Classification automatique des procédés de traduction

Yuming Zhai, Gabriel Illouz, Anne Vilnat

LIMSI, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay Orsay, France

> 4 juillet 2019 TALN

Traduction mot à mot

we all share the same nous partageons tous les mêmes

Traduction mot à mot

we all share the same nous partageons tous les mêmes

Glissement syntaxique

the statistics you hear about les statistiques qui nous sont communiquées

Traduction mot à mot

we all share the same nous partageons tous les mêmes

Glissement syntaxique

the statistics you hear about les statistiques qui nous sont communiquées

Glissement sémantique

convert that CO_2 back into fuel to **drive** this process reconvertir ce CO_2 en carburant pour **alimenter** ce processus

Traduction mot à mot

we all share the same nous partageons tous les mêmes

Glissement syntaxique

the statistics you hear about les statistiques qui nous sont communiquées

Glissement sémantique

convert that CO_2 back into fuel to **drive** this process reconvertir ce CO_2 en carburant pour **alimenter** ce processus

Traduction plus éloignée, glissement syntaxique et sémantique and that scar has stayed with him for his entire life et que, toute sa vie, il a souffert de ce traumatisme

Plan de la présentation

- 1 Contexte et travaux précédents
- Corpus et annotation
- 3 Classification automatique
- 4 Résultats expérimentaux
- 5 Conclusion et perspectives

Procédés de traduction étudiés par les traducteurs humains Traduction littérale versus d'autres procédés de traduction (Vinay and Darbelnet, 1958; Chuquet and Paillard, 1989)

Procédés de traduction étudiés par les traducteurs humains

Traduction littérale versus d'autres procédés de traduction (Vinay and Darbelnet, 1958; Chuquet and Paillard, 1989)

	mot-à-mot	catégorie grammaticale	sémantique	syntaxe
littéral	×			

Procédés de traduction étudiés par les traducteurs humains

Traduction littérale versus d'autres procédés de traduction (Vinay and Darbelnet, 1958; Chuquet and Paillard, 1989)

	mot-à-mot	catégorie grammaticale	sémantique	syntaxe
littéral	×			
équivalence				

Procédés de traduction étudiés par les traducteurs humains

Traduction littérale versus d'autres procédés de traduction (Vinay and Darbelnet, 1958; Chuquet and Paillard, 1989)

	mot-à-mot	catégorie grammaticale	sémantique	syntaxe
littéral	×			
équivalence				
transposition		×		

Procédés de traduction étudiés par les traducteurs humains

Traduction littérale versus d'autres procédés de traduction (Vinay and Darbelnet, 1958; Chuquet and Paillard, 1989)

	mot-à-mot	catégorie grammaticale	régorie maticale sémantique	
littéral	×			
équivalence				
transposition		X		
modulation			×	Х

Procédés de traduction étudiés par les traducteurs humains

Traduction littérale versus d'autres procédés de traduction (Vinay and Darbelnet, 1958; Chuquet and Paillard, 1989)

	mot-à-mot	catégorie grammaticale sémantique		syntaxe
littéral	×			
équivalence				
transposition		×		
modulation			×	Х
mod+trans		×	×	Х

Procédés de traduction étudiés par les traducteurs humains

Traduction littérale versus d'autres procédés de traduction (Vinay and Darbelnet, 1958; Chuquet and Paillard, 1989)

	mot-à-mot	catégorie grammaticale	sémantique	syntaxe
littéral	×			
équivalence				
transposition		X		
modulation			×	Х
mod+trans		×	×	Х
généralisation			x, ↑	

Procédés de traduction étudiés par les traducteurs humains

Traduction littérale versus d'autres procédés de traduction (Vinay and Darbelnet, 1958; Chuquet and Paillard, 1989)

	mot-à-mot catégorie grammaticale		sémantique	syntaxe
littéral	×			
équivalence				
transposition		×		
modulation			×	Х
mod+trans		×	×	Х
généralisation			x, ↑	
particularisation			x, ↓	

Manque d'exploitation explicite

Traduction automatique (SMT, NMT)

(Wu et al., 2016, Mallinson et al., 2017)

Paraphraser en exploitant des corpus parallèles bilingues

(Bannard and Callison-Burch, 2005)

rooted in

Ressource de paraphrase

PPDB (Paraphrase Database)

