Projet pour segmenter des clients d'un site e-commerce

Cyril REGAN

Base de données : kaggle.com/olistbr/brazilian-ecommerce/

28 mai 2020

Problématique

Analyse exploratoire

Préparation

Variables quantitatives

Transformations

Variables quantitatives

Réduction

Réduction des observations Réduction dimensionnelle ACP

Isomap TSNE Evaluation de l'encodage

lodèles

Présentation des modèles

(-means

Hierarchique

Evaluation des modèles

Réduction des variables avec le

4 D > 4 A > 4 B > 4 B >

K-means

Analyses des clusters

Stabilité temporelle

Analyse

Conclusion

Conclusion Perspective

Problématique

Besoin Olist : Segmentation des clients pour leur campagne de communication

- Comprendre les types d'utilisateurs
- "Description actionable" = Proposition de communications ciblées
- "Proposition de contrat de maintenance" = identifier la fréquence (ex : tous les mois) pour refaire l'analyse client

Problématique

Analyse exploratoire

Préparation Analyse

> Variables quantitatives Variables qualitatives

Transformations

Variables quantitatives Variables qualitatives

Réduction

Réduction des observations Réduction dimensionnelle ACP Isomap Evaluation de l'encodage

Présentation des modèles

K-means

Hierarchiau

Evaluation des modèles

Réduction des variables avec le

K-means

Analyses des clusters

Stabilité temporelle

Analyse

Conclusion

Conclusion Perspectives

Préparation des données

Nettoyage:

- Compilation des 9 fichers (products_category_translate customers orders geolocation products items sellers payments reviews) en un unique tableau
- Suppression commandes/produits mal définis (-4.3% des commandes)
- Imputation des données de géolocalisation.

Transformation:

- des dates en durée ("order_purchase_timestamp",
 "order delivered customer time", "shipping limit time", "review answer time")
- des données géolocalisées en distance ("distance_customers_sellers").
 Suppression des autres données géolocalisées autre que les pays.

Préparation

Analyse

Variables quantitatives

Variables quantitatives Variables qualitatives Réduction des observations Réduction dimensionnelle

> ACP Isomap TSNE

Evaluation de l'encodage

Présentation des modèles

K-means DB-Scan Hierarchiqu

Evaluation des modèles

Réduction des variables avec le

Stabilité temporelle

Analyse Conclusion

Perspectives

customer_top_code_prefix
tod_potent_tode_prefix
product_potent_potent_potent
product_potent_potent
product_potent_potent
product_potent_potent
product_potent_potent
product_potent
produc

order_purchase_tin

Préparation

Analyse

Variables quantitatives

Variables qualitatives

Variables qualitatives
Variables qualitatives
Réduction des observation
Réduction dimensionnelle

ACP Isomar TSNF

Evaluation de l'encodage

Présentation des modèles

K-means DB-Scan Hierarchiqu

Evaluation des modèles

Réduction des variables avec le

K-means

Stabilité temporelle

Analyse

Conclusion

Perspectives

Analyse variables qualitatives

4 variables : type de paiement , catégorie de produit, états des clients, états des vendeurs. Contingence multiples (ξ_n) :

Fait marquant:

Contingence de états vendeurs * catégories produit :

 $\xi_{computers,BA}/\xi_n=0.26$, soit 144 ordinateurs sur les 549 vendus proviennent de l'état de Bahia

• "Etats des vendeurs" fortement dépendant des "catégories de produit" et des "Etats des clients"

- Etats des clients mieux répartis
- Etats des vendeurs ⊂ distance client-vendeur indirectement
- On supprime la variable "états vendeurs"

Conclusion de l'analyse exploratoire

Tri par corrélations et contingences : 22 variables dont

- 17 variables quantitatives
- 3 variables qualitatives

Fait marquant : 1/4 des ordinateurs sur les 549 vendus proviennent de l'état de Bahia.

