MATEMÁTICA DISCRETA II

Correcção do Exame da Época de Recurso

CURSO: Engenharia de Sistemas e Informática

Duração: 2h

1. Considere o conjunto X de fórmulas do Cálculo Proposicional definido indutivamente pelas seguintes regras:

$$\frac{\varphi \in X}{p_0 \vee \neg p_0 \in X} \ 1 \qquad \frac{\varphi \in X}{(\neg \varphi \to \varphi) \in X} \ 2 \qquad \frac{\varphi \in X \quad \psi \in X}{\neg (\neg \varphi \land \psi) \in X} \ 3$$

- (a) Seja $\varphi_0 = \neg(\neg(p_0 \lor \neg p_0) \land p_0).$
 - i. Diga, justificando, se $\varphi_0 \in X$.

A fórmula φ_0 não admite qualquer árvore de formação, logo não é um elemento de X. De facto, a única forma de obtermos uma árvore de formação para φ_0 seria através da aplicação da regra 3 como última regra e, para além disso, seria também necessário encontrar árvores de formação para $\neg(p_0 \lor \neg p_0)$ e para p_0 . Ora, tendo em conta as regras que definem X, verifica-se não ser possível encontrar uma árvore de formação para p_0 . Logo $\varphi_0 \not\in X$.

ii. Dê exemplo de uma forma normal disjuntiva logicamente equivalente a φ_0 . Justifique.

Com base nas regras de equivalência lógica verifica-se que

$$\neg (\neg (p_0 \vee \neg p_0) \wedge p_0) \Leftrightarrow \neg \neg (p_0 \vee \neg p_0) \vee \neg p_0 \Leftrightarrow (p_0 \vee \neg p_0) \vee \neg p_0$$

onde $(p_0 \vee \neg p_0) \vee p_0$ é uma forma normal disjuntiva pois trata-se de uma fórmula do tipo $\bigvee_{i=1}^n \bigwedge_{j=1}^{m_n} l_{ij}$ onde cada l_{ij} é um literal (faça-se n=3, $m_1=1, m_2=1, m_3=1$, $l_{11}=p_0$, $l_{21}=\neg p_0$ e $l_{31}=\neg p_0$).

(b) Seja v uma valoração qualquer. Mostre que, para todo o $\varphi \in X$, $v(\varphi) = 1$.

Sejam $\varphi \in X$ e $P(\varphi)$ a propriedade " $v(\varphi) = 1$ ".

A prova de que $P(\varphi)$ é válida para todo $\varphi \in X$ é feita recorrendo ao Teorema de Indução Estrutural para o conjunto X.

- 1) $P(p_0 \vee \neg p_0)$: Uma vez que $v(p_0 \vee \neg p_0) = maximo(v(p_0), 1 - v(p_0))$, então $v(p_0 \vee \neg p_0) = 1$ (quer se tenha $v(p_0) = 1$ ou $v(p_0) = 0$). Logo $P(p_0 \vee \neg p_0)$.
- 2) Para todo $\psi \in X$, $P(\psi) \Rightarrow P(\neg \psi \to \psi)$: Seja $\psi \in X$. Como Hipótese de Indução suponha-se $P(\psi)$. Pretendemos mostrar $P(\neg \psi \to \psi)$. Por definição de valor lógico sabemos que, para todo $\varphi_1, \varphi_2 \in \mathcal{F}^{CP}$, $v(\varphi_1 \to \varphi_2) = 0$ se e só se $v(\varphi_1) = 1$ e $v(\varphi_2) = 0$. Logo, como por Hipótese de Indução temos $v(\psi) = 1$, é imediato que $v(\neg \psi \to \psi) = 1$. Assim, para todo $\psi \in X$, $P(\psi) \Rightarrow P(\neg \psi \to \psi)$.
- 3) Para todo $\psi_1, \psi_2 \in X$, $P(\psi_1)$ e $P(\psi_2) \Rightarrow P(\neg(\neg \psi_1 \wedge \psi_2))$: Sejam $\psi_1, \psi_2 \in X$. Suponha-se, como Hipótese de Indução, $P(\psi_1)$ e $P(\psi_2)$. Pretendemos mostrar $P(\neg(\neg \psi_1 \wedge \psi_2))$.

Por definição de valor lógico tem-se

$$v(\neg(\neg\psi_1 \land \psi_2)) = 1 - v(\neg\psi_1 \land \psi_2) = 1 - minimo(v(\neg\psi_1), v(\psi_2)) = 1 - minimo(1 - v(\psi_1), v(\psi_2))$$

e da Hipótese de Indução resulta que

$$1 - minimo(1 - v(\psi_1), v(\psi_2)) = 1 - minimo(1 - 1, 1) = 1 - 0 = 1.$$

Logo, para todo $\psi_1, \psi_2 \in X$, $P(\psi_1)$ e $P(\psi_2) \Rightarrow P(\neg(\neg \psi_1 \land \psi_2))$.

