Online News Popularity - Analysis Report

Nagraj Rao, Linhan Cai, Jennifer Hoang

2021-12-01

Our GitHub Repo: LINK HERE

Summary

Online articles have become a primary source of news in the digital age. In order to understand factors associated with online news popularity, we examined factors associated with higher shares per day (log transformed) using a multiple linear regression analysis in a dataset containing 36,644 observations (K. Fernandes and Cortez 2015). Our final model, derived using backward model selection, achieved an R-squared score of 0.2132. Additional features that are not among our explanatory variables appear to explain a large portion of variability in the shares per day. Further analysis will be required to better understand the factors which associate with online news popularity.

Introduction

The online news market space has grown rapidly in recent decades, leading to increased competition between traditional news outlets and non-traditional digital news sources. Understanding the factors associated with popularity of news articles online is vital for guiding publishing strategies of news agencies in order for them to remain competitive in the online news space. Here, we assessed factors associated with online news popularity using a public dataset with statistics from originally published on Mashable (www.mashable.com) in 2015 (K. Fernandes and Cortez 2015).

Methods

EDA During EDA on the raw data, we try merging data channels and the weekday columns into one column, then explore data type of the variables in the data set and summary Statistics for each variable. By creating correlation plot and correlation matrix, we try to find out the important features and in the end, we explore bar graph showing how number of shares vary based on topic, how number of shares vary based on day of the week, and try histogram showing how number of shares vary based on day of the week. Finally we made the matrix to pick the features whose coefficient is larger than 0.7. The code used to perform the 2 versions EDA can be found here.

Data Cleaning Upon examining the data during EDA, we observed that the distribution of the response variable Shares was highly right-skewed. Furthermore, we observed that articles had been published at different time points prior to data acquisition, which could confound the number of shares attained per article. To address both of these factors, we transformed the data by creating a Shares per Day features (Shares / Days since Publication), followed by a performing a log transformation of Shares per Day. Lastly, outliers in the log Shares per Day were removed using the Winsorization method, where we defined outliers to be values lower than the 1% percentile and greater than the 99% percentile. Data cleaning was performed using Python (Van Rossum and Drake 2009) and Pandas (team 2020).

Statistical Analysis A Multiple Linear Regression model was used to understand what factors are associated with online news popularity. We estimated six versions of this model using "log_shares_per_day" as our dependent variable until we arrived at a regression where all features were statistically significant at

the 95% confidence level. This was compared to both forward and backward selection models using VIF scores, R-Squared, and the time taken to run each model to arrive at the best model, which in our case was backward selection model. Finally, we plot the distribution of residuals to visually assess if it follows a normal distribution.

The R programming language (R Core Team 2019) and the following R packages were used to perform the statistical analysis outlined in this section: broom (Robinson, Hayes, and Couch 2021), car (Fox and Weisberg 2019), docopt (de Jonge 2020), tidyverse (Wickham et al. 2019).

Results and Discussion

EDA Through exploratory data analysis, we determined that some of the features were not informative to answering our question or contained many missing values. We find out the summary statistics for each variable, the features correlation greater than 0.7 and the distributions of shares vary based on day of the week and topics. 2 versions of EDA code can be found here and here.

Bar graph showing how number of shares vary based on topic. Several of the topics were reviewed by plotting the distribution of the shares based on different topic, Except others, "Business" and "Tech" take the largest 2 shares. The shares left "Entertainment", "Lifestyle" and "World" takes almost equal shares, and "Social media" takes the smallest shares.

Figure 1: Figure 1. Distribution of Shares Based on Topics

Histogram showing how number of shares vary based on day of the week. Several of the weekdays were reviewed by plotting the distribution of the shares based on different weekdays, Except others, "Wednesday", "Monday" and "Saturday" take the largest 3 shares. The "Tuesday", "Friday" and "Thursday" takes almost equal shares, and "Sunday" takes the smallest shares.

Figure 2: Figure 2. Distribution of Shares

Correlation plot showing the strength, direction, and form of the relationship between 2 features. It shows the kw_avg_avg(Avg. keyword (avg. shares)) has its strongest correlation with shares. The second most correlated feature to shares value is kw_max_max(Best keyword (max. shares)) which quite make sense.

Before model testing, data cleaning was done to address the findings of non-informative features, class imbalance, NAN values. And we calculate the shares_per_day and remove outliers, this code can be found here.

