Corso di aggiornamento

Impostazione e controllo del progetto di edifici antisismici in cemento armato secondo le indicazioni delle Norme Tecniche per le Costruzioni 2008

Aula Oliveri, Facoltà di Ingegneria di Catania 17-18 settembre 2009

Corso organizzato da:

Genio Civile di Catania Prof. Ing. Aurelio Ghersi, Università di Catania

Corso di aggiornamento

Impostazione e controllo del progetto di edifici antisismici in cemento armato secondo le indicazioni delle Norme Tecniche per le Costruzioni 2008

Aula Oliveri, Facoltà di Ingegneria di Catania 17-18 settembre 2009

Sponsor:

Corso di aggiornamento

Impostazione e controllo del progetto di edifici antisismici in cemento armato secondo le indicazioni delle Norme Tecniche per le Costruzioni 2008

> Aula Oliveri, Facoltà di Ingegneria di Catania 17-18 settembre 2009

7. Giudizio motivato di accettazione dei risultati: verifica delle sezioni e gerarchia delle resistenze

Aurelio Ghersi

Gerarchia delle resistenze

Processo progettuale tradizionale

Modellazione della struttura

Risoluzione degli schemi base

Inviluppo dei risultati

Definizione delle armature in base all'inviluppo

No: occorre tener conto della gerarchia delle resistenze

Gerarchia delle resistenze

Travi - elementi duttili, che si devono plasticizzare a flessione durante il sisma per dissipare energia

L'armatura a flessione delle travi deve essere definita in base ai risultati del calcolo

> Nota: in realtà è poco influente il fatto che qualche trave sia meno armata e si plasticizzi prima del previsto

Tutto il resto (armatura a taglio delle travi, armatura a flessione e a taglio dei pilastri) è definito a partire dall'armatura a flessione delle travi

Primo passo armatura a flessione delle travi

- · Si parte dall'inviluppo dei risultati
 - È possibile far riferimento ai valori a filo pilastro

Quali valori di M? meglio i valori al filo pilastro

Primo passo armatura a flessione delle travi

- · Si parte dall'inviluppo dei risultati
 - È possibile far riferimento ai valori a filo pilastro
- Per il progetto (o il controllo) si usano le formule tradizionali

 $A_s = \frac{M}{0.9 d f_{yd}}$

Nota: il diagramma dei momenti risente molto dell'effetto del sisma (forti valori positivi all'appoggio) Questo può condizionare la disposizione delle barre di armatura

Esempio - armature a flessione

Progetto dell'armatura longitudinale limiti di normativa

$$\rho_{comp} = \frac{A_{s,comp}}{b h}$$

$$\frac{1.4}{f_{yk}} < \rho < \rho_{comp} + \frac{3.5}{f_{yk}}$$

Nel caso in esame questo implica che

$$5.86 \text{ cm}^2 < A_s < A_{s,comp} + 14.65 \text{ cm}^2$$

La condizione è soddisfatta

Progetto dell'armatura longitudinale limiti di normativa

Ulteriori prescrizioni:

- Disporre sempre almeno 2 Ø14 sia sup. che inf.
- Armatura compressa almeno pari al 25% della armatura tesa, sempre, e al 50% della armatura tesa, nelle "zone critiche"
- Armatura superiore, sempre almeno 1/4 dell'armatura massima disposta agli estremi

Zona critica - dal filo pilastro un tratto pari a:

h_{trave} per DC"B"

1.5 h_{trave} per DC"A"

Secondo passo armatura a taglio delle travi

Gerarchia delle resistenze

non si deve avere rottura a taglio; quindi il taglio si ricava non dall'analisi strutturale ma da condizioni limite di equilibrio

$$V = \frac{q \, I}{2} + \gamma_{Rd} \frac{M_{Rd,sin} + M_{Rd,des}}{I}$$

$$\gamma_{Rd}$$
 = 1 per CD"B"

$$\gamma_{Rd}$$
 = 1.2 per CD"A"

