

Trabalho Individual I

Matemática Discreta

Descente:	Docente:
	João Venâncio Cuiana

Pergunta	1	2	3	4	5	6	7	8	9	10) 11	. 12	13	14
Pontos														
			1											
Pergunta	15	16	17	18	19	20	21	22	23	24	1 25	26	27	28
Pontos														
									'					
Pergunta	29	30	31	32	33	34	35	5	36	37	38	39	40	Soma
Pontos														

Instruções:

- O TI1 é constituido por 40 perguntas, cada uma com a cotação de 5 pontos (0,5 valores).
- Em todas as perguntas deve apresentar o raciocínio utilizado.
- O TI1 deve ser manuscrito (i.e. deve ser escrito à mão) com excepção da folha do rosto.
- O TI1 deve ser entregue às 8 horas e 30 minutos do dia 02 de abril de 2024, a cada 30 minutos de atraso, o estudante é retirado 40 pontos do total dos pontos que obter no trabalho.

Perguntas

1.	Fichas podem ser azuis, vermelhas ou amarelas; circulares, retangulares ou triangulares; finas ou grossas. Quantos tipos de fichas existem?
	Resolução:
2.	De quantos modos é possível colocar em uma prateleira 5 livros de Matemática, 3 livros de Física e 2 de Estatística, de modo que livros do mesmo assunto permaneçam juntos?
	Resolução:
9	Quantos números naturais do 7 dígitos nos quais o dígito 4 figura nola manos 2 vezos o o dígito 2 nola manos 2
ა.	Quantos números naturais de 7 dígitos nos quais o dígito 4 figura pelo menos 3 vezes e o dígito 8 pelo menos 2 vezes.
	Resolução:

4.	De quantos modos 5 mulheres e 6 homens podem formar uma roda de ciranda de modo que as mulheres permaneçam juntas?						
	Resolução:						
5.	Quantos são os inteiros, compreendidos entre 1 e 1000 inclusive que são divisíveis por exatamente dois números $2, 3, 7$ e 10 ? E por pelo menos dois?						
	Resolução:						

Resolução:						
3 -						
ara que valore	es de n o desenv	olvimento de	$\left(2x^2 - \frac{1}{x^3}\right)^n$	possui um ter	mo independe	nte de x ?
	es de n o desenv	olvimento de	$\left(2x^2 - \frac{1}{x^3}\right)^n$	possui um ter	mo independer	nte de x ?
	es de <i>n</i> o desenv	olvimento de	$\left(2x^2 - \frac{1}{x^3}\right)^n$	possui um ter	mo independer	nte de x ?
	es de n o desenv	olvimento de	$\left(2x^2 - \frac{1}{x^3}\right)^n$	possui um ter	mo independer	nte de x ?
	es de <i>n</i> o desenv	olvimento de	$\left(2x^2 - \frac{1}{x^3}\right)^n$	possui um ter	mo independer	nte de x ?
	es de <i>n</i> o desenv	rolvimento de	$\left(2x^2 - \frac{1}{x^3}\right)^n$	possui um ter	mo independer	nte de x ?
	es de n o desenv	rolvimento de	$\left(2x^2 - \frac{1}{x^3}\right)^n$	possui um ter	mo independer	nte de x?
	es de n o desenv	rolvimento de	$\left(2x^2 - \frac{1}{x^3}\right)^n$	possui um ter	mo independer	nte de x ?
	es de n o desenv	rolvimento de	$\left(2x^2 - \frac{1}{x^3}\right)^n$	possui um ter	mo independer	nte de x ?
	es de n o desenv	rolvimento de	$\left(2x^2 - \frac{1}{x^3}\right)^n$	possui um ter	mo independer	nte de x ?
	es de n o desenv	rolvimento de	$\left(2x^2 - \frac{1}{x^3}\right)^n$	possui um ter	mo independe	nte de x ?
	es de n o desenv	rolvimento de	$\left(2x^2 - \frac{1}{x^3}\right)^n$	possui um ter	mo independer	nte de x ?
	es de n o desenv	rolvimento de	$\left(2x^2 - \frac{1}{x^3}\right)^n$	possui um ter	mo independer	nte de x ?
	es de n o desenv	rolvimento de	$\left(2x^2 - \frac{1}{x^3}\right)^n$	possui um ter	mo independer	nte de x ?
	es de n o desenv	rolvimento de	$\left(2x^2 - \frac{1}{x^3}\right)^n$	possui um ter	mo independer	nte de x ?
	es de n o desenv	rolvimento de	$\left(2x^2 - \frac{1}{x^3}\right)^n$	possui um ter	mo independe	nte de x ?
Para que valore Resolução:	es de n o desenv	rolvimento de	$\left(2x^2 - \frac{1}{x^3}\right)^n$	possui um ter	mo independer	nte de x ?

	Determine o coeficiente de x^{17} no desenvolvimento de $(1-x^5+x^7)^{20}$. Resolução:
9.	Encontre um contra-exemplo para a proposição: todo número inteiro positivo pode ser escrito como a soma do quadrados de três números inteiros.
	Resolução:
0.	Demonstre ou contrarie que o produto de dois números irracionais é irracional.
0.	Demonstre ou contrarie que o produto de dois números irracionais é irracional. Resolução:
0.	
Э.	
Э.	
0.	
).	
).	

1.	Prove que a soma de um inteiro e do seu quadrado é par.
	Resolução:
2.	Demonstre que se m e n são números inteiros e mn é par, então m é par ou n é par.
	Resolução:
3.	Demonstre que se n é um número inteiro positivo, então n é ímpar se e somente se $5n+6$ for ímpar.
	Resolução:

(i) n^2 é ímpar,	(ii) $1 - n \in par$,	(iii) n^3 é ímpar,	(iv) $n^2 + 1$ é par
Resolução:			

	Nos Exercícios 15–24, use a indução matemática para demonstrar que os resultados são válidos para qualque inteiro positivo n .
15.	$2+4+6+\cdots+2n = n(n+1)$
	Resolução:
16.	$4 + 10 + 16 + \dots + (6n - 2) = n(3n + 1)$
	Resolução:

17.	$1^3 + 2^3 + 3^3 + \cdots +$	$+ n^3 =$	$\frac{n^2(n+1)^2}{4}$
			- 1

Resolução:	

12	$1^2 + 3^2 + \dots + (2n - 1)^2 =$	n(2n-1)(2n+1)
10.	$1+3+\cdots+(2n-1)=$	3

Resolução:

rtesorução.			
-			
-			
-			

-0.	$1 \cdot 1! + 2 \cdot 2! + 3 \cdot 3! + \dots + n \cdot n! = (n+1)! - 1$
	Resolução:
20.	$n^3 + 2n$ é divisível por 3
20.	$n^3 + 2n$ é divisível por 3 Resolução:
20.	
20.	
20.	
20.	
20.	
20.	
20.	
20.	
20.	
20.	
20.	
20.	
20.	
20.	
20.	

Resolução:				
	. por 5			
	por 5			
	l por 5			
	por 5			
	por 5			
	por 5			
	por 5			
	por 5			
	por 5			
	por 5			
	l por 5			
	l por 5			
	l por 5			
	l por 5			
	l por 5			
7 ⁿ – 2 ⁿ é divisíve. Resolução:	l por 5			

$3^{4n+2} + 5^{2n+1}$ é div	risível por 14			
	visível por 14			
	visível por 14			
	visível por 14			
	visível por 14			
	visível por 14			
	visível por 14			
	visível por 14			
	visível por 14			
	visível por 14			
	visível por 14			
	visível por 14			
	visível por 14			
	visível por 14			
	visível por 14			
	visível por 14			
	visível por 14			
$3^{4n+2} + 5^{2n+1}$ é div Resolução:	visível por 14			

	o que $a_1 = 1$ e $a_n = a_{n-1} + r$					
Resolu	ção:					
Osando	a mátada itarativa recolve					
	o método iterativo, resolva ç ão:	a a seguinte reco	rrencia: $a_1 = 0$	e $a_n - a_{n-1} + 2$, para //	
		a a seguinte reco	rrencia: $a_1 = 0$	$e^{-a_n-a_{n-1}+2}$		
		a a seguinte reco	rrencia: $a_1 = 0$	$e^{-a_n-a_{n-1}+2}$		
		a a seguinte reco	rrencia: $a_1 = 0$	e <i>a</i> _n - <i>a</i> _{n-1} + 2	, para 10 <u>_</u> <u>_</u> 2.	
		a a seguinte reco	rrencia: $a_1 = 0$	e <i>a</i> _n - <i>a</i> _{n-1} + 2		
		a a seguinte reco	rrencia: $a_1 = 0$	e <i>a</i> _n - <i>a</i> _{n-1} + 2	, para 10 <u>_</u> <u>_</u> <u>_</u>	
		a a seguinte reco	rrencia: $a_1 = 0$	e <i>a</i> _n - <i>a</i> _{n-1} + 2	, para 10 <u>_</u> <u>_</u> <u>_</u>	
		a a seguinte reco	rrencia: $a_1 = 0$	e <i>a</i> _n - <i>a</i> _{n-1} + 2	, para 10 <u>_</u> <u>_</u> <u>_</u>	
		a a seguinte reco	rrencia: $a_1 = 0$			
		a a seguinte reco	rrencia: $a_1 = 0$			
		a a seguinte reco	rrencia: $a_1 = 0$			
		a a seguinte reco	rrencia: $a_1 = 0$			
		a a seguinte reco	rrencia: $a_1 = 0$			
Resoluc		a a seguinte reco	rrencia: $a_1 = 0$			
		a a seguinte reco	rrencia: $a_1 = 0$			
		a a seguinte reco	rrencia: $a_1 = 0$			
		a a seguinte reco	rrencia: $a_1 = 0$			
		a a seguinte reco	Frencia: $a_1 = 0$			
		a a seguinte reco	rrencia: $a_1 = 0$			
		a a seguinte reco	Frencia: $a_1 = 0$			
		a a seguinte reco	rrencia: $a_1 = 0$			

Resolução:		
Resolução:		

$2a_n$	$a_n = 7a_{n-1} - 3a_{n-2} + 2^n$
\mathbf{Re}	esolução:
_	
_	
Re	esolução:

Resolução:			
	_		

Resolução:			

Resolução:				
	-			

	$f(x,y,z) = (\overline{x+y}) z(x+y)$
	Resolução:
-	
-	
-	
-	
_	
-	
-	
_	
-	
-	
-	
-	
	f(x,y,z) = (xy+z)(y+z)
	Resolução:
-	
-	
_	
_	
_	
-	
_	

Nos Exercícios 36 e 37, simplifique os circuitos

36.

Resolução:			

37.

Resolução:

	Nos Exercícios 38–39, simplifique as seguintes expressões booleanas
38.	$\left(\overline{xy} + y + v\right) + z\left(\overline{xyz}\right)$
	Resolução:
20	
	$\left(\overline{(x(y+z)v)}\right)(\overline{x+y})$
	Resolução:

	$a + b = \max\{a, b\}, ab = \min\{a, b\} e \bar{a} = -a.$	
	$\mathbb{Z},+,\cdot\rangle\;$ constitui ou não uma álgebra de Boole.	
Resolução:		