História e Metodologia da Investigação Operacional

Slide 1

Transparências de apoio à leccionação de aulas teóricas

Versão 2 ©2001, 1998 Maria Antónia Carravilla – FEUP

História da Investigação Operacional

Slide 2

Origens da Investigação Operacional

Grã-Bretanha 1936

fonte: www.battleofbritain.net/section-3/appendix-19.html

1937

- Instalação de radares
- Exercícios de defesa aérea para teste dos radares
 - Vantagem: aviso antecipado
 - Desvantagem: localização muito deficiente das aeronaves

1938

- Instalação de radares adicionais
- Exercícios de defesa aérea
 - Necessidade de correlacionar toda a informação adicional, por vezes conflituosa

fonte: www.battleofbritain.net/section-3/appendix-19.html

1938

- 2ª Guerra Mundial aproxima-se é necessária uma abordagem completamente diferente.
- Arranque de um programa de **investigação** com o objectivo de resolver aspectos **operacionais** (e não técnicos) do sistema.

Slide 5

Slide 4

 Grupo constituído pelos elementos da investigação em radares e por outros cientistas de topo recrutados nas universidades ^a.

1939

- Exercícios de defesa aérea
- A grande melhoria dos resultados dos exercícios considerou-se devida à "Secção de Investigação Operacional".

^a Alguns elementos deste grupo vieram a ser Prémio Nobel na sua área de investigação

10 esquadrões adicionais para França?

1940

Slide 6

- Alemães avançam rapidamente em França
- França necessita de incrementar o seu sistema defensivo.
- Pedido de França 10 esquadrões adicionais de caças (12 aviões por esquadrão)

.....

- "Secção de Investigação Operacional"
 - Avaliação das perdas-3 esquadrões em cada 2 dias
 - Recomendação não enviar os esquadrões pedidos e ordenar mesmo o retorno de França de alguns esquadrões lá estacionados
- Consequências esquadrões poupados puderam ser usados na defesa da Grã-Bretanha na batalha conhecida por "Battle of Britain", primeira grande derrota de Hitler.

"Battle of Britain"

Agosto e Setembro de 1940

- Recomendações para os pilotos dos caças usar as vantagens tácticas da altitude e obrigar os caças alemães a atacarem com sol de frente.
- Durante a Batalha verificaram-se grandes perdas de aviões e de pilotos

- "Secção de Investigação Operacional-- Analisou a situação.
- Recomendação Pilotos não devem perseguir caças alemães pelo Canal da Mancha.
- Recomendação Pilotos devem-se concentrar nos bombardeiros alemães e não nos caças
- Consequência Redução significativa das perdas de caças

Comando Costeiro

Responsabilidades do Comando Costeiro:

 Gestão de saídas de aviões usados para localização e ataque de submarinos alemães.

Slide 8

- Organização da manutenção e inspecção de aeronaves.
- Escolha de tipos de aeronaves para determinadas missões.
- Aumento da probabilidade de atacar e afundar submarinos.

Organização das manutenção e inspecção de aviões

Em cada ciclo de 300 horas de voo cada avião deve ser sujeito a:

- 7 inspecções pequenas (com uma duração de 2 a 5 dias)
- 1 inspecção grande (com uma duração de 15 dias)

Cada tripulação tem o seu próprio avião, há uma equipa em terra dedicada à manutenção de cada avião.

Slide 9

- Problemas sempre que o avião pára para manutenção a tripulação também pára.
- Recomendação Uma oficina central trata de todos os aviões.
- Recomendação A tripulação deve voar num avião diferente, se for necessário.
- Vantagem Mais horas de voo
- Desvantagem Corte dos laços avião/tripulação/manutenção

Solução apresentada aumentou horas de voo em mais de 50%.

O que é a Investigação Operacional?

Investigação Operacional Investigação das Operações Investigação das Actividades (de uma Organização)

Slide 10

Utilização de Métodos Científicos para fazer Investigação sobre Actividades de uma Organização. Objectivo: Auxiliar na tomada de melhores Decisões.

