Otimização não-linear

Prof. Tarcisio F. Maciel, Dr.-Eng.

Colaboradores: Diego A. Sousa, M.-Eng., José Mairton B. da Silva Jr., M.-Eng., Francisco Hugo C. Neto, M.-Eng., e Yuri Victor L. de Melo, M.-Eng.

Universidade Federal do Ceará Centro de Tecnologia Programa de Pós-Graduação em Engenharia de Teleinformática

04/07/2018

Introdução

- Introdução
 - O que é otimização?
 - Problemas de otimização
 - Classes de problemas de otimização

- Introdução
 - O que é otimização?
 - Problemas de otimização
 - Classes de problemas de otimização

Introdução [NW06]

- Pessoas otimizam
 - Investidores → criam portfólios que minimizam riscos e atingem uma certa taxa de retorno
 - Fabricantes → maximizam eficiência no projeto e operação de suas plantas produtivas
 - Engenheiros → ajustam parâmetros reduzir custos e aumentar a eficiência de seus projetos
- A natureza otimiza
 - Sistemas físicos → tendem ao estado de mínima energia
 - Raios de luz → percorrem o caminho de menor tempo de percurso
 - Moléculas → se acomodam para minimizar a energia potencial dos elétrons
- Otimização é uma ferramenta importante para tomada de decisões e análise de sistemas físicos

Introdução [NW06]

- O que é otimização?
 - Dar a algo um rendimento ótimo, criando-lhe as condições mais favoráveis ou tirando o melhor partido possível; tornar algo ótimo ou ideal [dHF10]
- Porque otimizar?
 - Com otimização é possível melhorar o desempenho de um sistema, ou seja, deixar o sistema mais rápido e eficiente [NW06]
- Como otimizar?
 - Para otimizar é preciso definir o objetivo, uma medida que quantifica o desempenho do sistema
 - O objetivo depende de certos de certas características do sistema, chamadas de variáveis que otimizam o sistema
 - Por fim é frequente o uso de restrições que descrevem situações do sistema consideradas não desejáveis
 [NW06]

- Introdução
 - O que é otimização?
 - Problemas de otimização
 - Classes de problemas de otimização

Elementos de um problema de otimização

- Uso da ferramenta de otimização → identificar alguns elementos
 - Objetivo → medida quantitativa do desempenho do sistema em estudo → lucro, tempo, energia, entre outros, ou uma combinação de fatores resultando em um escalar
 - Variáveis → parâmetros cujos valores podem ser ajustados e dos quais depende o desempenho do sistema
 - Restrições → condições às quais os valores da variáveis estão sujeitos
- Modelagem de problemas de otimização → Processo de identificação do objetivo, variáveis e restrições
 - Construção de um modelo apropriado → algumas vezes é o passo mais importante
 - Excessivamente simplista
- → não provê informação suficiente

Complexo demais

- → difícil de resolver
- Após modelado → solucionado usando um algoritmo de otimização
- Não há algoritmo universal → coleção de algoritmos especializados para cada tipo de problema
- Maiores benefícios → surgem quando o tipo do problema é conhecido
- Resultado do algoritmo → validado utilizando as condições de optimalidade

Modelo matématico de um problema de otimização

- Matematicamente, otimização é a maximização ou minimização de uma função objetivo sujeita a restrições sobre suas variáveis de otimização
- Em nossos modelos matemáticos, tipicamente:
 - $x \in \mathbb{R}^n$ \rightarrow vetor de variáveis de otimização
 - $f(x): \mathbb{R}^n \to \mathbb{R} \to \text{função objetivo que se deseja maximizar ou minimizar}$
 - $f_i(x): \mathbb{R}^n \to \mathbb{R} \to \text{as restrições}$ de igualdade e desigualdade que x deve satisfazer
- Logo, pode-se escrever um problema de otimização como

$$x^* = \underset{x \in \mathbb{R}^n}{\text{minimize }} f(x) \tag{1a}$$

sujeito a
$$f_i(x) = 0, \quad i = 1, 2, ..., I,$$
 (1b)

$$f_j(x) \ge 0, \quad j = 1, 2, \dots, J,$$
 (1c)

onde i e j são os índices para as restrições de igualdade e desigualdade, respectivamente, e x^* é uma solução ótima