Problématique

Analyse explorator

Analyse

Variables qualitatives

Transformations

Variables quantitatives Variables qualitatives

Réduction

Réduction des observations Réduction dimensionnelle ACP Isomap Evaluation de l'encodage

Présentation des modèles

K-means

DB-3can Hierarchiau

Evaluation des modèles

Réduction des variables avec le

K-means

Analyses des clusters

Stabilité temporelle

Analyse

Conclusion

Conclusion
Perspectives

Transformations variables quantitatives

• In(total_payment)

- $\sqrt{\text{distance customers sellers}}$
- √product photos qty
- $\sqrt{\text{order delivered customer time day}}$
- ⁴/review _ answer _ time _ days
- ⁴√shipping _limit _time _day

Transformation variables qualitatives:

• One Hot Encoding de états clients avec filtre à 5% : selection de 8 états

- LabelEncoding de catégories produits par la somme des achats par catégories ∑(Total_payment)
- => Permet de classer les catégories / volume de ventes
 - Fusion en LabelEncoding de type de paiement par la moyenne de paiement séquentiel

- => Permet de supprimer l'analyse d'une variable quantitative
 - L'encodage des variables qualitatives est **justifiée** par l'analyse graphique des structures

Problématique

Analyse exploratoire

Préparation

alyse

Variables quantitatives
Variables qualitatives

Transformations

Variables quantitatives Variables qualitatives

Réduction

Réduction des observations Réduction dimensionnelle

ACP Isomar TSNE

Evaluation de l'encodage

Modálas

Présentation des modèles

K-means

JB-Scan

Evaluation des modèles

Réduction des variables avec le

K-means

Analyses des clusters

Stabilité temporelle

Analyse

Conclusion

Conclusion
Perspectives

Réduction des observations

- \sim 95000 observations : Temps de calcul **trop grand** pour les calculs de **réduction dimensionnelle** ou de **clustering** :
 - 1. Segmenter en déciles chronologiques le set ($\sim 10000/\text{décile}$)
 - Construire et choisir les meilleurs modèles de réduction dimensionnelle et clustering sur le 1^{er} décile.
 - 3. Comparer avec ce modèles l'évolution temporelle sur les autres déciles (stabilité temporelle)
- => Suppression variables de type date [order_purchase_timestamp_month', 'order_purchase_timestamp_year] (différente période temporelle / décile).

Réduction dimensionnelle?

- Visualiser les données
- Réduire les coûts
- Améliorer la qualité des modèles d'apprentissage
- => Analyse en composante principale (ACP) : maximise la variance
- => Isomap (non linéaire) : conserve la structure globale
- => t-Stochastic Neighbour Embedding (t-SNE) : favorise la structure locale

Préparation Analyse

Variables qualitatives
Variables quantitatives
Variables qualitatives

Réduction dimensionnelle

ACP

TSNE

Evaluation de l'encodage

Présentation des modèles

K-means DB-Scan Hierarchique

Evaluation des modèles

Réduction des variables avec le

K-means

Stabilité temporelle

Analyse

Conclusion

Perspectives

Analyse en composante principale (ACP) : Eboulis des valeurs propres assez "plat"

=> mauvaise visualisation des données du 1er plan factoriel (% d'inertie trop faible)

Préparation Analyse

Variables qualitatives
Variables qualitatives

Variables qualitatives Réduction des observations

Réduction dimensionnelle

ACP

Isomap

ISNE

Evaluation de l'encodage

Présentation des modèles

K-means DB-Scan

-Evaluation des modèles

Réduction des variables avec le

K-means

Stabilité temporelle

Analyse

Conclusion

Perspectives

Multidimensional Scaling (MDS): Minimiser l'erreur entre la distance d_{ij} des points x_i, x_j dans l'espace initiale avec la distance $||y_i - y_j||^2$ de la projection de x_i, x_j dans l'espace de dimension réduite

$$S(y_1,...,y_N) = \sum_{i \neq j} (d_{ij} - ||y_i - y_j||)^2$$

• **Isomap** : Appliquer l'algorithme du MDS à cette matrice de distances géodésique.

Isomap: nb voisin = 5

lsomap : nb voisin = 10

L'Isomap permet d'identifier quelques structures

Préparation Analyse

Variables qualitatives
Variables qualitatives
Variables qualitatives

Variables qualitatives Réduction des observations

Réduction dimensionnelle

ACP Isomap TSNE

Evaluation de l'encodage

Présentation des modèles

K-means DB-Scan Hierarchique

Evaluation des modèles

Réduction des variables avec le

K-means

Stabilité temporelle

Analyse

Conclusion

Perspectives

- t-Stochastic Neighbour Embedding (t-SNE) :
 - Calculer la similarité P_{ij}: à chaque point est associé une probabilité conditionnelle **gaussienne** en fonction de sa distance aux autres points dans l'espace initial:

$$p_{j/i} = \frac{\exp^{-||x_i - x_j||^2/2\sigma_i^2}}{\sum_{k \neq j} \exp^{-||x_i - x_k||^2/2\sigma_i^2}}$$

 Calculer la similarité Q_{ij}, probabilité conditionnelle t-Student, dans l'espace de dimension inférieure

$$q_{j/i} = \frac{\exp^{-||y_i - y_j||^2}}{\sum_{k \neq i} \exp^{-||y_i - y_k||^2}}$$

telle que :

 La KL divergence des similarités soit minimisée (par descente de Gradient)

$$C = \sum_i \mathsf{KL}(P_i||Q_i||) = \sum_i \sum_j p_{j/i} \ln rac{p_{j/i}}{q_{j/i}}$$

Perplexité : Variance de P_{ij} . Estimation de la densité autour de chaque points.

=> TSNE avec une perplexité = 100 est le modèle de réduction dimensionnelle retenu.

27 / 61

Evaluation de l'encodage des variables qualitatives

- l'OHE **renforce** l'influence de la variables pour la formation de clusters
- A l'inverse, le Label Encoding la diminue

- Objectif de nb de cluster <15 pour l'analyse
- => Choix de conserver l'encodage qui conserve 11 cluster On s'attend à ce que la variable de **état des clients** soit la va-

On s'attend à ce que la variable de **état des clients** soit la variable principale sur laquelle la formation de clusters s'appuie.

Evaluation de l'encodage Modèles

Présentation des modèles

N-means DB-Scan

Evaluation des modèles Réduction des variables avec le

K-means Analyses des clusters

Stabilité temporell

Conclusion

Conclusion
Perspectives

Présentation des modèles de clustering

- K-means
- DB-Scan
- Hierarchique

Préparation
Analyse
Variables quantitatives
Variables qualitatives
Variables qualitatives
Variables qualitatives
Réduction des observation
Réduction dimensionnelle
ACP
Isomap
TSNE
Evaluation de l'encodage

K-means DB-Scan Hierarchique Evaluation des modèles Réduction des variables avec le K-means Stabilité temporelle

Présentation des modèles

- Choix aléatoire de K centroïdes
- Association des points les plus proche à chaque centroïde
- Calcul les K centroïdes de chaque cluster
- Boucler jusqu'à convergence

- Choix aléatoire de K centroïdes
- Association des points les plus proche à chaque centroïde
- Calcul les K centroïdes de chaque cluster
- Boucler jusqu'à convergence

- Choix aléatoire de K centroïdes
- Association des points les plus proche à chaque centroïde
- Calcul les K centroïdes de chaque cluster
- Boucler jusqu'à convergence

- Choix aléatoire de K centroïdes
- Association des points les plus proche à chaque centroïde
- Calcul les K centroïdes de chaque cluster
- Boucler jusqu'à convergence

- Choix aléatoire de K centroïdes
- Association des points les plus proche à chaque centroïde
- Calcul les K centroïdes de chaque cluster
- Boucler jusqu'à convergence

- Choix aléatoire de K centroïdes
- Association des points les plus proche à chaque centroïde
- Calcul les K centroïdes de chaque cluster
- Boucler jusqu'à convergence

- Choix aléatoire de K centroïdes
- Association des points les plus proche à chaque centroïde
- Calcul les K centroïdes de chaque cluster
- Boucler jusqu'à convergence

