EE 102 Week 6, Lecture 2 (Fall 2025)

Instructor: Ayush Pandey

Date: October 8, 2025

1 Introduction and Review

At the end of the previous lecture, we established that $e^{j\omega t}$ is an eigenfunction of LTI systems. That is, for an input $x(t) = e^{j\omega t}$, the output y(t) is also a complex exponential at the same frequency ω but scaled by a complex number $H(j\omega)$:

$$y(t) = H(j\omega)e^{j\omega t}$$
.

where

$$H(j\omega) = \int_{-\infty}^{\infty} h(\tau) e^{-j\omega\tau} d\tau.$$

As a result of this *very important* result, we proposed that if we are able to write any signal x(t) as a linear combination of complex exponentials, then we can find the output y(t) of an LTI system by simply scaling each complex exponential by $H(j\omega)$ and adding them up!

The previous line is a one-line summary of Fourier analysis and synthesis — something that we will be spending a lot of time on in the next few weeks.

We start this journey by positing the following problem: Given a T-periodic signal x(t), can we write it as a linear combination of complex exponentials? If so, how? More concretely, can we write

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}, \qquad \omega_0 = \frac{2\pi}{T},$$

the complex Fourier series coefficients are $\{a_k\}$. Note that $a_k \in \mathbb{C}$ are complex numbers, in general. The big question is; how do we find a_k ?

2 Goals

Represent any periodic signal x(t) as a linear combination of complex exponentials:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}.$$
 (1)

Find the coefficients a_k .

3 Introduction to Fourier Series

Since the first part of the goal is "any periodic signal x(t)" and we are claiming that x(t) can be written as a linear combination of complex exponentials. So, it must be true that (and we should make sure of it) that $e^{jk\omega_0 t}$ is periodic for every integer k.

Pop Quiz 3.1: Check your understanding!

Prove that (a) $e^{j\omega_0 t}$, (b) $e^{jk\omega_0 t}$ for $k \in \mathbb{Z}$, and (c) $\sum_{k=-\infty}^{\infty} e^{jk\omega_0 t}$ are all periodic and find their fundamental periods.

Solution on page 8

Let's start to answer the second part of the goal: how do we find a_k ? We will start with a simple example.

3.1 Example: A mix-sinusoidal audio signal

Consider the signal below that represents a combination of three sinusoids (added together). When you play a note of music at one specific frequency, you are playing one sinusoid. When you play a chord, you are playing multiple sinusoids at the same time by combining them together. So, in this example, we are representing an audio chord as a linear combination of complex exponentials to start our journey of representing any periodic signal as a linear combination of complex exponentials.

Consider

$$x(t) = \sin(6t) + \cos(2t) + \sin(12t), \qquad \omega_0 = 2.$$

Write x(t) as a linear combination of $e^{jk\omega_0t}$:

$$\sin(6t) = \frac{1}{2j} \left(e^{j6t} - e^{-j6t} \right) = \frac{1}{2j} \left(e^{j(3)\omega_0 t} - e^{-j(3)\omega_0 t} \right),$$

$$\cos(2t) = \frac{1}{2} \left(e^{j2t} + e^{-j2t} \right) = \frac{1}{2} \left(e^{j(1)\omega_0 t} + e^{-j(1)\omega_0 t} \right),$$

$$\sin(12t) = \frac{1}{2j} \left(e^{j12t} - e^{-j12t} \right) = \frac{1}{2j} \left(e^{j(6)\omega_0 t} - e^{-j(6)\omega_0 t} \right).$$

Hence

$$x(t) = \sum_{k=-6}^{6} a_k e^{jk\omega_0 t}, \qquad \omega_0 = 2,$$

with the nonzero Fourier series coefficients as

$$a_{\pm 2} = \frac{1}{2}, \qquad a_{\pm 3} = \pm \frac{1}{2j}, a_{\pm 6} = \pm \frac{1}{2j},$$

where the "±" pairs obey $a_{-k} = a_k^*$ for this real x(t).

Here, the cos term contributes the even coefficients $a_{\pm 2}$; the sin terms contribute the odd, purely imaginary coefficients at $k = \pm 3, \pm 6$. All other a_k are zero.

4 The Trigonometric Form of Fourier Series

If the linear combination form in equation (1) is confusing and the fact that "we are representing everything as a linear combination of sinusoids" is not obvious to you, you can see how we can rewrite the Fourier series synthesis equation (1) in a more familiar trigonometric form. Although you might not find the formulation below much useful, it will at least convince you that we are indeed representing everything as a linear combination of sinusoids.

4.1 From exponentials to trigonometry

For real x(t), $x^*(t) = x(t)$, and

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} = \sum_{k=1}^{\infty} (a_k e^{jk\omega_0 t} + a_{-k} e^{-jk\omega_0 t}) + a_0.$$

Since x(t) is real, we must have $a_{-k} = a_k^*$ (you can see that this is indeed the case in the example above with real signals). Therefore

$$x(t) = a_0 + \sum_{k=1}^{\infty} \left[a_k e^{jk\omega_0 t} + a_k^* e^{-jk\omega_0 t} \right] = a_0 + 2\sum_{k=1}^{\infty} \operatorname{Re} \left\{ a_k e^{jk\omega_0 t} \right\},$$

where we used the fact that for any complex number $z, z + z^* = 2 \operatorname{Re}\{z\}$.

