$$r = (((00)^*(11))|01)^*$$

Let
$$r_0=(00)^st, r_1=11, r_2=01$$

Let NFA M_0 recognise $L(r_0)=L(M_0), M_0$ has:

- ullet states $P=\{p_0,p_1\}$
- ullet start state $p_0 \in P$
- ullet accept state $A=\{p_0\}$
- transition function δ :

Input State	Letter	Output State
p_0	0	p_1
p_1	0	p_0

Let NFA M_1 recognise $L(r_1)=L(M_1), M_1$ has:

- ullet states $Q=\{q_0,q_1,q_2\}$
- ullet start state $q_0 \in Q$
- ullet accept state $A=\{q_2\}$
- transition function δ :

Input State	Letter	Output State
q_0	1	q_1
q_1	1	q_2

Let NFA M_2 recognise $L(r_2) = L(M_2), M_2$ has:

- ullet states $O=\{o_0,o_1,o_2\}$
- ullet start state $o_0 \in O$
- ullet accept state $A=\{o_2\}$
- transition function δ :

Input State	Letter	Output State
o_0	0	o_1
o_1	1	o_2

Let
$$r_3 = ((00)^*(11))|01$$
,

Combining M_0, M_1, M_2 .

Let NFA M_3 recognise $L(r_3) = L(M_3), M_3$ has:

- ullet states $Q = \{s, o_0, o_1, o_2, p_0, p_1, q_0, q_1, q_2\}$
- ullet start state $s\in Q$
- ullet accept states $A=\{o_2,q_2\}$

ullet transition function δ :

Input State	Letter	Output State
s	ϵ	o_0
s	ϵ	p_0
p_0	0	p_1
p_1	0	p_0
p_0	ϵ	q_0
q_0	1	q_1
q_1	1	q_2
o_0	0	o_1
o_1	1	o_2

Now constructing the final NFA for r: Let NFA M recognise L(r) = L(M), M has:

- ullet states $Q = \{s, o_0, o_1, o_2, p_0, p_1, q_0, q_1, q_2\}$
- ullet start state $s\in Q$
- ullet accept state $A=\{s\}$
- transition function δ :

Input State	Letter	Output State
s	ϵ	o_0
s	ϵ	p_0
p_0	0	p_1
p_1	0	p_0
p_0	ϵ	q_0
q_0	1	q_1
q_1	1	q_2
o_0	0	o_1
o_1	1	o_2
o_2	ϵ	s
q_2	ϵ	s