STUSB4700

Autonomous USB PD controller with short-to-VBUS protections

Datasheet - production data

Features

- USB power delivery (PD) controller
- Type-C attach and cable orientation detection
- Single role: provider DFP
- Full hardware solution no software
- I²C interface + Interrupt (optional connection to MCU)
- Support all USB PD profiles: up to 5 power data objects (PDO)
- Configurable startup profiles
- Integrated V_{BUS} voltage monitoring
- Internal and/or external V_{BUS} discharge path
- Short-to-VBUS protections on CC pins (22V) and VBUS pins (28V)
- High and/or low voltage power supply:
 - V_{SYS} = [3.0 V; 5.5 V]
 - V_{DD} = [4.1 V; 22 V]
- Automotive grade available

- Fully compatible with:
 - USB Type-C[™] rev 1.2
 - USB PD rev 2.0
 - Certification test ID 1030023

Applications

- AC adapters and power supplies for: computer, consumer or portable consumer applications
- Smart plugs and wall adapters
- Power hubs and docking stations
- Displays
- Any Type-C source device

Description

The STUSB4700 is a new family of USB power delivery controllers communicating over Type- C^{TM} configuration channel pins (CC) to negotiate a given amount of power to be sourced to an inquiring consumer device.

The STUSB4700 addresses provider/DFP devices such as notebooks, tablets and AC adapters. The device can handle any connections to a UFP or DRP without any MCU attachment support, from device attachment to power negotiation, including V_{BUS} discharge and protections.

Table 1: Device summary table

Order code	AEC-Q100	Package	Marking	temperature range
STUSB4700QTR	NO	QFN24 EP 4x4 mm	4700	-40 °C to 105 °C
STUSB4700YQTR	YES	QFN24 EP 4x4 mm Wettable flanks	4700Y	-40 °C to 105 °C

Contents STUSB4700

Contents

Function	nal descri	ption	6
Inputs/o	utputs		7
2.1			
2.2	Pin list		7
2.3	Pin descr	iption	8
	2.3.1	CC1 / CC2	
	2.3.2	RESET	
	2.3.3	I2C interface pins	g
	2.3.4	A_B_SIDE	g
	2.3.5	VBUS_SENSE	g
	2.3.6	VBUS_EN_SRC	9
	2.3.7	VSYS	9
	2.3.8	VDD	g
	2.3.9	GND	g
	2.3.10	VVAR_ADDR0	10
	2.3.11	GPIO [4:0]	10
	2.3.12	VREG2V7	
	2.3.13	VREG1V2	
	2.3.14	VBUS_DISCH	
	2.3.15	VCONN	10
Block de	escription	S	11
3.1	CC interfa	ace	11
3.2	BMC		11
3.3	Protocol I	ayer	11
3.4		gine	
3.5	Device po	- blicy manager	12
3.6	VBUS po	wer path control	12
	3.6.1	VBUS monitoring	
	3.6.2	VBUS discharge	
	3.6.3	VBUS power path assertion	13
3.7	High volta	age protection	13
3.8	•	e fault management	
3.9		y mode detection	
	3.9.1	Audio accessory mode detection	
	3.9.2	Debug accessory mode detection	
		DocID030193 Rev 3	477

STUSB4700 Contents

4	User-de	efined startup configuration	15
	4.1	Parameter overview	15
	4.2	PDO – voltage configuration in NVM	15
	4.3	PDO – current configuration in NVM	16
	4.4	Monitoring configuration in NVM	16
	4.5	Discharge configuration in NVM	16
5	I ² C inte	rface	17
	5.1	Read and write operations	17
	5.2	Timing specifications	
6	I ² C regi	ster map	20
7	_	use cases	
	7.1	Power supply – buck topology	
	7.2	Power supply – flyback topology	
8	Electric	al characteristics	
	8.1	Absolute maximum rating	24
	8.2	Operating conditions	24
	8.3	Electrical and timing characteristics	
9	Packag	e information	
	9.1	QFN24 EP 4x4 mm package information	28
	9.2	QFN24 EP 4x4 mm wettable flank package information	
	9.3	Thermal information	32
	9.4	Packing information	32
10	Terms a	and abbreviations	33
11	Revisio	n history	34

List of tables STUSB4700

List of tables

Table 1: Device summary table	1
Table 2: Pin functions list	7
Table 3: Legend	8
Table 4: I2C interface pin list	9
Table 5: USB Data mux select	9
Table 6: GPIO0 (pin #12) configuration	10
Table 7: GPIO1 (pin #11) configuration	10
Table 8: GPIO2 (pin #14) – GPIO3 (pin #15) – GPIO4 (pin #16) configuration	10
Table 9: Conditions for VBUS power path assertion	
Table 10: PDO configurations in NVM	15
Table 11: PDO NVM voltage configuration	15
Table 12: PDO NVM current configuration	16
Table 13: I2C timing parameters - VDD = 5 V	18
Table 14: STUSB4700 register map overview	20
Table 15: Register access legend	21
Table 16: Resistor value	
Table 17: Resistor value	23
Table 18: Absolute maximum rating	24
Table 19: Operating conditions	
Table 20: Electrical characteristics	
Table 21: QFN24 EP 4x4 mm mechanical data	28
Table 22: Thermal information	
Table 23: Tape dimensions	32
Table 24: List of terms and abbreviations	33
Table 25: Document revision history	34

STUSB4700 List of figures

List of figures Figure 1: Functional block dia

Figure 1: Functional block diagram	6
Figure 2: STUSB4700 pin connections (top view)	7
Figure 3: Read operation	18
Figure 4: Write operation	18
Figure 5: I ² C timing diagram	
Figure 6: Power supply - buck topology	22
Figure 7: Flyback topology	23
Figure 8: QFN24 EP 4x4 mm package outline	28
Figure 9: QFN24 EP 4x4 mm recommended footprint	29
Figure 10: QFN24 EP 4x4 mm wettable flank package outline	30
Figure 11: QFN24 EP 4x4 mm wettable flank recommended footprint	31
Figure 12: Reel information	32

1 Functional description

The STUSB4700 is an autonomous USB power delivery controller optimized as a provider. It offers an open drain GPIO interface to make direct interconnection with a power regulation stage.

