VICTORIA UNIVERSITY OF WELLINGTON

Te Whare Wananga o te Upoko o te Ika a Maui

Exam and Lecture Overview

Lecturer : Dr. Pavle Mogin

SWEN 432 Advanced Database Design and Implementation

Plan for Final Lecture

- What you may expect to be asked in the Exam?
- The answer:
 - All what we have learned is examinable, except the topic of the essay
- Exam questions will cover all the important topics we learned in lectures and applied in assignments
- 120 marks, 120 minutes
- Since we covered many topics, quiet a number of questions will be asking for a rather short answer
- Use Lecture Notes and Assignments as your main source for making the preparation

Exam – Structure and Content

- Exam structure will follow the structure of lectures:
 - Cloud Databases
 - General features of Cloud Databases (~23%)
 - Cassandra (~44%)
 - MongoDB (~16%)
 - Data Warehousing and OLAP (~17%)

Cloud Databases – General Features

Basic features

- Scalability
- Availability,
- Shared nothing,
- Data partitioning and replication,
 - Consistent Hashing,
 - Master Slave,
 - Membership changes
- Data versioning,
- Gossip protocol
- Trade-offs in cloud databases
 - CAP theorem
 - BASE
 - Range of consistency levels
 - Availability and consistency trade-offs

(1)

- Data model:
 - Column families with a CQL abstraction layer
- CQL:
 - Keyspace (column families having the same replication factor),
 - Tables (abstracting column families) (have non default features),
 - Query syntax: very close to the relational SQL, but not that powerful and with many restrictions not present in SQL

(2)

- Data modeling
- Storage Engine
 - Table Primary Key and Partitioning
 - Storage Engine Rows
 - Log Structured Merge Trees (mem table, log file, SSTables)
 - Write Paths for Insert and Update
 - About Reads (use of Bloom filters)
 - About Deletes (use of tombstones)
 - Compaction (deleting obsolete and deleted column values, uniting row fragments)
- Consistency levels:
 - Spread from strict via strong to eventual
 - Adjustable per a DML statement

(3)

- Architecture
 - Internode Communication
 - Gossip Protocol
 - Seed Nodes
 - Partitioning
 - Consistent hashing
 - A partitioner maps a partition key value into a token
 - Snitches (files containing topology information)
 - Keyspace and the replication strategy
 - cassasndra.yaml
 - cassandra-topology.properties
- Light weight transactions (CAS):
 - To avoid overwrite of other people's work

(4)

- Repair mechanisms
 - Read repair
 - Hinted Handoff Writes
 - Extreme write availability
 - Anti-entropy Node Repair (Merkle Trees)

MongoDB

(1)

- Data Model:
 - Data representation by documents
 - Document implementation by:
 - Embedding or Referencing
 - A rich query language:
 - Shell methods:
 - find(), insert(), update()
 - Simple aggregation (count(), distinct()),
 - Pipelined Aggregation with several stages, each having several expressions,
 - Powerful when combined with java scripts

MongoDB

(2)

Architecture

- Sharding:
 - Shard Key,
 - Balancing Data Distribution,
- Sharding architecture
 - Drivers (accept client's requests),
 - Routers (mogos processes rout user requests to appropriate replica set using meta data),
 - Configuration servers (contain routing information)
 - Replica set (contain shard data)
- Replication:
 - Master Slave Mode,
 - · Replica Set Operation,
 - Failover Election of a new Master (HA Cluster)

Data Warehousing and OLAP

(1)

- OLAP Database Structures
 - Star Schema
 - Facts,
 - Dimensions,
 - Attributes and attribute hierarchies,
 - Snowflakes, and
 - Constellations
 - Hyper Cube (Multidimensional Cube)
- Basic OLAP Queries
 - Roll-up (hierachical and dimensional)
 - Drill-down,
 - Slice and Dice, and
 - Pivoting.

Data Warehousing

(2)

- OLAP Specific Extensions of SQL
 - CUBE,
 - ROLLUP,
 - WINDOW, and
 - RANK
- Materialized Views
- Dimension Hierarchy
 - A syntax for defining attribute hierarchies and functional dependencies between attributes
- Query Rewriting
 - Text match, and
 - General query rewrite with:
 - · Join compatibility check,
 - Data sufficiency check,
 - Grouping compatibility check, and
 - Aggregate computability check

Data Warehousing

(3)

- Aggregate Functions
 - Distributive (SUM, COUNT, MIN, MAX),
 - Algebraic (AVG, VAR), and
 - Holistic (Median, RANK, TopN)
- OLAP Architectures
 - Virtual Datawarehouse,
 - Data Mart in a Box,
 - Stovepipe Data Mart,
 - Architected Data Mart,
 - Enterprise Data Warehouse with HOLAP