Taglio sollecitazioni di calcolo (CD "A")

```
Esempio a sinistra sup. 2 \varnothing 20 + 1 \varnothing 140 inf. 3 \varnothing 14
```

q=31.7 kN/m a destra sup. 3
$$\varnothing$$
20 inf. 3 \varnothing 14

$$V = \frac{q\,I}{2} + \gamma_{Rd} \frac{M_{Rd,sin} + M_{Rd,des}}{I} = \frac{31.7 \times 4.30}{2} + 1.2 \frac{91.1 + 185.9}{4.30} = 33.9 + 64.4 = 98.3 \text{ kN}$$

Taglio sollecitazioni di calcolo

 $V = \frac{q\,I}{2} + \gamma_{Rd}\,\frac{M_{Rd,sin}\,+\,M_{Rd,des}}{I} = \frac{31.7\times4.30}{2} + 1.2\,\frac{91.1+185.9}{4.30} = \frac{31.7\times4.30}{4.30} = \frac{31.7\times4.30}{$

= 33.9 + 64.4 = 98.3 kN

Taglio sollecitazioni di calcolo (CD "A")

```
Esempio a sinistra sup. 2 \varnothing 20 + 1 \varnothing 140 inf. 3 \varnothing 14
```

q=31.7 kN/m a destra sup. 3
$$\varnothing$$
20 inf. 3 \varnothing 14

-185.9

+91.1

$$V = \frac{q \, I}{2} + \gamma_{Rd} \frac{M_{Rd,sin} + M_{Rd,des}}{I} = \frac{31.7 \times 4.30}{2} + 1.2 \frac{154.2 + 91.1}{4.30} = 33.9 + 57.0 = 90.9 \, kN$$

Taglio sollecitazioni di calcolo

Taglio sollecitazioni di calcolo

Con solo g (differenze trascurabili)

Armature trasversali (staffe)

Prescrizioni di normativa:

La prima staffa di contenimento deve distare non più di 5 cm dalla sezione a filo pilastro; le successive devono essere disposte ad un passo non maggiore della più piccola delle grandezze seguenti:

- · un quarto dell'altezza utile della sezione trasversale
- 225 mm (per DC"B")
 175 mm (per DC"A")
- 8 Ømin,tra (per DC"B")
 6 Ømin,tra (per DC"A")
- 24 Østaffe

avendo ∅14: 8×14=112 mm

Armature trasversali (staffe)

Nel caso in esame si ha, ad esempio (per CD "A"): V = 98.3 kN

che richiede
$$\frac{A_{sw}}{s} = \frac{V_{Sd}}{z f_{ywd} \cot \theta} = \frac{98.3 \times 10}{0.9 \times 0.56 \times 391.3 \times 1} = 4.98 cm^2/m$$

Si possono disporre \emptyset 8 / 10 cm alle estremità (\emptyset 8 / 20 cm nella parte centrale della campata) Dovrebbero essere \emptyset 8 / 8.4 per i limiti minimi

Nota: per CD"B" si può usare cot $\theta = 2$ per CD"A" si deve usare cot $\theta = 1$ NTC 08 (D.M. 14/1/08), punto 7.4.4.1.2.2

Terzo passo armatura a pressoflessione dei pilastri

Per la sezione alla base e in testa all'ultimo piano si usano i valori di calcolo

Pilastri esaminati (come esempio)

Si esaminano i pilastri 15 e 27

Pilastro 15, base del I ordine (CD "A")

alla base non occorre gerarchia delle resistenze

Schemi di carico base

	q max	q min	Fx	Fy	M(Fx)	M(Fy)
M _×	-2.289	-1.69	45.67	-162.00	9.26	13.62
M _y	-1.74	-1.07	-44.07	-11.18	-0.63	-0.93
N	1384.80	827.76	2.81	-56.70	2.80	4.12

N positivo = compressione

Pilastro con rilevanti carichi verticali

Sollecitato prevalentemente in una direzione (y)

Effetto dell'eccentricità propria ed accidentale abbastanza modesto

Pilastro 15, base del I ordine (CD "A")

alla base non occorre gerarchia delle resistenze

Schemi di carico base

	q max	q min	Fx	Fy	M(Fx)	M(Fy)
M _×	-2.289	-1.69	45.67	-162.00	9.26	13.62
M _y	-1.74	-1.07	-44.07	-11.18	-0.63	-0.93
N	1384.80	827.76	2.81	-56.70	2.80	4.12

