Лекция 3. Регуляризация, композиции алгоритмов

Юрий Яровиков

План лекции

- Методы борьбы с переобучением
 - Напоминание: переобучение и методы борьбы с ним
 - Напоминание: линейные алгоритмы
 - Ridge-регрессия и Lasso-регрессия в Python
- Композиции алгоритмов
 - Напоминание: метрические алгоритмы и решающие деревья
 - о Композиции алгоритмов: бэггинг, бустинг
 - о Градиентный бустинг над решающими деревьями

Методы борьбы с переобучением

Переобучение

- Из-за чего возникает переобучение?
 - Переобучение есть всегда, когда выбор делается на основе заведомо неполной информации
 - Слишком сложная/гибкая модель может чрезмерно подстроиться под обучающую выборку и потерять способность находить нижележащие закономерности в новых данных

Переобучение

- Как обнаружить?
 - Разделить выборку на обучающую и контрольную
 - Следить за качеством на контрольной выборке
- Минусы?
 - Уменьшение размера обучающей выборки может негативно сказаться на качестве
 - Малый размер тестовой выборки может давать сильное смещение оценки.
 - Можно переобучиться под тестовую выборку

Переобучение под Тестовую Выборку

- Используя Train/Test split подход
 - Малый размер тестовой выборки
 - Перебор гипер-параметров модели
 - Выбор по наилучшему результату
- Train/Validate/Test split
 - Обучаем на Train
 - Корректируем параметры алгоритма по Validate
 - Итоговое качество на Test

Кросс-Валидация

- Кросс-Валидация
 - \circ Разделить выборку на K корзин
 - \circ Запустить K экспериментов, исключая одну корзину из обучения и замеряя на ней качество
 - Итоговое качество получить усреднением

	◄ Total Number of Dataset — ▶	
Experiment 1		
Experiment 2		Training Validation
Experiment 3		
Experiment 4		
Experiment 5		

Кросс-Валидация

- Плюсы
 - Качество измеряется на всем наборе данных
 - Качество не зависит от выбора конкретного тестового набора
 - Сложнее переобучиться под test
- Минусы
 - Скорость!
- Что выбрать
 - Мало обучающих данных → Кросс-Валидация
 - Много обучающих данных → Train/Validate split
- Не забыть
 - Отложить Test для замера итогового качества
 - Обучить итоговую модель на всех данных

Кросс-Валидация По Времени

- Используется для анализа временных рядов
 - Тестовый набор выбирается из самых свежих данных, обучение на более старых
- Полезно в реальных задачах
 - Если в качестве признаков используется множество сигналов, которые могут меняться от времени
 - Есть возможность определить дату наблюдения

Напоминание: линейные алгоритмы

$$y(x) = \operatorname{sign}(\langle w, x \rangle + b)$$

$$y(x) = \langle w, x \rangle + b$$

Classification

Regression

Регуляризация в линейных моделях

Разные линейные модели отличаются разными функциями потерь.

• Линейная регрессия:
$$\sum_{i=1}^{l} (\langle x_i, w \rangle - y_i)^2 \to \min_{w}$$

$$ullet$$
 Ridge-perpeccus: $\sum_{i=1}^l (\langle x_i, w \rangle - y_i)^2 + C ||w||^2
ightarrow \min_w$

• Lasso-perpeccus:
$$\sum_{i=1}^{\infty} (\langle x_i, w \rangle - y_i)^2 + C||w|| \to \min_{w}$$

Покажем отличия алгоритмов на примере датасета boston.

Композиции алгоритмов

Напоминание: метрические алгоритмы

Метрический алгоритм — алгоритм, опирающийся на геометрическую структуру данных в пространстве объектов.

