EECS 16B Designing Information Devices and Systems II Spring 2021 Discussion Worksheet Discussion 12A

In this discussion, we practice computing the SVD for a "wide" matrix (more columns than rows) and for a "tall" matrix (more rows than columns). There is also an associated jupyter notebook on Datahub that will serve useful to confirm the numerical calculations (specifically for performing Gram-Schmidt).

Also, note that the techniques and insights communicated in this discussion are conveyed in Note 13, sec. 3.

1. Computing the SVD: A "Tall" Matrix Example

Define the matrix

$$A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}.$$

- (a) In this part, we will find the full SVD of A in steps.
 - (i) Compute $A^{\top}A$ and find its eigenvalues.

(ii) Find orthonormal eigenvectors $\vec{v_i}$ (right singular vectors, columns of V).

(iii) Find singular values, $\sigma_i = \sqrt{\lambda_i}$.

(iv) Use $\vec{v_i}$ to find orthonormal $\vec{u_i}$ (for nonzero σ).
(v) Use the previous parts to write the full SVD of A .
(vi) Use the Jupyter notebook to run the code cell that calls $numpy.linalg.svd$ on A . What is the result? Does it match our result above?

(b)	Find the rank of A .
(c)	Find a basis for the range (or column space) of A .
(d)	Find a basis for the null space of A .
(e)	We now want to create the SVD of A^{\top} . Rather than repeating all of the steps in the algorithm, feel free to use the jupyter notebook for this subpart (which defines a numpy.linalg.svd command) What are the relationships between the matrices composing A and the matrices composing A^{\top} ?

2. Computing the SVD: A "Wide" Matrix Example

Define the matrix

$$A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}.$$

- (a) In this part, we will find the full SVD of A in steps.
 - (i) Compute AA^{\top} and find its eigenvalues.

(ii) Find orthonormal eigenvectors \vec{u}_i (left singular vectors, columns of U). Feel free to use the associated Jupyter notebook to perform Gram-Schmidt for this part, if needed.

- (iii) Find the singular values, $\sigma_i = \sqrt{\lambda_i}$.
- (iv) Use \vec{u}_i to find orthonormal \vec{v}_i (for nonzero σ). Feel free to use the associated Jupyter notebook to perform Gram-Schmidt for this part, if needed.

(v) Use the previous parts to write the full SVD of A .
(b) Find the rank of A , using the computed full SVD.
(c) Find a basis for the range (or columnspace) of A.
(c) This a basis for the range (of columnspace) of 11.
(d) Find a basis for the nullspace of A .

Contributors:

- Neelesh Ramachandran.
- Druv Pai.
- John Maidens.
- Aditya Arun.