Sinais e Sistemas

ET45A

Prof. Eduardo Vinicius Kuhn

kuhn@utfpr.edu.br Curso de Engenharia Eletrônica Universidade Tecnológica Federal do Paraná

Slides adaptados do material gentilmente cedido pelo <u>Prof. José C. M. Bermudez</u> do Departamento de Engenharia Elétrica da Universidade Federal de Santa Catarina.

O que se aprende nesta disciplina?

- O que são sinais
- O que são sistemas
- Como modelar matematicamente sinais e sistemas
- Como e porque representar sinais e sistemas em domínios transformados
- Como usar os modelos para prever o comportamento de sistemas lineares
- Como usar os modelos para projetar de sistemas lineares

Nosso estudo inclui sinais e sistemas de...

- Tempo contínuo
- Tempo discreto

Universidade Tecnológica Federal do

Fala

Música

Texto

Imagem/vídeo

kuhn@utrpr.edu.br dados ou informações! youtube.com/@eduardokuhn87

Funções matemáticas de uma ou mais variáveis independentes

$$x(t) = \cos(10\pi t)$$
 ou $y(t) = x(t)[1 + \cos(2\pi t)]$

A variável independente não é necessariamente o tempo!

- Realizam o processamento/tratamento de sinais a fim de
 - Extrair a informação de interesse
 - Interpretar a informação
 - Inserir uma nova informação
 - Modificar a informação

- Podem ser implementados
 - Em hardware (usando componentes físicos)
 - Em software (através de algoritmos matemáticos)

Tratamento analógico versus digital

Tratamento

- **Analógico:** Realizado por circuitos construídos utilizando resistores, capacitores, indutores, transistor e diodos...
- **Digital:** Realizado por processadores contendo somadores, multiplicadores e memórias.

• Vantagens e desvantagens

- Analógico:
 - → Garantia de operação em tempo real
 - → Resolução de equações diferenciais de forma trivial
- Digital:

Jniversidade Tecnológica Federal do

- → Flexibilidade (alterações de software permitem implementar outras funções no mesmo hardware)
- → Repetibilidade (operações podem ser executadas várias vezes sem erros decorrentes da sensibilidade dos componentes)

Biomédica: Sinais gerados em órgãos do corpo são medidos para auxiliar no diagnóstico de diferentes doenças.

Eletrocardiograma (ECG)

Tecnológica

Eletroencefalograma (EEG) de paciente com epilepsia

Ressonância magnética (angiografia)

Paraná

Universidade Tecnológica Federal do

Controle: Em certas aplicações, é necessário realizar algum tipo de controle a partir sinais captados no ambiente.

Controle ativo de ruído (Toyota/Bose)

Universidade Tecnológica Federal do Paraná

Aplicações no contexto de Engenharia

Cancelamento adaptativo de ruído (aparelhos auditivos)

Paraná

Tecnológica Federal do

Universidade

Comunicações: Em sistemas de comunicação, tem-se por objetivo reduzir efeitos adversos introduzidos no sinal durante a transmissão.

- Transmissão: conversão D/A, formatação da onda...
- Canal de comunicação: reflexões e desvanecimento...
- Recepção@uamostragem, conversãoeA/D1/.@eduardokuhn87

Sonar e Radar: Alterações nos sinais que retornam em relação aos enviados se traduzem em informações de posição, velocidade e característica.

Radar: Ondas eletromagnéticas

Sonar: Ondas sonoras

Sistemas de Potência: Estudo dos transitórios gerados devido à variações de carga na rede elétrica (e.g., à partida de um motor).

Universidade Tecnológica Federal do

Mercado financeiro: Análise de viabilidade para investimento e predição do comportamento do mercado.

Flutuações no preço de ações (Intel)

kuhn@uttpr.edu.br July 1999 youtube.com/@eduardokuhn87

Classificação de sinais

Amplitude pode assumir qualquer valor Sinal analógico:

Amplitude restrita a valores discretos Sinal digital:

Sinal contínuo: Definido qualquer valor

independente

Sinal discreto: valores discretos apenas para

variável independente

Iniciaremos nosso estudo com sinais analógicos de tempo contínuo...

Digital

Paraná

Universidade Tecnológica Federal do

Sinais periódicos ou aperiódicos

• Sinais periódicos satisfazem

$$x(t) = x(t+T), \quad \forall t \quad \text{com } T>0$$
 or valer do T are stricted a invaled

sendo o menor valor de T que satisfaz a igualdade denominado período fundamental.

• Sinal aperiódico: Aquele que não é periódico.

Exemplo: Determine se os seguintes sinais são ou não periódicos; caso afirmativo, especifique o período fundamental.

