

Desarrollo de una aplicación Práctica 3 multicapa basada en componentes Facultad de Ciencias 4º Grado en Ing. Informática

Universidad de Cantabria

Plan de pruebas de la aplicación UCPark

Los niveles de prueba que se van a aplicar son los siguientes:

- Pruebas unitarias. Se utilizará la técnica de prueba de métodos, usando técnicas de caja negra (partición equivalente y AVL) para la definición de los casos de prueba de cada método de cada clase o componente. Será necesaria la utilización de JUnit, Mockito y FEST.
- Pruebas de integración. La estrategia para la definición del orden de las pruebas de integración será jerárquica. Se probará:
 - o La integración entre la capa de negocio y la de persistencia. En este caso, para la definición de los casos de prueba se utilizarán técnica de métodos y caja negra y se utilizará JUnit.
 - o La integración entre las tres capas. En este caso, para la definición de los casos de prueba se utilizarán técnica de casos de uso y se utilizarán Junit y FEST.A continuación, se muestra una especificación detallada de los casos de prueba a aplicar en cada nivel mencionado anteriormente.
- Pruebas de aceptación. Las pruebas de aceptación se definirán siguiendo una estrategia basada en casos de uso y se ejecutarán de forma manual.

PRUEBAS DE ACEPTACIÓN

En base a los casos de uso se identifican los siguientes escenarios:

A1. CU: Registrarse

- a. Registro válido (nuevo usuario)
- b. Registro no válido (usuario ya existe)
- c. Registro no válido (usuario nulo)

A2. CU: Registrar vehículo

- a. Registro válido (vehículo no añadido aún)
- b. Registro no válido (vehículo ya existente)
- c. Registro no válido (vehículo nulo)

A3. CU: Eliminar vehículo

- a. Eliminación válida
- b. Eliminación no válida (el usuario no tiene vehículos)

A4. CU: Consultar denuncias

a. Consulta válida

A5. CU: Consultar estacionamientos en vigor

a. Consulta válida

A6. CU: Consultar histórico de estacionamientos

a. Consulta válida

Procesos de la IS Jakarta EE Facultad de Ciencias 4º Grado en Ing. Informática

Desarrollo de una aplicación Práctica 3 multicapa basada en componentes

Universidad de Cantabria

A7. CU: Nuevo estacionamiento

- a. Registro válido (el vehículo no tenía ningún estacionamiento activo)
- b. Registro no válido (el vehículo ya tiene un estacionamiento activo)
- c. Registro no válido (minutos mayores que 120)
- d. Registro no válido (minutos menores o iguales a 0)
- e. Registro no válido (error en cobro)

A8. CU: Ampliar tiempo de estacionamiento

- a. Ampliación válida
- b. Ampliación no válida (total de minutos excede el máximo global)
- c. Ampliación no válida (minutos negativos)
- d. Ampliación no válida (error en el cobro)

A9. CU: Finalizar estacionamiento

a. Finalización válida

A10. CU: Comprobar estacionamiento

- a. Comprobación válida (el vehículo tiene un estacionamiento activo)
- b. Comprobación válida (el vehículo no tiene un estacionamiento activo)
- c. Comprobación no válida (el vehículo no existe en el sistema)

A11. CU: Denunciar estacionamiento

- a. Denuncia válida (el vehículo no tiene un estacionamiento activo)
- b. Denuncia no válida (el vehículo tiene un estacionamiento activo)
- c. Denuncia no válida (el vehículo no existe en el sistema)

Los casos de prueba definidos solo en el caso del escenario Nuevo estacionamiento son los que se muestran en la Tabla 1, partiendo de una base de datos vacía.

Tabla 1. Casos de prueba de aceptación

Identificador	Entrada	Resultado
A7.a	<"1111-AAA", "Peugeot", "205">, 30	Registro válido (el vehículo
		no tenía ningún
		estacionamiento activo)
A7.b	<"1111-AAA", "Peugeot", "205">, 60	Registro no válido (el
		vehículo ya tiene un
		estacionamiento activo)
A7.c	<"2222-BBB", "Ford", "Focus">, 140	Registro no válido (minutos
		mayores que 120)
A7.d	<"3333-CCC", "Citröen", "Xsara">, -40	Registro no válido (minutos
		menores o iguales a 0)
A7.e	<"4444-DDD", "Mini", "Cooper">, 90	Registro no válido (error en
		cobro)

Desarrollo de una aplicación Práctica 3 multicapa basada en componentes Facultad de Ciencias 4º Grado en Ing. Informática Universidad de Cantabria

PRUEBAS DE INTEGRACIÓN

El orden de las pruebas y los casos de prueba a realizar serían los siguientes:

- 1. GestionUsuarios con UsuariosDAO.
- GestionEstacionamientos con EstacionamientosDAO y VehiculosDAO. Se usarían los mismos casos de prueba definidos como EGE.x en la sección de pruebas unitarias, aquí renombrados como IGE.x.
- 3. GestionVehiculos con UsuariosDAO con VehiculosDAO.
- 4. GestionDenuncias con VehiculosDAO y DenunciasDAO.
- 5. VistaUsuarioAnonimo con GestionUsuarios.
- 6. VistaUsuarioLogeado con GestionUsuarios, GestionEstacionamientos, GestionVehiculos y GestionDenuncias.
- 7. VistaAgente con GestionEstacionamientos y GestionDenuncias.

Las pruebas de estos tres últimos escenarios coincidirían con sus hipotéticas correspondientes pruebas de aceptación, aunque en este caso se automatizarían utilizando la librería FEST. Sin embargo, sólo se definirán las pruebas para el apartado 2.

