13) Ridge Regression and Least Absolute Shrinkage and Selection Operator (LASSO)

Vitor Kamada

February 2019

Tables, Graphics, and Figures from:

1) An Introduction to Statistical Learning

James et al. (2017): Ch 6.2, and 6.6

2) The Elements of Statistical Learning

Hastie et al. (2017): Ch 3.3, and 3.4

2 / 28

Stamey et al. (1989)

Y: log of Prostate-Specific Antigen

Icavol: log cancer volume

lweight: log prostate weight

lbph: log of the amount of benign prostatic

hyperplasia

svi: seminal vesicle invasion

Icp: log of capsular penetration

gleason: Gleason score

pgg45: Gleason scores 4 or 5

Tenfold Cross-Validation

Term	LS	Best Subset	Ridge	Lasso
Intercept	2.465	2.477	2.452	2.468
lcavol	0.680	0.740	0.420	0.533
lweight	0.263	0.316	0.238	0.169
age	-0.141		-0.046	
lbph	0.210		0.162	0.002
svi	0.305		0.227	0.094
lcp	-0.288		0.000	
gleason	-0.021		0.040	
pgg45	0.267		0.133	
Test Error	0.521	0.492	0.492	0.479
Std Error	0.179	0.143	0.165	0.164
		T	□ F 3 □ F F 3 ∈ F 3	= F = 1040

Best-Subset Selection (Prostate Cancer)

5/28

Ridge Coefficients for the Prostate Cancer

Ridge Regression

$$\sum_{i=1}^{n} (y_{i} - \beta_{0} - \sum_{j=1}^{p} \beta_{j} x_{ij})^{2} + \lambda \sum_{j=1}^{p} \beta_{j}^{2}$$

$$\tilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \bar{x}_{j})^{2}}}$$

$$\frac{\|\hat{\beta}_{\lambda}^{R}\|_{2}}{\|\hat{\beta}\|_{2}}$$

$$\|\beta\|_{2} = \sqrt{\sum_{j=1}^{p} \beta_{j}^{2}}$$

Ridge Regression - Matrix Form

$$RSS(\lambda) = (y - X\beta)^{T} (y - X\beta)^{T} + \lambda \beta^{T} \beta$$

$$\hat{\beta}^{ridge} = (X^T X + \lambda I)^{-1} X^T y$$

Vitor Kamada ECO 7100 Econometrics I February 2019 8 / 28

Credit Data Set

Ridge: Squared Bias (Black), Variance (Green), and Test Mean Squared Error (Pink)

Least Absolute Shrinkage and Selection Operator (LASSO)

$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

$$\frac{||\hat{\beta}_{\lambda}^{L}||_{1}}{||\hat{\beta}||_{1}}$$

$$||\beta||_1 = \Sigma |\beta_j|$$

11/28

The Standardized Lasso Coefficients

$|eta_1|+|eta_2|\leq s$ and $eta_1^2+eta_2^2\leq s$

Vitor Kamada ECO 7100 Econometrics I February 2019 13 / 2

45 Xs related to Y: Lasso (Solid) vs Ridge (Dotted)

Squared Bias (Black), Variance (Green), and Test MSE (Pink)

Only 2 Xs are related to the Y

Squared Bias (Black), Variance (Green), and Test MSE (Pink)

n = p and X a Diagonal Matrix with 1's

$$\sum_{j=1}^{p} (y_j - \beta_j)^2$$

$$\hat{\beta}_j = y_j$$

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

$$\hat{\beta}_j^L = \begin{cases} y_j - \lambda/2 & \text{if } y_j > \lambda/2 \\ y_j + \lambda/2 & \text{if } y_j < -\lambda/2 \\ 0 & \text{if } |y_j| \le \lambda/2 \end{cases}$$

