

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC141134 1 of 47 Page:

FCC Radio Test Report FCC ID: 2ACVA-BT02B150

Original Grant

Report No. TB-FCC141134

HUIZHOU GAOSHENGDA TECHNOLOGY CO., LTD **Applicant**

Equipment Under Test (EUT)

EUT Name Bluetooth Module

Model No. BT02B150

Series Model N/A

No.

Brand Name N/A

2014-07-08 **Receipt Date**

Test Date 2014-07-09 to 2014-07-24

Issue Date 2014-07-28

Standards FCC Part 15, Subpart C (15.247:2012)

Test Method ANSI C63.4:2003

Conclusions **PASS**

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer

Approved& Authorized

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301

Page: 2 of 47

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	<i>6</i>
	1.6 Description of Test Software Setting	<i>6</i>
	1.7 Test Facility	7
2.	TEST SUMMARY	8
3.	CONDUCTED EMISSION TEST	9
	3.1 Test Standard and Limit	9
	3.2 Test Setup	
	3.3 Test Procedure	
	3.4 Test Equipment Used	10
	3.5 EUT Operating Mode	10
	3.6 Test Data	10
4.	RADIATED EMISSION TEST	13
	4.1 Test Standard and Limit	
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Condition	15
	4.5 Test Equipment	15
	4.6 Test Data	16
5 .	RESTRICTED BANDS REQUIREMENT	25
	5.1 Test Standard and Limit	25
	5.2 Test Setup	
	5.3 Test Procedure	25
	5.4 EUT Operating Condition	26
	5.5 Test Equipment	26
	5.6 Test Data	26
6.	BANDWIDTH TEST	32
	6.1 Test Standard and Limit	32
	6.2 Test Setup	32
	6.3 Test Procedure	32
	6.4 EUT Operating Condition	32
	6.5 Test Equipment	32
	6.6 Test Data	33
7.	PEAK OUTPUT POWER TEST	35

Page: 3 of 47

	7.1 Test Standard and Limit	35
	7.2 Test Setup	35
	7.3 Test Procedure	35
	7.4 EUT Operating Condition	35
	7.5 Test Equipment	35
	7.6 Test Data	36
8.	POWER SPECTRAL DENSITY TEST	39
	8.1 Test Standard and Limit	39
	8.2 Test Setup	39
	8.3 Test Procedure	
	8.4 EUT Operating Condition	
	8.5 Test Equipment	
	8.6 Test Data	40
9.	ANTENNA CONDUCTED SPURIOUS EMISSION	42
	9.1 Test Standard and Limit	42
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 EUT Operating Condition	43
	9.5 Test Equipment	43
	9.6 Test Data	43
10.	ANTENNA REQUIREMENT	47
	10.1 Standard Requirement	47
	10.2 Antenna Connected Construction	
	10.2 Result	47

Page: 4 of 47

1. General Information about EUT

1.1 Client Information

Applicant: HUIZHOU GAOSHENGDA TECHNOLOGY CO., LTD

Address : HUA YU RD., NO.75, ZHONGKAI HIGH-TECH DEVELOPMENT

AREA, HUIZHOU, CHINA

Manufacturer : HUIZHOU GAOSHENGDA TECHNOLOGY CO., LTD

Address: HUA YU RD., NO.75, ZHONGKAI HIGH-TECH DEVELOPMENT

AREA, HUIZHOU, CHINA

1.2 General Description of EUT (Equipment Under Test)

	1	Τ				
EUT Name	:	Bluetooth Module	Bluetooth Module			
Models No.	:	BT02B150				
Model Difference	:	N/A				
		Operation Frequency: 2402MHz~2480MHz				
	:	Number of Channel:	Bluetooth 4.0 (BLE): 40 channels see note(3)			
Product Description		RF Output Power:	3.305 dBm Conducted Power			
Description		Antenna Gain:	3 dBi PIFA Antenna			
		Modulation Type:	GFSK			
		Bit Rate of Transmitter:	1Mbps(GFSK)			
Power Supply : DC Voltage supplied from PC System.		m PC System.				
Power Rating : DC 5V by USB adapter from PC System.		from PC System.				
Connecting I/O Port(S)	: Please refer to the User's Manual					
		51 51				

