Competishun

52/6, Opposite Metro Mas Hospital, Shipra Path, Mansarovar

Date: 12/12/2024

Time: 3 hours Max. Marks: 30

UTS-1_MT-9 (24-25)

Physics

Single Choice Question

Q1	A photodetector is meV. What is the max	nade of a semiconduct imum wavelength dete	iductor having a forbidden energy gap $E_g = 0$ is detected by it?						
	a) 1768 Å	b) 1768 μm	c)	1768 nm	d)	7000 Å			
Q2	The magnetic suscep	otibility of a diamagne	tic	substance					
	a) Increases with temperature			b) Decreases with temperature					
	c) Does not vary wi	d)) First decreases and then increases						
Q3	Twenty-two grams o of the mixture is	f CO ₂ at 27°C is mixe	ed w	ith 16 g of O_2 at 3	7°С	. The temperature			
	a) 32°C	b) 27°C	c)	37°C	d)	30.5°C			
Q4	The energy that should be added to an electron, to reduce its de-Broglie wavelengths from 10^{-10} m to 0.5×10^{-10} m, will be								
	a) four times the initial energy			thrice the initial e	gy				
	c) equal to the initial	al energy	d)	twice the initial e	nerg	gy			

In the following figure, the velocities are in ground frame and the cylinder is Q5 performing pure rolling on the plank, velocity of point 'A' would be

a) $2V_{\rm C}$

- **b)** $2 V_C + V_P$ **c)** $2 V_C V_P$ **d)** $2 (V_C V_P)$
- Two persons, A of mass 80 kg and B of mass 50 kg are standing on a horizontal Q6 platform of mass 20 kg. The platform is on horizontal frictionless surface and is initially at rest

If both A and B jump (horizontally) from platform simultaneously and in same direction with 2 m/s each, what would be the velocity of centre of mass of the system of persons and platform?

- a) 1.4 m/s
- **b)** 3.2 m/s
- c) 2.8 m/s
- d) Zero
- A non-uniformly charged conducting rod is being rotated about an end A with angular **Q7** speed ω . Linear charge density of the rod is given by $\lambda = kx^2$; where k is a constant and x is distance from A. Magnetic dipole moment of this arrangement is

- $k\omega L^2$
- $k\omega L^4$
- d) Zero

Two coherent sources S_1 and S_2 , vibrating in phase, emit light of wavelength λ . The separation between them is $\sqrt{2}\lambda$. The light is collected on screen placed at a distance $D(>>\lambda)$ from the slit S_1 . Find the position of point P on the screen from point O if the intensity at P is maximum

a) D

 $b) \quad \frac{D}{3}$

c) $\sqrt{3}D$

- d) $\frac{D}{2}$
- A bob of mass M is suspended by a massless string of length L. The horizontal velocity V at position A is just sufficient to make it reach the point B. The angle θ at which the speed of the bob is half of that at A, satisfies Figure :

- a) $\theta = \frac{\pi}{4}$
- $\qquad \qquad \frac{\pi}{4} < \theta < \frac{\pi}{2}$
- c) $\frac{\pi}{2} < \theta < \frac{3\pi}{4}$
- $\mathbf{d)} \quad \frac{3\pi}{4} < \theta < \pi$

- Q10 Two wires of the same material and radii r and 2r respectively are welded together end to end. The combination is used as a sonometer wire and kept under tension T. The welded point is midway between the two bridges. When stationary waves are set up ir the composite wire, the joint is a node. Then the ratio of the number of loops formed in the thinner to thicker wire is
 - a) 2:3

b) 1:2

c) 2:1

- **d)** 5:4
- o11 If coefficient of mutual induction of primary and secondary coil of transformer is 5 H and current in primary coil is given as $I = 10\sin 4000\pi t$ in SI units. Then peak value o emf induced in secondary coil is
- a) $5 \times 10^4 \text{ volt}$ b) $\pi \times 10^5 \text{ volt}$ c) $2\pi \times 10^5 \text{ volt}$ d) $5 \times 10^6 \text{ volt}$
- A block of mass m lies on a horizontal frictionless surface and is attached to one end of a horizontal spring (with spring constant k) whose other end is fixed. The block is initially at rest at the position where the spring is unstretched (x = 0) when a constant

horizontal force \vec{F} in the positive direction of the x-axis is applied to it. A plot of the resulting kinetic energy of the block versus its position x is shown in figure. What is

the magnitude of \vec{F} ?

