

Data de Emissão: 17/08/2018

Instituto de Informática

Departamento de Informática Teórica

Dados de identificação

Disciplina: TÓPICOS ESPECIAIS EM COMPUTAÇÃO XV

Período Letivo: 2018/2 Período de Início de Validade: 2018/2

Professor Responsável pelo Plano de Ensino: Rafael Santos Coelho

Sigla: INF05013 Créditos: 4

Carga Horária: 60h CH Autônoma: 10h CH Coletiva: 50h CH Individual: 0h

Professores Responsáveis durante 2018/2

1 Totossorius Responsavois darante 2016/2		
Professor	Início	Fim
Rafael Santos Coelho	21/05/2018 (2018/2)	-
LUCIO MAURO DUARTE	13/05/2010 (2010/2)	20/05/2018 (2018/2)

Súmula

Assuntos relacionados a inovações tecnológicas decorrentes de pesquisas recentes ou a aplicações específicas de interesse a um grupo restrito ou tendo caráter de temporalidade, enfocando aspectos não abordados ou abordados superficialmente em disciplinas regulares.

Currículos

Curriculos		
Currículos	Etapa Aconselhada	Natureza
BIOTECNOLOGIA MOLECULAR		Eletiva
BIOINFORMÁTICA		Eletiva
BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO		Eletiva

Objetivos

Título: Introdução a Algoritmos de Aproximação

Ao final da disciplina, espera-se que o aluno: (i) ao se deparar com um determinado problema de otimização real desconhecido, consiga formalizar aspectos técnicos e estruturais de tal problema de acordo com o arcabouço teórico ensinado, (ii) tenha familiaridade com algumas das principais técnicas de projeto de algoritmos de aproximação e (iii) conheça algumas das técnicas de demonstração de inaproximabilidade de problemas de otimização

Conteúdo Programático

Semana: 1

Título: Unidade 1: Introdução

Conteúdo: Apresentação e motivação da disciplina, discussão de alguns algoritmos de aproximação básicos, revisão de conceitos preliminares,

problemas de otimização, classes de complexidade de problemas de otimização e medidas de aproximação.

Semana: 2 a 3

Título: Unidade 2: Método guloso e busca local

Conteúdo: Conceituação preliminar sobre algoritmos gulosos e busca local, exemplos de aplicações desses métodos: variações do problema de

escalonamento de tarefas, algoritmos clássicos para o problema do caixeiro viajante métrico e o problema da cobertura de conjuntos.

Semana: 3 a 4

Título: Unidade 3: Esquemas polinomiais de aproximação

Conteúdo: Esquemas polinomiais de aproximação, esquemas plenamente polinomiais de aproximação, esquemas polinomiais de aproximação

assintóticos, discussão de exemplos: o problema da mochila binária, variações do problema de escalonamento de tarefas e o

problema do empacotamento.

Semana: 5 a 7

Título: Unidade 4: Arredondamento determinístico de programas lineares

Conteúdo: Conceituação geral de algoritmos de arredondamento, discussão de exemplos: variações do problema do escalonamento de tarefas,

variações do problema da árvore de Steiner, variações do problema de localização de facilidades.

Data de Emissão: 17/08/2018

Semana: 8 a 9

Título: Unidade 5: Arredondamento probabilístico de programas lineares

Conteúdo: Desigualdades de concentração, discussão de exemplos: o problema do corte máximo e algoritmos para a versão de maximização do

problema da satisfabilidade, desaleatotização via probabilidades condicionais e o problema dos fluxos multicommodity inteiros.

Semana: 10 a 11

Título: Unidade 6: Método primal-dual

Conteúdo: Revisão do método primal-dual clássico, folgas aproximadas, problema restrito aproximado

primal, problema restrito aproximado dual, discussão de exemplos: problemas de projeto de redes com restrições de conexidade e o

problema da cobertura de circuitos em grafos.

Semana: 12 a 15

Título: Unidade 7: Complexidade de aproximação

Conteúdo: Classes de aproximabilidade, a técnica do gap, reduções preservadoras de aproximação, NP-dificuldade forte e

pseudo-polinomialidade.

Metodologia

O professor da disciplina conduzirá atividades em sala de aula e proporá atividades extra-classe que estimulem o aluno a (i) compreender a importância teórica e prática de algoritmos de aproximação, (ii) desenvolver a capacidade de abstração necessária para modelar matematicamente problemas de otimização reais e (iii) desenvolver a capacidade inquisitiva de investigação da estrutura matemática de determinados tipos de problemas de otimização.

As 60 horas previstas para atividades teóricas e práticas indicadas neste plano de ensino incluem 30 encontros de 100 minutos de duração cada (2 períodos de 50 minutos por encontro, 2 encontros por semana), totalizando 3.000 minutos, e mais 10 horas (600 minutos) de atividades autônomas, realizadas sem contato direto com o professor, conforme Resolução 11/2013 do CEPE/UFRGS, Artigos 36 a 38.

Carga Horária

Teórica: 50 Prática: 10

Experiências de Aprendizagem

Participação em aulas expositivas teóricas, resolução de listas de exercícios de fixação, realização de trabalho prático de implementação e avaliação experimental de algoritmos de aproximação e preparação e apresentação de seminário de pesquisa sobre aproximabilidade e inaproximabilidade de alguns problemas de otimização importantes.

Critérios de avaliação

- Serão realizadas duas provas individuais e sem consulta (P1 e P2), cada uma valendo 10 pontos, abrangendo os seguintes conteúdos:

P1: Unidades 1 a 4 P2: Unidades 4 e 7

- Será realizado (em grupos) um trabalho prático (T), valendo 10 pontos, de implementação e avaliação experimental de algoritmos de aproximação;
- Será preparado e apresentado (em grupos) em sala um seminário de pesquisa (S), valendo 10 pontos, sobre tópicos complementares relacionados à aproximabilidade e inaproximabilidade de alguns problemas de otimização importantes;

A média ponderada (M) será calculada da seguinte forma:

M = 0.6*[(P1 + P2)/2] + 0.4*[(T + S)/2]

A conversão da média M para conceitos será realizada como descrito a seguir (a sigla PF significa percentual de frequência):

Data de Emissão: 17/08/2018

PF < 75% : FF (reprovado por falta de frequência)

PF >= 75% e 0 <= M < 6 : D (apto a fazer o exame de recuperação)

atribuído sumariamente o conceito FF (falta de fregüência).

PF >= 75% e 6.0 <= M < 7.5 : C (aprovado) PF >= 75% e 7.5 <= M < 9.0 : B (aprovado)

PF >= 75% e 9.0 <= M : A (aprovado)

Obs: Somente serão calculadas as médias (e corrigidos os trabalhos e provas) daqueles alunos que obtiverem, ao longo do semestre, um percentual de freqüência igual ou superior a 75% das aulas previstas. Aos que não satisfizerem este requisito, será

Atividades de Recuperação Previstas

Para poder realizar o exame de recuperação, o aluno deve ter percentual de frequência maior ou igual a 75%.

A recuperação (E), que valerá 10 pontos, versará sobre toda a matéria da disciplina e será individual e sem consulta. A nota final (NF) será calculada da seguinte maneira: NF = (M + E)/2. Serão considerados aprovados na recuperação os alunos que obtiverem NF >= 6. A estes será atribuído o conceito C. Aos demais, será atribuído o conceito D.

Não haverá oportunidade de recuperação das provas ou do trabalho prático (T) e do seminário (S) por não comparecimento (ou não entrega no prazo estipulado), exceto em casos previstos na legislação (problemas de saúde, parto, serviço militar, convocação judicial, luto, etc), sendo necessária a devida comprovação. O aluno que não fizer uma das provas por motivo de doença ou outro motivo previsto no regimento da Universidade deverá solicitar a realização de uma prova de recuperação junto ao Protocolo Geral da Universidade. Para a realização da prova de recuperação, o aluno deverá obter a aprovação da junta médica.

Prazo para Divulgação dos Resultados das Avaliações

Os resultados das avaliações de trabalhos e provas serão divulgados no prazo máximo de 15 dias após a realização ou entrega dos mesmos. Também será observado o prazo mínimo de 72 horas entre a divulgação da média ponderada e a realização do exame de recuperação

Bibliografia

Básica Essencial

Ausiello, G.; Crescenzi, P.; Kann, V.; Marchetti-Spaccamela, A.; Gambosi, G.. Complexity and approximation: Combinatorial optimization problems and their approximability properties. EUA: Springer Science and Business Media, 2012. ISBN 3540654313.

Vazirani, V. V. .. Approximation algorithms. EUA: Springer Science and Business Media, 2013. ISBN 3540653678.

Williamson, D. P.; Shmoys, D. B.. The design of approximation algorithms. EUA: Cambridge University Press, 2011. ISBN 0521195276. Disponível em: http://www.designofapproxalgscom/

Básica

Carvalho, M.H.; Cerioli, M.R.; Dahab, R.; Feofiloff, P.; Fernandes, C.G.; Ferreira, C.E.; Guimarães, K.S.; Miyazawa, F.K.; Pina Jr., J.C.; Soares, J.; Wakabayashi, Y.. Uma Introdução Sucinta a Algoritmos de Aproximação. Brasil: Publicações Matemáticas do IMPA, 2001. Disponível em: https://wwwimeuspbr/~cris/aprox/

Du, D. Z.; Ko, K. I.; Hu, X. Design and analysis of approximation algorithms. EUA: Springer Science and Business Media, 2011. ISBN 1461417007. Hochbaum, D. S.. Approximation algorithms for NP-hard problems. EUA: PWS Publishing Co., 1996. ISBN 0534949681.

Complementar

Arora, S.; Barak, B. Computational complexity: a modern approach. EUA: Cambridge University Press, 2009. ISBN 0521424267. Goldreich, O.. Computational Complexity: A Conceptual Perspective. EUA: Cambridge University Press, 2008. ISBN 052188473X.

Papadimitriou, C. H. Computational complexity. EUA: John Wiley and Sons Ltd., 2003. ISBN 0201530821.

Outras Referências	
Título	Texto
Artigos de periódicos da área	Artigos de periódicos cujos tópicos envolvam os conteúdos
	vistos em aula.

Data de Emissão: 17/08/2018

Observações

É fortemente desejável que o aluno que deseja cursar esta disciplina já tenha um bom conhecimento de matemática discreta, teoria de grafos, projeto e análise de algoritmos, otimização combinatória e familiaridade com conceitos básicos de probabilidade e estatística. Preferencialmente, recomenda-se que o aluno que já tenha cursado e obtido aprovação nas seguintes disciplinas: Complexidade de Algoritmos

(INF05515), Otimização Combinatória (INF05010) e Probabilidade e Estatística (MAT02219).