

BÁO CÁO BÀI TẬP LỚN

Đề tài: Thiết kế, thi công và mô phỏng mạch khuếch đại

Trở kháng ngõ vào: lớn hơn 100K 0hm

Trở kháng ngõ ra: nhỏ hơn 1K 0hm

Độ lợi: 5

Băng thông: 15Hz - 15KHz

Giới thiệu Thiết kế Mô phỏng Thực tế

Giới thiệu

Cách chọn BJT và điểm làm việc tĩnh

Thiết kế Mô phỏng

Thực tế

Giới thiệu

Chọn BJT BC547B theo datasheet có hfe nằm trong khoảng từ 200 đến 450.

Chọn điểm làm việc tĩnh cho Q1:

$$Q_1 (V_{CE}, I_{CQ}) = (4.5 V; 0.4 mA)$$

 $hie_1 = hfe. \frac{V_T}{I_{CQ}} = 300. \frac{0.025}{0.4. \cdot 10^{-3}} = 18.75 K\Omega$

Giới thiệu Mô phỏng

Thực tế

Thiết kế

KVL (**I**):

$$V_B - V_{\gamma} - I_B . R_B = V_E$$

$$\frac{V_{cc}.R_{B2}}{R_{B1}+R_{B2}} \ - \ 0.7 \ - \frac{I_{cQ}}{hfe} \ . \frac{R_{B1}.R_{B2}}{R_{B1}+R_{B2}} \ = I_{cQ} \ . \ \frac{hfe \ + \ 1}{hfe} \ . R_{E1}$$

Ta chọn $R_{B2} = 330 KΩ$ để đảm bảo $Z_{in} > 100 K$.

$$=> \frac{12.330K}{R_{B1} + 330K} - 0.7 - \frac{0.4.10^{-3}}{300} \cdot \frac{R_{B1} \cdot 330K}{R_{B1} + 330K}$$
$$= 0.4.10^{-3} \cdot \frac{300 + 1}{300} \cdot 3000$$

$$=>R_{B1}=1421K\Omega$$

 \rightarrow Chọn $R_{B1}=~1425 K\Omega$ để đảm bảo sai số.

Mô phỏng

Thực tế

Thiết kế

KVL (II):

$$V_{CC} = V_C + V_{CE} + V_E = I_{CQ} . R_{C1} + V_{CE} + I_{CQ} . \frac{hfe + 1}{hfe} . R_E$$

=>
$$R_{C1} = \frac{V_{CC} - V_{CE} - I_{CQ} \cdot \frac{hfe + 1}{hfe} \cdot R_E}{I_{CQ}}$$

$$= \frac{12 - 4.5 - 0.4 \cdot 10^{-3} \cdot \frac{301}{300} \cdot 3000}{0.4 \cdot 10^{-3}}$$

$$=>R_{c1}=15740\Omega \rightarrow \text{Chọn }R_{c1}=15K\Omega.$$

Mô phỏng

Thực tế

Thiết kế

KVL (III):

$$V_{C1} \approx V_{B2} \left(I_{B2} \ll I_{CQ1}\right)$$

$$V_{B2} - V_{\gamma} = V_{E} = > V_{E} = V_{C1} - V_{\gamma} = V_{CC} - I_{CQ1}.R_{C1} - V_{\gamma}$$

$$= 12 - 0.4 \cdot 10^{-3} \cdot 15K - 0.7 = 5.3 (V)$$

Mô phỏng

Thực tế

Thiết kế

Chọn điểm làm việc tĩnh cho Q2:

$$Q_2(V_{CE}, I_{CQ}) = (5 V; 5 mA)$$

$$R_{E2} = \frac{V_E}{I_{EQ}} \approx \frac{V_E}{I_{CQ2}} = \frac{5.3}{5.10^{-3}} \approx 1K \Omega$$

Mô phỏng

Thực tế

Thiết kế

KVL (IV):

$$R_{C2} = \frac{V_{CC} - V_{CE} - V_{E2}}{I_{CQ2}} = \frac{12 - 5 - 5.3}{5. \, 10^{-3}} = 340 \, \Omega$$

 \rightarrow Chọn $R_{C2}=400~\Omega$

Vì R_{B1} // R_{B2} nên ta có:

$$R_B = \frac{R_{B1}.R_{B2}}{R_{B1} + R_{B2}} = \frac{1425K.330K}{1425K + 330K} \approx 270 \text{ } K\Omega$$

