# 中国科学技术大学计算机学院

# 计算机网络实验报告

# 实验三

利用 Wireshark 观察 http 报文

学 号: PB17111568

姓 名:郭雨轩

专 业: 计算机科学与技术

指导老师: 张信明

中国科学技术大学计算机学院 2019年11月30日

#### 一、 实验目的

- 1、捕获从计算机到远程服务器的大量TCP传输;
- 2、根据获得的跟踪结果对TCP传输机制作一些必要的分析,加深对TCP协议的理解;

### 二、 实验原理

Wireshark (前称 Ethereal) 是一个网络封包分析软件。网络封包分析软件的功能是抓取网络封包,并尽可能显示出最为详细的网络封包资料。Wireshark 使用 WinPCAP 作为接口,直接与网卡进行数据报文交换,监听共享网络上传送的数据包,并不能对其进行修改或者控制。

本实验使用 Wireshark 抓取 Chrome 浏览器的在访问网页时发送和接收的数据包,对其进行分析。

#### 三、 实验环境

软件: Windows10-64bit, Wireshark, Chrome.

硬件: Intel Corei5-7300HQ, NVIDIA GTX1050Ti, 16GiB RAM.

#### 四、 实验过程

- 1、Wireshark 安装
  - 1) 访问 wireshark.org 得到了 wireshark 安装包



- 2) 双击打开 wireshark 安装包即可完成安装
- 2、实验过程
  - 1) 问题一:

客户端 IP: 192.168.43.238

客户端端口号: Source Port: 56481

2) 问题二:

服务器 IP: 128.119.245.12

服务器端口号: Destination Port: 80

3) 问题三:

客户端 IP: 192.168.1.102

客户端端口号: Source Port: 1161

4) 问题四:

初始化连接的序列号: Sequence number: 0

哪部分决定是 SYN:

5) 问题五:

序列号: Sequence number: 0

ACK: Acknowledgment number: 1 , 根据客户端的序列号加 1 确定 哪部分决定是 SYN:

```
Flags: 0x012 (SYN, ACK)

000. ... = Reserved: Not set
...0 ... = Nonce: Not set
...0 ... = Congestion Window Reduced (CWR): Not set
...0 ... = ECN-Echo: Not set
...0 ... = Urgent: Not set
...1 ... = Acknowledgment: Set
...0 ... = Push: Not set
...0 ... = Reset: Not set
...0 ... = Syn: Set
...0 = Fin: Not set
```

6) 问题六

POST 序列号: Sequence number: 1

7) 问题七

| NO. | SEQ  | Send time | ACK time  | RTT       | E-RTT    |
|-----|------|-----------|-----------|-----------|----------|
| 1   | 1    | 0. 026477 | 0. 053937 | 0. 02746  | 0. 02746 |
| 2   | 566  | 0. 041737 | 0. 077294 | 0. 035557 | 0. 0285  |
| 3   | 2026 | 0. 054026 | 0. 124085 | 0. 070059 | 0. 0337  |
| 4   | 3486 | 0. 054690 | 0. 169118 | 0. 11443  | 0. 0438  |
| 5   | 4946 | 0. 077405 | 0. 217299 | 0. 13989  | 0. 0558  |
| 6   | 6406 | 0. 078157 | 0. 267802 | 0. 18964  | 0. 0725  |

8) 问题八

| I NO | Longeth  |
|------|----------|
| NO   | Length   |
| 1.0  | 20116011 |

| 1 | 565  |
|---|------|
| 2 | 1460 |
| 3 | 1460 |
| 4 | 1460 |
| 5 | 1460 |
| 6 | 1460 |

#### 9) 问题九

| No | ı.  | Time     | Source         | Destination    | Protocol | Length Info                                   |
|----|-----|----------|----------------|----------------|----------|-----------------------------------------------|
| 4  | - 1 | 0.000000 | 192.168.1.102  | 128.119.245.12 | TCP      | 62 1161 → 80 [SYN] Seq=0 Win=16384 Len=0 MSS: |
|    | 2   | 0.023172 | 128.119.245.12 | 192.168.1.102  | TCP      | 62 80 → 1161 [SYN, ACK] Seq=0 Ack=1 Win=5840  |

在整个发送过程中,只有在 No. 2 报文时的 Win 最小为 5480

#### 10) 问题十

没有,因为ACK单调递增

#### 11) 问题十一

一个 ACK 通常确认 1460 的数据,

| 78 1.758227 | 128.119.245.12 | 192.168.1.102 | TCP | 60 80 → 1161 [ACK] | Seq=1 Ack=52893 Win=62780 Len=0 |
|-------------|----------------|---------------|-----|--------------------|---------------------------------|
| 79 1.860063 | 128.119.245.12 | 192.168.1.102 | TCP | 60 80 → 1161 [ACK] | Seg=1 Ack=55813 Win=62780 Len=0 |

ACK 跨度为 2920, 正在压缩其他段。

#### 12) 问题十二

吞吐量 = (164091-1)/(5.45583-0.026477) = 30.222 (kB/s)

#### 13) 问题十三

Sequence Numbers (Stevens) for 192.168.1.102:1161  $\Rightarrow$  128.119.245.12:80



只在最开始的一小部分时慢启动,之后进入拥塞避免状态,发送速度一直平稳不变, 与课本上讲的有较大出入。

这个图与课本的出入在于, 当结束慢启动之后, 就一直维持恒定的发送速率进行发送, 不会有每过一个周期加1这个操作。

#### 14) 问题十四

Sequence Numbers (Stevens) for 192.168.43.238:60306  $\rightarrow$  128.119.245.12:80



在我的发送过程中,一直进行慢启动直到文件发送完成也没有结束慢启动。至少这个过程与课本上讲得慢启动基本一致,至于拥塞避免状态的行为和快速重传的行为则不确定。

## 五、 实验总结

#### 1) 实验收获:

- a) 我熟悉了 Wireshark 的使用, 学会了通过 Wireshark 的统计数据获得数据包发送的情况。
- b) 通过阅读 TCP 报文, 我对连接建立和拆除的行为有了更加直观的认识, 同时根据得到的统计图, 我对真实的 TCP 的行为也有了了解。