n-1]x[0, n-2], \dots, [0, 0].$

Die Anzahl der Zyklen entspricht auf dieser Seite der Anzahl der "0" im n-Tupel.

3 Beispiel

Definition 1.3. (Inversionen) Sei $\pi = a_i, \dots, a_n \in S_n$ (Wortdarstellung). Falls $a_i < a_j$ für i < j, dann heißt (i, j) Inversion (oder Fehlstellung).

$$i(\pi) = \text{Anzahl der Inversion}$$

Für (a_i, \ldots, a_n) wähle $\pi \in S_n$ sodass a_i die Anzahl der Zahlen größer i (links von i) in der Wortdarstellung von π ist.

Beispiel: $n=9,(a_1,\ldots,a_9)=(1,5,2,0,4,2,0,1,0)$ (Auflistung der Inversionen). Bei $\pi=(41)(73)(96285)$ erkennen wir beispielweise, dass für 7 2 Inversionen vorliegen.

4 Erzeugende Funktionen

Eine Potenzreihe, deren Koeffizienten so gesetzt sind, dass sie die gewünschten Objekte zählen.

Lemma 1.4 (Erzeugende Funktionen von Inversionen)

$$\sum_{k\geq 0} \left| \{ \pi \in S_n : i(\pi) = k | q^k = \sum_{\pi \in S_n} q^{i(\pi)} \right\} = [n]_q!$$

Notation. $[k]_q = 1 + q + \ldots + q^{k-1} = \frac{q^k - 1}{q - 1}$.

$$[n]_q! = [n]_q[n-1]q\dots[1]_q$$

4.1 Beweis.

(Herleitung der Faktorielle)

$$\sum_{\pi \ inS_n} q^{i(\pi)} = \sum_{(a_1, a_2, \dots, a_n) \in [0, n-1] \times \dots \times [0, 0]} q^{a_1 + a_2 + \dots + a_n}$$

$$= \left(\sum_{a_1 = 0}^{n-1} q^{a_1}\right) \cdot \left(\sum_{a_2 = 0}^{n-2} q^{a_2} \cdot \dots\right) \cdot \dots \cdot \left(\sum_{a_n = 0}^{0} q^{a_n}\right) \cdot \dots \cdot$$

$$= (1 + q + \dots + q^{n-1})(1 + \dots + q^{n-2}) \dots (1 + q) \cdot 1$$

$$= [n]_q \cdot [n-1]_q \cdot \dots \cdot [1]_q$$

$$= [n]_q!$$

4.2 1.3 q-Analog q

$$\binom{n}{k}_q = \frac{[n]_q!}{[k]_q![n-k]_q!}$$
 für $q \to 1: [k]_q = k, [n]_q! = n!, \binom{n}{a}_q = \binom{n}{k}$

4.3 Property 1.5

Sei \mathbb{F}_q ein endlicher Körper, dann ist die Anzahl der k-dimensionalen Untervektorräume von \mathbb{F}_q^n ist gleich $\binom{n}{k}_q$.

Beweis. (Prinzip der doppelten Abzählung)

$$N(n,k) = \left\{(v_1,\dots,v_k)|v_1,\dots,v_k \right.$$
 linear unabhängig in $\mathbb{F}_q^n\right\}$

Dabei
$$N(n,0)=1.$$
 $N(n,1)=q^n-1.$ $N(n,2)=(q^n-1)(q^n-q).$ Dieses Prinzip setzt sich fort. $N(n,k)=(q^n-q)(q^n-q)(q^n-q^2)\dots(q^n-q^{k-1}).$

Sei W ein Unterraum von dim k, von \mathbb{F}_q^n . Wir zählen die geordneten Basen von W.

Für
$$q_1$$
: $q^k - 1$
Für q_2 und q_1 zusammen: $(q^{k-1})(q^k)$

Für q_2 und q_1 zusammen: $(q^{k-1})(q^k - q)$ Für q_1 bis q_k zusammen: $(q^{k-1}) \dots (q^k - q^{k-1})$

$$\begin{split} N(n,k) &= |\left\{V \subseteq \mathbb{F}_q^n, \dim V = k\right\}| \cdot (q^k - 1) \dots (q^k - q^{k-1}) \\ &|\left\{V \subseteq \mathbb{F}_q^n : \dim V = k\right\}| = \frac{N(n,k)}{(q^k - 1) \cdot \dots \cdot (q^k - q^k - 1)} \\ & \dots \\ &= \frac{[n]_q \dots [n - k + 1]_q}{[k]_q \dots [1]_q} = \binom{n}{k}_q \end{split}$$

5 8. Oktober 2013

(Nicht mehr alles mitgeschrieben. Skriptum verfügbar.)

Topic. Stirling-Partitions-Zahlen **Script reference.** Definition 1.4 und Definition 1.5

$$\binom{n}{k} = \binom{n-1}{k-1} + k \cdot \binom{n-1}{k}$$

n liegt in einer der k Teilmengen mit n-1 Elementen.

$$x^{\underline{k}} = x(x-1)\dots(x-k+1)$$

Beweis: Bei einer Abbildung $f:[n]\mapsto [x]$ kann jede Zahl von [n] auf x Elemente abgebildet werden. Daher haben wir insgesamt x^n Abbildungen. $a\sim b\Leftrightarrow f(a)=f(b)$.

Für jede Partition von [n] in k Mengen gibt es $x(x-1)\dots(x-k+1)=x^{\overline{k}}$ verschiedene Abbildungen.

$$\sum_{k \ge 0} \begin{bmatrix} n \\ k \end{bmatrix} x^k = x^{\overline{n}}$$

$$\sum_{k \ge 0} \begin{bmatrix} n \\ k \end{bmatrix} x^{\underline{k}} = x^n$$

 $x^{\overline{k}}$ ist die steigende Faktorielle

6 Siebmethoden

In einem partially ordered set müssen nicht alle Elemente miteinander vergleichbar sein.

Die Potenzmenge einer endlichen Menge ist endlich.

Script reference. Definition 2.4

7 15th of Oct 2013

Incidence algebra of poset P:

$$I(P) = \{ f : \text{intervals}(P) \to \mathbb{C} \}$$

3 operations: $+,\cdot,*$

Unitary means \exists an one-value.

$$(f+g)*(\tilde{f}+\tilde{g}) = f*\tilde{f}+g*g+f*\tilde{g}+g\tilde{g}$$

$$(\alpha f)*(\beta g) = \alpha \beta (f*g)$$

$$(f*\delta)(x,y) = \sum_{z \in [x,y]} f(x,z)\delta(z,y) = \sum_{z \in [x,y], z=y} f(x,z) = f(x,y)$$

Script reference. Proposition 2.2

In group theory left- and right-inverse are not relevant. Here it is.

 $\label{eq:Abbreviation.} \textbf{Abbreviation.} \ \textbf{TFAE} = \textbf{The following are equivalent.}$

Script reference. Definition 2.5 Zeta function is somehow related to the Riemann Zeta function.

Script reference. differences calculus

$$0^3, 1^3, 2^3, 3^3, 4^3, 5^3$$

 $0, 1, 8, 27, 64, 125$
 $1, 7, 19, 37, 61, 91 (differences)$
 $6, 12, 18, 24, 30$
 $6, 6, 6$
 $0, 0, 0$

Script reference. page 17 Sum corresponds (approximately) integration.

8 18. Oktober 2013

 \simeq isomorph

Eulersche ϕ -Funktion.

 $A \cup B \Leftrightarrow$ Union of disjoint sets A and B

Script reference. page 21

$$A = \{1\}, B = \{2\}, C = \{3\}$$
$$|u_1| + |u_2| + |u_3|$$
$$A = \{1, 2\}, B = \{1, 3\}, C = \{2, 3\}$$
$$-|u_1 \cap u_2| - |u_1 \cap u_3| - |u_2 \cap u_3|$$
$$A = \{1, 2, 3\}$$
$$+|u_1 \cap u_2 \cap u_3|$$

Script reference. page 23

Dimension equation (,,Dimensionsformel"):

$$\dim U + \dim a - \dim U \cap a$$

$$\binom{k}{k-1}_q = \frac{[k]_q[k-1]_q[k-2]_q\dots[1]_q}{[k-1]_q\dots[1]_q} = [k]_q = 1 + q + q^2 + \dots + q^{k-1} = \frac{q^k - 1}{q-1}$$

8.1 Involution principle

Script reference. page 24

 S^+ set of high numbers added to the set artificially. S^- set of low numbers added to the set artificially.

 $^+ \cup S_0$ is the set of all paths from (0,0) to (2n,0) without constraints: $\binom{2n}{n}$.

Topic. Vandermonde-Determinant

$$\det \pi \begin{pmatrix} 1 & x_1 & \dots & x_1^{n-1} \\ 1 & x_2 & \dots & x_2^{n-1} \\ 1 & x_3 & \dots & x_3^{n-1} \\ \vdots & \vdots & \vdots & & \\ 1 & x_n & \dots & x_n^{n-1} \end{pmatrix} = \prod_{i \le i < j \le n} \begin{pmatrix} 1 & x_1 & x_1^2 \\ 0 & x_2 - x_1 & x_2^2 - x_1^2 \\ \vdots & \ddots & \vdots \\ 0 & x_n - x_1 & x_n^2 - x_n^2 \end{pmatrix}$$

Laplace formula (dt. "Laplace'scher Entwicklungssatz").

