## Lie and Zie elements

Swapneel Mahajan

http://www.math.iitb.ac.in/~swapneel

## 1 Lie elements

#### 1.1 Lie elements

Recall the left module of chambers  $\Gamma[A]$ . We write a typical element as

$$z = \sum_{C} x^{C} \mathbf{H}_{C}.$$

An element  $z \in \Gamma[\mathcal{A}]$  is a Lie element if

(1) 
$$\sum_{C: HC=D} x^C = 0 \text{ for all } O < H \le D.$$

This is a linear system in the variables  $\boldsymbol{x}^{C}$ .

We denote the set of Lie elements by Lie[A].

It is a subspace of  $\Gamma[A]$ .

- ullet Note very carefully that H=O is excluded from (1): If not, then z=0 would be the only solution since all its coefficients  $x^C$  would be forced to be zero.
- Since the condition (1) is in terms of the Tits product, cisomorphic arrangements have the "same" Lie elements. In particular, to understand  $\text{Lie}[\mathcal{A}]$ , one may replace  $\mathcal{A}$  by its essentialization.

**Lemma 1.** If A has rank zero, then  $Lie[A] = \Gamma[A] = k$ .

*Proof.* Suppose  $\mathcal{A}$  has rank zero. Then, it has only one chamber which is the central face, so (1) is vacuously true. Hence  $\mathrm{Lie}[\mathcal{A}] = \Gamma[\mathcal{A}]$ , spanned by  $\mathrm{H}_O$ .

**Lemma 2.** If  $\mathcal A$  has rank at least one, then the sum of the coefficients of any Lie element is zero. That is,  $z \in \mathrm{Lie}[\mathcal A]$  implies

$$\sum_{C} x^{C} = 0.$$

*Proof.* Let D be any chamber. Since  $\mathcal A$  has rank at least one, D>O. So we may choose H=D in (1). This yields (2).

#### 1.2 Friedrichs primitive part criterion

Recall that left modules over the Tits algebra have a primitive part.

**Lemma 3.** The space of Lie elements is the primitive part of the left module of chambers:

$$\mathcal{P}(\Gamma[\mathcal{A}]) = \text{Lie}[\mathcal{A}].$$

Explicitly,

$$z \in \text{Lie}[A] \iff H_H \cdot z = 0 \text{ for all } H > O.$$

*Proof.* Let H be any face of A. Then

$$\mathbf{H}_{H^{\bullet}}\left(\sum_{C} x^{C} \mathbf{H}_{C}\right) = \sum_{C} x^{C} \mathbf{H}_{HC} = \sum_{D: H \leq D} \left(\sum_{C: HC = D} x^{C}\right) \mathbf{H}_{D}.$$

This equals 0 iff

$$\sum_{C: HC=D} x^C = 0 \text{ for all } D \ge H.$$

The result follows from (1).

We refer to the characterization of Lie elements given by Lemma 3 as the Friedrichs criterion.

### 1.3 Rank-one and antisymmetry

Consider the rank-one arrangement in which the ambient space has dimension one, and there is only one hyperplane consisting of the origin.



In this case,  $\mathrm{Lie}[\mathcal{A}]$  is one-dimensional.

The coefficients of the two chambers are a and -a.

The simplest choices are a=1 and a=-1.

Either of them spans  $Lie[\mathcal{A}]$ , and their sum is zero.

This can be shown as follows.

(3) 
$$\begin{pmatrix} 1 & \overline{1} \\ \bullet \end{pmatrix} + \begin{pmatrix} \overline{1} & 1 \\ \bullet \end{pmatrix} = 0.$$

This is the antisymmetry relation.

(By convention,  $\overline{1}$  denotes -1.)

## 1.4 Rank-two and Jacobi identity

Now consider the rank-two arrangement of 3 lines.



In this case,  $\mathrm{Lie}[\mathcal{A}]$  is two-dimensional.

The coefficients of the chambers (read in clockwise cyclic order) are  $a,\,b,\,c,\,a,\,b$  and c subject to the condition a+b+c=0.

For example, one may take  $a=1,\,b=-1,$  and c=0.

Other similar choices are  $a=0,\,b=1,$  and c=-1, or  $a=-1,\,b=0,$  and c=1.

Any two of these yield a basis for Lie[A], and the sum of all three is 0.

This can be shown as follows.



