Package 'RemixAutoML'

May 25, 2021

Title Remix Automated Machine Learning

Version 0.5.3

Date 2021-05-20

Maintainer Adrian Antico <adrianantico@gmail.com>

Description R package for the automation of machine learning, forecasting, feature engineering, model evaluation, model interpretation, data generation, and recommenders. Built using data.table for all tabular data-related tasks.

License MPL-2.0 | file LICENSE

URL https://github.com/AdrianAntico/RemixAutoML

BugReports https://github.com/AdrianAntico/RemixAutoML/issues

Depends R (>= 3.5.0)

Imports arules, bit64, catboost, combinat, data.table, doParallel, e1071, fBasics, foreach, forecast, ggplot2, grid, h2o, itertools, lubridate, methods,
 MLmetrics, nortest, parallel, pROC, RColorBrewer, recommenderlab,
 Rfast, scatterplot3d, stats, stringr, timeDate, tsoutliers, xgboost

Suggests knitr, rmarkdown, fpp, gridExtra

VignetteBuilder knitr

Additional_repositories https://github.com/catboost/catboost/tree/master/catboost/R-package

Contact Adrian Antico

Encoding UTF-8

Language en-US

LazyData true

NeedsCompilation no

RoxygenNote 7.1.1

SystemRequirements Java (>= 7.0)

Author Adrian Antico [aut, cre], Douglas Pestana [ctb]

ByteCompile TRUE

2 R topics documented:

R topics documented:

RemixAutoML-package	4
AutoArfima	
AutoBanditNNet	
AutoBanditSarima	
AutoCatBoostCARMA	
AutoCatBoostClassifier	
AutoCatBoostHurdleCARMA	
AutoCatBoostHurdleModel	
AutoCatBoostMultiClass	37
AutoCatBoostRegression	43
AutoCatBoostScoring	
AutoCatBoostVectorCARMA	
AutoClustering	60
AutoClusteringScoring	62
AutoDataDictionaries	64
AutoDataPartition	65
AutoDiffLagN	
AutoETS	68
AutoH2OCARMA	70
AutoH2oDRFClassifier	78
AutoH2oDRFHurdleModel	82
AutoH2oDRFMultiClass	85
AutoH2oDRFRegression	89
AutoH2oGAMClassifier	93
AutoH2oGAMMultiClass	97
AutoH2oGAMRegression	101
AutoH2oGBMClassifier	106
AutoH2oGBMHurdleModel	110
AutoH2oGBMMultiClass	113
AutoH2oGBMRegression	117
AutoH2oGLMClassifier	121
AutoH2oGLMMultiClass	125
AutoH2oGLMRegression	130
AutoH2oMLClassifier	134
AutoH2oMLMultiClass	137
AutoH2oMLRegression	140
AutoH2OMLScoring	143
AutoHierarchicalFourier	145
AutoHurdleScoring	146
AutoInteraction	148
AutoLagRollStats	151
AutoLagRollStatsScoring	154
AutoMarketBasketModel	
AutoNLS	159
AutoRecomDataCreate	161
AutoRecommender	
AutoRecommenderScoring	
AutoShapeShap	
AutoTBATS	
AutoTransformationCreate	

Index

261

AutoTransformationScore
AutoTS
AutoWord2VecModeler
AutoWord2VecScoring
AutoWordFreq
AutoXGBoostCARMA
AutoXGBoostClassifier
AutoXGBoostHurdleModel
AutoXGBoostMultiClass
AutoXGBoostRegression
AutoXGBoostScoring
Bisection
CategoricalEncoding
ChartTheme
CLForecast
CLTrainer
CreateCalendarVariables
CreateHolidayVariables
CumGainsChart
DummifyDT
EvalPlot
FakeDataGenerator
GenTSAnomVars
H2OAutoencoder
H2OAutoencoderScoring
H2OIsolationForest
H2OIsolationForestScoring
InsertSortedValue
ModelDataPrep
multiplot
ParDepCalPlots
PlotGUI
PrintToPDF
RedYellowGreen
ResidualOutliers
ResidualPlots
ROCPlot
ScatterCopula
ShapPlot
SingleRowShapeShap
SQL_ClearTable
SQL_DropTable
SQL_Query
SQL_Query_Push
SQL_SaveTable
SQL_Server_DBConnection
threshOptim
TimeSeriesDataPrepare
TimeSeriesFill

4 AutoArfima

RemixAutoML-package

Automated Machine Learning Remixed

Description

Automated Machine Learning Remixed for real-world use-cases. The package utilizes data.table under the hood for all data wrangling like operations so it's super fast and memory efficient. All ML methods are available in R or Python. The forecasting functions are unique and state of the art. There are feature engineering functions in this package that you cannot find anywhere else.

Details

See the github README for details and examples www.github.com/AdrianAntico/RemixAutoML

Author(s)

Adrian Antico, adrianantico@gmail.com, Douglas Pestana

AutoArfima

AutoArfima

Description

AutoArfima is a multi-armed bandit model testing framework for AR and SAR NNets. Randomized probability matching is the underlying bandit algorithm. Model evaluation is done by blending the training error and the validation error from testing the model on out of sample data. The bandit algorithm compares the performance of the current build against the previous builds which starts with the classic nnetar model from the forecast package. Depending on how many lags, seasonal lags, and fourier pairs you test the number of combinations of features to test begins to approach 10,000 different combinations of settings. The function tests out transformations, differencing, and variations of the lags, seasonal lags, and fourier pairs. The paramter space is broken up into various buckets that are increasing in sophistication. The bandit algorithm samples from those buckets and based on many rounds of testing it determines which buckets to generate samples from more frequently based on the models performance coming from that bucket. All of the models have performance data collected on them and a final rebuild is initiated when a winner is found. The rebuild process begins by retraining the model with the settings that produced the best performance. If the model fails to build, for whatever reason, the next best buildable model is rebuilt.

Usage

```
AutoArfima(
  data,
  FilePath = NULL,
  TargetVariableName,
  DateColumnName,
  TimeAggLevel = "week",
  EvaluationMetric = "MAE",
  NumHoldOutPeriods = 5L,
  NumFCPeriods = 5L,
```

AutoArfima 5

```
MaxLags = 5L,
MaxMovingAverages = 5L,
TrainWeighting = 0.5,
MaxConsecutiveFails = 12L,
MaxNumberModels = 100L,
MaxRunTimeMinutes = 10L,
NumberCores = max(1L, min(4L, parallel::detectCores() - 2L))
)
```

Arguments

data Source data.table

FilePath NULL to return nothing. Provide a file path to save the model and xregs if

available

TargetVariableName

Name of your time series target variable

DateColumnName Name of your date column

TimeAggLevel Choose from "year", "quarter", "month", "week", "day", "hour"

EvaluationMetric

Choose from MAE, MSE, and MAPE

NumHoldOutPeriods

Number of time periods to use in the out of sample testing

NumFCPeriods Number of periods to forecast

MaxLags A single value of the max number of lags to use in the internal auto.arima of

tbats

 ${\tt MaxMovingAverages}$

A single value of the max number of moving averages to use in the internal

auto.arima of arfima

TrainWeighting Model ranking is based on a weighted average of training metrics and out of

sample metrics. Supply the weight of the training metrics, such as $0.50\ \text{for}\ 50$

percent.

MaxConsecutiveFails

When a new best model is found MaxConsecutiveFails resets to zero. Indicated the number of model attemps without a new winner before terminating the pro-

cedure.

MaxNumberModels

Indicate the maximum number of models to test.

MaxRunTimeMinutes

Indicate the maximum number of minutes to wait for a result.

NumberCores Default max(1L, min(4L, parallel::detectCores()-2L))

Author(s)

Adrian Antico

See Also

```
Other Automated Time Series: AutoBanditNNet(), AutoBanditSarima(), AutoETS(), AutoTBATS(), AutoTS()
```

6 AutoBanditNNet

Examples

```
## Not run:
# Create fake data
data <- RemixAutoML::FakeDataGenerator(TimeSeries = TRUE, TimeSeriesTimeAgg = "days")</pre>
Output <- RemixAutoML::AutoArfima(
  data,
  FilePath = NULL,
  TargetVariableName = "Weekly_Sales",
  DateColumnName = "Date",
  TimeAggLevel = "weeks",
  EvaluationMetric = "MAE",
  NumHoldOutPeriods = 5L,
  NumFCPeriods = 5L,
  MaxLags = 5L,
  MaxMovingAverages = 5L,
  TrainWeighting = 0.50,
  MaxConsecutiveFails = 12L,
  MaxNumberModels = 100L,
  MaxRunTimeMinutes = 10L,
  NumberCores = max(1L, min(4L, parallel::detectCores()-2L)))
# Output
Output$ForecastPlot
Output$Forecast
Output$PerformanceGrid
## End(Not run)
```

AutoBanditNNet

AutoBanditNNet

Description

AutoBanditNNet is a multi-armed bandit model testing framework for AR and SAR NNets. Randomized probability matching is the underlying bandit algorithm. Model evaluation is done by blending the training error and the validation error from testing the model on out of sample data. The bandit algorithm compares the performance of the current build against the previous builds which starts with the classic nnetar model from the forecast package. Depending on how many lags, seasonal lags, and fourier pairs you test the number of combinations of features to test begins to approach 10,000 different combinations of settings. The function tests out transformations, differencing, and variations of the lags, seasonal lags, and fourier pairs. The paramter space is broken up into various buckets that are increasing in sophistication. The bandit algorithm samples from those buckets and based on many rounds of testing it determines which buckets to generate samples from more frequently based on the models performance coming from that bucket. All of the models have performance data collected on them and a final rebuild is initiated when a winner is found. The rebuild process begins by retraining the model with the settings that produced the best performance. If the model fails to build, for whatever reason, the next best buildable model is rebuilt.

Usage

AutoBanditNNet(

AutoBanditNNet 7

```
data,
 FilePath = NULL,
  TargetVariableName,
 DateColumnName,
  TimeAggLevel = "week",
  EvaluationMetric = "MAE",
 NumHoldOutPeriods = 5L,
 NumFCPeriods = 5L,
 MaxLags = 5L,
 MaxSeasonalLags = 1L,
 MaxFourierPairs = 2L,
  TrainWeighting = 0.5,
 MaxConsecutiveFails = 12L,
 MaxNumberModels = 100L,
 MaxRunTimeMinutes = 10L,
 NumberCores = max(1L, min(4L, parallel::detectCores() - 2L)),
 Debug = FALSE
)
```

Arguments

data Source data.table

FilePath NULL to return nothing. Provide a file path to save the model and xregs if

available

TargetVariableName

Name of your time series target variable

DateColumnName Name of your date column

TimeAggLevel Choose from "year", "quarter", "month", "week", "day", "hour"

EvaluationMetric

Choose from MAE, MSE, and MAPE

NumHoldOutPeriods

Number of time periods to use in the out of sample testing

NumFCPeriods Number of periods to forecast

MaxLags A single value of the max number of lags to test

 ${\tt MaxSeasonalLags}$

A single value of the max number of seasonal lags to test

MaxFourierPairs

A single value of the max number of fourier pairs to test

TrainWeighting Model ranking is based on a weighted average of training metrics and out of

sample metrics. Supply the weight of the training metrics, such as 0.50 for 50

percent.

MaxConsecutiveFails

When a new best model is found MaxConsecutiveFails resets to zero. Indicated the number of model attemps without a new winner before terminating the procedure.

MaxNumberModels

Indicate the maximum number of models to test.

MaxRunTimeMinutes

Indicate the maximum number of minutes to wait for a result

NumberCores Default max(1L, min(4L, parallel::detectCores()-2L))

Debug Set to TRUE to print some steps

8 AutoBanditSarima

Author(s)

Adrian Antico

See Also

Other Automated Time Series: AutoArfima(), AutoBanditSarima(), AutoETS(), AutoTBATS(), AutoTS()

Examples

```
## Not run:
# Create fake data
data <- RemixAutoML::FakeDataGenerator(TimeSeries = TRUE, TimeSeriesTimeAgg = "days")</pre>
# Build models
Output <- RemixAutoML::AutoBanditNNet(</pre>
  data = data,
  FilePath = NULL,
  TargetVariableName = "Weekly_Sales",
  DateColumnName = "Date",
  TimeAggLevel = "day",
  EvaluationMetric = "MAE",
  NumHoldOutPeriods = 5L,
  NumFCPeriods = 5L.
  MaxLags = 5L,
  MaxSeasonalLags = 1L,
  MaxFourierPairs = 2L,
  TrainWeighting = 0.50,
  MaxConsecutiveFails = 12L,
  MaxNumberModels = 100L,
  MaxRunTimeMinutes = 10L,
  NumberCores = max(1L, min(4L, parallel::detectCores()-2L)),
  Debug = FALSE)
# Output
Output$ForecastPlot
Output$Forecast
Output$PerformanceGrid
## End(Not run)
```

AutoBanditSarima

AutoBanditSarima

Description

AutoBanditSarima is a multi-armed bandit model testing framework for SARIMA. Randomized probability matching is the underlying bandit algorithm. Model evaluation is done by blending the training error and the validation error from testing the model on out of sample data. The bandit algorithm compares the performance of the current build against the previous builds which starts with the classic auto.arima from the forecast package. Depending on how many lags, moving averages, seasonal lags and moving averages you test the number of combinations of features to test begins to approach 100,000 different combinations of settings. The function tests out transformations, differencing, and variations of the lags and moving averages. The paramter space is broken

AutoBanditSarima 9

up into various buckets that are increasing in sophistication. The bandit algorithm samples from those buckets and based on many rounds of testing it determines which buckets to generate samples from more frequently based on the models performance coming from that bucket. All of the models have performance data collected on them and a final rebuild is initiated when a winner is found. The rebuild process begins by retraining the model with the settings that produced the best performance. If the model fails to build, for whatever reason, the next best buildable model is rebuilt.

Usage

```
AutoBanditSarima(
  data,
 FilePath = NULL,
 ByDataType = TRUE,
  TargetVariableName,
 DateColumnName,
  TimeAggLevel = "week",
  EvaluationMetric = "MAE",
 NumHoldOutPeriods = 5L,
 NumFCPeriods = 5L,
 MaxLags = 5L,
 MaxSeasonalLags = 0L,
 MaxMovingAverages = 5L,
 MaxSeasonalMovingAverages = 0L,
 MaxFourierPairs = 2L,
 TrainWeighting = 0.5,
 MaxConsecutiveFails = 25L,
 MaxNumberModels = 100L,
 MaxRunTimeMinutes = 10L,
 NumberCores = max(1L, min(4L, parallel::detectCores() - 2L)),
 DebugMode = FALSE
)
```

Arguments

data Source data.table

FilePath NULL to return nothing. Provide a file path to save the model and xregs if

available

ByDataType TRUE returns the best model from the four base sets of possible models. FALSE

returns the best model.

TargetVariableName

Name of your time series target variable

DateColumnName Name of your date column

TimeAggLevel Choose from "year", "quarter", "month", "week", "day", "hour"

EvaluationMetric

Choose from MAE, MSE, and MAPE

NumHoldOutPeriods

Number of time periods to use in the out of sample testing

NumFCPeriods Number of periods to forecast

MaxLags A single value of the max number of lags to test

MaxSeasonalLags

A single value of the max number of seasonal lags to test

10 AutoBanditSarima

MaxMovingAverages

A single value of the max number of moving averages to test

MaxSeasonalMovingAverages

A single value of the max number of seasonal moving averages to test

MaxFourierPairs

A single value of the max number of fourier pairs to test

TrainWeighting Model ranking is based on a weighted average of training metrics and out of sample metrics. Supply the weight of the training metrics, such as 0.50 for 50 percent.

MaxConsecutiveFails

When a new best model is found MaxConsecutiveFails resets to zero. Indicated the number of model attemps without a new winner before terminating the procedure.

MaxNumberModels

Indicate the maximum number of models to test.

MaxRunTimeMinutes

Indicate the maximum number of minutes to wait for a result.

NumberCores Default max(1L, min(4L, parallel::detectCores()-2L))

DebugMode Set to TRUE to get print outs of particular steps helpful in tracing errors

Value

data.table containing historical values and the forecast values along with the grid tuning results in full detail, as a second data.table

Author(s)

Adrian Antico

See Also

```
Other Automated Time Series: AutoArfima(), AutoBanditNNet(), AutoETS(), AutoTBATS(), AutoTS()
```

Examples

```
## Not run:
# Create fake data
data <- RemixAutoML::FakeDataGenerator(TimeSeries = TRUE, TimeSeriesTimeAgg = "days")</pre>
# Build models
Output <- RemixAutoML::AutoBanditSarima(</pre>
  data = data,
  FilePath = NULL,
  ByDataType = FALSE,
  TargetVariableName = "Weekly_Sales",
  DateColumnName = "Date",
  TimeAggLevel = "1min",
  EvaluationMetric = "MAE",
  NumHoldOutPeriods = 12L,
  NumFCPeriods = 16L,
  MaxLags = 10L
  MaxSeasonalLags = 0L,
```

```
MaxMovingAverages = 3L,
MaxSeasonalMovingAverages = 0L,
MaxFourierPairs = 2L,
TrainWeighting = 0.50,
MaxConsecutiveFails = 50L,
MaxNumberModels = 100L,
MaxRunTimeMinutes = 10L,
NumberCores Default max(1L, min(4L, parallel::detectCores()-2L)),
DebugMode = FALSE)

# Output
Output$ForecastPlot
Output$Forecast
Output$PerformanceGrid
Output$PerformanceGrid
Output$ErrorLagMA2x2
## End(Not run)
```

AutoCatBoostCARMA

AutoCatBoostCARMA

Description

AutoCatBoostCARMA Mutlivariate Forecasting with calendar variables, Holiday counts, holiday lags, holiday moving averages, differencing, transformations, interaction-based categorical encoding using target variable and features to generate various time-based aggregated lags, moving averages, moving standard deviations, moving skewness, moving kurtosis, moving quantiles, parallelized interaction-based fourier pairs by grouping variables, and Trend Variables.

Usage

```
AutoCatBoostCARMA(
  data,
  TimeWeights = NULL,
  NonNegativePred = FALSE,
  RoundPreds = FALSE,
  TrainOnFull = FALSE,
  TargetColumnName = "Target",
  DateColumnName = "DateTime",
  HierarchGroups = NULL,
  GroupVariables = NULL,
  FC_Periods = 30,
  TimeUnit = "week",
  TimeGroups = c("weeks", "months"),
  PDFOutputPath = NULL,
  SaveDataPath = NULL,
  NumOfParDepPlots = 10L,
  TargetTransformation = FALSE,
  Methods = c("BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt", "Asin", "Logit"),
  AnomalyDetection = NULL,
  XREGS = NULL,
  Lags = c(1L:5L),
```

```
MA_Periods = c(2L:5L),
SD Periods = NULL.
Skew_Periods = NULL,
Kurt_Periods = NULL,
Quantile_Periods = NULL,
Quantiles_Selected = c("q5", "q95"),
Difference = TRUE,
FourierTerms = 6L,
CalendarVariables = c("minute", "hour", "wday", "mday", "yday", "week", "isoweek",
  "month", "quarter", "year"),
HolidayVariable = c("USPublicHolidays", "EasterGroup", "ChristmasGroup",
  "OtherEcclesticalFeasts"),
HolidayLookback = NULL,
HolidayLags = 1L,
HolidayMovingAverages = 1L:2L,
TimeTrendVariable = FALSE,
ZeroPadSeries = NULL,
DataTruncate = FALSE,
SplitRatios = c(0.7, 0.2, 0.1),
PartitionType = "timeseries",
TaskType = "GPU",
NumGPU = 1,
DebugMode = FALSE,
Timer = TRUE,
EvalMetric = "RMSE",
EvalMetricValue = 1.5,
LossFunction = "RMSE",
LossFunctionValue = 1.5,
GridTune = FALSE,
PassInGrid = NULL,
ModelCount = 100,
MaxRunsWithoutNewWinner = 50,
MaxRunMinutes = 24L * 60L,
Langevin = FALSE,
DiffusionTemperature = 10000,
NTrees = 1000,
L2_Leaf_Reg = NULL,
LearningRate = NULL,
RandomStrength = 1,
BorderCount = 254,
Depth = 6,
RSM = 1,
BootStrapType = "Bayesian",
GrowPolicy = "SymmetricTree",
ModelSizeReg = 0.5,
FeatureBorderType = "GreedyLogSum",
SamplingUnit = "Group",
SubSample = NULL,
ScoreFunction = "Cosine",
MinDataInLeaf = 1
```

Arguments

data Supply your full series data set here

TimeWeights Supply a value that will be multiplied by he time trend value

NonNegativePred

TRUE or FALSE

RoundPreds Rounding predictions to an integer value. TRUE or FALSE. Defaults to FALSE

TrainOnFull Set to TRUE to train on full data

TargetColumnName

List the column name of your target variables column. E.g. "Target"

DateColumnName List the column name of your date column. E.g. "DateTime"

HierarchGroups Vector of hierarchy categorical columns.

GroupVariables Defaults to NULL. Use NULL when you have a single series. Add in Group-

Variables when you have a series for every level of a group or multiple groups.

FC_Periods Set the number of periods you want to have forecasts for. E.g. 52 for weekly

data to forecast a year ahead

TimeUnit List the time unit your data is aggregated by. E.g. "1min", "5min", "10min",

"15min", "30min", "hour", "day", "week", "month", "quarter", "year".

TimeGroups Select time aggregations for adding various time aggregated GDL features.

PDFOutputPath NULL or a path file to output PDFs to a specified folder

SaveDataPath NULL Or supply a path. Data saved will be called 'ModelID'_data.csv

NumOfParDepPlots

Supply a number for the number of partial dependence plots you want returned

 ${\tt TargetTransformation}$

TRUE or FALSE. If TRUE, select the methods in the Methods arg you want

tested. The best one will be applied.

Methods Choose from "YeoJohnson", "BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt",

"Asin", or "Logit". If more than one is selected, the one with the best normalization pearson statistic will be used. Identity is automatically selected and

compared.

AnomalyDetection

NULL for not using the service. Other, provide a list, e.g. AnomalyDetection =

list("tstat_high" = 4, "tstat_low" = -4)

XREGS Additional data to use for model development and forecasting. Data needs to be

a complete series which means both the historical and forward looking values

over the specified forecast window needs to be supplied.

Lags Select the periods for all lag variables you want to create. E.g. c(1:5,52) or

list("day" = c(1:10), "weeks" = c(1:4))

MA_Periods Select the periods for all moving average variables you want to create. E.g.

c(1:5,52) or list("day" = c(2:10), "weeks" = c(2:4))

SD_Periods Select the periods for all moving standard deviation variables you want to create.

E.g. c(1.5,52) or list("day" = c(2.10), "weeks" = c(2.4))

Skew_Periods Select the periods for all moving skewness variables you want to create. E.g.

c(1:5,52) or list("day" = c(2:10), "weeks" = c(2:4))

Kurt_Periods Select the periods for all moving kurtosis variables you want to create. E.g.

c(1:5,52) or list("day" = c(2:10), "weeks" = c(2:4))

Quantile_Periods

Select the periods for all moving quantiles variables you want to create. E.g. c(1.5,52) or list("day" = c(2.10), "weeks" = c(2.4))

Quantiles_Selected

Select from the following "q5", "q10", "q15", "q20", "q25", "q30", "q35", "q40", "q45", "q50", "q55", "q60", "q65", "q70", "q75", "q80", "q85", "q90", "q95"

Difference Puts the I in ARIMA for single series and grouped series.

FourierTerms Set to the max number of pairs. E.g. 2 means to generate two pairs for by each

group level and interations if hierarchy is enabled.

CalendarVariables

NULL, or select from "minute", "hour", "wday", "mday", "yday", "week", "isoweek", "month", "quarter", "year"

HolidayVariable

NULL, or select from "USPublicHolidays", "EasterGroup", "ChristmasGroup", "OtherEcclesticalFeasts"

HolidayLookback

Number of days in range to compute number of holidays from a given date in the data. If NULL, the number of days are computed for you.

HolidayLags Number of lags to build off of the holiday count variable.

HolidayMovingAverages

Number of moving averages to build off of the holiday count variable.

TimeTrendVariable

DataTruncate

Set to TRUE to have a time trend variable added to the model. Time trend is numeric variable indicating the numeric value of each record in the time series (by group). Time trend starts at 1 for the earliest point in time and increments by one for each success time point.

ZeroPadSeries NULL to do nothing. Otherwise, set to "maxmax", "minmax", "minmin". See TimeSeriesFill for explanations of each type

Set to TRUE to remove records with missing values from the lags and moving

average features created

SplitRatios E.g c(0.7,0.2,0.1) for train, validation, and test sets

PartitionType Select "random" for random data partitioning "timeseries" for partitioning by

time frames

TaskType Default is "GPU" but you can also set it to "CPU"

NumGPU Defaults to 1. If CPU is set this argument will be ignored.

DebugMode Defaults to FALSE. Set to TRUE to get a print statement of each high level

comment in function

Timer Set to FALSE to turn off the updating print statements for progress

EvalMetric Select from "RMSE", "MAE", "MAPE", "Poisson", "Quantile", "LogLinQuan-

tile", "Lq", "NumErrors", "SMAPE", "R2", "MSLE", "MedianAbsoluteError"

EvalMetricValue

Used when EvalMetric accepts an argument. See AutoCatBoostRegression

LossFunction Used in model training for model fitting. Select from 'RMSE', 'MAE', 'Quan-

tile', 'LogLinQuantile', 'MAPE', 'Poisson', 'PairLogitPairwise', 'Tweedie', 'QueryRMSE'

LossFunctionValue

Used when LossFunction accepts an argument. See AutoCatBoostRegression

GridTune Set to TRUE to run a grid tune

PassInGrid Defaults to NULL

ModelCount Set the number of models to try in the grid tune

MaxRunsWithoutNewWinner

Default is 50

MaxRunMinutes Default is 60*60

Langevin Enables the Stochastic Gradient Langevin Boosting mode. If TRUE and Task-

Type == "GPU" then TaskType will be converted to "CPU"

DiffusionTemperature

Default is 10000

NTrees Select the number of trees you want to have built to train the model

L2_Leaf_Reg 12 reg parameter

LearningRate Defaults to NULL. Catboost will dynamically define this if L2_Leaf_Reg is

NULL and RMSE is chosen (otherwise catboost will default it to 0.03). Then you can pull it out of the model object and pass it back in should you wish.

RandomStrength Default is 1

BorderCount Default is 254

Depth of catboost model

RSM CPU only. If TaskType is GPU then RSM will not be used

BootStrapType If NULL, then if TaskType is GPU then Bayesian will be used. If CPU then

MVS will be used. If MVS is selected when TaskType is GPU, then BootStrap-

Type will be switched to Bayesian

GrowPolicy Default is SymmetricTree. Others include Lossguide and Depthwise

ModelSizeReg Defaults to 0.5. Set to 0 to allow for bigger models. This is for models with high

cardinality categorical features. Valuues greater than 0 will shrink the model

and quality will decline but models won't be huge.

FeatureBorderType

Defaults to "GreedyLogSum". Other options include: Median, Uniform, Uni-

form And Quantiles, Max Log Sum, Min Entropy

SamplingUnit Default is Group. Other option is Object. if GPU is selected, this will be turned

off unless the loss_function is YetiRankPairWise

SubSample Can use if BootStrapType is neither Bayesian nor No. Pass NULL to use Cat-

boost default. Used for bagging.

ScoreFunction Default is Cosine. CPU options are Cosine and L2. GPU options are Cosine,

L2, NewtonL2, and NewtomCosine (not available for Lossguide)

MinDataInLeaf Defaults to 1. Used if GrowPolicy is not SymmetricTree

Value

See examples

Author(s)

Adrian Antico

See Also

Other Automated Panel Data Forecasting: AutoCatBoostHurdleCARMA(), AutoCatBoostVectorCARMA(), AutoH2OCARMA(), AutoXGBoostCARMA()

Examples

```
## Not run:
# Set up your output file path for saving results as a .csv
Path <- "C:/YourPathHere"
# Run on GPU or CPU (some options in the grid tuning force usage of CPU for some runs)
TaskType = "GPU"
# Define number of CPU threads to allow data.table to utilize
data.table::setDTthreads(percent = max(1L, parallel::detectCores()-2L))
# Load data
data <- data <- data.table::fread("https://www.dropbox.com/s/2str3ek4f4cheqi/walmart_train.csv?dl=1")</pre>
# Ensure series have no missing dates (also remove series with more than 25% missing values)
data <- RemixAutoML::TimeSeriesFill(</pre>
  data.
  DateColumnName = "Date",
  GroupVariables = c("Store", "Dept"),
  TimeUnit = "weeks",
  FillType = "maxmax"
  MaxMissingPercent = 0.25,
  SimpleImpute = TRUE)
# Set negative numbers to 0
data <- data[, Weekly_Sales := data.table::fifelse(Weekly_Sales < 0, 0, Weekly_Sales)]</pre>
# Remove IsHoliday column
data[, IsHoliday := NULL]
# Create xregs (this is the include the categorical variables instead of utilizing only the interaction of them)
xregs <- data[, .SD, .SDcols = c("Date", "Store", "Dept")]</pre>
# Change data types
data[, ":=" (Store = as.character(Store), Dept = as.character(Dept))]
xregs[, ":=" (Store = as.character(Store), Dept = as.character(Dept))]
# Subset data so we have an out of time sample
data1 <- data.table::copy(data[, ID := 1L:.N, by = c("Store", "Dept")][ID <= 125L][, ID := NULL])</pre>
data[, ID := NULL]
# Define values for SplitRatios and FCWindow Args
N1 \leftarrow data1[, .N, by = c("Store", "Dept")][1L, N]
N2 \leftarrow xregs[, .N, by = c("Store", "Dept")][1L, N]
# Setup Grid Tuning & Feature Tuning data.table using a cross join of vectors
Tuning <- data.table::CJ(</pre>
  TimeWeights = c("None", 0.999),
  MaxTimeGroups = c("weeks","months"),
  TargetTransformation = c("TRUE", "FALSE"),
  Difference = c("TRUE", "FALSE"),
  HoldoutTrain = c(6,18),
  Langevin = c("TRUE", "FALSE"),
  NTrees = c(2500, 5000),
  Depth = c(6,9),
```

```
RandomStrength = c(0.75,1),
  L2\_Leaf\_Reg = c(3.0, 4.0),
  RSM = c(0.75,"NULL"),
  GrowPolicy = c("SymmetricTree","Lossguide","Depthwise"),
  BootStrapType = c("Bayesian","MVS","No"))
# Remove options that are not compatible with GPU (skip over this otherwise)
Tuning <- Tuning[Langevin == "TRUE" | (Langevin == "FALSE" & RSM == "NULL" & BootStrapType %in% c("Bayesian","No</pre>
# Randomize order of Tuning data.table
Tuning <- Tuning[order(runif(.N))]</pre>
# Load grid results and remove rows that have already been tested
if(file.exists(file.path(Path, "Walmart_CARMA_Metrics.csv"))) {
 Metrics <- data.table::fread(file.path(Path, "Walmart_CARMA_Metrics.csv"))</pre>
  temp <- data.table::rbindlist(list(Metrics,Tuning), fill = TRUE)</pre>
  temp <- unique(temp, by = c(4:(ncol(temp)-1)))
 Tuning <- temp[is.na(RunTime)][, .SD, .SDcols = names(Tuning)]</pre>
  rm(Metrics, temp)
}
# Define the total number of runs
TotalRuns <- Tuning[,.N]</pre>
# Kick off feature + grid tuning
for(Run in seq_len(TotalRuns)) {
  # Print run number
  for(zz in seq_len(100)) print(Run)
  # Use fresh data for each run
  xregs_new <- data.table::copy(xregs)</pre>
  data_new <- data.table::copy(data1)</pre>
  # Timer start
  StartTime <- Sys.time()</pre>
  # Run carma system
  CatBoostResults <- RemixAutoML::AutoCatBoostCARMA(</pre>
    # data args
    data = data_new,
  TimeWeights = if(Tuning[Run, TimeWeights] == "None") NULL else as.numeric(Tuning[Run, TimeWeights]),
    TargetColumnName = "Weekly_Sales",
    DateColumnName = "Date",
    HierarchGroups = NULL,
    GroupVariables = c("Store", "Dept"),
    TimeUnit = "weeks",
  TimeGroups = if(Tuning[Run, MaxTimeGroups] == "weeks") "weeks" else if(Tuning[Run, MaxTimeGroups] == "months")
    # Production args
    TrainOnFull = TRUE,
    SplitRatios = c(1 - Tuning[Run, HoldoutTrain] / N2, Tuning[Run, HoldoutTrain] / N2),
    PartitionType = "random",
    FC_Periods = N2-N1,
    TaskType = TaskType,
    NumGPU = 1,
```

```
Timer = TRUE,
  DebugMode = TRUE,
  # Target variable transformations
  TargetTransformation = as.logical(Tuning[Run, TargetTransformation]),
Methods = c("YeoJohnson", "BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt", "Asin", "Logit"),
  Difference = as.logical(Tuning[Run, Difference]),
  NonNegativePred = TRUE,
  RoundPreds = FALSE.
  # Calendar-related features
  CalendarVariables = c("week", "wom", "month", "quarter"),
  HolidayVariable = c("USPublicHolidays"),
  HolidayLookback = NULL,
  HolidayLags = c(1,2,3),
  HolidayMovingAverages = c(2,3),
  # Lags, moving averages, and other rolling stats
Lags = if(Tuning[Run, MaxTimeGroups] == "weeks") c(1,2,3,4,5,8,9,12,13,51,52,53) else if(Tuning[Run, MaxTimeGroups])
 MA\_Periods = if(Tuning[Run, MaxTimeGroups] == "weeks") \ c(2,3,4,5,8,9,12,13,51,52,53) \ else \ if(Tuning[Run, MaxTimeGroups]) \ else \ else
  SD_Periods = NULL,
  Skew_Periods = NULL,
  Kurt_Periods = NULL,
  Quantile_Periods = NULL,
  Quantiles_Selected = NULL,
  # Bonus features
  AnomalyDetection = NULL,
  XREGS = xregs_new,
  FourierTerms = 0,
  TimeTrendVariable = TRUE,
  ZeroPadSeries = NULL,
  DataTruncate = FALSE,
  # ML grid tuning args
  GridTune = FALSE,
  PassInGrid = NULL,
  ModelCount = 5,
  MaxRunsWithoutNewWinner = 50,
  MaxRunMinutes = 60*60.
  # ML evaluation output
  PDFOutputPath = NULL,
  SaveDataPath = NULL,
  NumOfParDepPlots = 0L,
  # ML loss functions
  EvalMetric = "RMSE",
  EvalMetricValue = 1,
  LossFunction = "RMSE".
  LossFunctionValue = 1,
  # ML tuning args
  NTrees = Tuning[Run, NTrees],
  Depth = Tuning[Run, Depth],
  L2_Leaf_Reg = Tuning[Run, L2_Leaf_Reg],
  LearningRate = 0.03,
```

```
Langevin = as.logical(Tuning[Run, Langevin]),
  DiffusionTemperature = 10000,
  RandomStrength = Tuning[Run, RandomStrength],
  BorderCount = 254,
  RSM = if(Tuning[Run, RSM] == "NULL") NULL else as.numeric(Tuning[Run, RSM]),
  GrowPolicy = Tuning[Run, GrowPolicy],
  BootStrapType = Tuning[Run, BootStrapType],
  ModelSizeReg = 0.5,
  FeatureBorderType = "GreedyLogSum".
  SamplingUnit = "Group",
  SubSample = NULL,
  ScoreFunction = "Cosine",
  MinDataInLeaf = 1)
# Timer End
EndTime <- Sys.time()</pre>
# Prepare data for evaluation
Results <- CatBoostResults$Forecast</pre>
data.table::setnames(Results, "Weekly_Sales", "bla")
Results <- merge(Results, data, by = c("Store", "Dept", "Date"), all = FALSE)
Results <- Results[is.na(bla)][, bla := NULL]</pre>
# Create totals and subtotals
Results <- data.table::groupingsets(</pre>
  x = Results,
  j = list(Predictions = sum(Predictions), Weekly_Sales = sum(Weekly_Sales)),
  by = c("Date", "Store", "Dept"),
  sets = list(c("Date", "Store", "Dept"), c("Store", "Dept"), "Store", "Dept", "Date"))
# Fill NAs with "Total" for totals and subtotals
for(cols in c("Store", "Dept")) Results[, eval(cols) := data.table::fifelse(is.na(get(cols)), "Total", get(cols)
# Add error measures
Results[, Weekly_MAE := abs(Weekly_Sales - Predictions)]
Results[, Weekly_MAPE := Weekly_MAE / Weekly_Sales]
# Weekly results
Weekly_MAPE <- Results[, list(Weekly_MAPE = mean(Weekly_MAPE)), by = list(Store,Dept)]</pre>
# Monthly results
temp <- data.table::copy(Results)</pre>
temp <- temp[, Date := lubridate::floor_date(Date, unit = "months")]</pre>
temp <- temp[, lapply(.SD, sum), by = c("Date","Store","Dept"), .SDcols = c("Predictions", "Weekly_Sales")]
temp[, Monthly_MAE := abs(Weekly_Sales - Predictions)]
temp[, Monthly_MAPE := Monthly_MAE / Weekly_Sales]
Monthly_MAPE <- temp[, list(Monthly_MAPE = mean(Monthly_MAPE)), by = list(Store,Dept)]</pre>
# Collect metrics for Total (feel free to switch to something else or no filter at all)
Metrics <- data.table::data.table(</pre>
  RunNumber = Run,
  Total_Weekly_MAPE = Weekly_MAPE[Store == "Total" & Dept == "Total", Weekly_MAPE],
  Total_Monthly_MAPE = Monthly_MAPE[Store == "Total" & Dept == "Total", Monthly_MAPE],
  RunTime = EndTime - StartTime)
# Append to file (not overwrite)
```

```
data.table::fwrite(Metrics, file = file.path(Path, "Walmart_CARMA_Metrics.csv"), append = TRUE)

# Remove objects (clear space before new runs)
  rm(CatBoostResults, Results, temp, Weekly_MAE, Weekly_MAPE, Monthly_MAE, Monthly_MAPE)

# Garbage collection because of GPU
  gc()
}
## End(Not run)
```

AutoCatBoostClassifier

Auto Cat Boost Classifier

Description

AutoCatBoostClassifier is an automated modeling function that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train, validation, and test sets (if not supplied). Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions (on test data), an ROC plot, evaluation plot, evaluation metrics, variable importance, partial dependence calibration plots, partial dependence calibration box plots, and column names used in model fitting. You can download the catboost package using devtools, via: devtools::install_github('catboost/catboost', subdir = 'catboost/R-package')

Usage

```
AutoCatBoostClassifier(
 OutputSelection = c("Importances", "EvalPlots", "EvalMetrics", "PDFs",
    "Score_TrainData"),
  data = NULL,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
 PrimaryDateColumn = NULL,
 WeightsColumnName = NULL,
  IDcols = NULL,
  TrainOnFull = FALSE,
  task_type = "GPU",
 NumGPUs = 1,
 ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  SaveInfoToPDF = FALSE,
 ModelID = "FirstModel",
 model_path = NULL,
 metadata_path = NULL,
 EvalMetric = "MCC",
 LossFunction = NULL,
  grid_eval_metric = "MCC",
```

```
ClassWeights = c(1, 1),
  CostMatrixWeights = c(1, 0, 0, 1),
 NumOfParDepPlots = 0L,
 PassInGrid = NULL,
 GridTune = FALSE,
 MaxModelsInGrid = 30L,
 MaxRunsWithoutNewWinner = 20L,
 MaxRunMinutes = 24L * 60L,
 BaselineComparison = "default",
 MetricPeriods = 10L,
  Trees = 50L,
 Depth = 6,
  LearningRate = NULL,
 L2\_Leaf\_Reg = 3,
 RandomStrength = 1,
 BorderCount = 128,
 RSM = NULL,
 BootStrapType = NULL,
 GrowPolicy = "SymmetricTree",
  langevin = FALSE,
 diffusion_temperature = 10000,
 model_size_reg = 0.5,
  feature_border_type = "GreedyLogSum",
  sampling_unit = "Object",
  subsample = NULL,
  score_function = "Cosine",
 min_data_in_leaf = 1,
 DebugMode = FALSE
)
```

Arguments

OutputSelection

You can select what type of output you want returned. Choose from c("Importances", "EvalPlots", "EvalMetrics", "PDFs", "Score_TrainData")

data

This is your data set for training and testing your model

ValidationData This is your holdout data set used in modeling either refine your hyperparameters. Catboost using both training and validation data in the training process so you should evaluate out of sample performance with this data set.

TestData

This is your holdout data set. Catboost using both training and validation data in the training process so you should evaluate out of sample performance with this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located, but not mixed types. Note that the target column needs to be a 0 | 1 numeric variable.

FeatureColNames

Either supply the feature column names OR the column number where the target is located, but not mixed types. Also, not zero-indexed.

PrimaryDateColumn

Supply a date or datetime column for catboost to utilize time as its basis for handling categorical features, instead of random shuffling

WeightsColumnName

Supply a column name for your weights column. Leave NULL otherwise

IDcols A vector of column names or column numbers to keep in your data but not

include in the modeling.

Set to TRUE to train on full data and skip over evaluation steps TrainOnFull task_type Set to "GPU" to utilize your GPU for training. Default is "CPU".

NumGPUs Numeric. If you have 4 GPUs supply 4 as a value.

ReturnModelObjects

Set to TRUE to output all modeling objects. E.g. plots and evaluation metrics

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

SaveInfoToPDF Set to TRUE to save modeling information to PDF. If model_path or meta-

data_path aren't defined then output will be saved to the working directory

ModelID A character string to name your model and output

model_path A character string of your path file to where you want your output saved

A character string of your path file to where you want your model evaluation metadata_path

output saved. If left NULL, all output will be saved to model_path.

EvalMetric This is the metric used inside catboost to measure performance on validation

data during a grid-tune. "AUC" is the default. 'Logloss', 'CrossEntropy', 'Precision', 'Recall', 'F1', 'BalancedAccuracy', 'BalancedErrorRate', 'MCC', 'Accuracy', 'CtrFactor', 'AUC', 'BrierScore', 'HingeLoss', 'HammingLoss', 'ZeroOneLoss', 'Kappa', 'WKappa', 'LogLikelihoodOfPrediction', 'TotalF1', 'Pair-Logit', 'PairLogitPairwise', 'PairAccuracy', 'QueryCrossEntropy', 'QuerySoft-Max', 'PFound', 'NDCG', 'AverageGain', 'PrecisionAt', 'RecallAt', 'MAP'

LossFunction Default is NULL. Select the loss function of choice. c('Logloss','CrossEntropy','Lq','PairLogit','Pair

grid_eval_metric

Case sensitive. I typically choose 'Utility' or 'MCC'. Choose from 'Utility', 'MCC', 'Acc', 'F1_Score', 'F2_Score', 'F0.5_Score', 'TPR', 'TNR', 'FNR',

'FPR', 'FDR', 'FOR', 'NPV', 'PPV', 'ThreatScore'

ClassWeights Supply a vector of weights for your target classes. E.g. c(0.25, 1) to weight your

0 class by 0.25 and your 1 class by 1.

CostMatrixWeights

A vector with 4 elements c(True Positive Cost, False Negative Cost, False Positive Cost, True Negative Cost). Default c(1,0,0,1)

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create. Calibration boxplots will only be created for numerical features (not dummy variables)

PassInGrid Defaults to NULL. Pass in a single row of grid from a previous output as a

data.table (they are collected as data.tables)

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

MaxModelsInGrid

Number of models to test from grid options.

MaxRunsWithoutNewWinner

A number

MaxRunMinutes In minutes

BaselineComparison

Set to either "default" or "best". Default is to compare each successive model build to the baseline model using max trees (from function args). Best makes the comparison to the current best model.

MetricPeriods Number of trees to build before evaluating intermediate metrics. Default is 10L

Trees Bandit grid partitioned. Supply a single value for non-grid tuning cases. Otherwise supply a vector for the trees numbers you went to test. For suppling grid

wise, supply a vector for the trees numbers you want to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(1000L,

10000L, 1000L)

Depth Bandit grid partitioned Number, or vector for depth to test. For running grid

tuning, a NULL value supplied will mean these values are tested seq(4L, 16L,

2L)

LearningRate Bandit grid partitioned. Supply a single value for non-grid tuning cases. Oth-

erwise, supply a vector for the LearningRate values to test. For running grid tuning, a NULL value supplied will mean these values are tested c(0.01,0.02,0.03,0.04)

L2_Leaf_Reg Random testing. Supply a single value for non-grid tuning cases. Otherwise,

supply a vector for the L2_Leaf_Reg values to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(1.0, 10.0, 1.0)

RandomStrength A multiplier of randomness added to split evaluations. Default value is 1 which

adds no randomness.

BorderCount Number of splits for numerical features. Catboost defaults to 254 for CPU and

128 for GPU

RSM CPU only. Random testing. Supply a single value for non-grid tuning cases.

Otherwise, supply a vector for the RSM values to test. For running grid tuning, a NULL value supplied will mean these values are tested c(0.80, 0.85, 0.90,

0.95, 1.0)

BootStrapType Random testing. Supply a single value for non-grid tuning cases. Otherwise,

supply a vector for the BootStrapType values to test. For running grid tuning, a NULL value supplied will mean these values are tested c("Bayesian",

"Bernoulli", "Poisson", "MVS", "No")

GrowPolicy Random testing. NULL, character, or vector for GrowPolicy to test. For grid

tuning, supply a vector of values. For running grid tuning, a NULL value supplied will mean these values are tested c("SymmetricTree", "Depthwise", "Loss-

guide")

langevin TRUE or FALSE. TRUE enables

diffusion_temperature

Default value is 10000

model_size_reg Defaults to 0.5. Set to 0 to allow for bigger models. This is for models with high

cardinality categorical features. Valuues greater than 0 will shrink the model

and quality will decline but models won't be huge.

feature_border_type

Defaults to "GreedyLogSum". Other options include: Median, Uniform, Uni-

formAndQuantiles, MaxLogSum, MinEntropy

sampling_unit Default is Group. Other option is Object. if GPU is selected, this will be turned

off unless the LossFunction is YetiRankPairWise

subsample Default is NULL. Catboost will turn this into 0.66 for BootStrapTypes Poisson

and Bernoulli. 0.80 for MVS. Doesn't apply to others.

```
score_function Default is Cosine. CPU options are Cosine and L2. GPU options are Cosine,
L2, NewtonL2, and NewtomCosine (not available for Lossguide)
min_data_in_leaf
Default is 1. Cannot be used with SymmetricTree is GrowPolicy

DebugMode Set to TRUE to get a printout of which step the function is on. FALSE, otherwise
```

Value

Saves to file and returned in list: VariableImportance.csv, Model (the model), ValidationData.csv, ROC_Plot.png, EvaluationPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Binary Classification: AutoH2oDRFClassifier(), AutoH2oGAMClassifier(), AutoH2oGBMClassifier(), AutoH2oGLMClassifier(), AutoH2oMLClassifier(), AutoXGBoostClassifier()

Examples

```
## Not run:
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
  N = 10000,
 ID = 2,
  ZIP = 0,
  AddDate = FALSE,
  Classification = TRUE,
  MultiClass = FALSE)
# Run function
TestModel <- RemixAutoML::AutoCatBoostClassifier(</pre>
  # GPU or CPU and the number of available GPUs
  task_type = "GPU",
  NumGPUs = 1,
  TrainOnFull = FALSE,
  DebugMode = FALSE,
  # Metadata args
  OutputSelection = c("Score_TrainData", "Importance", "EvalPlots", "Metrics", "PDF"),
  ModelID = "Test_Model_1",
  model_path = normalizePath("./"),
  metadata_path = normalizePath("./"),
  SaveModelObjects = FALSE,
  ReturnModelObjects = TRUE,
  SaveInfoToPDF = FALSE,
  # Data args
  data = data,
  ValidationData = NULL,
  TestData = NULL,
```

25

```
TargetColumnName = "Adrian",
  FeatureColNames = names(data)[!names(data) %in%
     c("IDcol_1","IDcol_2","Adrian")],
  PrimaryDateColumn = NULL,
  WeightsColumnName = NULL,
  IDcols = c("IDcol_1","IDcol_2"),
  # Evaluation args
  ClassWeights = c(1L, 1L),
  CostMatrixWeights = c(1,0,0,1),
  EvalMetric = "AUC",
  grid_eval_metric = "MCC",
  LossFunction = "Logloss",
  MetricPeriods = 10L,
  NumOfParDepPlots = ncol(data)-1L-2L,
  # Grid tuning args
  PassInGrid = NULL,
  GridTune = FALSE,
  MaxModelsInGrid = 30L,
  MaxRunsWithoutNewWinner = 20L,
  MaxRunMinutes = 24L*60L,
  BaselineComparison = "default",
  # ML args
  Trees = 1000,
  Depth = 9,
  LearningRate = NULL,
  L2_Leaf_Reg = NULL,
  model_size_reg = 0.5,
  langevin = FALSE,
  diffusion_temperature = 10000,
  RandomStrength = 1,
  BorderCount = 128,
  RSM = 1,
  BootStrapType = "Bayesian",
  GrowPolicy = "SymmetricTree",
  feature_border_type = "GreedyLogSum",
  sampling_unit = "Object",
  subsample = NULL,
  score_function = "Cosine",
  min_data_in_leaf = 1)
# Output
TestModel$Model
TestModel$ValidationData
TestModel$ROC_Plot
TestModel$EvaluationPlot
TestModel$EvaluationMetrics
TestModel$VariableImportance
TestModel$InteractionImportance
TestModel$ShapValuesDT
TestModel$VI_Plot
TestModel$PartialDependencePlots
TestModel$GridMetrics
TestModel$ColNames
```

```
## End(Not run)
```

AutoCatBoostHurdleCARMA

AutoCatBoostHurdleCARMA

Description

AutoCatBoostHurdleCARMA is an intermittent demand, Mutlivariate Forecasting algorithms with calendar variables, Holiday counts, holiday lags, holiday moving averages, differencing, transformations, interaction-based categorical encoding using target variable and features to generate various time-based aggregated lags, moving averages, moving standard deviations, moving skewness, moving kurtosis, moving quantiles, parallelized interaction-based fourier pairs by grouping variables, and Trend Variables.

Usage

```
AutoCatBoostHurdleCARMA(
  data,
  NonNegativePred = FALSE,
  Threshold = NULL,
  RoundPreds = FALSE.
  TrainOnFull = FALSE,
  TargetColumnName = "Target",
  DateColumnName = "DateTime",
  HierarchGroups = NULL,
  GroupVariables = NULL,
  TimeWeights = 1,
  FC_Periods = 30,
  TimeUnit = "week",
  TimeGroups = c("weeks", "months"),
  NumOfParDepPlots = 10L,
  TargetTransformation = FALSE,
  Methods = c("BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt", "Asin", "Logit"),
  AnomalyDetection = NULL,
  XREGS = NULL,
  Lags = c(1L:5L),
  MA\_Periods = c(2L:5L),
  SD_Periods = NULL,
  Skew_Periods = NULL,
  Kurt_Periods = NULL,
  Quantile_Periods = NULL,
  Quantiles_Selected = c("q5", "q95"),
  Difference = TRUE,
  FourierTerms = 6L,
 CalendarVariables = c("second", "minute", "hour", "wday", "mday", "yday", "week",
    "wom", "isoweek", "month", "quarter", "year"),
  HolidayVariable = c("USPublicHolidays", "EasterGroup", "ChristmasGroup",
    "OtherEcclesticalFeasts"),
  HolidayLookback = NULL,
  HolidayLags = 1L,
```

NumOfParDepPlots

```
HolidayMovingAverages = 1L:2L,
      TimeTrendVariable = FALSE.
      ZeroPadSeries = NULL,
      DataTruncate = FALSE,
      SplitRatios = c(0.7, 0.2, 0.1),
      TaskType = "GPU",
      NumGPU = 1,
      EvalMetric = "RMSE",
      GridTune = FALSE,
      PassInGrid = NULL,
      ModelCount = 100,
      MaxRunsWithoutNewWinner = 50,
      MaxRunMinutes = 24L * 60L,
      NTrees = list(classifier = 200, regression = 200),
      Depth = list(classifier = 9, regression = 9),
      LearningRate = NULL,
      L2_Leaf_Reg = NULL,
      RandomStrength = list(classifier = 1, regression = 1),
      BorderCount = list(classifier = 254, regression = 254),
      BootStrapType = "Bayesian",
      PartitionType = "timeseries",
      Timer = TRUE,
      DebugMode = FALSE
Arguments
    data
                     Supply your full series data set here
   NonNegativePred
                     TRUE or FALSE
    Threshold
                     Select confusion matrix measure to optimize for pulling in threshold. Choose
                     from "MCC", "Acc", "TPR", "TNR", "FNR", "FPR", "FDR", "FOR", "F1_Score",
                     "F2_Score", "F0.5_Score", "NPV", "PPV", "ThreatScore", "Utility"
    RoundPreds
                     Rounding predictions to an integer value. TRUE or FALSE. Defaults to FALSE
                     Set to TRUE to train on full data
    TrainOnFull
    TargetColumnName
                     List the column name of your target variables column. E.g. "Target"
    DateColumnName List the column name of your date column. E.g. "DateTime"
   HierarchGroups Vector of hierarchy categorical columns.
   GroupVariables Defaults to NULL. Use NULL when you have a single series. Add in Group-
                     Variables when you have a series for every level of a group or multiple groups.
                     Timeweights creation. Supply a value, such as 0.9999
    TimeWeights
                     Set the number of periods you want to have forecasts for. E.g. 52 for weekly
    FC Periods
                     data to forecast a year ahead
    TimeUnit
                     List the time unit your data is aggregated by. E.g. "1min", "5min", "10min",
                     "15min", "30min", "hour", "day", "week", "month", "quarter", "year".
    TimeGroups
                     Select time aggregations for adding various time aggregated GDL features.
```

Supply a number for the number of partial dependence plots you want returned

TargetTransformation

Run AutoTransformationCreate() to find best transformation for the target variable. Tests YeoJohnson, BoxCox, and Asigh (also Asin and Logit for proportion target variables).

