Operations on Regular Languages

- Key Insight: Regular languages are closed under fundamental operations
- What this means: Applying these operations to regular languages always produces regular languages
- Today's Focus: Three core operations and their constructions

The Three Core Operations

- 1. **Union** (∪)
- 2. **Concatenation** (implicit or .)
- 3. **Closure** (*)

Each operation has:

- A formal definition
- Proof of closure (constructive proof using NFAs)
- Implementation strategy for virtual NFAs

1. Union Operation

Definition

The **union** of two regular languages is a regular language of all strings that belong to at least one of the languages.

$$R_1 \cup R_2 = R_{\cup} = \{ w \mid w \in R_1 \text{ or } w \in R_2 \}$$

Example

- $R_1 = \{ab, bc\}$
- $R_2 = \{bc, ac\}$
- $R_1 \cup R_2 = \{ab, bc, ac\}$

Union: Proof by Construction

2. Concatenation Operation

Definition

The **concatenation** of two regular languages R_1 and R_2 is the regular language of all strings formed by concatenating a string from R_1 with a string from R_2 .

$$R_1R_2 = R_{ ext{concat}} = \{xy \mid x \in R_1 \text{ and } y \in R_2\}$$

Example

- $R_1 = \{ab, bc\}$
- $R_2 = \{bc, ac\}$
- $R_1R_2 = \{abbc, abac, bcbc, bcac\}$

Concatenation: Proof by Construction

3. Closure Operation

Definition

The **closure** (or Kleene star) of a regular language R is a regular language of all strings formed by concatenating zero or more strings from R.

$$R^*=\{w_1w_2\cdots w_k\mid k\geq 0, w_i\in R\}$$

Note: $\varepsilon \in R^*$ (concatenating zero strings)

Example

- $R = \{ab, bc\}$
- $R^* = \{\varepsilon, ab, bc, abab, abbc, bcab, bcbc, \ldots\}$

Closure: Proof by Construction

Active Learning: Identify the Operation

 $L_1 = \{0,1\}$ i.e. the language of 1 digit binary numbers

- 1. $L_1 \cup L_1 = ?$
- $2. L_1 L_1 = ?$
- 3. L_1 * = ?

Implementing Union in Virtual NFA

```
public static NFA union(NFA n1, NFA n2) {
NFA union = new NFA();
// Create a new start state.
. . .
// Add ε-transition from the new start state to each NFA's start state
// Add each NFA's accept states to the union accept states
. . .
return union;
```

Implementing Concatenation in Virtual NFA

```
public static NFA concatenation(NFA n1, NFA n2) {
NFA concat = new NFA();
// Start state is n1's start state
. . .
// Add ε-transitions from n1's accept states to n2's start
// Accept states are n2's accept states
. . .
return concat;
```

Implementing Closure in Virtual NFA

```
public static NFA closure(NFA n) {
NFA star = new NFA();
// Create a new start state.
// New start is an accept state (accept \epsilon)
. . .
// ε-transition to original start
. . .
// E-transitions from accept states back to original start
. . .
return star;
```

Key Takeaways

Operation	Symbol	Meaning	Property
Union	U	Strings in either language	Closed
Concatenation	. (implicit)	Prefix from R_1 , suffix from R_2	Closed
Closure	*	Zero or more repetitions	Closed

Main Point: These constructions show that regular languages form a closed system under these operations.

Application: Building Complex Languages

You can combine these operations to build sophisticated regular languages:

- $(a \cup b)^*$: Any string of a's and b's
- $ab(cd)^*$: "ab" followed by zero or more "cd"
- $(a^*ba^*)^*$: Complex patterns with a's and b's

Understanding these operations is crucial for:

- Regular expression design
- Compiler lexical analysis
- String pattern matching