

همطراحی سختافزار نرمافزار

جلسه سيزدهم: الگوريتمهاي سنتز توأم-Co-Synthesis

ارائهدهنده: آتنا عبدي

a_abdi@kntu.ac.ir

مباحث این جلسه

- سنتز توام در روال همطراحی سختافزار و نرمافزار
 - مقدمات و مفاهیم اولیه
 - فرایند نگاشت و بخشبندی (Partitioning)

فرایند همطراحی

مقدمهای بر فرایند سنتز توأم

- به معنای طراحی توأم نرمافزاری و بستر سختافزاری یک کاربرد است
 - در نتیجه این مرحله
- ایجاد بستر سختافزاری متشکل از تعدادی المان پردازشی که کارکرد سیستم را پیادهسازی میکنند
 - ایجاد معماری نرمافزاری (application) بهمنظور توزیع کارکرد بر بستر سختافزاری
 - اتصالات متشکل از ارتباط بین اجزای سختافزاری و primitiveهای نرمافزاری
 - شکل گیری مصالحه بین بستر سختافزاری و معماری نرمافزاری حاصل از این مرحله

فرايند سنتز توأم

- در طی این فرایند، معماری سختافزاری و نرمافزاری سیستم مشخص میشود
- معماری سختافزاری: مجموعهای از اجزای پردازشی که نرمافزاری روی آن اجرا میشود
 - معماری نرمافزاری: ساختار پردازشی کد (Process Structure)
 - هر پروسه بهصورت ترتیبی اجرا می شود
- پس تعداد پروسه ها میزان موازیسازی ممکن و ارتباطات لازم در طراحی سیستم نرمافزاری را نشان میدهد
 - استخراج تعداد پروسه مناسب از توابع، هزینه را مدیریت می کند

اجزای پردازشی بستر سختافزاری

:CPU •

- پیادهسازی و اعمال نرمافزار به آن سادهتر است
- بهدلیل عام بودن، رعایت محدودیتهای سیستم مانند مساحت و توان مصرفی را دشوار می کند

:ASIC •

- سادگی رعایت الزامات عملکردی سیستم مانند توان مصرفی و کارایی بهدلیل خاصمنظوره بودن
 - جایگزینی با تغییر کاربرد
 - عموما معماریهای ترکیبی (ناهمگن) بهترین حالت است

اجزای پردازشی بستر سختافزاری

- معماریهای ترکیبی
- از لحاظ برقراری مبادله بین کارایی و هزینه بهینه هستند
- استفاده از معماریهای چندپردازندهای باوجود سربار ارتباطات، هزینه کمتر و کارایی بهتری دارد
 - از لحاظ سربار زمانبندی اجرا مناسبتر هستند
 - نرخ گذردهی (utility) کمتر در حالت تکپردازندهای
 - از لحاظ توان مصرفی مناسبتر هستند

توصیف برنامه کاربردی

- توصیف برنامه کاربردی در قالب گراف وظایف یا گراف جریان داده و کنترل
 - شباهت گراف وظایف به گراف جریان داده
 - تفاوت در تعریف واحدهای پردازشی که عامتر است
 - همان پروسههای مدنظر در طراحی
 - اتصالات، وابستگی دادهای بین واحدهای عملیاتی را نشان میدهد

روال طراحی توأم سختافزار و نرمافزار

فرايند سنتز توأم

- در سه مرحله اصلی انجام میشود:
 - تخصیص (Allocation):
- مشخص کردن اجزای پردازشی که محاسبات روی آنها اجرا میشوند
 - بخشبندی و نگاشت (Partitioning-Mapping):
 - تقسیمبندی کارکردهای سیستم به واحدهای محاسباتی
 - انتخاب اجزای مناسب برای واحدهای تخصیص داده شده
 - زمانبندی (Scheduling):
 - مشخص کردن زمان اجرای محاسبات

