

Fundamentos Físicos y Tecnológicos (G.I.I.)

Curso 2012/2013

Relación de problemas 4

- 1. En el circuito de la Figura 1, $V_i=15V,\,R=100\Omega$ y $I_s=100\cdot 10^{-6}A.$ Calcular:
 - a) la corriente que circula por diodo si la diferencia de potencial entre sus extremos es 0.1 V. Usar la relación exponencial entre V_d y I_d .
 - b) la corriente que circula por diodo si la diferencia de potencial entre sus extremos es 0.5V. Usar la relación exponencial entre V_d y I_d .
 - c) la corriente que circula por el circuito así como la diferencia de potencial entre los extremos del diodo usando la relación exponencial entre V_d y I_d .
 - d) la corriente que circula por el circuito así como la diferencia de potencial entre los extremos del diodo usando el primer modelo de aproximación para el diodo.

Figura 1:

- 2. Para el circuito de la Figura 1, calcular la característica de transferencia si:
 - a) se toma la salida en la resistencia.
 - b) se toma la salida en el diodo.

Datos: $R = 1K\Omega$

Figura 2:

- 3. En el circuito de la Figura 2 hay dos diodos, D_1 es de Germanio con una tensión umbral $V_{T1}=0.2V$ y una resistencia directa $r_{d1}=20\Omega$ (segundo modelo visto en clase). D_2 es de Silicio con una $V_{T2}=0.6V$ y $r_{d2}=15\Omega$. Calcular las intensidades que circulan por cada uno de dichos diodos si:
 - a) $V_i = 100V \text{ y } R = 10k\Omega$
 - b) $V_i = 100V \text{ y } R = 1k\Omega$
- 4. Para el circuito de la Figura 3, calcular la característica de transferencia si se toma la salida en el diodo. Datos: $R=1K\Omega$

Figura 3:

5. Para el circuito de la Figura 4, calcular la característica de transferencia si se toma la salida en el punto indicado por V_0 . Datos: $R=1K\Omega$

Figura 4:

- 6. Los fenómenos de avalancha o ruptura se producen en algunos diodos cuando la tensión que soportan en inversa es muy grande y supera cierto valor (llamado tensión inversa de ruptura). En esa situación, una gran corriente atraviesa el diodo de manera que sus efectos dejan de ser despreciables y hay que tenerlos en cuenta. En el circuito de la Figura 5, la tensión inversa de ruptura de los diodos es $V_{Z1}=10V$ y $V_{Z2}=8V$. Calcular las corrientes que circulan a través de cada una de las resistencias teniendo en cuenta que $V_i=20V$, $R_1=600\Omega$, $R_2=400\Omega$ y $R_3=300\Omega$.
- 7. Dibuje la forma de v_d si el circuito de la Figura 1 estuviera alimentado por una fuente de valor $v_i(t) = 1\cos(\omega t + \alpha)V$. ¿Afectaría el que la fuente no fuera de contínua a la forma de la

Figura 5:

característica de transferencia calculada en problema 2? ¿Qué forma tendría la diferencia de potencial entre los extremos de la resistencia? ¿Qué ocurriría si $v_i(t) = 0.2cos(\omega t + \alpha)V$?

- 8. En el circuito de la figura 6 calcular el valor de la tensión de salida (V_o) , sabiendo que el didodo D1 cuando está en conducción se puede representar por:
 - a) Un cortocircuito (diodo ideal)
 - b) Una fuente de tensión de 0.7V.
 - c) Una fuente de tensión de 0.7 V y una resistencia de 20 Ω . Datos: $R_1=5k\Omega,\,R_2=5k\Omega$ y $R_3=5k\Omega$.

Figura 6:

- 9. Determinar el valor de la corriente I en el circuito de la figura 7. Suponer que el diodo es un diodo rectificador común. Datos: $R_1=2.2k\Omega,\ R_2=5.6k\Omega,\ R_3=3.3k\Omega$ y $I_1=8mA$.
- 10. En el circuito de la Figura 8, los diodos D_1 y D_2 se pueden representar, en conducción, como una fuente de tensión de 0.7V en serie con una resistencia de 20Ω . Determinar la tensión en el punto A si:
 - a) $V_{in} = 10V$
 - $b) V_{in} = -5V$

Datos: $R_1 = 5k\Omega$ y $R_2 = 2k\Omega$.

11. En el circuito de la Figura 9, D1 es ideal. Calcular el valor de V_{out} cuando la tensión de entrada V_{in} es la de la Figura 9. Datos: $R_1 = 100\Omega$, $R_2 = 150\Omega$, $R_3 = 10k\Omega$ y $I_1 = 8mA$.

Figura 7:

Figura 8:

Figura 9:

- 12. Hallar el punto de trabajo del MOSFET de canal n de la Figura 10:
 - a) Si $V_{GG} = -3.5V$
 - b) Si $V_{GG} = -3V$
 - c) Si $V_{GG} = -4V$

Datos: $V_{SS} = -6V$, $R_1 = 5.6k\Omega$, $V_T = 2V$, $k = 2 \cdot 10^{-3} \frac{A}{V^2}$.

- 13. Determinar el valor de I_D , V_{DS} y V_{GS} en el circuito de la Figura 11. Datos: $V_{DD}=12V$, $R_1=2k\Omega,~R_2=1M\Omega,~V_T=3V,~k=0,48\cdot 10^{-3}\frac{A}{V^2}$.
- 14. En el circuito de la Figura 12:
 - a) Suponiendo $V_{GG}=0V,$ ¿cuál es el estado del transistor?

Figura 10:

Figura 11:

- b) Suponiendo que ahora V_{GG} aumenta desde 0, ¿para qué tensión empieza a conducir el MOSFET?
- c) En el momento en que entra en conducción, ¿en qué zona de trabajo (óhmica o saturación) se encuentra?

Datos: $V_{DD}=15V,\ V_{SS}=5V,\ R_{G1}=120\Omega,\ R_{G2}=220\Omega,\ R_d=4.7k\Omega,\ V_T=2V,\ k=2\cdot 10^{-3}\frac{A}{V^2}.$

Figura 12:

15. En el circuito de la Figura 13:

a) Hallar el punto de trabajo y la potencia disipada en cada uno de los transistores del MOSFET de canal n de la figura, si $V_{GG}=3V$.

b) Calcular la tensión V_{GG} máxima para que M_1 se mantenga en la región lineal.

Datos: $V_{DD} = 9V$ Para M_1 : $V_{T1} = 1V$, $k_1 = 4 \cdot 10^{-3} \frac{A}{V^2}$. Para M_2 : $V_{T2} = 2V$, $k_2 = 2 \cdot 10^{-3} \frac{A}{V^2}$

Figura 13:

- 16. Hallar el punto de trabajo y la potencia disipada en cada uno de los transistores del MOSFET de canal n de la Figura 13, si $V_{GG}=5V$. Datos: $V_{DD}=9V$ Para M_1 : $V_{T1}=1V$, $k_1=4\cdot 10^{-3}\frac{A}{V^2}$. Para M_2 : $V_{T2}=2V$, $k_2=2\cdot 10^{-3}\frac{A}{V^2}$
- 17. Los transistores NMOSFET de la Figura 14 son iguales. Se quiere que la corriente de drenador sea igual en ambos transistores. Calcular V_{GS} para M_1 y M_2 y el valor de R_1 . Justifique la zona de trabajo para ambos transistores. Datos: $V_{DD}=15V,\ V_T=0.6V,\ k=4\cdot 10^{-3}\frac{A}{V^2},\ R_2=1M\Omega,\ I_1=I_2=2mA,\ R_3=1.5k\Omega.$

Figura 14: