FACULDADE DE COMPUTAÇÃO E INFORMÁTICA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

Linguagens Formais e Autômatos - Aula 10 - 1º SEMESTRE/2014

Prof. Luciano Silva

TEORIA: ANÁLISES DESCENDENTE E ASCENDENTE

Nossos **objetivos** nesta aula são:

- conhecer os processos de análise descendente a ascendente a partir de tabelas de análise prontas
- praticar com análises descendente e ascendente

Para esta semana, usamos como referência as **Seções 4.1** (**Gramáticas Livres de Contexto**) até **4.4** (**Ambigüidade**) do nosso livro da referência básica:

RAMOS, M.V.M., JOSÉ NETO, J., VEJA, I.S. Linguagens Formais: Teoria, Modelagem e Implementação. Porto Alegre: Bookman, 2009.

Não deixem de ler estas seções depois desta aula!

ANÁLISE DESCENDENTE

 Na nossa aula anterior, vimos processo de geração da árvore sintática é chamado de análise sintática e pode ser realizada de duas maneiras: de cima para baixo (análise descendente ou top-down) ou de baixo para cima (análise ascendente ou bottom-up).

- Uma das maneiras de se realizar a análise descendente é via análise LL(k) (<u>Left-to-Right with Leftmost derivation</u>), que varre a entrada a ser processada da esquerda para a direita e realiza as derivações o mais à esquerda possível, utilizando k tokens para decidir qual regra aplicar. Uma categoria muito interessante dos analisadores LL são os analisadores LL(1), também conhecidos como parsers preditivos top-down, que utilizam apenas um token para decidir qual regra aplicar.
- O esquema básico de um analisador LL(1) é mostrado abaixo:

- Para processar um buffer de entrada, o analisador utiliza uma tabela, chamada Tabela de Análise LL(1), e uma pilha para guardar símbolos terminais e não-terminais. Este analisador é um tipo de Autômato à Pilha.
- Vamos considerar, como exemplo, a seguinte gramática livre de contexto:

$$S \rightarrow cAa$$

 $A \rightarrow cB \mid B$
 $B \rightarrow bcB \mid \epsilon$

• A tabela de análise LL(1), denotada por M(N,T), é mostrada abaixo (veremos, em uma aula posterior, como construir tal tabela). Nas linhas, teremos sempre símbolos nãoterminais e, nas colunas, teremos sempre símbolos terminais:

	а	b	С	\$
S	ERRO	ERRO	$\textbf{S} \rightarrow \textbf{cAa}$	ERRO
Α	$A \rightarrow B$	$A \rightarrow B$	$A \rightarrow cB$	ERRO
В	$B \rightarrow \epsilon$	B →bcB	ERRO	ERRO

• Algoritmo de Análise LL(1):

- 1. Inicializar a pilha com S\$ (S, símbolo inicial da gramática, S no topo da pilha)
- 2. Repita os passos abaixo até reconhecer a entrada ou até encontrar um erro
- 3. Seja X o símbolo no topo da pilha e seja t o símbolo na entrada
- 4. Se X = \$e t = \$, entrada reconhecida.
- 5. Se X = t e $t \neq \$$, desempilhar X e avançar um símbolo na entrada.
- 6. Se X for um símbolo não-terminal
- 7. Se M(X,t) contém ERRO, colocar estado do analisador em ERRO.
- 8. Senão, seja $M(X,T)=X \rightarrow UVW$. Desempilhar X e empilhar UVW, com U no topo da pilha.
- Exemplo de análise para a entrada cbca\$:

Pilha	Entrada	Ação
S\$	cbca\$	S->cAa
cAa\$	cbca\$	casar c
Aa\$	bca\$	A->B
Ba\$	bca\$	B->bcB
bcBa\$	bca\$	casar b
cBa\$	ca\$	casar c
Ba\$	a\$	Β-> ε
a\$	a\$	casar a
\$	\$	casar \$, sucesso

EXERCÍCIO TUTORIADO

Utilizando a tabela de análise LL(1) anterior, simule o processo de análise para a entrada ccbca\$:

Pilha	Entrada	Ação
\$\$	ccbca\$	

EXERCÍCIO COM DISCUSSÃO EM DUPLAS

Utilizando a tabela de análise LL(1) anterior, simule o processo de análise para a entrada ca\$:

Pilha	Entrada	Ação
S\$	ca\$	

- Uma das maneiras de se realizar a análise ascendente é via análise LR(k) (<u>Left-to-Right with Rightmost derivation</u>), que varre a entrada a ser processada da esquerda para a direita e realiza as derivações o mais à direita possível, utilizando k tokens para decidir qual regra aplicar.
- Existem diversas categorias de analisadores LR: LR(0), LR(1), SLR(1) e LALR(1). Porém, todos eles utilizam uma estrutura de análise comum, mostrada abaixo:

- Para processar um buffer de entrada, o analisador utiliza uma tabela, chamada Tabela de Análise LR, formada de ações (Shift-empilha e Reduce-reduz) e gotos (próximo estado que será empilhado) e uma pilha para guardar estados. Este analisador também é um tipo de Autômato à Pilha.
- Para ilustrar como com funciona este esquema de análise, vamos considerar a seguinte gramática:

$$\begin{array}{c} \mathsf{S} \to \mathsf{T} \\ \mathsf{T} \to \mathsf{F} \mid \mathsf{T} * \mathsf{F} \\ \mathsf{F} \to \mathsf{id} \mid (\mathsf{T}) \end{array}$$

• A tabela de análise LR(0) (ações e goto's) é mostrada abaixo. Veremos, em aulas posteriores, como construir esta tabela:

Goto

Ações

						000			
		*	()	id	\$	Е	Т	Ŧ
	0		S5		S8			2	1
	1	R1	R1	R1	R1	R1			
	2	S3				Ok!			
oductions	3		S5		8 8				4
T → F	4	R2	R2	R2	R2	R2			
	5		S5		S8			6	1
T → T*F	6	S3		S7					
F → id	7	R4	R4	R4	R4	R4			
F → (T)	8	R3	R3	R3	R3	R3			
		•							

Nesta tabela, a primeira coluna sempre indica os números dos estados. Nas Ações, sempre teremos símbolos terminais e, em Goto, símbolos não-terminais. SN indica que vamos empilhar o estado N e RN que vamos reduzir segundo a produção N (segundo a numeração de Productions). Espaços em branco em Ações denotam ERRO.

Algoritmo de Análise LR(0):

- 1. Empilhar estado 0 na pilha.
- 2. Repetir os passos abaixo até que se encontre OK! ou ERRO
- 3. Verificar qual ação tomar:
- 4. Se Ações[Topo da Pilha,símbolo da entrada] não contém **ERRO**
- 5. Se encontramos OK!, acabamos de reconhecer a entrada.
- 6. Se ação é do tipo **SN**, empilhar estado N e avançar um símbolo na entrada
- 7. Se ação é do tipo **RN**, desempilhar todos os estados dos símbolos reduzidos segundo a regra N (Productions). Se Goto [Topo da Pilha, Símbolo Reduzido] está definido, empilhar estado Goto [Topo da Pilha, Símbolo Reduzido].
- 8. Senão, estamos em estado de **ERRO**.

• Exemplo de análise LR(0) para (X)*Y\$:

Productions

 $T \rightarrow F$

2 T → T*F

 $F \rightarrow id$

 $F \rightarrow (T)$

	Ações						Goto	
	*	()	id	\$	Е	Т	F
0		S5		S8			2	1
1	R1	R1	R1	R1	R1			
2	S3				Ok!			
3		S5		S8				4
4	R2	R2	R2	R2	R2			
5		S5		S8			6	1
6	S3		S7					
7	R4	R4	R4	R4	R4			
8	R3	R3	R3	R3	R3			

Pilha	Entrada	Ação/Goto
0	(id)*id\$	S5
0 5	id)*id\$	S8
058)*id\$	R3 (F→id), desempilha 8, goto [5,F]=1
051)*id\$	R1 (T→F), desempilha 1, goto [5,T]=6
056)*id\$	S7
0567	*id\$	R4 (F \rightarrow (T)), desempilha 7 6 5, goto [0,F]=1
0 1	*id\$	R1 (T→F), desempilha 1, goto[0,T]=2
0 2	*id\$	S3
023	id\$	S8
0238	\$	R3 (F→id), desempilha 8, goto[3,F]=4
0234	\$	R2 (T→T*F), desempilha 4 3 2, goto[0,T]=2
0.2	\$	OKI ENTRADA ACEITA

EXERCÍCIO TUTORIADO

Utilizando as tabelas **LR(0)** e **Productions** anteriores, mostre o processo de análise LR para a entrada SOMA*X\$ (id*id\$):

Pilha	Entrada	Ação/Goto
0	id*id\$	

EXERCÍCIO COM DISCUSSÃO EM DUPLAS

Utilizando as tabelas **LR(0)** e **Productions** anteriores, mostre o processo de análise LR para a entrada (SOMA)\$ ((id)\$):

Pilha	Entrada	Ação/Goto
0	(id)\$	

1. Considere a tabela LL(1) mostrada abaixo:

	а	b	С	\$
S	ERRO	ERRO	$S \rightarrow cAa$	ERRO
Α	$A \rightarrow B$	$A \rightarrow B$	$A \rightarrow cB$	ERRO
В	$B \rightarrow \epsilon$	B →bcB	ERRO	ERRO

Simule o processo de análise para a entrada caab\$:

Pilha		Entrada	Ação	
	S\$	caab\$		

2. Utilizando as tabelas **LR(0)** e **Productions** abaixo, mostre o processo de análise LR para a entrada (X)(Y)\$ ((id)*(id)\$):

	Ações						Goto	
	*	()	id	\$	Е	Т	F
0		S5		S8			2	1
1	R1	R1	R1	R1	R1			
2	S3				Ok!			
3		S5		S8				4
4	R2	R2	R2	R2	R2			
5		S5		S8			6	1
6	S3		S7					
7	R4	R4	R4	R4	R4			
8	R3	R3	R3	R3	R3			

Productions		
1	$T \rightarrow F$	
2	T → T*F	
3	F → id	
4	F → (T)	

Pilha	Entrada	Ação/Goto
0	(id)*(id)\$	