" Progress So Far"

Kwame Ackah Bohulu

July 8, 2020

0.1 Notation

- 1. RTZ (Return-To-Zero) input :- A RTZ input is a binary input which causes a RSC encoder's final state to be return to zero after it has exited the zero state.
- 2. τ :- cycle length of the RSC encoder. For the 5/7 RSC encoder $\tau=3$
- 3. N:- Interleaver length.
- 4. \mathcal{N} :- Integer set of $\{0, 1, \dots, N-1\}$
- 5. N: Indexed set of $\{0, 1, \dots, N-1\}$ in the natural order.
- 6. We assume that $N/\tau = C$
- 7. \mathcal{C} and \mathbb{C} are definded in a similar manner.
- 8. $C^t := \{c+t\}_{c \in C}$ and \mathbb{C}^t is the indexed set with the elements of C^t where $t = (0, 1, ..., \tau 1)$. Where it becomes necessary to distinguish between the elements of C^t and C^t , we will write the elements of C^t as $c_{x'}^{t'}$ and the elements of C^t as c_x^t
- 9. Permutation matrix

$$\mathbf{\Pi} = egin{bmatrix} oldsymbol{\pi}^0 \ oldsymbol{\pi}^1 \ dots \ oldsymbol{\pi}^{K-1} \end{bmatrix} = egin{bmatrix} oldsymbol{\pi}_0, oldsymbol{\pi}_1, \cdots, oldsymbol{\pi}_{ au-1} \end{bmatrix} = egin{bmatrix} oldsymbol{\pi}_{(i)} \ oldsymbol{\pi}_{t-1} \ oldsymbol{\pi}_{t-1} \end{bmatrix}_{i=0, \ t=0}^{K-1, \ au-1}$$

where $\pi_t^{(i)} \in \{0, 1, \tau - 1\}.$

- 10. For the row vector $\boldsymbol{\pi}^{(i)}$, let $\mathscr{S}^e[\boldsymbol{\pi}^{(i)}]$ be the left-hand cycle shift of $\boldsymbol{\pi}^{(i)}$ and $\mathscr{S}^e[\boldsymbol{\pi}_t]$ be the up cycle shift of $\boldsymbol{\pi}_t$
- 11. We assume that the operation outputs the elements in \mathbb{C}^t in order while t is appeared in π^k . For example, $\pi^0 = (0,0,1)$ outputs (c_0^0,c_1^0,c_0^1) . From this example, we can see that the column index of i in $\pi^{(i)}$ represents the coset it belongs to before interleaving and the value $\pi_i^{(i)}$ specifies the coset after interleaving
- 12. Our goal is to find a prefer Π and \mathbb{C}^t , $t = 0, 1, \dots, \tau 1$.

0.2 Cosets and RTZ inputs

- 1. a weight 2 input sequence
 - polynomial: $P(x) = x^{h\tau+t}(1+x^{\alpha\tau}) = x^t(x^{h\tau}+x^{(h+\alpha)\tau})$
 - coset: the hth and $(h + \alpha)$ th elements in \mathbb{C}^t
- 2. a weight 3 input sequence
 - polynomial: $Q(x) = x^{h\tau+t}(1 + x^{\beta\tau+1} + x^{\gamma\tau+2}) = x^{h\tau+t} + x^{(h+\beta)\tau+t+1} + x^{(h+\gamma)\tau+t+2}$. Notice that $h \leq \beta$ is not a necessary condition.
 - coset: the hth element in \mathbb{C}^t , $(h+\beta)$ th element in $\mathbb{C}^{[t+1]_{\tau}}$, and $(h+\gamma)$ th element in $\mathbb{C}^{[t+2]_{\tau}}$.

0.3 Representation of interleaver

If the mapping relationship between elements in x and y are read column wise as shown below

$$\begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 0 & 5 & 1 & 6 & 2 & 7 & 3 & 8 & 4 \end{bmatrix}$$

the interleaver is represented by $\mathbb{N} = \{0, 5, 1, 6, 2, 7, 3, 8, 4\}.$

Let $\mathbb{C}^0 = \{0, 6, 3\}$, $\mathbb{C}^1 = \{1, 7, 4\}$, and $\mathbb{C}^2 = \{5, 2, 8\}$. Then, the permutation matrix of \mathbb{N} is $\mathbf{\Pi} = (0, 2, 1)$. Notice the row of $\mathbf{\Pi}$ takes cyclicly.

