Types of Morphisms in Bicategories

The Clowder Project Authors

May 3, 2024

In this chapter, we study special kinds of morphisms in bicategories:

1. Monomorphisms and Epimorphisms in Bicategories (Sections 1 and 2). There is a large number of different notions capturing the idea of a "monomorphism" or of an "epimorphism" in a bicategory.

Arguably, the notion that best captures these concepts is that of a *pseudomonic morphism* (Definition 1.10.1.1) and of a *pseudoepic morphism* (Definition 2.10.1.1), although the other notions introduced in Sections 1 and 2 are also interesting on their own.

Contents

1	Mon	omorphisms in Bicategories	2
	1.1	Representably Faithful Morphisms	2
	1.2	Representably Full Morphisms	3
	1.3	Representably Fully Faithful Morphisms	4
	1.4	Morphisms Representably Faithful on Cores	5
	1.5	Morphisms Representably Full on Cores	6
	1.6	Morphisms Representably Fully Faithful on Cores	7
	1.7	Representably Essentially Injective Morphisms	8
	1.8	Representably Conservative Morphisms	8
	1.9	Strict Monomorphisms	9
	1.10	Pseudomonic Morphisms	10
2	•	norphisms in Bicategories	
	2.1	Corepresentably Faithful Morphisms	11

Δ	Othe	er Chanters.	21
	2.10	Pseudoepic Morphisms	19
		Strict Epimorphisms	
	2.8	Corepresentably Conservative Morphisms	18
	2.7	Corepresentably Essentially Injective Morphisms	17
	2.6	Morphisms Corepresentably Fully Faithful on Cores	16
	2.5	Morphisms Corepresentably Full on Cores	15
	2.4	Morphisms Corepresentably Faithful on Cores	15
	2.3	Corepresentably Fully Faithful Morphisms	13
	2.2	Corepresentably Full Morphisms	12

1 Monomorphisms in Bicategories

1.1 Representably Faithful Morphisms

Let C be a bicategory.

Definition 1.1.1.. A 1-morphism $f: A \to B$ of C is **representably faithful**¹ if, for each $X \in \text{Obj}(C)$, the functor

$$f_* \colon \mathsf{Hom}_C(X, A) \to \mathsf{Hom}_C(X, B)$$

given by postcomposition by f is faithful.

Remark 1.1.1.2. In detail, f is representably faithful if, for all diagrams in C of the form

$$X \xrightarrow{\varphi} A \xrightarrow{f} B,$$

if we have

$$id_f \star \alpha = id_f \star \beta,$$

then $\alpha = \beta$.

Example 1.1.1.3. Here are some examples of representably faithful morphisms.

1. Representably Faithful Morphisms in Cats₂. The representably faithful mor-

¹Further Terminology: Also called simply a **faithful morphism**, based on Item 1 of Example 1.1.1.3.

phisms in $Cats_2$ are precisely the faithful functors; see Categories, Item 1 of Proposition 5.1.1.2.

2. Representably Faithful Morphisms in **Rel**. Every morphism of **Rel** is representably faithful; see Relations, Item 1 of Proposition 3.8.1.1.

1.2 Representably Full Morphisms

Let *C* be a bicategory.

Definition 1.2.1.1. A 1-morphism $f: A \to B$ of C is **representably full**² if, for each $X \in \text{Obj}(C)$, the functor

$$f_* : \operatorname{\mathsf{Hom}}_C(X,A) \to \operatorname{\mathsf{Hom}}_C(X,B)$$

given by postcomposition by f is full.

Remark 1.2.1.2. In detail, f is representably full if, for each $X \in \mathsf{Obj}(C)$ and each 2-morphism

of C, there exists a 2-morphism

$$\alpha: \phi \Longrightarrow \psi, \qquad X \underbrace{\qquad \qquad \qquad \qquad }_{y_{\ell}} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha$$
.

Example 1.2.1.3. Here are some examples of representably full morphisms.

² Further Terminology: Also called simply a **full morphism**, based on Item 1 of Example 1.2.1.3.

