Principais Funções

Priscila Bemm

UEM

Objetivos

- Função Afim
- Função Quadrática
- Função Exponencial
- Função Logarítmica

Função afim

Uma função afim é uma função f definida por uma expressão

$$f(x) = ax + b\,,$$

em que $a,b\in\mathbb{R}$ são constantes.

Função afim

Uma função afim é uma função f definida por uma expressão

$$f(x) = ax + b\,,$$

em que $a,b\in\mathbb{R}$ são constantes. Como essa expressão está definida para todo $x\in\mathbb{R}$, o domínio de f é \mathbb{R} .

Função afim

Uma função afim é uma função f definida por uma expressão

$$f(x) = ax + b\,,$$

em que $a,b\in\mathbb{R}$ são constantes. Como essa expressão está definida para todo $x\in\mathbb{R}$, o domínio de f é \mathbb{R} .

Observação

Se a=0, a função afim f definida pela expressão f(x)=b é chamada de uma função constante.

3 / 40

Função afim

Uma função afim é uma função f definida por uma expressão

$$f(x) = ax + b,$$

em que $a,b\in\mathbb{R}$ são constantes. Como essa expressão está definida para todo $x\in\mathbb{R}$, o domínio de f é \mathbb{R} .

Observação

Se a=0, a função afim f definida pela expressão f(x)=b é chamada de uma função constante.

Observação

Se b=0, a função afim f definida pela expressão f(x)=ax também é chamada de uma função linear.

Exemplos de funções afins

•
$$f(x) = 3x + 6$$

•
$$g(t) = -47t$$

•
$$h(u) = 10 - \frac{2}{3}u$$

•
$$c(x) = -5$$

$$p(x) = 3 + 10x - 4 + 2x$$

$$q(y) = \frac{5y - 2}{10}$$

Exemplos de funções afins

•
$$f(x) = 3x + 6$$

•
$$g(t) = -47t$$

•
$$h(u) = 10 - \frac{2}{3}u$$

•
$$c(x) = -5$$

$$p(x) = 3 + 10x - 4 + 2x = 12x - 1$$

$$q(y) = \frac{5y - 2}{10} = \frac{1}{2}y - \frac{1}{5}$$

Exemplos de função afim na arquitetura

• Transformações Geométricas Aplicando uma transformação de escala a uma planta baixa, cada ponto (x,y) é transformado para (ax,by), onde a e b são fatores de escala. Esta transformação é uma função afim que altera a escala da planta:

$$(x,y) \to (ax,by)$$

Exemplos de função afim na arquitetura

• Análise Estrutural: A deflexão de uma viga sob carga pode ser aproximada por uma função afim. Se uma viga de comprimento L é submetida a uma força F aplicada no meio, a deflexão δ ao longo da viga pode ser modelada como:

$$\delta = mx + c$$

onde x é a distância desde a extremidade da viga, m e c são constantes determinadas pelas propriedades da viga e a carga aplicada.

Aplicações de função afim na área de biológicas

 Modelo de Absorção de Ordem Zero: Em alguns casos, a absorção de fármacos pode ser modelada por uma função afim, seguindo um modelo de ordem zero. Isso significa que a taxa de absorção é constante e independente da concentração do fármaco no local de absorção

Aplicações de função afim na área de biológicas

• Estimativa de crescimento de alguns seres vivos: Um botânico mede o crescimetno de uma planta em centímetros, todos os dias. No 5º dia, a planta mede 1cm. No 10º dia a planta mede 2cm. Se a taxa de crescimento da planta é constante até o 30º dia, quanto a planta medirá no 23º dia?

6 / 40

Exercício

Esboce o gráfico da função afim f definida por f(x) = 2x - 2.

Exercício

Esboce o gráfico da função afim f definida por f(x) = 2x - 2.

Solução. Ingenuamente, construímos a seguinte tabela:

x	f(x)
0	$2 \cdot 0 - 2 = -2$
1	$2 \cdot 1 - 2 = 0$
2	$2 \cdot 2 - 2 = 2$
3	$2 \cdot 3 - 2 = 4$
4	$2 \cdot 4 - 2 = 6$

Exercício

Esboce o gráfico da função afim f definida por f(x) = 2x - 2.

