1/1

慶應義塾大学試験問題 物理学D (一条)

2013年2月1日(金)2時限(試験時間50分) 問題用紙 回収不要担当者 小原、神成、高野、福嶋

注意: とくに指示がない場合、答案には結果のみならず、それを導いた過程についても記すこと。また、万一与えられた条件だけでは解けない場合には、適当な量を定義したり、条件を明記した上で解いてよい。ただし、電気定数(真空の誘電率) ε_0 、磁気定数(真空の透磁率) μ_0 、真空中の光速 c の記号は断りなしに使ってよい。

問題 I 同じ中心もつ半径 a および半径 b の球殻を両極板とするコンデンサーがある (a < b)。この中心を位置ベクトルの原点とする。両極板の間の空間は誘電体で満たされており、その誘電率は、中心からの距離 r の関数として、 $\varepsilon(r) = \bar{\varepsilon}\varepsilon_0 \left(\frac{b}{r}\right)^4$ で与えられている。ここで、 $\bar{\varepsilon}$ は $\bar{\varepsilon} > 1$ を満たす定数である。内側の電極に Q の外側の電極に -Q の電荷を与える (図 I 参照)。

図Ⅰ

- (1) 両極板間の位置 r における電界 E(r)、電束密度 D(r)、電気分極 P(r) を求めなさい。
- (2) コンデンサーの電気容量を求めなさい。
- (3) 誘電体の内側の表面上の位置 r(|r|=a) における分極電荷面密度 $\omega_{\rm P}(a)$ および誘電体の外側の表面上の位置 r(|r|=b) における分極電荷面密度 $\omega_{\rm P}(b)$ を求めなさい。
- (4) 両極板間の中心からの距離 r が $r_1 \le r \le r_2$ の範囲の分極電荷 $q_P(r_1, r_2)$ を求めなさい。 ただし、 $a < r_1 < r_2 < b$ とする。

問題 II 物質中で、電界を E、電東密度を D、磁東密度を B、磁界を H、真電荷密度を ρ_t 、真電流密度を i_t とする。

- (1) 物質中のマクスウェル方程式を書きなさい。
- (2) デカルト座標系 (x,y,z) を用い、x,y,z 軸の正の方向の単位ベクトルを、それぞれ、 e_x,e_y,e_z とする。 $\rho_t=0$, $i_t=0$ で、時刻 t、位置 (x,y,z) において $E(x,y,z,t)=E_x(z,t)e_x$, $B(x,y,z,t)=B_y(z,t)e_y$ と与えられる平面電磁波を考える。 $E_x(z,t)$ の従う波動方程式と、その一般解を書きなさい。この一般解を用いて、 $B_y(z,t)$ がどのように表されるか書きなさい。また、時刻 t、位置 (x,y,z) におけるポインティングベクトル S(x,y,z,t) を求めなさい。

ヒント: 一般解には、2回以上微分可能な2つの任意の関数 $f(\xi)$, $g(\eta)$ を用いると良い。

問題 III 半径 a で無限に長い円柱状の連体がある。導体の外側には、導体と同軸で、内半径 b(>a)、外半径 d(>b) で無限に長い円筒状の磁性体がある (図 III-1 参照)。導体円柱、磁性体円筒の中心軸を z 軸にとり、z 軸に垂直な平面内の位置を 2 次元極座標 (r,φ) で表した円柱座標系 (r,φ,z) を用いて考える。 z 軸の正の向きの単位ベクトルを e_z とする。位置 (r,φ,z) において、z 軸に垂直で z 軸から遠ざかる方向の単位ベクトルを e_r 、z 軸を中心に回転する方向 (右ねじが e_z 方向に進む方向) の単位ベクトルを e_φ とする (図 III-2 参照)。互いに直交するこれらの単位ベクトル e_r , e_φ , e_z を用いて位置 (r,φ,z) におけるベクトル量を表す。磁性体は b < r < d の領域にあり、磁性体の透磁率は r の関数として $\mu(r) = \bar{\mu}\mu_0$ で与えられている。ここで、 $\bar{\mu}$ は $\bar{\mu}$ > 1 を満たす定数である。磁性体のない領域の速磁率は μ 0 である。導体に e_z 方向に失きさ I の定常電流を一様に流す。

- (1) 位置 (r,φ,z) における磁束密度 $B(r,\varphi,z)$ 、磁界 $H(r,\varphi,z)$ 、磁化 $J(r,\varphi,z)$ を求めなさい。
- (2) 磁性体の内側の表面上の位置 $(r=b,\varphi,z)$ における面磁化電流密度ベクトル $\mathcal{I}_{\mathbf{m}}(b,\varphi,z)$ と磁性体の外側の表面上の位置 $(r=d,\varphi,z)$ における面磁化電流密度ベクトル $\mathcal{I}_{\mathbf{m}}(d,\varphi,z)$ を求めなさい。
- (3) z= 一定 の平面内の $0 \le r \le r_1$, $0 \le \varphi < 2\pi$ で指定される円形の範囲を e_z 方向に貫く磁化電流 $I_m(r_1)$ を求めなさい。 $b < r_1 < d$ とする。
 - ヒント: $i_{
 m m}$ を磁化電流密度とするとき、 ${
 m rot} m{J} = \mu_0 i_{
 m m}$ の積分形を考える。あるいは、 $m{B}$ に関するアンペールの法則 (積分形) で、全電流から真電流の寄与を差し引く。
- (4) 位置 (r,φ,z) における磁化電流密度 $i_{\rm m}(r,\varphi,z)$ を求めなさい。b < r < d とする。 ヒント: (3) の結果を用い、z=-定 の平面内の $r_1 \le r \le r_1 + \Delta r_1$, $0 \le \varphi < 2\pi$ で指定される円環の範囲を e_z 方向に貫く磁化電流 $I_{\rm m}(r_1+\Delta r_1) I_{m}(r_1)$ を求め、円環の面積で割る。あるいは、デカルト座標 (x,y,z) においては、 $r=\sqrt{x^2+y^2}$ 、 $e_r=\left(\frac{x}{r},\frac{y}{r},0\right)$ 、 $e_{\varphi}=\left(-\frac{y}{r},\frac{x}{r},0\right)$ 、 $e_z=(0,0,1)$ と表されることを用いる。

問題 IV 真空中に、半径 r_1 で単位長さあたりの巻き数 n_1 のソレノイド1と、半径 r_2 の単位長さあたりの巻き数 n_2 のソレノイド2が、中心軸を共通にして配置されている。 $r_1 < r_2$ である。

- (1) ソレノイド 1 に大きさ I_1 の電流を、ソレノイド 2 に大きさ I_2 の電流を同じ向きに流したとき、ソレノイド 2 の内側の空間の単位長さあたりに蓄えられる磁界のエネルギー $U_{\rm m}$ を、磁界のエネルギー密度を用いて求めなさい。
- (2) ソレノイド1の単位長さあたりの自己インダクタンス \mathcal{L}_{11} 、ソレノイド2の単位長さあたりの自己インダクタンス \mathcal{L}_{22} およびソレノイド1とソレノイド2の単位長さあたりの相互インダクタンス \mathcal{L}_{12} を求めなさい。

Awtif(#1], - 4,],)