Практический АНМ. Инструкция по применению

Вафин Альберт Уфа, 26 апреля 2024

Недооценённые модули

Использование модуля АХМ 1.03%

Мотивация использования модуля АНМ

Причины активно использовать

- Станция считает, даже когда инженер отдыхает.
- Сокращает рутину для задач оптимизации
- Можно провести анализ чувствительности модели и не тратить время на ненужные расчеты
- Есть возможность создание прокси-модели и проведения моделирования Монте-Карло для анализа рисков.

Причины активного не использования

Оптимизация скорости расчета и количества расчетных вариантов

ЗАДАЧА

Максимально сократить время расчета реализации модели с минимальными потерями в точности

Инженерные решения

- Укрупнение сетки
- Сокращение расчетных шагов(не полный расчет, объединение шагов в год)
- Удаление из модели ячеек с водой
- Вырезание участков модели
- Тюнинг модели

Оптимизация скорости расчета и количества расчетных вариантов

Оптимизация скорости расчета и количества расчетных вариантов

Количество расчетов	Сэкономленное время, ч.
10	3.7
50	18.3 или 2.2 рабочих дня
100	36.7
200	73.3

Использование разделения ресурсов

Разделение ресурсов

Технология, позволяющая использовать расчетные мощности ваших коллег

Преимущества разделения ресурсов

Для модели со средним временем расчета **5** часов **10** станций это...

- 480 часов расчетов в выходные дни или 96 расчетов
- 750 часов расчетов в нерабочее время рабочей недели или 150 расчетов

Типовой рабочий процесс для модуля АХМ

«Преждевременная оптимизация есть корень всех зол» Энтони Хоар

Разведочные расчеты Выявление систематики и вылетов

Формирование рабочих гипотез, выбор основной

Формализация задач, определение целевой функции

Оптимизация параметров

Разведочные расчеты — комплекс мероприятий для добывания сведений о качестве исходных данных, соответствии априорной информации данным разработки, чувствительности модели на изменение входных параметров

Причины

- Высокая дисперсия значений
- Маленькая выборка
- Использование аналогов
- Множество вариантов аппроксимации экспериментальных точек

Параметры с неопределенностью

- Зависимость проницаемости
- Зависимость связанной воды
- Анизотропия
- Параметры ОФП
- Параметры аквифера
- Процент производительной закачки

Переменная	Баз. значение	Мин.	Макс.	Тип	Распределение	
✓ ANIZ	0.2	0.1	0.5	REAL	Uniform (cont. 0.1, max=0.5)	
✓ AQ_RAD	500	300	1000	REAL	Uniform (min=310, max=1000)	
✓ AQ_THICK	10	8	15	REAL	Uniform (min=8 max=15)	
✓ BHP_INJ	240	240	280	REAL	Uniform (min=240, max=280)	
✓ COMP	0.0005	0.0002	0.0009	PEAL	Uniform (min=0.0002, max=0.0009)	
✓ FWL	927	927	933	REAL	oniform (min=927, max=933)	
✓ KRO	0.8	0.5	1//	NEAL /	Uniform (min=0.5, max=1)	
✓ KRW	0.1	0.05	1 0.3 eH 20.25 8.04 58	REAL	Uniform (min=0.05, max=0.3)	
▼ KVUT	0.55	0.4	M	REAL	Uniform (min=0.4, max=0.6)	
✓ LAT_ANIZ	1	2/5 A	21.25/	REAL	Uniform (min=0.75, max=1.25)	
✓ PERM_A	0.02	0.00	8.04	REAL	Uniform (min=0.004, max=0.04)	
V PERM_B	54	1/	58	REAL	Uniform (min=51, max=58)	
✓ SKIN	446	5//	-0.5	REAL	Uniform (min=-5, max=-0.5)	
▼ SWCR_PER	0.2	0.1	0.8	REAL	Uniform (min=0.1, max=0.8)	
✓ SWL_A	0.000	0.00028	0.00035	REAL	Uniform (min=0.00028, max=0.00035)	
✓ SWL	3.35	-3.4	-3.3	REAL	Uniform (min=-3.4, max=-3.3)	

ВАЖНО!!!

