Algorytmy numeryczne

Zadanie 4 Dawid Bińkuś & Oskar Bir & Mateusz Małecki grupa 1 tester-programista

13 Styczeń 2019

1 Aproksymacja

Sprawozdanie prezentuje analizę aproksymacji dla problemu określonego w zadaniu 3. W tym celu, zastosowana została aproksymacja dla metod testowanych w zadaniu 3:

- Metoda Gaussa (PG) wielomian 3-go stopnia,
- Metoda Gaussa z drobną optymalizacją dla macierzy rzadkich (SPG) wielomian 2-go stopnia,
- Metoda Gaussa-Seidela (GS) przy założonej dokładności 1e-10 wielomian 2-go stopnia,

Oraz dodatkowo:

• Metoda zaimplementowana w oparciu o macierze rzadkie (S) - wielomian 1 stopnia (wykonane za pomocą LUDecomposition z biblioteki Apache Commons Math¹)

2 Podział pracy

Dawid Bińkuś	Oskar Bir	Mateusz Małecki
Praca nad strukturą pro-	Analiza algorytmu Gaussa	Implementacja typu własnej
jektu.	oraz implementacja wariantu	precyzji
	G	
Przygotowanie sprawozdania	Przygotowanie testów i ich	Operacje na macierzach
	uruchomienie	
Implementacja algorytmu	Analiza danych oraz określe-	Praca nad strukturą pro-
Gaussa w wariantach PG i	nie czasu pracy typu Frac-	jektu
FG	tion	
Implementacja generycznej	Przygotowanie wykresów	Implementacja generycznej
klasy MyMatrix	końcowych	klasy MyMatrix

1

¹http://commons.apache.org/proper/commons-math/javadocs/api-3.6/overview-summary.html