Name:

Solutions

Problem 1: A concentrated binary solution containing mostly species 2 (but $x_2 \neq 1$) is in equilibrium with a vapor phase containing both species 1 and 2. The pressure of this two-phase system is **1 bar**; the temperature is 25°C. Determine from the following data good estimates of x_1 and y_1 , stating all assumptions.

$$H_1 = 200 \text{ bar } p_2*(25^{\circ}\text{C}) = 0.10 \text{ bar}$$

(Assume
$$\rho_2^* \approx \rho_2$$
 is ok)

$$P = \times_1 H_1 + (1 - \times_1) P_2^*$$

$$\Rightarrow$$
 $\chi_1 = 0.0045$

$$\gamma_1 = \frac{\rho_1}{\rho} = \frac{x_1 H_1}{\rho} = 0.9$$

Problem 2: Are the following statements true or false? Explain your reasoning.

1) The chemical potential of a component in a system is the partial molar internal energy for the component.

Chemical potential = partial molar Gibbs free energy = $\left(\frac{\partial G}{\partial n_i}\right)_{T_i}$, P_i , n_i

2) The partial molar enthalpy of component 1 is given by $\overline{H}_1 = a + b$, when the total solution enthalpy is given by $\widehat{H} = ax_1 + b$.

$$\overline{H}_{1} = \widehat{H} + x_{2} d\widehat{H}
\overline{dx}_{1}$$

$$= ax_{1} + b + x_{2}(a)$$

$$= ax_1 + b + (1-x_1)a$$

$$= ax_1 + b - ax_1 + a$$

$$\overline{H_1} = a + b \qquad \boxed{\text{True}}$$

Useful Equations: Henry's Law $y_i P = x_i \mathcal{H}_i(T)$; $\widehat{M} = \sum x_i \overline{M}_i$; $\frac{dM_1}{dx_1} \neq \overline{M}_1 - \overline{M}_2$