Chemistry Solutions (Practical)

1.

a. i) Any **three** from:

A method of weighing by difference / wash the solid from its weighing container into the beaker

Wash the (wet) rod into the flask / beaker after use

Wash the (wet) beaker into the flask after transfer

Wash the filter funnel (after transfer) into the flask

Use a teat pipette to make up to the mark on the volumetric flask

Ensure the <u>bottom of the (liquid) meniscus</u> is on the graduation mark

Mix / shake the final solution in the flask / invert flask [1 mark for each]

- ii) Do (a) further titration(s) [1 mark] to obtain concordant results [1 mark]
- b. i) Space will fill during titration / titres or volumes added are too high [1 mark]
 - ii) Less chance of losing liquid on swirling / liquid doesn't splash on swirling [1 mark] Do not accept 'easier to swirl' on its own.
 - iii) Returns reagent on the sides of the flask to the reaction mixture (to ensure that all of the acid / alkali reacts) [1 mark] This does not change the number of moles of reagents / water is not a reagent / water is one of the products. [1 mark]
 - iv) (idea that) a single titration could be flawed / anomalous.or To obtain concordant results. [1 mark]

- c. Pipette = $0.05 \times 100 / 25.0 = 0.2\%$ [1 mark] Burette = $0.15 \times 100 / 24.25$ cm³ = 0.6% [1 mark]
- 2.
- a. Measured volume would be greater [1 mark]
 Level in burette falls as tap is filled before any liquid is delivered [1 mark]
- b. Drop sizes vary *or* percentage error for amount of oil will be large as the amount used is so small [1 mark]
- Use a larger single volume of oil [1 mark]
 Dissolve this oil in the organic solvent [1 mark]
 Transfer to a conical flask and make up to 250 cm³ with the solvent [1 mark]
 Titrate (25 cm³) samples from flask [1 mark]
- d. Mass of oil = 0.92 * (0.05 * 5) = 0.23 g [1 mark]Moles of oil = $0.23 / 885 = 2.6 \times 10^{-4} mol [1 mark]$ Moles of bromine = $0.02 * 0.0394 = 7.9 \times 10^{-4} mol [1 mark]$ So reacting ratio is $7.9 / 2.6 = 3.03 : 1 \rightarrow 3 : 1 [1 mark]$ So there are 3 C=C bonds [1 mark]

Mechanism name: nucleophilic addition-elimination [1 mark]
 Reagent: ethanoyl chloride *or* ethanoic anhydride [1 mark]
 Mechanism:

[1 mark: arrow from N-lone pair to C and from C=O bond to O]

[1 mark: arrow from O⁻ lone pair to C-O and from N-H to N⁺]

[1 mark: fully correct intermediate structure including charges and lone pair(s)]

- b. i) To ensure the hot solution would be saturated / crystals would form on cooling [1 mark]
 - ii) Yield lower if warm / solubility higher if warm [1 mark]
 - iii) Air passes through the sample not just around it / better drying [1 mark] **not** water squeezed out
 - iv) To wash away soluble impurities [1 mark]
- Water [1 mark]
 Press the sample of crystals between filter papers / give the sample time to dry in air [1 mark]
- d. M_r of product = 135.0 [1 mark]
 Expected mass = 5.05 * (135/93) = 7.33 g [1 mark]
 Percentage yield = 4.82 / 7.33 * 100 = 65.8% [1 mark, must be 3 s.f.]

e. i)

or using structural formula:

$$\mathrm{C_6H_5NHCOCH_3} + \mathrm{NO_2}^{\scriptscriptstyle +} \rightarrow \mathrm{C_6H_4(NHCOCH_3)NO_2} + \mathrm{H}^{\scriptscriptstyle +} \ \ [1 \ mark]$$

not formation equation:

$$(HNO_3 + 2 H_2SO_4 \rightarrow NO_2^+ + 2 HSO_4^- + H_3O^+)$$

- ii) Electrophilic substitution [1 mark]
- f. Hydrolysis [1 mark]
- g. (Sn or Fe) / HCl or H₂ / Ni [1 mark for either pair] **not** LiAlH₄

4.

a.
$$2 \text{ NaBr} + 2 \text{ H}_2 \text{SO}_4 \rightarrow \text{Na}_2 \text{SO}_4 + \text{Br}_2 + \text{SO}_2 + 2 \text{ H}_2 \text{O}$$

or ionic equation:
 $2 \text{ Br}^{-1} + 2 \text{ H}_2 \text{SO}_4 \rightarrow \text{Br}_2 + \text{SO}_2 + \text{SO}_4^{-2} + 2 \text{ H}_2 \text{O} \text{ [1 mark]}$

Br⁻ ions are larger (have greater ionic radius) than Cl⁻ ions [1 mark] Therefore Br⁻ ions are more easily oxidised / lose an electron more easily (than Cl⁻). [1 mark]

- b. Stage 1: formation of precipitates
 - Add silver nitrate
 - To form precipitates of AgCl and AgBr
 - AgNO₃ + NaCl → AgCl + NaNO₃
 - AgNO₃ + NaBr → AgBr + NaNO₃

Stage 2: selective dissolving of AgCl

- Add excess of dilute ammonia to the mixture of precipitates
- The AgCl precipitate dissolves
- AgCl + 2 NH₃ \rightarrow Ag(NH₃)₂⁺ + Cl⁻

Stage 3: separation and purification of AgBr

- Filter off the remaining AgBr precipitate
- Wash to remove soluble compounds
- Dry to remove water

[8-10 points, including all equations → 5-6 marks]
[5-7 (from all three stages) points → 3-4 marks]
[3-4 points → 1-2 marks]
[Must show clear, concise, logical order to gain full marks]

c. $Cl_2 + 2 OH^- \rightarrow ClO^- + Cl^- + H_2O$ [1 mark] ClO^- is +1, Cl^- is -1 [1 mark for both] [Accept HO^- for hydroxide and OCl^- for chlorate(I)]

5.

- a. Compound 1 [1 mark]
 No visible change with H₂SO₄, [1 mark]
 gives white precipitate with NaOH [1 mark]
- b. BaCO₃ [1 mark; allow name 'barium carbonate']
 The carbonate ion released CO₂ [1 mark]
 But the BaSO₄ formed is highly insoluble. [1 mark]
- c. Compound 4 [1 mark] $Sr(OH)_2 + H_2SO_4 \rightarrow SrSO_4 + 2 H_2O [1 mark; allow ionic eqn, ignore states]$

- a. Q: calcium bromide or magnesium bromide / CaBr₂ or MgBr₂
 R: aluminium chloride / AlCl₃
 S: iron(III) sulfate / Fe₂(SO₄)₃
 - 5: iron(III) sulfate / Fe₂(SO₄)₃
 [1 mark for each correct metal; 1 mark for each correct anion]
- b. $Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4 [1 mark]$ $[Fe(H_2O)_6]^{3+} + 3 OH^- \rightarrow Fe(H_2O)_3(OH)_3 + 3 H_2O [1 mark]$

2 [Fe(H₂O)₆]³⁺ + 3 CO₃²⁻
$$\rightarrow$$
 2 Fe(H₂O)₃(OH)₃ + 3 H₂O + 3 CO₂ [1 mark] [Fe(H₂O)₆]³⁺ + 4 Cl⁻ \rightarrow [FeCl₄]⁻ + 6 H₂O [1 mark]

7.

- a. i) Propanone evaporates [1 mark]and removes water (from the precipitate) [1 mark]
 - ii) Add NaOH / NH₃ / Na₂CO₃ [1 mark]No green precipitate / no visible change [1 mark]
 - iii) Any one reason from:
 Some salt dissolves (in propanone)
 Some lost in filtration
 Some Fe²⁺ gets oxidised (to Fe³⁺ in air) [1 mark]
 not reversible/incomplete reaction
 - iv) Moles $Fe^{2+} = 0.5 * 0.05 = 0.025 \text{ mol } [1 \text{ mark}]$ M_r of salt = 179.8 [1 mark] Mass of salt = 0.025 * 179.8 * 0.95 = 4.27 g [1 mark]
 - v) 1.67 moles or 5 FeC_2O_4 : 3 MnO_4 [1 mark]
- b. $C_2O_4^{2-} + Ca^{2+} \rightarrow CaC_2O_4 [1 \text{ mark}]$
- c. (Insoluble) calcium ethanedioate coats surface [1 mark]

d. Any one reason from:

Small amount of tea used / consumed
Concentration of acid in tea is low
High temperature decomposes the acid
Calcium ions in milk form a precipitate with the acid
[1 mark]

not tea is not consumed often

e. Mass of acid = 180 and mass of reagents = 450 [1 mark] Atom economy = 180 / 450 * 100 = 40%. [1 mark]

8.

- a. M_r = 164.0 [1 mark] % N = 28 / 164 * 100 = 17.1 % [1 mark]
- b. i) Absorption depends on (is proportional to) path length / distance travelled through solution [1 mark]
 - ii) To select the colour / frequency / wavelength that is (most strongly) absorbed (by the solution) *or* filter is chosen to complement the colour of the solution [1 mark]
 - iii) Quicker to analyse extracted samples than by titration *or* uses smaller volumes of solution [1 mark]

Step 1: (ester → alcohol)

Name: (acid/base) hydrolysis

Reagents: water and dilute HCl or NaOH (aq) then HCl

[1 mark for both name and reagents]

Apparatus: reflux condenser, round bottomed flask, bunsen burner [2 marks]

Step 2: (decarboxylation)

Apparatus: distillation apparatus (condenser, flask, thermometer) [1 mark]

Step 3: (benzene → nitro)

Name: nitration

Reagents: conc H₂SO₄ and conc HNO₃

[1 mark for name and reagents]

Apparatus: ice bath, thermometer [1 mark]

Step 4: (nitro \rightarrow amine)

Name: reduction

Reagents: Sn / HCl or Fe / HCl or H2 / Ni or NaBH4

[1 mark for both name and reagents]

Step 5: (amine \rightarrow amide)

Name: acylation

Reagents: ethanoyl chloride *or* ethanoic anhydride

[1 mark for both name and reagents]

Apparatus: Buchner flask, Buchner funnel, vacuum/suction apparatus [2 marks]