University of Illinois at Urbana-Champaign

ECE 486: Final Project Report

FALL 2014

Daniel McKeogh

Rohan R. Arora

Teaching Assistant: Yün Han Day of Laboratory Section: Tuesday

Contents

1	Introduction		1
	1.1	Sensors	1
	1.2	Actuators	1
	1.3	Equilibrium Positions	1
	1.4	Implementation	1
2	Mathematical Model		2
	2.1	Derivation of differential equations from Lagrangian	2
	2.2	Linearization into State Space Form	2
3	Full State Feedback Control with Friction Compensation		3
	3.1	Development of the PD Control with Friction Compensation	3
	3.2	Mathematical Proof	3
	3.3	Robustness Comparisons	3
	3.4	System Behavior	3
4	Full State Feedback Control with Decoupled Observer		4
	4.1	Theoretical Background	4
	4.2	Derivation	4
	4.3	Robustness	4
	4.4	System Behavior	4
5	Conclusions		5
6	Extra Credit: Up and Down Stabilizing Control		6
7	Extra Credit: Swing-Up Control		7

1 Introduction

- 1.1 Sensors
- 1.2 Actuators
- 1.3 Equilibrium Positions
- 1.4 Implementation

- 2 Mathematical Model
- 2.1 Derivation of differential equations from Lagrangian
- 2.2 Linearization into State Space Form

- 3 Full State Feedback Control with Friction Compensation
- 3.1 Development of the PD Control with Friction Compensation
- 3.2 Mathematical Proof
- 3.3 Robustness Comparisons
- 3.4 System Behavior

- 4 Full State Feedback Control with Decoupled Observer
- 4.1 Theoretical Background
- 4.2 Derivation
- 4.3 Robustness
- 4.4 System Behavior

Conclusions

6 Extra Credit: Up and Down Stabilizing Control

7 Extra Credit: Swing-Up Control