Exemplo de problema de otimização: transporte de produtos [NW06]

Uma companhia possui 02 fábricas F_1 e F_2 e 12 lojas R_1, R_2, \ldots, R_{12} . Cada fábrica F_i pode produzir a_i toneladas de um produto (a_i é a capacidade da planta de produção) e cada loja possui uma demanda semanal de b_j toneladas do produto. O custo de transporte da fábrica F_i para a loja R_j de uma tonelada do produto é $c_{i,j}$. O problema é determinar as quantidades $x_{i,j} \in \mathbb{R}_+$ do produto que devem ser transportadas de cada fábrica para cada loja de modo a atender a todos os requisitos e minimizar o custo total.

Exemplo de problema de otimização: transporte de produtos [NW06]

• Uma companhia possui 02 fábricas F_1 e F_2 e 12 lojas R_1, R_2, \ldots, R_{12} . Cada fábrica F_i pode produzir a_i toneladas de um produto (a_i é a capacidade da planta de produção) e cada loja possui uma demanda semanal de b_j toneladas do produto. O custo de transporte da fábrica F_i para a loja R_j de uma tonelada do produto é $c_{i,j}$. O problema é determinar as quantidades $x_{i,j} \in \mathbb{R}_+$ do produto que devem ser transportadas de cada fábrica para cada loja de modo a atender a todos os requisitos e minimizar o custo total. Esse problema pode ser formulado como segue:

$$\{x_{i,j}^{\star}\} = \underset{\{x_{i,j}\}}{\text{minimize}} \sum_{i=1}^{2} \sum_{j=1}^{12} c_{i,j} x_{i,j}$$
 (2a)

sujeito a
$$\sum_{j=1}^{12} x_{i,j} \le a_i, \quad i = 1, 2$$
 (2b)

$$\sum_{i=1}^{2} x_{i,j} \ge b_j, \quad j = 1, 2, \dots, 12$$
 (2c)

$$x_{i,j} \ge 0, \quad i = 1, 2 \quad \text{e} \quad j = 1, 2, \dots, 12$$
 (2d)

- Este problema é um problema de otimização linear → função custo e todas as restrições são funções lineares das variáveis do problema
- Reescreva o problema acima em forma vetorial/matricial

Exemplo de problema de otimização: minimização da soma das correlações espaciais [MK06]

• A correlação espacial $\rho_{i,j}$ entre os canais $\boldsymbol{h}_i = \begin{bmatrix} h_{i,1} & h_{i,2} & \dots & h_{i,N} \end{bmatrix}$ e $\boldsymbol{h}_j = \begin{bmatrix} h_{j,1} & h_{j,2} & \dots & h_{j,N} \end{bmatrix}$ do enlace direto de uma estação rádio base com N antenas para os terminais móveis i,j é dada por $\rho_{i,j} = \frac{\|\boldsymbol{h}_i\boldsymbol{h}_j^{\mathrm{H}}\|}{\|\boldsymbol{h}_i\|_2\|\boldsymbol{h}_j\|_2}$. Sabendo que existem K terminais móveis, selecione $G \leq N$ terminais móveis tal que a soma das correlações entre eles dois-a-dois seja mínima, ou seja, selecione os G terminais móveis com os canais menos correlacionados.

