La primera RN – El Perceptrón

- □ Está formada por una única neurona.
- Utiliza aprendizaje supervisado.
- Su regla de aprendizaje es una modificación de la propuesta por Hebb.
- Se adapta teniendo en cuenta el error entre la salida que da la red y la salida esperada.
- Representa una única función discriminante que separa linealmente los ejemplos en dos clases.

Perceptrón

$$y = \begin{cases} 1 & si \ neta \ge \theta \\ 0 & si \ neta < \theta \end{cases}$$

Ejemplo

 Verifique si la siguiente red neuronal se comporta como la función lógica AND

AND

$$w_1 = 1$$
 $w_2 = 1$ $\theta = 1.5$

x_1	x_2	neta	salida
0	0	0	0
0	1	1	0
1	0	1	0
1	1	2	1

Graficar la función discriminante (recta)

Función discriminante

$$x_1 w_1 + x_2 w_2 = \theta$$

$$x_1 + x_2 = 1.5$$

Entrenamiento del perceptrón

- Se busca una estrategia iterativa que permita adaptar los valores de las conexiones a medida que se presentan los datos de entrada.
- Ver que el estímulo de entrada se corresponde con el producto interior de los vectors X y W.

7

Producto interior

$$w \cdot x = ||w|| \cdot ||x|| \cdot COS(\phi)$$

$$w \cdot x = \sum_{i=1}^{n} w_i x_i$$

Vector de proyección

$$W_x \cdot ||x|| = W \cdot X$$

Uso del vector de proyección

9

$$W_x \parallel X \parallel = \theta$$

$$W.X = \theta$$

$$W.X > \theta$$

$$W.X < \theta$$

Entrenamiento del Perceptrón

- Inicializar los pesos de las conexiones con valores random (vector W)
- · D Mientras no se clasifiquen todos los ejemplos correctamente
 - □ Ingresar un ejemplo a la red.
 - □ Si fue clasificado incorrectamente
 - Si esperaba obtener W.X > θ y no lo logró, "acerque" el vector W al vector X.
 - Si esperaba obtener W.X < θ y no lo logró, "aleje" el vector W al vector X.

Aprendizaje supervisado

Ajuste del vector de pesos

 \square Si $W.X < \theta$ no es el valor esperado entonces acercar W a X de la siguiente forma

$$w' = w + \alpha x$$

 \square Si $W.X>\theta$ no es el valor esperado entonces alejar W a X de la siguiente forma

$$w' = w - \alpha x$$

La velocidad de aprendizaje lpha es un valor real perteneciente a (0,1]

Ajuste del vector de pesos

- □ La salida del perceptrón es $y = \begin{cases} 1 & si \ W.X \ge \theta \\ 0 & si \ W.X < \theta \end{cases}$
- La actualización de los pesos puede calcularse como

$$w_{nuevo} = w + \alpha (t - y) x$$

donde

- t es valor esperado
- $\square y$ es valor obtenido

Ajuste del vector de pesos

- □ La salida del perceptrón es $y = \begin{cases} 1 & si \ W.X \ge \theta \\ 0 & si \ W.X < \theta \end{cases}$
- La actualización de los pesos puede calcularse como

$$w_{nuevo} = w + \alpha (t - y) x$$

donde

- t es valor esperado
- $\square y$ es valor obtenido

Entrenamiento del perceptrón

- \square Seleccionar el valor de α y θ
- Inicializar los pesos de las conexiones con valores random (vector W)
- Mientras no se clasifiquen todos los ejemplos correctamente
 - □ Ingresar un ejemplo a la red.
 - □ Si fue clasificado incorrectamente

Ejemplo 1

 Entrenar un perceptrón para que se comporte como la función lógica AND.

