UNIVARIATE, BIVARIATE, MULTIVARIATE ANALYSIS

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [2]: df =pd.read_csv('https://raw.githubusercontent.com/uiuc-cse/data-fa14/g
h-pages/data/iris.csv')
```

```
In [3]: df.head()
```

Out[3]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

```
In [4]: df.shape
```

Out[4]: (150, 5)

Univariate Analysis

```
In [9]: df_setosa = df.loc[df['species']=='setosa']
In [10]: df_virginica=df.loc[df['species']=='virginica']
```

```
In [18]: plt.plot(df_setosa['sepal_length'],np.zeros_like(df_setosa['sepal_length']),'o')
    plt.plot(df_virginica['sepal_length'],np.zeros_like(df_virginica['sepal_length']),'o')
    plt.plot(df_versicolor['sepal_length'],np.zeros_like(df_versicolor['sepal_length']),'o')
    plt.xlabel('petal_length')
    plt.show()
```


Bivariate Analysis

Multivariate Analysis

