WHAT IS CLAIMED IS:

l		1.	A method of treating a patent foramen ovale in a heart, the method
2	comprising:		
3		advano	ing a catheter device to a position in the heart for treating the patent
4	foramen ovale	;	
5		bringir	ng tissues adjacent the patent foramen ovale at least partially together
5	using the cath	eter dev	ice; and
7		applyi	ng energy to the tissues with the catheter device to substantially close
3	the patent fora	amen ov	ale acutely.
		2.	A method as in claim 1, wherein the tissues are brought together before
1			A method as in claim 1, wherein the tissues are brought together before
2	applying the e	nergy.	
l		3.	A method as in claim 2, further comprising holding the tissues together
2	while applyin	g the en	ergy.
l		4.	A method as in claim 3, further comprising holding the tissues together
2	after the energ	gy has b	een applied to allow them to cool.
1		5.	A method as in claim 4, further comprising:
2		movin	g at least part of the catheter device to a different position relative to the
3	tissues;		
4		bringir	ng the tissues at least partially together again; and
5		applyi	ng energy to the tissues again.
1		6	A method as in claim 5, further comprising repeating the moving,
1	hain ain a to ant	6.	
2		ner and	applying energy steps at multiple locations along the patent foramen
3	ovale.		
1		7.	A method as in claim 6, wherein the repeated moving, bringing
2	together and a	pplying	energy steps are started at a first side of the patent foramen ovale and
3	continued acre	oss the p	patent foramen ovale to a second side.
		0	A mode documentarios 7. Control constituis bissing a location of Cale
ı		8.	A method as in claim 7, further comprising biasing at least part of the
2			d the first side, using a biasing device on the catheter, before first
5	bringing the ti	issues to	ogetner.

- A method as in claim 7, wherein moving at least part of the catheter 9. 1 2 body comprises bringing the tissues together between two energy transmission members, wherein the tissues are brought together against a catheter body of the catheter device, and 3 4 wherein bringing the tissues together against the catheter body pushes the catheter body to the 5 different position. 10. A method as in claim 7, wherein moving at least part of the catheter 1
- device comprises moving at least one energy transmission member to the different position. 2
- 1 11. A method as in claim 10, wherein moving at least part of the catheter 2 device comprises moving two energy transmission members to the different position.
- 12. A method as in claim 11, wherein moving at least part of the catheter 1 2 device further comprises moving a catheter body to the different position.
- 13. A method as in claim 4, further comprising actively cooling the tissues 1 2 after the energy has been applied.
- 14. A method as in claim 1, wherein advancing the catheter comprises 1 2 positioning a first distal portion of the catheter in a right atrium of the heart.
- 1 15. A method as in claim 14, wherein advancing further comprises advancing a second distal portion of the catheter at least partially through the patent foramen 2 3 ovale.
- 1 16. A method as in claim 15, further comprising advancing the second 2 distal portion through the patent foramen ovale into the left ventricle.
- A method as in claim 15, further comprising retracting a catheter body 1 17. 2 or sheath to expose at least the second distal portion.
- A method as in claim 15, wherein bringing the tissues at least partially 1 18. 2 together comprises applying force to the tissues by manipulating at least one of the first and 3 second distal portions.
- 19. A method as in claim 18, wherein bringing the tissues together 1 2 comprises:

3		mani	pulating one of the first and second distal portions to apply force to the		
4	tissues; and				
5		main	maintaining the other of the first and second distal portions in a relatively		
6	stable positio	on to act as a surface against which to bring the tissues together.			
1		20.	A method as in claim 18, wherein bringing the tissues together		
2	comprises mo	oving tl	ne first and second distal portions towards one another to bring the tissue		
3	together betw	ween them.			
1		21.	A method as in claim 18, wherein bringing the tissues together		
2	comprises ex	pandin	g at least one expandable member on at least one of the first and second		
3	distal portion	ıs.			
1		22.	A method as in claim 21, wherein bringing the tissues together		
2	comprises:				
3		expai	expanding a first expandable member on the first distal portion; and		
4		expanding a second expandable member on the second distal portion.			
1		23.	A method as in claim 22, further including moving at least one of the		
2	first and seco	nd exp	andable members axially along the catheter device toward the other		
3	expandable n	nember	to bring the tissues together between them.		
1		24.	A method as in claim 18, wherein manipulating at least one of the first		
2	and second d	and second distal portions comprises advancing at least one of the portions into one of the			
3	tissues adjacent the patent foramen ovale.				
1		25.	A method as in claim 24, wherein the first distal portion is advanced		
2	into septum secundum tissue.				
1		26.	A method as in claim 25, wherein the second distal portion is advanced		
2	into septum p	ptum primum tissue, and wherein the first and second distal portions are brought			
3	together to be	ring the	e tissues together.		
1		27.	A method as in claim 16, wherein bringing the tissues together		
2	comprises on	nlyina	attractive magnetic force between the first and second distal nortions		