(a)
$$x(t) = \begin{cases} \cos(\omega_0 t), & t \ge 0 \\ 0, & t < 0 \end{cases}$$

(b)
$$x(t) = \cos(2\pi t)$$

(b)
$$x(t)=\cos(2\pi t)$$

 (c) $y(t)=x(t)[1+\cos(2\omega_0 t)]$ onde $x(t)=\cos(\omega_0 t)$
 (d) $y(t)=\sin(3t)+\cos(2t)$

(d)
$$y(t) = \sin(3t) + \cos(2t)$$

Universidade Tecnológica Federal do Paraná

Exemplo: Determine se os seguintes sinais são ou não periódicos; caso afirmativo, especifique o período fundamental.

(a)
$$x(t) = \begin{cases} \cos(\omega_0 t), & t \geq 0 \\ 0, & t < 0 \end{cases}$$
 Resposta: Não periódico.

(b)
$$x(t) = \cos(2\pi t)$$

Resposta: Periódico com período fundamental $T_0 = 1 s$.

(c)
$$y(t) = x(t)[1 + \cos(2\omega_0 t)]$$
 onde $x(t) = \cos(\omega_0 t)$
Resposta: Periódico com período fundamental T_0 .

(d)
$$y(t) = \sin(3t) + \cos(2t)$$

Resposta: Periódico com período fundamental $T_0 = 2\pi s$.

Classificação de sinais

Tecnológica Federal do Paraná

Jniversidade

Atenção: Um sinal composto pela soma de dois ou mais sinais periódicos é periódico se, e somente se, as frequências são harmonicamente relacionadas; em outras palavras, a razão entre quaisquer duas frequências deve ser um número racional Q.

Determinação: A frequência fundamental de uma soma de senoides é o maior fator comum (MFC) entre as frequências de cada senoide.

Algoritmo de Euclides!

Para detalhes, veja: B.P. Lathi, Sinais e Sistemas Lineares, $2^{\underline{a}}$ ed., Porto Alegre, RS: Bookman, 2008 \longrightarrow (pp. 543-544)

Universidade Tecnológica Federal do Paraná

Exemplo: Determine se o seguinte sinal é ou não periódico; caso afirmativo, especifique o período fundamental.

$$x(t) = 2 + 7\operatorname{sen}\left(\frac{1}{2}t + \theta_1\right) + 3\operatorname{cos}\left(\frac{2}{3}t + \theta_2\right) + 5\operatorname{cos}\left(\frac{7}{6}t + \theta_3\right)$$

Exemplo: Determine se o seguinte sinal é ou não periódico; caso afirmativo, especifique o período fundamental.

$$x(t) = 2 + 7\operatorname{sen}\left(\frac{1}{2}t + \theta_1\right) + 3\operatorname{cos}\left(\frac{2}{3}t + \theta_2\right) + 5\operatorname{cos}\left(\frac{7}{6}t + \theta_3\right)$$

Resposta: De x(t),

$$\omega_1 = \frac{1}{2} \qquad \omega_2 = \frac{2}{3} \qquad \omega_3 = \frac{1}{2} \qquad \omega_3 = \frac{1}{2$$

o que implica

Resposta: De
$$x(t)$$
,
$$\omega_1=\frac{1}{2},\quad \omega_2=\frac{2}{3},\qquad \omega_3=\frac{7}{6}$$
 que implica
$$\frac{\omega_1}{\omega_2}=\frac{3}{4},\qquad \qquad \frac{\omega_2}{\omega_3}=\frac{4}{7}$$
 Dessa forma

$$\underset{\text{kuhn@utf}}{\underbrace{\left(\frac{3}{4},\frac{4}{4}\right)}} \stackrel{\text{f. periodico!}}{\underset{\text{youtube.com/@eduardokuhn87}}{}} \in \mathbb{Q} \xrightarrow{\text{f. periodico!}}$$

Classificação de sinais

Continuando, a frequência (angular) fundamental é obtida como

$$\omega_0 = \frac{\text{MFC}(1, 2, 7)}{\text{MMC}(2, 3, 6)}$$
$$= \frac{1}{6}$$

Portanto, $\boldsymbol{x}(t)$ é composto por três harmônicas, isto é,

$$\omega_1 = 3\left(\frac{1}{6}\right)$$
 $\omega_2 = 4\left(\frac{1}{6}\right)$ $\omega_3 = 7\left(\frac{1}{6}\right)$

Note que a componente de frequência fundamental está ausente.

*Dica: O MFO de frações é a razão entre o MFC dos numeradores e o mínimo múltiplo comum (MMC) dos denominadores.

*Créditos@uAndrél.Phillipe MilhomemnA@Santanau(2018/1).

Classificação de sinais

Exemplo: Determine se os seguinte sinal é ou não periódico; caso afirmativo, especifique o período fundamental.

$$x(t) = \cos\left(\frac{2}{3}t + \frac{\pi}{6}\right) + \sin\left(\frac{4}{5}t + \frac{\pi}{4}\right)$$

Resposta: Como $\omega_1/\omega_2\in\mathbb{Q},\ x(t)$ é periódico. Logo, a frequência (angular) fundamental é dada por

$$\omega_0 = \frac{\text{MFC}(2,4)}{\text{MMC}(3,5)} = \frac{2}{15}$$

Jniversidade Tecnológica Federal do Paraná

o que implica
$$\omega_1=\frac{2}{3}=5\left(\frac{2}{15}\right) \qquad \omega_2=\frac{4}{5}=6\left(\frac{2}{15}\right)$$

*Créditos@uAfride Phillipe Milhomenn A@Santanau (2018/1).

Universidade Tecnológica Federal do Paraná

Sinais causais, não-causais e anti-causais

• Sinais causais não iniciam antes de t=0, i.e.,

$$x(t) = 0$$
 para $t < 0$

• Sinais não-causais iniciam em t < 0 e se estendem para t > 0.

• Sinais anti-causais existem apenas para t < 0, o que implica

$$x(t)=0$$
 para $t>0$

(b) $x(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$ (c) $x(t) = \begin{cases} 0, & t \ge 0 \\ -1, & t < 0 \end{cases}$ **Exemplo:** Determine se os seguintes sinais são causais,

(a)
$$x(t) = 1, \quad \forall t$$

(b)
$$x(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

(c)
$$x(t) = \begin{cases} 0, & t \ge 0 \\ 1, & t < 0 \end{cases}$$

The contraction of the contract **Exemplo:** Determine se os seguintes sinais são causais,

(c)
$$x(t) = \begin{cases} 0, & t \ge 0 \\ 1, & t < 0 \end{cases}$$

Sinais pares e sinais ímpares

• Sinal par:

• Sinal ímpar:

Decomposição da parte par e ímpar de um sinal

 $x_{\mathsf{par}}(t) = \frac{x(t) + x(-t)}{2}$ $x_{\mathsf{impar}}(t) = \frac{x(t) - x(-t)}{2}$ forma, Qualquer sinal pode ser decomposto em parte par e ímpar através das seguintes relações:

$$x_{\mathsf{par}}(t) = \frac{x(t) + x(-t)}{2}$$

$$x_{\mathsf{impar}}(t) = \frac{x(t) - x(-t)}{2}$$

Dessa forma,

essa forma,
$$x(t) = x_{\rm par}(t) + x_{\rm impar}(t)$$

Jniversidade Tecnológica Federal do Paraná

Exemplo: Determine a parte par e a parte ímpar do seguinte sinal:

$$x(t) = e^{-at}u(t).$$

Resposta: Em relação a parte par, tem-se

eração a parte par, term-se
$$x_{\mathrm{par}}(t) = \frac{x(t) + x(-t)}{2}$$

$$= \frac{e^{-at}u(t) + e^{at}u(-t)}{2}$$

Por sua vez, com respeito a parte ímpar, tem-se

com respeito a parte ímpar, tem-se
$$x_{\rm impar}(t) = \frac{x(t) - x(-t)}{2}$$

$$= \frac{e^{-at}u(t) - e^{at}u(-t)}{2}$$

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Paraná

Jniversidade Tecnológica Federal do Paraná

Sinais determinísticos ou aleatórios

- Sinais determinísticos podem ser completamente caracterizados através de funções matemáticas.
- Sinais aleatórios apresentam uma inerente incerteza antes da sua observação (e.g., ruído ou variações aleatórias).

kuhn@utfpr.edu.br

youtube.com/@eduardokuhn87

Tecnológica Federal do Paraná

Sinais de energia e sinais de potência

ullet Sinais de energia têm energia E_x finita, i.e.,

$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt < \infty o ext{Sinais deterministicos/aperiódicos}$$

 \bullet Sinais de potência têm potência P_x finita, i.e.,

$$P_x = \lim_{T o \infty} rac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt < \infty o$$
 Sinais aleatórios/periódicos

Para um sinal periódico com período T, tem-se

$$P_x = \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt \xrightarrow{\sqrt{P_x}} = \text{Valor RMS}$$

Medidas de intensidade levam em conta a magnitude e a duração kuhn dotsinal (intervalo da vabiá vel independente) hn87

Observações:

Tecnológica Federal do Paraná

Jniversidade

- E_x e P_x são medidas de "capacidade energética" já que não têm unidade de energia
- A classificação de um sinal como de energia $(0 < E_x < \infty)$ ou de potência $(0 < P_x < \infty)$ é mutuamente exclusiva
- Existem sinais que não são nem de energia nem de potência, isto é, $E_x \to \infty$ e $P_x \to \infty$ (e.g., x(t)=t)
- P_x é muito util quando $E_x \to \infty$ (e.g., $\lim_{t \to \infty} |x(t)| \neq 0$)
- P_x representa o valor médio quadrático de x(t)

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Classificação de sinais

Universidade Tecnológica Federal do Paraná

Exemplo: Verifique se os seguintes sinais são de energia e/ou de potência.

Exemplo: Verifique se os seguintes sinais são de energia e/ou de potência.

