VE475 Homework 5

Liu Yihao 515370910207

Ex. 1 — RSA setup

1. In the RSA encryption and decryption, we use

$$ed \equiv 1 \mod \varphi(n)$$

$$m^{ed} \equiv m \mod \varphi(n)$$

This is based on the Euler's theorem, which has a condition that m and n be two coprime integers. So it is likely for n to be coprime with m.

2. Suppose $k = a\varphi(n), a \in N^*$, and m < n.

(a)

$$m^k \equiv (m^{\varphi(n)})^a \mod n$$

 $\equiv 1^a \mod n$
 $\equiv 1 \mod n$

So

$$m^k \equiv 1 \mod p$$
 and $m^k \equiv 1 \mod q$

(b) First, if gcd(m, n) = 1, according to (a), it's obvious that

$$m^{k+1} \equiv m \bmod p \quad \text{and} \quad m^{k+1} \equiv m \bmod q$$

Second, if gcd(m, n) = p, so gcd(m/p, q) = 1

$$m^{k+1} \equiv p \left[\left(\frac{m}{p} \right)^{k+1} \mod q \right] \mod n$$

$$\equiv p \left[\left(\frac{m}{p} \right)^{a(p-1)\varphi(q)+1} \mod q \right] \mod n$$

$$\equiv p \cdot \frac{m}{p} \mod n$$

$$\equiv m \mod n$$

So

$$m^{k+1} \equiv m \mod p$$
 and $m^{k+1} \equiv m \mod q$

Third, if gcd(m, n) = q, it is similar to the second case.

We can conclude that for any arbitrary $m, m^{k+1} \equiv m \mod p$ and mod q.

- 3. (a) We know that $ed \equiv 1 \mod \varphi(n)$, which means that ed = k + 1 where k is a multiple of $\varphi(n)$. According to part 2(b), we know that for any arbitrary m, $m^{k+1} \equiv m \mod p$ and mod q, or we can say $m^{k+1} \equiv m \mod n$, so $m^{ed} \equiv m \mod n$,
 - (b) From the previous calculation, we can find that for all m < n, no matter m and n are coprime or not, we can both find that $m^{ed} \equiv m \mod n$, so that the RSA encryption and decryption can be performed. So we can conclude that it is not necessary that gcd(m, n) = 1.

Ex. 2 — RSA decryption

$$n = 11413 = 101 \times 113$$

So we can find that p = 101 and q = 113, so $\varphi(n) = 11200$, and we should calculate d so that $ed \equiv 1 \mod \varphi(n)$.

By applying the extended euclidean algorithm,

	q_i	r_i	s_i
0		7467	1
1		11200	0
2	$7467 \div 11200 = 0$	$7467 - 0 \times 11200 = 7467$	$1 - 0 \times 0 = 1$
3	$11200 \div 7467 = 1$	$11200 - 1 \times 7467 = 3733$	$0 - 1 \times 1 = -1$
4	$7467 \div 3733 = 2$	$7467 - 2 \times 3733 = 1$	$1 - 2 \times -1 = 3$

$$e \cdot 3 \equiv 1 \mod \varphi(n)$$

So d=3, then we can apply modulo exponentiation to the equation

$$m \equiv c^d \bmod n$$

So m = 1415.

Ex. 3 — Breaking RSA

- 1. When we decrypt an RSA ciphertext, we use $m \equiv c^d \mod n$. When d is small, the decryption speed will be faster, so one would select short encryption or decryption keys.
- 2.

$$ed \equiv 1 \mod \operatorname{lcm}(p-1, q-1)$$

$$ed = K \cdot lcm(p-1, q-1) + 1, K \in N$$

Suppose $G = \gcd(p-1, q-1)$, we can find

$$ed = \frac{K}{G}(p-1, q-1) + 1$$

Let
$$k = \frac{K}{\gcd(K, G)}$$
, $g = \frac{G}{\gcd(K, G)}$,

$$ed = \frac{k}{q}(p-1, q-1) + 1$$

$$\frac{e}{pq} = \frac{k}{dg}(1-\lambda), \lambda = \frac{p+q-1-g/k}{pq}$$

Since $p \approx q \gg 0$, λ would be very small, then $\frac{e}{pq}$ is slightly smaller than $\frac{k}{dq}$, and

$$edg = k(p-1)(q-1) + g$$

Let $k_0 = \frac{k}{a}$ we can find

$$\varphi(n) = (p-1)(q-1) = \frac{ed-1}{k_0}$$

where $\frac{k_0}{d}$ converges to $\frac{e}{n}$. Then we can apply continued fractions to get a list of approximate of k_0 and d, validate them and get the right d if it is small enough.

- 3. According to Wiener's theorem, decryption key should be larger than $\frac{1}{3}n^{1/4}$. For security considerations, it should be randomly selected from the safe range.
- 4.

Ex. 4 — Programming

In the ex3 folder, with a README file inside it.

Ex. 5 — Simple Questions

- 1.
- 2.
- 3.
- 4.
- 5.

$$(97 - 1) = 96 = 2^5 \times 3$$

So the generator x should satisfy that

$$x^{32} \neq 1 \mod 97$$
 and $x^{48} \neq 1 \mod 97$

$$x^{16} \neq \pm 1, 35, 61 \mod 97$$

We can find that

$$2^{16} \equiv 61 \mod 97$$

 $3^{16} \equiv 61 \mod 97$
 $4^{16} \equiv 1 \mod 97$
 $5^{16} \equiv 36 \mod 97$

So the smallest generator of $U(\mathbb{Z}/97\mathbb{Z})$ is 5.