Note: The equipment with Bluetooth Bluetooth 4.0+EDR have test comply with FCC Part 15C Rules. More detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Note:

- (1) This Test Report is FCC Part 15.247 for Bluetooth BLE, the test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v03r02.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.
- (4) Channel List:

Channel Frequency	Channel	Frequency	Channel	Frequency
-------------------	---------	-----------	---------	-----------

Page: 5 of 47

	(MHz)		(MHz)		(MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414 Cable 1	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested

TX Mode

1.4 Description of Support Units

Equipment Information							
Name Model S/N Manufacturer Used "√"							
Notebook T60P 42W3244		Lenovo	V				
	Cable Information						
Number	Number Shielded Type Ferrite Core Length Note						
Cable 1 NO		NO	0.35M				

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test			
Final Test Mode	Description		
Mode 1	PC Charging with TX Mode		

For Radiated Test				
Final Test Mode	Description			
Mode 2	PC Charging with TX Mode			
Mode 3	PC Charging with TX Mode			
Wode 3	(Channel 01/20/39)			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.4 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

Bluetooth BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	Test Program: Bluesuite 2.4.exe		
Channel	CH 01	CH 20	CH 39
BLE Mode	DEF	DEF	DEF

Page: 7 of 47

1.7 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:

1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 8 of 47

2. Test Summary

FCC Part 15 Subpart C(15.247)/RSS-210: 2010					
Standaı	rd Section	Test Item	ludamont	D	
FCC	IC	rest item	Judgment	Remark	
15.203	1	Antenna Requirement	PASS	N/A	
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A	
15.205	RSS-GEN 7.2.2	Restricted Bands	PASS	N/A	
15.247(a)(2)	RSS-210	6dB Bandwidth	PASS	N/A	
	A.8.2(a)	Cab banaman			
15.247(b)	RSS-210	Peak Output Power	PASS	N/A	
13.247(0)	A.8.4(4)	Feak Output Fower	FAGG	IN/A	
45.047(a)	RSS-210	Power Spectral Density	DACC	NI/A	
15.247(e)	A.8.2(b)		PASS	N/A	
45.047(4)	RSS-210	Transmitter Radiated Spurious	DACC	NI/A	
15.247(d)	Annex 8 (A8.5)	Emission	PASS	N/A	
4E 047(d)	RSS-210	Antenna Conducted	PASS	NI/A	
15.247(d)	Annex 8 (A8.5)	Spurious Emission		N/A	

Note: "/" for no requirement for this test item.

N/A is an abbreviation for Not Applicable.

Page: 9 of 47

3. Conducted Emission Test

3.1 Test Standard and Limit

3.1.1Test Standard FCC Part 15.207

3.1.2 Test Limit

Conducted Emission Test Limit

Eraguanav	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

3.2 Test Setup

3.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 10 of 47

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

3.4 Test Equipment Used

Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
EMI Test	ROHDE&		100221	2013-08-10	2014-08-09
Receiver	SCHWARZ	ESCI	100321	2013-08-10	2014-00-09
50ΩCoaxial	Anritsu	MP59B	X10321	2013-08-10	2014-08-09
Switch	Ailliou	WIF 39B	X10321	2013-00-10	2014-00-09
L.I.S.N	Rohde & Schwarz	ENV216	101131	2013-08-10	2014-08-09
L.I.S.N	SCHWARZBECK	NNBL 8226-2	8226-2/164	2013-08-10	2014-08-09

3.5 EUT Operating Mode

Please refer to the description of test mode.

3.6 Test Data

Please see the next page.

