Matthew Burke

Thursday 8th November, 2018

Lecture on Thursday 8th November, 2018

Graphical interpretation

Polar form

Multiplication

Complex roots

Last time

- Complex numbers
- Addition of complex numbers
- Multiplication of complex numbers
- Division of complex numbers

Graphical interpretation

Consider the function $\mathbb{R} \to \mathbb{R}$ that multiplies by -1:

which shows us that $-1 \times (-1 \times x) = x$.

(Imagine this as a rotation rather than reflection.)

Graphical interpretation

So how do we get a transformation that squares to -1?

So how do we get a transformation that squares to -1?

Graphical interpretation

We draw the complex number z = a + bi as the point (a, b) in \mathbb{R}^2 .

Definition

The modulus of z is its length in \mathbb{R}^2 :

$$|z| = \left| \left[\begin{array}{c} a \\ b \end{array} \right] \right| = \sqrt{a^2 + b^2}$$

Complex addition is defined component-wise:

$$(a+ib)+(c+id) = (a+c)+(b+d)i$$

and therefore has the same graphical interpretation as the addition of vectors in \mathbb{R}^2 .

Graphical interpretation of multiplication

Next section.

Conjugate

Definition (Conjugate)

lf

$$z = a + bi$$

then

$$\overline{z} = a - bi$$

Let z and w be complex numbers.

- $\overline{z+w}=\overline{z}+\overline{w}$
- $ightharpoonup (zw) = \overline{z} \overline{w}.$
- $ightharpoonup (\overline{z}) = z$.
- $\overline{\left(\frac{z}{w}\right)} = \frac{\bar{z}}{\bar{w}}$.
- ightharpoonup z is real if and only if $\overline{z} = z$.

If z = a + bi, then

$$z\overline{z} = (a+bi)(a-bi) = a^2 + b^2.$$

Questions?

Questions?

Examples

Example

- |-3+4i|
- ► |3 2i|
- **▶** |*i*|

Example

- $ightharpoonup \overline{3+4i}$
- ightharpoonup -2+5i
- ▶ 7

Polar form

We can describe a point in the plane in terms of an angle and magnitude. By convention we let θ range between

$$-\pi < \theta \le +\pi$$

and if R = 0 we say the ⇒angle is undefined.

Converting from polar to Cartesian

If we have R and θ then:

$$x = R\cos\theta$$

$$y = R \sin \theta$$

(and if R = 0 then x = 0and y = 0).

Examples

Example

- ▶ (1,0) has R = 1 and $\theta = 0$.
- \blacktriangleright (0,1) has R=1 and $\theta=\frac{\pi}{2}$.
- ▶ (0,-1) has R=1 and $\theta=\frac{-\pi}{2}$.
- ▶ (1,1) has $R = \sqrt{2}$ and $\theta = \frac{\pi}{4}$.
- ▶ $(1, \sqrt{3})$ has R = 2 and $\theta = \frac{\pi}{3}$.

If we are given Cartesian co-ordinates (x, y) then

$$R = \sqrt{x^2 + y^2}$$

and we would like to use

$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$

but unfortunately it only works when x > 0.

- ▶ If x < 0 we should draw a picture.
- What we do depends on what quadrant the point is in.
- In general work out in terms of an acute angle.

Top left

If x < 0 and y > 0 then

$$\pi - \theta = \tan^{-1} \left(\frac{y}{|x|} \right)$$
$$= \tan^{-1} \left(\frac{y}{-x} \right)$$
$$= -\tan^{-1} \left(\frac{y}{x} \right)$$

and so

$$\theta = \tan^{-1}\left(\frac{y}{x}\right) + \pi$$

If x < 0 and y < 0 then

$$\pi + \theta = \tan^{-1} \left(\frac{|y|}{|x|} \right)$$
$$= \tan^{-1} \left(\frac{-y}{-x} \right)$$
$$= \tan^{-1} \left(\frac{y}{y} \right)$$

and so

$$\theta = \tan^{-1}\left(\frac{y}{x}\right) - \pi$$

If
$$x = 0$$
 and $y > 0$ then $\theta = \frac{\pi}{2}$.

▶ If
$$x = 0$$
 and $y < 0$ then $\theta = \frac{-\pi}{2}$.

▶ If x = 0 and y = 0 then θ is undefined.

▶ If x < 0 and y = 0 then $\theta = \pi$.

Relationship to complex numbers

Converting between polar and Cartesian forms gives an alternative representation of a complex number:

$$x + iy \leftrightarrow R\cos\theta + R\sin\theta i$$

Theorem (Euler formula)

$$e^{\theta i} = \cos \theta + \sin \theta i$$

and so every complex number can be written as:

$$x + iy \leftrightarrow e^{\theta i}$$

the LHS is called standard form and the RHS polar form.

Questions?

Questions?

Example

Convert the following to polar form:-

- ► $-2 + 2\sqrt{3}i$
- **▶** 3*i*
- ► -1 i
- ► $\sqrt{3} + 3i$

Example

Convert the following to standard form:-

- $ightharpoonup 2e^{\frac{2\pi i}{3}}$
- $ightharpoonup 3e^{-i\pi}$
- $ightharpoonup 2e^{\frac{3i\pi}{4}}$

Multiplication •000

Multiplication

Graphical interpretation of complex numbers

If we multiply $z = Re^{i\theta}$ and $w = Qe^{i\phi}$:

$$zw = Re^{i\theta}Qe^{i\phi} = (RQ)e^{i(\theta+\phi)}$$

Slogan: To multiply two complex numbers we multiply the moduli and add the angles.

Theorem (De Moivre Theorem)

$$(\cos \theta + i \sin \theta)^n = (e^{i\theta})^n = e^{in\theta} = \cos(n\theta) + i \sin(n\theta)$$

Questions?

Questions?

Examples

Example

Express $(1-i)^6(\sqrt{3}+i)^3$ in the form a+bi.

Example

Express $(\frac{1}{2} - \frac{\sqrt{3}}{2}i)^{17}$ in the form a + bi.

Complex roots

If $w = Re^{i\theta}$ then one solution to the equation

$$z^n = w$$

is

$$z = \sqrt[n]{R} \cdot e^{\frac{i\theta}{n}}$$

although there will in fact be n-1 more solutions.

The solutions to

$$z^2 = 25$$

are

$$z = +5$$
 and $z = -5$

Square roots

In general if $w = Re^{i\theta}$ then all of

$$\sqrt{R}e^{i\left(\frac{\theta}{2}+k\pi\right)}$$

will be square roots of w because

$$\left(\sqrt{R}e^{i\left(rac{ heta}{2}+k\pi
ight)}
ight)^2=Re^{i(heta+2k\pi)}=Re^{i heta}$$

and then we need to find the values of

$$\frac{\theta}{2} + k\pi$$

that are between $-\pi$ and $+\pi$.

Questions?

Questions?

Examples

Example

Find all solutions to the following equations:

- ightharpoonup 2 = 25.
- Find all solutions to $z^2 = -1$
- Find all solutions to $z^2 = e^{\frac{i\pi}{4}}$
- Find all solutions to $z^3 = i$. (Write in Cartesian form.)
- ► Find all solutions to $z^4 = 2(\sqrt{3}i 1)$. (Write in Cartesian form.)

Example

Find all sixth roots of unity.

Summary

- Polar form
- Euler's Identity
- Converting between polar and Cartesian form
- Using polar form for multiplication (De Moivre) slogan
- Roots of complex numbers using de Moivre
- ▶ Build up first with square roots, then cube roots and finally 4th roots. (Picture at each turn.)
- ► General *n*th case.
- Picture of sixth roots of unity.