Introductory Functional Analysis Chapter 1 Exercises

Top Maths

Last Updated: Thursday 7th March, 2024

1.1. Prove the reverse triangle inequality: For vectors x and y in any normed linear space,

$$||x + y|| \ge |||x|| - ||y|||.$$

Proof. Without loss of generality, suppose $||x|| \ge ||y||$; it suffices to show that

$$||y|| - ||x|| \le ||x + y|| \le ||x|| - ||y||,$$

because for $\alpha, \beta \in \mathbb{R}$, $|\alpha| \leq |\beta|$ if and only if

$$-|\beta| \le \alpha \le |\beta|$$
.

Assuming that $||x|| \ge ||y||$ is like assuming $\beta \ge 0$ in the above, so that we can remove the absolute value signs. Now,

$$||y|| - ||x|| = ||x + y - x|| - ||x|| \le ||x + y|| + ||x|| - ||x|| = ||x + y||$$

giving the left-side inequality. For the right-side inequality, we have

$$||x|| - ||y|| - ||x + y|| \ge ||x + y - x|| - ||y|| = ||y|| - ||y|| = 0$$

so we get that $\|x\| - \|y\| \ge \|x + y\|$ and the result follows.

1.2. Show that C[0,1] is a Banach space in the supremum norm. Hint: if $\{f_n\}$ is a Cauchy sequence in C[0,1], then for each fixed $x \in [0,1]$, $\{f_n(x)\}$ is a Cauchy sequence in \mathbb{C} , which is complete.

Proof. Suppose $\{f_n\}$ is a Cauchy sequence in C[0,1]. That means, for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for $n, m \geq N$ we have

$$||f_n - f_m|| = \sup_{x \in [0,1]} |f_n(x) - f_m(x)| < \varepsilon.$$

We also get that, for $m, n \ge N$, for all $a \in [0, 1]$,

$$|f_n(a) - f_m(a)| \le \sup_{x \in [0,1]} |f_n(x) - f_m(x)| < \varepsilon.$$
 (1)

In particular, since $\{f_n\}$ is a Cauchy sequence in C[0,1], $\{f_n(a)\}$ is a Cauchy sequence in \mathbb{C} for all $a \in [0,1]$. Since \mathbb{C} is complete, $\{f_n(a)\}$ converges (because it is Cauchy) for all $a \in [0,1]$. For each $a \in [0,1]$, define

$$f(a) := \lim_{n \to \infty} f_n(a).$$

Considering (1) again, we have by the continuity of $|\cdot|$,

$$\lim_{m \to \infty} |f_n(a) - f_m(a)| = |f_n(a) - \lim_{m \to \infty} f_m(a)| = |f_n(a) - f(a)| < \varepsilon.$$

Since this ε is independent of our choice of $a \in [0, 1]$, it follows that

$$\sup |f_n(a) - f(a)| = ||f_n - f|| < \varepsilon$$

giving that $f_n \to f$ in C[0,1]. To establish the continuity of f, pick $a \in [0,1]$ and let $\varepsilon > 0$ arbitrary. Since each f_n is continuous, there exists $\delta > 0$ such that

$$|x-a| < \delta \implies |f_n(x) - f_n(a)| < \frac{\varepsilon}{3}.$$

Also, pick n large enough so that

$$\sup_{p \in [0,1]} |f_n(p) - f(p)| < \frac{\varepsilon}{3}.$$

Then,

$$|f(x) - f(a)| = |f(x) - f(a) + f_n(x) - f_n(x) + f_n(a) - f_n(a)|$$

$$= |f(x) - f_n(x) + f_n(x) - f_n(a) + f_n(a) - f(a)|$$

$$\leq |f(x) - f_n(x)| + \underbrace{|f_n(x) - f_n(a)|}_{<\varepsilon/3} + |f_n(a) - f(a)|$$

$$\leq ||f - f_n|| + \frac{\varepsilon}{3} + ||f_n - f||$$

$$\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

1.3. Let $C^1[0,1]$ be the space of continuous, complex-valued functions on [0,1] with continuous first derivative. Show that with the supremum norm $\|\cdot\|_{\infty}$, $C^1[0,1]$ is not a Banach space, but that in the norm defined by $\|f\| = \|f\|_{\infty} + \|f'\|_{\infty}$ it does become a Banach space.

