МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ, СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ И ИНФОРМАТИКИ»

КАФЕДРА ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

ПРАКТИЧЕСКАЯ РАБОТА №2

по дисциплине «Сети ЭВМ и телекоммуникации»

Тема: «Адресация узлов в сетях. МАС-адрес. Сетевые адреса IPv4.

Протокол ARP. Статическая и динамическая конфигурация узлов»

Выполнил: студент группы ИС-142

Наумов А. А.

Проверил: доцент

кафедры ВС Перышкова Е.Н.

Задание

1. Собрать конфигурацию сети, представленной на рисунке.

VirtualBox Host Only Network

- 2. Определить MAC адреса сетевых интерфейсов маршрутизатора Mikrotik, AstraLinux, хост-машины.
- 3. Выделено адресное пространство 10.N.0.0/16, где N это Ваш порядковый номер в журнале. Спроектировать его таким образом, чтобы он был разделённа 4 равные по количеству адресов подсети (количество адресов в каждой подсети максимально возможное). Записать диапазоны адресов для каждойполученной подсети. Указать адрес сети и адрес для широковещательной передачи данных.
- 4. Выбрать один из рассчитанных в п. 3 диапазонов адресов и сконфигурировать соответствующим образом сетевые интерфейсы хост-машины, Astra Linux и Mikrotik. Адреса для узлов из назначенного диапазона выбираются произвольно.
- 5. Запустить на host-машине Wireshark и проверить связность хоста с Astra Linux и Mikrotik с использованием протокола ICMP и режима ping-pong. Показать этапы работы протокола разрешения сетевых адресов (ARP) и протокола контроля сетевого подключения (ICMP). Сравнить MAC-адрес адаптера хостмашины с адресом в захваченных пакетах.
- 6. Запустить на host-машине Wireshark. Запустить ping с Astra Linux до Mikrotik. Проанализировать полученный поток пакетов.
- 7. Перезапустить виртуальную машину Astra Linux в режиме записи потока сетевых пакетов. Повторить действия пункта 6. Показать, что в захваченном

потоке пакетов присутствуют все пакеты, отправляемые и получаемые виртуальной машиной. Объяснить, почему поток захваченных пакетов отличается от потока в п.6.

- 8. Запустить на host-машине Wireshark. С хост-машины из назначенного диапазона адресов "пропинговать" адрес сети и широковещательный адрес. Что поменяется в последовательности пакетов в сравнении с пингом простых адресов? В каком случае будет использоваться протокол ARP и почему? Могутли в сети оказаться узлы, на интерфейсах которых назначены такие адреса и будет работать протокол ARP? Если могут, продемонстрировать.
- 9. На машине Astra Linux установить пакет для конфигурирования сетевых интерфейсов с использованием APIPA.
- 10. Запустить Astra Linux в режиме захвата пакетов. Настроить сетевой интерфейс так, чтобы для его для конфигурирования использовалась APIPA. Запустить процесс конфигурации интерфейса. В захваченном потоке пакетов показать, какие действия выполнялись при конфигурации интерфейса.
- Используя web-интерфейс Mikrotik, установить на нем DHCP сервер. Адреса в DHCP должны выдаваться из иного диапазона, чем тот, который был выбран в п. 4. В настройках DHCP указать, что все пакеты протокола должны передаваться в широковещательном режиме. Если в Mikrotik запущен DHCP-client, остановить его.
- 12. Запустить на host-машине Wireshark. В Astra Linux создать виртуальный интерфейс (например eth0:1), настроить его на получение сетевых настроек в автоматическом режиме. "Поднять" интерфейс, определить какой адрес был получен для назначения на сетевой интерфейс. На хост-машине отфильтровать захваченный поток пакетов так, чтобы отображались только пакеты протокола DHCP. Какие типы пакетов были захвачены? Подождать время, на которое была выдана аренда адреса (допускается в настройках DHCP сервера это время уменьшить) и показать, какие пакеты были отправлены клиентом и сервером. Остановить DHCP сервер и показать, что будет делать клиент в этом случае. Будут ли все эти пакеты видны на host-машине? Если необходимо, перезапустить Astra Linux в режиме захвата пакетов и показать полный перечень пакетов, которые появляются в этом случае.

13. Изменить конфигурацию сети в соответствии с рисунком.

