Week 03

Combining & Validation

INFO 3402: Information Exposition

Brian Keegan, Ph.D. Assistant Professor, Information Science brian.keegan@colorado.edu

Course Overview

Module	Week	Dates	Computational skill	Communication skill			
Shaping	1 2 3	Jan 11, Jan 13 Jan 18, Jan 20	Loading Aggregation	Documentation Summarization Validation			
1 0	4	Jan 25, Jan 27 Feb 1, Feb 3	Joining Tidying	Tables			
Distribution	5 6	Feb 8, Feb 10 Feb 15, Feb 17	Histograms Box plots	Perception Audience			
Comparison 7 8		Feb 22, Feb 24 Mar 1, Mar 3	Cat plots Faceted plots	Objectives Simplicity			
Trend 9 10		Mar 8, Mar 10 Mar 15, Mar 17	Line plots Stacked plots	Trust Annotation			
	11	Mar 22, Mar 24	Spring	g Break			
Relationship	12 13	Mar 29, Mar 31 Apr 5, Apr 7	Scatter plots Heatmaps	Fallacies Persuasion			
Spatial	Spatial 14 Apr 12, Apr 15 Apr 19, Apr		Choropleths Point plots	Conventions Design			
Projects	16	Apr 26, Apr 28	Pro	pjects			

Recap – Module 01

Week	Skills	Datasets								
01	Data science mindset; loading data; documentation	Census; Boulder+Broomfield weather								
02	Types of data; groupby-aggregation; pivot tables	CDC deaths; time use								
03	Concatenation; joining/merging	Baseball; county cannabis, crime, population, & COVID								
04	TBD	TBD								
	Module Assignment 01 due on Tuesday, February 08 by 11am									

Weekly overview

- Notebook exercises (ungraded) Assigned Tuesdays and reviewed Thursdays
- Add a Visualization Critique (ungraded) Discussed in class on Thursdays
- Weekly Assignment (graded, 2%) Assigned Tuesdays and due Fridays
- Weekly Quiz (graded, 1%) End of class on Thursdays (12pm)

Combining Data

Concatenating

- DataFrames with similar columns but different rows can be combined with concat
 - Like "stacking" DataFrames on top of each other!
 - Similar(ish) columns and many more rows
 - O Data from different times, locations, etc.
- Put each DataFrame to be concatenated into a container like a list or dict and pass the container to concat
- Careful with the indices on the resulting DataFrame!
 Concatenated DF preserves parents' indices
 - The "ignore_index" parameter is your friend

https://pandas.pydata.org/docs/user_guide/merging.html#concatenating-objects

Merging

- DataFrames with at least one column in common can be combined with merge or join
 - Like stacking DataFrames next to each other
 - Similar(ish) rows and many more columns
 - Different data with elements in commons
- Combine DataFrames a pair at a time: left & right
 - Identify the column (or index) in each DataFrame with the values to combine in the other DataFrame
 - Can be multiple columns!
- Biggest (and hardest!) decision is how to join
 - O left, right, inner, outer
 - "indicator" parameter can be your friend!

	le	ft			rig	ht		Result							
N/	key	Α	В	100	key	С	D		key	Α	В	С	D		
0	K0	A0	В0	0	KO	œ	D0	0	KD	A0	B0	00	D0		
1	K1	A1	B1	1	K1	C1	D1	1	K1	A1	B1	C1	D1		
2	K2	A2	B2	2	K2	C2	D2	2	K2	A2	B2	C2	D2		
3	КЗ	A3	В3	3	КЗ	C3	D3	3	КЗ	A3	В3	C3	D3		

https://pandas.pydata.org/docs/user_guide/merging.html#concatenating-objects

Left join

- Preserve the keys in the left DataFrame
 - Drop the rows on right if keys not present in left
 - Add NaNs to rows on left if not present on right
- O left = { (K0,K0), (K0,K1), (K1,K0), (K2,K1) }
- o right = { (K0,K0), (K1,K0), (K1,K0), (K2,K0) }
- Left join
 - Left loses nothing
 - Right loses (K2, K0)
 - NaNs for right columns' (K0,K1) and (K2,K1) values

