Matematická analýza II (NOFY152) - DÚ 7

Topologické pojmy v \mathbb{R}^d , funkce více proměnných

1. Najděte vnitřek, uzávěr a hranici množiny $A \stackrel{\text{def}}{=} M \setminus K$, kde

$$\begin{split} M &\stackrel{\text{def}}{=} \big\{ (x,y) \in \mathbb{R}^2 : |x| \leq 1, \ 0 < y \leq 2 \big\}, \\ K &\stackrel{\text{def}}{=} \Big\{ (x,y) \in \mathbb{R}^2 : x^2 + (y-1)^2 = 1 \Big\}. \end{split}$$

Řešení: Platí

$$\begin{split} A^\circ &= \{(x,y) \in \mathbb{R}^2: \ |x| < 1, \ 0 < y < 2\} \setminus K, \\ \overline{A} &= \{(x,y) \in \mathbb{R}^2: \ |x| \le 1, \ 0 \le y \le 2\}, \\ \partial A &= \{(\pm 1,y) \in \mathbb{R}^2: \ 0 \le y \le 2\} \cup \{(x,0) \in \mathbb{R}^2: \ |x| \le 1\} \cup \{(x,2) \in \mathbb{R}^2: \ |x| \le 1\} \cup K. \end{split}$$

Pozorujeme, že $A^{\circ} \cup \partial A = \overline{A}$.

2. Pro které hodnoty parametru $\alpha \in \mathbb{R}$ platí, že počátek leží v uzávěru množiny

$$M \stackrel{\text{def}}{=} \{ (k^{\alpha} \cos k, k^{\alpha} \sin k) : k \in \mathbb{Z} \setminus \{0\} \} ?$$

Zdůvodněte.

Řešení: Nejprve připomeňme definici.

- 1. Je-li $\alpha=\frac{p}{q}$ racionální, kde p,q jsou nesoudělné a q liché, pak $k^{\alpha}=k^{\frac{p}{q}}$ je definováno pro každé $k\in\mathbb{Z}\setminus\{0\}$,
- 2. Není-li α tvaru jako v 1, pak $k^{\alpha}=e^{\alpha \ln k}$ je definováno jen pro $k>0,\;k\in\mathbb{Z}.$ V tomto případě můžeme uvažovat jen k>0.

Máme najít všechna α tak, aby pro každé $\varepsilon > 0$ platilo $U_{\varepsilon}((0,0)) \cap M \neq \emptyset$. Zde

$$U_{\varepsilon}((0,0)) = \{(x,y) \in \mathbb{R}^2 : ||(x,y)|| = \sqrt{x^2 + y^2} < \varepsilon\},\$$

je otevřená koule o poloměru $\varepsilon > 0$ se středem v počátku. Platí

$$||(k^{\alpha}\cos k, k^{\alpha}\sin k)|| = |k^{\alpha}| = |k|^{\alpha}.$$

Je-li $\alpha \geq 0$, pak $|k|^{\alpha} \geq 1$ a tedy $U_{\frac{1}{2}}((0,0)) \cap M = \emptyset$. Je-li naopak $\alpha < 0$, pak $|k|^{\alpha}$ klesá pro $k \to +\infty$ monotonně k nule, existuje tedy $k_0 \in \mathbb{N}$ tak, že pro $k \geq k_0$ platí $|k|^{\alpha} < \varepsilon$. Tedy $U_{\varepsilon}((0,0)) \cap M \neq \emptyset$ pro každé $\varepsilon > 0$.

Alternativně lze argumentovat přes hromadné body, což jsou v tomto případě body, které dostaneme pro $k \to +\infty$ nebo $k \to -\infty$. Podobné úvahy jako výše pak vedou k závěru, že (0,0) je hromadný bod dané množiny, jen pokud $\alpha < 0$.

Závěr: Bod (0,0) leží v uzávěru množiny M jen pro $\alpha < 0$.

3. Je množina

$$M = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 - z^2 > 1, |x| \le 1, |y| \le 1\}$$

omezená? Zdůvodněte.

Řešení: Z definice M plyne omezení $x^2 + y^2 > z^2 + 1$. Dále pro $(x, y, z) \in M$ platí

$$|x| + |y| \le 2$$
, $4 = 2^2 \ge (|x| + |y|)^2 = |x|^2 + |y|^2 + 2|x||y| \ge x^2 + y^2 > z^2 + 1$.