(Ganitkevitch and Callison-Burch, 2013)

Manque de contrôle sémantique

(Pavlick et al., 2015)

Équivalence : distant / remote

Ressource de paraphrase

PPDB (Paraphrase Database)

(Ganitkevitch and Callison-Burch, 2013)

Manque de contrôle sémantique

(Pavlick et al., 2015)

Équivalence : distant / remote

Implication : tower / building

Ressource de paraphrase

PPDB (Paraphrase Database)

(Ganitkevitch and Callison-Burch, 2013)

Manque de contrôle sémantique

(Pavlick et al., 2015)

Équivalence : distant / remote Implication: tower / building

Autrement lié : husband / marry to

Ressource de paraphrase

PPDB (Paraphrase Database)

(Ganitkevitch and Callison-Burch, 2013)

Manque de contrôle sémantique

(Pavlick et al., 2015)

Équivalence : distant / remote Implication : tower / building

Autrement lié : husband / marry to

Exclusion: close / open

Ressource de paraphrase

PPDB (Paraphrase Database)

(Ganitkevitch and Callison-Burch, 2013)

Manque de contrôle sémantique

(Pavlick et al., 2015)

Équivalence : distant / remote Implication : tower / building Autrement lié : husband / marry to

Exclusion : close / open

Indépendant : found / party

Travaux précédents

Étude sur la traduction non littérale

améliorer l'alignement de mot automatique (Dorr et al., 2002) développer une mesure de traduction littérale (Carl and Schaeffer, 2017) comparer la traduction automatique et humaine (Lars Ahrenberg, 2017)

Travaux précédents

Étude sur la traduction non littérale

améliorer l'alignement de mot automatique (Dorr et al., 2002) développer une mesure de traduction littérale (Carl and Schaeffer, 2017) comparer la traduction automatique et humaine (Lars Ahrenberg, 2017)

Détection automatique des divergences en traduction

filtrer automatiquement des couples de phrases divergentes dans des corpus parallèles (Carpuat et al., 2017, Vyas et al., 2018, Pham et al., 2018)

Travaux précédents

Étude sur la traduction non littérale

améliorer l'alignement de mot automatique (Dorr et al., 2002) développer une mesure de traduction littérale (Carl and Schaeffer, 2017) comparer la traduction automatique et humaine (Lars Ahrenberg, 2017)

Détection automatique des divergences en traduction

filtrer automatiquement des couples de phrases divergentes dans des corpus parallèles (Carpuat et al., 2017, Vyas et al., 2018, Pham et al., 2018)

Notre contribution

- exploiter les procédés de traduction au niveau sous-phrastique
- classification automatique basée sur l'annotation manuelle
- but : meilleur contrôle sémantique dans l'extraction des paraphrases

Plan de la présentation

- Contexte et travaux précédents
- Corpus et annotation
- Classification automatique
- 4 Résultats expérimentaux
- 5 Conclusion et perspectives

Exemples typiques annotés (couple anglais-français)

littéral	certain kinds of $ o$ certains types de
équivalence	alternatives $ o$ solutions de remplacement
transposition	astonishingly inquisitive
	→ dotée d'une curiosité stupéfiante
modulation	the statistics you hear about
	→ les statistiques qui nous sont communiquées
mod+trans	Steve's columns became the basis for a book
	→ les chroniques de Steve ont inspiré un livre
généralisation	as we sit here in \rightarrow alors que nous sommes à
particularisation	they have a screen \rightarrow ils sont équipés d'un écran

extraits du corpus TED Talks annoté (Zhai et al., 2018)

Statistique des données

Nombre d'instances par catégorie

littéral	3771		
équivalence			
<pre>contient_transposition (transposition+mod_trans)</pre>			
modulation			
généralisation	86		
particularisation	215		

Accord inter-annotateur

Corpus de contrôle : 100 lignes (3055 tokens anglais, 3238 tokens français)

kappa de Cohen: 0,672

Plan de la présentation

- Contexte et travaux précédents
- Corpus et annotation
- Classification automatique
- 4 Résultats expérimentaux
- 5 Conclusion et perspectives

Objectif de classification

Entrée (frontière connue) : $deceptive \rightarrow une illusion$

Sortie : la catégorie contient_transposition

- sans changement de sens
- changement de catégorie grammaticale

Traits exploités

1) Analyse morpho-syntaxique

comptage du nombre d'occurrence des étiquettes de PoS :