- 1. Representably Full Morphisms in Cats₂. The representably full morphisms in Cats₂ are precisely the full functors; see Categories, Item 1 of Proposition 5.2.1.2.
- 2. Representably Full Morphisms in **Rel**. The representably full morphisms in **Rel** are characterised in Relations, Item 2 of Proposition 3.8.1.1.

1.3 Representably Fully Faithful Morphisms

Let *C* be a bicategory.

Definition 1.3.1.1. A 1-morphism $f: A \to B$ of C is **representably fully faithful**³ if the following equivalent conditions are satisfied:

- 1. The 1-morphism f is representably faithful (Definition 1.1.1.1) and representably full (Definition 1.2.1.1).
- 2. For each $X \in \mathsf{Obj}(\mathcal{C})$, the functor

$$f_* : \operatorname{\mathsf{Hom}}_C(X,A) \to \operatorname{\mathsf{Hom}}_C(X,B)$$

given by postcomposition by f is fully faithful.

Remark 1.3.1.2. In detail, f is representably fully faithful if the conditions in Remark 1.1.1.2 and Remark 1.2.1.2 hold:

1. For all diagrams in C of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if we have

$$\mathrm{id}_f \star \alpha = \mathrm{id}_f \star \beta,$$

then $\alpha = \beta$.

³Further Terminology: Also called simply a **fully faithful morphism**, based on Item 1 of Example 1.3.1.3.

2. For each $X \in Obj(\mathcal{C})$ and each 2-morphism

$$\beta: f \circ \phi \Longrightarrow f \circ \psi, \qquad X \xrightarrow{f \circ \phi} B$$

of C, there exists a 2-morphism

$$\alpha \colon \phi \Longrightarrow \psi, \quad X \xrightarrow{\phi} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha$$
.

Example 1.3.1.3. Here are some examples of representably fully faithful morphisms.

- 1. Representably Fully Faithful Morphisms in Cats₂. The representably fully faithful morphisms in Cats₂ are precisely the fully faithful functors; see Categories, Item 5 of Proposition 5.3.1.2.
- 2. Representably Fully Faithful Morphisms in **Rel**. The representably fully faithful morphisms of **Rel** coincide (Relations, Item 3 of Proposition 3.8.1.1) with the representably full morphisms in **Rel**, which are characterised in Relations, Item 2 of Proposition 3.8.1.1.

1.4 Morphisms Representably Faithful on Cores

Let C be a bicategory.

Definition 1.4.1.1. A 1-morphism $f: A \to B$ of C is **representably faithful on cores** if, for each $X \in \mathsf{Obj}(C)$, the functor

$$f_* : \mathsf{Core}(\mathsf{Hom}_C(X, A)) \to \mathsf{Core}(\mathsf{Hom}_C(X, B))$$

given by postcomposition by f is faithful.

Remark 1.4.1.2. In detail, f is representably faithful on cores if, for all diagrams in \mathcal{C} of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if α and β are 2-isomorphisms and we have

$$id_f \star \alpha = id_f \star \beta$$
,

then $\alpha = \beta$.

1.5 Morphisms Representably Full on Cores

Let *C* be a bicategory.

Definition 1.5.1.1. A 1-morphism $f: A \to B$ of C is **representably full on cores** if, for each $X \in \text{Obj}(C)$, the functor

$$f_*: \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,A)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,B))$$

given by postcomposition by f is full.

Remark 1.5.1.2. In detail, f is representably full on cores if, for each $X \in \mathsf{Obj}(C)$ and each 2-isomorphism

$$\beta: f \circ \phi \stackrel{\sim}{\Longrightarrow} f \circ \psi, \qquad X \stackrel{f \circ \phi}{\underbrace{\beta \downarrow \downarrow}} B$$

of C, there exists a 2-isomorphism

$$\alpha: \phi \stackrel{\sim}{\Longrightarrow} \psi, \quad X \stackrel{\phi}{\underbrace{\qquad}} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha$$
.

1.6 Morphisms Representably Fully Faithful on Cores

Let *C* be a bicategory.

