6. Die Logarithmusfunktion als Umkehrfunktion und seine Ableitungsfunktion

 $f(x)=e^x$ ist auf $\mathbb R$ streng monoton steigend.

Also ist die e-Funktion injektiv.

Damit ist die e-Funktion nach Satz umkehrbar.

Bestimmung der Umkehrfunktion:

1. e-Funktion ist injektiv und damit umkehrbar.

$$y = e^x$$

3. Die Lösung der Gleichung $y=e^x$ lautet: $\ln(y)$, somit ist:

$$x = \ln(y)$$

$$4. y = \ln(x)$$

$$f^{-1}(x) = \ln(x)$$

Die Defintionsmenge von $\ln(x)$ ist die Wertemenge der e-Funktion: $D=\mathbb{R}^+_0$ Die Wertemenge von $\ln(x)$ ist die Defintionsmenge der e-Funktion: $W=\mathbb{R}$

Satz:

Die **natürliche Logarithmusfunktion** f^{-1} ist die Umkehrfunktion der natürlichen Exponentialfunktion.

Sie hat die Defintionsmenge $D=\mathbb{R}^+_0$ und die Wertemenge $W=\mathbb{R}$. Es gilt folglich:

$$ln: \mathbb{R}^+_0
ightarrow \mathbb{R}$$

Bestimmung der Ableitungsfunktion:

Es sei:

$$f^{-1}(x) = \ln(x)$$

Damit gilt:

$$e^{f^{-1}(x)}=x$$

beide Seiten ableiten:

$$e^{f^{-1}(x)} \cdot f'^{-1}(x) = 1$$

 f^{-1} ist die Umkehrfunktion von e:

$$x \cdot f'^{-1}(x) = 1$$

Dividiere durch x mit x>0:

$$f'^{-1}(x) = \frac{1}{x}$$

Satz:

Sei $(f^{-1}): x o \ln(x)$ die natürliche Logarithmusfunktion.

Es gilt:

$$(f^{-1})'(x)=\frac{1}{x}$$

Grenzwerte der natürlichen Logarithmusfunktion:

Satz:

Es gilt:

1.

$$\lim_{x o\infty}\ln(x)=\infty$$

2.

$$\lim_{x o 0}\ln(x)=-\infty$$

3. Sei $\alpha > 0$, dann gilt:

$$\lim_{x o\infty}rac{\ln(x)}{x^lpha}=0$$

Der Logarithmus wächst für $x \to \infty$ langsamer gegen ∞ , als jede positive Potenz von x.

4. Es gilt für lpha>0

$$\lim_{x o 0} x^{lpha} \cdot \ln(x) = 0$$