Week 1.3 Parameter Learning

Gradient Descent

- 1. Start with some θ_0, θ_1
- 2. Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum
- repeat until convergence {

$$heta_j := heta_j - lpha rac{\partial}{\partial heta_j} J(heta_0, heta_1)$$

} for (j = 0 and j = 1)

- α : learning rate
- Simultaneously: update θ_0 and θ_1
- Intuition:

Intuition

• too small

if α is too small, gradient descent can be slow

• too large:

if α is too large, gradient descent can overshoot minimum. It may fail to converge, or even diverge.

• Gradient descent can converge to a local minimum, even with the learning rate α fixed

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Gradient Descent for Linear Regression

$$rac{\partial}{\partial heta_0} J(heta_0, heta_1) = rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)})$$

$$rac{\partial}{\partial heta_1}J(heta_0, heta_1) = rac{1}{m}\sum_{i=1}^m (h_ heta(x^{(i)})-y^{(i)})x^{(i)}$$

- "convex function": bowl-shaped, only one global optimum
- "Batch" Gradient Descent: each step of gradient descent uses all the training examples