Automata and Reactive Systems

Lecture No. 10

Prof. Dr. Wolfgang Thomas

thomas@informatik.rwth-aachen.de

Lehrstuhl für Informatik VII
RWTH Aachen

ω -language L_n

Definition of L_n by a Büchi automaton \mathcal{B}_n over the alphabet $\{1,\ldots,n,\#\}$

4.11 Theorem: Any deterministic Rabin automaton which recognizes L_n must have $\geq n!$ states.

Characterization of L_n

Remark:

$$\alpha \in L_n \iff$$

(*) there are letters $i_1, \ldots, i_k \in \{1, \ldots, n\}$ (pairwise distinct) such that α contains i_1 , and the segments of letter pairs $i_1i_2, i_2i_3, \ldots, i_{k-1}i_k, i_ki_1$ occur infinitely often in α

Application of (*):

4.12 Lemma (Permutation Lemma):

For each permutation $(i_1 \ldots i_n)$ of $(1, \ldots, n)$, the ω -word $(i_1 \ldots i_n \#)^{\omega}$ does not belong to L_n .

Union Lemma

Let $\mathcal{R}=(Q,\Sigma,q_0,\delta,\Omega)$ be a Rabin automaton with $\Omega=((E_1,F_1),\ldots,(E_k,F_k))$. Let $\rho_1,\rho_2,\rho\in Q^\omega$ be runs with $\mathrm{Inf}(\rho_1)\cup\mathrm{Inf}(\rho_2)=\mathrm{Inf}(\rho)$.

If ρ_1 and ρ_2 are not successful, then ρ is not successful.

Proof: Assume ρ_1, ρ_2 are not successful but ρ is.

Then some $j \in \{1, ..., k\}$ exists with $Inf(\rho) \cap E_j = \emptyset$ and $Inf(\rho) \cap F_j \neq \emptyset$.

By assumption of Lemma: $Inf(\rho_1) \cup Inf(\rho_2) = Inf(\rho)$

Hence $Inf(\rho_1) \cap E_j = Inf(\rho_2) \cap E_j = \emptyset$

and $(\operatorname{Inf}(\rho_1) \cap F_j \neq \emptyset)$ or $\operatorname{Inf}(\rho_2) \cap F_j \neq \emptyset$.

So ρ_1 or ρ_2 is successful, a contradiction.

Proof of Theorem

Assume the Rabin automaton $\mathcal R$ recognizes L_n .

We have to show that \mathcal{R} has $\geq n!$ states.

Consider two distinct permutations $(i_1, \ldots, i_n), (j_1, \ldots, j_n)$ of $1, \ldots, n$.

The
$$\omega$$
-words $\underbrace{(i_1 \ldots i_n \#)^{\omega}}_{\alpha}$, $\underbrace{(j_1 \ldots j_n \#)^{\omega}}_{\beta}$

are not accepted by \mathcal{R} (Permutation Lemma!)

Consider the two non-accepting runs ρ_{α} , ρ_{β} of \mathcal{R} on α , β , and set $R := Inf(\rho_{\alpha})$ and $S := Inf(\rho_{\beta})$.

Claim: $R \cap S = \emptyset$.

Then \mathcal{R} must have as many states as permutations, i.e. $\geq n!$ states.

For contradiction assume $q \in R \cap S$.

Construct from ρ_{α} , ρ_{β} a new run on a new input word:

input segment $j_1 \dots j_n$ included

We repeat the two loops in alternation, get a new input word γ and a new run ρ on γ with $\mathrm{Inf}(\rho) = R \cup S$.

$$R \cap S = \emptyset$$

 $q \in R \cap S$

By the Union Lemma we know that ρ is not successful.

But we now show that γ has the cycle property (*) and hence $\gamma \in L_n$ (contradiction)

In γ both $i_1 \dots i_n$ and $j_1 \dots j_n$ occur infinitely often.

