

Softwaretechnik und Programmierparadigmen

10 Korrektheit

Prof. Dr. Sabine Glesner Software and Embedded Systems Engineering Technische Universität Berlin

Diese VL

Softwaretechnik-Anteil

Programmierparadigmen-Anteil

Inhalt

Korrektheit

- Einführung Software-Qualität
- WHILE-Sprache
- Hoare-Kalkül
- Nachweis partieller Korrektheit
- Nachweis totaler Korrektheit
- Tool Support

Inhalt

Korrektheit

- Einführung Software-Qualität
- WHILE-Sprache
- Hoare-Kalkül
- Nachweis partieller Korrektheit
- Nachweis totaler Korrektheit
- Tool Support

Was ist Software-Qualität?

"Software-Qualität ist die <u>Gesamtheit der Merkmale und</u> <u>Merkmalswerte</u> eines Software-Produkts, die sich auf dessen Eignung beziehen, <u>festgelegte Erfordernisse</u> zu erfüllen"

DIN-ISO-Norm 9126

Was sagt uns das?

- Sehr allgemeine Definition
- Software-Qualität ist vielfältig
- Messbarkeit der Qualität anhand von definierten Kriterien
- Unterschiedliche Auffassungen des Begriffs möglich

Qualitätsmerkmale

Qualitätssicherung

Prozessqualität

Befasst sich mit der Verbesserung der Entstehung des Software-Produkts (Prozess).

- Managementprozesse und Entwicklungsmodelle
- Software-Infrastruktur (Build-Automatisierung, Testautomatisierung, ...)

Produktqualität

Befasst mit der Verbesserung der genannten Qualitätsmerkmale des Software-Produkts.

- Korrektheit
- Testen
- Konventionen
- Kommentare
- Statische Analyse
- Metriken
- ...

Prozessqualität vs. Produktqualität

Der Entwicklungsprozess sollte Methoden zur Verbesserung der Produktqualität an sinnvollen Stellen einsetzen.

Die Verbesserung der Prozessqualität beinhaltet die Optimierung der Maßnahmen zur Verbesserung der Produktqualität

Qualitätssicherung

Prozessqualität

Befasst sich mit der Verbesserung der Entstehung des Software-Produkts (Prozess).

- Managementprozesse und Entwicklungsmodelle
- Software-Infrastruktur (Build-Automatisierung, Testautomatisierung, ...)

Produktqualität

Befasst mit der Verbesserung der genannten Qualitätsmerkmale des Software-Produkts.

Korrektheit

← Heute

- Testen
- Konventionen
- Kommentare
- Statische Analyse
- Metriken
- ...

Motivation - Korrektheit

Wer sagt uns eigentlich, dass unsere Implementierung...

```
pre: self.kunde.id->includes(kundeld) and neueAdr <> "
void emailAendern (Integer kundeId, String neueAdr) {
   Kunde k = kunde.get(kundeId);
   String email = k.getEmail();
   email = neueAdr;
   // TODO: mrk;31/12/14 Why does this not work?
   // FIXME: joe;03/01/15 Mark, please fix this!
   // FIXME: joe;10/01/15 Mark?
   // XXX: eve;04/02/16 Mark has left the building.
}
post: self.kunde->any(id = kundeld).email = neueAdr
```

...zur **Spezifikation** passt?

Motivation - Korrektheit

Wir kennen Contracts zur formalen Spezifikation von Methoden

➤ Können als Ausgangsbasis für die Implementierung dienen

Wie kann man nachweisen, dass die Implementierung den Contract erfüllt?

Antwort 1: Testen der Implementierung gegen den Contract

Viel Testen hilft, ist aber kein Beweis!

Antwort 2: Beweisen, dass das Programm den Contract erfüllt

Voraussetzung für Beweise: Beweiskalkül (hier: Hoare Kalkül)

Inhalt

Korrektheit

- Einführung Software-Qualität
- WHILE-Sprache
- Hoare-Kalkül
- Nachweis partieller Korrektheit
- Nachweis totaler Korrektheit
- Tool Support

Wozu die While-Spache?

Moderne Sprachen haben (viele) komplexe Features

Umfang zu groß bzw. Konstrukte zu schwierig für Demonstration einfacher Ideen

While-Sprache als formales Berechnungsmodell

- Übersichtlicher Sprachumfang
- Einfache Semantik
- ➤ Wir verwenden die WHILE-Sprache zur Demonstration. Hoare-Regeln lassen sich aber für beliebige Sprach-Konstrukte erstellen
- ➤ Viele Konstrukte gängiger Sprachen (z.B. Java) können in die While-Sprache umgeformt werden (turingmächtig)

WHILE Syntax

Arithmetische Ausdrücke

$$a ::= n | x | a_1 + a_2 | a_1 * a_2 | a_1 - a_2$$

Boolesche Ausdrücke

b ::= true | false |
$$a_1 = a_2 | a_1 \neq a_2 | a_1 \leq a_2 | \neg b | b_1 \land b_2$$

Anweisungen/Programme

$$S ::= x := a | \mathbf{skip} | S_1 ; S_2 |$$

if b then S_1 else S_2 fi | while b do S od

n: steht für syntaktische Zahlen

x: steht für syntaktische Variablen

S: steht für Anweisungen (Statements)

Beispielprogramme

Zwei Variablen werden vertauscht wenn sie nicht gleich sind:

Beispielprogramme

Fakultätsfunktion y = fak(x):

Endlosschleife:

while true do skip od

Inhalt

Korrektheit

- Einführung Software-Qualität
- WHILE-Sprache
- Hoare-Kalkül
- Nachweis partieller Korrektheit
- Nachweis totaler Korrektheit
- Tool Support

Hoare-Kalkül

Entwickelt von Sir Charles Antony Richard Hoare

- Geboren 1934
- Emeritierter Professor der Universität Oxford
- Momentan leitender Forscher bei Microsoft Research in Cambridge
- Einige wichtige Leistungen sind:
 - CSP (Communicating Sequential Processes)
 - Monitor-Konzept
 - Hoare-Kalkül
 - Quicksort
- Turing Award 1980
- John-von-Neumann-Medaille 2011

Hoare Kalkül

Idee des Hoare-Kalküls: Die Verifikation eines Programms besteht aus zwei Schritten.

- Beweis der partiellen Korrektheit
- Beweis der Terminierung

Am Beispiel Fakultäts-Funktion:

Gilt x=n vor Ausführung, dann gilt y=n! nach Ausführung, sofern die Ausführung terminiert

⇒ partielle Korrektheit

y:=1;
while x>1 do
 y:=x*y;
 x:=x-1
od

Gilt x=n vor Ausführung, dann terminiert das Programm und y=n!

⇒ totale Korrektheit

Partielle Korrektheit

Ein Programm ist partiell korrekt bzgl. einer Vorbedingung *P* und einer Nachbedingung *Q*, falls immer dann, wenn der initiale Zustand die Vorbedingung erfüllt und, wenn das Programm terminiert, der Endzustand die Nachbedingung erfüllt.

Vorbedingung

Nachbedingung

Programm

Annahme: Programm terminiert nach endlich vielen Schritten

Vorbedingung: Nur wenn diese erfüllt ist kann die Nachbedingung garantiert werden (durch Beweis)

Nachbedingung: Gefordertes Ergebnis (Spezifikation, z.B. Post-Condition eines Contracts)

➤ Vorbedingungen ergeben sich oft aus dem Beweis

Bedingungen

Zentrales Element eines Hoare-Beweises sind Bedingungen bzw. Zusicherungen (assertions)

- > Formeln der **Prädikatenlogik**
- Werden in geschwungenen Klammern hinzugefügt

Enthalten zwei Arten von Variablen:

- Programmvariablen (z.B. x, y)
- Zusätzlich logische Variablen (z.B. n)

Hier: Logische Variable n für den Anfangszustand von x ...

```
\{x = n \land n \ge 0\}
y:=1;
while x>1 do
y:=x*y;
x:=x-1
od
\{y = n!\}
```

Damit dieser für das Ergebnis zur Verfügung steht

Beispiele Vor-und Nachbedingungen

Vorbedingung (Anfangswerte in logischen Variablen "merken") von allen Eingaben erfüllbar

```
{x=n ∧ y=m}
if x=y then
    skip
else
    z:=x;
    x:=y;
    y:=z
fi
{y=n ∧ x=m}
```

Nachbedingung: Werte wurden vertauscht (oder waren gleich)

Nachbedingung kann nur für x>=0 vom Programm erfüllt werden

```
\{x>=0\}
c:=0;
sum:=0;
while c < x do
c := c+1;
sum := sum+c
od
\{sum=\sum_{i=0}^{x} i\}
```

Nachbedingung: Variable sum enthält Summe der Zahlen bis x

Inhalt

Korrektheit

- Einführung Software-Qualität
- WHILE-Sprache
- Hoare-Kalkül
- Nachweis partieller Korrektheit
- Nachweis totaler Korrektheit
- Tool Support

Überblick

Hoare Kalkül besteht aus **Axiomen** und **Inferenzregeln** für alle Konstrukte einer Programmiersprache

- > definiert was ein Konstrukt bewirkt (wie wird es ausgeführt)
- > gibt der **Syntax** eine **Semantik**

Axiome sind Grundsätze eines Systems, ohne weitere Begründung **Inferenzregeln** ermöglichen das Zerlegen komplexerer Ausdrücke

Stellen eine logische Schlussfolgerung dar

Formale Beschreibung der Konstrukte ermöglicht es, das Programm für alle Eingaben "durchzurechnen"

Hoare Kalkül – Axiome

Skip-Axiom

Skip ändert den Zustand nicht und bewahrt dadurch jede Vorbedingung

{ P } skip { P }
$$\{x = y + 5\}$$
skip
 $\{x = y + 5\}$

Ersetzungs-Axiom (Zuweisung)

Ersetze jede Vorkommen von x in der Nachbedingung P durch syntaktischen Ausdruck E

➤ Wird von unten nach oben angewandt

{
$$P[x \leftarrow E]$$
 } $x := E \{ P \}$
{ $y - 1 < y$ } $P[x \leftarrow E]$
 $a := y - 1;$
{ $a < y$ } P

Inferenzregeln

Jedes Kalkül gibt eine Menge von Inferenzregeln vor

• Eine Inferenzregel beschreibt, unter welchen Annahmen eine bestimmte Schlussfolgerung abgeleitet werden kann

• Beispiel aus dem Kalkül des natürlichen Schließens (Modus Ponens):

$$\frac{A \qquad A \to B}{B}$$

"Wenn A und A impliziert B gilt, dann gilt B"

Hoare Kalkül – Regeln

Sequenzregel

Hoare-Tripel können sequentiell komponiert werden, wenn die Nachbedingung der ersten Anweisung mit der Vorbedingung der zweiten Anweisung kompatibel ist

Inline

$$P$$

$$S_1$$

$$\{R\}$$

$$S_2$$

$$\{Q\}$$

27

Hoare Kalkül – Regeln

$$P \rightarrow P' \quad \{P'\}S\{Q'\} \quad Q' \rightarrow Q$$

$$\{P\}S\{Q\}$$

Rule of Consequence

- die Vorbedingung darf verschärft werden
- die Nachbedingung darf abgeschwächt werden

Inline

$$\begin{cases}
P' \\
P' \\
S \\
Q' \\
\downarrow \\
Q
\end{cases}$$

$$\{x = n \land y = m\}$$
 Vorbedingung P

z:=x;

x:=y;

y:=z
$$\{x = m \land y = n\}$$
 Nachbedingung Q

```
\{x = n \land y = m\}
\{z := x;
\{x := y;
\{x = m \land y = n\}
Sequenzregel
x := y
```

```
\{x = n \land y = m\}
\{z := x;
\{x := y;
\{x = m \land z = n\}
\begin{cases} x = m \land y = n\} \end{cases}
Ersetzungs-Axiom wurde angewandt y:=z
\{x = m \land y = n\}
```

```
\{x = n \land y = m\}
\{z := x;
\{y = m \land z = n\}
x := y;
\{x = m \land z = n\}
y := z
\{x = m \land y = n\}
```

32

```
\{x = n \land y = m\}
\{y = m \land x = n\}
z:=x;
\{y = m \land z = n\}
x:=y;
\{x = m \land z = n\}
y:=z
\{x = m \land y = n\}
```

```
\{x = n \land y = m\}
\Leftrightarrow
\{y = m \land x = n\}
z:=x;
\{y = m \land z = n\}
x:=y;
\{x = m \land z = n\}
y:=z
\{x = m \land y = n\}
```

Hoare Kalkül – Regeln

```
\frac{\{B \land P\} S_1 \{Q\} \quad \{\neg B \land P\} S_2 \{Q\}}{\{P\} \text{ if } B \text{ then } S_1 \text{ else } S_2 \text{ fi } \{Q\}}
```

If-Regel

 Für die if-Anweisung müssen beide möglichen Fälle entsprechend berücksichtigt werden

Beispiele rechnen wir in der Übung

```
{P}
if B then
    {B∧P}
    S<sub>1</sub>
    {Q}
else
    {¬B∧P}
    S<sub>2</sub>
    {Q}
fi
{Q}
```

Hoare Kalkül – Regeln

While-Regel

- Beweise für Schleifen basieren auf Invarianten I
- Die Invariante muss vom Schleifenrumpf S bewahrt werden
- Wenn vor der Schleife I gilt, gilt I auch nach der Schleife, zusätzlich gilt die Schleifenbedingung nicht
- keine Vorgabe zur Ermittlung der Schleifeninvariante: muss manuell ermittelt werden

```
{ B \ I } S { I }
\{I\} while B do S od \{\neg B \land I\}
               Gefundene Invariante
                  eingesetzt in das
                     Programm
      {I}
      while B do
             \{B \land I\}
             \{I\}
      od
      \{\neg B \land I\}
```

 $\{x = n \land n \ge 0\}$

Vorbedingung

y := 1;

while $x \ge 1$ do

y := y * x;

x := x - 1

Wie könnte eine **Schleifeninvariante** zum Nachweis der Fakultätsfunktion aussehen?

od

 $\{ y = n! \}$ Nachbedingung

$$\{x = n \land n \ge 0\}$$

y := 1;

while $x \ge 1$ do

$$y := y * x;$$

$$x := x - 1$$

od

 ${y = n!}$

Beobachtungen

- 1. x ist immer positiv
- 2. Werte für n = 4 (Beispiel):

х	n!	x!	У
4	24	24	1
3	24	6	4
2	24	2	12
1	24	1	24
0	24	1	24

Schleifen-Invariante:

$$\{y = \frac{n!}{x!} \land x \ge 0\}$$

Anwendung der Schleifenregel

 $\{x = n \land n \ge 0\}$

$$\{ x = n \land n \ge 0 \}$$

$$\{y = \frac{n!}{x!} \land x \ge 0\}$$

while $x \ge 1$ do

$$\{ y = \frac{n!}{x!} \land x \ge 0 \land x \ge 1 \}$$

$$y := y * x;$$

$$x := x - 1$$

$$\{y = \frac{n!}{r!} \land x \ge 0\}$$

od

$$\{ y = \frac{n!}{x!} \land x \ge 0 \land x < 1 \}$$

$$\{ y = n! \}$$

Rule of Consequence

$$\begin{cases} y = \frac{n!}{x!} \land x \ge 0 \land x < 1 \\ \Rightarrow \left\{ y = \frac{n!}{x!} \land x = 0 \right\} \\ \Rightarrow \left\{ y = \frac{n!}{n!} \right\} \\ \Rightarrow \left\{ y = \frac{n!}{1} \right\} \\ \Rightarrow \left\{ y = n! \right\} \end{cases}$$

```
\{ x = n \land n \ge 0 \}
y := 1;
\{ y = \frac{n!}{x!} \land x \ge 0 \}
while x \ge 1 do
\{ y = \frac{n!}{x!} \land x \ge 0 \land x \ge 1 \}
```

y := y * x;
{
$$y = \frac{n!}{(x-1)!} \land x - 1 \ge 0$$
 } -
x := x - 1

Ersetzungsaxiom wurde angewandt

 $\{y = \frac{n!}{x!} \land x \ge 0\}$

od

$$\{ y = \frac{n!}{x!} \land x \ge 0 \land x < 1 \}$$

$$\{ y = n! \}$$

```
\{x = n \land n \ge 0\}
y := 1;
\{y = \frac{n!}{r!} \land x \ge 0\}
while x \ge 1 do
                 \{y = \frac{n!}{x!} \land x \ge 0 \land x \ge 1\}
                \{ y \cdot x = \frac{n!}{(x-1)!} \land x - 1 \ge 0 \}
                 \mathbf{v} := \mathbf{v} * \mathbf{x};
                \{ \mathbf{y} = \frac{n!}{(x-1)!} \land x - 1 \ge 0 \}
                 x := x - 1
                 \{y = \frac{n!}{r!} \land x \ge 0\}
od
```

Ersetzungsaxiom wurde angewandt

$$\{ y = \frac{n!}{x!} \land x \ge 0 \land x < 1 \}$$

$$\{ y = n! \}$$

```
\{x = n \land n \ge 0\}
y := 1;
\{y = \frac{n!}{r!} \land x \ge 0\}
while x \ge 1 do
            Äquivalent
            y := y * x;
            \{ y = \frac{n!}{(x-1)!} \land x - 1 \ge 0 \}
            x := x - 1
            \{y = \frac{n!}{r!} \land x \ge 0\}
od
\{ y = \frac{n!}{x!} \land x \ge 0 \land x < 1 \}\{ y = n! \}
```

```
\{x = n \land n \ge 0\}
                                                     Ersetzungsaxiom
                                                    wurde angewandt
\{1=\frac{n!}{r!} \land x \ge 0\}
y := 1;
                                                    While-Schleife fertig:
\{y = \frac{n!}{r!} \land x \ge 0\}
                                                   Darüber geht es weiter
while x \ge 1 do
             \{ y = \frac{n!}{x!} \land x \ge 0 \land x \ge 1 \}
\longleftrightarrow
\{ y \cdot x = \frac{n!}{(x-1)!} \land x - 1 \ge 0 \}
              y := y * x;
              \{y = \frac{n!}{(x-1)!} \land x - 1 \ge 0\}
              x := x - 1
              \{y = \frac{n!}{x!} \land x \ge 0\}
od
\{y = \frac{n!}{x!} \land x \ge 0 \land x < 1\}
{y = n!}
```

```
\{x = n \land n \ge 0\}
                                                                Rule of Consequence
\{1 = \frac{n!}{x!} \land x \ge 0\}
y := 1;
\{y = \frac{n!}{r!} \land x \ge 0\}
while x \ge 1 do
                  \{ y = \frac{n!}{x!} \land x \ge 0 \land x \ge 1 \} 
 \longleftrightarrow 
 \{ y \cdot x = \frac{n!}{(x-1)!} \land x - 1 \ge 0 \} 
                  y := y * x;
                 \{y = \frac{n!}{(x-1)!} \land x - 1 \ge 0\}
                  x := x - 1
                  \{y = \frac{n!}{r!} \land x \ge 0\}
od
\{ y = \frac{n!}{x!} \land x \ge 0 \land x < 1 \}
```

Fahrplan zur Anwendung des Hoare-Kalküls

Muss gelten:
Aus
Vorbedingung
folgt
Nachbedingung
(RoC /
Äquivalenz)

Beweisführung meist rückwärts

 vom spezifizierten Ergebnis (post) die (möglichst schwächsten)
 Vorbedingungen ableiten

Vorgehensweise: Vom aktuellen Punkt aus gesehen nach oben arbeiten. Zwei Möglichkeiten:

- Darüber steht ein Programmausdruck
 - Regel anwenden
- Darüber steht eine Bedingung
 - Äquivalenz/RoC prüfen/ableiten
 - > Beweis schließen

Beispiele Vor-und Nachbedingungen

```
\{x = n \land y = m\} \{true\}

c:=0; sum:=0;

sum:=0;

while true do skip skip

od \{y = n \land x = m\} \{false\}
```

Sind die Vor-und Nachbedingungen für die gegebenen Programme korrekt?

Beispiele Vor-und Nachbedingungen

```
{x = n \land y = m}
                                    {true}
c:=0;
                                    c := 0;
sum:=0;
                                    sum:=0;
                                    while true do
while true do
    {true}
                                        {true}
    skip
                                        skip
                                    od
od
{false}
                                    {false}
{y = n \land x = m}
                                    {false}
```

Partiell sind die Programme korrekt - aber sie terminieren nicht!

Inhalt

Korrektheit

- Einführung Software-Qualität
- WHILE-Sprache
- Hoare-Kalkül
- Nachweis partieller Korrektheit
- Nachweis totaler Korrektheit
- Tool Support

Totale Korrektheit

Ein Programm S ist **total korrekt** bzgl. Vorbedingung P und Nachbedingung Q, wenn es partiell korrekt ist und **immer terminiert**

$$\frac{\{B \land I \land (t = m)\} S \{I \land (t < m)\}, \quad I \land B \Rightarrow t \ge 0}{\{I\} \textit{ while } B \textit{ do } S \textit{ od } \{\neg B \land I\}}$$

Finde für jede Schleife eine Terminierungsfunktion $t(...) \mapsto \mathbb{N}$, so dass

- 1. $I \wedge B \Rightarrow t \geq 0$ Zu Beginn des Schleifenrumpfes ist t immer positiv, aber...
- 2. $\{B \land I \land (t = m)\} S \{I \land (t < m)\}$...nimmt in jedem Durchlauf ab

Wenn eine solche Terminierungsfunktion (auch: **Schleifenvariante**) für jede Schleife gefunden werden kann, **dann** ist die totale Korrektheit bewiesen

$$\{ x = n \land n \ge 0 \}$$

$$\rightarrow$$

$$\{ 1 = \frac{n!}{x!} \land x \ge 0 \}$$

$$y := 1;$$

$$\{ y = \frac{n!}{x!} \land x \ge 0 \}$$

while x > 1 do

$$\{ y = \frac{n!}{x!} \land x \ge 0 \land x \ge 1 \}$$

$$\longleftrightarrow$$

$$\{ y \cdot x = \frac{n!}{(x-1)!} \land x - 1 \ge 0 \}$$

$$y := y * x;$$

$$\{ y = \frac{n!}{(x-1)!} \land x - 1 \ge 0 \}$$

$$x := x - 1$$

$$\{ y = \frac{n!}{x!} \land x \ge 0 \}$$

Wie könnte eine Terminierungsfunktion zum Nachweis der totalen Korrektheit aussehen?

Die Schleife zählt den Wert von x runter und terminiert bei x = 0.