Exemplo de problema de otimização: minimização da soma das correlações espaciais [MK06]

• A correlação espacial $\rho_{i,j}$ entre os canais $\boldsymbol{h}_i = \begin{bmatrix} h_{i,1} & h_{i,2} & \dots & h_{i,N} \end{bmatrix}$ e $\boldsymbol{h}_j = \begin{bmatrix} h_{j,1} & h_{j,2} & \dots & h_{j,N} \end{bmatrix}$ do enlace direto de uma estação rádio base com N antenas para os terminais móveis i,j é dada por $\rho_{i,j} = \frac{\|\boldsymbol{h}_i\boldsymbol{h}_j^H\|}{\|\boldsymbol{h}_i\|_2\|\boldsymbol{h}_j\|_2}$. Sabendo que existem K terminais móveis, selecione $G \leq N$ terminais móveis tal que a soma das correlações entre eles dois-a-dois seja mínima, ou seja, selecione os G terminais móveis com os canais menos correlacionados. Esse problema pode ser formulado como segue:

$$x^* = \underset{x}{\text{minimize}} \frac{1}{2} x^{\mathrm{T}} R x,$$
 (3a)

sujeito a
$$\mathbf{1}^{\mathrm{T}} \mathbf{x} = G$$
, (3b)

$$x \in \mathbb{B}^K$$
, (3c)

onde
$$\mathbf{R} = [\rho_{i,j}]_{i,j}, \quad i, j \in \{1, 2, \dots, K\}.$$

- Este problema é um problema de otimização binário quadrático → função custo quadrática com variáveis de otimização binárias
- Reescreva o problema acima utilizando somatórios

- Introdução
 - O que é otimização?
 - Problemas de otimização
 - Classes de problemas de otimização

Classes de problemas de otimização

- Natureza das variáveis de otimização, da função objetivo, e das restrições → diferentes tipos de problemas de otimização e algoritmos de otimização
- Variáveis de otimização
 - $x \in \mathbb{R}^n$

→ otimização contínua (mais fácil de resolver)

• $x \in \mathbb{Z}^n$

- → otimização inteira (pode requerer relaxações contínuas)
- $x_1, \ldots, x_k \in \mathbb{R}$ e $x_{k+1}, \ldots, x_n \in \mathbb{Z} \rightarrow$ otimização inteira mista
- Função objetivo e restrições
 - f(x), $f_i(x)$ e $f_i(x)$ lineares \rightarrow Otimização linear
 - f(x) e $f_i(x)$ convexas, $f_i(x)$ lineares \rightarrow Otimização convexa
- Máximo/mínimo local $\rightarrow f(x^*)$ é um máximo/mínimo local de f(x) se existe um sub-espaço aberto $\mathbb{A} \subset \mathbb{R}^n$ contendo x^* tal que $f(x) \leq f(x^*), \forall x \in \mathbb{A}$.
- Máximo/mínimo global $\Rightarrow f(x^*)$ é um máximo/mínimo global de f(x) se $f(x) \leq f(x^*)$, $\forall x \in \mathbb{R}^n$

Classes de problemas de otimização

- Algoritmos de otimização → especializados para cada tipo de problema
 - Otimização linear

- → método Simplex
- Otimização convexa
- → método dos pontos interiores
- Otimização linear inteira → método branch-and-bound
- Otimização sem restrições → método de busca direta e métodos do gradiente
- Otimização com restrições → métodos dos pontos interiores
- Otimização determinística → restrições e parâmetros dados por funções bem definidas
- Otimização estocástica
- → restrições ou parâmetros dependem de variáveis aleatórias

Exemplo de problema de otimização: mínimos quadrados [BV04]

Considere o problema de minimizar a soma dos erros quadráticos entre as componentes de um vetor
 y = Ax e um vetor de referência b. Esse é um problema de mínimos quadrados sem restrições que pode ser escrito como

$$x^* = \underset{\mathbf{r}}{\mathsf{minimize}} \|Ax - \boldsymbol{b}\|_2^2 \tag{4}$$

Exemplo de problema de otimização: mínimos quadrados [BV04]

