MATLAB 프로그래밍 및 실습

13강. 기초 수치해석 2

오늘 배울 내용

- 방정식의 해
- 함수 최소값 및 최적화
- 수치미분, 수치적분
- 미분방정식
- 몬테카를로 시뮬레이션

solution of equations

낙하산병 문제

$$v(t) = \frac{mg}{k} \left(1 - e^{-(k/m)t} \right)$$

- 80 kg 낙하산병이 낙하 10초 후 40 m/s에 도달하기 위한 공기저항계수는?
 - → Find a value k such that

$$f(k) = \frac{mg}{k} \left(1 - e^{-(k/m)t} \right) - 40 = 0$$

bisection

false position method

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

bisection < false position?</pre>

Newton-Raphson method

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Newton-Raphson (sometimes) fails.

secant method

matlab function - fzero


```
xl = 10;
xu = 20;
x = fzero(v, [xl, xu]);
```


※ bisection method, secant method를 혼합하여 사용함

applications

World population (1700-2000) and population projections (2000-2100)

minimum of a function

영원히 고통받는 낙하산병

→ Find a value k to minimize

$$v(t) = \frac{mg}{k} \left(1 - e^{-(k/m)t} \right)$$

$$s(t) = \frac{mg}{k} \left(t + \frac{m}{k} \left(e^{-(k/m)t} - 1 \right) \right)$$

$$f(k) = v(k) - s(k)$$

golden section search

parabola interpolation

Newton's method

matlab function - fminbnd


```
x1 = 2;
xu = 20;
[x, fval] = fminbnd(f, xl, xu);
```


applications

numerical differentiation and integration

high-order numerical differentiation

First Derivative

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h}$$
$$f'(x_i) = \frac{-f(x_{i+2}) + 4f(x_{i+1}) - 3f(x_i)}{2h}$$

Second Derivative

$$f''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{h^2}$$
$$f''(x_i) = \frac{-f(x_{i+3}) + 4f(x_{i+2}) - 5f(x_{i+1}) + 2f(x_i)}{h^2}$$

Third Derivative

$$f'''(x_i) = \frac{f(x_{i+3}) - 3f(x_{i+2}) + 3f(x_{i+1}) - f(x_i)}{h^3}$$
$$f'''(x_i) = \frac{-3f(x_{i+4}) + 14f(x_{i+3}) - 24f(x_{i+2}) + 18f(x_{i+1}) - 5f(x_i)}{2h^3}$$

Fourth Derivative

$$f''''(x_i) = \frac{f(x_{i+4}) - 4f(x_{i+3}) + 6f(x_{i+2}) - 4f(x_{i+1}) + f(x_i)}{h^4}$$
$$f''''(x_i) = \frac{-2f(x_{i+5}) + 11f(x_{i+4}) - 24f(x_{i+3}) + 26f(x_{i+2}) - 14f(x_{i+1}) + 3f(x_i)}{h^4}$$

numerical integration

matlab function - integral

$$v(t) = \frac{mg}{k} \left(1 - e^{-(k/m)t} \right)$$

$$s(t) = \frac{mg}{k} \left(t + \frac{m}{k} \left(e^{-(k/m)t} - 1 \right) \right)$$

applications

differential equation

이제 그만...

idea

$$\frac{dy}{dx} = f(x, y)$$

New value = old value + slope \times step size

$$y_{i+1} = y_i + \phi h$$

ode45

$$y' = f(t, y)$$

$$v(t)' = g - \frac{k}{m}v(t)$$

* analytic solution:

$$v(t) = \frac{mg}{k} \left(1 - e^{-(k/m)t} \right)$$

공기저항이 속도2에 비례한다면?

$$y' = f(t, y)$$

$$v(t)' = g - \frac{k}{m}v(t)^2$$

* analytic solution:

$$v(t) = \frac{\sqrt{\frac{mg}{k}} \left(1 - \exp\left(2t\sqrt{\frac{kg}{m}}\right) \right)}{1 + \exp\left(2t\sqrt{\frac{kg}{m}}\right)}$$

단진자 운동

$$y' = f(t, y)$$

$$\begin{bmatrix} y_1' \\ y_2' \end{bmatrix} = \begin{bmatrix} f_1(t, y_1, y_2) \\ f_2(t, y_1, y_2) \end{bmatrix}$$

damped vibration system

$$F = ma$$

$$y' = f(t, y)$$

$$\begin{bmatrix} y_1' \\ y_2' \end{bmatrix} = \begin{bmatrix} f_1(t, y_1, y_2) \\ f_2(t, y_1, y_2) \end{bmatrix}$$

applications

$$L\frac{di}{dt} + Ri + \frac{q}{C} - E(t) = 0$$

$$\frac{dx}{dt} = ax - bxy$$

$$\frac{dy}{dt} = -cy + dxy$$

Monte Carlo simulation

원주율을 구하는 새로운 방법

n차원 구의 부피는?

3차원 sphere

n차원 sphere?

$$V_2 = \pi R^2$$

https://en.wikipedia.org/wiki/Volume_of_an_n-ball

$$V_3 = \frac{4}{3}\pi R^3$$

$$V_n = \underline{C}R^n$$

몬티홀 문제

The Monty Hall Problem

random walk

applications

Q&A

