Лабораторная №4

В данной лабораторной работе реализованы бинарные деревья поиска: наивное дерево и АВЛ дерево. Исследуем сложности поиска элементов и заполнения деревьев отсортированными и случайными данными.

1 Наполнение

1.1 Наполнение отсортированными данными

Сначала проведем измерения для наполнения деревьев строго отсортированными данными. Так как при построении ABЛ дерева происходит балансировка, предполагается, что наполняться оно будет медленнее. Проведем измерения:

Построим графики в логарифмических осях.

Как видно, графики хорошо аппроксимируется прямыми $ln\left(\frac{t}{1\text{Hc}}\right)=kln(N)+b$

Тогда
$$t = t_0 e^b N^k$$
, где $t_0 = 1$ (нс)

Для АВЛ дерева из графика получаем

$$k = (2.22 \pm 0.04)$$

$$b = (1.2 \pm 0.4)$$

Тогда можем оценить характерное время добавления одного элемента au, приняв N=1:

$$\tau = t_0 e^b = (3.3 \pm 1.3)$$
нс

Для наивного дерева получаем

$$k = (2.22 \pm 0.06)$$

$$b = (0.5 \pm 0.5)$$

Тогда можем оценить характерное время добавления одного элемента au, приняв N=1:

$$\tau = t_0 e^b = (1.6 \pm 0.8)$$
HC

Заметим, что в пределах погрешности k совпадают для обеих реализаций, то есть вид зависимости t(N) одинаков, но характерные времена добавления одного элемента различаются примерно в 2 раза.

1.2 Наполнение случайными данными

Теперь проведем измерения для случайных данных: Построим графики в логарифмических осях.

Как видно, графики хорошо аппроксимируется прямыми $ln\left(\frac{t}{1\text{Hc}}\right)=kln(N)+b$

Тогда
$$t = t_0 e^b N^k$$
, где $t_0 = 1$ (нс)

Для АВЛ дерева из графика получаем

$$k = (2.09 \pm 0.05)$$

$$b = (0.7 \pm 0.4)$$

Тогда можем оценить характерное время добавления одного элементаau, приняв N=1:

$$\tau = t_0 e^b = (2.0 \pm 0.8)$$
HC

Для наивного дерева получаем

$$k = (2.18 \pm 0.04)$$

$$b = (0.6 \pm 0.4)$$

Тогда можем оценить характерное время добавления одного элементаau, приняв N=1:

$$\tau = t_0 e^b = (1.8 \pm 0.7)$$
HC

Заметим, что в пределах погрешности k совпадают для обеих реализаций, то есть вид зависимости t(N) одинаков, характерные времена добавления тоже равны в пределах погрешности. Это может быть связано с тем, что для отсортированных данных необходимо было большее количество раз перестраивать $AB\Pi$ дерево.

Также стоит отметить, что заполнение происходит со сложностью примерно $O(N^2)$. Значит, добавление одного элемента имеет сложность O(N), так как при заполнении было добавлено N элементов, а не один.

2 Поиск элементов, которые содержатся в дереве

2.1 Поиск при заполнении отсортированными данными

Проведем измерения для наполнения деревьев отсортированными данными. Так как наивное дерево эквивалентно списку, то ожидается, что время поиска в АВЛ дереве будет меньше. Теоретически сложность поиска одного элемента в АВЛ дереве $O(\ln(N))$, а в наивном O(N). Так как поиск был проведен N раз, то предполагается зависимость $t \sim N \ln(N)$ для АВЛ дерева и $t \sim N^2$ для наивного дерева.

Построим график t(Nln(N)) для ABЛ дерева.

Зависимость t(N In(N)) для поиска упорядоченных данных в АВЛ дереве

Как видно, график хорошо аппроксимируется прямой $t=t_0(kNln(N)+b),$ где $t_0=1$ (нс)

Из графика находим

$$k = (14.7 \pm 0.4)$$

$$b = (2.3 \pm 2.3) \cdot 10^5$$

Так как поправка $t_0 b$ порядка 10^{-4} секунды, а характерное время t порядка 10^{-2} секунды, то можем считать, что теоретическая зависимость выполняется. Тогда сложность поиска одного элемента в АВЛ дереве действительно $O(\ln(N))$

Построим график зависимости t от N для наивного дерева в логарифмических осях.

Как видно, график хорошо аппроксимируется прямой $ln\left(\frac{t}{1\text{Hc}}\right)=kln(N)+b$

Из графика находим:

$$k = (2.19 \pm 0.06)$$

$$b = (0.3 \pm 0.5)$$

Значит, $t \sim N^2$, то есть сложность поиска одного элемента в наивном дереве O(N).

Итак, теоретические зависимости подтверждаются.

2.2 Поиск при заполнении случайными данными

Теперь проведем измерения для случайных данных. Для $AB\Pi$ дерева по прежнему ожидается зависимость вида $t \sim Nln(N)$. Для наивного дерева она может оказаться такой же, так как данные случайны и структура наивного дерева "близка" к структуре $AB\Pi$ дерева.

Построим график t(Nln(N)) для ABЛ дерева.

График действительно линейный, $t=t_0(kNln(N)+b)$, где $t_0=1$ (нс) Из графика находим

$$k = (56 \pm 3)$$

$$b = (-10 \pm 6) \cdot 10^6$$

Так как поправка $t_0 b$ порядка 10^{-2} секунды, а характерное время t порядка 10^1 секунды, то можем считать, что теоретическая зависимость выполняется. Тогда сложность поиска одного элемента в АВЛ дереве действительно $O(\ln(N))$

Теперь исследуем наивное дерево. Построим график t от N в логарифмических координатах.

