

#### 题型: 无穷小量的比较

● 考试大纲要求:

| (9) ※※无穷小与无穷大的概念、性质及两者之间的关系;          | ☆☆ | ••  |
|---------------------------------------|----|-----|
| (10) ※※无穷小阶的比较方法,<br>※※※用等价无穷小代换法求极限; | 2  | • • |

#### ● 基础知识:

#### 1.关于无穷大与无穷小的概念

#### 2.无穷大和无穷小的关系

$$\frac{1}{0} = \infty, \qquad \frac{1}{\infty} = 0$$

## 题型: 无穷小量的比较

● 基础知识:

#### 3.无穷小的性质

- ① 无穷小+无穷小=无穷小
- ② 无穷小×无穷小=无穷小
- ③ 无穷小×有界函数=无穷小

# 请判断下面极限值:

$$(1) \lim_{x \to \infty} \frac{\sin \sqrt{x}}{\sqrt{x}} = 0$$

(2) 
$$\lim_{x \to \infty} \frac{2 \sin x + 3 \cos x}{x} = \frac{0}{1 + \frac{1}{2}}$$

(3) 
$$\lim_{x \to 0} x \cdot \sin \frac{1}{x} = 0$$

#### 题型: 无穷小量的比较

● 基础知识:

#### 4.两个无穷小量的比较

已知
$$\lim_{x \to \Delta} \alpha(x) = 0$$
,  $\lim_{x \to \Delta} \beta(x) = 0$ , 那么 
$$\lim_{x \to \Delta} \frac{\alpha(x)}{\beta(x)} = \begin{cases} 0 & \text{,} \quad \text{则称} \alpha(x) \text{是比} \beta(x) \textbf{高阶} \text{的无穷小} \\ \\ \infty & \text{,} \quad \text{则称} \alpha(x) \text{是比} \beta(x) \textbf{低阶} \text{的无穷小} \end{cases}$$
 
$$C(常数C \neq 1) & \text{,} \quad \text{则称} \alpha(x) \text{是与} \beta(x) \textbf{高阶} \text{的无穷小}$$
 
$$1 & \text{,} \quad \text{则称} \alpha(x) \text{是与} \beta(x) \textbf{等价} \text{的无穷小}, \quad \text{记为} \alpha(x) \sim \beta(x) \end{cases}$$

重点关注

#### 题型: 无穷小量的比较

● 基础知识:

## 4.两个无穷小量的比较

已知
$$\lim_{x \to \Delta} \alpha(x) = 0$$
,  $\lim_{x \to \Delta} \beta(x) = 0$ , 那么 
$$\lim_{x \to \Delta} \frac{\alpha(x)}{\beta(x)} = \begin{cases} 0 & \text{, 则称} \alpha(x) \text{是比} \beta(x) \textbf{高阶} \text{的无穷小} \\ \\ \infty & \text{, 则称} \alpha(x) \text{是比} \beta(x) \textbf{低阶} \text{的无穷小} \end{cases}$$
 
$$C(常数C \neq 1) & \text{, 则称} \alpha(x) \text{是与} \beta(x) \textbf{高阶} \text{的无穷小}$$
 
$$1 & \text{, 则称} \alpha(x) \text{是与} \beta(x) \textbf{等价} \text{的无穷小} , 记为 \alpha(x) \sim \beta(x) \end{cases}$$

## 5.常见等价无穷小 $(x \to 0$ 时)

 $\sin x \sim x$ ,  $\tan x \sim x$ ,  $\arcsin x \sim x$ ,  $\arctan x \sim x$ ,  $e^x - 1 \sim x$ ,  $\ln(1 + x) \sim x$ ,  $1 - \cos x \sim \frac{1}{2}x^2$ ,  $(1 + x)^a - 1 \sim ax$ 

重点关注

#### 典型例题

题型: 无穷小量的比较

# 填空:

- 1)  $\sin x \sim$  \_\_\_\_\_\_\_, 2)  $\arcsin x \sim$  \_\_\_\_\_\_
- 5)  $e^x 1 \sim$  \_\_\_\_\_\_, 6)  $\ln(1 + x) \sim$  \_\_\_\_\_