	ADJ	DET	NOUN		INTJ
anglais	1	0	0		0
français	0	1	2		0

- similarité cosinus entre ces deux vecteurs
- vérification du patron de changement de séquence de PoS methodologically → de façon méthodologique ADV → ADP NOUN ADJ

Traits exploités

1) Analyse morpho-syntaxique

comptage du nombre d'occurrence des étiquettes de PoS :

	ADJ	DET	NOUN		INTJ
anglais	1	0	0		0
français	0	1	2		0

- similarité cosinus entre ces deux vecteurs
- vérification du patron de changement de séquence de PoS methodologically → de façon méthodologique ADV → ADP NOUN ADJ

2) Surface

- nombre de tokens anglais (len_e), français (len_f)
- ratio de ces nombres (len_e/len_f, len_f/len_e)
- distance Levenshtein entre deux segments

Traits exploités

3.1) Analyse syntaxique en constituant

```
    trait binaire (0 ou 1):
    étiquettes PoS:
    adapt (verbe) → adaptation (nom)
    étiquettes du nœud non terminal:
    are a year behind (phrase verbale)
    → avons une année de retard (phrase verbale)
    catégorie des étiquettes:
    adjacent (adjectif) → qui n'était pas loin (phrase verbale)
```

3.2) Analyse syntaxique en dépendance

• à l'intérieur des segments

	amod	det	nmod	case		nsubj
anglais	0	1	0	1		0
français	0	1	1	1		0

Table: Comptage des étiquettes de relation de dépendance

3.2) Analyse syntaxique en dépendance

• à l'extérieur des segments

	acl	mark	nmod	case	 nsubj
anglais	1	1	0	0	 0
anglais français	0	0	1	1	 0

Table: Comptage des étiquettes de relation de dépendance

- 4) Ressource externe multilingue : ConceptNet (Speer et al., 2017)
 - similarité cosinus entre les plongements (ConceptNet Numberbatch) expressions multi-mots :
 - climate_change → changement_climatique moyenne des plongements lexicaux sur les mots pleins :
 - 're less burdened by o est moins un fardeau

- 4) Ressource externe multilingue : ConceptNet (Speer et al., 2017)
 - similarité cosinus entre les plongements (ConceptNet Numberbatch)
 expressions multi-mots :
 - climate_change → changement_climatique moyenne des plongements lexicaux sur les mots pleins : 're less burdened by → est moins un fardeau
 - o comment la paire est liée dans la ressource
 - 0 : lié directement
 - 1 : lié indirectement : $complete \leftarrow complet / entier \rightarrow totale$
 - 2 : pas lié

- 4) Ressource externe multilingue : ConceptNet (Speer et al., 2017)
 - similarité cosinus entre les plongements (ConceptNet Numberbatch) expressions multi-mots :
 - climate_change → changement_climatique moyenne des plongements lexicaux sur les mots pleins : 're less burdened by → est moins un fardeau
 - o comment la paire est liée dans la ressource
 - 0 : lié directement
 - 1 : lié indirectement : **complete** \leftarrow **complet** / **entier** \rightarrow **totale**
 - 2 : pas lié
 - pourcentage des tokens liés indirectement deceptive ← illusoire → une illusion

5) Alignement de mot automatique

Table de traduction lexicale générée par Berkeley Word Aligner

moyenne des entropies de traduction lexicale sur des mots pleins

5) Alignement de mot automatique

Table de traduction lexicale générée par Berkeley Word Aligner

- moyenne des entropies de traduction lexicale sur des mots pleins
- pondération lexicale bi-directionnelle sur les mots pleins (Koehn et al., 2003)

$$lex(e|f,A) = \prod_{i=1}^{length(e)} \frac{1}{|\{j|(i,j) \in A\}|} \sum_{\forall (i,j) \in A} w(e_i|f_j)$$
 (1)

5) Alignement de mot automatique

Table de traduction lexicale générée par Berkeley Word Aligner

- moyenne des entropies de traduction lexicale sur des mots pleins
- pondération lexicale bi-directionnelle sur les mots pleins (Koehn et al., 2003)

$$lex(e|f,A) = \prod_{i=1}^{length(e)} \frac{1}{|\{j|(i,j) \in A\}|} \sum_{\forall (i,j) \in A} w(e_i|f_j)$$
 (1)

somme de différence de probabilités de traduction lexicale alternatives → alternatives P = 0,4 alternatives → solutions de remplacement P = 0,07

