Project 2: Root Locating Methods
Connor A. Haskins
May 15th, 2017
CS 301 w/ Amar Raheja

Program Output

(a) $f(x) = 2(x^3) - 11.7(x^2) + 17.7(x) - 5$

====Bisection Method=====

Disection Method				
n	X	f(x)	approx. error	
0	0.5000	1.1750		
1	0.2500	-1.2750	1.0000	
2	0.3750	0.0977	0.3333	
3	0.3125	-0.5503	0.2000	
4	0.3438	-0.2169	0.0909	
5	0.3594	-0.0573	0.0435	
6	0.3672	0.0208	0.0213	
7	0.3633	-0.0181	0.0108	
8	0.3652	0.0014	0.0053	
9	0.3643	-0.0084	0.0027	
10	0.3647	-0.0035	0.0013	
11	0.3650	-0.0011	0.0007	
12	0.3651	0.0001	0.0003	
13	0.3651	-0.0005	0.0002	
14	0.3651	-0.0002	0.0001	
++++	+++++++			
0	2.0000	-0.4000		
1	1.5000	1.9750	0.3333	
2	1.7500	0.8625	0.1429	
3	1.8750	0.2383	0.0667	
4	1.9375	-0.0806	0.0323	
5	1.9062	0.0791	0.0164	
6	1.9219	-0.0007	0.0081	
7	1.9141	0.0392	0.0041	
8	1.9180	0.0193	0.0020	
9	1.9199	0.0093	0.0010	
10	1.9209	0.0043	0.0005	
11	1.9214	0.0018	0.0003	
12	1.9216	0.0006	0.0001	
13	1.9218	-0.0001	0.0001	
+++++++++				
0	3.5000	-0.6250		
1	3.7500	2.3125	0.0667	
2	3.6250	0.6867	0.0345	
3	3.5625	-0.0069	0.0175	

4	3.5938	0.3303	0.0087
5	3.5781	0.1593	0.0044
6	3.5703	0.0756	0.0022
7	3.5664	0.0342	0.0011
8	3.5645	0.0136	0.0005
9	3.5635	0.0033	0.0003
10	3.5630	-0.0018	0.0001
11	3.5632	0.0008	0.0001
++++	+++++++		
====	=Newton-Raphson	Method=====	
n	X	f(x)	approx. error
0	0.7500	2.5375	
1	0.0301	-4.4771	23.8824
2	0.2935	-0.7624	0.8973
3	0.3607	-0.0442	0.1863
4	0.3651	-0.0002	0.0121
5	0.3651	-0.0000	0.0001
++++	+++++++		
0	1.5000	1.9750	
1	2.0064	-0.4327	0.2524
2	1.9215	0.0012	0.0442
3	1.9217	-0.0000	0.0001
4	1.9217	0.0000	0.0000
++++	+++++++		
0	3.0000	-3.2000	
1	5.1333	48.0901	0.4156
2	4.2698	12.9562	0.2023
3	3.7929	2.9476	0.1257
4	3.5998	0.3980	0.0536
5	3.5643	0.0124	0.0100
6	3.5632	0.0000	0.0003
7	3.5632	0.0000	0.0000
++++	+++++++		
====	=Secant Method===	===	
n	X	f(x)	approx. error
0	1.0000	3.0000	
1	0.6250	1.9805	0.6000
2	-0.1034	-6.9585	7.0417
3	0.4636	0.8904	0.3481

4	0.3318	-0.3425	0.3974	
5	0.3684	0.0327	0.0994	
6	0.3652	0.0010	0.0087	
7	0.3651	-0.0000	0.0003	
8	0.3651	0.0000	0.0000	
+++	++++++++			
0	1.0000	3.0000		
1	1.9677	-0.2352	0.4918	
2	1.8974	0.1244	0.0371	
3	1.9217	0.0001	0.0127	
4	1.9217	-0.0000	0.0000	
+++	++++++++			
0	3.0000	-3.2000		
1	3.3265	-1.9689	0.0982	
2	3.8487	3.8338	0.1357	
3	3.5037	-0.5904	0.0506	
4	3.5796	0.1751	0.0212	
5	3.5622	-0.0097	0.0049	
6	3.5631	-0.0001	0.0003	
7	3.5632	0.0000	0.0000	
+++	++++++++			
===	==False Position	on Method====		
n	X	f(x)	approx. error	
0	0.6250	1.9805		
1	0.4477	0.7585	0.3961	
2	0.3887	0.2298	0.1517	
3	0.3716	0.0646	0.0460	
4	0.3669	0.0178	0.0129	
5	0.3656	0.0049	0.0036	
6	0.3652	0.0013	0.0010	
7	0.3651	0.0004	0.0003	
8	0.3651	0.0001	0.0001	
+++++++++				
0	1.9677	-0.2352		
1	1.8974	0.1244	0.0371	
2	1.9217	0.0001	0.0127	
3	1.9217	0.0000	0.0000	
+++++++++				
0	3.3265	-1.9689		
•				