- 14. На второй виртуальной машине Astra Linux сконфигурировать интерфейс так, чтобы он получал настройки автоматически. На маршрутризаторе Mikrotik установить второй DHCP сервер, чтобы он выдавал адреса из свободного диапазона, рассчитанного в п. 3. Попробовать получить сетевые настройки. Объяснить, почему не получилось.
- 15. Настроить сеть между маршрутизаторами Mikrotik в соответствии со свободным диапазоном из п. 3. Настроить на втором Mikrotik dhcp-relay агент. Запустить на host-машине Wireshark. Получить сетевые настройки для интерфейса второй виртуальной машины Astra Linux. Какие пакеты "видны" на хост машине и почему? Перезапустить виртуальную машину Astra Linux в режиме захвата пакетов и получить сетевые настройки. Указать, какие типы пакетов DHCP были отправлены.
- 16. Перезапустить маршрутизаторы Mirkotik в режиме захвата пакетов. Получить сетевые настройки на второй виртуальной машине. Показать, какие DHCP пакеты передавались между маршрутизаторами.

Выполнение работы

1. Конфигурация сети

Конфигурация, как на рисунке, уже была настроена в предыдущей практической работе. Для выполнения этой работы я отключил DHCP-сервер на адаптере VirtualBox.

2. МАС адреса сетевых интерфейсов

На хост-машине:

0A:00:27:00:00:00

Ha Astra Linux:

owner@astra:~\$ ip -c link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
link/ether 08:00:27:68:cb:e0 brd ff:ff:ff:ff:ff

Ha Mikrotik:

```
[admin@mt-01] > interface ethernet print
Flags: R - RUNNING
Columns: NAME, MTU, MAC-ADDRESS, ARP
# NAME MTU MAC-ADDRESS ARP
0 R ether1 1500 08:00:27:5E:D2:7C enabled
```

```
08:00:27:5E:D2:7C
```

3. Адресное пространство

Выделено адресное пространство 10.10.0.0/16. Маска - 255.255.0.0. Чтобы разделить на 4 подсети, фиксирую 2 старших бита в третьей части адреса. Таким образом:

- 2. 00001010.00000110.**01**000000.00000000: от 10.6.64.0 до 10.6.127.255;
- 3. 00001010.00000110.**10**0000000.000000000: от 10.6.128.0 до 10.6.191.255;
- 4. 00001010.00000110.**11**000000.000000000: от 10.6.192.0 до 10.6.255.255. При этом 10.10.*.0 будут адресами сети, а 10.10.*.255 адресами broadcast (свойдля каждой подсети). Маска станет 255.255.192.0 или /18.

4. Конфигурация сетевых интерфейсов ВМ

Установлю адаптеру адрес 10.10.0.1 с маской подсети 255.255.192.0.

VBoxManage hostonlyif ipconfig vboxnet0 --ip=10.10.0.0 --netmask=255.255.192.0

vboxnet0		10.10.0.1/18	fe80::800:27ff:fe00:0/64	Выключен
Адаптер				
Настроить адаптер автог Настроить адаптер вруч				
IPv4 адрес:	10.10.0.1			
IPv4 маска сети:	255.255.192.0			

alexeynaumov@Lenovo-Legion-5-15ARH05H-267a6435:-\$ VBoxManage hostonlyif ipconfig vboxnet0 --ip=10.10.0.0 --ne tmask=255.255.0.0

На ВМ Astra Linux отредактирую файл /etc/network/interfaces.d/eth0:

```
owner@astra:~$ cat /etc/network/interfaces.d/eth0
auto eth0
iface eth0 inet static
adress 10.10.0.2
netmask 255.255.192.0
```

Перезапущу интерфейс eth0 и убежусь, что подключение появилось:

```
owner@astra:~$ sudo ifup eth0
owner@astra:~$ ip –c a show dev eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state
link/ether 08:00:27:68:cb:e0 brd ff:ff:ff:ff:ff
inet 10.10.0.2/18 brd 10.10.63.255 scope global eth0
valid_lft forever preferred_lft forever
```

Ha BM Mikrotik выполню:

```
[admin@mt-01] > ip address add address=10.10.0.3/18 interface=ether1
[admin@mt-01] > ip address print
Columns: ADDRESS, NETWORK, INTERFACE
# ADDRESS NETWORK INTERFACE
0 10.10.0.3/18 10.10.0.0 ether1
```

Интерфейсы сконфигурированы успешно.

5. Связность хоста с ВМ

Настрою Wireshark на прослушивание интерфейса vboxnet0. Запущу ping с хоста до Astra Linux.