0.4 Coset Interleaver Design For Weight-2 RTZ inputs

From the definition of Weight-2 RTZ inputs in the previous section, we know that the index of the "1" bits are in the same coset \mathcal{C}^t and represented by the elements $\pi_t^{(h)}$ and $\pi_t^{(h+\alpha)}$. After interleaving, another weight-2 RTZ input occurs if the "1" bits are mapped to the elements $\pi_t^{(h')}$ and $\pi_t^{(h'+\alpha')}$ in \mathbb{C}^t . Therefore, to convert a weight-2 RTZ input into a non-RTZ input we need a permutation matrix Π which satisfies the condition below

$$\pi_i^{(i)} \neq \pi_i^{(i')}, \ |i - i'| \le N_c$$
 (0-1)

Since Π consisting of τ elements, the maximum length of column elements consisting of values different each other is τ . Thus, the cut-off interleaver length for which (0-1) is satisfied is $N_c = \tau = 3$.

1. One cycle permutation: Each row is permutation of the sequence (0,1,2). Setting the element at the first row and first column to 0, there are exactly 4 permutation matrices that exist for cut-off length N_c . Let

$$oldsymbol{\psi} = egin{bmatrix} 0 \ 1 \ 2 \end{bmatrix}, \ oldsymbol{\psi}' = egin{bmatrix} 0 \ 2 \ 1 \end{bmatrix}$$

We then have

$$[\psi, \mathcal{S}^{1}[\psi], \mathcal{S}^{2}[\psi]] = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 1 \end{bmatrix} := \psi(\psi)$$

$$[\psi', \mathcal{S}^{1}[\psi'], \mathcal{S}^{2}[\psi']] = \begin{bmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 2 & 0 \end{bmatrix} := \psi(\psi')$$

$$[\psi, \mathcal{S}^{2}[\psi], \mathcal{S}^{1}[\psi]] = \begin{bmatrix} 0 & 2 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix} := \psi'(\psi)$$

$$[\psi', \mathcal{S}^{2}[\psi'], \mathcal{S}^{1}[\psi']] = \begin{bmatrix} 0 & 2 & 1 \\ 1 & 0 & 2 \\ 2 & 1 & 0 \end{bmatrix} := \psi'(\psi')$$

- 2. Two cycle permutation: Two rows are permutation of the sequence (0,0,1,1,2,2). There are no permutation matrices that satisfying cut-off length N_c . This is because the sequence length is not divisible by N_c , there will always be 2 elements of the same value in each row of Π
- 3. Three cycle permutation: Three rows are permutation of the sequence (0, 0, 0, 1, 1, 1, 2, 2, 2). Example of the permutation matrices satisfying cut-off length $N_c = 9$ are shown in 1

Table 1 shows all unique coset interleaving arrays of length N_c that convert weight-2 RTZ inputs to non-RTZ inputs. They are labeled from A to X. A coset interleaving array is unique if a shift of the elements in the array does not produce another another coset interleaving array.

	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$		$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$
A		B	1 1 2 C	$U \parallel 1 2 1 \parallel L$	
	$\begin{bmatrix} 2 & 2 & 2 \end{bmatrix}$		$\begin{bmatrix} 2 & 2 & 1 \end{bmatrix}$	$\begin{bmatrix} 2 & 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$
	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$		$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$
E	$\begin{vmatrix} 2 & 1 & 1 \end{vmatrix}$	F	2 1 2 G	$ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	$\begin{bmatrix} 2 & 2 & 2 \end{bmatrix}$
	$\begin{bmatrix} 1 & 2 & 2 \end{bmatrix}$		$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$		
	$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$		[0 0 1]	[0 0 1]	[0 0 1]
I		J	1 2 0 K	$I \parallel 2 \mid 1 \mid 0 \mid L$	2 2 0
	$\begin{bmatrix} 2 & 2 & 2 \end{bmatrix}$		$\begin{bmatrix} 2 & 1 & 2 \end{bmatrix}$		$\begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$
	$\begin{bmatrix} 0 & 0 & 2 \end{bmatrix}$		$\begin{bmatrix} 0 & 0 & 2 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 2 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 2 \end{bmatrix}$
M		N	1 2 0 C	$0 \parallel 2 \ 1 \ 0 \mid P$	
	$\begin{bmatrix} 2 & 2 & 1 \end{bmatrix}$		$\begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$		
	$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$		[0 1 0]	[0 1 0]	0 1 0
Q	$\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$	R	1 0 2 S	$T \parallel 1 2 1 \parallel T$	$\begin{vmatrix} 1 & 2 & 0 & 1 \end{vmatrix}$
	$\begin{bmatrix} 2 & 2 & 2 \end{bmatrix}$		$\begin{bmatrix} 2 & 2 & 1 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 & 2 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 & 2 \end{bmatrix}$
	$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$		$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$	[0 1 1]	$\begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$
U	$\begin{bmatrix} 2 & 0 & 2 \end{bmatrix}$	V	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	$Y \parallel \begin{vmatrix} 1 & 2 & 0 \end{vmatrix} \mid X$	$\begin{bmatrix} 1 & 2 & 0 & 2 \end{bmatrix}$

Table 1: All unique coset interleaving arrays of length $N_c = 9$ for weight-2 RTZ inputs

The interleaver length used in turbo coding are way greater than N_c and it is not possible to transform weight-2 RTZ inputs into non-RTZ inputs for all values of i. All is not lost however, since not all weight-2 RTZ inputs produce low-weight codewords. The formula for calculating the Hamming weight (w_H) of the Turbo codeword produced by a weight-2 RTZ input occurring in both component codes is given by [SunTakeshita]

$$w_{H} = 2 + \left(2 + \frac{\Delta_{c}}{\tau}\right)w_{0} + \left(2 + \frac{\Delta_{c'}}{\tau}\right)w_{0}$$

$$= 6 + \left(\frac{\Delta_{c} + \Delta_{c'}}{\tau}\right)w_{0}, \ w_{0} = 2$$
(0-3)

For all the Π in Table 1, since $\Delta c = 9 = 3\tau$ and $\Delta c' := (c_{a'+\alpha'}^{t'} - c_{a'}^{t'})$ we have

$$w_H = 6 + \left(3 + \frac{\Delta c'}{3}\right)w_0, \ w_0 = 2$$
 (0-4)

0.5 Coset Interleaver Design For Weight-3 RTZ inputs

As mentioned earlier, a weight-3 RTZ input is formed when the indices of the "1" bits each occur in different cosets. It goes without saying that the simplest way to convert a weight-3 RTZ input into a non-RTZ input is to make sure that at least two of indices of the "1" bits occur within the same coset after interleaving.

$$w_H = 7 + 2(l + l') \tag{0-5}$$

Unique permutation matrices which meet this criteria are shown in Table 2 and they are labeled from A to L

	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$		$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$
A	1 1 1	$\mid B \mid$	
	$\begin{bmatrix} 2 & 2 & 2 \end{bmatrix}$		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	0 0 0		0 0 0
C	1 1 2	$\mid D \mid$	
	$\begin{bmatrix} 2 & 1 & 2 \end{bmatrix}$		$\begin{bmatrix} 2 & 2 & 1 \end{bmatrix}$
	0 0 0		0 0 0
E	$\begin{vmatrix} 2 & 2 & 1 \end{vmatrix}$	$\mid F \mid$	
	$\begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$		
	0 0 0		0 0 1
G	$\begin{vmatrix} 2 & 2 & 1 \end{vmatrix}$	$\mid H \mid$	
	$\begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$		$\begin{bmatrix} 2 & 2 & 2 \end{bmatrix}$
	0 0 1		0 0 2
$\mid I \mid$	1 1 2	$\mid J \mid$	
	$\begin{bmatrix} 2 & 0 & 2 \end{bmatrix}$		$ig egin{bmatrix} 1 & 1 & 1 \end{bmatrix}ig $
	0 0 2		0 1 0
K	$\begin{vmatrix} 2 & 2 & 1 \end{vmatrix}$	$\mid L \mid$	
	$\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$		$\begin{bmatrix} 2 & 0 & 2 \end{bmatrix}$

Table 2: All unique permutation matrices of length $N_c = 9$ for weight-3 RTZ inputs

Depending on which permutation matrix is chosen from Table 2, Equation 0-5 can be simplified.