Considere o problema de minimizar a soma dos erros quadráticos entre as componentes de um vetor
 y = Ax e um vetor de referência b. Esse é um problema de mínimos quadrados sem restrições que pode ser escrito como

$$x^* = \min_{\mathbf{r}} ||A\mathbf{r} - \mathbf{b}||_2^2 \tag{4}$$

Note que

$$||Ax - b||_2^2 = (Ax - b)^{\mathrm{T}}(Ax - b) = (x^{\mathrm{T}}A^{\mathrm{T}} - b^{\mathrm{T}})(Ax - b)$$

$$= x^{\mathrm{T}}A^{\mathrm{T}}Ax - x^{\mathrm{T}}A^{\mathrm{T}}b - b^{\mathrm{T}}Ax - b^{\mathrm{T}}b = x^{\mathrm{T}}A^{\mathrm{T}}Ax - 2b^{\mathrm{T}}Ax - b^{\mathrm{T}}b$$
(5)

ullet Derivando a equação acima em relação a $oldsymbol{x}$ e igualando a $oldsymbol{0}$ temos

$$\frac{d}{dx}\left(\mathbf{x}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} - 2\mathbf{b}^{\mathrm{T}}\mathbf{A}\mathbf{x} - \mathbf{b}^{\mathrm{T}}\mathbf{b}\right) = 0 \Rightarrow 2\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} - 2\mathbf{A}^{\mathrm{T}}\mathbf{b} = 0 \Rightarrow \boxed{\mathbf{x}^{\star} = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{b}}$$
(6)

Liste as classes de problemas de otimização às quais esse problema pertence

Conjuntos convexos e funções convexas

- Conjuntos convexos
 - Conjuntos afins e convexos
 - Operações sobre conjuntos que preservam convexidade
 - Hiperplanos, cones e desigualdades generalizadas
- 3 Propriedades básicas
- Bibliografia

- Conjuntos convexos
 - Conjuntos afins e convexos
 - Operações sobre conjuntos que preservam convexidade
 - Hiperplanos, cones e desigualdades generalizadas
- Propriedades básicas
- Bibliografia

Conjuntos afins

• Linha e segmentos

- Sejam os pontos $x_1, x_2 \in \mathbb{R}^n \operatorname{com} x_1 \neq x_2 \Rightarrow \operatorname{pontos} y$ da forma $y = \theta x_1 + (1 \theta) x_2 \operatorname{com} \theta \in \mathbb{R}, 0 \leq \theta \leq 1$, formam um segmento fechado ligando x_1 a x_2
- Representando $y = x_2 + \theta(x_1 x_2)$ → Ponto base x_2 e direção $(x_1 x_2)$ apontando de x_2 para x_1 e escalonada por θ

Conjuntos afins

- Um conjunto $\mathbb{A} \subset \mathbb{R}^n$ é afim \rightarrow para qualquer $x_1, x_2 \in \mathbb{A} \subset \mathbb{R}$ e $\theta \in \mathbb{R}$, o segmento de reta $y = \theta x_1 + (1 \theta)x_2 \in \mathbb{A}$
- Combinação afim $\Rightarrow y = \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_k x_k \in \mathbb{A} \subset \mathbb{R}$, $\operatorname{com} \theta_1 + \theta_2 + \ldots + \theta_k = 1$

- Conjuntos convexos
 - Um conjunto $\mathbb{A} \subset \mathbb{R}^n$ é convexo caso um segmento entre $x_1, x_2 \in \mathbb{A}$ e $0 \le \theta \le 1$, pertença a \mathbb{A} , ou seja, $\theta x_1 + (1 \theta)x_2 \in \mathbb{A}$
 - Em termos geométricos, um conjunto convexo é um conjunto sem buracos ou reentrâncias
- Invólucro convexo (convex hull)
 - Dado um conjunto \mathbb{A} , o invólucro convexo de \mathbb{A} é o menor conjunto convexo que engloba \mathbb{A} , sendo denotado por conv $\{\mathbb{A}\} = \{\theta_1 x_1 + \dots + \theta_k x_k \mid x_i \in \mathbb{A}, \theta_i \geq 0, i = 1, \dots, k, \theta_1 + \dots + \theta_k = 1\}$

- Conjuntos convexos
 - Conjuntos afins e convexos
 - Operações sobre conjuntos que preservam convexidade
 - Hiperplanos, cones e desigualdades generalizadas
- 3 Propriedades básicas
- Bibliografia

