2η Εργαστηριακή Άσκηση Ελαχιστοποίηση συναρτήσεων πολλών μεταβλητών χωρίς περιορισμούς

Στην εργασία αυτή θα ασχοληθούμε με το πρόβλημα της ελαχιστοποίησης μιας δοσμένης συνάρτησης πολλών μεταβλητών $f: \mathbb{R}^n \to \mathbb{R}$ χωρίς περιορισμούς. Οι αλγόριθμοι που θα χρησιμοποιήσουμε βασίζονται στην ιδέα της επαναληπτικής καθόδου, βάσει της οποίας ξεκινάμε από κάποιο αρχικό σημείο $x_0 \in \mathbb{R}^n$ και παράγουμε διαδοχικά τα διανύσματα x_1, x_2, \ldots έτσι ώστε $f(x_{k+1}) < f(x_k), k = 0,1,2,\ldots$ Οι αλγόριθμοι αναζήτησης που θα μελετήσουμε είναι:

- Μέθοδος μέγιστης καθόδου (Steepest descent)
- Μέθοδος Newton
- Μέθοδος Levenberg-Marquardt
- Μέθοδος συζυγών κλίσεων
- Μέθοδος σχεδόν Newton

Οι αντικειμενικές συναρτήσεις που θα μελετήσουμε είναι οι

$$f(x,y) = x^3 e^{-x^2 - y^4},$$

$$g(x,y) = x^4 + y^2 - 0.2\sin(2\pi x) - 0.3\cos(2\pi y).$$

Θέμα 1 Σχεδιάστε τις συναρτήσεις f, g, για να πάρετε μια γενική εικόνα της μορφής τους

Θέμα 2 Ελαχιστοποιείστε την f με την μέθοδο μέγιστης καθόδου, χρησιμοποιώντας ως αρχικά σημεία (x_0,y_0) τα i) (0,0), ii) (-1,-1), iii) (1,1). Το βήμα y_k θα επιλεγεί: α) σταθερό (της επιλογής σας), β) τέτοιο ώστε να ελαχιστοποιεί την $f(x_k+y_kd_k)$, και γ) βάσει του κανόνα Armijo. Σχολιάστε τις διαφορές στα αποτελέσματα, σε περίπτωση που προκαλούνται, λόγω της επιλογής του αρχικού σημείου (x_0,y_0) του αλγορίθμου, καθώς επίσης και λόγω της επιλογής του βήματος y_k . Οδηγούμαστε πάντα σε σωστό αποτέλεσμα; Αν όχι αιτιολογήστε της απάντηση σας.

Θέμα 3 Επαναλάβετε τα ερωτήματα του Θέματος 2 για την f με την μέθοδο Newton.

Θέμα 4 Επαναλάβετε τα ερωτήματα του Θέματος 2 για την f με την μέθοδο Levenberg-Marquardt.

Θέμα 5 Ελαχιστοποιείστε την g με την μέθοδο συζυγών κλίσεων, χρησιμοποιώντας ως αρχικά σημεία (x_0,y_0) τα i) (0,0), ii) (-0.6,-0.6), iii) (1,1). Το βήμα γ_{κ} θα επιλεγεί τέτοιο ώστε να ελαχιστοποιεί την $f(x_k+\gamma_{\kappa}d_k)$. Σχολιάστε τις διαφορές στα αποτελέσματα, σε περίπτωση που προκαλούνται, λόγω της επιλογής του αρχικού σημείου (x_0,y_0) του αλγορίθμου. Οδηγούμαστε πάντα σε σωστό αποτέλεσμα; Αν όχι αιτιολογήστε της απάντηση σας.

Θέμα 6 Επαναλάβετε τα ερωτήματα του Θέματος 5 για την g με την μέθοδο σχεδόν Newton.

Σημείωση: Για τα Θέματα 2-6, καταγράψτε όλες τις παρατηρήσεις σας (σύγκλιση και σύγκριση των μεθόδων, αριθμός επαναλήψεων, γραφική παράσταση της σύγκλισης της αντικειμενικής συνάρτησης ως προς k και σχολιάστε τυχόν αποκλίσεις από τις επιθυμητές τιμές λόγω εγκλωβισμού του αλγορίθμου σε κάποιο τοπικό ακρότατο (ελάχιστο ή μέγιστο). Παρατηρήστε την εξάρτηση του αποτελέσματος από την τιμή εκκίνησης (x_0,y_0) του αλγορίθμου, καθώς επίσης και από την επιλογή του βήματος y_{κ} .

Παραδοτέα: Αρχεία κώδικα σε Matlab (m-files) και αρχείο αναφοράς (pdf).