Utilice

$$\alpha = 0.3$$

$$\theta = 1.5$$

W₁ y W₂ comienzan con valores aleatorios

16

X1	X2	Т	W1 _t	W2 _t		W1 _{t+1}	W2 _{t+1}
0 1 0 1	0 0 1 1	0 0 0 1	0.00 0.00 0.00 0.00	0.25 0.25 0.25 0.25 0.25	0 0 0 0	0.00 0.00 0.00 0.30	0.25 0.25 0.25 0.25 0.55

Repetir hasta que sean iguales

AND

 $W1_{t+1} = W1_t + 0.3 (T-Y) X1$ $W2_{t+1} = W2_t + 0.3 (T-Y) X2$

	X1	X2	Т	W1 _t	W2 _t	Y	$W1_{t+1}$	$W2_{t+1}$
	0	0	0	0.00	0.25	0	0.00	0.25
	1	0	0	0.00	0.25	0	0.00	0.25
	0	1	0	0.00	0.25	0	0.00	0.25
	1	1	1	0.00	0.25	0	0.30	0.55
•	0	0	0	0.30	0.55	0	0.30	0.55
	1	0	0	0.30	0.55	0	0.30	0.55
	0	1	0	0.30	0.55	0	0.30	0.55
_	1	1	11	0.30	0.55	0	0.60	0.85
	0	0	0	0.60	0.85	0	0.60	0.85
	1	0	0	0.60	0.85	0	0.60	0.85
	0	1	0	0.60	0.85	0	0.60	0.85
	1	1	1	0.60	0.85	0	0.90	1.15
	0	0	0	0.90	1.15	0	0.90	1.15
	1	0	0	0.90	1.15	0	0.90	1.15
	0	1	0	0.90	1.15	0	0.90	1.15
	1	1	1	0.90	1.15	1	0.90	1.15

El proceso se repite hasta comprobar que todos los ejemplos son clasificados correctamente

X1	Х2	Т	W1 _t	W2 _t	Y	$W1_{t+1}$	$W2_{t+1}$
0	0	0	0.00	0.25	0	0.00	0.25
1	0	0	0.00	0.25	0	0.00	0.25
0	1	0	0.00	0.25	0	0.00	0.25
1	1	1	0.00	0.25	0	0.30	0.55
0	0	0	0.30	0.55	0	0.30	0.55
1	0	0	0.30	0.55	0	0.30	0.55
0	1	0	0.30	0.55	0	0.30	0.55
1	1	1	0.30	0.55	0	0.60	0.85
0	0	0	0.60	0.85	0	0.60	0.85
1	0	0	0.60	0.85	0	0.60	0.85
0	1	0	0.60	0.85	0	0.60	0.85
1	1		0.60	0.85		0.90	1.15
0	0	0	0.90	1.15	0	0.90	1.15
1	0	0	0.90	1.15	0	0.90	1.15
0	1	0	0.90	1.15	0	0.90	1.15
1	1	1	0.90	1.15	1	0.90	1.15

Perceptrón

$$neta = \sum_{i} x_i w_i \qquad y = \begin{cases} 1 & si \ neta \ge 0 \\ 0 & si \ neta < 0 \end{cases}$$

Ejemplo 2

 Entrenar un perceptrón para que se comporte como la función lógica AND.

Utilice

$$\alpha = 0.25$$
 W_0 , W_1 y W_2 comienzan con valores aleatorios

Ejemplo 2

 Entrenar un perceptrón para que se comporte como la función lógica AND.

Utilice

$$\alpha = 0.25$$
 b, W_1 y W_2 comienzan con valores aleatorios

ECUACIÓN EXPLÍCITA DE LA RECTA

$$\alpha = 0.25$$

W1	W2	b
-1	1	0.2

X1	X2	T	Neta	Y
0	0	0	0.2	1

W1 = W1 + alfa *
$$(T-Y)$$
 * X1 = -1 + 0.25* $(0-1)$ *0 = -1
W2 = W2 + alfa * $(T-Y)$ * X2 = 1 + 0.25* $(0-1)$ *0 = 1
b = b + alfa * $(T-Y)$ * 1 = 0.2 + 0.25* $(0-1)$ = -0.05

$$\alpha = 0.25$$

W1	W2	b
-1	1	-0.05

X1	X2	T	Neta	Y
0	1	0	0.95	1

W1 = W1 + alfa *
$$(T-Y)$$
 * X1 = -1 + 0.25* $(0-1)$ *0 = -1
W2 = W2 + alfa * $(T-Y)$ * X2 = 1 + 0.25* $(0-1)$ *1 = 0.75
b = b + alfa * $(T-Y)$ * 1 = -0.05 + 0.25* $(0-1)$ = -0.3

