

Industry-Standard Dual Operational Amplifiers

1 Features

- Wide supply range of 3V to 36V (B, BA versions)
- Quiescent current: 300µA/ch (B, BA versions)
- Unity-gain bandwidth of 1.2MHz (B, BA versions)
- Common-mode input voltage range includes ground, enabling direct sensing near ground
- 2mV input offset voltage maximum at 25°C (BA version)
- 3mV input offset voltage maximum at 25°C (A, B versions)
- Internal RF and EMI filter (B, BA versions)
- On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

2 Applications

- Merchant network and server power supply units
- Multi-function printers
- Power supplies and mobile chargers
- Motor control: AC induction, brushed DC, brushless DC, high-voltage, low-voltage, permanent magnet, and stepper motor
- Desktop PC and motherboard
- Indoor and outdoor air conditioners
- Washers, dryers, and refrigerators
- AC inverters, string inverters, central inverters, and voltage frequency drives
- Uninterruptible power supplies
- Electronic point-of-sale systems

3 Description

The LM358B and LM2904B devices are the next-generation versions of the industry-standard operational amplifiers (op amps) LM358 and LM2904, which include two high-voltage (36V) op amps. These

devices provide outstanding value for cost-sensitive applications, with features including low offset (300µV, typical), common-mode input range to ground, and high differential input voltage capability.

The LM358B and LM2904B op amps simplify circuit design with enhanced features such as unity-gain stability, lower offset voltage maximum of 3mV (2mV maximum for LM358BA and LM2904BA), and lower quiescent current of 300µA per amplifier (typical). High ESD (2kV, HBM) and integrated EMI and RF filters enable the LM358B and LM2904B devices to be used in the most rugged, environmentally challenging applications.

The LM358B and LM2904B amplifiers are available in micro-sized packaging, such as the SOT23-8, as well as industry standard packages including SOIC, TSSOP, and VSSOP.

Package Information

PART NUMBER ⁽¹⁾	PACKAGE	PACKAGE SIZE(2)
LM358B, LM358BA, LM2904B, LM2904BA, LM358, LM358A, LM2904, LM2904V, LM258, LM258A	_M358, LM358A, D (SOIC 8) 4 9mm x 6mm	
LM358B, LM358BA, LM2904B, LM2904BA, LM358, LM358A, LM2904, LM2490V	PW (TSSOP, 8)	3mm × 6.4mm
LM358B, LM358BA, LM2904B, LM2904BA, LM358, LM358A, LM2904, LM2904V, LM258, LM258A	358B, LM358BA, LM2904B, 2904BA, LM358, LM358A, 2904, LM2904V, LM258, 8) DGK (VSSOP, 8) 3mm ×	
LM358B, LM358BA, LM2904B, LM2904BA	DDF (SOT-23, 8)	2.9mm × 2.8mm
LM358, LM2904	PS (SO, 8)	6.2mm × 7.8mm
LM358, LM2904, LM358A, LM258, LM258A	P (PDIP, 8)	9.81mm × 9.43mm
LM158, LM158A	JG (CDIP, 8)	9.6mm × 6.67mm
LM158, LM158A	FK (LCCC, 20)	8.89mm × 8.89mm

Family Comparison

Specification	LM358B LM358BA	LM2904B LM2904BA	LM358 LM358A	LM2904	LM2904V LM2904AV	LM258 LM258A	LM158 LM158A	Units
Supply voltage	3 to 36	3 to 36	3 to 30	3 to 26	3 to 30	3 to 30	3 to 30	V
Offset voltage (max, 25°C)	± 3 ± 2	± 3 ± 2	± 7 ± 3	± 7	± 7 ± 2	± 5 ± 3	± 5 ± 2	mV
Input bias current (typ / max)	10 / 35	10 / 35	20 / 250 15 / 100	20 / 250	20 / 250	20 / 150 15 / 80	20 / 150 15 / 50	nA
Gain bandwidth product	1.2	1.2	0.7	0.7	0.7	0.7	0.7	MHz
Supply current (typ, per channel)	0.3	0.3	0.35	0.35	0.35	0.35	0.35	mA
ESD (HBM)	2000	2000	500	500	500	500	500	V
Operating ambient temperature	-40 to 85	-40 to 125	0 to 70	-40 to 125	-40 to 125	-25 to 85	-55 to 125	°C

- For all available packages, see the orderable addendum at the end of the data sheet.
- The package size (length × width) is a nominal value and includes pins, where applicable.

Table of Contents

1 Features1	7 Detailed Description	25
2 Applications 1	7.1 Overview	
3 Description1	7.2 Functional Block Diagram: LM358B, LM358BA,	
4 Pin Configuration and Functions3	LM2904B, LM2904BA	25
5 Specifications4	7.3 Feature Description	.26
5.1 Absolute Maximum Ratings4	7.4 Device Functional Modes	.26
5.2 ESD Ratings 4	8 Application and Implementation	27
5.3 Recommended Operating Conditions5	8.1 Application Information	27
5.4 Thermal Information5	8.2 Typical Application	27
5.5 Electrical Characteristics: LM358B and LM358BA 6	8.3 Power Supply Recommendations	28
5.6 Electrical Characteristics: LM2904B and	8.4 Layout	28
LM2904BA8	9 Device and Documentation Support	.30
5.7 Electrical Characteristics: LM358, LM358A10	9.1 Receiving Notification of Documentation Updates	30
5.8 Electrical Characteristics: LM2904, LM2904V 11	9.2 Support Resources	30
5.9 Electrical Characteristics: LM158, LM158A12	9.3 Trademarks	30
5.10 Electrical Characteristics: LM258, LM258A14	9.4 Electrostatic Discharge Caution	30
5.11 Typical Characteristics: LM358B and LM2904B 15	9.5 Glossary	30
5.12 Typical Characteristics: LM158, LM158A,	10 Revision History	30
LM258, LM258A, LM358, LM358A, LM2904, and	11 Mechanical, Packaging, and Orderable	
LM2904V22	Information	32
6 Parameter Measurement Information24		

4 Pin Configuration and Functions

Figure 4-1. D, DDF, DGK, P, PS, PW, and JG
Package
8-Pin SOIC, SOT23-8, VSSOP, PDIP, SO, TSSOP,
and CDIP
Top View

NC - No internal connection

Figure 4-2. FK Package 20-Pin LCCC Top View

Table 4-1. Pin Functions

	ı	PIN		
NAME	LCCC ⁽¹⁾	SOIC, SOT23-8, VSSOP, CDIP, PDIP, SO, TSSOP, CFP ⁽¹⁾	I/O	DESCRIPTION
IN1-	5	2	I	Negative input
IN1+	7	3	I	Positive input
IN2-	15	6	I	Negative input
IN2+	12	5	I	Positive input
OUT1	2	1	0	Output
OUT2	17	7	0	Output
V-	10	4	_	Negative (lowest) supply or ground (for single-supply operation)
NC	1, 3, 4, 6, 8, 9, 11, 13, 14, 16, 18, 19	_	_	No internal connection
V+	20	8	_	Positive (highest) supply

⁽¹⁾ For a listing of which devices are available in what packages, see Section 3.

5 Specifications

5.1 Absolute Maximum Ratings

over operating ambient temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
		LM358B, LM358BA, LM2904B, LM2904BA		±20 or 40	
Supply voltage, $V_S = ([V+] - [V-])$		LM158, LM258, LM358, LM158A, LM258A, LM358A, LM2904V		±16 or 32	V
		LM2904		±13 or 26	
Differential input voltage, V _{ID} ⁽²⁾		LM358B, LM358BA, LM2904B, LM2904BA,LM158, LM258, LM358, LM158A, LM258A, LM358A, LM2904V	-32	32	V
		LM2904	-26	26	
		LM358B, LM358BA, LM2904B, LM2904BA	-0.3	40	
Input voltage, V _I	Either input	LM158, LM258, LM358, LM158A, LM258A, LM358A, LM2904V	-0.3	32	V
		LM2904	-0.3	26	
Duration of output short circuit (one amp $V_S \le 15 V^{(3)}$	olifier) to ground at (or	below) T _A = 25°C,		Unlimited	s
		LM158, LM158A	- 55	125	
		LM258, LM258A	-25	85	
Operating ambient temperature, T _A		LM358B, LM358BA	-40	85	°C
operating annalon temperature, 14		LM358, LM358A	0	70	
		LM2904B, LM2904BA, LM2904, LM2904V	-40	125	
Operating virtual-junction temperature,	T _J			150	°C
Storage temperature, T _{stg}			-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

			VALUE	UNIT	
LM358E	B, LM358BA, LM2904B, A	ND LM2904BA			
V	Clastrostatia diasharas	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	.,	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾		, v	
LM158,	LM258, LM358, LM158, L	M258A, LM358A, LM2904, AND LM2904V			
V	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±500	\/	
V _(ESD)	Liectiostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	v	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ Differential voltages are at IN+, with respect to IN-.

