'MATH+ECON+CODE' MASTERCLASS ON COMPETITIVE EQUILIBRIUM: WALRASIAN EQUILIBRIUM WITH SUBSTITUTES

Alfred Galichon (NYU)

Spring 2018
Day 2, May 22, 2018: lattices and order
Block 4. Lattice, isotonicity and supermodularity

LEARNING OBJECTIVES: BLOCK 3

- Lattices
- Supermodularity and quasi-supermodularity
- ► Veinott's strong set order
- ► Topkis' theorem
- Multivocal gross substitutes
- ► Tarski's fixed point theorem

REFERENCES FOR BLOCK 3

- ► Topkis (1976). The structure of sublattice of the product of lattices. *Pacific Journal of Mathematics*.
- ► Topkis (1978). Minimizing a submodular function on a lattice. *Operations research*.
- ▶ Veinott (1989). Lattice programming. Lecture notes.
- Milgrom, Shannon (1994). "Monotone comparative statics."
 Econometrica.
- ► Galichon, Samuelson (2018). Mutivocal gross substitutes. Working paper.

Section 1

INTRODUCTION

SET-VALUED DEMAND: MOTIVATION

- ▶ Recall the hedonic model with exogenous demand considered in lecture
 - 1. The prices were given by

$$P(I) = \arg\max_{p} F_{\sigma}(p, I)$$
, where

$$F_{\sigma}(p, l) = \sum_{z \in \mathcal{Z}} l_{z} p_{z} - \sum_{y \in \mathcal{Y}} m_{y} \sigma \log \left(1 + \sum_{z \in \mathcal{Z}} \exp \left(\frac{p_{z} - c_{yz}}{\sigma} \right) \right)$$

with $\sigma > 0$ measures the unobserved heterogeneity among suppliers. (In lecture 1, $\sigma = 1$).

▶ We would like to understand what is happening when $\sigma \to 0$. Recall that $\sigma \log \left(e^{a/\sigma} + e^{b/\sigma} \right) \to \max \left(a, b \right)$, so the problem becomes

$$\left(W^{S}\right)^{*}(I) = \max_{p} \left\{ \sum_{z \in \mathcal{Z}} I_{z} p_{z} - W^{S}(p) \right\}, \text{ where}$$

$$W^{S}(p) = \sum_{y \in \mathcal{Y}} m_{y} \max_{z \in \mathcal{Z}} \left\{ p_{z} - c_{yz}, 0 \right\}$$

which is neither smooth (because of the max) nor strictly concave (because it is piecewise affine).

SET-VALUED DEMAND: MOTIVATION (CTD)

- ▶ Consider an extreme situation where $c_{yz}=0$ for all y and z and $p_z=0$ for all z. Then any supplier is indifferent between any alternative. Depending on how they break ties, this can lead to any vector of demand $I_z \geq 0$ such that $\sum_{z \in \mathcal{Z}} I_z \leq \sum_{v \in \mathcal{V}} m_v$.
- ► The equilibrium prices are defined by first order conditions

$$I \in \partial W^{S}(p)$$

where the (set-valued) demand function is given by the subdifferential of W^S at p, defined by

$$\partial W^{S}(p) = \left\{I: W^{S}(p) + \left(W^{S}\right)^{*}(s) = \sum_{z \in \mathcal{Z}} p_{z} s_{z}\right\}$$

hence the inverse demand correspondence is given by

$$p = \partial \left(W^{S} \right)^{*} (I) .$$

SET-VALUED DEMAND: MOTIVATION (CTD)

▶ We are led to formulate the set-valued supply as the set of I sucht that $F(p, I) \ge F(p', I)$ for any other p', that

$$s\left(p\right) = \left\{ \begin{array}{l} I \in \mathbb{R}_{+}^{\mathcal{Z}} : \exists \mu_{yz} \geq 0 \ s.t. \\ \begin{cases} \sum_{z \in \mathcal{Z}} \mu_{yz} \leq m_{y} \\ \sum_{y \in \mathcal{Y}} \mu_{yz} = I_{z} \\ \mu_{yz} > 0 \implies z \in \operatorname{arg\,max}_{z \in \mathcal{Z}} \left\{ p_{z} - c_{yz}, 0 \right\} \end{array} \right\}$$

