Exercise 0.1

Let $\Omega = \{a, b, c, d, e\}$ and $M = \{\{a\}, \{a, b\}\}.$

- 1. Give $\sigma(M)$.
- 2. Give a σ -algebra \mathcal{A} over Ω with $\mathcal{A} \supset \sigma(M)$ and $\mathcal{A} \neq \sigma(M)$.
- 3. Give two measures which are not identical, but have the same value on $\sigma(M)$.

Solution 0.1

1. In all σ -algebras Ω and \varnothing are included, so we immediately have $\Omega, \varnothing \in \sigma(M)$. Further, all complements are included, hence we have $\{b,c,d,e\} \in \sigma(M)$ and $\{c,d,e\} \in \sigma(M)$. We also have $\{a\} \cup \{c,d,e\} = \{a,c,d,e\} \in M$ and its complement $\{b\} \in M$. Another union included is $\{b\} \cup \{c,d,e\} = \{b,c,d,e\}$. To sum up, we have

$$\{\Omega,\varnothing,\{a\},\{b\},\{a,b\},\{c,d,e\},\{a,c,d,e\},\{b,c,d,e\}\}=M \tag{1}$$

These are indeed all the subsets of M as there is no more new complements or unions to be made.

2. $\mathcal{P}(\Omega) =: \mathcal{A}$ is a σ -algebra and fullfills the required properties.

3.