ЛЕКЦИЯ 3. СЛОЖНОЕ ДВИЖЕНИЕ МАТЕРИАЛЬНОЙ ТОЧКИ. ТЕОРЕМЫ О СЛОЖЕНИИ СКОРОСТЕЙ И УСКОРЕНИЙ.

Пусть имеется две системы отсчета: неподвижная Oxyz и подвижная O'x'y'z', которая движется по некоторому (известному) закону относительно неподвижной системы Oxyz. Пусть материальная точка M движется по некоторой траектории в подвижной системе отсчета O'x'y'z'. Тогда она будет перемещаться и относительно неподвижной системы отсчета Oxyz. Такое движение материальной точки называется cxyz и вместе с ней переносится относительно неподвижной системы отсчета и вместе с ней переносится относительно неподвижной системы отсчета. Движение точки относительно неподвижной системы Cxyz изывается Cxyzz называется Cxyzz называется Cxyzz изывается Cxyzzz называется Cxyzzzz называется Cxyzzzzzz называется Cxyzzzzzzz

В прошлой лекции мы изучили частный случай – вращение подвижной системы с одной закрепленной точкой (началом отсчета) относительно неподвижной. Мы показали, что такое движение в каждый момент времени есть мгновенное вращение относительно некоторой оси, определяемой вектором мгновенной угловой скорости $\vec{\omega}$.

В общем случае мгновенное движение системы O'x'y'z' относительно Oxyz складывается из двух движений: поступательного движения со скоростью точки O' – начала подвижной системы отсчета и мгновенного вращения вокруг оси, определяемой вектором угловой скорости $\vec{\omega}$.

*Поступательн*ым называется движение механической системы, при котором все точки системы движутся с одинаковой в данный момент скоростью.

ОБОЗНАЧЕНИЯ И ОПРЕДЕЛЕНИЯ.

Охуг - абсолютная (неподвижная) система отсчета.

O'x'y'z' - относительная (подвижная) система отсчета.

 $ec{i}$, $ec{j}$, $ec{k}$ - направляющие орты координатных осей абсолютной системы отсчета Oxyz .

 $\vec{i}', \vec{j}', \vec{k}'$ - направляющие орты координатных осей относительной системы отсчета O'x'y'z' . Так как система отсчета O'x'y'z' движется, то орты $\vec{i}', \vec{j}', \vec{k}'$ зависят от времени:

$$\vec{i}' = \vec{i}'(t), \ \vec{j}' = \vec{j}'(t), \ \vec{k}' = \vec{k}'(t).$$

Их производная по времени подчиняется формулам Пуассона, доказанным в прошлой лекции:

$$\frac{d\vec{i}'}{dt} = [\vec{\omega}, \vec{i}'],
\frac{d\vec{j}'}{dt} = [\vec{\omega}, \vec{j}'],
\frac{d\vec{k}'}{dt} = [\vec{\omega}, \vec{k}'].$$
(3.1)

 $\vec{r} = \overrightarrow{OM} = x \vec{i} + y \vec{j} + z \vec{k}$ - радиус-вектор точки M в абсолютной системе отсчета.

 $\vec{r}' = \overrightarrow{O'M} = x'\vec{i}' + y'\vec{j}' + z'\vec{k}'$ - радиус-вектор точки M в относительной системе отсчета.

 $\vec{r_0} = \overrightarrow{OO'} = x_0 \vec{i} + y_0 \vec{j} + z_0 \vec{k}$ - радиус-вектор начала относительной системы отсчета в абсолютной системе отсчета.

 $ec{v}_{abs}=rac{dec{r}}{dt}=\dot{x}ec{i}+\dot{y}ec{j}+\dot{z}ec{k}$ - абсолютная скорость – скорость точки M в абсолютной системе отсчета Oxyz .

 $\vec{a}_{abs} = \frac{d^2 \vec{r}}{dt^2} = \frac{d \vec{v}_{abs}}{dt} = \ddot{x} \vec{i} + \ddot{y} \vec{j} + \ddot{z} \vec{k}$ - абсолютное ускорение – ускорение точки M в абсолютной системе отсчета Oxyz.