Definition 1.6.1.1. A 1-morphism $f: A \to B$ of C is **representably fully faithful on cores** if the following equivalent conditions are satisfied:

- 1. The 1-morphism f is representably faithful on cores (Definition 1.5.1.1) and representably full on cores (Definition 1.4.1.1).
- 2. For each $X \in \mathsf{Obj}(\mathcal{C})$, the functor

$$f_* : \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,A)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(X,B))$$

given by postcomposition by f is fully faithful.

Remark 1.6.1.2. In detail, f is representably fully faithful on cores if the conditions in Remark 1.4.1.2 and Remark 1.5.1.2 hold:

1. For all diagrams in C of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if α and β are 2-isomorphisms and we have

$$id_f \star \alpha = id_f \star \beta$$
,

then $\alpha = \beta$.

2. For each $X \in Obj(C)$ and each 2-isomorphism

$$\beta: f \circ \phi \stackrel{\sim}{\Longrightarrow} f \circ \psi, \qquad X \stackrel{f \circ \phi}{\biguplus} B$$

of C, there exists a 2-isomorphism

$$\alpha: \phi \xrightarrow{\widetilde{}} \psi, \quad X \xrightarrow{\psi} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha$$
.

1.7 Representably Essentially Injective Morphisms

Let C be a bicategory.

Definition 1.7.1.1. A 1-morphism $f: A \to B$ of C is **representably essentially injective** if, for each $X \in \text{Obj}(C)$, the functor

$$f_* : \operatorname{\mathsf{Hom}}_C(X,A) \to \operatorname{\mathsf{Hom}}_C(X,B)$$

given by postcomposition by f is essentially injective.

Remark 1.7.1.2. In detail, f is representably essentially injective if, for each pair of morphisms ϕ , ψ : $X \Rightarrow A$ of C, the following condition is satisfied:

$$(\star)$$
 If $f \circ \phi \cong f \circ \psi$, then $\phi \cong \psi$.

1.8 Representably Conservative Morphisms

Let *C* be a bicategory.

Definition 1.8.1.1. A 1-morphism $f: A \to B$ of C is **representably conservative** if, for each $X \in \text{Obj}(C)$, the functor

$$f_* : \operatorname{\mathsf{Hom}}_C(X,A) \to \operatorname{\mathsf{Hom}}_C(X,B)$$

given by postcomposition by f is conservative.

Remark 1.8.1.2. In detail, f is representably conservative if, for each pair of morphisms $\phi, \psi \colon X \rightrightarrows A$ and each 2-morphism

$$\alpha: \phi \Longrightarrow \psi, \qquad X \xrightarrow{\phi} A$$

of C, if the 2-morphism

is a 2-isomorphism, then so is α .

1.9 Strict Monomorphisms

Let C be a bicategory.

Definition 1.9.1.1. A 1-morphism $f: A \to B$ of C is a **strict monomorphism** if, for each $X \in \text{Obj}(C)$, the functor

$$f_* : \operatorname{\mathsf{Hom}}_{\mathcal{C}}(X,A) \to \operatorname{\mathsf{Hom}}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is injective on objects, i.e. its action on objects

$$f_*: \mathsf{Obj}(\mathsf{Hom}_C(X,A)) \to \mathsf{Obj}(\mathsf{Hom}_C(X,B))$$

is injective.

Remark 1.9.1.2. In detail, f is a strict monomorphism in C if, for each diagram in C of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if $f \circ \phi = f \circ \psi$, then $\phi = \psi$.

Example 1.9.1.3. Here are some examples of strict monomorphisms.

- 1. Strict Monomorphisms in Cats₂. The strict monomorphisms in Cats₂ are precisely the functors which are injective on objects and injective on morphisms; see Categories, Item 1 of Proposition 6.2.1.2.
- 2. *Strict Monomorphisms in* **Rel**. The strict monomorphisms in **Rel** are characterised in **Relations**, **Proposition 3.7.1.1**.

1.10 Pseudomonic Morphisms

Let C be a bicategory.

Definition 1.10.1.1. A 1-morphism $f: A \to B$ of C is **pseudomonic** if, for each $X \in \text{Obj}(C)$, the functor

$$f_* : \operatorname{\mathsf{Hom}}_C(X,A) \to \operatorname{\mathsf{Hom}}_C(X,B)$$

given by postcomposition by f is pseudomonic.

