King County Housing Data

Presented By:

Rosario Fabian Ashay Kargaonkar Dharun Selvan

Table of Contents:

Introduction
Dataset
Pre-Processing
Exploration
Modeling
Implementation
Conclusion

INTRODUCTION

The aim of this project is to identify which variables explain the house price in this specific city King County, Washington State, USA.

The King County is a county located in the U.S. state of Washington. The population was 2,233,163 in the 2018 census estimate, making it the most populous county in Washington, and the 12th-most populous in the United States. This is the reason we selected the king county's data housing dataset.

The dataset

The dataset consisted of historic data of houses sold between May 2014 to May 2015. We will predict the price of those houses in King County in 2020 and make people understand which factors are responsible for the price of property. The dataset was obtained from Kaggle. The Original dataset consisted of 21 variables and 21613 observations.

In order to complete our model used the following software in this project:

1. SAS 9.4

For Creating models.

2. IBM SPSS SAS and Statistics 26

For Pre-processing, Data Exploration.

3. MS EXCEL 2019

For Pre-processing.

4. Jupyter Notebook

For pre-processing using Python V3.7 with third party libraries.

5. Visual Studio 2019

For creating application in Visual Basic using C sharp programming language that predicts the price of the house based on user input.

6. M.S. Word 2019

For Report.

Description of variables:

1. ID:

This variable gives the house's ID to recognize each observation.

2. Date:

This variable tells when this observation was made. The value of date ranges from 1900 to 2015.

3. Price:

This variable tells the current price of the house. This is a dependent variable who's value we are trying to predict.

4. Bedrooms:

This variable tells the number of bedrooms that are present in a house. The value of bedrooms ranges from 0 to 11.

5. Bathrooms:

This variable tells the number of bathrooms that are present in a house. The value of bedrooms ranges from 0 to 8.

6. Sqft_Living:

This variable gives the carpet area of the house.

7. Sqft_Lot:

This variable gives the total area of the house, which includes Sqft_Living

8. Floors:

This variable tells the number of floors that are present in a house. The value of floors ranges from 1-3.5.

9. Waterfront:

This variable tells if there is a waterbody near a house. It can be a lake, river etc. If the house has a waterfront view, then the value is 1 else it is 0.

10. View:

This variable tells us if there is a view nearby like mountain, historical monument, etcetera. The value of View ranges from 0 to 4, where 0 means no views and 4 means that there are 4 views surrounding the house.

11. Condition:

This variable tells the overall condition of the house. The value of condition ranges from 0 to 5, where 0 is the worst condition and 5 means the best condition.

12. Grade:

This variable is the evaluation of construction materials and level of craftmanship used to build the houses. The value of grade ranges from 0 to 13, where 0 is a bad grade and 13 is the best.

13. Sqft above:

This variable tells the total area excluding the basement area. It's the area above the basement.

14. Sqft_basement:

This variable tells only the area of basement and ignores the rest of the area. Ignored area might include the areas of the floors above the basement or the area of terrace.

15. Yr_built:

This variable tells the year of when the house was built. The value of Yr_built ranges from year 1900 to 2015

16. Yr renovate:

This variable tells the year when the house was renovated.

17. Zipcode:

This variable tells the zip code of where the house is situated.

18. Lat:

This variable gives the latitude of the house location.

19. Long:

This variable gives the longitude of the house location.

20. Sqft_living15:

This variable gives the average house square footage of 15 closest houses.

21.Sqft lot15:

This variable gives the average of the lot square footage of the 15 closest house.

Pre-Processing

Multiple tools were used to do data pre-processing. Those tools are IBM, SAS SPSS Statistics 26, Microsoft Excel 2019 and Jupiter Notebook (Python 3.7).

Missing Values Analysis

The above snapshot shows how we imported the file is Jupiter Notebook.

```
<class 'pandas.core.frame.DataFrame'
Cclass pands.core.frame.Datarrame >
RangeIndex: 21613 entries, 0 to 21612
Data columns (total 17 columns):
id 21613 non-null int64
date 21613 non-null object
price 21613 non-null float64
                          21613 non-null int64
21613 non-null float64
bedrooms
bathrooms
sqft_living
                              21613 non-null int64
sqft_lot
floors
                              21613 non-null int64
21613 non-null float64
waterfront
                               21613 non-null int64
view
condition
                                21613 non-null int64
                               21613 non-null int64
grade
sqft_above
                               21613 non-null int64
                               21611 non-null float64

        sqft_basement
        21613 non-null int64

        yr_built
        21613 non-null int64

        yr_renovated
        21613 non-null int64

zipcode 21613 non-null int64
dtypes: float64(4), int64(12), object(1)
memory usage: 2.8+ MB
```

Then we checked the data types of each variables.

