Latency = 1 cycle Miss Rate = 0.03Access Time = $(1 - Miss Rate) \times (Hit Time) + (Miss Rate) \times (Miss Time)$ = (0.97)(1) + 0.03(110) = 4.27 cycles

[B]

 $Latency = 110 \ cycles$

Hit Rate = $\frac{Cache \, Size}{Array \, Size} = \frac{64 \, Kb}{1000 \, Mb} = 0.000064$

Access Time = 0.000064(1) + (0.999936)(110) = 109.993 cycles

2.)

Memory Access Excluded CPI = 1.35 Instructions = 20% load, 10% store, 70% access L1 I-cache: 2% miss rate, 32 byte blocks, miss penalty 15 ns + 1 cycle L2 D-cache: 5% miss rate, 16 byte blocks, miss penalty 15 ns + 1 cycle

[A]

Access Time = 15 ns

Miss Time [L1 in L2] = $15 + 32(3.75)(\frac{1}{16}) = 2.5 \text{ ns}$

Miss Time [Memory] = $60 + \frac{64}{16}(7.5) = 90 \text{ ns}$

Avg. Memory Access Time = L2 access time + memory access time + L2 wb access time = 0.02(22.5) + 0.02(0.2)(90) + 0.02(0.5)(90) = 0.99 ns

[B]

 $Read\ Miss\ Time\ [L1\ in\ L2]\ =\ 15\ +\ 3.75\ =\ 18.75\ ns$

Miss Time [L2 in Memory] = 90 ns

Avg. Memory Access Time [Read] = 0.02(18.75) + 0.02(0.2)(90) + 0.02(0.2)(0.5)(90)= 0.92 ns

[C]

Write Time [L1 to L2] = 15 + 3.75 = 18.75 ns

Miss Time [L2 in Memory] = 90 ns

Avg. Memory Access Time [Write] = 0.05(18.75) + 0.05(0.2)(90) + 0.05(0.2)(0.5)(90)= 2.29 ns

Instruction	Memory	Cache
Fld f0, 0(x0)	Load M[0]; Miss	4, 1, -, -, -, -, -
Fld f2, 0(x2)	Load M[16]; <i>Miss</i>	4, 1, 7, 9, -, -, -
Fsd f2, 0(x2)	Store M[16]; Hit	4, 1, 28, 9, -, -, -, -
Fld f2, 0(x2)	Load M[24]; Hit	4, 1, 28, 9, -, -, -, -
Fsd f2, 0(x2)	Store M[24]; Hit	4, 1, 28, 36, -, -, -, -
Fld f2, 0(x2)	Load M[32]; Miss	4, 1, 28, 36, 5, 3, -, -
Fsd f2, 0(x2)	Store M[32]; Hit	4, 1, 28, 36, 20, 3, -, -
Fld f2, 0(x2)	Load M[40]; <i>Hit</i>	4, 1, 28, 36, 20, 3, -, -
Fsd f2, 0(x2)	Store M[40]; Hit	4, 1, 28, 36, 20, 12, -, -
Fld f2, 0(x2)	Load M[48]; <i>Miss</i>	4, 1, 28, 36, 20, 12, 1, 2
Fsd f2, 0(x2)	Store M[48]; Hit	4, 1, 28, 36, 20, 12, 4, 2
Fld f2, 0(x2)	Load M[56]; <i>Hit</i>	4, 1, 28, 36, 20, 12, 4, 2
Fsd f2, 0(x2)	Store M[56]; Hit	4, 1, 28, 36, 20, 12, 4, 8
Fld f2, 0(x2)	Load M[64]; Miss	6, 8, 28, 36, 20, 12, 4, 8
Fsd f2, 0(x2)	Store M[64]; Hit	24, 8, 28, 36, 20, 12, 4, 8
Fld f2, 0(x2)	Load M[72]; <i>Hit</i>	24, 8, 28, 36, 20, 12, 4, 8
Fsd f2, 0(x2)	Store M[72]; Hit	24, 32, 28, 36, 20, 12, 4, 8
Fld f2, 0(x2)	Load M[80]; <i>Miss</i>	24, 32, 7, 3, 20, 12, 4, 8
Fsd f2, 0(x2)	Store M[80]; Hit	24, 32, 28, 3, 20, 12, 4, 8

