Operations Research

Präsenzübung 1

Inhalte

AMPL

Aufgabe 1

Ein Betrieb stellt vier Produkte A, B, C und D her. Die tägliche Fertigungssituation ist durch folgende Tabelle gegeben:

	Rohstoffbedarf (kg)	Produktionszeit (h)	Lagerraum (m²)
Produkt A	6	3	6
Produkt B	4	1	5
Produkt C	3	3	4
Produkt D	5	2	3

Die Fertigung unterliegt den folgenden Kapazitätsbeschränkungen:

- Die maximal verfügbare Einsatzmenge für die Rohstoffe ist 440 kg.
- Die maximal verfügbare Einsatzmenge für die Produktionszeit ist 460 h.
- Die maximal verfügbare Einsatzmenge für den Lagerraum ist 555 m².

Der Gewinn beim Verkauf der Produkte A, B, C bzw. D beträgt 100€, 130€, 100€ bzw. 110€.

- a) Stellen Sie das konkrete mathematische Modell auf. Lösen Sie das Optimierungsmodell mit AMPL, indem Sie eine *AMPL*-Datei benutzen.
- b) Stellen Sie ein allgemeines Optimierungsmodell auf, das die beschriebene Entscheidungssituation unter dem Ziel der Gewinnmaximierung abbildet. Lösen Sie dieses Optimierungsproblem mit AMPL, indem Sie eine *Modell-* und eine *Daten-*Datei benutzen.

Hinweis: Bitte geben Sie in jeder .ampl- bzw. .mod-Datei *option solver gurobi* an, damit das Modell mit dem richtigen Solver gelöst wird.

Aufgabe 2

Eine windige Baufirma hat das Tempelhofer Feld mit insgesamt 100.000 m² Bauland gekauft, wovon laut Kaufvertrag 10% für Wege und gemeinnützige Flächen wie Spielplätze und einen kleinen Erholungspark reserviert werden müssen. Auf dem verbleibenden Areal können Einfamilienhäuser, Zweifamilienhäuser und/oder Dreifamilienhäuser gebaut werden. Der Deckungsbeitrag und die benötigte Fläche pro Haustyp sind in der folgenden Tabelle gezeigt:

	Deckungsbeitrag (€)	Fläche (m²)
Einfamilien-Haus	20.000	800
Zweifamilien-Haus	25.000	1.000
Dreifamilien-Haus	32.000	1.200

- a) Stellen Sie ein allgemeines Optimierungsmodell auf, das die beschriebene Entscheidungssituation unter dem Ziel der Maximierung des Deckungsbeitrages abbildet.
- b) Lösen Sie das Optimierungsproblem aus Aufgabenteil a) mit AMPL, indem Sie eine *Modell*-und eine *Daten*-Datei benutzen.
- c) Erweitern Sie das Modell aus Aufgabenteil a) um die folgende Bedingung:
 Mindestens 40% und maximal 70% der zu bauenden Häuser müssen Ein- oder Zweifamilienhäuser sein.
- d) Lösen Sie das sich aus Aufgabenteil c) ergebende Optimierungsproblem mit AMPL, indem Sie eine *Modell-* und eine *Daten-Datei* benutzen.

e) Zusatzaufgabe:

Erweitern Sie Ihr Modell aus Aufgabenteil c) um eine zusätzliche Bedingung: Wenn die Anzahl an Familien 40 oder mehr beträgt, muss die Firma den Bau einer Grundschule mit 100.000 € (ohne Rückzahlung) unterstützen. Gibt es genau oder mehr als 50 Familien kommt eine Bezuschussung in Höhe von 70.000 € hinzu.