

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL)

Academic Year 2019 – 1st Year Examination – Semester 2

IT2105 - Mathematics for Computing I

2nd November 2019

(TWO HOURS)

Important Instructions:

- The duration of the paper is 2 (two) hours.
- The medium of instruction and questions is English.
- The paper has **42** questions and **7** pages.
- All questions are of the MCQ (Multiple Choice Questions) type.
- All questions should be answered.
- Each question will have 5 (five) choices with **one or more** correct answers.
- All questions carry equal marks.
- There will be a penalty for incorrect responses to discourage guessing.
- The mark given for a question will vary from 0 to +1 (All the correct choices are marked & no incorrect choices are marked).
- Answers should be marked on the special answer sheet provided.
- Note that questions appear on both sides of the paper.
- If a page is not printed, please inform the supervisor immediately.
- Mark the correct choices on the question paper first and then transfer them to the given answer sheet which will be machine marked. Please completely read and follow the instructions given on the other side of the answer sheet before you shade your correct choices.

Notations:

Z – set of integers

N - set of positive integers

R – set of real numbers \varnothing - (null) empty set

R⁺- set of non-negative real numbers

Find x such that $\left(\frac{1}{100}\right)^{3x+2} = 1$. 1)

(a) x =

(c) $x = -\frac{2}{3}$

2) is equal to

- (c) $x^{-\frac{2}{7}} \times y^{\frac{1}{6}}$

Let x be a real number and $2\log_6(x+3) = 1 + \log_6(x+2)$. Find x. 3)

(a) $x = \sqrt{2}$.

- (b) $x = -\sqrt{2}$.
- (c) $x = \sqrt{3}$.

(d) $x = -\sqrt{3}$.

(e) 3.

4) Let $A = \{2,4,6,8\}$ and $B = \{2,3,4,6,8,9\}$. Find $A \cup B$, $A \cap B$ and $A \setminus B$.

- (a) $A \cup B = A, A \cap B = B, A \setminus B = \{3,9\}.$
- (b) $A \cup B = A$, $A \cap B = B$, $A \setminus B = \emptyset$.
- (c) $A \cup B = B$, $A \cap B = A$, $A \setminus B = A$.
- (d) $A \cup B = B$, $A \cap B = A$, $A \setminus B = \emptyset$.
- (e) $A \cup B = B, A \cap B = A, A \setminus B = \{3,9\}.$

5) Suppose the universal set $U=\{1,2,3,4,5,6,7,8,9,10\}$. Let $X=\{1,4,8,9\}$ and $Y=\{3,4,6,9\}$. Find $X^c \cap Y$.

- (a) $\{3,6,\}$
- (b) {2,3,4,5,6,7,9,10}
- (c) Ø
- (d) U
- (e) $\{4,9\}$

6) Let $S = \{(x, y) | x, y \in \mathbb{Z}, x - y = 2\}$ and $T = \{(b, a) | a, b \in \mathbb{Z}, a + b = 8\}$. Find $S \cap T$.

- (a) $\{(4,2)\}$
- (b) $\{(5,3)\}$
- (c) $\{(2,4)\}$
- (d) $\{(3,5)\}$
- (e) $\{(10,8)\}$

7) Let A and B be two different non-empty sets such that $B A = \emptyset$. Which of the following must be **false**?

(a) $A \subseteq B$ (b) $B \subseteq A$ (c) $A \cap B = \emptyset$ (d) $A \cap B \neq \emptyset$ (e) $A \setminus B = \emptyset$

8) Let A,B and C be three non-empty sets such that $A \subset B$, $A \cap C = \emptyset$ and C is not a proper subset of B. Which of the following Venn diagrams reflect these properties ?.

9) Let A be a non-empty subset of the universal set U. Which of the following **must** be **false**?

(a) $\varnothing \subset A$.

(b) $A \subseteq U$.

(c) $A \subseteq A$.

