First Hit

Previous Doc

Next Doc

Go to Doc#

Generate Collection

Print

L1: Entry 1 of 2

File: DWPI

Mar 10, 1994

DERWENT-ACC-NO: 1994-084199

DERWENT-WEEK: 199411

COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE: Limb function restoration using somatronic device - has microchip which responds to detected movement of sound limb to provide signals for stimulating

impaired limb

INVENTOR: SPRINGOB, L

PATENT-ASSIGNEE:

ASSIGNEE

CODE

SPRINGOB L

SPRII

PRIORITY-DATA: 1992DE-4229330 (September 2, 1992)

Search Selected

Search ALL

Clear

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

PAGES MAIN-IPC

☐ DE 4229330 A1

March 10, 1994

007

A61B005/0488

APPLICATION-DATA:

PUB-NO

APPL-DATE

APPL-NO

DESCRIPTOR

DE 4229330A1

September 2, 1992

1992DE-4229330

INT-CL (IPC): A61B 5/0488; A61N 1/36

ABSTRACTED-PUB-NO: DE 4229330A

BASIC-ABSTRACT:

The function restoration for an impaired limb, eg. a partially amputated limb uses a somatronic device which detects the <u>muscle activity</u> on the healthy side of the body, and provides electrical pulses used to activate the muscles on the impaired side.

Pref., the somatronic device uses a microchip detecting the muscle activity via sensors and providing pulses representing the muscle movement to the nerves on the opposite side, e.g. for providing movement of a prosthesis, replacing an amputated limb.

USE - Stimulation after amputation of limb to restore limb function.

CHOSEN-DRAWING: Dwg.0/3

TITLE-TERMS: LIMB FUNCTION RESTORATION DEVICE RESPOND DETECT MOVEMENT SOUND LIMB

SIGNAL STIMULATING IMPAIR LIMB

DERWENT-CLASS: P31 P34 S05

EPI-CODES: S05-A04; S05-D01C5;

SECONDARY-ACC-NO:

Non-CPI Secondary Accession Numbers: N1994-065867

Previous Doc Next Doc Go to Doc#

DEUTSCHES PATENTAMT

 ② Aktenzeichen:
 P 42 29 330.8

 ② Anmeldetag:
 2. 9.92

 ③ Offenlegungstag:
 10. 3.94

7 Anmelder:

Springob, Ludger, 4300 Essen, DE

② Erfinder: gleich Anmelder

Prüfungsantrag gem. § 44 PatG ist gestellt

- Wiederherstellung der Funktion eines gelähmten (sowie eines teilamputierten) K\u00f6rpers mit Hilfe einer Eleetronik (Mikrochip)
- Durch die heute übliche Therapie des Schleganfalls ist es nicht möglich, den ursprünglichen, gesunden Zustand wieder vollständig herzustellen. Die als "Somatronik" bezeichnete Erfindung erreicht dieses Ziel aber mit Hilfe einer Elektronik.

Ebenso kann die Erfindung bei Extremitäten-Prothesen eingesetzt werden, wodurch die Funktion der amputierten Extremität von einer elektronisch gesteuerten Prothese übernommen wird.

Die Elektronik erfaßt die Funktion der gesunden bzw. noch vorhandenen Körperselte und berechnet daraus die dementsprechenden Impulse, die sie an die gelähmte bzw. mit der Prothese versehenen Seite zu geben hat. Diese Impulse werden in Form von Stromstößen an die Nerven weitergegeben, so daß diese ganz gezielt die entsprechenden Muskeln aktivieren, bzw. an die Motoren in der Prothese weitergegeben, so daß in beiden Fällen wieder eine ganz normale Bewegung seitens des Patienten ausgeführt werden kann.

Beschreibung

Beschreibung

Die Anmeldung betrifft die Wiederherstellung der Funktion eines gelähmten Körpers mit Hilfe einer Elektronik (Mikrochip) nach dem Oberbegriff des Anspruches 1.

Physiologisches Prinzip der Signalübertragung vom Nerven auf den Muskel:

Wird eine erregbare Zelle, also eine Nerven- oder Muskelzelle, gereizt, ändern sich an ihrer Membran die 15 Ionenleitfähigkeit und das Potential. Ist der Reiz stark genug, kommt es zu einem sog. Aktionspotential (AF), das im Nerv das weitergeleitete Signal darstellt und am Muskel zur Kontraktion führt. Beim AP spielen sich folgende Vorgänge ab: Durch den Reiz wird das (negative) Ruhemembranpotential (-90 mV) in Richtung 0 mV verringert (Depolarisation), wobei bald ein kritischer Wert, das sog. Schwellerpotential, erreicht wird. Wird diese Schwelle überschritten, werden Natrium-Kanäle aktiviert, d. h. es kommt zu einem kurzzeitigen Anstieg 25 der Natrium-Leitfähigkeit. Dadurch bricht das Membranpotential sehr rasch zusammen (Depolarisationsphase des AP) und erreicht vorübergehend sogar positive Werte (engl.: Overshoot). Die Natrium-Leitfähigkeit sinkt schon vor Erreichen des Overshoots wieder (Inak- 30 tivation beginnt nach < 0,1 ms), und gleichzeitig steigt die Kalium-Leitfähigkeit relativ langsam an, was zum Wiederaufbau des Ruhemembranpotentials (Repolarisationsphase) beiträgt. Wegen der noch anhaltenden Erhöhung der Kalium-Leitfähigkeit kann es anschließend 35 zu einer Hyperpolarisation kommen.

(Silbernagl/Despopoulos, Taschenatlas der Physiologie, 3. überarbeitete und erweiterte Auflage, S.26).

Bei einem Schlaganfall (Apoplexia cerebri, apoplektischer Insult) wird die Steuerung motorischer und sensibler Funktionen beeinträchtigt, was sich in verschieden starken Symptomen äußern kann: von einer sehr geringen Symptomatik bis hin zu einem Totalausfall. Ursachen eines Schlaganfalls können erstens Hirninfarkte infolge arterieller Durchblutungsstörungen des 45 Gehirns durch Arteriosklerose, Thrombose oder Thromboembolie sein (vor allem betroffen: Arteria cerebri media). Eine zweite Ursache liegt in Massenblutungen innerhalb des Gehirns nach Riß eines Blutgefäßes im Gehirn aufgrund von Bluthochdruck oder Arteriosklerose. Der Altersgipfel des Schlaganfalls liegt im 50. bis 60. Lebensjahr, Frauen und Männer sind gleich häufig betroffen.

Die Therapie des Schlaganfalls umfaßt heute eine nur symptomatische Behandlung: vor allem Überwachung 55 von Atmung und Kreislauf, gegebenenfalls Behandlung eines Hirnödems, frühzeitig Krankengymnastik und evtl. neurochirurgische Therapie. (Pschyrembel, de Gruyter-Verlag, 256. Auflage, S.105)

Nachteile der bestehenden Therapie:

Bei leichten Schlaganfällen kann durch die o.g. Therapien der ursprüngliche, gesunde Zustand wieder hergestellt werden, in schweren Fällen ist eine 100%ige Wiederherstellung dieses Zustandes jedoch nicht möglich, so daß der Patient für den Rest seines Lebens an einen Krückstock oder sogar Rollstuhl gebunden ist.

Bekannt ist die Verwendung des sogenannten "Reizstroms", der z. B. nach Operationen eingesetzt wird, um lange nicht bewegte Muskeln wieder zu aktivieren. Solche Reizstromgeräte sind in verschiedenen Variationen beim Deutschen Patentamt angemeldet, so z. B. die folgenden:

DE 19 47 10 C3 Implantiertes Reizstromgerät für elektromedizinische Zwecke mit mindestens zwei Batterien

10 (DE) 22 36 434.7-33 Implantiertes elektromedizinisches Reizstromgerät

DT 23 46 223 Implantiertes Nervenreizgerät (Offenlegungsschrift)

DE 38 12 478 A1 Reizstromgenerator mit mehreren Reizkanälen zur Erzeugung von Reizpulsen für elektrische Stimulation der Nerven und Muskeln

DE 40 00 893 A1 Mehrkanaliges Gerät zur Elektrostimulation

AZ 29 03 392.9-33 Reizstromgerät (Offenlegungsschrift) AZ 29 14 546.8 Verfahren und Gerät zum Stimulieren von Nervenbahnen im menschlichen Körper DE 36 37 800 A1 Reizstromgerät

DE 33 44 831 C2 Mehrkanaliges Reizstromgerät DE 27 03 628 C2 Wiederaufladbares, implantiertes Reizimpulsgerät.

Desweiteren sind auch schon Mikrochip-gesteuerte Geräte bekannt, die am Körper des Patienten verschiedene Aufgaben mit verschiedenen Zielsetzungen wahrnehmen: EPA 0 001 156 A1 Programmable, implantable body function controller and method for reprogramming said apparatus

DE 28 03 366 C2 Programmierbarer elektrischer Stimulator für menschliches Gewebe.

Das letztgenannte Gerät kommt der hier angeführten Erfindung noch am nächsten, doch liegt der entscheidende Unterschied darin, daß die Elektronik in diesen Fällen nicht dazu da ist, die Aktivität der Muskulatur der gesunden Seite des Körpers zu erfassen und dann entsprechende Impulse an die Muskulatur der gelähmten Seite abzugeben, damit diese wieder so voll funktionsfähig wird wie vor dem Schlaganfall.

