Factorial Hidden Markov Models

Oussama Ennafii

December 17, 2014

Ecole Normale Supérieure, Cachan

Introduction

- Hidden Markov Models (HMM) are widely used as learning models for time series data (such an application is speech recognition modeling).
- A generalisation of this model is what we call factorial(distributed HMM).
- In this framework, the hidden state variable is actually a vector of multiple state variables.
- Basicaly, we can represent with this model, quite easily, K^M different states with just M variables.
- A practical example where it comes handy to use this model, is when the sound recorded comes from multiple sources and we want to recognize separatly the two sounds.

The theory Model definition

Figure: The FHMM represented as a DAG.

The factorial model is represented by:

$$P((S_t, Y_t), \forall t) = P(S_1)P(Y_1|S_1) \prod_{t=2,...,T} P(S_t|S_{t-1})P(Y_t|S_t)$$
(1)

with:

$$P(S_t|S_{t-1}) = \prod_{m=1}^{M} P(S_t^{(m)}|S_{t-1}^{(m)})$$
 (2)

and:

$$P(Y_t|S_t) = \mathcal{N}(Y_t, \sum_{m=1}^{M} W^{(m)} S_t^{(m)}, C)$$
 (3)

Inference:

The M step:

The parameters are chosen in this step to be:

$$W^{new} = (\sum_{t=1..T} Y_t < S_t^* >) (\sum_{t=1..T} < S_t S_t^* >)^{\dagger}$$
 (4)

$$\pi^{(m) \text{ new}} = \langle S_t^{(m)} \rangle \tag{5}$$

$$P_{i,j}^{(m) \text{ new}} = \frac{\sum_{t=2..T} \langle S_{t,i}^{(m)} S_{t,j}^{(m)} \rangle}{\sum_{t=2..T} \langle S_{t,j}^{(m)} \rangle}$$
(6)

$$C^{new} = \frac{1}{T} \left(\sum_{t=1...T} Y_t Y_t^* - \sum_{t=1...T} \sum_{t=1...M} W^{(m)} < S_t^{(m)} > Y_t^* \right)$$
 (7)

Inference:

The exact E step

We define:

$$\alpha_t(S_t) = P(S_t, \{Y_\tau\}_1^t | \psi)$$
$$\beta_t(S_t) = P(\{Y_\tau\}_{t+1}^T | S_t, \psi)$$

We get through Forward-Backward algorithm:

$$P(S_t|\{Y_\tau\}_1^T, \psi) = \frac{\alpha_t(S_t)\beta_t(S_t)}{\sum_{S_t} \alpha_t(S_t)\beta_t(S_t)}$$

We deduce the means from this probability distribution. This methods complexity is:

$$O(TMK^{M+1})$$

Inference:

Inexact E step

We can use Gibbs sampling. Using the fact that a node is idependent from all other nodes, conditionally on its Markov Blanket; we sample $S_t^{(m)}$ with:

$$P(S_t^{(m)}|S_{t-1}^{(m)})P(S_{t+1}^{(m)}|S_t^{(m)})P(Y_t|S_t)$$

We can otherwise use variational techniques;In the exact EM algorithm, by choosing the $Q(S_t)$ distribution to be equal to $P(S_t|Y_t)$,we minimize the Kullback-Leiber divergence between Q and P. So we can try to impose conditions on this minimisation such that we can compute easily the posterior probabilities.

Intuitively, there are two choices:

Completely factorised distribution:

$$Q(S_t) = \prod_{t=1..T} \prod_{m=1..M} \prod_{S_t=1..K} (\theta_{t,k}^{(m)})^{S_t^{(m)}}$$

This yields a fixed point set of equations:

$$\theta_t^{(m)} = f(\theta_{t-1}^{(m)}, \theta_{t+1}^{(m)}, \psi)$$

Structured distribution:

$$Q(S_t) \propto \prod_{m=1..M} Q(S_1^{(m)}|h) \prod_{t=1..T} Q(S_t^{(m)}|S_{t-1}^{(m)},h)$$

with:

$$Q(S_t^{(m)}|S_{t-1}^{(m)},h) = \prod_{k=1..K} (h_{t,k}^{(m)} \prod_{j=1..K} (P_{k,j}^{(m)})^{S_{t-1}^{(m)}})$$

Numerical results:

We generate artificially unidimensional data using a Factorial HMM with random parameters and setting K=2 and M=3. We repeat the process 20 times, we get this table representing the negative log likelihood (in bits) divided by T:

Algorithm	Training Set	Test set
Naive	1.43 ± 0.23	2.61 ± 0.27
Exact	1.05 ± 0.43	1.32 ± 0.51
Variational	1.16 ± 0.85	1.41 ± 0.79