Causal Learning and Inference: A Practical Guide — Part II

Adèle H. Ribeiro

Institute of Medical Informatics
University of Münster

https://adele.github.io/

adele.ribeiro@uni-muenster.de

Júlia M. P. Soler

Institute of Mathematics and Statistics University of São Paulo

https://www.ime.usp.br/pavan/

pavan@ime.usp.br

69th Annual Meeting of the Brazilian Region of the International Society of Biometrics (RBras)

August 4-5, 2025

What We Covered on Day 1:

Classical causal inference pipeline from a causal diagram:

Causal modeling: Structural Causal Models and Causal Bayesian Networks / d-Separation

Effect identification given a causal diagram: Backdoor Adjustment & ID Algorithm

Coding Exercises

Classical Causal Pipeline - Judea Pearl's framework

Pearl, J. 1995. Causal diagrams for empirical research. Biometrika, 82(4): 669-688.

Outline

Can we infer the causal diagram from observational data?

Day 2:

Causal discovery: from heterogenous data types; independent and dependent observations

Effect identification given a partial ancestral graph (PAG): Generalized Adjustment & PAG-ID

Coding Exercises

Markov Equivalence Class

Distribution **Factorization Bayesian Networks** Markov P(X, Y, Z) $P(x, y, z) = P(z \mid x, y)P(x \mid y)P(y)$ Equivalent with P(Y|X) = P(Y) $= P(z \mid x, y) P(x) P(y)$ i.e., $X \perp \!\!\!\perp Y$ $egin{pmatrix} X \end{pmatrix} \quad igl(Z) \quad igl(Y) \end{pmatrix}$

Markov Equivalence Class

Distribution

P(X, Y, Z)with P(Y|X) = P(Y)i.e., $X \perp \!\!\!\perp \!\!\!\perp Y$

Factorization

$$P(x, y, z) = P(z \mid x, y)P(x \mid y)P(y)$$
$$= P(z \mid x, y)P(x)P(y)$$

All models imply only $X \perp \!\!\! \perp Y$ and Z is always a collider in such models,

Note: Z is never an ancestor of X or Y

Bayesian Networks

Markov

Learning the Markov Equivalence Class

Causal Discovery:

Many models are statistically indistinguishable without additional parametric / distributional assumptions.

In non-parametric settings, causal discovery algorithms can only learn a graphical representation of its *Markov equivalence class* (MEC)!

Fast Causal Inference (FCI): Sound and complete causal discovery algorithm, even in the presence of unobserved confounders and selection bias.

Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. *Artificial Intelligence*, 172(16):1873–1896. Link

Constraint-Based Causal Discovery Algorithms

Constraint-Based Causal Discovery Algorithms

Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. *Artificial Intelligence*, 172(16):1873–1896. Link

FCI Algorithm - Pipeline

Unknown Reality

True causal diagram

$$X \perp \!\!\! \perp W$$

 $X \perp \!\!\! \perp Y \mid Z, W$

Implied by the ADMG using d-separation

Complete Graph

Conditional Independence Tests

Skeleton

FCI Rules (R0) + (R1 to R10)

Partial Ancestral Graph (PAG)

By **faithfulness**, are correctly observed in the data

 $A \longrightarrow B \implies$ B non-ancestor of A

 $A \longrightarrow B \implies A$ ancestror of B

 $A \longleftrightarrow B \Longrightarrow$ spurious association

 $A \longrightarrow B \implies$ selection bias

Implied by the PAG using m-separation

$$X \perp \!\!\! \perp W$$
 $X \perp \!\!\! \perp Y \mid Z, W$

Z is not an ancestor of X or W.

Z and W are ancestors of Y.

Z is not confounded with Y.