In general w_H for turbo codewords as a result of weight-3 RTZ inputs can be written as

$$w_H = 3 + w_p + w_p'$$

, where w_p, w_p' refer to the pre-interleaving parity weight and the post-interleaving parity weight respectively. The value of w_p for the pre-interleaving weight-3 is dependent on the elements in \mathcal{C}^t Let $(c_{\alpha}^t, c_{\alpha+\beta}^{t+1}, c_{\alpha+\gamma}^{t+2})$ be the vector representing a weight-3 RTZ input, where

$$c_{\alpha}^{t} = \alpha \tau + t$$

$$c_{\alpha+\beta}^{t+1} = (\alpha + \beta)\tau + t + 1$$

$$c_{\alpha+\gamma}^{t+2} = (\alpha + \gamma)\tau + t + 2$$

$$(0-6)$$

if c_{α}^{t} is the smallest value in the vector, then

$$l = \begin{cases} \beta, & \beta > \gamma \\ \gamma & \beta < \gamma \end{cases} \tag{0-7}$$

And

$$w_p = \begin{cases} 2\beta + 2, & i \ge k, \ \beta > \gamma \\ 2\beta & i < k, \ \beta > \gamma \\ 2\gamma + 2, & i \ge k, \ \beta < \gamma \\ 2\gamma & i < k, \ \beta < \gamma \end{cases}$$

$$(0-8)$$

where $i=\lfloor\frac{c_*^2}{3}\rfloor$, $k=\lfloor\frac{c_*^0}{3}\rfloor$ and * is the element position in \mathcal{C}^t By deciding on the Π we can easily calculate all values of l and w_p

 w_p' on the other hand is dependent on the elements in \mathbb{C}^t , $t=0,1,...,\tau-1$ Let $(c_{\alpha'}^{t'},\ c_{\alpha'+\beta'}^{t'+1},\ c_{\alpha'+\gamma'}^{t'+2})$ be the vector representing a weight-3 RTZ input, where

$$c_{\alpha'}^{t'} = \alpha \tau + t'$$

$$c_{\alpha'+\beta'}^{t'+1} = (\alpha + \beta)\tau + t' + 1$$

$$c_{\alpha'+\gamma'}^{t'+2} = (\alpha + \gamma)\tau + t' + 2$$
(0-9)

if $c_{\alpha'}^{t'}$ is the smallest value in the vector, then

$$l' = \begin{cases} \beta, & \beta > \gamma \\ \gamma & \beta < \gamma \end{cases} \tag{0-10}$$

And

$$w'_{p} = \begin{cases} 2\beta + 2, & i' \ge k', \ \beta > \gamma \\ 2\beta & i' < k', \ \beta > \gamma \\ 2\gamma + 2, & i' \ge k', \ \beta < \gamma \\ 2\gamma & i' < k', \ \beta < \gamma \end{cases}$$
(0-11)

where $i' = \lfloor \frac{c_*^2}{3} \rfloor$, $k' = \lfloor \frac{c_*^0}{3} \rfloor$ and * represents its position in \mathbb{C}^t As an example, Table 3 shows all the weight-3 RTZ inputs and the corresponding equations for

calculating w_H

To Do

1. add elements for inter-block Weight-3 RTZ inputs

RTZ index	l	w_p	w_H
(0 4 8)	2	6	$\begin{cases} 11 + 2\beta, \ \beta > \gamma \\ 11 + 2\gamma, \ \beta < \gamma \end{cases}$
(0 5 7)	2	6	$\begin{cases} 11 + 2\beta, \ \beta > \gamma \\ 11 + 2\gamma, \ \beta < \gamma \end{cases}$
(1 3 8)	2	6	$\begin{cases} 11 + 2\beta, \ \beta > \gamma \\ 11 + 2\gamma, \ \beta < \gamma \end{cases}$
(1 5 6)	2	4	$\begin{cases} 9 + 2\beta, \ \beta > \gamma \\ 9 + 2\gamma, \ \beta < \gamma \end{cases}$
(2 3 7)	2	4	$\begin{cases} 9 + 2\beta, \ \beta > \gamma \\ 9 + 2\gamma, \ \beta < \gamma \end{cases}$
(2 4 6)	2	4	$\begin{cases} 9 + 2\beta, \ \beta > \gamma \\ 9 + 2\gamma, \ \beta < \gamma \end{cases}$

Table 3: All unique permutation matrices of length $N_c=9$ for weight-3 RTZ inputs