IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of: Ryouji HIROYAMA, et al.

Serial No.: NEW APPLICATION

Filed: September 25, 2000

For: SEMICONDUCTOR LASER DEVICE AND METHOD OF MANUFACTURING

THE SAME

CLAIM FOR PRIORITY UNDER 35 U.S.C. 119

Directors of Patents and Trademarks Washington, D.C. 20231

Date: September 25, 2000

Sir:

The benefit of the filing dates of the following prior foreign applications is hereby requested for the above-identified application, and the priority provided in 35 U.S.C. 119 is hereby claimed:

JAPANESE APPLICATION NO. 11/272436, Filed September 27, 1999; and JAPANESE APPLICATION NO. 2000-012681, Filed January 21, 2000

In support of these claims, the requisite certified copies of said original foreign applications are filed herewith.

It is requested that the file of these applications be marked to indicate that the applicant has complied with the requirements of 35 U.S.C. 119 and that the Patent and Trademark Office kindly acknowledge receipt of said copies. In the event that any fees are due in connection with this paper, please charge our Deposit Account No. 01-2340.

Respectfully submitted,

ARMSTRONG, WESTERMAN, HATTORI, McLELAND & NAUGHTON

Atty. Docket No. 001241

1725 K Street, N.W., Suite 1000

Washington, DC 20006 Tel: (202) 659-2930

Fax: (202) 887-0357

MRQ/11

Mel R. Quintos Reg. No. 31,898

別紙添付の警題に記載されている事項は下記の出願警題に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1999年 9月27日

出 顯 番 号 Application Number:

平成11年特許願第272436号

出 顯 人 Applicant (s):

三洋電機株式会社

2000年 8月25日

特許庁長官 Commissioner, Patent Office

Dal

【書類名】

特許願

【整理番号】

NBA0991052

【提出日】

平成11年 9月27日

【あて先】

特許庁長官殿

【国際特許分類】

H01S 3/18

【発明者】

【住所又は居所】 大阪府守口市京阪本通2丁目5番5号 三洋電機株式

会社内

【氏名】

廣山 良治

【発明者】

【住所又は居所】 大阪府守口市京阪本通2丁目5番5号 三洋電機株式

会社内

【氏名】

野村 康彦

【発明者】

【住所又は居所】 大阪府守口市京阪本通2丁目5番5号 三洋電機株式

会社内

【氏名】

古沢 浩太郎

【発明者】

【住所又は居所】 大阪府守口市京阪本通2丁目5番5号 三洋電機株式

会社内

【氏名】

竹内 邦生

【発明者】

【住所又は居所】 大阪府守口市京阪本通2丁目5番5号 三洋電機株式

会社内

【氏名】

岡本 重之

【特許出願人】

【識別番号】

000001889

【氏名又は名称】 三洋電機株式会社

【代表者】

近藤 定男

【代理人】

【識別番号】 100109368

【弁理士】

【氏名又は名称】 稲村 悦男

【連絡先】

電話03-3837-7751 法務・知的財産部

東京事務所

【選任した代理人】

【識別番号】 100111383

【弁理士】

【氏名又は名称】 芝野 正雅

【手数料の表示】

【予納台帳番号】 013033

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】 要約書 1

【包括委任状番号】 9904451

【プルーフの要否】 要

【書類名】

明細書

【発明の名称】 半導体レーザ素子及びその製造方法

【特許請求の範囲】

【請求項1】 基板上に第1導電型のクラッド層、発光層、III族元素とし てA1を含有する第2導電型のクラッド層が順に積層され、前記第2導電型のク ラッド層にはリッジ部が形成され、前記第2導電型のクラッド層上の前記リッジ 部の周りにIII族元素としてA1を含有する電流ブロック層が形成された半導体 レーザ素子において、前記基板の上面に対する前記リッジ部の側面の傾斜角度 θ が80°以上、110°以下であり、前記第2導電型のクラッド層を構成するII I族元素中におけるAlの組成比をXlとし、前記電流ブロック層を構成するIII 族元素中におけるA1の組成比をX2とし、前記発光層と前記電流ブロック層と の離間距離をt した場合、t ≤ 0. 2 7 5 / (1 - (X 2 - X 1)) [μm] の 関係を満たし、前記リッジ部の下部幅Wが2μm以上、5μm以下であることを 特徴とする半導体レーザ素子。

