Experimentelle Übungen I

Versuchsprotokoll M3

Elastizität

Hauke Hawighorst, Jörn Sieveneck

Gruppe 9

 $\verb|h.hawighorst@uni-muenster.de|$

j_siev11@uni-muenster.de

betreut von

Christian Thiede

6. Dezember 2017

Inhaltsverzeichnis

1.	Zusammenfassung				
	1.1. Stäbe	1			
2.	Torsionsschwingung	7			
	2.1. Methoden	7			
	2.2. Daten und Analyse	7			
	2.3. Diskussion	10			
3.	Schlussfolgerung	11			
Α.	Anhang	12			
	A 1 Verwendete Gleichungen	12			

1. Zusammenfassung

In dem zweiten Teil des Experimentes wurde das Torsionspendel untersucht. Bei bekanntem Trägheitsmoment der Masse eignet es sich dazu das Schubmodul G des Drahtes zu bestimmen und Informationen über das verwendete Material zu erhalten. So lies der gemessen Wert von $G = (7.87 \pm 0.09) \cdot 10^{10} \, \mathrm{kg/s^2m}$ eine Stahllegierung vermuten. Bei bekanntem Aufbau und Schubmodul lässt sich alternativ das Trägheitsmoment eines Körpers um die, durch den Draht vorgegebene, Rotationsachse bestimmen. Durch unterschiedliche Aufhängungen der Hantlscheiben wurde der Einfluss des Abstandes zwischen Schwerpunkt und Rotationsachse untersucht und mithilfe des Steinerschen Satzes ausgewertet.

1.1. Stäbe

Zunächst wurde die Durchbiegung von vier verschiedenen Stäben gegen das angehängte Gewicht aufgetragen. Bei den Stäben handelte es sich um einen Runden Stahlstab, einen Runden Aluminiumstab, einen Runden Messingstab und um einen Rechteckigen Messingstab. Der Rechteckige Messingstab besitzt zwei unterschiedlich lange Kantenlängen. Dieser Messingstab wurde jeweils einmal so eingespannt, sodass jeweils eine der beiden Kanten nach oben zeigt. Diese Durchbiegung in Abhängigkeit vom Gewicht ist in den Abbildungen 1 bis 5 zu sehen. Mithilfe von den aus den Abbildungen entnommenen Steigungen wurde nach Gleichung A.5 mithilfe von den Gleichungen A.6 und A.8 das Elastizitätsmodul E berechnet. Somit ergab sich unter einsetzen der in Tabelle 1 zu sehenden Werte, die ebenfalls in der Tabelle zu sehenden Werte, für das Elastizitätsmodul. Vergleicht man diese Werte für das Elastizitätsmodul mit Literaturwerten¹ Tabelle 2

Tabelle 1: Elastizitätsmodul E berechnet nach A.5 mit allen dazu nötigen Werten

	$\left[\begin{array}{c} a & \left[\frac{m}{g}\right] \end{array}\right]$	b[m]	c[m]	d[m]	L[m]	$\mathrm{E}\left[\frac{N}{m^2}\right]$
Aluminium Rund	0,305			0,00297	0,298	74921967405
Messing Hochkant	0,041	0,0020	0,0050		0,287	94293095026
Messing Quer	0,264	0,0050	0,0020		0,287	93133852625
Messing Rund	0,202			0,00296	0,295	111186381240
Stahl Rund	0,114			0,00297	0,290	181538008224

¹Entnommen aus "Physik: für Wissenschaftler und Ingenieure" von Paul A. Tpler und Gene Mosca in der 7. Ausgabe von 2014.

Abbildung 1: Zu sehen ist hier die Durchbiegung des Runden Aluminiumstabes in Abhängigkeit vom Gewicht.

Tabelle 2: Literaturwerte für das Elastizitätsmodul

	Elastizitätsmodul E $\left[\frac{GN}{m^2}\right]$
Aluminium	70
Eisen	190
Kupfer	110
Messing	90

Abbildung 2: Zu sehen ist hier die Durchbiegung des Hochkant gestellten rechteckigen Messingstabes in Abhängigkeit vom Gewicht.

Abbildung 3: Zu sehen ist hier die Durchbiegung des Quer gestellten rechteckigen Messingstabes in Abhängigkeit vom Gewicht.

