PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C08G 65/10

(11) Internationale Veröffentlichungsnummer:

WO 98/51729

A1 (43) Internationales

Veröffentlichungsdatum:

19. November 1998 (19.11.98)

(21) Internationales Aktenzeichen:

PCT/EP98/02674

(22) Internationales Anmeldedatum:

6. Mai 1998 (06.05.98)

(81) Bestimmungsstaaten: CA, CN, JP, KR, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR,

IE, IT, LU, MC, NL, PT, SE).

(30) Prioritätsdaten:

197 19 875.9

12. Mai 1997 (12.05.97)

DE

Veröffentlicht

Mit internationalem Recherchenbericht.

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): ELLER, Karsten [DE/DE]; Bayernstrasse 45, D-67061 Ludwigshafen (DE). STEIN, Frank [DE/DE]; Seebacher Strasse 37, D-67098 Bad Dürkheim (DE). SIGWART, Christoph [DE/DE]; Kurpfalzstrasse 9, D-69198 Schriesheim (DE). BECKER, Rainer [DE/DE]; Im Haseneck 22, D-67098 Bad Dürkheim (DE). PLITZKO, Klaus-Dieter [DE/DE]; Kalmitweg 24, D-67117 Limburgerhof (DE). FISCHER, Rolf [DE/DE]; Bergstrasse 98, D-69121 Heidelberg (DE). MÜLLER, Ulrich [DE/DE]; Am Stecken 14a, D-67435 Neustadt (DE).
- ISENBRUCK, Günter; Theodor-Heuss-Anlage 12, D-68165 Mannheim (DE).
- (54) Title: METHOD FOR POLYMERIZING CYCLIC ETHER
- (54) Bezeichnung: VERFAHREN ZUR POLYMERISATION CYCLISCHER ETHER
- (57) Abstract

The invention relates to a method for polymerizing cyclic ether on a heterogeneous catalyst, wherein the heterogeneous catalyst contains one or several pillared interlayered clays (PILCs).

(57) Zusammenfassung

Die Erfindung betrifft ein Verfahren zur Polymerisation cyclischer Ether an einem Heterogenkatalysator, wobei der Heterogenkatalysator einen oder mehrere Pillared Interlayered Clays (PILCs) enthält.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
ΑT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
ΑZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungam	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten vor
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	υz	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbahwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumānien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EĘ	Estland	LR	Liberia	SG	Singapur		

- 1 -

Verfahren zur Polymerisation cyclischer Ether

10

15

20

5

Die vorliegende Erfindung betrifft ein Verfahren zur Polymerisation cyclischer Ether an einem Heterogenkatalysator, wobei der Heterogenkatalysator einen oder mehrere Pillared Interlayered Clays (PILCs) enthält.

Polytetrahydrofuran (PTHF), auch Polyoxybutylenglykol genannt, dient als Zwischenprodukt zur Herstellung von Polyurethan-, Polyester- und Polyamid-Elastomeren, zu deren Herstellung es als Diolkomponente eingesetzt wird. Der Einbau von PTHF in diese Polymere bewirkt, daß diese weich und flexibel werden, weshalb PTHF auch als Weichsegment-Komponente für diese Polymere bezeichnet wird. Polytetrahydrofuranmonoester von Monocarbonsäuren finden beispielsweise als Weichmacher (US-A 4 482 411), Imprägniermittel, Monomere (EP-A 286 454), Emulgatoren und Dispergierhilfsmittel Anwendung und werden außerdem noch zum Deinken bei der Wiederaufarbeitung von Altpapier eingesetzt.

25

30

35

Die kationische Polymerisation von Tetrahydrofuran (THF) mit Hilfe von Katalysatoren wurde von Meerwein et al. (Meerwein et al. (1960) Angew. Chem. 72, 927) beschrieben. Als Katalysatoren werden dabei entweder vorgeformte Katalysatoren verwendet, oder die Katalysatoren werden in situ im Reaktionsgemisch erzeugt. Dies geschieht dadurch, daß im Reaktionsmedium mit Hilfe starker Lewis-Säuren, wie Bortrichlorid, Aluminiumtrichlorid, Zinntetrachlorid, Antimonpentachlorid, Eisen(III)chlorid Phosphorpentafluorid, oder mittels starker Brønsted-Säuren, wie Perchlorsäu-Tetrafluoroborsäure, Fluorsulfonsäure, Chlorsulfonsäure, Hexachlorozinn(IV)säure, Iodsäure, Hexachlorantimon(V)säure oder Tetrachloreisen(III)säure, und mit Hilfe von als Promotoren bezeichneten reaktiven Verbindungen, wie Alkylenoxiden, z.B. Ethylenoxid, Propylenoxid, Epichlorhydrin oder Butylenoxid, Oxetanen, Orthoestern, Acetalen, α-Halogenethern, Benzylhalogeniden, Triarylmethylhalogeniden, Säurechloriden, B-Lactonen, Carbonsäureanhydriden, Thionylchlorid, Phosphoroxychlorid oder Sulfonsäurehalogeniden, Oxoniumionen erzeugt werden, die die Polymerisation des THF initiieren. Aus der Vielzahl dieser Katalysatorsysteme haben jedoch nur wenige technische Bedeutung erlangt, da sie teilweise hoch korrosiv sind und/oder bei der Herstellung des PTHF zu verfärbten PTHF-Produkten mit nur beschränkter Verwendbarkeit führen. Viele dieser Katalysatorsysteme wirken darüber hinaus nicht im eigentlichen Sinne katalytisch, sondern müssen, bezogen auf das herzustellende Makromolekül, in stöchiometrischen Mengen eingesetzt werden und werden bei der Polymerisation verbraucht. Beispielsweise müssen bei der Herstellung von PTHF mit Fluorsulfonsäure als Katalysator nach US-A 3 358 042 ungefähr zwei Moleküle Fluorsulfonsäure pro Molekül PTHF als Katalysator eingesetzt werden. Ein besonderer Nachteil bei der Verwendung halogenhaltiger Katalysatoren ist, daß diese zur Bildung halogenierter Nebenprodukte bei der PTHF-Herstellung führen, die vom reinen PTHF nur sehr schwierig abzutrennen sind und dessen Eigenschaften nachteilig beeinflussen.

10

15

20

30

Bei der Herstellung von PTHF in Gegenwart der oben genannten Promotoren, d. h. Reaktionsbeschleuniger, werden diese als Telogene in das PTHF-Molekül eingebaut, so daß als primäres Produkt der THF-Polymerisation nicht PTHF entsteht, sondern ein PTHF-Derivat, beispielsweise ein PTHF-Diester oder -Sulfonat, aus dem das PTHF in einer weiteren Umsetzung, z.B. durch Verseifung oder Umesterung (vgl. US-A 2 499 725 und DE-A 2 760 272) freigesetzt werden muß. Telogene sind im allgemeinen Verbindungen, die den Kettenabbruch und/oder die Kettenübertragung bei der Polymerisation bewirken. Bei der Verwendung von Alkylenoxiden als Promo-

- 3 -

toren wirken diese auch als Comonomere und werden in das Polymer eingebaut, mit der Folge, daß THF-Alkylenoxid-Copolymere mit anderen Eigenschaften, insbesondere anderen Anwendungseigenschaften als PTHF, gebildet werden.

Einstufig kann PTHF hergestellt werden, indem man die THF-Polymerisation in Gegenwart von Wasser, 1,4-Butandiol oder niederen PTHF-Oligomeren durchführt. Bei der Verwendung von 2-Butin-1,4-diol als Telogen entstehen Copolymere aus THF und 2-Butin-1,4-diol, die jedoch durch Hydrierung der darin enthaltenen Dreifachbindungen in PTHF überführt werden können.

Gemäß US-A 5 149 862 wird sulfatdotiertes Zirkoniumdioxid als saurer heterogener, im Reaktionsmedium unlöslicher Polymerisationskatalysator verwendet. Zur Beschleunigung der Polymerisation wird dem Reaktionsmedium ein Gemisch aus Essigsäure und Acetanhydrid zugesetzt, da in Abwesenheit dieser Promotoren die Polymerisation nur sehr schleppend verläuft und während eines Zeitraums von 19 Stunden nur ein Umsatz von 6% erzielt wird. Bei diesem Verfahren werden PTHF-Diacetate gebildet, die anschließend durch Verseifung oder Umesterung in PTHF umgewandelt werden müssen.

PTHF-Diester entstehen ebenfalls bei der Polymerisation von THF mit Bleicherdekatalysatoren nach EP-A 0 003 112.