Plan de la présentation

- Contexte et travaux précédents
- Corpus et annotation
- 3 Classification automatique
- 4 Résultats expérimentaux
- 5 Conclusion et perspectives

Plan expérimental

- littéral (3771) vs non_littéral (5 classes, 1127)
 → différentes configurations d'évaluation
- entraîner différents classifieurs avec Scikit-learn
 (RandomForest, Multi-Layer Perceptron, Logistic Regression, Support Vector Machine, K-nearest Neighbors, Decision Tree, Bernoulli Naive Bayes, multinomial Naive Bayes, Gaussian Naive Bayes)
- les hyperparamètres sont optimisés
- validation croisée à 5 plis
- baseline Dummy (prédire toujours la classe majoritaire)

Résultats expérimentaux (utilisant tous les traits)

Distribution de classes	Classifieur	Exactitude moyenne	Micro-F1	Macro-F1
Six classes				
six classes, avec 3771 littéral	Dummy	76,99%	0,77	0,14
SIX Classes, avec 3771 III.teral	RandomForest	83,10% ± 0,35%	0,83	0,44
six classes, avec 200 littéral	Dummy	25,77%	0,26	0,07
SIX Classes, avec 200 litteral	RandomForest	$57,04\% \pm 1,47\%$	0,57	0,52

Résultats expérimentaux (utilisant tous les traits)

Distribution de classes	Classifieur	Exactitude moyenne	Micro-F1	Macro-F1
Six classes			•	•
six classes, avec 3771 littéral	Dummy	76,99%	0,77	0,14
SIX Classes, avec 3771 Illieral	RandomForest	83,10% ± 0,35%	0,83	0,44
six classes, avec 200 littéral	Dummy	25,77%	0,26	0,07
SIX Classes, avec 200 litteral	RandomForest	$57,04\% \pm 1,47\%$	0,57	0,52
Deux classes				
littéral (3) : non_littéral (1)	Dummy	76,99%	0,77	0,43
iliteral (3) . Holl_litteral (1)	RandomForest	90,16% ± 0,98%	0,90	0,86
littéral (2) : non_littéral (1)	Dummy	66,67%	0,67	0,40
Interar (2) . Hon_Interar (1)	RandomForest	88,85% \pm 0,71%	0,89	0,88
littéral (1) : non_littéral (1)	Dummy	50,00%	0,50	0,33
interar (1) . Hon_interar (1)	RandomForest	87,09% ± 2,50%	0,87	0,87

Résultats expérimentaux (utilisant tous les traits)

Distribution de classes	Classifieur	Exactitude moyenne	Micro-F1	Macro-F1
Six classes			•	
six classes, avec 3771 littéral	Dummy	76,99%	0,77	0,14
SIX Classes, avec 3771 Illieral	RandomForest	83,10% \pm 0,35%	0,83	0,44
six classes, avec 200 littéral	Dummy	25,77%	0,26	0,07
SIX Classes, avec 200 litteral	RandomForest	$57,04\%\pm1,47\%$	0,57	0,52
Deux classes				
littáral (2) : non littáral (1)	Dummy	76,99%	0,77	0,43
littéral (3) : non_littéral (1)	RandomForest	90,16% ± 0,98%	0,90	0,86
littáral (2) : non littáral (1)	Dummy	66,67%	0,67	0,40
littéral (2) : non_littéral (1)	RandomForest	88,85% \pm 0,71%	0,89	0,88
littéral (1) : non_littéral (1)	Dummy	50,00%	0,50	0,33
Interal (1) . Hon_Interal (1)	RandomForest	87,09% \pm 2,50%	0,87	0,87
Cinq classes			•	
cing classes non_littéral	Dummy	30,35%	0,30	0,09
cinq classes non_interal	RandomForest	$55,10\%\pm1,45\%$	0,55	0,47

Analyse

Confusion entre:

- ullet littéral et équivalence search history o historique de recherche
- équivalence et contient_transposition all the people in the world \rightarrow la population mondiale
- modulation et les autres classes

