Examenul de bacalaureat național 2020 Proba E. d) FIZICĂ BAREM DE EVALUARE ȘI DE NOTARE

Test 15

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10.

A. MECANICĂ
A. Subiectul I

Nr.Item	Soluţie, rezolvare	Punctaj
I.1.	d	3р
2.	C	3р
3.	d	3р
4.	a	3р
5.	C	3р
TOTAL	pentru Subiectul I	15p

A. Subiectul al II - lea

II.a.	Pentru: reprezentarea corectă a forțelor care se exercită asupra corpului	4p	4p
b.	Pentru: $N = mg\cos\alpha$	2p	3р
	rezultat final $N = 10N$	1p	
C.	Pentru: $mg \sin \alpha = F + F_f$	1p	4p
	$F_{t} = \mu mg \cos \alpha$	1p	
	$F = mg(\sin \alpha - \mu \cos \alpha)$	1p	
	rezultat final <i>F</i> ≅ 14,4 N	1p	
d.	Pentru: $mg \sin \alpha = F' \cos \alpha + \mu N'$	1p	4p
	$N' = F' \sin \alpha + mg \cos \alpha$	1p	
	$F' = \frac{mg(\sin\alpha - \mu\cos\alpha)}{\cos\alpha + \mu\sin\alpha}$	1p	
	rezultat final: $F \cong 19,2 \text{ N}$	1p	
TOTAL	pentru Subiectul al II-lea		15p

A. Subjectul al III - lea

T. Subic	ctul al III - lea		
III.a.	Pentru:	25	3р
	grafic $E_c = f(h)$ corect cu precizarea valorilor E_{c0} şi h_{max}	3р	
b.	Pentru:		4p
	$\Delta E_c = L_G$	1 p	
	$0 - \frac{mv^2}{2} = -mgh_{\text{max}}$	1p	
	$v = \sqrt{2gh_{\text{max}}}$	1 p	
	rezultat final $v = 24 \text{m/s}$	1 p	
C.	Pentru:		4p
	$\frac{mv^2}{2} - \frac{mv_0^2}{2} = -mgh$	2p	
	$v = \frac{V_0}{2} \Rightarrow h = \frac{3}{4} h_{\text{max}}$	1p	
	rezultat final $h = 21,6m$	1p	
d.	Pentru:		4p
	$L_{\rm G} = mg(h_i - h_{\rm f})$	2p	
	$h_i = h_i$	1p	
	rezultat final $L_G = 0J$	1p	
TOTAL	pentru Subiectul al III-lea	_	15p

B. ELEMENTE DE TERMODINAMICĂ

(45 de puncte)

B. Subiectul I

Nr.Item	Soluţie, rezolvare	Punctaj
l.1.	C	3р
2.	d	3р
3.	a	3р
4.	b	3р
5.	C	3р
TOTAL pentru Subiectul I		15p

B. Subiectul al II - lea

II.a.	Pentru:	3p
	$v = \frac{m_{_1}}{\mu}$	
	rezultat final: $v = 0.2$ mol	
b.	Pentru:	4p
	$\Delta p = p_2 - p_1 $ 1p	
	$\Delta p = \frac{vR}{V}(T_2 - T_1)$ 2p	
	rezultat final: $\Delta p \cong 0,66 \cdot 10^5 \text{Pa}$	
C.	Pentru:	4p
	$p_3 \cdot V = \frac{m'}{\mu} R T_3$	
	rezultat final: $m' \cong 4.8g$	
d.	Pentru:	4p
	$\rho_3 = \frac{p_3 \mu}{R T_3}$	
	rezultat final: $\rho_3 \cong 1,2 \text{ kg/m}^3$	
TOTAL	pentru Subiectul al II-lea	15p

