CIRCUITOS LÓGICOS

Relatório VII

Discente: Rebeca de Macêdo Ferreira. Matrícula: 2016000524

Nesse projeto fizemos um somador de 16 bits

```
library IEEE;
      use IEEE.STD LOGIC 1164.ALL;
      use IEEE.STD LOGIC UNSIGNED.ALL;
 3
 4
 5
    entity adder is
          generic (N: integer :=8);
 6
 7
          port (a, b: in STD LOGIC VECTOR (N-1 downto 0);
 8
          cin: in STD_LOGIC; s: out STD_LOGIC_VECTOR(N-1 downto 0);
 9
          cout: out STD LOGIC);
10
11
     Lend;
12
13
    marchitecture synth of adder is
14
          signal result: STD LOGIC VECTOR(N downto 0);
15
16
    -begin
17
          result <= ('0' & a) + ('0' & b) + cin;
18
          s <= result (N-1 downto 0);</pre>
19
          cout <= result (N);
20
     Lend;
```

Este VDHL foi copiado no livro Digital Design and Computer Architecture, e define como entrada 'a', 'b' e 'cin' e como saída 's' 'cout'.

Após compilado, selecionamos RTL viewer:

Para fazer as simulações corretas, fez-se um test vector

Os primeiros 16 bits (esquerda pra direita) são referentes à entrada 'a', os próximos 16 bits correspondem à entrada 'b', o bit seguinte é o 'cin', depois o 'cout', depois a saída 's'.

Alteramos o testbench do projeto de um somador completo para o caso do projeto atual...

```
marchitecture sim of testbench adder is
12
       component adder
13
            port (a, b: in STD_LOGIC_VECTOR(15 downto 0);
                    cin: in STD LOGIC;
14
15
                    s: out STD LOGIC_VECTOR(15 downto 0);
16
                     cout: out STD_LOGIC);
17
         end component;
18
19
     signal clk: STD LOGIC;
     signal a, b, s: STD LOGIC VECTOR (15 downto 0);
20
21
     signal cin, cout: STD_LOGIC;
     signal sexpected: STD_LOGIC_VECTOR(15 downto 0);
22
23
     signal coutexpected: STD LOGIC;
24
     constant MEMSIZE: integer := 8;
     type tvarray is array (MEMSIZE downto 0) of STD_LOGIC_VECTOR (49 downto 0);
25
26
    signal testvectors: tvarray;
27
     shared variable vectornum, errors: integer;
28
     begin
29
     -- instantiate device under test
30
     dut: adder port map (a, b, cin, s, cout);
31
     -- generate clock
32 process begin
33
        clk <= '1'; wait for 15 ns;
         clk <= '0'; wait for 5 ns;
34
35 -end process;
```

O próximo passo foi simular o RTL level

																ľ
																T)
00000000	000000	000	111111111111	11111					000000000000	0000	11111111111	1111				
11111111	111111	111	000000000000		000000000000		***************************************				000000000000000000000000000000000000000		00000000000		00000000	1111
1111111	111111	111			000000000000	00000	111111111111	1110	000000000000	0000			00000000000	00001	11111111111	1111
11111111	111111	111			0000000000000	00000	11111111111	1110	000000000000000000000000000000000000000	0000			00000000000	0001	***************************************	11111
({UUUUUL	JUUUL	JUUUUUUU	JUUUUUUUUU	<u>JUUUUUUUUUU</u>	JUUUUUUUUU	J} {1111111111	111111111111	111111111111	1111111111111	111111} {1111	111111111111	.00000000000	000011100000	00000000001}	{1111111111	111

Depois simulamos o Gate level

DIRETÓRIO

Código VHDL: adder/adder.vhd

Código Testbench: adder/testbench/testbench_adder.vhd

Arquivo test vector: adder/ simulation / ModelSim / adder.tv