Prellberg

Lecture

Lecture 6

MAS115 Calculus I Week 2

Thomas Prellberg

School of Mathematical Sciences Queen Mary, University of London

2007/08

Lecture 4
Lecture 5

Triangle inequality

$$|a+b| \le |a| + |b|$$

Arithmetic-geometric mean inequality

$$\sqrt{ab} \le \frac{1}{2}(a+b)$$
 for $a, b \ge 0$

Cauchy-Schwarz inequality

$$(ac + bd)^2 \le (a^2 + b^2)(c^2 + d^2)$$

including their proofs

Repeat: the Cauchy-Schwarz Inequality

Lecture 5

Start with the fact that

$$0 \le (ax + c)^2 + (bx + d)^2$$

ullet Expand the RHS and collect equal powers of x

$$0 \le (a^2 + b^2)x^2 + 2(ac + bd)x + (c^2 + d^2)$$

ullet The RHS is quadratic in x with discriminant

$$D = 4(ac + bd)^2 - 4(a^2 + b^2)(c^2 + d^2)$$

- As $0 \le (ax + c)^2 + (bx + d)^2$ for all $x, D \le 0$
- $D \le 0$ is equivalent to

$$(ac + bd)^2 < (a^2 + b^2)(c^2 + d^2)$$

This is the Cauchy-Schwarz inequality

Prellberg

Lecture 4

.

Lecture 1

Reading Assignment

Read Chapter 1.2

Lines, Circles, and Parabolas

What do we mean when we say

"y is a function of x"?

Symbolically, we write

$$y = f(x)$$

- x independent variable (input value)
- y dependent variable (output value)
- f function (rule that assigns)

• Important: rule is unique, only one value f(x) for every x

Definition of a function

Definition

A function from a set D to a set Y is a rule that assigns a unique (single) element $f(x) \in Y$ to each element $x \in D$.

Further definitions and notations

Lecture 4
Lecture 5
Lecture 6

- The set *D* of all possible input values is called the *domain* of *f*
- The set R of all values of f(x) as x varies throughout D is called the *range* of f (a subset of Y)
- We write "f maps D to Y" symbolically as

$$f:D\to Y$$

• We write "f maps x to y = f(x)" symbolically as

$$f: x \mapsto y = f(x)$$

Note the different arrow symbols used

Natural domain

Lecture 5
Lecture 6

The *natural domain* is the largest set of real x which the rule f can be applied to.

Function	Domain (x)	Range (y)
$y = x^2$	$(-\infty, \infty)$	[0, ∞)
y = 1/x	$(-\infty,0)\cup(0,\infty)$	$(-\infty,0) \cup (0,\infty)$
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \sqrt{4-x}$	$(-\infty, 4]$	$[0,\infty)$
$y = \sqrt{1 - x^2}$	[-1, 1]	[0, 1]

Note: a function is specified by the rule f and the domain D

$$f: x \mapsto x^2$$
, $D(f) = [0, \infty)$

and

$$f: x \mapsto x^2$$
, $D(f) = (-\infty, \infty)$

are different functions

Graphs of functions

Lecture 4

Lecture 5

Lecture

Definition

If f is a function with domain D, its graph consists of the points (x, y) whose coordinates are the input-output pairs for f:

$$\{(x, f(x))|x \in D\}$$

Curves that are graphs of functions

Lecture 4

The vertical line test

Piecewise defined functions

Lecture 4

$$f(x) = |x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

$$y = -x \xrightarrow{3} y = |x|$$

$$y = -x \xrightarrow{3} y = |x|$$

$$f(x) = \begin{cases} -x & x < 0 \\ x^2 & 0 \le x \le 1 \\ 1 & x > 1 \end{cases}$$

Prellberg

Lecture 5

The floor function

$$f(x) = \lfloor x \rfloor$$

the greatest integer less than or equal to x:

$$\lfloor 1.3 \rfloor = 1, \ \lfloor -2.7 \rfloor = -3$$

$$f(x) = \lceil x \rceil$$

the smallest integer greater than or equal to x:

$$[3.5] = 4, [-1.8] = -1$$

Prellberg

. .

. .

Lecture 5

Lecture

Revision: Functions and their Graphs

- Definition of a function
- Domain and range of a function
- Graph of a function
- Piecewise defined functions

Identifying functions

Linear function f(x) = mx + b

b = 0: lines passing through the origin

m = -1

m = 0: constant function

$$f(x) = b$$

Power function $f(x) = x^a$

 \bullet a = n, a positive integer

Lecture 5

Lecture

Identifying functions

Power function $f(x) = x^a$

•
$$a = \frac{1}{2}$$
, $\frac{1}{3}$, $\frac{3}{2}$ and $\frac{2}{3}$

Domain: $-\infty < x < \infty$ Range: $0 \le y < \infty$

Identifying functions

Polynomials

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$

with $a_n \neq 0$ and $a_0, a_1, \ldots, a_{n-1}, a_n \in \mathbb{R}$

n degree of the polynomial

● Domain: R

Rational functions Lecture 5

$$f(x) = \frac{p(x)}{q(x)}$$

with p(x) and q(x) polynomials

• Domain: $\mathbb{R} \setminus \{x | q(x) = 0\}$ (never divide by zero!)

