Lógica Proposicional (parte 4)

Clase 06

IIC 1253

Prof. Miguel Romero

Outline

Introducción

Consecuencia lógica

Resolución proposicional

Epílogo

Objetivos de la clase

- Comprender el concepto de consecuencia lógica
- □ Comprender el método de resolución
- □ Demostrar consecuencias lógicas usando resolución

Outline

Introducción

Consecuencia lógica

Resolución proposicional

Epílogo

Consecuencia lógica

Definición

 ψ es consecuencia lógica de Σ si para cada valuación σ tal que $\sigma(\Sigma)$ = 1, se tiene que $\sigma(\psi)$ = 1.

Lo denotamos por $\Sigma \vDash \psi$.

 ψ debe ser satisfecha en cada "mundo" donde Σ es verdadero

Un resultado fundamental

Teorema

 $\Sigma \vDash \varphi$ si y sólo si $\Sigma \cup \{\neg \varphi\}$ es inconsistente.

Este teorema combina dos mundos:

la consecuencia lógica y la satisfacibilidad

Un resultado fundamental

Teorema

 $\Sigma \vDash \varphi$ si y sólo si $\Sigma \cup \{\neg \varphi\}$ es inconsistente.

Demostración

- $(\Rightarrow) \mbox{ Supongamos que } \Sigma \vDash \varphi. \mbox{ Por contradicción, supongamos que } \Sigma \cup \{\neg \varphi\} \mbox{ es satisfacible, luego existe una valuación } \sigma \mbox{ tal que } \sigma(\Sigma \cup \{\neg \varphi\}) = 1. \mbox{ Esto implica que } \sigma(\Sigma) = 1 \mbox{ y que } \sigma(\neg \varphi) = 1, \mbox{ y por lo tanto } \sigma(\Sigma) = 1 \mbox{ y } \sigma(\varphi) = 0, \mbox{ lo que contradice que } \Sigma \vDash \varphi.$
- $(\Leftarrow) \text{ Sea } \Sigma \cup \{\neg \varphi\} \text{ inconsistente. Debemos demostrar que dada una valuación } \sigma \text{ tal que } \sigma(\Sigma) = 1, \text{ se tiene que } \sigma(\varphi) = 1. \text{ Como } \Sigma \cup \{\neg \varphi\} \text{ es inconsistente y } \sigma(\Sigma) = 1, \text{ necesariamente } \sigma(\neg \varphi) = 0, \text{ y luego } \sigma(\varphi) = 1.$ Hemos demostrado que si σ es tal que $\sigma(\Sigma) = 1$, entonces $\sigma(\varphi) = 1$, por lo que concluimos que $\Sigma \models \varphi$.

Un resultado fundamental

El teorema anterior nos permite chequear $\Sigma \vDash \varphi$ estudiando la satisfacibilidad de $\Sigma \cup \{\neg \varphi\}$

- Podemos usar tablas de verdad para esto último. . .
- ... pero es muy lento!

Estudiaremos un método alternativo que no requiere tablas de verdad

Outline

Introducción

Consecuencia lógica

Resolución proposicional

Epílogo

Primer ingrediente: Cláusula vacía

Recordemos: una cláusula es una disyunción de literales

Notación

Denotaremos por □ una contradicción cualquiera. La llamaremos cláusula vacía

Teorema

Un conjunto de fórmulas Σ es inconsistente si y sólo si $\Sigma \vDash \Box$.

Primer ingrediente: Cláusula vacía

Teorema

Un conjunto de fórmulas Σ es inconsistente si y sólo si $\Sigma \vDash \square$.

Demostración (propuesta ★)

- (⇒) Dado que Σ es inconsistente, debemos demostrar que Σ \vDash \square . Como Σ es inconsistente, sabemos que toda valuación σ es tal que $\sigma(\Sigma)$ = 0, y luego se cumple trivialmente que Σ \vDash \square .
- (\Leftarrow) Dado que $\Sigma \vDash \Box$, debemos demostrar que Σ es inconsistente. Por contradicción, supongamos que Σ es satisfacible. Luego, existe una valuación σ tal que $\sigma(\Sigma)=1$. Como \Box es una contradicción, tenemos que $\sigma(\Box)=0$, y por lo tanto obtenemos que $\sigma(\Sigma)=1$ pero $\sigma(\Box)=0$, lo que contradice que $\Sigma \vDash \Box$.