Tudíž $z^2 < 3$ a $|z| < \sqrt{3}$. Množina M leží uvnitř omezené množiny

$$\{(x,y,z): |z| < \sqrt{3}, |x| \le 1, |y| \le 1\},\$$

která je podmnožinou krychle se středem v počátku a délkou strany $2\sqrt{3}$, tj.

$$M \subset B_{\sqrt{3}}(0) = \left\{ \mathbf{x} = (x, y, z) \in \mathbb{R}^3 : |\mathbf{x}|_{\infty} < \sqrt{3} \right\}.$$

M je tedy omezená.

- 4. Nechť $A, B \subset \mathbb{R}^n$. Rozhodněte, zda platí následující rovnosti nebo alespoň jedna inkluze, tj. dokažte nebo najděte protipříklady,
 - (i) $\overline{\partial A} = \partial \overline{A}$
 - (ii) $\partial(A \cup B) = \partial A \cup \partial B$
 - (iii) $\overline{A \cap B} = \overline{A} \cap \overline{B}$

Řešení:

(i) Inkluze $\overline{\partial A}\subseteq \partial \overline{A}$ neplatí. Stačí vzít $A=\mathbb{Q}$. Pak $\overline{\partial A}=\overline{\mathbb{R}}=\mathbb{R}$ a $\partial \overline{\mathbb{Q}}=\partial \mathbb{R}=\emptyset$.

Zkusme nyní \supseteq . Je-li $x \in \partial \overline{A}$ a $\varepsilon > 0$, pak $U_{\varepsilon}(x) \cap \overline{A} \neq \emptyset$ a $U_{\varepsilon}(x) \cap (\mathbb{R}^n \setminus \overline{A}) \neq \emptyset$. Jelikož $(\mathbb{R}^n \setminus \overline{A}) \subseteq (\mathbb{R}^n \setminus A)$, pak i $U_{\varepsilon}(x) \cap (\mathbb{R}^n \setminus A) \neq \emptyset$. Zvolme $x' \in U_{\varepsilon}(x) \cap \overline{A}$. Pak $U_{\varepsilon}(x)$ je otevřené okolí x' a jelikož $x' \in \overline{A}$, pak $U_{\varepsilon}(x)$ musí obsahovat bod z A. Tedy pro každé $\varepsilon > 0$ platí $U_{\varepsilon}(x) \cap A \neq \emptyset$. Každé otevřené okolí bodu x tedy protne A i $\mathbb{R}^n \setminus A$. To ale z definice znamená, že $x \in \partial A$ a tedy i $x \in \overline{\partial A}$. Dokázali jsme $\overline{\partial A} \supseteq \overline{\partial A}$.

(ii) Inkluze $\partial(A \cup B) \supseteq \partial A \cup \partial B$ neplatí. Stačí vzít otevřené intervaly A = (-1,1) a B = (0,2). Pak $\partial(A \cup B) = \partial(-1,2) = \{-1,2\}$ a $\partial A \cup \partial B = \{-1,1\} \cup \{0,2\} = \{-1,1,0,2\}$.

Obrácená inkluze $\partial(A \cup B) \subseteq \partial A \cup \partial B$ platí a nyní ji dokážeme nepřímo. Není-li $x \in \partial A \cup \partial B$, pak $x \notin \partial A$ a $x \notin \partial B$. Pak ale x je vnitřní bod A nebo $\mathbb{R}^n \setminus A$ a současně je to vnitřní bod B nebo $\mathbb{R}^n \setminus B$. Je-li $x \in A^o$ nebo $x \in B^o$, pak máme vyhráno, neboť pak je x nutně i vnitřním bodem $A \cup B$. Zbývá tedy probrat případ, kde x je vnitřním bodem $\mathbb{R}^n \setminus A$ i $\mathbb{R}^n \setminus B$. Najdeme $\varepsilon_1, \varepsilon_2$ tak, aby $U_{\varepsilon_1}(x) \subseteq (\mathbb{R}^n \setminus A)$ a $U_{\varepsilon_2}(x) \subseteq (\mathbb{R}^n \setminus B)$. Pak ale $U_{\varepsilon}(x) \subset \mathbb{R}^n \setminus (A \cup B)$, kde $\varepsilon = \min\{\varepsilon_1, \varepsilon_2\}$. Tudíž x je vnitřní bodem $\mathbb{R}^n \setminus (A \cup B)$ a nemůže tedy ležet na hranici této množiny. Ukázali jsme implikaci $x \notin \partial A \cup \partial B \Rightarrow x \notin \partial (A \cup B)$ a tím i $x \in (\partial A \cup \partial B) \Rightarrow x \in \partial A \cup \partial B$. Důkaz je hotov.

