Recognizing Expressibility of Process Graphs by Regular Expressions More Efficiently

Clemens Grabmayer

GRAN SASSO SCIENCE INSTITUTE

SCHOOL OF ADVANCED STUDIES Scuola Universitaria Superiore

Department of Computer Science, GSSI, L'Aquila, Italy

CS@GSSI retreat

Teramanico Terme December 13-14, 2023

Expressibility of process graphs by regular expressions

Question (Milner, 1984)

What structural property of process graphs can characterize expressibility?

Sharpened Question

What structural property of bisimulation-collapsed process graphs can characterize expressibility?

Theorem (Baeten/Corradini/G, 2005)

Expressibility is decidable. (With a super-exponential decision procedure.)

Partial answer with efficient recognition

Partial Answer to Sharpened Question (adapted fr. G/Fokkink [LICS 2020])

The Loop Existence and Elimination Property (LEE) characterizes those bisimulation-collapsed process graphs that are expressible by 1-free-under-star regular expressions.

Theorem (current work)

Loop elimination is confluent. LEE can be recognized in polynomial time.

Corollary

Expressibility of process graphs by 1-free under star regular expressions is decidable in polynomial time.

General answer (promising more efficient recognition)

Answer to Sharpened Question (consequence of [LICS 2022])

Expansion into a crystallized process graph (with LEE) characterizes bisimulation-collapsed process graphs that are expressible.

Questions

Complexity of:

- (i) Refinable by adding 1-transitions to obtain LEE? (likely polynomial)
- (ii) Expansion into a crystallized process graph? (perhaps FPT result)
- (iii) Expressibility? (same as (ii), due to answer above)

Resources

resources:

- ▶ https://clegra.github.io/lf/
 - recent overview article: DCM-2023-proc.pdf
 - ▶ poster crystallization: poster-lics-2022.pdf
 - ▶ article crystallization: cryst-article.pdf
 - slides pitch: pitch-CS-retreat.pdf

Thank you for your attention!