1. Grothendieck topologies

Definition 1.1. A site is given by a (small) category C and a set Cov(C) of families of morphisms with fixed target $\{U_i \to U\}_{i \in I}$, called coverings of C, satisfying the following conditions.

- (1) If $V \to U$ is an isomorphism, then $\{V \to U\}$ is a covering.
- (2) If $\{U_i \to U\}_{i \in I}$ is a covering and for each i we have a covering $\{V_{ij} \to U_i\}_{j \in J_i}$, then $\{V_{ij} \to U\}_{i \in I, j \in J_i}$ is a covering.
- (3) If $\{U_i \to U\}_{i \in I}$ is a covering and $V \to U$ is a morphism of C, then $U_i \times_U V$ exists for all i, and $\{U_i \times_U V \to V\}_{i \in I}$ is a covering.

2. Set theoretical issues

2.1. Ordinals.

Definition 2.1. A set T is transitive if $x \in T$ implies $x \subset T$.

Definition 2.2. A set α is an ordinal if it is transitive and well-ordered by " \in ".

Definition 2.3. The smallest ordinal is \emptyset which is also denoted by 0.

Let α be an ordinal.

Definition 2.4. The successor of α is $\alpha + 1 = \alpha \cup \{\alpha\}$, which is also an ordinal. The ordinal α is called a successor ordinal if it is the successor of another ordinal.

Definition 2.5. The ordinal α is called a limit ordinal if it is not 0, and not a successor ordinal.

Lemma 2.6. If α is a limit ordinal, then $\alpha = \bigcup_{\gamma \in \alpha} \gamma$.

TODO: The first limit ordinal is ω and it is also the first infinite ordinal. The first uncountable ordinal ω_1 is the set of all countable ordinals. The collection of all ordinals is a proper class. It is well-ordered by " \in " in the following sense: any non-empty set (or even class) of ordinals has a least element. Given a set A of ordinals, we define the supremum of A to be $\sup_{\alpha \in A} \alpha = \bigcup_{\alpha \in A} \alpha$. It is the least ordinal bigger or equal to all $\alpha \in A$. Given any well-ordered set (S,<), there is a unique ordinal α such that $(S,<) \simeq (\alpha,\in)$, called the order type of the well-ordered set (S,<).

Definition 2.7. We define by transfinite induction $V_0 = \emptyset$, $V_{\alpha+1} = P(V_{\alpha})$, and for a limit ordinal β , $V_{\beta} = \bigcup_{\gamma < \beta} V_{\gamma}$, where P(x) denotes the power set of x.

Lemma 2.8. Every set is an element of V_{α} for some ordinal α .

2.2. The category of schemes.

Definition 2.9. Let S be a scheme. We define the cardinal

$$size(S) = max\{\aleph_0, \kappa_1, \kappa_2\}$$

where κ_1 is the cardinality of the set of affine opens of S, and κ_2 is the supremum of all the cardinalities of $\Gamma(U, \mathcal{O}_S)$ for $U \subset S$ affine open.

Lemma 2.10. Let κ be a cardinal. There exists a set A such that every element of A is a scheme and such that for every scheme S with $\text{size}(S) \leq \kappa$, there is an element $X \in A$ such that X and S are isomorphic as schemes.

Definition 2.11. Let α be an ordinal. We denote $\operatorname{Sch}_{\alpha}$ the full sub-category of Sch whose objects are elements of V_{α} .

Lemma 2.12. Let $B(\kappa) = \max\{\kappa^{\aleph_0}, \kappa^+\}$ for each cardinal κ . Let S_0 be a set of schemes. There exists a limit ordinal α satisfying the following properties.

- (1) We have $S_0 \subset V_\alpha$. In particular, $S_0 \subset \mathrm{Ob}(\mathrm{Sch}_\alpha)$.
- (2) For any $S \in \text{Ob}(\operatorname{Sch}_{\alpha})$ and any scheme T with $\text{size}(T) \leq B(\text{size}(S))$, there exists a scheme $S' \in \text{Ob}(\operatorname{Sch}_{\alpha})$ such that $T \simeq S'$.
- (3) For any countable category (i.e. both the set of objects and the set of morphisms are countable) \mathcal{I} and any functor $F: \mathcal{I} \to \operatorname{Sch}_{\alpha}$, the limit $\lim_{\mathcal{I}} F$ exists in $\operatorname{Sch}_{\alpha}$ if and only if it exists in Sch and moreover, in this case, the natural morphism between them is an isomorphism.

