The Role of Luck in the Success of Social Media Influencers

Student Project for Applied Network Science
G. Zöcklein and M. Gong

24. May 2024

The Role of Luck in the Success of Social Media Influencers

- Source: Ionescu, S., Hannák, A. & Pagan, N. The role of luck in the success of social media influencers. Appl Netw Sci 8, 46 (2023).
- ▶ The paper examines how the recommendation process of a social media platform influences the fairness for the content creators (CCs).
- It introduces a parameter for the recommendation process to reflect the level of popularity bias in the visibility of CCs.
- Fairness metrics for CCs and a measure for user (dis-)satisfaction are formally defined.
- Simulations show how popularity biases and time constraints influence the fairness of CCs and the satisfaction of seekers.

- ▶ A bipartite graph with *m* regular users/seekers and *n* content creators (CCs).
- ▶ The network at time t is denoted by $A^t \in \{0,1\}^{m \times n}$.
- ▶ As an entry in A^t , $a^t_{s,c}$ is 1 if seeker $s \in [m]$ follows CC $c \in [n]$ at time t, and 0 otherwise.
- Network formation:
 - 1. The follower network is initially empty;
 - 2. Recommendation phase: each seeker is recommended a CC;
 - 3. Decision phase: seekers decide to follow the recommended CC or not.
 - Seekers follow a recommended CC only if the CC is higher ranked by quality than any of their current followees.

Visualization

- $ightharpoonup CC_1$ is of higher quality than CC_2 .
- Suppose at time t + 1, CC_2 is recommended to s_1 and CC_1 is recommended to s_2 .

Recommendation Process

- ▶ The recommendation process maps a follower network A^t to a recommendation function $R^t : [m] \rightarrow [n]$.
- ▶ The parameter α :
 - $ightharpoonup \alpha = 0$ corresponds to uniform random(UR) recommendations;
 - $ightharpoonup \alpha > 0$ corresponds to preferential attachment(PA);
 - $ightharpoonup \alpha < 0$ corresponds to anti-preferential attachment(antiPA);
 - $\alpha=\pm\infty$ corresponds to extreme cases where only CCs with the most(least) number of followers being recommended.
- ► The visibility of each CC is determined by

$$\mathbb{P}(R_{\alpha}^{t}(s)=i) = \frac{\left(1+a_{.,i}^{t}\right)^{\alpha}}{\sum_{j\in[n]}\left(1+a_{.,j}^{t}\right)^{\alpha}},$$

where $a_{\cdot,i} := \sum_{s \in [m]} a_{s,i}$ is the number of followers of CC_i .

Metric of Fairness, Simulation Setup

- ▶ Assumption: CCs are ranked by their quality with $CC_1 \succeq CC_2 \succeq \cdots \succeq CC_n$ and all users prefer higher ranked CCs.
- ▶ Individual fairness for CCs: An outcome A is fair for CC_i if CC_i is one of the top i most popular CCs, i.e. if $|\{j: a_{.,j} > a_{.,i}\}| < i$.
- ▶ We define the dissatisfaction of seeker s as min $\{i : a_{s,i} = 1\}$.
- ► Simulation Set-Up:
 - ▶ 100 Content Creators
 - ▶ 10000 Users
 - Repeat 1000 times

Sparsity and convergence rate depend on the recommendation process

Evolution of the network under different $\alpha\in\{-\infty,-2,-1,0,1,\infty\}$ at timesteps $\mathcal{T}=$ 10, 50, 250 and at convergence.

Increases in the visibility of low-popularity CCs improves fairness

 CC_i -fairness after 1000 timesteps with different recommendation processes

Time to convergence

Percentage of simulations that converge within 1000 timesteps

Seekers are most satisfied with α around 1

Average quality-position (over users and simulations) of the best followed CC over time

Our Project: So what parameters should I use?

- ▶ The paper explained: PA leads to many users being treated unfairly
- And that antiPA is better for CC fairness than PA
- We try to answer: If I want to use PA or antiPA in practice, what should I do? We do this in two steps.
- First step: Perform further, more fine-grained analysis.
- Second step: Devise a modification of the algorithm with better properties for practical use cases.

antiPA leads to exorbitant convergence times

Reminder: antiPA leads to more CC fairness

The Trade-off: CC fairness vs. user dissatisfaction

Evolution of User (Dis-)satisfaction

Evolution of CC Fairness

A new approach and better solution: (α, β) -PA

- ▶ To improve upon this trade-off, we developed a new modification of PA, called (α, β) -PA.
- ▶ The idea: Why not use both PA and negPA?
- negPA ensures fairness, while PA ensures fast convergence

We thus do the following. Given a parameter $\alpha \geq 0$ (PA parameter), and a parameter $\beta < 0$ (negPA parameter), at each timestep perform the following 2-step procedure:

- 1. Flip an unbiased coin; if it shows head, choose α , otherwise choose β
- 2. Perform a (neg-)PA step with the parameter chosen in step 1.

(α, β) -PA: empirical results (1)

- ▶ In order to get a average convergence time of \leq 200, for standard PA we need to choose $\alpha \geq$ 0.5
- ▶ But when using (-3,1)-PA, the average convergence time is only half that of 0.5-PA, while being just as fair.

Convergence times

CC fairness

 (α, β) -PA: empirical results (2)

- By using biased coins, we can even achieve a 15-times speed-up of -0.5-PA while achieving the same CC-fairness!
- As a further bonus: the results are of less variance
- ightharpoonup Downside: If convergence time needs to be \leq 100 steps, we do not achieve significantly better results.

Conclusion

- ► There is an inherent trade-off between CC fairness and user dissatisfaction / convergence times in a PA-type recommendation scheme
- Using (α, β) -PA, we can slightly mitigate it and gain in both metrics.
- ▶ Based on the admittedly naive model we worked with, we believe that (-3,1)-PA is a very decent parameter choice.

Summary

- ▶ The paper introduced a recommendation procedure called α -PA.
- ▶ It further introduced metrics of CC fairness and user dissatisfaction.
- ▶ It then shows empirically that one can expect that such a recommendation procedure leads to many content creators being treated unfairly.
- It further shows that using a negPA scheme, the CC fairness can be expected to be much better than with standard PA.
- ▶ Upon further analysis, we show that negPA's extremely long convergence times are unsuitable for possible practical use cases.
- ▶ But PA with positive exponent yields very bad content creator fairness.
- We thus introduce a new scheme called (α, β) -PA which tries to get the best of both worlds.