Scilab Textbook Companion for Thermodynamics by Obert¹

Created by
Chaitanya Potti
Chemical Engineering
Chemical Engineering
IIT Bombay
College Teacher
Na
Cross-Checked by
Lavitha Pereira

June 1, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Thermodynamics

Author: Obert

Publisher: McGraw Hill

Edition: 3

Year: 1987

ISBN: 0486603611

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Survey of dimensions and units	5
2	Fundamental concepts	8
3	The first law	10
4	The reversible process	12
5	The second law	13
6	Properties of fluids	18
7	Characteristics of gases	24
8	Approximate calculations for real gases	29
9	The flow of fluids	39
10	Mixtures of gases and vapors	50
11	Thermochemical calculations	66
12	Power cycles vapor	7 9
13	Power cycles gas	89
14	Refrigeration	93

List of Scilab Codes

Exa 1.1	Example 1												5
Exa 1.2	Example 2												5
Exa 1.3	Example 3												6
Exa 1.4	Example 4												6
Exa 1.5	Example 5												6
Exa 1.6	Example 6												7
Exa 2.1	Example 1												8
Exa 2.3	Example 2												8
Exa 3.1	Example 1												10
Exa 3.2	Example 2												11
Exa 4.2	Example 1												12
Exa 5.1	Example 1												13
Exa 5.2	Example 2												13
Exa 5.3	Example 3												14
Exa 5.4	Example 4												15
Exa 5.5	Example 5												15
Exa 5.7	Example 6												16
Exa 5.8	Example 7												16
Exa 6.1	Example 1												18
Exa 6.2	Example 2												18
Exa 6.3	Example 3												19
Exa 6.4	Example 4												19
Exa 6.5	Example 5												20
Exa 6.6	Example 6												20
Exa 6.7	Example 7												21
Exa 6.8	Example 8												21
Exa 6.10	Example 9												22
Eva 6.11	Example 10												23

Exa 7.2	Example 1												24	
Exa 7.3	Example 3												24	
Exa 7.4	Example 4												25	
Exa 7.5	Example 5												25	
Exa 7.6	Example 6												26	
Exa 7.7	Example 7												26	
Exa 7.8	Example 8												27	
Exa 7.9	Example 9												27	
Exa 8.1	Example 1												29	
Exa 8.2	Example 2												29	
Exa 8.3	Example 3												30	
Exa 8.4	Example 4												30	
Exa 8.5	Example 5												31	
Exa 8.7	Example 7												31	
Exa 8.8	Example 8												32	
Exa 8.9	Example 9												32	
Exa 8.10	Example 10												33	
Exa 8.11	Example 11												33	
Exa 8.12	Example 12												34	
Exa 8.13	Example 13												35	
Exa 8.14	Example 14												36	
Exa 8.15	Example 15												36	
Exa 8.16	Example 16												37	
Exa 9.1	Example 1												39	
Exa 9.2	Example 2												40	
Exa 9.3	Example 3												40	
Exa 9.4	Example 4												41	
Exa 9.5	Example 5												42	
Exa 9.6	Example 6												43	
Exa 9.8	Example 8												43	
Exa 9.9	Example 9												44	
Exa 9.10	Example 10												45	
Exa 9.11	Example 11												45	
Exa 9.12	Example 12												46	
Exa 9.13	Example 13												47	
Exa 9.14	Example 14												47	
Exa 9.15	Example 15												48	
Eva 0 16	Evample 16												18	

Exa 9.17	Example 17												49
Exa 10.1	Example 1												50
Exa 10.2	Example 2												51
Exa 10.3	Example 3												52
Exa 10.4	Example 4												53
Exa 10.5	Example 5												53
Exa 10.6	Example 6												54
Exa 10.7	Example 7												54
Exa 10.8	Example 8												55
Exa 10.9	Example 9												56
Exa 10.10	Example 10												57
Exa 10.11	Example 11												57
Exa 10.12	Example 12												58
Exa 10.13	Example 13												59
Exa 10.14	Example 14												59
Exa 10.15	Example 15												60
Exa 10.16	Example 16												60
Exa 10.17	Example 17												61
Exa 10.18	Example 18												61
Exa 10.19	Example 19												62
Exa 10.20	Example 20												63
Exa 10.21	Example 21												64
Exa 11.1	Example 1												66
Exa 11.2	Example 2												66
Exa 11.3	Example 3												67
Exa 11.4	Example 4												67
Exa 11.5	Example 5												68
Exa 11.6	Example 6												68
Exa 11.7	Example 7												69
Exa 11.8	Example 8												69
Exa 11.9	Example 9												70
Exa 11.10	Example 10												70
Exa 11.11	Example 11												71
Exa 11.12	Example 12												72
Exa 11.13	Example 13												72
Exa 11.14	Example 14												72
Exa 11.15	Example 15												73
Eva 11 16	Evample 16												7/

Exa 11.17	Example 17													74
Exa 11.18	Example 18													75
Exa 11.19	Example 19													75
Exa 11.20	Example 20													76
Exa 11.21	Example 21													76
Exa 11.22	Example 22													77
Exa 11.23	Example 23													78
Exa 12.1	Example 1													79
Exa 12.2	Example 2													80
Exa 12.3	Example 3													81
Exa 12.4	Example 4													82
Exa 12.5	Example 5													83
Exa 12.6	Example 6													84
Exa 12.7	Example 7													84
Exa 12.8	Example 8													85
Exa 12.9	Example 9													86
Exa 12.10	Example 10													87
Exa 12.11	Example 11													87
Exa 13.1	Example 1													89
Exa 13.2	Example 2													90
Exa 13.3	Example 3													91
Exa 14.1	Example 1													93
Exa 14.3	Example 3													94
Exa 14.4	Example 4													95
Exa 14.5	Example 5													95
Exa 14.6	Example 6													96
Exa 14.7	Example 7													97

Survey of dimensions and units

Scilab code Exa 1.1 Example 1

```
1 clc
2 //Initialization of variables
3 v=88 //ft/s
4 //calculations
5 v2= v*3600/5280
6 //results
7 printf("velocity in mph = %d mph", v2)
```

Scilab code Exa 1.2 Example 2

```
1 clc
2 //Initialization of variables
3 z1=1/5280
4 z2=1/3600
5 v=88 //ft/s
6 //calculations
7 v2= v*z1/z2
8 //results
9 printf("velocity in mph = %d mph",v2)
```

Scilab code Exa 1.3 Example 3

```
1 clc
2 //Initialization of variables
3 m=10 //lbm
4 a=10 //ft/sec^2
5 g=32.1739
6 //calculations
7 F=m*a/g
8 //results
9 printf("Force required = %.3 f lbf",F)
```

Scilab code Exa 1.4 Example 4

```
1 clc
2 //Initialization of variables
3 m=10 //lbm
4 a=32.1739 //ft/sec^2
5 g=32.1739
6 //calculations
7 F=m*a/g
8 //results
9 printf("Force required = %d lbf",F)
```

Scilab code Exa 1.5 Example 5

```
1 clc
2 //Initialization of variables
3 F=5e-9 //lbf/ft^2 hr
```

Scilab code Exa 1.6 Example 6

```
1 clc
2 //Initialization of variables
3 g=32.1739
4 gam=62.305
5 //calculations
6 rho=gam/g
7 //results
8 printf("Density in FLtheta system = %.3f slugs/ft^2", rho)
```

Fundamental concepts

Scilab code Exa 2.1 Example 1

```
1 clc
2 //Initialization of variables
3 m=32.1739 //lbm
4 z=100 //ft
5 g=32.1739
6 //calculations
7 PE=m*z
8 PE2=m*z/g
9 //results
10 printf("Potential energy = %.2 f g/g0 ft lbf",PE)
11 printf("\n in other units, Potential energy = %d g ft slug",PE2)
```

Scilab code Exa 2.3 Example 2

```
1 clc
2 //Initialization of variables
3 u=100 //Btu/lbm
```

```
4  P=100 //psia
5  v=5 //ft^3
6  //calculations
7  h=u + P*v*144/778.16
8  //results
9  printf("Enthalpy of unit mass of fluid = %.1 f Btu/lbm",h)
```

The first law

Scilab code Exa 3.1 Example 1

```
1 clc
 2 //Initialization of variables
3 \text{ f=5} //\text{lbm/s}
4 h2=1020 //B/lbm
5 \text{ h1} = 1000 //B/lbm
6 v2=50 //ft/s
7 v1 = 100 //ft/s
8 J = 778
9 g = 32.2
10 z2=0
11 z1 = 100
12 \text{ gc} = 32.2
13 Q=50 / Btu/s
14 //calculations
15 W=Q/f - (h2-h1) - (v2^2 -v1^2)/(2*J*gc) - g/gc *(z2-y2)
      z1)/J
16 \text{ power} = W*f
17 // results
18 printf("Work done = \%.1 \, f \, Btu/lbm", W)
19 printf("\n Power = \%.1 \, f \, Btu/s", power)
```

Scilab code Exa 3.2 Example 2

```
1 clc
2 //Initialization of variables
3 m=5 //lbm
4 v=15 //ft^3/lbm
5 V=100 //ft/s
6 //calculations
7 A=m*v/V
8 D=(4*A/%pi)^(0.5)
9 //results
10 printf("Diameter = %.1f in",D*12)
```

The reversible process

Scilab code Exa 4.2 Example 1

```
1 clc
2 //Initialization of variables
3 T1=100 //F
4 T2=500 //F
5 //calculations
6 function y=cp(t)
7     y=0.239 + 0.00003*t
8 endfunction
9 cpavg= 1/(T2-T1) *(intg(T1,T2,cp))
10 //results
11 printf("average value of Cp = %.3 f Btu/lbm F",cpavg)
```

The second law

Scilab code Exa 5.1 Example 1

Scilab code Exa 5.2 Example 2

```
1 clc
2 //Initialization of variables
3 \text{ Tr} = 500 / R
4 Ta=2500 //R
5 Q=1000 //Btu
6 \text{ Ta2=1000 } //\text{R}
7 //calculations
8 n1=1-Tr/Ta
9 w1=n1*Q
10 \quad n2=1-Tr/Ta2
11 \quad w2 = n2 * Q
12 \, dw = w1 - w2
13 / results
14 printf("Work done in case 1 = %d Btu", w1)
15 printf("\nWork done in case 2 = %d Btu", w2)
16 printf("\n Excess work done in case 1 = %d Btu", dw)
```

Scilab code Exa 5.3 Example 3

```
1 clc
2 clear
3 //Initialization of variables
4 Tr = 1000 / R
5 \text{ Ta} = 3000 //R
6 \quad Q=300 \quad //Btu/min
7 p=5 //hp
8 J = 778
9 //calculations
10 \text{ n1=1-Tr/Ta}
11 nt=p*33000/(J*Q)
12 //results
13 printf ("Theoretical efficiency = \%.3 \, \text{f}", nt)
14 printf("\n Claimed efficiency = \%.3 \, f",n1)
15 if n1>nt then
        printf("\n Inventor claims are true")
16
```

```
17 else
18 printf("\n Inventor claims are false")
19 end
```