Summary

For a group G:

$$G_X = \{g \in G | gx = x\}$$
 (stabilizer)
 $X_g = \{x \in X | gx = x\}$ (fixed points)

Orbit is an equivalence class:

$$x \sim_G y \Leftrightarrow \exists g \in G : gx = y$$
$$F = \{f | \mathbb{N} \mapsto \mathbb{R} \}$$
$$gf = f \circ g^{-1} \qquad gf(x) = f(g^{-1}(x))$$

Script reference. page 32

8.2 Rotation of a cube

The rotation group of cubes contains 24 elements. 1 corner mapped to 8 corners. 2 are mapped to 3 possible adjacent ones. $3 \cdot 8 = 24$. X are the vertices

|orbit of 1| = 8
$$|G_1| = 3$$

An edge has two mapping. Either itself or the vertices are swapped. X are the edges.

$$|stabilizer of edge| = 2$$

 $|orbit of an edge| = 12$

$$|G| = 2 \cdot 12 = 24.$$

X are the surfaces.

8.2.1 Listing of all rotations

Rotation axis?

- 1. identity (0°)
- 2. rotation along space diagonal (2 \rightarrow 3 \rightarrow 4 \rightarrow 2) (120°). Four rotation axes: 4 rotations.
- 3. rotation along space diagonal (240°). Four rotation axes: 4 rotations.
- 4. rotation along axis orthogonal to a surface (90°) . Three rotation axes: 3 rotations.
- 5. rotation along axis orthogonal to a surface (180°). Three rotation axes: 3 rotations.

- 6. rotation along axis orthogonal to a surface (270°). Three rotation axes: 3 rotations.
- 7. rotation along axis intersecting midpoints of edges which are on the other side of the cube (270°) . Six rotation axes: 6 rotations.

Sum: 24.

48 rotation reflections.

 $S_4 \cdot C_2$.

Topic. Stigler's Law

Topic. Burnsides Lemma

Handout. (M. Aigner "A course in enumeration") Given a chess board with 3×3 fields. How many rooks can be placed without attacking each other? 6 possibilities for 3 rooks.

Script reference. page 40

Theorem. For every defined number of colors r and for all numbers s_1, \ldots, s_r : $\exists R = \mathcal{R}(r; s_1, \ldots, s_r) < \infty$ such that a K_R contains a monochromatic K_{s_i} colored with i (for at least one i).

Sketch of proof. 3 colors = sum up 2 colors = 2 colors. Apply ramsey theorem for 2 colors iteratively.

$$\mathcal{R}(r=1; s_1, s_2, \dots, s_{r+1}) \le \mathcal{R}(2, \mathcal{R}(r; s_1, \dots, s_r), s_{r+1})$$

Open questions in Ramsey-theory (problem complexity grows extraordinary fast):

$$R(3,4) = 9$$

 $R(4,4)$
 $R(5,5) \approx 45$
 $R(6,6) = ?$

Exercise & Claim. (multichromatic ramsey theory)

$$\mathcal{R}(3;3,3,3) = 17$$

Fixate one vertex, there are 16 adjacent edges.

There is one color (with constraining generality), which occurs at least 6 times. Consider 6 vertices. Cases:

- 1. There is one red edge between 2 end points. Thus there is a red triangle.
- 2. There is no red edge. Thus only edges in blue/green paths R(3,3)=6 there is a one-colored triangle.

Exercise.

$$R(3;3,3,3) \ge 17$$

The following example is a K_{16} with 3 colors without a monochromatic triangle.

 $\mathcal{F}_p n$, irreducible polynomial f over $\mathcal{F}_p \sigma \mod n$

$$\mathcal{F}_p[x]/f = \left\{ a_0 + a_1 x + \dots + a_{n-1} x^{n-1} : a_i \in \mathcal{F}_p \right\}$$
here $\mathcal{F}_{2^n}/\langle f \rangle = \left\{ a_0 + a_1 x + a_2 x^2 + a_3 x^3 : a_i \in \mathcal{F}_2 \right\}$

For example $x^4 + x + 1$ is irreducible. There are no roots in \mathcal{F}_2 .

