Math 219, Lecture Notes Dynamical Systems Professor: Maciej Zworski, Spring 2022

Scribe: Vishal Raman

Contents

Lecture 1: 1/18/2022	3
1.1 Introduction	3
Lecture 2: 1/20/2022	6
2.1 Measurable Dynamics on \mathbb{S}^1	6
Lecture 3: 1/25/2022	9
3.1 Comments about Invariant Sets	9
3.3 General Theory	9
Lecture 4: 1/27/2022	12
4.1 Invariant Everywhere from Invariant Almost Everywhere	12
4.2 σ -algebra of Invariant Sets	12
4.3 Properties of $\mathcal{P}: L^2(X, d\mu) \to \operatorname{Inv}(T)$	13
	1.1 Introduction 1.2 Invariant Measures 1.3 Ergodicity and Mixing 1.4 Equivalence 1.5 Poincaré Recurrence Theorem 1.5 Poincaré Recurrence Theorem Lecture 2: $1/20/2022$ 1.1 Measurable Dynamics on \mathbb{S}^1 Lecture 3: $1/25/2022$ 1.1 Comments about Invariant Sets 3.2 Irrational Translations on \mathbb{S}^1 , continued 1.3 General Theory

§1 Lecture 1: 1/18/2022

§1.1 Introduction

We are concerned with a transformation $T: X \to X$ and we are concerned with the behavior of $T^n = T \circ \cdots \circ T$, $n \in \mathbb{N}_0$. This is the discrete setting. We could also consider $n \in \mathbb{Z}$ if T^{-1} exists, and we take $T^0 = \mathrm{id}$ by convention.

In the continuous setting, we have a family $\varphi_t : (\mathbb{R}^+)_t \times X \to X$ and we want the property that $\varphi_{t+k} = \varphi_t \circ \varphi_s$ for $t, s \geq 0$. This gives us a semigroup structure. If φ_t is invertible, we take $\varphi_{-t} = \varphi_t^{-1}$ giving us a group. It is already clear that $\varphi_0 = \mathrm{id}$.

Some questions we are concerned with:

- How many (if any) periodic orbits? These are points with $T^n(x_0) = x_0$. If we define $T^j(x_0) := x_j$, then $x_0 \to x_1 \to \dots x_n$ forms a periodic orbit of order n.
- Do we have invariant sets subsets $Y \subset X$ such that $T(Y) \subset Y$.
- Do we have invariant measures a measure on X so that the measure is preserved under the transformation T. We will talk about this more precisely in the next section.

§1.2 Invariant Measures

We have a measure space (X, \mathcal{M}, μ) , where $\mu : \mathcal{M} \to \overline{\mathbb{R}}_+$ a measure and a measurable function $T : X \to X$.

Definition 1.1 (Invariant Measure). μ is an invariant measure for T if $T^{-1}: \mathcal{M} \to \mathcal{M}$ and $\mu(T^{-1}(A)) = \mu(A)$. We also say that T is measure preserving.

Why do we say $\mu(T^{-1}(A)) = \mu(A)$ and not $\mu(T(A)) = \mu(A)$?

- $T_*\mu(A) := \mu(T^{-1}(A))$ is always a measure because $T^{-1}(A \cap B) = T^{-1}(A) \cap T^{-1}(B)$. This is not true for $\mu \circ T$.
- If we have a function $f: X \to \mathbb{R}$, we can consider the pullback $T^*f(x) = f(T(x))$. We have that

$$\int f d(T_*\mu) = \int T^* f d\mu.$$

This follows by checking it on indicator functions and extending by linearity. Note that $T^*(\mathbf{1}_A)(x) = \mathbf{1}_A(T(x)) = \mathbf{1}_{T^{-1}(A)}(x)$, which gives the result.

§1.3 Ergodicity and Mixing

As before, we have $(X, \mathcal{M}, \mu), T: X \to X$ measure preserving.

Definition 1.2 (Ergodic). We say that T is **ergodic** if $T^{-1}(A) = A$ implies that $\mu(A) = 0$ or $\mu(X \setminus A) = 0$.

