

AGENDA

Introduction

Problem Statement

Dataset Overview

Exploratory Data Analysis

Modelling & Performance

INTRODUCTION

Home Owner's Association

['hōm-,ō-nər ə-,sō-sē-'ā-shən]

An organization in a subdivision, planned community, or condominium building that makes and enforces rules for the properties and residents.

Objective

The goal of this project is to develop a predictive model for Home-Owners Association (HOA) fees, helping real estate professionals, buyers, and sellers estimate HOA costs based on property characteristics and location data.

Business Impact

- Homebuyers & Investors: Helps buyers factor in HOA fees when assessing the affordability of a property.
- Real Estate Agents: Allows agents to set better price expectations for listings and guide clients on cost-effective properties.
- HOA & Property Managers: Enables
 HOAs to compare their fees with similar
 properties and adjust them based on market
 trends.

04/02/2025

DATASET OVERVIEW

• Description of the Housing dataset:

Shape of the dataset: (5000,16)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
cell output actions total 16 columns):

#	Column	Non-Null Count	Dtype
0	MLS	5000 non-null	int64
1	sold_price	5000 non-null	float64
2	zipcode	5000 non-null	int64
3	longitude	5000 non-null	float64
4	latitude	5000 non-null	float64
5	lot_acres	4990 non-null	float64
6	taxes	5000 non-null	float64
7	year_built	5000 non-null	int64
8	bedrooms	5000 non-null	int64
9	bathrooms	4994 non-null	float64
10	sqrt_ft	4944 non-null	float64
11	garage	4993 non-null	float64
12	kitchen_features	4967 non-null	object
13	fireplaces	4975 non-null	float64
14	floor_covering	4999 non-null	object
15	HOA	4438 non-null	float64

EXPLORATORY DATA ANALYSIS

From this heatmap, I found that Bedrooms and Bathrooms are multicollinear, HOA is correlated only with Sold_Price.

MODELLING AND PERFORMANCE

KNN Classification KNN Regression OLS Regression

KNN CLASSIFIER

data_Classifier = data[['HOA_bins', 'Latitude', 'Longitude']]

Training data Accuracy: 0.91

Test data Accuracy : 0.88

Using Longitude and Latitude, I classified HOA values as classes in a new HOA bins column.

True 0s: 100

True 1s: 337

False 0s: 18

False 1s: 39

KNN REGRESSION

From this Correlation matrix, I found that HOA_bins are correlated moderately with other features.

Features: Sold_Price, Lot_Acres, Taxes, Sqft, Age, Rooms, Price/Sqft_bins, HOA bins

Target: HOA

Mean Absolute Error: 703.2039

R² Score: -1.3828

KNN REGRESSION

The plot compares the actual values (y_test) with the predicted values (y_hat_test) from the KNN regression model. The two lines are almost closely aligned, so I concluded that the model is performing good.

KNN REGRESSION

It looks like residuals are randomly scattered around zero. So, the model is well fitted.

Mean Absolute Error: 703.2039

R² Score: -1.3828

OLS REGRESSION

This curve shows the training loss (cost function) over epochs for the MVLinearRegression model. The model uses Gradient Descent to minimize the error over 9,000 epochs with a learning rate (eta) of 0.01. eta = 1e-2, epochs = 9e3

MAE: 20672042693.5798

R² Score: -0.5187

OLS REGRESSION

The plot compares the actual values (y_test) with the predicted values (y_hat_test_ols) from the OLS regression model.

The two lines are not closely aligned, so I concluded the model is not performing well.

It looks like residuals are not scattered around zero. So, the model is not well fitted.

SUMMARY

Predicting HOA fees is more important using Machine Learning algorithms as this fees is invisible for the buyers to check while they decide to fix a house. Accurate HOA prediction is more important in this case.

I chose KNN Regressor Algorithm for this prediction problem as this model gave better performance metrics compared to OLS regression.

THANK YOU