#### 知识储备

#### 5.常见等价无穷小 $(x \to 0$ 时)

 $\sin x \sim x$ ,  $\tan x \sim x$ ,  $\arcsin x \sim x$ ,  $\arctan x \sim x$ ,  $e^x - 1 \sim x$ ,  $\ln(1 + x) \sim x$ ,  $1 - \cos x \sim \frac{1}{2}x^2$ ,  $(1 + x)^a - 1 \sim ax$ 

典型例题

#### 题型: 无穷小量的比较

## 例题: 计算下列极限

(1) 
$$\lim_{x\to 0} \frac{\ln(1-2x)}{e^{3x}-1}$$

$$(2) \lim_{x\to 0} \frac{\tan x - \sin x}{x^3}$$

#### 知识储备

## 5.常见等价无穷小 $(x \to 0$ 时)

$$\sin x \sim x$$
,  $\tan x \sim x$ ,  
 $\arcsin x \sim x$ ,  $\arctan x \sim x$ ,  
 $e^x - 1 \sim x$ ,  $\ln(1 + x) \sim x$ ,  
 $1 - \cos x \sim \frac{1}{2}x^2$ ,  $(1 + x)^a - 1 \sim ax$ 

#### 6.等价无穷小替换定理

当
$$x \to \Delta$$
时,如果 $\alpha(x) \sim \alpha_1(x)$ , $\beta(x) \sim \beta_1(x)$ ,  
且 $\lim_{x \to \Delta} \frac{\alpha_1(x)}{\beta_1(x)}$ 存在,则  
$$\lim_{x \to \Delta} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to \Delta} \frac{\alpha_1(x)}{\beta_1(x)} = \lim_{x \to \Delta} \frac{\alpha(x)}{\beta_1(x)} = \lim_{x \to \Delta} \frac{\alpha_1(x)}{\beta(x)}$$

#### 典型例题

#### 题型: 无穷小量的比较

## 例题: 计算下列极限

(1) 
$$\lim_{x\to 0} \frac{\ln(1-2x)}{e^{3x}-1}$$

$$(2) \lim_{x\to 0} \frac{\tan x - \sin x}{x^3}$$

#### 替换定理使用注意:

$$\lim_{x \to \Delta} \frac{A(x) + \alpha(x)}{B(x) + \beta(x)} \neq \lim_{x \to \Delta} \frac{A(x) + \alpha_1(x)}{B(x) + \beta_1(x)}$$

$$\lim_{x \to \Delta} \frac{A(x) \cdot \alpha(x)}{B(x) \cdot \beta(x)} = \lim_{x \to \Delta} \frac{A(x) \cdot \alpha_1(x)}{B(x) \cdot \beta_1(x)} \quad \bigcirc$$

#### 知识储备

## 5.常见等价无穷小 $(x \to 0$ 时)

$$\sin x \sim x$$
,  $\tan x \sim x$ ,  
 $\arcsin x \sim x$ ,  $\arctan x \sim x$ ,  
 $e^x - 1 \sim x$ ,  $\ln(1 + x) \sim x$ ,  
 $1 - \cos x \sim \frac{1}{2}x^2$ ,  $(1 + x)^a - 1 \sim ax$ 

#### 6.等价无穷小替换定理

当 $x \to \Delta$ 时,如果 $\alpha(x) \sim \alpha_1(x)$ , $\beta(x) \sim \beta_1(x)$ , 且 $\lim_{x \to \Delta} \frac{\alpha_1(x)}{\beta_1(x)}$ 存在,则  $\lim_{x \to \Delta} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to \Delta} \frac{\alpha_1(x)}{\beta_1(x)} = \lim_{x \to \Delta} \frac{\alpha(x)}{\beta_1(x)} = \lim_{x \to \Delta} \frac{\alpha_1(x)}{\beta_1(x)}$ 

#### 典型例题

#### 题型: 无穷小量的比较

# 练习:

1)  $\lim_{x\to 0} \frac{3 \arctan x}{e^x-1}$ ,

 $2) \lim_{x\to 0} \frac{\sin 3x}{\ln(1+x)}$ 

3)  $\lim_{x\to 0} \frac{e^{x^2}-1}{1-\cos x}$ ,

4)  $\lim_{x \to 0} \frac{\ln(1+3x)}{\arcsin 2x}$ 

#### 知识储备

#### 5.常见等价无穷小 $(x \to 0$ 时)

$$\sin x \sim x$$
,  $\tan x \sim x$ ,  
 $\arcsin x \sim x$ ,  $\arctan x \sim x$ ,  
 $e^x - 1 \sim x$ ,  $\ln(1 + x) \sim x$ ,  
 $1 - \cos x \sim \frac{1}{2}x^2$ ,  $(1 + x)^a - 1 \sim ax$ 

