Time Complexity

Mohammed Rizin Unemployed

March 20, 2025

1 Time Complexity

1.1 Simple For Loop

```
Algorithm 1 Simple for loop

for i \leftarrow 0 to n-1 do

....STMT....
end for
```

Time complexity: O(n).

1.2 Simple Reverse Loop

```
Algorithm 2 Simple reverse loop

for i \leftarrow n down to 1 do

....STMT....
end for
```

Time complexity: O(n).

1.3 For Loop with Step

```
Algorithm 3 Simple for loop with step for i \leftarrow 0 to n-1 step 2 do ....STMT.... end for
```

Time complexity: O(n) (as n/2 is asymptotically O(n)).

1.4 Nested Loops

Time complexity: $O(n^2)$.

i	j	STMT	Total STMT	Total Time	Time Complexity
0	0	1	1	1	1
1	0	1	2	3	3
1	1	1	3	6	6
2	0	1	4	10	10
2	1	1	5	15	15
2	2	1	6	21	21

The total number of executions is n(n+1)/2, so the time complexity is $O(n^2)$.

1.5 Summation Loop

Algorithm 5 Summation loop

```
\begin{array}{c} p \leftarrow 0 \\ \textbf{for } i \leftarrow 1 \ \textbf{while} \ p \leq n \ \textbf{do} \\ p \leftarrow p + i \\ \textbf{end for} \end{array}
```

i	p	STMT	Total STMT	Total Time	Time Complexity
1	1	1	1	1	1
2	3	1	2	3	3
3	6	1	3	6	6
4	10	1	4	10	10
5	15	1	5	15	15
6	21	1	6	21	21
:	:	:	:	:	:
•			•	•	•
k	$\frac{k(k+1)}{2}$	1	k	$\frac{k(k+1)}{2}$	$\frac{k(k+1)}{2}$

Assuming $p \leq n$:

$$p = \frac{k(k+1)}{2},$$

$$\frac{k(k+1)}{2} > n,$$

$$k^2 > n,$$

$$k > \sqrt{n}.$$

Time complexity: $O(\sqrt{n})$.

1.6 Multiplication Loop

Algorithm 6 Multiplication loop

```
\label{eq:constraint} \begin{array}{ll} \mathbf{for} \ i \leftarrow 1 \ \mathbf{while} \ i \leq n \ \mathbf{step} \ 2 \cdot i \ \ \mathbf{do} \\ ...Statement... \\ \mathbf{end} \ \mathbf{for} \end{array}
```

step	i
1	2
2	4
3	8
4	16
5	32
:	:
	٠,
k	2^k

This stops when i > n:

i.e.
$$2^k > n$$
,
 $\log_2 2^k > \log_2 n$
 $k \cdot \log_2 2 > \log_2 n$
 $k > \log_2 n$

Time complexity: $O(\log_2 n)$.