An Introduction to Algorithms By Hossein Rahmani

h_rahmani@iust.ac.ir http://webpages.iust.ac.ir/h_rahmani/

Run-time Analysis

- Depends on
 - input size
 - input quality (partially ordered)
- Kinds of analysis
 - Worst case
 - Average case
 - Best case

What do we mean by Analysis?

- Analysis is performed with respect to a computational model
- We will usually use a generic <u>uniprocessor</u> random-access machine (RAM)
 - All memory is <u>equally expensive</u> to access
 - No concurrent operations
 - All reasonable <u>instructions</u> take <u>unit time</u>
 - Except, of course, function calls

Example: Searching

 Assume we have a sorted array of integers, X[1..N] and we are searching for "key"

```
Cost
                                                  Times
found = 0;
                                         C0
                                                   1
                                         C1
i = 0;
while (!found && i < N) {
                                         C2
                                                   0 \le L \le N
                                         C3
     if (key == X[i])
                                                   1 <= L <= N
       found = 1:
                                         C4
                                                   1 <= L <= N
    j++;
```

T(n) = C0 + C1 + L*(C2 + C3 + C4), where $1 \le L \le N$ is the number of times that the loop is iterated.

Example: Searching

- What's the <u>best</u> case? Loop iterates just once =>
 - T(n) = C0 + C1 + C2 + C3 + C4
- What's the <u>average</u> (expected) case? Loop iterates N/2 times =>
 - T(n) = C0 + C1 + N/2 * (C2 + C3 + C4)
 - Notice that this can be written as $\underline{T(n)} = a + b*n$ where a, b are constants
- What's the worst case? Loop iterates N times =>
 - T(n) = C0 + C1 + N * (C2 + C3 + C4)
 - Notice that this can be written as $\underline{T(n)} = a + b*n$ where a, b are constants

Worst Case Analysis

- We will <u>only</u> look at <u>WORST</u> CASE running time of an algorithm. Why?
 - Worst case is an <u>upper bound</u> on the running time. It gives us a <u>guarantee</u> that the algorithm will never take any longer
 - For some algorithms, the <u>worst case</u> happens fairly <u>often</u>.
 As in this <u>search</u> example, the searched item is typically <u>not in the array</u>, so the loop will iterate N times
 - The "average case" is often roughly as bad as the "worst case". In our search algorithm, both the average case and the worst case are linear functions of the input size "n"

Quiz Time

- Target: Complexity Analysis of Insertion Sort
- Make the group of 2
- First, write what you remember from Insertion sort
 - Do not check internet or the previous slides
- Second, explore the complexity analysis
 - Find out the number of times each command runs
 - Discuss the Worst Case and Best Case
- Be careful, You only have 15 minutes
- Then, we proceed with the slides

Insertion Sort

```
InsertionSort(A, n) {
  for i = 2 to n \{
     key = A[i]
     j = i - 1;
     while (j > 0) and (A[j] > key) {
          A[j+1] = A[j]
     A[j+1] = key
                            How many times will
                            this loop execute?
```

Insertion Sort

```
Cost
                                                                                     times
    Statement
InsertionSort(A, n) {
    for i = 2 to n \{
                                                                            \mathsf{C}_1
                                                                                       n
          key = A[i]
                                                                                       n-1
                                                                            C_2
           j = i - 1;
                                                                                       n-1
                                                                            C_4
                                                                                       \sum\nolimits_{j=2}^{n}t_{j}
          while (j > 0) and (A[j] > key) {
                                                                            C_5
                                                                                      \sum\nolimits_{j=2}^{n} \left(t_{j}-1\right)
                                                                            C_6
                     A[j+1] = A[j]
                                                                                       \sum_{j=2}^{n} \left( t_{j} - 1 \right)
                                                                            C_7
                      j = j - 1
                                                                            0
          A[j+1] = key
                                                                                       n-1
                                                                            C<sub>8</sub>
                                                                            0
```

Analyzing Insertion Sort

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

- What can T(n) be?
 - Best case -- inner loop body never executed
 - $t_i = 1 \rightarrow T(n)$ is a linear function
 - Worst case -- inner loop body executed for all previous elements
 - $t_i = i \rightarrow T(n)$ is a quadratic function
 - Average case
 - 555

So, Is Insertion Sort Good?

- Criteria for selecting algorithms
 - Correctness
 - Amount of work done
 - Amount of space used
 - Simplicity, clarity, maintainability
 - Optimality

Asymptotic Notation

- We will study the asymptotic efficiency of algorithms
 - To do so, we look at <u>input sizes large enough</u> to make only the order of growth of the running time relevant
 - That is, we are concerned with how the <u>running time</u> of an algorithm <u>increases</u> with the <u>size of the input in the limit</u> as the size of the input increases without bound.
 - Usually an algorithm that is asymptotically more efficient will be the <u>best choice for all but very small inputs</u>.
 - Real-time systems, games, interactive applications need to limit the input size to sustain their performance.
- 3 asymptotic notations
 - Big O, Θ , Ω Notations

Big-Oh Notation: Asymptotic Upper

Bound

Want g(n) to be simple.

