Sum of Squares & R Squared

lan He

Amateur Explorer of $\mathcal{E}\mathsf{con}\phi\mathsf{metric}$ \$

September 22, 2023

Table of Contents

- Overview
- Sum of Squares
 - Total Sum of Squares
 - Explained Sum of Squares
 - Residual Sum of Squares
 - Analysis-of-Variance formula
 - Sequential Sum of Squares
- Squared & Adjusted R Squared

Overview

The **sum of squares** is a statistical measure of **variability**. We usually decompose variability into three types of sum of squares, as shown below.

Total Sum of Squares

The total sum of squares (TSS) or sum of squares total (SST or $SS_{\rm tot}$) is the sum of squared differences between the observed dependent variables and the overall mean.

$$SS_{\text{tot}} = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

This is similar (not identical) to the sample variance of dependent variable in descriptive statistics.

Explained Sum of Squares

The explained sum of squares (ESS), also called sum of squares due to regression (SSR or $SS_{\rm reg}$) or model sum of squares (MSS), is the sum of the differences between the fitted value and the mean of the dependent variable.

$$SS_{\text{reg}} = \sum_{i=1}^{n} \left(\widehat{Y}_{i} - \overline{Y} \right)^{2}$$

Residual Sum of Squares

The residual sum of squares (RSS), also called the sum of squared residuals (SSR or $SS_{\rm res}$) or the sum of squared estimate of errors (SSE), is the sum of the squares of residuals (deviations fitted from actual empirical values of data).

$$SS_{res} = \sum_{i=1}^{n} \hat{e}_{i}^{2} = \sum_{i=1}^{n} (Y_{i} - \widehat{Y}_{i})^{2}$$

Alert: Be careful when seeing the abbreviation SSR. There's no consensus on abbreviations of **sum of squares due to regression** and **sum of squared residuals**, so SSR could refer to either term in different texts.

Analysis-of-Variance formula

The following equality is generally true in the OLS regression:

$$SS_{\text{tot}} = SS_{\text{res}} + SS_{\text{reg}}$$

or equivalently,

$$\sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2 + \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2$$

This equation is sometimes called the **analysis-of-variance formula** for the OLS regression. See Wikipedia for its proof.

Sequential Sum of Squares

The **sequential sum of squares**, also called the **extra sum of squares**, can be viewed in two ways:

- It is the reduction in the residual sum of squares $(SS_{\rm res})$ when one or more explanatory variables are added to the model.
- ullet It is the increase in the explained sum of squares ($SS_{
 m reg}$) when one or more explanatory variables are added to the model.

A sequential sum of squares quantifies how much more variability we explain (i.e., the increase in $SS_{\rm reg}$) or alternatively how much error we reduce (i.e., the reduction in $SS_{\rm res}$).

Notation: $SS_{res}(X_2|X_1)$ or $SS_{reg}(X_2|X_1)$ denotes the sequential sum of squares obtained by adding X_2 to a model already including the explanatory variable X_1 and a constant term.

Ian He Econometrics September 22, 2023

R Squared I

The **coefficient of determination**, denoted R^2 and pronounced "**R squared**", provides a measure of how well observed outcomes are replicated by the model, based on the proportion of total variation of outcomes explained by the model.

Its most general definition is

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \left(Y_{i} - \widehat{Y}_{i}\right)^{2}}{\sum_{i=1}^{n} \left(Y_{i} - \overline{Y}\right)^{2}} = 1 - \frac{SS_{\text{res}}}{SS_{\text{tot}}}$$

When the relation $SS_{
m tot}=SS_{
m reg}+SS_{
m res}$ holds, the above definition is equivalent to

$$R^{2} = \frac{SS_{\text{reg}}}{SS_{\text{tot}}} = \frac{\sum_{i=1}^{n} \left(\widehat{Y}_{i} - \overline{Y}\right)^{2}}{\sum_{i=1}^{n} \left(Y_{i} - \overline{Y}\right)^{2}} = \frac{\frac{1}{n} \sum_{i=1}^{n} \left(\widehat{Y}_{i} - \overline{Y}\right)^{2}}{\frac{1}{n} \sum_{i=1}^{n} \left(Y_{i} - \overline{Y}\right)^{2}} = \frac{\text{explained variance}}{\text{total variance}}$$

Ian He Econometrics September 22, 2023

R Squared II

 R^2 is a measure of the goodness of fit of a regression model, but it does **NOT** indicate whether

- omitted-variable bias exists:
- the most appropriate set of independent variables has been chosen;
- there is collinearity present in the data on the explanatory variables;
- the correct regression was used;
- the independent variables are a cause of the changes in the dependent variable:
- there are enough data points to make a solid conclusion.

What's worse. R^2 increases as the number of variables in the model increase!

Adjusted R Squared I

Due to the phenomenon that the R^2 is at least weakly increasing when extra explanatory variables are added to the model, the **adjusted** R^2 (denoted \overline{R}^2) was invented. The explanation of \overline{R}^2 is almost the same as R^2 but it penalizes the statistic as extra variables are included in the model.

There are many different ways of adjusting. A commonly used one is the correction proposed by Ezekiel (1930):

$$\overline{R}^2 = 1 - \frac{SS_{\mathrm{res}}/df_{\mathrm{res}}}{SS_{\mathrm{tot}}/df_{\mathrm{tot}}}$$

where $df_{\rm res}$ is the degrees of freedom of the estimate of the population variance around the model, and $df_{\rm tot}$ is the degrees of freedom of the estimate of the population variance around the mean.

lan He Econometrics September 22, 2023

Adjusted R Squared II

Assume that we have n observations and that k coefficients and an intercept are estimated. Then,

$$df_{\text{res}} = n - k - 1$$
$$df_{\text{tot}} = n - 1$$

Thus, the definition of \overline{R}^2 can be rewritten as

$$\overline{R}^2 = 1 - (1 - R^2) \frac{n - 1}{n - k - 1}$$

References

Ezekiel, M. J. B. (1930).

Methods of correlation analysis.

Wiley.

Hansen, B. E. (2022).

Econometrics.

Princeton University Press.