



## PROBLEM SOLVING USING PATTERN RECOGNITION DAY 2

Dr Zhu Fangming
Institute of Systems Science
National University of Singapore
fangming@nus.edu.sg

Not be reproduced in any form or by any means, without the written permission of ISS, NUS, other than for the purpose for which it has been supplied.

#### DAY 2 AGENDA





2.1 Solving Pattern Recognition Problems Using Supervised Learning Techniques (II):

**Decision Trees** 

Neural networks

Support Vector Machines

2.2 Pattern Recognition Workshop 2





# 2.1 Solving Pattern Recognition Problems Using Supervised Learning Techniques (II)

#### Supervised Learning Techniques (II)





- Decision Trees (DT)
- Neural Networks (NN)
- Support Vector Machines (SVM)

#### **Decision Tree**





- A decision tree is a flow-chart-like tree structure.
  - An internal node performs a test on an attribute
  - A branch represents a result of the test
  - A leaf node represents a class label
  - At each node, one feature is chosen to split training examples into distinct classes
  - A new sample is classified by following a matching path to a leaf node

#### **Decision Tree**







#### **Applications of Decision Trees**





- Customer Relationship Management
- Fraud Detection
- Churn Prediction
- Credit Risk Prediction
- Purchasing Behavior Prediction
- Fault Detection
- Sentiment Analysis
- Investment Solutions

#### Basic Algorithm: Quinlan's ID3/C4.5/C5.0





- create a root node for the tree
- if all examples from S belong to the same class Cj
- then label the root with Cj
- else



- select the "most informative" attribute A with values v1, v2, , vn
- divide the training set S into S1, ..., Sn according to values v1,...,vn
- recursively build subtrees T1,...,Tn for S1,...,Sn
- generate decision tree T

#### **Building Decision Tree**





- Top-down tree construction
  - At start, all training data are at the root.
  - Partition the examples recursively by choosing one feature each time.
- At each node, available attributes are evaluated on the basis of separating the classes of the training examples. A goodness function is used for this purpose.
- Typical goodness measures:
  - Information gain (ID3/C4.5)
  - Information gain ratio (C4.5)
  - Gini index (CART)

#### **Heuristic Search**





- Search bias: Search the space of decision trees from simplest to increasingly complex (greedy search, no backtracking, prefer small trees)
- Search heuristics: At a node, select the attribute that is most useful for classifying examples, split the node accordingly

#### Weather Data: Play Tennis or Not?





| Outlook  | Temperature   | Humidity | Windy | Play? |
|----------|---------------|----------|-------|-------|
| sunny    | hot           | high     | false | No    |
| sunny    | hot           | high     | true  | No    |
| overcast | hot           | high     | false | Yes   |
| rainy    | mild          | high     | false | Yes   |
| rainy    | cool          | normal   | false | Yes   |
| rainy    | cool          | normal   | true  | No    |
| overcast | cool          | normal   | true  | Yes   |
| sunny    | mild          | high     | false | No    |
| sunny    | cool          | normal   | false | Yes   |
| rainy    | mild          | normal   | false | Yes   |
| sunny    | mild          | normal   | true  | Yes   |
| overcast | overcast mild |          | true  | Yes   |
| overcast | hot           | normal   | false | Yes   |
| rainy    | mild          | high     | true  | No    |

#### Which Attribute to Select as the Root Node?













#### Criteria for Selecting an Attribute





- Which is the best attribute
  - The one which yields the smallest tree
  - Heuristic: choose the attribute that produces the "purest" nodes
- Popular impurity criterion: information gain
  - Information gain increases with the average purity of the subsets that an attribute produces
- One method: choose attribute that gives the greatest information gain

#### **Entropy**





- S training set, C<sub>1</sub>,...,C<sub>N</sub> classes
- Formula for computing the entropy:

$$E(S) = -\sum_{c=1}^{N} p_c \cdot \log_2 p_c$$

- Interpretation:
  - Higher Entropy → Higher Uncertainty
  - Lower Entropy→ Lower Uncertainty
- Entropy in binary classification problems





