Numerical Optimization, 2020 Fall Homework 3

Due on 14:59 OCT 10, 2020 请尽量使用提供的 tex 模板, 单纯形法的表格可手绘拍照加入文档.

1 单纯形法

以下均考虑非退化线性规划问题即可。

(i) 考虑一线性规划问题的规范型如下:

记进基变量的下标为 q, 转轴前分量 j 对应的 reduced cost 为 r_j , 转轴后对应的 reduced cost 为 r'_j 。试证明 reduced cost 的更新公式为 $r'_j = r_j - \frac{y_{pj}}{y_{pq}} r_q$ (参考 Lecture 3 中 17 页)。 [20pts]

$$\begin{split} r_j' &= c_j - \hat{\lambda}^T a_j (\text{By definition, where } a_j \text{ is the jth coloum of } N) \\ &= c_j - (\lambda^T + \frac{r_q}{y_{pq}} u_p) a_j (\text{By definition. } U_p \text{ is } p^{th} \text{ row of } B^{-1}) \\ &= r_j - \frac{r_q}{y_{pq}} u_p a_j \\ &= r_j - \frac{r_q}{y_{pq}} y_{pj} \end{split}$$

证毕。

(ii) 单纯形表中右下角的-f 对应当前基本可行解的目标函数值的相反数。试证明, 经过一次转轴后更新的-f 对应更新后基本可行解对应的目标函数值的相反数 (参考 Lecture 3 中 20 页)。 [20pts]

Simplex Method in Tableau Format

单纯形表(tableau): BFS对应规范形的表格+

既约费用系数和BFS目标值的相反数

	x_1	• • •	x_p	• • •	x_m	x_{m+1}	x_{m+2}	• • •	x_q	• • • •	x_n	$B^{-1}b$
	1	• • • •	0	• • •	0	$y_{1,m+1}$	$y_{1,m+2}$	• • •	y_{1q}	• • •	y_{1n}	\bar{b}_1
		· .				:	:		:		:	:
	0	• • •	1	• • •	0	$y_{p,m+1}$	$y_{p,m+2}$	• • •	y_{pq}	• • •	y_{pn}	\bar{b}_p
				1.		:	:		:		:	:
	0	• • •	0	• • •	1	$y_{m,m+1}$	$y_{m,m+2}$	• • •	y_{mq}	• • •	y_{mn}	\bar{b}_m
\mathbf{T}	0		0		0	r_{m+1}	r_{m+2}		r_a		r_n	<i>f</i>

解

设 f' 为 -f 转轴更新后的值, $f\hat{f}$ 为更新后基本可行解对应的目标函数值得真实值,下证 $f'=\hat{f}$ 。首 先根据高斯消元的性质可得

$$f' = f + \frac{r_q}{y_{pq}} \bar{b}_p$$

根据目标函数的定义我们有

$$\begin{split} f &= \lambda^T b \\ \hat{f} &= \hat{\lambda}^T b \\ &= (\lambda^T + \frac{r_q}{y_{pq}} u_p) b \\ &= \lambda^T b + \frac{r_q}{y_{qp}} u_p b \\ &= f + \frac{r_q}{y_{pq}} \bar{b}_p \text{ (Since } U_p \text{ is } p^{th} \text{ row of } B^{-1}, u_p b = \bar{b}_p) \\ &= f + \frac{r_q}{y_{pq}} \bar{b}_p \end{split}$$

即 $f' = \hat{f}$ 。因此经过一次转轴更新后的-f 对应更新后基本可行解对应的目标函数值的相反数。

修正单纯形法 2

2.1 证明题

试证明 Lecture 4 中 20 页 λ 的更新公式为: $\hat{\lambda}^T = \lambda^T + \frac{r_q}{u_{pq}} u_p$ 。 [20pts]