Scilab code Exa 5.4 Example 4

```
1 clc
2 //Initialization of variables
3 W=14.5 //B/lbm
4 Q=141.7 //B/lbm
5 Tr=520 //R
6 Ta=1040 //R
7 //calculations
8 n1=W/Q
9 n2=1-Tr/Ta
10 Wc=n2*Q
11 //results
12 printf("Thermal efficiency = %.2 f percent",n1*100)
13 printf("\n Work done in carnot cycle = %.1 f Btu/lbm", Wc)
```

Scilab code Exa 5.5 Example 5

```
1 clc
2 //Initialization of variables
3 cp=0.25
4 T1=3460 //R
5 T2=520 //R
6 //calculations
7 Q=cp*(T2-T1)
8 ds=cp*log(T2/T1)
9 G= Q - T2*ds
10 eta= G/Q
```

```
11 //results
12 printf("Thermal efficiency = %.1f percent",eta*100)
```

Scilab code Exa 5.7 Example 6

```
1 clc
2 //Initialization of variables
3 T1=60+460 //R
4 T2=100+460 //R
5 m=1 //lbm
6 cp=1 //Btu/lbm F
7 //calculations
8 ds= m*cp*log(T2/T1)
9 //results
10 printf("Change in entropy = %.3f Btu/lbm R",ds)
```

Scilab code Exa 5.8 Example 7

```
1 clc
2 //Initialization of variables
3 t1=32 //F
4 t2=80 //F
5 m1=1 //lbm
6 m2=5 //lbm
7 hlf=144 //Bru/lbm
8 cp=1 //B/lbm F
9 //calculations
10 te=(-hlf+t1*m1+t2*cp*m2) /(m2+m1)
11 dsi= hlf/(t1+460) + cp*log((460+te)/(460+t1))
12 dsw= m2*cp*log((460+te)/(460+t2))
13 dss=dsi+dsw
14 LE=-(t1+460)*dss
```

```
15 G1=m2*cp*(te-t2) - m2*(460+t1)*log((460+te)/(460+t2)
          )
16 G2=m1*cp*(te-t1) - m1*(460+t1)*log((460+te)/(460+t1)
          )
17 G=G1+G2
18 //results
19 printf("Entropy change of the system = %.4f Btu/R",
          dss)
20 printf("\n Loss of available energy = %.1f Btu", LE)
21 printf("\n Net change in available energy = %.1f Btu
          ",G)
22 //The asnwer is a bit different due to rounding off
          error in textbook
```

Properties of fluids

Scilab code Exa 6.1 Example 1

```
1 clc
2 //Initialization of variables
3 m=1 //lbm
4 T=32+460 //R
5 //calculations
6 disp("From steam tables")
7 hf=0
8 p=0.08854 //psi
9 vf=0.01602 //ft^3
10 u = hf- p*vf*144/778.16
11 //results
12 printf("Internal energy = %.7f Btu/lbm",u)
```

Scilab code Exa 6.2 Example 2

```
1 clc
2 //Initialization of variables
3 T=35+459.6 //R
```

```
4 //calculations
5 disp("From steam tables,")
6 hfg=1074.1 //Btu/lbm
7 ds=hfg/T
8 //results
9 printf("Change in entropy = %.4 f Btu/lbm R",ds)
```

Scilab code Exa 6.3 Example 3

```
1 clc
2 //Initialization of variables
3 p=3 //psi
4 x = 0.35
5 //calculations
6 printf("From steam tables,")
7 p=3 //psi
8 vf = 0.01630 / ft^3 / lbm
9 vg = 118.71 // ft^3/lbm
10 hf = 109.37 //Btu/lbm
11 hfg=1013.2 //Btu/lbm
12 \quad vx = vf + x * (vg - vf)
13 \text{ hx=hf+x*(hfg)}
14 // results
15 printf("specific volume = \%.1 \, \text{f ft} \, ^3/\text{lbm}", vx)
16 printf("\n specific enthalpy = \%.1 f Btu/lbm", hx)
```

Scilab code Exa 6.4 Example 4

```
1 clc
2 //Initialization of variables
3 disp("From steam tables,")
4 T1=355.21 //F
5 T2=500 //F
```

```
6 hg=1193.4 //Btu/lbm
7 h=1274.8 //Btu/lbm
8 //calculations
9 Qrev=h-hg
10 //results
11 printf("Heat transferred = %.1 f Btu/lbm", Qrev)
```

Scilab code Exa 6.5 Example 5

```
1 clc
2 //Initialization of variables
3 Qrev=81.4 //Btu/lbm
4 T1=355.21 //F
5 T2=500 //F
6 cp=0.562
7 //calculations
8 cp=Qrev/(T2-T1)
9 ds=cp*(log((460+T2)/(460+T1)))
10 s1=1.5728
11 s2=s1+ds
12 //results
13 printf("Change in entropy = %.4 f Btu/lbm F",ds)
14 printf("\n Final entropy = %.4 f Btu/lbm F",s2)
```

Scilab code Exa 6.6 Example 6

```
1 clc
2 //Initialization of variables
3 m=1 //lbm
4 P1=144 //psia
5 P2=150 //psia
6 t1=360 //F
7 J=778.16
```

```
8 //calculations
9 disp("From steam tables,")
10 v1=3.160 //ft^3/lbm
11 h1=1196.5 //Btu/lbm
12 u1=h1-P1*v1*144/J
13 h2=1211.4 //Btu/lbm
14 u2=h2 - P2*144*v1/J
15 Qrev=u2-u1
16 //results
17 printf("Heat transferred = %.1 f Btu/lbm",Qrev)
```

Scilab code Exa 6.7 Example 7

```
1 clc
2 //Initialization of variables
3 sf=0.12948
4 dt=0.32 //F
5 t1=100 //F
6 x=0.6
7 //calculations
8 t2=t1+dt
9 hf=67.97
10 ht=2.7
11 hp=0.3
12 h2=hf+ht+hp
13 Wrev=hf-h2
14 Wact=Wrev/x
15 //results
16 printf("Actual work done = %.1f Btu/lbm", Wact)
```

Scilab code Exa 6.8 Example 8

```
1 clc
```

```
2 //Initialization of variables
3 p1=1000 //psia
4 t1=100.32 //F
5 h1=70.97 //Btu/lbm
6 p2=1000 //psia
7 t2=544.61 //F
8 h2=1191.8 //Btu/lbm
9 //calculations
10 Qrev=h2-h1
11 //results
12 printf("Heat transferred = %.1 f Btu/lbm", Qrev)
```

Scilab code Exa 6.10 Example 9

```
1 clc
2 //Initialization of variables
3 \text{ h1} = 1220.4 //Btu/lbm}
4 s1=1.6050 //Btu/lbm R
5 s2=1.6050 / Btu/lbm R
6 p2=3 //psia
7 sf=0.2008 //Btu/lbm R
8 \text{ hf} = 109.37
9 sfg=1.6855 //Btu/lbm R
10 hfg=1013.2 //Btu/lbm
11 eta=0.7
12 //calculations
13 x = (s2-sf)/sfg
14 h2=hf+x*hfg
15 \text{ Wrev= } h1-h2
16 w=eta*Wrev
17 //results
18 printf("Work done = %d Btu/lbm", Wrev)
19 printf("\n Work done in case 2 = \%.1 \, \text{f Btu/lbm}", w)
20 //The asnwer is a bit different due to rounding off
      error int he textbook
```

Scilab code Exa 6.11 Example 10

```
1 clc
2 //Initialization of variables
3 disp("From steam tables,")
4 hb=1192.8 //Btu/lbm
5 ha=hb
6 hf=330.51 //Btu/lbm
7 hfg=863.6 //Btu/lbm
8 //calculations
9 x=(ha-hf)/hfg
10 //results
11 printf("Quality of wet steam = %.1f percent",x*100)
```

Characteristics of gases

Scilab code Exa 7.2 Example 1

```
1 clc
2 //Initialization of variables
3 x=1545 //ft lbf/ R mol
4 z=2120
5 //calculations
6 y=x/z
7 //results
8 printf("y = %.3 f atm ft^2 /R mol",y)
```

Scilab code Exa 7.3 Example 3

```
1 clc
2 //Initialization of variables
3 P=14.7 //psi
4 t=60+460 //R
5 R0=10.73 //psia ft^3/mol R
6 //calculations
7 v=R0*t/P
```

```
8 m=28.96
9 //results
10 printf("volume = %d ft^3/mol",v)
11 printf("\n Mass = %.2 f lbm",m)
```

Scilab code Exa 7.4 Example 4

```
1 clc
2 //Initialization of variables
3 p=20 //psi
4 t=100+460 //R
5 R0=10.73
6 M=28
7 //calculations
8 rho=p/(R0/M *t)
9 //results
10 printf("density of nitrogen = %.4f lbm/ft^3",rho)
```

Scilab code Exa 7.5 Example 5

```
1 clc
2 //Initialization of variables
3 T1=1000 //R
4 T2=2000 //R
5 //calculations
6 function y =cp(t)
7     y=9.47 -3.47*10^3 /t + 1.16*10^6 /t^2
8 endfunction
9 cp2= 1/(T2-T1) *(intg(T1,T2,cp))
10 //results
11 printf("Specific heat = %.2f Btu/mol R",cp2)
```

Scilab code Exa 7.6 Example 6

```
1 clc
2 //Initialization of variables
3 R=0.73
4 v=0.193*44 //ft^3/mol
5 T=672 //R
6 a=924.2 //atm ft^6 /mol^2
7 b=0.685 //ft^3/mol
8 //calculations
9 p1= R*T/(v-b) - a/v^2
10 p2=R*T/v
11 //results
12 printf("Ideal gas law, pressure = %.1 f atm",p2)
13 printf("\n Vanderwaals law, pressure = %.1 f atm",p1)
```

Scilab code Exa 7.7 Example 7

```
1 clc
2 //Initialization of variables
3 Z=1.39
4 R=0.73
5 T=492 //R
6 p=500 //atm
7 M=28 //lbm
8 //calculations
9 v=Z*R*T/(p*M)
10 //results
11 printf("volume = %.4 f ft^3/lbm",v)
```

Scilab code Exa 7.8 Example 8

```
1 clc
2 //Initialization of variables
3 p=50 //atm
4 pc= 73 / atm
5 t = 459.7 + 212 //R
6 tc=459.7+87.9 //R
7 R = 0.73
8 M = 44
9 v=0.193 // ft^3/lbm
10 //calculations
11 \text{ pr=p/pc}
12 \text{ tr=t/tc}
13 z=0.88 //from compressibility charts
14 p2 = z*R*t/v/M
15 //results
16 printf("pressure = \%.1 f atm",p2)
```

Scilab code Exa 7.9 Example 9

```
1 clc
2 //Initialization of variables
3 pc=45.8 //atm
4 tc=343.9 //R
5 t=515 //R
6 v=2.2
7 R=0.73
8 //calculations
9 tr=t/tc
10 vr= pc*v/(R*tc)
11 //from compressibilty charts
12 z=0.803
13 pr=3
14 p=pr*pc
```

```
15 p2= R*t/v
16 err= (p2-p)/p
17 //results
18 printf("pressure = %d atm",p)
19 printf("\n percentage error = %d percent ",err*100)
20 //the answer varies a bit due to rounding off error
```