Solução. Ingenuamente, construímos a seguinte tabela:

x	f(x)
0	$2 \cdot 0 - 2 = -2$
1	$2 \cdot 1 - 2 = 0$
2	$2 \cdot 2 - 2 = 2$
3	$2 \cdot 3 - 2 = 4$
4	$2 \cdot 4 - 2 = 6$

Exercício

Esboce o gráfico da função afim f definida por f(x) = 2x - 2.

Solução. Ingenuamente, construímos a seguinte tabela:

x	f(x)
0	$2 \cdot 0 - 2 = -2$
1	$2 \cdot 1 - 2 = 0$
2	$2 \cdot 2 - 2 = 2$
3	$2 \cdot 3 - 2 = 4$
4	$2 \cdot 4 - 2 = 6$

Exercício

Esboce o gráfico da função afim f definida por f(x) = 2x - 2.

Solução. Ingenuamente, construímos a seguinte tabela:

x	f(x)
0	$2 \cdot 0 - 2 = -2$
1	$2 \cdot 1 - 2 = 0$
2	$2 \cdot 2 - 2 = 2$
3	$2 \cdot 3 - 2 = 4$
4	$2 \cdot 4 - 2 = 6$

Podemos inferir que o gráfico de qualquer função afim será uma reta. Logo, na prática só precisamos de dois pontos $(x_1, f(x_1))$ e $(x_2, f(x_2))$ para construir o gráfico de f.

Gráfico de uma função afim

O gráfico de uma função afim f definida por f(x) = ax + b é uma reta que passa pelo ponto (0,b) (intercepto com o eixo y) e tem inclinação a. Além disso, toda reta não-vertical é o gráfico de uma função afim.

Função afim dados dois pontos do gráfico

O gráfico de uma função afim f que passa pelos pontos (a_1,b_1) e (a_2,b_2) é

$$y = \left(\frac{b_2 - b_1}{a_2 - a_1}\right)x + b_1 - \left(\frac{b_2 - b_1}{a_2 - a_1}\right)a_1$$

Domínio de Imagem

Se f é uma função afim, então $Dom(f)=\mathbb{R}$ e $Im(f)=\mathbb{R}$, se o coeficiente angular é diferente de zero, e Im(f)=b se f(x)=b, onde $b\in\mathbb{R}$.

Pessoas normais

Mais um lindo dia sem usar

Matemáticos

Função quadrática

Uma função quadrática é uma função f definida por uma expressão

$$f(x) = ax^2 + bx + c,$$

em que $a, b, c \in \mathbb{R}$ são constantes e $a \neq 0$.

Função quadrática

Uma função quadrática é uma função f definida por uma expressão

$$f(x) = ax^2 + bx + c,$$

em que $a,b,c\in\mathbb{R}$ são constantes e $a\neq 0$. Como essa expressão está definida para todo $x\in\mathbb{R}$, o domínio de f é \mathbb{R} .

Priscila Bemm (UEM) Principais Funções 11 / 40

Exemplos de funções quadráticas

•
$$f(x) = x^2 - 5x + 2$$

•
$$g(t) = -2t^2 + 6$$

$$h(u) = \left(x - \frac{1}{2}\right)^2$$

•
$$p(x) = 4 - 3x + 5x^2 - 3(x+1)^2$$

Exemplos de funções quadráticas

•
$$f(x) = x^2 - 5x + 2$$

•
$$g(t) = -2t^2 + 6$$

•
$$h(u) = \left(x - \frac{1}{2}\right)^2 = x^2 - x + \frac{1}{4}$$

•
$$p(x) = 4 - 3x + 5x^2 - 3(x+1)^2 = 2x^2 - 9x + 1$$

Esboce o gráfico da função quadrática f definida por $f(x) = x^2 - 2x + 4$.

Esboce o gráfico da função quadrática f definida por $f(x) = x^2 - 2x + 4$.