The STUSB4700 offers the benefits of a full hardware USB PD stack allowing robust and safe USB PD negotiation in line with USB PD standard. The STUSB4700 is ideal for provider applications in which digital or software intelligence is limited or missing.

The STUSB4700 main functions are:

- Detect the connection between two USB ports (attach detection)
- Establish a valid host to device connection
- Discover and configure V_{BUS}: Type-C low, medium or high current mode
- Resolve cable orientation
- Negotiate a USB power delivery contract with a PD capable device
- Configure the power source accordingly
- Monitor V_{BUS}, manage transitions, handle protections and ensure user and device safety

Additionally, the STUSB4700 offers 5 customizable power data objects (PDOs), 5 general purpose I/Os, an integrated discharge path, and is natively robust to high voltage peaks.

Figure 1: Functional block diagram

STUSB4700 Inputs/outputs

2 Inputs/outputs

2.1 Pinout

Figure 2: STUSB4700 pin connections (top view)

2.2 Pin list

Table 2: Pin functions list

GND

GPI01 GPI00

Pin	Name	Туре	Description	Connection
1	NC	NC	Not connected	
2	CC1	20 V analog IO	Configuration channel 1	Type-C receptacle A5
3	VCONN	PWR	Power input for active plug	5 V power source
4	CC2	20 V analog IO	Configuration channel 2	Type-C receptacle B5
6	RESET	DI	Reset input (active high)	
7	SCL	DI	I ² C clock	To I ² C master – Ext. pull-up
8	SDA	DI/OD	I ² C data input/output – active low open drain	To I ² C master – Ext. pull-up
9	ALERT#	OD	I ² C interrupt – active low open drain	To I ² C master – Ext. pull-up
10	GND	Power	Ground	

Inputs/outputs STUSB4700

Pin	Name	Туре	Description	Connection
11	GPIO1	OD	General purpose I/O #1	
12	GPIO0	OD	General purpose I/O #0	
13	VVAR_ADDR0	Analog	Variable voltage output	
14	GPIO2	OD	General purpose I/O #2	
15	GPIO3	OD	General purpose I/O #3	
16	GPIO4	OD	General purpose I/O #4	
17	A_B_SIDE	OD	Cable orientation - active low open drain	USB SuperSpeed mux select – Ext. pull-up
18	VBUS_SENSE	20 V AI	V _{BUS} voltage monitoring and discharge path	From V _{BUS}
19	VBUS_DISCH	Output	External output discharge path	
20	VBUS_EN_SRC	20 V OD	V _{BUS} source power path enable – active low open drain	To switch or power system – Ext. pull-up
21	VREG_1V2	Analog	1.2 V regulator output	1μF typ decoupling capacitor
22	VSYS	Power	System power supply	System low power (connect to ground if not used)
23	VREG_2V7	Analog	2.7 V regulator output	1μF typ decoupling capacitor
24	VDD	20 V power	Main power supply (USB power line)	From V _{BUS} (system side)
-	EP	Exposed pad	Exposed pad is connected to ground	To Ground

Table 3: Legend

Туре	Description		
D	Digital		
А	Analog		
0	Output pad		
I	Input pad		
Ю	Bidirectional pad		
OD	Open drain output		
PD	Pull-down		
PU	Pull-up		
PWR	Power supply		
GND	Ground		

2.3 Pin description

2.3.1 CC1 / CC2

CC1 and CC2 are the configuration channel pins used for connection and attachment detection, plug orientation determination and system configuration management across USB Type-C cable. CC1/CC2 are HiZ during reset.

57/

STUSB4700 Inputs/outputs

2.3.2 **RESET**

Active high reset. This pin resets all analog signals, states machine and reloads configuration.

2.3.3 I2C interface pins

Table 4: I2C interface pin list

Name	Description		
SCL	I ² C clock – need external pull-up		
SDA	I ² C data – need external pull-up		
ALERT#	I ² C interrupt – need external pull-up		

2.3.4 A_B_SIDE

This output pin provides cable orientation. It is used to establish USB SuperSpeed signals routing. The cable orientation is also provided by an internal I²C register. This signal is not required in case of USB 2.0 support or in case of supply only.

Table 5: USB Data mux select

Value	CC pin position		
HiZ	CC pin detected on CC1 (A5)		
0	CC pin detected on CC2 (B5)		

2.3.5 VBUS SENSE

This input pin is used to sense V_{BUS} presence, monitor V_{BUS} voltage and discharge V_{BUS} on USB Type-C receptacle side.

2.3.6 VBUS_EN_SRC

In source power role, this pin allows enabling of the outgoing V_{BUS} power when the connection to a sink is established and V_{BUS} is in the valid operating range. The open-drain output allows a PMOS transistor to be driven directly. The logic value of the pin is also advertised in a dedicated I^2C register bit.

2.3.7 VSYS

V_{SYS} is the low voltage power supply from the system (if any). V_{SYS} connection is optional, and can be connected directly to a single cell Lithium battery or a system power supply delivering 3.3 V or 5 V. If not used, it is recommended to connect to GND.

2.3.8 VDD

 V_{DD} is the main power supply for applications powered by V_{BUS} .

This pin can be used to sense the voltage level of the main power supply providing V_{BUS} . It allows UVLO and OVLO voltage thresholds to be considered independently on VDD pin as additional conditions to enable the V_{BUS} power path through VBUS_EN_SRC pin.