 $\vec{v}_{om}=\dot{x}'\vec{i}'+\dot{y}'\vec{j}'+\dot{z}'\vec{k}'$ - относительная скорость – скорость точки M в относительной системе отсчета O'x'y'z' .

 $\vec{a}_{om}=\ddot{x}'\ddot{i}'+\ddot{y}'\ddot{j}'+\ddot{z}'\ddot{k}'$ - относительное ускорение – ускорение точки M в относительной системе отсчета O'x'y'z' .

 $ec{v}_{per}$ - переносная скорость – скорость той точки относительной системы отсчета, с которой в данный момент совпадает движущаяся точка М.

 $\vec{a}_{\it per}$ - переносное ускорение –ускорение той точки относительной системы отсчета, с которой в данный момент совпадает движущаяся точка M .

 $\vec{v}_0 = rac{d\vec{r}_0}{dt} = \dot{x}_0 \vec{i} + \dot{y}_0 \vec{j} + \dot{z}_0 \vec{k}$ - скорость точки 0' - начала относительной системы отсчета.

$$ec{a}_0 = rac{d^2 ec{r}_0}{dt^2} = \ddot{x}_0 ec{t} + \ddot{y}_0 ec{j} + \ddot{z}_0 ec{k}$$
 - ускорение точки O' .

ТЕОРЕМА О СЛОЖЕНИИ СКОРОСТЕЙ В СЛОЖНОМ ДВИЖЕНИИ МАТЕРИАЛЬНОЙ ТОЧКИ.

Абсолютная скорость равна сумме относительной скорости и переносной скорости:

$$\vec{v}_{abs} = \vec{v}_{otn} + \vec{v}_{per}$$
.

Переносная скорость вычисляется по формуле

$$\vec{v}_{per} = \vec{v}_0 + [\vec{\omega}, \vec{r}'].$$

ДОКАЗАТЕЛЬСТВО.

Продифференцируем по времени равенство

$$\vec{r} = \vec{r_0} + \vec{r}' \,, \tag{3.2}$$

получим

$$\vec{v}_{abs} = \frac{d\vec{r}}{dt} = \frac{d\vec{r}_0}{dt} + \frac{d\vec{r}'}{dt} = \vec{v}_0 + \frac{d\vec{r}'}{dt}.$$
 (3.3)

Так как от времени зависят не только координаты x', y', z' точки M в относительной системе отсчета, но и направляющие орты $\vec{i}', \vec{j}', \vec{k}'$ координатных осей, то мы должны дифференцировать и их:

$$\frac{d\vec{r}'}{dt} = \frac{d}{dt} \left(x'\vec{i}' + y'\vec{j}' + z'\vec{k}' \right) =
= \dot{x}'\vec{i}' + \dot{y}'\vec{j}' + \dot{z}'\vec{k}' + x'\frac{d\vec{i}'}{dt} + y'\frac{d\vec{j}'}{dt} + z'\frac{d\vec{k}'}{dt} =
= \vec{v}_{otn} + x'[\vec{\omega}, \vec{i}'] + y'[\vec{\omega}, \vec{j}'] + z'[\vec{\omega}, \vec{k}'] =
= \vec{v}_{otn} + [\vec{\omega}, x'\vec{i}' + y'\vec{j}' + z'\vec{k}'] = \vec{v}_{otn} + [\vec{\omega}, \vec{r}'].$$
(3.4)

Подставив полученное выражение (3.4) в формулу (3.3), получим

$$\vec{v}_{abs} = \vec{v}_{otn} + \vec{v}_0 + [\vec{\omega}, \vec{r}'],$$
 (3.5)

Q.E.D.

ТЕОРЕМА КОРИОЛИСА О СЛОЖЕНИИ УСКОРЕНИЙ В СЛОЖНОМ ДВИЖЕНИИ МАТЕРИАЛЬНОЙ ТОЧКИ.