【請求項2】 前記第1導電型クラッド層はIII族元素としてA1とGaを 含有し、A1とGaの総和におけるA1の組成比がX1であり、前記電流ブロッ ク層はIII族元素としてA1とGaを含有し、A1とGaの総和におけるA1の 組成比がX2であることを特徴とする請求項1記載の半導体レーザ素子。

【請求項3】 前記第2導電型のクラッド層がA 1 X1 G a 1-X1 A s からなり 、前記電流ブロック層がAl_{X2}Ga_{1-X2}Asからなることを特徴とする請求項2 記載の半導体レーザ素子。

【請求項4】 t≦0.252/(1-(X2-X1)) [μm]であるこ とを特徴とする請求項1、2又は3記載の半導体レーザ素子。

【請求項5】 前記離間距離 t が 0. 15 μ m以上であることを特徴とする 請求項1、2、3又は4記載の半導体レーザ素子。

【請求項6】 前記離間距離 t が 0.2 μ m以上であることを特徴とする請 求項1、2、3又は4記載の半導体レーザ素子。

【請求項7】 基板上に第1導電型のクラッド層及び発光層を形成し、該発 光層上に所定の厚みを有する第2導電型の第1クラッド層を形成し、該第1クラ ッド層上にエッチング停止層を介してIII族元素中におけるA1の組成比がX1 である第2導電型の第2クラッド層を形成する工程と、

前記第2クラッド層の一部を除去することにより、前記基板の上面に対する側面の傾斜角度 θ が80°以上、110°以下であり、下部幅Wが2 μ m以上、5 μ m以下であるリッジ部を形成する工程と、

前記リッジ部の両側に、III族元素中におけるA1の組成比がX2であり、前記リッジ部の周りに露出した前記第1導電型の第2クラッド層の上面から発光層までの距離をtとした場合、t \leq 0. $275/(1-(X2-X1))[\mu m]$ の関係を満足する電流ブロック層を形成する工程とを有することを特徴とする半導体レーザ素子の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、光ディスクシステム等に用いて好適な半導体レーザ素子及びその製造方法に関する。

[0002]

【従来の技術】

近年、インターネットや電子メールが急速に普及し、これに対応してパーソナルコンピュータ市場が拡大を続けている。このパーソナルコンピュータの記憶媒体として、CD-ROMあるいはDVD-ROM等のディスク状の光記録媒体を用いた光ディスクシステムが不可欠となっている。さらに、これらの光ディスクシステムは、再生専用型から書き込み型、更には書き換え型への移行が顕在化してきた。

[0003]

半導体レーザ素子は、光ディスクシステムのキーデバイスであり、光ディスクシステムの書き込み速度向上のために、高出力化が強く要請されている。

[0004]

従来の代表的なリッジ型の半導体レーザ素子の基本構造を図15に示す。例えば、GaAs系の半導体レーザ素子の場合、n型GaAsからなるn型半導体基

板701上に、n型GaAsからなるn型バッファ層702、n型AlGaAsからなるn型クラッド層703、AlGaAsからなる発光層704、p型AlGaAsからなるp型クラッド層705が形成されている。

[0005]

このp型クラッド層705は、半導体レーザ素子の横モード制御のために、素子中央部が両脇の平坦部に比して層厚が大きいストライプ状のリッジ部を有する。また、このp型クラッド層705のリッジ部側面および平坦面上には、電流注入領域を制限するためにのn型A1GaAsからなるn型ブロック層706が形成されている。

[0006]

さらに、p型クラッド層705およびn型ブロック層706上には、p型GaAsからなるp型コンタクト層707が形成されている。また、n型半導体基板の裏面にはn型電極708が、p型コンタクト層707上にはp型電極709が形成されている。

[0007]

ここで、p型コンタクト層707のバンドギャップは、発光層704のバンドギャップよりも小さいため、発光層704で発生する光の一部はp型コンタクト層707で吸収される。この吸収により、レーザビームが半導体層の積層方向に強く閉じ込められ、レーザ出射端面における光密度が高くなる。

[0008]

このような従来の半導体レーザ素子の場合、レーザ出射端面における光密度が高くなると、レーザ出射端面での破壊が生じやすくなる。このため、半導体レーザ素子の高出力化のためには、リッジ部の高さHを高くし、更にはリッジ部の下部幅Wを大きくすることにより、レーザ出射面における光密度を低減することが考えられる。

[0009]

しかしながら、図15に示すようなリッジ部の幅が上方になる程、狭くなる順 メサ構造のリッジ部を有する半導体レーザでは、リッジ部の髙さHを髙くすると 、リッジ部の上面の幅が減少し、電流が流れ難くなるため、リッジ部の髙さHの 増加に限界がある。

