23

V

4

 $X_i^e = g(X_{S_i}^e) + \epsilon^e, \text{ for some } i \in \{1, \dots, m\}, \qquad (1)$

)

The noise variables ϵ_Y and ϵ_3 are i.i.d. $\mathcal{N}(0, \sigma^2)$. Suppose particular $e \in \mathcal{E}$ becomes difficult as β_1^e and μ_2^e vary with

Fig. 1: Comparisons of \hat{Y}_3^{test} (left) and \hat{Y}_2^{test} (right), where

 $F_{2}[Y_{2}|Y_{1}=r_{1}] - F_{2}[Y_{2}|Y_{1}=r_{1}|Y=0]$

Definition 1. For $k \in \{1, ..., m\}$, $S \subseteq \{1, ..., m\} \setminus k$, and $h(X_S, Y) := \mathsf{E}_{\mathcal{P}_e}[X_k | X_S, Y]$, the pair (k, S) satisfies the

$$n(\mathbf{A}_S, \mathbf{1}_J - n(\mathbf{A}_S, \mathbf{0}_J) \quad , \tag{8}$$

1) $X_k^e=g(X_R^e,Y^e)+\epsilon^e$ as in (1) , 2) $X_Q^e\perp \!\!\! \perp X_k^e \mid (X_R^e,Y^e)$.

 $\mathsf{E}_{\mathcal{P}_e}[Y|\phi_e(X) = (x_Q, x_R, z)]$

(9)

$$\begin{cases} X_1^e := f_1^e(X_{PA(X_1^e)}^e, \ \epsilon_1^e), \end{cases}$$
 (10)

all $i \in \{0, ..., m\}$.

some $i\in\{0,\dots,m\},$ let $f_i^e(X^e_{PA(X^e)},\epsilon^e_i)=g(X^e_{PA(X^e)})+$

Input: Y^e , for each $e \in \mathcal{E}_{train}$, and X^e , for each $e \in \mathcal{E}_{obs}$

$$\sum_{(k,S)\in\mathcal{T}_{ ext{inv}}} \hat{oldsymbol{Y}}_{k,S}^{ ext{test}}$$

$$\begin{aligned} & \textbf{for each } e \in \mathcal{E}_{\text{train}} \text{ and } i \in \{0,1\} \text{ do} \\ & \boldsymbol{R}_i^e = \boldsymbol{X}_{k.Y=i}^e - \hat{g}_i(\boldsymbol{X}_{S.Y=i}^e) \\ & \boldsymbol{R} \\ & \text{pval}_i^e = t\text{-test}(\boldsymbol{R}_i^e, \boldsymbol{R}_i^{-e}) \end{aligned}$$

 $\{3,\ldots,7\}.$ For each $i\in\{2,\ldots,m\}$ and $e\in\mathcal{E}_{ ext{train}},~X_i^e\sim$

for $e=e^1$, [0,2] for $e=e^2$, and [0,3] for $e=e^{\text{test}}$. Then, where $S_1=\{2,\ldots,m\}$, $Y^e|X_{S_1}^e$ follows a logistic model such that $\mathcal{P}_e(Y=1|X_{S_1})=1/(1+e^{-X_{S_1}\beta^e})$ for $e\in\mathcal{E}_{\text{train}}$. For e^{test} , $Y^{\text{test}}|X_{S_1}^{\text{test}}$ follows a probit model such that $Y^{\text{test}}=1$, if $X_{S_1}^{\text{test}}\beta^{\text{test}}+\epsilon<0$, where $\epsilon\sim\mathcal{N}(0,1)$. For all $e\in\mathcal{E}_{\text{obs}}$,

then scaled such that they sum to one. For all $e \in \mathcal{E}_{\mathsf{obs}}$,

Specifically, $g_1(X_{S_1}^e) = X_{S_1}^e \eta_1$ and $g_0(X_{S_1}^e) = X_{S_1}^e \eta_0$. The