Applying FCI's Rules

Unknown Reality

True causal diagram

$$X \perp \!\!\! \perp W$$

 $X \perp \!\!\! \perp Y \mid Z, W$

Implied by the ADMG using d-separation

R0: If $\langle V_1, V_2, V_3 \rangle$ is unshielded and $V_2 \notin Sepset(V_1, V_3)$, then

That is the only way for the path between V_1 and V_3 to be blocked when not conditioning on V2

Applying R0:

Skeleton

 $X \perp \!\!\! \perp W$, where $Z \notin Sepset(X, W)$ $X \perp \!\!\! \perp Y | Z, W$, where $Z \in Sepset(X, Y)$

Applying FCI's Rules

Unknown Reality

True causal diagram

 $X \perp \!\!\! \perp W$ $X \perp \!\!\! \perp Y \mid Z, W$

Implied by the ADMG using d-separation

R1:

 \Longrightarrow

where V_1 and V_3 are not adjacent

Applying FCI's Rules

Unknown Reality

True causal diagram

 $X \perp \!\!\! \perp W$ $X \perp \!\!\! \perp Y \mid Z, W$

Implied by the ADMG using d-separation

PAG: Representation of the Markov Equivalence Class

Partial Ancestral Graph (PAG)

Z is not an ancestor of X or W.

- Z and W are ancestors of Y.
- Z is not confounded with Y.

Fast Causal Inference (FCI) Algorithm

Underlying Causal Diagram

Partial Ancestral Graph

Available Implementations of the FCI

R Packages:

- pcalg R package:
 - https://cran.r-project.org/web/packages/pcalg/
 - https://github.com/cran/pcalg/
- RPy-Tetrad (Wrapper in R): https://github.com/cmu-phil/py-tetrad/tree/main/pytetrad/R

Python Packages:

- Do-discover in PyWhy: https://github.com/py-why/dodiscover
- Causal-Learn: https://causal-learn.readthedocs.io/en/latest/index.html
- Py-Tetrad (Wrapper in Python): https://github.com/bd2kccd/py-causal

Going Back to Our Simple Example...

True Causal Diagram (unknown)

In this simplified hypothetical scenario, the observed variables are of **heterogenous** types:

Age — continuous

Sex — binary (female vs. male)

Wealth — continuous

Zone type — categorical (center vs. periphery)

Usual bed net use — binary (yes vs. no)

Number of malaria infections — count variable

Going Back to Our Simple Example...

True Causal Diagram (unknown)

Partial Ancestral Graph (learned from data)

Accurate PAG inference with FCI requires conditional independence tests that are statistically appropriate and **correctly specified** for the **variable types** and underlying **structural**, **distributional and functional** properties.

Conditional Independence Tests

With independent observations:

Linear models with Gaussian errors: partial correlation test

- Fisher, R.A. (1921). On the Probable Error of a Coefficient of Correlation Deduced from a Small Sample.
- R package: https://cran.r-project.org/web/packages/pcalg/

Linear models with heterogeneous data types- likelihood ratio tests based on GLM

- Tsagris, M., Borboudakis, G., Lagani, V. et al. (2018) Constraint-based causal discovery with mixed data. Int J Data Sci Anal 6, 19–30. (Link)
- R package: https://cran.r-project.org/web/packages/MXM/

Linear / non-linear models with heterogeneous data types — kernel-based non-parametric test

- Zhang, K., Peters, J., Janzing, D., & Schölkopf, B. (2012). Kernel-based conditional independence test and application in causal discovery. In: Uncertainty in artificial intelligence. AUAI Press; 2011. p.804–13
- R package: https://cran.r-project.org/web/packages/CondIndTests

With dependent observations:

Linear models with Gaussian errors and family data:

Ribeiro A.H., Soler J.M.P. (2020). Learning Genetic and environmental graphical models from family data, Statistics in Medicine.

R package: https://github.com/adele/FamilyBasedPGMs

Fisher's Partial Correlation Test

Linear models with Gaussian errors: partial correlation test

- Fisher, R.A. (1921). On the Probable Error of a Coefficient of Correlation Deduced from a Small Sample.
- R package: https://cran.r-project.org/web/packages/pcalg/

Testing $X \perp \!\!\! \perp Y \mid S$:

For multivariate Gaussian variables, the **partial correlation test** is equivalent to a conditional independence test.

1) Obtain the partial correlation coefficient via univariate linear regression:

Give i.i.d. data
$$D = \{x_i, y_i, s_{ki} : k = 1, \dots | \mathbf{S} | \}$$

$$x_i = \alpha^X + \sum_{k=1}^{|\mathbf{S}|} \beta_k^X s_{ki} + \varepsilon_i^X, \text{ where } \varepsilon_i^X \sim \mathcal{N}(0, \sigma_{X|\mathbf{S}}^2)$$

$$y_i = \alpha^Y + \sum_{k=1}^{|\mathbf{S}|} \beta_k^Y s_{ki} + \varepsilon_i^Y, \text{ where } \varepsilon_i^Y \sim \mathcal{N}(0, \sigma_{Y|\mathbf{S}}^2)$$
 Then, $\rho_{XY|\mathbf{S}} = \operatorname{corr}\left(\boldsymbol{\varepsilon}^X, \boldsymbol{\varepsilon}^Y\right)$

The partial correlation coefficient is the Pearson correlation between the residuals!

Fisher's Partial Correlation Test

2) Test the significance of the partial correlation coefficient:

Hypothesis test:
$$H_0: \rho_{XY|S} = 0$$
 vs $H_1: \rho_{XY|S} \neq 0$

Fisher's z-transformed partial correlation coefficient:

$$z(\rho_{XY|S}) = \frac{1}{2} \ln \left(\frac{1 + \rho_{XY|S}}{1 - \rho_{XY|S}} \right).$$

Under H_0 , the test statistic $T = \sqrt{N} - |\mathbf{S}| - 3|z(\rho_{XY|\mathbf{S}})|$ asymptotically follows a standard Gaussian distribution (zero mean and unit variance).

We reject H_0 if p-value $<\alpha$, where p-value for the two-tailed test is given by $P(T>|t||H_1)=2<1-\alpha df(|t|)$

$$P(T > |t| | H_0) = 2 \times (1 - cdf(|t|),$$

t is the observed (estimated) value of T, and cdf is the cumulative distribution function of T under H_0 .

How can we accommodate heterogeneous data types?

Linear models with heterogeneous data types- likelihood ratio tests based on GLM

- Tsagris, M., Borboudakis, G., Lagani, V. et al. (2018) Constraint-based causal discovery with mixed data. Int J Data Sci Anal 6, 19–30. (Link)
- R package: https://cran.r-project.org/web/packages/MXM/

Likelihood Ratio Test (LRT) for testing $X \perp \!\!\! \perp Y \mid S$:

- 1) First, we test $H_{0_1}: P(Y|X, S) = P(Y|S)$
 - 1.a) Fit the null and alternative models for Y using generalized linear models (GLMs):

Give i.i.d. data
$$D = \{x_i, y_i, s_{ki} : k = 1, ... | S | \}$$

Null model
$$\mathcal{M}_0$$
: $g(E[Y_i|\mathbf{S}_i]) = \eta_i^{(0)} = \alpha + \sum_{k=1}^{|\mathbf{S}|} \beta_{S_k} s_{ki}$

Alternative model
$$\mathcal{M}_1$$
: $g(E[Y_i|X_i,\mathbf{S}_i]) = \eta_i^{(1)}\alpha + \beta_X X_i + \sum_{k=1}^{|\mathbf{S}|} \beta_{S_k} s_{ki}$

where $g(\cdot)$ is the link function appropriated to the data type of Y (e.g., identity for Gaussian, logit for binary, log for counts).

How can we accommodate heterogeneous data types?

1.b) Compare the models using a likelihood-ratio test (LRT):

Let:

$$\mathscr{C}_0 = \log \mathscr{L}(\theta_{\mathscr{M}_0}) = \sum_{i=1}^n \log f(y_i \mid S_i^{\mathsf{T}} \beta_S), \text{ be the maximized log-likelihood under } \mathscr{M}_0$$

$$\ell_1 = \log \mathcal{L}(\theta_{\mathcal{M}_1}) = \sum_{i=1}^n \log f(y_i \mid S_i^\top \beta_S + X_i^\top \beta_X) \ \text{ be the maximized log-likelihood under } \mathcal{M}_1$$

Then the LRT statistic $\Lambda=-2\left(\ell_0-\ell_1\right)$ measures how much better the alternative model \mathcal{M}_1 fits the data compared to the null model \mathcal{M}_0 .

Under H_{0_1} : $\beta_x = 0$ and regularity conditions:

$$\Lambda \xrightarrow{d} \chi_k^2$$
, with $k = \dim(\beta_X)$.

This enables computation of p-value p_1 corresponding to testing $H_{0_1}: P(Y|X, \mathbf{Z}) = P(Y|\mathbf{Z})$

How can we accommodate heterogeneous data types?