Solução. Construímos a seguinte tabela:

x	f(x)
-1	7
-1,5	$5,\!25$
0	4
$0,\!5$	$3,\!25$
1	3
1,5	$3,\!25$
2	4
2,5	$5,\!25$
3	7

Esboce o gráfico da função quadrática f definida por $f(x) = x^2 - 2x + 4$.

Solução. Construímos a seguinte tabela:

x	f(x)
-1	7
-1,5	$5,\!25$
0	4
$0,\!5$	$3,\!25$
1	3
1,5	$3,\!25$
2	4
2,5	$5,\!25$
3	7

Esboce o gráfico da função quadrática f definida por $f(x) = x^2 - 2x + 4$.

Solução. Construímos a seguinte tabela:

x	f(x)
-1	7
-1,5	$5,\!25$
0	4
$0,\!5$	3,25
1	3
1,5	3,25
2	4
2,5	5,25
3	7

• O gráfico de uma função quadrática é uma curva, a qual é chamada de parábola.

- O gráfico de uma função quadrática é uma curva, a qual é chamada de parábola.
- A parábola é uma curva que possui um eixo de simetria. No caso do exercício, esse eixo é vertical e passa pelo ponto mais baixo dela, o qual é chamado de vértice da parábola.

- O gráfico de uma função quadrática é uma curva, a qual é chamada de parábola.
- A parábola é uma curva que possui um eixo de simetria. No caso do exercício, esse eixo é vertical e passa pelo ponto mais baixo dela, o qual é chamado de vértice da parábola.
- Em geral, o gráfico de uma função quadrática é sempre uma parábola cujo vértice é o ponto mais baixo ou o ponto mais alto dela.

Gráfico de uma função quadrática

Gráfico de uma função quadrática

O gráfico de uma função quadrática f definida por $f(x)=ax^2+bx+c$ é uma parábola cujo vértice é o ponto

$$\left(-\frac{b}{2a}, -\frac{\Delta}{4a}\right) \, .$$

Onde, $\Delta = b^2 - 4ac$. Além disso,

- ullet se a>0, a parábola se estende para cima e seu vértice é o ponto mais baixo da parábola.
- ullet se a<0, a parábola se estende para baixo e seu vértice é o ponto mais alto da parábola.

15 / 40

Priscila Bemm (UEM) Principais Funções

Imagem de uma função quadrática

Imagem de uma função quadrática

Seja f uma função quadrática definida por $f(x) = ax^2 + bx + c$. Logo,

• se a > 0, a imagem de f é o intervalo

$$\left[-\frac{\Delta}{4a},\infty\right)$$

e $f(-b/2a) = -\Delta/4a$ é o valor mínimo de f;

• se a < 0, a imagem de f é o intervalo

$$\left(-\infty, -\frac{\Delta}{4a}\right]$$

e $f(-b/2a) = -\Delta/4a$ é o valor máximo de f.

<ロ > → □ > → □ > → □ > → □ = → ○ Q (で

Priscila Bemm (UEM) Principais Funções 16/40

Exemplos de função quadrática na arquitetura

• Arcos e Cúpulas: Os arcos muitas vezes seguem uma curva parabólica, descrita por uma função quadrática.

A equação de um arco pode ser:

$$y = ax^2 + bx + c$$

onde y é a altura do arco e x é a distância horizontal desde o centro do arco.

Exemplos de função quadrática na arquitetura

• Fachadas e Elementos Decorativos Elementos decorativos em fachadas podem seguir uma forma quadrática para criar um design simétrico. A altura de uma série de janelas ao longo de uma fachada pode ser descrita por:

$$y = ax^2 + bx + c$$

onde y é a altura do elemento e x é a posição horizontal.

Priscila Bemm (UEM)

Exemplos de função quadrática na arquitetura

 Pontes e Viadutos O perfil de uma ponte suspensa pode ser modelado por uma função quadrática para garantir resistência e eficiência estrutural. A curva do cabo suspenso pode ser representada por:

$$y = ax^2 + bx + c$$

onde y é a altura do cabo e x é a posição horizontal ao longo da ponte.

