Measure Theory for the Impatient

Nir Elber

Fall 2022

Abstract

This document collects a variety of definitions and results from measure theory.

Contents

Contents			1
1	Definitions		2
	1.1 Rings and Friends1.2 Measures and Friends		2
	1.2 Measures and Friends		2
	1.3 Adjectives for Measures		3
	1.4 Measurable Functions and Friends		4
	1.5 All the Convergences		4
	1.5 All the Convergences1.6 Integration		5
	Lemmas and Results		6
	2.1 Checks on Measures		6
	2.2 Checks on Measurable Functions		6

1 Definitions

1.1 Rings and Friends

Definition 1 (Prering). Fix a set X. A *prering* of a set X is a nonempty collection $\mathcal{P} \subseteq \mathcal{P}(X)$ satisfying the following.

- Intersection: if $E, F \in \mathcal{P}$, then $E \cap F = \mathcal{P}$.
- Decomposition: if $E, F \in \mathcal{P}$, then we can write

$$E \setminus F = \bigsqcup_{i=1}^{n} G_i$$

for some finite disjoint union on the right-hand side with $G_i \in \mathcal{P}$ for each i.

Definition 2 (Ring). Fix a set X. A ring is a nonempty collection $\mathcal{R} \subseteq \mathcal{P}(X)$ with the following properties.

- Union: if $E, F \in \mathcal{R}$, then $E \cup F \in \mathcal{R}$.
- Subtraction: if $E, F \in R$, then $E \setminus F \in \mathcal{R}$.

Definition 3 (σ -ring). Fix a set X. Then a ring $\mathcal{R} \subseteq \mathcal{P}(X)$ is a σ -ring if and only if R is closed under countable unions.

Definition 4 (σ -algebra). Fix a set X. Then a ring $\mathcal{R} \subseteq \mathcal{P}(X)$ is a σ -algebra if and only if R is a σ -ring and contains X.

Example 5. Given a topological space (X, \mathcal{T}) , the σ -algebra generated by \mathcal{T} make the σ -algebra of *Borel subsets* of X.

Definition 6 (Hereditary). Fix a set X and nonempty family $\mathcal{G} \subseteq \mathcal{P}(X)$. Then \mathcal{G} is hereditary if and only if $A \in \mathcal{G}$ and $A' \subseteq A$ implies $A' \in \mathcal{G}$.

Definition 7 (Hereditary σ -ring). Fix a set X and nonempty family $\mathcal{F} \subseteq \mathcal{P}(X)$. Then the *hereditary* σ -ring $\mathcal{H}(F)$ generated by \mathcal{F} consists of all subsets $E \subseteq X$ such that there exists a countable subcollection $\{F_i\}_{i=1}^{\infty} \subseteq \mathcal{F}$ such that

$$E \subseteq \bigcup_{i=1}^{\infty} E_i$$
.

1.2 Measures and Friends

Definition 8 (Finitely additive measure). Fix a set X and ring $\mathcal{R} \subseteq \mathcal{P}(X)$. Then a finitely additive measure is a function $\mu \colon \mathcal{R} \to [0, \infty]$ such that any disjoint $E, F \in \mathcal{R}$ have

$$\mu(E \sqcup F) = \mu(E) + \mu(F)$$

Definition 9 (Countably additive). Fix a set X and a collection of subsets $\mathcal{C} \subseteq \mathcal{P}(X)$. A function $\mu \colon \mathcal{C} \to [0,\infty]$ is countably additive if and only if any pairwise disjoint subcollection $\{E_i\}_{i=1}^\infty \subseteq \mathcal{C}$ with $\bigsqcup_{i=1}^\infty E_i \in \mathcal{C}$ has

$$\mu\bigg(\bigsqcup_{i=1}^{\infty} E_i\bigg) = \sum_{i=1}^{\infty} \mu(E_i).$$

Notably, we are allowed to have the right-hand side diverge to ∞ if the left-hand side is ∞ .

Definition 10 (Premeasure). Fix a set X and a prering $\mathcal{P} \subseteq \mathcal{P}(X)$. A premeasure on \mathcal{P} is a countably additive function $\mu \colon \mathcal{P} \to [0, \infty]$.

Definition 11 (Measure). Fix a set X and σ -ring S. Then a measure on S is a function $\mu \colon S \to [0, \infty]$ which is countably additive. We call the triple (X, S, μ) a measure space.

Example 12. Fix a left-continuous, increasing function $\alpha \colon \mathbb{R} \to \mathbb{R}$, and let $\mathcal{P} \subseteq \mathcal{P}(\mathbb{R})$ as the prering of half-open intervals [a,b) for a < b. Then

$$\mu_{\alpha}([a,b)) := \alpha(b) - \alpha(a)$$

is a premeasure on \mathcal{P} .