a) 2 N

b) 4 N

c) 8 N

- **d)** 16 N
- Q13 Capacitors C_1 and C_2 ($C_1 > C_2$) are connected to a battery, first individually, then in series. If q₁, q₂ and q₃ are the charges stored on them, then
 - **a)** $q_1 = q_2 = q_3$
- **b)** $q_1 = q_2 < q_3$
- c) $q_1 > q_2 = q_3$
- **d)** $q_1 > q_2 > q_3$
- The minimum and maximum distances of a satellite revolving around earth are 2R and 6R respectively, where R is radius of earth. The maximum velocity of satellite is

- Q15 A block of mass m = 1 kg, performs oscillations across its mean position, along x-axis under the influence of force F (x) = $2 - 3 \times N$ where x is the position. Motion is starting from rest from origin. Select incorrect option
 - The particle performs oscillations about $x = \frac{2}{3}m$
 - The time period of motion is $\frac{2\pi}{\sqrt{3}}$ sec .
 - Maximum velocity is $\frac{2}{\sqrt{3}}$ ms⁻¹
 - d) Velocity at x = 1 meter is $0.5 \,\mathrm{ms}^{-1}$
- **Q16** The velocity of a particle moving along y-axis is given by $v = \frac{2}{3}t^{3/2} \text{ ms}^{-1}$ where 't' is in seconds. Then acceleration of the particle is

- b) $\left(\frac{2}{3}v\right)^{\frac{1}{3}}$ c) $\left(\frac{3}{2}v\right)^{\frac{2}{3}}$ d) $\left(\frac{2}{3}v\right)^{\frac{2}{3}}$
- Q17 A stationary swimmer S inside a liquid of refractive index μ_1 is at a distance d from a fixed point P inside a liquid. A rectangular block of width t and refractive index μ_2 (μ_2 $< \mu_1$) is now placed between S and P. Now S will observed P to be at a distance
- a) $d-t\left[\frac{\mu_1}{\mu_2}-1\right]$ b) $d-t\left[1-\frac{\mu_2}{\mu_1}\right]$ c) $d+t\left[1-\frac{\mu_2}{\mu_1}\right]$ d) $d+t\left[\frac{\mu_1}{\mu_2}-1\right]$
- Q18 A force produces an acceleration of 10 m/s² in mass m_1 and an acceleration of 5 m/s² in mass m₂. Find the acceleration produced if the same force is applied to an object whose mass is $\frac{m_1 m_2}{m_1 + m_2}$.

- a) 10 m/s^2 b) 5 m/s^2 c) 20 m/s^2 d) 15 m/s^2

In the given AC circuit, when switch S is at position 1, the source emf leads currents by $\pi/6$. Now, if the switch is at position 2, then

- a) current leads source emf by $\pi/4$
- **b)** current leads source emf by $\pi/3$
- c) source emf leads current by $\pi/4$
- d) source emf leads current by $\pi/3$
- **Q20** A resistance R carries a current i. The power lost to the surroundings is $\lambda(\theta \theta_0)$. Her λ is a constant, θ is temperature of the resistance and θ_0 is the temperature of the atmosphere. If the thermal coefficient of resistance is α , then the ratio of change in resistance to the original value of the resistance in final condition is
 - a) $\frac{\alpha}{\lambda}i^2R$
 - b) $\alpha \lambda i R$
 - $\frac{\alpha i^2 R}{2\lambda}$
 - d) Proportional to the length of the resistance wire

Numerical

Q21 In the circuit shown below, maximum zener diode current will be mA

- Two small spheres each of mass 10 mg are suspended from a point by threads 0.5 m long. They are equally charged and repel each other to a distance of 0.20 m. The charge on each of the sphere is $\frac{a}{21} \times 10^{-8}$ C. The value of 'a' will be _____. [Given g = 10 ms^{-2}]
- **Q23** The batteries, one of emf 18 volt and internal resistance $2\Omega W$ and other of emf 12 volt and internal resistance 1Ω , are connected as shown. The voltmeter V will record a reading of (in V)

- The surface of water in a water tank of cross section area 750 cm² on the top of a house is h(m). above the tap level. The speed of water coming out through the tap of cross section area 500 mm² is 30 cm/s. At that instant, $\frac{dh}{dt}$ is $x \times 10^{-3}$ m/s. The value of x will be .
- Binding energy per nucleon versus mass number curve for nuclei is shown in figure. A, B, C and D are four nuclei indicated on the curve. The Q value of following nuclear reaction $A + B \rightarrow C$ is $N \times 10^7$ eV. Find the value of N.

