Practice Midterm Problems with Solutions for CPSC 322, Winter 2010 Term 1

The midterm will contain a combination of short questions (see review file for samples of those), and longer problems. The two problems below will help you practice for this second type of questions.

1. Search [22 points]

Consider the following directed graph where a is the start node and k and n are both goal nodes, the true cost function is given by the edge labels, and k is an admissible heuristic function.

node	h(node)
a	16
b	16
c	11
d	20
e	18
k	0
m	2
\boldsymbol{n}	0

In answering these questions show your work and justify your conclusions.

1. [7 points] A*

Assume that ties are broken alphabetically.

- (a) What sequence of paths is expanded by A*? (If you like, you can describe each path just by giving the last node in the path.)
- (b) What path is returned?
- (c) What is the cost of this path?

Answer: A* expands *acmn* and returns the path *acn* which costs 18.

2. [7 **points**] (Depth First) Branch-and-bound search with cycle checking, in which neighbors are expanded according to *f*

Assume that ties are broken alphabetically.

- (a) What sequence of paths are expanded (or considered for expansion) by branch-and-bound? (If you like, you can describe each path just by giving the last node in the path.)
- (b) What path is returned?
- (c) What is the cost of this path?

Answer: Branch-and-bound expands *acmnkb* and returns the path *acn* which costs 18.

- 3. [8 points] Consider a complete binary search tree with finite depth d, and with only one goal, which is at depth k < d. The search begins at the root node (let's call this node's depth 1).
 - (a) In the best case:
 - i. Exactly how many nodes would be expanded by breadth-first search? (including the

goal node) **Answer**: 2^{k-1} nodes.

- ii. Exactly how many paths would be on the frontier just before the goal node is expanded? **Answer**: 2^{k-1} paths.
- (b) In the best case:
 - i. Exactly how many nodes would be expanded by depth-first search? (including the goal

Answer: *k* nodes.

ii. Exactly how many paths would be on the frontier just before the goal node is expanded? Answer: k paths.

2. [22 points] CSP Planning

Consider the one-stage unrolling of a CSP planning problem represented below, in which we have an elevator that can be on different floors and a passenger who can be waiting at different floors or can be in the elevator. Notice that for the sake of simplicity the model is not realistic.

The constraint tables¹ are as follows (with * representing a wildcard or don't-care condition).

C1

Elevator 0	Passenger 0
2	3

¹ Recall that constraint tables list the joint variable assignments that are *allowed*.

Elevator 0	Passenger 0	PickUp 0
3	3	T
*	*	F

C3

Passenger 0	Elevator	PickUp 0
Е	4	T
*	*	F

C4

Elevator 0	GotoB 0	Goto1 0	Goto2 0	Goto3 0	Goto4 0	Elevator 1
В	F	F	F	F	F	В
1	F	F	F	F	F	1
2	F	F	F	F	F	2
3	F	F	F	F	F	3
4	F	F	F	F	F	4
*	T	F	F	F	F	В
*	F	T	F	F	F	1
*	F	F	T	F	F	2
*	F	F	F	T	F	3
*	F	F	F	F	T	4

C5

Passenger 0	PickUp 0	DropOff 0	Passenger 1
В	F	F	В
1	F	F	1
2	F	F	2
3	F	F	3
4	F	F	4
E	F	F	E
3	T	F	E
Е	F	T	4

C6

Passenger 1
4

1. [7 points] Perform arc-consistency on this CSP. (Just cross out the values on the figure above). What is the outcome? What does it mean?

Answer: Arc consistency will eliminate every value from every domain. By C6, $dom(Passenger 1) = \{4\}$. By C1, $dom(Passenger 0) = \{3\}$. Because of this, there is no satisfying assignment for C5, meaning we can eliminate every value from Passenger 0, Passenger 1, PickUp 0 and DropOff 0. Any constraint connected to a variable with an empty domain cannot be satisfied, which means we can eliminate the domain of every connected

variable. No one step solution exists for this planning problem.

2. [9 points] Give a STRIPS representation of the problem, including variables, domains, start state, goal states and action descriptions.

Answer: Variables: Elevator, Passenger

dom(Elevator) = {B,1,2,3,4}
dom(Passenger) = {B,1,2,3,4,E}
Start State: Elevator=2, Passenger=3
Goal State: Elevator=*, Passenger=4

Action	Precondition	Effect
GotoB		Elevator=B
Goto1		Elevator=1
Goto2		Elevator=2
Goto3		Elevator=3
Goto4		Elevator=4
PickUp	Elevator=3, Passenger=3	Passenger=E
DropOff	Elevator=4, Passenger=E	Passenger=4

3. [6 points] What is the smallest horizon for which this CSP planner can be solved, if a constraint is added to make all actions mutually exclusive? Report the plan that it would find. **Answer**: 4 is the smallest horizon for which this set of CSPs has a solution (with full mutex action constraints). The plan it would find is <<Goto3>,<PickUp>,<Goto4><DropOff>>.