Matheus Paolo dos Anjos Mourão Paulo Chaves dos Santos Júnior

Modelagem matemática

Rio Branco, Acre 2017

Matheus Paolo dos Anjos Mourão Paulo Chaves dos Santos Júnior

Modelagem matemática

Resoluções dos problemas referentes a modelagem matemática, entregue para a composição parcial da nota da N1. Orientador : Marcos Fabiano Firbida Eduardo

Universidade Federal do Acre - UFAC Equações Diferenciais Ordinárias I

> Rio Branco, Acre 2017

Resumo

Neste trabalho, são apresentados problemas de modelagem matemática sugeridos pelo livro *Equações Diferenciais Ordinárias*, do autor Dennis G. Zill. O processo de modelagem é algo que pode ser bastante interdisciplinar, visto que, são utilizados conceitos das mais diversas áreas de estudo e conhecimento para estruturação e resolução do problema.

Palavras-chaves: capacitor, retificador de onda, diodo Zener

Sumário

	Modelagem matemática: o que é?	4
1	PROBLEMAS PROPOSTOS	5
1.1	Problema 1.3.22	5
1.1.1	Teorema 1 (existência e unicidade)	5
1.1.1.1	Exemplo 1	5
1.1.1.2	Exemplo 2	5
1.1.1.3	Exemplo 3	6
1.2	Equações homogêneas	6
1.3	Operadores Lineares	6

Modelagem matemática: o que é?

A modelagem matemática é uma área de conhecimento que estuda a simulação de sistemas e situações reais, com o objetivo de prever como deve será o comportamento e o resultado dos mesmos. Abrange várias áreas de estudo, como física, biologia, engenharia, química, entre outros. Umas das formas que continuam sendo muito utilizadas para a modelagem desses problemas, é a partir das equações diferenciais.

1 Problemas propostos

1.1 Problema 1.3.22

Para uma ED linear, um PVI de ordem n é: Resolver:

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}\frac{d^{n-1} y}{dx^{n-1}} + \dots + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

Sujeita a:

$$y(x_0) = y_0, y'(x_0) = y_1, ..., y^{n-1}(x_0) = y_{n-1}$$
(1.1)

Obs: Resolver o PVI (1.1) é procurar uma finção definida em algum intervalo I, contendo x_0 que satisfaça a ED e os n condições iniciais especificadas em x_0 .

O Teorema a seguir dá condições suficientes para a existência de uma única solução para (1.1).

1.1.1 Teorema 1 (existência e unicidade)

Seham $a_n(x), a_{n-1}(x), ..., a_0(x)$ e g(x) contínuas em um intervalo I e seja $a_n(x)$ diferente de 0 para todo x_0 pertencente a I. Se $x = x_0$ for um ponto qualquer nesse intervalo, então existe uma única solução y(x) do PVI (1.1) nesse intervalo.

1.1.1.1 Exemplo 1

O PVI:

$$3y''' + 5y'' + y' + 7y = 0 (1.2)$$

$$y(1) = 0, y'(1) = 0, y''(1) = 0$$
 (1.3)

possui a solução trivial y=0, uma vez que a ED é de 3° ordem, é linear e possui todas os coeficientes constantes, isto é, contínuas, ou seja, o Teorema 1 está satisfeito. Logo, a solução y=0 do PVI é única em todo intervalo I, tal que 0 pertence a I.

1.1.1.2 Exemplo 2

A função $y = 3e^{2x} + e^{-2x} - 3x$ é uma solução do PVI:

$$y'' - 4y = 12xy(0) = 4ey'(0) = 1.$$
(1.4)

Notemos que a EDO é linear de ordem 2, além disso, os coeficientes são constantes, logo são contínuas. g(x) - 12x é contínua para todo x pertencente aos reais e $a_2(x)$ é

diferente de 0 sobre todo intervalo contendo $x_0 = 0$. Portanto, pelo Teorema 1, temos que $y = 3e^{2x} + e^{-2x} - 3x$ é a única solução do PVI. Obs: As hipóteses do Teorema 1, de que $a_i(x)$ sejam contínuas e xxxxx diferente de 0 para todo x pertencente a I, então a solução do PVI pode não ser única.

1.1.1.3 Exemplo 3

A função $y = cx^2 + x + 3$ é uma solução do PVI:

$$x^2y'' - 2xy' + 2y = 6y(0) = 3, y'(0) = 1$$

no intervalo (- infinito, + infinito). Porém, para x = 0 $a_2(0) = 0^2 = 0$, isto é, o coeficiente $a_2(x)$ não está dentro das hipóteses do Teorema !, isto é, a função $y = cx^2 + x + 3$ não é a única solução para o PVI dado. Observamos que para qualquer cpertencenceaR tomado, iremos obter uma solução diferente para o PVI. Portanto, se as hipóteses do Teorema 1 não são satisfeitas, não teremos a garantia de unicidade da solução.

1.2 Equações homogêneas

Uma EDO LINEAR DE ORDEM n de forma $a_n(x)\frac{d^ny}{dx^n(n)}$

$$a_n(x)\frac{d^n y}{dx^{(n)}} = a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$
(2)

É chamado de equação homogênea, e a EDO $a_n(x)\frac{d^ny}{dx^n(n)} = a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots +$

 $a_1(x)\frac{dy}{dx}=g(x)$ (3) chamada de não-homogênea. Obs.: Deveremos que para resolver uma EDO linear não-homogênea (3), precisamos primeiramente ser capazes de resolver a equação homogênea associada (2).

- (2) Daqui para frente vamos sempre considerar que:
- 1. Os coeficientes $a_i(x)$, i = 0, 1, 2, ..., n são contínuas.
- 2. q(x) é contínua.
- 3. $a_n(x) \neq 0$ para todo x no intervalo.

1.3 Operadores Lineares

Frequentemente usa-se o símbolo D quando se faz uma diferenciação por exemplo

$$\frac{dy}{dx} = D_y$$

O símbolo D é chamado (sub)operador diferencial(sub) uma vez que transforma uma função diferencial em outra função.

Por exemplo:

$$D(\cos(4x)) = -4\sin(4x), D(5x^3 - 6x^2) = 15x^2 - 12x$$

Dessa forma, derivadas de ordem superior o podem ser expressos em formas de D de uma forma natural.

$$\frac{d}{dx}(\frac{dy}{dx}) = \frac{d^2y}{dx^2} = D(Dy) = D^2y$$

em geral temos que $\frac{d^n y}{dx^n} = D^n y$, onde y é uma função (sub)suficientemente diferenciável.(sub)

Em geral, definimos um operador diferencial de ordem n como

$$L = a_n(x)D^n + a_{n-1}(x)D^{n-1} + \dots + a_1(x)D + a_0(x)(4)$$

Obs.: Devido a linearidade da diferenciação temos que o operador L dado em (4) é linear.

* Temos EDO linear pode ser expressa em termos de D, por exemplo:

A equação diferencial linear y'' + 5y' + 6y = 5x - 3 pode ser escrita como:

$$D^2y + 5Dy + 6y = 5x - 3$$

ou ainda

$$(D^2 + 5D + 6)y = 5x - 3$$

Logo, usando (4) podemos escrever as EDO's lineares de ordem n (2) e (3) como

$$L(y) = 0eL(y) = q(x)$$

respectivamente.

$$L(y) = 0(setaidaevolta)a_nD^ny + a$$