Global Pollution Analysis and Energy Recovery

Objective

The goal is to analyze global pollution data and develop strategies for pollution reduction and converting pollutants into energy. The dataset will be used for both **data preprocessing** and **building regression models** to predict energy recovery from pollution levels.

Phase 1: Data Collection and Exploratory Data Analysis (EDA)

Step 1 - Data Import and Preprocessing

1. Datasets

Load the dataset (Global_Pollution_Analysis.csv).

2. Handle Missing Values

Identify missing or inconsistent data, and handle them using appropriate imputation strategies.

3. Data Transformation

- Normalize or scale pollution indices (air, water, and soil).
- Encode categorical features such as Country and Year using label encoding or one-hot encoding.

Step 2 - Exploratory Data Analysis (EDA)

1. Descriptive Statistics

Calculate descriptive statistics for numerical features like CO2_Emissions and Industrial_Waste_in_tons.

2. Correlation Analysis

Visualize the correlation between pollution levels and other features like energy consumption using a heatmap.

3. Visualizations

Create bar charts, line plots, and box plots to explore trends in pollution over time and across countries.

Step 3 - Feature Engineering

1. Yearly Trends

Extract year-based trends to understand how pollution and energy recovery have evolved over time.

2. Energy Consumption per Capita

Calculate energy consumption per capita for better analysis.

Phase 2: Predictive Modeling

Step 4 - Linear Regression Model (for Pollution Prediction)

1. Model Objective

Predict energy recovery (in GWh) based on pollution levels, industrial waste, and other features.

2. Model Building

Train a **Linear Regression** model to predict energy recovery using features like Air_Pollution_Index, CO2_Emissions, and Industrial_Waste_in_tons.

3. Evaluation Metrics

Use R2, Mean Squared Error (MSE), and Mean Absolute Error (MAE) to evaluate model performance.

Step 5 - Logistic Regression Model (for Categorization of Pollution Levels)

1. Model Objective

Classify countries into pollution severity categories (Low, Medium, High).

2. Model Implementation

Use Logistic Regression to classify pollution severity based on features like Air_Pollution_Index and CO2_Emissions.

3. Evaluation Metrics

Evaluate using metrics like Accuracy, Precision, Recall, F1-score, and plot the Confusion Matrix.

Phase 3: Reporting and Insights

Step 6 - Model Evaluation and Comparison

- Compare Linear Regression and Logistic Regression models based on their performance and metrics.
- Visualize results using confusion matrices and classification reports.

Step 7 - Actionable Insights

- Provide insights on how different pollution levels affect energy recovery and suggest countries that could benefit from improvement.
- Offer recommendations for reducing pollution and improving energy recovery.

Final Deliverables

- 1. **Jupyter Notebook (.ipynb)** containing the entire code and analysis.
- 2. **Data Visualizations** in image format or embedded in the notebook.
- 3. Final Report summarizing key findings, model evaluations, and actionable recommendations.