05 - AES Key Expansion

Luc Spachmann

FSU Jena

November 23, 2023

Allgemeines

- Erzeugt aus 128 Bit Schlüssel 11 Rundenschlüssel
- Funktion arbeitet in 32-Bit Wörtern
- Galois-Multiplikation und S-Box aus AES wiederverwendet
- Erzeugt 44 Wörter W[0] bis W[43]
- Je 4 sind ein Schlüssel

Algorithmus

• Input: Wörter K[0],...,K[3] (Schlüssel)

$$W[i] = egin{cases} K[i], & ext{falls } i < 4 \ W[i-4] \oplus ext{rcon}(rac{i}{4}) \oplus & ext{falls } i \geq 4 ext{ und} \ ext{SubWord}(ext{RotWord}(W[i-1])), & i ext{mod } 4 = 0 \ W[i-4] \oplus W[i-1] & ext{sonst} \end{cases}$$

Output: Wörter W[0],.., W[43] (Rundenschlüssel)

Funktionen

- SubWord(W) = SubWord(b_0, b_1, b_2, b_3) = $(S[b_0], S[b_1], S[b_2], S[b_3])$
- RotWord(W) = RotWord(b_0, b_1, b_2, b_3) = (b_1, b_2, b_3, b_0)
- $rcon(i) = (rc_i 00_{16} 00_{16} 00_{16})$ mit

$$rc_i = x^{i-1} \text{ in } GF(2^8).$$

Alternativ rc_i speichern.

	1			1					9	
rci	01	02	04	08	10	20	40	80	1b	36

Table: Alle rc_i in Hexadezimal und i in Dezimal

Aufgabe

- Erweitert eure Programme um die Schlüsselgenerierung
- Kombiniert eure Programme mit den Betriebsmodi
- Programmname [Betriebsmodus] [Inputdatei] [Schlüsseldatei]
 [Outputdatei] ([IV] falls nötig)