Házi feladat Szabályozástechnika 2008/2009 2. félév

1. Folytonos rendszer

Adott az alábbi szabályozási kör:

Az adatokat a feladat végén lévő táblázatból olvashatja ki. A házi feladat kód a tanszéki honlapra belépve az Eredményeim fülön található meg.

	$P_1(s)$	$P_2(s)$	$W_{z1}(s)$	$W_{z2}(s)$
A	$\frac{A_1}{1+sT_1}$	$\frac{A_2}{\left(1+sT_2\right)\left(1+sT_3\right)}$	0.5	$\frac{2}{1+s}$
В	$\frac{A_1}{s(1+sT_1)}$	$\frac{A_2}{1+sT_2}$	1	$\frac{5}{1+10s}$
C	$\frac{A_1}{1+sT_1}$	$\frac{A_2}{s(1+sT_2)}$	2	$\frac{4}{1+2s}$
D	A_1	$\frac{A_2 e^{-sT_d}}{(1+sT_1)(1+sT_2)}$	5	$\frac{5}{1+5s}$

- **1.** C(s) = A arányos szabályozó mellett A függvényében:
- (1 pont)
- **a.** adja meg a szabályozott szakasz u módosított jellemzőjének a z_1 illetve z_2 zavaró jellemzőre vonatkozó eredő átviteli függvényeit! Adja meg az y szabályozott jellemzőnek az r alapjelre valamint a z_1 illetve z_2 zavaró jellemzőkre vonatkozó eredő átviteli függvényeit! (Egyszerűsítéseket nem kell végezni.)
- **b.** adja meg a felnyitott kör L(s) átviteli függvényét zérus-pólus alakban!
- \mathbf{c} . határozza meg a K_{kr} kritikus körerősítést a megadott adatokkal!
- **2.** Tervezzen olyan soros *PID* jellegű szabályozót, amely a zárt szabályozási rendszerre vonatkozóan kielégíti az alábbi tervezési specifikációkat: (2 pont)
 - r = 1(t) esetén a szabályozott jellemző végértéke $y_{\infty} = 1$,
 - az u(t) beavatkozó jel maximális értéke $u_{\text{max}} < 10/(A_1 A_2)$ legyen,
 - a rendszer átmeneti függvényének túllövése 5-10% között legyen.

- a. Adja meg a szabályozó átviteli függvényét zérus-pólus alakban. Adja meg a rendszer fázistöbbletét!
- b. Ábrázolja a zárt rendszer kimenőjelét és beavatkozójelét egységugrás alapjel esetén! Határozza meg a kimenőjel túllövését, beállási idejét és az *u* beavatkozójel maximumát! A szimulációt végezze el Simulink-kel is.

3. Folytonos szabályozás állapotvisszacsatolással

A folytonos szakasz átviteli függvénye $P_1(s)P_2(s)$. Holtidő esetén hagyjuk el a holtidőt.

3.1 Adja meg a szakasz állapotmátrixait.

(1 pont)

3.2 Tervezzen állapotvisszacsatolásos szabályozót. A visszacsatolt rendszer legyen leírható egy másodfokú lengő taggal, amelynek csillapítási tényezője 0.7 és időállandója a szakasz legkisebb időállandójának negyede. Harmadfokú szakasz esetén a visszacsatolt rendszer harmadik előírt időállandója egyezzen meg a lengő tag időállandójával. Határozza meg az egységugrás alapjel statikus hiba nélküli követését biztosító kompenzációs tényező értékét! Ábrázolja a szakasz és a visszacsatolt rendszer egységugrásra adott válaszát. **(2 pont)**

4. Mintavételes rendszer

Adott az alábbi diszkrét idejű (mintavételes) szabályozási kör:

- **4.1** Határozza meg a P(s) folytonos szakasz és a D/A átalakító *együttes G(z)* impulzusátviteli függvényét zérus-pólus alakban a megadott T_s mintavételi idő mellett zérusrendű tartószerv feltételezésével. (1 pont)
- **4.2** Tervezze meg a C(z) diszkrét idejű PID szabályozót.

(2 pont)

Előírások: egységugrás alapjelre a maradó hiba legyen zérus;

a rendszer átmeneti függvényének túllövése 5-10% között legyen;

az
$$u(t)$$
 jelre $u_{\text{max}} < 10/(A_1 A_2)$ teljesüljön.

- a. Adja meg a szabályozó C(z) impulzusátviteli függvényét zérus-pólus alakban. Adja meg a rendszer fázistöbbletét!
- b. Ábrázolja a szabályozás y(t) folytonos kimenőjelét és az u[k] diszkrét beavatkozójelet a tartószerv után egységugrás alapjel hatására! Határozza meg a kimenőjel túllövését, beállási idejét és az u beavatkozójel maximumát! A szimulációt végezze el Simulink-ben is.
- c. Adja meg a szabályozót megvalósító algoritmust (differencia egyenletet)! Írjon Matlab programot, amely megvalósítja az algoritmust. Futtassa le a programot az első 20 mintavételi pontra a szabályozó bemenetén egységimpulzus-sorozatot feltételezve. Ábrázolja az eredményt.

Formai értékelés (logikus felépítés, görbék, egyenletek megjelenítése): (1 pont)

Formai követelmények

A megoldást Word .doc vagy .pdf dokumentum formájában a tanszéki honlapra kell feltölteni az Eredményeim fülön.

A leírás tartalmazza a következő információkat:

Név: e-mail cím: Neptun kód: HF kód: Gyakorlatvezető:

Kurzus:

Adja meg a feladatok bemeneti adatait, a tervezési algoritmusok részletes leírását, a számításokat végző Matlab program listáját, a Simulink blokk-diagramokat, valamint a számítások és a szimuláció grafikus eredményeit, és azok értékelését.

A feladatokat a Matlab és a Simulink felhasználásával kell megoldani.

A feladat elfogadásának feltétele: minimum 4 pont

Adatok:

Traan	J11.	1						
Hf	Típus	$A_{\rm l}$	A_2	T_1	T_2	T_3	T_d	T_{s}
Kód								S
1	A	2	4	2	3	1		0.5
2	A	3	2	2	8	1		0.5
3	A	2	2	3	8	1		0.5
4	A	4	1	4	3	1		0.5
5	A	2	5	5	2	1		0.5
6	A	1	10	0.5	5	20		0.2
7	В	0.5	1	3	1			0.5
8	В	0.2	2	2	8			1
9	В	0.5	2	8	1			0.5
10	В	0.1	3	4	3			1
11	В	0.4	1	5	2			0.5
12	В	1	2	0.2	1			0.1
13	С	0.2	1	3	8			0.5
14	С	0.3	2	4	1			0.5
15	С	0.2	4	2	3			0.5
16	С	0.4	2	5	1			0.5
17	С	0.4	3	1	2			0.5
18	С	2	5	0.2	5			0.1
19	D	0.5	1	0.5	1		0.2	0.2
20	D	0.2	4	1	2		1	0.5
21	D	0.3	2	2	3		1	1
22	D	0.2	2	1	4		0.5	0.25
23	D	0.1	2	2	5		2	1
24	D	0.1	1	4	8		3	1.5
25	D	0.1	2	5	10		5	2.5
26	D	1	0.2	1	0.5		0.1	0.1
27	D	0.5	0.1	0.5	0.1		0.05	0.05
28	D	1	0.4	5	10		2	1
29	D	2	5	1	0.2		0.1	0.05
30	D	2	5	2	5		0.5	0.25
31	D	0.5	1	1	1		0.2	0.2
32	D	1	4	1	2		1	0.5

Hf	Típus	$A_{\rm l}$	A_2	T_1	T_2	T_3	T_d	T
Kód	1	1	2	1	2	,	a	T_s
33	A	2	8	2	5	1		0.5
34	A	3	2	2	8	1		0.5
35	A	2	5	3	10	1		0.5
36	A	4	2	4	2	1		0.5
37	A	2	1	5	2	2		1
38	A	2	10	1	5	20		0.5
39	В	0.1	1	3	0.5			0.2
40	В	0.1	2	2	10			1
41	В	0.5	5	5	1			0.5
42	В	0.1	2	4	5			2
43	В	0.2	1	7	2			0.5
44	В	1	5	0.2	2			0.1
45	С	0.2	5	3	6			0.5
46	С	0.6	2	5	1			0.5
47	C	0.2	4	1.5	3			0.5
48	C	0.4	5	5	1			0.5
49	С	0.4	3	1	1			0.5
50	C	1	5	0.2	8			0.1
51	D	0.1	1	0.5	1		0.4	0.2
52	D	0.5	4	1	4		1	0.5
53	D	0.3	2	3	3		1	1
54	D	0.2	5	1	5		0.5	0.25
55	D	0.1	1	2	10		2	1
56	D	0.1	8	4	10		3	1.5
57	D	0.25	2	5	8		5	2.5
58	D	1	0.5	2	0.5		0.1	0.1
59	D	0.5	0.1	0.5	0.1		0.05	0.05
60	D	2	0.4	5	10		2	1
61	D	5	5	1	0.2		0.1	0.05
62	D	5	5	2	5		0.5	0.25
63	D	0.1	1	1	1		0.2	0.2
64	D	5	4	1	2		1	0.5
65	A	1	2	1	5	10		1
66	A	3	4	2	5	8		2
67	A	5	6	3	10	15		3