Zadanie 1

Pokaż, że prawdopodobieństwo sumy dowolnych zdarzeń A i B wynosi

$$P(A+B) = P(A) + P(B) - P(A \cdot B).$$

Wskazówka

Zapisz zdarzenia B oraz A + B w postaci sumy zdarzeń rozłącznych

$$B = A \cdot B + (B - A \cdot B),$$

$$A + B = (A + A \cdot B) + (B - A \cdot B)$$

ale

więc

$$A + B = A + (B - A \cdot B).$$

a następnie skorzystaj z aksjomatu 3) definicji prawdopodobieństwa do obu zdarzeń A + B oraz B i równania na otrzymane prawdopodobieństwa odejmij stronami od siebie.

Rozwiązanie

Aksjomat 3: Jeżeli zdarzenia C i D są zdarzeniami rozłącznymi (wykluczającymi się), to prawdopodobieństwo zajścia zdarzenia C lub D wynosi

$$P(C+D) = P(C) + P(D).$$

Zdarzenia $A \cdot B$ i $(B - A \cdot B)$ są zdarzeniami wykluczającymi się, więc

$$P(A \cdot B + (B - A \cdot B)) = P(A \cdot B) + P(B - A \cdot B).$$

Ale

$$A \cdot B + (B - A \cdot B) = B,$$

czyli

$$P(B) = P(A \cdot B) + P(B - A \cdot B).$$

Podobnie możemy zrobić ze zdarzeniami

$$(A + A \cdot B) i (B - A \cdot B).$$

$$P(A + (B - A \cdot B)) = P(A) + P(B - A \cdot B).$$

Ale

$$A + (B - A \cdot B) = A + B,$$

czyli

$$P(A+B) = P(A) + P(B-A \cdot B).$$

Po odjęciu stronami równań

$$P(B) = P(A \cdot B) + P(B - A \cdot B),$$

$$P(A+B) = P(A) + P(B-A \cdot B)$$

dostajemy:

$$P(A+B) - P(B) = P(A) - P(A \cdot B),$$

stad

$$P(A + B) = P(A) + P(B) - P(A \cdot B)$$
. c. b. d. o

Zadanie 2

Rozważ rzuty dwiema symetrycznymi kostkami do gry. Niech zmienną losową będzie n oznaczającą sumę oczek n_1+n_2 wyrzuconych na kostce o numerze 1 i o numerze 2. Znajdź prawdopodobieństwo $P_2(n)$ uzyskania sumy oczek n dla $n=0,1,2,\ldots,12$. Sprawdź warunek normalizacyjny, czyli sprawdź czy suma obliczonych prawdopodobieństw jest równa jedności (drugi aksjomat Kołmogorowa). Znajdź wartość oczekiwaną i wariancję

Wskazówka

Prawdopodobieństwo wyrzucenia na i-tej (i=1,2) kostce n_i oczek ($n_i=1,2,...,6$) jest równe $P(n_i)=1/6$. Liczby oczek wyrzucone na każdej z kostek są od siebie niezależne, a zatem $P(n_1,n_2)=P(n_1)\cdot P(n_2)=1/36$. Rozważ na ile sposobów można uzyskać sumę n oczek. Na przykład n=3 można uzyskać na dwa sposoby: $\{1,2\}$ i $\{2,1\}$. A zatem