Since $i_1 ldots i_n \neq j_1 ldots j_n$, we may pick the smallest k with $i_k \neq j_k$. Then:

$$i_1 \dots i_{k-1} i_k i_{k+1} \dots i_n$$

$$\parallel \quad \parallel \quad \parallel$$

$$j_1 \quad j_{k-1} j_k j_{k+1} \dots j_n$$

$$i_1 \dots i_{k-1} i_k i_{k+1} \dots i_n$$

$$\parallel \quad \parallel \quad \parallel$$

$$j_1 \quad j_{k-1} j_k j_{k+1} \dots j_n$$

There is i_l with l > k, such that $i_l = j_k$.

Similarly there is j_r with r > k such that $j_r = i_k$.

$$i_k i_{k+1}, \ldots, i_{l-1} i_l$$
 , $j_k j_{k+1}, \ldots, j_{r-1} j_r$, $i_k i_{k+1}, \ldots$

We get a cycle of letter pairs as in condition (*).

So
$$\gamma \in L_n$$

in contradiction to the fact that run ρ is not successful.

Open Problem

Question:

Does the same lower bound of n! states also hold for the transformation from Büchi automata to deterministic Muller automata?

This is an open problem.

We would need a new family of example languages.

Exercise: The language L_n is accepted by a deterministic Muller automaton with n^2 states.

5 Logical Application: From S1S to Büchi automata

A consequence of McNaughton's Theorem:

The class of Büchi recognizable ω -languages is closed under complement.

Proof:

Given a Büchi automaton $\mathcal B$, construct a Büchi automaton for the complement ω -language as follows:

- 1. From $\mathcal B$ obtain an equivalent deterministic Muller automaton $\mathcal M$ by Safra's construction
- 2. In $\mathcal M$ declare the non-accepting state sets as accepting and vice versa and thus obtain $\mathcal M'$
- 3. From \mathcal{M}' obtain an equivalent Büchi automaton \mathcal{B}'

We have shown:

A Büchi-recognizable ω -language is S1S definable.

Now we prove the converse:

5.1 Theorem:

An S1S-definable ω -language is Büchi recognizable.

There will be two stages:

- 1. Reduction of S1S to a simpler formalism S1S₀
- 2. Construction of Büchi automata by induction on S1S₀-formulas.

Preparations: From S1S to S1S₀

We eliminate some constructs from S1S:

The constant 0 can be eliminated: Instead of X(0) write

$$\exists t(X(t) \land \neg \exists s(s < t))$$

The relation symbol < can be eliminated: Instead of s < t write

$$\forall X(X(s') \land \forall y(X(y) \rightarrow X(y')) \rightarrow X(t))$$

("each set which contains s' and is closed under successor must contain t")

The successor function only occurs in formulas x' = y: Instead of X(s'') write

$$\exists y \exists z (s' = y \land y' = z \land X(z))$$

S1S₀

Eliminate the use of first-order variables by using different atomic formulas:

$$X \subseteq Y$$
, $Sing(X)$, $Succ(X, Y)$, meaning:

"X is subset of Y", "X is a singleton set", and

" $X = \{x\}, Y = \{y\}$ are singleton sets with x + 1 = y"

Now one can write

$$X(y)$$
 as $Sing(Y) \land Y \subseteq X$

$$x' = y$$
 as $Succ(X, Y)$

Translation example: $\forall x \ \exists y (x' = y \land Z(y))$ is written as

$$\forall X(\operatorname{Sing}(X) \to \exists Y(\operatorname{Sing}(Y) \land \operatorname{Succ}(X,Y) \land Y \subseteq Z))$$

5.1 Theorem:

An S1S-definable ω -language is Büchi recognizable.

Proof:

We can assume that S1S-formulas $\varphi(X_1,\ldots,X_n)$ are rewritten as S1S₀-formulas.

Show the claim by induction on S1S₀-formulas:

It suffices to treat

the atomic formulas

$$X_1 \subseteq X_2$$
, $\operatorname{Sing}(X_1)$, $\operatorname{Succ}(X_1, X_2)$

• the connectives \lor and \neg and the existential set quantifier \exists .

