Minor 1 Graded Student Manshi Sagar **Total Points** 10 / 30 pts Question 1 Q1 **5** / 5 pts + 5 pts Correct + 0.5 pts Argued that the condition number is finite but no mention of a constant upper bound + 1 pt Correct argument for well-conditioning that the condition number is always small and bounded. + 0.5 pts Mentioned that unstable at x = 0, but unsatisfactory reasoning. \checkmark + 1.5 pts Mentioned that unstable at x = 0 and correct explanation. → + 1 pt Correct expression for alternative way to compute + 0 pts Incorrect/Unattempted Question 2 **Q2(i) 2** / 2 pts + 1 pt Correct for the first iteration but not for the second one.

+ 0 pts Incorrect.

how?

+ 0.5 pts Point adjustment

Q2(ii) Resolved 1/3 pts

- - + 2 pts Correct proof of the induction hypothesis.
 - + 0 pts Incorrect

C Regrade Request

please go through the solution again

the invariant is correct because

"no row interchange happened at some jth iteration" means the same as that "the lower (n-j)x(n-j) matrix has diagonal entry larger than sum of absolute values of off-diagonal entries"

Submitted on: Mar 31

(follows from part i and the further proof of part ii)

regraded

Reviewed on: May 05

Question 4

Q3 (i) Resolved 1/3 pts

- + 3 pts Correct
- +2 pts Correct computation of vector v and correct formula for final vector, but calculation mistake in computing it
- \checkmark + 1 pt Correct computation of the vector v
 - + 0 pts Incorrect

C Regrade Request Submitted on: Mar 31

i missed a factor of 2 in the formula of reflector it is a small mistake (I wrote it wrong in my 1-page exam notes) all other calculation and concept is correct please give some partial marking for the reflection part

We cannot give marks for applying the wrong formula.

Reviewed on: May 06

Question 5 **Q3(ii) 0** / 3 pts → + 0 pts Incorrect + 3 pts Correct + **0.5 pts** Calculation error in computing k_f , but right formula **+ 1 pt** Correctly computed σ_1 **+ 0.5 pts** Calculation error in computing σ_1 , but right idea **+ 1 pt** Correctly computed σ_2 **+ 0.5 pts** Calculation error in computing σ_2 , but right idea Question 6 Q4 **0** / 5 pts + 5 pts Correct + 2 pts Correct algorithm but explanation incomplete + 4 pts Correct but running time not justified. → + 0 pts Incorrect/Unattempted. + 1 pt Correct Direction + 5 pts Solution using Matrix Calculus Question 7 Q5 **0** / 5 pts + 5 pts Correct

+ 2 pts Correct explanation for infinite number of solutions

+ 0 pts Incorrect/Unattempted

+ 1.5 pts Part b correct direction

+ 3 pts Part b

- + 4 pts Correct
- + 0 pts Incorrect
- + 3 pts correct algorithm but no running time analysis
- + 2 pts Idea ok but no clear description. No running time analysis.
- + **0.5 pts** Mentioned zeroing out using Householder but details are incorrect.
- + 3 pts Idea ok, no clear description, running time analysis done.
- **→ + 1 pt** Point adjustment
 - Not at all clear what is going on here. No clear descritpion.

COL 726 Minor Exam

MANSHI SAGAR Name:

Entry Number: 2020(\$ 50429

Give justifications for your answers. Without a valid reasoning, you may not get any marks. There are 6 pages in this question paper.

- 1. (5 marks) Consider $f(x) = 1 \sqrt{1+x}$ for $x \ge 0$. Show that this function is well-conditioned for all non-negative values of $x \ge 0$ the function is computed according to the formula above, for which values of x will the calculation be unstable? Why?
- (ϵ) How will you compute this function such that the relative error is always $O(\varepsilon_{mach})$, where ε_{mach} denotes the machine precision (just mention the method, need not give any justification).

