Explicit Substitutions Part 1: STLC and Background

slides: https://github.com/donovancrichton/Talks

Donovan Crichton

April 2025

The goal of this talk

- How to read (theory) syntax.
- STLC Simply Typed Lambda Calculus.
- Substituions in anger De-Bruijn Indicies.
- Explicit Substitutions.
- Explicit Substitutions in modern type theory.

Natural Numbers (Peano)

$$\mathbb{N} ::= Z \mid S \mathbb{N}$$

Variable.

Application.

Abstraction.

$$V ::= x, y, z, ...$$

$$M, N ::= V$$

$$\mid M N$$

$$\mid \lambda V.M$$

$$\mathbb{N} ::= Z \mid S \mathbb{N}$$

Our <symbol> name...

$$\mathbb{N} ::= Z \mid S \mathbb{N}$$

...is defined in the following ways:

The letter Z by itself.

$$\mathbb{N} ::= \boxed{Z} \mid S \mathbb{N}$$

...or...

$$\mathbb{N} ::= Z || S \mathbb{N}$$

The letter S followed by a space, followed by any \mathbb{N} .

$$\mathbb{N} ::= Z | S \mathbb{N}$$

Our set of expressions/terms called V...

is given, or defined by:

$$V ::= x, y, z, ...$$
 $M, N ::= V$ Variable.

 $\mid M N$ Application.

 $\mid \lambda V.M$ Abstraction.

'x', 'y', 'z', or any other lower case letter (lower case words also implied)

Untyped Lambda Caluclus

$$V ::= \begin{bmatrix} x, y, z, \dots \end{bmatrix}$$

$$M, N ::= V$$

$$\mid M N$$

$$\mid \lambda V. M$$

Variable.

Application.

Our lambda terms, denoted by N or M (other capital letters implied).

are given by:

$$V ::= x, y, z, ...$$
 $M, N ::= V$ Variable.

 $\mid M N$ Application.

 $\mid \lambda V.M$ Abstraction.

A *V*...

$$V ::= x, y, z, \dots$$
 $M, N ::= \boxed{V}$ Variable. Application. $\mid \lambda V.M$ Abstraction.

...or,

Untyped Lambda Caluclus

$$V ::= x, y, z, ...$$

$$M, N ::= V$$

$$|| M N || \lambda V.M$$

Variable.

Application.

A lambda term (M), followed by a space, followed by another lambda term (N).

Untyped Lambda Caluclus

$$V ::= x, y, z, ...$$

$$M, N ::= V$$

$$| \boxed{M N}$$

$$| \lambda V.M$$

Variable.

Application.

Or,

Untyped Lambda Caluclus

$$V ::= x, y, z, ...$$

$$M, N ::= V$$

$$\mid M \mid N$$

$$\mid \lambda V \cdot M$$

Variable.

Application.

The λ symbol, followed by a V element, followed by a ".", followed by a lambda term (M)

$$V ::= x, y, z, ...$$
 $M, N ::= V$ Variable.
$$| M N$$
 Application.
$$| \overline{\lambda V. M} |$$
 Abstraction.

Why does Grammar look like this?

$$V ::= x, y, z, \dots$$
 $M, N ::= V$ Variable.
 $\mid M N$ Application.
 $\mid \lambda V.M$ Abstraction.

Why does Grammar look like this?

Untyped Lambda Caluclus

$$V ::= x, y, z, \dots$$
 $M, N ::= V$ Variable. Application. $| M N |$ Abstraction.

■ The smallest possible definition.

Why does Grammar look like this?

$$V ::= x, y, z, ...$$
 $M, N ::= V$ Variable.

 $\mid M N$ Application.

 $\mid \lambda V.M$ Abstraction.

- The smallest possible definition.
- Can be used to generate arbitrary elements.

What about in programming?

```
data Nat = Z | S Nat
1
2
   zero :: Nat
3
   zero = Z
5
   one :: Nat
   one = SZ
8
   two :: Nat
9
   two = S (S Z)
10
11
   three :: Nat
12
   three = S two
13
```

What about in programming?

