PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2000344581

(43) Date of publication of application: 12.12.00

(51) Int. CI

C04B 35/66

B22D 11/10

B22D 41/02

C21C 7/00

F27D 1/16

(21) Application number: 11153858

153858

(22) Date of filing: 01.06.99

(71) Applicant:

MINTEKKU JAPAN KK

(72) Inventor:

ISHIKAWA KENTARO SUZUKI YOSHIYUKI

(54) WET-SPRAYING MATERIAL FOR MOLTEN STEEL LADLE AND METHOD FOR SPRAYING

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a spraying material and a method suitable for extending the service life of a slag line and a buffer part of a molten steel ladle.

SOLUTION: This method for spraying mainly aims to suppress the rate of erosion of bricks every charge rather than to enhance the durability of the material itself in order to extend the life of a erosion part. The spraying material for a molten steel ladle contains 85 to 97.5 wt.% refractory aggregate composed of a material whose maximum

grain size is controlled to be 2.0 mm, $_{\Xi}0.1$ and <10 wt.% of one or more silicate binders or phosphate binders or $_{\Xi}0.1$ and <10 wt.% of a composition comprising one or more silicate binders and phosphate binders and $_{\Xi}0.05$ and <5 wt.% of one or more clay materials. The execution of spraying is carried out by adding water to the spraying the above material to obtain a slurry, then transporting the slurry through a hose under the pressure by a tank or a pump and spraying the slurry to an object to be sprayed while discharging the slurry from a nozzle attached to a tip part of the hose. The execution is in principle carried out every charge.

COPYRIGHT: (C)2000,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-344581 (P2000-344581A)

(43)公開日 平成12年12月12日(2000.12.12)

(51) Int.Cl.7		識別記号		FΙ					テーマコード(参考)
C 0 4 B	35/66			CO.	4 B	35/66		F	I 4E014
								N	4 G 0 3 3
B 2 2 D	11/10	3 1 0		B 2	2 D	11/10		3 1 0 K	4 K 0 1 3
								3 1 0 J	4 K 0 5 1
	41/02					41/02		C	
			審查請求	未請求	於	マダイ (項の数8	OL	(全 5 頁	〔) 最終頁に続く
(21)出顧番号	}	特願平11-153858		(71)	出願人	ر 592242	453		
						ミンテ	ックジ	ャパン株式	会社
(22)出顧日		平成11年6月1日(1999.6	. 1)			東京都	中央区	東日本橋1	丁目1番7号 東
						日本橋	スカイ	ピル	
				(72)	発明	皆 石川	堅太郎		
						愛知県	蒲郡市	浜町53-2	ミンテックジャ
						パン株	式会社	内	
				(72)	発明	皆 鈴木	義之		
						愛知県	蒲郡市	英町53-2	ミンテックジャ
						パン株	式会社	内	
				(74)	代理人	\ 100089	705		
						弁理士	社本	一夫	(外4名)
									最終頁に続く

(54) 【発明の名称】 溶鋼鍋湿式吹き付け材及び吹き付け方法

【課題】 公知の補修方法では、何れも溶鋼鍋のスラグ

(57)【要約】

ライン及び緩衝部の寿命を延長させる手段が限られてお り、経済的にも効率的にも好ましいものではない。 【解決手段】 材料自体の耐用よりもむしろ、毎チャー ジの煉瓦の溶損速度を如何にして押さえるかに主眼をお き上記溶損部位の寿命を延長することを図るため、本件 発明においては、施工は、最大粒径が2.0mmになる ように粒度調整された材料よりなる耐火骨材85~9 7.5重量%に1種又は2種以上の珪酸塩バインダー又 は燐酸塩バインダーを0.1重量%以上10重量%未 満、若しくは1種又は2種以上の珪酸塩バインダーと燐 酸塩バインダーの組合せで0.1重量%以上10重量% 未満、及び1種又は2種以上の粘材を0.05重量%以 上5重量%未満を含有した溶鋼鍋湿式吹き付け材に水を 添加しスラリー状としたものをタンク加圧、若しくはポ ンプ加圧によりホース内を搬送しホース先端部に取り付 けたノズルより吐出させながら対象物に吹き付ける。施 工は原則的には毎チャージ行う。

