

## **Standards for PV Monitoring**



#### **Rebecca Wong**

Suntrace Academy, June 18th, 2019

#### Purpose of this talk



- 1. What are standards and what do they do?
- 2. Who issues standards?
- 3. What advantages do standards offer Suntrace and technical developers?
- 4. How and where to find standards
- 5. IEC 61724-1 and ISO 9060:2018
- 6. What to note as a technical developer when using standards for solar on-site measurement stations
- 7. Example of using the standard



#### Standards and their Purpose



Standard: a technical document designed to be used as a rule, guideline or definition

- 1. Conformity in requirements
- 2. Reduce costs and delays
- 3. Safety



#### Agencies Involved in Implementing Solar Standards



- The International Electrotechnical Commission (IEC) develops and publishes consensus-based international standards for electrotechnology
  - 95 Technical Committees (TCs) and 80 Subcommittees (SCs)
    - TC 82 "Solar photovoltaic energy systems" is responsible for writing all IEC standards in photovoltaics (early 1980's)
    - Includes more than 60 countries
- The International Organization for Standardization (ISO) constitutes varies standards bodies
  - More than 160 countries
  - Successor to the International Federation of the National Standardizing Associations (ISA)
  - More than 22,000 standards







#### Why are these Standards Important to Suntrace?



- 1. Provide assurance of quality for customers
- 2. Improve reputation
- 3. Direct comparison with competitors
- 4. Analyze new technologies that come to market
- 5. Access markets across the globe
- 6. Increase efficiency of work by providing guidelines
- 7. Increase safety and ease of transfer of knowledge



## Happy customers = Good Reputation = More Sales

#### Standards Relating to On-Site Measurements



Easy to search for standards related to solar: <a href="https://webstore.iec.ch/searchform&q=">https://webstore.iec.ch/searchform&q=</a> and

https://www.iso.org/search.html

- Over 100 standards in each related to solar energy
- Some examples:
  - IEC 61683:1999
  - IEC 62446-1 (Edition 2018-08 revised from 2016)
  - ISO 9901:1990 (to be replaced)
  - IEC 61724-1 (2017)
  - ISO 9060:2018 (revised from 1990)



### Standard of Focus: Changes in IEC 61724





- Three part revision to IEC 61724:1998 in 2017
  - Part 1: PV System Monitoring
  - Part 2 and Part 3: Performance analysis based on the monitoring data (not covered in this presentation)
- Three precision classes of irradiance monitoring
  - Device requirements and maintenance
- Soiling
- Satellite-based irradiance (not covered in this presentation)
- Power efficiency, clipping and curtailment (not covered in this presentation)

## Sensor Requirements



Table 5 – Sensor choices and requirements for in-plane and global irradiance

| Sensor type            | Class A<br>High Accuracy                                                                                 |                                                                                                                  | Class C<br>Basic Accuracy |
|------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------|
| Thermopile pyranometer | Secondary standard per ISO 9060 or High quality per WMO Guide No. 8 (Uncertainty ≤ 3% for hourly totals) | First class per ISO 9060<br>or<br>Good quality per WMO Guide<br>No. 8<br>(Uncertainty ≤ 8% for hourly<br>totals) | Any                       |
| PV reference device    | Uncertainty ≤ 3%<br>From 100 W m^-2 to<br>1500 W m^-2                                                    | Uncertainty ≤ 8%<br>From 100 W m^-2 to<br>1500 W m^-2                                                            | Any                       |
| Photodiode sensors     | Not applicable                                                                                           | Not applicable                                                                                                   | Any                       |

Source: (IEC 61724-1, 2017)

Basically non-existent

#### Detailed Table of Additional Maintenence Requirements



Table 7 – Irradiance sensor maintenance requirements

| Item                                                                        | Class A<br>High Accuracy                                                                                                    | Class B<br>Medium Accuracy                                                                                                   | Class C<br>Basic Accuracy          |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Recalibration                                                               | Once a year Once every 2 years                                                                                              |                                                                                                                              | As per manufacturer's requirements |
| Cleaning                                                                    | At least once per week                                                                                                      | Optional                                                                                                                     |                                    |
| Heating to prevent accumulation of condensation and/or frozen precipitation | Required in locations where condensation and/or frozen precipitation would affect measurements on more than 7 days per year | Required in locations where condensation and/or frozen precipitation would affect measurements on more than 14 days per year |                                    |
| Ventilation (for thermopile pyranometers)                                   | Required                                                                                                                    | Optional                                                                                                                     |                                    |
| Desiccant inspection and replacement (for thermopile pyranometers           | As per manufacturer's requirements                                                                                          | As per manufacturer's requirements                                                                                           | As per manufacturer's requirements |

Source: (IEC 61724-1, 2017)

## Sensor Options Price and Class Comparison





Hukseflux SR30



Hukseflux SR20

| Sensor Name                            | Price (€) | Class A<br>High<br>Accuracy | Class B<br>Medium<br>Accuracy |
|----------------------------------------|-----------|-----------------------------|-------------------------------|
| Hukseflux SR30                         | 2799      | X                           |                               |
| Hukseflux SR20                         | 2599      |                             | X                             |
| Hukseflux SR20 +<br>Ventilation*       | 3399      | Х                           |                               |
| EKO MS-80                              | 2499      |                             | X                             |
| EKO MS-80 +<br>Ventilation*            | 3399      | Х                           |                               |
| Kipp&Zonnen<br>SMP10                   | 2599      |                             | Χ                             |
| Kipp&Zonnen<br>SMP10 +<br>Ventilation* | 3969      | X                           |                               |



EKO MS-80



Kipp&Zonnen SMP10

#### ISO 9060:2018 Radiometer classification



Change to more logical class names for newcomers

| Old Name           | New Name |
|--------------------|----------|
| Secondary Standard | Class A  |
| First Class        | Class B  |
| Second Class       | Class C  |

- Separation between fast response (photodiodes, RSI) and spectrally flat (thermopile pyranometers)
- Includes Si-pyranometers, fast thermopiles with diffusors, and any technology that reaches the limits from the classification
  - Classification of diffusometers (including RSIs and shadow patterns)
- Correction functions
- Distinctions between spectral error and spectral selectivity
- Include temperature and directional response test reports for Class A instruments











## What does an On-Site Technical Developer Need to Know from these Standards (just a few things)?



- Class A requires almost all measures of irradiance (except circumsolar ratio), environmental factors (except snow and humidity), tracker system (for CPV <20x concentration), and electrical output to be taken directly at site
- Class B is similar to Class A, but all irradiance and environmental factor measurements may be estimated (E) based on local or regional meteorological or satellite data
- Class C requires only measurements of POA (or E), ambient air temperature (E), output power, and output energy

## In general, Class A will always be the most accurate but the most costly Refer to tables in Wiki for reference

- Soiling methods
- Number of sensors based on system size

#### Soiling Measurement Methods



- Measure the short-circuit current and temperature of the clean and soiled devices to calculate irradiance (we measure the effective irradiance directly instead of the short-circuit current and temperature)
- 2. Calculate the expected max power of the soiled device at the irradiance determined and the temperature measured using the calibration values
- 3. Calculate the soiling ratio SR by dividing the soiled device max power measured by its expected



Atonometrics - Mars Optical Soiling Sensor



Kipp&Zonnen - DustIQ



HelioScale - Soiling Assembly

### Number of Sensors Depending on Size of System



 Table 4 – Relation between system size (AC) and number of sensors for specific sensors referenced in Table 3

|                      | Number of sensors per parameter |                                  |
|----------------------|---------------------------------|----------------------------------|
| System size (AC)     | Column 1                        | Column 2<br>(Module Temperature) |
| < 5 MW               | 1                               | 6                                |
| ≥ 5 MW to < 40 MW    | 2                               | 12                               |
| ≥ 40 MW to < 100 MW  | 3                               | 18                               |
| ≥ 100 MW to < 200 MW | 4                               | 24                               |
| ≥ 200 MW to < 300 MW | 5                               | 30                               |
| ≥ 300 MW to < 500 MW | 6                               | 36                               |
| ≥ 500 MW to < 750 MW | 7                               | 42                               |
| ≥ 750 MW             | 8                               | 48                               |

Source: (IEC 61724-1, 2017)

# Example Comparison between 50 MW PV and 50 MW CPV Requirements (Class A)



| PV                                         | Shared                                                                                                                                                            | CPV (<20x concentration)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • GHI (Uncertainty ≤ 3% for hourly totals) | <ul> <li>Number of sensors: 3</li> <li>Cleaning: Once per week</li> <li>Recalibration: Once per year</li> <li>Soiling: Use Helioscale soiling assembly</li> </ul> | <ul> <li>DNI (no specific uncertainty)         <ul> <li>Two axis tracking stage which automatically tracks the sun</li> </ul> </li> <li>DHI (no specific uncertainty)         <ul> <li>Horizontally-mounted irradiance sensor with rotating shadow band or tracked blocking ball</li> </ul> </li> <li>Very precise tracker system with limited error for primary, secondary, and tilt angle (single axis tracker)         <ul> <li>Ideal pointing error of 0°</li> <li>Width of scan at most ±0.75°</li> <li>IEC 62817:2014</li> </ul> </li> </ul> |

#### What would this look like for Class A?





#### What would this look like for Class A 50 MW PV Plant?





Source: (IEC 61724-1, 2017)

#### Other Factors for a Site Developer to Consider



- Setting stations in representative locations (including terrain, land use, local climate, local albedo)
- Setting enough stations to cover the variety of weather/physical environment conditions at the site
- Avoid setting sensors in area where shading occurs between sunrise and sunset
- Note that standards are different not only for different kinds of systems but also materials (i.e. crystalline silicon uses IEC 61215 but thin film IEC 61646)







#### IEC 61724-1 Available on Wiki



- https://wiki.suntrace.de/wiki/IEC\_61724-1
- Provides technical tables and details for reference



Thank you! Any questions?