Teoria dos Números

Notas de aula da disciplina TE: Técnicas de Construção de Algoritmos

Fabiano de Souza Oliveira

fabiano.oliveira@ime.uerj.br

Paulo Eustáquio Duarte Pinto (pauloedp arroba ime.uerj.br)

agosto/2020

TE: Técnicas de Construção de Algoritmos Teoria dos Números

Problemas de 29/08/2020:

```
1807 - Triângulo Trinomial, a Vingança
```

2801 - Cifra Affine

2852 - Troca de Mensagens

2636 - 3-RSA

1716 - RSA

1807 - Triângulo Trinomial, a Vingança

Contexto: O triângulo trinomial é análogo ao de Pascal, só que cada elemento é a soma de 1, 2, ou 3 outros, aqueles acima, à esquerda e à direita de cada elemento, segundo a configuração:

Dada a linha R do triângulo, quer-se imprimir a soma dos elementos dessa linha.

Entrada: Uma único caso de teste, contendo o inteiro R (0 < R < 999.999.999).

Saída: Imprimir a soma dos elementos da linha R, em módulo 231 - 1.

Exemplo de entrada 1:

Exemplo de saída 1:

Exemplo de saída 2:

Exemplo de saída 2:

1807 - Triângulo Trinomial, a Vingança Dicas:

- A nomenclatura não está de acordo com a Matemática. Na Matemática, triângulo trinomial é obtido tomando os coeficientes do desenvolvimento de (a+b+c)ⁿ.
- 2. Somando cada linha obtemos, por indução, ...

3. Implementar Potência Modular

4. DESAFIO: Provar, por indução o resultado de 2.

2801 - Cifra Affine

Contexto: É definida a cifra Affine, baseada em 3 inteiros T, A, B, onde T é o tamanho do alfabeto (os símbolos vão de O a T-1). Para criptografar um número X, ele é substituido por Y = (X*A+B) mod T. Nesse problema quer-se resolver o problema inverso, ou seja, dado Y, qual o valor de X?

Entrada: Um único caso de teste, descrito em 3 linhas. Na primeira, o inteiro N (1 \le N \le 10 5), o número de símbolos criptografados. Na segunda linha N inteiros positivos entre 0 e T-1, resultados da criptografía. Na 3 a linha, os inteiros T, A e B (1 \le A, B, T \le 10 9).

Saída: Para cada teste, imprimir N inteiros correpondendo aos números cuja criptografia é dada, ou a mensagem "DECIFRAGEM AMBIGUA", se não for possível decifrar um número de modo único.

Exemplo de entrada:

Exemplo de saída:

3 63 60 49 119 25 48 1 10 100

2801 - Cifra Affine

Dicas:

- Quer-se calcular X a partir de Y = (X.A+B) mod T.
 Ou seja X.A + B ≡ Y mod T, ou
 X.A ≡ (Y-B) mod T
- 2. Para encontrar X, temos que ter o inverso modular de A, A^{-1} . Como sabemos, isso só é possível se MDC(A,T) = 1. Se esse for o caso, então encontramos: $X = A^{-1}(Y-B) \mod T$
- 3. No exemplo:

MDC(25, 119) = 1. Inv modular (25, 119) = -19
X.25 + 48 = 60 mod 119
X = (60 - 48)*(-19) mod 119 = -228 mod 119 =
-109 mod 119 = (-109+119) mod 119 = 10 mod 119 =
10 (pois o símbolo deve estar entre 0 e 119).

2852 - Troca de Mensagens

Contexto: A cifra de Vigenère é uma modificação da cifra de César, usando uma palavra chave e a tabela:

	a	Ь	С	d	e	f	×	У	Z
α	a	Ь	С	d	e	f	x	у	z
Ь	Ь	С	d	e	f	g	у	Z	a
Z	Z	a	Ь	С	d	e	w	×	у

A palavra chave é repetida quantas vezes necessário e indica para cada letra da mensagem, qual linha usar para codificar. Neste problema só se codifica começada por consoantes.

Entrada: Um caso de teste descrito em várias linhas. A primeira linha contém um string K (tamanho entre 3 e 45), a palavra chave. Na segunda linha vem um inteiro N ($1 \le N \le 150$), o número de linhas a serem criptografadas. A seguir vêm N linhas de tamanho máximo = 100.000. Todos os caracteres envolvidos são letras minúsculas ou espaços.

Saída: Cada linha da entrada criptografada.

Exemplo de entrada:
informatica
2
ciencia da computacao
olimpiada brasileira de informatica

Exemplo de saída: kvjbtua wi eouczhroah olimpiada jefgzxebzc dm informatica

2852 - Troca de Mensagens

Exemplo: Palavra chave: etc Mensagem: curso na uerj

С	u	r	S	0		n	а		u	е	r	j
е	t	С	е	t	С	е	t	С	е	t	С	е

	α	Ь	С	d	e	f	r	s	t	u	v	w	×	У	z
e	e	f	g	h	i	j	v	w	×	y	z	a	Ь	c	d
t	t	u	v	w	×	У	k	ı	m	n	0	þ	9	r	s
С	С	d	e	f	g	h	t	u	v	w	×	y	z	a	Ь

С	u	r	s	0	n	а	u	е	r	j
g	b	t	W	h	r	t	u	r	r	j

2636 - 3-RSA

Contexto: Por analogia com o método 3-DES, que usa 3 chaves, a Criptografia 3-RSA usaria 3 primos como base cujo produto é igual a N. Dado um número n quer-se saber quais os primos base.

Entrada: Vários casos de teste, cada teste em uma linha. Cada teste contém um inteiro n, $(105 \le n < 10^{18})$. A entrada termina com uma linha contendo 0, que não deve ser processada.

Saída: Para cada teste deve ser impressa a mensagem " $n = p \times q \times r$ ", onde p, q, e r são os primos base.

Exemplo de entrada 1:

. 231 7163 89348965057411

Exemplo de saída 1:

105 = 3 × 5 × 7 231 = 3 × 7 × 11 7163 = 13 × 19 × 29

 $89348965057411 = 17393 \times 51437 \times 99871$

2636 - 3-RSA

1. O menor primo certamente é menor que 10⁶. A descrição do problema esconde uma restrição: o segundo primo é menor que 3 x 10⁷.

2. O problema se restringe a fatorar um número grande, sabendo que dois de seus fatores são menores ou iguais a 3×10^{-7} .

1716 - RSA

Contexto: É descrito o método RSA, conforme dado em sala. O que se quer é quebrar a RSA, pois são dadas as chaves públicas (N, e) e uma mensagem C, criptografada. O objetivo é descriptografar C, obtendo a mensagem original, M.

Entrada: Um único caso com três inteiros, N ($15 \le N \le 10^9$), e e C ($1 \le e$, C < N), onde o par (N, e) é a chave pública e C a mensagem criptografada.

Saída: Um inteiro M (1 ≤ M < N), contendo a mensagem original.

Exemplo de entrada 1: Exemplo de saída 1: 1073 71 436 726

1716 - RSA

Dicas:

- 1. Nesta situação só será possível quebrar a RSA, porque é possível fatorar N, pois ele é pequeno.
- 2. Portanto, trata-se de fatorar N, obter os primos e aplicar o método estudado em sala.

FIM