Die folgenden Erfindungen sind eventuell benötigte "Zusatzgeräte":

DE 35 14 210 C1 Paßteil zur elektrischen Behandlung von Körperteilen ("Fußsack"!)

GM 77 03 530 (U1) Ummantelung für einen implantablen Impulsgenerator (Gebrauchsmuster)

GM 69 109 970.6 Tragbare Vorrichtung zu EMG-getriggerter Muskelstimulation von zentral gelähmten Muskeln:

EPA 84 901 434.5 Therapeutic method and therapeutic means using sheetlike battery (Background: The present invention relates to therapeutic methode and therapeutic means for curing an affected part by applying a voltage to the human body).

Die Erfindung bezieht sich zunächst auf den Einsatz der Somatronik beim Schlaganfall.

Der Begriff der "Somatronik" beinhaltet die Kombination von Körper (griechisch: σωμα = soma) und Elektronik. Dabei kann die Elektronik zur Unterstützung oder zur vollständigen Wiederherstellung ausgefallener körperlicher Funktionsabläufe eingesetzt werden. Einsatzmöglichkeiten der Somatronik ergeben sich vorzugsweise auf dem Gebiet des Schlaganfalls und der 65 (Arm-oder Bein-) Amputation.

Die erfindungsgemäße Lösung wird an Hand der Abbildungen A, B und C (s. Anlage) beschrieben.

35

A) Die Erfindung besteht aus dem Einsatz einer Elektronik (=Somatronik) 1, die aufgrund der Messung der Aktivität einzelner Muskelgruppen der nicht gelähmten, gesunden Seite 2 des Körpers die Muskulatur der gelähmten Seite 3 wieder aktiviert. Da beim Schlaganfall die zentrale Steuerung ausfällt, die Nerven und die Muskeln selbst aber nicht funktionsunfähig sind, kann eine "abhängige" Elektronik die Aufgabe der Steuerung übernehmen. "Abhängig", insofern, als daß Sensoren 4 auf 10 der Muskulatur der gesunden Seite 2 Impulse über eine elektrische Leitung an die Elektronik übermitteln 5, die daraufhin die Bewegung selbst (z. B. "Gehen", "Laufen", usw.) und die Intensität sowie die Geschwindigkeit dieser Bewegung erkennt und dementsprechend Impulse auf die Nerven einzelner Muskeln und deren Anteile der gelähmten Seite 3 wiederum über Leitungen weitergibt 6. Es ergibt sich daraus eine koordinierte, von der Bewegung der gesunden Seite 2 abhängige Bewegung der ge- 20 lähmten Seite 3, so daß z. B. bei elektronischer Erfassung des Befehls "Gehen" durch entsprechende Bewegung des gesunden Beins 2 die Elektronik exakt gesteuerte Impulse an die korrespondierenden Muskeln 7 des kranken Beins 3 überträgt, so daß 25 auch diese die entsprechende Bewegung "Gehen" ausführen. Ebenso wird der Befehl "Setzen" von der Elektronik erfaßt, so daß die gelähmte Seite durch die Elektronik veranlaßt wird, die Bewegung "Setzen" auszuführen. Dies sind nur zwei Beispiele, 30 doch kann aufgrund der geschickten Programmierung der Elektronik jegliche Bewegung ausgeführt werden.

Beispiel: Bein

Operativ werden dem Patienten das gelähmte sowie das gesunde Bein geöffnet, so daß die Muskelanteile gut zugänglich sind. Die Sensoren, die die Bewegungen des gesunden Beins erfassen, werden auf die einzelnen Muskeln aufgebracht. Die Leitungen, die die Informationen übermitteln, werden durch das Becken zur gelähmten Seite verlegt. Dort sitzt, wie ein Herzschrittmacher, im Unterhaufettgewebe die Somatronik, zu der die Leitungen gelangen. Von der Somatronik führen Leitungen 45 weg, die an den Nerven der einzelnen Muskelanteile enden und dort über Kontaktflächen Strom(stöße) abgeben und damit die Nerven erregen, was nach dem oben beschriebenen physiologischen Prinzip der Signalübertragung erfolgt. Entsprechend werden auch weitere 50 Körperfunktionen erfindungsgemäß ausgeführt.

B) Ein einfacherer Lösungsweg — eventuell als Entwicklungsvorstufe für den gerade beschriebenen — ist die direkte Steuerung durch den Patienten. Der Unterschied zu der o.g. Lösung besteht darin, daß die Leitimpulse nicht durch Erfassen der Bewegung durch Sensoren über der Muskulatur der gesunden Seite 1 des Körpers, sondern durch Eingabe eines direkten Befehls 2 (z. B. "Bein heben") seitens des Patienten in die Elektronik 3 durch Drücken des entsprechenden Knopfes 4 der Schaltung der Elektronik umgesetzt werden und dadurch die Handlung ("Bein heben") von dem gelähmten Bein ausgeführt wird.

