Computational Intelligence Master in Artificial Intelligence 2023-24

Introduction to Evolution Strategies

Lluís A. Belanche

The nozzle experiment (I)

device for clamping nozzle parts

collection of conical nozzle parts

The nozzle experiment (II)

Hans-Paul Schwefel while changing nozzle parts

The nozzle experiment (III)

the nozzle in operation ...

... while measuring degree of efficiency

The nozzle experiment (IV)

J. Klockgether and H.-P. Schwefel, "Two-phase nozzle and hollow core jet experiments". Proceedings of the 11th Symposium on Engineering Aspects of Magneto-Hydrodynamics, Caltech, Pasadena, California, USA, 1970.

The Gaussian Distribution

A continuous *d*-variate random vector $\mathbf{X} = (X_1, \dots, X_d)^T$ is **normally distributed**, written $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, when its joint *pdf* is:

$$p(\mathbf{x}) = rac{1}{(2\pi)^{rac{d}{2}}|\Sigma|^{rac{1}{2}}} \exp\left\{-rac{1}{2}(\mathbf{x}-oldsymbol{\mu})^{\mathrm{T}}\Sigma^{-1}(\mathbf{x}-oldsymbol{\mu})
ight\}$$

where μ is the <u>mean vector</u> and $\Sigma_{d\times d}=(\sigma_{ij}^2)$ is the (real symmetric and p.d.) <u>covariance matrix</u>.

- ullet $\mathbb{E}[oldsymbol{X}] = oldsymbol{\mu} \quad ext{and} \quad \mathbb{E}[(oldsymbol{X} oldsymbol{\mu})(oldsymbol{X} oldsymbol{\mu})^{ ext{T}}] = \Sigma.$
- $\bullet \; \mathit{CoVar}[X_i, X_j] = \sigma_{ij}^2 \quad \text{and} \; \; \mathit{Var}[X_i] = \sigma_{ii}^2$

if $m{X} \sim N(m{\mu}, \Sigma)$, then X_i, X_j are independent \iff $CoVar[X_i, X_j] = 0$ (in general, only the left-to-right implication holds)

The Gaussian Distribution (d = 2)

The Gaussian Distribution (d = 2)

Observations from a bivariate normal distribution, a contour ellipsoid, the two $\underline{\text{marginal}}$ distributions, and their histograms (all images from the Wikipedia)

Linear algebra point of view (d = 2)

- The principal directions (a.k.a. PCs) of the hyperellipsoids are given by the eigenvectors u_i of Σ , which satisfy $\Sigma u_i = \lambda_i u_i$.
- The lengths of the hyperellipsoids along these axes are proportional to $\sqrt{\lambda_i}$ (note $\lambda_i > 0$), where λ_i are the eigenvalues associated with \boldsymbol{u}_i .

Conceptual view

- What is behind the choice of a multivariate Gaussian?
 Examples from a class are noisy versions of an ideal class member (a prototype):
 - Prototype: modeled by the mean vector
 - Noise: modeled by the covariance matrix
- The quantity

$$d(\mathbf{x}) := \sqrt{(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})}$$

is called the **Mahalanobis distance** for x

• Very important! the number of parameters is $\frac{d(d+1)}{2} + d$

Mathematical view

Positive definiteness

For a Gaussian distribution to be well-defined, Σ has to be real symmetric and positive definite (p.d.):

- for all non-null vectors $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{x}^T \Sigma \mathbf{x} > 0$ must hold true.
- alt., all eigenvalues must be positive (note they are real)

Examples: are these matrices p.d.?

$$a. \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \qquad b. \left(\begin{array}{cc} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{array}\right)$$

$$c. \left(\begin{array}{cc} 3 & -1 \\ -1 & 2 \end{array}\right) \qquad d. \left(\begin{array}{cc} 1 & 4 \\ \frac{1}{2} & 1 \end{array}\right)$$

- a. YES; b. YES

Mathematical view

Positive definiteness

For a Gaussian distribution to be well-defined, Σ has to be real symmetric and positive definite (p.d.):

- for all non-null vectors $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{x}^T \Sigma \mathbf{x} > 0$ must hold true.
- alt., all eigenvalues must be positive (note they are real)

Examples: are these matrices p.d.?

$$a. \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \qquad b. \left(\begin{array}{cc} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{array}\right)$$

$$c. \left(\begin{array}{cc} 3 & -1 \\ -1 & 2 \end{array}\right) \qquad d. \left(\begin{array}{cc} 1 & 4 \\ \frac{1}{2} & 1 \end{array}\right)$$

- a. YES; b. YES
- c. YES; d. NO

Mathematical view

a.
$$z_1^2 + z_2^2$$
;

b.
$$z_1^2 + z_1 z_2 + z_2^2$$
;

b.
$$z_1^2 + z_1 z_2 + z_2^2$$
; d. $z_1^2 + \frac{9}{2} z_1 z_2 + z_2^2$

Evolution Strategies: main characteristics

- Continuous search space \mathbb{R}^n (*n* **objective** parameters)
- Various ad hoc recombination operators
- Deterministic (μ, λ) -replacement
- ullet Generation of an offspring surplus: $\lambda\gg\mu$
- Emphasis on mutation: n-dimensional Gaussian
- Self-adaptation of mutation parameters (first self-adaptive EA!)

Evolution Strategies: Representation

Recall the notation:

$$(\mu/\rho,\lambda)$$
 – ES

The three parts of an individual

- **1** object variables $x \in \mathbb{R}^n$ to compute fitness F(x)
- **2** standard deviations $\sigma \in \mathbb{R}^{n_\sigma}_+$ to express variances
- $oldsymbol{\circ}$ rotation angles $\alpha \in (-\pi,\pi]^{n_{lpha}}$ to express covariances (all Gaussians are zero mean)

Simple self-adaptive Mutation

$$n_{\sigma}=1, n_{lpha}=0$$
 (one mutation parameter per individual)

$$\sigma := \sigma \cdot \exp(\mathcal{N}(0, \tau_0))$$

For
$$i \in \{1, 2, ..., n\}$$

1
$$x_i := x_i + \mathcal{N}_i(0, \sigma^2)$$

where

$$au_0 \propto rac{1}{n}$$

Diagonal self-adaptive Mutation

$$n_{\sigma}=n, n_{\alpha}=0$$

(one mutation parameter per individual and variable)

For
$$i \in \{1, 2, ..., n_{\sigma}\}$$

For
$$i \in \{1, 2, ..., n\}$$

$$x_i := x_i + \mathcal{N}_i(0, \sigma_i^2)$$

where

$$au \propto rac{1}{2\sqrt{n}}$$
 $au' \propto rac{1}{2n}$

Correlated self-adaptive Mutation

$$n_{\sigma}=n, n_{\alpha}=\left(n-\frac{n_{\sigma}}{2}\right)\left(n_{\sigma}-1\right)$$
 (one covariance matrix per individual, represented by a collection of n_{α} rotation angles)

For *i* ∈ $\{1, 2, ..., n_{\sigma}\}$

$$\bullet \ \sigma_i := \sigma_i \cdot \exp(\mathcal{N}(0, \tau') + \mathcal{N}_i(0, \tau)), \ \tau \propto \frac{1}{2\sqrt{n}}, \tau' \propto \frac{1}{2n}$$

For $i \in \{1, 2, ..., n_{\alpha}\}$

Build Σ using the σ and α for individual ${\it x}$ and then

$$\mathbf{x} := \mathbf{x} + \mathcal{N}(0, \Sigma)$$

Theorem (Rudolph 1992)

