MAT 653: Statistical Simulation

Instructor: Dr. Wei Li Scribe: Jianging Jia

Oct 12th, 2021

Monte Carlo Integration

Reading: R.C. Section 3.1-3.3 & Voss Section 3.1-3.3

Classical Monte Carlo Integration

General problem is to evaluate

$$\mathbb{E}_f[h(X)] = \int_{\mathcal{X}} h(x)f(x) \, dx$$

where h is some known function, X is r.v. $\sim f$ and $\mathcal{X} = supp(f)$. In the following discussion, sometimes the underlying \mathcal{X} is implicitly assumed.

The principle of M.C. method for evaluating this is to generate an i.i.d. random sample sequence (X_1, \dots, X_n) from f and propose to estimate $\mathbb{E}_f[h(X)]$ by empirical average

$$\overline{h}_n = \frac{1}{n} \sum_{j=1}^n h(X_j)$$

this is called M.C. estimator for $\mathbb{E}_f[h(X)]$.

If you have a realization for $\overline{h}_n = \frac{1}{n} \sum_{j=1}^n h(X_j)$, then this gives you an estimate for $\mathbb{E}_f[h(X)]$. This works because by Law of Large numbers, $\overline{h}_n \to \mathbb{E}_f[h(X)]$.

Properties of estimator \bar{h}_n

1.
$$\mathbb{E}_f(\overline{h}_n) = \mathbb{E}_f[h(X)]$$
 (i.e. bias=0)
Proof: $\mathbb{E}_f(\overline{h}_n) = \frac{1}{n} \sum_{j=1}^n \mathbb{E}_f[h(X_j)] = \frac{1}{n} \sum_{j=1}^n \mathbb{E}_f[h(X)] = \mathbb{E}_f[h(X)]$

2.
$$\mathbb{V}ar_f(\overline{h}_n) = \frac{1}{n} \mathbb{V}ar_f[h(X)]$$

$$\begin{split} \mathbb{V}ar_f(\overline{h}_n) &= \mathbb{V}ar_f \left[\frac{1}{n}\sum_{j=1}^n h(X_j)\right] = \frac{1}{n^2} \mathbb{V}ar_f \left[\sum_{j=1}^n h(X_j)\right] \\ &\stackrel{(*)}{=} \frac{1}{n^2}\sum_{j=1}^n \mathbb{V}ar_f[h(X_j)] = \frac{1}{n^2}\sum_{j=1}^n \mathbb{V}ar_f[h(X)] = \frac{1}{n} \mathbb{V}ar_f[h(X)] \end{split}$$

where (*) holds since $X_j \stackrel{iid}{\sim} f$, $Cov(X_i, X_j) = 0 \quad (i \neq j)$

And $\mathbb{V}ar_f(\overline{h}_n)$ can also be estimated from (X_1, \dots, X_n) by $\frac{1}{n^2} \sum_{i=1}^n \left[h(X_i) - \frac{1}{n} \sum_{i=1}^n h(X_i) \right]^2$.

Proof:

$$\mathbb{V}ar_{f}(\overline{h}_{n}) = \frac{1}{n} \mathbb{V}ar_{f}[h(X)]
= \frac{1}{n} \mathbb{E}_{f}\{[h(X) - \mathbb{E}_{f}(h(X))]^{2}\} \quad (where \ \mathbb{E}_{f}(h(X)) can \ be \ estimated \ by \ \overline{h}_{n})
\leftarrow \frac{1}{n} \mathbb{E}_{f}\{[h(X) - \overline{h}_{n}]^{2}\} \quad (now \ estimate \ \mathbb{E}_{f}[h(X) - \overline{h}_{n}]^{2})
\leftarrow \frac{1}{n^{2}} \sum_{j=1}^{n} \left[h(X_{j}) - \overline{h}_{n}\right]^{2}
= \frac{1}{n^{2}} \sum_{j=1}^{n} \left[h(X_{j}) - \frac{1}{n} \sum_{j=1}^{n} h(X_{i})\right]^{2}$$

Example: For $\mathcal{N}(0,1)$, want to estimate c.d.f $\phi(t) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-x} dx$.

Say
$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x}$$
, we can rewrite $\phi(t) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}}e^{-x} dx = \int_{-\infty}^{\infty} \mathbf{1}_{(-\infty,t)}(x) f(x) dx$.

Therefore, we can generate a sample of size n, $\{X_i\}_{i=1}^n \stackrel{iid}{\sim} f$, then use $\overline{h}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{(-\infty,t)}(X_i)$ to estimate $\phi(t)$.

Example (Drawback of classical M.C. integration): If $Z \sim \mathcal{N}(0,1)$, and we are asked to evaluate P(Z > 4.5).

$$P(Z > 4.5) = \mathbb{E}_f[\mathbf{1}_{(4.5,\infty)}(Z)]$$

Even though we can use classical M.C. integration: generate a sample of size n, $\{Z_i\}_{i=1}^n \stackrel{iid}{\sim} \mathcal{N}(0,1)$, then use $\overline{h}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{(4.5,\infty)}(Z_i)$ to estimate P(Z > 4.5). But actually, simulating $\{Z_i\}_{i=1}^n \stackrel{iid}{\sim} \mathcal{N}(0,1)$ probably only produce a hit $Z_i \in (4.5,\infty)$ once in large amount of iterations. However, using importance sampling can solve this issue.