$$x^{1}, x^{2}, x^{3}, x^{4} = x + 1$$

$$x^{5} = x^{2} + x$$

$$x^{6} = x^{3} + x^{2}$$

$$x^{7} = x^{4} + x^{3} = x^{3} + x + 1$$

$$x^{8} = x^{4} + x^{2} + x = x^{2} + 1$$

$$x^{9} = x^{3} + x$$

$$x^{10} = x^{4} + x^{2} = x^{2} + x + 1$$

$$x^{11} = x^{3} + x^{2} + x$$

$$x^{12} = x^{4} + x^{3} + x^{2} = x^{3} + x^{2} + x + 1$$

$$x^{13} = x^{4} + x^{3} + x^{2} + x = x^{3} + x^{2} + 1$$

$$x^{14} = x^{4} + x^{3} + x = x^{3} + 1$$

$$x^{15} = x^{4} + x = 1$$

class
$$0x^0, x^0 = x^{15} = 1, x^3, x^6 = x^3 + x^2, x^9 = \dots, x^{12}$$

class $1x^1, x^4 = x + 1, x^7 = \dots, x^{10}, \dots, x^{13}$
class $2x^2, x^5 = x^2 + x, x^8, x^{11} = \dots x^{14}$

Edge (v_i, v_j) is colored according to $x^i - x^j = x^k$ $(0 \le k \le 14)$. $k = 0 \mod 3$ is color 0 (red). $k = 1 \mod 3$ is color 1 (blue). $k = 2 \mod 3$ (green).

We still have to show that no monochromatic triangles are contained.

monochromatic triangle at
$$(x^i, x^j, x^s)$$

$$(0, x^j - x^i, x^s - x^i)$$

$$(0, 1, \frac{x^s - x^i}{x^k})$$

Exercise.

$$41 \le R(4; 3, 3, 3, 3) \le 66$$

$${x^{4k} \mod 41} = {1, 4, 10, 16, 18, 23, 25, 31, 37, 40}$$

Difference 1 must occur in any other case.

$$R(r+1; \underbrace{3, 3, \dots, 3}_{r+1}) \le (r+1) \left(R(r; \underbrace{3, \dots, 3}_{r}) - 1 \right) + 2$$

$$R(r; \underbrace{3, \dots, 3}_{r}) \le [r!e] + 1$$

$$r = 2 : 6 = [2!e] + 1$$

$$r = 3 : 17 = [3!e] + 1$$

Induction:

$$R(r+1;3...) \le (r+1)[r!e] + 2 = [(r+1)!e] + 1$$

Date. 14.01.07

9 Ramsey Theory with graphs

9.1 Remarks to the proof of the theorem of Turán

Is $n \neq r$. G has no K_r , but maximum number of edges. Due to maximality there must be a K_{r-1} subgraph. Let A_{r-1} be such an (r-1) clique (thus the r-1 vertices). $B = V \setminus A_{r-1}$ and |B| = b - (r-1).

Idea: Count edges e_A (edges in A), e_B (edges in B) and e_{AB} (edges from A to B).

$$|e_A| \le \binom{r-1}{2}$$

B does not contain a K_r . Apply induction hypothesis for n-(r-1).

$$|e_B| \le (1 - \frac{1}{r-1})(n - (r-1))^2$$

Each edge $b \in B$ is connected to at most r-2 edges of A_{r-1} (otherwise there would be a r clique).

$$|e_{AB}| \le (n - (r - 1))(r - 2)$$

 $|E| \le |e_A| + |e_B| + |e_{AB}|$
 $|E| \le \frac{1}{2} \left(1 - \frac{1}{r - 1}\right) n^2$

9.2 Second approach for proof

We put n vertices in buckets of size r-1. Therefore each bucket contains $\frac{n}{r-1}$ elements. To reach the maximum number of K_{r-1} but no K_r we connect every vertex with every vertex which is not part of the same bucket. Each vertex is connected to $(n-\frac{n}{r-1})$ vertices. Thus the total number of edges is $\frac{n}{2}(n-\frac{n}{r-1})$. QED.

10 Jensen's inequality

Date. 15th of January 2014

$$f(z) = {z \choose t} = \frac{z(z-1)(z-2)\dots(z-t+1)}{t!} \qquad \text{convex}$$

$$\sum {d_i \choose t} \ge m {|E| \choose m \choose t}$$

$$(s-1)n^t \ge m(\frac{E}{m} - t + 1)^t$$

$${n \choose t} = \frac{n(n-1)\dots(n-t+1)}{t} \le \frac{n^t}{t!}$$

$$(s-1)^{\frac{1}{t}}n(m^{-1})^{\frac{1}{t}} \ge \frac{E}{m} - t + 1$$