B. Subiectul al III - lea

III.a.	Pentru:	4p
	reprezentare corectă 4p	-
b.	Pentru:	3р
	$\Delta U = \nu C_{\nu} (T_1 - 3T_1) $ 2p	
	rezultat final: $\Delta U = -12465 \text{ J}$	
C.	Pentru:	4p
	$Q_{cedat} = \nu R T_3 \ln \frac{p_3}{p_4} + \nu C_V (T_1 - 3T_1)$ 2p	
	$\frac{p_2}{T_2} = \frac{p_3}{T_3}$	
	rezultat final: $Q_{cedat} = -14958 J$	
d.	Pentru:	4p
	$L_{tot} = L_{12} + L_{23} + L_{34} + L_{41} $ 1p	
	$L_{tot} = vR(1,5T_1 - T_1) + 0 + (-3vRT_1 \ln 1,5) + 0$ 2p	
	rezultat final: $L_{tot} = -1454,25 J$	
TOTAL	pentru Subiectul al III-lea	15p

No. Hem Solutije, rezolvare 9 Punct 1.1.	C. PROD C. Subie	UCEREA ŞI UTILIZAREA CURENTULUI CONTINUU	(45 c	de puncte)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Punctai
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
4. d 3 g 5. a 3 p TOTAL pentru Subiectul I 15p C. Subiectul al II - lea 4p III.a. Pentru: $R_1I_1 = R_2I_2$ 1p 1p 1p rezultat final: $I_1 = 0.2A$ 1p 4p b. Pentru: $R_{11} = R_{12} + R_{3}$ 1p rezultat final: $I_1 = 0.2A$ 1p 4p c. Pentru: $R_2 = R_1R_2 \cdot (R_1 + R_2)^{-1}$ 2p rezultat final: $R_6 = 44\Omega$ 1p 1p c. Pentru: $U_{AB} = E - I_{AF}$ 1p				•
5. a 3p TOTAL pentru Subiectul I 15p C. Subiectul al II - lea 4p II.a. Pentru: $R_1 - R_2 I_2$	3.	d		•
$ \begin{array}{c c c c} \textbf{TOTAL pentru Subiectul II le Ioa} \\ \hline \textbf{Ii.a.} & \textbf{Pentru:} & \textbf{4p} \\ \hline \textbf{Iii.a.} & \textbf{Pentru:} & \textbf{4p} \\ \hline \textbf{II.a.} & \textbf{Pentru:} & \textbf{1p} \\ \hline \textbf{II.a.} & \textbf{Pentru:} & \textbf{1p} \\ \hline \textbf{II.a.} & \textbf{Pentru:} & \textbf{3p} \\ \hline \textbf{II.a.} & \textbf{Pentru:} & \textbf{1p} \\ \hline \textbf{II.a.} & \textbf{II.a.} & \textbf{II.a.} & \textbf{II.a.} \\ \hline \textbf{II.a.} & \textbf{Pentru:} & \textbf{1p} \\ \hline \textbf{II.a.} & \textbf{II.a.} & \textbf{II.a.} & \textbf{II.a.} \\ \hline \textbf{II.a.} & \textbf{Pentru:} & \textbf{1p} \\ \hline \textbf{II.a.} & \textbf{II.a.} & \textbf{II.a.} & \textbf{II.a.} \\ \hline \textbf{II.a.} & \textbf{Pentru:} & \textbf{II.a.} & \textbf{II.a.} \\ \hline \textbf{II.a.} & \textbf{II.a.} & \textbf{II.a.} & \textbf{II.a.} \\ \hline \textbf{II.a.} & \textbf{II.a.} & \textbf{II.a.} & \textbf{II.a.} \\ \hline \textbf{II.a.} & \textbf{II.a.} & \textbf{II.a.} & \textbf{II.a.} \\ \hline \textbf{II.a.} & \textbf{II.a.} & \textbf{II.a.} & \textbf{II.a.} \\ \hline \textbf{II.a.} & \textbf{II.a.} & \textbf{II.a.} & \textbf{II.a.} \\ \hline \textbf{II.a.} & \textbf{II.a.} & \textbf{II.a.} & \textbf{II.a.} \\ \hline \textbf{II.a.} & \textbf{II.a.} & \textbf{II.a.} & \textbf{II.a.} \\ \hline \textbf{II.a.} & \textbf{II.a.} & \textbf{II.a.} & \textbf{II.a.} \\ \hline \textbf{II.a.} $		d		3р