Remark 1.10.1.2. In detail, a 1-morphism $f: A \to B$ of C is pseudomonic if it satisfies the following conditions:

1. For all diagrams in C of the form

$$X \xrightarrow{\phi} A \xrightarrow{f} B,$$

if we have

$$id_f \star \alpha = id_f \star \beta$$
,

then $\alpha = \beta$.

2. For each $X \in Obj(C)$ and each 2-isomorphism

$$\beta: f \circ \phi \xrightarrow{\tilde{}} f \circ \psi, \qquad X \xrightarrow{f \circ \phi} B$$

of C, there exists a 2-isomorphism

$$\alpha : \phi \xrightarrow{\tilde{}} \psi, \qquad X \xrightarrow{\phi} A$$

of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \mathrm{id}_f \star \alpha$$
.

Proposition 1.10.1.3. Let $f: A \rightarrow B$ be a 1-morphism of C.

- 1. *Characterisations*. The following conditions are equivalent:
 - (a) The morphism f is pseudomonic.
 - (b) The morphism f is representably full on cores and representably faithful.
 - (c) We have an isocomma square of the form

$$A \stackrel{\text{id}_A}{\cong} A \stackrel{\text{id}_A}{\times} A$$

$$A \stackrel{\text{id}_A}{\cong} A \stackrel{\text{id}_A}{\times} A \stackrel{\text{id}_A}{\longrightarrow} B$$

in C up to equivalence.

- 2. Interaction With Cotensors. If C has cotensors with $\mathbb{1}$, then the following conditions are equivalent:
 - (a) The morphism f is pseudomonic.
 - (b) We have an isocomma square of the form

$$A \stackrel{\text{eq}}{\cong} A \stackrel{\leftrightarrow}{\times}_{\mathbb{1} \pitchfork F} B, \qquad A \stackrel{\text{f}}{\longleftarrow} \mathbb{1} \pitchfork A$$

$$A \stackrel{\text{eq}}{\cong} A \stackrel{\leftrightarrow}{\times}_{\mathbb{1} \pitchfork F} B, \qquad A \stackrel{\text{f}}{\longleftarrow} \mathbb{1} \pitchfork A$$

in C up to equivalence.

Proof. Item 1, *Characterisations*: Omitted. *Item* 2, *Interaction With Cotensors*: Omitted.

2 Epimorphisms in Bicategories

2.1 Corepresentably Faithful Morphisms

Let *C* be a bicategory.

Definition 2.1.1.1. A 1-morphism $f: A \to B$ of C is **corepresentably faithful** if, for each $X \in \text{Obj}(C)$, the functor

$$f^* : \operatorname{Hom}_C(B, X) \to \operatorname{Hom}_C(A, X)$$

given by precomposition by f is faithful.

Remark 2.1.1.2. In detail, f is corepresentably faithful if, for all diagrams in C of the form

$$A \xrightarrow{f} B \underbrace{\alpha \psi \beta}_{\psi} X,$$

if we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f$$

then $\alpha = \beta$.

Example 2.1.1.3. Here are some examples of corepresentably faithful morphisms.

- Corepresentably Faithful Morphisms in Cats₂. The corepresentably faithful morphisms in Cats₂ are characterised in Categories, Item 4 of Proposition 5.1.1.2.
- 2. *Corepresentably Faithful Morphisms in* **Rel**. Every morphism of **Rel** is corepresentably faithful; see Relations, Item 1 of Proposition 3.10.1.1.

2.2 Corepresentably Full Morphisms

Let *C* be a bicategory.

Definition 2.2.1.1. A 1-morphism $f:A\to B$ of C is **corepresentably full** if, for each $X\in \mathrm{Obj}(C)$, the functor

$$f^* : \operatorname{Hom}_C(B, X) \to \operatorname{Hom}_C(A, X)$$

given by precomposition by f is full.

