## Interactive Multimodal Virtual Display of 2-D Coordinates Plane

Minjoo Kim<sup>1</sup> Jinah Park<sup>1</sup> Jisu Lee<sup>2</sup>

- School of Computing, KAIST, Daejeon, Korea
- <sup>2</sup> Knowledge E-learning Research Center, ETRI, Daejeon, Korea

## Introduction

### **Motivation**

In Korean middle-school Math education curriculum, coordinates plane or graph is the visual representations, and it is not easy concept to understand for visually-impaired students, who commonly get their math understanding from aural explanation of the teacher.



#### Main Work of the research

Develop an Interactive virtual coordinates plane based on **haptic** and auditory modules, in order to provide a studying aid for visually-impaired students to understand coordinates plane and graph (topics for 1st and 2nd grades in middle school)

## Method

## Results of Preliminary study on several aspects of education

## Process of setting three guidelines from considering math, multimodal education

- I. Considering a characteristic of education for target curriculum "coordinates plane"
- **Guideline 1**. Simplifying coordinates plane into grid plane is helpful to get started.
- II. Considering that general math education requires prerequisite process
- **Guideline 2**. Accessibility to meaning of basic terms related to math concept is helpful for understanding.
- III. Multimodal interaction in education fields



 Guideline 3. Active participation (bidirectional) is better than those only providing passive receiving (unidirectional).

## **Development of environment for program implementation**

- Phantom force-feedback device is used for haptic accessibility to our tool. (Fig1,right)
- Program Design Language is H3D API which is a VR modelling language and enables haptic device using (Fig1. left)
- H3D-provided haptic effects
  - Surface feedbacks Smooth Surface, Frictional Surface, Magnetic Surface
  - Force feedbacks Position function effect, Time function effect







**Figure 1:** (left) Touchable scene made using H3D API (middle) Phantom device (right) How Phantom device is used to touch virtual objects by a user

## Implementation and Results





- What to implement to Fulfil this guide
- Haptic Guidances for X and Y axis
- Used Haptic technologies from H3D API
- X, Y axis guidance: Constraining effect, Time function effect, speech-sound rendering
- Constraining Effect: F\_x=<0,-10\*y,0> for X axis, and  $F_y = <-10*x,0,0> for Y axis$
- Time Function Effect: F\_x=<sin(t),0,0> for X axis and
- $F_y = <0, \sin(t), 0> \text{ for } Y \text{ axis } (t : time)$

## IMPEMENTATION

- If user triggers the guidance rendering for one of the axes, device stylus automatically vibrates on virtual space of that axis.
- This vibration of the movement is a sinusoidal movement, which is a sin function of the time t.

# • Guideline 3

## ■ What to implement to Fulfil this guide

■ Two functions, Picking a Point, and Navigation with keyboard

#### Used Haptic technologies from H3D API Picking point - Device main Button

Navigation - by keyboard input. It is executed by Left-Right, Up-Down keys. (Start point: (0,0)) While keyboard navigating it is possible to pick point with key 'End'

## IMPLEMENTATION

- User picks a point by pressing a haptic device main button, and also can erase it with secondary button
- User triggers the keyboard navigation by pressing some key, and moves between the coordinates with arrow keys

## **Conclusion & Future Work**

- We developed Interactive virtual grid plane to help receiving a concept of coordinates plane for visually-impaired students.
- The implementation follows several guidelines, considering math education and multimodal interactive education.
- We plan to have a user study and modify this tool to be an optimal multimodal design for coordinates plane education.







