第三章 细胞的代谢

- 一、细胞与能量
- 二、呼吸作用
- 三、光合作用
- 四、生物固氮作用

上一页)(下一页

一、细胞与能量

- 生命活动需要能量
- 生命的存在要靠能量,生物本身 不能创造新的能量。
- 生命世界能量的最初来源是光能。
- 生态系统中能量的流动是由多样 化的生命过程完成的。
- 代谢是化学物质和能量的转化过程
- 物质和能量的转化在细胞内完成

(一) 生物有序性与自由能

自由能:一种能在恒温恒压下作功的能量。

G=H-TS

G-自由能, H-热含量, T-绝对温度, S-熵

热力学第二定律: 所有自发过程总是伴随自由能的降低, 即熵的增加, 系统的无序性增大!

生物有序性

生物----开放系统,与环境进行物质与能量的交换

生命依靠能量的不断输入一直在与热力学第二定律作抗争。

(二) ATP的结构与功能

1. 腺嘌呤核苷三磷酸(ATP)

ATP水解时,一个高能磷酸键 断裂同时释放出能量

ATP +
$$H_2O$$
 \longrightarrow ADP+ P_i
 $\triangle G = -33.44 \text{ KJ/mol}$

上一页

下一页

本章目录

总目录

2. ATP的生成

ADP + P \longrightarrow ATP

此过程称为磷酸化

若磷酸化所需能量来自化合物的氧化分解-----氧化磷酸化

若磷酸化所需能量来自光能----光合磷酸化

上一页

本章目录

总目录

3. ATP的生理功能

◆ ATP是生物体内各种 生化反应的直接能源。

◆ 细胞利用ATP完成各种工作, ATP是细胞中的"能量货币"。

上一页)(下一

本章目录

总目录

例: Ca²⁺的 跨膜运输

上一页 下一

本章目录

总目录

活细胞是一个微小的化学工业园

- 在极其微小的空间内发生着数千种生物化学反应
- 代谢是生物体内所有化学反应过程的总称
- 细胞复杂的结构特别是膜的结构固定了各代谢反应的空间和时间,使它们高度有序并可以被控制和调节。

代谢途径就像复杂道路交通图

上一页

下一页

本章目录

总目录

二、呼吸作用

细胞呼吸---是生物体通过生物氧化获取化学能的过程。

有机化合物+0₂→C0₂+能量

不同于呼吸运动, 但通常意义的呼吸运 动与细胞呼吸是相互 关联的。

上一页

下一页

本章目录

总目录

生物氧化

生物氧化--糖、脂、蛋白等有机物在活细胞内氧化分解,并释放能量的过程。

生物氧化与化学氧化的区别:

生物氧化分步骤进行;温和;由酶催化;产生能量贮存在ATP中;能量利用率高。

(一) 无氧呼吸

1. 糖酵解

由葡萄糖分解形成丙酮酸的一系列反应。

葡萄糖氧化的第一阶段。

葡萄糖十2NAD+2ADP+2Pi----2 丙酮酸+2ATP+2NADH+2H+H20

乳酸或乙醇等

进入线粒体进一步氧化为CO₂和H₂O,释放更多能量

糖酵解过程

上一页

下一页

本章目录

总目录

2. 发酵途径

1)酒精发酵

糖酵解产生的丙酮酸最终生成酒精和二氧化碳 酵母、植物细胞(例:酿酒、劳糟)

2) 乳酸发酵

糖酵解产生的丙酮酸最终生成乳酸 乳酸菌、高等动物细胞(例:泡菜、人剧烈运动)

生命科学学院普通生物学课程组

总目录

人体细胞的呼吸过程

》 慢跑,细胞消耗氧气来 分解葡萄糖并获得能量, 同时产生二氧化碳和水

快跑,细胞将葡萄糖分解成乳酸和二氧化碳

(二)有氧呼吸(线粒体内)

丙酮酸 氧化脱羧 乙酰辅酶A+CO₂+NADH + H+。 _{进入}

1. 柠檬酸循环[三羧酸循环(TCA循环)、Krebs循环] 是乙酰CoA脱羧、脱氢最终生成 CO₂的过程

柠檬酸循环是三大物质代谢的中心

上一页)(「

下一页

本章目录

总目录

2. 电子传递和氧化磷酸化

1) 电子传递链

线粒体内膜上的一系列电子传递体组成,也称为呼吸链。 目前公认的氧化呼吸链传递电子的顺序是:

底物(S) \rightarrow NAD+ \rightarrow FMN \rightarrow CoQ \rightarrow Fe-S \rightarrow Cytb \rightarrow Cytc₁ \rightarrow Cytc \rightarrow Cyta \rightarrow Cyta₃ \rightarrow 1/20₂

2) 氧化磷酸化

由物质氧化释放能量,供给ADP磷酸化合成ATP的偶联反应称为氧化磷酸化。

能量统计

1分子葡萄糖彻底氧化分解共得: 30或32个ATP

上一页

下一页

本章目录

总目录

三、光合作用

(一) 光合作用的发现和概念

$$6CO_2 + 12H_2O$$
 绿色植物 $C_6H_{12}O_6 + 6O_2 + 6H_2O$

绿色植物的光合作用可吸收CO₂,放出O₂ 细菌的光合作用是不产O₂的。

光合作用的早期研究

泥土仅减少0.1kg

树重76.7kg

显微镜 气孔

1770年英国牧师

Priestley

大玻璃罩 老鼠 蜡烛

上一页

下一页

本章目录

总目录

普通生物学CAI课件

1941年

证明: H₂0光解放出0₂

上一页

下一页

本章目录

总目录

叶绿体和光合膜

上一页

下一页

本章目录

总目录

(二) 光合作用的简单机理

1. 光合色素与光系统

光合色素: 作用中心色素, 少数叶绿素a分子

聚光色素--叶绿素a、叶绿素b、胡萝卜素

总目录

光系统: 由叶绿素分子及其蛋白复合物、天线色素系统和

电子受体等组成的功能单位。

光系统I(PSI)含有被称为"P700"的高度特化的叶绿素a 光系统II(PSII)含有被称为"P680"高度特化的叶绿素a

■光合色素

叶绿素a,

叶绿素b,

胡萝卜素,

叶黄素,

藻胆素等

叶绿素a启动光 反应

上一页 下一页 本章目录 总目录 生命科学学院普通生物学课程组

普通生物学CAI课件

叶绿素分子被可见光激发,在光子驱动下发生得失电子反应——光化学反应。

上一页

下一页

本章目录

总目录

2. 光合作用的过程

光反应:

光的吸收、传递和转化(生成ATP和NADPH)。(在类囊体膜上进行)

暗反应:

用光反应所形成的能量(ATP和NADPH), 将二氧化碳合成糖类。(在叶绿体基质中进行)

上一页

下一页

本章目录

总目录

二氧化碳同化的途径

- 1. 卡尔文循环: 是所有植物光合作用碳同 化的基本途径
- 2. C₄途径:二氧化碳先被固定再进入卡尔 文循环
 - 3. 景天科植物酸代谢

水稻叶

请指出: 图中的错误在哪里?

植 特点

景天科 石莲花属 红柏莲

3. 光呼吸

光呼吸:绿色植物在光照条件下吸收氧气,放出二氧化碳的过程,与光合作用密切联系。

泉目录

(三) 原核生物的光合作用

某些细菌利用无机物氧化释放的化学能将 CO2和水合成有机物的过程----化能合成作用

如:

硫细菌

硝化细菌

氢细菌

(四)光能利用效率

光能利用率: 是单位面积上植物光合作用累积的 有机物质所含能量与照射在同一地面上日光能 量的比率。

四、生物固氮作用

- 构成作物体内蛋白质和酶的主要成分。蛋白质又是原生质的主要组成成分,而原生质是一切生命活动的基础。
- 叶绿素的重要组成成分。缺乏氮元素叶绿素的数量就会减少,叶色退绿浅黄,光合作用减弱,光合产物减少。当氮元素供应充足时,作物的营养体和叶面积增加,叶绿素含量高,叶色显的农绿,光合作用旺盛,提高农作物的产量,进一步改善产品的质量。

生物固氮: 固氮微生物将分子态氮还原为氨的过程。 是由固氮酶催化的耗能反应。

固氮微生物:自生固氮微生物(有的放线菌) 共生固氮微生物 根瘤菌(与豆科植物根共生) 鱼腥藻(与红浮萍共生)

••••

共生固氮体系

鱼腥藻

红浮萍

上一页

下一页

本章目录

总目录

生物固氮研究目标

- 1) 有效利用自然界的生物固氮作用
- 2) 通过化学模拟,提高工业固氮的效率

本學和

上一页

下一页

本章目录

总目录

上一页

下一页

本章目录

总目录

普通生物学CAI课件

上一页

下一页

本章目录

总目录

电子传递链及结果

上一页

下一页

本章目录

总目录

底物水平磷酸化

上一页

下一页

本章目录

总目录

光合作用全程浏览

上一页

下一页

本章目录

总目录

光合作用示意图

光反应阶段

暗反应阶段

上一页

下一页

本章目录

总目录

光合磷酸化途径和电子传递链

上一页

下一页

本章目录

总目录

暗反应

 $12NADPH+12H^{+}+18ATP+6CO_{2} \longrightarrow C_{6}H_{12}O_{6}+12NADP^{+}+18ADP+18Pi$

Calvin循环: 叶绿体基 质中不断消耗ATP和 NADPH, 固定CO。形成葡 萄糖的循环反应

固定3分子二氧化碳需 要9个ATP和6个NADPH

上一页 下一页

本章目录 总目录

光呼吸

上一页

下一页

本章目录

总目录