[0010]

一方、リッジ部の下部幅Wを大きくすると横方向の光の閉じこめが困難となり、レーザビームの水平広がり角が急激に小さくなる。このため、レーザビームの水平広がり角と垂直広がり角との差が大きくなり、集光特性の劣化などの問題が発生する。また、幅Wを変化させた際の水平広がり角に変動が大きいため、水平広がり角の調整が困難であるという問題もある。

[0011]

また、リッジ部の幅が上方になる程、広くなる逆メサ構造のリッジ部を有する 半導体レーザでは、リッジ部の高さを高くしても、リッジ部の上面の幅が減少す るということは無いため、電流が流れ難いという問題は無くなるが、リッジ部の 底面の幅を大きくした際の問題は、依然として存在する。

[0012]

【発明が解決しようとする課題】

本発明は上記従来例の欠点に鑑み為されたものであり、レーザビームの高出力 化を図った場合においても、レーザビームの水平広がり角度が小さくなることを 抑制し、しかもレーザビームの水平広がり角度の調整が容易である半導体レーザ 素子を提供することを目的とするものである。

[0013]

また、本発明は、レーザビームの髙出力化を図った場合においても、レーザビームの水平広がり角度が小さくなることを抑制し、しかもレーザビームの水平広がり角度の調整が容易である半導体レーザ素子を容易に製造することが出来る半 導体レーザ素子の製造方法を提供することを目的とするものである。

[0014]

【課題を解決するための手段】

本発明の半導体レーザ素子は、基板上に第1導電型のクラッド層、発光層、II I族元素としてA1を含有する第2導電型のクラッド層が順に積層され、前記第 2導電型のクラッド層にはリッジ部が形成され、前記第2導電型のクラッド層上 の前記リッジ部の周りにIII族元素としてA1を含有する電流ブロック層が形成 された半導体レーザ素子において、前記基板の上面に対する前記リッジ部の側面の傾斜角度 θ が80°以上、110°以下であり、前記第2導電型のクラッド層を構成するIII族元素中におけるA1の組成比をX1とし、前記電流ブロック層を構成するIII族元素中におけるA1の組成比をX2とし、前記発光層と前記電流ブロック層との離間距離をtした場合、 $t \le 0$. 275/(1-(X2-X1)) [μ m]の関係を満たし、前記リッジ部の下部幅Wが 2μ m以上、 5μ m以下であることを特徴とする。

[0015]

このような構成の半導体レーザ素子では、高出力化を図るために、リッジ部の下部幅Wを大きくしても、レーザビームの水平広がり角度の変化は小さい。また、レーザビームの水平広がり角度が急激に低下しない範囲に、発光層と電流ブロック層との離間距離が設定されている。しかも、動作電圧が急激に大きくならない範囲に、リッジ部の下部幅Wが設定されている。

[0016]

尚、電流ブロック層が複数の層で形成されている場合は、リッジ部に最も近接 している電流ブロック層のA1組成比がX2となる。また、リッジ部の下部幅W とはリッジ部の最下部における共振器方向と直交する方向の長さである。

[0017]

特に、前記第1導電型クラッド層はIII族元素としてA1とGaを含有し、A1とGaの総和におけるA1の組成比がX1であり、前記電流ブロック層はIII族元素としてA1とGaを含有し、A1とGaの総和におけるA1の組成比がX2である場合、本発明による上述の効果は顕著である。

[0018]

[0019]

また、本発明の半導体レーザは、 $t \le 0$. 252/(1-(X2-X1)) [μ m] であることを特徴とする。

[0020]

この場合、レーザビームの水平広がり角度は、水平広がり角度の低下は小さく 、一定値以上の大きさを確保する。

[0021]

特に、前記離間距離 t が 1. 5 μ m以上であれば、離間距離 t が変動しても、 水平広がり角度の変動幅は小さい。

[0022]

更に、前記離間距離 t が 2. 0 μ m以上であれば、離間距離 t が変動した際の 水平広がり角度の変動幅は更に小さい。

[0023]

