Law And Economics

Property Law

Francisco Poggi

University of Mannheim - Fall 2021

Property Rights

- Delineate boundaries: what individuals can (and cannot) do with the assets under their control.
 - Tangible assets.
 - Intangible assets.

- Some questions:
 - How are PR defined?
 - What is their impact on economic incentives?
 - How are PR originally assigned?
 - How are PR protected?

How are Property Rights Defined?

- Bundle of rights:
 - Right to use, consume.
 - ${}^{\bullet}$ Right to $develop,\ transform.$
 - Right to exclude, destroy.
 - Right to lease, loan.
 - Right to dispose, sell, donate.

- Rights are enforced by Law.
 - But sometimes there is conflict: externalities.

Property Rights and Incentives

- Property rights improve efficiency:
 - Internalize externalities.
 - Incentives for production.

• Even if the 'final' allocation is not affected by the initial allocation of property rights, initial allocation affects wealth distribution.

How are Property Rights Originally Assigned?

- "This morning in a remote meadow in Wyoming, a mule was born. To whom does that mule belong?"
 - The owner of the mule's mother.
 - The lumber company that has leased the land.
 - The federal government because property is a national forest.

How are Property Rights Originally Assigned?

- Gold mines in California:
 - When would was first discovered (1848) enforcement was private.
 - 1872: General Mining Law:
 - Individuals allowed to explore federal lands in search of minerals.
 - Might 'stake a claim' (fees to maintain the claim)
 - If perform development of \$500 or more individual might file for a patent to obtain title to surface and mineral rights of the land.
 - Fixed cost of \$ 5 per acre (lode) or \$ 2.5 (placer).

How are Property Rights Originally Assigned?

- Homestead Laws:
 - 'First-come, first served' allocation.
 - Conditions: Promise to reside for 5 years.
 - In all, 10% of US territory was given away in this way to 1.6 million people.
- Are these ways to allocate assets efficient?

- Other potentially interesting cases?
 - Radio Frequency Spectrum.
 - Space.

First Possession

- 'Finder's keepers'
- Inefficient:
 - Tragedy of the commons.
 - Race effect (more on this when we talk about intellectual property rights.)

- Oil example:
 - Rule applied to the stock.
 - Rule applied to the flow (capture).

How are PR enforced: the Origins of the State

- In most economic models, property rights are assumed.
- Essential function of the state:
 - monopoly of violence.
 - Taxation.
 - Protection of the property rights of those taxed.

- 'Stationary bandits': not different than the role of the Mafia.
- This was central for modern economic growth.
- Empirical challenge: statistics where first created by states.

How are States Formed?

- Miners example:
 - Prior to government, private enforcement.
 - Associations.
 - Economies of scale.
 - Free riding problem
 - Turf wars.
 - Eventual transition to monopoly.
 - Efficient (scale and destructive competition).
 - Risk of abuse.

How are States Formed?

de la Sierra, R. S. (2020). On the origins of the state: Stationary bandits and taxation in eastern congo.

Journal of Political Economy, 128

- Eastern Congo:
 - 'failed state'.
 - Armed groups proliferated in the East.
 - · Robberies and control of individual villages.
- Impact of large sudden increases in price of certain minerals.
 - Introduction of Playstation II, increased demand for coltan.
 - If monopolies of violence are more likely to emerge in locations with higher potential revenues from taxation, one would expect positive shocks to cause a rise in use of organized crime in villages with higher concentration of minerals.

Price of Coltan

 ${\bf Figure \ 1:} \ {\bf Price \ of \ Coltan}.$

Price of Gold

 $\textbf{Figure 2:} \ \, \text{Price of Gold}. \\$

Findings

- Paper finds that increase in the price of minerals induce the formation of growth-promoting monopolies of violence, but only if these minerals are 'easy to tax'.
 - Coltan: it is bulky, so it cannot be easily hidden.
 - Gold: Easy to conceal.
- Once established, monopolies started to
 - · collect taxes,
 - provide security,
 - administer justice.
- Higher economic activity.

Findings

	Municipality Attacked (1)	Mine				
Variables		Customs Tax (2)	Entry Fees (3)	Stationary Bandit (4)	Security Service (5)	Extensive-Margin Index (6)
$Coltan_j \times p_{ct}$.15***	.06**	.01	.07***	.06**	.16***
	(.03)	(.02)	(.02)	(.03)	(.02)	(.06)
$\operatorname{Gold}_{j} \times p_{\operatorname{g}t}$	02	04	.04*	.05	.05	.10
<i>J</i> 18-	(.03)	(.02)	(.03)	(.04)	(.04)	(.07)
Observations	4,158	4,046	4,052	3,991	4,032	3,903
R^2	.39	.59	.69	.60	.62	.65

Figure 3: Effects of Price on Mines

Property Rights as a Solution to the Externality Problem

Coase Theorem revisited: When property rights are well-defined and transaction costs are low, the allocation of resources will be efficient regardless of the initial assignment of property rights.

- This says that: under these circumstances, final allocation is efficient for any initial allocation of property rights.
- This does <u>not</u> say: the final allocation is efficient independently of whether property rights are assigned or not.

Hawk and Dove Game with Asymmetric Values

• One way to think about unassigned property rights: Hawk and Dove Game.

	Н	D	
Н	$\frac{1}{2}V_1 - K, \ \frac{1}{2}V_2 - K$	$V_1, 0$	
D	$0, V_2$	$\frac{1}{2}V_1, \ \frac{1}{2}V_2$	

- Three cases:
 - $2K < \min\{V_1, V_2\}$
 - $2K \in (\min\{V_1, V_2\}, \max\{V_1, V_2\})$
 - $2K > \max\{V_1, V_2\}$

Property Rights and Liability Rules

Bargaining

- Suppose that there is a cake to split and we have the same preferences. If we can't agree the cake goes bad.
 - Rubinstein: game-theoretical approach. Alternating offers.
 - Nash: Axiomatic approach. What would be a reasonable outcome?

