Columbia MA Math Camp

Real Analysis

Vinayak Iyer August 16, 2019

Motivation

- In real analysis (and also in micro) we often need to use concepts related to limits and convergence
- roughly speaking, that the sequence will get "as close as we want" to the limit.

By saying that a sequence of objects converges to a limiting object, we mean,

- To be able to talk about how close 2 objects are, we need the concept of distance.
- Metric spaces are the general framework that capture the concept of distance, but we will focus on Euclidean metric spaces
 - Pretty much the only thing economists work with
 - Easier to visualize

Table of Contents

Euclidean Spaces

Sequences and Convergence

Open and Closed Sets

Compactness

Continuity

Metric Spaces

Defining Metric Spaces

Definition 1.1

Let X be a set, and $d: X \times X \to \mathbb{R}$ a function. We call d a **metric** on X if:

- Positive Definiteness : $d(x,y) \ge 0$ for all $x,y \in X$, and d(x,y) = 0 iff x = y
- Symmetry : d(x, y) = d(y, x)
- Triangle Inequality : $d(x,z) \le d(x,y) + d(y,z)$ for all $x,y,z \in X$

A metric space (X, d) is a set X with a metric d defined on X

Example: A trivial example is the discrete metric:

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

Does this satisfy the properties of a metric? We will however focus on Euclidean metric spaces.

4

Discrete Metric is actually a metric

Discrete metric :
$$d(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

Let us check that the discrete metric satisfies the 3 properties of a metric :

- (a) By definition d(x, y) = 0 iff x = y
- (b) Symmetric is also trivial
- (c) Take $x, y, z \in X$. If x = y, then $d(x, y) = 0 \le d(x, z) + d(z, y)$. If $x \ne y$, then we must have d(x, z) = 1 OR d(z, y) = 1. In either case we have :

$$d(x,y) = 1 \le d(x,z) + d(z,y)$$

Euclidean Distance

Definition 1.2

In \mathbb{R}^n , the Euclidean distance is the function $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^+$:

$$d(x,y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{\frac{1}{2}}$$

Euclidean distance satisfies the 3 properties that we mentioned earlier:

- $d(x,y) \ge 0$, and d(x,y) = 0 iff x = y
- d(x,y) = d(y,x)
- $d(x,y) \leq d(x,z) + d(z,y)$

Let us prove the first two properties. Triangle Inequality is hard to show - requires the Cauchy Schwarz inequality.

6

Euclidean metric proof

Fact 1

Prove that the Euclidean metric satisfies the first two properties of a metric

Proof.

(a) WTS that d(x,y) = 0 iff x = y for any $x, y \in \mathbb{R}^n$.

$$(\Longrightarrow):$$
 If $d(x,y)=\sqrt{\sum_{i=1}^n(x_i-y_i)^2}=0$, this implies $\sum_{i=1}^n(x_i-y_i)^2=0$. Since

 $(x_i - y_i)^2 \ge 0$ for each i which means that $(x_i - y_i)^2 = 0 \ \forall i$ and thus $x_i = y_i \ \forall i$. Thus x = y

(
$$\Leftarrow$$
): If $x = y$, we have $x_i = y_i$ for each i . Therefore

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} = 0$$

(b) WTS that d(x,y) = d(y,x). This follows from the fact that :

$$\sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} = \sqrt{\sum_{i=1}^{n} (y_i - x_i)^2}$$

Bounded Sets

Definition 1.3

A subset S of \mathbb{R}^n is **bounded** if there exists $M \in \mathbb{R}$ such that for all $x \in S$, $d(0,x) \leq M$.

Note: We could have chosen any $a \in \mathbb{R}^n$ in the place of 0. Suppose S is bounded with respect to 0. Then for any $x \in S$ the triangle inequality tells us

$$d(a,x) \le d(a,0) + d(0,x) \le d(a,0) + M$$

Thus S is bounded with respect to a as well.

Least Upper Bounds

Definition 1.4

Let $S \subseteq \mathbb{R}$. A number $M \in \mathbb{R}$ is an **upper bound** of S if $s \leq M$ for every $s \in S$.

If no M' < M is an upper bound of S, then M is called the **least upper bound** or **supremum** of S.

We make one important assumption about the real numbers: every bounded set of real numbers has a least upper bound. This is called the **least upper bound property**.

9

Table of Contents

Euclidean Spaces

Sequences and Convergence

Open and Closed Sets

Compactness

Continuity

Metric Spaces

Sequences: Definition

Formally, a **sequence** in a set X is a function from \mathbb{N} to X. We denote x_n the image of n, and (x_n) the sequence.

Less formally, a sequence is an **ordered collection** of elements $(x_0, x_1, x_2, ...)$. Many problems in math boil down to understanding the long-term behavior of some sequence.

We typically write sequences as a formula or by enumerating the first few terms.