This is the Jacobi identity for the hexagon. (By convention,  $\overline{\mathbf{1}}$  $\quad \text{denotes} \ -1.)$ 

The above analysis readily generalizes to the rank-two arrangement of n lines:

The hexagon gets replaced by a 2n-gon, and  $\mathrm{Lie}[\mathcal{A}]$  is (n-1)-dimensional.

The coefficients of the chambers (read in clockwise cyclic order) are  $a_1, \ldots, a_n, a_1, \ldots, a_n$  subject to the condition  $a_1 + \cdots + a_n = 0$ .

Jacobi identity consists of n terms adding up to 0. Each term is a 2n-gon whose two adjacent sides (and their opposites) have coefficients 1 and  $\overline{1}$ , and the remaining sides have coefficient 0.

For instance:



This is the Jacobi identity for the octagon.

# 2 Zie elements

## 2.1 Zie elements

Consider the Tits algebra  $\Sigma[\mathcal{A}]$ . Write a typical element as

$$z = \sum_{F} x^{F} \mathbb{H}_{F}.$$

An element  $z \in \Sigma[\mathcal{A}]$  is a Zie element if

(6) 
$$\sum_{F: HF=G} x^F = 0 \text{ for all } O < H \le G.$$

This is a linear system in the variables  $\boldsymbol{x}^F$ .

We denote the set of Zie elements by  $\mathsf{Zie}[\mathcal{A}].$ 

It is a subspace of  $\Sigma[A]$ .

As for Lie elements, note that  $H={\cal O}$  is excluded from the defining equations. Also, cisomorphic arrangements have the "same" Zie elements.

**Lemma 4.** If A has rank zero, then  $Zie[A] = \Sigma[A] = k$ .

*Proof.* Suppose  $\mathcal{A}$  has rank zero. Then, it has only one face, namely, the central face, so (6) is vacuously true. Hence  $\mathrm{Zie}[\mathcal{A}] = \Sigma[\mathcal{A}]$ , spanned by  $\mathrm{H}_O$ .

**Lemma 5.** Suppose z is a Zie element. Then

(7) 
$$\sum_{F: s(F) < X} x^F = 0 \text{ for all non-minimum flats } X.$$

In particular, if A has rank at least one, then

$$\sum_{F} x^{F} = 0.$$

The sum is over all faces F.

*Proof.* Consider the special case of (6) in which O < H = G.

Let 
$$X := s(H) = s(G)$$
.

Recalling that GF = G iff  $s(F) \leq X$ , we obtain (7).

Letting X be the maximum flat yields (8).

#### 2.2 Zie in small ranks

Let  $\mathcal A$  be the rank-one arrangement consisting of the central face, and chambers C and  $\overline C$ . In this case,

$$x^O \mathbf{H}_O + x^C \mathbf{H}_C + x^{\overline{C}} \mathbf{H}_{\overline{C}} \in \mathrm{Zie}[\mathcal{A}] \iff x^O + x^C + x^{\overline{C}} = 0.$$

Thus,  $Zie[\mathcal{A}]$  is two-dimensional.

A Zie element for the arrangement of 3 lines is shown in the diagram below.



# 2.3 Special Zie elements

A Zie element z is special if the coefficient in z of the central face is 1, that is, if  $x^O=1$ .

Such elements do exist; examples will be given later.

Special Zie elements form an affine space of dimension one less than the dimension of  ${\sf Zie}[{\cal A}].$ 

**Lemma 6.** For  $z \in \Sigma[A]$ , the following conditions are equivalent.

(9)  $x^O=1 \quad \text{and} \quad \sum_{F:\, \mathbf{s}(F)\leq \mathbf{X}} x^F=0 \text{ for all non-minimum flats } \mathbf{X}.$ 

(10) 
$$\sum_{F:\, \mathbf{s}(F)=\mathbf{X}} x^F = \mu(\bot,\mathbf{X}) \text{ for all flats } \mathbf{X}.$$

(11)  $\mathrm{s}(z) = \mathtt{Q}_{\perp}, \; \textit{the Q-basis element of the Birkhoff algebra}.$ 

When z is a special Zie element, all the above conditions hold.

*Proof.* For the equivalence between the first two conditions:

Denote the lhs of (10) by  $f(\mathbf{X})$ .

In (9), the condition  $x^O=1$  is the same as  $f(\bot)=1$ , while the equations say: for any  $Y>\bot$ ,

$$\sum_{\mathbf{X}:\,\mathbf{X}\leq\mathbf{Y}} f(\mathbf{X}) = 0.$$

This linear system has a unique solution, namely,  $f(\mathbf{X}) = \mu(\bot, \mathbf{X})$  for all  $\mathbf{X}$ .

For the equivalence between the last two conditions: Note that

$$s(z) = \sum_{F} x^{F} H_{s(F)} = \left(\sum_{F: s(F) = X} x^{F}\right) H_{X}.$$

This equals  $\mathbb{Q}_{\perp}$  iff the term in parenthesis is  $\mu(\perp, X)$ .

By Lemma 5, a special Zie element satisfies condition (9), and hence the other two conditions as well.

#### 2.4 Friedrichs primitive part criterion

The space of Zie elements is the primitive part of the Tits algebra (as a left module over itself). This is the Friedrichs criterion. It is elaborated below.

Lemma 7. We have

$$\mathcal{P}(\Sigma[A]) = \mathsf{Zie}[A].$$

Explicitly,

$$z \in \mathsf{Zie}[\mathcal{A}] \iff \mathsf{H}_H \cdot z = 0 \text{ for all } H > O.$$

*Proof.* Let H be any face of A. Then

$$\mathbf{H}_{H} \cdot \left(\sum_{F} x^{F} \mathbf{H}_{F}\right) = \sum_{F} x^{F} \mathbf{H}_{HF} = \sum_{G: H \leq G} \left(\sum_{F: HF = G} x^{F}\right) \mathbf{H}_{G}.$$

П

This equals 0 iff

$$\sum_{F:\ HF=G} x^F = 0 \text{ for all } G \ge H.$$

The result follows from (6).

We now discuss some consequences of the Friedrichs criterion.

**Lemma 8.** The subspace  $\mathrm{Zie}[\mathcal{A}]$  is a right ideal of  $\Sigma[\mathcal{A}]$ . More precisely: If z is a special  $\mathrm{Zie}$  element, then  $\mathrm{Zie}[\mathcal{A}]$  is the right ideal of  $\Sigma[\mathcal{A}]$  generated by z.

*Proof.* Let z be a special Zie element. For any element w of the Tits algebra,  $z \cdot w$  is a Zie element since by Lemma 7,

$$H_F \cdot (z \cdot w) = (H_F \cdot z) \cdot w = 0$$

whenever F>O. Thus the right ideal generated by z is contained in  $\mathrm{Zie}[\mathcal{A}].$ 

Equality holds since for any Zie element z',

$$z \cdot z' = \left(\sum_{F} x^{F} \mathbf{H}_{F}\right) \cdot z' = \sum_{F} x^{F} \mathbf{H}_{F} \cdot z' = x^{O} z' = z'$$

again using Lemma 7.

**Lemma 9.** Any Zie element is a quasi-idempotent. More precisely, any Zie element z satisfies  $z^2 = x^O z$ .

A nonzero Zie element is an idempotent iff it is special.

*Proof.* Let z be a Zie element. By Lemma 7,

$$z \cdot z = \left(\sum_{F} x^{F} \mathbf{H}_{F}\right) \cdot z = \sum_{F} x^{F} (\mathbf{H}_{F} \cdot z) = x^{O} z.$$

This proves the first claim.

Note that z is an idempotent iff  $x^Oz=z$ . Assuming z to be nonzero, this happens precisely when  $x^O=1$ , that is, when z is special.  $\hfill\Box$ 

**Lemma 10.** Conjugation of a special Zie element by an invertible element of the Tits algebra produces another special Zie element.

 ${\it Proof.}\ \ {\it Let}\ u$  be an invertible element and z be a special Zie element.

We want to show that  $u \cdot z \cdot u^{-1}$  is also a special Zie element.

We may assume that the coefficient of  $H_O$  in u is 1.

By Lemma 7,  $u \cdot z = z$ .

By Lemma 8,  $z \cdot u^{-1}$  is a Zie element, and it is special because the coefficient of  $\mathbf{H}_O$  in  $u^{-1}$  is also 1.

**Lemma 11.** If z is a special Zie element then z is an idempotent and  $\mathbf{s}(z) = \mathbf{Q}_{\perp}$ .

*Proof.* This follows from Lemmas 6 and 9.

# 2.5 Zie elements and primitive part of modules

Let z be an element of the Tits algebra  $\Sigma$  and h a left  $\Sigma$ -module. Recall that  $\Psi_{\rm h}(z)$  denotes the linear operator on h given by left multiplication by z.

**Proposition 1.** If z is a Zie element, then the image of  $\Psi_h(z)$  is contained in  $\mathcal{P}(h)$ .

Moreover,  $\Psi_h(z)$  acts on  $\mathcal{P}(h)$  by scalar multiplication by the coefficient of the central face in z.

If z is a special Zie element, then  $\Psi_{\mathsf{h}}(z)$  projects  $\mathsf{h}$  onto  $\mathcal{P}(\mathsf{h})$ .

*Proof.* Let  $z = \sum_F x^F \mathbf{H}_F$ . Let  $h \in \mathsf{h}$ . By Lemma 7,

$$H_H \cdot (z \cdot h) = (H_H \cdot z) \cdot h = 0$$

for all H>O. Thus  $z \cdot h \in \mathcal{P}(\mathsf{h})$  as required. If h itself is primitive, then

$$z \cdot h = \sum_{F} x^{F} \mathbf{H}_{F} \cdot h = x^{O} h.$$

The claim about special Zie elements also follows. □

**Example.** Consider the rank-one arrangement with chambers C and  $\overline{C}$ .

Observe that any special Zie element is of the form

$$H_O - p H_C - (1-p) H_{\overline{C}},$$

where p is an arbitrary scalar.

Let us compute the action of this element on  $\Gamma[A]$ .

$$(\mathbf{H}_{O} - p \,\mathbf{H}_{C} - (1-p) \,\mathbf{H}_{\overline{C}}) \cdot \mathbf{H}_{C} = \mathbf{H}_{C} - p \,\mathbf{H}_{C} - (1-p) \,\mathbf{H}_{\overline{C}}$$
$$= (1-p) \,\mathbf{H}_{C} - (1-p) \,\mathbf{H}_{\overline{C}},$$

which is a Lie element.

Further,

$$(\mathbf{H}_O - p \, \mathbf{H}_C - (1 - p) \, \mathbf{H}_{\overline{C}}) \cdot (\mathbf{H}_C - \mathbf{H}_{\overline{C}}) = \mathbf{H}_C - \mathbf{H}_{\overline{C}}.$$

So its action on a Lie element gives back the same Lie element.

This is consistent with Proposition 1.

#### 2.6 Dimensions of Lie and Zie

**Proposition 2.** For any finite-dimensional left  $\Sigma$ -module h,

(12) 
$$\dim(\mathcal{P}(\mathsf{h})) = \eta_{\perp}(\mathsf{h}) = \sum_{Y} \mu(\perp, Y) \, \xi_{Y}(\mathsf{h}),$$

with  $\xi_X(h)$  and  $\eta_X(h)$  as before.

*Proof.* We use that special Zie elements z do exist.

By Proposition 1,  $\mathcal{P}(\mathsf{h}) = z \cdot \mathsf{h}$ .

By Lemma 11, z is an idempotent which lifts  $Q_{\perp}$ .

So 
$$\dim(z \cdot h) = \eta_{\perp}(h)$$
.

Let us apply (12) to  $h = \Gamma$ .

Combining the Friedrichs criterion (Lemmas 3) with the formula  $\eta_{\perp}(\Gamma)=|\mu(\mathcal{A})|$ , we obtain:

**Theorem 1.** For any arrangement A,

(13) 
$$\dim(\mathsf{Lie}[\mathcal{A}]) = \sum_{\mathbf{X}} \mu(\perp, \mathbf{X}) \, c_{\mathbf{X}} = |\mu(\mathcal{A})|$$

where  $c_{\rm X}$  is the number of chambers in  $\mathcal{A}_{\rm X}$ .

Similarly, we can also obtain

(14) 
$$\dim(\mathsf{Zie}[\mathcal{A}]) = \sum_{\mathbf{X}} \mu(\perp, \mathbf{X}) \, d_{\mathbf{X}} = \sum_{\mathbf{X}} |\mu(\mathcal{A}^{\mathbf{X}})|,$$

where  $d_{\rm X}$  is the number of faces in  ${\cal A}_{\rm X}$ .