Approximate calculations for real gases

Scilab code Exa 8.1 Example 1

```
1 clc
2 //Initialization of variables
3 R=1.986 //B/mol R
4 t2=1100 //R
5 t1=1000 //R
6 //calculations
7 wrev=R*(t2-t1)
8 //results
9 printf("work done = %.1 f Btu/mol", wrev)
```

Scilab code Exa 8.2 Example 2

```
1 clc
2 //Initialization of variables
3 p1=20 //psia
4 p2=40 //psia
```

```
5 t1= 460+40 //R
6 m=28
7 R=1.986
8 cp=0.246 //B/lbm R
9 //calculations
10 t2= t1*p2/p1
11 cv=cp- (R/m)
12 Qrev=cv*(t2-t1)
13 ds= cv*log(t2/t1)
14 //results
15 printf("heat transferred = %.1 f Btu/lbm",Qrev)
16 printf("\n change in entropy = %.3 f Btu/lbm R",ds)
```

Scilab code Exa 8.3 Example 3

```
1 clc
2 //Initialization of variables
3 \text{ t1=500 } //\text{R}
4 t2=1000 / R
5 //calculations
6 function y = cp1(t)
       y = 7.484 - 3.47*10^3 / t + 1.16*10^6 / t^2
7
8 endfunction
9 function y = cp2(t)
       y = 7.484/t - 3.47*10^3 / t^2 + 1.16*10^6 / t^3
10
11 endfunction
12 Q=intg(t1,t2,cp1)
13 ds=intg(t1,t2,cp2)
14 //results
15 printf("heat transferred = %d Btu/mole",Q)
16 printf("\n change in entropy = \%.3 f Btu/mole R", ds)
```

Scilab code Exa 8.4 Example 4

```
1 clc
2 //Initialization of variables
3 v1=20.9 //ft^3/mol
4 v2=23.2 //ft^3/mol
5 p=500 //psia
6 w1=198.6 //Btu/mol
7 //calculations
8 w=p*(v2-v1)*144/100*0.1285
9 err = (w-w1)/w
10 //results
11 printf("Work done in this case = %d Btu/mol",w)
12 printf("\n error = %.2f percent",err*100)
```

Scilab code Exa 8.5 Example 5

```
1 clc
2 //Initialization of variables
3 R=1.986
4 T=1000 //R
5 vr=2
6 //calculations
7 Q= R*T*log(vr)
8 //results
9 printf("heat transferred = work = %d Btu/mol",Q)
```

Scilab code Exa 8.7 Example 7

```
1 clc
2 //Initialization of variables
3 v2=41.8 //ft^3/mol
4 v1=20.9 //ft^3/mol
5 b=0.685 //ft^3/mol
6 R=0.73 //atm ft^3 / R mol
```

```
7 a=924.2
8 T=1000 //R
9 //calculations
10 vr= log((v2-b)/(v1-b))
11 W= R*T*vr + a*(1/v2 - 1/v1)
12 //results
13 printf("Work done = %.1 f atm ft^3/mol", W)
```

Scilab code Exa 8.8 Example 8

```
2 //Initialization of variables
3 R = 1545
4 n = 1.3
5 \text{ T1} = 520 / \text{R}
6 p2=125 //psia
7 p1 = 14.7 // psia
8 M = 29
9 \text{ cv} = 0.171
10 \ k=1.4
11 //calculations
12 Wrev= R*T1/M/(1-n) *((p2/p1)^((n-1)/n) -1)
13 T2= T1*(p2/p1)^((n-1)/n)
14 Qrev= cv*((k-n)/(1-n))*(T2-T1)
15 //results
16 printf("Work done = %d ft lbf/lbm", Wrev)
17 printf("\n Heat transferred = \%.1 f Btu/lbm", Qrev)
```

Scilab code Exa 8.9 Example 9

```
1 clc
2 //Initialization of variables
3 k=1.38
```

```
4 R=1.986
5 T1=900 //R
6 M=29
7 pr=0.1
8 Wrev=50 //Btu/lbm
9 //calculations
10 KE = k*R*T1/M/(1-k) *(pr^((k-1)/k) -1) -Wrev
11 //results
12 printf("Change in kinetic energy = %d Btu/lbm", KE)
```

Scilab code Exa 8.10 Example 10

```
1     clc
2     //Initialization of variablesk=1.38
3     R=1.986
4     T1=900     //R
5     M=29
6     pr=0.1
7     Wrev=50     //Btu/lbm
8     cp=0.245
9     k=1.3
10     //calculations
11     KE = -cp*T1*(pr^((k-1)/k) -1) -Wrev
12     //results
13     printf("Change in kinetic energy = %d Btu/lbm", KE)
```

Scilab code Exa 8.11 Example 11

```
1 clc
2 //Initialization of variables
3 n=1.3
4 p2=125 //psia
5 m=1 //lbm
```

```
6 c = 0.04
 7 \text{ cv} = 0.171
8 k = 1.4
9 p1=14.7 // psia
10 T2=852 //R
11 T1=520 //R
12 //calculations
13 eta=1+c-c*((p2/p1)^{(1/n)})
14 \text{ md=m/eta}
15 \text{ m} 12 = \text{md} * (c+1)
16 \text{ m} 34 = \text{m} 12 - \text{m}
17 Q12=m12*cv*((k-n)/(1-n))*(T2-T1)
18 Q34=m34*cv*((k-n)/(1-n))*(T1-T2)
19 Q = Q12 + Q34
20 //results
21 printf("Net heat transfer from air = \%.1 \, f Btu/lbm ",
       Q)
```

Scilab code Exa 8.12 Example 12

```
1 clc
2 //Initialization of variables
3 stroke=14 //in
4 n=1.3
5 rpm=130
6 pa=14.7 //psia
7 ta=80+460 //R
8 c=0.03
9 p1=pa
10 p4=200 //psia
11 R=53.3
12 cap=400 //cfm
13 m=29.4
14 cp=0.24
15 //calculations
```

```
16 pi=sqrt(pa*p4)
17 nv=1+c-c*(pi/p1)^(1/n)
18 Dl=cap/nv
19 vdl=D1/(2*rpm)
20 dl=sqrt(vdl*1728*4/(%pi*stroke))
21 \text{ vh=cap*p1/pi}
22 \quad Dh = vh/nv
23 \text{ vdh=Dh/(2*rpm)}
24 dh=sqrt(vdh*1728*4/(%pi*stroke))
25 \text{ m=p1*144*cap/R/ta}
26 T2=ta*(pi/p1)^((n-1)/n)
27 \quad Q=m*cp*(T2-ta)
28 //results
29 printf("diameter of cylinder 1 = \%d in",dl)
30 printf("\n diameter of cylinder 2 = \%.2 \, \text{f} in", dh)
31 printf("\n Heat transferred = %d Btu/min",Q)
```

Scilab code Exa 8.13 Example 13

```
1 clc
2 //Initialization of variables
3 Pr=10
4 n=1.3
5 T1=900 //R
6 W=50 //Btu/lbm
7 //calculations
8 T2=T1/Pr^((n-1)/n)
9 h1=120.86
10 h2=30.69
11 dh=h2-h1
12 ke=-dh-W
13 //results
14 printf("Change in kinetic energy = %.2f Btu/lbm",ke)
```

Scilab code Exa 8.14 Example 14

```
1 clc
2 //Initialization of variables
3 \text{ T1=900 } //\text{R}
4 p1=100 // psia
5 p2=10 //psia
6 \text{ w=50 } //\text{Btu/lbm}
7 //calculations
8 h1=120.86 //Btu/lbm
9 \text{ pr1} = 17.374
10 pr2=pr1*p2/p1
11 disp("From equilibrium charts,")
12 T2=468 //R
13 \text{ h2=16.3} //\text{Btu/lbm}
14 \, \text{ke} = \text{h} 1 - \text{h} 2 - \text{w}
15 //results
16 printf ("Change in kinetic energy = %.2f Btu/lbm", ke)
```

Scilab code Exa 8.15 Example 15

```
1 clc
2 // Initialization of variables
3 p1=100 // psi
4 p2=10 // psia
5 pa=14.7 // psi
6 T2=468 //R
7 T2r=528 //R
8 R=1.986
9 M=29
10 // calculations
11 disp("From air tables,")
```

```
12  phi1=0.06657
13  phi2=0.03762
14  ds=phi1-phi2
15  phi11=0.19569
16  phi12=0.06657
17  ds2= phi12-phi11 - R/M *log(p2/p1)
18  //results
19  printf("In case 1, change in entropy = %.5 f Btu/lbm R",ds)
20  printf("\n In case 2, change in entropy = %.5 f btu/lbm R",ds2)
21  //the answer is a bit different due to rounding off error in textbook
```

Scilab code Exa 8.16 Example 16

```
1 clc
2 //Initialization of variables
3 T1 = 520 / R
4 disp("From air table,")
5 vr1=5192
6 u1 = -6.87 / Btu/lbm
7 pr1=2.504
8 vrat=6
9 p1 = 14.7
10 R=1.986
11 M = 29
12 //calculations
13 vr2=vr1/vrat
14 T2 = 1050 / R
15 u2=86.1 //Btu/lbm
16 pr2=30.35
17 p2=p1*pr2/pr1
18 W=u1-u2
19 k = 1.39
```

Chapter 9

The flow of fluids

Scilab code Exa 9.1 Example 1

```
1 clc
2 //Initialization of variables
3 h1 = 1329.1 //Btu/lbm
4 v1=6.218 // ft^3/lbm
5 J=778
6 g = 32.174
7 \quad m=1
8 //calculations
9 p=[80 60 54.6 40 20]
10 h=[ 1304.1 1273.8 1265 1234.2 1174.8]
11 v=[ 7.384 9.208 9.844 12.554 21.279]
12 Fc=1
13 V2=Fc*sqrt(2*J*g*(h1-h))
14 A = m * v ./V2
15 \quad V2 = [0 \quad V2]
16 \quad A = [0 \quad A]
17 // results
18 disp('velocity = ')
19 disp(V2)
20 disp('Area = ')
21 disp(A)
```

22 //The initial values of velocity and area are 0 and infinity respectively

Scilab code Exa 9.2 Example 2

```
1 clc
 2 //Initialization of variables
3 n = 1.4
4 p1=50 // psia
5 J=778
6 \text{ cp} = 0.24
7 \text{ T1} = 520 / \text{R}
8 k=n
9 R = 1545/29
10 \quad m=1
11 p2=10 // psia
12 //calculations
13 rpt=(2/(n+1))^(n/(n-1))
14 pt=p1*rpt
15 Vtrev = 223.77*sqrt(cp*T1*(1-rpt^((k-1)/k)))
16 \text{ v1} = R*T1/p1/144
17 vt=v1*(p1/pt)^(1/k)
18 \text{ At=m*vt/Vtrev}
19 V2rev = 223.77*sqrt(cp*T1*(1-(p2/p1)^((k-1)/k)))
20 v2=v1*(p1/p2)^(1/k)
21 \quad A2=m*v2/V2rev
22 / results
23 printf("Area required = \%.5 \, \text{f} \, \text{ft}^2", At)
24 printf("\n Area in case 2 = \%.5 \,\mathrm{f} ft<sup>2</sup>",A2)
```

