第六次作业参考答案

By 梁文艺 朱映

第六次作业最大问题:

- 1. 看清题目, 要求用直接证明+演绎定理, 就不能只写一种;
- 2. 演绎定理、反证法等运用时要说明清楚
- 1. 分别利用直接证明(即根据"证明"的定义,基于三个公理、 Γ 及 MP 规则进行证明)和演绎定理写出下面的证明过程(注明证明依据) $\Gamma=\{p,(q o(p o r))\}$,证明 $\Gamma\vdash(q o r)$

直接证明:

(1)
$$p$$
 假定 (2) $p \to (q \to p)$ (L1) 肯定后件律 (3) $q \to p$ (1), (2) MP (4) $q \to (p \to r)$ 假定 (5) $(q \to (p \to r)) \to ((q \to p) \to (q \to r))$ (L2) 蕴涵分配律 (6) $(q \to p) \to (q \to r)$ (4), (5) MP (7) $q \to r$ (3), (6) MP

由演绎定理,只需证明: $\Gamma \cup \{q\} \vdash r$

(1)
$$q$$
 假定

 (2) $q \rightarrow (p \rightarrow r)$
 假定

 (3) $p \rightarrow r$
 (1), (2) MP

 (4) p
 假定

 (5) r
 (4), (5) MP

原式得证。

1. 证明下列定理 (注明证明依据)。

$$egin{aligned} & 1.dash (q o p) o (
eg p o
eg q) \ & 2.dash
eg (p o q) o (q o p) \ & 3.dash ((p o q) o p) o p \ & 4.dash (p o q) o ((
eg p o q) o q) \ & 4.dash (p o q) o (p o q) o q) \end{aligned}$$

答:

1. 证明:根据演绎定理,只用证明 $\{q o p\} \vdash \neg p o \neg q$

(1)¬¬
$$q \rightarrow q$$
 双重否定律
(2) $q \rightarrow p$ 假定
(3)¬¬ $q \rightarrow p$ (1), (2) HS
(4) $p \rightarrow \neg \neg p$ 第二双重否定律
(5)¬¬ $q \rightarrow \neg \neg p$ (3), (4) HS
(6)(¬¬ $q \rightarrow \neg \neg p$) → (¬ $p \rightarrow \neg q$) (L3) 换位律
(7)¬ $p \rightarrow \neg q$ (5), (6) MP

得证。

2. 证明:根据演绎定理,只用证明 $\{\neg(p o q)\} \vdash q o p$

 $(1)\neg(p \to q)$ 假定 (2)
eg(p o q) o ((p o q) o p)否定前件律 (3)(p o q) o p(1), (2) MP $(4) \neg p
ightarrow (p
ightarrow q)$ 否定前件律 $(5) \neg p
ightarrow p$ (3), (4) HS $(6)(\neg p \rightarrow p) \rightarrow p$ 否定肯定律 (7)p(5), (6) HS(8)p
ightarrow (q
ightarrow p)(L1) 肯定后件率 (7), (8) MP(9)q o p

得证

3. 证明:根据演绎定理,只用证明 $\{(p \rightarrow q) \rightarrow p\} \vdash p$

 $(1)(p \to q) \to p$ 假定 $(2)\neg p \to (p \to q)$ 否定前件律 $(3)\neg p \to p$ (1), (2) HS $(4)(\neg p \to p) \to p$ 否定肯定律 (5)p (3), (4) MP

得证

4. 证明:根据演绎定理,只用证明 $\{p \to q\} \vdash (\neg p \to q) \to q$ 再次使用演绎定理,只用证明 $\{p \to q, \neg p \to q\} \vdash q$

 $(1)p \rightarrow q$ 假定 $(2)(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$ 換位律 $(3)\neg q \rightarrow \neg p$ (1), (2) MP $(4)\neg p \rightarrow q$ 假定 $(5)\neg q \rightarrow q$ (3), (4) HS $(6)(\neg q \rightarrow q) \rightarrow q$ 否定肯定律 (7)q (5), (6) MP

得证

3. 不用公理 L3(目前反证律的证明过程中间接地使用了 L3),尝试利用归谬律和双重否定律 $(\vdash \neg \neg p \to p)$ 推出反证律。

证明:由反证律前提,我们有:

- (1) $\Gamma \cup \{\neg p\} \vdash q$
- (2) $\Gamma \cup \{\neg p\} \vdash \neg q$

由归谬律可得:

 $\Gamma \vdash \neg \neg p$

即存在 $\neg \neg p$ 从 Γ 的证明:

于是我们有 $\Gamma \vdash p$, 反证律得证。