Chapter 3: Arrows Instead of Epsilon

1 Monic arrows

Monic arrows are an abstraction of injective functions.

Definition 1.1. An arrow $f: a \to b$ in a category C is *monic* if for any g_1, g_2 with codomain a, the implication

$$f \circ g_1 = f \circ g_2 \implies g_1 = g_2$$

holds. Or, if the diagram

$$c \xrightarrow{g_1} a \xrightarrow{f} b$$

commutes, then $g_1 = g_2$.

Definition 1.2. (Alternatively, Riehl pg. 11) An arrow $f: a \to b$ is monic iff for any C-object c, post-composition with f defines an injection $f_*: C(c,a) \to C(c,b)$. (Here C(x,y) is the set of C-arrows from x to y.)

For both exercises in this section, take the situation to be as follows:

$$s \xrightarrow{h_1} a \xrightarrow{f} b \xrightarrow{g} c$$

Where f and g are fixed, and s, h_1, h_2 are 'any such' objects/arrows.

Exercise 1.1.

Suppose that f and g are both monic, and that $g \circ (f \circ h_1) = g \circ (f \circ h_2)$. Since g is monic, that implies $f \circ h_1 = f \circ h_2$. But since f is monic, that implies $h_1 = h_2$. So using associativity and collapsing the chain of implication gives

$$(g \circ f) \circ h_1 = (g \circ f) \circ h_2 \implies h_1 = h_2.$$

Conclude $g \circ f$ is monic.

Exercise 1.2.

Now suppose that $g \circ f$ is monic. If $f \circ h_1 = f \circ h_2$ then clearly $g \circ (f \circ h_1) = g \circ (f \circ h_2)$. Then $(g \circ f) \circ h_1 = (g \circ f) \circ h_2$ and since $g \circ f$ is monic, $h_1 = h_2$. So

$$f \circ h_1 = f \circ h_2 \implies h_1 = h_2,$$

meaning f is monic.

2 Epic arrows

Definition 2.1. If f is *epic* then commutativity of

$$a \xrightarrow{f} b \xrightarrow{g_1} c$$

implies $g_1 = g_2$.

Definition 2.2. (Alternatively, Riehl pg. 11) An arrow $f: a \to b$ is epic iff for any C-object c, pre-composition with f defines an injection $f^*: C(b,x) \to C(a,c)$. (Here C(x,y) is the set of C-arrows from x to y.)

Dually to the exercises proven in the previous section we have

Fact 2.3. If $f: a \to b$ and $g: b \to c$ are epic, then $g \circ f: a \to c$ is epic.

Fact 2.4. If $g \circ f : a \to c$ is epic, then $g : b \to c$ is epic.

3 Iso arrows

Definition 3.1. An arrow $f: a \to b$ is iso if there exists another arrow $f^{-1}: b \to a$ such that

$$f \circ f^{-1} = 1_b$$

and

$$f^{-1} \circ f = 1_a.$$

This diagram commutes when the identity loops are included:

Fact 3.2. If an arrow is iso then it is epic and monic, but the converse isn't necessarily true. The converse is true in **Set** and any Topos.

Exercise 3.1. For any object a, the identity morphism 1_a is an inverse to itself and therefore is iso. Simply because

$$1_a \circ 1_a = 1_a.$$

$$a \xrightarrow{1_a} a$$

Exercise 3.2. If $f: a \to b$ is iso then we can retrieve f^{-1} and then plug it right into the definition and find

$$f^{-1} \circ f = 1_a$$

and

$$f \circ f^{-1} = 1_b,$$

indicating that f^{-1} is iso.

$$a \xrightarrow{f^{-1}} b$$

Exercise 3.3. With $f: a \to b$ and $g: b \to c$ both iso, the situation looks like the following:

Now we find that

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ 1_b \circ f = f^{-1} \circ f = 1_a$$

and

$$(g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ (f \circ f^{-1}) \circ g^{-1} = g \circ 1_b \circ g^{-1} = g \circ g^{-1} = 1_c.$$

Thus $(f^{-1} \circ g^{-1})$ acts as an inverse to $g \circ f$, and $g \circ f$ is iso.

4 Isomorphic objects

Definition 4.1. Two C-objects a and b are isomorphic, or

$$a \cong b$$

if there exists an iso C-arrow

$$f: a \to b$$
.

Definition 4.2. A category C is *skeletal* if $a \cong b$ implies a = b.

