

Page 1 of 33

Report No.: 190313002RFC-1

FCC TEST REPORT

Product Name: Amazonbasics Vertical Ergonomic Optical

Mouse

N/A Trade Mark:

Model No./HVIN: MD8033

Add. Model No.: N/A

Report Number: 190313002RFC-1

Test Standards: FCC 47 CFR Part 15 Subpart C

RSS-Gen Issue 5

RSS-210 Issue 9

FCC ID: 2AAIL-MM8033D IC: 11188A-MM8033D

Test Result: PASS

Date of Issue: March 29, 2019

Prepared for:

Dongguan Mae Tay Electronic CO., LTD. Beihuan Road Industrial Area, Changping Town, Dongguan, Guangdong, China

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

> TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Tested by:

Technical Director

Kevin Liang Assistant Manager

Approved by:

March 29, 2019

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Version

Version No.	Date	Description
V1.0	March 29, 2019	Original

CONTENTS

1.	GENI	ERAL INFORMATION	4
	1.1	CLIENT INFORMATION	4
	1.2	EUT Information	
		1.2.1 GENERAL DESCRIPTION OF EUT	4
		1.2.2 DESCRIPTION OF ACCESSORIES	
	1.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
	1.4	OTHER INFORMATION	
	1.5	DESCRIPTION OF SUPPORT UNITS	
	1.6	TEST LOCATION	
	1.7	TEST FACILITY	
	1.8	DEVIATION FROM STANDARDS	
	1.9	ABNORMALITIES FROM STANDARD CONDITIONS	
	1.10	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	1.11	MEASUREMENT UNCERTAINTY	6
2.	TEST	SUMMARY	7
3.		PMENT LIST	
4.		CONFIGURATION	
		ENVIRONMENTAL CONDITIONS FOR TESTING	
	4.1		
		4.1.1 NORMAL OR EXTREME TEST CONDITIONS	
	4.2	4.1.2 RECORD OF NORMAL ENVIRONMENT	
	4.2	TEST CHANNELS EUT TEST STATUS	
	4.3	TEST SETUP	
	4.4	4.4.1 FOR RADIATED EMISSIONS TEST SETUP	
		4.4.2 FOR CONDUCTED EMISSIONS TEST SETUP	
		4.4.3 FOR CONDUCTED EMISSIONS TEST SETUP	
	4.5	SYSTEM TEST CONFIGURATION	
	4.6	DUTY CYCLE	
			_
5.	RADI	O TECHNICAL REQUIREMENTS SPECIFICATION	
	5.1	REFERENCE DOCUMENTS FOR TESTING	14
	5.2	ANTENNA REQUIREMENT	
	5.3	RADIATED EMISSION	
	5.4	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
	5.5	20DB OCCUPIED BANDWIDTH	
	5.6	CONDUCTED EMISSION	
۸ ۲	חרגיהי		
A۲	LENDI	X 1 PHOTOS OF TEST SETUPX 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS	33
AL	L ENDI	A 4 FRUTUS OF EUT CUNSTRUCTIONAL DETAILS	33

Page 4 of 33 Report No.: 190313002RFC-1

1. GENERAL INFORMATION

1.1 CLIENT INFORMATION

Applicant:	Dongguan Mae Tay Electronic CO., LTD.	
Address of Applicant: Beihuan Road Industrial Area, Changping Town, Dongguan, Guangdong, Cl		
Manufacturer:	Dongguan Mae Tay Electronic CO., LTD.	
Address of Manufacturer:	Beihuan Road Industrial Area, Changping Town, Dongguan, Guangdong, China	

1.2 EUT INFORMATION

1.2.1 General Description of EUT

Product Name:	Amazonbasics Vertical Ergonomic Optical Mouse
Model No./HVIN:	MD8033
Trade Mark:	N/A
DUT Stage:	Production Unit
EUT Supports Function:	General 2.4GHz Technique
Power Supply:	The dongle is supplied power by USB port
Sample Received Date:	March 18, 2019
Sample Tested Date:	March 18, 2019 to March 29, 2019

1.2.2 Description of Accessories

None

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Frequency Band:	2400 MHz to 2483.5 MHz
Frequency Range:	2408 MHz to 2474 MHz
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Type of Modulation:	FSK
Number of Channels:	34
Channel Separation:	2MHz
Antenna Type:	PCB Antenna
Antenna Gain:	-1.0 dBi
Maximum Field Strength:	82.21 dBμV/m
Normal Test Voltage:	5.0 Vdc

1.4 OTHER INFORMATION

Operation Frequency Each of Channel						
	f = 2408 + k*2 MHz, k = 0,,33					
Note:						
f is the operating frequency (MHz);						
k is the operating channel.						

