Temporal-difference learning

Corrado Possieri

Machine and Reinforcement Learning in Control Applications

Introduction

- Learn directly from experience without a model of the environment.
- As DP, use learned estimates to update the prediction
 - learns from incomplete episodes;
 - bootstrap.
- Updates a guess towards a guess.
- Can be used both for prediction and control.

Monte Carlo vs temporal-difference prediction

- Given a policy π , the goal is to estimate v_{π} .
- MC methods wait until the return following the visit is known
 - lacksquare use the return G_t as a target for $V(S_t)$

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t)).$$

- The simplest TD method (TD(0)) uses the immediate reward
 - \blacksquare use the reward R_{t+1}
 - lacksquare and the expected return $\gamma V(S_{t+1})$ as a target for $V(S_t)$

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t)).$$

One-step temporal-difference

Tabular TD(0)

```
Input: \pi
Output: v_{\pi}
```

Initialization

$$V(s) \leftarrow \text{arbitrary}, \forall s \in \mathcal{S}$$

 $V(\text{terminal}) \leftarrow 0$

Loop

```
initialize S
for each step of the episode do
   A \leftarrow \pi(S)
   take action A and observe R, S'
   V(S) \leftarrow V(S) + \alpha(R + \gamma V(S') - V(S))
   S \leftarrow S'
   if S is terminal then
       reinitialize the episode
```

Comparison of DP, MC, and TD

• DP estimates $v_{\pi}(s)$ by bootstrapping

$$V(s) \leftarrow \mathbb{E}_{\pi}[R_{t+1} + \gamma \underbrace{V(S_{t+1})}_{\text{estimate}} | S_t = s].$$

ullet MC estimates $v_{\pi}(s)$ by sample mean

$$V(s) \leftarrow \underbrace{\mathbb{E}_{\pi}}_{\text{sample}} [G_t | S_t = s].$$

ullet TD estimates $v_{\pi}(s)$ by estimating both

$$V(s) \leftarrow \underbrace{\mathbb{E}_{\pi}}_{\text{sample}} [R_{t+1} + \gamma \underbrace{V(S_{t+1})}_{\text{estimate}} | S_t = s].$$

Temporal-difference error

• The TD error is

$$\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t).$$

Off-policy TD control

- This error is used to update $V(S_t)$ towards a better estimate.
- It is not available until t+1.
- If V does not change, the MC error satisfies

$$G_{t} - V(S_{t}) = R_{t+1} + \gamma G_{t+1} - V(S_{t})$$

$$= \delta_{t} + \gamma (G_{t+1} - V(S_{t+1}))$$

$$= \delta_{t} + \gamma \delta_{t+1} + \gamma^{2} (G_{t+1} - V(S_{t+1}))$$

$$= \sum_{k=t}^{T-1} \gamma^{k-t} \delta_{k}.$$

Driving home example

State	Elapsed time	Predicted	Predicted
		time to go	total time
Leaving university	0	30	30
Reaching car	5	35	40
Exiting highway	20	15	35
Secondary road	30	10	40
Entering home	40	3	43
Home	43	0	43

MC updates

TD updates

Advantages of TD

- TD can be implemented online.
- MC waits until the end of the episode.
- TD require just a single step.
- MC requires complete sequences.
- TD works also for incomplete sequences.
- MC can be applied just for episodic tasks.
- TD can be used for continuous and episodic tasks.

Bias and variance of estimators

MC target

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

is an unbiased estimate of $v_{\pi}(S_t)$.

TD true target

$$R_{t+1} + \gamma v_{\pi}(S_{t+1})$$

is an unbiased estimate of $v_{\pi}(S_t)$.

TD target

$$R_{t+1} + \gamma V(S_{t+1})$$

is a biased estimate of $v_{\pi}(S_t)$.

- TD target has lower variance than MC target
 - return depends on *many* random actions, transitions, rewards;
 - TD target depends on *one* random action, transition, reward.

Advantages and disadvantages of MC and TD

- MC has high variance and zero bias
 - good convergence properties;
 - not very sensitive to initial value;
 - simple to understand and use;
 - more efficient in non-Markov environments.
- TD has low variance and nonzero bias
 - usually more efficient than MC:
 - TD(0) proved to converge to v_{π}
 - \blacktriangleright in the mean for constant (small) α ;
 - ▶ almost surely if $\sum_k \alpha_k = \infty$ and $\sum_k \alpha_k^2 < \infty$;
 - sensitive to initial value;
 - more efficient in Markov environments.

Batch updating

- Suppose to have a finite amount of experience.
- We can present the experience repeatedly until convergence.
- Given V, update it only once for each batch
 - compute the updates $\alpha(\mathsf{target}_t V(S_t))$ at each time step;
 - change the value function once with the sum of all increments.

- Constant α TD converges deterministically.
- Constant α MC converges deterministically.
- The two results may be different.