Алгоритм к ближайших соседей:

- Хотим предсказать класс объекта х
- Вычисляем $f_1(x), f_2(x), ..., f_n(x)$
- Находим *k* ближайших объектов из обучающей выборки
- Предсказание = самый популярный класс среди соседей

Напоминание: решающие деревья

- В каждой вершине дерева находится вопрос
- В зависимости от ответа на вопрос, алгоритм направляется в нужную ветвь дерева
- Листы дерева соответствуют решению алгоритма

Решающее дерево: проблема переобучения

- Легко переобучиться, так как число листьев растет экспоненциально
- Для набора данных N = 1000 хватит дерева глубины 10, чтобы покрыть каждый объект листо

Композиции алгоритмов: простое голосование

- Если каждый член жюри имеет независимое мнение, и если вероятность правильного решения члена жюри больше 0.5, то тогда вероятность правильного решения присяжных в целом возрастает с увеличением количества членов жюри и стремится к единице.
- Если же вероятность быть правым у каждого из членов жюри меньше 0.5, то вероятность принятия правильного решения присяжными в целом монотонно уменьшается и стремится к нулю с увеличением количества присяжных.

принцип Кондорсе, 1784

Эксперимент Гальтона, 1906

- Собралось около 800 человек, которые попытались угадать вес быка на ярмарке. Бык весил 1198 фунтов.
- Ни один крестьянин не угадал точный вес быка
- Среднее предсказание оказалось равным 1197 фунтов.

Бэггинг

- С помощью бутстрэпа генерируем *М* выборок
- На каждой выборке обучим свой классификатор
- Итоговый классификатор будет усреднять ответы всех этих алгоритмов

Решающий лес

- Построим совокупность решающих деревьев, каждое из которых будем обучать по случайной подвыборке и случайному подмножеству признаков
- Каждое дерево имеет малую глубину
- Итоговый ответ усреднение ответов по всем деревьям

Бустинг

- Строим алгоритмы по очереди
- Каждый новый алгоритм выбирается так, чтобы вся композиция работала наилучшим образом
- Новый алгоритм исправляет ошибки предыдущих алгоритмов
- Итоговое решение принимается взвешенным голосованием

Напоминание: градиентный спуск

- Минимизируем функцию f(x)
- Выбираем x_o начальное приближение
- Пусть x_n текущая найденная точка
- Вычисляем градиент (производную) $f'(x_n)$
- Вычисляем следующее приближение:

$$x_{n+1} = x_n - \alpha f'(x_n)$$

Градиентный бустинг

Линейная (выпуклая) комбинация базовых алгоритмов:

$$a(x) = \sum_{t=1}^{T} \alpha_t b_t(x), \quad x \in X, \quad \alpha_t \in \mathbb{R}_+$$

Функционал качества с произвольной функцией потерь $\mathcal{L}(a,y)$:

$$Q(\alpha, b; X^{\ell}) = \sum_{i=1}^{\ell} \mathscr{L}\left(\underbrace{\sum_{t=1}^{T-1} \alpha_t b_t(x_i)}_{f_{T-1,i}} + \alpha b(x_i), y_i\right) \to \min_{\alpha, b}$$

Настраиваем b_T на антиградиент функции потерь $\mathscr{L}(\mathsf{a},\mathsf{y})$ в точке $\sum_{t=1}^{T-1} \alpha_t b_t(\mathsf{x}_i)$

Градиентный бустинг

- Базовые алгоритмы b_t должны быть простыми и быстро обучаемыми
- Часто в качестве базовых алгоритмов используются решающие деревья
- Реализации градиентного бустинга над решающими деревьями:

Бустинг: почти полное отсутствие переобучения

Бустинг: преимущества и недостатки

- Преимущества:
 - Позволяет очень точно восстанавливать искомую функцию
 - о Почти не переобучается
- Недостатки:
 - о Медленный
 - Плохо интерпретируемый
 - Переобучение на выбросах при избыточном количестве алгоритмов
 - Нужна довольно большая обучающая выборка

Стекинг

Стекинг — ещё один способ построить композицию алгоритмов

- Обучим несколько различных алгоритмов на одних и тех же данных
- Будем использовать ответы этих алгоритмов как новые признаки!