【特許請求の範囲】

【請求項1】 骨材と結合材とを含有してなる溶鋼鍋湿式吹き付け材において、最大粒径が2.0mm以下の粒度調整された耐火骨材85~97.5重量%に1種又は2種以上の珪酸塩バインダー又は燐酸塩バインダーを0.1重量%以上10重量%未満、若しくは1種又は2種以上の珪酸塩バインダーと燐酸塩バインダーの組合せで0.1重量%以上10重量%未満、及び1種又は2種以上の粘材を0.05重量%以上5重量%未満を含有したことを特徴とする溶鋼鍋湿式吹き付け材。

【請求項2】 骨材と結合材とを含有してなる溶鋼鍋湿式吹き付け材において、最大粒径が1.0mm以下の粒度調整された耐火骨材85~97.5重量%に1種又は2種以上の珪酸塩バインダー又は燐酸塩バインダーを0.1重量%以上10重量%未満、若しくは1種又は2種以上の珪酸塩バインダーと燐酸塩バインダーの組合せで0.1重量%以上10重量%未満、及び1種又は2種以上の粘材を0.05重量%以上5重量%未満を含有したことを特徴とする溶鋼鍋湿式吹き付け材。

【請求項3】 骨材が、海水Mg〇クリンカー、天然Mg〇クリンカー、電融Mg〇クリンカー、天然ドロマイトクリンカー、合成ドロマイトクリンカー、オリビン、スピネルクリンカー、クロマイト、カルシア、ジルコニア、ジルコン、アルミナ、シリカ、SiC、黒鉛の群から選択されていることを特徴とする請求項1または2に記載の溶鋼鍋湿式吹き付け材。

【請求項4】 珪酸塩バインダーが、珪酸ナトリウム、 珪酸カリウム、メタ珪酸ナトリウムの群から選択されて いることを特徴とする請求項1又は2に記載の溶鋼鍋湿 式吹き付け材。

【請求項5】 燐酸塩バインダーが、オルト燐酸塩、メタ燐酸塩およびポリ燐酸塩の群から選択されていることを特徴とする請求項1又は2に記載の溶鋼鍋湿式吹き付け材。

【請求項6】 粘材が、木節クレイ、ベントナイト、CMC、MC、BGの群から選択されていることを特徴とする請求項1又は2に記載の溶鋼鍋湿式吹き付け材。

【請求項7】 上記請求項1又は2に記載の構成を有している吹き付け材に水を20%~50%加えスラリー状としたものを、溶鋼鍋のスラグラインおよび緩衝部に少なくとも2チャージ毎に熱間で3~10mmの厚みに当該スラリーを吹き付けることを特徴とする溶鋼鍋のスラグライン及び緩衝部へ対する吹き付け材の吹き付け方法。

【請求項8】 上記請求項3~6のいずれか1に記載の構成を有している吹き付け材に水を20%~50%加えスラリー状としたものを、溶鋼鍋のスラグラインおよび緩衝部に少なくとも2チャージ毎に熱間で3~10mmの厚みに当該スラリーを吹き付けることを特徴とする溶鋼鍋のスラグライン及び緩衝部へ対する吹き付け材の吹

き付け方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本件発明は、溶鋼鍋に関し、より詳細には溶鋼鍋のスラグライン及び緩衝部の寿命延長に最適な吹き付け材及びその吹き付け方法に関する。 【0002】

【従来の技術】溶鋼作業においては、溶鋼鍋のスラグライン及び緩衝部の損傷が特に激しい。そのため、これまでその部分の寿命延長を図るための方法として、吹き付け法、煉瓦差し替え法、こて塗り法等種々の方法が行われている。

