Tabella 1: Validazione Empirica delle Ipotesi di Ricerca: Risultati Quantitativi

Ipotesi	Sample Size	Metrica Chiave	Risultato	Validazione
H1: Migliora-		Security improvement	+35-65%	Confermata
mento simulta-	45 org.	Performance enhancement	+25 - 45%	Confermata
neo sicurezza e		Correlation (r, p-value)	r=0.67, p<0.001	Significativa
performance H2: Efficacia Ze- ro Trust distri- buito	28 org.	Attack surface reduction Operational KPI impact MTTD improvement	-58% media 82% migliorato -92% (287 \rightarrow 23 giorni)	Confermata Confermata Superata
H3: Efficacia economica compliance-by-	35 org.	Cost reduction Control effectiveness ROI a 3 anni	-47% (32-68%) +23% 285% medio	Confermata Confermata Superata
design				

Tabella 2: Contributi Originali della Ricerca: Impatto e Validazione

Tipo Contributo	Descrizione	Validazione	Impatto Misurato
Metodologico	Framework MCDM per GDO	75+ decision scenarios 12 grandi catene europee	89% accuracy prediction Reduced project failu-
		12 grandi catene europee	re rate
Analitico	Cyber-physical risk model	15 incidenti retrospettivi	94% impact prediction accuracy
		3 insurance companies	Improved risk pricing models
Progettuale	7 Design principles	18 implementazioni pilota	Reduced security incidents
		2 procurement guidelines	Improved architectural quality
Strategico	Cognitive security roadmap	Delphi study 45 experts	Industry reference framework
		3 major tech vendors	Product roadmap guidance

Figura 1: Framework integrato dei 7 principi di progettazione per architetture GDO sicure

Figura 2: Analisi trade-off multidimensionale: evoluzione da conflitti a sinergie ottimizzate

Indicatori di Maturità:

Gen 1: 60% automation, 24h MTTR, 95% detection **Gen 2:** 85% automation, 1h MTTR, 99% detection **Gen 3:** 98% automation, 5min MTTR, predictive prevention

Figura 3: Roadmap evolutiva verso cognitive security ecosystems: tre generazioni di trasformazione

Figura 4: Architettura sustainable cybersecurity: integrazione di obiettivi ambientali e di sicurezza

Tabella 3: Direzioni per Ricerca Futura: Priorità e Timeline

Area di Ricerca	Priorità	Timeline	Impatto Atteso
Quantum-Safe Security per GDO	Alta	2-3 anni	Critico
Edge AI Security	Alta	1-2 anni	Alto
Sustainable Cybersecurity Metrics	Media	1-2 anni	Medio
Federated Learning Security	Media	2-4 anni	Alto
Adversarial AI in Retail	Alta	1-3 anni	Alto
Carbon Accounting for Security	Bassa	2-3 anni	Medio
Circular Security Economy	Bassa	3-5 anni	Basso
Cross-Org Threat Intelligence	Media	2-4 anni	Alto

Figura 5: Modello di resilienza supply chain: diversificazione ottimizzata e gestione del rischio

Figura 6: Evoluzione della maturità verso cognitive security: roadmap di automation e milestone