DFT - Part 1

- Introduction
- Internal Scan
- Scan Design Flow
- Issues and Solutions
 - Long test time
 - Large test data
 - Too much overhead
 - How to Test DFT
- Conclusion

SSF Operation (review)

Issue #1: Long Test Time

- How many test cycles do we need?
 - $L = length of scan chain ; N_{pattern} = number of test patterns$

- Example: Apply 5,000 test patterns to a CUT of 10K SFF
 - Single scan chain L = 10,000; $N_{pattern} = 5,000$
 - Total 50,015,000 cycles
 - (5,000+1) x 10,000 shift cycles
 - * 5,000 capture cycles
 - 5 sec. on 10MHz tester. 1,400 hours for 1M chips!

How to Save Test Time?

- To shorten L, we can partition SFF into n scan chains
 - L is determined by longest scan chain in CUT
 - because ATE shifts all scan chains together
 - Penalty: More scan I/O pins (see FFT)
- Example: 10K SFF partitioned into three scan chains
 - $L = \max \{ 3K, 3K, 4K \} = 4K$
 - 60% reduction in test time!

Single scan chain n=1, N_{SFF}=10K, L=10K

Three scan chains n=3, $N_{SFF}=1$ K, L=4K

Multiple Chains Reduce Test Time

Quiz

Q1: Apply 10K patterns to CUT of 6M SFF in three scan chains

$$L_1 = 1M$$
; $L_2 = 1M$; $L_3 = 4M$

How many cycles do we need to test this CUT?

Q2: What if we balance scan length: $L_1 = 2M$; $L_2 = 2M$; $L_3 = 2M$

A1:			
A1: A2:			

DFT - Part 1

- Introduction
- Internal Scan
- Scan Design Flow
- Issues and Solutions
 - Long test time
 - Large test data
 - Too much overhead
 - How to Test DFT
- Conclusion

Issue #2: Large Test Data

How many test data stored on ATE?

Scan in data: $N_{pattern} \times N_{SFF}$

Scan out data: $N_{pattern} \times N_{SFF}$

PI data: $N_{pattern} \times N_{PI}$

PO data: $N_{pattern} \times N_{PO}$

 N_{SFF} =number of scan FF N_{PI} =number of PO N_{PO} =number of PI

Example:

- Apply 10K patterns to CUT of 6M SFF
- Suppose $N_{PO}=50$, $N_{PF}=20$
 - * PI data = 10K x 20 = 200M bits
 - * PO data = 10K x 50 = 500M bits
 - * Scan in data = 10K x 6M = 60G bits!
 - * Scan out data = 10K x 6M = 60G bits!

Test Data Volume Skyrockets

- Suppose ATE has 500 pins, each has 64Mb memory
 - Total ATE memory available = 32Gb
 - 60Gb cannot fit in ATE!
- Q: Does multiple scan chain reduce test data volume?

Quiz

Q:	Apply 10K patterns to CUT of 6M SFF in three scan chains $L_1 = 2M$; $L_2 = 2M$; $L_3 = 2M$ How many scan test data do we need?		
A:			

DFT - Part 1

- Introduction
- Internal Scan
- Scan Design Flow
- Issues and Solutions
 - Long test time
 - Large test data
 - Too much overhead
 - How to Test DFT
- Conclusion

Issue #3: Too Much Overhead

Area overhead, Timing overhead, Power overhead

DFT about 5% Timing, 10% Area/Power Overhead

How to Reduce Overhead? Partial Scan

Full Scan

- Every FF scannable
- More overhead
- Higher fault coverage
- Shorter ATPG run time

Partial Scan

- Some FF not scannable
- Less overhead
- Cover fault coverage
- Conger ATPG run time

