Esercitazione Di Progettazione di Sistemi Digitali - 22/12/2023

Prof. Pontarelli canale A-F

	Cognome Nome	I	Matricola	
--	--------------	---	-----------	--

Esercizio 1 (5 punti)

Progettare un circuito che indichi quanti giorni ha un dato mese. Il mese è specificato da un input a 4 bit, a3a2a1a0. Ad esempio, se gli input sono (0001), il mese è gennaio e se gli input sono (1100), il mese è dicembre.

L'uscita del circuito, Y2, deve essere uguale a 1 solo quando il mese specificato dagli input ha 31 giorni, Y1, deve essere uguale a 1 quando il mese specificato ha 30 giorni e Y0, deve essere uguale a 1 quando il mese specificato ha 28 giorni. Scrivere le equazioni minime SOP e POS. Realizzare y2 utilizzando i multiplexer 4-a-1.

A3	A2	A1	A0	<i>Y2</i>	<i>Y1</i>	<i>Y0</i>
0	0	0	0	-	-	-
0	0	0	1	1	0	0
0	0	1	0	0	0	1
0	0	1	1	1	0	0
0	1	0	0	0	1	0
0	1	0	1	1	0	0
0	1	1	0	0	1	0
0	1	1	1	1	0	0
1	0	0	0	1	0	0
1	0	0	1	0	1	0
1	0	1	0	1	0	0
1	0	1	1	0	1	0
1	1	0	0	1	0	0
1	1	0	1	-	-	-
1	1	1	0	-	-	-
1	1	1	1	-	-	-

$$Y_2 = \bar{a}_3 a_0 + a_3 \bar{a}_0$$

 $Y_2 = (\bar{a}_3 + \bar{a}_0)(a_3 + a_0)$

matricola_____

$$Y_1 = \bar{a}_3 a_2 \bar{a}_0 + a_3 a_0$$

 $Y_1 = (a_3 + \bar{a}_0)(a_2 + a_0)(\bar{a}_3 + a_0)$

$$Y_0 = \overline{a}_3 \overline{a}_2 \overline{a}_0$$

$$Y_0 = \overline{a}_3 \overline{a}_2 \overline{a}_0$$

$$Y_0 = \bar{a}_3 \bar{a}_2 \bar{a}_0$$

Mux 4-1

matricola	
matricola	

Esercizio 2 (4 punti)

- a. Convertire i numeri X=111 e Y=78 rappresentati in base 10 in complemento a 2 utilizzando 8 bits ed eseguire le operazioni Z=X-Y e W=X+Y. Convertire i risultati in esadecimale.
- b. Eseguire l'operazione W=X+Y tra i numeri X=3AB e Y=B73 rappresentati in base 16. Convertire il risultato il base 10 e controllare la correttezza del risultato convertendo gli operandi iniziali.

```
a)  X = 0110\_1111 
 Y = 0100\_1110 
 X + Y = 1011\_1101 
 X + Y = 1011\_1101 
 Y = 0100\_1110 
 Y = 0100\_1110 
 Y = 1011\_0001 + 1 = 10110010 
 X = 0110\_1111 
 Y = 1011\_0010 
 X - Y = 10010\_0001 
 X - Y = 10010\_0001 
 X - Y = 10010\_0001 
 X = 3AB \rightarrow 11 + 16 * 10 + 256 * 3 = 11 + 160 + 768 = 939 
 Y = A73 \rightarrow 3 + 16 * 7 + 256 * 11 = 3 + 112 + 2560 = 2675 
 X + Y = E1E \rightarrow 14 + 16 * 1 + 256 * 14 = 14 + 16 + 3584 = 3614
```

Esercizio 3 (5 punti)

Data l'espressione $f = \bar{a} \oplus b + \overline{(a+b)}(\bar{a}c + b)(a+c) + \bar{b}c$:

