第二周第一次作业姓名: 学号:

习题 1.4.9. 证明对 \mathcal{O}_K 的任一非零理想 \mathfrak{a} , 存在非零元 $a \in \mathfrak{a}$ 使得

 $|\mathbf{N}_{K/\mathbb{Q}}(a)| \leq \left(\frac{2}{\pi}\right)^{r_2} \sqrt{|\Delta_K|} [\mathcal{O}_K:\mathfrak{a}].$ 证明. 习题 **1.4.11.** $\mathbf{N}((a)) = |\mathbf{N}_{K/\mathbb{Q}}(a)|, \forall a \in K^{\times}.$ 证明. 习题 1.4.12. 证明 $\mathfrak a$ 所有元素的范数生成的 $\mathbb Z$ 的理想为 $\mathbf N\mathfrak a\mathbb Z$. 证明. 习题 1.4.13. 证明对称凸集 $X = \left\{ (z_{\tau}) \in K_{\mathbb{R}} \mid \sum_{\tau} |z_{\tau}| < t \right\}$ 的体积为 $vol(X) = 2^{r_1} \pi^{r_2} \frac{t^n}{r!}$. 证明. 习题 **1.4.19.** 计算 $K = \mathbb{Q}(\sqrt{d}), d = -1, -2, -3, -5, -7, 2, 3, 5$ 的类数. 解答. 习题 **1.4.20.** 证明 $K \neq \mathbb{Q}$ 时, $|\Delta_K| \neq 1$. 证明. **习题 1.4.21.** 证明当数域 K 的次数趋于无穷时, $|\Delta_K|$ 趋于无穷. 证明. 习题 1.4.23. 在相差一个单位的前提下, $\mathbf{N}_{K/\mathbb{Q}}(\alpha)=a$ 的 α 只有有限多个. 证明. 习题 1.4.28. 虚二次域的单位群是什么? 解答. 习题 1.4.29. 证明 $x^3 + 3y^3 + 9z^3 - 9xyz = 1$ 有无穷多整数解.

证明.