MAT217 HW 7 Due Tues. Apr. 2, 2013

- 1. Let V be an \mathbb{F} -vector space of dimension n and let f be a k-linear alternating function on V with k > n. Show that f is identically zero.
- 2. Suppose that $A \in M_{n,n}(\mathbb{F})$ is upper-triangular; that is, $a_{i,j} = 0$ if i > j. Show that $\det A = a_{1,1}a_{2,2}\cdots a_{n,n}$. (Don't use the next exercise though!)
- 3. This exercise is a generalization of the previous one to block upper-triangular matrices. For $n \geq 2$ we say that $M \in M_{n,n}(\mathbb{F})$ is block upper-triangular if there exists k with $1 \leq k \leq n-1$ and matrices $A \in M_{k,k}(\mathbb{F}), B \in M_{k,n-k}(\mathbb{F})$ and $C \in M_{n-k,n-k}(\mathbb{F})$ such that M has the form

$$\left(\begin{array}{cc} A & B \\ 0 & C \end{array}\right) .$$

That is, the elements of M are given by

$$M_{i,j} = \begin{cases} A_{i,j} & 1 \le i \le k, \ 1 \le j \le k \\ B_{i,j-k} & 1 \le i \le k, \ k < j \le n \\ 0 & k < i \le n, \ 1 \le j \le k \\ C_{i-k,j-k} & k < i \le n, \ k < j \le n \end{cases}.$$

We will show in this exercise that

$$\det M = \det A \cdot \det C .$$

- (a) Show that if $\det C = 0$ then the above formula holds.
- (b) Suppose that $\det C \neq 0$ and define a function $\phi: M_{k,k}(\mathbb{F}) \to \mathbb{F}$ by

$$\phi(\hat{A}) = [\det C]^{-1} \det \begin{pmatrix} \hat{A} & B \\ 0 & C \end{pmatrix} .$$

That is, $\phi(\hat{A})$ is a scalar multiple of the determinant of the block upper-triangular matrix we get when we replace A by \hat{A} and keep B and C fixed.

- i. Show that ϕ is k-linear as a function of the columns of \hat{A} .
- ii. Show that ϕ is alternating and satisfies $\phi(I_k) = 1$, where I_k is the $k \times k$ identity matrix.
- iii. Conclude that the above formula holds when $\det C \neq 0$.
- 4. Let a_0, \ldots, a_n be distinct complex numbers. Write $M_n(a_0, \ldots, a_n)$ for the *Vandermonde* matrix

$$\begin{pmatrix} 1 & a_0 & a_0^2 & \cdots & a_0^n \\ 1 & a_1 & a_1^2 & \cdots & a_1^n \\ & & & \cdots \\ 1 & a_n & a_n^2 & \cdots & a_n^n \end{pmatrix}.$$

The goal of this exercise is to prove the Vandermonde determinant formula

$$\det M_n(a_0,\ldots,a_n) = \prod_{0 \le i < j \le n} (a_j - a_i) .$$

We will argue by induction on n.

- (a) Show that if n=2 then the Vandermonde formula holds.
- (b) Now suppose that $k \geq 2$ and that the formula holds for all $2 \leq n \leq k$. Show that it holds for n = k + 1 by completing the following outline.
 - i. Define the function $f: \mathbb{C} \to \mathbb{C}$ by $f(z) = \det M_n(z, a_1, \dots, a_n)$. Show that f is a polynomial of degree at most n.
 - ii. Find all the zeros of f.

Hint. Recall what was proved on a past homework: if a polynomial of degree n has at least n + 1 zeros then it must be identically zero.

- iii. Show that the coefficient of z^n is $(-1)^n \det M_{n-1}(a_1, \ldots, a_n)$.
- iv. Show that the Vandermonde formula holds for n = k + 1, completing the proof.
- 5. Show that if $A \in M_{n,n}(\mathbb{F})$ then $\det A = \det A^t$, the determinant of the transpose of A.
- 6. Let $A \in M_{7,7}(\mathbb{C})$ be anti-symmetric; that is, $A = -A^t$. What is det A?
- 7. A field \mathbb{F} is called algebraically closed if every $p \in \mathbb{F}[x]$ with $\deg(p) \geq 1$ has a zero in \mathbb{F} . Prove that if \mathbb{F} is algebraically closed then for any nonzero $p \in \mathbb{F}[x]$, we can find $a, \lambda_1, \ldots, \lambda_k \in \mathbb{F}$ and natural numbers n_1, \ldots, n_k with $n_1 + \cdots + n_k = \deg(p)$ such that

$$p(x) = a(x - \lambda_1)^{n_1} \cdots (x - \lambda_k)^{n_k} .$$

Here we say that $\lambda_1, \ldots, \lambda_k$ are the roots of p and n_1, \ldots, n_k are their multiplicities.

Hint. Use induction on the degree of p.

- 8. Let \mathbb{F} be algebraically closed. Show that for nonzero $p, q \in \mathbb{F}[x]$, the greatest common divisor of p and q is 1 if and only if p and q have no common root. Is this true for $\mathbb{F} = \mathbb{R}$?
- 9. Let $T: V \to V$ be linear and B a finite basis for V. We define

$$\det T = \det[T]_B^B .$$

- (a) Show that the above definition does not depend on the choice of B.
- (b) Show that if f is any nonzero n-linear alternating function on V then

$$\det T = \frac{f(T(v_1), \dots, T(v_n))}{f(v_1, \dots, v_n)},$$

where we have written $B = \{v_1, \dots, v_n\}$. (This is an alternate definition of det T.)