équivalence	généralisation	particularisation	modulation	contient- transposition
$0,51 \pm 0,02$	$0,25 \pm 0,09$	$0,56 \pm 0,05$	0.36 ± 0.08	$0,68 \pm 0,02$

Table: F-mesures moyennes sur les cinq plis pour chaque procédé non littéral

Analyse

Confusion entre:

- ullet littéral et équivalence search history o historique de recherche
- équivalence et contient_transposition
 all the people in the world → la population mondiale
- modulation et les autres classes

équivalence	généralisation	particularisation	modulation	contient- transposition
$0,51 \pm 0,02$	0.25 ± 0.09	$0,56 \pm 0,05$	0.36 ± 0.08	$0,68 \pm 0,02$

Table: F-mesures moyennes sur les cinq plis pour chaque procédé non littéral

Quels traits contribuent le plus ?

- classification binaire : alignement_de_mot
- classification multi-class : analyse_PoS et analyse_syntaxique

Plan de la présentation

- Contexte et travaux précédents
- Corpus et annotation
- Classification automatique
- 4 Résultats expérimentaux
- **5** Conclusion et perspectives

Conclusion et perspectives

Bilan:

- nouvelle tâche : classification automatique des procédés de traduction
- meilleurs résultats : RandomForest avec l'ingénierie des traits
- ouvre des pistes de recherche

Conclusion et perspectives

Bilan:

- nouvelle tâche : classification automatique des procédés de traduction
- meilleurs résultats : RandomForest avec l'ingénierie des traits
- ouvre des pistes de recherche

Amélioration:

- augmentation de la taille de données
- apport éventuel d'autres traits (e.g. probabilité de traduction de phrase)
- analyse d'erreur pour améliorer le guide d'annotation
- extension de l'étude au couple anglais-chinois

Conclusion et perspectives

Bilan:

- nouvelle tâche : classification automatique des procédés de traduction
- meilleurs résultats : RandomForest avec l'ingénierie des traits
- ouvre des pistes de recherche

Amélioration:

- augmentation de la taille de données
- apport éventuel d'autres traits (e.g. probabilité de traduction de phrase)
- analyse d'erreur pour améliorer le guide d'annotation
- extension de l'étude au couple anglais-chinois

Perspectives:

- adaptation au corpus parallèle sans annotation
- extraction de meilleures paraphrases

Merci pour votre attention! Des questions?

Contact: yuming.zhai@limsi.fr

Code : https://github.com/YumingZHAI/ctp

Résultats des classifieurs neuronaux

Plus de détails dans cet article : (Zhai et al., 2019, Conférence CICLing) :

Architecture	Exactitude	F1 (Littéral)	F1 (Non littéral)			
Plongement de caractère initialisé aléatoirement						
CNN	59,99%	0,60	0,60			
MLP	71,16%	0,71	0,71			
Plong	Plongement de mot pré-entraîné (FastText)					
MLP	71,25%	0,71	0,71			

Table: Classification binaire (distribution équilibrée)

Architecture	Exactitude	Micro-F1	Macro-F1				
Plongement de caractère initialisé aléatoirement							
CNN	34,08%	0,34	0,20				
MLP	40,74%	0,41	0,34				
Plongement de mot pré-entraîné (FastText)							
MLP	43,22%	0,43	0,34				

Table: Classification multi-class (cinq classes non littéral)

Contribution des traits (classification binaire 1:1)

F1 Moyenne (Littéral)	F1 Moyenne (Non littéral)
0,78	0,75
0,69	0,69
0,68	0,64
0,70	0,34
0,75	0,75
0,74	0,71
0,66	0,50
0,76	0,73
0,61	0,62
0,73	0,73
0,70	0,78
0,70	0,62
0,77	0,78
0,60	0,62
0,78	0,80
0,78	0,75
0,72	0,70
0,76	0,76
0,77	0,78
0,84	0,85
0,87	0,87
0,87	0,88
	0,78 0,69 0,68 0,70 0,75 0,74 0,66 0,76 0,61 0,73 0,70 0,70 0,77 0,60 0,78 0,78 0,72 0,76 0,77 0,84

Contribution des traits (5 classes non littéral)

Trait	F1(micro-av)	F1(macro-av)	F1 (E)	F1 (G)	F1 (P)	F1 (M)	F1 (T)
pos_vecteur_comptage	0,52	0,44	0,51	0,16	0,54	0,34	0,65
posCosinus_tous_les_mots	0,39	0,29	0,25	0,00	0,45	0,23	0,54
posCosinus_mots_pleins	0,39	0,25	0,06	0,00	0,42	0,19	0,58
pos_changement_patron	0,37	0,20	0,43	0,00	0,00	0,00	0,56
distance_Levenshtein	0,36	0,26	0,32	0,00	0,31	0,18	0,49
(ratio)_longueur_token	0,39	0,34	0,36	0,21	0,39	0,26	0,49
analyse_constituant	0,36	0,19	0,00	0,00	0,41	0,00	0,56
analyse_dépendance_interne	0,45	0,39	0,37	0,21	0,47	0,31	0,59
analyse_dépendance_externe	0,35	0,26	0,27	0,05	0,33	0,15	0,51
ConceptNet_Embedding	0,32	0,27	0,28	0,02	0,38	0,25	0,40
ConceptNet_lien	0,32	0,18	0,13	0,00	0,30	0,00	0,46
ConceptNet_pourcentage_indirect	0,29	0,16	0,22	0,00	0,00	0,18	0,42
différence_probabilité_traduction	0,38	0,32	0,35	0,13	0,38	0,26	0,50
entropie_traduction	0,35	0,27	0,36	0,00	0,39	0,15	0,44
pondération_lexicale	0,32	0,24	0,36	0,02	0,28	0,15	0,41
analyse_PoS	0,51	0,43	0,48	0,15	0,52	0,34	0,64
surface	0,38	0,34	0,36	0,23	0,37	0,27	0,47
analyse_syntaxique	0,48	0,40	0,38	0,18	0,52	0,30	0,63
ressource_ConceptNet	0,34	0,28	0,24	0,02	0,46	0,23	0,44
alignement_de_mot	0,45	0,38	0,44	0,15	0,51	0,26	0,54
pos + surface + syntaxique	0,54	0,47	0,49	0,28	0,54	0,38	0,67
tous - ConceptNet	0,54	0,47	0,51	0,27	0,54	0,37	0,67
tous les traits	0,55	0,47	0,50	0,25	0,55	0,37	0,67

Résultats des classifieurs entraînés

Algorithme	Exactitude Moyenne	F1 (Littéral)	F1 (Non littéral)
RandomForest	87,09%	0,87	0,87
MLP	85,01%	0,85	0,85
LogisticRegression	84,78%	0,85	0,85
rbfSVC	85,14%	0,84	0,86
MultinomialNB	80,83%	0,81	0,81
KNN	83,41%	0,83	0,83
BernoulliNB	81,14%	0,80	0,82
DecisionTree	79,95%	0,79	0,81
GaussianNB	64,51%	0,73	0,50

Table: Classification binaire (distribution équilibrée), utilisant tous les traits

Pondération lexicale sur les mots pleins (Koehn et al., 2003)

Exemple : astonishingly inquisitive \rightarrow dotée d' une curiosité stupéfiante

$$lex(e|f,A) = \prod_{i=1}^{length(e)} \frac{1}{|\{j|(i,j)\in A\}|} \sum_{\forall (i,j)\in A} w(e_i|f_j)$$

e : segment source

f : segment cible

A : l'ensemble des mots alignés

 $w(e_i|f_i)$: probabilité de traduction lexicale

Plus de détails sur la ressource PPDB (Pavlick et al., 2015)

Figure 2: Distribution of entailment relations in different sizes of PPDB. Distributions are estimated from our manual annotations of randomly sampled pairs. PPDB-XXXL contains over 77MM paraphrase pairs (where the majority type is independent), compared to only 700K in PPDB-S (where the majority type is equivalent).

Annotation via l'outil Yawat (Germann, 2008)

for some time I have been interested in the placebo effect , which might seem like an odd thing for a magician to be interested in , unless you think of it in the terms that I do , which is , `` something fake is believed in enough by somebody that it becomes something real . "

pendant un temps, je me suis intéressé à l' effet placebo, ce qui peut paraître bizarre pour un magicien comme sujet de prédilection, à moins que vous ne regardiez la chose comme moi : soit " quelque chose de faux peut être tellement crédible que ca devient quelque chose de vrai ".