Definition 1.3 (Mixing). We say that T is **mixing** if for all $A, B \subset \mathcal{M}$, $\mu(T^{-n}(A) \cap B) \to \mu(A)\mu(B)$ as $n \to \infty$.

- \bullet When X is a measure space and T is measure preserving, we have Measurable Dynamics, or Ergodic Theory.
- \bullet When X is a metric space and T is continuous, we have Topological Dynamics.

- When X is a manifold and $T \in C^1$, $dT(x) : T_x X \to T_{T(x)} X$ continuous, we have Smooth Dynamics. We have additional structure because we can also consider differentiability properties and use the properties of the tangent space.
- When (X, ω) is a symplectic manifold, ω a nondegenerate closed 2-form. For a function $f \in C^{\infty}(X) \to H_f$ a vector field on x, $\omega(\cdot, H_f) = df$. We also obtain a flow $\varphi_t = \exp tH_f$, where $\varphi_t(x) = x(t)$, $\dot{x}(t) = H_f(x(t))$, x(0) = 0. This is Hamiltonian Dynamics.

Example 1.4 (Newton's Equations)

Taking $X = \mathbb{R}^{2n} = \mathbb{R}^n_x \times \mathbb{R}^n_\xi, \, f : \mathbb{R}^{2n} \to \mathbb{R}$. We take

$$H_f = \sum_{j=1}^{n} \frac{\partial f}{\partial \xi_j} \partial_{x_j} - \frac{\partial f}{\partial x_j} \partial_{\xi_j},$$

$$\omega = \sum_{j=1}^{n} d\xi_j \wedge dx_j.$$

Taking $f(x,\xi) = \frac{1}{2}\xi^2 + V(x)$, $H_f = \xi \cdot \partial_x - V'(x)\partial_\xi$, $\varphi_t(x,\xi) = (x(t),\xi)(t)$). We obtain $\dot{x} = \xi, \dot{\xi} = -V'(x)$, Newton's Equations.

Example 1.5 (Invariant Measure on \mathbb{S}^1)

Take $\mathbb{S}^1 = \mathbb{R}/(2\pi\mathbb{Z})$. Define $T: \mathbb{S}^1 \to \mathbb{S}^1$ defined by $T(x) = x + 2\pi\alpha \pmod{2\pi}$. The invariant measure is given by the Lebesgue Measure, which is translation invariant. We will see that this is the only invariant Borel measure(a measure generated by open sets).

T is continuous and smooth. We will find that it is ergodic when $\alpha \notin \mathbb{Q}$. In other words, there are no invariant sets that are not measure 0 or measure 2π .

§1.4 Equivalence

Definition 1.6 (Semiconjugate). $S: Y \to Y$ is **semiconjugate** to $T: X \to X$ if there exists $\pi: Y \to X$ surjective such that $T \circ \pi = \pi \circ S$. We say that T is a **factor** of S. If π is bijective, then we say S is conjugate to T.

Note that if we have $S^n(x) = x$ semiconjugate to T, then $T^n(\pi(x)) = \pi(x)$.

Example 1.7

 $T: \mathbb{S}^1 \to \mathbb{S}^1$, $x \mapsto x + 2\pi\alpha \pmod{2\pi}$. Take $S: \mathbb{R}^2 \setminus 0 \to \mathbb{R}^2 \setminus 0$, $(x,y) \mapsto R_{2\pi\alpha}(x,y)$, the rotation by $2\pi\alpha$. The map $\pi: (x,y) \mapsto \arg(x+iy)$.

§1.5 Poincaré Recurrence Theorem

Theorem 1.8 (Poincaré Recurrence Theorem)

We have (X, \mathcal{M}, μ) a measure space, $\mu(X) < \infty$, $T : X \to X$, $T_*\mu = \mu$, $A \in \mathcal{M}$ with $\mu(A) > 0$. For almost every $x \in A$, there exists a subsequence n_j such that $T^{n_j}(x) \in A$.

The above theorem is a consequence of the following lemma:

Lemma 1.9

Suppose $\mu(A) > 0$. Then, for almost every x, there exists n > 0 such that $T_*^x \in A$.