C) Ein weiterer Einsatz der Somatronik ergibt sich bei dem Ersatz eines amputierten Beins durch eine mit Motoren ausgestattete Prothese. Das Prinzip entspricht genau dem der Somatronik beim Schlaganfall, wobei sowohl die Lösungsmöglichkeit nach dem Prinzip von A, als auch nach dem von B möglich ist. Der Unterschied besteht darin, daß die von der Elektronik 1 erfaßten Bewegungen des vorhandenen Beins 2 auf eine mit Motoren ausgestattete Prothese 3 übertragen werden, so daß diese die entsprechende Bewegung ausführt.

Beispiel: Bein

Operativ wird dem Patienten das gesunde Bein geöffnet, so daß die Muskelanteile gut zugänglich sind. Die Sensoren, die die Bewegungen des gesunden Beins erfassen, werden auf die einzelnen Muskeln aufgebracht. Die Leitungen, die die Informationen übermitteln, werden durch das Becken zur gelähmten Seite verlegt. Eventuell braucht man gar nicht das Bein zu öffnen, falls es möglich ist, die Aktivität der Muskeln auch über der Haut abzuleiten und dann die Leitungen-sowie den Mikrochip entsprechend auf der Haut zu verlegen. Von der Somatronik führen andere elektrische Leitungen weg, die an den Motoren der Prothese enden, die dann die entsprechende Bewegung derselben ausführen.

Durch den Einsatz der Somatronik wird es vielen Patienten ermöglicht, nach einem Schlaganfall bzw. einer Amputation mit Ersatz durch eine Prothese wieder ein weitgehend normales Leben zu führen, was sicherlich eine große Erleichterung sein wird.

Patentansprüche

1. Die Wieder-Aktivierung der Muskulatur der gelähmten Seite des menschiichen Körpers wird dadurch gekennzeichnet, daß die Somatronik die Aktivität der Muskulatur der gesunden Seite erfaßt und umsetzt in elektrische Impulse, die die Muskulatur der gelähmten Seite zu Aktivität veranlassen und so durch die Somatronik die gelähmte Seite wieder funktionsfähig und vor allem steuerbar gemacht wird.

 Die Erfindung gemäß Anspruch 1 ist dadurch gekennzeichnet, daß die Somatronik mit Hilfe des operativen Einsetzens eines Mikrochips bei einem Schlaganfall in Funktion gesetzt wird.

3. Die Erfindung gemäß Anspruch 2 ist dadurch gekennzeichnet, daß der Mikrochip die Aktivität über Sensoren direkt auf der Muskulatur der gesunden Seite des Körpers erfaßt und dieser Bewegung entsprechende Impulse auf Nerven der gelähmten Seite des Körpers, wie im Beispiel "Bein" unter A beschrieben, weitergibt.

4. Die Erfindung gemäß Anspruch 1 ist dadurch gekennzeichnet, daß die Somatronik mit Hilfe des operativen Einsetzens eines Mikrochips bei einer Extremitäten-Prothese nach einer Amputation in Funktion gesetzt wird.

5. Die Erfindung gemäß Anspruch 4 ist dadurch gekennzeichnet, daß der Mikrochip die Aktivität über Sensoren direkt auf der Muskulatur der gesunden Seite erfaßt und dieser Bewegung entsprechende Signale auf kleine Motoren in der Prothese, wie im Beispiel "Bein" unter C beschrieben, weitergibt.

6. Die Erfindung gemäß der Ansprüche 1 bis 5 ist dadurch gekennzeichnet, daß bestimmte Befehle ohne Ableitung über Sensoren auf der Muskulatur der gesunden Seite des Körpers ausgeführt wer-

DE 42 29 330 A1

den, sondern daß der Patient diese Befehle direkt durch Drücken des entsprechenden Knopfes der Schaltung der Elektronik ausführt, wie unter B im Text beschrieben.

Hierzu 3 Seite(n) Zeichnungen

Nummer:

DE 42 29 330 A1 A 61 B 5/0488 10. Mārz 1894

Int. Cl.5: Offenlegungstag:

Abbildung A nicht gelähmte Seite gelähmte Seite Seite 10

308 070/106

Nummer:

DE 42 29 330 A1 A 61 B 5/0488

Int. Cl.⁵: Offenlegungstag:

10. März 1994

Nummer: Int. Ci.5;

Offenlegungstag:

DE 42 29 330 A1 A 61 B 5/0488 10. März 1994

308 070/108