⁽³⁾ Short circuits from outputs to V_S can cause excessive heating and eventual destruction.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating ambient temperature range (unless otherwise noted)

			MIN	MAX	UNIT
	Supply voltage, V _S = ([V+] – [V–])	LM358B, LM358BA, LM2904B, LM2904BA	3	36	
Vs		LM158, LM258, LM358, LM158A, LM258A, LM358A, LM2904V	3	30	V
		LM2904	3	26	
V _{CM}	Common-mode voltage		V-	V+ - 2	V
		LM358B, LM358BA	-40	85	
_		LM2904B, LM2904BA, LM2904, LM2904V	-40	125	
T _A	Operating ambient temperature	LM358, LM358A	0	70	°C
		LM258, LM258A	-20	85	
		LM158, LM158A	-55	125	

5.4 Thermal Information

		LM258, LM	M258, LM258A, LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V ⁽²⁾				LM158,			
Т	THERMAL METRIC ⁽¹⁾		DGK (VSSOP)	P (PDIP)	PS (SO)	PW (TSSOP)	DDF (SOT-23)	FK (LCCC)	JG (CDIP)	UNIT
		8 PINS	8 PINS	8 PINS	8 PINS	8 PINS	8PINS	20 PINS	8 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	124.7	181.4	80.9	116.9	171.7	164.3	84.0	112.4	°C/W
R _{θJC(top)}	Junction-to-case (top) thermal resistance	66.9	69.4	70.4	62.5	68.8	98.1	56.9	63.6	°C/W
R _{θJB}	Junction-to-board thermal resistance	67.9	102.9	57.4	68.6	99.2	82.1	57.5	100.3	°C/W
ΨЈТ	Junction-to-top characterization parameter	19.2	11.8	40	21.9	11.5	11.4	51.7	35.7	°C/W
ΨЈВ	Junction-to-board characterization parameter	67.2	101.2	56.9	67.6	97.9	81.7	57.1	93.3	°C/W
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	_	_	_	_	_	_	10.6	22.3	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

⁽²⁾ For a listing of which devices are available in what packages, see Section 3.

5.5 Electrical Characteristics: LM358B and LM358BA

 $V_S = (V+) - (V-) = 5 V - 36 V (\pm 2.5 V - \pm 18 V), T_A = 25^{\circ}C, V_{CM} = V_{OUT} = V_S / 2, R_L = 10k connected to <math>V_S / 2$ (unless otherwise noted)

(uniess	otherwise noted)							
	PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
OFFSET	VOLTAGE							
		LM358B				±0.3	±3.0	mV
Vos	Input offset voltage			$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			±4	mV
•03	Input once voltage	LM358BA					±2.0	mV
		LWOSOBA		$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$			±2.5	mV
dV_{OS}/d_{T}	Input offset voltage drift			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C^{(1)}$		±3.5	11	μV/°C
PSRR	Power supply rejection ratio			•		±2	15	μV/V
	Channel separation, dc	f = 1 kHz to 20 kHz				±1		μV/V
INPUT V	OLTAGE RANGE							
		V _S = 3 V to 36 V			(V-)		(V+) – 1.5	V
V _{CM}	Common-mode voltage range	V _S = 5 V to 36 V		T _A = -40°C to +85°C	(V-)		(V+) – 2	V
		$(V-) \le V_{CM} \le (V+) - 1.5 \text{ V}$	V _S = 3 V to 36 V			20	100	
CMRR	Common-mode rejection ratio	$(V-) \le V_{CM} \le (V+) - 2.0 \text{ V}$		T _A = -40°C to +85°C		25	316	μV/V
INPUT B	AS CURRENT	(* / = * GM = (* / = = * *	1.3	1 A 10 C 11 C C				
						-10	-35	nA
I_B	Input bias current			$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}^{(1)}$			-50	nA
				1A40 C to +65 C		0.5		
Ios	Input offset current			T = 40%C t= :05%C(1)		0.5	4	nA
				$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}^{(1)}$			5	nA
dl _{OS} /d _T	Input offset current drift			$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$		10		pA/°C
NOISE	I							
En	Input voltage noise	f = 0.1 to 10 Hz				3		μV_{PP}
e _n	Input voltage noise density	f = 1 kHz				40		nV/√/Hz
INPUT IN	IPEDANCE							
Z_{ID}	Differential					10 0.1		MΩ pF
Z _{IC}	Common-mode					4 1.5		GΩ pF
OPEN-LO	OOP GAIN							
	0	V 45 V V 4 V 4 44 V	(D > 40 b0		70	140		V/mV
A _{OL}	Open-loop voltage gain	$V_S = 15 \text{ V}; V_O = 1 \text{ V to } 11 \text{ V}$	V; R _L ≥ 10 kΩ, connected to (V–)	T _A = -40°C to +85°C	35			V/mV
FREQUE	NCY RESPONSE							
GBW	Gain bandwidth product					1.2		MHz
SR	Slew rate	G = + 1				0.5		V/µs
Θ _m	Phase margin	$G = + 1$, $R_L = 10k\Omega$, $C_L = 2$	20 pF			56		•
t _{OR}	Overload recovery time	V _{IN} × gain > V _S	F:			10		μs
t _s	Settling time	To 0.1%, V _S = 5 V, 2-V ste	n G = +1 C = 100 pF			4		μs
THD+N	Total harmonic distortion + noise		53 V _{RMS} , V _S = 36 V, R _L = 100k, I _{OUT} ≤ ±50	μΛ RW = 80 kHz		0.001		
OUTPUT	Total Harmonic distortion + Hoise	G = + 1,1 = 1 KHZ, V ₀ = 3.	33 VRMS, VS = 30 V, IV = 100K, IOUT = 130	μΑ, Βνν – ου κι ιΖ				70
OUIFUI				1 - 50		4.05	4.40	V
		Desition will (1/1)		Ι _{ΟUT} = 50 μΑ		1.35	1.42	
		Positive rail (V+)		I _{OUT} = 1 mA		1.4	1.48	V
Vo	Voltage output swing from rail			I _{OUT} = 5 mA ⁽¹⁾		1.5	1.61	V
				I _{OUT} = 50 μA		100	150	mV
		Negative rail (V-)		I _{OUT} = 1 mA		0.75	1	V
			V _S = 5 V, RL ≤ 10 kΩ connected to (V–)	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$		5	20	mV
		V _S = 15 V; V _O = V-; V _{ID} = 1 V	Source ⁽¹⁾		-20	-30		
		V _{ID} = 1 V		$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	-10			mA
Io	Output current	V _S = 15 V; V _O = V+; V _{ID} = -1 V	Sink ⁽¹⁾		10	20		111/1
	V _{ID} = -1 V	$T_A = -40^{\circ}\text{C to } + 8$		5				
		V _{ID} = -1 V; V _O = (V-) + 20	0 mV		60	100		μΑ
I _{SC}	Short-circuit current	V _S = 20 V, (V+) = 10 V, (V-	-) = -10 V, V _O = 0 V			±40	±60	mA
C _{LOAD}	Capacitive load drive					100		pF
R _O	Open-loop output resistance	f = 1 MHz, I _O = 0 A				300		Ω
	<u>, , , , , , , , , , , , , , , , , , , </u>	1 3 5						

SLOS068AB - JUNE 1976 - REVISED OCTOBER 2024

5.5 Electrical Characteristics: LM358B and LM358BA (continued)

 V_S = (V+) - (V-) = 5 V - 36 V (±2.5 V - ±18 V), T_A = 25°C, V_{CM} = V_{OUT} = V_S / 2, R_L = 10k connected to V_S / 2 (unless otherwise noted)

PARAMETER TEST		TEST CONDITIONS	ST CONDITIONS		TYP	MAX	UNIT
POWER	POWER SUPPLY						
IQ	Quiescent current per amplifier	V _S = 5 V; I _O = 0 A	T _A = -40°C to +85°C		300	460	μA
IQ	Quiescent current per amplifier	V _S = 36 V; I _O = 0 A				800	μΑ

(1) Specified by characterization only.