Untyped Lambda Caluclus (Idris)

```
V: Type
    V = String
3
    data \Lambda = Var V
4
             | \Lambda pp \Lambda \Lambda
5
             Abs V A
6
7
    id : \Lambda
8
    id = Abs "x" (Var "x")
9
10
    const : \Lambda
11
    const = Abs "a" (Abs "b" (Var "a"))
12
```

Church Encoding - Naturals and Booleans

Church Booleans

True = $\lambda a. \lambda b. a$ False = $\lambda a. \lambda b. b$

Church Encoding - Naturals and Booleans

Church Booleans

True =
$$\lambda a. \lambda b. a$$

False = $\lambda a. \lambda b. b$

Church Naturals

$$0 = \lambda f. \lambda x. x$$

$$1 = \lambda f. \lambda x. f x$$

$$2 = \lambda f. \lambda x. f (f x)$$

$$\vdots$$

Church Encoding - Functions and Predicates

We use our definitions of True and False from earlier.

Functions and Predicates

Succ
$$(n, f, x) = \lambda n.\lambda f.\lambda x.\lambda f(n f x)$$

Add $(m, n, f, x) = \lambda m.\lambda n.\lambda f.\lambda x.m f(n f x)$
IsZero $(n) = \lambda n.n (\lambda x.$ False) True

Church Encoding - Functions and Predicates

As homework, trace through IsZero and convince yourself that IsZero 0 returns True, and IsZero for any other number returns false.

Functions and Predicates

Succ
$$(n, f, x) = \lambda n.\lambda f.\lambda x.\lambda f(n f x)$$

Add $(m, n, f, x) = \lambda m.\lambda n.\lambda f.\lambda x.m f(n f x)$
IsZero $(n) = \lambda n.n (\lambda x.\lambda a.\lambda b.b) \lambda a.\lambda b.a$

Reading Syntax: Typing Rules

Is this scary?

Typing Rules

$$\frac{\Gamma \vdash A \text{ Type} \qquad \Gamma, x : A \vdash B \text{ Type}}{\Gamma \vdash A \to B \text{ Type}} (\textit{Ty-Arrow})$$

$$\frac{\Gamma \vdash A \to B \text{ Type} \qquad \Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda (x : A) . M : A \to B} (\textit{Func})$$

$$\frac{\Gamma \vdash A \to B \text{ Type} \qquad \Gamma \vdash M : A \to B \qquad \Gamma \vdash N : A}{\Gamma \vdash M N : B} (\textit{App})$$

The current scope of our program.

$$\Gamma, \Delta ::= \diamond \mid \Gamma, x : A$$

Our context called Γ or Δ , etc...

$$\Gamma, \Delta ::= \diamond \mid \Gamma, x : A$$

Is defined by:

$$\Gamma, \Delta \square \Rightarrow | \Gamma, x : A$$

Empty (like the empty list) represented by \diamond .

$$\Gamma, \Delta ::= \Diamond \mid \Gamma, x : A$$

Or,

$$\Gamma, \Delta ::= \diamond \square \Gamma, x : A$$

Our program scope, extended with a variable 'x' of type 'A'.

$$\Gamma, \Delta ::= \diamond \mid \boxed{\Gamma, x : A}$$

Example Contexts

What is the context of this program?

```
-- assuming empty context here.
-- assuming A → B : Type here.
data Bool = True | False

not : Bool -> Bool
not True = False
not False = True
```

What is the context of this program?

```
-- assuming empty context here.
-- assuming A → B : Type here.
data Bool = True | False

not : Bool -> Bool
not True = False
not False = True
```

Answer.

 $\Gamma = ???$

What is the context of this program?

```
-- assuming empty context here.
-- assuming A → B : Type here.
data Bool = True | False

not : Bool -> Bool
not True = False
not False = True
```

$$\Gamma = \diamond, ...$$

What is the context of this program?

```
-- assuming empty context here.
-- assuming A → B : Type here.
data Bool = True | False

not : Bool -> Bool
not True = False
not False = True
```

$$\Gamma = \diamond, A \rightarrow B : \mathsf{Type}, ...$$

What is the context of this program?

```
1  -- assuming empty context here.
2  -- assuming A → B : Type here.
3  data Bool = True | False
4  
5  not : Bool -> Bool
6  not True = False
7  not False = True
```

```
\Gamma = \diamond, A \rightarrow B : Type, Bool : Type, True : Bool, False : Bool, ...
```