1	28.	A method as in claim 1, wherein advancing the catheter comprises		
2	advancing an expandable distal portion of the catheter at least partially through the patent			
3	foramen ovale, the ex	spandable distal portion disposed within a sheath.		
1	29.	A method as in claim 28, wherein bringing the tissue together		
2	comprises retracting	the sheath to expose the expandable distal portion, thus allowing it to		
3	expand to bring the t	issues together between portions of the expandable member.		
1	30.	A method as in claim 1, wherein applying energy comprises applying		
2	at least one of radiof	requency energy, cryogenic energy, resistive heat energy, ultrasound		
3	energy, microwave energy and laser energy.			
1	31.	A method as in claim 30, wherein at least one of monopolar		
2	radiofrequency energ	y and bipolar radiofrequency energy is applied.		
1	32.	A method as in claim 30, wherein applying energy comprises		
2	energizing a single co	onductive member of the catheter device.		
1	33.	A method as in claim 30, wherein applying energy comprises		
2	energizing multiple o	conductive members of the catheter device.		
1	34.	A method as in claim 30, wherein applying energy comprises:		
2	energizing at least one conductive fluid in the catheter device; and			
3	releas	ing the conductive fluid from the catheter device to contact the tissues.		
1	35.	A method as in claim 34, wherein energizing the conductive fluid		
2	comprises applying radio frequency energy to the fluid disposed within at least one			
3	expandable member	of the catheter device.		
1	36.	A method as in claim 35, wherein the fluid comprises saline solution.		
1	37.	A method as in claim 35, wherein releasing the conductive fluid		
2	comprises allowing t	he fluid to pass out of at least one aperture in the at least one expandable		
3	member.			
1	38.	A method as in claim 37, further comprising introducing fluid into the		

2

expandable member.

1	39.	A method as in claim 1, wherein applying energy comprises denaturing	
2	collagen in the tissues.		
1	40.	A method as in claim 1, further comprising monitoring an amount of	
2	energy applied to th	ne tissues.	
1	41.	A method as in claim 40, wherein monitoring the amount of energy	
2	comprises monitoring a temperature of the tissues.		
1	42.	A method as in claim 40, wherein monitoring the amount of energy	
2	comprises monitoring an impedance of the tissues.		
1	43.	A method as in claim 40, further comprising determining when a	
2		f energy has been applied to the tissues to substantially close the patent	
3	foramen ovale acut	ely.	
1	44.	A method as in claim 43, further comprising discontinuing the	
2	application of energ	gy when the sufficient amount of energy has been applied.	
1	45.	A method as in claim 1, further comprising directly visualizing the	
2	patent foramen ova	le and the tissues using at least one visualization device coupled with the	
3	catheter device.		
1	46.	A method of treating a patent foramen ovale in a heart, the method	
		A method of fleating a patent foramen ovale in a heart, the method	
2	comprising:		
3	advancing a catheter device to a position in the heart for treating the patent		
4	foramen ovale;		
5	bring	ging tissues adjacent the patent foramen ovale at least partially together	
6	using the catheter device;		
7	appl	ying energy to the tissues with the catheter device while holding the	
8	tissues at least partially together; and		
9	hold	ling the tissues at least partially together for a sufficient time after applying	
10	the energy to substa	antially close the patent foramen ovale.	
	٠,	•	

47.

catheter device comprising:

1 2 A catheter device for treating a patent foramen ovale in a heart, the

3	an elongate catheter body having a proximal end and a distal end;		
4	at least one tissue apposition member at or near the catheter body distal end		
5	for bringing tissues adjacent the patent foramen ovale at least partially together; and		
6	at least one energy transmission member at or near the distal end for applying		
7	energy to the tissues to substantially close the patent foramen ovale acutely.		
1	48. A catheter device as in claim 47, wherein the at least one tissue		
2	apposition member comprises at least a first tissue apposition member for contacting tissue		
3	adjacent the patent foramen ovale from a right atrium of the heart.		
1	49. A catheter device as in claim 48, wherein the at least one tissue		
2	apposition member further comprises at least a second tissue apposition member for		
3	contacting tissue adjacent the patent foramen ovale from the right atrium.		
1	50. A catheter device as in claim 49, wherein the first and second tissue		
2	apposition members comprise opposable jaws, and wherein at least one of the first and		
3	second members is advancable through tissue adjacent the patent foramen ovale.		
1	51. A catheter device as in claim 50, wherein the first apposition member		
2	advances through septum secundum tissue and the second apposition member advances		
3	through septum primum tissue.		
1	52. A catheter device as in claim 48, wherein the at least one tissue		
2	apposition member further comprises at least a second tissue apposition member for		
3	advancing through the patent foramen ovale to contact the tissues from a left atrium of the		
4	heart.		
1	53. A catheter device as in claim 52, wherein at least one of the first and		
2	second tissue apposition members comprises an expandable member.		
1	54. A catheter device as in claim 53, wherein both the first and second		
2	tissue apposition members comprise expandable members, and wherein at least one of the		
3	expandable members is slidably disposed along the catheter body so as to be axially movable		
4	toward the other expandable member.		
1	55. A catheter device as in claim 53, wherein at least one expandable		

member includes at least one aperture for releasing conductive fluid to contact the tissues.

A catheter device as in claim 55, wherein at least one expandable 1 56. 2 member includes a plurality of small apertures for releasing the conductive fluid.

1

2

3

4

- 57. A catheter device as in claim 55, wherein one of the first and second members comprises an expandable member and the other of the first and second members comprises a deployable shaped portion, wherein the expandable member and the shaped portion are brought together to bring the tissues together.
- 58. A catheter device as in claim 57, wherein the deployable shaped portion comprises a shape memory material that changes from an undeployed to a deployed 2 3 shape when released from the catheter body.
- 59. A catheter device as in claim 52, wherein the first and second tissue 1 2 apposition members comprise a clamp for clamping the tissues together.
- 60. A catheter device as in claim 52, wherein the first tissue apposition 1 2 member has a first deployed shape and the second tissue apposition member has a second deployed shape, and wherein the first and second members, when deployed to contact the 3 4 tissues, caused the tissues to be brought together.
- 61. A catheter device as in claim 60, wherein the first shape comprises 1 approximately a curved hook for curving over an edge of the patent foramen ovale to apply 2 3 force to the tissues from the left atrium, and wherein the second shape comprises approximately a straight, linear shape for applying pressure to the tissues from the right 4 5 atrium.
- A catheter device as in claim 52, wherein the first and second tissue 62. 1 apposition members comprise magnets having opposite polarity. 2
- 63. A catheter device as in claim 52, wherein the first tissue apposition 1 member comprises a pair of opposable jaws for contacting the septum secundum from the 2 right atrium, and the second tissue apposition member comprises a curved member for 3 advancing through the patent foramen ovale to contact the septum primum from the left 4 5 atrium.