 $\alpha = 0.25$

W1	W2	b
-1	0.75	-0.3

X1	X2	T	Neta	Y
1	0	0	-1.3	0

$$\alpha = 0.25$$

W1	W2	b
-1	0.75	-0.3

X1	X2	T	Neta	Y
1	1	1	-0.55	0

$$\alpha = 0.25$$

W1	W2	b
-0.75	1	-0.05

X1	X2	T	Neta	Y
0	0	0	-0.05	0

$$\alpha = 0.25$$

W1	W 2	b
-0.75	1	-0.05

X1	X2	T	Neta	Y
0	1	0	0.95	1

W1 = W1 + alfa * (T-Y) * X1 =
$$-0.75 + 0.25*(0-1)*0 = -0.75$$

W2 = W2 + alfa * (T-Y) * X2 = 1 + $0.25*(0-1)*1 = 0.75$
b = b + alfa * (T-Y) * 1 = $-0.05 + 0.25*(0-1) = -0.3$

$$\alpha = 0.25$$

W1	W2	b	
-0.75	0.75	-0.3	

X1	X2	T	Neta	Y
1	0	0	-1.05	0

$$\alpha = 0.25$$

W1	W 2	b	
-0.75	0.75	-0.3	

X1	X2	T	Neta	Y
1	1	1	-0.3	0

W1 = W1 + alfa * (T-Y) * X1 =
$$-0.75 + 0.25*(1-0)*1 = -0.5$$

W2 = W2 + alfa * (T-Y) * X2 = $0.75 + 0.25*(1-0)*1 = 1$
b = b + alfa * (T-Y) * 1 = $-0.3 + 0.25*(1-0) = -0.05$

$$\alpha = 0.25$$

W1	W 2	b
-0.5	1	-0.05

X1	X2	T	Neta	Y
0	0	0	-0.05	0

$$\alpha = 0.25$$

W1	W2	b
-0.5	1	-0.05

X1	X2	T	Neta	Y
0	1	0	0.95	1

W1 = W1 + alfa * (T-Y) * X1 =
$$-0.5 + 0.25*(0-1)*0 = -0.5$$

W2 = W2 + alfa * (T-Y) * X2 = 1 + $0.25*(0-1)*1 = 0.75$
b = b + alfa * (T-Y) * 1 = $-0.05 + 0.25*(0-1) = -0.3$

$$\alpha = 0.25$$

W1	W 2	b	
-0.5	0.75	-0.3	

X1	X2	T	Neta	Y
1	0	0	-0.8	0

$$\alpha = 0.25$$

W1	W2	b	
-0.5	0.75	-0.3	

X1	X2	T	Neta	Y
1	1	1	-0.05	0

W1 = W1 + alfa * (T-Y) * X1 =
$$-0.5 + 0.25*(1-0)*1 = -0.25$$

W2 = W2 + alfa * (T-Y) * X2 = $0.75 + 0.25*(1-0)*1 = 1$
b = b + alfa * (T-Y) * 1 = $-0.3 + 0.25*(1-0) = -0.05$

$$\alpha = 0.25$$

W1	W2	b
-0.25	1	-0.05

X1	X2	T	Neta	Y
0	0	0	-0.05	0

$$\alpha = 0.25$$

W1	W2	b
-0.25	1	-0.05

X1	X2	T	Neta	Y
0	1	0	0.95	1

W1 = W1 + alfa * (T-Y) * X1 =
$$-0.25 + 0.25*(0-1)*0 = -0.25$$

W2 = W2 + alfa * (T-Y) * X2 = 1 + $0.25*(0-1)*1 = 0.75$
b = b + alfa * (T-Y) * 1 = $-0.05 + 0.25*(0-1) = -0.3$

 $\alpha = 0.25$

W1	W2	b
-0.25	0.75	-0.3

X1	X2	T	Neta	Y
1	0	0	-0.55	0

 $\alpha = 0.25$

W1	W 2	b	
-0.25	0.75	-0.3	

X1	X2	T	Neta	Y
1	1	1	0.2	1

AND – Iteración 5

$$\alpha = 0.25$$

W1	W2	b	
0	0.75	-0.3	

AND - Iteración 6

$$\alpha = 0.25$$

W1	W2	b
0.25	0.75	-0.3

AND – Iteración 7

$$\alpha = 0.25$$

W1	W2	b
0.25	0.5	-0.55

AND - Iteración 8

$$\alpha = 0.25$$

W1	W2	b
0.25	0.5	-0.55

Veamos cómo implementar el algoritmo de entrenamiento del **Perceptrón**

```
import numpy as np
import grafica as gr
```

```
# ---- FUNCION AND -----
X = np.array([[0, 1], [1,0],[0,0],[1,1]])
T = np.array([0, 0, 0, 1])
```



```
import numpy as np
import grafica as gr
   --- FUNCION AND --
X = np.array([[0, 1], [1,0],[0,0],[1,1]])
T = np.array([0, 0, 0, 1])
  --- Pesos iniciales ---
W = np.array([-1.0, 1.0])
b = 0.2
# Recta --> w1*x1 + w2*x2 + b = 0
```

gr.dibuPtosRecta(X,T,W,b)

Entrenamiento del perceptrón

- \square Seleccionar el valor de α
- Inicializar los pesos de las conexiones con valores random (vector W y el bias b)
- Mientras no se clasifiquen todos los ejemplos correctamente
 - Ingresar uno a uno los ejemplos a la red.
 - Para cada ejemplo incorrectamente clasificado

$$W_{nuevo} = W + \alpha (t - y) X$$

$$b_{nuevo} = b + \alpha (t - y)$$

```
import numpy as np
from grafica import *
from ClassPerceptron import Perceptron
X = np.array([[0, 1], [1,0],[0,0],[1,1]])
T = np.array([0, 0, 0, 1])
#--- ENTRENAMIENTO ---
ppn = Perceptron(alpha=0.1, n iter=30, draw=1, title=['X1', 'X2'])
ppn.fit(X, T)
#--- Uso del perceptrón ---
Y = ppn.predict(X)
aciertos = sum(Y == T)
print("aciertos = ", aciertos)
nAciertos = sum(Y==T)
print("%% de aciertos = %.2f %%" %(100*nAciertos/X.shape[0]))
```

ClassPerceptron.py

- Parámetros de entrada
 - alpha: valor en el intervalo (0, 1] que representa la velocidad de aprendizaje.
 - n_iter: máxima cantidad de iteraciones a realizar.
 - draw: valor distinto de 0 si se desea ver el gráfico y 0 si no. Sólo si es 2D.
 - title: lista con los nombres de los ejes para el gráfico. Se usa sólo si draw no es cero.
 - random_state: None si los pesos se inicializan en forma aleatoria, un valor entero para fijar la semilla

ClassPerceptron.py

```
ppn = Perceptron(alpha=0.1, n_iter=30)
ppn.fit(X, T)
```

Parámetros de entrada

- X : arreglo de NxM donde N es la cantidad de ejemplos y M la cantidad de atributos.
- T : arreglo de N elementos siendo N la cantidad de ejemplos

Retorna

- □ w_: arreglo de M elementos siendo M la cantidad de atributos de entrada
- b_: valor numérico continuo correspondiente al bias.
- errors_: errores cometidos en cada iteración.

ClassPerceptron.py

Y = ppn.predict(X)

- Parámetros de entrada
 - X : arreglo de NxM donde N es la cantidad de ejemplos y M la cantidad de atributos.

- Retorna: un arreglo con el resultado de aplicar el perceptrón entrenado previamente con fit() a la matriz de ejemplos X.
 - Y : arreglo de N elementos siendo N la cantidad de ejemplos

- Sobre una cinta transportadora circulan naranjas y melones. Se busca obtener un clasificador de frutas que facilite su almacenamiento. Para cada fruta se conoce su diámetro, en centímetros y su intensidad de color naranja, medida entre 0 y 255.
- Utilice la información del archivo FrutasTrain.csv para entrenar un perceptrón que permita resolver el problema.
- Analice la performance de la red obtenida utilizando las muestras del archivo FrutasTest.csv

Perceptron_Frutas.ipynb

```
titulos

['Diametro', 'Color']

W

array([ 3.51034542, -0.41478193])

b

0.2536257868554866
```

 El resultado es una función discriminante lineal (en este caso una recta) que separa los datos de entrada en dos clases