- 2) Repeat steps 1.a) and 1.b), switching the roles of Y and X, to test $H_{0_{\gamma}}: P(X \mid Y, S) = P(X \mid S)$ This enables computation of p-value p_2 .
- 3) Tests are not necessarily symmetric, so a final p-value can be computed as following:

```
p = \min(p1,p2)
                    Favors dependencies
                    Favors independencies
p = \max(p1,p2)
p = \min\{2 \times \min(p1,p2), \max(p1,p2)\}
                                           Heuristic shown to have a good control of FP and FN
                                           Priority: Continuous > Nominal > Ordinal
```

Given a significance level α (e.g., 0.05), $\Longrightarrow X \perp\!\!\!\perp Y \mid S$ $p > \alpha$ suggests that X does not add explanatory power for Y beyond S.

LR-Based CI Test for Heterogenous Data Types

Implementations in R:

MXM R Package — functions ci.mm2 and ci.fast2

Handles binary, nominal and ordinal variables

Lagani V, Athineou G, Farcomeni A, Tsagris M, Tsamardinos I (2017). "Feature Selection with the R Package MXM: Discovering Statistically Equivalent Feature Subsets." *Journal of Statistical Software*, 80(7). doi:10.18637/jss.v080.i07

CRAN: Check latest archived version: https://cran.r-project.org/src/contrib/Archive/MXM/

GitHub: https://github.com/mensxmachina/MXM-R-Package

FCI.Utils R Package — function mixedCITest

Handles binary, nominal, ordinal, proportions, and (zero inflated) count variables

GitHub: https://github.com/adele/FCI.Utils

Equivalence of Residual, Likelihood, and Coefficient-Based Tests

Under joint Gaussianity, partial correlation, regression-based tests (e.g., t-tests), and likelihood ratio tests all provide equivalent ways to test for conditional independence:

Zero partial correlation between X and Y given S

(zero correlation between the residuals of X and Y after regressing out S)

No improvement in model fit when adding X to a regression of Y on S (as tested by an LRT or F-test)

No statistical significance when testing whether $\beta_X=0$ (e.g., via a t-test) in the linear model $Y=\beta_X X+{\bf S}^T\beta_{\bf S}+\varepsilon$

Conditional Independence Tests in Finite Samples

Even when conditional independence tests are **correctly specified**, errors may arise due to:

- Limited sample size
- Weak effect sizes
- Multicollinearity or measurement noise

Consequences include:

- Failure to reject H_0 false independencies
- Incorrect rejection of H_0 false dependencies

Example - Fork

Fork

Z as a common cause


```
X \perp \perp Y
X \perp \perp Y \mid Z
```

```
n <- 1000
age <- rnorm(n, 30, 5)
bmi <- 15 + 0.5*age + rnorm(n, 0, 2)
gray hair <-0.02*age + rnorm(n, 0, 0.01)
library("psych")
xyS <- data.frame(age, bmi, gray hair)</pre>
cort <- cor.test(xyS)</pre>
                                            obs
                                                    0.8
                                                                  0.79
"Pearson correlation matrix via psych:"
> cort$r
                     gray_hair
              Bmi
          1.0000000 0.7928973 0.7991331
obs
gray hair 0.7928973 1.0000000 0.9949050
          0.7991331 0.9949050 1.0000000
age
                                                                  0.99
                                                          age
"p-values:"
> cort$p
                    Bmi
                            gray_hair
           0.000000e+00
                          6.363175e-217 1.691675e-222
bmi
           6.363175e-217
                           0.00000e+00
                                         0.00000e+00
gray_hair
            8.458374e-223
                           0.00000e+00
                                          0.00000e+00
age
```

Example - Fork

Fork

Z as a common cause

 $X \perp \perp Y$ $X \perp \perp Y \mid Z$

```
n <- 1000
age <- rnorm(n, 30, 5)
Bmi <-15 + 0.5*age + rnorm(n, 0, 2)
gray_hair <- 0.02*age + rnorm(n, 0, 0.01)
# Estimation via linear regression
fit_X.S <- lm(bmi ~ age)
fit_Y.S <- lm(gray_hair ~ age)</pre>
cor(residuals(fit_X.S), residuals(fit_Y.S))
> -0.03570906
# Alternative with a test
cor.test(residuals(fit_X.S), residuals(fit_Y.S))
Pearson's product-moment correlation
data: residuals(fit_X.S) and residuals(fit_Y.S)
t = -1.1288, df = 998, p-value = 0.2592
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.09748633 0.02634234
sample estimates:
        cor
-0.03570906
```