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
II.a. Pentru:				15p
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	II.a.		1n	4p
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		==	·	
b. Pentru: 4p $R_0 = R_1 + R_2$ 1p rezultat final: $R_0 = 44\Omega$ 1p c. Pentru: 4p $U_{AB} = E - I_A r$ 1p $I_A = \frac{2E}{R_0 + 2r}$ 2p rezultat final: $U_{AB} = 5.5 \text{ V}$ 1p d. Pentru: 3p $U_{AB} = E$ 2p rezultat final: $U_{AB} = 6 \text{ V}$ 1p TOTAL pentru Subiectul al III-lea 1p C. Subiectul al III-lea II.a. Pentru: $I_1 = I - I_2$ 1p $E = R_1 I_1 + rI$ 1p rezultat final: $E = 4.5 \text{ V}$ 1p b. Pentru: 4p $R_2 = \frac{E-I}{I_2}$ 2p $W_2 = R_2 \cdot I_2^2 \cdot \Delta t$ 1p rezultat final: $W_2 = 648 \text{ J}$ 1p c. Pentru: 4p $P_{0a} = R_1 I_1^2 + R_2 I_2^2$ 1p $P_{0a} = R_1 I_1^2 + R_2 I_2^2$ 1p $P_{0a} = I_1 I_2 I_1 I_2 I_2 I_2$ 1p $P_{0a} = I_1 I_2 I_1 I_2 I_$			· ·	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1p	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	b.			4p
c. Pentru: 4p $I_{AB} = E - I_{A} \Gamma$ 1p $I_{A} = \frac{2E}{R_o + 2I}$ 2p rezultat final: $U_{AB} = 5.5 \text{ V}$ 1p d. Pentru: 3p $U_{AB} = E$ 2p rezultat final: $U_{AB} = 6 \text{ V}$ 1p TOTAL pentru Subiectul al III-lea 1p C. Subiectul al III-lea 3p II.a. Pentru: $I_{A} = I_{A} I_{A} + II$ 1p rezultat final: $E = 4.5 \text{ V}$ 1p b. Pentru: 4p $R_{2} = \frac{E - II}{I_{2}}$ 2p $W_{2} = R_{2} \cdot I_{2}^{2} \cdot \Delta t$ 1p rezultat final: $W_{2} = 648 \text{ J}$ 1p c. Pentru: 4p $P_{0} = \frac{P_{0}}{P_{00}}$ 1p $P_{0} = \frac{P_{0}}{P_{00}}$ 1p $P_{0} = E \cdot I$ 1p rezultat final: $\eta = 0.8 = 80\%$ 1p d. Pentru: 2p $R_{0} = I$ 2p $R_{0} = I$ 1p rezultat final: $R_{0} = I$ 2p rezultat final:		$R_{12} = R_1 R_2 \cdot (R_1 + R_2)^{-1}$	2p	
c. Pentru: 4p $I_{AB} = E - I_{A} \Gamma$ 1p $I_{A} = \frac{2E}{R_o + 2I}$ 2p rezultat final: $U_{AB} = 5.5 \text{ V}$ 1p d. Pentru: 3p $U_{AB} = E$ 2p rezultat final: $U_{AB} = 6 \text{ V}$ 1p TOTAL pentru Subiectul al III-lea 1p C. Subiectul al III-lea 3p II.a. Pentru: $I_{A} = I_{A} I_{A} + II$ 1p rezultat final: $E = 4.5 \text{ V}$ 1p b. Pentru: 4p $R_{2} = \frac{E - II}{I_{2}}$ 2p $W_{2} = R_{2} \cdot I_{2}^{2} \cdot \Delta t$ 1p rezultat final: $W_{2} = 648 \text{ J}$ 1p c. Pentru: 4p $P_{0} = \frac{P_{0}}{P_{00}}$ 1p $P_{0} = \frac{P_{0}}{P_{00}}$ 1p $P_{0} = E \cdot I$ 1p rezultat final: $\eta = 0.8 = 80\%$ 1p d. Pentru: 2p $R_{0} = I$ 2p $R_{0} = I$ 1p rezultat final: $R_{0} = I$ 2p rezultat final:			1n	