Resposta: $E_x = 8 < \infty$

Resposta:
$$P_x = \frac{1}{3} < \infty$$

Operações elementares sobre sinais

Escalamento

$$y(t) = cx(t)$$

Adição

$$y(t) = x_1(t) + x_2(t)$$

• Multiplicação

$$y(t) = x_1(t)x_2(t)$$

• Diferenciação

$$y(t) = \frac{d}{dt}x(t)$$

• Integração

$$y(t) = \int_{-\infty}^{t} x(\tau) \, d\tau$$

• Escalonamento no tempo

$$x(t)
ightarrow x(at)
ightharpoonup \begin{cases} a > 1 \text{ (compressão)} \\ 0 < a < 1 \text{ (expansão)} \end{cases}$$

lattes.cnpq.br/2456654064380180

Operações combinadas

$$x(t) \to x(at - b),$$

Desmembrando

Universidade Tecnológica Federal do Paraná

$$1^{\circ}) \ x(t) \stackrel{t \to (t-b)}{\longrightarrow} x(t-b)$$

$$(x(t-b)) \xrightarrow{t \to at} x(at-b)$$
 \leftarrow (escalonamento)

kuhn@utfpr.edu.br youtube.com/202dd3ar2ddkuhn87

Classificação de sinais

Exemplo: Determine

(a)
$$y_a(t) = x_1(t) + x_2(t)$$

(b)
$$y_b(t) = x_1(t)x_2(t)$$

(c)
$$y_c(t) = \frac{d}{dt}x_2(t)$$

(d)
$$y_d(t) = x_2(t-1)$$

(e)
$$u_2(t) = x_2(2t)$$

(e)
$$y_{e}(t) = x_{2}(t-1)$$

(f) $y_{f}(t) = x_{2}(2t-1)$

levando em consideração que

Modelos úteis de sinais

1) Degrau unitário

Universidade Tecnológica Federal do Paraná

$$u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

- Modelagem de variações abruptas
- Modelagem de funções contendo pulsos
- Modelagem de funções limitadas no tempo ardokunn87

Exemplo: Utilização do degrau unitário na representação de sinais.

2) Impulso Unitário (Impulso de Dirac)

- a) $\delta(t) = 0$ para $t \neq 0$
- b) $\int_{-\infty}^{\infty} \delta(t) dt = 1$

Universidade Tecnológica Federal do Paraná

+n

(área unitária \Rightarrow amplitude infinita!)

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Propriedade da amostragem

$$\int_{-\infty}^{\infty} x(t)\delta(t-t_0)\,dt = x(t_0)$$
 escalamento no tempo

Propriedade de escalamento no tempo

$$\int_{-\infty}^{\infty} x(t)\delta(at) dt = \frac{1}{|a|}x(0)$$

Relação entre degrau e impulso unitários

$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau \quad \longleftrightarrow \quad \delta(t) = \frac{d}{dt} u(t)$$

Demonstração: Para a propriedade da amostragem, observe que

tração: Para a propriedade da amostragem, observe
$$\int_{-\infty}^{\infty} x(t)\delta(t-t_0)\,dt = \int_{-\infty}^{\infty} x(t'+t_0)\delta(t')\,dt'$$

$$= \int_{-\infty}^{\infty} x(t_0)\delta(t')\,dt'$$

$$= x(t_0)\int_{-\infty}^{\infty} \delta(t')\,dt'$$

$$= x(t_0)$$

Portanto,

Universidade Tecnológica Federal do Paraná

$$\int_{0}^{\infty} x(t)\delta(t-t_0)\,dt = x(t_0)$$
 kuhn@utfpr.edi ∞ pr | youtube.com/@eduardokuhn87

Demonstração: Para a propriedade de escalamento no tempo, segue que

$$\int_{-\infty}^{\infty} \phi(t)\delta(at)dt = \frac{1}{a} \int_{-\infty}^{\infty} \phi\left(\frac{t'}{a}\right)\delta(t')dt'$$

$$= \frac{1}{a}\phi(0), \quad (a > 0)$$

e

Paraná

Tecnológica Federal do

$$\int_{-\infty}^{\infty} \phi(t)\delta(at)dt = \frac{1}{a} \int_{+\infty}^{-\infty} \phi\left(\frac{t'}{a}\right)\delta(t')dt'$$
$$= -\frac{1}{a}\phi(0), \quad (a < 0)$$

Portanto,

$$\int_{-\infty}^{\infty} \phi(t)\delta(at)dt = \frac{1}{|a|}\phi(0)$$

^{*}Créditos: Adessandra Jolanda Pacheco dos Santes (2017/2).

$$F(x) = \int_{-\infty}^{\infty} \left[\delta(x) + \delta(x-1)\right] \ln\left(\exp\left\{\sqrt{\cos\left[2(x-1)\pi\right]\right\}}\right) dx$$

Determine $F(x) = \int_{-\infty}^{\infty} [\delta(x) + \delta(x-1)] \ln(\exp\{\sqrt{\cos[2(x-1)\pi]\}}) \, dx.$