What is the context of this program?

```
-- assuming empty context here.
-- assuming A → B : Type here.
data Bool = True | False

not : Bool -> Bool
not True = False
not False = True
```

```
\Gamma = \diamond, A \rightarrow B : \mathsf{Type}, \mathsf{Bool} : \mathsf{Type}, \mathsf{True} : \mathsf{Bool}, \mathsf{False} : \mathsf{Bool}, \mathsf{not} : \mathsf{Bool} \rightarrow \mathsf{Bool}
```

If the derivations (true statements) hold above the line (premise), then the derivations hold below the line (conclusion).

...from an arbitrary context, Γ

...we may derive (produce, obtain...)

...an arbitrary type, called A

$$\frac{\Gamma \vdash \boxed{A \text{ Type}}}{(\textit{Ty-Arrow})}$$

AND

The Type Formation Rule

 $\frac{\Gamma \vdash A \text{ Type}}{} (\textit{Ty-Arrow})$

...From the same arbitrary context Γ , extended with a variable 'x' of type A

The Type Formation Rule $\frac{\Gamma \vdash A \text{ Type} \qquad \boxed{\Gamma, x : A}}{-(\textit{Ty-Arrow})}$

...we may derive

$$\frac{\Gamma \vdash A \text{ Type} \qquad \Gamma, x : A \vdash}{(\textit{Ty-Arrow})}$$

some arbitrary type B.

$$\frac{\Gamma \vdash A \text{ Type} \qquad \Gamma, x : A \vdash \boxed{B \text{ Type}}}{(Ty\text{-}Arrow)}$$

Then, from that arbitrary Γ (program scope)

$$\frac{\Gamma \vdash A \text{ Type} \qquad \Gamma, x : A \vdash B \text{ Type}}{\Gamma} (\textit{Ty-Arrow})$$

...we may derive

$$\frac{\Gamma \vdash A \text{ Type} \qquad \Gamma, x : A \vdash B \text{ Type}}{\Gamma \vdash} (\textit{Ty-Arrow})$$

...an arrow type between them

$$\frac{\Gamma \vdash A \text{ Type} \qquad \Gamma, x : A \vdash B \text{ Type}}{\Gamma \vdash A \rightarrow B} (Ty\text{-}Arrow)$$

...that is also a type.

$$\frac{\Gamma \vdash A \; \mathsf{Type} \qquad \Gamma, x : A \vdash B \; \mathsf{Type}}{\Gamma \vdash A \to B \; \mathsf{Type}} (\mathit{Ty-Arrow})$$

If the premises hold above, so the conclusion holds below.

From our program scope Γ we can obtain an arbitrary function type $A \rightarrow B$.

..And..

$$\frac{\Gamma \vdash A \to B \text{ Type}}{} (Abs)$$

From our program scope Γ , x: A we can derive a term M: B.

$$\frac{\Gamma \vdash A \to B \text{ Type} \qquad \boxed{\Gamma, x : A \vdash M : B}}{(Abs)}$$

Then we may derive a lambda abstraction term, where x has type A and the body is M, where the entire abstraction has type $A \rightarrow B$.

$$\frac{\Gamma \vdash A \to B \text{ Type} \qquad \Gamma, x : A \vdash M : B}{\left[\Gamma \vdash \lambda(x : A).M : A \to B\right]} (Abs)$$

If the premises hold above, so the conclusion holds below.

From our program scope Γ we can obtain some term M with type $A \rightarrow B$.

The Function Term Eliminator

$$\frac{\boxed{\Gamma \vdash M : A \to B}}{} (App)$$

And, from Γ we can also obtain a term N of type A.

The Function Term Eliminator

$$\frac{\Gamma \vdash M : A \to B \qquad \boxed{\Gamma \vdash N : A}}{(App)}$$

Then we can produce a term M N of type B.

The Function Term Eliminator

$$\frac{\Gamma \vdash M : A \to B \qquad \Gamma \vdash N : A}{\left[\Gamma \vdash M \ N : B\right]} (App)$$

The Simply Typed Lambda Calculus: Grammar

The Simply Typed Lambda Calculus: Grammar

$$V ::= x, y, z, \dots$$

Variable Set

The Simply Typed Lambda Calculus: Grammar

$$V ::= x, y, z, \dots$$

$$\alpha, \beta ::= * \mid \alpha \to \beta$$

Variable Set

Types

The Simply Typed Lambda Calculus: Grammar

$$V ::= x, y, z, \dots$$

$$\alpha,\beta ::= \ * \mid \alpha \to \beta$$

$$M, N ::= V \mid M N \mid \lambda(V : \alpha).M$$

Variable Set

Types

Terms

The Simply Typed Lambda Calculus: Grammar

$$\begin{array}{lll} \textit{V} ::= & \textit{x}, \textit{y}, \textit{z}, \ \dots & & \text{Variable Set} \\ \alpha, \beta ::= & * \mid \alpha \rightarrow \beta & & \text{Types} \\ \textit{M}, \textit{N} ::= & \textit{V} \mid \textit{M} \; \textit{N} \mid \lambda(\textit{V} : \alpha). \textit{M} & & \text{Terms} \\ & \Gamma ::= & \diamond \mid \Gamma, \textit{x} : \alpha & & \text{Contexts} \end{array}$$

The Simply Typed Lambda Calculus: Grammar

$$V::=x,y,z,\ldots$$
 Variable Set $\alpha,\beta::=*\mid \alpha \to \beta$ Types $M,N::=V\mid MN\mid \lambda(V:\alpha).M$ Terms $\Gamma::=\diamond\mid \Gamma,x:\alpha$ Contexts

Why $x : \alpha$ in the Contexts set, and not $V : \alpha$?

The Simply Typed Lambda Calculus: Grammar

$$\begin{array}{lll} \textit{V} ::= & \textit{x}, \textit{y}, \textit{z}, \ \dots & & \text{Variable Set} \\ \alpha, \beta ::= & * \mid \alpha \rightarrow \beta & & \text{Types} \\ \textit{M}, \textit{N} ::= & \textit{V} \mid \textit{M} \; \textit{N} \mid \lambda(\textit{V} : \alpha). \textit{M} & & \text{Terms} \\ & \Gamma ::= & \diamond \mid \Gamma, x : \alpha & & \text{Contexts} \end{array}$$

Why $x : \alpha$ in the Contexts set, and not $V : \alpha$?

V is the variable set in our *object* language, meaning it is part of the syntax of the language we are defining.

x represents a variable in our meta language - the language we use to specify and reason about our object language.

STLC: Typing Rules/Judgements

STLC: Typing Rules

$$\frac{\Gamma \vdash \alpha \text{ Type} \qquad \Gamma, x : \alpha \vdash \beta \text{ Type}}{\Gamma \vdash \alpha \rightarrow \beta \text{ Type}} (\rightarrow \text{-Form})$$

STLC: Typing Rules/Judgements

STLC: Typing Rules

$$\frac{\Gamma \vdash \alpha \; \mathsf{Type} \qquad \Gamma, x : \alpha \vdash \beta \; \mathsf{Type}}{\Gamma \vdash \alpha \to \beta \; \mathsf{Type}} (\to \mathsf{-Form})$$

$$\frac{\Gamma \vdash \mathsf{alpha} \to \beta \; \mathsf{Type} \qquad \Gamma, x : \alpha \vdash M : \beta}{\Gamma \vdash \lambda (x : \alpha) . M : \alpha \to \beta} (\to \mathsf{-Intro})$$

STLC: Typing Rules/Judgements

STLC: Typing Rules

$$\frac{\Gamma \vdash \alpha \; \mathsf{Type} \qquad \Gamma, x : \alpha \vdash \beta \; \mathsf{Type}}{\Gamma \vdash \alpha \to \beta \; \mathsf{Type}} (\to -\mathit{Form})$$

$$\frac{\Gamma \vdash \alpha \to \beta \; \mathsf{Type} \qquad \Gamma, x : \alpha \vdash M : \beta}{\Gamma \vdash \lambda (x : \alpha).M : \alpha \to \beta} (\to -\mathit{Intro})$$

$$\frac{\Gamma \vdash \alpha \to \beta \; \mathsf{Type} \qquad \Gamma \vdash M : \alpha \to \beta \qquad \Gamma \vdash N : \alpha}{\Gamma \vdash M \; N : \beta} (\to -\mathit{Elim})$$

Free Variables

FV

A variable is x considered *free* in a lambda term if it refers to a binding outside the *scope* of the current lambda term. Defined inductively.