Scilab code Exa 9.3 Example 3

1 clc

```
2 //Initialization of variables
3 \text{ rpt} = 0.569
4 b=0.8
5 p1 = 50 // psia
6 \text{ cp} = 0.24
7 T1 = 520 / R
8 k = 1.4
9 v2=12.2
10 \text{ v1} = 3.86
11 \quad m=1
12 //calculations
13 pt=p1*rpt
14 Vtrev=223.77*sqrt(cp*T1*(1-rpt^((k-1)/k)))/(1-b^4)
       *(v1/v2)^2))
15 \text{ vt} = (p1/pt)^{(1/k)} *v1
16 \text{ At=m*vt/Vtrev}
17 //results
18 printf("Area of throat = \%.5 \, f ft<sup>2</sup>",At)
```

Scilab code Exa 9.4 Example 4

```
1 clc
2 //Initialization of variables
3 J=778
4 g=32.2
5 pc=54.6 //psia
6 h1=1329.1 //Btu/lbm
7 h2=1265 //btu/lbm
8 V2rev=1790 //ft/s
9 cv=0.99
10 m=1 //lbm
11 cv2=0.96
12 //calculations
13 V2d=cv*V2rev
14 hd=cv^2 *(h1-h2)
```

```
15 h2d=h1-hd

16 v2d=9.946

17 A2d=m*v2d/V2d

18 dh=-154.3

19 V3=2775 //ft/s

20 V3d=cv2*V3

21 h3d= h1+ cv2^2 *dh

22 v3d=22.05 //ft^3/lbm

23 A3d=m*v3d/V3d

24 //results

25 printf("Throat area in case 2 = %.4f ft^2",A2d)

26 printf("\n Throat area in case 3 = %.5f ft^2",A3d)
```

Scilab code Exa 9.5 Example 5

```
1 clc
2 //Initialization of variables
3 p2 = 26.4 // psia
4 p1=50 // psia
5 p3=10 //psia
6 \text{ V2rev=1017 } // \text{ft/s}
7 \text{ cv} = 0.99
8 J=778
9 g = 32.2
10 \text{ cp} = 0.24
11 T1=460+60 //R
12 k = 1.4
13 R=1545/29
14 \quad m=1
15 \text{ cv2} = 0.92
16 //calculations
17 V2d=cv*V2rev
18 dhr= (V2rev^2 - V2d^2)/(2*g*J)
19 dtr=dhr/cp
20 T2=T1*(p2/p1)^{(k-1)/k}
```

```
21 T2d=T2+dtr

22 v2d=R*T2d/(p2*144)

23 A2d= m*v2d/V2d

24 V3=1515

25 V3d=V3*cv2^0.5

26 T3=T1*(p3/p1)^((k-1)/k)

27 dhr2=(V3^2 - V3d^2)/(2*J*g)

28 dtr2=dhr2/cp

29 T3d=T3+dtr2

30 v3d=R*T3d/(p3*144)

31 A3d=m*v3d/V3d

32 //results

33 printf("Area = %.5 f ft^2", A2d)

34 printf("\n Area in case 2= %.5 f ft^2", A3d)
```

Scilab code Exa 9.6 Example 6

```
1 clc
2 //Initialization of variables
3 mum=0.0000121 //lbm/ft sec
4 D=1.820 //in
5 m=1.173 //lbm/sec
6 //calculations
7 Re=1.27*m*12/(D*mum)
8 //results
9 printf("Reynolds number = %d", Re)
10 //The answer is a bit different due to rounding off error in textbook
```

Scilab code Exa 9.8 Example 8

```
1 clc
2 //Initialization of variables
```

```
3 pt=54.6 //psia
4 dh=64.1 //Btu/lbm
5 dh2=154.3 //Btu/lbm
6 vt=9.844 //ft^3/lbm
7 vt2=21.279 //ft^3/lbm
8 C=0.98
9 J=778
10 g=32.17
11 m=1 //lbm/sec
12 //calculations
13 At=m/C *sqrt(vt^2 /(2*g*J*dh))
14 A2=m/C *sqrt(vt2^2 /(2*g*J*dh2))
15 //results
16 printf("Throat area = %.4 f ft^2",At)
17 printf("\n Area at part 2 = %.5 f ft^2",A2)
```

Scilab code Exa 9.9 Example 9

```
1 clc
2 //Initialization of variables
3 k=1.4
4 D2=1.820
5 D1=6.065
6 p2=20.18 //psia
7 p1 = 30 // psia
8 g = 32.2
9 G=13.59
10 \text{ zm} = 20
11 R=1545/29
12 C=0.68
13 T=520 / R
14 //calculations
15 \text{ dp=0.03609*G*zm}
16 rp=p2/p1
17 \text{ bet=D2/D1}
```

```
18  v1=R*T/(p1*144)
19  A2=%pi*D2^2 /(4*144)
20  m=C*A2/sqrt(1 - bet^4 *rp^(1.43)) *sqrt(2*g*k*p1 *144/(k-1)/v1 *(rp^(2/k) - rp^((k+1)/k)))
21  //results
22  printf("Mass flow rate = %.3 f lbm/sec",m)
23  //The answer is a bit different due to rounding off error in textbook
```

Scilab code Exa 9.10 Example 10

```
1 clc
2 //Initialization of variables
3 \text{ K} = 0.6007
4 Y1=0.91
5 D1=6.065
6 D2=1.820
7 rho1=0.156
8 p1 = 30
9 p2 = 20.18
10 //calculations
11 \text{ bet=D2/D1}
12 \text{ m=0.525*K*Y1^2 *D2^2 *sqrt(rho1*(p1-p2))}
13 C=K*sqrt(1-bet^4)
14 //results
15 printf("mass flow rate = \%.2 \, \text{f lbm/sec}",m)
16 printf("\n Coefficient of discharge = \%.3 \, f", C)
```

Scilab code Exa 9.11 Example 11

```
1 clc
2 //Initialization of variables
3 zm=0.216
```

```
4 pm=62.3 //lbm/ft^2
5 p1=0.0736 //lbm/ft^2
6 g=32.2
7 d=4
8 //calculations
9 H=zm*(pm-p1)/12/p1
10 V=sqrt(2*g*H)
11 m=%pi/4 *d^2 *V*p1
12 //results
13 printf("average velocity = %.1 f ft/sec",V)
14 printf("\n mass flow rate = %.1 f lbm/sec",m)
```

Scilab code Exa 9.12 Example 12

```
1 clc
2 //Initialization of variables
3 p1=50 //psia
4 pr = 0.58
5 //calculations
6 p=p1*pr
7 \text{ s1}=1.6585
8 h1=1174.1 //Btu/lbm
9 \text{ sf} = 0.3680
10 \text{ sfg} = 1.3313
11 hfg = 945.3
12 \text{ vg} = 13.746
13 hf=218.82
14 x = (s1-sf)/sfg
15 \text{ v2=vg*x}
16 h2=hf+x*hfg
17 V2rev = 223.77*sqrt(h1-h2)
18 m=%pi/4 *1/144 *V2rev/v2
19 //results
20 printf("mass flow rate = \%.3 \, \text{f lbm/sec}",m)
```

Scilab code Exa 9.13 Example 13

```
1 clc
2 //Initialization of variables
3 k=1.31
4 p1 = 7200 // lbf / ft^2
5 \text{ v1=8.515} // \text{ft} ^3/\text{lbm}
6 pr = 0.6
7 m1 = 0.574
8 \text{ T1} = 741 / \text{R}
9 //calculations
10 V2rev=8.02*sqrt(k/(k-1) *p1*v1*(1- (pr)^((k-1)/k)))
11 v2=v1*(1/pr)^(1/k)
12 m=%pi/4 *1/144 *V2rev/v2
13 \quad C=m/m1
14 T2=T1*(0.887)
15 t=250+460 / R
16 dt=t-T2
17 // results
18 printf("Mass flow rate = \%.3 \, \text{f lbm/sec}",m)
19 printf("\n Meta stable under cooling = %d F", dt)
```

Scilab code Exa 9.14 Example 14

```
1 clc
2 //Initialization of variables
3 C=0.98
4 m=1
5 v=12.55 //ft^3/lbm
6 V=1372 //ft/s
7 //calculations
8 A=m*v/(C*V) *144
```

```
9 D=sqrt(A*4/%pi)
10 //results
11 printf("Area = %.3 f in^2", A)
12 printf("\n diameter = %.2 f in", D)
```

Scilab code Exa 9.15 Example 15

```
1 clc
2 //Initialization of variables
3 nn = 0.95
4 p1=50 // psia
5 p2=30 //psia
6 v1=8.515
7 \text{ m=1} //\text{lbm}
8 //calculations
9 cv=sqrt(nn)
10 \ V2rev = 1372
11 V2act=cv*V2rev
12 n=1.283
13 v2=v1*(p1/p2)^(1/n)
14 \text{ A=m*v2/V2act } *144
15 D=sqrt(A*4/%pi)
16 //results
17 printf ("Area = \%.2 \text{ f in } ^2", A)
18 printf("\n diameter = \%.3 \, \text{f in}",D)
```

Scilab code Exa 9.16 Example 16

```
1 clc
2 //Initialization of variables
3 p1=100 //psia
4 p2=14.7 //psia
5 k=1.4
```

```
6 \text{ T1} = 700 / \text{R}
7 R=10.73/29
8 V=50
9 \text{ cv} = 0.171
10 \text{ cp=0.24}
11 R2=1.986/29
12 //calculations
13 T2=T1/(p1/p2)^{(k-1)/k}
14 \text{ T2} = 358 / R
15 \text{ m1=p1*V/(R*T1)}
16 \text{ m2=p2*V/(R*T2)}
17 Wrev= cv*(m1*T1 - m2*T2) - (m1-m2)*(T2)*cp
18 Wrev2=m1*cv*(T1-T2) - m1*R2*(T2-p2/p1*T1)
19 //results
20 printf("Work done in case 1 = %d Btu", Wrev)
21 printf("\n Work done in case 2 = \%d Btu", Wrev2)
```

Scilab code Exa 9.17 Example 17

```
1 clc
2 //Initialization of variables
3 hf=1187.2 //Btu/lbm
4 p2=100 //psia
5 //calculations
6 t=328 //F
7 u2=hf
8 disp("from steam table,")
9 t2=540 //F
10 p2=100 //psia
11 dt=t2-t
12 //results
13 printf("Rise in temperature = %d F",dt)
```

