2A: TUTORIAL 6

School of Mathematics and Statistics

Dr. Ana Lecuona and Dr. Daniele Valeri

Semester 1 2019-20

Instructions

Access your tutorial lecture

TU11,TU12,TU13,TU14,TU15: November 2nd, 09:00-10:00

TU16,TU17,TU18,TU19,TU20: November 2nd, 15:00-16:00

using the Zoom plug-in in the Moodle page of the course.

Please mute yourself when you are in the main room of the meeting.

Be ready to work in groups. Having a method of writing on screen, as mouse, tablet or similar is useful. Screen sharing is allowed!

EX SHEET 6, T1 (RELATED)

The region W is bounded by the planes x = 0, y = 0, z = 0, x = 1 and y + z = 1. Which one of the following integrals represents the volume of W?

(A)
$$\int_0^{1-y} \left(\int_0^1 \left(\int_0^1 dz \right) dy \right) dx$$
 (B) $\int_0^1 \left(\int_0^1 \left(\int_0^1 y dz \right) dx \right) dy$ (C) $\int_0^1 \left(\int_0^{1-y} \left(\int_0^1 dx \right) dz \right) dy$ (D) $\int_0^1 \left(\int_0^{1-z} \left(\int_0^{1-y} dx \right) dy \right) dz$

EX SHEET 6, T1 (RELATED)

The region W is bounded by the planes x = 0, y = 0, z = 0, x = 1 and y + z = 1. Which one of the following integrals represents the volume of W?

(A)
$$\int_0^{1-y} \left(\int_0^1 \left(\int_0^1 dz \right) dy \right) dx$$
 (B) $\int_0^1 \left(\int_0^1 \left(\int_0^1 y dz \right) dx \right) dy$ (C) $\int_0^1 \left(\int_0^{1-y} \left(\int_0^1 dx \right) dz \right) dy$ (D) $\int_0^1 \left(\int_0^{1-z} \left(\int_0^{1-y} dx \right) dy \right) dz$

ANSWER: (C) The volume of W is $\iiint_W 1 \, dx dy dz$. The region W can be described as points (x, y, z) with

$$(x,y) \in D_1, \quad 0 \le z \le 1-y,$$

where D_1 is the square region $[0,1] \times [0,1]$; alternatively by

$$(x,z) \in D_3, \quad 0 \le y \le 1-z,$$

where D_3 is the square region $[0, 1] \times [0, 1]$;

EX SHEET 6, T1 (RELATED)

The region W is bounded by the planes x = 0, y = 0, z = 0, x = 1 and y + z = 1. Which one of the following integrals represents the volume of W?

(A)
$$\int_0^{1-y} \left(\int_0^1 \left(\int_0^1 dz \right) dy \right) dx$$
 (B) $\int_0^1 \left(\int_0^1 \left(\int_0^1 y dz \right) dx \right) dy$ (C) $\int_0^1 \left(\int_0^{1-y} \left(\int_0^1 dx \right) dz \right) dy$ (D) $\int_0^1 \left(\int_0^{1-z} \left(\int_0^{1-y} dx \right) dy \right) dz$

or by

$$(y,z)\in D_2, \quad 0\leq x\leq 1,$$

where D_2 is the triangular region $0 \le y \le 1$ and $0 \le z \le 1 - y$.

The order of integration is different with each description and choice (C) matches the last description above.

EX SHEET 5, T18

For the region in the first quadrant enclosed by the parabolas $y^2 = x$, $y = x^2$ and $y^2 = 2x$, $y = 4x^2$; identify an appropriate change of variable for performing double integration.

(A)
$$u = xy, v = x/y$$
 (B) $u = y^2x, v = x^2y$

(C)
$$u = y^2/x$$
, $v = x^2/y$ (D) $u = y^2 - x$, $v = x^2 - y$

EX SHEET 5, T18

For the region in the first quadrant enclosed by the parabolas $v^2 = x$, $v = x^2$ and $v^2 = 2x$, $v = 4x^2$; identify an appropriate change of variable for performing double integration.

(A)
$$u = xy, v = x/y$$
 (B) $u = y^2x, v = x^2y$ (C) $u = y^2/x, v = x^2/y$ (D) $u = y^2 - x, v = x^2 - y$

(C)
$$u = y^2/x, v = x^2/y$$
 (D) $u = y^2 - x, v = x^2 - y$

ANSWER: (C) We see that the four boundaries of the region can be written as

$$\frac{y^2}{x} = 1$$
, $\frac{y^2}{x} = 2$, $\frac{x^2}{y} = 1$, $\frac{x^2}{y} = \frac{1}{4}$

so that the change of variable $u = y^2/x$ and $v = x^2/y$ would transform the region of integration into a rectangle in the uv plane.

