Ramesh Chandra Soren

Enrollment No: 2022CSB086

Department: Computer Science and Technology

Problem: Implement Backpropagation (BP) on a Feedforward Perceptron Neural Network

Part (a): Digit Recognition (0-9) Using 7-Segment Display

Implement a backpropagation algorithm on a feedforward perceptron neural network with **2** hidden layers. The network should:

- Recognize digits 0 9 using a **7-segment display** as input.
- Output 1 when digit K (0 . . . 9) is input; otherwise, output 0.
- Use **sigmoidal activation function** and **Mean Squared Error (MSE)** as the loss function.

Tasks:

- 1. **Examine the effect** of learning rate, hidden layers, and nodes in each hidden layer.
- 2. **Study convergence** by plotting Loss vs. Iterations.
- 3. **Perform N-fold cross-validation** to evaluate the following performance metrics:
 - Accuracy
 - Specificity
 - Sensitivity
 - Precision
 - Recall
 - F-Measure

Input Patterns:

Here are the 7-segment display patterns for digits 0 to 9:

```python def get\_7\_segment\_patterns(): patterns =  $\{0: [1, 1, 1, 0, 1, 1, 1], #01: [0, 0, 1, 0, 0, 1, 0], #12: [1, 0, 1, 1, 1, 0, 1], #23: [1, 0, 1, 1, 0, 1, 1], #34: [0, 1, 1, 1, 0, 1, 0], #45: [1, 1, 0, 1, 0, 1, 1], #56: [1, 1, 0, 1, 1, 1, 1], #67: [1, 0, 1, 0, 0, 1, 0], #78: [1, 1, 1, 1, 1, 1, 1], #89: [1, 1, 1, 1, 1, 1, 1] #9} return patterns$ 

```
import torch
import torch.nn as nn
import torch.optim as optim
```

```
import numpy as np
from sklearn.model selection import KFold
from sklearn.metrics import accuracy score, precision score,
recall score, f1 score
import matplotlib.pyplot as plt
Data setup (7-segment display)
X = np.array([
 [1,1,1,1,1,1,0],
 [0,1,1,0,0,0,0], # 1
 [1,1,0,1,1,0,1], # 2
 [1,1,1,1,0,0,1], # 3
 [0,1,1,0,0,1,1], # 4
 [1,0,1,1,0,1,1], # 5
 [0,0,1,1,1,1,1], # 6
 [1,1,1,0,0,0,0], # 7
 [1,1,1,1,1,1,1], # 8
 [1,1,1,0,0,1,1] # 9
])
Define digit target
K = 5 # Change this to test other digits
y = np.array([1 if i == K else 0 for i in range(10)])
Convert to tensors
X = torch.FloatTensor(X)
y = torch.FloatTensor(y)
Updated Model Definition
class DigitClassifier(nn.Module):
 def __init__(self, input size, hidden1 size, hidden2 size):
 super(DigitClassifier, self). init ()
 self.layer1 = nn.Linear(input size, hidden1 size)
 self.layer2 = nn.Linear(hidden1 size, hidden2 size)
 self.layer3 = nn.Linear(hidden2 size, 1) # Single output for
binary classification
 def forward(self, x):
 x = torch.relu(self.layer1(x))
 x = torch.relu(self.layer2(x))
 x = self.layer3(x) # No activation here, we use
BCEWithLogitsLoss for stability
 return x
Model training with BCEWithLogitsLoss
def train_model(model, X_train, y_train, learning_rate, epochs):
 criterion = nn.BCEWithLogitsLoss()
 optimizer = optim.SGD(model.parameters(), lr=learning rate)
 losses = []
```