The above snapshot shows the variable **sqft_above** have 2 missing value.

```
In [25]: mean_sqft_ab=int(data.sqft_above.mean())
In [26]: mean_sqft_ab
Out[26]: 1788
In [27]: data.sqft_above.fillna(mean_sqft_ab,axis=0,inplace=True)
```

So, we planned to fill those missing value with different kinds of methodologies, means, boixplot analysis

Analysis of Outliers

It was made in SAS

Variable: Size of buildings

Variable: Price

Now In spss,

The above snapshot of **sqft_living_t** shows that there are no outliers after transformation.

The above snapshot of **price_t** shows that there are no outliers after t ransformation.

Then we analysed the outliers for bedrooms.

Then we looked for outliers in sqft_lot.

<u>Decision:</u> In four variables, we replaced outliers following the next formula. In other cases the specific observations were eliminated. The qualitative variables did not have these problems.

Main changes:

Price: The variable was transformed the maximum value from \$770000000 to \$1129574 which is calculated using the same formula and saved it in a new variable called **price_t**.

Size of building: The boxplot shows that there is many outliers. We found that we had almost 2500+ outliers. So we planned to do log transformation to the it.

Bedrooms: We deleted only one row that has 33 bedrooms and planned to keep all other outliers.

It was made by SPSS

These dataset do not have string values, therefore we did not have string – processing.

Exploration

After the first – Preprocessing, we started to analyze each variable again in SAS, we check main statistics values and distributions in order to understand better the dataset and then creating new variables.

Variable Size

N	20279	Sum Weights	20279
Mean	1951.22087	Sum Observations	39568808
Std Deviation	732.860753	Variance	537084.883
Skewness	0.58368018	Kurtosis	-0.1358301
Uncorrected SS	8.80985E10	Corrected SS	1.0891E10
Coeff Variation	37.5590875	Std Error Mean	5.1463367

Basic Statistical Measures

Location		Variability		
Mean	1951.221	Std Deviation	732.86075	
Median	1850.000	Variance	537085	
Mode	1300.000	Range	3940	
		Interquartile Range	1020	

Tests for Location: Mu0=0

Test	5	Statistic	p Val	ue
Student's t	t	379.1475	Pr > t	<.0001
Sign	M	10139.5	Pr >= M	<.0001
Signed Rank	S	1.0281E8	Pr >= S	<.0001

Quantiles (Definition 5)

Level	Quantile
100% Max	4230
99%	3890
95%	3330
90%	3000
75% Q3	2420
50% Median	1850
25% Q1	1400
10%	1070
5%	920
1%	720
0% Min	290

Extreme Observations

Lowest		High	est
Value	Obs	Value	Obs
290	20279	4230	2
370	20278	4230	3
380	20277	4230	4
384	20276	4230	5
390	20275	4230	6

Variable xxxx

The UNIVARIATE Procedure Variable: sqft_lot

Moments

N	21613	Sum Weights	21613
Mean	15106.9676	Sum Observations	326506890
Std Deviation	41420.5115	Variance	1715658774
Skewness	13.060019	Kurtosis	285.07782
Uncorrected SS	4.20113E13	Corrected SS	3.70788E13
Coeff Variation	274.181508	Std Error Mean	281.746112

Basic Statistical Measures

Location		Variabilit	y
Mean	15106.97	Std Deviation	41421
Median	7618.00	Variance	1715658774
Mode	5000.00	Range	1650839
		Interquartile Range	5648

Tests for Location: Mu0=0

Test	Statistic		p Value	
Student's t	t	53.61908	Pr > t	<.0001
Sign	M	10806.5	Pr >= M	<.0001
Signed Rank	S	1.1679E8	Pr >= S	<.0001

Quantiles (Definition 5)

Level	Quantile
100% Max	1651359
99%	213008
95%	43350
90%	21399
75% Q3	<mark>10688</mark>

Quantiles (Definition 5)

Level	Quantile
50% Median	7618
25% Q1	5040
10%	3322
5%	1800
1%	1013
0% Min	520

Extreme Observations

Lowest		Highest		
Value	Obs	Value	Obs	
520	15744	982998	3950	
572	5827	1024068	7770	
600	7590	1074218	7648	
609	3453	1164794	17320	
635	20605	1651359	1720	

Creating the new variables:

Variable Zipcode: This variable is like a small cluster of city, we divide in 4 zones according to zipcode.

a. Binning was done by selecting Visual Binning option in Analyse menu. 3 cuts were given with equal width.

```
* Visual Binning.

*zipcode.

RECODE zipcode (MISSING=COPY) (LO THRU 98033=1) (LO THRU 98065=2) (LO THRU 98118=3) (LO THRU HI=4)

(ELSE=SYSMIS) INTO zip_range3.

VARIABLE LABELS zip_range3 'zipcode (Binned)'.

FORMATS zip_range3 (F5.0).

VALUE LABELS zip_range3 1 '' 2 '' 3 '' 4 ''.

VARIABLE LEVEL zip_range3 (ORDINAL).

EXECUTE.
```

b. Dummy variables are created using selecting Decode Variables into Different Variable option in Analyse menu. 3 dummy variables are created as **zip1**, **zip2**, **zip3**.

Variable Year: It is is a date variable, it was changed in order to have number of years of building.

- year_1 for buildings built from 2013 to 2015.
- Year_2 for buildings built from 2003 to 2012. It was done using SPSS and it's log is shown below.

```
DATASET NAME DataSet4 WINDOW=FRONT.

SORT CASES BY yr_built (A).

SORT CASES BY yr_built (D).

RECODE yr_built (2015=1) (2014=1) (2013=1) INTO year_1.

VARIABLE LABELS year_1 'year_1'.

EXECUTE.

RECODE yr_built (2003 thru 2012=1) (ELSE=0) INTO year_2.

VARIABLE LABELS year_2 'year_2'.

EXECUTE.
```

Dummy : Variable View: It is converted into dummy variable as **view_t**. 0 means no views and 1 means the house has view(s).

Variable Renovated: It is a good nice smart variable, that we created.

In original data set, **yr_renovated** has 0 as the home that hasn't renovated. With that variable we created 2 new variables as **yr renovated t** and **yr renovated d**.

- **yr_renovated_t** is the age of the building from renovation. This was done in Ms Excel using the formula =2020-yr_renovated. (Only for those renovated houses. Remaining will be zero.)
- **yr_renovated_d** is a dummy variable. 0 means it's not renovated and 1 means it's renovated. This was done using SPSS.

yr_renovated	yr_renovated_age	yr_renovated_d
1994	21	1
2011	4	1
2014	1	1
2002	13	1
2000	15	1
2002	13	1
1982	33	1
2005	10	1
2014	1	1
2014	1	1
1992	23	1
1989	26	1
1999	16	1
1997	18	1
2006	9	1
1987	28	1
1995	20	1
2003	12	1
		-

The above screenshot shows the output for yr_renovation.

Then using **sqft_basement** variable, we created a new dummy variable **sqft_basement_t**. 0 means no basement and 1 means the house has basement. Screenshot with the converted dummy variable along with original value is shown below. This was also done usind SPSS's Decode variable into different value is used.

sqft_basement	sqft_basement_t
0	0
180	1
0	0
0	0
0	0
0	0
0	0
340	1
390	1
1130	1
0	0
0	0
500	1
0	0
0	0
750	1
1510	1
0	0

More variables:

We created a new variable called **sqft_diff** using **sqft_built** and **sqft_lot**. It is the total difference between total area of the lot and total area of the building. It was done using excel and the formula is =sqft_lot-sqft_built.

yr_built	yr_age
1998	22
1940	80
2014	6
1964	56
1986	34
1914	106
1968	52
2004	16
2008	12
1960	60
1948	72
1965	55
1984	36
1990	30
1944	76
1966	54
1990	30
1963	57
2008	12

We also created a new variable called yr_age . It is the total age of the building from built. It was calculated using the formula =2020-yr_built.

sqft_living	sqft_lot	sqft_diff
2480	10800	8320
1430	5200	3770
2870	4712	1842
1860	7700	5840
1250	7029	5779
1480	6500	5020
970	8874	7904
1400	1657	257
1500	1119	-381
2260	12500	10240
1590	11222	9632
2340	12443	10103
1810	7350	5540
1946	17786	15840
790	7153	6363
2250	8970	6720
4230	21455	17225
1170	9848	8678

After these analysis, the new variables were created and also preprocessing again in order to have a clean dataset

Variable	Description
Number of years of building	This variable was a year in dataset,
	now it is a number (number of years)
How old the building was renovated	Count the number of years it was
	renovated, but for news building, it is
	0
Logathm size	Logarithm function commands this
	relation with price.
Segmentation geographic	Created cluster of places according to
	the zipcode
Dummies	New scores because there are many
	groups
Years of building	How many years has the building
Years of renovation	How many yearswas renovated
Zip code	Geographic Zone
View	With or not view

Analysis Bivariate:

We analyze the relation function between price and all independent variables in order to find tendency between them.

Variable:

x: Years of building

Y: Price

We though that new houses were more expensive than older houses. However, it is not true there is something that affect this simple relation. It is renovation, when the houses were renovated, this effect help to increase the prices of houses. These interaction was considered in our fixing modeling

In this plot is evident there is a change of slope. Therefore, we consider to model with the methodology of piecewise in order to changes to direction of slope during modeling process

Modeling

After the exploration and creating new variables, we try different kind of regression models. First, we started to fit with simples variables, then we try more complicated models and finally we choose the most convenient in order to explain the price of houses in King County city.

Model: Multiple Regression

Dataset: 17829 observations and 30 variables.

