$ au_1^{\#2}$	0	0	0	$-\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$	$\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$	0	$2k^2(t_1+4t_3)$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	
$\sigma_{1^{+}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2}(t_1-2t_3)}{3(1+2k^2)t_1t_3}$	$\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_3}$	0	$i\sqrt{2} k(t_1+4t_3)$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3}$	$-\frac{\sqrt{2} (t_1 - 2t_3)}{3(1 + 2k^2)t_1t_3}$	0	2 ik (t ₁ -2 t ₃)
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	c
$\sigma_{1}^{\#2}{}_{lphaeta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	c
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$i\sqrt{2} k$ $t_1 + k^2 t_1$	0	0	0	c
,	$\sigma_{1}^{\#1} + \alpha \beta$	$r_1^{#2} + \alpha \beta$	$t_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#_1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$_{\tau}^{#2} + ^{\alpha}$

$f_{1^-}^{*1}$ $f_{1^-}^{*2}$	0 0	0 0	0 0	$0 \frac{1}{3} \bar{l} k (t_1 - 2 t_3)$	$0 \left \frac{1}{3} \bar{l} \sqrt{2} k (t_1 + t_3) \right $	0 0	$0 \frac{2}{3} k^2 (t_1 + t_3)$
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1+t_3}{3}$	0	$-\frac{1}{3}\bar{l}k(t_1-2t_3)\Big -\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{6} (t_1 + 4 t_3)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}\bar{l}k(t_1-2t_3)$
$f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{lphaeta}$ $\omega_{1}^{\#2}{}_{lphaeta}$ $f_{1}^{\#1}{}_{lphaeta}$	$k^2 r_1 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
,	$\omega_{1}^{#1} + \alpha^{\beta} k^{2} r_{1} - \frac{t_{1}}{2}$	$\omega_{1}^{#2} + \alpha \beta$	$f_{1+}^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_1^{\#2} +^{\alpha}$

		$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2^{-}lphaeta\chi}^{\#1}$
	$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
	$f_{2}^{#1}\dagger^{\alpha\beta}$	٧ ح	$k^2 t_1$	0
2 1+t1	$\omega_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$
0 $\frac{2}{2k^2r_1+t_1}$		#1	c#1	c#2
$\frac{1}{2}t_1$	#1	$\omega_{0}^{\#1}$	$f_{0+}^{#1}$	$f_{0+}^{#2} \omega$

_	$\omega_0^{\#1}$	$f_{0}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\sharp1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0}^{#1}$ †	$i \sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	-t ₁

	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$ au_0^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^+}^{\sharp 1} \dagger$	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$ au_{0}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$ au_{0^{+}}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{\sharp 1}$ †	0	0	0	$-\frac{1}{t_1}$

ource constraints	
O(3) irreps	#
^{#2} ₀ + == 0	1
$_{0}^{\#1}$ - 2 $i k \sigma_{0}^{\#1}$ == 0	1
$^{\#2\alpha}_{1^{-}} + 2ik \sigma_{1^{-}}^{\#2\alpha} == 0$	3
#1 ^{\alpha} == 0	3
$^{\#_1 \alpha \beta}_{1^+} + i k \sigma_{1^+}^{\#_2 \alpha \beta} = 0$	3
$\sigma_{2+}^{\#1} \alpha \beta - 2 i k \sigma_{2+}^{\#1} \alpha \beta = 0$	5
otal #:	16

	Massive particle		
?	Pole residue:	$-\frac{1}{r_1} > 0$	
$J^P = 2^-$	Polarisations:	5	
	Square mass:	$-\frac{t_1}{2r_1} >$	
?	Spin:	2	
	Parity:	Odd	

(No massless particles)