- 2.1 Without experimental data we cannot answer this question. The order of reaction need not match the stoichiometry, and often doesn't
- 2.3 Why should the way you write the stoichiometry affect the vate of reaction? The rate expression remains unchanged.

2.5
$$r_R = -2r_A = -\frac{2}{3}r_B$$
 or $-r_A = -\frac{1}{3}r_B = \frac{1}{3}r_R$

2.7a) We are given $\frac{dP_A}{dt} = k_p P_A^2$ $\frac{dP_A}{dt} = k_p P_A^2$ $\frac{dP_A}{dt} = k_p P_A^2$ $\frac{dP_A}{dt} = k_p P_A^2$

Balancing dimensions we find $k_p = 3.66 (atm)' (hr)^{-1} = a)$

b) For an ideal gas $p_AV = n_ART$ or $p_A = C_ART$ Thus $-\frac{dp_A}{dt} = 3.66 p_A^2$... becomes ... $-\frac{d(C_ART)}{dt} = 3.66 (C_ART)^2$ or $-\frac{dC_A}{dt} = \left[3.66 \left(at_m\right)^- h_r^-\right]RT C_A^2$

new rate constant = &

where $k' = 3.66 \frac{1}{a \text{ lm} \cdot \text{hr}} \cdot \frac{(1 \text{ atm})(22.4 \text{ l})}{(1 \text{ mol})(273 \text{ k})} \cdot (400 \text{ k}) = 120 (\text{hr})^{-1} (\text{mol})^{-1}$

2.9 From Eq. 35 we write $\frac{k_{650}}{k_{500}} = e^{-\frac{E}{R}(\frac{1}{T_{650}} - \frac{1}{T_{500}})}$ $= e^{-\frac{300000}{0.314}(\frac{1}{923} - \frac{1}{773})}$ = 1971

.13				+×10 ⁻³	Days	In(Rate) = In(Jays)
			22.0	3-390	87	- 4.466
			23.4	3-374	85	-4.443
-4.3			26.3	3-341	74	-4.304
			24.3	3.364	78	-4.357
and the second s			21.1	3.400	90	-4.500
Hazilinosavinteritä		0	22.7	3.382	84	-4.431
In(Rate) -4.4		0		·		= -3392
in the second se			Q		= (339.	2)(8-314)
-4.5		and the same of th			= 285	2015/mol
	3.34	3.36	3.38 3	.40	= 28.	2 k5/mol

2.15
$$-r_A = kC_A^n = \frac{k(2c_A)^n}{kc_A^n} = 2^n$$
 so $n = 1.585$

steady state approximation

$$50 = k(2)^{a}(125)^{b}$$
 ---(i)

2.19a) Consider the mechanism
$$2A \stackrel{!}{=} A + A^*$$
 and let us find its $A^* \stackrel{3}{=} R + s$ rate expression.

For reactant A: -TA = K, [A]2 - R2 [A+][A](i) For intermediate: -1/4 = K, [A]2 - k2[A"][A] - k3[A"] = 0

Replacing (ii) in (i) so as to eliminate the unmeasurable A* gues $-\pi = \frac{k_1 k_2 [A]^2}{k_2 [A] + k_3} \qquad (iii)$

And when k2[A] > ks - TA = Rika [A] ... or first order rx (a)

b) Now at low enough C_A we may reach conditions where $k_2[A] \ll k_3$. In such a situation Eq. (iii) will reduce to

Hence lower CA more and more. This mechanism predicts that a point will be reached where the reaction order will start rising from one, and will approach and eventually become two.

2.21 Hypothesize:
$$X^* + O_X = X^* + H^+$$
 where X^* is an unstable intermediate

Then as in the example, pg 19, we write

Thus
$$[X^*] = \frac{k_1[H_3Po_2][H^+] + k_4[H_3Po_3]}{k_2[H^+] + k_3[O_X]}$$

Assuming ky = 0 (and we are certainly free to do this since this is our model, our brainchild), replacing (ii) in (i) then gives

$$r_{H_3PO_3} = \frac{k_1 k_3 [H_3PO_2][H^+][O_x]}{k_2 [H^+] + k_3 [O_x]}$$
 (iii)

Now when $k_3[0x] \gg k_2[H^{\dagger}]$... i.e. high oxidizer concentration, Eq. (iii) gives

On the other hand when & [H+] >> k3 [Ox] ... i.e. low oxidizer concentration Eq. (iii) gives

 $T_{H_3PO_3} = \frac{k_1 k_3}{k_2} [H_3PO_2][O_X]$ ----(v)

Eqs (iv) & (v) fit the evidence hence the hypothesized model is accepted.

2.23

A + E
$$\frac{1}{2}$$
 X - 0
X - R + E - 2
th
E = E + X - 3

M-M assume that the reverse reactions of @ approach equilibrium quickly, or

$$K = \frac{X}{AE} = \frac{k_1}{k_2} - \Theta$$
B-H assume that quickly

2,23 (continued) From (3)

For M.M

From (5)

Eliminate E with 3

Eq Tim @ gives

These equations give essentially the same result

For B-H

From (2)

From (5)

$$\frac{dX}{dt} = 0 = k_1 AE - (k_2 + k_3) X$$

Eliminate E with (2)

$$X = \frac{k_1 A E_0}{k_1 A + k_2 + k_3} - - 9$$

Eq 1 m@ gnes

TR = K3AE0

This is called the Michaelis constant, CM

Note: By careful analysis of careful experiments Chance, in J. Biol, Chem. 151 553 (1943) favors the Briggs-Haldane mechanism. Later evidence reinforces this choice. Thus we end up today with the so called Michaelis-Menten equation which is in fact the B-H modification of the M-M equation