Giới thiệu Mô phỏng

Thực tế

$$A_{V} = \frac{V_{o}}{V_{i}} = \frac{V_{o}}{i_{b2}} \cdot \frac{i_{b2}}{i_{b1}} \cdot \frac{i_{b1}}{i_{i}} \cdot \frac{i_{i}}{V_{i}} = (R_{E2}^{*}//R_{L}^{*}) \cdot \frac{R_{C1} \cdot (-hfe)}{R_{C1} + hie_{2} + R_{E2}^{*}//R_{L}^{*}} \cdot \frac{R_{B}}{R_{B} + hie_{1} + R_{E1}^{*}} \cdot \frac{1}{R_{in} + [R_{B}//(hie_{1} + R_{E1}^{*})]}$$

$$= \frac{-300.15K}{\frac{15K+1.5K}{X}+1} \cdot \frac{270K}{270K+18,75K+900K} \cdot \frac{1}{1K+[270K//(918,75K)]} \ = -5$$

$$X \gg 15K + 1.5K \rightarrow Chọn R_L = 16 K\Omega$$

Mô phỏng

Thực tế

$$Z_{in} = R_B / / (hie_1 + R_{E1}^*) = \frac{270 K. (18,75 K + 900 K)}{270 K + (18,75 K + 900 K)} = 208675 \Omega > 100 \ K \Omega$$

$$Z_{out} = \frac{R_{E2}^* / / (R_{C1} + hie_2)}{hfe} = \frac{\frac{300K.(15K + 1,5K)}{300K + (15K + 1,5K)}}{300} = 52,13\Omega < 1K\Omega$$

Giới thiêu Mô phỏng

Thực tế

$$\begin{cases} R_{Z1} = \infty = > \omega_{Z1} = 0 \\ R_{P1} = \frac{R_B(hie_1 + R_{E1}^*)}{R_B + (hie_1 + R_{E1}^*)} + R_{in} = \frac{270K(18.75K + 900K)}{270K + (18.75K + 900K)} + 1K = 209675 \end{cases}$$

=>
$$\omega_{P1} = \frac{1}{R_{P1}.C_{in}} = 15.2\pi$$
 => $C_{in} = \frac{1}{R_{P1}.15.2\pi} = \frac{1}{209675.15.2\pi} = 5,06.10^{-8} (F)$

 \rightarrow Chọn tụ có giá trị điện dung là 50nF.

Giới thiệu Mô phỏng

Thực tế

Thiết kế

Xét tụ C_{out} :

$$\begin{cases} R_{Z2} = \infty => \omega_{Z2} = 0 \\ \sqrt{\frac{R_{E2}^* + \left[\frac{R_{E2}^* (hie_2 + R_{C1})}{R_{E2}^* + (hie_2 + R_{C1})}\right]}}{hfe} = (1) \end{cases}$$

$$=>(1) = \frac{4800K + \left[\frac{300K(1.5K + 15K)}{300K + (1.5K + 15K)}\right]}{300} = 16052L$$

=>
$$\omega_{P2} = \frac{1}{R_{P2}.C_{out}} = 15.2\pi = > C_{out} = \frac{1}{R_{P2}.15.2\pi} = \frac{1}{16052.15.2\pi} = 0.67.10^{-6} (F)$$

 \rightarrow Chọn tụ có giá trị điện dung là 0,68 μF .

Giới thiêu Mô phỏng

Thưc tế

Xét tụ C_E :

Thiết kế

Đặt:
$$Y = R_{E11}^* + hie_1 + R_B / / R_{in}$$

$$<=>$$
 Y = 2500.300 + 18750 + $\frac{270K.1K}{270K+1K}$ = 769746,31 Ω

$$\begin{cases} R_{Z3} = R_{E12}^* = 150K\Omega \implies \omega_{Z3} = \frac{1}{150K.25,356.10^{-6}} = 0,2629 \approx 0 \\ R_{P3} = \frac{\frac{Y.R_{E12}^*}{Y + R_{E12}^*}}{hfe} = \frac{\frac{769746,31.500.300}{769746,31 + 500.300}}{300} = 418,456\Omega \end{cases}$$

$$=>\omega_{P3}=\frac{1}{418,456.C_E}=2\pi.15 =>C_E=\frac{1}{418,456.2\pi.15}=25,356\mu F$$

 \rightarrow Chọn tụ C_E có giá trị điện dung là $25\mu F$.

