

交互网络 - 相关性热图-分组 XY

网址: https://www.xiantao.love

更新时间: 2023.04.24

目录

基本概念 3
应用场景 3
分析流程 3
结果解读6
数据格式 8
参数说明 9
统计 g
映射10
样式
热图
标注
分面
标题文本 15
图注
<mark>坐标轴</mark> 17
风格17
图片
结果说明
主要结果 19
补充结果 20
方法学 22
如何引用
常见问题 24

基本概念

热图: 热图是一个以颜色变化来显示数据情况的矩阵

▶ 相关性热图:通过热图的方式来展示变量之间的相关性

应用场景

相关性热图-分组 xy: 通过将数据进行分组的方式,分别对各个组进行相应处理: 将各分组中的对应的数据分成两个不同方向上变量(即将所有变量分成两个不同的组别)进行两两间(两分组间)相关性分析,再以热图的形式展示其结果

分析流程

上传数据 → 数据清洗 → 数据处理 → 将各分组进行相关性分析得到的结果进行可视化

- ▶ 数据格式: csv / txt 文件格式: (具体格式可参考后续数据格式部分)
 - 第1行为 #注释的 xy 方向信息
 - ◆ 必须提供: 在数据处理过程中会根据注释信息将数据分成 xy 两个不同的方向(不同的方向对应不同的变量/列),。#注释的信息中提供的分类个数不能超过 2 个(二维坐标轴只支持 xy 两个方向),注释信息的长度与数据(除了第 1 列外)的列数一致,如下:

A	Α	В	C	D	E	F	G	H	1	J	K
1	#group	group1	group1	group1	group1	group1	group2	group2	group2	group2	group2
2	facet	Gene1	Gene2	Gene3	Gene4	Gene5	Gene6	Gene7	Gene8	Gene9	Gene10
3	facet1	0.496745924	0.467723302	-0.048351761	-0.240196499	0.43226315	0.921879419	0.784514945	1.245615557	0.518298418	0.739705603
4	facet2	-0.01368477	0.06421928	0.249732944	0.537374657	-0.04316992	1.286957965	1.175662851	0.5182841	0.981862233	0.568852396

- ① #group 表示不同方向的名字
- ② group1, ...group2 表示相关性热图对应 xy 两个方向(最多两个方向: group1, group2), group1 对应的变量为 Gene1、Gene2、Gene3、Gene4、Gene5; group2 对应的变量为 Gene6、Gene7、Gene8、Gene9、Gene10
- 此时的 group1、group2 在图形中代表 xy 两个不同的方向,而各 分组对应的变量代表 xy 两个方向上变量

■ 第1列为分类类型,表示分面/分组,表示将数据分成多少个组(对应 热图的分面),分组后的数据分别<mark>按照注释信息</mark>以 xy 两个方向分割成其 对应的变量并进行相关性分析

- 第2列及以后为数值类型数据,表示每个变量/样本值
- ▶ 数据清洗: 对除了第1行注释信息外的非字符和除第1列外非数值的数据进行清洗
- ▶ 数据处理:
 - 根据上传数据第一行的 #注释信息将数据进行分组(除了第1列),此数据中将数据分成两个组(group1, group2),其中 group1 对应的变量为 Gene2、Gene4、Gene5、Gene7; group2 对应的变量为 Gene1、Gene3、Gene6、Gene8、Gene9、Gene10
 - 将各分组中的所有变量分成 xy 两个方向,并将各分组中两个方向上的变量进行两两间相关性分析, <u>结果如下</u>: (可查看模块补充结果部分)

将分析所得结果进行可视化

结果解读

上图: (完整热图)

- ▶ 行、列都代表变量/样本(分别代表不同方向对应的变量,按照上传数据第1 行#注释信息来划分)
- ▶ 每一个小方格表示变量之间的相关系数,颜色越深,变量间越相关
- 两个热图表示两个不同的分面(表示不同的分组,对应上传数据第1列的分组数据,有多少个不同的分类就有多少个分面)

下图: (完整热图-三角对角线)

- ▶ 行、列都代表变量/样本,...同上....
- ▶ 每一个小方格分为两个部分(三角形),上部分表示变量间的相关系数,颜色越深,变量间越相关;下部分表示p值,颜色越深p值越小

▶ 两个热图表示两个不同的分面.....同上...