- 1) semplificarla e portarla in forma POS.
- 2) scrivere l'espressione canonica POS di f

$$f = \bar{a} \bigoplus b + \overline{(a+b)}(\bar{a}c + b)(a+c) + \bar{b}c$$

$$= \bar{a}\bar{b} + ab + \overline{(a+b)}(\bar{a}c + b)(a+c) + \bar{b}c$$

$$= \overline{(a+b)} + ab + \overline{(a+b)}(\bar{a}c + b)(a+c) + \bar{b}c$$

$$= \overline{(a+b)} + ab + \overline{(a+b)}(\bar{a}c + b)(a+c) + \bar{b}c$$

$$= \overline{(a+b)} + ab + \bar{b}c$$

$$= \overline{a}\bar{b} + ab + \bar{b}c = \bar{b}(\bar{a}+c) + ab = (a+\bar{b})(\bar{a}+b+c)$$
2)

$$(a+\overline{b}+c)(a+\overline{b}+\overline{c})(\overline{a}+b+c)$$

Esercizio 4 (6 punti)

Progettare, utilizzando il numero minimo di porte logiche AND/OR/NOT, un FF di tipo SR ed un flip-flop di tipo T il circuito sequenziale corrispondente alla seguente tabella di transizione di stato.

	х	$\bar{\chi}$
A	B/0	A/0
В	A/0	C/0
С	C/0	D/1
D	B/1	C/0

Tabella degli stati, utilizzando un flip-flop T per Q1 e un flip-flop SR per Q0

PS	\mathbf{Q}_1	Q_0	X	NS	Q ₁ '	Q ₀ '	T ₁	So	Ro	Z
A	0	0	0	A	0	0	0	0	-	0
A	0	0	1	В	0	1	0	1	0	0
В	0	1	0	С	1	0	1	0	1	0
В	0	1	1	A	0	0	0	0	1	0
C	1	0	0	D	1	1	0	1	0	1
С	1	0	1	С	1	0	0	0	-	0
D	1	1	0	С	1	0	0	0	1	0
D	1	1	1	В	0	1	1	-	0	1

Le equazioni corrispondenti sono:

$$T_1=\bar{Q}_1Q_0\bar{x}+Q_1Q_0x$$

$$S_0 = \bar{Q}_1 \bar{Q}_0 x + Q_1 \bar{Q}_0 \bar{x}$$

$$R_0 = \bar{Q}_1 Q_0 \bar{x} + \bar{Q}_1 Q_0 x + Q_1 Q_0 \bar{x} = \bar{Q}_1 Q_0 + Q_1 Q_0 \bar{x} = \bar{Q}_1 Q_0 + Q_0 \bar{x}$$

$$z=Q_1\bar{Q}_0\bar{x}+Q_1Q_0x$$

Esercizio 5 (6 punti)

Descrivere in SystemVerilog la macchina a stati di Moore corrispondente alla seguente tabella di transizione di stato.

	\bar{x}, \bar{y}	\bar{x}, y	x, \bar{y}	<i>x</i> , <i>y</i>
A	B/0	C/0	A/0	A/0
В	A/0	C/0	C/0	C/0
С	A/1	B/1	A/1	B/1

```
module fsm2(input logic clk, reset,
              input logic x, y,
              output logic z);
 typedef enum logic {SA, SB,SC} statetype;
 statetype state, nextstate;
 always ff @(posedge clk, posedge reset)
          if (reset) state <= SA;
          else state <= nextstate;
 // next state logic
 always_comb
          case (state)
                  SA: if (!x &!y) nextstate = SB;
                      else if (!x &y) nextstate = SC;
                      else nextstate = SA;
                  SB: if (!x & !y) nextstate = SA;
                       else nextstate = SC;
                  SC: if (y) nextstate = SB;
                      else nextstate = SA;
                  default: nextstate = SA;
          endcase
 //output logic
 assign z = (state== SC);
```

endmodule

Esercizio 6 (4 punti)

Si scriva l'espressione booleana di f.

$$f = (a+b)\bar{c}\bar{d} + a\bar{b}c\bar{d} + \bar{b}cd = a\bar{c}\bar{d} + b\bar{c}\bar{d} + a\bar{b}c\bar{d} + \bar{b}cd = a\bar{c}\bar{d} + b\bar{c}\bar{d} + \bar{b}c(a\bar{d} + d) = a\bar{c}\bar{d} + b\bar{c}\bar{d} + \bar{b}c(a+d) = a\bar{c}\bar{d} + b\bar{c}\bar{d} + a\bar{b}c + \bar{b}cd$$

Si scriva f in forma all-NAND.

$$f = NAND(NAND(a, \bar{c}, \bar{d}), NAND(b, \bar{c}, \bar{d}), NAND(a, \bar{b}, c), NAND(\bar{b}, c, d))$$