- $(x_n) = (n)_{n=0}^{\infty} : (0, 1, 2, 3, ...)$
- $(x_n) = (1)_{n=0}^{\infty} : (1, 1, 1, 1, ...)$
- $(x_n) = \left(\frac{1+(-1)^n}{2}\right)_{n=0}^{\infty}$: (1, 0, 1, 0, ...)
- $(x_n) = (\frac{1}{n+1})_{n=0}^{\infty}$: $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots)$

You'll also see people write things like $x_n = n$.

Bounded Sequences

In \mathbb{R}^n we can define properties of sequences that rely on the notion of distance.

Definition 2.1

A sequence (x_n) of $S \subseteq \mathbb{R}^n$ is **bounded** iff $\{x_0, ..., x_n, ...\}$ is a bounded subset of \mathbb{R}^n .

Are the sequences $x_n = n$ and $x_n = 1/n$ bounded or unbounded?

- The sequence $x_n = n$ is not bounded. For any $M \in \mathbb{R}$, $d(x_n, 0) > M$ for n > M.
- The sequence $x_n = \frac{1}{n}$ is bounded: $d(x_n, 0) \le 1$ for all n

Limits

Definition 2.2

A sequence (x_n) of $S \subseteq \mathbb{R}^n$ converges to a limit $\ell \in S$ iff for all $\epsilon > 0$, there exists an integer $N(\epsilon)$ such that for all $n \geq N(\epsilon)$

$$d(x_n,\ell) < \epsilon$$

We write $x_n \to \ell$ or $\lim_{n \to \infty} x_n = \ell$. If (x_n) does not converge, we say it diverges.

This definition is important, so let's unpack it a little:

- ullet The sequence must eventually **get and remain** arbitrarily close to ℓ
- N can be different for each ϵ .
- We require $\ell \in S$. Consider $(x_n) = (1, \frac{1}{2}, \frac{1}{3}, ...)$. What happens if $S = \mathbb{R}$? If S = (0, 2)?

Convergent sequences: Results

Proposition 2.1

If a sequence (x_n) converges, then (x_n) is bounded.

Proof.

Assume $x_n \to \ell$.

- Take $\epsilon = 1$
- Since $x_n \to \ell$, by definition there exists $N \in \mathbb{N}$ such that for all $n \geq N, d(x_n, \ell) < 1$.

This proves that the sequence starting at N is bounded, but we need to deal with the first N-1 terms.

- Define $M \equiv \max\{d(x_1, \ell), ..., d(x_{N-1}, \ell), 1\}$
- For all $n, d(x_n, l) \leq M$

Limit (if exists) must be unique

Proposition 2.2

The limit of a sequence (x_n) is unique provided it exists i.e. if $x_n \to x$ and $x_n \to x'$, then x = x'

Proof.

We prove this by contradiction. Suppose $x \neq x'$. Thus it must be that d(x, x') > 0.

Consider
$$\varepsilon = \frac{d(x,x')}{2}$$
.

Because $x_n \to x$, there exists N such that $d(x_n, x) < \varepsilon$ for any n > N. Similarly, because $x_n \to x'$, there exists N' such that $d(x_n, x') < \varepsilon$ for any n > N'. Take $\hat{n} = \max\{N, N'\} + 1$ so that $\hat{n} > N$ and $\hat{n} > N'$. There $d(x_{\hat{n}}, x) < \varepsilon$ and $d(x_{\hat{n}}, x') < \varepsilon$.

Thus it must be that:

$$d(x, x_{\hat{n}}) + d(x_{\hat{n}}, x') < 2\varepsilon = d(x, x')$$

which contradicts the triangle inequality of d. Thus we have reached a logical contradiction and therefore x = x'.

Order of Limits are preserved in sequences

Proposition 2.3

In the Euclidean metric space (\mathbb{R}, d) , suppose there are 2 convergent sequences $x_n \to x$ and $y_n \to y$. If $x_n \le y_n \ \forall n$, then prove that $x \le y$

Proof.

We do this by contradiction. Suppose x>y and set $\varepsilon=\frac{x-y}{2}$. Since $x_n\to x$ and $y_n\to y$, then by definition, $\exists N_x$ and N_y such that $|x_n-x|<\varepsilon$ and $|y_n-y|<\varepsilon$ $\forall n>N_x$ and $n>N_y$. Take $\hat n>\max\{N_x,N_y\}$. Then we must have $|x_{\hat n}-x|<\varepsilon$ and $|y_{\hat n}-y|<\varepsilon$. Since $\varepsilon=\frac{x-y}{2}$, this implies, $x-\varepsilon=y+\varepsilon$

$$x_{\hat{n}} > x - \varepsilon = y + \varepsilon > y_{\hat{n}}$$

which contradicts $x_n \leq y_n \ \forall n$

Convergent sequences: results (cont.)

Here is a result you'll show on your problem set:

Proposition 2.4

A sequence $(x^k) = (x_1^k, ..., x_n^k)$ of \mathbb{R}^n converges to a limit x iff each component converges to the corresponding component of x in \mathbb{R} .

The result boils down to the fact that for all $j \in \{1, ..., n\}$:

$$|x_j - x_j^k| \le \left(\sum_{i=1}^n (x_j - x_j^i)^2\right)^{\frac{1}{2}} \le n \max_i |x_i - x_i^k|$$

Convergent sequences: results (cont.)