EUT: **Bluetooth Module** Model: BT02B150 25 ℃ **Relative Humidity:** 55% Temperature: **Test Voltage:** AC 120V/60 Hz Terminal: Line **Test Mode:** AC Charging with BLE TX 2402 MHz Remark: Only worse case is reported 90.0 dBuV QP: AVG: -10 0.150 (MHz) 30.000 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dΒ dBuV dBuV dΒ Detector Comment 1 0.4500 40.56 10.02 50.58 56.87 -6.29 QΡ 2 0.4500 28.38 10.02 38.40 46.87 -8.47 AVG 37.97 56.00 -7.94 QΡ 3 0.8260 10.09 48.06 0.8260 22.87 10.09 32.96 46.00 -13.04 AVG 4 37.81 QP 5 1.4100 10.06 47.87 56.00 -8.13 1.4100 23.27 46.00 -12.67 6 10.06 33.33 AVG 7 2.1140 37.36 10.06 47.42 56.00 -8.58 QΡ 8 2.1140 23.78 10.06 33.84 46.00 -12.16 AVG 9 3.3380 35.71 10.02 45.73 56.00 -10.27 QΡ 10 3.3380 21.93 10.02 31.95 46.00 -14.05 AVG **Emission Level= Read Level+ Correct Factor**

Page: 12 of 47

EUT:	В	luetooth M	1odule	Model:			BT02B1	50
Temperatu	ire: 25	5 °C		Relativ	e Humi	dity:	55%	
Test Voltaç	ge: A	C 120V/60	Hz					
Terminal:	N	eutral						
Test Mode	: A	C Charging	with BLE	TX 2402 N	lHz			
Remark:	0	nly worse c	ase is rep	orted				
90.0 dBuV								
							QP: AVG:	
	-		× ×	. ¥				
				Approximate Angerosia	4 aprilipping	MMA. J		
40	/	Ya Madakan ili	ki ii. lik	1		MANA MANA LANGUA	Hallyword In the	
M 'A	$V_{\Omega}V_{\Omega}$, M	1/14 444444	Jahan Palahiri Paya		4-4712-412-412-41-4-4-4	WWW.	, Jakrah/pikket	hule .
	MANA M	, il altarella di la lata	ווי ייזן ווע			A Maril	acocoalecophylogecological	The state of the s
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V // ''						- Militali	peak
ν.	Y							peak
0.150		0.5	ſM	Hz)	5			30.000
			•	,				
No Mi		Reading	Correct	Measure-	Limit	Over		
No. Mk	. Freq.	Level dBuV	Factor dB	ment dBuV	dBuV	dB	Detector	Common
1 *	0.4580	40.01	10.03	50.04	56.73	-6.69	QP	Commer
'		25.68						
2	0.4580 1.1260	37.81	10.03	35.71 47.96	46.73 56.00	-11.02 -8.04	AVG	
							QP	
4	1.1260	21.43	10.15	31.58		-14.42	AVG	
5	1.4060	36.93	10.12	47.05	56.00	-8.95	QP	
6	1.4060	21.29	10.12	31.41		-14.59	AVG	
	2.4620	36.80	10.06	46.86	56.00	-9.14	QP	
7		21.90	10.06	31.96	46.00	-14.04	AVG	
8	2.4620							
	2.4620 3.1820 3.1820	34.60 19.64	10.06 10.06	44.66 29.70	56.00	-11.34 -16.30	QP AVG	

Page: 13 of 47

4. Radiated Emission Test

4.1 Test Standard and Limit

4.1.1 Test Standard FCC Part 15.209

4.1.2 Test Limit

Radiated Emission Limits (9kHz~1000MHz)

(
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)				
0.009~0.490	2400/F(KHz)	300				
0.490~1.705	24000/F(KHz)	30				
1.705~30.0	30	30				
30~88	100	3				
88~216	150	3				
216~960	200	3				
Above 960	500	3				

Radiated Emission Limit (Above 1000MHz)

Frequency	Class A (dBuV	/m)(at 3 M)	Class B (dBuV/m)(at 3 M)		
(MHz)	• •		Peak	Average	
Above 1000	80	60	74	54	

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

Page: 14 of 47

4.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 15 of 47

Above 1GHz Test Setup

4.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (6) For the actual test configuration, please see the test setup photo.

4.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

4.5 Test Equipment

Equ	uipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due
-----	---------	--------------	-----------	------------	-----------	----------

Page: 16 of 47

					Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 10, 2013	Aug.09, 2014
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Aug. 10, 2013	Aug.09, 2014
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 07, 2014	Mar.06, 2015
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	11909A	185903	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	8447B	3008A00849	Mar. 07, 2014	Mar.06, 2015
Cable	HUBER+SUHNE R	100	SUCOFLEX	Mar. 07, 2014	Mar.06, 2015
Signal Generator	Rohde & Schwarz	SML03	IKW682-054	Feb. 11, 2014	Feb.10, 2015
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

4.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Test data please refer the following pages.