#### Information Gain





- Information gain measure is aimed to minimize the number of tests needed for the classification of a new object
- Gain(S,A) expected reduction in entropy of S due to sorting on A



Most informative attribute: max Gain(S,A)

#### Which Attribute to Select?









#### gain("Humidity") = 0.152



gain("Temperature") = 0.029

#### **Continuing to Split**







gain("Temperature") = 0.570







gain("Humidity") = 0.970



#### **Continuing to Split**









### Computing Information-Gain for Continuous-Valued Attributes





- Let attribute A be a continuous-valued attribute
- Must determine the best split point for A
  - Sort the value A in increasing order
  - Typically, the midpoint between each pair of adjacent values is considered as a possible split point
    - $(a_i+a_{i+1})/2$  is the midpoint between the values of  $a_i$  and  $a_{i+1}$
  - The point achieving the maximum information gain for A is selected as the split-point for A
- Split:
  - S1 is the set of tuples in S satisfying A ≤ split-point, and S2 is the set of tuples in S satisfying A > split-point

#### **Stopping Criteria**





- if all examples belong to same class  $C_j$ , label the leaf with  $C_j$
- if all attributes were used, label the leaf with the most common value C<sub>k</sub> of examples in the node
- min\_samples\_split The minimum number of samples required to split an internal node.
- min\_samples\_leaf The minimum number of samples required to be at a leaf node
- max\_depth The maximum depth of the tree.

•

#### **Highly-Branching Features**





- Problematic: attributes with a large number of values (extreme case: ID code)
- Subsets are more likely to be pure if there is a large number of values
  - ⇒Information gain is biased towards choosing features with a large number of values
  - ⇒This may result in overfitting (selection of a feature that is non-optimal for prediction)

#### Split for ID Code Attribute





| ID | Outlook  | Temperature | Humidity | Windy | Play? |
|----|----------|-------------|----------|-------|-------|
| A  | sunny    | hot         | high     | false | No    |
| В  | sunny    | hot         | high     | true  | No    |
| C  | overcast | hot         | high     | false | Yes   |
| D  | rain     | mild        | high     | false | Yes   |
| Е  | rain     | cool        | normal   | false | Yes   |
| F  | rain     | cool        | normal   | true  | No    |
| G  | overcast | cool        | normal   | true  | Yes   |
| Н  | sunny    | mild        | high     | false | No    |
| I  | sunny    | cool        | normal   | false | Yes   |
| J  | rain     | mild        | normal   | false | Yes   |
| K  | sunny    | mild        | normal   | true  | Yes   |
| L  | overcast | mild        | high     | true  | Yes   |
| M  | overcast | hot         | normal   | false | Yes   |
| N  | rain     | mild        | high     | true  | No    |



Entropy of split = 0 (since each leaf node is "pure", having only one case.)

Information gain is maximal for ID code

#### **Gain Ratio**





- Gain ratio: a modification of the information gain that reduces its bias on highly-branching attributes
- Gain ratio takes number and size of branches into account when choosing an attribute
- Intrinsic information: entropy of distribution of instances into branches

$$GainRatio(S,A) = \frac{Gain(S,A)}{IntrinsicInfo(S,A)}$$

• Gain ratio (Quinlan'86) normalizes info gain by:

IntrinsicInfo(S, A) = 
$$-\sum \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$
.

• The attribute with the maximum gain ratio is selected as the splitting attribute

#### Gini Index: Splitting Criteria in CART





- CART (Classification And Regression Trees)
- If a data set T contains examples from n classes, gini index -- gini(T) is defined as

gini 
$$(T) = 1 - \sum_{j=1}^{n} p_j^2$$

where  $p_j$  is the relative frequency of class j in T

gini(T) is minimized if the classes in T are skewed

After splitting T into two subsets T1 and T2 with sizes N1 and N2, the gini index of the split data is defined as

$$gini_{split}(T) = \frac{N_1}{N}gini(T_1) + \frac{N_2}{N}gini(T_2)$$

• The attribute providing smallest gini<sub>solit</sub>(T) is chosen to split the node