Büchi automata for the formulas

$$X_1 \subseteq X_2$$
, $Sing(X_1)$, $Succ(X_1, X_2)$

$$3 \longrightarrow \frac{2^{\circ}}{1} \longrightarrow 0$$

$$x_1 = 001101...$$
 $x_2 = 010101...$

$$\chi_1 = 000010000$$

Induction step

1. Consider $\varphi_1(X_1,\ldots,X_n) \vee \varphi_2(X_1,\ldots,X_n)$

By induction hypothesis assume Büchi automata $\mathcal{A}_1, \mathcal{A}_2$ are equivalent to φ_1, φ_2 . Take the Büchi automaton for the union.

2. Consider $\neg \varphi(X_1,\ldots,X_n)$

By induction hypothesis there is a Büchi automaton equivalent to φ .

Apply the closure of Büchi recognizable ω -languages under complement, to obtain a Büchi automaton equivalent to $\neg \varphi$.

3. Existential quantifier: Consider $\exists X \varphi(X, X_1, \dots, X_n)$

Assume \mathcal{A} is a Büchi automaton equivalent to $\varphi(X, X_1, \dots, X_n)$

In \mathcal{A} , change each transition label (b, b_1, \dots, b_n) into (b_1, \dots, b_n) ; thus obtain \mathcal{A}' .

Then a transition via b in \mathcal{A}' amounts to the existence of a transition via $(0, \overline{b})$ or $(1, \overline{b})$ in \mathcal{A} .

 \mathcal{A}' accepts $\alpha \in (\mathbb{B}^n)^\omega$

iff there exists a bit sequence c_0c_1 ... such that $(c_0, \alpha(0)), (c_1, \alpha(1))$... is accepted by \mathcal{A}

iff $\exists c_0 c_1 \dots$ such that \mathcal{A} accepts $(c_0, \alpha(0)), (c_1, \alpha(1)) \dots$

iff $\alpha \models \exists X \varphi(X, X_1, \dots, X_n)$

So the Büchi automaton \mathcal{H}' is equivalent to $\exists X \varphi(X, X_1, \dots, X_n)$

Illustration

Complexity of Logic-Automata Translation

We have translated LTL- and S1S-formulas into Büchi automata.

The complexity bounds are very different.

We define the k-fold exponential function g_k by

$$g_0(n) = n, \quad g_{k+1}(n) = 2^{g_k(n)}$$

5.2 Theorem:

- 1. An LTL formula of size n (measured in the number of subformulas) can be translated into a Büchi automaton with 2^n states
- 2. There is no k such that each S1S formula of size n (measured in the number of subformulas) can be translated into a Büchi automaton with $g_k(n)$ states

The case of sentences

A sentence is a formula without free variables.

The translation of a sentence φ into a Büchi automaton \mathcal{A}_{φ} yields an automaton with unlabelled transitions.

The sentence φ is true in the structure $(\mathbb{N}, +1, <, 0)$ iff the automaton \mathcal{A}_{φ} has a successful run.

The latter condition can be checked as in the nonemptiness test.

Consequence: One can decide, for any given S1S-sentence φ , whether φ is true in $(\mathbb{N}, +1, <, 0)$ or not.

Monadic second-order theory of successor

The monadic second-order theory of $(\mathbb{N}, +1, <, 0)$ is the set of S1S-sentences which are true in $(\mathbb{N}, +1, <, 0)$

Notation: $MTh_2(\mathbb{N}, +1, <, 0)$

Example sentences:

$$\forall X \,\exists Y (\forall t (X(t) \rightarrow Y(t)))$$

$$\forall X \exists t \ \forall s(X(s) \rightarrow s < t)$$

$$\forall X(X(0) \land \forall s(X(s) \rightarrow X(s')) \rightarrow \forall tX(t))$$

tone

felre

tone

5.3 Theorem (Büchi 1960):

The theory $MTh_2(\mathbb{N}, +1, <, 0)$ is decidable.