Two real-world data. We also include experiments on two real datasets: census [18] and mushroom [19]. The census 14 societal and demographic variables such as age, education, whether or not an individual's income exceeded 50k/yr. The

mushroom data below.

meadows	76.0	87.5	46.2
paths	88.1	90.9	11.8

naturally growing mushrooms' size, shape, and color and

or paths. Results in Table II indicate that bIMP outperforms

VII. ACKNOWLEDGEMENTS

 $e \in \mathcal{E}_{\text{obs}}$. Without loss of generality, let X_i^e be continuous for all $i \in \{1, \dots, m\}$. The pdf of $X_k^e | X_S^e$ for any $e \in \mathcal{E}_{\text{obs}}$ is

$$f_{X_{k}^{e}|X_{S}^{e}}(x_{k}|x)$$

$$= f_{X_{k}^{e}|X_{S}^{e},Y^{e}}(x_{k}|x,1) \cdot p_{Y^{e}|X_{S}^{e}}(1|x)$$

$$+ f_{X_{k}^{e}|X_{S}^{e},Y^{e}}(x_{k}|x,0) \cdot p_{Y^{e}|X_{S}^{e}}(0|x)$$

$$= f_{X_{k}^{e}|X_{S}^{e},Y^{e}}(x_{k}|x,1) \cdot p_{Y^{e}|X_{S}^{e}}(1|x)$$

$$+ f_{X_{k}^{e}|X_{S}^{e},Y^{e}}(x_{k}|x,0) \cdot \left[1 - p_{Y^{e}|X_{S}^{e}}(1|x)\right]$$

$$= p_{Y^{e}|X_{S}^{e}}(1|x) \left[f_{X_{k}^{e}|X_{S}^{e},Y^{e}}(x_{k}|x,1) - f_{X_{k}^{e}|X_{S}^{e},Y^{e}}(x_{k}|x,0)\right]$$
(12)

$$\int_{-\infty}^{\infty} x_k \cdot f_{X_k^e|X_S^e}(x_k|x) dx_k$$

$$- \mathsf{E}_{\mathcal{P}_e}[Y|X_S = x] \cdot \mathsf{E}_{\mathcal{P}_e}[X_k|X_S = x, Y = 0] \tag{13}$$

$$\frac{\mathsf{E}_{\mathcal{P}_e}[X_k|X_S] - \mathsf{E}_{\mathcal{P}_e}[X_k|X_S, Y = 0]}{\mathsf{E}_{\mathcal{P}_e}[X_k|X_S, Y = 1] - \mathsf{E}_{\mathcal{P}_e}[X_k|X_S, Y = 0]}.$$
 (14)

on e and (II) the denominator of (14) is non-zero. Since $X^e_S = (X^e_R, X^e_Q),\,$

$$\mathsf{E}_{\mathcal{P}_e}[X_k|X_S,Y] = \mathsf{E}_{\mathcal{P}_e}[X_k|X_R,X_Q,Y] \stackrel{(a)}{=} \mathsf{E}_{\mathcal{P}_e}[X_k|X_R,Y]$$

$$\stackrel{(b)}{=} \mathsf{E}_{\mathcal{P}_e}[g(X_R,Y) + \epsilon|X_R,Y] = g(X_R^e,Y^e), \quad (15)$$

where (a) follows since $X_O^e \perp X_L^e | X_R^e, Y^e$, (b) follows from

 ϵ has zero mean. Thus, the $\mathsf{E}_{\mathcal{P}_e}[X_k|X_S=(x_Q,x_R),Y=y]$ does not depend on e as $\mathsf{E}_{\mathcal{P}_e}[X_k|X_S=(x_Q,x_R),Y=y]=$

REFERENCES

[12] M. Rojas-Carulla, B. Schölkopf, R. Turner, and J. Peters, "Invariant

[13] D. Rothenhäusler, N. Meinshausen, P. Bühlmann, and J. Peters, "Anchor

[6] B. Schölkopf, D. Janzing, J. Peters, E. Sgouritsa, K. Zhang, and J. Mooij,