Chemistry

Single Choice Question

Q26 The major product of the following reaction is:

- CHCI, a)
- CO,H b)
- CHO c)
- CH₂OH d)

A saturated solution of XCl₃ has a vapour pressure 17.20 mm Hg at 20°C, while pure water vapour pressure is 17.25 mm Hg . Solubility product (K_{sp}) of XCl₃ at 20°C is: a) 9.8×10^{-2} b) 10^{-5} c) 2.56×10^{-6} d) 7×10^{-5}

For a complex reaction $A \xrightarrow{k}$ products

$$E_{a_1} = 180 \,\mathrm{kJ/mol}; E_{a_2} = 80 \,\mathrm{kJ/mol}; E_{a_3} = 50 \,\mathrm{kJ/mol}$$

Overall rate constant k is related to individual rate constant by the equation

$$k = \left(\frac{k_1 \cdot k_2}{k_3}\right)^{2/3}$$
. Activation energy (kJ/mol) for the overall reaction is:

a) 100

- **b)** 43.44
- c) 150

d) 140

Q29	One mole of a non-ideal gas undergoes a change of state from (1.0 atm, 3.0 L, 200 k to (4.0 atm, 5.0 L, 250 K) with a change in internal energy $(\Delta U) = 40 \text{L}$ -atm. The change in enthalpy of the process in L-atm:									
	a) 43	b) 57	c) 42	d) None of these						
Q30	In the neutralization process of $\rmH_{3}PO_{4}$ and NaOH, the number or buffers formed will be									
	a) 3	b) 1	c) 2	d) 4						
Q31	Solid A decomposes $A(s) \Longrightarrow B(s)$	as $+CO_2(g) + H_2O(g)$	į							
	If the total pressure is 0.2 bar at 420 K, what is the standard free energy change for the given reaction $(\Delta_r G^{\circ})$?									

a) $840 \,\mathrm{kJ/mol}$

 \mathbf{b}) 3.86 kJ/mol

c) 6.98kJ/mol

d) 16.083 kJ/mol

Q32 The complex that can show fac-and merisomers is

a) $[CoCl_2(en)_2]$

b) $[Co(NH_3)_3(NO_2)_3]$

c) $[Pt(NH_3)_2Cl_2]$

d) $[Co(NH_3)_4Cl_2]^+$

Q33 The de Broglie wavelength of an electron in the 4th Bohr orbit is

a) $4\pi a_0$

b) $6\pi a_0$

c) $8\pi a_0$

d) $2\pi a_0$

b)

d)

P and Q are respectively –

a) OH OH OH OH COCH₃,
$$Q = \bigcirc$$

$$P = OH COCH_3$$
, $Q = OH COCH_3$

P =
$$\bigcirc$$
 COCH₃, Q = \bigcirc COCH

$$P = \bigcirc OH$$
 OH $COCH_3$ $Q = \bigcirc OH$

Q35
$$NO_2$$

$$NO_2 \longrightarrow [X] \xrightarrow{Na_2S (aq)} [X] \xrightarrow{BrCl} [Y] \xrightarrow{HNO_2} \xrightarrow{C_0H_0} [Z]$$

$$NO_2 \longrightarrow [X] \xrightarrow{NaOH} [Y] \xrightarrow{HNO_3/H_2SO_4} [P]$$

The correct statement is:

a)
$$Y = \bigcup_{Cl}^{NO_2} NH_2$$

b)
$$Z = \bigcup_{Br}^{NO_2} Ph$$

P =
$$O_2N$$
 Ph

d)
$$X = \bigcup_{NH_2}^{NH_2}$$

$$NH_2$$

Q36 Consider the following sequence of reactions.