5.6 Electrical Characteristics: LM2904B and LM2904BA

 $V_S = (V+) - (V-) = 5 \text{ V} - 36 \text{ V} (\pm 2.5 \text{ V} - \pm 18 \text{ V}), T_A = 25^{\circ}\text{C}, V_{CM} = V_{OUT} = V_S/2, R_L = 10 \text{k connected to } V_S/2$

(dilles	s otherwise noted)		TEOT COMPLETE			F 1/2		1
	PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
OFFSET	VOLTAGE	T		I	r			
		LM2904B				±0.3	±3.0	mV
Vos	Input offset voltage	211120013		$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			±4	mV
VOS	input onset voltage	LM2904BA					±2.0	mV
		LIVIZ304DA		$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			±3.0	mV
dV _{OS} /d _T	Input offset voltage drift			$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}^{(1)}$		±3.5	12	μV/°C
PSRR	Power Supply Rejection Ratio			•		±2	15	μV/V
	Channel separation, dc	f = 1 kHz to 20 kHz				±1		μV/V
INPUT V	OLTAGE RANGE							
.,		V _S = 3 V to 36 V			(V-)		(V+) – 1.5	٧
V _{CM}	Common-mode voltage range	V _S = 5 V to 36 V		T _A = -40°C to +125°C	(V-)		(V+) – 2	V
		$(V-) \le V_{CM} \le (V+) - 1.5 \text{ V}$	V _S = 3 V to 36 V			20	100	
CMRR	Common-mode rejection ratio	$(V-) \le V_{CM} \le (V+) - 2.0 \text{ V}$	V _S = 5 V to 36 V	T _A = -40°C to +125°C		25	316	μV/V
INPUT B	IAS CURRENT		-					
	Input higo ourrant					-10	-35	nA
I _B	Input bias current			$T_A = -40$ °C to +125°C ⁽¹⁾			-50	nA
	land offer to the state of the					0.5	4	nA
los	Input offset current			$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}^{(1)}$			5	nA
dl _{OS} /d _T	Input offset current drift			T _A = -40°C to +125°C		10		pA/°C
NOISE	1			1				l
En	Input voltage noise	f = 0.1 to 10 Hz				3		μV _{PP}
e _n	Input voltage noise density	f = 1 kHz				40		nV/√/Hz
	// PEDANCE							
Z _{ID}	Differential				1	10 0.1		MΩ pF
Z _{IC}	Common-mode					4 1.5		GΩ pF
	OOP GAIN							- 111
<u> </u>					70	140		V/mV
A _{OL}	Open-loop voltage gain	V _S = 15 V; V _O = 1 V to 11 V	V; R _L ≥ 10 kΩ, connected to (V-)	T _A = -40°C to +125°C	35	140		V/mV
FREQUE	NCY RESPONSE			1A 40 0 to 1120 0	- 00			V/111V
GBW	Gain bandwidth product					1.2		MHz
SR	Slew rate	G = + 1				0.5		V/µs
	Phase margin	$G = +1, R_L = 10k\Omega, C_L = 2$	20 pE			56		ν/μ5
Θ _m	<u> </u>		и рг					
t _{OR}	Overload recovery time	V _{IN} × gain > V _S	. 0 .4.0 .400			10		μs
t _s	Settling time	To 0.1%, $V_S = 5 \text{ V}$, 2-V Ste	· · · · · · · · · · · · · · · · · · ·	A DW 00111		4		μs
THD+N	Total harmonic distortion + noise	$G = +1, f = 1 \text{ KHz}, V_0 = 3.$	$53 \text{ V}_{RMS}, \text{ V}_{S} = 36 \text{ V}, \text{ R}_{L} = 100 \text{ k}, \text{ I}_{OUT} \le \pm 50 \text{ J}_{OUT}$	JA, BW = 80 KHZ		0.001		%
OUTPUT	· 	<u> </u>		T				
				Ι _{ΟUT} = 50 μΑ		1.35	1.42	V
		Positive Rail (V+)		I _{OUT} = 1 mA		1.4	1.48	V
Vo	Voltage output swing from rail		T	I _{OUT} = 5 mA ⁽¹⁾		1.5	1.61	V
-				Ι _{ΟUT} = 50 μΑ		100	150	mV
		Negative Rail (V-)		I _{OUT} = 1 mA		0.75	1	V
			V _S = 5 V, RL ≤ 10 kΩ connected to (V–)	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		5	20	mV
		V _S = 15 V; V _O = V-; V _{ID} = 1 V	Source ⁽¹⁾		-20	-30		
		1 V		$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	-10			mA
Io	Output current	V _S = 15 V; V _O = V+; V _{ID} =	Sink ⁽¹⁾		10	20		
		-1 V		$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	5			
		V _{ID} = -1 V; V _O = (V-) + 200	mV		60	100		μA
I _{SC}	Short-circuit current	V _S = 20 V, (V+) = 10 V, (V-) = -10 V, V _O = 0 V			±40	±60	mA
C _{LOAD}	Capacitive load drive					100		pF
R _O	Open-loop output resistance	f = 1 MHz, I _O = 0 A				300		Ω
	SUPPLY	1			I			1

www.ti.com

 V_S = (V+) - (V-) = 5 V - 36 V (±2.5 V - ±18 V), T_A = 25°C, V_{CM} = V_{OUT} = $V_S/2$, R_L = 10k connected to $V_S/2$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
IQ	Quiescent current per amplifier	$V_S = 5 V; I_O = 0 A$	T. = 40°C to ±125°C		300	460	μΑ
ΙQ	Quiescent current per amplifier	V _S = 36 V; I _O = 0 A	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			800	μΑ

(1) Specified by characterization only

5.7 Electrical Characteristics: LM358, LM358A

	$= (V+) - (V-) = 5 V, T_A$ PARAMETER		TEST CONE			MIN	TYP ⁽²⁾	MAX	UNIT
OFFSET \	/OLTAGE								
							3	7	
		V = 5 V to 20 V V	01/11/ - 1.1	LM358	T _A = 0°C to 70°C		<u> </u>	9	
Vos	Input offset voltage	V _S = 5 V to 30 V; V _{C M} =	0 v; v _O = 1.4	LM358A	1A 0 0 10 10 0		2	3	mV
				LIVIOUGIA	T _A = 0°C to 70°C			5	
				LM358			7	3	
dV_{OS}/d_T	Input offset voltage drift				T _A = 0°C to 70°C		7	20	μV/°C
				LM358A	T _A = 0°C to 70°C		1	20	
PSRR	Input offset voltage vs power supply $(\Delta V_{IO}/\Delta V_S)$	V _S = 5 V to 30 V				65	100		dB
V _{O1} / V _{O2}	Channel separation	f = 1 kHz to 20 kHz					120		dB
	LTAGE RANGE								
		V _S = 5 V to 30 V		LM358					
		V _S = 30 V		LM358A		(V–)		(V+) – 1.5	
V_{CM}	Common-mode voltage range	V _S = 5 V to 30 V		LM358					V
		V _S = 30 V		LM358A	T _A = 0°C to 70°C	(V–)		(V+) – 2	
CMRR	Common-mode rejection ratio	V _S = 5 V to 30 V; V _{CM} = 0) V	LIVIOUGIA		65	80		dB
	AS CURRENT	TAS OF TO GO V, VCM							ub ub
1111 01 01	-O OURILINI						-20	-250	
				LM358	T = 0°C to 70°C		-20	-500	
IB	Input bias current	V _O = 1.4 V			T _A = 0°C to 70°C		45		nA
				LM358A	T 000 to 7000		–15	-100	
					T _A = 0°C to 70°C			-200	
				LM358			2	50	
Ios	Input offset current	V _O = 1.4 V			T _A = 0°C to 70°C			150	nA
	,			LM358A			2	30	
					T _A = 0°C to 70°C			75	
dl _{OS} /d _T	Input offset current drift						10		pA/°C
				LM358A	T _A = 0°C to 70°C			300	
NOISE									
e _n	Input voltage noise density	f = 1 kHz					40		nV/√ Hz
OPEN-LO	OP GAIN								
A _{OL}	Open-loop voltage gain	V _S = 15 V; V _O = 1 V to 11	V: R. > 2 k∩			25	100		V/mV
, (OL		15 10 1, 10 1 1 10 11	V, I'L = 2 K32		T _A = 0°C to 70°C	15			V/111V
FREQUEN	NCY RESPONSE								
GBW	Gain bandwidth product						0.7		MHz
SR	Slew rate	G = +1					0.3		V/µs
OUTPUT								,	
			V _S = 30 V; R	L = 2 kΩ	T _A = 0°C to 70°C			4	
		Positive rail	V _S = 30 V; R	_L ≥ 10 kΩ			2	3	V
Vo	Voltage output swing from rail		V _S = 5 V; R _L	≥ 2 kΩ				1.5	
		Negative rail	V _S = 5 V; R _I		T _A = 0°C to 70°C		5	20	mV
		-			1	-20	-30		
		V _S = 15 V; V _O = 0 V; V _{ID} Source		LM358A				-60	
		= 1 V			T _A = 0°C to 70°C	-10			mA
Io	Output current	V ₀ = 15 V: V ₀ = 15 V:		1	n	10	20		
		$V_S = 15 \text{ V}; V_O = 15 \text{ V}; V_{ID} = -1 \text{ V}$	Sink		T _A = 0°C to 70°C	5	20		
		V _{ID} = -1 V; V _O = 200 mV	<u> </u>		1A - 0 0 to 10 0	12	30		μA
laa	Short-circuit current	$V_{S} = 10 \text{ V}; V_{O} = V_{S} / 2$				12	±40	±60	mA
POWER S		v _S - 10 v, v _O = v _S /2					±4U	100	IIIA
FUWER S	DUFFLI	V = 2.5.V. \					050	000	
IQ	Quiescent current per amplifier	V _O = 2.5 V; I _O = 0 A	0.4		T _A = 0°C to 70°C		350	600	μΑ
		V _S = 30 V; V _O = 15 V; I _O	= 0 A				500	1000	

