LATEX - A Book of Drawings An ever evolving document

Geraldo Xexéo

2023-02-13 22:31:18

Contents

1	Introduction	1
2	3D and Fake 3D	5
3	Desenhos de Negócios	9
4	Transparences, Shades	13
5	Graphs and Trees 5.1 Nodes With Lists Inside	15 22 24 24
6	Cartesian Coordinates 6.1 Grids	29 31 32 35 36 39 39 42
7	Circle Magic	45
8	Measurements	51
9	Other	53
10	Mais!	61
11	Arquiteturas 11.1 Mecanismos de Busca	63 68
12	Neural Networks	71

iv CONTENTS

List of Figures

1.1	A position form Fischer's Random Chess	2
1.2	Cores da paleta sugerida pela IBM para daltonismo, com atenu-	
	ação na cor para branco	2
1.3	Cores da paleta sugerida pela IBM para daltonismo, com atenu-	
	ação na cor para preto	3
1.4	Itemize no nó precisa transformar o nó de mbox para minipage, e	
	o text width faz isso. https://tex.stackexchange.com/questions	s/
	213662/enumerate-within-tikz-node	3
2.1	A fake 3D cube	6
2.2	A fake 3D cube of cubes	7
2.3	Two cubes and 3 planes	8
3.1	Triangle	9
3.2	A tipical pyramid of concepts	11
4.1	Shading, Fdding and Transform	13
4.2	Multiplicando cores fading	13
5.1	Caption	15
5.2	Based on the topathas manual	15
5.3	Relations from Wordnet	16
5.4	Exemplo de uso de Transform Canvas, mas que não deu certo no	
	documento em que foi usado, pois gerou outras mudanças	16
5.5	Figure from IR, first try, using calculated absolute positions	17
5.6	Figure from IR, second try, using relative positions	17
5.7	This tree is described in https://tex.stackexchange.com/questions/8	,
	a-syntax-tree-in-tikz	17
5.8	This tree is described in https://tex.stackexchange.com/questi	
	123212/tikz-tree-some-childs-without-arrows	18
5.9	Primeira forma de interpretar sintaticamente a sentença "O menino viu a mulher de binóculo", onde o menino tem o binóculo, baseado	
	em	18

5.10	Segunda forma de interpretar sintaticamente a sentença "O menino	
	viu a mulher de binóculo", onde a mulher tem o binóculo, baseado	
	em	19
5.11	https://tex.stackexchange.com/questions/153598/how-to-draw-emp	ty-
	nodes-in-tikz-qtree	19
5.12	Wordnet	20
5.13	Grafo - Diagrama de Causas Raiz Vertical	20
5.14	Auto layout	21
5.15	Graph Tree	23
	Caption	24
5.17	This figure uses a pre-defined commando to draw a linked list	25
5.18	Exemplo de somar posições	26
5.19	Grafo	26
	Grafo Co Citação	26
	Bug na interação do BABEL com o TIKZ precisa desligar o aspas	
	com shorthandoff	26
5.22	Grafo com força spring e variações elétricas	27
5.23	Taxonomia de Modelos de IR com posicionamento relativo	28
5.24	Taxonomia do Modelos de IR com child nodes	28
6.1	Grid with Coordinates	31
6.2	Grid with Coordinates, another use	31
6.3	ERRADA!!!!!	32
6.4	Regras fuzzy funcionam como especificação de pedaços das funções	
	sendo agregadas	33
6.5	Usando o coseno dos vetores	34
6.6	Exemplo de problema com o uso do tamanho dos vetores	34
6.7	Desenho de 3D (real) a partir de funções	35
6.8	Regras fuzzy funcionam como especificação de pedaços das funções	
	sendo agregadas	36
6.9	Ideia do Modelo Vetorial	37
6.10	Duas regras ativadas simultaneamente de um conjunto de regras,	
	a partir de uma entrada x , são agregadas e uma função de de-	
	fuzzificação, como o centróide, é usada para determinar $y \ \dots \ \dots$	38
6.11	Visão gráfica da medida simples de concordância para três pontos,	
	x basicamente em desacordo, considerando um contra a média de	
	todos	39
6.12	Visão gráfica da medida simples de concordância para três pontos,	
	x basicamente em acordo	39
6.13	O conjunto referente ao corte-alfa de médio com $\alpha=0,5,$ ou seja	
	$\mathrm{m\acute{e}dio}^{0,5}$	39
	Exemplo de cortes- α	40
6.15	Representação dos cortes- α do conjunto \tilde{A} dos números perto de	
	7 ou 20	40
6 16	Grafico de $y = f(x)$	41