Tecnológica Federal

$$F(x) = \int_{-\infty}^{\infty} [\delta(x) + \delta(x-1)] \ln(\exp{\{\sqrt{\cos[2(x-1)\pi]\}}\}) dx.$$

Resposta: A solução da integral é obtida como

F(x) =
$$\int_{-\infty}^{\infty} \underbrace{\delta(x)}_{\neq 0, x=0} \ln(\exp\{\sqrt{\cos[2(x-1)\pi]}\}) dx$$
$$+ \int_{-\infty}^{\infty} \underbrace{\delta(x-1)}_{\neq 0, x=1} \ln(\exp\{\sqrt{\cos[2(x-1)\pi]}\}) dx$$
$$= \sqrt{\cos(-2\pi)} \underbrace{\int_{-\infty}^{\infty} \delta(x) dx + \sqrt{\cos(0)}}_{=1} \underbrace{\int_{-\infty}^{\infty} \delta(x-1) dx}_{=1}$$

kul2@utfpr.edu.br | youtube.com/@eduardokuhn87

Determine
$$y(t) = \int_{-\infty}^{\infty} e^{(t-1)} \cos\left[\frac{\pi}{2}(t-5)\right] \delta(2t-3) \, dt.$$

attes.cnpq.br/2456654064380180

Jniversidade Tecnológica Federal do

$$y(t) = \int_{-\infty}^{\infty} e^{(t-1)} \cos\left[\frac{\pi}{2}(t-5)\right] \delta(2t-3) dt.$$

Resposta: A solução da integral é obtida como

$$y(t) = \int_{-\infty}^{\infty} e^{(t-1)} \cos\left[\frac{\pi}{2}(t-5)\right] \delta(2t-3) dt$$

$$= \int_{-\infty}^{\infty} e^{\left[\left(\frac{u+3}{2}\right)-1\right]} \cos\left\{\frac{\pi}{2}\left[\left(\frac{u+3}{2}\right)-5\right]\right\} \delta(u) \frac{du}{2}$$

$$= \frac{1}{2}e^{0.5} \cos\left(\frac{7\pi}{4}\right) \underbrace{\int_{-\infty}^{\infty} \delta(u) du}_{=1}$$

$$= \frac{1}{2}e^{0.5} \cos(1,75\pi)$$

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

3) Exponencial complexa

$$x(t)=e^{st}$$
 onde $s=\sigma+j\omega$ $(j=\sqrt{-1})$

- Como casos particulares de $x(t)=e^{st}$, tem-se $\bullet \ \, \text{Constante: } s=0 \quad \to \quad x(t)=ke^{0t}=k$ $\bullet \ \, \text{Exponencial monotônica: } s=\sigma \quad \to \quad x(t)=e^{\sigma t}$
 - Senoide: $s=\pm j\omega$ \rightarrow $\mathrm{Re}[x(t)]=\cos(\omega t)$
 - Senoide "amortecida": $s=\sigma\pm j\omega \ \to \ {\rm Re}[x(t)]=e^{\sigma t}\cos(\omega t)$

Regiões do plano s

Universidade Tecnológica Federal do Paraná

Exemplo: Exponencial complexa

$$x(t) = ke^{st}$$
 onde $s = \sigma + j\omega \longrightarrow x(t) \implies ke^{\sigma t}e^{j\omega}$

Com respeito ao número de entradas/saídas, tem-se

• Sistemas SISO (single-input and single-output)

• Sistemas MIMO (multiple-input and multiple-output)

- Por convenção, $x_i(t)$ denota as entradas e $y_i(t)$ as saídas.
- Por simplicidade, o foco aqui é sobre sistemas SISQ!!! youtube.com/@eduardokuhn87

- Sistemas de tempo contínuo ou discreto
 - Contínuo: Entrada e saída são sinais contínuos.
 - Discreto: Entrada e saída são sinais discretos.

attes.cnpq.br/2456654064380180

- Sistemas analógicos e digitais
 - Analógicos: Entrada e saída são sinais analógicos.
 - Digitais: Entrada e saída são sinais digitais.

Classificação de sistemas

que
$$\left\{ \begin{array}{l} x_1(t) \to y_1(t) \\ x_2(t) \to y_2(t) \end{array} \right.$$

o sistema é dito <u>linear</u> quando satisfaz o princípio da superposição, i.e.,

$$a_1 x_1(t) + a_2 x_2(t) \rightarrow a_1 y_1(t) + a_2 y_2(t)$$

A aditividade não implica a homogeneidade!

Exemplo: Considerando y(t) = 2tx(t-1), verifique se o sistema é linear.

Classificação de sistemas

Exemplo: Considerando y(t) = 2tx(t-1), verifique se o sistema é linear.

Resposta: Primeiramente, observa-se que

$$x_1(t) \to y_1(t) = 2t x_1(t-1)$$

 $x_2(t) \to y_2(t) = 2t x_2(t-1)$

Portanto.

