1803.02999 - On First-Order Meta-Learning Algorithms

On First-Order Meta-Learning Algorithms

Alex Nichol and Joshua Achiam and John Schulman OpenAI {alex, jachiam, joschu}@openai.com

• Yunqiu Xu

1. Introduction

- Challenges:
 - Human can learn a new task quickly through prior knowledge
 - Meta learning can be used to achieve this, however MAML with two-level derivatives can be computational expensive
- Our contribution
 - o Expand the work of First-order MAML, which is simpler to implement
 - o Reptile: similar to FOMAML but doesn't need to split training-test for each task
 - Analyse both FOMAML and Reptile theritically to show that they optimize for within-task generalization
 - o Experiment on Mini-ImageNet and Omniglot

2. Reptile

- 符号:
 - φ:初始参数

- \circ $ilde{oldsymbol{\phi}}$: 梯度下降更新后参数
- 。 $ilde{\phi}=U^k_{ au}(\phi)$: 使用任务 au 更新 k 次参数 ϕ , 即进行 k 次梯度下降, 得到更新后的参数 $ilde{\phi}$
- MAML:

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples
- 6: Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 7: end for
- 8: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$
- 9: end while
- 。 MAML基于假设: 对于内循环(inner-loop)某个任务, 使用训练集 $m{A}$ 进行训练, 并使用测试集 $m{B}$ 进行测试, 其测试误差会被当作外循环(meta-loop)
- 。 可以看出MAML在内循环和外循环都需要计算梯度导数 → 二阶导数

$$g_{\text{MAML}} = \frac{\partial}{\partial \phi} L_{\tau,B}(U_{\tau,A}(\phi)) \tag{3}$$

$$=U'_{\tau,A}(\phi)L'_{\tau,B}(\widetilde{\phi}), \quad \text{where} \quad \widetilde{\phi} = U_{\tau,A}(\phi)$$
(4)

- ullet FOMAML: 仅仅对外循环梯度求导,不求取内循环梯度的导数,将 $U_{ au,A}'$ 看作常数
- Reptile:

Algorithm 1 Reptile (serial version)

```
Initialize \phi, the vector of initial parameters for iteration = 1, 2, ... do

Sample task \tau, corresponding to loss L_{\tau} on weight vectors \widetilde{\phi}

Compute \widetilde{\phi} = U_{\tau}^{k}(\phi), denoting k steps of SGD or Adam

Update \phi \leftarrow \phi + \epsilon(\widetilde{\phi} - \phi)

end for
```

- \circ 在内循环进行 k 次更新, 得到更新后的参数 $ilde{\phi}$
- 。 然后用 $ilde{\phi}$ 对 ϕ 进行更新

3. Experiment

- Few-shot classification:
 - 。 Transductive setting: 通过batch normalization在test sample之间共享信息
 - Non-transductive setting: 仅仅在training sample上使用batch normalization, 使用 single test sample

Algorithm	1-shot 5-way	5-shot 5-way
MAML + Transduction	$48.70 \pm 1.84\%$	$63.11 \pm 0.92\%$
1 st -order MAML + Transduction	$48.07 \pm 1.75\%$	$63.15 \pm 0.91\%$
Reptile	$47.07 \pm 0.26\%$	$62.74 \pm 0.37\%$
Reptile + Transduction	$49.97 \pm 0.32\%$	$65.99 \pm 0.58\%$

Table 1: Results on Mini-ImageNet. Both MAML and 1st-order MAML results are from [4].

Algorithm	1-shot 5-way	5-shot 5-way	1-shot 20-way	5-shot 20-way
MAML + Transduction	$98.7 \pm 0.4\%$	$99.9 \pm 0.1\%$	$95.8 \pm 0.3\%$	$98.9 \pm 0.2\%$
1 st -order MAML + Transduction	$98.3 \pm 0.5\%$	$99.2 \pm 0.2\%$	$89.4 \pm 0.5\%$	$97.9 \pm 0.1\%$
Reptile	$95.39 \pm 0.09\%$	$98.90 \pm 0.10\%$	$88.14 \pm 0.15\%$	$96.65 \pm 0.33\%$
Reptile + Transduction	$97.68 \pm 0.04\%$	$99.48 \pm 0.06\%$	$89.43 \pm 0.14\%$	$97.12 \pm 0.32\%$

Table 2: Results on Omniglot. MAML results are from [4]. 1st-order MAML results were generated by the code for [4] with the same hyper-parameters as MAML.

- Different inner-loop and outer-loop gradient combinations
 - $\circ \ g_1,g_2,g_3,g_4$: inner-loop gradients with different minibatches
 - $\circ~g_1+g_2$: outer-loop update for two-step Reptile
 - $\circ \;\; extbf{ extit{g}_2} : ext{outer-loop update for two-step FOMAML}$

Figure 3: Different inner-loop gradient combinations on 5-shot 5-way Omniglot.

- Overlap between inner-loop minibatches:
 - Aim: check whether small changes to optimization procedure can lead to large changes in performance
 - shared-tail (cycling): final inner-loop mini-batch comes from the same set as earlier inner-loop batches
 - o separate-tail (more correct): final mini-batch comes from a disjoint of data

Figure 4: The results of hyper-parameter sweeps on 5-shot 5-way Omniglot.

 result: Reptile and FOMAML with cycling / separate-tail are not sensitive to inner-loop hyper-parameters

4. Summary

• Reptile:

- 类似joint training和FOMAML
- 将MAML简化为一阶
- o 和MAML差不多的性能, 但是效率更高
- 。 和FOMAML相比, 对每个子任务不需要再split training-testing

• Future work:

- 。 Reptile在RL中的效果不大好, 作者这里提出原因可能为"joint training is a strong baseline", 未来需要对Reptile进行改进
- 还有一些未来工作是关于few-shot classification的

• Further reading:

- Paper repro: Deep Metalearning using "MAML" and "Reptile"
- Understanding Reptile: A Scalable Meta-learning Algorithm By OpenAI

• Implementations:

- Pytorch implementation in "Paper repro: Deep Metalearning using 'MAML' and 'Reptile'"
- TF implementation on new dataset
- Another pytorch implementation