Notation 13. Fix a set X and nonempty family $\mathcal{F} \subseteq \mathcal{P}(X)$. Then give $\mu \colon \mathcal{F} \to [0, \infty]$, we will define $\mu^* \colon \mathcal{H}(\mathcal{F}) \to [0, \infty]$ by

$$\mu^*(E) \coloneqq \inf \left\{ \sum_{i=1}^{\infty} \mu(E_i) : \{E_i\}_{i=1}^{\infty} \subseteq \mathcal{F} \text{ and } E \subseteq \bigcup_{i=1}^{\infty} E_i \right\}.$$

Definition 14 (Lebesgue–Stieltjes measure). Let $\mathcal P$ be the prering of right-half-open intervals, and fix a left-continuous function $\alpha\colon\mathbb R\to\mathbb R$. Then the measure $\mu_\alpha^*|_{\mathcal M(\mu_\alpha^*)}$ from the premeasure of Example 12 is the Lebesgue–Stieltjes measure. The Lebesgue measure is the measure coming from $\alpha(t)=t$.

1.3 Adjectives for Measures

Definition 15 (Monotone). Fix a collection $\mathcal F$ of subsets of a set X. A function $\mu \colon \mathcal F \to [0,\infty]$ is monotone if and only if any $E,F\in \mathcal F$ with $E\subseteq F$ have $\mu(E)\leq \mu(F)$.

Definition 16 (Countably subadditive). Fix a set X and a collection $\mathcal{F} \subseteq \mathcal{P}(X)$. A function $\mu \colon \mathcal{F} \to [0, \infty]$ is *countably subadditive* if and only if

$$E \subseteq \bigcup_{i=1}^{\infty} E_i \implies \mu(E) \le \sum_{i=1}^{\infty} \mu(E_i)$$

for any $E \in \mathcal{F}$ and $\{E_i\}_{i=1}^{\infty} \subseteq \mathcal{F}$.

Definition 17. Fix a set X and a hereditary σ -ring $\mathcal H$ on X, and fix an outer measure $\nu\colon \mathcal H\to [0,\infty]$. Then a set $E\subseteq \mathcal H$ is ν -measurable if and only if

$$\nu(A) = \nu(A \cap E) + \nu(A \setminus E)$$

for any $A \in \mathcal{H}$. We will let $\mathcal{M}(\nu)$ denote the set of ν -measurable sets.

Definition 18 (Compelete). Fix a set X and a family $\mathcal{F} \subseteq \mathcal{P}(X)$. Then a function $\nu \colon \mathcal{F} \to [0, \infty]$ is complete if and only if any $E \in \mathcal{F}$ with $F \subseteq E$ and $\nu(E) = 0$ must have $F \in \mathcal{F}$ and $\nu(F) = 0$.

Example 19. If ν is an outer measure on a hereditary σ -ring \mathcal{H} , then $\nu|_{\mathcal{M}(\nu)}$ is complete when $\mathcal{M}(\nu)$ is nonempty.

1.4 Measurable Functions and Friends

Definition 20 (Simple measurable function). Fix a ring $\mathcal S$ on a set X and a normed vector space B. Then a simple $\mathcal S$ -measurable B-valued function is a function $f\colon X\to B$ such that $\operatorname{im} f$ is finite and $f^{-1}(\{y\})\in \mathcal S$ for any $y\in B\setminus\{0\}$.

Remark 21. Any simple S-measurable function $f: X \to S$ can be written as

$$f = \sum_{y \in (\operatorname{im} f) \backslash \{0\}} y 1_{f^{-1}(\{y\})}.$$

Definition 22 (Measurable function). Fix a set X and a σ -ring S on X. Given a normed vector space B, an S-measurable function is a function $f: X \to B$ such that there is a sequence of simple S-measurable functions $\{f_n\}_{n\in\mathbb{N}}$ which converge to f pointwise.

Definition 23 (Separable). A topological space M is *separable* if and only if there is a countable dense subset of M. As such, a subset $A \subseteq M$ is *separable* if and only if A is separable with the restricted metric; in other words, $A \subseteq M$ is separable if and only if there is a countable subset $B \subseteq A$ such that $A \subseteq \overline{B}$.

Theorem 24. Fix a normed vector space B and a set X with a σ -ring S on X. Then a function $f: X \to B$ is S-measurable if and only if

- (i) $\operatorname{im} f$ is separable, and
- (ii) for any open $U \subseteq B$, we have $f^{-1}(U \setminus \{0\}) \in \mathcal{S}$.

1.5 All the Convergences

Definition 25 (Null set). Fix a set X and a σ -ring S on X equipped with a measure μ . A *null set* is a subset $N \subseteq X$ such that there is some $E \in S$ such that $N \subseteq E$ and $\mu(N) = 0$.

Definition 26 (Almost everywhere). Fix a set X and a σ -ring S on X equipped with a measure μ . A property P(x) for points $x \in X$ holds almost everywhere if and only if $\{x \in X : \neg P(x)\}$ is a null set.

