Лабораторна робота № 3. Перевірка статистичних гіпотез:

гіпотеза однорідності (критерій пустих блоків та χ^2 -критерій),

гіпотеза незалежності (χ^2 -критерій, критерії Спірмена та Кендалла) та гіпотеза випадковості (критерій, що ґрунтується на кількості інверсій)

Всі розрахунки проводяться при рівні значимості $\gamma = 0.05$.

Завдання 1. Перевірка гіпотези однорідності.

А. Критерій пустих блоків. Генеруємо дві незалежні вибірки:

$$\overline{X} = (X_1, ?, X_n) \qquad ? F_{\xi}(u) = 1 - e^{-u}, \ u \ge 0,$$

$$\overline{Y} = (Y_1, ?, Y_m) \qquad ? F_{\eta}(u) = 1 - e^{-1.2u}, \ u \ge 0$$

За допомогою критерію пустих блоків перевірити гіпотезу однорідності при наступних значеннях параметрів:

a)
$$n = 500$$
, $m = 1000$; b) $n = 5000$, $m = 10000$; c) $n = 50000$, $m = 100000$.

В. Критерій χ^2 . Генеруємо три серії незалежних спостережень:

$$\overline{X} = (X_1, ?, X_n) \qquad \text{?} F_{\xi}(u) = 1 - e^{-u}, \ u \ge 0,$$

$$\overline{Y} = (Y_1, ?, Y_m) \qquad \text{?} F_{\eta}(u) = 1 - e^{-u}, \ u \ge 0,$$

$$\overline{Z} = (Z_1, ?, Z_k) \qquad \text{?} F_{\zeta}(u) = 1 - e^{-1.5u}, \ u \ge 0$$

За допомогою критерію χ^2 перевірити гіпотезу однорідності при наступних значеннях параметрів:

a)
$$n = 200$$
, $m = 600$, $k = 400$; b) $n = 2000$, $m = 6000$, $k = 4000$; c) $n = 20000$, $m = 60000$, $k = 40000$.

<u>Зауваження</u>. Кількість r проміжків і самі проміжки U_i , i = 1,?, r, обирати самостійно.

Завдання 2. Перевірка гіпотези незалежності.

Генеруємо вибірку $(\overline{X},\overline{Y}) = \{(X_1,Y_1),\dots,(X_n,Y_n)\}$ за наступним правилом: $\{X_i\}$ — це реалізації рівномірно розподіленої на [0,1] випадкової величини ξ , а $\{Y_i\}$ — це реалізації випадкової величини ξ + η , де η має рівномірний розподіл на проміжку [-1,1] , тобто $(X_i,Y_i) = (\xi_i,\xi_i+\eta_i)$.

A. Критерій χ^2 .

Перевірити гіпотезу незалежності за допомогою критерія χ^2 при наступних значеннях параметра n: a) n = 500; b) n = 5000; c) n = 50000.

<u>Зауваження</u>. Значення r та k, а також самі проміжки U_i , i = 1, $\mathbf{?}$, r, r i = 1, $\mathbf{?}$, k, обирати самостійно.

В. Критерій Спірмена.

Перевірити гіпотезу незалежності за допомогою критерія Спірмена при наступних значеннях параметра n: a) n = 500; b) n = 5000; c) n = 50000.

С. Критерій Кендалла.

Перевірити гіпотезу незалежності за допомогою критерія Кендалла при наступних значеннях параметра n: a) n = 500; b) n = 5000; c) n = 50000.

Завдання 3. Перевірка гіпотези випадковості.

Припустимо, що вибірка $\overline{X} = (X_1, ?, X_n)$ утворюється за наступним правилом:

 $X_i = \xi_1 + \mathbf{?} + \xi_i$, i = 1, $\mathbf{?}_i$ де $\{\xi_i\}$ — це послідовність незалежних рівномірно розподілених на [-1,1] випадкових величин.

Перевірити гіпотезу випадковості за допомогою критерію, що грунтується на обчисленні кількості інверсій при наступних значеннях параметра n:

a)
$$n = 500$$
; b) $n = 5000$; c) $n = 50000$.