⁽¹⁾ All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. Maximum V_S for testing purposes is 30 V for LM358 and LM358A.

⁽²⁾ All typical values are T_A = 25°C.

5.8 Electrical Characteristics: LM2904, LM2904V

	PARAMETER		TES	ST COND	ITIONS ⁽¹⁾		MIN	TYP (2)	MAX	UNIT
OFFSET	VOLTAGE									
								3	7	
					Non-A suffix devices	T = 40°C to 405°C			10	
Vos	Input offset voltage	V _S = 5 V to max	imum; $V_{CM} = 0 V$;	V _O =	4011000	T _A = -40°C to 125°C				mV
		1.4 V			A-suffix			1	2	
					devices	$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$			4	
dV _{OS} /d _T	Input offset voltage drift					$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$		7		μV/°C
PSRR	Input offset voltage vs power supply $(\Delta V_{IO}/\Delta V_S)$	V _S = 5 V to 30 V	r				65	100		dB
V _{O1} / V _{O2}	Channel separation	f = 1 kHz to 20 k	Hz					120		dB
INPUT V	OLTAGE RANGE									
							(V-)		(V+) - 1.5	
V _{CM}	Common-mode voltage range	V _S = 5 V to max	imum			T _A = -40°C to 125°C	(V-)		(V+) – 2	V
CMRR	Common-mode rejection ratio	Vo = 5 V to max	imum; V _{CM} = 0 V			A	65	80	, ,	dB
	IAS CURRENT	VS = 5 V to max	imam, v _{CM} = 0 v				03			ub ub
MPUIB	IAS CURRENT	1								
I _B	Input bias current	V _O = 1.4 V						-20	-250	nA
						$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$			-500	
					Non-V suffix			2	50	
	Input offset current	V = 1.4.V			device	$T_A = -40^{\circ}C \text{ to } 125^{\circ}C$			300	nA
los	input onset current	V _O = 1.4 V			V-suffix			2	50	IIA
					device	T _A = -40°C to 125°C			150	
dl _{OS} /d _T	Input offset current drift					T _A = -40°C to 125°C		10		pA/°C
NOISE	<u> </u>					A				
	Input voltage noise density	f = 1 kHz						40		nV/√ Hz
e _n		I - I KIIZ						40		110/1112
OPEN-LO	DOP GAIN	1				1				
A _{OL}	Open-loop voltage gain	V _S = 15 V: V _O =	1 V to 11 V; R _L ≥ 2	2 kΩ			25	100		V/mV
						$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	15			
FREQUE	NCY RESPONSE									
GBW	Gain bandwidth product							0.7		MHz
SR	Slew rate	G = +1						0.3		V/µs
OUTPUT								-		
			R _L ≥ 10 kΩ				V _S – 1.5			
			1.5	V ma	ximum; R _L =		13			
			Non-V suffix	2 kΩ	ixiiiiuiii, i\[-				4	
			device	V _s = ma	ıximum; R _I ≥					
.,	Voltage cutmut cuing from well	Positive rail		10 kΩ	, -	T = 40°C to 405°C		2	3	V
Vo	Voltage output swing from rail				ximum; R _L =	$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$			6	
			V-suffix device	2 kΩ					0	
					ximum; R _L ≥			4	5	
				10 kΩ						
		Negative rail		V _S = 5 V	/; R _L ≤ 10 kΩ	T _A = -40°C to 125°C		5	20	mV
		V _S = 15 V; V _O =	0 V: V = 1 V	Source			-20	-30		
		'S - 15 v, v ₀ -	∪ v, v _{ID} – i v	Cource		T _A = -40°C to 125°C	-10			m A
				a			10	20		mA
l _o	Output current	$V_S = 15 \text{ V}; V_O =$	15 V; V _{ID} = -1 V	Sink		T _A = -40°C to 125°C	5			
				Non-V s	uffix device			30		
		V _{ID} = -1 V; V _O =	200 mV	V-suffix			12	40		μΑ
	Ob and almostid account	14 401111	N. 10	v-suiliX	uc vice		14		. 0.5	
I _{SC}	Short-circuit current	V _S = 10 V; V _O =	V _S / 2					±40	±60	mA
POWER	SUPPLY								ı	
lo.	Quiescent current per amplifier	V _O = 2.5 V; I _O =	0 A	T = 40°C to 40		T _A = -40°C to 125°C		350	600	μA
IQ	and soon canonit per amplified	V _S = maximum;	V _O = maximum / 2	2; I _O = 0 A		1A = = +0 0 to 123 0		500	1000	μΛ
			J	, 571					.000	

⁽¹⁾ All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. Maximum V_S for testing purposes is 26 V for LM2904 and 32 V for LM2904V.

⁽²⁾ All typical values are $T_A = 25$ °C.

5.9 Electrical Characteristics: LM158, LM158A

	PARAMETER	TE	ST CONDI	MIN	TYP ⁽²⁾	MAX	UNIT		
OFFSET	VOLTAGE								
				LM158			3	5	
,	Input offset voltage	V _S = 5 V to 30 V; V _{C M} = 0 V; V _C	-141/	LIVITO	T _A = -55°C to 125°C	·		7	m\/
Vos	input onset voltage	VS - 5 V 10 50 V, VC M - 0 V, VC) - 1.4 V	1.84450.4		,		2	mV
				LM158A	T _A = -55°C to 125°C			4	
				LM158	T _A = -55°C to 125°C	,	7		
dV _{OS} /d _T	Input offset voltage drift			LM158A	T _A = -55°C to 125°C		7	15 ⁽³⁾	μV/°C
PSRR	Input offset voltage vs power supply $(\Delta V_{IO}/\Delta V_S)$	V _S = 5 V to 30 V				65	100		dB
V ₀₁ / V ₀₂	Channel separation	f = 1 kHz to 20 kHz					120		dB
NPUT V	OLTAGE RANGE						-		
		V _S = 5 V to 30 V		LM158					
		V _S = 30 V		LM158A		(V-)		(V+) – 1.5	
V _{CM}	Common-mode voltage range	V _S = 5 V to 30 V		LM158					V
		V _S = 30 V		LM158A	$T_A = -55^{\circ}\text{C to } 125^{\circ}\text{C}$	(V-)		(V+) – 2	
CMRR	Common-mode rejection ratio	V _S = 5 V to 30 V; V _{CM} = 0 V		2		70	80		dB
	AS CURRENT	15 0 1 to 00 1, TCM 0 1							45
51 61				1			-20	-150	
				LM158	T _A = -55°C to 125°C		-20	-300	
В	Input bias current	V _O = 1.4 V			1A = -55 C to 125 C		-15	-50 -50	nA
				LM158A	T _A = -55°C to 125°C		-15		
					1 _A = -55 C to 125 C			-100	
				LM158			2	30	
os	Input offset current	V _O = 1.4 V			T _A = -55°C to 125°C			100	nA
				LM158A			2	10	
					T _A = -55°C to 125°C			30	
dl _{OS} /d _T	Input offset current drift						10		pA/°C
031				LM158A	T _A = -55°C to 125°C			200	p
NOISE									
e _n	Input voltage noise density	f = 1 kHz					40		nV/√ Hz
OPEN-LO	OOP GAIN								
	O I	V 45.V.V 4.V.E 44.V.D	> 0 t-0			50	100		\ //\ /
A _{OL}	Open-loop voltage gain	$V_S = 15 \text{ V}; V_O = 1 \text{ V to } 11 \text{ V}; R_L$	≥ 2 KΩ		T _A = -55°C to 125°C	25			V/mV
FREQUE	NCY RESPONSE					,	1		
GBW	Gain bandwidth product						0.7		MHz
SR	Slew rate	G = +1					0.3		V/µs
OUTPUT									
			V _S = 30 V	'; R _L = 2 kΩ	T _A = -55°C to 125°C			4	
		Positive rail		; R _L ≥ 10 kΩ	A		2	3	V
√o	Voltage output swing from rail			R _L ≥ 2 kΩ		,		1.5	
		Negative rail		$R_{l} \le 10 \text{ k}\Omega$	T _A = -55°C to 125°C		5	20	mV
		14cgative rail	VS - 3 V,	T(_ = 10 K22	1A = -00 0 to 120 0	-20	-30	20	1110
		V _S = 15 V; V _O = 0 V; V _{ID} = 1 V Source		1 M150A		-20		60	
		V _S = 15 V; V _O = 0 V; V _{ID} = 1 V Source		LM158A	T - 55°C + 405°C	40		-60	A
lo	Output current				T _A = -55°C to 125°C	-10			mA
		V _S = 15 V; V _O = 15 V; V _{ID} = -1 Sink	Sink			10	20		
		<u> </u>			T _A = -55°C to 125°C	5			
		V _{ID} = -1 V; V _O = 200 mV				12	30		μA
sc	Short-circuit current	$V_S = 10 \text{ V}; V_O = V_S / 2$					±40	±60	mA