Off-policy TD control

You are the predictor (1)

- Suppose you observe the following eight episodes
 - **1** A, 0, B, 0;
 - **2** B, 1;
 - **3** B, 1;
 - **4** B, 1;

 - **6** B, 1;
 - **1** B, 1;
 - **∅** B, 1;
 - **8** B, 0.
- We want to estimate V(A) and V(B).

You are the predictor (2)

- The optimal value for B is $V(B) = \frac{6}{8} = 0.75$.
- Modeling experience via an MP

- V(A) = 0.75;
- same answer given by TD(0).
- We observed the return from A once and it was 0
 - V(A) = 0;
 - same answer given by MC;
 - minimum squared error on training data.

Certainty equivalence

- Batch MC converges to solution with minimum MS error
 - best fit to the observed returns

$$\sum_{k=1}^{K} \sum_{t=1}^{T_k} \left(G_t^k - V(S_t^k) \right)^2.$$

Off-policy TD control

- Batch TD(0) converges to solution of max likelihood MDP
 - solution to the MDP that best fits the data

$$\hat{P}_{s,s',a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k} \mathbf{1}(s_{t+1}^k = s', s_t^k = s, a_t^k = a),$$

$$\hat{R}_{s,a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k} r_t^k \mathbf{1}(s_t^k = s, a_t^k = a);$$

equivalent to assuming that the process estimate was known.

- ullet Use TD targets generated from b to evaluate $\pi.$
- Weight TD target by importance sampling.
- Only need a single importance sampling correction

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{\pi(A_t|S_t)}{b(A_t|S_t)} \underbrace{(R_{t+1} + \gamma V(S_{t+1}))}_{\text{TD target}} - V(S_t) \right).$$

Lower variance than Monte-Carlo importance sampling.

On-policy TD control

- We follow the path of GPI.
- Use TD for the evaluation part.
- Estimate q_{π} rather than v_{π} .
- Transitions from a state-action pair to a state-action pair.

This is still an MDP.

SARSA

Apply TD(0) to action values

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \underbrace{\left(\underbrace{R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})}_{\text{TD target}} - Q(S_t, A_t)\right)}_{\text{TD error } \delta_t} - Q(S_t, A_t)) \,.$$

• If S_{t+1} is terminal

$$Q(S_{t+1}, A_{t+1}) = 0, \quad \forall A_t.$$

The update is carried out on the basis of the quintuple

$$(S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1}).$$

Greedy in the Limit with Infinite Exploration

GLIE policies

A policy π is GLIE if

All state-action pairs are explored infinitely many times

$$N_k(s, a) \to \infty, \quad \forall a \in \mathcal{A}(s), \forall s \in \mathcal{S}.$$

2 The policy converges on a greedy policy

$$\pi(a|s) = \mathbf{1}(a = \arg\max_{a} Q(s, a)).$$

• For instance, ε -greedy policies are GLIE if $\varepsilon_k = \frac{1}{L}$.

Notes on SARSA

If Q does not change, the MC error satisfies

$$G_{t} - Q(S_{t}, A_{t}) = R_{t+1} + \gamma G_{t+1} - Q(S_{t}, A_{t})$$

$$= \delta_{t} + \gamma (G_{t+1} - Q(S_{t+1}, A_{t+1}))$$

$$= \delta_{t} + \gamma \delta_{t+1} + \gamma^{2} (G_{t+2} - Q(S_{t+2}, A_{t+2}))$$

$$= \sum_{k=t}^{T-1} \gamma^{k-t} \delta_{k}.$$

If the policy is GLIE and

$$\sum_{k} \alpha_k = \infty, \quad \sum_{k} \alpha_k^2 < \infty$$

■ SARSA converges with probability 1.

Off-policy TD control

On-policy TD control algorithm

SARSA algorithm

```
Input: \alpha > 0, \varepsilon > 0
Output: q_*, \pi_*
```

Initialization

```
Q(s, a) \leftarrow \text{arbitrary}, \forall a \in \mathcal{A}(s), \forall s \in \mathcal{S}
Q(\text{terminal}, \cdot) \leftarrow 0
```

Loop

```
initialize S
A \leftarrow \text{action derived by } Q(S, \cdot) \text{ (e.g., } \varepsilon \text{-greedy)}
for each step of the episode do
    take action A and observe R, S'
    A' \leftarrow \text{action derived by } Q(S', \cdot) \text{ (e.g., } \varepsilon \text{-greedy)}
    Q(S, A) \leftarrow Q(S, A) + \alpha(R + \gamma Q(S', A') - Q(S, A))
    S \leftarrow S'
    A \leftarrow A'
    if S is terminal then
         reinitialize the episode
```

Q-learning

- Independent of the policy being followed.
- Directly approximate q_* .
- ullet Update Q as

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha (R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t)).$$

No importance sampling is required.

Off-policy TD control

Notes on Q-learning

- Next action is chosen using behavior policy, e.g., ε -greedy.
- We consider alternative successor action following the greedy target policy π .
- Both behavior and target policies improve.
- If all pairs continue to be updated and

$$\sum_k \alpha_k(x_k,a_k) = \infty, \quad \sum_k \alpha_k^2(x_k,a_k) < \infty$$

Q-learning converges with probability 1.

Off-policy TD control algorithm

Q-learning algorithm

```
Input: \alpha > 0, \varepsilon > 0
Output: q_*, \pi_*
```

Initialization

$$Q(s,a) \leftarrow \text{arbitrary}, \forall a \in \mathcal{A}(s), \forall s \in \mathcal{S}$$

 $Q(\text{terminal}, \cdot) \leftarrow 0$

Loop

```
initialize S
```

for each step of the episode do

 $A \leftarrow action derived by Q(S, \cdot)$ (e.g., ε -greedy)

take action A and observe R, S'

 $Q(S, A) \leftarrow Q(S, A) + \alpha(R + \gamma \max_{a} \gamma Q(S', a) - Q(S, A))$

 $S \leftarrow S'$

if S is terminal then

reinitialize the episode

Cliff walking

- Consider the gridworld on the right.
- Terminal states are those in red and green.
- Reward is -1 on all transitions except those into the red area.
- Stepping into this region incurs a reward of -100.

Off-policy TD control

Expected SARSA

- Consider the basic update of Q-learning.
- Rather than maximizing, take expectation

$$\begin{split} Q(S_t, A_t) &\leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma \mathbb{E}_{\pi}[Q(S_{t+1}, A_{t+1}) | S_t] - Q(S_t, A_t)) \\ &= Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma \left(\sum_a \pi(a | S_{t+1}) Q(S_{t+1}, a) \right) - Q(S_t, A_t) \right). \end{split}$$

- This moves deterministically as SARSA moves in expectation.
- It eliminates the variance due to the random selection of A_{t+1} .

Off-policy TD control

Notes on expected SARSA

- Retains advantages of SARSA.
- Consistent empirical advantage of expected SARSA over SARSA.
- Can select large values of α ($\simeq 1$) when the environment is non-stochastic.
- Can be used off-policy
 - \blacksquare π is the greedy policy
 - b is the behavior policy
 - expected SARSA is Q-learning.

Maximization bias

- All control algorithms discussed so far involve maximization
 - in Q-learning the target policy is the greedy policy on Q;
 - in SARSA in Sarsa the policy is often ε -greedy.
- A maximization over estimates may lead to a (positive) bias.
- Consider, e.g., the case
 - q(s,a)=0 for all $a\in\mathcal{A}(s)$;
 - ullet Q(s,a) are uncertain and thus distributed some above and some below zero
- The problem is due to the fact that the same data are used to estimate both optimal actions and their values.

Divide data in two sets and used them to learn two

- independent estimates: Q_1 and Q_2 .
- ullet Q_1 can be used to determine the maximizing action

$$A_t^* = \arg\max_a Q_1(S_t, a).$$

ullet Q_2 can be used to estimate its value

$$Q_2(S_t, A_t^*) = Q_2(S_t, \arg\max_a Q_1(S_t, a)).$$

This is equivalent to

$$Q_2(s, a) \leftarrow Q_2(s, a) + \alpha (R + \gamma Q_1(s', \arg \max_{a'} Q_2(s', a')) - Q_2(S, A)).$$

The estimate will be unbiased

$$\mathbb{E}[Q_2(S_t, A_t^*)] = q(S_t, A_t^*).$$

Double Q-learning

Double Q-learning algorithm

reinitialize the episode

```
Input: \alpha > 0, \varepsilon > 0
Output: q_*, \pi_*
```

Initialization

$$\begin{array}{l} Q_1(s,a) \leftarrow \mathsf{arbitrary}, \forall a \in \mathcal{A}(s), \forall s \in \mathcal{S}, \ Q_1(\mathsf{terminal}, \cdot) \leftarrow 0 \\ Q_2(s,a) \leftarrow \mathsf{arbitrary}, \forall a \in \mathcal{A}(s), \forall s \in \mathcal{S}, \ Q_2(\mathsf{terminal}, \cdot) \leftarrow 0 \end{array}$$

Loop

```
initialize S for each step of the episode do A \leftarrow \text{action derived by } Q_1(S,\cdot) + Q_2(S,\cdot) \text{ (e.g., $\varepsilon$-greedy)} take action A and observe R,S' with probability 0.5 Q_1(S,A) \leftarrow Q_1(S,A) + \alpha(R+\gamma Q_2(S',\arg\max_a Q_1(S',a)) - Q_1(S,A)) else Q_2(S,A) \leftarrow Q_2(S,A) + \alpha(R+\gamma Q_1(S',\arg\max_a Q_2(S',a)) - Q_2(S,A)) S \leftarrow S' if S is terminal then
```