

Agenda

- Cluster Services
- Overview on Installation Procedures
- Configuration and Setup of a NETBOOT Environment
- Troubleshooting
- Cluster Management Tools
- Notes on Security
- Hands-on Laboratory Session

Configuration and setup of NETBOOT services

- client setup
 - PXE
 - BIOS
- server setup
 - DHCP
 - TFTP + PXE
 - NFS
 - Kickstart

Setting up the client

- NIC that supports network booting (or etherboot)
- BIOS boot-sequence
 - 1. Floppy
 - 2. CD/DVD
 - 3. USB/External devices
 - 4. NETWORK
 - 5. Local Hard Disk
- Information gathering (client MAC address)
 - documentation (don't rely on this)
 - motherboard BIOS (if on-board)
 - NIC BIOS, initialization, PXE booting (need to monitor the boot process)
 - network sniffer (suitable for automation)

Collecting MAC addresses

tcpdump -c1 -i any -qtep port bootpc and port bootps and ip broadcast

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on any, link-type LINUX_SLL (Linux cooked), capture size 96 bytes

B **00:30:48:2c:61:8e** 592: IP 0.0.0.0.bootpc > 255.255.255.255.bootps: UDP, length 548

- 1 packets captured
- 1 packets received by filter
- 0 packets dropped by kernel

(see /etc/services for details on ports assignment)

Setting up DHCP

- It's a protocol that allows the dynamic configuration of the network settings for a client
- We need DHCP software for both the server and the clients (PXE implements a DHCP client internally)
- Steps needed
 - DHCP server package
 - DHCP configuration
 - client configuration
 - a TFTP server to supply the PXE bootloader
 - avoid conflicts ignore queries from external networks (empty subnet declaration) or interfaces (dhcpd command line arguments)

```
ddns-update-style
                    none;
ddns-updates
                     off;
authoritative;
deny unknown-clients;
# cluster network
subnet 10.10.0.0 netmask 255.255.0.0 {
   option domain-name
                               "cluster.network";
   option domain-name-servers 10.10.0.1;
   option ntp-servers
                               10.10.0.1;
   option subnet-mask
                               255.255.0.0;
                               10.10.255.255;
   option broadcast-address
   # TFTP server
   next-server
                               10.10.0.1;
   # NBP
                               "/pxe/pxelinux.0";
   filename
   default-lease-time
                               -1;
   min-lease-time
                               864000;
# client section
host node01.cluster.network {
   hardware ethernet
                              00:30:48:2c:61:8e;
   fixed-address
                              10.10.1.1;
   option host-name
                              "node01";
```


Setting up DHCP

```
hardware ethernet 00:30:48:2c:61:8e;
ddns-update-style
                    none;
                              fixed-address
ddns-updates
                    off;
                              option host-name "node01";
authoritative;
deny unknown-clients;
# cluster network
subnet 10.10.0.0 netmask 255.255.0.0 {
   option domain-name
                              "cluster.network";
   option domain-name-servers 10.10.0.1;
   option ntp-servers
                              10.10.0.1;
                              255.255.0.0;
   option subnet-mask
   option broadcast-address
                              10.10.255.255;
   # TFTP server
                              10.10.0.1;
   next-server
   # NBP
   filename
                              "/pxe/pxelinux.0";
   default-lease-time
                              -1;
   min-lease-time
                              864000;
```

client section

host node01.cluster.network {

```
Parameters starting with the
option keyword correspond
to actual DHCP options,
while parameters that do
not start with the option
keyword either control the
behavior of the DHCP server
or specify client parameters
that are not optional in the
DHCP protocol.
```

(man dhcpd.conf)

10.10.1.1;

TFTP and PXE

What is TFTP

- Trivial File Transfer Protocol: is a simpler, faster, session-less and "unreliable" (based on UDP) implementation of the File Transfer Protocol;
- lightweight and simplicity make it the preferred way to transfer small files to/from network devices.

What is PXE

- Pre-boot eXecution Environment, API burned-in into the PROM of the NIC
- provides a light implementation of some protocols (IP, UDP, DHCP, TFTP)

What we need

- tftp-server, enabled as stand-alone daemon or through (x)inetd
- pxelinux.0 from syslinux package (and system-config-netboot)
- the kernel (*vmlinuz*) and the initial ramdisk (*initrd.img*) from the installation CD
- a way to handle the node configuration file (<HEXIP>)
 - through TFTP
 - daemon on the server waiting for a connection from the installed node or *port-knocking*
 - CGI or PHP script (requires a web server)
 - directory exported via NFS

