Solucions Problemes 1.7, 1.11, 5.6, 5.7, 5.11, 5.15

Problema 1.7 de la col.lecció

Tenim dos implementacions diferents del mateix ISA, on hi han 4 classes d'instruccions A, B, C, D. La taula següent mostra la freqüencia de rellotge i el CPI de cada classe, per les dues implementacions.

	Clock Rate	CPI A	CPI B	CPI C	CPI D
P1	$1.5~\mathrm{Ghz}$	1	2	3	4
P2	2 Ghz	2	2	2	2

- 1. Quin seria el CPI en mitjana de cada implementació, suposant un programa de 10^6 instruccions distribuïdes de la forma : 10% Classe A, 20% Classe B, 50% Classe C i 20% Classe D?
- 2. Quina de les dues implementacions és mes ràpida, suposant un programa 10⁶?

SOLUCIÓ:

1.
$$CPI_{P1} = 0, 1 * 1 + 0, 2 * 2 + 0, 5 * 3 + 0, 2 * 4 = 2, 8$$
 cicles. $CPI_{P2} = 0, 1 * 2 + 0, 2 * 2 + 0, 5 * 2 + 0, 2 * 2 = 2$ cicles.

2.
$$Texe_{P1} = 10^6 * (0, 1*1+0, 2*2+0, 5*3+0, 2*4) * (1/1, 5) * 10^{-9} = 10^6 * 1, 87*10^{-9} = 1, 87*10^{-3} = 1, 87ms.$$

 $Texe_{P2} = 10^6 * (0, 1*2+0, 2*2+0, 5*2+0, 2*2) * (1/2) * 10^{-9} = 10^6 * 1, 0*10^{-9} = 1, 0*10^{-3} = 1ms.$

P2 és més ràpid.

Problema 1.11 de la col.lecció

Tot i que la potència dinàmica és la principal font de disipació de la potència en una CMOS, la pèrdua produeix una disipació de la potencia estàtica, de la forma $V*I_{leak}$. Quant més petit és el circuit més significativa és la potència estatica. La taula següent ens mostra la dissipació de potència estatica i dinamica per a dues generacions de processadors.

		Tecnologia (nm)	Potència dinàmica (W)	Potència estàtica (W)	Voltatge (V)
	a	250	49	1	3.3
Ī	b	90	75	45	1.1

- Troba quin percentatge de potència total dissipada correspon a la potència estàtica i dinàmica en cada generació.
- 2. Si la potència estàtica depén de la corrent de pèrdua (I_{leak}) , $P = V * I_{leak}$. Troba la corrent de pèrdua en cada tecnologia.
- 3. En quin percentatge podríem reduir la potència total de cada processador reduint només la potència dinàmica?

SOLUCIÓ:

1. (a)
$$\%P_s = 1/50 = 2\%$$
; $\%P_d = 49/50 = 98\%$
(b) $\%P_s = 45/120 = 37,5\%$; $\%P_d = 75/120 = 62,5\%$

```
2. (a) I_{leak} = P_s/V = 1/3, 3 = 0, 3A
(b) I_{leak} = P_s/V = 45/1, 1 = 40, 90A
```

```
3. P_1 = \lim_{P_d \to 0} P =Potència estàtica. (a) %millora = \frac{P_0 - P_1}{P_0} = \frac{50 - 1}{50} = \frac{49}{50} = 0,98 \to 98\% (50/1 = 50 vegades) (b) %millora = \frac{P_0 - P_1}{P_0} = \frac{120 - 45}{120} = \frac{75}{120} = 0,625 \to 62,5\% (120/45 = 2,67 vegades)
```

