Denoising with Kernel Prediction and Asymmetric Loss Functions

Minmin GE

Plan

- 1. Background:
 - MC rendering
 - Denoising methods
- Denoising with kernel prediction (Statistic method)
 - Single frame denoiser
 - Temporal stability
 - Multi-scale architecture
- 3. Asymmetric loss function

Background: MC rendering & Denoising methods

MC rendering

Reference (1024 samples/pixel)

Denoising methods

Local smoothing filter:

 A continuous image is usually interpreted as the Shannon interpolation of a discrete grid of samples.

Other methods:

- Use different kernels
- Can be categorized depending on the polynomial order

Neighborhood filter:

- take the average of values of the neighbor pixels
- neighborhood is defined as a group of pixels which has the closest values
- Non local method

Denoising with kernel prediction

Single frame denoiser

- The features of the input may depend strongly on the renderer
- A source encoder is used to extract the input features unique to a certain renderer.
- Trained independently of the following layers

Single frame denoiser

- The core of the denoiser is a kernel predicting CNN using 3 residual blocks
- Residual blocks can improve the performance significantly without introducing optimization instabilities

Single frame denoiser

• The denoised color reconstructed as a linear combination of input colors in a *kxk* neighborhood around it

Flickering

The single frame denoiser can produce severe artifacts when executed on a sequence of frames independently since each denoised frame may be "wrong" in a slightly different way

Temporal stability

 The extracted features of different frames are warped using motion vectors to match the time of the center frame

Temporal stability

- These warped features are the concatenated and fed into a temporal feature extractor
- A kernel predictor is then applied on the features

Residual noise

The algorithm is typically good at removing high frequency noise but it may leave low frequency noise.

Multi-scale architecture

A three level pyramid is constructed by a uniform 2x2 down-sampling

Asymmetric loss function

Asymmetric loss function

- Goal:
 - Under some circumstance, it may be desirable to retain some noise
 - An artistic decision
- Solution: Use an asymmetric loss function

$$\ell'_{\lambda}(\mathbf{d}, \mathbf{r}, \mathbf{c}) = \ell(\mathbf{d}, \mathbf{r}) \cdot (1 + (\lambda - 1)H((\mathbf{d} - \mathbf{r})(\mathbf{r} - \mathbf{c})))$$

where d is the denoised color, r is the reference color and c is the input color H returns 1 when the argument is positive or 0 and 0 otherwise

Asymmetric loss function

- take λ , like the features extracted, as the input of the loss-specialization module
- the loss-specialization module output then a representation of the features and λ to the kernel predictor