Identifying functions

Lecture 4 Lecture 5

Other classes (to come later)

- Algebraic functions
- Trigonometric functions
- Exponential functions
- Logarithmic functions
- ..

Increasing/decreasing functions

Informally,

- *f* is called increasing, if the graph of *f* "climbs" or "rises" as you move *from left to right*.
- *f* is called decreasing, if the graph of *f* "descends" or "falls" as you move *from left to right*.

Function	Where increasing	Where decreasing
$y = x^2$	$0 \le x < \infty$	$-\infty < x \le 0$
$y = x^3$	$-\infty < x < \infty$	Nowhere
y = 1/x	Nowhere	$-\infty < x < 0$ and $0 < x < \infty$
$y = 1/x^2$	$-\infty < x < 0$	$0 < x < \infty$
$y = \sqrt{x}$	$0 \le x < \infty$	Nowhere
$y = x^{2/3}$	$0 \le x < \infty$	$-\infty < x \le 0$

Lecture 4
Lecture 5

DEFINITIONS Even Function, Odd Function

A function y = f(x) is an

even function of
$$x$$
 if $f(-x) = f(x)$,
odd function of x if $f(-x) = -f(x)$,

for every x in the function's domain.

the graph of f is symmetric with respect to the y-axis

the graph of f is symmetric with respect to the origin

Lecture 5

Lecture

$$f(x) = x^2 + 1$$

$$f(x) = x$$

$$f(x) = x + 1$$


```
Lecture 4
Lecture 5
```

If f and g are functions, then for every

(that is, every
$$x$$
 that belongs to the domains of f and g)

Sums, differences, products, quotients

we define

 $x \in D(f) \cap D(g)$

$$(f-g)(x) = f(x) - g(x)$$

$$(fg)(x) = f(x)g(x)$$

$$(f/g)(x) = f(x)/g(x) \quad \text{if } g(x) \neq 0$$

(f+g)(x) = f(x) + g(x)

Special case: multiplication by constant:

$$(cf)(x) = c f(x)$$

(take g(x) = c constant function)

Examples

Lecture 5

$$f(x) = \sqrt{x}$$
 $g(x) = \sqrt{1-x}$

Domains:

$$D(f) = [0, \infty)$$
 $D(g) = (-\infty, 1]$

Intersection:

$$D(f) \cap D(g) = [0, \infty) \cap (-\infty, 1] = [0, 1]$$

Function	Formula	Domain
f + g	$(f+g)(x) = \sqrt{x} + \sqrt{1-x}$	$[0,1] = D(f) \cap D(g)$
f - g	$(f-g)(x) = \sqrt{x} - \sqrt{1-x}$	[0, 1]
g - f	$(g-f)(x) = \sqrt{1-x} - \sqrt{x}$	[0, 1]
$f \cdot g$	$(f \cdot g)(x) = f(x)g(x) = \sqrt{x(1-x)}$	[0, 1]
f/g	$\frac{f}{g}(x) = \frac{f(x)}{g(x)} = \sqrt{\frac{x}{1-x}}$	[0, 1) (x = 1 exclude)
g/f	$\frac{g}{f}(x) = \frac{g(x)}{f(x)} = \sqrt{\frac{1-x}{x}}$	(0, 1] (x = 0 exclude)

Prellberg

Lecture

Lecture

Lecture 6

Revision: Functions and their Graphs

- power functions, polynomials, rational functions
- increasing/decreasing functions
- even/odd functions
- sums, differences, products, quotients of functions

Compositions of functions

.

Lecture

Lecture 6

Definition

If f and g are functions, the composite function $f \circ g$ ("f composed with g") is defined by

$$(f\circ g)(x)=f(g(x))$$

$$x \longrightarrow g -g(x) \longrightarrow f \longrightarrow f(g(x))$$

The domain of $f \circ g$ consists of the numbers x in the domain of g for which g(x) lies in the domain of f, i.e.

$$D(f \circ g) = \{x | x \in D(g) \text{ and } g(x) \in D(f)\}$$

Compositions of functions

Lecture

Lecture

Lecture 6

$$D(f \circ g) = \{x | x \in D(g) \text{ and } g(x) \in D(f)\}$$

$$f \circ g$$

$$g$$

$$g(x)$$

Prellberg

Lecture 4
Lecture 5
Lecture 6

$$f(x) = \sqrt{x}$$
 with $D(f) = [0, \infty)$
 $g(x) = 1 + x$ with $D(g) = (-\infty, \infty)$