#### **Overfitting / Overtraining**





- Overfitting: An induced tree may overfit the training data
  - Too many branches, some may reflect anomalies due to noise or outliers
  - Poor accuracy for unseen samples



#### **Overfitting and Tree Pruning**





- Two approaches to avoid overfitting
  - Pre-pruning (forward pruning): stop growing the tree
     e.g.
    - When data split not statistically significant
    - Too few examples are in a split
  - <u>Postpruning</u>: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
    - Use a set of validation data to decide which is the "best pruned tree"

#### **Overfitting and Tree Pruning**







#### Decision Tree Modeling using Scikit-learn





```
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
iris = load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
clf = DecisionTreeClassifier(criterion='entropy',max_depth=3, random_state=0)
clf.fit(X_train, y_train)
clf.predict(X_test)
```

#### **Decision Tree Summary**





#### Decision Trees

- splits binary, multi-way
- splitting criteria info gain, gain ratio, gini, ...
- pruning
- rule extraction from trees

#### Avoid Overfitting

- Pruning
- Fixed depth/ Early stopping...

#### **Pros and Cons of Decision Trees**





#### Pros:

- simple to understand and interpret
- little data preparation and little computation
- indicates which attribute are most important for classification

#### Cons:

- not guaranteed to produce an optimal decision tree
- perform poorly with many classes and small data
- over-complex trees do not generalise well from the training data (overfitting)

#### **Neural Networks**





- ➤ Neural Networks (NN) are biologically inspired and attempt to build computational models that operate like a human brain.
- > These networks can "learn" from the data and recognize patterns.
- Make no assumptions about the data
- Can be very accurate
- > Handle both numeric targets and categorical targets
- > A black box....



#### **Neural Networks**









http://www.asimovinstitute.org/neural-network-zoo/

#### From Biological Neuron to Artificial Neuron









#### **General Architecture of Neural Networks**



net = X1\*W1 + X2\*W2 +...+ Xn\*Wn

W1



- Framework (in general, but not for all NNs)
  - Input layer + Hidden Layer + Output Layer
  - Weights
  - Activation functions f(net)



X1 \

**X2** 

Input Layer

Hidden Layer

**Output Layer** 

#### General Architecture of Neural Networks (cont.)





#### Weights

Normally initial weights are randomised to small real numbers

#### Learning rule

- determine how to adapt connection weights in order to optimise the network performance  $W_i(t+1)=W_i(t)+\Delta W_i(t)$
- indicate how to calculate the weight adjustment during each training cycle

#### Activation calculation & Weight adjustment

- Compute the activation levels across the network
- Weight adjustment based on the errors /distance

#### **Activation functions**





| Name +                                                    | Plot                     | •                                               | Equation \$                                                                      | Derivative (with respect to x)                                                                       |  |  |
|-----------------------------------------------------------|--------------------------|-------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|
| Identity                                                  | /                        | f(s                                             | x) = x                                                                           | f'(x)=1                                                                                              |  |  |
| Binary step                                               |                          | f(s                                             | $(x) = egin{cases} 0 & 	ext{for} & x < 0 \ 1 & 	ext{for} & x \geq 0 \end{cases}$ | $f'(x) = \left\{ egin{array}{ll} 0 & 	ext{for} & x  eq 0 \ ? & 	ext{for} & x = 0 \end{array}  ight.$ |  |  |
| Logistic (a.k.a. Soft step) $f(x) = \frac{1}{1 + e^{-x}}$ |                          | $(x)=rac{1}{1+e^{-x}}$                         | $f^{\prime}(x)=f(x)(1-f(x))$                                                     |                                                                                                      |  |  |
| TanH                                                      |                          | f(:                                             | $x)=	anh(x)=rac{2}{1+e^{-2x}}-1$                                                | $f^{\prime}(x)=1-f(x)^2$                                                                             |  |  |
| ArcTan                                                    |                          | $f(x) = 	an^{-1}(x)$ $f'(x) = rac{1}{x^2 + 1}$ |                                                                                  | $f'(x) = \frac{1}{x^2+1}$                                                                            |  |  |
| Softsign [7][8]                                           | $f(x) = \frac{x}{1+ x }$ |                                                 | $(x) = \frac{x}{1 +  x }$                                                        | $f'(x) = \frac{1}{(1+ x )^2}$                                                                        |  |  |

https://www.codeproject.com/Articles/1200392/Neural-Network

# **Training Neural Networks**





- Require lots of training data
- Training can be slow!
- Limit training by
  - the time taken
  - number or training iterations
  - the accuracy