EUT: Model: Bluetooth Module BT02B150 Temperature: 25 ℃ **Relative Humidity:** 55% **Test Voltage:** AC 120V/60 Hz Ant. Pol. Horizontal **Test Mode:** BLE TX 2402 Mode Remark: Only worse case is reported 80.0 dBuV/m (RF)FCC 15C 3M Radiation Judhada makanada 30 60 70 80 (MHz) 30.000 400 500 600 700 1000.000 Reading Correct Me asure-Limit Over No. Mk. Freq. Level Factor ment MHz dBu∀ dBuV/m dBuV/m αÐ Detector dB/m 1 134.5592 54.46 -22.0932.37 43.50 -11.13 peak 2 167.8243 58.63 -21.04 37.59 43.50 -5.91 peak 3 191.7450 58.53 -20.81 37.72 -5.78 43.50 peak 243.3772 55.27 4 -18.4336.84 46.00 -9.16 peak 377.2591 5 52.47 -14.31 38.16 46.00 -7.84 peak 6 468.8762 47.73 -11.81 35.92 46.00 -10.08peak **Emission Level= Read Level+ Correct Factor**

TOBY Page: 18 of 47

UT:		Bluet	ooth Module	e N	lodel:		BT02B150	
emperatur	e:	25 °C	2	F	Relative Humio	dity:	55%	
est Voltage	e:	AC 1	20V/60 Hz	·				
nt. Pol.		Vertic	cal					
est Mode:		BLE	TX 2402 Mc	ode				
lemark:		Only	worse case	is reported	b			
80.0 dBuV/m								
						(RF)F0	CC 15C 3M Radiation	1
							Margin -6	dB
						5 X	8	
30	1 · **		2	¥	4 ×			البالار
30		1 1	, I ()	ب السجامية	بالأمرانيان	الأرابات	May had house the mander of	NAME OF THE PARTY.
20								
30.000 40	50	60 70	80	(MHz)	300	400	500 600 700	1000.00
	50	60 70						1000.00
		60 70 eq.	Reading Level	(MHz) Correct Factor	Me asure-	400		1000.00
30.000 40	. Fr		Reading	Correct	Me asure-		t Over	1000.00
30.000 40	. Fr	eq. Hz	Reading Level	Correct Factor	Measure- ment	Limit	t Over √m dB	
No. Mk	. Fr	eq. Hz 711	Reading Level dBuV	Correct Factor	Measure- ment dBuV/m	Limit dBuV	t Over Vm dB 00 -7.03	Detecto
No. Mk	. Fr мі 54.0	eq. Hz 711 5101	Reading Level dBuV 57.42	Correct Factor dB/m -24.45	Measure- ment dBuV/m 32.97	Limit dBuV 40.0	t Over Vm dB 00 -7.03	Detecto pe ak
No. Mk	. Fr мі 54.0 107.5	eq. Hz 711 5101 3295	Reading Level dBuV 57.42 50.51	Correct Factor dB/m -24.45	Measure- ment dBuV/m 32.97 28.65	Limit dBuV 40.0	t Over 7m dB 100 -7.03 100 -14.85 100 -10.81	Detecto peak peak
No. Mk 1 2 3	. Fr мі 54.0 107.5 143.8	eq. Hz 711 5101 3295	Reading Level dBuV 57.42 50.51 54.36	Correct Factor dB/m -24.45 -21.86	Measure- ment dBuV/m 32.97 28.65 32.69	Limit dBuV 40.0 43.5 43.5	t Over m dB 00 -7.03 00 -14.85 00 -10.81 00 -14.59	Detecto peak peak peak
No. Mk 1 2 3	54.0 107.5 143.8 243.3	eq. 711 5101 3295 3772	Reading Level dBuV 57.42 50.51 54.36 49.84	Correct Factor dB/m -24.45 -21.86 -21.67 -18.43	Measure- ment dBuV/m 32.97 28.65 32.69 31.41	Limit dBuV 40.0 43.5 43.5	t Over m de 00 -7.03 00 -14.85 00 -10.81 00 -5.49	Detector peak peak peak