Сначала хост отправляет всем машинам в подсети запрос "Кто имеет адрес 10.10.0.2?", хосту отвечает ВМ Astra Linux **напрямую** и сообщает свой МАС адрес.Далее так же напрямую идут request/reply ICMP пакеты между хостом и ВМ. Затем ping до Mikrotik:

Принцип такой же, как был описан выше.

6. Связность между ВМ

Настрою Wireshark на прослушивание интерфейса vboxnet0. Запущу ping с Mikrotik до Astra Linux.

Сначала Mikrotik отправляет всем машинам в подсети запрос "Кто имеет адрес 10.6.0.2?". Поскольку ВМ Astra Linux сообщает свой МАС адрес ему **напрямую**, я не могу увидеть это при захвате пакетов, как и echo request/reply пакеты. Но по логу видно, что пакеты между ВМ принимаются и отправляются корректно.

7. Связность между ВМ, попытка номер 2

Выключу BM Astra Linux и включу логгирование пакетов на стороне гостевой машины:

```
VBoxManage modifyvm "Astra-1" --nictracel on --nictracefilel ~/Desktop/astra-1.pcap
```

Запущу Astra Linux и пропингую Mikrotik. Затем приостановлю ВМ и открою .pcap файл в Wireshark.

Те самые ARP и ICMP пакеты присутствуют. Почему поток отличается от захваченного с хоста, объяснено в п.6.

Запись потока с ВМ может понадобиться далее, поэтому запоминаю, что в конце её обязательно нужно выключить, чтобы не заполнить диск.

8. Адрес сети и Broadcast

Напомню, что адрес сети - 10.10.0.0. Если пропинговать его с хоста, можно увидеть следующие ARP пакеты:

Всем машинам в подсети с хоста отправляется запрос "Кто имеет адрес 10.10.0.0?", но так как ни одна машина не имеет такого адреса и не отвечает, то делается вывод, что конечный хост недоступен. Но что, если назначить этот адрес для интерфейса eth0 в Astra Linux?

```
[01:29:27 #10] owner@astra—1:~$ ip a show dev eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
link/ether 08:00:27:64:90:70 brd ff:ff:ff:ff:ff
inet 10.6.0.0/18 brd 10.6.63.255 scope global e
valid_lft forever preferred_lft forever
```


Обмен пакетами происходит без каких либо проблем по стандартной схеме. Адрес Broadcast для данной подсети - 10.10.63.255. Пропингую его с хоста:

Во-первых, ARP запрос не посылается, т.к. адрес пингуемого хоста совпадает с широковещательным адресом. Во-вторых, на есhо запросы не приходят ответные пакеты, и утилита ping интерпретирует это как 100% потерю пакетов. Назначу этот адрес для интерфейса eth0 в Astra Linux:

```
[01:32:17 #14] owner@astra–1:~$ ip a show dev eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
link/ether 08:00:27:64:90:70 brd ff:ff:ff:ff:ff
inet 10.6.63.255/18 brd 10.6.63.255 scope globa
valid_lft forever preferred_lft forever
```


Теперь Astra посылает ARP запрос с вопросом "Кто имеет адрес 10.6.0.1 (хост)?", но не получает ответа от хоста из-за настроек безопасности и поэтому не может отправить echo reply. Поэтому результат аналогичный - 100% потеря пакетов. Вывод - узлу можно без проблем присвоить адрес сети, но присваивание ему адреса бродкаста приведёт к трудностям и проблемам.

9. Automatic Private IP Addressing (APIPA)

Ha Astra Linux временно поменяю сетевой адаптер на NAT (для доступа в WAN) и конфигурацию eth0 на получение адреса по DHCP:

```
sudo vi /etc/network/interfaces.d/eth0:

auto eth0
iface eth0 inet dhcp
    #address10.10.0.2
    #netmask 255.255.192.0

sudo apt update
sudo apt install avahi-autoipd
```

Пакет установлен, верну виртуальный адаптер хоста.