Methods

Choose from "YeoJohnson", "BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt", "Asin", or "Logit". If more than one is selected, the one with the best normalization pearson statistic will be used. Identity is automatically selected and compared.

AnomalyDetection

NULL for not using the service. Other, provide a list, e.g. AnomalyDetection = list("tstat_high" = 4, tstat_low = -4)

XREGS

Additional data to use for model development and forecasting. Data needs to be a complete series which means both the historical and forward looking values over the specified forecast window needs to be supplied.

Lags

Select the periods for all lag variables you want to create. E.g. c(1:5,52)

MA_Periods

Select the periods for all moving average variables you want to create. E.g. c(1:5,52)

SD_Periods

Select the periods for all moving standard deviation variables you want to create. E.g. c(1:5,52)

Skew_Periods

Select the periods for all moving skewness variables you want to create. E.g. c(1:5,52)

Kurt_Periods

Select the periods for all moving kurtosis variables you want to create. E.g. c(1:5,52)

Quantile_Periods

Select the periods for all moving quantiles variables you want to create. E.g. c(1:5,52)

Quantiles_Selected

Select from the following "q5", "q10", "q15", "q20", "q25", "q30", "q35", "q40", "q45", "q50", "q55", "q60", "q65", "q70", "q75", "q80", "q85", "q90", "q95"

Difference

Puts the I in ARIMA for single series and grouped series.

FourierTerms

Set to the max number of pairs. E.g. 2 means to generate two pairs for by each group level and interations if hierarchy is enabled.

CalendarVariables

NULL, or select from "second", "minute", "hour", "wday", "mday", "yday", "week", "isoweek", "month", "quarter", "year"

HolidayVariable

NULL, or select from "USPublicHolidays", "EasterGroup", "ChristmasGroup", "OtherEcclesticalFeasts"

HolidayLookback

Number of days in range to compute number of holidays from a given date in the data. If NULL, the number of days are computed for you.

HolidayLags Number of lags to build off of the holiday count variable.

HolidayMovingAverages

Number of moving averages to build off of the holiday count variable.

TimeTrendVariable

Set to TRUE to have a time trend variable added to the model. Time trend is numeric variable indicating the numeric value of each record in the time series (by group). Time trend starts at 1 for the earliest point in time and increments by one for each success time point.

ZeroPadSeries Set to "all", "inner", or NULL. See TimeSeriesFill for explanation

DataTruncate Set to TRUE to remove records with missing values from the lags and moving

average features created

SplitRatios E.g c(0.7,0.2,0.1) for train, validation, and test sets TaskType Default is "GPU" but you can also set it to "CPU"

NumGPU Defaults to 1. If CPU is set this argument will be ignored.

EvalMetric Select from "RMSE", "MAE", "MAPE", "Poisson", "Quantile", "LogLinQuan-

tile", "Lq", "NumErrors", "SMAPE", "R2", "MSLE", "MedianAbsoluteError"

GridTune Set to TRUE to run a grid tune

PassInGrid Defaults to NULL

ModelCount Set the number of models to try in the grid tune

MaxRunsWithoutNewWinner

Default is 50

MaxRunMinutes Default is 60*60

NTrees Select the number of trees you want to have built to train the model

Depth of catboost model

LearningRate learning_rate
L2_Leaf_Reg l2 reg parameter
RandomStrength Default is 1

BorderCount Default is 254

BootStrapType Select from Catboost list

PartitionType Select "random" for random data partitioning "timeseries" for partitioning by

time frames

Timer Set to FALSE to turn off the updating print statements for progress

DebugMode Defaults to FALSE. Set to TRUE to get a print statement of each high level

comment in function

Value

Returns a data.table of original series and forecasts, the catboost model objects (everything returned from AutoCatBoostRegression()), a time series forecast plot, and transformation info if you set TargetTransformation to TRUE. The time series forecast plot will plot your single series or aggregate your data to a single series and create a plot from that.

Author(s)

Adrian Antico

See Also

Other Automated Panel Data Forecasting: AutoCatBoostCARMA(), AutoCatBoostVectorCARMA(), AutoH2OCARMA(), AutoXGBoostCARMA()

Examples

```
## Not run:
 # Single group variable and xregs ----
 # Load Walmart Data from Dropbox----
 data <- data.table::fread(</pre>
   "https://www.dropbox.com/s/2str3ek4f4cheqi/walmart_train.csv?dl=1")
 # Subset for Stores / Departments With Full Series
 data <- data[, Counts := .N, by = c("Store", "Dept")][Counts == 143][</pre>
   , Counts := NULL]
 # Subset Columns (remove IsHoliday column)----
 keep <- c("Store", "Dept", "Date", "Weekly_Sales")</pre>
 data <- data[, ..keep]</pre>
 data <- data[Store == 1][, Store := NULL]</pre>
 xregs <- data.table::copy(data)</pre>
 data.table::setnames(xregs, "Dept", "GroupVar")
 data.table::setnames(xregs, "Weekly_Sales", "Other")
 data <- data[as.Date(Date) < as.Date('2012-09-28')]</pre>
 # Add zeros for testing
 data[runif(.N) < 0.25, Weekly_Sales := 0]</pre>
 # Build forecast
 CatBoostResults <- RemixAutoML::AutoCatBoostHurdleCARMA(</pre>
  # data args
  data = data, # TwoGroup_Data,
  TargetColumnName = "Weekly_Sales",
  DateColumnName = "Date",
  HierarchGroups = NULL,
  GroupVariables = c("Dept"),
  TimeWeights = 1,
  TimeUnit = "weeks",
  TimeGroups = c("weeks", "months"),
  # Production args
  TrainOnFull = FALSE,
  SplitRatios = c(1 - 20 / 138, 10 / 138, 10 / 138),
  PartitionType = "random",
  FC_Periods = 4,
  Timer = TRUE,
  DebugMode = TRUE,
  # Target transformations
  TargetTransformation = TRUE,
  Methods = c("BoxCox", "Asinh", "Asin", "Log",
  "LogPlus1", "Sqrt", "Logit", "YeoJohnson"),
  Difference = FALSE,
  NonNegativePred = FALSE,
  RoundPreds = FALSE,
  # Date features
  CalendarVariables = c("week", "wom", "month", "quarter"),
```

```
HolidayVariable = c("USPublicHolidays",
    "EasterGroup",
    "ChristmasGroup", "OtherEcclesticalFeasts"),
  HolidayLookback = NULL,
  HolidayLags = 1,
  HolidayMovingAverages = 1:2,
  # Time series features
  Lags = list("weeks" = seq(2L, 10L, 2L),
    "months" = c(1:3)),
  MA_Periods = list("weeks" = seq(2L, 10L, 2L),
    "months" = c(2,3)),
  SD_Periods = NULL,
  Skew_Periods = NULL,
  Kurt_Periods = NULL,
  Quantile_Periods = NULL,
  Quantiles_Selected = c("q5","q95"),
  # Bonus features
  AnomalyDetection = NULL,
  XREGS = xregs,
  FourierTerms = 2,
  TimeTrendVariable = TRUE,
  ZeroPadSeries = NULL,
  DataTruncate = FALSE,
  # ML Args
  NumOfParDepPlots = 100L,
  EvalMetric = "RMSE",
  GridTune = FALSE,
  PassInGrid = NULL,
  ModelCount = 5,
  TaskType = "GPU",
  NumGPU = 1,
  MaxRunsWithoutNewWinner = 50,
  MaxRunMinutes = 60*60,
 NTrees = 2500,
 L2\_Leaf\_Reg = 3.0,
 LearningRate = list("classifier" = seq(0.01, 0.25, 0.01), "regression" = seq(0.01, 0.25, 0.01)),
  RandomStrength = 1,
  BorderCount = 254,
  BootStrapType = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
  Depth = 6)
# Two group variables and xregs
# Load Walmart Data from Dropbox----
data <- data.table::fread(</pre>
 "https://www.dropbox.com/s/2str3ek4f4cheqi/walmart_train.csv?dl=1")
# Subset for Stores / Departments With Full Series
data <- data[, Counts := .N, by = c("Store", "Dept")][Counts == 143][</pre>
  , Counts := NULL]
# Put negative values at 0
data[, Weekly_Sales := data.table::fifelse(Weekly_Sales < 0, 0, Weekly_Sales)]</pre>
```

```
# Subset Columns (remove IsHoliday column)----
keep <- c("Store","Dept","Date","Weekly_Sales")</pre>
data <- data[, ..keep]</pre>
data <- data[Store %in% c(1,2)]</pre>
xregs <- data.table::copy(data)</pre>
xregs[, GroupVar := do.call(paste, c(.SD, sep = " ")), .SDcols = c("Store", "Dept")]
xregs[, c("Store","Dept") := NULL]
data.table::setnames(xregs, "Weekly_Sales", "Other")
xregs[, Other := jitter(Other, factor = 25)]
data <- data[as.Date(Date) < as.Date('2012-09-28')]</pre>
# Add some zeros for testing
data[runif(.N) < 0.25, Weekly_Sales := 0]</pre>
# Build forecast
Output <- RemixAutoML::AutoCatBoostHurdleCARMA(</pre>
  # data args
  data = data,
  TargetColumnName = "Weekly_Sales",
  DateColumnName = "Date",
  HierarchGroups = NULL,
  GroupVariables = c("Store", "Dept"),
  TimeWeights = 1,
  TimeUnit = "weeks",
  TimeGroups = c("weeks", "months"),
  # Production args
  TrainOnFull = TRUE,
  SplitRatios = c(1 - 20 / 138, 10 / 138, 10 / 138),
  PartitionType = "random",
  FC_Periods = 4,
  Timer = TRUE,
  DebugMode = TRUE,
  # Target transformations
  TargetTransformation = TRUE,
  Methods = c("BoxCox", "Asinh", "Asin", "Log",
              "LogPlus1", "Sqrt", "Logit", "YeoJohnson"),
  Difference = FALSE,
  NonNegativePred = FALSE,
  Threshold = NULL,
  RoundPreds = FALSE,
  # Date features
  CalendarVariables = c("week", "wom", "month", "quarter"),
  HolidayVariable = c("USPublicHolidays",
                       "EasterGroup",
                       "ChristmasGroup", "OtherEcclesticalFeasts"),
  HolidayLookback = NULL,
  HolidayLags = 1,
  HolidayMovingAverages = 1:2,
  # Time series features
  Lags = list("weeks" = seq(2L, 10L, 2L),
              "months" = c(1:3)),
```

```
MA_Periods = list("weeks" = seg(2L, 10L, 2L),
                     "months" = c(2,3)),
  SD_Periods = NULL,
  Skew_Periods = NULL,
  Kurt_Periods = NULL,
  Quantile_Periods = NULL,
  Quantiles_Selected = c("q5","q95"),
  # Bonus features
  AnomalyDetection = NULL,
  XREGS = xregs,
  FourierTerms = 2,
  TimeTrendVariable = TRUE,
  ZeroPadSeries = NULL,
  DataTruncate = FALSE,
  # ML Args
  NumOfParDepPlots = 100L,
  EvalMetric = "RMSE",
  GridTune = FALSE,
  PassInGrid = NULL,
  ModelCount = 5,
  TaskType = "GPU",
  NumGPU = 1,
  MaxRunsWithoutNewWinner = 50,
  MaxRunMinutes = 60*60,
  NTrees = list("classifier" = 200, "regression" = 200),
  Depth = list("classifier" = 9, "regression" = 9),
  LearningRate = NULL,
  L2_Leaf_Reg = NULL,
  RandomStrength = list("classifier" = 1, "regression" = 1),
  BorderCount = list("classifier" = 254, "regression" = 254),
  BootStrapType = "Bayesian"
## End(Not run)
```

AutoCatBoostHurdleModel

AutoCatBoostHurdleModel

Description

AutoCatBoostHurdleModel for generalized hurdle modeling. Check out the Readme.Rd on github for more background.

Usage

```
AutoCatBoostHurdleModel(
  data = NULL,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  Buckets = 0L,
  TargetColumnName = NULL,
```

```
FeatureColNames = NULL,
 PrimarvDateColumn = NULL.
 WeightsColumnName = NULL,
 IDcols = NULL,
 TransformNumericColumns = NULL,
 Methods = c("BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "YeoJohnson"),
 ClassWeights = NULL,
 SplitRatios = c(0.7, 0.2, 0.1),
  task_type = "GPU",
 ModelID = "ModelTest",
 Paths = NULL,
 DebugMode = FALSE,
 MetaDataPaths = NULL,
 SaveModelObjects = FALSE,
 ReturnModelObjects = TRUE,
 NumOfParDepPlots = 10L
 PassInGrid = NULL,
 GridTune = FALSE,
 BaselineComparison = "default",
 MaxModelsInGrid = 1L,
 MaxRunsWithoutNewWinner = 20L,
 MaxRunMinutes = 60L * 60L,
 MetricPeriods = 25L,
 Langevin = FALSE,
 DiffusionTemperature = 10000,
 Trees = list(classifier = seq(1000, 2000, 100), regression = seq(1000, 2000, 100)),
 Depth = list(classifier = seq(6, 10, 1), regression = seq(6, 10, 1)),
 RandomStrength = list(classifier = seq(1, 10, 1), regression = seq(1, 10, 1)),
 BorderCount = list(classifier = seq(32, 256, 16), regression = seq(32, 256, 16)),
 LearningRate = list(classifier = seq(0.01, 0.25, 0.01), regression = seq(0.01, 0.25,
 L2\_Leaf\_Reg = list(classifier = seq(3, 10, 1), regression = seq(1, 10, 1)),
 RSM = list(classifier = c(0.8, 0.85, 0.9, 0.95, 1), regression = c(0.8, 0.85, 0.9, 0.95, 1)
    0.95, 1)),
 BootStrapType = list(classifier = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
   regression = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No")),
 GrowPolicy = list(classifier = c("SymmetricTree", "Depthwise", "Lossguide"),
   regression = c("SymmetricTree", "Depthwise", "Lossguide"))
)
```

Arguments

data Source training data. Do not include a column that has the class labels for the

buckets as they are created internally.

TrainOnFull Set to TRUE to use all data

ValidationData Source validation data. Do not include a column that has the class labels for the

buckets as they are created internally.

TestData Souce test data. Do not include a column that has the class labels for the buckets

as they are created internally.

Buckets A numeric vector of the buckets used for subsetting the data. NOTE: the final

Bucket value will first create a subset of data that is less than the value and a

second one thereafter for data greater than the bucket value.

TargetColumnName

Supply the column name or number for the target variable

FeatureColNames

Supply the column names or number of the features (not included the Primary-DateColumn)

PrimaryDateColumn

Supply a date column if the data is functionally related to it

WeightsColumnName

Column name for weights variable

IDcols Includes PrimaryDateColumn and any other columns you want returned in the

validation data with predictions

TransformNumericColumns

Transform numeric column inside the AutoCatBoostRegression() function

Methods Choose transformation methods
ClassWeights Utilize these for the classifier model

SplitRatios Supply vector of partition ratios. For example, c(0.70,0.20,0,10).

task_type Set to "GPU" or "CPU"

ModelID Define a character name for your models

Paths The path to your folder where you want your model information saved

DebugMode Print steps to screen by setting to TRUE

MetaDataPaths TA character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to Paths.

SaveModelObjects

Set to TRUE to save the model objects to file in the folders listed in Paths

ReturnModelObjects

TRUE to return the models

NumOfParDepPlots

Set to pull back N number of partial dependence calibration plots.

PassInGrid Pass in a grid for changing up the parameter settings for catboost

GridTune Set to TRUE if you want to grid tune the models

BaselineComparison

= "default",

 ${\tt MaxModelsInGrid}$

= 1L,

MaxRunsWithoutNewWinner

= 20L,

 $\label{eq:maxRunMinutes} \mbox{ = } 60\mbox{L*}60\mbox{L},$

MetricPeriods = 25L.

Langevin TRUE or FALSE

DiffusionTemperature

Default 10000

Trees Provide a named list to have different number of trees for each model. Trees =

list("classifier" = seq(1000,2000,100), "regression" = seq(1000,2000,100))

Depth = seq(4L, 8L, 1L),

RandomStrength 1

```
\label{eq:bound} \begin{tabular}{lll} BorderCount & 128 \\ LearningRate & = seq(0.01,0.10,0.01), \\ L2\_Leaf\_Reg & = seq(1.0, 10.0, 1.0), \\ RSM & = c(0.80, 0.85, 0.90, 0.95, 1.0), \\ BootStrapType & = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"), \\ GrowPolicy & = c("SymmetricTree", "Depthwise", "Lossguide") \\ Shuffles & = 2L, \\ \end{tabular}
```

Value

Returns AutoCatBoostRegression() model objects: VariableImportance.csv, Model, ValidationData.csv, EvalutionPlot.png, EvalutionBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, and catboost-grid

Author(s)

Adrian Antico

See Also

Other Supervised Learning - Compound: AutoH2oDRFHurdleModel(), AutoH2oGBMHurdleModel(), AutoXGBoostHurdleModel()

Examples

```
## Not run:
Output <- RemixAutoML::AutoCatBoostHurdleModel(</pre>
  # Operationalization
  task_type = "GPU",
  ModelID = "ModelTest",
  SaveModelObjects = FALSE,
  ReturnModelObjects = TRUE,
  # Data related args
  data = data,
  WeightsColumnName = NULL,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  Buckets = 0L,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  PrimaryDateColumn = NULL,
  IDcols = NULL,
  DebugMode = FALSE,
  # Metadata args
  Paths = normalizePath("./"),
  MetaDataPaths = NULL,
  TransformNumericColumns = NULL,
     c("BoxCox", "Asinh", "Asin", "Log",
```

```
"LogPlus1", "Logit", "YeoJohnson"),
  ClassWeights = NULL,
  SplitRatios = c(0.70, 0.20, 0.10),
  NumOfParDepPlots = 10L,
  # Grid tuning setup
  PassInGrid = NULL,
  GridTune = FALSE,
  BaselineComparison = "default",
  MaxModelsInGrid = 1L,
  MaxRunsWithoutNewWinner = 20L,
  MaxRunMinutes = 60L*60L,
  MetricPeriods = 25L,
  # Bandit grid args
  Langevin = FALSE,
  DiffusionTemperature = 10000,
  Trees = list("classifier" = seq(1000,2000,100),
               "regression" = seq(1000, 2000, 100)),
  Depth = list("classifier" = seq(6,10,1),
               "regression" = seq(6,10,1)),
  RandomStrength = list("classifier" = seq(1,10,1),
                       "regression" = seq(1,10,1),
  BorderCount = list("classifier" = seq(32,256,16),
                     "regression" = seq(32, 256, 16)),
  LearningRate = list("classifier" = seq(0.01,0.25,0.01),
                     "regression" = seq(0.01, 0.25, 0.01)),
  L2\_Leaf\_Reg = list("classifier" = seq(3.0,10.0,1.0),
                  "regression" = seq(1.0, 10.0, 1.0)),
  RSM = list("classifier" = c(0.80, 0.85, 0.90, 0.95, 1.0),
             "regression" = c(0.80, 0.85, 0.90, 0.95, 1.0)),
 BootStrapType = list("classifier" = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
                      "regression" = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No")),
  GrowPolicy = list("classifier" = c("SymmetricTree", "Depthwise", "Lossguide"),
                    "regression" = c("SymmetricTree", "Depthwise", "Lossguide")))
## End(Not run)
```

AutoCatBoostMultiClass

AutoCatBoostMultiClass

Description

AutoCatBoostMultiClass is an automated modeling function that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation metrics, variable importance, and column names used in model fitting. You can download the catboost package using devtools, via: devtools::install_github('catboost/catboost', subdir = 'catboost/R-package').

Usage

```
AutoCatBoostMultiClass(
 OutputSelection = c("Importances", "EvalPlots", "EvalMetrics", "Score_TrainData"),
  data = NULL,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  PrimaryDateColumn = NULL,
  WeightsColumnName = NULL,
  IDcols = NULL,
  TrainOnFull = FALSE,
  task_type = "GPU",
  NumGPUs = 1,
  DebugMode = FALSE,
  ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  ModelID = "FirstModel",
  model_path = NULL,
  metadata_path = NULL,
  ClassWeights = NULL,
  NumOfParDepPlots = 3,
  eval_metric = "MultiClassOneVsAll",
  loss_function = "MultiClassOneVsAll",
  grid_eval_metric = "Accuracy",
  BaselineComparison = "default",
  MetricPeriods = 10L,
  PassInGrid = NULL,
  GridTune = FALSE,
  MaxModelsInGrid = 30L,
  MaxRunsWithoutNewWinner = 20L,
  MaxRunMinutes = 24L * 60L,
  Trees = 50L,
  Depth = 6,
  LearningRate = NULL,
  L2_Leaf_Reg = NULL,
  RandomStrength = 1,
  BorderCount = 128,
  RSM = NULL,
  BootStrapType = NULL,
  GrowPolicy = NULL,
  langevin = FALSE,
  diffusion_temperature = 10000,
  model_size_reg = 0.5,
  feature_border_type = "GreedyLogSum",
  sampling_unit = "Object",
  subsample = NULL,
  score_function = "Cosine",
  min_data_in_leaf = 1
```

Arguments

OutputSelection

You can select what type of output you want returned. Choose from c("Importances",

"EvalPlots", "EvalMetrics", "PDFs", "Score_TrainData")

data This is your data set for training and testing your model

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters. Catboost using both training and validation data in the training process so

you should evaluate out of sample performance with this data set.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located, but not mixed types. Note that the target column needs to be a 0 | 1

numeric variable.

FeatureColNames

Either supply the feature column names OR the column number where the target

is located, but not mixed types. Also, not zero-indexed.

PrimaryDateColumn

Supply a date or datetime column for catboost to utilize time as its basis for

handling categorical features, instead of random shuffling

WeightsColumnName

Supply a column name for your weights column. Leave NULL otherwise

IDcols A vector of column names or column numbers to keep in your data but not

include in the modeling.

TrainOnFull Set to TRUE to train on full data and skip over evaluation steps

task_type Set to "GPU" to utilize your GPU for training. Default is "CPU".

NumGPUs Set to 1, 2, 3, etc.

DebugMode TRUE to print out steps taken

ReturnModelObjects

Set to TRUE to output all modeling objects. E.g. plots and evaluation metrics

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

ModelID A character string to name your model and output

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model path.

ClassWeights Supply a vector of weights for your target classes. E.g. c(0.25, 1) to weight your

0 class by 0.25 and your 1 class by 1.

NumOfParDepPlots

Number of partial dependence plots to create for each target level

eval_metric Internal bandit metric. Select from 'MultiClass', 'MultiClassOneVsAll', 'AUC',

'TotalF1', 'MCC', 'Accuracy', 'HingeLoss', 'HammingLoss', 'ZeroOneLoss',

'Kappa', 'WKappa'

grid_eval_metric

For evaluating models within grid tuning. Choices include, "accuracy", "microauc", "logloss"

BaselineComparison

Set to either "default" or "best". Default is to compare each successive model build to the baseline model using max trees (from function args). Best makes the comparison to the current best model.

MetricPeriods Number of trees to build before evaluating intermediate metrics. Default is 10L

PassInGrid Defaults to NULL. Pass in a single row of grid from a previous output as a

data.table (they are collected as data.tables)

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

MaxModelsInGrid

Number of models to test from grid options.

MaxRunsWithoutNewWinner

A number

MaxRunMinutes In minutes

Trees Bandit grid partitioned. Supply a single value for non-grid tuning cases. Other-

wise, supply a vector for the trees numbers you want to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(1000L,

10000L, 1000L)

Depth Bandit grid partitioned. Number, or vector for depth to test. For running grid

tuning, a NULL value supplied will mean these values are tested seq(4L, 16L,

2L)

LearningRate Bandit grid partitioned. Supply a single value for non-grid tuning cases. Oth-

erwise, supply a vector for the LearningRate values to test. For running grid tuning, a NULL value supplied will mean these values are tested c(0.01,0.02,0.03,0.04)

L2_Leaf_Reg Random testing. Supply a single value for non-grid tuning cases. Otherwise,

supply a vector for the L2_Leaf_Reg values to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(1.0, 10.0, 1.0)

RandomStrength A multiplier of randomness added to split evaluations. Default value is 1 which

adds no randomness.

BorderCount Number of splits for numerical features. Catboost defaults to 254 for CPU and

128 for GPU

RSM CPU only. Random testing. Supply a single value for non-grid tuning cases.

Otherwise, supply a vector for the RSM values to test. For running grid tuning, a NULL value supplied will mean these values are tested c(0.80, 0.85, 0.90,

0.95, 1.0)

BootStrapType Random testing. Supply a single value for non-grid tuning cases. Otherwise,

supply a vector for the BootStrapType values to test. For running grid tuning, a NULL value supplied will mean these values are tested c("Bayesian",

"Bernoulli", "Poisson", "MVS", "No")

GrowPolicy Random testing. NULL, character, or vector for GrowPolicy to test. For grid

tuning, supply a vector of values. For running grid tuning, a NULL value supplied will mean these values are tested c("SymmetricTree", "Depthwise", "Loss-

guide")

langevin TRUE or FALSE. Enable stochastic gradient langevin boosting

 $diffusion_temperature$

Default is 10000 and is only used when langevin is set to TRUE

model_size_reg Defaults to 0.5. Set to 0 to allow for bigger models. This is for models with high

cardinality categorical features. Valuues greater than $\boldsymbol{0}$ will shrink the model

and quality will decline but models won't be huge.

feature_border_type

Defaults to "GreedyLogSum". Other options include: Median, Uniform, Uni-

formAndQuantiles, MaxLogSum, MinEntropy

sampling_unit Default is Group. Other option is Object. if GPU is selected, this will be turned

off unless the loss_function is YetiRankPairWise

subsample Default is NULL. Catboost will turn this into 0.66 for BootStrapTypes Poisson

and Bernoulli. 0.80 for MVS. Doesn't apply to others.

score_function Default is Cosine. CPU options are Cosine and L2. GPU options are Cosine,

L2, NewtonL2, and NewtomCosine (not available for Lossguide)

min_data_in_leaf

Default is 1. Cannot be used with SymmetricTree is GrowPolicy

Value

Saves to file and returned in list: VariableImportance.csv, Model (the model), ValidationData.csv, EvaluationMetrics.csv, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Multiclass Classification: AutoH2oDRFMultiClass(), AutoH2oGAMMultiClass(), AutoH2oGLMMultiClass(), AutoH2oGLMMultiClass(), AutoH2oGLMMultiClass(), AutoXGBoostMultiClass()

```
## Not run:
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
  N = 10000L
  ID = 2L,
  ZIP = 0L
  AddDate = FALSE,
  Classification = FALSE,
  MultiClass = TRUE)
# Run function
TestModel <- RemixAutoML::AutoCatBoostMultiClass(</pre>
    # GPU or CPU and the number of available GPUs
    task_type = "GPU",
    NumGPUs = 1,
    TrainOnFull = FALSE,
    DebugMode = FALSE,
```

```
# Metadata args
   OutputSelection = c("Importances", "EvalPlots", "EvalMetrics", "Score_TrainData"),
   ModelID = "Test_Model_1",
   model_path = normalizePath("./"),
   metadata_path = normalizePath("./"),
   SaveModelObjects = FALSE,
   ReturnModelObjects = TRUE,
   # Data args
   data = data,
   ValidationData = NULL,
   TestData = NULL,
   TargetColumnName = "Adrian",
   FeatureColNames = names(data)[!names(data) %in%
     c("IDcol_1", "IDcol_2", "Adrian")],
   PrimaryDateColumn = NULL,
   WeightsColumnName = NULL,
   ClassWeights = c(1L, 1L, 1L, 1L, 1L),
   IDcols = c("IDcol_1","IDcol_2"),
   # Model evaluation
   eval_metric = "MCC"
   loss_function = "MultiClassOneVsAll",
   grid_eval_metric = "Accuracy",
   MetricPeriods = 10L,
   NumOfParDepPlots = 3,
   # Grid tuning args
   PassInGrid = NULL,
   GridTune = TRUE,
   MaxModelsInGrid = 30L,
   MaxRunsWithoutNewWinner = 20L,
   MaxRunMinutes = 24L*60L,
   BaselineComparison = "default",
   # ML args
   langevin = FALSE,
   diffusion_temperature = 10000,
   Trees = seq(100L, 500L, 50L),
   Depth = seq(4L, 8L, 1L),
   LearningRate = seq(0.01, 0.10, 0.01),
   L2\_Leaf\_Reg = seq(1.0, 10.0, 1.0),
   RandomStrength = 1,
   BorderCount = 254,
   RSM = c(0.80, 0.85, 0.90, 0.95, 1.0),
   BootStrapType = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
   GrowPolicy = c("SymmetricTree", "Depthwise", "Lossguide"),
   model_size_reg = 0.5,
   feature_border_type = "GreedyLogSum",
   sampling_unit = "Object",
   subsample = NULL,
   score_function = "Cosine",
   min_data_in_leaf = 1)
# Output
TestModel$Model
TestModel$ValidationData
```

```
TestModel$EvaluationMetrics
TestModel$Evaluation
TestModel$VI_Plot
TestModel$VariableImportance
TestModel$InteractionImportance
TestModel$GridMetrics
TestModel$ColNames = Names
TestModel$TargetLevels
## End(Not run)
```

AutoCatBoostRegression

AutoCatBoostRegression

Description

AutoCatBoostRegression is an automated modeling function that runs a variety of steps. First, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation boxplot, evaluation metrics, variable importance, partial dependence calibration box plots, and column names used in model fitting. You can download the catboost package using devtools, via: devtools::install_github('catboost/catboost', subdir = 'catboost/R-package')

Usage

```
AutoCatBoostRegression(
 OutputSelection = c("Importances", "EvalPlots", "EvalMetrics", "Score_TrainData"),
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
 PrimaryDateColumn = NULL,
 WeightsColumnName = NULL,
  IDcols = NULL,
  TransformNumericColumns = NULL,
 Methods = c("BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt", "Asin", "Logit"),
 TrainOnFull = FALSE,
  task\_type = "GPU",
 NumGPUs = 1,
 DebugMode = FALSE,
 ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
 ModelID = "FirstModel",
 model_path = NULL,
 metadata_path = NULL,
  SaveInfoToPDF = FALSE,
  eval_metric = "RMSE",
  eval_metric_value = 1.5,
  loss_function = "RMSE",
```

```
loss_function_value = 1.5,
  grid_eval_metric = "r2",
 NumOfParDepPlots = 0L,
 PassInGrid = NULL,
 GridTune = FALSE,
 MaxModelsInGrid = 30L,
 MaxRunsWithoutNewWinner = 20L,
 MaxRunMinutes = 24L * 60L,
 BaselineComparison = "default",
 MetricPeriods = 10L,
  Trees = 500L,
 Depth = 9,
 L2\_Leaf\_Reg = 3,
 RandomStrength = 1,
 BorderCount = 254,
 LearningRate = NULL,
 RSM = 1,
 BootStrapType = NULL,
 GrowPolicy = "SymmetricTree",
  langevin = FALSE,
 diffusion_temperature = 10000,
 model_size_reg = 0.5,
  feature_border_type = "GreedyLogSum",
  sampling_unit = "Object",
  subsample = NULL,
  score_function = "Cosine",
 min_data_in_leaf = 1
)
```

Arguments

OutputSelection

You can select what type of output you want returned. Choose from c("Importances", "EvalPlots", "EvalMetrics", "PDFs", "Score_TrainData")

data

This is your data set for training and testing your model

ValidationData This is your holdout data set used in modeling either refine your hyperparameters. Catboost using both training and validation data in the training process so you should evaluate out of sample performance with this data set.

TestData

This is your holdout data set. Catboost using both training and validation data in the training process so you should evaluate out of sample performance with this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where the target is located (but not mixed types)

PrimaryDateColumn

Supply a date or datetime column for catboost to utilize time as its basis for handling categorical features, instead of random shuffling

WeightsColumnName

Supply a column name for your weights column. Leave NULL otherwise

IDcols A vector of column names or column numbers to keep in your data but not include in the modeling.

TransformNumericColumns

Set to NULL to do nothing; otherwise supply the column names of numeric variables you want transformed

Methods Choose from "YeoJohnson", "BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt",

> "Asin", or "Logit". If more than one is selected, the one with the best normalization pearson statistic will be used. Identity is automatically selected and

compared.

Set to TRUE to train on full data and skip over evaluation steps TrainOnFull Set to "GPU" to utilize your GPU for training. Default is "CPU". task_type

NumGPUs Set to 1, 2, 3, etc.

Set to TRUE to get a printout of which step the function is on. FALSE, otherwise DebugMode

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

A character string to name your model and output ModelID

A character string of your path file to where you want your output saved model_path

A character string of your path file to where you want your model evaluation metadata_path

output saved. If left NULL, all output will be saved to model_path.

Set to TRUE to save modeling information to PDF. If model_path or meta-SaveInfoToPDF

data_path aren't defined then output will be saved to the working directory

Select from 'RMSE', 'MAE', 'MAPE', 'R2', 'Poisson', 'MedianAbsoluteEreval_metric

ror', 'SMAPE', 'MSLE', 'NumErrors', 'FairLoss', 'Tweedie', 'Huber', 'LogLin-

Quantile', 'Quantile', 'Lq', 'Expectile', 'MultiRMSE'

eval_metric_value

Used with the specified eval metric. See https://catboost.ai/docs/concepts/lossfunctions-regression.html

loss_function Used in model training for model fitting. 'MAPE', 'MAE', 'RMSE', 'Poisson',

'Tweedie', 'Huber', 'LogLinQuantile', 'Quantile', 'Lq', 'Expectile', 'Multi-

RMSE'

loss_function_value

Used with the specified loss function if an associated value is required. 'Tweedie',

'Huber', 'LogLinQuantile', 'Quantile' 'Lq', 'Expectile'. See https://catboost.ai/docs/concepts/loss-

functions-regression.html

grid_eval_metric

Choose from "mae", "mape", "rmse", "r2". Case sensitive

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create. Calibration boxplots will only be created for numerical features (not

dummy variables)

PassInGrid Defaults to NULL. Pass in a single row of grid from a previous output as a

data.table (they are collected as data.tables)

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

MaxModelsInGrid

Number of models to test from grid options

MaxRunsWithoutNewWinner

Number of models built before calling it quits

MaxRunMinutes Maximum number of minutes to let this run

BaselineComparison

Set to either "default" or "best". Default is to compare each successive model build to the baseline model using max trees (from function args). Best makes the comparison to the current best model.

MetricPeriods Number of periods to use between Catboost evaluations

Trees Standard + Grid Tuning. Bandit grid partitioned. The maximum number of trees

you want in your models

Depth Standard + Grid Tuning. Bandit grid partitioned. Number, or vector for depth

to test. For running grid tuning, a NULL value supplied will mean these values

are tested seq(4L, 16L, 2L)

L2_Leaf_Reg Standard + Grid Tuning. Random testing. Supply a single value for non-grid

tuning cases. Otherwise, supply a vector for the L2_Leaf_Reg values to test. For running grid tuning, a NULL value supplied will mean these values are

tested seq(1.0, 10.0, 1.0)

RandomStrength Standard + Grid Tuning. A multiplier of randomness added to split evaluations.

Default value is 1 which adds no randomness.

BorderCount Standard + Grid Tuning. Number of splits for numerical features. Catboost

defaults to 254 for CPU and 128 for GPU

LearningRate Standard + Grid Tuning. Default varies if RMSE, MultiClass, or Logloss is

utilized. Otherwise default is 0.03. Bandit grid partitioned. Supply a single value for non-grid tuning cases. Otherwise, supply a vector for the LearningRate values to test. For running grid tuning, a NULL value supplied will mean these

values are tested c(0.01,0.02,0.03,0.04)

RSM CPU only. Standard + Grid Tuning. If GPU is set, this is turned off. Random

testing. Supply a single value for non-grid tuning cases. Otherwise, supply a vector for the RSM values to test. For running grid tuning, a NULL value supplied will mean those values are tested of 0.80, 0.85, 0.00, 0.05, 1.00.

supplied will mean these values are tested c(0.80, 0.85, 0.90, 0.95, 1.0)

BootStrapType Standard + Grid Tuning. NULL value to default to catboost default (Bayesian

for GPU and MVS for CPU). Random testing. Supply a single value for nongrid tuning cases. Otherwise, supply a vector for the BootStrapType values to test. For running grid tuning, a NULL value supplied will mean these values are

tested c("Bayesian", "Bernoulli", "Poisson", "MVS", "No")

GrowPolicy Standard + Grid Tuning. Catboost default of SymmetricTree. Random test-

ing. Default "SymmetricTree", character, or vector for GrowPolicy to test. For grid tuning, supply a vector of values. For running grid tuning, a NULL value supplied will mean these values are tested c("SymmetricTree", "Depthwise",

"Lossguide")

langevin Set to TRUE to enable

diffusion_temperature

Defaults to 10000

model_size_reg Defaults to 0.5. Set to 0 to allow for bigger models. This is for models with high cardinality categorical features. Values greater than 0 will shrink the model

and quality will decline but models won't be huge.

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvaluationBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, catboostgrid, and a transformation details file.

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Regression: AutoH2oDRFRegression(), AutoH2oGAMRegression(), AutoH2oGBMRegression(), AutoH2oGLMRegression(), AutoH2oMLRegression(), AutoNLS(), AutoXGBoostRegression(), AutoH2oMLRegression(), AutoNLS(), AutoXGBoostRegression(), AutoH2oMLRegression(), AutoM2oMLRegression(), AutoM2oMLRe

```
## Not run:
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
  N = 10000,
  ID = 2,
  ZIP = 0,
  AddDate = FALSE,
  Classification = FALSE,
  MultiClass = FALSE)
# Run function
TestModel <- RemixAutoML::AutoCatBoostRegression(</pre>
  # GPU or CPU and the number of available GPUs
  TrainOnFull = FALSE,
  task\_type = "GPU",
  NumGPUs = 1,
  DebugMode = FALSE,
  # Metadata args
  OutputSelection = c("Importances", "EvalPlots", "EvalMetrics", "Score_TrainData"),
  ModelID = "Test_Model_1",
```

```
model_path = normalizePath("./"),
  metadata_path = normalizePath("./"),
  SaveModelObjects = FALSE,
  SaveInfoToPDF = FALSE,
  ReturnModelObjects = TRUE,
  # Data args
  data = data.
  ValidationData = NULL.
  TestData = NULL,
  Weights = NULL,
  TargetColumnName = "Adrian",
  FeatureColNames = names(data)[!names(data) %in%
   c("IDcol_1", "IDcol_2", "Adrian")],
  PrimaryDateColumn = NULL,
  WeightsColumnName = NULL,
  IDcols = c("IDcol_1","IDcol_2"),
  TransformNumericColumns = "Adrian",
 Methods = c("BoxCox", "Asinh", "Asin", "Log",
  "LogPlus1", "Sqrt", "Logit"),
  # Model evaluation
  eval_metric = "RMSE",
  eval_metric_value = 1.5,
  loss_function = "RMSE",
  loss_function_value = 1.5,
  MetricPeriods = 10L,
  NumOfParDepPlots = ncol(data)-1L-2L,
  # Grid tuning args
  PassInGrid = NULL,
  GridTune = FALSE,
  MaxModelsInGrid = 30L,
  MaxRunsWithoutNewWinner = 20L,
  MaxRunMinutes = 60*60,
  BaselineComparison = "default",
  # ML args
 langevin = FALSE,
  diffusion_temperature = 10000,
  Trees = 1000,
  Depth = 9,
  L2_Leaf_Reg = NULL,
  RandomStrength = 1,
  BorderCount = 128,
  LearningRate = NULL,
  RSM = 1,
  BootStrapType = NULL,
  GrowPolicy = "SymmetricTree",
  model_size_reg = 0.5,
  feature_border_type = "GreedyLogSum",
  sampling_unit = "Object",
  subsample = NULL,
  score_function = "Cosine",
  min_data_in_leaf = 1)
# Output
```

AutoCatBoostScoring 49

```
TestModel$Model
TestModel$TrainData
TestModel$TestData
TestModel$PlotList
TestModel$EvaluationMetrics
TestModel$VariableImportance
TestModel$InteractionImportance
TestModel$GridList
TestModel$ColNames
TestModel$TransformationResults
TestModel$FactorLevelsList
## End(Not run)
```

AutoCatBoostScoring AutoCatBoostScoring

Description

AutoCatBoostScoring is an automated scoring function that compliments the AutoCatBoost model training functions. This function requires you to supply features for scoring. It will run ModelDataPrep() to prepare your features for catboost data conversion and scoring.

Usage

```
AutoCatBoostScoring(
  TargetType = NULL,
  ScoringData = NULL,
  FeatureColumnNames = NULL,
  FactorLevelsList = NULL,
  IDcols = NULL,
  OneHot = FALSE,
  ReturnShapValues = FALSE,
  ModelObject = NULL,
  ModelPath = NULL,
  ModelID = NULL,
  ReturnFeatures = TRUE,
  MultiClassTargetLevels = NULL,
  TransformNumeric = FALSE,
  BackTransNumeric = FALSE,
  TargetColumnName = NULL,
  TransformationObject = NULL,
  TransID = NULL,
  TransPath = NULL,
  MDP_Impute = FALSE,
  MDP_CharToFactor = FALSE,
  MDP_RemoveDates = FALSE,
  MDP_MissFactor = "0",
  MDP_MissNum = -1,
  RemoveModel = FALSE
)
```

Arguments

TargetType Set this value to "regression", "classification", "multiclass", or "multiregression"

to score models built using AutoCatBoostRegression(), AutoCatBoostClassify()

or AutoCatBoostMultiClass().

ScoringData This is your data.table of features for scoring. Can be a single row or batch.

FeatureColumnNames

Supply either column names or column numbers used in the AutoCatBoostRegression() function

FactorLevelsList

List of factors levels to DummifyDT()

IDcols Supply ID column numbers for any metadata you want returned with your pre-

dicted values

OneHot Passsed to DummifyD

ReturnShapValues

Set to TRUE to return a data.table of feature contributions to all predicted values

generated

ModelObject Supply the model object directly for scoring instead of loading it from file. If

you supply this, ModelID and ModelPath will be ignored.

ModelPath Supply your path file used in the AutoCatBoost__() function

ModelID Supply the model ID used in the AutoCatBoost__() function

ReturnFeatures Set to TRUE to return your features with the predicted values.

MultiClassTargetLevels

For use with AutoCatBoostMultiClass(). If you saved model objects then this scoring function will locate the target levels file. If you did not save model objects, you can supply the target levels returned from AutoCatBoostMultiClass().

TransformNumeric

Set to TRUE if you have features that were transformed automatically from an Auto__Regression() model AND you haven't already transformed them.

BackTransNumeric

Set to TRUE to generate back-transformed predicted values. Also, if you return features, those will also be back-transformed.

TargetColumnName

Input your target column name used in training if you are utilizing the transformation service

TransformationObject

Set to NULL if you didn't use transformations or if you want the function to pull from the file output from the Auto_Regression() function. You can also supply the transformation data.table object with the transformation details versus

having it pulled from file.

TransID Set to the ID used for saving the transformation data.table object or set it to the

ModelID if you are pulling from file from a build with Auto Regression().

TransPath Set the path file to the folder where your transformation data.table detail object

is stored. If you used the Auto__Regression() to build, set it to the same path as

ModelPath.

MDP_Impute Set to TRUE if you did so for modeling and didn't do so before supplying Scor-

ingData in this function

AutoCatBoostScoring 51

MDP_CharToFactor

Set to TRUE to turn your character columns to factors if you didn't do so to your

ScoringData that you are supplying to this function

MDP_RemoveDates

Set to TRUE if you have date of timestamp columns in your ScoringData

MDP_MissFactor If you set MDP_Impute to TRUE, supply the character values to replace missing

values with

MDP_MissNum If you set MDP_Impute to TRUE, supply a numeric value to replace missing

values with

RemoveModel Set to TRUE if you want the model removed immediately after scoring

Value

A data.table of predicted values with the option to return model features as well.

Author(s)

Adrian Antico

See Also

Other Automated Model Scoring: AutoH20MLScoring(), AutoHurdleScoring(), AutoXGBoostScoring()

```
## Not run:
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
 N = 10000,
  ID = 2,
  ZIP = 0,
  AddDate = FALSE,
  Classification = FALSE,
 MultiClass = FALSE)
# Train a Multiple Regression Model (two target variables)
TestModel <- RemixAutoML::AutoCatBoostRegression(</pre>
  # GPU or CPU and the number of available GPUs
  task_type = "GPU",
  NumGPUs = 1,
  # Metadata arguments
  ModelID = "Test_Model_1",
  model_path = normalizePath("./"),
  metadata_path = NULL,
  SaveModelObjects = FALSE,
  ReturnModelObjects = TRUE,
  # Data arguments
  data = data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
```

```
TestData = NULL,
  Weights = NULL,
  DummifyCols = FALSE,
  TargetColumnName = c("Adrian","Independent_Variable1"),
  FeatureColNames = names(data)[!names(data) %in%
    c("IDcol_1","IDcol_2","Adrian")],
  PrimaryDateColumn = NULL,
  IDcols = c("IDcol_1","IDcol_2"),
  TransformNumericColumns = NULL,
  Methods = c("BoxCox", "Asinh", "Asin", "Log", "LogPlus1",
    "Logit", "YeoJohnson"),
  # Model evaluation
  eval_metric = "MultiRMSE",
  eval_metric_value = 1.5,
  loss_function = "MultiRMSE",
  loss_function_value = 1.5,
  MetricPeriods = 10L,
  NumOfParDepPlots = ncol(data)-1L-2L,
  EvalPlots = TRUE,
  # Grid tuning
  PassInGrid = NULL,
  GridTune = FALSE,
  MaxModelsInGrid = 100L,
  MaxRunsWithoutNewWinner = 100L,
  MaxRunMinutes = 60*60,
  BaselineComparison = "default",
  # ML Args
  langevin = TRUE,
  diffusion_temperature = 10000,
  Trees = 250,
  Depth = 6,
  L2\_Leaf\_Reg = 3.0,
  RandomStrength = 1,
  BorderCount = 128,
  LearningRate = seq(0.01, 0.10, 0.01),
  RSM = c(0.80, 0.85, 0.90, 0.95, 1.0),
  BootStrapType = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
  GrowPolicy = c("SymmetricTree", "Depthwise", "Lossguide"))
# Output
TestModel$Model
TestModel$ValidationData
{\tt TestModel\$EvaluationPlot}
{\tt TestModel\$EvaluationBoxPlot}
TestModel$EvaluationMetrics
TestModel$VariableImportance
TestModel$InteractionImportance
TestModel$ShapValuesDT
TestModel$VI_Plot
TestModel$PartialDependencePlots
TestModel$PartialDependenceBoxPlots
TestModel$GridList
TestModel$ColNames
TestModel$TransformationResults
```

```
# Score a multiple regression model
Preds <- RemixAutoML::AutoCatBoostScoring(</pre>
  TargetType = "multiregression",
  ScoringData = data,
  FeatureColumnNames = names(data)[!names(data) %in%
    c("IDcol_1", "IDcol_2", "Adrian")],
  FactorLevelsList = TestModel$FactorLevelsList,
  IDcols = c("IDcol_1","IDcol_2"),
  OneHot = FALSE,
  ReturnShapValues = TRUE,
  ModelObject = TestModel$Model,
  ModelPath = NULL, #normalizePath("./"),
  ModelID = "Test_Model_1",
  ReturnFeatures = TRUE,
  MultiClassTargetLevels = NULL,
  TransformNumeric = FALSE,
  BackTransNumeric = FALSE,
  TargetColumnName = NULL,
  TransformationObject = NULL,
  TransID = NULL,
  TransPath = NULL,
  MDP_Impute = TRUE,
  MDP_CharToFactor = TRUE,
  MDP_RemoveDates = TRUE,
  MDP_MissFactor = "0",
  MDP\_MissNum = -1,
  RemoveModel = FALSE)
## End(Not run)
```

AutoCatBoostVectorCARMA

AutoCatBoostVectorCARMA

Description

AutoCatBoostVectorCARMA Multiple Regression, Mutlivariate Forecasting with calendar variables, Holiday counts, holiday lags, holiday moving averages, differencing, transformations, interaction-based categorical encoding using target variable and features to generate various time-based aggregated lags, moving averages, moving standard deviations, moving skewness, moving kurtosis, moving quantiles, parallelized interaction-based fourier pairs by grouping variables, and Trend Variables.

Usage

```
AutoCatBoostVectorCARMA(
  data,
  NonNegativePred = FALSE,
  RoundPreds = FALSE,
  TrainOnFull = FALSE,
  TargetColumnName = "Target",
  DateColumnName = "DateTime",
  HierarchGroups = NULL,
```

```
GroupVariables = NULL,
TimeWeights = 1,
FC_Periods = 30,
TimeUnit = "week",
TimeGroups = c("weeks", "months"),
NumOfParDepPlots = 10L,
TargetTransformation = FALSE,
Methods = c("BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "YeoJohnson"),
AnomalyDetection = NULL,
XREGS = NULL,
Lags = c(1L:5L),
MA\_Periods = c(2L:5L),
SD_Periods = NULL,
Skew_Periods = NULL,
Kurt_Periods = NULL,
Quantile_Periods = NULL,
Quantiles_Selected = c("q5", "q95"),
Difference = TRUE,
FourierTerms = 6L,
CalendarVariables = c("second", "minute", "hour", "wday", "mday", "yday", "week",
  "isoweek", "month", "quarter", "year"),
HolidayVariable = c("USPublicHolidays", "EasterGroup", "ChristmasGroup",
  "OtherEcclesticalFeasts"),
HolidayLookback = NULL,
HolidayLags = 1L,
HolidayMovingAverages = 1L:2L,
TimeTrendVariable = FALSE,
ZeroPadSeries = NULL,
DataTruncate = FALSE,
SplitRatios = c(0.7, 0.2, 0.1),
TaskType = "GPU",
NumGPU = 1,
PartitionType = "timeseries",
Timer = TRUE,
DebugMode = FALSE,
EvalMetric = "RMSE",
EvalMetricValue = 1.5,
LossFunction = "RMSE",
LossFunctionValue = 1.5,
GridTune = FALSE,
PassInGrid = NULL,
ModelCount = 100,
MaxRunsWithoutNewWinner = 50,
MaxRunMinutes = 24L * 60L,
Langevin = FALSE,
DiffusionTemperature = 10000,
NTrees = 1000,
L2\_Leaf\_Reg = NULL,
LearningRate = NULL,
RandomStrength = 1,
BorderCount = 254,
Depth = 6,
```

```
RSM = 1,
BootStrapType = "Bayesian",
GrowPolicy = "SymmetricTree",
ModelSizeReg = 0.5,
FeatureBorderType = "GreedyLogSum",
SamplingUnit = "Group",
SubSample = NULL,
ScoreFunction = "Cosine",
MinDataInLeaf = 1
)
```

Arguments

data Supply your full series data set here

NonNegativePred

TRUE or FALSE

RoundPreds Rounding predictions to an integer value. TRUE or FALSE. Defaults to FALSE

TrainOnFull Set to TRUE to train on full data

TargetColumnName

List the column names of your target variables column. E.g. c("Target1","Target2",

..., "TargetN")

DateColumnName List the column name of your date column. E.g. "DateTime"

HierarchGroups Vector of hierarchy categorical columns.

GroupVariables Defaults to NULL. Use NULL when you have a single series. Add in Group-

Variables when you have a series for every level of a group or multiple groups.

TimeWeights NULL or a value.

FC_Periods Set the number of periods you want to have forecasts for. E.g. 52 for weekly

data to forecast a year ahead

TimeUnit List the time unit your data is aggregated by. E.g. "1min", "5min", "10min",

"15min", "30min", "hour", "day", "week", "month", "quarter", "year".

TimeGroups Select time aggregations for adding various time aggregated GDL features.

NumOfParDepPlots

Supply a number for the number of partial dependence plots you want returned

TargetTransformation

 $Run\ AutoTransformationCreate()\ to\ find\ best\ transformation\ for\ the\ target\ variable.\ Tests\ YeoJohnson,\ BoxCox,\ and\ Asigh\ (also\ Asin\ and\ Logit\ for\ proportion$

target variables).

Methods Transformation options to test which include "BoxCox", "Asinh", "Asinh", "Log",

"LogPlus1", "Logit", "YeoJohnson"

AnomalyDetection

NULL for not using the service. Other, provide a list, e.g. AnomalyDetection =

list("tstat high" = 4, tstat low = -4)

XREGS Additional data to use for model development and forecasting. Data needs to be

a complete series which means both the historical and forward looking values

over the specified forecast window needs to be supplied.

Lags Select the periods for all lag variables you want to create. E.g. c(1:5,52)

MA_Periods Select the periods for all moving average variables you want to create. E.g.

c(1:5,52)

SD_Periods Select the periods for all moving standard deviation variables you want to create.

E.g. c(1:5,52)

Skew_Periods Select the periods for all moving skewness variables you want to create. E.g.

c(1:5,52)

Kurt_Periods Select the periods for all moving kurtosis variables you want to create. E.g.

c(1:5,52)

Quantile_Periods

Select the periods for all moving quantiles variables you want to create. E.g.

c(1:5,52)

Quantiles_Selected

Select from the following "q5", "q10", "q15", "q20", "q25", "q30", "q35", "q40",

"q45", "q50", "q55", "q60", "q65", "q70", "q75", "q80", "q85", "q90", "q95"

Difference Puts the I in ARIMA for single series and grouped series.

