

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Licenciatura en Ciencias de la Computación Facultad de Ciencias

Programa de la asignatura

Denominación de la asignatura:

Autómatas y Lenguajes Formales

Automatas y Lenguajes i ermaies						
Clave:	Semestre:	Eje tem	Eje temático:			No. Créditos:
	4	Comput	Computación Teórica			
Carácte	r: Obligatoria		Но	oras	Horas por semana	Total de Horas
Tipo: Teórico-Práctica			Teoría:	Práctica:		
Tipo: Te	Onco-Practica		4	2	6 96	
Modalidad: Curso			Duración del programa: Semestral			

Asignatura con seriación obligatoria antecedente: Álgebra Superior I; Estructuras Discretas

Asignatura con seriación obligatoria subsecuente: Compiladores; Complejidad Computacional

Asignatura con seriación indicativa antecedente: Álgebra Lineal I; Gráficas y Juegos; Estructuras de Datos

Asignatura con seriación indicativa subsecuente: Lenguajes de Programación

Objetivo general:

Conocer y aplicar los conceptos de autómatas con un número finito de estados, identificar problemas que no tienen solución en estos modelos, reconocer la clase a la que pertenece determinado lenguaje y, por lo tanto, cuáles propiedades tiene y cuáles no;

Proponer soluciones en ambos tipos de modelos y estén conscientes de las limitaciones y posibilidades de cómputo que presenta cada uno de los modelos expuestos.

Índice temático				
Unidad	Tomas	Horas		
Unidad	Temas	Teóricas	Prácticas	
	Introducción	8	4	
II	Máquinas con un número finito de estados y lenguajes tipo 3	12	6	
III	Autómatas con pila	4	2	
IV	Lenguajes libres del contexto	16	8	
V	Máquinas de Turing	8	4	

VI	La Jerarquía de Chomsky	8	4
VII	Introducción a decidibilidad	8	4
	Total de horas:	64	32
	Suma total de horas:	9	6

Contenido temático				
Unidad	Tema			
I Introduce	troducción			
l.1	Motivación.			
1.2	Cadenas y lenguajes.			
1.3	Expresiones regulares.			
1.4	Modelos matemáticos de cadenas.			
1.5	Gramáticas y lenguajes formales.			
I.6	Conceptos básicos de gramáticas.			
1.7	Gramáticas formales.			
1.8	Clasificación de gramáticas.			
1.9	Árboles de derivación.			
II Máquina	as con un número finito de estados y lenguajes tipo 3			
II.1	Definición.			
II.2	Aplicaciones e instrumentación.			
II.3	Equivalencia.			
II.4	Minimización.			
II.5	Modelos alternativos.			
II.6	Lenguajes tipo 3.			
II.7	Propiedades de los lenguajes regulares.			
II.8	Relación entre autómatas finitos, lenguajes regulares y expresiones regulares.			
III Autóma	itas con pila			
III.1	Formalización.			
III.2	Traducción con autómatas con pila.			
III.3	Ciclos en los autómatas con pila.			
III.4	Autómatas con pila de un solo estado.			
III.5	Traducción con autómatas de pila.			
III.6	Ciclos en los autómatas de pila deterministas.			
IV Lengua	ijes libres del contexto			
IV.1	Recapitulación.			
IV.2	Simplificación de gramáticas libres del contexto.			
IV.3	Formas normales.			
IV.4	Equivalencia entre autómatas de pila y lenguajes libres del contexto.			
IV.5	Propiedades de los lenguajes libres del contexto.			
IV.6	Caracterización de lenguajes que no son libres del contexto.			
IV.7	Lema de Ogden.			
IV.8	Propiedades de cerradura de LLC.			

IV.9	Decidibilidad en lenguajes libres del contexto.			
V Máquinas de Turing				
V.1	Motivación.			
V.2	Definiciones y notación.			
V.3	Técnicas para la construcción de máquinas de Turing.			
V.4	La máquina de Turing como un procedimiento.			
V.5	Distintos tipos de máquinas de Turing.			
V.6	La máquina universal de Turing.			
V.7	Autómatas linealmente acotados.			
VI La Jerar	quía de Chomsky			
VI.1	Lenguajes recursivos y recursivamente numerables.			
VI.2	Gramáticas sin restricciones.			
VI.3	Lenguajes generales y máquinas de Turing.			
VI.4	Lenguajes dependientes del contexto y autómatas linealmente acotados.			
VII Introduc	cción a decidibilidad			
VII.1	Significado de "indecidibilidad".			
VII.2	El problema de la detención (<i>Halting Problem</i>).			
VII.3	Reducción.			
VII.4	Indecidibilidad en Máquinas de Turing.			
VII.5	Otros problemas de indecidibilidad.			

