CSCA67 Tutorial, Week 3*

September 14, 2017

0.1 LOGICAL EQUIVALENCE

Two statements are LOGICALLY EQUIVALENT if they have the same truth table - that is, given the same combination of truth values for their constituent statements, they both have the same truth value.

For example, using truth tables, we can demonstrate that p and $\neg\neg p$ are logically equivalent:

$$\begin{array}{c|cccc} p & p & \neg p & \neg \neg p \\ \hline T & T & F & T \\ F & F & T & F \end{array}$$

Likewise, we can demonstrate that $\neg y \land (y \lor x)$ and $\neg y \land x$ are logically equivalent:

\boldsymbol{x}	y	$\neg y$	$y \vee x$	$\neg y \land (y \lor x)$	$\neg y \wedge x$
Τ	Τ	F	Τ	F	F
\mathbf{T}	\mathbf{F}	Γ	${ m T}$	T	T
\mathbf{F}	\mathbf{T}	F	${ m T}$	\mathbf{F}	F
\mathbf{F}	\mathbf{F}	Γ	\mathbf{F}	\mathbf{F}	F

Q: Show that $(a \lor b) \land \neg (a \land b)$ is logically equivalent to $a \leftrightarrow \neg b$ using truth tables.

Using the method discussed last week, we construct a truth table for each of the statements. (The truth table shown below merges the two truth tables into one.)

a	b	$a \wedge b$	$\neg (a \wedge b)$	$a \lor b$	$(a \lor b) \land \neg (a \land b)$	$ \neg b$	$a \leftrightarrow \neg b$
\overline{T}	Τ	Т	F	Т	F	F	F
${ m T}$	\mathbf{F}	F	Γ	T	T	T	Т
\mathbf{F}	${\rm T}$	F	T	Т	T	F	Т
\mathbf{F}	\mathbf{F}	F	T	F	F	Γ	F

We have shown that the truth table for $(a \lor b) \land \neg (a \land b)$ and the truth table for $a \leftrightarrow \neg b$ are identical (the truth value of two statements is the same, given the same combination of truth values of a and b). Thus, the two statements are logically equivalent.

0.2 Using Venn Diagrams

We can consider any statement a to be the statement " $x \in A$ ", where A is a set and x is an element.

Then, if we draw a Venn diagram containing A, a is true at every location in the diagram where an element x at that location is in A. a is false everywhere else.

^{*}Compiled by G. Singh Cadieux

Q: Shade the region(s) where each of the following is true: $\neg a$, $\neg a \lor a$, $\neg a \land a$.

NOTICE that $\neg a \lor a$ is true for every region in the diagram. This is because, regardless of the truth value of a (or of its constituent statements), $\neg a \lor a$ is always true. This type of statement is known as a tautology.

Notice also that $\neg a \land a$ is false for every region in the diagram. This is because, regardless of the truth value of a (or of its constituent statements), $\neg a \land a$ is always false. This type of statement is known as a contradiction.

We follow the same process to represent a statement with multiple constituent statements. For example, to create a Venn diagram representing $a \wedge b$, we let a be the statement " $x \in A$ " and b be the statement " $x \in B$ ", where A and B are sets and x is an element. Then

Q: Shade the region(s) where $a \rightarrow b$ is false.

 $x \in A$ but $x \notin B$

NOTICE that this region is the region in which a is true but b is false. Everywhere else (that is, for every other combination of truth values for a and b), the implication is true.

Q. Shade the regions of a Venn diagram where each of the following statements is true:

1. $p \rightarrow \neg q$ Regions: 1, 2, 4

2. $p \leftrightarrow \neg (q \wedge r)$ Regions: 3, 7 2, 5

3. $(p \rightarrow q) \rightarrow r$.

Regions: 2, 5, 6, 7 8

4. Construct an equivalent statement using only \wedge , \vee , and/or \neg using the equivalence rules from class. Soln.

$$(p \to q) \to r \quad \Leftrightarrow \quad \neg(p \to q) \lor r \quad (\to \text{ Law})$$

$$\Leftrightarrow \quad \neg(\neg p \lor q) \lor r \quad (\to \text{ Law})$$

$$(2)$$

$$\Leftrightarrow \neg(\neg p \lor q) \lor r \quad (\to \text{ Law})$$
 (2)

$$\Leftrightarrow (p \land \neg q) \lor r \quad (DeMorgan)$$
 (3)

(4)

For fun!

There are 3 boxes A, B, C. Exactly one contains gold.

Each box has a message on top, but only one of the messages is true.

Box C: Gold is in box A. Box A: Gold is not in this box. Box B: Gold is not in this box.

Which box contains the gold?