

Introduction to GRID Computing and Overview of the Globus Toolkit

Marcel Kunze
Abteilung Grid Computing und e-Science

Overview

- > What is GRID computing?
- > Why GRIDs?
- > GRID projects world wide
- > The Globus Toolkit
- > The Open Grid Services Architecture (OGSA)

The Grid Computing Metaphor

What is Grid Computing?

Resource sharing & coordinated problem solving in dynamic, multi-institutional virtual organizations

Why Grids? (1) eScience

- A biochemist exploits 10,000 computers to screen 100,000 compounds in an hour
- 1,000 physicists worldwide pool resources for peta-op analyses of petabytes of data
- Civil engineers collaborate to design, execute, & analyze shake table experiments
- Climate scientists visualize, annotate, & analyze terabyte simulation datasets
- An emergency response team couples real time data, weather model, population data

Why Grids? (2) eBusiness

- Engineers at a multinational company collaborate on the design of a new product
- A multidisciplinary analysis in aerospace couples code and data in four companies
- An insurance company mines data from partner hospitals for fraud detection
- An application service provider offloads excess load to a compute cycle provider
- An enterprise configures internal & external resources to support eBusiness workload

Grids: Why Now?

- Moore's law ⇒ highly functional end-systems
- ▶ Ubiquitous Internet ⇒ universal connectivity
- Network exponentials produce dramatic changes in geometry and geography
 - 9-month doubling: double Moore's law!
 - 1986-2001: x340,000; 2001-2010: x4000?
- New modes of working and problem solving emphasize teamwork, computation
- New business models and technologies facilitate outsourcing

Elements of the Problem

- Resource sharing
 - Computers, storage, sensors, networks, ...
 - Heterogeneity of device, mechanism, policy
 - Sharing conditional: negotiation, payment, ...
- Coordinated problem solving
 - Integration of distributed resources
 - Compound quality of service requirements
- Dynamic, multi-institutional virtual orgs
 - Dynamic overlays on classic org structures
 - Map to underlying control mechanisms

GRID computing at work

- user's identity has to be certified by (mutually recognized) national Certification Authorities (accessing resources belonging to different domains requires identity to be certified).
- secure access to resources is required (security framework to allow resources access only to certified, identified users (X.509 Public Key Infrastructure)).
- > resources (node machines) have to be certified by CAs
- temporary delegation from users to processes to be executed "in user's name" (proxy certificates).
- Common agreed policies for accessing resource and handling user's rights across different domains in within the same Virtual Organization a user belongs to.

The Grid World: Current Status

- Dozens of major Grid projects in scientific & technical computing/research & education
 - Deployment, application, technology
- Considerable consensus on key concepts and technologies
 - Open source Globus Toolkit[™] a de facto standard for major protocols & services
 - Far from complete or perfect, but out there, evolving rapidly, and large tool/user base
- Global Grid Forum a significant force
- Industrial interest emerging rapidly

GRID projects world wide

> EU

- EDG (EU-IST) R&D EU GRID project [www.edg.org]
- CrossGRID QoS Real Time apps. [<u>www.crossgrid.org</u>]
- GLUE (EU-USA) [www.datatag.org] DataTAG
- LCG The LHC Computing GRID Deployment [cern.ch/lcq]
- The new 16,2 B Euro EU VI Framework Prog. GEANT based GRID projects

> USA

GriPhyN

- iVDGL-VDTv1
- PPDG (NSF, DoE)

[www.griphyn.org] [www.idvgl.org] [www.ppdg.org]

> Asia

ApGrid

Pragma (USA-Asia)

[www.apgrid.org]

The Globus Toolkit in One Slide

Grid protocols (GSI, GRAM, ...) enable resource sharing within virtual orgs;
 toolkit provides reference implementation
 = Globus Toolkit services)

(Grid Resource Allocation & Management)

• Protocols (and APIs) enable other tools and services for membership, discovery, data mgmt, workflow, ...