LIST OF FIGURES vii

6.17	Exemplo de cortes- α , onde as linhas horizontais indicam os valores do eixo das abcissas que pertencem ao conjunto nítido correspondente	41
7.1 7.2 7.3	ERP Market in 2013	45 48 50
8.1 8.2	Tentando usar cilindros, mas varia com o texto dentro dele . . Tentando usar cilindros, texto de fora 	51 52
9.1 9.2 9.3	Variáveis e posições	54 55
9.4	orations de chaves	55
	sizes!)	56
9.5	Klir e os tipos de medida	57
9.6	LSI	57
9.7	Caption	58
9.8	Information Retrieval	58
9.9	Representação de um índice	59
	Representação do LSI/LSA	59
	Cronologia	60
9.12	Stemmers	60
10.1	Caption	62
11.1	Solr Architecture	64
11.2	Modelo Fuzzy de Qualidade Rocha	64
	Computador Simples, usa estilos genéricos	65
	Abstração da CPU, usa referências com shift e cálculo de pontos	
	por interseção de uma referência vertical com uma horizontal, estilos genéricos e específicos	67
11.5	Lucene?	68
	Modelo genérico de um mecanismo de busca moderno	69
	Caption Identificada 1	69
	Indexar	70
10.1	TI' 1 NINI	71
	Tipo de NN	71 72
14.4	A pingle neuron in a neural network	12

Introduction

This is a book of drawings made in L^AT_EX with Tikz¹ and other useful packages. Some drawings are in Portuguese.

Although most drawings in this book of examples use Tikz², there are some easier solutions for some specific drawings. Moreover, Tikz has multiple libraries that must be included, and I don't kept control of it, I just added everyone.

For example, chessboard³ is a useful package for drawing chess boards. I enjoy that it uses a very practical notation that is known to chess players.

The following code generates the image in Figure 1.1.

Listing 1.1: Code for a Chess board

\chessboard[addfen={bnrbnkrq/%
ppppppppp/%
8/8/8/8/%
PPPPPPPPPBNRBNKRQ}, showmover=false]

 $^{^1}$ Pronounced "tics"

²https://ctan.org/pkg/pgf?lang=en

³https://ctan.org/pkg/chessboard?lang=en

Figure 1.1: A position form Fischer's Random Chess

#648fff	#785ef0	#dc267f	#fe6100	#ffb000	#000000	#तितित
						100%
						95%
						90%
						85%
						80%
						75%
						70%
						65%
						60%
						55%
						50%
						45%
						40%
						35%
						30%
						25%
						20%
						15%
						10%
						5%
						0%

Figure 1.2: Cores da paleta sugerida pela IBM para daltonismo, com atenuação na cor para branco.

#648fff	#785ef0	#dc267f	#fe6100	#ffb000	#000000	#fffff
					100%	
					95%	
					90%	
					85%	
					80%	
					75%	
					70%	
					65%	
					60%	
					55%	
					50%	
					45%	
					40%	
					35%	
					30%	
					25%	
					20%	
					15%	
					10%	
					5%	
					0%	

Figure 1.3: Cores da paleta sugerida pela IBM para daltonismo, com atenuação na cor para preto.

```
\begin{tikzpicture}
\node[draw,text width=3cm] at (0,0) {A
\begin{itemize}
    \item item um
    \item item dois
\end{itemize}
};
\end{tikzpicture}
```

A

• item um

• item dois

Figure 1.4: Itemize no nó precisa transformar o nó de mbox para minipage, e o text width faz isso. https://tex.stackexchange.com/questions/213662/enumerate-within-tikz-node

3D and Fake 3D

Some times I had to build some 3D drawings based on boxes, for example, to describe a Data Warehouse Cube. There is an easy solution that is to develop a basic cube subroutine and use them to build more complex figures.

O próximo código construi uma caixa calculando os pontos, como uma projeção de 3D em 3D.

Listing 2.1: Cubo azul em Fake 3D

```
\newcommand{\drawbox}[5]{
                                   \pgfmathsetmacro \angle {30}
                                   \protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
                                   \protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
                                   \pgfmathsetmacro \x {{#1-#5+(#2-#5)*(\xd)*#5}}
                                   \pgfmathsetmacro \y {{#3-#5+(#2-#5)*(\yd)*#5}}
                                   \draw[fill=#4] (\x,\y) --
                                   (\x+#5,\y) -- (\x+#5,\y+#5) --
                                   (\x,\y+#5) -- cycle;
                                   \draw[fill=#4] (\x,\y+#5) --
                                   (\x+\xd,\y+\#5+\yd) --
                                   (\x + \#5 + \xd, \y + \#5 + \yd) --
                                   (\x+#5,\y+#5) -- cycle;
                                   \draw[fill=#4] (\x+#5,\y+#5) --
                                   (\x+#5+\xd,\y+#5+\yd) --
                                   (\x+#5+\xd,\y+\yd) --
                                   (\x+#5,\y) -- cycle;
\drawbox{}{1}{1}{1}{blue}{1}
```

A simple blue cube, Figure 2.1, can be easily drawn with:

Figure 2.1: A fake 3D cube

And a composite figure can use the order of drawing to build a cube made of cubes, as in Figure 2.2.