Ketone
$$A \xrightarrow{\text{1. C}_2\text{H}_5\text{MgBr}} B \xrightarrow{\text{H}_2\text{SO}_4, \text{ heat}} C \xrightarrow{\text{1. O}_3} C \xrightarrow{\text{2. Zn, H}_2\text{O}} + A \xrightarrow{\text{Pl}_2\text{SO}_4, \text{ heat}} C \xrightarrow{\text{2. N}_2\text{O}} C \xrightarrow{\text{2. Zn, H}_2\text{O}} C$$

The ketone (A) is :

OH $\longrightarrow V$ \longrightarrow

b)

Product Z of above reaction is

d) O - C - CH₃

Q38 A nucleoside is:

- a) base + sugar
- c) sugar + phosphate

- **b)** base + phosphate
- d) base + sugar + phosphate

Q39 Correct IUPAC name of the compound

- a) Methyl-3-brorno-2-hydroxy-2-methylbutanoate
- **b)** Methyl-2-brorno-3-hydroxy-3-methylbutanoate
- c) Methyl-2-brorno-1-hydroxybutanoate
- d) Methyl-3-brorno-2-hydroxy-2-methylbutylester

Q40 Which of the indicated H in the following is most acidic?

$$\begin{array}{c|c}
 & H \\
 & \downarrow \\$$

a) X

b) Y

c) Z

d) p

Q41 Which of the following statement is correct.

- a) Nucleophiles have an unshared electron pair and can make use of this to react with an electron rich species.
- **b)** AgNO₃ increases the rate of solvolysis in S_N^{-1} reaction of alkyl halide.
- c) Inversion of configuration occurs at the carbon undergoing S_N^{-1} reaction.
- d) Aryl halides are more reactive towards nucleophilc substitution reaction as compared to alkyl halide.

Aluminium is usually found in +3 oxidation state. In contrast, thallium exists in +1 and +3 oxidation states. This is due to

a) Lattice effect

b) Lanthanoid contraction

c) Diagonal relationship

d) Inert pair effect

The standard electrode potential of a metal-metal ion (Ag | Ag⁺) and metal-sparingly soluble salt anion (Ag | AgCl | Cl⁻) are related as:

$$E^{o}_{\text{Ag}^{+}|\text{Ag}} = E^{o}_{\text{CI}^{-}|\text{AgCI}|\text{Ag}} + \frac{RT}{F} \text{In } K_{\text{sp}}$$

b)
$$E^{\circ}_{C\Gamma|AgCI|Ag} = E^{\circ}_{Ag^{+}|Ag} + \frac{RT}{F} In K_{sp}$$

E°
$$_{\text{CF}|AgCI|Ag} = \text{E°}_{\text{Ag}^{+}|Ag} - \frac{\text{RT}}{\text{F}} \text{In } \frac{[\text{CI}^{-}]}{\text{K}_{so}}$$

$$\mathsf{E}^{\circ}_{\mathsf{CF}|\mathsf{AgC}|\mathsf{Ag}} = \mathsf{E}^{\circ}_{\mathsf{Ag}^{+}|\mathsf{Ag}} - \frac{\mathsf{RT}}{\mathsf{F}} \mathsf{In} \; \frac{\mathsf{K}_{\mathsf{sp}}}{[\mathsf{CI}^{-}]}$$

- Q44 CrO₃ dissolves in aqueous NaOH to give:
 - a) $Cr_2O_7^{2-}$ b) CrO_4^{2-} c) $Cr(OH)_3$
- d) $Cr(OH)_2$
- 10 litre of a non linear polyatomic ideal gas at 127°C and 2 atm pressure is suddenly released to 1 atm pressure and the gas expanded adiabatically against constant external pressure, the final temperature and volume of the gas respectively are:
 - a) T = 350K; V = 17.5 L

b) T = 300K: V = 15L

c) T = 250 K; V = 12.5 L

d) None of these

Numerical

- Q46 In order to oxidise a mixture of one mole of each of FeC₂O₄, Fe₂(C₂O₄)₃, FeSO₄ and Fe₂(SO₄)₃ in acidic medium, the number of moles of KMnO₄ required is
- Q47 If the activation energy of a reaction is 80.9 kJ mol⁻¹, the fraction of molecules at 700 K, having enough energy to react to form products is e^{-x} . The value of x is (Rounded off to the nearest integer) [Use $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$]
- Q48 0.092g of a compound with molecular formula C₃H₈O₃ on reaction with an excess of CH₃Mgl give 67.00 mL of CH₄ at STP. The number of active hydrogen atoms present in a molecule of the compound is:

Q49 Consider the following compounds

$$IF_5;\; lCl_4^-;\; XeO_2ar{F_2};\; Nar{H}_2^-;\; AsCl_4^+$$

$$B(OH)_3; NO_2^-; \ ClO_2^+; \ [ilde{S}bF_5]^{2-}; [PCl_4]^+, [PCl_6]^-$$

What is total number of compounds in (above compounds) which central atom used their all 3 p- orbitals in hybridisation.

Q50 How many of the following species are paramagnetic:

NO, $[Cr(NH_3)_6]^{3+}$, $Ni(CO)_4$,

 NO_2 , $[Cu(Cl_4)]^{2-}$, $[Cu(NH_3)_4]^{2+}$, $[CO(NH_3)_8]^{3+}$,

CIO2, [Fe(CN)6]4-, Fe(CO)5, KO2,

Mathematics

Single Choice Question

Q51 sin $[2 \cos^{-1}(-3/5)]$ is equal t	Q51	sin [2	cos ⁻¹ ([-3/5]	is	equal	t
---	-----	--------	---------------------	--------	----	-------	---

a) $\frac{6}{25}$

- **b**) $\frac{24}{25}$
- c) $\frac{4}{5}$

d) $\frac{-24}{25}$

Q52 The length of the perpendicular from the point
$$(2, -1, 4)$$
 on the straight line,

$$\frac{x+3}{10} = \frac{y-2}{-7} = \frac{z}{1}$$
 is

- a) Greater than 3 but less than 4
- **b)** Greater than 2 but less than 3

c) Greater than 4

d) Less than 2

Q53
$$\alpha$$
, β are roots of the equation λ ($x^2 - x$) + $x + 5 = 0$. If λ_1 and λ_2 are the two values of λ for which the roots α , β are connected by the relation $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = 4$, then the value of $\frac{\lambda_1}{\lambda_2} + \frac{\lambda_2}{\lambda_1}$ is -

a) 150

c) 180

d) 1022

a) 4:9

b) 6:7

- c) 10:3

a) 0

a) 360

b) 306

c) 288

d) 310

If
$$\int_0^{4\pi} \ln|13\sin x + 3\sqrt{3}\cos x| dx = 4\pi \ln k$$
, then the value of k is______

a) 4

c) 6

d) 7

Q58 For the two positive numbers a, b, if a, b and $\frac{1}{18}$ are in a geometric progression,

while $\frac{1}{2}$, 10 and $\frac{1}{h}$ are in an arithmetic progression, then, 16a + 12b is equal to

b) 3

c) 4

- **d**) -3
- Axis of a parabola lies along x-axis. If its vertex and focus are at distances 2 and 4 respectively from the origin, on the positive x-axis then which of the following points does not lie on it?
 - a) (4, -4)
- **b)** $(5,2\sqrt{6})$ **c)** $(6,4\sqrt{2})$
- **d)** (8, 6)
- **Q60** The sum of the co-efficients of all even degree terms in x in the expansion of

$$(x + \sqrt{x^3 - 1})^6 + (x - \sqrt{x^3 - 1})^6$$
, $(x > 1)$ is equal to:

- **d)** 29
- The pair of lines joining origin to the intersection of the curve $\frac{x^2}{a^2} + \frac{y^2}{a^2} = 1$ by the Q61 line $\ell x + my + n = 0$ are coincident if
 - a) $a^2\ell^2 + b^2m^2 = n^2$

b) $\frac{a^2}{\ell^2} + \frac{b^2}{m^2} = \frac{1}{n^2}$

c) $\frac{\ell^2}{g^2} + \frac{m^2}{\ell^2} = n^2$

- d) None of these
- Q62 If S₁ and S₂ are respectively the sets of local minimum and local maximum points of the function, $f(x) = 9x^4 + 12x^3 - 36x^2 + 25$, $x \in \mathbb{R}$, then:
 - a) $S_1 = \{-2\}; S_2 = \{0, 1\}$

b) $S_1 = \{-2, 1\}; S_2 = \{0\}$

c) $S_1 = \{-1\}; S_2 = \{0, 2\}$

- **d)** $S_1 = \{-2, 0\}; S_2 = \{1\}$
- For some $\theta \in \left(0, \frac{\pi}{2}\right)$, if the eccentricity of the hyperbola, $x^2 y^2 \sec^2 \theta = 10$ is $\sqrt{5}$ **Q63** times the eccentricity of the ellipse, $x^2 \sec^2 \theta + y^2 = 5$, then the length of the latus rectum of the ellipse, is:
 - $2\sqrt{6}$
- **b)** $\frac{2\sqrt{5}}{2}$
- c) $\frac{4\sqrt{5}}{3}$

