Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model

Study Group vision 김윤서 2024/04/02

Contents

- Intro
- Method
- Experiments

Intro

- Mamba에서의 성공적인 언어 모델링을 바탕으로, 시각 task에도 적용 가능하게 하고 싶음
- 문제점
 - 1) 단방향모델링(unidirectional modeling)
 - 2) 위치 인식의 부족(lack of positional awareness)
- 해결
 - : 양방향 SSM(bidirectional SSMs)과 위치 임베딩(positional embeddings)을 결합
- attention이 필요하지 않은 Vim은 ViT와 동일한 모델링 능력을 가지며, 제곱 시간 계산 및 선형 메모리 복잡도만 가진다.
- DeiT보다 2.8배 빠르며, 1248*1248 해상도의 이미지에서 특성을 추출하기 위해 배치 추론을 수행할 때 GPU 메모리를 86.8% 절약한다.

1. SSM

$$h'(t) = \mathbf{A}h(t) + \mathbf{B}x(t), \qquad x(t) \in \mathbb{R} \mapsto y(t) \in \mathbb{R}$$

 $y(t) = \mathbf{C}h(t). \qquad h(t) \in \mathbb{R}^{N}$

이산화(S4, Mamba)

$$\overline{\mathbf{K}} = (\mathbf{C}\overline{\mathbf{B}}, \mathbf{C}\overline{\mathbf{A}}\overline{\mathbf{B}}, \dots, \mathbf{C}\overline{\mathbf{A}}^{\mathsf{M}-1}\overline{\mathbf{B}})$$

 $\mathbf{y} = \mathbf{x} * \overline{\mathbf{K}},$

Convolution kernel

2. Vision Mamba

- Mamba 블록은 1차원 데이터만 처리 가능하므로 2차원인 이미지데이터에 일정한 처리를 해주어야 함.

$$\mathbf{T}_0 = [\mathbf{t}_{cls}; \mathbf{t}_p^1 \mathbf{W}; \mathbf{t}_p^2 \mathbf{W}; \cdots; \mathbf{t}_p^J \mathbf{W}] + \mathbf{E}_{pos}$$

2. Vision Mamba


```
class PatchEmbed(nn.Module):
       2D Image to Patch Embedding
   def __init__(self, img_size=224, patch_size=16, stride=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True):
       super().__init__()
       img size = to 2tuple(img size)
       patch_size = to 2tuple(patch_size)
       self.img size = img size
       self.patch_size = patch_size
       self.grid_size = ((img_size[0] - patch_size[0]) // stride + 1, (img_size[1] - patch_size[1]) // stride + 1)
       self.num patches = self.grid size[0] * self.grid size[1]
       self.flatten = flatten
       self.proj = nn.Conv2d(in chans, embed_dim, kernel size=patch_size, stride=stride)
       self.norm = norm layer(embed dim) if norm layer else nn.Identity()
    def forward(self, x):
       B, C, H, W = x.shape
       assert H == self.img size[0] and W == self.img size[1], \
           f"Input image size ({H}*{W}) doesn't match model ({self.img size[0]}*{self.img size[1]})."
       x = self.proj(x)
       if self.flatten:
           x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
       x = self.norm(x)
       return x
```

2. Vision Mamba

$$\mathbf{T}_l = \mathbf{Vim}(\mathbf{T}_{1-1}) + \mathbf{T}_{1-1},$$

 $\mathbf{f} = \mathbf{Norm}(\mathbf{T}_L^0),$
 $\hat{p} = \mathbf{MLP}(\mathbf{f}),$

- 토큰 시퀀스 T_(I-1)를 Vim 인코더의 I번째 레이어로 보내고, 출력 T_t를 얻음(residual connection)
- 최종 출력 클래스 토큰을 정규화하고, MLP 헤드에 공급하여 최종 예측을 얻는다.