Trade-off Area and FC

S5378 Example (BA Table 14.1 modified)

	w/o scan	Partial scan	Full scan
no. of logic gates (N_L)	2,781	2,781	2,781
no. of non-Scan FF (<i>N_{NFF}</i>)	179	149	0
no. of Scan FF (<i>N_{SFF}</i>)	0	30	179
area overhead*	0.0%	1.63%	9.73%
no. of faults	4,603	4,603	4,603
(PI+PPI) / (PO+PPO)	35/49	65/79	213/228
Fault Coverage	70.9%	93.7%	99.1%
CPU time (SUN 200MHz)	5,533 s	727 s	5 s
no. of Test Patterns	414	1,117	585
no. of Test Cycles	414	34,657	105,479

$$*overhead = \frac{Scan - w/o_scan}{w/o_scan}$$

1 non-scan FF = 5 logic gates 1 scan FF = 7 logic gates

Quiz

Q: Please calculate partial scan area overhead Assume 1 non-scan FF = 5 logic gates

Assume 1 scan FF = 7 logic gates

$$*overhead = \frac{Scan - w/o_scan}{w/o_scan}$$

	w/o scan	Partial scan	Full scan
no. of logic gates (N_L)	2,781	2,781	2,781
no. of non-Scan FF (<i>N_{NFF}</i>)	179	79	0
no. of Scan FF (<i>N_{SFF}</i>)	0	100	179
area overhead	0.0%	?	9.73%

A :			

CH1: DFT or Not?

- Q: Is it economical to insert DFT?
- A: Yes. This is true for many products.

$$DL = 1 - Y^{(1-FC)}$$

Although Y drops, DL improves significantly

Item	w/o DFT	with DFT
Total # of Dies	1,000,000	900,000
Yield	98%	97%
FC fault coverage	70%	99%
DL =1-Y ^(1-FC)	6,043 DPM	304 DPM
Sales=D x Y x \$1	980,000	873,000
Repair cost=D x Y x DL x \$100	592,163	26,587
Profit = S – R	387,837	846,413

Despite Overhead, DFT Is Worth Doing!

DFT - Part 1

- Introduction
- Internal Scan
- Scan Design Flow
- Issues and Solutions
 - Long test time
 - Large test data
 - Too much overhead
 - How to Test DFT
- Conclusion

How to Test FF Scan Chain?

- Scan chains themselves can be faulty. Must be tested too
- Scan chain integrity test
 - A sequence 00110011... is shifted in and shifted out
 - No capture clock
 - Each SFF undergo four transitions: 0→1, 0→0, 1→1, 1→0
- Detects all stuck-at faults, transition faults in scan chains

$$(N_{pattern} + 1) \times L + N_{pattern} + 2L$$
shift capture scan integrity

How to Test LSSD Scan Chain?

- LSSD scan chain Flush Test
- CK_C = 0, CK_A =1, CK_B = 1
 - A combinational path from SI to SO is formed
 - Apply SI= 0→1 transition at SI
 - Measure delay time from SI to SO

Summary

- Four Issues of scan
 - Long test time
 - Multiple scan chains
 - Large test data volume
 - * see Test Compression chapter
 - Too much overhead
 - * Partial scan
 - Test scan chain itself
 - * 00110011 or flush test
- Despite above issues, scan is worth doing!

$$(N_{pattern} + 1)xL + N_{pattern} + 2L$$

FFT

- Q1: We want to reduce test time so we have many scan chains. Can we share scan I/O pins to reduce pin overhead?
- Q2: Multiple scan chain does NOT reduce test data. What can we do?

Reference

- [Eichelberger 77] E.B. Eichelberger, and T.W. Williams, "A logic design structure for LSI testability." Proc. of Design Auto. Conf., 1977. (IBM)
- [Funatsau 75] S. Funatsu, N. Wakatsuki, and T. Arima, "Test generation systems in Japan," Proc. Design Auto. Symp., 1975. (NEC)
- [Kobayashi 68] A. Kobayashi, S Matsue, H Shiba "Flip-flop circuit with FLT capability," Proc. of IECEO conf., 1968. (NEC)
- [McCluskey 86] E. J. McCluskey, Logic Design Principles, 1986
- [Williams 73] M.J.Y. Williams, J. B. Angell, "Enhancing Testability of Large-Scale Integrated Circuits via Test Points and Additional Logic," IEEE Trans. on Comput., Vol. C-22, Issue: 1, 1973. (Stanford)