Task 5: Find Optimizing Diameters and Volumes

June 11, 2021

Objective:

For a given $CF_{ref} = x$, we consider CF as a function of the diameter D and the volume V of the storage unit. Our task is to find n optimizing D_i , V_i such that the resulting CF_i is x.

My Approach:

I built an MLP to approximate the map $(D, V) \to CF$. Call this model minNN. Taking the points (D_k, V_k) in the training set we then run DNNOPT in order to find (D_k^*, V_k^*) such that $\min NN(D_k^*, V_k^*) = x$.

Upon plotting the resulting points, it became clear that they were all lying along the same line. I therefore used linear regression, defined m points along the line (presumable close to being optimal).

I then ran DNNOPT on these points to find the final optimizers.