Right join

- Preserve the keys in the right DataFrame
 - Drop the rows on left if keys not present in right
 - Add NaNs to rows on right if not present on left
- Ieft = { (K0,K0), (K0,K1), (K1,K0), (K2,K1) }
- oright = $\{ (K0,K0), (K1,K0), (K1,K0), (K2,K0) \}$
- Right join
 - Right loses nothing
 - Left loses (K0, K1) and (K2,K1)
 - O NaNs for left columns' (K2,K0) values

Outer join

- O Preserve <u>all</u> keys in the right DataFrame
 - No rows dropped but lots of NaNs added
- \circ left = { (K0,K0), (K0,K1), (K1,K0), (K2,K1) }
- o right = $\{ (K0,K0), (K1,K0), (K1,K0), (K2,K0) \}$
- Outer join
 - Nothing lost
 - NaNs for left columns' (K2,K0) values
 - O NaNs for right columns' (K0,K1) and (K2,K1) values

Inner join

- Preserve <u>only</u> keys in both DataFrames
 - Lots of rows dropped but no NaNs added
- \circ left = { (K0,K0), (K0,K1), (K1,K0), (K2,K1) }
- o right = $\{ (K0,K0), (K1,K0), (K1,K0), (K2,K0) \}$
- Inner join
 - (K2,K0), (K0,K1), (K2,K1) lost
 - Only (K0,K0) and (K1,K0) preserved

			left					right			Result						
		keyl	key2	Α	В		keyl	key2	С	D	1 1	level.	Imv2	۸	В	С	D
ſ	0	KD	KD	A0	BO	0	KD	KO	α	D0		keyl	key2	Α	ь		ь
ı	<u> </u>					. 3					0	KO	KO	A0	B0	co	D0
1	1	K0	K1	A1	B1	1	K1	KO	C1	D1							
ŀ	1 1					3/4 (1)	_			_	1	K1	K0	A2	B2	C1	D1
1	2	K1	K0	A2	B2	2	K1	K0	C2	D2	333			-			
ŀ	100					. 0	_			_	2	K1	K0	A2	B2	C2	D2
1	3	K2	K1	A3	B3	3	K2	K0	C3	D3	A						
ı			0.00	7.		187											

https://pandas.pydata.org/docs/user_guide/merging.html#brief-primer-on-merge-methods-relational-algebra

Weekly Assignments

Feedback

- loc[index_name, column_name] to return DataFrame values in a particular spot
 - https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#selection-by-label
- O Multilevel indexing: .loc[(index_1, index_2), column_name]
 - https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html#advanced-indexing-with-hierarchical-index
- Boolean indexing: create a series of True/False values + pass back to DF to get only True rows
 - https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#boolean-indexing
- Adding a new column: assign column name as string in brackets to DF and then operation
 - https://pandas.pydata.org/docs/getting_started/intro_tutorials/05_add_columns.html
- .max() returns the maximum value itself; .idxmax() returns the location of the maximum value
 - Powerful in combination with .loc!
 - https://pandas.pydata.org/pandas-docs/stable/user_guide/basics.html#index-of-min-max-values

Feedback

- Return the specific value we're looking for → not just a series of values containing it
- "Find the maximum value of X in Y"
 - BAD: sorted DF/Series/array of Xs with the highest value at the top we have to look up
 - O GOOD: sorting, Boolean indexing, idxmax-ing, etc. and printing/returning a single largest value
 - We've been giving partial or full credit so far, but won't in future!
- Homeworks are released on Tuesdays, get started early!
 - Get questions in over email or in Thursday lecture
 - Samantha and I are may not be available on Thursday nights to help with last-minute debugging
- O Join the class Discord server for collaborating, questions, etc.
 - O https://discord.gg/Jmzq3dHQv4

