

Forecasting: principles and practice

Rob J Hyndman

3.2 Forecasting with multiple seasonality

Outline

- 1 Time series with complex seasonality
- 2 Lab session 17
- 3 Lab session 18
- 4 Lab session 19

Examples

```
autoplot(gasoline) +
  xlab("Year") + ylab("Thousands of barrels per day") +
  ggtitle("Weekly US finished motor gasoline products")
```


Examples

Examples

TBATS

Trigonometric terms for seasonality

Box-Cox transformations for heterogeneity

ARMA errors for short-term dynamics

Trend (possibly damped)

Seasonal (including multiple and non-integer periods)

$$\begin{aligned} y_t &= \text{observation at time } t \\ y_t^{(\omega)} &= \begin{cases} (y_t^\omega - 1)/\omega & \text{if } \omega \neq 0; \\ \log y_t & \text{if } \omega = 0. \end{cases} \\ y_t^{(\omega)} &= \ell_{t-1} + \phi b_{t-1} + \sum_{i=1}^M s_{t-m_i}^{(i)} + d_t \\ \ell_t &= \ell_{t-1} + \phi b_{t-1} + \alpha d_t \\ b_t &= (1 - \phi)b + \phi b_{t-1} + \beta d_t \\ d_t &= \sum_{i=1}^p \phi_i d_{t-i} + \sum_{j=1}^q \theta_j \varepsilon_{t-j} + \varepsilon_t \\ s_t^{(i)} &= \sum_{j=1}^{k_i} s_{j,t}^{(i)} & s_{j,t}^{(i)} = s_{j,t-1}^{(i)} \cos \lambda_j^{(i)} + s_{j,t-1}^{*(i)} \sin \lambda_j^{(i)} + \gamma_1^{(i)} d_t \\ s_{j,t}^{(i)} &= -s_{j,t-1}^{(i)} \sin \lambda_j^{(i)} + s_{j,t-1}^{*(i)} \cos \lambda_j^{(i)} + \gamma_2^{(i)} d_t \end{cases}$$

,

$$y_t$$
 = observation at time t

 $y_t^{(\omega)} = \begin{cases} (y_t^{\omega} - 1)/\omega & \text{if } \omega \neq 0; \\ \log y_t & \text{if } \omega = 0. \end{cases}$

$$y_t^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum_{i=0}^{M} s_{t-m_i}^{(i)} + d_t$$

$$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha d_t$$

$$b_t = (1 - \phi)b + \phi b_{t-1} + \beta d_t$$

$$d_t = \sum_{i=1}^p \phi_i d_{t-i} + \sum_{j=1}^q \theta_j \varepsilon_{t-j} + \varepsilon_t$$

$$s_{i}^{(i)} = \sum_{j=1}^{k_{i}} s_{j}^{(i)} \qquad s_{j,t}^{(i)} = s_{j,t}^{(i)}$$

Box-Cox transformation

$$\begin{aligned} d_t &= \sum_{i=1}^p \phi_i d_{t-i} + \sum_{j=1}^q \theta_j \varepsilon_{t-j} + \varepsilon_t \\ s_t^{(i)} &= \sum_{j=1}^{k_i} s_{j,t}^{(i)} & s_{j,t}^{(i)} = s_{j,t-1}^{(i)} \cos \lambda_j^{(i)} + s_{j,t-1}^{*(i)} \sin \lambda_j^{(i)} + \gamma_1^{(i)} d_t \\ s_{j,t}^{(i)} &= -s_{j,t-1}^{(i)} \sin \lambda_j^{(i)} + s_{j,t-1}^{*(i)} \cos \lambda_j^{(i)} + \gamma_2^{(i)} d_t \end{aligned}$$

 y_t = observation at time t

$$y_t^{(\omega)} = \begin{cases} (y_t^{\omega} - 1)/\omega & \text{if } \omega \neq 0; \\ \log y_t & \text{if } \omega = 0. \end{cases}$$

 $y_t^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum_{i=1}^{M} s_{t-m_i}^{(i)} + d_t$ M seasonal periods

Box-Cox transformation

$$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha d_t$$

$$b_t = (1 - \phi)b + \phi b_{t-1} + \beta d_t$$

$$d_t = \sum_{i=1}^p \phi_i d_{t-i} + \sum_{j=1}^q \theta_j \varepsilon_{t-j} + \varepsilon_t$$

 $s_{t}^{(i)} = \sum_{j=1}^{k_{i}} s_{j,t}^{(i)} \qquad s_{j,t}^{(i)} = s_{j,t-1}^{(i)} \cos \lambda_{j}^{(i)} + s_{j,t-1}^{*(i)} \sin \lambda_{j}^{(i)} + \gamma_{1}^{(i)} d_{t}$ $s_{j,t}^{(i)} = -s_{j,t-1}^{(i)} \sin \lambda_{j}^{(i)} + s_{j,t-1}^{*(i)} \cos \lambda_{j}^{(i)} + \gamma_{2}^{(i)} d_{t}$

 y_t = observation at time t

$$y_t^{(\omega)} = \begin{cases} (y_t^{\omega} - 1)/\omega & \text{if } \omega \neq 0; \\ \log y_t & \text{if } \omega = 0. \end{cases}$$

 $y_t^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum_{i=0}^{M} s_{t-m_i}^{(i)} + d_t$

$$\omega$$
 = 0

M seasonal periods

global and local trend

Box-Cox transformation

 $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha d_t$ $b_{t} = (1 - \phi)b + \phi b_{t-1} + \beta d_{t}$

$$d_{t} = \sum_{i=1}^{p} \phi_{i} d_{t-i} + \sum_{i=1}^{q} \theta_{j} \varepsilon_{t-j} + \varepsilon_{t}$$