- T(n) = f(n) = O(g(n))
 - if $f(n) \le c*g(n)$ for all n > n0, where c & n0 are constants > 0

- Example: T(n) = 2n + 5 is O(n). Why?
 - 2n+5 <= 3n, for all n >= 5
- $T(n) = 5*n^2 + 3*n + 15$ is $O(n^2)$. Why?
 - $-5*n^2 + 3*n + 15 <= 6*n^2$, for all n >= 6

Ω Notation: Asymptotic Lower Bound

- $T(n) = f(n) = \Omega(g(n))$
 - if f(n) >= c*g(n) for all n > n0, where c and n0 are constants > 0

- Example: T(n) = 2n + 5 is $\Omega(n)$. Why?
 - -2n+5 > = 2n, for all n > 0
- $T(n) = 5*n^2 3*n$ is $\Omega(n^2)$. Why?
 - $-5*n^2 3*n >= 4*n^2$, for all n >= 4

Θ Notation: Asymptotic Tight Bound

- $T(n) = f(n) = \Theta(g(n))$
 - if $c1*g(n) \le f(n) \le c2*g(n)$ for all n > n0, where c1, c2 and n0 are constants > 0

- Example: T(n) = 2n + 5 is $\Theta(n)$. Why? 2n <= 2n+5 <= 3n, for all n >= 5
- $T(n) = 5*n^2 3*n \text{ is } \Theta(n^2)$. Why?
 - $-4*n^2 <= 5*n^2 3*n <= 5*n^2$, for all n >= 4

Big-Oh, Theta, Omega

Tips to guide your intuition:

- Think of O(g(N)) as "greater than or equal to" f(N)
 - Upper bound
- Think of Ω(g(N)) as "less than or equal to" f(N)
 - Lower bound
- Think of Θ(g(N)) as "equal to" f(N)
 - "Tight" bound

(True for large N and ignoring constant factors)

$$f(n) = O(g(n)) \Rightarrow f \leq g$$

 $f(n) = \Omega(g(n)) \Rightarrow f \geq g$
 $f(n) = \Theta(g(n)) \Rightarrow f \approx g$

Polynomial time

Common Functions

Name	Big-Oh	Comment
Constant	O(1)	Can't beat it!
Log log	O(loglogN)	Extrapolation search
Logarithmic	O(logN)	Typical time for good searching algorithms
Linear	O(N)	This is about the fastest that an algorithm can run given that we need O(n) just to read the input
N logN	O(NlogN)	Most sorting algorithms
Quadratic	O(N ²)	Acceptable when the data size is small (N<10000)
Cubic	O(N ³)	Acceptable when the data size is small (N<1000)
Exponential	O(2N)	Only good for really small input sizes (n<=20)

Comparison of growth rates

$\log n$	n	$n \log n$	n^2	n^3	2^n
0	1	0	1	1	2
0.6931	2	1.39	4	8	4
1.099	3	3.30	9	27	8
1.386	4	5.55	16	64	16
1.609	5	8.05	25	125	32
1.792	6	10.75	36	216	64
1.946	7	13.62	49	343	128
2.079	8	16.64	64	512	256
2.197	9	19.78	81	729	512
2.303	10	23.03	100	1000	1024
2.398	11	26.38	121	1331	2048
2.485	12	29.82	144	1728	4096
2.565	13	33.34	169	2197	8192
2.639	14	36.95	196	2744	16384
2.708	15	40.62	225	3375	32768
2.773	16	44.36	256	4096	65536
2.833	17	48.16	289	4913	131072
2.890	18	52.03	324	5832	262144

Quiz Time: Deliver Today

- Make the group of 2
- Deliver today, before 3pm
- No need to knock the door, Just under the door

 If this is too hard for you??, we could postpone the deadline until the Monday session!!!

Show that
$$\frac{1}{2}n^2 + 3n = \Theta(n^2)$$

Show that
$$(n \log n - 2n + 13) = \Omega(n \log n)$$

Discuss the complexity of the following algorithm:

```
void sum_first_n(int n) {
   int i,sum=0;
   for (i=1;i<=n;i++)
      sum = sum + i;
   }</pre>
```

 Discuss the complexity of the following algorithm:

```
int binarysearch(int a[], int n, int val)
{
  int l=1, r=n, m;
  while (r>=1) {
    m = (l+r)/2;
    if (a[m]==val) return m;
    if (a[m]>val) r=m-1;
    else l=m+1; }
return -1;
}
```

Discuss the complexity of the following algorithm:

```
int *compute_sums(int A[], int n) {
   int M[n][n];
   int i,j;
   for (i=0;i<n;i++)
        for (j=0;j<n;j++)
            M[i][j]=A[i]+A[j];
   return M;
}</pre>
```

•
$$S(N) = 1 + 2 + 3 + 4 + ... N =$$

$$\sum_{i=1}^{N} i = \frac{N(N+1)}{2}$$

• Sum of Squares:

$$\sum_{i=1}^{N} i^2 = \frac{N*(N+1)*(2n+1)}{6} \approx \frac{N^3}{3}$$

Geometric Series:

$$\sum_{i=0}^{N} A^{i} = \frac{1 - A^{N+1}}{1 - A} = \Theta(1)$$

$$\sum_{i=0}^{N} A^{i} = \frac{A^{N+1} - 1}{A - 1}$$

$$A < 1$$

$$A > 1$$

• Linear Geometric Series:

$$\sum_{i=0}^{n} ix^{i} = x + 2x^{2} + 3x^{3} + \dots + nx^{n} = \frac{(n-1)x^{(n+1)} - nx^{n} + x}{(x-1)^{2}}$$

Logarithms:

$$\log A^{B} = B * \log A$$

$$\log(A * B) = \log A + \log B$$

$$\log(\frac{A}{B}) = \log A - \log B$$

Summations with general bounds:

$$\sum_{i=a}^{b} f(i) = \sum_{i=0}^{b} f(i) - \sum_{i=0}^{a-1} f(i)$$

Linearity of Summations:

$$\sum_{i=1}^{n} (4i^2 - 6i) = 4\sum_{i=1}^{n} i^2 - 6\sum_{i=1}^{n} i$$

PROOF TECHNIQUES

Proof by induction

Proof by contradiction

Proof by construction

Induction

We have statements P_1 , P_2 , P_3 , ...

If we know

- for some k that P_1 , P_2 , ..., P_k are true
- for any n >= k that

$$P_1, P_2, ..., P_n$$
 imply P_{n+1}

Then

Every P_i is true

Proof by Induction

Inductive basis

Find P_1 , P_2 , ..., P_k which are true

Inductive hypothesis

Let's assume P_1 , P_2 , ..., P_n are true, for any $n \ge k$

Inductive step

Show that P_{n+1} is true

Example

Theorem: A binary tree of height n has at most 2ⁿ leaves.

Proof:

let I(i) be the number of leaves at level i

We want to show:
$$I(i) \leftarrow 2^i$$

Inductive basis

$$I(0) = 1$$
 (the root node)

Inductive hypothesis

Let's assume
$$l(i) \leftarrow 2^i$$
 for all $i = 0, 1, ..., n$

Induction step

we need to show that
$$I(n + 1) \leftarrow 2^{n+1}$$

Induction Step

Induction Step

$$I(n+1) \leftarrow 2 * I(n) \leftarrow 2 * 2^n = 2^{n+1}$$

Remark

Recursion is another thing

Example of recursive function:

$$f(n) = f(n-1) + f(n-2)$$

$$f(0) = 1, f(1) = 1$$

Proof by Contradiction

We want to prove that a statement P is true

- we assume that P is false
- then we arrive at an incorrect conclusion
- therefore, statement P must be true

Example

Theorem: $\sqrt{2}$ is not rational

Proof:

Assume by contradiction that it is rational

$$\sqrt{2}$$
 = n/m

n and m have no common factors

We will show that this is impossible

$$\sqrt{2} = n/m$$
 $2 m^2 = n^2$

Therefore,
$$n^2$$
 is even $n = 2 k$

$$2 m^2 = 4k^2 \qquad m^2 = 2k^2 \qquad m = 2 p$$

Thus, m and n have common factor 2

Contradiction!

Proof by Construction

Many theorems state that a particular type of object exists. One way to prove such a theorem is by demonstrating how to construct the object.

This technique is a proof by construction.

Example

For each even number n greater than 2, there exists a 3-regular graph with n nodes.

PROOF Let n be an even number greater than 2. Construct graph G = (V, E) with n nodes as follows. The set of nodes of G is $V = \{0, 1, ..., n-1\}$, and the set of edges of G is the set

$$E = \{ \{i, i+1\} \mid \text{ for } 0 \le i \le n-2 \} \cup \{ \{n-1, 0\} \}$$

$$\cup \{ \{i, i+n/2\} \mid \text{ for } 0 \le i \le n/2 - 1 \}.$$

Picture the nodes of this graph written consecutively around the circumference of a circle. In that case, the edges described in the top line of E go between adjacent pairs around the circle. The edges described in the bottom line of E go between nodes on opposite sides of the circle. This mental picture clearly shows that every node in G has degree 3.

Quiz

Let $T(1), T(2), T(3), \ldots, T(n)$ be a sequence of numbers such that for all $n \ge 2$ then

$$T(n) = 2T(n-1) + 2^{n+1}$$

If T(1) = 4 then prove that for all $n \ge 1$,

$$T(n) = n2^{n+1}$$