個案演練分析參考表格 南 區 3 組

重要提醒:本分析表格提供參與演練夥伴使用,係基於提供案例的有限資訊,並結合事故調查的專業方法論進行。一場實際、完整的事故調查,需要 更詳盡的現場勘查、人員訪談與物證檢驗來支持所有結論。

演練案例 : 局限空間案 5

事故基本資料

● 行業分類:電力電子設備批發業

● 災害類型:與有害物等之接觸(12)

● 媒介物:有害物(514)

● 罹災情形:死亡2人

● 事故時間:98年3月30日15時00分許

● 事故地點:台中市,○○股份有限公司廠內之顯影液桶槽

● 事故摘要:承攬人勞工於某電子廠從事顯影液桶槽檢查作業,於進行桶體內部檢查程序時,甲員在桶體內不慎跌倒,共同作業之4名勞工隨即進入桶槽內進行搶救。從事作業及搶救之5名勞工吸(食)入及接觸顯影液受傷,從桶槽內被救出後隨即送往醫院急救,其中2員經急救90分鐘後仍宣告不治死亡,另3員留院觀察無礙後,隔日出院。

以下建議事項謹供參考。

一. 事件成因分析圖 (ECFC)

此圖將事故發生的事件及相關條件按時間順序,由左至右呈現,以視覺化方式釐清因果關係。

建議:

- **事件**:具體的「動作」或「發生了什麼事」。可加入:「第一位勞工未 著防護具入槽」、「其餘四名勞工未通報,直接入槽救援」等,後來可 被查證的事。
- 條件:為「狀態」或「環境」。例如:「槽內氧氣濃度低於 18%」、「槽底殘留 37.5 公分顯影液」、「現場未配置任何搶救設備」等。

二. 時間序列表

以表格形式記錄事故發生的先後順序和相關條件,為後續分析奠定基礎。

日期/時間	事件描述	事實/推斷	主(P)/	相關條件1	相關條件2(條件1
			次(S)事件	(直接條件)	的前提)
98/3 15:00	顯影槽桶入槽檢查	事實	Р	檢查作業	
	人員入槽後跌倒	事實	Р	缺氧導致昏迷跌	未通風換氣並未測
				入槽底吸入顯影	定含氧量・槽底顯
				液	影藝未排空
	四名勞工進入搶救	事實	S	發現緊急意外入	監視人員發現意外
				槽搶救	
	接連因缺氧昏迷倒下吸食接	事實	Р	1.發現意外人員	1.未設置緊急搶救
	觸顯影液			未選用正確防護	設備
				具及使用緊急器	2.未依入槽規定直
				具直接入槽	接入槽執行搶救作
				2.第二位人員缺	業
				氧跌入槽底・顯	
				影液高於頭部吸	
				入液體	
	消防人員進入急救	事實	Р	急救並送醫	
	急救後2人不治,3人隔日出	事實	Р	1.兩人跌入槽底	
	院			吸到顯影液死亡	
				2.三人吸入有害	
				氣體及缺氧留院	
				觀察無礙	

三. 為何樹分析 (Why-Tree)

本分析從最終的傷害事件開始,透過不斷追問「為什麼」來探究事件的根本 原因。

建議:

- 可更嚴謹的提問:「為何未執行通風換氣?」原因可能是:「因為人員不知道需要通風(訓練不足)」或「因為現場沒有通風設備(資源不足)」或「因為主管未要求(監督不周)」等。
- 可繼續追問:「為何程序未落實?」答案可能是:「程序不切實際」、「人員未經訓練」、「管理層對違規視而不見(安全文化問題)」。「為何主管未監督?」答案可能是:「主管職責不清」、「主管身兼數職,分身乏術」、「公司沒有賦予主管足夠的權力或資源進行監督」等。
- 可持續追問直到管理層決策可改善之處

四. 屏障分析 (Barrier Analysis)

