1 物理定数表

1.1 基礎定数

真空中の光速 †	c	$2.997 924 58 \times 10^8 \text{ m s}^{-1} \text{ (SI)}$
単位電荷†	$e = q_e / \sqrt{4\pi\epsilon_0}$	$4.80 \times 10^{-10} \text{ esu (CGS)}$
	$q_e = e\sqrt{4\pi\epsilon_0}$	$1.602\ 176\ 634 \times 10^{-19}\ \mathrm{C}\ \mathrm{(SI)}$
	$\left[e^2\right] = \left[\left(q_e/4\pi\epsilon_0\right)^2\right]$	$\left[\mathrm{ML^{3}T^{-2}}\right]$
真空の誘電率	$\epsilon_0 = (1/4\pi c^2) \times 10^{7}$	$8.85 \times 10^{-12} \text{ Fm}^{-1} \text{ (SI)}$
	$1/4\pi\epsilon_0 = c^2 \times 10^{-7}$	$8.99 \times 10^9 \text{ kg m}^3 \text{ s}^{-2} \text{ C}^{-2} \text{ (SI)}$
	$q_e^2/4\pi\epsilon_0$	$2.31 \times 10^{-28} \text{ kg m}^3 \text{ s}^{-2} \text{ (SI)}$
真空の透磁率	$\mu_0 = 4\pi \times 10^{-7}$	$1.26 \times 10^{-6} \; \mathrm{Hm}^{-1} \; (\mathrm{SI})$
プランク定数 [†]	h	$6.626\ 070\ 15 \times 10^{-34}\ \mathrm{J\ s} = 4.14 \times 10^{-15}\ \mathrm{eV\ s}$
	$\hbar = h/2\pi$	$1.05 \times 10^{-27} \text{ erg s} = 6.58 \times 10^{-16} \text{ eVs}$
	[h]	$[\mathrm{ML}^2\mathrm{T}^{-1}]$
重力定数	G	$6.67 \times 10^{-8} \text{ dyn cm}^2 \text{ g}^{-2}$
	[G]	$[M^{-1}L^3T^{-2}]$
微細構造定数	$\alpha_{\rm e} = e^2/\hbar c({\rm CGS}) = q_e^2/4\pi\epsilon_0\hbar c({\rm SI})$	$1/(1.37 \times 10^2) = 7.30 \times 10^{-3}$
重力微細構造定数	$\alpha_{\rm g} = G m_{\rm p}^2 / \hbar c$	5.90×10^{-39}
アボガドロ数 [†]	$N_{ m A}$	$6.022\ 140\ 76 \times 10^{23}\ \mathrm{mol^{-1}}$
ボルツマン定数 †	k	$1.380~649 \times 10^{-23}~\mathrm{J~K^{-1}} = 8.62 \times 10^{-5}~\mathrm{eV~K^{-1}}$
ボーア磁子	$\mu_{ m B} = e\hbar/2m_{ m e}$	$9.27 \times 10^{-21} \text{ gauss cm}^3$
(4. 2010 年からの年で	I 単島をなった I N 1.以下連かさのおいた	2 差估レレア人にも主ニ るれNMM#七州粉ウ9歩云主訂)

(†: 2019 年からの新 SI 単位系で $c, q_{\rm e}, h, N_{\rm A}, k$ は不確かさのない定義値として全桁を表示。それ以外は有効数字 2 桁で表記。)

1.2 長さと面積

	cm	pc	light year	AU
cm	1	3.24×10^{-19}	1.06×10^{-18}	6.69×10^{-14}
$\operatorname{pc}\left(\mathcal{N}- ext{$ ext{t}}- ext{$ ext{t}} ight)$	3.09×10^{18}	1	3.26	2.06×10^{5}
light year (光年)	9.46×10^{17}	0.307	1	6.32×10^{4}
AU (天文単位)	1.50×10^{13}	4.85×10^{-6}	1.58×10^{-5}	1

電子のコンプトン波長 陽子のコンプトン波長 古典電子半径 ボーア半径 リュードベリ定数 1 keV の光子の波長 ラーモア半径	$\lambda_{\rm e} = h/m_{\rm e}c$ $\lambda_{\rm p} = h/m_{\rm p}c$ $r_e = e^2/m_ec^2$ $a_0 = \hbar^2/m_ee^2$ $R_{\infty} = 2\pi^2 m_{\rm e}e^4/ch^3$ $hc/1{\rm keV}$ $r_q = p_{\perp}/qB$	$2.43 \times 10^{-10} \text{ cm}$ $1.32 \times 10^{-13} \text{ cm}$ $2.82 \times 10^{-13} \text{ cm}$ $0.529 \times 10^{-8} \text{ cm}$ $1.10 \times 10^5 \text{ cm}^{-1}$ $12.4 \times 10^{-8} \text{ cm}$ $3.3 \times 10^2 (\gamma mc^2/\text{GeV})(v)$	$(\lambda_e/2\pi = 3.84 \times 10^{-11} \text{ cm})$ $(\lambda_p/2\pi = 2.10 \times 10^{-14} \text{ cm})$ $(\pi a_0^2 = 0.880 \times 10^{-16} \text{ cm}^2)$ = 12.4 Å $_{\perp}/c)(q/e)^{-1}(B/T)^{-1} \text{ cm}$
地球半径 太陽半径 シュバルツシルト半径 銀河系中心から太陽の距離	R_{\oplus} R_{\odot} $R_{ m s}=2GM/c^2$	$6.38 \times 10^{8} \text{ cm}$ $6.96 \times 10^{10} \text{ cm}$ $2.95 \times 10^{5} (M/M_{\odot}) \text{ cm}$ $\sim 10 \text{ kpc}$	$(4\pi R_{\odot}^2 = 5.11 \times 10^{18} \text{ cm}^2)$ $(4\pi R_{\odot}^2 = 6.09 \times 10^{22} \text{ cm}^2)$ $\sim 3 \text{ km}$ (c.f., IAU 8.5 kpc)
銀河系の直径 銀河団の平均直径 プランク長 トムソン散乱断面積 バーン (barn, 反応断面積)	$(G\hbar/c^3)^{1/2}$ $\sigma_{\rm T} = 8\pi r_{\rm e}^2/3$ b	$\sim 25 \text{ kpc}$ $\sim 3 \text{ Mpc}$ $1.62 \times 10^{-33} \text{ cm}$ $6.65 \times 10^{-25} \text{ cm}^2$ $10^{-24} \text{ cm}^2 = 10^{-28} \text{ m}^2$	

1.3 時間

1ユリウス年		365.25 days (SI day) = 31,557,600 s
1 日		24 h = 1,440 min = 86,400 s
光の伝搬時間		3.33(r/1 m) ns = 500(r/1 AU) s
ハッブル時間	$1/H_0$	$9.8 \times 10^9 h^{-1} \text{ year} = 3.09 \times 10^{17} h^{-1} \text{ s}$ (宇宙年齢の目安)
宇宙年齢		138 億年 [Planck Collaboration A&A (2016), Table 4]
プランク時間	$(G\hbar/c^5)^{1/2}$	$5.39 \times 10^{-44} \text{ s}$

1.4 質量とエネルギー

電子の質量	$m_{ m e}$	$9.11 \times 10^{-28} \text{ g}$	電子の静止質量エネルギー	$m_{ m e}c^2$	$0.511~{ m MeV}$
陽子の質量	$m_{ m p}$	$1.67 \times 10^{-24} \text{ g}$	陽子の静止質量エネルギー	$m_{ m p}c^2$	$938~{ m MeV}$
陽子電子質量比	m_n/m_e	1.84×10^{3}	水素の基底状態エネルギー	$m_{\rm e}c^2(\alpha_{\rm e}^2/2)$	$13.6~\mathrm{eV}$
地球質量	M_{\oplus}	$5.98 \times 10^{27} \text{ g}$		=1Ry	$912~{ m \AA}$
太陽質量	M_{\odot}	$1.99 \times 10^{33} \text{ g}$			
銀河系質量	$M_{ m gal}$	$\sim 2 \times 10^{11} M_{\odot}$	$E\lambda = 12.39842~\mathrm{keV}~\mathrm{\mathring{A}}$		
宇宙の質量	$M_{ m U}$	$10^{54} - 10^{56} \text{ g}$	$\hbar c = 1.973 \text{ keV Å} = 197.3 \text{ MeV fm}$	ı	