Segundo ingrediente: conjuntos equivalentes

Definición

Los conjuntos de fórmulas Σ_1 y Σ_2 son **lógicamente equivalentes** $(\Sigma_1 \equiv \Sigma_2)$ si para toda valuación σ se tiene que $\sigma(\Sigma_1) = \sigma(\Sigma_2)$.

Observaciones

lacksquare Diremos que Σ es lógicamente equivalente a una fórmula arphi si

$$\Sigma \equiv \{\varphi\}$$

 \blacksquare Para todo Σ se cumple

$$\Sigma \equiv \bigwedge_{\varphi \in \Sigma} \varphi$$

Segundo ingrediente: conjuntos equivalentes

Teorema

Todo conjunto de fórmulas Σ es equivalente a un conjunto de cláusulas.

Ejemplo

Pasando las fórmulas de un conjunto Σ a CNF, podemos separar sus cláusulas

$$\{p, q \rightarrow (p \rightarrow r), \neg (q \rightarrow r)\} \equiv \{p, \neg q \lor \neg p \lor r, q, \neg r\}$$

obteniendo un conjunto de cláusulas que es equivalente al original.

Para determinar si $\Sigma \vDash \varphi$, construiremos un conjunto de cláusulas $\Sigma' \equiv \Sigma \cup \{\neg \varphi\}$

La regla de resolución

Notación

Si un literal $\ell=p$, entonces $\bar{\ell}=\neg p$, y si $\ell=\neg p$, entonces $\bar{\ell}=p$.

Regla de resolución

Dadas cláusulas C_1 , C_2 y un literal ℓ ,

$$C_1 \lor \ell \lor C_2$$

$$C_3 \lor \overline{\ell} \lor C_4$$

$$C_1 \lor C_2 \lor C_3 \lor C_4$$

Observaciones

- La regla es correcta: $\{C_1 \lor \ell \lor C_2, C_3 \lor \overline{\ell} \lor C_4\} \models C_1 \lor C_2 \lor C_3 \lor C_4$
- ℓ y $\bar{\ell}$ se llaman literales complementarios

La regla de resolución

Regla de resolución

Dadas cláusulas C_1 , C_2 y un literal ℓ ,

$$\begin{array}{c}
C_1 \lor \ell \lor C_2 \\
C_3 \lor \overline{\ell} \lor C_4 \\
\hline
C_1 \lor C_2 \lor C_3 \lor C_4
\end{array}$$

Ejemplo

Algunos casos particulares de resolución

$$\begin{array}{ccc}
C_1 \lor \ell \lor C_2 & \ell \\
\hline
\ell & \hline
C_1 \lor C_2
\end{array}$$

La regla de factorización

Regla de factorización

Dadas cláusulas C_1, C_2, C_3 y un literal ℓ ,

$$\frac{C_1 \vee \ell \vee C_2 \vee \ell \vee C_3}{C_1 \vee \ell \vee C_2 \vee C_3}$$

Observación

■ La regla es **correcta**: $\{C_1 \lor \ell \lor C_2 \lor \ell \lor C_3\} \models C_1 \lor \ell \lor C_2 \lor C_3$

Demostraciones por resolución

Definición

Una demostración por resolución de que Σ es inconsistente es una secuencia de cláusulas C_1, \ldots, C_n tal que

- Para cada $i \leq n$
 - $C_i \in \Sigma$ o
 - existen j, k < i tales que C_i se obtiene de C_j, C_k usando la regla de resolución o
 - existe j < i tal que C_i se obtiene de C_j usando la regla de factorización
- $C_n = \square$

Lo denotamos por $\Sigma \vdash \Box$.

