with $C'' := C_{\text{Nash }d}^{-2} |||E|||^{-2-\frac{4}{d}}$, and finally

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\left\|\Gamma_{\Omega}(t,\cdot,y)\right\|_{\mathrm{L}^{2}(\Omega)}^{2} \leq -C''\left\|\Gamma_{\Omega}(t,\cdot,y)\right\|_{\mathrm{L}^{2}(\Omega)}^{2+\frac{4}{d}} + \left\|\Gamma_{\Omega}(t,\cdot,y)\right\|_{\mathrm{L}^{2}(\Omega)}^{2}.$$

Denoting $q(t):=\left(\|\Gamma_{\Omega}(t,\cdot,y)\|_{\mathrm{L}^2(\Omega)}^2\right)^{-\frac{2}{d}}$, we see therefore that

$$q'(t) \ge \frac{4}{d} \left(C'' - q(t) \right),$$

which implies

$$q(t) \ge C'' \, \frac{4}{d} \, t \, \mathrm{e}^{-\frac{4}{d} \, t},$$

so that in the end

$$\left\|\Gamma_{\Omega}(t,\cdot,y)\right\|_{\mathrm{L}^{2}(\Omega)}^{2} \leq \left(C''\frac{4}{d}\right)^{-\frac{d}{2}} \,\mathrm{e}^{2T}\,t^{-\frac{d}{2}}.$$

This yields the claimed L^2 bound.

For the L^{∞} bound, note first that the Laplace operator is self-adjoint, so that $\Gamma_{\Omega}(t,x,y)$ = $\Gamma_{\Omega}(t,y,x)$. By the semigroup property, we therefore find that

$$\begin{split} \Gamma_{\Omega}(t,x,y) &= \int_{\Omega} \Gamma_{\Omega}(t/2,x,z) \, \Gamma_{\Omega}(t/2,z,y) \, \mathrm{d}z \\ &\leq \|\Gamma_{\Omega}(t/2,x,\cdot)\|_{\mathrm{L}^{2}(\Omega)} \, \|\Gamma_{\Omega}(t/2,\cdot,y)\|_{\mathrm{L}^{2}(\Omega)} \\ &\leq \|\Gamma_{\Omega}(t/2,\cdot,x)\|_{\mathrm{L}^{2}(\Omega)} \, \|\Gamma_{\Omega}(t/2,\cdot,y)\|_{\mathrm{L}^{2}(\Omega)}, \end{split}$$

and we use the already established L² bound to conclude.

A direct interpolation between the L^1 and L^{∞} estimates yields the L^p estimate stated in the Lemma. Finally, the self-adjointness argument leads to the second group of estimates.

In the context of the domains appearing in the proof of Proposition 5 (but keeping the notations of Lemma 11), we write down for the related geometry the following statement:

Lemma 12. Fix T > 0. Then there exists a constant $C_{T,d}^*$ such that for any domain

$$\Omega := B_d(0, R) \cap \{(x', x_d) \in \mathbb{R}^d : x_d > \phi(x')\}$$

for R > 0 and $\phi : \mathbb{R}^{d-1} \to \mathbb{R}$ with $\|\nabla \phi\|_{\infty} \le \frac{1}{11d}$ with $\partial \Omega_n = B_d(0, R) \cap \{x', x_d\} \in \mathbb{R}^d : x_d = \phi(x')\}$ and $\partial \Omega_d = \partial \Omega \setminus \partial \Omega_n$ the constant $C_{\Omega, T, d}$ appearing in Lemma 11 is bounded by $C_{T, d}^*$.

Proof. For the domain considered in the statement, we need an extension operator E for functions

 $f \in H^1(\Omega)$ such that $f|_{\partial\Omega_d} = 0$, for the norms H^1 and L^1 . We can first extend f to $\Omega_+ := \{(x', x_d) \in \mathbb{R}^d : x_d > \phi(x')\}$ by setting $E_1 f = 0$ on $\Omega_+ \setminus \Omega$, and $E_1 f = f$ on Ω . Recalling that $f|_{\partial\Omega_d} = 0$, we see that $||E_1||_{H^1 \to H^1} = 1$ and $||E_1||_{L^1 \to L^1} = 1$. We then use Lemma 10 (with Ω in this lemma corresponding to Ω_+ here) to build the operator E_2 from $H^1(\Omega_+)$ to $H^1(\mathbb{R}^d)$, so that still thanks to Lemma 10, $|||E_2E_1||| = |||E_2||| \le 2\sqrt{1 + \frac{1}{121d^2}}$, and we conclude the Lemma by setting $E := E_2 E_1$.

We now write down an estimate which is a direct consequence of Lemma 11, and which will be used several times in the sequel.