

#### ANÁLISIS DE COMPONENTES PRINCIPALES (PCA)

Alan Reyes-Figueroa Introducción a la Ciencia de Datos

(AULA 11) 09.FEBRERO.2022

#### Componentes principales

Objetivo: encontrar una estructura subyacente en los datos.

• Proyectar a un subespacio adecuado.



#### Componentes principales

Caso particular 1D: (proyectamos a un subespacio 1-dimensional).

Suponga que proyectamos a un subespacio  $\langle \ell \rangle \Rightarrow \langle \ell, X \rangle = \ell^T X$ . Buscamos maximizar

$$\max_{||\ell||=1} Var(\ell^T X) = \max_{\ell \neq o} \frac{Var(\ell^T X)}{\ell^T \ell} = \max_{\ell \neq o} \frac{\ell^T Var(X) \ell}{\ell^T \ell} = \max_{\ell \neq o} \frac{\ell^T (\mathbb{X}^T \mathbb{X}) \ell}{\ell^T \ell}.$$

(cociente de Rayleigh).







### El teorema espectral

#### Teorema (Teorema espectral / Descomposición espectral)

Sea  $A \in \mathbb{R}^{d \times d}$  una matriz simétrica (operador auto-adjunto). Entonces, A admite una descomposición de la forma

$$A = U\Lambda U^{T}$$
,

donde  $\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_d)$  es la matriz diagonal formada por los autovalores  $\lambda_1 \geq \lambda_2 \geq \dots \lambda_d$  de A, y

$$U = \left( \mathbf{u}_1 \ \mathbf{u}_2 \ \ldots \ \mathbf{u}_d \right) \in \mathbb{R}^{d \times d}$$

es una matriz ortogonal cuyas columnas son los autovectores de A, con  $\mathbf{u}_i$  el autovector correspondiente a  $\lambda_i$ , i = 1, 2, ..., d.

### El teorema espectral

#### Teorema (Teorema espectral / Descomposición espectral)

En otras palabras, A puede escribirse como una suma de matrices de rango 1

$$A = \sum_{i=1}^d \lambda_i \, \mathbf{u}_i \mathbf{u}_i^T.$$

#### Comentario:

Para  $1 \le k \le d$ , la suma  $A = \sum_{i=1}^{\kappa} \lambda_i \mathbf{u}_i \mathbf{u}_i^T$ , es una matriz de rango k siempre que los  $\lambda_i \ne 0$  (ya que los  $\mathbf{u}_i$  son independientes).

#### El teorema espectral

#### **Observaciones:**

- Si A es simétrica y semi-definida positiva, existe  $A^{1/2}$  tal que  $A^{1/2}A^{1/2} = A$ .
- Si todos los autovalores de A son no-negativos,  $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d \geq 0$ , entonces  $\Lambda^{1/2}$  existe y

$$\Lambda^{1/2} = diag(\lambda_1, \lambda_2, \dots, \lambda_d)^{1/2} = diag(\lambda_1^{1/2}, \lambda_2^{1/2}, \dots, \lambda_d^{1/2}).$$

• A partir de la descomposición espectral podemos calcular  $A^{1/2}$ . De hecho, si  $A = U \Lambda U^T$ , definimos  $A^{1/2} = U \Lambda^{1/2} U^T$ , y

$$A^{1/2}A^{1/2} = (U\Lambda^{1/2}U^{T})(U\Lambda^{1/2}U^{T}) = U\Lambda^{1/2}(U^{T}U)\Lambda^{1/2}U^{T}$$
  
=  $U\Lambda^{1/2}\Lambda^{1/2}U^{T} = U\Lambda U^{T} = A$ .

# Descomposición SVD

#### Teorema (Descomposición en valores singulares (SVD))

Sea  $A \in \mathbb{R}^{n \times d}$  una matriz de rango k. Para todo  $1 \le r \le k$ , existen matrices  $U \in \mathbb{R}^{n \times r}$ ,  $S \in \mathbb{R}^{r \times r}$ ,  $V \in \mathbb{R}^{d \times r}$ , tales que

$$A = USV^{T} = \sum_{i=1}^{T} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T},$$

#### con

- las columnas  $\mathbf{u}_1, \dots, \mathbf{u}_r \in \mathbb{R}^n$  de U son los autovectores de  $AA^T$ ,
- las columnas  $\mathbf{v}_1, \dots, \mathbf{v}_r \in \mathbb{R}^d$  de V son los autovectores de  $\mathbf{A}^T \mathbf{A}$ ,  $S = diag(\sigma_1, \dots, \sigma_r)$ ,  $\sigma_i^2 = \lambda_i$ , con  $\lambda_i$  los autovectores de  $\mathbf{u}_i$  y de  $\mathbf{v}_i$ ,
- Además,  $\sigma_i \mathbf{u}_i = A \mathbf{v}_i$  y  $\sigma_i \mathbf{v}_i = A^T \mathbf{u}_i$ , para  $i = 1, 2, \dots, r$ .



# Descomposición SVD

El teorema de descomposición espectral ocurre como un caso particular de la descomposición SVD:

Caso especial: A simétrica

$$A = USU^T = U\Lambda U^T = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{u}_i^T.$$

En este caso los autovectores de A y  $A^TA = A^2 = AA^T$  coinciden, y los autovalores de A al cuadrado son los autovalores de  $A^TA$ .

# Cociente de Rayleigh

#### Teorema (Cociente de Rayleigh, caso 1D)

Sea  $A \in \mathbb{R}^{d \times d}$  una matriz simétrica,  $A \succeq O$ . Entonces, el cociente de Rayleigh

$$\max_{\mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^T A \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$

alcanza su máximo exactamente en  $\mathbf{x} = \mathbf{u}_1$ , el autovector asociado al mayor autovalor  $\lambda_1$  de A.

#### Prueba:

Sea  $A = U \wedge U^T$  la descomposición espectral del A, A con autovalores  $\lambda_1 \geq \lambda_2 \geq \dots \lambda_d \geq 0$ , y  $U = [\mathbf{u_1} \ \mathbf{u_2} \ \dots \ \mathbf{u_d}]$ , con  $\mathbf{u_i}$  el autovector correspondiente a  $\lambda_i$ ,  $i = 1, 2, \dots, d$ .

#### Cociente de Rayleigh

Tomemos  $A^{1/2} = U\Lambda^{1/2}U^T$ . Consideremos el cambio de base  $\mathbf{y} = U^T\mathbf{x}$ . Entonces

$$\max_{\mathbf{x} \neq 0} \frac{\mathbf{x}^{T} \mathbf{A} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} = \max_{\mathbf{x} \neq 0} \frac{\mathbf{x}^{T} A^{1/2} \mathbf{A}^{1/2} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} = \max_{\mathbf{x} \neq 0} \frac{\mathbf{x}^{T} U \Lambda^{1/2} U^{T} U \lambda^{1/2} U^{T} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} = \max_{\mathbf{x} \neq 0} \frac{\mathbf{x}^{T} U \Lambda U^{T} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}$$

$$= \max_{\mathbf{x} \neq 0} \frac{\mathbf{x}^{T} U \Lambda U^{T} \mathbf{x}}{\mathbf{x}^{T} U U^{T} \mathbf{x}} = \max_{\mathbf{x} \neq 0} \frac{(U^{T} \mathbf{x})^{T} \Lambda (U^{T} \mathbf{x})}{(U^{T} \mathbf{x})^{T} (U^{T} \mathbf{x})} = \max_{\mathbf{y} \neq 0} \frac{\mathbf{y}^{T} \Lambda \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} = \max_{||\mathbf{y}||=1} \mathbf{y}^{T} \Lambda \mathbf{y}$$

$$= \max_{||\mathbf{y}||=1} \sum_{i=1}^{d} \lambda_{i} y_{i}^{2} \leq \max_{||\mathbf{y}||=1} \sum_{i=1}^{d} \lambda_{1} y_{i}^{2} = \lambda_{1}.$$

# Cociente de Rayleigh

Luego, el valor del cociente de Rayleigh, está limitado superiormente por  $\lambda_1$ .

Por otro lado, si  $\mathbf{y} = \mathbf{e}_1 = (1, 0, \dots, 0)$ , entonces

$$\frac{\mathbf{y}^{\mathsf{T}} \wedge \mathbf{y}}{\mathbf{y}^{\mathsf{T}} \mathbf{y}} = \mathbf{y}^{\mathsf{T}} \wedge \mathbf{y} = \mathbf{e}^{\mathsf{T}} \wedge \mathbf{e}_{1} = \sum_{i=1}^{d} \lambda_{i} \mathbf{e}_{1i}^{2} = \lambda_{1}.$$

Portanto, el cociente de Rayleigh alcanza su máximo en  $\mathbf{y} = \mathbf{e}_1$ . Volviendo a las coordenadas originales, como  $\mathbf{y} = U^T \mathbf{x}$ , entonces

$$\mathbf{x} = (U^T)^{-1} \mathbf{e}_1 = U \mathbf{e}_1 = \mathbf{u}_1.$$

De modo que el cociente de Rayleigh alcanza su máximo en  $\mathbf{x}=\mathbf{e}_1$ , el autovector asociado al mayor autovalor de A.  $\square$ 

### Proyección PCA

Caso general: Proyectar a un subespacio *r*-dimensional.

Buscamos direcciones ortogonales  $\{\ell_i\}_{i=1}^r$  que generan el supespacio de proyección.

$$\max_{||\ell_i||=1} Var(\ell_i^T X) = \max_{\ell_i \neq 0} \frac{\ell_i^T Cov(X)\ell_i}{\ell_i^T \ell_i}, \quad \text{sujeto a } \ell_i \perp \ell_1, \ldots, \ell_{i-1}, \ i = 2, 3, \ldots, r.$$

<u>Solución</u>:  $\{\ell_i\}$  son los autovectores asociados a los primeros r autovectores de Cov(X).

<u>Prueba</u>: El caso i = 1 está resuelto, la proyección se maximiza con el autovector  $\mathbf{u}_1$ , la primer columna de U en la descomposición SVD de Cov(X).

