Autodiff-based estimation of kinetic trap rate constants

David Bass
Margaret Johnson lab
26 January 2023

Molecular self-assembly is ubiquitous in cell biology

Kinetic trapping inhibits molecular self-assembly

Cell seeks to span self with microtubule

Tubulin subunits bind to existing microtubule:
No kinetic trapping

Tubulin subunits form new microtubule:
Kinetic trapping

Fully connected hetero-*n*-mers provide a model system

$$egin{align*} egin{align*} k_{dim_on} & egin{align*} k_{dim_off} & egin{align*} k_{dim_off} & egin{align*} k_{dim_off} & egin{align*} k_{dim_off} & egin{align*} YZ & \hline k_{dim_off} & egin{align*} XYZ & egin{align*} k_{tri_off} & egin{al$$

Fully connected:

Every reactants binds to every other reactant

Rate-growth:

Every reaction at a given level of assembly has the same association rate, which determines a single dissociation rate

Fully connected hetero-*n*-mers provide a model system

$$\frac{\mathrm{d}X\left(t\right)}{\mathrm{d}t} = k_{dim_off} \mathrm{XY}\left(t\right) + k_{dim_off} \mathrm{XZ}\left(t\right) + k_{tri_off} \mathrm{XYZ}\left(t\right) - k_{dim_on}Y\left(t\right)X\left(t\right) - k_{dim_on}X\left(t\right)Z\left(t\right) - k_{tri_on}X\left(t\right)\mathrm{YZ}\left(t\right)$$

$$\frac{\mathrm{d}Y\left(t\right)}{\mathrm{d}t} = k_{dim_off} \mathrm{XY}\left(t\right) + k_{dim_off} \mathrm{YZ}\left(t\right) + k_{tri_off} \mathrm{XYZ}\left(t\right) - k_{dim_on}Y\left(t\right)X\left(t\right) - k_{dim_on}Y\left(t\right)Z\left(t\right) - k_{tri_on}Y\left(t\right)\mathrm{XZ}\left(t\right)$$

$$(2)$$

$$\frac{\mathrm{d}Y\left(t\right)}{\mathrm{d}t} = k_{dim_off}\mathrm{XY}\left(t\right) + k_{dim_off}\mathrm{YZ}\left(t\right) + k_{tri_off}\mathrm{XYZ}\left(t\right) - k_{dim_on}Y\left(t\right)X\left(t\right) - k_{dim_on}Y\left(t\right)Z\left(t\right) - k_{tri_on}Y\left(t\right)\mathrm{XZ}\left(t\right) \tag{2}$$

$$\frac{XY(t)}{dt} = -k_{dim_off}XY(t) + k_{tri_off}XYZ(t) + k_{dim_on}Y(t)X(t) - k_{tri_on}XY(t)Z(t)$$
(3)

$$\frac{\mathrm{d}t}{\mathrm{d}t} = k_{dim_off} XZ\left(t\right) + k_{dim_off} YZ\left(t\right) + k_{tri_off} XYZ\left(t\right) - k_{dim_on} Y\left(t\right) Z\left(t\right) - k_{dim_on} X\left(t\right) Z\left(t\right) - k_{tri_on} XY\left(t\right) Z\left(t\right)$$

$$(4)$$

$$\frac{\text{IXZ}\left(t\right)}{\text{d}t} = -k_{dim_off}\text{XZ}\left(t\right) + k_{tri_off}\text{XYZ}\left(t\right) + k_{dim_on}X\left(t\right)Z\left(t\right) - k_{tri_on}Y\left(t\right)\text{XZ}\left(t\right) \tag{5}$$

$$\frac{\mathrm{dYZ}\left(t\right)}{\mathrm{d}t} = -k_{dim_off} \mathrm{YZ}\left(t\right) + k_{tri_off} \mathrm{XYZ}\left(t\right) + k_{dim_on} Y\left(t\right) Z\left(t\right) - k_{tri_on} X\left(t\right) \mathrm{YZ}\left(t\right) \tag{6}$$

$$\frac{\mathrm{dXYZ}\left(t\right)}{\mathrm{d}t} = -3k_{tri_off}\mathrm{XYZ}\left(t\right) + k_{tri_on}Y\left(t\right)\mathrm{XZ}\left(t\right) + k_{tri_on}\mathrm{XY}\left(t\right)Z\left(t\right) + k_{tri_on}X\left(t\right)\mathrm{YZ}\left(t\right) \tag{7}$$

Kinetic trapping may encode information about reactions

Estimating rate constants requires expensive computation

Kong et al. 2020, Academic Press $[X]_{n+1}pprox f([X]_n,[Y]_n,[Z]_n,\ldots) imes (t_{n+1}-t_n)$

Automatic differentiation accelerates gradient calculation

Baydin et al. 2018, arXiv

Reverse-mode autodiff excels when the ratio of inputs to outputs is high

Forward-mode autodiff requires less memory

What information does kinetic trapping encode about rate constants?

constants?

Can autodiff help us to extract that data machine learning?

Forward-mode is faster, yield data provides more accuracy

Next steps

- 1. Perform non-autodiff control experiments
- 2. Examine memory consumption of forward- and reverse-mode autodiff
- Examine more realistic chemical reaction networks and data

Acknowledgements

Johnson lab

Dr. Margaret Johnson Adip Jhaveri Jonathan Fischer Dr. Sam Foley Spencer Loggia (undergrad. alum.)

Mankun Sang Moon Ying Dr. Sikao Guo

JHU symBIOsis

Error regression

```
Call:
lm(formula = error ~ autodiff mode + exp type + n + autodiff mode:exp type,
   data = df
Residuals:
  Min 10 Median 30 Max
-30533 -13018 848 2682 99715
Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
                           -10004 4709 -2.124 0.0341 *
(Intercept)
                            -2286 3055 -0.748 0.4546
autodiff moderev
                         -17008 2237 -7.603 1.45e-13 ***
exp typeyield
                              8115 1273 6.377 4.14e-10 ***
autodiff moderev:exp typeyield 4192 3748 1.118 0.2639
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 17330 on 498 degrees of freedom
Multiple R-squared: 0.2557, Adjusted R-squared: 0.2497
F-statistic: 42.77 on 4 and 498 DF, p-value: < 2.2e-16
```

Time regression

```
Call:
lm(formula = time ~ autodiff mode + exp type + n + autodiff mode:exp type,
   data = df
Residuals:
   Min 10 Median 30 Max
-31.729 -11.304 -3.051 7.536 118.899
Coefficients:
                           Estimate Std. Error t value Pr(>|t|)
                          -80.031 4.908 -16.305 < 2e-16 ***
(Intercept)
                          32.209 3.184 10.115 < 2e-16 ***
autodiff moderev
                           3.320 2.332 1.424 0.155
exp typeyield
                          23.560 1.326 17.762 < 2e-16 ***
autodiff moderev:exp typeyield -16.696 3.906 -4.274 2.3e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 18.07 on 498 degrees of freedom
Multiple R-squared: 0.4973, Adjusted R-squared: 0.4933
F-statistic: 123.2 on 4 and 498 DF, p-value: < 2.2e-16
```