1

(4) For any countable category (i.e. both the set of objects and the set of morphisms are countable) \mathcal{I} and any functor $F: \mathcal{I} \to \operatorname{Sch}_{\alpha}$, the colimit $\operatorname{colim}_{\mathcal{I}} F$ exists in $\operatorname{Sch}_{\alpha}$ if and only if it exists in Sch and moreover, in this case, the natural morphism between them is an isomorphism.

Lemma 2.13. Let α be the ordinal constructed in the previous lemma. The category $\operatorname{Sch}_{\alpha}$ satisfies the following properties.

- (1) If $X, Y, S \in \text{Ob}(\operatorname{Sch}_{\alpha})$, then for any morphisms $f: X \to S$ and $g: Y \to S$, the fibre product $X \times_S Y$ exists in $\operatorname{Sch}_{\alpha}$, and is a fibre product in the categor of schemes.
- (2) Given any at most countable collection S_1, S_2, \ldots of elements of $Ob(Sch_{\alpha})$, the coproduct $\coprod_i S_i$ exists in Sch_{α} , and is a coproduct in the category of schemes.
- (3) For any $S \in \text{Ob}(\operatorname{Sch}_{\alpha})$ and any open immersion $U \to S$, there exists a $V \in \text{Ob}(\operatorname{Sch}_{\alpha})$ with $V \simeq U$.
- (4) For any $S \in \text{Ob}(\operatorname{Sch}_{\alpha})$ and any closed immersion $T \to S$, there exists a $T' \in \text{Ob}(\operatorname{Sch}_{\alpha})$ with $T' \simeq T$.
- (5) And so on.
- 2.3. The coverings of sites. Let C be a (small) category. Let Cov(C) be a (proper) class of coverings of C satisfying the conditions of sites.

Definition 2.14. For an ordinal α , we set $Cov(\mathcal{C})_{\alpha} = Cov(\mathcal{C}) \cap V_{\alpha}$. Given an ordinal α and a cardinal κ , we set $Cov(\mathcal{C})_{\alpha,\kappa}$ to be the set of coverings $\{U_i \to U\}_{i \in I} \in Cov(\mathcal{C})_{\alpha}$ with $|I| \leq \kappa$.

Lemma 2.15. Let $C_0 \subset \text{Cov}(\mathcal{C})$ be a set. There exists a cardinal κ and a limit cardinal α with the following properties.

- (1) We have $C_0 \subset \text{Cov}(\mathcal{C})_{\alpha,\kappa}$.
- (2) The set $Cov(\mathcal{C})_{\alpha,\kappa}$ satisfies the conditions of a site, i.e. $(\mathcal{C}, Cov(\mathcal{C})_{\alpha,\kappa})$ is a site.
- (3) Every covering in $Cov(\mathcal{C})$ is combinatorially equivalent to a covering in $Cov(\mathcal{C})_{\alpha,\kappa}$.

3. Valuation rings

Definition 3.1. Let K be a field. Let A, B be subrings of K that are local. We say that B dominates A if $A \subset B$ and $\mathfrak{m}_A = A \cap \mathfrak{m}_B$.

4. Spectral sequences

4.1. **Basics.** Let \mathcal{A} be an abelian category. Let r_0 be an integer.

Definition 4.1. A spectral sequence (starting from r_0) in \mathcal{A} is a family $(E_r, d_r)_{r \geq r_0}$ where each E_r is an object of \mathcal{A} , each $d_r : E_r \to E_r$ is a morphism in \mathcal{A} such that $d_r \circ d_r = 0$ and $E_{r+1} \simeq \ker(d_r)/\operatorname{im}(d_r)$ for $r \geq r_0$.

Let $(E_r, d_r)_{r \geq r_0}$ be a spectral sequence in \mathcal{A} .

Definition 4.2. We define subobjects

$$0 = B_{r_0} \subset B_{r_0+1} \subset \cdots \subset Z_{r_0+1} \subset Z_{r_0} = E_{r_0}$$

by the following procedure. Set $B_{r_0+1}=\operatorname{im}(d_{r_0})$ and $Z_{r_0+1}=\ker(d_{r_0})$. Then $E_{r_0+1}\simeq Z_{r_0+1}/B_{r_0+1}$. Suppose we have defined Z_r and B_r with $E_r\simeq Z_r/B_r$. Then we set Z_{r+1} and B_{r+1} to be the unique subobject of Z_r containing B_r corresponding to $\ker(d_r)$ and $\operatorname{im}(d_r)$. In particular we have $E_r\simeq Z_r/B_r$ for all $r\geq r_0$.

Definition 4.3. If the subobjects $Z_{\infty} = \bigcap_r Z_r$ and $B_{\infty} = \bigcup_r B_r$ of E_{r_0} exist, we define the limit of spectral sequence to be $E_{\infty} = Z_{\infty}/B_{\infty}$.

Definition 4.4. We say that the spectral sequence $(E_r, d_r)_{r \geq r_0}$ degenerates at E_r if $d_{r'} = 0$ for all $r' \geq r$.

4.2. Exact couples. Let \mathcal{A} be an abelian category.

Definition 4.5. An exact couple in \mathcal{A} is a datum (A, E, α, f, g) where A, E are objects of \mathcal{A} , and α, f, g are morphisms as depicted in the following (non-commutative) diagram

that is exact at each corner, i.e. the kernel of each morphism is equal to the image of its predecessor, i.e. $\ker(\alpha) = \operatorname{im}(f), \ker(f) = \operatorname{im}(g), \text{ and } \ker(g) = \operatorname{im}(\alpha).$

Lemma 4.6. Let (A, E, α, f, g) be an exact couple in \mathcal{A} . Set

- (1) $d = q \circ f : E \to E$ (then $d \circ d = 0$),
- (2) $E' = \ker(d)/\operatorname{im}(d)$,
- (3) $A' = \operatorname{im}(\alpha)$,
- (4) $\alpha': A' \to A'$ induced by α ,
- (5) $f': E' \to A'$ induced by f,
- (6) $g': A' \to E'$ induced by " $g \circ \alpha^{-1}$ ".

Then $(A', E', \alpha', f', g')$ is an exact couple.

Definition 4.7. Let (A, E, α, f, g) be an exact couple in \mathcal{A} . The derived exact couple of (A, E, α, f, g) is the exact couple $(A', E', \alpha', f', g')$ constructed in Lemma 4.6.

Remark 4.8. Let (A, E, α, f, g) be an exact couple. Consider the following commutative diagram

$$E \xrightarrow{d} E \xrightarrow{d} E \longrightarrow E/\operatorname{im}(d) \longrightarrow 0$$

$$\downarrow^{0} \qquad \downarrow^{f} \qquad \downarrow^{d}$$

$$0 \longrightarrow A/\ker(\alpha) \xrightarrow{\alpha} A \xrightarrow{g} E$$

with exact rows, and the snake lemma gives the morphism $f': E' \to A'$. The map $g': A' \to E'$ can be obtained by applying the snake lemma to the diagram

$$E \xrightarrow{f} A \xrightarrow{\alpha} \operatorname{im}(\alpha) \longrightarrow 0$$

$$\downarrow^{d} \qquad \downarrow^{g} \qquad \downarrow^{0}$$

$$0 \longrightarrow \ker(d) \longrightarrow E \xrightarrow{d} E.$$

4.3. Example.

Lemma 4.9. Let $F \to X \to B$ be a fibration with B a simply-connected CW complex. Let G be an abelian group. There is a spectral sequence $E_{p,q}^r$ with the following properties.

- (1) The differentials are $E_{p,q}^r \to E_{p-r,q-1+r}^r$. (2) $E_{p,q}^2 = H_p(B; H_q(F;G))$. (3) $E_{p,n-p}^{\infty} \simeq F_n^p/F_n^{p-1}$ where $0 \subset F_n^0 \subset \cdots \subset F_n^n = H_n(X;G)$.