Remark 2.2.1.2. In detail, f is corepresentably full if, for each $X \in \text{Obj}(C)$ and each 2-morphism

$$\beta: \phi \circ f \Longrightarrow \psi \circ f, \qquad A \xrightarrow{\phi \circ f} X$$

of C, there exists a 2-morphism

$$\alpha: \phi \Longrightarrow \psi, \qquad B \xrightarrow{\psi} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \xrightarrow{\psi} X = A \xrightarrow{\psi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star id_f$$
.

Example 2.2.1.3. Here are some examples of corepresentably full morphisms.

- 1. Corepresentably Full Morphisms in Cats₂. The corepresentably full morphisms in Cats₂ are characterised in Categories, Item 5 of Proposition 5.2.1.2.
- 2. *Corepresentably Full Morphisms in* **Rel**. The corepresentably full morphisms in **Rel** are characterised in Relations, Item 2 of Proposition 3.10.1.1.

2.3 Corepresentably Fully Faithful Morphisms

Let C be a bicategory.

Definition 2.3.1.1. A 1-morphism $f: A \to B$ of C is **corepresentably fully faith-** ful⁴ if the following equivalent conditions are satisfied:

- 1. The 1-morphism f is corepresentably full (Definition 2.2.1.1) and corepresentably faithful (Definition 2.1.1.1).
- 2. For each $X \in Obj(C)$, the functor

$$f^* : \operatorname{Hom}_C(B, X) \to \operatorname{Hom}_C(A, X)$$

given by precomposition by f is fully faithful.

⁴Further Terminology: Corepresentably fully faithful morphisms have also been called **lax epi-**

Remark 2.3.1.2. In detail, *f* is corepresentably fully faithful if the conditions in Remark 2.1.1.2 and Remark 2.2.1.2 hold:

1. For all diagrams in C of the form

$$A \xrightarrow{f} B \underbrace{\alpha \downarrow \downarrow \beta}_{\psi} X,$$

if we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f$$

then $\alpha = \beta$.

2. For each $X \in Obj(\mathcal{C})$ and each 2-morphism

$$\beta: \phi \circ f \Longrightarrow \psi \circ f, \qquad A \xrightarrow{\phi \circ f} X$$

of C, there exists a 2-morphism

$$\alpha: \phi \Longrightarrow \psi, \qquad B \xrightarrow{\phi} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \xrightarrow{\psi} X = A \xrightarrow{\psi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star id_f$$
.

Example 2.3.1.3. Here are some examples of corepresentably fully faithful morphisms.

- 1. Corepresentably Fully Faithful Morphisms in Cats₂. The fully faithful epimorphisms in Cats₂ are characterised in Categories, Item 9 of Proposition 5.3.1.2.
- Corepresentably Fully Faithful Morphisms in Rel. The corepresentably fully faithful morphisms of Rel coincide (Relations, Item 3 of Proposition 3.10.1.1) with the corepresentably full morphisms in Rel, which are characterised in Relations, Item 2 of Proposition 3.10.1.1.

2.4 Morphisms Corepresentably Faithful on Cores

Let *C* be a bicategory.

Definition 2.4.1.1. A 1-morphism $f: A \to B$ of C is **corepresentably faithful on cores** if, for each $X \in \text{Obj}(C)$, the functor

$$f^* : \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(B,X)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(A,X))$$

given by precomposition by f is faithful.

Remark 2.4.1.2. In detail, f is corepresentably faithful on cores if, for all diagrams in \mathcal{C} of the form

$$A \stackrel{f}{\longrightarrow} B \underbrace{\varphi}_{\psi} X,$$

if α and β are 2-isomorphisms and we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f$$
,

then $\alpha = \beta$.

2.5 Morphisms Corepresentably Full on Cores

Let *C* be a bicategory.

Definition 2.5.1.1. A 1-morphism $f: A \to B$ of C is **corepresentably full on cores** if, for each $X \in \text{Obj}(C)$, the functor

$$f^*: \mathsf{Core}(\mathsf{Hom}_C(B,X)) \to \mathsf{Core}(\mathsf{Hom}_C(A,X))$$

given by precomposition by f is full.