C. Pentru: $U_{AB} = E - I_A \Gamma$ 1p 4p $I_A = \frac{2E}{R_e + 2\Gamma}$ 2p 2p rezultat final: $U_{AB} = 5.5 \text{ V}$ 1p 3p d. Pentru: $U_{AB} = E$ 2p 3p rezultat final: $U_{AB} = 6 \text{ V}$ 1p 15p TOTAL pentru Subiectul al II-lea 3p C. Subiectul al III-lea 3p U. j.			·	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			ıρ	4n
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C.		1n	μ-τρ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			īρ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$I_A = \frac{2E}{R}$	2p	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			·	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1p	
rezultat final: $U_{AB} = 6 \lor$ 15p TOTAL pentru Subiectul al III-lea 15p C. Subiectul al III-lea 3p II.a. Pentru: 1p 2p II.a. Pentru: 4p E = R ₁ I ₁ + rI 1p 4p E = R ₁ I ₁ + R ₂ I ₂ ² \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	d.			3р
TOTAL pentru Subiectul al III-lea C. Subiectul al III - lea II.a. Pentru:		$U_{AB} = E$	2p	
TOTAL pentru Subiectul al III-lea C. Subiectul al III - lea II.a. Pentru:		rezultat final: $U_{AB} = 6 \text{ V}$	1p	
C. Subiectul al III - lea II.a. Pentru: 1p $l_1 = l_2$ 1p $E = R_1 l_1 + rl$ 1p rezultat final: $E = 4,5 \lor$ 1p b. Pentru: 4p $R_2 = \frac{E - rl}{l_2}$ 2p $W_2 = R_2 \cdot l_2^2 \cdot \Delta t$ 1p rezultat final: $W_2 = 648 \text{ J}$ 1p c. Pentru: 4p $\eta = \frac{P_u}{P_{tot}}$ 1p $P_u = R_1 l_1^2 + R_2 l_2^2$ 1p $P_{tot} = E \cdot l$ 1p rezultat final: $\eta = 0.8 = 80\%$ 1p d. Pentru: 2p $R_{ext} = r$ 2p $\frac{1}{R_{ext}} = \frac{1}{R_1} + \frac{1}{R_2}$ 1p rezultat final: $R_2 = 2\Omega$ 1p	TOTAL		· ·	15p
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	II.a.	Pentru:		3р
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$I_1 = I - I_2$	1p	
b. Pentru: 4p $R_2 = \frac{E - rl}{l_2}$ 2p $W_2 = R_2 \cdot l_2^2 \cdot \Delta t$ 1p rezultat final: $W_2 = 648J$ 1p c. Pentru: 4p $\eta = \frac{P_u}{P_{lot}}$ 1p $P_u = R_1 l_1^2 + R_2 l_2^2$ 1p $P_{lot} = E \cdot l$ 1p rezultat final: $\eta = 0.8 = 80\%$ 1p d. Pentru: 4p $R_{ext} = r$ 2p $\frac{1}{R_{ext}} = \frac{1}{R_1} + \frac{1}{R_2^i}$ 1p rezultat final: $R_2^i = 2\Omega$ 1p		$E = R_1 I_1 + rI$	1p	
b. Pentru: 4p $R_2 = \frac{E - rl}{l_2}$ 2p $W_2 = R_2 \cdot l_2^2 \cdot \Delta t$ 1p rezultat final: $W_2 = 648J$ 1p c. Pentru: 4p $\eta = \frac{P_u}{P_{lot}}$ 1p $P_u = R_1 l_1^2 + R_2 l_2^2$ 1p $P_{lot} = E \cdot l$ 1p rezultat final: $\eta = 0.8 = 80\%$ 1p d. Pentru: 4p $R_{ext} = r$ 2p $\frac{1}{R_{ext}} = \frac{1}{R_1} + \frac{1}{R_2^i}$ 1p rezultat final: $R_2^i = 2\Omega$ 1p		rezultat final: $E = 4.5 \text{ V}$	1p	
