Japanese Patent Laid-open No. Hei 4-24889
Laid-open on January 28, 1992
Japanese Patent Application No. Hei 2-130897
Filed on May 21, 1990
Title of the Invention: IC Card Capable of Authentication
Description of the Invention:

The present invention relates to an IC card capable of personal authentication.

Fig. 2 shows an example of an IC card according to the invention. IC card 10 comprises pressure sensor 1, authenticity sensor 3 and contact 11. Fig. 4 shows an example of pressure sensor 1 having a plurality of small sensors 1a arranged in matrix.

Authenticity sensor 3 is used to determine whether a finger placed on sensor 1 is echt or not. To do this, sensor 3 has a line of LEDs 17 for illuminating a finger surface and a line sensor 18 for receiving a light reflected by the finger surface, as shown in Fig. 7. The output of line sensor 18 is used to determine whether a finger placed on pressure sensor 1 is echt or not. If it is determined that a finger placed on sensor 1 is echt and that a bodily feature obtained by sensor 1 is the same as the bodily feature of the owner of the IC card, the use of the IC card is permitted.

### ⑲日本国特許庁(JP)

40 特許出願公開

## ② 公開特許公報(A) 平4-24889

®int. Cl. ⁵

識別記号

庁内整理番号

❷公開 平成4年(1992)1月28日

G 06 K 19/10 B 42 D 15/10

521

6548-2C

6711-5L G 06 K 19/00

S

審査請求 未請求 請求項の数 2 (全8頁)

会発明の名称

個人認証機能付きICカード

**Ø特 顧 平2-130897** 

❷出 願 平2(1990)5月21日

**烟**発明者 平松 意

神奈川県川崎市幸区柳町70番地 株式会社東芝柳町工場内

切出 願 人 株式会社東芝

神奈川県川崎市幸区堀川町72番地

四代 理 人 弁理士 鈴江 武彦 外3名

明 椒 書

1. 発明の名称

個人認証機能付きICカード

2. 特許請求の範囲

(1) JCカード本体と、

このICカード本体の表面に設けられ、指の特徴情報を入力する圧力センサと、

この圧力センサによって入力された指の特徴情報とあらかじめ【Cカード本体内に記憶されたカード所有者の指の特徴情報とを照合する照合手段と、

この照合手段の照合結果に基づきICカード本体の使用を許可する制御手段と、

を具備することを特徴とする個人認証機能付き「 Cカード。

(2) ICカード本体と、

このICカード本体の表面に設けられ、指の特徴情報を入力する圧力センサと、

この圧力センサによって入力された指の特徴情報とあらかじめ1Cカード本体内に記憶されたカ

ード所有者の指の特徴情報とを照合する照合手段 と、

この照合手段の照合結果に基づきICカード本体の使用を許可する制御手段と、

前記圧力センサ上の指の真偽を判別する判別手 段と、

この判別手段の判別結果に基づき前記ICカード本体の使用を制限する手段と、

を具備することを特徴とする個人認証機能付き ICカード。

3. 発明の詳細な説明

[発明の目的]

(産業上の利用分野)

本発明は、カードの利用者があらかじめ登録されたカードの所有者であるか否かを認証する個人認証機能を有する、個人認証機能付きICカードに関する。

(従来の技術)

近年、クレジットカードや銀行カードなどの利用が急速に増大していることに伴い、これらの

カードの不正な使用の増加が問題となっている。
不正な使用としては、たとえば、所有者が紛失されたカードが使用される場合などがある。このかである。なカードの不正な使用を防止するためには、カードの利用を防止ながあるかなどを確認する必要がある。

止できない場合がある。

このような課題を解決する方法としては、暗証 番号に代えてカードの利用者の身体的特徴を用い の身体的特徴をあらかじめ野者の身体的特徴を が使用される度にカード利用者の身体的特徴を が使用される度にカード利用者の身体的 が使用された身体的特徴と比較することを はいすることとすれば、カードの所有者は暗証 号を記憶する必要がなく、且つ、カードの不正使 用を防止することが可能である。

ここで、他人の不正な使用を防止するためには、かかる身体的特徴の入力から認証までの一連の処理を、すべてカードに内蔵された集積回路で行なうようにする必要がある。たとえば、かからの体がを外部装置によって入力し、カードに内蔵された集積回路内でこの身体的特徴に対応する信号を送る必要があるにより、他人にこの信号を読み取られる可能性が生

かった。

(発明が解決しようとする課題)

じるからである。

本発明は、以上説明したような従来技術の課題に極みて試されたものであり、カードの所有者の身体的特徴を入力から認証までの一選の処理をすべてカードに内蔵された集被回路で行なうことができ、偽造や悪用を防止できる個人認証機能付き

[発明の構成]

(課題を解決するための手段)

第2の発明の個人認証機能付きICカードは、 ICカード本体と、このICカード本体の表面に 設けられ、指の特徴情報を入力する圧力センサと、 この圧力センサによって入力された指の特徴情報とあらかじめ I C カード本体内に記憶されたカード所有者の指の特徴情報とを照合する照合手段と、この照合手段の照合結果に基づき I C カード本体の使用を許可する制御手段と、 前記圧力センサ上の指の真偽を判別する判別手段と、 この判別手段の判別結果に基づき前記 I C カード本体の使用を制限する手段とを具備している。

(作用)

本発明は、指の特徴情報を圧力センサを用いて入力することとし、この圧力センサによって入力されたカード利用者の指の特徴情報とあらかじめカード内に記憶されたカード所有者の指の特徴情報とを照合し、この照合結果に基づき本ICカードの使用を許可することとしたものである。

(実施例)

以下、この発明の一実施例について、図面を参照して説明する。

第2図は、本実施例の個人認証機能付きIC カードの外観を概略的に示す斜視図である。図に

第1 図は、本実施例に係わる個人認証機能付き I C カードの指の特徴の入力から認証までの一連 の処理を行なうための電気回路系を振略的に示す プロック図である。図において、1は圧力センサ、 2は圧力センサ1 から出力された信号をデジタル 信号に変換するためのA / D 変換器、3は指が本 物であるかどうかを検知するための真偽センサ、 おいて、1は指の特徴情報を入力する圧力センサ、3は指が本物であるかどうかを検知するための異偽センサ、10はカード本体、11は外部装置との接続を行なうための外部接続用コンタクトである。

また、第3図は、本実施例の個人認証機能付き 「Cカードで認証を行なうために、圧力センサ1 および真偽センサ3の上に指12を置いた状態を 示す機略的側面図である。図に示したように、本 実施例では、圧力センサ1および真偽センサ3の上に 同時に指を置くことができるように配置されてい る。

カードの使用が正当であるか否かの認証は、第3回のようにして指12を圧力センサ1 および真偽センサ3の上においた状態で行なわれる。カードの使用が正当であると判断されたときは、カードは使用可能な状態となる。一方、不当であると判断されたときは、カードは状態を変えず使用可能な状態にはならない。この時、本実施例の個人

4 は真偽センサ3から出力された信号をデジタル 信号に変換するためのA/D変換器、5はA/D 変換器4が出力した信号によって指が本物である か否かを判断する真偽検知回路、6はA/D変換 器2の出力信号から得られたカード利用者の指の 特徴を表す情報を一時的に記憶させる画像メモリ、 7はカード所有者の指の特徴を表す情報を記憶す **る辞書用メモリ、8は気折のための名類処理を行** なう制御部、9はICカード全体の制御を行なう マイクロプロセッサである。制御部8は、A/D 変換器2の出力信号を処理してカード利用者の指 の特徴を表す情報を画像メモリ6に出力すると共 に、この情報と辞書用メモリフに記憶された情報 とを照合して2つの指の特徴情報が一致するか否 かを判定する。さらに、真偽検知回路5から指が 本物であるか否かを表す信号を入力し、指が本物 であり且つ画像メモリ5に記憶された情報が表す 指の特徴と辞書用メモリフに記憶された情報が最 す指の特徴とが一致した場合は、カードの使用を 正当と判断し、カードの使用を許可するための信

号をマイクロプロセッサ9に出力する。

次に、圧力センサ1を用いて指の特徴を認識する方法について、詳細に説明する。

第4図は、圧力センサ1の外観を概略的に示す 上面図である。第4図に示すように、圧力センサ 1は、微小センサ1 a をマトリックス状に配列し て構成されている。また、第5図は、第4図に示 した圧力センサ1のA-A′ 断面の一部を示す概 略的断面図である。図において、13はガラス基 板、14はガラス基板13の上に形成された電極、 15は同じくガラス基板13の上に形成されたシ リコン基板、16はガラス基板13とシリコン基 . 板15との間に形成されたダイヤフラムである。 なお、ダイヤフラム16を形成する方法としては、 例えば、異方性エッチング技術などが使用可能 である。また、シリコン基板15は、ガラス基板 13例に、電極としての低低抗圧15aを有しい る。この低低抗層15aには、図示していない電 源により、各版小センサ1 a について均一な電位

が与えられている。電極14は、各微小センサ

た部分は、それぞれ第5図と同じ構成部を示す。また、12は指を振念的に示したものである。図に示したように、圧力センサ1のと、指の間になどに起因する特のと、活の間がなどに起因する特と、医面の凹凸によって、圧力センサ1の各版小センサ1aにで、一定はよりも大きい圧力が加えられた微小センサ1aは、低抵抗層15aと電位よりも小さい圧力しか加える。れなかった微小センサ1aは、低抵抗層15a

と電極14とが接触せず、電極14には君圧は印

加されない。したがって、各散小センサ18につ

いて電極14の電位を個別に検出することにより、 指の皮膚の凹凸に対応した画像情報を得ることが

1 a 毎に、個別に外部に取り出されている。

第6回は、このように構成された圧力センサ1

の上に指を置いた状態を拡大して示す概略的断面

図である。図において、第5図と同じ符号を付し

統いて、真偽センサ3を用いて指が本物である

か否かを認識する方法について、詳細に説明する。 第7図は、真偽センサ3の構成の一例を提略的 に示す断面図である。図に示したように、真偽 センサ3は、ライン状に配列された緑色発光の LED(発光ダイオード)17と、このLED 17の発した光のうち指12で反射した光を受け るように配置されたラインセンサ18とが異確さ れている。また、ラインセンサ18は、長手方 向が指の幅方向と平行になるように配置されてい · る。ラインセンサ18の出力信号は、A/D変換 器4によりディジタル信号に変換され、真偽検知 回路5に送られる。第8図は、指が本物である場 合の真偽検知回路5に入力されたラインセンサ 18の出力分布の一例を示すグラフである。第8 図において、Aは真偽センサ3の上に指を置く前 のラインセンサ18の出力分布であり、Bは真偽 センサ3の上に指を置いたときの出力分布である。 このように、真偽センサ3の上に置かれた指が本 物である場合には、この指により緑色光は反射さ れるので、Bで示したような出力分布が得られる

が、真偽センサ3の上に置かれた指が偶えばシリコンゴム等で作られた偽物の指である場合には、 緑色光はほとんど反射しないので、Aで示したような出力分布のままである。

次に、本実施例の個人認証機能付きICカードにおける、カードの使用が正当であるか否かを認証する処理のシーケンスについて説明する。この認証における処理は「登録」と「無合」に大別される。

まず、カード所有者の指の特徴を登録するときの処理のシーケンスについれて説明する。第9回は、このときの制御部8の動作シーケンスにつりでして、上述のようにして対応した画像情報の表面に、指の個になって説明を加算信号について説明するとした。第10回は、この加算信号について説明するとしている。加算信号にあり、指の画像情報19と加算信号にののを模式的に表わしている。加算信号にあり、おの画像情報19と加算信号にののを模式的に表わしている。加算信号にあり、おの画像情報19と加算信号

指の幅の方向、すなわち図に示したッ方向に、指の画像情報19の各画素の濃度(各圧カセンサ1の出力値)を加算して得られる1次元の信号である。この加算信号20は、関節に対応する横じわの位置で急峻な谷を持ち、この谷の部分に個人性(指の特徴を表すパラメータ)が含まれている。 最後に、この加算信号20を辞書用メモリ7に登録する(ステップST3)。

あるとすると、辞書用メモリ7から統み出した加算信号の要素 A d (1) は、ステップST7で算出した加算信号の要素 A (i+m) と一致するため、A d (i) と A (i+m) の差は原理的には「O」となる。したがって、このとき、2つの加算信号の各要素についての誤差の2乗を和算した値S(m)、すなわち、

m≥0のとき

$$S(a) = \frac{1}{N-a} \sum_{i=1}^{N-a} \{A(i+a) - Ad(i)\}^2 \cdots (1)$$

m < 0 のとき

$$S(n) = \frac{1}{N+n} \sum_{\{m-n+1\}}^{N} \{A(1+n) - Ad(1)\}^{2} \cdots (2)$$

を計算すると、S(m) は原理的には「O」となる。 すなわち、S(m) は2つの加算信号の一致度を表 わすパラメータであり、S(m) の値が小さいほど 一致度が高いことになる。本実施例では、m をあ る範囲で変化させ、S(m) の値が最も小さくなる ときのm の値(この時のm の値をM とする)に対 応する位置で位置合わせができたものとし、その う。続いて、あらかじめ辞書用メモリフに登録してあるカード所有者の加算信号を読み出し、ステップST7で算出した加算信号と位置合わせを行ない(ステップST8)、さらに配合を行なう(ステップST9)。

ここで、この位置合わせ(ステップST7)および照合(ステップST8)について説明する。「位置合わせ」とは、上述のようにして登録を行なったときの指の位置と上記ステップST6で指の画像情報を入力したときの指の位置とのずれ(すなわち、2つの加算信号のずれ)を補正する処理である。また、「照合」とは、位置合わせ後の2つの加算信号の一致度を数値化する処理である。

いま、各加算信号の要素の数をNとし、辞書用メモリフから読み出した加算信号のうち i 番目の要素をA(i)とする。ここで、信号のうち i 番目の要素をA(i)とする。ここで、2つの加算信号に対応する指が同一の指であり、且つ、2つの加算信号のずれが m 画条分の長さで

ときのS(N)の値を照合の結果とする。

位置合わせおよび照合が終了すると、次に、この時の照合結果 S (N) により、辞書用メモリ 7 に記憶させたカード所有者の指と上記ステップ S T 6 で画像情報を入力したカード利用者の指とが同一であるか否かの判断を行う (ステップ S T 1 0)。本実施例では、あらかじめ同一指であるかどうかの判断のための関値 T H を定めておき、 S (N) がこの関値 T H より大きいか否かで同一 / 非同一の判断をするものとする。すなわち、 S (N) \* T H であれば同一でないと判断する。

同一であると認められた場合には、マイクロプロセッサ9がカードを使用可能な状態にする(ステップST11)。一方、非同一と認められた場合には、マイクロブロセッサ9は1Cカードの状態を変えない。したがって、非同一と認められた場合には、このカードを使用することはできない。

このように、本実指例によれば、指の特徴を接 すパラメータによってカード利用者が所有者自身

### 特朗平4-24889(6)

また、真偽センサ3を用いて指が本物の人間の指であるか否かを判断することとしたので、不正使用の防止を、より確実なものとすることができる。

さらに、本実施例においては、カード利用者の 指がカード所有者の指と一致するか否かの判断に 指の画像情報から計算した加算信号を用いたので、 後の処理を簡単にすることでき、したがって、この点からも、個人認証のためのすべての処理を ICカードに内蔵された集被回路で行なうことが 容易となる。但し、本発明はこれに限らず、指の 特徴情報を使った方式ならば他の方式を用いることも可能である。

なお、本実施例ではカードとして!Cカードを 例にとって説明したが、無線カード、非接触カー ドと呼ばれるようなカードにも本発明を適用でき ることはもちろんである。

#### [発明の効果]

以上詳細に説明したように、本発明によれば、カード利用者が所有者自身であるか否かを判断する手段として指の特徴情報を用いたこと、および個人認証のためのすべての処理を10カードに内蔵された集積回路で行なうようにしたことにより、カードの利用の便を図りつつ、他人によるカードの偽造および悪用を確実に防止することができる個人認証機能付き10カードを提供することができる。

### 4. 図面の簡単な説明

第1図は本発明の1実施例に係わる個人認証機 能付き1Cカードの指の特徴の入力から認証まで の一連の処理を行なうための電気回路系を概略的 に示すプロック図、第2図は第1図に示した個人 22 紅機能付き I C カードの外観を振略的に示す斜 視図、第3図は第1図に示した個人認証機能付き ICカードの圧力センサおよび真偽センザの上に 指を置いた状態を示す振略的側面図、第4図は圧 カセンサの外観を概略的に示す上面図、第5図は 第4図に示した圧力センサのA-A、断面の一部 を示す機略的断面図、第6図は圧力センサの上に 指を置いた状態を拡大して示す概略的斯面図、第 7 図は車体センサの構成の一例を摂略的に示す断 面図、第8図はラインセンサの出力分布の一例を 示すグラフ、第9図は第1図に示した個人認証機 能付きICカードにカード所有者の指の特徴情報 を登録するときの制御部の動作シーケンスを示す フローチャート、第10回は制御部で算出される 加算信号について説明するための概念図、第11

図はカード利用者の指の特徴情報をカード所有者 の指の特徴情報と照合するときの制御部の動作シ ーケンスを示すフローチャートである。

1 … 圧力センサ、 2 … A / D 変換器、 3 … 真偽 センサ、 4 … A / D 変換器、 5 … 真偽検知回路、 6 … 画像メモリ、 7 … 辞書用メモリ、 8 … 制御部、 9 … マイクロプロセッサ、 1 0 … カード本体、 1 1 … 外部接続用コンタクト、 1 2 … 指、 1 3 … ガラス基板、 1 4 … 電極、 1 5 … シリコン基板、 1 6 … ダイヤフラム、 1 7 … L E D 、 1 8 … ライ ンセンサ、 1 9 … 指の画像情報、 2 0 … 加算信号。

出顧人代理人 弁理士 鈴江武彦

# 特丽平 4-24889(**7)**













# 特開平 4-24889 (B)





【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第6部門第3区分 【発行日】平成11年(1999)12月10日

【公開番号】特開平4-24889 【公開日】平成4年(1992)1月28日 【年通号数】公開特許公報4-249 【出願番号】特願平2-130897 【国際特許分類第6版】

17/00 G06T 7/00 [FI] G06K 19/00 S 17/00 V G06F 15/62 460

G06K 19/10

### 予 秋 利 正 14s

平成 9 年 5 月 2 1 日

特許庁長官 洗 井 寮 北 麓

1. 本件の概示

**粉紙平2-130897**以

2. 発明の名称

別人尊範律部付き [ ロカード

3. 補圧をする者

事件との関係 特許出職人

(307) 株式会社 東芝

4. 代 数 人



- 5. 自我被驱
- 6、 植正片杂类网络
  - (1) 明細書
- 7. 横正对象项目条
  - (1) 特許請求の範囲(2) 売別の許額な役別

( A SE

### 8、横正の内容

- (1) 骨許額水の範囲を伊護に示す近り訂正する。
- (2) 明線時の第6頁第10行目から第7頁前8行目にわたって、「第1の乗明の一旦度している。」とあるを、「この是明の個人算能機能付き10カードは、10カード本体と、この10カード本体の裏面に設けられ、治の特徴情報を入力する物徴情報入力予数と、この特徴情報入力予数によって入力された他の特徴情報とあらかに的10カード本体内に配覧されたカード所有者の指の特徴情報とを配合する配合予数と、この性合手段の個介報差に基づき上記10カード本体の使用を許可する制御手段とを具備している。」と訂定する。
- (3) 引縮節の約7 頁第1 0 行員から第1 5 行目にわたって、「本是別は、〜したものである。」とあるを、「本是別は、投の特徴情報を入力し、この人力をれた難の特徴情報とあらかしめ「Cカード本体内に配慮されたカード所有者の指の特徴情報とを見合し、この無合能薬に基づき「Cカード本体の使用を許可することとしたものである。」と41 圧する。

#### 2. 特別別求の復居

- (ロードログード本体と、
- この I Cカード本体の表面に載けられ、欲の勢改体機を入力する<u>参展体優入力</u> 参<u>数</u>と、
- この<u>特徴情報入力手数</u>によって入力された数の特徴情報とあらかじめ I Cカー F本体内に配給されたカード度行数の限の特徴情報とを設合する総合手数と、
- この思合平像の患合効果に基づき<u>」を</u> 1 Cカード本体の使用を許可する製料手 数と、
- を具備することを特別とする個人総理機能分を1cカード。
- (2) 上記等価値報入力手級上の指の実施を判別する判別手級と、
- この者別手段の有別競集に長づき上記!ロカード本体の使用を領策する手段と、

を具備することを特徴とする前求項1に記載の個人認能機能付き1Cカード。