また、本発明の半導体レーザの製造方法は、基板上に第1導電型のクラッド層及び発光層を形成し、該発光層上に所定の厚みを有する第2導電型の第1クラッド層を形成し、該第1クラッド層上にエッチング停止層を介してIII族元素中におけるA1の組成比がX1である第2導電型の第2クラッド層を形成する工程と、前記第2クラッド層の一部を除去することにより、前記基板の上面に対する側面の傾斜角度 θ が80°以上、110°以下であり、下部幅Wが2 μ m以上、5 μ m以下であるリッジ部を形成する工程と、前記リッジ部の両側に、III族元素中におけるA1の組成比がX2であり、前記リッジ部の周りに露出した前記第1導電型の第2クラッド層の上面から発光層までの距離を t とした場合、 t \leq 0 . 2 7 5 χ (1 - (X2 - X1)) [χ m] の関係を満足する電流ブロック層を形成する工程とを有することを特徴とする。

[0024]

このような半導体レーザの製造方法では、高出力化を図るために、リッジ部の下部幅Wを大きくしても、レーザビームの水平広がり角度の変化は小さく、また、レーザビームの水平広がり角度が急激に低下しない範囲に、発光層と電流ブロック層との離間距離が設定されており、しかも、動作電圧が急激に大きくならない範囲に、リッジ部の下部幅Wが設定されている半導体レーザ素子を、容易に製造することが出来る。

[0025]

【発明の実施の形態】

以下、図面を参照しつつ本発明の実施の形態について詳細に説明する。

[0026]

図1は本発明の実施の形態である実施例の半導体レーザ素子の断面図である。

[0027]

本実施例の半導体レーザ素子は、n型GaAsからなるn型半導体基板1の上面に、n型GaAsからなるn型第1バッファ層2、n型AlGaAsからなるn型第2バッファ層3、n型AlGaAsからなるn型クラッド層4、n型AlGaAsからなるn型キャリアブロック層5、アンドープのAlGaAsからなる光ガイド層6、およびアンドープの多重量子井戸構造の活性層7が順に形成されている。

[0028]

活性層7はアンドープのA1GaAsからなる3つの量子井戸層71とアンドープのA1GaAsからなる2つの障壁層72とが交互に積層されてなる。

[0029]

活性層7の上には、アンドープのA1GaAsからなる光ガイド層8、p型A 1GaAsからなるp型キャリアブロック層9、p型A1GaAsからなるp型 第1クラッド層10が順に形成されている。

[0030]

本実施例の半導体レーザ素子では、光ガイド層 6、活性層 7 及び光ガイド層 8 により発光層 1 0 0 が構成されている。

[0031]

p型第1クラッド層10上の中央部には、p型A1GaAsからなるp型エッチング停止層11を介して、p型A1GaAsからなる共振器方向に延びるストライプ状のp型第2クラッド層12及びp型GaAsからなるp型第1コンタクト層13が順に積層されてリッジ部200が形成されている。

[0032]

リッジ部200を構成するp型第2クラッド層12及びp型第1コンタクト層13の両側面、更にはリッジ部の両側のp型第1クラッド層10の平坦面上には

、アンドープのA1GaAsからなる第1電流ブロック層14、n型A1GaAsからなるn型第2電流ブロック層15及びn型GaAsからなるn型第3電流ブロック層16が順に形成されている。

[0033]

p型第1コンタクト層13上からn型第3電流ブロック層16上に亘っては、 p型GaAsからなるp型第2コンタクト層17及びp型GaAsからなるp型 第3コンタクト層18が順に形成されている。

[0034]

p型第3コンタクト層18上にはp型電極19が形成され、n型半導体基板1 の裏面にはn型電極20が形成されている。

[0035]

図2及び図3は第1実施例の半導体レーザ素子の製造方法を示す図である。

[0036]

まず、図2(a)に示すように、n型半導体基板1上に、n型第1バッファ層2、n型第2バッファ層3、n型クラッド層4、n型キャリアブロック層5、光ガイド層6、活性層7、光ガイド層8、p型キャリアブロック層9、p型第1クラッド層10、p型エッチング停止層11、p型第2クラッド層12およびp型第1コンタクト層13を順に、MOCVD法(有機金属化学的気相成長法)またはMBE法(分子線エピタキシャル成長法)により成長温度700~900℃で成長させる。また、各層2~13の材料、A1組成比、層厚およびキャリア濃度は表1に示す通りである。尚、A1組成比は、A1_XGa_{1-X}AsにおけるX(A1とGaとの総量に対するA1の原子濃度比)である。また、n型半導体基板1のキャリア濃度は2×10¹⁸cm⁻³である。

[0037]