Empirical Unfaithfulness with Limited Data

N=500. Results from 1000 runs:

Fork

Z as a common cause

$X \perp \perp Y$				
X	Щ	Y	Z	

Partial Correlation Coefficients
Mean +- SD

	Gray Hair	Age
ВМІ	0 +- 0.04 min: -0.12 max: 0.14	0.13 +- 0.04 min: -0.01 max: 0.24
Gray Hair		0.99 +- 0 min: 0.98 max: 0.99

P-Va	alue	es
Mean	+-	SD

	Gray F	lair	Age
BMI	0.51 +- min: max:	0	0.05 +- 0.12 min: 0 max: 0.99
Gray Hair			0 +- 0 min: 0 max: 0

False dependencies:

 $ho_{GrayHair,BMI|Age}$ can be incorrectly estimated as non-zero!

Empirical Unfaithfulness with Limited Data

N=500. Results from 1000 runs

Fork

Z as a common cause

J		1	Y
X	Щ	Y	Z

Partial Correlation	n Coefficients
Mean +-	- SD

	Gray Hair	Age
BMI	0 +- 0.04 min: -0.12 max: 0.14	0.13 +- 0.04 min: -0.01 max: 0.24
Gray Hair		0.99 +- 0 min: 0.98 max: 0.99

Mean +- SD					
	Gray F	łair	Age		
BMI	0.51 +- min: max:	0	0.05 +- 0.12 min: 0 max: 0.99		
Gray Hair			0 +- 0 min: 0 max: 0		

P-Values

False independences:

 $ho_{Age,BMI|GrayHair}$ can be incorrectly estimated as zero!

Example - Collider

V-Structure

Z as a collider or common effect


```
n <- 1000
diet <- rnorm(n, 3, 1)
physAct <- rnorm(n, 1, 0.3)
bmi <- 25 + 1.8*diet - 2.5*physAct + rnorm(n, 0, 2)
library("psych")
xyS <- data.frame(diet, physAct, bmi)</pre>
cort <- cor.test(xyS)</pre>
                                                 0.06
                                                                -0.25
"Pearson correlation matrix via psych:"
> cort$r
                       physAct
                                       bmi
              diet
                                                                          -0.2
        1.0000000 0.05663004 0.6337937
diet
physAct 0.05663004 1.00000000 -0.2502297
                                                                0.63
                                                        diet
        0.63379369 -0.25022971 1.0000000
Bmi
"p-values:"
> cort$p
              diet
                       physAct
                                       bmi
         0.00000e+00 7.345456e-02 5.772847e-113
diet
        7.345456e-02 0.000000e+00
                                     1.931014e-15
physAct
        1.924282e-113 9.655072e-16
                                     0.00000e+00
Bmi
```

Example - Collider

V-Structure

Z as a collider or common effect

$$X \perp \perp Y \mid Z$$

```
n <- 1000
diet <- rnorm(n, 3, 1)
physAct <- rnorm(n, 1, 0.3)
Bmi < -25 + 1.8*diet -2.5*physAct + rnorm(n, 0, 2)
# Estimation via linear regression
fit X.S <- lm(diet ~ bmi)
fit Y.S <- lm(physAct ~ bmi)</pre>
cor(residuals(fit_X.S), residuals(fit_Y.S))
> 0.2873891
# Alternative with a test
cor.test(residuals(fit_X.S), residuals(fit_Y.S))
  Pearson's product-moment correlation
data: residuals(fit_X.S) and residuals(fit Y.S)
t = 9.4788, df = 998, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.2294845 0.3432665
sample estimates:
     cor
0.2873891
```

