CSC3170 Introduction to Database Systems (Spring 2024) Assignment 2 – Non-SQL PART

Please answer all the questions below and submit your answer to blackboard

Question 1 (16 marks)

Consider a relation R(A,B,C,D,E,G,H,I,J) and its FD set $F = \{AB \rightarrow DE,C \rightarrow GH,E \rightarrow BCD,D \rightarrow CI,H \rightarrow G,EH \rightarrow I\}$.

- 1) Check if $E \rightarrow G \in F^{+}$. Justify your answer. (2 mark)
- 2) List all the candidate keys for R. (2 marks)
- 3) How many super keys can be found for *R*? Compute the total number of super keys and list 5 of them. (2 marks)
- 4) Find a minimal cover F_m for F. (2 marks)
- 5) Determine the highest normal form of *R* with respect to *F*. Justify your answer. (2 marks)
- 6) Regarding F, is the decomposition $R_1 = \{ABCDE\}$, $R_2 = \{CGH\}$, $R_3 = \{EIJ\}$ of R dependency-preserving? Please justify your answer. (2 marks)
- 7) Regarding F, is the decomposition $R_1 = \{ABCDE\}$, $R_2 = \{CGH\}$, $R_3 = \{EIJ\}$ of R lossless-join? Please justify your answer. (2 marks)
- 8) Decompose it into a collection of BCNF relations if it is not in BCNF. Make sure your decomposition is lossless-joined and briefly justify your answers. (2 marks)

Question 2 (8 marks)

Consider the schedule below. Here, R(*) and W(*) stand for 'Read' and 'Write', respectively. T_1 , T_2 , T_3 and T_4 represent four transactions and t_i represents a time slot.

Time	t_1	t_2	<i>t</i> ₃	t ₄	<i>t</i> ₅	t ₆	<i>t</i> ₇	t ₈	t ₉	t ₁₀	t ₁₁	t ₁₂
T_1	R(B)					R(A)	W(B)				W(A)	
T_2			R(A)		R(A)				R(B)	W(B)		W(A)
T_3								R(B)				W(B)
T_4		R(A)		W(A)						R(B)	W(B)	

Each transaction begins at the time slot of its first Read and commits right after its last Write (same time slot).

Regarding the following questions, give and justify your answers.

- 1) Assume a checkpoint is made between t_4 and t_5 , what should be done to the four transactions when the crash happens between t_6 and t_7 . (2 marks)
- 2) Is the transaction schedule conflict serializable? Give the precedence graph to justify your answer. (2 marks)
- 3) Give a serial schedule of these four transactions. (2 marks)
- 4) Construct a schedule (which is different from above) of these four transactions which causes deadlock when using two-phase locking protocol. If no such schedule exists, explain why. (2 marks)

Question 3 (6 marks)

- 1) There are currently 11 records in this tree. How many additional records could be added to this tree without changing its height (give the maximum possible number)? (3 marks)
- 2) Show the B+ tree after deleting the data entry with key 49 from the original tree. (3 marks)