Page 5 of 33 Report No.: 190313002RFC-1

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
Notebook	Lenovo	E450	SL10G10780	UnionTrust

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
1	Antenna Cable	SMA	0.05 Meter	UnionTrust

1.6 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua

New District, Shenzhen, China 518109 Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

ISED Wireless Device Testing Laboratories

CAB identifier: CN0032

FCC Accredited Lab.

Designation Number: CN1194

Test Firm Registration Number: 259480

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

Page 6 of 33 Report No.: 190313002RFC-1

1.10OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.8 dB
2	Conducted emission 150KHz-30MHz	±3.4 dB
3	Radiated emission 9KHz-30MHz	±4.9 dB
4	Radiated emission 30MHz-1GHz	±4.7 dB
5	Radiated emission 1GHz-18GHz	±5.1 dB
6	Radiated emission 18GHz-26GHz	±5.2 dB
7	Radiated emission 26GHz-40GHz	±5.2 dB

2. TEST SUMMARY

FCC 47 CFR Part 15 Subpart C Test Cases						
Test Item	Test Requirement	Test Method	Result			
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203 RSS-Gen Issue 5, Section 6.8	ANSI C63.10-2013	PASS			
Conducted Emission	FCC 47 CFR Part 15 Subpart C Section 15.207 ANSI C63.10-20 RSS-Gen Issue 5, Section 8.8 FCC 47 CFR Part 15 Subpart C Section		PASS			
Radiated Emission	FCC 47 CFR Part 15 Subpart C Section 15.249 (a)/15.209 RSS-210 Issue 9 B.10	ANSI C63.10-2013	PASS			
Restricted bands around fundamental frequency (Radiated Emission)	FCC 47 CFR Part 15 Subpart C Section 15.249(a)/15.205 RSS-210 Issue 9 B.10	ANSI C63.10-2013	PASS			
20dB Occupied Bandwidth	FCC 47 CFR Part 15 Subpart C Section 15.215 (c) RSS-Gen Issue 5, Section 6.7	ANSI C63.10-2013	PASS			

3. EQUIPMENT LIST

	Radiated Emission Test Equipment List								
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)			
	3M Chamber & Accessory Equipment	ETS-LINDGREN	3M	N/A	Dec. 03, 2018	Dec. 03, 2021			
\boxtimes	Receiver	R&S	ESIB26	100114	Nov. 24, 2018	Nov. 24, 2019			
\boxtimes	Loop Antenna	ETS-LINDGREN	6502	00202525	Dec. 03, 2018	Dec. 03, 2019			
\boxtimes	Broadband Antenna	ETS-LINDGREN	3142E	00201566	Dec. 08, 2018	Dec. 08, 2019			
	6dB Attenuator	Talent	RA6A5-N- 18	18103001	Dec. 08, 2018	Dec. 08, 2019			
\boxtimes	Preamplifier	HP	8447F	2805A02960	Nov. 24, 2018	Nov. 24, 2019			
	6dB Attenuator	Talent	RA6A5-N- 18	18103002	Nov. 24, 2018	Nov. 24, 2019			
	Horn Antenna	ETS-LINDGREN	3117	00164202	Dec. 08, 2018	Dec. 08, 2019			
	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	May 22, 2018	May 22, 2019			
	Horn Antenna	ETS-LINDGREN	3116C	00200180	May 20, 2018	May 20, 2019			
	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	Jan. 05, 2019	Jan. 05, 2020			
	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A			
	Band Rejection Filter (2400MHz~2500MHz)	Micro-Tronics	BRM50702	G248	Jun. 06, 2018	Jun. 06, 2019			
	Band Rejection Filter (5150MHz~5880MHz)	Micro-Tronics	BRM50716	G1868	Jun. 06, 2018	Jun. 06, 2019			
\boxtimes	Test Software	Audix	e3	Sof	tware Version: 9.16	0333			