#### 6.等价无穷小替换定理

当 $x \to \Delta$ 时,如果 $\alpha(x) \sim \alpha_1(x)$ , $\beta(x) \sim \beta_1(x)$ , 且 $\lim_{x \to \Delta} \frac{\alpha_1(x)}{\beta_1(x)}$ 存在,则  $\lim_{x \to \Delta} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to \Delta} \frac{\alpha_1(x)}{\beta_1(x)} = \lim_{x \to \Delta} \frac{\alpha(x)}{\beta_1(x)} = \lim_{x \to \Delta} \frac{\alpha_1(x)}{\beta(x)}$ 

#### 通识教学部



# ……5分钟后



#### 练习解答

1) 
$$\lim_{x \to 0} \frac{3 \arctan x}{e^x - 1}$$

原式= 
$$\lim_{x\to 0} \frac{3x}{x} = 3$$

分析:  $\exists x \to 0$ 时,  $\operatorname{arc} \tan x \sim x$ ,  $e^x - 1 \sim x$ .

3) 
$$\lim_{x\to 0} \frac{e^{x^2}-1}{1-\cos x}$$

原式= 
$$\lim_{x\to 0} \frac{x^2}{\frac{1}{2}x^2} = 2$$

$$2)\lim_{x\to 0}\frac{\sin 3x}{\ln(1+x)}$$

原式= 
$$\lim_{x\to 0}\frac{3x}{x}=3$$

$$4)\lim_{x\to 0}\frac{\ln(1+3x)}{\arcsin 2x}$$

原式= 
$$\lim_{x\to 0} \frac{3x}{2x} = \frac{3}{2}$$

分析:  $\exists x \to 0$ 时,  $\ln(1+3x) \sim 3x$ ,  $\arcsin 2x \sim x$ .



典型例题

题型: 无穷小量的比较

例题: 计算下列极限

(3) 
$$\lim_{x \to 1} \frac{\sin(x^2 - 1)}{x + 1}$$

#### 知识储备

## 5.常见等价无穷小 $(x \to 0$ 时)

$$\sin x \sim x$$
,  $\tan x \sim x$ ,  
 $\arcsin x \sim x$ ,  $\arctan x \sim x$ ,  
 $e^x - 1 \sim x$ ,  $\ln(1 + x) \sim x$ ,  
 $1 - \cos x \sim \frac{1}{2}x^2$ ,  $(1 + x)^a - 1 \sim ax$ 

#### 6.等价无穷小替换定理

当
$$x \to \Delta$$
时,如果 $\alpha(x) \sim \alpha_1(x)$ , $\beta(x) \sim \beta_1(x)$ ,  
且 $\lim_{x \to \Delta} \frac{\alpha_1(x)}{\beta_1(x)}$ 存在,则  
$$\lim_{x \to \Delta} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to \Delta} \frac{\alpha_1(x)}{\beta_1(x)} = \lim_{x \to \Delta} \frac{\alpha(x)}{\beta_1(x)} = \lim_{x \to \Delta} \frac{\alpha_1(x)}{\beta(x)}$$

# 模块一 函数与极限

典型例题

#### 题型: 无穷小量的比较

## 例题: 计算下列极限

(3) 
$$\lim_{x \to 1} \frac{\sin(x^2 - 1)}{x + 1}$$

# 练习:

5) 
$$\lim_{x \to 0} \frac{\sin x \cdot \ln(1+x)}{x^2}, \qquad 6) \quad \lim_{x \to 0} \frac{x^2 \cdot \sin\frac{2}{x}}{\tan x},$$