(d) . $A^{\mathbf{c}} \subseteq U$

(e) $A \subset A$.

Let X and Y be two non-empty sets and $X \cap Y \neq \emptyset$. If P(X) and P(Y) are power sets of X and Y respectively, which of the following is/are true?

(a) $P(X) \subseteq X$.

- (b) $X \subseteq P(X)$.
- (c) $\emptyset \subseteq P(X) \cap P(Y)$.

- (d) $\emptyset \in P(X) \cap P(Y)$.
- (e) $P(X) \cup P(Y) = X \cup Y$.

Let A and B be any two non-empty sets. Which of the following is/are a proposition/ propositions?

- (a) Human has four legs.
- (b) Sign your attendance.
- (c) $A \subseteq B$.

(d) $A \subset A$.

(e) it is raining.

12) Consider the following truth tables for three different propositions, P,Q, R of a propositional variable p.

p	P	Q	R
F	T	F	T
T	T	T	F

Which of the following gives P.O and R respectively.?

	(a) p ∨	~p,	$p \vee p$, ~p∧	~p.
--	---------	-----	------------	-------	-----

(b)
$$p \vee \sim p$$
, p , $\sim p$,.

(c)
$$p \lor p$$
, p , $\sim p$.

(d)
$$p \Rightarrow p$$
, p , $\sim p$.

(e)
$$\sim$$
(p \wedge \sim p), p, \sim p.

13) Let p and q be two propositions. Which of the following proposition is/are (a) contradiction(s)?

(a)
$$(p \land \sim p) \lor \sim q$$
.

(b)
$$(q \lor \sim q) \Rightarrow (p \land \sim p)$$

(c)
$$(p \land q) \Rightarrow (\sim p \lor \sim q)$$

(d)
$$(p \land q) \Rightarrow (\neg p \lor q)$$
 (e) $(p \land q) \Rightarrow (p \land \neg p)$

(e)
$$(p \land q) \Rightarrow (p \land \sim p)$$

14) Let p and q be two propositions. Which of the following is/are **tautologies**?

(a)
$$(p \land q \Rightarrow \neg p \lor q) \lor \neg q$$
. (b) $(p \land q \Rightarrow \neg p \lor q) \lor q$. (c) $p \lor \neg p$.

(b)
$$(p \land q \Rightarrow \neg p \lor q) \lor q$$

(c)
$$p \vee \sim p$$
.

(d)
$$(p \lor \sim p) \land \sim q$$
. (e) $p \land q \Rightarrow p \lor q$.

(e)
$$p \land q \Rightarrow p \lor q$$

15) Let p and q be two propositions. Which of the following pairs of propositions are logically equivalent?

(a)
$$p \Rightarrow q, \sim p \vee \sim q$$
.

(b)
$$p \Rightarrow q, q \lor \sim p$$
.

(c)
$$p \Leftrightarrow q$$
, $(p \Rightarrow q) \lor (q \Rightarrow p)$.

(d)
$$p \Leftrightarrow q$$
, $(\sim p \lor q) \land (p \lor \sim q)$.

(e)
$$p \Rightarrow q, \sim p \Rightarrow \sim q$$
.

16) Let p and q be two propositions. Which of the following arguments is/are valid?

(a)
$$p \Rightarrow q, p \vdash q$$

(b)
$$p \Rightarrow a \sim p + \sim a$$

(b)
$$p \Rightarrow q, \sim p \vdash \sim q$$
 (c) $\sim p \Leftrightarrow \sim q, p \vdash \sim q$

(d)
$$p \Leftrightarrow q, p \vdash q$$
 (e) $p \Leftrightarrow \neg q, p \vdash q$

Let p and q be two propositions. Which of the following arguments is/are **invalid**?

