Movie recommendation

- Amish Popli

<u>Problem statement</u>: Creating a Recommendation Model for an OTT Platform -> Personalized Movie Suggestions

<u>Dataset</u>: User ratings for movies and metadata for movies (only genre)

userId	movieId	rating	Action	Adventure	Animation	Children's	Comedy	Crime	Documentary	Drama	Fantasy	Film- Noir	Horror	Musical	Mystery	Romance	Sci- Fi	Thriller	War	Western
1	1193	5	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
1	661	3	0	0	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0
1	914	3	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
1	3408	4	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
1	2355	5	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0

Formulating an ML problem

Step 1 -> ML model - Build a regression (or classification model assuming rating are discrete values from 1 to 5) model to predict the rating of a movie given a user, movie and genre.

Step 2 -> Use the model to predict the movie rating for all movies and show the one with highest rating (Naive way - will discuss more further)

Step 3 -> Set up a feedback look (A/B test or something else) to assess the model and make improvements

Step 4 -> Make

Formulating an ML problem

Step 1 -> ML model - Build a regression (or classification model assuming rating are discrete values from 1 to 5) model to predict the rating of a movie given a user, movie and genre.

Step 2 -> Use the model to predict the movie rating for all movies and show the one with highest rating (Naive way - will discuss more further)

Step 3 -> Set up a feedback look (A/B test or something else) to assess the model and make improvements

Step 4 -> Make

We explored 3 methods to predict the rating

1. Dummy classifier (Baseline model)

2. Matrix Factorization

3. Deep learning based approach

1. Dummy classifier (Setting the baseline)

- Used a <u>uniform distribution</u> to assign values for a rating.
- MAE -> 3.7

2. Matrix Factorization

2. Matrix Factorization (Cont)

Item W X Z W X Y Z A 1.2 0.8 4.5 2.0 1.5 1.2 1.0 0.8 В B 1.4 0.9 3.5 1.7 0.6 1.1 0.4 4.0 User 1.5 1.0 5.0 2.0 D 1.2 0.8 3.5 4.0 1.0 User Item Rating Matrix Matrix Matrix

2. Matrix Factorization (Cont)

- MAE -> 3.1

Cons:

- Matrix factorization can suffer from overfitting and underfitting
- Cannot recommend for users/movies outside the dataset. (the split of test vs train causes the issue)

3. Deep learning model - <u>Two tower architecture</u>

3. Deep learning model (Cont)

- Model parameters
 - Adam
 - Sparse categorical entropy
 - 20 epochs
 - 80% train
 - 10% validation
 - 10% test

- MAE -> 0.79

Embeddings for FREE !!!

- Embeddings can open up other use cases:
 - User similarity (simple K means)
 - Movie similarity
 - Use <u>vector databases</u> to quickly find closest match for a user

Questions?