c.	artad on	Tuesday & Ostober 2020, E:00 DM
31	State	Tuesday, 6 October 2020, 5:00 PM Finished
Comr		Tuesday, 6 October 2020, 5:14 PM
		14 mins 1 sec
	Grade	10.00 out of 10.00 (100 %)
Question 1		
Complete		
Not graded		
Choose v	alid staten	nent(s) for compositional logic circuits from the list below:
Select on	e or more:	
The	output of a	a compositional logic circuits, in addition to current input values, might depend on the previous input values as well
The	se circuits	might contain memory elements (registers)
The	se circuits	must contain memory elements (registers)
This	type of cir	rcuits is used to implement arithmetic and logic operations for processors
■ No o	choice is c	prrect
Due to th	e typo in th	ne question formulation (the usage of "compositional" instead of "combinational" term), the question is excluded from
grading		
The corre	ect answer	is: This type of circuits is used to implement arithmetic and logic operations for processors
Question 2		
Correct		
Mark 1.00 out	of 1.00	
Convert of	lecimal nu	mber "-28" to 8-bit binary number, by using two's complement method for representing negative numbers.
Answer:	1110010	
	1110010	<u> </u>
The corre	ect answer	is: 11100100
55116		

Question 3	
Correct	
Mark 1.00 out of 1.00	
Recall the basic principles behind an ALU unit of a processor. Do you agree with the following statement?	
Any arithmetic operation, which is defined for decimal values (such as addition, subtraction, multiplication, division) can be implemented by means of a logic circuit (either combinational or sequential), for binary inout values.	
Select one:	
b. Completely disagree! For example, there is no operation of subtraction in Boolean algebra, and thus, subtraction operation cannot be implemented for binary input values?!	
Your answer is correct.	
The correct answer is: Yes, totally agree!	
Question 4	
Correct	
Contest	
Mark 1.00 out of 1.00	
Mark 1.00 out of 1.00 Do you agree that the use of saturation arithmetic principles solves the overflow and underflow problems for arithmetic operations, without	
Mark 1.00 out of 1.00 Do you agree that the use of saturation arithmetic principles solves the overflow and underflow problems for arithmetic operations, without any loss of precision or computation correctness?	
Do you agree that the use of saturation arithmetic principles solves the overflow and underflow problems for arithmetic operations, without any loss of precision or computation correctness? Select one:	
Do you agree that the use of saturation arithmetic principles solves the overflow and underflow problems for arithmetic operations, without any loss of precision or computation correctness? Select one: True	
Do you agree that the use of saturation arithmetic principles solves the overflow and underflow problems for arithmetic operations, without any loss of precision or computation correctness? Select one: True	
Do you agree that the use of saturation arithmetic principles solves the overflow and underflow problems for arithmetic operations, without any loss of precision or computation correctness? Select one: True False ✓	
Mark 1.00 out of 1.00 Do you agree that the use of saturation arithmetic principles solves the overflow and underflow problems for arithmetic operations, without any loss of precision or computation correctness? Select one: True False ✓ The correct answer is 'False'.	
Do you agree that the use of saturation arithmetic principles solves the overflow and underflow problems for arithmetic operations, without any loss of precision or computation correctness? Select one: True False ✓ The correct answer is 'False'.	
Do you agree that the use of saturation arithmetic principles solves the overflow and underflow problems for arithmetic operations, without any loss of precision or computation correctness? Select one: True False ✓ The correct answer is 'False'.	
Do you agree that the use of saturation arithmetic principles solves the overflow and underflow problems for arithmetic operations, without any loss of precision or computation correctness? Select one: True False ✓ The correct answer is 'False'.	
Do you agree that the use of saturation arithmetic principles solves the overflow and underflow problems for arithmetic operations, without any loss of precision or computation correctness? Select one: True False ✓ The correct answer is 'False'. Question 5 Correct Mark 1.00 out of 1.00 Recall an encoder circuit. Do you agree that, according to its definition, only one input pin can be set to "1", while all others must remain	
Do you agree that the use of saturation arithmetic principles solves the overflow and underflow problems for arithmetic operations, without any loss of precision or computation correctness? Select one: True False ✓ The correct answer is 'False'. Question 5 Correct Mark 1.00 out of 1.00 Recall an encoder circuit. Do you agree that, according to its definition, only one input pin can be set to "1", while all others must remain "0"?	
Do you agree that the use of saturation arithmetic principles solves the overflow and underflow problems for arithmetic operations, without any loss of precision or computation correctness? Select one: True False ✓ The correct answer is 'False'. Question 5 Correct Mark 1.00 out of 1.00 Recall an encoder circuit. Do you agree that, according to its definition, only one input pin can be set to "1", while all others must remain "0"? Select one: True ✓	
Do you agree that the use of saturation arithmetic principles solves the overflow and underflow problems for arithmetic operations, without any loss of precision or computation correctness? Select one: ☐ True ⑥ False ✔ The correct answer is 'False'. Question 5 Correct Mark 1.00 out of 1.00 Recall an encoder circuit. Do you agree that, according to its definition, only one input pin can be set to "1", while all others must remain "0"? Select one:	
Do you agree that the use of saturation arithmetic principles solves the overflow and underflow problems for arithmetic operations, without any loss of precision or computation correctness? Select one: True False ✓ The correct answer is 'False'. Question 5 Correct Mark 1.00 out of 1.00 Recall an encoder circuit. Do you agree that, according to its definition, only one input pin can be set to "1", while all others must remain "0"? Select one: True ✓	

Question **6**

Correct

Mark 1.00 out of 1.00

Do you agree that the hexadecimal numeral system is a positional system?

Select one:

- True
- False

The correct answer is 'True'.

Question 7

Correct

Mark 1.00 out of 1.00

Do you agree that the following two logic circuits are equivalent?

Circuit 1

Circuit 2

Select one:

- True
- False

The correct answer is 'True'.

Question &	
Correct	
Mark 1.00	out of 1.00
	the basic building blocks for compositional logic circuits. Which of the following circuits have(s) the number of output pins exceeding mber of input pins? Note: do not count control or selector pins as input pins.
Select	one or more:
_ a.	multiplexer
	demultiplexer✓
✓ c.	decoder✓
_ d.	encoder
_ e.	No choice is correct
Your a	nswer is correct.
	prect answers are: demultiplexer, decoder
THE CO	meet answers are, dermanspiezer, decoder
Question	
Correct	out of 1,00
Mark 1.00	out of 1.00
What is	s the minimum required number of input pins for a decoder with 19 output pins?
Answe	r: 5
The co	prrect answer is: 5
1110 00	
Question 1	10
Correct Mark 1 00	out of 1.00
man 2100	
Do yoι	agree that any logic gate can be implemented by using only NAND logic gates?
Select	
	No! It would be correct if, in addition to NAND, we could use NOR logic gate as well
	No choice is correct
C.	Yes❖
Your a	nswer is correct.
	nswer is correct. prect answer is: Yes

Question 11
Correct
Mark 1.00 out of 1.00
Convert decimal number "256" into hexadecimal numeral system.

Note: Use capital letters "A", "B", "C", etc., in your answer, if needed.

Answer: 100

The correct answer is: 100