TP n°04 : Titrage conductimétrique du vinaigre

<u>I. Contexte du sujet</u>

Le vinaigre est un liquide acide (pH généralement compris entre 2 et 3) obtenu grâce à l'oxydation de l'éthanol, présent dans les boissons alcoolisées, par un processus de fermentation acétique. Il est utilisé dans l'alimentation humaine.

Le vinaigre commun à une concentration en acide acétique (acide éthanoïque) comprise entre 5 et 8 %, appelée degré, mais l'acide tartrique et l'acide citrique se retrouvent, en plus faibles concentrations, dans les vinaigres naturels.

« Comment contrôler le degré du vinaigre par titrage conductimétrique ? »

II. Documents à disposition

<u>Doc n°1</u>: Le vinaigre d'alcool

Le vinaigre d'alcool est une solution d'acide acétique (acide éthanoïque).

Le <u>degré</u> d'un vinaigre représente <u>le titre massique en pourcent</u> de l'acide acétique dans le vinaigre.

La densité du vinaigre est de 1,02

 $M_{CH_3CO_2H} = 60.0 \text{ g.mol}^{-1}$

Doc n°2: Titrage du vinaigre

Pour contrôler la qualité d'un vinaigre indiqué à 8° , on réalise le titrage de l'acide acétique CH_3CO_2H contenu dans un volume $V_1 = 10,0$ mL de vinaigre dilué 10 fois par une solution d'hydroxyde de sodium, appelée « soude » de concentration $C_2 = 0,100$ mol. L^{-1}

<u>Doc n°3</u>: Conductivités molaires ioniques

$$\lambda_{HO^{-}} = 20 \text{ mS.m}^{2}.\text{mol}^{-1}$$
 $\lambda_{Na^{+}} = 5,0 \text{ mS.m}^{2}.\text{mol}^{-1}$
 $\lambda_{CH_{3}CO_{2}^{-}} = 4,1 \text{ mS.m}^{2}.\text{mol}^{-1}$

Doc n°4: Incertitudes

On néglige l'incertitude sur la concentration du réactif titrant.

<u>Incertitude sur le prélèvement :</u> $u(V_{titré}) = 0,1 \text{ mL}$

 $\underline{\textit{Incertitude sur } V_E}: \quad u(V_E) = 0.1 \text{ mL}$

Incertitude sur la concentration du réactif titré

$$u(C_{titr\acute{e}}) = C_{titr\acute{e}} \times \sqrt{\left(\frac{u(V_E)}{V_E}\right)^2 + \left(\frac{u(V_{Titr\acute{e}})}{V_{titr\acute{e}}}\right)^2}$$

Lorsqu'une grandeur mesurée est multipliée par une valeur non mesurée, l'incertitude subie la même opération.

III. Matériel à disposition

- Un conductimètre + solution étalon
- 1 agitateur magnétique (+ gros turbulent)
- 3 béchers de 50 mL.
- 1 bécher de 250 mL
- 1 éprouvette graduée de 100 mL
- 1 pissette d'eau distillée.

- 1 burette de 25 mL.
- 1 pipette jaugée de 10,0 mL
- 1 solution de <u>vinaigre à 8°</u> diluée 10 fois.
- 1 flacon de soude à $C_B = 0,100 \text{ mol.L}^{-1}$
- 1 flacon de
- Latis-Pro

IV. Travail à effectuer.

S'APPROPRIER

- 1°- Préciser le réactif titrant et le réactif titré.
- 2°- Réaliser un schéma légendé du dispositif expérimental en précisant les espèces chimiques et leur formule, ainsi que les concentrations et volumes correspondant.
 - Entourer les réactifs et en déduire l'équation de la réaction support du titrage.
- 3°- a- Compléter le tableau suivant :

	Évolution des quantités de matière dans le bécher	
Ions	$ m V_{titrant} < m V_{E}$	$V_{titrant} > V_{E}$

- b- Déterminer puis comparer l'évolution de la conductivité de la solution avant et après l'équivalence.
- c- Comment sera repérée l'équivalence ?