10. Automatic Private IP Addressing (APIPA), продолжение

На Astra Linux временно поменяю конфигурацию eth0 на получение Zeroconf адреса:

```
sudo vi /etc/network/interfaces.d/eth0:

#auto eth0
iface eth0 inet ipv411
    #address 10.10.0.2
    #netmask 255.255.192.0
```

Удалю файл ~/Desktop/astra-1.pcap и перезапущу виртуальную машину. Подниму интерфейс eth0, затем приостановлю BM и открою поток в Wireshark.

```
[03:12:02 #4] owner@astra=1:~$ ip -c a show dev eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qd
    link/ether 08:00:27:64:90:70 brd ff:ff:ff:ff:ff:ff
    inet 169.254.6.235/16 brd 169.254.255.255 scope lin
    valid_ift forever preferred_lft forever
```


Сначала avahi генерирует случайный адрес 169.254.*.*, затем с помощью ARP опрашивает сеть, занят этот адрес или нет. Если адрес не занят, avahi занимает его и сообщает об этом другим узлам в сети (делает анонс).

На этом взаимодействие с APIPA в данной практической работе завершено, поэтому верну конфигурацию eth0 обратно на статический IP.

```
sudo vi /etc/network/interfaces.d/eth0:

auto eth0
iface eth0 inet static
   address 10.10.0.2
   netmask 255.255.192.0
```

11. Mikrotik DHCP Server

Зайду в веб-панель Mikrotik WebFig по адресу 10.10.0.3.

В IP * Pool добавлю следующий пул адресов от 10.10.64.1 до 10.10.127.254 (второй из п.4). То есть пространство 10.10.0.1-10.6.63.254 будет отводиться под статические подключения, а 10.10.64.1-10.6.127.254 - под динамические.

В IP * DHCP Client выключу клиент для интерфейса ether1.

		▲ Interface	Use Peer DNS	Add Default Route	IP Address	Expires After
- E	X	ether1	yes	yes		

B IP * DHCP Server * Option Sets создам пустое множество настроек **subnet2-set**. B IP * DHCP Server * Networks создам новую сеть 10.10.0.0/18 с маской 255.255.192.0, которую сервер должен будет сообщать клиенту.

В IP * DHCP Server создам новый сервер с именем **subnet2-server**. Укажу время аренды 2 минуты (позже увеличу), пул адресов **subnet2-pool**, множество настроек

subnet2-set. Также включу широковещательный режим (Always Broadcast).

12. Astra Linux DHCP Client

Запущу Astra Linux и добавлю виртуальный интерфейс eth0:1, который будет выступать DHCP клиентом.

```
sudo vi /etc/network/interfaces.d/eth0:

auto eth0
iface eth0 inet static
    address 10.10.0.2
    netmask 255.255.192.0

auto eth0:1
iface eth0:1 inet dhcp
```

Перезапущу ВМ. Дождусь, пока машина получит IP по DHCP. В Wireshark открою файл astra-1.pcap, в который записывается поток из ВМ.

Client IP address: 0.0.0.0 Your (client) IP address: 10.6.127.254 Next server IP address: 10.6.0.3

Как видно, подключение произошло успешно, машина получила адрес 10.10.127.254.

Через минуту Astra отправляет DHCPREQUEST на продление аренды, и сервер обновляет её, посылая DHCPACK пакет.

В этот раз Client IP address уже не 0.0.0.0, потому что он был выдан узлу ранее.

Затем выключу Mikrotik DHCP Server и подожду 2 минуты (полное время аренды).

```
46 242.308348 10.6.0.2
                                      10.6.0.3
                                                                     342 DHCP Request - Transaction ID 0x55f96e20
47 245.500245 10.6.0.2
                                      10.6.0.3
                                                           DHCP
                                                                     342 DHCP Request - Transaction ID 0x55f96e20
50 253.036258
                10.6.0.2
                                      10.6.0.3
                                                           DHCP
                                                                     342 DHCP Request - Transaction ID 0x55f96e20
51 260.788170
                10.6.0.2
                                      10.6.0.3
                                                           DHCP
                                                                     342 DHCP Request
                                                                                       - Transaction ID 0x55f96e20
53 270.252227
                                                           DHCP
                                                                     342 DHCP Request
                                                                                       - Transaction ID 0x55f96e20
                10.6.0.2
                                      10.6.0.3
54 270.252585
                                                                     370 Destination unreachable (Port unreachable)
                10.6.0.3
                                      10.6.0.2
57 285.548108
                                                           DHCP
                                                                     342 DHCP Request - Transaction ID 0x55f96e20
                                      10.6.0.3
58 285.548506
                                                                     370 Destination unreachable (Port unreachable)
63 301,772069
                0.0.0.0
                                      255.255.255.255
                                                           DHCP
                                                                      342 DHCP Discover - Transaction ID 0x53cbd776
                                                           DHCP
                                                                     342 DHCP Discover - Transaction ID 0x53cbd776
64 308.795979
                0.0.0.0
                                      255.255.255.255
                                      255.255.255.255
                                                           DHCP
                                                                     342 DHCP Discover - Transaction ID 0x53cbd776
```

Astra посылает запросы на продление, но сервер не отвечает. Поэтому текущее подключение пропадает, и Astra начинает посылать запросы к другим DHCP серверам, которые **возможно** находятся в сети.