【表1】

	材料	AI組成比	層厚	キャリア温度
		(原子温度比)	(nm)	(cm ⁻⁸)
n型 バッファ 🖺 2	GaAs	0	500	3×10 ¹⁷
n型バッファ暦3	AlGaAs	0. 18	100	5 × 10 ¹⁷
n型クラッド圏4	AlGaAs	0. 45	2700	5 × 10 ¹⁷
n型キャリアブロック層5	AlGaAs	0. 5	50	5×10 ¹⁷
光ガイド暦6	AlGaAs	0. 35	20	アンドープ
☆子井戸窓71	AlGaAs	0. 106	7	アンドープ
摩壁图72	AlGaAs	0. 35	8	アンドープ
光ガイド暦8	AlGaAs	0. 35	20	アンドープ
p型キャリアブロック29	AlGaAs	0. 5	50	1 × 10 ¹⁸
p型第1クラッド暦10	AlGaAs	0. 45	0~	1 × 10 ¹⁸
			400	
p型エッチング停止層11	AlGaAs	0. 7	20	8 × 10 ¹⁷
p型 第 2クラッド 圏 12	AlGaAs	0. 45	2700	8 × 10 ¹⁷
p型 第 1コンタクト 悶 13	GaAs	0	200	4×10 ¹⁸

[0038]

n型第1バッファ層2の成長には、原料ガスとしてAsH3およびTMGを用い、ドーパントガスとしてH2Seを用いる。n型第2バッファ層3、n型クラッド層4及びn型キャリアブロック層5の成長には、原料ガスとしてAsH3、TMGおよびTMAを用い、ドーパントガスとしてH2Seを用いる。光ガイド層6、活性層7及び光ガイド層8の成長には、原料ガスとしてAsH3、TMGおよびTMAを用いる。p型キャリアブロック層9、p型第1クラッド層10、p型エッチング停止層11およびp型第2クラッド層12の成長には、原料ガスとしてAsH3、TMGおよびTMAを用い、ドーパントガスとしてDEZを用いる。p型第1コンタクト層13の成長には、原料ガスとしてAsH3およびTMGを用い、ドーパントガスとしてDEZを用いる。

[0039]

ここで、 AsH_3 はアルシンであり、TMGはトリメチルガリウムであり、TMGはトリメチルアルミニウムであり、 H_2Se はセレン化水素であり、 SiH_4 はモノシランであり、DEZはジエチルジンクである。

[0040]

[0041]

次に、図2(b)に示すように、酸化膜21をマスクとしてp型第1クラッド層10が露出するまでエッチングによりp型第1コンタクト層13、p型第2クラッド層12及びp型エッチング停止層11を除去する。これにより、酸化膜21の下方にはストライプ状のリッジ部200が形成される。

[0042]

尚、この時のエッチングは、湿式エッチングあるいはドライエッチングのいず れを用いても良い。

[0043]

この時、n型半導体基板1に対するリッジ部200の側面の傾斜角度θ (本実施例では、リッジ部の側面とp型エッチング停止層11の上面との為す角度に一致)は、半導体基板1の上面の結晶方向とリッジ部200のストライプ方向との関係、湿式エッチングにおける過酸化水素及び水の含有量や温度、或いはリアクテイブイオンエッチングやリアクテイブイオンビームエッチングにおけるイオンのエネルギー等を制御することにより、下記に詳述する所定の角度に設定することが出来る。

[0044]

また、リッジ部 2 0 0 の下部幅Wは、 p型第 2 クラッド層 1 2 の膜厚、酸化膜 2 1 の幅、リッジ部の側面の傾斜角度 θ 、エッチング時間等により、下記に詳述 する所定の値に設定することが出来る。

[0045]

また、p型キャリアブロック層9及びp型第1クラッド層10との厚みの和は、図2(a)の工程におけるp型キャリアブロック層9及びp型第1ブロック層10を形成する際の成長時間、更には図2(b)の工程におけるエッチング停止層11によるエッチング深さの制御により、下記に詳述する所定の値に設定され

る。そして、このp型キャリアブロック層9及びp型第1クラッド層10との厚みの和が、発光層と、次の工程で形成される第1電流ブロック層14との離間距離 t となる。

[0046]

次に、図3(c)に示すように、酸化膜21をマスクとして、リッジ部の両側のp型第2クラッド層10の平坦面上及びリッジ部の側面上に、アンドープの第1電流ブロック層14、n型第2電流ブロック層15及びn型第3電流ブロック層16を、成長温度600~900℃で選択成長させる。この時、酸化膜21上には、これらの層は結晶成長しない。尚、各層14~16の材料、A1組成比、層厚及びキャリア濃度は表2に示す通りであり、第1電流ブロック層14のA1組成比は、下記に詳述する条件を満足する範囲に設定される。

[0047]

【表2】

	材料	AI組成比	图度	キャリア温度
		(原子湿度比)	(µ m)	(cm ⁻⁸)
第1電流ブロック層14	AlGaAs	X2	1. 0	アンドープ
		(0. 5~0. 8)		
n型第2電流ブロック層15	AlGaAs	X2	0. 25	3 × 10 ¹⁸
		(0. 5~0. 8)		1
n型第3電流ブロック暦16	GaAs	0	0. 25	5 × 10 ¹⁷

[0048]

第1電流ブロック層 14の成長には、原料ガスとして AsH_3 、TMGおよび TMAを用いる。n型第2電流ブロック層 15の成長には、原料ガスとして AsH_3 、TMGおよびTMAを用い、ドーパントガスとして H_2 Seを用いる。n型第3電流ブロック層 16の成長には、原料ガスとして AsH_3 及びTMGを用い、ドーパントガスとして H_2 Seを用いる。

[0049]

次に、酸化膜21をフッ酸系エッチャントにより除去した後、図3(d)に示すように、p型第1コンタクト層13上およびn型第3電流ブロック層16上に、p型第2コンタクト層17及びp型第3コンタクト層18を、成長温度600

~900℃で結晶成長させる。尚、各層17、18の材料、A1組成、層厚及び キャリア濃度は表3に示す通りである。

[0050]

【表3】

	材料	AI組成比 (原子温度比)	層厚 (μm)	キャリア 没度 (cm ⁻³)
p型 第 2コンタクト層 17	GaAs	O	5. 3	1 × 10 ¹⁹
p型 第 3コンタクト 🖾 18	GaAs	0	0. 7	6×10 ¹⁹

[0051]

p型第2コンタクト層17及びp型第3コンタクト層18の成長には、原料ガスとしてAsH₃及びTMGを用い、ドーパントガスとしてDEZを用いる。尚、p型第1コンタクト層13の厚さは、非常に薄くても素子特性上問題がなく、5nm以上、1000nm以下の範囲内であればよい。

[0052]

最後に、p型第3コンタクト層18上に、厚さ約50nmのCrAuおよび厚さ約1.5μmのAuからなるp型電極19を形成し、n型半導体基板1の裏面に、AuGe/Ni/Auからなるn型電極20を形成する。

[0053]

以上の工程により、図1に示した構造の半導体レーザ素子が形成される。

[0054]

次に、図1に示した構造の半導体レーザ素子において、n型半導体基板1の上面に対するリッジ部200の側面の傾斜角度 θ(本実施例では、リッジ部200の側面とp型エッチング停止層11の上面との為す角度 θ に一致)が、55°、80°、90°、100°、110°、125°と異なる複数タイプの半導体レーザ素子を作製した。尚、傾斜角度 θ が 55°、80°の場合は、図4に示すような順メサ構造のリッジ部を有する半導体レーザ素子となり、傾斜角度 θ が 100°、110°、125°の場合は、図5に示すような逆メサ構造のリッジ部を有する半導体レーザ素子となる。また、傾斜角度 θ が 90°の場合は、図1に示する半導体レーザ素子となる。また、傾斜角度 θ が 90°の場合は、図1に示

すような側面が直立しているリッジ部を有する半導体レーザ素子となる。

[0055]

次に、上述した傾斜角度 θ が異なる各半導体レーザ素子において、リッジ部の下部幅Wを変化させた時のレーザビームの水平広がり角度を調べた。その結果を、図6及び図7に示す。尚、この測定に用いた半導体レーザ素子の p 型第2クラッド層の厚みは2000 n m である。

[0056]

傾斜角度 θ が55°、125°の半導体レーザ素子では、図6から判るように、リッジ部の下部幅Wが大きくなると、レーザビームの水平広がり角度が大きく低下する。

[0057]

これに対して、傾斜角度 θ が80°、90°、100°、110°の半導体レーザ素子では、図7から判るように、、リッジ部の下部幅Wが5 μ mまでは、下部幅Wが大きくなっても、レーザビームの水平広がり角度の低下は殆ど見られない。

[0058]

次に、リッジ部の傾斜角度θが100°、下部幅Wが4μmである図5に示すような逆メサ構造のリッジ部を有する半導体レーザ素子において、第1電流ブロック層14及びn型第2電流ブロック層15のA1組成比X2が0.55、0.62、0.75、0.80である4タイプの半導体レーザ素子を作製し、この各タイプの半導体レーザ素子において、発光層と電流ブロック層との離間距離t(p型キャリアブロック層9とp型第1クラッド層10の厚みの合計)と、レーザビームの水平広がり角度との関係を調べた。その結果を図8に示す。

[0059]

図8から判るように、離間距離 t が大きくなると、レーザビームの水平広がり角度は小さくなるが、離間距離 t が 0. 15 μ m以上になると、水平広がり角度の低下の傾きは小さくなり、更に、離間距離 t が 0. 2 μ m以上になると、水平広がり角度の低下の傾きは更に小さくなる。更に、離間距離 t がある値を越えると、水平広がり角度が急激に低下する第1の臨界離間距離 t 1 が存在することが

判る。この第1の臨界離間距離 t 1 は、A 1 組成比X 2 が 0. 5 5 の時、 0. 3 1 であり、A 1 組成比X 2 が 0. 6 2 の時、 0. 3 3 であり、A 1 組成比X 2 が 0. 7 5 の時、 0. 3 9 であり、A 1 組成比X 2 が 0. 8 0 の時、 0. 4 2 である。

[0060]

また、図8より、第1の臨界離間距離 t 1よりも小さいところに、離間距離 t が大きくなっても水平広がり角度の低下は小さく、安定している離間距離の上限値である第2の臨界離間距離 t 2が存在することが判る。この第2の臨界離間距離 t 1は、A1組成比X2が0.55の時、0.28であり、A1組成比X2が0.62の時、0.31であり、A1組成比X2が0.75の時、0.36であり、A1組成比X2が0.80の時、0.39である。

[0061]

次に、第1電流ブロック層14及びn型第2電流ブロック層15のA1組成比X2と、第1の臨界離間距離t1との関係を調べるために、第1電流ブロック層14及びn型第2電流ブロック層15のA1組成比X2とp型クラッド層のA1組成比X1(本実施例では0.45)との差を1から減じた値の逆数、即ち1/(1-(X2-X1))と、第1の臨界離間距離t1との関係をグラフ化した。その結果を図9に示す。

[0062]

[0063]

また、リッジ部の側面の傾斜角度θが80°、110°である場合についても、同様に調べた結果、図8と同様の結果が得られ、1/(1-(X2-X1))と、第1の臨界離間距離t1との関係をグラフ化した結果、図10、図11に示

すような結果が夫々得られた。

[0064]

この図10、図11から判るように、リッジ部の側面の傾斜角度 θ が80°、110°である場合においても、水平広がり角度が急激に低下しないためには、離間距離 $t \le 0$. 275/(1-(X2-X1))の関係を満足する必要がある

[0065]

次に、リッジ部の傾斜角度 θ が100°の半導体レーザ素子において、電流ブロック層のA1組成比X2が0.80、離間距離 t が0.10 μ mの場合、電流ブロック層のA1組成比X2が0.75、離間距離 t が0.20 μ mの場合、電流ブロック層のA1組成比X2が0.58、離間距離 t が0.25 μ mの場合について夫々、リッジ部の下部幅Wを変えた時のレーザビームの水平広がり角度を調べた。その結果を図12に示す。

[0066]

図12から判るように、リッジ部の下部幅Wが1.5 μ m以上、5 μ m以下の場合、レーザビームの水平広がり角度は略一定であり、下部幅Wが5 μ mを超えると、レーザビームの水平広がり角度は急激に小さくなる。

[0067]

次に、リッジ部の傾斜角度θが100°、電流ブロック層のA1組成比X2が0.75、離間距離 t が0.20μmの半導体レーザ素子において、リッジ部の下部幅Wと動作電流が40mAの時の動作電圧を調べた。その結果を図13に示す。

[0068]

図13から判るように、リッジ部の下部幅Wが 2μ mよりも小さくなると、動作電圧が急激に大きくなるため、下部幅Wは 2μ m以上必要である。

[0069]

即ち、図12及び図13から判るように、水平広がり角度と動作電圧との点を 考慮すると、リッジ部の下部幅Wは、2μm以上、5μm以下が好ましい。

[0070]

[0071]

図14から判るように、第2の臨界離間距離 t 2は、A1組成比X2とA1組成比X1との差を1から減じた値の逆数(1/(1-(X2-X1)))に比例しており、その比例式は t 2=0. 252/(1-(X2-X1)) である。即ち、水平広がり角度の低下が少なく、一定以上の水平広がり角度(実施例では4°)を確保するためには、離間距離 t ≤ 0 . 252/(1-(X2-X1)) の関係を満足する必要がある。尚、リッジ部の側面の傾斜角度 θ が80°、110°である場合においても、同様に結果が得られた。

[0072]

尚、上述の実施例では、p型第1クラッド層10とp型第2クラッド層12とは、A1組成比が等しいが、両者のA1組成比は異なっても良い。この場合は、リッジ部200を構成する第2クラッド層12のA1組成比がX1となる。

[0073]

尚、上述の実施例では、III族元素としてA1とGaとを含有する場合について説明したが、In等の他のIII族元素を含有する場合においても、本発明は適用可能である。また、V族元素としても、As以外に、P、N等を含有した場合についても本発明は適用可能である。

[0074]

【発明の効果】

本発明によれば、レーザビームの高出力化を図った際においても、レーザビームの水平広がり角度が小さくなることを抑制、しかもレーザビームの水平広がり角度の調整が容易である半導体レーザ素子を提供し得る。

[0075]

また、本発明によれば、レーザビームの高出力化を図った際においても、レーザビームの水平広がり角度が小さくなることを抑制、しかもレーザビームの水平 広がり角度の調整が容易である半導体レーザ素子を容易に製造することが出来る 半導体レーザ素子の製造方法を提供し得る。

【図面の簡単な説明】

【図1】

本発明の半導体レーザ素子の構成を示す図である。

【図2】

本発明の半導体レーザ素子の製造方法を示す図である。

【図3】

本発明の半導体レーザ素子の製造方法を示す図である。

【図4】

本発明の順メサ構造のリッジ部を有する半導体レーザ素子の構成を示す図である。

【図5】

本発明の逆メサ構造のリッジ部を有する半導体レーザ素子の構成を示す図である。

【図6】

レーザビームの水平広がり角度と、リッジ部の下部幅Wとの関係を示す図である。

【図7】

レーザビームの水平広がり角度と、リッジ部の下部幅Wとの関係を示す図である。

[図8]

レーザビームの水平広がり角度と、発光層と電流ブロック層との離間距離 t と の関係を示す図である。

【図9】

第1の臨界離間距離 t 1 と、(1 / (1 - (X 2 - X 1))) との関係を示す 図である。

【図10】

第1の臨界離間距離 t 1 と、 (1 / (1 - (X 2 - X 1))) との関係を示す 図である。

【図11】

第1の臨界離間距離 t 1 と、(1 / (1 - (X2 - X1))) との関係を示す 図である。

【図12】

レーザビームの水平広がり角度と、リッジ部の下部幅Wとの関係を示す図である。

【図13】

動作電圧と、リッジ部の下部幅Wとの関係を示す図である。

【図14】

第2の臨界離間距離 t 2と、 (1/(1-(X2-X1))) との関係を示す 図である。

【図15】

従来の半導体レーザの構成を示す図である。

【符号の説明】

- 1 n型半導体基板
- 10 p型第1クラッド層(第2導電型の第1クラッド層)
- 11 エッチング停止層
- 12 p型第2クラッド層(第2導電型の第2クラッド層)
- 14 第1電流ブロック層
- 100 発光層
- 200 リッジ部

【書類名】

図面

【図1】

【図2】

[図3]

[図4]

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

 \bigcirc

【書類名】

要約書

【要約】

【課題】 レーザビームの高出力化を図った際においても、レーザビームの水平 広がり角度が小さくなることを抑制し、しかもレーザビームの水平広がり角度の 調整が容易である半導体レーザ素子を提供する。

【解決手段】 リッジ部の側面と前記リッジ部の下部との為す傾斜角度 θ が80。以上、110。以下であり、p型クラッド層10は $A1_{X1}$ G a_{1-X1} A s からなり、第1電流ブロック層14は $A1_{X2}$ G a_{1-X2} A s からなり、発光層と第1電流ブロック層14との離間距離を t とした場合、 t ≤ 0 . 275/ (1-(X2-X1))となり、リッジ部の下部幅Wが 2μ m以上、 5μ m以下であることを特徴とする。

【選択図】 図1

出願人履歴情報

識別番号

[000001889]

1. 変更年月日

1993年10月20日

[変更理由]

住所変更

住 所

大阪府守口市京阪本通2丁目5番5号

氏 名

三洋電機株式会社