N positivo = compressione

Combinazione

	sisma x	sisma y	x + 0.3 y	y + 0.3 ×
M _×	54.92	-175.62	107.61	-192.10
M _y	-44.71	-12.11	-48.34	-25.53
N	5.60	-61.24	22.19	-69.72

$$M_{x,max}$$
 = 192.1 kNm

con N =
$$758 \div 897 \text{ kN}$$

$$M_{y,max}$$
 = 48.3 kNm

$$con N = 806 \div 850 kN$$

Pilastro 15, base del I ordine dimensionamento armature

Può essere effettuato separatamente per le due

direzioni

Si visualizza bene con domini M-N

Ad esempio col programma EC2

Pilastro 15, base del I ordine dimensionamento armature

Può essere effettuato separatamente per le due direzioni

occorrono 1 Ø 20 su ciascun lato corto

Pilastro 15, base del I ordine dimensionamento armature

Può essere effettuato separatamente per le due direzioni

non occorrerebbero armature sul lato lungo

Armatura longitudinale nei pilastri limiti di normativa

Nella sezione corrente del pilastro la percentuale di armatura longitudinale deve essere compresa tra i seguenti limiti: $1\% \le \frac{A_s}{A} \le 4\%$

con A_s area totale dell'armatura longitudinale e A_c area della sezione lorda del pilastro

Per tutta la lunghezza del pilastro l'interasse tra le barre non deve essere superiore a 25 cm

Per una sezione 30x70: $21 \text{ cm}^2 \le A_s \le 84 \text{ cm}^2$

Pilastro 15, base del I ordine

Il pilastro può essere armato con $6 \varnothing 20$ e $4 \varnothing 14$, con doppia staffa

Poiché i momenti trasversali sono molto bassi non occorre una verifica a pressoflessione deviata

Pilastro 15, base del I ordine

Il pilastro può essere armato con $6 \varnothing 20$ e $4 \varnothing 14$, con doppia staffa

Ai piani superiori le caratteristiche di sollecitazioni si riducono, ma le armature non possono scendere al di sotto di 21 cm², cioè $4 \varnothing 20$ e $6 \varnothing 14$ (quindi $2 \varnothing 20$ e $1 \varnothing 14$ nel lato corto)

Pilastro 27, base del I ordine

Schemi di carico base

	q max	q min	Fx	Fy	M(Fx)	M(Fy)
M _×	2.87	2.25	63.12	-315.90	-28.01	-41.21
M _y	-4.83	-3.11	-58.74	-28.70	-3.11	-4.58
N	800.67	508.94	342.41	-312.68	-26.33	-38.73

N positivo = compressione

Pilastro con bassi carichi verticali

Più sollecitato del pilastro 15 in direzione y a causa della rotazione

Forte sforzo normale da sisma (perché è un pilastro d'angolo)

Pilastro 27, base del I ordine

Schemi di carico base

	q max	q min	F×	Fy	M(Fx)	M(Fy)
M _×	2.87	2.25	63.12	-315.90	-28.01	-41.21
M _y	-4.83	-3.11	-58.74	-28.70	-3.11	-4.58
Ν	800.67	508.94	342.41	-312.68	-26.33	-38.73

N positivo = compressione

Combinazione

	sisma x	sisma y	x + 0.3 y	y + 0.3 x
M _×	91.14	-357.11	198.27	-384.45
M _y	-61.85	-33.28	-71.83	-51.83
N	396.86	-351.41	592.55	-314.02

 $M_{x,max}$ = 384.5 kNm

con N = $195 \div 823 \text{ kN}$

 $M_{y,max} = 71.8 \text{ kNm}$

con N = $-84 \div 1101 \text{ kN}$

Pilastro 27, base del I ordine dimensionamento armature

Può essere effettuato separatamente per le due direzioni

occorrono 5 Ø20 su ciascun lato corto

Pilastro 27, base del I ordine dimensionamento armature

Può essere effettuato separatamente per le due direzioni

occorrono 3 Ø20 su ciascun lato lungo

Pilastro 27, base del I ordine

Il pilastro può essere armato con $14 \varnothing 20$, con doppia staffa

Poiché i momenti trasversali sono forti occorre una verifica a pressoflessione deviata