Exercise 4.1.

We wish to show that object isomorphism is an equivalence relation, or that it's reflexive, symmetric, and transitive. Fortunately the exercises from section 3 correspond exactly to these properties.

- (i) $a \cong a$ since 1_a is iso.
- (ii) If $a \cong b$ then some $f: a \to b$ is iso, and therefore $f^{-1}: b \to a$ is iso and $b \cong a$.
- (iii) If $a \cong b$ and $b \cong c$ then we have iso arrows $f: a \to b$ and $g: b \to c$. Then $g \circ f$ is iso, and $a \cong c$.

Exercise 4.2.

Suppose a and b are two **Finord**-objects such that $a \cong b$. Then there is some $f: a \to b$ that is iso. Since **Finord** is a subcategory of **Set**, iso arrows correspond to bijective functions. Then a and b must have the same cardinality, but by the definition of **Finord** distinct objects have distinct cardinalities. So a = b and **Finord** is skeletal.

5 Initial objects

Definition 5.1. An object c is *initial* if for every C-object a, there is exactly one arrow $f: c \to a$.

6 Terminal objects

Definition 6.1. An object c is terminal if for every C-object a, there is exactly one arrow $f: a \to c$.

Exercise 6.1. Let c_1 and c_2 be terminal C-objects.

By terminality there is a unique arrow $f_1: c_1 \to c_2$ and a unique arrow $f_2: c_2 \to c_1$. Then by the category axiom, $f_2 \circ f_1: c_1 \to c_1$ and $f_1 \circ f_2: c_2 \to c_2$ must exist. But again by terminality, there is a unique arrow $1_{c_1}: c_1 \to c_1$ and $1_{c_2}: c_2 \to c_2$, so the composition of f_1 and f_2 must give the identity. Conclude $c_1 \cong c_2$.

Exercise 6.2. (i) Terminal objects in **Set**² are of the form $\langle \{e_1\}, \{e_2\} \rangle$, or pairs of singleton sets.

- (ii) Terminal objects in $\mathbf{Set}^{\rightarrow}$ are arrows with singleton sets as domain and codomain.
- (iii) The terminal object in the poset (n, \leq) is the maximal element n, since $m \leq n$ for every m.

Exercise 6.3. Suppose $f: 1 \to a$ has its domain 1 a terminal object, and g_1, g_2 are any two parallel arrows from $c \to 1$.

$$c \xrightarrow{g_1} 1 \xrightarrow{f} a$$

Well, since 1 is terminal the arrow from $c \to 1$ is unique and we see that $g_1 = g_2$, so regardless of whether $g_1 \circ f = g_2 \circ f$ holds (which it does), we can conclude f is monic.

7 Duality

Any category can be turned into its opposite category. So any statement about a category can be dualized with all the arrows reversed.

8 Products

Definition 8.1. Given C-objects a and b, a product is a C-object $a \times b$ and 2 C-arrows pr_a, pr_b .

$$a \longleftarrow pr_a \qquad a \times b \longrightarrow pr_b \qquad b$$

For any c, f, g configured as follows

f and g determine a unique $h: c \to (a \times b)$ so that

commutes. This is denoted

$$c := \langle f, g \rangle.$$

Fact 8.2. If c is a product $a \times b$, any arrow $f: c \to c$, f must be the identity 1_c . First observe that the identity must exist. Then plug c into definition 8.1 to see that f must be the unique arrow with that domain and codomain.

Fact 8.3. Any two products of a and b, say $a \times_1 b$ and $a \times_2 b$, are isomorphic to each other. Consider that in the diagram

 h_1 and h_2 are uniquely determined by symmetric applications of definition 8.1. But by fact 8.2, composition of h_1 and h_2 must give identities.

Exercise 8.1. The fact that $\langle pr_a, pr_b \rangle = 1_{a \times b}$ follows as a special case of fact 8.2, by plugging in the projection functions.

Exercise 8.2. Suppose we have parallel $f, k : c \Rightarrow a$ and $g, h : c \Rightarrow b$ and $p : c \rightarrow a \times b$ such that $p = \langle f, g \rangle = \langle k, h \rangle$. Then $f = pr_a \circ p$ and $k = pr_a \circ p$. It doesn't take any special cancellation rules to see that identically f = k. Similarly g = h.

Exercise 8.3. Suppose the situation is as follows.