## **Neural Network Learning /Training**





#### Supervised learning

Training samples are shown to the network as input and the weights are adjusted to



## Multilayer Perceptron (MLP) with Backpropagation Learning





- Propagate signals forward and then errors backward
- Backpropogation (BP) ~ gradient descent learning
- Weights in hidden layers are adjusted to reduce aggregate errors in the output layer



#### **MLP Networks**





Nodes in the first hidden layer represent hyperplanes



• Nodes in second hidden layer can combine the hyperplanes into complex non-linear surfaces



• Beware.... too many nodes or layers can be very hard to train (requiring many samples & long training time)

## **Steps of Backpropagation Algorithm**





- 1. Initialize the weights to small random numbers
- 2. Randomly select a training pattern pair (xp, tp) and present the input pattern xp to the network. Compute the corresponding network output pattern zp
- 3. Compute the error Ep for pattern (xp, tp)
- 4. Backpropagate the errors according to the BP weight adjustment formulas
- 5. Test the Loss Function (mean square error (MSE), cross-entropy, etc.): If it is below the required threshold, stop. Otherwise, repeat steps 2-5.
- 6. Test for generalization performance if appropriate



# **Gradient Descent Learning**







## **MLP Networks**







## **Generalization & Overtraining / Overfiting**





- Generalization is the ability of a network to correctly classify a pattern it has not seen (not been trained on). NNs generalize when they recognize patterns not previously trained on or when they predict new outcomes from past behaviors.
- Networks can be overtrained. It means that they memorize the training set and are unable to generalize well.



## **Building NN & Pre-processing Data**





- Training/test data set
  - Perform statistical analyses to support data set choices
  - Select representative training set
  - Divide training set & testing set appropriately
- Pre-processing the data
  - Data Coding
  - Data Smoothing
  - Data Transformation

• Log 
$$y = log(x)$$

• Delta 
$$\Delta x_i = x_i - x_{i-1}$$

• Normalization 
$$\mathbf{y} = \frac{\mathbf{x} - \mathbf{min}(\mathbf{x})}{\mathbf{max}(\mathbf{x}) - \mathbf{min}(\mathbf{x})}$$

• Normalized Z score 
$$z = \frac{x - \mu}{\sigma}$$

## **Testing / Evaluation**





- Testing the Generalization ability of a trained NN
  - Look for good performance on a validation set and test set
  - Changing the training algorithm
- The performance varies with training/solution procedures
- Network optimization should be performed after training/testing (eliminate redundant unneeded nodes and the corresponding weights – is called <u>'pruning'</u>)
- Periodic performance testing is essential to verify model's accuracy environmental changes can cause the data to change thereby afflicting the
  performance of the developed model

## **Applications of Neural Networks**





- Image processing / Computer vision
- Natural language processing
- Data visualization
- Fault diagnosis
- Forecasting time series
- General mapping

•

# NN Modeling with Scikit-learn





import numpy as np

from sklearn.model\_selection import train\_test\_split

from sklearn.datasets import load\_iris

from sklearn.neural\_network import MLPClassifier

from sklearn.preprocessing import StandardScaler

iris = load\_iris()

X = iris.data

y = iris.target

X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, random\_state=0)

```
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
mlp = MLPClassifier(hidden_layer_sizes=(10,10), max_iter=1000)
mlp.fit(X_train, y_train)
predictions = mlp.predict(X_test)
from sklearn.metrics import classification_report, confusion_matrix
print(confusion_matrix(y_test,predictions))
print(classification_report(y_test,predictions))
```