2.3.9 GND

Ground.

Inputs/outputs STUSB4700

2.3.10 VVAR ADDR0

At start-up, this pin is latched to set I^2C device address 0 bit. During operation, this output can be used as an analog voltage output to control the power management unit. Analog value is one tenth of the requested V_{BUS} value. This function can be enabled through appropriate NVM configuration.

2.3.11 **GPIO** [4:0]

Table 6: GPIO0 (pin #12) configuration

Select	Value	Configuration	Comments
GPIO0_sel	11b ^(NVM)	GPIO0 = Sel_PDO2	Active Low

Table 7: GPIO1 (pin #11) configuration

Select	Value	Configuration	Comments
GPIO1_sel	11b ^(NVM)	GPIO1 = Sel_PDO3	Active Low

Table 8: GPIO2 (pin #14) - GPIO3 (pin #15) - GPIO4 (pin #16) configuration

Select	Value	Configuration	Comments
	11b ^(NVM)	GPIO2 = Sel_PDO4	Active Low
GPIO234_sel[1:0]		GPIO3 = Sel_PDO5	Active Low
		GPIO4 = Attached	Active Low

Other configurations are available (please contact our customer support).

2.3.12 VREG2V7

This pin is used only for external decoupling of 2.7 V internal regulator.

Recommended decoupling capacitor: 1 μF typ. (0.5 μF min; 10 μF max).

This pin must not be used to supply any external component.

2.3.13 VREG1V2

This pin is used for external decoupling of 1.2 V internal regulator.

Recommended decoupling capacitor: 1 µF typ. (0.5 µF min; 10 µF max).

2.3.14 VBUS DISCH

Control signal for external VBUS_DISCH path.

2.3.15 VCONN

This power input is connected to a power source that can be a 5 V power supply, or a lithium battery. It is used to supply e-marked cables. It is internally connected to power switches that are protected against short-circuit and overvoltage. When a valid source-to-sink connection is determined and V_{CONN} power switches enabled, V_{CONN} is provided by the Source to the unused CC pin.

STUSB4700 Block descriptions

3 Block descriptions

3.1 CC interface

The STUSB4700 controls the connection to the configuration channel (CC) pins, CC1 and CC2, through two main blocks, the CC lines interface block and the CC control logic block.

The CC lines interface block is used to:

- Configure the termination mode on the CC pins relative to the power mode supported, i.e. pull-up for source power role
- Monitor the CC pin voltage values relative to the attachment detection thresholds
- Configure V_{CONN} on the unconnected CC pin when required
- Protect the CC pins against over voltage

The CC control logic block is used to:

- Execute the Type-C FSM relative to the Type-C power mode supported
- Determine the electrical state for each CC pins relative to the detected thresholds
- Evaluate the conditions relative to the CC pin states and V_{BUS} voltage value to transition from one state to another in the Type-C FSM
- Detect and establish a valid source-to-sink connection
- Determine the attached mode: source, accessory
- Determine cable orientation to allow external routing of the USB super speed data
- Manage V_{BUS} power capability: USB default, Type-C medium or Type-C high current mode
- Handle hardware faults

The CC control logic block implements the Type-C FSM's corresponding to source power role with accessory support.

3.2 BMC

This block is the physical link between USB PD protocol layer and CC pin. In TX mode, it converts the data into biphase mark coding (BMC), and drives the CC line to correct voltages. In RX mode, it recovers BMC data from the CC line, and converts to baseband signaling for the protocol layer.

3.3 Protocol layer

The protocol layer has the responsibility to manage the messages from/to the physical layer. It automatically manages the protocol receive timeouts, the message counter, the retry counter and the GoodCRC messages.

It communicates with the internal policy engine.

3.4 Policy engine

The policy engine implements the power negotiation with the connected device according to its source role, it implements all states machine that controls protocol layer forming and scheduling the messages.

The policy engine uses the protocol layer to send/receive messages.

Block descriptions STUSB4700

The policy engine interprets the device policy manager's input in order to implement policy for port and directs the protocol layer to send appropriate messages.

3.5 Device policy manager

The device policy manager is managing the power resources.

3.6 VBUS power path control

3.6.1 VBUS monitoring

The V_{BUS} monitoring block supervises (from the VBUS_SENSE input pin) the V_{BUS} voltage on the USB Type-C receptacle side.

This block is used to check that V_{BUS} is within a valid voltage range:

- To establish a valid source-to-sink connection according to USB Type-C standard specification
- To enable safely the V_{BUS} power path through VBUS EN SRC pin

It allows detection of unexpected V_{BUS} voltage conditions such as undervoltage or overvoltage relative to the valid V_{BUS} voltage range. When such conditions occur, the STUSB4700 reacts as follows:

- At attachment, it prevents the source-to-sink connection and the V_{BUS} power path assertion
- After attachment, it deactivates the source-to-sink connection and disables the V_{BUS} power path. The device goes into error recovery state.

The V_{BUS} voltage value is automatically adjusted at attachment and at each PDO transition. The monitoring is then disabled during T_PDO_transition (default 280 ms changed through NVM programming). Additionally, if a transition occurs to a lower voltage, the discharge path is activated during this time.

The valid V_{BUS} voltage range is defined from the V_{BUS} nominal voltage by a high threshold voltage and a low threshold voltage whose minimal values are respectively $V_{BUS}+5\%$ and $V_{BUS}-5\%$. The nominal threshold limits can be shifted by a fraction of V_{BUS} from +1% to +15% for the high threshold voltage and from -1% to -15% for the low threshold voltage. This means the threshold limits can vary from $V_{BUS}+5\%$ to $V_{BUS}+20\%$ for the high limit and from $V_{BUS}-5\%$ to $V_{BUS}-20\%$ for the low limit.

