Aluno(a):	Matrícula:
Curso:	Data:/

4ª AP - Eletromagnetismo aplicado

- 1°) Explique em detalhe o que são as perdas no ferro. (2 pontos)
- 2°) A arruela condutora de condutividade σ da figura é submetida a uma indução magnética perpendicular ao plano da mesma que é dada por $B(r,t)=B_0(1+r/R)$ senwt. Consideremos que $p<<\delta$, p<<R e que a corrente induzida não modifica o campo enterno B(r,t).
 - a) Calcule a densidade de corrente induzida na arruela; (1,5 pontos)
 - b) Calcule a corrente total I(t) nesta peça. (1,5 pontos)

- 3°) A espira circular da figura é filiforme, sendo que a seção transversal do fio é S_f . Ela se encontra numa região onde existe uma indução magnética $B(t)=B_0 sen(wt)$ perpendicular ao plano da espira. Admita que a corrente induzida na espira não é suficientemente grande para modificar a indução externa B(t).
 - a) Calcule a corrente induzida na espira para $B_0=0.5T$, Sf=1mm², R=2cm, f=60Hz e $\sigma=10^7$ S/m. (1 **ponto**)
 - b) Calcule a potência média dissipada na espira por efeito Joule. (1 ponto)
 - c) Calcule a indução magnética criada no centro da espira pela corrente induzida na mesma e verifique se esta grandeza é realmente pequena em relação ao B(t) imposto, validando a hipótese inicialmente feita. (1 ponto)

 4°) A partir da figura temos uma barra condutora que se move com a velocidade de módulo v sobre um circuito condutor. Perpendicular ao plano deste conjunto a indução magnética B_0 é imposta. Calcule a *fem* induzida no circuito e medida entre os pontos P e Q. Obtenha o valor numérico para B_0 =1T, L=2cm e v=5m/s. (2 pontos)