PRUEBAS UNITARIAS

Pruebas unitarias de la capa de persistencia

Se aplica prueba de métodos, siendo los casos de prueba definidos para cada método los que se exponen a continuación. Los casos expuestos para cada método suponen como punto de partida una base de datos con los siguientes valores:

ID	Minutos	Fecha de inicio	Vehículo
1	60	01/04/2022, 11:58	<"1111-AAA", "Peugeot", "205">
2	85	24/04/2022, 00:49	<"1111-AAA", "Peugeot", "205">
3	90	04/07/2022, 15:51	<"1111-AAA", "Peugeot", "205">
4	20	06/07/2022, 14:03	<"2222-BBB", "Ford", "Focus">
5	120	19/07/2022, 14:10	<"2222-BBB", "Ford", "Focus">
6	10	05/09/2022, 14:24	<"3333-CCC", "Citröen", "Xsara">
7	24	03/10/2022, 08:35	<"3333-CCC", "Citröen", "Xsara">
8	5	31/10/2022, 16:37	<"3333-CCC", "Citröen", "Xsara">
9	45	24/12/2022, 19:26	<"4444-DDD", "Mini", "Cooper">
10	33	01/01/2023, 17:32	<"4444-DDD", "Mini", "Cooper">

Desarrollo de una aplicación Práctica 3 multicapa basada en componentes

Facultad de Ciencias 4º Grado en Ing. Informática Universidad de Cantabria

Método getParkingList()

Identificador	Entrada	Valor esperado
UCD.1a		Listado con diez
OCD.1a		estacionamientos
		Lista vacía (sería necesario
UCD.1b		probar con una base de datos
		vacía)

Método getParking(long)

Identificador	Entrada	Valor esperado
UCD.2a	1 (estacionamiento existe)	<1, 01/04/2022 11:58, <"1111- AAA", "Peugeot", "205">>
UCD.2b	11 (estacionamiento no existe)	null

Método addParking(Parking)

Identificador	Entrada	Valor esperado
	< id = 1, 60, 02/04/2022 11:58, <"1111-	
UCD.3a	AAA", "Peugeot", "205">>	true
	(estacionamiento no existe)	
	< id = 1, 60, 02/04/2022 11:58, <"1111-	
UCD.3b	AAA", "Peugeot", "205">>	false
	(estacionamiento ya existe)	

Método modifyParking(Parking)

Identificador	Entrada	Valor esperado
UCD.4a	<pre><id "205"="" "peugeot",="" 01="" 04="" 1,="" 11:58,="" 2022="" 85,="" <"1111-aaa",="" =="">></id></pre>	<id 02="" 04="" 1,="" 11:58,<br="" 2022="" 85,="" ==""><"1111-AAA", "Peugeot", "205">></id>
UCD.4b	<id 01="" 04="" 11,="" 11:58,<br="" 2022="" 85,="" ==""><"1111-AAA", "Peugeot", "205">> (estacionamiento no existe)</id>	null

Método deleteParking(long)

Identificador	Entrada	Valor esperado
UCD.5a	1 (estacionamiento existe)	true
UCD.5b	11 (estacionamiento no existe)	false

Pruebas unitarias de la capa de negocio

Para poder llevar a cabo estas pruebas, será necesario el uso de objetos Mock para la interfaz IUsuariosDAO. Se aplica prueba de métodos, siendo los casos de prueba definidos para cada método los siguientes:

Desarrollo de una aplicación Práctica 3 multicapa basada en componentes

Facultad de Ciencias 4º Grado en Ing. Informática Universidad de Cantabria

Método consultParking: conceptualmente se trata de los mismos casos identificados para el caso de uso 10.

Identificador	Entrada	Valor esperado
		< id = 1, 85, 02/04/2022
UGE.1a	"1111-AAA"	11:58, <"1111-AAA",
		"Peugeot", "205">>
UGE.1b	"2222-BBB"	null
UGE.1c	"5555-EEE"	OperacionNoValida

Método registerParking: conceptualmente se trata de los mismos casos identificados para el caso de uso 7.

Identificador	Entrada	Valor esperado
		El vehículo ahora tiene un
UGE.2a	<"1111-AAA", "Peugeot", "205">, 30	estacionamiento
		registrado
UGE.2b	<"1111-AAA", "Peugeot", "205">, 60	OperacionNoValida
UGE.2c	<"2222-BBB", "Ford", "Focus">, 140	OperacionNoValida
UGE.2d	<"2222-BBB", "Ford", "Focus">, -50	OperacionNoValida
UGE.2e	<"2222-BBB", "Ford", "Focus">, 90	OperacionNoValida

Método extendParkingTime: conceptualmente se trata de los mismos casos identificados para el caso de uso 8.

Identificador	Entrada	Valor esperado
		< id = 1, 60, 01/04/2022
UGE.3a	<"1111-AAA", "Peugeot", "205">, 30	11:58, <"1111-AAA",
		"Peugeot", "205">>
UGE.3b	<"1111-AAA", "Peugeot", "205">, 91	OperacionNoValida
UGE.3c	<"1111-AAA", "Peugeot", "205">, -20	OperacionNoValida
UGE.3d	<"1111-AAA", "Peugeot", "205">, 30	OperacionNoValida

A9. CU: Finalizar estacionamiento

- b. Finalización válida
- Método finishParking: conceptualmente se trata de los mismos casos identificados para el caso de uso 9.

Identificador	Entrada	Valor esperado
UGE.4a	1	El vehículo ya no tiene un
UGE.4a		estacionamiento activo

Patricia López Martínez y Héctor G. Iglesias