Operações sobre conjuntos que preservam convexidade

Interseção

ightharpoonup se \mathbb{A}_{lpha} é convexo para todo $lpha\in\mathbb{R}$, então

$$\bigcap_{\alpha \in \mathbb{R}} \mathbb{A}_{\alpha} \qquad \mathsf{tamb\'{e}m}\, \acute{\mathsf{e}}\, \mathsf{convexo} \tag{7}$$

• Multiplicação por escalar \rightarrow se $\mathbb{A} \subseteq \mathbb{R}^n$ é convexo e $\alpha \in \mathbb{R}$, então

$$\alpha \mathbb{A} = \{ \alpha \mathbf{x} \mid \mathbf{x} \in \mathbb{A} \}$$
 também é convexo (8)

• Translação \Rightarrow se $\mathbb{A} \subseteq \mathbb{R}^n$ é convexo e $\alpha \in \mathbb{R}^n$, então

$$\mathbb{A} + \alpha = \{x + \alpha \mid x \in \mathbb{A}\}$$
 também é convexo

• Soma \rightarrow se \mathbb{A}_1 e \mathbb{A}_2 são convexos, então

$$\mathbb{A}_1 + \mathbb{A}_2 = \{ x + y \mid x \in \mathbb{A}_1, y \in \mathbb{A}_2 \}$$
 também é convexo (10)

- Produto cartesiano \rightarrow se \mathbb{A}_1 e \mathbb{A}_2 são convexos, então
 - $\mathbb{A}_1 \times \mathbb{A}_2 = \{ (x, y) \mid x \in \mathbb{A}_1, y \in \mathbb{A}_2 \}$ também é convexo (11)

(9)

- Conjuntos convexos
 - Conjuntos afins e convexos
 - Operações sobre conjuntos que preservam convexidade
 - Hiperplanos, cones e desigualdades generalizadas
- Propriedades básicas
- Bibliografia

Hiperplanos, cones e desigualdades generalizadas

 Hiperplano → conjunto de pontos, podendo ser escrito como

$$\{ \boldsymbol{x} \mid \boldsymbol{a}^{\mathrm{T}}(\boldsymbol{x} - \boldsymbol{x}_0) = 0 \}$$
 (12)

onde $a \in \mathbb{R}^n$, $a \neq 0$, e x_0 determina o offset do hiperplano. Um hiperplano divide o espaço em dois semi-espaços

Semi-espaço → conjunto da forma

$$\{ \boldsymbol{x} \mid \boldsymbol{a}^{\mathrm{T}}(\boldsymbol{x} - \boldsymbol{x}_0) \le 0 \}$$
 (13)

onde $a \in \mathbb{R}^n$, $a \neq 0$

TODO

Adicionar figuras

Hiperplanos, cones e desigualdades generalizadas

• Cone é conjunto de pontos tais que $\forall x \in \mathbb{A} \subset \mathbb{R}^n \text{ e } \theta \geq 0, \theta \in \mathbb{R}_+$

$$\theta \mathbf{x} \in \mathbb{A}, \forall \mathbf{x} \in \mathbb{A} \tag{14}$$

• Cone Convexo é um conjunto que é simultaneamente um cone e convexo, ou seja, para qualquer $x_1, x_2 \in \mathbb{A} \subset \mathbb{R}^n$ e $\theta_1, \theta_2 \geq 0, \theta_1$

$$\theta_1 \boldsymbol{x}_1 + \theta_2 \boldsymbol{x}_2 \in \mathbb{A} \tag{15}$$

TODO

Adicionar figuras

• A bola Euclidiana com o centro em x_c e raio r é representada por

$$B(x_c, r) = \{x_c + ru \mid ||u||_2 \le 1\}$$
 (16)

• O elipsoide com o centro em x_c é um conjunto representado na forma

$$\mathcal{E} = \{ \boldsymbol{x} \mid (\boldsymbol{x} - \boldsymbol{x}_c)^{\mathrm{T}} \boldsymbol{P}^{-1} (\boldsymbol{x} - \boldsymbol{x}_c) \le 1 \}$$
 (17)

onde $P \in \mathbb{A} \subset \mathbb{S}^n_{++}$, ou seja, P é uma matriz simétrica positiva definida

TODO

Adicionar figuras

Poliedro

• O poliedro é definido como um conjunto de igualdades lineares e inequações.

$$Ax \le b, Cx = d \tag{18}$$

onde \leq é o símbolo que representa desiguadade componente a componente entre vetores.

