Picking Cards

There are N cards on the table and each has a number between 0 and N. Let us denote the number on the i^{th} card by c_i . You want to pick up all the cards. The i^{th} card can be picked up only if at least c_i cards have been picked up before it. (As an example, if a card has a value of 3 on it, you can't pick that card up unless you've already picked up 3 cards previously) In how many ways can all the cards be picked up?

Input Format

The first line contains the number of test cases T. T test cases follow. Each case contains an integer N on the first line, followed by integers $c_1,...,c_N$ on the second line.

Output Format

Output T lines one corresponding to each test case containing the required answer for the corresponding test case. As the answers can be very big, output them modulo 1000000007.

Constraints:

```
1 \le T \le 10

1 \le N \le 50000

0 \le c_i \le N
```

Sample Input:

```
3
3
0 0 0
3
0 0 1
3
0 3 3
```

Sample Output:

```
6
4
0
```

Sample Explanations:

For the first case, the cards can be picked in any order, so there are 3! = 6 ways. For the second case, the cards can be picked in 4 ways: $\{1,2,3\}$, $\{2,1,3\}$, $\{1,3,2\}$, $\{2,3,1\}$. For the third case, no cards can be picked up after the first one, so there are 0 ways to pick up all cards.