- Choix aléatoire de K centroïdes
- Association des points les plus proche à chaque centroïde
- Calcul les K centroïdes de chaque cluster
- Boucler jusqu'à convergence

- Choix aléatoire de K centroïdes
- Association des points les plus proche à chaque centroïde
- Calcul les K centroïdes de chaque cluster
- Boucler jusqu'à convergence

- Choix aléatoire de K centroïdes
- Association des points les plus proche à chaque centroïde
- Calcul les K centroïdes de chaque cluster
- Boucler jusqu'à convergence

- Choix aléatoire de K centroïdes
- Association des points les plus proche à chaque centroïde
- Calcul les K centroïdes de chaque cluster
- Boucler jusqu'à convergence

- Choix aléatoire de K centroïdes
- Association des points les plus proche à chaque centroïde
- Calcul les K centroïdes de chaque cluster
- Boucler jusqu'à convergence

- Choix aléatoire de K centroïdes
- Association des points les plus proche à chaque centroïde
- Calcul les K centroïdes de chaque cluster
- Boucler jusqu'à convergence

- Choix aléatoire de K centroïdes
- Association des points les plus proche à chaque centroïde
- Calcul les K centroïdes de chaque cluster
- Boucler jusqu'à convergence

- Choix aléatoire de K centroïdes
- Association des points les plus proche à chaque centroïde
- Calcul les K centroïdes de chaque cluster
- Boucler jusqu'à convergence

- Choix aléatoire de K centroïdes
- Association des points les plus proche à chaque centroïde
- Calcul les K centroïdes de chaque cluster
- Boucler jusqu'à convergence

- Choix aléatoire de K centroïdes
- Association des points les plus proche à chaque centroïde
- Calcul les K centroïdes de chaque cluster
- Boucler jusqu'à convergence

- Choix aléatoire de K centroïdes
- Association des points les plus proche à chaque centroïde
- Calcul les K centroïdes de chaque cluster
- Boucler jusqu'à convergence

- Choix aléatoire de K centroïdes
- Association des points les plus proche à chaque centroïde
- Calcul les K centroïdes de chaque cluster
- Boucler jusqu'à convergence

- Choix aléatoire de K centroïdes
- Association des points les plus proche à chaque centroïde
- Calcul les K centroïdes de chaque cluster
- Boucler jusqu'à convergence

- Initialisation **kmean** ++ : centroïdes initiaux sont choisis "éparpillés" le plus possible
- random_state paramétrée une initialisation déterministe.
- Avantages : Recherche efficace d'une partition de variance intra-cluster minimale.
- <u>Inconvénients</u>: limitation à des formes cluster convexe (corrigées avec Kernel KMeans). Trouve minimum locaux plutôt que globaux (corrigées en partie avec kmeans++ et les répétitions)

Table of Contents

Préparation
Analyse
Variables quantitatives
Variables qualitatives
Variables qualitatives
Variables qualitatives
Réduction des observatio
Réduction dimensionnelle
ACP
Isomap
TSNE
Evaluation de l'encodage

Présentation des modèles

-means

DB-Scan

Hierarchique

Evaluation des modèles

Réduction des variables avec le

K-means

Stabilité temporelle

Analyse

Conclusion

Perspectives

DB-Scan

• Construction par densité : l'epsilon-voisinage ϵ et le nombre minimal de voisins n_{min} à l'intérieur.

- Avantages : Faible temps de calcul sans définition à l'avance du nombre de clusters. Les clusters trouvés sont de forme arbitraire.
- Inconvénient : fléau de la dimensionalité : Les boules de rayon ϵ et de grande dimension ont tendance à ne contenir aucun autre point. Le choix de ϵ et n_{min} peut être délicat.

Table of Contents

Présentation des modèles

Hierarchique

Hierarchique : clustering de Ward

- Clustering séparatif ou aggrégatif
- Clustering de **Ward** : Clustering **aggrégatif** qui minimise l'augmentation de variance inter-cluster.
- Avantages : pas de définition à l'avance du nombre de clusters. Visualisation possible par dendogramme.

• <u>Inconvénient</u> : **complexité algorithmique lourde** : adapté aux *faibles nombre d'individus*.

