Phase-contrast imaging in the EM

Cheng-Yu Hung

- Amplitude and Phase Contrast
- •The Contrast Transfer Function
- Defocus and its Effects
- Envelopes
- •2D CTF
- Aberration
- CTF Estimation

Amplitude and Phase Contrast

Thinking the Electron as a wave, instead of thinking it as a particle

Amplitude = 1 Phase = 0°

Travel through the vacuum

<mark>Plane Wave</mark>

$$A = 1$$
$$\theta = 0^{\circ}$$

$$A = 1$$
$$\theta = 90^{\circ}$$

$$A = 1$$
$$\theta = 180^{\circ}$$

Scattering

Scattering

mon

mon

mong mon

The Contrast Transfer Function

Structure of Cryo-EM

The Contrast Transfer Function

$$CTF = \sin\left(-\pi\lambda\Delta z f^2 + \frac{\pi}{2}C_s\lambda^3 f^4\right)$$

 λ : wave length

 Δz : defocus

f: spatial frequency (1/d)

 C_s : spherical aberration coefficient

3 Defocus and its Effects

Defocus and Overfocus

Overfocus Image

Defocus and Overfocus

Defocus Image

Weak low-resolution features Strong high-resolution features

Strong low-resolution features Weak high-resolution features

Figure from Thuman-Commike and Chiu, Micron 31:687

4 Envelopes

Envelope Function of CTF

Envelope Function Caused by Different Direction

Low Frequency

High Frequency

Blurred!

Envelope Function Caused by Different Energy

Contrast Transfer Function

Envelope Function Caused by Different Energy

Contrast Transfer Function

Envelope Example

Figure from Thuman-Commike and Chiu, Micron 31:687

5 2D CTF

6TF can be formulated as follow:

$$CTF = -w_1 \sin(\chi_{\phi}(g)) - w_2 \cos(\chi_{\phi}(g))$$

Or

Called Weak Phase Approximation

$$CTF = -\sin\left(\chi_{\phi}(g)\right)$$

$$\chi_{\phi}(g) = \pi \lambda |g|^2 \Delta f - \frac{\pi}{2} \lambda^3 |g|^4 C_s + \Delta \varphi ,$$

$$\Delta f = \frac{1}{2} (\Delta f_1 + \Delta f_2 + (\Delta f_1 - \Delta f_2) \cos(2(\alpha - \alpha_{ast})))$$

Where w_2 depends on the specimen characteristics and microscope properties

Figure from Alexis Rohou and Nikolaus Grigorieff, Journal of Structural Biology

6 Aberration

Spherical Aberration

Astigmatism Aberration

CTF Estimation

CTF Estimation