Page: 19 of 47

EUT:	Bluetooth Module	Model:	BT02B150				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60 Hz						
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	BLE Mode TX 2402 MHz						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
100 0 10 14							

N	lo.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Ov er	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	αÐ	Detector
1		*	4803.605	29.53	13.44	42.97	54.00	-11.03	AVG
2			4805.340	43.14	13.45	56.59	74.00	-17.41	peak

Page: 20 of 47

EUT:	Bluetooth Module	Model:	BT02B150				
Temperature:	25 ℃	25 °C Relative Humidity: 5					
Test Voltage:	AC 120V/60 Hz						
Ant. Pol.	Vertical	Vertical					
Test Mode:	BLE Mode TX 2402 MHz						
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
	F						

	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Ov er	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	αÐ	Detector
_	1	*	4803.770	30.49	13.44	43.93	54.00	-10.07	AVG
-	2		4804.000	46.67	13.44	60.11	74.00	-13.89	peak

Report No.: TB-FCC141134
Page: 21 of 47

EUT:	Bluetooth Module	Model:	BT02B150				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60 Hz						
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	BLE Mode TX 2442 MHz	BLE Mode TX 2442 MHz					
Remark:	No report for the emissio prescribed limit.	No report for the emission which more than 10 dB below the prescribed limit.					

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Ov er	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	αB	Detector
1		4882.160	43.29	13.90	57.19	74.00	-16.81	peak
2	*	4884.140	29.15	13.92	43.07	54.00	-10.93	AVG

Page: 22 of 47

EUT:	Bluetooth Module	Model:	BT02B150
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60 HZ		
Ant. Pol.	Vertical		
Test Mode:	BLE Mode TX 2442 MHz		
Remark:	No report for the emissio prescribed limit.	n which more than 10 c	IB below the

	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Ov er	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	αÐ	Detector
1	1	*	4883.830	30.25	13.92	44.17	54.00	-9.83	AVG
7	2		4884.620	45.95	13.92	59.87	74.00	-14.13	peak

Page: 23 of 47

EUT:	Bluetooth Module	Model:	BT02B150
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60 HZ		
Ant. Pol.	Horizontal		
Test Mode:	BLE Mode TX 2480 MHz		
Remark:	No report for the emission	n which more than 10 c	B below the
	prescribed limit.		
100 0 JD-364-			·

	No.	Mk.	Freq.	Reading Level		Me asure- ment	Limit	Ov er	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	αÐ	Detector
_	1	*	4960.050	28.53	14.36	42.89	54.00	-11.11	AVG
_	2		4960.670	42.78	14.36	57.14	74.00	-16.86	peak

Page: 24 of 47

EUT:	Bluetooth Module	Model:	BT02B150
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60 HZ		
Ant. Pol.	Vertical		
Test Mode:	BLE Mode TX 2480 MHz		
Remark:	No report for the emission	n which more than 10 c	dB below the
	prescribed limit.		

	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Ov er	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	αB	Detector
	1		4959.200	46.31	14.36	60.67	74.00	-13.33	peak
-	2	*	4959.880	30.48	14.36	44.84	54.00	-9.16	AVG

Page: 25 of 47

5. Restricted Bands Requirement

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209 FCC Part 15.205

5.1.2 Test Limit

Restricted Frequency	Class B (dBu	uV/m)(at 3 M)
Band (MHz)	Peak	Average
2310 ~2390	74	54
2483.5 ~2500	74	54

5.2 Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit

Report No.: TB-FCC141134
Page: 26 of 47

Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.

- (5) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (6) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 10, 2013	Aug.09, 2014
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Aug. 10, 2013	Aug.09, 2014
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 07, 2014	Mar.06, 2015
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	11909A	185903	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	8447B	3008A00849	Mar. 07, 2014	Mar.06, 2015
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar. 07, 2014	Mar.06, 2015
Signal Generator	Rohde & Schwarz	SML03	IKW682-054	Feb. 11, 2014	Feb.10, 2015
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

5.6 Test Data

Please see the next page.

