```
### **Grupo 8: Ferro (Fe), Rutênio (Ru), Ósmio (Os)**
#### **Ferro (Fe)**
**Propriedades:**
- Símbolo: **Fe**
- Número atômico: **26**
- Massa atômica: **55,845 u**
- Ponto de fusão: **1.538 °C**
- Ponto de ebulição: **2.862 °C**
- Eletronegatividade: **1,83**
- Estados de oxidação: **+2, +3** (mais comuns)
- Distribuição eletrônica: **[Ar] 3d6 4s2**
**Características:**
- Metal maleável, ferromagnético
- Forma óxidos (Fe<sub>2</sub>O<sub>3</sub> - ferrugem)
- Elemento mais abundante na Terra (núcleo terrestre)
**Aplicações:**
- Produção de aço (liga com carbono)
- Construção civil e indústria automotiva
- Hemoglobina (transporte de oxigênio no sangue)
**Ocorrência:**
- Minérios: hematita (Fe<sub>2</sub>O<sub>3</sub>), magnetita (Fe<sub>3</sub>O<sub>4</sub>)
- Grande produtor: Brasil (Quadrilátero Ferrífero)
#### **Rutênio (Ru)**
**Propriedades:**
- Símbolo: **Ru**
- Número atômico: **44**
- Massa atômica: **101,07 u**
- Ponto de fusão: **2.334 °C**
- Ponto de ebulição: **4.150 °C**
- Eletronegatividade: **2,2**
- Estados de oxidação: **+2, +3, +4, +6, +8**
**Características:**
- Metal de platina, duro e raro
- Resistente à corrosão
- Catalisador eficiente
**Aplicações:**
- Eletrônicos (discos rígidos)
- Ligas super-resistentes
- Catalisador em processos químicos
#### **Ósmio (Os)**
```

Propriedades:

```
- Símbolo: **Os**
```

- Número atômico: **76**

- Massa atômica: **190,23 u**

- Ponto de fusão: **3.033 °C**

- Ponto de ebulição: **5.012 °C**

- Eletronegatividade: **2,2**

Características:

- Metal mais denso (22,59 g/cm³)
- Forma tetróxido tóxico (OsO₄)
- Extremamente duro

Aplicações:

- Pontas de canetas tinteiro
- Ligas super-resistentes
- Catalisador em síntese orgânica

Grupo 9: Cobalto (Co), Ródio (Rh), Irídio (Ir)

Cobalto (Co)

Propriedades:

- Símbolo: **Co**

- Número atômico: **27**

- Massa atômica: **58,933 u**

- Ponto de fusão: **1.495 °C**

- Ponto de ebulição: **2.927 °C**

Características:

- Ferromagnético
- Compostos azuis característicos
- Radioisótopo Co-60 usado em medicina

Aplicações:

- Baterias de íon-lítio
- Superligas para turbinas
- Pigmentos cerâmicos

Ródio (Rh)

- **Propriedades:**
- Símbolo: **Rh**
- Número atômico: **45**
- Massa atômica: **102,91 u**
- Ponto de fusão: **1.964 °C**

Características:

- Metal nobre, refletivo
- Excelente catalisador

```
- Resistente à corrosão
**Aplicações:**
- Conversores catalíticos
- Joalheria (revestimento)
- Contatos elétricos
#### **Irídio (Ir)**
**Propriedades:**
- Símbolo: **Ir**
- Número atômico: **77**
- Massa atômica: **192,22 u**
- Ponto de fusão: **2.446 °C**
**Características:**
- Um dos metais mais densos
- Extremamente resistente
- Associado a eventos de extinção (camada de irídio no limite K-T)
**Aplicações:**
- Pontas de canetas
- Instrumentos científicos
- Contatos elétricos de alta resistência
### **Grupo 10: Níquel (Ni), Paládio (Pd), Platina (Pt)**
#### **Níquel (Ni)**
**Propriedades:**
- Símbolo: **Ni**
- Número atômico: **28**
- Massa atômica: **58,693 u**
- Ponto de fusão: **1.455 °C**
**Características:**
- Resistente à corrosão
- Ferromagnético
- Alérgeno comum
**Aplicações:**
- Aço inoxidável
- Baterias recarregáveis
- Galvanização
#### **Paládio (Pd)**
**Propriedades:**
- Símbolo: **Pd**
```

- Número atômico: **46**

- Massa atômica: **106,42 u**- Ponto de fusão: **1.554,9 °C**
- **Características:**
- Absorve hidrogênio (até 900x seu volume)
- Excelente catalisador
- Metal precioso
- **Aplicações:**
- Conversores catalíticos
- Joalheria
- Armazenamento de hidrogênio
- #### **Platina (Pt)**
- **Propriedades:**
- Símbolo: **Pt**
- Número atômico: **70**
- Massa atômica: **195,08 u**
- Ponto de fusão: **1.768 °C**
- **Características:**
- Nobre, resistente à corrosão
- Catalisador versátil
- Maleável e dúctil
- **Aplicações:**
- Joias e ourivesaria
- Catalisadores industriais
- Eletrodos especiais

- ### **Comparação dos Elementos da Família 8B**
- **Metais de Transição Notáveis:**
- 1. **Ferro**: Base da civilização industrial moderna
- 2. **Cobalto**: Essencial para baterias verdes
- 3. **Níquel**: Versátil em aplicações cotidianas
- 4. **Metais do Grupo da Platina (PGMs)**:
 - Rutênio, Ródio, Paládio
 - Ósmio, Irídio, Platina
- **Características Comuns:**
- Excelentes catalisadores
- Resistência à corrosão
- Altos pontos de fusão
- Propriedades magnéticas variadas

^{**}Aplicações Tecnológicas:**

- Automotivo: conversores catalíticos (Pd, Pt, Rh)
- Eletrônica: componentes e contatos (Ru, Ir)
- Energia: baterias (Co, Ni)
- Medicina: radioisótopos (Co-60), implantes (Pt)
- **Valor de Mercado (2023):**
- Ferro: ~US\$ 120/ton
- Cobalto: ~US\$ 33.000/ton
- Níquel: ~US\$ 21.000/ton
- Platina: ~US\$ 30/g
- Paládio: ~US\$ 60/g
- Ródio: ~US\$ 300/g (o mais caro dos PGMs)
- **Fatos Interessantes:**
- 1. O núcleo terrestre é composto principalmente de ferro e níquel
- 2. O paládio pode absorver até 900 vezes seu volume em hidrogênio
- 3. A camada de irídio no limite K-T é evidência do impacto que extinguiu os dinossauros
- 4. O ródio é o metal precioso mais caro atualmente
- 5. A platina foi usada pelos antigos egípcios em ornamentos

Conclusão sobre a Família 8B

Esta família engloba alguns dos metais mais importantes para a tecnologia moderna:

- **Ferro, cobalto e níquel**: Base da indústria metalúrgica
- **Metais do grupo da platina**: Catalisadores essenciais e materiais de alta performance
- **Elementos com propriedades únicas**: Desde o ferromagnetismo até a capacidade de armazenar hidrogênio

Enquanto o ferro é um dos elementos mais abundantes e utilizados, metais como ródio e irídio estão entre os mais raros e valiosos do mundo, com aplicações especializadas em tecnologia de ponta.