Problema 5.6 de la col.lecció

La condición de desbordamiento (overflow) de la suma de dos números naturales a y b de 32 bits es fácil de comprobar habiendo realizado la suma s, pues en ese caso el valor de s (incorrecto) resulta ser menor que cualquiera de los dos sumandos. En efecto, debido al desbordamiento se cumple que $s=a+b-2^{32}$. Puesto que se cumple $b<2^{32}$, se cumple también que $a+b-2^{32}< a$, es decir s< a (análogamente se demuestra s< b). Basándote en esta propiedad, haz un programa que, dadas dos variables naturales de 32 bits almacenadas en \$t1 y \$t2, calcule si su suma (\$t0 = \$t1 + \$t2), una vez realizada, ha producido desbordamiento (carry), en cuyo caso debe guardar un 1 en \$t3, o bien un 0 en caso contrario. El programa no debe contener ninguna instrucción de salto.

```
(SOLUCIÓ)

addu $t0, $t1, $t2

sltu $t3, $t0, $t2 #suma < b
```

Problema 5.7 de la col.lecció

La condición de desbordamiento (overflow) de la suma de dos números naturales de 32 bits a y b también se puede calcular antes de realizar la suma: la condición es $a+b>2^{32}-1$. Lo cual equivale a: $a+b>a+\bar{a}$. Lo cual equivale a: $b>\bar{a}$. Basándote en esta propiedad, haz un programa que, dadas dos variables naturales de 32 bits almacenadas en \$t1 y \$t2, calcule anticipadamente si su suma produciría desbordamiento (pero sin calcularla), en cuyo caso debe guardar un 1 en \$t3, o bien un 0 en caso contrario. El programa no debe contener ninguna instrucción de salto.

```
nor $t0, $zero, $t1 #not(a)
sgtu $t3, $t2, $t0 #b > not(a)
```

(SOLUCIÓ)

Problema 5.11 de la col·lecció

Suposant el circuit del problema 5.10, descriu els passos necessaris per a la multiplicació dels nombres naturals de 6 bits X (multiplicand) i Y (multiplicador), calculant en cada pas el valor dels registres P, MD i MR, en binari:

```
IT2: |P= 000001111000|MR=000100|
   |MD=000010100000|
-----
IT3: |P= 000001111000|MR=000010|
    |MD=000101000000|
_____
IT4: |P= 000001111000|MR=000001|
    |MD=001010000000|
IT5: |P= 001011111000|MR=000000|
   |MD=01010000000|
_____
IT6: |P= 0010111111000|MR=000000|
    |MD=10100000000|
b)Suposant X=110110, Y=000100
-----
INI: | P= 00000000000 | MR=000100 |
    |MD=00000110110|
_____
IT1: |P= 000000000000|MR=000010|
   |MD=000001101100|
_____
IT2: |P= 00000000000|MR=000001|
   |MD=000011011000|
_____
IT3: |P= 000011011000|MR=000000|
   |MD=000110110000|
IT4: |P= 000011011000|MR=000000|
    |MD=001101100000|
_____
IT5: |P= 000011011000|MR=000000|
    |MD=011011000000|
_____
IT6: |P= 000011011000|MR=000000|
   |MD=110110000000|
```

Problema 5.15 de la col.lecció

Suposant el circuit del problema 5.14, descriu els passos necessaris per a la divisió dels nombres naturals de 6 bits X (dividend) entre Y (divisor), calculant en cada pas el valor dels registres R, D i Q, en binari:

	D=000010011000
IT4:	R= 000000101000 Q=000000 D=000001001100
IT5:	R= 00000000010 Q=000001 D=000000100110
IT6:	R= 00000000010 Q=000010 D=00000010011
b) Su	posant X=010101, Y=100100
INI:	R= 000000010101 Q=000000 D=100100000000
IT1:	R= 000000010101 Q=000000 D=010010000000
IT2:	R= 000000010101 Q=000000 D=001001000000
IT3:	R= 000000010101 Q=000000 D=0001001000000
IT4:	R= 000000010101 Q=000000 D=000010010000
IT5:	R= 000000010101 Q=000000 D=000001001000
IT6:	R= 000000010101 Q=000000 D=000000100100
-	