Discovering Threshold-based Frequent Closed Itemsets over Probabilistic Data

Yongxin Tong¹, Lei Chen¹, Bolin Ding²

¹Department of Computer Science and Engineering, Hong Kong University of Science and Technology ² Department of Computer Science, University of Illinois at Urbana-Champaign

Motivations of Probabilistic Frequent Closed Itemsets

TID	Location	Weather	Time	Speed	Probability
T1	HKUST	Rain	8:30-9:00 AM	20-30	0.9
T2	HKUST	Rain	8:30-9:00 AM	null	0.6
Т3	HKUST	Rain	8:30-9:00 AM	null	0.7
T4	HKUST	Rain	8:30-9:00 AM	20-30	0.9

TID	Transaction	Probability
T1	a b c d	0.9
T2	a b c	0.6
Т3	a b c	0.7
T4	a b c d	0.9

PW	Transactions	Probability	Frequent Closed Itemsets
PW1	T1	0.0108	{ }
PW2	T1, T2	0.0162	{abc}
PW3	T1, T3	0.0252	{abc}
PW4	T1, T4	0.0972	{abcd}
PW5	T1, T2, T3	0.0378	{abc}
PW6	T1, T2, T4	0.1458	{abc} {abcd}
PW7	T1, T3, T4	0.2268	{abc} {abcd}
PW8	T1, T2, T3, T4	0.3402	{abc} {abcd}
PW9	T2	0.0018	{ }
PW10	T2, T3	0.0042	{abc}
PW11	T2, T4	0.0162	{abc}
PW12	T2, T3, T4	0.0378	{abc}
PW13	T3	0.0028	{ }
PW14	T3, T4	0.0252	{abc}
PW15	T4	0.0108	{ }
PW16	{ }	0.0012	{ }

A Uncertain Transaction Database

- Given $min_sup=2$, pft=0.8, there are 15 probabilistic frequent itemsets (7 ones' frequent probability=0.9726, other 8 frequent probabilitis= 0.81).
- How to distinguish 15 itemsets? (Probabilistic frequent closed itemset)
- The frequent closed probability of {abc}=Pr(PW2)+ Pr(PW3)+Pr(PW5)+Pr(PW6)+Pr(PW7)+Pr(PW8)+Pr(PW10)+Pr(PW11)+Pr(PW12)+Pr(PW14)=0.8754.

Definition of Probabilistic Frequent Closed Itemset

- Frequent Closed Probability:
 - Given a minimum support min_sup , and an itemset X, X's frequent closed probability, denoted as $Pr_{FC}(X)$ is the sum of the probabilities of possible worlds where X is a frequent closed itemset.
- Probabilistic Frequent Closed Itemset:
 - Given a minimum support min_sup, a probabilistic frequent closed threshold pfct, an itemset X, X
 is a probabilistic frequent closed itemset if:

Pr{X is frequent closed itemset}= PrFC(X) > pfct

• It is #P-hard to calculate the frequent closed probability of an itemset when the minimum support is given in an uncertain transaction database.

The relationship of $Pr_F(X)$, $Pr_C(X)$ and $Pr_{FC}(X)$

Procedure MPFCI Framework {

1: Discover all the single probabilistic frequent items, called Cand, using Chernoff-Hoeffding bound and sort all the items in Cand based on the alphabetic order.

//Phase 1: Construct initial probabilistic frequent single items

2: For each item X in Cand, extend X using a depth-first search like strategy to its supersets with X as prefix and perform Chernoff-Hoeffding bound-based pruning, superset pruning, subset pruning, and frequent closed probability bound-based pruning.

//Phase 2: Bounding and Pruning

3: Check the frequent closed probability of itemsets which cannot be pruned and return the result set.

//Phase 3: Checking

MPFCI Algorithm

- Four Pruning Methods:
 - Chernoff-Hoeffding Bound-based Pruning
 - Superset Pruning
 - Subset Pruning

750 - MPFCI

-4-MPFCI-NoCH

★ MPFCI-NoSuper

0.7 0.5 0.3
Probabilistic Frequent Closed Threshold

(a) Mushroom

600 - MPFCI-NoBound

450 - MPECI-NoSub

-MPECI

500 - MPFCI-NoCH

- Upper Bound and Lower Bound of Frequent Closed Probability-based Pruning
- Monte-Carlo sampling algorithm to calculate the frequent closed probability approximately

Experimental Results

-MPFCI

--- MPFCI-NoCH

600 → MPFCI-NoBound

MPFCI

--- MPFCI-NoCH

▼ MPFCI-NoBound

→ MPFCI-NoSuper

Probabilistic Frequent Closed Threshold

(b) T20I10D30KP40

→MPFCI-NoSub

Running Time w.r.t epsilon

Running Time w.r.t pfct

