9.
$$(k, +, +)$$
. Royal $x \in K \setminus \{0\}$ $p, q \in \mathbb{Z}$
 $\exists z : x \neq = \frac{1}{x^p}$

Fallimer scheiding: $p \in \mathbb{N}$ $p = 1$: $x = \frac{1}{x^n}$
 $p + 1$: $x = \frac{1}{x^{n+1}}$

2. Fall: $p = 0$: $x = x = 1 = \frac{1}{1} = \frac{1}{x^n}$

3. Fall: $p \in \mathbb{N}$: $p = -1$: $p = 1$

ANA V3 9.) ... 27: X8 x9= x P+9 O.B.d. A: PEg Fallantersche: oling: 1. Full: PEN => gEN D= 1 - X . X = X . X = X 41 0+1: xP+1 x9 = xP. x9. x = xP+9. x = xP+1-9 2. Fall p=0 => 9 & NU {0} x ° x 9 = 1 · x 9 = x 9 = x 0 · 9 v 3. Fall pe-IN 0. B. d. A: $P \leq Q$ Fallumerscheidung: 1. Fall $P \in \mathbb{N} \Rightarrow Q \in \mathbb{N}$ $Q = 1: (x) = x = x P \cdot Q$ $Q + 1: x P \cdot (Q + A) = x P \cdot Q + P = x P \cdot Q$ $Q + 1: x P \cdot (Q + A) = x P \cdot Q + P = x P \cdot Q$ 2. Fall: q=0: (x) = 1 = x = x ... / 3. Fall: GE-IN: $\alpha = -1: (x^{p})^{-1} = \frac{1}{x^{p}} = x^{p} = x^{p} = (x^{p})^{q} \cdot x^{-p} = (x^{p})^{q-1}$ $\alpha = -1: x^{p} \cdot (\alpha - 1) = x^{p} \cdot q + p = x^{p} \cdot \alpha x^{-p} = (x^{p})^{q} \cdot x^{-p} = (x^{p})^{q-1}$