In US-A 4 303 782 werden Zeolithe zur Herstellung von PTHF eingesetzt. Die nach diesem Verfahren erhältlichen THF-Polymeren haben extrem hohe mittlere Molekulargewichte - M_n 250.000 bis 500.000 D - und konnten sich für die obengenannten Anwendungszwecke nicht durchsetzen. Dementsprechend hat auch dieses Verfahren keine industrielle Bedeutung erlangt.

10

- 4 -

DE 4 433 606 beschreibt beispielsweise die einstufige PTHF-Herstellung durch THF-Polymerisation an heterogenen Trägerkatalysatoren, die eine katalytisch aktive Menge einer sauerstoffhaltigen Wolfram- oder Molybdänverbindung oder Gemische dieser Verbindungen auf einem oxidischen Trägermaterial enthalten und die nach dem Aufbringen der Vorläuferverbindungen der sauerstoffhaltigen Molybdän- und/oder Wolframverbindungen auf den Trägermaterialvorläufer bei Temperaturen von 500 bis 1000 °C kalziniert wurden. Ein Nachteil bei diesen Katalysatoren ist der Einsatz des teuren Zirkondioxides als Trägermaterial.

10

Aufgabe der vorliegenden Erfindung ist daher, ein Verfahren bereitzustellen, bei dem die Polymerisation cyclischer Ether auf vorteilhafte Weise, insbesondere mit hohen Raum-Zeit-Ausbeuten, und unter Vermeidung der oben geschilderten Nachteile durchgeführt werden kann.

15

20

25

30

Ein Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Polymerisation cyclischer Ether an einem Heterogenkatalysator, wobei der Heterogenkatalysator einen oder mehrere sogenannte Pillared Interlayered Clays (PILCs) enthält, die beispielsweise aus Figueras, F. (1988) Catal. Rev. Sci. Eng., 30, 457 No.3 oder Jones (1988), Catal. Today, 2, 357 bekannt sind.

Unter PILC versteht man im allgemeinen Schichtstrukturen, wobei zwischen den Schichten eine oder mehrere Metallverbindungen in Form von Pfeilern eingelagert sind (siehe z. B. Fig. 2 in Figueras, F. (1988), supra). Im allgemeinen liegt der Schichtabstand zwischen ca. 4-80 Å, vorzugsweise zwischen ca. 8-30 Å, vor allem zwischen ca. 8-25 Å. Der durch die eingelagerten Metallverbindungen "aufgespannte" Raum zwischen den Schichtstrukturen steht als Porenvolumen für die Reaktanden der erfindungsgemäßen Polymerisationsreaktion zur Verfügung. Ein zusätzliches Porenvolu-

- 5 -

men wird z. B. durch Delaminierung geschaffen, d. h. es werden sogenannte Kartenhausstrukturen erzeugt.

Bevorzugte Metallverbindungen für die Pfeiler sind Metallverbindungen, vorzugsweise Oxide und/oder Sulfide von Elementen der III. und IV. Hauptgruppe des Periodensystems, insbesondere von Aluminium, Gallium, Indium, Thallium, Silizium, Germanium, Zinn oder Blei, vor allem von Aluminium, Gallium oder Silizium, oder von Elementen der Übergangsgruppen, vorzugsweise von Titan, Zirkon, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän, Wolfram, Mangan oder Eisen, vor allem von Titan, Zirkon, Vanadium, Tantal, Chrom oder Eisen, die gegebenenfalls als Mischungen untereinander oder als Mischungen mit einem oder mehreren anderen Oxiden und/oder Sulfiden wie z. B. von Magnesium, Bor, Kobalt oder Nickel vorliegen können. Bevorzugt sind oxidische Pfeiler.

15

Beispiele geeigneter Metalloxide sind Al_2O_3 , ZrO_2 , TiO_2 , Cr_2O_3 , Ga_2O_3 , SiO_2 , Ta_2O_5 , Fe_2O_3 und V_2O_5 . Beispiele von weiterhin vorliegenden Oxiden sind MgO, B_2O_3 , Co_2O_3 oder NiO. Vor allem ist hierbei eine Mischung aus Al_2O_3 und MgO, welche ein Aluminium-Magnesium-Mischoxid ergibt, bevorzugt. Ein Beispiel eines Sulfids ist Fe_2S_3 .

Auch eignen sich Metallverbindungen mit Perowskit-Struktur wie z. B. LaCoO₃, LaNiO₃, LaMnO₃ und/oder LaCuO₃ als Pfeiler (siehe z. B. WO 92/00808).

25

Der Anteil an eingelagertem Metall ist vorzugsweise ca. 1-50 Gew.-%, insbesondere ca. 2-35 Gew.-% bezogen auf den fertigen PILC und gerechnet als Gew.-% Metall.

Als geeignete Schichtverbindungen zur Herstellung der PILCs eignen sich vorzugsweise Schichtsilikate, insbesondere Tone. Beispiele für Tonmineralien sind z. B. Smektitmineralien, wie z. B. Montmorillonit in reiner Form oder als Bestandteil von Bentonit. Weitere Beispiele für Smektite sind Beidellit, Hectorit, Nontronit, Sauconit oder Saponit (siehe z.B. U.S. 5.409.597, Tabelle 1). Weitere Beispiele von Tonmineralien sind Vermiculit, Mica, Taeniolit oder von Schichtsilikaten sind Kanemit, Ilerit, Magadiit, Makatit oder Kenyait.

- Andere Beispiele von geeigneten Schichtverbindungen sind α-Zirkoniumphosphat, Tetrasilizium-mica, Brucit, Siliziumsäure TypI oder Rectorit (siehe
 z. B. Vaughan, D. E. W. (1988) "Developments in Pillared Interlayered
 Clays" in Perspectives in Molecular Sieve Science (Flank, W. H. & Whyte,
 Th. E. Jr. eds.) ACS Symposium Series, 368, 308-323, Chapter 19, American Chemical Society; Szostak, R. & Ingram, C. (1995) "Pillared Layered
 Structures (PLS): From Microporous to Nano-phase Materials" in Catalysis
 by Microporous Materials, Studies in Surface Science and Catalysis Vol. 94,
 13 (Beyer, H. K. et al., eds.) Elsevier Science B. V.).
- Der Einfachheit halber sollen im Sinne dieser Erfindung auch andere Pillared Layered Strukturen unter dem Begriff PILC verstanden werden, die nicht aus Tonmineralien hergestellt werden.
- Zur Herstellung der PILCs geht man im allgemeinen von käuflichen natürlich vorkommenden oder synthetisch hergestellten Schichtverbindungen aus,
 die entweder unbehandelt oder vorbehandelt sind (siehe z. B. Mokaya, R.
 & Jones, W. (1994) J. Chem. Soc. Chem. Commun., 929-930 oder WO
 95/14530).

- 7 -

Die Einlagerung einer oder mehrerer Metallverbindungen in vor- oder nicht vorbehandelten Schichtverbindungen erfolgt beispielsweise nach folgendem allgemein bekannten Verfahren (siehe z. B. U.S. 4.238.364 oder WO 95/14530):

5

15

20

25

30

Das oder die im allgemeinen negativ geladenen Schichtverbindungen werden zuerst in einem Dispersionsmittel, beispielsweise Wasser, dispergiert, und anschließend mit einer Lösung, die eine oder mehrere im allgemeinen positiv geladene oligomere Hydroxidionen der genannten Metalle enthält, versetzt. Die Metallhydroxidlösung kann beispielsweise durch alkalische Hydrolyse einer entsprechenden Salzlösung nach dem Fachmann bekannten Methoden hergestellt werden. Geeignete Ausgangsverbindungen sind z. B. AlCl₃, Aluminium-Chlorhydrat, Aluminiumnitrat oder -acetat, Zirkonylchlorid oder nitrat, Titanylchlorid oder -nitrat, Titantetrachlorid, Chrom(III)nitrat, Eisen(III)nitrat, Zinn(IV)chlorid, -nitrat oder -acetat. Aus den Lösungen dieser Salze werden die entsprechenden Hydroxide z. B. mittels wäßriger Ammoni-Natriumhydroxidlösung oder Natriumcarbonatlösung Alternativ können die Hydroxide durch Zugabe verdünnter oder schwacher Säuren, wie Essigsäure, zu wasserlöslichen Hydroxokomplexen der entsprechenden Metalle erhalten werden. Ebenso ist es möglich, die Hydroxide durch Hydrolyse von organometallischen Verbindungen, beispielsweise den Alkoholaten der betreffenden Metalle, wie z. B. Zirkoniumtetraethanolat, Zirkoniumtetraisopropylat, Titantetramethanolat, Titantetraisopropylat erhalten. Die Bezeichnung "Hydroxide" im Sinne dieser Erfindung stellt eine Sammelbezeichnung für die oligomeren Ionen der genannten Metalle dar, die z. B. auch Oxidhydrate, polymere Hydroxo-Komplexe oder die auch andere Anionen wie Chlorid- oder Alkoholationen enthalten können. Danach werden die Suspensionen beispielsweise ca. 30 Minuten bis 100 Stunden bei z. B. ca. 0-100 °C, vorzugsweise bei ca. 20-95 °C gerührt und anschließend die Schichtverbindung beispielsweise mittels Filtration oder Zentrifugation abge-