# Support Vector Machines (SVM)





- Another category of feed forward networks [Vapnik, 1992, 1995, 1998]
- SVM can be used for pattern classification and non-linear regression – but uses statistical learning theory
- General architecture of a support vector machine
  - Input layer
  - Hidden layer of Inner-product kernels (fully connected with the input layer)
  - Output neuron



# Support Vector Machines (SVM)





- For nonlinear problem, it uses a <u>nonlinear mapping</u> to transform the original training data into a higher dimension
- With the new dimension, it searches for the linear optimal separating hyperplane
- SVM finds this hyperplane using support vectors ("essential" training tuples) and margins (defined by the support vectors)
- Training can be slow but accuracy is high owing to their ability to model complex nonlinear decision boundaries (margin maximization)
- Applications:
  - handwritten digit recognition, object recognition, speaker identification, ...

#### **SVM: Optimal Hyperplane & Support Vector**





- Important concepts from the theoretical background
  - Optimal hyperplane for separable or non-separable patterns
  - Support vector
- A training pattern can be represented as a vector from the problem space
- Consider a group of training patterns
  - Training samples:  $\{(\mathbf{x}_i, y_i)\}$  i = 1, 2, ..., N
    - $\mathbf{x}_{i}$ : the input pattern for the *i*-th example
    - $y_i \in \{-1,1\}$ ): the corresponding desired output
  - The decision surface for the separation is a hyperplane

$$\mathbf{w}^{T}\mathbf{x} + b = 0$$
 (e.g.  $w_{1}x_{1} + w_{2}x_{2} + ... + w_{N}x_{N} + b = 0$ )  
i.e.  $\mathbf{w}^{T}\mathbf{x} + b \ge 0$  for  $y_{i} = 1$ 

$$w^T x + b < 0$$
 for  $y_i = -1$ 

## **SVM: Separation Margin & Support Vector**





- Margin of separation
  - The separation between the decision surface hyperplane and the closest data points



# **Linear Separability**





 When a linear hyperplane exists to place the instances of one class on one side and those of the other class on the other side.

linearly separable





not linearly separable





#### Hard Margin Linear SVM: Optimal Hyperplane & Support Vector





- The goal of a support vector machine for linearly separable patterns is to find the particular hyper-plane for which the margin of separation ρ is maximized.
- Support vectors: those data
   points that lie closest to the
   decision surface and are
   therefore the most difficult to
   classify



# **Learning SVM as Optimization**





maximize 
$$\frac{2}{||\mathbf{w}||}$$
 minimize  $\frac{1}{2} \mathbf{w}^T \mathbf{w}$  subject to  $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1$   $\forall i$ 

$$\mathbf{w}^T \mathbf{x}_i + b \ge +1 \qquad \qquad \text{for } y_i = +1$$
 where  $\mathbf{w}$  satisfy  $\mathbf{w}^T \mathbf{x}_i + b \le -1 \qquad \qquad \text{for } y_i = -1$ 

Consruct the lagrangian function (primal problem):

$$J(W, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{l} \alpha_i [y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1]$$

where  $a_i, i = 1, ..., l$ ,  $a_i \ge 0$  are Lagrange multipliers

# **Learning SVM as Optimization**





Dual problem:

Maximize 
$$Q(\mathbf{\alpha}) = \sum_{i}^{l} \alpha_{i} - \frac{1}{2} \sum_{i,j}^{l} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}$$

Subject to: 
$$\sum_{i=1}^{l} \alpha_i y_i = 0$$
 and  $\alpha_i \ge 0$   $i = 1,2 \dots l$ 

- This is a quadratic optimization problem.
- The solutions to the above dual optimization are a set of optimal  $\alpha_i^*$  for i=1,...,l
  - for support vectors (SVs)  $\mathbf{x}_i$ ,  $\alpha_i^* > 0$ , for non-SVs  $\mathbf{x}_i$ ,  $\alpha_i^* = 0$
  - $\alpha^*$  determine the optimal parameters  $\mathbf{w}^*$  and  $b^*$

# **Learning SVM as Optimization**





- Linear SVM
  - decision hypersurface is given by



#### Soft Margin Linear SVM: Optimal Hyperplane & Support Vector





- Given a set of not linearly separable training patterns, it is not possible to construct a separating hyperplane without encountering classification error.
- The goal of a support vector machine for not linearly separable patterns is to find an optimal hyperplane that minimizes the misclassification error, averaged over the training set.