Example 4.10. Consider the fibration $S^1 \to S^\infty \to \mathbb{C}P^\infty$. The E^2 -page is given by

$$E_{p,q}^2 = H_p(\mathbb{C}P^{\infty}; H_q(S^1; \mathbb{Z})).$$

One immediate observation is that $E_{p,q}^2$ can only be non-trivial if $p \ge 0$ and $q \ge 0$. We know that

$$H_q(S^1; \mathbb{Z}) = \begin{cases} \mathbb{Z} & q = 0, 1\\ 0 & \text{otherwise.} \end{cases}$$

Then the E^2 -page is

$$E_{p,q}^2 = \begin{cases} H_p(\mathbb{C}P^\infty; \mathbb{Z}) & q = 0, 1\\ 0 & \text{otherwise.} \end{cases}$$

Because S^{∞} is contractible, we have $H_n(X;\mathbb{Z})=0$ for n>0 and $H_0(X;\mathbb{Z})=\mathbb{Z}$. Then the E^{∞} -page is

$$E_{p,q}^{\infty} = \begin{cases} \mathbb{Z} & (p,q) = (0,0) \\ 0 & \text{otherwise.} \end{cases}$$

The following facts can be checked easily.

- $\begin{array}{ll} (1) \ E_{0,0}^2 = E_{0,0}^{\infty}. \\ (2) \ E_{p,q}^3 = E_{p,q}^{\infty} \ \text{for all} \ p,q. \end{array}$

We have the following complex from the E^2 -page

$$0 = E_{k+2,-1}^2 \to E_{k,0}^2 \to E_{k-2,1}^2 \to E_{k-4,2}^2 = 0$$

for every k. Note that $E_{k,0}^3=E_{k,0}^\infty=0$ for $k\neq 0$, and that $E_{k-2,1}^3=E_{k-2,1}^\infty=0$ for all k. Thus the sequence is exact for $k\geq 1$, i.e. $E_{k,0}^2\simeq E_{k-2,1}^2$ for $k\geq 1$, i.e. $H_k(\mathbb{C}P^\infty;\mathbb{Z})\simeq H_{k-2}(\mathbb{C}P^\infty)$ for $k\geq 2$ and $H_1(\mathbb{C}P^\infty;\mathbb{Z})=0$. This gives all the homologies of $\mathbb{C}P^\infty$.

5. Cohomology of schemes

5.1. Basics.

Remark 5.1. There are three possible variants of cohomology, gotten by restricting the source category for the derived functors, as demonstrated in the following diagram:

$$(1) \qquad (2) \qquad (3)$$

$$\operatorname{QCoh}(X) \longrightarrow \operatorname{Mod}(\mathcal{O}_X) \longrightarrow \operatorname{Sh}(X, \operatorname{Ab})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Delta \operatorname{b}$$

Each of (1)-(3) is an abelian category with enough injectives. So we could consider the right derived functors with each (1)-(3) as the source category. There is no guarantee that these right derived functors agree, even if all the horizontal functors are exact. But we still have some compatibilities.

- (1) For every scheme X, every \mathcal{O}_X -module M admits an injective resolution such that each term in the resolution is also injective as an object in Sh(X, Ab). This implies that $H^i_{(2)}(X, M) = H^i_{(3)}(X, M)$.
- (2) For every locally noetherian scheme X, every $M \in QCoh(X)$ admits an injective resolution such that each term in the resolution is also injective in $Mod(\mathcal{O}_X)$. This implies that $H^i_{(1)}(X,M) = H^i_{(2)}(X,M)$.

So for locally noetherian schemes, all three options agree. We shall take $H_{(3)}^i$ as the cohomology unless otherwise specified. The reasons are as follows.

- (1) There are non-quasi-coherent sheaves of abelian groups on a scheme X whose cohomology is interesting, for example, $H^1(X, \mathcal{O}_X^{\times}) \simeq \operatorname{Pic}(X)$.
- (2) There are certain maps of \mathcal{O}_X -modules in $\mathrm{Sh}(X,\mathrm{Ab})$, i.e. not \mathcal{O}_X -linear, that we still want to have an induced map on cohomologies. An example is the de Rham complex whose differential is not \mathcal{O}_X -linear.

Let $f: Y \to X$ be a morphism of schemes. We have the left exact functor $f_*: \operatorname{Mod}(\mathcal{O}_Y) \to \operatorname{Mod}(\mathcal{O}_X)$. So we may consider its *i*-th right derived functor $R^i f_*$ for $i \geq 0$.

Lemma 5.2. If $f: Y \to X$ is affine, then $R^i f_*(\mathcal{F}) = 0$ for every quasi-coherent \mathcal{O}_Y -module \mathcal{F} and every integer i > 0.

Lemma 5.3. If X is a scheme of Krull dimension $\leq d$, then $H^i(X, \mathcal{F}) = 0$ for all i > d and all sheaves $\mathcal{F} \in Sh(X, Ab)$.

Lemma 5.4. Suppose $f: Y \to X$ is proper and X is locally noetherian. If \mathcal{F} is a coherent \mathcal{O}_Y -module, then $R^i f_*(\mathcal{F})$ is a coherent \mathcal{O}_X -module for all $i \geq 0$.

6. The Zariski topology

Definition 6.1. Let T be a scheme. A Zariski covering of T is a family of morphisms $\{f_i: T_i \to T\}_{i \in I}$ of schemes such that each f_i is an open immersion and such that $T = \bigcup_{i \in I} f_i(T_i)$.

Lemma 6.2. The (proper) class of Zariski coverings satisfies the conditions of sites.

Definition 6.3. A big Zariski site is a site Sch_{Zar} constructed as follows:

- (1) Choose a set of schemes S_0 , and a set of Zariski coverings C_0 among these schemes.
- (2) Take Sch_{Zar} to be a category Sch_{α} constructed in Section 2.2.

(3) Choose a set of coverings starting with the category $\operatorname{Sch}_{\alpha}$, the class of Zariski coverings, and the set C_0 , cf. 2.3.

Remark 6.4. The sheaf category $Sh(Sch_{Zar})$ does not depend on the choice of coverings (even the choice of C_0). Thus it only depends on the choice of Sch_{α} .

Lemma 6.5. Let $\operatorname{Sch}_{\operatorname{Zar}}$ be a big Zariski site. Let $T \in \operatorname{Ob}(\operatorname{Sch}_{\operatorname{Zar}})$. Let $\{T_i \to T\}_{i \in I}$ be a Zariski covering of T. Then there is a covering $\{U_i \to T\}_{i \in I}$ in the site $\operatorname{Sch}_{\operatorname{Zar}}$ that is tautologically equivalent to $\{T_i \to T\}_{i \in I}$.

Definition 6.6. Let S be a scheme. Let Sch_{Zar} be a big Zariski site containing S.

- (1) The big Zariski site of S, denoted $(Sch/S)_{Zar}$, is the localization site Sch_{Zar}/S of Sch_{Zar} at S.
- (2) The small Zariski site of S, denoted S_{Zar} , is the full subcategory of $(\text{Sch}/S)_{\text{Zar}}$ consisting of objects U/S such that $U \to S$ is an open immersion. A covering of S_{Zar} is any covering $\{U_i \to U\}_{i \in I}$ of $(\text{Sch}/S)_{\text{Zar}}$ with $U \in \text{Ob}(S_{\text{Zar}})$.

Lemma 6.7. The category of sheaves on S_{Zar} is equivalent to the category of sheaves on the underlying topological space of S.

7. SIMPLICIAL METHODS

7.1. Basics.

Definition 7.1. For every integer $n \ge 0$, we write [n] for the linearly ordered finite set $\{0 < 1 < \cdots < n - 1 < n\}$. We also denote $[-1] = \emptyset$.

Definition 7.2. We define a category Δ^+ as follows.

- (1) The objects of Δ^+ are [n] for integers $n \geq -1$.
- (2) A morphism from [m] to [n] in the category Δ_+ is a function $\alpha : [m] \to [n]$ that is non-decreasing. The category Δ^+ is called the augmented simplex category. The simplex category Δ is the full sub-category of Δ_+ consisting of objects [n] with $n \ge 0$.

Remark 7.3. The object [-1] is the initial object of Δ_+ , and objects other than [-1] have no morphisms to [-1]. The category Δ does not have an initial objects.

Definition 7.4. Let \mathcal{C} be a category. A simplicial object of \mathcal{C} is a functor $\Delta^{\text{opp}} \to \mathcal{C}$, usuall denoted by $X_{\bullet} : [n] \mapsto X_n$. An augmented simplicial object of \mathcal{C} is a functor $\Delta^{\text{opp}}_+ \to \mathcal{C}$, usually denoted by $X_{\bullet} \to Y$ where Y is the degree -1 part, and X_{\bullet} is degree ≥ 0 part. An morphism between simplicial objects of \mathcal{C} is a morphism of functors. The category of simplicial objects (resp. augmented simplicial objects) of \mathcal{C} is denoted by $\mathrm{Simp}(\mathcal{C})$ (resp. $\mathrm{Simp}_+(\mathcal{C})$).

Remark 7.5. To give an augmented simplicial object is to give a simplicial object X_{\bullet} and an additional object X_{-1} of \mathcal{C} , equipped with a map $X_0 \to X_{-1}$ such that all possible compositions $X_n \to X_{-1}$ coincide. Then all maps in X_{\bullet} are over X_{-1} . In other words, an augmented simplicial object of \mathcal{C} with a specified augmentation X_{-1} is simply an simplicial object in the slice category $\mathcal{C}_{/X_{-1}}$.

8. The étale topology

9. The arc-topology

9.1. **Descent.** Let τ be a Grothendieck topology. We can ask when a functor satisfies descent with respect to it, or equivalently, when it is a sheaf. Let's consider Grothendieck topologies on $\operatorname{Sch}_{\operatorname{qcqs}}$ that are finitary, i.e. every cover admits a finite subcover, and such that if $X, Y \in \operatorname{Sch}_{\operatorname{qcqs}}$, then $\{X \to X \sqcup Y \leftarrow Y\}$ forms a covering family, cf. [Lur18, Section A.3.2, Section A.3.3].

Definition 9.1. Let $F: \operatorname{Sch}^{\operatorname{opp}}_{\operatorname{qcqs}} \to \mathcal{C}$ be a presheaf valued in an ∞ -category \mathcal{C} . We say that F satisfies descent for a morphism $Y \to X$ of qcqs schemes if it satisfies the ∞ -categorical sheaf axiom with respect to $Y \to X$, i.e. if the natural map

$$F(X) \to \lim [F(Y) \rightrightarrows F(Y \times_X Y) \cdots]$$

is an equivalence. If this property holds for all maps $f: Y \to X$ that are covers for the Grothendieck topology τ , and further if F carries finite disjoint unions to finite products, then we say that F satisfies τ -descent, or is a τ -sheaf.

9.2. Basics.

- **Definition 9.2.** (1) An extension of valuation rings is a faithfully flat map of valuation rings, or equivalently, an injective local homomorphism.
 - (2) A map of qcqs schemes $Y \to X$ is called a v-cover if for any valuation ring V and any map $\operatorname{Spec}(V) \to X$, there is an extension of valuation rings $V \to W$ and a map $\operatorname{Spec}(W) \to Y$ that fits into a commutative square

$$Spec(W) \longrightarrow Y$$

$$\downarrow \qquad \qquad \downarrow$$

$$Spec(V) \longrightarrow X.$$

(3) The v-topology on the category of schemes is the Grothendieck topology where the covering families $\{f_i: Y_i \to X\}_{i \in I}$ are those families with the following property: for any affine open $V \subset X$, there exists a map $t: K \to I$ of sets with K finite, and affine opens $U_k \subset f_{t(k)}^{-1}(V)$ for each $k \in K$ such that the induced map $\bigsqcup_k U_k \to V$ is a v-cover in the sense of (2).

Remark 9.3. For finite type maps of noetherian schemes, the v-topology coincides with the h-topology defined by Voevodsky [Voe96]. In general, every v-cover is a limit of h-covers.

- **Definition 9.4.** (1) A map $f: Y \to X$ of qcqs schemes is an arc-cover if for any rank ≤ 1 valuation ring V and a map $\operatorname{Spec}(V) \to X$, there is an extension $V \to W$ of rank ≤ 1 valuation rings and a map $\operatorname{Spec}(W) \to Y$ lifting $\operatorname{Spec}(V) \to X$.
 - (2) The arc-topology on the category of all schemes is defined similarly to the v-topology.

Remark 9.5. For noetherian targets, there is no distinction between v-covers and arc-covers.

Example 9.6. Let V be a valuation ring of rank 2. Let $\mathfrak{p} \subset V$ be the unique height 1 prime. Then both $V_{\mathfrak{p}}$ and V/\mathfrak{p} are rank 1 valuation rings, and the map $V \to V_{\mathfrak{p}} \times V/\mathfrak{p}$ is an arc-cover but not a v-cover.

Remark 9.7. A contravariant functor F on the category Sch of all schemes that is a sheaf for the Zariski topology is automatically determined by its restriction to the subcategory $\operatorname{Sch}_{qcqs}$ of qcqs schemes. Conversely, any Zariski sheaf on $\operatorname{Sch}_{qcqs}$ comes from a unique unique Zariski sheaf on Sch .

9.3. Excision.

Definition 9.8. An excision datum is a map $f:(A,I)\to (B,J)$ where A and B are commutative rings, $I\subset A$ and $J\subset B$ are ideals, and $f:A\to B$ is a map that carries $I\subset A$ isomorphically onto $J\subset B$. In this situation, we obtain a commutative square of rings

$$\begin{array}{ccc} A & \longrightarrow & A/I \\ \downarrow & & \downarrow \\ B & \longrightarrow & B/J \end{array}$$

that is both cartesian and co-cartesian. Such diagrams are also called Milnor squares, cf. [Mil71]. We say that a $D(\mathbb{Z})$ -valued functor on commutative rings is excisive if for any excisive datum as above, the square obtained by apply F is cartesian.

Lemma 9.9. Let V be a valuation ring. Let $\mathfrak{p} \subset \mathfrak{q}$ be primes of V. Then $(V_{\mathfrak{q}}, \mathfrak{p}V_{\mathfrak{q}}) \to (V_{\mathfrak{p}}, \mathfrak{p}V_{\mathfrak{p}})$ is an excision datum.

Proof. By replacing V with $V_{\mathfrak{q}}$, we may assume that \mathfrak{q} is the maximal ideal.

Main result:

Lemma 9.10. Let \mathcal{C} be an ∞ -category that has all small limits. Then any arc-sheaf $F: \operatorname{Sch}_{\operatorname{qcqs}}^{\operatorname{opp}} \to \mathcal{C}$ satisfies excision.

10. Surveys

10.1. Crystalline local systems.

Definition 10.1. A p-adic field is a field of characteristic zero that is complete with respect to a fixed (non-archimedean) discrete valuation such that the residue field is perfect of characteristic p > 0.

Let K be a p-adic field with ring of integers \mathcal{O}_K and residue field k.

Let X be a smooth p-adic formal scheme over \mathcal{O}_K . Motivated by the de Rham and Hodge theorem in complex geometry, Grothendieck asked if there exists a "mysterious functor" relating the \mathbb{Q}_p -étale cohomology of the generic fibre X_η over K, and the crystalline cohomology of the special fibre X_s over k. This is first formulated by Fontaine [Fon82] using the p-adic period ring B_{crys} . Fontaine made the following prediction, now known as the C_{crys} -conjecture.

Conjecture 10.2 (Fontaine). Let X be a smooth proper scheme over \mathcal{O}_K . There is a natural isomorphism of B_{crys} -modules

 $H^i($

Remark 10.3. Approaches:

- (1) Associations with filtered F-isocrystals.
- (2) Associations in the sense of Faltings.

References

- [Fon82] Jean-Marc Fontaine. Sur certains types de représentations p-adiques du groupe de galois d'un corps local; construction d'un anneau de barsotti-tate. *Annals of Mathematics*, 115(3):529–577, 1982.
- [Lur18] Jacob Lurie. Spectral algebraic geometry. preprint, 2018.
- [Mil71] John Willard Milnor. Introduction to algebraic K-theory. Number 72 in Annals of Mathematics Studies. Princeton University Press, 1971.
- [Voe96] Vladimir Voevodsky. Homology of schemes. Selecta Mathematica, 2:111–153, 1996.