Make Use of Neural Networks for Solving Partial Differential Equations (The Deep Ritz Method)

Sajed N. Zarrinpour

sa.zarrinpour@iasbs.ac.ir

Institute for Advanced Studies in Basic Sciences

Fall 2019

Outline

Introduction

Problem Definition

Results

Conclusion

References

Introduction

"Lost time is never found again."

- Benjamin Franklin.

Introduction

"The key is in not spending time, but in investing it"
- Stephen R. Covey.

Finite Element Method

Poisson Equation on Unit Square - Strong Form

$$\begin{cases} -\Delta u = f(x) &, on\Omega = [0 \times 1] \times [0 \times 1] \\ u = 0 &, on\partial\Omega \end{cases}$$

Finite Element Method

Poisson Equation on Unit Square - Weak Form

Finite Element Method

Quite Complex, eh?

Lets cheat!

Deep Ritz Method

Universal Approximation Theorem

Let $\phi:\mathbb{R}\to\mathbb{R}$ be a nonconstant, bounded, and continuous function. Let I_m denote the m-dimensional unit hypercube $[0\times 1]^m$. The space of real-valued continuous functions on I_m is denoted by $C(I_m)$. Then, given any $\epsilon>0$ and any function $f\in C(I_m)$, there exist an integer N, real constants $v_i,b_i\in\mathbb{R}$ and real vectors $w_i\in\mathbb{R}^m$ for i=1,...,N, such that we may have define : $F(x)=\sum_{i=1}^N v_i\phi(w_i^Tx+b_i)$ as an approximate realization of the function f; that is, $|F(x)-f(x)|<\epsilon$ for all $x\in I_m$.

IASBS

Deep Ritz Method

Poisson Equation - Neural Networks Form

$$u_{\theta}(x) = a.f_{n}(x) \circ ... \circ f_{1}(x) + b$$
 where $f_{i}(x) = \phi(W_{i}2.\phi(W_{i}1.x + b_{i1}) + b_{i2}) + x$ and $a \in \mathbb{R}^{m}, b \in \mathbb{R}$ and $\phi(x) = \max\{x^{3}, 0\}$

Deep Ritz Method

Poisson Equation - Neural Networks Form

Deep Ritz Method

Figure: (a) DRM - 811 parameter, (b) FDM - 1681 parameter

Conclusion

• By pass the calculation of the basis

Conclusion

- By pass the calculation of the basis
- Better accuracy in less cost

Q&A

"Ask, and it shall be given you!"

Matthew 7:7

- The Deep Ritz Method
- Universal Approximation Theorem