• Параметры должны быть взаимосогласованными между собой!

Планирование эксперимента

- □ Пользовательский
- □ Перебор по сетке
- □ Латинский гиперкуб
- □ Монте-Карло
- □ Торнадо
- 🗖 Плакетт-Берман
- □ Бокс-Бенкен

16 переменных

Полный факторный эксперимент 65 536 расчетов

Метод	Краткое пояснение	Минимальное количество расчетов
Плакетт-Берман	Многофакторный расчет по минимальным и максимальным значениям, позволяющий оценить весь диапазон возможных решений за небольшое количество расчетов.	21
Латинский гиперкуб	Центральный композиционный план, зачастую решения группируются в центральной части.	-
Монте-Карло	Случайная генерация, иногда тоже пригождается	-
Бокс-Бенкен	Похож на Плакетт-Берман, но включает еще базовое значение переменных, чтобы оценить линейность. Требует больше расчетов	385
Торнадо	Однофакторный расчет, хорошо понимается интуитивно, но может быть не корректным ввиду взаимосвязи переменных между собой	31

Разведочные расчеты. Результаты работы алгоритмов планирования экспериментов

Оценка влияния переменных на результаты расчетов

Работа с целевыми функциями

Веса объектов, параметров, временных шагов

Целевые функции это не только инструмент для оптимизационных алгоритмов, но и инструмент анализа многовариантных расчетов.

Использование целевых функций в разведочных расчетах направлено на выявление систематики и вылетов

- Может быть сколь угодно много
- Лучше начинать анализ с простых функций

Работа с целевыми функциями

- Лучше начинать анализ с простых функций
- По возможности избегать комплексных параметров
- Использовать фильтры и группировки при разведочном анализе

Работа с целевыми функциями

ЦФ по скважинам ≠ ЦФ по месторождению

Последовательная проверка различных параметров и целевых функций на уровне месторождения и скважин позволит:

- Сузить коридор переменных для дальнейшей работы
- Выбрать и корректно настроить веса целевых функций для оптимизации
- Найти не состыковки в исторической информации и использованных переменных

Выявление систематики и вылетов

«Противоречий не существует. Всякий раз, когда ты считаешь, что сталкиваешься с противоречием, проверь исходные положения. Ты обнаружишь, что одно из них ошибочно.»

Априорные распределения параметров не позволяют описать часть промысловых данных

100 80 80 80 900 3000 32000 34000 36000 38000 40000 42000 44000 4600C

Изменить гипотезу и ввести другие наборы переменных для проверки

Исключить данные из расчета целевой функции как не валидные

Выявление систематики и вылетов

Расхождение между расчетными и историческими данными во всех расчетах указывает на наличие ошибок в геологической модели или в принятых неопределенностях модели и требует проведения дополнительного анализа.

Методы планирования эксперимента и оптимизаторы

«Преждевременная оптимизация есть корень всех зол» Энтони Хоар

Планирование эксперимента

- У меня есть несколько конкурирующих гипотез
- Я не знаю чувствительность результатов расчета модели от параметров неопределенности
- У меня нет понимания проблем противоречия априорной информации между собой
- Я не могу формализовать целевую функцию

Оптимизация

- Я знаю, что влияет на результат
- Я знаю какие параметры хочу оптимизировать и эти параметры друг другу не противоречат

Заключение

АХМ – мощный модуль, позволяющий проверять гипотезы инженера в режиме 24/7

Для повышения эффективности АХМ оптимизируйте время расчета моделей и пользуйтесь технологией **Распределения ресурсов**

Планируйте эксперименты правильно

Перед проведением оптимизации следует предварительно провести анализ согласованности априорной информации и промысловых данных.

Хотите узнать больше?

Описание функционала, учебные курсы и видеоуроки доступны на сайте:

www.rfdyn.ru

Остались вопросы?

Обратиться в техническую поддержку:

tnavigator@rfdyn.ru

