Interro11 - Dynamique

Nom:	Note:
Prénom ·	

Exercice 1 - Dynamique

1. Donner l'expression du vecteur quantité de mouvement pour un point matériel de masse m et de vitesse \overrightarrow{v} .

$$\overrightarrow{p} = m\overrightarrow{v}$$

71 2. On considère le référentiel \mathcal{R}_A galiléen. Décrire le mouvement de \mathcal{R}_B par rapport à \mathcal{R}_A pour que l'on puisse également le considérer galiléen.

 \mathcal{R}_B est également un référentiel galiléen s'il a un mouvement de translation rectiligne et uniforme par rapport à \mathcal{R}_A .

- /2 3. Parmi les référentiels ci-dessous, cocher ceux qui peuvent être considérés galiléens pour une expérience dont la durée caractéristique est de l'ordre de 1 min. v désigne la norme de la vitesse et ω la vitesse angulaire.
 - \square Un train qui arrive en gare.

 - \Box La nacelle d'une grande roue ($\omega = \text{cste}$).
 - □ L'avion de Air Zero G en chute libre.

/3 4. Énoncer le principe fondamental de la dynamique.

Dans un référentiel **galiléen**, la somme des forces **extérieures** s'exerçant sur un système est égale à la dérivée temporelle de sa quantité de mouvement :

$$\frac{\mathrm{d}\overrightarrow{p}}{\mathrm{d}t} = \sum_{i} \overrightarrow{F_{i}^{\mathrm{ext}}}.$$

71 5. L'axe (Oz) est orienté vers le haut et on note g l'accélération de la pesanteur. Établir rapidement l'expression de la composante verticale \ddot{z} de l'accélération d'un point matériel en chute libre.

$$m\overrightarrow{a} = \overrightarrow{P}$$
, d'où $\ddot{z} = -g$.

/2 6. Donner l'expression de la force d'interaction gravitationnelle. On s'appuiera sur un schéma et on introduira soigneusement toutes les grandeurs nécessaires.

$$\overrightarrow{F_G} = -G \frac{m_1 m_2}{r^2} \overrightarrow{e_r},$$

avec:

• G la constante gravitationnelle;

- m_1 et m_2 la masse de chaque objet;
- r la distance entre les deux objets;
- $\overrightarrow{F_G}$ la force d'attraction gravitationnelle représentée sur le schéma;
- $\overrightarrow{e_r}$ le vecteur unitaire représenté sur le schéma.