## problème [

soit la fonction f définie sur  $[-1, +\infty[$  par  $f(x) = x^3 - 2\sqrt{x^3 + 1}.$ 

- **1** montrer que  $\lim_{x \to +\infty} f(x) = +\infty$
- **2** a montrer que  $\forall x \succ -1 : \frac{f(x)+1}{x+1} = x^2 x + 1 2\sqrt{\frac{x^2-x+1}{x+1}}$ 
  - b déduire que f n'est pas dérivable en  $(-1)^+$ .
  - c interpréter graphiquement ce résultat.
- **3** a montrer que f est dérivable sur l'intervalle  $]-1,+\infty[$  b montrer que  $\forall x \succ -1: f'(x) = \frac{3x^5}{\sqrt{x^3+1}(\sqrt{x^3+1}+1)}$  c déterminer f([0,1]) et déduire que  $\forall x \in [0,1]: f(x) \prec 0$ .
- $oldsymbol{4}$  a montrer que l'équation f(x)=0 admet une unique solution  $\alpha$  dans  $\mathbb{R}^+$  et que  $1\prec \alpha \prec 2$ .
  - b montrer que :  $\begin{cases} \forall x \in [0, \alpha] : f(x) \leq 0 \\ \forall x \in [\alpha, +\infty[ : f(x) \geq 0 \\ \text{c soit } a \succ 0. \text{ résoudre dans } \mathbb{R} \text{ l'équation } x^3 + f(a) = 0 \end{cases}$
- **6** soit q la restriction de f á  $\mathbb{R}^+$ .
  - a montrer que g admet une fonction réciproque  $g^{-1}$  définie sur  $[-2, +\infty[$ .
  - b montrer que  $g^{-1}$  est dérivable en 0 et que :  $(g^{-1})'(0) = \frac{\alpha^3 + 2}{12\alpha^2}$

  - c montrer que  $\forall x \in \mathbb{R}^+ : g(x) = (\sqrt{x^3 + 1} 1)^2 2$ d montrer que  $\forall x \ge -2 : g^{-1}(x) = \sqrt[3]{(\sqrt{x + 2} + 1)^2 1}$
  - e déduire que  $\alpha=\sqrt[3]{2+2\sqrt{2}}$  et déterminer l'intersection de  $C_g$  avec la droite d'équation y = -1.
  - f tracer dans le repère ci-joint  $C_{g^{-1}}$ .