História da IO – Alguns marcos importantes

- 0-500 **Teoria dos Jogos** Talmude (o problema do contrato de casamento)
- 1654 **Teoria das Probabilidades** Blaise Pascal e Fermat
- 1730 Teoria das Probabilidades Daniel Bernoulli

- 1713 **Teoria dos Jogos** James Waldegrave
- 1738 **Teoria dos Grafos** Leonard Euler
- 1764 Teoria das Probabilidades Thomas Bayes
- 1781 **Problema de Transportes** Gaspard Monge
- 1909 Filas de Espera Agner Erlang Edgeworths
- 1913 **Teoria dos Jogos** Francis Isidro Edgeworths
- 1928 **Teoria dos Jogos** John Von Neumann

- 1936 **Teoria dos Grafos** Dènes König
- 1939 **Programação Linear** L.V. Kantorovich
- 1947 Algoritmo Simplex George Dantzig
- 1954 **Programação Dinâmica** Richard Bellman
- 1963 **Programação Inteira** Egon Balas
- Slide 12 1975 Algoritmos Genéticos John Holland
 - 1983 Simulated Annealing S. Kirkpatrick
 - 1989 **Pesquisa Tabu** Fred Glover
 - 1989 **GRASP** Maurício Resende

Bibliografia

• Hillier, Frederick S. e Lieberman, Gerald (2001). *Introduction to Operations Research – seventh edition*, Mc Graw-Hill.

Radares – "Battle of Britain"

- http://www.ms.ic.ac.uk/jeb/or/intro.html (2001.09.11)
- http://www.battleofbritain.net/section-3/appendix-19.html (2001.09.11)
- http://www.legionmagazine.com/features/canadianmilitaryhistory/95-11.asp (2001.09.11)
- http://www3.sympatico.ca/drrennie/chap2.html (2001.09.11)
- http://www.radar.pages.cwc.net/mob/ch/chainhome.htm (2001.09.11)

História da IO

- http://www-anw.cs.umass.edu/ rich/book/1/node7.html (2001.09.20)
- http://william-king.www.drexel.edu/top/class/histf.html (2001.09.20)
- http://www.math.nus.edu.sg/ matngkl/ (2001.09.20)
- http://www.gsia.cmu.edu/andrew/eb17/public/balas-publications.html (2001.09.20)

• http://www2.uwindsor.ca/ hlynka/qfaq.html - (2001.09.20)

Maria Antónia Carravilla – FEUP

O Caso Rio Negroª

Slide 15

O caso do Rio Negro (in "Investigação Operacional", Valadares Tavares et al)

^ain "Investigação Operacional", Valadares Tavares et al

Resultado da reunião...

...do grupo de trabalho interministerial com representantes dos movimentos de defesa do ambiente, dos empresários turísticos e das comissões de coordenação das duas regiões:

- O ministério da Indústria concluiu que a principal fonte de poluição correspondia à produção agrária que lançava no rio elevadas quantidades de matéria orgânica, pelo que não tinha responsabilidades nesta área;
- O Ministério da Agricultura reconheceu o carácter frágil da empresa;

Slide 17

- O Ministério do Emprego explicou que não poderia gerar emprego alternativo para um eventual encerramento da indústria;
- O Ministério do Turismo fez notar que, embora fosse desejável reduzir a poluição, existiam outras áreas com problemas ambientais, pelo que haveria de adaptar o tipo de turismo a este novo condicionamento;
- O Ministério do Ambiente explicou que a política ambiental tem uma natureza horizontal e inter sectorial, pelo que sozinho não poderia resolver tudo;
- Os restantes representantes deixaram de comparcer às reuniões, em sinal de protesto.

O Município da Beira-Serra encetou negociações directas com a Superterra, Lda. — contrataram um jovem engenheiro com boa formação em IO para analisar o problema e equacionar soluções: o Eng. Luís Bela Vida.

Análise da situação da fábrica

O complexo agro-industrial tem, basicamente, duas linhas de produtos, A e B, costumando produzir, por mês, 20 toneladas de A e 80 toneladas de B, respeitando-se assim a sua capacidade máxima total de produção mensal, que é de 100 toneladas/mês. O seu director diz, com orgulho, que há mais de 10 anos que adoptam esta solução.

Slide 18

 $\downarrow \downarrow$

Caudal de águas residuais elevado e bastante poluído, especialmente em matérias orgânicas.

"Morte" do rio no período de menor caudal (Verão) \Rightarrow fim da pesca, dos banhos, etc.

Quantificação da poluição

Indicador da presença de matéria orgânica — CBO₅

(Carência Bioquímica de Oxigénio para o período de 5 dias)^a

Se o caudal do rio for elevado consegue receber um caudal de águas residuais mais "contaminado" (valor de CBO₅ mais elevado). No entanto, para o mesmo caudal de águas residuais, se o caudal do rio menor, as águas residuais terão que ter um teor de CBO₅ mais baixo, para que não se sintam os indesejáveis efeitos da poluição.

Slide 19

- Durante o Verão a capacidade de recepção do rio não ultrapassa os 210 mg/l de CBO_5 no caudal de águas residuais.
- A análise do sistema de produção permitiu concluir que cada tonelada produzida de A é responsável por uma carga de 0.7 mg/l de CBO_5 , e cada tonelada de B, por 3.5 mg/l.
 - O caudal residual não depende das quantidades produzidas de cada tipo de produto.

Análise económica da empresa

Identificação dos lucros relativos às duas linhas de produção (difícil dado o deficiente sistema contabilístico da Superterra):

• Existe uma despesa de 280000 contos/mês mesmo que não haja produção;

- Sem contar com esse encargo, o lucro obtido por tonelada de A e B é de 2000 e 4000 contos, respectivamente;
- Dada a sólida posição da empresa no mercado, as actuais produções, ou mesmo produções superiores, são facilmente escoadas para o mercado.

^aMede a quantidade de oxigénio dissolvido na água que é necessária à oxidação bioquímica da referida matéria orgânica por parte de uma cultura de microorganismos à temperatura de 20° .

E se se construísse um sistema de tratamento das águas residuais?

Atendendo aos problemas de poluição já apresentados, a empresa encomendou um projecto de construção de um sistema de tratamento das suas águas residuais, tendo-se concluído que as cargas passavam a 0.6 e 3.0 mg/l, para A e B, respectivamente. Todavia, os custos fixos aumentariam de 20000 contos, e o lucro unitário reduzir-se-ia de 20%, o que foi considerado uma exorbitância.

Decisão do município

Obrigar a empresa a respeitar o limite de 210 mg/l ⇒ redução das produções, pois:

$$20 \times 0.7 + 80 \times 3.5 = 294 > 210$$

Para tal sugeriu que a empresa produzisse na mesma proporção de 1 para 4 (produtos A e B) mas em quantidades tais que o limite de 210 mg/l fosse respeitado, isto é:

$$0.7 \times x + 3.5 \times 4x = 210$$
 \Leftrightarrow $x = 14.3 \Leftrightarrow A \rightarrow 14.3 \text{ ton/mês} \land B \rightarrow 57.2 \text{ ton/mês}$
O que daria um lucro de:

$$L = 2000 \times 14.3 + 4000 \times 57.2 - 280000 = -22600 \text{ contos/mês}$$

A empresa rejeitou esta solução pois daria prejuízo. No caso da introdução do sistema de tratamento:

$$0.6 \times x + 3.0 \times 4x = 210 \Leftrightarrow x = 16.7$$

e portanto:

Slide 21

Slide 22

$$L = 1600 \times 16.7 + 3200 \times 66.8 - 300000 = -59520 \text{ contos/mês}$$

o que também foi considerado inaceitável pois dava um prejuízo maior!

Não há melhor solução?

Para saber isso é preciso descrever o problema de uma forma rigorosa (matemática). É necessário identificar e quantificar:

• o tipo de decisão a tomar

ou

- fechar o complexo e despedir trabalhadores está fora de questão;
- $-\,$ só se pode actuar ao nível das quantidades de A e B a produzir mensalmente. Como são as nossas incógnitas chamemos-lhes x_A e $x_B.$
- o que limita a nossa capacidade de decisão, que neste caso são as limitações produtivas e os condicionamentos ambientais.
 - Não se pode produzir mais do que 100 toneladas por mês:

$$x_A + x_B \le 100$$

- Não se pode exceder 210 mg/l de CBO₅:

$$0.7x_A + 3.5x_B \le 210$$
 — cenário sem estação de tratamento

$$0.6x_A + 3.0x_B \le 210$$
 — cenário com estação de tratamento

• o objectivo que norteia as nossas decisões, que neste caso será o lucro da empresa:

$$2x_A + 4x_B - 280 ext{ } (10^3 ext{contos})$$
 — cenário **sem** estação de tratamento ou
$$1.6x_A + 3.2x_B - 300 ext{ } (10^3 ext{contos})$$
 — cenário **com** estação de tratamento

Slide 24

Slide 23

Para resolver o problema de achar a melhor solução (quantidades a produzir de cada tipo de produto) dentro de cada um dos cenários, o Eng. Luís Bela Vida achou útil representar os problemas graficamente num espaço a duas dimensões.

Representação gráfica do problema

Cenário sem estação de tratamento

$$\begin{cases} 0.7x_A + 3.5x_B &= 210 \\ x_A + x_B &= 100 \end{cases} \Leftrightarrow$$

$$\begin{cases} x_A = 50 \\ x_B = 50 \end{cases} \Rightarrow L = 300 - 280 = 20$$

Plano de produção com lucro (20 000 contos/mês) apesar de menor que o actual (80 000 contos/mês).

Cenário com estação de tratamento

$$\begin{cases} 0.6x_A + 3x_B &= 210 \\ x_A + x_B &= 100 \end{cases} \Leftrightarrow$$

$$\begin{cases} x_A &=& 37.5\\ x_B &=& 62.5 \end{cases} \Rightarrow L = -40$$

Plano de produção com prejuízo (40 000 contos/mês).

Recomendação do Eng. Luís Bela Vida: não instalação do sistema de tratamento e alteração do plano de produção nos meses de Verão.

Mas...

Porque é que, estando a Superterra a aplicar o seu plano de produção $x_A = 20$, $x_B = 80$ há mais 10 anos, só recentemente surgiu o problema da poluição do rio? Caudais médios estivais e invernais (m³/s) nos últimos anos:

Em 1992 foi inaugurada uma nova captação de água para abastecimento urbano, pois o aumento do número de turistas nos meses de Verão conduziu a rupturas sistemáticas no abastecimento de água.

Análise da variação dos caudais

Comparação dos caudais estivais antes e depois da entrada em funcionamento da nova captação:

$$\frac{Q_{>91}}{Q_{<91}} = \frac{7220 \text{ l/s}}{9960 \text{ l/s}} = 0.73$$

 $Pr\'oximo\ passo:$ encontrar uma estimativa para a carga de CBO₅ que seria possível lançar num caudal igual a $\frac{1}{0.73}$ vezes o actual.

Slide 27 Modelo do comportamento do rio face a uma descarga poluente, com base em equações de conservação da massa:

 $x_p.Q_p + x_1.Q_1 = x_2.Q_2$

 x_p – carga poluente lançada no rio por unidade de caudal;

 Q_p – caudal lançado pela fonte poluente no rio;

 x_1 – carga poluente trazida pelo rio (por unidade de caudal) a montante da descarga poluente;

 Q_1 – caudal do rio a montante da descarga poluente;

 x_2 – carga poluente no rio (por unidade de caudal)

a juzante da descarga poluente;

 Q_2 — caudal do rio a juzante da descarga poluente

$$(Q_2 = Q_1 + Q_p)$$

Recolhendo mais alguma informação:

- $Q_p = 80$ l/s (caudal da descarga poluente igual nos últimos 10 anos;
- $x_1 = 10$ uni. CBO₅ (poluição a montante da Superterra);

a que se adiciona os 210 CBO5 que se pretende impôr para x_p e 7220 l/s como valor médio para Q_2 após a entrada em funcionamento da nova captação de água.

Slide 28 Então, para a situação actual, o valor máximo admissível para x_2 , para que não se sintam os efeitos da poluição, será:

$$x_2 = \frac{210 \times 80 + 10 \times 7220}{7220 + 80} = 12.2$$

No passado o caudal era maior: em média $Q_1 = 9960$.

 \downarrow

Assumindo Q_p constante, Q_2 também seria maior.

 \Downarrow

 x_2 também poderia ser maior sem que se sentisse poluição.

Vamos no entanto assumir o caso mais desfavorável de, no passado, x_2 não poder exceder também os 12.2 mg/l de CBO₅.

$$x_p \times 80 + 10 \times 9960 = 12.2 \times (9960 + 80) \Leftrightarrow x_p = 286$$

Com os caudais do passado o rio era capaz de receber uma carga poluente muito semelhante à actualmente gerada pela Superterra — 294.

Slide 29

O aumento de turistas implicou o aumento de poluição no rio!

Solução do Eng. Luís Bela Vida: Repartir os custos da necessária alteração de produção de (20,80) para (50,50) pela SuperTerra e pelos operadores turísticos.

- Lucro actual: $2 \times 20 + 4 \times 80 280 = 80 \text{ (}10^3 \text{ contos/mês)}$
- Lucro após alteração: $2 \times 50 + 4 \times 50 280 = 20 \text{ (}10^3 \text{ contos/mês)}$

Considerando os 3 meses de Verão o prejuízo por ano será de 180000 contos (por sinal muito inferior ao resultante da introdução da estação de tratamento...).

A aplicação das soluções

Reuniões + reuniões + reuniões + reuniões + ...

- Os operadores turísticos não aceitaram cobrir parcialmente os prejuízos por entenderem ser obrigação legal do município proporcionar boa qualidade ambiental.
- Slide 30
- A Superterra recusou-se alterar a produção pois considerou que o interessante relatório do Eng. Luís Bela Vida mostrava que a causa do aumento da poluição era a redução do caudal do rio, de que eles não eram responsáveis.

O município acabou por deliberar:

- Impôr a redução de produção à Superterra nos meses de Julho, Agosto e Setembro.
- Aplicar uma taxa adicional à actividade turística a fim de compensar os custos adicionais do abastecimento de água.

E o que aconteceu?

- A poluição começou gradualmente a diminuir e o turismo voltou a florescer.
- O Eng. Luís Bela Vida foi contratado como assessor do Presidente da Câmara para o ambiente.

Slide 31

Dois anos mais tarde...

O Presidente chama o Eng. Luís Bela Vida ao seu gabinete e confia-lhe pessoalmente um novo dossier: o excesso de turistas estava a criar situações de insuficiência de abastecimento de água à população nos meses mais secos!

Bibliografia

• Tavares, L. V., Oliveira, R. C., Themido, I. H., Correia, F. N. (1997). Investigação Operacional. Mc Graw-Hill.

Metodologia da Investigação Operacional

Slide 33

Método da Investigação Operacional Fases do método

- 1. Formulação do problema
- 2. Construção de um modelo
- 3. Obtenção da solução

Slide 34

- 4. Validação do modelo e teste da solução
- 5. Implementação da solução

Observações:

- sequência apresentada não é rígida;
- fases, depois de iniciadas, sobrepoem-se no tempo;
- há interacção contínua entre as várias fases;
- fases são mutuamente dependentes.

Método da Investigação Operacional Razões para diversidade nas abordagens

- Estrutura particular do problema em análise
- Contexto em que o problema ocorre
- Slide 35
- prazo para conclusão
- dificuldade na obtenção de dados
- Composição do grupo que realiza o estudo

Método da Investigação Operacional O Modelo como representação da realidade

Método da Investigação Operacional O Modelo como representação da realidade

Sistema real

- complexo;
- grande número de variáveis;

Slide 37

• interacção entre variáveis.

Sistema idealizado

- concentração nas variáveis dominantes;
- interacção entre variáveis dominantes.

Modelo

- variáveis dominantes;
- simplificação da interacção entre as variáveis dominantes.

Método da Investigação Operacional Cone de resolução (in Beer 1967)

Método da Investigação Operacional Cone de resolução (exemplo)

Método da Investigação Operacional Procedimento para representação de um sistema em análise

- 1. Construir um modelo
 - simples;
 - de dimensão reduzida.

Slide 40

- 2. Usar modelo para detectar subsistemas relevantes
 - máquinas onde é mais simples conseguir um aumento de produção;
 - sectores que correspondem a estrangulamentos, etc . . .
- 3. Aumentar a resolução de subsistemas considerados relevantes.
- 4. Aumentar modelo . . .

Quando se atinge a base do cone de resolução, já se focam apenas os subsistemas relevantes para o problema em causa.

Modelos de problemas de decisão Quando é que há um problema de decisão?

- Quando existe pelo menos um indivíduo (agente de decisão) a quem o problema é atribuído;
- Quando existe mais do que uma linha de acção que esse agente pode seguir;
- Quando o agente de decisão tem pelo menos um objectivo a atingir quando opta por uma das decisões alternativas;
- Quando as alternativas de decisão não correspondem todas ao mesmo grau de satisfação do objectivo.

Modelos e técnicas usados em IO

• Modelos Estocásticos

Slide 41

Slide 42

- Teoria das Filas de Espera
- Teoria da Decisão
- Teoria do Valor
- Programação estocástica
- Teoria dos Jogos
- Simulação
- Programação Dinâmica

- ...

- Modelos Determinísticos
 - Programação Linear
 - Programação Inteira
 - Análise de Dados
 - Programação Não-linear
 - Optimização com Objectivos Múltiplos
 - Programação Dinâmica

- ...

Alguns domínios de aplicação da IO

- Previsão
- Marketing
- Economia e Finanças
- Gestão de Recursos Humanos
- Gestão de Stocks
- Planeamento da Produção
- Manutenção
- Localização
- Distribuição

- Processos Sequenciais
- Transportes
- Sistemas Urbanos
- Controlo de Processos Industriais
- Planeamento de Sistemas de Energia
- Recursos Hídricos
- Problemas Ambientais
- . . .

Bibliografia

• Guimarães, Rui Campos (1979). *Metodologia da Investigação Operacional*. FEUP.

Slide 44