 $s_{t}^{(i)} = \sum_{j,t}^{k_{i}} s_{j,t}^{(i)} \qquad s_{j,t-1}^{(i)} \cos \lambda_{j}^{(i)} + s_{j,t-1}^{*(i)} \sin \lambda_{j}^{(i)} + \gamma_{1}^{(i)} d_{t}$ $s_{j,t}^{(i)} = -s_{j,t-1}^{(i)} \sin \lambda_j^{(i)} + s_{j,t-1}^{*(i)} \cos \lambda_j^{(i)} + \gamma_2^{(i)} d_t$

 y_t = observation at time t

Box-Cox transformation

$$y_t^{(\omega)} = \begin{cases} (y_t^{\omega} - 1)/\omega & \text{if } \omega \neq 0; \\ \log y_t & \text{if } \omega = 0. \end{cases}$$

$$y_t^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum_{i=1}^{M} s_{t-m_i}^{(i)} + d_t$$

M seasonal periods

global and local trend

+
$$\alpha$$
d_t

ARMA error

$$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha d_t$$

$$b_t = (1 - \phi)b + \phi b_{t-1} + \varepsilon$$

$$b_{t} = (1 - \phi)b + \phi b_{t-1} + \beta d_{t}$$

$$d_{t} = \sum_{i=1}^{p} \phi_{i} d_{t-i} + \sum_{i=1}^{q} \theta_{j} \varepsilon_{t-j} + \varepsilon_{t}$$

$$s_{t}^{(i)} = \sum_{j=1}^{k_{i}} s_{j,t}^{(i)} \qquad s_{j,t}^{(i)} = s_{j,t-1}^{(i)} \cos \lambda_{j}^{(i)} + s_{j,t-1}^{*(i)} \sin \lambda_{j}^{(i)} + \gamma_{1}^{(i)} d_{t}$$

$$s_{t}^{(i)} = -s_{j,t-1}^{(i)} \sin \lambda_{j}^{(i)} + s_{j,t-1}^{*(i)} \cos \lambda_{j}^{(i)} + \gamma_{2}^{(i)} d_{t}$$

 y_t = observation at time t

$$y_t^{(\omega)} = \begin{cases} (y_t^{\omega} - 1)/\omega & \text{if } \omega \neq 0; \\ \log y_t & \text{if } \omega = 0. \end{cases}$$

Box-Cox transformation

$$y_{t}^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum_{i=1}^{M} s_{t-m_{i}}^{(i)} + d_{t}$$
$$\ell_{t} = \ell_{t-1} + \phi b_{t-1} + \alpha d_{t}$$

M seasonal periods

global and local trend

$$b_t = (1 - \phi)b + \phi b_{t-1} + \beta d_t$$

ARMA error

$$d_{t} = \sum_{i=1}^{p} \phi_{i} d_{t-i} + \sum_{i=1}^{q} \theta_{j} \varepsilon_{t-j} + \varepsilon_{t}$$

Fourier-like seasonal terms

$$s_{t}^{(i)} = \sum_{j=1}^{k_{i}} s_{j,t}^{(i)}$$

$$s_{t}^{(i)} = \sum_{j=1}^{k_{i}} s_{j,t}^{(i)}$$

$$s_{j,t}^{(i)} = s_{j,t-1}^{(i)} \cos \lambda_{j}^{(i)} + s_{j,t-1}^{*(i)} \sin \lambda_{j}^{(i)} + \gamma_{1}^{(i)} d_{t}$$

$$s_{j,t}^{(i)} = -s_{j,t-1}^{(i)} \sin \lambda_{j}^{(i)} + s_{j,t-1}^{*(i)} \cos \lambda_{j}^{(i)} + \gamma_{2}^{(i)} d_{t}$$

$$y_{t} = \text{observation at time } t$$

$$y_{t}^{(\omega)} = \begin{cases} (y_{t}^{\omega} - 1)/\omega & \text{if } \omega \neq 0; \\ \textbf{TBATS} \end{cases}$$

$$Trigonometric$$

$$y_{t}^{(\omega)} = \ell_{t}$$

$$Box\text{-Cox}$$

$$\ell_{t} = \ell_{t}$$

$$ARMA$$

$$b_{t} = (1)$$

$$d_{t} = \sum_{i=1}^{t} \textbf{Seasonal}$$

$$s_{t}^{(i)} = \sum_{j=1}^{k_{i}} s_{j,t}^{(i)}$$

$$s_{j,t}^{(i)} = -s_{j,t-1}^{(i)} \sin \lambda_{j}^{(i)} + s_{j,t-1}^{*(i)} \cos \lambda_{j}^{(i)} + \gamma_{2}^{(i)} d_{t}$$

$$s_{j,t}^{(i)} = -s_{j,t-1}^{(i)} \sin \lambda_{j}^{(i)} + s_{j,t-1}^{*(i)} \cos \lambda_{j}^{(i)} + \gamma_{2}^{(i)} d_{t}$$

Complex seasonality

Complex seasonality

Complex seasonality

TBATS

Trigonometric terms for seasonality

Box-Cox transformations for heterogeneity

ARMA errors for short-term dynamics

Trend (possibly damped)

Seasonal (including multiple and non-integer periods)

- Handles non-integer seasonality, multiple seasonal periods.
- Entirely automated
- Prediction intervals often too wide
- Very slow on long series

Outline

- 1 Time series with complex seasonality
- 2 Lab session 17
- 3 Lab session 18
- 4 Lab session 19

Lab Session 17

Outline

- 1 Time series with complex seasonality
- 2 Lab session 17
- 3 Lab session 18
- 4 Lab session 19

Lab Session 18

Outline

- 1 Time series with complex seasonality
- 2 Lab session 17
- 3 Lab session 18
- 4 Lab session 19

Lab Session 19