3.51034542 * diametro - 0.41478193 * color + 0.253625787

Diametro	Color	Clase	ase Neta Predice		Corresponde a	
10	200	Naranja	-47 . 5993	0	Naranja	
20	30	Melon	58.0171	1	Melon	
8	150	Naranja	-33.8809	0	Naranja	
26	30	Melon	79.0791	1	Melon	
7	170	Naranja	-45.6869	0	Naranja	
24	32	Melon	71.2289	1	Melon	
20	170	Naranja	-0.0524	0	Naranja	
21	160	Melon	7.6058	1	Melon	
21	180	Naranja	-0.6899	0	Naranja	
23	160	Melon	14.6265	1	Melon	
22	190	Naranja	-1.3273	0	Naranja	
23	190	Melon	2.1830	1	Melon	
24	250	Naranja	-19.1936	0	Naranja	
15	31	Melon	40.0506	1	Melon	
15	250	Naranja	-50.7867	0	Naranja	
19	31	Melon	54.0919	1	Melon	

Uso del perceptrón

□ Ejemplos del archivo FrutasTest.csv

3.51034542 * diametro - 0.41478193 * color + 0.253625787

Diametro	Color	Clase Neta Predice		Corresponde a		
7	100	Naranja	-16.6521	0	Naranja	
20	20	Melon 62.1649 1		Melon		
25	70	Melon	58.9775	58.9775 1 Me		
10	210	Naranja	-51.7471	0	Naranja	

```
import pandas as pd
import numpy as np
from sklearn import preprocessing
datos = pd.read csv("../Datos/FrutasTrain.csv")
xTrain = np.array(datos.iloc[:,0:2])
#--- Escala los valores entre 0 y 1 ---
normalizador = preprocessing.MinMaxScaler()
xTrain = normalizador.fit transform(xTrain)
datosTest = pd.read csv("../Datos/FrutasTest.csv")
xTest = np.array(datosTest.iloc[:,0:2])
#--- normalizando los datos de testeo ---
xTest = normalizador.transform(xTest)
```

- □ Entrene el perceptrón
 - Normalizando los ejemplos linealmente
 - Normalizando los ejemplos utilizando los valores de media y desvío
- Pruebe ingresando
 - Las frutas en orden aleatorio
 - Las naranjas primero
 - Los melones primero

Se busca predecir si el tipo de fármaco que se debe administrar a un paciente afectado de rinitis alérgica es el habitual (DrugY) o no.

- Para ello se hará uso de la información disponible en las historias clínicos de pacientes atendidos previamente. Las variables relevadas son:
 - Age: Edad
 - Sex: Sexo
 - BP (Blood Pressure): Tensión sanguínea.
 - Cholesterol: nivel de colesterol.
 - Na: Nivel de sodio en la sangre.
 - K: Nivel de potasio en la sangre.
 - Cada paciente ha sido medicado con un único fármaco de entre cinco posibles: DrugA, DrugB, DrugC, DrugX, DrugY.

• El archivo **DrugY.csv** contiene 200 muestras de pacientes atendidos previ<u>amente.</u>

Nro.	Age	Sex	ВР	Colesterol	Na	К	Drug
1	23	F	HIGH	HIGH	0,792535	0,031258	drugY
2	47	М	LOW	HIGH	0,739309	0,056468	drugC
3	47	М	LOW	HIGH	0,697269	0,068944	drugC
4	28	F	NORMAL	HIGH	0,563682	0,072289	drugX
5	61	F	LOW	HIGH	0,559294	0,030998	drugY
197	16	М	LOW	HIGH	0,743021	0,061886	drugC
198	52	М	NORMAL	HIGH	0,549945	0,055581	drugX
199	23	М	NORMAL	NORMAL	0,78452	0,055959	drugX
200	40	F	LOW	NORMAL	0,683503	0,060226	drugX

- Entrene un perceptrón para predecir si el tipo de fármaco que se debe administrar a un paciente afectado de rinitis alérgica es el habitual (DrugY) o no. Utilice el 80% de los ejemplos para entrenar y el 20% para testear.
 - Pruebe ambas numerizaciones.
 - Pruebe resolver el problema
 - Sin normalizar los datos
 - Normalizando linealmente
 - Normalizando utilizando media y desvío