fn cdp_epsilon

Michael Shoemate

July 17, 2024

Proves soundness of fn cdp_epsilon in cdp_epsilon.rs at commit 0b8f4222 (outdated). This proof is an adaptation of subsection 2.3 of [CKS20].

Bound Derivation 1

Definition 1.1. (Privacy Loss Random Variable). Let $M: \mathcal{X}^n \to \mathbb{Y}$ be a randomized algorithm. Let $x, x' \in \mathcal{X}^n$ be neighboring inputs. Define $f: \mathcal{Y} \to \mathbb{R}$ by $f(y) = \log \left(\frac{\mathbb{P}[M(x) = y]}{\mathbb{P}[M(x') = y]} \right)$. Let Z = f(M(x)), the privacy loss random variable, denoted $Z \leftarrow PrivLoss(M(x)||M(x'))$.

Lemma 1.2. [CKS20] Let $\epsilon, \delta \geq 0$. Let M: $\mathcal{X}^n \to \mathcal{Y}$ be a randomized algorithm. Then M satisfies (ϵ, δ) differential privacy if and only if

$$\delta \ge \underset{Z \leftarrow PrivLoss(M(x)||M(x'))}{\mathbb{E}} [max(0, 1 - e^{\epsilon - Z})] \tag{1}$$

(2)

for all $x, x' \in \mathcal{X}^n$ differing on a single element.

Proof. Fix neighboring inputs $x, x' \in \mathcal{X}^n$. Let $f: \mathcal{Y} \to \mathbb{R}$ be as in 1.1. For notational simplicity, let Y = M(x), Y' = M(x'), Z = f(Y) and Z' = -f(Y'). This is equivalent to $Z \leftarrow PrivLoss(M(x)||M(x'))$. Our first goal is to prove that

$$\sup_{E \subset \mathcal{Y}} \mathbb{P}[Y \in E] - e^{\epsilon} \mathbb{P}[Y' \in E] = \mathbb{E}[\max\{0, 1 - e^{\epsilon - Z}\}]. \tag{3}$$

For any $E \subset \mathcal{Y}$, we have

$$\mathbb{P}[Y' \in E] = \mathbb{E}[\mathbb{I}[Y' \in E]] = \mathbb{E}[\mathbb{I}[Y \in E]e^{-f(Y)}]. \tag{4}$$

This is because $e^{-f(y)} = \frac{\mathbb{P}[Y=y]}{\mathbb{P}[Y'=y]}$. Thus, for all $E \subset \mathcal{Y}$, we have

$$\mathbb{P}[Y \in E] - e^{\epsilon} \mathbb{P}[Y' \in E] = \mathbb{E}\left[\mathbb{I}[Y \in E](1 - e^{\epsilon - f(Y)})\right]$$
 (5)

Now it is easy to identify the worst event as $E = \{y \in \mathcal{Y} : 1 - e^{\epsilon - f(y)} > 0\}$. Thus

$$\sup_{E\subset Y}\mathbb{P}[Y\in E]-e^{\epsilon}\mathbb{P}[Y'\in E]=\mathbb{E}\left[\mathbb{I}[1-e^{\epsilon-f(Y)}>0](1-e^{\epsilon-f(Y)})\right]=\mathbb{E}[\max\{0,1-e^{\epsilon-Z}\}] \tag{6}$$

 $^{^{1}\}mathrm{See}$ new changes with git diff <code>Ob8f4222..bc5438ec</code> rust/src/combinators/measure_cast/zCDP_to_approxDP/cdp_ epsilon.rs

Theorem 1.3. [CKS20] Let $M: \mathcal{X}^n \to \mathcal{Y}$ be a randomized algorithm. Let $\alpha \in (1, \infty)$ and $\epsilon \geq 0$. Suppose $D_{\alpha}(M(x)||M(x')) \leq \tau$ for all $x, x' \in \mathcal{X}^n$ differing in a single entry.² Then M is (ϵ, δ) -differentially private for

$$\delta = \frac{e^{(\alpha - 1)(\tau - \epsilon)}}{\alpha - 1} \left(1 - \frac{1}{\alpha} \right)^{\alpha} \tag{7}$$

Proof. Fix neighboring $x, x' \in \mathcal{X}^n$ and let $Z \leftarrow PrivLoss(M(x)||M(x'))$. We have

$$\mathbb{E}[e^{(\alpha-1)Z}] = e^{(\alpha-1)D_{\alpha}(M(x)||M(x'))} \le e^{(\alpha-1)\tau} \tag{8}$$

By 1.2, our goal is to prove that $\delta \geq \mathbb{E}[\max\{0, 1 - e^{\epsilon - Z}\}]$. Our approach is to pick c > 0 such that $\max\{0, 1 - e^{\epsilon - Z}\} \leq ce^{(\alpha - 1)z}$ for all $z \in \mathbb{R}$. Then

$$\mathbb{E}[\max\{0, 1 - e^{\epsilon - Z}\}] \le \mathbb{E}[ce^{(\alpha - 1)z}] \le ce^{(\alpha - 1)\tau}.$$
(9)

We identify the smallest possible value of c:

$$c = \sup_{z \in \mathbb{R}} \frac{\max\{0, 1 - e^{\epsilon - z}\}}{e^{(\alpha - 1)z}} = \sup_{z \in \mathbb{R}} e^{z - \alpha z} - e^{\epsilon - \alpha z} = \sup_{z \in \mathbb{R}} f(z)$$

$$\tag{10}$$

where $f(z) = e^{z-\alpha z} - e^{\epsilon-\alpha z}$. We have

$$f'(z) = e^{z - \alpha z} (1 - \alpha) - e^{\epsilon - \alpha z} (-\alpha) = e^{-\alpha z} (\alpha e^{\epsilon} - (\alpha - 1)e^{z})$$
(11)

Clearly $f'(z) = 0 \iff e^z = \frac{\alpha}{\alpha - 1} e^{\epsilon} \iff z = \epsilon - \log(1 - 1/\alpha)$. Thus

$$c = f(\epsilon - \log(1 - 1/\alpha)) \tag{12}$$

$$= \left(\frac{\alpha}{\alpha - 1}e^{\epsilon}\right)^{1 - \alpha} - e^{\epsilon} \left(\frac{\alpha}{\alpha - 1}e^{\epsilon}\right)^{-\alpha} \tag{13}$$

$$= \left(\frac{\alpha}{\alpha - 1}e^{\epsilon} - e^{\epsilon}\right) \left(\frac{\alpha}{\alpha - 1}e^{-\epsilon}\right)^{\alpha} \tag{14}$$

$$= \frac{e^{\epsilon}}{\alpha - 1} \left(1 - \frac{1}{\alpha} \right)^{\alpha} e^{-\alpha \epsilon}. \tag{15}$$

Thus

$$\mathbb{E}[\max\{0, 1 - e^{\epsilon - Z}\}] \le \frac{e^{\epsilon}}{\alpha - 1} \left(1 - \frac{1}{\alpha}\right)^{\alpha} e^{-\alpha \epsilon} e^{(\alpha - 1)\tau} = \frac{e^{(\alpha - 1)(\tau - \epsilon)}}{\alpha - 1} \left(1 - \frac{1}{\alpha}\right)^{\alpha} = \delta \tag{16}$$

Corollary 1. [CKS20] Let $M: \mathcal{X}^n \to \mathcal{Y}$ be a randomized algorithm. Let $\alpha \in (1, \infty)$ and $\epsilon \geq 0$. Suppose $D_{\alpha}(M(x)||M(x')) \leq \tau$ for all $x, x' \in \mathcal{X}^n$ differing in a single entry. Then M is (ϵ, δ) -differentially private for

$$\epsilon = \tau + \frac{\ln(1/\delta) + (\alpha - 1)\ln(1 - 1/\alpha) - \ln(\alpha)}{\alpha - 1} \tag{17}$$

Proof. This follows by rearranging 1.3.

Corollary 2. Let $M: \mathcal{X}^n \to \mathcal{Y}$ be a randomized algorithm satisfying ρ -concentrated differential privacy. Then M is (ϵ, δ) -differentially private for any $0 < \delta \le 1$ and

$$\epsilon = \inf_{\alpha \in (1,\infty)} \alpha \rho + \frac{\ln(1/\delta) + (\alpha - 1)\ln(1 - 1/\alpha) - \ln(\alpha)}{\alpha - 1}$$
(18)

Proof. This follows from 1 by taking the infimum over all divergence parameters α .

²This is the definition of (α, τ) -Rényi differential privacy.

1.1 Efficient computation of ϵ

From 2, we have

$$\epsilon(\alpha) = \alpha \rho + \frac{\ln(1/\delta) + (\alpha - 1)\ln((\alpha - 1)/\alpha) - \ln(\alpha)}{\alpha - 1}$$
(19)

$$\epsilon'(\alpha) = \rho + \frac{\ln(\alpha\delta)}{(\alpha - 1)^2} \tag{20}$$

$$\epsilon''(\alpha) = \frac{2\alpha \ln(\alpha \delta) - \alpha + 1}{(\alpha - 1)^3 \alpha} \tag{21}$$

Notice the curve is convex so long as

$$\delta < e^{1/2 - 1/(2\alpha)}/\alpha \tag{22}$$

Otherwise the curve is concave, with a non-negative derivative for any choice of α :

$$\epsilon'(\alpha) = \rho + \frac{\ln(\alpha\delta)}{(\alpha - 1)^2} \ge \rho + \frac{\alpha - 1}{2\alpha(\alpha + 1)^2} \ge 0 \tag{23}$$

We can find the minimizer α_* by conducting a binary search over the interval $(1, \alpha_{max})$, where α_{max} is discovered via exponential search for a positive derivative.

2 Pseudocode

Precondition

• Type Q must have trait Float.

Implementation

```
def cdp_epsilon(rho: Q, delta: Q) -> Q:
      if rho.is_sign_negative():
          raise "rho must be non-negative"
      if not delta.is_sign_positive():
          raise "delta must be positive"
      if rho.is_zero():
9
          return 0
10
      # checks if derivative is positive
11
      def deriv_pos(a):
12
          return rho > -log(a * delta) / (a - 1)**2
14
      # find bounds
15
      a_min = 1.01
16
      a_max = 2
17
      while not deriv_pos(a_max):
          a_max *= 2
19
20
      # optimize alpha
21
      while True:
22
          diff = a_max - a_min
24
25
          a_mid = a_min + diff / _2
26
          if a_mid == a_max or a_mid == a_min:
27
28
              break
```

```
if deriv_pos(a_mid):
30
31
               a_max = a_mid
           else:
32
33
               a_min = a_mid
34
      # back out epsilon
35
36
      a_m1 = a_max.inf_sub(_1)
37
      numer = (a_m1.inf_div(a_max).inf_ln().inf_mul(a_m1)) \
38
           .inf_sub(a_max.inf_ln()) \
39
           .inf_add(delta.recip().inf_ln())
40
41
      denom = a_max.neg_inf_sub(_1)
42
43
       epsilon = a_max.inf_mul(rho).inf_add(numer.inf_div(denom))
44
45
      return max(epsilon, 0)
```

Postcondition

Either a valid epsilon is returned or an error is returned.

3 Proof

Theorem 3.1. For any possible setting of ρ and δ , cdp_epsilon either returns an error, or an ϵ such that any ρ -differentially private measurement is also (ϵ, δ) -differentially private.

Proof. The code always finds an $\alpha_* \approx \mathtt{a_max} \geq 1.01$. Since $\mathtt{a_max} \in (1, \infty)$, then by 2, any ρ -differentially private measurement is also $(\epsilon(\mathtt{a_max}), \delta)$ -differentially private. Define $\epsilon_{cons}(\alpha)$ as a "conservative" function for computing $\epsilon(\alpha)$, where floating-point arithmetic is computed with conservative rounding such that $\epsilon_{cons}(\alpha) \geq \epsilon(\alpha)$ for $\forall \alpha \in (1, \infty)$. Since $\mathtt{epsilon} = \epsilon_{cons}(\mathtt{a_max}) \geq \epsilon(\mathtt{a_max})$, then any $(\epsilon(\mathtt{a_max}), \delta)$ -differentially private measurement is also $(\mathtt{epsilon}, \delta)$ -differentially private.

References

[CKS20] Clément L. Canonne, Gautam Kamath, and Thomas Steinke. The discrete gaussian for differential privacy. *CoRR*, abs/2004.00010, 2020.