```
Assignment 5:
```

Take all the columns in mall_customers.csv gender age annual income spending score

perform label encoding on gender

train your data

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
```

df=pd.read_csv('/content/Mall_Customers.csv')

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40
195	196	Female	35	120	79
196	197	Female	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83

200 rows × 5 columns

print(df.head())
print(df.tail())

0 4 4 7 40	1
0 1 Male 19 15 39	
1 2 Male 21 15 81	
2 3 Female 20 16 6	i
3 4 Female 23 16 77	
4 5 Female 31 17 40)
CustomerID Genre Age Annual Income (k\$) Spending Score (1-10	0)
195 196 Female 35 120	79
196 197 Female 45 126	28
197 198 Male 32 126	74
198 199 Male 32 137	18
199 200 Male 30 137	83

print(df.shape)

(200, 5)

print(df.info())

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype	
0	CustomerID	200 non-null	int64	
1	Genre	200 non-null	object	
2	Age	200 non-null	int64	
3	Annual Income (k\$)	200 non-null	int64	
4	Spending Score (1-100)	200 non-null	int64	
<pre>dtypes: int64(4), object(1)</pre>				

memory usage: 7.9+ KB

None

df.describe()

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

df.corr()

<ipython-input-9-2f6f6606aa2c>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version,
 df.corr()

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
CustomerID	1.000000	-0.026763	0.977548	0.013835
Age	-0.026763	1.000000	-0.012398	-0.327227
Annual Income (k\$)	0.977548	-0.012398	1.000000	0.009903
Spending Score (1-100)	0.013835	-0.327227	0.009903	1.000000

sns.heatmap(df.corr())

<ipython-input-10-aa4f4450a243>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version
sns.heatmap(df.corr())

<Axes: >

df.isnull().any()

CustomerID	False
Genre	False
Age	False

```
Annual Income (k$)
                                 False
     Spending Score (1-100)
                                 False
     dtype: bool
df.isnull().sum()
     CustomerID
     Genre
                                 0
                                 0
     Age
     Annual Income (k$)
     Spending Score (1-100)
dtype: int64
                                 0
plt.subplots(figsize=(20,15))
sns.boxplot(df)
```



```
CustomerID Genre Age
y.head()
         Annual Income (k$)
     0
      1
                         15
      2
                         16
     3
                         16
      4
                         17
print(x.shape)
print(y.shape)
     (200, 3)
     (200, 1)
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
x['Genre']=le.fit_transform(x['Genre'])
x[['Genre']]
           Genre
       0
               1
       1
               1
       2
               0
       3
               0
               0
      ...
      195
               0
      196
               0
      197
               1
      198
               1
      199
               1
     200 rows × 1 columns
```

x.head()

	CustomerID	Genre	Age
0	1	1	19
1	2	1	21
2	3	0	20
3	4	0	23
4	5	0	31

```
from sklearn.model_selection import train_test_split
x\_train, x\_test, y\_train, y\_test=train\_test\_split(x,y,test\_size=0.3, random\_state=0)
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
     (140, 3)
     (60, 3)
```

```
(140, 1)
      (60, 1)
from sklearn.preprocessing import MinMaxScaler
mms=MinMaxScaler()
x_train_scaled=mms.fit_transform(x_train)
x_{\text{test\_scaled=mms.fit\_transform}}(x_{\text{test}})
x_train_scaled
                                    , 0.40384615],
      array([[0.65829146, 1.
                                , 0.55769231],
, 0.26923077],
, 0.32692308],
             [0.48241206, 0.
             [0.90954774, 0.
             [0.09547739, 0.
                                    , 0.38461538],
, 0.57692308],
             [0.76884422, 0.
             [0.46231156, 1.
                                    , 0.61538462],
             [0.27135678, 0.
             [0.81909548, 0.
                                     , 0.25
                                    , 0.28846154],
             [0.25628141, 1.
                                   , 0.71153846],
             [0.4321608 , 0.
             [0.69849246, 0.
                                     , 0.32692308],
                                    , 0.96153846],
             [0.45226131, 0.
                                    , 0.26923077],
, 0.59615385],
             [0.68844221, 1.
             [0.50753769, 0.
             [0.72361809, 1.
                                    , 0.13461538],
                                  , 0.61538462],
, 0.92307692],
             [0.44723618, 0.
             [0.54773869, 1.
             [0.07035176, 1.
                                    , 0.36538462],
             [0.13567839, 1.
                                     , 0.32692308],
                                    , 0.26923077],
             [0.70854271, 1.
                                    , 0.19230769],
             [0.93969849, 1.
                                   , 0.61538462],
, 0.01923077],
             [0.23115578, 0.
             [0.69346734, 1.
                                   , 0.32692308],
             [0.9798995 , 0.
             [0.54271357, 1.
                                    , 0.96153846],
, 0.94230769],
             [0.31155779, 0.
                                   , 0.03846154],
             [0.01005025, 0.
             [0.29648241, 1.
                                     , 0.67307692],
                                    , 0.5
             [0.68341709, 0.
                                    , 0.26923077],
             [0.98994975, 1.
             [0.2160804 , 0.
                                     , 0.25
             [0.05025126, 1.
                                    , 0.94230769],
                                   , 0.55769231],
, 0.80769231],
             [0.97487437, 0.
             [0.36683417, 0.
             [0.98492462, 0.
                                    , 0.51923077],
                                    , 0.78846154],
, 0.23076923],
             [0.89447236, 1.
             [0.87939698, 0.
                                  , 0.23076923],
, 0.48076923],
, 0.42307692],
, 0.38461538],
, 0.30769231],
, 0.26923077],
             [0.63316583, 1.
[0.46733668, 0.
             [0.56281407, 0.
             [0.79396985, 1.
[0.95979899, 0.
             [0.25125628, 0.
                                  , 0.01923077],
, 0.26923077],
, 0.90384615],
                         , 1.
             [0.47236181, 0.
             [0.55276382, 1.
                                    , 0.11538462],
             [0.47738693, 1.
                                     , 0.86538462],
             [0.32160804, 1.
             [0.83919598, 0.
                                  , 0.28846154],
, 0.11538462],
, 0.26923077],
             [0.20603015, 1.
             [0.34673367, 0.
             [0.24623116, 0.
                                    , 0.25
                                    , 0.21153846],
, 0.57692308],
             [0.24120603, 0.
             [0.42713568, 1.
             [0.06532663, 0. , 0.11538462],
[0.80904523, 0. , 0.21153846],
                                     , 0.25
             [0.11557789, 1.
                                     , 0.69230769],
             [0.93467337, 0.
print(x_test_scaled)
      [[0.07567568 1.
                             0.65384615]
       [0.8972973 1.
                               0.423076921
       [0.55675676 1.
                              0.692307691
       [0.50810811 1.
                              0.57692308]
       0.93513514 1.
                               0.173076921
       [0.96216216 1.
                               0.538461541
       [0.00540541 0.
                               0.07692308]
```

```
[0.76756757 1.
                       0.57692308]
[0.04324324 0.
                       0.76923077]
[0.8
                       0.5
```

3.30 F W		
[0.30810811	1.	0.01923077]
[0.65405405	0.	0.25
[0.95135135	0.	0.36538462
0.81081081	0.	0.55769231]
[0.41081081	1.	0.75
0.01621622	0.	0.09615385
0.15675676	1.	o. j
[0.68108108	1.	0.55769231]
0.17837838	0.	0.23076923
0.37837838	1.	0.78846154
[0.96756757	0.	0.21153846]
0.76216216	1.	0.19230769]
[0.22162162	0.	0.11538462]
[0.83783784	0.	0.23076923]
[0.3027027	1.	1.
[0.64324324	1.	0.40384615]
[0.94594595	1.	0.32692308]
[0.97837838	1.	0.23076923]
[0.63783784	0.	0.42307692]
[0.21621622	0.	0.59615385]
[0.06486486	0.	0.32692308]
[0.27567568	1.	0.55769231]
[0.78918919	1.	0.48076923]
[0.57837838	0.	0.01923077]
[0.0972973	0.	0.53846154]
[1.	0.	0.34615385]
[0.67567568	1.	0.38461538]
[0.	0.	0.25]
[0.42702703	0.	0.53846154]
[0.55135135	0.	0.92307692]
[0.7027027	1.	0.03846154]
[0.33513514	0.	0.48076923]
[0.11891892	0.	0.51923077]
[0.58918919	1.	0.01923077]
[0.88648649	0.	0.34615385]
[0.31891892	0.	0.69230769]
[0.02162162	1.	0.88461538]
[0.38378378	1.	0.15384615]
[0.61621622	0.	0.63461538]
[0.75135135	0.	0.26923077]
[0.36216216	0.	0.55769231]
[0.64864865	0.	0.09615385]
[0.97297297	0.	0.44230769]
[0.5027027	0.	0.17307692]
[0.78378378	1.	0.30769231]
[0.10810811	0.	0.69230769]
[0.14054054	1.	0.80769231]