A real symmetric matrix $\Sigma_{n\times n}$ is p.d. iff it can be decomposed as $\Sigma=(ST)^{\mathrm{T}}(ST)$, with T orthogonal and S diagonal with $s_{ii}>0$ and:

$$T:=\prod_{i=1}^{n-1}\prod_{j=i+1}^n T_{ij}(\alpha_{f(i,j)})$$

- T is the product of $\frac{n(n-1)}{2}$ elementary rotation matrices T_{ij} .
- $\alpha_{f(i,j)}$ are the rotation angles (between axes i and j), represented in the chromosomic vector in position f(i,j).
- $T_{ij}(\alpha_{f(i,j)})$ is built as the identity matrix and modified as:

$$r_{ii} = r_{jj} := cos(\alpha_{f(i,j)})$$

 $r_{ij} = -r_{ji} := -sin(\alpha_{f(i,j)}), i \neq j$

- The dummy function f(i,j) is used to index the vector of self-adaptive parameters (angles) α , using a single index.
- As a consequence, a total of $\frac{n(n+1)}{2}$ angles and scaling parameters are sufficient to generate arbitrary correlated Normal random vectors with 0 mean and covariance matrix $\Sigma = (ST)^{\top}(ST)$ via:

$$x := x + Tz$$

with $\mathbf{z} \sim \mathcal{N}(0, S)$ and $S = \operatorname{diag}(\sigma_1^2, \dots, \sigma_{n_\sigma}^2)$.

Evolution Strategies: log-normal mutation for the σ_i

Log-normal distribution

It is a continuous probability distribution whose logarithm is normally distributed. A random variable which is log-normally distributed takes only positive real values.

$$\sigma_i := \sigma_i \cdot \exp(\mathcal{N}(0, \tau'))$$

- Multiplication by positive values preserves positivity
- ② $Pr\{X = x\} = Pr\{X = \frac{1}{x}\}, x > 0$
- Small modifications are more probable than larger ones

Evolution Strategies: recombination (I)

- Usually introduced as the first operator (before mutation)
- Generates an intermediate population size of λ by generating one individual at a time out of ρ parents by looping $\lambda\gg\mu$ times (generation of a **surplus**)
- Typically $\rho=2$ (dual) or $\rho=\mu$ (global recombination):
 - dual: the two parents are chosen at random, per individual
 - global: one parent is held fixed and the other is chosen anew per each gene
- Applied to both objective and strategy parameters (and often differently)
- Two basic ways: choose randomly (discrete) and average (intermediate)

Evolution Strategies: recombination (II)

Recombination example

- $\mu=6, n=5, n_{\sigma}=n, n_{\alpha}=0$ (one mutation parameter per individual and gene)
- dual discrete recombination on x_i ; global intermediate on σ_i (first parent held fixed, second chosen anew)

Evolution Strategies: replacement

- Strictly deterministic, rank-based
- ullet The μ best are treated equally
- (μ, λ) selection:
 - offspring surplus $\lambda \gg \mu$
 - important (necessary?) for self-adaptation
 - useful for moving optima, noisy F, ...
- ⇒ Very strong selective pressure

Evolution Strategies: summary

The crucial claim (Schwefel '87 '92)

Self-adaptation of strategy parameters works!

- without exogenous or centralized control
- needs mutation of all parameters
- ullet needs generation of a surplus and (μ, λ) replacement
- needs recombination of all parameters

default (recommended) settings:

- $\lambda \propto 7\mu$; historically ($\mu = 7, \lambda = 105$)
- dual discrete recombination on objective parameters
- global intermediate on strategy parameters

Evolution Strategies: demos

Prof. Dr. Ingo Rechenberg

https://web.archive.org/web/20180425010001/http://www.bionik.tu-berlin.de/institut/xstart.htm

Evolution Strategies: Modern developments

The CMA-ES (Covariance Matrix Adaptation Evolution Strategy, by N. Hansen) is the more recent development of ESs:

- Uses a more sophisticated method to update the covariance matrix, particularly useful if the fitness function is complex.
- Learns a second order model of the underlying function (similar to the approximation of the inverse Hessian matrix in quasi-Newton methods, used for example in neural networks).

Resources:

- www.cmap.polytechnique.fr/~nikolaus.hansen/ cma-es.github.io/index.html arxiv.org/pdf/1604.00772.pdf
- C, C++, Java, Matlab, Octave, Python, Scilab cma-es.github.io/cmaes_sourcecode_page.html
- Julia github.com/bionik-berlin/PURE_ES
- R packages {rCMA, cmaes, adagio, parma}
- Python github.com/CMA-ES/pycma
- Tensorflow 2 pypi.org/project/cma-es/