- 8 -

trennt, danach z. B. mit deionisiertem Wasser gewaschen und in der Regel an der Luft oder unter einer Inertgasatmosphäre, z. B. Stickstoff, bei ca. 100-160 °C getrocknet und bei ca. 150-600 °C, vorzugsweise bei ca. 200-500 °C ca. 2-16 Stunden, kalziniert. Ebenso ist eine Gefriertrocknung möglich. Beispiele positiv geladener Metallhydroxide sind $[Al_{13}O_4(OH)_{24}(H_2O)_{12}]^{7+}$ oder $[Zr_4(OH)_8(H_2O)_{16}]^{8+}$, die nach der Einlagerung und Kalzinierung zu Aluminiumoxid- oder Zirkoniumoxid-Verbindungen ("Pfeiler") führen, d. h. zu Al- bzw. Zr-PILCs.

In einer weiteren Ausführungsform werden die Schichtverbindungen vor oder 10 nach der Einlagerung einer oder mehrerer Metallverbindungen und vor der unten näher beschriebenen Verformung mit einer oder mehreren Säuren behandelt, da die Säurebehandlung das Porenvolumen erhöhen und die Aktivität der PILCs steigern kann. Vorzugsweise wird die Säurebehandlung mit einer anorganischen Säure, wie z. B. Salzsäure, Flußsäure, Schwefelsäu-15 re, Phosphorsäure und/oder einer organischen Säure, wie z. B. Oxalsäure, durchgeführt. Die Säurebehandlung wird im allgemeinen mit einer ca. 0,001-20 N, vorzugsweise mit einer ca. 0,1-10 N Säure ca. 1-100 Stunden, vorzugsweise ca. 1-24 Stunden lang in einer wäßrigen Aufschlämmung des Schichtminerals bei ca. 0-150 °C durchgeführt. Nach dem Abtrennen und 20 Auswaschen wird in der Regel bei ca. 150-600 °C, vorzugsweise bei ca. 200-500 °C ca. 2-16 Stunden kalziniert.

In einer alternativen Ausführungsform können die Schichtverbindungen auch gegebenenfalls zusätzlich nach der unten näher beschriebenen Verformung säurebehandelt werden, um noch vorhandene Alkali- oder Erdalkaliionen gegen Wasserstoffionen auszutauschen. Hierbei wird die Schichtverbindung im allgemeinen ca. 1-3 Stunden zwischen ca. 60-80 °C mit einer ca. 3-25 %igen Säure behandelt, ausgewaschen, bei ca. 100-160 °C getrocknet und bei ca. 200-600 °C kalziniert. Vor allem bei der Säurebehandlung von

25

- 9 -

ZrO₂-, TiO₂- oder Fe₂O₃-PILCs mit beispielsweise Schwefelsäure können PILCs mit sulfatierten Metalloxid-"Pfeilern" erhalten werden, die thermisch besonders stabil sind (Farfan-Torres, E. M. & Grange, P. (1991) Catal. Sci. Technol., 1, 103-109.)

5

20

Die Behandlung mit Ammonium- und/oder Aminsalzen stellt eine weitere Möglichkeit dar, noch vorhandene Alkali- oder Erdalkaliionen gegen Wasserstoffionen auszutauschen. Hierzu werden die Schichtverbindungen vor oder nach der Einlagerung mit einer oder mehreren Metallverbindungen mit einer ca. 0,1-40 Gew.-%igen, vorzugsweise ca. 5-30 Gew.-%igen Ammoniumsalzlösung, wie z. B. mit einer Ammoniumchlorid- und/oder Ammoniumnitrat-Lösung, und/oder mit einer Salzlösung eines flüchtigen Amins, z. B. Ethylamin, ca. 1-100 Stunden, vorzugsweise ca. 1-24 Stunden lang in einer wäßrigen Aufschlämmung der Schichtverbindung bei ca. 0-100 °C behandelt. Nach dem Abtrennen und Auswaschen wird in der Regel bei ca. 150-600 °C, vorzugsweise bei ca. 200-500 °C ca. 2-16 Stunden kalziniert, um den Ammoniak bzw. das flüchtige Amin wieder zu entfernen.

In einer anderen Ausführungsform wird das Schichtmineral vor oder nach der Einlagerung mit einem oder mehreren Fluoriden, z. B. mit Ammoniumfluorid, fluoriert, wobei entweder die Hydroxylgruppen des Schichtminerals durch Fluorid ersetzt werden (siehe z. B. U.S. 5.308.812) und/oder die eingelagerten Metalloxide fluoriert werden (siehe z. B. U.S. 5.409.597).

In einer weiteren Ausführungsform wurde die Schichtverbindung vor oder nach der Einlagerung eines oder mehrerer Metalloxide und vor oder nach der Verformung zusätzlich mit Metallionen, insbesondere mit Übergangsmetallionen, beispielsweise mit Titan-, Zirkonium-, Niob-, Molybdän-, Wolfram-, Rhenium-, Nickel-, Eisen, Cobaltionen und/oder mit Metallionen der Seltenen Erden wie Cer-, Yttrium- und/oder Lanthanionen dotiert (siehe

z. B. U.S. 4.238.364 oder Jiang et al. (1992) in Proc. 9th Int. Zeolite Conf., 2, 631-638). In einer vorteilhaften Ausführungsform wird der bereits verformte PILC in einem Strömungsrohr vorgelegt und eine Lösung an Metallionen in Form beispielsweise eines Halogenids, eines Acetats, eines Oxalats, eines Citrats und/oder eines Nitrats bei ca. 20-100 °C darübergeleitet. Eine weitere Möglichkeit die Katalysatoren zu dotieren, besteht darin, daß man den PILC mit einer Lösung, beispielsweise einer wäßrigen oder alkoholischen Lösung, der oben beschriebenen Übergangsmetallsalzen imprägniert. Anschließend erfolgt eine Trocknung und gegebenenfalls eine zusätzliche Kalzinierung unter den oben bereits näher beschriebenen Bedingungen. Auch kann es vorteilhaft sein, den Metall-dotierten PILC mit Wasserstoff und/oder Wasserdampf nachzubehandeln.

10

15

20

25

30

Im allgemeinen kann der PILC für das erfindungsgemäße Verfahren entweder als solches zu Formkörpern, beispielsweise zu Strängen oder Tabletten, oder gegebenenfalls in Anwesenheit eines Bindemittels, vorzugsweise in einem Verhältnis von ca. 98:2 bis ca. 40:60, verformt werden. Als Bindemittel eignen sich verschiedene Aluminiumoxide, vorzugsweise Böhmit (AlOOH), amorphe Aluminiumsilikate, Siliziumdioxid, vorzugsweise hochdisperses Siliziumdioxid, hochdisperses Titandioxid und/oder Tone wie beispielsweise Kaolin. Nach der Verformung werden die Extrudate oder Preßlinge zweckmäßigerweise bei ca. 110-120 °C über Nacht getrocknet und anschließend bei ca. 150-600 °C, vorzugsweise bei ca. 200-500 °C, für ca. 2-16 Stunden kalziniert, wobei die Kalzinierung auch direkt im Polymerisationsreaktor erfolgen kann. Bei der Durchführung des erfindungsgemäßen Verfahrens in Suspensionsfahrweise eignen sich die Heterogenkatalysatoren in Form von Pulver oder bei einer Festbettanordnung des Heterogenkatalysators als Formkörper, z. B. in Zylinder-, Kugel- oder Splittform. Die Festbettanordnung des Heterogenkatalysators ist insbesondere bei z. B. Schlaufenreaktoren oder beim kontinuierlichen Betrieb des Verfahrens bevorzugt.

Die oben beschriebenen Heterogenkatalysatoren haben im allgemeinen eine BET-Oberfläche von ca. 50-400 m²g⁻¹, vorzugsweise von ca. 60-300 m²g⁻¹, insbesondere von 100-300 m²g⁻¹ und eignen sich überraschenderweise besonders vorteilhaft für die Polymerisation cyclischer Ether. Diese Eigenschaft war deshalb besonders überraschend, da die Katalysatoren bislang überwiegend nur in petrochemischen Verfahren, beispielsweise als Katalysatoren für Alkylierungen, Isomerisierungen oder Cracken von Kohlenwasserstoffen verwendet wurden, also in Verfahren, die mit dem Verfahren gemäß der vorliegenden Erfindung nicht verwandt sind.