(a)
$$p \Rightarrow q, p \nmid q$$

17)

(b)
$$p \Rightarrow q, \sim p \mid \sim q$$

(c)
$$\sim p \Leftrightarrow \sim q, p \vdash \sim q$$

(d)
$$p \Leftrightarrow a, p \vdash a$$

(d)
$$p \Leftrightarrow q, p \vdash q$$
 (e) $p \Leftrightarrow \sim q, p \vdash q$

Which of the following sets of statements is/are consistent? 18)

(a) {
$$p \wedge q$$
, $p \vee q$, $\sim p$ }

(b) {
$$p \lor q$$
, $\sim p$, $\sim q$ }

(c) {
$$q \Rightarrow p, p \Rightarrow \sim r, q, r$$
 }

(d) {
$$q \Leftrightarrow p, \sim p, \sim q$$

(d) {
$$q \Leftrightarrow p, \sim p, \sim q$$
 } (e) { $q \Rightarrow p, p \Rightarrow \sim r, r$ }

(a) $\exists x (p(x) \lor (d) (\exists x p(x)))$	-	(b) $(\forall x \ p(x)) \lor (\forall x \ q(x))$ (e) $(\exists x \ p(x)) \lor (\exists x \ q(x))$	(c) ∀x (p(x	$(x) \vee q(x)$
Let A={4,6,,8,	$\{10\}$ and $x, y \in$	A. Which of the following is	/are true?	
(a) $\forall x \exists y x + (d) \exists x \exists x \exists y x + (d) \exists x \exists x \exists x \exists x + (d) \exists x \exists x = (d) $	•	(b) $\forall x \ \forall y \ x + y < 14$ (e) $\forall x \ \exists y \ x < y$	(c) ∃x ∀y :	x + y <14
Let the two prec Which of the f		$q(x)$ be defined on R and supp \mathbf{t} be true?	ose $\forall x (p(x) \lor q$	(x)) is tr
(a) $\exists x \ p(x)$. (d) $\forall x \ p(x)$.		(b) $\sim \exists x \ p(x)$. (e) $\exists x \ (p(x) \lor \ q(x))$.	(c) ~∀x p	o(x).
	following pairs	s of propositions is/are equiv	alent?	
(a) $\forall x p(x), \sim$ (d) $\exists x p(x), \sim$	$\sim (\exists x \ p(x)).$ $\sim \forall x \sim p(x).$	(b) $\forall x \ p(x), \sim \exists x \sim p(x).$ (e) $\exists x \ p(x), \sim (\forall x \ p(x)).$	(c) ∀x p(x), ∃x p(x
Question 23 – 2	28 are based or	the following relations.		
$\pi = \{ (a)$	$(a, b) a \le b \land a,$ $(a, b) a \ge b \land a, b,$ $(a, b) a^2 = b^2 \land a,$	o∈ Z }		
$\sigma = (a, 1)$	b) $ b = a + 2 \land$ b) $ b = a - 2 \land$	$a, b \in Z$		
$\sigma = (a, 1)$ $\alpha = (a, 1)$	b) $ b = a + 2 \land$ b) $ b = a - 2 \land$	$a, b \in Z$		
$\sigma = (a, 1)$ $\alpha = (a, 1)$	b) $ b = a + 2 \land$ b) $ b = a - 2 \land$	$\{a, b \in Z\}$ $\{a, b \in Z\}$	(d) σ	(e)
$\sigma = (a, 1)$ $\alpha = (a, 1)$ Which of the a	b) $ b = a + 2 \land$ b) $ b = a - 2 \land$ above relation (b) π	a, $b \in Z$ } a, $b \in Z$ } is/are Reflexive?	(d) σ	(e)
$\sigma = (a, 1)$ $\alpha = (a, 1)$ Which of the a	b) $ b = a + 2 \land$ b) $ b = a - 2 \land$ above relation (b) π	a, $b \in Z$ } a, $b \in Z$ } is/are Reflexive? (c) θ	(d) σ (d) σ	
$\sigma = (a, 1)$ $\alpha = (a, 1)$ Which of the a (a) μ (b) μ	b) $ b = a + 2 \land$ b) $ b = a - 2 \land$ above relation (b) π	a, $b \in Z$ } a, $b \in Z$ } is/are Reflexive? (c) θ is/are Symmetric?		
$\sigma = (a, 1)$ $\alpha = (a, 1)$ Which of the a (a) μ (b) μ	b) $ b = a + 2 \land$ b) $ b = a - 2 \land$ above relation (b) π	a, $b \in Z$ } a, $b \in Z$ } is/are Reflexive? (c) θ is/are Symmetric? (c) θ		(e
$\sigma = (a, b)$ $\alpha = (a, b)$ Which of the a (a) μ Which of the a (b) μ Which of the a	b) $ b = a + 2 \land$ b) $ b = a - 2 \land$ above relation (b) π above relation (b) π	a, $b \in Z$ } a, $b \in Z$ } is/are Reflexive? (c) θ is/are Symmetric? (c) θ is/are equivalence? (c) θ	(d) σ	(e)