d) $\sqrt{30}$

Function $\mathrm{f}(\mathrm{x})=f(x)=\left\{egin{array}{ll} xsin\ x; & 0\leq x<rac{\pi}{2} \\ rac{\pi}{2}sin(\pi+x); & rac{\pi}{2}\leq x<\pi \end{array}
ight.$ then-**Q64**

a) $\lim_{x \to \frac{\pi}{2}} f(x)$ does not exist

b) $\lim_{x \to \frac{\pi}{\dot{x}}} f(x)$ does not exist

c) Discontinuous at $x = \frac{\pi}{2}$

d) Both (1) & (3)

Q65 If $I = \int (\sqrt{\tan x} + \sqrt{\cot x}) dx$, then I equals:

- a) $\sqrt{2} \sin^{-1} (\sin x + \cos x) + C$
- c) $\sqrt{2} \sin^{-1} (\sin x \cos x) + C$
- **b)** $\sqrt{2} \cos^{-1} (\sin x \cos x) + C$ **d)** $\sqrt{2} \cos^{-1} (\sin x + \cos x) + C$

Q66 Area of the region bounded by the curves $y = x^2 + 2$, y = -x, x = 0 and x = 1 is -

b) $\frac{5}{16}$

c) $\frac{3}{16}$

d) None of these

Q67 The curve amongst the family of curves represented by the differential equation, $(x^2$ y^2) dx + 2xydy = 0 which passes through (1, 1) is

- a) A hyperbola with transverse axis along the x-axis.
- **b)** A circle with centre on the y-axis.
- c) An ellipse with major axis along the y-axis.
- d) A circle with centre on the x-axis.

Q68 If $|z^2 - 1| = |z|^2 + 1$ then z lies on a -

a) circle

- **b)** parabola
- c) ellipse
- d) None of these

Q69 If for two events A, B; $P(A \cup B) = \frac{6}{7}$, $P(\bar{A}) = \frac{5}{7}$, $P(B) = \frac{4}{7}$, then A, B are

a) independent events

b) mutually exclusive

c) equally likely

d) forming an exhaustive system

Q70 If A satisfies the equation $x^3 - 5x^2 + 4x + k = 0$, then A^{-1} exists if -

- a) k
 eq 1
- b) $k \neq 3$ c) $k \neq -1$ d) None

Numerical

- Q71 Two newspapers A and B are published in a city. It is known that 25% of the city population reads A and 20% reads B while 8% reads both A and B. Further, 30% of those who read A but not B look into advertisements and 40% of those who read B but not A also look into advertisements, while 50% of those who read both A and B look into advertisements. Then the percentage of the population who look into advertisements is p then what is the value of 10p?
- **Q72** If $f: R \to R$ satisfying f(0) = 1, f(1) = 2 and f(x + 2) = 2 f(x) + f(x + 1) then f(6) is
- Let the unit vectors \vec{a} , \vec{b} , \vec{c} be the position vectors of the vertices of a triangle ABC If \vec{F} is the position vector of the mid point of the line segment joining its orthocentre and centroid then $(\vec{a} \vec{F})^2 + (\vec{b} \vec{F})^2 + (\vec{c} \vec{F})^2 =$
- **Q74** $\lim_{ heta o 0} rac{1-cos heta}{sin^22 heta} = rac{1}{k}$ then k is
- Value of $y=\left[\left(0.36\right)^{\log_{0.25}\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\ldots\sup_{1\le i\le n}\cos integral}\right]$ is- (where [.] is greatest integral function)

Answer Key

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	С	С	Α	В	С	D	Α	Α	D	В
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	C	С	D	D	D	Α	D	D	Α	А
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	9	20	14	2	21	В	D	D	В	А
Que.	31	32	33	34	35	36	37	38	39	40
Ans.	D	В	С	D	В	В	В	Α	Α	D
Que.	41	42	43	44	45	46	47	48	49	50
Ans.	В	D	В	В	Α	2	14	3	8	7
Que.	51	52	53	54	55	56	57	58	59	60
Ans.	D	Α	D	Α	В	D	D	В	D	А
Que.	61	62	63	64	65	66	67	68	69	70
Ans.	Α	В	С	D	С	Α	D	D	В	D
Que.	71	72	73	74	75					
Ans.	139	64	3	8	0					