 $1 \text{ J} = 1 \times 10^7 \text{ ergs}, 1 \text{ cal} = 4.19 \text{ J}$

	eV	- 0	cm^{-1}	Hz	K
eV	1	1.60×10^{-12}	8.07×10^{3}	2.42×10^{14}	1.16×10^4
erg	6.24×10^{11}	1	5.03×10^{15}	1.51×10^{26}	7.24×10^{15}
${ m cm}^{-1}$	1.24×10^{-4}	1.99×10^{-16}	1	3.00×10^{10}	1.44
${ m Hz}$	4.14×10^{-15}	6.63×10^{-27}	3.34×10^{-11}	1	4.80×10^{-11}
K	8.62×10^{-5}	1.38×10^{-16}	6.95×10^{-1}	2.08×10^{10}	1

 $(\hbar c/G)^{1/2}$ 2.18 × 10⁻⁵ g

輻射 1.5

プランク質量

 $a = \pi^2 k^4 / 15c^3 \hbar^3$ 7.57 × 10⁻¹⁵ erg cm⁻³ K⁻⁴ 黒体放射の輻射密度定数 $5.67\times10^{-5}~{\rm erg}~{\rm cm}^{-2}~{\rm K}^{-4}~{\rm s}^{-1}$ $\sigma_{\rm sb} = ac/4$ シュテファン-ボルツマン定数 $0.290~\rm cm~K$ 黒体放射の最大強度波長 $T\lambda_{\max}$ $L_{\rm x} = 4\pi R^2 \sigma_{\rm sb} T^4 = 1.045 \times 10^{35} (R/10 \text{ km})^2 (kT/0.3 \text{ keV})^4 \text{ erg s}^{-1}$ 黒体放射の光度 $3.8 \times 10^{33} \text{ erg s}^{-1} = 3.8 \times 10^{26} \text{ W}$ 太陽光度 絶対輻射等級 $M_{\rm bol} = 4.75 - 2.5 \log (L/L_{\odot})$ $3.0 \times 10^{35} \text{ erg s}^{-1}$ 絶対輻射等級 0 等星の輻射 $2.5 \times 10^{-5} \text{ erg cm}^{-2} \text{ s}^{-1}$ 輻射等級 0 等星の明るさ $m=M+5\log(D/\mathrm{pc})-5+$ 空間吸収の大きさ 見かけの等級 $L_{\rm x} = 4\pi d^2 F_{\rm x} = 1.200 \times 10^{32} (d/1 \text{ kpc})^2 (F_{\rm x}/10^{-12} \text{ erg s cm}^{-2}) \text{ erg s}^{-1}$ X線光度 $L_{\rm Edd} \sim 1.3 \times 10^{38} (M/M_{\odot}) \ {\rm erg \ s^{-1}}$ エディントン光度 スピンダウン光度 $L_{\rm sd} = 3.94 \times 10^{35} \text{ erg s}^{-1} (P/1 \text{ s})^{-3} (\dot{P}/10^{-11} \text{ s s}^{-1}) \text{ (at } I = 10^{45} \text{ g cm}^2)$ $\sim 2.3 \times 10^{-8} \text{ erg s cm}^{-2} \text{ (2-10 keV)}$ かに星雲のX線強度 1 Crab