•
$$(f \circ g)(x) = f(g(x)) = \sqrt{x+1}$$
, Domain $[-1, \infty)$

•
$$(g \circ f)(x) = g(f(x)) = \sqrt{x} + 1$$
, Domain $[0, \infty)$

•
$$(f \circ f)(x) = f(f(x)) = x^{1/4}$$
, Domain $[0, \infty)$

•
$$(g \circ g)(x) = g(g(x)) = x + 2$$
, Domain $(-\infty, \infty)$

Lecture 4
Lecture 5
Lecture 6

$$f(x) = \sqrt{x}$$
 with $D(f) = [0, \infty)$
 $g(x) = x^2$ with $D(g) = (-\infty, \infty)$

- $(f \circ g)(x) = f(g(x)) = |x|$, Domain $(-\infty, \infty)$
- $(g \circ f)(x) = g(f(x)) = x$, Domain $[0, \infty)$

$$f(x) = 1/x$$
 with $D(f) = (-\infty, 0) \cup (0, \infty)$

• $(f \circ f)(x) = f(f(x)) = x$, Domain $(-\infty, 0) \cup (0, \infty)$

Shifting a graph of a function

Lecture

. .

Lecture 6

Shift Formulas

Vertical Shifts

y = f(x) + k Shifts the graph of f up k units if k > 0

Shifts it down |k| units if k < 0

Horizontal Shifts

y = f(x + h) Shifts the graph of f left h units if h > 0

Shifts it right | h | units if h < 0

Scaling a graph of a function

Lecture 6

Vertical and Horizontal Scaling and Reflecting Formulas

For c > 1. v = cf(x)

Stretches the graph of f vertically by a factor of c.

 $y = \frac{1}{C}f(x)$

Compresses the graph of f vertically by a factor of c.

y = f(cx)

Compresses the graph of f horizontally by a factor of c.

y = f(x/c)

Stretches the graph of f horizontally by a factor of c.

For c = -1,

y = -f(x)

Reflects the graph of f across the x-axis.

y = f(-x)Reflects the graph of f across the y-axis.

Reflecting a graph of a function

Lecture 6

Vertical and Horizontal Scaling and Reflecting Formulas

For c > 1,

y = cf(x)Stretches the graph of f vertically by a factor of c.

 $y = \frac{1}{c} f(x)$

Compresses the graph of f vertically by a factor of c.

y = f(cx)

Compresses the graph of f horizontally by a factor of c.

y = f(x/c)

Stretches the graph of f horizontally by a factor of c.

For c = -1,

y = -f(x)

Reflects the graph of f across the x-axis.

v = f(-x)Reflects the graph of f across the v-axis.

Combining scalings and reflections

- (a) the original graph of f(x): y = f(x)
- (b) horizontal compression by a factor of 2, followed by a reflection across the y-axis: y = f(-2x)
- (c) vertical compression by a factor 2, followed by a reflection across the x-axis: $y = -\frac{1}{2}f(x)$

Prellberg

Lecture 4

Lecture 6

Reading Assignment

Read Chapter 1.6

Trigonometric Functions

especially Trigonometric Identities

Prellberg

Lecture

Lecture 6

 360° corresponds to 2π

$$\frac{\text{angle in radians}}{\text{angle in degrees}} = \frac{\pi}{180}$$

Prellberg

Lecture

Lecture 6

Signed angles

- angles are oriented
- positive angle: anti-clockwise
- negative angle: clockwise
- ullet angles can be larger than 2π

Examples

Lecture 6

Trigonometric functions

Lecture 4
Lecture 5
Lecture 6

$$\sin \theta = \frac{y}{r}$$
 $\csc \theta = \frac{r}{y}$
 $\cos \theta = \frac{x}{r}$ $\sec \theta = \frac{r}{x}$
 $\tan \theta = \frac{y}{x}$ $\cot \theta = \frac{x}{y}$

Prellberg

Lecture 5

Example

$$\theta = \frac{2}{3}\pi$$

$$x = -\frac{1}{2}$$
, $y = \frac{\sqrt{3}}{2}$, $r = 1$ (Can you answer why?)

$$\sin \theta = \frac{y}{r}$$
 $\csc \theta = \frac{r}{y}$
 $\cos \theta = \frac{x}{r}$ $\sec \theta = \frac{r}{x}$
 $\tan \theta = \frac{y}{x}$ $\cot \theta = \frac{x}{y}$

$$\sin(\frac{2}{3}\pi) = \frac{\sqrt{3}}{2}$$
 $\csc(\frac{2}{3}\pi) = \frac{2}{3}\sqrt{3}$

Prellberg

Lecture

Lecture 6

The End