Page: 27 of 47

(1) Radiation Test

adiation le	รเ											
EUT:		Blueto	oth Module	e	Мо	del:			BT	02B150		
Temperatu	re:	25 ℃			Re	lativ	e Hun	nidity:	559	%		
Test Voltag	je:	AC 12	20V/60 HZ									
Ant. Pol.		Horizo	ontal									
Test Mode		BLE N	/lode TX 24	02 MHz								
Remark:		N/A										
110.0 dBuV/m	·											
										6 X		
										^		
								(BF)	FCC PA	RT 15C (PEA	AK)	
60			1					(DE) FCC P	ART 15C (AV	(C)	
			×) rec r	5	/u)	
								X		Ň		
			2 X					4	\mathcal{J}			
10.0 2 318.000 23	28.00 2	338.00	2348.00 235	8.00 2368	3.0 0	2378	3. 0 0 2	2388.00	2398.00)	2418.00	 MHz
No. Mi	c. Fr	eq.	Reading Level	Correc Facto			isure- ent	Limi	t	Ov er		
	Mi	Ηz	dBu∀	dB/m		dBı	uV/m	dBu∀	/m	αB	Detect	or
1	2353	.700	53.05	0.62		53	3.67	74.0	00	-20.33	pea	k
2	2353	.900	33.05	0.62		33	3.67	54.0	00	-20.33	AV(3
3	2390	.000	43.59	0.77		44	1.36	74.0	00	-29.64	pea	k
4	2390	.000	31.37	0.77		32	2.14	54.0	00	-21.86	AV(3
5	2401	.900	44.69	0.82		45	5.51	54.0	00	-8.49	AV(3
6 *	2402	.300	99.38	0.82		10	0.20	74.0	00	26.20	pea	k
Emission I	_evel=	Read L	evel+ Cor	rect Fact	or							

Page: 28 of 47

UT	:		Bluete	ooth Module	e	Mc	odel:		BT02	2B150				
em	peratur	e:	25 ℃	1		Re	lative Humi	dity:	55%					
est	Voltage	e :	AC 12	20V/60 HZ										
nt.	Pol.		Vertic	al										
est	Mode:		BLE I	Mode TX 24	02 MHz									
lem	nark:		N/A											
10.0) dBuV/m											_		
									5					
Ì									×					
ı												1		
								(RF)	FCC PART	15C (PEA	AK)	1		
												1		
60				1				(DE)	FCC PAR	RT 15C (AV	/G)	-		
				×					6	, u j				
								3 X	Ž					
				2 X				4	\mathcal{J}					
Ì												1		
												1		
10.0 23	18.000 2328	3. 0 0 2	2338.00	2348.00 235	8.00 2368	3.00	2378.00 23	88.00 2	2398.00		2418.00	_ M⊦		
١	No. Mk.	F	eq.	Reading Level	Correc Facto		Measure- ment	Limit	t (Over				
	40. IVIK		еч. Hz	dBuV			dBuV/m	dBuV		αB	Detec	+~		
					dB/m									
1		2353		54.75	0.62		55.37	74.0		18.63	<u>'</u>			
2		2354		33.36	0.62		33.98	54.0		20.02				
3		2390	.000	43.71	0.77		44.48	74.0)0 -	29.52	pea	ak		
4		2390	.000	31.36	0.77		32.13	54.0)0 -:	21.87	ΑV	Ġ		
5	*	2401	.800	97.44	0.82		98.26	74.0	00 2	24.26	pea	ak		
6		2402	.000	44.21	0.82		45.03	54.0)0 .	8.97	AV	Ġ		

