Analog Multiplexers/Demultiplexers

The MC14067 and MC14097 multiplexers/demultiplexers are digitally controlled analog switches featuring low ON resistance and very low leakage current. These devices can be used in either digital or analog applications.

The MC14067 is a 16-channel multiplexer/demultiplexer with an inhibit and four binary control inputs A, B, C, and D. These control inputs select 1-of-16 channels by turning ON the appropriate analog switch (see MC14067 truth table.)

The MC14097 is a differential 8–channel multiplexer/demultiplexer with an inhibit and three binary control inputs A, B, and C. These control inputs select 1 of 8 pairs of channels by turning ON the appropriate analog switches (see MC14097 truth table).

- Low OFF Leakage Current
- Matched Channel Resistance
- Low Quiescent Power Consumption
- Low Crosstalk Between Channels
- Wide Operating Voltage Range: 3 to 18 V
- Low Noise
- Pin for Pin Replacement for CD4067B and CD4097B

MC14067B MC14097B

L SUFFIX CERAMIC CASE 623

P SUFFIX PLASTIC CASE 709

DW SUFFIX SOIC CASE 751E

ORDERING INFORMATION

MC14XXXBCP MC14XXXBCL MC14XXXBDW Plastic Ceramic SOIC

 $T_{\Delta} = -55^{\circ}$ to 125°C for all packages.

MC14067B 16-Channel Analog Multiplexer/Demultiplexer

X14

X15

MC14097B Dual 8-Channel Analog Multiplexer/Demultiplexer

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	- 0.5 to + 18.0	V
V _{in} , V _{out}	Input or Output Voltage (DC or Transient)	– 0.5 to V _{DD} + 0.5	V
lin	Input Current (DC or Transient), per Control Pin	± 10	mA
I _{SW}	Switch Through Current	± 25	mA
PD	Power Dissipation, per Package†	500	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature (8–Second Soldering)	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, $V_{\mbox{in}}$ and $V_{\mbox{out}}$ should be constrained to the range $V_{\mbox{SS}} \leq (V_{\mbox{in}}$ or $V_{\mbox{out}}) \leq V_{\mbox{DD}}.$

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

Plastic "P and D/DW" Packages: – 7.0 mW/°C From 65°C To 125°C Ceramic "L" Packages: – 12 mW/°C From 100°C To 125°C

MC14067 TRUTH TABLE

	Selected				
Α	В	С	D	Inh	Channel
Х	Х	Х	Х	1	None
0	0	0	0	0	X0
1	0	0	0	0	X1
0	1	0	0	0	X2
1	1	0	0	0	Х3
0	0	1	0	0	X4
1	0	1	0	0	X5
0	1	1	0	0	X6
1	1	1	0	0	X7
0	0	0	1	0	X8
1	0	0	1	0	X9
0	1	0	1	0	X10
1	1	0	1	0	X11
0	0	1	1	0	X12
1	0	1	1	0	X13
0	1	1	1	0	X14
1	1	1	1	0	X15

MC14097 TRUTH TABLE

	Control	Sele	cted			
Α	В	С	Inh	Channels		
Х	Х	Х	1	None		
0	0	0	0	X0	Y0	
1	0	0	0	X1	Y1	
0	1	0	0	X2	Y2	
1	1	0	0	ХЗ	Y3	
0	0	1	0	X4	Y4	
1	0	1	0	X5	Y5	
0	1	1	0	X6	Y6	
1	1	1	0	X7	Y7	

X = Don't Care

MC14067 FUNCTIONAL DIAGRAM

MC14097 FUNCTIONAL DIAGRAM

^{*} Maximum Ratings are those values beyond which damage to the device may occur.