Listing 2.2: A cube made of cubes

```
\pgfmathsetmacro{\profX}{5}
  \displaystyle \operatorname{drawbox}\{1\}\{\operatorname{profX}\}\{1\}\{\operatorname{green}\}\{.5\}
  \displaystyle \frac{1.5}{\profX}_{1}\{green}_{.5}
  \drawbox{2}{\profX}{1}{green}{.5}
  \drawbox{1}{\profX}{1.5}{green!50}{.5}
  \drawbox{1.5}{\profX}{1.5}{\green!50}{.5}
  \drawbox{2}{\profX}{1.5}{green!50}{.5}
  \drawbox{1}{\profX}{2}{green!25}{.5}
  \drawbox{1.5}{\profX}{2}{green!25}{.5}
  \drawbox{2}{\profX}{2}{green!25}{.5}
  \pgfmathsetmacro{\profX}{3}
  \displaystyle \operatorname{drawbox}\{1\}\{\operatorname{profX}\}\{1\}\{\operatorname{red}\}\{.5\}
  \displaystyle \operatorname{drawbox}\{1.5\}\{\operatorname{profX}\{1\}\{\operatorname{red}\}\{.5\}\}
  \displaystyle \operatorname{drawbox}\{2\}\{\operatorname{profX}\}\{1\}\{\operatorname{red}\}\{.5\}
  \drawbox{1}{\profX}{1.5}{red!50}{.5}
  \drawbox{1.5}{\profX}{1.5}{red!50}{.5}
  \drawbox{2}{\profX}{1.5}{red!50}{.5}
  \drawbox{1}{\profX}{2}{red!25}{.5}
  \drawbox{1.5}{\profX}{2}{red!25}{.5}
  \drawbox{2}{\profX}{2}{red!25}{.5}
  \drawbox{1}{1}{1}{1}{blue}{.5}
  \drawbox{1.5}{1}{1}{blue}{.5}
  \drawbox{2}{1}{1}{blue}{.5}
  \drawbox{1}{1}{1}{1.5}{blue!50}{.5}
```

```
\drawbox{1.5}{1}{1.5}{blue!50}{.5}
\drawbox{2}{1}{1.5}{blue!50}{.5}
\drawbox{1}{1}{2}{blue!25}{.5}
\drawbox{1.5}{1}{2}{blue!25}{.5}
\drawbox{2}{1}{2}{blue!25}{.5}
```


Figure 2.2: A fake 3D cube of cubes

It is also possible to use fixed coordinates, such as the following code, that result in Figure 2.3.

Listing 2.3: A cube with fixed 2d Coordinates

```
\begin{tikzpicture} [scale=0.33] %[x=\{10.0pt\}, y=\{10.0pt\}]
\frac{draw[line width=2pt] (0,0) -- (0,10);}
\draw[line width=2pt] (0,0) -- (10,0);
\draw[line width=2pt] (0,10) -- (10,10);
\draw[line width=2pt] (0,10) -- (10,10);
\draw[line width=2pt] (10,0) -- (10,10);
\frac{draw[line width=2pt]}{(0,0)} -- (3,5);
\frac{draw[line width=2pt]}{(10,0)} -- (13,5);
\frac{\text{draw}[\text{line width=2pt}] (0,10) -- (3,15);}
\draw[line width=2pt] (10,10) -- (13,15);
\frac{draw[line width=2pt]}{(3,5)} -- (13,5);
\frac{draw[line width=2pt]}{(3,5)} -- (3,15);
\draw[line width=2pt] (13,5) -- (13,15);
\draw[line width=2pt] (3,15) -- (13,15);
\frac{draw[line width=1pt]}{(5,0)} -- (5,10);
\frac{draw[line width=1pt]}{(5,10)} -- (8,15);
\frac{draw[line width=1pt]}{(5,0)} -- (8,5);
\frac{draw[line width=1pt]}{(8,5)} -- (8,15);
\draw[black, fill=blue,fill opacity=0.5] (5,0) -- (5,10) -- (8,15) -- (8,5) -- cy
\end{tikzpicture}% pic 1
\qquad % <----- SPACE BETWEEN PICTURES
% ou
%\hspace{3cm}
\begin{tikzpicture} [scale=0.33] %[x=\{10.0pt\}, y=\{10.0pt\}]
```

```
\frac{\text{draw}[\text{line width=2pt}] (0,0) -- (0,10);}
\draw[line width=2pt] (0,0) -- (10,0);
\frac{draw[line width=2pt]}{(0,10)} -- (10,10);
\frac{\text{draw}[\text{line width=2pt}] (0,10) -- (10,10);}
\draw[line width=2pt] (10,0) -- (10,10);
\frac{draw[line width=2pt]}{(0,0)} -- (3,5);
\frac{draw[line width=2pt]}{(10,0)} -- (13,5);
\draw[line width=2pt] (0,10) -- (3,15);
\draw[line width=2pt] (10,10) -- (13,15);
\frac{draw[line width=2pt]}{(3,5)} -- (13,5);
\frac{draw[line width=2pt]}{(3,5)} -- (3,15);
\frac{draw[line width=2pt]}{(13,5)} -- (13,15);
\draw[line width=2pt] (3,15) -- (13,15);
\draw[line width=1pt] (0,10) -- (10,0);
\frac{draw[line width=1pt]}{(0,10)} -- (3,5);
\frac{\text{draw}[\text{line width=1pt}] (3,5) -- (10,0);}
\frac{draw}{black}, fill=blue, fill opacity=0.5] (0,10) -- (10,\frac{b}{0}) -- (3,5) -- cy
\frac{\text{draw}[\text{line width=1pt}]}{(3,15)} -- (10,10);
\draw[line width=1pt] (3,15) -- (13,5);
\draw[line width=1pt] (10,10) -- (13,5);
\draw[black, fill=blue,fill opacity=0.5] (3,15) -- (10,10) -- (13,5) --
\end{tikzpicture}% pic 2
```