Empirical Unfaithfulness with Limited Data

N=500. Results from 1000 runs

V-Structure

Z as a collider or common effect

$$X \perp \perp Y \mid Z$$

Partial Correlation Coefficients
Mean +- SD

P-Va	alue	es
Mean	+-	SD

	Diet	ВМІ		Diet	ВМІ
Physical Activity	max. 0.30	min: 0 max: 0	Physical Activity	0 +- 0.02 min: 0 max: 0.55	0 +- 0 min: 0 max: 0
BMI		0 +- 0 min: 0 max: 0	ВМІ		0 +- 0 min: 0 max: 0

False independencies:

 $\rho_{Diet,PhysAct|Obesity}$ can be incorrectly estimated as zero!

$$Y \perp Z \qquad X \perp Y \qquad X \perp Z \qquad X \perp Y \mid Z$$

Inconsistencies ⇒ Ambiguous Triplet

Robust Causal Discovery under Empirical Unfaithfulness

These errors can ultimately lead to misleading causal or structural inferences.

We need uncertainty-aware approaches to ensure reliable causal inference!

[Submitted on 10 May 2025]

dcFCI: Robust Causal Discovery Under Latent Confounding, Unfaithfulness, and Mixed Data

Adèle H. Ribeiro, Dominik Heider

dcFCI R package:
 GitHub repository: @adele/dcFCI

Ribeiro, A. H., & Heider, D. (2025). dcFCI: Robust Causal Discovery Under Latent Confounding, Unfaithfulness, and Mixed Data. arXiv preprint arXiv:2505.06542 (under review).

Handling Missing Data in Conditional Independence Tests

Test-Wise Deletion

- Selectively removes only rows with missing values in variables involved in the current test
- Unlike list-wise deletion, it preserves more data by not discarding entire rows
- Assumes data are Missing Completely At Random (MCAR)
- More efficient in large datasets with low missingness (<5%)
- Balances simplicity and statistical power

Strobl, E. V., Visweswaran, S., & Spirtes, P. L. (2018). Fast causal inference with non-random missingness by test-wise deletion. International journal of data science and analytics, 6, 47-62.

Handling Missing Data in Conditional Independence Tests

Multiple Imputation (MI)

- Designed for data Missing At Random (MAR) where missingness depends only on observed variables
- Uses a predictive model to generate multiple plausible values for missing entries
- Produces several complete datasets, which are analyzed separately
- Final results are **pooled**, accounting for uncertainty due to imputation
- Offers greater flexibility and validity than deletion-based methods, especially in moderate
 to high missingness scenarios
- micd R package: Multiple Imputation for Causal Graph Discovery (Link)

Witte, J., Foraita, R., & Didelez, V. (2022). Multiple imputation and test-wise deletion for causal discovery with incomplete cohort data. Statistics in Medicine, 41(23), 4716-4743. https://doi.org/10.1002/sim.9535

Going Back to Our Simple Example...

True Causal Diagram (unknown)

In many real-world settings, observations are **not independent**:

- Longitudinal data: repeated measures per individual
- Genetic / family data: related individuals
- Household data: shared environment

Classical conditional independence tests assume independent observations.

How can we test $X \perp\!\!\!\perp Y \mid S$ accounting for dependencies due to household, genetic, and longitudinal factors? e.g. X (BedNet) and Y (Malaria)?

How can we handle unit-level dependencies?

- Genetic Relatedness: Restrict analyses to a subset of genetically unrelated individuals (e.g., 808 pseudo-independent individuals in the Mâncio Lima cohort $-GRM_{ij} < 0.125$).
- Temporal Autocorrelation: Transform longitudinal measures into count outcomes and model them using zero-inflated negative binomial regression to account for overdispersion and excess zeros.
- Household Clustering: Not explicitly modeled due to weak or negligible effect observed in preliminary analyses.

These are limited by reduced sample size, loss of temporal granularity, and potential residual biases from unmodeled dependencies.

Our proposal: to formulate likelihood ratio-based conditional independence tests using generalized linear mixed models (GLMMs), explicitly modeling within-group dependence through random effects.

How can we handle unit-level dependencies?

Classical conditional independence tests assume independent observations.

In many real-world settings, observations are not independent:

- Longitudinal data: repeated measures per individual
- Genetic / family data: related individuals
- Household data: shared environment

The literature remains limited when it comes to modeling complex data structures!

