캡스톤 디자인

- Path Planning 9th Week Progress

A6 Blue

Path Planning

Search-based

- Dijkstra
- A* Dijkstra + heuristic cost
- D* Dynamic A*

Sampling-based

- RRT Random Tree
- RRT* RRT + rewire

Artificial Intelligence

- ANN Artificial Neural Network
- GA Genetic Algorithm

Our Algorithm

- Design own algorithm
 - A*(D*) 기반: 장애물 회피
- Using python & ROS
 - Simulation
- Using drone
 - 3D path planning
 - Safety distance
 - Cost function optimization
 - : Distance(Euclidean) + Power(battery) + Stability(?)

A* Algorithm

- Search-based algorithm
- Dijkstra + heuristic cost

Cost function: f(n) = g(n) + h(n)

g(n): 현재 node까지의 cost

h(n): 현재 node부터 목표 node

까지의 heuristic cost

A* Algorithm

A6 Blue

Schematic

Schematic

Topics:

/pp/obstacle: contains array of xyz coordinates of obstacle

/pp/map: contains array of xyz coordinates of map

/pp/destination: contains xyz coordinates of destination

/pp/checkpoint: contains xyz coordinates of checkpoint, way to destination

/pp/cp_pos: contains xyz coordinates of c heckpoint, way to destination

/pp/arr_info: contains bool if drone arrived checkpoint

/mavros/local/pose: contains xyz coordinates of drone's local position

Mapping

Box size:

50m x 30m x 10m

condition:

Gravity acc: -9.8 m/s^2

atmosphere type : adiabatic

Wind velocity: 0 m/s

Mapping

Successfully takeoff

Successfully land

Flight altitude: 2.5m

Mapping(problem)

Start-point: [5,5]

Start-point: [1,1]

Mapping(summary)

Achievements:

Completed making example map in gazebo

Static map on Planning node implemented

- Mapping node not implemented

Dynamic mapping impossible

Challenges:

Real-time dynamic mapping with topic required in practice

Coordinate system is different in Gazebo

Plan for next week:

Solve problem about starting-point

Apply created code to map that we make

Make view-point in gazebo more comfortable

Planning

Achievements:

A* algorithm implemented

- input: map, start, destination
- output: route to destination

Challenges:

How to improve performance?

Planning node need to be changed for dyn amic mapping

Plan for next week:

ROS embedding

- input : /pp/map, /pp/destination, /pp/arr_info
- output : /pp/checkpoint

Control

Achievements:

80% implemented

- drone controllable via topic
- sends /pp/arr_info True if distance between checkpoint and current position is under particular distance

Challenges:

Gazebo error occured in control PC Overshooting

- Acceleration control required

Plan for next week:

Check if drone works well with ROS embedded Planning node

Solve Gazebo error

Plan

- 1. Static path planning
- 2. Acceleration control
- 3. Dynamic mapping & path planning