[†]Temperature Derating:

ELECTRICAL CHARACTERISTICS

				– 55°C			25°C		125°C		
Characteristic	Symbol	V _{DD}	Test Conditions	Min	Max	Min	Typ#	Max	Min	Max	Unit
SUPPLY REQUIREMENTS	(Voltages F	Reference	ced to VSS)	•		•					
Power Supply Voltage Range	V _{DD}	_		3.0	18	3.0	_	18	3.0	18	V
Quiescent Current Per Package	I _{DD}	5.0 10 15			5.0 10 20	_ _ _	0.005 0.010 0.015	5.0 10 20		150 300 600	μА
Total Supply Current (Dynamic Plus Quiescent, Per Package	I _{D(AV)}	5.0 10 15	T _A = 25°C only (The channel component, (Vin – Vout)/R _{on} , is not included.)	(0.07 μA/kHz) f + I _{DD} Typical (0.20 μA/kHz) f + I _{DD} (0.36 μA/kHz) f + I _{DD}				μΑ			
CONTROL INPUTS — INHI	BIT, A, B, C	D (Vo	Itages Referenced to VSS)								
Low-Level Input Voltage	VIL	5.0 10 15	R _{On} = per spec, I _{off} = per spec	_ _ _	1.5 3.0 4.0	_ _ _	2.25 4.50 6.75	1.5 3.0 4.0	_ _ _	1.5 3.0 4.0	V
High–Level Input Voltage	VIH	5.0 10 15	R _{on} = per spec, I _{off} = per spec	3.5 7.0 11	 - -	3.5 7.0 11	2.75 5.50 8.25	 - -	3.5 7.0 11		V
Input Leakage Current	l _{in}	15	V _{in} = 0 or V _{DD}	_	± 0.1	_	±0.00001	± 0.1	_	1.0	μΑ
Input Capacitance	C _{in}	_		_	_	_	5.0	7.5	_	_	pF
SWITCHES IN/OUT AND C	OMMONS	OUT/IN	- X, Y (Voltages Reference	ed to V	SS)						
Recommended Peak-to- Peak Voltage Into or Out of the Switch	V _{I/O}	_	Channel On or Off	0	V _{DD}	0	_	V _{DD}	0	V _{DD}	V _{p-p}
Recommended Static or Dynamic Voltage Across the Switch'* (Figure 1)	ΔV _{switch}	_	Channel On	0	600	0	_	600	0	300	mV
Output Offset Voltage	Voo	_	V _{in} = 0 V, No Load	_	_	_	10	_			μV
ON Resistance	R _{on}	5.0 10 15	$\begin{array}{l} \Delta V_{SWitch} \leq 500 \text{ mV**}, \\ V_{in} = V_{IL} \text{ or } V_{IH} \\ \text{(Control), and } V_{in} \\ \text{0 to } V_{DD} \text{ (Switch)} \end{array}$		800 400 220	_ _ _	250 120 80	1050 500 280		1300 550 320	Ω
∆ON Resistance Between Any Two Channels in the Same Package	∆R _{on}	5.0 10 15		_ _ _	70 50 45	_ _ _	25 10 10	70 50 45		135 95 65	Ω
Off-Channel Leakage Current (Figure 2)	l _{off}	15	V _{in} = V _{IL} or V _{IH} (Control) Channel to Channel or Any One Channel	_	± 100	_	± 0.05	± 100	_	±1000	nA
Capacitance, Switch I/O	C _{I/O}	_	Inhibit = V _{DD}	_	_	_	10	_	_	_	pF
Capacitance, Common O/I	C _{O/I}	_	Inhibit = V _{DD} (MC14067B) (MC14097B)	_	_ _		100 60	_	_	_ _	pF
Capacitance, Feedthrough (Channel Off)	C _{I/O}	_	Pins Not Adjacent Pins Adjacent	_	_	_	0.47	_	_	_	pF

Data labeled "Typ" is not to be used for design purposes, but is intended as an indication of the IC's potential performance.

^{**}For voltage drops across the switch (ΔV_{switch}) > 600 mV (> 300 mV at high temperature), excessive V_{DD} current may be drawn; i.e. the current out of the switch may contain both V_{DD} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. (See first page of this data sheet.)