- Bargaining Problem: pair (U, d) with $U \subseteq R^2$ and $d \in U$.
- A Bargaining Solution is a map f from the set of bargaining problems to U.

Bargaining

- Nash Axioms:
 - Pareto Efficiency: f(U, d) in the Pareto frontier. (there is no $u \in U$ such that u > f(U, d)).
 - Symmetry: U symmetric and $d_1 = d_2$, then $f_1(U, d) = f_2(U, d)$.
 - Invariance to Linear Transformations. (This reflects the fact that linear transformation of utility maintains the same preferences.) Let $\alpha_1, \alpha_2 > 0$ and $\beta_1, \beta_2, d'_i = \alpha_i d_i + \beta_i, U' = \{(\alpha_1 u_1 + \beta_1, \alpha_2 u_2 + \beta_2) : u \in U)\}$

$$f_i(U', d') = \alpha_i f_i(U, d) + \beta_i$$

• Independence of Irrelevant Alternatives. Let $U' \subseteq U$. If $f(U,d) \in U'$ then f(U',d) = f(U,d).

Bargaining

Let the Nash solution $f^*(U,d)$ be the solution to

$$\max_{u \in U \cap D(d)} (u_1 - d_1) \cdot (u_2 - d_2)$$

Where $D(d) := \{d' : d' \ge d\}.$

Proposition

The Nash Bargaining solution f^* is the unique bargaining solution that satisfies the four axioms.

Property Rules and Liability Rules

- Difference lies in consent: permission or forgiveness.
 - Property Rights require ex ante bargaining.
 - Liability involves ex post compensation.

- Deterministic case:
 - 'Producer' can pay \$100 to prevent causing a damage of \$120 to the 'Recipient'.
 - Farmer and Rancher with bridge.

Numerical Example

• Two enforcement rules and two assignments: four cases.

${\bf Enforcement}\ /\ {\bf Assignment}$	Producer	Recipient
Property Rule	I	II
Liability Rule	III	IV

Property Rule Cases

- Case I: Rancher's property rights are protected.
 - Rancher has no incentives to destroy the bridge.
 - Farmer has incentives to buy the right from the producer.
 - Nash solution: Recipient pays 110 for the right.
 - Allocation is efficient.

- Case II: Producer will not be able to buy the right.
 - Will destroy the bridge.

Liability Cases

- Case III: Rancher's right are protected by Liability rule.
 - Rancher does not have incentives to destroy the bridge.
 - Farmer will destroy the bridge and pay the damages (\$ 100) to the rancher.

- Case IV: Farmer's rights are protected by Liability rule.
 - If the Rancher does not destroy the bridge, he will have to pay damages for the crops.
 - Rancher will destroy the bridge.

Property Rule Cases (damage is efficient)

Instead of \$100 the benefit of the bridge for the Rancher is \$ 140.

- Case I: Rancher's property rights are protected.
 - Rancher has no incentives to destroy the bridge.
 - Farmer will not be willing to buy the right from the producer.

- Case II: Rancher wants to buy the right from the farmer.
 - Nash solution: price of \$ 130.

Liability Cases (damage is efficient)

- Case III: Rancher's right are protected by Liability rule.
 - Rancher does not have incentives to destroy the bridge.
 - Farmer will not be willing to pay the damages (\$ 140), so he doesn't destroy the bridge either.

- Case IV: Farmer's rights are protected by Liability rule.
 - If the Rancher does not destroy the bridge, he will have to pay damages for the crops.
 - Rancher will prefer this to destroy the bridge.

Property Rules and Liability Rules

The previous example abstracts from two important issues:

- Transaction Costs.
- Information Asymmetry.

Transfers of Property

Ownership risk

- Model:
 - p(c) probability that owner will retain title.
 - $p(\cdot)$ increasing, concave in c
 - Owner's problem:

$$\max_{c} p(c) \cdot V - c$$

- FOC: p'(c) = 1/V
- higher $V \Rightarrow$ higher c^*

Eminent Domain

- Many names for the same thing:
 - Eminent Domain,
 - Compulsory Acquisition,
 - Resumption,
 - Expropriation.
- Power to take private property for public use.

No-Compensation Result

- Model:
 - V(x) value to the owner if makes irreversible investment x.
 - \cdot V increasing and concave.
 - dB: social benefit where d is a binary variable.
 - p: probability of d = 1.
 - C(x): compensation to the owner.

No-Compensation Result

• Efficient level of investment.

$$\max_{x}(1-p)V(x) + pB - x$$

• Problem of the original owner:

$$\max_{x} (1-p) \cdot V(x) + p \cdot C(x) - x$$

- Claim I: C(x) = V(x) generates over investment.
- Claim II: any $C(\cdot)$ that is constant implements the first-best level of investment. E.g. $C(\cdot) = 0$.

No-Compensation Result with Non-Benevolent Government

- Model Modification:
 - B is a continuous random variable (cdf F).
 - Government is also strategic: takes when B > C(x) (would be efficient to take when B > V(x))

- If C(x) = 0, the level of investment is optimal given p = F(0).
- But the government takes posession inefficiently often.
- Solution: $C(x) = C(x^*)$.

References

de la Sierra, R. S. (2020). On the origins of the state: Stationary bandits and taxation in eastern congo. *Journal of Political Economy*, 128.