tut2

February 1, 2019 2:28 PM

(x1,y1) -> (xm,ym)

close: xm=x1, y1=ym

smooth: d^nx/dt^n. dy^n/dt^n exists

$$x^2 + y^2 = 1$$
,
let angle t on curve, $x = cost$, $y = sint$, $t \in [0,2\pi]$, $r(t) = (x,y) = (cost, sint)$

tangent, normal

$$r(t) = x(t), y(t) = \left(x(0) + \frac{tdx(0)}{dt}, y(0) + \frac{tdy(0)}{dt}\right)$$

r(0) = x(0), y(0))

now we have 2 points r0 and rt

on y it's right hand, on x is left hand

it's actually match from t to a 2dim matrix, $\frac{dr}{dt} = \left(\frac{dx}{dt}, \frac{dy}{dt}\right)$

unit tangent $T(t) = \frac{dr}{dt} * \frac{1}{\left|\left|\frac{dr}{dt}\right|\right|}$, length is 1

unit normal N(t) = $\left(-\frac{dy}{dt}, \frac{dx}{dt}\right) \frac{1}{\left|\left|\frac{dr}{dt}\right|\right|}$

 $N(t) dot_mul T(t) = 0$