1.6 磁場

 $B_{\rm cr} = m_e^2 c^3/\hbar e$ $4.414 \times 10^{13} \text{ G}$ 量子電磁力学の臨界磁場 $B_{\rm d} = (3c^3 IP\dot{P}/2\pi^2 R_{\rm ns}^6)^{1/2}$ $1.0 \times 10^{14} (P/1 \text{ s})^{1/2} (\dot{P}/10^{-11} \text{ s s}^{-1})^{1/2} \text{ G}$ パルサーの表面磁場強度 $11.6(B/10^{12} \text{ G}) \text{ keV}$ 電子サイクロトロン共鳴 $E_{\rm cvc} = m_e c^2 (1 + B/B_{\rm cr})$ 磁気エネルギー密度 $U_{\rm mag} = B^2/8\pi \; ({\rm CGS})$ $3.98 \times 10^{-2} (B/1 \text{ G})^2 \text{ erg cm}^{-3}$ (1T=10⁴ G)

1.7 宇宙論

 $100h~{\rm km~s^{-1}~Mpc^{-1}} = 3.2h \times 10^{-18}~{\rm s^{-1}}~(h \sim 0.70)$ ハッブル定数 H_0 $3000h^{-1} \text{ Mpc} = 9.26 \times 10^{27}h^{-1} \text{ cm}$ ハッブル距離 c/H_0 $1.9 \times 10^{-29} h^2 \text{ g cm}^{-3} = 2.8 \times 10^{11} h^2 M_{\odot} \text{ Mpc}^{-3}$ $\rho_c = (3H_0^2)/(8\pi G)$ 臨界密度 $4.0 \times 10^{-13} \left[T_{r0} / 2.7 \text{K} \right]^4 \text{ erg cm}^{-3}$ 宇宙黒体輻射密度 $\rho_{r0} = aT_{r0}^4$ $4.0 \times 10^2 \left[T_{r0} / 2.7 \text{K} \right]^3 \text{ cm}^{-3}$ 宇宙黒体輻射光子数密度 n_{r0} $3.3 \times 10^{-4} h(d/\text{Mpc})$ (z < 0.05) 宇宙論的赤方偏移(近傍) $z \sim (H_0/c)d$ $E' = \gamma(1-\beta)E = \{(1-\beta)/(1+\beta)\}^{1/2}E$ 運動学的赤方偏移 $1 + z = \sqrt{(1+\beta)/(1-\beta)}$ 重力赤方偏移 $1 + z = (1 - R_{\rm s}/R)^{-1/2}$

1.8 その他

 $[
カ] = [MLT^{-2}], [エネルギー] = [ML^2T^{-2}], [圧力] = [ML^{-1}T^{-2}]$ $1 \text{ g cm}^{-3} = 5.99 \times 10^{23} \text{ proton cm}^{-3} = 5.61 \times 10^{32} \text{ eV cm}^{-3} = 1.48 \times 10^{40} M_{\odot} \text{ Mpc}^{-3}$ $1 \text{ Jy} = 10^{-23} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ Hz}^{-1} = 10^{-26} \text{ J m}^{-2} \text{ s}^{-1} \text{ Hz}^{-1}$ $760 \text{ torr} = 1.013 \times 10^6 \text{ dyn cm}^{-2} = 1 \text{ atmos} = 1.013 \text{ bars} = 1.013 \times 10^5 \text{ Nm}^{-2}$ (Pa) 1 radian =57.296 degrees, 1 arcsec = 4.848×10^{-6} radians, 1 sr \sim 3282.806 degrees² 天体の赤経と赤緯を (α, δ) として、人工衛星のオイラー角は $(\alpha, 90^{\circ} - \delta, 90^{\circ} - [\text{ロール角}])$

2 中性原子や高階電離イオンからの代表的な輝線

Table 1: 中性原子、ヘリウム様イオン、水素様イオンの輝線エネルギーと K 殻束縛エネルギー (単位 eV)

