

Comparação de algoritmos de busca de rotas em grafos urbanos: um estudo de caso em Alto Selva Alegre, Arequipa, Peru

Disciplina: Análise de Algoritmos e Estruturas de Dados

Aluno: Gian Franco Joel Condori Luna

Motivação

- Artigo: "Otimizar a localização dos locais de vacinação para impedir uma epidemia zoonótica" (Castillo-Neyra, Ricardo)
- Optimizar o número de postos de vacinação antirrábica numa determinada área

Contexto (I)

- A raiva é uma doença zoonótica
- São realizadas campanhas anuais de vacinação anti-rábica para prevenir surtos.
- Seu planeamento apresenta limitações logísticas e económicas.

Contexto (II)

- Uma das principais estratégias destas campanhas é selecionar pontos de vacinação ideais. (fixos e móveis).
- Estes pontos de vacinação são selecionados pelos responsáveis pela vacinação.
- O estabelecimento de um número excessivo de pontos fixos de vacinação aumenta significativamente os custos.

Contexto (III)

Resultados do artigo de Castillo-Neyra, Ricardo et al.(2024) [1]

Contexto (IV)

Metodologia

Metodologia

Metodologia

Resultados (I)

Nodos: 3031

	Dijkstra	A *	Bellman-Ford
Iteration 1	3834.75 s	3926.30 s	15263.10 s
Iteration 2	3854.02 s	3925.74 s	15000.08 s
Iteration 3	3908.80 s	4013.35 s	14510.25 s

Resultados (II)

Total de consultas: 3031 x 70 = 212 170

	Seconds	Hours
base article	NA	176.81
Dijkstra	3865.85 ± 31.37	1.07
A *	3955.14 ± 41.17	1.14
Bellman-Ford	14924.47 ± 311.96	4.15

Conclusões

- Eficácia de algoritmos de rotas curtas aplicados a gráficos urbanos como estratégia para otimizar a seleção de pontos de vacinação em contextos urbanos complexos.
- O algoritmo Dijkstra oferece desempenho um pouco melhor do que A*.
- Se oferece uma solução prática e económica para o planeamento de campanhas de saúde pública

MUITO OBRIGADO