	Conducted Emission Test Equipment List							
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)		
	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Nov. 24, 2018	Nov. 24, 2019		
\boxtimes	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	Nov. 24, 2018	Nov. 24, 2019		
	LISN	R&S	ESH2-Z5	860014/024	Nov. 24, 2018	Nov. 24, 2019		
	LISN	ETS-Lindgren	3816/2SH	00201088	Nov. 24, 2018	Nov. 24, 2019		
\boxtimes	Test Software	Audix	e3	Sof	tware Version: 9.16	0323		

	Conducted RF test Equipment List						
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)	
	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Nov. 24, 2018	Nov. 24, 2019	
	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Nov. 24, 2018	Nov. 24, 2019	
	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	Nov. 24, 2018	Nov. 24, 2019	
	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430023	Nov. 24, 2018	Nov. 24, 2019	

Page 9 of 33 Report No.: 190313002RFC-1

4. TEST CONFIGURATION

4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Environment Parameter	Selected Values During Tests					
Test Condition	Ambient					
rest Condition	Temperature (°C)	Voltage (V)	Relative Humidity (%)			
NT/NV	+15 to +35	5	20 to 75			
Remark: 1) NV: Normal Voltage; NT: Normal Temperature						

4.1.2 Record of Normal Environment

Test Item	Temperature (°C)	Relative Humidity (%)	Pressure (kPa)	Tested by	
Conducted Emission	21.9	49	99.80	Gemini Huang	
Radiated Emission	25.1	52	100.02	Andy Liu	
Restricted bands around fundamental frequency (Radiated Emission)	25.1	52	100.02	Andy Liu	
20dB Occupied Bandwidth	24.3	50	99.98	Hank Wu	

4.2TEST CHANNELS

Type of Modulation	Tx/Rx Frequency	Test RF Channel Lists			
		Lowest(L)	Middle(M)	Highest(H)	
FSK	2408 MHz to 2474 MHz	Channel 0	Channel 16	Channel 33	
		2408 MHz	2440 MHz	2474 MHz	

4.3 EUT TEST STATUS

Modulation Mode	Tx Function	Description
FSK	1Tx	Keep the EUT in continuously transmitting with modulation test single.

Power Setting
Power Setting: not applicable, test used software default power level.

Test Software			
Test software name: RF TEST & EMI MODE_V1.0.0.4;			

4.4TEST SETUP

4.4.1 For Radiated Emissions test setup

4.4.2 For Conducted Emissions test setup

4.4.3 For Conducted Emissions test setup

4.5 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. The dongle is supplied power by USB port .Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

Frequency	Mode	Antenna Port	Worst-case axis positioning	
Above 1GHz	1TX	Chain 0	Z axis	

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.6 DUTY CYCLE

Type of Modulation	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Average Factor (dB)
FSK	100	100	1	100	0

Report No.: 190313002RFC-1

Remark:

- 1) Duty cycle= On Time/ Period;
- 2) Duty Cycle factor = 10 * log(1/ Duty cycle);
- 3) Average factor = 20 log₁₀ Duty Cycle.

The test plot as follows

Page 14 of 33 Report No.: 190313002RFC-1

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title
1	FCC 47 CFR Part 15	Radio Frequency Devices
2	RSS-210 Issue 9	Licence-Exempt Radio Apparatus: Category I Equipment
3	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

5.2 ANTENNA REQUIREMENT

Standard Requirement

15.203 Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

Antenna in the interior of the equipment and no consideration of replacement. The gain of the antenna is -1 dBi.