FourierTerms Set to the max number of pairs. E.g. 2 means to generate two pairs for by each

group level and interations if hierarchy is enabled.

CalendarVariables

NULL, or select from "second", "minute", "hour", "wday", "mday", "yday",

"week", "isoweek", "month", "quarter", "year"

HolidayVariable

 $NULL, or \ select \ from \ "USPublicHolidays", "EasterGroup", "ChristmasGroup",$

"OtherEcclesticalFeasts"

HolidayLookback

Number of days in range to compute number of holidays from a given date in

the data. If NULL, the number of days are computed for you.

HolidayLags Number of lags to build off of the holiday count variable.

HolidayMovingAverages

Number of moving averages to build off of the holiday count variable.

TimeTrendVariable

Set to TRUE to have a time trend variable added to the model. Time trend is numeric variable indicating the numeric value of each record in the time series (by group). Time trend starts at 1 for the earliest point in time and increments

by one for each success time point.

ZeroPadSeries Set to "all", "inner", or NULL. See TimeSeriesFill for explanation

DataTruncate Set to TRUE to remove records with missing values from the lags and moving

average features created

SplitRatios E.g c(0.7,0.2,0.1) for train, validation, and test sets

TaskType Has to CPU for now. If catboost makes GPU available for "MultiRMSE" then it

will be enabled. If you set to GPU the function will coerce it back to CPU.

NumGPU Defaults to 1. If CPU is set this argument will be ignored.

PartitionType Select "random" for random data partitioning "timeseries" for partitioning by

time frames

Timer Set to FALSE to turn off the updating print statements for progress

DebugMode Defaults to FALSE. Set to TRUE to get a print statement of each high level

comment in function

EvalMetric "MultiRMSE" only. If catboost updates this I'll add more later

EvalMetricValue

Placeholder for later

LossFunction "MultiRMSE" only. If catboost updates this I'll add more later

LossFunctionValue

Placeholder for later

GridTune Set to TRUE to run a grid tune

PassInGrid Defaults to NULL

ModelCount Set the number of models to try in the grid tune

MaxRunsWithoutNewWinner

Default is 50

MaxRunMinutes Default is 60*60

Langevin Enables the Stochastic Gradient Langevin Boosting mode. If TRUE and Task-

Type == "GPU" then TaskType will be converted to "CPU"

DiffusionTemperature

Default is 10000

NTrees Select the number of trees you want to have built to train the model

L2_Leaf_Reg 12 reg parameter

LearningRate Defaults to NULL. Catboost will dynamically define this if L2_Leaf_Reg is

NULL and RMSE is chosen (otherwise catboost will default it to 0.03). Then you can pull it out of the model object and pass it back in should you wish.

RandomStrength Default is 1
BorderCount Default is 254

Depth of catboost model

RSM CPU only. If TaskType is GPU then RSM will not be used

BootStrapType If NULL, then if TaskType is GPU then Bayesian will be used. If CPU then

MVS will be used. If MVS is selected when TaskType is GPU, then BootStrap-

Type will be switched to Bayesian

GrowPolicy Default is SymmetricTree. Others include Lossguide and Depthwise

ModelSizeReg Defaults to 0.5. Set to 0 to allow for bigger models. This is for models with high

cardinality categorical features. Valuues greater than 0 will shrink the model

and quality will decline but models won't be huge.

 ${\it Feature Border Type}$

Defaults to "GreedyLogSum". Other options include: Median, Uniform, Uni-

formAndQuantiles, MaxLogSum, MinEntropy

SamplingUnit Default is Group. Other option is Object. if GPU is selected, this will be turned

off unless the loss_function is YetiRankPairWise

SubSample Can use if BootStrapType is neither Bayesian nor No. Pass NULL to use Cat-

boost default. Used for bagging.

ScoreFunction Default is Cosine. CPU options are Cosine and L2. GPU options are Cosine,

L2, NewtonL2, and NewtomCosine (not available for Lossguide)

MinDataInLeaf Defaults to 1. Used if GrowPolicy is not SymmetricTree

Value

Returns a data.table of original series and forecasts, the catboost model objects (everything returned from AutoCatBoostRegression()), a time series forecast plot, and transformation info if you set TargetTransformation to TRUE. The time series forecast plot will plot your single series or aggregate your data to a single series and create a plot from that.

Author(s)

Adrian Antico

See Also

Other Automated Panel Data Forecasting: AutoCatBoostCARMA(), AutoCatBoostHurdleCARMA(), AutoH2OCARMA(), AutoXGBoostCARMA()

```
## Not run:
# Two group variables and xregs
# Load Walmart Data from Dropbox
data <- data.table::fread(</pre>
 "https://www.dropbox.com/s/2str3ek4f4cheqi/walmart_train.csv?dl=1")
# Filter out zeros
data <- data[Weekly_Sales != 0]</pre>
# Subset for Stores / Departments With Full Series
data <- data[, Counts := .N, by = c("Store", "Dept")][Counts == 143][</pre>
 , Counts := NULL]
# Subset Columns (remove IsHoliday column)----
keep <- c("Store", "Dept", "Date", "Weekly_Sales")</pre>
data <- data[, ..keep]</pre>
data <- data[Store %in% c(1,2)]</pre>
xregs <- data.table::copy(data)</pre>
xregs[, GroupVar := do.call(paste, c(.SD, sep = " ")), .SDcols = c("Store", "Dept")]
xregs[, c("Store","Dept") := NULL]
data.table::setnames(xregs, "Weekly_Sales", "Other")
xregs[, Other := jitter(Other, factor = 25)]
data <- data[as.Date(Date) < as.Date('2012-09-28')]</pre>
# Vector CARMA testing
data[, Weekly_Profit := Weekly_Sales * 0.75]
# Build forecast
CatBoostResults <- RemixAutoML::AutoCatBoostVectorCARMA(
  # data args
  data = data, # TwoGroup_Data,
  TargetColumnName = c("Weekly_Sales","Weekly_Profit"),
  DateColumnName = "Date",
  HierarchGroups = NULL,
  GroupVariables = c("Store", "Dept"),
  TimeWeights = 1,
  TimeUnit = "weeks",
  TimeGroups = c("weeks", "months"),
  # Production args
  TaskType = "GPU",
  NumGPU = 1,
  TrainOnFull = TRUE,
  SplitRatios = c(1 - 10 / 138, 10 / 138),
```

```
PartitionType = "random",
FC_Periods = 4,
Timer = TRUE,
DebugMode = TRUE,
# Target transformations
TargetTransformation = TRUE,
Methods = c("BoxCox", "Asin", "Asin", "Log",
            "LogPlus1", "Logit", "YeoJohnson"),
Difference = FALSE,
NonNegativePred = FALSE,
RoundPreds = FALSE,
# Date features
CalendarVariables = c("week", "month", "quarter"),
HolidayVariable = c("USPublicHolidays",
                    "EasterGroup",
                    "ChristmasGroup", "OtherEcclesticalFeasts"),
HolidayLookback = NULL,
HolidayLags = 1,
HolidayMovingAverages = 1:2,
# Time series features
Lags = list("weeks" = seq(2L, 10L, 2L),
            "months" = c(1:3)),
MA_Periods = list("weeks" = seq(2L, 10L, 2L),
                  "months" = c(2,3)),
SD_Periods = NULL,
Skew_Periods = NULL,
Kurt_Periods = NULL,
Quantile_Periods = NULL,
Quantiles_Selected = c("q5","q95"),
# Bonus features
AnomalyDetection = NULL,
XREGS = xregs,
FourierTerms = 2,
TimeTrendVariable = TRUE,
ZeroPadSeries = NULL,
DataTruncate = FALSE,
# Eval args
NumOfParDepPlots = 100L,
EvalMetric = "MultiRMSE",
EvalMetricValue = 1.5,
LossFunction = "MultiRMSE",
LossFunctionValue = 1.5,
# Grid args
GridTune = FALSE,
PassInGrid = NULL,
ModelCount = 5,
MaxRunsWithoutNewWinner = 50,
MaxRunMinutes = 60*60,
# ML Args
NTrees = 1000,
```

60 AutoClustering

```
Depth = 6,
  LearningRate = NULL,
 L2_Leaf_Reg = NULL,
  RandomStrength = 1,
  BorderCount = 254,
  RSM = 1,
  BootStrapType = "Bayesian",
  GrowPolicy = "SymmetricTree",
  Langevin = FALSE,
  DiffusionTemperature = 10000,
  ModelSizeReg = 0.5,
  FeatureBorderType = "GreedyLogSum",
  SamplingUnit = "Group",
  SubSample = NULL,
  ScoreFunction = "Cosine",
 MinDataInLeaf = 1)
## End(Not run)
```

AutoClustering

AutoClustering

Description

AutoClustering adds a column to your original data with a cluster number identifier. You can run request an autoencoder to be built to reduce the dimensionality of your data before running the clusering algo.

Usage

```
AutoClustering(
  data,
  FeatureColumns = NULL,
  ModelID = "TestModel",
  SavePath = NULL,
  NThreads = 8,
  MaxMemory = "28G",
  MaxClusters = 50,
  ClusterMetric = "totss",
  RunDimReduction = TRUE,
  ShrinkRate = (sqrt(5) - 1)/2,
  Epochs = 5L,
  L2_Reg = 0.1,
  ElasticAveraging = TRUE,
  ElasticAveragingMovingRate = 0.9,
  ElasticAveragingRegularization = 0.001
)
```

Arguments

data is the source time series data.table

FeatureColumns Independent variables

AutoClustering 61

ModelID For naming the files to save
SavePath Directory path for saving models

NThreads set based on number of threads your machine has available

MaxMemory set based on the amount of memory your machine has available

MaxClusters number of factors to test out in k-means to find the optimal number

ClusterMetric pick the metric to identify top model in grid tune c("totss", "betweenss", "withinss")

RunDimReduction

If TRUE, an autoencoder will be built to reduce the feature space. Otherwise,

all features in FeatureColumns will be used for clustering

ShrinkRate Node shrink rate for H2OAutoencoder. See that function for details.

Epochs For the autoencoder L2_Reg For the autoencoder

ElasticAveraging

For the autoencoder

 ${\tt ElasticAveragingMovingRate}$

For the autoencoder

 ${\tt Elastic Averaging Regularization}$

For the autoencoder

Value

Original data.table with added column with cluster number identifier

Author(s)

Adrian Antico

See Also

Other Unsupervised Learning: AutoClusteringScoring(), GenTSAnomVars(), H20IsolationForestScoring(), H20IsolationForest(), ResidualOutliers()

```
## Not run:
############################
# Training Setup
###########################
# Create fake data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
  N = 1000,
  ID = 2,
  ZIP = 0,
  AddDate = TRUE,
  Classification = FALSE,
  MultiClass = FALSE)
# Run function
data <- RemixAutoML::AutoClustering(</pre>
  data,
```

```
FeatureColumns = names(data)[2:(ncol(data)-1)],
  ModelID = "TestModel",
  SavePath = getwd(),
 NThreads = 8,
 MaxMemory = "28G",
 MaxClusters = 50,
 ClusterMetric = "totss",
  RunDimReduction = TRUE,
  ShrinkRate = (sqrt(5) - 1) / 2,
 Epochs = 5L,
 L2_{Reg} = 0.10,
 ElasticAveraging = TRUE,
 ElasticAveragingMovingRate = 0.90,
 ElasticAveragingRegularization = 0.001)
# Scoring Setup
Sys.sleep(10)
# Create fake data
data <- RemixAutoML::FakeDataGenerator(</pre>
 Correlation = 0.85,
 N = 1000,
 ID = 2,
 ZIP = 0,
 AddDate = TRUE,
 Classification = FALSE,
 MultiClass = FALSE)
# Run function
data <- RemixAutoML::AutoClusteringScoring(</pre>
 FeatureColumns = names(data)[2:(ncol(data)-1)],
 ModelID = "TestModel",
 SavePath = getwd(),
 NThreads = 8,
 MaxMemory = "28G"
 DimReduction = TRUE)
## End(Not run)
```

AutoClusteringScoring AutoClusteringScoring

Description

AutoClusteringScoring adds a column to your original data with a cluster number identifier. You can run request an autoencoder to be built to reduce the dimensionality of your data before running the clusering algo.

AutoClusteringScoring 63

Usage

```
AutoClusteringScoring(
  data,
  FeatureColumns = NULL,
  ModelID = "TestModel",
  SavePath = NULL,
  NThreads = 8,
  MaxMemory = "28G",
  DimReduction = TRUE
)
```

Arguments

data is the source time series data.table

FeatureColumns Independent variables

ModelID This is returned from the training run in the output list with element named

'model_name'. It's not identical to the ModelID used in training due to the grid

tuning.

SavePath Directory path for saving models

NThreads set based on number of threads your machine has available

MaxMemory set based on the amount of memory your machine has available

DimReduction Set to TRUE if you set RunDimReduction in the training version of this function

Value

Original data.table with added column with cluster number identifier

Author(s)

Adrian Antico

See Also

Other Unsupervised Learning: AutoClustering(), GenTSAnomVars(), H20IsolationForestScoring(), H20IsolationForest(), ResidualOutliers()

64 AutoDataDictionaries

```
# Run function
data <- RemixAutoML::AutoClustering(</pre>
  FeatureColumns = names(data)[2:(ncol(data)-1)],
 ModelID = "TestModel",
  SavePath = getwd(),
 NThreads = 8,
 MaxMemory = "28G"
  MaxClusters = 50,
  ClusterMetric = "totss",
  RunDimReduction = TRUE,
  ShrinkRate = (sqrt(5) - 1) / 2,
 Epochs = 5L,
 L2_Reg = 0.10,
 ElasticAveraging = TRUE,
 ElasticAveragingMovingRate = 0.90,
 ElasticAveragingRegularization = 0.001)
# Scoring Setup
###########################
Sys.sleep(10)
# Create fake data
data <- RemixAutoML::FakeDataGenerator(</pre>
 Correlation = 0.85,
 N = 1000,
 ID = 2,
 ZIP = 0,
  AddDate = TRUE,
  Classification = FALSE,
 MultiClass = FALSE)
# Run function
data <- RemixAutoML::AutoClusteringScoring(</pre>
  FeatureColumns = names(data)[2:(ncol(data)-1)],
 ModelID = "TestModel",
  SavePath = getwd(),
 NThreads = 8,
 MaxMemory = "28G"
  DimReduction = TRUE)
## End(Not run)
```

AutoDataDictionaries AutoDataDictionaries

Description

AutoDataDictionaries is a function to return data dictionary data in table form

AutoDataPartition 65

Usage

```
AutoDataDictionaries(
   Type = "sqlserver",
   DBConnection,
   DDType = 1L,
   Query = NULL,
   ASIS = FALSE,
   CloseChannel = TRUE
)
```

Arguments

Type = "sqlserver" is currently the only system supported

DBConnection This is a RODBC connection object for sql server

DDType Select from 1 - 6 based on this article

Query Supply a query

ASIS Set to TRUE to pull in values without coercing types

CloseChannel Set to TRUE to disconnect

Author(s)

Adrian Antico

See Also

```
Other Database: SQL_ClearTable(), SQL_DropTable(), SQL_Query_Push(), SQL_Query(), SQL_SaveTable(), SQL_Server_DBConnection()
```

AutoDataPartition AutoDataPartition

Description

This function will take your ratings matrix and model and score your data in parallel.

Usage

```
AutoDataPartition(
  data,
  NumDataSets = 3L,
  Ratios = c(0.7, 0.2, 0.1),
  PartitionType = "random",
  StratifyColumnNames = NULL,
  TimeColumnName = NULL
)
```

66 AutoDataPartition

Arguments

data Source data to do your partitioning on

NumDataSets The number of total data sets you want built

Ratios A vector of values for how much data each data set should get in each split. E.g.

c(0.70, 0.20, 0.10)

PartitionType Set to either "random", "timeseries", or "time". With "random", your data will

be paritioned randomly (with stratified sampling if column names are supplied). With "timeseries", you can partition by time with a stratify option (so long as you have an equal number of records for each strata). With "time" you will have data sets generated so that the training data contains the earliest records in time,

validation data the second earliest, test data the third earliest, etc.

StratifyColumnNames

Supply column names of categorical features to use in a stratified sampling procedure for partitioning the data. Partition type must be "random" to use this

option

TimeColumnName Supply a date column name or a name of a column with an ID for sorting by

time such that the smallest number is the earliest in time.

Value

Returns a list of data.tables

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDiffLagN(), AutoHierarchicalFourier(), AutoInteraction(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(AutoWord2VecModeler(), AutoWord2VecScoring(), CategoricalEncoding(), CreateCalendarVariables(), CreateHolidayVariables(), DummifyDT(), H2OAutoencoderScoring(), H2OAutoencoder(), ModelDataPrep(), TimeSeriesFill()

```
# Create fake data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
  N = 1000,
  ID = 2,
  ZIP = 0,
  AddDate = FALSE,
  Classification = FALSE,
  MultiClass = FALSE)
# Run data partitioning function
dataSets <- RemixAutoML::AutoDataPartition(</pre>
  data,
  NumDataSets = 3L,
  Ratios = c(0.70, 0.20, 0.10),
  PartitionType = "random",
  StratifyColumnNames = NULL,
```

AutoDiffLagN 67

```
TimeColumnName = NULL)
# Collect data
TrainData <- dataSets$TrainData
ValidationData <- dataSets$ValidationData
TestData <- dataSets$TestData</pre>
```

AutoDiffLagN

AutoDiffLagN

Description

AutoDiffLagN create differences for selected numerical columns

Usage

```
AutoDiffLagN(
data,
DateVariable = NULL,
GroupVariables = NULL,
DiffVariables = NULL,
DiffDateVariables = NULL,
DiffGroupVariables = NULL,
NLag1 = 0L,
NLag2 = 1L,
Sort = FALSE,
RemoveNA = TRUE
)
```

Arguments

data Source data

DateVariable Date column used for sorting GroupVariables Difference data by group

DiffVariables Column names of numeric columns to difference

DiffDateVariables

Columns names for date variables to difference. Output is a numeric value representing the difference in days.

DiffGroupVariables

Column names for categorical variables to difference. If no change then the output is 'No_Change' else 'New=NEWVAL Old=OLDVAL' where NEWVAL

and OLDVAL are placeholders for the actual values

NLag1 If the diff calc, we have column 1 - column 2. NLag1 is in reference to column

1. If you want to take the current value minus the previous weeks value, supply

a zero. If you want to create a lag2 - lag4 NLag1 gets a 2.

NLag2 If the diff calc, we have column 1 - column 2. NLag2 is in reference to column

2. If you want to take the current value minus the previous weeks value, supply

a 1. If you want to create a lag2 - lag4 NLag1 gets a 4.

Sort TRUE to sort your data inside the function

RemoveNA Set to TRUE to remove rows with NA generated by the lag operation

68 AutoETS

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoHierarchicalFourier(), AutoInteraction(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(AutoWord2VecModeler(), AutoWord2VecScoring(), CategoricalEncoding(), CreateCalendarVariables(), CreateHolidayVariables(), DummifyDT(), H2OAutoencoderScoring(), H2OAutoencoder(), ModelDataPrep(), TimeSeriesFill()

```
## Not run:
# Create fake data
data <- RemixAutoML::FakeDataGenerator(</pre>
 Correlation = 0.70,
 N = 50000,
 ID = 2L,
 FactorCount = 3L,
  AddDate = TRUE,
  ZIP = 0L
  TimeSeries = FALSE,
  ChainLadderData = FALSE,
  Classification = FALSE,
 MultiClass = FALSE)
# Store Cols to diff
Cols <- names(data)[which(unlist(data[, lapply(.SD, is.numeric)]))]</pre>
# Clean data before running AutoDiffLagN
data <- RemixAutoML::ModelDataPrep(data = data, Impute = FALSE, CharToFactor = FALSE, FactorToChar = TRUE)
# Run function
data <- RemixAutoML::AutoDiffLagN(</pre>
  DateVariable = "DateTime",
  GroupVariables = c("Factor_1", "Factor_2"),
  DiffVariables = Cols,
  DiffDateVariables = NULL,
 DiffGroupVariables = NULL,
 NLag1 = 0L
  NLag2 = 1L
  Sort = TRUE,
  RemoveNA = TRUE)
## End(Not run)
```

AutoETS 69

Description

AutoETS is a multi-armed bandit model testing framework for AR and SAR NNets. Randomized probability matching is the underlying bandit algorithm. Model evaluation is done by blending the training error and the validation error from testing the model on out of sample data. The bandit algorithm compares the performance of the current build against the previous builds which starts with the classic nnetar model from the forecast package. Depending on how many lags, seasonal lags, and fourier pairs you test the number of combinations of features to test begins to approach 10,000 different combinations of settings. The function tests out transformations, differencing, and variations of the lags, seasonal lags, and fourier pairs. The paramter space is broken up into various buckets that are increasing in sophistication. The bandit algorithm samples from those buckets and based on many rounds of testing it determines which buckets to generate samples from more frequently based on the models performance coming from that bucket. All of the models have performance data collected on them and a final rebuild is initiated when a winner is found. The rebuild process begins by retraining the model with the settings that produced the best performance. If the model fails to build, for whatever reason, the next best buildable model is rebuilt.

Usage

```
AutoETS(
   data,
   FilePath = NULL,
   TargetVariableName,
   DateColumnName,
   TimeAggLevel = "week",
   EvaluationMetric = "MAE",
   NumHoldOutPeriods = 5L,
   NumFCPeriods = 5L,
   TrainWeighting = 0.5,
   MaxConsecutiveFails = 12L,
   MaxNumberModels = 100L,
   MaxRunTimeMinutes = 10L,
   NumberCores = max(1L, min(4L, parallel::detectCores() - 2L))
)
```

Arguments

data Source data.table

FilePath NULL to return nothing. Provide a file path to save the model and xregs if

available

TargetVariableName

Name of your time series target variable

DateColumnName Name of your date column

TimeAggLevel Choose from "year", "quarter", "month", "week", "day", "hour"

EvaluationMetric

Choose from MAE, MSE, and MAPE

NumHoldOutPeriods

Number of time periods to use in the out of sample testing

NumFCPeriods Number of periods to forecast

TrainWeighting Model ranking is based on a weighted average of training metrics and out of

sample metrics. Supply the weight of the training metrics, such as 0.50 for 50

percent.

70 AutoH2OCARMA

MaxConsecutiveFails

When a new best model is found MaxConsecutiveFails resets to zero. Indicated the number of model attemps without a new winner before terminating the procedure.

MaxNumberModels

Indicate the maximum number of models to test.

MaxRunTimeMinutes

Indicate the maximum number of minutes to wait for a result.

NumberCores Default max(1L, min(4L, parallel::detectCores()-2L))

Author(s)

Adrian Antico

See Also

```
Other Automated Time Series: AutoArfima(), AutoBanditNNet(), AutoBanditSarima(), AutoTBATS(), AutoTS()
```

```
## Not run:
# Create fake data
data <- RemixAutoML::FakeDataGenerator(TimeSeries = TRUE, TimeSeriesTimeAgg = "days")</pre>
# Build model
Output <- RemixAutoML::AutoETS(</pre>
  data,
  FilePath = NULL,
  TargetVariableName = "Weekly_Sales",
  DateColumnName = "Date",
  TimeAggLevel = "weeks"
  EvaluationMetric = "MAE",
  NumHoldOutPeriods = 5L,
  NumFCPeriods = 5L,
  TrainWeighting = 0.50,
  MaxConsecutiveFails = 12L,
  MaxNumberModels = 100L,
  MaxRunTimeMinutes = 10L,
  NumberCores = max(1L, min(4L, parallel::detectCores()-2L)))
# Output
Output$ForecastPlot
Output$Forecast
{\tt Output\$PerformanceGrid}
## End(Not run)
```

AutoH2OCARMA 71

Description

AutoH2OCARMA Mutlivariate Forecasting with calendar variables, Holiday counts, holiday lags, holiday moving averages, differencing, transformations, interaction-based categorical encoding using target variable and features to generate various time-based aggregated lags, moving averages, moving standard deviations, moving skewness, moving kurtosis, moving quantiles, parallelized interaction-based fourier pairs by grouping variables, and Trend Variables.

Usage

```
AutoH2OCARMA(
  AlgoType = "drf",
  ExcludeAlgos = "XGBoost",
  data,
  TrainOnFull = FALSE,
  TargetColumnName = "Target",
  PDFOutputPath = NULL,
  SaveDataPath = NULL,
  WeightsColumn = NULL,
  NonNegativePred = FALSE,
  RoundPreds = FALSE,
  DateColumnName = "DateTime",
  GroupVariables = NULL,
  HierarchGroups = NULL,
  TimeUnit = "week",
  TimeGroups = c("weeks", "months"),
  FC_Periods = 30,
  PartitionType = "timeseries",
  MaxMem = {
                  gc()
   paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo",
    intern = TRUE))/1e+06)), "G") },
  NThreads = max(1, parallel::detectCores() - 2),
  Timer = TRUE,
  DebugMode = FALSE,
  TargetTransformation = FALSE,
 Methods = c("YeoJohnson", "BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt", "Asin",
    "Logit"),
  XREGS = NULL,
  Lags = c(1:5),
  MA_Periods = c(1:5),
  SD_Periods = NULL,
  Skew_Periods = NULL,
  Kurt_Periods = NULL,
  Quantile_Periods = NULL,
  Quantiles_Selected = NULL,
  AnomalyDetection = NULL,
  Difference = TRUE,
  FourierTerms = 6,
 CalendarVariables = c("second", "minute", "hour", "wday", "mday", "yday", "week", "wom", "isoweek", "month", "quarter", "year"),
HolidayVariable = c("USPublicHolidays", "EasterGroup", "ChristmasGroup",
    "OtherEcclesticalFeasts"),
  HolidayLookback = NULL,
```

72 AutoH2OCARMA

```
HolidayLags = 1,
  HolidayMovingAverages = 1:2,
  TimeTrendVariable = FALSE,
  DataTruncate = FALSE,
  ZeroPadSeries = NULL,
  SplitRatios = c(0.7, 0.2, 0.1),
  EvalMetric = "rmse",
  NumOfParDepPlots = 0L,
  GridTune = FALSE,
  ModelCount = 1,
  NTrees = 1000,
  LearnRate = 0.1,
  LearnRateAnnealing = 1,
  GridStrategy = "Cartesian",
  MaxRunTimeSecs = 60 * 60 * 24,
  StoppingRounds = 10,
  MaxDepth = 20,
  SampleRate = 0.632,
  MTries = -1,
  ColSampleRate = 1,
  ColSampleRatePerTree = 1,
  ColSampleRatePerTreeLevel = 1,
  MinRows = 1,
  NBins = 20,
  NBinsCats = 1024,
  NBinsTopLevel = 1024,
  CategoricalEncoding = "AUTO",
  HistogramType = "AUTO",
  Distribution = "gaussian",
  Link = "identity",
  RandomDistribution = NULL,
  RandomLink = NULL,
  Solver = "AUTO",
  Alpha = NULL,
  Lambda = NULL,
  LambdaSearch = FALSE,
  NLambdas = -1,
  Standardize = TRUE,
  RemoveCollinearColumns = FALSE,
  InterceptInclude = TRUE,
  NonNegativeCoefficients = FALSE,
  RandomColNumbers = NULL,
  InteractionColNumbers = NULL
)
```

Arguments

AlgoType Select from "dfr" for RandomForecast, "gbm" for gradient boosting, "glm" for

generalized linear model, "automl" for H2O's AutoML algo, and "gam" for

H2O's Generalized Additive Model.

 $\label{thm:condition} \textbf{ExcludeAlgoS} \qquad \textbf{For use when AlgoType} = "AutoML". \ \textbf{Selections include "DRF", "GLM", "XGBoost", "GBM", "DeepLeading to the property of the pro$

and "Stacke-dEnsemble"

data Supply your full series data set here
TrainOnFull Set to TRUE to train on full data

TargetColumnName

List the column name of your target variables column. E.g. "Target"

PDFOutputPath NULL or a path file to output PDFs to a specified folder

SaveDataPath NULL Or supply a path. Data saved will be called 'ModelID'_data.csv

WeightsColumn NULL

NonNegativePred

TRUE or FALSE

RoundPreds Rounding predictions to an integer value. TRUE or FALSE. Defaults to FALSE

DateColumnName List the column name of your date column. E.g. "DateTime"

GroupVariables Defaults to NULL. Use NULL when you have a single series. Add in Group-

Variables when you have a series for every level of a group or multiple groups.

HierarchGroups Vector of hierarchy categorical columns.

TimeUnit List the time unit your data is aggregated by. E.g. "1min", "5min", "10min",

"15min", "30min", "hour", "day", "week", "month", "quarter", "year".

TimeGroups Select time aggregations for adding various time aggregated GDL features.

FC_Periods Set the number of periods you want to have forecasts for. E.g. 52 for weekly

data to forecast a year ahead

PartitionType Select "random" for random data partitioning "time" for partitioning by time

frames

MaxMem Set to the maximum amount of memory you want to allow for running this

function. Default is "32G".

NThreads Set to the number of threads you want to dedicate to this function.

Timer Set to FALSE to turn off the updating print statements for progress

DebugMode Defaults to FALSE. Set to TRUE to get a print statement of each high level

comment in function

TargetTransformation

Run AutoTransformationCreate() to find best transformation for the target variable. Tests YeoJohnson, BoxCox, and Asigh (also Asin and Logit for proportion

target variables).

Methods Choose from "YeoJohnson", "BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt",

"Asin", or "Logit". If more than one is selected, the one with the best normalization pearson statistic will be used. Identity is automatically selected and

compared.

XREGS Additional data to use for model development and forecasting. Data needs to be

a complete series which means both the historical and forward looking values

over the specified forecast window needs to be supplied.

Lags Select the periods for all lag variables you want to create. E.g. c(1:5,52) or

list("day" = c(1:10), "weeks" = c(1:4))

MA_Periods Select the periods for all moving average variables you want to create. E.g.

c(1:5,52) or list("day" = c(2:10), "weeks" = c(2:4))

SD_Periods Select the periods for all moving standard deviation variables you want to create.

E.g. c(1:5,52) or list("day" = c(2:10), "weeks" = c(2:4))

Skew_Periods Select the periods for all moving skewness variables you want to create. E.g.

c(1:5,52) or list("day" = c(2:10), "weeks" = c(2:4))

Kurt_Periods Select the periods for all moving kurtosis variables you want to create. E.g. c(1:5,52) or list("day" = c(2:10), "weeks" = c(2:4))

Quantile_Periods

Select the periods for all moving quantiles variables you want to create. E.g. c(1:5,52) or list("day" = c(2:10), "weeks" = c(2:4))

Quantiles_Selected

Select from the following c ("q5","q10","q15","q20","q25","q30","q35","q40","q45","q50","q55","q60", q600 from the following c ("q5","q10","q15","q10","q15","q20","q25","q30","q35","q40","q45","q50","q55","q60","q65","q60","q65","q60","q65","q60","q65","q60","q65","q60","q65","q60","q65","q60","q65","q60","q65","q60","q65","q60","q65","q60","q65","q6

AnomalyDetection

NULL for not using the service. Other, provide a list, e.g. AnomalyDetection = $list("tstat_high" = 4, tstat_low = -4)$

Difference Puts the I in ARIMA for single series and grouped series.

FourierTerms Set to the max number of pairs. E.g. 2 means to generate two pairs for by each

group level and interations if hierarchy is enabled.

CalendarVariables

NULL, or select from "second", "minute", "hour", "wday", "mday", "yday", "week", "isoweek", "month", "quarter", "year"

HolidayVariable

NULL, or select from "USPublicHolidays", "EasterGroup", "ChristmasGroup", "OtherEcclesticalFeasts"

HolidayLookback

Number of days in range to compute number of holidays from a given date in the data. If NULL, the number of days are computed for you.

Number of lags to build off of the holiday count variable. HolidayLags

Holiday Moving Averages

Number of moving averages to build off of the holiday count variable.

TimeTrendVariable

Set to TRUE to have a time trend variable added to the model. Time trend is numeric variable indicating the numeric value of each record in the time series (by group). Time trend starts at 1 for the earliest point in time and increments by one for each success time point.

Set to TRUE to remove records with missing values from the lags and moving DataTruncate

average features created

NULL to do nothing. Otherwise, set to "maxmax", "minmax", "maxmin", "min-ZeroPadSeries

min". See TimeSeriesFill for explanations of each type

SplitRatios E.g c(0.7,0.2,0.1) for train, validation, and test sets

EvalMetric Select from "RMSE", "MAE", "MAPE", "Poisson", "Quantile", "LogLinQuan-

tile", "Lq", "SMAPE", "R2", "MSLE", "MedianAbsoluteError"

NumOfParDepPlots

Set to zeros if you do not want any returned. Can set to a very large value and it

will adjust to the max number of features if it's too high

GridTune Set to TRUE to run a grid tune

Set the number of models to try in the grid tune ModelCount

NTrees Select the number of trees you want to have built to train the model

LearnRate Default 0.10, models available include gbm

LearnRateAnnealing

Default 1, models available include gbm

Default "Cartesian", models available include GridStrategy

MaxRunTimeSecs Default 60*60*24, models available include

StoppingRounds Default 10, models available include

MaxDepth Default 20, models available include drf, gbm
SampleRate Default 0.632, models available include drf, gbm

MTries Default 1, models available include drf
ColSampleRate Default 1, model available include gbm

ColSampleRatePerTree

Default 1, models available include drf, gbm

ColSampleRatePerTreeLevel

Default 1, models available include drf, gbm

MinRows Default 1, models available include drf, gbm

NBins Default 20, models available include drf, gbm

NBinsCats Default 1024, models available include drf, gbm

NBinsTopLevel Default 1024, models available include drf, gbm

CategoricalEncoding

Default "AUTO". Choices include: "AUTO", "Enum", "OneHotInternal", "OneHotExplicit", "Binary", "Eigen", "LabelEncoder", "Sort-ByResponse", "Enum-

Limited"

HistogramType Default "AUTO". Select from "AUTO", "UniformAdaptive", "Random", "Quan-

tilesGlobal", "RoundRobin"

Distribution Model family

Link for model family

RandomDistribution

Default NULL

RandomLink Default NULL
Solver Model optimizer
Alpha Default NULL
Lambda Default NULL
LambdaSearch Default FALSE,
NLambdas Default -1

Standardize Default TRUE RemoveCollinearColumns

Default FALSE

InterceptInclude

Default TRUE

 ${\tt NonNegativeCoefficients}$

Default FALSE

RandomColNumbers

NULL

 ${\tt Interaction Col Numbers}$

NULL

Value

See examples

Author(s)

Adrian Antico

See Also

Other Automated Panel Data Forecasting: AutoCatBoostCARMA(), AutoCatBoostHurdleCARMA(), AutoCatBoostVectorCARMA(), AutoXGBoostCARMA()

```
## Not run:
# Load data
data <- data.table::fread("https://www.dropbox.com/s/2str3ek4f4cheqi/walmart_train.csv?dl=1")</pre>
# Ensure series have no missing dates (also remove series with more than 25% missing values)
data <- RemixAutoML::TimeSeriesFill(</pre>
  data,
 DateColumnName = "Date",
  GroupVariables = c("Store", "Dept"),
  TimeUnit = "weeks",
  FillType = "maxmax"
  MaxMissingPercent = 0.25,
  SimpleImpute = TRUE)
# Set negative numbers to 0
data <- data[, Weekly_Sales := data.table::fifelse(Weekly_Sales < 0, 0, Weekly_Sales)]</pre>
# Remove IsHoliday column
data[, IsHoliday := NULL]
# Create xregs (this is the include the categorical variables instead of utilizing only the interaction of them)
xregs <- data[, .SD, .SDcols = c("Date", "Store", "Dept")]</pre>
# Change data types
data[, ":=" (Store = as.character(Store), Dept = as.character(Dept))]
xregs[, ":=" (Store = as.character(Store), Dept = as.character(Dept))]
# Build forecast
Results <- RemixAutoML::AutoH2OCARMA(</pre>
  # Data Artifacts
  AlgoType = "drf",
  ExcludeAlgos = NULL,
  data = data,
  TargetColumnName = "Weekly_Sales",
  DateColumnName = "Date",
  HierarchGroups = NULL,
  GroupVariables = c("Dept"),
  TimeUnit = "week",
  TimeGroups = c("weeks", "months"),
  # Data Wrangling Features
  SplitRatios = c(1 - 10 / 138, 10 / 138),
  PartitionType = "random",
```

```
# Production args
FC_Periods = 4L,
TrainOnFull = FALSE,
MaxMem = {gc();paste0(as.character(floor(max(32, as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo
NThreads = parallel::detectCores(),
PDFOutputPath = NULL,
SaveDataPath = NULL,
Timer = TRUE.
DebugMode = TRUE,
# Target Transformations
TargetTransformation = FALSE,
Methods = c("BoxCox", "Asinh", "Asin", "Log",
   "LogPlus1", "Sqrt", "Logit", "YeoJohnson"),
Difference = FALSE,
NonNegativePred = FALSE,
RoundPreds = FALSE,
# Calendar features
CalendarVariables = c("week", "wom", "month", "quarter", "year"),
HolidayVariable = c("USPublicHolidays", "EasterGroup",
  "ChristmasGroup", "OtherEcclesticalFeasts"),
HolidayLookback = NULL,
HolidayLags = 1:7,
HolidayMovingAverages = 2:7,
TimeTrendVariable = TRUE,
# Time series features
Lags = list("weeks" = c(1:4), "months" = c(1:3)),
MA\_Periods = list("weeks" = c(2:8), "months" = c(6:12)),
SD_Periods = NULL,
Skew_Periods = NULL,
Kurt_Periods = NULL,
Quantile_Periods = NULL,
Quantiles_Selected = NULL,
# Bonus Features
XREGS = NULL,
FourierTerms = 2L,
AnomalyDetection = NULL,
ZeroPadSeries = NULL,
DataTruncate = FALSE,
# ML evaluation args
EvalMetric = "RMSE",
NumOfParDepPlots = 0L,
# ML grid tuning args
GridTune = FALSE,
GridStrategy = "Cartesian",
ModelCount = 5,
MaxRunTimeSecs = 60*60*24,
StoppingRounds = 10,
# ML Args
NTrees = 1000L,
MaxDepth = 20,
```

```
SampleRate = 0.632,
  MTries = -1,
  ColSampleRatePerTree = 1,
  ColSampleRatePerTreeLevel = 1,
  MinRows = 1,
  NBins = 20,
  NBinsCats = 1024,
  NBinsTopLevel = 1024,
  HistogramType = "AUTO".
  CategoricalEncoding = "AUTO",
  RandomColNumbers = NULL,
  InteractionColNumbers = NULL,
  WeightsColumn = NULL,
  # ML args
  Distribution = "gaussian",
  Link = "identity",
  RandomDistribution = NULL,
  RandomLink = NULL.
  Solver = "AUTO",
  Alpha = NULL,
  Lambda = NULL,
  LambdaSearch = FALSE,
  NLambdas = -1,
  Standardize = TRUE,
  RemoveCollinearColumns = FALSE,
  InterceptInclude = TRUE,
  NonNegativeCoefficients = FALSE)
UpdateMetrics <-</pre>
  Results$ModelInformation$EvaluationMetrics[
    Metric == "MSE", MetricValue := sqrt(MetricValue)]
print(UpdateMetrics)
# Get final number of trees actually used
Results \$ Model @ model \$ model\_summary \$ number\_of\_internal\_trees
# Inspect performance
Results$ModelInformation$EvaluationMetricsByGroup[order(-R2_Metric)]
Results$ModelInformation$EvaluationMetricsByGroup[order(MAE_Metric)]
Results \$ Model Information \$ Evaluation \texttt{MetricsByGroup[order(MSE\_Metric)]}
Results$ModelInformation$EvaluationMetricsByGroup[order(MAPE_Metric)]
## End(Not run)
```

AutoH2oDRFClassifier AutoH2oDRFClassifier

Description

AutoH2oDRFClassifier is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the

model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation metrics, variable importance, partial dependence calibration plots, and column names used in model fitting.

Usage

)

```
AutoH2oDRFClassifier(
  OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
  data = NULL,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  WeightsColumn = NULL,
  MaxMem = {
                 gc()
  paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo",
    intern = TRUE))/1e+06)), "G") },
  NThreads = max(1L, parallel::detectCores() - 2L),
  model_path = NULL,
  metadata_path = NULL,
  ModelID = "FirstModel",
  NumOfParDepPlots = 3L,
  ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  SaveInfoToPDF = FALSE,
  IfSaveModel = "mojo",
  H2OShutdown = FALSE,
  H2OStartUp = TRUE,
  GridTune = FALSE,
  GridStrategy = "RandomDiscrete",
  MaxRunTimeSecs = 60 * 60 * 24,
  StoppingRounds = 10,
  MaxModelsInGrid = 2,
  DebugMode = FALSE,
  eval_metric = "auc",
  CostMatrixWeights = c(1, 0, 0, 1),
  Trees = 50L,
  MaxDepth = 20L,
  SampleRate = 0.632,
  MTries = -1,
  ColSampleRatePerTree = 1,
  ColSampleRatePerTreeLevel = 1,
  MinRows = 1,
  NBins = 20,
  NBinsCats = 1024,
  NBinsTopLevel = 1024,
  HistogramType = "AUTO";
  CategoricalEncoding = "AUTO"
```

Arguments

OutputSelection

You can select what type of output you want returned. Choose from c("EvalMetrics",

"PDFs", "Score_TrainData")

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located (but not mixed types). Note that the target column needs to be a $0 \mid 1$

numeric variable.

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

WeightsColumn Column name of a weights column

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to

create.

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

SaveInfoToPDF Set to TRUE to save modeling information to PDF. If model_path or meta-

data_path aren't defined then output will be saved to the working directory

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H20Shutdown Set to TRUE to shutdown H2O after running the function

H2OStartUp Defaults to TRUE which means H2O will be started inside the function

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

GridStrategy Default "Cartesian"

MaxRunTimeSecs Default 86400

StoppingRounds Default 10

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

DebugMode Set to TRUE to get a printout of each step taken internally

eval_metric This is the metric used to identify best grid tuned model. Choose from "AUC"

or "logloss"

CostMatrixWeights

A vector with 4 elements c(True Positive Cost, False Negative Cost, False Posi-

tive Cost, True Negative Cost). Default c(1,0,0,1),

Trees The maximum number of trees you want in your models

MaxDepth Default 20 SampleRate Default 0.632

MTries Default -1 means it will default to number of features divided by 3

ColSampleRatePerTree

Default 1

ColSampleRatePerTreeLevel

Default 1

MinRows Default 1
NBinsCats Default 1024
NBinsTopLevel Default 1024
HistogramType Default "AUTO"

CategoricalEncoding

Default "AUTO"

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Binary Classification: AutoCatBoostClassifier(), AutoH2oGAMClassifier(), AutoH2oGBMClassifier(), AutoH2oGLMClassifier(), AutoH2oMLClassifier(), AutoXGBoostClassifier()

```
## Not run:
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(
   Correlation = 0.85,
   N = 1000L,
   ID = 2L,
   ZIP = 0L,
   AddDate = FALSE,
   Classification = TRUE,
   MultiClass = FALSE)</pre>
TestModel <- RemixAutoML::AutoH2oDRFClassifier(
```

```
# Compute management args
 MaxMem = {gc();paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo", inte
 NThreads = max(1L, parallel::detectCores() - 2L),
  IfSaveModel = "mojo",
 H2OShutdown = FALSE,
 H2OStartUp = TRUE,
  # Model evaluation args
  eval metric = "auc".
  NumOfParDepPlots = 3L,
  CostMatrixWeights = c(1,0,0,1),
  # Metadata args
  OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
  model_path = normalizePath("./"),
  metadata_path = NULL,
 ModelID = "FirstModel",
  ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  SaveInfoToPDF = FALSE,
  DebugMode = FALSE,
  # Data args
  data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = "Adrian",
  FeatureColNames = names(data)[!names(data) %in% c("IDcol_1", "IDcol_2", "Adrian")],
  WeightsColumn = NULL,
  # Grid Tuning Args
  GridStrategy = "RandomDiscrete",
  GridTune = FALSE,
  MaxModelsInGrid = 10,
  MaxRunTimeSecs = 60*60*24,
  StoppingRounds = 10,
 # Model args
  Trees = 50L,
  MaxDepth = 20,
  SampleRate = 0.632,
  MTries = -1,
  ColSampleRatePerTree = 1,
  ColSampleRatePerTreeLevel = 1,
 MinRows = 1,
 NBins = 20,
 NBinsCats = 1024,
 NBinsTopLevel = 1024,
 HistogramType = "AUTO",
 CategoricalEncoding = "AUTO")
## End(Not run)
```

AutoH2oDRFHurdleModel 83

Description

AutoH2oDRFHurdleModel for hurdle modeling

Usage

```
AutoH2oDRFHurdleModel(
  data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  Buckets = 0L,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  TransformNumericColumns = NULL,
  SplitRatios = c(0.7, 0.2, 0.1),
  ModelID = "ModelTest",
  Paths = NULL,
  MetaDataPaths = NULL,
  SaveModelObjects = TRUE,
  IfSaveModel = "mojo",
  MaxMem = {
                 gc()
  paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo",
    intern = TRUE))/1e+06)), "G") },
  NThreads = max(1L, parallel::detectCores() - 2L),
  Trees = 1000L,
  GridTune = TRUE,
  MaxModelsInGrid = 1L,
  NumOfParDepPlots = 10L,
  PassInGrid = NULL
)
```

Arguments

data Source training data. Do not include a column that has the class labels for the

buckets as they are created internally.

TrainOnFull Set to TRUE to train on full data

ValidationData Source validation data. Do not include a column that has the class labels for the

buckets as they are created internally.

TestData Souce test data. Do not include a column that has the class labels for the buckets

as they are created internally.

Buckets A numeric vector of the buckets used for subsetting the data. NOTE: the final

Bucket value will first create a subset of data that is less than the value and a

second one thereafter for data greater than the bucket value.

TargetColumnName

Supply the column name or number for the target variable

FeatureColNames

Supply the column names or number of the features (not included the Primary-DateColumn)

TransformNumericColumns

Transform numeric column inside the AutoCatBoostRegression() function

SplitRatios Supply vector of partition ratios. For example, c(0.70,0.20,0,10).

ModelID Define a character name for your models

Paths The path to your folder where you want your model information saved

MetaDataPaths A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to Paths.

SaveModelObjects

Set to TRUE to save the model objects to file in the folders listed in Paths

IfSaveModel Save as "mojo" or "standard"

MaxMem Set the maximum memory your system can provide

NThreads Set the number of threads you want to dedicate to the model building

Trees Default 1000

GridTune Set to TRUE if you want to grid tune the models

MaxModelsInGrid

Set to a numeric value for the number of models to try in grid tune

NumOfParDepPlots

Set to pull back N number of partial dependence calibration plots.

PassInGrid Pass in a grid for changing up the parameter settings for catboost

Value

Returns AutoXGBoostRegression() model objects: VariableImportance.csv, Model, Validation-Data.csv, EvalutionPlot.png, EvalutionBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, and the grid used

Author(s)

Adrian Antico

See Also

Other Supervised Learning - Compound: AutoCatBoostHurdleModel(), AutoH2oGBMHurdleModel(), AutoXGBoostHurdleModel()

```
## Not run:
Output <- AutoH2oDRFHurdleModel(
   data,
   TrainOnFull = FALSE,
   ValidationData = NULL,
   TestData = NULL,
   Buckets = 1L,
   TargetColumnName = "Target_Variable",
   FeatureColNames = 4:ncol(data),
   TransformNumericColumns = NULL,
   SplitRatios = c(0.7, 0.2, 0.1),
   NThreads = max(1L, parallel::detectCores()-2L),
   ModelID = "ModelID",
   Paths = NULL,
   MetaDataPaths = NULL,</pre>
```

 ${\tt AutoH2oDRFMultiClass} \quad \textit{AutoH2oDRFMultiClass}$

Description

AutoH2oDRFMultiClass is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation metrics, confusion matrix, and variable importance.

Usage

```
AutoH2oDRFMultiClass(
  OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
  data = NULL,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  WeightsColumn = NULL,
  ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  IfSaveModel = "mojo",
  MaxMem = {
                 gc()
  paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo",
    intern = TRUE))/1e+06)), "G") },
  NThreads = max(1, parallel::detectCores() - 2),
  model_path = NULL,
  metadata_path = NULL,
  ModelID = "FirstModel",
  H2OShutdown = FALSE,
  H2OStartUp = TRUE,
  DebugMode = FALSE,
  eval_metric = "logloss",
  GridTune = FALSE,
  GridStrategy = "RandomDiscrete",
  MaxRunTimeSecs = 60 * 60 * 24,
```

```
StoppingRounds = 10,
MaxModelsInGrid = 2,
Trees = 50,
MaxDepth = 20L,
SampleRate = 0.632,
MTries = -1,
ColSampleRatePerTree = 1,
ColSampleRatePerTreeLevel = 1,
MinRows = 1,
NBins = 20,
NBinsCats = 1024,
NBinsTopLevel = 1024,
HistogramType = "AUTO",
CategoricalEncoding = "AUTO")
```

Arguments

OutputSelection

You can select what type of output you want returned. Choose from c("EvalMetrics",

"PDFs", "Score_TrainData")

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target

is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

WeightsColumn Column name of a weights column

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

H2OShutdown Set to TRUE to have H2O shutdown after running this function

H2OStartUp Defaults to TRUE which means H2O will be started inside the function

DebugMode Set to TRUE to print steps to screen

eval_metric This is the metric used to identify best grid tuned model. Choose from "logloss",

"r2", "RMSE", "MSE"

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

GridStrategy Default "Cartesian"

MaxRunTimeSecs Default 86400

StoppingRounds Default 10

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

Trees The maximum number of trees you want in your models

MaxDepth Default 20
SampleRate Default 0.632

MTries Default -1 means it will default to number of features divided by 3

ColSampleRatePerTree

Default 1

ColSampleRatePerTreeLevel

Default 1

MinRows Default 1

NBins Default 20

NBinsCats Default 1024

NBinsTopLevel Default 1024

HistogramType Default "AUTO"

CategoricalEncoding

Default "AUTO"

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evaluation-Metrics.csv, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Multiclass Classification: AutoCatBoostMultiClass(), AutoH2oGAMMultiClass(), AutoH2oGLMMultiClass(), AutoH2oGLMMultiClass(), AutoH2oGLMMultiClass(), AutoXGBoostMultiClass()

Examples

CategoricalEncoding = "AUTO")

```
## Not run:
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
 Correlation = 0.85,
 N = 1000L
 ID = 2L,
 ZIP = 0L,
  AddDate = FALSE,
  Classification = FALSE,
 MultiClass = TRUE)
# Run function
TestModel <- RemixAutoML::AutoH2oDRFMultiClass(</pre>
  OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
  data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = "Adrian",
  FeatureColNames = names(data)[!names(data) %in% c("IDcol_1", "IDcol_2", "Adrian")],
  WeightsColumn = NULL,
  eval_metric = "logloss",
 MaxMem = {gc();paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo", inte
 NThreads = max(1, parallel::detectCores()-2),
  model_path = normalizePath("./"),
  metadata_path = file.path(normalizePath("./")),
  ModelID = "FirstModel",
  ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  IfSaveModel = "mojo",
  H2OShutdown = FALSE,
  H2OStartUp = TRUE,
  DebugMode = FALSE,
  # Grid Tuning Args
  GridStrategy = "RandomDiscrete",
  GridTune = FALSE,
  MaxModelsInGrid = 10,
  MaxRunTimeSecs = 60*60*24,
  StoppingRounds = 10,
  # ML args
  Trees = 50,
  MaxDepth = 20,
  SampleRate = 0.632,
  MTries = -1,
  ColSampleRatePerTree = 1,
  ColSampleRatePerTreeLevel = 1,
  MinRows = 1,
  NBins = 20,
  NBinsCats = 1024,
  NBinsTopLevel = 1024,
  HistogramType = "AUTO",
```

```
## End(Not run)
```

AutoH2oDRFRegression AutoH2oDRFRegression

Description

AutoH2oDRFRegression is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation boxplot, evaluation metrics, variable importance, partial dependence calibration plots, partial dependence calibration box plots, and column names used in model fitting.

Usage

```
AutoH2oDRFRegression(
  OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
  data = NULL,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  WeightsColumn = NULL,
  MaxMem = {
                gc()
  paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo",
    intern = TRUE))/1e+06)), "G") },
  NThreads = max(1, parallel::detectCores() - 2),
  H2OShutdown = TRUE,
  H2OStartUp = TRUE,
  DebugMode = FALSE,
  ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  SaveInfoToPDF = FALSE,
  IfSaveModel = "mojo",
  model_path = NULL,
  metadata_path = NULL,
  ModelID = "FirstModel",
  TransformNumericColumns = NULL,
  Methods = c("BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt", "Asin", "Logit"),
  NumOfParDepPlots = 3,
  eval_metric = "RMSE",
  GridTune = FALSE,
  GridStrategy = "RandomDiscrete",
  MaxRunTimeSecs = 60 * 60 * 24,
  StoppingRounds = 10,
  MaxModelsInGrid = 2,
  Trees = 50,
  MaxDepth = 20,
```

```
SampleRate = 0.632,
MTries = -1,
ColSampleRatePerTree = 1,
ColSampleRatePerTreeLevel = 1,
MinRows = 1,
NBins = 20,
NBinsCats = 1024,
NBinsTopLevel = 1024,
HistogramType = "AUTO",
CategoricalEncoding = "AUTO")
```

Arguments

OutputSelection

You can select what type of output you want returned. Choose from c("EvalMetrics",

"PDFs", "Score_TrainData")

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target

is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

WeightsColumn Column name of a weights column

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building

H20Shutdown Set to TRUE to shutdown H2O inside the function

H2OStartUp Defaults to TRUE which means H2O will be started inside the function

DebugMode Set to TRUE to print steps to screen

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

SaveInfoToPDF Set to TRUE to save insights to PDF

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

TransformNumericColumns

Set to NULL to do nothing; otherwise supply the column names of numeric

variables you want transformed

Methods Choose from "YeoJohnson", "BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt",

"Asin", or "Logit". If more than one is selected, the one with the best normalization pearson statistic will be used. Identity is automatically selected and

compared.

