PRURE

Sprawozdanie

Laboratorium nr 2

Data: 21.11.2024

Zespół:

1. Anna Dzieżyk

Zadanie nr 1:

Opis wykonanych czyności:

(co należało wykonać, jakie techniki programowania zostały wykorzystane itp.)

Należało zaprojektować układ tzw. prescalera sygnału zegarowego o następujących właściwościach:

- Generowanie impulsu trwającego dokładnie 1 takt zegara co 1 sekundę Wskazówka: licznik synchroniczny +1 o zdefiniowanej wartości wyzerowania licznika Na potrzeby symulacji czas można skrócić: np. do 1 us
- •Zaprojektować odpowiedni testbench symulując sygnał zegarowy dostępny na płytce Basys 3 oraz opracowany komponent.

Niżej opisywane moduły zostały zaprojektowane w języku VHDL. Poniższa tabela ilustruje sygnały i stałe używane w obu modułach:

	licznik.vhd	licznik_tb.vhd
Zegar (wejściowy)	С	С
Reset asynchroniczny	R	R
(wejściowy)		
Sygnał sterujący wartością	S	S
zakresu (wejściowy)		
Sygnał wyjściowy	D	D
Zakres (wewnętrzny)	Z	-
Licznik (wewnętrzny)	L	-

Wynik syntezy:

(np. schemat, zajętość zasobów)

Moduł "licznik.vhd" nie był syntezowany, był wywoływany tylko jako instancja modułu testbencha.

Opracowany kod:

(krótki opis głównych modułów)

Zostały wykorzytane materiały dostarczone przez prowadzących – plik licznik.vhd, plik

licznik_tb.vhd oraz plik Basys-3-Master_lab2.xdc . Na początek zmodyfikowano plik licznik.vhd, by móc obserwować sygnały w testbenchu porawnie – licznik, który miał za zadanie zliczanie taktów zegara został zmniejszony do 10.

Następnie wykonano edycję testbencha - zainicjalizowano wartości sygnałów wejściowych – nakazano inicjalizację R (resetu), a następnie zwolniono sygnał resetu, po 100μs. Z symulowaniem zegara nic nie zmieniano – ten sygnał zmienia się co 10 μs. Przypsano wejściu S sygnał równy "10", trwający przez cały czas symulacji.

Podsumowanie oraz wyniki:

(krótki opis działania układu, wynik testów, screenshot np. z programowania itp.)

Zrzut 1.: Przebiegi czasowe sygnałów wejściowych i obserwowanego wyjściwego

Symulacja trwała 5ms, natomiast sama zmiana stanu sygnału wyjściowego D następowała co 100µs. Został przetestowany tylko ten jeden sygnał – odwzorowujący 1:1 wartość stałej ilości taktów zegara T – deklarowanej w module "licznik.vhd" (S ustawiono na wartość "01").

Zadanie nr 2:

Opis wykonanych czyności:

(co należało wykonać, jakie techniki programowania zostały wykorzystane itp.)

Na bazie komponentu z zadania 2 należało zaprojektować prosty zegarek na 3 diodach:

- LED 3 godziny
- LED 2 minuty
- LED 1 sekundy

Zasada działania zegarka jest następująca: stan każdego elementu LED jest negowany (tzn. reverse state) co wskazywaną wartość: tzn. co sekundę, co minutę i co godzinę.

Sygnały obecne w powyższych rozważaniach zostały opisane w tabelce poniżej.

	Basys-3-	zegar.vhd	zegar_tb.vhd
	Master_lab2.xdc		
Sygnał zegara	CLK	С	CLK
(wejściowy)			
Syganł resetu	RST	R	RST
asynchronicznego			
(wejściowy)			
Sygnał wyjściowy	led	D1, D2, D3	led
Sygnał sterujący	-	S_L1, S_L2, S_L3	-
(wejściowy)			

Wynik syntezy:

(np. schemat, zajętość zasobów)

Zrzut 2.: Schemat blokowy modułu "zegar.vhd"

Zrzut 3.: Wykres zajętości zasobów.

Opracowany kod:

(krótki opis głównych modułów)

Aby zaimplementować ten koncept, stworzono nowy moduł – "zegar.vhd" – w nim zainstancjonowano moduł "licznik.vhd", wykorzystując jego cechę – możliwość skalowania sygnału wyjściowego, sygnałem wejściowym S. Skoro wymóg był taki, że trzeba było

zaimpementować zegar z sekundami, minutami i godzinami – utworzono trzy instancje modułu "licznik.vhd", każdej przypisując inne wartości sygnału skalującego S i inne wyjścia sygnału D na diody. Reset każdej z tych instancji został zmapowany na jeden z przycisków – czyli jeden przycisk resetuje cały układ.

Moduł "licznik.vhd" został też zmodyfikowany – sygnał S = "01" koduje sekundy, więc zakres jest równy tyle, co stała zakresu zliczania licznika T. Sekundy mają zakres równy T*60, a godziny 3600*T. Ponadto zmieniono wartość T na 200.

Aby przedstawić poprawność działania zaimplementowanego rozwiązania – napisano do niego też testbench. Aby przyspieszyć działanie zegara – skala czasowa wynosi 5ms czasu trwania symulacji.

Podsumowanie oraz wyniki:

(krótki opis działania układu, wynik testów, screenshot np. z programowania itp.)

Zrzut 4.: Przebiegi zegarowe porównujące sygnały wyjściowe diody led odpowiedzialnej za godziny i tej odpowiedzialnej za minuty

Zrzut 5.: Przebiegi zegarowe porównujące sygnały wyjściowe diody led odpowiedzialnej za minuty i tej odpowiedzialnej za sekundy

Proporcje między sygnałami są zachowane – a to było głównym celem. Skalę czasową można zmieniać zgodnie z życzeniem w module "licznik.vhd", zmieniając tylko stałą T. Aby testbench zadziałał – należało zakomentować linię przypisującą reset do przycisku w głównym module "zegar.vhd".