Mô phỏng

Thực tế

Thiết kế

Giới thiệu Mô phỏng Thực tế

Xét tụ C_M :

$$\begin{cases} R_{Z1} = 0 = > \omega_{Z1} = \infty \\ R_{P1} = \left(\frac{1}{R_B} + \frac{1}{hie_1 + R_{E11}^*} + \frac{1}{R_{in}}\right)^{-1} = \left(\frac{1}{270K} + \frac{1}{18,75K + 2500.300} + \frac{1}{1K}\right)^{-1} = 995\Omega \end{cases}$$

=>
$$f = \frac{1}{2\pi . R_{P1}. C_{BE}} = \frac{1}{2\pi . 995.9. 10^{-12}} = 17,77 MHz$$

Giới thiệu Mô phỏng Thực tế

Thiết kế

$$g_m = \frac{I_{CQ}}{V_T} = \frac{0.4 \cdot 10^{-3}}{25 \cdot 10^{-3}} = 0.016$$

$$K = \frac{V_2}{V_1} = -g_m \cdot \frac{R_{C1} \left[hie_2 + \left(\frac{R_{E2} \cdot R_L}{R_{E2} + R_L} \right) \right]}{R_{C1} + \left[hie_2 + \left(\frac{R_{E2} \cdot R_L}{R_{E2} + R_L} \right) \right]} = -0.016 \cdot \frac{15K \left[1500 + \left(\frac{1K \cdot 16K}{1K + 16K} \right) \right]}{15K + \left[1500 + \left(\frac{1K \cdot 16K}{1K + 16K} \right) \right]} = -33.6$$

Giới thiêu Mô phỏng

Thực tế

Thiết kế

$$C_{M} = \left(1 + g_{m} \cdot \frac{R_{C1} \left[hie_{2} + \left(\frac{R_{E2} \cdot R_{L}}{R_{E2} + R_{L}}\right)\right]}{R_{C1} + \left[hie_{2} + \left(\frac{R_{E2} \cdot R_{L}}{R_{E2} + R_{L}}\right)\right]}\right) \cdot C = \left(1 + 0.016 \cdot \frac{15K \left[1500 + \left(\frac{1K \cdot 16K}{1K + 16K}\right)\right]}{15K + \left[1500 + \left(\frac{1K \cdot 16K}{1K + 16K}\right)\right]}\right) \cdot C = 34,6C$$

$$=> f_H = \frac{1}{R_{P1}.34,6C} = \frac{1}{995.34,6C} = 2\pi.15K => C_C = 550pF$$

 \rightarrow Chọn tụ C_C có giá trị điện dung là 550pF.

RB1

VB1

RB2 330K

SINE(0 0.5 1000)

.op

1425K

Vcc

550p 5

RC1

15K

IB2

BC547B

2K5

500

C2 25µ

VB2

Q2

VE2

BC547B

RE2

1000

0,67μ

OUT

16K

Trang chủ

Giới thiêu

Thiết kế

Thưc tế

Mô phỏng

```
* C:\Users\Duc Manh\Documents\LTspiceXVII\btlmdt.asc
       --- Operating Point ---
V(ic2):
                12
                               voltage
V(vb1):
                1.87999
                               voltage
                1.26549
                               voltage
V(ve1):
                0.210916
V(ie1):
                               voltage
V(vb2):
                5.45304
                               voltage
♥(vc2):
                10.0973
                               voltage
V(ve2):
                4.77283
                               voltage
V(vc1):
                5.45304
                               voltage
                1.87999
V(n002):
                               voltage
V(in):
                               voltage
V(n001):
                               voltage
                1.12799e-16
V(out):
                5.11648e-12
                               voltage
Ic(Q1):
                0.000420427
                               device_current
                               device current
Ib(Q1):
                1.40482e-06
Ie(Q1):
                -0.000421832
                               device_current
Ic(Q2):
                0.0047568
                               device_current
Ib(Q2):
                1.6037e-05
                               device current
Ie(Q2):
                -0.00477283
                               device_current
I(C1):
                1.12799e-19
                               device_current
I(C2):
                8.85846e-19
                               device current
I(C3):
                -3.1978e-16
                               device_current
                               device_current
I(C4):
                1.96518e-21
I(Rb1):
                7.10176e-06
                               device current
I (Rb2):
                5.69694e-06
                               device current
I(Re1):
                0.000421832
                               device_current
I (Rc1):
                0.000436464
                               device current
                0 0047568
```


Thiết kế

Thực tế

Mô phỏng

Giới thiệu Thiết kế Mô phỏng

Thực tế

Mạch thực tế được cắm trên breadboard.

Giới thiệu Thiết kế Mô phỏng

Thực tế

Độ lợi lớn nhất thu được trên Oscilloscope.

Thiết kế

Mô phỏng

Thực tế

Tần số cắt thấp thu được trên Oscilloscope.

Tần số cắt cao thu được trên Oscilloscope.