Abbildung 4: Zu sehen ist hier die Durchbiegung des Runden Messingstabes in Abhängigkeit vom Gewicht.

Abbildung 5: Zu sehen ist hier die Durchbiegung des Runden Stahlstabes in Abhängigkeit vom Gewicht.

2. Torsionsschwingung

2.1. Methoden

Das Experiment unterteilte sich in zwei Abschnitte, im ersten wurde die Schwingungsdauer eines Torsionspendels mit Zylinder um das Schubmodul G des Drahtes zu bestimmen. Dies bildetet die Grundlage um anschließend die Trägheitsmomente der Hantel mit Gewichten in verschiedenen Abständen der Rotationsachse zu bestimmen. Gemessen wurden daher alle für das Schubmodul relevanten Größen, d.h. die Schwingungsdauer die Abmessungen des Drahtes und der Gewichte sowie die Masse letzterer. Dies wurde sowohl für den Zylinder, die Hantel ohne Scheiben und mit aufgelegten Scheiben in fünf verschiedenen Abständen durchgeführt. Der Radius des Drahtes wurde an fünf stellen je dreimal gemessen.

2.2. Daten und Analyse

Bei der Messung des Radius des Drahtes wurde in 13 von 15 Messungen der selbe Wert festgestellt, dies war zudem der Mittelwert. Daher ist davon auszugehen das der Draht eine im Vergleich zur Messgenauigkeit konstante Dicke aufweist. Die einzelnen Drahtradien sowie Schwingungsdauern sind dem Laborbuch zu entnehmen. Die Unsicherheiten ergab sich nach den Gleichungen A.2, A.3 und A.4 aus der statistischen Unsicherheit und einer Ablesegenauigkeit von $\pm 2.5 \cdot 10^{-6}\,\mathrm{m}$. Alle weiteren Entfernungen wurden einmal gemessen, da sie nicht in vierter Potenz in das Schubmodul eingehen, hier wurden Dreiecksverteilungen mit $a=1\,\mathrm{mm}$ angenommen. Die auf den Gewichten gegebene Masse wurde als gegeben und exakt im Vergleich zu den anderen Messungenauigkeiten angenommen. Bei der Schwingungsdauer des Torsionspendels mit Zylinder wurden drei Messungen je drei Schwingungsdauer der Berioden gemessen. Die Reaktionszeit wurde mit 0.5 s dreiecksverteilt betrachtet.

Torsionspendel mit Zylinder

Mit den Messdaten aus Tabelle 3 und Gleichungen 2.1 und 2.2 folgt für das Schubmodul des Drahtes $G \pm \Delta G = (7.87 \pm 0.09) \cdot 10^{10} \, \text{kg/s}^2 \text{m}$.

Messgröße	Messwert
Länge des Drahtes L_D	$(1,8150 \pm 0,0004) \mathrm{m}$
Masse des Zylinders m_z	$2,648\mathrm{kg}$
Radius des Zylinders R_z	$(0.0735 \pm 0.0004) \mathrm{m}$
Radius des Drahtes R_D	$(2,500 \pm 0,002) \cdot 10^{-4} \mathrm{m}$
Gemittelte Schwingungsdauer T_z	$(32,58 \pm 0,04) \mathrm{s}$

Tabelle 3: Messdaten des Torsionspendels mit Zylinder

$$G = \frac{4\pi L_D m_z R_z^2}{R_D^4 T_z^2} \tag{2.1}$$

$$\Delta G = G \sqrt{\left(\frac{\Delta L_D}{L_D}\right)^2 + \left(2\frac{\Delta R_z}{R_z}\right)^2 + \left(4\frac{\Delta R_D}{R_D}\right)^2 + \left(2\frac{\Delta T_z}{T_z}\right)^2}$$
(2.2)

Torsionspendel mit Hantel

Hier wurde die Schwingungsdauer einer Hantel mit aufgelegten Scheiben beobachtet, wobei der Abstand a des Scheibenschwerpunktes zur Rotationsachse variiert wurde.

Tabelle 4: Messdaten des Torsionspendels mit Hantel und aufgelegten Scheiben

Messgröße	Messwert
Länge des Drahtes L_D	$(1.8150 \pm 0.0004) \mathrm{m}$
Masse der Achse m_1	$0.21773\mathrm{kg}$
Radius der Achse R_1	$(0.0599 \pm 0.0004) \mathrm{m}$
Länge der Achse H_1	$(0.270 \pm 0.004) \mathrm{m}$
Radius des Drahtes R_D	$(2,500 \pm 0,002) \cdot 10^{-4} \mathrm{m}$
Masse der aufgelegten Scheibe m_2	$0,29728\mathrm{kg}$
Radius der aufgelegten Scheibe R_2	$(0.0245 \pm 0.0004) \mathrm{m}$
Höhe der aufgelegten Scheibe H_2	$(0.02040 \pm 0.00004) \mathrm{m}$

Der Steinersche Satz sagt einen linearen Zusammenhang für Abb. 6 vorher, daher wurde eine Anpassung des Typs $T^2(2m_2a^2) = b(2ma^2) + c$ gewählt, da der letzte Messpunkt

deutlich Abseits einer gedachten Grade durch die anderen Messpunkte lag, wurde hier von einem groben Fehler ausgegangen und er wurde bei der Anpassung ausgelassen.

Abbildung 6: Dargestellt werden die Messung mit Anpassung der Schwingungsdauern der Hantel mit aufgelegten Scheiben in verschiedenen Abständen zur Rotationsachse. Die Einheiten der Achsen sind so gewählt, dass die Messpunkte nach dem Steinerschen Satz linear sind.

Der Steinersche Satz sagt einen linearen Zusammenhang für Abb. 6 vorher, daher wurde eine Anpassung des Typs $T^2(2m_2a^2) = b(2ma^2) + c$ gewählt, da der letzte Messpunkt deutlich Abseits einer gedachten Grade durch die anderen Messpunkte lag, wurde hier von einem groben Fehler ausgegangen und er wurde bei der Anpassung ausgelassen. Man erhält nach der Anpassung^2 und unter Berücksichtigung des geringen Freiheitsgrades (2) die Werte: $b = (1,5346 \pm 0,0040) \cdot 10^5 \, \mathrm{s}^2/\mathrm{kg} \, \mathrm{m}^2$ und $c = (186,587 \pm 1,100) \, \mathrm{s}^2$. Aus der Steigung b und Gleichung 2.4 folgt durch Koeffzientenvergleich $D^* = (8,19 \pm 0,02) \cdot 10^{-5} \, \mathrm{kg} \, \mathrm{m}^2/\mathrm{s}^2$ Da jedoch der letzte Punkt so stark abweicht nehmen wir eine Unsicherheit von $\Delta D^* = \pm 2 \cdot 10^{-6} \, \mathrm{kg} \, \mathrm{m}^2/\mathrm{s}^2$ an.

Die Schwingungsdauer der Hantel ohne Scheiben T_0 betrug $(13,01 \pm 0,03)$ s. Es folgt mit Gleichung 2.3 für das Trägheitsmoment des Hantelstabes $J_1 = (1,40 \pm 0,04) \cdot 10^{-3} \,\mathrm{kg} \,\mathrm{m}^2$.

²Die Anpassung wurde durch "Gnuplot" mit dem Levenberg-Marquardt Algorithmus vorgenommen.

$$J = \frac{T^2 D^*}{4\pi^2} \pm \frac{T^2 D^*}{4\pi^2} \sqrt{\left(\frac{2\Delta T}{T}\right)^2 + \left(\frac{\Delta D^*}{D^*}\right)^2}$$
 (2.3)

Aus dem Parameter c und der Gleichung 2.4 und a=0 folgt für das Trägheitsmoment der Hantelscheiben mit Schwerpunkt auf der Rotationsachse die Gleichung 2.5 und $J_2=(5,1\pm0,4)\cdot 10^{-5}\,\mathrm{kg}\,\mathrm{m}^2$.

$$T^{2} = \frac{4\pi^{2}}{D^{*}}(J_{1} + 2J_{2} + 2m_{2}a^{2})$$
(2.4)

$$J_2 = \frac{cD^*}{8\pi^2} - \frac{J_1}{2} \pm \sqrt{\left(\frac{cD^*}{8\pi}\right)^2 \left(\left(\frac{\Delta c}{c}\right)^2 + \left(\frac{\Delta D^*}{D^*}\right)^2\right) + \left(\frac{J_1}{2}\right)^2}$$
(2.5)

$$J_{allg.} = \int r_{\perp}^2 \mathrm{d}m \tag{2.6}$$

Zum Vergleich wurden die theoretisch vorhergesagten Trägheitsmomente nach Gleichung 2.6 bestimmt und in Tabelle 5 mit den experimentell bestimmten zum Vergleich aufgeführt.

Tabelle 5: Vergleich der experimentellen Trägheitsmomente mit den theoretisch berechneten

Objekt	Theoretischer Wert	Experimenteller Wert
Hantelstange J_1	$(1,324 \pm 0,004) \cdot 10^{-3}$	$(1,40 \pm 0,04) \cdot 10^{-3}$
Scheibe J_2	$(5.76 \pm 0.07) \cdot 10^{-5}$	$(5.1 \pm 0.5) \cdot 10^{-4}$

2.3. Diskussion

Im Vergleich mit den Literaturwerten erscheint eine Stahllegierung wahrscheinlich. So besitzt zum Beispiel "CrV-Federstahl" oder "V2A-Stahl" ein Schubmodul³ $G=8,000\cdot 10^{10}\,\mathrm{kg/s^2m}$. Genauso Wahrscheinlich sind jedoch auch andere Stahllegierungen, da die Eigenschaften von den genauen Anteilen der Legierungsbestandteilen steuerbar

³entnommen: Gerthsen Physik, Vogel 1977

sind und das gewünschte Schubmodul mit verschiedenen Zusätzen erreicht werden kann. An den Werten in Tabelle 5, dass der theoretische Wert für das Trägheitsmoment liegen jeweils in der 2σ -Umgebung des experimentell bestimmten Wertes und stellen somit keinen Widerspruch dar. Die weiteren berechneten Werte lassen sich nicht einordnen, da es sich um Materialkonstanten handelt und die Materialien nicht bekannt sind. Bei einer Weiterführung der Versuchsreihe wäre die Pendeldauer der Hantel für das größte a zu wiederholen um zu überprüfen ob es sich wie angenommen um einen Fehler handelt oder ob die Abweichung reproduzierbar ist. Sollte eine höhere Genauigkeit erforderlich sein, sollte insbesondere J_1 genauer bestimmt werden, da dieser Wert für weitere Rechnungen benötigt wird. Eine höhere Genauigkeit von D^* , welches auch Grundlage weiterer Berechnungen ist, ist nur durch allgemeine Techniken wie mehr Abstände vermessen oder über viele Perioden mehrfach messen möglich und somit deutlich aufwendiger.

3. Schlussfolgerung

A. Anhang

A.1. Verwendete Gleichungen

Standardunsicherheit der Rechteckverteilung u für die Intervallbreite a:

$$u = \frac{a}{2\sqrt{3}} \tag{A.1}$$

Standardunsicherheit der Dreieckverteilung u:

$$u = \frac{a}{2\sqrt{6}} \tag{A.2}$$

Standardunsicherheit des Mittelwertes der Normalverteilung u für die Messwerte x_i und den Mittelwert \bar{x} :

$$u(\bar{x}) = t_p \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n(n-1)}}$$
(A.3)

Kominierte Standartunsicherheit der Messgröße $g(x_i)$

$$u(g(x_i)) = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial g}{\partial x_i} u(x_i)\right)^2}$$
(A.4)

Elastizitätsmodul E

$$E = \frac{F}{h_{\text{max}}I_g} \frac{L^3}{3} \tag{A.5}$$

Flächenträgheitsmoment Kreis

$$I_{\text{Kreis}} = \frac{\pi d^4}{64} \tag{A.6}$$

Flächenträgheitsmodul Rechteck

$$I_{\text{Rechteck}} = \frac{bc^3}{12} \tag{A.7}$$

b senkrecht zur Biegungsebene, b waagerecht zu Biegungsebene. (A.8)

Kraft

$$F = 10 \cdot a \cdot m \tag{A.9}$$

a ist die Steigung entnommen aus den Abbildungen 1, 2, 3, 4, 5 (A.10)