فرایند بخشبندی در سنتز توأم

- مهمترین گام در مرحله سنتز توأم است:
- بیشترین تاثیر را بر برقراری مصالحه بین کارایی و هزینه سیستم طراحی شده دارد
 - در طی بخشبندی مشخص میشود که:
- چه بخشهایی از مدل بهتر است روی سختافزار و چه بخشهایی روی نرمافزار پیادهسازی شوند
 - معیار: رسیدن به کارایی مدنظر و تحقق تمام محدودیتهای مشخص شده سیستم
 - محدودیتها: توان مصرفی، هزینه و....
 - هزینه براساس حجم ASIC موردنیاز در سیستم تخمین زده می شود

فرایند بخشبندی در سنتز توأم (ادامه)

- انجام فرایند بخشبندی
- بهصورت دستی توسط طراح که با بهبودهای دورهای همراه است
 - بهصورت اتوماتیک توسط ابزارهای کمک-طراحی (CAD)
- در هر دو حالت، لازم است مشخصات و محدودیتهای هردو بخش رعایت شوند

	Cost	Speed	Power
Software	/	X	X
Hardware	X	/	/

روشهای بخشبندی

- روال کلی بخشبندی:
- لازم است الزامات كاركردى به پروسهها تبديل شوند
- زمان اجرای تقریبی هر الزام کارکردی روی هر عنصر پردازشی سیستم تقریب زده شود
 - یک پروسه به تمامی عناصر پردازشی سیستم تخصیص داده شود
- انجام بخشبندی براساس جستجوی فضای طراحی (Design Space Exploration)
- بررسی و تحلیل حالات مختلف در طراحی و انتخاب بهترین جواب که تمامی الزامات را رعایت میکند
 - روشهایی برای محدود کردن فضای جستجو وجود دارد مانند طراحی Platform-based

روشهای بخشبندی-جستجوی فضای طراحی

- رویکردی است که بهترین شیوه پیکربندی سیستم با هدف تحقق اهداف را پیدا می کند
 - جستجوی کامل فضا که بسیار زمان گیر و پرهزینه است (Exhaustive Search)
 - روشهای قطعی (Exact Methods)
 - مبتنی بر مدلسازی ریاضی مسئله و حل آن
 - مناسب برای فضای طراحی کوچک و محدود
- روشهای ابتکاری که فضای طراحی را محدود کرده و جستجو را ساده تر می کنند (Heuristic Methods)
 - روشهای فرامکاشفهای (Meta heuristic) مانند الگوریتمهای تکاملی

روشهای بخشبندی (ادامه)

- دادههای مسئله:
- نمایش پروسهها و اتصالات مابین آنها با گراف وظایف (Task Graph)
 - نمایش ساختار معماری سیستم در قالب اجزای پردازشی و اتصالات

• هدف:

• نگاشت و افراز پروسهها بین اجزای پردازشی معماری

روشهای بخشبندی (ادامه)

- سادەترىن روش بخشبندى:
- تمامی وظایف که محاسبات کمتری دارند به CPU بروند
- وظایف محاسبات بالا یا پررخداد به ASIC بروند تا عملکرد سیستم تسریع شود

روشهای بخشبندی (ادامه)

• مثال ساده از بخشبندی:

روشهای بخشبندی – Optimization Strategy

- دستهبندی روشها براساس استراتژی که در رعایت محدودیتها (کارایی-هزینه) دارند:
 - هدف اولیه: کارایی
 - Primal Strategy •
- سیستم Vulcan: تخصیص همه وظایف به ASIC و انتقال تدریجی توابع غیربحرانی به پردازنده با هدف کاهش هزینه
 - هدف اولیه: هزینه
 - Dual Strategy •
- سیستم Cosyma: تخصیص همه وظایف به پردازنده و انتقال تدریجی توابع بحرانی به سمت ASIC با هدف افزایش کارایی

مباحثی که این جلسه آموختیم

- فرايند سنتز توأم
- مراحل و ورود به بخشبندی و نگاشت
- آشنایی با الگوریتمهای این حیطه و فرایند DSE
 - الگوريتمهاي پايه

مباحث جلسه آینده

- فرايند سنتز توأم
- الگوریتمهای پایه بخشبندی و نگاشت