The threshold limits are preset by default in the NVM with different shift coefficients (see Section 8.3: "Electrical and timing characteristics"). The threshold limits can be changed independently through NVM programming (see Section 4: "User-defined startup configuration") and also by software during attachment through the I²C interface (see Section 6: "I²C register map").

3.6.2 VBUS discharge

The monitoring block handles also the internal V_{BUS} discharge path connected to the VBUS_SENSE input pin. The discharge path is activated at detachment, or when the device goes into the error recovery state (see *Section 3.8: "Hardware fault management"*).

The V_{BUS} discharge path is enabled by default in the NVM and can be disabled through NVM programming only (see *Section 4: "User-defined startup configuration"*). Discharge time duration (T_PDO_transition and T_Transition to 0 V) are also preset by default in the NVM (see *Section 8.3: "Electrical and timing characteristics"*). The discharge time duration can be changed through NVM programming (see *Section 4: "User-defined startup configuration"*) and also by software through the I²C interface (see *Section 6: "I²C register map"*).

STUSB4700 Block descriptions

3.6.3 VBUS power path assertion

The STUSB4700 can control the assertion of the V_{BUS} power path on USB Type-C port, directly or indirectly, through VBUS_EN_SRC pin.

The following table summarizes the configurations and the conditions that determine the logic value of VBUS_EN_SRC pin during system operation.

Table 9: Conditions for VBUS power path assertion

Pin Electrica value		C	Operation conditions				
		Attached state	V _{DD} monitoring	V _{BUS} monitoring	Comment		
	Attached.SRC			V _{BUS} within valid			
	0	UnorientedDebug Accessory.SRC	VDD > UVLO if VDD_UVLO enabled	voltage range if VBUS _VALID_RANGE	The signal is asserted only if all		
VBUS_EN_SRC		OrientedDebug Accessory.SRC	and/or VDD < OVLO if VDD_OVLO enabled	enabled or V _{BUS} > UVLO if VBUS _VALID_RANGE disabled	the valid operation conditions are met.		
HiZ		Any other state	VDD < UVLO if VDD_UVLO enabled and/or VDD > OVLO if VDD_OVLO enabled	V _{BUS} is out of valid voltage range if VBUS _VALID_RANGE enabled or V _{BUS} < UVLO if VBUS _VALID_RANGE disabled	The signal is de- asserted when at least one non- valid operation condition is met.		

Activation of the UVLO and OVLO threshold detections can be done through NVM programming (see Section 4: "User-defined startup configuration") and also by software through the I²C interface (see Section 6: "I²C register map"). When the UVLO and/or OVLO threshold detection is activated, the VBUS_EN_SRC pin is asserted only if the device is attached and the valid threshold conditions on VDD are met. Once the VBUS_EN_SRC pin is asserted, the VBUS_monitoring is done on VBUS_SENSE pin instead of the VDD pin.

3.7 High voltage protection

The STUSB4700 can be safely used in systems or connected to systems that handle high voltage on the V_{BUS} power path. The device integrates an internal circuitry on the CC pins that tolerates high voltage and ensures a protection up to 22 V in case of unexpected short circuit with V_{BUS} or in case of connection to a device supplying high voltage on V_{BUS} .

3.8 Hardware fault management

The STUSB4700 handles hardware fault conditions related to the device itself and the V_{BUS} power path during system operation.

When such conditions occur, the circuit goes into a transient error recovery state named ErrorRecovery in the Type-C FSM. When entering in this state, the device de-asserts the

Block descriptions STUSB4700

VBUS power path by disabling the VBUS_EN_SRC pin, and it removes the terminations from the CC pins during several tens of milliseconds. Then, it transitions to the unattached source state.

The STUSB4700 goes into error recovery state when at least one condition listed below is met:

- If an overtemperature is detected, the "THERMAL FAULT"flag is asserted.
- If an internal pull-up voltage on CC pins is below UVLO threshold, the "VPU_VALID" flag is asserted.
- If an overvoltage is detected on the CC pins, the "VPU_OVP_FAULT" flag is asserted.
- If the V_{BUS} voltage is out of the valid voltage range during attachment, the "VBUS VALID" flag is asserted.
- If an undervoltage is detected on the V_{DD} pin during attachment when UVLO detection is enabled, the "VDD UVLO DISABLE" flag is asserted.
- If an overvoltage is detected on the V_{DD} pin during attachment when OVLO detection is enabled, the "VDD OVLO DISABLE" flag is asserted.

The I²C register bits mentioned above in quotes give either the state of the hardware fault when it occurs or the setting condition to detect the hardware fault.

3.9 Accessory mode detection

The STUSB4700 supports the detection of audio accessory mode and debug accessory mode as defined in the USB Type-C standard specification source power role with accessory support.

3.9.1 Audio accessory mode detection

The STUSB4700 detects an audio accessory device when both the CC1 and CC2 pins are pulled down to ground by a Ra resistor from the connected device. The audio accessory detection is advertised through the CC_ATTACHED_MODE bits of the I²C register CC CONNECTION STATUS.

3.9.2 Debug accessory mode detection

The STUSB4700 detects a connection to a debug and test system (DTS) when it operates either in sink power role or source power role. The debug accessory detection is advertised by the DEBUG1 and DEBUG2 pins as well as through the CC_ATTACHED_MODE bits of the I²C register CC_CONNECTION_STATUS.

In source power role, a debug accessory device is detected when both the CC1 and CC2 pins are pulled down to ground by a Rd resistor from the connected device. The orientation detection is performed in two steps as described in the table below. The DEBUG2 pin is asserted to advertise the DTS detection and the A_B_SIDE pin indicates the orientation of the connection. The orientation detection is advertised through the TYPEC_FSM_STATE bits of the I²C register CC_OPERATION_STATUS.

