order of the graph's adjacency lists.

	Yes	No
(A,B) (A,F) (B,D) (B,E) (D,C)	0	◎ ✓
(A,B) (A,C) (A,F) (B,D) (F,E)	○ ✓	0
(A,B) (A,C) (B,E) (C,D) (E,F)	0	◎ ✓
(A,B) (A,C) (A,F) (C,D) (F,E)	⊙ ✓	0
(A,B) (A,C) (A,F) (B,E) (C,D)	⊙ ✓	0

A function, f, is shown in the diagram below:

What is the range of f? Select the correct answer below.

Α	$\{a,b,c\}$	
В	$\{2,4\}$	~
С	$\{1,2,3,4\}$	
D	$\{2,2,4\}$	

Consider the function

$$f(x) = \frac{99}{2x-50} + 31.$$

What is the range of the inverse function f^{-1} ? Write your answer as an integer between 0 and 99.

Range of f⁻¹: ℝ\{ 25

Write the following as a single logarithm

$$\frac{1}{2}\log(x) + 3\log(y) - 4\log(x-y)$$

Write your answers as two integers between 0 and 99.

$$\log\left(\frac{\sqrt{x}\cdot y^{\boxed{3}}}{(x-y)^{\boxed{4}}}\right)$$

We want to find $3^{26} \mod 11$ using the square and multiply algorithm. Fill in the missing values below in order to demonstrate correct use of the algorithm. If you only need to square, leave the non-squared box empty. State your answer as integers between 0 and 99.

A person deposits \$4 in an account with a 5% interest which is compounded annually. Define a sequence $\{P_n\}_{n=0}$ such that $P_0=4$ is the initial account balance (in dollars), P_1 is the account balance after one year has passed, P_2 is the account balance after 2 years has passed and so on. What is the (rounded) value of P_{30} ? Write your answer as an integer between 0 and 99 (Note: you will need to round of the answer. Make sure you do so correctly!).

~

A person deposits \$4 in an account with a 5% interest which is compounded annually. Define a sequence $\{P_n\}_{n=0}$ such that $P_0=4$ is the initial account balance (in dollars), P_1 is the account balance after one year has passed, P_2 is the account balance after 2 years has passed and so on. What is the (rounded) value of P_{30} ? Write your answer as an integer between 0 and 99 (Note: you will need to round of the answer. Make sure you do so correctly!).

17

~

How many number between 1 and 112 are relatively prime to 112? Write your answer as an integer between 0 and 99.

48

Check answer

Consider the congruence $ax \equiv 10 \mod 27$. It is known that the inverse of $a \mod 27$ is 11. Use this to determine the smallest positive value of x. State your answer as an integer between 0 and 99.

 $\chi = 2$

We want to find $4^{30} \mod 9$ using the square and multiply algorithm. Fill in the missing values below in order to demonstrate correct use of the algorithm. If you only need to square, leave the non-squared box empty. State your answer as integers between 0 and 99.

