Title

Algebraic Geometry An Introduction with Hilbert's Nullstellensatz

Maxwell Goldberg

Rutgers University

December 2023

What is Algebraic Geometry

Algebraic geometry is the field of math concerned with using algebraic techniques to solve questions about geometry.

We will look at *classical* algebraic geometry, the study of solutions of multivariate polynomials.

Setting the Stage

What operations can we do with multivariate polynomials?

• Addition, subtraction, multiplication; what about division?

Setting the Stage

What operations can we do with multivariate polynomials?

• Addition, subtraction, multiplication; what about division?

Definition

A **ring** is a set R equipped with two operations, referred to as addition and multiplication, such that addition, subtraction, and multiplication are defined on R, but not necessarily division. Note: We will be assuming all rings are commutative.

Remark

A ring in which division is allowed is called a field.

Setting the Stage

What operations can we do with multivariate polynomials?

Addition, subtraction, multiplication; what about division?

Definition

A **ring** is a set R equipped with two operations, referred to as addition and multiplication, such that addition, subtraction, and multiplication are defined on R, but not necessarily division. Note: We will be assuming all rings are commutative.

Remark

A ring in which division is allowed is called a field.

Definition

Let R be a ring. Then $R[x_1, \ldots, x_n]$ polynomial ring in n variables with coefficients in R.

A Simple Example

Consider the solutions in \mathbb{R}^2 of the polynomial $f(x,y) = x^2 + y^2 - 1$.

A Simple Example

Consider the solutions in \mathbb{R}^2 of the polynomial $f(x,y) = x^2 + y^2 - 1$.

- What other polynomials in $\mathbb{R}[x, y]$ vanish on this solution set?
- What properties can we observe about this set of polynomials?

Varieties

Definition

Let k be a field, and let $F \subseteq k[x_1, \ldots, x_n]$. We define the variety of F, denoted as V(F), to be the set of common zeros among polynomials in F. That is,

$$V(F) = \{ a \in k^n \mid f(a) = 0 \text{ for all } f \in F \}.$$

In the previous example, we were examining $V({x^2 + y^2 - 1})$.

Varieties

Definition

Let k be a field, and let $F \subseteq k[x_1, \ldots, x_n]$. We define the variety of F, denoted as V(F), to be the set of common zeros among polynomials in F. That is,

$$V(F) = \{ a \in k^n \mid f(a) = 0 \text{ for all } f \in F \}.$$

In the previous example, we were examining $V({x^2 + y^2 - 1})$.

Definition

Let k be a field, and let $A \subseteq k^n$. We define the ideal of A, denoted as I(A) to be the set of functions that vanish on A. That is,

$$I(A) = \{ f \in k[x_1, \dots, x_n] \mid f(a) = 0 \text{ for all } a \in A \}.$$

Exploring Further

Define C as the set from earlier (the circle). What properties does I(C) have?

Exploring Further

Define C as the set from earlier (the circle). What properties does I(C) have?

- Closure Under Addition: If $f, g \in I(S)$, then $f + g \in S$.
- Absorption: If $f \in I(S)$ and c is any polynomial in $k[x_1, ..., x_n]$, then $cf \in I(S)$.

Exploring Further

Define C as the set from earlier (the circle). What properties does I(C) have?

- Closure Under Addition: If $f, g \in I(S)$, then $f + g \in S$.
- Absorption: If $f \in I(S)$ and c is any polynomial in $k[x_1, ..., x_n]$, then $cf \in I(S)$.

A subset of a ring satisfying the above properties is called an ideal.

Definition

Let $F \subseteq k[x_1, ..., x_n]$. We define the ideal generated by F as set of possible linear combinations of elements in F with scalars in $k[x_1, ..., x_n]$.

Let k be a field. Let $A, B \subseteq k^n$ and $F, G \subseteq k[x_1, \dots, x_n]$.

Let k be a field. Let $A, B \subseteq k^n$ and $F, G \subseteq k[x_1, \ldots, x_n]$.

• If $F \subseteq G$, then $V(F) \supseteq V(G)$.

Let k be a field. Let $A, B \subseteq k^n$ and $F, G \subseteq k[x_1, \ldots, x_n]$.

- If $F \subseteq G$, then $V(F) \supseteq V(G)$.
- If $A \subseteq B$, then $I(A) \supseteq I(B)$.

Let k be a field. Let $A, B \subseteq k^n$ and $F, G \subseteq k[x_1, \ldots, x_n]$.

- If $F \subseteq G$, then $V(F) \supseteq V(G)$.
- If $A \subseteq B$, then $I(A) \supseteq I(B)$.
- $V(k[x_1,...,x_n]) = \varnothing$ and $V(\varnothing) = k^n$

Let k be a field. Let $A, B \subseteq k^n$ and $F, G \subseteq k[x_1, \ldots, x_n]$.

- If $F \subseteq G$, then $V(F) \supseteq V(G)$.
- If $A \subseteq B$, then $I(A) \supseteq I(B)$.
- $V(k[x_1,...,x_n]) = \varnothing$ and $V(\varnothing) = k^n$
- If F = G, then V(F) = V(G).

Example

Consider $A = \{(-1,0), (1,0)\}$ and $B = \{(1,0)\}$. Then $x - 1 \in I(B)$, but we can see that $x - 1 \notin I(A)$.

Remark

We will not go into detail on this, but Hilbert's Basis Theorem states that every polynomial ring over a field k is finitely generated. Hence, if we have an ideal $I \subseteq k[x_1, \ldots, x_n]$, then $I = (f_1, \ldots, f_m)$.

Let k be an algebraically closed field, and let $A \subseteq k^n$ be any variety. How does V(I(A)) relate to A?

Let k be an algebraically closed field, and let $A \subseteq k^n$ be any variety. How does V(I(A)) relate to A?

$$V(I(A)) = A$$

Let k be an algebraically closed field, and let $A \subseteq k^n$ be any variety. How does V(I(A)) relate to A?

$$V(I(A)) = A$$

Now, let $F \subseteq k[x_1, ..., x_n]$. How does I(V(F)) relate to F?

Let k be an algebraically closed field, and let $A \subseteq k^n$ be any variety. How does V(I(A)) relate to A?

$$V(I(A)) = A$$

Now, let $F \subseteq k[x_1, ..., x_n]$. How does I(V(F)) relate to F?

$$I(V(F)) \supseteq F$$

Why is this?

Ideals of Varieties of Ideals

Consider $F = (x^3y^3)$. What is V(F)?

Ideals of Varieties of Ideals

Consider $F = (x^3y^3)$. What is V(F)?

Now, what is I(V(F))?

Ideals of Varieties of Ideals

Consider $F = (x^3y^3)$. What is V(F)?

Now, what is I(V(F))? It is everything vanishing on the set pictured above. Namely, I(V(F)) = (xy).

We work more generally now. If $f^m \in I(A)$ for some variety A, then $f^m(a) = 0$ for each $a \in A$. So, it follows that f(a) = 0 for each $a \in A$, so $f \in I(A)$ as well.

Radical Ideals

Definition

Let R be a ring, and let $I \subseteq R$ be an ideal. Then the radical of I, denoted as $\operatorname{Rad}(I)$ or \sqrt{I} , is the of all elements in $r \in R$ such that $r^m \in I$ for some $m \in \mathbb{N}$. That is,

$$\sqrt{I} = \{ f \in R \mid \text{there exists } m \in \mathbb{N} \text{ such that } f^m \in I \}.$$

I is called a radical ideal if $I = \sqrt{I}$.

Is it true in general that $I(V(F)) = \sqrt{F}$ for some ideal $F \subseteq k[x_1 \dots, x_n]$?

Hilbert's Nullstellensatz

Hilbert's Nullstellensatz

Let k be an algebraically closed field, and let $F \subseteq k[x_1, \ldots, x_n]$ be an ideal. Then $I(V(F)) = \sqrt{F}$.

The proof of this uses the *Rabinowitsch trick* along with the Weak Nullstellensatz, which we will take as given.

Weak Nullstellensatz

Let k be an algebraically closed field, and let $F \subseteq k[x_1, \ldots, x_n]$ be an ideal such that $V(F) = \emptyset$. Then $F = k[x_1, \ldots, x_n]$.

Proof: Let F be an ideal in $k[x_1, \ldots, x_n]$. We have already seen a sketch of why $\sqrt{F} \subseteq V(I(F))$. The hard part is the reverse direction.

Proof: Let F be an ideal in $k[x_1, \ldots, x_n]$. We have already seen a sketch of why $\sqrt{F} \subseteq V(I(F))$. The hard part is the reverse direction.

