Roteamento

Conceito

O roteamento é a forma de entrega de pacotes de dados entre hosts (equipamentos de rede de uma forma geral, incluindo computadores, roteadores etc). Sua função primária é realizar a entrega consistente de pacotes fim-a-fim, para aplicações ou outras camadas de protocolos, através de uma infraestrutura de redes interconectadas. Para tanto, o roteamento executa funções de determinação de caminhos de comunicação, de comutação de pacotes por esses caminhos e de processamento e escolha de rotas para um determinado sistema de comunicação.

O roteamento possibilita que o roteador analise os caminhos disponíveis para um determinado destino e estabeleça qual o caminho de preferência para o envio de pacotes para esse destino. Nessa determinação de caminhos de comunicação, os serviços de roteamento executam:

- Inicialização e manutenção de tabelas de rotas;
- Processos e protocolos de atualização de rotas;
- Especificação de endereços e domínios de roteamento;
- Atribuição e controle de métricas de roteamento.

Basicamente, o termo roteamento refere-se ao processo de escolher um caminho sobre o qual os datagramas (pacotes) serão enviados para que os mesmos alcancem seu destino.

Podemos então classificar o roteamento em dois tipos:

Roteamento estático: Utiliza uma rota pré-definida e configurada manualmente pelo administrador da rede. Utilizada em pequenas redes, pois possui um processo lento de implementação e sujeito a erros.

Roteamento dinâmico: Utiliza protocolos de roteamentos que ajustam automaticamente, através de algoritmos, as rotas de acordo com as alterações de topologia e outros fatores, tais como o tráfego. Utilizada, geralmente, em grandes redes ou quando ocorrem mudança de rota frequentes.

	Dinâmico	Estático
Complexidade de Configuração	Independente do tamanho da rede	Aumenta com tamanho da rede
Conhecimentos administrativos necessários	Conhecimentos avançados necessários	Nenhum conhecimento adicional necessário
Mudanças na Topologia	Adaptáveis automaticamente	Requer intervenção do administrador
Dimensionamento	Topologias simples e complexas	Topologias simples
Segurança	Menos seguro	Mais seguro
Uso de recursos	CPU, memória e largura de banda do link	Não requer
Previsibilidade	Depende da topologia atual	Rota de destino sempre é a mesma

Esta classificação mostra de quem é a responsabilidade na geração das tabelas de rotas.

A propagação destas tabelas utiliza-se de protocolos de roteamento e pode ocorre de duas formas, sempre buscando o *menor custo de rede*:

Protocolos de Roteamento Vetor Distancia

O algoritmo de vetor de distância DV – distance vector - é interativo, assíncrono e distribuído. É distribuído porque cada nó recebe alguma informação com respeito a um ou mais vizinhos diretamente conectados, faz cálculos e, após, distribui os resultados de seus cálculos para seus vizinhos. O interativo vem da troca de dados constante, até que não seja mais possível realizar tal troca. E assíncrono porque não requer que todos os nós rodem simultaneamente (KUROSE; ROSS, 2009).

Os algoritmos de roteamento, que usam vetor de distância, operam de forma que cada roteador mantenha uma tabela (isto é, um vetor), que fornece a melhor distância conhecida até o destino, e também indica qual linha deve ser utilizada para a transmissão. Tais tabelas são atualizadas através da troca de informações com os vizinhos. Esse algoritmo pode ser conhecido também como Bellman-Ford (algoritmo recebe esse nome pelo seu em homenagem aos seus pesquisadores, Bellman, 1957 e Ford em 1962) (TANEMBAUM, 2003)

No roteamento de vetor de distância, cada roteador mantém uma tabela de roteamento indexada por cada roteador da sub-rede, e contém a entrada para cada um de tais roteadores. A entrada possui duas partes: a linha de saída a ser usada e uma estimativa do tempo ou da distância até o ponto final. Duas unidades métricas podem ser usadas: o número de hops ou o tempo em [ms] (TANEMBAUM, 2003)

Protocolos de Roteamento de Estado de Enlace (Link State)

O algoritmo de estado de enlace possui o conhecimento de topologia da rede e todos os custos de enlaces. Isso é possível com a transmissão de pacotes por cada um dos nós para todos os outros. Com isso é que se chega ao custo de cada link (KUROSE; ROSS, 2009).

O algoritmo de roteamento de estado de enlace é conhecido como Dijkstra, o nome do seu idealizador. Outro algoritmo que guarda relação muito próxima com ele é o Prim.

"A ideia por trás do roteamento por estado de enlace é simples e pode ser estabelecida como cinco partes. Cada roteador deve fazer o seguinte (TANEMBAUM, 2003, p. 383)":

- Descobrir seus vizinhos e aprender seus endereços de rede;
- Medir o roteador ou custo até cada um de seus vizinhos;
- Criar um pacote que informe tudo o que ele acabou de aprender;
- Enviar esse pacote a todos os outros roteadores;
- Calcular o caminho mais curto até cada um dos outros roteadores.

Hierarquia de Roteamento

Os roteadores foram divididos em regiões chamadas Autonomous System - AS, onde cada roteador conhecia todos os detalhes de sua própria região e não conhecia a estrutura interna de outras regiões. Para uma rede local existem dois níveis de comunicação: interna ao AS, que utiliza algoritmos de roteamento Interior Gateway Protocol - IGP e externa ao AS, que utiliza algoritmos de roteamento Exterior Gateway Protocol – EGP.

Autonomous System - Um AS seria uma rede ou um conjunto de redes que, além de se encontrarem sob uma gestão comum, possuem características e políticas de roteamento comum.

Roteamento Interno (Interior Gateway Protocol - IGP)

Os roteadores utilizados para trocar informações dentro de Sistemas Autônomos são chamados roteadores internos (interior routers) e podem utilizar uma variedade de protocolos de roteamento interno (Interior Gateway Protocols – IGPs). Dentre eles estão: RIP, IGRP, EIGRP, OSPF e Integrated IS-IS.

Roteamento Externo (Exterior Gateway Protocol – EGP)

Roteadores que trocam dados entre Sistemas Autônomos são chamados de roteadores externos (exterior routers), e estes utilizam o Exterior Gateway Protocol (EGP) ou o BGP (Border Gateway Protocol). Para este tipo de roteamento são considerados basicamente coleções de prefixos CIDR (Classless Inter Domain Routing) identificados pelo numero de um Sistema Autonomo.