Remark 2.5.1.2. In detail, f is corepresentably full on cores if, for each $X \in \text{Obj}(C)$ and each 2-isomorphism

$$\beta: \phi \circ f \stackrel{\sim}{\Longrightarrow} \psi \circ f, \qquad A \stackrel{\phi \circ f}{\biguplus} X$$

of C, there exists a 2-isomorphism

$$\alpha: \phi \stackrel{\sim}{\Longrightarrow} \psi, \qquad B \stackrel{\phi}{\underbrace{\qquad}} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \xrightarrow{\varphi} X = A \xrightarrow{\phi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star id_f$$
.

2.6 Morphisms Corepresentably Fully Faithful on Cores

Let *C* be a bicategory.

Definition 2.6.1.1. A 1-morphism $f: A \to B$ of C is **corepresentably fully faithful on cores** if the following equivalent conditions are satisfied:

- 1. The 1-morphism f is corepresentably full on cores (Definition 2.5.1.1) and corepresentably faithful on cores (Definition 2.1.1.1).
- 2. For each $X \in Obj(C)$, the functor

$$f^* : \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(B,X)) \to \mathsf{Core}(\mathsf{Hom}_{\mathcal{C}}(A,X))$$

given by precomposition by f is fully faithful.

morphisms in the literature (e.g. in [Adá+o1]), though we will always use the name "corepresentably fully faithful morphism" instead in this work.

Remark 2.6.1.2. In detail, *f* is corepresentably fully faithful on cores if the conditions in Remark 2.4.1.2 and Remark 2.5.1.2 hold:

1. For all diagrams in C of the form

$$A \xrightarrow{f} B \underbrace{\alpha \Downarrow \beta}_{\psi} X,$$

if α and β are 2-isomorphisms and we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f$$
,

then $\alpha = \beta$.

2. For each $X \in Obj(C)$ and each 2-isomorphism

$$\beta: \phi \circ f \xrightarrow{\sim} \psi \circ f, \qquad A \xrightarrow{\phi \circ f} X$$

of C, there exists a 2-isomorphism

$$\alpha: \phi \stackrel{\sim}{\Longrightarrow} \psi, \qquad B \stackrel{\phi}{\underbrace{\qquad}} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \underbrace{\phi}_{\psi} X = A \underbrace{\phi \circ f}_{\psi \circ f} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star id_f$$
.

2.7 Corepresentably Essentially Injective Morphisms

Let *C* be a bicategory.

Definition 2.7.1.1. A 1-morphism $f: A \to B$ of C is **corepresentably essentially injective** if, for each $X \in \text{Obj}(C)$, the functor

$$f^* : \operatorname{Hom}_{\mathcal{C}}(B, X) \to \operatorname{Hom}_{\mathcal{C}}(A, X)$$

given by precomposition by f is essentially injective.

Remark 2.7.1.2. In detail, f is corepresentably essentially injective if, for each pair of morphisms $\phi, \psi: B \Rightarrow X$ of C, the following condition is satisfied:

$$(\star)$$
 If $\phi \circ f \cong \psi \circ f$, then $\phi \cong \psi$.

2.8 Corepresentably Conservative Morphisms

Let *C* be a bicategory.

Definition 2.8.1.1. A 1-morphism $f:A\to B$ of C is **corepresentably conservative** if, for each $X\in \mathrm{Obj}(C)$, the functor

$$f^* : \operatorname{Hom}_{\mathcal{C}}(B, X) \to \operatorname{Hom}_{\mathcal{C}}(A, X)$$

given by precomposition by f is conservative.

Remark 2.8.1.2. In detail, f is corepresentably conservative if, for each pair of morphisms $\phi, \psi \colon B \rightrightarrows X$ and each 2-morphism

$$\alpha \colon \phi \stackrel{\sim}{\Longrightarrow} \psi, \qquad B \stackrel{\phi}{\underbrace{\qquad \qquad }} X$$

of C, if the 2-morphism

$$\alpha \star \mathrm{id}_f \colon \phi \circ f \Longrightarrow \psi \circ f, \qquad A \underbrace{ \begin{array}{c} \phi \circ f \\ \parallel \\ \alpha \star \mathrm{id}_f \end{array}}_{\psi \circ f} X$$

is a 2-isomorphism, then so is α .