Абсолютное ускорение равно сумме относительного ускорения, переносного ускорения и добавочного, или кориолисова ускорения:

$$\vec{a}_{abs} = \vec{a}_{otn} + \vec{a}_{per} + \vec{a}_{kor}. \tag{3.6}$$

Переносное ускорение $\vec{a}_{\scriptscriptstyle per}$ и кориолисово ускорение $\vec{a}_{\scriptscriptstyle kor}$ вычисляются по формулам

$$\begin{split} \vec{a}_{per} &= \vec{a}_0 + [\vec{\varepsilon}, \vec{r}'] + \left[\vec{\omega}, [\vec{\omega}, \vec{r}']\right], \\ \vec{a}_{tor} &= 2[\vec{\omega}, \vec{v}_{otn}], \end{split}$$

$$z$$
де $\vec{\varepsilon} = \frac{d\vec{\omega}}{dt}$ - угловое ускорение.

доказательство.

Продифференцируем по времени выражение (3.5) для абсолютной скорости:

$$\vec{a}_{abs} = \frac{d\vec{v}_{abs}}{dt} = \frac{d\vec{v}_{otn}}{dt} + \frac{d\vec{v}_0}{dt} + \frac{d}{dt} [\vec{\omega}, \vec{r}'] = \frac{d\vec{v}_{otn}}{dt} + \vec{a}_0 + \left[\frac{d\vec{\omega}}{dt}, \vec{r}' \right] + \left[\vec{\omega}, \frac{d\vec{r}'}{dt} \right]. \tag{3.7}$$

Преобразуем первое слагаемое в формуле (3.7):

$$\frac{d\vec{v}_{om}}{dt} = \frac{d}{dt} (\dot{x}'\vec{i}' + \dot{y}'\vec{j}' + \dot{z}'\vec{k}') =
= \ddot{x}'\vec{i}' + \ddot{y}'\vec{j}' + \ddot{z}'\vec{k}' + \dot{x}'\frac{d\vec{i}'}{dt} + \dot{y}'\frac{d\vec{j}'}{dt} + \dot{z}'\frac{d\vec{k}'}{dt} =
= \vec{a}_{om} + \dot{x}'[\vec{\omega}, \vec{i}'] + \dot{y}'[\vec{\omega}, \vec{j}'] + \dot{z}'[\vec{\omega}, \vec{k}'] =
= \vec{a}_{om} + [\vec{\omega}, \dot{x}'\vec{i}' + \dot{y}'\vec{j}' + \dot{z}'\vec{k}'] = \vec{a}_{om} + [\vec{\omega}, \vec{v}_{om}].$$
(3.8)

Третье слагаемое в формуле (3.7) равно, по определению углового ускорения,

$$\left[\frac{d\vec{\omega}}{dt}, \vec{r}'\right] = \left[\vec{\varepsilon}, \vec{r}'\right]. \tag{3.9}$$

Воспользовавшись формулой (3.4) для $\frac{d\vec{r}'}{dt}$, преобразуем четвертое слагаемое в формуле (3.7):

$$\left[\vec{\omega}, \frac{d\vec{r}'}{dt}\right] = \left[\vec{\omega}, \vec{v}_{otn} + \left[\vec{\omega}, \vec{r}'\right]\right] = \left[\vec{\omega}, \vec{v}_{otn}\right] + \left[\vec{\omega}, \left[\vec{\omega}, \vec{r}'\right]\right]. \tag{3.10}$$

Подставляя полученные формулы (3.8), (3.9) и (3.10) в (3.7), окончательно получим

$$\vec{a}_{abs} = \vec{a}_{otn} + \vec{a}_0 + [\vec{\varepsilon}, \vec{r}'] + [\vec{\omega}, [\vec{\omega}, \vec{r}']] + 2[\vec{\omega}, \vec{v}_{otn}]. \tag{3.11}$$

Физический смысл относительного ускорения \vec{a}_{om} ясен: это ускорение точки M относительно подвижной системы отсчета. Если система отсчета O'x'y'z' не движется, или движется равномерно и прямолинейно, т.е. $\vec{a}_0 = \vec{\omega} \equiv \vec{0}$, то относительное ускорение совпадает с абсолютным: $\vec{a}_{abs} = \vec{a}_{om}$.

Физический смысл и выражение для переносного ускорения \vec{a}_{per} получим, если положим, что точка M покоится относительно подвижной системы отсчета O'x'y'z', т.е. $\vec{v}_{om} = \vec{a}_{om} \equiv \vec{0}$.