补充:

- ▶ * 表示 Pvalue < 0.05
- ➤ Correlation 代表相关性系数(Correlation): |Correlation|越大,变量间相关性越高,反之相关性越低
 - Correlation < 0,变量间呈负相关关系
 - Correlation = 0,变量间没有相关关系
 - Correlation > 0,变量间呈正相关关系
- ▶ Pvalue 代表变量间相关系数对应的 Pvalue 值, Pvalue 值越小, 变量间相关系数越显著

数据格式

4	Α	В	С	D	E	F	G	Н	1	J	K
1	#group	group1	group1	group1	group1	group1	group2	group2	group2	group2	group2
2	facet	Gene1	Gene2	Gene3	Gene4	Gene5	Gene6	Gene7	Gene8	Gene9	Gene10
3	facet1	0.496745924	0.467723302	-0.048351761	-0.240196499	0.43226315	0.921879419	0.784514945	1.245615557	0.518298418	0.739705603
4	facet2	-0.01368477	0.06421928	0.249732944	0.537374657	-0.04316992	1.286957965	1.175662851	0.5182841	0.981862233	0.568852396
5	facet2	0.01182029	0.141322045	0.633965878	-0.263885834	0.542861073	0.490195153	1.183083571	0.987716302	1.067240227	1.033805987
6	facet2	-0.004488363	-0.058815726	0.586873137	0.222179483	0.179198701	0.44559659	0.548951482	0.965296724	1.13184169	0.354723611
7	facet1	-0.210829963	0.369931219	0.547144016	0.36844285	0.472425386	0.854233325	1.18447251	1.123654746	1.262049733	0.943975343
8	facet2	0.642966409	0.355974738	0.671350067	-0.173697559	-0.032966	0.767416042	1.249694698	0.595296227	0.60783876	0.513691745
9	facet2	-0.179486354	0.196057306	0.168928365	0.065455873	-0.014343253	0.448853135	1.244653087	0.678902879	1.150490547	1.088849734
10	facet1	0.119288873	-0.192532717	-0.155474752	0.501615558	-0.246108244	0.940513758	1.272317943	0.347395517	0.745167982	0.645567114
11	facet1	0.15636136	0.52661018	-0.077797179	0.380145601	0.315129994	1.260823014	1.181884192	1.258837779	0.556531639	1.120612391
12	facet1	0.625642134	0.319952123	0.246807153	0.013511406	0.392323231	1.198206731	0.861498273	0.492483526	1.168313728	1.199737413
13	facet1	0.223237827	0.46813969	-0.270452353	-0.271382299	-0.042795272	0.734466762	0.696293427	0.3255452	1.235287427	0.623165723
14	facet2	0.327989421	0.053296945	-0.054571989	0.113712744	-0.114236178	0.36837606	1.103604986	1.17269313	0.833974877	0.594458569
15	facet1	-0.138863375	0.651505674	0.145345091	0.532905728	0.306025015	0.945230436	0.440612899	1.112037256	1.013758465	0.42780374
16	facet2	0.049065953	-0.14631829	0.063868247	0.010649082	0.333018047	0.33428674	1.225104532	1.255972546	1.076337558	0.50712956

数据要求: (csv / txt 格式文件)

- ▶ 数据至少3列以上,每列至少5行,最多支持50列和5000行数据
 - 第1行数据需要用 #注释的数据作为 xy 两个不同的方向信息,(将不同分组中对应的变量按照 xy 两个方向进行划分,以便进行不同方向上变量间相关性分析)
 - 除第1行外,第1列为分类类型数据,表示分组信息(将所有的数据分成不同的分组(相当于将同一个变量对应的数据分成了多少份)),然后按照 xy 两个不同的方向(相当于不同的分组中对应的变量分成了两个部分,两个分组对应着不一样的变量)
 - <u>除第1行、第1列外</u>,从第2列开始,每一列都为数值类型数据,表示 一个变量/基因/分子的值
 - ◆ 不能含有非数值之外的其它字符类型
- ▶ 变量名/列名不能重复

参数说明

(说明:标注了颜色的为常用参数。)

统计

- ▶ 统计方法:可以选择变量间进行相关性分析的方法
 - spearman: Spearman(默认)为非参数检验方法,数据可以不需要满足正态性
 - pearson: Pearson 为参数检验方法,数据需要满足双正态

映射

▶ 上半颜色映射:对应整体颜色的映射,当热图选择的是三角对角线类型时,则对应三角的上半颜色映射,如下: (上为热图类型-三角对角线;中为上半颜色映射变量相关系数,下半颜色映射变量 p 值;右为上半颜色映射变量 p 值,下半颜色映射变量相关系数

▶ 下半颜色映射: 当热图选择的是三角对角线类型时,则对应三角的下半颜色映射(如上: 上半颜色映射)

大小映射:可以对热图进行大小映射,只有在非三角对角线类型的时候会有效果,对应映射方块大小,默认为不映射,还可以选择相关系数绝对值,如下:

类型:可以选择热图的类型,默认为完整热图,还可以选择上半热图、下半 热图,如下(左侧为上半,右侧为下半)

热图

方块:可以选择热图中每个小块(一行一列)的类型,默认为方块,还可以 选择圆形,三角对角线,如下:

▶ 上半(全)颜色:选择三角类型时可以修改对应方块上半部分颜色,其他类型则修改对应整个方块颜色

▶ 下半颜色: 当选择三角类型时可以修改对应方块下半部分颜色, 其他类型无法修改

描边颜色:可以修改热图对应方块的描边颜色

▶ 描边粗细: 可以修改热图对应方块的描边粗细

▶ 大小比例:可以修改热图对应方块的大小比例,默认为1

不透明度:可以修改热图对应方块的不透明度,默认为1,表示完全不透明, 0表示完全透明

标注

- ➤ 标注映射:可以选择是否在热图矩阵对应的每一个小矩形上进行标注映射, 默认为星号(*p<0.05)进行标注,还可以选择:如下: (左侧为(*p<0.05)映射, 右侧为不映射)
 - 星号(*p<0.05|**p<0.01)
 - 星号(*p<0.05|**p<0.01|***p<0.001)
 - p值(2位小数)
 - 相关系数(2位小数)
 - 无

- ▶ 颜色:可以选择当进行标注映射时,标注的颜色
- ▶ 标注大小:可以选择并修改标注的大小,默认为6pt

分面

- 分面方向:可以选择并修改分组(分面)相关性热图进行分面的方向,默认为按列的方向,还可以选择按行进行分面(分组)
- ▶ 分面颜色: 可以修改各个分面(分组)的颜色
- 》 文字大小: 可以修改各个分面(分组)对应文本字体的大小, 默认为 6pt

标题文本

▶ 大标题: 大标题文本

补充: 在要换行的中间插入\n。如果需要上标,可以用两个英文输入法下的大括号括住,比如 {{2}};如果需要下标,可以用两个英文输入法下的中括号括住,比如 [[2]]

图注

▶ 是否展示: 可以选择是否展示图注信息, 默认展示

图注标题:可以修改图注标题内容,默认没有

▶ 图注位置:默认为图片的右侧,还可以选择上、下

坐标轴

> x 轴标注旋转: 可选择并修改 x 轴对应刻度文本的旋转角度

风格

▶ 网格:可以选择是否展示网格,默认不展示

▶ 文字大小:控制整体文字大小,默认为6pt

图片

▶ 宽度:图片横向长度,单位为 cm

▶ 高度:图片纵向长度,单位为 cm

> 字体:可以选择图片中文字的字体

结果说明

主要结果

补充结果

facet1-相关系数表格							
	Gene6	Gene7	Gene8	Gene9	Gene10		
Gene1	-0.328	-0.574	-0.493	-0.459	-0.53		
Gene2	-0.542	-0.591	-0.477	-0.743	-0.584		
Gene3	-0.578	-0.584	-0.499	-0.614	-0.572		
Gene4	-0.447	-0.636	-0.315	-0.49	-0.505		
Gene5	-0.708	-0.512	-0.465	-0.759	-0.631		

facet2-相关系数表格							
	Gene6	Gene7	Gene8	Gene9	Gene10		
Gene1	-0.475	-0.474	-0.531	-0.782	-0.551		
Gene2	-0.284	-0.607	-0.54	-0.849	-0.514		
Gene3	-0.104	-0.585	-0.504	-0.71	-0.582		
Gene4	-0.283	-0.635	-0.681	-0.555	-0.686		
Gene5	-0.469	-0.756	-0.58	-0.621	-0.474		

这里提供相关性分析表: 可以查看变量之间的相关系数

- ▶ 相关系数为正数,说明两个分子(主要分子与其他分子)之间可能存在正相 关关系;相关系数为负数,说明两个分子可能存在负相关关系
 - 相关系数绝对值在 0.8-1.0 之间,说明两个分子之间强相关
 - 相关系数绝对值在 0.5-0.8 之间, 说明两个分子之间中等程度相关
 - 相关系数绝对值在 0.3-0.5 之间,说明两个分子之间相关程度一般
 - 相关系数绝对值在 0.0-0.3 之间,说明两个分子之间弱相关或者不相关

facet1-相关性检验(p/值)表格								
	Gene6	Gene7	Gene8	Gene9	Gene10			
Gene1	0.0954	0.00209	0.0097	0.0169	0.00504			
Gene2	0.00399	0.00144	0.0126	1.58e-05	0.00167			
Gene3	0.00193	0.00167	0.00883	0.000852	0.00218			
Gene4	0.0204	0.000484	0.11	0.0103	0.00794			
Gene5	5.66e-05	0.00697	0.0155	8,54e-06	0.000549			

	facet2-相关性检验(p值)表格								
	Gene6	Gene7	Gene8	Gene9	Gene10				
Gene1	0.0231	0.0234	0.0102	1.59e-05	0.00722				
Gene2	0.189	0.00262	0.00879	1.84e-06	0.0132				
Gene3	0.636	0.00398	0.0153	0.000216	0.0042				
Gene4	0.191	0.00144	0.00049	0.00675	0.000431				
Gene5	0.0251	4.71e-05	0.00436	0.00198	0.0234				

相关性.xls>

相关性系数表格:

- 1. 表中包含了各个变量间的相关系数(r)值,相关系数一般是 -1到1 之间,正负号表示正相关和负相关,系数绝对值大小表示相关性大小
- 2. 一般关系强度是: |r|>0.95: 显著性相关; |r|≥0.8: 高度相关; 0.5≤|r|<0.8: 中度相关; 0.3≤|r|<0.5: 低度相关; |r|<0.3: 弱相关 相关性p·值素格:
- 1. 表中包含了各个变量间的相关性的检验p值

这里提供相关性分析表:可以查看各个变量间的相关性的检验 p 值

▶ p值表示检验 p值

方法学

统计分析和可视化均在R 4.2.1 版本中进行

涉及的 R 包: ggplot2 包 (用于可视化)

处理过程:

(1) 对数据各个组的变量进行两两相关性分析,分析结果用热图进行可视化

如何引用

生信工具分析和可视化用的是 R 语言,<mark>可以直接写自己用 R 来进行分析和可视化即可</mark>,可以无需引用仙桃,如果想要引用仙桃,可以在致谢部分 (Acknowledge) 致谢仙桃学术(www.xiantao.love)。

方法学部分可以参考对应说明文本中的内容以及一些文献中的描述。

常见问题

1. 方法里面的 Spearman 和 Pearson 方法, 应该选择哪一个?

答: 两种方法均可以选择。Pearson 会要求数据是满足正态性,Spearman 因为是非参数的方法,可以不需要满足。可以先选择非参数的 Spearman 相关进行尝试。

2. 图的内容被压缩了,如何处理?

答:由于文字不会被压缩,如果热图部分很长,就可能会导致热图部分重叠。解决方案可以是:

- ① 增加图片高度;
- ② 减少分子列表中的分子。

3. 相关系数多少为好?

答: 这个没有很统一的标准, 可以参考以下:

- ▶ 相关系数强弱:
 - 绝对值在 0.8 以上: 强相关
 - 绝对值在 0.5-0.8: 中等程度相关
 - 绝对值在 0.3-0.5: 相关程度一般
 - 绝对值在 0.3 以下: 弱或者不相关