In general, working with the definition of convergence is cumbersome. There are some important results we'll use frequently

Proposition 2.5

Let (x_n) and (y_n) be sequences of \mathbb{R} . If $(x_n) \to x$ and $(y_n) \to y$:

- (a) $x_n + y_n \rightarrow x + y$
- (b) $x_n y_n \to xy$
- (c) $1/x_n \rightarrow 1/x$ if $x \neq 0$

Proof.

We'll show the second one and the rest will probably be on your problem set.

Proof of Property (b)

Proposition 2.6

Let (x_n) and (y_n) be sequences of \mathbb{R} . If $(x_n) \to x$ and $(y_n) \to y$ then $x_n y_n \to xy$

Proof.

Take any $\varepsilon > 0$. I want to find N such that $|x_n y_n - xy| < \varepsilon$ for any n > N.

Because (y_n) is convergent, it is bounded i.e. there exists M such that $|y_n| < M \ \forall n$. Because $x_n \to x$, there exists N_x s.t $|x_n - x| < \frac{\varepsilon}{2M}$. Again since $y_n \to y$, there exists N_y such that $|y_n - y| < \frac{\varepsilon}{2(|x|+1)}$.

Let $N = \max\{N_x, N_y\}$ and I claim this is the N we need to find. This is because for any n > N,

$$\begin{aligned} |x_n y_n - xy| &= |(x_n - x)y_n + (y_n - y)x| \\ &\leq |x_n - x| |y_n| + |y_n - y| |x| \\ &< \frac{\varepsilon}{2M} \cdot M + \frac{\varepsilon}{2(|x| + 1)} \cdot |x| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{aligned}$$

Subsequences

Definition 2.3

Let (x_n) be a sequence. A subsequence of (x_n) is a sequence (x_{n_k}) where $n_1 < n_2 < ...$ is an increasing sequence of indices.

- $(x_2, x_3, x_5, ...)$ is a subsequence of (x_n)
- $(x_4, x_3, x_2, ...)$ is not (the terms are out of order).

Proposition 2.7

A sequence (x_n) converges to a limit ℓ iff all its subsequences converge to the same limit ℓ .

Proof.

- (\Rightarrow) Assume $(x_n) \to \ell$ and consider a subsequence (x_{n_k}) of (x_n) . Fix $\epsilon > 0$. There exists $N \in \mathbb{N}$ such that for all $n \geq N$, $d(x_n, \ell) < \epsilon$. Take K such that $n_K \geq N$. Then for all $k \geq K$, $n_k \geq n_K \geq N$, so $d(x_{n_k}, \ell) < \epsilon$.
- (\Leftarrow) Since (x_n) is a subsequence of itself, this implication is immediate.

Subsequences (cont.)

Proposition 2.8

Bolzano-Weierstrass Theorem *Every bounded sequence of real numbers has a convergent subsequence.*

Proof.

To do this, we will first prove :

- Monotone Convergence Theorem : Every increasing (decreasing) and bounded from above (below) real sequence is convergent in $(\mathbb{R},)$
- \bullet Every sequence in $\mathbb R$ has a monotone subsequence.

Combining these 2 results, we get that the Bolzano-Weierstrass Theorem holds.

Monotone Convergence Theorem

Proposition 2.9

Monotone Convergence Theorem Every increasing (decreasing) and bounded from above (below) real sequence is convergent in (\mathbb{R}, d)

Proof.

Take any increasing and bounded real sequence (x_n) . By the least upper bound property of \mathbb{R} , it has a l.u.b.

Let $x:=\sup x_1,x_2,\ldots$ We want to show $x_n\to x$. Take any $\varepsilon>0$. Want to find N s.t. $d(x_n,x)<\varepsilon\ \forall n>N$. Since x is the lub $\implies x-\varepsilon$ is not an upper bound and therefore $\exists\ N$ s.t. $x_N>x-\varepsilon$. Therefore $\forall n>N$, it must be that :

$$x \ge x_n \ge x_N > x - \varepsilon$$

and therefore $|x_n - x| < \varepsilon$

The proof for a decreasing and bounded from below sequence (x_n) is completed by applying the proof above to $(-x_n)$.

Every sequence in ${\mathbb R}$ has a monotone subsequence

Proposition 2.10

Every sequence in $\mathbb R$ has a monotone subsequence

Proof.

Take any sequence (x_n) in \mathbb{R} . Call the term x_n a dominant term if $x_n > x_m$ for all $m \ge n$.

- Case 1 : (x_n) has infinitely many dominant terms. Then these dominant terms constitute a decreasing sequence
- Case 2: (x_n) has finitely many dominant terms. Let x_N be the last dominant term. Let $n_1 = N + 1$. So x_{n_1} is not a dominant term. This means there exists $n_2 > n_1$ s.t. $x_{n_2} > x_{n_1}$. Again x_{n_2} is not dominant which implies there exists n_3 st $x_{n_3} > x_{n_2}$ and so on. We thus obtain a strictly increasing sequence
- Case 3: (x_n) has no dominant terms. We can let $n_1 = 1$ and then we're back in the previous case.