Modeling unit-level dependencies via GLMMs

When applied with tests that appropriately account for multiple dependence structures in the data, FCI can infer the correct:

True Causal Diagram (unknown)

Partial Ancestral Graph (learned from data)

Modeling unit-level dependencies via GLMMs

Likelihood ratio test for $X \perp \!\!\! \perp Y \mid S$ with dependent data: $D = \{x_{it}, y_{it}, s_{kit} : k = 1, ..., |S|; i = 1, ..., n\}$

Null model \mathcal{M}_0 :

$$g(E[Y_{it}|\mathbf{S}_i]) = \eta_{it}^{(0)} = \alpha + \sum_{k=1}^{|\mathbf{S}|} \beta_{S_k} s_{kit} + \beta_t \cdot t_i + \underline{u_{0_i} + Z_{h(i)} u_{0_h} + Z_{g(i)} u_{0_g}} + (u_{1_i} + Z_{h(i)} u_{1_h} + Z_{g(i)} u_{1_g}) \cdot t_i$$

Alternative model \mathcal{M}_1 :

Basal, household, and genetic random intercepts

Basal, household, and genetic random slopes for time

$$g(E[Y_{it}|X_{it},S_{it}]) = \eta_{it}^{(1)} = \alpha + \beta_X x_{it} + \sum_{k=1}^{|S|} \beta_{S_k} s_{kit} + \beta_t \cdot t + u_{0_i} + Z_{h(i)} u_{0_h} + Z_{g(i)} u_{0_g} + \underbrace{(u_{1_i} + Z_{h(i)} u_{1_h} + Z_{g(i)} u_{1_g}) \cdot t}$$

Where:

- $Z_{h(i)}$ is the i-th row of the $n \times D$ incidence matrix, with $Z_{h(i,j)} = 1$ if individual i is in household j, and 0 otherwise.
- $Z_{g(i)}$ is the i-th row of the $n \times n$ matrix Z_g , such that $Z_gZ_g^T = GRM$

$$u_{0i}, u_{1i} \sim \mathcal{N}\left(\mathbf{0}, \begin{pmatrix} \sigma_0^2 & \sigma_{0,1} \\ \sigma_{0.1} & \sigma_1^2 \end{pmatrix}\right); \qquad u_{0_h}, u_{1h} \sim \mathcal{N}_{2D}\left(\mathbf{0}, \mathbf{I_D} \otimes \begin{pmatrix} \sigma_{h_0}^2 & \sigma_{h_{0,1}} \\ \sigma_{h_{0.1}} & \sigma_{h_1}^2 \end{pmatrix}\right); \qquad u_{0_g}, u_{1g} \sim \mathcal{N}_{2n}\left(\mathbf{0}, \mathbf{I_n} \otimes \begin{pmatrix} \sigma_{g_0}^2 & \sigma_{g_{0,1}} \\ \sigma_{g_{0.1}} & \sigma_{g_1}^2 \end{pmatrix}\right)$$

LRT for Fixed Effects as Conditional Independence Test

For tests involving a fixed effects X for Y, it follows as before:

Under $H_{0_1}: P(Y|X, \mathbf{Z}) = P(Y|\mathbf{Z})$ — case in which $\beta_x = 0$ — and regularity conditions: $\Lambda = -2\left(\ell_0 - \ell_1\right) \xrightarrow{d} \chi_k^2, \quad \text{with } k = \dim(\beta_X).$

Compute p-value p_1 corresponding to H_{0_1} .

For symmetric testing, test H_{0_2} : P(X|Y,S) = P(X|S) and obtain p_2

Compute the combined p-value: $p = \min\{2 \times \min(p1,p2), \max(p1,p2)\}$

Interpretation: $p < \alpha \rightarrow \text{evidence that } X \not\perp Y \mid S$

LRT for Random Effects as Conditional Independence Test

For tests involving a latent group variable $U_g \sim \mathcal{N}(0, \sigma_g^2)$ (e.g., genetic, household) for Y:

Under
$$H_{0_1}$$
: $P(Y|U_g,\mathbf{S}) = P(Y|\mathbf{S})$ — case in which $\sigma_g^2 = 0$:
$$\Lambda = -2\left(\mathscr{E}_0 - \mathscr{E}_1\right) \xrightarrow{d} \frac{1}{2}\chi_0^2 + \frac{1}{2}\chi_1^2 \text{ when testing a single random effect (*)}.$$

Compare the likelihood ratio statistic or use *parametric bootstrap* to obtain p-value p_1 .

