МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

		КАФЕДРА 33	
ОТЧЕТ ЗАЩИЩЕН С ОЦ	ЕНКОЙ _		
ПРЕПОДАВАТЕЛЬ			
Ассистент			Н.С. Красников
должность, уч. степень, звание		подпись, дата	инициалы, фамилия
ОТЧЕ	т о лаб	ОРАТОРНОЙ РА	БОТЕ № 4
ПРЕДОБРАБОТКА ДА	нных с	ИСТЕМЫ ЖУРНА	АЛОВ БЕЗОПАСНОСТИ
по курсу: О	СНОВЫ	МАШИННОГО	ОБУЧЕНИЯ
СТУДЕНТ ГР. № 303		подпись, дата	М.В. Вдовин

1. Цель работы:

Проведение анализа данных системных журналов безопасности операционной системы Windows 7/10/11. Предварительная подготовка данных для их интеллектуального анализа «цифрового портрета» пользователя.

2. Задание

- 1. Изучить теоретические материалы формирования log-журналов различных операционных систем, приведенные в данном лабораторном практикуме.
- 2. Провести предварительную подготовку и анализ собственных системных журналов безопасности.
- 3. Сделать выводы о "цифровом портрете" пользователя в точки зрения событий безопасности.
- 4. Создать датасет из растровых изображений-гистограмм цифровых портретов студентов группы (самостоятельный групповой проект)
- 5. Сформулировать (самостоятельно) задачу выявления аномалий цифрового профиля
- 6. Решить задачу бинарной классификации (выявления аномалий) в поведении пользователей, используя в качестве исходных данных изображения scatterгистограмм и/или их векторные представления.
- 7. Решить задачу многоклассовой классификация Определить принадлежность цифрового портрета конкретному пользователю (студенту группы)
- 8. Рассчитать метрики качества классификации.
- 9. Отчет по лабораторной работе представить в виде "живого" скрипта с результатами анализа собственных журналов безопасности, а также в виде pdf документа данного скрипта.

3. Ход работы

В качестве источников данных используем системный журнал безопасности Windows 10. Для получения «сырой» выборки воспользуемся консолью управления (ММС) - Рисунок 1.

Объектом исследования является журнал безопасности - Рисунок 2. Выберем события за последние три дня и скопируем их в таблицу Excel - Рисунок 3.

Рисунок 1. Доступ к журналу событий безопасности в Windows 10

Рисунок 2. Журнал событий безопасности

	Α	В	C D E
1	19.12.2023 21:50	5379	User Account Management
2	19.12.2023 21:50	5379	User Account Management
3	19.12.2023 21:50	5379	User Account Management
4	19.12.2023 21:50	5379	User Account Management
5	19.12.2023 21:50	5379	User Account Management
6	19.12.2023 21:50	5379	User Account Management
7	19.12.2023 21:50	5379	User Account Management
8	19.12.2023 21:50	5379	User Account Management
9	19.12.2023 21:50	5379	User Account Management
10	19.12.2023 21:50	5379	User Account Management
11	19.12.2023 21:50	5379	User Account Management
12	19.12.2023 21:50	5379	User Account Management
13	19.12.2023 21:50	5379	User Account Management
14	19.12.2023 21:50	5379	User Account Management
15	19.12.2023 21:50	5379	User Account Management
16	19.12.2023 21:50	5379	User Account Management
17	19.12.2023 21:50	4672	Special Logon
18	19.12.2023 21:50	4624	Logon
19	19.12.2023 21:50	4672	Special Logon
20	19.12.2023 21:50	4624	Logon
21	19.12.2023 21:47	4672	Special Logon
22	19.12.2023 21:47	4624	Logon
23	19.12.2023 21:41	4672	Special Logon
24	19.12.2023 21:41	4624	Logon
25	19.12.2023 21:40	5379	User Account Management
26	19.12.2023 21:34	4672	Special Logon
27	19.12.2023 21:34	4624	Logon
28	19.12.2023 21:34		Special Logon
29	19.12.2023 21:34	4624	Logon
30	19.12.2023 21:33	4672	Special Logon
31	19.12.2023 21:33		Logon
32	19.12.2023 21:32	4672	Special Logon
33	19.12.2023 21:32	4624	Logon
34	19.12.2023 21:32	5379	User Account Management
35	19.12.2023 21:29	5379	User Account Management
36	19.12.2023 21:29	5379	User Account Management
37	19.12.2023 21:29	5379	User Account Management
38	19.12.2023 21:29	5379	User Account Management

Рисунок 3. Таблица с событиями безопасности за 3 дня

Откроем среду Matlab и перенесем в рабочую зону получившуюся таблицу – Рисунок 4.

