Adversarial Search

CS 3600 Intro to Artificial Intelligence

Adding in other agents

Recall, our environments were **single-agent**.

How can you plan a sequence of actions if you have no control over what other agents will do?

Simple **games** are an environment with multiple agents that keeps most of the other restrictions in place

- Checkers, Chess, Go
- Poker, Rock-paper-scissors, Blackjack
- Roulette, Backgammon, Monopoly

Two player, perfect information, zero-sum games

Two player

In general, we could have many players, but many classic games only have two.

Perfect information

All players know the exact state of the game.

Zero-sum

The result (**utility**) for each player at the end of the game is exactly the opposite of the opponent.

These assumptions let us **reason** about the goals of the other agent.

Search trees for 2-player zero-sum games (1)

We can still construct the state space as before, but the other player (**opponent**) gets to make every other move.

In tree form, we choose actions on **alternating** layers.

We are choosing actions that **maximize** our utility, opponent is choosing actions that **minimize** our utility

Idea: keep expanding nodes until we hit a **terminal** state, propagate the final utility back to initial action choice, pick the action with the best utility.

Search trees for 2-player zero-sum games (2)

Notes

- Result of searching this tree is a single move (have to wait for opponent's move)
- To pick the optimal move, we might need to expand the entire search tree
- We are assuming the opponent is rational (picks the best moves)

A recursive definition of the Minimax value of a state

MAX (x)

MIN (o)

MAX (x)

MIN (o)

A simple example

$$\text{MINIMAX}(s) = \left\{ \begin{array}{ll} \text{UTILITY}(s) & \text{if Terminal-Test(s)} \\ \max_{a \in \text{Actions}(s)} \text{MINIMAX}(\text{Result}(s, a)) & \text{if Player(s)} = \text{Max} \\ \min_{a \in \text{Actions}(s)} \text{MINIMAX}(\text{Result}(s, a)) & \text{if Player(s)} = \text{Min} \end{array} \right.$$

Minimax(B) = $3 (b_1)$ Minimax(C) = $2 (c_1)$ Minimax(D) = $2 (d_3)$ Minimax(A) = $3 (a_1)$

The Minimax algorithm

```
def Minimax_Decision(state):
    best_action,best_val = None,-math.inf
    for a in actions(state):
        s_prime = result(a,state)
        a_val = Min_Value(s_prime)
        if a_val>best_val:
            best_val = a_val
            best_action = a
    return best_action
```

```
def Max_Value(state):
    if isTerminal(state):
        return utility(state)
    v = -math.inf
    for a,s in successors(state):
        v = max(v,Min_Value(s))
    return v
def Min_Value(state):
    if isTerminal(state):
        return utility(state)
    v = math.inf
    for a,s in successors(state):
        v = min(v,Max_Value(s))
    return v
```

The Minimax algorithm - notes

Basically, DFS!

- Complete? Yes (if tree is finite)
- Optimal? **Yes** (if opponent is rational)
- Time complexity? **O(b^m)** (b: branching factor, m: depth of tree)
- Space complexity? O(m*b)

For chess, b≅35, m≅100

Expanding the full tree isn't going to work!

Do we always need to expand every node? (1)

Do we always need to expand every node? (2)

Range of

possible Minimax

values

Unreachable nodes

If we can move to m, which has a strictly better Minimax value than n, we don't need to explore the path containing n.

Define the following helper variables

 α = the value of the **highest value** choice we have found so far at any choice point along the path for Max

 β = the value of the **lowest value** choice we have found so far at any choice point along the path for Min

The Alpha-Beta search algorithm

```
def Alpha_Beta_Search(state):
    best_action,best_val = None,-math.inf
    for a in actions(state):
        s_prime = result(a,state)
        a_val = Min_Value(s_prime,-math.inf,math.inf)
        if a_val>best_val:
            best_val = a_val
            best_action = a
    return best_action
```

```
def Max_Value(state,alpha,beta):
    if isTerminal(state):
        return utility(state)
    v = -math.inf
    for a,s in successors(state):
        v = max(v,Min_Value(s,alpha,beta))
        if v >= beta:
            return v
        alpha = max(alpha,v)
    return v
```

```
def Min_Value(state,alpha,beta):
    if isTerminal(state):
        return utility(state)
    v = math.inf
    for a,s in successors(state):
        v = min(v,Max_Value(s,alpha,beta))
        if v<= alpha:
            return v
        beta = min(beta,v)
    return v</pre>
```

Alpha-Beta notes

Pruning does not affect the optimality of the final result

Which paths we can prune highly depends on the expansion order (just like DFS)

Worst case, same complexity as Minimax

With the best ordering, time complexity: $O(b^{m/2})$ (effective branching factor \sqrt{b})

For chess, b≅6 instead of 35

6¹⁰⁰ is still pretty big

Alternatives to finding the optimal solution

- Use Cutoff-Test and Eval instead of Terminal and Utility
 - Cutoff-Test checks to see if terminal, or if we've already expanded past some depth limit
 - Eval provides an estimate of the true utility of this node without searching all the way down to the leaves. Similar to the heuristic from previous lectures
- Use Iterative Deepening Search and return the move selected by the deepest completed search (alternatively, use IDS to help with move ordering)
- Use a lookup table of previously visited states (transposition table, memoization)
 - Kind of like the closed list from previous lectures
 - Need to have a cache-like structure to keep memory usage bounded

Summary and preview

Wrapping up

- Games with multiple agents can be solved with similar search methods, when certain assumptions are made that let us reason about the objectives of the other agents
- Minimax uses an alternating, DFS-like search to pick the best action for the current state
- We can effectively double the depth of the trees we can search in a fixed time by using Alpha-Beta pruning

Next time

Introducing stochasticity