CMPE323 Lecture 10 LTI and Block Diagrams

UMBC CMPE323 Signals and Systems © EFCLaBerge, S. J. Kim 2014 All rights reserved Portions © Addison-Wesley Publishing, Inc

1

- Content
 - Signals, decomposition, synthesis
 - Time manipulation, delay, advance, compress, expand, linear
 - Even & odd
 - Differentiation, integration
- Systems, Linear, TI, Causal, Static
- Convolution, graphic, analytic, properties

UMBC CMPE323 Signals and Systems © EFCLaBerge, S. J. Kim 2014 All rights reserved Portions © Addison-Wesley Publishing, Inc

2

System applications

- In systems application we're much less worried about the particular and homogeneous solutions than we are about the solution with and without an input
- The zero state solution

$$y_{ZS}(t) = y(t)|_{Y_t=0} = \left(\frac{1}{a-b}\right) \left(e^{-bt} - e^{-at}\right) u(t)$$

- The zero input solution $y_{ZI}(t) = y(t)\Big|_{x(t)=0} = y_h(t) = Y_I e^{-at}$
- And $y(t) = y_{ZS}(t) + y_{ZI}(t)$

UMBC CMPE323 Signals and Systems
© EFCLaBerge, S. J. Kim 2014 All rights reserved
Portions © Addison-Wesley Publishing Inc.

Is the system described linear?

- The linear combinations have to work for any valid inputs, so choose $x_1(t) = \alpha e^{-bt} u(t)$, $x_2(t) = -x_1(t)$
- Then, from our solution

$$y_1(t) = Y_I e^{-at} + \frac{1}{\alpha} \left(\frac{1}{a-b} \right) (e^{-bt} - e^{-at}) u(t)$$

$$y_2(t) = Y_1 e^{-at} - \frac{1}{\alpha} \left(\frac{1}{a-b} \right) (e^{-bt} - e^{-at}) u(t)$$

• If we let $x(t) = x_1(t) + x_2(t) = 0$, a linear system will give

$$y(t) = Y_1 e^{-at} + \frac{1}{\alpha} \left(\frac{1}{a - b} \right) (e^{-bt} - e^{-at}) u(t) + Y_1 e^{-at} - \frac{1}{\alpha} \left(\frac{1}{a - b} \right) (e^{-bt} - e^{-at}) u(t)$$

$$y(t) = Y_{i}e^{-at} + Y_{i}e^{-at} = 2Y_{i}e^{-at} = 0 \Leftrightarrow Y_{i} = 0$$

So this system is linear iff it is initially at rest!

UMBC CMPE323 Signals and Systems © EFCLaBerge, S. J. Kim 2014 All rights reserved Portions © Addison-Wesley Publishing, Inc

1

In general

- A system described by a LCCDE is linear if and only if it is initially at rest.
- A causal system that is initially at rest is also Time Invariant

UMBC CMPE323 Signals and Systems © EFCLaBerge, S. J. Kim 2014 All rights reserved Portions © Addison-Wesley Publishing, Inc

nd Systems All rights reserved Publishina. Inc

Block Diagrams of LCCDE

- How would we implement or synthesize a system if we had a LCCDE?
- Implementing differentiators is problematic because
 - High frequencies in the input are multiplied by a frequency ramp

$$\frac{d\sin(\omega_o t)}{dt} = \omega_o \cos(\omega_0 t)$$

- Impulses can result from differentiation
- So we transform the equation into an integral equation
- Here are the steps

UMBC CMPE323 Signals and Systems © EFCLaBerge, S. J. Kim 2014 All rights reserved Portions © Addison-Wesley Publishing, Inc

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}, \ \frac{d^0 y(t)}{dx^0} \triangleq y(t)$$

If
$$M < N$$
, let $b_k = 0$, $k = M + 1$, $M + 2...N$

If
$$N < M$$
, let $a_k = 0$, $k = N + 1, N + 2...M$

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{N} b_k \frac{d^k x(t)}{dt^k}, \ \frac{d^0 y(t)}{dx^0} \triangleq y(t)$$

UMBC CMPE323 Signals and Systems
© EFCLaBerge, S. J. Kim 2014 All rights reserved

Now form a set of auxiliary variables or , $y_k(t)$ and $x_k(t)$

$$y_0(t) = y(t), \ x_0(t) = x(t)$$

$$y_1(t) = \int_0^t y_o(\tau) d\tau, \ x_1(t) = \int_0^t x_o(\tau) d\tau$$

$$y_2(t) = \int_{-\infty}^{t} y_1(\tau) d\tau, x_2(t) = \int_{-\infty}^{t} x_1(\tau) d\tau$$

etc...