Cauchy Sequences

- When a sequence converges, its terms become closer and closer to the limit as n
 increases. As a by-product, the terms themselves become closer and closer
 together.
- The notion of a Cauchy sequence weakens the requirement of convergence by only requiring that the terms get closer together
 - Without necessarily converging to a limit.

Cauchy Sequences (contd)

 How do we actually know when a sequence converges? Do we have to calculate the limit?

$$a_n = \sum_{k=1}^n \frac{1}{k^2}$$

- Turns out the right notion is that of Cauchy sequences
- In many situations, we will show that Cauchy sequences are the same as convergent sequences which will help us show that a sequence is convergent without specifying the limit

Cauchy Sequences (cont.)

Definition 2.4

A sequence (x_n) is Cauchy iff:

$$\forall \epsilon > 0, \exists N(\epsilon) \in \mathbb{N} \text{ such that } \forall n, m \geq N(\epsilon), d(x_n, x_m) < \epsilon$$

- Not enough for subsequent terms to be close: all terms after a certain point must be close.
- Let's show (a_n) on the previous slide is Cauchy. Fix $\epsilon > 0$, and take $N > 1/\epsilon$:

$$d(x_n, x_m) = \sum_{k=n+1}^{m} \frac{1}{k^2} < \sum_{k=n+1}^{m} \frac{1}{k(k-1)}$$
$$= \sum_{k=n+1}^{m} \frac{1}{k-1} - \frac{1}{k}$$
$$= \frac{1}{n} - \frac{1}{m} < \epsilon$$

Cauchy sequences are bounded

Proposition 2.11

If (x_n) is Cauchy, it is bounded

Proof.

As in a proof before, let us take $\varepsilon=1$. Since (x_n) is Cauchy, there exists N such that $d(x_n,x_m)<1$ for all $n,m\geq N$. In particular, $d(x_n,x_N)<1$, so $\{x_n|n\geq N\}$ is bounded.

Since $\{x_n|n < N\}$ is also bounded, the whole sequence is bounded.

Question: Is the reverse implication true? Counter-example?

Convergence of a subsequence implies convergence

Proposition 2.12

If a subsequence of a Cauchy sequence converges to ℓ , the sequence itself converges to ℓ .

Proof.

Let (x_n) be Cauchy, and suppose $x_{n_k} \to \ell$. Fix $\epsilon > 0$. Since (x_n) is Cauchy, there exists an N such that

$$d(x_n, x_m) < \epsilon/2, \forall n, m \geq N$$

Since $(x_{n_k}) \to \ell$, there exists K such that

$$d(x_{n_k}, \ell) < \epsilon/2, \forall k \geq K$$

Take k such that $N_k \ge \max(N, n_K)$. Then for all $n \ge N_k$:

$$d(x_n,\ell) < d(x_n,x_{n_k}) + d(x_{n_k},\ell) < \epsilon/2 + \epsilon/2 = \epsilon$$

Thus $x_n \to \ell$.

Do Cauchy sequences converge?

Theorem 2.1

In \mathbb{R}^n a sequence converges iff it is Cauchy.

Proof.

(⇒) Suppose $x_n \to \ell$. Let $\epsilon > 0$. There exists N such that for all $n \ge N$, $d(x_n, l) < \epsilon/2$. Let $n, m \ge N$. By the triangle inequality,

$$d(x_n, x_m) \le d(x_n, I) + d(I, x_m) < \epsilon/2 + \epsilon/2 = \epsilon$$

(\Leftarrow) Since Cauchy sequences are bounded, by Prop. **2.8**, (x_n) has a convergent subsequence. From the result above, (x_n) converges.

Definition 2.5

Spaces in which Cauchy sequences converge are called complete metric spaces

Can you give an example of a Cauchy sequence which does not converge? (Hint: Impossible in \mathbb{R} .)

Do Cauchy sequences converge?

Theorem 2.1

In \mathbb{R}^n a sequence converges iff it is Cauchy.

Proof.

(⇒) Suppose $x_n \to \ell$. Let $\epsilon > 0$. There exists N such that for all $n \ge N$, $d(x_n, l) < \epsilon/2$. Let $n, m \ge N$. By the triangle inequality,

$$d(x_n, x_m) \le d(x_n, I) + d(I, x_m) < \epsilon/2 + \epsilon/2 = \epsilon$$

(\Leftarrow) Since Cauchy sequences are bounded, by Prop. **2.8**, (x_n) has a convergent subsequence. From the result above, (x_n) converges.

Definition 2.5

Spaces in which Cauchy sequences converge are called complete metric spaces

Can you give an example of a Cauchy sequence which does not converge? (**Hint:** Impossible in \mathbb{R} .)