Step 1: Try simple models

Simple Models

Model: MODEL1 Dependent Variable: price

Number of Observations Read 17289 **Number of Observations Used** 17289

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	1.248038E15	3.120094E14	5512.40	<.0001
Error	17284	9.782982E14	56601375387		
Corrected Total	17288	2.226336E15			

 Root MSE
 237910
 R-Square
 0.5606

 Dependent Mean
 540198
 Adj R-Sq
 0.5605

Coeff Var 44.04138

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-36424	8068.27221	-4.51	<.0001
yr_age	1	2102.98350	66.06902	31.83	<.0001
bedrooms	1	-55100	2490.07882	-22.13	<.0001
sqft_living	1	313.76280	2.68605	116.81	<.0001
view_t	1	171872	6463.54792	26.59	<.0001

This Model has R-SQUARE 0.5606 and this is good, and all variables are significant. However, we decided to improve this score.

Polynomial second order

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: price

Number of Observations Read 17289

Number of Observations Used 17289

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	6.462679E13	3.23134E13	258.39	<.0001
Error	17286	2.161709E15	1.250555E11		
Corrected Total	17288	2.226336E15			

Root MSE 353632 **R-Square** 0.0290 **Dependent Mean** 540198 **Adj R-Sq** 0.0289

Coeff Var 65.46343

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	676222	6928.88101	97.59	<.0001
yr_age	1	-7134.17898	313.96409	-22.72	<.0001
YR_AGE_CUADRA	1	63.54092	2.95005	21.54	<.0001

It is a simple model with a variable, we can see R-square is 3%, it means that just 3% of variability is explained for the model. So we start to use more variables.

Model with dummy

Model 1 dummy

The variable view_1 has values 0 and 1, it means that the building has view or does have view.

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: price

Number of Observations Read 17289

Number of Observations Used 17289

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	1.248038E15	3.120094E14	5512.40	<.0001
Error	17284	9.782982E14	56601375387		

 Root MSE
 237910
 R-Square
 0.5606

 Dependent Mean
 540198
 Adj R-Sq
 0.5605

Coeff Var 44.04138

Corrected Total 17288 2.226336E15

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-36424	8068.27221	-4.51	<.0001
yr_age	1	2102.98350	66.06902	31.83	<.0001
bedrooms	1	-55100	2490.07882	-22.13	<.0001
sqft_living	1	313.76280	2.68605	116.81	<.0001
view_t	1	171872	6463.54792	26.59	<.0001

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: price

Model 2: With dummy

The REG Procedure Model: MODEL1 Dependent Variable: price

Number of Observations Read 17289

Number of Observations Used 17289

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	11	1.451891E15	1.319901E14	2944.55	<.0001
Error	17277	7.74444E14	44825167587		
Corrected Total	17288	2.226336E15			

 Root MSE
 211720
 R-Square
 0.6521

 Dependent Mean
 540198
 Adj R-Sq
 0.6519

Coeff Var 39.19299

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-1025703	18642	-55.02	<.0001
yr_age	1	1309.24690	219.93626	5.95	<.0001
YR_AGE_CUADRA	1	17.87659	1.90813	9.37	<.0001
view_t	1	108985	5995.66014	18.18	<.0001
sqft_living	1	145.61303	3.33616	43.65	<.0001
grade	1	129505	2306.58776	56.15	<.0001
condition	1	20361	2731.64910	7.45	<.0001
waterfront	1	615313	19556	31.46	<.0001

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
bathrooms	1	30377	3604.14830	8.43	<.0001
zip1	1	5724.35899	4866.57751	1.18	0.2395
zip2	1	-1451.45161	5086.09906	-0.29	0.7754
zip3	1	46859	4689.06386	9.99	<.0001

This model has a high R-Square = 0.6521, however 2 dummies are not significant.

With Effect Piecewise and Second Polynomial second order

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: price

Number of Observations Read 17289

Number of Observations Used 17289

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	2.9003E14	7.250749E13	647.22	<.0001
Error	17284	1.936306E15	1.120288E11		
Corrected Total	17288	2.226336E15			

 Root MSE
 334707
 R-Square
 0.1303

 Dependent Mean
 540198
 Adj R-Sq
 0.1301

Coeff Var 61.96012

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	216897	12165	17.83	<.0001
yr_age	1	-6643.72216	297.37947	-22.34	<.0001
YR_AGE_CUADRA	1	64.82010	2.79284	23.21	<.0001
bedrooms	1	128939	2876.94771	44.82	<.0001
X2STAR	1	-340622	66481	-5.12	<.0001

This model has a Rsquare = 13%, only 13 % of variability of price can be explaineded. However, when evaluating how the parameters are going, these are significant. We are going for a right path. We need to add more variables to the model.