Free Variables

The set FV of free variables.

A variable is x considered *free* in a lambda term if it refers to a binding outside the *scope* of the current lambda term. Defined inductively.

$$FV(V) = V$$

$$FV(M N) = FV(M) \cup FV(N)$$

$$FV(\lambda(V : \alpha).M) = FV(M) \setminus V$$

Free Variables

The set FV of free variables.

A variable is x considered *free* in a lambda term if it refers to a binding outside the *scope* of the current lambda term. Defined inductively.

$$FV(V) = V$$

$$FV(M N) = FV(M) \cup FV(N)$$

$$FV(\lambda(V : \alpha).M) = FV(M) \setminus V$$

Examples

$$\lambda(x:\alpha\to\beta).\lambda(y:\beta).xy \qquad FV=\emptyset$$
$$\lambda(x:\alpha\to\beta).\boxed{\lambda(y:\beta).xy} \qquad FV=\{x\}$$

$$\lambda(x:\beta).x = \lambda(y:\beta).y$$

Two lambda terms are said to be α -equivalent if we can rename bound variables and still have the same term. We may α -convert or α -rename a lambda term into another α -equivalence term.

$$\lambda(x:\beta).x = \lambda(y:\beta).y$$

Two lambda terms are said to be α -equivalent if we can rename bound variables and still have the same term. We may α -convert or α -rename a lambda term into another α -equivalence term.

Examples of α -equivalence.

$$\lambda(x:\beta).x = \lambda(y:\beta).y$$

$$\lambda(x:\beta).x = \lambda(y:\beta).y$$

Two lambda terms are said to be α -equivalent if we can rename bound variables and still have the same term. We may α -convert or α -rename a lambda term into another α -equivalence term.

Examples of α -equivalence.

$$\lambda(x:\beta).x = \lambda(y:\beta).y$$
$$\lambda(x:\beta).\lambda(x:\beta).x = \lambda(y:\beta).\lambda(x:\beta).x$$

$$\lambda(x:\beta).x = \lambda(y:\beta).y$$

Two lambda terms are said to be α -equivalent if we can rename bound variables and still have the same term. We may α -convert or α -rename a lambda term into another α -equivalence term.

Examples of α -equivalence, and non-equivalence.

$$\lambda(x:\beta).x = \lambda(y:\beta).y$$
$$\lambda(x:\beta).\lambda(x:\beta).x = \lambda(y:\beta).\lambda(x:\beta).x$$
$$\lambda(x:\beta).\lambda(x:\beta).x \neq \lambda(y:\beta).\lambda(x:\beta).y$$

M[x := N] or M[N/x] or $M[x \mapsto N]$

Substitution is a *meta* operation that allows us to perform computation with lambda calculus. We may replace (almost) any variable x that occurs in term M with term N.

$$M[x := N]$$
 or $M[N/x]$ or $M[x \mapsto N]$

Substitution is a meta operation that allows us to perform computation with lambda calculus. We may replace (almost) any variable x that occurs in term M with term N.

Example Substitutions

$$(\lambda(x:\mathbb{N}).2+x)[3/x]=\lambda(x:\mathbb{N}).2+3$$

$$M[x := N]$$
 or $M[N/x]$ or $M[x \mapsto N]$

Substitution is a meta operation that allows us to perform computation with lambda calculus. We may replace (almost) any variable x that occurs in term M with term N.

Example Substitutions

$$(\lambda(x:\mathbb{N}).2+x)[3/x] = \lambda(x:\mathbb{N}).2+3$$
$$(\lambda(x:\beta\to\beta).x)[\lambda(y:\beta).y/x] = \lambda(x:\beta\to\beta).\lambda(y:\beta).y$$

M[x := N] or M[N/x] or $M[x \mapsto N]$

Substitution is a *meta* operation that allows us to perform computation with lambda calculus. We may replace (almost) any variable x that occurs in term M with term N.