or in other words

$$s\left(p\right) = \left\{ \begin{array}{l} I \in \mathbb{R}_{+}^{\mathcal{Z}} : \exists \mu_{yz} \geq 0 \text{ s.t.} \\ \begin{cases} \sum_{z \in \mathcal{Z}} \mu_{yz} \leq m_{y} \\ \sum_{y \in \mathcal{Y}} \mu_{yz} = I_{z} \\ \sum_{yz} \mu_{yz} \left(p_{z} - c_{yz}\right) = \sum_{y} m_{y} \max_{z \in \mathcal{Z}} \left\{p_{z} - c_{yz}, 0\right\} \end{array} \right\}$$

▶ This makes quite a bit of sense. A vector of quality distribution $(I_z) \ge 0$ rationalizes market prices p if there is a coupling μ_{yz} of distributions m and I such that if $\mu_{yz} > 0$, then z is the optimal alternative of y.

Section 2

MONOTONE COMPARATIVE STATICS

MOTIVATION: MONOTONE COMPARATIVE STATICS

► In the hedonic models, given exogenous demand *I*, the equlibrium prices solve

$$P\left(I\right)=\arg\max_{p}F\left(p,I\right)$$

where as in lecture 1.

$$F(p, l) = \sum_{z \in \mathcal{Z}} l_z p_z - \sum_{y \in \mathcal{Y}} m_y \sigma \log \left(1 + \sum_{z \in \mathcal{Z}} \exp \left(\frac{p_z - c_{yz}}{\sigma} \right) \right).$$

▶ In the sequel, we shall give several arguments to show that P(I) is isotone, namely, if $I \leq I'$, then $P(I) \leq P(I')$, where \leq is the componentwise partial order on $\mathbb{R}^{\mathcal{Z}}$.

ARGUMENT 1: BGH'S THEOREM

▶ BGH's theorem seen in Block 2 applies. Indeed, letting

$$\begin{split} D_{z}\left(\rho\right) &= \sum_{y \in \mathcal{Y}} m_{y} \frac{\exp\left(\frac{\rho_{z} - c_{yz}}{\sigma}\right)}{1 + \sum_{z' \in \mathcal{Z}} \exp\left(\frac{\rho_{z'} - c_{yz'}}{\sigma}\right)} \\ D_{0}\left(\rho\right) &= \sum_{y \in \mathcal{Y}} m_{y} \frac{1}{1 + \sum_{z' \in \mathcal{Z}} \exp\left(\frac{\rho_{z'} - c_{yz'}}{\sigma}\right)} \end{split}$$

is such that $\sum_{z\in\mathcal{Z}_0}D_z\left(p\right)=0$, $D_z\left(p\right)$ is a decrasing function of p_z for $z\neq z'$, and $D_0\left(p\right)$ is strictly decreasing in any p_z for $z\in\mathcal{Z}$.

▶ Therefore $D(p) \le D(p')$ implies $p \le p'$.

ARGUMENT 2: STIELTJES MATRICES

 One way to understand this is that P (I) is given implicitly by first order conditions

$$\nabla_{p}F\left(P\left(I\right) ,I\right) =0,$$

and thus

$$DP(I) = -\left(D_{pp}^2 F\right)^{-1} D_{pI}^2 F$$

- ▶ One can show that $I \rightarrow P(I)$ by showing that the terms of its Jacobian DP(I) are nonnegative:
 - It is easy to check that $-D_{pp}^2F$ has off-diagonal nonpositive terms (because F is supermodular in p) and that it is symmetric, positive definite (because F is smooth and stricty concave). Thus $-D_{pp}^2F$ is a Stieltjes matrix, which implies that the terms of its inverse are positive.
 - ► Similarly, the terms of $D_{pl}^2 F$ are nonnegative, because this matrix happens to be the identity matrix.
 - ▶ As a result, the terms of DP(I) are nonnegative, which implies that $I \to P(I)$ is isotone.

