

Дедуктивни системи (формалне теорије)

▶ Однос $\mathcal{F} \models A$ између хипотеза \mathcal{F} и последице A је дефинисан значењем ових формула у исказној алгебри.

- Дакле, ради се о семантичком приступу.
- Постоји и потпуно другачији приступ, синтаксно-дедуктивни, где се формуле посматрају искључиво као низови симбола, не улазећи у њихово значење.
- Поступци доказивања се изводе по строго дефинисаним правилима, независно од валуација и тачности формула.
- На тај начин се избегава неодређеност и непрецизност (која проистиче из употребе природног језика), а употреба интуиције своди на минимум.

Пре него што изложимо исказну рачун као формалну теорију, одговарајуће појмове ћемо дефинисати у општем случају.

Дефиниција. Формална теорија (дедуктивни систем) ${\mathcal T}$ је уређена четворка (S, For, Ax, R) где је:

- S највише пребројив скуп полазних симбола (азбука, алфабет). Коначни низови симбола из S су речи. Скуп свих речи означимо са S^* .
- $For \subseteq S^*$ скуп формула. Постоји ефективан поступак којим се утврђује да ли је дата реч формула или не.
- ► Ax ⊆ For скуп аксиома. Ако је дат ефективан поступак за одлучивање да ли је формула аксиома или не, кажемо да је теорија аксиоматска.
- R коначан скуп правила извођења. Свако правило извођења је облика

$$r: \frac{A_1, \ldots, A_n}{A}$$

где су A_1,\ldots,A_n,A формуле из скупа F ог.

Доказ, теорема

Дефиниција.

- 1. Коначан низ формула $B_1, B_2 \dots, B_n$ је доказ (извођење, дедукција) у формалној теорији $\mathcal T$ ако за све $i=1,\dots,n$
 - $ightharpoonup B_i$ је аксиома или
 - $lacktriangledown B_i$ је добијена из претходних формула низа $B_1, B_2 \dots, B_{i-1}$ применом неког правила извођења из R.
- 2. Формула B је теорема формалне теорије \mathcal{T} , у ознаци $\vdash B$, ако је последњи члан неког доказа, тј. постоји доказ $B_1, B_2 \dots, B_{n-1}, B$ у формалној теорији \mathcal{T} .
 - Формална теорија *T* је одлучива ако постоји ефективни поступак којим се за произвољну формулу утврђује да ли је теорема или не.

Синтаксна последица

Дефиниција. Формула A је синтаксна последица (краће, последица) скупа формула \mathcal{F} , у ознаци $\mathcal{F} \vdash A$, ако постоји коначан низ B_1,\dots,B_{n-1},B_n формула из For такав да је $B_n=A$ и за свако $i=1,\dots,n$

- ▶ $B_i \in Ax$ или
- ▶ $B_i \in \mathcal{F}$ или
- $ightharpoonup B_i$ је добијена из претходних чланова низа помоћу неког од правила извођења из R.

У том случају формуле скупа ${\mathcal F}$ се зову премисе или хипотезе.

Исказни рачун као формална теорија

36

- Постоји више различитих начина да се исказни рачун изгради као формална теорија.
- Они се разликују по избору основних симбола, као и избору аксиома и правила извођења.
 - Избор аксиома и правила извођења треба да буде такав да:
 - буду доказиве све таутологије (свака таутологија је теорема)
 - не мозе се доказати ниста више, сем таутологија (свака теорема је таутологија)
 - Хилбертов систем, природна дедукција, рачун секвената...

Природна дедукција

Природна дедукција је формална теорија изграђена над алфабетом $S = \{p_1, \dots, p_n, \dots, \vee, \wedge, \Rightarrow, \neg, \bot, (,)\}.$

Скуп формула је изграђен на уобичајен начин (по дефиницији формуле исказне логике) помоћу симбола из S.

Симболи ⇔ и ⊤ се уводе дефиницијама:

 $A \Leftrightarrow B$ је замена за $(A \Rightarrow B) \land (B \Rightarrow A)$,

 \top је замена за $\neg \bot$.

Нека је ${\mathcal F}$ произвољан скуп исказних формула и A исказна формула. Запис $\mathcal{F} \vdash A$ се зове секвент.

Правила извођења

Секвент $\mathcal{F} \vdash A$ је доказив ако се може добити применом следећих правила коначан број пута:

аксиома:

$$\overline{\mathcal{F},A \vdash A}$$
 (ax)

увођење импликације:

$$\frac{\mathcal{F}, A \vdash B}{\mathcal{F} \vdash A \Rightarrow B} (\Rightarrow_U)$$

увођење конјункције:

$$\frac{\mathcal{F} \vdash A, \quad \mathcal{F} \vdash B}{\mathcal{F} \vdash A \land B} (\land_U)$$

слабљење:

$$\frac{\mathcal{F} \vdash A}{\mathcal{F}, B \vdash A} (slab)$$

елиминација импликације:

$$\frac{\mathcal{F} \vdash A \Rightarrow B, \quad \mathcal{F} \vdash A}{\mathcal{F} \vdash B} (\Rightarrow_E)$$

елиминација конјункције:

$$\frac{\mathcal{F} \vdash A, \quad \mathcal{F} \vdash B}{\mathcal{F} \vdash A \land B} \left(\land_{U} \right) \quad \frac{\mathcal{F} \vdash A \land B}{\mathcal{F} \vdash A} \left(\land_{E}^{l} \right) \quad \frac{\mathcal{F} \vdash A \land B}{\mathcal{F} \vdash A} \left(\land_{E}^{d} \right)$$

Исказни рачун као формална теорија

Правила извођења

увођење дисјункције:

$$\frac{\mathcal{F} \vdash A}{\mathcal{F} \vdash A \vee B} (\vee_U^l) \frac{\mathcal{F} \vdash B}{\mathcal{F} \vdash A \vee B} (\vee_U^d)$$

елиминација дисјункције:

$$\frac{\mathcal{F} \vdash A \lor B, \quad \mathcal{F}, A \vdash C, \quad \mathcal{F}, B \vdash C}{\mathcal{F} \vdash C} (\lor_E)$$

увођење негације:

$$\frac{\mathcal{F}, A \vdash \bot}{\mathcal{F} \vdash \neg A} (\neg_U)$$

класична противречност:

$$\frac{\mathcal{F}, \neg A \vdash \bot}{\mathcal{F} \vdash A} (\bot_C)$$

елиминација негације:

$$\frac{\mathcal{F} \vdash \neg A, \quad \mathcal{F} \vdash A}{\mathcal{F} \vdash \bot} (\neg_E)$$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

