

Stochastic inference

with deterministic

spiking neurons

Mihai A. Petrovici Luziwei Leng, David Stöckel, Oliver Breitwieser, Ilja Bytschok, Jakob Jordan Roman Martel, Johannes Bill, Johannes Schemmel, Karlheinz Meier

Electronic Vision(s)
Kirchhoff Institute for Physics
University of Heidelberg

Ensemble dynamics

Ensemble dynamics

Ising model

$$H(\boldsymbol{\sigma}) = -\sum_{ij} J_{ij} \sigma_i \sigma_j - \sum_i b_i \sigma_i$$

$$p_{\beta}(\boldsymbol{\sigma}) = \frac{e^{-H(\boldsymbol{\sigma})/k_BT}}{Z_{\beta}}$$

Glauber dynamics

 \rightarrow sampling !

Bayesian inference & learning

decision problem \leftrightarrow inference problem

p (reality | observations)

Berkes et al. (2011)

Knill & Kersten (1991)

Bayesian inference & learning

decision problem ↔ inference problem

p (reality | observations)

Berkes et al. (2011)

Matthew et al. (ca. 85)

Knill & Kersten (1991)

Why spikes ?

understand biology

exploit efficient hardware

low power, high speed, ...

... and maybe also gain a **computational advantage**

Neural sampling

(Gibbs) sampling

Neural sampling

(Gibbs) sampling

assumptions: $z_k \in \{0,1\}$

$$z_k = 1 \iff$$
 neuron has spiked in $[t - \tau, t)$

information transfer between neurons:

$$u_k = \log \frac{p(z_k = 1 \mid \mathbf{z}_{\setminus k})}{p(z_k = 0 \mid \mathbf{z}_{\setminus k})}$$

$$\Leftrightarrow$$
 $v_k = p(z_k = 1) = \frac{1}{1 + \exp(-u_k)}$

response/activation function

The LIF activation function

noise source: Poisson spike trains \Rightarrow membrane as Ornstein-Uhlenbeck process

$$du(t) = \Theta \cdot [\mu - u(t)]dt + \sigma dW(t)$$

Brunel & Sergi (1998)

assumption: $au_{
m syn} \ll au_{
m m}$

$$\langle T \rangle = \tau \sqrt{\pi} \int_{\rho - \mu/\sigma}^{\vartheta_{\text{eff}} - \mu/\sigma} [1 + \text{erf } x] \exp(x^2) dx$$

Moreno-Bote & Parga (2004)

assumption: $au_{ref} pprox au_{syn} \gg au_{m}$

$$v = \int_{\vartheta}^{\infty} \left(\tau_{\rm m} \, \frac{\varrho - \tilde{u}}{\vartheta - \tilde{u}} \right)^{-1} p(\tilde{u}) \, d\tilde{u}$$

The membrane autocorrelation propagation

$$p(z_k = 1) = \frac{t_{k, \text{ refractory}}}{t_{\text{total}}} = \frac{\sum_n P_n n \tau_{\text{ref}}}{\sum_n P_n \cdot \left(n \tau_{\text{ref}} + \sum_{k=1}^{n-1} \overline{\tau_k^b} + T_n\right)}$$

$$P_{n} = \left(1 - \sum_{i=1}^{n-1} P_{i}\right) \cdot \int_{V_{\text{thr}}}^{\infty} dV_{n-1} \ p(V_{n-1}|V_{n-1} > V_{\text{thr}}) \left[\int_{-\infty}^{V_{\text{thr}}} dV_{n} \ p(V_{n}|V_{n-1})\right]$$

$$T_{n} = \int_{V_{\text{thr}}}^{\infty} dV_{n-1} \ p(V_{n-1}|V_{n-1} > V_{\text{thr}}) \left[\int_{-\infty}^{V_{\text{thr}}} dV_{n} \ p(V_{n}|V_{n-1}) \langle FPT(V_{\text{thr}}, V_{n}) \rangle\right]$$

$$\overline{\tau_{k}^{D}} = \int_{0}^{\infty} du_{k} \ \tau_{\text{eff}} \ln\left(\frac{\varrho - u_{k}}{\vartheta - u_{k}}\right) p(u_{k}|u_{k} > \vartheta, u_{k-1})$$

$$1.0$$

Petrovici & Bill et al. (2013)

HCS!

(Fully visible) LIF-based Boltzmann machines

... so where does the noise come from ?

- in simulations: from independent Poisson sources
- more realistic: from being embedded in larger networks

LIF sampling on accelerated neuromorphic hardware

"Spikey" chip

Schemmel et al. (2006)

bio: 100 s

Pfeil et al. (2013)

software simulation: 10 s

neuromorphic emulation: 10 ms

Deep learning architectures

Deep learning architectures

Training of RBMs/DBMs on MNIST:

- contrastive divergence
- coupled adaptive tempering

Leng & Petrovici et al. (2016)

Mixing in deep spiking networks

Mixing in deep spiking networks

Mixing in deep spiking networks

Tsodyks-Markram short-term plasticity

$$\frac{dR}{dt} = \frac{1 - R}{\tau_{rec}} - U_{SE}R\delta(t - t_{sp})$$

$$\frac{dU_{SE}}{dt} = -\frac{U_{SE}}{\tau_{facil}} + U_0(1 - U_{SE})\delta(t - t_{sp})$$

Spiking networks as superior generative and discriminative models

Summary

- model of LIF sampling
- analytical description of LIF activation function
- deep spiking networks as simultaneous discriminative and generative models