1	6	4.	A catheter device as in claim 47, wherein the at least one tissue	
2	apposition member comprises:			
3	at	at least two tissue apposition members for moving relative to one another to		
4	bring the tissues	togetl	her between them; and	
5	a	t least	one biasing member for biasing the tissue apposition members toward	
6	a first side of the	e pater	nt foramen ovale.	
1	6	5.	A catheter device as in claim 64, wherein the tissue apposition	
2	members are mo	vable	along the patent foramen ovale from the first side to a second opposite	
3	side of the paten	t forai	men ovale.	
1	6	6.	A catheter device as in claim 65, wherein the catheter body has a cross-	
2	sectional shape s	such th	nat when the tissues are brought together between the two tissue	
3	apposition mem	bers, t	he tissues urge the catheter body to a different position relative to the	
4	patent foramen ovale.			
1	6	7.	A catheter device as in claim 66, wherein the shape is selected from the	
2	group consisting	g of tri	angular, oval, elliptical and diamond shaped.	
1	6	8.	A catheter device as in claim 66, wherein the two tissue apposition	
2	members compr	ise:		
3	o	ne sha	pe-memory tissue apposition member; and	
4	0	ne jav	v member.	
1	6	9.	A catheter device as in claim 66, further comprising at least one	
2	aperture on the catheter body for releasing one or more fluids to enhance the application of			
3	energy to the tissues to close the patent foramen ovale.			
1	7	0.	A catheter device as in claim 66, further comprising a coating over the	
2	catheter body, th	ne coa	ting enhancing application of energy to the tissues when the tissues	
3	contact the catheter body.			
1	7	1.	A catheter device as in claim 47, wherein the at least one tissue	
2	apposition mem	ber co	mprises an expandable member releasably disposed within the catheter	
3	body, wherein advancing the expandable member out the distal end of the catheter body or			

- 4 retracting the catheter body relative to the expandable member allows the expandable
- 5 member to expand within the patent foramen ovale.
- 1 72. A catheter device as in claim 71, wherein the expandable member
- 2 comprises two prongs that expand apart to provide lateral force to the tissues adjacent the
- 3 patent foramen ovale.
- 1 73. A catheter device as in claim 72, wherein the prongs do not extend into
- 2 the left atrium of the heart.
- 1 74. A catheter device as in claim 72, wherein the prongs are spring loaded.
- 1 75. A catheter device as in claim 72, wherein the prongs comprise a shape
- 2 memory material.
- 1 76. A catheter device as in claim 72, wherein the prongs include at least
- 2 one vacuum aperture for applying vacuum force to further bring the tissues together.
- 1 77. A catheter device as in claim 47, further comprising a guide member
- 2 for advancing through the patent foramen ovale, wherein the catheter device is slidably
- 3 disposed over the guide member.
- 1 78. A catheter device as in claim 77, wherein the guide member comprises
- 2 a guidewire divided along a portion of its length, the divided portion comprising expandable
- 3 shape memory material.
- 1 79. A catheter device as in claim 77, wherein the guide member comprises
- 2 at least one tip for contacting a left atrial surface of the tissues adjacent the patent foramen
- 3 ovale.
- 1 80. A catheter device as in claim 79, wherein the at least one tip is
- 2 conformable to the left atrial surface.
- 1 81. A catheter device as in claim 79, wherein the guide member is
- 2 retractable to engage the at least one tip with the left atrial surface.
- 1 82. A catheter device as in claim 77, wherein the guide member comprises
- 2 at least one of the energy transmission member(s).

1	83. A catheter device as in claim 82, wherein the guide member comprises		
2	an expandable member for expanding within the patent foramen ovale, and wherein the		
3	expandable member comprises at least one radiofrequency energy transmission member.		
4	84. A catheter device as in claim 47, wherein the at least one energy		
5	transmission member transmits at least one of radiofrequency energy, cryogenic energy,		
6	resistive heat energy, ultrasound energy, microwave energy and laser energy.		
1	85. A catheter device as in claim 84, wherein the at least one energy		
2	transmission member is movable relative to the at least one tissue apposition member.		
1	86. A catheter device as in claim 84, wherein the at least one energy		
2	transmission member is coupled with the at least one tissue apposition member.		
1	87. A catheter device as in claim 84, wherein the at least one energy		
2	transmission member comprises the at least one tissue apposition member.		
1	88. A catheter device as in claim 84, wherein the at least one energy		
2	transmission member comprises at least one monopolar radiofrequency transmission member.		
1	89. A catheter device as in claim 84, wherein the at least one energy		
2	transmission member comprises at least two bipolar radiofrequency transmission members.		
1	90. A catheter device as in claim 84, wherein the at least one energy		
2	transmission member comprises:		
3	at least one radiofrequency transmission member disposed within an		
4	expandable member, the expandable member including at least one aperture for releasing		
5	fluid to contact the tissues; and		
6	at least one conductive fluid disposed within the expandable member and		
7	exposed to the radiofrequency transmission member.		
1	91. A catheter device as in claim 84, wherein the at least one energy		
2	transmission member comprises at least one curved radiofrequency transmission member.		
1	92 A catheter device as in claim 84 wherein the at least one energy		

transmission member comprises at least one of a mesh material and a braid material.

