Logistic Regression

Code ▼

Hide

library(car)
library(mlogit)

Hide

df<- read.delim('/home/atrides/Desktop/R/statistics_with_R/08_LogisticRegres
sion/Data_Files/eel.dat', header=TRUE)</pre>

listing all columns in data frame
names(df)

[1] "Cured" "Intervention" "Duration"

Hide

checking whether the passed columns ae factor or not print(is.factor(df\$Cured))

[1] FALSE

Hide

print(is.factor(df\$Intervention))

[1] FALSE

Hide

converting column to a factor
df\$Cured<- as.factor(df\$Cured)
df\$Intervention<- as.factor(df\$Intervention)</pre>

Default factors were not suitable. So refactoring the revels
df\$Cured<- relevel(df\$Cured, "Not Cured")
df\$Intervention<- relevel(df\$Intervention, "No Treatment")</pre>

Hide

```
# fitting the model
# newModel<-glm(outcome ~ predictor(s), data = dataFrame, family = name of a</pre>
distribution, na.action = an action)
m01<- glm(Cured~Intervention, data=df, family = binomial())</pre>
m02<- glm(Cured~Intervention+Duration, data=df, family = binomial())
m00<- glm(Cured~1, data=df, family = binomial())</pre>
                                                                          Hide
# printing summary
print(summary(m00))
Call:
glm(formula = Cured ~ 1, family = binomial(), data = df)
Deviance Residuals:
  Min 10 Median
                            30
                                   Max
-1.309 -1.309 1.052
                        1.052
                                 1.052
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.3032
                         0.1903
                                  1.593
                                           0.111
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 154.08 on 112 degrees of freedom
Residual deviance: 154.08 on 112 degrees of freedom
AIC: 156.08
Number of Fisher Scoring iterations: 4
                                                                          Hide
```

```
print(summary(m01))
```

```
Call:
glm(formula = Cured ~ Intervention, family = binomial(), data = df)
Deviance Residuals:
   Min
         10
                Median
                             30
                                     Max
-1.5940 -1.0579 0.8118 0.8118
                                  1.3018
Coefficients:
                       Estimate Std. Error z value Pr(>|z|)
(Intercept)
                        -0.2877 0.2700 -1.065 0.28671
InterventionIntervention 1.2287
                                 0.3998 3.074 0.00212 **
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 154.08 on 112 degrees of freedom
Residual deviance: 144.16 on 111 degrees of freedom
AIC: 148.16
Number of Fisher Scoring iterations: 4
```

```
print(summary(m02))
```

```
Call:
glm(formula = Cured ~ Intervention + Duration, family = binomial(),
    data = df
Deviance Residuals:
   Min
             10
                               30
                                       Max
                  Median
-1.6025 -1.0572 0.8107 0.8161
                                    1.3095
Coefficients:
                         Estimate Std. Error z value Pr(>|z|)
                        -0.234660 1.220563 -0.192 0.84754
(Intercept)
InterventionIntervention 1.233532
                                    0.414565 2.975 0.00293 **
Duration
                         -0.007835 0.175913 -0.045 0.96447
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 154.08 on 112 degrees of freedom
Residual deviance: 144.16 on 110 degrees of freedom
AIC: 150.16
Number of Fisher Scoring iterations: 4
                                                                        Hide
# Accessing some other statistics of our Logmodel
print(m01$null.deviance)
[1] 154.084
                                                                        Hide
print(m01$deviance)
[1] 144.1578
                                                                        Hide
print(m01$coefficients)
             (Intercept) InterventionIntervention
              -0.2876821
                                       1.2286654
                                                                         Hide
```

to see what all statistics are there , we could do as follows names(m01)

[1] "coefficients" "R"	"residuals"	"fitted.values"	"effects"
[6] "rank" dictors" "deviance"	"qr"	"family"	"linear.pre
[11] "aic" "prior.weights"	"null.deviance"	"iter"	"weights"
[16] "df.residual" "boundary"	"df.null"	"у"	"converged"
[21] "model" "data"	"call"	"formula"	"terms"
[26] "offset" "xlevels"	"control"	"method"	"contrasts"

Hide

getting some critical statistics, model chi square and its significance
modelChi<- m01\$null.deviance - m01\$deviance
modelChi</pre>

[1] 9.926201

Hide

chidf<- m01\$df.null-m01\$df.residual
chidf</pre>

[1] 1

Hide

feeding model chi square and its degree of freedom to calculate the p valu
e
chisq.prob<- 1-pchisq(modelChi , chidf)
chisq.prob</pre>

[1] 0.001629425

Hide

 $\mbox{\#}$ Note: we reject the null model that our model 'm01' is not better than just chance to predict outcome

