Formelsammlung Lineare Systeme und Regelung

Mario Felder, Michi Fallegger

18. Februar 2014

Inhaltsverzeichnis

1	\mathbf{Ein}	leitung	S															1
	1.1	Regell	kreis	з.							 							1
	1.2	System	ne															2
2	Sys	teme u	ınd	Sig	gna	ale												5
	2.1	Signal	е.															5
		2.1.1	Dε	efini	tio	n												5
		2.1.2	Ei	nhe	itss	spr	un	g			 							5
		2 1 3	$\mathbf{E}_{\mathbf{i}}$	oen	sch	aft	en											5

Kapitel 1

Einleitung

1.1 Regelkreis

Merkmale:

- $\bullet\,$ Erfassen der Regelgrösse y
- Vergleich von Führungs- und Regelgrösse
- Angleichen der Regelgrösse an die Führungsgrösse in Wirkungskreis

1.2 Systeme

Signale sind rückwirkungsfrei, also eingeprägte Grössen.

Nr.	Bsp	Klassifikation
1	$y(t) = \cos t \cdot x(t)$	statisch
2	$\frac{dy(t)}{dt} = -\cos(y(t)) + x(t)$ $\frac{dy(t)}{dt} = -y(t) + x(t)$	dynamisch
3		zeitkontinierlich
_ 4	$y((k+1)\tau) = -y(k \cdot \tau) + x(k \cdot \tau)$	zeitdiskret
5	$y(t) = \cos(x(t-\tau))$	kausal
6	$y(t) = \cos(x(t+\tau))$	nicht kausal
7	$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = -3y(t) + x(t)$	zeitinvariant
8	$\frac{\frac{dy(t)}{dt} = -\cos t \cdot y(t) + x(t)}{\frac{dy(t)}{dt} = -y(t) + x(t)}$	zeitvariant
9	$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = -y(t) + x(t)$	linear
10	$\frac{dy(t)}{dt} = -y^2(t) + x(t)$	nicht linear
11	$\frac{\mathrm{d}t}{\mathrm{d}y(t)} = -y(t) + x(t)$	endlich-dimensional
_12	$\frac{\partial \tilde{y}(t)}{\partial t} = -\frac{\partial}{\partial x}y(x,t) + x(t)$	unendlich-dimensional
13	$y(t) = t \cdot \cos^2 t \cdot x(t)$	single input / single output
14	$\begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} -3 & \sin(t) \\ t & -1 \end{bmatrix} \cdot \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$	multiple input / multiple output

Kapitel 2

Systeme und Signale

2.1 Signale

2.1.1 Definition

Ein Signal ist eine (reelle) Funktion:

$$u: \mathbb{R} \to \mathbb{R}$$

2.1.2 Einheitssprung

Der Einheitssprung wird in der Technik oft gebraucht und ist folgendermassen definiert:

$$\sigma := \begin{cases} 1 & \text{für alle } t \ge 0. \\ 0 & \text{für alle } t < 0. \end{cases}$$

Eine weitere Bezeichnung lautet H(t), Heaviside-Funktion.

2.1.3 Eigenschaften

Sprungstelle: Ist eine Funktion u(t) in einem Punkt t_0 definiert aber unstetig, so heisst t_0 eine Sprungstelle von u(t).

Wenn die einseitigen Grenzwerte $\lim_{t \nearrow t_0} u(t)$ und $\lim_{t \searrow t_0} u(t)$ existieren und endlich sind, so heisst die Sprungstelle endlich.

Knickstelle: Ist u(t) in t_0 stetig, aber nicht differenzierbar, so wird t_0 Knickstelle genannt.

sprungstetig: Eine Funktion, die bis auf endliche Sprung- und Knickstellen überall differenzierbar ist, wird sprungstetig genannt.

gerade: Eine Funktion u(t) ist gerade, falls ihr Graph achsensymmetrisch zur u-Achse ist:

$$u(-t) = u(t)$$
 für alle t

ungerade: Eine Funktion u(t) ist ungerade, falls ihr Graph punktxymmetrisch zum Ursprung ist:

$$u(-t) = -u(t)$$
 für alle t

kausale Signale: Dies sind Funktionen, die vor einem Zeitpunkt t_0 Null sind. (Bsp. der Einheitssprung)

beschränkt: Ein Signal u(t) heisst beschränkt, falls u dem Betrage nicht beliebig grosse Werte annimmt:

$$|u(t)| \le M_u$$
 für alle t .