GPU上で動くAMR流体計算コード の開発と現状について

(筑波大学)

共同研究者: 松本倫明(法政大学)

開発の動機: 星・星団形成

星団: 数~100pc

星団スケールと星へのガス降着を同時に計算したい 円盤の性質などより議論できるようになるはず

(HF+2020)

降着円盤: 10auくらい?

格子法

粒子法

Guszejnov+21

質量解像度: $10^{-3}M_{\odot}$

Chon+24

質量解像度: 数 $10^{-3}M_{\odot}$

どちらも星質量分布関数を導出

円盤は解像できている? > 大向さん, 細川さん

最近のHPC分野の動向

Top 500 (November 2024)

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory	8,699,904	1,206.00	1,714.81	22,786
	United States	GPU	搭載		
2	Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot-11, Intel DOE/SC/Argonne National Laboratory United States	9,264,128	1,012.00	1,980.01	38,698
		GPU搭載			
3	Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure Microsoft Azure United States	2,073,600	561.20	846.84	
		GPU搭載			
4	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
5	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC	2,752,704	379.70	531.51	7,107
	Finland	GPU	搭載		
6	Alps - HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, NVIDIA GH200 Superchip, Slingshot-11, HPE Swiss National Supercomputing Centre (CSCS) Switzerland	1,305,600	270.00	353.75	5,194
		GPU搭載			
7	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, EVIDEN EuroHPC/CINECA Italy	1,824,768	241.20	306.31	7,494
		GPU搭載			
8	MareNostrum 5 ACC - BullSequana XH3000, Xeon Platinum 8460Y+ 32C 2.3GHz, NVIDIA H100 64GB, Infiniband NDR, EVIDEN	663,040	175.30	249.44	4,159
	EuroHPC/BSC Spain	GPU搭載			
9	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148.60	200.79	10,096
		GPU搭載			
10	Eos NVIDIA DGX SuperPOD - NVIDIA DGX H100, Xeon Platinum 8480C 56C 3.8GHz, NVIDIA H100, Infiniband NDR400, Nvidia NVIDIA Corporation United States	485,888	121.40	188.65	
		GPU搭載			

GPU (Graphics Processing Units)搭載のものが大部分

利点: 多数のコアを搭載した並列計算機

例)NVIDIA A100: 6912 cores

NVIDIA H100(PCIe): 14592 cores (三木さんのスライドより)

演算性能: 26Tflops(H100 PCIe, FP64)

参考)HPE Cray XD2000


```
システムP
Intel Xeon Platinum 8480+
理論ピーク性能 3.6 Tflops
コア数 56
メモリバンド幅 614 GB/s
メモリ量 256 GB
2 CPU/ 1node
ノード間インターコネクト
InfiniBand NDR200
80 node
理論ピーク性能 0.57 Pflops
総コア数 8960
メモリバンド幅 98.24 TB/s
メモリ量 40.96 TB
```

(cfcaのサイトより)

(H100)

欠点: 計算コードの全体的な書き直し

自分視点

筑波大学計算科学研究センター

2025年3月運用終了

H100搭載

これらの計算資源を活用したい

Miyabi (全国共同利用, 2025年1月運用開始)

SFUMATOのGPU化

(Matsumoto 2007)

適合格子細分化法の流体コード

- + 自己重力(Multigrid 法)
- + シンク粒子
- +他

(A) パッチ型 ブロック構造格子

(C) セル分割型格子 (D) 三角形非構造格子

(松本さんのスライドより)

(GPU化に適している)

SFUMATOのGPU化

(Matsumoto 2007)

言語: Fortran90

並列化: MPI

CPUのみ

SFUMATO GPUの開発状況

AMR格子生成 <- 完了

流体計算 <- 完了

自己重力 <- 完了(?, 早くしたいが)

シンク粒子 <- 完了

非平衡化学+輻射輸送 <- 開発中

(ChatGPTで作成)

言語: CUDA (今後HIP対応も目指す)

並列化: MPI (+openmp or threads?)

CPU + GPU (現状NVIDIAのみ)

GPU化において面倒なところ(初心者的視点)

- FortranのコードをC/C++に書き換えたくなる (あまりサポートされていない気がする)
- ・CPU・GPUと2つメモリがあるので、よりコードが複雑に

Cell情報はGPU上に(Unified memoryとしてホスト上に確保することも可能)

CPUはポインターとセルのインデックスを保持し、計算を制御

MPI 通信による複数GPUの使用も行う(後述するストリームを含む管理も必要)

GPU化において面倒なところ(初心者的視点)

・Streamの管理等

・StreamとMPI通信の併用

Stream上でのタスクの終了を確認しつつ、MPI通信を行う。

・カーネル中でif文を(あまり)使えない

計算の工夫

例) 流体移流の手順

ゴーストセルの値の値を補完 (ARMレベル境界含む) 移流計算+值更新 → 次の階層へ 異なるストリームで実行 一つ上の階層の移流を更新 次の階層へ

格子構造

流束補正の様子

(Matsumoto 2007)

計算の様子

衝擊波管問題

計算スピードの比較

Shocktube 問題 セル数: 128³

Nested gridで段数を 伸ばしてみる

計算の様子 自己重力計算 0.00 2 -0.052 -0 -0.100 --0.15**-2 -**2 -ガス密度 -0.20-2 0 10⁰ 10-1 0 10⁻² -2解析解との誤差 10⁻³ -2

計算の様子: BE球 (自己重力 + 流体)

密度進化の様子

計算の様子

GMC(自己重力+流体)

まとめ

GPU上で稼働するAMR流体コードの開発を行っている

現状はテスト計算を実施しており、来年度での科学的成果の創出を目指して、コード開発を続けていきたい。

現状、SFUMATO GPUの開発チームは実質1人なので、仲間を募集中です。