1.2 Exercises

1–2 Classify each function as a power function, root function, polynomial (state its degree), rational function, algebraic function, trigonometric function, exponential function, or logarithmic function.

1.

a.
$$f(x) = \log_2 x$$

b.
$$g(x) = \sqrt[4]{x}$$

c.
$$h\left(x
ight)=rac{2x^{3}}{1-x^{2}}$$

d.
$$u(t) = 1 - 1.1t + 2.54t^2$$

e.
$$v\left(t\right)=5^{t}$$

f.
$$w(\theta) = \sin \theta \cos^2 \theta$$

2.

a.
$$y = \pi^x$$

b.
$$y=x^\pi$$

c.
$$y = x^2 (2 - x^3)$$

$$d. y = \tan t - \cos t$$

e.
$$y = \frac{s}{1+s}$$

f.
$$y=rac{\sqrt{x^3-1}}{1+\sqrt[3]{x}}$$

3–4 Match each equation with its graph. Explain your choices. (Don't use a computer or graphing calculator.)

3.

a.
$$y = x^2$$

b.
$$y=x^5$$

c.
$$y=x^8$$

4.

a.
$$y=3x$$

b.
$$y=3^x$$

C.
$$y=x^3$$

d.
$$y=\sqrt[3]{x}$$

5–6 Find the domain of the function.

$$5. \ f(x) = \frac{\cos x}{1 - \sin x}$$

$$6. g(x) = \frac{1}{1 - \tan x}$$

7.

- a. Find an equation for the family of linear functions with slope 2 and sketch several members of the family.
- b. Find an equation for the family of linear functions such that f(2) = 1 and sketch several members of the family.
- c. Which function belongs to both families?

- 8. What do all members of the family of linear functions f(x) = 1 + m(x + 3) have in common? Sketch several members of the family.
- 9. What do all members of the family of linear functions f(x) = c x have in common? Sketch several members of the family.
- 10. Find expressions for the quadratic functions whose graphs are shown.

- 11. Find an expression for a cubic function f if f(1) = 6 and f(-1) = f(0) = f(2) = 0.
- 12. Recent studies indicate that the average surface temperature of the earth has been rising steadily. Some scientists have modeled the temperature by the linear function T=0.02t+8.50, where T is temperature in °C and t represents years since 1900.
 - a. What do the slope and T-intercept represent?
 - b. Use the equation to predict the average global surface temperature in 2100.
- 13. If the recommended adult dosage for a drug is D (in mg), then to determine the appropriate dosage c for a child of age a, pharmacists use the equation c = 0.0417D(a+1). Suppose the dosage for an adult is 200 mg.
 - a. Find the slope of the graph of c. What does it represent?
 - b. What is the dosage for a newborn?
- 14. The manager of a weekend flea market knows from past experience that if he charges x dollars for a rental space at the market, then the number y of spaces he can rent is given by the equation y = 200 4x.
 - a. Sketch a graph of this linear function. (Remember that the rental charge per space and the number of spaces rented can't be negative quantities.)
 - b. What do the slope, the y-intercept, and the x-intercept of the graph represent?
- 15. The relationship between the Fahrenheit (F) and Celsius (C) temperature scales is given by the linear function $F = \frac{9}{5}C + 32$.
 - a. Sketch a graph of this function.

- b. What is the slope of the graph and what does it represent? What is the *F* -intercept and what does it represent?
- 16. Jason leaves Detroit at 2:00 PM and drives at a constant speed west along I-94. He passes Ann Arbor, **40** mi from Detroit, at 2:50 PM.
 - a. Express the distance traveled in terms of the time elapsed.
 - b. Draw the graph of the equation in part (a).
 - c. What is the slope of this line? What does it represent?
- 17. Biologists have noticed that the chirping rate of crickets of a certain species is related to temperature, and the relationship appears to be very nearly linear. A cricket produces 113 chirps per minute at 70°F and 173 chirps per minute at 80°F.
 - a. Find a linear equation that models the temperature T as a function of the number of chirps per minute N.
 - b. What is the slope of the graph? What does it represent?
 - c. If the crickets are chirping at 150 chirps per minute, estimate the temperature.
- 18. The manager of a furniture factory finds that it costs \$2200 to manufacture 100 chairs in one day and \$4800 to produce 300 chairs in one day.
 - a. Express the cost as a function of the number of chairs produced, assuming that it is linear. Then sketch the graph.
 - b. What is the slope of the graph and what does it represent?
 - c. What is the y-intercept of the graph and what does it represent?
- 19. At the surface of the ocean, the water pressure is the same as the air pressure above the water, 15 lb/in². Below the surface, the water pressure increases by 4.34 lb/in² for every 10 ft of descent.
 - a. Express the water pressure as a function of the depth below the ocean surface.
 - b. At what depth is the pressure 100 lb/in²?
- 20. The monthly cost of driving a car depends on the number of miles driven. Lynn found that in May it cost her \$380 to drive 480 mi and in June it cost her \$460 to drive 800 mi.
 - a. Express the monthly cost C as a function of the distance driven d, assuming that a linear relationship gives a suitable model.
 - b. Use part (a) to predict the cost of driving 1500 miles per month.

d. What does the C-intercept represent?

e. Why does a linear function give a suitable model in this situation?

21–22 For each scatter plot, decide what type of function you might choose as a model for the data. Explain your choices.

21.

b. y

22.

23. The table shows (lifetime) peptic ulcer rates (per **100** population) for various family incomes as reported by the National Health Interview Survey.

