

A spatial agent based model for simulating and optimizing networked eco-industrial systems

J. Raimbault^{1*}, J. Broere², M. Somveille³, J.M. Serna⁴, E. Strombom⁵, C. Moore⁶, B. Zhu⁷, L. Sugar⁸

*j.raimbault@ucl.ac.uk

(1) CASA, UCL; (2) Utrecht University, Centre for Complex Systems Studies; (3) University of Oxford, Edward Grey Institute; (4) Université de Paris, CRPMS; (5) University of Minnesota, CBS Ecology; (6) University of Oxford, Environmental Change Institute; (7) Delft University of Technology, Department of Engineering Systems and Services; (8) University of Toronto, Department of Civil Engineering

> Workshop on Geo-industrial clusters February 17th 2020

Unsustainable use of resources

MacArthur, E. (2013). Towards the circular economy. Journal of Industrial Ecology, 2, 23-44.

Towards a circular economy

[MacArthur, 2013]

Industrial symbiosis and spatial structure

Industrial symbiosis as an approach to cycle by-products and energy between industries [Chertow, 2000], such as in eco-industrial parks [Gibbs and Deutz, 2007]

Systems perspective necessary to understand and optimize these processes [Chertow and Ehrenfeld, 2012]

Spatial structure of the system plays a crucial role [Desrochers, 2001]

Agent-based modeling as a privileged modeling approach but never applied at regional scales from an urban system perspective [Kraines and Wallace, 2006]

An agent-based model for industrial symbiosis

- \rightarrow A simple agent-based model to study the effects of geographical proximity on industrial symbiosis network, and the role of cluster policies.
- \rightarrow Integrates geography, ecology and economy concepts, from a generative social science perspective.
- ightarrow Can be applied to understand the interplay between different processes, and to optimize policies for a circular economy

Resources, Conservation & Recycling 155 (2020) 104538

Contents lists available at ScienceDirect

Resources, Conservation & Recycling

journal homepage: www.elsevier.com/locate/resconrec

Full length article

A spatial agent based model for simulating and optimizing networked ecoindustrial systems

Juste Raimbault^a, Joris Broere^{b,*}, Marius Somveille^c, Jesus Mario Serna^d, Evelyn Strombom^e, Christine Moore^f, Ben Zhu^g, Lorraine Sugar^h

Model summary

Model description

Setup: Companies located into space (synthetic or real setup), with input/output product distribution (Probabilistic Niche Model) which average is correlated with a clustering parameter α

Network growth: At each time step,

- A current contractor is drawn among companies with minimal number of links.
- 2 Spatial interaction model (span d_0) determines potential partners.
- Partner with the best utility (linear in product overlap and transportation cost) is chosen, link created and distributions updated.

Iterate until the network stabilizes.

Indicators: Total remaining waste (non exchanged products) and relative cost (network length weighted by flows).

Processes and parameters

Parameter	Notation	Process	Range	Value
Number of firms	N	Economic system	[2; 10 ⁶]	N = 50
Hierarchy of city system	γ	City system	0.5; 2.0	$\gamma = 1.3$
Density-to-firms exponent	α_P	Economic system	[0.1; 4.0]	$\alpha_{P} = 1.5$
Number of centers	р	City system	[1;10]	p = 5
Gravity decay	d_0	Spatial interactions	1;200	$d_0 = 50km$
Distribution width	σ	Industrial structure	[0.01; 0.1]	$\sigma = 0.05$
Overlap threshold	T_0	Industrial structure	[0.01; 0.1]	$T_0 = 0.1$
Transportation cost	С	Urban system	[0.1; 4.0]	c = 0.5
Correlation level	α	Industrial clusters	[0;20.0]	$\alpha = 5$

Examples of generated networks

Random company positions, synthetic urban system (scaling law of population), and real population distribution.

Model implementation and exploration

Spatial model with several parameters

 \rightarrow model implemented in NetLogo for its compromise between performance and interactivity

Consequent number of parameters and processes

 \rightarrow integration into the OpenMOLE model exploration open source software [Reuillon et al., 2013]

https://next.openmole.org

Enables seamlessly (i) model embedding; (ii) access to HPC resources; (iii) exploration and optimization algorithms

Baseline behavior of the model

Running grid sampling on synthetic urban systems with no correlation process:

- Statistical consistency of indicators, *n*=100 replications fixed for following experiments.
- Expected effect of some parameters, in particular company product span σ (decreases waste) and transportation cost c (increases waste and decreases relative cost).
- Emerging behaviors: congestion effect with T_0 exchange threshold; U-shaped behavior of cost as a function of σ .
- Different qualitative patterns between synthetic and real system for company position setup.

Policy optimization for the circular economy

(Left) At fixed exogenous parameters c and σ , bi-objective optimization of cost and waste; (Right) Size of Pareto fronts (number of alternatives for policy optimization) as a function of c and σ .

Spatial correlation between inputs and outputs

Influence of level of clustering on the circularity of the final network, for low (resp. high) transportation cost (Left, resp. Right), for different thresholds T_0 (columns), distribution width σ (rows) and gravity decay d_0 (color).

 \rightarrow In practice, the spatial correlation policy must be strictly enforced to have an effect.

Model calibration

Real-world application of the model by calibration on the EPRTR database to reproduce network structure (number of links, average link length, relative cost); yield medium range interactions but high propensity to exchange.

Implications

- \rightarrow Importance of spatial configuration; Eco-industrial park policies must be strictly applied.
- \rightarrow Real-world application of the model shown as a proof-of-concept with good model fit

Developments

- → Data-driven approach in link with interactive application.
- \rightarrow Refinement of economic processes.
- ightarrow Comparison of multiple possible processes and levels of policies.

Conclusion

- \rightarrow A simple agent-based model to understand and optimize industrial symbiosis.
- → Important role of spatial structure and spatial correlations.

Git repository:

https://github.com/SFICSSS16-CircularEconomy/CircularEconomy

Simulation data: https://doi.org/10.7910/DVN/7XCWTN

Acknowledgments: thanks to the *European Grid Infrastructure* for access to the infrastructure.

References I

Chertow, M. and Ehrenfeld, J. (2012).

Organizing self-organizing systems: Toward a theory of industrial symbiosis.

Journal of industrial ecology, 16(1):13-27.

Chertow, M. R. (2000).

Industrial symbiosis: literature and taxonomy.

Annual review of energy and the environment, 25(1):313–337.

Desrochers, P. (2001).

Cities and industrial symbiosis: Some historical perspectives and policy implications.

Journal of industrial ecology, 5(4):29-44.

References II

- Gibbs, D. and Deutz, P. (2007).

 Reflections on implementing industrial ecology through eco-industrial park development.

 Journal of Cleaner Production, 15(17):1683–1695.
- Kraines, S. and Wallace, D. (2006).

 Applying agent-based simulation in industrial ecology.

 Journal of Industrial Ecology, 10(1-2):15–18.
- MacArthur, E. (2013). Towards the circular economy. Journal of Industrial Ecology, pages 23–44.

References III

Reuillon, R., Leclaire, M., and Rey-Coyrehourcq, S. (2013). Openmole, a workflow engine specifically tailored for the distributed exploration of simulation models.

Future Generation Computer Systems, 29(8):1981-1990.