Numerical Analysis II: Homework 3

Peter Shaffery

February 15, 2017

1 Problems

Problem 1a. Prove that, if all the singular values of $A \in \mathbb{C}^{n \times n}$ are equal then $A = \gamma U$, where γ is a constant and U is unitary.

Proof. This follows almost immediately from the SVD of A. Since $A = V\Sigma W^*$, where V and W are unitary and Σ is a diagonal matrix of the singular values of A, then if all singular values are equal then $\Sigma = \gamma I$, where I is the identity matrix. Hence $A = \gamma VW^*$, and since V and W are unitary clearly $U = VW^*$ is unitary as well.

Problem 1b. Prove that, if A is nonsingular and λ is an eigenvalue of A, then $||A^{-1}||_2^{-1} \le |\lambda| \le ||A||_2$.

Proof. By the definition of $||A||_2 := \sup_x \frac{||Ax||}{||x||}$ we have that $|\lambda| \leq ||A||_2$. This can be seen by letting v be the eigenvector of λ then $||Av|| = |\lambda| ||v||$. Now note that $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} , so we have that $\frac{1}{|\lambda|} \leq ||A^{-1}||$, therefore $|\lambda| \geq ||A^{-1}||^{-1}$, and the result is proven.

Problem 1c. Prove that A may be represented in the form A = SU, where S is positive semidefinite and U is unitary. Furthermore prove that if A is invertible then this representation is unique.

Proof. Couldn't make headway with this one

Problem 2. Here we want to prove some eigenvector perturbation results. Consider the following perturbed eigenproblem:

$$(A + \epsilon B)u_k(\epsilon) = \lambda_k(\epsilon)u_k(\epsilon)$$

We would like to show that:

$$u_k(\epsilon) = u_k + \epsilon (a_k u_k + \sum_{j \neq k} \frac{v_j^* B u_k}{(\lambda_k - \lambda_j) s_j} u_j) + \mathcal{O}(\epsilon^2)$$

Where $A^*v_k = \bar{\lambda_k}v_k$ and $s_k = v_k^*u_k$.

Proof. To start let's assume that $\lambda_k(\epsilon)$ and $u_k(\epsilon)$ are continuous functions in ϵ , so we can write:

$$u_k(\epsilon) = u_k(0) + \epsilon u_k'(0) + \mathcal{O}(\epsilon^2)$$

Take the derivative of both sides of the perturbed eigenproblem and set $\epsilon = 0$ to get $Bu_k + Au'_k(0) = \lambda'_k(0)u_k + \lambda_k u'_k(0)$, so:

$$(A - \lambda_k)u_k'(0) = (B - \lambda_k'(0))u_k \tag{1}$$

Note that we can expaned $u'_k(0)$ can be expanded in terms of the basis $(u_1, ..., u_n)$, ie. $u'_k(0) = \sum_{i=1}^n a_i u_i$ which can be inserted into (1) to get:

$$(B - \lambda_k'(0))u_k = (A - \lambda_k) \sum_{i=1}^n a_i u_i = \sum_{i \neq k} a_i (\lambda_i - \lambda_k) u_i$$
(2)

From the hint we have that $\lambda_k'(0) = \frac{v_k^* B u_k}{s_k}$, so this means that:

$$(B - \frac{v_k^* B u_k}{s_k}) u_k = \sum_{i \neq k} a_i (\lambda_i - \lambda_k) u_i$$
(3)

Now we can pick out an individual term from the sum of the RHS of (3) by multiplying on both sides by v_i^* (since $v_i^*u_j = \delta_{ij}s_i$, where δ_{ij} is the Kronecker delta), which gives:

$$v_i^* B u_k - \frac{v_k^* B u_k}{s_k} v_i^* u_k = a_i (\lambda_i - \lambda_k) s_i$$

And since $i \neq k$ (the k term dropped out of the sum a few steps back), then the second term in the LHS is always 0 and we can solve for a_i to obtain:

$$a_i = \frac{v_i^* B u_k}{(\lambda_i - \lambda_k) s_i} \tag{4}$$

Plugging (4) back into our expansion of $u'_k(0)$ and plugging that into the expansion of $u_k(\epsilon)$ gives the desired result.