10

Als cyclische Ether eignen sich insbesondere cyclische Ether der allgemeinen Formel (I)

$$R^{5}$$
 R^{1} R^{2}
 C C (I),
 R^{4} O R^{3}

20

30

15

wobei R¹ eine Bindung oder 1 bis 8, vorzugsweise 1 bis 4, vor allem 2 Kohlenstoffatome, die gegebenenfalls mit einem Rest R⁶ und/oder R⁷ substituiert sind, bedeutet und R², R³, R⁴, R⁵, R⁶, und R⁷ unabhängig voneinander Wasserstoff, oder eine gesättigte oder einfach oder mehrfach ungesättigte Alkylgruppe mit 1 bis 4 Kohlenstoffatomen, oder eine Arylgruppe mit 6 Kohlenstoffatomen ist, wobei gegebenenfalls R², R³, R⁴, R⁵, R⁶, und/oder R⁷ über 2 bis 8, vorzugsweise 4 bis 5 Kohlenstoffatome verbunden sein kann, die gegebenenfalls mit einem oder mehreren Resten entsprechend R⁶ und/oder R⁷ substituiert sein können. Besonders bevorzugt als cyclische Ether sind z. B. Ethylenoxid, Propylenoxid, Oxetan, Tetrahydrofuran (THF), Tetrahydropyran, 2-Methyltetrahydrofuran, 3-Methyltetrahydrofuran, Styroloxid, vor allem THF, 2-Methyltetrahydrofuran oder 3-Methyltetrahydrofuran, oder Mischungen eines oder mehrerer der genannten cyclischen Ether mit

mindestens einer Verbindung als Telogen, ausgewählt aus Wasser, Alkan-, Alken- oder Alkindiolen mit 1-12, vorzugsweise 1-6, insbesondere 1-4 Kohlenstoffatomen, insbesondere Wasser, 1,4-Butandiol und/oder 2-Butin-1,4-diol, Polytetrahydrofuran (PTHF) mit einem Molekulargewicht von ca. 200-700 Dalton, einer Monocarbonsäure mit 1-10, vorzugsweise 1-8 Kohlenstoffatomen, insbesondere Ameisensäure, Essigsäure, Propionsäure, 2-Ethylhexansäure, Acrylsäure und/oder Methacrylsäure, und/oder eines Carbonsäureanhydrids aus Monocarbonsäuren mit 2-20, vorzugsweise mit 2-8 Kohlenstoffatomen, insbesondere Acetanhydrid, Propionsäureanhydrid und/oder Buttersäureanhydrid, vor allem Wasser, 1,4-Butandiol, Ameisensäure, Essigsäure, 2-Butin-1,4-diol und/oder Acetanhydrid. Insbesondere ist eine Mischung aus THF und 1,4-Butandiol, vorzugsweise aus 1 mol THF und ca. 0,1-15 mol 1,4-Butandiol, THF und einem 1,4-Butandiol/Wasser-Gemisch, THF und einem niedermolekularem PTHF, oder aus THF und Essigsäureanhydrid bevorzugt.

10

15

20

25

30

Grundsätzlich kann für die katalytische Polymerisation jeder cyclische Ether eingesetzt werden, also z. B. handelsübliche cyclische Ether oder durch Säurebehandlung oder destillativ vorgereinigte cyclische Ether. Ein durch Säurebehandlung vorgereinigter THF ist z. B. in EP-A-0 003 112 beschrieben.

Die Telogene werden vorzugsweise in dem cyclischen Ether selbst, beispielsweise in THF, gelöst. Über die eingesetzte Telogenmenge kann zudem das mittlere Molekulargewicht des Polymerisationsproduktes gesteuert werden. Je mehr Telogen im Reaktionsgemisch enthalten ist, desto niedriger wird das mittlere Molekulargewicht des Polymerisationsproduktes. So können beispielsweise je nach Telogengehalt der Polymerisationsmischung PTHF bzw. die entsprechenden PTHF-Copolymere mit mittleren Molekulargewichten von ca. 250-10000 gezielt hergestellt werden. Vorzugsweise werden mit dem erfin-

. - 13 -

dungsgemäßen Verfahren PTHF bzw. die entsprechenden PTHF-Copolymere oder die entsprechenden Derivate mit mittleren Molekulargewichten von ca. 500-10000, vor allem von ca. 650-5000 Dalton hergestellt. Hierzu wird das entsprechende Telogen, bezogen auf die eingesetzte Menge an cyclischen Ether, beispielsweise THF, in Mengen von ca. 0,01-20 mol-%, vorzugsweise von ca. 0,05-10 mol-% und besonders bevorzugt von ca. 0,1-8 mol-% zugesetzt. Die Verwendung z. B. des Telogens 2-Butin-1,4-diol zur katalytischen Herstellung von Polyoxyalkylenglykolen, die C-C-Dreifach- oder C-C-Doppelbindungen enthalten, ist beispielsweise in WO 96/27626 ausführlich beschrieben, oder die Verwendung zur katalytischen Herstellung eines Copolymers aus THF und 2-Butin-1,4-diol ist beispielsweise in DE 195 275 32 ausführlich beschrieben. Im übrigen wird auch auf die DE 44 33 606 oder WO 96/09335 verwiesen, die katalytische Herstellung von PTHF und PTHF-Copolymeren im einzelnen beschreiben.

15

20

25

30

10

Die katalytische Polymerisation wird im allgemeinen bei Temperaturen von ca. 0-80°C, vorzugsweise von ca. 25°C bis zur Siedetemperatur des Reaktionsgemisches, z.B. bei THF bis zu ca. 66°C, durchgeführt. Der angewandte Druck ist im allgemeinen für eine erfolgreiche Polymerisation nach dem erfindungsgemäßen Verfahren nicht kritisch, weshalb im allgemeinen bei Atmosphärendruck oder unter dem Eigendruck des Polymerisationssystems polymerisiert wird. Zur Vermeidung der Bildung von Etherperoxiden wird die Polymerisation im allgemeinen vorzugsweise unter einer Inertgasatmosphäre, z.B. Stickstoff, Wasserstoff, Kohlendioxid oder Edelgase wie Argon, vorzugsweise Stickstoff, durchgeführt.

Das erfindungsgemäße Verfahren kann kontinuierlich oder diskontinuierlich durchgeführt werden, wobei aus wirtschaftlichen Gründen im allgemeinen ein kontinuierliches Verfahren bevorzugt ist. Bei der diskontinuierlichen Betriebsweise wird der oder die cyclischen Ether, z.B. THF, das oder die ent-

- 14 -

sprechenden Telogene und der oder die Katalysatoren im allgemeinen in einem Rührkessel oder Schlaufenreaktor bei den oben erwähnten Temperaturen solange umgesetzt, bis der gewünschte Umsatz an cyclischem Ether erreicht ist. Die Reaktionszeit kann in Abhängigkeit von der zugesetzten Katalysatormenge ca. 0,5-40, vorzugsweise ca. 1-30 Stunden betragen. Die Katalysatoren werden im allgemeinen in einer Menge von ca. 1-90 Gew.-%, vorzugsweise von ca. 4-70 Gew.-% und besonders bevorzugt von ca. 8-60 Gew.-%, bezogen auf das Gewicht des oder der cyclischen Ether, beispielsweise THF, eingesetzt.

10

15

Zur Aufarbeitung wird der Reaktionsaustrag beispielsweise im Falle der diskontinuierlichen Betriebsweise vom darin befindlichen Katalysator zweckmäßigerweise durch Filtration, Dekantieren oder Zentrifugieren abgetrennt, und im allgemeinen destillativ aufgearbeitet, wobei üblicherweise nicht umgesetztes THF abdestilliert und gegebenenfalls niedermolekulares PTHF vom Polymerisat durch Destillation bei vermindertem Druck abgetrennt werden kann. Durch Rückführung kann das niedermolekulare PTHF als Telogen in die Polymerisation erneut eingebracht werden, wo es in höhermolekulares umgewandelt wird.

20

Die Produkte der katalytischen Polymerisationsreaktion sind PTHF, PTHF-Derivate und/oder Copolymere aus THF und mindestens einer der oben genannten Verbindungen, beispielsweise ein PTHF-Monoester aus der Reaktion von THF und einer Monocarbonsäure, ein PTHF-Diester aus einer Reaktion von THF und einem Carbonsäureanhydrid oder THF/Butindiol-Copolymere aus der Reaktion von THF und 2-Butin-1,4-diol. Anschließend können die Derivate oder die Copolymere nach allgemein bekannten und oben bereits erwähnten Methoden durch Verseifung oder Hydrierung direkt in PTHF überführt werden.