1	3.4813	-0.7959	0.0444
2	3.5371	-0.2671	0.0158
3	3.5551	-0.0840	0.0051
4	3.5607	-0.0259	0.0016
5	3.5624	-0.0079	0.0005
6	3.5629	-0.0024	0.0001
7	3.5631	-0.0007	0.0000
+++	++++++++		
===	==Modified Sec	ant Method=====	
n	X	f(x)	approx. error
0	0.7500	2.5375	
1	0.0190	-4.6685	38.5437
2	0.2895	-0.8078	0.9345
3	0.3604	-0.0473	0.1966
4	0.3651	-0.0001	0.0129
5	0.3651	0.0000	0.0000
+++	++++++++		
0	1.5000	1.9750	
1	2.0013	-0.4064	0.2505
2	1.9214	0.0015	0.0415
3	1.9217	0.0000	0.0002
4	1.9217	0.0000	0.0000
+++	++++++++		
0	3.0000	-3.2000	
1	4.8926	35.7632	0.3868
2	4.1429	9.7305	0.1809
3	3.7423	2.2031	0.1071
4	3.5911	0.3004	0.0421
5	3.5647	0.0162	0.0074
6	3.5632	0.0005	0.0004
7	3.5632	0.0000	0.0000

+++++++++++

(b) f(x) = x + 10 - xcosh(50/x) =====Bisection Method===== n x f(x) 0 125.0000 -0.1340 1 127.5000 0.0698

2 126.2500 -0.0311 3 126.8750 0.0196 4 126.5625 -0.0057

5 126.7188 6 126.6406

7 126.6016 8 126.6211 9 126.6309

+++++++++++

22

127.9610

====Newton-Raphson Method=====

n	X	f(x)	approx. error
0	130.0000	0.2655	
1	129.8620	0.2549	0.0011
2	129.7294	0.2447	0.0010
3	129.6022	0.2349	0.0010
4	129.4800	0.2254	0.0009
5	129.3628	0.2164	0.0009
6	129.2502	0.2076	0.0009
7	129.1422	0.1992	0.0008
8	129.0386	0.1912	0.0008
9	128.9391	0.1834	0.0008
10	128.8437	0.1760	0.0007
11	128.7521	0.1688	0.0007
12	128.6643	0.1619	0.0007
13	128.5800	0.1553	0.0007
14	128.4992	0.1490	0.0006
15	128.4217	0.1429	0.0006
16	128.3473	0.1370	0.0006
17	128.2760	0.1314	0.0006
18	128.2076	0.1260	0.0005
19	128.1420	0.1208	0.0005
20	128.0792	0.1158	0.0005
21	128.0189	0.1111	0.0005

0.1065

0.0070

0.0007

-0.0025

-0.0009

-0.0001

approx. error

0.0196

0.0099

0.0049

0.0025

0.0012

0.0006

0.0003

0.0002

0.0001

0.0005

23	127.9056	0.1021	0.0004	
24	127.8524	0.0979	0.0004	
25	127.8015	0.0938	0.0004	
26	127.7526	0.0899	0.0004	
27	127.7058	0.0862	0.0004	
28	127.6609	0.0826	0.0004	
29	127.6179	0.0792	0.0003	
30	127.5767	0.0759	0.0003	
31	127.5371	0.0728	0.0003	
32	127.4992	0.0697	0.0003	
33	127.4629	0.0668	0.0003	
34	127.4281	0.0640	0.0003	
35	127.3948	0.0614	0.0003	
36	127.3628	0.0588	0.0003	
37	127.3322	0.0564	0.0002	
38	127.3028	0.0540	0.0002	
39	127.2747	0.0518	0.0002	
40	127.2477	0.0496	0.0002	
41	127.2219	0.0475	0.0002	
42	127.1971	0.0455	0.0002	
43	127.1734	0.0436	0.0002	
44	127.1507	0.0418	0.0002	
45	127.1289	0.0401	0.0002	
46	127.1080	0.0384	0.0002	
47	127.0880	0.0368	0.0002	
48	127.0689	0.0352	0.0002	
49	127.0505	0.0338	0.0001	
50	127.0329	0.0323	0.0001	
51	127.0161	0.0310	0.0001	
52	126.9999	0.0297	0.0001	
53	126.9845	0.0284	0.0001	
54	126.9697	0.0272	0.0001	
55	126.9555	0.0261	0.0001	
56	126.9419	0.0250	0.0001	
57	126.9288	0.0240	0.0001	
58	126.9164	0.0229	0.0001	
++++++++++				
====Secant Method=====				
n	x	f(x)	approx. error	

0	130.0000	0.2655	
1	126.8156	0.0148	0.0251
2	126.6274	-0.0004	0.0015
3	126.6324	0.0000	0.0000
+++	++++++++		
===	==False Position	Method====	
n	X	f(x)	approx. error
0	126.8156	0.0148	====
1	126.6424	8000.0	0.0014
2	126.6330	0.0000	0.0001
+++	++++++++		
===	==Modified Seca	nt Method=====	
n	X	f(x)	approx. error
0	130.0000	0.2655	====
1	126.5037	-0.0104	0.0276
2	126.6336	0.0001	0.0010
3	126.6324	-0.0000	0.0000
++++++++++			

PLOTS

(a)
$$f(x) = 2(x^3) - 11.7(x^2) + 17.7(x) - 5$$

zero @ ~0.3651

zero @ 1.9218

zero @ 3.5625

(b) $f(x) = x + 10 - x \cosh(50/x)$

zero @ ~126.6324

Conclusions

The data that was pulled was created using very specific starting point values that were re-used wherever necessary and were chosen to give each method a "best-case scenario." These points were chosen simply by graphing the function with an external program and picking points that looked like they would work well.

For problem (a), the x-values of (0.0, 1.0), (3.0, 1.0), and (3.0, 4.0) were used for the first, second, and third zero, respectively, when using the Bisection, Secant, and False-Position methods. These were all nice round numbers that happened to bracket all three roots. The values of 0.75, 1.5, and 3.0 were used for the x-values for the first, second and third zero, respectively, when using the Newton-Raphson and Modified Secant methods. These numbers were chosen because they are all located on slopes that were headed towards their respective zero.

Using these methods with these starting points produced the average of 38, 16, 19, 18, and 16 iterations to find all zeros at 0.01% approximate error for Bisection, Newton-Raphson, Secant, False-Position, and Modified Secant methods, respectively.

Bisection method always converges at the same rate, no matter the problem. So I won't discuss its convergence further. Newton's Method converges quickly and produces an approximate to the 100th at the 5th iteration or earlier. The Secant, False-Position, and Modified Secant share very similar results. Although the Secant and Modified Secant methods sometimes start with pretty sporadic results in the first few iterations.

For problem (b), the x-values of (120, 130) were used for locating the zero when using the Bisection, Secant, and False-Position methods, respectively. These numbers were chosen because they were presented in the problem and they bracket the root. The x-value of 130 was used for the x-value when finding the zero using the Newton-Raphson and Modified Secant methods. This numbers was chosen because its slope points towards the zero and it was presented in the problem.

Using these methods with these starting points, the roots were found in 9, 58, 3, 2, and 3 iterations at 0.01% approximate error for Bisection, Newton-Raphson, Secant, False-Position, and Modified Secant methods, respectively.

As one might be able to guess from the information presented before, the Newton-Raphson took an incredibly long time to converge to the solution. The ones place was not even accurate until the 52nd iteration. The remaining methods converged extremely quickly.

Other values were used as starting values for locating roots. Some did not give quality results. This mainly had to do with methods that depended on the slope of the graph, like the Newton-Raphson or Modified Secant methods. The approximate values would either quickly diverge or discover the wrong zero.

Doubles were used for calculations and allow up to 15 decimal digits of accuracy.