Proof. Take $A, T^{-1}A, T^{-2}A, \ldots$ The claim is that there exists j > i such that $\mu(T^{-i}A \cap T^{-j}A) > 0$. Suppose not. Then, the sequence $A, T^{-1}A, \ldots$ is disjoint modulo sets of measure 0. It would follow that $\mu\left(\bigcup_{j=0}^{\infty} T^{-j}A\right) = \sum \mu(T^{-j}(A)) = \sum \mu(A) = \infty$, but $\mu(X) < \infty$ contradicting monotonicity. It follows that $\mu(T^{-i}A \cap T^{-j}A) - \mu(T^{-i}(A \cap T^{-j+i}A)) = \mu(A \cap T^{i-j}A) > 0$.

Example 1.10

Consider $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. $A : \mathbb{R}^2 \to \mathbb{R}^2$. It also takes $\mathbb{Z}^2 \to \mathbb{Z}^2$ and has an inverse taking $\mathbb{Z}^2 \to \mathbb{Z}^2$. It follows that $A : \mathbb{R}^2 \setminus \mathbb{Z}^2 \to \mathbb{R}^2 \setminus \mathbb{Z}^2$, which is a torus action. Taking μ to be the Lebesgue measure on the torus. Since det A = 1, it follows that $A_*\mu = \mu$.

Consider $T: (\mathbb{T}^2)^{N^2} \to (\mathbb{T}^2)^{N^2}$, $T((x_j)) = T((Ax_j))$. We have a set of measure 1 so we can apply Poincare's Theorem.

§2 Lecture 2: 1/20/2022

§2.1 Measurable Dynamics on \mathbb{S}^1

Recall last time we were discussing measurable dynamics: (X, \mathcal{M}, μ) , where \mathcal{M} is a σ -algebra of measurable sets, $\mu : \mathcal{M} \to \overline{\mathbb{R}_+}$ is a measure, and $T : X \to X$ is measure preserversing.

Definition 2.1 (Invariant Set). A such that $T^{-1}(A) = A$.

Last time, we considered the example $T: \mathbb{S}^1 \to \mathbb{S}^1$ with $Tx = x + 2\pi\alpha \pmod{2}$ $pi\mathbb{Z}$). We characterize the invariant sets of T. If $\alpha = \frac{p}{q}, (p,q) = 1$, then $T^qx = x + 2\pi q\frac{p}{q} = x + 2\pi p = x \pmod{2\pi\mathbb{Z}}$. We can use this to easily construct sets of positive measure by extending the points to small arcs.

Suppose we have T_{α} , $\alpha, \beta \in \mathbb{Q}$ with $\alpha \neq \beta$. When are T_{α}, T_{β} conjugate?

If $T_{\alpha}^{q} = \text{id}$, then $T_{\beta}^{q} = \text{id}$ and similarly if $T_{\alpha}^{q-1} \neq 0$, then $T_{\beta}^{q-1} \neq 0$ when they are conjugate. This gives the necessary condition that $\alpha = \frac{p_1}{q}, \beta = \frac{p_2}{q}$ where $(p_1; q) = (p_2; q) = 1$. However, we must have exactly, $\alpha = \beta$. We will prove this later.

Now, we consider $\alpha \notin \mathbb{Q}$. For $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, T_{α} which maps $x \mapsto x + 2\pi\alpha \pmod{2\pi\mathbb{Z}}$ for $x \in \mathbb{S}^1$ is ergodic, and for every $x \in \mathbb{S}^1$, $T^n x$ is dense in \mathbb{S}^1 .

Theorem 2.2 (Weyl, Khinchin)

Suppose $f \in C(\mathbb{S}^1)$. Then for all $x \in \mathbb{S}^1$,

$$\frac{1}{N} \sum_{j=0}^{N-1} f(T^j(x)) \xrightarrow{N \to \infty} \frac{1}{2\pi} \int_0^{2\pi} f(y) \, dy =: \overline{f}.$$

Corollary 2.3

Every orbit $\{T^n x\}$ is dense on \mathbb{S}^1 .

