Prüfungsrelevante Verfahren, Sätze und Rechenregeln

2 Diskrete Strukturen

2.1 Mengenlehre und Kombinatorik

- zwei Mengen A und B sind gleich wenn sie die selben Elemente haben, d.h. wenn $A \subseteq B \land B \subseteq A$
- Beachte z.B. dass $\{\{1,2\},7\} \nsubseteq \mathbb{N}$
- Schnitt und Vereinigung sind kommutativ, assoziativ, distributiv in beide Richtungen; für Beweise kann es nützlich sein sich die Definitionen dieser Operationen in Erinnerung zu rufen; $\overline{A \cup B} = \overline{A} \cap \overline{B}, \overline{A \cap B} = \overline{A} \cup \overline{B}$
- $A \times B = \{(a,b) \mid a \in A \land b \in B\}$ heißt kartesisches Produkt oder Produktmenge; $|A \times B| = |A| \cdot |B|$
- **Potenzmenge** $\mathcal{P}(A)$ ist die Menge aller (auch unechten) Teilmengen von A, $|\mathcal{P}(A)| = 2^{|A|}$, es gilt stets $\emptyset \in \mathcal{P}(A)$

$$\bullet \ \binom{n}{k} = \frac{n!}{k!(n-k)!} = \binom{n}{n-k}; \ \binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

• Handschlaglemma: Anzahl der Teilnehmer einer Konferenz, die einer ungeraden Anzahl von Teilnehmern die Hand geben, ist immer gerade

2.2 Abbildungen

- für $f: A \to B, A' \subseteq A$ heißt $f[A'] = \{f(a) \mid a \in A'\}$ Bild von A' unter f
- injektiv: $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$ ("für jedes $b \in B$ existiert höchstens ein $a \in A$ mit f(a) = b") Beweise über Gegenbeispiel oder $f(a_1) = f(a_2)$ setzen
- surjektiv: f[A] = B ("für jedes $b \in B$ existiert mindestens ein $a \in A$ mit f(a) = b") Beweise über Gegenbeispiel oder Definitionsbereich der Umkehrfunktion untersuchen
- bijektiv: injektiv und surjektiv ("für jedes $b \in B$ existiert genau ein $a \in A$ mit f(a) = b")
- für f injektiv (!!) definieren wir $f^{-1}: f[A] \to A, b \mapsto f^{-1}(b) = a$ mit $f^{-1}(b) = a$ g.d.w. f(a) = b
- für $f: A \to B, g: B \to C$ ist **Komposition** $g \circ f: A \to C, x \mapsto g(f(x))$ (\Rightarrow von rechts nach links ausführen!!)

2.3 Permutationen

- **Permutation** von X ist bijektive Abbildung von X nach X, für $X = \{1, ..., n\}$ ist S_n Menge aller Permutationen und $\pi \in S_n$ mit $\pi = \begin{pmatrix} 1 & ... & n \\ \pi(1) & ... & \pi(n) \end{pmatrix}$ und $|S_n| = n!$
- **k-Zyklus** = k-Tupel der Form (a_1, \ldots, a_k) mit $\pi(a_k) = a_1, \pi(a_i) = a_{i+1}$, jedes Element von S_n kann als Komposition elementfremder Zyklen notiert werden: $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix} = (1, 2, 3) \circ (4, 5) = (123)(45)$
- bei elementfremden Zyklen ist Reihenfolge egal: (123)(45) = (45)(123); Elemente die auf sich selbst abgebildet werden heißen **Fixpunkte** und müssen nicht notiert werden: (123)(4) = (123); mit welchem Element im Zyklus angefangen wird ist Egal: (123)(45) = (312)(54)
- Transposition = 2-Zyklus, jedes Element von S_n kann mit Transpositionen geschrieben werden als: $(a_1 \dots a_k) = (a_1 a_2)(a_2 a_3) \dots (a_{k-1} a_k)$ (nicht elementfremd \Rightarrow Reihenfolge wichtig!!)
- bei Komposition von Permutationen für jede Zahl von rechts nach links durchgehen: $\underbrace{(123)}_{(2)}\underbrace{(35)}_{(1)} = \underbrace{(1235)}_{(3)}$ 5 wird in (1) auf 3 abgebildet, in (2) wird 3 auf 1 abgebildet, also $5 \to 3 \to 1$ und damit $5 \to 1$ in (3)
- für $\alpha = (125)(38)(47)$ ist $\operatorname{ord}(\alpha) = \operatorname{kgV}(\underbrace{3,2,2}_{\operatorname{ord\ der\ Zyklen}}) = 6 \Rightarrow \alpha^6 = \operatorname{id}_X \Rightarrow \alpha^5 = \alpha^{-1}, \alpha^n = \alpha^{n \mod 6}$ für α^{-1} kann man auch einfach Zeilen vertauschen

2.4 Beweis mittels vollständiger Induktion (Beispiel)

Beweis. Die Aussage A_n sei $\sum_{k=0}^n q^k = \frac{1-q^{n+1}}{1-q}$ mit $n \in \mathbb{N}, q \in \mathbb{R}, q \neq 1$.