Então de 1), 2) e 3) concluímos pelo Teorema de Indução Estrutural para o conjunto X que, para todo $\varphi \in X$, $v(\varphi) = 1$.

(c) Diga, justificando, se para qualquer conjunto de fórmulas Γ que seja consistente e para qualquer $\Delta \subseteq X$, $\Gamma \cup \Delta$ é ainda consistente.

Se Γ é consistente e $\Delta\subseteq X$, então $\Gamma\cup\Delta$ é consistente. De facto, se Γ é consistente, então existe uma valoração v_1 tal que $v_1(\varphi)=1$, para todo $\varphi\in\Gamma$. Por outro lado, da alínea anterior sabe-se que, para todo $\varphi\in X$, $v_1(\varphi)=1$; em particular, como $\Delta\subseteq X$ temos que, para todo $\varphi\in\Delta$, $v_1(\varphi)=1$.

Sendo assim, para todo $\varphi \in \Gamma \cup \Delta$, $v_1(\varphi) = 1$. Logo, como existe uma valoração (neste caso a valoração v_1) que satisfaz $\Delta \subseteq X$, concluímos que este conjunto é consistente.

- 2. Considere as seguintes afirmações:
 - A₁: Se a arma do crime é um revólver, então: o Sherlock Holmes desvenda o crime ou o mordomo é culpado.
 - \bullet A_2 : Não é verdade que: a arma do crime é um revolver ou o mordomo não é culpado.
 - A_3 : O mordomo não é culpado se e somente se: o Sherlock Holmes desvenda o crime e a arma do crime não é um revólver.
 - (a) Considerando que p_1 , p_2 e p_3 representam, respectivamente, "A arma do crime é um revólver", "O Sherlock Holmes desvenda o crime" e "O mordomo é culpado", represente as afirmações anteriores através de fórmulas do Cálculo Proposicional.

Sendo φ_1 , φ_2 e φ_3 as fórmulas do Cálculo Proposicional que representam as afirmações A_1 , A_2 e A_3 , respectivamente, temos

$$\varphi_1 = p_1 \to (p_2 \lor p_3);$$

$$\varphi_2 = \neg (p_1 \lor \neg p_3);$$

$$\varphi_3 = \neg p_3 \leftrightarrow (p_2 \land \neg p_1).$$

(b) Diga, justificando, se é suficiente que a terceira afirmação seja verdadeira para que a primeira também o seja.

Consideremos a tabela de verdade de φ_1 , φ_2 e φ_3 .

p_1	p_2	p_3	φ_1	φ_2	φ_3
1	1	1	1	0	1
1	1	0	1	0	0
1	0	1	1	0	1
1	0	0	0	0	0
0	1	1	1	1	0
0	1	0	1	0	1
0	0	1	1	1	1
0	0	0	1	0	0

Por observação da tabela, concluímos que, sendo v uma valoração, sempre que $v(\varphi_3)=1$ então $v(\varphi_1)=1$. Logo, é suficiente que a terceira afirmação seja verdadeira para que a primeira também o seja.

(c) Admitindo que todas as afirmações são verdadeiras, podemos concluir que o Sherlock Holmes desvenda o crime? Justifique.

Observando a tabela de verdade da alínea anterior, verifica-se que as únicas valorações v para as quais $v(\varphi_1)=v(\varphi_2)=v(\varphi_3)=1$ são aquelas em que $v(p_1)=v(p_2)=0$ e $v(p_3)=1$. Assim, não podemos concluir que o Sherlock Holmes desvenda o crime mas sim que o Sherlock Holmes não desvenda o crime.

3. (a) Construa uma derivação em DNP de $(p_0 \vee \neg p_1) \to p_2$ a partir de $\{p_1, p_0 \to p_2\}$.

$$\frac{p_0 \text{$\not \sim} - p_1^{(1)}}{p_1^{(2)}} \quad \frac{p_0^{(2)} - p_0 \to p_2}{p_2} \to E \quad \frac{p_1 - \text{$\not \sim} p_1^{(2)}}{\frac{1}{p_2}} \to E \\ \frac{p_2}{(p_0 \vee \neg p_1) \to p_2} \to I^{(1)}$$

é uma derivação cuja conclusão é $(p_0 \lor \neg p_1) \to p_2$ e cujas hipóteses por cancelar são p_1 e $p_0 \to p_2$, sendo assim uma derivação nas condições pretendidas.

(b) Sejam $\Gamma \subseteq \mathcal{F}^{CP}$ e $\varphi, \psi \in \mathcal{F}^{CP}$. Prove que se $\Gamma, \varphi \vdash \psi$ e $\Gamma', \psi \vdash \varphi$ então $\Gamma \cup \Gamma' \models \varphi \leftrightarrow \psi$.

Suponhamos que $\Gamma, \varphi \vdash \psi$ e $\Gamma', \psi \vdash \varphi$. Então, existe uma derivação D_1 de ψ a partir de $\Gamma \cup \{\varphi\}$ e existe uma derivação D_2 de φ a partir de $\Gamma' \cup \{\psi\}$. Assim, a construção

$$\begin{array}{ccc} \Gamma', \psi^{(1)} & \Gamma, \varphi^{(1)} \\ D_1 & D_2 \\ \frac{\varphi}{\varphi & \psi} & \psi \\ \end{array} \mapsto I^{(1)}$$

é uma derivação de $\varphi \leftrightarrow \psi$ a partir de $\Gamma \cup \Gamma'$ e, portanto, $\Gamma \cup \Gamma' \vdash \varphi \leftrightarrow \psi$. Daqui, pelo Teorema da Correcção, segue que $\Gamma \cup \Gamma' \models \varphi \leftrightarrow \psi$.

- 4. Seja $L = (\{c, f\}, \{R\}, N)$ a linguagem onde N(c) = 0, N(f) = 1 e N(R) = 1.
 - (a) Dê exemplo de uma L-fórmula atómica φ tal que LIV $(\varphi) = \emptyset$. Justifique.

Uma L-fórmula atómica é uma fórmula do tipo R(t) onde t é um L-termo. Dado que pretendemos $\mathsf{LIV}(\varphi) = \emptyset$, então temos de considerar um L-termo onde não ocorram variáveis (como, por exemplo, o termo c). Assim R(c) é exemplo de uma L-fórmula atómica nas condições indicadas

(b) Seja $E = (\{0, 1, 2\}, -)$ uma L-estrutura onde $\overline{c} = 2$ e $\overline{f} : \{0, 1, 2\} \longrightarrow \{0, 1, 2\}$ é tal que $\overline{f}(0) = 1$, $\overline{f}(1) = 2$ e $\overline{f}(2) = 0$. Dada uma qualquer atribuição a em E, calcule $f(f(c))[a]_E$. Justifique.

Seja a uma atribuição em E. Por definição de valor de um termo tem-se:

$$f(f(c))[a]_E = \overline{f}(f(c)[a]_E) = \overline{f}(\overline{f}(c[a]_E)) = \overline{f}(\overline{f}(\overline{c}) = 1.$$

Logo, para qualquer atribuição a em E, $f(f(c))[a]_E=1$.

- (c) Considere a L-fórmula $\varphi = (\forall x_0 R(x_0)) \rightarrow (\forall x_0 R(f(x_0))).$
 - i. Indique uma L-estrutura que valide φ . Justifique

Uma L-estrutura E=(D,-) valida φ se, para toda a atribuição a em E, $E\models\varphi[a]$. Por definição de valor lógico para uma implicação tem-se que: $E\models\varphi[a]$ se e só se $E\models(\forall x_0\,R(f(x_0)))[a]$ sempre que $E\models(\forall x_0\,R(x_0))[a]$. Por sua vez,

- 1) $E \models (\forall x_0 R(x_0))[a]$ se e só se para qualquer $d_1 \in D$, $d_1 \in \overline{R}$;
- 2) $E \models (\forall x_0 R(f(x_0)))[a]$ se e só se para qualquer $d_2 \in D, \overline{f}(d_2) \in \overline{R}$.

Se considerarmos a L-estrutura $E_1=(\{0,1,2\},-)$ onde $\overline{c}=2$, $\overline{f}:\{0,1,2\}\longrightarrow\{0,1,2\}$ é tal que $\overline{f}(0)=1$, $\overline{f}(1)=2$, $\overline{f}(2)=0$ e $\overline{R}=\{0,1,2\}$, é fácil verificar que:

- para qualquer $d_1 \in \{0,1,2\}$, $d_1 \in \overline{R}$ e
- para qualquer $d_2 \in \{0, 1, 2\}, \overline{f}(d_2) \in \overline{R}$.

Logo, para toda a atribuição a, $E_1 \models (\forall x_0 R(f(x_0)))[a]$ sempre que $E_1 \models (\forall x_0 R(x_0))[a]$, i.e., $E_1 \models \varphi[a]$, qualquer que seja a atribuição. Logo E_1 valida φ .

ii. A L-fórmula φ é universalmente válida? Justifique.

A fórmula φ é universalmente válida se, para toda a L-estrutura E=(D,-) e toda a atribuição a em $E, E \models \varphi[a]$. Da alínea anterior sabe-se que $E \models \varphi[a]$ se e só se sempre que

1) para qualquer $d_1 \in D$, $d_1 \in \overline{R}$;

também se verifica

2) para qualquer
$$d_2 \in D, \overline{f}(d_2) \in \overline{R}$$
.

Ora, se assumirmos 1), temos que $\overline{R}=D$. Assim, como \overline{f} é uma aplicação de D em D, 2) verificase. Logo $E\models\varphi[a]$, para toda a L-estrutura E=(D,-) e para toda a atribuição a em E, i.e., φ é universalmente válida.