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create. Calibration boxplots will only be created for numerical features (not

dummy variables)

eval_metric This is the metric used to identify best grid tuned model. Choose from "MSE",

"RMSE", "MAE", "RMSLE"

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

GridStrategy Default "Cartesian"

MaxRunTimeSecs Default 86400 StoppingRounds Default 10

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

Trees The maximum number of trees you want in your models

MaxDepth Default 20 SampleRate Default 0.632

MTries Default -1 means it will default to number of features divided by 3

ColSampleRatePerTree

Default 1

 ${\tt ColSampleRatePerTreeLevel}$

Default 1

MinRows Default 1

NBins Default 20

NBinsCats Default 1024

NBinsTopLevel Default 1024

HistogramType Default "AUTO". Select from AUTO", "UniformAdaptive", "Random", "Quan-

tilesGlobal", "RoundRobin"

CategoricalEncoding

Default "AUTO"

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvalutionBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, GridList, and Transformation metadata

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Regression: AutoCatBoostRegression(), AutoH2oGAMRegression(), AutoH2oGBMRegression(), AutoH2oGLMRegression(), AutoH2oMLRegression(), AutoNLS(), AutoXGBoostRegression()

```
## Not run:
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
 Correlation = 0.85,
 N = 1000,
 ID = 2,
  ZIP = 0,
  AddDate = FALSE,
  Classification = FALSE,
  MultiClass = FALSE)
# Run function
TestModel <- RemixAutoML::AutoH2oDRFRegression(</pre>
    # Compute management
  MaxMem = {gc();paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo", int
    NThreads = max(1L, parallel::detectCores() - 2L),
    H2OShutdown = TRUE,
    H2OStartUp = TRUE,
    IfSaveModel = "mojo",
    # Model evaluation:
    eval_metric = "RMSE",
    NumOfParDepPlots = 3,
    # Metadata arguments
    OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
    model_path = normalizePath("./"),
    metadata_path = NULL,
    ModelID = "FirstModel",
    ReturnModelObjects = TRUE,
    SaveModelObjects = FALSE,
    SaveInfoToPDF = FALSE,
    DebugMode = FALSE,
    # Data Args
    data = data,
    TrainOnFull = FALSE,
    ValidationData = NULL,
    TestData = NULL,
    TargetColumnName = "Adrian",
    FeatureColNames = names(data)[!names(data) %in%
      c("IDcol_1", "IDcol_2", "Adrian")],
    WeightsColumn = NULL,
    TransformNumericColumns = NULL,
    Methods = c("BoxCox", "Asinh", "Asin", "Log",
      "LogPlus1", "Sqrt", "Logit", "YeoJohnson"),
    # Grid Tuning Args
    GridStrategy = "RandomDiscrete",
```

```
GridTune = FALSE,
   MaxModelsInGrid = 10,
   MaxRunTimeSecs = 60*60*24,
   StoppingRounds = 10,
   # ML Args
   Trees = 50.
   MaxDepth = 20,
   SampleRate = 0.632,
   MTries = -1,
   ColSampleRatePerTree = 1,
   ColSampleRatePerTreeLevel = 1,
   MinRows = 1,
   NBins = 20,
   NBinsCats = 1024,
   NBinsTopLevel = 1024,
   HistogramType = "AUTO",
   CategoricalEncoding = "AUTO")
## End(Not run)
```

AutoH2oGAMClassifier AutoH2oGAMClassifier

Description

AutoH2oGAMClassifier is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation metrics, variable importance, partial dependence calibration plots, and column names used in model fitting.

Usage

```
AutoH2oGAMClassifier(
 OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
 data = NULL,
 TrainOnFull = FALSE,
 ValidationData = NULL,
 TestData = NULL,
 TargetColumnName = NULL,
 FeatureColNames = NULL,
 WeightsColumn = NULL,
 GamColNames = NULL,
 Distribution = "binomial".
 Link = "logit",
  eval_metric = "auc",
  CostMatrixWeights = c(1, 0, 0, 1),
 MaxMem = {
                 gc()
  paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo",
    intern = TRUE))/1e+06)), "G") },
```

```
NThreads = max(1, parallel::detectCores() - 2),
  model_path = NULL.
  metadata_path = NULL,
  ModelID = "FirstModel",
  NumOfParDepPlots = 3,
  ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  SaveInfoToPDF = FALSE,
  IfSaveModel = "mojo",
  H2OShutdown = FALSE,
  H2OStartUp = TRUE,
  DebugMode = FALSE,
  GridTune = FALSE,
  GridStrategy = "Cartesian",
  StoppingRounds = 10,
  MaxRunTimeSecs = 3600 * 24 * 7,
  MaxModelsInGrid = 2,
  num_knots = NULL,
  keep_gam_cols = TRUE,
  Solver = "AUTO",
  Alpha = 0.5,
  Lambda = NULL,
  LambdaSearch = FALSE,
  NLambdas = -1,
  Standardize = TRUE,
  RemoveCollinearColumns = FALSE,
  InterceptInclude = TRUE,
  NonNegativeCoefficients = FALSE
)
```

Arguments

OutputSelection

You can select what type of output you want returned. Choose from c("EvalMetrics",

"PDFs", "Score_TrainData")

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located (but not mixed types). Note that the target column needs to be a $0 \mid 1$

numeric variable.

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

WeightsColumn Weighted classification

GamColNames GAM column names. Up to 9 features

Distribution "binomial", "quasibinomial"

Link identity, logit, log, inverse, tweedie

eval_metric This is the metric used to identify best grid tuned model. Choose from "AUC"

or "logloss"

CostMatrixWeights

A vector with 4 elements c(True Positive Cost, False Negative Cost, False Posi-

tive Cost, True Negative Cost). Default c(1,0,0,1),

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to

create.

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

SaveInfoToPDF Set to TRUE to save modeling information to PDF. If model_path or meta-

data_path aren't defined then output will be saved to the working directory

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H2OShutdown Set to TRUE to shutdown H2O after running the function

H2OStartUp Set to TRUE to start up H2O inside function

DebugMode Set to TRUE to get a print out of steps taken internally

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

GridStrategy "RandomDiscrete" or "Cartesian"

StoppingRounds Iterations in grid tuning
MaxRunTimeSecs Max run time in seconds

 ${\tt MaxModelsInGrid}$

Number of models to test from grid options (1080 total possible options)

num_knots Numeric values for gam

keep_gam_cols Logical

Solver Default "AUTO". Options include "IRLSM", "L_BFGS", "COORDINATE_DESCENT_NAIVE",

"COORDINATE_DESCENT", "GRADIENT_DESCENT_LH", "GRADIENT_DESCENT_SQERR

Alpha Gridable. Default 0.5 Otherwise supply a value between 0 and 1. 1 is equivalent

to Lasso regression. 0 is equivalent to Ridge regression. Inbetween for a blend

of the two.

Lambda Gridable. Default NULL. Regularization strength.

LambdaSearch Default FALSE.
NLambdas Default -1

```
Standardize Default TRUE. Standardize numerical columns
RemoveCollinearColumns
Default FALSE. Removes some of the linearly dependent columns
InterceptInclude
Default TRUE
NonNegativeCoefficients
Default FALSE
```

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Binary Classification: AutoCatBoostClassifier(), AutoH2oDRFClassifier(), AutoH2oDRFClassifier(), AutoH2oGBMClassifier(), AutoH2oGLMClassifier(), AutoH2oMLClassifier(), AutoKGBoostClassifier()

```
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
       Correlation = 0.85,
       N = 1000,
       ID = 2,
       ZIP = 0,
       AddDate = FALSE,
       Classification = TRUE,
       MultiClass = FALSE)
# Define GAM Columns to use - up to 9 are allowed
GamCols <- names(which(unlist(lapply(data, is.numeric))))</pre>
GamCols <- GamCols[!GamCols %in% c("Adrian","IDcol_1","IDcol_2")]</pre>
GamCols <- GamCols[1L:(min(9L,length(GamCols)))]</pre>
# Run function
TestModel <- RemixAutoML::AutoH2oGAMClassifier(</pre>
       # Compute management
    \label{eq:maxMem} \textit{MaxMem} = \{gc(); paste0(as.character(floor(as.numeric(system("awk '/MemFree/ \{print $2\}' /proc/meminfo", interval and the process of t
       NThreads = max(1, parallel::detectCores()-2),
       H2OShutdown = TRUE,
       H2OStartUp = TRUE,
       IfSaveModel = "mojo",
       # Model evaluation args
       CostMatrixWeights = c(1,0,0,1),
       eval_metric = "auc",
       NumOfParDepPlots = 3,
```

```
# Metadata arguments
OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
model_path = NULL,
metadata_path = NULL,
ModelID = "FirstModel"
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
SaveInfoToPDF = FALSE,
DebugMode = FALSE,
# Data args
data = data,
TrainOnFull = FALSE,
ValidationData = NULL,
TestData = NULL,
TargetColumnName = "Adrian",
FeatureColNames = names(data)[!names(data) %in% c("IDcol_1", "IDcol_2", "Adrian")],
WeightsColumn = NULL,
GamColNames = GamCols,
# ML args
num_knots = NULL,
keep_gam_cols = TRUE,
GridTune = FALSE,
GridStrategy = "Cartesian",
StoppingRounds = 10,
MaxRunTimeSecs = 3600 * 24 * 7,
MaxModelsInGrid = 10,
Distribution = "binomial".
Link = "logit",
Solver = "AUTO",
Alpha = 0.5,
Lambda = NULL,
LambdaSearch = FALSE,
NLambdas = -1,
Standardize = TRUE,
RemoveCollinearColumns = FALSE,
InterceptInclude = TRUE,
NonNegativeCoefficients = FALSE)
```

AutoH2oGAMMultiClass AutoH2oGAMMultiClass

Description

AutoH2oGAMMultiClass is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation metrics, confusion matrix, and variable importance.

Usage

```
AutoH2oGAMMultiClass(
  OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
  data = NULL,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  WeightsColumn = NULL,
  GamColNames = NULL,
  eval_metric = "logloss",
  MaxMem = {
                gc()
  paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo",
    intern = TRUE))/1e+06)), "G") },
  NThreads = max(1, parallel::detectCores() - 2),
  model_path = NULL,
  metadata_path = NULL,
  ModelID = "FirstModel",
  ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  IfSaveModel = "mojo",
  H2OShutdown = FALSE,
  H2OStartUp = TRUE,
  DebugMode = FALSE,
  GridTune = FALSE,
  GridStrategy = "Cartesian",
  StoppingRounds = 10,
  MaxRunTimeSecs = 3600 * 24 * 7,
  MaxModelsInGrid = 2,
  Distribution = "multinomial",
  Link = "Family_Default",
  num_knots = NULL,
  keep_gam_cols = TRUE,
  Solver = "AUTO",
  Alpha = 0.5,
  Lambda = NULL,
  LambdaSearch = FALSE,
  NLambdas = -1,
  Standardize = TRUE,
  RemoveCollinearColumns = FALSE,
  InterceptInclude = TRUE,
  NonNegativeCoefficients = FALSE
)
```

Arguments

```
OutputSelection
```

You can select what type of output you want returned. Choose from c("EvalMetrics", "PDFs", "Score_TrainData")

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target

is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

WeightsColumn Weighted classification

GamColNames GAM column names. Up to 9 features

eval_metric This is the metric used to identify best grid tuned model. Choose from "logloss",

"r2", "RMSE", "MSE"

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H20Shutdown Set to TRUE to have H2O shutdown after running this function

H2OStartUp Set to TRUE to start up H2O inside function

DebugMode Set to TRUE to print steps to screen

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

GridStrategy "RandomDiscrete" or "Cartesian"

StoppingRounds Iterations in grid tuning
MaxRunTimeSecs Max run time in seconds

 ${\tt MaxModelsInGrid}$

Number of models to test from grid options (1080 total possible options)

num_knots Numeric values for gam

keep_gam_cols Logical

Solver Default "AUTO". Options include "IRLSM", "L_BFGS", "COORDINATE_DESCENT_NAIVE",

"COORDINATE_DESCENT", "GRADIENT_DESCENT_LH", "GRADIENT_DESCENT_SQERR

Alpha Gridable. Default 0.5 Otherwise supply a value between 0 and 1. 1 is equivalent

to Lasso regression. 0 is equivalent to Ridge regression. Inbetween for a blend

of the two.

```
Lambda Gridable. Default NULL. Regularization strength.
```

LambdaSearch Default FALSE.

NLambdas Default -1

Standardize Default TRUE. Standardize numerical columns

 ${\tt RemoveCollinearColumns}$

Default FALSE. Removes some of the linearly dependent columns

InterceptInclude

Default TRUE

NonNegativeCoefficients

Default FALSE

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evaluation-Metrics.csv, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Multiclass Classification: AutoCatBoostMultiClass(), AutoH2oDRFMultiClass(), AutoH2oGLMMultiClass(), AutoH2oGLMMultiClass(), AutoH2oMLMultiClass(), AutoXGBoostMultiClass()

```
# Create some dummy correlated data with numeric and categorical features
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
  N = 1000L
  ID = 2L,
  ZIP = 0L,
  AddDate = FALSE,
  Classification = FALSE,
 MultiClass = TRUE)
# Define GAM Columns to use - up to 9 are allowed
GamCols <- names(which(unlist(lapply(data, is.numeric))))</pre>
GamCols <- GamCols[!GamCols %in% c("Adrian","IDcol_1","IDcol_2")]</pre>
GamCols <- GamCols[1L:(min(9L,length(GamCols)))]</pre>
# Run function
TestModel <- RemixAutoML::AutoH2oGAMMultiClass(</pre>
  OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
  data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = "Adrian",
  FeatureColNames = names(data)[!names(data) %in% c("IDcol_1", "IDcol_2", "Adrian")],
  WeightsColumn = NULL,
  GamColNames = GamCols,
```

```
eval_metric = "logloss",
MaxMem = {gc();paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo", inte
NThreads = max(1, parallel::detectCores()-2),
model_path = normalizePath("./"),
metadata_path = NULL,
ModelID = "FirstModel"
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
IfSaveModel = "mojo",
H2OShutdown = FALSE,
H2OStartUp = TRUE,
DebugMode = FALSE,
# ML args
num_knots = NULL,
keep_gam_cols = TRUE,
GridTune = FALSE,
GridStrategy = "Cartesian",
StoppingRounds = 10,
MaxRunTimeSecs = 3600 * 24 * 7,
MaxModelsInGrid = 10,
Distribution = "multinomial",
Link = "Family_Default",
Solver = "AUTO",
Alpha = 0.5,
Lambda = NULL,
LambdaSearch = FALSE,
NLambdas = -1,
Standardize = TRUE,
RemoveCollinearColumns = FALSE,
InterceptInclude = TRUE,
NonNegativeCoefficients = FALSE)
```

 ${\tt AutoH2oGAMRegression} \quad \textit{AutoH2oGAMRegression}$

Description

AutoH2oGAMRegression is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation boxplot, evaluation metrics, variable importance, partial dependence calibration plots, partial dependence calibration box plots, and column names used in model fitting.

Usage

```
AutoH2oGAMRegression(
  OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
  data = NULL,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
```

```
TargetColumnName = NULL,
  FeatureColNames = NULL.
  InteractionColNumbers = NULL,
  WeightsColumn = NULL,
  GamColNames = NULL,
  Distribution = "gaussian",
  Link = "identity",
  TweedieLinkPower = NULL,
  TweedieVariancePower = NULL,
  TransformNumericColumns = NULL,
  Methods = c("BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt", "Asin", "Logit"),
  eval_metric = "RMSE",
  MaxMem = {
                 gc()
  paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo",
    intern = TRUE))/1e+06)), "G") },
  NThreads = max(1, parallel::detectCores() - 2),
  model_path = NULL,
  metadata_path = NULL,
  ModelID = "FirstModel",
  NumOfParDepPlots = 3,
  ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  SaveInfoToPDF = FALSE,
  IfSaveModel = "mojo",
  H2OShutdown = TRUE,
  H2OStartUp = TRUE,
  GridTune = FALSE,
  GridStrategy = "Cartesian",
  StoppingRounds = 10,
  MaxRunTimeSecs = 3600 * 24 * 7,
  MaxModelsInGrid = 2,
  num_knots = NULL,
  keep_gam_cols = TRUE,
  Solver = "AUTO",
  Alpha = 0.5,
  Lambda = NULL,
  LambdaSearch = FALSE,
  NLambdas = -1,
  Standardize = TRUE,
  RemoveCollinearColumns = FALSE,
  InterceptInclude = TRUE,
  NonNegativeCoefficients = FALSE,
  DebugMode = FALSE
)
```

Arguments

 ${\tt OutputSelection}$

You can select what type of output you want returned. Choose from c("EvalMetrics", "PDFs", "Score_TrainData")

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target

is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

InteractionColNumbers

Column numbers of the features you want to be pairwise interacted

WeightsColumn Column name of a weights column

GamColNames GAM column names. Up to 9 features

Distribution : "AUTO", "gaussian", "binomial", "quasi-binomial", "ordinal", "multinomial",

"poisson", "gamma", "tweedie", "negative-binomial", "fractionalbinomial"

Link "family_default", "identity", "logit", "log", "inverse", "tweedie", "ologit"

TweedieLinkPower

See h2o docs for background

TweedieVariancePower

See h2o docs for background

TransformNumericColumns

Set to NULL to do nothing; otherwise supply the column names of numeric

variables you want transformed

Methods Choose from "BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt", "Asin", or "Logit".

If more than one is selected, the one with the best normalization pearson statistic

will be used. Identity is automatically selected and compared.

eval_metric This is the metric used to identify best grid tuned model. Choose from "MSE",

"RMSE", "MAE", "RMSLE"

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create. Calibration boxplots will only be created for numerical features (not

dummy variables)

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

SaveInfoToPDF Set to TRUE to save insights to PDF

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H20Shutdown Set to TRUE to shutdown H2O inside the function

H2OStartUp Defaults to TRUE which means H2O will be started inside the function

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

GridStrategy "RandomDiscrete" or "Cartesian"

StoppingRounds Iterations in grid tuning
MaxRunTimeSecs Max run time in seconds

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

num_knots Numeric values for gam

keep_gam_cols Logical

Solver Default "AUTO". Options include "IRLSM", "L_BFGS", "COORDINATE_DESCENT_NAIVE",

"COORDINATE_DESCENT", "GRADIENT_DESCENT_LH", "GRADIENT_DESCENT_SQERR

Alpha Gridable. Default 0.5 Otherwise supply a value between 0 and 1. 1 is equivalent

to Lasso regression. 0 is equivalent to Ridge regression. Inbetween for a blend

of the two.

Lambda Gridable. Default NULL. Regularization strength.

LambdaSearch Default FALSE.

NLambdas Default -1

Standardize Default TRUE. Standardize numerical columns

RemoveCollinearColumns

Default FALSE. Removes some of the linearly dependent columns

InterceptInclude

Default TRUE

 ${\tt NonNegativeCoefficients}$

Default FALSE

DebugMode Set to TRUE to get a printout of steps taken

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvaluationBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, GridList, and Transformation metadata

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Regression: AutoCatBoostRegression(), AutoH2oDRFRegression(), AutoH2oGBMRegression(), AutoH2oGLMRegression(), AutoH2oMLRegression(), AutoNLS(), AutoXGBoostRegression()

Model args

```
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
 Correlation = 0.85,
 N = 1000,
 ID = 2,
  ZIP = 0,
  AddDate = FALSE,
  Classification = FALSE,
 MultiClass = FALSE)
# Define GAM Columns to use - up to 9 are allowed
GamCols <- names(which(unlist(lapply(data, is.numeric))))</pre>
GamCols <- GamCols[!GamCols %in% c("Adrian","IDcol_1","IDcol_2")]</pre>
GamCols <- GamCols[1L:(min(9L,length(GamCols)))]</pre>
# Run function
TestModel <- RemixAutoML::AutoH2oGAMRegression(</pre>
 # Compute management
MaxMem = {gc();paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo", inter
 NThreads = max(1, parallel::detectCores()-2),
 H2OShutdown = TRUE,
 H2OStartUp = TRUE,
 IfSaveModel = "mojo",
 # Model evaluation
 eval_metric = "RMSE",
 NumOfParDepPlots = 3,
 # Metadata arguments
 OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
 model_path = NULL,
 metadata_path = NULL,
 ModelID = "FirstModel",
 ReturnModelObjects = TRUE,
 SaveModelObjects = FALSE,
 SaveInfoToPDF = FALSE,
 # Data arguments:
 data = data,
 TrainOnFull = FALSE,
 ValidationData = NULL,
 TestData = NULL,
 TargetColumnName = "Adrian",
 FeatureColNames = names(data)[!names(data) %in%
                                  c("IDcol_1", "IDcol_2", "Adrian")],
 InteractionColNumbers = NULL,
 WeightsColumn = NULL,
 GamColNames = GamCols,
 TransformNumericColumns = NULL,
 Methods = c("BoxCox", "Asin", "Asin", "Log",
             "LogPlus1", "Sqrt", "Logit"),
```

```
num_knots = NULL,
keep_gam_cols = TRUE,
GridTune = FALSE,
GridStrategy = "Cartesian",
StoppingRounds = 10,
MaxRunTimeSecs = 3600 * 24 * 7,
MaxModelsInGrid = 10,
Distribution = "gaussian",
Link = "Family_Default",
TweedieLinkPower = NULL,
TweedieVariancePower = NULL,
Solver = "AUTO",
Alpha = 0.5,
Lambda = NULL,
LambdaSearch = FALSE,
NLambdas = -1,
Standardize = TRUE,
RemoveCollinearColumns = FALSE,
InterceptInclude = TRUE,
NonNegativeCoefficients = FALSE,
DebugMode = FALSE)
```

AutoH2oGBMClassifier AutoH2oGBMClassifier

Description

AutoH2oGBMClassifier is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation metrics, variable importance, partial dependence calibration plots, and column names used in model fitting.

Usage

```
AutoH2oGBMClassifier(
  OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
  data = NULL,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  WeightsColumn = NULL,
  MaxMem = {    gc()
    paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo",
        intern = TRUE))/1e+06)), "G") },
  NThreads = max(1L, parallel::detectCores() - 2L),
  model_path = NULL,
  metadata_path = NULL,
```

```
ModelID = "FirstModel",
NumOfParDepPlots = 3L,
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
SaveInfoToPDF = FALSE,
IfSaveModel = "mojo",
H2OShutdown = FALSE,
H2OStartUp = TRUE,
DebugMode = FALSE,
GridStrategy = "Cartesian",
MaxRunTimeSecs = 60 * 60 * 24,
StoppingRounds = 10,
MaxModelsInGrid = 2,
eval_metric = "auc",
CostMatrixWeights = c(1, 0, 0, 1),
Trees = 50L,
GridTune = FALSE,
LearnRate = 0.1,
LearnRateAnnealing = 1,
Distribution = "bernoulli",
MaxDepth = 20,
SampleRate = 0.632,
ColSampleRate = 1,
ColSampleRatePerTree = 1,
ColSampleRatePerTreeLevel = 1,
MinRows = 1,
NBins = 20,
NBinsCats = 1024,
NBinsTopLevel = 1024,
HistogramType = "AUTO",
CategoricalEncoding = "AUTO"
```

Arguments

data

OutputSelection

You can select what type of output you want returned. Choose from c("EvalMetrics", "PDFs", "Score TrainData")

This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where the target is located (but not mixed types)

WeightsColumn Column name of a weights column

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set to the mamimum amount of threads you want to use for this function model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create. Calibration boxplots will only be created for numerical features (not

dummy variables)

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

SaveInfoToPDF Set to TRUE to save modeling information to PDF. If model_path or meta-

data_path aren't defined then output will be saved to the working directory

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H20Shutdown Set to TRUE to shutdown H2O inside the function

H2OStartUp Defaults to TRUE which means H2O will be started inside the function

DebugMode Set to TRUE to get a printout of the steps taken internally

GridStrategy Default "Cartesian"

MaxRunTimeSecs Default 60*60*24

StoppingRounds Number of runs

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

eval_metric This is the metric used to identify best grid tuned model. Choose from "auc", "logloss", "aucpr",

"lift_top_group", "misclassification", "mean_per_class_error"

CostMatrixWeights

A vector with 4 elements c(True Positive Cost, False Negative Cost, False Posi-

tive Cost, True Negative Cost). Default c(1,0,0,1),

Trees The maximum number of trees you want in your models

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

LearnRate Default 0.10

LearnRateAnnealing

Default 1

Distribution Choose from "AUTO", "bernoulli", and "quasibinomial"

MaxDepth Default 20
SampleRate Default 0.632
ColSampleRate Default 1
ColSampleRatePerTree
Default 1

ColSampleRatePerTreeLevel

Default 1

MinRows Default 1

NBins Default 20

NBinsCats Default 1024

NBinsTopLevel Default 1024

HistogramType Default "AUTO"

CategoricalEncoding

Default "AUTO"

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Binary Classification: AutoCatBoostClassifier(), AutoH2oDRFClassifier(), AutoH2oGAMClassifier(), AutoH2oGLMClassifier(), AutoH2oMLClassifier(), AutoXGBoostClassifier()

Examples

```
## Not run:
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
         Correlation = 0.85,
        N = 1000L
         ID = 2L,
         ZIP = 0L,
        AddDate = FALSE,
         Classification = TRUE,
        MultiClass = FALSE)
TestModel <- RemixAutoML::AutoH2oGBMClassifier(</pre>
                 # Compute management
           \label{eq:maxMem} \textit{MaxMem} = \{gc(); paste0(as.character(floor(as.numeric(system("awk '/MemFree/ \{print $2\}' /proc/meminfo", into the property of the proper
                 NThreads = max(1, parallel::detectCores()-2),
                 H2OShutdown = TRUE,
                 H2OStartUp = TRUE,
                 IfSaveModel = "mojo",
                 # Model evaluation
                 CostMatrixWeights = c(1,0,0,1),
                 eval_metric = "auc",
                 NumOfParDepPlots = 3,
                 # Metadata arguments
```

OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),

```
model_path = normalizePath("./"),
   metadata_path = file.path(normalizePath("./")),
   ModelID = "FirstModel",
   ReturnModelObjects = TRUE,
   SaveModelObjects = FALSE,
   SaveInfoToPDF = FALSE,
   DebugMode = FALSE,
   # Data arguments
   data = data,
   TrainOnFull = FALSE,
   ValidationData = NULL,
   TestData = NULL,
   TargetColumnName = "Adrian",
   FeatureColNames = names(data)[!names(data) %in% c("IDcol_1", "IDcol_2", "Adrian")],
   WeightsColumn = NULL,
   # ML grid tuning args
   GridTune = FALSE,
   GridStrategy = "Cartesian",
   MaxRunTimeSecs = 60*60*24,
   StoppingRounds = 10,
   MaxModelsInGrid = 2,
   # Model args
   Trees = 50,
   LearnRate = 0.10,
   LearnRateAnnealing = 1,
   Distribution = "bernoulli",
   MaxDepth = 20,
   SampleRate = 0.632,
   ColSampleRate = 1,
   ColSampleRatePerTree = 1,
   ColSampleRatePerTreeLevel = 1,
   MinRows = 1,
   NBins = 20,
   NBinsCats = 1024,
   NBinsTopLevel = 1024,
   HistogramType = "AUTO",
   CategoricalEncoding = "AUTO")
## End(Not run)
```

AutoH2oGBMHurdleModel AutoH2oGBMHurdleModel

Description

AutoH2oGBMHurdleModel for hurdle modeing

Usage

```
AutoH2oGBMHurdleModel(
  data,
  ValidationData = NULL,
```

AutoH2oGBMHurdleModel 111

```
TestData = NULL,
 Buckets = 0L.
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  TransformNumericColumns = NULL,
 Distribution = "gaussian",
  SplitRatios = c(0.7, 0.2, 0.1),
 ModelID = "ModelTest",
 Paths = NULL,
 MetaDataPaths = NULL,
  SaveModelObjects = TRUE,
  IfSaveModel = "mojo",
  MaxMem = {
                 gc()
  paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo",
    intern = TRUE))/1e+06)), "G") },
 NThreads = max(1L, parallel::detectCores() - 2L),
  Trees = 1000L,
 GridTune = TRUE,
 MaxModelsInGrid = 1L,
 NumOfParDepPlots = 10L,
 PassInGrid = NULL
)
```

Arguments

data Source training data. Do not include a column that has the class labels for the

buckets as they are created internally.

ValidationData Source validation data. Do not include a column that has the class labels for the

buckets as they are created internally.

TestData Souce test data. Do not include a column that has the class labels for the buckets

as they are created internally.

Buckets A numeric vector of the buckets used for subsetting the data. NOTE: the final

Bucket value will first create a subset of data that is less than the value and a

second one thereafter for data greater than the bucket value.

TargetColumnName

Supply the column name or number for the target variable

FeatureColNames

Supply the column names or number of the features (not included the Primary-

DateColumn)

TransformNumericColumns

Transform numeric column inside the AutoCatBoostRegression() function

Distribution Set to the distribution of choice based on H2O regression documents.

SplitRatios Supply vector of partition ratios. For example, c(0.70,0.20,0,10).

ModelID Define a character name for your models

Paths The path to your folder where you want your model information saved

MetaDataPaths A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to Paths.

SaveModelObjects

Set to TRUE to save the model objects to file in the folders listed in Paths

IfSaveModel Save as "mojo" or "standard"

MaxMem Set the maximum memory your system can provide

NThreads Set the number of threads you want to dedicate to the model building

Trees Default 1000

GridTune Set to TRUE if you want to grid tune the models

MaxModelsInGrid

Set to a numeric value for the number of models to try in grid tune

NumOfParDepPlots

Set to pull back N number of partial dependence calibration plots.

PassInGrid Pass in a grid for changing up the parameter settings for catboost

Value

Returns AutoXGBoostRegression() model objects: VariableImportance.csv, Model, Validation-Data.csv, EvalutionPlot.png, EvalutionBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, and the grid used

Author(s)

Adrian Antico

MaxModelsInGrid = 1L,
NumOfParDepPlots = 10L,
PassInGrid = NULL)

See Also

Other Supervised Learning - Compound: AutoCatBoostHurdleModel(), AutoH2oDRFHurdleModel(), AutoXGBoostHurdleModel()

Examples

```
Output <- RemixAutoML::AutoH2oGBMHurdleModel(
         data,
         ValidationData = NULL,
         TestData = NULL,
         Buckets = 1L,
         TargetColumnName = "Target_Variable",
         FeatureColNames = 4L:ncol(data),
         TransformNumericColumns = NULL,
         Distribution = "gaussian",
         SplitRatios = c(0.7, 0.2, 0.1),
      \label{lem:maxMem} \mbox{\tt MaxMem} = \{ \mbox{\tt gc()}; \mbox{\tt paste0(as.character(floor(as.numeric(system("awk '/MemFree/ \{print $2\}' /proc/meminfo", interesting the lemma of the lemma 
         NThreads = max(1L, parallel::detectCores()-2L),
         ModelID = "ModelID",
         Paths = normalizePath("./"),
         MetaDataPaths = NULL,
         SaveModelObjects = TRUE,
         IfSaveModel = "mojo",
         Trees = 1000L,
         GridTune = FALSE,
```

AutoH2oGBMMultiClass AutoH2oGBMMultiClass

Description

AutoH2oGBMMultiClass is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation metrics, confusion matrix, and variable importance.

Usage

ColSampleRate = 1,

```
AutoH2oGBMMultiClass(
  OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
  data = NULL,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
 TargetColumnName = NULL,
 FeatureColNames = NULL,
 WeightsColumn = NULL,
 MaxMem = {
  paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo",
    intern = TRUE))/1e+06)), "G") },
 NThreads = max(1L, parallel::detectCores() - 2L),
 model_path = NULL,
 metadata_path = NULL,
 ModelID = "FirstModel",
 NumOfParDepPlots = 3L,
 ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  IfSaveModel = "mojo",
 H2OShutdown = TRUE,
 H2OStartUp = TRUE,
 DebugMode = FALSE,
 GridTune = FALSE,
 GridStrategy = "Cartesian",
 MaxRunTimeSecs = 60 * 60 * 24,
  StoppingRounds = 10,
 MaxModelsInGrid = 2,
 eval_metric = "auc",
  Trees = 50L,
 LearnRate = 0.1,
 LearnRateAnnealing = 1,
 Distribution = "multinomial",
 MaxDepth = 20,
  SampleRate = 0.632,
 MTries = -1,
```

```
ColSampleRatePerTree = 1,

ColSampleRatePerTreeLevel = 1,

MinRows = 1,

NBins = 20,

NBinsCats = 1024,

NBinsTopLevel = 1024,

HistogramType = "AUTO",

CategoricalEncoding = "AUTO"
```

Arguments

OutputSelection

You can select what type of output you want returned. Choose from c("EvalMetrics",

"PDFs", "Score_TrainData")

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target

is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

WeightsColumn Column name of a weights column

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set to the mamimum amount of threads you want to use for this function model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create. Calibration boxplots will only be created for numerical features (not

dummy variables)

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H2OShutdown Set to TRUE to shutdown H2O inside the function

H2OStartUp Defaults to TRUE which means H2O will be started inside the function

DebugMode Set to TRUE to print steps

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

GridStrategy Default "Cartesian"

MaxRunTimeSecs Default 60*60*24

StoppingRounds Number of runs

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

eval_metric This is the metric used to identify best grid tuned model. Choose from "auc",

"logloss"

Trees The maximum number of trees you want in your models

LearnRate Default 0.10

LearnRateAnnealing

Default 1

Distribution Choose from "multinomial". Placeholder in more options get added

MaxDepth Default 20
SampleRate Default 0.632
ColSampleRate Default 1
ColSampleRatePerTree

Default 1

ColSampleRatePerTreeLevel

Default 1

MinRows Default 1

NBins Default 20

NBinsCats Default 1024

NBinsTopLevel Default 1024

HistogramType Default "AUTO"

CategoricalEncoding

Default "AUTO"

SaveInfoToPDF Set to TRUE to save insights to PDF

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evaluation-Metrics.csv, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Multiclass Classification: AutoCatBoostMultiClass(), AutoH2oDRFMultiClass(), AutoH2oGLMMultiClass(), AutoH2oGLMMultiClass(), AutoH2oGLMMultiClass(), AutoXGBoostMultiClass()

Examples

CategoricalEncoding = "AUTO")

```
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
 Correlation = 0.85,
 N = 1000,
 ID = 2,
 ZIP = 0,
  AddDate = FALSE,
  Classification = FALSE,
 MultiClass = TRUE)
# Run function
TestModel <- RemixAutoML::AutoH2oGBMMultiClass(</pre>
  OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
  data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = "Adrian",
  FeatureColNames = names(data)[!names(data) %in% c("IDcol_1", "IDcol_2","Adrian")],
  WeightsColumn = NULL,
  eval_metric = "logloss",
 MaxMem = {gc();paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo", inter
  NThreads = max(1, parallel::detectCores()-2),
  model_path = normalizePath("./"),
  metadata_path = file.path(normalizePath("./")),
  ModelID = "FirstModel",
  ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  IfSaveModel = "mojo",
  H2OShutdown = TRUE,
  H2OStartUp = TRUE,
  DebugMode = FALSE,
  # Model args
  GridTune = FALSE,
  GridStrategy = "Cartesian",
  MaxRunTimeSecs = 60*60*24,
  StoppingRounds = 10,
  MaxModelsInGrid = 2,
  Trees = 50,
  LearnRate = 0.10,
  LearnRateAnnealing = 1,
  eval_metric = "RMSE",
  Distribution = "multinomial",
  MaxDepth = 20,
  SampleRate = 0.632,
  ColSampleRate = 1,
  ColSampleRatePerTree = 1,
  ColSampleRatePerTreeLevel = 1,
  MinRows = 1,
  NBins = 20,
  NBinsCats = 1024,
  NBinsTopLevel = 1024,
  HistogramType = "AUTO",
```

AutoH2oGBMRegression AutoH2oGBMRegression

Description

AutoH2oGBMRegression is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation boxplot, evaluation metrics, variable importance, partial dependence calibration plots, partial dependence calibration box plots, and column names used in model fitting.

Usage

```
AutoH2oGBMRegression(
 OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
  data = NULL,
 TrainOnFull = FALSE,
 ValidationData,
 TestData = NULL.
 TargetColumnName = NULL,
 FeatureColNames = NULL,
 WeightsColumn = NULL,
 TransformNumericColumns = NULL,
 Methods = c("BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt", "Asin", "Logit"),
 MaxMem = {
  paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo",
    intern = TRUE))/1e+06)), "G") },
 NThreads = max(1, parallel::detectCores() - 2),
 model_path = NULL,
 metadata_path = NULL,
 ModelID = "FirstModel",
 NumOfParDepPlots = 3,
 ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  SaveInfoToPDF = FALSE,
  IfSaveModel = "mojo",
 H2OShutdown = TRUE,
 H2OStartUp = TRUE,
 DebugMode = FALSE,
 GridTune = FALSE,
 GridStrategy = "Cartesian",
 MaxRunTimeSecs = 60 * 60 * 24
  StoppingRounds = 10,
 MaxModelsInGrid = 2,
  eval_metric = "RMSE",
 Trees = 50,
 LearnRate = 0.1,
 LearnRateAnnealing = 1,
```

```
Alpha = NULL,
Distribution = "poisson",
MaxDepth = 20,
SampleRate = 0.632,
MTries = -1,
ColSampleRate = 1,
ColSampleRatePerTree = 1,
ColSampleRatePerTreeLevel = 1,
MinRows = 1,
NBins = 20,
NBinsCats = 1024,
NBinsTopLevel = 1024,
HistogramType = "AUTO",
CategoricalEncoding = "AUTO")
```

Arguments

OutputSelection

You can select what type of output you want returned. Choose from c("EvalMetrics",

"PDFs", "Score_TrainData")

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target

is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

WeightsColumn Column name of a weights column

TransformNumericColumns

Set to NULL to do nothing; otherwise supply the column names of numeric

variables you want transformed

Methods Choose from "YeoJohnson", "BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt",

"Asin", or "Logit". If more than one is selected, the one with the best normalization pearson statistic will be used. Identity is automatically selected and

compared.

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set to the mamimum amount of threads you want to use for this function

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create. Calibration boxplots will only be created for numerical features (not dummy variables)

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

SaveInfoToPDF Set to TRUE to save insights to PDF

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H20Shutdown Set to TRUE to shutdown H2O inside the function

H2OStartUp Defaults to TRUE which means H2O will be started inside the function

DebugMode Set to TRUE to print steps to screen

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

GridStrategy Default "Cartesian"

MaxRunTimeSecs Default 60*60*24

StoppingRounds Number of runs

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

eval_metric This is the metric used to identify best grid tuned model. Choose from "MSE",

"RMSE", "MAE", "RMSLE"

Trees The maximum number of trees you want in your models

LearnRate Default 0.10

Learn Rate Annealing

Default 1

Alpha This is the quantile value you want to use for quantile regression. Must be a

decimal between 0 and 1.

Distribution Choose from gaussian", "poisson", "gamma", "tweedie", "laplace", "quantile",

"huber"

MaxDepth Default 20
SampleRate Default 0.632
ColSampleRate Default 1
ColSampleRatePerTree
Default 1

ColSampleRatePerTreeLevel

Default 1

MinRows Default 1

NBins Default 20

NBinsCats Default 1024

NBinsTopLevel Default 1024

HistogramType Default "AUTO"

CategoricalEncoding

Default "AUTO"

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, GridList, and metadata

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Regression: AutoCatBoostRegression(), AutoH2oDRFRegression(), AutoH2oGAMRegression(), AutoH2oGLMRegression(), AutoH2oMLRegression(), AutoNLS(), AutoXGBoostRegression()

Examples

```
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
  N = 1000,
  ID = 2,
  ZIP = 0,
  AddDate = FALSE,
  Classification = FALSE,
  MultiClass = FALSE)
# Run function
TestModel <- RemixAutoML::AutoH2oGBMRegression(</pre>
    # Compute management
  MaxMem = {gc();paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo", int
    NThreads = max(1, parallel::detectCores()-2),
    H2OShutdown = TRUE,
    H2OStartUp = TRUE,
    IfSaveModel = "mojo",
    # Model evaluation
    NumOfParDepPlots = 3,
    # Metadata arguments
    OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
    model_path = normalizePath("./"),
    metadata_path = file.path(normalizePath("./")),
    ModelID = "FirstModel",
    ReturnModelObjects = TRUE,
    SaveModelObjects = FALSE,
    SaveInfoToPDF = FALSE,
    DebugMode = FALSE,
    # Data arguments
    data = data,
    TrainOnFull = FALSE,
    ValidationData = NULL,
    TestData = NULL,
    TargetColumnName = "Adrian",
    FeatureColNames = names(data)[!names(data) %in% c("IDcol_1", "IDcol_2", "Adrian")],
```

```
WeightsColumn = NULL,
 TransformNumericColumns = NULL,
Methods = c("BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Sqrt", "Logit", "YeoJohnson"),
 # ML grid tuning args
 GridTune = FALSE,
 GridStrategy = "Cartesian",
 MaxRunTimeSecs = 60*60*24,
 StoppingRounds = 10,
 MaxModelsInGrid = 2,
 # Model args
 Trees = 50,
 LearnRate = 0.10,
 LearnRateAnnealing = 1,
 eval_metric = "RMSE",
 Alpha = NULL,
 Distribution = "poisson",
 MaxDepth = 20,
 SampleRate = 0.632,
 ColSampleRate = 1,
 ColSampleRatePerTree = 1,
 ColSampleRatePerTreeLevel = 1,
 MinRows = 1,
 NBins = 20,
 NBinsCats = 1024,
 NBinsTopLevel = 1024,
 HistogramType = "AUTO",
 CategoricalEncoding = "AUTO")
```

AutoH2oGLMClassifier AutoH2oGLMClassifier

Description

AutoH2oGLMClassifier is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation metrics, variable importance, partial dependence calibration plots, and column names used in model fitting.

Usage

```
AutoH2oGLMClassifier(
  OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
  data = NULL,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = NULL,
```

```
FeatureColNames = NULL,
 RandomColNumbers = NULL,
  InteractionColNumbers = NULL,
 WeightsColumn = NULL,
 MaxMem = {
                 gc()
  paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo",
    intern = TRUE))/1e+06)), "G") },
 NThreads = max(1, parallel::detectCores() - 2),
 ModelID = "FirstModel",
 ReturnModelObjects = TRUE,
 model_path = NULL,
 metadata_path = NULL,
  SaveModelObjects = FALSE,
  SaveInfoToPDF = FALSE,
  IfSaveModel = "mojo",
 H2OShutdown = TRUE,
 H2OStartUp = TRUE,
 DebugMode = FALSE,
 MaxModelsInGrid = 2,
 NumOfParDepPlots = 3,
 GridTune = FALSE,
 GridStrategy = "Cartesian",
  StoppingRounds = 10,
 MaxRunTimeSecs = 3600 * 24 * 7,
 Distribution = "binomial",
 Link = "logit",
  eval_metric = "auc",
 CostMatrixWeights = c(1, 0, 0, 1),
 RandomDistribution = NULL,
 RandomLink = NULL,
  Solver = "AUTO",
 Alpha = 0.5,
 Lambda = NULL.
 LambdaSearch = FALSE,
 NLambdas = -1,
  Standardize = TRUE,
 RemoveCollinearColumns = FALSE,
 InterceptInclude = TRUE,
 NonNegativeCoefficients = FALSE
)
```

Arguments

OutputSelection

You can select what type of output you want returned. Choose from c("EvalMetrics",

"PDFs", "Score_TrainData")

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

This is your holdout data set. Catboost using both training and validation data TestData

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where the target is located (but not mixed types)

RandomColNumbers

Random effects column number indicies

InteractionColNumbers

Column numbers of the features you want to be pairwise interacted

WeightsColumn Column name of a weights column

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building

ModelID A character string to name your model and output

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

SaveInfoToPDF Set to TRUE to save modeling information to PDF. If model_path or meta-

data_path aren't defined then output will be saved to the working directory

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H20Shutdown Set to TRUE to shutdown H2O inside the function

H2OStartUp Defaults to TRUE which means H2O will be started inside the function

DebugMode Set to TRUE to print steps to screen

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create. Calibration boxplots will only be created for numerical features (not

dummy variables)

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

GridStrategy "RandomDiscrete" or "Cartesian"

StoppingRounds Iterations in grid tuning
MaxRunTimeSecs Max run time in seconds

Distribution "binomial", "fractionalbinomial", "quasibinomial"

eval_metric This is the metric used to identify best grid tuned model. Choose from "auc"

CostMatrixWeights

A vector with 4 elements c(True Positive Cost, False Negative Cost, False Positive Cost, True Negative Cost). Default c(1,0,0,1),

RandomDistribution

Random effects family. Defaults NULL, otherwise it will run a hierarchical glm

RandomLink Random effects link. Defaults NULL, otherwise it will run a hierarchical glm

Solver Default "AUTO". Options include "IRLSM", "L_BFGS", "COORDINATE_DESCENT_NAIVE",

"COORDINATE_DESCENT", "GRADIENT_DESCENT_LH", "GRADIENT_DESCENT_SQERR

Alpha Default 0.5 Otherwise supply a value between 0 and 1. 1 is equivalent to Lasso

regression. 0 is equivalent to Ridge regression. Inbetween for a blend of the

wo.

Lambda Default NULL. Regularization strength.

LambdaSearch Default FALSE.

NLambdas Default -1

Standardize Default TRUE. Standardize numerical columns

RemoveCollinearColumns

Default FALSE. Removes some of the linearly dependent columns

InterceptInclude

Default TRUE

NonNegativeCoefficients

Default FALSE

link identity, logit, log, inverse, tweedie

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Binary Classification: AutoCatBoostClassifier(), AutoH2oDRFClassifier(), AutoH2oGAMClassifier(), AutoH2oGBMClassifier(), AutoH2oMLClassifier(), AutoXGBoostClassifier()

Examples

```
# Create some dummy correlated data with numeric and categorical features
data <- RemixAutoML::FakeDataGenerator(
    Correlation = 0.85,
    N = 1000L,
    ID = 2L,
    ZIP = 0L,
    AddDate = FALSE,
    Classification = TRUE,
    MultiClass = FALSE)

# Run function
TestModel <- RemixAutoML::AutoH2oGLMClassifier(

    # Compute management
    MaxMem = {gc();paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo", int)</pre>
```

```
NThreads = max(1, parallel::detectCores()-2),
H2OShutdown = TRUE,
H2OStartUp = TRUE,
IfSaveModel = "mojo",
# Model evaluation args
CostMatrixWeights = c(1,0,0,1),
eval_metric = "auc",
NumOfParDepPlots = 3,
# Metadata args
OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
model_path = NULL,
metadata_path = NULL,
ModelID = "FirstModel",
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
SaveInfoToPDF = FALSE,
DebugMode = FALSE,
# Data args
data = data,
TrainOnFull = FALSE,
ValidationData = NULL,
TestData = NULL,
TargetColumnName = "Adrian",
FeatureColNames = names(data)[!names(data) %in%
 c("IDcol_1", "IDcol_2", "Adrian")],
RandomColNumbers = NULL,
InteractionColNumbers = NULL,
WeightsColumn = NULL,
# ML args
GridTune = FALSE,
GridStrategy = "Cartesian",
StoppingRounds = 10,
MaxRunTimeSecs = 3600 * 24 * 7,
MaxModelsInGrid = 10,
Distribution = "binomial",
Link = "logit",
RandomDistribution = NULL,
RandomLink = NULL,
Solver = "AUTO",
Alpha = 0.5,
Lambda = NULL,
LambdaSearch = FALSE,
NLambdas = -1,
Standardize = TRUE,
RemoveCollinearColumns = FALSE,
InterceptInclude = TRUE,
NonNegativeCoefficients = FALSE)
```

Description

AutoH2oGLMMultiClass is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation metrics, confusion matrix, and variable importance.

Usage

Standardize = TRUE,

```
AutoH2oGLMMultiClass(
 OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
 data = NULL,
  TrainOnFull = FALSE,
 ValidationData = NULL,
 TestData = NULL,
  TargetColumnName = NULL,
 FeatureColNames = NULL,
 RandomColNumbers = NULL,
  InteractionColNumbers = NULL,
 WeightsColumn = NULL,
 MaxMem = {
                 gc()
  paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo",
    intern = TRUE))/1e+06)), "G") },
 NThreads = max(1, parallel::detectCores() - 2),
 ModelID = "FirstModel",
 ReturnModelObjects = TRUE,
 model_path = NULL,
 metadata_path = NULL,
 DebugMode = FALSE,
  SaveModelObjects = FALSE,
  SaveInfoToPDF = FALSE,
  IfSaveModel = "mojo",
 H2OShutdown = TRUE,
 H2OStartUp = TRUE,
 MaxModelsInGrid = 2,
 NumOfParDepPlots = 3,
 GridTune = FALSE,
 GridStrategy = "Cartesian",
  StoppingRounds = 10,
 MaxRunTimeSecs = 3600 * 24 * 7,
 Distribution = "multinomial",
 Link = "family_default",
 eval_metric = "logloss",
 RandomDistribution = NULL,
 RandomLink = NULL.
  Solver = "AUTO",
 Alpha = 0.5,
 Lambda = NULL,
 LambdaSearch = FALSE,
 NLambdas = -1,
```

```
RemoveCollinearColumns = FALSE,
  InterceptInclude = TRUE,
  NonNegativeCoefficients = FALSE
)
```

Arguments

OutputSelection

You can select what type of output you want returned. Choose from c("EvalMetrics",

"PDFs", "Score_TrainData")

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target

is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

RandomColNumbers

Random effects column number indicies

InteractionColNumbers

Column numbers of the features you want to be pairwise interacted

WeightsColumn Column name of a weights column

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building

ModelID A character string to name your model and output

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

DebugMode Set to TRUE to see a printout of each step

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

SaveInfoToPDF Set to TRUE to save insights to PDF

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H20Shutdown Set to TRUE to shutdown H2O inside the function

H2OStartUp Defaults to TRUE which means H2O will be started inside the function

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create. Calibration boxplots will only be created for numerical features (not

dummy variables)

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

GridStrategy "RandomDiscrete" or "Cartesian"

StoppingRounds Iterations in grid tuning
MaxRunTimeSecs Max run time in seconds

Distribution "multinomial"

eval_metric This is the metric used to identify best grid tuned model. Choose from "logloss"

RandomDistribution

Random effects family. Defaults NULL, otherwise it will run a hierarchical glm

RandomLink Random effects link. Defaults NULL, otherwise it will run a hierarchical glm

Solver Default "AUTO". Options include "IRLSM", "L_BFGS", "COORDINATE_DESCENT_NAIVE",

"COORDINATE_DESCENT", "GRADIENT_DESCENT_LH", "GRADIENT_DESCENT_SQERR

Alpha Default 0.5 Otherwise supply a value between 0 and 1. 1 is equivalent to Lasso

regression. 0 is equivalent to Ridge regression. Inbetween for a blend of the

two.

Lambda Default NULL. Regularization strength.

LambdaSearch Default FALSE.

NLambdas Default -1

Standardize Default TRUE. Standardize numerical columns

RemoveCollinearColumns

Default FALSE. Removes some of the linearly dependent columns

InterceptInclude

Default TRUE

 ${\tt NonNegativeCoefficients}$

Default FALSE

link "family_default"

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evaluation-Metrics.csv, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Multiclass Classification: AutoCatBoostMultiClass(), AutoH2oDRFMultiClass(), AutoH2oGBMMultiClass(), AutoH2oGBMMultiClass(), AutoH2oMLMultiClass(), AutoXGBoostMultiClass()

Examples

RandomLink = NULL,

```
# Create some dummy correlated data with numeric and categorical features
data <- RemixAutoML::FakeDataGenerator(</pre>
    Correlation = 0.85,
    N = 1000L,
    ID = 2L,
    ZIP = 0L,
     AddDate = FALSE,
     Classification = FALSE,
    MultiClass = TRUE)
# Run function
TestModel <- RemixAutoML::AutoH2oGLMMultiClass(</pre>
     # Compute management
     OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
   \label{eq:maxMem} \textit{MaxMem} = \{gc(); paste0(as.character(floor(as.numeric(system("awk '/MemFree/ \{print \$2\}' /proc/meminfo", interval (as.character(floor(as.numeric(system("awk '/MemFree/ \{print \$2\}' /proc/meminfo", interval (as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor
    NThreads = max(1, parallel::detectCores()-2),
     H2OShutdown = TRUE,
     H2OStartUp = TRUE,
     IfSaveModel = "mojo",
     # Model evaluation:
     eval_metric = "logloss",
     NumOfParDepPlots = 3,
     # Metadata arguments:
     model_path = NULL,
     metadata_path = NULL,
     ModelID = "FirstModel",
     ReturnModelObjects = TRUE,
     SaveModelObjects = FALSE,
     SaveInfoToPDF = FALSE,
     DebugMode = FALSE,
     # Data arguments:
     data = data,
     TrainOnFull = FALSE,
     ValidationData = NULL,
     TestData = NULL,
     TargetColumnName = "Adrian",
     FeatureColNames = names(data)[!names(data) %in% c("IDcol_1", "IDcol_2", "Adrian")],
     RandomColNumbers = NULL,
     InteractionColNumbers = NULL,
     WeightsColumn = NULL,
     # Model args
     GridTune = FALSE,
     GridStrategy = "Cartesian",
     StoppingRounds = 10,
     MaxRunTimeSecs = 3600 * 24 * 7,
     MaxModelsInGrid = 10,
     Distribution = "multinomial",
     Link = "family_default",
     RandomDistribution = NULL,
```

```
Solver = "AUTO",
Alpha = 0.5,
Lambda = NULL,
LambdaSearch = FALSE,
NLambdas = -1,
Standardize = TRUE,
RemoveCollinearColumns = FALSE,
InterceptInclude = TRUE,
NonNegativeCoefficients = FALSE)
```

AutoH2oGLMRegression AutoH2oGLMRegression

Description

AutoH2oGLMis an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation boxplot, evaluation metrics, variable importance, partial dependence calibration plots, partial dependence calibration box plots, and column names used in model fitting.

Usage

```
AutoH2oGLMRegression(
  OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
  data = NULL,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  RandomColNumbers = NULL,
  InteractionColNumbers = NULL,
  WeightsColumn = NULL,
  MaxMem = {
                 gc()
  paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo",
    intern = TRUE))/1e+06)), "G") },
  NThreads = max(1, parallel::detectCores() - 2),
  ModelID = "FirstModel",
  ReturnModelObjects = TRUE,
  model_path = NULL,
  metadata_path = NULL,
  SaveModelObjects = FALSE,
  SaveInfoToPDF = FALSE,
  IfSaveModel = "mojo",
  H2OShutdown = TRUE,
  H2OStartUp = TRUE,
  DebugMode = FALSE,
  TransformNumericColumns = NULL,
  Methods = c("BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt", "Asin", "Logit"),
```

```
NumOfParDepPlots = 3,
GridTune = FALSE.
GridStrategy = "Cartesian",
StoppingRounds = 10,
MaxRunTimeSecs = 3600 * 24 * 7,
MaxModelsInGrid = 2,
Distribution = "gaussian",
Link = "identity",
TweedieLinkPower = NULL,
TweedieVariancePower = NULL,
eval_metric = "RMSE",
RandomDistribution = NULL,
RandomLink = NULL,
Solver = "AUTO",
Alpha = 0.5,
Lambda = NULL,
LambdaSearch = FALSE,
NLambdas = -1,
Standardize = TRUE,
RemoveCollinearColumns = FALSE,
InterceptInclude = TRUE,
NonNegativeCoefficients = FALSE
```

Arguments

)

OutputSelection

You can select what type of output you want returned. Choose from c("EvalMetrics",

"PDFs", "Score TrainData")

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target

is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

RandomColNumbers

Random effects column number indicies

 ${\tt Interaction Col Numbers}$

Column numbers of the features you want to be pairwise interacted

WeightsColumn Column name of a weights column

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building

ModelID A character string to name your model and output

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

SaveInfoToPDF Set to TRUE to save insights to PDF

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H20Shutdown Set to TRUE to shutdown H2O inside the function

H20StartUp Defaults to TRUE which means H2O will be started inside the function

DebugMode Set to TRUE to print out steps to screen

TransformNumericColumns

Set to NULL to do nothing; otherwise supply the column names of numeric

variables you want transformed

Methods Choose from "YeoJohnson", "BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt",

"Asin", or "Logit". If more than one is selected, the one with the best normalization pearson statistic will be used. Identity is automatically selected and

compared.

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to greate. Calibration box plots will only be greated for numerical features (not

to create. Calibration boxplots will only be created for numerical features (not

dummy variables)

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

GridStrategy "RandomDiscrete" or "Cartesian"

StoppingRounds Iterations in grid tuning
MaxRunTimeSecs Max run time in seconds

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

Distribution "AUTO", "gaussian", "poisson", "gamma", "tweedie", "negativebinomial"

Link "family_default", "identity", "log", "inverse", "tweedie"

TweedieLinkPower

See h2o docs for background

TweedieVariancePower

See h2o docs for background

eval_metric This is the metric used to identify best grid tuned model. Choose from "MSE",

"RMSE", "MAE", "RMSLE"

RandomDistribution

Random effects family. Defaults NULL, otherwise it will run a hierarchical glm

RandomLink Random effects link. Defaults NULL, otherwise it will run a hierarchical glm

Solver Default "AUTO". Options include "IRLSM", "L_BFGS", "COORDINATE_DESCENT_NAIVE",

"COORDINATE_DESCENT", "GRADIENT_DESCENT_LH", "GRADIENT_DESCENT_SQERR

Alpha Default 0.5 Otherwise supply a value between 0 and 1. 1 is equivalent to Lasso

regression. 0 is equivalent to Ridge regression. Inbetween for a blend of the

two.

Lambda Default NULL. Regularization strength.

LambdaSearch Default FALSE.

NLambdas Default -1

Standardize Default TRUE. Standardize numerical columns

RemoveCollinearColumns

Default FALSE. Removes some of the linearly dependent columns

InterceptInclude

Default TRUE

NonNegativeCoefficients

Default FALSE

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvalutionBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, GridList, and Transformation metadata

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Regression: AutoCatBoostRegression(), AutoH2oDRFRegression(), AutoH2oGAMRegression(), AutoH2oGBMRegression(), AutoH2oMLRegression(), AutoNLS(), AutoXGBoostRegression(), AutoH2oMLRegression(), AutoNLS(), AutoXGBoostRegression(), AutoM2oMLRegression(), AutoM2oML

Examples

```
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
         Correlation = 0.85,
          N = 1000,
          ID = 2,
          ZIP = 0,
         AddDate = FALSE,
          Classification = FALSE,
          MultiClass = FALSE)
# Run function
TestModel <- RemixAutoML::AutoH2oGLMRegression(</pre>
                   # Compute management
             \label{eq:maxMem} \textit{MaxMem} = \{gc(); paste0(as.character(floor(as.numeric(system("awk '/MemFree/ \{print $2\}' /proc/meminfo", into the property of the proper
                   NThreads = max(1, parallel::detectCores()-2),
                   H2OShutdown = TRUE,
                   H2OStartUp = TRUE,
                   IfSaveModel = "mojo",
                   # Model evaluation:
                   eval_metric = "RMSE",
```

```
NumOfParDepPlots = 3,
 # Metadata arguments
 OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
 model_path = NULL,
 metadata_path = NULL,
 ModelID = "FirstModel",
 ReturnModelObjects = TRUE,
 SaveModelObjects = FALSE,
 SaveInfoToPDF = FALSE,
 DebugMode = FALSE,
 # Data arguments:
 data = data,
 TrainOnFull = FALSE,
 ValidationData = NULL,
 TestData = NULL,
 TargetColumnName = "Adrian",
 FeatureColNames = names(data)[!names(data) %in%
   c("IDcol_1", "IDcol_2", "Adrian")],
 RandomColNumbers = NULL,
 InteractionColNumbers = NULL,
 WeightsColumn = NULL,
 TransformNumericColumns = NULL,
Methods = c("BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Sqrt", "Logit", "YeoJohnson"),
 # Model args
 GridTune = FALSE,
 GridStrategy = "Cartesian",
 StoppingRounds = 10,
 MaxRunTimeSecs = 3600 * 24 * 7,
 MaxModelsInGrid = 10,
 Distribution = "gaussian",
 Link = "identity",
 TweedieLinkPower = NULL,
 TweedieVariancePower = NULL,
 RandomDistribution = NULL,
 RandomLink = NULL,
 Solver = "AUTO",
 Alpha = 0.5,
 Lambda = NULL,
 LambdaSearch = FALSE,
 NLambdas = -1,
 Standardize = TRUE,
 RemoveCollinearColumns = FALSE,
 InterceptInclude = TRUE,
 NonNegativeCoefficients = FALSE)
```

AutoH2oMLClassifier AutoH2oMLClassifier

Description

AutoH2oMLClassifier is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to

create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation metrics, variable importance, partial dependence calibration plots, and column names used in model fitting.

Usage

```
AutoH2oMLClassifier(
 OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
 data = NULL,
 TrainOnFull = FALSE,
  ValidationData = NULL,
 TestData = NULL,
  TargetColumnName = NULL,
 FeatureColNames = NULL,
  ExcludeAlgos = NULL,
  eval_metric = "auc",
  CostMatrixWeights = c(1, 0, 0, 1),
 MaxMem = {
  paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo",
    intern = TRUE))/1e+06)), "G") },
 NThreads = max(1, parallel::detectCores() - 2),
 MaxModelsInGrid = 2,
 model_path = NULL.
 metadata_path = NULL,
 ModelID = "FirstModel",
 NumOfParDepPlots = 3,
 ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  SaveInfoToPDF = TRUE,
  IfSaveModel = "mojo",
 H2OShutdown = TRUE,
 H2OStartUp = TRUE,
 DebugMode = FALSE
)
```

Arguments

OutputSelection

You can select what type of output you want returned. Choose from c("EvalMetrics",

"PDFs", "Score_TrainData")

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located (but not mixed types). Note that the target column needs to be a $0 \mid 1$

numeric variable.

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

ExcludeAlgos "DRF", "GLM", "XGBoost", "GBM", "DeepLearning" and "Stacke-dEnsemble"

eval_metric This is the metric used to identify best grid tuned model. Choose from "AUC"

or "logloss"

CostMatrixWeights

A vector with 4 elements c(True Positive Cost, False Negative Cost, False Posi-

tive Cost, True Negative Cost). Default c(1,0,0,1),

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to

create.

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

SaveInfoToPDF Set to TRUE to print model insights to PDF

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H20Shutdown Set to TRUE to shutdown H2O after running the function

H2OStartUp Set to FALSE

DebugMode Set to TRUE to print out steps taken

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Binary Classification: AutoCatBoostClassifier(), AutoH2oDRFClassifier() AutoH2oGAMClassifier(), AutoH2oGBMClassifier(), AutoH2oGLMClassifier(), AutoKGBoostClassifier()

Examples

```
# Create some dummy correlated data with numeric and categorical features
data <- RemixAutoML::FakeDataGenerator(</pre>
      Correlation = 0.85,
      N = 1000L
      ID = 2L,
      ZIP = 0L,
      AddDate = FALSE,
      Classification = TRUE,
      MultiClass = FALSE)
TestModel <- RemixAutoML::AutoH2oMLClassifier(</pre>
      OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
      data,
      TrainOnFull = FALSE,
      ValidationData = NULL,
      TestData = NULL,
      TargetColumnName = "Adrian",
      FeatureColNames = names(data)[!names(data) %in% c("IDcol_1", "IDcol_2", "Adrian")],
      ExcludeAlgos = NULL,
      eval_metric = "auc",
      CostMatrixWeights = c(1,0,0,1),
    \label{eq:maxMem} \textit{MaxMem} = \{gc(); paste0(as.character(floor(as.numeric(system("awk '/MemFree/ \{print \$2\}' /proc/meminfo", interval (as.character(floor(as.numeric(system("awk '/MemFree/ \{print \$2\}' /proc/meminfo", interval (as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor(as.character(floor
     NThreads = max(1, parallel::detectCores()-2),
      MaxModelsInGrid = 10,
      model_path = normalizePath("./"),
      metadata_path = normalizePath("./"),
      ModelID = "FirstModel",
      NumOfParDepPlots = 3,
      ReturnModelObjects = TRUE,
      SaveModelObjects = FALSE,
      SaveInfoToPDF = TRUE,
      IfSaveModel = "mojo",
      H2OShutdown = TRUE,
      H2OStartUp = TRUE,
      DebugMode = FALSE)
```

AutoH2oMLMultiClass

AutoH2oMLMultiClass

Description

AutoH2oDRFMultiClass is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation metrics, confusion matrix, and variable importance.

Usage

```
AutoH2oMLMultiClass(
   OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
```

```
data = NULL,
TrainOnFull = FALSE.
ValidationData = NULL,
TestData = NULL,
TargetColumnName = NULL,
FeatureColNames = NULL,
ExcludeAlgos = NULL,
eval_metric = "logloss",
MaxMem = {
               gc()
paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo",
  intern = TRUE))/1e+06)), "G") },
NThreads = max(1, parallel::detectCores() - 2),
MaxModelsInGrid = 2,
model_path = NULL,
metadata_path = NULL,
ModelID = "FirstModel"
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
SaveInfoToPDF = TRUE,
IfSaveModel = "mojo",
H2OShutdown = TRUE,
H2OStartUp = TRUE,
DebugMode = FALSE
```

Arguments

OutputSelection

You can select what type of output you want returned. Choose from c("EvalMetrics",

"PDFs", "Score_TrainData")

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target

is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

ExcludeAlgos "DRF", "GLM", "XGBoost", "GBM", "DeepLearning" and "Stacke-dEnsemble"

eval_metric This is the metric used to identify best grid tuned model. Choose from "logloss",

"r2", "RMSE", "MSE"

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

SaveInfoToPDF Set to TRUE to print model insights to PDF

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H20Shutdown Set to TRUE to have H2O shutdown after running this function

H2OStartUp Set to FALSE

DebugMode Set to TRUE to get a print out of steps taken internally

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evaluation-Metrics.csv, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Multiclass Classification: AutoCatBoostMultiClass(), AutoH2oDRFMultiClass(), AutoH2oGBMMultiClass(), AutoH2oGBMMultiClass(), AutoH2oGBMMultiClass(), AutoXGBoostMultiClass()

Examples

```
# Create some dummy correlated data with numeric and categorical features
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
 N = 1000,
  ID = 2,
  ZIP = 0,
  AddDate = FALSE,
  Classification = FALSE,
  MultiClass = TRUE)
# Run function
TestModel <- RemixAutoML::AutoH2oMLMultiClass(</pre>
  OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
  data.
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = "Adrian",
  FeatureColNames = names(data)[!names(data) %in% c("IDcol_1", "IDcol_2", "Adrian")],
  ExcludeAlgos = NULL,
```

```
eval_metric = "logloss",
MaxMem = {gc();paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo", inte
NThreads = max(1, parallel::detectCores()-2),
MaxModelsInGrid = 10,
model_path = normalizePath("./"),
metadata_path = normalizePath("./"),
ModelID = "FirstModel",
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
SaveInfoToPDF = TRUE,
IfSaveModel = "mojo",
H2OShutdown = TRUE,
H2OStartUp = TRUE,
DebugMode = FALSE)
```

AutoH2oMLRegression

AutoH2oMLRegression

Description

AutoH2oMLRegression is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation boxplot, evaluation metrics, variable importance, partial dependence calibration plots, partial dependence calibration box plots, and column names used in model fitting.

Usage

```
AutoH2oMLRegression(
 OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),
  data = NULL,
  TrainOnFull = FALSE,
 ValidationData = NULL,
 TestData = NULL,
 TargetColumnName = NULL,
 FeatureColNames = NULL,
 ExcludeAlgos = NULL,
 TransformNumericColumns = NULL,
 Methods = c("BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt", "Asin", "Logit"),
  eval_metric = "RMSE",
 MaxMem = {
                 gc()
  paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo",
    intern = TRUE))/1e+06)), "G") },
 NThreads = max(1, parallel::detectCores() - 2),
 model_path = NULL,
 metadata_path = NULL,
 ModelID = "FirstModel";
 NumOfParDepPlots = 3,
 ReturnModelObjects = TRUE,
```

AutoH2oMLRegression 141

```
SaveModelObjects = FALSE,
SaveInfoToPDF = TRUE,
IfSaveModel = "mojo",
H2OShutdown = TRUE,
H2OStartUp = TRUE,
DebugMode = FALSE
)
```

Arguments

OutputSelection

You can select what type of output you want returned. Choose from c("EvalMetrics",

"PDFs", "Score_TrainData")

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target

is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

ExcludeAlgos "DRF", "GLM", "XGBoost", "GBM", "DeepLearning" and "Stacke-dEnsemble"

TransformNumericColumns

Set to NULL to do nothing; otherwise supply the column names of numeric

variables you want transformed

Methods Choose from "YeoJohnson", "BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt",

"Asin", or "Logit". If more than one is selected, the one with the best normalization pearson statistic will be used. Identity is automatically selected and

compared.

eval_metric This is the metric used to identify best grid tuned model. Choose from "MSE",

"RMSE", "MAE", "RMSLE"

MaxMem Set the maximum amount of memory you'd like to dedicate to the model run.

E.g. "32G"

NThreads Set the number of threads you want to dedicate to the model building

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

ModelID A character string to name your model and output

 ${\tt NumOfParDepPlots}$

Tell the function the number of partial dependence calibration plots you want to create. Calibration boxplots will only be created for numerical features (not

dummy variables)

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

SaveInfoToPDF Set to TRUE to save insights to PDF

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular H2O

model object

H20Shutdown Set to TRUE to shutdown H2O inside the function

H2OStartUp Defaults to TRUE which means H2O will be started inside the function

DebugMode Set to TRUE to print to screen steps taken internally

OutputSelection = c("EvalMetrics", "PDFs", "Score_TrainData"),

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvalutionBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, GridList, and Transformation metadata

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Regression: AutoCatBoostRegression(), AutoH2oDRFRegression(), AutoH2oGAMRegression(), AutoH2oGLMRegression(), AutoH2oGLMRegression(), AutoNLS(), AutoXGBoostRegression()

Examples

```
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
  N = 1000,
  ID = 2,
  ZIP = 0,
  AddDate = FALSE,
  Classification = FALSE,
  MultiClass = FALSE)
# Run function
TestModel <- RemixAutoML::AutoH2oMLRegression(</pre>
  # Compute management
 MaxMem = {gc();paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo", inte
  NThreads = max(1, parallel::detectCores()-2),
  H2OShutdown = TRUE,
  H2OStartUp = TRUE,
  IfSaveModel = "mojo",
  # Model evaluation
  eval_metric = "RMSE",
  NumOfParDepPlots = 3,
  # Metadata arguments
```

AutoH2OMLScoring 143

```
model_path = NULL,
metadata_path = NULL,
ModelID = "FirstModel"
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
SaveInfoToPDF = TRUE,
DebugMode = FALSE,
# Data arguments
TrainOnFull = FALSE,
ValidationData = NULL,
TestData = NULL,
TargetColumnName = "Adrian",
FeatureColNames = names(data)[!names(data) %in% c("IDcol_1", "IDcol_2", "Adrian")],
TransformNumericColumns = NULL,
Methods = c("BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Sqrt", "Logit"),
# Model args
ExcludeAlgos = NULL)
```

AutoH2OMLScoring

AutoH2OMLScoring

Description

AutoH2OMLScoring is an automated scoring function that compliments the AutoH2oGBM_() and AutoH2oDRF_() models training functions. This function requires you to supply features for scoring. It will run ModelDataPrep() to prepare your features for H2O data conversion and scoring.

Usage

```
AutoH2OMLScoring(
  ScoringData = NULL,
  ModelObject = NULL,
  ModelType = "mojo",
  H2OShutdown = TRUE,
  H2OStartUp = TRUE,
  MaxMem = {
                 gc()
  paste0(as.character(floor(as.numeric(system("awk '/MemFree/ {print $2}' /proc/meminfo",
    intern = TRUE))/1e+06)), "G") },
  NThreads = max(1, parallel::detectCores() - 2),
  JavaOptions = "-Xmx1g -XX:ReservedCodeCacheSize=256m",
  ModelPath = NULL,
  ModelID = NULL,
  ReturnFeatures = TRUE,
  TransformNumeric = FALSE,
  BackTransNumeric = FALSE,
  TargetColumnName = NULL,
  TransformationObject = NULL,
  TransID = NULL,
  TransPath = NULL,
  MDP_Impute = TRUE,
```

144 AutoH2OMLScoring

```
MDP_CharToFactor = TRUE,
MDP_RemoveDates = TRUE,
MDP_MissFactor = "0",
MDP_MissNum = -1
)
```

Arguments

ScoringData This is your data.table of features for scoring. Can be a single row or batch.

ModelObject Supply a model object from AutoH2oDRF__()

ModelType Set to either "mojo" or "standard" depending on which version you saved

H20Shutdown Set to TRUE to shutdown H2O inside the function.

H20StartUp Defaults to TRUE which means H2O will be started inside the function

MaxMem Set to you dedicated amount of memory. E.g. "28G" NThreads Default set to max(1, parallel::detectCores()-2)

JavaOptions Change the default to your machines specification if needed. Default is '-Xmx1g

-XX:ReservedCodeCacheSize=256m',

ModelPath Supply your path file used in the AutoH2o__() function

ModelID Supply the model ID used in the AutoH2o__() function

ReturnFeatures Set to TRUE to return your features with the predicted values.

TransformNumeric

Set to TRUE if you have features that were transformed automatically from an Auto Regression() model AND you haven't already transformed them.

BackTransNumeric

Set to TRUE to generate back-transformed predicted values. Also, if you return features, those will also be back-transformed.

TargetColumnName

Input your target column name used in training if you are utilizing the transformation service

TransformationObject

Set to NULL if you didn't use transformations or if you want the function to pull from the file output from the Auto_Regression() function. You can also supply the transformation data.table object with the transformation details versus having it pulled from file.

TransID Set to the ID used for saving the transformation data.table object or set it to the

ModelID if you are pulling from file from a build with Auto_Regression().

TransPath Set the path file to the folder where your transformation data.table detail object

is stored. If you used the Auto_Regression() to build, set it to the same path as

ModelPath.

MDP_Impute Set to TRUE if you did so for modeling and didn't do so before supplying Scor-

ingData in this function

MDP_CharToFactor

Set to TRUE to turn your character columns to factors if you didn't do so to your ScoringData that you are supplying to this function

MDP_RemoveDates

Set to TRUE if you have date of timestamp columns in your ScoringData

MDP_MissFactor If you set MDP_Impute to TRUE, supply the character values to replace missing

values with

values with

AutoHierarchicalFourier 145

Value

A data.table of predicted values with the option to return model features as well.

Author(s)

Adrian Antico

See Also

Other Automated Model Scoring: AutoCatBoostScoring(), AutoHurdleScoring(), AutoXGBoostScoring()

Examples

```
## Not run:
Preds <- AutoH2OMLScoring(</pre>
        ScoringData = data,
       ModelObject = NULL,
       ModelType = "mojo",
       H2OShutdown = TRUE,
       H2OStartUp = TRUE,
     \label{eq:maxMem} \textit{MaxMem} = \{gc(); paste0(as.character(floor(as.numeric(system("awk '/MemFree/ \{print $2\}' /proc/meminfo", interval and the process of t
       NThreads = max(1, parallel::detectCores()-2),
        JavaOptions = '-Xmx1g -XX:ReservedCodeCacheSize=256m',
        ModelPath = normalizePath("./"),
       ModelID = "ModelTest",
        ReturnFeatures = TRUE,
        TransformNumeric = FALSE,
        BackTransNumeric = FALSE,
        TargetColumnName = NULL,
        TransformationObject = NULL,
        TransID = NULL,
        TransPath = NULL,
       MDP_Impute = TRUE,
       MDP_CharToFactor = TRUE,
       MDP_RemoveDates = TRUE,
       MDP_MissFactor = "0",
       MDP_MissNum = -1)
## End(Not run)
```

AutoHierarchicalFourier

AutoHierarchicalFourier

Description

AutoHierarchicalFourier reverses the difference

Usage

```
AutoHierarchicalFourier(
  datax = data,
  xRegs = names(XREGS),
```

146 AutoHurdleScoring

```
FourierTermS = FourierTerms,
  TimeUniT = TimeUnit,
  FC_PeriodS = FC_Periods,
  TargetColumN = TargetColumn,
  DateColumN = DateColumnName,
  HierarchGroups = NULL,
  IndependentGroups = NULL)
```

Arguments

datax data

xRegs The XREGS

FourierTermS Number of fourier pairs

TimeUniT Time unit

FC_PeriodS Number of forecast periods

TargetColumN Target column name
DateColumN Date column name

HierarchGroups Character vector of categorical columns to fully interact

IndependentGroups

Character vector of categorical columns to run independently

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoDiffLagN(), AutoInteraction(), AutoLagRollStatsScori AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), AutoWord2VecScoring(), CategoricalEncoding(), CreateCalendarVariables(), CreateHolidayVariables(), DummifyDT(), H2OAutoencoderScoring(), H2OAutoencoder(), ModelDataPrep(), TimeSeriesFill()

AutoHurdleScoring AutoHurdleScoring

Description

 $AutoHurdleScoring\ can\ score\ AutoCatBoostHurdleModel()\ and\ AutoXGBoostHurdleModel()$

Usage

```
AutoHurdleScoring(
  TestData = NULL,
  Path = NULL,
  ModelID = NULL,
  ModelClass = "catboost",
  ArgList = NULL,
  ModelList = NULL,
  Threshold = NULL,
  CARMA = FALSE
)
```

AutoHurdleScoring 147

Arguments

TestData scoring data.table Path Supply if ArgList is NULL or ModelList is null. ModelID Supply if ArgList is NULL or ModelList is null. Same as used in model training. ModelClass Name of model type. "catboost" is currently the only available option ArgList Output from the hurdle model ModelList Output from the hurdle model Threshold NULL to use raw probabilities to predict. Otherwise, supply a threshold Keep FALSE. Used for CARMA functions internals CARMA

Value

A data.table with the final predicted value, the intermediate model predictions, and your source data

Author(s)

Adrian Antico

See Also

Other Automated Model Scoring: AutoCatBoostScoring(), AutoH20MLScoring(), AutoXGBoostScoring()

```
## Not run:
# XGBoost----
# Define file path
Path <- "C:/Users/aantico/Documents/Package/GUI_Package"
# Create hurdle data with correlated features
data <- RemixAutoML::FakeDataGenerator(</pre>
 Correlation = 0.70,
 N = 25000,
  ID = 3,
 FactorCount = 2L,
  AddDate = TRUE,
  ZIP = 1,
  Classification = FALSE,
  MultiClass = FALSE)
# Define features
Features <- names(data)[!names(data) %chin%</pre>
  c("Adrian","IDcol_1","IDcol_2","IDcol_3","DateTime")]
# Build hurdle model
Output <- RemixAutoML::AutoXGBoostHurdleModel(</pre>
  # Operationalization args
  TreeMethod = "hist",
  TrainOnFull = FALSE,
  PassInGrid = NULL,
```

148 AutoInteraction

```
# Metadata args
  NThreads = max(1L, parallel::detectCores()-2L),
  ModelID = "ModelTest",
  Paths = normalizePath(Path),
  MetaDataPaths = NULL,
  ReturnModelObjects = TRUE,
  # data args
  data,
  ValidationData = NULL,
  TestData = NULL,
  Buckets = c(0),
  TargetColumnName = "Adrian",
  FeatureColNames = Features,
  IDcols = c("IDcol_1","IDcol_2","IDcol_3"),
  # options
  TransformNumericColumns = NULL,
  SplitRatios = c(0.70, 0.20, 0.10),
  SaveModelObjects = TRUE,
  NumOfParDepPlots = 10L,
  # grid tuning args
  GridTune = FALSE,
  grid_eval_metric = "accuracy",
  MaxModelsInGrid = 1L,
  BaselineComparison = "default",
  MaxRunsWithoutNewWinner = 10L,
  MaxRunMinutes = 60L,
  # bandit hyperparameters
  Trees = 100L,
  eta = seq(0.05, 0.40, 0.05),
  max_depth = seq(4L, 16L, 2L),
  # random hyperparameters
  min_child_weight = seq(1.0, 10.0, 1.0),
  subsample = seq(0.55, 1.0, 0.05),
  colsample_bytree = seq(0.55, 1.0, 0.05))
# Score XGBoost Hurdle Model
HurdleScores <- RemixAutoML::AutoHurdleScoring(</pre>
  TestData = data,
  Path = Path,
  ModelID = "ModelTest",
  ModelClass = "xgboost",
  ModelList = NULL,
  ArgList = NULL,
  Threshold = NULL)
## End(Not run)
```

AutoInteraction 149

Description

AutoInteraction creates interaction variables from your numerical features in your data. Supply a set of column names to utilize and set the interaction level. Supply a character vector of columns to exclude and the function will ignore those features.

Usage

```
AutoInteraction(
  data = NULL,
  NumericVars = NULL,
  InteractionDepth = 2,
  Center = TRUE,
  Scale = TRUE,
  SkipCols = NULL,
  Scoring = FALSE,
  File = NULL
)
```

Arguments

data Source data.table

InteractionDepth

The max K in N choose K. If NULL, K will loop through 1 to length(NumVars).

Default is 2 for pairwise interactions

Center TRUE to center the data
Scale TRUE to scale the data

SkipCols Use this to exclude features from being created. An example could be, you build

a model with all variables and then use the varaible importance list to determine which features aren't necessary and pass that set of features into this argument

as a character vector.

Scoring Defaults to FALSE. Set to TRUE for generating these columns in a model scor-

ing setting

File When Scoring is set to TRUE you have to supply either the .Rdata list with

lookup values for recreating features or a pathfile to the .Rdata file with the lookup values. If you didn't center or scale the data then this argument can be

ignored.

NumVars Names of numeric columns (if NULL, all numeric and integer columns will be

used)

Author(s)

Adrian Antico

See Also

```
Other Feature Engineering: AutoDataPartition(), AutoDiffLagN(), AutoHierarchicalFourier(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(AutoWord2VecModeler(), AutoWord2VecScoring(), CategoricalEncoding(), CreateCalendarVariables(), CreateHolidayVariables(), DummifyDT(), H2OAutoencoderScoring(), H2OAutoencoder(), ModelDataPrep(), TimeSeriesFill()
```

150 AutoInteraction

```
## Not run:
# Feature Engineering for Model Training
# Create fake data
data <- RemixAutoML::FakeDataGenerator(</pre>
 Correlation = 0.70,
 N = 50000,
 ID = 2L,
 FactorCount = 2L,
 AddDate = TRUE,
 ZIP = 0L,
 TimeSeries = FALSE,
 ChainLadderData = FALSE,
 Classification = FALSE,
 MultiClass = FALSE)
# Print number of columns
print(ncol(data))
# Store names of numeric and integer cols
Cols <-names(data)[c(which(unlist(lapply(data, is.numeric))),</pre>
                  which(unlist(lapply(data, is.integer))))]
# Model Training Feature Engineering
system.time(data <- RemixAutoML::AutoInteraction(</pre>
 data = data,
 NumericVars = Cols,
 InteractionDepth = 4,
 Center = TRUE,
 Scale = TRUE,
 SkipCols = NULL,
 Scoring = FALSE,
 File = getwd()))
# user system elapsed
# 0.30
        0.11
              0.41
# Print number of columns
print(ncol(data))
# Feature Engineering for Model Scoring
# Create fake data
data <- RemixAutoML::FakeDataGenerator(</pre>
 Correlation = 0.70,
 N = 1000,
 ID = 2L,
 FactorCount = 2L,
 AddDate = TRUE,
 ZIP = 0L,
```

AutoLagRollStats 151

```
TimeSeries = FALSE,
  ChainLadderData = FALSE,
  Classification = FALSE,
  MultiClass = FALSE)
# Print number of columns
print(ncol(data))
# Reduce to single row to mock a scoring scenario
data <- data[1L]</pre>
# Model Scoring Feature Engineering
system.time(data <- RemixAutoML::AutoInteraction(</pre>
  data = data,
  NumericVars = names(data)[
    c(which(unlist(lapply(data, is.numeric))),
      which(unlist(lapply(data, is.integer))))],
  InteractionDepth = 4,
  Center = TRUE,
  Scale = TRUE,
  SkipCols = NULL,
  Scoring = TRUE,
 File = file.path(getwd(), "Standardize.Rdata")))
# user system elapsed
# 0.19
        0.00
                 0.19
# Print number of columns
print(ncol(data))
## End(Not run)
```

AutoLagRollStats

AutoLagRollStats

Description

AutoLagRollStats Builds lags and a large variety of rolling statistics with options to generate them for hierarchical categorical interactions.

Usage

```
AutoLagRollStats(
  data,
  Targets = NULL,
  HierarchyGroups = NULL,
  IndependentGroups = NULL,
  DateColumn = NULL,
  TimeUnit = NULL,
  TimeUnitAgg = NULL,
  TimeGroups = NULL,
  TimeBetween = NULL,
  RollOnLag1 = TRUE,
```

152 AutoLagRollStats

```
Type = "Lag",
SimpleImpute = TRUE,
Lags = NULL,
MA_RollWindows = NULL,
SD_RollWindows = NULL,
Skew_RollWindows = NULL,
Kurt_RollWindows = NULL,
Quantile_RollWindows = NULL,
Quantiles_Selected = NULL,
Debug = FALSE
)
```

Arguments

data A data.table you want to run the function on

Targets A character vector of the column names for the reference column in which you

will build your lags and rolling stats

HierarchyGroups

A vector of categorical column names that you want to have generate all lags and rolling stats done for the individual columns and their full set of interactions.

IndependentGroups

A vector of categorical column names that you want to have run independently

of each other. This will mean that no interaction will be done.

DateColumn The column name of your date column used to sort events over time

TimeUnit List the time aggregation level for the time between events features, such as

"hour", "day", "weeks", "months", "quarter", or "year"

TimeUnitAgg List the time aggregation of your data that you want to use as a base time unit

for your features. E.g. "raw" or "day"

TimeGroups A vector of TimeUnits indicators to specify any time-aggregated GDL fea-

tures you want to have returned. E.g. c("raw" (no aggregation is done), "hour",

"day", "week", "month", "quarter", "year")

TimeBetween Specify a desired name for features created for time between events. Set to

NULL if you don't want time between events features created.

RollOnLag1 Set to FALSE to build rolling stats off of target columns directly or set to TRUE

to build the rolling stats off of the lag-1 target

Type List either "Lag" if you want features built on historical values or "Lead" if you

want features built on future values

SimpleImpute Set to TRUE for factor level imputation of "0" and numeric imputation of -1

Lags A numeric vector of the specific lags you want to have generated. You must

include 1 if WindowingLag = 1.

MA_RollWindows A numeric vector of the specific rolling statistics window sizes you want to

utilize in the calculations.

SD_RollWindows A numeric vector of Standard Deviation rolling statistics window sizes you want

to utilize in the calculations.

Skew_RollWindows

A numeric vector of Skewness rolling statistics window sizes you want to utilize

in the calculations.

AutoLagRollStats 153

```
Kurt_RollWindows
```

A numeric vector of Kurtosis rolling statistics window sizes you want to utilize in the calculations.

Quantile_RollWindows

A numeric vector of Quantile rolling statistics window sizes you want to utilize in the calculations.

Quantiles_Selected

Select from the following c("q5", "q10", "q15", "q20", "q25", "q30", "q35", "q40", "q45", "q50", "q55", "q60"," q65", "q70", "q75", "q80", "q85", "q90", "q95")

Debug

Set to TRUE to get a print of which steps are running

Value

data.table of original data plus created lags, rolling stats, and time between event lags and rolling stats

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoDiffLagN(), AutoHierarchicalFourier(), AutoInteraction(), AutoLagRollStatsScoring(), AutoTransformationCreate(), AutoTransformationScore() AutoWord2VecModeler(), AutoWord2VecScoring(), CategoricalEncoding(), CreateCalendarVariables(), CreateHolidayVariables(), DummifyDT(), H2OAutoencoderScoring(), H2OAutoencoder(), ModelDataPrep(), TimeSeriesFill()

```
## Not run:
# Create fake Panel Data----
Count <- 1L
for(Level in LETTERS) {
  datatemp <- RemixAutoML::FakeDataGenerator(</pre>
    Correlation = 0.75,
    N = 25000L
    ID = 0L,
    ZIP = 0L
    FactorCount = 0L,
    AddDate = TRUE,
    Classification = FALSE,
    MultiClass = FALSE)
  datatemp[, Factor1 := eval(Level)]
  if(Count == 1L) {
    data <- data.table::copy(datatemp)</pre>
  } else {
    data <- data.table::rbindlist(</pre>
      list(data, data.table::copy(datatemp)))
  Count <- Count + 1L
# Add scoring records
```

```
data <- RemixAutoML::AutoLagRollStats(</pre>
  # Data
  data
                     = data,
                    = "DateTime",
 DateColumn
                    = "Adrian",
  Targets
 HierarchyGroups = NULL,
  IndependentGroups = c("Factor1"),
  TimeUnitAgg = "days",
  TimeGroups
                     = c("days", "weeks",
                          "months", "quarters"),
  TimeBetween
                     = NULL,
  TimeUnit
                      = "days",
  # Services
 RollOnLag1
                     = TRUE.
                     = "Lag",
  Type
  SimpleImpute
                      = TRUE,
  # Calculated Columns
 Lags
                      = list("days" = c(seq(1,5,1)),
                             "weeks" = c(seq(1,3,1)),
                             "months" = c(seq(1,2,1)),
                             "quarters" = c(seq(1,2,1)),
 MA_RollWindows
                      = list("days" = c(seq(1,5,1)),
                             "weeks" = c(seq(1,3,1)),
                             "months" = c(seq(1,2,1)),
                             "quarters" = c(seq(1,2,1)),
  SD RollWindows
                     = NULL,
  Skew_RollWindows = NULL,
  Kurt_RollWindows = NULL,
  Quantile_RollWindows = NULL,
  Quantiles_Selected = NULL,
  Debug
                      = FALSE)
## End(Not run)
```

AutoLagRollStatsScoring

AutoLagRollStatsScoring

Description

AutoLagRollStatsScoring Builds lags and a large variety of rolling statistics with options to generate them for hierarchical categorical interactions.

Usage

```
AutoLagRollStatsScoring(
  data,
  RowNumsID = "temp",
  RowNumsKeep = 1,
  Targets = NULL,
  HierarchyGroups = NULL,
```

```
IndependentGroups = NULL,
  DateColumn = NULL.
  TimeUnit = "day",
  TimeUnitAgg = "day",
  TimeGroups = "day",
  TimeBetween = NULL,
  RollOnLag1 = 1,
  Type = "Lag",
  SimpleImpute = TRUE,
  Lags = NULL,
 MA_RollWindows = NULL,
  SD_RollWindows = NULL,
  Skew_RollWindows = NULL,
 Kurt_RollWindows = NULL,
  Quantile_RollWindows = NULL,
 Quantiles_Selected = NULL,
  Debug = FALSE
)
```

Arguments

data A data.table you want to run the function on

RowNumsID The name of your column used to id the records so you can specify which rows

to keep

RowNumsKeep The RowNumsID numbers that you want to keep

Targets A character vector of the column names for the reference column in which you

will build your lags and rolling stats

HierarchyGroups

A vector of categorical column names that you want to have generate all lags and rolling stats done for the individual columns and their full set of interactions.

 ${\tt IndependentGroups}$

Only supply if you do not want HierarchyGroups. A vector of categorical column names that you want to have run independently of each other. This will

mean that no interaction will be done.

DateColumn The column name of your date column used to sort events over time

TimeUnit List the time aggregation level for the time between events features, such as

"hour", "day", "weeks", "months", "quarter", or "year"

TimeUnitAgg List the time aggregation of your data that you want to use as a base time unit

for your features. E.g. "day",

TimeGroups A vector of TimeUnits indicators to specify any time-aggregated GDL features

you want to have returned. E.g. c("hour", "day", "week", "month", "quarter", "year"). STILL NEED TO ADD these '1min', '5min', '10min', '15min', '30min', '45min'

TimeBetween Specify a desired name for features created for time between events. Set to

NULL if you don't want time between events features created.

RollOnLag1 Set to FALSE to build rolling stats off of target columns directly or set to TRUE

to build the rolling stats off of the lag-1 target

Type List either "Lag" if you want features built on historical values or "Lead" if you

want features built on future values

SimpleImpute Set to TRUE for factor level imputation of "0" and numeric imputation of -1

Lags A numeric vector of the specific lags you want to have generated. You must

include 1 if WindowingLag = 1.

MA_RollWindows A numeric vector of the specific rolling statistics window sizes you want to

utilize in the calculations.

SD_RollWindows A numeric vector of Standard Deviation rolling statistics window sizes you want

to utilize in the calculations.

Skew_RollWindows

A numeric vector of Skewness rolling statistics window sizes you want to utilize in the calculations.

Kurt_RollWindows

A numeric vector of Kurtosis rolling statistics window sizes you want to utilize in the calculations.

Quantile_RollWindows

A numeric vector of Quantile rolling statistics window sizes you want to utilize in the calculations.

Quantiles_Selected

```
Select from the following c("q5", "q10", "q15", "q20", "q25", "q30", "q35", "q40", "q45", "q50", "q55", "q60"," q65", "q70", "q75", "q80", "q85", "q90", "q95")
```

Debug Set to TRUE to get a print out of which step you are on

Value

data.table of original data plus created lags, rolling stats, and time between event lags and rolling stats

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoDiffLagN(), AutoHierarchicalFourier(), AutoInteraction(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), AutoWord2VecScoring(), CategoricalEncoding(), CreateCalendarVariables(), CreateHolidayVariables(), DummifyDT(), H2OAutoencoderScoring(), H2OAutoencoder(), ModelDataPrep(), TimeSeriesFill()

```
# Create fake Panel Data----
Count <- 1L
for(Level in LETTERS) {
    datatemp <- RemixAutoML::FakeDataGenerator(
        Correlation = 0.75,
        N = 25000L,
        ID = 0L,
        ZIP = 0L,
        FactorCount = 0L,
        AddDate = TRUE,
        Classification = FALSE,
        MultiClass = FALSE)
    datatemp[, Factor1 := eval(Level)]</pre>
```

```
if(Count == 1L) {
    data <- data.table::copy(datatemp)</pre>
  } else {
    data <- data.table::rbindlist(</pre>
      list(data, data.table::copy(datatemp)))
  Count <- Count + 1L
}
# Create ID columns to know which records to score
data[, ID := .N:1L, by = "Factor1"]
data.table::set(data, i = which(data[["ID"]] == 2L), j = "ID", value = 1L)
# Score records
data <- RemixAutoML::AutoLagRollStatsScoring(</pre>
  # Data
                       = data,
  data
  RowNumsID
                      = "ID".
  RowNumsKeep
                      = 1,
  DateColumn
                      = "DateTime",
  Targets
                      = "Adrian",
                      = c("Store", "Dept"),
  HierarchyGroups
  IndependentGroups
                      = NULL,
  # Services
  TimeBetween
                      = NULL,
                     = c("days", "weeks", "months"),
  TimeGroups
                     = "day",
  TimeUnit
                     = "day",
  TimeUnitAgg
                     = TRUE,
  RollOnLag1
                      = "Lag",
  Type
  SimpleImpute
                       = TRUE,
  # Calculated Columns
  Lags
                        = list("days" = c(seq(1,5,1)),
                               "weeks" = c(seq(1,3,1)),
                               "months" = c(seq(1,2,1)),
  MA_RollWindows
                        = list("days" = c(seq(1,5,1)),
                               "weeks" = c(seq(1,3,1)),
                               "months" = c(seq(1,2,1)),
                        = list("days" = c(seq(1,5,1)),
  SD_RollWindows
                               "weeks" = c(seq(1,3,1)),
                               "months" = c(seq(1,2,1)),
  Skew_RollWindows
                        = list("days" = c(seq(1,5,1)),
                               "weeks" = c(seq(1,3,1)),
                               "months" = c(seq(1,2,1)),
                        = list("days" = c(seq(1,5,1)),
  Kurt_RollWindows
                               "weeks" = c(seq(1,3,1)),
                               "months" = c(seq(1,2,1)),
  Quantile_RollWindows = list("days" = c(seq(1,5,1)),
                               "weeks" = c(seq(1,3,1)),
                               "months" = c(seq(1,2,1))),
  Quantiles_Selected = c("q5","q10","q95"),
  Debug
                        = FALSE)
```

158 AutoMarketBasketModel

AutoMarketBasketModel AutoMarketBasketModel

Description

AutoMarketBasketModel function runs a market basket analysis automatically. It will convert your data, run the algorithm, and add on additional significance values not originally contained within.

Usage

```
AutoMarketBasketModel(
data,
OrderIDColumnName,
ItemIDColumnName,
LHS_Delimeter = ",",
Support = 0.001,
Confidence = 0.1,
MaxLength = 2,
MinLength = 2,
MaxTime = 5
)
```

Arguments

data This is your transactions data set

OrderIDColumnName

Supply your column name for the Order ID Values

ItemIDColumnName

Supply your column name for the Item ID Values

LHS_Delimeter Default delimeter for separating multiple ItemID's is a comma.

Support Threshold for inclusion using support

Confidence Threshold for inclusion using confidence

MaxLength Maximum combinations of Item ID (number of items in basket to consider)

MinLength Minimum length of combinations of ItemID (number of items in basket to con-

sider)

Max run time per iteration (default is 5 seconds)

Author(s)

Adrian Antico and Douglas Pestana

See Also

Chi-sq statistics and p-values based on this paper: http://www.cs.bc.edu/~alvarez/ChiSquare/chi2tr.pdf
Other Recommenders: AutoRecomDataCreate(), AutoRecommenderScoring(), AutoRecommender()

AutoNLS 159

Examples

```
## Not run:
rules_data <- AutoMarketBasketModel(
    data,
    OrderIDColumnName = "OrderNumber",
    ItemIDColumnName = "ItemNumber",
    LHS_Delimeter = ",",
    Support = 0.001,
    Confidence = 0.1,
    MaxLength = 2,
    MinLength = 2,
    MaxTime = 5)
## End(Not run)</pre>
```

AutoNLS

AutoNLS

Description

This function will build models for 9 different nls models, along with a non-parametric monotonic regression and a polynomial regression. The models are evaluated, a winner is picked, and the predicted values are stored in your data table.

Usage

```
AutoNLS(data, y, x, monotonic = TRUE)
```

Arguments

data Data is the data table you are building the modeling on

y Y is the target variable name in quotes

X is the independent variable name in quotes

monotonic This is a TRUE/FALSE indicator - choose TRUE if you want monotonic regres-

sion over polynomial regression

Value

A list containing "PredictionData" which is a data table with your original column replaced by the nls model predictions; "ModelName" the model name; "ModelObject" The winning model to later use; "EvaluationMetrics" Model metrics for models with ability to build.

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Regression: AutoCatBoostRegression(), AutoH2oDRFRegression(), AutoH2oGAMRegression(), AutoH2oGLMRegression(), AutoH2oGLMRegression(), AutoH2oMLRegression(), AutoXGBoostRegression()

160 AutoNLS

```
## Not run:
# Create Growth Data
data <- data.table::data.table(Target = seq(1, 500, 1),</pre>
 Variable = rep(1, 500)
for (i in as.integer(1:500)) {
 if (i == 1) {
    var <- data[i, "Target"][[1]]</pre>
    data.table::set(data, i = i, j = 2L,
      value = var * (1 + runif(1) / 100))
  } else {
    var <- data[i - 1, "Variable"][[1]]</pre>
    data.table::set(data, i = i, j = 2L,
      value = var * (1 + runif(1) / 100))
 }
}
# Add jitter to Target
data[, Target := jitter(Target, factor = 0.25)]
# To keep original values
data1 <- data.table::copy(data)</pre>
# Merge and Model data
data11 <- AutoNLS(</pre>
  data = data,
  y = "Target"
  x = "Variable"
  monotonic = TRUE)
# Join predictions to source data
data2 <- merge(</pre>
  data1.
  data11$PredictionData,
 by = "Variable",
 all = FALSE)
# Plot output
ggplot2::ggplot(data2, ggplot2::aes(x = Variable)) +
  ggplot2::geom_line(ggplot2::aes(y = data2[["Target.x"]],
                                   color = "Target")) +
  ggplot2::geom_line(ggplot2::aes(y = data2[["Target.y"]],
                                   color = "Predicted")) +
 RemixAutoML::ChartTheme(Size = 12) +
  ggplot2::ggtitle(paste0("Growth Models AutoNLS: ",
    data11$ModelName)) +
  ggplot2::ylab("Target Variable") +
  ggplot2::xlab("Independent Variable") +
  ggplot2::scale_colour_manual("Values",
    breaks = c("Target", "Predicted"),
    values = c("red", "blue"))
summary(data11$ModelObject)
data11$EvaluationMetrics
## End(Not run)
```

AutoRecomDataCreate 161

AutoRecomDataCreate AutoRecomDataCreate

Description

AutoRecomDataCreate to create data that is prepared for modeling

Usage

```
AutoRecomDataCreate(
  data,
  EntityColName = "CustomerID",
  ProductColName = "StockCode",
  MetricColName = "TotalSales",
  ReturnMatrix = FALSE
)
```

Arguments

data This is your transactional data.table. Must include an Entity (typically cus-

tomer), ProductCode (such as SKU), and a sales metric (such as total sales).

EntityColName This is the column name in quotes that represents the column name for the En-

tity, such as customer

ProductColName This is the column name in quotes that represents the column name for the prod-

uct, such as SKU

MetricColName This is the column name in quotes that represents the column name for the met-

ric, such as total sales

ReturnMatrix Set to FALSE to coerce the object (desired route) or TRUE to return a matrix

Value

A BinaryRatingsMatrix

Author(s)

Adrian Antico and Douglas Pestana

See Also

Other Recommenders: AutoMarketBasketModel(), AutoRecommenderScoring(), AutoRecommender()

```
## Not run:
RatingsMatrix <- AutoRecomDataCreate(
  data,
  EntityColName = "CustomerID",
  ProductColName = "StockCode",
  MetricColName = "TotalSales",
  ReturnMatrix = TRUE)
## End(Not run)</pre>
```

162 AutoRecommender

AutoRecommender	Automatically build the best recommender model among models available.
	· ·

Description

This function returns the winning model that you pass onto AutoRecommenderScoring

Usage

```
AutoRecommender(
  data,
  Partition = "Split",
  KFolds = 1,
  Ratio = 0.75,
  Given = 1,
  RatingType = "TopN",
  RatingsKeep = 20,
  SkipModels = "AssociationRules",
  ModelMetric = "TPR"
)
```

Arguments

data	This is your BinaryRatingsMatrix. See function RecomDataCreate
Partition	Choose from "split", "cross-validation", "bootstrap". See evaluationScheme in recommenderlab for details.
KFolds	Choose 1 for traditional train and test. Choose greater than 1 for the number of cross validations
Ratio	The ratio for train and test. E.g. 0.75 for 75 percent data allocated to training
Given	The number of products you would like to evaluate. Negative values implement all-but schemes.
RatingType	Choose from "TopN", "ratings", "ratingMatrix"
RatingsKeep	The total ratings you wish to return. Default is 20.
SkipModels	$Association Rules \ runs \ the \ slowest \ and \ may \ crash \ your \ system. \ Choose \ from: \\ "Association Rules", "ItemBased CF", "UserBased CF", "Popular Items", "Random Items"$
ModelMetric	Choose from "Precision", "Recall", "TPR", or "FPR"

Value

The winning model used for scoring in the AutoRecommenderScoring function

Author(s)

Adrian Antico and Douglas Pestana

See Also

 $Other\ Recommenders:\ AutoMarketBasketModel(), AutoRecomDataCreate(), AutoRecommenderScoring()$

Examples

```
## Not run:
WinningModel <- AutoRecommender(
   RatingsMatrix,
   Partition = "Split",
   KFolds = 1,
   Ratio = 0.75,
   Given = 1,
   RatingType = "TopN",
   RatingsKeep = 20,
   SkipModels = "AssociationRules",
   ModelMetric = "TPR")
## End(Not run)</pre>
```

AutoRecommenderScoring

The AutoRecomScoring function scores recommender models from AutoRecommender()

Description

This function will take your ratings matrix and model and score your data in parallel.

This function will take your ratings matrix and model and score your data in parallel.

Usage

```
AutoRecommenderScoring(
  data,
  WinningModel,
  EntityColName = "CustomerID",
  ProductColName = "StockCode",
  NumItemsReturn = 1
)

AutoRecommenderScoring(
  data,
  WinningModel,
  EntityColName = "CustomerID",
  ProductColName = "StockCode",
  NumItemsReturn = 1
)
```

Arguments

data The binary ratings matrix from RecomDataCreate()
WinningModel The winning model returned from AutoRecommender()

EntityColName Typically your customer ID
ProductColName Something like "StockCode"

NumItemsReturn Number of items to return on scoring

Value

Returns the prediction data Returns the prediction data

Author(s)

Adrian Antico and Douglas Pestana Adrian Antico and Douglas Pestana

See Also

```
Other Recommenders: AutoMarketBasketModel(), AutoRecomDataCreate(), AutoRecommender() Other Recommenders: AutoMarketBasketModel(), AutoRecomDataCreate(), AutoRecommender()
```

```
## Not run:
Results <- AutoRecommenderScoring(</pre>
  data = AutoRecomDataCreate(
      data,
      EntityColName = "CustomerID",
      ProductColName = "StockCode",
      MetricColName = "TotalSales"),
  WinningModel = AutoRecommender(
      AutoRecomDataCreate(
        data,
        EntityColName = "CustomerID",
        ProductColName = "StockCode",
       MetricColName = "TotalSales"),
      Partition = "Split",
      KFolds = 2,
      Ratio = 0.75,
      RatingType = "TopN",
      RatingsKeep = 20,
      SkipModels = "AssociationRules",
      ModelMetric = "TPR"),
  EntityColName = "CustomerID",
  ProductColName = "StockCode")
## End(Not run)
## Not run:
Results <- AutoRecommenderScoring(</pre>
  data = AutoRecomDataCreate(
      data,
      EntityColName = "CustomerID",
      ProductColName = "StockCode"
      MetricColName = "TotalSales"),
  WinningModel = AutoRecommender(
      AutoRecomDataCreate(
        data,
        EntityColName = "CustomerID",
        ProductColName = "StockCode",
        MetricColName = "TotalSales"),
      Partition = "Split",
      KFolds = 2,
```

AutoShapeShap 165

```
Ratio = 0.75,
RatingType = "TopN",
RatingsKeep = 20,
SkipModels = "AssociationRules",
ModelMetric = "TPR"),
EntityColName = "CustomerID",
ProductColName = "StockCode")
## End(Not run)
```

AutoShapeShap

AutoShapeShap

Description

AutoShapeShap will convert your scored shap values from CatBoost

Usage

```
AutoShapeShap(
   ScoringData = NULL,
   Threads = max(1L, parallel::detectCores() - 2L),
   DateColumnName = "Date",
   ByVariableName = "GroupVariable"
)
```

Arguments

ScoringData Scoring data from AutoCatBoostScoring with classification or regression

Threads Number of threads to use for the parellel routine

DateColumnName Name of the date column in scoring data

ByVariableName Name of your base entity column name

Author(s)

Adrian Antico

See Also

```
Other Model Evaluation and Interpretation: CumGainsChart(), EvalPlot(), ParDepCalPlots(), ROCPlot(), RedYellowGreen(), ResidualPlots(), ShapPlot(), SingleRowShapeShap(), threshOptim()
```

166 AutoTBATS

AutoTBATS

AutoTBATS

Description

AutoTBATS is a multi-armed bandit model testing framework for AR and SAR NNets. Randomized probability matching is the underlying bandit algorithm. Model evaluation is done by blending the training error and the validation error from testing the model on out of sample data. The bandit algorithm compares the performance of the current build against the previous builds which starts with the classic nnetar model from the forecast package. Depending on how many lags, seasonal lags, and fourier pairs you test the number of combinations of features to test begins to approach 10,000 different combinations of settings. The function tests out transformations, differencing, and variations of the lags, seasonal lags, and fourier pairs. The paramter space is broken up into various buckets that are increasing in sophistication. The bandit algorithm samples from those buckets and based on many rounds of testing it determines which buckets to generate samples from more frequently based on the models performance coming from that bucket. All of the models have performance data collected on them and a final rebuild is initiated when a winner is found. The rebuild process begins by retraining the model with the settings that produced the best performance. If the model fails to build, for whatever reason, the next best buildable model is rebuilt.

Usage

```
AutoTBATS(
  data,
 FilePath = NULL,
  TargetVariableName,
 DateColumnName,
  TimeAggLevel = "week",
 EvaluationMetric = "MAE",
 NumHoldOutPeriods = 5L,
 NumFCPeriods = 5L,
 MaxLags = 5L
 MaxMovingAverages = 5L,
 MaxSeasonalPeriods = 1L,
 TrainWeighting = 0.5,
 MaxConsecutiveFails = 12L,
 MaxNumberModels = 100L,
 MaxRunTimeMinutes = 10L,
  NumberCores = max(1L, min(4L, parallel::detectCores() - 2L))
)
```

Arguments

data Source data.table

FilePath NULL to return nothing. Provide a file path to save the model and xregs if

available

TargetVariableName

Name of your time series target variable

DateColumnName Name of your date column

TimeAggLevel Choose from "year", "quarter", "month", "week", "day", "hour"

AutoTBATS 167

EvaluationMetric

Choose from MAE, MSE, and MAPE

NumHoldOutPeriods

Number of time periods to use in the out of sample testing

NumFCPeriods Number of periods to forecast

MaxLags A single value of the max number of lags to use in the internal auto.arima of

tbats

 ${\tt MaxMovingAverages}$

A single value of the max number of moving averages to use in the internal auto.arima of tbats

MaxSeasonalPeriods

A single value for the max allowable seasonal periods to be tested in the tbats framework

TrainWeighting Model ranking is based on a weighted average of training metrics and out of sample metrics. Supply the weight of the training metrics, such as 0.50 for 50

percent.

MaxConsecutiveFails

When a new best model is found MaxConsecutiveFails resets to zero. Indicated the number of model attemps without a new winner before terminating the procedure.

MaxNumberModels

Indicate the maximum number of models to test.

MaxRunTimeMinutes

Indicate the maximum number of minutes to wait for a result.

NumberCores Default max(1L, min(4L, parallel::detectCores()-2L))

Author(s)

Adrian Antico

See Also

Other Automated Time Series: AutoArfima(), AutoBanditNNet(), AutoBanditSarima(), AutoETS(), AutoTS()

```
## Not run:
# Create fake data
data <- RemixAutoML::FakeDataGenerator(TimeSeries = TRUE, TimeSeriesTimeAgg = "days")

# Build model
Output <- RemixAutoML::AutoTBATS(
    data,
    FilePath = NULL,
    TargetVariableName = "Weekly_Sales",
    DateColumnName = "Date",
    TimeAggLevel = "weeks",
    EvaluationMetric = "MAE",
    NumHoldOutPeriods = 5L,
    NumFCPeriods = 5L,
    MaxLags = 5L,
    MaxMovingAverages = 5L,</pre>
```

168 AutoTransformationCreate

```
MaxSeasonalPeriods = 1L,
TrainWeighting = 0.50,
MaxConsecutiveFails = 12L,
MaxNumberModels = 100L,
MaxRunTimeMinutes = 10L,
NumberCores = max(1L, min(4L, parallel::detectCores()-2L)))
# Output
Output$ForecastPlot
Output$Forecast
Output$PerformanceGrid
## End(Not run)
```

AutoTransformationCreate

AutoTransformationCreate

Description

AutoTransformationCreate is a function for automatically identifying the optimal transformations for numeric features and transforming them once identified. This function will loop through your selected transformation options (YeoJohnson, BoxCox, Asinh, Asin, and Logit) and find the one that produces data that is the closest to normally distributed data. It then makes the transformation and collects the metadata information for use in the AutoTransformationScore() function, either by returning the objects (always) or saving them to file (optional).

Usage

```
AutoTransformationCreate(
   data,
   ColumnNames = NULL,
   Methods = c("BoxCox", "YeoJohnson", "Asinh", "Log", "LogPlus1", "Sqrt", "Asin",
        "Logit", "Identity"),
   Path = NULL,
   TransID = "ModelID",
   SaveOutput = FALSE
)
```

Arguments

data This is your source data

ColumnNames List your columns names in a vector, for example, c("Target", "IV1")

Methods Choose from "YeoJohnson", "BoxCox", "Asinh", "Log", "LogPlus1", "Asin",

"Logit", and "Identity".

Path Set to the directly where you want to save all of your modeling files

TransID Set to a character value that corresponds with your modeling project

SaveOutput Set to TRUE to save necessary file to run AutoTransformationScore()

Value

data with transformed columns and the transformation object for back-transforming later

AutoTransformationScore 169

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoDiffLagN(), AutoHierarchicalFourier(), AutoInteraction(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationScore(), AutoWord2VecModeler(), AutoWord2VecScoring(), CategoricalEncoding(), CreateCalendarVariables(), CreateHolidayVariables(), DummifyDT(), H2OAutoencoderScoring(), H2OAutoencoder(), ModelDataPrep(), TimeSeriesFill()

Examples

```
## Not run:
# Create Fake Data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
  N = 25000,
  ID = 2L,
  ZIP = 0,
  FactorCount = 2L,
  AddDate = FALSE,
  Classification = FALSE,
  MultiClass = FALSE)
# Columns to transform
Cols <- names(data)[1L:11L]</pre>
print(Cols)
# Run function
data <- RemixAutoML::AutoTransformationCreate(</pre>
  ColumnNames = Cols,
 Methods = c("YeoJohnson", "BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt", "Asin", "Logit", "Identity"),
 Path = getwd(),
  TransID = "Trans",
  SaveOutput = TRUE)
## End(Not run)
```

AutoTransformationScore

 $AutoTransformationScore()\ is\ a\ the\ complimentary\ function\ to\ AutoTransformationCreate()$

Description

AutoTransformationScore() is a the compliment function to AutoTransformationCreate(). Automatically apply or inverse the transformations you identified in AutoTransformationCreate() to other data sets. This is useful for applying transformations to your validation and test data sets for modeling. It's also useful for back-transforming your target and prediction columns after you have build and score your models so you can obtain statistics on the original features.

170 AutoTransformationScore

Usage

```
AutoTransformationScore(
   ScoringData,
   FinalResults,
   Type = "Inverse",
   TransID = "TestModel",
   Path = NULL
)
```

Arguments

ScoringData This is your source data

FinalResults This is the FinalResults output object from AutoTransformationCreate().

Type Set to "Inverse" to back-transfrom or "Apply" for applying the transformation.

TransID Set to a character value that corresponds with your modeling project

Path Set to the directly where you want to save all of your modeling files

Value

data with transformed columns

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoDiffLagN(), AutoHierarchicalFourier(), AutoInteraction(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoWord2VecModeler(), AutoWord2VecScoring(), CategoricalEncoding(), CreateCalendarVariables(), CreateHolidayVariables(), DummifyDT(), H2OAutoencoderScoring(), H2OAutoencoder(), ModelDataPrep(), TimeSeriesFill()

```
## Not run:
# Create Fake Data
data <- RemixAutoML::FakeDataGenerator(
   Correlation = 0.85,
   N = 25000,
   ID = 2L,
   ZIP = 0,
   FactorCount = 2L,
   AddDate = FALSE,
   Classification = FALSE,
   MultiClass = FALSE)
# Columns to transform
Cols <- names(data)[1L:11L]
print(Cols)
data <- data[1]</pre>
```

AutoTS 171

```
# Run function
Output <- RemixAutoML::AutoTransformationCreate(</pre>
  data,
  ColumnNames = Cols,
 Methods = c("YeoJohnson", "BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt", "Asin", "Logit", "Identity"),
 Path = getwd(),
  TransID = "Model_1",
  SaveOutput = TRUE
# Output
data <- Output$Data
TransInfo <- Output$FinalResults</pre>
# Back Transform
data <- RemixAutoML::AutoTransformationScore(</pre>
  data.
  FinalResults = TransInfo,
 Path = NULL,
  TransID = "Model_1")
## End(Not run)
```

AutoTS

AutoTS

Description

Step 1 is to build all the models and evaluate them on the number of HoldOutPeriods periods you specify. Step 2 is to pick the winner and rebuild the winning model on the full data set. Step 3 is to generate forecasts with the final model for FCPeriods that you specify. AutoTS builds the best time series models for each type, using optimized box-cox transformations and using a user-supplied frequency for the ts data conversion along with a model-based frequency for the ts data conversion, compares all types, selects the winner, and generates a forecast. Models include:

DSHW: Double Seasonal Holt Winters

ARFIMA: Auto Regressive Fractional Integrated Moving Average

ARIMIA: Stepwise Auto Regressive Integrated Moving Average with specified max lags, seasonal lags, moving averages, and seasonal moving averages

ETS: Additive and Multiplicitive Exponential Smoothing and Holt Winters

NNetar: Auto Regressive Neural Network models automatically compares models with 1 lag or 1 seasonal lag compared to models with up to N lags and N seasonal lags

TBATS: Exponential smoothing state space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components

TSLM: Time Series Linear Model - builds a linear model with trend and season components extracted from the data

Usage

```
AutoTS(
  data,
  TargetName = "Target",
```

172 AutoTS

```
DateName = "DateTime",
FCPeriods = 30.
HoldOutPeriods = 30,
EvaluationMetric = "MAPE",
InnerEval = "AICc",
TimeUnit = "day",
Lags = 25,
SLags = 2,
MaxFourierPairs = 0,
NumCores = 4,
SkipModels = NULL,
StepWise = TRUE,
TSClean = TRUE,
ModelFreq = TRUE,
PrintUpdates = FALSE,
PlotPredictionIntervals = TRUE
```

Arguments

data is the source time series data as a data.table - or a data structure that can be

converted to a data.table

TargetName is the name of the target variable in your data.table

DateName is the name of the date column in your data.table

FCPeriods is the number of periods into the future you wish to forecast

HoldOutPeriods is the number of periods to use for validation testing

EvaluationMetric

Set this to either "MAPE", "MSE", or "MAE". Default is "MAPE"

InnerEval Choose from AICC, AIC, and BIC. These are what the time series models use

internally to optimize

TimeUnit is the level of aggregation your dataset comes in. Choices include: hour, day,

week, month, quarter, year, 1Min, 5Min, 10Min, 15Min, and 30Min

Lags is the number of lags you wish to test in various models (same as moving aver-

ages)

SLags is the number of seasonal lags you wish to test in various models (same as mov-

ing averages)

MaxFourierPairs

Set the max number of Fourier terms to test out. They will be utilized in the

ARIMA and NN models.

NumCores is the number of cores available on your computer

SkipModels Don't run specified models - e.g. exclude all models "DSHW" "ARFIMA"

"ARIMA" "ETS" "NNET" "TBATS" "TSLM"

StepWise Set to TRUE to have ARIMA and ARFIMA run a stepwise selection process.

Otherwise, all models will be generated in parallel execution, but still run much

slower.

TSClean Set to TRUE to have missing values interpolated and outliers replaced with in-

terpolated values: creates separate models for a larger comparison set

ModelFreq Set to TRUE to run a separate version of all models where the time series fre-

quency is chosen algorithmically

AutoTS 173

PrintUpdates Set to TRUE for a print to console of function progress PlotPredictionIntervals

Set to FALSE to not print prediction intervals on your plot output

Value

Returns a list containing 1: A data.table object with a date column and the forecasted values; 2: The model evaluation results; 3: The champion model for later use if desired; 4: The name of the champion model; 5. A time series ggplot with historical values and forecasted values with 80

Author(s)

Adrian Antico and Douglas Pestana

See Also

Other Automated Time Series: AutoArfima(), AutoBanditNNet(), AutoBanditSarima(), AutoETS(), AutoTBATS()

```
## Not run:
data <- data.table::data.table(DateTime = as.Date(Sys.time()),</pre>
 Target = stats::filter(rnorm(100,
                             mean = 50,
                             sd = 20),
                        filter=rep(1,10),
                        circular=TRUE))
data[, temp := seq(1:100)][, DateTime := DateTime - temp][
 , temp := NULL]
data <- data[order(DateTime)]</pre>
output <- AutoTS(</pre>
  data,
 TargetName = "Target",
                        = "DateTime",
 DateName
 FCPeriods
                        = 1,
                    = 1,
= "MAPE",
 HoldOutPeriods
 EvaluationMetric
                       = "AICc",
 InnerEval
                        = "day",
 TimeUnit
                        = 1,
 Lags
                       = 1,
  SLags
 MaxFourierPairs = 0,
 NumCores
                       = 4,
                        = c("NNET", "TBATS", "ETS",
  SkipModels
   "TSLM", "ARFIMA", "DSHW"),
                       = TRUE,
  StepWise
  TSClean
                        = FALSE,
 ModelFreq
                        = TRUE,
 PlotPredictionIntervals = TRUE,
 PrintUpdates
                       = FALSE)
ForecastData <- output$Forecast
ModelEval <- output$EvaluationMetrics</pre>
WinningModel <- output$TimeSeriesModel</pre>
## End(Not run)
```

174 AutoWord2VecModeler

AutoWord2VecModeler AutoWord2VecModeler

Description

This function allows you to automatically build a word2vec model and merge the data onto your supplied dataset

Usage

```
AutoWord2VecModeler(
   data,
   BuildType = "Combined",
   stringCol = c("Text_Col1", "Text_Col2"),
   KeepStringCol = FALSE,
   model_path = NULL,
   vects = 100,
   MinWords = 1,
   WindowSize = 12,
   Epochs = 25,
   SaveModel = "standard",
   Threads = max(1L, parallel::detectCores() - 2L),
   MaxMemory = "28G",
   ModelID = "Model_1"
)
```

Arguments

data Source data table to merge vects onto

BuildType Choose from "individual" or "combined". Individual will build a model for every

text column. Combined will build a single model for all columns.

stringCol A string name for the column to convert via word2vec

KeepStringCol Set to TRUE if you want to keep the original string column that you convert via

word2vec

model_path A string path to the location where you want the model and metadata stored

vects The number of vectors to retain from the word2vec model

MinWords For H2O word2vec model
WindowSize For H2O word2vec model
Epochs For H2O word2vec model

SaveModel Set to "standard" to save normally; set to "mojo" to save as mojo. NOTE: while

you can save a mojo, I haven't figured out how to score it in the AutoH20Scoring

function.

Threads Number of available threads you want to dedicate to model building

MaxMemory Amount of memory you want to dedicate to model building

ModelID Name for saving to file

Author(s)

Adrian Antico

AutoWord2VecModeler 175

See Also

Other Feature Engineering: AutoDataPartition(), AutoDiffLagN(), AutoHierarchicalFourier(), AutoInteraction(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecScoring(), CategoricalEncoding(), CreateCalendarVariables(), CreateHolidayVariables(), DummifyDT(), H2OAutoencoderScoring(), H2OAutoencoder(), ModelDataPrep(), TimeSeriesFill()

```
## Not run:
# Create fake data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.70,
 N = 1000L
 ID = 2L,
 FactorCount = 2L,
  AddDate = TRUE,
  AddComment = TRUE,
  ZIP = 2L,
  TimeSeries = FALSE,
  ChainLadderData = FALSE,
  Classification = FALSE,
  MultiClass = FALSE)
# Create Model and Vectors
data <- RemixAutoML::AutoWord2VecModeler(</pre>
  data,
  BuildType = "individual",
  stringCol = c("Comment"),
  KeepStringCol = FALSE,
  ModelID = "Model_1",
  model_path = getwd(),
  vects = 10,
  MinWords = 1,
  WindowSize = 1,
  Epochs = 25,
  SaveModel = "standard",
  Threads = max(1,parallel::detectCores()-2),
 MaxMemory = "28G")
# Remove data
rm(data)
# Create fake data for mock scoring
data <- RemixAutoML::FakeDataGenerator(</pre>
 Correlation = 0.70,
  N = 1000L
 ID = 2L,
  FactorCount = 2L,
  AddDate = TRUE,
  AddComment = TRUE,
  ZIP = 2L
  TimeSeries = FALSE,
  ChainLadderData = FALSE,
  Classification = FALSE,
  MultiClass = FALSE)
```

```
# Create vectors for scoring
data <- RemixAutoML::AutoWord2VecScoring(
    data,
    BuildType = "individual",
    ModelObject = NULL,
    ModelID = "Model_1",
    model_path = getwd(),
    stringCol = "Comment",
    KeepStringCol = FALSE,
    H2OStartUp = TRUE,
    H2OShutdown = TRUE,
    Threads = max(1L, parallel::detectCores() - 2L),
    MaxMemory = "28G")
## End(Not run)</pre>
```

AutoWord2VecScoring

AutoWord2VecScoring

Description

AutoWord2VecScoring is for scoring models generated by AutoWord2VecModeler()

Usage

```
AutoWord2VecScoring(
  data,
  BuildType = "individual",
  ModelObject = NULL,
  ModelID = "Model_1",
  model_path = NULL,
  stringCol = NULL,
  KeepStringCol = FALSE,
  H2OStartUp = TRUE,
  H2OShutdown = TRUE,
  Threads = max(1L, parallel::detectCores() - 2L),
  MaxMemory = "28G"
)
```

Arguments

data data.table

BuildType "individual" or "combined". Used to locate model in file

ModelObject NULL if you want it loaded in the function

ModelID Same as in training
model_path Location of model
stringCol Columns to transform

KeepStringCol FALSE to remove string col after creating vectors

H2OStartUp = TRUE,

Threads max(1L, parallel::detectCores() - 2L)

MaxMemory "28G"

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoDiffLagN(), AutoHierarchicalFourier(), AutoInteraction(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), CategoricalEncoding(), CreateCalendarVariables(), CreateHolidayVariables(), DummifyDT(), H2OAutoencoderScoring(), H2OAutoencoder(), ModelDataPrep(), TimeSeriesFill()

177

```
## Not run:
# Create fake data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.70,
 N = 1000L
 ID = 2L,
  FactorCount = 2L,
  AddDate = TRUE,
  AddComment = TRUE,
  ZIP = 2L,
  TimeSeries = FALSE,
  ChainLadderData = FALSE,
  Classification = FALSE,
  MultiClass = FALSE)
# Create Model and Vectors
data <- RemixAutoML::AutoWord2VecModeler(</pre>
  data,
  BuildType = "individual",
  stringCol = c("Comment"),
  KeepStringCol = FALSE,
  ModelID = "Model_1",
  model_path = getwd(),
  vects = 10,
  MinWords = 1,
  WindowSize = 1,
  Epochs = 25,
  SaveModel = "standard",
  Threads = max(1,parallel::detectCores()-2),
  MaxMemory = "28G")
# Remove data
rm(data)
# Create fake data for mock scoring
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.70,
 N = 1000L
 ID = 2L
  FactorCount = 2L,
  AddDate = TRUE,
  AddComment = TRUE,
  ZIP = 2L,
```

178 AutoWordFreq

```
TimeSeries = FALSE,
  ChainLadderData = FALSE,
  Classification = FALSE,
  MultiClass = FALSE)
# Create vectors for scoring
data <- RemixAutoML::AutoWord2VecScoring(</pre>
  data.
  BuildType = "individual",
  ModelObject = NULL,
  ModelID = "Model_1",
  model_path = getwd(),
  stringCol = "Comment",
  KeepStringCol = FALSE,
  H2OStartUp = TRUE,
  H2OShutdown = TRUE,
  Threads = max(1L, parallel::detectCores() - 2L),
  MaxMemory = "28G")
## End(Not run)
```

AutoWordFreq

Automated Word Frequency and Word Cloud Creation

Description

This function builds a word frequency table and a word cloud. It prepares data, cleans text, and generates output.

Usage

```
AutoWordFreq(
  data,
  TextColName = "DESCR",
  GroupColName = "ClusterAllNoTarget",
  GroupLevel = 0,
  RemoveEnglishStopwords = TRUE,
  Stemming = TRUE,
  StopWords = c("bla", "bla2")
)
```

Arguments

data Source data table

TextColName A string name for the column

GroupColName Set to NULL to ignore, otherwise set to Cluster column name (or factor column

name)

GroupLevel Must be set if GroupColName is defined. Set to cluster ID (or factor level)

RemoveEnglishStopwords

Set to TRUE to remove English stop words, FALSE to ignore

Stemming Set to TRUE to run stemming on your text data
StopWords Add your own stopwords, in vector format

AutoXGBoostCARMA 179

Author(s)

Adrian Antico

See Also

Other EDA: ScatterCopula()

Examples

```
## Not run:
data <- data.table::data.table(</pre>
DESCR = c(
            "Gru", "Gru", "Gru", "Gru", "Gru", "Gru",
            "Gru", "Gru", "Gru", "Gru", "Gru", "Gru", "Urkle", "Urkle
            "Gru", "Gru", "Gru", "bears", "bears",
            "bears", "bears", "bears", "smug", "smug", "smug", "smug",
            "smug", "smug", "smug", "smug", "smug", "smug", "smug", "smug", "eats", "eats",
            "eats", "eats", "eats", "beats", "beats", "beats", "beats",
            "beats", "beats", "beats", "beats", "beats",
            "beats", "science", "bwigt", "Dwigt", "Dwigt", "Dwigt",
           "Dwigt", "Dwigt", "Dwigt", "Dwigt", "Dwigt", "Dwigt", "Schrute", "Schrute", "Schrute", "Schrute", "James", "Jam
            "James", "James", "James", "James", "James",
            "Halpert", "Halpert", "Halpert", "Halpert", "Halpert", "Halpert", "Halpert"))
data <- AutoWordFreq(</pre>
            data,
            TextColName = "DESCR",
            GroupColName = NULL,
            GroupLevel = NULL,
            RemoveEnglishStopwords = FALSE,
            Stemming = FALSE,
            StopWords = c("Bla"))
## End(Not run)
```

AutoXGBoostCARMA

AutoXGBoostCARMA

Description

AutoXGBoostCARMA Mutlivariate Forecasting with calendar variables, Holiday counts, holiday lags, holiday moving averages, differencing, transformations, interaction-based categorical encoding using target variable and features to generate various time-based aggregated lags, moving averages, moving standard deviations, moving skewness, moving kurtosis, moving quantiles, parallelized interaction-based fourier pairs by grouping variables, and Trend Variables.

180 AutoXGBoostCARMA

Usage

```
AutoXGBoostCARMA(
  data,
  NonNegativePred = FALSE,
  RoundPreds = FALSE,
  TrainOnFull = FALSE,
  TargetColumnName = NULL,
  DateColumnName = NULL,
  HierarchGroups = NULL,
  GroupVariables = NULL,
  FC_Periods = 5,
  SaveDataPath = NULL,
  PDFOutputPath = NULL,
  TimeUnit = "week",
  TimeGroups = c("weeks", "months"),
  TargetTransformation = FALSE,
 Methods = c("YeoJohnson", "BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt", "Asin",
    "Logit"),
  EncodingMethod = "binary",
  AnomalyDetection = NULL,
  XREGS = NULL,
  Lags = c(1:5),
  MA_Periods = c(1:5),
  SD_Periods = NULL,
  Skew_Periods = NULL,
  Kurt_Periods = NULL,
  Quantile_Periods = NULL,
  Quantiles_Selected = NULL,
  Difference = TRUE,
  FourierTerms = 6,
 CalendarVariables = c("second", "minute", "hour", "wday", "mday", "yday", "week",
    "wom", "isoweek", "month", "quarter", "year"),
  HolidayVariable = c("USPublicHolidays", "EasterGroup", "ChristmasGroup",
    "OtherEcclesticalFeasts"),
  HolidayLookback = NULL,
  HolidayLags = 1L,
  HolidayMovingAverages = 3L,
  TimeTrendVariable = FALSE,
  DataTruncate = FALSE,
  ZeroPadSeries = NULL,
  SplitRatios = c(1 - 10/100, 10/100),
  TreeMethod = "hist",
  NThreads = max(1, parallel::detectCores() - 2L),
  PartitionType = "random",
  Timer = TRUE,
  DebugMode = FALSE,
  EvalMetric = "MAE",
  LossFunction = "reg:squarederror",
  GridTune = FALSE,
  GridEvalMetric = "mae",
  ModelCount = 30L,
  MaxRunsWithoutNewWinner = 20L,
```

```
MaxRunMinutes = 24L * 60L,
 NTrees = 1000L
 LearningRate = 0.3,
 MaxDepth = 9L,
 MinChildWeight = 1,
  SubSample = 1,
  ColSampleByTree = 1
)
```

Arguments

data Supply your full series data set here

NonNegativePred

TRUE or FALSE

RoundPreds Rounding predictions to an integer value. TRUE or FALSE. Defaults to FALSE

TrainOnFull Set to TRUE to train on full data

TargetColumnName

List the column name of your target variables column. E.g. "Target"

DateColumnName List the column name of your date column. E.g. "DateTime"

HierarchGroups = NULL Character vector or NULL with names of the columns that form the

interaction hierarchy

GroupVariables Defaults to NULL. Use NULL when you have a single series. Add in Group-

Variables when you have a series for every level of a group or multiple groups.

FC_Periods Set the number of periods you want to have forecasts for. E.g. 52 for weekly

data to forecast a year ahead

SaveDataPath Path to save modeling data

PDFOutputPath Supply a path to save model insights to PDF

TimeUnit List the time unit your data is aggregated by. E.g. "1min", "5min", "10min",

"15min", "30min", "hour", "day", "week", "month", "quarter", "year"

TimeGroups Select time aggregations for adding various time aggregated GDL features.

TargetTransformation

Run AutoTransformationCreate() to find best transformation for the target variable. Tests YeoJohnson, BoxCox, and Asigh (also Asin and Logit for proportion

target variables).

Choose from "YeoJohnson", "BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt", Methods

"Asin", or "Logit". If more than one is selected, the one with the best normalization pearson statistic will be used. Identity is automatically selected and

compared.

Choose from 'binary', 'm_estimator', 'credibility', 'woe', 'target_encoding', EncodingMethod

'poly_encode', 'backward_difference', 'helmert'

AnomalyDetection

NULL for not using the service. Other, provide a list, e.g. AnomalyDetection =

 $list("tstat_high" = 4, tstat_low = -4)$

XREGS Additional data to use for model development and forecasting. Data needs to be

a complete series which means both the historical and forward looking values

over the specified forecast window needs to be supplied.

Select the periods for all lag variables you want to create. E.g. c(1:5,52) or Lags

list("day" = c(1:10), "weeks" = c(1:4))

MA_Periods Select the periods for all moving average variables you want to create. E.g.

c(1:5,52) or list("day" = c(2:10), "weeks" = c(2:4))

SD_Periods Select the periods for all moving standard deviation variables you want to create.

E.g. c(1.5,52) or list("day" = c(2.10), "weeks" = c(2.4))

Skew_Periods Select the periods for all moving skewness variables you want to create. E.g.

c(1:5,52) or list("day" = c(2:10), "weeks" = c(2:4))

Kurt_Periods Select the periods for all moving kurtosis variables you want to create. E.g.

c(1:5,52) or list("day" = c(2:10), "weeks" = c(2:4))

Quantile_Periods

Select the periods for all moving quantiles variables you want to create. E.g.

c(1:5,52) or list("day" = c(2:10), "weeks" = c(2:4))

Quantiles_Selected

Select from the following c("q5","q10","q15","q20","q25","q30","q35","q40","q45","q50","q55","q6

Difference Set to TRUE to put the I in ARIMA

FourierTerms Set to the max number of pairs

CalendarVariables

NULL, or select from "second", "minute", "hour", "wday", "mday", "yday", "week", "wom", "isoweek", "month", "quarter", "year"

HolidayVariable

NULL, or select from "USPublicHolidays", "EasterGroup", "ChristmasGroup", "OtherEcclesticalFeasts"

HolidayLookback

Number of days in range to compute number of holidays from a given date in the data. If NULL, the number of days are computed for you.

HolidayLags Number of lags for the holiday counts

HolidayMovingAverages

Number of moving averages for holiday counts

TimeTrendVariable

Set to TRUE to have a time trend variable added to the model. Time trend is numeric variable indicating the numeric value of each record in the time series (by group). Time trend starts at 1 for the earliest point in time and increments by any for each success time point.

by one for each success time point.

DataTruncate Set to TRUE to remove records with missing values from the lags and moving

average features created

ZeroPadSeries NULL to do nothing. Otherwise, set to "maxmax", "minmax", "maxmin", "min-

min". See TimeSeriesFill for explanations of each type

SplitRatios E.g c(0.7,0.2,0.1) for train, validation, and test sets

TreeMethod Choose from "hist", "gpu hist"

NThreads Set the maximum number of threads you'd like to dedicate to the model run.

E.g. 8

PartitionType Select "random" for random data partitioning "time" for partitioning by time

frames

Timer Setting to TRUE prints out the forecast number while it is building

DebugMode Setting to TRUE generates printout of all header code comments during run time

of function

EvalMetric Select from "r2", "RMSE", "MSE", "MAE"

LossFunction Default is 'reg:squarederror'. Other options include 'reg:squaredlogerror', 'reg:pseudohubererror',

'count:poisson', 'survival:cox', 'survival:aft', 'aft_loss_distribution', 'reg:gamma',

'reg:tweedie'

GridTune Set to TRUE to run a grid tune

GridEvalMetric This is the metric used to find the threshold 'poisson', 'mae', 'mape', 'mse',

'msle', 'kl', 'cs', 'r2'

ModelCount Set the number of models to try in the grid tune

MaxRunsWithoutNewWinner

Number of consecutive runs without a new winner in order to terminate proce-

dure

MaxRunMinutes Default 24L*60L

NTrees Select the number of trees you want to have built to train the model

LearningRate Learning Rate

MaxDepth Depth

MinChildWeight Records in leaf

SubSample Random forecast setting

ColSampleByTree

Self explanatory

Value

See examples

Author(s)

Adrian Antico

See Also

Other Automated Panel Data Forecasting: AutoCatBoostCARMA(), AutoCatBoostHurdleCARMA(), AutoCatBoostVectorCARMA(), AutoH2OCARMA()

```
## Not run:

# Load data
data <- data.table::fread("https://www.dropbox.com/s/2str3ek4f4cheqi/walmart_train.csv?dl=1")

# Ensure series have no missing dates (also remove series with more than 25% missing values)
data <- RemixAutoML::TimeSeriesFill(
    data,
    DateColumnName = "Date",
    GroupVariables = c("Store", "Dept"),
    TimeUnit = "weeks",
    FillType = "maxmax",
    MaxMissingPercent = 0.25,
    SimpleImpute = TRUE)

# Set negative numbers to 0
data <- data[, Weekly_Sales := data.table::fifelse(Weekly_Sales < 0, 0, Weekly_Sales)]</pre>
```

```
# Remove IsHoliday column
data[, IsHoliday := NULL]
# Create xregs (this is the include the categorical variables instead of utilizing only the interaction of them)
xregs <- data[, .SD, .SDcols = c("Date", "Store", "Dept")]</pre>
# Change data types
data[, ":=" (Store = as.character(Store), Dept = as.character(Dept))]
xregs[, ":=" (Store = as.character(Store), Dept = as.character(Dept))]
 # Build forecast
XGBoostResults <- AutoXGBoostCARMA(
  # Data Artifacts
  data = data,
  NonNegativePred = FALSE,
  RoundPreds = FALSE,
  TargetColumnName = "Weekly_Sales",
  DateColumnName = "Date",
  HierarchGroups = NULL,
  GroupVariables = c("Store", "Dept"),
  TimeUnit = "weeks",
  TimeGroups = c("weeks", "months"),
  # Data Wrangling Features
  EncodingMethod = "binary",
  ZeroPadSeries = NULL,
  DataTruncate = FALSE,
  SplitRatios = c(1 - 10 / 138, 10 / 138),
  PartitionType = "timeseries",
  AnomalyDetection = NULL,
  # Productionize
  FC_Periods = 0,
  TrainOnFull = FALSE,
  NThreads = 8,
  Timer = TRUE,
  DebugMode = FALSE,
  SaveDataPath = NULL,
  PDFOutputPath = NULL,
  # Target Transformations
  TargetTransformation = TRUE,
 Difference = FALSE,
  # Features
  Lags = list("weeks" = seq(1L, 10L, 1L),
              "months" = seq(1L, 5L, 1L),
  MA_Periods = list("weeks" = seq(5L, 20L, 5L),
                    "months" = seq(2L, 10L, 2L)),
  SD_Periods = NULL,
  Skew_Periods = NULL,
  Kurt_Periods = NULL,
  Quantile_Periods = NULL,
  Quantiles_Selected = c("q5","q95"),
```

```
XREGS = xregs,
  FourierTerms = 4,
  CalendarVariables = c("week", "wom", "month", "quarter"),
  HolidayVariable = c("USPublicHolidays", "EasterGroup",
    "ChristmasGroup", "OtherEcclesticalFeasts"),
  HolidayLookback = NULL,
  HolidayLags = 1,
  HolidayMovingAverages = 1:2,
  TimeTrendVariable = TRUE,
  # ML eval args
  TreeMethod = "hist",
  EvalMetric = "RMSE",
  LossFunction = 'reg:squarederror',
  # ML grid tuning
  GridTune = FALSE,
  ModelCount = 5,
  MaxRunsWithoutNewWinner = 20L,
  MaxRunMinutes = 24L*60L,
  # ML args
  NTrees = 300,
  LearningRate = 0.3,
  MaxDepth = 9L,
  MinChildWeight = 1.0,
  SubSample = 1.0,
  ColSampleByTree = 1.0)
UpdateMetrics <- print(</pre>
  XGBoostResults$ModelInformation$EvaluationMetrics[
    Metric == "MSE", MetricValue := sqrt(MetricValue)])
print(UpdateMetrics)
XGBoostResults$ModelInformation$EvaluationMetricsByGroup[order(-R2_Metric)]
XGBoostResults$ModelInformation$EvaluationMetricsByGroup[order(MAE_Metric)]
XGBoostResults$ModelInformation$EvaluationMetricsByGroup[order(MSE_Metric)]
XGBoostResults$ModelInformation$EvaluationMetricsByGroup[order(MAPE_Metric)]
## End(Not run)
```

Description

AutoXGBoostClassifier is an automated XGBoost modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation boxplot, evaluation metrics, variable importance, partial dependence calibration plots, partial dependence calibration box plots, and column names used in model fitting.

Usage

```
AutoXGBoostClassifier(
 OutputSelection = c("Importances", "EvalPlots", "EvalMetrics", "Score_TrainData"),
 data = NULL,
 TrainOnFull = FALSE,
 ValidationData = NULL,
 TestData = NULL,
 TargetColumnName = NULL,
 FeatureColNames = NULL,
 WeightsColumnName = NULL,
 IDcols = NULL,
 model_path = NULL,
 metadata_path = NULL,
  SaveInfoToPDF = FALSE,
 ModelID = "FirstModel",
 EncodingMethod = "binary",
 ReturnFactorLevels = TRUE,
 ReturnModelObjects = TRUE,
 SaveModelObjects = FALSE,
 Verbose = 0L,
 NumOfParDepPlots = 3L,
 NThreads = max(1L, parallel::detectCores() - 2L),
 LossFunction = "reg:logistic",
 CostMatrixWeights = c(1, 0, 0, 1),
  eval_metric = "auc",
 grid_eval_metric = "MCC",
 TreeMethod = "hist",
 GridTune = FALSE,
 BaselineComparison = "default",
 MaxModelsInGrid = 10L,
 MaxRunsWithoutNewWinner = 20L,
 MaxRunMinutes = 24L * 60L,
 PassInGrid = NULL,
 Trees = 1000L,
 eta = 0.3,
 max_depth = 9,
 min_child_weight = 1,
 subsample = 1,
 colsample_bytree = 1,
 DebugMode = FALSE
)
```

Arguments

OutputSelection

You can select what type of output you want returned. Choose from c("Importances",

"EvalPlots", "EvalMetrics", "PDFs", "Score_TrainData")

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located (but not mixed types). Note that the target column needs to be a 0 | 1 numeric variable.

FeatureColNames

Either supply the feature column names OR the column number where the target is located (but not mixed types)

WeightsColumnName

Supply a column name for your weights column. Leave NULL otherwise

IDcols A vector of column names or column numbers to keep in your data but not

include in the modeling.

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

SaveInfoToPDF Set to TRUE to save modeling information to PDF. If model_path or meta-

data_path aren't defined then output will be saved to the working directory

ModelID A character string to name your model and output

 ${\tt EncodingMethod\ Choose\ from\ 'binary',\ 'm_estimator',\ 'credibility',\ 'woe',\ 'target_encoding',}$

'poly_encode', 'backward_difference', 'helmert'

ReturnFactorLevels

TRUE or FALSE. Set to FALSE to not return factor levels.

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

Verbose Set to 0 if you want to suppress model evaluation updates in training

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to

create.

NThreads Set the maximum number of threads you'd like to dedicate to the model run.

E.g. 8

LossFunction Select from 'reg:logistic', "binary:logistic"

CostMatrixWeights

grid_eval_metric

A vector with 4 elements c(True Positive Cost, False Negative Cost, False Posi-

tive Cost, True Negative Cost). Default c(1,0,0,1),

eval_metric This is the metric used to identify best grid tuned model. Choose from "logloss", "error", "aucpr", "auc"

Case sensitive. I typically choose 'Utility' or 'MCC'. Choose from 'Utility', 'MCC', 'Acc', 'F1_Score', 'F2_Score', 'F0.5_Score', 'TPR', 'TNR', 'FNR',

'FPR', 'FDR', 'FOR', 'NPV', 'PPV', 'ThreatScore'

TreeMethod Choose from "hist", "gpu_hist"

GridTune Set to TRUE to run a grid tuning procedure

 ${\tt BaselineComparison}$

Set to either "default" or "best". Default is to compare each successive model build to the baseline model using max trees (from function args). Best makes the comparison to the current best model.

MaxModelsInGrid

Number of models to test from grid options.

MaxRunsWithoutNewWinner

A number

MaxRunMinutes In minutes

PassInGrid Default is NULL. Provide a data.table of grid options from a previous run.

Trees Bandit grid partitioned. Supply a single value for non-grid tuning cases. Otherwise, supply a vector for the trees numbers you want to test. For running grid

tuning, a NULL value supplied will mean these values are tested seq(1000L,

10000L, 1000L)

eta Bandit grid partitioned. Supply a single value for non-grid tuning cases. Oth-

erwise, supply a vector for the LearningRate values to test. For running grid tuning, a NULL value supplied will mean these values are tested c(0.01,0.02,0.03,0.04)

max_depth Bandit grid partitioned. Number, or vector for depth to test. For running grid

tuning, a NULL value supplied will mean these values are tested seq(4L, 16L,

2L)

min_child_weight

Number, or vector for min_child_weight to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(1.0, 10.0, 1.0)

subsample Number, or vector for subsample to test. For running grid tuning, a NULL value

supplied will mean these values are tested seq(0.55, 1.0, 0.05)

colsample_bytree

Number, or vector for colsample_bytree to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(0.55, 1.0, 0.05)

DebugMode TRUE to print to console the steps taken

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Binary Classification: AutoCatBoostClassifier(), AutoH2oDRFClassifier() AutoH2oGAMClassifier(), AutoH2oGBMClassifier(), AutoH2oGLMClassifier(), AutoH2oMLClassifier()

```
## Not run:
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(
   Correlation = 0.85,
   N = 1000L,
   ID = 2L,
   ZIP = 0L,
   AddDate = FALSE,
   Classification = TRUE,</pre>
```

```
MultiClass = FALSE)
# Run function
TestModel <- RemixAutoML::AutoXGBoostClassifier(</pre>
  # GPU or CPU
  TreeMethod = "hist",
  NThreads = parallel::detectCores(),
  # Metadata args
 OutputSelection = c("Importances", "EvalPlots", "EvalMetrics", "PDFs", "Score_TrainData"),
 model_path = normalizePath("./"),
  metadata_path = NULL,
  ModelID = "Test_Model_1",
  EncodingMethod = "binary",
  ReturnFactorLevels = TRUE,
  ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  SaveInfoToPDF = FALSE,
  # Data args
  data = data,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = "Adrian",
  FeatureColNames = names(data)[!names(data) %in%
   c("IDcol_1", "IDcol_2", "Adrian")],
  WeightsColumnName = NULL,
  IDcols = c("IDcol_1","IDcol_2"),
  # Model evaluation
  LossFunction = 'reg:logistic',
  CostMatrixWeights = c(1,0,0,1),
  eval_metric = "auc",
  grid_eval_metric = "MCC",
  NumOfParDepPlots = 3L,
  # Grid tuning args
  PassInGrid = NULL,
  GridTune = FALSE,
  BaselineComparison = "default",
  MaxModelsInGrid = 10L,
  MaxRunsWithoutNewWinner = 20L,
  MaxRunMinutes = 24L*60L,
  Verbose = 1L,
  # ML args
  Trees = 500L,
  eta = 0.30,
  max_depth = 9L,
  min_child_weight = 1.0,
  subsample = 1,
  colsample_bytree = 1,
  DebugMode = FALSE)
```

```
## End(Not run)
```

AutoXGBoostHurdleModel

AutoXGBoostHurdleModel

Description

AutoXGBoostHurdleModel is generalized hurdle modeling framework

Usage

```
AutoXGBoostHurdleModel(
  TreeMethod = "hist",
  TrainOnFull = FALSE,
  PassInGrid = NULL,
  NThreads = max(1L, parallel::detectCores() - 2L),
  ModelID = "ModelTest",
  Paths = NULL,
  MetaDataPaths = NULL,
  data,
  ValidationData = NULL,
  TestData = NULL,
  Buckets = 0L,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  IDcols = NULL,
  EncodingMethod = "binary",
  TransformNumericColumns = NULL,
  SplitRatios = c(0.7, 0.2, 0.1),
  SaveModelObjects = FALSE,
  ReturnModelObjects = TRUE,
  NumOfParDepPlots = 10L,
  GridTune = FALSE,
  grid_eval_metric = "accuracy",
  MaxModelsInGrid = 1L,
  BaselineComparison = "default",
  MaxRunsWithoutNewWinner = 10L,
  MaxRunMinutes = 60L,
 Trees = list(classifier = seq(1000, 2000, 100), regression = seq(1000, 2000, 100)),
 eta = list(classifier = seq(0.05, 0.4, 0.05), regression = seq(0.05, 0.4, 0.05)),
 max_depth = list(classifier = seq(4L, 16L, 2L), regression = seq(4L, 16L, 2L)),
 min_child_weight = list(classifier = seq(1, 10, 1), regression = seq(1, 10, 1)),
 subsample = list(classifier = seq(0.55, 1, 0.05), regression = seq(0.55, 1, 0.05)),
 colsample_bytree = list(classifier = seq(0.55, 1, 0.05), regression = seq(0.55, 1,
    0.05))
)
```

Arguments

TreeMethod

Set to hist or gpu_hist depending on if you have an xgboost installation capable of gpu processing

TrainOnFull Set to TRUE to train model on 100 percent of data

PassInGrid Pass in a grid for changing up the parameter settings for catboost NThreads Set to the number of threads you would like to dedicate to training

ModelID Define a character name for your models

Paths The path to your folder where you want your model information saved

MetaDataPaths A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to Paths.

data Source training data. Do not include a column that has the class labels for the

buckets as they are created internally.

ValidationData Source validation data. Do not include a column that has the class labels for the

buckets as they are created internally.

TestData Souce test data. Do not include a column that has the class labels for the buckets

as they are created internally.

Buckets A numeric vector of the buckets used for subsetting the data. NOTE: the final

Bucket value will first create a subset of data that is less than the value and a

second one thereafter for data greater than the bucket value.

TargetColumnName

Supply the column name or number for the target variable

FeatureColNames

Supply the column names or number of the features (not included the Primary-

DateColumn)

IDcols Includes PrimaryDateColumn and any other columns you want returned in the

validation data with predictions

EncodingMethod Choose from 'binary', 'poly_encode', 'backward_difference', 'helmert' for mul-

 $ticlass\ cases\ and\ additionally\ 'm_estimator',\ 'credibility',\ 'woe',\ 'target_encoding'$

for classification use cases.

 ${\it TransformNumeric Columns}$

Transform numeric column inside the AutoCatBoostRegression() function

SplitRatios Supply vector of partition ratios. For example, c(0.70,0.20,0,10).

SaveModelObjects

Set to TRUE to save the model objects to file in the folders listed in Paths

ReturnModelObjects

Set to TRUE to return all model objects

NumOfParDepPlots

Set to pull back N number of partial dependence calibration plots.

GridTune Set to TRUE if you want to grid tune the models

grid_eval_metric

Select the metric to optimize in grid tuning. "accuracy", "microauc", "logloss"

MaxModelsInGrid

Set to a numeric value for the number of models to try in grid tune

BaselineComparison

"default"

MaxRunsWithoutNewWinner

Number of runs without a new winner before stopping the grid tuning

Max number of minutes to allow the grid tuning to run for

Trees Provide a named list to have different number of trees for each model. Trees =

list("classifier" = seq(1000,2000,100), "regression" = seq(1000,2000,100))

eta Provide a named list to have different number of eta for each model.

max_depth Provide a named list to have different number of max_depth for each model.

min_child_weight

Provide a named list to have different number of min_child_weight for each

model.

subsample Provide a named list to have different number of subsample for each model.

colsample_bytree

Provide a named list to have different number of colsample_bytree for each

model.

Value

Returns AutoXGBoostRegression() model objects: VariableImportance.csv, Model, Validation-Data.csv, EvalutionPlot.png, EvalutionBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, and the grid used

Author(s)

Adrian Antico

See Also

Other Supervised Learning - Compound: AutoCatBoostHurdleModel(), AutoH2oDRFHurdleModel(), AutoH2oGBMHurdleModel()

```
## Not run:
Output <- RemixAutoML::AutoXGBoostHurdleModel(</pre>
   # Operationalization args
   TreeMethod = "hist",
   TrainOnFull = FALSE,
   PassInGrid = NULL,
   # Metadata args
   NThreads = max(1L, parallel::detectCores()-2L),
   ModelID = "ModelTest",
   Paths = normalizePath("./"),
   MetaDataPaths = NULL,
   # data args
   data,
   ValidationData = NULL,
   TestData = NULL,
   Buckets = 0L,
   TargetColumnName = NULL,
   FeatureColNames = NULL,
   IDcols = NULL,
   # options
   EncodingMethod = "binary",
   TransformNumericColumns = NULL,
   SplitRatios = c(0.70, 0.20, 0.10),
```

```
ReturnModelObjects = TRUE,
   SaveModelObjects = FALSE,
   NumOfParDepPlots = 10L,
   # grid tuning args
   GridTune = FALSE,
   grid_eval_metric = "accuracy",
   MaxModelsInGrid = 1L,
  BaselineComparison = "default".
   MaxRunsWithoutNewWinner = 10L,
   MaxRunMinutes = 60L,
   # bandit hyperparameters
  Trees = list("classifier" = seq(1000,2000,100),
                "regression" = seq(1000, 2000, 100)),
   eta = list("classifier" = seq(0.05, 0.40, 0.05),
              "regression" = seq(0.05, 0.40, 0.05)),
   max_depth = list("classifier" = seq(4L,16L,2L),
                    "regression" = seq(4L, 16L, 2L)),
   # random hyperparameters
   min_child_weight = list("classifier" = seq(1.0,10.0,1.0),
                            "regression" = seq(1.0, 10.0, 1.0)),
   subsample = list("classifier" = seq(0.55,1.0,0.05),
                    "regression" = seq(0.55, 1.0, 0.05)),
  colsample_bytree = list("classifier" = seq(0.55,1.0,0.05),
                           "regression" = seq(0.55, 1.0, 0.05))
## End(Not run)
```

 ${\tt AutoXGBoostMultiClass} \ \ \textit{AutoXGBoostMultiClass}$

Description

AutoXGBoostMultiClass is an automated XGBoost modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation metrics, variable importance, and column names used in model fitting.

Usage

```
AutoXGBoostMultiClass(
  OutputSelection = c("Importances", "EvalPlots", "EvalMetrics", "Score_TrainData"),
  data = NULL,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  WeightsColumnName = NULL,
```

```
IDcols = NULL,
  model_path = NULL.
  metadata_path = NULL,
  ModelID = "FirstModel",
  LossFunction = "multi:softprob",
  EncodingMethod = "credibility",
  ReturnFactorLevels = TRUE,
  ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  Verbose = 0L,
  DebugMode = FALSE,
  NumOfParDepPlots = 3L,
  NThreads = parallel::detectCores(),
  eval_metric = "merror",
  grid_eval_metric = "accuracy",
  TreeMethod = "hist",
  GridTune = FALSE,
  BaselineComparison = "default",
  MaxModelsInGrid = 10L,
  MaxRunsWithoutNewWinner = 20L,
  MaxRunMinutes = 24L * 60L,
  PassInGrid = NULL,
  Trees = 50L,
  eta = NULL,
  max_depth = NULL,
  min_child_weight = NULL,
  subsample = NULL,
  colsample_bytree = NULL
)
```

Arguments

OutputSelection

You can select what type of output you want returned. Choose from c("Importances",

"EvalPlots", "EvalMetrics", "PDFs", "Score_TrainData")

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located (but not mixed types). Note that the target column needs to be a $0 \mid 1$

numeric variable.

FeatureColNames

Either supply the feature column names OR the column number where the target is located (but not mixed types)

WeightsColumnName

Supply a column name for your weights column. Leave NULL otherwise

IDcols A vector of column names or column numbers to keep in your data but not

include in the modeling.

A character string of your path file to where you want your output saved model_path

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model path.

ModelID A character string to name your model and output

LossFunction Use 'multi:sofprob', I set it up to return the class label and the individual prob-

abilities, just like catboost. Doesn't come like that off the shelf

EncodingMethod Choose from 'binary', 'm_estimator', 'credibility', 'woe', 'target_encoding',

'poly_encode', 'backward_difference', 'helmert'

ReturnFactorLevels

TRUE or FALSE. Set to FALSE to not return factor levels.

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

Verbose Set to 0 if you want to suppress model evaluation updates in training

Set to TRUE to get a print out of the steps taken internally DebugMode

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to

This is the metric used to identify best grid tuned model. Choose from "logloss", "error", "aucpr", "auc"

create.

NThreads Set the maximum number of threads you'd like to dedicate to the model run.

grid_eval_metric

eval_metric

"accuracy", "logloss", "microauc"

TreeMethod Choose from "hist", "gpu_hist"

GridTune Set to TRUE to run a grid tuning procedure

BaselineComparison

Set to either "default" or "best". Default is to compare each successive model build to the baseline model using max trees (from function args). Best makes

the comparison to the current best model.

MaxModelsInGrid

Number of models to test from grid options.

MaxRunsWithoutNewWinner

A number

MaxRunMinutes In minutes

PassInGrid Default is NULL. Provide a data.table of grid options from a previous run.

Trees Bandit grid partitioned. Supply a single value for non-grid tuning cases. Other-

> wise, supply a vector for the trees numbers you want to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(1000L,

10000L, 1000L)

Bandit grid partitioned. Supply a single value for non-grid tuning cases. Otheta

> erwise, supply a vector for the LearningRate values to test. For running grid tuning, a NULL value supplied will mean these values are tested c(0.01,0.02,0.03,0.04)

max_depth Bandit grid partitioned. Number, or vector for depth to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(4L, 16L, 2L) min_child_weight Number, or vector for min_child_weight to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(1.0, 10.0, 1.0) Number, or vector for subsample to test. For running grid tuning, a NULL value subsample supplied will mean these values are tested seq(0.55, 1.0, 0.05)

colsample_bytree

Number, or vector for colsample_bytree to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(0.55, 1.0, 0.05)

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evaluation-Metrics.csv, GridCollect, GridList, and TargetLevels

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Multiclass Classification: AutoCatBoostMultiClass(), AutoH2oDRFMultiClass(), AutoH2oGAMMultiClass(), AutoH2oGBMMultiClass(), AutoH2oGLMMultiClass(), AutoH2oMLMultiClass()

```
## Not run:
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
 N = 1000L
  ID = 2L,
  ZIP = 0L,
  AddDate = FALSE,
  Classification = FALSE,
 MultiClass = TRUE)
# Run function
TestModel <- RemixAutoML::AutoXGBoostMultiClass(</pre>
    # GPU or CPU
    TreeMethod = "hist",
    NThreads = parallel::detectCores(),
    # Metadata args
  OutputSelection = c("Importances", "EvalPlots", "EvalMetrics", "PDFs", "Score_TrainData"),
    model_path = normalizePath("./"),
    metadata_path = normalizePath("./"),
    ModelID = "Test_Model_1",
    EncodingMethod = "binary",
    ReturnFactorLevels = TRUE,
    ReturnModelObjects = TRUE,
```

```
SaveModelObjects = FALSE,
   # Data args
   data = data,
   TrainOnFull = FALSE,
   ValidationData = NULL,
   TestData = NULL,
   TargetColumnName = "Adrian",
   FeatureColNames = names(data)[!names(data) %in%
      c("IDcol_1", "IDcol_2", "Adrian")],
   WeightsColumnName = NULL,
   IDcols = c("IDcol_1","IDcol_2"),
   # Model evaluation args
   eval_metric = "merror",
   LossFunction = 'multi:softprob',
   grid_eval_metric = "accuracy",
   NumOfParDepPlots = 3L,
   # Grid tuning args
   PassInGrid = NULL,
   GridTune = FALSE,
   BaselineComparison = "default",
   MaxModelsInGrid = 10L,
   MaxRunsWithoutNewWinner = 20L,
   MaxRunMinutes = 24L*60L,
   Verbose = 1L,
   DebugMode = FALSE,
   # ML args
   Trees = 50L,
   eta = 0.05,
   max_depth = 4L,
   min_child_weight = 1.0,
   subsample = 0.55,
   colsample_bytree = 0.55)
## End(Not run)
```

 $AutoXGBoostRegression \ \ \textit{AutoXGBoostRegression}$

Description

AutoXGBoostRegression is an automated XGBoost modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation boxplot, evaluation metrics, variable importance, partial dependence calibration plots, partial dependence calibration box plots, and column names used in model fitting.

Usage

```
AutoXGBoostRegression(
 OutputSelection = c("Importances", "EvalPlots", "EvalMetrics", "Score_TrainData"),
  data = NULL,
  TrainOnFull = FALSE,
  ValidationData = NULL,
  TestData = NULL,
  TargetColumnName = NULL,
  FeatureColNames = NULL,
  PrimaryDateColumn = NULL,
  WeightsColumnName = NULL,
  IDcols = NULL,
  model_path = NULL,
  metadata_path = NULL,
  DebugMode = FALSE,
  SaveInfoToPDF = FALSE,
  ModelID = "FirstModel",
  EncodingMethod = "binary",
  ReturnFactorLevels = TRUE,
  ReturnModelObjects = TRUE,
  SaveModelObjects = FALSE,
  TransformNumericColumns = NULL,
  Methods = c("BoxCox", "Asinh", "Log", "LogPlus1", "Sqrt", "Asin", "Logit"),
  Verbose = 0L,
  NumOfParDepPlots = 3L,
  NThreads = parallel::detectCores(),
  LossFunction = "reg:squarederror",
  eval_metric = "rmse"
  grid_eval_metric = "r2",
  TreeMethod = "hist",
  GridTune = FALSE,
  BaselineComparison = "default",
  MaxModelsInGrid = 10L,
  MaxRunsWithoutNewWinner = 20L,
  MaxRunMinutes = 24L * 60L,
  PassInGrid = NULL,
  Trees = 50L,
  eta = NULL,
  max_depth = NULL,
  min_child_weight = NULL,
  subsample = NULL,
  colsample_bytree = NULL
)
```

Arguments

```
OutputSelection
```

You can select what type of output you want returned. Choose from c("Importances", "EvalPlots", "EvalMetrics", "PDFs", "Score_TrainData")

data This is your data set for training and testing your model

TrainOnFull Set to TRUE to train on full data

ValidationData This is your holdout data set used in modeling either refine your hyperparame-

ters.

TestData This is your holdout data set. Catboost using both training and validation data

in the training process so you should evaluate out of sample performance with

this data set.

TargetColumnName

Either supply the target column name OR the column number where the target

is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where the target

is located (but not mixed types)

PrimaryDateColumn

Supply a date or datetime column for catboost to utilize time as its basis for

handling categorical features, instead of random shuffling

WeightsColumnName

Supply a column name for your weights column. Leave NULL otherwise

IDcols A vector of column names or column numbers to keep in your data but not

include in the modeling.

model_path A character string of your path file to where you want your output saved

metadata_path A character string of your path file to where you want your model evaluation

output saved. If left NULL, all output will be saved to model_path.

DebugMode Set to TRUE to get a print out of the steps taken throughout the function

SaveInfoToPDF Set to TRUE to save model insights to pdf

ModelID A character string to name your model and output

EncodingMethod Choose from 'binary', 'm_estimator', 'credibility', 'woe', 'target_encoding',

'poly_encode', 'backward_difference', 'helmert'

ReturnFactorLevels

Set to TRUE to have the factor levels returned with the other model objects

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

TransformNumericColumns

Set to NULL to do nothing; otherwise supply the column names of numeric

variables you want transformed

Methods Choose from "BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Sqrt", "Logit",

"YeoJohnson". Function will determine if one cannot be used because of the

underlying data.

Verbose Set to 0 if you want to suppress model evaluation updates in training

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to

create.

NThreads Set the maximum number of threads you'd like to dedicate to the model run.

E.g. 8

LossFunction Default is 'reg:squarederror'. Other options include 'reg:squaredlogerror', 'reg:pseudohubererror',

'count:poisson', 'survival:cox', 'survival:aft', 'aft_loss_distribution', 'reg:gamma',

'reg:tweedie'

eval_metric This is the metric used to identify best grid tuned model. Choose from "r2",

"RMSE", "MSE", "MAE"

grid_eval_metric

"mae", "mape", "rmse", "r2". Case sensitive

TreeMethod Choose from "hist", "gpu_hist"

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid

to tell the procedure how many models you want to test.

BaselineComparison

Set to either "default" or "best". Default is to compare each successive model build to the baseline model using max trees (from function args). Best makes

the comparison to the current best model.

MaxModelsInGrid

Number of models to test from grid options (243 total possible options)

MaxRunsWithoutNewWinner

Runs without new winner to end procedure

MaxRunMinutes In minutes

PassInGrid Default is NULL. Provide a data.table of grid options from a previous run.

Trees Bandit grid partitioned. Supply a single value for non-grid tuning cases. Other-

wise, supply a vector for the trees numbers you want to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(1000L,

10000L, 1000L)

eta Bandit grid partitioned. Supply a single value for non-grid tuning cases. Oth-

erwise, supply a vector for the LearningRate values to test. For running grid tuning, a NULL value supplied will mean these values are tested c(0.01,0.02,0.03,0.04)

max_depth Bandit grid partitioned. Number, or vector for depth to test. For running grid

tuning, a NULL value supplied will mean these values are tested seq(4L, 16L,

2L)

min_child_weight

Number, or vector for min_child_weight to test. For running grid tuning, a

NULL value supplied will mean these values are tested seq(1.0, 10.0, 1.0)

subsample Number, or vector for subsample to test. For running grid tuning, a NULL value

supplied will mean these values are tested seq(0.55, 1.0, 0.05)

colsample_bytree

Number, or vector for colsample_bytree to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(0.55, 1.0, 0.05)

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, Evalution-Plot.png, EvalutionBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Automated Supervised Learning - Regression: AutoCatBoostRegression(), AutoH2oDRFRegression(), AutoH2oGAMRegression(), AutoH2oGLMRegression(), AutoH2oGLMRegression(), AutoH2oGLMRegression(), AutoH2oMLRegression(), AutoH2oMLR

Examples

```
## Not run:
# Create some dummy correlated data
data <- RemixAutoML::FakeDataGenerator(</pre>
 Correlation = 0.85,
 N = 1000,
 ID = 2,
 ZIP = 0,
  AddDate = FALSE,
  Classification = FALSE,
 MultiClass = FALSE)
# Run function
TestModel <- RemixAutoML::AutoXGBoostRegression(</pre>
    # GPU or CPU
    TreeMethod = "hist",
    NThreads = parallel::detectCores(),
    LossFunction = 'reg:squarederror',
    # Metadata args
    OutputSelection = c("Importances", "EvalPlots", "EvalMetrics", "Score_TrainData"),
    model_path = normalizePath("./"),
    metadata_path = NULL,
    ModelID = "Test_Model_1"
    EncodingMethod = "binary"
    ReturnFactorLevels = TRUE,
    ReturnModelObjects = TRUE,
    SaveModelObjects = FALSE,
    SaveInfoToPDF = FALSE,
    DebugMode = FALSE,
    # Data args
    data = data,
    TrainOnFull = FALSE,
    ValidationData = NULL,
    TestData = NULL,
    TargetColumnName = "Adrian",
    FeatureColNames = names(data)[!names(data) %in%
      c("IDcol_1", "IDcol_2","Adrian")],
    PrimaryDateColumn = NULL,
    WeightsColumnName = NULL,
    IDcols = c("IDcol_1","IDcol_2"),
    TransformNumericColumns = NULL,
    Methods = c("BoxCox", "Asinh", "Asin", "Log",
  "LogPlus1", "Sqrt", "Logit", "YeoJohnson"),
    # Model evaluation args
    eval_metric = "rmse",
    NumOfParDepPlots = 3L,
    # Grid tuning args
    PassInGrid = NULL,
    GridTune = FALSE,
    grid_eval_metric = "r2",
```

BaselineComparison = "default",

202 AutoXGBoostScoring

```
MaxModelsInGrid = 10L,
MaxRunsWithoutNewWinner = 20L,
MaxRunMinutes = 24L*60L,
Verbose = 1L,

# ML args
Trees = 50L,
eta = 0.05,
max_depth = 4L,
min_child_weight = 1.0,
subsample = 0.55,
colsample_bytree = 0.55)
## End(Not run)
```

AutoXGBoostScoring

AutoXGBoostScoring

Description

AutoXGBoostScoring is an automated scoring function that compliments the AutoCatBoost model training functions. This function requires you to supply features for scoring. It will run ModelDataPrep() and the DummifyDT() function to prepare your features for xgboost data conversion and scoring.

Usage

```
AutoXGBoostScoring(
  TargetType = NULL,
  ScoringData = NULL,
  ReturnShapValues = FALSE,
  FeatureColumnNames = NULL,
  IDcols = NULL,
  EncodingMethod = "binary",
  FactorLevelsList = NULL,
  TargetLevels = NULL,
  OneHot = FALSE,
  ModelObject = NULL,
  ModelPath = NULL,
  ModelID = NULL,
  ReturnFeatures = TRUE,
  TransformNumeric = FALSE,
  BackTransNumeric = FALSE,
  TargetColumnName = NULL,
  TransformationObject = NULL,
  TransID = NULL,
  TransPath = NULL,
  MDP_Impute = TRUE,
  MDP_CharToFactor = TRUE,
  MDP_RemoveDates = TRUE,
  MDP_MissFactor = "0",
  MDP\_MissNum = -1
```

AutoXGBoostScoring 203

Arguments

TargetType Set this value to "regression", "classification", or "multiclass" to score mod-

 $els\ built\ using\ AutoCatBoostRegression(),\ AutoCatBoostClassify()\ or\ AutoCatBoostClassify()$

BoostMultiClass().

ScoringData This is your data.table of features for scoring. Can be a single row or batch.

ReturnShapValues

Set to TRUE to return shap values for the predicted values

FeatureColumnNames

Supply either column names or column numbers used in the AutoXGBoost__()

function

IDcols Supply ID column numbers for any metadata you want returned with your pre-

dicted values

EncodingMethod Choose from 'binary', 'm_estimator', 'credibility', 'woe', 'target_encoding',

'poly_encode', 'backward_difference', 'helmert'

FactorLevelsList

Supply the factor variables' list from DummifyDT()

TargetLevels Supply the target levels output from AutoXGBoostMultiClass() or the scoring

function will go looking for it in the file path you supply.

ModelObject Supply a model for scoring, otherwise it will have to search for it in the file path

you specify

ModelPath Supply your path file used in the AutoXGBoost__() function

ModelID Supply the model ID used in the AutoXGBoost__() function

ReturnFeatures Set to TRUE to return your features with the predicted values.

TransformNumeric

Set to TRUE if you have features that were transformed automatically from an

Auto__Regression() model AND you haven't already transformed them.

 ${\tt BackTransNumeric}$

Set to TRUE to generate back-transformed predicted values. Also, if you return

features, those will also be back-transformed.

TargetColumnName

Input your target column name used in training if you are utilizing the transfor-

mation service

TransformationObject

Set to NULL if you didn't use transformations or if you want the function to pull from the file output from the Auto_Regression() function. You can also sup-

ply the transformation data.table object with the transformation details versus

having it pulled from file.

TransID Set to the ID used for saving the transformation data.table object or set it to the

ModelID if you are pulling from file from a build with Auto Regression().

TransPath Set the path file to the folder where your transformation data.table detail object

is stored. If you used the Auto_Regression() to build, set it to the same path as

ModelPath.

MDP_Impute Set to TRUE if you did so for modeling and didn't do so before supplying Scor-

ingData in this function

MDP_CharToFactor

Set to TRUE to turn your character columns to factors if you didn't do so to your

ScoringData that you are supplying to this function

MDP_RemoveDates

Set to TRUE if you have date of timestamp columns in your ScoringData

MDP_MissFactor If you set MDP_Impute to TRUE, supply the character values to replace missing

values with

MDP_MissNum If you set MDP_Impute to TRUE, supply a numeric value to replace missing

values with

Value

A data.table of predicted values with the option to return model features as well.

Author(s)

Adrian Antico

See Also

Other Automated Model Scoring: AutoCatBoostScoring(), AutoH2OMLScoring(), AutoHurdleScoring()

```
## Not run:
Preds <- AutoXGBoostScoring(</pre>
  TargetType = "regression",
  ScoringData = data,
  ReturnShapValues = FALSE,
  FeatureColumnNames = 2:12,
  IDcols = NULL,
  EncodingMethod = "binary",
  FactorLevelsList = NULL,
  TargetLevels = NULL,
  ModelObject = NULL,
  ModelPath = "home",
  ModelID = "ModelTest",
  ReturnFeatures = TRUE,
  TransformNumeric = FALSE,
  BackTransNumeric = FALSE,
  TargetColumnName = NULL,
  TransformationObject = NULL,
  TransID = NULL,
  TransPath = NULL,
  MDP_Impute = TRUE,
  MDP_CharToFactor = TRUE,
  MDP_RemoveDates = TRUE,
  MDP_MissFactor = "0",
  MDP_MissNum = -1)
## End(Not run)
```

Bisection 205

Bisection

Bisection

Description

Finds roots for a given interval of values for a given function using bisection method Algorithms

Usage

```
Bisection(f = function(x) x^2 - 4 * x + 3, a = 0, b = 2)
```

Arguments

f mathematical function
a lower bound numeric value
b upper bound numeric value

Author(s)

Adrian Antico

Examples

```
## Not run:
RemixAutoML::Bisection(f = function(x) x ^ 2 - 4 * x + 3, a = 0, b = 2)
# 1
## End(Not run)
```

CategoricalEncoding

CategoricalEncoding

Description

Categorical encoding for factor and character columns

Usage

```
CategoricalEncoding(
  data = NULL,
  ML_Type = "classification",
  GroupVariables = NULL,
  TargetVariable = NULL,
  Method = NULL,
  SavePath = NULL,
  Scoring = FALSE,
  ImputeValueScoring = NULL,
```

```
ReturnFactorLevelList = TRUE,
SupplyFactorLevelList = NULL,
KeepOriginalFactors = TRUE
)
```

Arguments

data Source data

ML_Type Only use with Method "credibility'. Select from 'classification' or 'regression'.

GroupVariables Columns to encode

Method Method to utilize. Choose from 'm_estimator', 'credibility', 'woe', 'target_encoding',

'poly_encode', 'backward_difference', 'helmert'

SavePath Path to save artifacts for recreating in scoring environments

Scoring Set to TRUE for scoring mode.

ImputeValueScoring

If levels cannot be matched on scoring data you can supply a value to impute the

NA's. Otherwise, leave NULL and manage them outside the function

ReturnFactorLevelList

TRUE by default. Returns a list of the factor variable and transformations needed for regenerating them in a scoring environment. Alternatively, if you

save them to file, they can be called for use in a scoring environment.

SupplyFactorLevelList

The FactorCompenents list that gets returned. Supply this to recreate features in

scoring environment

KeepOriginalFactors

Defaults to TRUE. Set to FALSE to remove the original factor columns

TargetVariabl Target column name

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoDiffLagN(), AutoHierarchicalFourier(), AutoInteraction(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), AutoWord2VecScoring(), CreateCalendarVariables(), CreateHolidayVariables(), DummifyDT(), H2OAutoencoderScoring(), H2OAutoencoder(), ModelDataPrep(), TimeSeriesFill()

```
## Not run:
# Create fake data with 10 categorical
data <- RemixAutoML::FakeDataGenerator(
   Correlation = 0.85,
   N = 1000000,
   ID = 2L,
   ZIP = 0,
   FactorCount = 10L,
   AddDate = FALSE,</pre>
```

ChartTheme 207

```
Classification = TRUE,
  MultiClass = FALSE)
# Take your pick
Meth <- c('m_estimator',</pre>
          'credibility',
          'woe',
          'target_encoding',
          'poly_encode',
          'backward_difference',
          'helmert')
# Pass to function
MethNum <- 1
# Mock test data with same factor levels
test <- data.table::copy(data)</pre>
# Run in Train Mode
data <- RemixAutoML::CategoricalEncoding(</pre>
  data = data,
  ML_Type = "classification",
  GroupVariables = paste0("Factor_", 1:10),
  TargetVariable = "Adrian",
  Method = Meth[MethNum],
  SavePath = getwd(),
  Scoring = FALSE,
  ReturnFactorLevelList = FALSE,
  SupplyFactorLevelList = NULL,
  KeepOriginalFactors = FALSE)
# View results
print(data)
# Run in Score Mode by pulling in the csv's
test <- RemixAutoML::CategoricalEncoding(</pre>
  data = data,
  ML_Type = "classification",
  GroupVariables = paste0("Factor_", 1:10),
  TargetVariable = "Adrian",
  Method = Meth[MethNum],
  SavePath = getwd(),
  Scoring = TRUE,
  ImputeValueScoring = 222,
  ReturnFactorLevelList = FALSE,
  SupplyFactorLevelList = NULL,
  KeepOriginalFactors = FALSE)
## End(Not run)
```

208 ChartTheme

Description

This function helps your ggplots look professional with the choice of the two main colors that will dominate the theme

Usage

```
ChartTheme(
   Size = 12,
   AngleX = 35,
   AngleY = 0,
   ChartColor = "lightsteelblue1",
   BorderColor = "darkblue",
   TextColor = "darkblue",
   GridColor = "white",
   BackGroundColor = "gray95",
   LegendPosition = "bottom"
)
```

Arguments

```
Size
                  The size of the axis labels and title
                  The angle of the x axis labels
AngleX
                  The angle of the Y axis labels
AngleY
{\tt ChartColor}
                  "lightsteelblue1",
BorderColor
                  "darkblue",
                  "darkblue",
TextColor
GridColor
                  "white",
BackGroundColor
                   "gray95",
LegendPosition Where to place legend
```

Value

An object to pass along to ggplot objects following the "+" sign

Author(s)

Adrian Antico

See Also

```
Other Graphics: multiplot()
```

CLForecast 209

```
circular=TRUE))
data[, temp := seq(1:1000)][, DateTime := DateTime - temp][
   , temp := NULL]
data <- data[order(DateTime)]
p <- ggplot2::ggplot(data, ggplot2::aes(x = DateTime, y = Target)) +
   ggplot2::geom_line()
p <- p + ChartTheme(Size = 12)
## End(Not run)</pre>
```

CLForecast

CLForecast

Description

CLForecast for generating forecasts

Usage

```
CLForecast(
  data,
  OutputFilePath = NULL,
  FC_BaseFunnelMeasure = NULL,
  SegmentName = NULL,
  MaxDateForecasted = NULL,
  MaxCalendarDate = NULL,
  ArgsList = NULL,
  MaxCohortPeriods = NULL
)
```

Arguments

```
\begin{array}{ccc} \text{data} & N \\ \text{OutputFilePath} & P \\ \text{FC\_BaseFunnelMeasure} \\ & d \\ \text{SegmentName} & a \\ \text{MaxDateForecasted} \\ & S \\ \text{MaxCalendarDate} \\ & S \\ \text{ArgsList} & A \\ \text{MaxCohortPeriods} \\ & T \\ \end{array}
```

Value

S

Author(s)

Adrian Antico

See Also

Other Population Dynamics Forecasting: CLTrainer()

CLTrainer

CLTrainer

Description

CLTrainer is a forecasting model for chain ladder style forecasting

Usage

```
CLTrainer(
  data,
  PartitionRatios = c(0.7, 0.2, 0.1),
  BaseFunnelMeasure = NULL,
  ConversionMeasure = NULL,
  ConversionRateMeasure = NULL,
  CohortPeriodsVariable = NULL,
  CalendarDate = NULL,
  CohortDate = NULL,
  TruncateDate = NULL,
  TimeUnit = c("day"),
  CalendarTimeGroups = c("day", "week", "month"),
  CohortTimeGroups = c("day", "week", "month"),
  TransformTargetVariable = TRUE,
  TransformMethods = c("Identity", "YeoJohnson"),
  AnomalyDetection = list(tstat_high = 3, tstat_low = -2),
  Jobs = c("Evaluate", "Train"),
  SaveModelObjects = TRUE,
  ModelID = "Segment_ID",
  ModelPath = NULL
  MetaDataPath = NULL,
  TaskType = "CPU",
  NumGPUs = 1,
  DT_Threads = max(1L, parallel::detectCores()),
  EvaluationMetric = "RMSE",
  LossFunction = "RMSE",
  NumOfParDepPlots = 1L,
  MetricPeriods = 50L,
 CalendarVariables = c("wday", "mday", "yday", "week", "isoweek", "month", "quarter",
    "year"),
  HolidayGroups = c("USPublicHolidays", "EasterGroup", "ChristmasGroup",
    "OtherEcclesticalFeasts"),
  HolidayLookback = NULL,
  ImputeRollStats = -0.001,
  CohortHolidayLags = c(1L, 2L, 7L),
  CohortHolidayMovingAverages = c(3L, 7L),
  CalendarHolidayLags = c(1L, 2L, 7L),
  CalendarHolidayMovingAverages = c(3L, 7L),
 CalendarLags = list(day = c(1L, 7L, 21L), week = c(1L, 4L, 52L), month = c(1L, 6L, 6L)
```

```
12L)),
 CalendarMovingAverages = list(day = c(1L, 7L, 21L), week = c(1L, 4L, 52L), month =
    c(1L, 6L, 12L)),
  CalendarStandardDeviations = NULL,
 CalendarSkews = NULL,
  CalendarKurts = NULL,
 CalendarQuantiles = NULL,
 CalendarQuantilesSelected = "q50",
 CohortLags = list(day = c(1L, 7L, 21L), week = c(1L, 4L, 52L), month = c(1L, 6L, 6L)
    12L)),
 CohortMovingAverages = list(day = c(1L, 7L, 21L), week = c(1L, 4L, 52L), month =
    c(1L, 6L, 12L)),
  CohortStandardDeviations = NULL,
  CohortSkews = NULL,
 CohortKurts = NULL,
 CohortQuantiles = NULL,
  CohortQuantilesSelected = "q50",
 PassInGrid = NULL,
 GridTune = FALSE,
 BaselineComparison = "default",
 MaxModelsInGrid = 25L,
 MaxRunMinutes = 180L,
 MaxRunsWithoutNewWinner = 10L,
  Trees = 3000L,
 Depth = seq(4L, 8L, 1L),
 LearningRate = seq(0.01, 0.1, 0.01),
 L2\_Leaf\_Reg = seq(1, 10, 1),
 RSM = c(0.8, 0.85, 0.9, 0.95, 1),
 BootStrapType = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
 GrowPolicy = c("SymmetricTree", "Depthwise", "Lossguide")
)
```

Arguments

data data object

PartitionRatios

Requires three values for train, validation, and test data sets

BaseFunnelMeasure

E.g. "Leads". This value should be a forward looking variable. Say you want to forecast ConversionMeasure 2 months into the future. You should have two months into the future of values of BaseFunnelMeasure

ConversionMeasure

E.g. "Conversions". Rate is derived as conversions over leads by cohort periods out

ConversionRateMeasure

Conversions over Leads for every cohort

CohortPeriodsVariable

Numeric. Numerical value of the the number of periods since cohort base date.

 ${\tt CalendarDate} \qquad {\tt The \ name \ of \ your \ date \ column \ that \ represents \ the \ calendar \ date}$

CohortDate The name of your date column that represents the cohort date

TruncateDate NULL. Supply a date to represent the earliest point in time you want in your

data. Filtering takes place before partitioning data so feature engineering can

include as many non null values as possible.

TimeUnit Base time unit of data. "days", "weeks", "months", "quarters", "years"

CalendarTimeGroups

TimeUnit value must be included. If you want to generate lags and moving averages in several time based aggregations, choose from "days", "weeks", "months", "quarters", "years".

CohortTimeGroups

TimeUnit value must be included. If you want to generate lags and moving averages in several time based aggregations, choose from "days", "weeks", "months", "quarters", "years".

TransformTargetVariable

TRUE or FALSe

TransformMethods

Choose from "Identity", "BoxCox", "Asinh", "Asin", "Log", "LogPlus1", "Logit", "YeoJohnson"

AnomalyDetection

Provide a named list. See examples

Jobs Default is "eval" and "train"

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

ModelID A character string to name your model and output

ModelPath Path to where you want your models saved

MetaDataPath Path to where you want your metadata saved. If NULL, function will try Mod-

elPath if it is not NULL.

TaskType "GPU" or "CPU" for catboost training

NumGPUs Number of GPU's you would like to utilize

DT_Threads Number of threads to use for data.table. Default is Total - 2

EvaluationMetric

This is the metric used inside catboost to measure performance on validation data during a grid-tune. "RMSE" is the default, but other options include: "MAE", "MAPE", "Poisson", "Quantile", "LogLinQuantile", "Lq", "NumErrors" "SMAPE" "P2" "MSLE" "Median Absolute Error"

rors", "SMAPE", "R2", "MSLE", "MedianAbsoluteError".

LossFunction Used in model training for model fitting. Select from 'RMSE', 'MAE', 'Quan-

tile', 'LogLinQuantile', 'MAPE', 'Poisson', 'PairLogitPairwise', 'Tweedie', 'QueryRMSE'

NumOfParDepPlots

Number of partial dependence plots to return

MetricPeriods Number of trees to build before the internal catboost eval step happens

CalendarVariables

"wday", "mday", "yday", "week", "isoweek", "month", "quarter", "year"

HolidayGroups c("USPublicHolidays","EasterGroup","ChristmasGroup","OtherEcclesticalFeasts")

HolidayLookback

Number of days in range to compute number of holidays from a given date in the data. If NULL, the number of days are computed for you.

ImputeRollStats

Constant value to fill NA after running AutoLagRollStats()

 ${\tt CohortHolidayLags}$

c(1L, 2L, 7L),

CohortHolidayMovingAverages

c(3L, 7L),

CalendarHolidayLags

c(1L, 2L, 7L),

CalendarHolidayMovingAverages

= c(3L, 7L),

CalendarLags List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

CalendarMovingAverages

List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

CalendarStandardDeviations

List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

CalendarSkews List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

CalendarKurts List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

CalendarQuantiles

List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

CalendarQuantilesSelected

Supply a vector of "q5", "q10", "q15", "q20", "q25", "q30", "q35", "q40", "q45", "q50", "q55", "q60", "q65", "q70", "q75", "q80", "q85", "q90", "q95"

CohortLags List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

CohortMovingAverages

List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

 ${\tt CohortStandardDeviations}$

List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

CohortSkews List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

CohortKurts List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

CohortQuantiles

List of the form list("day" = c(1L, 7L, 21L), "week" = c(1L, 4L, 52L), "month" = c(1L, 6L, 12L))

CohortQuantilesSelected

Supply a vector of "q5", "q10", "q15", "q20", "q25", "q30", "q35", "q40", "q45", "q50", "q55", "q60", "q65", "q70", "q75", "q80", "q85", "q90", "q95"

PassInGrid Defaults to NULL. Pass in a single row of grid from a previous output as a data.table (they are collected as data.tables)

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxModelsInGrid to tell the procedure how many models you want to test.

BaselineComparison

Set to either "default" or "best". Default is to compare each successive model build to the baseline model using max trees (from function args). Best makes the comparison to the current best model.

MaxModelsInGrid

Number of models to test from grid options

 ${\tt MaxRunMinutes} \quad Maximum \ number \ of \ minutes \ to \ let \ this \ run$

MaxRunsWithoutNewWinner

Number of models built before calling it quits

Trees Bandit grid partitioned. The maximum number of trees you want in your models

Depth Bandit grid partitioned. Number, or vector for depth to test. For running grid

tuning, a NULL value supplied will mean these values are tested seq(4L, 16L,

2L)

LearningRate Bandit grid partitioned. Supply a single value for non-grid tuning cases. Oth-

erwise, supply a vector for the LearningRate values to test. For running grid tuning, a NULL value supplied will mean these values are tested c(0.01,0.02,0.03,0.04)

L2_Leaf_Reg Random testing. Supply a single value for non-grid tuning cases. Otherwise,

supply a vector for the L2_Leaf_Reg values to test. For running grid tuning, a NULL value supplied will mean these values are tested seq(1.0, 10.0, 1.0)

RSM CPU only. Random testing. Supply a single value for non-grid tuning cases.

Otherwise, supply a vector for the RSM values to test. For running grid tuning, a NULL value supplied will mean these values are tested c(0.80, 0.85, 0.90,

0.95, 1.0)

BootStrapType Random testing. Supply a single value for non-grid tuning cases. Otherwise,

supply a vector for the BootStrapType values to test. For running grid tuning, a NULL value supplied will mean these values are tested c("Bayesian",

"Bernoulli", "Poisson", "MVS", "No")

GrowPolicy Random testing. NULL, character, or vector for GrowPolicy to test. For grid

tuning, supply a vector of values. For running grid tuning, a NULL value supplied will mean these values are tested c("SymmetricTree", "Depthwise", "Loss-

guide")

Value

Saves metadata and models to files of your choice. Also returns metadata and models from the function. User specifies both options.

Author(s)

Adrian Antico

See Also

Other Population Dynamics Forecasting: CLForecast()

```
## Not run:
# Create simulated data
data <- RemixAutoML::FakeDataGenerator(
    ChainLadderData = TRUE)</pre>
```

```
# Build model
RemixAutoML::CLTrainer(
   # Data Arguments----
   data = data,
   PartitionRatios = c(0.70, 0.20, 0.10),
   BaseFunnelMeasure = "Leads",
   ConversionMeasure = "Appointments",
   ConversionRateMeasure = NULL,
   CohortPeriodsVariable = "CohortDays",
   CalendarDate = "CalendarDateColumn",
   CohortDate = "CohortDateColumn",
   TruncateDate = NULL,
   TimeUnit = "days",
   TransformTargetVariable = TRUE,
   TransformMethods = c("Identity", "BoxCox", "Asinh",
                         "Asin","LogPlus1","Logit",
                         "YeoJohnson"),
   AnomalyDetection = list(tstat_high = 3,
     tstat_low = -2),
   # MetaData Arguments----
   Jobs = c("eval","train"),
   SaveModelObjects = TRUE,
   ModelID = "ModelTest",
   ModelPath = getwd(),
   MetaDataPath = NULL,
   TaskType = "GPU",
   NumGPUs = 1,
   DT_Threads = max(1L, parallel::detectCores() - 2L),
   EvaluationMetric = "RMSE",
   LossFunction = "RMSE",
   NumOfParDepPlots = 1L,
   MetricPeriods = 50L,
   # Feature Engineering Arguments----
   ImputeRollStats = -0.001,
   CalendarTimeGroups = c("days", "weeks", "months"),
   CohortTimeGroups = c("days", "weeks"),
   CalendarVariables = c("wday", "mday", "yday", "week", "month", "quarter", "year"),
   HolidayGroups = c("USPublicHolidays", "EasterGroup"
                      "ChristmasGroup", "OtherEcclesticalFeasts"),
   HolidayLookback = NULL,
   CohortHolidayLags = c(1L, 2L, 7L),
   CohortHolidayMovingAverages = c(3L,7L),
   CalendarHolidayLags = c(1L, 2L, 7L),
   CalendarHolidayMovingAverages = c(3L,7L),
   CalendarLags = list("day" = c(1L, 2L, 7L, 35L, 42L),
                        "week" = c(5L, 6L, 10L, 12L, 25L, 26L)),
   CalendarMovingAverages = list("day" = c(7L,14L,35L,42L),
                                   "week" = c(5L, 6L, 10L, 12L, 20L, 24L),
                                   "month" = c(6L, 12L)),
   CalendarStandardDeviations = NULL,
   CalendarSkews = NULL,
   CalendarKurts = NULL,
```

216 CreateCalendarVariables

```
CalendarQuantiles = NULL,
   CalendarQuantilesSelected = "q50",
   CohortLags = list("day" = c(1L, 2L, 7L, 35L, 42L),
                      "week" = c(5L,6L)),
   CohortMovingAverages = list("day" = c(7L,14L,35L,42L),
                                "week" = c(5L,6L),
                                "month" = c(1L, 2L)),
   CohortStandardDeviations = NULL,
   CohortSkews = NULL.
   CohortKurts = NULL,
   CohortQuantiles = NULL,
   CohortQuantilesSelected = "q50",
   # Grid Tuning
   PassInGrid = NULL,
   GridTune = FALSE,
   BaselineComparison = "default",
   MaxModelsInGrid = 25L,
   MaxRunMinutes = 180L,
  MaxRunsWithoutNewWinner = 10L,
   Trees = 1000L,
   Depth = seq(4L, 8L, 1L),
   LearningRate = seq(0.01, 0.10, 0.01),
   L2\_Leaf\_Reg = seq(1.0,10.0,1.0),
  RSM = c(0.80, 0.85, 0.90, 0.95, 1.0),
  BootStrapType = c("Bayesian", "Bernoulli", "Poisson", "MVS", "No"),
   GrowPolicy = c("SymmetricTree", "Depthwise", "Lossguide"))
## End(Not run)
```

CreateCalendarVariables

CreateCalendarVariables

Description

CreateCalendarVariables Rapidly creates calendar variables based on the date column you provide

Usage

```
CreateCalendarVariables(
  data,
  DateCols = NULL,
  AsFactor = FALSE,
  TimeUnits = "wday"
)
```

Arguments

data This is your data

DateCols Supply either column names or column numbers of your date columns you want to use for creating calendar variables

CreateCalendarVariables 217

AsFactor Set to TRUE if you want factor type columns returned; otherwise integer type

columns will be returned

TimeUnits Supply a character vector of time units for creating calendar variables. Op-

tions include: "second", "minute", "hour", "wday", "mday", "yday", "week",

"isoweek", "wom" (week of month), "month", "quarter", "year"

Value

Returns your data.table with the added calendar variables at the end

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoDiffLagN(), AutoHierarchicalFourier(), AutoInteraction(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), AutoWord2VecScoring(), CategoricalEncoding(), CreateHolidayVariables(), DummifyDT(), H2OAutoencoderScoring(), H2OAutoencoder(), ModelDataPrep(), TimeSeriesFill()

```
## Not run:
# Create fake data with a Date column----
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.75,
 N = 25000L
 ID = 2L,
  ZIP = 0L
  FactorCount = 4L,
  AddDate = TRUE,
  Classification = FALSE,
  MultiClass = FALSE)
for(i in seq_len(20L)) {
  print(i)
  data <- data.table::rbindlist(</pre>
    list(data, RemixAutoML::FakeDataGenerator(
    Correlation = 0.75,
    N = 25000L
    ID = 2L,
    ZIP = 0L
    FactorCount = 4L,
    AddDate = TRUE,
    Classification = FALSE,
    MultiClass = FALSE)))
}
\# Create calendar variables - automatically excludes
  the second, minute, and hour selections since
   it is not timestamp data
runtime <- system.time(</pre>
  data <- RemixAutoML::CreateCalendarVariables(</pre>
    data = data,
    DateCols = "DateTime",
```

```
AsFactor = FALSE,
    TimeUnits = c("second",
                   "minute",
                   "hour",
                   "wday",
                   "mday",
                   "yday"
                   "week",
                   "isoweek",
                   "wom",
                   "month",
                   "quarter",
                   "year")))
head(data)
print(runtime)
## End(Not run)
```

CreateHolidayVariables

CreateHolidayVariables

Description

CreateHolidayVariables Rapidly creates holiday count variables based on the date columns you provide

Usage

```
CreateHolidayVariables(
  data,
  DateCols = NULL,
  LookbackDays = NULL,
  HolidayGroups = c("USPublicHolidays", "EasterGroup", "ChristmasGroup",
        "OtherEcclesticalFeasts"),
  Holidays = NULL,
    Print = FALSE
)
```

Arguments

data This is your data

DateCols Supply either column names or column numbers of your date columns you want

to use for creating calendar variables

LookbackDays Default NULL which investigates Date - Lag1Date to compute Holiday's per

period. Otherwise it will lookback LokkbackDays.

HolidayGroups Pick groups
Holidays Pick holidays

Print Set to TRUE to print iteration number to console

Value

Returns your data.table with the added holiday indicator variable

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoDiffLagN(), AutoHierarchicalFourier(), AutoInteraction(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), AutoWord2VecScoring(), CategoricalEncoding(), CreateCalendarVariables(), DummifyDT(), H2OAutoencoderScoring(), H2OAutoencoder(), ModelDataPrep(), TimeSeriesFill()

```
## Not run:
# Create fake data with a Date----
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.75,
  N = 25000L
  ID = 2L,
  ZIP = 0L,
  FactorCount = 4L,
  AddDate = TRUE,
  Classification = FALSE,
  MultiClass = FALSE)
for(i in seq_len(20L)) {
  print(i)
  data <- data.table::rbindlist(list(data,</pre>
  RemixAutoML::FakeDataGenerator(
    Correlation = 0.75,
    N = 25000L
    ID = 2L,
    ZIP = 0L
    FactorCount = 4L,
    AddDate = TRUE,
    Classification = FALSE,
    MultiClass = FALSE)))
# Run function and time it
runtime <- system.time(</pre>
  data <- CreateHolidayVariables(</pre>
    data,
    DateCols = "DateTime",
    {\sf LookbackDays} \; = \; {\sf NULL} \, ,
    HolidayGroups = c("USPublicHolidays","EasterGroup",
      "Christmas {\tt Group"}\,, "Other {\tt Ecclestical Feasts"})\,,
    Holidays = NULL,
    Print = FALSE))
head(data)
print(runtime)
## End(Not run)
```

220 CumGainsChart

 ${\tt CumGainsChart}$

CumGainsChart

Description

Create a cumulative gains chart

Usage

```
CumGainsChart(
  data = NULL,
  PredictedColumnName = "p1",
  TargetColumnName = NULL,
  NumBins = 20,
  SavePlot = FALSE,
  Name = NULL,
  metapath = NULL,
  modelpath = NULL
)
```

Arguments

data Test data with predictions. data.table

 ${\tt PredictedColumnName}$

Name of column that is the model score

TargetColumnName

Name of your target variable column

NumBins Number of percentile bins to plot

SavePlot FALSE by default

Name File name for saving

metapath Path to directory

modelpath Path to directory

Author(s)

Adrian Antico

See Also

```
Other Model Evaluation and Interpretation: AutoShapeShap(), EvalPlot(), ParDepCalPlots(), ROCPlot(), RedYellowGreen(), ResidualPlots(), ShapPlot(), SingleRowShapeShap(), threshOptim()
```

DummifyDT 221

DummifyDT	DummifyDT
-----------	-----------

Description

DummifyDT creates dummy variables for the selected columns. Either one-hot encoding, N+1 columns for N levels, or N columns for N levels.

Usage

```
DummifyDT(
  data,
  cols,
  TopN = NULL,
  KeepFactorCols = FALSE,
  OneHot = FALSE,
  SaveFactorLevels = FALSE,
  SavePath = NULL,
  ImportFactorLevels = FALSE,
  FactorLevelsList = NULL,
  ClustScore = FALSE,
  ReturnFactorLevels = FALSE,
  GroupVar = FALSE
)
```

Arguments

data The data set to run the micro auc on

cols A vector with the names of the columns you wish to dichotomize

TopN Default is NULL. Scalar to apply to all categorical columns or a vector to apply

to each categorical variable. Only create dummy variables for the TopN number

of levels. Will be either TopN or max(levels)

KeepFactorCols Set to TRUE to keep the original columns used in the dichotomization process

OneHot Set to TRUE to run one hot encoding, FALSE to generate N columns for N

levels

 ${\tt SaveFactorLevels}$

Set to TRUE to save unique levels of each factor column to file as a csv

SavePath Provide a file path to save your factor levels. Use this for models that you have

to create dummy variables for.

 ${\tt ImportFactorLevels}$

Instead of using the data you provide, import the factor levels csv to ensure you

build out all of the columns you trained with in modeling.

 ${\tt FactorLevelsList}$

Supply a list of factor variable levels

ClustScore This is for scoring AutoKMeans. It converts the added dummy column names

to conform with H2O dummy variable naming convention

ReturnFactorLevels

If you want a named list of all the factor levels returned, set this to TRUE. Doing so will cause the function to return a list with the source data.table and the list of factor variables' levels

222 DummifyDT

GroupVar Ignore this

Value

Either a data table with new dummy variables columns and optionally removes base columns (if ReturnFactorLevels is FALSE), otherwise a list with the data.table and a list of the factor levels.

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoDiffLagN(), AutoHierarchicalFourier(), AutoInteraction(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), AutoWord2VecScoring(), CategoricalEncoding(), CreateCalendarVariables(), CreateHolidayVariables(), H2OAutoencoderScoring(), H2OAutoencoder(), ModelDataPrep(), TimeSeriesFill()

```
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.85,
 N = 25000,
  ID = 2L,
  ZIP = 0,
  FactorCount = 10L,
  AddDate = FALSE,
  Classification = FALSE,
  MultiClass = FALSE)
# Create dummy variables
data <- RemixAutoML::DummifyDT(</pre>
  data = data,
  cols = c("Factor_1",
           "Factor_2",
           "Factor_3",
           "Factor_4"
           "Factor_5",
           "Factor_6",
           "Factor_8",
           "Factor_9"
           "Factor_10"),
  TopN = c(rep(3,9)),
  KeepFactorCols = TRUE,
  OneHot = FALSE,
  SaveFactorLevels = TRUE,
  SavePath = getwd(),
  ImportFactorLevels = FALSE,
  FactorLevelsList = NULL,
  ClustScore = FALSE,
  ReturnFactorLevels = FALSE)
# Create Fake Data for Scoring Replication
data <- RemixAutoML::FakeDataGenerator(</pre>
```

EvalPlot 223

```
Correlation = 0.85,
  N = 25000,
  ID = 2L,
  ZIP = 0,
  FactorCount = 10L,
  AddDate = FALSE,
  Classification = FALSE,
  MultiClass = FALSE)
# Scoring Version
data <- RemixAutoML::DummifyDT(</pre>
  data = data,
  cols = c("Factor_1",
           "Factor_2",
           "Factor_3",
           "Factor_4",
           "Factor_5",
           "Factor_6",
           "Factor_8",
           "Factor_9"
           "Factor_10"),
  TopN = c(rep(3,9)),
  KeepFactorCols = TRUE,
  OneHot = FALSE,
  SaveFactorLevels = TRUE,
  SavePath = getwd(),
  ImportFactorLevels = TRUE,
  FactorLevelsList = NULL,
  ClustScore = FALSE,
  ReturnFactorLevels = FALSE)
## End(Not run)
```

EvalPlot

EvalPlot

Description

This function automatically builds calibration plots and calibration boxplots for model evaluation using regression, quantile regression, and binary and multinomial classification

Usage

```
EvalPlot(
  data,
  PredictionColName = c("PredictedValues"),
  TargetColName = c("ActualValues"),
  GraphType = c("calibration"),
  PercentileBucket = 0.05,
  aggrfun = function(x) mean(x, na.rm = TRUE)
)
```

224 FakeDataGenerator

Arguments

data Data containing predicted values and actual values for comparison

PredictionColName

String representation of column name with predicted values from model

TargetColName String representation of column name with target values from model

GraphType Calibration or boxplot - calibration aggregated data based on summary statistic;

boxplot shows variation

PercentileBucket

Number of buckets to partition the space on (0,1) for evaluation

aggrfun The statistics function used in aggregation, listed as a function

Value

Calibration plot or boxplot

Author(s)

Adrian Antico

See Also

```
Other Model Evaluation and Interpretation: AutoShapeShap(), CumGainsChart(), ParDepCalPlots(), ROCPlot(), RedYellowGreen(), ResidualPlots(), ShapPlot(), SingleRowShapeShap(), threshOptim()
```

Examples

FakeDataGenerator

FakeDataGenerator

Description

Create fake data for examples

FakeDataGenerator 225

Usage

```
FakeDataGenerator(
   Correlation = 0.7,
   N = 1000L,
   ID = 5L,
   FactorCount = 2L,
   AddDate = TRUE,
   AddComment = FALSE,
   AddWeightsColumn = FALSE,
   ZIP = 5L,
   TimeSeries = FALSE,
   TimeSeriesTimeAgg = "day",
   ChainLadderData = FALSE,
   Classification = FALSE,
   MultiClass = FALSE
)
```

Arguments

Correlation Set the correlation value for simulated data

N Number of records

ID Number of IDcols to include

FactorCount Number of factor type columns to create

AddDate Set to TRUE to include a date column

AddComment Set to TRUE to add a comment column

ZIP Zero Inflation Model target variable creation. Select from 0 to 5 to create that

number of distinctly distributed data, stratifed from small to large

TimeSeries For testing AutoBanditSarima

TimeSeriesTimeAgg

Choose from "1min", "5min", "10min", "15min", "30min", "hour", "day", "week", "month", "quarter", "year",

ChainLadderData

Set to TRUE to return Chain Ladder Data for using AutoMLChainLadderTrainer

Classification Set to TRUE to build classification data
MultiClass Set to TRUE to build MultiClass data

Author(s)

Adrian Antico

```
## Not run:
data <- RemixAutoML::FakeDataGenerator(
   Correlation = 0.70,
   N = 1000L,
   ID = 2L,
   FactorCount = 2L,
   AddDate = TRUE,
   AddWeightsColumn = FALSE,</pre>
```

226 GenTSAnomVars

```
AddComment = FALSE,
ZIP = 2L,
TimeSeries = FALSE,
ChainLadderData = FALSE,
Classification = FALSE,
MultiClass = FALSE)

## End(Not run)
```

GenTSAnomVars

GenTSAnomVars

Description

GenTSAnomVars is an automated z-score anomaly detection via GLM-like procedure. Data is z-scaled and grouped by factors and time periods to determine which points are above and below the control limits in a cumulative time fashion. Then a cumulative rate is created as the final variable. Set KeepAllCols to FALSE to utilize the intermediate features to create rolling stats from them. The anomalies are separated into those that are extreme on the positive end versus those that are on the negative end.

Usage

```
GenTSAnomVars(
  data,
  ValueCol = "Value",
  GroupVars = NULL,
  DateVar = "DATE",
  HighThreshold = 1.96,
  LowThreshold = -1.96,
  KeepAllCols = TRUE,
  IsDataScaled = FALSE
)
```

Arguments

data the source residuals data.table

ValueCol the numeric column to run anomaly detection over

GroupVars this is a group by variable

DateVar this is a time variable for grouping
HighThreshold this is the threshold on the high end
LowThreshold this is the threshold on the low end

KeepAllCols set to TRUE to remove the intermediate features
IsDataScaled set to TRUE if you already scaled your data

Value

The original data.table with the added columns merged in. When KeepAllCols is set to FALSE, you will get back two columns: AnomHighRate and AnomLowRate - these are the cumulative anomaly rates over time for when you get anomalies from above the thresholds (e.g. 1.96) and below the thresholds.

Author(s)

Adrian Antico

See Also

Other Unsupervised Learning: AutoClusteringScoring(), AutoClustering(), H20IsolationForestScoring(), H20IsolationForest(), ResidualOutliers()

Examples

```
## Not run:
data <- data.table::data.table(</pre>
  DateTime = as.Date(Sys.time()),
  Target = stats::filter(
   rnorm(10000, mean = 50, sd = 20),
  filter=rep(1,10),
  circular=TRUE))
data[, temp := seq(1:10000)][, DateTime := DateTime - temp][
  , temp := NULL]
data <- data[order(DateTime)]</pre>
x <- data.table::as.data.table(sde::GBM(N=10000)*1000)</pre>
data[, predicted := x[-1,]]
data[, Fact1 := sample(letters, size = 10000, replace = TRUE)]
data[, Fact2 := sample(letters, size = 10000, replace = TRUE)]
data[, Fact3 := sample(letters, size = 10000, replace = TRUE)]
stuff <- GenTSAnomVars(</pre>
  data,
  ValueCol = "Target",
  GroupVars = c("Fact1", "Fact2", "Fact3"),
  DateVar = "DateTime",
  HighThreshold = 1.96,
  LowThreshold = -1.96,
  KeepAllCols = TRUE,
  IsDataScaled = FALSE)
## End(Not run)
```

H20Autoencoder

H2OAutoencoder

Description

H2OAutoencoder for anomaly detection and or dimensionality reduction

Usage

```
H2OAutoencoder(
  AnomalyDetection = FALSE,
  DimensionReduction = TRUE,
  data,
  Features = NULL,
  RemoveFeatures = FALSE,
  NThreads = max(1L, parallel::detectCores() - 2L),
```

```
MaxMem = "28G",
H2OStart = TRUE,
H2OShutdown = TRUE,
ModelID = "TestModel",
model_path = NULL,
LayerStructure = NULL,
NodeShrinkRate = (sqrt(5) - 1)/2,
ReturnLayer = 4L,
per_feature = TRUE,
Activation = "Tanh",
Epochs = 5L,
L2 = 0.1,
ElasticAveraging = TRUE,
ElasticAveragingMovingRate = 0.9,
ElasticAveragingRegularization = 0.001)
```

Arguments

AnomalyDetection

Set to TRUE to run anomaly detection

DimensionReduction

Set to TRUE to run dimension reduction

data The data.table with the columns you wish to have analyzed

Features NULL Column numbers or column names

RemoveFeatures Set to TRUE if you want the features you specify in the Features argument to be

removed from the data returned

NThreads max(1L, parallel::detectCores()-2L)

MaxMem "28G"

H2OStart TRUE to start H2O inside the function

H20Shutdown Setting to TRUE will shutdown H2O when it done being used internally.

ModelID "TestModel"

model_path If NULL no model will be saved. If a valid path is supplied the model will be

saved there

LayerStructure If NULL, layers and sizes will be created for you, using NodeShrinkRate and 7

layers will be created.

NodeShrinkRate = (sqrt(5) - 1) / 2,

ReturnLayer Which layer of the NNet to return. Choose from 1-7 with 4 being the layer with

the least amount of nodes

per_feature Set to TRUE to have per feature anomaly detection generated. Otherwise and

overall value will be generated

Activation Choose from "Tanh", "TanhWithDropout", "Rectifier", "RectifierWithDropout", "Maxout",

"MaxoutWithDropout"

Epochs Quantile value to find the cutoff value for classifying outliers

L2 Specify the amount of memory to allocate to H2O. E.g. "28G"

ElasticAveraging

Specify the number of threads (E.g. cores * 2)

```
ElasticAveragingMovingRate
Specify the number of decision trees to build
ElasticAveragingRegularization
Specify the row sample rate per tree
```

Value

A data.table

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoDiffLagN(), AutoHierarchicalFourier(), AutoInteraction(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), AutoWord2VecScoring(), CategoricalEncoding(), CreateCalendarVariables(), CreateHolidayVariables(), DummifyDT(), H2OAutoencoderScoring(), ModelDataPrep(), TimeSeriesFill()

```
## Not run:
####################################
# Training
##############################
# Create simulated data
data <- RemixAutoML::FakeDataGenerator(</pre>
 Correlation = 0.70,
 N = 1000L
 ID = 2L,
  FactorCount = 2L,
  AddDate = TRUE,
  AddComment = FALSE,
  ZIP = 2L,
  TimeSeries = FALSE,
  ChainLadderData = FALSE,
  Classification = FALSE,
 MultiClass = FALSE)
Output <- RemixAutoML::H2OAutoencoder(</pre>
  # Select the service
  AnomalyDetection = TRUE,
  DimensionReduction = TRUE,
  # Data related args
  data = data,
  Features = names(data)[2L:(ncol(data)-1L)],
  per_feature = FALSE,
  RemoveFeatures = FALSE,
  ModelID = "TestModel",
  model_path = getwd(),
```

```
# H20 Environment
  NThreads = max(1L, parallel::detectCores()-2L),
 MaxMem = "28G",
 H2OStart = TRUE,
 H2OShutdown = TRUE,
  # H20 ML Args
 LayerStructure = NULL,
  NodeShrinkRate = (sqrt(5) - 1) / 2,
  ReturnLayer = 4L,
  Activation = "Tanh",
 Epochs = 5L,
 L2 = 0.10,
 ElasticAveraging = TRUE,
 ElasticAveragingMovingRate = 0.90,
 ElasticAveragingRegularization = 0.001)
# Inspect output
data <- Output$Data
Model <- Output$Model</pre>
# If ValidationData is not null
ValidationData <- Output$ValidationData</pre>
# Scoring
# Create simulated data
data <- RemixAutoML::FakeDataGenerator(</pre>
 Correlation = 0.70,
 N = 1000L
 ID = 2L,
 FactorCount = 2L,
 AddDate = TRUE,
 AddComment = FALSE,
 ZIP = 2L,
 TimeSeries = FALSE,
  ChainLadderData = FALSE,
  Classification = FALSE,
 MultiClass = FALSE)
# Run algo
data <- RemixAutoML::H2OAutoencoderScoring(</pre>
  # Select the service
  AnomalyDetection = TRUE,
  DimensionReduction = TRUE,
  # Data related args
  data = data,
  Features = names(data)[2L:ncol(data)],
  RemoveFeatures = TRUE,
  per_feature = FALSE,
  ModelObject = NULL,
  ModelID = "TestModel",
```

```
model_path = getwd(),

# H2O args
NThreads = max(1L, parallel::detectCores()-2L),
MaxMem = "28G",
H2OStart = TRUE,
H2OShutdown = TRUE,
ReturnLayer = 4L)

## End(Not run)
```

H2OAutoencoderScoring H2OAutoencoderScoring

Description

H2OAutoencoderScoring for anomaly detection and or dimensionality reduction

Usage

```
H20AutoencoderScoring(
  data,
  Features = NULL,
  RemoveFeatures = FALSE,
  ModelObject = NULL,
  AnomalyDetection = TRUE,
  DimensionReduction = TRUE,
  ReturnLayer = 4L,
  per_feature = TRUE,
  NThreads = max(1L, parallel::detectCores() - 2L),
  MaxMem = "28G",
  H2OStart = TRUE,
  H2OShutdown = TRUE,
  ModelID = "TestModel",
  model_path = NULL
)
```

Arguments

data The data.table with the columns you wish to have analyzed

Features NULL Column numbers or column names

RemoveFeatures Set to TRUE if you want the features you specify in the Features argument to be

removed from the data returned

ModelObject If NULL then the model will be loaded from file. Otherwise, it will use what is

supplied

 ${\tt Anomaly Detection}$

Set to TRUE to run anomaly detection

DimensionReduction

Set to TRUE to run dimension reduction

ReturnLayer Which layer of the NNet to return. Choose from 1-7 with 4 being the layer with

the least amount of nodes

per_feature Set to TRUE to have per feature anomaly detection generated. Otherwise and

overall value will be generated

NThreads max(1L, parallel::detectCores()-2L)

MaxMem "28G'

H2OStart TRUE to start H2O inside the function

H2OShutdown Setting to TRUE will shutdown H2O when it done being used internally.

ModelID "TestModel"

model_path If NULL no model will be saved. If a valid path is supplied the model will be

saved there

Value

A data.table

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoDiffLagN(), AutoHierarchicalFourier(), AutoInteraction(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), AutoWord2VecScoring(), CategoricalEncoding(), CreateCalendarVariables(), CreateHolidayVariables(), DummifyDT(), H2OAutoencoder(), ModelDataPrep(), TimeSeriesFill()

```
## Not run:
######################################
# Training
######################################
# Create simulated data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.70,
  N = 1000L,
  ID = 2L,
  FactorCount = 2L,
  AddDate = TRUE,
  AddComment = FALSE,
  ZIP = 2L,
  TimeSeries = FALSE,
  ChainLadderData = FALSE,
  Classification = FALSE,
  MultiClass = FALSE)
# Run algo
data <- RemixAutoML::H2OAutoencoder(</pre>
  # Select the service
  AnomalyDetection = TRUE,
  DimensionReduction = TRUE,
```

```
# Data related args
  data = data,
  ValidationData = NULL,
 Features = names(data)[2L:(ncol(data)-1L)],
  per_feature = FALSE,
  RemoveFeatures = TRUE,
 ModelID = "TestModel",
 model_path = getwd(),
  # H20 Environment
  NThreads = max(1L, parallel::detectCores()-2L),
  MaxMem = "28G",
 H2OStart = TRUE,
 H2OShutdown = TRUE,
  # H20 ML Args
 LayerStructure = NULL,
 ReturnLayer = 4L,
  Activation = "Tanh",
 Epochs = 5L,
 L2 = 0.10,
 ElasticAveraging = TRUE,
  ElasticAveragingMovingRate = 0.90,
 ElasticAveragingRegularization = 0.001)
# Scoring
# Create simulated data
data <- RemixAutoML::FakeDataGenerator(</pre>
 Correlation = 0.70,
 N = 1000L
 ID = 2L,
 FactorCount = 2L,
 AddDate = TRUE,
 AddComment = FALSE,
 ZIP = 2L,
 TimeSeries = FALSE,
  ChainLadderData = FALSE,
  Classification = FALSE,
 MultiClass = FALSE)
# Run algo
data <- RemixAutoML::H2OAutoencoderScoring(</pre>
  # Select the service
  AnomalyDetection = TRUE,
  DimensionReduction = TRUE,
  # Data related args
  data = data,
  Features = names(data)[2L:ncol(data)],
  RemoveFeatures = TRUE,
  per_feature = FALSE,
  ModelObject = NULL,
  ModelID = "TestModel",
```

234 H2OIsolationForest

```
model_path = getwd(),

# H2O args
NThreads = max(1L, parallel::detectCores()-2L),
MaxMem = "28G",
H2OStart = TRUE,
H2OShutdown = TRUE,
ReturnLayer = 4L)

## End(Not run)
```

H20IsolationForest

H2OIsolationForest

Description

H2OIsolationForestScoring for dimensionality reduction and / or anomaly detection

Usage

```
H20IsolationForest(
  data,
  Features = NULL,
  IDcols = NULL,
  ModelID = "TestModel",
  SavePath = NULL,
  Threshold = 0.975,
  MaxMem = "28G",
  NThreads = -1,
  NTrees = 100,
  MaxDepth = 8,
  MinRows = 1,
  RowSampleRate = (sqrt(5) - 1)/2,
  ColSampleRate = 1,
  ColSampleRatePerLevel = 1,
  ColSampleRatePerTree = 1,
  CategoricalEncoding = c("AUTO"),
  Debug = FALSE
```

Arguments

data	The data.table with the columns you wish to have analyzed
Features	A character vector with the column names to utilize in the isolation forest
IDcols	A character vector with the column names to not utilize in the isolation forest but have returned with the data output. Otherwise those columns will be removed
ModelID	Name for model that gets saved to file if SavePath is supplied and valid
SavePath	Path directory to store saved model
Threshold	Quantile value to find the cutoff value for classifying outliers
MaxMem	Specify the amount of memory to allocate to H2O. E.g. "28G"

H2OIsolationForest 235

NThreads Specify the number of threads (E.g. cores * 2)
NTrees Specify the number of decision trees to build

Max tree depth

MinRows Minimum number of rows allowed per leaf

RowSampleRate Number of rows to sample per tree

ColSampleRate Sample rate for each split

ColSampleRatePerLevel

Sample rate for each level

 ${\tt ColSampleRatePerTree}$

Sample rate per tree

CategoricalEncoding

Choose from "AUTO", "Enum", "OneHotInternal", "OneHotExplicit", "Binary",

"Eigen", "LabelEncoder", "SortByResponse", "EnumLimited"

Debugging Debugging

Value

Source data.table with predictions. Note that any columns not listed in Features nor IDcols will not be returned with data. If you want columns returned but not modeled, supply them as IDcols

Author(s)

Adrian Antico

See Also

Other Unsupervised Learning: AutoClusteringScoring(), AutoClustering(), GenTSAnomVars(), H2OIsolationForestScoring(), ResidualOutliers()

```
## Not run:
# Create simulated data
data <- RemixAutoML::FakeDataGenerator(</pre>
  Correlation = 0.70,
  N = 50000,
  ID = 2L,
  FactorCount = 2L,
  AddDate = TRUE,
  ZIP = 0L
  TimeSeries = FALSE,
  ChainLadderData = FALSE,
  Classification = FALSE,
  MultiClass = FALSE)
# Run algo
data <- RemixAutoML::H20IsolationForest(</pre>
  data,
  Features = names(data)[2L:ncol(data)],
  IDcols = c("Adrian", "IDcol_1", "IDcol_2"),
  ModelID = "Adrian",
  SavePath = getwd(),
  Threshold = 0.95,
```

```
MaxMem = "28G",
  NThreads = -1,
  NTrees = 100,
 MaxDepth = 8,
  MinRows = 1,
  RowSampleRate = (sqrt(5)-1)/2,
  ColSampleRate = 1,
  ColSampleRatePerLevel = 1,
  ColSampleRatePerTree = 1,
  CategoricalEncoding = c("AUTO"),
  Debug = TRUE
# Remove output from data and then score
data[, eval(names(data)[17:ncol(data)]) := NULL]
# Run algo
Outliers <- RemixAutoML::H2OIsolationForestScoring(
  data,
  Features = names(data)[2:ncol(data)],
  IDcols = c("Adrian", "IDcol_1", "IDcol_2"),
  H2OStart = TRUE,
 H2OShutdown = TRUE,
  ModelID = "TestModel",
  SavePath = getwd(),
  Threshold = 0.95,
  MaxMem = "28G",
 NThreads = -1,
  Debug = FALSE)
## End(Not run)
```

H20IsolationForestScoring

H2OIsolationForestScoring

Description

H2OIsolationForestScoring for dimensionality reduction and / or anomaly detection scoring on new data

Usage

```
H2OIsolationForestScoring(
  data,
  Features = NULL,
  IDcols = NULL,
  H2OStart = TRUE,
  H2OShutdown = TRUE,
  ModelID = "TestModel",
  SavePath = NULL,
  Threshold = 0.975,
  MaxMem = "28G",
  NThreads = -1,
  Debug = FALSE
)
```

Arguments

data	The data.table with the columns you wish to have analyzed
Features	A character vector with the column names to utilize in the isolation forest
IDcols	A character vector with the column names to not utilize in the isolation forest but have returned with the data output. Otherwise those columns will be removed
H2OStart	TRUE to have H2O started inside function
H2OShutdown	TRUE to shutdown H2O inside function
ModelID	Name for model that gets saved to file if SavePath is supplied and valid
SavePath	Path directory to store saved model
Threshold	Quantile value to find the cutoff value for classifying outliers
MaxMem	Specify the amount of memory to allocate to H2O. E.g. "28G"
NThreads	Specify the number of threads (E.g. cores * 2)
Debug	Debugging

Value

Source data.table with predictions. Note that any columns not listed in Features nor IDcols will not be returned with data. If you want columns returned but not modeled, supply them as IDcols

Author(s)

Adrian Antico

See Also

 $Other\ Unsupervised\ Learning:\ AutoClusteringScoring(), AutoClustering(), GenTSAnomVars(), \\ H2OIsolationForest(), ResidualOutliers()$

```
## Not run:
# Create simulated data
data <- RemixAutoML::FakeDataGenerator(</pre>
 Correlation = 0.70,
 N = 50000,
 ID = 2L,
 FactorCount = 2L,
  AddDate = TRUE,
  ZIP = 0L,
  TimeSeries = FALSE,
  ChainLadderData = FALSE,
  Classification = FALSE,
 MultiClass = FALSE)
# Run algo
data <- RemixAutoML::H20IsolationForest(</pre>
  data,
  Features = names(data)[2L:ncol(data)],
  IDcols = c("Adrian", "IDcol_1", "IDcol_2"),
  ModelID = "Adrian",
  SavePath = getwd(),
```

238 InsertSortedValue

```
Threshold = 0.95,
  MaxMem = "28G",
  NThreads = -1,
 NTrees = 100,
  SampleRate = (sqrt(5)-1)/2,
  MaxDepth = 8,
  MinRows = 1,
  ColSampleRate = 1,
  ColSampleRatePerLevel = 1,
  ColSampleRatePerTree = 1,
  CategoricalEncoding = c("AUTO"),
  Debug = TRUE)
# Remove output from data and then score
data[, eval(names(data)[17:ncol(data)]) := NULL]
# Run algo
Outliers <- RemixAutoML::H2OIsolationForestScoring(
  data.
  Features = names(data)[2:ncol(data)],
  IDcols = c("Adrian", "IDcol_1", "IDcol_2"),
  H2OStart = TRUE,
 H2OShutdown = TRUE,
 ModelID = "TestModel",
  SavePath = getwd(),
  Threshold = 0.95,
 MaxMem = "28G",
 NThreads = -1,
 Debug = FALSE)
## End(Not run)
```

InsertSortedValue

InsertSortedValue

Description

Update a sorted vector with a new value that preserves sort order Algorithms

Usage

```
InsertSortedValue(Vec, Val, order = "left")
```

Arguments

Val value to insert

order 'left' or 'right', insert value location

vec numeric vector

Author(s)

Adrian Antico

ModelDataPrep 239

Examples

```
## Not run:
RemixAutoML::InsertSortedValue(vec = seq(2, 2000, 2), Val = 741, order = "left")
## End(Not run)
```

ModelDataPrep

ModelDataPrep

Description

This function replaces inf values with NA, converts characters to factors, and imputes with constants

Usage

```
ModelDataPrep(
  data,
  Impute = TRUE,
  CharToFactor = TRUE,
  FactorToChar = FALSE,
  IntToNumeric = TRUE,
  LogicalToBinary = FALSE,
  DateToChar = FALSE,
  IDateConversion = FALSE,
  RemoveDates = FALSE,
  MissFactor = "0",
  MissNum = -1,
  IgnoreCols = NULL
)
```

Arguments

data Th	iis is your source d	lata you'd like to	modify
---------	----------------------	--------------------	--------

Impute Defaults to TRUE which tells the function to impute the data

CharToFactor Defaults to TRUE which tells the function to convert characters to factors

FactorToChar Converts to character

IntToNumeric Defaults to TRUE which tells the function to convert integers to numeric

LogicalToBinary

Converts logical values to binary numeric values

DateToChar Converts date columns into character columns

IDateConversion

Convert IDateTime to POSIXct and IDate to Date types

RemoveDates Defaults to FALSE. Set to TRUE to remove date columns from your data.table

MissFactor Supply the value to impute missing factor levels

MissNum Supply the value to impute missing numeric values

IgnoreCols Supply column numbers for columns you want the function to ignore

240 ModelDataPrep

Value

Returns the original data table with corrected values

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoDiffLagN(), AutoHierarchicalFourier(), AutoInteraction(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), AutoWord2VecScoring(), CategoricalEncoding(), CreateCalendarVariables(), CreateHolidayVariables(), DummifyDT(), H2OAutoencoderScoring(), H2OAutoencoder(), TimeSeriesFill()

```
## Not run:
# Create fake data
data <- RemixAutoML::FakeDataGenerator(</pre>
 Correlation = 0.75,
 N = 250000L
 ID = 2L,
 ZIP = 0L
  FactorCount = 6L,
  AddDate = TRUE,
  Classification = FALSE,
 MultiClass = FALSE)
# Check column types
str(data)
# Convert some factors to character
data <- RemixAutoML::ModelDataPrep(</pre>
  data,
              = TRUE,
  Impute
  CharToFactor = FALSE,
 FactorToChar = TRUE,
  IntToNumeric = TRUE,
  LogicalToBinary = FALSE,
  DateToChar = FALSE,
  IDateConversion = FALSE,
  RemoveDates = TRUE,
 MissFactor = "0",
 MissNum = -1,
  IgnoreCols = c("Factor_1"))
# Check column types
str(data)
## End(Not run)
```

multiplot 241

multiplot

multiplot

Description

Sick of copying this one into your code? Well, not anymore.

Usage

```
multiplot(..., plotlist = NULL, cols = 2, layout = NULL)
```

Arguments

... Passthrough arguments
plotlist This is the list of your charts

cols This is the number of columns in your multiplot

layout Leave NULL

Value

Multiple ggplots on a single image

Author(s)

Adrian Antico

See Also

```
Other Graphics: ChartTheme()
```

```
## Not run:
Correl <- 0.85
data <- data.table::data.table(Target = runif(100))</pre>
data[, x1 := qnorm(Target)]
data[, x2 := runif(100)]
data[, Independent_Variable1 := log(
  pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
data[, Predict := (
  pnorm(Correl * x1 + sqrt(1-Correl^2) * qnorm(x2)))]
p1 <- RemixAutoML::ParDepCalPlots(</pre>
  PredictionColName = "Predict",
  TargetColName = "Target",
  IndepVar = "Independent_Variable1",
  GraphType = "calibration",
 PercentileBucket = 0.20,
 FactLevels = 10,
  Function = function(x) mean(x, na.rm = TRUE))
p2 <- RemixAutoML::ParDepCalPlots(</pre>
  PredictionColName = "Predict",
```

242 ParDepCalPlots

```
TargetColName = "Target",
  IndepVar = "Independent_Variable1",
  GraphType = "boxplot",
  PercentileBucket = 0.20,
  FactLevels = 10,
  Function = function(x) mean(x, na.rm = TRUE))
RemixAutoML::multiplot(plotlist = list(p1,p2), cols = 2)
## End(Not run)
```

ParDepCalPlots

ParDepCalPlots

Description

This function automatically builds partial dependence calibration plots and partial dependence calibration boxplots for model evaluation using regression, quantile regression, and binary and multinomial classification

Usage

```
ParDepCalPlots(
  data,
  PredictionColName = c("PredictedValues"),
  TargetColName = c("ActualValues"),
  IndepVar = c("Independent_Variable_Name"),
  GraphType = c("calibration"),
  PercentileBucket = 0.05,
  FactLevels = 10,
  Function = function(x) mean(x, na.rm = TRUE)
)
```

Arguments

data Data containing predicted values and actual values for comparison

PredictionColName

Predicted values column names

TargetColName Target value column names

IndepVar Independent variable column names

GraphType calibration or boxplot - calibration aggregated data based on summary statistic;

boxplot shows variation

PercentileBucket

Number of buckets to partition the space on (0,1) for evaluation

FactLevels The number of levels to show on the chart (1. Levels are chosen based on fre-

quency; 2. all other levels grouped and labeled as "Other")

Function Supply the function you wish to use for aggregation.

Value

Partial dependence calibration plot or boxplot

PlotGUI 243

Author(s)

Adrian Antico

See Also

```
Other Model Evaluation and Interpretation: AutoShapeShap(), CumGainsChart(), EvalPlot(), ROCPlot(), RedYellowGreen(), ResidualPlots(), ShapPlot(), SingleRowShapeShap(), threshOptim()
```

Examples

```
## Not run:
# Create fake data
data <- RemixAutoML::FakeDataGenerator(</pre>
 Correlation = 0.70, N = 10000000, Classification = FALSE)
data.table::setnames(data, "Independent_Variable2", "Predict")
# Build plot
Plot <- RemixAutoML::ParDepCalPlots(</pre>
  data,
  PredictionColName = "Predict",
  TargetColName = "Adrian",
  IndepVar = "Independent_Variable1",
  GraphType = "calibration",
  PercentileBucket = 0.20,
  FactLevels = 10,
  Function = function(x) mean(x, na.rm = TRUE))
## End(Not run)
```

PlotGUI

PlotGUI

Description

Spin up the esquisse plotting gui

Usage

PlotGUI()

PrintToPDF

PrintToPDF

Description

PrintToPDF

244 RedYellowGreen

Usage

```
PrintToPDF(
   Path,
   OutputName,
   ObjectList = NULL,
   Tables = FALSE,
   MaxPages = 500,
   Title = "Model Output",
   Width = 12,
   Height = 7,
   Paper = "USr",
   BackgroundColor = "transparent",
   ForegroundColor = "black"
)
```

Arguments

Path file to the location where you want your pdf saved

OutputName Supply a name for the file you want saved

ObjectList List of objects to print to pdf

Tables TRUE for data tables, FALSE for plots

MaxPages Default of 500

Title The title of the pdf
Width Default is 12

Height Default is 7

Paper 'USr' for landscape. 'special' means that Width and Height are used to deter-

mine page size

BackgroundColor

Default is 'transparent'

ForegroundColor

Default is 'black'

Author(s)

Adrian Antico

RedYellowGreen RedYellowGreen

Description

This function will find the optimial thresholds for applying the main label and for finding the optimial range for doing nothing when you can quantity the cost of doing nothing

RedYellowGreen 245

Usage

```
RedYellowGreen(
  data,
  PredictColNumber = 2,
  ActualColNumber = 1,
  TruePositiveCost = 0,
  TrueNegativeCost = -10,
  FalsePositiveCost = -10,
  FalseNegativeCost = -50,
  MidTierCost = -2,
  Cores = 8,
  Precision = 0.01,
  Boundaries = c(0.05, 0.75)
)
```

Arguments

data is the data table with your predicted and actual values from a classification

model

PredictColNumber

The column number where the prediction variable is located (in binary form)

ActualColNumber

The column number where the target variable is located

TruePositiveCost

This is the utility for generating a true positive prediction

TrueNegativeCost

This is the utility for generating a true negative prediction

FalsePositiveCost

This is the cost of generating a false positive prediction

FalseNegativeCost

This is the cost of generating a false negative prediction

MidTierCost This is the cost of doing nothing (or whatever it means to not classify in your

case)

Cores Number of cores on your machine

Precision Set the decimal number to increment by between 0 and 1

Boundaries Supply a vector of two values c(lower bound, upper bound) where the first value

is the smallest threshold you want to test and the second value is the largest value you want to test. Note, if your results are at the boundaries you supplied, you should extent the boundary that was reached until the values is within both

revised boundaries.

Value

A data table with all evaluated strategies, parameters, and utilities, along with a 3d scatterplot of the results

Author(s)

Adrian Antico

246 ResidualOutliers

See Also

Other Model Evaluation and Interpretation: AutoShapeShap(), CumGainsChart(), EvalPlot(), ParDepCalPlots(), ROCPlot(), ResidualPlots(), ShapPlot(), SingleRowShapeShap(), threshOptim()

Examples

```
## Not run:
data <- data.table::data.table(Target = runif(10))</pre>
data[, x1 := qnorm(Target)]
data[, x2 := runif(10)]
data[, Predict := log(pnorm(0.85 * x1 +
  sqrt(1-0.85^2) * qnorm(x2))
data[, ':=' (x1 = NULL, x2 = NULL)]
data <- RedYellowGreen(</pre>
  data,
  PredictColNumber = 2,
  ActualColNumber = 1,
  TruePositiveCost = 0,
  TrueNegativeCost = 0,
  FalsePositiveCost = -1,
  FalseNegativeCost = -2,
  MidTierCost = -0.5,
  Precision = 0.01,
  Cores = 1,
  Boundaries = c(0.05, 0.75))
## End(Not run)
```

ResidualOutliers

ResidualOutliers

Description

ResidualOutliers is an automated time series outlier detection function that utilizes tsoutliers and auto.arima. It looks for five types of outliers: "AO" Additive outliter - a singular extreme outlier that surrounding values aren't affected by; "IO" Innovational outlier - Initial outlier with subsequent anomalous values; "LS" Level shift - An initial outlier with subsequent observations being shifted by some constant on average; "TC" Transient change - initial outlier with lingering effects that dissapate exponentially over time; "SLS" Seasonal level shift - similar to level shift but on a seasonal scale.

Usage

```
ResidualOutliers(
   data,
   DateColName = "DateTime",
   TargetColName = "Target",
   PredictedColName = NULL,
   TimeUnit = "day",
   Lags = 5,
   MA = 5,
   SLags = 0,
   SMA = 0,
```

ResidualOutliers 247

```
tstat = 2
)
```

Arguments

data the source residuals data.table

DateColName The name of your data column to use in reference to the target variable

TargetColName The name of your target variable column

PredictedColName

The name of your predicted value column. If you supply this, you will run anomaly detection of the difference between the target variable and your predicted value. If you leave PredictedColName NULL then you will run anomaly

detection over the target variable.

TimeUnit The time unit of your date column: hour, day, week, month, quarter, year the largest lag or moving average (seasonal too) values for the arima fit

MA Max moving average
SLags Max seasonal lags

SMA Max seasonal moving averages tstat the t-stat value for tsoutliers

Value

A named list containing FullData = original data.table with outliers data and ARIMA_MODEL = the arima model.

Author(s)

Adrian Antico

See Also

Other Unsupervised Learning: AutoClusteringScoring(), AutoClustering(), GenTSAnomVars(), H2OIsolationForestScoring(), H2OIsolationForest()

```
## Not run:
data <- data.table::data.table(</pre>
  DateTime = as.Date(Sys.time()),
  Target = as.numeric(stats::filter(
    rnorm(1000, mean = 50, sd = 20),
  filter=rep(1,10),
  circular=TRUE)))
data[, temp := seq(1:1000)][, DateTime := DateTime - temp][
  , temp := NULL]
data <- data[order(DateTime)]</pre>
data[, Predicted := as.numeric(
  stats::filter(rnorm(1000, mean = 50, sd = 20),
filter=rep(1,10),
circular=TRUE))]
stuff <- ResidualOutliers(</pre>
  data = data,
```

248 ResidualPlots

```
DateColName = "DateTime",
  TargetColName = "Target",
  PredictedColName = NULL,
  TimeUnit = "day",
  Lags = 5,
  MA = 5,
  SLags = 0,
  SMA = 0,
  tstat = 4)
data     <- stuff[[1]]
model     <- stuff[[2]]
outliers <- data[type != "<NA>"]
## End(Not run)
```

ResidualPlots

ResidualPlots

Description

Residual plots for regression models

Usage

```
ResidualPlots(
  TestData = NULL,
  Target = "Adrian",
  Predicted = "Independent_Variable1",
  DateColumnName = NULL,
  Gam_Fit = FALSE
)
```

Arguments

```
TestData = NULL,
Target = "Adrian",
Predicted = "Independent_Variable1",
DateColumnName "DateTime"
Gam_Fit = TRUE
```

Author(s)

Adrian Antico

See Also

```
Other Model Evaluation and Interpretation: AutoShapeShap(), CumGainsChart(), EvalPlot(), ParDepCalPlots(), ROCPlot(), RedYellowGreen(), ShapPlot(), SingleRowShapeShap(), threshOptim()
```

ROCPlot 249

Examples

```
## Not run:
# Create fake data
test_data <- RemixAutoML::FakeDataGenerator(</pre>
 Correlation = 0.80,
  N = 250000,
  ID = 0,
  FactorCount = 0,
  AddDate = TRUE,
  AddComment = FALSE,
  AddWeightsColumn = FALSE,
  ZIP = 0)
# Build Plots
output <- RemixAutoML::ResidualPlots(</pre>
  TestData = test_data,
 Target = "Adrian",
  Predicted = "Independent_Variable1",
 DateColumnName = "DateTime",
  Gam_Fit = TRUE)
## End(Not run)
```

ROCPlot

ROCPlot

Description

Internal usage for classification methods. Returns an ROC plot

Usage

```
ROCPlot(
  data = ValidationData,
  TargetName = TargetColumnName,
  SavePlot = SaveModelObjects,
  Name = ModelID,
  metapath = metadata_path,
  modelpath = model_path
)
```

Arguments

data validation data
TargetName Target variable name
SavePlot TRUE or FALSE
Name Name for saving
metapath Passthrough
modelpath Passthrough

250 ScatterCopula

Value

ROC Plot for classification models

Author(s)

Adrian Antico

See Also

Other Model Evaluation and Interpretation: AutoShapeShap(), CumGainsChart(), EvalPlot(), ParDepCalPlots(), RedYellowGreen(), ResidualPlots(), ShapPlot(), SingleRowShapeShap(), threshOptim()

ScatterCopula

ScatterCopula

Description

Dual plot. One on original scale and one using empirical copula data

Usage

```
ScatterCopula(
  data = NULL,
  x_var = NULL
  y_var = NULL,
  GroupVariable = NULL,
  SampleCount = 100000L,
  FitGam = TRUE,
  color = "darkblue",
  point_size = 0.5,
  text_size = 12,
  x_axis_text_angle = 35,
  y_axis_text_angle = 0,
  chart_color = "lightsteelblue1",
  border_color = "darkblue",
  text_color = "darkblue",
  grid_color = "white",
  background_color = "gray95",
  legend_position = "bottom"
)
```

Arguments

 $\begin{array}{ll} \text{data} & \text{Source data.table} \\ \text{x_var} & \text{Numeric variable} \\ \text{y_var} & \text{Numeric variable} \\ \text{GroupVariable} & \text{Color options} \end{array}$

SampleCount Number of randomized rows to utilize. For speedup and memory purposes

ShapPlot 251

```
FitGam
                 Add gam fit to scatterplot and copula plot
color
                 = "darkblue"
                 = 0.50
point_size
text_size
                 = 12
x_axis_text_angle
                 = 35
y_axis_text_angle
                 = "lightsteelblue1"
chart_color
border_color
                 = "darkblue"
                 = "darkblue"
text_color
                 = "white"
grid_color
background_color
                 = "gray95"
legend_position
                 = "bottom
```

Author(s)

Adrian Antico

See Also

Other EDA: AutoWordFreq()

ShapPlot

CumGainsChart

Description

Bar plot of importance

Usage

```
ShapPlot(ShapData = NULL, VarList = NULL, PlotTitle = "Shap Plot")
```

Arguments

data Test data with predictions. data.table

PredictionColumnName

Name of column that is the model score

TargetColumnName

Name of your target variable column

NumBins Number of percentile bins to plot

SavePlot FALSE by default

Name File name for saving

metapath Path to directory

modelpath Path to directory

252 SQL_ClearTable

Author(s)

Adrian Antico

See Also

Other Model Evaluation and Interpretation: AutoShapeShap(), CumGainsChart(), EvalPlot(), ParDepCalPlots(), ROCPlot(), RedYellowGreen(), ResidualPlots(), SingleRowShapeShap(), threshOptim()

SingleRowShapeShap

SingleRowShapeShap

Description

SingleRowShapeShap will convert a single row of your shap data into a table

Usage

```
SingleRowShapeShap(ShapData = NULL, EntityID = NULL, DateColumnName = NULL)
```

Arguments

ShapData

Scoring data from AutoCatBoostScoring with classification or regression

Author(s)

Adrian Antico

See Also

```
Other Model Evaluation and Interpretation: AutoShapeShap(), CumGainsChart(), EvalPlot(), ParDepCalPlots(), ROCPlot(), RedYellowGreen(), ResidualPlots(), ShapPlot(), threshOptim()
```

SQL_ClearTable

SQL_ClearTable

Description

SQL_ClearTable remove all rows from a database table

Usage

```
SQL_ClearTable(
  DBConnection,
  SQLTableName = "",
  CloseChannel = TRUE,
  Errors = TRUE
)
```

SQL_DropTable 253

Arguments

DBConnection RemixAutoML::SQL_Server_DBConnection()

SQLTableName The SQL statement you want to run

CloseChannel TRUE to close when done, FALSE to leave the channel open

Errors Set to TRUE to halt, FALSE to return -1 in cases of errors

Author(s)

Adrian Antico

See Also

```
Other Database: AutoDataDictionaries(), SQL_DropTable(), SQL_Query_Push(), SQL_Query(), SQL_SaveTable(), SQL_Server_DBConnection()
```

SQL_DropTable

SQL_DropTable

Description

SQL_DropTable drop a database table

Usage

```
SQL_DropTable(
  DBConnection,
  SQLTableName = "",
  CloseChannel = TRUE,
  Errors = TRUE
)
```

Arguments

 ${\tt DBConnection} \qquad RemixAutoML::SQL_Server_DBConnection()$

 ${\tt SQLTableName} \qquad {\tt The \ SQL \ statement \ you \ want \ to \ run}$

CloseChannel TRUE to close when done, FALSE to leave the channel open

Errors Set to TRUE to halt, FALSE to return -1 in cases of errors

Author(s)

Adrian Antico

See Also

```
Other Database: AutoDataDictionaries(), SQL_ClearTable(), SQL_Query_Push(), SQL_Query(), SQL_SaveTable(), SQL_Server_DBConnection()
```

254 SQL_Query_Push

SQL_Query SQL_Query

Description

SQL_Query get data from a database table

Usage

```
SQL_Query(
   DBConnection,
   Query,
   ASIS = FALSE,
   CloseChannel = TRUE,
   RowsPerBatch = 1024
)
```

Arguments

 ${\tt DBConnection} \qquad RemixAutoML::SQL_Server_DBConnection()$

Query The SQL statement you want to run

ASIS Auto column typing

CloseChannel TRUE to close when done, FALSE to leave the channel open

RowsPerBatch Rows default is 1024

Author(s)

Adrian Antico

See Also

```
Other Database: AutoDataDictionaries(), SQL_ClearTable(), SQL_DropTable(), SQL_Query_Push(), SQL_SaveTable(), SQL_Server_DBConnection()
```

SQL_Query_Push

SQL_Query_Push

Description

SQL_Query_Push push data to a database table

Usage

```
SQL_Query_Push(DBConnection, Query, CloseChannel = TRUE)
```

Arguments

 ${\tt DBConnection} \qquad RemixAutoML::SQL_Server_DBConnection()$

Query The SQL statement you want to run

CloseChannel TRUE to close when done, FALSE to leave the channel open

SQL_SaveTable 255

Author(s)

Adrian Antico

See Also

```
Other Database: AutoDataDictionaries(), SQL_ClearTable(), SQL_DropTable(), SQL_Query(), SQL_SaveTable(), SQL_Server_DBConnection()
```

SQL_SaveTable

SQL_SaveTable

Description

SQL_SaveTable create a database table

Usage

```
SQL_SaveTable(
  DataToPush,
  DBConnection,
  SQLTableName = "",
  RowNames = NULL,
  ColNames = TRUE,
  CloseChannel = TRUE,
  AppendData = FALSE,
  AddPK = TRUE,
  Safer = TRUE
)
```

Arguments

DataToPush data to be sent to warehouse

 ${\tt DBConnection} \qquad RemixAutoML::SQL_Server_DBConnection()$

SQLTableName The SQL statement you want to run

RowNames c("Segment","Date")

ColNames Column names in first row

CloseChannel TRUE to close when done, FALSE to leave the channel open

AppendData TRUE or FALSE

Add a PK column to table

Safer TRUE

Author(s)

Adrian Antico

See Also

```
Other Database: AutoDataDictionaries(), SQL_ClearTable(), SQL_DropTable(), SQL_Query_Push(), SQL_Query(), SQL_Server_DBConnection()
```

256 threshOptim

```
SQL_Server_DBConnection
```

SQL_Server_DBConnection

Description

SQL_Server_DBConnection makes a connection to a sql server database

Usage

```
SQL_Server_DBConnection(DataBaseName = "", Server = "")
```

Arguments

DataBaseName Name of the database
Server Name of the server to use

Author(s)

Adrian Antico

See Also

```
Other Database: AutoDataDictionaries(), SQL_ClearTable(), SQL_DropTable(), SQL_Query_Push(), SQL_Query(), SQL_SaveTable()
```

threshOptim

threshOptim

Description

threshOptim will return the utility maximizing threshold for future predictions along with the data generated to estimate the threshold

Usage

```
threshOptim(
  data,
  actTar = "target",
  predTar = "p1",
  tpProfit = 0,
  tnProfit = -1,
  fnProfit = -2,
  MinThresh = 0.001,
  MaxThresh = 0.999,
  ThresholdPrecision = 0.001
)
```

threshOptim 257

Arguments

data	data is the data table you are building the modeling on		
actTar	The column name where the actual target variable is located (in binary form)		
predTar	The column name where the predicted values are located		
tpProfit	This is the utility for generating a true positive prediction		
tnProfit	This is the utility for generating a true negative prediction		
fpProfit	This is the cost of generating a false positive prediction		
fnProfit	This is the cost of generating a false negative prediction		
MinThresh	Minimum value to consider for model threshold		
MaxThresh	Maximum value to consider for model threshold		
ThresholdPrecision			
	Incrementing value in search		

Value

Optimal threshold and corresponding utilities for the range of thresholds tested

Author(s)

Adrian Antico

See Also

```
Other Model Evaluation and Interpretation: AutoShapeShap(), CumGainsChart(), EvalPlot(), ParDepCalPlots(), ROCPlot(), RedYellowGreen(), ResidualPlots(), ShapPlot(), SingleRowShapeShap()
```

Examples

```
## Not run:
data <- data.table::data.table(Target = runif(10))</pre>
data[, x1 := qnorm(Target)]
data[, x2 := runif(10)]
data[, Predict := log(pnorm(0.85 * x1 + sqrt(1-0.85^2) * qnorm(x2)))]
data[, ':=' (x1 = NULL, x2 = NULL)]
tpProfit = 0,
                   tnProfit = 0,
                   fpProfit = -1,
                   fnProfit = -2,
                   MinThresh = 0.001,
                   MaxThresh = 0.999,
                   ThresholdPrecision = 0.001)
optimalThreshold <- data$Thresholds</pre>
allResults <- data$EvaluationTable</pre>
## End(Not run)
```

TimeSeriesDataPrepare TimeSeriesDataPrepare

Description

TimeSeriesDataPrepare is a function that takes raw data and returns the necessary time series data and objects for model building. It also fills any time gaps with zeros. Use this before you run any time series model functions.

Usage

```
TimeSeriesDataPrepare(
  data,
  TargetName,
  DateName,
  Lags,
  SeasonalLags,
  MovingAverages,
  SeasonalMovingAverages,
  TimeUnit,
  FCPeriods,
  HoldOutPeriods,
  TSClean = TRUE,
  ModelFreq = TRUE,
  FinalBuild = FALSE
)
```

Arguments

data	Source data.table for forecasting
TargetName	Name of your target variable
DateName	Name of your date variable

Lags The max number of lags you want to test

Seasonal Lags
The max number of seasonal lags you want to test

MovingAverages The max number of moving average terms

SeasonalMovingAverages

The max number of seasonal moving average terms

TimeUnit The level of aggregation your dataset comes in. Choices include: 1Min, 5Min,

10Min, 15Min, and 30Min, hour, day, week, month, quarter, year

FCPeriods The number of forecast periods you want to have forecasted HoldOutPeriods The number of holdout samples to compare models against

TSClean TRUE or FALSE. TRUE will kick off a time series cleaning operation. Outliers

will be smoothed and imputation will be conducted.

ModelFreq TRUE or FALSE. TRUE will enable a model-based time frequency calculation

for an alternative frequency value to test models on.

FinalBuild Set to TRUE to create data sets with full data

TimeSeriesFill 259

Value

Time series data sets to pass onto auto modeling functions

Author(s)

Adrian Antico

Examples

```
## Not run:
data <- data.table::fread(</pre>
  file.path(PathNormalizer(
    "C:\\Users\\aantico\\Documents\\Package\\data"),
    "tsdata.csv"))
TimeSeriesDataPrepare(
  data = data,
  TargetName = "Weekly_Sales",
  DateName = "Date",
  Lags = 5,
  MovingAverages,
  SeasonalMovingAverages,
  SeasonalLags = 1,
  TimeUnit = "week",
  FCPeriods = 10,
  HoldOutPeriods = 10,
  TSClean = TRUE,
  ModelFreq = TRUE,
  FinalBuild = FALSE)
## End(Not run)
```

TimeSeriesFill

TimeSeriesFill

Description

TimeSeriesFill For Completing Time Series Data For Single Series or Time Series by Group

Usage

```
TimeSeriesFill(
  data = data,
  DateColumnName = "Date",
  GroupVariables = c("Store", "Dept"),
  TimeUnit = "weeks",
  FillType = c("maxmax", "minmax", "maxmin", "minmin"),
  MaxMissingPercent = 0.05,
  SimpleImpute = FALSE
)
```

260 TimeSeriesFill

Arguments

data Supply your full series data set here

DateColumnName Supply the name of your date column

GroupVariables Supply the column names of your group variables. E.g. "Group" or c("Group1", "Group2")

TimeUnit Choose from "second", "minute", "hour", "day", "week", "month", "quarter",

"year"

FillType Choose from maxmax - Fill from the absolute min date to the absolute max date,

minmax - Fill from the max date of the min set to the absolute max date, maxmin - Fill from the absolute min date to the min of the max dates, or minmin - Fill

from the max date of the min dates to the min date of the max dates

MaxMissingPercent

The maximum amount of missing values an individual series can have to remain

and be imputed. Otherwise, they are discarded.

SimpleImpute Set to TRUE or FALSE. With TRUE numeric cols will fill NAs with a -1 and

non-numeric cols with a "0"

Value

Returns a data table with missing time series records filled (currently just zeros)

Author(s)

Adrian Antico

See Also

Other Feature Engineering: AutoDataPartition(), AutoDiffLagN(), AutoHierarchicalFourier(), AutoInteraction(), AutoLagRollStatsScoring(), AutoLagRollStats(), AutoTransformationCreate(), AutoTransformationScore(), AutoWord2VecModeler(), AutoWord2VecScoring(), CategoricalEncoding(), CreateCalendarVariables(), CreateHolidayVariables(), DummifyDT(), H2OAutoencoderScoring(), H2OAutoencoder(), ModelDataPrep()

Examples

```
## Not run:

# Pull in data
data <- data <- data.table::fread("https://www.dropbox.com/s/2str3ek4f4cheqi/walmart_train.csv?dl=1")

# Run function
data <- TimeSeriesFill(
    data,
    DateColumnName = "Date",
    GroupVariables = c("Store","Dept"),
    TimeUnit = "weeks",
    FillType = "maxmax",
    SimpleImpute = FALSE)

## End(Not run)</pre>
```

Index

* Automated Model Scoring	AutoETS, 68
AutoCatBoostScoring, 49	AutoTBATS, 166
AutoH2OMLScoring, 143	AutoTS, 171
AutoHurdleScoring, 146	* Data Wrangling
AutoXGBoostScoring, 202	FakeDataGenerator, 224
* Automated Panel Data Forecasting	* Database
AutoCatBoostCARMA, 11	AutoDataDictionaries, 64
AutoCatBoostHurdleCARMA, 26	SQL_ClearTable, 252
AutoCatBoostVectorCARMA, 53	SQL_DropTable, 253
AutoH2OCARMA, 70	SQL_Query, 254
AutoXGBoostCARMA, 179	SQL_Query_Push, 254
* Automated Supervised Learning - Binary	SQL_SaveTable, 255
Classification	SQL_Server_DBConnection, 256
AutoCatBoostClassifier, 20	* EDA
AutoH2oDRFClassifier, 78	AutoWordFreq, 178
AutoH2oGAMClassifier, 93	ScatterCopula, 250
AutoH2oGBMClassifier, 106	* Feature Engineering
AutoH2oGLMClassifier, 121	AutoDataPartition, 65
AutoH2oMLClassifier, 134	AutoDiffLagN, 67
AutoXGBoostClassifier, 185	AutoHierarchicalFourier, 145
* Automated Supervised Learning -	AutoInteraction, 148
Multiclass Classification	AutoLagRollStats, 151
AutoCatBoostMultiClass, 37	AutoLagRollStatsScoring, 154
AutoH2oDRFMultiClass, 85	AutoTransformationCreate, 168
AutoH2oGAMMultiClass, 97	AutoTransformationScore, 169
AutoH2oGBMMultiClass, 113	AutoWord2VecModeler, 174
AutoH2oGLMMultiClass, 125	AutoWord2VecScoring, 176
AutoH2oMLMultiClass, 137	CategoricalEncoding, 205
AutoXGBoostMultiClass, 193	CreateCalendarVariables, 216
* Automated Supervised Learning -	CreateHolidayVariables, 218
Regression	DummifyDT, 221
AutoCatBoostRegression, 43	H20Autoencoder, 227
AutoH2oDRFRegression, 89	H2OAutoencoderScoring, 231
AutoH2oGAMRegression, 101	ModelDataPrep, 239
AutoH2oGBMRegression, 117	TimeSeriesFill, 259
AutoH2oGLMRegression, 130	* Graphics
AutoH2oMLRegression, 140	ChartTheme, 207
AutoNLS, 159	multiplot, 241
AutoXGBoostRegression, 197	* Misc
* Automated Time Series	PrintToPDF, 243
AutoArfima, 4	* Model Evaluation and Interpretation
AutoBanditNNet, 6	AutoShapeShap, 165
AutoBanditSarima, 8	CumGainsChart, 220

262 INDEX

EvalPlot, 223	219, 222, 229, 232, 240, 260
ParDepCalPlots, 242	AutoDiffLagN, 66, 67, 146, 149, 153, 156,
RedYellowGreen, 244	169, 170, 175, 177, 206, 217, 219,
ResidualPlots, 248	222, 229, 232, 240, 260
ROCPlot, 249	AutoETS, 5, 8, 10, 68, 167, 173
ShapPlot, 251	AutoH20CARMA, 15, 29, 58, 70, 183
SingleRowShapeShap, 252	AutoH2oDRFClassifier, 24, 78, 96, 109, 124,
threshOptim, 256	136, 188
* Population Dynamics Forecasting	AutoH2oDRFHurdleModel, 36, 82, 112, 192
CLForecast, 209	AutoH2oDRFMultiClass, 41, 85, 100, 115,
CLTrainer, 210	128, 139, 196
* Recommenders	AutoH2oDRFRegression, 47, 89, 104, 120,
AutoMarketBasketModel, 158	133, 142, 159, 200
AutoRecomDataCreate, 161	AutoH2oGAMClassifier, 24, 81, 93, 109, 124,
AutoRecommender, 162	136, 188
AutoRecommenderScoring, 163	AutoH2oGAMMultiClass, 41, 87, 97, 115, 128,
* Supervised Learning - Compound	139, 196
AutoCatBoostHurdleModel, 33	AutoH2oGAMRegression, 47, 92, 101, 120,
AutoH2oDRFHurdleModel, 82	133, 142, 159, 200
AutoH2oGBMHurdleModel, 110	
AutoXGBoostHurdleModel, 190	AutoH2oGBMClassifier, 24, 81, 96, 106, 124,
* Time Series Helper	136, 188
TimeSeriesDataPrepare, 258	AutoH2oGBMHurdleModel, 36, 84, 110, 192
* Unsupervised Learning	AutoH2oGBMMultiClass, 41, 87, 100, 113,
AutoClustering, 60	128, 139, 196
AutoClusteringScoring, 62	AutoH2oGBMRegression, 47, 92, 104, 117,
GenTSAnomVars, 226	133, 142, 159, 200
H2OIsolationForest, 234	AutoH2oGLMClassifier, 24, 81, 96, 109, 121,
H2OIsolationForestScoring, 236	136, 188
ResidualOutliers, 246	AutoH2oGLMMultiClass, 41, 87, 100, 115, 125, 139, 196
AutoArfima, 4, 8, 10, 70, 167, 173	AutoH2oGLMRegression, 47, 92, 104, 120,
AutoBanditNNet, 5, 6, 10, 70, 167, 173	130, 142, 159, 200
AutoBanditSarima, 5, 8, 8, 70, 167, 173	AutoH2oMLClassifier, 24, 81, 96, 109, 124,
AutoCatBoostCARMA, 11, 29, 58, 76, 183	134, 188
AutoCatBoostClassifier, 20, 81, 96, 109,	AutoH2oMLMultiClass, 41, 87, 100, 115, 128,
124, 136, 188	137, 196
AutoCatBoostHurdleCARMA, 15, 26, 58, 76, 183	AutoH2oMLRegression, 47, 92, 104, 120, 133, 140, 159, 200
AutoCatBoostHurdleModel, 33, 84, 112, 192	AutoH2OMLScoring, <i>51</i> , 143, <i>147</i> , <i>204</i>
AutoCatBoostMultiClass, 37, 87, 100, 115,	AutoHierarchicalFourier, 66, 68, 145, 149,
128, 139, 196	153, 156, 169, 170, 175, 177, 206,
AutoCatBoostRegression, 14, 43, 92, 104,	217, 219, 222, 229, 232, 240, 260
120, 133, 142, 159, 200	AutoHurdleScoring, <i>51</i> , <i>145</i> , 146, <i>204</i>
AutoCatBoostScoring, 49, 145, 147, 204	AutoInteraction, 66, 68, 146, 148, 153, 156,
AutoCatBoostVectorCARMA, 15, 29, 53, 76,	169, 170, 175, 177, 206, 217, 219,
183	222, 229, 232, 240, 260
AutoClustering, 60, 63, 227, 235, 237, 247	AutoLagRollStats, 66, 68, 146, 149, 151,
AutoClusteringScoring, <i>61</i> , 62, 227, 235,	156, 169, 170, 175, 177, 206, 217,
237, 247	219, 222, 229, 232, 240, 260
AutoDataDictionaries, 64, 253–256	AutoLagRollStatsScoring, 66, 68, 146, 149,
AutoDataPartition, 65, 68, 146, 149, 153,	153, 154, 169, 170, 175, 177, 206,
156, 169, 170, 175, 177, 206, 217,	217, 219, 222, 229, 232, 240, 260

INDEX 263

AutoMarketBasketModel, 158, 161, 162, 164	EvalPlot, 165, 220, 223, 243, 246, 248, 250,
AutoNLS, 47, 92, 104, 120, 133, 142, 159, 200	252, 257
AutoRecomDataCreate, 158, 161, 162, 164	FalsaDataCananatan 224
AutoRecommender, 158, 161, 162, 164	FakeDataGenerator, 224
AutoRecommenderScoring, <i>158</i> , <i>161</i> , <i>162</i> , 163	GenTSAnomVars, 61, 63, 226, 235, 237, 247
AutoShapeShap, 165, 220, 224, 243, 246, 248,	H20Autoencoder, 66, 68, 146, 149, 153, 156,
250, 252, 257	169, 170, 175, 177, 206, 217, 219,
AutoTBATS, 5, 8, 10, 70, 166, 173	222, 227, 232, 240, 260
AutoTransformationCreate, 66, 68, 146,	H20AutoencoderScoring, 66, 68, 146, 149,
149, 153, 156, 168, 170, 175, 177,	——————————————————————————————————————
206, 217, 219, 222, 229, 232, 240,	153, 156, 169, 170, 175, 177, 206,
260	217, 219, 222, 229, 231, 240, 260
AutoTransformationScore, 66, 68, 146, 149,	H20IsolationForest, <i>61</i> , <i>63</i> , 227, 234, 237,
153, 156, 169, 169, 175, 177, 206,	247
	H2OIsolationForestScoring, 61 , 63 , 227 ,
217, 219, 222, 229, 232, 240, 260	235, 236, 247
AutoTS, 5, 8, 10, 70, 167, 171	T
AutoWord2VecModeler, 66, 68, 146, 149, 153,	InsertSortedValue, 238
156, 169, 170, 174, 177, 206, 217,	ModelDataPrep, 66, 68, 146, 149, 153, 156,
219, 222, 229, 232, 240, 260	169, 170, 175, 177, 206, 217, 219,
AutoWord2VecScoring, 66, 68, 146, 149, 153,	
156, 169, 170, 175, 176, 206, 217,	222, 229, 232, 239, 260
219, 222, 229, 232, 240, 260	multiplot, 208, 241
AutoWordFreq, 178, 251	ParDepCalPlots, 165, 220, 224, 242, 246,
AutoXGBoostCARMA, 15, 29, 58, 76, 179	248, 250, 252, 257
AutoXGBoostClassifier, 24, 81, 96, 109,	PlotGUI, 243
124, 136, 185	PrintToPDF, 243
AutoXGBoostHurdleModel, <i>36</i> , <i>84</i> , <i>112</i> , 190	1111110101, 243
AutoXGBoostMultiClass, 41, 87, 100, 115,	RedYellowGreen, 165, 220, 224, 243, 244,
<i>128, 139,</i> 193	248, 250, 252, 257
AutoXGBoostRegression, <i>47</i> , <i>92</i> , <i>104</i> , <i>120</i> ,	RemixAutoML (RemixAutoML-package), 4
<i>133</i> , <i>142</i> , <i>159</i> , 197	RemixAutoML-package, 4
AutoXGBoostScoring, <i>51</i> , <i>145</i> , <i>147</i> , 202	ResidualOutliers, <i>61</i> , <i>63</i> , 227, 235, 237, 246
Discotion 205	ResidualPlots, 165, 220, 224, 243, 246, 248,
Bisection, 205	250, 252, 257
CategoricalEncoding, 66, 68, 146, 149, 153,	ROCPlot, 165, 220, 224, 243, 246, 248, 249,
156, 169, 170, 175, 177, 205, 217,	252, 257
219, 222, 229, 232, 240, 260	252, 257
ChartTheme, 207, 241	ScatterCopula, 179, 250
CLForecast, 209, 214	ShapPlot, 165, 220, 224, 243, 246, 248, 250,
CLTrainer, 210, 210	251, 252, 257
CreateCalendarVariables, 66, 68, 146, 149,	SingleRowShapeShap, 165, 220, 224, 243,
153, 156, 169, 170, 175, 177, 206,	246, 248, 250, 252, 252, 257
216, 219, 222, 229, 232, 240, 260	SQL_ClearTable, 65, 252, 253–256
CreateHolidayVariables, 66, 68, 146, 149,	SQL_DropTable, 65, 253, 253, 254–256
153, 156, 169, 170, 175, 177, 206,	SQL_Query, 65, 253, 254, 255, 256
	SQL_Query_Push, 65, 253, 254, 254, 255, 256
217, 218, 222, 229, 232, 240, 260	SQL_SaveTable, 65, 253–255, 255, 256
CumGainsChart, 165, 220, 224, 243, 246, 248,	SQL_Saverable, 65, 255–255, 255, 256 SQL_Server_DBConnection, 65, 253–255,
250, 252, 257	256
DummifyDT, 66, 68, 146, 149, 153, 156, 169,	230
170, 175, 177, 206, 217, 219, 221,	threshOptim, 165, 220, 224, 243, 246, 248,
229, 232, 240, 260	250, 252, 256

264 INDEX

```
TimeSeriesDataPrepare, 258
TimeSeriesFill, 14, 66, 68, 74, 146, 149,
153, 156, 169, 170, 175, 177, 182,
206, 217, 219, 222, 229, 232, 240,
259
```