(iii) Inkluze $\overline{A \cap B} \supseteq \overline{A} \cap \overline{B}$ neplatí. Stačí vzít otevřené intervaly A = (-1,0) a B = (0,1). Pak $\overline{A \cap B} = \overline{\emptyset} = \emptyset$ a současně $\overline{A} \cap \overline{B} = [-1,0] \cap [0,1] = \{0\}$.

Dokážeme \subseteq . Je-li $x \in \overline{A \cap B}$, pak pro každé $\varepsilon > 0$ platí $U_{\varepsilon}(x) \cap (A \cap B) \neq \emptyset$. Speciálně $U_{\varepsilon}(x) \cap A \neq \emptyset$ a $U_{\varepsilon}(x) \cap B \neq \emptyset$. Ukázali jsme, že libovolné otevřené okolí x má netriviální průnik s A i s B. Tedy $x \in \overline{A}$ a $x \in \overline{B}$, nutně tedy $x \in \overline{A} \cap \overline{B}$.

- 5. Spočtěte limity (pokud existují)
 - (i) $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2+xy}{|x|+|y|}$,
 - (ii) $\lim_{(x,y)\to(0,0)} (\cos(x+y))^{\frac{1}{x^2+y^2}}$.

Řešení:

(i) Pomocí Youngovy nerovnosti dostáváme

$$0 \leq \left| \frac{x^2 - y^2 + xy}{|x| + |y|} \right| \leq \frac{x^2 + y^2 + |xy|}{|x| + |y|} \leq \frac{3}{2} \frac{x^2 + y^2}{|x| + |y|} \leq \frac{3}{2} \sqrt{x^2 + y^2} = \frac{3}{2} |(x, y)|_2,$$

odkud vidíme, že zadaná limita je rovna 0. V poslední nerovnosti jsme navíc využili

$$\frac{\sqrt{x^2+y^2}}{|x|+|y|} \le 1 \quad \iff \quad x^2+y^2 \le \left(|x|+|y|\right)^2 \quad \iff \quad 0 \le |xy|.$$

Alternativně můžeme postupovat takto

$$0 \leq \left| \frac{x^2 - y^2 + xy}{|x| + |y|} \right| \leq \frac{x^2 + y^2 + |xy|}{|x| + |y|} \leq \frac{|x|^2 + |y|^2 + 2|xy|}{|x| + |y|} = \frac{\left(|x| + |y|\right)^2}{|x| + |y|} = |x| + |y| = |(x, y)|_1.$$

(ii) Ukažme, že limita neexistuje. Na paprsku y=x dostáváme

$$\lim_{x \to 0} (\cos 2x)^{\frac{1}{2x^2}} = \lim_{x \to 0} e^{\frac{\ln(\cos 2x)}{2x^2}} = e^{\lim_{x \to 0} \frac{\ln(\cos 2x)}{2x^2}} = e^{\lim_{x \to 0} \frac{\cos 2x - 1}{2x^2}} = e^{-1},$$

kde jsme využili věty o limitě složené funkce a limitě součinu a znalost základních limit

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 0, \qquad \lim_{x \to 0} \frac{1 - \cos x}{x} = \frac{1}{2}.$$

Na druhou stranu na paprsku y=-x máme

$$\lim_{x \to 0} (\cos 0)^{\frac{1}{2x^2}} = \lim_{x \to 0} 1^{\frac{1}{2x^2}} = 1.$$

Protože se limity neshodují, zadaná limita neexistuje.

6. Jestliže dodefinujeme funkce z předchozího příkladu v počátku nulou, rozhodněte, zda jsou takto definované funkce spojité nebo omezené na nějakém okolí počátku.

