Tsinghua-Berkeley Shenzhen Institute Information Theory and Statistical Learning Fall 2020

Problem Set 5

Notations: We use x, y, w and $\underline{x}, y, \underline{w}$ to denote random variables and random vectors.

5.1. Cramer-Rao inequality with a bias term. Let $y \sim f(y; x)$ and let $\hat{x}(y)$ be an estimator for x. Let $b(x) = \mathbb{E}[\hat{x}(y)] - x$ be the bias of the estimator. Show that

$$\mathbb{E}\left[(\hat{x}(y) - x)^2\right] \ge \frac{[1 + b'(x)]^2}{J_{y}(x)} + b^2(x)$$

5.2. (a) Let

$$p_{y}(y;x) = \begin{cases} x & \text{if } 0 \le y \le 1/x \\ 0 & \text{otherwise} \end{cases}$$

for x > 0. Show that there exist no unbiased estimators $\hat{x}(y)$ for x. (Note that because only x > 0 are possible values, an unbiased estimator need only be unbiased for x > 0 rather than all x.)

(b) Suppose instead that

$$p_{y}(y;x) = \begin{cases} 1/x & \text{if } 0 \le y \le x \\ 0 & \text{otherwise} \end{cases}$$

for x > 0. Does a minimum-variance unbiased estimator for x based on y exist? If your answer is yes, determine $\hat{x}_{MVU}(y)$. If your answer is no, explain.

5.3. Suppose, for i = 1, 2

$$y_i = x + w_i$$

where x is an unknown but non-zero constant, w_1 and w_2 are statistically independent, zero-mean Gaussian random variables with

$$\operatorname{var}(\mathbf{w}_1) = 1$$
$$\operatorname{var}(\mathbf{w}_2) = \begin{cases} 1 & x > 0 \\ 2 & x < 0 \end{cases}.$$

(a) Calculate the Cramér-Rao bound for unbiased estimators of x based on observation of

$$\underline{\mathbf{y}} = \left[\begin{array}{c} \mathbf{y}_1 \\ \mathbf{y}_2 \end{array} \right].$$

(b) Show that a minimum variance unbiased estimator $\hat{x}_{MVU}(\underline{y})$ does not exist. *Hint*: Consider the estimators

$$\hat{x}_1(\underline{y}) = \frac{1}{2}y_1 + \frac{1}{2}y_2,$$

 $\hat{x}_2(\underline{y}) = \frac{2}{3}y_1 + \frac{1}{3}y_2.$

- 5.4. Let $\underline{y} = [y_1 \ y_2]^T$ be a vector random variable whose components are i.i.d. Bernoulli random variables with parameter x, 0 < x < 1, i.e., $\mathbb{P}(y_i = 1) = x$, i = 1, 2.
 - (a) Show that $t(y) = y_1 + y_2$ is a sufficient statistic.
 - (b) Let $\hat{x}(\underline{y}) = y_1$ be an estimator of the parameter x from the observation \underline{y} . Find $MSE_{\hat{x}}(x)$, the mean-square error of this estimator.
 - (c) Let $\hat{x}'(t) = \mathbb{E}[\hat{x}(\underline{y})|t=t]$ be an estimator of the parameter x that uses the sufficient statistic t instead of the observations y.
 - i. Show that $\hat{x}'(t)$ is a valid estimator, i.e., it does not depend on x.
 - ii. Show that $MSE_{\hat{x}'}(x) = \gamma MSE_{\hat{x}}(x)$ and find the constant γ .
 - (d) We now consider a generalization of this problem. Let \underline{y} be a random variable generated by a distribution $p_{\underline{y}}(\cdot;x)$ and $\underline{t}(\underline{y})$ be a sufficient statistic. Let $\hat{x}(\underline{y})$ be an estimator of the parameter x based on the observation \underline{y} . We define an alternate estimator $\hat{x}'(\underline{t}) = \mathbb{E}[\hat{x}(\underline{y})|\underline{t} = \underline{t}]$.
 - i. Show that $\hat{x}'(\underline{t})$ is a valid estimator, i.e., it does not depend on x.
 - ii. Show that for any cost function $C(x,\hat{x})$ that is convex in \hat{x} , the following inequality holds:

$$\mathbb{E}[C(x, \hat{x}'(\underline{\mathbf{t}}))] \le \mathbb{E}[C(x, \hat{x}(\mathbf{y}))].$$

- 5.5. For a non-bayesian case $p_{y}(y;x)$, we do a binary hypothesis testing where $x \in \{H_0, H_1\}$. Please prove that $t(y) = \frac{p_{y}(y;H_1)}{p_{y}(y;H_0)}$ is a complete sufficient statistics.
- 5.6. In class we developed the EM algorithm for maximum likelihood estimation (EM-ML). That is, we gave an iterative procedure to compute

$$\hat{x}_{ML}(y) = \operatorname*{arg\,max}_{a} p_{\mathsf{y}}(y; a).$$

and showed that the likelihood was non-decreasing with each iteration. Please develop the EM-MAP algorithm for MAP estimation:

$$\hat{x}_{MAP}(y) = \arg\max_{a} p_{\mathsf{x}|\mathsf{y}}(a|y)$$

where the complete data z is an arbitrary random vector. (Please follow the procedures in the lecture note)