Price Discrimination in Production Networks

Antonio Martner Trade proseminar UCLA

March 13, 2024

Motivation

What is the price formation process of firms in production network structures?

In inefficient economies, firms are usually modeled as choosing a single price with one distortionary markup, often considered a wedge, that can cumulate downstream production networks and generate production factors missallocation.

But if firms can discriminate prices, firm-specific or product-specific markups are not necessarily distortionary.

A possible starting point for analyzing firm-specific price discrimination distortionary effects is to (try to) understand why firms can discriminate prices.

This paper (1)

Assuming that firms are multiproduct objects that discriminate prices within production networks:

Questions:

- Why do firms can endogenously discriminate prices in production networks?
- What are the aggregate implications of price discrimination in supply chains on (i) Production efficiency and (ii) Welfare?

This paper (2)

What this paper PLANS to do:

- (a) Present evidence of price discrimination in Chile.
- (b) Develop a theoretical framework to endogenize product pricing decisions by firms facing heterogeneous demand elasticities downstream.
- (c) Estimate firm-level elasticities of substitution and buyer-product level demand elasticities.
- (d) Aggregate price discrimination effects on:
 - Heterogeneous Producers and Consumers Welfare.
 - 2 TFP in supply chains with firm-product pairs markups.
- (e) Run counterfactuals: What are the aggregate gains/losses of eliminating/reducing price discrimination heterogeneity?

Related Literature

Price discrimination and missallocation

Bornstein and Peter (AER R&R 2023), Burstein, Cravino & Rojas (WP, 2024)

Endogenous multi-product market power

Edmond, Midrigan & Xu (JPE, 2023)

Aggregating in presence of distortions

Liu (QJE 2019), Baqaee & Farhi (QJE 2020), Davila & Schaab (WP, 2022)

Firm level elasticities of substitution

Fujiy, Ghose, Khanna (STEG WP, 2023)

Price discrimination evidence from Chile

- 2 Theoretical framework
 - Simplified model
 - Quantitative exploration simplified model

3 Application

Data: Chilean IRS Electronic Invoices

Transporte - Providencia

10232

Transaction-based data for the universe of formal Chilean firms from 2018.

15.529

15.529,41

Price variance decomposition

In p_{iig} is log price charged by firm i to j for product g and G is the mean of $\ln p_{ijg}$ across all ijg_s triples. ψ_{ig} is a seller-product fixed effect, θ_i is a buyer fixed effect, γ_q is a quantity fixed effect, and ω_{ijg} is the residual and accounts for the match-specific characteristics.

$$\ln p_{ijg} = \ln G + \ln \psi_{ig} + \ln \theta_j + \ln \gamma_q + \ln \omega_{ijg}$$

There are 4.5 Million seller-product fixed effects, but the focus is on buyers (θ_i) and quantities (γ_a) variance decomposition: $var(\theta_i + \gamma_a)$.

$\frac{\operatorname{var}(\theta_j)}{\operatorname{var}(\theta_j + \gamma_q)}$	$\frac{\operatorname{var}(\gamma_q)}{\operatorname{var}(\theta_j + \gamma_q)}$	$\frac{2cov(\theta_j, \gamma_q)}{var(\theta_j + \gamma_q)}$	N obs	R2	Adj R2
0.64	0.50	-0.14	91,815,975	0.94	0.93

 Results suggest evidence of second and third-degree price discrimination.

Buyers fixed effect (θ_j) distribution

- Buyers fixed effect (which could capture bargaining power, market power, centrality) varies.
- Which might suggest upstream competition forces driving the price formation process.

Upstream competition will motivate my modeling strategy.

Price discrimination evidence from Chile

- Theoretical framework
 - Simplified model
 - Quantitative exploration simplified model

Application

Simplified Model

- Firm u_1 sells quantity $m_{1,d1}$ and $m_{1,d2}$ at prices $w_{1,d1}$ and $w_{1,d2}$ to d_1 and d_2 respectively. While Firm u_2 sells quantity m_2 at prices w_2 to d_2 .
- Firms d_1 and d_2 produce q_1 and q_2 that sells to c_1 and c_2 respectively.

Final consumers

Each final consumer consumes only one good and has the following symmetric demand:

$$q_c = p_c^{-\eta}$$
 with $c \in \{1, 2\}$

Downstream firms: d_1

Firm d_1 production function is $q_{d1} = m_{1,d1}$ and a faces marginal cost that equals the price that pays to upstream firm $1 \ w_{1,d1} = mc_{d1}$.