5.3 RADIATED EMISSION

Test Requirement: FCC 47 CFR Part 15.209 and 15.249

RSS-210 Issue 9 B.10

Test Method: ANSI C63.10-2013 Section 6.6.4.3

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009 MHz-0.090 MHz	Peak	10 kHz	30 KHz	Peak
0.009 MHz-0.090 MHz	Average	10 kHz	30 KHz	Average
0.090 MHz-0.110 MHz	Quasi-peak	10 kHz	30 KHz	Quasi-peak
0.110 MHz-0.490 MHz	Peak	10 kHz	30 KHz	Peak
0.110 MHz-0.490 MHz	Average	10 kHz	30 KHz	Average
0.490 MHz -30 MHz	Quasi-peak	10 kHz	30 kHz	Quasi-peak
30 MHz-1 GHz	Quasi-peak	100 kHz	300 KHz	Quasi-peak
Abovo 1 CHz	Peak	1 MHz	3 MHz	Peak
Above 1 GHz	Peak	1 MHz	10 Hz	Average

Limits:

Spurious Emissions

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009 MHz-0.490 MHz	2400/F(kHz)			300
0.490 MHz-1.705 MHz	24000/F(kHz)	I		30
1.705 MHz-30 MHz	30			30
30 MHz-88 MHz	100	40.0	Quasi-peak	3
88 MHz-216 MHz	150	43.5	Quasi-peak	3
216 MHz-960 MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1 GHz	500	54.0	Average	3

Field strength of the fundamental signal

Frequency Limit (dBµV/m @3m) Remark

Page 15 of 33 Report No.: 190313002RFC-1

2400 MHz-2483.5 MHz	94.0	Average
	114.0	Peak

Remark:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Test Setup: Refer to section 4.4.1 for details.

Test Procedures:

- 1. From 30 MHz to 1GHz test procedure as below:
- 1) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- 2. Above 1GHz test procedure as below:
- Different between above is the test site, change from Semi-Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- 2) Test the EUT in the lowest channel, middle channel, the Highest channel
- 3) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the Z axis positioning which it is worse case.
- 4) Repeat above procedures until all frequencies measured was complete.

Equipment Used: Refer to section 3 for details.

Test Result: Pass

Page 16 of 33 Report No.: 190313002RFC-1

The measurement data as follows:

Field Strength of the Fundamental Signal						
Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Antenna Polaxis	Pass/Fail	
Lowest Channel			•	•		
82.21	94.00	-11.79	Average	Horizontal	Pass	
82.21	114.00	-31.79	Peak	Horizontal	Pass	
77.79	94.00	-16.21	Average	Vertical	Pass	
77.79	114.00	-36.21	Peak	Vertical	Pass	
Middle Channel						
80.65	94.00	-13.35	Average	Horizontal	Pass	
80.65	114.00	-33.35	Peak	Horizontal	Pass	
72.78	94.00	-21.22	Average	Vertical	Pass	
72.78	114.00	-41.22	Peak	Vertical	Pass	
Highest Channel				:		
80.71	94.00	-13.29	Average	Horizontal	Pass	
80.71	114.00	-33.29	Peak	Horizontal	Pass	
81.42	94.00	-12.58	Average	Vertical	Pass	
81.42	114.00	-32.58	Peak	Vertical	Pass	

Remark: Average result = Peak result + Average Factor

Radiated Emission Test Data (9 KHz ~ 30 MHz):

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

Radiated Emission Test Data (Above 1GHz):

Lowest Channel:

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	4816.00	47.44	74.00	-26.56	Peak	Horizontal
2	4816.00	47.44	54.00	-6.56	Average	Horizontal
3	7224.00	48.01	74.00	-25.99	Peak	Horizontal
4	7224.00	48.01	54.00	-5.99	Average	Horizontal
5	4816.00	48.41	74.00	-25.59	Peak	Vertical
6	4816.00	48.41	54.00	-5.59	Average	Vertical
7	7224.00	46.77	74.00	-27.23	Peak	Vertical
8	7224.00	46.77	54.00	-7.23	Average	Vertical

Middle Chann	nel:					
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	4880.00	46.37	74.00	-27.63	Peak	Horizontal
2	4880.00	46.37	54.00	-7.63	Average	Horizontal
3	7320.00	48.55	74.00	-25.45	Peak	Horizontal
4	7320.00	48.55	54.00	-5.45	Average	Horizontal
5	4880.00	45.11	74.00	-28.89	Peak	Vertical
6	4880.00	45.11	54.00	-8.89	Average	Vertical
7	7320.00	47.46	74.00	-26.54	Peak	Vertical
8	7320.00	47.46	54.00	-6.54	Average	Vertical