Figure 2.3: Two cubes and 3 planes.

Desenhos de Negócios

You can draw a triangle by trial and error, as I did to find the best point for putting the top edge in Figure 3.1, with single command \draw, as shown in the following code.

```
\begin{tikzpicture}
```

\draw (-2,0) node[anchor=north]{\Large Prazo} -- (2,0) node[anchor=north]{\Large Custo} \end{tikzpicture}

Figure 3.1: Triangle

Another figure done by deciding where the edges should be *a priori*, resulting in Figure 3.2. In this code, there is a good example of using foreach to achieve a result. Also, the use of intersections to calculate where a point is.

\begin{tikzpicture}

```
\coordinate (A) at (-3.5,0) {};
\coordinate (B) at (3.5,0) {};
\coordinate (C) at (0,6) {};
```

```
\path[name path=AC,draw=none] (A) -- (C);
\path[name path=BC,draw=none] (B) -- (C);
\filldraw[draw=black, ultra thick,fill=white]
(A) -- (B) -- (C) -- cycle;
\foreach \y/\A in {O/Despejo Controlado,}
                   1/Aterro ou Incineração,
                   2/Reciclagem,
                   3/Reuso,
                   4/\parbox{3cm}{\centering
                   Redução}}
    {
    \path[draw=none, very thick, dashed, name
    path=horiz] (A|-0,\y) -- (B|-0,\y);
    \draw[draw=black, very thick, dashed,
          name intersections={of=AC and horiz,by=P},
          name intersections={of=BC and horiz,by=Q}]
          (P) -- (Q)
          node[midway,above,font=\bfseries\scshape,
          color=black] {\A};
}
\node[single arrow,rotate=90,draw=black,minimum
height=6cm] at (-4,3) {melhor opção};
\end{tikzpicture}
```


Figure 3.2: A tipical pyramid of concepts.

Transparences, Shades

Figure 4.1: Shading, Fdding and Transform

Figure 4.2: Multiplicando cores fading

Graphs and Trees

In this chapter there are many exemples of using nodes and paths to draw diagrams.

Figure 5.1: Caption

Figure 5.2: Based on the topathas manual.

Figure 5.3: Relations from Wordnet

Figure 5.4: Exemplo de uso de Transform Canvas, mas que não deu certo no documento em que foi usado, pois gerou outras mudanças

Figure 5.5: Figure from IR, first try, using calculated absolute positions

Figure 5.6: Figure from IR, second try, using relative positions.

Figure 5.7: This tree is described in https://tex.stackexchange.com/questions/85112/drawing-a-syntax-tree-in-tikz

Figure 5.8: This tree is described in https://tex.stackexchange.com/questions/123212/tikz-tree-some-childs-without-arrows

Figure 5.9: Primeira forma de interpretar sintaticamente a sentença "O menino viu a mulher de binóculo", onde o menino tem o binóculo, baseado em \dots

Figure 5.10: Segunda forma de interpretar sintaticamente a sentença "O menino viu a mulher de binóculo", onde a mulher tem o binóculo, baseado em \dots

Figure~5.11:~https://tex.stackexchange.com/questions/153598/how-to-draw-empty-nodes-in-tikz-qtree