Assuming the firm competes Bertrand, it will charge a constant markup over marginal cost to c1 as a function of its elasticity and produce according to the consumer's demand:

$$p_1 = \frac{\eta}{\eta - 1} w_{1,d1}$$

$$q_1 = \left(\frac{\eta}{\eta - 1} w_{1,d1}\right)^{-\eta}$$

Downstream firms: d_2 (1)

Firm d_2 buys producion inputs form both upstream firms, $m_{1,d2}$, $m_{2,d2}$ at prices $w_{1,d2}$, $w_{2,d2}$, following a CES production function with elasticity of substitution σ :

$$q_2(m_{1,d2},m_{2,d2}) = A \left(\alpha_1 m_{1,d2}^{\frac{\sigma-1}{\sigma}} + \alpha_2 m_{2,d2}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

The profit maximization problem will yield prices and quantities:

$$q_2 = \left(rac{\eta}{\eta - 1} \underbrace{rac{1}{A} \left(lpha_1^\sigma w_{1,d2}^{1-\sigma} + lpha_2^\sigma w_{2,d2}^{1-\sigma}
ight)^{rac{1}{1-\sigma}}}_{mc_{d2}}
ight)^{-\eta}$$
 $p_2 = rac{\eta}{\eta - 1} mc_{d2}$

Downstream firm d_2 will charge a constant markup to consumer c_2 as a function of its demand elasticity.

Downstream firms: d_2 (2)

 d_2 conditional (on output and input prices) demands for each input are:

$$m_{1,d2}^*(w_{1,d2}, w_{2,d2}, q_2) = \frac{q_2}{A} \left(\frac{\alpha_1}{w_{1,d2}}\right)^{\sigma} \left(\alpha_1^{\sigma} w_{1,d2}^{1-\sigma} + \alpha_2^{\sigma} w_{2,d2}^{1-\sigma}\right)^{\frac{\sigma}{1-\sigma}}$$

$$m_{2,d2}^*(w_{1,d2}, w_{2,d2}, q_2) = \frac{q_2}{A} \left(\frac{\alpha_2}{w_{2,d2}}\right)^{\sigma} \left(\alpha_1^{\sigma} w_{1,d2}^{1-\sigma} + \alpha_2^{\sigma} w_{2,d2}^{1-\sigma}\right)^{\frac{\sigma}{1-\sigma}}$$

Upstream firms: u_1 (1)

If u_1 can discriminate prices, it maximizes profits by choosing prices for downstream firms by observing its factor demands:

$$\max_{\{w_{1,d1}, \ w_{1,d2}\}} \pi_{u1} = m_{1,d1}(w_{1,d1} - mc_u) + m_{1,d2}(w_{1,d2} - mc_u)$$

While if u_1 cannot price discriminate, it will choose only one price for both downstream firms:

$$\max_{\{w_1\}} \pi_{u1} = (m_{1,d1} + m_{1,d2})(w_1 - mc_u)$$

Both upstream firms face a constant marginal cost mc_u .

Upstream firms: u_1 (2)

Downstream firm 1 only uses input from upstream 1 in production, hence when u_1 can price discriminate, applying the Bertrand pricing rule $(p = \frac{e}{e-1}mc)$:

$$m_{1,d1} = q_{d1}$$

$$m_{1,d1} = \left(\frac{\eta}{\eta - 1} w_{1,d1}\right)^{-\eta}$$

$$\log(m_{1,d1}) = -\eta \log\left(\frac{\eta}{\eta - 1}\right) - \eta \log(w_{1,d1})$$

$$-e_{m_{1,d1},w_{1,d1}} = -\frac{\partial \log m_{1,d1}}{\partial \log w_{1,d1}} = \eta$$

Hence:

$$q_{u1,d_1} = m_{1,d1} = q_{d1} \ w_{1,d1} = rac{\eta}{\eta - 1} m c_u$$

Upstream firms: u_1 (3)

 u_1 decisions with respect to d_2 are different, because d_2 uses two production inputs under a CES technology. The conditional factor demand of d_2 for u_1 is $m_{1,d2}$, hence solving for $w_{1,d2}$

$$m_{1,d2} = \left(\frac{1}{A}\right)^{1-\eta} \left(\frac{\eta}{\eta-1}\right)^{-\eta} \left(\alpha_1^{\sigma} w_{1,d2}^{1-\sigma} + \alpha_2^{\sigma} w_{2,d2}^{1-\sigma}\right)^{\frac{\sigma-\eta}{1-\sigma}} \left(\frac{\alpha_1}{w_{1,d2}}\right)^{\sigma}$$

$$-\frac{\partial \log m_{1,d2}}{\partial \log w_{1,d2}} = (\eta - \sigma) \underbrace{\frac{\alpha_1^{\sigma} w_{1,d2}^{1-\sigma}}{\alpha_1^{\sigma} w_{1,d2}^{1-\sigma} + \alpha_2^{\sigma} w_{2,d2}^{1-\sigma}}}_{s_1} + \sigma$$
$$-e_{m_{1,d2},w_{1,d2}} = \eta s_1 + \sigma (1 - s_1)$$

where s_1 is the share of u_1 good on d_2 total costs. (Nested CES with inner and outer elasticity similar to Atkeson & Burstein, AER 2008)

Upstream firms: u_1 (4)

Applying the same logic when u_1 cannot discriminate:

$$-e_{m_1,w_1} = \eta \ (sh_{m1} + sh_{m2}s_1) + \sigma \ sh_{m2}(1-s_1)$$

Where $sh_{m1} = \frac{m_{1,d1}}{m1}$ is the share of u1 production that d1 purchases.