【0003】ここで、吹き付け法とは、数チャージ毎に吹き付けを行い吹き付けした材料自体が溶鋼やスラグによる溶損を食い止め、ライニングの損耗を押さえることを主眼としているものである。吹き付けは、稼動中の熱間で行われる所謂熱間補修である。この方法は、1回の吹き付け量が、数百Kgであり作業時間が5分から15分程度かかる。このため、鍋の回転が間に合わない現場では熱間補修を行うことが出来ない。また熱間補修では溶鋼鍋の受ける操業の厳しさによるが、一般鋼のような比較的緩い操業で耐用しても2~3チャージ程度、LF等の厳しい操業では1チャージの耐用も無いのが現状で、吹き付け量の割りには耐用が良くなく、コストパフォーマンスが極めて低いという課題がある。

【0004】煉瓦差し替え法とは、スラグラインの煉瓦の溶損が進んだ場合に溶鋼鍋を常温まで冷却した後、煉瓦を解体し、新しい煉瓦を積み替える方法である。この方法は溶鋼鍋を常温まで冷却するため、スラグライン部以外の耐火物に熱スポールを与えることになり、耐用に悪影響を及ぼす懸念がある。また、煉瓦積み替えのための解体、積み直しの時間、作業負荷、コスト高等の課題がある。

【0005】更に、こて塗り法とは、スラグラインの煉瓦の損耗が進んだ場合に、煉瓦差し替え法と同様に、溶鋼鍋を常温まで冷却した後、こて塗りによりスラグライン部を補修する方法である。この方法は溶鋼鍋を常温まで冷却するため、煉瓦差し替え法と同様に、スラグライン部以外の耐火物に熱スポールを与えることになり耐用に悪影響を及ぼす懸念がある。そのうえ、こて塗りのため作業効率が悪く、作業負荷、コスト高となる等の課題がある。

[0006]

【発明が解決しようとする課題】このように公知の補修 方法である、吹き付け法、煉瓦差し替え法、こて塗り法 では、何れも溶鋼鍋のスラグライン及び緩衝部の寿命を 延長させる手段が限られており、経済的にも効率的にも 好ましいものではない。

[0007]

【課題を解決するための手段】公知の補修方法では溶損

部位の材料自体の耐用を図ることを主眼にしているが、本件発明では、材料自体の耐用よりもむしろ、毎チャージの煉瓦の溶損速度を如何にして押さえるかに主眼をおき上記溶損部位の寿命を延長することを図っている。具体的には、本件発明においては、施工は、材料に水を添加しスラリー状としたものをタンク加圧、若しくはボンプ加圧によりホース内を搬送しホース先端部に取り付けた特殊ノズルより吐出させながら対象物に吹き付ける。施工は原則的には毎チャージ行うことが好ましい。

[0008]

【発明の実施の形態】溶鋼作業において溶鋼鍋のスラグライン及び緩衝部には特に激しい損傷が発生する。これらの損傷が激しいスラグライン及び緩衝部の寿命延長を図るための方法として、本件発明においては、スラリー状の材料を熱間施工する。このためには、当該材料は、少なくとも、途布施工法に優れていること、施工後の剥離や脱落が容易に発生しないこと、目地の細部まで容易に侵入し硬化すること、等が要請される。

【0009】そこで、本件発明においては、粒度構成において最大粒径を2.0mm以下好ましくは1.0mm以下とし、薄い均一な施工を可能とし、さらに珪酸塩や燐酸塩を使用することにより流動性を良くし、かつ熱硬化性を与えると共にスラリーの分離を防ぐために粘材を使用した材料を提供する。

【0010】具体的には、本件発明における骨材と結合材とを含有してなる溶鋼鍋湿式吹き付け材は、最大粒径が2.0mm以下好ましくは1.0mm以下の粒度調整された耐火骨材85~97.5重量%に1種又は2種以上の珪酸塩バインダー又は燐酸塩バインダーを0.1重量%以上10重量%未満、若しくは1種又は2種以上の珪酸塩バインダーと燐酸塩バインダーの組合せで0.1重量%以上10重量%未満、及び1種又は2種以上の粘材を0.05重量%以上5重量%未満を含有している。【0011】さらに、この骨材は、海水MgOクリンカー、天然MgOクリンカー、電融MgOクリンカー、天然MgOクリンカー、合成ドロマイトクリンカー、オリビン、スピネルクリンカー、クロマイトクリンカー、オリビン、スピネルクリンカー、クロマイト、カルシア、ジルコニア、ジルコン、アルミナ、シリカ、SiC、黒鉛から成る群から選択されている。

【0012】また、珪酸塩バインダーは、珪酸ナトリウム、珪酸カリウム、メタ珪酸ナトリウムの群から選択されており、燐酸塩バインダーは、オルト燐酸塩、メタ燐酸塩およびポリ燐酸塩から成る群から選択されている。一方、粘材は、木節クレイ、ベントナイト、CMC(カルボキシルメチルセルロース)、MC(メチルセルロース)、BG(ブリテッシュガム)から成る群から選択さ

れている。

【0013】また、本件発明において上記の材料を溶損部へ提供する方法としては、上述した構成を有している吹き付け材に水を20%~50%加えスラリー状としたものを、溶鋼鍋のスラグラインおよび緩衝部に少なくとも2チャージ毎、好ましくは毎チャージ、熱間で3~10mmの厚みに当該スラリーを吹き付けることが好ましい。これによりスラグラインおよび緩衝部の寿命延長が容易に達成出来るのである。

【0014】本件発明においてスラリー状の材料をスラグラインおよび/または緩衝部へ提供する方法としては、1)混錬機のついたバッチ式のタンクに材料を入れ、水を添加し撹拌した後に、加圧によりバイプを通じて被吹き付け面に施工する方法、2)スクリュー式の押し出しポンプを用いてスクリューの押し出し加圧によりパイプ内を搬送して施工する方法が好ましい。これらの方法においては、いずれもパイプの先端に、例えば米国のSprayingSystem社製のスプレーノズルを使用することにより広がりのよい安定した塗布状態が確保出来る。

【0015】この場合、使用する骨材の最大粒度が2.0mm以上、例えば2.5mmの場合には、詰まりが発生する。そのような詰まり防止のためスプレーノズルの径を5mm以上とする必要があり、そのような径のノズルを使用した場合、吐出むらやスプレーの広がり不足或いは吐出過多などの好ましくない状態が見られ、さらに、吹き付けに際して、だれ落ち、剥落などを発生する。

【0016】これに対して、使用する骨材の最大粒度が2.0mm以下、例えば1.0mmの場合には、スプレーノズルの径が5.0mm程度のものを使用出来、広がりが良く吐出むらが無く安定した吐出が得られ、また、だれ落ち、剥落などの発生も見られない。

【0017】以下に、本件発明の実施例について記載した表1及び表2について記載する。ここで、表1は、本件発明の成分配合比率を有する吹き付け材と、従来公知の吹き付け材と、を使用してA社において120トンしadleを使用して行った試験例であり、表2は、本件発明の成分配合比率を有する吹き付け材と、従来公知の吹き付け材と、を使用してB社において90トンしadleを使用して行った試験例である。これらの表から、本件発明によれば、スラグライン寿命が4割程度延長し、1チャージ(ch)当たりの溶損速度(mm)が4~5割減少することが判明した。

[0018]

【表1】

			実 8	在例	比較例			
		1	2	3	4	5	6	7
	海水MgOクリンカー	91.5	35	35	40.9	53		
	天然MgOクリンカー		48.5	48.5	24	38.5]	
	天然ドロマイトクリンカー		10	10				
配合内容	オリピン				30		一般	一般
	珪酸ナトリウム1号	2.0	1.5	1.5	3.0	2.0	吹付材	吹付材
	珪酸ナトリウム3号	3.0	2.5	2.5	2.0	3.0		
	燐酸1カリウム		0.5	0.5		1		
	木節CLAY	3.5	2.0	2.0		3.5		
	BG				0.1			
粒度	最大粒径(0.5mm)	0.5	0.5	0.5	0.5	1.0	4.0	4.0
成分	MgO(%)	86.9	81.0	81.0	74.2	85.0	84.5	87.0
	吹付法	スプレー	スプレー	スプレー		スプレー	乾式	
現場試験 (A社) 12Ot Ladle	施工	タンク圧送	タンク圧送	タンク圧送		タンク圧送		
	吹付頻度	毎チャージ	毎チャージ	1/27ャージ			1/3チャージ	
	施工量(Kg)	90	90	90		90	500	
	付着率(%)	95	95	95		60	75	
	従来のスラグライン寿命	35チャーシ	35チャーシ	35チャーシ		<u> </u>	35チャージ	
	本件のスラグライン身命	50チャーシ	50チャーシ	45チャージ		<u> </u>	35チャージ	
	従来のスラグライン	3.0-3.6	3.0-3.6	3.0-3.6		1	3.0-3.6	
	溶損速度(mm/ch)					<u> </u>		
	本件のスラグライン	1.8-2.0	1.8-2.0	2.0-2.3		1	3.0-3.5	
	溶損速度(mm/ch)					 	ļ.,,,,	
	結果	良好な	良好な	良好な		付着性	吹付の	
		付着性	付着性	付着性		悪い為	効果無い	
						吹付中止		
		l		. }		した	1 1	