Jniversidade Tecnológica Federal do Paraná

nto,
$$a_1 x_1(t) + a_2 x_2(t) \to 2 t \left[a_1 x_1(t-1) + a_2 x_2(t-1) \right]$$
$$= a_1 y_1(t) + a_2 y_2(t) \quad \Rightarrow \text{(Linear)}$$

Exemplo: Considerando y(t)=x(t)+1, verifique se o sistema é linear.

Classificação de sistemas

Exemplo: Considerando y(t) = x(t) + 1, verifique se o sistema é linear.

Resposta: Primeiramente, observa-se que

$$x_1(t) \to y_1(t) = x_1(t) + 1$$

 $x_2(t) \to y_2(t) = x_2(t) + 1$

Portanto,

Universidade Tecnológica Federal do Paraná

Resposta: Primeiramente, observa-se que
$$x_1(t) \to y_1(t) = x_1(t) + 1$$

$$x_2(t) \to y_2(t) = x_2(t) + 1$$
 Portanto,
$$a_1 x_1(t) + a_2 x_2(t) \to a_1 x_1(t) + a_2 x_2(t) + 1$$

$$\neq a_1 y_1(t) + a_2 y_2(t) \implies \text{(Não linear)}$$

Exemplo: Considerando $y(t)=x^2(t)$, verifique se o sistema é linear.

Exemplo: Considerando $y(t) = x^2(t)$, verifique se o sistema é linear.

$$x_1(t) \to y_1(t) = x_1^2(t)$$

 $x_2(t) \to y_2(t) = x_2^2(t)$

Resposta: Primeiramente, observa-se que
$$x_1(t) \to y_1(t) = x_1^2(t)$$

$$x_2(t) \to y_2(t) = x_2^2(t)$$
 Portanto,
$$a_1 x_1(t) + a_2 x_2(t) \to [a_1 x_1(t) + a_2 x_2(t)]^2$$

$$= [a_1 x_1(t)]^2 + 2a_1 x_1(t)a_2 x_2(t) + [a_2 x_2(t)]^2$$

$$\neq a_1 y_1(t) + a_2 y_2(t) \quad \Rightarrow \text{(N\~ao linear)}$$

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Exemplo: Verifique se o sistema y(t) = Re[x(t)] é linear, i.e., satisfaz o princípio da superposição (aditividade e homogeneidade). *******Observe o que ocorre quando a_1 e/ou a_2 são complexos.******

Exemplo: Verifique se o sistema y(t) = Re[x(t)] é linear, i.e., satisfaz o princípio da superposição (aditividade e homogeneidade). ******Observe o que ocorre quando a_1 e/ou a_2 são complexos. *******

Resposta: Primeiramente, observa-se que

$$x_1(t) \to y_1(t) = \text{Re}[x_1(t)]$$

 $x_2(t) \to y_2(t) = \text{Re}[x_2(t)]$

Então,

Tecnológica Federal do Paraná

Jniversidade

$$x_3(t) = x_1(t) + x_2(t) \to y_3(t) = \text{Re}[x_3(t)]$$

$$= \text{Re}[x_1(t)] + \text{Re}[x_2(t)]$$

Contudo, para $a_i \in \mathbb{C}$, verifica-se que

$$x_i(t) = a_i x_i(t) o y_i(t) = \mathrm{Re}[a_i x_i(t)]$$
kuhn@utfpr.edu.br | youtube.c#n q_i Re[$x_i(t)$]uhn87

Universidade Tecnológica Federal do Paraná

2) Invariância no tempo: Dado que

$$x(t) \to y(t)$$

o sistema é dito invariante no tempo se

$$x(t-t_0) \to y(t-t_0)$$

Exemplo: Considerando y(t) = sen[x(t)], verifique se o sistema é invariante no tempo.

Resposta: Primeiramente, observa-se que

$$x_1(t) \to y_1(t) = \operatorname{sen}[x_1(t)]$$

 $x_1(t)\to y_1(t)=\sin[x_1(t)]$ $x_2(t)=x_1(t-t_0)\to y_2(t)=\sin[x_2(t)]=\sin[x_1(t-t_0)]$ anto, $y_1(t-t_0) \neq y_2(t) \Rightarrow$ (Invariante no tempo)

Portanto,

$$y_1(t-t_0) \neq y_2(t) \Rightarrow$$
 (Invariante no tempo)

Universidade Tecnológica Federal do Paraná

Exemplo: Considerando $y(t) = \operatorname{sen}(t) \, x(t-2)$, verifique se o sistema é invariante no tempo.

Exemplo: Considerando y(t) = sen(t) x(t-2), verifique se o sistema é invariante no tempo.

Resposta: Primeiramente, observa-se que

$$x(t) \to y(t) = \sin(t) x(t-2)$$

 $x_1(t) = x(t-t_0) \to y_1(t) = \sin(t) x(t-t_0-2)$

Portanto, visto que

$$y(t - t_0) = \text{sen}(t - t_0) x(t - t_0 - 2)$$

tem-se

$$y_1(t) \neq y(t-t_0) \Rightarrow \underline{\text{(Variante no tempo)}}$$

3) Memória: Dado que

Universidade Tecnológica Federal do Paraná

$$x(t) \to y(t)$$

o sistema é dito sem memória se

$$y(t_0) = F[\mathbf{K}, x(t_0)]$$

Em outras palavras, se a saída $y(t_0)$ depende "exclusivamente" de x(t) para $t=t_0$ e/ou de constantes arbitrárias, o sistema é dito sem memória.