• Dessa forma, a representação do poliedro pode escrita como:

$$P = \{x \mid Ax \le b, Cx = d\}$$
 (19)

• Norma da Bola com centro x_c e raio r é representado por:

$$\{x \mid ||x - x_c|| \le r\} \tag{20}$$

onde ∥·∥ é a norma.

• A norma do cone pode ser definido como:

$$\{(x,t) \in \mathbb{R}^n + 1 \mid ||x|| \le t\} \tag{21}$$

• PSD (Cone positivo semidefinido) é um cone formado a parti das matrizes positivas semidefinidas que utiliza a notação:

$$\mathbb{A}_{+}^{n} = \{ X \in \mathbb{A}^{n} \mid X > 0 \} \tag{22}$$

onde \mathbb{A}^n denota o conjunto de matrizes simetricas. Dessa forma o conjunto \mathbb{A}^n_+ é um cone positivo semidefinido, se $\theta_1, \theta_2 \geqslant 0$ e $A, B \in \mathbb{A}^n_+$, assim $\theta_1 A + \theta_2 B \in \mathbb{A}^n_+$.

- Desigualdade generalizadas
 - Um cone pode ser usado para definir a desigualdade generalizada, que é similar a relação de ordem apresentada em \mathbb{R} . Desta forma, para um cone K onde $K \subseteq \mathbb{R}^n$, as desigualdades não estritas e estritas $\leq_K e <_K$, respectivamente são definidas da seguinte maneira:

$$x \leq_K y \Leftrightarrow y - x \in K \tag{23a}$$

$$x <_K y \Leftrightarrow y - x \in \mathbf{int}(K) \tag{23b}$$

onde int(K) representa o interior do conjunto K.

- Propriedades
 - Se $x \leq_K y$ e $u \leq_K v$, então $x + u \leq_K y + v$
 - Se $x \leq_K y$ e $y \leq_K u$, então $x \leq_K u$
 - Se $x \leq_K y$ e $y \leq_K x$, então x = y
 - Se $x \prec_K y$ e $u \leq_K v$, então $x + u \prec_K y + v$

- Conjuntos convexos
- Propriedades básicas
 - Propriedades básicas e exemplos
 - Operações que preservam convexidade
 - Função conjugada
 - Funções quasi-convexas
 - Funções log-côncavas e log-convexas
 - Convexidade e inequações generalizadas
- 4 Bibliografia

- Conjuntos convexos
- Propriedades básicas
 - Propriedades básicas e exemplos
 - Operações que preservam convexidade
 - Função conjugada
 - Funções quasi-convexas
 - Funções log-côncavas e log-convexas
 - Convexidade e inequações generalizadas
- Bibliografia

Propriedades básicas

• Uma função $f: \mathbb{R}^n \to \mathbb{R}^n$ é convexa somente se o domínio de f (dom f) for convexo e $\forall x, y \in \text{dom } f$, e $0 \le \theta \le 1$ (24) for verdade.

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) \tag{24}$$

• Observando a condição (24), temos que em uma função $f(\cdot)$ convexa, qualquer segmento de reta entre os pontos (x, f(x)) e (y, f(y)) estará acima de $f(\cdot)$ entre os valores x e y, como mostrado na figura abaixo.