RÉALISER

- Rincer la burette avec la soude et ajuster le zéro.
- Rincer la pipette avec la solution de vinaigre puis en prélever 10,0 mL et les verser dans le bécher de 250 mL.
- Ajouter environ 100 mL d'eau distillée à l'éprouvette graduée.
- Préparer le conductimètre.
- Placer la cellule dans le bécher et ajuster le dispositif de manière à ce que <u>la cellule soit correctement immergée</u> dans la solution, sans toucher les parois, ni le turbulent.
- Mettre l'agitation en marche, elle doit être suffisamment rapide, mais pas trop!

Attention : En conductimétrie, il faut agiter en versant le réactif titrant, mais <u>arrêter l'agitation avant de faire la</u> mesure.

Ouvrir Latis-Pro et créer les variables V_{titrant} et sigma (en style croix) dans le tableur

- Noter la valeur de σ dans le tableur pour $V_{titrant} = 0$ mL (n'oubliez pas d'appuyer sur READ pour lire la conductivité)
- Ajouter 2,0 mL de réactif titrant dans le bécher, et noter les valeurs correspondantes.
- Recommencer de 2,0 mL en 2,0 mL jusqu'à 25,0 mL
- Tracer $sigma = f(V_{titrant})$.
- Modéliser séparément les 2 parties du graphique (déplacer la souris sur le graphique, des curseurs rouges apparaissent, ils permettent de sélection des points pour la modélisation) et en déduire le volume V_E.
 Le noter en tenant compte de l'incertitude-type sur la mesure.

Appel 1 : Appeler le professeur pour vérifier modélisation et votre volume équivalent.

VALIDER

4°- Déterminer la concentration en quantité de matière C_{titrée} de la solution titrée avec son incertitude (*attention à la rédaction !*)

Appel 2 : Appeler le professeur pour lui montrer vos résultats

5°- En déduire la concentration en quantité de matière du vinaigre C_v et son incertitude.

Appel 3 : Appeler le professeur pour lui montrer vos résultats

- 6°- En déduire le degré expérimental du vinaigre degrévinaigre et son incertitude.
- 7°- Conclure sur le critère de qualité du vinaigre.

RÉALISER

- Rincer la burette avec la soude et ajuster le zéro.
- Rincer la pipette avec la solution de vinaigre puis en prélever 10,0 mL et les verser dans le bécher de 250 mL.
- Ajouter environ 100 mL d'eau distillée à l'éprouvette graduée.
- Préparer le conductimètre.
- Placer la cellule dans le bécher et ajuster le dispositif de manière à ce que <u>la cellule soit correctement immergée</u> dans la solution, sans toucher les parois, ni le turbulent.
- Mettre l'agitation en marche, elle doit être suffisamment rapide, mais pas trop!

Attention : En conductimétrie, il faut agiter en versant le réactif titrant, mais <u>arrêter l'agitation avant de faire la</u> mesure.

Ouvrir Latis-Pro et créer les variables V_{titrant} et sigma (en style croix) dans le tableur

- Noter la valeur de σ dans le tableur pour $V_{titrant} = 0$ mL (n'oubliez pas d'appuyer sur READ pour lire la conductivité)
- Ajouter 2,0 mL de réactif titrant dans le bécher, et noter les valeurs correspondantes.
- Recommencer de 2,0 mL en 2,0 mL jusqu'à 25,0 mL
- Tracer $sigma = f(V_{titrant})$.
- Modéliser séparément les 2 parties du graphique (déplacer la souris sur le graphique, des curseurs rouges apparaissent, ils permettent de sélection des points pour la modélisation) et en déduire le volume V_E.
 Le noter en tenant compte de l'incertitude-type sur la mesure.

Appel 1 : Appeler le professeur pour vérifier modélisation et votre volume équivalent.

VALIDER

4°- Déterminer la concentration en quantité de matière C_{titrée} de la solution titrée avec son incertitude (*attention à la rédaction !*)

Appel 2 : Appeler le professeur pour lui montrer vos résultats

5°- En déduire la concentration en quantité de matière du vinaigre C_v et son incertitude.

Appel 3 : Appeler le professeur pour lui montrer vos résultats

- 6°- En déduire le degré expérimental du vinaigre degré_{vinaigre} et son incertitude.
- 7°- Conclure sur le critère de qualité du vinaigre.