

Al plays checkers

Introduction

 Create an Al bot that can play Checkers against other bots or real players.

 Create and interface for playing against the AI or see how two AI bots can play against each other.

Methodology

· Create a checkers game and board using the python module pygame.

• Use the algorithm Minimax programmed in python 3.9.16 to decide the movements of the Al.

Optimize the algorithm Minimax using Alpha-Beta prunning

Methodology: Pygame

- Graphics Rendering
- Input Handling
- Event Management
- Animation and Effects
- Sound and Music

- User Interface (UI)
- Game Logic and State Management
- Al Integration
- Customization and Styling
- Cross-Platform Compatibility

Methodology: Minimax algorithm

- Objective
- Two-Player, Zero-Sum Games
- Recursive Approach
- Maximizing and Minimizing

- Depth-Limited Search
- Challenges and Considerations
- Evaluation Function
- Backpropagation

Methodology: Minimax algorithm

Evaluation function:

Max_player pieces - Min_player pieces + (Max_player kings * 0.5 - Min_player kings * 0.5)

Methodology: Alpha-Beta pruning

- Optimization Objective
- Node Evaluation Order
- Alpha and Beta Values
- Pruning Conditions
- Maximizing Player (Alpha)

- Minimizing Player (Beta)
- Efficiency Gain
- Depth-First Search:
- Impact on Complexity

Methodology: Alpha-Beta pruning

Methodology: Repository structure

- Code Organization and Readability
 Version Control and History
- Modularity and Reusability
- Collaboration and Teamwork
- Ease of Maintenance
- Scalability

- Documentation
- Testing and Quality Assurance
- Reduced Technical Debt

The game

Possible Extensions

- Deep Reinforcement Learning (DRL)
- Monte Carlo Tree Search (MCTS)
- Ensemble Learning
- Dynamic Learning Rates
- Curriculum Learning
- Hierarchical Reinforcement Learning

- Reward Shaping
- Exploration Strategies
- Adversarial Training
- Human-AI Collaboration
- Visual Recognition
- Multi-Agent Learning
- Real-Time Learning

Thank you for your attention