Chapter 10

Mixtures of gases and vapors

Scilab code Exa 10.1 Example 1

```
1 clc
 2 //Initialization of variables
3 \text{ m1=10} //\text{lbm}
4 \text{ m}2=15 // \text{lnm}
5 p=50 //psia
6 t = 60 + 460 / R
7 M1 = 32
8 M2 = 28.02
9 R0 = 10.73
10 //calculations
11 \quad n1 = m1/M1
12 \quad n2=m2/M2
13 x1=n1/(n1+n2)
14 x2=n2/(n1+n2)
15 \quad M = x1 * M1 + x2 * M2
16 R=R0/M
17 V = (n1+n2)*R0*t/p
18 rho=p/(R0*t)
19 \text{ rho2=M*rho}
20 p1 = x1 * p
21 p2=x2*p
```

```
22 v1 = x1 * V
23 v2 = x2 * V
24 //results
25 disp("part a")
26 printf ("Mole fractions of oxygen and nitrogen are %
      .3 f and \%.3 f respectively", x1, x2)
27 disp("part b")
28 printf("Average molecular weight = \%.1 \, \text{f}", M)
29 disp("part c")
30 printf ("specific gas constant = \%.4 f psia ft^3/lbm R
      ",R)
31 disp("part d")
32 printf("volume of mixture = \%.1 \, \text{ft}^3", V)
33 printf ("density of mixture is \%.5 \,\mathrm{f} mole/ft ^3 and \%.2
      f \, lbm/ft^3", rho, rho2)
34 disp("part e")
35 printf ("partial pressures of oxygen and nitrogen are
       \%.2 f psia and \%.2 f psia respectively", p1,p2)
36 printf("\n partial volumes of oxygen and nitrogen
      are \%.2 f ft^3 and \%.2 f ft^3 respectively", v1, v2)
```

Scilab code Exa 10.2 Example 2

```
1 clc
2 //Initialization of variables
3 m1=5.28
4 m2=1.28
5 m3=23.52
6 //calculations
7 m=m1+m2+m3
8 x1=m1/m
9 x2=m2/m
10 x3=m3/m
11 C=12/44 *m1/ m
12 O=(32/44 *m1 + m2)/m
```

```
13  N=m3/m
14  //results
15  printf("From gravimetric analysis, co2 = %.1 f
      percent , o2 = %.1 f percent and n2 = %.1 f percent
      ",x1*100,x2*100,x3*100)
16  printf("\n From ultimate analysis, co2 = %.2 f
      percent , o2 = %.2 f percent and n2 = %.2 f percent
      ",C*100,O*100,N*100)
```

Scilab code Exa 10.3 Example 3

```
1 clc
2 //Initialization of variables
3 \times 1 = 1/3
4 n1=1
5 n2=2
6 x2=2/3
7 p=12.7 // psia
8 cp1=7.01 //Btu/mole R
9 cp2=6.94 //Btu/mole R
10 R0 = 1.986
11 T2=460+86.6 //R
12 T1 = 460 / R
13 p0=14.7 // psia
14 //calculations
15 p1=x1*p
16 p2=x2*p
17 ds1= cp1*log(T2/T1) - R0*log(p1/p0)
18 ds2= cp2*\log(T2/T1) - R0*\log(p2/p0)
19 S=n1*ds1+n2*ds2
20 //results
21 printf ("Entropy of mixture = \%.2 \, f \, Btu/R", S)
22 printf("the answer given in textbook is wrong.
      please check using a calculator")
```

Scilab code Exa 10.4 Example 4

```
1 clc
2 //Initialization of variables
3 c1=4.97 //Btu/mol R
4 c2=5.02 //Btu/mol R
5 n1=2
6 n2=1
7 T1=86.6+460 //R
8 T2=50+460 //R
9 //calculations
10 du=(n1*c1+n2*c2)*(T2-T1)
11 ds=(n1*c1+n2*c2)*log(T2/T1)
12 //results
13 printf("Change in internal energy = %d Btu",du)
14 printf("\n Change in entropy = %.3 f Btu/R",ds)
```

Scilab code Exa 10.5 Example 5

```
1 clc
2 //Initialization of variables
3 n1=1
4 n2=2
5 c1=5.02
6 c2=4.97
7 t1=60 //F
8 t2=100 //F
9 R0=10.73
10 p1=30 //psia
11 p2=10 //psia
12 //calcualtions
13 t=(n1*c1*t1+n2*c2*t2)/(n1*c1+n2*c2)
```

```
14 V1= n1*R0*(t1+460)/p1

15 V2=n2*R0*(t2+460)/p2

16 V=V1+V2

17 pm=(n1+n2)*R0*(t+460)/V

18 //results

19 printf("Pressure of mixture = %.1 f psia",pm)
```

Scilab code Exa 10.6 Example 6

```
1 clc
2 //Initialization of variables
3 T2 = 546.6 / R
4 T1=520 //R
5 T3 = 560 / R
6 v2=1389.2
7 v1 = 186.2
8 R0 = 1.986
9 c1=5.02
10 c2=4.97
11 \quad n1=1
12 n2=2
13 \quad v3 = 1203
14 //calculations
15 ds1=n1*c1*log(T2/T1) + n1*R0*log(v2/v1)
16 ds2=n2*c2*log(T2/T3)+n2*R0*log(v2/v3)
17 ds=ds1+ds2
18 //results
19 printf("Net change in entropy = \%.3 \, \text{f Btu/R}", ds)
20 //The answer is a bit different due to rounding off
      error in the textbook
```

Scilab code Exa 10.7 Example 7

```
1 clc
2 //Initialization of variables
3 \text{ m1=1} //\text{lbm}
4 \text{ m2=0.94} //\text{lbm}
5 M1 = 29
6 M2 = 18
7 p1=50 // psia
8 p2=100 //psia
9 t1=250 + 460 / R
10 R0=1.986
11 \text{ cpa} = 6.96
12 \text{ cpb=8.01}
13 //calculations
14 \text{ xa} = (m1/M1)/((m1/M1) + m2/M2)
15 \text{ xb}=1-\text{xa}
16 t2=t1*(p2/p1)^(R0/(xa*cpa+xb*cpb))
17 d=R0/(xa*cpa+xb*cpb)
18 k=1/(1-d)
19 dsa=cpa*log(t2/t1) -R0*log(p2/p1)
20 \text{ dSa}=(m1/M1)*dsa
21 dSw = -dSa
22 dsw=dSw*M2/m2
23 //results
24 printf ("Final remperature = %d R",t2)
25 printf("\n Change in entropy of air = \%.3 f btu/mole
      R and \%.5 f Btu/R", dsa, dSa)
26 printf("\n Change in entropy of water = \%.4 \,\mathrm{f} btu/
      mole R and \%.5 f Btu/R", dsw, dSw)
27 //The answers are a bit different due to rounding
       off error in textbook
```

Scilab code Exa 10.8 Example 8

```
1 clc
2 //Initialization of variables
```

```
3 T = 250 + 460 //R
4 p=29.825 //psia
 5 \text{ pt=50} // \text{psia}
 6 vg=13.821 //ft^3/lbm
 7 M = 29
8 R = 10.73
9 //calculations
10 pa=pt-p
11 \ V=1/M *R*T/pa
12 \text{ ma=V/vg}
13 \text{ xa=p/pt}
14 \text{ mb} = xa/M *18/(1-xa)
15 //results
16 printf("In case 1, volume occupied = \%.2 \, \text{f} \, \text{ft} \, ^3", V)
17 printf("\n In case 1, mass of steam = \%.2 \,\mathrm{f} lbm steam
18 printf("\n In case 2, mass of steam = \%.3 \, f lbm steam
       ",mb)
```

Scilab code Exa 10.9 Example 9

```
1 clc
2 //Initialization of variables
3 ps=0.64 //psia
4 p=14.7 //psia
5 M=29
6 M2=46
7 //calculations
8 xa=ps/p
9 mb=xa*9/M *M2/(1-xa)
10 //results
11 printf("percentage = %d percent",mb*100)
```

Scilab code Exa 10.10 Example 10

```
1 clc
2 //Initialization of variables
3 ps=0.5069 //psia
4 p=20 //psia
5 m1=0.01
6 m2=1
7 M1=18
8 M2=29
9 //calculations
10 xw= (m1/M1)/(m1/M1+m2/M2)
11 pw=xw*p
12 //results
13 printf("partial pressure of water vapor = %.3 f psia", pw)
```

Scilab code Exa 10.11 Example 11

```
1 clc
2 //Initialization of variables
3 t1=80+460 //R
4 ps=0.5069 // psia
5 disp("from steam tables,")
6 vs = 633.1 // ft^3 / lbm
7 phi = 0.3
8 R = 85.6
9 Ra = 53.3
10 p = 14.696
11 //calculations
12 tdew=46 //F
13 \text{ pw=phi*ps}
14 \text{ rhos}=1/\text{vs}
15 \text{ rhow=phi*rhos}
16 \text{ rhow2= pw*144/(R*t1)}
```

Scilab code Exa 10.12 Example 12

```
1 clc
2 //Initialization of variables
3 p=14.696 //psia
4 ps=0.0505 //psia
5 ps2=0.5067 //psia
6 phi2=0.5
7 phi = 0.6
8 grain=7000
9 //calculations
10 \text{ pw=phi*ps}
11 w1=0.622*pw/(p-pw)
12 \text{ pw2=phi2*ps2}
13 \text{ w}2=0.622*\text{pw}2/(\text{p-pw}2)
14 \, dw = w2 - w1
15 \text{ dwg=dw*grain}
16 //results
17 printf ("change in moisture content = \%.6 f lbm water/
```

Scilab code Exa 10.13 Example 13

```
1 clc
2 //Initialization of variables
3 \text{ t1=80 } //\text{F}
4 t2=60 / F
5 p=14.696 //psia
6 ps=0.5069 //psia
7 pss=0.2563 //psia
8 \text{ cp} = 0.24
9 //calculations
10 pw= pss- (p-pss)*(t1-t2)/(2830-1.44*t2)
11 phi=pw/ps
12 w = 0.622*pw/(p-pw)
13 \text{ ws} = 0.0111
14 \text{ hfg} = 1059.9
15 \text{ hw} = 1096.5
16 \text{ hf} = 28
17 w2 = (cp*(t2-t1) + ws*hfg)/(hw-hf)
18 //results
19 printf("relative humidity = %d percent", phi*100)
20 printf("\n humidity ratio = \%.5 \, \text{f}",w)
21 printf("\n in case 2, humidity ratio = \%.4 \,\mathrm{f}", w2)
```

Scilab code Exa 10.14 Example 14

```
1 clc
2 //Initialization of variables
3 pw=0.15//psia
```

```
4 disp("using psychrometric charts,")
5 tdew=46 //F
6 //calculations
7 va=13.74 //ft^3/lbm dry air
8 rhoa=1/va
9 V = 13.74
10 \text{ mw} = 45/7000
11 rhow=mw/V
12 \quad w = 0.00643
13 / results
14 disp("part a")
15 printf("partial pressure of water = \%.2 f psia",pw)
16 printf("\n dew temperature = \%d F", tdew)
17 disp("part b")
18 printf("density of water = \%.6 \, \text{f lbm/ft}^3", rhow)
19 printf("\n density of air = \%.4 \text{ f lbm/ft}^3", rhoa)
20 disp("part c")
21 printf("specific humidity = %.5 f lbm steam/lbm air"
      , w)
```

Scilab code Exa 10.15 Example 15

```
1 clc
2 //Initialization of variables
3 t=80 //F
4 phi=0.3
5 w=0.00643
6 //calculations
7 H=0.24*t+ w*(1061+0.444*t)
8 //results
9 printf("enthalpy = %.2 f Btu/lbm dry air", H)
```