Рисунок 4. Перемещение таблицы с данными в рабочую зону MatLab

Поскольку требуется, чтобы значения столбца "Дата и время" мигрировали в состав первичного ключа таблицы, требуется выполнить код: T=readtable("seclog.xlsx")

При преобразовании таблицы русские наименования столбцов были подвергнуты принудительному преобразованию и потеряли свой логический смысл. Поэтому следует выполнить их переименование:

T.Properties.DemensionName(1, 1) = "datetime";

T.Properties.DemensionName(1) = "EventCode";

Аналогично переименуем второй столбец и проведем анализ табличной переменной Т с помощью функции summary: T.Properties.VariableNames(2) = "EventCategory";

Summary(T) – Рисунок 5.

```
RowTimes:
```

```
      datetime: 13381×1 datetime

      Values:
      Min
      16-Dec-2023 23:29:32

      Median
      18-Dec-2023 15:43:48

      Max
      19-Dec-2023 21:50:35
```

Variables:

EventCode: 13381×1 double

Values:

Min 1100 Median 5379 Max 5382

EventCategory: 13381×1 cell array of character vectors

Рисунок 5. Сырая выборка

Можно сделать следующие выводы: в данную сырую выборку перенесено 13381 события безопасности с кодами событий от 1100 до 5382, а данные из временного интервала с 16.12.2023 по 19.12.2023.

Теперь требуется узнать, как распределены события безопасности в течении суток.

По этой информации можно делать выводы о поведении пользователя/ей данной вычислительной системы. Поведение пользователей формирует их "цифровой портрет", который в дальнейшем потребуется для интеллектуального анализа и. возможно, предсказания их действий. В частности, анализ событий системных журналов безопасности принимаются в суде в качестве доказательной базы. Итак, добавим в таблицу Т новый столбец hr_of_day, который будет хранить, сколько событий безопасности зарегистрировано в течении конкретного часа суток — Рисунок 6.

	datetime	EventCode	EventCategory	hr_of_day
1	19-Dec-2023 21:50:35	5379	'User Account Management'	21
2	19-Dec-2023 21:50:35	5379	'User Account Management'	21
3	19-Dec-2023 21:50:35	5379	'User Account Management'	21
4	19-Dec-2023 21:50:35	5379	'User Account Management'	21
5	19-Dec-2023 21:50:35	5379	'User Account Management'	21
6	19-Dec-2023 21:50:35	5379	'User Account Management'	21
7	19-Dec-2023 21:50:35	5379	'User Account Management'	21
8	19-Dec-2023 21:50:35	5379	'User Account Management'	21
9	19-Dec-2023 21:50:35	5379	'User Account Management'	21

Рисунок 6. Количество событий, зарегистрированных в конкретный час суток

Чтобы произвести предварительный анализ данных построим scatterгистограмму командной scatterhistogram(T, "hr_of_day", "EventCode") – Рисунок 7.

Из данный гистограммы видно:

1. Пиковыми часами являются часы с 6 утра по 12 ночи, когда выполняется наибольшее количество действий, связанный с безопасностью. А в период с 12 ночи до 6 утра наступает затишье.

Рисунок 7. Scatter-гистрограмма

Чтобы уточнить характер (категорию) событий, происходящих в каждый час суток, модернизируем scatter-гистограмму указав ей необходимость (параметр Group Variable) группировать ПО полю "EventCode": данные (T,"hr of day","EventCode",'GroupVariable',"EventCode") Scatterhistogram Рисунок 8. Из данной гистограммы видно, что с 8 по 11 часов происходит самое широкое по спектру событий безопасности множество событий. Делать конкретные выводы, с чем это связано, пока что рано.

Зафиксируем полученные гистограммой срезы событий безопасности по конкретным часам суток в отдельной таблице H — Рисунок 9. Важно, что для фиксирования "пустых" событий (когда в конкретные часы суток не происходило ничего) нужно использовать параметр "IncludeEmptyGroups" = true: H=groupsummary(T,["hr of day","EventCode"], 'IncludeEmptyGroups', true).

Чтобы зафиксировать ОБЩЕЕ количество событий безопасности в конкретные часы суток, создадим еще одну таблицу H1 – Рисунок 10, используя функцию groupsummary: H1=groupsummary(T,"hr of day").

