CC1004 - Modelos de Computação Prática 4

Ana Paula Tomás

DCC FCUP

Março 2021

1a) $r = (0^*)$ é da forma (r_1^*) , com $r_1 = 0$.

O AFND- ε para r_1 é:

O AFND- ε para r é:

1b) $r = (\emptyset^*)$ é da forma (s^*) , com $s = \emptyset$.

O AFND- ε para s é:

O AFND- ε para r é:

1e) $r = ((0^*)((11) + 0))$ é da forma (r_1r_2) , com $r_1 = (0^*)$ e $r_2 = ((11) + 0)$. A expressão $r_2 = (r_3 + r_4)$, com $r_3 = (11)$ e $r_4 = 0$. A expressão $r_3 = (r_5r_6)$, com $r_5 = 1$ e $r_6 = 1$. Os AFND- ε obtidos pelo método de Thompson são:

Para r_1 :

Para $r = (r_1 r_2)$:

1h) Para $r = ((11) + (0 + (0^*)))$, o AFND- ε que se obtém por aplicação do método de Thompson é

1m) Construção para $r = (((((1\varepsilon)^*)1) + (\varepsilon\varepsilon))$ Para r: (1ε) : $((1\varepsilon)^*)$:

Na construção do AFND- ε para a expressão para a (r_1r_2) , o estado inicial de $A(r_2)$ substitui o estado final de $A(r_1)$.

 $(\varepsilon\varepsilon)$:

• Para eliminar s_0 , ver os ramos que estão a entrar e a sair de s_0 .

Novo arcos:

$$(i, s_1)$$
 com $\varepsilon 1^*0$, i.e., 1^*0 ; (s_1, s_1) com 01^*0

• Elimina s_1 . Fica $j_{1*0(01*0)*}$

Expressão: 1*0(01*0)*

2c) Inserir estados i (novo inicial) e f (o único final) e alterar as expressões nos ramos para ter expressões regulares (abreviadas).

• Para eliminar s_0 , ver os ramos que estão a entrar e a sair de s_0 .

Arcos:

$$(s_2, s_1)$$
: já existia; acrescenta $0(1+2)$.
Fica $1+2+0(1+2)\equiv (0+\varepsilon)(1+2)$.
 (i, s_1) : $1+2$.
 (s_1, s_1) : $(1+2)(1+2)$.

• Eliminar s₂

2c) (cont)

Eliminar s₁

Expressão:
$$(1+2)(001+002+01+02+11+12+21+22)*(0+\varepsilon)$$

2f) Remove os estados s_2 e s_3 pois não são acessíveis do estado inicial. Como fica sem estados finais, a expressão é \emptyset .