9. Übungsblatt

Upload: 27.06.2023.

Deadline: 04.07.2023, 10:00 Uhr (im Abgabeordner bei stud.ip).

Aufgabe 9.1 (3 + 3)

Überprüfen Sie, ob die Matrizen $A,B \in \mathbb{R}^{3\times 3}$ positiv definit, positiv semidefinit, negativ definit, negativ semidefinit oder indefinit sind:

(a)
$$A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
, (b) $B = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -1 & 2 \\ 0 & 2 & -5 \end{pmatrix}$.

Aufgabe 9.2 (2+4)

Berechnen Sie die Taylorpolyome zweiten Grades der folgenden Funktionen:

(a)
$$f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto x^2 + 3xy - y^2$$
 um den Entwicklungspunkt $\vec{x}_0 = (1,2)$.

(b)
$$g: \mathbb{R}^3 \to \mathbb{R}$$
, $(x, y, z) \mapsto e^{-z^2} \sin(x^2 + y^2)$ um den Entwicklungspunkt $\vec{x}_0 = (0, 0, 0)$.

Aufgabe 9.3 (3+3)

Finden und klassifizieren Sie alle lokalen Extrema der Funktionen

(a)
$$f: \mathbb{R}^3 \to \mathbb{R}, (x, y, z) \mapsto x^2y - y + 2z^3 - 3z^2 - 12z + 42,$$

(b)
$$g: \mathbb{R}^2 \to \mathbb{R}$$
, $(x,y) \mapsto (x^2+y^2)e^{-x^2-y^2}$.

Aufgabe 9.4 (6)

Seien $F \in C^3(\mathbb{R}^2; \mathbb{R})$, $x_0 \in \mathbb{R}^2$ mit $\nabla F(x_0) = \vec{0}$, $F''(x_0) \ge \lambda_1 > 0$, wobei $\lambda_1 > 0$ den kleinsten Eigenwert der Hesse-Matrix $F''(x_0)$ bei x_0 notiert, und

$$||F'''||_{\infty} = \sup \left\{ \left| \frac{\partial^3 F(x)}{\partial x_i \partial x_j \partial x_k} \right| \left| i, j, k \in \{1, 2\}, x \in \mathbb{R}^2 \right. \right\} < \infty.$$

Bestimmen Sie einen Radius r>0 in Abhängigkeit von λ_1 und $\|F'''\|_{\infty}$ so, dass

$$\forall x \in B_{eukl}(x_0, r) : F(x) - F(x_0) \ge \frac{\lambda_1}{4} ||x - x_0||_{eukl}^2$$

gilt.