4 User-defined startup configuration

4.1 Parameter overview

The STUSB4700 has a set of user-defined parameters that can be customized by NVM reprogramming and/or by software through I²C interface. It allows changing the preset configuration of USB Type-C and PD interface and to define a new configuration to meet specific customer requirements addressing various applications, use cases or specific implementations.

The NVM re-programming overrides the initial default setting to define a new default setting that will be used at power-up or after a reset. The default value is copied at power-up, or after a reset, from the embedded NVM into dedicated I²C register bits. The NVM re-programming is possible few times with a customer password.

Feature	Parameter	Value	Default
Voltage		5 V	5 V
PDO1	Current	Configurable – defined by PDO1_I [3:0]	3 A
DDO3	Voltage	Configurable – defined by PDO2_V [1:0]	9 V
PDO2 Current		Configurable – defined by PDO2_I [3:0]	3 A
DD 00	Voltage	Configurable – defined by PDO3_V [1:0]	12 V
PDO3	Current	Configurable – defined by PDO3_I [3:0]	3 A
PDO4 Voltage Current		Configurable – defined by PDO4_V [1:0]	15 V
		Configurable – defined by PDO4_I [3:0]	3 A
DDOE	Voltage	Configurable – defined by PDO5_V [1:0]	20 V
PDO5	Current	Configurable – defined by PDO5_I [3:0]	2.25 A

When a default value is changed during system boot by software, the new settings apply as long as STUSB4700 is operating and until it is changed again. But after power-off and power-up, or after a hardware reset, STUSB4700 takes back default values defined in the NVM

4.2 PDO – voltage configuration in NVM

PDO2_V [1:0], PDO3_V [1:0], PDO4_V [1:0] and PDO5_V [1:0] can be configured with the following values:

Table 11: PDO NVM voltage configuration

Value	Configuration
2b00	9 V
2b01	15 V
2b10	PDO_FLEX_V1
2b11	PDO_FLEX_V2

PDO_FLEX_V1 and PDO_FLEX_V2 are defined in a specific 10-bit register, value being expressed in 50 mV units.

For instance:

- PDO_FLEX_V1 = 10b0100100010 → 14.5 V
- PDO_FLEX_V2 = $10b0110000110 \rightarrow 19.5 \text{ V}$

4.3 PDO – current configuration in NVM

PDO1_I [3:0], PDO2_I [3:0], PDO3_I [3:0], PDO4_I [3:0] and PDO5_I [3:0] can be configured with the following fixed values:

Table 12: PDO NVM current configuration

Value	Configuration
4b0000	PDO_FLEX_I
4b0001	1.50 A
4b0010	1.75 A
4b0011	2.00 A
4b0100	2.25 A
4b0101	2.50 A
4b0110	2.75 A
4b0111	3.00 A
4b1000	3.25 A
4b1001	3.50 A
4b1010	3.75 A
4b1011	4.00 A
4b1100	4.25 A
4b1101	4.50 A
4b1110	4.75 A
4b1111	5.00 A

PDO_FLEX_I is defined in a specific 10-bit register, value being expressed in 10 mA units. For instance:

• PDO_FLEX_I = 10b0011100001 → 2.25 A

4.4 Monitoring configuration in NVM

- T_PDO_Transition can be configured from 20 to 300 ms by increments of 20 ms (0 is not recommended)
- T_Transition_to_0V can be configured from 84 to 1260 ms by increments of 84 ms (0 is not recommended)
- Vshift_High can be configured from (5 to 20%)
- Vshift _Low can be configured from (5 to 20%)

4.5 Discharge configuration in NVM

Enable discharge

Internal discharge

Reverse

STUSB4700 I²C interface

5 I²C interface

5.1 Read and write operations

The I²C interface is used to configure, control and read the status of the device. It is compatible with the Philips I²C Bus® (version 2.1). The I²C is a slave serial interface based on two signals:

- SCL serial clock line: input clock used to shift data
- SDA serial data line: input/output bidirectional data transfers

A filter rejects the potential spikes on the bus data line to preserve data integrity.

The bidirectional data line supports transfers up to 400 Kbit/s (fast mode). The data are shifted to and from the chip on the SDA line, MSB first.

The first bit must be high (START) followed by the 7-bit device address and the read/write control bit.

Eight two 7-bit device addresses are available for STUSB4700 thanks to external programming of DevADDR0, DevADDR11 and/or DevADDR2 through ADDR0, ADDR1/ADDR2 pin setting. It allows to connect two up to 8 STUSB4700 devices on the same I²C bus.

ADDR are not available for all configurations.

Device address format:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DevADDR6	DevADDR5	DevADDR4	DevADDR3	DevADDR2	DevADDR1	DevADDR0	R/W
0	1	0	1	ADDR2	ADDR1	ADDR0	0/1

Register address format:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RegADDR7	RegADDR6	RegADDR5	RegADDR4	RegADDR3	RegADDR2	RegADDR1	RegADDR0

Register data format:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0

I²C interface STUSB4700

Figure 3: Read operation

Figure 4: Write operation

5.2 Timing specifications

The device uses a standard slave I²C channel at speed up to 400 kHz.

