

VHDL Design and Implementation of an Instruction Set Architecture Z. Navabi

Course on Details of Hardware of Processors (Processors)

VHDL Design and Implementation of an Instruction Set Architecture

Zain Navabi

VHDL Design and Implementation of an Instruction Set Architecture Z. Navabi

Topic 2

Memory Models

Zain Navabi

Course Roadmap

Learning Outcomes:

- Learn different types of memory
- Learn memory stages in embedded system
- Learn memory interface

Outline:

- Memory Types
- Memory Stages in Embedded Systems
- Memory Handshaking
- Memory Mapping

Memory Types

Memory Stages in Embedded Systems

- Discrete Registers
- Register File
- On-chip / Closely-Coupled / Scratch Pad Memory
 - SRAM
- Main Memory
 - DRAM

Memory Hierarchy in Embedded Systems

Does not scale well as we deal with larger amounts of data

handling the complexity involving the storage and retrieval of large amounts of data

Unable to simultaneously access all data

SRAMs can accommodate hundreds of kilobytes of on-chip storage

Higher capacity and correspondingly higher access times

Memory Stages in Embedded Systems

- Smaller memories are faster, whereas larger memories are slower.
- The common method is to architect the memory system as a hierarchy of memories with increasing capacities
- The smallest memory (registers and register files) located closest to the processing units and the largest memory (DRAM) lying farthest.
- Processor fetch the data from the closest memory very fast.
- Performance should not be overwhelmed by excessive accesses to the large memories.

Memory Stages in Embedded Systems

- SRAM (On-chip Memory)
 - Scratch-Pad Memory
 - Cache

Memory Stages in Embedded Systems

• Different ways of integrating scratchpad memory DMA: Interface between external memory and on-chip memories

Memory Handshaking

Memory Mapping

Conclusion

In this topic we have learned:

- Memory types
- Memories in embedded system
- Memory mapped structure
- Processor-Memory handshaking

1xample - Myal