Instruments

5.9 Electrical Characteristics: LM158, LM158A (continued)

	PARAMETER	TEST CONDITIONS(1)	MIN	TYP ⁽²⁾	MAX	UNIT	
P	OWER SUPPLY						
Ī.	Outleasant account was assaulties	V _O = 2.5 V; I _O = 0 A	T _A = -55°C to 125°C		350	600	μA
Į'a		V _S = 30 V; V _O = 15 V; I _O = 0 A	1A33 C to 125 C		500	1000	μΑ

- All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. Maximum V_S for testing purposes is 30 V for LM158 and LM158A.
- (2) All typical values are $T_A = 25$ °C.
- (3) On products compliant to MIL-PRF-38535, this parameter is not production tested.

5.10 Electrical Characteristics: LM258, LM258A

	PARAMETER	TE	ST CONDI	TIONS ⁽¹⁾		MIN	TYP ⁽²⁾	MAX	UNIT
OFFSET	VOLTAGE								
				LMOEG			3	5	
,			4.437	LM258	T _A = -25°C to 85°C			7	.,
Vos	Input offset voltage	$V_S = 5 \text{ V to } 30 \text{ V; } V_{C \text{ M}} = 0 \text{ V; } V_{C}$	_D = 1.4 V				2	3	mV
				LM258A	T _A = -25°C to 85°C			4	
				LM258			7		
dV _{OS} /d _T	Input offset voltage drift			LM258A	$T_A = -25^{\circ}\text{C to } 85^{\circ}\text{C}$		7	15	μV/°C
PSRR	Input offset voltage vs power supply	V _S = 5 V to 30 V		I		65	100		dB
Vos/ Vos	$(\Delta V_{IO}/\Delta V_S)$ Channel separation	f = 1 kHz to 20 kHz					120		dB
	OLTAGE RANGE	T INTE TO ZO RITE					120		ub
	OLIAGE MANGE	V _S = 5 V to 30 V		LM258					
		V _S = 30 V		LM258A		(V-)		(V+) – 1.5	
V _{CM}	Common-mode voltage range	V _S = 5 V to 30 V		LM258					V
				LM258A	$T_A = -25^{\circ}\text{C to } 85^{\circ}\text{C}$	(V-)		(V+) – 2	
CMDD	Common woods unication natio	V _S = 30 V		LM258A		70	90		40
CMRR	Common-mode rejection ratio	V _S = 5 V to 30 V; V _{CM} = 0 V				70	80		dB
INPULB	IAS CURRENT			1				.=-	
				LM258			-20	-150	
I _B	Input bias current	V _O = 1.4 V			T _A = -25°C to 85°C			-300	nA
				LM258A			-15	-80	
					T _A = -25°C to 85°C			-100	
				LM258			2	30	
Ios	Input offset current	V _O = 1.4 V			T _A = -25°C to 85°C			100	nA
03	·			LM258A		,	2	15	
					T _A = -25°C to 85°C			30	
dl _{OS} /d _T	Input offset current drift						10		pA/°C
ui0S/u	input onset current and			LM258A	T _A = -25°C to 85°C			200	pA 0
NOISE									
e _n	Input voltage noise density	f = 1 kHz					40		nV/√ Hz
OPEN-LO	OOP GAIN								
٨	Open leen voltage gein	\/ = 15\/:\/ = 1\/:to 11\/:D	> 2 1/0			50	100		V/mV
A _{OL}	Open-loop voltage gain	$V_S = 15 \text{ V}; V_O = 1 \text{ V to } 11 \text{ V}; R_L$	≥ 2 KΩ		T _A = -25°C to 85°C	25			V/IIIV
FREQUE	NCY RESPONSE								
GBW	Gain bandwidth product						0.7		MHz
SR	Slew rate	G = +1				,	0.3		V/µs
OUTPUT					L				
			V _S = 30 V	'; R _L = 2 kΩ	T _A = -25°C to 85°C			4	
		Positive rail		'; R _L ≥ 10 kΩ			2	3	V
V _O	Voltage output swing from rail			R _L ≥ 2 kΩ		,		1.5	
		Negative rail		R _L ≤ 10 kΩ	T _A = -25°C to 85°C		5	20	mV
		13	13 7 1,		- A	-20	-30		
		V _S = 15 V; V _O = 0 V; V _{ID} = 1 V	Source	LM258A				-60	
		VS - 10 V, VO - 0 V, VID - 1 V	Cource	LIVIZOOA	T _A = -25°C to 85°C	-10		-00	mΛ
l _o	Output current				1A20 0 10 00 0	10	20		mA
		V _S = 15 V; V _O = 15 V; V _{ID} = -1	Sink		T = 05°C + 05°C		20		
		· · · · · · · · · · · · · · · · · · ·			T _A = -25°C to 85°C	5	20		, . A
	Observation and the second sec	V _{ID} = -1 V; V _O = 200 mV				12	30	. 0.5	μA
I _{SC}	Short-circuit current	V _S = 10 V; V _O = V _S / 2					±40	±60	mA
POWER	SUPPLY	I							
Iq	Quiescent current per amplifier	V _O = 2.5 V; I _O = 0 A			T _A = -25°C to 85°C	,	350	600	μA
		$V_S = 30 \text{ V}; V_O = 15 \text{ V}; I_O = 0 \text{ A}$			1 22		500	1000	

⁽¹⁾ All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. Maximum V_S for testing purposes is 30 V for LM258 and LM258A.

⁽²⁾ All typical values are T_A = 25°C.

5.11 Typical Characteristics: LM358B and LM2904B

Figure 5-38. EMIRR (Electromagnetic Interference Rejection Ratio) vs Frequency

5.12 Typical Characteristics: LM158, LM158A, LM258, LM258A, LM358A, LM2904, and LM2904V

Typical characteristics section is applicable for LM158, LM158A, LM258, LM258A, LM358A, LM358A, LM2904, and LM2904V.

5.12 Typical Characteristics: LM158, LM158A, LM258, LM258A, LM358, LM358A, LM2904, and LM2904V (continued)

Typical characteristics section is applicable for LM158, LM158A, LM258, LM258A, LM358A, LM358A, LM2904, and LM2904V.