$$y_{N}(t) = \int_{-\infty}^{t} y_{N-1}(\tau) d\tau, \ x_{N}(t) = \int_{-\infty}^{t} x_{N-1}(\tau) d\tau$$

$$\sum_{k=0}^{N} a_k y_{N-k}(t) = \sum_{k=0}^{N} b_k x_{N-k}(t) = \sum_{k=0}^{-\infty} b_k x_{N-k}(t)$$

Where we have integrated both sides N times...

requiring N initial conditions (one for each integral)

UMBC CMPE323 Signals and Systems © EFCLaBerge, S. J. Kim 2014 All rights reserved Portions © Addison-Wesley Publishing, Inc

Basic Block Diagram Elements

- We'll now use this "integrated" form to synthesize an implementation of the system described by the **LCCDE**
- We need three building blocks

Adder

UMBC CMPE323 Signals and Systems
© EFCLaBerge, S. J. Kim 2014 All rights reserved
Portions © Addison-Wesley Publishing, Inc

Synthesis

• Assume $a_N = 1$ (or divide through to make it so)

N-th order **Continuous** Time **Direct Form**

 $y_N(t)$

-y(t)

UMBC CMPE323 Signals and Systems © EFCLaBerge, S. J. Kim 2014 All rights reserved Portions © Addison-Wesley Publishing, Inc

Draw the Direct Form Implementation

• Example $\frac{dy(t)}{dt} + \alpha y(t) = \beta \frac{dx(t)}{dt} + \gamma x(t)$

UMBC CMPE323 Signals and Systems © EFCLaBerge, S. J. Kim 2014 All rights reserved Portions © Addison-Wesley Publishing, Inc 11

Concatenation

• Our direct form is the concatenation of two systems:

$$v(t) = \sum_{k=0}^{N} b_k x_{N-k}(t)$$

$$y(t) = v(t) - \sum_{k=0}^{N-1} a_k y_{N-k}(t)$$

 Convolution is associative and commutative, so we can swap the order (defining a new intermediate fnc)

$$w(t) = x(t) - \sum_{k=0}^{N-1} a_k x_{N-k}(t)$$

$$y(t) = \sum_{k=0}^{N} b_k w_{N-k}(t)$$

UMBC CMPE323 Signals and Systems © EFCLaBerge, S. J. Kim 2014 All rights reserved Portions © Addison-Wesley Publishing, Inc

12

Consider

$$2\frac{d^{2}y(t)}{dt^{2}} + 2\frac{dy(t)}{dt} + y(t) = \frac{dx(t)}{dt} + 3x(t)$$

Draw the Direct Form II implementation

UMBC CMPE323 Signals and Systems
© EFCLaBerge, S. J. Kim 2014 All rights reserved
Portions © Addison-Wesley Publishing Inc.

• Define the centroid of a signal x(t) to be

$$C_x = \int \tau x(\tau) d\tau / A_x$$
, where $A_x = \int x(\tau) d\tau$

Define the k-th central moment of a signal to be

$$\sigma_x^k = \int (\tau - C_x)^k x(\tau) d\tau / A_x$$

- $\sigma_x^k = \int_x^x (\tau C_x)^k x(\tau) d\tau / A_x$ Define our usual unit pulse $p(t) = \begin{cases} 1 & 0 \le t < 1 \\ 0 & otherwise \end{cases}$
- Do the following in MATLAB
 - 1) Compute C_p, σ_p^2 for the shifted pulse p(t+0.5)
 - 2) Convolve p(t+0.5) with itself $p_2(t)=p(t+0.5)*p(t+0.5)$ and compute $C_{p_2},\sigma_{p_2}^2$
 - 3) Convolve $p_2(t)$ with itself $p_4(t) = p_2(t) * p_2(t)$ and compute $C_{p_4}, \sigma_{p_4}^2$
 - 4) Repeat to compute $p_8(t) = p_4(t) * p_4(t), C_{p_0}, \sigma_{p_0}^2$
 - 5) Provide plots. Superimpose the plot of $p_{8}(t)$ with $Ke^{-(t-C_{p_{8}})^{2}/(2\sigma_{p_{8}}^{2})}$, choosing K to make the peaks