(IA):
$$n_0 = 0$$
: $\sum_{k=0}^{0} q^k = q^0 = 1 = \frac{1 - q^{0+1}}{1 - q}$ w.A. \Rightarrow Es gilt A_0

(IV):
$$\forall \tilde{n} : n_0 \le \tilde{n} \le n : \sum_{k=0}^{\tilde{n}} q^k = \frac{1 - q^{\tilde{n}+1}}{1 - q}$$

(IS):
$$\sum_{k=0}^{n+1} q^k = \sum_{k=0}^n q^k + q^{n+1} \stackrel{\text{(IV)}}{=} \frac{1 - q^{n+1}}{1 - q} + q^{n+1} = \frac{1 - q^{n+1} + (1 - q)q^{n+1}}{1 - q}$$
$$= \frac{1 - q^{n+1} + q^{n+1} - q^{n+2}}{1 - q} = \frac{1 - q^{(n+1)+1}}{1 - q}$$

 \Rightarrow Damit ist die Behauptung für alle $n\in\mathbb{N}$ vollständig bewiesen

• "Die Aussage A_n sei..." nur in VL und AuD Skript, evtl. wird sonst aber z.Z.: erwartet; IV muss auch nicht unbedingt notiert werden

- alles nochmal mit (n+1)+1 hinschreiben ist nicht nötig
- Varianten: $A_n \Rightarrow A_{n+1}/$ aus A_n folgt A_{n+1} für alle $n \in \mathbb{N}$ w.A. /Folglich gilt A_n für alle $n \in \mathbb{N}, n \geq n_0$
- Beachte dass oft auch nur für $n \in \mathbb{N}, n \geq k$ bewiesen wird (kein \tilde{n})!! und $n_0 = 0$ nicht immer gelten muss

2.5 Zahlentheorie

- $n \in \mathbb{N}, n \ge 1$ kann eindeutig geschrieben werden als $n = \prod_{i=1}^k p_i^{\alpha_i}$ (p_i prim, $\alpha_i \in \mathbb{N}$, "PFZ") \Rightarrow #Teiler von $n = \prod_i (\alpha_i + 1)$
- für $a, b \in \mathbb{N}$ gilt $a \mid b \Leftrightarrow \exists k : k \in \mathbb{N} \land ak = b; \quad a \mid b_1 \land a \mid b_2 \Rightarrow a \mid (b_1 + b_2) \land a \mid (b_1 b_2)$
- für $m, n \in \mathbb{Z}$ mit n > 0 gilt $\exists q, r : (q, r \in \mathbb{Z} \land m = nq + r \land 0 \le r < n)$ $m \mod n := r$, für $a \mod n = b \mod n$ schreibe $a \equiv b \mod n$
- Homomorphieregel: $(a \mod n + b \mod n) \mod n = (a + b) \mod n$ (analog für ·)
- kgV(m, 0) = kgV(0, n) = 0; $ggT(m, n) \cdot kgV(m, n) = m \cdot n \ (\Rightarrow kgV \text{ mit Euklid berechenbar})$
- Euklidischer Algorithmus: für $m, n \in \mathbb{N}, m \le n!!$, immer weiter $ggT(m, n) = ggT(n \mod m, m)$ berechnen; ggT(m, n) = m falls $m \mid n$; ggT(0, n) = n; m, n teilerfremd $\Leftrightarrow ggT(m, n) = 1$
- Lemma von Bézout: $m, n \in \mathbb{N} \Rightarrow \exists a, b : a, b \in \mathbb{Z} \land \operatorname{ggT}(m, n) = am + bn$ (a, b nicht eindeutig)
- Erweiterter Euklidischer Algorithmus am Beispiel ("EEA", keine offizielle Abkürzung):

	1008	499	$-q_i$					
1008	<u>m</u>	n				1008	499	$ -q_i $
499	0	U 1	$1008 = 499 \cdot 2 + 10 \Rightarrow -q_i = -2$ $499 = 10 \cdot 49 + 9 \Rightarrow -q_i = -49$ $10 = 9 \cdot 1 + 1 \Rightarrow -q_i = -1$	\Rightarrow	1008	1	0	
$1008 \mod 499 = 10$	1	$0 + 1 \cdot (-q_i) = -2$			499	0	1	
$499 \mod 10 = 9$	-49	()			10	1	-2	-2
	50	$1 + (-2)(-q_i) = 99$ $-2 + 99(-q_i) = -101$			9	-49	99	-49
$10 \bmod 9 = \underbrace{1}$	50	$-2 + 99(-q_i) = -101$			1	50	-101	-1
$9 \bmod 1 = \overset{\text{ggT}}{0}$	STOP					I		1

in m Spalte wird analog zu n Spalte gerechnet; EEA für $m, n \in \mathbb{Z}$: mit |m|, |n| rechnen, dann Ergebnis anpassen $\Rightarrow \operatorname{ggT}(1008, 499) = 1 = 50 \cdot 1008 - 101 \cdot 499$ (Bézout Koeffizienten a = 50, b = -101)

- chinesischer Restsatz: Seien $0 < n_1, \ldots, n_k \in \mathbb{N}$ teilerfremd und seien $a_1, \ldots, a_k \in \mathbb{Z}$. Dann existiert genau ein $x \in \{0, 1, \ldots, \prod_{i=1}^k n_i 1\}$ mit $x \equiv a_i \mod n_i$ für alle $i = 1, \ldots, k$
- für k = 2: Seien $0 < m, n \in \mathbb{N}$ teilerfremd und seien $a_1, a_2 \in \mathbb{N}$. Dann existiert genau ein $x \in \{0, 1, \dots, mn 1\}$ mit $x \equiv a_1 \mod m \land x \equiv a_2 \mod n$; anschaulich heißt das, dass ein $m \times n$ Spielbrett eindeutig wie in VL durchnummeriert werden kann wenn ggT(m, n) = 1

2.6 Gruppentheorie

- Gruppe (G, \circ) (auch $(G; \circ, ^{-1}, e)$; dann Definition einfach anders formulieren) besteht aus Menge G und innerer Verknüpfung $\circ: G \times G \to G$, so dass: \circ assoziativ, es existiert **neutrales Element** $e \in G$ ($a \circ e = a = e \circ a$ für alle $a \in G$), es existiert **Inverses** $a^{-1} \in G$ zu jedem $a \in G$ (mit $a \circ a^{-1} = e = a^{-1} \circ a$)
- beweisen, dass es sich um eine Gruppe handelt z.B. per Tabelle möglich, oft kann man auch argumentieren dass Eigenschaften wie Assoziativität geerbt werden
- Gruppe heißt abelsch/kommutativ, falls o kommutativ ist
- $\mathbb{Z}_n = \{0, \dots, n-1\}$ bildet mit Addition mod n eine Gruppe; Menge aller Permutationen auf einer Menge kann als Gruppe aufgefasst werden, z.B. Eckenpermutationen eines Quadrates (" D_4 "/" D_8 ")(Komposition führt zu Drehungen, Spiegelungen und Identitätsabbildung)
- Nullteiler mod n sind $a \in \mathbb{Z}_n \setminus \{0\}$ für die $b \in \mathbb{Z}_n \setminus \{0\}$ existiert mit $a \cdot b \equiv 0 \mod n$ Einheiten mod n sind $a \in \mathbb{Z}_n$ für die $b \in \mathbb{Z}_n$ existiert mit $a \cdot b \equiv 1 \mod n$, 1 ist immer eine Einheit m ist Einheit mod $n \Leftrightarrow m$ ist kein Nullteiler mod $n \Leftrightarrow \operatorname{ggT}(m, n) = 1$
- Die Menge der Einheiten mod n heißt \mathbb{Z}_n^* und bildet eine Gruppe mit Multiplikation mod n; es gilt mit PFZ, dass $\phi(n) := |\mathbb{Z}_n^*| = \prod_{i=1}^k (p_i^{\alpha_i} p_i^{\alpha_i-1}) = \#$ zu n teilerfremde Zahlen die kleiner (-gleich) n sind
- eine multiplikative Gruppe ist **zyklisch**, falls $g \in G$ existiert mit $G = \{g^j \mid j \in \mathbb{Z}\}$, ein solches g heißt **Erzeuger** von G (Potenzrechengesetze ähnlich wie in \mathbb{N} , für additive Gruppen schreibe $G = \{jg \mid j \in \mathbb{Z}\}$); für Erzeuger gilt mit |G| = n, dass $G = \{g^j \mid j \in \mathbb{Z}_n\}$;
- Erzeuger von $(\mathbb{Z}_n, + \mod n)$ sind genau die Elemente von $\mathbb{Z}_n^* \Rightarrow \#$ Erzeuger $= \phi(n)$
- Ein Satz von Gauß: für p prim ist $(\mathbb{Z}_p^*, \cdot \text{ mod } n)$ zyklisch; # Erzeuger= $\phi(p-1) = \phi(\phi(p))$; diese Erzeuger heißen Primitivwurzeln

sobald man für $j \neq 0$ auf $g^j = 1$ kommt kann man aufhören (da gilt $j \in \mathbb{Z}_n$ und damit immer schon $1 = g^0$)

- Inverses zu Einheit g von \mathbb{Z}_n berechnen: $\text{EEA}(n,g) \Rightarrow 1 = ag + bn \Rightarrow 1 \equiv ag \mod n$ Achtung: evtl. ist $a \notin \mathbb{Z}_n!!!$ (z.B. weil $a \text{ negativ} \Rightarrow g^{-1} = n - a$)
- isomorph=Strukturgleich ("man kann Elemente einfach umbenennen"), jede zyklische Gruppe ist isomorph entweder zu $(\mathbb{Z}, +)$ oder einem $(\mathbb{Z}_n, + \text{ mod } n)$; als Beweis das zwei Gruppen nicht isomorph sind genügt z.B. " G_1 ist zyklisch, G_2 nicht "
- $U \subseteq G$ heißt **Untergruppe** von G falls $e \in U$; $a \circ b \in U$ für alle $a, b \in U$; $a^{-1} \in U$ für alle $a \in U$
- $\langle g \rangle := \{ g^i \mid i \in \mathbb{Z} \}$ ist von g erzeugte Untergruppe
- $g \circ U = \{g \circ u \mid u \in U\}$ ist eine (Links-)Nebenklasse ("LNK") von U, $|g \circ U| = |U|$, 2 LNK sind entweder gleich oder disjunkt \Rightarrow jedes $g \in G$ liegt in genau einer LNK (nämlich $g \circ U$)
- Satz von Lagrange: $|G| = |G:U| \cdot |U|$ (|G:U| = # LNK von U in G=Index von U in G) |G| heißt Ordnung von G, $o(g) := |\langle g \rangle|$ Ordnung von g; $g^{|G|} = e$
- "Finden Sie alle $\langle g \rangle$ ": ausnutzen welche Werte für o(g) nach Lagrange nur möglich sind "Finden Sie Untergruppen der Ordnung 2/3": U_2 enthält nur 1 und g mit $g^2 = 1$, U_3 enthält nur 1 und g_1, g_2 mit $g_1^2 = g_2, g_2^2 = g_1$ (\Rightarrow beides per Verknüpfungstafel lösbar)
- "Finden Sie die LNK von U": per Verknüpfungstafel rechnen, ausnutzen dass LNK gleich oder disjunkt sind
- Satz von Euler-Fermat: Seien $n \in \mathbb{N}, a \in \mathbb{Z}$ mit ggT(a, n) = 1. Dann gilt $a^{\phi(n)} \equiv 1 \mod n$. (bei kleinem Fermat gilt n prim)
- für Beweise bieten sich oft Verknüpfungstafeln an, folgende Methoden helfen beim effizient rechnen: Kongruenz mit kleineren negativen Zahlen ausnutzen, für o kommutativ ist Tafel symmetrisch bzgl. Hauptdiagonale, Sudokuprinzip (jede Zahl nur ein mal pro Zeile/Spalte)
- dass $ggT(m, n) \ge 2$ kann man auch damit begründen, dass m, n beide z.B. 2 in PFZ haben, für ggT von kleinen Zahlen ist keine Begründung nötig
- $\bullet \text{ Gleichungen in } \mathbb{Z}_n \text{: } \underline{123^{321} \cdot x} \equiv 3^{321(\mod{\phi(40)})} \cdot x \equiv 3x \equiv \underline{4(\mod{40})}, \text{ mit } 3^{-1} = 27 \text{ folgt } x \equiv (27 \cdot 4)(\mod{40})$

2.7 Effizient potenzieren mod n

- andere Form von Euler-Fermat: $a^m \equiv a^{m \mod \phi(n)} \mod n$, gilt aber auch nur für ggT(a, n) = 1!!
- einfach die Zahlen Stück für Stück mit mod zerlegen

2.8 Kryptographie

• für p prim und g Primitivwurzel von \mathbb{Z}_p^* ist der **diskrete Logarithmus** von $x \in \mathbb{Z}_p^*$ zur Basis g die Zahl $m \in \{0, \dots, p-2\}$ mit $g^m \equiv x \mod p$ $(m = \log_q(x))$; m kann nicht effizient berechnet werden, x aus g^m schon

• Diffie-Hellman-Merkle:

- 1. Alice und Bob einigen sich auf Primzahl p und Primitivwurzel g von \mathbb{Z}_p^*
- 2. Alice wählt geheime Zufallszahl a und berechnet $a' = g^a \mod p$; Bob analog: $b' = g^b \mod p$
- 3. beide teilen sich a' und b' mit und berechnen das Geheimnis $c = g^{ab} \mod p = (a')^b \mod p = (b')^a \mod p$

Um damit Nachricht $m \leq c$ zu verschlüsseln:

- 1. schreibe m und c binär als $m = m_1 \dots m_l, c = c_1 \dots c_k$
- 2. Alice verschickt $v_1 = m_1 + c_1 \mod 2, \dots, v_l = m_l + c_l \mod 2$; Bob berechnet $m_i = v_i + c_i \mod 2$

• RSA:

- 1. Bob wählt zufällig 2 verschiedene Primzahlen p,q und berechnet n:=pq
- 2. Bob wählt zufällig $d \in \mathbb{Z}_{\phi(n)}^*$ und berechnet $i, h \in \mathbb{Z}$ mit $i \cdot d + h \cdot \phi(n) = \operatorname{ggT}(d, \phi(n)) = 1$ (EEA)
- 3. n und i sind öffentliche Schlüssel und werden an Alice weitergegeben, d ist privater Schlüssel
- 4. Alice schickt $c = m^i \mod n$ an Bob mit Nachricht $m \ (0 \le m < n)$
- 5. Bob berechnet $m = c^d \mod n$

2.9 Ungerichtete Graphen

- Komplementgraph $\overline{G} := \left(V, \binom{V}{2} \setminus E\right)$ (statt $\binom{V}{2}$ scheint $\{X \subset V : |X| = 2\}$ sicherer zu sein)
- $G_1 = (V_1, E_1), G_2 = (V_2, E_2)$ sind **isomorph**, wenn es eine Bijektion $f : V_1 \to V_2$ gibt, so dass $\{u, v\} \in E_1$ g.d.w. $\{f(u), f(v)\} \in E_2$ für alle $u, v \in V_1$. (d.h. es muss auch gelten $|E_1| = |E_2|$) $(G_1 \cong G_2)$ ("sind G_1, G_2 gleich wenn man die Knoten in G_2 umbenennt?")
- Subgraph von G heißt ein Graph H mit $V(H) \subseteq V(G), E(H) \subseteq E(G)$. H heißt induzierter Subgraph von G, wenn $E(H) = E(G) \cap \binom{V(H)}{2}$ (also wenn aus G nur Knoten und nur die damit verbundenen Kanten gelöscht wurden), wir schreiben H = G[V(H)]
- ein Graph ist k-färbbar, wenn die Knoten so in k Farben angemalt werden könnten, dass 2 benachbarte Knoten nie die gleiche Farbe haben (z.B. C_n immer 3-färbbar, 2-färbbar g.d.w. n gerade) (i.A. einfach durch probieren lösen)
- G zweifärbbar (\Leftrightarrow bipartit) g.d.w. es in G keine ungeraden Kreise gibt; G ist **bipartit** g.d.w. disjunkte A, B (**Partitionsklassen**) existieren, so dass $V(G) = A \cup B \land \binom{A}{2} \cap E = \binom{B}{2} \cap E = \emptyset$
- Graph ohne Kreise = Wald; zusammenhängender Graph ohne Kreise = Baum, für Bäume gilt |E| = |V| 1; Knoten mit deg= 1 heißen Blätter

4

- "Geben Sie bis auf Isomorphie alle Bäume an für die gilt...." \Rightarrow alle Kombinationen von Knotengraden durchgehen, die bei gegebenem |V| in Frage kommen
- G ist k-fach zusammenhängend wenn $G \setminus X = G[V \setminus X]$ zusammenhängend ist für alle $X \subseteq V$ mit |X| = k-1; G k-fach Zusammenhängend $\Leftrightarrow G$ enthält für alle $a, b \in V$ mindestens k paarweise unabhängige Pfade von a nach b (unabhängig heißt haben nur Anfangs- und Endpunkt gemeinsam)
- ob k paarweise unabhängigen Pfade für k-fachen Zusammenhang vorliegen muss man i.A. für jedes Paar (a, b) einzeln prüfen, evtl. Aufwand verringern durch Symmetrien möglich, außerden gilt $\min\{\deg(v) \mid v \in V\} \ge k$
- G ist **zweifach zusammenhängend** \Leftrightarrow G kann aus einem Kreis durch sukzessives Anhängen von Pfaden konstruiert werden kann \Leftrightarrow es gibt keine Gelenkpunkte in $G \Leftrightarrow$ jeder Knoten liegt mit jedem anderen auf einem Kreis
- Sei A Menge der Gelenkpunkte von G, \mathcal{B} Menge der Blöcke, dann ist $(A \cup \mathcal{B}, \{\{a, B\} \mid a \in A, B \in \mathcal{B}, a \in B\})$ der **Blockgraph** von G; Blockgraph ist ein Wald und für G zusammenhängend ein Baum Blöcke können nicht als Kantenzüge angegeben werden, am besten einfach zeichnen!
- Pfade sind **disjunkt** wenn sie keine Knoten gemeinsam haben und **kantendisjunkt** falls sie keine Kanten gemeinsam haben; bei einem A-B-Pfad liegt nur der Anfangsknoten in A, nur der Endknoten in B
- Satz von Menger: Seien $A, B \subseteq V$. Dann ist die maximale Anzahl von paarweise disjunkten A-B-Pfaden in G gleich der Mächtigkeit einer kleinsten Knotenmenge, die A von B in G trennt (aus der also jeder A-B-Pfaden einen Knoten enthält)
- Kantengraph L(G) hat die Knotenmenge E und Kantenmenge $\{\{e, f\} \mid e, f \in E, |e \cap f| = 1\}$. Ist (u_0, \ldots, u_n) Kantenzug/Pfad in G, so ist $(\{u_0, u_1\}, \ldots, \{u_{n-1}, u_n\})$ Kantenzug/Pfad in L(G) (für Kantenzüge gilt auch die Umkehrung)
- die maximale Anzahl von kantendisjunkten Pfaden von a nach b ist gleich der Mächtigkeit einer kleinsten Kantenmenge, die a von b trennt (trennt hat hier andere Bedeutung als bei Mengen: $F \subseteq E$ trennt a und b, wenn es in $(V, E \setminus F)$ keinen Kantenzug von a nach b gibt)
- G ist k-fach kantenzusammenhängend, falls für alle $F \subseteq E$ mit |F| < k gilt $(V, E \setminus F)$ ist zusammenhängend; G k-fach kantenzusammenhängend \Leftrightarrow für je 2 $a, b \in V$ gibt es mindestens k kantendisjunkte Pfade von a nach b
- Ist G k-fach kantenzusammenhängend und $k \geq 2$, so ist L(G) k-fach knotenzusammenhängend
- offener Eulerzug = Kantenzug, der jede Kante von G genau einmal durchläuft mit Anfangsknoten ≠ Endknoten (Haus vom Nikolaus); (geschlossener) Eulerzug = Eulerzug bei dem Anfangs- und Endknoten gleich sind
- es gibt einen Eulerzug in $G \Leftrightarrow \forall v \in V : \deg(v)$ gerade; es gibt einen offenen Eulerzug in $G \Leftrightarrow$ es gibt genau 2 Knoten von ungeradem Grad in G
- $M \subseteq E$ heißt **Paarung** von G, falls die Element von M paarweise disjunkt sind. Für **perfekte Paarungen** gilt 2|M| = |V| (d.h. jeder Knoten taucht in genau einem Element von M auf). M ist eine **Paarung von** $S \subseteq V$, falls M Paarung von G und jedes Element von S in einer Kante von M auftaucht.
- Pfad in G heißt **alternierend** bzgl. M, falls er abwechselnd über Kanten aus M und $E \setminus M$ läuft; ein alternierender Pfad P heißt **augmentierend** bzgl. M, falls Start- und Endpunkt von P in keiner Kante aus M liegen (P beginnt und endet also auf Kante aus $E \setminus M$)
- Lemma von Berge: Eine Paarung M von G ist genau dann größtmöglich, wenn es keinen augmentierenden Pfad in G bzgl. M gibt.
- für $S \subseteq V$ heißt $N(S) = \{n \in V \mid \exists s \in S \text{ mit } s \text{ Nachbar von } n\}$ die Nachbarschaft von S
- Existiert eine Paarung M von S in G, so gilt $|N(S)| \ge |S|$
- Heiratssatz von Hall: Sei $\{A, B\}$ Bipartition von G. Dann gibt es genau dann eine Paarung von A in G, wenn $|N(S)| \geq |S|$ für alle $S \subseteq A$. $\Rightarrow k$ -reguläre (=jeder Knoten hat deg k) bipartite Graphen haben eine perfekte Paarung
- Eine Überdeckung von G ist eine Teilmenge $U \subseteq V$, so dass jede Kante von G ein Element aus U enthält. Satz von König: Die Größe einer minimalen Überdeckung von G ist gleich der Größe einer größten Paarung.
- Handschlaglemma für Graphen: $\sum_{v \in V} \deg(v) = 2|E|$ (=gerade!!, das ist wichtig für Beweise)

2.10 Gerichtete Graphen

- für $(u, v) \in E$ ist u Vorgänger von v, v Nachfolger von u
- für gerichtete Graphen gilt $E \subseteq V \times V$; $G^{-1} = (V, E^{-1})$ mit $E^{-1} = \{(y, x) \mid (x, y) \in E\}$ (Pfeile umkehren, hat die selben SZK wie G); $G[V'] = (V', E \cap (V' \times V'))$; "Schleifen" sind erlaubt ("Schleife" = gerichteter Kreis der Länge 1)
- Für $u, v \in V$ schreibe $u \leq v$, falls es in G einen Pfad von u nach v gibt. \leq ist transitive reflexive Hülle von $E \Rightarrow \subseteq$ Quasiordnung auf V, \subseteq Ordnung wenn es in G keine Kreise gibt
- Schreibe $u \sim v$ falls $u \leq v \wedge v \leq u$. Die Äquivalenzklassen von \sim heißen die **starken Zusammenhangskomponenten** von G ("SZK")

Algorithmen für gerichtete Graphen werden nicht geprüft

2.11 Aussagenlogik

- \top/\perp = wahr/falsch; \land , \lor kommutativ, assoziativ, distributiv in beide Richtungen **De Morgansche Gesetze:** $\neg(x \land y) = \neg x \lor \neg y, \neg(x \lor y) = \neg x \land \neg y$
- jeder **Ausdruck** A (=Verbindung von $\top, \bot, \neg, \wedge, \lor$, Variablensymbolen) definiert eine **boolsche Funktion** $f_A : \{0,1\}^n \to \{0,1\}; A$ heißt **tautologisch/Tautologie** wenn $f_A(a_1, \ldots, a_n) = 1$ für alle $a_1, \ldots, a_n \in \{0,1\}$
- schreibe $A \Rightarrow B$ für $\neg A \lor B, A \Leftrightarrow B$ für $(A \Rightarrow B) \land (B \Rightarrow A)$ (d.h. \Rightarrow ist immer war außer für $1 \Rightarrow 0$, \Leftrightarrow ist wahr für $1 \Leftrightarrow 1$ und $0 \Leftrightarrow 0$); es gilt $A \Rightarrow B$ äquivalent zu $\neg B \Rightarrow \neg A$ (Kontraposition)
- Ausdrücke A, B sind **äquivalent** wenn $f_A = f_B$ (d.h. wenn $A \Leftrightarrow B$ Tautologie); A **impliziert** B ($A \models B$) wenn jede erfüllende Belegung von A schon erfüllende Belegung von B ist (d.h. wenn $A \Rightarrow B$ Tautologie)
- Darstellungssatz: für jede n-stellige boolsche Funktion f existiert Ausdruck A in n Variablen, so dass $f_A = f$ (außerdem gilt f kann immer in KNF und DNF dargestellt werden)
- disjunktive Normalform (DNF): $\bigvee_i \bigwedge_j L_{ij}$; konjunktive Normalform (KNF): $\bigwedge_i \bigvee_j L_{ij}$ Beispiel: Sei f gegeben durch Tabelle. Es gilt $f = f_A = f_B$.

- eine Aussage in KNF (!!) heißt Horn , falls jede Klausel maximal ein positives Literal (L_{ij} der Form X) enthält
- Algorithmus für **Horn-SAT**:
 - 1. suche nach Klausel der Gestalt X, lösche dann alle Literale der Gestalt $\neg X$
 - 2. falls dadurch leere Klausel entsteht return NEIN
 - 3. gehe zu 1. solange noch etwas gelöscht werden kann
 - 4. return JA

Beispiel: $A = (X_1 \vee \neg X_2 \vee \neg X_3) \wedge X_3$ Ausdruck ist Horn \Rightarrow Horn-SAT Algorithmus anwendbar X_3 ist eine Klausel $\Rightarrow \neg X_3$ streichen $A \Leftrightarrow (X_1 \vee \neg X_2) \wedge X_3 \Rightarrow JA$ (ist erfüllbar)

- erfüllende Belegung für Horn-SAT: Setze alle Variablen X mit Klausel der Gestalt X auf 1, alle anderen auf 0
- Beweise in Aussagenlogik über Ausdrücke umformen oder Wertetabelle (mit Zwischenschritten!!) oder Fallunterscheidung; gleiche Herangehensweise für "gesucht sind alle erfüllenden Belegungen", gilt z.B. Ausdruck A = B müssen in Tabelle nur noch 2^{n-1} Belegungen geprüft werden

2.12 Relationen

- $R \subseteq A \times B$ heißt Relation, wir schreiben $(a, b) \in R$ oder aRb; für Beweise sind oft Gegenbeispiele hilfreich
- mögliche Eigenschaften von $R \subseteq A \times A$: **reflexiv** $(aRA \text{ für alle } a \in A)$; **transitiv** $(aRb \wedge bRc \models aRc \text{ für alle } a, b, c \in A)$; **symmetrisch** $(aRb \models bRa \text{ für alle } a, b \in A)$; **antisymmetrisch** $(aRb \wedge bRa \models a = b \text{ für alle } a, b \in A)$
- R ist eine $\ddot{\mathbf{A}}$ quivalenzrelation (" $\ddot{\mathbf{A}}$ R") falls gilt R reflexiv, symmetrisch, transitiv; $R_1, R_2 \ddot{\mathbf{A}}$ R $\models R_1 \cap R_2 \ddot{\mathbf{A}}$ R
- $a/R := \{b \in A \mid (a,b) \in R\}$ heißt Äquivalenzklasse ("ÄK") von a ("alles was mit a in Relation steht"); $A/R := \{a/R \mid a \in A\}$ Menge der ÄK; 2 ÄK sind entweder gleich oder disjunkt
- eine Partition von A ist eine Menge \mathcal{P} deren Elemente nichtleere Teilmengen von A sind, so dass gilt $\bigcup_{X \in \mathcal{P}} X = A$ und alle X sind gleich oder disjunkt; A/R ist eine Partition von A; #ÄR auf A=#Partitionen von A
- Relationen können als gerichtete Graphen visualisiert werden; reflexiv=jeder Knoten hat Schlinge, transitiv= für jeden Pfad der Länge 2 gibt es Abkürzung, symmetrisch: wenn → dann ≒, ÄK=Zusammenhangskomponenten; ÄR können auch als ungerichtete Graphen visualisiert werden
- Ordnung heißt man kann das sortieren ⇒ Graph darf keine gerichteten Kreise enthalten
- R ist eine **Ordnung** falls R reflexiv, antisymmetrisch, transitiv; **Quasiordnung** falls R reflexiv und transitiv Beispiele: Teilbarkeitsrelation auf \mathbb{N} ; jede ÄR (nur Quasiordnung, keine Ordnung); \subseteq (i.A. nicht total)
- R ist **totale (Quasi-) Ordnung** falls R eine (Quasi-) Ordnung ist und je zwei Elemente x, y von A vergleichbar sind (d.h. $(x,y) \in R \lor (y,x) \in R$) Beispiele: \leq auf \mathbb{N} ; $\ddot{A}R$ mit nur einer $\ddot{A}K$ (nur totale Quasiordnung); $R = \{(a,b) \in \mathbb{C} \times \mathbb{C} : |a| \leq |b|\}$ (nur totale Quasiordnung)
- für R Ordnung auf A und $M \subseteq A$ heißt $x \in M \dots$
 - maximales Element von M, falls xRy schon x=y impliziert für alle $y \in M$; minimales Element von M, falls yRx schon y=x impliziert für alle $y \in M$
 - größtest Element von M, falls yRx für alle $y \in M$; kleinstes Element von M, falls xRy für alle $y \in M$
- gibt es ein größtes Element von M, so ist es eindeutig bestimmt und auch das einzige maximale Element von M; analog für kleinstes
- für $R \subseteq A \times A$ ist $R \circ R = \{(a_1, a_3) \in A \times A \mid \text{ es gibt } a_2 \in A \text{ mit } (a_1, a_2) \in R \land (a_2, a_3) \in R\}$; $R^0 = \{(a, a) \mid a \in A\}$, $R^1 = R$, $R^2 = R \circ R$ etc. (im gerichteten Graph entspricht R^k allen "Abkürzungen" für Wege der Länge k)
- für jede Relation R auf A existiert eine Quasiordnung auf A die R enthält. Sei R' die kleinste Quasiordnung die R enthält (**transitive reflexive Hülle**). Dann gilt $R' = \bigcup_{i \geq 0} R^i$ (das ganze berechnen bis $R^i = R^k$ für $i \geq k$, d.h. bis keinen neuen "Abkürzungen" mehr hinzukommen können)
- für jede Relation R auf A existiert eine transitive Relation auf A die R enthält. Sei R' die kleinste transitive Relation die R enthält (**transitive Hülle**). Dann gilt $R' = \bigcup_{i>1} R^i$

Hinweis: In den Zusammenfassungen wird die Schreibweise x_1, \ldots, x_n verwendet um Platz zu sparen, gebräuchlicher ist aber x_1, x_2, \ldots, x_n

Immer angeben welche Sätze angewendet werden und warum sie anwendbar sind!

Bestimmen heißt Begründen! Nicht nur sagen "es gibt ungerade Kreise", sondern auch Beispiel angeben.