Total No.	of Question	s:8]
-----------	-------------	------

SEAT No.:	
[Total	No. of Pages : 3

PA-912 [5927]-342

B.E. (Computer Engineering) DESIGN AND ANALYSIS OF ALGORITHMS (2019 Pattern) (Semester - VII) (410241)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate marks.
- 4) Assume suitable data, if necessary.
- Q1) a) Solve the matrix chain multiplication for the following 6 matrix problem using Dynamic programming. [10]

Matrix	A_1	A_2	A_3	A_4	A_5	A_6
Dimensions	10×20	20×5	5×15	15×50	50×10	10×15

b) Explain Greedy strategy: Principle, control abstraction, time analysis of control abstraction with suitable example. [8]

OR

Q2) a) Explain the 'dynamic programming' approach for solving problems. Write a dynamic programming algorithm for creating an optimal binary search tree for a set of 'n' keys. Use the same algorithm to construct the optimal binary search tree for the following 4 keys.
[10]

Key	A	В	C	D
Probability	0.1	0.2	0.4	0.3

- b) Explain Dynamic programming: Principle, control abstraction, time analysis of control abstraction with suitable example. [8]
- Q3) a) Explain the 'branch and bound' approach for solving problems. Write a branch and bound algorithm for solving the 0/1 Knapsack problem. Use the same algorithm to solve the following 0/1 Knapsack problem. The capacity of the Knapsack is 15 kg.
 [9]

Item	A	В	С	D
Profit (Rs.)	18	10	12	10
Weight (kg.)	9	4	6	2

b) Explain with suitable example Backtracking: Principle, control abstraction, time analysis of control abstraction. [8]

- Q4) a) What is Branch and Bound method? Write control abstraction for Least Cost search?[9]
 - b) Explain the backtracking with graph coloring problem. Find solution for following graph [8]

	C_1	C_2	C_3	C_4	C_5
C_1	0	1	0	1	0
C_2	1	0	1	0	0
C_3	0	1	0	1	1
C_4	1	0	1	0	1
$\overline{C_5}$	0	0	1	0	0

Adjacency matrix for graph G

Q5) a) Write short notes on the following.

[10]

- i) Aggregate Analysis
- ii) Accounting Method
- iii) Potential Function method
- iv) Tractable and Non-tractable Problems
- b) Write short notes on with suitable example of each

[8]

- i) Randomized algorithm
- ii) Approximation algorithm

OR

- Q6) a) What is Potential function method of amortized analysis? To illustrate Potential method, find amortized cost of PUSH, POP and MULTIPOP stack operations.[9]
 - b) What is embedded algorithm? Explain Embedded system scheduling using power optimized scheduling algorithm. [9]

Q7) a) Write short notes on the following.

[10]

- i) Multithreaded matrix multiplication.
- ii) Multithreaded merge sort
- iii) Distributed breadth first search
- iv) The Rabin-Karp algorithm
- b) With respect to Multithreaded Algorithms explain Analyzing multithreaded algorithms, Parallel loops, Race conditions. [7]

OR

- Q8) a) Write and explain pseudo code for Multi-threaded merge sort algorithm.How parallel merging gives a significant parallelism advantage over Merge Sort?[9]
 - b) Write a pseudo code for naïve string matching algorithm and Rabin-Karp algorithm for string matching and analyze the same. [8]

X X X