$\begin{tabular}{ll} \textbf{ELECTRICAL CHARACTERISTICS} & (C_L = 50 \ pF, \ T_A = 25^{\circ}C) \end{tabular}$

Characteristic	Symbol	V _{DD} - V _{SS} Vdc	Typ #	Max	Unit
Propagation Delay Times	t _{PLH} ,t _{PHL}				ns
Channel Input–to–Channel Output (R $_L$ = 200 k Ω) MC14067B	(Figure 3)	5.0 10 15	35 15 12	90 40 30	
MC14097B		5.0 10 15	25 10 7	65 25 18	ns
Control Input-to-Channel Output	tPZH, tPZL				ns
Channel Turn–On Time (R _L = 10 k Ω) MC14067B/097B	(Figure 4)	5.0 10 15	240 115 75	600 290 190	
Channel Turn–Off Time (R _L = 300 k Ω)	t _{PHZ} , t _{PLZ}				ns
MC14067B/097B	(Figure 4)	5.0 10 15	250 120 75	625 300 190	
Any Pair of Address Inputs to Output	tpLH, tpHL				ns
MC14067B		5.0 10 15	280 115 85	700 290 215	
MC14097B	(Figure 10)	5.0 10 15	250 100 75	625 250 190	ns
Second Harmonic Distortion (R _L = 10 k Ω , f = 1 kHz, V _{in} = 5 V _{p-p})	_	10	0.3	_	%
ON Channel Bandwidth	BW				MHz
$ [R_L = 1 \text{ k}\Omega, \text{ V}_{\text{in}} = 1/2 \text{ (V}_{\text{DD}} - \text{V}_{\text{SS}}) _{\text{p-p}} (\text{sine-wave})] $ 20 Log10 (V _{out} /V _{in}) = -3 dB MC14067B MC14097B	(Figure 5)	10 10	15 25	_	
Off Channel Feedthrough Attenuation $[R_L = 1 \text{ k}\Omega, \text{ V}_{\text{in}} = 1/2 \text{ (V}_{DD} - \text{V}_{SS}) \text{ p-p}(\text{sine-wave})] \\ f_{\text{in}} = 20 \text{ MHz} - \text{MC14067B} \\ f_{\text{in}} = 12 \text{ MHz} - \text{MC14097B}$	— (Figure 5)	10	- 40	_	dB
Channel Separation $[R_L = 1 \text{ k}\Omega, \text{ V}_{in} = 1/2 \text{ (V}_{DD} \text{V}_{SS}) \text{ pp (sine-wave)}]$ $f_{in} = 20 \text{ MHz}$	— (Figure 6)	10	- 40	_	dB
Crosstalk, Control Inputs–to–Common O/I (R1 = 1 k Ω , R _L = 10 k Ω , Control t _f = t _f = 20 ns, Inhibit = VSS)	(Figure 7)	10	30	_	mV

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Figure 1. ΔV Across Switch

Figure 2. Off Channel Leakage

Figure 3. Propagation Delay Test Circuit and Waveforms V_{in} to V_{out}

A, B, and C inputs used to turn ON or OFF the switch under test.

Figure 5. Bandwidth and Off-Channel Feedthrough Attenuation

Figure 4. Turn-On and Delay Turn-Off Test Circuit and Waveforms

Figure 6. Channel Separation (Adjacent Channels Used for Setup)

Figure 7. Crosstalk, Control to Common O/I

Figure 8. Channel Resistance (R_{ON}) Test Circuit

Figure 9. Propagation Delay, Any Pair of Address Inputs to Output

TYPICAL RESISTANCE CHARACTERISTICS

Figure 10. $V_{DD} = 7.5 \text{ V}, V_{SS} = -7.5 \text{ V}$

Figure 11. $V_{DD} = 5.0 \text{ V}, V_{SS} = -5.0 \text{ V}$

Figure 12. $V_{DD} = 2.5 \text{ V}$, $V_{SS} = -2.5 \text{ V}$

Figure 13. Comparison at 25° C, $V_{DD} = -V_{SS}$

APPLICATIONS INFORMATION

Figure A illustrates use of the Analog Multiplexer/Demultiplexer. The 0–to–5 volt Digital Control signal is used to directly control a 5 $\rm V_{p-p}$ analog signal.