Hide

```
# Now we will calculate various different R and R^2
R<- sqrt((3.074^2-2*1)/m01$null.deviance)
[1] 0.2198792
                                                                             Hide
pseudoRsquared<- function(m){</pre>
  dev<- m$deviance
  nulldev<- m$null.deviance
  n<- length(m$fitted.values)</pre>
  R2 hl<- 1-dev/nulldev
  R2 cs<- 1-exp(-(nulldev-dev)/n)
  R2 n<- R2 cs/(1-(\exp(-(\text{nulldev/n}))))
  cat("Pseudo R^2 for logistic regression: \n")
  cat("Hosmer and Lemeshow R^2: ", round(R2_hl, 3), "\n")
  cat("Cox and Snell R^2: ", round(R2 cs ,3), "\n")
  cat("Nagelkerke R^2: ", round(R2 n, 3),"\n")
}
pseudoRsquared(m01)
Pseudo R^2 for logistic regression:
Hosmer and Lemeshow R^2: 0.064
Cox and Snell R^2: 0.084
Nagelkerke R^2: 0.113
                                                                             Hide
# odds Ratio
exp(m01$coefficients)
             (Intercept) InterventionIntervention
                0.750000
                                          3,416667
                                                                             Hide
# confidence interval of these odds, as it doesn't cross 1 , so it says as i
ntervention is done odds of
# being cured increases
exp(confint(m01))
Waiting for profiling to be done...
```

```
2.5 % 97.5 % (Intercept) 0.4374531 1.268674 InterventionIntervention 1.5820127 7.625545
```

```
\# Model 2 , Intervention and Duration as predictor summary(m02)
```

```
Call:
glm(formula = Cured ~ Intervention + Duration, family = binomial(),
   data = df
Deviance Residuals:
   Min
             10
                 Median
                               30
                                      Max
-1.6025 -1.0572 0.8107 0.8161
                                   1.3095
Coefficients:
                         Estimate Std. Error z value Pr(>|z|)
(Intercept)
                        -0.234660
                                   1.220563 -0.192 0.84754
InterventionIntervention 1.233532
                                   0.414565 2.975 0.00293 **
                        -0.007835
Duration
                                   0.175913 -0.045 0.96447
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 154.08 on 112 degrees of freedom
Residual deviance: 144.16 on 110 degrees of freedom
AIC: 150.16
Number of Fisher Scoring iterations: 4
```

Hide

```
modelChi<- m01$deviance - m02$deviance
chidf<- m01$df.residual - m02$df.residual
chisq.prob<- 1 - pchisq(modelChi, chidf)
chisq.prob</pre>
```

```
[1] 0.9644765
```

Hide

from above chisq.prob , we can conclude that model 2 is not such an improvement over model 1

```
Hide
```

also doing anova
anova(m01, m02)

Analysis of Deviance Table

Model 1: Cured ~ Intervention

Model 2: Cured ~ Intervention + Duration

Resid. Df Resid. Dev Df Deviance

1 111 144.16

2 110 144.16 1 0.0019835

Hide

```
# Doing casewise diagnostics
df$predicted.probablities<- fitted(m01)
df$standarized.residuals<- rstandard(m01)
df$studentized.residuals<- rstudent(m01)
df$dfbeta<- dfbeta(m01)
df$dffits<- dffits(m01)
df$leverage<- hatvalues(m01)</pre>
```

Hide

by seeing the residuals we can see that none of the case to be seem an ou tlier head(df[order(-df\$standarized.residuals),]\$standarized.residuals, 10)

[1] 1.313547 1.313547 1.313547 1.313547 1.313547 1.313547 1.313547 1.313547

Hide

all cases have DFBetas less than 1, and leverage statistics are very close to the calculated expected value of 0.018.

All in all, this means that there are no influential cases having an effect on the model.

The studentized residuals all have values of less than ± 2 and so there see ms to be very little here to concern us.

Hide

8 of 14

```
# Another Example
data<- read.delim('/home/atrides/Desktop/R/statistics_with_R/08_LogisticRegr
ession/Data Files/penalty.dat', header=TRUE)
head(data)
                                                                             Hide
# checking if Scored is a factor or not
is.factor(data$Scored)
[1] FALSE
                                                                             Hide
# it is not, so
data$Scored<- as.factor(data$Scored)</pre>
names(data)
                "Anxious" "Previous" "Scored"
[1] "PSWQ"
                                                                             Hide
m01<- glm(Scored~PSWQ+Previous, data=data, family=binomial())</pre>
m02<- glm(Scored~PSWQ+Previous+Anxious, data=data, family=binomial())</pre>
anova(m01, m02)
Analysis of Deviance Table
Model 1: Scored ~ PSWQ + Previous
Model 2: Scored ~ PSWO + Previous + Anxious
  Resid. Df Resid. Dev Df Deviance
1
         72
                48.662
2
         71
                47.416 1
                             1.2463
                                                                             Hide
print(summary(m01))
```

```
Call:
glm(formula = Scored ~ PSWQ + Previous, family = binomial(),
   data = data
Deviance Residuals:
   Min
             10
                 Median
                             30
                                     Max
-2.2212 -0.3306 0.1038 0.5046
                                  1.6067
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.28031
                     1.67017 0.767 0.44333
                      0.07983 -2.882 0.00395 **
PSW0
          -0.23009
Previous 0.06480
                     0.02209 2.934 0.00335 **
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 103.638 on 74 degrees of freedom
Residual deviance: 48.662 on 72 degrees of freedom
AIC: 54.662
Number of Fisher Scoring iterations: 6
```

```
print(summary(m02))
```

```
Call:
glm(formula = Scored ~ PSWQ + Previous + Anxious, family = binomial(),
   data = data
Deviance Residuals:
    Min
                                  30
               10
                    Median
                                           Max
-2.31374 -0.35996
                    0.08334
                              0.53860
                                       1.61380
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -11.49256 11.80175 -0.974 0.33016
PSW0
            -0.25137
                        0.08401 -2.992 0.00277 **
Previous
            0.20261
                        0.12932 1.567 0.11719
             0.27585
                        0.25259 1.092 0.27480
Anxious
- - -
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 103.638 on 74 degrees of freedom
Residual deviance: 47.416 on 71 degrees of freedom
AIC: 55.416
Number of Fisher Scoring iterations: 6
```

```
modelChi1<- m01$null.deviance - m01$deviance
chidf1<- m01$df.null - m01$df.residual
chisq.prob1<- 1- pchisq(modelChi1, chidf1)
chisq.prob1</pre>
```

```
[1] 1.1533e-12
```

