Théorème 4.1 - équation locale de Maxwell-Faraday

En tout point M de l'espace :

$$\overrightarrow{\operatorname{rot}}\,\overrightarrow{E} = -\frac{\partial\overrightarrow{B}}{\partial t}$$

Et dans le cas particulier du régime stationnaire : $\overrightarrow{rot} \overrightarrow{E} = \overrightarrow{0}$

Définition 4.2 - potentiel électrostatique

On appelle potentiel électrostatique le champ scalaire V tel que \overrightarrow{E} en dérive :

$$\overrightarrow{E} = -\overrightarrow{\operatorname{grad}}V$$

Soit \overrightarrow{A} une fonction vectorielle et AB un chemin de l'espace. On appelle circulation de A le long du chemin AB l'intégrale :

$$\mathcal{C} = \int_{M \in AB} \overrightarrow{A}(M) \cdot d\overrightarrow{OM}$$