

VIENNA UNIVERSITY OF TECHNOLOGY

FACULTY OF PHYSICS

LABORATORY III

Laboratory Report

Elasticity Modulus

Authors: Supervisor:

Raul Wagner Martin Kronberger

Group 301

conducted on: 18 June 2025

Laboratory Work III - Elasticity Modulus

Contents

1	Elasticity Modulus of Tension Rods	. 2
	1.1 Fundamentals	. 2
	1.2 Setup	. 2
	1.3 Procedure	
	1.4 Measurement Values	. 3
	1.5 Data Analysis	
2	Bending Beam Analysis	. 4
	2.1 Fundamentals	. 4
	2.2 Setup	
	2.3 Procedure	. 4
	2.4 Measurement Values	
	2.5 Data Analysis	. 5
В	ibliography	. 6

1 Elasticity Modulus of Tension Rods

1.1 Fundamentals

The elasticity modulus (Young's modulus) E describes the relationship between stress and strain in the elastic deformation region. For a tension rod under axial load:

$$E = \frac{\sigma}{\varepsilon} = \frac{\frac{F}{A}}{\Delta \frac{L}{L_0}} \tag{1}$$

where F is the applied force, A is the cross-sectional area, ΔL is the elongation, and L_0 is the original length. The measurement uses strain gauges with a bridge circuit configuration.

1.2 Setup

Equipment:

- Bridge extension device
- Tension rods (Aluminum, Steel, Brass, Plexiglas)
- Strain gauge measurement system
- Calibrated weights or voltage source
- Digital multimeter

Material Specifications:

• Aluminum: D = 14.85 mm, d = 3.7 mm

• Steel: D = 15 mm, d = 2.2 mm

• Brass: D = 15.8 mm, d = 3 mm

• Plexiglas: D = 15.2 mm, d = 7.7 mm

K-factor: $k = 2.03 \pm 1\%$ (pre-calibrated)

1.3 Procedure

- 1. Switch the bridge extension device to 1/2 position
- 2. Connect the first tension rod to the bridge extension
- 3. Wait 5 minutes for thermal equilibration
- 4. For each material, perform 4 measurement series:
 - Series with 5V and 2.5V excitation voltage, OR
 - Series with 2 kg and 5 kg loading
- 5. Take at least 6 measurements per series
- 6. Record all voltage readings and corresponding loads
- 7. Repeat for all four materials

1.4 Measurement Values

Figure 1: After applying a rolling average onto the raw data, it is segmented into baseline, pulses, rising and falling slopes. Afterwards a quadratic function is fitted onto the baseline dataset and subtracted from the segmented dataset. This results in clear baseline and pulse datasets which can be averaged over.

1.5 Data Analysis

- 1. Calculate cross-sectional area: $A = \frac{\pi}{4} (D^2 d^2)$
- 2. Calculate stress: $\sigma = \frac{F}{A}$
- 3. Calculate strain from voltage readings: $\varepsilon = \frac{U}{k \cdot U_{\text{bridge}}}$
- 4. Plot stress vs. strain for each material
- 5. Determine E from the slope of the linear region
- 6. Perform error propagation analysis considering individual measurement uncertainties
- 7. Compare experimental values with literature values

Weight (kg)	Voltage (V)	Material	Pulse Height (V)	Strain	Stress (MPa)	E-Modulus (GPa)
2	2.5	Alu	0.5093	200726.7	0.12	0
2	5	Alu	1.0128	199566.7	0.12	0
5	2.5	Alu	1.2686	499937.3	0.3	0
5	5	Alu	2.5238	497300.1	0.3	0
2	2.5	Glas	4.3655	1720377	0.15	0
2	5	Glas	2.1122	416194.9	0.15	0
5	2.5	Glas	4.9465	1949341.9	0.36	0
5	5	Glas	5.7489	1132793.5	0.36	0
2	2.5	Messing	0.1331	52459.3	0.1	0
2	5	Messing	0.2313	45576.4	0.1	0

5	2.5	Messing	0.5061	199444.2	0.26	0
5	5	Messing	0.5871	115677.9	0.26	0
2	2.5	Stahl	0.2946	116117.6	0.11	0
2	5	Stahl	0.4572	90081.1	0.11	0
5	2.5	Stahl	0.4539	178882.8	0.28	0
5	5	Stahl	0.6541	128882.6	0.28	0

2 Bending Beam Analysis

2.1 Fundamentals

For a cantilever beam under point load, the deflection w is related to the applied force F by:

$$w = \frac{FL^3}{3EI} \tag{2}$$

where L is the beam length, E is the elasticity modulus, and I is the second moment of area. The relationship between bending moment and curvature is:

$$M = EI\kappa \tag{3}$$

2.2 Setup

Equipment:

- Cantilever beam setup
- Displacement measurement system (dial gauge or LVDT)
- Calibrated weights
- Ruler for length measurements
- Caliper for cross-section measurements

Beam Configuration:

- \bullet Length L to be measured
- Cross-section dimensions to be determined
- Support conditions: fixed-free (cantilever)

2.3 Procedure

- 1. Set up the cantilever beam with proper clamping
- 2. Ensure the beam is horizontal using a level
- 3. Position the displacement measurement device at the free end
- 4. Apply loads incrementally (suggested: 0.5, 1.0, 1.5, 2.0 kg)
- 5. Wait for stabilization between each load increment
- 6. Record deflection for each load
- 7. Repeat measurements 3 times for statistical analysis
- 8. Unload and check for permanent deformation

2.4 Measurement Values

Data Collection:

Load F (N)	Deflection w (mm)	Trial 1	Trial 2	Trial 3
0	0			
4.9				

9.8		
14.7		
19.6		

Beam Geometry:

- Length L = mm
- Width b = mm
- Height h = mm
- Second moment of area $I = \frac{bh^3}{12} = \text{mm}^4$

2.5 Data Analysis

- 1. Plot load F vs. deflection w
- 2. Determine the slope $k = \frac{\Delta F}{\Delta w}$
- 3. Calculate theoretical deflection: $w_{\text{theory}} = \frac{FL^3}{3EI}$
- 4. Compare experimental slope with theoretical prediction
- 5. Calculate experimental elasticity modulus: $E_{\text{exp}} = \frac{FL^3}{3Iw}$
- 6. Analyze linearity and determine measurement uncertainty
- 7. Calculate percentage error compared to known material properties
- 8. Discuss sources of experimental error (beam self-weight, clamping effects, measurement precision)

Error Analysis:

- Systematic errors: calibration, geometric measurements
- Random errors: measurement repeatability, environmental factors
- Propagation of uncertainties through calculations

Expected Results: Compare experimental values with typical elasticity moduli for common materials (Steel: 200 GPa, Aluminum: 70 GPa).

Laboratory Work III - Elasticity Modulus

List of Tables

	List	of	Fig	gures
--	------	----	-----	-------

Bibliography