In [33]: import pandas as pd df=pd.read_csv(r"C:\Users\SRAVANI\Documents\datasets\test.csv")

In [34]: df.head()

Out	[2/]	
Out	1 24	

:		PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
	0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN
	1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN
	2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN
	3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN
	4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN

In [35]: df.describe()

Out[35]:

	PassengerId	Pclass	Age	SibSp	Parch	Fare
count	418.000000	418.000000	332.000000	418.000000	418.000000	417.000000
mean	1100.500000	2.265550	30.272590	0.447368	0.392344	35.627188
std	120.810458	0.841838	14.181209	0.896760	0.981429	55.907576
min	892.000000	1.000000	0.170000	0.000000	0.000000	0.000000
25%	996.250000	1.000000	21.000000	0.000000	0.000000	7.895800
50%	1100.500000	3.000000	27.000000	0.000000	0.000000	14.454200
75%	1204.750000	3.000000	39.000000	1.000000	0.000000	31.500000
max	1309.000000	3.000000	76.000000	8.000000	9.000000	512.329200

In [36]: df.info()

```
Data columns (total 11 columns):
        # Column
                      Non-Null Count Dtype
                       -----
        0 PassengerId 418 non-null
                                      int64
        1
           Pclass 418 non-null int64
        2 Name
                      418 non-null object
                      418 non-null object
        3 Sex
        4
          Age
                      332 non-null float64
        5 SibSp6 Parch
                     418 non-null int64
                      418 non-null int64
                     418 non-null object
        7
          Ticket
        8
           Fare
                       417 non-null float64
        9 Cabin
                      91 non-null object
        10 Embarked 418 non-null
                                      object
       dtypes: float64(2), int64(4), object(5)
       memory usage: 36.1+ KB
In [37]: df.isnull().sum()
Out[37]: PassengerId
                        0
         Pclass
                        0
         Name
                        0
         Sex
                        0
         Age
                       86
         SibSp
         Parch
                       0
         Ticket
                       0
         Fare
                       1
         Cabin
                      327
         Embarked
                        0
         dtype: int64
In [38]: df.duplicated().sum()
Out[38]: 0
In [39]:
        df['Sex'].value_counts()
Out[39]:
         Sex
         male
                  266
         female
                 152
         Name: count, dtype: int64
In [40]:
        df['Age'].value_counts()
Out[40]: Age
         21.0
                17
         24.0
                17
         22.0
                16
         30.0
                15
         18.0
               13
         76.0
               1
         28.5
                1
         22.5
                1
         62.0
                1
         38.5
                 1
         Name: count, Length: 79, dtype: int64
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417

Pairplot

```
In [49]: import matplotlib.pyplot as plt
  import seaborn as sns
  sns.pairplot(df[['Age', 'Fare', 'Pclass', 'SibSp']])
  plt.suptitle("Pairplot of Numeric Features", y=1.03)
  plt.show()
```

Pairplot of Numeric Features

Heatmap

```
In [59]: correlation_matrix = df.corr(numeric_only=True)

plt.figure(figsize=(10, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", linewidt
plt.title('Correlation Heatmap', pad=15)
plt.tight_layout()
plt.show()
```

Correlation Heatmap

In [63]: df.corr(numeric_only=True)

-			_	-	7	
-1	11	_	6	~	- 1	۰
J	и	L	\cup	$_{\sim}$	- 1	

	PassengerId	Pclass	Age	SibSp	Parch	Fare
PassengerId	1.000000	-0.026751	-0.034102	0.003818	0.043080	0.008211
Pclass	-0.026751	1.000000	-0.492143	0.001087	0.018721	-0.577147
Age	-0.034102	-0.492143	1.000000	-0.091587	-0.061249	0.337932
SibSp	0.003818	0.001087	-0.091587	1.000000	0.306895	0.171539
Parch	0.043080	0.018721	-0.061249	0.306895	1.000000	0.230046
Fare	0.008211	-0.577147	0.337932	0.171539	0.230046	1.000000

Histogram

```
In [75]: sns.histplot(df['Age'], bins=6)
   plt.title("Age Distribution")
   plt.xlabel("Age")
   plt.ylabel("Frequency")
   plt.show()
```


Boxplot

```
In [81]: sns.boxplot(x='Pclass', y='Fare', data=df)
    plt.title("Fare Distribution by Passenger Class")
    plt.xlabel("Passenger Class")
    plt.ylabel("Fare")
    plt.show()
```

Fare Distribution by Passenger Class


```
In [89]: sns.scatterplot(x='Age', y='Fare', hue='Sex', data=df)
plt.title("Fare vs Age by Gender")
plt.show()
```


Pairplot:

The pairplot provides scatterplots and distributions for multiple numerical features (e.g., Age, Fare, SibSp, Parch).

It helps reveal patterns and relationships between features.

Some clustering is visible in Fare vs Pclass—1st class passengers generally paid higher fares.

Heatplot:

The heatmap shows the correlation between numerical features in the dataset.

Strong positive correlation is observed between SibSp and Parch, indicating passengers with siblings likely had parents/children aboard too.

Pclass has a moderate negative correlation with Fare—higher classes paid higher fares.

This visualization helps quickly identify which features may be useful for predicting or understanding other features

Histogram:

Most passengers are in the 20–40 age group.

Boxplot:

1st class passengers paid significantly higher fares.

Scatterplot:

No clear trend between age and fare, but females appear to have slightly higher fares in some cases.