- 20 зад. В разширеното евклидово пространство E_3^* , в хомогенни координати са дадени равнина γ : x + 2y z + 3t = 0 и точките A(-1, 1, 2, -1), B(4, 5, 7, 1), M(2, -1, 0, 1).
 - а) Да се намерят координатите на U_{AB} безкрайната точка на правата AB;
 - b) Да се намери уравнение на равнината $\pmb{\beta}$, която минава през т. \pmb{M} и през безкрайната права на равнината $\pmb{\gamma}$;
 - с) Да се намери аналитично представяне на централното проектиране ψ на E_3^* върху равнината $\pmb{\beta}$, с център точката $\pmb{U}_{\pmb{A}\pmb{B}}$.
- 21 зад. Спрямо ОКС К=Оху в равнината са дадени правите:

$$g_1: x - \sqrt{3}y + 2 = 0$$
 if $g_2: \sqrt{3}x - y = 0$

Да се определи вида на ортогоналната трансформация $\varphi = \sigma_{g_1}$ о σ_{g_2} .

22 зад. Спрямо ОКС K=Oxy в равнината са дадени правите:

$$g_1: \sqrt{3}x - y - 2 = 0$$
 и $g_2: x - \sqrt{3}y = 0$.

Да се определи вида на ортогоналната трансформация $\varphi = \sigma_{g_1 \circ} \sigma_{g_2}$.

- 23 зад. Спрямо ОКС K=Oxy в E_2 е дадена еднаквостта $\psi=\tau_{\vec{p}}\circ\sigma_g$. Намерете аналитично представяне на еднаквостта ψ спрямо дадената ОКС, ако g:4x-3y+1=0, $\vec{p}\left(\frac{4}{25},\frac{-3}{25}\right)$. Определете вида на еднаквостта ψ .
- 24 зад. Спрямо ОКС K=Oxy в равнината е дадена ортогоналната трансформация:

$$\varphi: \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} 7 \\ 7 \end{pmatrix}$$
. Да се определи вида на φ и да се намери образа на правата $a: x - y + 4 = 0$ под действие на φ .

25 зад. Спрямо ОКС K=Oxy в равнината е дадена ортогоналната трансформация:

$$\varphi: \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} . \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 5 \\ -5 \end{pmatrix}$$
. Да се определи вида на φ и да се намери образа на правата $a: x + y - 4 = 0$ под действие на φ .

- 26 зад. Спрямо ОКС K=Oxy в E_2 е дадена еднаквостта $\psi=\tau_{\vec{p}}\circ\sigma_g$. Намерете аналитично представяне на еднаквостта ψ спрямо дадената ОКС, ако g:3x+4y+1=0, $\vec{p}\left(\frac{3}{25},\frac{4}{25}\right)$. Определете вида на еднаквостта ψ .
- 27 зад. Спрямо ОКС K = Oxy в равнината е дадена ортогоналната трансформация:

$$\varphi$$
: $\binom{x'}{y'} = \frac{1}{5} \cdot \binom{4}{3} \cdot \binom{3}{-4} \cdot \binom{x}{y} - \frac{1}{5} \cdot \binom{2}{-6}$. Да се определи вида на φ и да се намери образа на правата a : $3x + y + 4 = 0$ под действие на φ .

28 зад. Спрямо ОКС K=Oxy в равнината е дадена ортогоналната трансформация:

$$\varphi: \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 10 \\ 6 \end{pmatrix}$$
. Да се определи вида на φ и да се намери образа на правата $a: x - y - 2 = 0$ под действие на φ .

29 зад. Спрямо ОКС K=Oxy в равнината е дадена ортогоналната трансформация:

$$\varphi$$
: $\binom{x'}{y'} = \frac{1}{5} \cdot \binom{4}{3} + \binom{3}{4} \cdot \binom{x}{y} + \frac{1}{5} \cdot \binom{2}{-6}$. Да се определи вида на φ и да се намери образа на правата Ox под действие на φ .

- 30 зад. Спрямо ОКС K=Oxy в E_2 е дадена еднаквостта $\psi=\tau_{\vec{p}}\circ\sigma_g$. Намерете аналитично представяне на ψ , ако g:x+y-5=0, $\vec{p}(3,3)$. Определете вида на еднаквостта ψ . Вярно ли е, че $\tau_{\vec{p}}\circ\sigma_g=\sigma_g\circ\tau_{\vec{p}}$? Намерете образа на правата m:3x-3y+6=0 под действие на ψ .
- 31 зад. Спрямо ОКС K=Oxy в равнината са дадени правите $g_1: x+y-5=0$ и $g_2: x+y=0$. Определете вида на еднаквостите $\varphi_1=\sigma_{g_1}\circ\sigma_{g_2}$ и $\varphi_2=\sigma_{g_2}\circ\sigma_{g_1}$. Намерете образа на правата m:-x+y+5=0 под действие на φ_1 .
- 32 зад. Спрямо ОКС K=Oxy в равнината са дадени правите $g_1:x+y-5=0$ и $g_2:x=0$. Определете вида на еднаквостите $\varphi_1=\sigma_{g_1}\circ\sigma_{g_2}$ и $\varphi_2=\sigma_{g_2}\circ\sigma_{g_1}$.