$$\begin{split} & \Sigma = \{ \rho \vee q \vee r, \neg \rho \vee s, \neg q \vee s, \neg r \vee s, \neg s \} \\ & (1) \quad p \vee q \vee r \quad \in \Sigma \\ & (2) \quad \neg \rho \vee s \quad \in \Sigma \\ & (3) \quad s \vee q \vee r \quad \text{resolución de } (1), (2) \\ & (4) \quad \neg q \vee s \quad \in \Sigma \\ & (5) \quad s \vee s \vee r \quad \text{resolución de } (3), (4) \\ & (6) \quad s \vee r \quad \text{factorización de } (5) \\ & (7) \quad \neg r \vee s \quad \in \Sigma \\ & (8) \quad s \vee s \quad \text{resolución de } (6), (7) \\ & (9) \quad s \quad \text{factorización de } (8) \\ & (10) \quad \neg s \quad \in \Sigma \\ & (11) \quad \Box \quad \text{resolución de } (9), (10) \end{split}$$

Es decir, existe una demostración por resolución de que Σ es inconsistente

Teorema

Dado un conjunto de cláusulas Σ , se tiene que:

- **Correctitud:** Si $\Sigma \vdash \Box$ entonces $\Sigma \vDash \Box$.
- **Completitud:** Si $\Sigma \vDash \square$ entonces $\Sigma \vdash \square$.

Corolario

Si Σ es un conjunto de cláusulas, entonces $\Sigma \vDash \square$ si y sólo si $\Sigma \vdash \square$.

Corolario (forma alternativa)

Un conjunto de cláusulas Σ es inconsistente si y sólo si existe una demostración por resolución de que es inconsistente.

¡Resolución resuelve nuestro problema!

¡Resolución resuelve nuestro problema de consecuencia lógica!

Corolario

Dados un conjunto de fórmulas Σ y una fórmula φ cualesquiera,

$$\Sigma \vDash \varphi$$
 si y sólo si $\Sigma' \vdash \Box$

donde Σ' es un conjunto de cláusulas tal que $\Sigma \cup \{\neg \varphi\} \equiv \Sigma'$.

Este procedimiento nos permite determinar consecuencia lógica

Ejemplo

Demostremos que $\{p, q \to (p \to r)\} \models q \to r$.

Seguiremos la estrategia planteada

- 1. Agregar $\neg \varphi$ al conjunto
- 2. Transformar todo en $\Sigma \cup \{\neg \varphi\}$ a CNF y separar cláusulas
- 3. Obtener una secuencia de cláusulas por resolución para llegar a 🗆

El desarrollo se deja propuesto 🛨

Ejemplo

Consideremos el conjunto $\{p, q \to (p \to r), \neg(q \to r)\}\$ y llamamos

- $\varphi = q \rightarrow (p \rightarrow r)$
- $\psi = \neg (q \rightarrow r)$

Transformamos cada una a conjuntos de cláusulas

 \blacksquare Para φ usamos ley de implicancia material (dos veces) y asociatividad

$$\varphi = q \rightarrow (p \rightarrow r) \equiv \neg q \lor (p \rightarrow r) \equiv \neg q \lor (\neg p \lor r) \equiv \{\neg q \lor \neg p \lor r\}$$

lacktriangle Para ψ usamos implicancia y de Morgan

$$\psi = \neg (q \to r) \equiv \neg (\neg q \lor r) \equiv q \land \neg r \equiv \{q, \neg r\}$$

Ejemplo

Tenemos el conjunto de cláusulas

$$\Sigma = \{p, \neg q \lor \neg p \lor r, q, \neg r\}.$$

Basta demostrar que Σ es inconsistente, y como es un conjunto de cláusulas, lo haremos mostrando que $\Sigma \vdash \Box$:

- $\begin{array}{lll}
 (1) & p & \in \Sigma \\
 (2) & \neg q \lor \neg p \lor r & \in \Sigma
 \end{array}$
- (3) $\neg q \lor r$ resolución de (1), (2)
- (4) $q \in \Sigma$
- (5) r resolución de (3), (4)
- (6) $\neg r \in \Sigma$
- (7) \Box resolución de (5), (6)

Outline

Introducción

Consecuencia lógica

Resolución proposicional

Epílogo

Objetivos de la clase

- Comprender el concepto de consecuencia lógica
- □ Comprender el método de resolución
- □ Demostrar consecuencias lógicas usando resolución