Database Technologies PG-DAC

Content

- Introduction to DBMS
- Basic Database Terminology
- Types of DBMS
 - Relational
 - Object Relational
- Introduction to MySQL, MySQL Clients (Monitor, Shell, Workbench)

First

An Inventory Control Application

user-file

vendor-file

Then

A Purchasing Application

part-file

user-file

vendor-file

order-file

and Now

The Information Seeker!

Problems

- Data Redundancy
- No consistency
- No integrity
 - maintaining and assuring the accuracy
- Concurrency related problems
 - Note: OS concurrency never handled database concurrency implementations
- Security Not everyone should be allowed to access all the data at all the time

The Causes?

- No sharing
- Data isolation
- Diffused responsibilities
- Poor coordination
- Disorganized developments
- Data redundancy
- Weak integrity

Problems with File systems

- Problems with file processing systems
 - Limited data sharing
 - Poor enforcement of standards
 - Inconsistent data
 - Inflexibility everything dependent on programs
 - Even simple tasks required extensive programming
 - Security feature practically nil
 - Complex system administration
 - Excessive program maintenance

A Solution

Data, Information, Database

- Data –raw facts
- Information- Result of processing raw data to reveal meaning
- Data is building blocks of information
- Information produced by processing raw data
- Accurate, timely, relevant information is the key to good decision making
- A database is a collection of information that is organized so that it can easily be accessed, managed, and updated.

Introduction to DBMS

- A database management system (DBMS) is system software for creating and managing databases.
- The DBMS provides users and programmers with a systematic way to create, retrieve, update and manage data.

Introduction to DBMS

Architecture for a DBMS

External view

 Content of the database as seen by a particular external user defined by external schema

Conceptual view

 Abstract view of the physical level defined by conceptual schema

Internal view

 Low level representation of the entire database defined by internal schema

Types of databases

Documentoriented databases

Relational Model

table module student course attributes faculty assign book test perf attend session fee

Relational model

- A DBMS is said to be a Relational DBMS(RDBMS)
 if the database relationships are treated in the
 form of a table.
- Three keys on relational DBMS
 - Relation
 - Domain
 - Attributes.
- A number of RDBMSs are available, some popular examples are Oracle, MySQL, Sybase, Ingress, Informix, Microsoft SQL Server, and "Microsoft Access.

Relational model (contd)

- Properties of Relational Tables:
 - Values Are Atomic
 - Each Row is Unique
 - Column Values Are of the Same Kind
 - The Sequence of Columns is Insignificant
 - The Sequence of Rows is Insignificant
 - Each Column Has a Unique Name

Relational Database

Object-Oriented Model

Object Model

Object-Oriented Model

- New user defined data types.
- Complex data types
- Object references and methods
- New capabilities like encapsulation, inheritance etc. for databases.
- Intuitive and Natural Model

What is Object Oriented Database? (OODB)

- A database system that incorporates all the important object-oriented concepts
- Some additional features
- Unique Object identifiers
- Persistent object handling
- Designer can specify the structure of objects and their behavior (methods)
- Better interaction with object-oriented languages such as Java and C++
- Definition of complex and user-defined types
- Encapsulation of operations and user-defined methods

- Queries look very similar in SQL and OQL, sometimes they are the same
- In fact, the results they give are very different Query returns
- Foundation for several OO database management
 systems ORACLE8, DB2, etc

OQL	SQL
Object	Tuple
Collection of objects	Table

Benefits of OODBMS

- Object database is a good choice for three factors: business need, high performance, and complex data.
- With ODBMS, lesser code is required compared to RDBMS.
 - If using Java or C++ -- no need to translate into a database sub-language such as SQL, ODBC, or JDBC.
 - The data structure that you can imagine in Java or C++ can be stored directly without translation in an ODBMS.
- ODBMS give better performance than an RDBMS.
 - The data is read off the disk, it is already in the format that Java or C++ uses (OO). No translation is needed.

Shortcomings OODBMS

- Object databases are not as popular as RDBMS.
- Not many programming language support object databases.
- RDBMS have SQL as a standard query language. Object databases do not have a standard.
- Object databases are difficult to learn for nonprogrammers.

Object-Relational Model

Object-Relational Model

- Combination of
 - OO features Complex objects, Functions, Inheritance, Overloading

And

- Relations features Tables, Views, Transactions, Recovery,
 Indexing, Optimization, SQL queries
- Data is still stored in tables
- SQL3 ('object-oriented' SQL) is the language for data definition, manipulation, and query.

Object-Relational Model

- Extend the relational data model by including object orientation and constructs to deal with added data types
- Allow attributes of tuples to have complex types, including non-atomic values such as nested relations
- Preserve relational foundations, in particular the declarative access to data, while extending modeling power
- PostgreSQL is the most popular pure ORDBMS.

Stonebraker's Application Matrix

	No Query	Query
Complex Data	OODBMS	ORDBMS
Simple Data	File System	RDBMS

Stonebraker's view: Most applications will move to the upper right.

Conclusion

- Data: Known facts that can be recorded and have implicit meaning
- Database: Collection of interrelated data
- DBMS: A computerized data/record keeping system for managing data

Introduction to MySQL

- Open Source SQL based database management system developed, distributed, and supported by Oracle Corporation.
- The MySQL software is Dual Licensed.
 - Users can choose to use the MySQL software as an Open Source product under the terms of the GNU General Public License
 - Or can purchase a standard commercial license from Oracle
- MySQL Database Server is very fast, reliable, scalable, and easy to use.

MySQL 8.0 Command Line Client

```
base) surabhi@surabhi-seng:~$ sudo mysql
sudo] password for surabhi:
Velcome to the MySQL monitor. Commands end with ; or \q.
Your MySQL connection id is 14
Server version: 8.0.26-0ubuntu0.20.04.2 (Ubuntu)
Copyright (c) 2000, 2021, Oracle and/or its affiliates.
Dracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement
nysql> show databases;
 Database
 information schema
 mysql
 performance schema
 sys
 rows in set (0.00 sec)
nysql>
```

MySQL Workbench

MySQL Workbench

Design

- MySQL Workbench enables a DBA, developer, or data architect to visually design, model, generate, and manage databases.
- It includes everything a data modeler needs for creating complex ER models, forward and reverse engineering,

MySQL Workbench

Develop

- MySQL Workbench delivers visual tools for creating, executing, and optimizing SQL queries.
- The SQL Editor provides color syntax highlighting, auto-complete, reuse of SQL snippets, and execution history of SQL.
- The Database Connections Panel enables developers to easily manage standard database connections
- The Object Browser provides instant access to database schema and objects.

MySQL Workbench

Administer

- MySQL Workbench provides a visual console to easily administer MySQL environments and gain better visibility into databases.
- Developers and DBAs can use the visual tools for configuring servers, administering users, performing backup and recovery, inspecting audit data, and viewing database health.

MySQL Workbench

Database Migration

- MySQL Workbench now provides a complete, easy to use solution for migrating Microsoft SQL Server, Microsoft Access, Sybase ASE, PostreSQL, and other RDBMS tables, objects and data to MySQL.
- Migration also supports migrating from earlier versions of MySQL to the latest releases.

- References

- "An Introduction to Database Systems", C. J. Date, Sixth Edition
- "Database System Concepts", Avi Silberschatz, Henry F. Korth, S. Sudarshan
- http://www.cse.iitb.ac.in/~sudarsha/db-book/slide-dir/
- "Fundamentals of Database Systems", Ramez Elmasri, Shamkant B. avathe
- "Database Management Systems", Raghu Ramakrishan
- "Relational Database Selected Writings", C. J. Date
- MySQL manuals
- https://downloads.mysql.com/docs/refman-8.0-en.pdf