Income	Ulcer rate (per 100 population)
\$4,000	14.1
\$6,000	13.0
\$8,000	13.4
\$12,000	12.5
\$16,000	12.0
\$20,000	12.4
\$30,000	10.5
\$45,000	9.4
\$60,000	8.2

- a. Make a scatter plot of these data and decide whether a linear model is appropriate.
- b. Find and graph a linear model using the first and last data points.
- c. Find and graph the least squares regression line.
- d. Use the linear model in part (c) to estimate the ulcer rate for an income of \$25,000.
- e. According to the model, how likely is someone with an income of \$80,000 to suffer from peptic ulcers?
- f. Do you think it would be reasonable to apply the model to someone with an income of \$200,000?
- 24. Biologists have observed that the chirping rate of crickets of a certain species appears to be related to temperature. The table shows the chirping rates for various temperatures.
 - a. Make a scatter plot of the data.
 - b. Find and graph the regression line.
 - c. Use the linear model in part (b) to estimate the chirping rate at 100°F.

Temperature (°F)	Chirping rate (chirps/min)
50	20

Temperature (°F)	Chirping rate (chirps/min)
55	46
60	79
65	91
70	113
75	140
80	173
85	198
90	211

- 25. Anthropologists use a linear model that relates human femur (thighbone) length to height. The model allows an anthropologist to determine the height of an individual when only a partial skeleton (including the femur) is found. Here we find the model by analyzing the data on femur length and height for the eight males given in the following table.
 - a. Make a scatter plot of the data.
 - b. Find and graph the regression line that models the data.
 - c. An anthropologist finds a human femur of length **53** cm. How tall was the person?

Femur length (cm)	Height (cm)
50.1	178.5
48.3	173.6
45.2	164.8
44.7	163.7
44.5	168.3
42.7	165.0
39.5	155.4
38.0	155.8

- 26. When laboratory rats are exposed to asbestos fibers, some of them develop lung tumors. The table lists the results of several experiments by different scientists.
 - a. Find the regression line for the data.
 - b. Make a scatter plot and graph the regression line. Does the regression line appear to be a suitable model for the data?
 - c. What does the y-intercept of the regression line represent?

Asbestos exposure (fibers/mL)	Percent of mice that develop lung tumors
50	2
400	6
500	5
900	10
1100	26
1600	42
1800	37
2000	38
3000	50

- 27. The table shows world average daily oil consumption from 1985 to 2010 measured in thousands of barrels per day.
 - a. Make a scatter plot and decide whether a linear model is appropriate.
 - b. Find and graph the regression line.
 - c. Use the linear model to estimate the oil consumption in 2002 and 2012.

Years since 1985	Thousands of barrels of oil per day
0	60,083
5	66,533
10	70,099

Years since 1985	Thousands of barrels of oil per day	
15	76,784	
20	84,077	
25	87,302	

Source: US Energy Information Administration

- 28. The table shows average US retail residential prices of electricity from 2000 to 2012, measured in cents per kilowatt hour.
 - a. Make a scatter plot. Is a linear model appropriate?
 - b. Find and graph the regression line.
 - c. Use your linear model from part (b) to estimate the average retail price of electricity in 2005 and 2013.

ears ince 2000	Cents/kWh	
0	8.24	
2	8.44	
4	8.95	
6	10.40	
8	11.26	
10	11.54	
12	11.58	

- 29. Many physical quantities are connected by *inverse square laws*, that is, by power functions of the form $f(x) = kx^{-2}$. In particular, the illumination of an object by a light source is inversely proportional to the square of the distance from the source. Suppose that after dark you are in a room with just one lamp and you are trying to read a book. The light is too dim and so you move halfway to the lamp. How much brighter is the light?
- 30. It makes sense that the larger the area of a region, the larger the number of species that inhabit the region. Many ecologists have modeled the speciesarea relation with a power function and, in particular, the number of species *S*

of bats living in caves in central Mexico has been related to the surface area A of the caves by the equation $S=0.7A^{0.3}$.

- a. The cave called *Misión Imposible* near Puebla, Mexico, has a surface area of $A=60~\rm m^2$. How many species of bats would you expect to find in that cave?
- b. If you discover that four species of bats live in a cave, estimate the area of the cave.
- 31. The table shows the number N of species of reptiles and amphibians inhabiting Caribbean islands and the area A of the island in square miles.
 - a. Use a power function to model N as a function of A.
 - b. The Caribbean island of Dominica has area **291 mi²**. How many species of reptiles and amphibians would you expect to find on Dominica?

Island	\boldsymbol{A}	N
Saba	4	5
Monserrat	40	9
Puerto Rico	3,459	40
Jamaica	4,411	39
Hispaniola	29,418	84
Cuba	44,218	76

- 32. The table shows the mean (average) distances d of the planets from the sun (taking the unit of measurement to be the distance from the earth to the sun) and their periods T (time of revolution in years).
 - a. Fit a power model to the data.
 - b. Kepler's Third Law of Planetary Motion states that "The square of the period of revolution of a planet is proportional to the cube of its mean distance from the sun."

Does your model corroborate Kepler's Third Law?

Planet	d	T
Mercury	0.387	0.241
Venus	0.723	0.615

Planet	d	T
Earth	1.000	1.000
Mars	1.523	1.881
Jupiter	5.203	11.861
Saturn	9.541	29.457
Uranus	19.190	84.008
Neptune	30.086	164.784

Chapter 1: Functions and Models: 1.2 Exercises Book Title: Calculus: Early Transcendentals Printed By: Troy Jeffery (tradozprime@gmail.com) © 2018 Cengage Learning, Cengage Learning

© 2019 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any means - graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.