Model with variables discretas

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: price

Number of Observations Read 17289

Number of Observations Used 17289

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	1.373367E15	3.433416E14	6957.25	<.0001
Error	17284	8.529693E14	49350223141		
Corrected Total	17288	2.226336E15			

 Root MSE
 222149
 R-Square
 0.6169

 Dependent Mean
 540198
 Adj R-Sq
 0.6168

 Coeff Var
 41.12368

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-960260	17344	-55.37	<.0001
yr_age	1	3636.68928	64.41144	56.46	<.0001
bedrooms	1	-40147	2342.87746	-17.14	<.0001
sqft_living	1	200.60401	3.33950	60.07	<.0001
grade	1	138081	2385.47512	57.88	<.0001

We can see the R square is 61%, It is good. However we want to increase more this R square.

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: price

Number of Observations Read 17289

Number of Observations Used 17289

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	6	1.40064E15	2.3344E14	4885.95	<.0001
Error	17282	8.256957E14	47777784295		
Corrected Total	17288	2.226336E15			

 Root MSE
 218581
 R-Square
 0.6291

 Dependent Mean
 540198
 Adj R-Sq
 0.6290

 Coeff Var
 40.46322

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-959831	19095	-50.27	<.0001
yr_age	1	3208.63184	68.39118	46.92	<.0001
bedrooms	1	-36178	2318.83635	-15.60	<.0001
sqft_living	1	187.61688	3.33085	56.33	<.0001
view_t	1	137330	5969.79571	23.00	<.0001
grade	1	132995	2360.47574	56.34	<.0001
condition	1	16922	2751.59016	6.15	<.0001

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: price

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: price

Number of Observations Read 17289

Number of Observations Used 17289

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	7	1 400743E15	2.001061E14	4188 55	< 0001

Analysis of Variance

Error 17281 8.25593E14 47774606298

Corrected Total 17288 2.226336E15

Root MSE 218574 **R-Square** 0.6292

Dependent Mean 540198 **Adj R-Sq** 0.6290

Coeff Var 40.46187

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-958854	19106	-50.19	<.0001
yr_age	1	3205.80086	68.41615	46.86	<.0001
bedrooms	1	-36719	2347.90724	-15.64	<.0001
sqft_living	1	187.79476	3.33295	56.34	<.0001
view_t	1	137276	5969.71342	23.00	<.0001
grade	1	133021	2360.46330	56.35	<.0001
condition	1	17026	2752.41204	6.19	<.0001
X2STAR	1	63767	43493	1.47	0.1426

The REG Procedure Model: MODEL1 Dependent Variable: price

Number of Observations Read 17289

Number of Observations Used 17289

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	9	1.417992E15	1.575546E14	3367.86	<.0001
Error	17279	8.083441E14	46781878785		
Corrected Total	17288	2.226336E15			

 Root MSE
 216291
 R-Square
 0.6369

 Dependent Mean
 540198
 Adj R-Sq
 0.6367

Coeff Var 40.03928

Variable	D F	Parameter Estimate	Standard Error	t Valu e	Pr > t
Intercept	1	-563697	24610	-22.91	<.0001
yr_age	1	2958.4131 7	227.04863	13.03	<.0001
YR_AGE_CUADRA	1	6.01530	2.40531	2.50	0.0124
bedrooms	1	-36822	2334.5341	-15.77	<.0001
X2STAR	1	35541	43064	0.83	0.4092
INT_YR_AGE_YR_RENOVATE D	1	-1.46466	1.54881	-0.95	0.3443
log_sqft_lot	1	-37314	2196.1078 8	-16.99	<.0001
view_t	1	139306	5936.3896 9	23.47	<.0001
sqft_living	1	206.96865	3.51317	58.91	<.0001
grade	1	127334	2356.4824	54.04	<.0001

Decision:

After evaluating different models, they have among R- square 0.55 and 0.64 with 5 and 8 variables, however we can get models with more R- square, but these had many variables and no all were significants . Therefore, we decided to select among the next models.

_	Model 1	Model 2	Model 3	Model 4	Model 5
Age	Х	Х	Х	Х	Х
Renovation					Х
Size	X	X	X	X	Х
Bedrooms	X	X	X	X	Х
View					Х
Condition	X				
Grade	X	Х	X		Х
Zone		Х	X		
Floors			X	Χ	
Living					Х
Water front				Χ	
Basement				Χ	
Bathroom	X				
Rsquare	0.54	0.58	0.58	0.62	0.64

Final Model

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: price

Number of Observations Read 17289

Number of Observations Used 17289

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	8	1.42073E15	1.775912E14	3809.28	<.0001
Error	17280	8.056062E14	46620730218		
Corrected Total	17288	2.226336E15			