```
for epoch in range(epochs):
 optimizer.zero grad()
 outputs = model(X train).squeeze()
 loss = criterion(outputs, y train)
 loss.backward()
 optimizer.step()
 if epoch % 100 == 0:
 losses.append(loss.item())
 return losses
Testing configurations
learning rates = [0.5, 0.1, 0.01]
hidden sizes = [(8,4), (16,8), (32,16)]
for lr in learning rates:
 for h1, h2 in hidden sizes:
 print(f"\nLearning rate: {lr}, hidden sizes: ({h1},{h2})")
 model = DigitClassifier(7, h1, h2)
 losses = train model(model, X, y, lr, 1000)
 with torch.no grad():
 outputs = model(X).squeeze()
 predicted = (torch.sigmoid(outputs) > 0.5).float()
 accuracy = (predicted == y).float().mean()
 print(f"Accuracy: {accuracy:.3f}")
 plt.plot(losses)
 plt.title(f'Learning Rate: {lr}, Hidden Sizes: ({h1},{h2})')
 plt.xlabel('Epoch (x100)')
 plt.ylabel('Loss')
 plt.show()
Final model cross-validation
def calculate metrics(y true, y pred):
 y pred = (torch.sigmoid(y pred) > 0.5).float()
 y_true, y_pred = y_true.numpy(), y_pred.numpy()
 return {
 'accuracy': accuracy_score(y_true, y_pred),
 'precision': precision_score(y_true, y_pred, zero_division=1),
 'recall': recall_score(y_true, y_pred, zero_division=1),
 'f1': f1 score(y true, y pred, zero division=1)
 }
kf = KFold(n splits=5, shuffle=True, random state=42)
metrics list = []
for fold, (train idx, test idx) in enumerate(kf.split(X), 1):
 X train, X test = X[train idx], X[test idx]
```

```
y train, y test = y[train idx], y[test idx]
 model = DigitClassifier(7, 16, 8)
 train model(model, X train, y train, 0.1, 1000)
 with torch.no grad():
 y_pred = model(X_test).squeeze()
 metrics = calculate metrics(y test, y pred)
 metrics list.append(metrics)
 print(f"\nFold {fold} metrics:")
 for metric, value in metrics.items():
 print(f"{metric}: {value:.3f}")
print("\nFinal Average Metrics:")
avg metrics = {metric: np.mean([m[metric] for m in metrics list]) for
metric in ['accuracy', 'precision', 'recall', 'f1']}
for metric, avg in avg metrics.items():
 print(f"{metric}: {avg:.3f}")
Final model prediction display
with torch.no grad():
 best model = DigitClassifier(7, 16, 8)
 outputs = best model(X).squeeze()
 predicted = (torch.sigmoid(outputs) > 0.5).float()
 print(f"\nPredictions for all digits (1 means digit {K}, 0 means
other):")
 for i, (pred, true) in enumerate(zip(predicted, y)):
 print(f"Digit {i}: Predicted {pred.item():.3f}, Actual
{true.item():.0f}")
Learning rate: 0.5, hidden sizes: (8,4)
Accuracy: 1.000
```



Learning rate: 0.5, hidden sizes: (16,8) Accuracy: 1.000



Learning rate: 0.5, hidden sizes: (32,16) Accuracy: 1.000



Learning rate: 0.1, hidden sizes: (8,4) Accuracy: 1.000



Learning rate: 0.1, hidden sizes: (16,8) Accuracy: 1.000



Learning rate: 0.1, hidden sizes: (32,16) Accuracy: 1.000



Learning rate: 0.01, hidden sizes: (8,4) Accuracy: 0.900



Learning rate: 0.01, hidden sizes: (16,8) Accuracy: 0.900



Learning rate: 0.01, hidden sizes: (32,16) Accuracy: 0.900

Learning Rate: 0.01, Hidden Sizes: (32,16)



Fold 1 metrics: accuracy: 1.000 precision: 1.000 recall: 1.000 f1: 1.000

Fold 2 metrics: accuracy: 0.500 precision: 1.000 recall: 0.000 f1: 0.000

Fold 3 metrics: accuracy: 1.000 precision: 1.000 recall: 1.000 f1: 1.000

Fold 4 metrics: accuracy: 1.000 precision: 1.000 recall: 1.000

