Experiment No.: 08

Expensiment Norme: i) Design a synchronous sequential cincuit with the sequence given below using JK FFG:

$$2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 1$$

ii) Design a 4-bit odd counten:

Objective:

The objective of this expeniment is to implement two synchronous sequential circuit. In the first expeniment we will implement a nandom synchronous sequential clock counters and in the second expeniment we will implement a 4-bit odd counters. In the first expensiment we will use 3 JK flip-flops and in the second we will use 4 D Alip-Hops.

For (i),

State Diagnam:

State Table:

nt State		yael	Next Sta	te
02	Q1	Q3	Q ₂	01
1	0	0	1	1
1	1	1	0	0
0	0	1	0	1
0	1	1	1	0
1	0	0	0	1
0	1	0	1	
		nt State Q2 Q1 1 0 1 1 0 0 0 1 1 0 1 1 1 0		

- There will be 3 JK Flip-Flops

and, $d = \Sigma(0,7)$ Excitation Table:

	ent St		Next	- Stat	l e	F	Tip-	Hop	,		
Q3	Q2	Q ₁	Q3	02	Q,	13	K3	72	K ₂	J.	K ₁
0	1	0	0	1	1	0	×	×	0	1	×
0	1	1	1	0	0	1	×	X	1	×	1
1	0	0	1	0	1	×	0	0	X	1	×
1	0	1	1	1	0	×	O	1	×	×	1
1	1	0	0	0	1	X	1	×	1	1	×
0	0	1	0	1	O	0	×	1	×	×	1

Function Simplification:

For and Flip-Hop: Fon Jay C

Q3 Q5O	`Q2Q!	$Q_2'Q_1$	0,01	Q2Q1
Q ₃	×		1	
O ₃	×	×	×	×

$$\therefore J_3 = Q_2Q_1$$

Fon K3, Q20	3' Q'2Q'	Q2'Q1	Q2Q1	G2Q'
Q_3'	×		X	X
Q_3			X	1

For 2nd Flip-Flop:

For J2 ,

03 020	Q2Q1	Q ₂ 'Q ₁	QQ,	Q2'Q1
Q_3'	X	1	X	X
Q ₃		1	×	

$$1.1 \text{ K}_2 = Q_3 + Q_1$$

For 1st Hip-Hop:

Fon Ji,

Q3 Q2Q	020	Q2 Q1	Q ₂ Q ₁	0201
Q's	Tx	×	×	1
Q_3	1	×	X	1

$$J_1 = 1$$

For K1,

Q ₃ Q ₂ Q	Q2Q1	Q2Q,	Q ₂ Q ₁	Qz Q1'
Q3	X	1	1	X
Q3	X	1	X	x)

$$.'. k_1 = 1$$

Required ICs:

i) A1 - AND Gate (7408); Quantity: 1

ii) O1 - OR Gate (7432); Quantity: 1

ii) F, F2 - JK Flipflop (7476); Quantity: 2

Circuit Diagnam and IC ping Connections; CP2 G Required ICs: i) A, - AND Gate (7408); Quantity: 1 ii) O1 - OR Gate (7432); Quantity: 1 ii) F, F - JK Flipflop (7476); Quantity: 2

Fon (ii),

State Diagnom:

State Table:

Pn	esent (State		Ne	of Stol	e	
Qu	Q ₃	Q2	Q ₁	Qч	Qз	Q_2	Q1
0	0	0	1	C	0	1	1
0	0	1	1.	0	1	0	1
0	1	0	1	0	1	1	1
0	1	1	1	1	0	0	1
1	0	0	1	1	0	1	1
1	0	1	1	1	1	0	1
1	1	0	1	1	1	1	1
1	1	1	1	0	0	0	1

... There will be 4 D Flip-Flops and, $d = \Sigma(0, 2, 4, 6, 8, 10, 12, 14)$

-		TIL
Excito	from	Table:

			and homeometric	Service restauran								į
Pn	Proesent State Next State Flip-Flops											
Qu	Q3	Q2	Qı	Qų	Q_3	02	Q,	\mathcal{D}_{q}	D_3	D2	D_1	-
0	0	0	1	0	0	1	1	0	0	1	1	-
0	0	1	1	0	1	0	1	0	1	0	1	Summer of
0	1	0	1	0	1	1	1	0	1	1	1	-
0	1	1	1	1	0	0	1	1	0	0	1	
1	0	0	1	1	0	1	1	1	0	1	1	
1	0	1	1	1	1	0	1	1	1	0	1	
1	1	0	1	1	1	1	1	1	1	1	1	
1	1	1	1	0	0	0	1	0	0	0	1	,

Function Simplification:

For
$$D_{u}$$
, $Q_{2}Q_{1}$, $Q_{2}Q_{2}$, Q_{3} , $Q_{4}Q_{3}$, $Q_{4}Q_{4}$, $Q_{4}Q_{3}$, $Q_{4}Q_{4}$, $Q_{4}Q$

$$D_{y} = Q_{y}Q_{3}' + Q_{y}Q_{2}' + Q_{y}'Q_{3}Q_{2}$$

$$= Q_{y}(Q_{3}' + Q_{2}') + Q_{y}'Q_{3}Q_{2}; [Distributive Low]$$

For Da,				
QyQ3 Q2Q	'Q'2Q'	0,0	Q2 Q1	Q2Q1
Q'Q'3	×		1	X
$Q_{y}^{\prime}Q_{3}$	X	1		X
Q4 Q3	X	1		X
Q4Q3	×		1	X

$$= Q_3 \oplus Q_2$$

For D2? Q4Q3 Q4Q3	o ala	(Q2Q1	Q2 Q4	Q2 Q'1
	X	1		×
$Q_{Y}^{\prime}Q_{3}$	X	1		X
Qy Qz	X	1		×
$Q_{4}Q_{3}^{\prime}$	X	1)		X

$$\therefore \mathcal{D}_2 = \mathcal{Q}_2'$$

Qu	Q3 Q4 Q4 Q4	a.'.d',	0.0.	Q,Q,	a, a'.		
	0,0%	(X	1	1	X		
	QyQz	X	1	1	X		
	Q40,	X	1	1	X		
	0403	X	1		X		

Cincuit Diagnorm and I'C Pin Connections:

Required ICs:

Discussion:

Through this expeniment, we implemented two synchronous sequential cincuits i.e. both cincuits had the same clock pass. In the first expeniment we implemented a nondorn synchronous sequential clock counters using 3 JK flip-flops and in the second expeniment we implemented an 4-bit odd counters using 4 D flip-flips.