[B] 2-way $\rightarrow n\%2$

Instruction	Memory	Cache
Fld f0, 0(x0)	Load M[0]; Miss	4, 1, -, -, -, -, -
Fld f2, 0(x2)	Load M[16]; <i>Miss</i>	4, 1, -, -, 7, 9, -, -
Fsd f2, 0(x2)	Store M[16]; Hit	4, 1, -, -, 28, 9, -, -
Fld f2, 0(x2)	Load M[24]; <i>Hit</i>	4, 1, -, -, 28, 9, -, -
Fsd f2, 0(x2)	Store M[24]; Hit	4, 1, -, -, 28, 36, -, -
Fld f2, 0(x2)	Load M[32]; Miss	4, 1, 5, 3, 28, 36, -, -
Fsd f2, 0(x2)	Store M[32]; Hit	4, 1, 20, 3, 28, 36, -, -
Fld f2, 0(x2)	Load M[40]; Hit	4, 1, 20, 3, 28, 36, -, -
Fsd f2, 0(x2)	Store M[40]; Hit	4, 1, 20, 12, 28, 36, -, -
Fld f2, 0(x2)	Load M[48]; Miss	4, 1, 20, 12, 28, 36, 1, 2
Fsd f2, 0(x2)	Store M[48]; Hit	4, 1, 20, 12, 28, 36, 4, 2
Fld f2, 0(x2)	Load M[56]; <i>Hit</i>	4, 1, 20, 12, 28, 36, 4, 2
Fsd f2, 0(x2)	Store M[56]; Hit	4, 1, 20, 12, 28, 36, 4, 8
Fld f2, 0(x2)	Load M[64]; Miss	6, 8, 20, 12, 28, 36, 4, 8
Fsd f2, 0(x2)	Store M[64]; Hit	24, 8, 20, 12, 28, 36, 4, 8
Fld f2, 0(x2)	Load M[72]; <i>Hit</i>	24, 8, 20, 12, 28, 36, 4, 8
Fsd f2, 0(x2)	Store M[72]; Hit	24, 32, 20, 12, 28, 36, 4, 8
Fld f2, 0(x2)	Load M[80]; <i>Miss</i>	24, 32, 20, 12, 7, 3, 4, 8
Fsd f2, 0(x2)	Store M[80]; Hit	24, 32, 20, 12, 28, 3, 4, 8

$$AMAT = Hit Time + Miss Rate \times Miss Penalty$$

$$AMAT [Data] = 1 + 0.06 \times 16 = 1.96 \ cycles$$

$$AMAT [Instruction] = 1 + 0.05 \times 16 = 1.8 \ cycles$$

$$Avg. \ AMAT = \frac{1.96 + 1.8}{2} = 1.88 \ cycles$$

[A]

Cache Block	Set	Memory Blocks residing in Cache Blocks
0	0	M0, M8, M16, M24
1	1	M1, M9, M17, M25
2	2	M2, M10, M18, M26
3	3	M3, M11, M19, M27
4	4	M4, M12, M20, M28
5	5	M5, M13, M21, M29
6	6	M6, M14, M22, M30
7	7	M7, M15, M23, M31

[B] 2-way $\rightarrow n\%2$

Cache Block	Set	Memory Blocks residing in Cache Blocks
0	0	M0, M2, M4, M30
1	1	M1, M3, M5, M31
2	0	M0, M2, M4, M30
3	1	M1, M3, M5, M31
4	0	M0, M2, M4, M30
5	1	M1, M3, M5, M31
6	0	M0, M2, M4, M30
7	1	M1, M3, M5, M31

6.)

Cache Miss CPI = $1 + 0.2(0.02) \times 25$ cycles = 1.1 cycles Speedup = $\frac{1.1}{1}$ = 1.1 times faster

Critical Word First $\rightarrow 10$ cycles Without Critical Word = $10 + (32 - 1) \rightarrow 41$ cycles Speedup = $\frac{41}{10}$ = 4.1 times faster