Scilab code Exa 10.16 Example 16

```
1 clc
2 //Initialization of variables
3 disp("From psychrometric charts,")
4 va1=13 //ft^3/lbm dry air
5 va2=13.88 //ft^3/lbm dry air
6 flow=2000 //cfm
7 //calculations
8 ma1= flow/va1
9 ma2=flow/va2
10 t=71// F
11 phi=t //percent
12 //results
13 printf("humidity = %d percent",phi)
```

Scilab code Exa 10.17 Example 17

```
1 clc
2 //Initialization of variables
3 t=90 //F
4 ts=67.2 //F
5 phi=0.3
6 per=0.8
7 //calculations
8 dep=t-ts
9 dt=dep*per
10 tf=t-dt
11 disp("from psychrometric charts,")
12 phi2=0.8
13 //results
14 printf("Dry bulb temperature = %.2 f F",tf)
15 printf("\n percent humidity = %.2 f",phi2)
```

Scilab code Exa 10.18 Example 18

```
1 clc
2 //Initialization of variables
3 \text{ m=1} //\text{lbm}
4 disp("From psychrometric charts,")
5 t1=82 //F
6 \text{ phi1} = 0.4
7 H1=30 //Btu/lbm dry air
8 w1=65 //grains/lbm dry air
9 w2=250 // grains/lbm dry air
10 //calculations
11 dmf3 = (w2 - w1) *0.0001427
12 hf3=68
13 \text{ hf} 4 = 43
14 H2=62.2
15 H1=30
16 \text{ mf4} = (H1-H2+ dmf3*hf3)/(hf4-hf3)
17 per=dmf3/(dmf3+mf4)
18 //results
19 printf ("amount of water cooled per pound of dry air
      = \%.3 f lbm dry air/lbm dry air", mf4)
20 printf("\n percentage of water lost by evaporation =
       \%.2\,\mathrm{f} percent", per*100)
```

Scilab code Exa 10.19 Example 19

```
1 clc
2 //Initialization of variables
3 R0=0.73 //atm ft^3/mol R
4 a1=578.9
5 a2=3675
6 b1=0.684
7 b2=1.944
8 n1=0.396 //mol
9 n2=0.604 //mol
10 V=8.518 //ft^3
```

```
11 T=460+460 / R
12 //calculations
13 p1=R0*n1*T/(V-n1*b1) - a1*n1^2 /V^2
14 p2 = R0*n2*T/(V-n2*b2) -a2*n2^2 /V^2
15 p = p1 + p2
16 pa=(n1+n2)*R0*T/V
17 \text{ err} = (pa-p)/p
18 pb=58.7 //atm
19 \text{ err2} = (p-pb)/p
20 //results
21 printf("Pressure = \%.1 f atm",p)
22 printf("\n error in ideal case = \%.1f percent", err
      *100)
23 printf("\n error in case 2 = \%.1f percent", err2
      *100)
24 //The answer is a bit different due to rounding off
      error in textbook
```

Scilab code Exa 10.20 Example 20

```
1 clc
2 //Initialization of variables
3 p1=45.8 //atm
4 p2=36 //atm
5 t1=343.3 //R
6 t2=766.8 //R
7 n1=0.396 //mol
8 n2=0.604 //mol
9 V=8.518 //ft^3
10 R0=0.73
11 T=920 //R
12 //calcualtions
13 vr1=p1*(V/n1)/(R0*t1)
14 vr2=p2*(V/n2)/(R0*t2)
15 tr1=T/t1
```

Scilab code Exa 10.21 Example 21

```
1 clc
2 //Initialization of variables
3 \text{ t1}=343.3 //R
4 t2=766.8 //R
5 \text{ n1=0.396 } //\text{mol}
6 \text{ n2=0.604 } // \text{mol}
7 V=8.518 //ft^3
8 p1 = 45.8 / atm
9 p2=36 //atm
10 R0 = 0.73
11 T = 920 / R
12 //calculations
13 tcd=n1*t1+n2*t2
14 pcd=n1*p1+n2*p2
15 \text{ Tr=T/tcd}
16 \text{ Vr=pcd*V/(R0*tcd)}
17 \quad Z = 0.87
18 p = Z*R0*T/V
19 //results
20 printf("Pressure = %.1f atm",p)
```

Chapter 11

Thermochemical calculations

Scilab code Exa 11.1 Example 1

```
1 clc
2 //Initialization of variables
3 per=87
4 //calculations
5 a=per/12
6 b=12
7 ad=4*a
8 bd=4*b
9 //results
10 printf("Molecule is C %d H %d",ad,bd)
```

Scilab code Exa ${\bf 11.2}$ Example 2

```
1 clc
2 //Initialization of variables
3 per=0.071
4 //calculations
5 02=8.74
```

```
6 N2=per/2 + 3.76*02
7 //results
8 printf("Oxygen = %.2 f and Nitrogen = %.2 f",02,N2)
```

Scilab code Exa 11.3 Example 3

```
1 clc
2 //Initialization of variables
3 M=29
4 m1=8.74
5 m2=32.85
6 fuel=100 //lbm
7 //calculations
8 mass=M*(m1+m2)
9 AF=mass/fuel
10 a2=9.75
11 b2=12.19
12 AF2=mass/(fuel+a2+b2)
13 //results
14 printf("Air fuel ratio = %.2 f lbm air/lbm fuel",AF)
15 printf("\n In dry air, Air-fuel ratio = %.1 f lbm air /lbm fuel as fired",AF2)
```

Scilab code Exa 11.4 Example 4

```
1 clc
2 // Initialization of variables
3 m1=322.3
4 m2=2
5 m3=926
6 basis=121.94
7 // calculations
8 m=m1+m2+m3
```

```
9 ratio=m/basis
10 dh=5776.6 //Btu/mol
11 h1=dh*7.364
12 h2=14064.3
13 h3=130565.5
14 H=h1+h2+h3
15 hrat=H/basis
16 //results
17 printf("Mass of dry flue gases = %.2 f lbm dry flue gas/lbm fuel ash and moisture free",ratio)
18 printf("\n Energy carried away = %.1 f btu/mol coal as fired = %.1 f Btu/lbm mol coal ",H, hrat)
```

Scilab code Exa 11.5 Example 5

```
1 clc
2 //Initialization of variables
3 ns=2
4 n=100
5 nco=10
6 nn=88
7 //calculations
8 xs=ns/n
9 conden=(ns-(nn+ns)*xs)/(1-xs)
10 co2=nco/(nn+nco) *100
11 //results
12 printf("Percentage of condensed H20 = %.3f percent", conden)
13 printf("\n percent of co2 in original mixture = %.3f percent", co2)
```

Scilab code Exa 11.6 Example 6

```
1 clc
2 //Initialization of variables
3 n1=2 //moles
4 n2=10.52 //moles
5 P=14.7 //psia
6 //calculations
7 pp=n1/n2 *P
8 disp("from s=psychrometric charts,")
9 dew=139 //F
10 //results
11 printf("dew point = %d F",dew)
```

Scilab code Exa 11.7 Example 7

```
1 clc
2 //Initialization of variables
3 p=14.7 //psia
4 ps=0.363 //psia
5 n2=7.52 //moles
6 n1=1 //moles
7 //calculations
8 x= (n1+n2)*ps/p /(1-ps/p)
9 //results
10 printf("Final orsat composition is %d CO2 + %.2 f H20 + %.2 f N2",n1, x, n2)
```

Scilab code Exa 11.8 Example 8

```
1 clc
2 //Initialization of variables
3 p=14.7 //psia
4 ps=0.363 //psia
5 n2=7.52 //moles
```

Scilab code Exa 11.9 Example 9

```
1 clc
2 //Initialization of variables
3 \text{ basis}=100 //\text{lbm}
4 \times 1 = 0.6
5 \text{ ash=12 } //\text{lbm}
6 N2 = 79.7
7 M = 29
8 //calculations
9 x = ash/x1
10 C = (1 - x1) * x
11 \quad 02 = N2/3.76
12 a = (14.6 + 0.2)/(5.83 - 0.75)
13 AF = (02+N2)*M/(a*100)
14 //results
15 printf("Air fuel ratio = \%.2 \, \text{f lbm air/lbm fuel as}
       \operatorname{fired} ",AF)
```

Scilab code Exa 11.10 Example 10

```
1 clc
2 //Initialization of variables
3 N2 = 79.7
4 M = 29
5 \text{ ba} = 2.12
6 x4=0.3
7 x5=3.7
8 \times 6 = 14.7
9 //calculations
10 \quad 02 = N2/3.76
11 c = 14.7
12 b = x4*4 + x5*2 + x6*2
13 \quad a=b/ba
14 AF = (02+N2)*M/(a*12 + b)
15 //results
16 printf("Air fuel ratio = %.1f lbm air/lbm fuel", AF)
```

Scilab code Exa 11.11 Example 11

Scilab code Exa 11.12 Example 12

```
1 clc
2 //Initialization of variables
3 co=1.2
4 //calculations
5 H2=co/2
6 ch4=0.3
7 N2=88-H2-ch4
8 //results
9 printf("Nitrogen = %.1f percent", N2)
```

Scilab code Exa 11.13 Example 13

```
1 clc
2 //Initialization of variables
3 dn=-0.5
4 R0=1.986
5 T=537 //R
6 Qp=-121664
7 //calculations
8 Qv= Qp- dn*R0*T
9 //results
10 printf("Heat of reaction at constant volume = %d Btu /mol", Qv)
```

Scilab code Exa 11.14 Example 14

1 clc

```
2 //Initialization of variables
3 m=2362 //g
4 cp=1 //Btu/lbm F
5 T=0.83 //F
6 mass=0.1 //g
7 //calculations
8 Qm=m*cp*T/mass
9 Qv=-Qm
10 //results
11 printf("Heat transferred = %d Btu/lbm fuel",Qv)
```

Scilab code Exa 11.15 Example 15

```
1 clc
2 //Initialization of variables
3 y = 13
4 x = 12
5 M2 = 18
6 M = 170
7 p=0.4593
8 \text{ vfg} = 694.9
9 J = 778.2
10 \, m=1.375
11 U = -19650 //Btu/lbm fuel
12 //calculations
13 z=y*M2/M
14 hfg=1050.4 //Btu/lbm
15 ufg= hfg- p*vfg*144/J
16 dU=ufg*m //Btu/lbm
17 Ud = dU + U
18 //results
19 printf("Lower heating value = %d Btu/lbm", Ud)
```

Scilab code Exa 11.16 Example 16

Scilab code Exa 11.17 Example 17

```
1 clc
2 //Initialization of variables
3 n1=8
4 n2=9
5 n3=1
6 \quad n4 = 12.5
7 U11=3852
8 U12=118
9 U21=3009
10 U22=104
11 U31=24773
12 U32=640
13 U41=2539
14 U42=85
15 \text{ H} = -2203279
16 //calculations
17 dU1=n1*(U11-U12)+n2*(U21-U22)
```

```
18  dU2=n3*(U31-U32)+n4*(U41-U42)
19  Q=H+dU1-dU2
20  //results
21  printf("Heat of reaction = %d Btu/mole",Q)
```

Scilab code Exa 11.18 Example 18

```
1 clc
2 //Initialization of variables
3 n1=8
4 n2=9
5 n3=47
6 h1=118
7 h2=104
8 h3=82.5
9 Q=2203279 //Btu
10 //calculations
11 U11=n1*h1+n2*h2+n3*h3
12 U12=U11+Q
13 T2=5271 //R
14 //results
15 printf("Upon interpolating, T2 = %d R",T2)
```