Bibliografía básica:

- 1. Viso G., E., *Introducción a la teoría de la computación*. Las Prensas de Ciencias, 2008. (libro escrito para este curso).
- 2. Rich, E., *Automata, Computability and Complexity, theory and applications*. Pearson Prentice Hall, 2008. (libro relativamente nuevo, con buenas bases teóricas y una gran cantidad de ejemplos novedosos y aplicaciones).

Bibliografía complementaria:

- 1. Aho A.V., Lam M., Sethi S.R. and Ullman J.D., *Compilers: Principles, Techniques, & Tools.* Pearson Addison-Wesley, 2007. (Buena fuente de ejemplos y aplicaciones, además de que extiende la teoría de la parte sintactica para lenguajes regulares y libres del contexto).
- 2. Ceruzzi, P. E., *A History of Modern Computing*. The MIT Press, 2nd. Edition, 2003. (Para información histórica de las abstracciones en computación).
- 3. Cooper, K. D. and Torkzon, L., *Engineering a Compiler*. Morgan Kaufman Publishers, 2004. (Aplicaciones para lenguajes regulares y libres del contexto).
- 4. Hopcroft, J. E., Motwani, R., and Ullman, J., *Introduction to Automata Theory, Languages, and Computation*. Addison-Wesley Publishing Company, third edition edition, 2007. (libro clásico con un desarrollo teórico adecuado).
- 5. Ifrah, G., Harding, E. F, Bellos, D., Wood S., *The Universal History of Computing: From the Abacus to Quantum Computing.* John Wiley & Sons, Inc., 2000. (Interesantes aspectos sobre el desarrollo de abstracciones de cómputo).

- 6. Kozen, D. C., *Automata and Computability*. Springer-Verlag TELOS, 1997. (Presentación muy formal y concisa de lenguajes regulares, libres del contexto y máquinas de Turing; tal vez demasiado breve para este curso).
- 7. Linz, P., *An Introduction to Formal Languages and Automata*. D.C. Heath and Company, fourth edition edition, 2006. (Un muy buen libro que cubre los aspectos teóricos, pero da una muy buena intuición de cada uno de los resultados teóricos).
- 8. Sipser, M., *Introduction to the Theory of Computation*. PWS Publishing Company, second edition, 2005. (Trabaja más la parte de complejidad, pero trae una parte breve y concisa sobre lenguajes no contraíbles).
- 9. Sudkamp, T. A., *Languages and Machines*. Addisson-Wesley, second edition, 1997. (Una visión un pco distinta de los autómatas, pues empieza en máquinas de Turing, pero puede proporcionar otro enfoque).

10. Taylor, R. G., *Models of Computation and Formal Languages*. Oxford University Press, 1998. (Un enfoque un poco más general que el tradicional).

Sugerencias didácticas:		Métodos de evaluación:	
Exposición oral	(X)	Exámenes parciales	(X)
Exposición audiovisual	(X)	Examen final escrito	(X)
Ejercicios dentro de clase	(X)	Trabajos y tareas fuera del aula	(X)
Ejercicios fuera del aula	(X)	Exposición de seminarios por los alumnos	()
Seminarios	()	Participación en clase	()
Lecturas obligatorias	(X)	Asistencia	(X)
Trabajo de investigación	(X)	Seminario	()
Prácticas de taller o laboratorio	(X)		
Prácticas de campo	()	Otras: Prácticas de laboratorio.	
Otras:			

Perfil profesiográfico:

Profesional de la computación orientado a la teoría, con fundamentos sólidos de matemáticas. Es deseable que este curso sea impartido por profesionales con posgrado y con conocimientos de diseño e implementación de reconocedores de lenguajes. Con experiencia docente.