从算法设计到机制设计

张国川

研究组成员:

叶德仕、陈林、程郁琨、余炜、罗文昌

中国运筹学会2012学术年会, 沈阳, 10月20日

Alan Turing (1912-1954)

图灵机

可计算性

• 计算的难解性

· Cook (1971): 3-SAT 是NP-完全的

· Karp (1972): 21个NP-完全问题

P ≠ NP

- 计算资源的匮乏
- 图难问题
 - 多项式时间近似算法
 - -指数时间的精确算法
 - -解的质量与时间成本的平衡

多项式时间

巨大的间隙

指数时间

多项式时间下的计算效能

• 近似比

·近似方案(PTAS)

• EPTAS

完全近似方案(FPTAS)

PINP下的效能极限

• 没有FPTAS

· 没有EPTAS

· 没有PTAS

近似此的下界

Cardinality Constraints

- We have m identical machines and n jobs
- Machine i can accept up to ki jobs
- Goal: find a schedule meeting the cardinality constraints so that the makespan is minimized

A quick remark

You may have in mind the 3partition problem, from which
we move further to k-partition,
finally we arrive at k_i-partition
that is exactly the problem we
just introduced

Previously results

- K-partition
 - 4/3 [Bable, Kellerer, Kotov, 1998]
 - 7/6 for k=3, [Bable, Kellerer, 1999]
- K_i-partition
 - FPTAS for fixed m [Woeginger 2005]
 - 3 [Zhang et al. 2009]
 - 2 [Barna, Aravind 2010] (more general)
 - 3/2 [Kellerer, Kotov, 2011]

Our contribution

EPTAS

Non-standard ILP formulation+ Best-Fit + Greedy Rounding

精确算法的计算效率

• 伪多项式时间

• 指数时间

双指数时间

指数运行时间假设 (Exponential Time Hypothesis)

- Impagliazzo, Paturi, and Zane (2001) 存在 s>0, 使得3-CNF-SAT没有如下时 间的精确算法 $2^{sn}(n+m)^{O(1)}$.
- Lokshtanov, Marx, Saurabh(2011)
 Lower bounds based on the ETH

另一个影响计算效能的因素

信息

- 一不完全信息下的算法设计与分析
 - √ 在线算法
 - ✓ 鲁棒优化
 - ✓随机优化

• 纳什均衡的计算及复杂性

算法机制设计

系统有效性分析

"稳定"装箱

Input: a set of items $\{a_1, a_2, ..., a_n\}$, each of size at most 1, and an infinite number of identical bins

Output: a feasible packing with a minimum number of bins used

换个角度

- There is one decision maker who does not take care of the own interest of each item
- What happened if every item is handled by an agent?
- What a feasible packing looks like in this case?

分摊机制

How to design a sharing policy so that any stable packing is not far away from a social optimum?

Proportional sharing (Bilo 2006)

Identical sharing (Han et al. 2012)

问题描述

· A residential area as a network

The local government plans to build a garbage dump in this area, so that the location is as far away from the residents as possible, i.e., the total distance from the residents is maximized.

博弈元素

- The home address of every resident is private, which is unknown to the government
- The government publicize an "algorithm" to compute the location of the dump
- The residents report their home addresses

Goal of the government

An algorithm (truthful mechanism):

Decide the facility location

Every resident has no incentive to lie

Left# Right#

Majority decides!

Group StrategyProof of 3-approximation

The mechanism is the best possible!

(Han and Du 2012, Ibara and Nagamochi 2012)

一般网络

GSP of 3-approximation for a tree and 4-approximation for a general network

进一步的研究

- 线段上随机GSP机制的下界
- 一般网络上的随机GSP机制设计
- 设施带服务半径下的机制设计

Efficiencies of Competing Schedulers

同一个世界,不同的梦想

- Job (Client): minimize its completion time
- Machine (Service Provider): maximize its own revenue by processing jobs
- Game: machines claim the polices, jobs chooses machines

Scheduling Policies

 Largest (Shortest) Processing Times LPT(SPT)

Makespan: all jobs on a machine has the same completion time (the total processing time)

Random Order

Incentive of a machine

- There may exist many equilibria
- A machine is interested in changing its policy if and only if all equilibria are better after the change.

Otherwise an NE may not exist!

Previous results

Two-sided game (Ashlagi, AAAI 2010)

- With any two deterministic polices,
 there always exists a pure NE
- (5, R) and (L, R) also admit pure NE
- There exists a set of three polices, if a machine can use any of these polices, no pure equilibria exist

Our results

Model	(S, L)	(S, M)	(L, M)
Makespan $m=2$	9/7	3/2	7/6
Makespan $m \geq 3$	$\frac{2m}{m+1}$	$2-\frac{1}{m}$	$\frac{2m}{m+1}$
Max-Min	$[2-\frac{2}{m-1},2-\frac{1}{m}]$	m	[1.691, 1.7]

Remarks

科学发展观

- 眼前利益与长远利益的平衡(Online Optimization,Robust Optimization)
- · 局部利益与全局利益的平衡 (Mathematical Programming)
- 个人利益和团体利益的平衡(Game Theory)

Start from a good optimizer, knowing what best you can achieve.

Become a strong mechanism designer, monitoring a game most players are happy with.

谢谢诸俭捧场!

下面是广告时间

Results based on ETH

Lower bounds on exact algorithms

3-Coloring	$2^{o(n)}$
Dominating set	$2^{o(n)}$
Hamiltonian path	$2^{o(n)}$
Independent set	$2^{o(n)}$
Vertex cover	$2^{o(n)}$
Hamiltonian cycle in planar graph	$2^{o(\sqrt{n})}$

n: number of vertices in a graph

Lower bounds on approximation schemes

Maximum	$2^{O((1/\varepsilon)^{1-\delta})} n^{O(1)}$	$2^{O(1/\varepsilon)}n$
independent set on	2 70	
planar graphs		
Minimum vertex cover	$2^{O((1/\varepsilon)^{1-\delta})} n^{O(1)}$	$2^{O(1/\varepsilon)}n$
on planar graphs	2 11	
Minimum dominating	$2^{O((1/\varepsilon)^{1-\delta})}n^{O(1)}$	$2^{O(1/\varepsilon)}n$
set on planar graphs	2 "	
TSP with a metric	$2^{O((1/\varepsilon)^{1-\delta})}n^{O(1)}$	$2^{O(1/\varepsilon)}n$
defined by an	2 "	
unweighted planar		
graph		

By Daniel Marx (FOCS, 2007)

Our Contributions

Problems	Lower bounds	Upper bounds
	(based on ETH)	
	(based on Lift)	
$P \parallel C_{\text{max}}$	$2^{o(n)}$	$2^{O(n)}$
#jobs n		_
,		(Horowitz, Sahni , 1976)
$P \parallel C_{\max}$	$2^{O((1/\varepsilon)^{1-\delta})} poly(I)$	$2^{O(1/\varepsilon^2\log^3(1/\varepsilon))} poly(I)$
Input size I		
		(Jansen, 2010)
$P_m \parallel C_{\max}$	$(1/\varepsilon)^{O(m^{1-\delta})}$	$n(m/\varepsilon)^{O(m)}$
#jobs n		(Jansen, Porkolab, 2001)
$P_m \parallel C_{\max}$	$2^{O((\sqrt{m I })^{1-\delta})}$	$2^{O(\sqrt{m I } + m\log I)}$
Input size I		