Consider the rational numbers $\ensuremath{\mathbb{Q}}$ and the sequence given by :

$$a_n = \left(1 + \frac{1}{n}\right)^n$$

Table of Contents

Euclidean Spaces

Sequences and Convergence

Open and Closed Sets

Compactness

Continuity

Metric Spaces

Open and Closed Sets

- Most of economics deals with sets: budget sets, indifference curves, production sets, the set of unbiased estimators, etc. It's useful to have well-defined language to describe the structure of sets.
- In addition, many common concepts and results (limits, continuity, existence of maxima, etc.) rely on the notion of open and closed sets.
- As a silly example consider the sets $S_1 = [0,1]$ and $S_2 = (0,1)$. The points 0 and 1 seem special: they are on the "edge" of both sets. The difference between S_1 and S_2 is whether they contain these points on the edge (turns out to be an important distinction!)

Open Balls

Definition 3.1

In \mathbb{R}^n , an **open ball** with center a and radius r > 0 is the subset of all points at a distance less than r from a:

$$B(a,r) = \{x \in \mathbb{R}^n | d(x,a) < r\}$$

Note: Even though I'm writing d(x, a), I mean the Euclidean metric.

1.5

Figure 1: Open balls in \mathbb{R}, \mathbb{R}^2 , and \mathbb{R}^3

Open Sets: Definition

Definition 3.2

Let S be a subset of \mathbb{R}^n

- A point $a \in \mathbb{R}^n$ is an interior point of S if $\exists r > 0$ such that $B(a, r) \subseteq S$.
- The interior of S, noted int(S) is the set of all its interior point.
- A subset S is an open set if all its points are interior points of S, i.e. if int(S) = S.
- Because an interior point of S always belongs to S, $int(S) \subseteq S$.
- To show a set is open, take an arbitrary point $s \in S$ and find a radius such that $B(s,r) \subseteq S$.

Open Sets: Results

Proposition 3.1

Any open ball is an open set.

Proof.

Terminology is not a proof!

Consider an open ball B(a, r). We will show every point is interior.

- Let $x \in B(a, r)$. We need to find a radius R > 0 such that $B(x, R) \subseteq B(a, r)$
- Define R = r d(a, x) > 0
- Using the triangle inequality, for any $y \in B(x, R)$:

$$d(y,a) \le d(y,x) + d(x,a) < r.$$

Open Sets: Results (cont.)

Proposition 3.2

- Any union (possibly infinite) of open sets is an open set.
- Any finite intersection of open sets is an open set.

Proof.

We will show the first result.

- Let $\{S_i\}$ be a family of open sets and $S \equiv \bigcup_i S_i$. Need to show S = int(S).
- For any $x \in S$, $x \in S_i$ for some i.
- Since S_i is open, there exists r > 0 such that $B(x, r) \subseteq S_i$.
- But $S_i \subseteq S$, so $B(x,r) \subseteq S$, so $x \in int(S)$.

Closed Sets: Definition

Definition 3.3

Let S be a subset of \mathbb{R}^n .

- A point $a \in \mathbb{R}^n$ is a closure point of S iff for any radius r > 0, the open ball B(a, r) around a contains some point of S. In other words, for all r > 0, $B(a, r) \cap S \neq \emptyset$
- The closure of a subset S, cl(S), is the set of all its closure points.
- A subset S is a closed set iff cl(S) = S.

A point that belongs to S is always a closure point of S, so $S \subseteq cl(S)$.

Links between open and closed sets

Proposition 3.3

- The complement of int(S) is the closure of $S^c : (int(S))^c = cl(S^c)$.
- The complement of cl(S) is the interior of $S^c: (cl(S))^c = int(S^c)$.

Proof.

We'll show the first result. The definition of int(S) is:

$$a \in int(S) \Leftrightarrow \exists r > 0 : B(a, r) \subseteq S$$

Take the negation of each side of the equivalence:

$$a \in (int(S))^c \Leftrightarrow \forall r > 0 : B(a,r) \cap S^c \neq \emptyset$$

But the right-hand side is precisely the definition of belonging to $cl(S^c)!$

Links between open and closed sets (cont.)

An important theorem follows directly from the previous result

Theorem 3.1

A set S is open (closed) iff its complement is closed (open).

Proof.

Applying the previous result, we see

$$S$$
 is open \Leftrightarrow $int(S) = S$ (defn) \Leftrightarrow $cl(S^c) = S^c$ (previous result) \Leftrightarrow S^c is closed (defn)

A similar proof shows S is closed iff S^c is open.

Closed Sets: Results

Proposition 3.4

- Any intersection (possibly infinite) of closed sets is a closed set.
- Any finite union of closed sets is a closed set.

Proof.

We'll show the first result:

- For a collection of closed sets $\{S_i\}$, $\cap_i S_i = (\cup_i S^c)^c$ by Morgan's laws.
- Since S_i is closed, S_i^c is open.
- By Proposition 3.2, $\cup_i S_i^c$ is open.
- Therefore $(\bigcup_i S_i^c)^c$ is closed, finishing the proof.

Finding the closure: sequential characterization

Proposition 3.5

Let $S \subseteq \mathbb{R}^n$. A point x is in cl(S) iff there exists a sequence of elements of S that converges (in \mathbb{R}^n) to x.

