Sampling and Inference for Beta Neutral-to-the-Left Models of Sparse Networks

Benjamin Bloem-Reddy, Adam Foster, Emile Mathieu, Yee Whye Teh

Department of Statistics, University of Oxford

Contents

Background

Sampling and inference

Experiments

Example

► Messages sent between people over time

Edges and vertices

Power law degree distribution

Sparity and power law

dense

Sparse

Vertex exchangeable dense

Sparse

Vertex exchangeable Preferential attachment

dense

Sparse

Vertex exchangeable Edge exchangeable

Pitman Yor

Preferential attachment

Edge exchangeable models [9], [8]

Edge exchangeable models [9], [8]

Edge exchangeable models [9], [8]

Paintbox representation

Paintbox representation

Consequence

▶ Edge exchangeable models have sublinear sparsity

Beta Neutral-to-the-left Model [10]

Latent representation

Available data

Observation	Unobserved variables
Entire history	α, ϕ, Ψ
Degrees in arrival order	$lpha,\phi,\mathbf{\Psi},\mathbf{T}$
Snapshot	$lpha, \phi, oldsymbol{\Psi}, oldsymbol{T}, \sigma$

- $ightharpoonup \alpha = \mathsf{BTNL} \; \mathsf{parameter} \in (-\infty, 1)$
- $lackbox{}\phi = {\it arrival distribution parameters}$
- $\mathbf{\Psi}$ = latent sociabilities
- ightharpoonup T = arrival times
- $ightharpoonup \sigma = arrival order$

Gibbs structure

The joint density has Gibbs structure

$$p(\mathsf{graph}|\mathbf{T}) = \frac{\Gamma(d_1 - \alpha)}{\Gamma(n - K\alpha)} \prod_{j=2}^{K} \frac{\Gamma(T_j - j\alpha)\Gamma(d_j - \alpha)}{\Gamma(T_j - 1 - (j-1)\alpha)\Gamma(1 - \alpha)}$$

- $ightharpoonup T_j = arrival time of vertex j$
- $ightharpoonup d_i = \text{degree of vertex } j$
- ► *K* = #vertices
- ▶ n = #edges

Sampling Ψ

Beta prior on Ψ_j , plus Gibbs structure, give

$$\Psi_j \mid \mathsf{graph}, oldsymbol{\Psi}_{\backslash j} \sim \mathsf{Beta}(d_j - lpha, ar{d}_{j-1} - (j-1)lpha) \ ,$$

where
$$ar{d}_j = \sum_{i=1}^j d_i$$

Sampling α, ϕ s

- lacktriangle One-dimensional unnormalized density for lpha
- lackbox For ϕ depends on arrival distribution family

Sampling **T**

Sampling σ

- ► Initialise in descending degree order
- ▶ Use Metropolis-Hastings with adjacent swap proposal $\sigma_j \leftrightarrow \sigma_{j+1}$

Point estimation

- ightharpoonup Decompose $p_{\alpha,\phi}(\mathsf{graph}) = p_{\phi}(\mathsf{T})p_{\alpha}(\mathsf{graph}|\mathsf{T})$
- \blacktriangleright MLE/MAP estimation for α by optimizing unnormalized density

Empirical study

SNAP dataset [2]	# of vertices	# of edges
Ask Ubuntu	159,316	964,437
UCI social network	1,899	20,296
:	:	:

Ask Ubuntu

UCI social network

Experiments

- ► Synthetic data parameter recovery
- ► Scaling in *n*
- ▶ Point estimation with massive graphs

Synthetic data

- \blacktriangleright Simulate 500 edges from the prior with fixed α
- ightharpoonup Arrivals either \mathcal{PYP} or Geom
- Observe final snapshot of the graph only

Gibbs sampler results

Gen. arrival distn.	Inference model	$ \hat{\alpha} - \alpha^* $	Pred. log-lik.
$\mathcal{PYP}(1.0, 0.75)$	$(au, \mathcal{PYP}(heta, au))$	0.046 ± 0.002	$\textbf{-2637.0}\pm\textbf{0.1}$
$\mathcal{PYP}(1.0, 0.75)$	$(\alpha,Geom(eta))$	0.049 ± 0.004	-2660.5 ± 0.7
Geom(0.25)	$(\tau, \mathcal{PYP}(\theta, \tau))$	0.086 ± 0.002	-2386.8 ± 0.1
Geom(0.25)	$(\alpha,Geom(eta))$	0.043 ± 0.003	$\textbf{-2382.6}\pm0.2$

Scalability of Gibbs sampler

- ▶ Do we learn from all data?
- ▶ How does performance scale?