 Root MSE
 215918
 R-Square
 0.6481

 Dependent Mean
 540198
 Adj R-Sq
 0.6380

Coeff Var 39.97026

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-626609	25774	-24.31	<.0001
yr_age	1	2485.28618	234.02762	10.62	<.0001
YR_AGE_CUADRA	1	7.57086	2.07243	3.65	0.0003
bedrooms	1	-37284	2303.93989	-16.18	<.0001
log_sqft_lot	1	-36862	2193.08433	-16.81	<.0001
view_t	1	139629	5924.45505	23.57	<.0001
sqft_living	1	205.77015	3.50692	58.68	<.0001
grade	1	127655	2349.51988	54.33	<.0001
condition	1	21449	2760.94775	7.77	<.0001

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: price

<u>Model</u>

$$E(Y) = \beta 0 + \beta 1 x 1 + \beta 2 x 1^2 + \beta 3 x 2 + \beta 4 x 3 + \beta 5 LOG x 4 + \beta 6 x 5 + \beta 7 x 6 + \beta 8 x 7$$

Fitting the model

$$Y^{\circ} = -626609 + 2485.28x1 + 7.57x1^{2} -37284x2 + -36862x3 + 139629x4 + 205.77x5 + 127655x6 + 21449x7$$

Testing Using Usefulness of the model

Ho: B1 = B2 = 0

H1: At least one of the coefficients is nonzero

Test Statistic :F = 3809.28

p-value = 0.0001

Conclusion: since $\alpha = 0.05$ exceeds the observed significance level, p=0.0053, the data provide strong evidence that at least one of the model coefficients is nonzero. The overall model appears to be statistical usefull for predicting earnings.

<u>Testing B Parameters Coefficients in the Multiple Regression</u>

For each Bi in our model:

Ho: Bi = 0

Ho: $B4 \neq 0$

Since p value is 0.001 and α = 0.01, so p value is much smaller than 0.05, we reject Ho. Therefore, The parameter Bi is different 0

 $H1: Bi \neq 0$

Test statistics: t

Since p values are 0.0001 and α = 0.05 (sas output), so p value is much smaller than 0.05, we have evidence not reject Ho. Thus, the parameter Bi is different than 0

All B-Parameters are significant, because p-values are smaller than 0.05.

<u>Interpretation of Coefficients Betas of the model</u>

Bo is -626609, It is impractical, because the price can not be negative. The prices of the houses are also positive.

B1 is 2484.5, B1 is the slope and this case it is positive, it is the mean of price of houses E(y) will increase 2484.5 for every unit increase in age of building when the other variables is held fixed.

B2 is 7.57, it is positive, so the mean of price of houses E(Y) will increase 7.57 for every unit increase in the square of age of building when the other variables is held fixed.

B3 is -37284, it is negative, so the mean of price of houses E(Y) will decrease - 37284 for every unit increase in bedrooms when the other variables is held fixed.

B4 is -36862, it is negative, so the mean of price of houses E(Y) will decrease 36862 for every unit increase in logarithm the all first lote floor when the other variables is held fixed.

B5 is 139629, it is positive, so the mean of price of houses E(Y) will increase 139629 for houses with view, houses with not view d o not have this effect. when the other variables is held fixed.

B6 is 205.77, it is positive, so the mean of price of houses E(Y) will increase 205.77 for every unit increase in size of km when the other variables is held fixed.

B7 is 127655, it is positive, so the mean of price of houses E(Y) will increase 127655 for every unit increase in grade when the other variables is held fixed.

B8 is 21449, it is positive, so the mean of price of houses E(Y) will increase 21499 for every unit increase in condition when the other variables is held fixed.

Multicollinearity

The SAS System

The CORR Procedure

4 Variables: yr_age bedrooms log_sqft_lot sqft_living

Simple Statistics

Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
yr_age	17289	43.98161	29.37772	760398	0	115.00000
bedrooms	17289	3.36943	0.90641	58254	0	11.00000
log_sqft_lot	17289	8.98934	0.90077	155417	6.25383	14.31711
sqft_living	17289	2081	917.10323	35984111	290.00000	13540

Pearson Correlation Coefficients, N = 17289 Prob > |r| under H0: Rho=0

	yr_age	bedrooms	log_sqft_lot	sqft_living
yr_age	1.00000	-0.15372	0.00436	-0.32070
		<.0001	0.5662	<.0001
bedrooms	-0.15372	1.00000	0.19314	0.59024
	<.0001		<.0001	<.0001
log_sqft_lot	0.00436	0.19314	1.00000	0.34820
	0.5662	<.0001		<.0001
sqft_living	-0.32070	0.59024	0.34820	1.00000
	<.0001	<.0001	<.0001	

Our variables do not contribute with redundant information, these are not strong correlated with each other. It is common to find correlation. However, we try to control this effect that could give not real values and relation among the variables.

Residual Analysis

The SAS System

The REG Procedure Model: MODEL1 Dependent Variable: price

Durbin-Watson D 2.011

Number of Observations 17289

1st Order Autocorrelation -0.005

By visual inspection, the residual plot indicates that the values are around the cero and It does not have a patron or tendency. So the variances satisfy the property of homoscedastic. However, after of quickly research durbin Watson, because we can not use table (book) or table website (n=200), we have 1700 observations, we considered that it is a border. So we do not consider this statistic in this evaluation, just plot observation.