Mögliche Terminierungsfunktion: t(x) = x

od

$$\{ y = \frac{n!}{x!} \land x \ge 0 \land x < 1 \}$$

$$\{ y = n! \}$$

```
\{x = n \land n \ge 0\}
\{1 = \frac{n!}{r!} \land x \ge 0\}
y := 1;
\{y = \frac{n!}{r!} \land x \ge 0\}
while x > 1 do
                 \{ y = \frac{n!}{x!} \land x \ge 0 \land x \ge 1 \}
\longleftrightarrow
\{ y \cdot x = \frac{n!}{(x-1)!} \land x - 1 \ge 0 \}
                  y := y * x;
                  \{y = \frac{n!}{(x-1)!} \land x - 1 \ge 0\}
                  x := x - 1
                  \{y = \frac{n!}{r!} \land x \ge 0\}
od
\{y = \frac{n!}{x!} \land x \ge 0 \land x < 1\}
```

Mögliche Terminierungsfunktion: t(x) = x

Erster Teil des Beweises:

 $I \wedge B \Rightarrow t \geq 0$

```
\{x = n \land n \ge 0\}
\{1 = \frac{n!}{x!} \land x \ge 0\}
y := 1;
\{y = \frac{n!}{r!} \land x \ge 0\}
while x > 1 do
                 \{ y = \frac{n!}{x!} \land x \ge 0 \land x \ge 1 \}
\longleftrightarrow
\{ y \cdot x = \frac{n!}{(x-1)!} \land x - 1 \ge 0 \}
                   v := v * x;
                  \{y = \frac{n!}{(x-1)!} \land x - 1 \ge 0\}
                   x := x - 1
                   \{y = \frac{n!}{r!} \land x \ge 0\}
od
\{ y = \frac{n!}{x!} \land x \ge 0 \land x < 1 \}
```

Mögliche Terminierungsfunktion:

$$t(x) = x$$

Erster Teil des Beweises:

$$\{ y = \frac{n!}{x!} \land x \ge 0 \land x \ge 1 \} \Rightarrow x \ge 0$$

OK

while $x \ge 1$ do

$$\left\{ y = \frac{n!}{x!} \land x \ge 0 \land x \ge 1 \land x = m \right\}$$

$$\left\{ y \cdot x = \frac{n!}{(x-1)!} \land x - 1 \ge 0 \land \right.$$

$$y := y * x;$$

$$\left\{ y = \frac{n!}{(x-1)!} \land x - 1 \ge 0 \land \right.$$

$$x := x - 1$$

$$\left\{ y = \frac{n!}{x!} \land x \ge 0 \land x < m \right\}$$

Mögliche Terminierungsfunktion: t(x) = x

Erster Teil des Beweises:

$$\{ y = \frac{n!}{x!} \land x \ge 0 \land x \ge 1 \} \Rightarrow x \ge 0$$

Zweiter Teil des Beweises:

$${B \wedge I \wedge (t = m)} S {I \wedge (t < m)}$$

while $x \ge 1$ do

$$\{ y = \frac{n!}{x!} \land x \ge 0 \land x \ge 1 \land x = m \}$$

$$\{ y \cdot x = \frac{n!}{(x-1)!} \land x - 1 \ge 0 \land x - 1 < m \}$$

$$y := y * x;$$

$$\{ y = \frac{n!}{(x-1)!} \land x - 1 \ge 0 \land x - 1 < m \}$$

$$x := x - 1 \qquad \text{Ersetzungsaxiom}$$

$$\{ y = \frac{n!}{x!} \land x \ge 0 \land x < m \}$$

Mögliche Terminierungsfunktion: t(x) = x

Erster Teil des Beweises:

$$\{ y = \frac{n!}{x!} \land x \ge 0 \land x \ge 1 \} \Rightarrow x \ge 0$$

Zweiter Teil des Beweises:

$${B \wedge I \wedge (t = m)} S {I \wedge (t < m)}$$

while
$$x \ge 1$$
 do
$$x = m \Rightarrow x - 1 < m$$

$$\begin{cases} y = \frac{n!}{x!} \land x \ge 0 \land x \ge 1 \land x = m \} \\ \Rightarrow \\ \{ y \cdot x = \frac{n!}{(x-1)!} \land x - 1 \ge 0 \land x - 1 < m \} \end{cases}$$

