Topology

Elliott Stein

Transcribed by Ron Wu

This is an advanced undergraduate course. Offered in Fall 2013 at Columbia University. Course textbook is Munkres, Topology. Office hours: TR 5:00-6:00.

Contents

1	\mathbf{Set}	Theory	2	
	1.1	Set Algebra	2	
	1.2	Functions	4	
	1.3	Relations (binary)	4	
	1.4	Countability	5	
2	Topological Spaces			
	2.1	Topology	7	
	2.2	Basis and subbasis	C	

General Topology

Lecture 1 (9/3/13)

We will follow the book very closely, and spend first half of the semester study general topology and second half study algebraic topology.

1 Set Theory

1.1 Set Algebra

 $a \in S, \ a$ is an element of set S. Denote \varnothing set with no element, empty set. A, B sets

Definition 1. Union of two sets

$$A \cup B = \{a : a \in A \text{ or } a \in B\} = B \cup A$$

Intersection of two sets

$$A \cap B = \{a : a \in A \text{ and } a \in B\} = B \cap A$$

We can do more general things

$$\alpha \in J$$
 index set

J is countable or uncountable. S_α family of sets, we can have

$$\bigcup_{\alpha \in J} S_{\alpha} \qquad \bigcap_{\alpha \in J} S_{\alpha}$$

Definition 2. Difference of two sets $A, B \subset C$,

$$B - A = \{b : b \in B \text{ and } b \notin A\}$$

C here acts like an universal set although there is not one.

Theorem 3. (deMorgan's Law)

$$(A - B) \cup (B - C) = A - (B \cap C)$$

$$(A - B) \cap (A - C) = A - (B \cup C)$$

S set, we define the power set

$$P(S) = \{A : A \subset S\}$$

$$A \in P \iff A \subset S$$

Here we didn't use lower letter to represent element of P(S), we are going to be absolutely rigid.

Definition 4. Cartesian product

$$A \times B = \{(a, b) : a \in A, b \in B\}$$

E.g $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$.

Note 5. Technically $(A \times B) \times C$ is not the same as $A \times (B \times C)$, but for our purpose we won't make a big deal of it.

 $A_1, ..., A_k$ countable finite many of sets,

$$A_1 \times A_2 \times ... \times A_k = \{ \underbrace{(\underbrace{a_1, a_2, ..., a_k})}_{k\text{-tuple}} : a_i \in A_i \forall i \}$$

Or $A_1, A_2...$ $i \in \mathbb{Z}_+$ countable or uncountable infinitely many of sets

$$A_1 \times A_2 \times ... \times = \{(\underbrace{a_1, a_2, ...}_{\omega \text{-tuple}}) : a_i \in A_i \forall i \}$$

 $\omega\text{-tuple}$ is really a function

$$f: \mathbb{Z}_+ \to \bigcup_{i \in \mathbb{Z}_i} A_i$$

$$\prod_{i \in \mathbb{Z}_+} A_i = \{ f : \mathbb{Z}_+ \to \bigcup_{i \in \mathbb{Z}_i} A_i \text{ s.t. } f(i) \in A_i \}$$

hence f is a choice function. Or more general for a family $\{S_{\alpha} : \alpha \in J\}$

$$\prod_{\alpha \in J} S_{\alpha} = \{ f : J \to \bigcup_{\alpha \in J} S_{\alpha} \text{ s.t. } f(i) \in S_{\alpha} \}$$

Clearly if one of $A_i = \emptyset$, then $\prod_{i \in \mathbb{Z}_+} A_i = \emptyset$.

Question 6. If all $A_i \neq \emptyset$, does it imply $\prod_{i \in \mathbb{Z}_+} A_i \neq \emptyset$?

We cannot prove this within our logic system. One has to introduce axiom of choice.

1.2 Functions

A, B sets,

$$f:A\to B$$

A domain, B codomain. Image of A

$$\{f(a), a \in A\} \subset B$$

Definition 7. f is 1-1 $f(x) = f(y) \implies x = y$.

f is onto $\forall y \in B, \exists x \in A \text{ s.t. } f(x) = y.$ In this case image = range.

f is one to one correspondence if it is both 1-1 and onto.

synonyms for these: injective/subjective/bijective.

Pre-image of C

$$f^{-1}(C) = \{ a \in A : f(a) \in C \}$$

this doesn't assume f to be invertible.

1.3 Relations (binary)

Relation R on S is subset of $S \times S$, denote aRb for $(a, b) \in R$.

We will only talk about 2 relations: equivalence relation, and total ordering.

Definition 8. R is equivalence $a \sim b$ iff

- 1) $a \sim a \ \forall a \in S$ (reflexive)
- 2) $a \sim b \implies b \sim a \ \forall a, b \in S$ (symmetric)
- 3) $a \sim b, b \sim c \implies a \sim c$ (transitive)

Example 9. on \mathbb{Z} $m \sim n$ iff

$$\frac{m-n}{p} \in \mathbb{Z}$$

for some fixed $p \neq 0$.

Definition 10. Equivalence class of $a \in S$

$$C_a = \{b \in S : b \sim a\}$$

Example 11. p = 5,

$$C_2 = \{2, 7, 12, ..., -3, -8, ...\}$$

Equivalence classes give a partition of S, i.e. S is divided into a collection of disjoint subsets

$$S = \bigcup_{\alpha \in I} C_{\alpha} \quad C_{\alpha} \cap C_{\beta} = \emptyset \text{ if } \alpha \neq \beta$$

Conversely given S and a partition $S = \bigcup C_{\alpha}$, one can define an equivalence $a \sim b \iff a, b \in C_{\alpha}$ for some α .

Example 12. For p=5

$$\mathbb{Z} = C_0 \cup C_1 \cup C_2 \cup C_3 \cup C_4$$

Definition 13. (S, <) is total order (or called linear order) iff

- 1) it's not the case that a < a (anti reflexivity)
- 2) if $a \neq b$ then a < b or b < a (comparability)
- 3) $a < b, b < c \implies a < c$ (transitivity)

Definition 14. Given (S, <), M is the maximum element if $a \le M$ for all $a \in S$. m is the minimum element if $m \le a$ for all $a \in S$.

Example 15. (\mathbb{R} , <) (usual <) 2 is an upper bound for (0,1) open interval.

Definition 16. Given (A, <), (B, <) one can define dictionary ordering on $A \times B$

$$(a_1, b_1) < (a_2, b_2) \iff a_1 < a_2 \text{ or } \begin{cases} a_1 = a_2 \\ b_1 < b_2 \end{cases}$$

Example 17. In \mathbb{R}^2 with the dictionary ordering, the open interval between two points (a, b), where $a, b \in \mathbb{R}^2$ is all vertical lines between a, b and ray from a up and ray from b down.

1.4 Countability

Definition 18. An infinite set is a set that is not finite.

Definition 19. A set S is countable iff S is finite or S can be put in 1-1 correspondence with \mathbb{Z}_+ .

S is countable infinite iff S is in 1-1 correspondence with \mathbb{Z}_+ .

Example 20. $\mathbb{Z}_+: 1,2,3,4,...$ $\mathbb{Z}: 0,\pm 1,\pm 2,...$ One can find a 1-1 correspondence between \mathbb{Z}_+ and \mathbb{Z} .

Example 21. $\mathbb{Z}_+ \times \mathbb{Z}_+$ is too countable. Use diagonal lines connect the grid.

Proposition 22. The following statements are equivalent

- 1) S is countable
- 2) There is a function $\mathbb{Z}_+ \to S$ that is onto
- 3) There is a function $S \to \mathbb{Z}_+$ that is 1-1

The proof requires axiom of choice.

Proposition 23. A, B constable then $A \times B$ is countable.

Proposition 24. $A_1,..,A_k$ countable

$$A_1 \times A_2 \times ... \times A_k$$

 $is\ countable$

Notice the finite product about, if we do

Example 25. $S = \{0, 1\}$

$$S \times S... = \{0, 1\}^{\omega}$$

is uncountable.

But union is find

Proposition 26. A_i is countable, then

$$\bigcup_{i\in\mathbb{Z}_+}A_i$$

is countable.

2 Topological Spaces

2.1 Topology

Lecture 2 (9/5/13)

Recall from advanced calculus. \mathbb{R}^n euclidean space

$$x = (x_1, ..., x_n) \in \mathbb{R}^n$$

we have distance $x, y \in \mathbb{R}^n$

$$||x - y|| = \left[\sum_{i=1}^{n} (x_i - y_i)^2\right]^{1/2}$$

If n=2, it is Pythagorean. From there we have notion of an open ball centered at x radius ϵ

$$B(x,\epsilon) = \{y : ||y - x|| < \epsilon\}$$

Definition 27. $U \subset \mathbb{R}^n$ open if $\forall x \in U \ \exists \epsilon > 0 \text{ s.t. } B(x, \epsilon) \subset U$.

E.g. x axis is not open in \mathbb{R}^2 .

Notion of distance is very important. It tells about whether f is continuous.

We do these in a much more general settings.

Definition 28. X set, a topology \mathcal{J} on X is a subset of P(X) satisfying

- 1) $\varnothing \in \mathcal{J}, X \in \mathcal{J}$
- $2) A_1, A_2 \in \mathcal{J} \implies A_1 \cap A_2 \in \mathcal{J}$
- 3) $A_{\alpha}, \alpha \in J$ with $A_{\alpha} \in \mathcal{J} \implies \bigcup_{\alpha} A_{\alpha} \in \mathcal{J}$.

Claim 29. Check the collection of open sets in \mathbb{R}^n is a topology on \mathbb{R}^n .

 \emptyset is open vacuously.

 \mathbb{R}^n is open since for $x \in \mathbb{R}^n$ $B(x,1) \subset \mathbb{R}^n$.

 A_1, A_2 open, let $x \in A_1 \cap A_2, \exists \epsilon_1, \epsilon_2$ s.t.

$$B(x, \epsilon_1) \subset A_1$$
 $B(x, \epsilon_2) \subset A_2$

Let $\epsilon = \min(\epsilon_1, \epsilon_2)$, then

$$B(x,\epsilon) \subset A_1 \text{ and } A_2 \implies B(x,\epsilon) \subset A_1 \cap A_2$$

 A_{α} open $x \in \bigcup A_{\alpha}$ then $x \in A_{\alpha_0}$ for some particular α_0

$$B(x,\epsilon) \subset A_{\alpha_0} \subset \bigcup A_{\alpha} \implies \bigcup A_{\alpha}$$
 is open

Definition 30. (X, \mathcal{J}) topological space. The elements of \mathcal{J} are called the open sets in the topology.

So we define openness without referring to distance.

Example 31. Indiscrete topology X, $\mathcal{J} = \{\emptyset, X\}$.

Example 32. Discrete topology X, $\mathcal{J} = P(X)$.

Example 33. Cofinite (or finite complement topology) $X = \mathbb{R}$, $A \in \mathcal{J}$ iff $\mathbb{R} - A$ is a finite set or $A = \emptyset$.

check it is a topology. $\emptyset, \mathbb{R} \in \mathcal{J}, A_1, A_2 \in \mathcal{J}$ then

$$A_1 = \mathbb{R} - F_1 \qquad A_2 = \mathbb{R} - F_2$$

where $F_{1,2}$ are finite

$$A_1 \cap A_2 = (\mathbb{R} - F_1) \cap (\mathbb{R} - F_2) = \mathbb{R} - (F_1 \cup F_2) \in \mathcal{J}$$

since $F_1 \cup F_2$ is finite.

 $A_{\alpha} = \mathbb{R} - F_{\alpha} \bigcup A_{\alpha} = \bigcup \mathbb{R} - F_{\alpha} = \mathbb{R} - \bigcap F_{\alpha} \in \mathcal{J}$, since $\bigcap F_{\alpha} \subset F_{\alpha_0}$ that is $\bigcap F_{\alpha}$ is finite.

Hence we have see 4 different topologies on \mathbb{R} .

Definition 34. $(X, \mathcal{J}_1), (X, \mathcal{J}_2)$. We say \mathcal{J}_1 is finer than \mathcal{J}_2 if $\mathcal{J}_2 \subset \mathcal{J}_1$ (or say \mathcal{J}_2 is coarser than \mathcal{J}_1)

We say that \mathcal{J}_1 is strictly finer than \mathcal{J}_2 if $\mathcal{J}_2 \subsetneq \mathcal{J}_1$.

The reason it is called finer, because we think in \mathbb{R}^n standard topology, $\mathcal{J}_2 \subset \mathcal{J}_1$ means \mathcal{J}_1 contains some smaller sets that may not be in \mathcal{J}_2 .

Definition 35. $\mathcal{J}_1, \mathcal{J}_2$ are compatible if

$$\mathcal{J}_2 \subset \mathcal{J}_1 \text{ or } \mathcal{J}_1 \subset \mathcal{J}_2$$

Claim 36. $X = \mathbb{R}$

 $\mathcal{J}_{indiscrete} \subsetneq \mathcal{J}_{cofinite} \subsetneq \mathcal{J}_{euclidean} \subsetneq \mathcal{J}_{discrete}$

We only need to check the middle

$$U \in \mathcal{J}_{\text{cofinite}} \implies U \in \mathcal{J}_{\text{euclidean}}$$

$$U = \mathbb{R} - F, F = \{t_1, ..., t_n\} \text{ fix } x \in U, |x - t_i| > 0 \ \forall i.$$

let $\epsilon = \min\{|x - x_i|, i = 1, ..., n\} \implies t_i \notin B(x, \epsilon) \implies B(x, \epsilon) \subset U$, so U is open in $\mathcal{J}_{\text{euclidean}}$.

2.2 Basis and subbasis

The role of open ball in euclidean is very useful.

Definition 37. A basis \mathcal{B} on X is a subset of P(X) satisfying

1)

$$\bigcup_{A\in\mathcal{B}}A=X$$

2) $A_1, A_2 \in \mathcal{B}, x \in A_1 \cap A_2$, then

$$\exists A_3 \in \mathcal{B} \text{ with } x \in A_3 \subset A_1 \cap A_2$$

Note 38. one can have a basis without knowing the Topology. In the definition no where mention the kind of topology.

Claim 39. The open balls in \mathbb{R}^n are a basis.

Clearly

$$\bigcup_{\substack{x \in \mathbb{R}^n \\ \epsilon > 0}} B(x, \epsilon) = X$$

For given $B(x_1, \epsilon_1)$, $B(x_2, \epsilon_2)$, $x_3 \in B(x_1, \epsilon_1) \cap B(x_2, \epsilon_2)$, the ball

$$B(x_3, \min\{\epsilon_1 - \|x_1 - x_3\|, \epsilon_2 - \|x_2 - x_3\|\}) \subset B(x_1, \epsilon_1) \cap B(x_2, \epsilon_2)$$

If \mathcal{B} is a basis on X, it defines a topology \mathcal{J} as follows:

Definition 40. $U \subset X$ is open iff $\forall x \in U, U \in \mathcal{J}, \exists B_x \in \mathcal{B}$ with $x \in B_x \subset U$.

It turns out all elements of \mathcal{J} can be expressed via a basis, so basis gives a simpler way to characterize the topology.

Proposition 41. Suppose \mathcal{B} is a basis for \mathcal{J} on X, $U \in \mathcal{J}$ iff

$$U = \bigcup_{\alpha \in J} B_{\alpha}$$

for some J.

Proof. Assume U is an arbitrary open set, $x \in U \implies \exists B_x$ with

$$x \in B_x \subset U$$

so for any $y, y \in \bigcup_{x \in U} B_x$, so $U \subset \bigcup_{x \in U} B_x$. On the other hand, each $B_x \subset U$, so $\bigcup_{x \in U} B_x \subset U$, thus

$$U = \bigcup B_x$$

Conversely B_{α} is open in $\mathcal{J} \implies \bigcup_{\alpha \in J} B_{\alpha} \in \mathcal{J}$.

Example 42. $X = \mathbb{R}$, $\mathcal{B} = \{[a, b)\}$ is a basis.

Check it.

$$\mathbb{R} = \bigcup_{B \in \mathcal{B}} B$$

Moreover instead of proving $\exists B \in \mathcal{B}$, s.t.

$$B \subset [a_1, b_1) \cap [a_2, b_2)$$

we find

$$[a_1,b_1)\cap[a_2,b_2)\in\mathcal{B}$$

The \mathcal{J} generated by \mathcal{B} is called the lower limit topology on \mathbb{R} , denoted \mathbb{R}_l .

Question 43. Is this compatible to standard topology in \mathbb{R} ?

Yes,

$$(a,b) = \bigcup_{n \in \mathbb{Z}_+} [a + \frac{\epsilon}{n}, b)$$

chose a proper ϵ so that $a + \epsilon < b$.

In other words, the basis of standard topology can be expressed by basis of \mathbb{R}_l , so according to the proposition below \mathbb{R}_l is finer. In fact it is strictly finer.

Proposition 44. $\mathcal{J}_1, \mathcal{J}_2$ on X with \mathcal{J}_1 associated with \mathcal{B}_1 and \mathcal{J}_2 associated with \mathcal{B}_2 then \mathcal{J}_1 is finer than \mathcal{J}_2 iff

$$\forall x \in B_2 \in \mathcal{B}_2 \quad \exists B_1 \in \mathcal{B}_1 \text{ with } x \in B_1 \subset B_2$$

Proof. We prove the converse direction.

Suppose U is open in \mathcal{J}_2 , need to show that U is open in \mathcal{J}_1 , i.e. $\forall x \in U$, $\exists B_x \in B_1$ with $B_x \subset U$.

Since U is open in \mathcal{J}_1 , $\exists B'_x \in \mathcal{B}_2$ with $x \in B'_x \in \mathcal{B}_2$, by assumption $\exists B_x \in \mathcal{B}_1$ with $x \in B_x \in \mathcal{B}'_x \subset U$, so U is open in \mathcal{J}_1 .

Definition 45. Let \mathcal{B}' be any collection of subsets of X with the properties that $X = \bigcup_{B' \in \mathcal{B}} B'$

 $\mathcal{B} = \{\text{all finite intersections of elements of } \mathcal{B}'\}$

If $\mathcal B$ becomes a basis, then $\mathcal B'$ is a subbasis for the topology generated by $\mathcal B$.

Subbasis is even better than basis, because it contains less sets.

Example 46. $\{(-\infty,b),(a,\infty)\}$ subbasis for \mathbb{R} standard topology.

Lecture 3 (9/10/13)