首先我们定义初等矩阵 E_{pq} , 设 $B(a_1,a_2,...,a_m)$, 转轴元为 y_{pq} , 转轴后的基 $\hat{B}=(a_1,...,a_{p-1},a_q,a_{p+1},...,a_m)$

$$E_{pq} = [e_1, ..., v, e_{p+1}, ..., e_m]$$

另定义v为

$$v_i = \begin{cases} -\frac{y_{iq}}{y_{p1}}, & \text{for } i \neq p \\ \frac{1}{y_{pq}}, & \text{for } i = p \end{cases}$$

则有
$$\hat{B}^{-1} = E_{pq}B^{-1}$$
. 下面我们将 $c_{\hat{B}}$, \hat{B}^{-1} 带入到 $\hat{\lambda}$ 中
$$\hat{\lambda}^T = (c_B + (0, ..., 0, -c_p + c_q, 0, ..., 0))^T E_{pq}B^{-1}$$

$$= C_B^T E_{pq}B^{-1} + (0, ..., 0, -c_p + c_q, 0, ..., 0)^T B^{-1}$$

$$= C_B^T (I - (\vec{0}, \vec{0}, ..., e_p - v, ..., \vec{0})) B^{-1} + (0, ..., 0, -c_p + c_q, 0, ..., 0)^T B^{-1}$$

$$= \lambda^T + (0, ..., 0, -c_p + c_B^T v + (-c_p + c_q) v_p, 0, ..., 0)^T B^{-1}$$

$$= \lambda^T + (0, ..., 0, -c_p + c_1 v_1 + c_2 + ... + c_p v_p + ... + c_m v_m - c_p v_p + c_q v_q)^T B^{-1}$$

$$= \lambda^T + (0, ..., 0, -\frac{1}{y_{pq}} (c_1 y_{1q} + ... + c_m y_{mq}) + \frac{c_q}{y_{pq}}, 0, ..., 0)^T B^{-1}$$

$$= \lambda^T + (0, ..., 0, \frac{c_q - z_q}{y_{pq}}, ..., 0)^T B^{-1}$$

$$= \lambda^T + \frac{r_q}{y_{pq}} u_p$$

证毕。

2.2 计算题

试用两阶段法求解如下线性规划问题 (详见 Lecture 4 第 13 页), 给出各个步骤的单纯形表。 [40pts]

$$\begin{array}{ll} \text{minimize} & x_1-x_2\\ \text{subject to} & -x_1+2x_2+x_3=2\\ & -4x_1+4x_2-x_3=4\\ & -5x_1+6x_2=6\\ & x_1-x_3=0\\ & x_1,\ x_2,\ x_3\geq 0 \end{array}$$

	x1	x2	x3	x4	x5	х6	b
	-1	2	1	1	0	0	2
	-4	4	-1	0	1	0	4
	1	0	-1	0	0	1	0
c^T	0	0	0	1	1	1	0
	x1	x2	x3	x4	x5	x6	b
	-1	2	1	1	0	0	2
	-4	4	-1	0	1	0	4
	1	0	-1	0	0	1	0
c^T	4	-6	1	0	0	0	-6
			-				
	x1	x2	х3	x4	x5	х6	b
	1	-2	-1	-1	0	0	-2
	0	-4	-5	-4	1	0	-4
	0	2	0	1	0	1	2
c^T	0	2	5	4	0	0	2
	x1	x2	x3	x4	x5	х6	b
	1	0	1.5	1	-0.5	0	0
	0	1	1.25	1	-0.25	0	1
	0	0	-2.5	-1	0.5	1	0
c^T	0	0	2.5	2	0.5	0	0
	x1	x2	х3	x4	x5	х6	b
	1	0	0	0.4	-0.2	0.6	0
	0	1	0	0.5	0	0.5	1
	0	0	1	0.4	-0.2	-0.4	0
c^T	0	0	0	1	1	1	0
	x1	x2	х3	ь			
	1	0	0	0	1		
	0	1	0	1	1		
	0	0	1	0			
c^T	1	-1	0	0			
	x1	x2	х3	ь			
	1	0	0	0	1		
	0	1	0	1	1		
	0	0	1	0			
c^T	1	0	0	1	-		

于是我们有: $x_1 = 0, x_2 = 1, x_3, 0$, 并且最优值是 -1。