#### Proyección PCA

Sea A = Cov(X). Ilustramos ahora como proyectar en la segunda dirección. Para ello, consideramos el espacio ortogonal a  $\langle \mathbf{u}_1 \rangle$ , esto es, borramos la información de la matriz A en la dirección de  $\mathbf{u}_1$ :

$$\mathbf{A}_2 = \mathbf{A} - \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T = \sum_{i=1}^d \lambda_i \mathbf{u}_i \mathbf{u}_i^T - \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T = \sum_{i=2}^d \lambda_i \mathbf{u}_i \mathbf{u}_i^T.$$

Observe que  $A_2 \in \mathbb{R}^{d \times d}$  es una matriz d-dimensional, pero con ceros en toda su primera fila y columna (en la base  $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_d$ . Luego, podemos considerarla como una matriz d-1-dimensional. La información en el resto de dimensiones no ha cambiado, esto es, los autovalores y autovectores de  $A_2$  son, respectivamente  $\lambda_2 > \ldots > \lambda_d$ , y  $\mathbf{u}_2, \ldots, \mathbf{u}_d$ .

### Proyección PCA

De ahí, resolver el problema

$$\max_{\ell_2 \neq 0} \frac{\ell_2^T A \ell_2}{\ell_2^T \ell_2}, \quad \text{sujeto a } \ell_2 \perp \boldsymbol{u_1},$$

se reduce a

$$\max_{\ell_2 \neq 0} \frac{\ell_2^\mathsf{T} \mathsf{A}_2 \ell_2}{\ell_2^\mathsf{T} \ell_2}.$$

Ya vimos que la solución de este cociente de Rayleigh es dada por  $\mathbf{u}_2$ , el autovector asociado al mayor autovalor  $\lambda_2$  de  $A_2$ .

Este mismo proceso se generaliza al resto de dimensiones  $\ell_3,\ldots,\ell_r$ . Esto termina la prueba de la descomposición PCA.  $\Box$ 

# Aproximaciones de bajo rango

#### Teorema (Eckart-Young)

Sea  $A \in \mathbb{R}^{n \times d}$ ,  $n \geq d$ , una matriz cuya descomposición SVD está dada por

$$A = USV^T = \sum_{i=1}^d \sigma_i \mathbf{u}_i \mathbf{v}_i^T.$$

Entonces, la matriz  $\widehat{A}_r$  de rango r,  $1 \le r \le d$ , que mejor aproxima A en el sentido de minimizar  $\min_{\substack{rank \ \widehat{A}_r < r}} ||A - \widehat{A}_r||_F^2$ 

se obtiene de truncar la descomposición en valores dingulares de A:

$$\widehat{\mathbf{A}}_r = \mathbf{U}_r \mathbf{S}_r \mathbf{V}_r^\mathsf{T} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^\mathsf{T},$$

# Aproximaciones de bajo rango

# Teorema (Eckart-Young) donde

$$U_r = [\mathbf{u_1} \ \mathbf{u_2} \ \dots \ \mathbf{u_r}], \ S_r = diag(\sigma_1, \sigma_2 \dots, \sigma_r), \ V_r = [\mathbf{v_1} \ \mathbf{v_2} \ \dots \ \mathbf{v_r}].$$

En ese caso, el error de aproximación está dado por

$$||A - \widehat{A_r}||_F^2 = \sum_{i=r+1}^d \lambda_i,$$

0

$$||\mathbf{A} - \widehat{\mathbf{A}_r}||_2^2 = \lambda_{r+1}.$$

# Aproximaciones de bajo rango

#### Obs!

- Las direcciones  $\mathbf{u}_i$  se llaman las **componentes principales** de  $\mathbb{X}$ .
- La descomposición SVD proporciona un mecanismo para proyectar los datos al "mejor" subespacio de dimensión  $r \leq d$ . Dicha proyección se obtiene haciendo

$$X_{proj} = X V_r^T$$
.

- Los autovalores  $\lambda_i$  de  $\mathbb{X}^T\mathbb{X}$  nos proporcionan un mecanismo para medir el error, vía  $||A \widehat{A_r}||_F^2 = \sum_{i=r+1}^d \lambda_i$ .
- El cociente  $\frac{\sum_{i=1}^{r} \lambda_i}{\sum_{i=1}^{d} \lambda_i}$ ,  $r=1,2,\ldots,d$ , se interpreta como el porcentaje de variabilidad de los datos  $\mathbb{X}$  que es explicada por las primeras r componentes principales.

Compresión de imágenes usando PCA.



Original r = 1 r = 2 r = 4 r = 8 r = 16 r = 32

r = 64

Imagen Original (256  $\times$  256), aproximaciones con rango = 1, 2, 4, 8, 16, 32, 64.







En PCA la estructura de los datos se capta solamente a través de las matrices Cov(X) o Corr(X).





Dos veces misma correlación. =(

#### Obs.

- Cuidado con desviaciones fuertes de normalidad.
- Lo ideal es investigar la normalidad de los datos en la práctica, al menos ver si escala es continua, distribución unimodal, simétrica, ...

# Contraejemplos