Report No.: TB-FCC141134
Page: 29 of 47

UT:			Bluet	ooth Module	;	Model:		BT02E	3150					
m	peratur	e:	25 ℃	,		Relative H	lumidity:	55%						
est	Voltage) :	AC 12	20V/60 HZ										
nt.	Pol.		Horiz	ontal										
est	Mode:		BLE I	Mode TX 24	80 MHz									
em	ark:		N/A											
10.0	dBuV/m									,				
		1 X					(BE) FCC PART 1:	SC (PFAK)					
							(***	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	od (i Erak)	1				
60			3											
			-				(R	F) FCC PART	15C (AVG)	1				
		×	4											
0.0	54.000 2474	.00 2	484.00	2494.00 2504	1.00 2514.	00 2524.00	2534.00	2544.00	2564.00	 MH2				
	No. Mk	Е.		Reading	Correc		1 :	it Os	er					
I	NO. IVIN	. г	eq.	Level	Facto	r men	_{it} Lim		i ei					
_	NO. IVIN		eq. Hz	Level dBuV	Facto dB/m	r men dBuV			B Detect	tor				
1	*		Hz				/m dBu'	V/m c						
		М	Hz .700	dBu∀	dB/m	dBu∀	/m dBu' 3 74.	V/m c	E Detect	ık				
1		M 2479	Hz .700 .900	dBu∨ 96.58	dB/m 1.15	dBu∀. 97.7	/m dBu ¹ 3 74. 3 54.	V/m 0 00 23 00 -9	B Detect 3.73 pea	ik G				

Report No.: TB-FCC141134
Page: 30 of 47

EUT	Γ:		Bluet	ooth Mo	dule	;	Me	odel:			E	3T02B150	ı				
Tem	perature:		25 °C	C			Re	elativ	e Hu	midi	ty: 5	55%					
Test	t Voltage:		AC 1	20V/60	ΗZ						•						
Ant.	. Pol.		Verti	cal													
Test	t Mode:		BLE	Mode T	X 24	80 MHz											
Ren	nark:		N/A														
110.0	0 dBuV/m																
		1 X															
											(RF) FCC	PART 15C (PE	AK)				
			3														
60			×								(BE) EC	C PART 15C (A	VG)				
		2									()						
		Ň	4														
	/	/	X				<u></u>										
10.0																	
	464.000 2474.0	0 2	484.00	2494.00	2504	1.00 251	1.00	252	4.00	2534.0	0 254	4.00	2564.00 MHz				
_	No. Mk.	Fı	eq.	Read Leve		Corre			asure ent	:- L	_imit	Ov er					
		М	Hz	dBu'	V	dB/m		dB	uV/m	(#BuV/m	dB	Detector				
1	* 2	2479	.700	101.	15	1.15		10	2.30		74.00	28.30	peak				
2	! 2	2479	.900	44.9	3	1.15		48	6.08		54.00	-7.92	AVG				
3	1 2	2483	.500	62.2	7	1.17		63	3.44	,	74.00	-10.56	peak				
4	. 2	2483	.500	35.1	5	1.17		36	5.32		54.00	-17.68	AVG				
-																	

(2) Conducted Test

EUT:	Bluetooth Module	Model:	BT02B150	
Temperature:	25 ℃	Relative Humidity:	55%	
Test Voltage:	AC 120V/60 Hz			
Test Mode:	BLE Mode TX 2402MHz / BLE Mode TX 2480MHz			
Remark:	The EUT is programed in	The EUT is programed in continuously transmitting mode		

Page: 32 of 47

6. Bandwidth Test

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247 (a)(2)

6.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210				
Test Item Limit Frequency Range(MHz)				
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5		

6.2 Test Setup

6.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

6.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

6.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 10, 2013	Aug.09, 2014

Page: 33 of 47

6.6 Test Data

EUT:	Bluetooth Module	Model:	BT02B150	
Temperature:	25 ℃	Relative Humidity:	55%	
Test Voltage:	AC 120V/60 Hz			
Test Mode:	BLE TX Mode			
Channel frequence	cy 6dB Bandwidth	99% Bandwidth	Limit	
(MHz)	(kHz)	(kHz)	(kHz)	
2402	550.244	1095.6		
2442	2442 542.587		>=500	
2480	545.047	1097.1		
BLE Mode				

2402 MHz

Page: 34 of 47

2480 MHz Agilent 18:59:39 Jul 10, 2014 Ref 15 dBm #Atten 25 dB #Peak Log 10 dB/ Center Offst 2 dB 2.480000000 GHz Center 2.48 GHz Span 5 MHz #Res BW 100 kHz **#VBW 300 kHz** Sweep 5 ms (401 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % -6.00 dB x dB 1.0971 MHz Transmit Freq Error -15.640 kHz x dB Bandwidth 545.047 kHz

Page: 35 of 47

7. Peak Output Power Test

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (b)

7.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210				
Test Item Limit Frequency Range(MHz)				
Peak Output Power	1 Watt or 30 dBm	2400~2483.5		

7.2 Test Setup

7.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 558074 D01 DTS Meas Guidance v03r02.