Highest Chan	nel:					
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	4948.00	46.34	74.00	-27.66	Peak	Horizontal
2	4948.00	46.34	54.00	-7.66	Average	Horizontal
3	7422.00	47.44	74.00	-26.56	Peak	Horizontal
4	7422.00	47.44	54.00	-6.56	Average	Horizontal
5	4948.00	46.26	74.00	-27.74	Peak	Vertical
6	4948.00	46.26	54.00	-7.74	Average	Vertical
7	7422.00	47.27	74.00	-26.73	Peak	Vertical
8	7422.00	47.27	54.00	-6.73	Average	Vertical

Remark: Average result = Peak result + Average Factor

Page 24 of 33 Report No.: 190313002RFC-1

5.4 RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY

Test Requirement: FCC 47 CFR Part 15.209 and 15.205

RSS-210 B.10 **Test Method:** ANSI C63.10-2013

Limits:

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Frequency	Limit (dBµV/m @3m)	Remark
30 MHz-88 MHz	40.0	Quasi-peak Value
88 MHz-216 MHz	43.5	Quasi-peak Value
216 MHz-960 MHz	46.0	Quasi-peak Value
960 MHz-1 GHz	54.0	Quasi-peak Value
Above 1 GHz	54.0	Average Value
	74.0	Peak Value

Test Setup: Refer to section 4.4.1 for details.

Test Procedures:

Radiated band edge measurements at 2400 MHz and 2483.5 MHz were made with the unit transmitting in the low end of the channel range and the high end closest to the restricted bands respectively. The emissions were made on the 966 Semi-Chamber. Use (resolution bandwidth (RBW) = 1 MHz, video bandwidth (VBW) = 3 MHz for peak levels and RBW = 1 MHz and VBW = 10 Hz or 1/T for average levels).

- 1. Use radiated spurious emission test procedure described in clause 5.3. The transmitter output (antenna port) was connected to the test receiver.
- 2. Set the PK and AV limit line.
- 3. Record the fundamental emission and emissions out of the band-edge.
- 4. Determine band-edge compliance as required.

Equipment Used: Refer to section 3 for details.

Test Result: Pass

The measurement data as follows:

Page 27 of 33 Report No.: 190313002RFC-1

5.520DB OCCUPIED BANDWIDTH

Test Requirement: FCC 47 CFR Part 15.215 RSS-Gen Issue 5 Section 6.7

Test Method: ANSI C63.10-2013

Test Setup: Refer to section 4.4.3 for details.

Limits: N/A

Equipment Used: Refer to section 3 for details.

Test Result: Pass

The measurement procedure shall be as follows:

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

- a) Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel
- b) RBW ≥ 1% of the 20 dB bandwidth
- c) VBW ≥ RBW
- d) Sweep = auto;
- e) Detector function = peak
- f) Trace = max hold
- g) All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down bandwidth of the emission.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Result: Pass

The measurement data as follows:

Test Channel	20 dB Bandwidth (MHz)		
Lowest	1.567		
Middle	1.562		
Highest	1.566		

Page 30 of 33 Report No.: 190313002RFC-1

5.6 CONDUCTED EMISSION

Test Requirement: FCC 47 CFR Part 15.207 RSS-Gen Section 8.8

Test Method: ANSI C63.10-2013 Section 6.2

Limits:

Frequency range	Limits (dB(μV)			
(MHz)	Quasi-peak	Average		
0,15 to 0,50	66 to 56	56 to 46		
0,50 to 5	56	46		
5 to 30	60	50		

Remark:

1. The lower limit shall apply at the transition frequencies.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz.

Test Setup: Refer to section 4.4.2 for details.

Test Procedures:

1) The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

2) The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

3) For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

Equipment Used: Refer to section 3 for details.

Test Result: Pass

Page 31 of 33 Report No.: 190313002RFC-1

The measurement data as follows:

Quasi Peak and Average: Mode: Normal Link

Remark:

1. An initial pre-scan was performed on the Phase and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Page 33 of 33 Report No.: 190313002RFC-1

APPENDIX 1 PHOTOS OF TEST SETUP

See test photos attached in Appendix 1 for the actual connections between Product and support equipment.

APPENDIX 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS

