INTRODUCCIÓN A LA ESTABILIDAD FINANCIERA

LUIS ORTIZ-CEVALLOS

2022-02-24

Contents

1	La i	portancia en la medición del riesgo sistémico	5
	1.1	l mapa de riesgos	5

4 CONTENTS

Chapter 1

La importancia en la medición del riesgo sistémico

1.1 El mapa de riesgos

1.1.1 Aplicación para una serie

El caso de las remesas en El Salvador.

Para conocer mejor esta metodología por favor revisar Ortiz (2019)

```
library("zoo")
library("xts")
library("dplyr")
library("ggplot2")
library("ggrepel")
library("ggthemes")
REMESAS <- as.xts(read.zoo("REMESAS.csv", index.column = 1, sep = ";",</pre>
    header = TRUE, format = "%d/%m/%Y"))
SV <- data.frame(date = index(REMESAS), coredata(REMESAS))</pre>
SV <- mutate(SV, SLV_R = SLV/(IPC_SV/100))
SV \leftarrow mutate(SV, DIFF = SLV_R - lag(SLV_R, n = 12))
SV \leftarrow mutate(SV, G1 = (DIFF/(lag(SLV_R, n = 12))) * 100)
BASE <- data.frame(date = SV$date, coredata(SV$G1))
colnames(BASE) <- c("date", "SV")</pre>
inicial <- "2002-01-01"
finalista <- "2021-09-01"
Data <- filter(BASE, date >= "2002-01-01" & date <= "2021-09-01")
```

```
dates <- Data[, "date"]</pre>
LARGO <- length(dates)
missing.color <- "white"
colours1T <- c("forestgreen", "yellow", "red3")</pre>
DIR <- -1
VARIABLES <- colnames(Data)</pre>
VAR <- Data[, VARIABLES[2]]</pre>
VAR.DIR <- VAR * DIR
EMP <- ecdf(VAR.DIR)</pre>
QUANT <- EMP(VAR.DIR)
z <- QUANT
zz <- z
assign(pasteO(VARIABLES[2], ".s.lim"), max(VAR, na.rm = T) +
    sd(VAR.DIR, na.rm = T)/2)
assign(paste0(VARIABLES[2], ".i.lim"), min(VAR, na.rm = T) -
    sd(VAR.DIR, na.rm = T)/2)
dates.s <- Data$date[1]</pre>
dates <- Data$date
for (t in seq_along(dates)[-1]) {
    mean.day \leftarrow dates[t - 1] + ((dates[t] - dates[t - 1])/2)
    dates.s <- c(dates.s, mean.day, dates[t])</pre>
dates.s <- c(dates.s[1] - 45, dates.s, dates.s[length(dates.s)] +</pre>
assign(pasteO(VARIABLES[2]), VAR.DIR)
for (t in seq_along(dates)[-length(dates)]) {
    pos <- which(dates[t] == dates.s)</pre>
    assign(paste0(VARIABLES[2], ".t.", t), dates.s[pos + c(-1,
        [0, 1)])
    if (is.na(zz[t])) {
        assign(paste0(VARIABLES[2], ".c.", t), rgb(matrix(col2rgb(missing.color),
            1, 3)/255))
    } else {
        assign(paste0(VARIABLES[2], ".c.", t), rgb(colorRamp(colours1T)(z[t])/255))\\
DATOS <- select(Data, date, SV)</pre>
DATOS$date <- as.Date(DATOS$date)</pre>
DATOS$MAX <- zz
DATOS$INICIO <- as.Date(DATOS$date) - 46
DATOS$FINAL <- as.Date(DATOS$date) + 46</pre>
for (t in seq_along(dates)[c(-LARGO)]) {
    DATOS$COLOR[t] <- get(pasteO(VARIABLES[2], ".c.", t))</pre>
DATOS$COLOR[LARGO] <- get(paste0(VARIABLES[2], ".c.", LARGO -</pre>
```

```
1))
P_2 <- paste0("+geom_rect(data = DATOS,aes(xmin =as.Date('",
    DATOS$INICIO[1], "'), xmax =as.Date('", DATOS$FINAL[1], "'),ymin = -Inf, ymax = Inf),fill =''
    DATOS$COLOR[1], "',alpha = 0.05, color='transparent')")
for (j in 2:LARGO) {
    P_2 <- pasteO(P_2, "+geom_rect(data = DATOS, aes(xmin =as.Date('",
        DATOS$INICIO[j], "'), xmax =as.Date('", DATOS$FINAL[j],
        "'), ymin = -Inf, ymax = Inf), fill = '", DATOS$COLOR[j],
        "',alpha = 0.05, color='transparent')")
}
P = 1 < - \text{"ggplot(data} = DATOS, aes(x = date, y=SV)) + labs(y='', x='')"
P <- paste0(P_1, P_2)
PS <- eval(parse(text = P))
PS <- PS + geom_line(size = 1, color = "blue") + labs(y = "Porcentaje",
    x = "", title = "El Salvador: Tasa de crecimiento anual de \n las remesas en términos reales
    caption = "Fuente: Elaboración propia con base en Banco Central de Reserva de El Salvador.")
    geom_hline(aes(yintercept = 0), color = "black", size = 1,
        linetype = "dashed")
PS <- PS + theme_classic() + theme(axis.line.x = element_line(colour = "black",
    size = 0.5), axis.line.y.left = element_line(colour = "black",
    size = 0.5), axis.line.y.right = element_blank(), axis.text.x = element_text(color = "black";
    size = 8), axis.text.y = element_text(color = "black", size = 14),
   axis.title.x = element_text(color = "black", size = 18),
    axis.title.y = element_text(color = "black", size = 18),
   plot.title = element_text(size = 16, hjust = 0.5, face = "bold"),
    plot.caption = element_text(size = 12, hjust = 0), panel.grid.major = element_line(size = 0.5)
        linetype = "solid", colour = "#EAEAF2"))
PS <- PS + scale_x_date(date_breaks = "24 month", date_labels = "%b-%y") +
    scale_y_continuous(breaks = seq(-50, 125, by = 25), limits = c(-50, 125, by = 25))
        125)) + coord_cartesian(xlim = as.Date(c("2002-01-01", 
    "2021-09-15")))
ggsave(filename="SIVAR.jpg",
       plot = PS,
       #device = cairo_pdf,
       width = 297,
       height = 210,
       units = "mm")
PS
```


Fuente: Elaboración propia con base en Banco Central de Reserva de El Salva