Then by compositionality there must exist $h \circ f : d \to a$ and $g \circ f : d \to b$. There also must exist $h \circ \langle f, g \rangle : d \to a \times b$. By collapsing the diagram to

we see the arrow from $d \to a \times b$ must be unique, and therefore

$$\langle f \circ h, g \circ h \rangle = h \circ \langle f, g \rangle.$$

Exercise 8.4. Suppose a category C has a terminal object t, and products. Let a be a C-object and consider the product $a \times t$.

$$a \longleftarrow a \times t \longrightarrow t$$

Plugging a into the product definition using the arrows given by 1_a and ! (the unique arrow to t) yields the unique arrow $h = \langle 1_a, ! \rangle$.

By definition we have that $pr_a \circ h = 1_a$. And since $h \circ pr_a$ maps $a \times t \to a \times t$ it follows from fact 8.2 that $h \circ pr_a = 1_{a \times t}$. Given these two iso arrows we conclude

$$a \cong a \times t$$
.

Example. As a specific example of exercise 8.4, let's work in **Set** where A is any set, and our terminal set t is any singleton set $\{b\}$.

Now we can explicitly say what all of our functions do:

$$1_a(x) = x$$

$$!(x) = b$$

$$pr_a(\langle a, b \rangle) = a$$

$$pr_b(\langle a, b \rangle) = b$$

$$h(x) = \langle x, b \rangle$$

The fact that $pr_a(h(x)) = x$ and $h(pr_a(\langle a,b\rangle)) = \langle a,b\rangle$ gives the isomorphism

$$A \cong A \times \{b\}$$
.

Intuitively, elements in A can be placed in one-to-one correspondence with elements in $A \times \{b\}$ by simply sending x to the tuple $\langle x, b \rangle$.

Definition 8.4. Given two products $a \times b$ and $c \times d$, and arrows $f: a \to c$ and $g: b \to d$

the unique product arrow $(f \times g) : a \times b \to c \times d$ is found as $\langle f \circ pr_a, g \circ pr_b \rangle$.

Exercise 8.5. In the reflexive case we consider the product arrow $1_a \times 1_b$.

By definition we have

$$1_a \times 1_b = \langle 1_a \circ pr_a, 1_b \circ pr_b \rangle = \langle pr_a, pr_b \rangle.$$

Then applying exercise 8.1 from here gives the desired result

$$1_a \times 1_b = 1_{a \times b}.$$

Exercise 8.6. The isomorphism $a \times b \cong b \times a$ follows by plugging each object into definition 8.1 in relation to the other. In this way the two unique (dashed) arrows are found:

and fact 8.2 tells us that they are iso.

Exercise 8.7. In this exercise we wish to show that products are associative up to isomorphism. So given C-objects a, b, c, form the products $(a \times b) \times c$ and $a \times (b \times c)$. Here they are with the relevant projection

arrows:

We'll use the product definition side-by-side, noting that composition of projections gives us our arrows $a \times (b \times c) \to b$ and $(a \times b) \times c \to b$:

The definition yields unique arrows $a \times (b \times c) \to b \times c$ and $(a \times b) \times c \to a \times b$. Using these arrows along-side the 'first-order' projection arrows, we use the product definition again to find the unique arrows

Using fact 8.2 gives that $(a \times b) \times c \cong a \times (b \times c)$.

Exercise 8.8. Consider the situation of a pair of arrows to the codomain objects of the product arrow's constituent arrows:

(i)

We can use composition to collapse a and b out of the picture:

and thus find that $(f \times g) \circ \langle h, k \rangle$ is the unique arrow determined by $f \circ h$ and $g \circ k$.

(ii) In the situation where we can place two product arrows end-to-end:

we again use composition to collapse the middle level

Giving (more details needed?)

$$(f\times g)\circ (h\times k)=(f\circ g)\times (h\circ k).$$

8.1 Finite Products

Definition 8.5. Given a C-object a, the finite product (for some integer m) consists of object a_m , and

m projection arrows pr_a^m .

So that for any m parallel arrows $f_i: c \to a$, there is a unique arrow $\langle f_1, \ldots, f_m \rangle: c \to a^m$ making

commute.

Definition 8.6. A more general finite product of m (not necessarily different) C-objects $a_1 \times a_2 \times \ldots \times a_m$ consists of a C-object and m projection arrows:

So that for any c-object with m arrows $f_1:c\to a_1,\ f_2:c\to a_2,$ etc, there is a unique arrow $\langle f_1,f_2,\ldots,f_m\rangle$ making

commute.