Pilastro 27, base del I ordine verifica a pressoflessione deviata

Per sisma x + 0.3y
$$M_x = 198.3 \text{ kNm}$$
 $M_y = 71.8 \text{ kNm}$ $N = -84 \text{ kN}$

- 1 Calcolo il momento resistente $M_{Rd,x}$ per N = -84 kN $M_{Rd,x} = 339.0$ kNm
- 2 Calcolo il momento resistente $M_{Rd,y}$ per N = -84 kN $M_{Rd,y}$ = 99.8 kNm

3 - Calcolo
$$\left(\frac{M_{Ed,x}}{M_{Rd,x}}\right)^{1.5} + \left(\frac{M_{Ed,y}}{M_{Rd,y}}\right)^{1.5} = \left(\frac{198.3}{339.0}\right)^{1.5} + \left(\frac{71.8}{99.8}\right)^{1.5} = 1.06$$

La verifica non è soddisfatta (anche se di poco)

Pilastro 27, base del I ordine verifica a pressoflessione deviata

Per sisma y + 0.3x
$$M_x = 384.5 \text{ kNm}$$
 $M_y = 51.8 \text{ kNm}$ $N = 195 \text{ kN}$

- 1 Calcolo il momento resistente $M_{Rd,x}$ per N = 195 kN $M_{Rd,x}$ = 422.3 kNm
- 2 Calcolo il momento resistente $M_{Rd,y}$ per N = 195 kN $M_{Rd,y}$ = 130.3 kNm

3 - Calcolo
$$\left(\frac{M_{Ed,x}}{M_{Rd,x}}\right)^{1.5} + \left(\frac{M_{Ed,y}}{M_{Rd,y}}\right)^{1.5} = \left(\frac{384.5}{422.3}\right)^{1.5} + \left(\frac{51.83}{130.3}\right)^{1.5} = 1.12$$

La verifica non è soddisfatta: devo aumentare (di poco) l'armatura

Pilastro 27, base del I ordine

Il pilastro può essere armato con $12 \varnothing 20 + 4 \varnothing 14$, con doppia staffa

In questo modo considero 6 \varnothing 20 per lato sul lato corto, $4\varnothing$ 20 + 2 \varnothing 14 per lato sul lato lungo

Continua ... armatura a pressoflessione dei pilastri

Per la sezione alla base e in testa all'ultimo piano si usano i valori di calcolo

Per le altre sezioni, i momenti flettenti con cui armare si ricavano dai momenti resistenti delle travi

Per ciascuna direzione e ciascun verso di applicazione delle azioni sismiche, si devono proteggere i pilastri dalla plasticizzazione prematura adottando opportuni momenti flettenti di calcolo; tale condizione si consegue qualora, per ogni nodo trave-pilastro ed ogni direzione e verso dell'azione sismica, la resistenza complessiva dei pilastri sia maggiore della resistenza complessiva delle travi amplificata del coefficiente γ_{Rd} , in accordo con la formula:

$$\sum M_{C,Rd} \ge \gamma_{Rd} \cdot \sum M_{b,Rd} . \tag{7.4.4}$$

dove:

 γ_{Rd} = 1,30 per le strutture in CD "A" e γ_{Rd} = 1,10 per le strutture in CD "B",

Nelle sezioni diverse da quella di base

I valori di progetto si ottengono dal criterio di gerarchia delle resistenze

"per ogni nodo trave-pilastro ed ogni direzione e verso dell'azione sismica, la resistenza complessiva dei pilastri deve essere maggiore della resistenza complessiva delle travi amplificata del coefficiente γ_{Rd} in accordo con la formula $\sum M_{c,Rd} \geq \gamma_{Rd} \sum M_{b,Rd}$ "