Proof. If not, then there exists K and an open set U such that $T^n x \notin U$ for n > K. We can take U = (a, b), f to be 0 outside (a, b) and a cone from a to b.

$$\frac{1}{N} \sum_{j=0}^{K} f(T^{j}(x)) + \frac{1}{N} \sum_{j=K+1}^{N-1} f(T^{j}(x)) = \frac{1}{N} \sum_{j=0}^{K} f(T^{j}(x)) \to 0,$$

a contradiction. \Box

Now, we prove the main theorem.

Proof. We first prove the result for $f \in \mathcal{P} \subset C(S^1)$, $\mathcal{P} = \{\sum_{|j| \leq J} a_j e^{ijx} : a_j \in \mathbb{C}\}$, the trignometric polynomials. It is enough to prove it for $f(x) = e^{ijx}$, since elements of \mathcal{P} are finite linear combinations of e^{ijx} . Note that the theorem statement becomes

$$\frac{1}{N} \sum_{k=0}^{N-1} e^{ixk} e^{i2\pi\alpha jk} = e^{ixj} \frac{1}{N} \sum_{j=0}^{N-1} e^{(2\pi\alpha ij)k}$$

$$= \begin{cases} 1, & j=0\\ \frac{1}{N} \frac{1 - e^{2\pi i\alpha jN}}{1 - e^{2\pi i\alpha j}}, & j \neq 0 \end{cases}$$

$$\to \delta_{\{j=0\}} = \overline{f}.$$

Finally, $\mathcal{P} \subset C(\mathbb{S}^1)$ is dense: if $f \in C(S^1)$, there exists $p \in \mathcal{P}$ such that $||f - p||_{\mathbb{S}^1} < \epsilon$. This implies that

$$\left| \frac{1}{N} \sum_{j=0}^{N-1} f(T^{j}(x)) - \frac{1}{2\pi} \int_{0}^{2\pi} f(y) \, dy \right| \le \left| \frac{1}{N} \sum_{j=0}^{N-1} (f-p)(T^{j}(x)) - \overline{f-p} \right| + \left| \frac{1}{N} \sum_{k=0}^{N-1} p(T^{k}x) - \overline{p} \right|$$

$$\le 2\epsilon + \left| \frac{1}{N} \sum_{k=0}^{N-1} p(T^{k}x) - \overline{p} \right| \to 2\epsilon.$$

We denote $S_N f(x) = \sum_{k=0}^N f(T^k(x))$, and we call $\frac{1}{N} S_N f(x)$ the **ergodic average**.

Theorem 2.4 $(L^2(\mathbb{S}^1) \text{ Ergodic Theorem})$

Suppose $f \in L^2(\mathbb{S}^1)$. Then

$$\frac{1}{N}S_N f \xrightarrow{L^2} \overline{f}$$

Recall that $L^2(\mathbb{S}^1) = \{f(x) = \sum_{n \in \mathbb{Z}} a_n e^{inx} : 2\pi \sum_{n \in \mathbb{Z}} |a_n|^2 < \infty \}$, where

$$a_n = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-inx} dx.$$

Note that $\{\frac{1}{\sqrt{n}}e^{inx}:n\in\mathbb{Z}\}$ is an orthonormal basis of $L^2(\mathbb{S}^1)$.

Proof.

$$\begin{split} \|\frac{1}{N}S_n \sum_{n \neq 0} f_n\|_{L^2} &= \|\sum_{n \neq 0} \frac{1}{N}S_N f_n \|L^2 \\ &\leq \sum_{0 < |n| < K} \|1/NS_N f_n\|_{L^2} + \|\sum_{|n| \geq K} f_n\|_{L^2} \end{split}$$

Take $\epsilon > 0$ and choose K so that the tail is bounded by ϵ . Using the result with trignometric polynomials,

$$1/NS_N f_n \to 0, |n| < K, n \neq 0, N \to \infty.$$

In other words,

$$\lim \sup \|\frac{1}{N} S_N \sum_{n \neq 0} f_n\| \leq \sum_{0 < |n| < K} \lim \|\frac{1}{N} S_N f_n\| + \epsilon \leq \epsilon.$$

Finally,
$$\sum_{n\neq 0} f_n = f - \overline{f}$$
, so $\|\frac{1}{N}S_N(f - \overline{f})\|_{L^2} \to 0$ and $\frac{1}{N}S_Nf \to \overline{f}$.