ARGUMENT 3: TOPKIS THEOREM

- Note that the first argument assumes that F(p,l) should be strictly concave in p, so that the argmax, namely P(l), should be uniquely defined; the second argument assumes that F(p,l) should be twice differentiable.
- ▶ What if neither of these hold? as in the intro, consider in particular the case $\sigma \to 0$. In this case, recall that

$$F_{0}\left(p,I\right) = \sum_{z \in \mathcal{Z}} I_{z} p_{z} - \sum_{y \in \mathcal{Y}} m_{y} \max_{z \in \mathcal{Z}} \left\{p_{z} - c_{yz}, 0\right\}.$$

- ▶ Topkis theorem requires simply that $F_0(p, I)$ should be *supermodular* in p (which implies that the domain of $F_0(., I)$ should be a *lattice*), and should satisfy *increasing differences* in (p, I). As a result, the set valued demand $I \to \arg\max F_0(., I)$ will be increasing in *Veinott's order*. In particular, the set of equilibrium prices $\arg\max F_0(., I)$ will be a *lattice*.
- ► Of course, we haven't defined the terms in italics. We are about to do that.

Section 3

SUPERMODULARITY

PARTIAL ORDER OF RN

- ▶ The partial order on \mathbb{R}^n , also called *componentwise order*, and denoted \geq , is the binary relation defined by $x \geq y$ if and only if $x_i \geq y_i$ for all $i \in \{1, ..., n\}$.
- ▶ We consider two sets $X \subseteq \mathbb{R}^n$ and $Y \subseteq \mathbb{R}^m$ endowed with the componentwise order.
 - ▶ A map $f: X \longmapsto Y$ is isotone if $x \le y$ implies $f(x) \le f(y)$.
 - ▶ A map $f: X \longmapsto Y$ is antitone if $x \le y$ implies $f(x) \ge f(y)$.
 - ▶ A map $f: X \longmapsto Y$ is *inverse isotone* if $f(x) \le f(y)$ implies $x \le y$.

LATTICES

- ▶ Let (L, \leq) be a set endowed with partial order. L is a lattice whenever there exist two operations \vee called "join" and \wedge "meet" such that for $x, x' \in L$, $x \vee x'$ and $x \wedge x'$ are elements of L such that $y \leq x$ and $y \leq x'$ implies $y \leq x \wedge x'$, and $y \geq x$ and $y \geq x'$ implies $y \leq x \vee x'$.
- ▶ \mathbb{R}^n endowed with the componentwise order is a lattice, with $(x \lor x')_i = \max(x_i, x_i')$, and $(x \land x')_i = \min(x_i, x_i')$.
- ▶ A subset $X \subseteq \mathbb{R}^n$ is a sublattice (of \mathbb{R}^n) when $x, x' \in X$ implies $x \land x' \in X$ and $x \lor x' \in X$. A sublattice X is complete if inf B and sup B exist whenever $B \subseteq X$.

CHARACTERIZATION OF SUBLATTICES OF RN

Definition. A function $R_{ij}: \mathbb{R}^n \to \mathbb{R} \cup \{-\infty, +\infty\}$ is called a *rent function* associated to ij if the following four conditions are met: (i) if $i \neq j$, $R_{ij}(x)$ is nonincreasing in x_i , (ii) if $i \neq j$, $R_{ij}(x)$ is nondecreasing in x_j , (iii) $R_{ij}(x)$ does not depend on x_k for $k \notin \{i, j\}$, and (iv) for all $t \in \mathbb{R}$, $R_{ij}(x) + t(n-n) = R_{ij}(x) + t$

$$R_{ij}\left(x+t\left(e_{j}-e_{i}\right)\right)=R_{ij}\left(x\right)+t.$$

The following theorem was first published in Topkis (1976).

Theorem. X is a sublattice of \mathbb{R}^n if and only if it there are rent functions R_{ij} where $1 \leq i, j \leq n$, such that

$$X = \bigcap_{1 \le i, j \le n} \left\{ x \in \mathbb{R}^n : R_{ij}(x) \le 0 \right\}. \tag{1}$$

Note that if for $i \in \{1, ..., n\}$, one defines $X_i = \{z \in \mathbb{R} : R_{ii}(x) = -\infty\}$, (recalling that R_{ii} can only take values $-\infty$ and $+\infty$), X_i is a chain and $X \subseteq X_1 \times X_2 \times ... \times X_n$.