IMPLEMENTATION

By getting the equation of the best model for our data we can now predict the price of houses. For demonstration we have made a Windows Form Application which outputs the value of the price depending upon the value of independent variables. Image of the Application is displayed below.

	King County Housing Price Prediction	
Age of house since built		20
Number of Bedrooms		4
Age of house since renovation		7
Area of Lot in Square Feet		4000
Number of Views		2
Living Area in Square Feet		2500
Grade of the house		13
	Compute	

From the image we can see that the textboxes are provided to enter relevant data and a compute button. After the values of independent variables are entered, we press the compute button. After pressing this button, a Message Box appears displaying the Price Range value. The price range is between 0.9*Predicted_Value and 1.1* Predicted_Value.

The values to be entered are:

- 1. Age of house since built
- 2. Number of bedrooms
- 3. Age of house since renovation
- 4. Area of lot in square feet.

- 5. Number of views
- 6. Living area in square feet
- 7. Grade of the house

For making this application we had used Visual Studio 2019 and the language of code is C#. Below Images displays the code of the program.

```
1reference
private void button1_Click(object sender, EventArgs e)
{
   var betaAge = 8643.41071;
   var betaAgeSquare = -55.69137;
   var betaBedroom = -36286;
   var betaX2Star = 38793;
   var betaYearRenovateAge = -6133.55030;
   var betaInt_Yr_AgeYr_Renovated = 64.61776;
   var betaLogSqftLot = -36169;
   var betaView = 137908;
   var betaSqftLiving = 204.91411;
   var betaGrade = 127454;
   var intercept = -566374;
```

The above code block shows assigning the beta values of our final model to the variables.

```
age = float.Parse(textBox1.Text);
bedrooms = float.Parse(textBox11.Text);
yr_renovate_age = float.Parse(textBox9.Text);
saft_feet_lot = Math.Log(Int32.Parse(textBox7.Text));
view = Int32.Parse(textBox5.Text);
saft_living = Int32.Parse(textBox3.Text);
grade = Int32.Parse(textBox16.Text);

if (age < 0) {

    MessageBox.Show("Enter the correct age value");
}

if (bedrooms < 0) {

    MessageBox.Show("Enter the correct number of bedrooms value");
}

if (yr_renovate_age == 0) {
    yr_renovate_age = age;
}

if (saft_feet_lot < 0) {

    MessageBox.Show("Enter the correct Area of Lot in Square Feet");
}

if (view != 0) {
    view = 1;
}

if (view < 0) {
</pre>
```

```
if (sqft_feet_lot < 0) {
    MessageBox.Show("Enter the correct Area of Lot in Square Feet");
}

if (view != 0) {
    view = 1;
}

if(view < 0)
{
    MessageBox.Show("Enter the correct Number of Views Value");
}

if (sqft_living < 0) {
    MessageBox.Show("Enter the correct Area of Living in Square Feet");
}

if (grade < 0 || grade > 13) {
    MessageBox.Show("Enter the correct Grade");
}

if (bedrooms >= 8) {
    X2Star = bedrooms - 8;
}

else
{
    X2Star = 0;
}
```

The above two snapshots shows how we created the text boxes and what should be the error message if someone gives an incorrect value.

```
price = intercept + betaAge*age - betaAge$quare*age*age + betaBedroom*bedrooms + betaX2Star*X2Star + betaYearRenovateAge*yr_renovate_age + betaInt_Yr_AgeYr_Renovated * age * yr_renovate_age + betaLogSqftLot * sqft_feet_lot + betaView * view + betaSqftLiving * sqft_living + betaGrade * grade;
```

The above code shows the calculation based on our final model.

```
MessageBox.Show("Expected Price Range for the given parameters " +price_min + " ----- " +price_max);
```

The above snapshot shows the code for displaying the output block.

Compute button on the output window applies the equation which is displayed on Page No. xx and calculate the price range values. Image below displays the message box which is displaying price range values.

King County Housing Price Prediction Age of house since built Age of house since renovation 7 Area of Lot in Square Feet Luing Area in Square Feet Expected Price Range for the given parameters 1311162 ----- 1525688 Goade of the house Compute

Conclusion

- Our first datasets were not used because these needed another kind of models and this course is strictly Regression, so we had to look for new datasets during the course. Then we had different datasets, but finally we worked together only with one dataset.
- Have a good dataset is very important in order to make a great a model, in this case the dataset was easy to manage, it does not have string values, just numbers. Therefore, it makes the process of preprocessing more friendly and quickly, no too much preprocessing but smart exploration.
- Doing a good exploration is crucial in order to understand the dataset and create useful variables. For example, how many years ago it was renovated, also dummies like geographical dummy.
- We tried and did models with the new concepts that were taught in class as piecewise regression, dummies and also polynomials
- Nobody in this team knows about housing business. However, during this modeling we learnt quickly how this business works and finally we could create a friendly model that can be understand and used.
- All HomeWorks are very important in order to reinforce specific concepts, no matter if we practiced with small bases, it was useful in our project.
- The powerful software SAS and SPSS command these project, so it is very important to manage different softwares.
- The application is a great tool in order to show our model.

