Ejercicios de Estadística

Temas: Regresión lineal y no lineal

Titulaciones: Medicina, Farmacia

Alfredo Sánchez Alberca asalber@ceu.es http://aprendeconalf.es

La siguiente tabla muestra las tasas de incidencia de gripe por cada 100.000 habitantes registradas al cabo de un número de días desde el comienzo de el estudio.

Días	1	5	8	12	20	26	38	44
Tasa gripe	60	66	71	80	106	132	194	235

Se pide:

- 1. Calcular la tasa de incidencia de gripe a los 50 días desde el comienzo del estudio mediante un modelo de regresión lineal.
- 2. ¿Cuánto varía la tasa de incidencia de gripe cada día según el modelo lineal?
- 3. Calcular la tasa de incidencia de gripe a los 50 días desde el comienzo del estudio mediante un modelo de regresión exponencial.
- 4. ¿Cuál de las predicciones anteriores es más fiable? Razonar la respuesta.

Utilizar las siguientes sumas para los cálculos (
$$X$$
 =Días e Y =Tasa de gripe): $\sum x_i = 154$, $\sum \log(x_i) = 19.8494$, $\sum y_j = 944$, $\sum \log(y_j) = 37.2024$, $\sum x_i^2 = 4690$, $\sum \log(x_i)^2 = 60.2309$, $\sum y_j^2 = 140918$, $\sum \log(y_j)^2 = 174.8363$, $\sum x_i y_j = 25182$, $\sum \log(x_i) y_j = 2795.2484$, $\sum x_i \log(y_j) = 772.3504$, $\sum \log(x_i) \log(y_j) = 96.1974$.

Calcular la tasa de incidencia de gripe a los 50 días desde el comienzo del estudio mediante un modelo de regresión lineal.

Datos X = Dias $Y \equiv \text{Tasa de gripe}$ $\sum x_i = 154$ $\sum_{i} \log(x_i) = 19.8494$ $\sum y_i = 944$ $\sum \log(y_i) = 37.2024$ $\sum x_i^2 = 4690$ $\sum \log(x_i)^2 = 60.2309$

 $\sum \log(y_i)^2 = 174.8363$

 $\sum \log(x_i)y_j = 2795.2484$ $\sum x_i \log(y_j) = 772.3504$ $\sum \log(x_i) \log(y_j) = 96.1974$

 $\sum y_i^2 = 140918$

 $\sum x_i y_i = 25182$

2. ¿Cuánto varía la tasa de incidencia de gripe cada día según el modelo lineal?

Datos

 $X \equiv \mathsf{D}\mathsf{ías}$

 $Y \equiv \mathsf{Tasa} \ \mathsf{de} \ \mathsf{gripe}$

Recta de regresión de Y sobre X:

y = 39.7951 + 4.0626x

3. Calcular la tasa de incidencia de gripe a los 50 días desde el comienzo del estudio mediante un modelo de regresión exponencial.

Datos

 $X \equiv D$ ías $Y \equiv \mathsf{Tasa} \ \mathsf{de} \ \mathsf{gripe}$

 $\bar{x} = 19.25$ $s_r^2 = 215.6875$

 $\bar{\nu} = 118$

 $s_{\nu}^2 = 3690.75$

 $s_{xy} = 876.25$

 $\sum \log(x_i) = 19.8494$ $\sum \log(y_i) = 37.2024$

 $\sum \log(x_i)^2 = 60.2309$

 $\sum \log(y_i)^2 = 174.8363$ $\sum \log(x_i)y_i = 2795.2484$ $\sum x_i \log(y_i) = 772.3504$ $\sum \log(x_i) \log(y_i) = 96.1974$ 4. ¿Cuál de las predicciones anteriores es más fiable? Razonar la respuesta.

Datos

 $X \equiv D$ ías $Y \equiv \text{Tasa de gripe}$

 $\bar{x} = 19.25$ $s_r^2 = 215.6875$

 $\bar{y} = 118$ $s_{\nu}^2 = 3690.75$

 $s_{xy} = 876.25$

 $\overline{\log(y)} = 4.6503$

 $s_{\log(y)}^2 = 0.2293$

 $s_{x \log(y)} = 7.0255$