Evaluation des modèles

- Stabilité des clusters : étude de la variation des résultats par rapport à une initialisation différente.
- Forme des clusters : par le coefficient de silhouette :

$$s(x) = \frac{b(x) - a(x)}{\max(a(x), b(x))}$$

- a(x) distance moyenne de x aux autres points du cluster
- b(x) plus petite valeur de a(x) si x était assigné à un autre cluster

K-Means

Stabilité : Initialisation avec différents random state

Silhouette analysis for KMeans clustering on sample data with n clusters = 10

Silhouette moyenne : 0.216

DBSCAN

$$\epsilon \in [0.5, 2, 5]$$
 , $\textit{n}_{\textit{min}} \in [2, 10, 50]$

Meilleurs paramètres : 6 clusters ($[\epsilon = 5, n_{min} = 50]$)

Silhouette moyenne : 0.241

Hierarchique Ward

Silhouette moyenne : 0.192

Selection du meilleur modèle

- K-Means : coef silhouette = 0.22 et groupes homogènes
- DB-Scan : coef silhouette = 0.24 et groupes très inhomogènes
- Ward : coef silhouette = 0.20 et groupes homogènes
- => Selection de K-Means

Réduction des variables avec le K-means

- Suppressions successives des variables les moins interpretables
- Etude d'impact sur le nombre et la forme des clusters.

variables restantes		variables supprimées	
22 19 16 15 14 13 12	product_name_lenght inertie payment_installments total_payment <u>OU</u> review_ans_time_days total_payment order_delivered_time_day distance_customers_sellers		prod_descript_lenght ship_lim_time_days

13 variables

12 variables

11 variables

45 / 61

=> Choix de garder 13 variables : 10 clusters de formes compactes.

Table of Contents

Problématique Analyse exploratoire

Préparation Analyse

Variables qualitatives

Transformations

Variables quantitatives Variables qualitatives

Réduction

Réduction des observations Réduction dimensionnelle ACP Evaluation de l'encodage

Présentation des modèles

K-means

Hierarchique

Evaluation des modèles

Réduction des variables avec le

K-means

Analyses des clusters

Stabilité temporelle Analyse

Conclusion

Conclusion Perspectives

Etude de la stabilité des clusters dans le temps <

décile	années	mois
1	[2016, 2017]	[10, 12, 1, 2, 3, 4, 5]
2	[2017]	[5, 6, 7, 8]
3	[2017]	[8, 9, 10]
4	[2017]	[10, 11, 12]
5	[2017, 2018]	[12, 1, 2]
6	[2018]	[2, 3]
7	[2018]	[3, 4, 5]
8	[2018]	[5, 6]
9	[2018]	[6, 7, 8]
10	[2018]	[7, 8]

L'indice de Rand : proportion (x_1, x_2) groupés de la même façon dans les deux partitions (= 0 pour clustering 2 aléatoire, = 1 pour clustering 2 = clustering 1)

Clustering ($_i$ = décile n°i, / = comparaison Rand) :

1 : fit₁.predict₁

2 : fit₁.predict₂/fit₂.predict₂

...

 $10 : fit_1.predict_{10}/fit_{10}.predict_{10}$

=> Evaluation du Rand Scorce sur tous les déciles

=> Clustering plutôt stable suivant les périodes étudiées

Analyse des clusters

- => Cls 9 se distingue par le type de paiement séquencé.
- => Cls 0 se distingue par un mécontentement des clients

- => Cls 9 : type de paiement séquencé.
- => Cls 0 : mécontentement des clients, <u>distance client-vendeur</u> grande, temps de livraison long
- => Cls 1 : distance client-vendeur **grande**, temps de livraison **long**
- => Cls 2 : distance client-vendeur courte, temps de libraison court

Dépendance forte de 8 clusters / 10 des <u>Etats</u> d'où proviennent les clients.