f(n) = 1- JI+2 (a)

$$K_{g}(n) = \left| \frac{n \times f'(n)}{f(n)} \right| = \left(\frac{n}{1 - \sqrt{1 + n}} \right) \times \left(\frac{-1}{2\sqrt{1 + n}} \right) \times \left(\frac{1 + \sqrt{1 + n}}{1 + \sqrt{1 + n}} \right)$$

$$= \frac{1+\int 1+n}{(2J+n)(-n)} = \frac{1+\int 1+n}{2J+n}$$

for . 2) kf(n) is finite and small (close to 2)

for oexel, specially for n = close to 0, kg(n)

is close to 1

=) well conditioned for all n>0

y = value computed by f = (1- VI+ry(1+E))(1+E2) (1+E2)

Ey adul to error in addition (1+n)

PEIE Emach

ez due to essor in squall root

93 due to error in subtraction

$$\frac{y-f(n)}{f(n)} = \underbrace{\left(1+\epsilon_3\right)}_{1-\sqrt{1+n}} \underbrace{\left(1+\epsilon_1\right)}_{1+\epsilon_2} \underbrace{\left(1+\epsilon_3\right)}_{1-\sqrt{1+n}} -\underbrace{\left(1+\epsilon_1\right)}_{1+\epsilon_2} \underbrace{\left(1+\epsilon_2\right)}_{1+\epsilon_3} -\underbrace{\left(1+\epsilon_3\right)}_{1+\epsilon_4}$$

For I close to 0, 1-JI+n is close to 0

y-frn) caube large for 05×221 150 algorithm is unstable

also, from the expression of y, we can't find it st $\frac{|\hat{n}-n|}{n} = O(E_{macn})$

① To make this stable
$$f(x) = \# (1-JI+n) \times \underbrace{(1+JI+n)}_{I+JI+n} = -n$$

$$I+JI+n$$

If we compute fer using this algorithm, it will be stable because the cancellation error is not seen here, to

2. Suppose you are given an $\underline{n} \times n$ matrix A such that the absolute value of every diagonal entry is larger than the sum of the absolute values of the non-diagonal entries in that column. In other words, for every column j, $|A_{jj}| > \sum_{i, i \neq j} |A_{ij}|$. We now perform

Base case: No sow interchange needed at tool=1

Induction: after five alcons, (ool=160j)

aji = ajg - an Collegado & aji ajj

to no now interchange was needed for (j-1) the afi

Aj= (Lja. Lz 4 A) -, in Aj-1, |ajj| > & laij|

then for Aj = 2 Lj. Aj-1

is |a'jj| man abs value in the column

if yes, then by in we don't need to do

how interchange at jth interaction

then by induction we don't need & to do that berang

(i) (3 marks) Suppose there is a Housuholder transformation H (i.e., reflection

ation) that maps the vector
$$\begin{pmatrix} 2\\1\\2 \end{pmatrix}$$
 to the vector $\begin{pmatrix} 3\\0\\0 \end{pmatrix}$. Wh

reflection operation) that maps the vector
$$\begin{pmatrix} 2\\1\\2 \end{pmatrix}$$
 to the vector $\begin{pmatrix} 3\\0\\0 \end{pmatrix}$. Where will the plane vector $\begin{pmatrix} 2\\1\\2 \end{pmatrix}$ get mapped to by this operation H ?

Normal of the reflection plane = $V_1 - V_2 = \begin{pmatrix} -1\\1\\2 \end{pmatrix} = V_3$

$$\Delta_{1} = I - \frac{V_{3}V_{3}^{T}}{|V_{3}|^{2}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 1/6 - 1/6 - 1/6 \\ -1/6 & 1/6 \end{bmatrix}$$

Reflection of
$$\begin{pmatrix} 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix} \begin{pmatrix} I - V_3 V_3^T \\ -2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} - \begin{pmatrix} V_3 V_3^T \\ 1 \\ -2 \end{pmatrix}$$

$$= \begin{pmatrix} 7/6 \\ -12/6 \\ -2/6 \end{pmatrix}$$

(ii) (3 marks) Let
$$A$$
 be a 3×2 matrix which maps the vector $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ to $\begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}$ and the vector $\begin{pmatrix} 4 \\ -2 \end{pmatrix}$ to $\begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$. What is the condition number of A ?