Writing $a_k = B_k + jC_k$ with $B_k, C_k \in \mathbb{R}$, we obtain the trigonometric form

$$x(t) = a_0 + 2\sum_{k=1}^{\infty} \left[B_k \cos(k\omega_0 t) - C_k \sin(k\omega_0 t) \right]. \tag{2}$$

Equation (2) shows that x(t) is a linear combination of sinusoids at frequencies $k\omega_0$, $k = 1, 2, \ldots$ with real coefficients. The constant term a_0 is the DC component (average value) of x(t) (as we will see again in the next section). It's also finally an equation without any complex numbers or the imaginary term j in it! So, it's hopefully more intuitive now. Let's continue towards our main goal — finding a_k .

4.2 The Fourier coefficients

To find a_k generally, let's start by multiplying both sides of equation (1) by $e^{-jn\omega_0 t}$ for some integer $n \in \mathbb{Z}$, we get

$$x(t) e^{-jn\omega_0 t} = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} e^{-jn\omega_0 t} = \sum_{k=-\infty}^{\infty} a_k e^{j(k-n)\omega_0 t}.$$

Next, let us integrate this equation over [0, T),

$$\int_0^T x(t) e^{-jn\omega_0 t} dt = \sum_{k=-\infty}^\infty a_k \int_0^T e^{j(k-n)\omega_0 t} dt$$

Now, we need to evaluate the integral on the right-hand side. We have two cases:

• If k = n, then

$$\int_{0}^{T} e^{j(k-n)\omega_{0}t} dt = \int_{0}^{T} 1 dt = T$$

since $e^{j0} = 1$.

• If $k \neq n$, then we have

$$\int_0^T e^{j(k-n)\omega_0 t} dt$$

Using orthogonality over one period T, this integral is 0 (since integrating a sinusoid over one period will lead to the positive and negative areas canceling out). You can verify this by direct integration too:

$$\int_{0}^{T} e^{j(k-n)\omega_{0}t} dt = \left[\frac{e^{j(k-n)\omega_{0}t}}{j(k-n)\omega_{0}} \right]_{0}^{T} = \frac{e^{j(k-n)\omega_{0}T} - 1}{j(k-n)\omega_{0}} = 0$$

since $e^{j(k-n)\omega_0 T} = e^{j(k-n)2\pi} = 1$ for every integer k-n (from the pop-quiz above).

Hence, we have the Fourier series analysis equation (the equation that gives us values of a_k):

$$a_n = \frac{1}{T} \int_0^T x(t) e^{-jn\omega_0 t} dt \qquad n \in \mathbb{Z},$$

if you replace n by k, you get the more familiar form:

$$a_k = \frac{1}{T} \int_0^T x(t) e^{-jk\omega_0 t} dt, \qquad k \in \mathbb{Z},$$

which is the formula for the Fourier series coefficients. Note that for k=0, we have

$$a_0 = \frac{1}{T} \int_0^T x(t) dt,$$

which is the average value (or DC component) of x(t) over one period.

4.3 Properties of Fourier Series coefficients

There are many helpful properties that you should know about Fourier series coefficients. Here are a few of them (you can find the full list in the textbook):

Linearity For two periodic signals x(t) and y(t) with Fourier Series coefficients a_k and b_k , if we construct another signal by linear superposition, z(t) = Ax(t) + By(t), then the Fourier Series coefficients for z(t) satisfy

$$z(t) \iff \{Aa_k + Bb_k\}_{k \in \mathbb{Z}}.$$

Periodic convolution The Fourier series coefficients for the output y(t) of a system with impulse response h(t) to a periodic input x(t) can be computed using periodic convolution.

Let y(t) = (x * h)(t) denote periodic convolution with period T. We write the Fourier series expansion of x(t) and y(t) as

$$x(t) = \sum_{\ell=-\infty}^{\infty} a_{\ell} e^{j\ell\omega_0 t}, \qquad h(t) = \sum_{m=-\infty}^{\infty} b_m e^{jm\omega_0 t}, \qquad \omega_0 = \frac{2\pi}{T}.$$

Let y(t) = (x * h)(t) denote the periodic convolution (integrate only for one period):,

$$y(t) = \int_0^T x(\tau) h(t - \tau) d\tau.$$

Let $\{c_k\}$ be the Fourier Series coefficients of y(t), defined as

$$c_k = \frac{1}{T} \int_0^T y(t) e^{-jk\omega_0 t} dt.$$

We can find c_k in terms of a_k and b_k using convolution as follows. Start by substituting the expression for y(t) into the definition of c_k :

$$c_k = \frac{1}{T} \int_0^T \left[\int_0^T x(\tau) h(t - \tau) d\tau \right] e^{-jk\omega_0 t} dt.$$

Now, using the following equations for the Fourier Series expansions of $x(\tau)$ and $h(t-\tau)$ (this is also an in-place proof for the time-shift property of Fourier Series!):

$$x(\tau) = \sum_{\ell} a_{\ell} e^{j\ell\omega_0 \tau}$$

and

$$h(t-\tau) = \sum_{m} b_m e^{jm\omega_0(t-\tau)} = \sum_{m} b_m e^{jm\omega_0 t} e^{-jm\omega_0 \tau},$$

we get

$$c_k = \frac{1}{T} \int_0^T \int_0^T \left(\sum_{\ell} a_{\ell} e^{j\ell\omega_0 \tau} \right) \left(\sum_m b_m e^{jm\omega_0 t} e^{-jm\omega_0 \tau} \right) e^{-jk\omega_0 t} d\tau dt.$$

Interchange sums and integrals and collect factors together to write,

$$c_k = \frac{1}{T} \sum_{\ell} \sum_{m} a_{\ell} b_m \int_0^T \int_0^T e^{j\ell\omega_0\tau} e^{-jm\omega_0\tau} e^{jm\omega_0t} e^{-jk\omega_0t} d\tau dt$$
$$= \frac{1}{T} \sum_{\ell} \sum_{m} a_{\ell} b_m \left[\int_0^T e^{j(m-k)\omega_0t} dt \right] \left[\int_0^T e^{j(\ell-m)\omega_0\tau} d\tau \right].$$

Finally, note that periodic integral over one period is 0 unless the integrand is constant. So, for any integers p, $\int_0^T e^{jp\omega_0 t} dt = \begin{cases} T, & p=0, \\ 0, & p \neq 0. \end{cases}$ Hence the t-integral is zero unless m=k, and the τ -integral is zero unless $\ell=m$:

$$\int_0^T e^{j(m-k)\omega_0 t} dt = T \,\delta_{m,k}, \qquad \int_0^T e^{j(\ell-m)\omega_0 \tau} d\tau = T \,\delta_{\ell,m}.$$

So, only the terms with $\ell = m = k$ survive!

$$c_k = \frac{1}{T} \sum_{\ell} \sum_{m} a_{\ell} b_m (T \delta_{m,k}) (T \delta_{\ell,m}) = \frac{1}{T} (T) (T) a_k b_k = T a_k b_k.$$

$$c_k = T a_k b_k, \qquad k \in \mathbb{Z}.$$

Thus, periodic convolution corresponds to a *line-by-line* product of Fourier Series coefficients: each harmonic k of the output equals T times the product of the input and impulse response harmonics at the same k.

Filtering of output using aperiodic impulse response If h(t) is aperiodic (but LTI) and x(t) is T-periodic with Fourier Series coefficients $\{a_k\}$, then

$$y(t) = (x * h)(t) = \int_{-\infty}^{\infty} h(\tau) x(t - \tau) d\tau = \sum_{k} a_k e^{jk\omega_0 t} \underbrace{\int_{-\infty}^{\infty} h(\tau) e^{-jk\omega_0 \tau} d\tau}_{H(jk\omega_0)}.$$

Hence

$$y(t) = \sum_{k=-\infty}^{\infty} a_k H(jk\omega_0) e^{jk\omega_0 t}$$

i.e., each harmonic is scaled by the continuous-time frequency response $H(j\omega)$ evaluated at $\omega = k\omega_0$. So, the Fourier Series coefficients of y(t) are

$$c_k = a_k H(jk\omega_0).$$

This will be very useful for your homework problems!

5 Practice Problems

- 1. Solved Example 3.6 in Oppenheim and Willsky (2nd Edition) the square wave
- 2. Solved Example 3.7 in Oppenheim and Willsky (2nd Edition) the ramp function
- 3. Work through the properties in Table 3.1 in Oppenheim and Willsky (2nd Edition)
- 4. Solved Example 3.5 in Oppenheim and Willsky (2nd Edition) the square wave (this is similar to HW 6 problem 1 and 2!)

Pop Quiz Solutions

Pop Quiz 3.1: Solution(s)

We can just consider the general case: for $x(t) = e^{jk\omega_0 t}$ to be periodic with period T we need x(t+T) = x(t), i.e.,

$$e^{jk\omega_0(t+T)} = e^{jk\omega_0t} \iff e^{jk\omega_0T} = 1 \iff k\omega_0T = 2\pi m, \ m \in \mathbb{Z}.$$

Thus any $T = \frac{2\pi m}{k\omega_0}$ is a period and the smallest period (the fundamental period) is

$$T_0 = \frac{2\pi}{|k|\omega_0}.$$

Since each harmonic $e^{jk\omega_0t}$ has a period that is an integer divisor of $\frac{2\pi}{\omega_0}$, the sum of all harmonics is periodic with the common (fundamental) period

$$T_0 = \frac{2\pi}{\omega_0}.$$

For k = 1, we get the simpler result for $e^{j\omega_0 t}$.

Moreover, note that $e^{jk2\pi} = \cos(2\pi k) + j\sin(2\pi k) = 1$ for every integer k, confirming periodicity.