Тригонометрическая интерполяция четными полиномами

Блинец Владимир ЗММ

October 28, 2024

1 Введение

Тригонометрическая интерполяция — это метод, при котором интерполяционный полином строится с использованием тригонометрических функций, таких как синус и косинус. Данный подход полезен, когда требуется интерполировать функцию, обладающую периодичностью или симметрией. В этом отчете рассматривается построение четного интерполяционного полинома T(x) степени n, который принимает заданные значения y_m в узловых точках x_m .

2 Постановка задачи

Пусть дана функция f(x), значения которой известны в n+1 узловых точках x_m :

$$x_m = \frac{m\pi}{n}, \quad m = 0, 1, \dots, n.$$

Наша цель — построить четный тригонометрический полином T(x) степени n, такой что:

$$T\left(\frac{m\pi}{n}\right) = y_m, \quad m = 0, 1, \dots, n,$$

где $y_m = f\left(\frac{m\pi}{n}\right)$.

3 Формула для четного интерполяционного тригонометрического полинома

Четный тригонометрический полином T(x) степени n, удовлетворяющий условиям интерполяции, имеет вид:

$$T(x) = \frac{1}{n}\sin(x)\sin(nx)\left[-\frac{1}{2}y_0\frac{1}{\cos(x)-1} + \sum_{m=1}^{n-1}y_m(-1)^{m+1}\frac{1}{\cos(x)-\cos\left(\frac{m\pi}{n}\right)} + (-1)^{n+1}\frac{y_n}{2(\cos(x)+1)}\right].$$

Разделение на компоненты

Данная формула состоит из нескольких частей, каждая из которых имеет свою роль в построении интерполяционного полинома.

1. Множитель $\frac{1}{n}\sin(x)\sin(nx)$:

$$\frac{1}{n}\sin(x)\sin(nx)$$
.

Этот множитель отвечает за симметрию и периодичность интерполяционного полинома T(x), и обеспечивает нулевые значения на границах интервала x=0 и $x=\pi$.

2. Первый член $-\frac{1}{2}y_0\frac{1}{\cos(x)-1}$:

$$-\frac{1}{2}y_0\frac{1}{\cos(x)-1}.$$

Этот член учитывает значение y_0 в точке x=0. Знаменатель $\cos(x)-1$ обеспечит правильное поведение интерполяционного полинома при $x\approx 0$, так как $\cos(x)-1\to 0$ при $x\to 0$, что компенсируется множителем $\sin(x)$ в общем факторе.

3. Сумма промежуточных членов:

$$\sum_{m=1}^{n-1} y_m (-1)^{m+1} \frac{1}{\cos(x) - \cos\left(\frac{m\pi}{n}\right)}.$$

Этот суммирующий член учитывает значения y_m в промежуточных узловых точках $x=\frac{m\pi}{n}$, где $m=1,2,\ldots,n-1$. Весовые коэффициенты $(-1)^{m+1}$ и знаменатели $\cos(x)-\cos\left(\frac{m\pi}{n}\right)$ обеспечивают корректное поведение полинома между узлами.

4. Последний член $(-1)^{n+1} \frac{y_n}{2(\cos(x)+1)}$:

$$(-1)^{n+1} \frac{y_n}{2(\cos(x)+1)}.$$

Этот член отвечает за значение y_n в точке $x=\pi$. Знаменатель $\cos(x)+1$ предотвращает деление на ноль при $x=\pi$, компенсируя значения в точке $x=\pi$.

Обработка особых точек

Для точек x=0 и $x=\pi$ некоторые члены формулы могут обращаться в бесконечность из-за деления на ноль. Чтобы избежать этого, в реализации метода делается проверка близости к этим значениям и используется ограничение ϵ для предотвращения деления на ноль.

Симметрия полинома

Четный тригонометрический полином T(x) обладает свойством четности:

$$T(x) = T(-x),$$

что обеспечивает симметричность интерполяции относительно оси ординат. Это свойство полезно для функций, которые симметричны относительно центра интервала интерполяции.

4 Заключение

Четный тригонометрический полином T(x), построенный по формуле, обеспечивает интерполяцию заданной функции f(x) в узловых точках $x_m = \frac{m\pi}{n}$ с учетом её симметрии. Этот метод особенно полезен для интерполяции функций, обладающих четностью и периодичностью. Использование факторов вида $\sin(x)\sin(nx)$ и компенсации в особых точках обеспечивает точную аппроксимацию и предотвращает проблемы с делением на ноль.

5 Ну и графики напоследок

Figure 1: Полином для точек 1;0,5;0,25;0,5;1

Figure 2: Полином для точек 1;0,707;0;0,707;1