Настройка завершена, выключаю запись потока BM Astra Linux, т.к. больше она не понадобится.

Изменю время аренды 60 минут для DHCP сервера Mikrotik.

13. Обновление конфигурации сетевых интерфейсов ВМ

Для начала уточню текущую конфигурацию сети:

Создам дополнительные 2 виртуальных адаптера хоста: vboxnet1 (будет верхним) и vboxnet2 (будет правым).

Соответственно, для vboxnet1 отводится адресное пространство 10.10.128.0/18.

```
VBoxManage hostonlyif ipconfig vboxnet1 --ip=10.6.128.1 --
netmask=255.255.192.0
```

Для vboxnet2 - 10.6.192.0/18.

```
VBoxManage hostonlyif ipconfig vboxnet2 --ip=10.6.192.1 --
netmask=255.255.192.0
```

Имя	▼ IPv4 префикс
vboxnet0	10.6.0.1/18
vboxnet1	10.6.128.1/18
vboxnet2	10.6.192.1/18

Создам BM Astra-2 (клон Astra-1) и подключу её к адаптеру vboxnet2. Сменю ей hostname на astra-2, чтобы не возникало путаницы.

```
hostnamectl set-hostname astra-2

sudo vi /etc/hosts:
...
127.0.1.1 astra-2
```

Текущая конфигурация:

Для RouterOS-1 добавлю vboxnet1 в качестве второго по счёту адаптера. Создам новую BM RouterOS-2 с чистой конфигурацией и подключу её к адаптерам vboxnet1 (первый по счёту) и vboxnet2 (второй по счёту). Сменю имя на mt-02, чтобы не возникало путаницы:

[admin@MikroTik] > system identity set name=mt-02
[admin@mt-02] > _

Финальная конфигурация:

Задание выполнено.

14. Astra-2 DHCP

На ВМ Astra-2 укажу, чтобы интерфейс eth0 получал IP и настройки сети по DHCP.

```
sudo ifdown eth0

sudo vi /etc/network/interfaces.d/eth0:

auto eth0
  iface eth0 inet dhcp
```

В данный момент нет смысла пытаться поднять интерфейс и получить сетевые настройки от DHCP сервера. ВМ никак не может их получить, т.к. не "видит" сервер. Это логично, ведь он находится в другой подсети. Чтобы исправить эту проблему, в п.15 будет создан DHCP Relay.

15. Связность роутеров Mikrotik

На ВМ RouterOS-1 обеспечу связность с RouterOS-2. Для этого выдам интерфейсу ether2 адрес 10.10.128.2/18.

```
[admin@mt-01] > ip address add interface=ether2 address=10.6.128.2/18
[admin@mt-01] > ip address print
Columns: ADDRESS, NETWORK, INTERFACE
# ADDRESS NETWORK INTERFACE
0 10.6.0.3/18 10.6.0.0 ether1
1 10.6.128.2/18 10.6.128.0 ether2
```

На BM RouterOS-2 обеспечу связность с RouterOS-1. Для этого выдам интерфейсу ether1 адрес 10.10.128.3/18.

```
[admin@mt-02] > ip address add interface=ether1 address=10.6.128.3/18
[admin@mt-02] > ip address print
Columns: ADDRESS, NETWORK, INTERFACE
# ADDRESS NETWORK INTERFACE
0 10.6.128.3/18 10.6.128.0 ether1
```

Машины пингуют друг друга, значит все сделано правильно:

```
[admin@mt-01] > ping 10.6.128.3
SEQ HOST
    0 10.6.128.3
    1 10.6.128.3
    2 10.6.128.3
    3 10.6.128.3
    4 10.6.128.3
    sent=5 received=5 packet-loss=0%
    max-rtt=734us
```

На BM RouterOS-2 обеспечу связность с узлами сети vboxnet2. Для этого выдам интерфейсу ether2 адрес 10.10.192.2/18.

```
[admin@mt-02] > ip address add interface=ether2 address=10.6.192.2/18
[admin@mt-02] > ip address print
Columns: ADDRESS, NETWORK, INTERFACE
# ADDRESS NETWORK INTERFACE
0 10.6.128.3/18 10.6.128.0 ether1
1 10.6.192.2/18 10.6.192.0 ether2
```

Также удалю все DHCP клиенты.

```
[admin@mt-02] > ip dhcp-client remove 0
[admin@mt-02] > ip dhcp-client print
[admin@nt-02] >
```

Зайду в веб-панель по адресу 10.10.192.2 и настрою DHCP Relay.

