

OpenHarmonyOS E53模块开发-智慧路灯

CONTENTS

01 硬件设计

102 工作原理

03 API分析

94 实例分析

硬件设计

硬件设计

工作原理

● 指令集合结构		
指令	功能代码	注释
断电	0000_0000	无激活状态。
通电	0000_0001	等待测量指令。
重置	0000_0111	重置数字寄存器值,重置指令在断电模式下 不起作用。
连续H分辨率模式	0001_0000	在 11x 分辨率下开始测量。
		测量时间一般为 120ms。
连续 H 分辨率模式 2	0001_0001	在 0.51x 分辨率下开始测量。
		测量时间一般为 120ms。
连续L分辨率模式	0001_0011	在 411x 分辨率下开始测量。
		测量时间一般为 16ms。

02 工作原理

首先,我们通过i2c总线下发"通电"指令给光线传感器,让光线传感器处于准备状态。"通电"指令就是0x01。

其次,通过i2c总线下发"连续H分辨率模式"给光线传感器,让光线传感器处于 11x分辨率下开始测量,测量时间一般为120ms。

再次,通过i2c总线直接读取光线传感器芯片2个数值。这2个数据就是当前光线传感器的光线强度。

最后,根据读取到的光线强度,判断路灯是否要打开。

03 API设计

智慧井盖接口的头文件

/vendor/lockzhiner/rk2206/samples/e53_intelligent_street_lamp/include/e53_intelligent_street_lamp.h

OpenHarmonyOS E53模块开发中,智慧路灯模块的接口主要分为几大类:

- (1) 初始化智慧路灯模块;
- (2) 控制光线传感器;
- (3) 控制路灯。

03 API设计

void void e53_isl_init();

该函数主要功能是智慧路灯模块初始化,包括初始化I2C0、路灯控制GPI0以及初始化BH1750光线传感器。

无返回值。

void start_bh1750();

该函数主要功能是智慧路灯模块使能bh1750传感器开启测量,通过I2C总线下发连续H分辨率模式指令集。

无返回值。

03 API设计

float e53_isl_read_data();

该函数主要功能是智慧路灯模块读取传感器数据, 得到亮度值。 返回值是传感器返回的亮度值。

void isl_light_set_status(SWITCH_STATUS_ENUM status);

该函数主要功能是智慧路灯模块控制路灯开关。

■参数status: 控制路灯亮灭。 无返回值。

实例分析

1、打开sdk下面路径的文件

vendor/lockzhiner/rk2206/samples/c3_e53_intelligent_street_lamp/e53_intelligent_street_lamp_example.c

2、创建任务

在e53_isl_example函数中,创建的一个任务e53_isl_thread。

task.pfnTaskEntry = (TSK_ENTRY_FUNC)e53_isl_thread;

task.uwStackSize = 10240;

task.pcName = "e53_isl_thread";

task.usTaskPrio = 24;

ret = LOS_TaskCreate(&thread_id, &task);

实例分析

在e53_isl_thread函数中,每2s读取一次传感器数据并打印亮度数据。当亮度小于20时,打开路灯,否则关闭路灯。

```
void e53_isl_thread()
{
    float lum = 0;

    e53_isl_init();

    while (1)
    {
        lum = e53_isl_read_data();

        printf("luminance value is %.2f\n", lum);
}
```

```
if (lum < 20)
        isl_light_set_status(ON);
        printf("light on\n");
     else
        isl_light_set_status(OFF);
        printf("light off\n");
     LOS_Msleep(2000);
```


实例分析

3、修改编译脚本

修改 vendor/lockzhiner/rk2206/sample 路径下 BUILD.gn 文件, 指定c3_e53_intelligent_street_lamp 参与编译。

"./c3_e53_intelligent_street_lamp:e53_isl_example",

修改 device/lockzhiner/rk2206/sdk_liteos 路径下 Makefile 文件,添加 -le53_isl_example 参与编译。

hardware_LIBS = -lhal_iothardware -lhardware -le53_isl_example

4、编译固件

hb set -root.

hb set

hb build -f

实例分析

- 5、烧写固件
- 6、通过串口查看结果

运行结果

luminance value is 45.83

light off

luminance value is 4.17

light on

谢谢聆听

单击此处添加副标题内容