Propriedades básicas

• Dizemos que uma função $f(\cdot)$ é estritamente convexa se a desigualdade ocorrer sempre para $0 < \theta < 1$ e $x \neq y$, ou seja,

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$
(25)

- Define-se uma função $f(\cdot)$ como côncava, se $-f(\cdot)$ for convexa.
- Funções afins são convexas e côncavas, visto que

$$f(\theta x + (1 - \theta)y) = \theta f(x) + (1 - \theta)f(y)$$
(26)

para $0 \le \theta \le 1$.

Propriedades básicas

- Uma função $f(\cdot)$ é convexa se e somente se ela é convexa quando restrita a qualquer linha que intercepta seu domínio. Ou seja, f(x) é convexa se e somente se para todo $x \in \text{dom } f$ e para todo y, a função g(t) = f(x + ty) é convexa no domínio $\{t \mid x + ty \in \text{dom } f\}$.
- Esta propriedade é muito importante, pois pode-se avaliar a convexidade de uma função, restringindo-a a uma linha.

Extensão

- As vezes é conveniente que o domínio da função $f(\cdot)$ seja estendido para todo \mathbb{R}^n , atribuindo o valor ∞ para f(x) quando $x \notin \text{dom } f$.
- Assim, a extensão de f(x), $\tilde{f}: \mathbb{R}^n \to \mathbb{R} \cup \infty$ é definida como:

$$\tilde{f}(x) = \begin{cases} f(x) & x \in \text{dom } f \\ \infty & x \notin \text{dom } f \end{cases}$$
 (27)

- Essa extensão é útil pelo fato de simplificar a notação e de não haver a necessidade de se explicitar o seu domínio.
- ullet De modo análogo, podemos estender funções côncavas adicionando $-\infty$ a seu domínio.

Condições de primeira ordem

• Seja $f(\cdot)$ uma função diferenciável, então $f(\cdot)$ é convexo se e somente se o $\mathrm{dom}\,f$ for convexo e

$$f(y) \ge f(x) + \nabla f(x)^{\mathrm{T}} (y - x) \quad \forall x, y \in \mathrm{dom} \, f$$
 (28)

• Note que o segundo termo de (28) é uma função afim em relação a y e que é igual a aproximação de primeira ordem de Taylor de f(y) em torno de x.

Condições de primeira ordem

- Assim, se a aproximação de primeira ordem de Taylor de uma função sempre representar um subestimador global, a função $f(\cdot)$ é convexa.
- De (28), podemos ver que a partir da informação local ($x \in \nabla f(x)$) nós podemos derivar a informação global (subestimador global) de $f(\cdot)$.
- Podemos ainda deduzir de (28) que se $\nabla f(x) = 0$, então $f(y) \ge f(x)$, o que implica dizer que o ponto (x, f(x)) representa o mínimo global de $f(\cdot)$.
- Para que $f(\cdot)$ seja estritamente convexo, temos que a desigualdade em (28) tem que ser estrita, ou seja,

$$f(y) > f(x) + \nabla f(x)^{\mathrm{T}} (y - x) \quad \forall x, y \in \mathrm{dom} \, f \, \mathrm{e} \, x \neq y \tag{29}$$

Condições de segunda ordem

• Seja $f(\cdot)$ duas vezes diferenciável. $f(\cdot)$ é convexo se e somente se o $\mathrm{dom}\, f$ é convexo e sua Hessiana é semi-positiva definida $\forall x \in \mathrm{dom}\, f$, ou seja,

$$\nabla^2 f(x) \ge 0. \tag{30}$$

- No caso das funções reais (30) se reduz a $f''(x) \ge 0$, o que implica dizer que $f(\cdot)$ é não decrescente.
- Geograficamente, a condição (30) pode ser interpretada como o gráfico da função possuir curvatura sempre positiva.
- De modo análogo, temos que $f(\cdot)$ é côncava se e somente se

$$\nabla^2 f(x) \le 0. \tag{31}$$

• Se $\nabla^2 f(x) > 0$, então $f(\cdot)$ é estritamente convexa, contudo, a recíproca não é verdadeira!

Conjunto de subníveis

• O conjunto de subnível α de uma função $f: \mathbb{R}^n \to \mathbb{R}$ é definido como:

$$C_{\alpha} = \{ x \in \text{dom } f | f(x) \le \alpha \}$$
 (32)

- Conjuntos de subnível de uma função convexa são convexos para qualquer α .
- Prova: Seja $x, y \in \mathbb{A}_{\alpha}$, então $f(x) \leq \alpha$ e $f(y) \leq \alpha$. Assim, de (24), temos que:

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

$$\le \theta \alpha + (1 - \theta)\alpha \le \alpha$$

Logo,
$$\theta x + (1 - \theta)y \in \mathbb{A}_{\alpha}$$

 A recíproca não é verdadeira! Uma função pode ter todos seus subníveis convexos e não ser convexa.

Epígrafo e Hipografo

• O grafo de uma função $f: \mathbb{R}^n \to \mathbb{R}$ é definido como

$$\{(x, f(x))|x \in \text{dom } f\},\tag{33}$$

que é um subconjunto de \mathbb{R}^{n+1} .

• O epígrafo de $f(\cdot)$ é definido como:

$$epi f = \{(x,t)|x \in dom f, f(x) \le t\}$$
(34)

que é um subconjunto de \mathbb{R}^{n+1} .

Epígrafo e Hipografo

- O epígrafo faz a ligação entre funções e conjuntos convexos.
- Uma função $f(\cdot)$ é convexa se e somente se seu epígrafo representar um conjunto convexo.
- O hipografo de uma função é definido como sendo

$$\mathrm{hypo}\, f = \{(x,t) | x \in \mathrm{dom}\, f, t \le f(x)\} \tag{35}$$

• A função $f(\cdot)$ é côncava se e somente seu hipografo for convexo.

Desigualdade de Jensen e extensões

- Conjuntos convexos
- Propriedades básicas
 - Propriedades básicas e exemplos
 - Operações que preservam convexidade
 - Função conjugada
 - Funções quasi-convexas
 - Funções log-côncavas e log-convexas
 - Convexidade e inequações generalizadas
- Bibliografia

- Conjuntos convexos
- 3 Propriedades básicas
 - Propriedades básicas e exemplos
 - Operações que preservam convexidade
 - Função conjugada
 - Funções quasi-convexas
 - Funções log-côncavas e log-convexas
 - Convexidade e inequações generalizadas
- Bibliografia

- Conjuntos convexos
- Propriedades básicas
 - Propriedades básicas e exemplos
 - Operações que preservam convexidade
 - Função conjugada
 - Funções quasi-convexas
 - Funções log-côncavas e log-convexas
 - Convexidade e inequações generalizadas
- Bibliografia

- Conjuntos convexos
- Propriedades básicas
 - Propriedades básicas e exemplos
 - Operações que preservam convexidade
 - Função conjugada
 - Funções quasi-convexas
 - Funções log-côncavas e log-convexas
 - Convexidade e inequações generalizadas
- Bibliografia

- Conjuntos convexos
- Propriedades básicas
 - Propriedades básicas e exemplos
 - Operações que preservam convexidade
 - Função conjugada
 - Funções quasi-convexas
 - Funções log-côncavas e log-convexas
 - Convexidade e inequações generalizadas
- Bibliografia

- Conjuntos convexos
- Propriedades básicas
- Bibliografia

Bibliografia

- [BV04] S. Boyd and L. Vandenberghe, Convex optimization, 1st ed. Cambridge University Press, 2004.
- [dHF10] A. B. de Holanda Ferreira, Dicionário do Aurélio, 5th ed. Positivo Editora, 2010.
- [MK06] T. F. Maciel and A. Klein, "A low-complexity SDMA grouping strategy for the downlink of Multi-User MIMO systems," in Proceedings of the IEEE Personal, Indoor and Mobile Radio Communications (PIMRC), sep 2006.
- [NW06] J. Nocedal and S. J. Wright, *Numerical optimization*, 2nd ed., T. V. Mikosh, S. M. Robinson, and S. I. Resnick, Eds. Springer, 2006.