Es war besonders überraschend, daß nach dem erfindungsgemäßen Verfahren die Polymerisation cyclischer Ether, insbesondere von THF vor allem bei Verwendung von Wasser und/oder 1,4-Butandiol und/oder niedermolekularem PTHF und/oder Essigsäureanhydrid als Telogene, in hohen Raum-Zeit-Ausbeuten in einem Schritt und somit auf besonders vorteilhafte Weise durchgeführt werden konnte. Es ist nach dem erfindungsgemäßen Verfahren auch besonders vorteilhaft, niedermolekulares, offenkettiges PTHF mit einem Molekulargewicht von ca. 200-700 Dalton (niedermolekulares PTHF) als Telogen zu verwenden. Da niedermolekulares PTHF und 1,4-Butandiol zwei Hydroxygruppen besitzen, werden diese Verbindungen nicht nur als Telogen an den Kettenenden der PTHF-Kette, sondern auch in die PTHF-Kette als Monomer eingebaut.

Die folgenden Beispiele sollen die Erfindung näher erläutern, ohne sie zu beschränken:

<u>Beispiele</u>

Die Molekulargewichtsverteilung (Dispersität D) der gemäß den Beispielen hergestellten Polymeren wurde aus dem Verhältnis von Gewichtsmittel des Molekulargewichts (M_w) und Zahlenmittel des Molekulargewichts (M_n) nach der Gleichung

$$M_w / M_n = D$$

25

errechnet. M_w und M_n wurden mittels Gelpermeationschromatographie bestimmt, wobei ein standardisiertes Polystyrol zur Eichung verwendet wurde. Aus den erhaltenen Chromatogrammen wurde das Zahlenmittel M_n nach der Gleichung

- 16 -

$$M_n = \Sigma c_i / (\Sigma (c_i / M_i))$$

und das Gewichtsmittel Mw nach der Gleichung

$$M_w = \Sigma c_i \cdot M_i / \Sigma c_i$$

berechnet, in der c_i für die Konzentration der einzelnen Polymerspezies i im erhaltenen Polymergemisch steht und in der M_i das Molekulargewicht der einzelnen Polymerspezies bedeutet.

1. Katalysatorherstellung

1.1 <u>Katalysator A</u>: Al-PILC (nach Diano et al. (1994), Microp. Mat., 2, 179)

15

20

25

10

5

28,5g AlCl₃·6H₂O werden in 584g dest. Wasser gelöst. Hierzu wird eine Lösung aus 10g NaOH in 1,09 Liter dest. Wasser gegeben. Die anfängliche Trübung verschwindet nach 1 h Rühren bei 50 °C. 10g eines Natrium-Montmorilloniten werden in 2 Liter dest. Wasser suspendiert und 0,75 Liter der obigen Lösung hinzugefügt. Mit 1,8g einer 25%igen Ammoniak-Lösung wird ein Ph-Wert von 5,6 eingestellt und 3 h bei 80 °C gerührt. Der so gebildete Al-PILC wird abfiltriert, chloridfrei gewaschen, bei 100 °C für 2 h getrocknet und bei 200 °C für 5 h kalziniert. Nach der Aluminium-Analyse beträgt der Al-Gehalt 16,3%; die BET-Oberfläche beträgt 185 m²g⁻¹, die Mikroporenfläche 87 m²g⁻¹. Im Röntgendiffraktogramm ist ein d₀₀₁-Reflex bei 18,5 Å erkennbar.

1.2 <u>Katalysator B</u>: Zr-PILC (Abwandlung von US 4 176 090, Bsp. 17)

15

20

25

30

106,3g ZrOCl₂·8H₂O werden in 360ml dest. Wasser gelöst und 24 h unter Rückfluß gekocht. Nach Verdünnung auf 1,5 Liter werden bei Raumtemperatur 30g eines säureaktivierten Montmorilloniten hinzugefügt und 1 h gerührt. Der so abgebildete Zr-PILC wird abfiltriert, zweimal mit je 1,5 Liter heißem dest. Wasser gewaschen, bei 110 °C für 2 h getrocknet und bei 250 °C für 3 h kalziniert. Die BET-Oberfläche beträgt 284 m²g⁻¹.

1.3 <u>Katalysator C</u>: Ti-PILC (nach Sychev et al., Proc. Polish-German

Zeolite Colloquium, Rozwadowski (Ed.), Nicholas Copernicus

University Press: Torún, 1992)

Zu 1 Liter 1 N Salzsäure werden 71,1g Ti(OⁱPr)₄ langsam zugetropft und 3 h bei Raumtemperatur gerührt. 20g eines natürlichen Montmorilloniten werden in 2 Liter einer 1:1 Mischung aus 1 N HCl und Aceton suspendiert und die obige Lösung hinzugefügt. Nach 3 h Rühren bei Raumtemperatur wird der so gebildete Ti-PILC abfiltriert, mit dest. Wasser gewaschen, bei 100 °C für 2 h getrocknet und bei 300 °C für 3 h kalziniert. Die BET-Oberfläche beträgt 117 m²g⁻¹.

1.4 <u>Katalysator D</u>: Ti-PILC (Abwandlung von Sychev et al., supra)

Zu 1 Liter 1 N Salzsäure werden 71,1g Ti(O'Pr)₄ langsam zugetropft und 3 h bei Raumtemperatur gerührt. 20g eines säureaktivierten Montmorilloniten werden in 2 Liter einer 1:1 Mischung aus 1 N Hcl und Aceton suspendiert und die obige Lösung hinzugefügt. Nach 3 h Rühren bei Raumtemperatur wird der so gebildete Ti-PILC abfiltriert, mit dest. Wasser gewaschen, bei 100 °C für 2 h getrocknet und bei 300 °C für 3 h kalziniert. Die BET-Ober-

15

20

25

30

fläche beträgt 257 m²g⁻¹. Das Beispiel zeigt, daß auch ein bereits vorbehandeltes Schichtsilikat als Ausgangsstoff verwendet werden kann.

5 1.5 Katalysator E: Al-PILC (Abwandlung von US 4 176 090, Bsp. 10)

Reheis, Irland) werden mit 100ml dest. Wasser verdünnt. 60g eines natürlichen Montmorilloniten werden hinzugefügt und die Mischung 1 h bei 65 °C gerührt. Der so gebildete Al-PILC wird abzentrifugiert, mit je 250ml heißem dest. Wasser gewaschen, bei 110 °C 2 h getrocknet und bei 250 °C für 3 h kalziniert. Nach Analyse beträgt der Al-Gehalt 15,7%; die BET-Oberfläche beträgt 87 m²g⁻¹, die Mikroporenfläche 50 m²g⁻¹. Im Röntgendiffraktogramm ist ein d₀₀₁-Reflex bei 18,6 Å erkennbar. 20,6g dieses Al-PILCs werden in 1 Liter 0,5 M H₂SO₄ suspendiert und 6 h bei 60 °C gerührt. Der Al-PILC wird abfiltriert, zweimal mit dest. Wasser gewaschen, bei 110 °C 2 h getrocknet und bei 250 °C für 3 h kalziniert. Die BET-Oberfläche beträgt nun 103 m²g⁻¹. Das Beispiel zeigt eine Möglichkeit des nachträglichen Ionenaustausches auf.

1.6 <u>Katalysator F</u>: Al-Mg-PILC (Abwandlung von US 4 248 739, Bsp. 9)

54g 50%ige Chlorhydrol-Lösung (siehe Beispiel 1.5) werden mit dest. Wasser auf 1,6 Liter verdünnt. 41g MgCl₂·6H₂O werden in 400ml dest. Wasser gelöst und zu der obigen Lösung hinzugegeben. Nach 3 Tagen Rühren werden 100g eines natürlichen Montmorilloniten hinzugefügt und die Mischung 1 h bei 70 °C gerührt. Der so gebildete Al-Mg-PILC wird abfiltriert, zweimal mit je 1

10

15

20

25

Liter heißem dest. Wasser gewaschen, bei 110 °C über Nacht getrocknet und bei 200 °C für 5 h kalziniert. Nach Analyse beträgt der Al-Gehalt 15,8%, Mg 1,2%; die BET-Oberfläche beträgt 105 m²g⁻¹, die Mikroporenfläche 52 m²g⁻¹. Im Röntgendiffraktogramm ist ein d₀₀₁-Reflex bei 18,9 Å erkennbar. 51,9g dieses Al-Mg-PILCs werden in 1 Liter 5 M H₂SO₄ suspendiert und 6 h bei 60 °C gerührt. Der Al-Mg-PILC wird abfiltriert, mit dest. Wasser gewaschen, bei 110 °C über Nacht getrocknet und bei 200 °C für 5 h kalziniert. Die BET-Oberfläche beträgt nun 193 m²g⁻¹. Das Beispiel zeigt den Einsatz gemischter Metalloxid-Pfeiler auf.