PXE client configuration

configuration fall-back (MAC -> HEXIP -> default) paths relative to /tftpboot/pxe/pxelinux.cfg/

```
/01-00-30-48-2c-61-8e # MAC address
                                                              # 10.10.1.1 (IP ADDRESS)
                                         /0A0A0101
/tftpboot/pxe/pxelinux.cfg/default
                                         /0A0A010
                                                              # 10.10.1.0-10.10.1.15
                                         /0A0A01
                                                              # 10.10.1.0-10.10.1.255
 prompt 1
                                         /0A0A0
                                                              # 10.10.0.0-10.10.15.255
 timeout 100
                                         / O A O A
                                                              # 10.10.0.0-10.10.255.255
                                         /0A0
                                                              # 10.0.0.0-10.15.255.255
 display /pxelinux.cfg/bootmsq.txt
                                         /OA
                                                              # 10.0.0.0-10.255.255.255
                                         / 0
                                                              # 0.0.0.0-15.255.255.255
 default local
                                         /default
                                                              # nothing matched
 label local
    LOCALBOOT ()
                                                   Note: '\' means that the line
                                                   continue, but it should be
```

```
label install
    kernel vmlinuz
    append vga=normal selinux=0 network ip=dhcp
         ksdevice=eth0 ks=nfs:10.1.0.1:/distro/ks/nodes.ks
         load_ramdisk=1 prompt_ramdisk=0 ramdisk_size=16384
```

label memtest
 kernel memtest

initrd=initrd.img

Setting up the TFTP tree

Populating the filesystem tree...

```
'--tftpboot/
`-- pxe/

|-- vmlinuz
|-- initrd.img
|-- memtest
|-- pxelinux.0
`-- pxelinux.cfg/
|-- 0A0A0101
|-- bootmsg.txt
|-- default -> default.local
|-- default.install
`-- default.local
```

- Permissions: world readable for "get"; writable flags and ownerships depend on how the <HEXIP> file is handled (tftp, web, nfs, daemon, ...)
 - tftp: needs world writable <HEXIP> file (for "put")
 - nfs: directory exported (and mounted) as RW
 - daemon: ownerships and permissions depend on the UID
 - web: ownerships for the web server user

Setting up NFS

- Create a local repository for RPM packages
- Copy the RPMs from the installation CDs/DVD or the ISO image(s), or just export the loop-mounted iso image(s)
- Export the repository to the cluster internal network
- Export the directory on which the kickstart resides
- Start/restart NFS service (or just "exportfs -r")

Configuration sample (/etc/exports)

/distro 10.10.0.0/16(ro,root_squash)

Setting up KICKSTART

- Part of RedHat installation suite (Anaconda)
- Based on RPM packages and supported by all RH-based distros
- Allows non-interactive batch installation
- system-config-kickstart permit to create a template file

The kickstart configuration file, among other things, allows:

- network setup
- HD partitioning
- basic system configuration
- packages selection (%packages)

```
@<package-group>
<package> (add)
-<package> (remove)
```

- pre-installation operations (%pre)
 - HW setup
 - specific configuration
- → post-installation operations (%post)
 - post configuration, customization
 - stop the automated installation procedure

KICKSTART example

/distro/ks/nodes.ks

```
install
nfs --server=10.10.0.1 --dir=/distro/WB4/
text
lang en US
langsupport --default=en US en US
keyboard us
network --device eth0 --bootproto dhcp
network --device eth1 --bootproto dhcp
bootloader --location=mbr --append selinux=0
clearpart --all --initlabel
zerombr ves
part swap --size=4096 --asprimary
part / --fstype "ext3" --size=4096 --asprimary
part /local_scratch --fstype "ext3" --size=100 --grow
skipx
%packages --resolvedeps
ntp
openssh
openssh-server
-sendmail
%pre
hdparm -d1 -u1 /dev/hda 2>&1
```

%post --nochroot cp /tmp/ks.cfg /mnt/sysimage/root/install-ks.cfg cp /proc/cmdline /mnt/sysimage/root/install-cmdline %post --interpreter=/bin/bash exec 1>/root/post.log exec 2>&1 set -x export MASTER=10.10.0.1 tftp get() { tftp \$MASTER -v -c get \$1 \$2 ; } tftp put() { tftp \$MASTER -v -c put \$1 \$2 ; } ip to hex() { /sbin/ip addr show dev \$1 sed -r ' = -rawk -F. '{printf("%02X%02X%02X%02X",\$1,\$2,\$3,\$4);}' for eth in eth0 eth1 eth2 HEX=`ip to hex \$eth` test "x\$HEX" != "x" && break done tftp_get /pxe/pxelinux.cfg/default.local /tmp/\$HEX tftp put /tmp/\$HEX /pxe/pxelinux.cfg/\$HEX

System logs

- Check system logs for:
 - DHCP negotiation (DISCOVER, OFFER, REQUEST, ACK/NACK)
 - DHCP leases (/var/lib/dhcp/dhcpd.leases)
 - → TFTP transfers (enable verbose logging with -vvv)
 - denied/successful NFS mount (showmount)
 - connections rejected by server(s) configuration,
 TCPwrapper, firewall rules

Network traffic analysis

- Sniff the network activity with:
 - tcpdump
 - wireshark/ethereal (tshark/tethereal)
- Look for:
 - client's ethernet MAC address (any packet sent by the node)
 - DHCP negotiation (DISCOVER, REQUEST, NACK)
 - TFTP UDP traffic
 - (NFS traffic)

Client virtual consoles (anaconda)

FIRST STAGE

CTRL+ALT+F1 BOOT, TEXTUAL CONFIGURATION

CTRL+ALT+F2,F3 LOGS

SECOND STAGE

CTRL+ALT+F1 LAUNCH X, REBOOT LOGS

CTRL+ALT+F2 SHELL

CTRL+ALT+F3,F4,F6 LOGS, DEBUG

CTRL+ALT+F7 GRAPHICAL CONFIGURATION (X)

- use NTP to synchronize time/date cluster-wide
- collect logs on the masternode
 - → masternode: syslogd -r -x -m0
 - → nodes: /etc/syslog.conf:*.* @masternode
- logcheck/logwatch
- logrotate
- tail -f ...
- grep ...

