

STATISTICS AND RANKING METHODS

Information Gain

Fisher Score

Univariate tests

Univariate rocauc / rmse

STATISTICS AND RANKING METHODS

Two steps:

Rank features based on certain criteria / metric

Select features with highest rankings

Pros and Cons

- > Fast
- Does not contemplate feature redundancy

STATISTICS AND RANKING METHODS

Evaluate if the variable is important to discriminate the target

MUTUAL INFORMATION

- Measures the mutual dependence of 2 variables
- Determines how similar the joint distribution p(X,Y) is to the products of individual distributions p(X)p(Y)
- If X and Y are independent, their MI is zero
- If X is deterministic of Y, the MI is the uncertainty in X.

MUTUAL INFORMATION

$$\sum_{i,y} P(xi,yj) \times \log \frac{P(xi,yj)}{P(xi)P(yj)}$$

FISHER SCORE

- Measures the dependence of 2 variables
- Suited for categorical variables.
- Target should be binary
- Variable values should be non-negative, and typically Boolean, frequencies, or counts.
- It compares observed distribution of class among the different labels against the expected one, would there be no labels

FISHER SCORE

	Male	Female	Total Row
Survived = 1	2	9	11
Survived $= 0$	10	3	13
Total column	12	12	24

	Male	Female	Total Row
Survived = 1	0.17	0.75	0.46
Survived = 0	0.38	0.25	0.54
Total column	1	1	1

FISHER SCORE

Fisher Score [10]: Features with high quality should assign similar values to instances in the same class and different values to instances from different classes. With this intuition, the score for the i-th feature S_i will be calculated by Fisher Score as,

$$S_i = \frac{\sum_{k=1}^K n_j (\mu_{ij} - \mu_i)^2}{\sum_{k=1}^K n_j \rho_{ij}^2},$$
(0.2)

where μ_{ij} and ρ_{ij} are the mean and the variance of the *i*-th feature in the *j*-th class respectively, n_j is the number of instances in the *j*-th class, and μ_i is the mean of the *i*-th feature.

UNIVARIATE TESTS

- Measures the dependence of 2 variables

 ANOVA
- Suited for continuous variables
- Requires a binary target
 - Sklearn extends the test to continuous targets with a correlation trick
- Assumes linear relationship between variable and target
- Assumes variables are normally distributed
- Sensitive to the sample size

UNIVARIATE ROC-AUC / RMSE

- Measures the dependence of 2 variables \rightarrow using machine learning
- Suited for all types of variables
- Makes no assumption on the distribution of the variables

UNIVARIATE ROC-AUC / RMSE

Builds decision tree using a single variable and the target

Ranks the features according to the model roc-auc or rmse

Selects the features with the highest machine learning metrics

roc-auc = 0.5 means random