Machine Learning - Unit 2 Neural Networks Portion Question Bank

- 1. With examples and diagrams explain what do you understand by the following:
 - a) McCulloch and Pitts Neurons
 - **b)** Perceptron
 - c) Perceptron Convergence Theorem
 - **d)** Linear Separability
- 2. Write and describe the Perceptron Algorithm. What is the difference between the 'Recall' and 'Training' phase?(Solution: Refer 02 Perceptron MKN.pdf & Stephen Marsland Section 3.3.3)
- **3.** Design a Perceptron that produces output of logical OR of their inputs.(<u>Solution</u>: Refer 02_Perceptron_MKN.pdf for short explanation. If asked for more marks, refer Stephen Marsland Section 3.3.4 and 3.3.5. Concept expected **not** the Python Code)
- **4.** The values of x and their corresponding values of y are shown in the table below

X	0	1	2	3	4
У	2	3	5	4	6

- a) Find the least square regression line y = a x + b.
- b) Estimate the value of y when x = 10.

(Solution: Refer https://www.analyzemath.com/statistics/linear_regression.html)

- **5.** For a year, five randomly selected students took a math aptitude test before they began their statistics course. The Statistics Department has three questions.
 - a) What linear regression equation best predicts statistics performance, based on math aptitude scores?
 - b) If a student made an 80 on the aptitude test, what grade would we expect her to make in statistics?
 - c) How well does the regression equation fit the data?

Student	x i	Уi
1	95	85
2	85	95
3	80	70
4	70	65
5	60	70

(Solution: Refer https://stattrek.com/regression/regression-example.aspx)

- **6.** State Hebb's rule. Explain how Hebb's rule improves the performance of McCulloch and Pitts Neurons. (Solution: Refer Stephen Marsland Section 3.1.1)
- 7. What is Linear Regression? List the critical assumptions of Linear Regression. Mention few applications of Linear Regression. (Solution: Refer 03_Perceptrons Putting it all together_MKN.pdf).
- 8. What do you understand by 'Perceptron Activation Function'? What is its purpose? What are

the types? (Solution: Refer 03 Perceptrons - Putting it all together MKN.pdf).

- **9.** What do you understand by the following terms w.r.t Perceptron?
 - a) Learning Rate
 - **b)** Bias
 - c) Perceptron Convergence Theorem (<u>Solution</u>:Refer 02 Perceptron MKN.pdf)
- **10.** What do you understand by the term 'Linear Separability'? Illustrate a few graphs which depicts linear and Non-Linear Separability. (**Solution**:Refer 02_Perceptron_MKN.pdf and Stephen Marsland Section 3.4)
- 11. What is the problem pointed out by Minsky and Papert regarding 'Linear Separability' and XOR Function? Give a brief overview of how it can be solved. (Solution: Refer 02 Perceptron MKN.pdf and Stephen Marsland Section 3.4.2)
- **12.** "Least Square Error' is a Cost Function used by the Perceptron to minimise the error". Justify this statement with an appropriate example. (**Solution**: Refer 02 Perceptron MKN.pdf)