the vector
$$\begin{pmatrix} 4 \\ -2 \end{pmatrix}$$
 to $\begin{pmatrix} 5 \\ 1 \\ -2 \\ -1 \end{pmatrix}$. What is the condition number of A ?

$$\Delta x = x_2 - x_1 = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$$

$$Adz = bz$$

4. (5 marks) Suppose you are given the reduced QR factorization of an $m \times n$ full rank matrix A , where $m > n$. Given vectors $b_1, b_2, \ldots, b_r \in \mathbb{R}^m$, show how to find a vector x that minimizes $ Ax - b_1 ^2 + Ax - b_2 ^2 + \ldots + Ax - b_r ^2 \longrightarrow \text{Min} \text{if} \text{all}$
$ Ax-b_1 ^2+ Ax-b_2 ^2+\ldots+ Ax-b_r ^2$ min if all Your algorithm should make $O(m(n+r))$ floating point operations. $ An-b_1 ^2$ are for b_1^2 $ An-b_1 ^2$
Last Squared problems
O some for y at bi= y gis unitary
O some for y of y gis unitary min mx1 orm) min will take timen operations
3 save for g n
RX=Y
[][] this will take of operations
nyn nxl
m>n =) m·n>n=, So, Dande will take O(m.n) operations
after getting n, 11 An-15/12

5. (5 marks) Suppose you are given a full-rank $m \times n$ matrix A where m is smaller than n, i.e., m < n. Given a vector $b \in \Re^m$, we would like to find a solution x to Ax = b such that |x| is minimized. Show that there are infinitely many solutions to this system of equations. Suppose you are given the reduced SVD of A. Show how you can find the desired solution x in O(mn) time.

$$A = U \leq V^{T} = \hat{U} \stackrel{?}{\leq} V^{T} \qquad A = \begin{bmatrix} \hat{U} \\ n \times n \end{bmatrix} \begin{bmatrix} \hat{Z} \\ n \times n \end{bmatrix} \begin{bmatrix} \hat{Z} \\ n \times n \end{bmatrix}$$

$$A = \begin{bmatrix} \hat{\mathbf{u}} \\ \end{bmatrix} \begin{bmatrix} \hat{\mathbf{z}} \\ \hat{\mathbf{n}} \times \hat{\mathbf{n}} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{v}} \\ \hat{\mathbf{n}} \times \hat{\mathbf{n}} \end{bmatrix}$$

$$\begin{bmatrix} A \\ m \times m \end{bmatrix} \begin{bmatrix} 2i_1 \\ n_2 \\ j_i \\ n \end{bmatrix}$$

we have mequations and n variables =) there will be infinity many solutions min

for An=b

(we need at least n equations to find n1, 22 - 2n)

let us consider Inorn

1241 = 1241+ 121= +12119

| Am = 16/ | Am = 16/

(x) will be minimum when

$$\mathcal{N} = \begin{cases} \mathcal{U}_1 \\ \mathcal{U}_2 \\ \vdots \\ \mathcal{U}_m \end{cases}$$

n= [n]

| pi|,=|nm| are the

im smallest values offinish

sunt to sin will be multi-

-plied by 0

(othere are mainqueur values)

\$ for ? m

To solve

EW = UT b some for W 5

n=VW sower for n

Step 1 will take 0(m.n) time step 1 will take o (n) time

- total time = O(m.n)

6. (4 marks) Let A be an $m \times n$ matrix which is of the form $\begin{pmatrix} U \\ B \end{pmatrix}$, where U is an $n \times n$ upper triangular matrix and B is an arbitrary $k \times n$ matrix where k = m - n. Assume that $m \ge n$ but k = m - n is much smaller than n. Give an $O(kn^2)$ time algorithm to compute the reduced QR factorization of A.

entend A to A' (mxm)

For ar factorisation, we want to premultiply A' by 8; St

we only need (a, to am-n) to me

Convert B -> [0] zuo matrin

ourse who disturbing U

For j=1 to m-n

(convert jth column