Figure 5.12: Wordnet

Figure 5.13: Grafo - Diagrama de Causas Raiz Vertical

Figure 5.14: Auto layout

5.1 Nodes With Lists Inside

Figure 5.15: Graph Tree

Figure 5.16: Caption

5.2 Positioning and TikzMath

5.3 Using arrays and foreach

The next figure describes a vector where each cell points to a linked list. It is first necessary to define the styles of cells and links:

```
\tikzset{
node of list/.style = {
             draw,
             fill=orange!20,
             minimum height=6mm,
             minimum width=6mm,
             node distance=6mm
   },
link/.style = {
     -stealth,
     shorten >=1pt
     },
array element/.style = {
    draw, fill=white,
    minimum width = 6mm,
    minimum height = 10mm
```

```
}
}
   Then, we will use a command that builds a linked list using foreach.
\def\LinkedList#1{%
  \foreach \element in \list {
     \node[node of list, right = of aux, name=ele] {\element};
     \node[node of list, name=aux2, anchor=west] at ([xshift=-.4pt] ele.east) {};
     \draw[link] (aux) -- (ele);
     \coordinate (aux) at (aux2);
   \fill (aux) circle(2pt);
}
   Finally, the following code results in Figure 5.17.
\begin{tikzpicture}
\foreach \index/\list in {
.2/{(3,11),(16,24),null},
.4/{(4,10),(17,23),null},
.6/{(5,9),(18,22),null},
.8/\{(6,8),(19,21),\text{null}\},
1/{7,20,null}} {
   \node[array element] (aux) at (0,-\index*5) {\index};
   \LinkedList{\list}
\end{tikzpicture}
                .2
                       (3,11)
                                    (16,24)
                                                 null
                       (4,10)
                .4
                                    (17,23)
                                                 null
                       (5,9)
                                   (18,22)
                .6
                                                null
                .8
                       (6,8)
                                   (19,21)
                                                null
                        7
                                20
                 1
                                         null
```

Figure 5.17: This figure uses a pre-defined commando to draw a linked list.

Figure 5.18: Exemplo de somar posições

Figure 5.19: Grafo

Figure 5.20: Grafo Co Citação

```
\begin{figure}
\centering
\shorthandoff{"}
\tikz \graph {
a ->["x"] b ->["y"'] c ->["z" red] d;
};
    \caption{Bug na interação do BABEL com o TIKZ precisa desligar o aspas com shorthat
    \label{fig:my_labeldasd}
\end{figure}
```

$$a \xrightarrow{X} b \xrightarrow{y} c \xrightarrow{Z} d$$

Figure 5.21: Bug na interação do BABEL com o TIKZ precisa desligar o aspas com shorthandoff

Figure 5.22: Grafo com força spring e variações elétricas

Figure 5.23: Taxonomia de Modelos de IR com posicionamento relativo

Figure 5.24: Taxonomia do Modelos de IR com child nodes

Cartesian Coordinates

6.1 Grids

The following code allows for the creation of Figure 6.1 and Figure 6.2

```
\makeatletter
\def\grd@save@target#1{%
  \def\grd@target{#1}}
\def\grd@save@start#1{%
  \def\grd@start{#1}}
\tikzset{
  grid with coordinates/.style={
   to path={%
      \pgfextra{%
        \edef\grd@@target{(\tikztotarget)}%
        \tikz@scan@one@point\grd@save@target\grd@@target\relax
        \edef\grd@@start{(\tikztostart)}%
        \tikz@scan@one@point\grd@save@start\grd@@start\relax
       \draw[minor help lines] (\tikztostart) grid (\tikztotarget);
        \draw[major help lines] (\tikztostart) grid (\tikztotarget);
        \grd@start
        \pgfmathsetmacro{\grd@xa}{\the\pgf@x/1cm}
        \pgfmathsetmacro{\grd@ya}{\the\pgf@y/1cm}
        \grd@target
        \pgfmathsetmacro{\grd@xb}{\the\pgf@x/1cm}
```

```
\pgfmathsetmacro{\grd@yb}{\the\pgf@y/1cm}
        \pgfmathsetmacro{\grd@xc}{\grd@xa + \pgfkeysvalueof{/tikz/grid with coordinate
        \pgfmathsetmacro{\grd@yc}{\grd@ya + \pgfkeysvalueof{/tikz/grid with coordinate
        \foreach \x in {\grd@xa,\grd@xc,...,\grd@xb}
        \node[anchor=north] at (\x,\grd@ya) {\pgfmathprintnumber{\x}};
        \foreach \y in {\grd@ya,\grd@yc,...,\grd@yb}
        \node[anchor=east] at (\grd@xa,\y) {\pgfmathprintnumber{\y}};
      }
    }
  },
 minor help lines/.style={
    help lines,
    step=\pgfkeysvalueof{/tikz/grid with coordinates/minor step}
  },
 major help lines/.style={
    help lines,
    line width=\pgfkeysvalueof{/tikz/grid with coordinates/major line width},
    step=\pgfkeysvalueof{/tikz/grid with coordinates/major step}
  grid with coordinates/.cd,
 minor step/.initial=.2,
 major step/.initial=1,
 major line width/.initial=2pt,
\makeatother
  The first example of grid construction generates Figure 6.1.
\begin{tikzpicture}
  \draw(-1,-1) to[grid with coordinates,grid with coordinates/major line width=1pt] (3
\end{tikzpicture}
   The second exame uses the same macro defined before, changing line widths,
resulting in Figure 6.2
\begin{tikzpicture}
  \frac{-2,-2}{to[grid with coordinates,grid with]}
  coordinates/major line width=2pt,grid with
  coordinates/major step=.5,grid with
  coordinates/minor step=0.1] (3,3);
```


Figure 6.1: Grid with Coordinates

\end{tikzpicture}

Figure 6.2: Grid with Coordinates, another use

6.2 Simple Figures

Figure 6.3: ERRADA!!!!!

6.3 Axis and Vectors

Figure 6.4: Regras fuzzy funcionam como especificação de pedaços das funções sendo agregadas

Figure 6.5: Usando o coseno dos vetores.

Figure 6.6: Exemplo de problema com o uso do tamanho dos vetores

6.4. REAL 3D 35

6.4 Real 3D

Figure 6.7: Desenho de 3D (real) a partir de funções.

6.5 More difficult drawing mixing nodes and curves

Figure 6.8: Regras fuzzy funcionam como especificação de pedaços das funções sendo agregadas

Figure 6.9: Ideia do Modelo Vetorial

Figure 6.10: Duas regras ativadas simultaneamente de um conjunto de regras, a partir de uma entrada x, são agregadas e uma função de defuzzificação, como o centróide, é usada para determinar y

6.6. 1D 39

6.6 1D

Figure 6.11: Visão gráfica da medida simples de concordância para três pontos, ${\bf x}$ basicamente em desacordo, considerando um contra a média de todos

Figure 6.12: Visão gráfica da medida simples de concordância para três pontos, $\mathbf x$ basicamente em acordo

6.7 Desenhos de Fuzzy

Figure 6.13: O conjunto referente ao corte-alfa de médio com $\alpha=0,5,$ ou seja médio $^{0,5}.$

Figure 6.14: Exemplo de cortes- α

Figure 6.15: Representação dos cortes- α do conjunto \tilde{A} dos números perto de 7 ou 20

Figure 6.16: Grafico de y=f(x)

Figure 6.17: Exemplo de cortes- α , onde as linhas horizontais indicam os valores do eixo das abcissas que pertencem ao conjunto nítido correspondente

6.8 Gráficos a partir de números

Circle Magic

Pie charts are very easy!

\begin{tikzpicture}
\pie{24/SAP, 12/Oracle,
6/Sage, 6/Infor, 5/Microsoft,
47/Outros}
\end{tikzpicture}

Figure 7.1: ERP Market in 2013

Using polar coordinates it is easy to draw a circle. The following code results in Figure 7.2.

\begin{tikzpicture}

```
\coordinate (center) at (1,2);
\def\radius{2.5cm}
% a circle
\draw[dotted] (center) circle[radius=\radius];
\fill[black] (center) ++(0:\radius)
circle[radius=4pt] node[black,right] {1};
\fill[red] (center) ++(36:\radius)
circle[radius=2pt] node[right] {2 Malala's Call};
\fill[red] (center) ++(2*36:\radius)
circle[radius=2pt] node[above] {3};
\fill[blue] (center) ++(3*36:\radius)
circle[radius=2pt] node[above] {4};
\fill[red] (center) ++(4*36:\radius)
circle[radius=2pt] node[left] {5};
\fill[red] (center) ++(5*36:\radius)
circle[radius=2pt] node[left] {6};
\fill[blue] (center) ++(6*36:\radius)
circle[radius=2pt] node[left] {7};
\fill[red] (center) ++(7*36:\radius)
circle[radius=2pt] node[below] {8};
\fill[red] (center) ++(8*36:\radius)
circle[radius=2pt] node[below] {9};
\fill[blue] (center) ++(9*36:\radius)
circle[radius=2pt] node[right] {10};
 \draw[-{>[scale=2.5,}
        length=2,
        width=3]}] (center)+(4*36:\radius) --
        +(9*36:\radius);
 \draw[-{>[scale=2.5,}
        length=2,
        width=3]}] (center)+(2*36:\radius) --
        +(9*36:\radius);
 \draw[-{>[scale=2.5,}
        length=2,
        width=3]}] (center)+(0:\radius) --
```

```
+(9*36:\radius) node [midway, right] {$w$};
   \frac{-{\text{scale=2.5}}}{}
          length=2,
          width=3]}] (center)+(7*36:\radius) --
          +(3*36:\radius);
   \draw[-{>[scale=2.5,}
          length=2,
          width=3]}] (center)+(5*36:\radius) --
          +(3*36:\radius);
   \draw[-{>[scale=2.5,}
          length=2,
          width=3]}] (center)+(0:\radius) --
          +(3*36:\radius) node [midway, below] {$w$};
  \draw[-{>[scale=2.5,}
          length=2,
          width=3]}] (center)+(1*36:\radius) --
          +(6*36:\radius);
   \draw[-{>[scale=2.5,}
          length=2,
          width=3]}] (center)+(8*36:\radius) --
          +(6*36:\radius);
   \draw[-{>[scale=2.5,}
          length=2,
          width=3]}] (center)+(0:\radius) --
          +(6*36:\radius) node [midway, below] {$w$};
\end{tikzpicture}
   Another example of using polar coordinates to draw a circle results in Fig-
ure 7.3.
\begin{tikzpicture}
% posicao central do circulo
 \coordinate (center) at (1,2);
% coloca o nome aqui
\def\nome{Campbell's Hero Journey}
% nome fica no centro
  \node[align=center,text width=4cm,anchor=center] at (center) {\baselineskip=16pt \Huge{\nome}\r
% raio do circulo
  \def\radius{4cm}
% numero de pontos
  \def\passos{10}
% tamanho em angulo graus do passo
```


