

மொநட்டுவைப் பல்கலைக்கழக பொநியியற் பீட தமிழ் மாணவர்கள் நடாத்தும் க.பொ.த உயர்தர மாணவர்களுக்கான 12^{வது}

முன்னோடிப் பரீட்சை 2021

10(I) - இணைந்தகணிதம் I

விடைகள் (புள்ளியிடும் திட்டம்)

Prepared By **B.Raveendran** *B.Sc.*

பகுதி A

1. கணிதத்தொகுத்தறிவுக்கோட்பாட்டைப் பயன்படுத்தி எல்லா $n \in \mathbb{Z}^+$ இந்கும் $\sum_{r=1}^n \frac{r}{2^r} = 2 - \frac{n+2}{2^n}$ என நிறுவுக.

$$n=1$$
 இந்கு $L.H.S = \sum_{r=1}^{1} \frac{r}{2^r} = \frac{1}{2}$ $R.H.S = 2 - \frac{1+2}{2^1} = \frac{1}{2}$ $L.H.S = R.H.S$ $\therefore n=1$ இந்கு முடிவு உண்மை. (5)

யாதாயினும் $p\in\mathbb{Z}^+$ இந்கு முடிவு உண்மை எனக் கொள்க.

$$\Rightarrow \sum_{r=1}^{p} \frac{r}{2^r} = 2 - \frac{p+2}{2^p} \qquad \boxed{5}$$

$$n = p+1 \quad \text{@iso} \quad \sum_{r=1}^{p+1} \frac{r}{2^r} = \sum_{r=1}^{p} \frac{r}{2^r} + \frac{p+1}{2^{p+1}}$$

$$= 2 - \frac{p+2}{2^p} + \frac{p+1}{2^{p+1}} \qquad \boxed{5}$$

$$= 2 - \frac{2(p+2) - (p+1)}{2^{p+1}}$$

$$= 2 - \frac{(p+1) + 2}{2^{p+1}} \qquad \boxed{5}$$

 \therefore n=p இந்கு முடிவு உண்மை எனின் n=p+1 இந்கு முடிவு உண்மை ஆகும்.

இதிலிருந்து, கணித தொகுத்தறிவுக் கோட்பாட்டின்படி எல்லா $n\in\mathbb{Z}^+$ இற்கும் முடிவு உண்மையாகும்.

25

2. ஒரே வரிப்படத்தில் $y=\left|x-3\right|,\;y=\left|2x-3\right|$ ஆகியவந்நின் வரைபுகளை பரும்படியாக வரைக. இதிலிருந்து சமனிலி $\left|x\right|>\left|2x+3\right|$ ஐத் திருப்தியாக்கும் x இன் எல்லா மெய்ப்பெறுமானங்களையும் காண்க.

$$|x| > |2x+3|$$
 $\Leftrightarrow |x+3-3| > |2(x+3)-3|$
 $\Leftrightarrow |u-3| > |2u-3|$; இங்கு $u = x+3$ (5)
 $\Leftrightarrow 0 < u < 2$ (வரைபிலிருந்து)
 $\Leftrightarrow 0 < x+3 < 2$
 $\Leftrightarrow -3 < x < -1$ (5)

$$-x + 3 = 2x - 3$$
$$x = 2$$

3. யாதாயினும் ஒரு சிக்கலெண் z இந்கு $\left|i\,\overline{z}-1-i\right|=\left|z-1-i\right|$ எனக் காட்டுக. $Arg\left(z-1+i\right)=\frac{\pi}{6}$ ஐத் திருப்தியாக்கும் சிக்கலெண்கள் z ஐ வகைகுறிக்கும் புள்ளிகளின் ஒழுக்கை பரும்படியாக ஆகண் வரிப்படத்தில் வரைக. இதிலிருந்து $Arg\left(z-1+i\right)=\frac{\pi}{6}$ ஆக இருக்குமாறு $\left|i\,\overline{z}-1-i\right|$ இன் இழிவுப்பெறுமானத்தைக் காண்க.

 $\left|i\,\overline{z}-1-i
ight|$ இன் இழிவுப் பெறுமானம் PM இற்கு சமன்

$$PM = 2\sin\frac{\pi}{3} = \sqrt{3} \quad \boxed{5}$$

25

4. $\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{3}}\right)^n$ இன் ஈருநுப்பு விரிவில் $7^{\text{வது}}$ உறுப்புக்கும் $(n-5)^{\text{வது}}$ உறுப்புக்கும் இடையிலான விகிதம் 1:6 எனின் n இனைக் காண்க; இங்கு $n \in \mathbb{Z}^+$ ஆகும்.

$$T_{7} = {}^{n}C_{6} \left(\sqrt[3]{2}\right)^{n-6} \left(\frac{1}{\sqrt[3]{3}}\right)^{6} \qquad \boxed{5}$$

$$T_{n-5} = {}^{n}C_{n-6} \left(\sqrt[3]{2}\right)^{6} \left(\frac{1}{\sqrt[3]{3}}\right)^{n-6} \qquad \boxed{5}$$

$$\frac{T_{7}}{T_{n-5}} = \frac{1}{6}$$

$$\frac{{}^{n}C_{6} \left(\sqrt[3]{2}\right)^{n-6} \left(\frac{1}{\sqrt[3]{3}}\right)^{6}}{{}^{n}C_{n-6} \left(\sqrt[3]{2}\right)^{6} \left(\frac{1}{\sqrt[3]{3}}\right)^{n-6}} = \frac{1}{6} \qquad \boxed{5}$$

$$\left(\sqrt[3]{2}\right)^{n-12} \left(\sqrt[3]{3}\right)^{n-12} = \frac{1}{6} \qquad (\because {}^{n}C_{6} = {}^{n}C_{n-6})$$

$$6^{\frac{n-12}{3}} = 6^{-1}$$

$$\frac{n-12}{3} = -1 \qquad \boxed{5}$$

$$\therefore n = 9 \qquad \boxed{5}$$

5.
$$\lim_{x \to \frac{\pi}{4}} \frac{256x^4 - \pi^4}{\tan x - 1} = 8\pi^3$$
 எனக் காட்டுக.

$$\lim_{x \to \frac{\pi}{4}} \frac{256x^4 - \pi^4}{\tan x - 1} = \lim_{x \to \frac{\pi}{4}} \frac{(4x - \pi)(4x + \pi)(16x^2 + \pi^2)\cos x}{\sin x - \cos x}$$

$$= \lim_{x \to \frac{\pi}{4}} \frac{4\left(x - \frac{\pi}{4}\right)(4x + \pi)(16x^2 + \pi^2)\cos x}{\sqrt{2}\left(\sin x \cos\left(\frac{\pi}{4}\right) - \cos x \sin\left(\frac{\pi}{4}\right)\right)}$$

$$= 4\lim_{x \to \frac{\pi}{4}} \frac{(4x + \pi)(16x^2 + \pi^2)\cos x}{\sqrt{2}} \lim_{x \to \frac{\pi}{4}} \frac{1}{\sin\left(x - \frac{\pi}{4}\right)}$$

$$= \frac{4 \times 2\pi \times 2\pi^2 \times \frac{1}{\sqrt{2}}}{\sqrt{2}} \times 1$$

$$= 8\pi^3$$
 (5)

6. $x^2+y^2=r^2$ எனும் வட்டத்தின் பகுதி பரும்படியாக காட்டப்பட்டுள்ளது. $O\hat{P}A=\thetaigg(0<\theta<rac{\pi}{2}igg)$ ஆகும். நிழந்நப்பட்ட பகுதி PAB இனை x- அச்சுப்பந்நி 2π கோணத்தினூடாக சுழந்நப்படும் போது பெறப்படும் திண்மத்தின் கனவளவு $\frac{\pi r^3}{3}ig(2-3\sin\theta+\sin^3\thetaig)$ எனக் காட்டுக.

$$V = \pi \int_{r\sin\theta}^{r} y^{2} dx$$

$$= \pi \int_{r\sin\theta}^{r} \left[r^{2} - x^{2} \right] dx \qquad 5$$

$$= \pi \left[r^{2}x \Big|_{r\sin\theta}^{r} - \frac{x^{3}}{3} \Big|_{r\sin\theta}^{r} \right] \qquad \boxed{0}$$

$$= \pi \left[r^{3} - r^{3}\sin\theta - \frac{r^{3}}{3} + \frac{r^{3}\sin^{3}\theta}{3} \right] \qquad 5$$

$$= \frac{\pi r^{3}}{3} \left(2 - 3\sin\theta + \sin^{3}\theta \right) \qquad \boxed{5}$$

7. $x^2=4y$ எனும் வளையிக்கு $P(2t,t^2),\,Q(4t,\,4t^2)$ ஆகிய புள்ளிகளில் வரையப்படும் தொடலிகள் R இல் சந்திக்கின்றன எனின் R இன் ஒழுக்கின் சமன்பாடு $2x^2=9y$ இனால் தரப்படுகின்றது எனக் காட்டுக. இங்கு $t(\neq 0)$ பரமானம் ஆகும்.

$$x^2 = 4y$$

$$\frac{dy}{dx} = \frac{x}{2}$$
 (5)

$$\frac{dy}{dx}\Big|_{P} = t, \quad \frac{dy}{dx}\Big|_{Q} = 2t$$
 (5)

$$P$$
 யில் தொடலி \Rightarrow $y-t^2=t(x-2t)$ --------

$$Q$$
 வில் தொடலி \Rightarrow $y-4t^2=2t(x-4t)$ --------2

$$R \equiv \left(3t, \, 2t^2\right) \quad \boxed{5}$$

$$R \equiv (\overline{x}, \overline{y})$$
 என்க

$$t^2 = \frac{\overline{x}^2}{9} = \frac{\overline{y}}{2} \Rightarrow 2\overline{x}^2 = 9\overline{y}$$

$$\therefore$$
 R இன் ஒழுக்கு $2x^2 = 9y$ (5)

25

8. a,b என்பன $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}$ ஆகுமாறு உள்ள நேர் பரமானங்கள் ஆகும்; இங்கு $c \in \mathbb{R}$. $\frac{x}{a} + \frac{y}{b} = 1$ எனும் நேர்கோட்டிந்கு உந்பத்தியில் இருந்து வரையப்படும் செங்குத்தின் அடியின் ஒழுக்கு $x^2+y^2=c^2$ எனக் காட்டுக.

செங்குத்தின் அடி $N\equiv \left(\overline{x},\overline{y}\right)$ என்க.

$$\tan \theta = \frac{b}{a} = \frac{\overline{x}}{\overline{y}} \quad ---- \boxed{1}$$

N ஆனது நேர்கோட்டின் மீது இருப்பதால் $\frac{\overline{x}}{a} + \frac{\overline{y}}{b} = 1$ $\boxed{5}$ $\overline{y} = 1$

இதே போல்
$$b = \frac{\overline{x}^2 + \overline{y}^2}{\overline{y}}$$

$$\frac{1}{\frac{\left(\overline{x}^2 + \overline{y}^2\right)^2}{\overline{x}^2}} + \frac{1}{\frac{\left(\overline{x}^2 + \overline{y}^2\right)^2}{\overline{y}^2}} = \frac{1}{\frac{c^2}{5}} \implies \overline{x}^2 + \overline{y}^2 = c^2$$

$$\therefore$$
 N இன் ஒழுக்கு $x^2 + y^2 = c^2$ ஆகும். (5)

9. $y = x^2 - 6$ எனும் வளையி மீது மையத்தைக் கொண்டதும் x, y அச்சுக்களைத் தொடுவதுமான நான்கு வட்டங்கள் உள்ளன எனக்காட்டி அவ்வட்டங்களின் பரப்புகளின் கூட்டுத்தொகை 26π எனக் காட்டுக.

மையம்
$$\equiv (t, t^2 - 6)$$
 (5)

வட்டம் x, y அச்சுக்களைத் தொடுவதால் $\left|t\right| = \left|t^2 - 6\right|$ $\boxed{5}$

$$\Rightarrow t = t^{2} - 6 \quad \text{or} \quad t = -(t^{2} - 6)$$

$$t^{2} - t - 6 = 0 \quad t^{2} + t - 6 = 0$$

$$(t - 3) (t + 2) = 0 \quad (t + 3) (t - 2) = 0$$

$$t = -2, 3 \quad t = 2, -3 \quad (5)$$

(2,-2),(-2,-2),(3,3),(-3,3) இனை மையங்களாக உடைய நான்கு வட்டங்கள் உண்டு. (5) வட்டங்களின் ஆரைகள் முறையே (2,2,3,3) அலகுகள் ஆகும்.

$$\therefore$$
 மொத்தப் பரப்பளவு $=\pi\left(2^2+2^2+3^2+3^2\right)$ $=26\pi$ $\boxed{5}$

10. $\sec\theta + \tan\theta = \tan\left(\frac{\theta}{2} + \frac{\pi}{4}\right)$ எனக்காட்டுக. இதிலிருந்து $\tan\left(\frac{3\pi}{8}\right)$ இன் பெறுமானத்தைக் காண்க.

$$\sec \theta + \tan \theta = \frac{1 + \sin \theta}{\cos \theta}$$

$$= \frac{\left(\cos \frac{\theta}{2} + \sin \frac{\theta}{2}\right)^{2}}{\cos^{2} \frac{\theta}{2} - \sin^{2} \frac{\theta}{2}} \quad \text{(5)}$$

$$= \frac{\cos \frac{\theta}{2} + \sin \frac{\theta}{2}}{\cos \frac{\theta}{2} - \sin \frac{\theta}{2}} \quad \text{(5)}$$

$$= \frac{1 + \tan \frac{\theta}{2}}{1 - \tan \frac{\theta}{2}} \quad \text{(5)}$$

$$= \frac{\tan \frac{\pi}{4} + \tan \frac{\theta}{2}}{1 - \tan \frac{\pi}{4} \tan \frac{\theta}{2}} \quad \text{(5)}$$

$$= \tan \left(\frac{\theta}{2} + \frac{\pi}{4}\right)$$

$$\theta = \frac{\pi}{4} \Rightarrow \tan \left(\frac{3\pi}{8}\right) = \sec \left(\frac{\pi}{4}\right) + \tan \left(\frac{\pi}{4}\right) = \sqrt{2} + 1 \quad \text{(5)}$$

