Justificar cada respuesta. El examen esta pensado para que no haga falta usar una calculadora.

Ejercicio	1	2	3	Nota
Puntaje maximo	4	4	2	10
Puntaje obtenido				

Si se traban con algún ejercicio, pasen al siguiente y vuelvan a intentar mas tarde con el que dejaron.

- 1. (4 Puntos) Resolver: Cada ítem vale medio 0,5 puntos.
 - (a) $log(1000) log_{\frac{1}{2}}(1)$

 - (b) $4^{\log_2(5)}$
 - (c) $log_2(\frac{1}{64})$
 - (d) $e^{3.ln(3)+2.ln(5)-2^6.ln(1)}$

(e) $log_{b^m}(b^n)$

Sabiendo que $log_3(5) \simeq 1,46$, calcular:

Profesor: Alexis Gomel

16/7/2015

- (f) $log_3(15)$
- (g) $log_5(3)$
- (h) $log_3(25)$
- 2. (4 Puntos) Encontrar, si es posible, el valor de x : Cada ítem vale 1 punto.
 - (a) $log_5(x) = 2.log_5(4)$
 - (b) $log_5(4.x-3) = 1$
 - (c) $5^{x+2} 10.5^x = 500$
 - (d) $4.log_3(x) 2.log_9(x) = 3$
- 3. (2 Puntos) **Gráficos:** Cada ítem vale 1 punto.
 - (a) Graficar $log_3(x+2)$. (Basta con completar la tabla, y unir los puntos.) Indicar en que valor de x esta la asíntota vertical.

\boldsymbol{x}	1	7	-1	-5/3	-17/9
y					

(b) Encontrar a y b, a partir del gráfico de $y = log_a(x - b)$

Figure 1: Encontrar a y b, a partir del gráfico de $y = log_a(x-b)$. Los puntos marcados con asterisco, son los valores de y cuando x vale 2,000001; 3; 4; 5; 6; 7...

Pista: Analizar que pasa en (3,0) y en (4,1). Que tienen que cumplir a y b para que sea posible que la función tome estos valores?

4. (bonus) Extra: Si ya terminaste los demás, este ejercicio sirve como un bonus para darte un empujón si estas cerca de aprobar, o para redondear la nota para arriba.

Sabiendo que, por definición, $x = a^{log_a(x)}$; y $x = c^{log_c(x)}$. Demostrar que $log_a(x) = \frac{log_c(x)}{log_a(x)}$.

[&]quot;There's as many atoms in a single molecule of your DNA as there are stars in the typical galaxy. We are, each of us, a little universe." Neil deGrasse Tyson, Cosmos