MATH 222, Week 1: I.1,I.3,I.5

Problem 1. Use the identity $sin^2(\theta) + cos^2(\theta) = 1$ to show that $tan^2(\theta) + 1 = sec^2(\theta)$.

Problem 2. (a) Circle the correct answer:

$$2\sin(\theta)\cos(\theta) = \sin(2\theta) \qquad \cos(2\theta)$$

$$\cos^2(\theta) - \sin^2(\theta) = \sin(2\theta) \qquad \cos(2\theta)$$

- (b) Using the previous part and other trig identities, prove the following half angle formulas:
 - (a) $\cos^2(\theta) = \frac{1}{2}(\cos(2\theta) + 1)$. There's a very similar identity for $\sin^2(\theta)$ that could be useful later on.

(b)
$$\tan(2\theta) = \frac{2\tan(\theta)}{1-\tan^2(\theta)}$$

Problem 3. True of False. In either case, briefly explain why.

- (a) $\frac{d}{dx}(\ln(x^2)) = \frac{2}{x^2}$
- (b) $\frac{d}{dz} \int_0^z \frac{dy}{4-y^2} = \frac{1}{4-z^2}$
- (c) $\sqrt{x^4 + 36} = x^2 + 6$
- (d) $\int e^x dx = e^x$
- (e) $\int \ln(x)dx = \frac{1}{x} + C$

Problem 4. Compute $\int \ln(x) dx$ (Slight hint for part (e) of the last problem).

Problem 5. Compute $\int \arcsin(3x) dx$.

Problem 6. Let a be any fixed real constant. Compute $\frac{d}{dx} \int_{x^3}^a \ln(t) dt$. (Hint: Fundamental Theorem of Calc).

Problem 7. Compute $\int \sin^2(\theta) \cos^2(\theta) d\theta$. There are at least two ways to approach this.