Invariants de similitude

Leçons: 150, 153, 154, 159

S Soit K corps quelconque et E, un \mathbb{K} -espace vectoriel de dimension n. Génériquement, u désignera un endomorphisme dans $\mathcal{L}(E)$ dont le polynôme minimal est noté Π_u et le polynôme caractéristique χ_{u} .

Définition 1

Soit $u \in \mathcal{L}(E)$ et soit $x \in E$. On appelle polynôme minimal de u en x l'unique générateur unitaire de l'idéal

$${P \in \mathbb{K}[X], \ P(u)(x) = 0}.$$

On le note $\Pi_{u,x}$. On a $\Pi_{u,x}|\Pi_u$.

Proposition 2

Il existe $x \in E$ tel que $\Pi_u = \Pi_{u,x}$.

Démonstration. On écrit $\Pi_u = \prod_{i=1}^r P_i^{m_i}$ où P_i sont des irréductibles distincts. On note $K_i = \ker P_i^{m_i}(u)$ et $u_i = u|_{K_i}$. Par le lemme des noyaux, $E = \bigoplus_i K_i$.

Montrons le résultat sur chaque sous-espace K_i . Par l'absurde, si le résultat ne tenait pas, alors pour tout $x_i \in K_i$, Π_{u_i,x_i} diviserait strictement $\Pi_{u_i} = P_i^{m_i}$ donc diviserait $P_i^{m_i-1}$ par irréductibilité. Mais alors $P_i^{m_i-1}(u_i)$ serait nul sur tout K_i , ce qui est impossible par minimalité de Π_{u_i} . On dispose donc d'éléments x_i comme dans l'énoncé sur chaque sous-espace K_i . Montrons que $x = x_1 + ... + x_r$ convient. On a :

$$0 = \Pi_{u,x}(u)(x) = \sum_{i} \Pi_{u,x}(x_i)$$

donc $\Pi_{u,x}(u)(x_i) = 0$ puisque les K_i sont en somme directe. Ainsi, $P_i^{m_i} = \Pi_{u_i,x_i} | \Pi_{u,x}$ pour tout i. Puisque les $P_i^{m_i}$ sont premiers entre eux, leur produit qui est égal à Π_u divise aussi $\Pi_{u,x}$, ce qui conclut.

Théorème 3

Soit $u \in \mathcal{L}(E)$. Il existe une unique famille P_1, \ldots, P_r de polynômes unitaires et une famille $E_1, ..., E_r$ de sous-espaces de E vérifiant :

1
$$P_r | \dots | P_1$$

$$2 E = E_1 \oplus \ldots \oplus E_r$$

2 $E = E_1 \oplus ... \oplus E_r$ **3** Pour tout $i \in \{1,...,r\}$, E_i est stable par u et $u_{|E_i}$ est cyclique de polynôme P_i .

Les polynômes $P_1, \ldots P_r$ sont appelés les invariants de similitudes de u.

Démonstration. Existence. Montrons le résultat par récurrence sur dim E. Il est trivial pour $\dim E = 1$, supposons donc $\dim E > 2$.

Soit $d = \deg(\Pi_u)$ et soit $x \in E$ tel que $\Pi_{u,x} = \Pi_u$. On note $F = \operatorname{Vect}(x, u(x), \dots, u^{d-1}(x))$. Clairement, F est stable par u et $u|_F$ est cyclique. On va montrer par dualité que F admet un supplémentaire stable par u. Soit $\varphi \in E^*$ tel que :

$$\varphi(x) = \varphi(u(x)) = \dots = \varphi(u^{d-2}(x)) = 0 \text{ et } \varphi(u^{d-1}(x)) = 1.$$

La famille $(\varphi, \varphi \circ u, \dots, \varphi \circ u^{d-1})$ est une famille libre de E^* et on note Φ le sous-espace vectoriel de E^* engendré par cette famille. On pose alors $G := \Phi^\circ = \{y \in E, \ \forall \psi \in \Phi, \ \psi(y) = 0\}$ et on montre que c'est un supplémentaire de F stable par u.