Table 13: I2C timing parameters - VDD = 5 V

Symbol	Parameter	Min	Тур	Max	Unit
F _{scl}	SCL clock frequency	0	ı	400	kHz
t _{hd,sta}	Hold time (repeated) START condition	0.6	1	ı	μs
t_{low}	LOW period of the SCL clock	1.3	1	ı	μs
thigh	HIGH period of the SCL clock	0.6	ı	ı	μs
t _{su,dat}	Setup time for repeated START condition	0.6	1	ı	μs
t _{hd,dat}	Data hold time	0.04	1	0.9	μs
t _{su,dat}	Data setup time	100	ı	ı	μs
tr	Rise time of both SDA and SCL signals	20 + 0.1 C _b	1	300	ns
t _f	Fall time of both SDA and SCL signals	20 + 0.1 C _b	-	300	ns
t _{su,sto}	Setup time for STOP condition	0.6	ı	-	μs
t _{buf}	Bus free time between a STOP and START condition	1.3	ı	-	μs
Сь	Capacitive load for each bus line	-	1	400	pF

STUSB4700 I²C interface

Figure 5: I²C timing diagram

I²C register map STUSB4700

6 I²C register map

Table 14: STUSB4700 register map overview

Address	Register name	Access	Description
00h to 0Ah	Reserved	RO	Do not use
0Bh	ALERT_STATUS	RC	Alert register linked to transition registers
0Ch	ALERT_STATUS_MASK_CTRL	R/W	Interrupt mask on ALERT_STATUS register
0Dh	CC_CONNECTION_STATUS_TRANS	RC	Alerts on transition in CC_CONNECTION_STATUS register
0Eh	CC_CONNECTION_STATUS	RO	CC connection status
0Fh	MONITORING_STATUS_TRANS	RC	Alerts on transition in MONITORING_STATUS register
10h	MONITORING_STATUS	RO	Gives status on V _{BUS} voltage monitoring
11h	Reserved	RO	Do not use
12h	HW_FAULT_STATUS_TRANS	RC	Alerts on transition in HW_FAULT_STATUS register
13h	HW_FAULT_STATUS	RO	Hardware faults status
14h to 17h	Reserved	RO	Do not use
18h	CC_CAPABILITY_CTRL	R/W	Allows to change the CC capabilities
19h to 22h	Reserved	RO	Do not use
23h	RESET_CTRL	R/W	Controls the device reset by software
24h	Reserved	RO	Do not use
25h	VBUS_DISCHARGE_TIME_CTRL	R/W	Parameters defining V _{BUS} discharge time
26h	VBUS_DISCHARGE_CTRL	R/W	Controls the V _{BUS} discharge path
27h	VBUS_ENABLE_STATUS	RO	V _{BUS} power path activation status
2Eh	VBUS_MONITORING_CTRL	R/W	Allows to change the monitoring conditions of V _{BUS} voltage
19h to 1Eh	Reserved	RO	Do not use
71h	SRC_PDO1	R/W	PDO1 capabilities configuration
75h	SRC_PDO2	R/W	PDO2 capabilities configuration
79h	SRC_PDO3	R/W	PDO3 capabilities configuration
7Dh	SRC_PDO4	R/W	PDO4 capabilities configuration
81h	SRC_PDO5	R/W	PDO5 capabilities configuration
91h	SRC_RDO	RO	PDO request status

STUSB4700 I²C register map

Table 15: Register access legend

	Access code Expanded name		Description
	RO	Read only	Register can be read only
	R/W	Read / Write	Register can be read or written
	RC	Read and clear	Register can be read and is cleared after read

Typical use cases STUSB4700

7 Typical use cases

7.1 Power supply – buck topology

Figure 6: Power supply - buck topology

The STUSB4700 offers the possibility to have up to 5 PDOs.

In the above example, the V_{safe5V} is generated by R_1 and the full ladder $R_2+R_3+R_4+R_5+R_6$. When a power delivery negotiation results in a PD contract that is not 5 V (PDO2, PDO3, PDO4 and PDO5), GPIO0, GPIO1, GPIO2 and GPIO3 are asserted (active low), respectively. This shorts R_6 , R_5 , R_4 and R_3 according to the following table.

PDO Calculation Resistor value (ohm) **V**out R_{1P} 200 k $R_2 = R_1 \cdot \frac{1.22}{V_{OUT} - 1.22}$ 5 20 13 k $R_3 = R_1 \cdot \frac{1.22}{V_{OUT} - 1.22} - R_2$ $R_4 = R_1 \cdot \frac{1.22}{V_{OUT} - 1.22} - R_2 - R_3$ 4 4.7 k 15 3 12 4.87 k $R_5 = R_1 \cdot \frac{1.22}{V_{OUT} - 1.22} - R_2 - R_3 - R_4$ $R_6 = R_1 \cdot \frac{1.22}{V_{OUT} - 1.22} - R_2 - R_3 - R_4 - R_5$ 2 9 8.66 k 1 5 33 k

Table 16: Resistor value

To implement a different VBUS output voltage for every PDO, the Resistor matrix needs to be calculated using the following formula:

$$VBUS = 1.22 \cdot \frac{R_1}{R_2 + R_3 + R_4 + R_5 + R_6}$$

STUSB4700 Typical use cases

7.2 Power supply – flyback topology

Figure 7: Flyback topology

In the above example, only 4 power profiles are used: 5 V, 9 V, 12 V and 15 V.

The V_{safe5V} is generated by R_1 and the full ladder $R_3+R_4+R_5+R_6$. When a power delivery negotiation results in a PD contract that is not 5 V (PDO2, PDO3, PDO4), GPIO0, GPIO1 and GPIO2 are asserted (active low), respectively. This shorts R_6 , R_5 , R_4 according to the following table.

Table 17: Resistor value

PDO	V _{оит}	Calculation	Resistor value (Ω)
_	-	R ₁	100 k
4	15	$R_3 = R_1 \cdot \frac{1.24}{V_{OUT} - 1.24}$	8.87 k
3	12	$R_4 = R_1 \cdot \frac{1.24}{V_{OUT} - 1.24} - R_3$	2.49 k
2	9	$R_5 = R_1 \cdot \frac{1.24}{V_{OUT} - 1.24} - R_3 - R_4$	4.42 k
1	5	$R_6 = R_1 \cdot \frac{1.24}{V_{OUT} - 1.24} - R_3 - R_4 - R_5$	16.2 k

To implement a different VBUS output voltage for every PDO, the Resistor matrix needs to be calculated using the following formula:

$$VBUS = 1.24 \cdot \frac{R_1}{R_3 + R_4 + R_5 + R_6}$$

Electrical characteristics STUSB4700

8 Electrical characteristics

8.1 Absolute maximum rating

All voltages are referenced to GND.