Proof.

(⇒) Assume $x \in cl(S)$. We will construct a sequence of S that converges to x.

- For each $n \in N$ take $x_n \in S \cap B(x, 1/n) \neq \emptyset$ (we can do this because x is a closure point of S)
- To check convergence, fix $\epsilon > 0$. For any $n \ge 1/\epsilon$, $d(x_n, x) < 1/n \le \epsilon$.

(\Leftarrow) Assume there exists a sequence x_n of S converging to x.

- Let r > 0. We need to show $B(x, r) \cap S \neq \emptyset$.
- Since $x_n \to x$, there exists an N such that for all $n \ge N$, $x_n \in B(x, r)$. Since $x_n \in S$, we see $B(x, r) \cap S \ne \emptyset$

Finding the closure: discussion

The previous result is quite useful since it gives us another approach for determining whether a set is closed.

Corollary 3.1

A set S is closed iff the limits of all convergent sequences of S belong to S.

Example: Show the set $S = [a, \infty)$ is closed.

- Approach: Take a convergent sequence of S, $x_n \to x$. If $x \in S$, then S is closed.
- Since $x_n \ge a$ for all n, from our previous results we know $x \ge a$, so $x \in S$.

Table of Contents

Euclidean Spaces

Sequences and Convergence

Open and Closed Sets

Compactness

Continuity

Metric Spaces

Compact sets

Definition 4.1

A set $S \subseteq \mathbb{R}^n$ is compact iff every sequence of S has a convergent subsequence (in S).

Examples:

- ℝ?
- [0, 1]?
- (0, 1]?

Proposition 4.1

If S is a compact subset of \mathbb{R}^n , S is bounded.

Proof.

We show the contrapositive. Assume S is not bounded. For each n, let $x_n \in B(0, n)^c$.

This sequence has no bounded subsequence, so it has no convergent subsequence.

Compact sets (cont.)

Proposition 4.2

If S is a compact subset of \mathbb{R}^n , S is closed

Proof.

Let $x \in cl(S)$; we want to show $x \in S$.

- Since $x \in cl(S)$, it is the limit of a sequence $(x_n) \in S^{\mathbb{N}}$.
- Since S is compact, (x_n) has a subsequence (x_{n_k}) that converges to a limit $l \in S$.
- But (x_{n_k}) is a subsequence of the converging sequence (x_n) , so I is necessarily equal to X

Thus $x = I \in S$, so S is closed.

Compact sets (cont.)

The two previous results have an important implication:

Corollary 4.1

Let S be a subset of \mathbb{R} . If S is compact, it has a maximal element.

Proof.

- Since S is compact, it is bounded, meaning it has a least upper bound s.
- By way of contradiction, suppose $s \notin S$. Then $s \in S^c$.
- Since S is closed, S^c is open, so there exists some $\epsilon > 0$ such that $B(s, \epsilon) \subseteq S^c$.
- This implies $s \epsilon$ is an upper bound for S, contradicting the fact that s is the *least* upper bound.

Therefore we must have $s \in S$.

How can we tell whether a set is compact?

We've seen that closed and bounded are necessary conditions. Are they sufficient as well?

Theorem 4.1

(Heine-Borel) Let $S \subseteq \mathbb{R}^n$. Then S is compact iff it is closed and bounded.

Proof.

For simplicity we'll show this in \mathbb{R} ; the proof extends easily.

Assume S is closed and bounded, and let (x_n) be a sequence of S. By Proposition 2.8, (x_n) has a convergent subsequent, $x_{n_k} \to \ell$. Since S is closed, $\ell \in S$. Therefore S is compact.

Table of Contents

Euclidean Spaces

Sequences and Convergence

Open and Closed Sets

Compactness

Continuity

Metric Spaces

Limits of functions

- A sequence (x_n) converges to ℓ if as n gets closer and closer to ∞ , x_n gets closer and closer to ℓ .
- Analogously, we say a function f converges to a limit ℓ at a point x_0 if as x gets closer and closer to x_0 , f(x) gets closer and closer to ℓ .

Definition 5.1

Let $D \subseteq \mathbb{R}^n$ and let $f: D \to \mathbb{R}^m$ with $x_0 \in cl(D)$. We say $\lim_{x \to x_0} f(x) = \ell$ ("the limit as x approaches x_0 of f(x) is ℓ ") if for all $\epsilon > 0$, there exists $\delta > 0$ such that

$$0 < d(x, x_0) < \delta \Rightarrow d(f(x), \ell) < \epsilon$$

Example: $f : \mathbb{R} \to \mathbb{R}, f(x) = 3x$. What is $\lim_{x \to 0} f(x)$?

Limit: Discussion

• Another way to put the ϵ, δ criteria is:

$$f(B(x_0,\delta)\setminus\{x_0\})\subseteq B(\ell,\epsilon)$$

(Be careful: there are two distances in this equation!)

