Simulazione nel dominio del tempo

metodi di integrazione numerica di equazioni differenziali

eq.differenziale
$$x' = f(x,t)$$

noto x_0 si vuol determinare x_1

forward Euler formula:

$$x_1 = x_o + h x_o'$$

$$x_s' = \frac{x_1 - x_o}{x_o}$$

$$x_o' = \frac{x_1 - x_o}{h}$$

Simulazione nel dominio del tempo

backward Euler formula:

$$x_1' = \frac{x_1 - x_o}{h}$$
 $x_1 = x_o + h x_1'$

è una formula implicita:

 $non \, conosciamo \, x_1 \, e \, quindi \, non \, conosciamo \, x_1 \, '.$

In generale: si usa un procedimento iterativo partendo da una stima iniziale (Corrector)

Trapezoidal rule:

$$x_1 = x_o + \frac{h}{2} (x_1 - x_o)$$

formula implicita

Stabilità dell'integrazione

si usa la funzione test:

$$x' = \lambda x$$
 (soluzione: $x = x(0)e^{\lambda t}$)

e si studia la stabilità in funzione di λh dove h è il passo di integrazione.

Reti lineari

formulazione a variabili di stato:

$$x' = Ax + w$$

bakward Euler:

$$\mathbf{x}_{n+1} = \mathbf{x}_n + h\mathbf{x}'_{n+1}$$

$$\mathbf{x}_{n+1} = \mathbf{x}_n + h(\mathbf{A}\mathbf{x}_{n+1} + \mathbf{w}_{n+1}).$$

$$(1 - h\mathbf{A})\mathbf{x}_{n+1} = \mathbf{x}_n + h\mathbf{w}_{n+1}$$

scomposizione LU.

N.B.: per h costante
la scomposizione LU è valida per tutti i passi,
serve solo forward e back substitution

Reti lineari

regola trapezoidale:

$$\mathbf{x}_{n+1} = \dot{\mathbf{x}}_n + \frac{h}{2} (\mathbf{A} \mathbf{x}_{n+1} + \mathbf{w}_{n+1} + \mathbf{A} \mathbf{x}_n + \mathbf{w}_n).$$

$$\left(\mathbf{1}-\frac{h}{2}\mathbf{A}\right)\mathbf{x}_{n+1}=\left(1+\frac{h}{2}\mathbf{A}\right)\mathbf{x}_n+\frac{h}{2}\left(\mathbf{w}_{n+1}+\mathbf{w}_n\right)$$

vale quanto detto per la bacward.

Formulazione Tableau o MNA

dominio di Laplace:

$$(\mathbf{G} + s\mathbf{C})\mathbf{X} = \mathbf{W}$$

dominio del tempo:

$$Gx + Cx' = w \longrightarrow Cx' = w - Gx$$

backward Euler:
$$\mathbf{C}\mathbf{x}_{n+1} = \mathbf{C}\mathbf{x}_n + h\mathbf{C}\mathbf{x}'_{n+1}.$$

$$Cx_{n+1} = Cx_n + h(w_{n+1} - Gx_{n+1})$$

$$\left(\mathbf{G} + \frac{1}{h}\mathbf{C}\right)\mathbf{x}_{n+1} = \frac{1}{h}\mathbf{C}\mathbf{x}_n + \mathbf{w}_{n+1}.$$

matrice MNA con 1/h al posto di s

Formulazione Tableau o MNA

regola trapezoidale:

$$Cx_{n+1} = Cx_n + \frac{h}{2}Cx'_{n+1} + \frac{h}{2}Cx'_n.$$

$$Cx_{n+1} = Cx_n + \frac{h}{2}(w_{n+1} - Gx_{n+1}) + \frac{h}{2}(w_n - Gx_n).$$

$$\left(\mathbf{C} + \frac{h}{2}\mathbf{G}\right)\mathbf{x}_{n+1} = \left(\mathbf{C} - \frac{h}{2}\mathbf{G}\right)\mathbf{x}_n + \frac{h}{2}(\mathbf{w}_{n+1} + \mathbf{w}_n).$$

$$\left(\mathbf{G} + \frac{2}{h}\mathbf{C}\right)\mathbf{x}_{n+1} = -\left(\mathbf{G} - \frac{2}{h}\mathbf{C}\right)\mathbf{x}_n + \mathbf{w}_{n+1} + \mathbf{w}_n$$

matrice MNA con 2/h al posto di s

Esempio

MNA:

$$\begin{bmatrix} G_1 + sC_1 & 0 & 1 \\ 0 & G_2 + sC_2 & -1 \\ 1 & -1 & -sL \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ I_L \end{bmatrix} = \begin{bmatrix} J \\ 0 \\ 0 \end{bmatrix}$$

bakward Euler:
$$\left(\mathbf{G} + \frac{1}{h}\mathbf{C}\right)\mathbf{x}_{n+1} = \frac{1}{h}\mathbf{C}\mathbf{x}_n + \mathbf{w}_{n+1}$$

$$\begin{bmatrix} G_{1} + \frac{C_{1}}{h} & 0 & 1 \\ 0 & G_{2} + \frac{C_{2}}{h} & -1 \\ 1 & -1 & -\frac{L}{h} \end{bmatrix} \begin{bmatrix} v_{1,n+1} \\ v_{2,n+1} \\ i_{L,n+1} \end{bmatrix} = \begin{bmatrix} j_{n+1} \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} \frac{C_{1}}{h}v_{1,n} \\ \frac{C_{2}}{h}v_{2,n} \\ -\frac{L}{h}i_{L,n} \end{bmatrix}$$

Modelli tempo-discreti dei componenti con memoria

Condensatore:

$$i = C\frac{dv}{dt} \qquad \frac{dv}{dt} = \frac{i}{C}$$

backward:

$$x_{n+1} = x_n + h x'_{n+1}$$

$$v_{n+1} = v_n + i_{n+1} \frac{h}{C}$$

cioè:

$$i_{n+1} = \frac{C}{h} v_{n+1} - \frac{C}{h} v_n$$

Modelli tempo-discreti dei componenti con memoria

Induttore:

$$v = L \frac{di}{dt} \qquad \frac{di}{dt} = \frac{v}{L}$$

backward:

$$x_{n+1} = x_n + h x'_{n+1}$$

$$i_{n+1} = i_n + v_{n+1} \frac{h}{L}$$

cioè:

$$v_{n+1} = \frac{L}{h}i_{n+1} - \frac{L}{h}i_{n}$$

Modelli tempo-discreti dei componenti con memoria

La rete diventa una rete resistiva con resistori L/h al posto degli induttori e conduttanze C/h al posto dei condensatori.

In parallelo a C/h ed in serie con L/h vengono posti generatori che tengono conto della soluzione al passo precedente.

Modelli analoghi possono essere ricavati per la regola trapezoidale o anche per formule di ordine superiore.

Metodo applicabile anche a reti non lineari, si otterrà una rete resistiva non lineare.

Esempio

Tecniche LMS (Linear MultiStep) di ordine superiore

- Uso di relazioni di ordine superiore
 - Stima di x basandosi sulla conoscenza di n valori precedenti sia di x che della sua derivata.
- Uso di formule di tipo predictor per la stima iniziale di x e poi uso iterativo di formule di tipo corrector.
 - Stima dell'errore
 - Modifica del passo di integrazione (e dell'ordine).

Conoscenza di n valori precedenti di x e della sua derivata:

$$x_n, x_{n+1}, \dots, x_{n+k-1}$$

 $x'_n, x'_{n+1}, \dots, x'_{n+k-1}$

- Se si considerano \mathcal{X}_{n+k} $\mathcal{X'}_{n+k}$ come incognite si ha una formula *predictor*.
- Se \mathcal{X}_{n+k} è supposto noto e si considera come incognita solo $\mathcal{X'}_{n+k}$ si ha una formula *corrector*.

si usa una tecnica di interpolazione polinomiale per il polinomio di ordine m:

$$x_m(t) = \sum_{i=0}^m d_i \left(\frac{t_{n+k}-t}{h}\right)^i = \sum_{i=0}^m d_i \tau^i$$

$$x'_{m}(t) = -\frac{1}{h} \sum_{i=1}^{m} i d_{i} \left(\frac{t_{n+k} - t}{h} \right)^{i-1} = -\frac{1}{h} \sum_{i=1}^{m} i d_{i} \tau^{i-1}$$

forma generale delle formule "predictor":

$$x_{n+k} = \sum_{j=1}^{k} a_{j}^{p} x_{n+k-j} - h \sum_{j=1}^{k} b_{j}^{p} x_{n+k-j}'$$

forma generale delle formule "corrector":

$$x'_{n+k} = -\frac{1}{h} \left\{ \sum_{j=0}^{k} a_j^C x_{n+k-j} - h \sum_{j=1}^{k} b_j^C x'_{n+k-j} \right\}$$

$$\sum_{i=0}^{k} \alpha_{i} x_{n+k-i} - h \sum_{i=0}^{k} \beta_{i} x'_{n+k-i} = 0$$

- 1) si ha una formula "predictor" se $\alpha_o = 0$ oppure $\beta_o = 0$
- 2) si ha una formula "corrector" se $\alpha_0 \neq 0$ e $\beta_0 \neq 0$
- 3) formule "Bakward differentiation" (BDF) se:

$$\beta_1 = \beta_2 = ... = \beta_k = 0$$

Adams-Bashforth Predictors and Adams-Moulton Correctors.

$$x_{n+k} = x_{n+k-1} + h \sum_{j=1}^{k} \gamma_j x'_{n+k-j+1}$$

	k	γι	γ ₂	γ ₃	γ4	Truncation Error
predictor corrector	1	0 1	1	_		$ \frac{\frac{1}{2} h^2 x^{(2)}}{-\frac{1}{2} h^2 x^{(2)}} $
predictor corrector	2	0 $\frac{1}{2}$	$\begin{array}{c} \frac{3}{2} \\ \frac{1}{2} \end{array}$	$-\frac{1}{2}$	<u></u> -	$-\frac{\frac{5}{12}}{12}h^3x^{(3)} - \frac{1}{12}h^3x^{(3)}$
predictor corrector	3	0 5 12	23 12 8 12	$-\frac{16}{12} - \frac{1}{12}$	5 12	$-\frac{\frac{9}{24}}{1}h^4x^{(4)}$ $-\frac{1}{24}h^4x^{(4)}$

LMS - BDF

BDF Predictors

$$x_{n+k} = \sum_{j=1}^{k+1} a_j^P x_{n+k-j}$$

Order k	a_1^P	a_2^P	a_3^P	a_4^P	a_5^P	a_6^P	a_7^P
1	2	-1					· · · · · · · · ·
2	3	-3	1			_	_
3	4	-6	4	-1		_	, · · · · · ·
4	5	-10	10	-5	1		_
5	6	-15	20	-15	6	1	_
6	7	-21	35	-35	21	-7	1

BDF Correctors

$$x'_{n+k} = -\frac{1}{h} \sum_{j=0}^{k} a_j^C x_{n+k-j}$$

Order k	a_0^C	a_1^C	a_2^C	a_3^C	a_4^C	a_5^C	a_6^C
1	-1	1	<u> </u>	-		_	_
2	$-\frac{3}{2}$	2	$-\frac{1}{2}$	-		_	_
3	$-\frac{11}{6}$	3	$-\frac{3}{2}$	1/3	_ ,	_	_
4	$-\frac{25}{12}$	4	-3	4 3	$-\frac{1}{4}$	· · · · · ·	_
5	$-\frac{137}{60}$	5	-5	10 3	$-\frac{5}{4}$	1/5	
6	$-\frac{147}{60}$	6	$-\frac{15}{2}$	20 3	$-\frac{15}{4}$	6 5	$-\frac{1}{6}$

LMS - BDF Stima dell'errore

Formula di Brayton:

$$E = \frac{h(x_{n+k}^C - x_{n+k}^P)}{a_0^C(t_{n+k} - t_n)} = \frac{hD}{a_0^CT}$$

Può essere usata per modificare il passo di integrazione ed eventualmente anche l'ordine delle BDF.