Problématique	Analyse exploratoire	Transformations	Réduction	Modèles	Analyses des clusters	Conclusion
00	0	0	0	0	0	0
	0	0	0	00000000	00	0000
	0000000	00	000000000	00000	000000	00

cluster	catégories spécifiques de produits vendus	eper_losseleg_and_connects #_C_continues
Cls 2 Cls 4		Steam, Sandard America Arthropic Control Cont
Cls 1 Cls 6 Cls 9	bed_bath_table,furniture_decor,telephony signaling_and_security	Get by Co.
Cls 7	pet_shop	Aminor processors of the Control of
Cls 8	furniture bedroom,music	Private y parenterio per la parente 1875/s), denego perde y periodo y parente 1875/s), denego parenterio y periodo y
Cls 3	kitchen_dining_laundry_garden_furniture	Track part Track
Cls 5	art,computers,small appliances,sports leisure	Secreta, Andreas equations and exactly walls publications (and a publication)
Cls 0	health beauty,tablets printing image	Million production of the second seco

=> Identification de catégories de produits vendus spécifiquement dans certains cluster ($\xi_{\text{état,produit}}/\xi_n > 0.01$).

Probléi 00	matique	Ana O O	alyse exploratoire	Transformations O O	Réduction 0	Modèles Analyses des clus	ters Conclusion
			00000	00	00000000		00
	Cluste	ers	Etat client	Distance client- vendeur	temps de livraison	Spécificité	Produit spécifique
	Cls 0		ВА	grande	long	Mécontentement des clients	=>
	Cls 1			grande	long		=>
	Cls 2		SP	courte	court		
	Cls 3		RJ				=>
	CLs 4		MG				
	CLs 5		DF				=>
	CLs 6		RS				=>
	CLs 7		SC				=>
	CLs 8		PR				=>
	CLs 9					paiement sé- quencé	F
						<□ > < @ > < \(\bar{\bar{\bar{\bar{\bar{\bar{\bar{	₹

=> Meilleurs ventes (en volume) des catégories de produit par clusters.

Table of Contents

Problématique

Analyse exploratoire

Préparation

Variables quantitatives

Transformations

Variables quantitatives

Réduction

Réduction des observations

ACP Isom

TSN

Evaluation de l'encodage

èles

Présentation des modèles

-means

Hierarchique

Evaluation des modèles

Réduction des variables avec le

4 D > 4 B > 4 B > 4 B >

K-means

Analyses des clusters

Stabilité temporelle

Conclusion

Conclusion

Perspectives

Conclusion

Réponses aux besoins clients :

- Comprendre les types d'utilisateurs
- => Identification des clusters suivant :
 - pays des clients
 - mécontentement des clients
 - distance client-vendeur
 - temps de livraison
 - type de paiement séquencé
 - produits vendus spécifique

- "Description actionable" = Proposition de communications ciblées
- => Identifier en détail le mécontentement des clients (distance client-vendeur grande / temps de livraison grande / état client : Bahia)
- => Pub ciblé de ventes spécifiques ou importantes par cluster

Problématique	Analyse exploratoire	Transformations	Réduction	Modèles	Analyses des clusters	Conclusion
00	0	0	0	0	0	0
	0	0	0	00000000	00	0000
	0000000	00	000000000	00000	000000	00

- "Proposition de contrat de maintenance" = identifier la fréquence (ex : tous les mois) pour refaire l'analyse client
- => Pas de nécessité de refaire l'analyse client sur la période [2016-2018] : fréquence tous les 2 ans

Apprentissage majeur du projet :

- Importance capitale de l'encodage des variables qualitatives pour le clustering :
 - => l'OHE renforce l'influence de la variable pour la formation de clusters
 - => A l'inverse, le Label Encoding la diminue
- Importance capitale du nombre de variables pour le clustering :
 - => Réduire le nombre de variables sans réduire le nombre de cluster améliore significativement les résultats : coéfficient de silhouette a doublé passant de 0.21 à 0.46 pour une réduction de 22 à 13 variables.

Perspectives

Problématique client :

• Etudier plus en détail les cluster

Perspectives personnelles:

 Creuser plus "systématiquement" l'influence de la transformation et la réduction de variable sur les modèles d'apprentisage artificiel

Merci de votre attention