• What happens when $x = x_0$ is not relevant. Consider $f : [0,1] \to \mathbb{R}$:

$$f(x) = \begin{cases} 0 & x < 1 \\ 1 & x = 1 \end{cases}$$

What is $\lim_{x\to 1} f(x)$?

 We require x₀ ∈ cl(D). For a function defined on (0,1) it makes sense to talk about its limit as x approaches 1. What about its limit as x approaches 2?

Continuity

Continuous functions are functions that preserve limits. Remember this!

Definition 5.2

Let $x_0 \in D$. Then f is **continuous at** x_0 iff $\lim_{x \to x_0} f(x) = f(x_0)$. That is, for all $\epsilon > 0$ there exists a $\delta > 0$ such that

$$x \in B(x_0, \delta) \Rightarrow f(x) \in B(f(x_0), \epsilon)$$

We say f is continuous if it is continuous at all points of its domain.

Most functions that we use in economics are continuous:

- Polynomials $(x, x^2, \text{ etc.})$
- Exponential functions (2^x, e^x, etc.)
- The log function is continuous for x > 0
- Addition, multiplication, and composition of continuous functions
- Division of continuous functions, so long as the denominator $\neq 0$

Sequential characterization of continuity

Proposition 5.1

A function f is continuous at x_0 iff for all $(x_n) \to x_0$, $(f(x_n)) \to f(x_0)$.

Proof.

(⇒). Suppose f is continuous at x_0 , and let (x_n) be a sequence of D that converges to x_0 . We want to show $f(x_n) \to f(x_0)$.

- Fix $\epsilon > 0$. Since f is continuous, there exists $\delta > 0$ such that $d(f(x_0), f(x_n)) < \epsilon$ whenever $x \in B(x_0, \delta)$.
- Since $x_n \to x_0$, there exists N such that $d(x_n, x_0) < \delta$ for all $n \ge N$.
- This implies $d(f(x_n), f(x_0)) < \epsilon$ for all $n \ge N$, so $f(x_n) \to f(x_0)$

(\Leftarrow) Suppose f is not continuous at x_0 . There exists ϵ such that for every $\delta > 0$, we can find $x \in B(x_0, \delta)$ with $f(x) \notin B(f(x_0), \epsilon)$. Construct (x_n) by taking $\delta = 1/n$ for $n = 1, 2, \ldots$ We have $x_n \to x$, but $f(x_n) \not\to f(x_0)$.

Open/closed set characterization of continuity

Theorem 5.1

- f is continuous iff the inverse image by f of any open set is open
- f is continuous iff the inverse image by f of any closed set is closed

Proof.

 (\Rightarrow) Let $f:D o\mathbb{R}^m$ be continuous, $V\subseteq\mathbb{R}^m$ open. WTS $f^{-1}(V)$ open

- Let $x \in f^{-1}(V)$; by definition, $f(x_0) \in V$
- Since V is open, there exists $\epsilon > 0$ such that $B(f(x_0), \epsilon) \subseteq V$.
- Since f is continuous, there exists a $\delta > 0$ such that $f(B(x_0, \delta)) \subseteq B(f(x_0), \epsilon) \subseteq V$.
- Therefore $B(x_0, \delta) \subseteq f^{-1}(V)$, so $f^{-1}(V)$ is open

(⇐): Try it yourself.

Result for closed sets follows your problem set: $(f^{-1}(S))^c = f^{-1}(S^c)$

Continuous functions preserve compact sets

- The inverse image of a closed set by a continuous function is a closed set.
- Is the image of a closed set by a continuous function a closed set?
- Is the image of a bounded set by a continuous function bounded?

Theorem 5.2

Let K be a compact subset of D and $f:D\to\mathbb{R}^m$ a continuous function. Then f(K) is compact.

Proof.

Let (y_n) be a sequence of f(K).

- By definition there exists $x_n \in K$ such that $y_n = f(x_n)$.
- Since K is compact, (x_n) has a convergent subsequence $x_{n_k} \to \ell \in K$.
- Since f is continuous, $y_{n_k} \equiv f(x_{n_k}) \to f(\ell) \in f(K)$.

Thus f(K) has a convergent subsequence, so f(K) is compact.

Weierstrass Theorem

A central application of the previous theorem is the existence of a maximizer for a continuous, real-valued function over a compact domain.

Theorem 5.3

(Weierstrass) Let $f: D \to \mathbb{R}$. If f is continuous and D is compact, then f attains a maximum and a minimum.

Proof.

By the previous theorem, f(D) is a compact subset of \mathbb{R} . By Theorem 4.1 (Heine-Borel), f(D) has a maximum element.

Intermediate Value Theorem

Proposition 5.2

Let $f:[a,b] \to \mathbb{R}$ be a continuous function. If $u \in (f(a), f(b))$, then there exists a $c \in (a,b)$ such that f(c) = u.