No additional test is required to enforce symmetry.

Interpretation: $p_1 < \alpha \Longrightarrow$ evidence that $X \not\perp \!\!\!\perp U_g \mid \mathbf{S}$

(*) The asymptotic distribution under the null is often a mixture of chi-squares (Self & Liang, 1987).

Modeling Assumptions and Interpretation

Assumptions:

- Random effects are assumed to be **exogenous**, i.e., not caused by any observed variables in the model.
- Random effects are assumed to be independent of each other if not modeled otherwise.
- Interpretation: A significant random effect for outcome variable Y implies the presence of a statistical dependency between the random effect and Y.
- **Implication**: An **edge is inferred** between the random effect and *Y* only if the random effect remains significant when including all adjacent variables (i.e., all significant fixed and random effects of *Y*).

Implementing Conditional Independence Tests with Complex Dependencies

We can use established R packages in both Bayesian and frequentist frameworks:

- Bayesian approach: brms
 - Estimation via Markov Chain Monte Carlo (MCMC)
 - Highly flexible formula syntax
 - Supports a wide range of response distributions (e.g., binomial, zero-inflated models)
 - Computationally intensive; scales less efficiently with large samples or random effects
- Frequentist approach: GMMAT
 - Estimation via maximum likelihood (with penalized quasi-likelihood for GLMMs)
 - Specifically designed for genetic studies
 - More efficient for large datasets

Causal Identification from Equivalence Classes

Can we identify causal effects from an equivalence class?

Effect Identification from PAGs:

For Covariate Adjustment, we can use the Generalized Adjustment Criterion.

Recently, we proposed complete calculus and algorithms for the identification of marginal and conditional causal effect in PAGs!

Perkovic, E., Textor, J. C., Kalisch, M., & Maathuis, M. H. (2018). Complete graphical characterization and construction of adjustment sets in Markov equivalence classes of ancestral graphs. Journal of Machine Learning Research 18 (2018) 1-62

Jaber A., **Ribeiro A. H.,** Zhang, J., Bareinboim, E. (2022) Causal Identification under Markov Equivalence - Calculus, Algorithm, and Completeness. In Proceedings of the 36th Annual Conference on Neural Information Processing Systems, NeurIPS. (<u>Link</u>)

Effect Identification in Markov Equivalence Classes

Identification via Adjustment in Markov Equivalence Classes

Perkovic, E., Textor, J. C., Kalisch, M., & Maathuis, M. H. (2018). <u>Complete graphical characterization and construction of adjustment sets in Markov equivalence classes of ancestral graphs.</u> Journal of Machine Learning Research 18 (2018) 1-62

General Identification in Markov Equivalence Classes

Jaber A., **Ribeiro A. H.,** Zhang, J., Bareinboim, E. (2022) Causal Identification under Markov Equivalence - Calculus, Algorithm, and Completeness. In Proceedings of the 36th Annual Conference on Neural Information Processing Systems (NeurIPS 2022).

Coding Exercises

Causality Tutorial:

Source Code in R and slides available on GitHub: RBras 2025

Check Part III: Causal Discovery using FCI

Check Part IV: Causal Effect Identification from the Markov Equivalence Class

- 1. Generalized Backdoor / Adjustment Criterion -- pcalg R package
- 2. CIDP Algorithm -- pagID R package

Educational Resources

- Causality Lectures on YouTube : @adelehelena
 - Complete course (13 lectures at HHU): <u>Playlist</u>
 - 3-hour tutorials at summer schools:
 - Lisbon Machine Learning School (LxMLS): Playlist (2021-2025)
 - Nordic Probabilistic Al School (ProbAl): Playlist (2023-2024)
 - European Summer School on Artificial Intelligence (ESSAI 2024): Playlist
- Tutorial on GitHub (7): @adele → Causality-Tutorial
 - Causal Discovery Google Colab Notebook: <u>Link</u>
 - Causal Effect Identification Google Colab Notebook: <u>Link</u>

Thank you!:)

Feel free to reach out to me if you have any questions:

adele.ribeiro@uni-muenster.de pavan@ime.usp.br