Program

```
PROC REG DATA= FINAL MB T 3;
MODEL PRICE = YR AGE YR AGE CUADRA BEDROOMS X2STAR YR RENOVATED AGE
INT YR AGE YR RENOVATED;
RUN:
PROC REG DATA= FINAL MB T 3;
MODEL PRICE = YR AGE YR AGE CUADRA BEDROOMS X2STAR YR RENOVATED AGE
INT YR AGE YR RENOVATED SQFT LIVING;
RUN:
PROC REG DATA= FINAL MB T 3;
MODEL PRICE = YR AGE YR AGE CUADRA BEDROOMS X2STAR YR RENOVATED AGE
INT YR AGE YR RENOVATED SQFT LIVING;
RUN:
PROC REG DATA= FINAL MB T 3;
MODEL PRICE = YR AGE YR AGE CUADRA BEDROOMS X2STAR YR RENOVATED AGE
INT YR AGE YR RENOVATED SQFT LIVING VIEW T;
RUN:
*/mORE MODELS NO CUADRADO**/
PROC REG DATA= FINAL MB T 3;
MODEL PRICE = YR AGE BEDROOMS SQFT LIVING VIEW T;
RUN;
/* Modles with no square and qauality**/
PROC REG DATA= FINAL MB T 3;
MODEL PRICE = YR AGE BEDROOMS SQFT LIVING VIEW T grade condition;
RUN;
/* Modles with no square and qauality and piecewaise in bedrrom **/
PROC REG DATA= FINAL MB T 3;
MODEL PRICE = YR AGE BEDROOMS SQFT LIVING VIEW T grade condition
x2star;
RUN:
/* Modles with no square and qauality and piecewaise in bedrrom **/
PROC REG DATA= FINAL MB T 3;
int_yr_age_yr_renovated log_sqft_lot view_t sqft living grade;
RUN;
/* Modles with no square and qauality and piecewaise in bedrrom **/
PROC REG DATA= FINAL MB T 3;
```

```
int_yr_age_yr_renovated log_sqft_lot view_t sqft_living grade ;
RUN;
/* Modles with no square and qauality and piecewaise in bedrrom **/
PROC REG DATA= FINAL MB T 3;
int_yr_age_yr_renovated log_sqft_lot view_t sqft_living grade;
RUN;
PROC REG DATA=HOUSING F 2;
 MODEL PRICE = YR BUILT YR BUILT2;
PROC REG DATA= FINAL V3;
MODEL PRICE = YR AGE YR AGE CUADRA BEDROOMS X2STAR;
PROC REG DATA= FINAL V3;
MODEL PRICE = YR_AGE_YR_AGE_CUADRA BEDROOMS X2STAR YR_RENOVATED_AGE
YR AGE*YR RENOVATED AGE;
RUN:
PROC REG DATA= FINAL_MB_T_3;
int_yr_age_yr_renovated log_sqft_lot view_t sqft_living grade;
PROC REG DATA= FINAL MB T 3;
MODEL PRICE = YR AGE BEDROOMS SQFT LIVING VIEW T grade condition;
RUN:
PROC REG DATA= FINAL MB T 3;
MODEL PRICE = YR AGE BEDROOMS SQFT LIVING VIEW T grade condition
x2star;
RUN;
/* Modles with no square */
```

```
PROC REG DATA= FINAL MB T 3;
int_yr_age_yr_renovated log_sqft_lot view_t sqft_living grade;
RUN;
PROC REG DATA= FINAL_MB_T_3;
int_yr_age_yr_renovated log_sqft_lot view_t sqft_living grade;
DATASET NAME DataSet4 WINDOW=FRONT.
SORT CASES BY yr built (A).
SORT CASES BY yr built (D).
RECODE yr_built (2015=1) (2014=1) (2013=1) INTO year_1.
VARIABLE LABELS year 1 'year 1'.
EXECUTE.
RECODE yr_built (2003 thru 2012=1) (ELSE=0) INTO year_2.
VARIABLE LABELS year 2 'year 2'.
EXECUTE.
from sklearn.model_selection import train_test_split
final_mb_t,final_mb_v=train_test_split(data,test_size=0.2,random_state=33)
In [25]: mean_sqft_ab=int(data.sqft_above.mean())
In [26]: mean_sqft_ab
Out[26]: 1788
In [27]: data.sqft_above.fillna(mean_sqft_ab,axis=0,inplace=True)
```