Priscila Bemm (UEM)

Exemplos de função quadrática na arquitetura

• Superfícies Parabólicas: Estruturas como coberturas de estádios podem utilizar superfícies parabólicas especialmente em tetos e coberturas para otimizar a dispersão de luz e som. A equação de uma superfície parabólica é:

$$z = ax^2 + by^2 + c$$

onde z é a altura da superfície, e x e y são as coordenadas horizontais.

Principais Funções

Aplicações de Funções Qudráticas em Ciências Biológicas

• Um instituto de metereologia de uma cidade do sul do país registrou a temperatura local nas 12 primeiras horas de um dia de inverno. Uma lei que pode representar uma temperatura (${}^{\circ}T$) em função da hora (x) é:

$$T(x) = \frac{1}{4}x^2 - \frac{7}{2}x + k$$

 $\text{Com } 0 \leq x \leq 12 \text{ e } k \text{ uma constante real. }$

- Determine:
 - **1** O valor de k sabendo que, às 3horas da manhã, a temperatura indicou 0° .
 - 2 a temperatura mínima registrada.

Priscila Bemm (UEM)

Juros Compostos e a Função Exponencial

O estudo dos juros compostos é uma das principais aplicações da matemática no cotidiano, especialmente na área financeira.

Juros compostos é quando o juro incide não apenas no valor inicial, mas também sobre os juros acumulados (juros sobre juros).

A fórmula do juros compostos é:

$$M = C(1+i)^n$$

onde,

M é o montante

C é o capital

i é a taxa de juros

t é o período

Suponha uma aplicação de 1 milhão de reais, no regime de juros compostos, seja investido por 3 meses a taxa de 10% ao mês. Qual o valor que será resgatado ao final do período?

21 / 40

Suponha uma aplicação de 1 milhão de reais, no regime de juros compostos, seja investido por 3 meses a taxa de 10% ao mês. Qual o valor que será resgatado ao final do período? Nesse caso $C=1, \qquad i=10\%=0,1, \qquad t=3$

$$M = C(1+i)^n = 1(1+0,1)^3 = 1,331$$
 milhões de reais

Se nessa mesma aplicação de 1 milhão de reais no mesmo regime de juros compostos, a taxa de 10% ao mês, qual será o montante se a aplicação resgatada após 6 meses?

22 / 40

Se nessa mesma aplicação de 1 milhão de reais no mesmo regime de juros compostos, a taxa de 10% ao mês, qual será o montante se a aplicação resgatada após 6 meses? Nesse caso $C=1, \qquad i=10\%=0,1, \qquad t=6$

$$M = C(1+i)^n = 1(1+0,1)^6 = 1,771561$$
 milhões de reais

Observe que nessa mesma aplicação de 1 milhão de reais, no mesmo regime de juros compostos, a taxa de 10% ao mês, o montante varia conforme o tempo.

$$M(t) = (1+0,1)^t$$

ou equivalentemente,

$$M(t) = 1, 1^t$$

Função exponencial de base

Seja a>0 e $a\neq 1$. Uma função f é chamada de função exponencial de base a se ela é definida pela expressão

$$f(x) = a^x.$$

Como essa expressão está definida para todo $x \in \mathbb{R}$, o domínio de f é \mathbb{R} .

Função exponencial de base

Seja a>0 e $a\neq 1$. Uma função f é chamada de função exponencial de base a se ela é definida pela expressão

$$f(x) = a^x.$$

Como essa expressão está definida para todo $x \in \mathbb{R}$, o domínio de f é \mathbb{R} .

Exemplos de funções exponenciais

- $f(x) = 2^x$
- $\bullet \ g(y) = \left(\frac{1}{4}\right)^y$
- $\bullet \ h(t) = (\sqrt{3})^t$

Priscila Bemm (UEM) Principais Funções 24/40

Função exponencial de base

Seja a > 0 e $a \neq 1$. Uma função f é chamada de função exponencial de base a se ela é definida pela expressão

$$f(x) = a^x.$$

Como essa expressão está definida para todo $x \in \mathbb{R}$, o domínio de $f \in \mathbb{R}$.