Importance Sampling

Given another p.d.f g s.t. $supp(g) \supseteq supp(f)$.

$$\mathbb{E}_f[h(X)] = \int h(x)f(x) \, dx = \int h(x) \frac{f(x)}{g(x)} g(x) \, dx = \mathbb{E}_g\left[h(X) \frac{f(X)}{g(X)}\right]$$

Now, we can generate a sample of size n, $\{X_i\}_{i=1}^n \stackrel{iid}{\sim} g$, then use $\overline{h}_n = \frac{1}{n} \sum_{i=1}^n h(X_i) \frac{f(X_i)}{g(X_i)}$ to estimate $\mathbb{E}_f[h(X)] = \int h(x) f(x) dx$.

Where g is called **importance function**, $\frac{f(X_i)}{g(X_i)}$ is called **importance weight** for X_i and $\left(X_i, \frac{f(X_i)}{g(X_i)}\right)$ is called **importance sample**. $\frac{1}{n} \sum_{i=1}^n h(X_i) \frac{f(X_i)}{g(X_i)}$ is called **importance sampling estimator** for $\mathbb{E}_f[h(X)]$.

Example (continue the previous example): recall that $Z \sim \mathcal{N}(0,1)$, and we are asked to evaluate P(Z > 4.5).

Now we can take g to be density function of $\exp(1)$ (right) truncated at 4.5:

$$g(y) = P\left(exp(1) = y | exp(1) > 4.5\right) = \frac{P\left(exp(1) = y, exp(1) > 4.5\right)}{P\left(exp(1) > 4.5\right)} = \frac{P\left(exp(1) = y\right)}{P\left(exp(1) > 4.5\right)}$$
$$= \frac{e^{-y}}{1 - \int_0^{4.5} e^{-x} dx} = \frac{e^{-y}}{1 - (1 - e^{-4.5})} = e^{-(y - 4.5)} \quad (y > 4.5)$$

Now we can generate a sample of size n, $\{Y_i\}_{i=1}^n \stackrel{iid}{\sim} g$, recall $f(x) = \frac{1}{\sqrt{2\pi}}e^{-x}$, then the importance sampling estimator for $P(Z > 4.5) = \mathbb{E}_f[\mathbf{1}_{(4.5,\infty)}(Z)]$ becomes

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{(4.5,\infty)}(Y_i) \frac{f(Y_i)}{g(Y_i)} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{(4.5,\infty)}(Y_i) \frac{e^{-\frac{Y_i^2}{2} + Y_i - 4.5}}{\sqrt{2\pi}} = \frac{1}{n} \sum_{i=1}^{n} \frac{e^{-\frac{Y_i^2}{2} + Y_i - 4.5}}{\sqrt{2\pi}}$$

where here $\mathbf{1}_{(4.5,\infty)}(Y_i) = 1$ since $\{Y_i\}_{i=1}^n \stackrel{iid}{\sim} g$.

Remark: we need $supp(g) \supseteq supp(f)$ to make sure the value of importance weight $\frac{f(X_i)}{g(X_i)}$ is meaningful. Actually here having a weaker condition $supp(g) \supseteq supp(h \times f)$ suffices since we have the fraction $\frac{h(X_i)f(X_i)}{g(X_i)}$.

Self-normalized version of importance sampling

Again, we want to evaluate $\mathbb{E}_f[h(X)]$. But now $f \propto \tilde{f}$, $g \propto \tilde{g}$. Say $f = c_o f_0$ where f_0 is the unnormalized p.d.f, c_0 is the normalizing constant. And $g = c_1 g_1$, where g_0 is the unnormalized p.d.f, c_1 is the normalizing constant.

Now, suppose we know f_0 and g_0 , but possibly not c_0 and c_1 . And suppose we know how to generate random sample from g.

$$\mathbb{E}_{f}[h(X)] = \int h(x)f(x) dx$$

$$= \frac{\int \frac{h(x)f(x)}{g(x)}g(x) dx}{\int \frac{f(x)}{g(x)}g(x) dx}$$

$$= \frac{\int \frac{f_{0}(x)}{g_{0}(x)}h(x)g(x) dx}{\int \frac{f_{0}(x)}{g_{0}(x)}g(x) dx} \quad (now \ w(x) := \frac{f_{0}(x)}{g_{0}(x)})$$

$$= \frac{\int w(x)h(x)g(x) dx}{\int w(x)g(x) dx} = \frac{\mathbb{E}_{g}[w(x)h(x)]}{\mathbb{E}_{g}[w(x)]}$$

Then we can generate a sample of size n, $\{X_i\}_{i=1}^n \stackrel{iid}{\sim} g$, and use $\hat{\mu} = \frac{\frac{1}{n} \sum_{i=1}^n w(X_i) h(X_i)}{\frac{1}{n} \sum_{i=1}^n w(X_i)}$ to estimate $\mu = \mathbb{E}_f[h(X)]$. Here $\hat{\mu}$ is called **Self-normalized importance sampling estimator** for μ .

The reason why $\hat{\mu} \to \mu$.

$$\hat{\mu} = \frac{\frac{1}{n} \sum_{i=1}^{n} \frac{f_0(X_i)}{g_0(X_i)} h(X_i)}{\frac{1}{n} \sum_{i=1}^{n} \frac{f_0(X_i)}{g_0(X_i)}} = \frac{\frac{1}{n} \sum_{i=1}^{n} \frac{f(X_i)}{g(X_i)} h(X_i)}{\frac{1}{n} \sum_{i=1}^{n} \frac{f(X_i)}{g(X_i)}} \xrightarrow{LLN} \underbrace{\mathbb{E}_g \left[\frac{f(X)}{g(X)} h(X) \right]}_{\mathbb{E}_g \left[\frac{f(X)}{g(X)} \right]}$$

The last term equals to $\int \frac{h(x)f(x)}{g(x)}g(x)\,dx/\int \frac{f(x)}{g(x)}g(x)\,dx=\int h(x)f(x)\,dx=\mathbb{E}_f[h(X)]=\mu.$