- (1) Set the RBW≥DTS Bandwidth
- (2) Set VBW≥3*RBW
- (3) Set Span≥3*RBW
- (4) Sweep time=auto
- (5) Detector= peak
- (6) Trace mode= maxhold.
- (7) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

7.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum	Rohde & Schwarz	FSP30	DE25181	Aug. 10, 2013	Aug.09, 2014

Page: 36 of 47

Analyzor			
Allalyzel			

7.6 Test Data

EUT:Bluetooth ModuleModel:BT02B150Temperature:25 °CRelative Humidity:55%Test Voltage:AC 120V/60 HZ

Test Mode: BLE TX Mode

Channel frequency (MHz)	Test Result (dBm)	Limit (dBm)
2402	3.305	
2442	2.550	30
2480	1.143	

BLE Mode

2402 MHz

Page: 38 of 47

Page: 39 of 47

8. Power Spectral Density Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (e)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)					
Test Item	Limit	Frequency Range(MHz)			
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5			

8.2 Test Setup

8.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v03r02.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequenyc.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Midle and high channel for the test.

40 of 47

8.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 10, 2013	Aug.09, 2014

8.6 Test Data

	1				
EUT:	Bluetooth Module		Model:		BT02B150
Temperature:	25 ℃		Relative Humidity:		55%
Test Voltage:	AC 120V/	60 Hz			
Test Mode:	BLE TX Mode				
Channel Frequency	uency	Power Density			Limit (dBm)
(MHz)		(3 kHz/dBm)			
2402	2402		-13.01		
2442	-13.9		-13.92		8
2480	-15.22				
BLE Mode					

BLE Mode 2442 MHz Agilent 19:05:37 Jul 10, 2014 Mkr1 2.4419748 GHz #Atten 25 dB -13.92 dBm Ref 15 dBm Peak Log 10 dB/ Offst 2 dB Marker 2.441974800 GHz -13.92 dBm M1 S2 S3 FC AA Center 2.442 GHz Span 3.36 MHz #Res BW 3 kHz #VBW 10 kHz Sweep 384.3 ms (401 pts) **BLE Mode** 2480 MHz Agilent 19:04:20 Jul 10, 2014 Mkr1 2.4799748 GHz -15.22 dBm Ref 15 dBm #Atten 25 dB Peak Log 10 dB/ Offst 2 dB Marker 2.479974800 GHz -15.22 dBm M1 S2 S3 FC AA Center 2.48 GHz Span 3.36 MHz #Res BW 3 kHz #VBW 10 kHz Sweep 384.3 ms (401 pts)

Page: 42 of 47

9. Antenna Conducted Spurious Emission

9.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247 (d)

10.1.2 Test Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above~960	500	3

(2)If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b)(3) requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

9.2 Test Setup

9.3 Test Procedure

(1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

Page: 43 of 47

(2) Spectrum Setting:

RBW=100 KHz, VBW=300 KHz.

Frequency range: from 30MHz to 26.5 GHz.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

9.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015

9.6 Test Data

Page: 44 of 47

BLE Mode TX CH 00 2402MHz

Above 1 GHz

Below 1 GHz

Page: 45 of 47

BLE Mode TX CH 20 2442MHz

Above 1 GHz

Below 1 GHz

Page: 46 of 47

BLE Mode

TX CH 39 2480MHz

Above 1 GHz

Below 1 GHz

Page: 47 of 47

10. Antenna Requirement

10.1 Standard Requirement

11.1.1 Standard

FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 3 dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

10.2 Result

The EUT antenna is a PIFA Antenna. It complies with the standard requirement.