CS 4110

Programming Languages & Logics

Lecture 8
Denotational Semantics Proofs

Determinism in Small-Step Semantics

Determinism: every configuration has at most one successor

$$\forall e \in \mathbf{Exp}. \ \forall \sigma, \sigma', \sigma'' \in \mathbf{Store}. \ \forall e', e'' \in \mathbf{Exp}.$$
 if $\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle$ and $\langle \sigma, e \rangle \rightarrow \langle \sigma'', e'' \rangle$ then $e' = e''$ and $\sigma' = \sigma''$.

A different property, which you can call confluence:

If
$$\langle \sigma, e \rangle \rightarrow^* \langle \sigma', e' \rangle$$
 and $\langle \sigma, e \rangle \rightarrow^* \langle \sigma'', e'' \rangle$ and neither $\langle \sigma', e' \rangle$ nor $\langle \sigma'', e'' \rangle$ can take a step then $e' = e''$ and $\sigma' = \sigma''$.

Kleene Fixed-Point Theorem

Definition (Scott Continuity)

A function F is Scott-continuous if for every chain $X_1 \subseteq X_2 \subseteq ...$ we have $F(\bigcup_i X_i) = \bigcup_i F(X_i)$.

Kleene Fixed-Point Theorem

Definition (Scott Continuity)

A function F is Scott-continuous if for every chain $X_1 \subseteq X_2 \subseteq ...$ we have $F(\bigcup_i X_i) = \bigcup_i F(X_i)$.

Theorem (Kleene Fixed Point)

Let F be a Scott-continuous function. The least fixed point of F is $\bigcup_i F^i(\emptyset)$.

Denotational Semantics for IMP Commands

```
\mathcal{C}\llbracket \mathsf{skip} \rrbracket = \{(\sigma, \sigma)\}
\mathcal{C}[x := a] = \{(\sigma, \sigma[x \mapsto n]) \mid (\sigma, n) \in \mathcal{A}[a]\}
\mathcal{C}\llbracket c_1; c_2 \rrbracket =
              \{(\sigma,\sigma')\mid \exists \sigma''.\ ((\sigma,\sigma'')\in \mathcal{C}\llbracket c_1\rrbracket \land (\sigma'',\sigma')\in \mathcal{C}\llbracket c_2\rrbracket)\}
\mathcal{C}\llbracket \text{if } b \text{ then } c_1 \text{ else } c_2 \rrbracket =
              \{(\sigma,\sigma')\mid (\sigma,\mathsf{true})\in\mathcal{B}\llbracket b\rrbracket\wedge(\sigma,\sigma')\in\mathcal{C}\llbracket c_1\rrbracket\}\ \cup
              \{(\sigma, \sigma') \mid (\sigma, \mathsf{false}) \in \mathcal{B}\llbracket b \rrbracket \land (\sigma, \sigma') \in \mathcal{C}\llbracket c_2 \rrbracket \}
\mathbb{C}[\mathbf{while}\ b\ \mathbf{do}\ c] = fix(f)
where F(f) = \{(\sigma, \sigma) \mid (\sigma, \mathbf{false}) \in \mathcal{B}[\![b]\!]\} \cup
              \{(\sigma, \sigma') \mid (\sigma, \mathsf{true}) \in \mathcal{B}\llbracket b \rrbracket \land \exists \sigma''. ((\sigma, \sigma'') \in \mathcal{C}\llbracket c \rrbracket \land \sigma''\}
                                           (\sigma'', \sigma') \in f
```

Exercises

 \mathbf{skip} ; c and c; \mathbf{skip} are equivalent.

Exercises

skip; *c* and *c*; **skip** are equivalent.

 $\mathcal{C}[\![$ while false do $c]\![$ is equivalent to...

Exercises

skip; c and c; **skip** are equivalent. $\mathcal{C}[\![\mathbf{while\ false\ do\ }c]\!]$ is equivalent to... $\mathcal{C}[\![\mathbf{while\ true\ do\ skip}]\!]$