6 Parameter Measurement Information

Figure 6-1. Unity-Gain Amplifier

Figure 6-3. Test Circuit, G = -1, for THD+N and Small-Signal Step Response

7 Detailed Description

7.1 Overview

These devices consist of two independent, high-gain frequency-compensated operational amplifiers designed to operate from a single supply over a wide range of voltages. Operation from split supplies also is possible if the difference between the two supplies is within the supply voltage range specified in Recommended Operating Conditions and V_S is at least 1.5 V more positive than the input common-mode voltage. The low supply-current drain is independent of the magnitude of the supply voltage.

Applications include transducer amplifiers, dc amplification blocks, and all the conventional operational amplifier circuits that now can be implemented more easily in single-supply-voltage systems. For example, these devices can be operated directly from the standard 5-V supply used in digital systems and easily can provide the required interface electronics without additional ±5-V supplies.

7.2 Functional Block Diagram: LM358B, LM358BA, LM2904B, LM2904BA

7.3 Feature Description

7.3.1 Unity-Gain Bandwidth

The unity-gain bandwidth is the frequency up to which an amplifier with a unity gain may be operated without greatly distorting the signal. These devices have a 1.2-MHz unity-gain bandwidth (B Version).

7.3.2 Slew Rate

The slew rate is the rate at which an operational amplifier can change its output when there is a change on the input. These devices have a 0.5-V/µs slew rate (B Version).

7.3.3 Input Common-Mode Range

The valid common-mode range is from device ground to $V_S - 1.5 \text{ V}$ ($V_S - 2 \text{ V}$ across temperature). Inputs may exceed V_S up to the maximum V_S without device damage. At least one input must be in the valid input common-mode range for the output to be the correct phase. If both inputs exceed the valid range, then the output phase is undefined. If either input more than 0.3 V below V– then input current should be limited to 1 mA and the output phase is undefined.

7.4 Device Functional Modes

These devices are powered on when the supply is connected. This device can be operated as a single-supply operational amplifier or dual-supply amplifier, depending on the application.

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LMx58 and LM2904 operational amplifiers are useful in a wide range of signal conditioning applications. Inputs can be powered before V_Sfor flexibility in multiple supply circuits.

8.2 Typical Application

A typical application for an operational amplifier is an inverting amplifier. This amplifier takes a positive voltage on the input, and makes it a negative voltage of the same magnitude. In the same manner, it also makes negative voltages positive.

Figure 8-1. Application Schematic

8.2.1 Design Requirements

The supply voltage must be chosen such that it is larger than the input voltage range and output range. For instance, this application scales a signal of ± 0.5 V to ± 1.8 V. Setting the supply at ± 12 V is sufficient to accommodate this application.

8.2.2 Detailed Design Procedure

Determine the gain required by the inverting amplifier using Equation 1 and Equation 2:

$$A_{V} = \frac{VOUT}{VIN}$$
 (1)

$$A_{V} = \frac{1.8}{-0.5} = -3.6 \tag{2}$$

Once the desired gain is determined, choose a value for R_I or R_F . [Subscripts should be fixed in the accompanying figures and equations also.] Choosing a value in the kilohm range is desirable because the amplifier circuit uses currents in the milliampere range. This ensures the part does not draw too much current. This example uses 10 k Ω for R_I which means 36 k Ω is used for R_F . This was determined by Equation 3.

$$A_{V} = -\frac{RF}{RI}$$
 (3)

8.2.3 Application Curve

Figure 8-2. Input and Output Voltages of the Inverting Amplifier

8.3 Power Supply Recommendations

CAUTION

Supply voltages larger than specified in the recommended operating region can permanently damage the device (see *Absolute Maximum Ratings*).

Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-impedance power supplies. For more detailed information on bypass capacitor placement, see Section 8.4.

8.4 Layout

8.4.1 Layout Guidelines

For best operational performance of the device, use good PCB layout practices, including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the
 operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low-impedance
 power sources local to the analog circuitry.
 - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for singlesupply applications.
- Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds, paying attention to the flow of the ground current.
- To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as opposed to in parallel with the noisy trace.
- Place the external components as close to the device as possible. Keeping R_F and R_G close to the inverting
 input minimizes parasitic capacitance, as shown in *Layout Examples*.
- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

8.4.2 Layout Examples

Figure 8-3. Operational Amplifier Board Layout for Noninverting Configuration

Figure 8-4. Operational Amplifier Schematic for Noninverting Configuration

9 Device and Documentation Support

9.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision AA (March 2022) to Revision AB (October 2024)	Page
 Changed Device Information table to Package Information Changed the polarity of the LM358B and LM358BA input bias current value from ± to – in the Elect 	
Characteristics section	
• Changed the polarity of the LM2904B and LM2904BA input bias current value from ± to – in the Ele	
Characteristics section	88
Changes from Revision Z (July 2021) to Revision AA (March 2022)	Page
Added LM358BA and LM2904BA to the Device Information table	
Added Family Comparison table to the Description section	
• Raised ESD (CDM) for B-versions and BA-versions from 1 kV to 1.5 kV in the ESD Ratings table	
• Changed Input Offset Voltage Max of LM2904BA from T _A = -40°C to +125°C from ±2.5 mV to ±3.0	mV8
Changes from Revision Y (February 2021) to Revision Z (July 2021)	Page
• Deleted preview tag from LM358B and LM2904B SOT-23 (8) package in <i>Device Information</i> table.	1
Updated DDF (SOT-23) package thermal information in the <i>Thermal Information</i> table	<mark>5</mark>
Deleted Related Links from the Device and Documentation Support section	30

www.ti.com

C	hanges from Revision X (June 2020) to Revision Y (February 2021)	Page
•	Updated the numbering format for tables, figures, and cross-references throughout the document	1
•	Added SOT23-8 (DDF) package information throughout data sheet	1
•	Deleted preview tag from LM358B and LM2904B VSSOP (8) package in Device Information table	1
•	Added SOT23-8 (DDF) package information to the Pin Configuration and Functions section	3
•	Added DDF (SOT-23) package to the <i>Thermal Information</i> table	5
_		
С	hanges from Revision W (October 2019) to Revision X (June 2020)	Page
•	Added application links to Applications section	1
•	Deleted preview tag from LM358B and LM2904B TSSOP (8) package in <i>Device Information</i> table	1
С	hanges from Revision V (September 2018) to Revision W (October 2019)	
•	Changed CDM ESD rating for LM358B and LM2904B in ESD Ratings	
•	Changed V _S to V+ in Recommended Operating Conditions	
•	Changed Thermal Information for the LM158FK and LM158JG devices	
•	Added Typical Characteristics section for the LM358B and LM2490B op amps	15
•	Added test circuit for THD+N and small-signal step response, G = -1 in the <i>Parameter Measurement</i>	0.4
	Information section	
•	Changed the Functional Block Diagram	25
<u>c</u>	hanges from Revision U (January 2017) to Revision V (September 2018) Changed the data sheet title	
	Changed first four items in the <i>Features</i> section	
•	Changed the first item in the <i>Applications</i> section and added four new items	
	Changed voltage values in the first paragraph of the <i>Description</i> section	
	Changed text in the second paragraph of the <i>Description</i> section	
	Added devices LM358B and LM2904B to data sheet	
•	Changed the first three rows of the <i>Device Information</i> table and added a cross-referenced note for	
	PREVIEW-status devices	1
•	Added a table note to the <i>Pin Functions</i> table	
•	Changed "free-air temperature" to "ambient temperature" in the Absolute Maximum Ratings	
	condition statement	
•	Changed all entries in the Absolute Maximum Ratings table except T _J and T _{stg}	4
•	Deleted lead temperature and case temperature from Absolute Maximum Ratings	
•	Changed device listings and their voltage values in the ESD Ratings table	4
•	Changed "free-air temperature" to "ambient temperature" in the Recommended Operating Conditions	_
	condition statement	
•	Changed table entries for all parameters in the Recommended Operating Conditions table	
•	Added rows to the Thermal Information table, and a table note regarding device-package combinations	
•	Deleted the Operating Conditions table	
•	Added a condition statement to the <i>Typical Characteristics</i> section	
•	Changed specific voltages to a Recommended Operating Conditions reference	
•	Changed unity-gain bandwidth from 0.7 MHz for all devices to 1.2 MHz for B-version devices	
•	Changed slew rate from 3 V/µs for all devices to 0.5 V/µs for B-version devices	
•	Changed the Input Common-Mode Range section in multiple places throughout	
•	Changed V _{CC} to V _S in the <i>Application Information</i> section	
•	OUDDOING UIF DUING IIV N AIN NE	∠ /