பகுதி B

- $11.\ (a)\ f(x)=x^2+kx+\lambda^2-\lambda\mu,\ g(x)=2x^2+kx-\mu^2+\lambda\mu$ எனக்கொள்வோம்; இங்கு $\lambda>\mu>0$ ஆகும். $f(x)=0,\ g(x)=0$ ஆகியன ஒரு பொதுமூலம் lpha ஐ கொண்டுள்ளன எனத் தரப்பட்டுள்ளது; இங்கு lpha>0 ஆகும். $lpha=\lambda-\mu$ எனக் காட்டுக. மேலும் $k=\mu-2\lambda$ எனக் காட்டி இதிலிருந்து
 - (i) k < 0 எனவும்
 - (ii) f(x) = 0 இன் பிரித்துக்காட்டி μ^2 எனவும்
 - (iii) g(x) = 0 இன் பிரித்துக்காட்டி $\left(3\mu 2\lambda\right)^2$ எனவும் காட்டுக.
 - $f(x)=0,\ g(x)=0$ ஆகியவற்றின் மற்றைய மூலங்கள் முறையே eta,γ எனக்கொள்வோம். $eta-\gamma=\lambda-rac{\mu}{2}$ எனக் காட்டி eta,γ ஆகியவற்றை $\lambda,\,\mu$ ஆகியவற்றில் காண்க. இதிலிருந்து $eta,\,\gamma$ ஆகியவற்றை மூலங்களாகக் கொண்ட இருபடிச் சமன்பாடு $2x^2-(2\lambda+\mu)x+\lambda\mu=0$ எனக் காட்டுக.
 - $(b)\ h(x)=2x^3+ax^2+bx+c$ எனக் கொள்வோம்; இங்கு $a,b,c\in\mathbb{R}$ ஆகும். h(x) இனை x^2-1 இனால் வகுக்க வரும் மீதி 6x-3 எனத் தரப்பட்டுள்ளது. b=4 எனக் காட்டுக.
 - h(x) இனை x^2-3x இனால் வகுக்க வரும் மீதி kx+4 எனின் k,a,c ஆகியவந்றைக் காண்க. (x-2) ஆனது h(x) இன் ஒரு காரணி எனக்காட்டி h(x) ஐ வடிவம் $(x-p)^2(2x-q)$ இல் எழுதலாம் எனக் காட்டுக; இங்கு $p,q\in\mathbb{R}$.
 - (a) lpha ஆனது $f(x)=0,\,g(x)=0$ ஆகியவற்றின் ஒரு பொது மூலம் ஆகையால்

$$\alpha^2 + k\alpha + \lambda^2 - \lambda\mu = 0$$
 ----- (5)

$$2\alpha^2 + k\alpha - \mu^2 + \lambda\mu = 0$$
 (5)

$$(2) - (1) \Rightarrow \alpha^2 - \mu^2 - \lambda^2 + 2\lambda\mu = 0$$

$$\alpha^2 = (\lambda - \mu)^2$$

$$\alpha = \lambda - \mu$$
 (: $\alpha > 0$, $\lambda > \mu$) (5)

$$(1) \Rightarrow (\lambda - \mu)^2 + k(\lambda - \mu) + \lambda(\lambda - \mu) = 0$$

$$\lambda - \mu + k + \lambda = 0$$
 (: $\lambda - \mu \neq 0$)

$$k = \mu - 2\lambda \quad \boxed{5}$$

(i) $k = \mu - 2\lambda$

$$\lambda > \mu \Rightarrow 2\lambda > \mu \ (\because \lambda, \mu > 0)$$
 5

$$2\lambda - \mu < 0$$

$$\therefore k < 0 \quad \boxed{5}$$

(ii)
$$\Delta_f = k^2 - 4(\lambda^2 - \lambda \mu)$$
 (5)

$$= (\mu - 2\lambda)^2 - 4(\lambda^2 - \lambda\mu)$$

$$=\mu^2$$
 5

(iii)
$$\Delta_g = k^2 - 8(-\mu^2 + \lambda\mu)$$
 (5)

$$= (\mu - 2\lambda)^2 - 8(-\mu^2 + \lambda\mu)$$

$$= 9\mu^2 - 12\lambda\mu + 4\lambda^2$$

$$= (3\mu - 2\lambda)^2$$
 (5)

$$\alpha + \beta = -k$$
 -----3

$$\alpha\beta = \lambda^2 - \lambda\mu = \lambda(\lambda - \mu)$$
 ----- (4)

$$\alpha + \gamma = \frac{-k}{2}$$

$$\beta - \frac{\mu\beta}{2\lambda} = \lambda - \frac{\mu}{2} \implies \beta = \lambda \ (\because 2\lambda - \mu \neq 0) \ \boxed{5}$$
$$\gamma = \frac{\mu}{2} \ \boxed{5}$$

$$\gamma + \beta = \lambda + \frac{\mu}{2}$$

$$\beta \gamma = \frac{\lambda \mu}{2}$$

$$(5)$$

$$\therefore$$
 β , γ ஆகியவற்றை மூலங்களாக் கொண்ட இருபடிச்சமன்பாடு $(x-\beta)$ $(x-\gamma)=0$ \bigcirc

$$x^2 - \left(\lambda + \frac{\mu}{2}\right)x + \frac{\lambda\mu}{2} = 0 \quad \boxed{5}$$

$$2x^2 - (2\lambda + \mu)x + \lambda\mu = 0$$

(b)
$$h(x) = 2x^3 + ax^2 + bx + c$$

$$h(x) = (x^2 - 1)\phi(x) + 6x - 3$$
 என்க.

இங்கு
$$\phi(x)$$
 ஈவு ஆகும்.

$$h(1) = 2 + a + b + c = 3$$

$$a+b+c=1$$
 ----- ① (5)

$$h(-1) = -2 + a - b + c = -9$$

$$a-b+c=-7$$
 ----- ② (5)

$$0 - 2 \Rightarrow 2b = 8$$

$$b=4$$
 (5)

$$h(x) = (x^2 - 3x) \varphi(x) + kx + 4$$
 என்க.

இங்கு $\varphi(x)$ ஈவு ஆகும்.

$$h(0) = c = 4 \qquad \boxed{5}$$

$$h(3) = 54 + 9a + 3b + c = 3k + 4$$

$$54 - 63 + 12 + 4 = 3k + 4$$

$$k=1$$
 (5)

$$k = 1 \underbrace{5}_{h(x) = 2x^3 - 7x^2 + 4x + 4}$$

$$h(2) = 16 - 28 + 8 + 4 = 0$$
 (5)

 $\therefore (x-2)$ ஆனது h(x) இன் ஒரு காரணி ஆகும்.

$$h(x) = (x-2)(2x^2 - 3x - 2)$$

$$= (x-2)(x-2)(2x+1)$$

$$= (x-2)^2(2x+1)$$

$$= (x-p)^2(2x-q)$$

$$\therefore p = 2, \quad \boxed{5} \qquad q = -1 \quad \boxed{5}$$

60

150

12. (*a*) பொறியியல் பீடமொன்றில் இருந்து சர்வதேச மாநாடு ஒன்றில் பங்குகொள்வதந்காக ഥിன്, കത്തിതി, കட்டிட 20 பிரிவுகளில் இருந்து பரிந்துரைக்கப்பட்ட தொடர்பான விபரங்கள் அட்டவணையில் காட்டப்பட்டுள்ளது. மாநாட்டில் பங்குபற்றுவதற்காக இவர்களில் இருந்து 10 பேர் கொண்ட குழு ஒன்றைத் தெரிவுசெய்ய வேண்டியுள்ளது.

	ஆண்	பெண்
மின் பொறியியல்	4	2
கணினி பொறியியல்	4	4
கட்டிட பொறியியல்	4	2

- (i) குழுவில் செப்பமாக ஐந்து ஆண்களும் ஐந்து பெண்களும் இருக்குமாறு எத்தனை குழுக்களைத் தெரிவுசெய்ய முடியுமெனக் காண்க.
- (ii) குழுவில் ஆகக்குறைந்தது 5 ஆண்களும் 3 பெண்களும் இருக்குமாறு எத்தனை குழுக்களைத் தெரிவுசெய்ய முடியுமெனக் காண்க.
- (iii) ஒவ்வொரு பொறியியல் பிரிவில் இருந்தும் குறைந்தபட்சம் 2 ஆணும் ஒரு பெண்ணுமாக 6 ஆண்களும் 4 பெண்களும் கொண்ட எத்தனை குழுக்களைத் தெரிவுசெய்ய முடியுமெனக் காண்க.

$$(b)\ r\in\mathbb{Z}^+$$
 இந்க $U_r=rac{2(2r+7)}{(2r-1)\ (2r+1)\ (2r+3)},\ V_r=rac{A}{2r+1}-rac{B}{2r-1}$ எனக் கொளவோம்; இங்கு

 $A,B\in\mathbb{R}.$ $r\in\mathbb{Z}^+$ இந்கு $U_r=V_{r+1}-V_r$ ஆகுமாறு A,B ஆகியவந்நின் பெறுமானங்களைக் காண்க.

இதிலிருந்து
$$n \in \mathbb{Z}^+$$
 இந்கு $\sum_{r=1}^n U_r = \frac{2n(10n+17)}{3(2n+1)(2n+3)}$ எனக் காட்டுக.

முடிவில் தொடர் $\sum^\infty U_r$ ஒருங்குகின்றது எனக் காட்டி அதன் கூட்டுத்தொகையைக் காண்க.

$$r \in \mathbb{Z}^+$$
 இற்கு $W_r = U_r - U_{r+1} + U_{r+2}$ எனக் கொள்வோம். $\sum_{r=1}^n W_r = \sum_{r=1}^n U_r + U_{n+2} - U_2$ எனக் காட்டி

முடிவில் தொடர் $\sum_{r=1}^{\infty}W_{r}$ ஒருங்கின்றதென உய்த்தறிந்து, அதன் கூட்டுத்தொகையைக் காண்க.

தெரிவுசெய்யக் கூடிய குழுக்களின் எண்ணிக்கை =
$$^{12}C_5 \times ^8C_5$$
 \bigcirc = $\frac{12!}{7!5!} \times \frac{8!}{3!5!}$ = 712×56

(ii)

	முறைகள்	பெண்கள் (8)	ஆண்கள் (12)
	$^{12}C_5^{\ 8}C_5 = 44352$	5	5
(10	$^{12}C_6^{\ 8}C_4 = 924 \times 70 = 64680$	4	6
(1	$^{12}C_7^{\ 8}C_3 = 792 \times 56 = 44352$	3	7
(5	153384	மொத்தம்	

(iii) E- மின்பொறியியல்

=44352 (5)

Co- கணினி பொறியியல்

$$F$$
 – பெண்

Ci- கட்டிடப் பொறியியல்

E-M(4)	E-F(2)	Co-M(4)	Co-F(4)	Ci-M(4)	Ci-F(2)	முறைகள்
2	2	2	1	2	1	${}^{4}C_{2}{}^{2}C_{2}{}^{4}C_{2}{}^{4}C_{1}{}^{4}C_{2}{}^{2}C_{1}$ $=1728$
2	1	2	2	2	1	
2	1	2	1	2	2	
					மொத்தம்	8640

$$(b) \qquad U_r = V_{r+1} - V_r$$

$$\frac{2(2r+7)}{(2r-1)(2r+1)(2r+3)} = \left(\frac{A}{2r+3} - \frac{B}{2r+1}\right) - \left(\frac{A}{2r+1} - \frac{B}{2r-1}\right)$$
 (5)

$$= \frac{-2A}{(2r+1)(2r+3)} + \frac{2B}{(2r-1)(2r+1)}$$

$$2(2r+7) = -2A(2r-1) + 2B(2r+3)$$

$$(2r+7) = -A(2r-1) + B(2r+3)$$
 (5)

AL/2021/10/T-I

$$r$$
 இன் குணகம் : $-2A + 2B = 2$ -------

மாநிலி :
$$A + 3B = 7$$

①, ②
$$\Rightarrow$$
 $A=1$, ⑤ $B=2$ ⑤

$$r = n-1:$$
 $U_{n-1} = V_n - V_{n-1}$ $r = n:$ $U_n = V_{n+1} - V_n$ (5)

$$\sum_{r=1}^{\infty} U_r = V_{n+1} - V_1 \qquad \boxed{5}$$

$$= \frac{1}{2n+3} - \frac{2}{2n+1} - \left(\frac{1}{3} - \frac{2}{1}\right)$$

$$=\frac{3(2n+1)-6(2n+3)+5(2n+1)(2n+3)}{3(2n+1)\;(2n+3)}$$

$$=\frac{20n^2+34n}{3(2n+1)(2n+3)}=\frac{2(10n^2+17n)}{3(2n+1)(2n+3)}$$

$$\lim_{n \to \infty} \sum_{r=1}^{n} U_r = \lim_{n \to \infty} \frac{2(10n^2 + 17n)}{3(2n+1)(2n+3)}$$

$$\sum_{r=1}^{\infty} U_r = \lim_{n \to \infty} \frac{2(10 + \frac{17}{n})}{3(2 + \frac{1}{n})(2 + \frac{3}{n})}$$
 (5)

$$=\frac{2\times10}{3\times2\times2}=\frac{5}{3}$$
 (5)

$$W_r = U_r - U_{r+1} + U_{r+2}$$

$$\sum_{r=1}^{n} W_{r} = \sum_{r=1}^{n} U_{r} - \sum_{r=1}^{n} U_{r+1} + \sum_{r=1}^{n} U_{r+2}$$

$$= \sum_{r=1}^{n} U_{r} - \left(\sum_{r=1}^{n} U_{r} - U_{1} + U_{n+1}\right) + \left(\sum_{r=1}^{n} U_{r} - U_{1} - U_{2} + U_{n+1} + U_{n+2}\right)$$

$$(5)$$

$$= \sum_{r=1}^{n} U_r - U_2 + U_{n+2} \qquad 5$$

$$\lim_{n \to \infty} \sum_{r=1}^{n} W_r = \sum_{r=1}^{\infty} U_r - U_2 + \lim_{n \to \infty} U_{n+2}$$

$$\sum_{r=1}^{\infty} W_r = \frac{5}{3} - \frac{2 \times 11}{3 \times 5 \times 7} + \lim_{n \to \infty} \frac{2(2n+11)}{(2n+3)(2n+3)(2n+7)} \qquad 5$$

$$= \frac{5}{3} - \frac{22}{105} + 0$$

$$= \frac{153}{105} = \frac{51}{35} \qquad 5$$

். தொடர் ஒருங்குகின்றது. 🔇

80

150

$$egin{align*} egin{align*} egin{align*}$$

-11-

தாயங்கள் எனக் கொள்வோம். இங்கு $a,b\in\mathbb{R}$ ஆகும். $a=3,\,b=5$ எனக் காட்டுக.

 $m{C}^{-1}$ இனை எழுதி $m{C} + m{C}^{-1} = 7m{I}$ எனக் காட்டுக. இங்கு $m{I}$ ஆனது வரிசை 2 ஆகவுள்ள சர்வ சமன்பாட்டு தாயம் ஆகும்.

 $P = \frac{1}{3}(C - 2I)$ எனக் கொள்க. $C(Q + P) + AA^T = C + C^{-1}$ ஆகுமாறு தாயம் Q இனைக் காண்க.

$$(b)$$
 $z = \cos \theta + i \sin \theta$ எனக் கொள்க; இங்கு $0 < \theta < \frac{\pi}{2}$ ஆகும்.

$$z+z^2=2\cos\left(rac{ heta}{2}
ight)\!\!\left(\cos\!\left(rac{3 heta}{2}
ight)\!\!+i\sin\!\left(rac{3 heta}{2}
ight)\!
ight)$$
 எனக் காட்டுக. இதிலிருந்து

(i)
$$Arg(z+z^2)$$

(ii)
$$|z+z^2|$$
 ஆகியவற்றை எழுதுக.

ஆகண் வரிப்படத்தில் புள்ளிகள் A,B,C என்பன முறையே சிக்கலெண்கள் $z,z^2,z+z^2$ ஆகியவற்றை வகைக்குறிக்கின்றன. ஆகண் வரிப்படமொன்றில் A,B,C ஆகிய புள்ளிகளைப் பரும்படியாகக் குறித்து OACB ஆனது ஓர் சாய்சதுரம் எனக் காட்டுக.

மேலும்
$$heta=rac{\pi}{6}$$
 ஆக இருக்கும்போது $z+z^2=\left(rac{\sqrt{3}+1}{2}
ight)(1+i)$ எனக் காட்டுக.

இதிலிருந்து
$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}$$
 என உய்த்தறிக.

$$(c)\ z = r(\cos lpha + i \sin lpha)$$
 எனக் கொள்வோம்; இங்கு $r \in \mathbb{R}, -rac{\pi}{2} < lpha < rac{\pi}{2}$ ஆகும். த மோய்வரின்

தேற்றத்தைப் பயன்படுத்தி $z^n+\overline{z}^n=2r^n\cos nlpha$ எனக் காட்டுக; இங்கு $n\in\mathbb{Z}^+$ ஆகும்.

இதிலிருந்து அல்லது வேறுவிதமாக
$$(1+i)^n+(1-i)^n=2\Big(\sqrt{2}\Big)^n\cos\left(\frac{n\pi}{4}\right)$$
 எனக் காட்டுக.

$$(a) \qquad AB^T = C$$

$$\begin{pmatrix} a & 0 & a-1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ a & a-1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} b & b-2 \\ b-2 & b-3 \end{pmatrix}$$

$$0 + a + 0 = b - 2$$

$$a = b - 2$$
 ---- ① (5)

$$a + 0 + a - 1 = b$$

$$2a-1=b$$
 ----- ② (5)

$$\bigcirc, \bigcirc \Rightarrow a = 3$$
 \bigcirc

$$b=5$$
 5

$$C = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}$$

$$C^{-1} = \frac{1}{10-9} \begin{pmatrix} 2 & -3 \\ -3 & 5 \end{pmatrix} = \begin{pmatrix} 2 & -3 \\ -3 & 5 \end{pmatrix}$$

$$C + C^{-1} = \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix} + \begin{pmatrix} 2 & -3 \\ -3 & 5 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} = 7 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 7I$$
 (5)

$$\mathbf{P} = \frac{1}{3} (\mathbf{C} - 2\mathbf{I}) = \frac{1}{3} \begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\boldsymbol{C}(\boldsymbol{Q} + \boldsymbol{P}) + \boldsymbol{A}\boldsymbol{A}^{T} = \boldsymbol{C} + \boldsymbol{C}^{-1}$$

$$C(Q+P)+AA^{T}=7I \quad \boxed{5}$$

$$\mathbf{Q} + \mathbf{P} = \mathbf{C}^{-1}(7\mathbf{I} - \mathbf{A}\mathbf{A}^T)$$

$$Q = C^{-1}(7I - AA^{T}) - P$$
 (5)

$$AA^{T} = \begin{pmatrix} 3 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 13 & 0 \\ 0 & 1 \end{pmatrix}$$
 \bigcirc

$$\mathbf{Q} = \begin{pmatrix} 2 & -3 \\ -3 & 5 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} - \begin{pmatrix} 13 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
 $\boxed{5}$

$$= \begin{pmatrix} 2 & -3 \\ -3 & 5 \end{pmatrix} \begin{pmatrix} -6 & 0 \\ 0 & 6 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -13 & -19 \\ 17 & 30 \end{pmatrix}$$
 \bigcirc

$$(b) z = \cos\theta + i\sin\theta$$

$$z^2 = (\cos\theta + i\sin\theta)^2$$

$$z^2 = \cos 2\theta + i \sin 2\theta \quad (5)$$

$$z + z^2 = (\cos \theta + \cos 2\theta) + i(\sin \theta + \sin 2\theta)$$

$$= \left(2\cos\left(\frac{\theta}{2}\right)\cos\left(\frac{3\theta}{2}\right)\right) + i\left(2\sin\left(\frac{3\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)\right)$$

$$= 2\cos\left(\frac{\theta}{2}\right)\left(\cos\left(\frac{3\theta}{2}\right) + i\sin\left(\frac{3\theta}{2}\right)\right)$$
(5)

(i)
$$Arg(z+z^2) = \frac{3\theta}{2}$$
 (5)

(ii)
$$\left|z+z^2\right|=2\cos\left(\frac{\theta}{2}\right)$$
 (5)

OACB ஓர் இணைகரம்.

$$OA = OB \left(:: |z| = |z^2| \right)$$
 (5)

 $\therefore OACB$ ஓர் சாய்சதுரம்

$$heta = \frac{\pi}{6} \Rightarrow z + z^2 = \left(\frac{\sqrt{3}}{2} + \frac{1}{2}\right) + i\left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right)$$
 (இலிருந்து) $= \left(\frac{\sqrt{3} + 1}{2}\right)(1 + i)$ $= \left(\frac{\sqrt{3} + 1}{2}\right)(1 + i)$ $= \left(\frac{\sqrt{3} + 1}{2}\right) \times \sqrt{2} = \left(\frac{\sqrt{6} + \sqrt{2}}{2}\right)$ $= \left(\frac{\sqrt{6} + \sqrt{2}}{2}\right)$

$$\cos \frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}$$
 (5)

$$(c) z = r(\cos\alpha + i\sin\alpha)$$

$$z^{n} = r^{n} \left(\cos n\alpha + i \sin n\alpha \right) \quad \boxed{5}$$

 $\overline{z} = r(\cos \alpha - i \sin \alpha)$

$$\overline{z}^n = r^n \left(\cos n\alpha - i \sin n\alpha \right)$$
 (5)

$$z^n + \overline{z}^n = 2r^n \cos n\alpha$$
 (5)

$$z=1+i$$
 என்க. $\overline{z}=1-i$ $\sqrt{5}$

$$\overline{z} = 1 - i$$

$$z = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$$
 (5)

மேலே உள்ள முடிவில் இருந்து $z^n + \overline{z}^n = 2r^n \cos n\alpha$

$$(1+i)^n + (1-i)^n = 2(\sqrt{2})^n \cos\left(\frac{n\pi}{4}\right) \qquad \boxed{5}$$

30

150

14. (*a*)
$$x \neq 2$$
 இற்கு $f(x) = \frac{(x+1)(2x-1)}{(x-2)^2}$ எனக் கொள்வோம்.

 $x \neq 2$ இற்கு f(x) இன் பெறுதி f'(x) ஆனது $f'(x) = \frac{-9x}{(x-2)^3}$ இனால் தரப்படுகின்றது எனக் காட்டுக.

இதிலிருந்து y=f(x) எனும் வரைபின் திரும்பல் புள்ளியின் ஆள்கூறுகளைக் கண்டு அது உயர்வா இழிவா என வேறுபடுத்துக.

 $x \neq 2$ இற்கு $f''(x) = \frac{18(x+1)}{(x-2)^4}$ எனத் தரப்பட்டுள்ளது. y = f(x) இன் வரைபின் விபத்தி புள்ளியின் அள்கூறுகளைக் காண்க

y=f(x) இன் வரைபை அணுகுகோடுகள், திரும்பற்புள்ளி, விபத்திப்புள்ளி ஆகியவற்றைக்காட்டிப் பரும்படியாக வரைக.

(b) O இனை மையமாகவும் 2km ஆரையும் உடைய ஏரி ஒன்று $3kmh^{-1}$ எனும் படத்தில் காட்டப்பட்டுளளது. நீந்தக்கூடியதும் $4kmh^{-1}$ எனும் சீரான கதியில் ஓடக்கூடியதுமான விலங்கு ஒன்று A யிலிருந்து B யிற்கு செல்வதற்காக யிலிருந்து P வரை நீந்தி பின்னர் P யிலிருந்து B வரை ஏரியின் கரைவழியே ஓடிச்செல்கின்றது. விலங்கானது A யிலிருந்து இனை அடைய எடுத்த மொத்தநேரம் $\it T$ மணித்தியாலங்கள் ஆகும். $\measuredangle PAB = \theta$ ஆரையன் எனக்கொள்க; இங்கு $0 < \theta < \frac{\pi}{2}$ ஆகும்.

(i)
$$T = \frac{1}{3}(4\cos\theta + 3\theta)$$
 எனக் காட்டுக.

(ii) $\frac{dT}{d\theta} = \frac{1}{3}(3 - 4\sin\theta)$ எனக் காட்டி T உயர்வாகும் θ இன் பெறுமானத்தைக் காண்க.

(a)
$$f(x) = \frac{(x+1)(2x-1)}{(x-2)^2}$$

$$f'(x) = \frac{(x-2)^2(4x+1) - (x+1)(2x-1)2(x-2)}{(x-2)^4}$$

$$= \frac{(x-2)(4x+1) - 2(x+1)(2x-1)}{(x-2)^3}$$

$$= \frac{4x^2 - 7x - 2 - 2(2x^2 + x - 1)}{(x-2)^3}$$

$$= \frac{-9x}{(x-2)^3}$$
5

$$f'(x) = 0 \iff x = 0$$

	$-\infty < x < 0$	0 < x < 2	$2 < x < \infty$
f'(x) இன் குறி	_	+	_
f(x)	குறைகின்றது	அதிகரிக்கின்றது	குறைகின்றது

(5)

$$x \neq 2$$
 இ遊க $f''(x) = \frac{18(x+1)}{(x-2)^2}$

$$f''(x) = 0 \Leftrightarrow x = -1$$

	$-\infty < x < -1$	-1 < x < 2	
f "(x) இன் குறி	_	+	
குழிவு	கீழ்நோக்கி குழிவானது	மேல்நோக்கி குழிவானது	

 \therefore விபத்திப் புள்ளி $\equiv (-1,0)$ $\bigcirc 5$

$$\lim_{x \to +\infty} f(x) = 2$$

 \therefore கிடை அணுகுகோடு: y=2

நிலைக்குத்து அணுகுகோடு: x = 2

$$f\left(x\right)=0 \Rightarrow x=-1,\ x=rac{1}{2}$$

$$\therefore \ \left(-1,\,0\right), \left(rac{1}{2},\,0\right)$$
 இல் $x-$ அச்சை வெட்டும். $x=0\ \Rightarrow\ f(0)=-rac{1}{4}$

$$x=0 \implies f(0)=-rac{1}{4}$$

 $\therefore \left(0,-rac{1}{4}
ight)$ இல் $y-$ அச்சை வெட்டும்.

(b) (i)
$$AP = 2 \times 2 \cos \theta = 4 \cos \theta$$

 $PB = 2 \times 2\theta = 4\theta$ (5)

$$T = \frac{AP}{3} + \frac{PB}{4}$$

$$= \frac{4 \cos \theta}{3} + \frac{4\theta}{4}$$
 (5)
$$= \frac{1}{3} (4 \cos \theta + 3\theta)$$
 (5)

(ii)
$$\frac{dT}{d\theta} = \frac{1}{3} (4(-\sin\theta) + 3 \times 1) \quad \boxed{0}$$

$$= \frac{1}{3} (3 - 4\sin\theta) \quad \boxed{5}$$

$$\frac{dT}{d\theta} = 0 \Rightarrow \sin\theta = \frac{3}{4} \quad \theta = \sin^{-1}\left(\frac{3}{4}\right) \quad \boxed{5}$$

$$0 < \theta < \sin^{-1}\left(\frac{3}{4}\right) \quad \text{givs} \quad \frac{dT}{d\theta} > 0 \quad \boxed{5}$$

$$\sin^{-1}\left(\frac{3}{4}\right) < \theta < \frac{\pi}{2} \quad \text{givs} \quad \frac{dT}{d\theta} < 0 \quad \boxed{5}$$

 $\therefore \theta = \sin^{-1}\left(\frac{3}{4}\right)$ ஆகம்போது T உயர்வாகும். $\boxed{5}$

50

15. (
$$a$$
) பொருத்தமான பிரதியீட்டைப் பயன்படுத்தி $I = \int_0^1 \frac{1}{(x^2+1)^2} dx = \frac{\pi}{8} + \frac{1}{4}$ எனக் காட்டுக.

$$J=\int\limits_0^1 rac{x^2}{\left(x^2+1
ight)^2} dx$$
 எனின் $I+J=rac{\pi}{4}$ எனக் காட்டி இதிலிருந்து J இனைக் காண்க.

$$(b)\ m\in\mathbb{Z}$$
 இந்கு பகுதிகளாக தொகையிடலைப் பயன்படுத்தி $\int\limits_0^{2\pi}e^x\cos\ mx\ dx=rac{1}{m^2+1}\Big(e^{2\pi}-1\Big)$ எனக் காட்டுக.

இதிலிருந்து
$$\int\limits_{0}^{2\pi}e^{x}\cos x\,\cos 2x\,\,dx=rac{3}{10}\Big(e^{2\pi}-1\Big)$$
 எனக் காட்டுக.

$$(c)$$
 $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$ எனக் காட்டுக. இதிலிருந்து $\int_{1}^{3} \frac{\cos^{2}\left(\frac{\pi}{8}x\right)}{x(4-x)} dx = \frac{1}{4}\ln 3$ எனக் காட்டுக.

$$(a)$$
 $I = \int_{0}^{1} \frac{1}{(x^2+1)^2} dx$

$$x = \tan \theta$$
 என்க. $dx = \sec^2 \theta \ d\theta$ $\sqrt{5}$

$$x \to 0$$
 ஆக $\theta \to 0$

$$x \to 0$$
 ஆв $\theta \to 0$ $x \to 1$ ஆв $\theta \to \frac{\pi}{4}$

$$I = \int_{0}^{\pi/4} \frac{1}{(1 + \tan^{2} \theta)^{2}} \sec^{2} \theta \ d\theta \quad \boxed{5}$$
$$= \int_{0}^{\pi/4} \cos^{2} \theta \ d\theta \quad \boxed{5}$$

$$= \int_{0}^{\pi/4} \frac{1 + \cos 2\theta}{2} \ d\theta \quad \boxed{5}$$

$$= \frac{1}{2} \theta \Big|_{0}^{\frac{\pi}{4}} + \frac{1}{4} \sin 2\theta \Big|_{0}^{\frac{\pi}{4}} \qquad \boxed{10}$$

$$=\frac{\pi}{8}+\frac{1}{4}$$
 (5)

$$J = \int_{0}^{1} \frac{x^2}{(x^2 + 1)^2} dx$$

$$I + J = \int_{0}^{1} \frac{x^{2} + 1}{(x^{2} + 1)^{2}} dx = \int_{0}^{1} \frac{1}{x^{2} + 1} dx = \tan^{-1} x \Big|_{0}^{1} = \frac{\pi}{4}$$
 (5)

$$I + J = \frac{\pi}{4} \implies J = \frac{\pi}{4} - \left(\frac{\pi}{8} + \frac{1}{4}\right) = \frac{\pi}{8} - \frac{1}{4}$$
 (5)

$$(b) I = \int_{0}^{2\pi} e^{x} \cos mx \, dx$$

$$= e^{x} \frac{\sin mx}{m} \Big|_{0}^{2\pi} - \int_{0}^{2\pi} e^{x} \frac{\sin mx}{m} \, dx \quad \textcircled{0}$$

$$= 0 - \frac{1}{m} \left[e^{x} \frac{(-\cos mx)}{m} \right]_{0}^{2\pi} - \int_{0}^{2\pi} e^{x} \frac{(-\cos mx)}{m} \, dx \quad \textcircled{1}$$

$$= -\frac{1}{m} \left[\frac{-e^{2\pi} + 1}{m} + \frac{1}{m} \int_{0}^{2\pi} e^{x} \cos mx \, dx \right] \quad \textcircled{3}$$

$$= \frac{e^{2\pi} - 1}{m^{2}} - \frac{1}{m^{2}} I \quad \textcircled{3}$$

$$I + \frac{1}{m^{2}} I = \frac{e^{2\pi} - 1}{m^{2}}$$

$$I = \frac{e^{2\pi} - 1}{m^{2} + 1} \quad \textcircled{3}$$

$$= \frac{1}{m^{2}} \left[\int_{0}^{2\pi} e^{x} \cos 3x \, dx + \int_{0}^{2\pi} e^{x} \cos x \, dx \right]$$

$$= \frac{1}{2} \left[\int_{0}^{2\pi} e^{x} \cos 3x \, dx + \int_{0}^{2\pi} e^{x} \cos x \, dx \right]$$

$$= \frac{1}{2} \left[\frac{e^{2\pi} - 1}{3^{2} + 1} + \frac{e^{2\pi} - 1}{1^{2} + 1} \right] \quad \textcircled{3}$$

$$= \frac{3}{10} \left(e^{2\pi} - 1 \right) \quad \textcircled{3}$$

$$I = \int_{1}^{3} \frac{\sin^{2}\left(\frac{\pi}{8}x\right)}{x(4-x)} dx - 2$$
 (5)

$$\begin{array}{l}
\boxed{1+2} \Rightarrow 2I = \int_{0}^{a} \frac{1}{x(4-x)} dx \quad \boxed{5} \\
= \int_{1}^{3} \frac{\frac{1}{4}}{x} + \frac{\frac{1}{4}}{4-x} dx \quad \boxed{5} \\
= \frac{1}{4} \left[\int_{1}^{3} \frac{1}{x} dx + \int_{1}^{3} \frac{1}{4-x} dx \right] \quad \boxed{5} \\
= \frac{1}{4} \left[\ln x \Big|_{1}^{3} - \ln |4-x| \Big|_{1}^{3} \right] \quad \boxed{5} \\
= \frac{1}{4} \left[\ln 3 - 0 - (0 - \ln 3) \right] \\
= \frac{1}{4} \ln 3 \quad \boxed{5} \\
I = \frac{1}{4} \ln 3 \quad \boxed{5}
\end{array}$$

150

16. y=mx+c எனும் நேர்கோட்டுடன் $\frac{\pi}{4}$ கோணத்தை ஆக்கிச்செல்லும் நேர்கோடுகளின் படித்திறன்கள் $\frac{m-1}{m+1}, \frac{1+m}{1-m}$ எனக் காட்டுக. இங்கு $m \neq \pm 1$ ஆகும். $A \equiv (0,-2)$ எனவும் $B \equiv (6,6)$ எனவும் கொள்வோம். A,B யினூடாகச் செல்லும் நேர்கோட்டின் சமன்பாட்டைக் கண்டு A யினூடாகச் செல்வதும் AB உடன் ஆக்கும் கூர்ங்கோணம் $\frac{\pi}{4}$ ஆகவும் உள்ள நேர்கோடுகள் l_1, l_2 ஆகியவற்றின் சமன்பாடுகளைக் காண்க. இங்கு l_1 ஆனது நேர் x- அச்சுடன்

நேர்கோடுகள் l_1, l_2 ஆகியவற்றின் சமன்பாடுகளைக் காண்க. இங்கு l_1 ஆனது நேர் x-அச்சுடன் கூர்ங்கோணம் அமைக்கின்றது. AB யின் செங்குத்து இருகூறாக்கி l' இன் சமன்பாடு $l'\equiv 3x+4y-17=0$ எனக் காட்டுக. P ஆனது l' மீதுள்ள ஒரு புள்ளி எனக் கொள்வோம். P யின் ஆள்கூறுகளை (3-4t,2+3t) எனும் வடிவில் எழுதலாம் எனக் காட்டுக.

l' ஆனது l_1, l_2 ஆகியவற்றை இடைவெட்டும் புள்ளிகள் முறையே C, D எனின் C, D ஆகியவற்றின் ஆள்கூறுகளைக் கண்டு ACBD ஓர் சதுரம் எனக் காட்டுக.

சதுரம் ACBD இன் நான்கு பக்கங்களையும் உட்புறமாகத் தொடும் வட்டம் S இன் மையம், ஆரை ஆகியவற்றை கண்டு S இன் சமன்பாடு $S\equiv x^2+y^2-6x-4y+\frac{1}{2}=0$ எனக் காட்டுக.

S ஆனது AC இனை M இலும் CB இனை N இலும் தொடுகின்றது எனில் M,N இன் ஆள்கூறுகளைக் கண்டு M,N இனூடாகச் செல்லும் வட்டங்களின் சமன்பாடு $S+\lambda U=0$ எனக் காட்டுக. இங்கு $U\equiv 8x-6y-37=0$ உம் λ பரமானமும் ஆகும். இதிலிருந்து S இனை நிமிர்கோண முறையாக இடைவெட்டுவதும் M,N இனூடாகச் செல்வதுமான வட்டத்தின் சமன்பாடு S-U=0 எனக் காட்டுக.

$$\tan\frac{\pi}{4} = \left| \frac{m - m_1}{1 + m_1 m} \right| \quad \boxed{5}$$

$$\frac{m-m_1}{1+m_1m}=\pm 1$$

$$\frac{m - m_1}{1 + m_1 m} = 1$$
or
$$m_1 = \frac{m - 1}{m + 1}$$
or
$$m_1 = \frac{1 + m}{1 - m}$$
or
$$m_1 = \frac{1 + m}{1 - m}$$

$$m_1 = \frac{m-1}{m+1} \quad \boxed{5}$$

$$m_1 = \frac{1+m}{1-m} \quad \boxed{5}$$

$$m \neq \pm 1$$

$$A \equiv (0, -2)$$
 $B \equiv (6, 6)$

$$AB$$
 யின் சமன்பாடு $\Rightarrow \frac{y+2}{6+2} = \frac{x-0}{6-0}$ (5)

$$l \equiv 4x - 3y - 6 = 0 \quad \boxed{5}$$

படித்திறன்
$$=\frac{4}{3}$$

$$AB$$
 உடன் $\frac{\pi}{4}$ ஆக்கும் கோடுகளின் படித்திறன்கள் $=\frac{\frac{4}{3}-1}{\frac{4}{3}+1}, \frac{1+\frac{4}{3}}{1-\frac{4}{3}}$ $=\frac{1}{7}, -7$ (5)

 l_1 ஆனது நேர் x – அச்சுடன் அமைக்கும் கோணம் கூர்ங்கோணம் என்பதால்,

$$l_1$$
 இன் படித்திறன் $=\frac{1}{7}$, l_2 இன் படித்திறன் $=-7$ $\boxed{5}$

$$l_1$$
 இன் சமன்பாடு $\Rightarrow y+2=\frac{1}{7}(x-0)$

$$l_1 \equiv x - 7y - 14 = 0$$
 (5)

$$l_2$$
 இன் சமன்பாடு $\Rightarrow y+2=-7(x-0)$

$$l_2 \equiv 7x + y + 2 = 0 \quad \boxed{5}$$

AB யின் நடுப்புள்ளியின் ஆள்கூறு $\equiv (3,2)$ (5)

செங்குத்து இருகூறாக்கியின் படித்திறன்
$$=-\frac{3}{4}$$
 $\boxed{5}$

செங்குத்து இருகூறாக்கியின் சமன்பாடு
$$\Rightarrow y-2=\frac{-3}{4}(x-3)$$
 (5)

$$l' \equiv 3x + 4y - 17 = 0$$

$$\frac{x-3}{-4} = \frac{y-2}{3} = t \quad \text{signs.} \quad \boxed{5}$$

$$x = 3 - 4t$$

$$y = 2 + 3t$$

 \therefore l' மீது உள்ள புள்ளியை (3-4t,2+3t) எனும் வடிவில் எழுதலாம். (5)

l' ஆனது $l_{\scriptscriptstyle 1}$ இனை இடைவெட்டும் புள்ளி \Rightarrow

$$(3-4t)-7(2+3t)-14=0$$

$$t = -1 \implies C \equiv (7, -1)$$
 (5)

l' ஆனது l_2 இனை இடைவெட்டும் புள்ளி \Rightarrow

$$7(3-4t) + (2+3t) + 2 = 0$$

$$t=1 \Rightarrow D \equiv (-1, 5)$$

$$AB = \sqrt{8^2 + 6^2} = 10$$

$$CD = \sqrt{8^2 + 6^2} = 10$$

நாந்பக்கல் ACBD யில்

$$AB = CD$$
 $AB + CD$ (5)

 $\therefore ACBD$ ஓர் சதுரமாகும். (5)

உட்புறமாக தொடும் வட்டத்தின் மையம் AB யின்

நடுப்புள்ளி ஆகும் \Rightarrow மையம் $\equiv (3,2)$ (5)

ஆரை
$$=\frac{1}{2}\times$$
 சதுரத்தின் பக்க நீளம் $=\frac{1}{2}\times\sqrt{7^2+1^2}=\frac{5\sqrt{2}}{2}$ (5)

$$\therefore$$
 வட்டத்தின் சமன்பாடு $\Rightarrow (x-3)^2 + (y-2)^2 = \frac{25}{2}$ (5)

$$S \equiv x^2 + y^2 - 6x - 4y + \frac{1}{2} = 0$$
 (5)

$$S$$
 ஆனது AC ஐ தொடும் புள்ளி $\equiv \left(\frac{7}{2}, \frac{-3}{2}\right) \equiv M$ (5)

$$S$$
 ஆனது CB ஐ தொடும் புள்ளி $\equiv \begin{pmatrix} 13/2, 5/2 \end{pmatrix} \equiv N$ (5)

$$MN$$
 இன் சமன்பாடு $\Rightarrow \frac{y+\frac{3}{2}}{\frac{5}{2}+\frac{3}{2}} = \frac{x-\frac{7}{2}}{\frac{13}{2}-\frac{7}{2}}$ (5)

$$U \equiv 8x - 6y - 37 = 0$$

 $S,\,U$ இடைவெட்டும் புள்ளிகளினூடாகச் செல்லும் வட்டங்கள்

$$S + \lambda U = 0$$
 (5)
 $x - 4y + \frac{1}{2} + \lambda (8x - 6y - 37) = 0$

$$x^{2} + y^{2} - 6x - 4y + \frac{1}{2} + \lambda(8x - 6y - 37) = 0$$

 $S, S + \lambda U$ நிமிர்கோண முறையாக இடைவெட்டுவதால்

$$2g_1g_2 + 2f_1f_2 = c_1 + c_2$$

$$2(-3)(-3+4\lambda)+2(-2)(-2-3\lambda)=\frac{1}{2}+\frac{1}{2}-37\lambda$$
 (5)

$$\lambda = -1$$
 (5)

$$\therefore$$
 வட்டத்தின் சமன்பாடு $\mathit{S}-\mathit{U}=0$ \bigcirc

- 17. (a) $\frac{\cos heta}{a} + \frac{\sin heta}{b} = \frac{1}{c}$ எனக் கொள்வோம்; இங்கு $0 < heta < \frac{\pi}{2}$ உம் $a,b,c \in \mathbb{R}$ ஆகும். $t = an \left(\frac{ heta}{2} \right)$ எனப் பிரதியிடுவதன் மூலம் $(ab+bc)t^2 2act + (ab-bc) = 0$ எனக் காட்டுக. $(\alpha + \beta)$ a
 - t இந்கான தீர்வுகள் $an\!\left(rac{lpha}{2}
 ight)\!$, $an\!\left(rac{eta}{2}
 ight)\!$ எனின் $an\!\left(rac{lpha+eta}{2}
 ight)\!=\!rac{a}{b}$ எனக் காட்டுக.
 - (b) (i) $0 < \theta < 180^\circ$ இந்கு $\sin 60^\circ \sin \theta = \sqrt{3} \sin 75^\circ \sin (45^\circ \theta)$ எனின் $\theta = 30^\circ$ எனக் காட்டுக.
 - (ii) வழக்கமான குறியீட்டில் ஒரு முக்கோணி ABC இந்கு சைன் நெறியைக் கூறுக. $_{\rm C}$ ஆகில் காட்டப்பட்டுள்ள முக்கோணி ABC யில் $_{\rm C}ACB = 60^{\circ}$, $_{\rm C}BAC = 75^{\circ}$ ஆகும். $_{\rm C}D$ ஆனது $_{\rm C}AC$ மீது $_{\rm C}BAD$ யின் பரப்பு $_{\rm C}BAD$ யின் பரப்பு எனத்தரப்படின்

- $c\sin\theta = \sqrt{3}a\,\sin(45^\circ \theta)$ எனக் காட்டுக. சைன் விதியையும் மேலே $(b)\,(i)$ இலுள்ள முடிவையும் பயன்படுத்தி θ இனைக் காண்க.
- (c) $\left(\sin^{-1}x\right)^3 + \left(\cos^{-1}x\right)^3 = \pi^3 a$ எனக் கொள்வோம்; இங்கு $-1 \le x \le 1$ ஆகும். $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$ எனும் முடிவைப்பயன்படுத்தி $\left(\sin^{-1}x \frac{\pi}{4}\right)^2 = \frac{\pi^2}{48} (32a 1)$ எனக் காட்டுக. இதிலிருந்து $a \ge \frac{1}{32}$ என உய்த்தறிக.
- $(a) \qquad \frac{\cos\theta}{a} + \frac{\sin\theta}{b} = \frac{1}{c}$

 $bc\cos\theta + ac\sin\theta = ab$

$$bc\left(\frac{1-\tan^2\frac{\theta}{2}}{\tan^2\frac{\theta}{2}+1}\right) + ac\left(\frac{2\tan\frac{\theta}{2}}{1+\tan^2\frac{\theta}{2}}\right) = ab \quad \boxed{0}$$

$$(ab+bc)\tan^2\left(\frac{\theta}{2}\right) - 2ac\tan\left(\frac{\theta}{2}\right) + (ab-bc) = 0 \quad \boxed{5}$$

$$(ab+bc)t^2-2act+(ab-bc)=0$$
 ; § $t=\tan\frac{\theta}{2}$ ஆகும்

மூலங்கள்
$$an\!\left(\!\frac{\alpha}{2}\!\right)\!,\ an\!\left(\!\frac{\beta}{2}\!\right)$$

$$\tan\left(\frac{\alpha}{2}\right) + \tan\left(\frac{\beta}{2}\right) = \frac{2ac}{ab + bc} \quad \text{(5)} \quad \tan\left(\frac{\alpha}{2}\right) \\ \tan\left(\frac{\beta}{2}\right) = \frac{ab - bc}{ab + bc} = \frac{a - c}{a + c} \quad \text{(5)}$$

$$\tan\left(\frac{\alpha+\beta}{2}\right) = \frac{\tan\left(\frac{\alpha}{2}\right) + \tan\left(\frac{\beta}{2}\right)}{1 - \tan\left(\frac{\alpha}{2}\right)\tan\left(\frac{\beta}{2}\right)} \quad \boxed{5}$$

$$= \frac{\frac{2ac}{ab + bc}}{1 - \frac{(a-c)}{(a+c)}} = \frac{\frac{2ac}{b}}{2c} = \frac{a}{b} \quad \boxed{5}$$

(b) (i)
$$\sin 60^{\circ} \sin \theta = \sqrt{3} \sin 75^{\circ} \sin (45^{\circ} - \theta)$$

$$\frac{\sqrt{3}}{2}\sin\theta = \sqrt{3}\sin75^{\circ}\sin(45^{\circ} - \theta) \qquad \boxed{5}$$

$$\sin\theta = 2\sin75^{\circ}\sin(45^{\circ} - \theta)$$

$$\sin\theta = \cos(30^{\circ} + \theta) - \cos(120^{\circ} - \theta) \qquad \boxed{5}$$

$$\sin\theta = \cos(30^{\circ} + \theta) + \cos(60^{\circ} + \theta) \qquad \boxed{5}$$

$$\sin\theta = \frac{\sqrt{3}}{2}\cos\theta - \frac{1}{2}\sin\theta + \frac{1}{2}\cos\theta - \frac{\sqrt{3}}{2}\sin\theta \qquad \boxed{5}$$

$$\frac{3+\sqrt{3}}{2}\sin\theta = \frac{\sqrt{3}+1}{2}\cos\theta$$

$$\tan\theta = \frac{1}{\sqrt{3}} \quad (5)$$

$$\theta = 30^{\circ} \ (\because 0 < \theta < 180^{\circ}) \ (5)$$

$$(ii)$$
 சைன் விதி $\Rightarrow \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ (10)

 ΔBAD யின் பரப்பு $=\sqrt{3}~\Delta BCD$ யின் பரப்பு $\frac{1}{2} \times BD \times AB \times \sin \theta = \sqrt{3} \times \frac{1}{2} \times BD \times BC \times \sin(45^{\circ} - \theta)$

$$c\sin\theta = \sqrt{3} \ a\sin\left(45^\circ - \theta\right) \ \boxed{5}$$

$$k \sin 60^{\circ} \sin \theta = \sqrt{3} k \sin 75^{\circ} \sin(45^{\circ} - \theta)$$

$$\sin 60^{\circ} \sin \theta = \sqrt{3} \sin 75^{\circ} \sin(45^{\circ} - \theta)$$

$$(5)$$

மேலே (i) இலிருந்து
$$\theta = 30^{\circ}$$
 (5)

70

 75°

(c)
$$(\sin^{-1} x)^3 + (\cos^{-1} x)^3 = a\pi^3$$

$$\left(\sin^{-1} x\right)^3 + \left(\frac{\pi}{2} - \sin^{-1} x\right)^3 = a\pi^3$$
 (5)

$$\frac{\pi^3}{8} + \frac{3\pi}{2} \left(\sin^{-1} x \right)^2 - \frac{3\pi^2}{4} \left(\sin^{-1} x \right) = a\pi^3 \quad \boxed{10}$$

$$12(\sin^{-1}x)^2 - 6\pi(\sin^{-1}x) = 8a\pi^2 - \pi^2$$

$$(\sin^{-1} x)^{2} - \frac{\pi}{2} (\sin^{-1} x) = \frac{1}{12} (8a\pi^{2} - \pi^{2})$$

$$(\sin^{-1} x - \frac{\pi}{4})^{2} - \frac{\pi^{2}}{16} = \frac{1}{12} (8a - 1)\pi^{2}$$

$$(\sin^{-1} x - \frac{\pi}{4})^{2} = (\frac{1}{12} (8a - 1) + \frac{1}{16})\pi^{2}$$

$$= \frac{\pi^{2}}{48} (32a - 1)$$

$$(\sin^{-1} x - \frac{\pi}{4})^{2} \ge 0$$

150

米米米

மொநட்டுவைப் பல்கலைக்கழக பொநியியற் பீட தமிழ் மாணவர்கள் நடாத்தும் க.பொ.த உயர்தர மாணவர்களுக்கான 12^{வது}

முன்னோடிப் பரீட்சை 2021

10(II) - இணைந்தகணிதம் II

விடைகள் (புள்ளியிடும் திட்டம்)

Prepared By P. Senthilnathan B.Sc, Dip in Ed

Mora E-fac Tamil Students 2021 | Examination Committee

I = Δ(mu) System $O = (2mV_1 + mV_2) - (-2mu + m.o)$ 05 + 05

⇒ $2V_1 + V_2 = 2u$(1)

Newton's Experimental Law. $-V_1 + V_2 = \frac{1}{2}(u + o)$ 05 $-2V_1 + 2V_2 = u$(2)

(1) + (2) ⇒ $V_2 = u$, (1) ⇒ $V_1 = \frac{u}{2}$ 05 $E_A : E_B = \frac{1}{2}(2m)V_1^2 : \frac{1}{2}mV_2^2 \Rightarrow E_A : E_B = 1:2$ 05

கிடை நிலத்தில் உள்ள புள்ளி O விலிருந்து கிடையுடன் கோணம் θ $(0 < \theta < 90)$ இல் $u = \sqrt{ag}$ வேகத்துடன் துணிக்கை ஒன்று புவியீர்ப்பின் கீழ் எறியப்படுகிறது. அது தன் பாதையில் கிடைத்தூரம் $\frac{a}{2}$ இல் இருக்கும் உயரம் λa ஐக் கொண்ட புள்ளியினூடு செல்லின் $\tan^2 \theta - 4 \tan \theta + (8\lambda + 1) = 0$ எனக்காட்டுக. $\lambda \leq \frac{3}{8}$ என உய்த்தறிக.

$$(O \to P), S = ut + \frac{1}{2}at^{2}$$

$$\to, \frac{a}{2} = u\cos\theta t + 0 \Rightarrow t = \frac{a}{2u\cos\theta}$$

$$\uparrow \lambda a = u\sin\theta \times t - \frac{1}{2}gt^{2}$$

$$05$$

$$\lambda a = u\sin\theta \times \frac{a}{2u\cos\theta} - \frac{1}{2}g \times \frac{a^{2}}{4u^{2}\cos^{2}\theta}$$

$$\lambda = \frac{1}{2} \tan \theta - \frac{ag}{8 \times ag} \times (1 + \tan^2 \theta) \Rightarrow \tan^2 \theta - 4 \tan \theta + (8\lambda + 1) = 0$$

an heta இன் மெய் பெறுமானத்திற்கு

$$\Delta \ge 0$$

$$\Rightarrow (-4)^2 - 4 \times 1 \times (8\lambda + 1) \ge 0$$

$$4 - 8\lambda - 1 \ge 0 \Rightarrow \lambda \le \frac{3}{8}$$
05

25

3) ஓப்பமான கிடை மேசையில் வைக்கப்பட்டுள்ள M திணிவுடைய துணிக்கை P இற்கு இலேசான நீட்ட முடியாத இழையொன்றின் ஒரு முனை இணைக்கப்பட்டுள்ளது. இழையானது மேசையின் விளிம்பில் நிலைப்படுத்தப்பட்ட ஒப்பமான கப்பியிற்கு மேலாகச் சென்று M திணிவுடைய இயங்கும் ஒப்பமான கப்பி Q இன் கீழாகச் சென்று மறுமுனை நிலையான புள்ளி O இற்கு இணைக்கப்பட்டுள்ளது. கப்பியுடன் தொடுகையுறாத இழையின் பகுதிகள் கிடையாக or நிலைக்குத்தாக உள்ளதோடு மேசையின் விளிம்பிற்கு செங்குத்தாகவும் உள்ளன. ஆரம்பத்தில் இழை இறுக்கமாகவும் P ஆனது மேசையின் விளிம்பில் இருந்து ℓ துரரத்திலும் இருக்க ஓய்வில் இருந்து விடுவிக்கப்படுகிறது. P இன் ஆர்முடுகல் $\frac{2g}{5}$ எனக் காட்டுக. மேலும் P ஆனது மேசையின் விளிம்பை அடையும் போது Q இன் வேகத்தைக் காண்க.

4) a,b என்பன மாறிலிகளாக இருக்க $1000 \, \mathrm{kg}$ திணிவுடைய கார் பருமன் (a+bv)N வடிவத்தினுடைய தடைவிசைக்கு எதிராக ஒரு நேர்கிடைவீதியில் செல்கிறது. இங்கு V ஆனது ms^{-1} இல் காரின் கதியாகும். கார் $10ms^{-1}$ கதியில் செல்லின் தடைவிசை $1500 \, \mathrm{N}$ ஆக காணப்படுகிறது. காரின் எஞ்சின் $40 \, \mathrm{kW}$ வலுவில் தொழிற்படும் போது உயர்கதி $20ms^{-1}$ ஆக உள்ளது. a,b இன் பெறுமானங்களைக் காண்க.

5) .மையம் O இல் θ கோணம் எதிரமைக்கும் a ஆரையுடைய ஒப்பமான மெல்லிய ஒடுக்கமான குழாய் AB நிலைக்குத்து தளத்தில் OA கிடையாக இருக்க நிலைப்படுத்தப்பட்டுள்ளது. m திணிவுடைய துணிக்கை, A இல் குழாயினுள் நிலக்குத்தாக மேல்நோக்கி \sqrt{ag} கதியுடன் எறியப்படுகிறது. தொடரும் இயக்கத்தில் துணிக்கை B ஐ **மட்டுமட்டாக** அடைந்து, பின் புவியீர்ப்பின் கீழ் நிலைக்குத்தாக கீழ்நோக்கி விழுகிறது. $\theta = 30^{\circ}$ எனக் காட்டுக. துணிக்கை புவியீர்ப்பின் கீழ் இயங்கி OA இல் உள்ள புள்ளி C ஐ அடைய எடுத்த நேரத்தைக் காண்க.

$$(S_1 \rightarrow S_2)$$
 ச.கா.விதி
$$\frac{1}{2} \times m \times \left(\sqrt{ag}\right)^2 = mg \times aSin \theta \quad \boxed{05} + \boxed{05}$$
 $\Rightarrow \frac{1}{2} \times ag = ag \sin \theta \Rightarrow \sin \theta = \frac{1}{2} \Rightarrow \theta = 30^{\circ} \quad \boxed{05}$ $S = ut + \frac{1}{2}at^2$
$$\downarrow a \sin \theta = 0 + \frac{1}{2} \times g \times t^2 \quad \boxed{05}$$
 $aSin 30 = \frac{1}{2}gt^2 \Rightarrow t = \sqrt{\frac{a}{g}} \quad \boxed{05}$

25

25

6) வழக்கமான குறியீட்டில் A,B,C ஆகியபுள்ளிகள் $\overrightarrow{AB} = -2\underline{i} + 4\underline{j}, \overrightarrow{OB} = 2\underline{i} + 7\underline{j}, \overrightarrow{OC} = \underline{i} + 9\underline{j},$ ஆகுமாறுள்ளன. இங்கு O ஆனது உற்பத்தி ஆகும். A,B,C ஆகியன ஒரு நேர்கோட்டில் உள்ள புள்ளிகள் எனக் காட்டுக.

OA மீது புள்ளி D ஆனது $\overrightarrow{BD}=(4\lambda-2)\underline{i}+(3\lambda-7)\underline{j}$ ஆகுமாறுள்ளது. இங்கு λ எண்ணி. BD // CO எனின் $\lambda=\frac{1}{3}$ எனக்காட்டுக.

$$\overrightarrow{AB} = -2\underline{i} + 4\underline{j} \dots (1)$$

$$\overrightarrow{OB} = 2\underline{i} + 7\underline{j}, \overrightarrow{OC} = \underline{i} + 9\underline{j}$$

$$\overrightarrow{BC} = \overrightarrow{BO} + \overrightarrow{OC} \Rightarrow \overrightarrow{BC} = -\underline{i} + 2\underline{j} \dots (2) \quad 05$$

$$(1),(2) \Rightarrow \overrightarrow{AB} = 2\overrightarrow{BC}$$

$$\therefore AB//BC \Rightarrow A,B,C \text{ GpiGanie} \oplus \text{ Upinfilasin} \quad 05$$

$$\overrightarrow{BD} = (4\lambda - 2)\underline{i} + (3\lambda - 7)\underline{j}, \overrightarrow{CO} = -(\underline{i} + 9\underline{j})$$

$$\overrightarrow{BD}//\overrightarrow{CO} \Rightarrow \overrightarrow{BD} = \mu \overrightarrow{CO}; \quad \mu - \text{simin} \quad \Rightarrow (4\lambda - 2)\underline{i} + (3\lambda - 7)\underline{j} = \mu(\underline{-i} - 9\underline{j}) \quad 05$$

$$\text{But } \underline{i} \neq \underline{j}$$

$$\therefore \underline{i} \Rightarrow 4\lambda - 2 = -\mu$$

$$\underline{j} \Rightarrow 3\lambda - 7 = -9\mu \quad 05$$

$$4\lambda - 2 = \frac{1}{9}$$

$$36\lambda - 18 = 3\lambda - 7 \Rightarrow 33\lambda = 11 \Rightarrow \lambda = \frac{1}{2}$$

$$05$$

7) W நிறையும், 2a நீளமும் உடைய சீரான கோலின் முனை A ஆனது ஒப்பமான கிடைத்தரை, நிலைக்குத்து சுவர் என்பன இடைவெட்டுக் கோட்டில் இரண்டினுடனும் பொறுத்திருக்க, மறுமுனை B ஆனது ஒப்பமான முளையில் தாங்கப்பட்டு கோல் கிடையுடன் θ கோணத்தில் இருக்க சமநிலையில் முளையில் மறுதாக்கம்

 $\frac{w}{2\sqrt{2}}$ ஆகுமெனின் $heta=45^{
m o}$ எனக் காட்டுக. A இல் மறுதாக்கத்தின் கிடை, நிலைக் கூறுகளைக் காண்க.

A இல் உள்ள மறுதாக்கமும் B இல் உள்ள மறுதாக்கமும் சந்திக்கும் புள்ளிக்கு சுவரில் இருந்தான கிடைத்தூரம் யாது?

$$A \rightarrow \frac{w}{2\sqrt{2}} \times 2a - w \times a \cos \theta = 0$$

$$\Rightarrow \cos \theta = \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{\pi}{4}$$

$$\Rightarrow X - \frac{w}{2\sqrt{2}} \cos \frac{\pi}{4} = 0$$

$$\Rightarrow X = \frac{w}{4} \qquad 05$$

$$\uparrow Y + \frac{w}{2\sqrt{2}} \sin \frac{\pi}{4} - w = 0$$

$$\Rightarrow Y = \frac{3w}{4} \qquad 05$$

$$x = a \cos \theta = a \cos \frac{\pi}{4} = \frac{a}{\sqrt{2}} \qquad 05$$

கரடான கிடையுடன் θ சாய்வுள்ள சாய்தளத்தின் மேல் விளிம்பில் நிலைப்படுத்தப்பட்டுள்ள ஒப்பமான கப்பியின் மேலாகச் செல்லும் நீட்டமுடியாத இலேசான இழையின் முனைகளில் முறையே ஒவ்வொன்றும் W நிறையுடைய P,Q எனும் இரு துணிக்கைகள் இணைக்கப்பட்டுள்ளன. படத்தில் காட்டியவாறு P யானது சுயாதீனமாக தொங்கிக்கொண்டும் Q சாய்தளத்திலும் இருக்க, இழை இறுக்கமாகவும் அதன் பகுதிகள் சாய்தளத்தின் விளிம்பிற்கு செங்குத்தாகவும் இருக்க எல்லைச்சமநிலையில் உள்ளன. Q – தளம் இடையிலான உராய்வுக்குணகம் $\frac{1}{2}$ எனின் $\sec\theta - \tan\theta = \frac{1}{2}$ எனக் காட்டுக. மேலும் $\sec\theta$, $\tan\theta$ இற்கிடையில் பிறிதொரு தொடர்பைப் பெற்று $\cos\theta = \frac{4}{5}$ என உய்த்தறிக.

(P),
$$\uparrow T = W$$

(Q), $f = W \cos \theta$

$$f = W (1 - \sin \theta)$$

Significantly of the problem with $f = 1/2$

$$\frac{W(1 - \sin \theta)}{W \cos \theta} = 1/2$$

$$\Rightarrow Sec \theta - \tan \theta = 1/2$$

$$Sec^2 \theta - \tan^2 \theta = 1 \Rightarrow \sec \theta + \tan \theta = 2$$
(1) (1) (2) $\Rightarrow Sec \theta = 5/4 \Rightarrow \cos \theta = 4/5$ (05)

P.SENTHILNATHAN | COMBINED MATHEMATICS II MORA E-TAMILS 2021 | EXAMINATION COMMITTEE

9)
$$A,B$$
 என்பன மாதிரி வெளியொன்றில் வரையப்பட்ட இரு சாரா நிகழ்ச்சிகளாகவும் $P(A) = x, P(B) = x - \frac{1}{10}$, $P(A \cup B) = \frac{7}{10}$ ஆகவும் உள்ளன. x இன் பெறுமானத்தைக் காண்க.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 05

$$P(A \cup B) = P(A) + P(B) - P(A) \cdot P(B)$$
, A,B சாராதவை

$$\frac{7}{10} = x + \left(x - \frac{1}{10}\right) - x\left(x - \frac{1}{10}\right)$$

$$\Rightarrow 10x^{2} - 21x + 8 = 0 \Rightarrow (5x - 8)(2x - 1) = 0 \Rightarrow x = \frac{8}{5}, \frac{1}{2}$$

$$\therefore x = \frac{1}{2}, \quad \therefore x < 1$$

$$05$$

10) ஓவ்வொன்றும் 7 அல்லது 7 இலும் குறைவான நேர் நிறை எண்களின் 5 நோக்கல்களைக் கொண்ட ஒரு தொடையின் இடை, இடையம், ஆகாரம் ஆகிய ஒவ்வொன்றும் 4 இந்கு சமனாகும், நோக்கல்களின் மிகக்குறைந்த, மிக்ககூடிய நோக்கல்களின் கூட்டுத்தொகை 9 ஆகும். ஆகார நோக்கல் இருதடவைக்கு மேற்படாமலும், மற்றயவை எல்லாம் சமனில்லாதவைகளாகவும் இருப்பின் இவ் ஐந்து நோக்கங்களையும் காண்க.

மிகக்குறைந்த நோக்கல் = x

மிகக்கூடிய நோக்கல் = y என்க.

$$x + y = 9$$
(1)

ஆகாரம் 4 ⇒4,4

மற்றைய நோக்கல் z என்க

$$9 + 8 + z = 20$$

$$z=3$$
 05

$$(1)$$
 $\Rightarrow x = 2, y = 7,$ \therefore நோக்கல்கள் ≤ 7 and $x, y \neq 3,4$ 05

உருவில் காட்டப்பட்டுள்ளவாறு P,Q,R எனும் மூன்று புகையிரத நிலையங்கள் PQ = akm, QR = 100km ஆக இருக்குமாறு ஒரு நேர்கோட்டில் உள்ளன. நேரம் t = 0 இல் ஒரு புகைவண்டி X ஆனது P ஐ $2ukmh^{-1}$ இல் கடந்து $fkmh^{-2}$ எனும் சீரான ஆர்முடுகலுடன் இயங்கி t = 1h இன் பின் குறித்த நேரத்திற்கு மாறா வேகத்துடன் இயங்கி இறுதியாக $4fkmh^{-2}$ எனும் அமர்முடுகலுடன் $\frac{1}{2}h$ இற்கு இயங்கி நிலையம் Q இல் t = T இல் ஒய்விற்குவருகிறது. நேரம் t = 1h இல் வேறொரு புகைவண்டி Y ஆனது R ஐ $5ukmh^{-1}$ இல் கடந்து $fkmh^{-2}$ எனும் அமர்முடுகலில் இயங்கி $3ukmh^{-1}$ எனும் வேகத்தைப் பெற்று அக்கணத்தில் ஏற்பட்ட கணக்குலுக்கம் காரணமாக அதன் வேகம் $2ukmh^{-1}$ ஆக திடீரென குறைகிறது. பின்னர் தொடர்ந்து அதே அமர்முடுகல் $fkmh^{-2}$ இல் இயங்கி Q இல் ஒய்விற்கு வருகிறது. இரு புகையிரதங்களும் ஒரே கணத்தில் ஒய்விற்கு வருகின்றன. X,Y இன் இயக்கங்களிற்கு வேக - நேர வரைபுகளை ஒரே வரிப்படத்தில் பரும்படியாக வரைக. இதிலிருந்து அல்லது வேறுவிதமாக T = 3, u = 20, f = 40 எனக் காட்டி a இன் பெறுமானத்தைக் காண்க.

$$\tan \theta = f$$

$$\Rightarrow \frac{v - 2u}{1} = f$$

$$v - 2u = f \dots (1)$$

$$\tan \alpha = 4f$$

$$\Rightarrow \frac{v}{1/2} = 4f$$

$$\Rightarrow v = 2f \dots (2)$$

$$v = 2(v - 2u)$$

$$\Rightarrow v = 4u$$

$$(2) \Rightarrow 4u = 2f$$

$$2u = f \dots (3)$$

$$\tan \theta = f$$

$$\Rightarrow \frac{2u}{t_1} = f$$

$$\Rightarrow t_1 = \frac{2u}{f}$$

$$\Rightarrow t_1 = 1$$

$$05$$

$$\Delta HIJ \equiv \Delta BDK$$

$$\therefore BD = IJ$$

2.