2.9 Strict Epimorphisms

Let *C* be a bicategory.

Definition 2.9.1.1. A 1-morphism $f: A \to B$ is a **strict epimorphism in** C if, for each $X \in \mathsf{Obj}(C)$, the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is injective on objects, i.e. its action on objects

$$f_* : \mathsf{Obj}(\mathsf{Hom}_C(B, X)) \to \mathsf{Obj}(\mathsf{Hom}_C(A, X))$$

is injective.

Remark 2.9.1.2. In detail, f is a strict epimorphism if, for each diagram in C of the form

$$A \stackrel{f}{\longrightarrow} B \stackrel{\phi}{\Longrightarrow} X,$$

if $\phi \circ f = \psi \circ f$, then $\phi = \psi$.

Example 2.9.1.3. Here are some examples of strict epimorphisms.

- 1. Strict Epimorphisms in Cats₂. The strict epimorphisms in Cats₂ are characterised in Categories, Item 1 of Proposition 6.3.1.2.
- 2. *Strict Epimorphisms in* **Rel**. The strict epimorphisms in **Rel** are characterised in Relations, Proposition 3.9.1.1.

2.10 Pseudoepic Morphisms

Let C be a bicategory.

Definition 2.10.1.1. A 1-morphism $f: A \to B$ of C is **pseudoepic** if, for each $X \in \text{Obj}(C)$, the functor

$$f^* : \operatorname{Hom}_C(B, X) \to \operatorname{Hom}_C(A, X)$$

given by precomposition by f is pseudomonic.

Remark 2.10.1.2. In detail, a 1-morphism $f: A \to B$ of C is pseudoepic if it satisfies the following conditions:

1. For all diagrams in C of the form

$$A \stackrel{f}{\longrightarrow} B \underbrace{\alpha \iiint \beta}_{\psi} X,$$

if we have

$$\alpha \star \mathrm{id}_f = \beta \star \mathrm{id}_f$$

then $\alpha = \beta$.

2. For each $X \in Obj(C)$ and each 2-isomorphism

$$\beta: \phi \circ f \stackrel{\sim}{\Longrightarrow} \psi \circ f, \qquad A \stackrel{\phi \circ f}{\underbrace{\beta \downarrow \downarrow}} X$$

of C, there exists a 2-isomorphism

$$\alpha: \phi \stackrel{\sim}{\Longrightarrow} \psi, \qquad B \stackrel{\phi}{\underbrace{\qquad \qquad }} X$$

of C such that we have an equality

$$A \xrightarrow{f} B \underbrace{\overset{\phi}{\underset{\psi}{\longrightarrow}}} X = A \underbrace{\overset{\phi \circ f}{\underset{\psi \circ f}{\longrightarrow}}} X$$

of pasting diagrams in C, i.e. such that we have

$$\beta = \alpha \star id_f$$
.

Proposition 2.10.1.3. Let $f: A \rightarrow B$ be a 1-morphism of C.

- 1. Characterisations. The following conditions are equivalent:
 - (a) The morphism f is pseudoepic.
 - (b) The morphism f is corepresentably full on cores and corepresentably faithful.

(c) We have an isococomma square of the form

$$B \stackrel{\text{eq.}}{\cong} B \stackrel{\leftrightarrow}{\coprod}_A B, \quad \text{id}_B \qquad B \stackrel{\text{id}_B}{\swarrow} \qquad B \\ B \stackrel{\leftarrow}{\longleftarrow} A$$

in C up to equivalence.

Proof. Item 1, Characterisations: Omitted.

Appendices

A Other Chapters

Sets

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets

Relations

5. Relations

- 6. Constructions With Relations
- 7. Equivalence Relations and Apartness Relations

Category Theory

8. Categories

Bicategories

Types of Morphisms in Bicategories

References

[Adá+01] Jiří Adámek, Robert El Bashir, Manuela Sobral, and Jiří Velebil. "On Functors Which Are Lax Epimorphisms". In: *Theory Appl. Categ.* 8 (2001), pp. 509–521. ISSN: 1201-561X (cit. on p. 16).