$R_{2} = \frac{E - rl}{l_{2}}$ $W_{2} = R_{2} \cdot l_{2}^{2} \cdot \Delta t$ $rezultat final: W_{2} = 648 \text{J}$ $1p$ $C. Pentru: $	b.		- 15	4p
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_ E-rl		- 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$K_2 = \frac{1}{l_2}$	2р	
rezultat final: $W_2 = 648 \text{J}$ 1p c. Pentru:			15	
C. Pentru: 4p $\eta = \frac{P_u}{P_{tot}}$ 1p $P_u = R_1 I_1^2 + R_2 I_2^2$ 1p $P_{tot} = E \cdot I$ 1p rezultat final: $\eta = 0.8 = 80\%$ 1p d. Pentru: 4p $R_{ext} = r$ 2p $\frac{1}{R_{ext}} = \frac{1}{R_1} + \frac{1}{R_2}$ 1p rezultat final: $R_2 = 2\Omega$ 1p			•	
$ \eta = \frac{P_{u}}{P_{tot}} \qquad 1p \\ P_{u} = R_{1}I_{1}^{2} + R_{2}I_{2}^{2} \qquad 1p \\ P_{tot} = E \cdot I \qquad 1p \\ rezultat final: \eta = 0.8 = 80\% \qquad 1p \mathbf{d.} \qquad \begin{array}{c} \mathbf{Pentru:} \\ R_{ext} = r \qquad 2p \\ \frac{1}{R_{ext}} = \frac{1}{R_{1}} + \frac{1}{R_{2}'} \qquad 1p \\ rezultat final: R_{2}' = 2\Omega \end{array} $			1p	
$P_{u} = R_{1}I_{1}^{2} + R_{2}I_{2}^{2}$ $P_{tot} = E \cdot I$ $rezultat final: \ \eta = 0.8 = 80\%$ $\mathbf{d.} \begin{array}{c} \mathbf{Pentru:} \\ R_{ext} = r \\ \hline R_{ext} = \frac{1}{R_{1}} + \frac{1}{R_{2}} \\ rezultat final: \ R_{2}^{'} = 2\Omega \end{array}$ $1p$	C.			4p
$P_{u} = R_{1}I_{1}^{2} + R_{2}I_{2}^{2}$ $P_{tot} = E \cdot I$ $rezultat final: \ \eta = 0.8 = 80\%$ $\mathbf{d.} \begin{array}{c} \mathbf{Pentru:} \\ R_{ext} = r \\ \hline R_{ext} = \frac{1}{R_{1}} + \frac{1}{R_{2}} \\ rezultat final: \ R_{2}^{'} = 2\Omega \end{array}$ $1p$		$\eta = \frac{P_u}{I}$	1n	
$P_{tot} = E \cdot I$ 1p rezultat final: $\eta = 0.8 = 80\%$ 1p		P_{tot}	٠,٢	
$P_{tot} = E \cdot I$ 1p rezultat final: $\eta = 0.8 = 80\%$ 1p		$P_{u} = R_{1}l_{1}^{2} + R_{2}l_{2}^{2}$	1p	
rezultat final: $\eta=0.8=80\%$ 1p d. Pentru: $R_{\rm ext}=r$ $\frac{1}{R_{\rm ext}}=\frac{1}{R_1}+\frac{1}{R_2}$ rezultat final: $R_2=2\Omega$ 1p			1n	
d. Pentru: $R_{\text{ext}} = r$ 2p $\frac{1}{R_{\text{ext}}} = \frac{1}{R_1} + \frac{1}{R_2}$ 1p $\text{rezultat final: } R_2 = 2\Omega$			•	
$R_{ext} = r$ $\frac{1}{R_{ext}} = \frac{1}{R_1} + \frac{1}{R_2}$ $rezultat final: R_2 = 2\Omega$ 1p	Ч		יף	4n
$\frac{1}{R_{ext}} = \frac{1}{R_1} + \frac{1}{R_2}$ rezultat final: $R_2' = 2\Omega$	u.		2n	קד
rezultat final: $R_2^{'} = 2\Omega$			2μ	
rezultat final: $R_2^{'} = 2\Omega$		$\frac{1}{R} = \frac{1}{R} + \frac{1}{R'}$	1p	
			•	
TOTAL pentru Subiectul al III-lea 15p		rezultat final: $R_2^{'} = 2\Omega$	1p	
	TOTAL	pentru Subiectul al III-lea		15p