Table 18: Absolute maximum rating

Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage	28	V
Vsys	Supply voltage on V _{SYS} pin	6	٧
V _{CC1} , V _{CC2}	High voltage on CC pins	22	٧
Vvbus_en_src Vvbus_sense	High voltage on V _{BUS} pins	28	V
VSCL, VSDA VALERT# VRESET VA_B_SIDE	Operating voltage on I/O pins	-0.3 to 6	>
V _{CONN}	V _{CONN} voltage	6	V
T _{STG}	Storage temperature	-55 to 150	°C
TJ	Maximum junction temperature	145	°C
ESD	НВМ	4	14) /
	CDM	1.5	kV

8.2 Operating conditions

Table 19: Operating conditions

Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage	4.1 to 22	V
V _{SYS}	Supply voltage on V _{SYS} pin	3.0 to 5.5	V
VCC1, VCC2	CC pins (1)	-0.3 to 5.5	V
Vvbus_en_src Vvbus_disch Vvbus_sense	High voltage pins	0 to 22	V
VSCL, VSDA VALERT# VRESET VA_B_SIDE	Operating voltage on I/O pins	0 to 4.5	V
VCONN	V _{CONN} voltage	2.7 to 5.5	V
ICONN	V _{CONN} rated current (default = 0.35 A)	0.1 to 0.6	Α
TA	Operating temperature	-40 to 105	°C

Notes:

⁽¹⁾Transient voltage on CC1 and CC2 pins are allowed to go down to -0.3 during BMC communication from

connected devices.

8.3 Electrical and timing characteristics

Unless otherwise specified: V_{DD} = 5 V, T_A = +25 °C, all voltages are referenced to GND.

Table 20: Electrical characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Device Idle as SOURCE (not co	nnected, no co	mmunication)		
I _{DD(SRC)}	Current consumption	V _{SYS} @ 3.3 V	_	158	_	μΑ
	Consumption	V _{DD} @ 5.0 V	_	188	_	μA
	Standby	Device standby (not connected,	low power)			•
ISTDBY	current	V _{SYS} @ 3.3 V	_	33	_	μΑ
	consumption	V _{DD} @ 5.0 V	-	53	_	μA
CC1 and C	CC2 pins			•		•
I _{P-USB}		CC pin voltage V _{CC} = -0.3	-20%	80	+20%	μA
I _{P-1.5}	CC current sources	to 2.6 V	-8%	180	+8%	μΑ
I _{P-3.0}	Sources	-40° < T _A < +105°	-8%	330	+8%	μA
Vcco	CC open pin voltage	CC unconnected, V _{DD} =3.0 to 5.5 V	2.75	_	_	V
		External I _P =180 μA applied into CC	_	_	1.2	V
VCCDB-1.5 VCCDB-3.0	CC pin voltage in dead battery condition	External I _P =330 µA applied into CC (V _{DD} = 0, dead battery function enabled)	_	_	2	V
R _{INCC}	CC input impedance	Pull-up and pull-down resistors off	200	_	-	kΩ
V _{TH0.2}	Detection threshold 1	Max R _a detection by DFP at I _P = I _{P -USB} , min I _{P -USB} detection by UFP on R _d , min CC voltage for connected UFP	0.15	0.2	0.25	V
V _{TH0.4}	Detection threshold 2	Max R_a detection by DFP at I_P = $I_{P-1.5}$	0.35	0.4	0.45	٧
V _{TH0.66}	Detection threshold 3	Min I _{P_1.5} detection by UFP on R _d	0.61	0.66	0.7	V
V _{TH0.8}	Detection threshold 4	Max R _a detection by DFP at I _P = I _{P-3.0}	0.75	0.8	0.85	V
V _{TH1.23}	Detection threshold 5	Min I _{P_3.0} detection by UFP on R _d	1.16	1.23	1.31	V
V _{TH1.6}	Detection threshold 6	Max R _d detection by DFP at I _P = I _{P-USB} and I _P = I _{P-1.5}	1.5	1.6	1.65	V

Electrical characteristics

STUSB4700

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{TH2.6}	Detection threshold 7	Max R _d detection by DFP at I _{P-3.0} , max CC voltage for connected UFP	2.45	2.6	2.75	V
V _{CONN} prot	ection					
RVCONN	V _{CONN} path resistance	I _{VCONN} = 0.2 A -40°C < TA < +105°C	0.25	0.5	0.975	Ω
		Programmable current limit	85	100	125	
I _{OCP}	Over current protection	threshold (from 100 mA to 600	300	350	400	mA
		mA by step of 50 mA).	550	600	650	
V _{OVP}	Output over voltage protection		5.9	6	6.1	V
V _{UVP}	Input under	Low UVLO threshold	2.6	-	2.7	V
VUVP	voltage protection	High UVLO threshold (default)	4.6	-	4.8	V
V _{BUS} moni	toring and driving	,	1		1	
V _{THUSB}	V _{BUS} presence threshold	V _{SYS} =3.0 to 5.5 V	3.8	3.9	4	V
		V _{SYS} =3.0 to 5.5 V	0.5	0.6	0.7	
	V _{BUS} safe 0V	Programmable threshold	0.8	0.9	1	
V _{TH0} V	threshold (vSafe0V)	(from 0.6 to 1.8 V)	1.1	1.2	1.3	V
(voaleuv)		Default V _{THOV} = 0.6 V	1.7	1.8	1.9	
RDISUSB	V _{BUS} discharge resistor		600	700	800	Ω
T _{DISUSB}	V _{BUS} discharge time to 0 V	Default T _{DISUSB} = 840 ms . The coefficient T _{DISPARAM} is programmable by NVM.	70 *T _{DISPA} RAM	84 *T _{DISPARA} M	100 *T _{DISPA} RAM	ms
Toisusb	V _{BUS} discharge time to PDO	Default T _{DISUSB} = 200 ms The coefficient T _{DISPARAM} is programmable by NVM	20 *T _{DISPA} RAM	24 *T _{DISPARA} M	28 *T _{DISPA} RAM	ms
Vmonusbh	V _{BUS} monitoring high voltage threshold	V _{BUS} = nominal target value Default V _{MONUSBH} = V _{BUS} +10% The threshold limit is programmable by NVM from V _{BUS} +5% to V _{BUS} +20%	_	V _{BUS} +10%	-	V

