計数工学プログラミング演習最終レポート

計数工学科システム情報学コース 3 年 03-190615 工藤龍

2019年6月8日

1 課題内容

疎行列の2乗を様々な手法で計算し、実行時間を測定した。具体的には、行列の保持方法が二次 元配列の場合と隣接リストの場合でアルゴリズムを分け、また、計算方法の部分でもいくつかの種 類を考えた。

2 手法

今回の実験に用いたのは、以下の4つのアルゴリズムである.

- dense ijk
- dense ikj
- sparce transpose
- sparce access

以下、上記の四つの説明をする. dense ijk は、二次元配列の形で行列を保持するアルゴリズムである. 次のような形で積を計算する.

```
1 for (int i = 0; i < n; i++) {
2    for (int j = 0; j < m; j++) {
3         x = 0;
4         for (int k = 0; k < n; k++) {
5             x += A[i][k] * A[k][j];
6         }
7         M[i][j] = x;
8    }
9 }</pre>
```

dense ikj は、同じように二次元配列の形で行列を保持するが、積の計算の順序がやや異なる。具体的には以下のようになっている。

```
for (int i = 0; i < n; i++) {
    for (int k = 0; k < n; k++) {
        for (int j = 0; j < m; j++) {
            M[i][j] += A[i][k] * A[k][j];
        }
    }
}</pre>
```

sparce transpose は、隣接リストの形で行列を保持するものである。入力した行列と、その転置行列を考えることで計算する方針をとっている。

sparce access は、transpose と同様に隣接リストで行列を保持するが、access 関数を用いることで、転置を考えずに直接積を計算している.

入力した行列は、matrixmarket の行列である。実行時間の計測は、time コマンドの user の値を利用することとした。

3 実験結果

それぞれのアルゴリズムに関し、計算を 5 回繰り返して平均をとった。結果は次の表のようになった。

行列の大きさ	dense ijk	dense ikj	sparce transpose	sparce access
39	0.007	0.007	0.007	0.008
49	0.007	0.007	0.007	0.009
118	0.010	0.008	0.011	0.029
274	0.040	0.020	0.017	0.203
443	0.165	0.045	0.018	0.548
1454	8.835	1.695	0.057	16.914
1612	16.052	2.317	0.066	22.695
1624	17.645	2.355	0.072	23.359
1723	22.589	2.754	0.127	27.605
5300	3291.228	95.127	1.385	879.153

表1 アルゴリズムごとの行列の大きさと計算時間

その結果のグラフが次のものである.

図1 行列の大きさと計算の所要時間の関係

ここからわかることとしては、全体として計算の速さが sparce transpose, dense ijk, dense ikj, sparce access の順だということである。また、dense ikj と sparce access は最後の行列でだけ順番が逆転している。

4 考察