Figure 7.2: Points and chords in a circle.

```
\def\passo{360/\passos}
\% em vez de círculo, podemos usar um arco
% aqui tem um truque, que é usar o shift para
\% o primeiro valor que você usar no nosso
% "loop aberto", no caso o 2*\passo
\draw[black] ([shift=(2*\passo:\radius)]center) arc (2*\passo:-7*\passo:\radius);
% cada ponto é um fill
% tem que acertar para cada ponto o multiplicador do passo
% isso deveria ser um for, mas é realmente melhor
\% fazer na mão para controlar tudo
  \fill (center) ++(2*\passo:\radius)
   node[above,yshift=1em,xshift=2em] {\textbf{Primeiro Ato}};
  \fill[black] (center) ++(2*\passo:\radius)
  %circle[radius=4pt]
  node[regular polygon, regular polygon sides=3, fill,regular polygon rotate=-
90,minimum width = 11pt,inner sep =0] {}
  node[left,yshift=-.7em ] {1} node[black, right,xshift=.5em,yshift=.3em] {Call to Act
  \fill[black] (center) ++(1*\passo:\radius)
  circle[radius=2pt] node[left] {2} node[right] {Malala's Call};
```

```
\fill[black] (center) ++(0*\passo:\radius)
  circle[radius=2pt] node[left] {3} node[right] {Malala's Call};
% SEGUNDO ATO
  \fill (center) ++(-1*\passo:\radius)
  node[above,yshift=.5em,xshift=4.3em] {\textbf{Segundo Ato}};
  \fill[black] (center) ++(-1*\passo:\radius)
  circle[radius=2pt] node[below,right] {Malala's Call}
  node[left] {4};
  \fill[black] (center) ++(-2*\passo:\radius)
  circle[radius=2pt] node[above] {5} node[below,xshift=3.5em] { Malala's Call};
% TERCEIRO ATO
   \fill (center) ++(-3*\passo:\radius)
   node[below,yshift=-.5em,xshift=-3em] {\textbf{Terceiro Ato}};
  \fill[black] (center) ++(-3*\passo:\radius)
  circle[radius=2pt] node[above] {6} node[left,xshift=-1em] {Malala's Call};
  \fill[black] (center) ++(-4*\passo:\radius)
  circle[radius=2pt] node[right] {7} node[left] {Malala's Call};
  \fill[black] (center) ++(-5*\passo:\radius)
  circle[radius=2pt] node[right] {8} node[left] {Malala's Call};
  \fill[black] (center) ++(-6*\passo:\radius)
  circle[radius=2pt] node[right] {9} node[left] {Malala's Call};
  \fill[black] (center) ++(-7*\passo:\radius)
  node[shape=rectangle,fill] {} node[right,yshift=-.5em] {10} node[above,xshift=-
3.5em] {Malala's Call };
 \end{tikzpicture}
```


Figure 7.3: The Heroine Learner Journey

Measurements

Figure 8.1: Tentando usar cilindros, mas varia com o texto dentro dele

Figure 8.2: Tentando usar cilindros, texto de fora

Other

Figure 9.1: Variáveis e posições

Figure 9.2: Decorations need many libraries (at least)

Figure 9.3: Modelo abstrato de uma relação como uma tabela - usando decorations de chaves

Figure 9.4: The manual states: Tracking of the picture size is (locally) switched off. This means that the bounding box is lost, which needs to be specified manually via the useasboundingbox path (= path[use as bounding box]) which also needs to be outside of the scope that has transform canvas applied to. You might consider the necessarity to transform your whole picture (this also affects font-sizes!).