Globus Toolkit: Evaluation (+)

- Good technical solutions for key problems, e.g.
 - Authentication and authorization
 - Resource discovery and monitoring
 - Reliable remote service invocation
 - High-performance remote data access
- This + good engineering is enabling progress
 - Good quality reference implementation, multi-language support, interfaces to many systems, large user base, industrial support
 - Growing community code base built on tools

Globus Toolkit: Evaluation (-)

- Protocol deficiencies, e.g.
 - Heterogeneous basis: HTTP, LDAP, FTP
 - No standard means of invocation, notification, error propagation, authorization, termination, ...
- Significant missing functionality, e.g.
 - Databases, sensors, instruments, workflow, ...
 - Virtualization of end systems (hosting envs.)
- Little work on total system properties, e.g.
 - Dependability, end-to-end QoS, ...
 - Reasoning about system properties

"Web Services"

- Increasingly popular standards-based framework for accessing network applications
 - W3C standardization; Microsoft, IBM, Sun, others
- WSDL: Web Services Description Language
 - Interface Definition Language for Web services
- > SOAP: Simple Object Access Protocol
 - XML-based RPC protocol; common WSDL target
- WS-Inspection
 - Conventions for locating service descriptions
- > UDDI: Universal Desc., Discovery, & Integration
 - Directory for Web services

Transient Service Instances

- "Web services" address discovery & invocation of persistent services
 - Interface to persistent state of entire enterprise
- In Grids, must also support <u>transient service instances</u>, created/destroyed dynamically
 - Interfaces to the states of distributed activities
 - E.g. workflow, video conf., dist. data analysis
- Significant implications for how services are managed, named, discovered, and used
 - In fact, much of our work is concerned with the management of service instances

Open Grid Services Architecture

- Service orientation to virtualize resources
- From Web services:
 - Standard interface definition mechanisms: multiple protocol bindings, multiple implementations, local/remote transparency
- Building on Globus Toolkit:
 - Grid service: semantics for service interactions
 - Management of transient instances (& state)
 - <u>Factory</u>, <u>Registry</u>, <u>Discovery</u>, other services
 - Reliable and secure transport
- Multiple hosting targets: J2EE, .NET, "C", ...

The Grid Service

- A (potentially transient) Web service with specified <u>interfaces & behaviors</u>, *including*
 - Creation (Factory)
 - Global naming (GSH) & references (GSR)
 - Lifetime management
 - Registration & Discovery
 - Authorization
 - Notification
 - Concurrency
 - Manageability

Globus Toolkit Refactoring

- Grid Security Infrastructure (GSI)
 - Used in Grid service network protocol bindings
- Meta Directory Service 2 (MDS-2)
 - Native part of each Grid service:
 - Discovery, Registry, RegistryManagement, Notification
- Grid Resource Allocation & Mngt (GRAM)
 - Gatekeeper -> Factory for job mgr instances
- GridFTP
 - Refactor control channel protocol
- Other services refactored to used Grid services

Summary: Evolution of Grid Technologies

- > Initial exploration (1996-1999; Globus 1.0)
 - Extensive appln experiments; core protocols
- > Data Grids (1999-2002; Globus 2.0+)
 - Large-scale data management and analysis
- > Open Grid Services Architecture (2002-??, Globus 3.0)
 - Integration w/ Web services, hosting environments, resource virtualization
 - Databases, higher-level services
- Radically scalable systems (2003-??)
 - Sensors, wireless, ubiquitous computing

Summary

- The Grid problem: Resource sharing & coordinated problem solving in dynamic, multi-institutional virtual organizations
- Grid architecture: Protocol, service definition for interoperability & resource sharing
- Globus Toolkit a source of protocol and API definitions—and reference implementations
 - And <u>many</u> projects applying Grid concepts (& Globus technologies) to important problems
- Open Grid Services Architecture represents next step in evolution

For More Information

- ➤ The Globus Project[™]
 - www.globus.org
- Grid architecture
 - www.globus.org/research/papers/an atomy.pdf
- Open Grid Services Architecture
 - www.globus.org/research/papers/og sa.pdf
 - www.globus.org/research/papers/gs spec.pdf