График In(t)(In(N)) для поиска неупорядоченных данных в наивном дереве

Как видно, график аппроксимируется прямой $ln\left(\frac{t}{1\text{Hc}}\right)=kln(N)+b$ Из графика находим:

$$k = (1.41 \pm 0.07)$$

$$b = (2.1 \pm 0.8)$$

В пределах погрешности верно, что для наивного дерева сложность $O(N^{0.4})$

Построим график t(Nln(N)) для наивного дерева.

График t(N ln(N)) для поиска неупорядоченных данных в наивном дереве

График аппроксимируется прямой вида $t = t_0(kNln(N) + b)$, где $t_0 = 1$ (нс)

Из графика находим

$$k = (98.9 \pm 1.9)$$
$$b = (-10 \pm 6) \cdot 10^6$$

Аналогично поправка $t_0 b$ мала, поэтому можем считать, что в пределах погрешности $t \sim N ln(N)$.

Так как в данном случае рассматривается одна и та же модель для обоих деревьев, то можем сравнить их характерные времена поиска одного элемента $\approx kt_0$. Для ABЛ дерева это время примерно в 2 раза меньше.

Итак, теоретическая зависимость для АВЛ дерева подтверждается, а для наивного дерева в пределах погрешности применимы две модели: сложность поиска одного элемента либо $O(N^{0.4})$, либо $O(\ln(N))$. Во втором случае относительная погрешность коэффициентов меньше, поэтому эта модель точнее.

3 Поиск элементов, которых нет в дереве

Для того, чтобы поиск не происходил все время по одному пути, в деревья добавлялись четные элементы, а искались нечетные, отличающиеся от тех, которые есть в дереве, на единицу.

3.1 Поиск при заполнении отсортированными данными

Поиск элемента, которого нет, эквивалентен поиску элемента, у которого нет потомков, то есть который находится "внизу"в дереве. Для АВЛ дерева поиск такого элемента имеет сложность O(ln(N)), а для наивного дерева, заполненного отсортированными данными O(N), так как дерево эквивалентно списку и при поиске перебираются все элементы, не превосходящие данный.

Построим график t(Nln(N)) для ABЛ дерева.

График t(N ln(N)) для поиска недобавленных элементов в АВЛ дереве

График действительно линейный, $t=t_0(kNln(N)+b)$, где $t_0=1$ (нс) Из графика находим

$$k = (12.0 \pm 0.7)$$

$$b = (1.5 \pm 1.5) \cdot 10^6$$

Итак, сложность поиска действительно O(ln(N)).

Теперь построим график t от N в логарифмических осях для наивного дерева.

График действительно линейный, $ln\left(\frac{t}{1\text{Hc}}\right) = kln(N) + b$ Из графика находим:

$$k = (2.05 \pm 0.08)$$

$$b = (1.4 \pm 0.8)$$

Тогда поиск недобавленного элемента действительно имеет сложность $\mathcal{O}(N).$

3.2 Поиск при заполнении случайными данными

Для $AB\Pi$ дерева все так же, как для отсортированных данных. Для наивного дерева зависимость t от N может оказаться такой же, как для $AB\Pi$ дерева, так как данные случайны и структура наивного дерева "близка" к структуре $AB\Pi$ дерева.

Построим график t(Nln(N)) для ABЛ дерева.

График действительно линейный, $t=t_0(kNln(N)+b)$, где $t_0=1$ (нс) Из графика находим

$$k = (13.6 \pm 0.2)$$

$$b = (5 \pm 5) \cdot 10^5$$

Итак, сложность поиска действительно O(ln(N)).

Теперь построим график t от N в логарифмических осях для наивного дерева.

График хорошо аппроксимируется прямой вида $ln\left(\frac{t}{1\mathrm{hc}}\right)=kln(N)+b.$ Из графика находим:

$$k = (1.16 \pm 0.05)$$

$$b = (3.6 \pm 0.6)$$

То есть в предположении, что t(N) - степенная, сложность поиска элемента, которого нет в дереве $O(N^{0.16})$

Построим график t(Nln(N)) для наивного дерева.

График t(N ln(N)) для поиска недобавленных элементов в наивном дереве

График аппроксимируется прямой вида $t = t_0(kNln(N) + b)$, где $t_0 = 1$ (нс)

Из графика находим

$$k = (21.50 \pm 0.14)$$

$$b = (0 \pm 3) \cdot 10^5$$

То есть данная модель тоже хорошо описывает поиск элемента в наивном дереве, заполненном случайными данными.

Так как в данном случае рассматривается одна и та же модель для обоих деревьев, то можем сравнить их характерные времена поиска одного элемента $\approx kt_0$. Для ABЛ дерева это время примерно в 1.6 раз меньше.

Итак, теоретическая зависимость для АВЛ дерева подтверждается, а для наивного дерева в пределах погрешности применимы две модели: сложность поиска одного элемента либо $O(N^{0.16})$, либо O(ln(N)). Во втором случае относительная погрешность коэффициентов меньше, поэтому эта модель точнее.

4 Вывод

Были проведены исследования для наивного и ABЛ деревьев. Сложность заполнения обоих деревьев получилась O(N) для всех типов данных, причем наивное дерево заполняется быстрее, так как в нем нет самобалансировки.

Сложность поиска элемента в АВЛ дереве O(ln(N)) для всех типов данных и даже для элементов, которых нет в дереве.

Для наивного дерева, заполненного отсортированными данными, сложность поиска O(N), так как оно эквивалентно списку. Для заполненного случайными данными большую точность дает модель, в которой поиск имеет сложность $O(\ln(N))$