Scilab code Exa 11.19 Example 19

```
1 clc
2 //Initialization of variables
3 n1=0.95
4 n2=0.05
5 n3=0.025
6 P=147 //psia
7 pa=14.7 //psia
8 //calculations
```

```
9     n=n1+n2+n3
10     p1=n1/n *P/pa
11     p2=n2/n *P/pa
12     p3=n3/n *P/pa
13     Kp1= p1/(p2*p3^0.5)
14     Kp2= p1^2 /(p2^2 *p3)
15     //results
16     printf("In case 1, Equilibrium constant = %.1f ",Kp1 )
17     printf("\n In case 2, Equilibrium constant = %.1f ", Kp2)
```

Scilab code Exa 11.20 Example 20

```
1 clc
2 //Initialization of variables
3 kp=5
4 //calculations
5 x=poly(0,"x")
6 vec=roots(24*x^3 + 3*x-2)
7 x=vec(3)
8 y=poly(0,"y")
9 vec2=roots(249*y^3 +3*y-2)
10 y=vec2(3)
11 //results
12 printf("degree of dissociation = %.2 f",x)
13 printf("\n If pressure =10 . degree of dissociation = %.2 f",y)
```

Scilab code Exa 11.21 Example 21

```
1 clc
2 //Initialization of variables
```

```
3 x=poly(0,"x")
4 vec=roots(24*x^3 +48*x^2 + 7*x -4)
5 x=vec(3)
6 // results
7 printf("degree of dissociation = %.2f",x)
```

Scilab code Exa 11.22 Example 22

```
1 clc
2 //Initialization of variables
3 T = 77 + 460 / R
4 \times 1 = 0.21
5 x2=1-x1
6 G = -169557 //Btu/mole
7 n1=1
8 n2=3.76
9 R0 = 1.986
10 \quad v = 0.0885
11 \text{ pi} = 14.7
12 J=778
13 //calculations
14 dg1 = -n1 * R0 * T * log(x1)
15 dg2=-n2*R0*T*log(x2)
16 dg = dg1 + dg2
17 dG = dg + G
18 \quad W = -dG
19 W2 = -G
p = 0.0004 / atm
21 G1=-n1*R0*T*log(1/p)
22 \text{ W3} = -(\text{dg1} + \text{G} + \text{G1})
23 \text{ dgf} = v * pi * 144/J
24 //results
25 printf("In case 1, Work done = %d Btu/mole C", W)
26 printf("\n In case 2, Work done = %d Btu/mole C", W2)
27 printf("\n In case 3, Work done = %d Btu/mole C", W3)
```

```
28 printf("\n In case 4, Work done = \%.2\,\mathrm{f} Btu/mole C", dgf)
```

Scilab code Exa 11.23 Example 23

```
1 clc
2 //Initialization of variables
3 H=-169182 //Btu/mole
4 s1=1.3609 //Btu/mole R
5 s2=49.003 //Btu/mole R
6 s3=51.061 //Btu/mole R
7 T=537 //R
8 //calculations
9 dG=H-T*(s3-s2-s1)
10 //results
11 printf("Change in Gibbs energy = %d Btu/mole carbon", dG)
```

Chapter 12

Power cycles vapor

Scilab code Exa 12.1 Example 1

```
1 clc
2 //Initialization of variables
3 p1 = 600 // psia
4 p2=0.2563 // psia
5 t1 = 486.21 //F
6 t2=60 / F
7 //calculations
8 disp("from steam tables,")
9 h1=1203.2
10 hf1=471.6
11 hfg1=731.6
12 h2=1088
13 hf2=28.06
14 \text{ hfg2} = 1059.9
15 \text{ s1=1.4454}
16 \text{ sf1} = 0.6720
17 \text{ sfg1} = 0.7734
18 \text{ s2=2.0948}
19 \text{ sf} 2 = 0.0555
20 \text{ sfg}2=2.0393
21 \text{ xd}=(s1-sf2)/sfg2
```

```
22 \text{ hd=hf2+xd*hfg2}
23 \text{ xa} = 0.3023
24 \text{ ha=hf2+xa*hfg2}
25 \text{ wbc=0}
26 \text{ wda=0}
27 \text{ wcd=h1-hd}
28 wab=ha-hf1
29 W=wab+wcd+wbc+wda
30 \text{ Wrev=hfg1- (t2+459.7)*sfg1}
31 etat=(t1-t2)/(t1+459.7)
32 etac=W/Wrev
33 etae=W/Wrev
34 Wr=Wrev/(wcd)
35 //results
36 printf("Thermal efficiency = %d percent", etat*100)
37 printf("\n Compression efficiency = \%d percent", etac
       *100)
38 printf("\n Expansion efficiency = \%d percent", etae
39 printf("\n Work ratio = \%.2 \, \text{f} ", Wr)
```

Scilab code Exa 12.2 Example 2

```
1 clc
2 //Initialization of variables
3 dhab=-122.6
4 ha=348.5
5 eta=0.85
6 hf=471.6
7 hfg=731.6
8 hc=1203.2
9 dhcd=384.4
10 hf2=28.06
11 hfg2=1059.9
12 //calculations
```

Scilab code Exa 12.3 Example 3

```
1 clc
2 //Initialization of variables
3 \text{ vf} = 0.01604 // \text{ft}^3/\text{lbm}
4 p1 = 600 // psia
5 p2=0.2563 //psia
6 J=778.16
7 //calculations
8 \ W=-vf*(p1-p2)*144/J
9 disp("From steam tables")
10 ha=28.06
11 \text{ hb} = 29.84
12 hd=1203.2
13 he = 750.5
14 \text{ sa} = 0.0555
15 \text{ sb} = 0.0555
16 \text{ sd} = 1.4454
17 \text{ se} = 1.4454
18 Qa=hd-hb
```

Scilab code Exa 12.4 Example 4

```
1 clc
2 //Initialization of variables
3 \text{ Wisen=-1.78}
4 \text{ eta} = 0.85
5 t2=60 / F
6 \text{ t1=}486.21 \text{ //F}
7 //calculations
8 Wact=Wisen/eta
9 dsabd= (Wact+Wisen)/(t2+459.7)
10 disp("From steam tables,")
11 ha = 28.06
12 \text{ hb} = 30.15
13 hd=1203.2
14 \text{ he} = 818.4
15 \text{ sa} = 0.0555
16 \text{ sb} = 0.0561
17 \text{ sd} = 1.4454
18 \text{ se} = 1.576
19 Qa=hd-hb
20 Qr=ha-he
21 \quad W2 = Qr + Qa
22 Wt=hd-he
```

```
23 Wp=ha-hb
24 etat=W2/Qa
25 rw= W2/(Wt)
26 //results
27 printf("theoretical efficiency = %.1f percent",etat
          *100)
28 printf("\n Work ratio = %.3f",rw)
```

Scilab code Exa 12.5 Example 5

```
1 clc
 2 //Initialization of variables
 3 \text{ sh}=1.6070
 4 ph = 94.8 // psia
 5 \text{ th} = 324 //F
 6 \text{ tr} = 60 //F
 7 \text{ hh} = 1186.2
 8 \text{ pi} = 94.8 // \text{psia}
 9 hi=1399.5
10 \text{ si} = 1.8265
11 //calculations
12 \quad Q=hi-hh
13 Hr = -(tr + 459.7) * (si - sh)
14 \text{ work= Q+Hr}
15 eff=work/Q
16 \quad Qa1 = 1557.5
17 W1=637.1
18 etat=W1/Qa1
19 \text{ he} = 1374
20 \text{ hj} = 948
21 Whp=he-hh
22 Wlp=hi-hj
23 //results
24 printf("Thermal efficiency in case 1=\%.1\,\mathrm{f} percent",
       eff *100)
```

Scilab code Exa 12.6 Example 6

```
2 //Initialization of variables
3 p2 = 600 //psia
4 p1=44 // psia
5 \text{ te}=486.21 //F
6 tb=273.1 //F
7 J=778.16
8 p3=0.25 //psia
9 //calculations
10 \text{ hc} = 241.9
11 hj=834.6
12 y = 1 - 0.805
13 \text{ v1} = 0.0172
14 v2=0.016
15 ha=28.06
16 \text{ hd=hc+v1*(p2-p1)*144/J}
17 hb=ha+v2*(p1-p3)*144/J
18 hh=1374
19 Qa=hh-hd
20 Qr = (ha - hj) * (1 - y)
21 \text{ etat=}(Qa+Qr)/Qa
22 / results
23 printf("thermal efficiency = \%.1 f percent", etat*100)
```

Scilab code Exa 12.7 Example 7

```
1 clc
2 //Initialization of variables
3 \text{ cp} = 0.25
4 t2=3460 / R
5 \text{ t1=946.2} / \text{R}
6 \text{ etat} = 0.45
7 Q = -489
8 t3=520 //R
9 \text{ etat2=0.384}
10 //calculations
11 Qa = cp * (t2 - t1)
12 \text{ w=etat*Qa}
13 eps=-w/Q
14 I = w + Q
15 \text{ Qa2} = \text{cp}*(t2-t3)
16 \quad W2 = \text{etat2} * Qa2
17 \text{ eps2} = -W2/Q
18 I2 = W2 + Q
19 //results
20 printf("In case 1, Effectiveness of cycle = %d
       percent", eps*100)
21 printf("\n in case 1, loss in available energy = \%d
       Btu/lbm", I)
22 printf("\n in case 2, loss in available energy = \%d
       Btu/lbm", I2)
```

Scilab code Exa 12.8 Example 8

```
1 clc
2 //Initialization of variables
3 W=481 //Btu/lbm
4 hh=1374
5 hd=243.7
6 sh=1.6070
7 sd=0.4
```

```
8 t=519.7 //R
9 //calculations
10 Q=(hh-hd) - t*(sh-sd)
11 eta=W/Q
12 I=-Q+W
13 //resu;ts
14 printf("Efficiency = %.1f percent",eta*100)
15 printf("\n Energy = %.1f Btu/lbm",I)
```

Scilab code Exa 12.9 Example 9

```
1 clc
2 clear
3 //Initialization of variables
4 b1=480.9
5 h1=1306.9
6 \text{ s1}=1.5894
7 h2 = 1122
8 s2=s1
9 s3=1.6522
10 b3=310.9
11 h3=1169.5
12 //calculations
13 W=h3-h1
14 db=b3-b1
15 dh=h1-h2
16 etae=abs(W/dh)
17 eps=abs(W/db)
18 \quad I = db - W
19 //results
20 printf ("Engine efficiency = \%.1 f percent", etae*100)
21 printf("\n Effectiveness = \%.1 f percent", eps*100)
22 printf("\n Loss of available energy = \%.1 \, \mathrm{f} \, \mathrm{Btu/lbm}",
      I)
```