That's All Folks!


```
( questions ; comments ) | mail -s uheilaaa baro@democritos.it
( complaints ; insults ) &>/dev/null
```


REFERENCES AND USEFUL LINKS

Cluster Toolkits:

- OSCAR Open Source Cluster Application Resources http://oscar.openclustergroup.org/
- NPACI Rocks http://www.rocksclusters.org/
- Scyld Beowulf http://www.beowulf.org/
- CSM IBM Cluster Systems Management http://www.ibm.com/servers/eserver/clusters/software/
- xCAT eXtreme Cluster Administration Toolkit http://www.xcat.org/
- Warewulf/PERCEUS http://www.warewulf-cluster.org/ http://www.perceus.org/

Installation Software:

SystemImager http://www.systemimager.org/

FAI http://www.informatik.uni-koeln.de/fai/

• Anaconda/Kickstart http://fedoraproject.org/wiki/Anaconda/Kickstart

Management Tools:

- openssh/openssl http://www.openssh.com http://www.openssl.org
- C3 tools The Cluster Command and Control tool suite http://www.csm.ornl.gov/torc/C3/
- PDSH Parallel Distributed SHell https://computing.llnl.gov/linux/pdsh.html
- DSH Distributed SHell http://www.netfort.gr.jp/~dancer/software/dsh.html.en
- ClusterSSH http://clusterssh.sourceforge.net/
- C4 tools Cluster Command & Control Console http://gforge.escience-lab.org/projects/c-4/

Monitoring Tools:

Ganglia http://ganglia.sourceforge.net/

Nagios http://www.nagios.org/Zabbix http://www.zabbix.org/

Network traffic analyzer:

tcpdumpwiresharkhttp://www.tcpdump.orghttp://www.wireshark.org

UnionFS:

- Hopeless, a system for building disk-less clusters http://www.evolware.org/chri/hopeless.html
- UnionFS A Stackable Unification File System http://www.unionfs.org http://www.fsl.cs.sunysb.edu/project-unionfs.html

RFC: (http://www.rfc.net)

- RFC 1350 The TFTP Protocol (Revision 2) http://www.rfc.net/rfc1350.html
- RFC 2131 Dynamic Host Configuration Protocol http://www.rfc.net/rfc2131.html
- RFC 2132 DHCP Options and BOOTP Vendor Extensions http://www.rfc.net/rfc2132.html
- RFC 4578 DHCP PXE Options http://www.rfc.net/rfc4578.html
- RFC 4390 DHCP over Infiniband http://www.rfc.net/rfc4390.html
- PXE specification http://www.pix.net/software/pxeboot/archive/pxespec.pdf
- SYSLINUX http://syslinux.zytor.com/

Some acronyms...

ICTP – the Abdus Salam International Centre for Theoretical Physics

DEMOCRITOS – Democritos Modeling Center for Research In aTOmistic Simulations

INFM – Istituto Nazionale per la Fisica della Materia (Italian National Institute for the Physics of Matter)

CNR – Consiglio Nazionale delle Ricerche (Italian National Research Council)

HPC – High Performance Computing

OS – Operating System
LINUX – LINUX is not UNIX
GNU – GNU is not UNIX
RPM – RPM Package Manager

CLI – Command Line Interface BASH – Bourne Again SHell PERL – Practical Extraction and Report Language

PXE – Preboot Execution Environment **INITRD** – INITial RamDisk

NFS – Network File System
SSH – Secure SHell
LDAP – Lightweight Directory Access Protocol
NIS – Network Information Service
DNS – Domain Name System

PAM – Pluggable Authentication Modules

LAN – Local Area Network WAN – Wide Area Network IP – Internet Protocol
TCP – Transmission Control Protocol
UDP – User Datagram Protocol
DHCP – Dynamic Host Configuration Protocol
TFTP – Trivial File Transfer Protocol
FTP – File Transfer Protocol
HTTP – Hyper Text Transfer Protocol
NTP – Network Time Protocol

NIC – Network Interface Card/ControllerMAC – Media Access ControlOUI – Organizationally Unique Identifier

API – Application Program Interface UNDI – Universal Network Driver Interface PROM – Programmable Read-Only Memory BIOS – Basic Input/Output System

SNMP – Simple Network Management Protocol **MIB** – Management Information Base **OID** – Object IDentifier

IPMI – Intelligent Platform Management Interface LOM – Lights-Out Management RSA – IBM Remote Supervisor Adapter

BMC – Baseboard Management Controller