Proof. Let $\{f_n\}_{n\in\mathbb{N}}\subseteq C^1[0,1]$ be defined by

$$f_n(x) = \sqrt{x + \frac{1}{n}}$$
 $(x \in [0, 1]).$

Observe that \sqrt{x} is uniformly continuous¹ on [0, 1], and so for all $\varepsilon > 0$ there exists $\delta > 0$ such that for any two points $p_1, p_2 \in [0, 1]$,

$$|p_1 - p_2| < \delta \implies |f(p_1) - f(p_2)| < \varepsilon.$$

Take $p_1 = x + 1/n$ and $p_2 = x$, then the uniform continuity condition yields

$$\frac{1}{n} < \delta \implies \left| \sqrt{x + 1/n} - \sqrt{x} \right| < \varepsilon.$$

There exists $N \in \mathbb{N}$ large enough so that $1/n < \delta$, and so there exists $n \in \mathbb{N}$ large enough so that

$$\left|\sqrt{x+1/n} - \sqrt{x}\right| < \varepsilon.$$

Since this ε comes from the uniform continuity condition, it is independent of the choice of x, as is N, and therefore there exists $N \in \mathbb{N}$ such that for $n \geq N$,

$$\sup_{x \in [0,1]} \left| \sqrt{x + 1/n} - \sqrt{x} \right| < \varepsilon.$$

While $\sqrt{x+1/n}$ converges to \sqrt{x} in the supremum norm, we find that $\sqrt{x} \notin C^1[0,1]$ because the derivative of \sqrt{x} :

$$\frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}}$$

is not differentiable at 0, and hence $(C^1[0,1],\|\cdot\|_\infty)$ is not a Banach space.

We'll consider the new norm $\|\cdot\|$ as defined above. Suppose $\{f_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence in $(C^1[0,1],\|\cdot\|)$. And so for all $\varepsilon>0$, there exists $N\in\mathbb{N}$ such that for $m,n\geq N$,

$$||f_n - f_m|| = ||f_n - f_m||_{\infty} + ||f'_n - f'_m||_{\infty} < \varepsilon.$$

It follows immediately that $\{f_n\}_{n\in\mathbb{N}}$ and $\{f'_n\}_{n\in\mathbb{N}}$ are a Cauchy sequences in C[0,1], and from our previous work we know $\lim_{n\to\infty} f_n = f$ and $\lim_{n\to\infty} f'_n = g$, where

$$f(x) := \lim_{n \to \infty} f_n(x), \qquad g(x) := \lim_{n \to \infty} f'_n(x)$$

for all $x \in [0,1]$. In fact, since this convergence is in the sup-norm, it follows² that $\{f_n\}_{n \in \mathbb{N}}$ uniformly converges to f and $\{f'_n\}_{n \in \mathbb{N}}$ uniformly converges to g. But, we now have the conditions acquired³ to say that

$$g(x) = f'(x) = \lim_{n \to \infty} f'(x).$$

Therefore,

$$\lim_{n \to \infty} ||f_n - f|| = \lim_{n \to \infty} ||f_n - f||_{\infty} + \lim_{n \to \infty} ||f'_n - f'||_{\infty} = 0.$$

Hence, $C^1[0,1]$ is complete under this new norm.

¹Continuous functions on compact sets, such as [0, 1] in question here, are always uniformly continuous

²See Principles of Mathematical Analysis (PMA) by Walter Rudin, 3rd Edition, Theorem 7.9 on p. 148

³See PMA, Theorem 7.17, p. 152

1.4. Show that the space ℓ^1 of Example 1.5 is complete.