Exemplo: Considerando y(t) = (t-3)x(t+1), verifique se o sistema é sem memória.

Exemplo: Considerando

Universidade Tecnológica Federal do Paraná

$$v(t) = R i(t)$$

e resistência constante, verifique se o sistema é sem memória.

Exemplo: Considerando y(t) = (t-3)x(t+1), verifique se o sistema é sem memória.

Resposta:

Jniversidade Tecnológica Federal do Paraná

a:
$$y(t_0) = (t_0 - 3) \, x(t_0 + 1) \qquad \underline{\text{(Com memória)}}$$

Exemplo: Considerando

$$v(t) = R i(t)$$

e resistência constante, verifique se o sistema é sem memória.

Exemplo: Considerando $y(t)=(t-3)\,x(t+1)$, verifique se o sistema é sem memória.

Resposta:

Universidade Tecnológica Federal do Paraná

a:
$$y(t_0) = (t_0 - 3) \, x(t_0 + 1) \qquad \underbrace{\text{(Com memória)}}$$

Exemplo: Considerando

$$v(t) = R i(t)$$

e resistência constante, verifique se o sistema é sem memória.

Resposta:

$$v(t_0) = R i(t_0) \Rightarrow \text{(Sem memória)}$$

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Exemplo: Considerando y(t) = (t-3)x(t), verifique se o sistema é sem memória.

Exemplo: Considerando

ando
$$v(t) = \int_{-\infty}^t i(\tau) \, d\tau$$

e capacitância constante, verifique se o sistema é sem memória.

Exemplo: Considerando y(t) = (t-3) x(t), verifique se o sistema é sem memória.

Resposta:

Jniversidade Tecnológica Federal do Paraná

$$y(t_0) = (t_0 - 3) x(t_0) \Rightarrow \underline{\text{(Sem memória)}}$$

Exemplo: Considerando

ando
$$v(t) = \int_{-\infty}^t i(\tau) \, d\tau$$

e capacitância constante, verifique se o sistema é sem memória.

Exemplo: Considerando y(t) = (t-3) x(t), verifique se o sistema é sem memória.

Resposta:

Jniversidade Tecnológica Federal do Paraná

$$y(t_0) = (t_0 - 3) x(t_0) \Rightarrow \underline{\text{(Sem memória)}}$$

Exemplo: Considerando

ando
$$v(t) = \int_{-\infty}^t i(\tau) \, d\tau$$

e capacitância constante, verifique se o sistema é sem memória.

Resposta:

$$v(t_0) = \int_{t_0}^{t_0} i(\tau) d\tau \Rightarrow \text{(Com memória)}$$
youtube.com/@eduardokunn87

4) Causalidade: Dado que

$$x(t) \to y(t)$$

o sistema é dito causal se

$$y(t_0) = F[K, x(t \le t_0)]$$

Em outras palavras, se a saída $y(t_0)$ depender apenas de x(t) para $t \leq t_0$, pode-se inferir que o sistema é causal (i.e., sistema não antecipativo).

Observações:

- O critério de causalidade tem grande importância prática!
- No caso de sistemas de tempo contínuo, a causalidade é uma restrica de projeto ressençantube.com/@eduardokuhn87

Exemplo: Considerando y(t)=x(t-2)+x(t+2), verifique se o sistema é causal.

Exemplo: Considerando
$$y(t) = \int_{-\infty}^t x^2(\tau-1)\,d\tau$$
 verifique se o sistema é causal.

Exemplo: Considerando y(t) = x(t-2) + x(t+2), verifique se o sistema é causal.

Resposta:

Jniversidade Tecnológica Federal do Paraná

ta:
$$y(t_0) = x(t_0 - 2) + x(t_0 + 2) \Longrightarrow \underline{\text{(Não causal)}}$$

Exemplo: Considerando

ando
$$y(t) = \int_{-\infty}^{t} x^2(\tau - 1) \, d\tau$$

verifique se o sistema é causal.

Exemplo: Considerando y(t) = x(t-2) + x(t+2), verifique se o sistema é causal.

Resposta:

Jniversidade Tecnológica Federal do Paraná

za:
$$y(t_0) = x(t_0 - 2) + x(t_0 + 2) \Longrightarrow \underline{\text{(Não causal)}}$$

Exemplo: Considerando

ando
$$y(t) = \int_{-\infty}^{t} x^2(\tau - 1) d\tau$$

verifique se o sistema é causal.