Let $f \in I(V(F))$. We wish to show that $f \in \sqrt{F}$, we means we must show some power of f is in F. Note that $F = (f_1, \ldots, f_m)$ by Hilbert's Basis Theorem. We now add another variable x_{n+1} and consider $J = (f_1, \ldots, f_m, x_{n+1}f - 1) \subseteq k[x_1, \ldots, x_n, x_{n+1}]$.

Proof: Let F be an ideal in $k[x_1, \ldots, x_n]$. We have already seen a sketch of why $\sqrt{F} \subseteq V(I(F))$. The hard part is the reverse direction.

Let $f \in I(V(F))$. We wish to show that $f \in \sqrt{F}$, we means we must show some power of f is in F. Note that $F = (f_1, \ldots, f_m)$ by Hilbert's Basis Theorem. We now add another variable x_{n+1} and consider $J = (f_1, \ldots, f_m, x_{n+1}f - 1) \subseteq k[x_1, \ldots, x_n, x_{n+1}]$.

We claim $V(J)=\varnothing$. This is true because when all of the f_i 's vanish, so does f, but then $x_{n+1}f-1$ is equal to -1 at these points and does not vanish. Hence, by the Weak Nullstellensatz, $J=k[x_1,\ldots,x_{n+1}]$.

Note that $1 \in J = k[x_1, \dots, x_{n+1}]$, so there is a linear combination of the generators of J that is equal to 1. More explicitly, for some $a_1, \dots, a_{n+1} \in k[x_1, \dots, x_{n+1}]$,

$$1 = a_{n+1} \cdot (x_{n+1}f - 1) + \sum_{i=1}^{m} a_i f_i.$$

Note that $1 \in J = k[x_1, \dots, x_{n+1}]$, so there is a linear combination of the generators of J that is equal to 1. More explicitly, for some $a_1, \dots, a_{n+1} \in k[x_1, \dots, x_{n+1}]$,

$$1 = a_{n+1} \cdot (x_{n+1}f - 1) + \sum_{i=1}^{m} a_i f_i.$$

Now, we use one more trick. Since these are free variables, we may substitute $x_{n+1} = 1/f$ (note that this cancels out the $x_{n+1}f - 1$ term).

Note that $1 \in J = k[x_1, \dots, x_{n+1}]$, so there is a linear combination of the generators of J that is equal to 1. More explicitly, for some $a_1, \dots, a_{n+1} \in k[x_1, \dots, x_{n+1}]$,

$$1 = a_{n+1} \cdot (x_{n+1}f - 1) + \sum_{i=1}^{m} a_i f_i.$$

Now, we use one more trick. Since these are free variables, we may substitute $x_{n+1}=1/f$ (note that this cancels out the $x_{n+1}f-1$ term). Plugging this in for x_{n+1} will give us rational functions on the right-hand side. So, we multiply by a high enough power of f, say f^m , to clear out all denominators. So, we obtain

$$f^m = \sum_{i=1}^m a_i' f_i.$$

So, we have shown that a power of f lies in $F = (f_1, \ldots, f_m)$. So, $f \in \sqrt{I}$ and the Strong Nullstellensatz holds.

Application

We return to $f(x,y) = \{x^2 + y^2 - 1\}$. We now ask again, which polynomials in $\mathbb{C}[x,y]$ vanish on V((f))?

We know $I(V((f)) = \sqrt{(f)}$. You can convince yourself that $\sqrt{(f)} = (f)$, so only multiples of f vanish on V((f))!

Consequences

There are many useful consequences of the Nullstellensatz.

- There is a one-to-one correspondence between radical ideals and varieties.
- There is a one-to-one correspondence between prime ideals and irreducible varieties.
- There is a one-to-one correspondence between maximal ideals in $k[x_1,\ldots,x_n]$ and points in k^n . Namely, for a point $a=(a_1,\ldots,a_n)\in k^n$, then (x_1-a_1,\ldots,x_n-a_n) is a maximal ideal in $k[x_1,\ldots,x_n]$.

Thank You!

Presentation made with help from *Algebraic Curves* by William Fulton along with various online sources like Wikipedia.

A huge thanks to my mentor Riley Guyett for all the help, explanations, and guidance this fall! And thanks to the DRP team for organizing the program this semester! :)