

fakultät für mathematik

Prof. Dr. Dimitri Kuzmin Dipl.-Math. Justus Klipstein

Numerische Mathematik für Physiker und Ingenieure

Sommersemester 2018 Übungsblatt 8 Seite 1/2

Abgabe der Aufgaben bis Donnerstag, 28.06.2018, 16:15 Uhr vor der Vorlesung (einzeln, zu zweit oder dritt) in den Briefkasten Ihrer Übungsgruppe:

Gruppe	Termin	Übungsleiter	Briefkasten
2	Montag 10:00-12:00	Korinna Rosin	107
3	Montag 12:00-14:00	Mirco Arndt	108
4	Montag 14:00-16:00	Marina Bangert	109
5	Montag 16:00-18:00	Marina Bangert	109
6	Dienstag 14:00-16:00	Justus Klipstein	108
7	Dienstag 16:00-18:00	Dr. Fatma Ibrahim	110

Die Briefkästen befinden sich im Foyer des Mathematikgebäudes. Bitte vermerken Sie unbedingt auf jeder Abgabe Ihren Namen und Ihre Übungsgruppe. Eine Abgabe der theoretischen Übungsaufgaben per E-Mail ist nicht möglich.

Abgabe der Programmieraufgaben bis Donnerstag, 28.06.2018, 24:00 Uhr digital im Moodle-Arbeitsraum der Veranstaltung. Bei Abgabe zu zweit oder dritt bitte nur einmal einreichen und im Kommentar den Namen und E-Mail Adresse des/der Koautors/Koautorin/Koautoren nennen. Sie können die Aufgaben in MATLAB bzw. OCTAVE schreiben. Bitte den "Header" als Kommentar in die Programme einfügen.

Aufgabe 8.1 (Fixpunktsatz von Banach | 4 + 3 + 2 Punkte)

Betrachten Sie für $(x,y) \in [0,1]^2$ das Fixpunktproblem

$$\frac{1}{6}\cos x + \frac{1}{3}y = x, \quad \frac{1}{8}xy^2 + \frac{1}{8}\sin x = y.$$

- a) Begründen Sie, dass ein Fixpunktproblem vorliegt mit einer Abbildung $\Phi(x,y)$ die auf $[0,1]^2$ eine kontrahierende Selbstabbildung ist. Bestimmen Sie die Kontraktionskonstante in der Zeilensummen- und der Spaltensummennorm.
- **b)** Geben Sie ausgehend vom Startwert $x_0 = (0.5, 0.5)$ die ersten 6 Iterationen des Fixpunktverfahrens an.

Hinweis: Benutzen Sie Matlab, GNU Octave oder Ähnliches.

c) Wie weit ist man nach 6 Iterationen noch vom Fixpunkt entfernt (a posteriori Abschätzung)? Führen Sie die Abschätzung jeweils für die Zeilensummen- und die Spaltensummennorm (Kontraktionskonstante) und deren zugeordneten Vektornormen durch.

Aufgabe 8.2 (Newton-Verfahren im $\mathbb{R}^2 \mid 1+3+6$ Punkte)

In dieser Aufgabe soll eine Extremalstelle der Funktion

$$f(x,y) = x^3 + y^3 - 3xy$$

durch das Newton-Verfahren ermittelt werden.

Prof. Dr. Dimitri Kuzmin Dipl.-Math. Justus Klipstein Sommersemester 2018 Übungsblatt 8 Seite 2/2

Numerische Mathematik für Physiker und Ingenieure

das Vorliegen einer Extremalstelle folgt.

- a) Geben Sie das nichtlineare Gleichungssytem an, welches aus der notwendigen Bedingung für
- b) Formulieren Sie das Newton-Verfahren zur Lösung dieses Gleichungssystems.
- c) Berechnen Sie vom Startwert $x_0 = (2,2)^{T}$ ausgehend zwei Iterationen des Newton-Verfahrens.

Programmieraufgabe 8.1 (Fixpunktiteration | 4 Punkte)

In dieser Aufgabe sollen die theoretischen Ergebnisse aus Aufgabe **7.1** numerisch evaluiert werden (Vorheriger Zettel). Implementieren Sie dazu ein Skript myFixpunktIter, welches das Fixpunktproblem aus Aufgabe **7.1** b) löst. Verwenden Sie als Startwert $x_0 = 0$ und führen Sie N Schritte aus (mit N aus c)). Geben Sie x_i und $|x_i - x_{i-1}|$ für $i = 1, \ldots, N$ aus.