$$P_2(3) = P(1,2) + P(2,1) = 2/36.$$

Rozwiązanie

n		I.komb.		pi	F(n)	n _i p _i	(n _i) ² p _i	(n _i -E(n)) ² p _i
1		0	0	0	0	0	0	0
2	(1,1)	1	1/36	0,027778	0,027778	0,055556	0,111111	0,694444
3	(1,2), (2,1)	2	2/36	0,055556	0,083333	0,166667	0,5	0,888889
4	(1,3), (3,1), (2,2)	3	3/36	0,083333	0,166667	0,333333	1,333333	0,75
5	(1,4), (2,3), (3,2), (4,1)	4	4/36	0,111111	0,277778	0,555556	2,777778	0,444444
6	(1,5), (2,4), (3,3), (4,2), (5,1)	5	5/36	0,138889	0,416667	0,833333	5	0,138889
7	(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)	6	6/36	0,166667	0,583333	1,166667	8,166667	1,31E-31
8	(2,6), (3,5), (4,4), (5,3), (6,2)	5	5/36	0,138889	0,722222	1,111111	8,888889	0,138889
9	(3,6), (4,5), (5,4), (6,3)	4	4/36	0,111111	0,833333	1	9	0,444444
10	(4,6), (5,5), (6,4)	3	3/36	0,083333	0,916667	0,833333	8,333333	0,75
11	(5,6), (6,5)	2	2/36	0,055556	0,972222	0,611111	6,722222	0,888889
12	(6,6)	1	1/36	0,027778	1	0,333333	4	0,694444
	Suma	36	36/36	1				
				E(n)	E(n²)	σ²(n)	E(n ²)-(E(n)) ²	
				7	54,8333	5,8333	5,8333	

Zadanie 3

Z talii liczącej 52 karty losujemy jedną kartę. Oblicz prawdopodobieństwo, że wylosowana karta jest w kolorze pik lub jest asem.

Wskazówka

Niech zdarzenie A oznacza, że wylosowano asa, a zdarzenie B, że wylosowano pik. Zdarzenie $A \cdot B$ oznacza, że wylosowano asa pik. Znajdź prawdopodobieństwa zdarzeń P(A), P(B) i $P(A \cdot B)$, a następnie skorzystaj z wyniku zadania 1.

Rozwiązanie

$$P(A) = 4/52,$$

 $P(B) = 13/52,$
 $P(A \cdot B) = 1/52.$

$$P(A+B) = P(A) + P(B) - P(A \cdot B) = \frac{4}{52} + \frac{13}{52} - \frac{1}{52} = \frac{16}{52} = \frac{4}{13} \approx 0.308.$$

Zadanie 4

Pokaż, że zdarzenia A i B oznaczające odpowiednio: wylosowanie asa i wylosowanie pika z talii liczącej 52 karty są zdarzeniami niezależnymi.

Wskazówka

Znajdź prawdopodobieństwa zdarzeń P(A), P(B) i $P(A \cdot B)$, a następnie skorzystaj z warunku niezależności zdarzeń $(P(A \cdot B) = P(A) \cdot P(B))$..

$$P(A) = 4/52,$$

$$P(B) = 13/52,$$

$$P(A \cdot B) = 1/52.$$

$$P(A) \cdot P(B) = \frac{4}{52} \cdot \frac{13}{52} = \frac{52}{52 \cdot 52} = \frac{1}{52} = P(A \cdot B). \quad c. b. d. o.$$

Zadanie 5

Pokaż, że zdarzenia opisane w poprzednim zadaniu są zależne jeśli zwykłą talię liczącą 52 karty uzupełnimy o dżokera.

$$P(A) = 4/53,$$

$$P(B) = 13/53,$$

$$P(A \cdot B) = 1/53.$$

$$P(A) \cdot P(B) = \frac{4}{53} \cdot \frac{13}{53} = \frac{52}{53 \cdot 53} = \frac{52}{2809} \neq \frac{1}{53} = P(A \cdot B). \quad c. b. d. o.$$

$$P(A) = 5/53,$$

$$P(B) = 14/53,$$

$$P(A \cdot B) = 2/53.$$

$$P(A) \cdot P(B) = \frac{5}{53} \cdot \frac{14}{53} = \frac{70}{53 \cdot 53} = \frac{70}{2809} \neq \frac{2}{53} = P(A \cdot B). \quad c. b. d. o.$$

$$P(A+B) = P(A) + P(B) - P(A \cdot B) = \frac{5}{53} + \frac{14}{53} - \frac{70}{2809} = \frac{53 \cdot 19 - 70}{2809} = \frac{937}{2809} \approx 0.334.$$