1.7 <u>Katalysator G</u>: Al-Mg-PILC (Abwandlung von US 4 248 739, Bsp. 9)

54g 50%ige Chlorhydrol-Lösung (Aluminium-Chlorhydrat, Fa. Reheis) werden mit dest. Wasser auf 1,6 Liter verdünnt. 41g MgCl₂ 6H₂O werden in 400ml dest. Wasser gelöst und zu der obigen Lösung hinzugegeben. Nach 3 Tagen Rühren werden 100g eines natürlichen Montmorilloniten hinzugefügt und die Mischung 1 h bei 70 °C gerührt. Der so gebildete Al-Mg-PILC wird abfiltriert, zweimal mit je 11 heißem dest. Wasser gewaschen, bei 110 °C über Nacht getrocknet und bei 200 °C für 5 h kalziniert. 54,8g dieses Al-Mg-PILCs werden in 1 Liter 5 M H₂SO₄ suspendiert und 12 h bei 60 °C gerührt. Der Al-Mg-PILC wird abfiltriert, mit dest. Wasser gewaschen, bei 110 °C über Nacht getrocknet und bei 200 °C für 5 h kalziniert. Die BET-Oberfläche beträgt 237 m²g⁻¹.

1.8 <u>Katalysator H</u>: Cr-PILC (Abwandlung von Pinnavaia et al.(1985), 30 J. Am. Chem. Soc. 107, 4783) Zu 6 Liter einer 0,1 M Cr(NO₃)₃-Lösung werden langsam 343,4g Na₂CO₃·10H₂O hinzugegeben und über Nacht bei 95 °C gerührt. 40g eines säureaktivierten Montmorilloniten werden in 4 Liter dest. Wasser suspendiert und in die obige Lösung gegeben. Nach 2 h Rühren bei 95 °C wird der so gebildete Cr-PILC abfiltriert, mit dest. Wasser gewaschen, bei 100 °C für 2 h getrocknet und bei 300 °C für 2 h kalziniert. Nach Analyse beträgt der Cr-Gehalt 31%; die BET-Oberfläche beträgt 74 m²g⁻¹. 28,3g dieses Cr-PILCs werden in 1 Liter 5 M H₂SO₄ suspendiert und 6 h bei 60 °C gerührt. Der Cr-PILC wird abfiltriert, mit dest. Wasser gewaschen, bei 110 °C über Nacht getrocknet und bei 200 °C für 5 h kalziniert. Die BET-Oberfläche beträgt nun 211 m²g⁻¹.

5

15

20

25

(

1.9 <u>Katalysator I</u>: Al-PILC (Abwandlung von Diano et al. (1994), Microp. Mat. 2, 179)

57g AlCl₃·6H₂O werden in 1,2 Liter dest. Wasser gelöst. Hierzu wird eine Lösung aus 20g NaOH in 2,2 Liter dest. H₂O gegeben und noch 1 h bei 50 °C gerührt. 40g eines Natrium-Montmorilloniten werden in 8 Liter destilliertem Wasser suspendiert und 3 Liter der obigen Lösung hinzugefügt. Mit 9g einer 25%igen Ammoniak-Lösung wird ein Ph-Wert von 5,0 eingestellt und 3 h bei 80 °C gerührt. Der so gebildete Al-PILC wird abfiltriert, chloridfrei gewaschen, bei 110 °C über Nacht getrocknet und bei 200 °C für 5 h kalziniert. 43g des PILCs werden in 1 Liter 5 M H₂SO₄ suspendiert und 6 h bei 60 °C gerührt. Der Al-PILC wird abfiltriert, mit dest. Wasser gewaschen, bei 110 °C über Nacht getrocknet und bei 200 °C für 5 h kalziniert. Nach der Aluminium-

Analyse beträgt der Al-Gehalt 10,1%; die BET-Oberfläche beträgt $122 \text{ m}^2\text{g}^{-1}$.

1.10 <u>Katalysator J</u>: Al-Mg-PILC (Abwandlung von US 4 248 739, Bsp. 9)

270g 50% ige Chlorhydrol-Lösung (siehe Beispiel 1.5) werden mit dest. Wasser auf 8 Liter verdünnt. 205g MgCl₂·6H₂O werden in 2 Liter dest. Wasser gelöst und zu der obigen Lösung hinzugegeben. Nach 3 Tagen Rühren werden 500g eines natürlichen Montmorilloniten hinzugefügt und die Mischung 1 h bei 70 °C gerührt. Der so gebildete Al-Mg-PILC wird abfiltriert, mit dest. Wasser gewaschen, bei 110 °C über Nacht getrocknet und bei 200 °C für 5 h kalziniert. Der so getrocknete Al-Mg-PILC wird in 5 Liter 5 M H₂SO₄ suspendiert und 6 h bei 60 °C gerührt. Der Al-Mg-PILC wird abfiltriert, mit 5 Liter dest. Wasser gewaschen, bei 110 °C für 16 h getrocknet und bei 200 °C für 5 h kalziniert. Der so getrocknete säureausgetauschte Al-Mg-PILC wird mit 95g Böhmit und 9,5g Ameisensäure versetzt. Im Kneter wird die Mischung kompaktiert und unter vorsichtigem Wasserzusatz (295 ml) innerhalb von 2 h verknetet. In einer Strangpresse werden mit einem Preßdruck von 85 bar 2mm Stränge erzeugt, 16 h bei 110 °C getrocknet und 5 h bei 200 °C kalziniert. Die BET-Oberfläche beträgt 236 m^2g^{-1} .

25

30

10

15

1.11 <u>Katalysator K</u>: Ti-PILC (Abwandlung von Sychev et al., supra)

Zu 1 Liter 1 N Salzsäure werden 71,1g Ti(OⁱPr)₄ langsam zugetropft und 3 h bei Raumtemperatur gerührt. 40g eines säureaktivierten Montmorilloniten werden in 2 Liter einer 1:1 Mischung aus

- 22 -

1 N Hcl und Aceton suspendiert und die obige Lösung hinzugefügt. Nach 3 h Rühren bei Raumtemperatur wird der so gebildete Ti-PILC abfiltriert, mit dest. Wasser gewaschen und bei 200 °C für 3 h kalziniert. Die BET-Oberfläche beträgt 148 m²g⁻¹.

5

2. Diskontinuierliche THF-Polymerisation

2.1 Telogen: 1,4-Butandiol

10

15

20

Die diskontinuierlichen Polymerisationsversuche wurden in 100ml Glaskolben mit Rückflußkühler unter einer Stickstoff-Atmosphäre durchgeführt. 5g Katalysatorformkörper, die vor ihrer Verwendung zur Entfernung von adsorbiertem Wasser 18 h lang bei 180 °C/0,3 mbar getrocknet worden waren, wurden in 10g Butandiol-haltigem THF (Wassergehalt 30 ppm) 24 h lang auf 50 °C erhitzt. Anschließend wurde dem Reaktionsgemisch wasserhaltiges THF (5 Gew.-% Wasser) zugegeben und der Katalysator durch Filtration und/oder Zentrifugation abgetrennt. Nach dreimaligem Waschen des Katalysator mit je 40g THF wurden die Filtrate vereinigt und bei 70 °C/20 mbar am Rotationsverdampfer und anschließend noch 30 min bei 160 °C/0,3 mbar im Kugelrohrofen eingeengt. Als Destillationsrückstand anfallendes PTHF wurde ausgewogen und analysiert. Die nachstehende Tabelle 1 faßt die an den Katalysatoren A bis K erhaltenen Versuchsergebnisse zusammen.