$(d) \pi \mathbf{o} \mu \neq \pi$	(b) $\pi \mathbf{o} \mu = \pi$. (e) $\mu \mathbf{o} \pi = \{(a,a) \mid a \in Z \}$.	(c) $\mu \mathbf{o} \pi \neq \mu$.
(d) π o $\mu \neq \pi$. Let $x \in \mathbb{Z}$. Which of the following		_
	(b) $ x _{\theta} = \{y y = \pm x, y \in \{e\} x _{\theta} = \{y y \ge y \in Z\}.$	
Suppose β is a relation defined	on A. Which of the following i	s/are true?
(a) $D(\beta) = \{x \exists y \in A, (x,y) \in \beta\}.$ (c) $R(\beta) = \{x \exists y \in D(\beta), (x,y) \in \beta\}.$ (e) $D(\beta) = R(\beta).$		$x \in A, (y, x) \in \beta$. $x \in D(\beta), (x, y) \in \beta$.
Suppose f is a function define	ed on A. Which of the follow	ing must be true?
(a) $D(f) \subseteq A$, $R(f) \subseteq A$. (d) $D(f) = A$, $R(f) \subseteq A$.	(b) $D(f) \subset A$, $R(f) \subseteq A$. (e) $D(f) = A$, $R(f) = A$.	(c) $D(f) \subset A$, $R(f) \subset A$.
Suppose <i>f</i> is a 1-1 function. W	Which of the following is/are t	rue?
(a) $\forall x_1, \forall x_2, x_1 \in D(f), x$	$f_2 \in D(f), f(x_1) = f(x_2) \Rightarrow x$	$_{1}=x_{2}.$
	$f_2 \in D(f), f(x_1) \neq f(x_2) \Rightarrow x$	
	$a \in D(f), x_1 \neq x_2 \Rightarrow f(x_1) = 0$	
	$x \in D(f), x_1 = x_2 \Rightarrow f(x_1) \neq f(x_1)$ $x \in D(f), x_1 = x_2 \Rightarrow f(x_1) = f(x_1)$	
	efined on R by $f(x)=2x$ and g	
(a) $2(x+2)$. (b) $2(x+2)$	1). (c) $4(x + 1)$.	(d) $2x + 1$. (e) $g(2x)$.
Let f be a function defined on	R by $f(x) = 2x + 1$. Find f^{-1} .	
·	1). (b) $D(f^{-1})=R$, $f^{-1}(x)=2$	
(a) $D(f^{-1})=R$, $f^{-1}(x)=\frac{1}{2}(x+1)$ (d) $D(f^{-1})=R$, $f^{-1}(x)=2(x-1)$ In a group of 4 boys and 2 girls,	1). (b) $D(f^{-1})=R$, $f^{-1}(x)=2(1)$. (e) $D(f^{-1})=R$, $f^{-1}(x)=\frac{1}{2}(1)$, two children are to be selected.	(x-1).
(d) $D(f^{-1})=R$, $f^{-1}(x)=2(x-1)$ In a group of 4 boys and 2 girls, can they be selected such that at	1). (b) $D(f^{-1})=R$, $f^{-1}(x)=2(1)$. (e) $D(f^{-1})=R$, $f^{-1}(x)=\frac{1}{2}(1)$. two children are to be selected. It least one boy is there.	(x-1).
(a) $D(f^{-1})=R$, $f^{-1}(x)=\frac{1}{2}(x+1)$ (d) $D(f^{-1})=R$, $f^{-1}(x)=2(x-1)$ In a group of 4 boys and 2 girls, can they be selected such that at $(a)^4C_2$. (d) $^4C_1 \times ^2C_1$.	1). (b) $D(f^{-1})=R$, $f^{-1}(x)=2(1)$. (e) $D(f^{-1})=R$, $f^{-1}(x)=\frac{1}{2}(1)$, two children are to be selected. It least one boy is there.	(c) 14.