The proof given here follows in Veinott's (1989) lecture notes.

Proof. The proof of the "if" statement is easy. Conversely, let X be a lattice and show that it has representation (1). To this end, define the canonical rent function associated to the lattice as

$$R_{ij}^{X}(x) = \inf_{y \in X} \left\{ \max \left(y_i - x_i, x_j - y_j \right) \right\}, \tag{2}$$

which takes value in $\mathbb{R} \cup \{-\infty\}$ for $i \neq j$, while $R_{ii}^X(x) = \inf_{y \in X} \{|y_i - x_i|\} \in \mathbb{R}_+$. Clearly, R_{ij} is a rent function. Also, if $x \in X$, then $R_{ii}^X(x) \leq 0$, thus

$$X \subseteq \bigcap_{1 \le i, j \le n} \left\{ x \in \mathbb{R}^n : R_{ij}(x) \le 0 \right\}.$$

Conversely, assume $R_{ij}^X(x) \leq 0$ for all $1 \leq i, j \leq n$ and show that $x \in X$. By definition, this implies the existence of $y^{ij} \in X$ such that $y_i^{ij} \leq x_i, y_j^{ij} \geq x_j$ for $i \neq j, y^{ii} = x_i$. Set $y^i = \bigvee_{1 \leq j \leq n} y^{ij} \in X$. One has $y_i^i = x_i$, and $y_j^i \geq x_j$ for $j \neq i$. Therefore, $x = \bigwedge_{i=1}^{n} y^i$, and therefore $x = \bigwedge_{i=1}^{n} y^{ij} \in X$.

 $1 \le i \le n$

1 < i < n 1 < i < n

EXAMPLES

Example. Let (c_{ij}) be a $n \times n$ matrix. The set of x such that $x_j - x_i \le c_{ij}$ for all $i \ne j$ is a lattice called the *dual transportation polyhedron*. More on this tomorrow.

Example. More generally, let A be a $m \times n$ matrix, and $c \in \mathbb{R}^m$. The set

$$X = \{x \in \mathbb{R}^n : Ax \le c\}$$

is a lattice if and only if every row of A has at most two nonzero elements, and does not have two nonzero elements of the same sign. The matrix A is sometimes called a *node-incidence matrix with gains*.

SUPERMODULAR FUNCTIONS

- ▶ Let *L* be a sublattice of \mathbb{R}^d . Then $f : \mathbb{L} \to \mathbb{R}$ is supermodular if $f(x \land x') + f(x \lor x') \ge f(x) + f(x')$
- ▶ If f is C^2 and $L = \mathbb{R}^d$ is a rectangle, this is equivalently expressed by

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_j} \ge 0 \ \forall i \ne j$$

ightharpoonup f is supermodular.

INCREASING DIFFERENCES

- ► Consider $f: X \times Y \to \mathbb{R}$ where X and Y are partially ordered sets. Then f has increasing differences in (x, y) iff whenever $x \le x'$ and $y \le y'$, then $f(x', y') f(x, y') \ge f(x', y) f(x, y)$.
- ▶ If $X = \mathbb{R}^n$ and $Y = \mathbb{R}^m$, this is equivalently expressed by

$$\frac{\partial^2 f}{\partial x_i \partial y_i} \ge 0 \ \forall i \in \{1, ..., n\}, j \in \{1, ..., m\}.$$

VEINOTT'S STRONG SET ORDER

- ▶ Consider X and X' two subsets of \mathbb{R}^d . Then X' dominates X in Veinott's strong set order, denoted $X \leq_{v} X'$, if $x \in X$ and $x' \in X'$ implies $x \land x' \in X$ and $x \lor x' \in X'$.
- ▶ In particular, $X \leq_{V} X$ if and only if X is a sublattice of \mathbb{R}^{d} .

VEINOTT'S STRONG SET ORDER, CHARACTERIZATION

The following theorem first appeared in Topkis (1976).

Theorem. (a) The following statements are equivalent:

- (i) X and X' are complete sublattices of \mathbb{R}^d such that $X \leq_{\nu} X'$.
- (ii) There exist a complete sublattice Y of \mathbb{R}^d such that
- $X = Y \cap \{x : x \le \sup X\}$, and $X' = Y \cap \{x : x \ge \inf X'\}$.
- (b) Further, if X and X' are complete sublattices such that $X \leq_{\nu} X'$, then $X \cup X'$ is a complete sublattice.