[0019]

【表2】

			異	超例	比較例			
		1	2	3	4	5	6	7
	海水MgOクリンカー	91.5	35	35	40.9	53		
	天然MgOクリンカー		48.5	48.5	24	38.5]	
	天然ドロマイトクリンカー	1	10	10				
配合内容	オルシ				30			一般
~	建設ナトリウム1号	2.0	1.5	1.5	3.0	2.0	吹付材	吹付材
	珪酸ナトリウム3号	3.0	2.5	2.5	2.0	3.0		
	燐酸1カリウム		0.5	0.5				
	未飾CLAY	3.5	2.0	2.0		3.5		l
	BG				0.1]	<u> </u>
粒度	最大粒径(0.5mm)	0.5	0.5	0.5	0.5	1.0	4.0	4.0
成分	MgO(%)	86.9	81.0	81.0	74.2	85.0	84.5	87.0
	吹付法	スプレー			スプレー			牧式
	施工	タンク圧送			タンク圧送		<u> 1 </u>	ロテクタ・
現場試験	吹付額度	毎チャーシ			毎チャーシ			1/47+-
(B社)	施工量(Kg)	80			80			300
90 t	付着率(%)	95			95			75_
Ladle	従来のスラグライン寿命	35チャーシ			35チャーシ		<u> </u>	35チャーシ
	本件のスラグライン寿命	49チャーシ			48チャーシ			37チャーシ
	従来のスラグライン	2.1-2.8			2.1-2.8			2.1-2.8
	溶損速度(mm/ch)			L			<u> </u>	
	本件のスラグライン	1.0-1.3			1,1-1.3			2.0-2.7
	溶損速度(mm/ch)	1						
	結果	良好な			良好な		1	吹付の
	*****	付着性		I .	付着性		i	効果無し

[0020]

【発明の効果】本件発明によれば、a)材料の最大粒径が2.0mm以下例えば1.0mm程度と非常に細かいため煉瓦表面の凹凸の内部まで容易に侵入し容易に表面の保護を達成する。b)案早い熱硬化により機械的な強度を発現する。c)稼働中は、熱を受け案早く焼結し、

スラグの浸透を低減するとともに、MgO-C煉瓦の表面酸化を押さえ溶損を低減する。d)スラグと反応した材料は高粘度の反応生成物を形成しMgO含有煉瓦(MgO-C、ドロマイト煉瓦)の溶損を押さえる。e)毎チャージ施行を行うことにより、上述の積み重ね効果が発揮され溶損を押さえることが出来る。

!(5) 000-344581 (P2000-34**■**¦8

フロントページの続き

(51) Int. Cl. 7		識別記号	FI		デーマコート'(参	3考)
C21C	7/00		C 2 1 C	7/00	Q	
F27D	1/16		F 2 7 D	1/16	W	
					С	
					V	

Fターム(参考) 4E014 BB02

4G033 AA01 AA02 AA03 AA04 AA05 AA06 AA07 AA09 AA15 AA17 AB03 AB04 AB07 AB22 AB23

BA02

4K013 CF13 CF19

4K051 AA06 AB03 BB03 BE03 GA01 LA02 LA11 LA12 LJ01 LJ04