1	93.	A catheter device as in claim 47, wherein the at least one energy	
2	transmission memb	er comprises a guide member for advancing through the patent foramen	
3	ovale.		
1	94.	A catheter device as in claim 93, wherein the guide member includes at	
2	least one expandabl	e portion for expanding within the patent foramen ovale to at least	
3	•	ther the tissues adjacent the patent foramen ovale.	
1	95.	A catheter device as in claim 47, further comprising at least one sensor	
2	coupled with the ca	theter device for sensing an amount of energy delivered to the tissues by	
3	the at least one energy transmission member.		
1	96.	A catheter device as in claim 95, wherein the at least one sensor is	
2	selected from the gr	oup consisting of an infrared sensing device, thermistors and	
3	thermocouples.		
1	97.	A catheter device as in claim 95, further comprising a microprocessor	
2	coupled with the at	least one sensor for processing sensed data to determine when the amount	
3	of delivered energy	has reached a desired amount of energy.	
1	98.	A catheter device as in claim 47, further comprising a microprocessor	
2	coupled with the ca	theter device for sensing and controlling energy transmission by the	
3	energy transmission	n member.	
1	99.	A system for treating a patent foramen ovale in a heart, the system	
2	comprising:		
3	a cat	heter device comprising:	
4		an elongate catheter body having a proximal end and a distal end;	
5		at least one tissue apposition member at or near the catheter body distal	
6	end for bringing tiss	sues adjacent the patent foramen ovale at least partially together; and	
7		at least one energy transmission member at or near the distal end for	
8	applying energy to	the tissues to substantially close the patent foramen ovale; and	
9	at lea	ast one guide member for guiding the catheter device to a position for	
Λ	treating the natent f	oramen ovale	

A system as in claim 99, wherein the at least one tissue apposition 11 100. 12 member comprises at least a first tissue apposition member for contacting tissue adjacent the 13 patent foramen ovale from a right atrium of the heart. A system as in claim 100, wherein the at least one tissue apposition 1 101. 2 member further comprises at least a second tissue apposition member for contacting tissue 3 adjacent the patent foramen ovale from the right atrium. 1 102. A system as in claim 101, wherein the first and second tissue 2 apposition members comprise opposable jaws, and wherein at least one of the first and 3 second members is advancable through tissue adjacent the patent foramen ovale. A system as in claim 102, wherein the first apposition member 1 103. advances through septum secundum tissue and the second apposition member advances 2 3 through septum primum tissue. 1 104. A system as in claim 100, wherein the at least one tissue apposition 2 member further comprises at least a second tissue apposition member for contacting tissue 3 adjacent the patent foramen ovale from a left atrium of the heart. 1 105. A system as in claim 104, wherein the second tissue apposition 2 member is advancable through the patent foramen ovale into the left atrium to contact the 3 tissue. 1 106. A system as in claim 105, wherein at least one of the first and second 2 tissue apposition members comprises an expandable member. A system as in claim 106, wherein both the first and second tissue 1 107. apposition members comprise expandable members, and wherein at least one of the 2 3 expandable members is slidably disposed along the catheter body so as to be axially movable 4 toward the other expandable member. A system as in claim 106, wherein at least one expandable member 1 108. 2 includes at least one aperture for releasing conductive fluid to contact the tissues. 1 109. A system as in claim 108, wherein at least one expandable member

includes a plurality of small apertures for releasing the conductive fluid.