# **SVM: Soft margin solution**





- To classify data sets that are not linearly separable, the SVM within the linear framework is extended by introducing soft margin
  - Replace the restriction

subject to 
$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i$$

where  $\xi_i$ , called slack variables, are positive variables that indicate tolerance of misclassification.

Note that  $\xi_i = 0$  if there is no error for  $\mathbf{x}_i$ 

# **SVM: Soft margin solution**





 There are optimization functions proposed for the case with soft margin, such as

minimize 
$$\frac{1}{2}\mathbf{w}^{T}\mathbf{w} + C\sum_{i} \xi_{i}$$
  
subject to 
$$y_{i}(\mathbf{w}^{T}\mathbf{x}_{i} + b) \geq 1 - \xi_{i}$$

- C is a penalty parameter
  - small  $C \Rightarrow$  wide margin (more tolerance)
    - many support vectors will be on the margin
  - large  $C \Rightarrow$  narrow margin
    - there will be few support vectors on the margin
  - $C \rightarrow \infty$  enforces all constraints  $\Rightarrow$  hard margin

# SVM: Soft margin solution - C value





A higher value of C implies you want lesser errors on the training data.



https://blog.statsbot.co/support-vector-machinestutorial-c1618e635e93

### **SVM** with Non-linear Kernels





- To construct a SVM for classification with an input space made up of non-linearly separable patterns
- Form Inner-product kernels
  - The multidimensional input space is transformed to a new feature space where the patterns are linearly separable with high probability, provided
    - (a) The transformation is nonlinear
    - (b) The dimensionality of the feature is high enough
  - A subset of training samples  $\{x_1, x_2, ...x_{m1}\}$  will be used as support vectors

• Define the separating hyperplane as a linear function of vector drawn from the feature space rather than the original input space



## **SVM with Non-linear Kernels**





- Example
  - Map the original 2-dimensional input space to a 3-dimensional feature space



 The original non-linearly separable problem becomes linearly separable in the feature space



## **SVM with Non-linear Kernels**





- The target of learning is to achieve a minimized error of classification with decision surface
- Using dual representation we can rewrite



All the information the learning algorithm needs is the inner products between data points in the feature space, where all  $\mathbf{x}_i$  are in the input space.  $K(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$ 

A function that performs this direct computation of inner product is known as a **kernel function**, which is equivalent to the distance between  $\mathbf{x}$  and  $\mathbf{x}'$  measured in the higher dimensional feature space transformed by  $\phi$ .

## **SVM**: Typical Kernel Functions for Nonlinear Classification





• Apply a kernel function  $K(X_i, X_i)$  to the original data, i.e.

$$K(X_i, X_j) = \Phi(X_i) \Phi(X_j)$$

Typical Kernel Functions

Polynomial kernel of degree  $h: K(X_i, X_j) = (X_i \cdot X_j + 1)^h$ 

Gaussian radial basis function kernel:  $K(X_i, X_i) = e^{-\|X_i - X_j\|^2/2\sigma^2}$ 

Sigmoid kernel:  $K(X_i, X_j) = \tanh(\kappa X_i \cdot X_j - \delta)$ 

# **SVM Example**





- Objective: Classification for 1-D data
- Suppose we have 5 training data points
  - $x_1=1$ ,  $x_2=2$ ,  $x_3=4$ ,  $x_4=5$ ,  $x_5=6$ , with 1, 2, 6 as class A and 4, 5 as class B  $\Rightarrow$   $y_1=1$ ,  $y_2=1$ ,  $y_3=-1$ ,  $y_4=-1$ ,  $y_5=1$
- We use the polynomial kernel  $K(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i.\mathbf{x}_j + 1)^2$  and C is set to 100. We need to find  $\alpha_i$  (i=1, ..., 5) by