```
f1: 1.000
Fold 5 metrics:
accuracy: 0.500
precision: 0.000
recall: 1.000
f1: 0.000
Final Average Metrics:
accuracy: 0.800
precision: 0.800
recall: 0.800
f1: 0.600
Predictions for all digits (1 means digit 5, 0 means other):
Digit 0: Predicted 1.000, Actual 0
Digit 1: Predicted 1.000, Actual 0
Digit 2: Predicted 1.000, Actual 0
Digit 3: Predicted 1.000, Actual 0
Digit 4: Predicted 1.000, Actual 0
Digit 5: Predicted 1.000, Actual 1
Digit 6: Predicted 1.000, Actual 0
Digit 7: Predicted 1.000, Actual 0
Digit 8: Predicted 1.000, Actual 0
Digit 9: Predicted 1.000, Actual 0
import numpy as np
import random
Sigmoid activation function and its derivative
def sigmoid(x):
 return 1 / (1 + np.exp(-x))
def sigmoid derivative(x):
 return x * (1 - x)
Softmax function for output layer activation with numerical
stability
def softmax(x):
 e x = np.exp(x - np.max(x)) # Subtract the max value for
numerical stability
 return e x / e x.sum(axis=1, keepdims=True) # Normalize across
rows
Neural Network with backpropagation
class AlphabetRecognitionNN:
 def init (self, input size, hidden size, output size,
learning rate=0.1):
 # Initialize weights and biases
 self.learning rate = learning rate
```

```
self.weights input hidden = np.random.rand(input size,
hidden size) - 0.5
 self.weights hidden output = np.random.rand(hidden size,
output size) - 0.5
 self.bias hidden = np.zeros((1, hidden size))
 self.bias output = np.zeros((1, output size))
 def forward(self, X):
 # Forward pass
 self.hidden input = np.dot(X, self.weights input hidden) +
self.bias hidden
 self.hidden output = sigmoid(self.hidden input)
 self.output input = np.dot(self.hidden output,
self.weights hidden output) + self.bias output
 self.output = softmax(self.output input)
 return self.output
 def backward(self, X, y, output):
 # Calculate error
 output error = output - y
 hidden error = np.dot(output error,
self.weights hidden output.T) * sigmoid derivative(self.hidden output)
 # Update weights and biases
 self.weights hidden output -= self.learning_rate *
np.dot(self.hidden output.T, output error)
 self.weights input hidden -= self.learning rate * np.dot(X.T,
hidden error)
 self.bias output -= self.learning_rate * np.sum(output_error,
axis=0, keepdims=True)
 self.bias hidden -= self.learning_rate * np.sum(hidden_error,
axis=0, keepdims=True)
 def train(self, X, y, epochs):
 for epoch in range(epochs):
 output = self.forward(X)
 self.backward(X, y, output)
 def predict(self, X):
 output = self.forward(X)
 return np.argmax(output, axis=1)
Define the 5x5 binary patterns for letters A-Z
def get char pattern(char):
 patterns = {
 'A': [0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,
1, 1, 0, 0, 0, 1],
 'B': [1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1,
1, 1, 1, 1, 0, 1],
 'C': [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,
```

```
0, 1, 0, 0, 0, 1],
 'D': [1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1,
0, 1, 0, 0, 1, 0],
 'E': [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,
0, 1, 1, 1, 1, 1],
 'F': [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,
0, 1, 0, 0, 0, 0],
 'G': [0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1,
0, 0, 1, 1, 1, 0],
 'H': [1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,
1, 1, 0, 0, 0, 1],
 'I': [1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 1, 1, 0],
 'K': [1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,
1, 1, 0, 0, 0, 1],
 'L': [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,
0, 1, 0, 0, 0, 1],
 'M': [1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1,
0, 1, 0, 0, 0, 1],
 'N': [1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,
1, 1, 0, 0, 0, 1],
 '0': [0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0,
1, 0, 1, 1, 1, 0],
 'P': [1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0,
0, 1, 0, 0, 0, 0],
 'Q': [0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1,
0, 0, 1, 1, 1, 0],
 'R': [1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0,
1, 1, 0, 0, 0, 1],
 'S': [0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0,
0, 1, 1, 1, 1, 0],
 'T': [1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
1, 0, 0, 0, 0, 1],
 'U': [1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0,
1, 0, 1, 1, 1, 0],
 'V': [1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0,
1, 0, 0, 0, 1, 0],
 'W': [1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1,
0, 1, 0, 0, 0, 1],
 'X': [1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0,
0, 1, 0, 0, 0, 1],
 'Y': [1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
1, 0, 0, 0, 0, 1],
 'Z': [1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,
1, 1, 1, 1, 1, 1],
 # Return the pattern if available, otherwise return None
```