Which of the fo	llowing is/are true?			
(a) X+XY=X	(b) X•X=X.	(c) $X + \overline{X} = X$.	(d) $X + \overline{X} = 0$.	(e) X•X=1
The events hav	ving no experimen	tal outcomes in co	mmon are called	:
(a) Equally lil (d) Independe		b) Exhaustive ever e) Dependent even	• •	ually exclusive eve
If A and B are $P(B)$ is equal		usive and exhausti	ve events and P	(A) = 2P(B), then
(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c) $\frac{2}{3}$	$(d)\frac{1}{4}$	(e) $\frac{2}{4}$
Given that A a value for $P(\bar{A} $		ally exclusive and	$P(\bar{A}\cap\bar{B})=2/5$	then a possible
(a) 0.	$(b) \frac{1}{10}$	$(c) \frac{3}{10}$	$(d)\frac{7}{10}$	(e) 1.
A part of an exchoices (listed	am contains two r "A", "B", and "C" e equally likely, fin	multiple-choice que f) out of which onlind the probability t	estions, each with y one is correct. hat at least one a	h three answer Assuming the nswer is "C".
A part of an exchoices (listed outcomes to be $\frac{7}{9}$	cam contains two rather "A", "B", and "C" e equally likely, find the equal background $\frac{5}{9}$ and $\frac{5}{9}$ ent events A and B	multiple-choice quantum of which only out of which only odd the probability to $\frac{4}{9}$	estions, each with yone is correct. hat at least one a $ (d) \frac{1}{3} $	th three answer Assuming the answer is "C". (e) $\frac{2}{3}$
A part of an exchoices (listed outcomes to be $\frac{7}{9}$	cam contains two rather "A", "B", and "C" e equally likely, find the equal background $\frac{5}{9}$ and $\frac{5}{9}$ ent events A and B	multiple-choice quantum of which only out of which only odd the probability to $\frac{4}{9}$	estions, each with yone is correct. hat at least one a $ (d) \frac{1}{3} $	th three answer Assuming the answer is "C". (e) $\frac{2}{3}$
A part of an exchoices (listed outcomes to be outcomes and I are outcomes are outcomes and I are outcomes are outcomes and I are outcomes are outcomes are outcomes are outcomes are outcomes are outcomes are outcomes.	cam contains two rand "A", "B", and "C" equally likely, find $(b) \frac{5}{9}$ ent events A and B $A \cup B$ is: (b) 0.2. Sompany produces 6 Plant C produces 2	multiple-choice quantity out of which only out of which only the probability of $\frac{4}{9}$ are such that $P(A)$ (c) 0.4. % defective production of the plants is equality of the plants	estions, each with yone is correct. hat at least one at $\frac{1}{3}$ $A B) = 0.5$ and B $A B) = 0.5$ and $A B $ $A B B $ $A B B B B B B B B B B B B B B B B B B B$	th three answer Assuming the answer is "C". (e) $\frac{2}{3}$ $P(B A) = 0.2.$ The