- *G* est stable par u: soit $y \in G$. Par construction, on a déjà $\forall k \in [0, d-2], \varphi \circ u^k(u(y)) = 0$.. Comme le polynôme minimal de u est de degré d, on a $u^d(y) \in \text{Vect}(y, u(y), \dots, u^{d-1}(y))$ et donc $\varphi \circ u^{d-1}(u(y)) = \varphi(u^d(y)) = 0$ par ce qui précède.
- $F \cap G = \{0\}$. Soit $y \in F \cap G$, alors on peut écrire $y = a_0x + \dots + a_{d-1}u^{d-1}(x)$ et en appliquant $\varphi \circ u^i$ pour i allant de 0 à d-1, on trouve que tous les a_k sont nuls.
- $\dim F + \dim G = n$. C'est une propriété générale de l'orthogonal au sens de la dualité : $\dim \Phi + \dim \Phi^{\circ} = n$.

De plus, $\Pi_{u_{|G}}|\Pi_u$ puisque Π_u annule $u_{|G}$. En appliquant l'hypothèse de récurrence à $u_{|G}$, on obtient le résultat voulu.

Unicité. On suppose l'existence d'une autre famille de polynôme Q_1, \ldots, Q_s donnant lieu à une autre décomposition $F_1 \oplus \ldots \oplus F_s$ comme dans l'énoncé. On a déjà $P_1 = Q_i = \Pi_u$. Soit j > 1 l'indice minimal tel que $P_j \neq Q_j$. Alors, on a d'une part :

$$P_j(u)(E) = P_j(u)(E_1) \oplus \ldots \oplus P_j(u)(E_{j-1}),$$

et d'autre part:

$$P_j(u)(E) = P_j(u)(F_1) \oplus \ldots \oplus P_j(u)(F_{j-1}) \oplus P_j(u)(F_j) \oplus \ldots \oplus P_j(u)(F_s).$$

Mais pour i < j, on a $\dim P_j(u)(E_i) = \dim P_j(u)(F_i)$ donc $0 = \dim P_j(u)(F_j) = \cdots = \dim P_j(u)(G_s)$, ce qui prouve que $Q_j|P_j$ et par symétrie $P_j|Q_j$. C'est absurde car $P_j \neq Q_j$. Finalement r = s et $P_i = Q_i$ pour tout i.

Corollaire 4 (Décomposition de Frobenius)

Soit $u \in \mathcal{L}(E)$. Il existe une base dans laquelle la matrice de u est de la forme

$$\left(egin{array}{ccc} C_{p_1} & & & \ & \ddots & \ & & C_{p_r} \end{array}
ight)$$

où C_{P_i} est la matrice compagnon associée au polynôme P_i avec $P_r|\dots|P_1$. De plus, on a

$$\chi_{\nu} = P_1 \dots P_r$$
.

Corollaire 5

Deux endomorphismes u et v sont semblables si et seulement s'ils ont les mêmes invariants de similitude.

Démonstration (idée). Supposons u et v semblables. On considère E_i les sous-espaces cycliques associés à u et φ tel que $\varphi \circ u = v \circ \varphi$. Alors si $F_i = \varphi(E_i)$, les F_i sont les sous-espaces cycliques associés à F.

Corollaire 6

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors A est semblable à sa transposée.

Démonstration. Il suffit de le montrer pour A matrice compagnon de la forme $C_P = M_{(e_1,\dots,e_n)}(u)$ où $P = X^n + \sum_{i=0}^{n-1} a_i X^i$. Le changement de base $e_i' = a_1 e_1 + \dots + a_{n-i} e_{n-i} + e_{n-i+1}$ conduit au résultat.

Remarque. • On retrouve en particulier la décomposition de Jordan des endomorphismes nilpotents puisque dans ce cas $\chi_u = X^n$: les invariants de similitudes sont donc de la forme X^{n_i} pour $n_i \le n$.

- Les invariants de similitude ne dépendent pas du corps de base.
- La théorie des $\mathbb{K}[X]$ -modules donne une façon simple pour calculer les invariants de similitude : Si U est la matrice de $u \in \mathcal{L}(E)$ dans une certaine base, alors les invariants de similitude de u sont les facteurs invariants non inversibles de la matrice $U XI_n \in \mathcal{M}_n(\mathbb{K}[X])$.

En effet, on montre par des opérations élémentaires sur les lignes et les colonnes qu'une matrice de la forme $C_P - XI$ est équivalente à

$$\left(\begin{array}{ccc}
1 & & & 0 \\
& \ddots & & \\
& & 1 & \\
0 & & P
\end{array}\right)$$

et on utilise la décomposition de Frobenius pour conclure.

Référence: Xavier GOURDON (2009). Les maths en tête : algèbre. 2^e éd. Ellipses, pp. 289-291.

Merci à Antoine Diez pour ce développement.