Definition 8.7. A general product arrow is given by a family of m mappings between the components of two general products.

The product arrow $f_1 \times f_2 \cdots \times f_m$ is the unique arrow found by using

$$\langle f_1 \circ pr_{a_1}, f_2 \circ pr_{a_2}, \dots, f_m \circ pr_{a_m} \rangle$$

in the general product definition of $b_1 \times b_2 \times \ldots \times b_m$.

9 Co-products

Definition 9.1. A co-product of C-objects a and b is given by a a C-object denoted a+b, and injection functions i_a and i_b .

$$a \longrightarrow i_a \longrightarrow a + b \longleftarrow i_b \qquad b$$

For any $f: a \to c$ and $g: b \to c$, there is a unique arrow $[f, g]: (a + b) \to c$ so that

commutes.

Exercise 9.1. In **Set** we are told that the co-product A + B is the disjoint union, with i_A and i_B being the disjoint identity function (Ie, $i_A(x) = (x, 0)$ for $x \in A$, and $i_B(x) = (x, 1)$ for $x \in B$. Now suppose we have functions $f: A \to C$ and $g: B \to C$.

We can find $[f,g]:A+B\to C$ making this diagram commute by using the rule

$$[f,g](\langle x,y\rangle) = \begin{cases} f(x) & y=0\\ g(x) & y=1. \end{cases}$$

To see that it [f,g] is unique, notice that as given, $[f,g] \circ i_A = f$ iff $[f,g](i_A(x)) = f(x)$ for all $x \in A$. Similarly on the B side - there is no other way to recover the action of f and g out of A + B.

Exercise 9.2. If $A \cup B = \emptyset$ then we notice that $A \cup B$ satisfies the definition of co-product

where i_A and i_B are the inclusion functions, and

$$[f,g] = \begin{cases} f(x) & x \in A \\ g(x) & x \in B, \end{cases}$$

which is well defined because any x is in either A or B but not both. Then applying the dual of fact 8.3, co-products are isomorphic and therefore $A \cup B \cong A + B$.

Definition 9.2. Given two co-products a+b and c+d, and arrows $f:a\to c$ and $g:b\to d$

the co-product arrow f + g is found by using $[i_c \circ f, i_d \circ g]$ in the co-product definition of c + d.

10 Equalizers

Definition 10.1. An arrow i equalizes f and g if they are laid out as follows

$$e \xrightarrow{i} a \xrightarrow{f} b$$

where $f \circ i = g \circ i$. Additionally we demand the limiting property: if another e^* and i^* work as above, there is a unique arrow $e^* \to e$ making

commute.

Fact 10.2. Every equalizer is monic.

Fact 10.3. An epic equalizer is iso.

Exercise 10.1. Working in **Set**, we wish to show that monics are equalizers. Suppose we have some injective function $i: E \to A$:

$$E \rightarrowtail i A$$

We seek functions which i is an equalizer. Let $f, g : A \Longrightarrow \{0, 1\}$ be given by

$$f(x) = 1$$

$$g(x) = \begin{cases} 1 & x \in i(E) \\ 0 & x \notin i(E). \end{cases}$$

Now clearly g(i(x)) = f(i(x)) for all $x \in E$, so $i \circ f = i \circ g$. Supposing that there is another $i^* : C \to A$ such that $i^* \circ f = i^* \circ g$. We must have ...?

Exercise 10.2. Working in a poset, suppose that i equalizes f and g. Recall that any 2 parallel arrows are equal. Then in particular $f \circ i = g \circ i$ as follows:

$$e \xrightarrow{i} a \xrightarrow{f} b$$

But plugging a and 1_a into the definition for equalizer, since $f \circ 1_a = f = g = g \circ 1_a$ we retrieve the unique arrow $a \to e$.

Since we have arrows $a \to e$ and $e \to a$ we simply apply the antisymmetric property of posets to determine e = a, and the single-arrow property to determine that $i = 1_a$.

11 Limits and co-limits

Definition 11.1. A diagram...

Definition 11.2. Given a diagram D, a a D-cone consists of a C-object c together with component

arrows $f_i: c_i \to d_i$ for each $d_i \in d$ that commute with any arrow g in D.

Definition 11.3. Given a diagram D, a limit for D is a D-cone such that any other D-cone factors through uniquely.

