RECEIVED CENTRAL FAX CENTER

Appl. No. 10/799,316 Amdt. dated August 11, 2008 Reply to Office Action of June 18, 2008

AUG 1 1 2008

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (currently amended) A method for Galois field (GF(2^m)) multiplication by a logic circuit, where m is a positive integer, and the GF(2^m) multiplication operation calculates the multiplication of two polynomials producing a product which is divided by a generator polynomial, and wherein the multiplication of the two polynomials is combined with the division operation whereby the GF(2^m) multiplication is computed as a single function GF(2^m) multiplication operation, the method comprising:

generating x^{m-i} polynomial coefficient terms from multiplication and division mathematical operations, where i is a variable;

combining x^{m-i} polynomial coefficient terms having the same exponents from the multiplication and division mathematical operations to generate a recurrence relation that represents the combination of the multiplication and division operations;

computing the recurrence relation using the combined x^{m-i} polynomial coefficient terms in the single function $GF(2^m)$ multiplication operation to produce a $GF(2^m)$ result; and storing the $GF(2^m)$ result in memory in a computer readable form.

2. (previously presented) The method of claim 1 wherein the recurrence relation for the single $GF(2^m)$ multiplication function is $Y(i) = Y(i-1) + (q_{m-i}*p + Y(i-1)_{2m-1}*g)*x^{m-i}$, i=1,

Appl. No. 10/799,316 Amdt. dated August 11, 2008 Reply to Office Action of June 18, 2008

2,..., m and where Y(0) = 0, Y(i=m) is the $GF(2^m)$ result, p and q are coefficients of input polynomials p[x] and q[x], respectively, and g is the coefficients of a generator polynomial g[x].

- 3. (previously presented) The method of claim 1 further comprising:

 computing the recurrence relation for a single GF(2^m) multiplication function as Y(i)

 = Y(i-1) + (q_{m-i}*p + Y(i-1)_{2m-1}*g Y(i-1)_{m-1}*g)*x^{m-i}, i=1, 2, ..., m and where Y(0) = 0, Y(i=m) is the GF(2^m) result, p and q are coefficients of input polynomials p[x] and q[x], respectively, and g is the coefficients of a generator polynomial g[x] in an m by m single function computation array utilizing m bits per internal calculation stage
- 4. (currently amended) A method for Galois field (GF(2^m)) multiplication by a logic circuit, where m is a positive integer, and the GF(2^m) multiplication operation calculates the multiplication of two polynomials producing a product which is divided by a generator polynomial, and wherein the multiplication of the two polynomials is combined with the division operation whereby the GF(2^m) multiplication is computed as a single function GF(2^m) multiplication operation, the method comprising:

generating x^{m-i} polynomial coefficient terms from multiplication and division mathematical operations, where i is a variable;

combining x^{m-i} polynomial coefficient terms having the same exponents from the multiplication and division mathematical operations to generate a recurrence relation that represents the combination of the multiplication and division operations;

Appl. No. 10/799,316 Amdt. dated August 11, 2008 Reply to Office Action of June 18, 2008

computing the recurrence relation using the combined x^{m-i} polynomial coefficient terms in the single function $GF(2^m)$ multiplication operation thereby calculating m by m bits for the $GF(2^m)$ multiplication function to produce an m bit $GF(2^m)$ result; and

storing the m bit GF(2^m) result in memory in a computer readable form.

- 5. (previously presented) The method claim 4 wherein the the recurrence relation for the single $GF(2^m)$ multiplication function is $Y(i) = Y(i-1) + (q_{m-i}*p + Y(i-1)_{m-1}*g)*x^{m-i}$, i=1, 2, ..., m and where Y(0) = 0, Y(i=m) is the m bit $GF(2^m)$ result, p and q are coefficients of input polynomials p[x] and q[x], respectively, and g is the coefficients of a generator polynomial g[x].
- 6. (previously presented) The method of claim 4 wherein the step of computing the recurrence relation is accomplished in an m by m single function computation logic array utilizing m bits per internal logic stage.
- 7. (previously presented) A GF multiplication circuit cell producing result $Y(i)_j$ for $i \in \{1, 2, ..., m\}, j \in \{0, 1, ..., m-1\}$, where m is a positive integer, and a selected i and j value comprising:

a bit q_{m-i} selected from the set $\{q_{m-1}, q_{m-2}, ..., q_{m-i}, ..., q_0\}$ of first product inputs based on the selected i value:

a bit p_j selected from the set $\{p_{m-1}, p_{m-2}, ..., p_j, ..., p_0\}$ of second product inputs based on the selected i value:

a bit g_j selected from the set $\{g_{m-1}, g_{m-2}, ..., g_j, ..., g_0\}$ of generator polynomial coefficients based on the selected j value;

9198061690 03:27:13 p.m. 08-11-2008 8 //11

Appl. No. 10/799,316 Amdt. dated August 11, 2008 Reply to Office Action of June 18, 2008

a most significant bit $Y(i-1)_{m-1}$ of a previous stage of GF multiplication circuit cells results;

a value of the rightmost neighbor bit $Y(i-1)_{j-1}$ of a previous stage of GF multiplication circuit cell results, wherein the rightmost neighbor bit $Y(i-1)_{j-1}$ is in relation to the present GF multiplication circuit cell producing result $Y(i)_j$ for the selected i and j values;

a logic device producing q_{m-i} AND p_i as output A;

a logic device producing Y(i-1)_{m-1} AND g_i as output B; and

a logic device producing A XOR B XOR Y(i-1)_{j-1} as result Y(i)_j to be utilized in one or more GF multiplication circuit cells or stored in a processor accessible storage unit.

8. (previously presented) The GF multiplication circuit cell of claim 7 disposed within an m-by-m array of interconnected GF multiplication circuit cells for producing a Galois Field (2^m) multiplication result Y, where m is a positive integer, further comprising:

input operand $q = (q_{m-1} q_{m-2} \dots q_0);$

input operand $p = (p_{m-1} p_{m-2} \dots p_0);$

input operand $g = (g_{m-1} g_{m-2} \dots g_0);$

the $Y(i-1)_{m-1}$ and the $Y(i-1)_{j-1}$ array border GF multiplication circuit cell input values set to 0; and

output Y result which is stored in a computer readable form.

9. (original) The GF multiplication circuit cell of claim 8 wherein the m-by-m array of interconnected GF multiplication circuit cells further comprises:

the interconnections of the GF multiplication circuit cells governed by the equation

03:27:23 p.m. 08-11-2008

9198061690 9/11

Appl. No. 10/799,316 Amdt. dated August 11, 2008 Reply to Office Action of June 18, 2008

$$Y(i) = Y(i-1) + (q_{m-i}*p + Y(i-1)_{m-1}*g)*x^{m-i}, i=1, 2, ..., m \text{ and where } Y(0) = 0.$$

- 10. (original) The GF multiplication circuit cell of claim 8 wherein the m-by-m array of GF multiplication circuit cells is further disposed within a grouping of multiple m-by-m arrays in a processor execution unit and further comprises:
- a GF (2^m) multiplication instruction with a data type field specifying at least one GF (2^m) multiplication operation; and

means for connecting the multiple m-by-m arrays inputs and outputs for performing at least one GF (2^m) multiplication in the execution of the GF (2^m) multiplication instruction.

- 11. (original) The GF multiplication circuit cell of claim 8 wherein the input operands $q = (q_{m-1} \ q_{m-2} \ \dots \ q_0), p = (p_{m-1} \ p_{m-2} \ \dots \ p_0), and g = (g_{m-1} \ g_{m-2} \ \dots \ g_0)$ are connected to read outputs of at least one storage unit in a processor system.
- 12. (original) The GF multiplication circuit cell of claim 8 wherein the output Y results are connected to at least one storage unit write inputs in a processor system.
- 13. (original) The GF multiplication circuit cell of claim 11 wherein the at least one storage unit is a processor accessible register file.
- 14. (original) The GF multiplication circuit cell of claim 12 wherein the at least one storage unit is a processor accessible register file.

15-19. (canceled)