The digital control logic levels are determined by V_{DD} and V_{SS}. The V_{DD} voltage is the logic high voltage; the V_{SS} voltage is logic low. For the example. $V_{DD} = +5 \text{ V} = \text{logic high at}$ the control inputs; $V_{SS} = \text{GND} = 0 \text{ V} = \text{logic low}$.

The maximum analog signal level is determined by VDD and VSS. The analog voltage must swing neither higher than VDD nor lower than VSS. The example shows a 5 Vp-p signal

which allows no margin at either peak. If voltage transients above V_{DD} and/or below V_{SS} are anticipated on the analog channels, external diodes (D_X) are recommended as shown in Figure B. These diodes should be small signal types able to absorb the maximum anticipated current surges during clipping.

The absolute maximum potential difference between V_{DD} and V_{SS} is 18.0 volts. Most parameters are specified up to 15 V which is the recommended maximum difference between V_{DD} and V_{SS} .

Figure A. Application Example

Figure B. External Germanium or Schottky Clipping Diodes

OUTLINE DIMENSIONS

L SUFFIX

CERAMIC DIP PACKAGE CASE 623-05 ISSUE M

- NOTES:

 1. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 2. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION (WHEN FORMED

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	31.24	32.77	1.230	1.290	
В	12.70	15.49	0.500	0.610	
C	4.06	5.59	0.160	0.220	
D	0.41	0.51	0.016	0.020	
F	1.27	1.52	0.050	0.060	
G	2.54	BSC	0.100 BSC		
J	0.20	0.30	0.008	0.012	
K	3.18	4.06	0.125	0.160	
٦	15.24 BSC		0.600	BSC	
М	0 °	15°	0 °	15°	
N	0.51	1.27	0.020	0.050	

P SUFFIX

PLASTIC DIP PACKAGE CASE 709-02 **ISSUE C**

- OTES:

 1. POSITIONAL TOLERANCE OF LEADS (D),
 SHALL BE WITHIN 0.25 (0.010) AT MAXIMUM
 MATERIAL CONDITION, IN RELATION TO
 SEATING PLANE AND EACH OTHER.
 2. DIMENSION L TO CENTER OF LEADS WHEN
 FORMED PARALLEL.
- 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	31.37	32.13	1.235	1.265	
В	13.72	14.22	0.540	0.560	
С	3.94	5.08	0.155	0.200	
D	0.36	0.56	0.014	0.022	
F	1.02	1.52	0.040	0.060	
G	2.54	BSC	0.100 BSC		
H	1.65	2.03	0.065	0.080	
J	0.20	0.38	0.008	0.015	
K	2.92	3.43	0.115	0.135	
L	15.24 BSC		0.600	BSC	
M	0 °	15°	0 °	15°	
N	0.51	1.02	0.020	0.040	

OUTLINE DIMENSIONS

NOTES

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
- 3. DIMENSIONS A AND B DO NOT INCLUDE
- MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION, ALLOWABLE DAMBAR PROTRUSION: ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN
 EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	15.25	15.54	0.601	0.612
В	7.40	7.60	0.292	0.299
С	2.35	2.65	0.093	0.104
D	0.35	0.49	0.014	0.019
F	0.41	0.90	0.016	0.035
G	1.27	BSC	0.050	BSC
J	0.23	0.32	0.009	0.013
K	0.13	0.29	0.005	0.011
M	0°	8°	0°	8°
Р	10.05	10.55	0.395	0.415
R	0.25	0.75	0.010	0.029

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Marare registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.