Московский Государственный Университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики
Отчёт по второму заданию в рамках курса «Суперкомпьютерное моделирование и технологии»
ариант 16
кляр Никита Алексеевич, группа 614

Математическая постановка задачи и численный метод ее решения

Функция f(x, y, z) - непрерывна в ограниченной замкнутой области G⊂R3. Требуется вычислить определённый интеграл:

$$I = \iiint_C f(x, y, z) \ dxdydz$$

В моем варианте $f(x, y, z) = x^2 y^2 z^2$

где область
$$G = \{(x, y, z) : |x| + |y| \le 1, -2 \le z \le 2\}$$

Предлагается использовать численный метод Монте-Карло для решения данной задачи.

Пусть область G ограниченна параллелепипедом: $\Pi: \begin{cases} a_1 \leqslant x \leqslant b_1 \\ a_2 \leqslant y \leqslant b_2 \\ a_3 \leqslant z \leqslant b_3 \end{cases}$ Рассмотрим функцию: $F(x,y,z) = \begin{cases} f(x,y,z), & (x,y,z) \in G \\ 0, & (x,y,z) \notin G \end{cases}$

Рассмотрим функцию:
$$F(x,y,z)=\begin{cases} f(x,y,z), & (x,y,z)\in G\\ 0, & (x,y,z)\notin G \end{cases}$$

Преобразуем искомый интеграл:

$$I = \iiint\limits_G f(x, y, z) \ dxdydz = \iiint\limits_\Pi F(x, y, z) \ dxdydz$$

Пусть $p_1(x_1, y_1, z_1), p_2(x_2, y_2, z_2), \ldots$ — случайные точки, равномерно распределённые в Π . Возьмём n таких случайных точек. В качестве приближённого значения интеграла предлагается использовать выражение:

$$I \approx |\Pi| \cdot \frac{1}{n} \sum_{i=1}^{n} F(p_i) \tag{1}$$

где $|\Pi|$ — объём параллелепипеда Π . $|\Pi|=(b_1-a_1)(b_2-a_2)(b_3-a_3)$

Объем параллелепипеда (П) = 16.

Нахождение точного значения интеграла аналитически

$$T = SSS x^{2}y^{2}z^{2} dx dy dz$$

$$G = ((x, y, z): |x| + |y| \le 1, -2 \le 2 \le 2$$

$$\int_{-1}^{y} \int_{x}^{2} \frac{1}{1-2} dx dy dz = \{\pi . \kappa. x^{2}y^{2}z^{2} - \alpha \iota \iota \iota \iota \iota \iota \iota \iota \iota \mu p x, \varphi _{y} \star \iota e^{2}\}$$

$$= 8 \int_{0}^{2} dz \int_{0}^{2} dx \int_{0}^{2} x^{2}y^{2}z^{2} dy = 8 \int_{0}^{2} dz \int_{0}^{2} dx \cdot (-\frac{1}{3}(x-1)^{3}x^{2}z^{2}) = 8 \int_{0}^{2} \frac{1}{180} dz = \frac{16}{135}$$

Краткое описание программной реализации

Программа была написана на языке C++. Мастер процесс генерирует точки, отправляет их рабочим при помощи MPI_Sens и ожидает сложение сумм рабочих при помощи MPI_Reduce. Затем, если текущая точность удовлетворяет введенному значению, то мастер процесс отправляет каждому рабочему процессу сообщение 0, иначе 1. Рабочие ожидают точки при помощи MPI_Recv, а затем вычисляют значение функции, суммируют и отправляют мастеру, используя MPI_Reduce и MPI_Bcast. Когда достигается необходимая точность, рабочим отправляется 0 и выполняется редукция по максимальному времени работы процессов, выводится необходимая информация и выполняется MPI_Finalize.

Исследование масштабируемости программы на системе Polus

Точность ерѕ	Число МРІ-процессов	Время работы программы (с)	Ускорение	Ошибка
0.00003	2	0.00458883	1	1.62921e-06
	4	0.00271619	1.6894363060021574	1.62921e-06
	16	0.00336581	1.363365727714874	4.95751e-06
0.000005	2	0.00462808	1	1.62921e-06
	4	0.00277205	1.6695514150177666	1.62921e-06
	16	0.00294746	1.5701926404429577	4.95751e-06
0.0000015	2	0.0156421	1	1.31817e-06
	4	0.0115087	1.3591543788612093	6.68818e-07
	16	0.0105921	1.4767704232399619	5.82976e-07

Графики ускорений на системе Polus