То есть, агент слушает DHCP запросы на интерфейсе ether2 (в подсети vboxnet2) и пересылает их серверу, который находится на RouterOS-1 в подсети vboxnet1.

Чтобы эти запросы от агента обрабатывались сервером, на RouterOS-1 в IP * Pool создаю новый пул адресов **subnet4-pool** от 10.10.192.1 до 10.10.255.254.

В IP * DHCP Server * Networks создам новую сеть 10.10.192.0/18 с маской 255.255.192.0, которую сервер должен будет сообщать клиенту. Там же создам новый DHCP сервер:

Он будет слушать запросы агента с адресом 10.10.192.2 на интерфейсе ether2.

Запущу Wireshark для адаптера vboxnet2 и попробую поднять интерфейс eth0 на машине Astra-2.

Видно только пакеты DHCP Discover и DHCP Request к агенту. Причина - узел запрашивает конфигурацию широковещательно, а relay отвечает конкретному узлу. Перезапущу Astra-2 в режиме захвата пакетов и повторю процедуру получения IP.

```
VBoxManage modifyvm "Astra-2" --nictrace1 on --nictracefile1 ~/Desktop/astra-2.pcap
```

■ dhcp						
No.	Time	Source	Destination	Protocol	Lengtl Info	
	8 11.785354	0.0.0.0	255.255.255.255	DHCP	342 DHCP	Discover
r	9 11.790520	10.6.192.2	10.6.255.254	DHCP	342 DHCP	Offer
	10 11.790859	0.0.0.0	255.255.255.255	DHCP	342 DHCP	Request
	11 11.791644	10.6.192.2	10.6.255.254	DHCP	342 DHCP	ACK

DHCP Discover от Astra-2 к RouterOS-2, затем ответ с предложением от RouterOS-2 к Astra-2.

16. Пакеты между роутерами

Перезапущу RouterOS-1 в режиме захвата пакетов и повторю процедуру получения IP на Astra-2.

```
VBoxManage modifyvm "RouterOS-1" --nictrace2 on --nictracefile2 ~/Desktop/ros-1.pcap
```

Поток с RouterOS-1:

A dhcp							
No.		Time	Source	Destination	Protocol	Lengtl Info	
г	18	38.796668	10.6.128.3	10.6.128.2	DHCP	342 DHCP	Discover
	20	39.306317	10.6.128.2	10.6.192.2	DHCP	342 DHCP	Offer
L	21	39.307993	10.6.128.3	10.6.128.2	DHCP	342 DHCP	Request
	22	39.308513	10.6.128.2	10.6.192.2	DHCP	342 DHCP	ACK

С агента (10.10.128.3) к серверу приходит пакет DHCP Discover с полем:

```
Next server IP address: 0.0.0.0

Relay agent IP address: 10.6.192.2
```

С сервера на агент отправляется пакет DHCP Offer.

С агента (10.10.128.3) к серверу приходит пакет DHCP

Request. С сервера на агент отправляется пакет DHCP ACK.

Ha Astra-2 (п.15) пакеты DHCP Offer и DHCP ACK содержат поле Next server IP address:

```
Your (client) IP address: 10.6.255.254
Next server IP address: 10.6.128.2
```

Выключу захват пакетов со всех ВМ:

```
VBoxManage modifyvm "RouterOS-1" --nictrace2 off
VBoxManage modifyvm "Astra-2" --nictrace1 off
```

Работа выполена, сеть настроена.

Вывод

Я познакомился со способами распределения IP адресов для создания подсетей, устройством и назначением MAC адресов, режимом ping-pong, ARP и ICMP пакетами, технологией **A**utomatic **P**rivate **IP A**ddressing (APIPA). С их помощью сконфигурировал работоспособную сеть из машин Mikrotik и Astra Linux со статическими и динамическими конфигурациями IP адресов.