Definition 27 (Converge in measure). Fix a measure space (X, \mathcal{S}, μ) and normed vector space $(B, \|\cdot\|)$. Then a sequence $\{f_n\}_{n\in\mathbb{N}}$ of \mathcal{S} -measurable functions *converges in measure* to an \mathcal{S} -measurable function f if and only if all $\varepsilon>0$ have

$$\lim_{n \to \infty} \mu(\{x \in X : ||f(x) - f_n(x)|| \ge \varepsilon\}) = 0.$$

1.6 Integration

Definition 28 (Simple integrable function). Fix a ring S on a set X and a metric space B. Further, let μ be a finitely additive measure μ on S. Then a function $f: X \to B$ is a simple S-integrable function if and only if $\operatorname{im} f$ is finite, and $f^{-1}(\{y\}) \in S$ has finite measure for each $y \in (\operatorname{im} f) \setminus \{0\}$.

Definition 29 (Integral). Fix a ring S on a set X and a metric space B. Further, let μ be a finitely additive measure μ on S. Given a simple μ -integrable function f, we define the *integral*

$$\int_X f \, d\mu := \sum_{y \in (\text{im } f) \setminus \{0\}} \mu \left(f^{-1}(\{y\}) \right) y.$$

Note this is a finite sum with $\mu\left(f^{-1}(\{y\})\right)$ finite, so $\int_X f\,d\mu$ is finite.

Notation 30. Fix a normed vector space B and a ring S on a set X equipped with a finitely additive measure μ . Given a (simple) μ -integrable function $f: X \to B$, we define

$$||f||_1 \coloneqq \int_X ||f|| \ d\mu.$$

Note ||f|| is in fact simple μ -integrable.

2 Lemmas and Results

2.1 Checks on Measures

Lemma 31 (Monotone). Fix a prering $\mathcal P$ on X and a finitely additive function $\mu\colon \mathcal P\to [0,\infty]$. Given $E,F\in \mathcal P$, then $\mu(E)\geq \mu(E\cap F)$. In particular, if $E\supseteq F$, then $\mu(E)\geq \mu(F)$.

Lemma 32 (Countably subadditive). Fix a prering \mathcal{P} on a set X, and let μ be a premeasure on \mathcal{P} . Then μ is countably subadditive.

Lemma 33. Fix a set X and nonempty family $\mathcal{F} \subseteq \mathcal{P}(X)$. Further, fix some $\mu \colon \mathcal{F} \to [0, \infty]$. Then we have the following.

- (a) $\mu^*(E) \leq \mu(E)$ for any $E \in \mathcal{F}$.
- (b) μ^* is monotone.
- (c) μ^* is countably subadditive.

Lemma 34. Fix a set X and a prering $\mathcal P$ on X equipped with a premeasure μ on $\mathcal P$. Then $\mu^*(E)=\mu(E)$ for any $E\in\mathcal P$.

Theorem 35. Fix a set X and a hereditary σ -ring $\mathcal H$ on X, and fix an outer measure $\nu \colon \mathcal H \to [0,\infty]$. If nonempty, $\mathcal M(\nu)$ is a σ -ring, and $\nu|_{\mathcal M(\nu)}$ is a measure.

Theorem 36. Fix a set X and a prering \mathcal{P} on X equipped with a premeasure μ on \mathcal{P} . Then $\mathcal{P} \subseteq \mathcal{M}(\mu^*)$.

Theorem 37. Fix a set X and a prering \mathcal{P} on X equipped with a σ -finite premeasure μ on X. Then, for some σ -ring $\mathcal{S} \subseteq \mathcal{M}(\mu^*)$, our $\mu^*|_{\mathcal{S}}$ is the unique extension of μ to a measure on \mathcal{S} .

Proposition 38. Fix a σ -ring $\mathcal S$ on a set X equipped with a measure μ on $\mathcal S$. A collection $\{E_i\}_{i=1}^\infty\subseteq \mathcal S$ such that $E_n\subseteq E_{n+1}$ for each i will have

$$\lim_{n \to \infty} \mu(E_n) = \mu\left(\bigcup_{i=1}^{\infty} E_i\right).$$

Corollary 39. Fix a σ -ring $\mathcal S$ on a set X equipped with a measure μ on $\mathcal S$. Suppose we have a collection $\{E_i\}_{i=1}^\infty\subseteq\mathcal S$ such that $\mu(E_1)<\infty$ and $E_n\supseteq E_{n+1}$ for each i. Then we have

$$\lim_{n \to \infty} \mu(E_n) = \mu\left(\bigcap_{i=1}^{\infty} E_i\right).$$

2.2 Checks on Measurable Functions

Lemma 40. Fix a measure space (X, \mathcal{S}, μ) and a Banach space $(B, \|\cdot\|)$ over a normed field k. Given $a, b \in k$ and $E \in \mathcal{S}$, if f and g are (simple \mathcal{S} -measurable, \mathcal{S} -measurable, simple μ -integrable, μ -integrable, then af + b and $\|f\|$ and $f1_E$ and $f1_{K\setminus E}$ are as well.

Lemma 41. Convergence statement.