THE INTERNATINONAL UNIVERSITY (IU) - VIETNAM NATIONAL UNIVERSITY - HCMC

Final Examination

Date: May 21, 2016

Duration: 120 minutes

SUBJECT: Electromagnetic Theory	
Dean of School of Electrical Engineering	Lecturer
Signature:	Signature:
Full name: Tran Van Su	Full name: Tran Van Su

INTRODUCTIONS:

- 1. One sheet, A4-size paper, with your own hand-writing characters is allowed (Books are prohibited)
- 2. Laptop and communications devices are not allowed except calculators
- 3. Answer all questions

Question 1 (20 Marks)

An infinite plane sheet of current density $\vec{J}_S = -J_S(t)\hat{x}$ (A/m), where $J_S(t)$ is as shown in *Figure* below, lie in the z = 0 in free space. Find and sketch:

- a) E_x versus t in the z = 600m plane (10 Marks)
- b) E_x versus z for $t = 2\mu s$ (10 Marks)

Question 2 (15 Marks)

The electric field of a uniform plane wave propagating in the +z direction in a nonmagnetic $(\mu = \mu_o = 4\pi \times 10^{-7})$ material medium is given by

$$\vec{E} = 8.4e^{-0.0432z}\cos(4\pi \times 10^6 t - 0.1829z)\,\vec{a_r}(V/m)$$

Find the magnetic field of the wave (*Hint*: $\overline{\gamma}\overline{\eta} = j\omega\mu_0$)

Question 3 (10 Marks)

The plane z=0 forms the boundary between free space (z>0) and perfect conductor (z<0)

- a) Find $\vec{J}_{S}(0,0,0)$ at t = 0 and $\vec{H}(0,0,0^{+}) = H_{o}(\hat{x} + 2\hat{y})\cos\omega t$ (5 Marks)
- b) Find $\rho_S(0,0,0)$ at t = 0 and $\vec{D}(0,0,0^+) = E_0 \cos \omega t \hat{z}$ (5 Marks)

Question 4 (15 Marks)

The sinusoidally time-varying, linearly polarized vector fields are given at a point by

$$\overrightarrow{F}_1 = \cos(2\pi \times 10^6 t + 30^\circ) \hat{x}, \ \overrightarrow{F}_2 = \cos(2\pi \times 10^6 t + 30^\circ) \hat{z}, \ \overrightarrow{F}_3 = \sqrt{2}\sin(2\pi \times 10^6 t + 30^\circ) \hat{y}$$

Determine the polarizations of the following vectors:

- a) $\vec{F}_1 + \vec{F}_2$ (7 Marks)
- b) $\vec{F}_1 + \vec{F}_2 + \vec{F}_3$ (8 Marks)

Question 5 (15 Marks)

For the Transmission line of the following *Figure*:

- a) The reflected wave voltage is 1/5 times the incident wave voltage (5 Marks)
- b) The transmitted wave voltage is 1/5 times the incident wave voltage (5 Marks)
- c) The reflected wave voltage is 1/5 times the transmitted wave voltage (5 Marks)

Question 6 (25 Marks)

For the transmission line in *Figure* shown:

- a) Sketch the bounce diagram of the voltage and give enough information on it (up to 5µs) (5 Marks)
- b) Sketch the bounce diagram of the current and give enough information on it (up to 5µs) (5 Marks)
- c) Determine the voltage at the middle of the line at $t = 2.8 \mu s$
- d) Calculate steady state V_{SS} and I_{SS} (5 Marks)
- e) Calculate steady state V_{SS}^+ , V_{SS}^- , I_{SS}^+ and I_{SS}^- (5 Marks)

(5 Marks)