

Class 10th

Mathematics

Short Note

TRIGONOMETRY

• Trigonometry is the branch of mathematics in which we study the relationships between the sides and the angles of a triangle.

TRIGONOMETRIC RATIOS:-

The ratio of sides of a right angle triangle with respect to acute angles are called "Trigonometric ratios of the angle".

RIGHT ANGLE TRIANGLE:-

- 1. A triangle having one angle equal to 90° is called right angle triangle.
- 2. The sum of other two acute (Less than 90°) angles is 90°. (or both acute angles are complementary)
- 3. The side opposite to 90°, is called hypotenuse, it is longest side in triangle.
- 4. The side opposite to given acute angle is perpendicular and side adjacent to the angle is base.

	Hypotenuse	Perpendicular	Base
for ∠A	AC	ВС	AB
for ∠C	AC	AB	ВС

TRIGONOMETRIC RATIOS:-

В

TRICK: Some People Have Curly Brown Hair To Produce Beauty.

sin θ	= P/H = DE/DF
cos θ	= B/H $=$ EF/DF
tan θ	= P/B = DE/EF
cot θ	= B/P $=$ EF/DE
sec θ	= H/B $=$ DF/EF
cosec θ	= H/P = DF/DE

By above table
$$\sin \theta = \frac{1}{\csc \theta}$$
, $\cos \theta = \frac{1}{\sec \theta}$,

$$\tan \theta = \frac{1}{\cot \theta}$$

Points To be Remember:

- 1. The values of $\sin \theta \& \cos \theta$ are always less than or equal to 1 & greater than or equal to -1.
- 2. Value of $\tan \theta$ & $\cot \theta$ lie between $-\infty$ to $+\infty$.
- 3. sin A, cos A, etc. are not product of sin and A.
- 4. $(\sin A)^2 \neq \sin A^2$ etc.

$$\sin^2\theta = (\sin \theta)^2$$

$$\cos^2\theta = (\cos \theta)^2$$

$$\tan^2\theta = (\tan \theta)^2$$

$$\csc^2\theta = (\csc \theta)^2$$

$$\sec^2\theta = (\sec \theta)^2$$

$$\cot^2\theta = (\cot \theta)^2$$

If sec
$$\alpha = \frac{5}{4}$$
, evaluate $\frac{1 - \tan \alpha}{1 + \tan \alpha}$.

Since sec $\alpha = \frac{\text{Hypotenuse}}{\text{Base}} = \frac{5}{4}$, so we draw a right triangle ABC, right angled at B such that

Hypotenuse = AC = 5 units,

Base = AB = 4 units, and \angle BAC = α .

By Pythagoras theorem, we have

$$AC^2 = AB^2 + BC^2$$

$$\Rightarrow$$
 5² = 4² + BC²

$$\Rightarrow$$
 BC² = 5² - 4² = 9

$$\Rightarrow$$
 BC = $\sqrt{9}$ = 3

$$\therefore \tan \alpha = \frac{BC}{AB} = \frac{3}{4}$$

Now,
$$\frac{1-\tan\alpha}{1+\tan\alpha} = \frac{1-\frac{3}{4}}{1+\frac{3}{4}} = \frac{\frac{1}{4}}{\frac{7}{4}} = \frac{1}{7}$$
.

TRIGONOMETRIC RATIO (T.R.) OF SOME SPECIFIC ANGLES:-

The angles 0° , 30° , 45° , 60° , 90° are angles for which we have values of T.R.

