- 1. [10] Величины (X_n) независимы и равномерно распределены на отрезке [1;2].
 - а) [5] Найдите предел по вероятности

$$plim(X_1-1)(X_2-1)(X_3-1)\dots(X_n-1)/n!$$

б) [5] Найдите предел по вероятности

$$plim \frac{6n-7}{(X_1-2X_2)^2+(X_2-2X_3)^2+\cdots+(X_{n-1}-2X_n)^2}.$$

2. [10] Рассмотрим две последовательности биномиально распределённых случайных величин,

$$X_n \sim \text{Bin}(3n, 1/(n^2+5))$$
 in $Y_n \sim \text{Bin}(2025, n/(2n+30))$.

- а) [2+2+2] К чему сходятся по распределению последовательности (X_n) , (Y_n) и (X_nY_n) ?
- б) [2 + 2] Если возможно, приведите пример, когда последовательность (Y_n) сходится по вероятности и когда она не сходится по вероятности.
- 3. [10] Величины X_1, X_2, X_3 независимы и равномерно распределены на отрезке [1;2]. Найдите характеристическую функцию случайной величины Y,

$$Y = egin{cases} X_1, \ ext{ec} \ X_1 + X_2 > 3, \ 0, \ ext{uhave}. \end{cases}$$

- 4. [10] Характеристическая функция величины X равна $\phi(t) = 4/(4 + \exp(-2it) 4 \exp(-it)).$
 - а) [6] Какое распределение имеет величина X?
 - б) [4] Найдите $\mathbb{E}(X)$ и $\mathbb{V}\mathrm{ar}(X)$.
- 5. [10] Немного сигма-алгебр для настоящего самурая!
 - а) [2] Множество всех исходов равно $\Omega=\{a,b,c,d\}$. Случайная величина Y определена как $Y(a)=-1,\,Y(b)=1,\,Y(c)=0,\,Y(d)=-1.$ Найдите сигма-алгебру $\sigma(Y+Y^2)$.
 - б) [4] Верно ли, что $\sigma(X+Y,X)\subseteq\sigma(X,Y)$ для произвольных величин X и Y? Докажите или приведите контр-пример.
 - в) [4] Верно ли, что $\sigma(X,Y)\subseteq\sigma(X+Y,X)$ для произвольных величин X и Y? Докажите или приведите контр-пример.
- 6. [10] Каждый день в заезде участвую только две лошади: Юлиус и Фру-фру. Ставки на Фру-фру принимаются с коэффициентом 3, то есть при победе Фру-фру ставка будет возвращена в тройном размере. Ставки на Юлиуса принимаются с коэффициентом 3/2. Безусловная вероятность победы Фру-фру равна 1/3.

Игрок начинает со стартовой суммой $S_0=100$ и каждый день ставит все свои деньги в некоторой пропорции на Фру-фру и Юлиуса. Игрок заметил, что условная вероятность победы Фру-фру равна 0.5, если идёт дождь. Дождь идёт каждый день независимо от других с вероятностью 0.1.

Определим долгосрочную процентную ставку r условием $p\lim(S_n/S_0)^{1/n}=1+r$, где S_n — благосостояние игрока после n дней.

- а) [4] Какая стратегия максимизирует $\mathbb{E}(S_n)$?
- б) [4] Какая стратегия максимизирует долгосрочную процетную ставку?
- в) [2] Чему равна максимально достижимая долгосрочная процентная ставка?