சரிவகம் ABJH பரப்பு + Δ BDK பரப்பு =100 05 $\frac{1}{2}(5u+3u)\times 1+\frac{1}{2}\times 1\times 2u=100$ 05 $\Rightarrow u=20$ 05

$$(3) \Rightarrow f = 40$$

$$(2) \Rightarrow v = 80$$
05

 $\Rightarrow BD = 1$ $\therefore T = 1 + 1 + 1 = 3$

2_ (б OEFGD идіц = a \Rightarrow ғубалый ОАFE идіц + ғубалый ADGE идіц = a $= \frac{1}{2}(2u+v)\times 1 + \frac{1}{2}\times \left(2+\frac{3}{2}\right)v$ 05 $= \frac{1}{2}\times 120 + \frac{1}{2}\times \frac{7}{2}\times 80$ $\Rightarrow a = 200$ 05

b) a அகலமான நேர் கரைகளையுடைய ஓர் ஆறு u என்ற மாறாக்கதியில் பாய்கின்றது. X என்பது ஆற்றின் கரையில் உள்ள ஒரு புள்ளியாகும். Y என்பது X இற்கு நேர் எதிரே ஆற்றின் நடுவில் உள்ள ஒரு புள்ளியாகும். படகு ஒன்று ஆறு சார்பாக λu கதியுடன் ஆறு பாயும் திசைக்கு எதிர் திசையுடன் θ

$$\left(0< heta<rac{\pi}{2}
ight)$$
 என்னும் ஒரு கோணம் அமைய X . இலிருந்து புறப்பட்டு செல்கிறது.

படகு ஆறு பாயும் திசையிலே Y இற்கு நேர் எதிரே உள்ள Z என்னும் புள்ளியை அடைகிறது. அதன் பின் படகு ஆறுபாயும் திசைக்கு எதிர் திசையிலே Z இலிருந்து Y இற்கு செல்கிறது. படகின் X இலிருந்து Z வரையேயான இயக்கத்திற்கு வேகமுக்கோணத்தை வரைந்து, புவி தொடர்பான படகின் இயக்கத்திசை ஆறுபாயும் திசையுடன் $\tan^{-1}\!\left(\frac{\lambda\sin\theta}{1\!-\!\lambda\cos\theta}\right)$ எனக்காட்டுக. இங்கு $1\!<\!\lambda\!<\!\sec\theta$.

மேலும் படகின் X இலிருந்து Y வரையான முழு இயக்கதத்திற்கான நேரம் $\dfrac{a}{2(\lambda-1)u} an \left(\dfrac{\theta}{2}\right)$ எனவும் காட்டுக.

$$V_{RE} = \rightarrow u, V_{B,R} = \stackrel{\lambda u}{\Psi}$$

படகு B, ஆறு – R, பூமி –E

சார்பு வேக கோட்பாடு

$$V_{B,E} = V_{B,R} + V_{RE}$$

05

வேக முக்கோணம்

Sin - Rule

$$\frac{v_1}{\sin \theta} = \frac{\lambda u}{\sin \alpha} = \frac{u}{\sin \left[180 - (\theta + \alpha)\right]}$$

$$\frac{\lambda u}{\sin \alpha} = \frac{u}{\sin(\theta + \alpha)}$$

 $\lambda(\sin\theta\cos\alpha + \cos\theta\sin\alpha) = \sin\alpha$

 $\lambda \sin \theta + \lambda \cos \alpha \tan \alpha = \tan \alpha$

$$\Rightarrow \tan \alpha = \frac{\lambda \sin \theta}{1 - \lambda \cos \theta} \qquad \boxed{05}$$

35

$$V_{2} = \lambda u - u$$

$$\Rightarrow V_{2} = (\lambda - 1)u \quad \boxed{05}$$

$$T = \frac{XZ}{v_{1}} + \frac{ZY}{v_{2}} \quad \boxed{05}$$

$$= \frac{\left(\frac{a/2}{\sin \alpha}\right)}{v_{1}} + \frac{a/2 \cot \alpha}{v_{2}} \quad \boxed{05}$$

$$= \frac{a}{2\lambda u \sin \theta} + \frac{a}{2(\lambda - 1)u} \times \frac{(1 - \lambda \cos \theta)}{\lambda \sin \theta} \quad \boxed{05}$$

$$= \frac{a}{2\lambda u \sin \theta} \left[1 + \frac{1 - \lambda \cos \theta}{\lambda - 1}\right]$$

$$= \frac{a}{2\lambda u \sin \theta} \frac{\lambda(1 - \cos \theta)}{(\lambda - 1)}$$

$$= \frac{a}{2(\lambda - 1)u} \frac{2\sin^{2} \theta/2}{2\sin \theta/2 \cos \theta/2} \quad \boxed{05}$$

$$\Rightarrow T = \frac{a \tan \theta/2}{2(\lambda - 1)u}$$

12)

a) உருவில் $\triangle ABC$ ஆனது $\stackrel{\wedge}{ABC}=\alpha, \stackrel{\wedge}{ACB}=\frac{\pi}{2},$

AD = a ஆகவுள்ளதும் AB ஜக் கொண்ட முகம் ஒப்பமான கிடையுடன் lpha சாய்வுள்ள சாய்தளத்தில் வைக்கப்பட்ட திணிவு உடைய ஓர் ஒப்பமான சீரான ஆப்பின் புவியீர்ப்பு மையத்தினூடாக உள்ளதுமான நிலைக்குத்து குறுக்குவெட்டாகும். BC கொண்ட ജ கிடையாகவும் AB இற்கு சமாந்தரமாக மெல்லிய ஒப்பமான தவாளிப்பு DE உள்ளது. P,Q எனும் துணிக்கைகள் முறையே 2m,m திணிவுடைய நுனிகளில் இலேசான நீட்டமுடியாத இழையின் தொடுக்கப்பட்டுள்ளன. இழையானது ஆப்பின் D இல் உள்ள இலேசான ஒப்பமான கப்பியினூடாகவும் G இல் உள்ள நிலையான $_{D}$ ஒப்பமான கப்பியினூடாகவும் சென்று படத்தில்

காட்டியவாறு P,Q என்பன சுயாதீனமாக தொங்கியவண்ணமுள்ளன. இழையின் பகுதி DG ஆனது AB இற்கு சமாந்தரமாகவுள்ளது. ஆரம்பத்தில் இழை இறுக்கமாகவும் P ஆனது கப்பி D இற்கு அருகிலும் இருக்க தொகுதி ஒய்விலிருந்து விடப்படுகிறது. துணிக்கை P ஆனது A ஜ அடைய எடுக்கும் நேரத்தை துணிவதற்கு போதிய சமன்பாடுகளை எழுதுக.

$$x + y + z =$$
 மாறிலி t குறித்து வகையிட

$$x + y + z = 0$$

மீண்டும் t குறித்து வகையிட

$$\ddot{x} + \ddot{y} + \ddot{z} = 0$$
....(1) 05

$$\ddot{x} = f, \ddot{y} = F$$
 என்க

ஆப்பு X என்க

$$a_{P,X} = \downarrow f, a_{X,E} = \swarrow F$$

சார்பு ஆர்முடுகல் கோட்பாடு

$$a_{P,E} = a_{P,X} + a_{X,E}$$
 05

$$= \downarrow f + \checkmark F$$

$$=$$
 F
 f

$$(1) \implies f + F + \ddot{z} = 0$$

$$\ddot{Z} = -(f + F)$$

40

$$F = ma$$

(P),
$$\downarrow 2mg - T = 2m(f + F \sin\alpha)$$
(1) 05

(ஆப்பு + துணிக்கை P) இற்கு

$$\checkmark$$
 mg sin α + 2mg sin α -T= 2m(F+ f sin α) + mF

$$\Rightarrow 3\text{mg} - \text{T} = 3\text{mF} + 2\text{mSin } \alpha f \qquad \dots (2)$$

P.SENTHILNATHAN | COMBINED MATHEMATICS II MORA E-TAMILS 2021 | EXAMINATION COMMITTEE

(Q),
$$\uparrow T - mg = m (f + F)$$
(3)

ஆப்பின் சட்டத்தில் துணிக்கை P இற்கு

$$\downarrow S = ut + \frac{1}{2}at^2$$

 $a=O+rac{1}{2}ft^2$, இங்கு $\, {
m t}\,$ என்பது ${
m P}\,$ ஆனது $\, {
m A}\,$ ஐ அடைய எடுத்த நேரம்

$$\Rightarrow t = \sqrt{\frac{2a}{f}} \quad \boxed{05}$$

30

b) உருவில் காட்டப்பட்டுள்ளவாறு நிலைக்குத்துத் தளத்தில் ABCD எனும் ஒப்பமான வட்டக்கம்பியின் ஒரு பகுதி நிலைப்படுத்தப்பட்டுள்ளது. கம்பியின் மையம் O உம், ஆரை
 a உம், AÔD = α உம் ஆகும். AOC நிலைக்குத்தாகவும் உள்ளது. E எனும் புள்ளி AC இல் D யினூடாக உள்ள கிடைமட்டத்தில் உள்ளது. m திணிவுடைய சிறிய மணி P

ஆனது A இல் வைக்கப்பட்டு அதற்கு கிடையாக ஒரு வேகம் ${\bf u}$ தரப்படும் அதே வேகை அது கப்பி வழியே இயங்கத் தொடங்குகிறது. இங்கு $u=\frac{\sqrt{3ag}}{2}$

 $\stackrel{
ightarrow}{OP}$ ஆனது $\stackrel{
ightarrow}{OA}$ உடன் ஒரு கோணம் θ $(O \le \theta \le 2\pi - \alpha)$ ஐ ஆக்கும் போது மணி P இன் கதி v ஆனது $v^2 = \frac{ag}{4}(11 - 8\cos\theta)$ இனால் தரப்படும் எனக் காட்டுக.

மேற்குறித்த தானத்தில் கம்பியிலிருந்து மணி P மீதுள்ள மறுதாக்கத்தைக் கண்டு $\theta = \cos^{-1} \left(\frac{11}{12} \right)$ ஆகவுள்ள புள்ளியை மணி P கடக்கும் போது அது தன் திசையை மாற்றும் எனக் காட்டுக.

மேலும் துணிக்கை P,D இல் கம்பியைவிட்டு வெளியேறும் வேகத்தை α,a,g இல் காண்க. தொடரும் புவியீர்ப்பின் கீழ் இயக்கத்தில் துணிக்கை P ஆனது E யினூடு செல்லின் α ஆனது $8\cos^2\alpha-11\cos\alpha+2=0$ எனும் சமன்பாட்டை திருப்தியாக்கும் எனக்காட்டுக.

$$(S_1 - S_2)$$
 ச.கா.வி
$$\frac{1}{2}mu^2 + mg(a - a\cos\theta) = \frac{1}{2}mv^2$$
 05 05 05 05
$$\Rightarrow v^2 = u^2 + 2ag(1 - \cos\theta)$$

$$u = \frac{\sqrt{3ag}}{2} \Rightarrow v^2 = \frac{3ag}{4} + 2ag(1 - \cos\theta)$$

$$\Rightarrow v^2 = \frac{ag}{4}(11 - 8\cos\theta)$$
 05(1)

P.SENTHILNATHAN | COMBINED MATHEMATICS II

MORA E-TAMILS 2021 | EXAMINATION COMMITTEE

$$(S_2), \searrow \underline{F} = m\underline{a}$$

$$mg\cos\theta - R = \frac{mv^2}{a}$$
 10

$$\Rightarrow R = mg\cos\theta - \frac{m}{a} \times \frac{ag}{4}(11 - 8\cos\theta)$$
 05

$$R = 3mg\left(\cos\theta - \frac{11}{12}\right) \quad \boxed{05}$$

$$R = 3mg(\cos\theta - \cos\beta)$$
, இங்கு $\cos\beta = \frac{11}{12}$

$$0 < \theta < \beta \Rightarrow R > 0$$

$$\beta < \theta < \pi \Rightarrow R < 0$$
05

$$\therefore$$
 $\theta = \beta = Cos^{-1} \left(\frac{1}{12} \right)$ இல் மறுதாக்கம் தனது திசையை புறமாற்றும்

$$\theta = 2\pi - \alpha$$
 இல் $v = w$ என்க

$$(1) \Rightarrow w^2 = \frac{ag}{4} \left[11 - 8\cos(2\pi - \alpha) \right]$$

$$\Rightarrow w = \frac{1}{2} \sqrt{ag(11 - 8\cos\alpha)}$$

புவியீர்ப்பின் கீழ் இயக்கத்திற்கு

$$(D \rightarrow E)$$
, $S = ut + \frac{1}{2}at^2$

$$\uparrow 0 = w \sin \alpha t - \frac{1}{2} g t^2, :: t \neq 0$$

$$\Rightarrow t = \frac{2w}{g} \sin \alpha \qquad \boxed{\text{05}}$$

$$\leftarrow a \sin \alpha = w \cos \alpha \times t + 0$$

$$\Rightarrow a \sin \alpha = w \cos \alpha \times \frac{2w}{g} \sin \alpha$$

$$ag = 2w^2 \cos \alpha$$

$$ag = 2\cos\alpha \cdot \frac{ag}{4}(11 - 8\cos\alpha)$$
 05

$$\Rightarrow 2 = 11\cos\alpha - 8\cos^2\alpha$$

$$\Rightarrow 8\cos^2 \alpha - 11\cos \alpha + 2 = 0$$
 05

உருவில் காட்டப்பட்டுள்ளவாறு ஓர் ஒப்பமான கிடையுடன் 30° இல் உள்ள தளத்தின் மீது A,B,O,C_0,C,D ஆகிய புள்ளிகள் அதே வரிசையில் ஒரு நேர்கோட்டில் $AB=2a,BO=a,OC_0=a$ $C_0C=a,CD=2a$ ஆகுமாறு உள்ளன. இயற்கை நீளம் 2a ஜயும் மீள்தன்மை மட்டு λ_1 ஜயும் உடைய ஒர் இலேசான மீள்தன்மை இழையின் ஒரு நுனி புள்ளி A உடனும் மற்றைய நுனி திணிவு m ஜ உடைய ஒரு துணிக்கை P உடனும் இணைக்கப்பட்டுள்ளன. இயற்கை நீளம் 2a ஜயும் மீள்தன்மை மட்டு λ_2 ஜயும் உடைய வேறொரு இலேசான மீள்தன்மை இழையின் ஒரு நுனி புள்ளி D உடனும் மற்றைய நுனி துணிக்கை P உடனும் இணைக்கப்பட்டுள்ளன. துணிக்கை P ஆனது P இல் பிடிக்கப்பட்டு விடப்படும் போது அது நாப்பத்தில் இருக்கிறது. $\lambda_1:\lambda_2=3:2$ எனின் $\lambda_1=3mg,\lambda_2=2mg$ எனக் காட்டுக.

இப்போது துணிக்கை P ஆனது C இற்கு கொண்டுவரப்பட்டு ஒய்வில் இருந்து விடுவிக்கப்படுகிறது. C இல் இருந்து B வரைக்கும் P இன் இயக்கத்திற்கான சமன்பாடு $x + \frac{5g}{2a}(x - 2a) = 0$ இனால் தரப்படுகிறது. எனக்காட்டுக இங்கு CP = x ஆகும். இச்சமன்பாட்டை $X = -\omega^2 X$ எனும் வடிவில் உருமாற்றுக. இங்கு X = x - 2a, $\omega = \sqrt{\frac{5g}{2a}}$ ஆகும்.

 $\dot{X}^2 = \omega^2 \left(a_1^{\ 2} - X^2\right)$ ஜப் பயன்படுத்தி துணிக்கை P ஆனது B ஜ அடையும் போது அதன் வேகம் $\sqrt{\frac{15ag}{2}}$ எனக் காட்டுக. இங்கு a_1 வீச்சமாகும். மேலும் P ஆனது B ஜ அடையும் போது B இல் ஒய்வில் வைத்திருக்கப்படும் m திணிவுடைய துணிக்கையை மோதி தன்னுடன் சேர்த்துக்கொள்கிறது. மோதலுக்கு சற்றுபின் சேர்த்தி துணிக்கையின் வேகம் $\stackrel{\rightarrow}{BA}$ இன் திசையில் $\frac{1}{2}\sqrt{\frac{15ag}{2}}$ எனக் காட்டுக. B ஐக் கடந்த பின்னர் கணநிலை ஒய்விற்கு வரும்வரைக்கும் சேர்த்தி துணிக்கை Q இன் இயக்கச்சமன்பாடு $\stackrel{\rightarrow}{Y} = -\omega_0^2 Y$ எனக் காட்டுக இங்கு $\omega_0 = \sqrt{\frac{g}{2a}}$, Y = y + a , OQ = y .

