Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання лабораторної роботи №7 з дисципліни: «Твердотільна електроніки-1»

Дослідження вольт-амперних характеристик біполярних транзисторів

Виконавець: Студент 3-го курсу	(підпис)	А.С. Мнацаканов
Превірив:	(підпис)	Л. М. Королевич

1. МЕТА РОБОТИ

Теоретичне вивчення і практичне дослідження біполярних транзисторів з допомогою вимірювання вольт-амперних характеристик, визначення фізичних та основних технічних параметрів біполярних транзисторів із вольт-амперних характеристик.

2. ЗАВДАННЯ

- 1. Вивчити структуру паспортних параметрів біполярних транзисторів. Ознайомитися із вимірювальним стендом та використовуваними приладами (рис. 1, 2, 3, 4).
- 2. Зібрати схему для дослідження вольт-амперних характеристик біполярних транзистора ввімкненого за схемою із спільним емітером (або із спільною базою).
- 3. Визначити експериментально і побудувати графічно сімейство вхідних характеристик транзистора залежність вхідного струму від вхідної напруги.
- 4. Визначити експериментально та побудувати графічно сімейство вихідних характеристик транзистора залежність вихідного струму від вихідної напруги.
- 5. * Провести температурні дослідження ВАХ біполярного транзистора при підвищеній температурі $T_2 \approx +70$ °C.
- 6. **Із вхідних та вихідних ВАХ побудувати характеристики зворотного зв'язку і прямої передачі.
- 7. За побудованими графіками характеристик визначити основні параметри біполярного транзистора: коефіцієнт підсилення струму бази - β ; коефіцієнт підсилення струму емітера - α ; диференційні опори емітерного r_e і колекторного r_c переходів для вибраної робочої точки $A_p(I_c, U_{ce})$; графічно визначити дифузійний потенціал емітерного переходу φ_{0e} та опір бази r_b .
- 8. Провести аналіз результатів досліджень, і зробити висновки з виконаної роботи.

2.1. СХЕМА ВИМІРЮВАННЯ

Рис. 1: Схема для дослідження вольт — амперних характеристик транзистора ввімкненого за схемою зі спільним емітером.

3.ГРАФІКИ Й ТАБЛИЦІ

3.1. Таблиці вимірювань

	Uвых	= 0 B		Uвых = 8 B						
Ивх, В	Івх, мкА	ΔU, Β	ΔΙ, ΜκΑ	Ивх, В	Івх, мкА	ΔU, Β	ΔΙ, ΜΚΑ			
0,441	2	0,0025	0,75	0,599	2	0,0025	0,75			
0,463	4	0,0025	0,75	0,619	4	0,0025	0,75			
0,476	6	0,0025	0,75	0,632	6	0,0025	0,75			
0,485	8	0,0025	0,75	0,638	8	0,0025	0,75			
0,493	10	0,0025	0,75	0,644	10	0,0025	0,75			
0,5	12	0,0025	0,75	0,649	12	0,0025	0,75			
0,506	14	0,0025	0,75	0,653	14	0,0025	0,75			
0,51	16	0,0025	0,75	0,656	16	0,0025	0,75			
0,516	18	0,0025	0,75	0,659	18	0,0025	0,75			
0,518	20	0,0025	0,75	0,662	20	0,0025	0,75			
0,524	22	0,0025	0,75	0,664	22	0,0025	0,75			
0,527	24	0,0025	0,75	0,666	24	0,0025	0,75			
0,53	26	0,0025	0,75	0,667	26	0,0025	0,75			
0,533	28	0,0025	0,75	0,668	28	0,0025	0,75			
0,536	30	0,0025	0,75	0,67	30	0,0025	0,75			
0,539	32	0,0025	0,75	0,672	32	0,0025	0,75			
0,541	34	0,0025	0,75	0,673	34	0,0025	0,75			
0,544	36	0,0025	0,75	0,674	36	0,0025	0,75			
0,548	38	0,0025	0,75	0,675	38	0,0025	0,75			
0,55	40	0,0025	0,75	0,676	40	0,0025	0,75			
0,552	42	0,0025	0,75	0,676	42	0,0025	0,75			
0,554	44	0,0025	0,75	0,676	44	0,0025	0,75			
0,556	46	0,0025	0,75	0,678	46	0,0025	0,75			
0,557	48	0,0025	0,75	0,678	48	0,0025	0,75			
0,56	50	0,0025	0,75	0,678	50	0,0025	0,75			