(45 de puncte) D. OPTICĂ

D. Subiectul I

Nr.Item	Soluţie, rezolvare	Punctaj
I.1.	а	3р
2.	С	3р
3.	b	3р
4.	С	3р
5.	a	3р
TOTAL	pentru Subiectul I	15p

D. Subjectul al II - lea

D. Suble	ctul al II - lea	
II.a.	Pentru:	3р
	$\beta = -\frac{h_2}{h_1}$	
	rezultat final $\beta = -20$	
b.	Pentru:	4p
	$\frac{x_2}{x_1} = \frac{y_2}{y_1}$	
	$f = \frac{X_1 X_2}{X_1 - X_2} $ 2p	
	rezultat final $f \cong 9.5 \text{ cm}$	
C.	Pentru:	4p
	$\frac{1}{F} = \frac{1}{f} + \frac{1}{f_2}$	
	$\frac{1}{F} = \frac{1}{x_2} - \frac{1}{x_1'}$ $\beta' = 2\beta$ 1p	
	$\beta' = 2\beta$	
	rezultat final $\frac{1}{f_2} = 10 \mathrm{m}^{-1}$	
d.	Pentru:	4p
	construcția corectă a imaginii prin lentilă 4p	
TOTAL	pentru Subiectul al II-lea	15p

D. Subiectul al III - lea

III.a.	Pentru:	3р
	$i = \frac{\lambda_1 D}{2\ell}$	
	rezultat final: $i = 1,4 \text{ mm}$	
b.	Pentru:	4p
	$d = x_4 _{\min} - x_0 $ 1p	
	$x_{k \min} = \frac{(2k+1)\lambda_1 D}{4\ell}$	
	k=2	
	rezultat final: $d = 3.5 \text{ mm}$	
C.	Pentru:	4p
	$X'_0 = X_{6 \text{ max}}$	
	$x_0' = x_0 + \frac{e(n-1)D}{2\ell}$	
	$x_0 = x_{6 \max}$ $x_0' = x_0 + \frac{e(n-1)D}{2\ell}$ $x_{6 \max} = \frac{4\lambda_1 D}{2\ell}$ 1p	
	rezultat final: $n = 1,5$	

Ministerul Educației și Cercetării Centrul Național de Politici și Evaluare în Educație

d.	Pentru:	4p
	$\frac{k_1 \lambda_1 D}{2\ell} = \frac{k_2 \lambda_2 D}{2\ell}$	
	$\frac{k_1}{k_2} = \frac{4}{3}; \ k_1, k_2 \in \mathbb{Z}$	
	$d_{\min} = \frac{4 \lambda_1 D}{2 \ell}$	
	rezultat final: $d_{\min} = 5.6 \text{ mm}$	
TOTAL	pentru Subiectul al III-lea	15p