Figure 3: Figure 3. Distribution of Features Correlation Matrix

Statistical Analysis The results of our best model, derived from Backward Model Selection is shown below:

Table 1: Table 1. Backstep Model Results

term	estimate	std.error	statistic	p.value	conf.low	conf.high	is_sig
(Intercept)	1057.9608458	135.1025999	7.830796	0.0000000	793.1563567	1322.765334	9TRUE
n_non_stop_unique_to	oken 6 314715	0.1462972	4.316360	0.0000159	0.3447253	0.9182178	TRUE
global_subjectivity	0.4132123	0.0720999	5.731107	0.0000000	0.2718946	0.5545299	TRUE
data_channel_is_world	0.3451603	0.0308061	11.204293	0.0000000	0.2847796	0.4055410	TRUE
data_channel_is_socme	d = 0.3106069	0.0310984	9.987885	0.0000000	0.2496533	0.3715605	TRUE
is_weekend	0.2553258	0.0158811	16.077322	0.0000000	0.2241984	0.2864532	TRUE
rate_negative_words	0.2525924	0.0986547	2.560368	0.0104599	0.0592267	0.4459581	TRUE
data_channel_is_tech	0.2396748	0.0308791	7.761706	0.0000000	0.1791509	0.3001987	TRUE
abs_title_subjectivity	0.1550362	0.0333235	4.652463	0.0000033	0.0897214	0.2203511	TRUE
data_channel_is_lifesty	1e0.1286847	0.0338225	3.804704	0.0001422	0.0623917	0.1949776	TRUE
title_subjectivity	0.1072980	0.0194179	5.525739	0.0000000	0.0692385	0.1453575	TRUE
title_sentiment_polarity	y 0.0731971	0.0213573	3.427259	0.0006103	0.0313362	0.1150580	TRUE
n_tokens_title	0.0577943	0.0026293	21.981160	0.0000000	0.0526408	0.0629477	TRUE
average_token_length	0.0316563	0.0221576	1.428686	0.1531025	-0.0117732	0.0750859	FALSE
num_keywords	0.0144281	0.0033875	4.259282	0.0000206	0.0077886	0.0210676	TRUE
num hrefs	0.0041843	0.0006199	6.749714	0.0000000	0.0029692	0.0053993	TRUE
kw_avg_avg	0.0003112	0.0000129	24.155547	0.0000000	0.0002859	0.0003364	TRUE
kw max min	0.0000589	0.0000046	12.908945	0.00000000	0.0000499	0.0000678	TRUE
n_tokens_content	0.0000328	0.0000201	1.629319	0.1032536	-0.0000067	0.0000722	FALSE
self_reference_min_sha		0.0000007	3.433831	0.0005957	0.0000010	0.0000037	TRUE
kw_avg_max	0.0000015	0.0000001	20.166349	0.0000000	0.0000014	0.0000017	TRUE
kw_max_max	0.0000006	0.0000000	17.769520	0.0000000	0.0000005	0.0000007	TRUE
self_reference_max_sha		0.0000000	1.638230	0.1013818	-0.0000001	0.0000013	FALSE
kw_min_max	-0.0000011	0.0000001	-	0.0000000	-0.0000013	-0.0000009	TRUE
nw <u>_</u> mm_mœr	0.0000011	0.0000001	10.558313	0.0000000	0.0000013	0.0000000	11001
self_reference_avg_shar	rest 0000016	0.0000010	-	0.0968014	-0.0000035	0.0000003	FALSE
son_reference_avg_sna.	.0000010	0.0000010	1.660603	0.0000011	0.0000000	0.0000000	11111011
kw_min_avg	-0.0000333	0.0000069	-	0.0000014	-0.0000468	-0.0000198	TRUE
av8	0.0000000	0.0000000	4.831641	0.0000011	0.0000100	0.0000100	11001
kw_max_avg	-0.0000410	0.0000023	-	0.0000000	-0.0000454	-0.0000365	TRUE
KW_IIIdX_dvS	0.0000110	0.0000020	17.944360	0.0000000	0.0000101	0.0000000	11001
kw avg min	-0.0004220	0.0000280	-	0.0000000	-0.0004769	-0.0003670	TRUE
Kw_avg_mm	0.0004220	0.0000200	15.057736	0.0000000	-0.0004103	-0.0003010	11001
num imgs	-0.0018143	0.0008181	-	0.0265780	-0.0034178	-0.0002108	TRUE
num_mgs	-0.0010140	0.0000101	2.217744	0.0200100	-0.0094110	-0.0002100	11001
num_videos	-0.0026074	0.0014325	2.211144	0.0687486	-0.0054152	0.0002004	FALSE
num_videos	-0.0020014	0.0014323	1.820119	0.0001400	-0.0054152	0.0002004	TALDL
num self hrefs	-0.0210983	0.0016414	1.020119	0.0000000	-0.0243154	-0.0178812	TRUE
num_scn_meis	-0.0210303	0.0010414	12.854241	0.0000000	-0.0243134	-0.0170012	1100
min negative polarity	-0.1263717	0.0256066	-	0.0000008	-0.1765614	-0.0761821	TRUE
mm_negative_polarity	-0.1203717	0.0250000	4.935115	0.0000000	-0.1705014	-0.0701021	1100
max positive polarity	-0.1428581	0.0308727	4.933113	0.0000037	-0.2033694	-0.0823467	TRUE
max_positive_polarity	-0.1420001	0.0306121	4.627321	0.0000037	-0.2055094	-0.0625407	THOE
data_channel_is_bus	-0.1450772	0.0321352	4.02/321	0.0000064	-0.2080631	-0.0820913	TRUE
uata_channer_is_bus	-0.1400772	0.0521552	- 1 51 1501	0.0000004	-0.2000031	-0.0020913	TUUE
n non ston words	-0.2661874	0.135/177	4.514581	0.0402421	-0.5316095	-0.0007653	TRUE
n_non_stop_words	-0.2001874	0.1354177	1 065676	0.0495451	-0.9910099	-0.0001003	INUL
			1.965676				

term	estimate	$\operatorname{std.error}$	statistic	p.value	conf.low	conf.high	is_sig
global_rate_positive_	words5283499	0.5910915	-	0.0097234	-2.6869040	-0.3697957	TRUE
			2.585640				
n_unique_tokens	-1.6969142	0.1690463	-	0.0000000	-2.0282491	-1.3655793	TRUE
			10.038164				
$global_rate_negative_$	_wor4d 3 456218	1.1788783	-	0.0002279	-6.6562530	-2.0349907	TRUE
			3.686234				
LDA_00	-	135.0944797	-	0.0000000	-	-	TRUE
	1057.8152585		7.830189		1322.6038318	793.0266852	
LDA_04	-	135.0922015	-	0.0000000	-	-	TRUE
	1057.9194454		7.831092		1322.7035535	793.1353373	
LDA_01	-	135.0925029	-	0.0000000	-	-	TRUE
	1057.9347375		7.831188		1322.7194363	793.1500388	
LDA_03	-	135.0924559	-	0.0000000	-	-	TRUE
	1058.0458221		7.832013		1322.8304287	793.2612156	
LDA_02	-	135.0952899	-	0.0000000	-	-	TRUE
	1058.1926285		7.832935		1322.9827898	793.4024673	

Table 2: Table 2. Backstep Model Model Performance

r.squared adj.r.square	d sigma	statistic	p.value	df	logLik	AIC	BIC	deviance	df.residual	nobs
0.20596720.2051079	1.04472	239.6737	0	42	- 56803.93		114072.	8 42355.58	38807	38850

Overall, our model has an R-Squared of 0.2051. This seems like a low R-Squared, particularly given the large number of features included in the model and their statistical significance at alpha = 0.05. This indicates that other variables that are not currently included in the model explain a large portion of the variability in our data. There is not much we can do about this problem, beyond including some interaction variables to assess if there are any interaction effects.

Finally, we plot a distribution of the residuals, which looks normally distributed, one of the assumptions of a linear regression.

Figure 4: Figure 4. Histogram of Residuals

As next steps, we need to consider if interaction terms can help improve model performance, and perform rigorous statistical tests for the remaining assumptions of a multiple linear regression model – heteroscedasticity and normality of residuals.

References

- de Jonge, Edwin. 2020. Docopt: Command-Line Interface Specification Language. https://CRAN.R-project.org/package=docopt.
- Fox, John, and Sanford Weisberg. 2019. An R Companion to Applied Regression. Third. Thousand Oaks CA: Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/.
- K. Fernandes, P. Vinagre, and P. Cortez. 2015. A Proactive Intelligent Decision Support System for Predicting the Popularity of Online News. Coimbra, Portugal: Proceedings of the 17th EPIA 2015 Portuguese Conference on Artificial Intelligence. https://archive-beta.ics.uci.edu/ml/datasets/online+news+popularity.
- R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- Robinson, David, Alex Hayes, and Simon Couch. 2021. Broom: Convert Statistical Objects into Tidy Tibbles. https://CRAN.R-project.org/package=broom.
- team, The pandas development. 2020. Pandas-Dev/Pandas: Pandas (version latest). Zenodo. https://doi.org/10.5281/zenodo.3509134.
- Van Rossum, Guido, and Fred L. Drake. 2009. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace. Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. "Welcome to the tidyverse." Journal of Open Source Software 4 (43): 1686. https://doi.org/10.21105/joss.01686.