Таб. 1 Значення вхідних струмів та напруг, а також їх похибок при різних напругах виходу.

	IBX = 3	3 мкА			lbx = (6 мкА		IBX = 9 MKA				
Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ	Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ	Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ	
0,12	0,06	0,025	0,00375	0,12	0,125	0,025	0,00375	0,1	0,115	0,025	0,00375	
0,2	0,24	0,025	0,00375	0,22	0,55	0,025	0,00375	0,2	0,66	0,025	0,00375	
0,3	0,29	0,025	0,00375	0,36	0,66	0,025	0,00375	0,3	0,98	0,025	0,0075	
0,5	0,31	0,025	0,00375	0,6	0,665	0,025	0,00375	0,4	1,01	0,025	0,0075	
10	0,315	0,25	0,00375	10	0,675	0,25	0,00375	2	1,025	0,075	0,0075	
								4	1,03	0,25	0,0075	
								10	1,04	0,25	0,0075	

Iвх = 12 мкА				IBX = 15 MKA				Iвх = 18 мкА			
Ивых, В	Івых, мА	ΔU, Β	ΔI, M A	Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ	Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ
0,1	0,158	0,025	0,0015	0,1	0,234	0,025	0,0015	0,1	0,268	0,025	0,0015
0,14	0,4125	0,025	0,00375	0,14	0,515	0,025	0,00375	0,12	0,595	0,025	0,00375
0,18	0,7175	0,025	0,00375	0,2	1,12	0,025	0,0075	0,16	0,84	0,025	0,0075
0,2	0,93	0,025	0,0075	0,24	1,45	0,025	0,015	0,2	1,38	0,025	0,015
0,3	1,3	0,025	0,0075	0,3	1,62	0,025	0,015	0,3	1,9	0,025	0,015
0,4	1,345	0,025	0,0075	0,4	1,69	0,025	0,015	0,4	1,98	0,025	0,015
0,6	1,38	0,025	0,0075	0,5	1,72	0,025	0,015	0,52	2,02	0,025	0,015
0,94	1,39	0,025	0,0075	0,6	1,74	0,025	0,015	0,6	2,06	0,025	0,015
3	1,4	0,25	0,0075	0,8	1,76	0,025	0,015	0,7	2,08	0,025	0,015
6	1,41	0,25	0,0075	1,5	1,78	0,075	0,015	1,1	2,12	0,075	0,015
10	1,42	0,25	0,0075	10	1,81	0,25	0,015	2,5	2,14	0,075	0,015
								10	2,18	0,25	0,015

Iвх = 21 мкА				Iвх = 24 мкA				Iвх = 27 мкA			
Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ	Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ	Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ
0,1	0,166	0,0075	0,0015	0,09	0,252	0,0075	0,0015	0,08	0,218	0,0075	0,0015
0,12	0,285	0,0075	0,00375	0,11	0,4175	0,0075	0,00375	0,11	0,48	0,0075	0,00375
0,15	0,61	0,0075	0,00375	0,13	0,67	0,0075	0,00375	0,12	0,605	0,0075	0,00375
0,18	1,01	0,0075	0,0075	0,15	0,97	0,0075	0,0075	0,15	1,09	0,0075	0,0075
0,2	1,29	0,0075	0,0075	0,18	1,42	0,0075	0,0075	0,17	1,39	0,0075	0,0075
0,23	1,66	0,0075	0,015	0,22	1,92	0,0075	0,015	0,19	1,74	0,0075	0,015
0,25	1,84	0,0075	0,015	0,25	2,22	0,0075	0,015	0,22	2,11	0,0075	0,015
0,27	1,98	0,0075	0,015	0,3	2,4	0,0075	0,015	0,25	2,38	0,0075	0,015
0,3	2,1	0,0075	0,015	0,5	2,6	0,025	0,015	0,34	2,78	0,025	0,015
0,4	2,29	0,025	0,015	0,6	2,66	0,025	0,015	0,4	2,88	0,025	0,015
0,5	2,34	0,025	0,015	0,7	2,69	0,025	0,015	0,6	2,96	0,025	0,015
0,6	2,38	0,025	0,015	0,9	2,76	0,025	0,015	1,1	3,175	0,075	0,0375
0,76	2,42	0,025	0,015	1,5	2,84	0,075	0,015	2	3,25	0,075	0,0375
2,6	2,51	0,075	0,015	5	2,88	0,25	0,015				
								10	3,325	0,25	0,0375
10	2,56	0,25	0,015	10	2,92	0,25	0,015				

	Iвх = 3	0 мкА		Iвх = 33 мкA				Iвх = 36 мкA			
Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ	Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ	Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ
0,06	0,108	0,0075	0,0015	0,06	0,124	0,0075	0,0015	0,06	0,144	0,0075	0,0015
0,1	0,42	0,0075	0,00375	0,08	0,25	0,0075	0,00375	0,07	0,19	0,0075	0,00375
0,11	0,555	0,0075	0,00375	0,1	0,475	0,0075	0,00375	0,09	0,385	0,0075	0,00375
0,12	0,7	0,0075	0,00375	0,11	0,6125	0,0075	0,00375	0,11	0,675	0,0075	0,00375
0,13	0,89	0,0075	0,0075	0,12	0,8	0,0075	0,0075	0,13	1,03	0,0075	0,0075
0,15	1,185	0,0075	0,0075	0,13	0,955	0,0075	0,0075	0,15	1,47	0,0075	0,0075
0,17	1,59	0,0075	0,015	0,14	1,13	0,0075	0,0075	0,17	1,88	0,0075	0,015
0,19	1,9	0,0075	0,015	0,15	1,32	0,0075	0,0075	0,19	2,23	0,0075	0,015
0,21	2,18	0,0075	0,015	0,16	1,54	0,0075	0,015	0,21	2,55	0,0075	0,015
0,25	2,64	0,0075	0,015	0,17	1,74	0,0075	0,015	0,23	2,808	0,0075	0,015
0,3	2,9	0,0075	0,015	0,18	1,89	0,0075	0,015	0,25	3,05	0,0075	0,0375
0,4	3,075	0,025	0,0375	0,19	2,06	0,0075	0,015	0,29	3,3	0,0075	0,0375
0,5	3,15	0,025	0,0375	0,2	2,21	0,0075	0,015	0,32	3,5	0,025	0,0375
0,8	3,3	0,025	0,0375	0,21	2,36	0,0075	0,015	0,4	3,575	0,025	0,0375
2	3,55	0,075	0,0375	0,25	2,82	0,0075	0,015	0,8	3,85	0,025	0,0375
				0,36	3,3	0,025	0,0375	1,5	4,2	0,075	0,0375
10	3,65	0,25	0,0375	0,4	3,325	0,025	0,0375	2,7	4,3	0,075	0,0375
				0,5	3,4	0,025	0,0375	5,6	4,35	0,25	0,0375
				0,6	3,475	0,025	0,0375	10	4,425	0,25	0,0375
				0,7	3,55	0,025	0,0375				
				1,1	3,75	0,075	0,0375				
				2,9	3,95	0,075	0,0375				
				10	4,05	0,25	0,0375				

	Iвх = 3	9 мкА			IBX = 4	2 мкА		Iвх = 45 мкА				
Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ	Ивых, В	Івых, мА	ΔU, Β	ΔΙ, ΜΑ	Ивых, В	Івых, мА	ΔU, B	ΔΙ, ΜΑ	
0,06	0,166	0,0075	0,0015	0,06	0,2	0,0075	0,0015	0,06	0,202	0,0075	0,0015	
0,07	0,256	0,0075	0,0015	0,07	0,292	0,0075	0,0015	0,07	0,275	0,0075	0,00375	
0,08	0,345	0,0075	0,00375	0,08	0,3775	0,0075	0,00375	0,08	0,39	0,0075	0,00375	
0,09	0,43	0,0075	0,00375	0,09	0,48	0,0075	0,00375	0,09	0,525	0,0075	0,00375	
0,1	0,5775	0,0075	0,00375	0,11	0,85	0,0075	0,0075	0,1	0,7	0,0075	0,00375	
0,12	0,935	0,0075	0,0075	0,13	1,23	0,0075	0,0075	0,12	1,1	0,0075	0,0075	
0,15	1,59	0,0075	0,015	0,15	1,72	0,0075	0,015	0,14	1,62	0,0075	0,015	
0,18	2,16	0,0075	0,015	0,17	2,16	0,0075	0,015	0,16	2,04	0,0075	0,015	
0,2	2,56	0,0075	0,015	0,2	2,74	0,0075	0,015	0,18	2,5	0,0075	0,015	
0,24	3,05	0,0075	0,0375	0,24	3,3	0,0075	0,0375	0,21	3,05	0,0075	0,0375	
0,3	3,6	0,0075	0,0375	0,28	3,7	0,0075	0,0375	0,26	3,7	0,0075	0,0375	
0,4	3,825	0,025	0,0375	0,36	4	0,025	0,0375	0,3	4	0,0075	0,0375	
0,6	4	0,025	0,0375	0,44	4,1	0,025	0,0375	0,4	4,3	0,025	0,0375	
1	4,25	0,025	0,0375	0,54	4,2	0,025	0,0375	0,5	4,4	0,025	0,0375	
2	4,6	0,075	0,0375	0,7	4,3	0,025	0,0375	0,6	4,5	0,025	0,0375	
10	4,75	0,25	0,0375	0,8	4,4	0,025	0,0375	0,96	4,75	0,025	0,0375	
				0,9	4,45	0,025	0,0375	2	5,3	0,075	0,0375	
				1,5	4,75	0,075	0,0375	6	5,5	0,25	0,0375	
				3	5	0,075	0,0375	10	5,55	0,25	0,0375	
				3,4	5,05	0,25	0,0375					
				10	5,15	0,25	0,0375					

Таб. 2 Значення вихідних напруг та струмів, а також їх похибок при різних значеннях вхідного струму.

Рис. 2: Сімейство вхідних характеристик транзистора.

Спочатку знайдемо вхідний опір, тобто опір на емітері за такою формулою:

$$R_{\rm BX} = \frac{\Delta U_{\rm EB}}{\Delta I_{\rm B}} \tag{1}$$

Оскільки так звані прирости $\triangle I$ та $\triangle U$ можна подати у вигляді різниці струмів і напруг відповідно різних точках, тому можна обрати дві робочі точки A та B, але їх треба вибрати так, щоб вони лежали на одній кривій, а саме кривій яка зоображує напругу колектор-емітер. Оскьльки ці точки (A та B) мають дві координати (позначу їх як $A(U_{EB_1}, I_{B_1})$ та $B(U_{EB_2}, I_{B_2})$) і формулу (1) перепишу наступним чином:

$$R_{\rm BX} = \frac{U_{\rm EB_2} - U_{\rm EB_1}}{I_{\rm B_2} - I_{\rm B_1}} \tag{2}$$

підставляючи отримаємо, що

$$R_{\rm BX} = 1250 \; {\rm O_M}$$
 (3)

Також з цього графіка можна знайти I_6 взявши середнє значення між точками A та B і провевши перпендикуляр на вісь у, отриваємо, що $I_6 \approx 20$ мкA.

Використовуючи формулу (4) та рис. 3 можна знайти опір колекторного переходу, тобто опір виходу.

$$R_{\text{\tiny BHX}} = \frac{\triangle U_{\text{EK}}}{\triangle I_{\text{K}}} \tag{4}$$

Рис. 3: Сімейство вихідних характеристик транзистора.

Аналогічно з вхідними характеристиками можна обрати на рис. З робочу точку С, таким чином, щоб перпендикуляр, опущений з неї на вісь х, був чітко на 8 В, оскільки на вхідних характеристиках ця сама робоча точка А розташовувалась на гілці, що відповідала напрузі U.

! Оскільки в даному випадку виконується умова $I_{\rm B}=const,$ тоді точки С і D розташовую на одній кривій, але таким чином щоб була помітна різниця у значеннях. Виконую майже аналогічні операції. для визначення значення $R_{\rm виx}$

$$R_{\text{вих}} = \frac{U_{\text{EK}_2} - U_{\text{EK}_1}}{I_{\text{K}_2} - I_{\text{K}_1}} = 13,3 \text{ кОм}$$
 (5)

Взявши середнє значення між точками C та D можна знайти $I_{\rm K} \approx 5.35$

Знаючи струм бази та струм колектора, можу знайти струм емітера, використовуючи формулу для коефіцієнта підсилення за струмом для спільного емітера наступним чином:

$$\beta = \frac{I_{\rm K}}{I_{\rm B}} = \frac{I_{\rm K}}{I_{\rm E} - I_{\rm K}} \Rightarrow I_{\rm E} = I_{\rm B} + I_{\rm K} = 0.02 \cdot 10^{-3} + 5.35 \cdot 10^{-3} = 5.37 \text{MA}$$
 (6)

Коефіцієнт підсилення за струмом для спільного емітера знаходжу за формулою:

 $\beta = \frac{5.35}{0.02} = 267.5 \tag{7}$

Коеф. підсилення струму бази знаходжу за наступною формулою:

$$\alpha = \frac{I_{\rm K}}{I_{\rm E}} = \frac{5.35}{5.37} \approx 0.99$$
 (8)

Знаючи струм емітера, можна знайти опір емітера за наступною формулою:

$$r_{\rm E} = \frac{\varphi_T}{I_{\rm E}} = \frac{26}{5.37} \approx 4.84 {\rm Om}$$
 (9)

де φ_T — температурний потенціал.

Для того щоб визначити дифузійний потенціал емітерного переходу (потрібен для знаходження опіру бази) φ_0 треба просто провети дотичну до точки, що знаходиться посередині між робочими точками A та B і отримаю наступне:

Рис. 4: Графічне визначення дифузійного потенціау емітерного переходу.

$$\varphi_0 = 0.64B \tag{10}$$

Знаючи струм бази та дифузійний потенціал, тепер можна і опір бази знайти:

$$r_{\rm B} = \frac{\varphi_0}{I_{\rm B}} = \frac{0.64}{0.02 \cdot 10^{-3}} = 32 \text{kOm}$$
 (11)

Знайдені параметри транзистора

 \circledast струм бази $I_{\mathrm{B}}=20$

 \circledast струм емітера $I_{\rm E}=5,37$ мА

 \circledast струм колектора $I_{\mathrm{K}}=5,35$

 \circledast диференційний опір емітерного переходу $R_{\rm BX}=1250$ Ом

 \circledast диференційний опір колекторного переходу $R_{\text{вих}}=13,3$ кОм

 \circledast дифузійний потенціал емітерного переходу $arphi_0=0.64$

 \circledast опір бази $r_{\mathrm{B}}=32$ кОм

 \circledast коефіцієнт підсилення струму емітера $\beta=267.5$

 \circledast коефіцієнт підсилення струму бази $\alpha=0,99$

3.1. Висновки