Changed Operational Amplifier Board Layout for Noninverting Configuration with an image the dual op amp	
Changes from Revision T (April 2015) to Revision U (January 2017)	Page
Changed data sheet title	1
Changes from Revision S (January 2014) to Revision T (April 2015)	Page
 Added Applications section, ESD Ratings table, Feature Description section, Device Function Application and Implementation section, Power Supply Recommendations section, Layout se and Documentation Support section, and Mechanical, Packaging, and Orderable Information 	ction, <i>Device</i>
Changes from Revision R (July 2010) to Revision S (January 2014)	Page
 Converted this data sheet from the QS format to DocZone using the PDF on the web Deleted Ordering Information table 	1
 Updated Features to include Military Disclaimer. Added Typical Characteristics section. 	1 22

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most-current data available for the designated devices. This data is subject to change without notice and without revision of this document. For browser based versions of this data sheet, see the left-hand navigation pane.

www.ti.com 25-Nov-2024

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-87710012A	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 87710012A LM158FKB	Samples
5962-8771001PA	ACTIVE	CDIP	JG	8	50	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8771001PA LM158	Samples
5962-87710022A	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 87710022A LM158AFKB	Samples
5962-8771002PA	ACTIVE	CDIP	JG	8	50	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8771002PA LM158A	Samples
LM158 MW8	ACTIVE	WAFERSALE	YS	0	1	RoHS & Green	Call TI	Level-1-NA-UNLIM	-55 to 125		Samples
LM158AFKB	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 87710022A LM158AFKB	Samples
LM158AJG	ACTIVE	CDIP	JG	8	50	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	LM158AJG	Samples
LM158AJGB	ACTIVE	CDIP	JG	8	50	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8771002PA LM158A	Samples
LM158FKB	ACTIVE	LCCC	FK	20	55	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 87710012A LM158FKB	Samples
LM158JG	ACTIVE	CDIP	JG	8	50	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	LM158JG	Samples
LM158JGB	ACTIVE	CDIP	JG	8	50	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8771001PA LM158	Samples
LM258ADGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-25 to 85	(M3L, M3P, M3S, M3 U)	Samples
LM258ADR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-25 to 85	LM258A	Samples
LM258ADRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258A	Samples
LM258AP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-25 to 85	LM258AP	Samples
LM258APE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-25 to 85	LM258AP	Samples

25-Nov-2024

www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM258DGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-25 to 85	(M2L, M2P, M2S, M2 U)	Samples
LM258DR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-25 to 85	LM258	Samples
LM258DRG3	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-25 to 85	LM258	
LM258DRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258	Samples
LM258P	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU SN	N / A for Pkg Type	-25 to 85	LM258P	Samples
LM258PE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-25 to 85	LM258P	Samples
LM2904AVQDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904AV	Samples
LM2904AVQDRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904AV	Samples
LM2904AVQPWR	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904AV	Samples
M2904AVQPWRG4	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904AV	Samples
LM2904BAIDDFR	ACTIVE	SOT-23-THIN	DDF	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904A	Samples
LM2904BAIDGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	28CB	Samples
LM2904BAIDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904BA	Samples
LM2904BAIPWR	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904BA	Samples
LM2904BIDDFR	ACTIVE	SOT-23-THIN	DDF	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904	Samples
LM2904BIDGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	28BB	Samples
LM2904BIDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904B	Samples
LM2904BIPWR	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904B	Samples
LM2904DE4	NRND				75	TBD	Call TI	Call TI	-40 to 125		
LM2904DGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	(MBL, MBP, MBS, MB U)	Samples
LM2904DR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LM2904	Samples
LM2904DRG3	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 125	LM2904	

25-Nov-2024

www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM2904DRG4	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 125	LM2904	
LM2904P	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 125	LM2904P	Samples
LM2904PE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 125	LM2904P	Samples
LM2904PSR	ACTIVE	SO	PS	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904	Samples
LM2904PWR	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	L2904	Samples
LM2904PWRG3	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI	-40 to 125	L2904	
LM2904PWRG4-JF	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI	-40 to 125	L2904	
LM2904QDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904Q1	Samples
LM2904QDRG4	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	-40 to 125	2904Q1	
LM2904VQDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904V	Samples
LM2904VQDRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904V	Samples
LM2904VQPWR	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904V	Samples
LM2904VQPWRG4	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904V	Samples
LM358ADE4	NRND				75	TBD	Call TI	Call TI	0 to 70		
LM358ADGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	SN	Level-1-260C-UNLIM	0 to 70	(M6L, M6P, M6S, M6 U)	Samples
LM358ADR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	0 to 70	LM358A	Samples
LM358ADRG4	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	0 to 70	LM358A	
LM358AP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	LM358AP	Samples
LM358APE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	LM358AP	Samples
LM358APW	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI	0 to 70	L358A	
LM358APWR	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	0 to 70	L358A	Samples
LM358BAIDDFR	ACTIVE	SOT-23-THIN	DDF	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	358BA	Samples
LM358BAIDGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 85	28DB	Samples

25-Nov-2024 www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sample
LM358BAIDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	L358BA	Samples
LM358BAIPWR	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	L358BA	Samples
LM358BIDDFR	ACTIVE	SOT-23-THIN	DDF	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LM358	Samples
LM358BIDGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	(1TKR, 358B)	Sample
LM358BIDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LM358B	Sample
LM358BIPWR	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LM358B	Sample
LM358D	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	0 to 70	LM358	
LM358DGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	SN	Level-1-260C-UNLIM	0 to 70	(M5L, M5P, M5S, M5 U)	Sample
LM358DR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358	Sample
LM358DRG3	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	0 to 70	LM358	
LM358DRG4	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	0 to 70	LM358	
LM358P	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	LM358P	Sample
LM358PE3	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI	0 to 70	LM358P	
LM358PE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	LM358P	Sample
LM358PSR	ACTIVE	SO	PS	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	L358	Sample
LM358PW	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI	0 to 70	L358	
LM358PWR	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	0 to 70	L358	Sample
LM358PWRG3	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI	0 to 70	L358	
LM358PWRG4	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI	0 to 70	L358	
LM358PWRG4-JF	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI	0 to 70	L358	

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM

www.ti.com 25-Nov-2024

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LM258A, LM2904, LM2904B, LM2904BA:

Automotive: LM2904-Q1, LM2904B-Q1, LM2904BA-Q1

■ Enhanced Product : LM258A-EP, LM2904-EP

NOTE: Qualified Version Definitions:

- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

www.ti.com 6-Feb-2025

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM258ADGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM258ADGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM258ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258ADRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258ADRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258ADRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258ADRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.25	3.35	1.25	8.0	12.0	Q1
LM258DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter		A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	ļ				(mm)	W1 (mm)						
LM258DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904AVQDR	SOIC	D	8	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
LM2904AVQDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904AVQDRG4	SOIC	D	8	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
LM2904AVQDRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904AVQPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904AVQPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904AVQPWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904AVQPWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904BAIDDFR	SOT-23- THIN	DDF	8	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LM2904BAIDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.25	3.35	1.25	8.0	12.0	Q1
LM2904BAIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904BAIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904BAIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904BAIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904BAIPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904BAIPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904BIDDFR	SOT-23- THIN	DDF	8	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LM2904BIDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM2904BIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904BIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904BIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904BIPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.25	3.35	1.25	8.0	12.0	Q1
LM2904DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904PSR	SO	PS	8	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
LM2904PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904QDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904QDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904VQDR	SOIC	D	8	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
LM2904VQDRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904VQPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904VQPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904VQPWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM2904VQPWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358ADGKR	VSSOP	DGK	8	2500	330.0	12.4	5.25	3.35	1.25	8.0	12.0	Q1
LM358ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358APWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358APWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358BAIDDFR	SOT-23- THIN	DDF	8	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LM358BAIDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.25	3.35	1.25	8.0	12.0	Q1
LM358BAIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358BAIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358BAIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358BAIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358BAIPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358BAIPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358BIDDFR	SOT-23- THIN	DDF	8	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LM358BIDGKR	VSSOP	DGK	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358BIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358BIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358BIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358BIPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358BIPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.25	3.35	1.25	8.0	12.0	Q1
LM358DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358PSR	SO	PS	8	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
LM358PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM258ADGKR	VSSOP	DGK	8	2500	353.0	353.0	32.0
LM258ADGKR	VSSOP	DGK	8	2500	356.0	356.0	35.0
LM258ADR	SOIC	D	8	2500	353.0	353.0	32.0
LM258ADR	SOIC	D	8	2500	353.0	353.0	32.0
LM258ADR	SOIC	D	8	2500	356.0	356.0	35.0
LM258ADR	SOIC	D	8	2500	340.5	336.1	25.0
LM258ADRG4	SOIC	D	8	2500	340.5	338.1	20.6
LM258ADRG4	SOIC	D	8	2500	340.5	338.1	20.6
LM258ADRG4	SOIC	D	8	2500	356.0	356.0	35.0
LM258ADRG4	SOIC	D	8	2500	356.0	356.0	35.0
LM258DGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
LM258DR	SOIC	D	8	2500	353.0	353.0	32.0
LM258DR	SOIC	D	8	2500	353.0	353.0	32.0
LM258DR	SOIC	D	8	2500	340.5	338.1	20.6
LM258DR	SOIC	D	8	2500	340.5	336.1	25.0
LM258DR	SOIC	D	8	2500	356.0	356.0	35.0
LM258DR	SOIC	D	8	2500	356.0	356.0	35.0
LM258DRG4	SOIC	D	8	2500	340.5	338.1	20.6

PACKAGE MATERIALS INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM258DRG4	SOIC	D	8	2500	356.0	356.0	35.0
LM258DRG4	SOIC	D	8	2500	340.5	338.1	20.6
LM258DRG4	SOIC	D	8	2500	356.0	356.0	35.0
LM2904AVQDR	SOIC	D	8	2500	353.0	353.0	32.0
LM2904AVQDR	SOIC	D	8	2500	340.5	338.1	20.6
LM2904AVQDRG4	SOIC	D	8	2500	353.0	353.0	32.0
LM2904AVQDRG4	SOIC	D	8	2500	340.5	338.1	20.6
LM2904AVQPWR	TSSOP	PW	8	2000	356.0	356.0	35.0
LM2904AVQPWR	TSSOP	PW	8	2000	356.0	356.0	35.0
LM2904AVQPWRG4	TSSOP	PW	8	2000	356.0	356.0	35.0
LM2904AVQPWRG4	TSSOP	PW	8	2000	356.0	356.0	35.0
LM2904BAIDDFR	SOT-23-THIN	DDF	8	3000	210.0	185.0	35.0
LM2904BAIDGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
LM2904BAIDR	SOIC	D	8	2500	353.0	353.0	32.0
LM2904BAIDR	SOIC	D	8	2500	353.0	353.0	32.0
LM2904BAIDR	SOIC	D	8	2500	340.5	336.1	25.0
LM2904BAIDR	SOIC	D	8	2500	356.0	356.0	35.0
LM2904BAIPWR	TSSOP	PW	8	2000	353.0	353.0	32.0
LM2904BAIPWR	TSSOP	PW	8	2000	356.0	356.0	35.0
LM2904BIDDFR	SOT-23-THIN	DDF	8	3000	210.0	185.0	35.0
LM2904BIDGKR	VSSOP	DGK	8	2500	353.0	353.0	32.0
LM2904BIDR	SOIC	D	8	2500	340.5	336.1	25.0
LM2904BIDR	SOIC	D	8	2500	353.0	353.0	32.0
LM2904BIDR	SOIC	D	8	2500	353.0	353.0	32.0
LM2904BIPWR	TSSOP	PW	8	2000	356.0	356.0	35.0
LM2904DGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
LM2904DR	SOIC	D	8	2500	353.0	353.0	32.0
LM2904DR	SOIC	D	8	2500	340.5	338.1	20.6
LM2904PSR	SO	PS	8	2000	356.0	356.0	35.0
LM2904PWR	TSSOP	PW	8	2000	353.0	353.0	32.0
LM2904PWR	TSSOP	PW	8	2000	356.0	356.0	35.0
LM2904QDR	SOIC	D	8	2500	353.0	353.0	32.0
LM2904QDR	SOIC	D	8	2500	350.0	350.0	43.0
LM2904VQDR	SOIC	D	8	2500	353.0	353.0	32.0
LM2904VQDRG4	SOIC	D	8	2500	340.5	338.1	20.6
LM2904VQPWR	TSSOP	PW	8	2000	356.0	356.0	35.0
LM2904VQPWR	TSSOP	PW	8	2000	356.0	356.0	35.0
LM2904VQPWRG4	TSSOP	PW	8	2000	356.0	356.0	35.0
LM2904VQPWRG4	TSSOP	PW	8	2000	356.0	356.0	35.0
LM358ADGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
LM358ADR	SOIC	D	8	2500	353.0	353.0	32.0
LM358ADR	SOIC	D	8	2500	340.5	336.1	25.0
LM358ADR	SOIC	D	8	2500	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM358ADR	SOIC	D	8	2500	340.5	338.1	20.6
LM358ADR	SOIC	D	8	2500	353.0	353.0	32.0
LM358APWR	TSSOP	PW	8	2000	353.0	353.0	32.0
LM358APWR	TSSOP	PW	8	2000	356.0	356.0	35.0
LM358BAIDDFR	SOT-23-THIN	DDF	8	3000	210.0	185.0	35.0
LM358BAIDGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
LM358BAIDR	SOIC	D	8	2500	356.0	356.0	35.0
LM358BAIDR	SOIC	D	8	2500	353.0	353.0	32.0
LM358BAIDR	SOIC	D	8	2500	340.5	336.1	25.0
LM358BAIDR	SOIC	D	8	2500	353.0	353.0	32.0
LM358BAIPWR	TSSOP	PW	8	2000	356.0	356.0	35.0
LM358BAIPWR	TSSOP	PW	8	2000	353.0	353.0	32.0
LM358BIDDFR	SOT-23-THIN	DDF	8	3000	210.0	185.0	35.0
LM358BIDGKR	VSSOP	DGK	8	2500	353.0	353.0	32.0
LM358BIDR	SOIC	D	8	2500	353.0	353.0	32.0
LM358BIDR	SOIC	D	8	2500	340.5	336.1	25.0
LM358BIDR	SOIC	D	8	2500	353.0	353.0	32.0
LM358BIPWR	TSSOP	PW	8	2000	356.0	356.0	35.0
LM358BIPWR	TSSOP	PW	8	2000	353.0	353.0	32.0
LM358DGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
LM358DR	SOIC	D	8	2500	353.0	353.0	32.0
LM358DR	SOIC	D	8	2500	340.5	338.1	20.6
LM358PSR	SO	PS	8	2000	356.0	356.0	35.0
LM358PWR	TSSOP	PW	8	2000	353.0	353.0	32.0
LM358PWR	TSSOP	PW	8	2000	356.0	356.0	35.0

www.ti.com 6-Feb-2025

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
5962-87710012A	FK	LCCC	20	55	506.98	12.06	2030	NA
5962-87710022A	FK	LCCC	20	55	506.98	12.06	2030	NA
LM158AFKB	FK	LCCC	20	55	506.98	12.06	2030	NA
LM158FKB	FK	LCCC	20	55	506.98	12.06	2030	NA
LM258AP	Р	PDIP	8	50	506	13.97	11230	4.32
LM258APE4	Р	PDIP	8	50	506	13.97	11230	4.32
LM258P	Р	PDIP	8	50	506	13.97	11230	4.32
LM258P	Р	PDIP	8	50	506.1	9	600	5.4
LM258PE4	Р	PDIP	8	50	506	13.97	11230	4.32
LM2904P	Р	PDIP	8	50	506	13.97	11230	4.32
LM2904PE4	Р	PDIP	8	50	506	13.97	11230	4.32
LM358AP	Р	PDIP	8	50	506	13.97	11230	4.32
LM358APE4	Р	PDIP	8	50	506	13.97	11230	4.32
LM358P	Р	PDIP	8	50	506	13.97	11230	4.32
LM358PE4	Р	PDIP	8	50	506	13.97	11230	4.32

8.89 x 8.89, 1.27 mm pitch

LEADLESS CERAMIC CHIP CARRIER

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

INSTRUMENTS www.ti.com

PLASTIC SMALL OUTLINE

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.

PLASTIC SMALL OUTLINE

- 4. Publication IPC-7351 may have alternate designs.
- 5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

PLASTIC SMALL OUTLINE

- 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 7. Board assembly site may have different recommendations for stencil design.

SMALL OUTLINE INTEGRATED CIRCUIT

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PS (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

CERAMIC DUAL IN-LINE PACKAGE

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This package can be hermetically sealed with a ceramic lid using glass frit.

- 4. Index point is provided on cap for terminal identification. 5. Falls within MIL STD 1835 GDIP1-T8

CERAMIC DUAL IN-LINE PACKAGE

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated