1. Интегриращо звено

ДУ:
$$\frac{dy(t)}{dt} = ku(t)$$

$$dt$$

$$\Box \Phi: \qquad pY(p) = kU(p),$$

$$W(p) = \frac{Y(p)}{U(p)} = \frac{k}{p}$$

$$W(p) = \frac{k}{Tp}, \quad W(p) = \frac{1}{Tp}$$

(Други записи:

Пример:

$$W(p) = \frac{U(p)}{I(p)} = \frac{\frac{1}{pC}I(p)}{I(p)} = \frac{1}{pC} = \frac{k}{p}$$

$$k = \frac{1}{C}$$

ПХ:
$$u(t) = 1(t), \quad \frac{dy(t)}{dt} = k.1(t)$$
 $dy = kdt, \quad \Rightarrow \quad y(t) = kt$ (при нулеви начални условия)

TX:
$$u(t) = \delta(t)$$
,
$$w(t) = \frac{dh(t)}{dt} = \frac{d}{dt}(kt) = k$$

$$\mathsf{Y} \mathsf{\Pi} \Phi \colon \qquad W(j\omega) = \frac{k}{j\omega} \cdot \frac{j}{j} = -j\frac{k}{\omega}$$

PYO:
$$U(\omega) = \text{Re}W(j\omega) = 0$$

ИЧФ:
$$V(\omega) = \operatorname{Im} W(j\omega) = -\frac{k}{\omega}$$

ω	0	∞
U	0	0
V	$-\infty$	0

A4X:
$$A(\omega) = \sqrt{U^2(\omega) + V^2(\omega)} = \sqrt{0^2 + \left(\frac{-k}{\omega}\right)^2} = \frac{k}{\omega}$$

ΦΥΧ:
$$\varphi(\omega) = \arctan \frac{V(\omega)}{U(\omega)} = \arctan \frac{-k}{\omega} = -\frac{\pi}{2}$$

ЛАЧХ:
$$L(\omega) = 20 \lg A(\omega) = 20 \lg \frac{k}{\omega} = 20 \lg k - 20 \lg \omega$$

$$\frac{\Delta L}{\Delta \omega} = ?$$

Нека
$$\Delta \omega = 1 \operatorname{dec}$$

$$\phi_1$$
 ϕ_2 ϕ_3 ϕ_4 ϕ_4 ϕ_5 ϕ_6 ϕ_6

$$L(\omega_1) = 20 \lg k - 20 \lg \omega_1$$
$$L(10\omega_1) = 20 \lg k - 20 \lg 10\omega_1$$

$$\Delta L = L(10\omega_1) - L(\omega_1) =$$
= 20 \lg k - 20 \lg 10\omega_1 - 20 \lg k + 20 \lg \omega_1 =
= -20 \lg 10 = -20 \dB

ЛАЧХ:
$$\frac{\Delta L}{\Delta \omega} = -20 \frac{\text{dB}}{\text{dec}};$$
 $\omega = 1$, $L(1) = 20 \log k$

2. Идеално диференциращо звено

ДУ:
$$y(t) = k \frac{du(t)}{dt}$$

$$\Box \Phi \colon \qquad Y(p) = kpU(p), \qquad W(p) = \frac{Y(p)}{U(p)} = kp$$

ΠX:
$$u(t) = 1(t)$$
$$h(t) = k \frac{d1(t)}{dt} = k\delta(t)$$

TX:
$$u(t) = \delta(t)$$

 $w(t) = k \frac{d\delta(t)}{dt} = k\dot{\delta}(t)$

ЧПФ:
$$W(j\omega) = jk\omega = U(\omega) + jV(\omega)$$

PY
$$\Phi$$
: $U(\omega) = 0$

ИЧФ:
$$V(\omega) = k\omega$$

ω	0	∞
U	0	0
V	0	∞

АЧХ:

$$A(\omega) = \sqrt{U^{2}(\omega) + V^{2}(\omega)} =$$
$$= \sqrt{0^{2} + (k\omega)^{2}} = k\omega$$

ФЧХ:

$$\varphi(\omega) = \operatorname{arctg} \frac{V(\omega)}{U(\omega)} =$$

$$= \operatorname{arctg} \frac{k\omega}{0} = \frac{\pi}{2}$$

ЛАЧХ:
$$L(\omega) = 20 \lg A(\omega) = 20 \lg k\omega = 20 \lg k + 20 \lg \omega$$

$$\Delta L = 20 \lg k$$
, $\Delta \omega = ?$

Нека $\Delta \omega = 1 \operatorname{dec}$

$$\frac{\circ}{\omega_1}$$
 $10\,\omega_1$

$$L(\omega_1) = 20 \lg k + 20 \lg \omega_1$$

$$L(10\omega_1) = 20 \lg k + 20 \lg 10\omega_1$$

$$\Delta L = L(10\omega_1) - L(\omega_1) =$$
= 20 \lg k + 20 \lg 10\omega_1 - 20 \lg k - 20 \lg \omega_1 =
= 20 \lg 10 = 20 \dB