Tabelle 1

Beispiel	Katalysator	Butandiol [ppm]	Ausbeute [%]	M _n (GPC)	D (GPC)
1	A	2000	25	5736	11,3
2	B .	2000	31	9054	8,4
3	С	2000	26	11000	
4	D	2000	37	16000	
5	E	2000	31	9995	6,6
6	F	2000	27	5320	4,0
7	G	2000	37	11729	3,5
8	н .	2000	24	8862	8,3
9	I	2000	26	4810	3,9
10	J	2000	39	6734	5,2
s 11	K	2000	33	1510	1,4
12	F	4000	22	4693	7,4
13	F	8000	13	2578	4,8

 M_n = mittleres PTHF-Molgewicht (Zahlenmittel); Dispersität $D = M_w/M_n$

2.2 Telogen: Essigsäureanhydrid

20

Die diskontinuierlichen Polymerisationsversuche mit Essigsäureanhydrid (ESA) wurden in Abweichung zur oben beschriebenen THF-

- 24 -

Polymerisation mit 1,4-Butandiol als Telogen bei 60 °C und einer Reaktionszeit von nur 5 h durchgeführt. Anstelle von 0,2 Gew.-% Butandiol wurden 1,0 Gew.-% ESA eingesetzt. Die Versuchsführung, eingesetzte Mengenverhältnisse sowie die Aufarbeitung wurde analog der Butandiol-Fahrweise durchgeführt. Bei Einsatz des PILC-Katalysators J wurde ein THF-Umsatz von 18% erzielt. Die mittlere Molmasse betrug nach GPC 4829 Dalton, die Dispersität wurde zu 3,5 bestimmt.

10

15

20

25

30

5

3. Kontinuierliche THF-Polymerisation

3.1 Telogen: 1,4-Butandiol

Ein 250 ml Festbettreaktor wurde unter Argon mit 250ml (177 g) des 20 h bei 180 °C/0,3 mbar getrockneten Aluminium-Magnesium-PILC-Katalysators J befüllt. Beim Einfüllen wurde der Katalysator mit THF (< 0,01 Gew.-% Wasser) überdeckt. Um Katalysatorstaub zu entfernen, wurde der Katalysator zweimal mit je 300ml THF, das 0,4 Gew.-% 1,4-Butandiol (BDO) enthielt, gewaschen. Zum Umpumpen der Reaktionsmischung war eine Umlaufpumpe vorhanden. Nach vollständigem Befüllen von Reaktor, Pumpe und Rohrleitungen mit THF, dem 0,4 Gew.-% BDO zugesetzt worden war, wurde die Umlaufpumpe in Betrieb genommen, die Reaktionstemperatur auf 50 °C geregelt und kontinuierlich 20g THF mit einem BDO-Gehalt von 4000 ppm entsprechend einer Katalysator-Belastung von 0.08kg_{THF}l_{Kat.}⁻¹h⁻¹ in den Kreislauf dosiert. Das Umlauf/Zulaufverhältnis betrug etwa 20. Durch Absenkung des BDO-Gehalts auf 0,2 Gew.-% konnte das mittlere Molgewicht M_n des erhaltenen PTHF laut GPC und ¹H-NMR bei einem Umsatz von 1,9% entsprechend einer Raum-Zeit-Ausbeute von 1.5g_{PTHF}l_{Kat.} - Ih⁻¹ auf ca. 2000 Dalton einreguliert werden. Die THF-Umsätze wurden nach destillativer Rest-THF-Abtrennung (60 °C, 60mbar) und Kugelrohrdestillation (150 °C, 0,3mbar) bestimmt.

- 26 -

Patentansprüche

5

 Verfahren zur Polymerisation cyclischer Ether an einem Heterogenkatalysator, dadurch gekennzeichnet, daß der Heterogenkatalysator einen oder mehrere Pillared Interlayered Clays (PILCs) enthält.

10

15

20

25

- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der oder die PILCs aus Schichtverbindungen bestehen, zwischen denen eine oder mehrere Metallverbindungen von Elementen der III. und IV. Hauptgruppe des Periodensystems, vorzugsweise Aluminium, Gallium, Indium, Thallium, Silizium, Germanium, Zinn oder Blei, vor allem Aluminium, Gallium oder Silizium, oder von Elementen der Übergangsgruppen, vorzugsweise Titan, Zirkon, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän, Wolfram, Mangan oder Eisen, vor allem Titan, Zirkon, Vanadium, Tantal, Chrom oder Eisen, Mischungen daraus oder Mischungen einer oder mehrerer der Metallverbindungen mit anderen Metalloxiden und/oder Metallsulfiden, eingelagert sind.
- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Metallverbindungen oder die Metallverbindungen ein Oxid und/oder Sulfid des oder der genannten Metalle sind.
- Verfahren nach einem der Ansprüche 1-3, dadurch gekennzeichnet, daß
 die Schichtverbindung ausgewählt ist aus Tonmineral, α-Zirkoniumphosphat, Tetrasilizium-mica, Brucit, Siliziumsäure TypI und/oder Rectorit.

10

20

25

30

- 5. Verfahren nach einem der Ansprüche 1-4, dadurch gekennzeichnet, daß die Schichtverbindung vor oder nach der Einlagerung eines oder mehrerer der genannten Metallverbindungen mit einer oder mehreren Säuren oder mit einer oder mehreren Ammonium- und/oder Aminsalzlösungen behandelt wurde.
- 6. Verfahren nach einem der Ansprüche 1-5, dadurch gekennzeichnet, daß die Schichtverbindung vor oder nach der Einlagerung einer oder mehrerer Metallverbindungen zusätzlich mit einem oder mehreren Übergangsmetallionen oder Ionen der Seltenen Erden, ausgewählt sind aus Titan-, Zirkonium-, Niob-, Molybdän-, Wolfram-, Eisen-, Cobalt-, Rhenium-, Nickel-, Yttrium-, Lanthan- und/oder Cerionen, dotiert wurde.
- 7. Verfahren nach einem der Ansprüche 1-6, dadurch gekennzeichnet, daß als cyclischer Ether ein Ether der allgemeinen Formel (I)

eingesetzt wird, wobei R¹ eine Bindung oder 1 bis 8, vorzugsweise 1 bis 4, vor allem 2 Kohlenstoffatome, die gegebenenfalls mit einem Rest R⁶ und/oder R⁷ substituiert sind, bedeutet und R², R³, R⁴, R⁵, R⁶, und R⁷ unabhängig voneinander Wasserstoff, oder eine gesättigte oder einfach oder mehrfach ungesättigte Alkylgruppe mit 1 bis 4 Kohlenstoffatomen, oder eine Arylgruppe mit 6 Kohlenstoffatomen ist, wobei gegebenenfalls R², R³, R⁴, R⁵, R⁶, und/oder R⁷ über 2 bis 8, vorzugsweise 4 bis 5 Kohlenstoffatome verbunden sein kann, die gegebenenfalls mit einem oder mehreren Resten entsprechend R⁶ und/oder R⁷ substituiert sein können.

- 28 -

- 8. Verfahren nach einem der Ansprüche 1-7, dadurch gekennzeichnet, daß ein oder mehrere cyclische Ether in einer Mischung mit mindestens einer Verbindung ausgewählt aus Wasser, Alkan-, Alken- oder Alkindiolen mit 1-12 Kohlenstoffatomen, vorzugsweise 1-6 Kohlenstoffatomen, insbesondere 1-4 Kohlenstoffatomen, vor allem Wasser, 1,4-Butandiol und/oder 2-Butin-1,4-diol, Polytetrahydrofuran (PTHF) mit einem Molekulargewicht von ca. 200-700 Dalton, einer Monocarbonsäure mit 1-10 Kohlenstoffatomen, vorzugsweise 1-8 Kohlenstoffatomen, insbesondere Ameisensäure, Essigsäure, Propionsäure, 2-Ethylhexansäure, Acrylsäure und/oder Methacrylsäure, und/oder einem Carbonsäureanhydrid aus Monocarbonsäuren mit 2-20 Kohlenstoffatomen, vorzugsweise 2-8 Kohlenstoffatomen, insbesondere Acetanhydrid, Propionsäureanhydrid und/oder Buttersäureanhydrid, eingesetzt werden.
- 9. Verfahren nach einem der Ansprüche 1-8, dadurch gekennzeichnet, daß der Heterogenkatalysator in einer Menge von ca. 1-90 Gew.-%, vorzugsweise von ca. 4-70 Gew.-%, insbesondere von ca. 8-60 Gew.-%, bezogen auf das Gewicht des oder der cyclischen Ether, eingesetzt wird.

20

5

10

10. Verfahren nach einem der Ansprüche 1-9, dadurch gekennzeichnet, daß als Heterogenkatalysator ein Pillared Clay eingesetzt wird, der mit einem Bindemittel zu einem Formkörper verformt und der anschließend bei ca. 150-600 °C kalziniert wurde.

I. national Application No

	·	101/	EP 98/026/4								
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C08G65/10	-	·								
According to	o International Patent Classification(IPC) or to both national classifica	tion and IPC									
B. FIELDS SEARCHED											
Minimum do IPC 6	Minimum documentation searched (classification system followed by classification symbols) IPC 6 C08G C07C										
Ocumentat	tion searched other than minimumdocumentation to the extent that su	ch documents are included in the	fields searched								
Electronic d	ata base consulted during the international search (name of data bas	e and, where practical, search te	rms used)								
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT										
Category °	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.								
x	EP 0 250 168 A (BRITISH PETROLEUM December 1987 see page 3, line 55; claims	1									
X	EP 0 083 970 A (BRITISH PETROLEUM 1983 see claims	1									
Α	DE 44 33 606 A (BASF AG) 28 March cited in the application see claims 1,6	1									
Α	DE 195 27 532 A (BASF AG) 30 Janu cited in the application see page 7, line 29 - line 43; cl	•	1								
Α	US 4 329 445 A (T. DEL PESCO) 11 see claims	May 1982	. 1								
Furth	ner documents are listed in the continuation of box C.	X Patent family members a	are listed in annex.								
° Special cat	tegories of cited documents :	The latest decision of the second second									
conside	nt defining the general state of the art which is not ered to be of particular relevance locument but published on or after the international	cited to understand the princinvention	nflict with the application but tiple or theory underlying the								
filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publicationdate of another "B" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alore which is cited to establish the publicationdate of another											
"O" docume other n	ant referring to an oral disclosure, use, exhibition or	cannot be considered to inve document is combined with	olve an inventive step when the one or more other such docu- ing obvious to a person skilled								
later th		&" document member of the san	ne patent family								
	actual completion of theinternational search	Date of mailing of the Interna	tional search report								
	7 August 1998	04/09/1998									
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Authorized officer									
Fax: (+31-70) 340-3016 Boeker, R											

information on patent family members

national Application No PCT/EP 98/02674

	atent document d in search report		Publication date		Patent family member(s)		Publication date
ΕP	0250168	A	23-12-1987	AU	7441087	Α	24-12-1987
				JP	63022043		29-01-1988
EP	0083970	A	20-07-1983	AU	560803	В	16-04-1987
				UΑ	1022383	Α	14-07-1983
				CA	1217501	Α	03-02-1987
				FI	830048	Α	10-07-1983
				JP	58164522	Α	29-09-1983
				US	4542250	Α	17-09-1985
				US	4665220	A	12-05-1987
DE	4433606	Α	28-03-1996	AT	169648	T	15-08-1998
				AU	690340	В	23-04-1998
				AU	3607495	Α	09-04-1996
				BR	9508974	Α	11-11-1997
				CA	2199644	Α	28-03-1996
				CN		Α	03-09-1997
				CZ	9700851		12-11-1997
				MO	9609335		28-03-1996
				EP	0782594	A	09-07-1997
				FI	971175	A	20-03-1997
				JP	10506137	1	16-06-1998
				PL	319300	A	04-08-1997
				SK	38397		05-11-1997
			·	US 	5773648 	A	30-06-1998
DE	19527532	Α	30-01-1997	MO	9705188		13-02-1997
				EP	0840757	Α	13-05-1998
US	4329445	Α	11-05-1982	US	4235751	A	25-11-1980

I. nationales Aktenzeichen PCT/EP 98/02674

·										
a. KLASSI IPK 6	FIZIERUNG DES ANMELDUNGSGEGENSTANDES C08G65/10									
Nach der In	ternationalen Patentklassifikation (IPK) oder nach der nationalen Klas	sifikation und der IPK								
B. RECHERCHIERTE GEBIETE										
Recharchies IPK 6	ter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbo C08G C07C	le)								
Recherchier	te aber nicht zum Mindestprüfstoffgehörende Veröffentlichungen, so	weit diese unter die rech	erchierten Gebiete fallen							
				·						
Während de	r internationalen Recherche konsultierte elektronische Datenbank (N	ame der Datenbank und	d evtl. verwendete Suchbegriffe)							
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN									
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe	der in Betracht komme	nden Teile Betr. Anspru	ich Nr.						
X	EP 0 250 168 A (BRITISH PETROLEUM 23.Dezember 1987 siehe Seite 3, Zeile 55; Ansprüch		1							
X	EP 0 083 970 A (BRITISH PETROLEUM	. 1								
	siehe Ansprüche									
Α	DE 44 33 606 A (BASF AG) 28.März in der Anmeldung erwähnt siehe Ansprüche 1,6	1								
A	DE 195 27 532 A (BASF AG) 30.Janu in der Anmeldung erwähnt siehe Seite 7, Zeile 29 - Zeile 4 Ansprüche	1								
			İ							
	-	/								
	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	X Siehe Anhang	Patentfamille							
"A" Veröffer	itlichung, die den allgemeinen Stand der Technik definiert,	oder dem Prioritäts	hung, die nach deminternationalen Ani datum veröffentlicht worden ist und mit blildiert, sondern nur zum Verständnis	der						
"E" älteres (cht als besonders bedeuteam anzusehen ist Dokument, das jedoch erst am oder nach dem internationalen	Erfindung zugrunde	iliegenden Prinzips oder der ihr zugrun							
"L" Veröffen	Anmeldedatum veröffentlicht worden ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf									
soli od		kann nicht als auf e	n besonderer Bedeutung; die beanspru Infinderischer Tätigkeit beruhend betrac	:htet (
ausgef "O" Veröffer eine R	unn) ntlichung, die sich auf eine mündliche Offenbarung, enutzung, eine Ausstellung oder andere Maßnahmen bezieht	werden, wenn die \ Veröffentlichungen	/eröffentlichung miteiner oder mehrere dieser Kategorie in Verbindung gebrag	n anderen						
"P" Veröffer	tilchung, die vor dem internationalen Anmeidedatum, aber nach	_	ür einen Fachmann naheilegend ist Mitglied derselben Patentfamilie ist							
	Abschlusses der internationalen Recherche		internationalen Recherchenberichts							
27	7.August 1998	04/09/1	998							
Name und P	ostanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2	Bevolimächtigter Be	ediensteter							
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Boeker,	R							

PCT/EP 98/02674

US 4	329 445 Ansprü	A (T.			Angabe der in	Betracht komm	renden Teile	Betr. Anspruch Nr.
US 4 siehe	329 445 Ansprü	A (T.	DEL					_L
		che		PESCO) 	11.Mai	1982		1
							·	

etionales Aktenzeichen PCT/EP 98/02674

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Im Recherchenbericht angeführtes Patentdokument			Datum der Veröffentlichung		litglied(er) der Patentfamilie	Datum der Veröffentlichung
EP	0250168	Α	23-12-1987	AU	7441087 A	24-12-1987
	·			JР	63022043 A	29-01-1988
EP	0083970	Α	20-07-1983	AU	560803 B.	16-04-1987
			••	AU	1022383 A	14-07-1983
				CA	1217501 A	03-02-1987
				FI	830048 A	10-07-1983
				JP	58164522 A	29-09-1983
				US	4542250 A	17-09-1985
				US	4665220 A	12-05-1987
DE	4433606	Α	28-03-1996	AT	169648 T	15-08-1998
				AU	690340 B	23-04-1998
				AU	3607495 A	09-04-1996
				BR	9508974 A	11-11-1997
				CA	2199644 A	28-03-1996
				CN	1158625 A	03-09-1997
				CZ	9700851 A	12-11-1997
				WO	9609335 A	28-03-1996
				EP	0782594 A	09-07-1997
				FI	971175 A	20-03-1997
				JP	10506137 T	16-06-1998
				PL	319300 A	04-08-1997
			•	SK	38397 A .	05-11-1997
				US	5773648 A	30-06-1998
DE	19527532	Α	30-01-1997	WO	9705188 A	13-02-1997
				EΡ	0840757 A	13-05-1998
US	4329445	A	11-05-1982	US	4235751 A	25-11-1980

An: Anke Jacobs/ZD/BASF-AG/BASF@EUROPE

Kopie:

Thema: BN 020828 DMPS

Hallo Frau Jacobs,

hier ist unser Entwurf der BN mit der Bitte um kritische Durchsicht Korrekturen & Ergänzung (Rechtsstand der Anmeldungen).

Die BN soll zunächst Herrn Witzel vorgelegt werden, bevor sie off. verteilt wird.

BN 020828 Patente Rev 1.de

Gruß Hagen Weigl

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

M BLA	CK BORDERS	
🛭 іма	GE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FAD	ED TEXT OR DRAWING	
☐ BLU	RRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKE	WED/SLANTED IMAGES	
COL	OR OR BLACK AND WHITE PHOTOGRAPHS	٠
₩ GRA	Y SCALE DOCUMENTS	
☐ LINI	ES OR MARKS ON ORIGINAL DOCUMENT	-
🛚 REF	ERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
П отн	IER:	,

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

This Page Blank (uspto)