

МОСТДОРГЕОТРЕСТ испытательная лаборатория 129344, г. Москва, ул. Искры, д.31, к.1

СВИДЕТЕЛЬСТВО ОБ АККРЕДИТАЦИИ № ИЛ/ЛРИ-01936 Срок действия с 03.09.2021 до 03.09.2026 РЕЕСТР ГЕОНАДЗОРА г. МОСКВЫ №27 (РЕЙТИНГ №4)

ОПРЕДЕЛЕНИЕ СЕЙСМИЧЕСКОЙ РАЗЖИЖАЕМОСТИ ГРУНТОВ МЕТОДОМ ЦИКЛИЧЕСКИХ ТРЁХОСНЫХ СЖАТИЙ С РЕГУЛИРУЕМОЙ НАГРУЗКОЙ (ГОСТ 56353-2015, ASTM D5311/ASTM D5311M-13)

Протокол ист	пытаний №		Py .		
Заказчик:	1 1				
Объект:	-4		4		
Привязка про	обы (скв.; глубина отбора):		ИГЭ/РГЭ		
Лабораторны	ій номер №:				-
Наименовани	ие грунта:	240 1	77-	7.46	1177

ХАРАКТЕРИСТИКИ ГРУНТА

ľ [$ρ_s$, $Γ/c M^3$	ρ, г/cм ³	$ρ_d$, $Γ/c M^3$	n, %	е, ед.	W, %	Sr, д.е.	I _P , %	Іь, ед.	Ir, %
. [-			1	, and the second		

СВЕДЕНИЯ ОБ ИСПЫТАНИИ

Режим испытания:	Анизотропная	Анизотропная реконсолидация, девиаторное циклическое нагружение								
Оборудование:	Камера трехосного сжатия динамическая ГТ 2.3.20, Wille Geotechnik 13-HG/020:001									
Параметры образца:	Высота, мм: 100 Диаметр, мм:			50						
σ' ₃ , кПа:	10	σ' ₁ , кПа:		14	τ _α , кПа:		3			
К ₀ , д.е.:	0,70	Частота, Гц:		0,5	I, балл:	7	7,0			
М, ед.:	5,0	MSF, ед.:	1	2,82	r _d , ед.:		0,989			

РЕЗУЛЬТАТЫ ИСПЫТАНИЯ

Исполнители:

Исполнительный директор / нач. ИЛ:

Научный руководитель ИЛ:

Главный инженер:

Жмылёв Д.А., Старостин П.А., Чалая Т.А., Михалева О.В.

Горшков Е.С., Доронин С.А.

Семенова О.В.

Академик РАЕН Озмидов О.Р. / к.т.н. Череповский А.В.

Жидков И.М.

Номер документа № Дата: Лист: 1/2

МОСТДОРГЕОТРЕСТ испытательная лаборатория 129344, г. Москва, ул. Искры, д.31, к.1

СВИДЕТЕЛЬСТВО ОБ АККРЕДИТАЦИИ № ИЛ/ЛРИ-01936 Срок действия с 03.09.2021 до 03.09.2026 РЕЕСТР ГЕОНАДЗОРА г. МОСКВЫ №27 (РЕЙТИНГ №4)

ОПРЕДЕЛЕНИЕ СЕЙСМИЧЕСКОЙ РАЗЖИЖАЕМОСТИ ГРУНТОВ МЕТОДОМ ЦИКЛИЧЕСКИХ ТРЁХОСНЫХ СЖАТИЙ С РЕГУЛИРУЕМОЙ НАГРУЗКОЙ (ГОСТ 56353-2015, ASTM D5311/ASTM D5311M-13)

Протокол ис	пытаний №	 77.7		 74,34
Заказчик:		4077		4077
Объект:	44	* 4		***
Привязка пр	обы (скв.; глубина отбора):		ИГЭ/РГЭ:	
Лабораторны	ый номер №:	344		344
Наименован	ие грунта:	17		17

ХАРАКТЕРИСТИКИ ГРУНТА

	A				A STATE OF THE STA	The second second			A STATE OF THE STA		40
r	ρ_s , Γ/cm^3	ρ, г/см ³	ρ_d , г/см ³	n, %	е, ед.	W, %	Sr, д.е.	I _P , %	Ι _L , ед.	Ir, %	ı
			-	-	_		-	-		7.7	Г

СВЕДЕНИЯ ОБ ИСПЫТАНИИ

Режим испытания:	Анизотропная	Анизотропная реконсолидация, девиаторное циклическое нагружение							
Оборудование:	Камера трехос	Камера трехосного сжатия динамическая ГТ 2.3.20, Wille Geotechnik 13-HG/020:001							
Параметры образца:	Высота, мм: 100 Диаметр, мм:			50					
σ' ₃ , кПа:	10	σ' ₁ , кПа:		14	τ _α , кПа:		3		
К ₀ , д.е.:	0,70	Частота, Гц:		0,5	I, балл:	7	7,0		
М, ед.: 5,0		MSF, ед.:	ř	2,82	r _d , ед.:		0,989		

РЕЗУЛЬТАТЫ ИСПЫТАНИЯ

Исполнители:

Исполнительный директор / нач. ИЛ:

Научный руководитель ИЛ:

Главный инженер:

Жмылёв Д.А., Старостин П.А., Чалая Т.А., Михалева О.В.

Горшков Е.С., Доронин С.А.

Семенова О.В.

Академик РАЕН Озмидов О.Р. / к.т.н. Череповский А.В.

Жидков И.М.

Номер документа №: Дата: Лист: 2/2