本分析旨在識別應有但失效、缺失或不足的屏障,導致危害接觸到目標。

• 危害:局限空間作業缺氧並吸入顯影液

• 目標: 兩位人員罹災,三位留院觀察後無礙

屏障類型	屏障	屏障表現 (事故 時狀態)	屏障失效原因	屏障如何影響事故 (失效的後果)
行政管理	工程前危害告知工具箱會議	不存在或不足	1.業主未對廠區危害風險對承 攬商做明確告知 2.承攬商未確實執行當日作業 危害告知	作業人員無法得知作業風險·也不會 進行相關防護
行政管理	危害辨識與風險 評估	未執行	未對作業內容評估可能會遇到 的危害及緊急應變措施	未辨識危害帶來的風險·所以未規劃 所需要的防護具·及各項搶救設備· 導致事故發生連鎖效應
行政管理	局限空間作業安全教育訓練 提供 SDS	未實施或不足	未能讓員工充分了解局限空間 作業的危害嚴重性·也沒有讓 作業人員知道有害物接觸的緊 急處理措施	缺乏安全知識·讓現場作業人員未能 意識到作業過程衍生的危險性
行政管理	現場安全管制	缺失或未遵守	1.入槽前的通風換氣與氧氣濃度及有害氣體監測 2.入槽人數的許可管制 3.作業前的裝備檢點	1.槽內未知的狀況導致作業人員深陷 惡劣環境 2.未有齊全的裝備導致入槽人員一同 遇害
物理屏障	提供適當正確的 防護具及緊急救 難設備	選擇不當	1.缺氧環境使用 R95 口罩·明顯不符合環境內使用 2.未有輔助吊升設備·導致人員直接進入有害環境	不安全環境未提供正確防護器具及緊 急救難設備 · 讓作業人員只能直覺式 的執行不安全行為
工程控制	提供通風換氣設 備・使用四合一 偵測器	未實施	1.未使用通風換氣設備(桶槽排空後檢測結果含氧量上14%、中6.8%、下5%) 2.入槽前未使用四合一偵測器進行量測 3.「承攬商為節省成本而未攜帶設備?」、「現場無適用電源?」還是「作業人員不知道要用(訓練不足)?」	未設置通風換氣設備導致槽內氧氣濃度低於 18%·人員在不知情狀況下入槽,發生缺氧跌入槽底
工程控制	顯影液未抽乾排 空	未實施	底部顯影液未排空·上有 37.5 公分高度	人員跌入槽底因顯影液位偏高·導致 人員吸入顯影液引發肺水腫致呼吸衰 竭

建議:

• 將屏障失效原因與為何樹分析結果連結:在「屏障失效原因」一欄,直接引用為何樹分析中找到的管理系統根本原因。例如,在「提供適當防護具」屏障下,其失效原因可註明:「危害辨識與風險評估不足,導致未規劃正確的防護具」、「安全教育訓練不足,人員缺乏危害認知」等。

五. 變更分析 (Change Analysis)

本分析比較「事故狀況」與一個「理想的無事故狀況」,以識別導致事故的關鍵差異。

因素 (Factor)	事故狀況	先前、理想或未發生事故	差異(變更)	效果評估 (此差異對事故
		狀況 (比較基準)		的影響)
WHAT	1.入槽缺氧跌入槽底,吸	1.執行通風換氣與環境監	1.未讓作業的危害環境	1.未執行相關措施·導致
	入顯影液不治死亡	測·排空槽底顯影液	成為安全環境	不可控危害並風險增高
	2.入槽搶救作業同樣缺氧	2.緊急搶救設備設置,使用	2.沒有設備可以搶救受	2.讓搶救人員一同曝露高
	跌入槽底,吸入顯影液	正確防護具可安全搶救受	傷人員・便宜行事	危害環境
	不治死亡	傷人員		
WHEN	1.既定安排入槽檢查	業主進行環境及作業危害	在不熟悉及有害環境作	未有周詳計畫與發現潛在
	2.未進行作業現場危害評	告知,承攬商確認相關風險	業・無知狀況下進行入	危害風險·無法及時達到
	估	進行風險評估與危害辨識	槽檢查	預防與應變
		·明確準備對應物品		
WHERE	1 缺氧作業環境無防護	1.入槽前應進行通風換氣讓	1.未讓槽內氧氣濃度足	槽內不安全環境未改善,
	2.槽底留有害化學液體	槽內含氧量高於 18%以上	夠	讓人員有不安全行為方式
		2.槽底顯影液應排空避免作	2.有害液體未排空,導	執行
		業人員接觸	致人員吸入	
WHO	1.人員未接受相關教育訓	1.現場作業主管應於施工前	1.未讓作業人員知悉當	1.缺乏安全觀念導致行為
	練與危害告知	進行工具箱會議告知風險	日工作內容注意事項	未能意識風險的存在
	2.局限作業主管未盡監督	危害與注意事項	2.作業主管無進行管制	2.無作為的監督無法及時
	之責	2.局限空間作業主管應進行	措施	反應及立即改善不安全狀
		許可管制與相關公告事項		況