Řešení:

(i) Podle Příkladu 5(i) víme, že funkce

$$f(x,y) \stackrel{\text{def}}{=} \begin{cases} \frac{x^2 - y^2 + xy}{|x| + |y|} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0), \end{cases}$$

je spojitá v počátku, a tudíž je i omezená na nějakém okolí počátku (podle věty o nabývání extrémů pro spojitou funkci na kompaktní množině).

(ii) Podle Příkladu 5(ii) není funkce

$$f(x,y) \stackrel{\text{def}}{=} \begin{cases} (\cos(x+y))^{\frac{1}{x^2+y^2}} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0), \end{cases}$$

spojitá v počátku. V dalším uvažujme funkci f na množině

$$M \stackrel{\text{def}}{=} \left\{ (x, y) \in \mathbb{R}^2 : |x + y| < \frac{\pi}{2} \right\},$$

neboť na takové množině je f definovaná a zároveň obsahuje počátek. Pro $(0,0) \neq (x,y) \in M$ je z definice funkce f omezená zdola, neboť

$$(\cos(x+y))^{\frac{1}{x^2+y^2}} = e^{\frac{\ln(\cos(x+y))}{x^2+y^2}} > 0.$$

Dále platí

$$e^{\frac{\ln(\cos(x+y))}{x^2+y^2}} \le 1 \quad \iff \quad \frac{\ln(\cos(x+y))}{x^2+y^2} \le 0 \quad \iff \quad \cos(x+y) \le 1,$$

což je splněno pro všechna $(x,y) \in M$, a tedy f je na této množině omezená i shora. Existuje tedy okolí počátku, na kterém je funkce f omezená.

- 7. Určete definiční obor následujících funkcí a spočtěte jejich první parciální derivace
 - (i) $f(x, y, z) = \cos(x + y)\sin(x y + z)$,
 - (ii) $f(x, y) = e^{tg(xy)}$.

Řešení:

(i) Zřejmě platí $D_f = \mathbb{R}^3$. S využitím součtového vzorce $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$, potom pro první parciální derivace na celém D_f dostáváme

$$\begin{split} \frac{\partial f}{\partial x}(x,y,z) &= -\sin(x+y)\sin(x-y+z) + \cos(x+y)\cos(x-y+z) = \cos(2x+z), \\ \frac{\partial f}{\partial y}(x,y,z) &= -\sin(x+y)\sin(x-y+z) - \cos(x+y)\cos(x-y+z) = -\cos(2y-z), \\ \frac{\partial f}{\partial z}(x,y,z) &= \cos(x+y)\cos(x-y+z). \end{split}$$

(ii) Z podmínky $xy \neq \frac{(2k+1)\pi}{2}$ dostáváme

$$D_f = \mathbb{R}^2 \setminus \left\{ \left(x, \frac{(2k+1)\pi}{2x} \right) : x \in \mathbb{R} \setminus \{0\}, k \in \mathbb{Z} \right\}.$$

Na D_f potom máme

$$\frac{\partial f}{\partial x}(x,y) = \frac{y e^{\operatorname{tg}(xy)}}{\cos^2(xy)},$$
$$\frac{\partial f}{\partial y}(x,y) = \frac{x e^{\operatorname{tg}(xy)}}{\cos^2(xy)}.$$

8. Najděte směrovou derivaci funkce

$$f(x,y) = \begin{cases} \frac{x^4 + 2x^2y + y^3}{x^2 + y^2} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0), \end{cases}$$

v počátku v obecném směru $(u, v) \in \mathbb{R}^2, u^2 + v^2 = 1.$

 Řešení: Označme si $\mathbf{v} \stackrel{\mathrm{def}}{=} (u,v)$. Podle definice derivace ve směru máme

$$\frac{\partial f}{\partial \mathbf{v}}((0,0)) = \lim_{h \to 0} \frac{f((0,0) + h(u,v)) - f((0,0))}{h} = \lim_{h \to 0} \frac{f((hu,hv))}{h} = \lim_{h \to 0} \frac{\frac{h^4 u^4 + 2h^3 u^2 v + h^3 v^3}{h^2 u^2 + h^2 v^2}}{h}.$$

S využitím $u^2 + v^2 = 1$, pak dostáváme

$$\frac{\partial f}{\partial \mathbf{v}}((0,0)) = \lim_{h \to 0} (hu^4 + 2u^2v + v^3) = 2u^2v + v^3.$$