3. Vim Block

Vision Mamba Encoder

Algorithm 1 Vim Block Process

```
Require: token sequence T_{l-1}: (B, M, D)
Ensure: token sequence T_l: (B, M, D)
  1: /* normalize the input sequence T'_{l-1} */
  2: \mathbf{T}'_{l-1}: (B, M, D) \leftarrow \mathbf{Norm}(\mathbf{T}_{l-1})
  3: \mathbf{x}: (B, M, E) \leftarrow \mathbf{Linear}^{\mathbf{x}}(\mathbf{T}'_{l-1})
  4: \mathbf{z}: (B, M, E) \leftarrow \mathbf{Linear}^{\mathbf{z}}(\mathbf{T}'_{l-1})
  5: /* process with different direction */
  6: for o in {forward, backward} do
  7: \mathbf{x}'_o : (B, M, E) \leftarrow \mathbf{SiLU}(\mathbf{Conv1d}_o(\mathbf{x}))
  8: \mathbf{B}_o : (B, M, N) \leftarrow \mathbf{Linear}_o^{\mathbf{B}}(\mathbf{x}_o')
  9: \mathbf{C}_o: (B, M, N) \leftarrow \mathbf{Linear}_o^{\mathbf{C}}(\mathbf{x}_o')
10: /* softplus ensures positive \Delta_o */
11: \Delta_o: (B, M, E) \leftarrow \log(1 + \exp(\mathbf{Linear}_o^{\Delta}(\mathbf{x}_o') +
            Parameter ^{\Delta}_{o}))
12: /* shape of Parameter is (E, N) */
13: \overline{\mathbf{A}}_o: (\mathtt{B}, \mathtt{M}, \mathtt{E}, \mathtt{N}) \leftarrow \mathbf{\Delta}_o \otimes \mathbf{Parameter}_o^{\mathbf{A}}
14: \overline{\mathbf{B}}_o: (\mathbb{B}, \mathbb{M}, \mathbb{E}, \mathbb{N}) \leftarrow \mathbf{\Delta}_o \bigotimes \mathbf{B}_o
15: \mathbf{y}_o : (B, M, E) \leftarrow \mathbf{SSM}(\overline{\mathbf{A}}_o, \overline{\mathbf{B}}_o, \mathbf{C}_o)(\mathbf{x}_o')
16: end for
17: /* get gated yo */
18: \mathbf{y}'_{forward}: (B, M, E) \leftarrow \mathbf{y}_{forward} \odot \mathbf{SiLU}(\mathbf{z})
19: \mathbf{y}'_{backward}: (B, M, E) \leftarrow \mathbf{y}_{backward} \odot \mathbf{SiLU}(\mathbf{z})
20: /* residual connection */
21: \mathbf{T}_l : (B, M, D) \leftarrow \mathbf{Linear^T}(\mathbf{y}'_{forward} + \mathbf{y}'_{backward}) + \mathbf{T}_{l-1}
       Return: T_l
```

Experiments

1. Classification

- ImageNet 1K, input size=224, (랜덤 크롭, 랜덤 플립, 라벨 스무딩, 믹스업),AdamW, cosine annealing,batch size=1024, epochs=300, lr=1e-03

추가로 long sequence fine-tuning 진행. 기존의 패치 사이즈 (224/4 = 56) 에서 8으로 대폭 줄여서 훨씬 긴 시퀸스를 만들고, 30 epoch 만큼 학습

Method	image size	#param.	ImageNet top-1 acc.
	Convnet	ts	
ResNet-18	2242	12M	69.8
ResNet-50	224^{2}	25M	76.2
ResNet-101	224^{2}	45M	77.4
ResNet-152	224^{2}	60M	78.3
ResNeXt50-32×4d	$ 224^2$	25M	77.6
RegNetY-4GF	2242	21M	80.0
Tr	ansform	ners	
ViT-B/16	3842	86M	77.9
ViT-L/16	384^{2}	307M	76.5
DeiT-Ti	$ 224^2$	6M	72.2
DeiT-S	224^{2}	22M	79.8
DeiT-B	224^{2}	86M	81.8

	SSMs		
S4ND-ViT-B	$ 224^2$	89M	80.4
Vim-Ti	224^{2} 224^{2}	7M	76.1
Vim-Ti [†]		7M	78.3 +2.2
Vim-S	$\begin{vmatrix} 224^2 \\ 224^2 \end{vmatrix}$	26M	80.5
Vim-S [†]		26M	81.6 +1.1

Experiments

2. Sementic segmentation

ADE20K, UperNet framework

Method	Backbone	image size	#param.	val mIoU
DeepLab v3+	ResNet-101	512^{2}	63M	44.1
UperNet	ResNet-50	512^{2}	67M	41.2
UperNet	ResNet-101	512^{2}	86M	44.9
UperNet	DeiT-Ti	512^{2}	11M	39.2
UperNet	DeiT-S	512^{2}	43M	44.0
UperNet	Vim-Ti	512^{2}	13M	41.0
UperNet	Vim-S	512^{2}	46M	44.9

Experiments

3. Object detection, Instance segmentation

COCO 2017, ViTDet framework

Backbone	AP ^{box}	AP ₅₀ box	AP ₇₅	AP _s box	$AP_{m}^{box} \\$	AP ₁ ^{box}
DeiT-Ti	44.4	63.0	47.8	26.1	47.4	61.8
Vim-Ti	45.7	63.9	49.6	26.1	49.0	63.2
Backbone	A Dmask	ΔDmask	ΔDmask	AP _s ^{mask}	Δpmask	A Dmask
Dackbolle	AI	AI 50	75	rn s	AI m	Ar ₁
DeiT-Ti	38.1	59.9	40.5	18.1	40.5	58.4