EX SHEET 5, T6

Evaluate

$$\iint_D \sqrt{x^2 + y^2} \, dA$$

where D is the disk with centre (0,1) and radius 1.

EX SHEET 6, T6(B)

Use triple integration to express the volume of the region bounded by surfaces

$$y = x^2$$
, $z = -y + 4$, $z = 0$.

EX SHEET 6, T3

A solid shell of variable density is in the form of a region between the spheres $x^2+y^2+z^2=1$ and $x^2+y^2+z^2=9$. The density at (x,y,z) is $\rho(x,y,z)=\sqrt{x^2+y^2+z^2}$. Calculate the mass of the shell.

EX SHEET 5, T6

Evaluate

$$\iint_D \sqrt{x^2 + y^2} \, dA$$

where D is the disk with centre (0, 1) and radius 1.

The equation of the circle is $x^2 + (y-1)^2 = 1$, namely $x^2 + y^2 = 2y$. In polar coordinates it becomes $r = 2\sin\theta$. Since $r \ge 0$ this also forces $0 \le \theta \le \pi$ (or you can sketch a picture to see this directly).

Hence the integral is

$$\begin{split} & \int_0^\pi \left(\int_0^{2\sin\theta} r^2 \, dr \right) \, d\theta = \frac{8}{3} \int_0^\pi \sin^3\theta \, d\theta = \frac{8}{3} \int_0^\pi (1 - \cos^2\theta) \sin\theta \, d\theta \\ & = -\frac{8}{3} \int_1^{-1} (1 - u^2) \, du = \frac{32}{9}. \quad \text{(We used the substitution } u = \cos\theta.\text{)} \end{split}$$

EX SHEET 6, T6(B)

Use triple integration to express the volume of the region bounded by surfaces

$$y = x^2$$
, $z = -y + 4$, $z = 0$.

The region of integration can be described as $0 \le z \le 4 - y$ and $(x, y) \in D$ where D is the region that lies above the parabola $y = x^2$ and below y = 4 (this is where the plane z = 4 - y intersects z = 0). The curves y = 4 and $y = x^2$ intersect at $x^2 = 4$ so $x = \pm 2$.

Therefore the triple integral that represents the volume is

$$\int_{-2}^{2} \left(\int_{x^2}^{4} \left(\int_{0}^{4-y} dz \right) dy \right) dx.$$

A patient computation gives

$$\int_{-2}^{2} \left(\int_{x^{2}}^{4} [z]_{0}^{4-y} dy \right) dx = \int_{-2}^{2} \left(\int_{x^{2}}^{4} 4 - y dy \right) dx$$

$$= \int_{-2}^{2} \left[-\frac{1}{2} (4 - y)^{2} \right]_{x^{2}}^{4} dx = \int_{-2}^{2} \frac{1}{2} (4 - x^{2})^{2} dx$$

$$= \int_{0}^{2} (4 - x^{2})^{2} dx \quad \text{(even integrand)}$$

$$= \left[16x - \frac{8}{3}x^{3} + \frac{1}{5}x^{5} \right]_{0}^{2} = \frac{256}{15} .$$

EX SHEET 6, T3

A solid shell of variable density is in the form of a region between the spheres $x^2+y^2+z^2=1$ and $x^2+y^2+z^2=9$. The density at (x,y,z) is $\rho(x,y,z)=\sqrt{x^2+y^2+z^2}$. Calculate the mass of the shell.

The triple integral representing the mass is

$$\iiint_V \sqrt{x^2 + y^2 + z^2} \, dx dy dz \,.$$

In spherical polars the region V is described as $1 \le r \le 3$, $0 \le \phi \le \pi$ and $0 \le \theta \le 2\pi$ (a cuboid in spherical polar coordinates). Hence,

$$\iiint_V \sqrt{x^2 + y^2 + z^2} \, dxdydz = \iiint_{\tilde{V}} rr^2 \sin \phi \, drd\phi d\theta$$

and as the integrand is separable and the region \tilde{V} is a cuboid we have that the mass is

$$\left(\int_{1}^{3} r^{3} dr\right) \left(\int_{0}^{\pi} \sin \phi \, d\phi\right) \left(\int_{0}^{2\pi} 1 \, d\theta\right) = \left[\frac{1}{4} r^{4}\right]_{1}^{3} \left[-\cos \phi\right]_{0}^{\pi} \left[\theta\right]_{0}^{2\pi} = 80\pi.$$