Example Substitutions

$$(\lambda(x:\mathbb{N}).2+x)[3/x] = \lambda(x:\mathbb{N}).2+3$$
$$(\lambda(x:\beta\to\beta).x)[\lambda(y:\beta).y/x] = \lambda(x:\beta\to\beta).\lambda(y:\beta).y$$
$$(\lambda(x:\beta).y)[x/y] \neq \lambda(x:\beta).x$$

Rule 1. x[T/x] = T

When substituting into a variable, we just have the term.

Rule 1.
$$x[T/x] = T$$

When substituting into a variable, we just have the term.

Rule 2.
$$y[T/x] = y$$
 if $x \neq y$

Substituting by a different variable does nothing.

Rule 1.
$$x[T/x] = T$$

When substituting into a variable, we just have the term.

Rule 2.
$$y[T/x] = y$$
 if $x \neq y$

Substituting by a different variable does nothing.

Rule 3.
$$(M \ N)[T/x] = M[T/x] \ N[T/x]$$

Substitution distributes over application.

Rule 1.
$$x[T/x] = T$$

When substituting into a variable, we just have the term.

Rule 2.
$$y[T/x] = y$$
 if $x \neq y$

Substituting by a different variable does nothing.

Rule 3.
$$(M \ N)[T/x] = M[T/x] \ N[T/x]$$

Substitution distributes over application.

Rule 4.
$$(\lambda(x:\alpha).M)[T/x] = \lambda(x:\alpha).M$$

Abstraction substitution is neutral for the binding variable.

Rule 1.
$$x[T/x] = T$$

When substituting into a variable, we just have the term.

Rule 2.
$$y[T/x] = y$$
 if $x \neq y$

Substituting by a different variable does nothing.

Rule 3.
$$(M \ N)[T/x] = M[T/x] \ N[T/x]$$

Substitution distributes over application.

Rule 4.
$$(\lambda(x:\alpha).M)[T/x] = \lambda(x:\alpha).M$$

Abstraction substitution is neutral for the binding variable.

Rule 5.
$$(\lambda(y:\alpha).M)[T/x] = \lambda(y:\alpha).M[T/x]$$
 if: $x \neq y$ and $y \notin FV(T)$

Substitution is conditional through an abstraction body.

Computation

β -reduction: $(\lambda(x:\alpha).M) N \to M[N/x]$

 β -reduction is the essence of computation for the STLC. If we see an application after an abstraction, we may perform the given substitution then strip off the lambda binder.

Computation

$$\beta$$
-reduction: $(\lambda(x:\alpha).M) N \to M[N/x]$

 β -reduction is the essence of computation for the STLC. If we see an application after an abstraction, we may perform the given substitution then strip off the lambda binder.

Example of beta-reduction.

$$(\lambda(x:\alpha).x)\ y \to \lambda(x:\alpha).x[y/x]$$
 replace abs-app with substitution. $\to \lambda(x:\alpha).y$ perform the substitution. $\to y$ eliminate the relevant binder.

De Bruijn Indices: (1972) Lambda Calculus Notation with Nameless Dummies ...

Nicolaas Govert De Bruijn

Replacing letters with numbers (why?)

Instead of using variable names to denote variable terms, we use numbers to denote a distance from the relevant binder. Best shown by example.

Replacing letters with numbers (why?)

Instead of using variable names to denote variable terms, we use numbers to denote a distance from the relevant binder. Best shown by example.

De-Bruijn Indexed Lambda Term Examples

$$\lambda(x:\alpha).\lambda(y:\alpha).\lambda(z:\alpha).y(xz) = \lambda\alpha.\lambda\alpha.\lambda\alpha.1 (2 0)$$

Replacing letters with numbers (why?)

Instead of using variable names to denote variable terms, we use numbers to denote a distance from the relevant binder. Best shown by example.

De-Bruijn Indexed Lambda Term Examples

$$\lambda(x:\alpha).\lambda(y:\alpha).\lambda(z:\alpha).y(xz) = \lambda\alpha.\lambda\alpha.\lambda\alpha.1 (2 0)$$
$$\lambda(x:\alpha).x = \lambda\alpha.0$$

Replacing letters with numbers (why?)

