25 Spring ECEN 720: High-Speed Links: Circuits and Systems Pre-lab Report

Lab6: Link Modeling with ADS

Name: Yu-Hao Chen

UIN:435009528

Section:700

Professor: Sam Palermo

TA: Srujan Kumar Kaile

1. In digital circuit design, there are many switching signals. Finite supply impedance causes switching output noise. Build the circuit shown in Figure 28 with supply inductance and decoupling capacitance. Use Case 1: CLK (i.e. 1010 pattern) and Case 2: 7-bits PRBS as the input sources. CLK frequency is set to be 2.5GHz with 20ps rise/fall time. PRBS date rate is 5Gb/s with 20ps rise/fall time. Please plot the output eye diagrams. Compare the results with the case having ideal supply (zero supply impedance by removing all parasitics).

2. Complete the noise and jitter budget tables.

Table 2 Noise Budget (V)

Parameter	Kn	RMS	Value (BER=10 ⁻¹²)		
Peak Differential Swing		Q = 14.06		1	
bounded RX Offset + Sensitivity				0.005	
unbounded Power Supply Noise			0.004		
bounded Residual ISI	0.03		X1	? 0.03	
bounded Crosstalk	0.02		X1	?0.02	
unbounded Random Noise		0.002	X 14. 06	?0.02812	
Attenuation	12dB		X 10 10	? 0. 2511	
Total Noise				?0. 33822	
Differential Eye Height Margin				? 0. 132	

bounded: 0.03 CISI) + 0.02 (crosstulk) + 0.005 (odfset) = 0.055 v.

+0.25v.

-0.25v.

Table 3 Jitter Budget (ps)

Component (BER=10 ⁻¹²)	RJ	DJ	TJ
TX+PLL	14.06 1	1 2	26.06?
Channel	21.09 1.5	25	46. 09?
RX+CDR	28.12 2	_ 12	40.12?
RSS TJ	37. 85 ?	? 49	86.85?

random determin

$$TX+ PLL = (Yms) \int_{1^{2}}^{2} X \ Q \ C14.06) = 14.06$$

Channel = $\int_{1.5^{2}}^{2} X \ Q = 21.09$

RX+ CDR = $\int_{2^{2}}^{2} X \ Q = 28.12$

RSS TJ : $\int_{1^{2}+1.5^{2}+2^{2}}^{2} = 37.85$

 \leftarrow