Resposta:

$$y(t_0) = \int_{-\infty}^{t_0} x^2(\tau - 1) d\tau \Rightarrow \text{(Causal)}$$
kuhn@utfpr.edu/br_\infty | youtube.com/@eduardokuhn87

5) Invertibilidade: Dado que

$$x(t) \to y(t)$$

o sistema é dito invertível se

Universidade Tecnológica Federal do Paraná

$$x(t) = F^{-1}[y(t)]$$

Em outras palavras, caso seja possível determinar $\boldsymbol{x}(t)$ biunivocamente a partir de y(t), o sistema é considerado $\underline{\text{invertível}}.$ attes.cnpq.br/2456654064380180

Exemplo: Considerando y(t) = 4x(t), verifique se o sistema é invertível.

Exemplo: Considerando $y(t)=x^2(t)$, verifique se o sistema é invertível.

Exemplo: Considerando y(t) = 4x(t), verifique se o sistema é invertível.

Resposta:

Universidade Tecnológica Federal do Paraná

$$x(t) = \frac{1}{4} y(t) \quad \Rightarrow \text{(Invertível)}$$

Exemplo: Considerando $y(t)=x^2(t)$, verifique se o sistema é invertível.

Exemplo: Considerando y(t) = 4x(t), verifique se o sistema é invertível.

Resposta:

Jniversidade Tecnológica Federal do Paraná

$$x(t) = \frac{1}{4} y(t) \implies \underline{\text{(Invertível)}}$$

Exemplo: Considerando $y(t)=x^2(t)$, verifique se o sistema é invertível.

Resposta:

$$\dot{x}(t) = \pm \sqrt{y(t)} \quad \Rightarrow \quad \text{(Não invertível)}$$

6) Estabilidade (BIBO - bounded-input bounded-output): Dado $x(t) \to y(t)$ que

$$x(t) \to y(t)$$

pode-se inferir que o sistema é BIBO estavel se

$$|x(t)| = K < \infty \quad \Rightarrow \quad |y(t)| < \infty \quad \forall t$$

Em outras palavras, um dado sistema é considerado BIBO estável se uma entrada limitada implica saída limitada.

Observações:

- Para instabilidade basta encontrar um exemplo.
- Sistemas estáveis são estáveis para qualquer x(t).

kuhn@utfpr.edu.br | youtube.com/@eduardokuhn87

Universidade Tecnológica Federal do Paraná

Exemplo: Considerando $y(t) = e^{-|x(t)|}$, verifique se o sistema é BIBO estável.

Exemplo: Considerando y(t)=tx(t), verifique se o sistema é BIBO estável.

Jniversidade Tecnológica Federal do Paraná

Exemplo: Considerando $y(t) = e^{-|x(t)|}$, verifique se o sistema é BIBO estável.

Resposta: Para x(t) = K (com $|K| < \infty$), verifica-se que

$$|y(t)|<\infty \Rightarrow \underline{\text{(Estável)}}$$

Exemplo: Considerando y(t)=tx(t), verifique se o sistema é BIBO estável.

Resposta: Para x(t) = K (com $|K| < \infty$), verifica-se que

$$\lim_{t \to \infty} y(t) \to \infty \Rightarrow \underline{\text{(Instável)}}$$

Exemplo: Classifique os sistemas descritos pelas seguintes relações de entrada e saída como i) Com mémoria; ii) Estável; iii) Causal; iv) Linear; e v) Invariante no tempo.

(a)
$$y(t) = tx(t) + x(t-1)$$

(b)
$$y(t) = 1 + \cos[2\pi x(t+1)]$$

Exemplo: Classifique os sistemas descritos pelas seguintes relações de entrada e saída como i) Com mémoria; ii) Estável; iii) Causal; iv) Linear; e v) Invariante no tempo.

- (a) y(t) = tx(t) + x(t-1)
 - i) Com memória
 - ii) Instável
 - iii) Causal

- iv) Linear
- v) Variante no tempo

(b)
$$y(t) = 1 + \cos[2\pi x(t+1)]$$

Exemplo: Classifique os sistemas descritos pelas seguintes relações de entrada e saída como i) Com mémoria; ii) Estável; iii) Causal; iv) Linear; e v) Invariante no tempo.

- (a) y(t) = tx(t) + x(t-1)
 - i) Com memória
 - ii) Instável
 - iii) Causal

- iv) Linear
- v) Variante no tempo
- (b) $y(t) = 1 + \cos[2\pi x(t+1)]$
 - i) Com memória
 - i) Estável
 - ii) Não causal
 - iv) Não linear

Para revisar e fixar os conceitos apresentados até então, recomenda-se a seguinte leitura:

B.P. Lathi, *Sinais e Sistemas Lineares*, 2ª ed., Porto Alegre, RS: Bookman, 2008 \longrightarrow (pp. 125-127)

Para a próxima aula, favor realizar a leitura do seguinte material:

B.P. Lathi, *Sinais e Sistemas Lineares*, 2ª ed., Porto Alegre, RS: Bookman, 2008 (Capítulo 2)

Até a próxima aula... =)