Рисунок 8. Доработанная Scatter-гистограмма

 $H = 450 \times 3$ table

	hr_of_day	EventCode	GroupCount
1	0	1100	0
2	0	4608	0
3	0	4616	0
4	0	4824	24
5	0	4834	3
6	0	4847	2
7	0	4648	4
8	0	4872	22
9	0	4888	0

Рисунок 9. Фрагмент матрицы Н

	hr_of_day	GroupCount
1	0	208
2	7	656
3	8	864
4	9	732
5	10	1874
6	11	2215
7	12	787
8	13	135
9	14	516

Рисунок 10. Фрагмент матрицы Н1

Для отображения этой таблицы в виде гистограммы используем код (убрав %*)

%* bar(H1.hr of day, H1.GroupCount)

Поскольку в данном случае наиболее информативной будет "гистограмма с накоплением", для этого произведем ряд преобразований:

1. В качестве агрегирующей (накапливающей) переменной будем использовать вектор X, в который будут группироваться события безопасности ("EventCode") и уже подсчитанное их количество "GroupCount" из таблицы H. В новой таблице H2 — Рисунок 11 в результате выполнения функции groupsummary появится четыре столбца "hr_of_day", "GroupCount", fun1_EventCode и fun1_GroupCount, причем два последних появляются автоматически, как результат группировки: H2 = groupsummary(H, "hr_of_day", @(x) { x' }, ["EventCode", ... "GroupCount"])

	hr_of_day	GroupCount	fun1_EventCode	fun1_GroupCount
1	0	25	1×25 double	1×25 double
2	7	25	1×25 double	1×25 double
3	8	25	1×25 double	1×25 double
4	9	25	1×25 double	1×25 double
5	10	25	1×25 double	1×25 double
6	11	25	1×25 double	1×25 double
7	12	25	1×25 double	1×25 double
8	13	25	1×25 double	1×25 double
9	14	25	1×25 double	1×25 double

Рисунок 11. Фрагмент матрицы Н2

Создадим промежуточные переменные hrs (вектор часов суток), counts (матрица количества событий безопасности для каждого кода события) и codes (вектор кодов событий безопасности):

Рисунок 12. Вектор кодов событий безопасности

И теперь можем построить гистограмму с накоплением, а также сформировать легенду – Рисунок 13.

Построенная гистограмма с накоплением показывает, что в 11 часов дня происходит наибольшее количество событий безопасности, таких как:

- 5397 когда пользователь выполняет операцию чтения учетных данных, сохраненных в диспетчере учетных данных Windows (WCM).
- 4799 перечисление процессом локальных групп безопасности пользователя на компьютере или устройстве.
 - 4688 создание новых процессов.
 - 4616 изменение системного времени.

Данные события являются наиболее часто встречаемыми для данного пользователя. Наибольшая активность пользователя наблюдается в первой половине дня, с 6 утра до 12 дня, затем активность снижается и возрастает только в вечернее время с 19:00 по 22:00. В часы с 12:00 по 6:00 активность не наблюдается. Данная особенность пользователя может помочь выявить аномальное поведение работы под данным пользователем.

Рисунок 13. Цифровой проект пользователя

4. Вывод

В ходе лабораторной работы был осуществлен анализ данных системных журналов безопасности ОС Windows 10, который включал в себя изучение различных событий и записей, предоставляемых системой для отслеживания действий пользователя.

Листинг

```
T=readtimetable("seclog.xlsx")
T.Properties.DimensionNames(1,1) = "datetime";
T.Properties.VariableNames(1) = "EventCode";
T.Properties.VariableNames(2) = "EventCategory";
summary(T)
T.hr of day = hour(T.datetime)
scatterhistogram(T,"hr_of_day","EventCode" )
scatterhistogram(T,"hr_of_day","EventCode",'GroupVariable',"EventCode" )
H=groupsummary(T,["hr_of_day","EventCode"], 'IncludeEmptyGroups', true)
H1=groupsummary(T, "hr_of_day")
%bar(H1.hr_of_day, H1.GroupCount)
H2 = groupsummary(H, "hr_of_day", @(x) { x' }, ["EventCode", "GroupCount"])
hrs = H2.hr_of_day;
counts = cell2mat(H2.fun1_GroupCount(:))
codes = H2.fun1_EventCode{1}
b = bar(hrs, counts, 'stacked', 'FaceColor', 'flat');
for k = 1:size(counts,2)
b(k).CData = k;
end
grid on
legend(num2cell(string(codes)))
```