STUSB4700 Electrical characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		V _{BUS} = nominal target value				
	V _{BUS} monitoring	Default V _{MONUSBL} = V _{BUS} - 10%				
VMONUSBL	low voltage threshold	The threshold limit is programmable by NVM from V _{BUS} -20% to V _{BUS} -5%	-	V _{BUS} -10%	_	V
Digital inpu	ut/output (SCL, SDA,	ALERT#, A_B_SIDE)				
VIH	High level input voltage		1.2	-	_	٧
V _{IL}	Low level input voltage		-	-	0.35	V
VoL	Low level output voltage	loh = 3 mA	-	-	0.4	٧
20 V open	20 V open drain outputs (VBUS_EN_SRC)					
VoL	Low level output voltage	loh = 3 mA	-	_	0.4	V

Package information 9

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

9.1 QFN24 EP 4x4 mm package information

D В TOP VIEW SIDE VIEW ž D2 BOTTOM VIEW

Figure 8: QFN24 EP 4x4 mm package outline

Table 21: QFN24 EP 4x4 mm mechanical data

Cumbal	Millimeters			
Symbol	Min.	Тур.	Max.	
A	0.80	0.90	1.00	
A1	0.00	0.02	0.05	
b	0.18	0.25	0.30	

Cumbal	Millimeters			
Symbol	Min.	Тур.	Max.	
D	3.95	4.00	4.05	
D2	2.55	2.70	2.80	
E	3.95	4.00	4.05	
E2	2.55	2.70	2.80	
е	0.45	0.50	0.55	
K	0.15			
L	0.30	0.40	0.50	

Figure 9: QFN24 EP 4x4 mm recommended footprint

9.2 QFN24 EP 4x4 mm wettable flank package information

Figure 10: QFN24 EP 4x4 mm wettable flank package outline

Dof	Dimensions (mm)			
Ref.	Min	Тур	Max	
А	0.90	0.95	1.00	
A1	-	0.10	-	
A2	0.00	0.02	0.05	
A3	-	0.20	-	
b	0.20	0.25	0.30	
D	3.85	4.00	4.15	
D2	2.40	2.50	2.60	
E	3.85	4.00	4.15	
E2	2.40	2.50	2.60	
е	-	0.50	-	
J	-	0.35	-	
L	0.30	0.40	0.50	
L1	-	0.20	-	
L2	-	0.05	-	
L3	-	0.10	-	

Figure 11: QFN24 EP 4x4 mm wettable flank recommended footprint

9.3 Thermal information

Table 22: Thermal information

Symbol	Parameter	Value	Unit
R _{θJA}	Junction-to-ambient thermal resistance	37	°C ///
$R_{ heta JC}$	Junction-to-case thermal resistance	°C/W	

9.4 Packing information

Figure 12: Reel information

Table 23: Tape dimensions

Package	Pitch	Carrier width	Reel
QFN 4x4 - 24L	8 mm	12 mm	13"

10 Terms and abbreviations

Table 24: List of terms and abbreviations

Term	Description
Accessory	Audio adapter accessory mode. It is defined by the presence of Ra/Ra on the CC1/CC2 pins.
modes	Debug accessory mode. It is defined by the presence of Rd/Rd on CC1/CC2 pins in Source power role or Rp/Rp on CC1/CC2 pins in Sink power role.
DFP	Downstream Facing Port, associated with the flow of data in a USB connection. Typically, the ports on a HOST or the ports on a hub to which devices are connected. In its initial state, the DFP sources V_{BUS} and V_{CONN} and supports data.
DRP	Dual-role port. A port that can operate as either a source or a sink. The port's role may be changed dynamically.
Sink	Port asserting Rd on the CC pins and consuming power from the V_{BUS} ; most commonly a device.
Source	Port asserting Rp on the CC pins and providing power over the V_{BUS} ; usually a host or hub DFP.
UFP	Upstream Facing Port, specifically associated with the flow of data in a USB connection. The port on a device or a hub that connects to a host or the DFP of a hub. In its initial state, the UFP sinks the VBUS and supports data.

Revision history STUSB4700

11 Revision history

Table 25: Document revision history

Date	Version	Changes
24-Jan-2017	1	Initial release.
22-Mar-2017	2	Updated comments columns in Table 7: "GPIO1 (pin #11) configuration" and Table 8: "GPIO2 (pin #14) – GPIO3 (pin #15) – GPIO4 (pin #16) configuration", and ESD parameter description in Table 18: "Absolute maximum rating".
		In Table 19: "Operating conditions " replaced VVBUS_EN_SNK with VVBUS_DISCH. Replaced Figure 6: "Power supply - buck topology" with a new figure. Minor changes throughout the document.
06-Dec-2017	3	On cover page: - updated title description - updated feature regarding protections - added feature regarding Automotive grade availability - updated feature regarding Certification test ID - updated Table 1: "Device summary table" Updated Section 7.1: "Power supply – buck topology" Updated Section 7.2: "Power supply – flyback topology" Added Section 9.2: "QFN24 EP 4x4 mm wettable flank package information"

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