Instead of using variable names to denote variable terms, we use numbers to denote a distance from the relevant binder. Best shown by example.

De-Bruijn Indexed Lambda Term Examples

$$\lambda(x:\alpha).\lambda(y:\alpha).\lambda(z:\alpha).y(xz) = \lambda\alpha.\lambda\alpha.\lambda\alpha.2 (3 1)$$
$$\lambda(x:\alpha).x = \lambda\alpha.1$$
$$\lambda(y:\alpha).y = \lambda\alpha.1$$

Lift-and-shift

Substitution: Given $(\lambda \alpha.M)$ N

- 1. Find the instances of the binding sites in $\lambda \alpha.M$.
- 2. Decrement the free variables in M to account for the removal of the outer binder.
- 3. Replace the binding sites with N but increment any necessary free variables so they occur under the appropriate number of binders.
- (I think we need an example).

Lift-and-shift

1. Identify binding sites in the λ abstraction.

$$\lambda \alpha. \lambda \beta. 2$$
 3)) ($\lambda \alpha. 1$ 4) $\rightarrow \lambda \alpha. \lambda \beta. \square$ 3

2. Decrement free variables that are affected by the removal of the outer binder.

$$\lambda \alpha. \lambda \beta. \square 3 \rightarrow \lambda \beta. \square 2$$

3. Increment the free variables in the applied term to match the number of binders.

$$\lambda \beta. \square \ 2 \rightarrow \lambda \beta. (\lambda \alpha. 1 \ 4 + 1) \ 2$$

 $\lambda \beta. \square \ 2 \rightarrow \lambda \beta. (\lambda \alpha. 1 \ 5) \ 2$

Explicit Substitutions: (1991) Explicit Substitutions

Luca Cardelli

Pierre-Louis Curien

Jean-Jacques Levy

STLC with Explicit Substitutions: Grammar

$$\alpha, \beta ::= * \mid \alpha \to \beta$$

Types

STLC with Explicit Substitutions: Grammar

$$\begin{array}{ll} \alpha,\beta::=\ *\mid \alpha \to \beta & \text{Types} \\ \textit{M},\textit{N}::=1\ \mid \textit{M}\;\textit{N}\mid \lambda\alpha.\textit{M}\mid \textit{M}[\gamma] & \text{Terms} \end{array}$$

STLC with Explicit Substitutions: Grammar

$$\begin{array}{ll} \alpha,\beta::=\ *\mid \alpha \to \beta & \text{Types} \\ \textit{M},\textit{N}::=1\mid \textit{M}\;\textit{N}\mid \lambda\alpha.\textit{M}\mid \textit{M}[\gamma] & \text{Terms} \\ \gamma,\delta::=\textit{id}\mid \uparrow\mid \gamma,\textit{M}:\alpha\mid \gamma\circ\delta & \text{Substitutions} \end{array}$$

STLC with Explicit Substitutions: Grammar

$$\begin{array}{ll} \alpha,\beta ::= \ * \mid \alpha \to \beta & \text{Types} \\ \textit{M},\textit{N} ::= 1 \mid \textit{M} \; \textit{N} \mid \lambda \alpha. \textit{M} \mid \textit{M}[\gamma] & \text{Terms} \\ \gamma,\delta ::= \textit{id} \mid \uparrow \mid \gamma,\textit{M} : \alpha \mid \gamma \circ \delta & \text{Substitutions} \\ \Gamma ::= \ \diamond \mid \Gamma,\alpha & \text{Contexts} \end{array}$$

Additional Terms

$1 \in \mathsf{Terms}$

 ${\bf 1}$ is De Bruijn index ${\bf 1}$, the variable pointing to the most recent binder.

This replaces our need for a variable term in our lambda calculus.

Additional Terms

$1 \in \mathsf{Terms}$

1 is De Bruijn index 1, the variable pointing to the most recent binder.

This replaces our need for a variable term in our lambda calculus.

$M[\gamma] \in \mathsf{Terms}$

A substitution of γ in \emph{M} because \emph{gamma} tells us what and where.

Explicit Substitutions