Figure 9.5: Klir e os tipos de medida

Figure 9.6: LSI

Figure 9.7: Caption

Figure 9.8: Information Retrieval

Figure 9.9: Representação de um índice

Figure 9.10: Representação do LSI/LSA

Figure 9.11: Cronologia

Figure 9.12: Stemmers

Mais!

Figure 10.1: Caption

Arquiteturas

Figure 11.4 uses different interesting commands, such as calculating point position by the intersections of a vertical and a a horizontal reference (using (h-|v) or (v|-h), general and specific styles, style overwriting, y and x shifts in points, etc.

```
\begin{tikzpicture}%
[every node/.style={%
draw,%
black,%
align=center,%
node distance=1cm and 3cm,%
minimum height = 1.5cm,%
minimum width = 3cm,
registro/.style={%
minimum height = 18pt,%
minimum width = 4cm,
node distance=.5cm and 3cm,%
},
every path/.style={%
black,
Latex-Latex,
thick
}%
\node (UdC) at (0,0) {Unidade \\ de Controle};
\node (ALU) [above = of UdC] {ALU};
\node (B) [above = of ALU] {Buffer};
\node[registro] (Pilha) [right = of UdC] {Registro de Pilha};
```


Figure 11.1: Solr Architecture

Figure 11.2: Modelo Fuzzy de Qualidade Rocha

Figure 11.3: Computador Simples, usa estilos genéricos

```
\node[registro] (End) [above = of Pilha] {Registro de Endereço};
\node[registro] (Regn) [above = of End] {Registro Geral N};
\node[registro,draw=none] (Regp) [above = of Regn] {...};
\node[registro] (Reg2) [above = of Regp] {Registro Geral 2};
\node[registro] (Reg1) [above = of Reg2] {Registro Geral 1};
\node[draw=none] (ini) at (2,-1) {};
\node[draw=none] at (2,7) {};
%($(UdC.south west)!.5!(Pilha.east)$)
\draw[-,ultra thick] ([yshift=-10pt]3,0|-Pilha.west) -- ([yshift=10pt]3,0|-
Reg1.west);
\draw (Pilha.west) -- (3,0|-Pilha.west);
\draw (Reg1.west) -- (3,0|-Reg1.west);
\draw (Reg2.west) -- (3,0|-Reg2.west);
\draw (Regn.west) -- (3,0|-Regn.west);
\draw (End.west) -- (3,0|-End.west);
\draw (ALU.east) -- (3,0|-ALU.east);
\draw (UdC.east) -- (3,0|-UdC.east);
\draw (B.east) -- (3,0|-B.east);
\draw[-,ultra thick] ([xshift=15pt,yshift=15pt]Reg1.north)
-- node [pos=0.5,draw=none,above] {Barramento
de Dados} ([xshift=-15pt,yshift=15pt]Reg1.north-|B.north);
\draw ([yshift=15pt]Reg1.north)
-- (Reg1.north);
\draw ([yshift=15pt]Reg1.north-|B.north)
-- (B.north);
\node[draw=none] (T1) at ([yshift=-10pt]Pilha.south) {Barramento Interno de Dados};
\draw[Latex-,dotted] ([yshift=-10pt]3,0|-Pilha.west) -- (T1.west);
\draw[ultra thick,-] ([yshift=15pt,xshift=-15pt]B.west) --
```

```
([yshift=-15pt,xshift=-15pt]UdC.south west) --
node [draw=none,below,pos=0.5] {Barramento de Controle}
([yshift=-15pt,xshift=15pt]Pilha.south east |-
UdC.south west) --
([yshift=15pt,xshift=15pt] Pilha.south east |- B.west)
;

\draw (Pilha.east) -- ([xshift=15pt]Pilha.east -| Pilha.south east);
\draw (End.east) -- ([xshift=15pt]End.east -| UdC.south west);
\draw (ALU.west) -- ([xshift=-15pt]ALU.west -| UdC.south west);
\draw (B.west) -- ([xshift=-15pt]B.west -| UdC.south west);
\draw (B.west) -- ([xshift=-15pt]B.west -| UdC.south west);
\end{tikzpicture}
```

Barramento de Dados

Barramento de Controle

Figure 11.4: Abstração da CPU, usa referências com shift e cálculo de pontos por interseção de uma referência vertical com uma horizontal, estilos genéricos e específicos

Figure 11.5: Lucene?

11.1 Mecanismos de Busca

Figure 11.6: Modelo genérico de um mecanismo de busca moderno

Figure 11.7: Caption Identificada 1

Figure 11.8: Indexar

Neural Networks

Input Cell
Hidden Cell
Recurrent Cell
Memory Cell
Output Cell

Figure 12.1: Tipo de NN

Figure 12.2: A Single Neuron in a Neural Network