Exemplos de funções exponenciais

- $f(x) = 2^x$
- $g(y) = \left(\frac{1}{4}\right)^y = 4^{-y}$ $h(t) = (\sqrt{3})^t = 3^{t/2}$

Priscila Bemm (UEM) Principais Funções 24 / 40

Exercício

Esboce o gráfico da função f definida por $f(x) = 2^x$.

Exercício

Esboce o gráfico da função f definida por $f(x) = 2^x$.

Solução. Construímos a seguinte tabela:

x	f(x)
-3	$2^{-3} = 1/8$
-2	$2^{-2} = 1/4$
-1	$2^{-1} = 1/2$
0	$2^0 = 1$
1	$2^1 = 2$
2	$2^2 = 4$
3	$2^3 = 8$
4	$2^4 = 16$
5	$2^5 = 32$

Exercício

Esboce o gráfico da função f definida por $f(x) = 2^x$.

Solução. Construímos a seguinte tabela:

x	f(x)
-3	$2^{-3} = 1/8$
-2	$2^{-2} = 1/4$
-1	$2^{-1} = 1/2$
0	$2^0 = 1$
1	$2^1 = 2$
2	$2^2 = 4$
3	$2^3 = 8$
4	$2^4 = 16$
5	$2^5 = 32$

Exercício

Esboce o gráfico da função f definida por $f(x) = (1/2)^x$.

Exercício

Esboce o gráfico da função f definida por $f(x) = (1/2)^x$.

Solução. Construímos a seguinte tabela:

x	f(x)
-3	$(1/2)^{-3} = 8$
-2	$(1/2)^{-2} = 4$
-1	$(1/2)^{-1} = 2$
0	$(1/2)^0 = 1$
1	$(1/2)^1 = 1/2$
2	$(1/2)^2 = 1/4$
3	$(1/2)^3 = 1/8$
4	$(1/2)^4 = 1/16$
5	$(1/2)^5 = 1/32$

Exercício

Esboce o gráfico da função f definida por $f(x) = (1/2)^x$.

Solução. Construímos a seguinte tabela:

x	f(x)
-3	$(1/2)^{-3} = 8$
-2	$(1/2)^{-2} = 4$
-1	$(1/2)^{-1} = 2$
0	$(1/2)^0 = 1$
1	$(1/2)^1 = 1/2$
2	$(1/2)^2 = 1/4$
3	$(1/2)^3 = 1/8$
4	$(1/2)^4 = 1/16$
5	$(1/2)^5 = 1/32$

Observações

Observação

Sobre o gráfico de uma função exponencial f definida por $f(x) = a^x$ pode-se afirmar que:

- ullet é uma curva que sempre está localizada acima do eixo x e que passa pelo ponto (0,1)
- se a > 1, a curva se eleva rapidamente conforme x assume valores cada vez maiores;
- se 0 < a < 1, a curva decai rapidamente conforme x assume valores cada vez maiores.
- $Dom(f) = \mathbb{R}$
- $Im(f) = (0, \infty)$

Priscila Bemm (UEM)

Aplicações de Função exponencial na arquitetura

 Na arquitetura paramétrica, a função exponencial é um dos elementos matemáticos utilizados para gerar formas complexas e personalizadas. Esse estilo valoriza modelos sinuosos, curvas acentuadas, formas geometricamente complexas.

Aplicações de Função exponencial na arquitetura

 Ponte Estaiada Millau: Essa ponte na França possui um mastro central de 343 metros de altura, cuja forma parabólica foi determinada utilizando a função exponencial. Essa forma garante a estabilidade da ponte sob diferentes cargas de vento e tráfego.

Aplicações de Função Exponencial em Ciências Biológicas

 Populações de Microrganismos: O crescimento exponencial de populações de bactérias, fungos e outros microrganismos em laboratório é um exemplo. Fatores como disponibilidade de nutrientes, temperatura e presença de antibióticos podem influenciar essa taxa de crescimento.