Section 4

TOPKIS THEOREM

TOPKIS' THEOREM

Theorem (Topkis, 1978). Let X be a lattice, T a partially ordered set, and assume f(.,t) is supermodular for all t and $(x,t) \to f(x,t)$ has increasing differences. Then

$$t \rightarrow \arg \max f(., t)$$

is isotone in Veinott's strong set order.

TOPKIS' THEOREM, PROOF

Proof. Let $t \le t'$ and take $x \in \arg \max f(., t)$ and $x' \in \arg \max f(., t')$. Then $f(x \land x', t) \le f(x, t)$ and $f(x \lor x', t') \le f(x', t')$. Summing yields

$$f(x \wedge x', t) + f(x \vee x', t') \le f(x, t) + f(x', t')$$

but by supermodularity $f(x,t) + f(x',t) - f(x \lor x',t) \le f(x \land x',t)$, hence

$$f(x,t) + f(x',t) - f(x \lor x',t) + f(x \lor x',t') \le f(x,t) + f(x',t')$$

but by increasing differences,

$$-f(x',t) + f(x',t') \le -f(x \lor x',t) + f(x \lor x',t')$$
, hence

$$f(x,t) + f(x',t) \le f(x,t) + f(x',t')$$
.

As we have reached an equality, all the intermediates inequalities, and thus

$$f(x \wedge x', t) \leq f(x, t)$$
 and $f(x \vee x', t') \leq f(x', t')$, QED.

IMPLICATIONS OF TOPKIS' THEOREM

Corollary 1. If $f: \mathbb{R}^d \to \mathbb{R}$ is supermodular, then arg min f is a lattice.

Corollary 2. Under the assumptions of Topkis' theorem,

$$t
ightarrow \inf f\left(.,t
ight) \ ext{and} \ t
ightarrow \sup rg \min f\left(.,t
ight)$$

are isotone.

TOPKIS' THEOREM: APPLICATIONS

The function given by

$$P\left(I
ight) = rg \max_{p} F_{\sigma}\left(p,I
ight)$$
, where
$$F_{\sigma}\left(p,I
ight) = \sum_{z \in \mathcal{Z}} I_{z} p_{z} - \sum_{y \in \mathcal{Y}} m_{y} \sigma \log \left(1 + \sum_{z \in \mathcal{Z}} \exp\left(rac{p_{z} - c_{yz}}{\sigma}
ight)
ight)$$

follows the assumptions of Topkis theorem (exercise).

TOPKIS' THEOREM: APPLICATIONS (2)

Similarly, the gravity model of trade which is given by

$$\min_{p} \sum_{y} m_{y} p_{y} - \sum_{x} n_{x} p_{x} + \sum_{xy} \exp\left(p_{y} - p_{x} - c_{xy}\right)$$

also satisfies the assumptions of Topkis theorem, upon some changes of signs (exercise).

Section 5

MULTIVOCAL GROSS SUBSTITUTE PROPERTY

INVERSE ISOTONICITY OF DEMAND

► Let's recapitulate the results that we have seen so far to show inverse isotonicity of demand. Here are the results that can be applied

	E(p) point-valued	E(p) set-valued
E(p) is a subdifferential	Topkis and BGH	Topkis only
E(p) not a subdifferential	BGH only	??

- ▶ As one sees, when is the subdifferential of a convex function, that is, when we can reformulate the equilibrium problem as an optimization problem, Topkis' theorem applies both in the point-valued and the set-valued case.
- ▶ When E(p) is a map, Berry, Gandhi and Haile's theorem applies—both when the equilibrium can be formulated as an optimization problem and when it cannot.
- ▶ When *E* (*p*) is a correspondence which is not a subdifferential, we need a new tool. This tool is provided by a recent theorem by a recent theorem by Galichon and Samuelson (2018).

SUBSTITUTABILITY FOR DEMAND CORRESPONDENCES

Galichon and Samuelson (2018) define the following property: **Definition**. Let E be a partially ordered set and L a lattice. A correspondence: $L \to E$ is said to satisfy the *multivocal gross substitutes* (MGS) property if for any $s \in E(p)$ and $s' \in E(p')$, there exists $s' \in E(p \lor p')$ and $s^{\land} \in E(p \land p')$ such that for all $z \in \mathcal{Z}_0$

$$\left\{ \begin{array}{l} p_z \leq p_z' \implies s_z \leq s_z^\wedge \text{ and } s_z^\vee \leq s_z' \\ p_z > p_z' \implies s_z' \leq s_z^\wedge \text{ and } s_z^\vee \leq s_z \end{array} \right. .$$

Let us show that this is the right generalization of the classical condition. Indeed, consider s and s' such that $s_z>s_z'$ for some z and $p_{z'}=p_{z'}'$ for $z'\neq z$. We have $p\wedge p'=p'$, thus $s^\wedge=\sigma\left(p\wedge p'\right)=s'$. Therefore the condition expresses as $p_{z'}\leq p_{z'}'$ for all $z'\neq z$.

THE GROSS SUBSTITUTE THEOREM

The following theorem is due to Galichon and Samuelson (2018). **Theorem**. Assume that a correspondence $E:L\to\mathbb{R}^{\mathcal{Z}_0}$ satisfies MGS and is such that for any $s\in E(p)$, then $\sum_{z\in\mathcal{Z}_0}s_z=1$. Then $s\to E^{-1}(s)$ is isotone with respect to Veinott's strong set order, i.e. $s_z\leq s_z'$ for all $z\in\mathcal{Z}$, $s\in E(p)$ and $s'\in E(p')$ imply $s\in E(p\wedge p')$ and $s'\in E(p\vee p')$.

THE GROSS SUBSTITUTE THEOREM, PROOF

We have by assumption that

$$z\in\mathcal{Z}_0^{\leq}\implies s_z\leq s_z^{\wedge},$$
 and for $z\in\mathcal{Z}_0^{>},\ s_z'\leq s_z^{\wedge},$ thus as $0\notin\mathcal{Z}_0^{>},$ we get

 $1 = \sum_{z \in \mathcal{Z}_0} s_z \le \sum_{z \in \mathcal{Z}_0} s_z^{\wedge} = 1,$

 $z \in \mathcal{Z}_0^> \implies s_z \leq s_z' \leq s_z^\wedge$

hence all the inequalities involved are equalities, and therefore

$$z\in\mathcal{Z}_0^{\leq}\implies s_z=s_z^{\wedge}, ext{ and }
onumber \ z\in\mathcal{Z}_0^{>}\implies s_z=s_z^{\prime}=s_z^{\wedge}.$$

thus $s = s^{\wedge}$, that is $s \in E(p \wedge p')$. A similar argument shows that $s' \in E(p \vee p')$.

(3)

(4)

(5)

MGS PROPERTY OF SET-VALUED EXCESS SUPPLY

▶ Consider $S_z\left(p\right)$ be the set of excess supply vectors associated with price vector p. One has:

$$S_{z}\left(\boldsymbol{p}\right) = \left\{\left(s_{z}\right), \exists \mu_{yz} \geq 0: \left\{\begin{array}{l} s_{z} = \sum_{y \in \mathcal{Y}} \mu_{yz} - I_{z}, \; \sum_{z \in \mathcal{Z}_{0}} \mu_{yz} = m_{y} \\ \mu_{yz} > 0 \implies z \in \arg\max_{z \in \mathcal{Z}_{0}} \left\{\mathcal{U}_{yz}\left(\boldsymbol{p}_{z}\right)\right\} \end{array}\right\}.$$

► Slightly reformulate as:

$$S_{z}\left(\boldsymbol{p}\right) = \left\{ \left(s_{z}\right), \exists \mu_{yz}, \, U_{y} \geq 0: \left\{ \begin{array}{l} s_{z} = \sum_{y \in \mathcal{Y}} \mu_{yz} - I_{z}, \, \sum_{z \in \mathcal{Z}_{0}} \mu_{yz} = m_{y} \\ U_{y} \geq \mathcal{U}_{yz}\left(p_{z}\right), \, \mu_{yz} > 0 \Longrightarrow U_{y} = \mathcal{U}_{yz}\left(p_{z}\right) \end{array} \right. \right\}$$

▶ One has clearly $\sum_{z \in \mathcal{Z}_0} S_z(p) = \sum_{z \in \mathcal{Z}_0} I_z - \sum_{y \in \mathcal{Y}} m_y$. Let us show that S satisfies the MGS property.

MGS PROPERTY OF SET-VALUED EXCESS SUPPLY (CTD)

▶ Take $s \in E(p)$ and $s' \in E(p')$. Then there exists μ and $\mu' \ge 0$ such that

$$\begin{cases} s_{z} = \sum_{y \in \mathcal{Y}} \mu_{yz} - I_{z}, \sum_{z \in \mathcal{Z}_{0}} \mu_{yz} = m_{y} \\ U_{y} \geq \mathcal{U}_{yz} \left(p_{z} \right), \ \mu_{yz} > 0 \Longrightarrow U_{y} = \mathcal{U}_{yz} \left(p_{z} \right) \\ s'_{z} = \sum_{y \in \mathcal{Y}} \mu'_{yz} - I_{z}, \sum_{z \in \mathcal{Z}_{0}} \mu'_{yz} = m_{y} \\ U'_{y} \geq \mathcal{U}_{yz} \left(p'_{z} \right), \ \mu'_{yz} > 0 \Longrightarrow U'_{y} = \mathcal{U}_{yz} \left(p'_{z} \right) \end{cases}$$

- ▶ One has $U_v \vee U_v' \geq \mathcal{U}_{vz} (p_z \vee p_z')$.
- ▶ Lemma: $1\{U_V > U_V'\} \mu_{VZ} \le 1\{p_Z > p_Z'\} \mu_{VZ}$ and $1\{U_{v} \leq U'_{v}\} \mu'_{vz} \leq 1\{p_{z} \leq p'_{z}\} \mu'_{vz}$. Indeed:

 - ▶ $\mu_{yz} > 0$ and $U_y > U_y'$ implies $\mathcal{U}_{yz}\left(p_z\right) = U_y > U_y' \ge \mathcal{U}_{yz}\left(p_z'\right)$. ▶ $\mu_{yz}' > 0$ and $U_y \le U_y'$ implies $\mathcal{U}_{yz}\left(p_z\right) \le U_y \le U_y' = \mathcal{U}_{yz}\left(p_z'\right)$

MGS PROPERTY OF SET-VALUED EXCESS SUPPLY (CTD)

▶ Define $\mu_{vz}^{\vee} = 1 \{ U_y > U_v' \} \mu_{yz} + 1 \{ U_y \leq U_v' \} \mu_{vz}'$. One has

$$\mu_{yz}^{\vee}>0 \implies \textit{U}_{y} \vee \textit{U}_{y}' = \textit{U}_{yz}\left(\textit{p}_{z} \vee \textit{p}_{z}'\right)$$

- ▶ One has $\sum_{z \in \mathcal{Z}_0} \mu_{yz}^{\vee} = 1 \{ U_y > U_y' \} \sum_{z \in \mathcal{Z}_0} \mu_{yz} + 1 \{ U_y \le U_y' \} \sum_{z \in \mathcal{Z}_0} \mu_{yz}' = m_y.$
- ► Finally, let $s_z^{\vee} = \sum_{y \in \mathcal{Y}} \mu_{yz}^{\vee} I_z \le 1 \{p_z > p_z'\} s_z + 1 \{p_z \le p_z'\} s_z'$. One has therefore

$$\left\{ \begin{array}{l} p_z \leq p_z' \implies s_z \leq s_z^\wedge \text{ and } s_z^\vee \leq s_z' \\ p_z > p_z' \implies s_z' \leq s_z^\wedge \text{ and } s_z^\vee \leq s_z \end{array} \right..$$

Section 6

TARSKI'S FIXED POINT THEOREM

TARKSI'S FIXED POINT THEOREM

Theorem (Tarski). If L is a complete lattice and and if $F: L \to L$ is isotone, then the set of fixed points of f in L is also a complete lattice.

Kleene's fixed point theorem provide conditions for a constructive argument following which the lattice bounds can be obtained by iterative applications of F.