∠A	0 °	30°	45°	60°	90°
sin A	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos A	1	$\frac{\sqrt{3}}{2}$ $\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan A	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not defined
cot A	Not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0
sec A	1	$\frac{2}{\sqrt{3}}$ 2	$\sqrt{2}$	2	Not defined
cosec A	Not defined		$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	

- $\sin \theta \uparrow \text{ when } \theta \uparrow , 0^{\circ} \le \theta \le 90^{\circ}$
- $\cos \theta \downarrow \text{ when } \theta \uparrow , 0^{\circ} \le \theta \le 90^{\circ}$
- $\tan \theta$, $\cot \theta$ are not defined for $\theta = 90^{\circ} \& 0^{\circ}$ respectively.
- cosec θ , sec θ are not defined when $\theta = 0^{\circ} \& 90^{\circ}$ respectively.
- $\sin \theta = \cos \theta$ for only $\theta = 45^{\circ}$
- $180^{\circ} = \pi^{c}$

$$30^{\circ} = \left(\frac{\pi}{6}\right)^{c}; \quad 45^{\circ} = \left(\frac{\pi}{4}\right)^{c}; \quad 60^{\circ} = \left(\frac{\pi}{3}\right)^{c}; \quad 90^{\circ} = \left(\frac{\pi}{2}\right)^{c}$$

TRIGONOMETRIC RATIOS OF COMPLEMENTARY ANGLES:-

We know complementary angles are pair of angles whose sum is 90°

$$\sin (90^{\circ}-\theta) = \cos \theta$$
, $\cot (90^{\circ}-\theta) = \tan \theta$

$$\cos (90^{\circ}-\theta) = \sin \theta$$
, $\sec (90^{\circ}-\theta) = \csc \theta$

$$\tan (90^{\circ} - \theta) = \cot \theta$$
, $\csc (90^{\circ} - \theta) = \sec \theta$

Without using trigonometric tables, evaluate the following:

$$(i) \ \frac{\cos 37^{\circ}}{\sin 53^{\circ}}$$

(ii)
$$\frac{\sin 41^{\circ}}{\cos 49^{\circ}}$$

(ii)
$$\frac{\sin 41^{\circ}}{\cos 49^{\circ}}$$
 (iii) $\frac{\sin 30^{\circ}17'}{\cos 59^{\circ}43'}$

$$\frac{\cos 37^{\circ}}{\sin 53^{\circ}} = \frac{\cos(90^{\circ} - 53^{\circ})}{\sin 53^{\circ}} = \frac{\sin 53^{\circ}}{\sin 53^{\circ}} = 1$$

$$[\because \cos(90^{\circ} - \theta) = \sin \theta]$$

$$\frac{\sin 41^{\circ}}{\cos 49^{\circ}} = \frac{\sin(90^{\circ} - 49^{\circ})}{\cos 49^{\circ}} = \frac{\cos 49^{\circ}}{\cos 49^{\circ}} = 1$$

$$[\because \sin(90^{\circ} - \theta) = \cos\theta]$$

$$\frac{\sin \, 30^{\rm o}17^{\prime}}{\cos 59^{\rm o}43^{\prime}} = \frac{\sin (90^{\rm o} - 59^{\rm o}43^{\prime})}{\cos 59^{\rm o}43^{\prime}} = \frac{\cos 59^{\rm o}43^{\prime}}{\cos 59^{\rm o}43^{\prime}} = 1.$$

TRIGONOMETRIC IDENTITIES

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
; $\cot \theta = \frac{\cos \theta}{\sin \theta}$

(2)
$$\sin^2\theta + \cos^2\theta = 1$$

(i)
$$\sin^2\theta = 1 - \cos^2\theta$$
 (ii) $\cos^2\theta = 1 - \sin^2\theta$

$$(3) 1 + \tan^2\theta = \sec^2\theta$$

(i)
$$\sec^2\theta - 1 = \tan^2\theta$$
 (ii) $\sec^2\theta - \tan^2\theta = 1$

(ii)
$$\tan^2\theta - \sec^2\theta = -1$$

$$(4) 1 + \cot^2\theta = \csc^2\theta$$

(i)
$$\csc^2\theta - 1 = \cot^2\theta$$

(ii)
$$\csc^2\theta - \cot^2\theta = 1$$

(iii)
$$\cot^2\theta - \csc^2\theta = -1$$

PW Web/App - https://smart.link/7wwosivoicgd4 Library- https://smart.link/sdfez8ejd80if