29 / 40

Aplicações de Função Exponencial em Ciências Biológicas

 Modelos Epidemiológicos: A função exponencial é utilizada para modelar a propagação de doenças infecciosas em populações. O número de indivíduos infectados cresce exponencialmente ao longo do tempo, se não forem tomadas medidas para controlar a disseminação da doença.

Aplicações de Função Exponencial em Ciências Biológicas

Degradação de Medicamentos: A função exponencial é utilizada para modelar a
degradação de medicamentos no organismo. A concentração do medicamento no sangue
diminui exponencialmente ao longo do tempo, à medida que ele é metabolizado e
excretado. A meia-vida do medicamento, representada pelo tempo necessário para reduzir
a concentração do medicamento pela metade, é um parâmetro importante para determinar
a dosagem e o intervalo entre as doses.

Aplicação de Função Exponencial em Ciências Biológicas

Aplicação

O número de bactérias de uma cultura, t horas após o início de um certo experimento, é dado pela expressão $n(t)=1200\cdot 2^{0,4t}$. Nessas condições, quanto tempo após o início do experimento a cultura terá 38400 bactérias?

Aplicação de Função Exponencial em Ciências Biológicas

Aplicação

O número de bactérias de uma cultura, t horas após o início de um certo experimento, é dado pela expressão $n(t)=1200\cdot 2^{0,4t}$. Nessas condições, quanto tempo após o início do experimento a cultura terá 38400 bactérias?

Quanto tempo 1 milhão de reais precisa ficar investido, a uma taxa de 10% ao mês para que ele dobre o valor?

Quanto tempo 1 milhão de reais precisa ficar investido, a uma taxa de 10% ao mês para que ele dobre o valor?

Resolver esse problema é equivalente a resolver a seguinte equação:

 $1, 1^t = 2$ para qual valor de t?

Quanto tempo 1 milhão de reais precisa ficar investido, a uma taxa de 10% ao mês para que ele dobre o valor?

Resolver esse problema é equivalente a resolver a seguinte equação:

 $1, 1^t = 2$ para qual valor de t?

A função logarítmica surge como a função inversa da exponencial, e sua principal necessidade é justamente resolver equações exponenciais, ou seja, quando a incógnita está no expoente. Veremos mais sobre a função logarítmica a seguir.

31 / 40

Priscila Bemm (UEM) Principais Funções

Função logarítmica de base

Como a função exponencial de base a>0 é uma bijeção $f:\mathbb{R}\to(0,\infty)$, ela possui uma inversa $f^{-1}:(0,\infty)\to\mathbb{R}$. A função f^{-1} é chamada de função logarítmica de base a e é denotada por \log_a . Assim,

$$\log_a:(0,\infty)\to\mathbb{R}$$

é uma bijeção tal que

$$\log_a x = y$$
 se, e somente se, $a^y = x$.

O número $\log_a x$ é chamado de logaritmo de x na base a.

Priscila Bemm (UEM)

Função logarítmica de base

Como a função exponencial de base a>0 é uma bijeção $f:\mathbb{R}\to(0,\infty)$, ela possui uma inversa $f^{-1}:(0,\infty)\to\mathbb{R}$. A função f^{-1} é chamada de função logarítmica de base a e é denotada por \log_a . Assim,

$$\log_a:(0,\infty)\to\mathbb{R}$$

é uma bijeção tal que

$$\log_a x = y$$
 se, e somente se, $a^y = x$.

O número $\log_a x$ é chamado de logaritmo de x na base a.

Exemplo

Temos que $\log_3 81 = 4$, pois $3^4 = 81$.

32 / 40

Priscila Bemm (UEM) Principais Funções

Curiosidades

- Bernoulli (1654-1705), ao estudar problemas relacionado com juros compostos, se deparou várias vezes com o mesmo número que tinha infinitas casas decimais, não periódicas, . Posteriormente, Leonhard Euler (1707-1783) ao se deparar também várias vezes com esse número, o chamou de e.
- ullet O número e tem inúmeras propriedades interessantes e é crucial para a resolução de problemas da matemática e de ciências em geral, muitas vezes usados em problemas que envolve crescimento.
- $e \approx 2,718281...$

Definição

Quando a base do logaritmo é e, chamamos $\log_e x$ de logaritmo natural e denotamos por $\ln x$, isto é,

$$\ln x = y$$
 se, e somente se, $e^y = x$.

4 D > 4 D > 4 E > 4 E > E 9 Q O

Exercício

Esboce o gráfico da função f definida por $f(x) = \log_2 x$.

Exercício

Esboce o gráfico da função f definida por $f(x) = \log_2 x$.

Solução. Construímos a seguinte tabela:

x	f(x)
1/8	$\log_2(1/8) = -3$
1/4	$\log_2(1/4) = -2$
1/2	$\log_2(1/2) = -1$
1	$\log_2 1 = 0$
2	$\log_2 2 = 1$
4	$\log_2 4 = 2$
8	$\log_2 8 = 3$
16	$\log_2 16 = 4$
32	$\log_2 32 = 5$

Exercício

Esboce o gráfico da função f definida por $f(x) = \log_2 x$.

Solução. Construímos a seguinte tabela:

x	f(x)
1/8	$\log_2(1/8) = -3$
1/4	$\log_2(1/4) = -2$
1/2	$\log_2(1/2) = -1$
1	$\log_2 1 = 0$
2	$\log_2 2 = 1$
4	$\log_2 4 = 2$
8	$\log_2 8 = 3$
16	$\log_2 16 = 4$
32	$\log_2 32 = 5$

Exercício

Esboce o gráfico da função f definida por $f(x) = \log_{1/2} x$.

Exercício

Esboce o gráfico da função f definida por $f(x) = \log_{1/2} x$.

Solução. No lugar de construir uma tabela que nem no caso anterior, notamos que

para todo x > 0.

Observação

O gráfico de uma função logarítmica f definida por $f(x) = \log_a x$ é uma curva que sempre está localizada à direita do eixo y e que passa pelo ponto (1,0). Além disso,

- se a > 1, a curva se eleva lentamente conforme x assume valores cada vez maiores;
- se 0 < a < 1, a curva decai lentamente conforme x assume valores cada vez maiores.
- Quando a base

Aplicações de Função logarítmica na arquitetura

• Isolamento Acústico: No dimensionamento de paredes, divisórias e outros elementos de isolamento acústico, a função logarítmica é utilizada para determinar a espessura e os materiais necessários para reduzir o nível de ruído transmitido de um ambiente para outro.

Aplicações de Função logarítmica na arquitetura

 Distribuição de Iluminação Natural: A função logarítmica é utilizada para determinar a quantidade de luz natural que incide em diferentes pontos de um ambiente, considerando fatores como a orientação do edifício, a forma das aberturas e a presença de obstáculos. Essa informação permite otimizar o projeto de iluminação natural, reduzindo o consumo de energia artificial.

Aplicação de Função Logarítmica em Matemática Financeira

Quanto tempo 1 milhão de reais precisa ficar investido, a uma taxa de 10% ao mês para que ele dobre o valor?

$$1, 1^t = 2$$

É necessário deixar investido durante 7,28 meses, que é equivalente a 7 meses e 9 dias.

Priscila Bemm (UEM)

Aplicações de Função Logarítmica em Ciências Biológicas

• Sabemos que o número de bactérias numa cultura, depois de um tempo t em minutos, é dado por $n(t) = n_0 \cdot e^{kt}$, em que n_0 é o número inicial de bactérias e k é a taxa de crescimento relativo.

Se em uma cultura específica, ao iniciar o experimento, havia 5 bactérias e, após 10 minutos, o número de bactérias é 8, determine:

- A taxa de crescimento relativo k
- O total de bactéria quando t=20
- O tempo necessário para que o número de bactérias seja igual a 30.

Priscila Bemm (UEM) Principais Funções 39 / 40