Nota: non è precisato come ripartire il momento tra pilastro superiore e inferiore

Momenti per equilibrio dei nodi

Per la gerarchia delle resistenze: momenti resistenti delle travi

Tab. 6. Momenti resistenti nelle travi adiacenti al pilastro 20 (kNm)

piano		direzione x			direzione y			
		sin	des	ΣM	sin	des	ΣM	rip.
4	M^{-}_{Rd}	-97.3		97.3	-160.0	-160.0	321.2	0.38
	M^{+}_{Rd}	97.3			161.2	161.2		0.62
3	M^{-}_{Rd}	-128.6		128.6	-225.0	-225.0	450.0	0.42
	M^{+}_{Rd}	97.3			225.0	225.0		0.58
2	M^{-}_{Rd}	-161.2		161.2	-289.8	-289.8	547.3	0.46
	M^+_{Rd}	161.2			257.5	257.5		0.54
1	M^{-}_{Rd}	-161.2		161.2	-289.8	-289.8	547.3	0.50
	M^{+}_{Rd}	161.2			257.5	257.5		0.50

Per la gerarchia delle resistenze: valori di calcolo dei pilastri

Tab. 7. Pilastro 20, valori per il progetto delle armature o la verifica delle sezioni

piano	M_{y}	M_x	N		M_{y}	M_x	N	
	(kNm)	(kNm)	(kN)		(kNm)	(kNm)	(kN)	
5	48.1	53.7	74.7	105.2	28.5	158.7	81.7	98.2
4	78.4	93.7	178.1	288.7	31.4	258.9	204.2	262.7
3	97.0	123.7	260.1	492.4	37.7	339.3	315.5	437.0
2	113.2	151.3	325.4	713.8	42.2	384.2	418.0	621.1
1 testa	104.8	107.9	353.6	903.0	31.4	355.7	484.4	772.1
1 piede	68.6	231.5			38.4	445.0		

Ho usato in una direzione i valori da gerarchia delle resistenze e nell'altra i valori di calcolo (o, se maggiore, $0.3 \times valori ger. resist. nell'altra direzione)$

Quarto passo armatura a taglio dei pilastri

• I valori del taglio vanno calcolati con lo stesso criterio mostrato per le travi

Armatura trasversale nei pilastri limiti di normativa

Zona critica: dall'estremità del pilastro un tratto pari alla maggiore delle seguenti quantità:

- · il lato maggiore della sezione trasversale
- · un sesto dell'altezza netta del pilastro
- 45 cm
- tutto il pilastro, se la sua altezza è inferiore a 3 volte il lato maggiore della sezione

Per il pilastro 30x70: 70 cm

Armatura trasversale nei pilastri limiti di normativa

Nelle zone critiche devono essere rispettate le condizioni seguenti:

- le barre disposte sugli angoli della sezione devono essere contenute dalle staffe;
- almeno una barra ogni due, di quelle disposte sui lati, dovrà essere trattenuta da staffe interne o da legature;
- · le barre non fissate devono trovarsi a meno di 20 cm (CD"B") o 15 cm (CD"A") da una barra fissata

Le staffe disegnate vanno bene

Armatura trasversale nei pilastri limiti di normativa

Il diametro delle staffe di contenimento e legature non deve essere inferiore a 6 mm.

suggerisco 8 mm per le staffe

(Nelle zone critiche?) esse saranno disposte ad un passo pari alla più piccola delle quantità seguenti:

- 1/2 (CD"B") o 1/3 (CD"A") del lato minore della sezione trasversale
- · 175 mm (CD"B") o 125 mm (CD"A")
- · 8 Ømin, lon (per DC"B") o 6 Ømin, lon (per DC"A")

Nei tratti di estremità si devono quindi disporre $\emptyset 8 / 10$ Nella parte centrale si metteranno $\emptyset 8 / 15$

Ulteriori passi

- Verifica ed armatura dei nodi
 (è opportuno armarli bene, ma le regole applicative
 della norma portano spesso a valori eccessivi, non
 realizzabili)
- Verifica ed armatura degli impalcati
- · Verifica ed armatura degli elementi di fondazione