Scilab code Exa 12.10 Example 10

```
1 clc
2 //Initialization of variables
3 \text{ ha} = 348.5
4 hb = 471.6
5 \text{ sa} = 0.6720
6 \text{ sb=sa}
7 \text{ sbd} = 0.6944
8 \text{ hbd} = 492.7
9 \text{ etac} = 0.85
10 \quad T0 = 60 + 460
11 //calculations
12 eps=abs(((hbd-ha)-T0*(sbd-sa))/(-(hbd-ha)))
13 I=(hbd-ha)-T0*(sbd-sa)-(hbd-ha)
14 // results
15 printf("Effectiveness = \%.1f percent", eps*100)
16 printf("\n loss of available energy = \%.1 \, \text{f} btu/lbm",
       I)
```

Scilab code Exa 12.11 Example 11

```
1 clc
2 //Initialization of variables
3 y=0.195
4 bc=34.07
5 bb=-0.65
6 bi=290.85
7 //calculations
8 eps=abs((1-y)*(bc-bb)/(y*(bc-bi)))
9 I=(1-y)*(bc-bb)+ (y*(bc-bi))
10 //results
```

```
11 printf("Effectiveness = \%.1\,\mathrm{f} percent", eps*100)
12 printf("\n loss of available energy = \%.1\,\mathrm{f} btu/lbm", I)
```

Chapter 13

Power cycles gas

Scilab code Exa 13.1 Example 1

```
1 clc
2 //Initialization of variables
3 \text{ ta} = 780 / F
4 \text{ tr}=80/F
5 Qa=195 //Btu
6 pd=14.7 // psia
7 R=1.986/29
8 k = 1.4
9 J=778
10 g = 32.174
11 //calculations
12 etat=(ta-tr)/(ta+459.7)
13 W=etat*Qa
14 \text{ vd}=R*(tr+460)/pd
15 va=vd*exp(-(Qa-W)/R/(tr+460))
16 vb=va*((tr+460)/(ta+460))^(1/(k-1))
17 vc=vd/va*vb
18 \text{ rv=vd/vb}
19 \text{ rv2=vc/vb}
20 \text{ rv3=va/vb}
21 imep= W*J/(144*(vd-vb))/5.77
```

```
// 5.77 is conversion factor
// results
printf("cycle expansion ratio = %.1 f ",rv)
printf("\n isothermal expansion ratio = %.1 f",rv2)
printf("\n isentropic expansion ratio = %.1 f",rv3)
printf("\n imep = %.1 f lbf/in^2",imep)
```

Scilab code Exa 13.2 Example 2

```
1 clc
2 //Initialization of variables
3 \text{ rv=8}
4 k = 1.4
5 Qa = 1280
6 pa=14.7 // psia
7 R = 10.73/29
8 Ta=540 //R
9 J = 778
10 cv=0.17 //Btu/lbm R
11 //calculations
12 etat=1-1/rv^{(k-1)}
13 W=etat*Qa
14 \text{ va=R*Ta/pa}
15 vb=va/rv
16 \text{ Tb=Ta*rv}^{(k-1)}
17 dt=Qa/cv
18 \text{ Tc=Tb+dt}
19 pb=pa*(rv)^(k-1)
20 pc = Tc*pb/Tb
21 \text{ Td=Tc*(1/rv)^(k-1)}
22 pd=pa*Td/Ta
23 \quad imep = W*J/144/(va-vb)
24 //results
25 printf ("Thermal efficiency = \%.1 f percent", etat*100)
26 printf("\n Work done = \%d btu/lbm air", W)
```

Scilab code Exa 13.3 Example 3

```
1 clc
2 clear
3 //Initialization of variables
4 ha = 1033
5 \text{ hbd} = 1403 + 1589
6 \text{ hc} = 7823
7 \text{ hdd} = 5142
8 lhv=2733000
9 M = 29
10 //calculations
11 wt=hc-hdd
12 wc=ha-hbd
13 \text{ wnet=wt+wc}
14 heat=hc-hbd
15 etat=wnet*100/heat
16 \text{ mr=heat/lhv } *142/M
17 \text{ AF}=1/\text{mr}
18 //results
19 printf ("Thermal efficiency = \%.1f percent", etat)
20 printf("\n Air fuel ratio = \%.1 \, f lbm air/lbm fuel",
       AF)
```

Chapter 14

Refrigeration

Scilab code Exa 14.1 Example 1

```
1 clc
2 //Initialization of variables
3 Ta=500 //R
4 Tr=540 //R
5 //calculations
6 cop=Ta/(Tr-Ta)
7 \text{ hp} = 4.71/\text{cop}
8 disp("From steam tables,")
9 \text{ ha} = 48.02
10 \text{ hb} = 46.6
11 \text{ hc} = 824.1
12 hd=886.9
13 Wc = -(hd - hc)
14 \text{ We=-(hb-ha)}
15 //results
16 printf ("Coefficient of performance = %.1 f", cop)
17 printf("\n horsepower required per ton of
       refrigeration = \%.3 f hp/ton refrigeration",hp)
18 printf("\n Work of compression = \%.1 \, \text{f Btu/lbm}", Wc)
19 printf("\n Work of expansion = \%.2 \, f \, Btu/lbm", We)
```

Scilab code Exa 14.3 Example 3

```
1 clc
2 //Initialization of variables
3 \text{ hc} = 613.3 // \text{btu/lbm}
4 hb=138.9//btu/lbm
5 \text{ ha} = 138.9 / / \text{btu/lbm}
6 \text{ hd=713.4 } //\text{btu/lbm}
7 ta=464.7 //R
8 \text{ t0} = 545.7 / \text{R}
9 v=8.150 //ft^3/lbm
10 //calculations
11 Qa=hc-hb
12 Qr=ha-hd
13 \text{ Wcd=Qa+Qr}
14 cop=abs(Qa/Wcd)
15 hp=abs(4.71/cop)
16 carnot=abs(ta/(t0-ta))
17 rel=abs(cop/carnot)
18 \text{ mass} = 200/Qa
19 C = mass * v
20 //results
21 printf("Work done = \%.1 \, f \, Btu/lbm", Wcd)
22 printf("\n horsepower required per ton of
       refrigeration = \%.3 f hp/ton refrigeration",hp)
23 printf("\n Coefficient of performance actual = \%.2 f
      ",cop)
24 printf("\n Ideal cop = \%.3 \, f", carnot)
25 printf("\n relative efficiency = \%.3 \, f", rel)
26 printf("\n Mass flow rate = \%.3 \, \text{f lbm/min ton}", mass)
27 printf("\n Compressor capacity = \%.2 \text{ f cfm/ton}",C)
```

Scilab code Exa 14.4 Example 4

```
1 clc
2 //Initialization of variables
3 k=1.29
4 R=1.986/17.024
5 T1=464.7
6 pr=4.94
7 //calculations
8 Wrev= k*R*T1/(1-k) *(pr^((k-1)/k) -1)
9 Wold=-100.1 //Btu/lbm
10 err=(Wrev-Wold)/Wrev
11 //results
12 printf("Work done = %.1 f Btu/lbm", Wrev)
13 printf("\n error = %.1 f percent", err*100)
```

Scilab code Exa 14.5 Example 5

```
1 clc
2 //Initialization of variables
3 hc = 73.5
4 hb = 26.28
5 hd=91.58
6 \text{ hc2}=190.7
7 \text{ hd2} = 244.3
8 \text{ hb2} = 44.4
9 m1=1 / lbm
10 m2 = 0.461 / lbm
11 \text{ hc1} = 73.5
12 hd1=83.35
13 hc2=197.58
14 hd2=224
15 hb1=12.55
16 // Calculations
17 \text{ w1=hc-hd}
```

```
18 \quad qa1=hc-hb
19 cop1=abs(qa1/(w1))
20 \text{ hp1}=4.71/\text{cop1}
21 \quad w2=hc2-hd2
22 qa2=hc2-hb2
23 cop2=abs(qa2/(w2))
24 \text{ hp2} = 4.71/\text{cop2}
25 \text{ qa3=m1*(hc1-hb1)}
26 \text{ w3}=\text{m1}*(\text{hc1}-\text{hd1}) + \text{m2}*(\text{hc2}-\text{hd2})
27 \text{ cop3} = \text{abs}(\text{qa3/w3})
28 \text{ hp3} = 4.71/\text{cop3}
29 //results
30 disp("part a")
31 printf("Work done = \%.2 \, f \, Btu/lbm", w1)
32 printf("\n Heat = \%.2 \, f \, Btu/lbm", qa1)
33 printf("\n horsepower required per ton of
       refrigeration = \%.3 f hp/ton refrigeration",hp1)
34 printf ("\n Coefficient of performance actual = \%.2 \,\mathrm{f}
       ",cop1)
35 printf("\n Work done = \%.1 \, f \, Btu/lbm", w2)
36 printf("\n Heat = \%.2 \, f \, Btu/lbm", qa2)
37 printf("\n horsepower required per ton of
       refrigeration = \%.3 f hp/ton refrigeration",hp2)
  printf("\n Coefficient of performance actual = \%.2 f
       ",cop2)
39 disp("part b")
40 printf("\n Work done = \%.1 \, f \, Btu/lbm", w3)
41 printf("\n Heat = \%.2 \, f \, Btu/lbm", qa3)
42 printf("\n horsepower required per ton of
       refrigeration = \%.3 f hp/ton refrigeration",hp3)
43 printf ("\n Coefficient of performance actual = \%.2 \,\mathrm{f}
       ",cop3)
```

Scilab code Exa 14.6 Example 6

```
1 clc
2 //Initialization of variables
3 \text{ ha} = 44.36
4 \text{ hc} = 18.04
5 \text{ hj} = 197.58
6 \text{ hh} = 213.5
7 hd=hc
8 \text{ he} = 190.66
9 \text{ hk} = 241.25
10 //calculations
11 m=(hc-ha)/(ha-hj)
12 hi = (m*hj+hh)/(1+m)
13 Qa=he-hd
14 \text{ W=he-hh} + (1+m)*(hi-hk)
15 cop=abs(Qa/W)
16 \text{ hp} = 4.71/\text{cop}
17 //results
18 printf("\n horsepower required per ton of
       refrigeration = \%.3 f hp/ton refrigeration",hp)
19 printf("\n Coefficient of performance actual = \%.2 \,\mathrm{f}
       ",cop)
```

Scilab code Exa 14.7 Example 7

```
1 clc
2 //Initialization of variables
3 pc=0.6982 //psia
4 pe=0.1217 //psia
5 m=200 //gal/min
6 qual=0.98
7 h1=23.07 //Btu/lbm
8 h2=8.05 //Btu/lbm
9 hw=1071.3
10 //calculations
11 rp=pc/pe
```

```
12 m2=m/0.01602 *0.1388 //Conversion of units
13 \quad m2 = 1670
14 dh=15.02
15 Qa=m2*(h1-h2)
16 \text{ h3=h2} + \text{qual*hw}
17 \text{ m3} = Qa/(h3-h1)
18 v = 0.016 + qual * 2444
19 C = m3 * v
20 / results
21 printf ("Pressure ratio = \%.2 \,\mathrm{f}", rp)
22 printf("\n Heat = %d Btu/min",Qa)
23 printf("\n Water make up required = \%.2 \text{ f lbm/min}",m3
24 printf("\n Volume of vapor entering ejector = %d ft
       ^3/\min, C)
25 //The answers are a bit different due to rounding
       off error in textbook
```