Hide

```
# the chisquare probability 'chisq.prob1' value is less than 0.05 which tell
s that this
# model was quite an improvement over a null model(i.e just chance)
```

Hide

```
\# Now we will see whether model 2 is any improvement over model 1
modelChi2<- m01$deviance - m02$deviance</pre>
chidf2<- m01$df.residual - m02$df.residual
chisq.prob2<- 1-pchisq(modelChi2, chidf2)</pre>
chisq.prob2
[1] 0.2642667
                                                                             Hide
# the chisquare probability 'chisq.prob2' value is greater than 0.05 , which
tells that this
# model(i.e m02) was a improvement over m01 , just by chance.
                                                                            Hide
# dataframe of studentized residuals
df resid<- rstudent(m01)</pre>
# printing the head, i.e top 10 residuals
head(df resid[order(-df resid)], 10)
                 14
                            32
                                      13
                                                  2
                                                            3
                                                                      28
33
           1
                    27
1.6882430 1.5949348 1.4174228 1.4170369 1.3540485 1.2509617 1.2509617 1.1185
592 0.8917579 0.8907728
                                                                             Hide
# now , we will head to model m02, for assumption checking
# Testing for multicollinearity
# vif
vif(m02)
    PSWQ Previous Anxious
  1.0898 35.2270 35.5820
                                                                             Hide
# tolerance
1/vif(m02)
      PSWQ
             Previous
                          Anxious
0.91759956 0.02838732 0.02810410
```

 $\mbox{\#}$ from the output of $% \mbox{\ vif}$ and tolerance , we can deduce that there is a high multicollinearity in our model

Hide

checking correlation between different independent variables
cor(data[, cbind('PSWQ', 'Anxious', 'Previous')])

```
PSWQ Anxious Previous
PSWQ 1.0000000 0.6516416 -0.6435448
Anxious 0.6516416 1.0000000 -0.9928699
Previous -0.6435448 -0.9928699 1.0000000
```

Hide

from the above table , the correlation b/w Anxious and Previous is very high, thus leading to high multicollinearity

Hide

```
# Testing for linearity of logit
data$logPSWQ<- data$PSWQ * log(data$PSWQ)
data$logAnxious<- data$Anxious * log(data$Anxious)
data$logPrevious<- data$Previous * log(data$Previous)
head(data)</pre>
```

Hide

```
\label{eq:m03} \begin{tabular}{ll} m03<- & glm(Scored~PSWQ+logPSWQ+Anxious+logAnxious+Previous+logPrevious, data=data, family=binomial()) \\ & summary(m03) \end{tabular}
```

```
Call:
glm(formula = Scored ~ PSWQ + logPSWQ + Anxious + logAnxious +
   Previous + logPrevious, family = binomial(), data = data)
Deviance Residuals:
                 Median
   Min
             10
                              30
                                     Max
-2.0685 -0.3846
                 0.1116 0.5460
                                   1.8272
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.87885 14.92410 -0.260
                                        0.795
           -0.42233
PSW0
                     1.10267 -0.383
                                        0.702
logPSWQ
          0.04393 0.29675 0.148
                                        0.882
Anxious
           -2.64485 2.79702 -0.946
                                        0.344
logAnxious 0.68077
                     0.65277 1.043
                                        0.297
            1.66601
                     1.48202 1.124
Previous
                                        0.261
logPrevious -0.31855 0.31731 -1.004
                                        0.315
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 97.283 on 70 degrees of freedom
Residual deviance: 45.909 on 64 degrees of freedom
  (4 observations deleted due to missingness)
AIC: 59.909
Number of Fisher Scoring iterations: 7
```

```
# From the summary output , if any interaction term has significance less th
an 0.05 , it will mean that assumption
# of linearity has been violated. In our output we can conclude that the ass
umption of linearity has been met as all
# interaction term is non-significant
```