In sum:

$$e_{m_1,w_1} = egin{cases} \eta s_1 + \sigma (1-s_1) & ext{Price discrimination} \\ \eta \left(sh_{m1} + sh_{m2}s_1
ight) + \sigma \ sh_{m2}(1-s_1) & ext{NO price discrimination} \end{cases}$$

Upstream firms u₂

Upstream 2 sells only to downstream 2, then:

$$\begin{split} m_{2,d2} &= \left(\frac{1}{A}\right)^{1-\eta} \left(\frac{\eta}{\eta - 1}\right)^{-\eta} \left(\alpha_1^{\sigma} w_{1,d2}^{1-\sigma} + \alpha_2^{\sigma} w_{2,d2}^{1-\sigma}\right)^{\frac{\sigma - \eta}{1-\sigma}} \left(\frac{\alpha_1}{w_{2,d2}}\right)^{\sigma} \\ -e_{2,d2} &= \eta s_2 + \sigma (1 - s_2) \\ w_{2,d2} &= \frac{\eta s_2 + \sigma (1 - s_2)}{\eta s_2 + \sigma (1 - s_2) - 1} m c_u \end{split}$$

Discussion: The $\eta - \sigma$ relation will govern markups

Upstream firm's demand elasticity is determined by how easy it is to substitute production inputs by downstream firms (σ) and the demand elasticity downstream firms face (η).

$$e_{i,di} = \eta s_i + \sigma (1 - s_i)$$

Large η and σ will prevent upstream firms from charging high markups. Hence, upstream firms can charge high markups:

- If the upstream firm good represents a small share of the total cost (small s_i), then upstream can charge a high markup (small $e_{i,di}$) as long as the downstream firm cannot substitute upstream firm good relatively easy (small σ).
- If the upstream firm good represents a large share of the total cost (large s_i), the upstream firm can charge a high markup as long as the demand elasticity downstream is low (small η)

Quantitative exploration: Welfare

Welfare is defined as the sum of consumer surplus and firm profits.

$$W = CS_{c1} + CS_{c2} + \pi_{d1} + \pi_{d2} + \pi_{u1} + \pi_{u2}$$

$$W = \int_0^{q_1^*} q^{-\frac{1}{\eta}} dq - p_1^* q_1^* + \int_0^{q_2^*} q^{-\frac{1}{\eta}} dq - p_2^* q_2^*$$

$$+ \pi_{d1} + \pi_{d2} + \pi_{u1} + \pi_{u2}$$

Quantitative exploration: Variant η Welfare

Assume $mc_u = 0.5$, $\alpha_1 = 0.6$, $\alpha_2 = 0.4$, $\sigma = 2$

- (a) Welfare ratio: Price disc./ no disc.
- With $\sigma > \eta$, final good has a relatively inelastic demand: u1 charges a high markup to d1 (not to d2) distorting d1 input and output and hence c1 consumer surplus.
- With $\eta > \sigma$, price discrimination is welfare enhancing as u1 can extract part of downstream firms' profits by tailoring specific prices.

Quantitative exploration: Variant σ Welfare

Assume $\eta = 2$

(b) Welfare ratio: Price disc./ no disc.

Price discrimination is welfare enhancing only with $\eta > \sigma$.

Welfare components

Quantitative exploration: Aggregate TFP with shock to μ

Using Baqaee & Farhi, QJE 2020, growth accounting in the presence of distortions formula:

$$d \log \mathit{TFP} = \underbrace{\sum_{i} \tilde{\lambda}_{i} d \log A_{i}}_{\mathsf{Technology}} - \underbrace{\sum_{i} \tilde{\lambda}_{i} d \log \mu_{i} - \sum_{f} \tilde{\Lambda}_{(f)} d \log \Lambda_{f}}_{\mathsf{Allocative efficiency}}$$

Where $\tilde{\lambda}_i$ and $\tilde{\Lambda}_{(f)}$ are cost-based Domar weights for firms and factors respectively.

Assume a shock to markups given a 25% reduction of upstream marginal cost, $d \log A_i = d \log \Lambda_f = 0$, then:

$$d \log TFP = -\sum_{i} \tilde{\lambda}_{i} d \log \mu_{i}$$

Quantitative exploration: Aggregate TFP η variant

- A reduction of marginal cost where firms cannot price discriminate (or face a unique demand downstream) will increase TFP if η is not too large.
- While if firms can discriminate prices (or face heterogeneous demands downstream), TFP will increase when $\sigma > \eta$.
- With $\eta > \sigma$, TFP changes tend to disappear as high demand elasticity erases markups.

Quantitative exploration: Aggregate TFP σ variant

- With no price discrimination, TFP changes increase with a higher elasticity of substitution, and most of the mc reduction will be passed downstream.
- While with price discrimination, TFP increases only when $\sigma > \eta$.

Price discrimination evidence from Chile

- 2 Theoretical framework
 - Simplified model
 - Quantitative exploration simplified model

3 Application

First data test

- (a) Take one month of transactions to get monthly weighted average prices and quantities for every seller-buyer-product.
- (b) Keep only buyers that purchase at most two intermediate inputs.
- (c) Keep only sellers that sell only one product.

Identification Strategy (1)

$$w_{1,d2} = \frac{\eta s_1 + \sigma(1 - s_1)}{\eta s_1 + \sigma(1 - s_1) - 1} mc_u \tag{1}$$

$$w_{2,d2} = \frac{\eta s_2 + \sigma(1 - s_2)}{\eta s_2 + \sigma(1 - s_2) - 1} mc_u$$
 (2)

Observed: $s_1, s_2, w_{1,d2}, w_{2,d2}$

If the firm exhibits CRS, then average variable cost (which is observed) equals marginal costs. Therefore, η and σ are identified.

Define the learner index to be: $L = \frac{w - mc}{w}$

$$\sigma = \frac{s_1 L_1 - s_2 L_2}{(s_1 - s_2) L_1 L_2}$$
$$\eta = \frac{1 + L_1 \sigma(s_1 - 1)}{s_1 L_1}$$

Preliminary Results: elasticities

Estimations above and below 95% percentiles are trimmed.

Preliminary Results: Alphas

$$s_{1} = \frac{\alpha_{1} w_{1,d2}^{1,d2}}{\alpha_{1}^{\sigma} w_{1,d2}^{1-\sigma} + \alpha_{2}^{\sigma} w_{2,d2}^{1-\sigma}}$$

$$s_{2} = \frac{\alpha_{2}^{\sigma} w_{2,d2}^{1-\sigma}}{\alpha_{1}^{\sigma} w_{1,d2}^{1-\sigma} + \alpha_{2}^{\sigma} w_{2,d2}^{1-\sigma}}$$

Next steps: Research plan

- (a) Extend model to n inputs and g products.
- (b) Evaluate more flexible production functions like CRESH, or at least include product nests inside the CES production function.
- (c) Deal with the over-identification problem. Build GMM estimators for σ_i and η_{ig} to profit panel data.
- (d) Run counterfactuals: What are the aggregate gains/losses of eliminating/reducing price discrimination heterogeneity?

Price discrimination evidence: Second degree

 $\log p_{ijt} = \beta_0 + \beta_1 \log q_{ijt}$

	(1)	(2)	(3)	(4)
Log q	-0.1048	-0.0579	-0.1621	-0.1037
(SE)	0.00008	0.00006	0.00009	0.00007
Seller FE	Yes	Yes	Yes	Yes
Product FE	Yes	Yes	Yes	Yes
Buyer FE	No	No	Yes	Yes
Q >1	No	Yes	No	Yes
R2	0.9112	0.9489	0.9246	0.9655
N obs	72,178,033	44,656,779	71,809,764	44,496,689

Price discrimination evidence: Third degree

Price variation by seller-product-month

Bertrand pricing rule

$$\max_{\{p\}} \pi = q(p) \cdot p - q(p) \cdot mc$$

$$\frac{\partial q(p)}{\partial p} \cdot p + q(p) - \frac{\partial q(p)}{\partial p} \cdot mc = 0$$

$$\frac{\partial q(p)}{\partial p} (p - mc) + q(p) = 0$$
Multiplying by
$$\frac{p}{q(p)}$$

$$\frac{\partial q(p)}{\partial p} \frac{p}{q(p)} (p - mc) + q(p) \frac{p}{q(p)} = 0$$

$$-\eta(p - mc) + p = 0$$

$$p(1 - \eta) = -\eta \cdot mc$$

$$p = \frac{\eta}{1 - \eta} \cdot mc$$

$$p = \frac{\eta}{n - 1} \cdot mc$$

Variant η prices \bigcirc Go back

Variant η welfare components ratio: Price disc./ no disc.

▶ Go back

Variant σ prices Go back

Variant σ welfare components ratio: Price disc./ no disc.

▶ Go back