Ridge and Lasso Regression

$$\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

$$\hat{\beta}_j^R = y_j / (1 + \lambda)$$

4□ > 4⊡ > 4 를 > 4 를 > 를 → 9 Q @

Gaussian Prior vs Double-Exponential Prior

$$p(\beta|X,Y) \propto f(Y|X,\beta)p(\beta|X)$$

Vitor Kamada ECO 7100 Econometrics I February 2019 18 / 28

library(glmnet)

```
 \begin{split} & x = model.matrix(Salary \sim ., Hitters)[,-1] \\ & y = Hitters \$Salary \\ & grid = 10 \widehat{\ \ } seq(10,-2, length = 100) \\ & ridge.mod = glmnet(x,y,alpha = 0, lambda = grid) \\ & dim(coef(ridge.mod)) \end{split}
```

20 rows (one for each $Xs + \beta_0$)

100 columns (λ)

ridge.mod\$lambda[50]

 $\lambda = 11497.57$

coef(ridge.mod)[,50]

(Intercept)	AtBat	Hits	HmRun
407.356050200	0.036957182	0.138180344	0.524629976
Runs	RBI	Walks	Years
0.230701523	0.239841459	0.289618741	1.107702929
CAtBat	CHits	CHmRun	CRuns
0.003131815	0.011653637	0.087545670	0.023379882
CRBI	CWalks	LeagueN	DivisionW
0.024138320	0.025015421	0.085028114	-6.215440973
PutOuts	Assists	Errors	NewLeagueN
0.016482577	0.002612988	-0.020502690	0.301433531

set.seed(1)

```
train=sample(1:nrow(x), nrow(x)/2)
test=(-train); y.test=y[test]
set.seed(1)
# 10 fold cross-validation
cv.out=cv.glmnet(x[train,],y[train],alpha=0)
bestlam=cv.out$lambda.min; bestlam
                     211 74
```

plot(cv.out)

MSE: Ridge ($\lambda = 211.74$) vs OLS vs Intercept

```
ridge.pred=predict(ridge.mod,s=bestlam, newx=x[test,])
mean((ridge.pred-y.test)^2)
```

96015.51

```
ridge.predOLS=predict(ridge.mod,s=0, newx=x[test,]) mean((ridge.predOLS-y.test)^2)
```

114723.6

mean((mean(y[train])-y.test)^2)

193253.1

out=glmnet(x,y,alpha=0)

predict(out,type="coefficients",s=bestlam)[1:20,]

(Intercept)	AtBat	Hits	HmRun
9.88487157	0.03143991	1.00882875	0.13927624
Runs	RBI	Walks	Years
1.11320781	0.87318990	1.80410229	0.13074381
CAtBat	CHits	CHmRun	CRuns
0.01113978	0.06489843	0.45158546	0.12900049
CRBI	CWalks	LeagueN	DivisionW
0.13737712	0.02908572	27.18227535	-91.63411299
PutOuts	Assists	Errors	NewLeagueN
0.19149252	0.04254536	-1.81244470	7.21208390

24 / 28

lasso.mod=glmnet(x[train,],y[train], alpha=1,lambda=grid)

plot(lasso.mod)

set.seed(1)

```
cv.out=cv.glmnet(x[train,], y[train],alpha=1)
bestlam=cv.out$lambda.min; bestlam
```

16.78

log(bestlam)

2.82

lasso.pred=predict(lasso.mod,s=bestlam,newx=x[test,])
mean((lasso.pred-y.test)^2)

100743.4

plot(cv.out)

out=glmnet(x,y,alpha=1,lambda=grid)

lasso.coef=predict(out, type="coefficients",
s=bestlam)[1:20,]

(Intercept)	AtBat	Hits	HmRun
18.539484	4 0.00	000000	1.8735390	0.0000000
Run		RBI	Walks	Years
0.000000	0.00	000000	2.2178444	0.0000000
CAtBa	t	CHits	CHmRun	CRuns
0.000000	0.00	000000	0.0000000	0.2071252
CRB	Ι (Walks	LeagueN	DivisionW
0.413013	0.00	000000	3.2666677	-103.4845458
Put0ut	s As	sists	Errors	NewLeagueN
0.220428	4 0.00	000000	0.0000000	0.0000000