Scalability of Gibbs sampler

- ▶ Do we learn from all data?
- ► How does performance scale?

	n = 200	n = 20000			
$\frac{ \hat{\alpha} - \alpha^* }{ \hat{\alpha} - \alpha^* }$	0.12 ± 0.01	0.01 ± 0.00			
$ \hat{\beta} - \beta^* $	0.02 ± 0.00	0.00 ± 0.00			
ESS	0.90 ± 0.04	0.75 ± 0.08			
Runtime (s)	21 ± 0	2267 ± 2			

► Most expensive Gibbs update is for **T**

Fitted point estimates

Dataset	Coupled $PYP(\theta, \alpha)$				Uncoupled $PYP(\theta, \tau)$		$Geom(\beta)$		
	$(\hat{\theta}, \hat{\alpha})$		Pred. I-I.	â	$(\hat{\theta}, \hat{\tau})$	Pred. I-I.	β		Pred. I-I.
Ask Ubuntu	(18080, 0.25)	1.25	-3.707e6	-2.54	(-0.99, 0.99)	-3.678e6	0.083	2.32	-3.678e6
UCI social network	(320.4, 4.4e-11)		-1.600e5	-4.98	(5.50, 0.52)	-1.595e6	0.016	2.10	-1.596e5
EU email	(113.6, 2.5e-14)		-8.06e5	-1.86	(113.6, 9.2e-10)	-8.06e5	0.001	2.00	-8.07e5
Math Overflow	(2575, 0.15)	1.15	-1.685e6	-6.62	(-0.97, 0.997)	-1.670e6	0.025	2.19	-1.670e6
Stack Overflow	(297600, 0.11)	1.11	-3.358e8	-8.94	(-1.0, 1.0)	-3.333e8		2.21	-3.333e8
Super User	(20640, 0.24)	1.24	-5.855e6	-4.19	(-0.996, 1.0)	-5.775e6	0.067	2.37	-5.775e6
Wikipedia talk pages	(14870, 0.54)	1.54	-3.074e7	-0.25	(-1.0, 1.0)	-3.066e7	0.073	2.10	-3.066e7

$\mathcal{P}\mathcal{Y}\mathcal{P}$ parameter estimates vary coupled and uncoupled

Dataset	Coupled $PYP(\theta, \alpha)$				Uncoupled $\mathcal{PYP}(\theta, \tau)$		$Geom(\beta)$		
	$(\hat{\theta}, \hat{\alpha})$		Pred. I-I.	â	$(\hat{\theta}, \hat{\tau})$	Pred. I-I.			Pred. I-I.
Ask Ubuntu	(18080, 0.25)	1.25	-3.707e6	-2.54	(-0.99, 0.99)	-3.678e6	0.083	2.32	-3.678e6
UCI social network	(320.4, 4.4e-11)		-1.600e5	-4.98	(5.50, 0.52)	-1.595e6	0.016	2.10	-1.596e5
EU email	(113.6, 2.5e-14)		-8.06e5	-1.86	(113.6, 9.2e-10)	-8.06e5	0.001	2.00	-8.07e5
Math Overflow	(2575, 0.15)	1.15	-1.685e6	-6.62	(-0.97, 0.997)	-1.670e6	0.025	2.19	-1.670e6
Stack Overflow	(297600, 0.11)	1.11	-3.358e8	-8.94	(-1.0, 1.0)	-3.333e8		2.21	-3.333e8
Super User	(20640, 0.24)	1.24	-5.855e6	-4.19	(-0.996, 1.0)	-5.775e6	0.067	2.37	-5.775e6
Wikipedia talk pages	(14870, 0.54)	1.54	-3.074e7	-0.25	(-1.0, 1.0)	-3.066e7	0.073	2.10	-3.066e7

Edge exchangeable models likely misspecified

Dataset	Coupled $\mathcal{PYP}(\theta, \alpha)$				Uncoupled $\mathcal{PYP}(\theta, \tau)$			$Geom(\beta)$		
			Pred. I-I.	â		Pred. I-I.		$\hat{\eta}$	Pred. I-I.	
Ask Ubuntu	(18080, 0.25)	1.25	-3.707e6	-2.54	(-0.99, 0.99)	-3.678e6	0.083	2.32	-3.678e6	
UCI social network	(320.4, 4.4e-11)		-1.600e5	-4.98	(5.50, 0.52)	-1.595e6	0.016	2.10	-1.596e5	
EU email	(113.6, 2.5e-14)		-8.06e5	-1.86	(113.6, 9.2e-10)	-8.06e5	0.001	2.00	-8.07e5	
Math Overflow	(2575, 0.15)	1.15	-1.685e6	-6.62	(-0.97, 0.997)	-1.670e6	0.025	2.19	-1.670e6	
Stack Overflow	(297600, 0.11)	1.11	-3.358e8	-8.94	(-1.0, 1.0)	-3.333e8		2.21	-3.333e8	
Super User	(20640, 0.24)	1.24	-5.855e6	-4.19	(-0.996, 1.0)	-5.775e6	0.067	2.37	-5.775e6	
Wikipedia talk pages	(14870, 0.54)	1.54	-3.074e7	-0.25	(-1.0, 1.0)	-3.066e7	0.073	2.10	-3.066e7	

Though better than Geom for some datasets

Dataset	Coupled $PYP(\theta, \alpha)$				Uncoupled $\mathcal{PYP}(\theta, \tau)$			Geom(eta)		
Dataset			Pred. I-I.	â		Pred. I-I.			Pred. I-I.	
Ask Ubuntu	(18080, 0.25)	1.25	-3.707e6	-2.54	(-0.99, 0.99)	-3.678e6	0.083	2.32	-3.678e6	
UCI social network	(320.4, 4.4e-11)		-1.600e5	-4.98	(5.50, 0.52)	-1.595e6	0.016	2.10	-1.596e5	
EU email	(113.6, 2.5e-14)		-8.06e5	-1.86	(113.6, 9.2e-10)	-8.06e5	0.001	2.00	-8.07e5	
Math Overflow	(2575, 0.15)	1.15	-1.685e6	-6.62	(-0.97, 0.997)	-1.670e6	0.025	2.19	-1.670e6	
Stack Overflow	(297600, 0.11)	1.11	-3.358e8	-8.94	(-1.0, 1.0)	-3.333e8		2.21	-3.333e8	
Super User	(20640, 0.24)	1.24	-5.855e6	-4.19	(-0.996, 1.0)	-5.775e6	0.067	2.37	-5.775e6	
Wikipedia talk pages	(14870, 0.54)	1.54	-3.074e7	-0.25	(-1.0, 1.0)	-3.066e7	0.073	2.10	-3.066e7	

Conclusion

- ▶ BNTL models are *flexible*
- ▶ BNTL models are tractable

Future work

- ► Scalability of inference
 - ▷ Metropolis-Hastings to update T altogether
- ► Recency-weighted preferential attachment

References

- Nicholas H Bingham, Charles M Goldie, and Jef L Teugels. Regular variation, volume 27. Cambridge University Press, 1989.
- [2] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, June 2014.
- [3] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-law distributions in empirical data. SIAM Review, 51(4):661–703, 2009.
- [4] David J Aldous. Representations for partially exchangeable arrays of random variables. *Journal of Multivariate Analysis*, 11(4):581–598, 1981.
- [5] Douglas N Hoover. Relations on probability spaces and arrays of random variables. Preprint, Institute for Advanced Study, Princeton, NJ, 2, 1979.
- [6] François Caron and Emily B Fox. Sparse graphs using exchangeable random measures. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(5):1295–1366, 2017.
- [7] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286(5439):509–512, 1999.
- [8] Harry Crane and Walter Dempsey. Edge exchangeable models for interaction networks. Journal of the American Statistical Association, (just-accepted), 2017.
- [9] Diana Cai, Trevor Campbell, and Tamara Broderick. Edge-exchangeable graphs and sparsity. In Advances in Neural Information Processing Systems, pages 4249–4257, 2016.
- [10] Benjamin Bloem-Reddy and Peter Orbanz. Preferential attachment and vertex arrival times. arXiv preprint arXiv:1710.02159, 2017.
- [11] Scott W Linderman, Gonzalo E Mena, Hal Cooper, Liam Paninski, and John P Cunningham. Reparameterizing the birkhoff polytope for variational permutation inference. arXiv preprint arXiv:1710.09508, 2017.