6) 
$$\lim_{x \to 0} \frac{x^2 \cdot \sin \frac{x}{x}}{\tan x}$$

7) 
$$\lim_{x \to 1} \frac{\sin[\sin(x-1)]}{\ln x}$$

#### 知识储备

#### **5.**常见等价无穷小( $x \to 0$ 时)

$$\sin x \sim x$$
,  $\tan x \sim x$ ,  
 $\arcsin x \sim x$ ,  $\arctan x \sim x$ ,  
 $e^x - 1 \sim x$ ,  $\ln(1 + x) \sim x$ ,  
 $1 - \cos x \sim \frac{1}{2}x^2$ ,  $(1 + x)^a - 1 \sim ax$ 

#### 6.等价无穷小替换定理

当 $x \to \Delta$ 时,如果 $\alpha(x) \sim \alpha_1(x)$ , $\beta(x) \sim \beta_1(x)$ , 且 $\lim_{x \to \Delta} \frac{\alpha_1(x)}{\beta_1(x)}$ 存在,则  $\lim_{x \to \Delta} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to \Delta} \frac{\alpha_1(x)}{\beta_1(x)} = \lim_{x \to \Delta} \frac{\alpha(x)}{\beta_1(x)} = \lim_{x \to \Delta} \frac{\alpha_1(x)}{\beta(x)}$ 

#### 通识教学部



# ……18分钟后



#### 练习解答

$$5)\lim_{x\to 0}\frac{\sin x\cdot \ln(1+x)}{x^2}$$

原式= 
$$\lim_{x\to 0} \frac{x\cdot x}{x^2} = 1$$

分析:  
 
$$当 x \rightarrow 0$$
时,  
  $\sin x \sim x, \ln(1+x) \sim x$ 

$$6)\lim_{x\to 0}\frac{x^2\cdot\sin^2_x}{\tan x}$$

原式= 
$$\lim_{x \to 0} \frac{x^2 \cdot \sin\frac{2}{x}}{x}$$
$$= \lim_{x \to 0} x \cdot \sin\frac{2}{x}$$
$$= 0$$

分析: 
$$\exists x \to 0$$
时,  $\tan x \sim x$ .

7) 
$$\lim_{x \to 1} \frac{\sin[\sin(x-1)]}{\ln x}$$

原式= 
$$\lim_{x \to 1} \frac{\sin(x-1)}{\ln[1+(x-1)]}$$

$$= \lim_{x \to 1} \frac{x-1}{x-1}$$
= 1

分析:  
设
$$u = \sin(x - 1)$$
,  
当 $x \to 1$ 时,  $u \to 0$ , 所以 $\sin u \sim u$ 



典型例题

题型: 无穷小量的比较

## 练习:

8) 当 $x \to 0$ 时, $\ln(1 - ax^2)$ 与 $e^{x^2} - 1$ 是 等价无穷小,则a =\_\_\_\_\_\_.

#### 知识储备

## **5.常见等价无穷小** $(x \rightarrow 0$ 时)

$$\sin x \sim x$$
,  $\tan x \sim x$ ,  
 $\arcsin x \sim x$ ,  $\arctan x \sim x$ ,  
 $e^x - 1 \sim x$ ,  $\ln(1 + x) \sim x$ ,  
 $1 - \cos x \sim \frac{1}{2}x^2$ ,  $(1 + x)^a - 1 \sim ax$ 

#### 6.等价无穷小替换定理

当 $x \to \Delta$ 时,如果 $\alpha(x) \sim \alpha_1(x)$ , $\beta(x) \sim \beta_1(x)$ , 且 $\lim_{x \to \Delta} \frac{\alpha_1(x)}{\beta_1(x)}$ 存在,则  $\lim_{x \to \Delta} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to \Delta} \frac{\alpha_1(x)}{\beta_1(x)} = \lim_{x \to \Delta} \frac{\alpha(x)}{\beta_1(x)} = \lim_{x \to \Delta} \frac{\alpha_1(x)}{\beta(x)}$ 

#### 练习解答

## 8) 根据等价无穷小的定义,有

$$\lim_{x \to 0} \frac{\ln(1 - ax^2)}{\mathbf{e}^{x^2} - 1} = 1$$

因为
$$\lim_{x\to 0} \frac{\ln(1-ax^2)}{e^{x^2}-1} = \lim_{x\to 0} \frac{-ax^2}{x^2} = -a$$

所以, 
$$a = -1$$
.

分析:

当
$$x$$
 → 0时,

$$\ln(1 - ax^2) \sim -ax^2$$
,  $e^{x^2} - 1 \sim x^2$ 