```
return np.array(patterns.get(char.upper(), [0] * 25)) # Default
to empty if not found
Main function
if name == " main ":
 # Create and train the model
 nn = AlphabetRecognitionNN(input size=25, hidden size=50,
output size=26, learning rate=0.01) # Reduced learning rate
 # Generate training data
 alphabet = list('ABCDEFGHIJKLMNOPQRSTUVWXYZ')
 X train = []
 y train = []
 for _ in range(5000): # Generate 5000 training examples
 char = random.choice(alphabet)
 pattern = get_char_pattern(char)
 if pattern is not None: # Skip if pattern is not found (for
invalid input)
 X train.append(pattern)
 y train.append(np.eye(26)[ord(char.upper()) - ord('A')])
One-hot encoding
 X_train = np.array(X_train)
 y train = np.array(y train)
 nn.train(X train, y train, epochs=1000) # Train the model
 # Take user input for character
 # Take user input for character
 while True:
 user input = input("Enter a character (A-Z) to recognize or
'exit' to quit: ").upper()
 if user input == 'EXIT':
 print("Exiting the program.")
 break
 if user input in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ':
 pattern = get char pattern(user input)
 prediction = nn.predict(np.array([pattern])) # Predict
the character class
 predicted char = chr(prediction[0] + ord('A')) # Convert
the predicted class back to character
 print(f"Predicted character: {predicted char}")
 else:
 print("Invalid input. Please enter a letter between A-Z.")
Enter a character (A-Z) to recognize or 'exit' to quit: A
Predicted character: F
Enter a character (A-Z) to recognize or 'exit' to quit: B
```

```
Predicted character: F
Enter a character (A-Z) to recognize or 'exit' to quit: Z
Predicted character: F
Enter a character (A-Z) to recognize or 'exit' to guit: D
Predicted character: F
Enter a character (A-Z) to recognize or 'exit' to quit: I
Predicted character: F
Enter a character (A-Z) to recognize or 'exit' to quit: L
Predicted character: F
Enter a character (A-Z) to recognize or 'exit' to guit: 0
Predicted character: F
Enter a character (A-Z) to recognize or 'exit' to quit: V
Predicted character: V
Enter a character (A-Z) to recognize or 'exit' to quit: N
Predicted character: F
Enter a character (A-Z) to recognize or 'exit' to quit: L
Predicted character: F
Enter a character (A-Z) to recognize or 'exit' to quit: P
Predicted character: F
Enter a character (A-Z) to recognize or 'exit' to quit: X
Predicted character: X
Enter a character (A-Z) to recognize or 'exit' to guit: V
Predicted character: V
Enter a character (A-Z) to recognize or 'exit' to quit: M
Predicted character: F
Enter a character (A-Z) to recognize or 'exit' to quit: U
Predicted character: F
Enter a character (A-Z) to recognize or 'exit' to quit: S
Predicted character: F
Enter a character (A-Z) to recognize or 'exit' to quit: F
Predicted character: F
Enter a character (A-Z) to recognize or 'exit' to quit: E
Predicted character: F
Enter a character (A-Z) to recognize or 'exit' to quit: T
Predicted character: F
Enter a character (A-Z) to recognize or 'exit' to quit: EXIT
Exiting the program.
import numpy as np
import random
from tensorflow.keras.datasets import mnist # For loading EMNIST
dataset
from tensorflow.keras.utils import to categorical
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Conv2D,
MaxPooling2D
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.preprocessing.image import ImageDataGenerator
Sigmoid activation function and its derivative
```