max. 
$$\sum_{i=1}^{5} \alpha_i - \frac{1}{2} \sum_{i=1}^{5} \sum_{j=1}^{5} \alpha_i \alpha_j y_i y_j (x_i x_j + 1)^2$$

subject to 
$$100 \ge \alpha_i \ge 0, \sum_{i=1}^5 \alpha_i y_i = 0$$

## **SVM Example**





- After solving optimization problem, we get
  - $\alpha_1$ =0,  $\alpha_2$ =2.5,  $\alpha_3$ =0,  $\alpha_4$ =7.333,  $\alpha_5$ =4.833
  - The support vectors are  $\{x_2=2, x_4=5, x_5=6\}$
- For a new point z, the discriminant function is

$$f(z)$$
= 2.5(1)(2z + 1)<sup>2</sup> + 7.333(-1)(5z + 1)<sup>2</sup> + 4.833(1)(6z + 1)<sup>2</sup> + b  
= 0.6667z<sup>2</sup> - 5.333z + b

b is solved by solving f(2)=1 or by f(5)=-1 or by f(6)=1, all three give
 b=9

$$f(z) = 0.6667z^2 - 5.333z + 9$$

## **SVM** in Practice





- Prepare the dataset
- Select the kernel function to use
- Select the parameter of the kernel function and the value of  $\mathcal C$ 
  - You can use the values suggested by the SVM software, or you can set apart a validation set to determine the values of the parameter
- ullet Execute the training algorithm and obtain the  $a_i$
- Test data can be classified using the  $a_i$  and the support vectors

## **Multi-class SVM Classifier**





- One vs. others
  - Training: Learn an SVM for each vs. the others
  - Testing: Apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value



#### Learn 3 classifiers:

- vs. {o,+}, weights w\_
- + vs. {o,-}, weights  $W_+$
- o vs.  $\{+,-\}$ , weights  $w_o$

#### Predict label using:

$$\hat{y} \leftarrow \arg\max_{k} \ w_k \cdot x + b_k$$

- One vs. one
  - Training: Learn an SVM for each pair of classes
  - Testing: Major voting from each learned SVM

# **Applications of SVM**





- SVMs have been widely applied in
  - Bioinformatics
  - Machine Vision
  - Text Categorization
  - Handwritten Character Recognition
  - •

## **SVM with Scikit-learn**





import numpy as np

from sklearn.model\_selection import train\_test\_split from sklearn.datasets import load\_iris from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC

iris = load\_iris()

X = iris.data

y = iris.target

X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y,
random\_state=0)

```
scaler = StandardScaler()
```

scaler.fit(X\_train)

X\_train = scaler.transform(X\_train)

X\_test = scaler.transform(X\_test)

svm=SVC(kernel="rbf", gamma=5, C=1)

svm.fit(X\_train, y\_train)

predictions = svm.predict(X\_test)

from sklearn.metrics import classification\_report, confusion\_matrix

print(confusion\_matrix(y\_test,predictions))

print(classification\_report(y\_test,predictions))

## **Support Vector Machines: Summary**





- The SVM is an elegant and highly principled learning method for the design of a feedforward network with a single hidden layer of nonlinear units
- Design hinges on the extraction of a subset of the training data that serves as support vectors and therefore represents a stable characteristic of the data
- Learning in SVM
  - Learning algorithm operates only in a batch mode
  - The near-to-perfect classification performance is achieved at the cost of a significant demand on computational complexity
- The complexity of trained classifier is characterized by the # of support vectors rather than the dimensionality of the data
- An SVM with a small number of support vectors can have good generalization, even when the dimensionality of the data is high





# 2.2 Pattern Recognition Workshop 2

# Workshop 2





- Open the iPython notebook provided for workshop 2.
- You will build decision tree, neural network and SVM models in this workshop.
- As you go through the notebook, make sure you understand how each different model is built. (you can save notes as markdown in the notebook).
- Compare the performance of these models.
- Experiment with different parameter settings.
- You may try with your own datasets.
- Save your notebook with the cell output and upload it to LumiNUS.