Neutral a	tom		ρ		Fluorescence					
Element	\mathbf{Z}		$(\mathrm{g}\ \mathrm{cm}^{-3})$	$K\alpha_1$	$K\alpha_2$	$K\beta_1$	$L\alpha_1$	$L\alpha_2$	$\mathrm{L}eta_1$	K-edge
С	6	$1s^2 2s^2 2p^2$	2.27	277.						284.2
N	7	$1s^22s^22p^3$	1.25	392.4						409.9
O	8	$1s^22s^22p^4$	1.42	524.9						543.1
Ne	10	$1s^2 2s^2 2p^6$	0.90	848.6	848.6					870.2
Na	11	$[\mathrm{Ne}]3\mathrm{s}^1$	0.97	1,040.9	1,040.9	1,071.1				1,070.8
Mg	12	$[\mathrm{Ne}]3\mathrm{s}^2$	1.74	1,253.6	$1,\!253.6$	1,302.2				1,303.0
Al	13	$[\mathrm{Ne}]3\mathrm{s}^23\mathrm{p}^1$	2.70	1,486.7	1,486.2	1,557.4				$1,\!559.6$
Si	14	$[\mathrm{Ne}]3\mathrm{s}^23\mathrm{p}^2$	2.33	1,739.9	1,739.3	1,835.9				1,839.
\mathbf{S}	16	$[\mathrm{Ne}]3\mathrm{s}^23\mathrm{p}^4$	2.09	2,307.8	2,306.6	2,464.0				2,472.
Ar	18	$[\mathrm{Ne}]3\mathrm{s}^23\mathrm{p}^6$	1.78	2,957.7	2,955.6	$3,\!190.5$				$3,\!205.9$
Ca	20	$[Ar]4s^2$	1.53	3,691.6	3,688.0	4,012.7	341.3	341.3	344.9	4,038.5
Fe	26	$[Ar]3d^64s^2$	7.87	6,403.8	6,390.8	7,057.9	705.0	705.0	718.5	7,112.
Ni	28	$[Ar]3d^84s^2$	8.91	7,478.1	7,460.8	8,264.6	851.5	851.5	868.8	8,333.

			He-like					H-like		
Ion	F or z	I1 or y	I2 or x	R or w	K-edge	$Ly\alpha_2$	$Ly\alpha_1$	$Ly\beta_2$	$\text{Ly}\beta_1$	K-edge
С	298.9	304.4	304.4	307.9	392.0	367.4	367.5	435.5	435.5	489.9
N	419.8	426.3	426.3	430.7	552.0	500.2	500.3	592.9	592.9	667.0
O	560.9	568.5	568.6	573.9	739.3	653.4	653.6	774.5	774.6	871.4
Ne	905.0	914.8	915.0	922.0	1,195.8	1,021.5	1,021.9	1,210.8	$1,\!210.9$	$1,\!362.1$
Na	1,107.8	1,118.7	1,119.0	$1,\!126.8$	1,465.1	1,236.3	$1,\!236.9$	$1,\!465.4$	$1,\!465.6$	1,648.7
Mg	1,331.1	1,343.1	1,343.5	$1,\!352.2$	1,761.8	1,471.6	$1,\!472.6$	1,744.5	1,744.8	1,962.6
Al	1,574.9	1,588.1	$1,\!588.7$	$1,\!598.2$	$2,\!085.9$	1,727.6	1,728.9	2,048.0	2,048.4	$2,\!304.1$
Si	1,839.4	$1,\!853.7$	1,854.6	1,864.9	$2,\!437.6$	2,004.3	2,006.0	$2,\!376.1$	$2,\!376.6$	$2,\!673.1$
\mathbf{S}	2,430.3	2,447.1	$2,\!448.7$	$2,\!460.6$	$3,\!223.7$	2,619.7	2,622.7	3,105.8	$3,\!106.7$	$3,\!494.1$
Ar	3,104.1	$3,\!123.5$	$3,\!126.2$	$3,\!139.5$	4,120.6	3,318.1	$3,\!322.9$	3,934.2	3,935.7	$4,\!426.2$
Ca	3,861.1	3,883.3	$3,\!887.7$	3,902.2	$5,\!128.8$	4,100.1	4,107.5	$4,\!861.9$	$4,\!864.1$	$5,\!469.8$
Fe	6,636.6	6,667.5	$6,\!682.3$	6,700.4	8,828.1	6,951.9	6,973.1	8,246.3	$8,\!252.6$	$9,\!277.6$
Ni	7,731.6	7,765.7	7,786.4	$7,\!805.5$	$10,\!288.8$	8,073.1	8,101.7	$9,\!577.5$	$9,\!586.0$	10,775.3

X-ray Data Booklet (http://xdb.lbl.gov) are used for line and K-edge (ionization) energies of neutral elements, NIST Atomic Spectra Database version 5.6 (https://www.nist.gov/pml/atomic-spectra-database) for K-edge (ionization) energies of Helike and H-like ions, and AtomDB v3.0.9 http://www.atomdb.org for emission line energies of He-like and H-like ions. The energies are shown to one place of decimal without rounding values. Note: Inner shell lines are denoted by $K\alpha$ (n=1 to 2), $K\beta$ (n=1 to 3) for Li-like or higher ions, but called Ly α and Ly β for He-like and H-like ions.

Table 2: An incomplete list of astrophysically important X-ray spectral features (keV)

	Energy		Energy		Energy		Energy
Ne VII	0.127	O VII	0.574	Fe XX	0.996	Fe I K α_1	6.404
Si XI	0.283	O VIII	0.654	Ne X	1.022	Fe XXV	6.64
C I K edge	0.284	O VII	0.666	Mg I K edge	1.305	Fe XXV	6.68
Si XII	0.303	O VII	0.698	Mg XI	1.340	Fe XXV	6.70
C V	0.308	Fe I LIII edge	0.707	Mg XI	1.352	Fe XXVI	6.93
N I K edge	0.402	Fe I LII edge	0.721	Si K edge	1.839	Fe I K β	7.058
N VI	0.431	Fe XVII	0.826	Si XIII	1.86	Fe I Kedge	7.111
N VII	0.500	Ne I K edge	0.867	S I K edge	2.472		
O I K edge	0.532	Ne IX	0.915	Ar I K edge	3.203		
O VII	0.569	Ne IX	0.922	Fe I K α_2	6.391		

M.V. Zombeck "Handbook of Space Astronomy and Astrophysics", Third Edition, Cambridge University Press, pp.28 http://ads.harvard.edu/books/hsaa/

3 原子核からの代表的な輝線

Table 3: 放射線源 (較正用、環境放射線) からのガンマ線

	Decay	Half-life	Energy	I_g			Decay	Half-life	Energy	I_g
		$T_{1/2}$	(keV)	(%)				$T_{1/2}$	(keV)	(%)
^{-22}Na	EC/β^+	2.6019 y	511.	181.4		$^{152}\mathrm{Eu}$	EC/β^-	13.53 y	121.78	28.58
			1274.5	99.94					244.69	7.58
$^{40}{ m K}$	EC/β^+	$1.27 \times 10^9 \text{ y}$	1460.83	11					344.27	26.5
55 Fe	EC	2.73 y	5.888	8.5					778.90	12.94
			5.899	16.9					867.37	4.24
			6.490	2.99					964.07	14.60
$^{57}\mathrm{Co}$	EC	271.79 d	14.41	9.16					1085.86	10.20
			122.06	85.60					1112.07	13.64
			136.47	10.68					1408.00	21.00
$^{60}\mathrm{Co}$	β^-	$5.27 \mathrm{\ y}$	1173.23	99.97		$^{241}\mathrm{Am}$	α	$432.2~\mathrm{y}$	59.54	35.9
			1332.50	99.98		$^{214}\mathrm{Bi}$	α/β^-	$19.9~\mathrm{m}$	609.31	46.1
^{88}Y	EC/β^+	$106.65 \ d$	898.04	93.7					768.35	4.94
			1836.06	99.2					934.06	3.03
$^{133}\mathrm{Ba}$	EC	10.51 y	53.16	2.19					1120.28	15.1
			79.61	2.62					1238.11	5.79
			80.99	34.06					1764.49	15.4
			276.39	7.16		$^{208}\mathrm{Tl}$	β^-	$3.05~\mathrm{m}$	277.35	6.31
			302.85	18.33					510.77	22.6
			356.01	62.05					583.19	84.5
			383.85	8.94					860.56	12.42
$^{-137}\mathrm{Cs}$	β^-	30.07 y	661.65	85.1	<u> </u>				2614.53	99

Data from the Lund/LBNL Nuclear Data Search Version 2.0 (1999) http://nucleardata.nuclear.lu.se/toi/, shown for $I_g \gtrsim 5\%$. Lines from ⁵⁵Fe are Mn K α 2 (5.888 keV), Mn K α 1 (5.899 keV), and Mn K β 1+Mn K β 3 (6.490 keV).

4 周期表

Periodic Table of the Elements

Standard atomic weights taken from the Commission on Isotopic Abundances and Atomic Weights (ciaaw.org/atomic-weights.htm). Adapted from Ivan Griffin's I/TEX Periodic Table. © 2017 Paul Daness

An asterisk (*) next to a subshell indicates an anomalous (Aufbau rule-breaking) ground state electron configuration

5 衝突電離プラズマのイオン比率

Calculated via pyatomdb (https://atomdb.readthedocs.io) with a Google Colaboratory code (https://x.gd/oyOCN) see also Smith et al. "ASTRO-H White Paper - New Spectral Features", 2014 (https://arxiv.org/abs/1412.1172)

6 天文学の便利な TIPS

6.1 覚えておきたい数値

(距離)

 $pc \approx 3 \times 10^{18}~cm$

 $AU \approx 500$ light-seconds

 $R_{\rm earth} \approx R_{\rm jupiter}/10 \approx R_{\odot}/100$

 $2GM_{\odot}/c^2 \approx 3 \text{ km}$

(質量とエネルギー)

 $m_{\rm p} \sim m_{\rm n} \sim 940~{\rm MeV} \approx 1~{\rm GeV}$

 $m_{\rm e} \approx 0.511 \; {\rm MeV/c^2} \approx m_{\rm p}/2000$

 $\hbar c \approx 2000 \text{ eV Å}$

 $\alpha = e^2/(\hbar c)$ [ガウス単位系] $\approx 1/137$ ($\hbar c$ と微細構造定数 α から基本パラメータを導出できる)

 $1~\textrm{Å}{\rightarrow}~12.4~\textrm{keV}$

 $1 \text{ eV} \approx 1.6 \times 10^{-12} \text{ erg} \rightarrow 1,200 \text{ nm} \rightarrow 240 \text{ THz} \rightarrow 10^4 \text{ K}$

(天文学では依然として CGS 単位系に揃えると便利なことも多い)

ボルツマン定数 $k \sim 1.38 \times 10^{-16} \text{ erg/K}$

ステファン-ボルツマン定数 $\sigma \sim 1.03 \times 10^{24} \ \mathrm{erg/s/cm^2/keV^4}$

典型的な星間密度 $\approx 1 \text{ Hydogen atom/cm}^3$

距離 d までの水素柱密度 (hydrogen column density) $N_{\rm H} \approx 3 \times 10^{21} (d/{\rm kpc})~{\rm cm}^{-2}$

6.2 便利な近似

桁で議論する封筒の裏の精度である [確認が必要, 2022-04-21]

year $\approx 3.15 \times 10^7$ seconds $\approx \pi \cdot 10^7$ seconds

 $km/s \approx pc/Myr$

 $G \approx 40 \text{ AU}^3/(M_{\text{sun year}^2})$

1" $\approx 5 \,\mu \text{rad}$

sphere $\approx 60^6/(100\pi) \text{ arcmin}^2$