Theorem 2.5 (No Invariant Sets on $\mathbb{S}^1)$

. If $A = T^{-1}(A)$, then m(A) = 0 or $m(A) = 2\pi$.

Proof. Suppose not: $T^{-1}(A) = A$, $0 < m(S^1 \setminus A) < 2\pi$. Take $f = \mathbf{1}_A(x) \in L^2(\mathbb{S}^1)$.

§3 Lecture 3: 1/25/2022

§3.1 Comments about Invariant Sets

- $T: X \to X$, for $A \subset X$, $T^{-1}(A) = \{x: Tx \in A\}$.
- A is invariant under T if and only if $T^{-1}(A) = A$.
- "Everything that lands in A comes from A."
- Take $f: X \to \mathbb{C}$. $T^*f = f \circ T: X \to \mathbb{C}$ is well-defined. We also have $f_A = f|_A: A \to C$. If A is invariant, then $(T^*f)_A = T^*(f_A)$.
- If T is invertible, then this is the same as T(A) = A.
- Take $X = [0, \infty)$, Tx = mx, 0 < m < 1. $T([0, 1)) = [0, m) \subset [0, 1]$. $T^{-1}([0, 1)) = [0, 1/m)$. An example of an invariant set is $A = \{m^k : k \in \mathbb{Z}\}$. This is not invariant when you take a one-sided set.

§3.2 Irrational Translations on \mathbb{S}^1 , continued

We have $T: \mathbb{S}^1 \to \mathbb{S}^1$, $x \mapsto x + 2\pi\alpha \pmod{2\pi\mathbb{Z}}$ for $\alpha \notin \mathbb{Q}$.

- For $f \in C(\mathbb{S}^1)$, $\frac{1}{N}S_N f(x) \to \overline{f} := \frac{1}{2\pi} \int_0^{2\pi} f$. This is uniform in x but not in f, which can even be seen by taking trignometric polynomials.
- Every orbit $\{T^j x\}_{j \in \mathbb{N}}$ is dense in \mathbb{S}^1 .
- ullet (Unique Ergodicity)The Lebesgue measure is the only Radon measure invariant under T.

Proof. Suppose $d\mu$ is invariant. Then, $\int f(Tx)d\mu(x) = \int fd\mu$, which implies that $\frac{1}{N}\int S_N f(x)\,d\mu(x) = \int fd\mu$. But the left-hand side converges uniformly to $\frac{1}{2\pi}\int f\,dx$ which is the Lebesgue measure, so it must follows that $d\mu$ is the Lebesgue measure.

- For every $f \in L^2$, $\frac{1}{N}S_N f \xrightarrow{L^2} \overline{f}$.
- Corollary: $T^{-1}(A) = A \Longrightarrow m(A)m(S^1 \setminus A) = 0$.

Proof. Take $f = \mathbf{1}_A(x) \in L^2(\mathbb{S}^1)$. Take $g = \mathbf{1}_{S^1 \setminus A} \in L^2(\mathbb{S}^1)$. Note that $T^*\mathbf{1}_A = \mathbf{1}_{T^{-1}A} = \mathbf{1}_A$.

$$\langle g, \frac{1}{N} S_N f \rangle_{L^2} = \langle \mathbf{1}_{\mathbb{S}^1 \setminus A}, \mathbf{1}_A \rangle = 0,$$

 $\langle g, \frac{1}{N} S_N f \rangle_{L^2} \to \langle g, \overline{f} \rangle = m(A) m(\mathbb{S}^1 \setminus A) / 2\pi.$

§3.3 General Theory

We have (X, \mathcal{M}, μ) , μ a measure, \mathcal{M} a σ -algebra, $T: X \to X$, with $T^{-1}: \mathcal{M} \to \mathcal{M}$, $T_*\mu = \mu(T_*\mu(A) = \mu(T^{-1}(A)))$. We also have $\int T^*fd\mu = \int fd\mu$, $T^*f = f \circ T$.

Recall $L^2(X, d\mu) = \{f : X \to \mathbb{C} | \int |f|^2 d\mu < \infty \}$, with the inner product $\langle f, g \rangle = \int f \overline{g} d\mu(x)$. This defines a complete metric topology. From T, we obtain an operator $Uf = T^*f$.

Note that

$$\langle Uf, Uf \rangle = \int T^* f \overline{T^*f} d\mu = \int T^* |f|^2 d\mu = \langle f, f \rangle.$$

As before, we can take $S_N f = \sum_{j=0}^{N-1} U^j f$.

Theorem 3.1 (Mean Ergodic Theorem)

 \mathcal{H} , a Hilbert space, $U: \mathcal{H} \to \mathcal{H}$ linear, $||Uf|| \leq ||f||$ for all $f \in \mathcal{H}$. Define Inv = $\{f: f = Uf\} = \ker(I - U) \subset \mathcal{H}$, a closed subspace. Let $\mathcal{P}: H \to \text{Inv}$ be the orthogonal projection($\mathcal{P}(\mathcal{H}) = \text{Inv}, P^2 = P, P = P^*$). Then,

$$\|\frac{1}{N}S_Nf - \mathcal{P}f\|_{L^2} \xrightarrow{N \to \infty} 0.$$

Proof. We first prove a lemma:

Lemma 3.2

For all $g \in \mathcal{H}$, Ug = g if and only if $U^*g = g$.

Remark 3.3. Note that if $Uf = T^*f$, then $U^*f = T_*f$. This follows from

$$\langle f, Ug \rangle = \int_X f(x) \overline{g(y)} \, d\mu(x) = \int_X f(T^{-1}(x)) \overline{g(y)} |D(T^{-1})(y)| dy = \langle U^*f, g \rangle.$$

Proof. If Ug = g,

$$||U^*g - g||^2 = \langle U^*g - g, U^*g - g \rangle = ||U^*g||^2 + ||g||^2 - 2\operatorname{Re}\langle Ug, g \rangle$$

$$\leq 2||g||^2 - 2\operatorname{Re}\langle Ug, g \rangle = 2\operatorname{Re}\langle g - Ug, g \rangle = 0.$$

The opposite implication is given by reversing U and U^* .

If $f \in \text{Inv}$, the result is obvious, so we need to show $\frac{1}{N}S_N f \xrightarrow{L^2} 0$ for all $f \in \text{Inv}^{\perp}$.

$$\|\frac{1}{N}S_N f\|^2 = \langle f, \frac{1}{N}S_N^* \frac{1}{N}S_N f \rangle =: \langle f, g_N \rangle.$$

It is enough to show that $g_N \to 0$ weakly in L^2 . Note that $||g_N|| \le ||f||$ since $||Uf|| \le ||f||$, which implies that $\{g_N\}$ is weakly compact(has a weakly converging subsequence). If we know in some topology that $\{g_N\}$ is weakly compact, then $g_N \to 0$ weakly if every weak limit point of g_n is 0.

It is enough to show that weak limits are invariant under $U(\text{or }U^*)$. Put $h=\frac{1}{N}S_Nf$.

$$(I - U^*) \frac{1}{N} S_N^* h = \frac{1}{N} (I - U^*) \sum_{j=0}^{N-1} (U^*)^j h = \frac{1}{N} (I - U^{*N}) h,$$

and

$$\left\| \frac{1}{N} (I - U^{*N}) h \right\| \le \frac{1}{N} \|I - U^{*N}\| \left\| \frac{1}{N} S_N f \right\| \le \frac{2}{N} \|f\| \to 0.$$

It follows that $g = U^*g$, so g = Ug and $g \in Inv$ which implies that g = 0.

An immediate consequence is the following:

Theorem 3.4 (Von Neumann, Ergodic Theorem)

 $(X, \mathcal{M}, \mu), T: X \to X$ measure-preserving. Then,

$$\frac{1}{N}\sum_{j=0}^{N-1}f\circ T^j\xrightarrow{L^2(X)}\mathcal{P}f,$$

where $\mathcal{P}: L^2 \xrightarrow{\perp} \{f \in L^2: f \circ T = f\}.$

§4 Lecture 4: 1/27/2022

§4.1 Invariant Everywhere from Invariant Almost Everywhere

Proposition 4.1

Suppose f(x) = f(T(x)) almost everywhere where f is measurable. Then, there exists g measurable such that f = g almost everywhere and g(x) = g(T(x)) everywhere.

Proof. We write $g(x) = \limsup_{n \to \infty} f(T^n(x))$. This can potentially be infinite at certain points, which is not a problem. Note that g(x) = g(T(x)), since

$$g(T(x)) = \limsup_{n \to \infty} f(T^{n+1}(x)) = g(x).$$

Furthermore, note that g(x) = f(x) if $f(T^n(x)) = f(x)$ for all $n \ge 0$, or equivalently, $f(T^{n+1}x) = f(T^nx)$ for all $n \ge 0$. Equivalently, $T^n(x) \in \{y : Tf(y) = f(y)\}$ or equivalently,

$$x \in \bigcap T^{-n}(\{y : Tf(y) = f(y)\}) =: Y.$$

Taking complements, $X \setminus Y = \bigcup T^{-n}(\{y : Tf(y) \neq f(y)\})$, but this set has measure zero. This implies that $\mu(X \setminus Y) = 0$, so the set where g(x) = f(x) has full measure.

In particular, if we take $f = \mathbf{1}_A$, $f = f \circ T$ almost everywhere is equivalent to $\mathbf{1}_A = \mathbf{1}_{T^{-1}(A)}$ almost everywhere. This is equivalent to saying that the symmetric difference has measure zero:

$$\mu((A \setminus T^{-1}(A)) \cup (T^{-1}(A) \setminus A)) = 0.$$

If we take g as constructed in the proposition, $g = \limsup f(T^n(x)) = \mathbf{1}_B$ for some B. Since $\mathbf{1}_B = \mathbf{1}_A$ almost everywhere, $\mu((B \setminus A) \cup (A \setminus B)) = 0$ and $T^{-1}(B) = B$. Hence Note that $\sup_{k \leq n} \mathbf{1}_{B_k} = \mathbf{1}_{\bigcup_{k < n} B_k}$, and $\int_{k \leq n} \mathbf{1}_{B_k} = \mathbf{1}_{\bigcap_{k < n} B_k}$. It follows that

$$g(x) = \bigcap \bigcup T^{-1}.$$

§4.2 σ -algebra of Invariant Sets

Take $\mathcal{J} \subset \mathcal{M}$, $\mathcal{J} = \{A \in \mathcal{M} : T^{-1}(A) = A\}$.

Proposition 4.2

A measurable function $f: X \to \mathbb{R}$ is invariant almost everywhere if and only if f is measurable with respect to \mathscr{J} - for every $(a,b) \subset \mathbb{R}$, $f^{-1}((a,b)) \in \mathscr{J}$.

Proof. The forward direction is obvious. For the backward direction, fix some $y \in \mathbb{R}$. Then $f^{-1}(\{y\}) \in \mathscr{J}$. This implies that $T^{-1}(f^{-1}(y)) = f^{-1}(y)$, which is the same as $(f \circ T)^{-1}(y) = f^{-1}(y)$. This implies that $f \circ T(x) = f(x)$.

§4.3 Properties of $\mathcal{P}: L^2(X, d\mu) \to \operatorname{Inv}(T)$

• For every $f \in L^2$, $g \in \text{Inv}$, $\int Pf \cdot \overline{g} = \int f \cdot \overline{g}$.

Proof.
$$Pg = g, P = P^*$$
.

• $f \in L^2$, $T^{-1}(A) = A$, $\mu(A) < \infty$. Then $\int_A P f d\mu = \int_A f d\mu$.

Proof. Take $g = \mathbf{1}_A$ and apply the previous result.

• $\mu(X) < \infty$, $f \in L^2$, then $\int Pf d\mu = \int f d\mu$

Proof. Take X = A in the previous result.

• $\mu(X) < \infty$, for every $f \in L^2$, $f \ge 0$, then f(x) > 0 implies Pf(x) > 0.

