Prosthetic Heart Valves

ED15B001 Adarsh ED15B019 Sanjeev

Natural Heart Valves

- Allow unidirectional flow of blood in the heart
- 4 Valves in the human heart-Tricuspid, Mitral, Pulmonary & Aortic
- Incorporate leaflets or cusps which are pushed open to allow blood flow & which then close together to seal & prevent backflow

Fig: Illustration of Natural Heart Valves[†]

http://www.yourheartvalve.com/heartbasics/pages/heartvalves.aspx

() Loading Cycle of Natural HVs

- HVs are primarily passive structures that are driven by forces exerted by the surrounding blood & heart
- HVs must replicate their cyclic function over an entire lifetime, with an estimated functional demand of at least 3x10⁹ cycles

[†]M.S. Sacks, A.P Yoganathan, "*Heart valve function: a biomechanical perspective*", Philosophical Transactions of the Royal Society, 2007 Aug 29; 362(1484): 1369–1391

Fig: Instantaneous friction streamline & shear stress magnitude plots on the aortic (a,c) & ventricular (b,d) sides of the leaflets during the fully open (a,b) & early closing (c,d) phases of the cardiac cycle[†]

Properties of Natural HVs

- High tensile strength to resist high Trans Valvular Pressures
- Very low flexural rigidity to allow for passive interactions with the surrounding blood
- Undergo large, rapid, directionally dependent strain when in the process of closing
- Allow for rapid cessation of strain when closed

Failure Modes of Natural HVs

Regurgitation

- Leaflets of the valve fail to coapt correctly
- Allows blood to flow in the reverse direction

Stenosis

Narrowing of the valves

 Prevents adequate outflow of blood

Artificial Heart Valves

Prosthetic heart valves are required to replicate the functioning of a normal heart valve & should last throughout the lifetime of the patient

Mechanical HVs

Medtronic Hall Tilting Disc Valve(1970s)[†]

St. Jude's Medical Bileaflet Valve(1979)[†]

Two semicircular leaflets that

rotate about struts attached

to the valve housing

Bioprosthetic HVs

- Homografts: Preserved human aortic valves
- Heterografts: Composed of bovine or porcine tissue(pericardial or valvular), mounted on a metal support

Carpentier-Edwards
Porcine Bioprosthesis[†]

Prosthetic HVs Materials

Mechanical Heart Valves

- Metals Stainless Steel, Titanium
- Ceramics Titanium Dioxide, Pyrolytic Carbon
- Synthetic Materials- Silicone

Bioprosthetic Heart Valves

- Natural Materials Bovine & Porcine tissue
- Synthetic Materials PTFE, Dacron

[†]C.R. Gentle, "*The use of ceramics in prosthetic heart valves*", Journal of Engineering in Medicine, Volume 16, Issue 2, 1987, p.no: 115-117

Market Evaluation

- Increase in valvular disease due to:
 - Socioeconomic factors
 - Growing life expectancy
- Currently a 4.84 billion USD market, the prosthetic HV market is projected to reach 8.86 billion USD by 2022*
- Abbott Healthcare, Edwards LifeSciences Corp., St. Jude's Medical, Medtronic PLC, & Boston Scientific Corp. are the major players in this segment

[†]J.S. Gammie et al, "Isolated Mitral Valve Surgery: The Society of Thoracic Surgeons Adult Cardiac Surgery Database Analysis", The Annals of Thoracic Surgery, September 2018, Volume 106, Issue 3

Fig: Total number of isolated mitral valve operations performed every year in 1143 major US hospitals

(2011-2016)†

^{*}https://www.marketsandmarkets.com/Market-Reports/prosthetic-heart-valve-market-245407958.html

Issues with Prosthetic HVs

Durability

- Mechanical HVs: Life of 20 to 30 years
- Bioprosthetic HVs: Require replacement within 10-15 years[†]

Thrombogenicity

- Reduced leaflet movement, thickening of valve leaflets, changes in effective prosthesis area (stenosis or regurgitation)
- Mechanical HVs: Highly thrombogenic; Long term anticoagulant therapy (warfarin) required
- Bioprosthetic HVs: Less thrombogenic

[†]W. Vongpatanasin, L.D. Hillis, R.A. Lange, "*Prosthetic Heart Valves*", The New England Journal of Medicine 1996; 335:407-416

Issues with Prosthetic HVs

Structural Failure

- Mechanical HVs: Rare
- Bioprosthetic HVs: Calcification leads to cusps becoming rigid and rupturing

Embolization

 An unattached mass clogs arterial beds at a point distal to its origin. Eg: Thromboembolism

Paravalvular Regurgitation

- Improper implantation, sutures give way over time
- Causes trauma to blood cells; leads to hemolysis

Solutions- Polymeric Materials

- Combine durability & strength of mechanical HVs and biocompatibility of bioprosthetic HVs
- Polyurethane (PU) is attractive option:
 - Hard (crystalline) and soft (elastomeric) segments
 - Proportion determines features like stiffness
 - Favourable mechanical and hemodynamic properties, resistance to thrombus formation
- Drawbacks: Susceptibility to degradation & risk of calcification;

Solutions- Polymeric Materials

- Soft segments are modified three variant polymers of PU
- Polyester urethane
 - Soft segments were easily hydrolysed; hence unsuitable for long term implantation
- Polyether urethane
 - Resistant to hydrolysis but susceptible to oxidative degradation and cracking under env. stress in vivo
- Polycarbonate urethane
 - Resistant to oxidative degradation
 - Biodegradation is limited to peripheral layer

Solutions- Polymeric Materials

- Modification of chemical structure
 - Linking biodegradation resistant molecules
 - Eg: polydimethylsiloxane (thermal and oxidative stability)
 - Attempts to link anticalcification agents into the polymer structure
 - Eg: covalent binding of bisphosphonate (2-hydroxyethane bisphosphonic acid [HEBP])

Solutions- Endothelialization

- Provide a coating of endothelial cells on prosthesis surface so as to reduce risks of thrombosis and autoimmune reactions
- Two techniques Tissue Engineering & Surface Modification
- **Tissue Engineering:** Seeding of cells on the polymer surface and proliferating them *In vitro*
 - Need for providing the cell culture
 - Risk of infection

Solutions- Endothelialization

- **Surface Modification:** Modify surface of polymer so as to promote adhesion of endothelial progenitor cells (EPCs) *in situ*[†]
 - Application of short peptide sequences recognized by cell receptors
 - Low concentration of EPCs; Need for a selective surface
 - The tripeptide Arg-Gly-Asp (RGD) has been in common use
 - Also recognized by platelet integrin receptors
 - Tetrapeptide Arg-Glu-Asp-Val (REDV) is shown to have high selectivity towards human endothelial cells

†Beata A.Butruk-Raszeja, Magdalena S.Dresler, Aleksandra Kuzminska, Tomasz Ciach, "Endothelialization of polyurethanes: surface silanization and immobilization of REDV peptide, Colloids and Surfaces"

Conclusions

- Proposed design involves the use of Polycarbonate urethane, structurally modified by linking biodegradation resistant molecules and anti calcification molecules
- Further, surface modification techniques used to enhance affinity of human endothelial progenitor cells (EPCs) towards the prosthesis
- Expected to have longer life as a result of reduced risks of biodegradation and calcification
- Also expected to be less susceptible to thrombosis and autoimmune reactions due to endothelialization

THANK YOU