Module Assignments

Module Assignment 01

- Module Assignment 01 will be due Tuesday, February 08 by 11am
 - Tag assignment with "INFO3402S22MA1"
- Write up an exploratory data analysis on any of the datasets we've used in Weeks 01-04
 - O Census; Weather; CDC deaths; Time use; Baseball; County cannabis/crime/COVID
- O Should: (1) be a good question; (2) follow the EDA checklist; (3) include at least one numeric table and one visualization; and (4) communicate for general audience

Rubric

- **A**: New/novel data source; good motivation for question; high-quality visualizations; excellent communication
- ≦ B: Trivial or previously-analyzed data; mediocre question; off-the-shelf visualizations; average communication
- \bigcirc \leq **C**: Duplicates existing tutorials/docs; trivial EDA with poor question; no or poor visualizations; poor communication

Using Medium

- O We will be using Medium, a popular blogging platform launched in 2012
- A WYSIWYG interface like WordPress, upvoting like Reddit, tags like Instagram/Tumblr/TikTok
- O Create account using your Colorado.edu email address and no need to purchase membership
- Posts will be submitted to our class publication and tag
 - https://medium.com/information-expositions-s2022 and Info3402s22
- Use the Medium Help Center or Google around for tips and advice on writing Medium posts
- Submit your Medium user name <u>here</u>

Medium check-in

- Can you access Medium.com?
- Have you created an account?
- O Have you followed some writers, publications, or keywords that interest you?
- WITHOUT PUBLISHING, draft a 250-word story on what you hope to accomplish this semester
- Can you find this draft under your account?
- Can you add this draft to the "Information Expositions S2022" class publication?
- O Have I added your username to the class publication as a writer?

Characteristics of a good question

- Question should be of interest to audience
- Question should not already been answered
- Question should be plausible
- Question should be answerable
- Question should be specific

Exploratory data analysis checklist

- 1. Formulate your question → see "Characteristics of a good question"
- 2. Read in your data → Is it properly formatted? Perform cleanup activities
- 3. Check the packaging → Make sure there are the right number of rows & columns, formats, etc.
- 4. Look at the top and bottom of data → Confirm that all observations are there
- 5. Check the "n"s → Identify "landmark" values and to check expectations (number of states, etc.)
- 6. Validate against an external data source → Right order of magnitude, expected distribution, etc.
- 7. Make a plot → Checking and creating expectations about the shape of data and appropriate analyses
- 8. Try an easy solution → What is the simplest test for your question?

Communicating results of an analysis

- Audience: Who cares about your question and results? Why? Do they share your expertise?
- Content: What is appropriate background? What are your objectives? Breadth vs. depth?
- Style: Formality of venue? Jargon? When to do discussion?
- Attitude: What kind of feedback do you want? What actions do you want audience to take?

Weekly Assignment & Next Class

Readings

- Questions for Friday's Weekly Quiz 03 will be drawn from these readings
- pandas Getting Started How to combine data from multiple tables?
- pandas User Guide Database-style DataFrame joining/merging
- O Chan, L. (2021). "Python Tricks: How to Check Table Merging with Pandas." TDS.

Weekly Assignment 03

- Skills: Concatenating and merging data
- Data: County-level longitudinal data about cannabis sales, crime, and COVID
- Due Friday before midnight on Canvas
 - Save an HTML version of your notebook with all output present
 - File > Download as > HTML (.html)
 - Upload the HTML file to Canvas

Next Class

- Review concepts and exercises from last class
- Critique a data narrative or visualization
 - O Post a link and a few sentences about a data visualization on Canvas discussion (ungraded/optional)
- Time to work on Weekly Assignment
 - Weekly Assignment due on Friday by submitting HTML notebook to Canvas before midnight
- Weekly quiz at the end of class (12:00–12:30)