Proof. If we have a < 0,

$$\begin{split} \mu(\{x:g(x) < a\}) &\leq \mu(\{x:|g(x)|^2 \geq a^2\}) \\ &= \int_{|g(x)^2 \geq a^2|} d\mu \\ &\leq \int_{|g(x)^2 \geq a^2|} \frac{|g(x)|^2}{a^2} d\mu \\ &\leq \frac{1}{a^2} \int_X |g(x)|^2 d\, mu \\ &= \|g\|_{L^2}/a^2. \end{split}$$

This is known as Chebyshev's Inequality.

Hence,

$$\mu(\{x: Pf(x) < -1/N\}) \le N^2 \int |Pf|^2 < \infty.$$

Furthermore, note that $a\{x: g(x) < a\} \ge \int_{g(x) < a} g(x) d\mu$. Applying this with g = Pf, a = -1/N, we have

$$\frac{-1}{N}\mu\{x: Pf(x) < -1/N\} \ge \int_{Pf < -1/N} Pf \, d\mu = \int_{Pf < -1/N} f \, d\mu \ge 0.$$

It follows that $\mu\{x: Pf(x)<-1/N\}=0$. Taking a union over N, we have that $\mu\{x: Pf(x)<0\}=0$.

This implies that

$$\int_{Pf=0} f = \int_{Pf=0} Pf = 0.$$

Hence, Pf = 0 implies that f = 0. But this is the same as saying $f(x) > 0 \Rightarrow Pf(x) > 0$.

Remark 4.3. If we don't assume $\mu(X) < \infty$, then $f \ge 0$ implies $Pf \ge 0$. But if $\mu(X) < \infty$, we have the stronger statement that f(x) > 0 implies that Pf(x) > 0. This also follows from the mean ergodic theorem, $S_N f \ge 0$, $g = g^+ - g_-$, $g_+, g_- \ge 0$, $|g| = g^+ + g^-$.

Recall the statement:

Theorem 4.4 (Poincare Recurrence)

 $B \in M$, $\mu(B) > 0$, for almost every $x \in B$, there exists a subsequence n_k such that $T^{n_k}(x) \in B$.

Proof. If $\frac{1}{n}S_nf \xrightarrow{L^2} Pf$, then there exists a subsequence so that $1/n_kS_{n_k}f \to Pf(x)$ almost everywhere. Taking $f = \mathbf{1}_B$, the last property of \mathcal{P} shows that $\mathcal{P}\mathbf{1}_B(x) > 0$ almost everywhere in B.

Hence for almost every x,

$$\frac{1}{n_k} \sum_{k=0}^{n_k} \mathbf{1}_B \circ T^{n_k}(x) \to \mathcal{P}(x).$$

But if no such subsequence existed, the LHS would converge to 0.

§4.4 Examples of Ergodic Functions

- Recall the example $T: \mathbb{S}^1 \to \mathbb{S}^1$, $x \mapsto x + \theta \pmod{\mathbb{Z}}$. If θ is irrational, then T is ergodic.
- Take Tx = mx, $m \in \mathbb{N}$, $m \geq 2$, $T : \mathbb{S}^1 \to \mathbb{S}^1$. This is an m-to-1 map of $\mathbb{S}^1 \to \mathbb{S}^1$. Is T measure-preserving? Take $[x,y) \subset \mathbb{S}^1$, d(x,y) < 1/m. Then, $T^{-1}([x,y)) = \bigcup_{j=0}^{m-1} [x/m+j/m,y/m+j/m]$, each of which has length (y-x)/m, so $\mu(T^{-1}([x,y])) = y x = \mu([x,y))$.

List of Definitions and Theorems

1.1	Definition (Invariant Measure)	3
1.2	Definition (Ergodic)	3
1.3	Definition (Mixing)	3
1.6	Definition (Semiconjugate)	4
1.8	Theorem (Poincaré Recurrence Theorem)	5
2.1	Definition (Invariant Set)	6
2.2	Theorem (Weyl, Khinchin)	6
2.4	Theorem $(L^2(\mathbb{S}^1)$ Ergodic Theorem)	7
2.5	Theorem (No Invariant Sets on \mathbb{S}^1)	8
3.1	Theorem (Mean Ergodic Theorem)	10
3.4	Theorem (Von Neumann, Ergodic Theorem)	11
4.4	Theorem (Poincare Recurrence)	14