- If f(a) = f(b) the theorem says nothing. Assume f(a) < f(b)
- Let f(a) < u < f(b) and define $S = \{x \in [a, b] | f(x) \le u\}$.
- S is non-empty and bounded above, so $c \equiv \sup S$ exists
- By continuity, $f(c) \le u$. Suppose f(c) < u.
- Let $T=f^{-1}((f(a),u))$. Since f is continuous, T is open. By assumption, $c\in T$.
- However, c is not an interior point of T, a contradiction. Therefore f(c) = u.

Fixed Points

Let $f: \mathbb{R}^n \to \mathbb{R}^n$. A point x is a **fixed point** of f if f(x) = x

- Common equation in econ (game theory, dynamic programming)
- General setup: can express roots in terms of fixed points

$$g(x) = 0 \Leftrightarrow \underbrace{g(x) + x}_{\equiv f(x)} = x$$

Question: how do we find fixed points? For a certain class of functions, we can compute them easily

Contractions

A function $f: \mathbb{R}^n \to \mathbb{R}^n$ is a **contraction** if there exists a $k \in [0,1)$ such that for all $x,y \in \mathbb{R}^n$:

$$d(f(x),f(y)) \le kd(x,y)$$

Example: $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \alpha x + \beta$. Then:

$$d(f(x), f(y)) = |\alpha x + \beta) - (\alpha y + \beta)|$$

= $|\alpha||x - y|$
= $|\alpha|d(x, y)$

Thus f is contraction iff $|\alpha| < 1$.

Contractions are continuous

- Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a contraction with modulus k and fix $x \in \mathbb{R}^n$; we will show f is continuous at x.
- Fix $\epsilon > 0$. By definition, for any $y \in B_{\epsilon/k}(x)$ we have

$$f(y) \in B_{\epsilon}(f(x))$$

- Thus f is continuous at x (we took $\delta = \epsilon/k$)
- (We didn't need the fact that k < 1. Any function satisfying d(f(x), f(y)) < kd(x, y) for some $k \in \mathbb{R}_+$ is continuous. These are called **Lipschitz functions**.)

Contraction Mapping Theorem

Theorem 5.4

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a contraction. Then f has a unique fixed point, x^* . Moreover, given any x_0 , the sequence $x_{n+1} = f(x_n)$ converges to x^* .

- Show x_n is Cauchy, and therefore converges to some x^*
- By continuity, $f(x_n) \to f(x^*)$. However, $f(x_n) = x_{n+1} \to x^*$. Thus x^* is a fixed point of f
- Show uniqueness, suppose x_1 and x_2 are fixed points. Then

$$d(x_1, x_2) = d(f(x_1), f(x_2)) \le kd(x_1, x_2)$$

Therefore $d(x_1, x_2) = 0$

Table of Contents

Euclidean Spaces

Sequences and Convergence

Open and Closed Sets

Compactness

Continuity

Metric Spaces

A brief recap of metric spaces

Let X be a set, and $d: X \times X \to \mathbb{R}$ a function. We call d a **metric** on X if:

- $d(x,y) \ge 0$ for all $x,y \in X$, and d(x,y) = 0 iff x = y
- d(x,y) = d(y,x)
- $d(x,z) \le d(x,y) + d(y,z)$ for all $x,y,z \in X$

These are properties which are more general than the Euclidean distance that we have seen

A brief recap of metric spaces (cont.)

- The definitions of results we've developed for \mathbb{R}^n largely carry over to general metric spaces
- \bullet One special property of $\mathbb R$ we used was the LUB property. This was important for the proofs of:
 - A bounded sequence of \mathbb{R}^n has a convergent subsequence
 - \bullet A sequence of \mathbb{R}^n converges iff it is Cauchy, which we used to prove the Contraction Mapping Theorem
 - \bullet A compact subset of $\mathbb R$ has a maximal element
 - A set $S \subseteq \mathbb{R}^n$ is compact iff it is closed and bounded
 - The intermediate value theorem
- These results don't hold in every metric space, but in some metric spaces similar results hold
 - The contraction mapping theorem holds in any complete metric space

Examples of other metric spaces?

- Let X denote the set of bounded functions from [0,1] to \mathbb{R} .
- Define the function $d: X \times X \to \mathbb{R}$ as follows:

$$d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|$$

• Is d a distance? To show triangle inequality, let $f, g, h \in X$:

$$d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|$$

$$= \sup_{x \in [0,1]} |f(x) - h(x) + h(x) - g(x)|$$

$$\leq \sup_{x \in [0,1]} (|f(x) - h(x)| + |h(x) - g(x)|)$$

$$\leq \sup_{x \in [0,1]} |f(x) - h(x)| + \sup_{x \in [0,1]} |h(x) - g(x)|$$

$$= d(f,h) + d(h,g)$$

Function spaces

- The metric on the previous slide is called the **sup metric**. There are other intuitive notions of distance (e.g. the "average distance" between f and g), but those are a little tricky to worth with (the $d(x, y) = 0 \Leftrightarrow x = y$ property breaks down)
- It turns out that spaces of bounded functions with the sup metric are complete (Cauchy sequences converge)
- Therefore the contraction mapping theorem holds for spaces of bounded functions!
 This is a powerful result for dynamic programming, which we'll return to later in the semester