Тогда ее абсолютное ускорение совпадает с переносным (по определению переносного ускорения) и равно

$$\vec{a}_{abs} = \vec{a}_{per} = \vec{a}_0 + [\vec{\varepsilon}, \vec{r}'] + [\vec{\omega}, [\vec{\omega}, \vec{r}']].$$

Переносное ускорение складывается из трех частей:

- \vec{a}_0 поступательное ускорение, совпадающее с ускорением точки O'- начала относительной системы отсчета;
- $\vec{a}_{vr} = [\vec{\varepsilon}, \vec{r}']$ вращательное ускорение;
- $\vec{a}_{os} = [\vec{\omega}, [\vec{\omega}, \vec{r}']]$ осестремительное ускорение.

В формуле сложения ускорений (3.6), помимо относительного и переносного ускорений, присутствует еще дополнительный член, который называется дополнительным, или кориолисовым ускорением. Сравнивая формулы (3.6) и (3.11), получаем, что кориолисово ускорение равно

$$\vec{a}_{kor} = 2[\vec{\omega}, \vec{v}_{otn}]$$
.

Q.E.D.

Кориолисово ускорение равно нулю в следующих случаях:

- Относительное движение отсутствует ($\vec{v}_{otn} = \vec{0}$);
- Система отсчета O'x'y'z' движется поступательно ($\vec{\omega} = \vec{0}$);
- Векторы относительной скорости и угловой скорости коллинеарны.

ТЕОРЕМА ОБ ОСЕСТРЕМИТЕЛЬНОМ УСКОРЕНИИ.

Осестремительное ускорение $\vec{a}_{os} = \left[\vec{\omega}, \left[\vec{\omega}, \vec{r}'\right]\right]$ направлено к оси вращения и равно по величине произведению квадрата угловой скорости на расстояние до оси вращения

$$|\vec{a}_{os}| = \omega^2 d$$
.

доказательство.

Опустим из точки M перпендикуляр OC на мгновенную ось вращения. Обозначим CM=d . Вектор $[\vec{\omega},\vec{r}']$ перпендикулярен плоскости O'CM и равен по величине $\omega \cdot O'M \cdot \sin \alpha = \omega d$. Вектор \vec{a}_{os} перпендикулярен вектору $[\vec{\omega},\vec{r}']$, т.е. лежит в плоскости O'CM и направлен по MC, т.к. $\vec{a}_{os} \perp \omega$. Так как $[\vec{\omega},\vec{r}'] \perp \vec{\omega}$, то $|\vec{a}_{os}| = \left| \left[\vec{\omega}, \left[\vec{\omega}, \vec{r}' \right] \right] \right| = \omega \cdot \left| \left[\vec{\omega}, \vec{r}' \right] \right| = \omega^2 d$. Направления векторов выбираются согласно правилу векторного умножения так, чтобы вращение от первого вектора ко второму было видно происходящим против часовой стрелки.

Q.E.D.

ПРИМЕР. МОДЕЛЬ РАВНОМЕРНО РАСШИРЯЮЩЕЙСЯ ВСЕЛЕННОЙ.

Наблюдатель, стоящий на солнце S, видит, что все звезды удаляются от него со скоростями, пропорциональными расстояниям до них. Доказать, что Вселенная не имеет центра.

доказательство.

Пусть A и B – две произвольных звезды и их скорости равны соответственно $\vec{v}_A = k \cdot \overrightarrow{SA}$ и $\vec{v}_B = k \cdot \overrightarrow{SB}$, где k – коэффициент пропорциональности.

Рассмотрим относительную систему отсчета, движущуюся поступательно со скоростью звезды A. Тогда $\vec{v}_{per} = \vec{v}_A$, закон сложения скоростей $\vec{v}_B = \vec{v}_A + \vec{v}_{B~om~A}$. Отсюда

$$\vec{v}_{B otnA} = \vec{v}_{B} - \vec{v}_{A} = k(\overrightarrow{SB} - \overrightarrow{SA}) = k \cdot \overrightarrow{AB}.$$

То есть, наблюдатель, находящийся на любой звезде, видит ту же картину: все звезды удаляются от него со скоростями, пропорциональными расстояниям до них. Поэтому Вселенная не имеет центра.