```
def sigmoid(x):
 return 1 / (1 + np.exp(-x))
def sigmoid derivative(x):
 return x * (1 - x)
Softmax function for output layer activation with numerical
stability
def softmax(x):
 """Softmax function with numerical stability."""
 exps = np.exp(x - np.max(x, axis=1, keepdims=True))
 return exps / np.sum(exps, axis=1, keepdims=True)
Neural Network with backpropagation (using Keras)
def create model(input shape, num classes):
 """Creates a basic CNN model for alphabet recognition."""
 model = Sequential()
 model.add(Conv2D(32, (3, 3), activation='relu',
input shape=input shape))
 model.add(MaxPooling2D((2, 2)))
 model.add(Conv2D(64, (3, 3), activation='relu'))
 model.add(MaxPooling2D((2, 2)))
 model.add(Flatten())
 model.add(Dense(128, activation='relu'))
 model.add(Dense(num classes, activation='softmax'))
 # Compile the model
 optimizer = Adam(learning rate=0.001) # Try different optimizers
and learning rates
 model.compile(loss='categorical crossentropy',
optimizer=optimizer, metrics=['accuracy'])
 return model
Define the 5x5 binary patterns for letters A-Z (for comparison)
def get char pattern(char):
 patterns = {
 'A': [0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,
1, 1, 0, 0, 0, 1],
 'B': [1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1,
1, 1, 1, 1, 0, 1],
 'C': [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,
0, 1, 0, 0, 0, 1],
 'D': [1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1,
0, 1, 0, 0, 1, 0],
 'E': [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,
0, 1, 1, 1, 1, 1],
 'F': [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,
0, 1, 0, 0, 0, 0],
 'G': [0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1,
0, 0, 1, 1, 1, 0],
```

```
'H': [1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,
1, 1, 0, 0, 0, 1],
 'I': [1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1],
 'J': [0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1,
0, 0, 1, 1, 1, 0],
 'K': [1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,
1, 1, 0, 0, 0, 1],
 'L': [1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
0, 1, 0, 0, 0, 1],
 'M': [1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1,
0, 1, 0, 0, 0, 1],
 'N': [1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,
1, 1, 0, 0, 0, 1],
 '0': [0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0,
1, 0, 1, 1, 1, 0],
 'P': [1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0,
0, 1, 0, 0, 0, 0],
 'Q': [0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1,
0, 0, 1, 1, 1, 0],
 'R': [1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0,
1, 1, 0, 0, 0, 1],
 'S': [0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0,
0, 1, 1, 1, 1, 0],
 1, 0, 0, 0, 0, 1],
 'U': [1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0,
1, 0, 1, 1, 1, 0],
 'V': [1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0,
1, 0, 0, 0, 1, 0],
 'W': [1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1,
0, 1, 0, 0, 0, 1],
 'X': [1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0,
0, 1, 0, 0, 0, 1],
 'Y': [1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
1, 0, 0, 0, 0, 1],
 'Z': [1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0,
1, 1, 1, 1, 1, 1],
 # Return the pattern if available, otherwise return None
 return np.array(patterns.get(char.upper(), [0] * 25)) # Default
to empty if not found
Main function
if name == " main ":
 # Load EMNIST dataset (Balanced Letters dataset)
 (X_train, y_train), (X_test, y_test) = mnist.load_data() # Load
MNIST for testina
```

```
Preprocess data (assuming EMNIST images are 28x28)
 input shape = (28, 28, 1) # Add a channel dimension
 num_classes = 26 # Number of alphabet classes
 X train = X train.reshape(X train.shape[0], 28, 28,
1).astype('float32') / 255.0
 X test = X test.reshape(X test.shape[0], 28, 28,
1).astype('float32') / 255.0
 y train = to categorical(y train, num classes)
 y test = to categorical(y test, num classes)
 # Create a CNN model
 model = create model(input shape, num classes)
 # Data Augmentation
 datagen = ImageDataGenerator(
 rotation range=10,
 width shift range=0.1,
 height shift range=0.1,
 shear_range=0.1,
 zoom range=0.1,
 horizontal flip=False,
 fill mode='nearest'
)
 # Train the model
 history = model.fit(
 datagen.flow(X train, y train, batch size=32),
 epochs=10, # Increase epochs for better accuracy
 validation data=(X test, y test)
)
 # Evaluate model on test set
 loss, accuracy = model.evaluate(X_test, y_test, verbose=0)
 print(f"Test accuracy: {accuracy:.4f}")
 # Save the trained model
 model.save('alphabet_model.h5')
 # Load the trained model (assuming you've saved it as
'alphabet model.h5')
 model = create model(input shape=(28, 28, 1), num classes=26) #
Create the model structure
 model.load_weights('alphabet_model.h5') # Load trained weights
 # Take user input for character
 while True:
 user input = input("Enter a character (A-Z) to recognize or
'exit' to quit: ").strip()
 if user input.lower() == 'exit':
 break
```

```
if len(user_input) == 1 and user input.isalpha():
 # Get the pattern for the input character (for
visualization purposes)
 char pattern = get char pattern(user input)
 if char pattern is not None:
 # Convert pattern to an image (for compatibility with
the trained model)
 char_image = char_pattern.reshape(28,
28).astype('float32') / 255.0
 char_image = char_image.reshape(1, 28, 28, 1) # Add
channel dimension
 # Predict using the trained model
 prediction = model.predict(char image)
 predicted char = chr(np.argmax(prediction[0]) +
ord('A'))
 print(f"Predicted character: {predicted char}")
 else:
 print(f"Character '{user input}' not recognized.")
 else:
 print("Invalid input! Please enter a character from A-Z or
'exit' to quit.")
Epoch 1/10
 1875/1875 —
loss: 0.5867 - val_accuracy: 0.9865 - val_loss: 0.0421
Epoch 2/10
 ———— 81s 38ms/step - accuracy: 0.9689 -
1875/1875 —
loss: 0.1032 - val_accuracy: 0.9842 - val_loss: 0.0456
Epoch 3/10
 73s 39ms/step - accuracy: 0.9766 -
1875/1875 —
loss: 0.0756 - val accuracy: 0.9904 - val loss: 0.0285
Epoch 4/10
 79s 37ms/step - accuracy: 0.9819 -
1875/1875 —
loss: 0.0604 - val accuracy: 0.9923 - val loss: 0.0241
Epoch 5/10
 73s 39ms/step - accuracy: 0.9839 -
1875/1875 ---
loss: 0.0511 - val_accuracy: 0.9933 - val_loss: 0.0234
Epoch 6/10
loss: 0.0458 - val accuracy: 0.9904 - val loss: 0.0326
Epoch 7/10
 1875/1875 —
loss: 0.0403 - val_accuracy: 0.9898 - val_loss: 0.0296
Epoch 8/10
 80s 38ms/step - accuracy: 0.9889 -
1875/1875 –
loss: 0.0361 - val accuracy: 0.9910 - val loss: 0.0255
Epoch 9/10
 70s 37ms/step - accuracy: 0.9891 -
1875/1875 -
```

```
loss: 0.0360 - val accuracy: 0.9928 - val_loss: 0.0206
Epoch 10/10
 82s 37ms/step - accuracy: 0.9892 -
1875/1875 ---
loss: 0.0327 - val accuracy: 0.9924 - val loss: 0.0259
WARNING:absl:You are saving your model as an HDF5 file via
`model.save()` or `keras.saving.save_model(model)`. This file format
is considered legacy. We recommend using instead the native Keras
format, e.g. `model.save('my model.keras')` or
`keras.saving.save_model(model, 'my_model.keras')`.
Test accuracy: 0.9924
Enter a character (A-Z) to recognize or 'exit' to quit: A
ValueError
 Traceback (most recent call
<ipython-input-7-26756c79b498> in <cell line: 74>()
 127
 if char pattern is not None:
 128
 # Convert pattern to an image (for
compatibility with the trained model)
--> 129
 char image = char pattern.reshape(28,
28).astype('float32') / 255.\overline{0}
 char image = char image.reshape(1, 28, 28, 1)
Add channel dimension
 131
ValueError: cannot reshape array of size 25 into shape (28,28)
```