六. 人為失誤分析 (Human Failure Analysis)

本分析探討影響人員行為的深層次原因,而非僅歸咎於個人。

失誤類型	主要不安全行為/失誤	根本原因 (組織與系統層面)
技術性失誤	1. 未使用通風換氣設備	1.未落實使用或未準備通風設備
(Skill-based errors)	2. 入槽未進行含氧量檢測	2.風險評估不足
	3. 配戴錯誤防護具	3.局限空間作業程序未落實
規則性錯誤	1.誤認為槽內為低風險環境	1.風險評估不足
(Rule-based mistakes)	2.沿用錯誤或過時的作業方法	2.SOP 制定規則與防護不足
	3.憑經驗作業	3.資深人員以經驗規則執行·未以 SOP
知識性錯誤	1.不清楚局限空間作業危害	1.未受局限空間教育訓練
(Knowledge-based mistakes)	2.缺乏顯影液的化學毒性	2.未確認顯影液的 SDS
	3.緊急應變知識不足	3.未有相關知識與演練
違規行為	1.未申請許可程序	1.業主默許違規
(Violations)	2.忽略防護具使用種類·以為有戴就好	2.作業主管執行監督鬆散·缺乏執行力
	3.以為低濃度危害·不啟動抽風換氣系統	

建議:「配戴錯誤防護具」被歸類為「技術性失誤」,但如果人員根本「不知道」 在缺氧環境下 R95 口罩無效,那可能偏向於「知識性失誤」。如果人員知道,但為 了方便或因為沒有其他選擇而使用,則可能涉及「違規行為」。(需要後續查證)

七. 根本原因分析與矯正改善措施

本章節匯總前述六項分析的結果,旨在明確事故的直接原因與根本原因,並依據控制階層理論,提出能有效防止災害再次發生的系統性改善建議。

(一) 立即原因

- 不安全的狀況: 1.未執行通風換氣,槽內為不安全環境
 - 2.未排空槽內顯影液,人員接觸及吸入
 - 3.未架設緊急搶救設備
 - 4.未提供自主式呼吸防護具
- 不安全的行為: 1.氧氣濃度不足 18%, 只配戴 R95 口罩
 - 2.搶救人員未有足夠裝備入槽救人

(二) 根本原因

- 1. 未落實安全許可制度與監督管理執行力鬆散
- 2. 危害鑑別與風險評估不足
- 3. 對危害教育訓練不足,作業人員不清楚嚴重度
- 4. 緊急應變計畫與設備缺乏,未有演練經驗,導致搶救風險提高

(三) 矯正改善措施建議

- 依據風險控制階層 (消除 > 取代 > 工程控制 > 管理控制 > 個人防 護具),提出以下矯正措施:
- 工程控制層面 (最優先):
 - 1. 使用通風換氣設備置換槽內空氣,提升氧氣濃度並將有害氣體排除
 - 2. 使用四合一偵測器持續監測
 - 3. 使用排液馬達將顯影液排空
 - 4. 架設輔助吊升之緊急救援設備

管理控制層面:

- 工程發包前的環境危害,緊急沖淋設備、逃生動線列入採購程序 要求內容
- 2. 高風險作業列入管制項目,並定期檢討危害辨識與風險評估管理
- 3. 加強作業主管監督與稽核的力道,確認現場有無按照 SOP 執行
- 4. 安全觀察文化培養,互相觀察並提醒不安全環境與行為

• 個人防護具:

1. 缺氧環境需使用自主式呼吸防護具

- 2. 接觸顯影液需穿著耐化學防護衣、手套、鞋、面罩
- 3. 現場備有除汙劑與沖身洗眼設備