1	110. A system as in claim 108, wherein one of the first and second members		
2	comprises an expandable member and the other of the first and second members comprises a		
3	deployable shaped portion, wherein the expandable member and the shaped portion are		
4	brought together to bring the tissues together.		
1	111. A system as in claim 110, wherein the deployable shaped portion		
2	comprises a shape memory material that changes from an undeployed to a deployed shape		
3	when released from the catheter body.		
1	112. A system as in claim104, wherein the first and second tissue apposition		
2	members comprise a clamp for clamping the tissues together.		
_	momoord comprise a claimp for claimping the tissues together.		
1	113. A system as in claim 99, wherein the at least one tissue apposition		
2	member comprises:		
3	at least two tissue apposition members for moving relative to one another to		
4	bring the tissues together between them; and		
5	at least one biasing member for biasing the tissue apposition members toward		
6	a first side of the patent foramen ovale.		
1	114. A system as in claim 113, wherein the tissue apposition members are		
2	movable along the patent foramen ovale from the first side to an opposite side of the patent		
3	foramen ovale.		
1	115. A system as in claim 99, wherein the at least one tissue apposition		
2	member comprises an expandable member releasably disposed within the catheter body,		
3	wherein advancing the expandable member out the distal end of the catheter body allows the		
4	expandable member to expand within the patent foramen ovale.		
1	116. A system as in claim 115, wherein the expandable member comprises		
2	at least two members that expand apart to provide lateral force to the tissues adjacent the		
3	patent foramen ovale.		
1	117. A system as in claim 116, wherein the exposed expanding member		
	117. 21 3 3 5 com as in claim 110, wherein the exposed expanding member		

provides the lateral force without extending into the left atrium of the heart.

- 1 118. A system as in claim 116, wherein the expandable member comprises a spring loaded member.
- 1 119. A system as in claim 116, wherein the expandable member comprises a shape memory material.
- 1 120. A system as in claim 99, wherein the guide member is advancable 2 through the patent foramen ovale, wherein the catheter device is slidably disposed over the 3 guide member.
- 1 121. A system as in claim 120, wherein the guide member comprises a 2 guidewire divided along a portion of its length, the divided portion comprising expandable 3 shape memory material.
- 1 122. A system as in claim 121, wherein the guide member comprises at 2 least one tip for contacting a left atrial surface of the tissues adjacent the patent foramen 3 ovale.
- 1 123. A system as in claim 122, wherein the at least one tip is conformable to 2 the left atrial surface.
- 1 124. A system as in claim 122, wherein the guide member is retractable to 2 engage the at least one tip with the left atrial surface.
- 1 125. A system as in claim 99, wherein the at least one energy transmission 2 member transmits at least one of radiofrequency energy, cryogenic energy, resistive heat 3 energy, ultrasound energy, microwave energy and laser energy.
- 1 126. A system as in claim 125, wherein the at least one energy transmission 2 member is movable relative to the at least one tissue apposition member.
- 1 127. A system as in claim 125, wherein the at least one energy transmission 2 member is coupled with the at least one tissue apposition member.
- 1 128. A system as in claim 127, wherein the at least one energy transmission 2 member comprises at least one monopolar radiofrequency transmission member.

1	129. A system as in claim 127, wherein the at least one energy transmission		
2	member comprises at least two bipolar radiofrequency transmission members.		
1	130. A system as in claim 127, wherein the at least one energy transmission		
2	member comprises:		
3	at least one radiofrequency transmission member disposed within an		
4	expandable member, the expandable member including at least one aperture for releasing		
5	fluid to contact the tissues; and		
6	at least one conductive fluid disposed within the expandable member and		
7	exposed to the radiofrequency transmission member.		
1	131. A system as in claim 127, wherein the at least one energy transmission		
2	member comprises at least one curved radiofrequency transmission member.		
1	122 A sentence of in alaim 127 whence the of least one anomal transmission		
1	132. A system as in claim 127, wherein the at least one energy transmission		
2	member comprises at least one of a mesh material and a braid material.		
1	133. A system as in claim 99, further comprising at least one sensor coupled		
2	with the catheter device for sensing an amount of energy delivered to the tissues by the at		
3	least one energy transmission member.		
1	134. A system as in claim 133, wherein the at least one sensor is selected		
2	from the group consisting of an infrared sensing device, thermistors and thermocouples.		
1	135. A system as in claim 133, further comprising a microprocessor coupled		
2	with the at least one sensor for processing sensed data to determine when the amount of		
3	delivered energy has reached a desired amount of energy.		
1	136. A system as in claim 99, further comprising a microprocessor coupled		
2	with the catheter device for sensing and controlling energy transmission by the energy		
3	transmission member.		