Cálculo Diferencial e Integral I

2ª Ficha de problemas

Sucessões de números reais

1. Considere a sucessão x_n

$$x_1 = \frac{3}{2}$$
 $x_{n+1} = \frac{1}{3}(x_n^2 + 2)$

- a) Recorrendo ao princípio de indução matemática, verifique que $1 < x_n < 2$, $n \in \mathbb{N}$.
- b) Mostre que a sucessão é decrescente.
- c) A sucessão x_n é convergente em \mathbb{R} ? Justifique.
- 2. Seja u_n o termo geral de uma sucessão tal que, para qualquer $n \in \mathbb{N}$,

$$u_n > 0 \quad e \quad \frac{u_{n+1}}{u_n} < 1$$

- a) Justifique que a sucessão u_n é convergente. Mostre ainda, recorrendo à definição de limite, que o limite de u_n não pode ser um número negativo.
- b) Indique o supremo e o ínfimo do conjuntos dos termos da sucessão e conclua se este conjunto tem máximo ou mínimo? Justifique abreviadamente as respostas.
- 3. Determine, se existirem, os limites das sucessões que têm por termo de ordem n:

$$a)\frac{n^2-1}{n^4+3}, \quad b)\frac{2^n+1}{2^{n+1}-1}, \quad c)\frac{n^{\frac{1}{2}}+n}{n^{\frac{1}{3}}+(n^2+1)^{\frac{5}{2}}}, \quad d)(1+\frac{1}{n^3})^{n^2}, \quad e)\frac{\left(\frac{1}{4}\right)^{-n}\,9^{\frac{n}{2}}}{\left(\frac{1}{4}\right)^{-n}\,+\,9^{\frac{n}{2}}}.$$

4. Considere as sucessões x_n e y_n , tais que x_n é uma sucessão monótona, y_n é uma sucessão limitada

$$|x_n - y_n| < \frac{1}{n} \quad n \in \mathbb{N}.$$

- a) Mostre que a sucessão x_n é limitada.
- b) Mostre que as sucessões x_n e y_n são convergentes e que

$$\lim_{n \to +\infty} x_n = \lim_{n \to +\infty} y_n = a \in \mathbb{R}$$