$$y := y * x;$$

$$\begin{cases} y = \frac{n!}{(x-1)!} \land x - 1 \ge 0 \land x - 1 < m \} \\ x := x - 1 \end{cases}$$

$$\{ y = \frac{n!}{x!} \land x \ge 0 \land x < m \}$$

od

Mögliche Terminierungsfunktion: t(x) = x

Erster Teil des Beweises:

$$\{ y = \frac{n!}{x!} \land x \ge 0 \land x \ge 1 \} \Rightarrow x \ge 0$$

Zweiter Teil des Beweises:

$${B \wedge I \wedge (t = m)} S {I \wedge (t < m)}$$

Inhalt

Korrektheit

- Einführung Software-Qualität
- WHILE-Sprache
- Hoare-Kalkül
- Nachweis partieller Korrektheit
- Nachweis totaler Korrektheit
- Tool Support

Tool Support

- Viele Werkzeuge zur Programmverifikation basieren auf dem Hoare-Kalkül
- Einfache Regeln müssen dann nicht mehr von Hand ausgeführt werden
- Invarianten sind jedoch in der Regel schwer zu finden und können nicht immer automatisch bestimmt werden

"Verifikation von C-Programmen in der Praxis" Inf und TI Master, 3 LP, jedes SoSe: Infos über *sese.tu-berlin.de* oder direkt *168200*

Beispiel-Werkzeuge

- VCC: Verifying C Compiler von Microsoft Research
- KeY: Integrated Deductive Software Design < key-project.org

KeY

Kooperation vom KIT und der TU Darmstadt

Berechnet Beweisverpflichtungen aus Java-Programmen und JML

- Basiert auf einem erweiterten Hoare-Kalkül mit Zustandsveränderungen
- Ermöglicht symbolische Ausführung von JAVA Code
- Erzeugt automatisch Gegenbeispiele und Testfälle

Wurde unter anderem verwendet um einen Fehler in JAVAs Sortieralgorithmus nachweisen

Als Plug-In für Eclipse erhältlich http://www.key-project.org/download/

```
/*@
    public normal_behavior
@ requires true;
@ ensures \result == (unsuccessfulOperations<=3);
@ assignable \nothing;
@*/
public /*@pure@*/ boolean isValid() {
    if (unsuccessfulOperations<=3) {
        return true;
    } else {
        return false;
    }
}</pre>
```

Zusammenfassung Hoare Kalkül

- Unterscheidet partielle versus totale Korrektheit
- Definiert durch logische Kalküle
- Beschreibt nicht notwendigerweise die vollständige Semantik, sondern eventuell nur Ausschnitte davon
- Damit können Beweise für relevante Eigenschaften vereinfacht werden
- Tool support z.B. mit KeY oder dem VCC
- Ermöglicht den Nachweis, dass eine Java Methode eine OCL Spezifikation auch tatsächlich umsetzt

Lernziele

☐ Wie lässt sich die Korrektheit einer Implementierung nachweisen?
☐ Was versteht man unter einem Hoare-Tripel?
☐ Welche Axiome gibt es im Hoare-Kalkül für die WHILE-Sprache?
☐ Wie lassen sich komplexere Terme zerlegen?
☐ Welche Inferenzregeln gibt es für die WHILE-Sprache?
☐ Was versteht man unter einer Schleifeninvariante und wofür wird sie benötigt?
☐ Was versteht man unter der Rule of Consequence?
☐ Was ist der unterschied zwischen partieller und totaler Korrektheit?
☐ Wie lässt sich totale Korrektheit nachweisen?
☐ Was versteht man unter einer Terminierungsfunktion?
☐ Was muss für sie gelten um totale Korrektheit nachzuweisen?