B இல் தொடங்கி முதல் கணநிலை ஒய்விற்கு வரும்வரை இயக்கத்திற்கான நேரம் $\sqrt{\frac{2a}{g}}\cos^{-1}\!\left(\frac{4}{\sqrt{51}}\right)$ எனக் காட்டுக.

Hooke's low

$$T_1 = \frac{\lambda_1 a}{2a}, \quad \boxed{05} \quad T_2 = \frac{\lambda_2 \times 2a}{2a} = \lambda_2 \quad \boxed{05}$$

$$= \frac{\lambda_1}{2}$$

சமநிலையில்

$$T_2 - T_1 - mg \cos 60 = 0 \quad \boxed{10}$$

$$\Rightarrow \lambda_2 - \frac{\lambda_1}{2} = \frac{mg}{2} \dots \dots (1) \quad \boxed{05}$$

$$But \quad \lambda_1 : \lambda_2 = 3 : 2$$

$$\frac{\lambda_1}{\lambda_2} = \frac{3}{2} \Rightarrow \lambda_1 = \frac{3}{2} \lambda_2 \dots (2) \otimes (1) \otimes \otimes \mathbb{Q} \square$$

$$\lambda_2 - \frac{3}{2} \lambda_2 \cdot \frac{1}{2} = \frac{mg}{2}$$

$$\Rightarrow \lambda_2 = 2mg$$

$$(2) \Rightarrow \lambda_1 = 3mg \quad \boxed{05}$$

35

Hooke's low

$$T_1^1 = \frac{3mg(3a-x)}{2a}$$
, $T_2^1 = \frac{2mgx}{2a}$

$$\underline{F} = m\underline{a}$$

$$\sqrt{T_1^1 + mg \cos 60 - T_2^1} = mx$$
 10

$$\Rightarrow \frac{3mg(3a-x)}{2a} - \frac{2mgx}{2a} + \frac{mg}{2} = mx$$

$$\Rightarrow \ddot{x} = \frac{g}{2a} [9a - 3x - 2x + a]$$

$$= \frac{g}{2a} \left[-5x + 10a \right]$$

$$\Rightarrow \ddot{x} = -\frac{5g}{2a}(x - 2a)$$
 05

$$X = x - 2a$$

t குறித்து வகையிட

$$\dot{X}=\dot{x}$$
 மீண்டும் t குறித்து வகையிட $\Rightarrow \ddot{X}=\ddot{x}$ o5

$$\omega^2 = \frac{5g}{2a} \Rightarrow \omega = \sqrt{\frac{5g}{2a}}$$

$$\ddot{X} = -\omega^2 X$$
 05

$$\dot{X}^2 = \omega^2 (a_1^2 - X^2)$$
....(3)

$$x = 0$$
 இல் $x = 0$

$$(3) \Rightarrow X = -2a, \dot{X} = 0 \quad \boxed{05}$$

$$0 = \omega^2 \left[a_1^2 - \left(-2a \right)^2 \right]$$

$$a_1^2 - 4a^2 = 0, : \omega = \sqrt{\frac{5g}{2a}} \neq 0$$

$$\Rightarrow a_1 = 2a$$
 05

$$(3) \Rightarrow \dot{X}^2 = \omega^2 (4a^2 - X^2)$$

B
$$\otimes \dot{o}$$
 $x = 3a \Rightarrow X = x - 2a = a$

$$\dot{X}^2 = \omega^2 (4a^2 - a^2)$$

$$\Rightarrow \dot{X}^2 = 3a^2\omega^2$$
 05

$$\Rightarrow \dot{X} = \sqrt{3}a\omega = \sqrt{3}a \times \sqrt{\frac{5g}{2a}} = \sqrt{\frac{15ag}{2}},$$

$$x = \sqrt{\frac{15ag}{2}}, \quad x = X$$
 05

$$\therefore$$
 B இல் P இன் வேகம் $=\sqrt{\frac{15ag}{2}}$

$$0 = 2mu_0 - \left(m \cdot \sqrt{\frac{15ag}{2}} + m.o\right) \quad \boxed{05}$$

$$\Rightarrow u_0 - \frac{1}{2} \cdot \sqrt{\frac{15ag}{2}}$$
 05

Hooke's low

$$T = \frac{2mg(2a+y)}{2a} = \frac{mg(2a+y)}{a}$$

$$(Q)$$
, $\angle F = ma$

$$2mg\cos 60 - T = 2m \dot{y} \qquad \boxed{10}$$

$$\Rightarrow mg - \frac{mg}{a}(2a + y) = 2m \dot{y}$$

$$2\ddot{y} = -\frac{g}{a}(a+y)$$
 05

$$\ddot{y} = -\frac{g}{2a}(y+a)$$

$$Y = y + a \Rightarrow \dot{Y} = \dot{y} \Rightarrow \ddot{Y} = \ddot{y}$$

$$\Rightarrow \ddot{Y} = -\omega_0^2 Y, \omega_0 = \sqrt{\frac{g}{2a}}$$

: S.H.M

Y=0 இல் அலைவு மையம்

y = -a இல் அலைவுமையம்

 $ie,\,C_o\,$ இல் அலைவு மையம். $\,$

05

$$\dot{Y}^2 = \omega_0^2 (a_2^2 - Y^2); \ a_2$$
 -обёнь $y = a \ \$ об $\dot{y} = \frac{1}{2} \sqrt{\frac{15ag}{2}}$ об $y = a \ \$ об $\dot{y} = \frac{1}{2} \sqrt{\frac{15ag}{2}}$ об $y = 2a \ \$ об $\dot{Y} = \frac{1}{2} \sqrt{\frac{15ag}{2}}, \dots \dot{y} = \dot{Y}$ $\therefore \frac{1}{4} \times \frac{15ag}{2} = \frac{g}{2a} (a_2^2 - 4a^2)$ об $y = \frac{15a^2}{4} + 4a^2 = a_2^2$ $y = \frac{\sqrt{31}}{2}a$ об $y = \frac{\sqrt{31}}{2}a$

$$\cos \theta = \frac{2a}{a_2} = 2a \times \frac{2}{\sqrt{31}a} = \frac{4}{\sqrt{31}}$$

$$\Rightarrow \theta = \cos^{-1} \left(\frac{4}{\sqrt{51}}\right) \qquad \boxed{05}$$

$$\Rightarrow t = \frac{\theta}{\omega_0} = \sqrt{\frac{2a}{g}} \cos^{-1} \left(\frac{4}{\sqrt{31}}\right) \qquad \boxed{05}$$

14) (a) உற்பத்தி O குறித்து A,B,C,D ஆகிய புள்ளிகளின் தானக்காவிகள் முறையே $\underline{a},\underline{b},\underline{c},\underline{d}$ ஆகும். இங்கு $\underline{a}=-5\underline{i}-2\underline{j},\ \underline{b}=\lambda\underline{i}+\mu\underline{j}$ இங்கு $(\lambda<\mu),\ \underline{c}=7\underline{i}+10\underline{j},\ \underline{d}=-5\underline{i}+14\underline{j}$ ஆகும். இங்கு $\underline{i},\underline{j}$ என்பன முறையே ox, oy அச்சுக்கள் வழியேயான செங்கோண அலகுக் காவிகள் ஆகும். AB,AC,BD ஆகியவற்றை $\underline{i},\underline{j},\lambda,\mu$ இல் காண்க. $AC\perp BD$ எனவும் $|\underline{b}|=\sqrt{45}$ எனவும் தரப்படின் $\lambda=3,\mu=6$ எனக்காட்டுக. A,B,C என்பன ஒரே நேர்கோட்டில் உள்ளன என உய்த்தறிந்து AB:BC ஐ காண்க. $\overrightarrow{CA}.\overrightarrow{CD}$ ஐ காண்பதனூடாக $\angle ACD=\cos^{-1}\left(\frac{1}{\sqrt{5}}\right)$ எனக் காட்டுக.

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$$

$$= -\underline{a} + \underline{b}$$

$$\overrightarrow{AB} = (\lambda + 5)\underline{i} + (\mu + 2)\underline{j}$$

$$\overrightarrow{AC} = \overrightarrow{AO} + \overrightarrow{OC} = -\underline{a} + \underline{c}$$

$$\overrightarrow{AC} = 12\underline{i} + 12\underline{j} \quad \boxed{05}$$

$$\overrightarrow{BD} = \overrightarrow{BO} + \overrightarrow{OD}$$

$$= -\underline{b} + \underline{d}$$

$$\Rightarrow \overrightarrow{BD} = -(\lambda + 5)\underline{i} + (14 - \mu)\underline{j} \quad \boxed{05}$$

$$AC \perp BD \Rightarrow \overrightarrow{AC} \cdot \overrightarrow{BD} = 0 \quad \boxed{05}$$

$$\Rightarrow (12\underline{i} + 12\underline{j}) \cdot \left[-(\lambda + 5)\underline{i} + (14 - \mu)\underline{j} \right] = 0$$

$$\Rightarrow -12(\lambda + 5) + 12(14 - \mu) = 0 \quad \boxed{05}$$

$$-\lambda - 5 + 14 - \mu = 0$$

$$\lambda + \mu = 9 \dots \dots \dots (1)$$

$$|\underline{b}| = \sqrt{45}$$

$$\Rightarrow \sqrt{\lambda^2 + \mu^2} = \sqrt{45}$$

$$\Rightarrow \lambda^2 + \mu^2 = 45 \dots \dots (2) \quad \boxed{05}$$

$$(1) \Rightarrow \mu = 9 - \lambda \dots \dots \dots (1)^1$$

$$(2) \Rightarrow \lambda^2 + (9 - \lambda)^2 = 45$$

$$\Rightarrow \lambda^2 - 9\lambda + 18 = 0$$

$$\Rightarrow (\lambda - 6)(\lambda - 3) = 0$$

$$\Rightarrow \lambda = 6,3 \quad \boxed{05}$$

$$\lambda = 3 \text{ sodisisin} \quad (1)^1 \Rightarrow \mu = 6$$

$$\lambda = 6 \text{ sodisin} \quad (1)^1 \Rightarrow \mu = 3$$

$$\text{But } \lambda < \mu$$

$$\overrightarrow{AB} = 8\underline{i} + 8\underline{j}$$

$$\Rightarrow \overrightarrow{AB} = 8(\underline{i} + \underline{j})$$

$$\overrightarrow{AC} = 12(\underline{i} + \underline{j})$$

$$\Rightarrow \overrightarrow{AC} = \frac{12}{8} \overrightarrow{AB}$$

$$\overrightarrow{AC} = \frac{3}{2} \overrightarrow{AB}$$

$$\therefore AC//AB$$

$$\therefore A,B,C \text{ Grif Centi-Giu- Upit offlication}$$

$$AC = \frac{3}{2} \overrightarrow{AB}$$

$$05$$

 $\therefore \lambda = 3, \mu = 6$

$$\Rightarrow \frac{AC}{AB} = \frac{3}{2}$$

$$AB \cdot BC = 2.1$$

 \therefore AB :BC = 2:1

15

$$\overrightarrow{CA} = -12\underline{i} - 12\underline{j} \Rightarrow \left| \overrightarrow{CA} \right| = \sqrt{(-12)^2 + (-12)^2} = 12\sqrt{2}$$

$$\vec{CD} = \vec{CO} + \vec{OD}$$

$$=-c+d$$

$$\Rightarrow \overrightarrow{CD} = -12\underline{i} + 4\underline{j} \Rightarrow \left| \overrightarrow{CD} \right| = \sqrt{(-12)^2 + 4^2} = 4\sqrt{10}$$
05

But
$$\overrightarrow{CA} \cdot \overrightarrow{CD} = \begin{vmatrix} \overrightarrow{CA} \\ \overrightarrow{CD} \end{vmatrix} \cos \theta$$
 05

$$\Rightarrow (-12\underline{i} - 12\underline{j})(-12\underline{i} + 4\underline{j}) = 12\sqrt{2} \times 4\sqrt{10}\cos\theta$$

$$\Rightarrow$$
 144 - 48 = 12 × 4 × 2 $\sqrt{5}$ cos θ

$$\Rightarrow \cos \theta = \frac{1}{\sqrt{5}}$$

$$\Rightarrow \theta = \cos^{-1}\left(\frac{1}{\sqrt{5}}\right)$$
 05

20

ABCD ஆனது AB = 3m, AD = 1m ஆகவுள்ள ஒரு செவ்வகம் ஆகும். AB மீது E எனும் புள்ளி AE =1m ஆகுமாறுள்ளது. BA,CB,DC,AD,ED,EC வழியே எழுத்துக்களின் ஒழுங்கு முறையினால் காட்டப்படும் திசைகளில் முறையே

 $10{,}14, P, Q, 7\sqrt{2}, 3\sqrt{5}N$ பருமனுள்ள விசைகள் தாக்குகின்றன. பொருத்தமான புள்ளிபற்றிய திருப்பத்தை கருதுவதன் மூலம் அல்லது வேறுவிதமாக தொகுதி போதும் சமநிலையில் ஒரு இருக்கமாட்டாது எனக் காட்டுக.

- இணையாக ஒடுங்கும் எனின் P=11, Q=4 எனக்காட்டி, இணையின் திருப்பத்தின் (i) பருமனையும் போக்கையும் காண்க.
- P=7, Q=8 எனின் விளையுள் விசையைக் கண்டு, அது ED இற்கு சமாந்தரமெனக்காட்டுக. அத்துடன் விளையுள் DC ஜ வெட்டுப்புள்ளியை இனம் காண்க.

தொகுதியிற்கு மேலதிகமாக M பருமனுள்ள இணைசேர்க்கும் போது விளையுள் விசையானது C யினூடு செல்லின் M இன் பருமனையும் போக்கையும் காண்க.

$$\rightarrow X = P - 10 - 7\sqrt{2}\cos 45 + 13\sqrt{5}\cos \theta$$

$$= P - 17 + 3\sqrt{5} \times \frac{2}{\sqrt{5}}$$

$$\Rightarrow X = P - 11 \dots (1)$$

$$\uparrow Y = Q - 14 + 7\sqrt{2}\sin 45 + 3\sqrt{5}\sin \theta$$

$$= Q - 14 + 7 + 3\sqrt{5} \times \frac{1}{\sqrt{5}}$$

$$\Rightarrow Y = Q - 4....(2)$$

$$G = -10 \times 1 - 14 \times 3 + 3\sqrt{5} \sin \theta \times 1 + 3\sqrt{5} \cos \theta \times 1$$

$$= -52 + 3\sqrt{5} \times \frac{1}{\sqrt{5}} + 3\sqrt{5} \times \frac{2}{\sqrt{5}}$$

$$\Rightarrow G = -43Nm$$
.....(3)

$$G = 43Nm \neq 0$$

i) இணையாக ஒடுங்கின்

$$X = 0, Y = 0$$
 05

$$(1) \Rightarrow P = 11$$

$$(2) \Rightarrow Q = 4$$
 05

இணையின் பருமன்
$$(3) \Rightarrow G = 43 \text{Nm}$$

15

ii) P=7, Q=8 எனின்

$$(1)$$
 \Rightarrow X= -4

$$(2)$$
 \Rightarrow Y = 4

ഖിണെயുள் $R = \sqrt{4^2 + 4^2} = 4\sqrt{2}N$ 05

$$\tan \alpha = \frac{4}{4} = 1 \Rightarrow \tan \alpha = 1 \Rightarrow \alpha = 45$$
 ். விளையுள் //ED

В

$$D \longrightarrow -43 = -4 \times b$$

$$b = \frac{43}{4} \qquad \boxed{05}$$

 \therefore விளையுள் நீட்டப்பட்ட CD ஐ D இல் இருந்து $\frac{43}{4}m$ தூரத்தில் வெட்டும்.

P.SENTHILNATHAN | COMBINED MATHEMATICS II MORA E-TAMILS 2021 | EXAMINATION COMMITTEE

15)

AB=2a, BC=2a , $CD=2\sqrt{3}a$ ஆகவுள்ள மூன்று சீரான கோல்கள் B,C ஆகியமுனைகளில் ஒப்பமான மூட்டப்பட்டுள்ளன. AB,BC,CD ஆகிய கோல்களின்நிறைகள் முறையே $W,\lambda W,2W$ ஆகும். முனை A ஒரு நிலைத்தபுள்ளியில் ஒப்பமாக பிணைக்கப்பட்டுள்ளது. கோல் AB இல் $AE=\frac{3}{2}a$ ஆகுமாறு உள்ள புள்ளி E இல் உள்ள ஒப்பமான நிலைத்த முளையில் AB ஆனது கிடையாக இருக்குமாறு தாங்கப்பெற்றும், மூட்டு C ஆனது ஒப்பமான கிடை நிலத்தில் பொறுத்திருக்க $B\hat{C}D=90^{\circ}$ யும் ஆகுமாறும் இருக்க CD இற்கு செங்குத்தாக D இல் பிரயோகிக்கப்படும் P எனும் விசையினால் A,B,D என்பன ஒரே கிடைமட்டத்தில் இருக்குமாறு ஒரு நிலைக்குத்து தளத்தில் நாப்பத்தில் வைக்கப்பட்டுள்ளன. C இல் மறுதாக்கம் 3wஆகும். $\lambda=2$ எனக் காட்டுக. மேலும் முளை E இல் மறுதாக்கம் R=w எனக்காட்டுக.

அத்துடன் மூட்டு B இல் CB இனால் $\mathbf{A}B$ மீது உஞற்றப்படும் விசையின் கிடை, நிலைக்கூறுகள் முறையே $\dfrac{\sqrt{3}}{4}w,\dfrac{1}{4}w$ எனவும் காட்டுக.

CD, C
$$P \times 2\sqrt{3}a - 2w \times \sqrt{3}a \cos 30^{\circ} = 0$$
 10 $\Rightarrow P = \frac{\sqrt{3}}{2}w$ 05

P x 4a Sin 60 + 3W x 2a cos 60 – λ w. acos 60 - 2W x(2acos 60 + $\sqrt{3}a$ Cos 30) = 0

$$\Rightarrow \frac{\sqrt{3}}{2} w \times 4 \times \frac{\sqrt{3}}{2} + 3w - 2w \times \frac{5}{2} = \frac{\lambda w}{2}$$

$$\Rightarrow \lambda = 2$$

$$05$$

30

(AB + BC + CD), A

BC + CD இந்கு

$$R \times \frac{3a}{2} + P \times 6a \sin 60 + 3w \times (2a + 2a \cos 60) - \lambda w \times (2a + a \cos 60) - 2w(6a - \sqrt{3}a \cos 30)$$

$$\boxed{10 \qquad -w \times a = 0}$$

$$\Rightarrow \frac{3}{2}R + \frac{\sqrt{3}}{2}w \times 6 \times \frac{\sqrt{3}}{2} + 3w \times 3 - 2w \times \frac{5}{2} - 2w \times \frac{9}{2} - w = 0$$

$$\Rightarrow R = w \qquad \boxed{05}$$

P.SENTHILNATHAN | COMBINED MATHEMATICS II MORA E-TAMILS 2021 | EXAMINATION COMMITTEE

BCD,
$$\rightarrow X - \sqrt{3} / 2 w \cos 60 = 0$$

 $\Rightarrow X = \sqrt{3} / 4 w$ 05

$$\uparrow 3w + \sqrt{3} / 2 w \sin 60 - Y - 2w - 2w = 0$$

$$\Rightarrow Y = \frac{w}{4}$$
 05

b) சுயாதீனமாக மூட்டப்பட்ட சமநீளமுடைய ஏழு இலேசான கோல்களாலான சட்டப்படலை உரு காட்டுகிறது. A இல் நிலையாக சுயாதீனமாக பிணைக்கப்பட்டும் C,D,E இல் முறையே 400N, 300N, 200N நிறைகளையுடைய சுமைகள் தொங்கவிடப்பட்டு, C இல் F எனும் கிடை விசை பிரயோகிக்கப்பட்டு சட்டப்படல் AB, CD, DE என்பன கிடையாக இருக்க சமநிலையில் பேணப்படுகின்றது.

- (i) F ஐயும் A இலுள்ள மறுதாக்கத்தின் கிடைக்கூறையும், நிலைக்குத்துக் கூறையும் கண்க.
- (ii) தகைப்பு வரிப்படம் ஒன்று வரைந்து இழுவைகளையும் , உதைப்புக்களையும் வேறுபடுத்தி கோல்களிலுள்ள தகைப்புகளை காண்க.

P.SENTHILNATHAN | COMBINED MATHEMATICS II MORA E-TAMILS 2021 | EXAMINATION COMMITTEE

A ,
$$F \times \frac{\sqrt{3}a}{2} + 400 \times \frac{a}{2} - 300 \times \frac{a}{2} - 200 \times \frac{3a}{2} = 0$$

$$\Rightarrow \sqrt{3}F + 400 - 300 - 600 = 0$$

$$\Rightarrow F = \frac{500}{\sqrt{3}}N$$

$$\Rightarrow X = \frac{500}{\sqrt{3}}N$$

$$\Rightarrow X = \frac{500}{\sqrt{3}}N$$

$$\Rightarrow Y - 400 - 300 - 200 = 0$$

$$Y = 900N$$

$$05$$

 $\frac{400}{\sqrt{3}}$

25

	தகைப்	தகைப்பு (N)		
கோல்	இ ழுவை	உதைப்பு		
AB	400	-		
	$\overline{\sqrt{3}}$			
AC	500	-		
	$\overline{\sqrt{3}}$			
AD	1000	-		
	$\sqrt{3}$			
CD	-	900		
		$\overline{\sqrt{3}}$		
BD	-	400		
		$\sqrt{3}$		
BE	400	-		
	$\sqrt{3}$			
DE	-	200		
		$\sqrt{3}$		

05

05

Mora E Tamil

படம் | 30

16)

- (i) அடியின் ஆரை r ஆகவும் உயரம் h ஆகவும் உள்ள ஒரு சீரான பொட்கூம்பின் திணிவுமையம் உச்சியில் இருந்து $\frac{2}{3}\,h$ இல் உள்ளது எனக் காட்டுக.
- (ii) ஆரை 2r ஐ உடைய சீரான பொட் அரைக்கோளம் ஒன்றின் அடியின் மையம் C யிலிருந்து ஒரு தூரம் $\sqrt{3}r$ இல் அதன் அச்சிற்கு செங்குத்தான தளம் ஒன்றினால் இருபகுதிகளாக பிரிக்கப்படுகிறது. இரு வட்ட ஓரங்களைக் கொண்ட பகுதி R இன் திணிவு மையம் அச்சின் மீது C யிலிருந்து $\frac{\sqrt{3}r}{2}$ இல் இருக்கிறது எனக் காட்டுக.

2r,r வட்ட ஒரங்களையும் h உயரமும் உடைய சீரான பொட்கூம்பின் அடித்துண்டின் திணிவுமையம் அதன் சிறிய வட்ட மையத்தில் இருந்து $\frac{5h}{9}$ தூரத்தில் அச்சின் வழியே உள்ளது எனக் காட்டுக.

i) சமச்சீரின்படி திணிவு 05 மையம் x அச்சில் இருக்கும். 05 கீலத்தின் திணிவு $m_i = 2\pi \big(z \sin \alpha\big) \big(\delta z\big) \rho$: ρ பரப்படர்த்தி $m_i = (2\pi \rho \sin \alpha) z \delta z$ $x_i = z \cos \alpha$

$$\frac{1}{x} = \frac{\sum m_i x_i}{\sum m_i}$$

$$\Rightarrow \frac{1}{x} = \frac{\sum (2\pi\rho \sin\alpha) z \delta z (z\cos\alpha)}{\sum (2\pi\rho \sin\alpha) z \delta z}$$

$$05$$

$$= \frac{(2\pi\rho \sin\alpha)\cos\alpha\sum z^2\delta z}{(2\pi\rho \sin\alpha)\sum z\delta z}$$

$$=\frac{\cos\alpha\int_{0}^{l}z^{2}dz}{\int_{0}^{l}zdz}$$

$$= \frac{\cos \alpha \left[\frac{z^3}{3} \right]_0^l \boxed{05}}{\left[\frac{z^2}{2} \right]_0^l \boxed{05}}$$

ii) சமச்சீரின்படி திணிவுமையம் x அச்சில் அமையும் 0

கீலத்தின் திணிவு $m_{i}=2\pi(2r\sin\theta)2r\delta heta\sigma$; σ பரப்படர்த்தி

$$\Rightarrow m_i = (8\pi r^2 \sigma) \sin \theta \delta \theta, \, \delta \theta$$

$$x_i = 2r \cos \theta$$
,

திணிவுமைய தேந்நப்படி
$$\overset{-}{x} = \frac{\sum m_i x_i}{\sum m_i}$$

$$= \frac{\sum (8\pi r^2 \sigma) \sin \theta \delta \theta (2r \cos \theta)}{\sum (8\pi r^2 \sigma) \sin \theta \delta \theta} \underbrace{05}$$

$$= \frac{(8\pi r^2 \sigma) 2r \sum \sin \theta \cos \theta \delta \theta}{(8\pi r^2 \sigma) \sum \sin \theta \delta \theta}$$

$$= \frac{2r \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sin \theta \cos \theta d\theta}{\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin \theta d\theta}$$

$$=\frac{2r\left[\frac{\sin^2\theta}{2}\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}}{\left[-\cos\theta\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}} = \frac{2r\left[\frac{1}{2} - \frac{1}{8}\right]}{O + \sqrt{3}/2} = \frac{3r}{2\sqrt{3}}$$

$$\Rightarrow \bar{x} = \frac{\sqrt{3}}{2}r$$
 05

சமச்சீரின் படி திணிவுமையம் x —அச்சில் அமையும் சிறிய கூம்பின் திணிவு $=\pi r l
ho = k$ என்க பெரியகூம்பின் திணிவு $=\pi(2r)(2l)p=4k$

பொருள்	திணிவு	திணிவுமையம் (From oy)
பெரிய கூம்பு	4 1 05	$\frac{h}{3}$ 05
சிறிய கூம்பு	k 05	$-\frac{h}{3}$ 05
துண்டு	3 k 05	- x

திணிவு மைய தோற்றப்படி

$$\frac{1}{x} = \frac{\sum m_i x_i}{\sum m_i}$$

$$= \frac{4k \times \frac{h}{3} - k \times \left(-\frac{h}{3}\right)}{3k}$$

$$\Rightarrow \frac{10}{3k}$$

$$\Rightarrow x = \frac{5}{9}h$$

$$05$$

45

சமச்சீரின் படி திணிவுமையம் x —அச்சில் அமையும்

பொருள்	திணிவு	தி.மை(From oy)	
R	4m	$\sqrt{3}r$ 05	
வட்டதட்டு	m	$\frac{\sqrt{3}}{2}r$ 05	
கும்பு துண்டு	M	$\frac{2\sqrt{3}}{9}r \boxed{05}$	
Cup	M +5m 05	$\frac{-}{x}$	

$$\bar{x} = \frac{\sum m_i x_i}{\sum m_i}$$

$$=\frac{4m\sqrt{3}r+m\times\frac{\sqrt{3}}{2}r+M\times\frac{2\sqrt{3}}{9}r}{(M+5m)}$$

$$=\frac{\sqrt{3}(81m+4M)}{18(M+5m)}r$$
 05

$$\bar{x} = \frac{\sqrt{3}}{2} r$$
 எனின்

$$\frac{\sqrt{3}(81m+4M)r}{18(M+5m)} = \frac{\sqrt{3}}{2}r$$
 05

$$81m + 4M = 9M + 45mr$$
$$\Rightarrow 5M = 36m$$

25

17)

- (1) தனியார் நிறுவனம் ஒன்றிற்கு மைக்கல், நிமல், சுரேன் என்பவர்களில் ஒருவர் புதிய தலைமை நிர்வாகியாக நியமிக்கப்படுவர். மைக்கல், நிமல், சுரேன் என்பவர்கள் தலைமை நிர்வாகியாக ஆவதற்கான வாய்ப்புக்கள் முறையே 3:2:5 எனும் விகிதத்திலுள்ளது. மைக்கல், நிமல், சுரேன் என்பவர்கள் தலைமை நிர்வாகியாக நியமிக்கப்படுமிடத்து தொழிலாளர்களுக்கு சம்பள அதிகரிப்பு திட்டம் ஒன்றை அறிமுகப்படுத்துவதற்கான நிகழ்தகவுகள் முறையே 0.3, 0.5, \$\mathcal{X}\$ ஆகும்.
 தொழிலாளர்களுக்கு சம்பள அதிகரிப்பு திட்டம் ஒன்றை அறிமுகப்படுத்துவதற்கான நிகழ்தகவு 0.29 ஆகும்.
 - i) x = 0.2 எனக்காட்டுக.
 - ii) சம்பள அதிகரிப்பு திட்டம் ஒன்றை அறிமுகப்படுத்தியிருப்பின் சுரேன் தலைமை நிர்வாகியாக நியமிக்கப்பட்டிருப்பதற்கான நிகழ்தகவு யாது?

M- மைக்கல், N- நிமல;, S- சுரென்

I சம்பள அதிகரிப்பு

i)
$$P(M) = \frac{3}{10}, P(N) = \frac{2}{10}, P(S) = \frac{5}{10}$$

$$P(I/M) = 0.3, P(I/N) = 0.5, P(I/S) = x$$

$$P(I) = 0.29$$

மொத்த நிகழ்தகவு தேற்றம்

$$P(I) = P\left(\frac{I}{M}\right)P(M) + P\left(\frac{I}{N}\right)P(N) + P\left(\frac{I}{S}\right)P(S)$$
 10

$$0.29 = \left(0.3 \times \frac{3}{10}\right) + \left(0.5 \times \frac{2}{10}\right) + \left(x \times \frac{5}{10}\right)$$

$$0.29 = 0.09 + 0.1 + 0.5 X$$

$$0.29 - 0.19 = 0.5x$$

$$\Rightarrow x = 0.2$$
 05

MORA E-TAMILS 2021 | EXAMINATION COMMITTEE

ii) Baye's Theorem

$$P(S/I) = \frac{P(I/S)P(S)}{P(I)}$$

$$= \frac{x \times 5/10}{0.29}$$

$$= \frac{0.2 \times 0.5}{0.29}$$

$$= \frac{0.1}{0.29}$$

$$\Rightarrow P(S/I) = \frac{10}{29}$$
05

25

b) .ஒரு குறித்த பரீட்சை ஒன்றிற்கு குறித்த எண்ணிக்கையான மாணவர்கள் பெற்ற புள்ளிகளின் பரம்பல்

கீழே தரப்பட்டுள்ளது.

இப்பரம்பலின் ஆகாரம் 52 எனத்தரப்படின் தவறவிடப்பட்ட மீடிறன் a=25 எனக்காட்டுக.

இப்பரம்பலின் இடை, இடையம், நியமவிலகல் ஆகியவற்றை காண்க.

அத்துடன் ஓராயக்குணகத்தைக்கண்டு, பரம்பலின் வடிவம் எவ்வகையானது எனக்கூறுக?

புள்ளிகள்	மா.எண்ணிக்கை
30-40	15
40-50	20
50-60	a
60-70	05
70-80	15
80 -90	20

эмьтгой
$$= L + c \left(\frac{\Delta_1}{\Delta_1 + \Delta_2}\right)$$
. $\boxed{05}$

$$\Rightarrow 52 = 50 + 10 \left[\frac{a - 20}{(a - 20) + (a - 5)}\right]$$

$$\Rightarrow 2 = \left[\frac{10(a - 20)}{2a - 25}\right]$$

$$2a - 25 = 5a - 100$$

$$\Rightarrow a = 25$$

$$\boxed{05}$$

	05	உத்தேச	இடை <i>1</i>	A = 55		05	05
पुनानीक्रना	Б.6⊔ (х)	юп. я (f)	திரன் மீடிநன்	x-A =x- 55	$d = \frac{x - A}{c}$ $\mathbf{c} = 10$	fd	fd^2
30-40	35	15	15	-20	-2	-30	60
40-50	45	20	35	-10	-1	-20	20
50-60	55	25	60	0	0	00	00
60-70	65	05	65	10	1	05	05
70-80	75	15	80	20	2	30	60
80 -90	85	20	100	30	3	60	180
		$\sum f = 100$				$\sum fd = 45$	$\sum fd^2 = 325$

$$math{\mathbb{Z}}$$
 $math{$\mathbb{Z}$}$ mat

55

05

05

நேர் ஒராயமான பரம்பல்

