

Impact of Big Data on SoC Design IoT Technology and SoC Design

Chun-Zhang Chen, Ph.D.

June 25-29, 2018

IoT and SoC Design

IoT and Technology Background	
IoT and LPWAN	
IoT and MCU/IP	
3D IC/MEMS/Wearable	
Discussion	

Hot Topics of IoT

- Internet of (for) Things IoT
 - P2P, M2M, P2M
 - Billion Things/ Everything
 - Internet of Vehicles
- IoT Applications
 - Consumer: SHome, Med/Hlth
 - Enterprise/biz: Devices
 - Infrastructure: Manuf., Agr. E./Env.
- Internet+, Ind. IoT (IIoT)
 - Green Energy/Smart Grid
 - 3rd/4th Industrial Revolution

Connected Devices in 2020

 Gartner, Inc. forecasts that 4.9 billion connected things will be in use in 2015, up 30 percent from 2014, and will reach 25 billion by 2020. [Ref. 11, 12(IEEE), 13]

Technology Roadmap of IoT

TECHNOLOGY ROADMAP: THE INTERNET OF THINGS

Source: SRI Consulting Business Intelligence

The Internet of Things 12-13 May 2015, San Francisco,

Essential IoT Training Program alongside Internet of Things World 2015

- The world's largest & most comprehensive IoT event
- 4000+ Attendees
- 250+ Speakers

Internet of Things
Internet of Your Things
Internet of Every Things

High Level VIP/CIOs Conference

Integrating IoT Technologies and Standards & Creating a Sustainable IoT Framework

- Assessing the range of enabling technologies for IoT
- Overcoming interoperability challenges
- Which wireless standards will be most pertinent
- How can the different standards be integrated?

8th Int'l Conference on IoT

Keynote Speakers

- IoT 2018 (Santa Barbara, US)
 - SmartFarm, UCSB
- loT 2017 (Linz, Austria)
- loT 2016 (Stuttgart, Germany)
- loT 2015 (Coex, Seoul, S. Korea)
- loT 2014 (MIT, Cambridge, US)
- <u>loT 2012 (Wuxi, China)</u>
- loT 2010 (Tokyo, Japan)
- loT 2008 (Zurich, Switzerland)

- IoT Asia 2019, 27-28 Mar. S'pore
- <u>IoT Asia 2018, 21-22 Mar.S'pore</u>
- <u>loT Asia 2017, 29-30 Mar. S'pore</u>
- IoT Asia 2016, 30-31 Mar. S'pore
- IoT Asia 2015, 8-9 April, Singapore
- loT Asia 2014, 21-22 April, S'pore

- IoT China 2016, 16-18 Nov, CD
- IoT Expo China 2015, 20-21 Aug, SZ

www.iot-conference.org

DAC and IoT

San Francisco, CA June 24-28, 2018

DAC 2018 | San Francisco, CA | June 24-28

About DAC

Exhibit At DAC

Design

- EDA
- ESS and Auto
- •IP
- Security

MONDAY KEYNOTE

Living Products: Building Connected Devices that Learn and Evolve

Monday, June 25 | 9:20am - 10:00am | Room 3008

Sarah Cooper, GM of IoT Solutions

Amazon Web Services, Inc., Mountain View, CA

Rikky Muller, UCB

The Internet of Things can sometimes seem vast and unmanageable, ...

Design ▶

There is no other way to improve your "design IQ" in such a short amount of time than to attend the Design Track.

EDA ▶

In addition to the traditional EDA topics ranges from physical design to system architectures, DAC 2016 features high-quality papers on design research, design practices, and design automation for...

ESS & Auto ▶

The Embedded Systems and Software sessions at DAC provide a forum for discussing the challenges of embedded design and an opportunity for leaders in the industry and academia to come together to ...

IoT ▶

The Internet of Things can sometimes seem vast and unmanageable. Let the IoT sessions at DAC simplify it for you.

IP >

The IP track provides creators and users of IP with an open forum to exchange information on state-of-art IP products, tools and methodologies to create, incorporate and validate IP in SoCs.

Security ▶

Security topics will be featured through invited special sessions, panels, and lecture/poster presentations by both practitioners and researchers to share their knowledge and experience on this...

IMS – Intelligent Manufacturing System

- IM in US, 1980s; IMS (1990) by Andrew Kusiak (U. Iowa)
 - "Big Data on IM" (8/6/14 at UCAS); ANN for IMS
- Industry 4.0 in Germany (IP/IoT)
- 02/2014, Made in China 2025 2035 2049
- IMS and associated topics
 - Journal, Research & Business, Solution, Software

The Third | Fourth Industrial Revolution

Degree of

complexity

Jeremy Rifkin, 2011

First

Industrial Revolution

based on the introduction of mechanical production equipment driven by water and steam power

First mechanical loom, 1784

ana programono, **p**rotti nocinnami

Second

Industrial Revolution

based on mass production achieved by division of labor concept and the use of electrical energy

First conveyor belt, Cincinnati slaughterhouse, 1870

Third

Industrial Revolution

based on the use of electronics and IT to further automate production

Fourth

Industrial Revolution

based on the use of cyber-physical systems

First programmable logic controller (PLC) Modicon 084, 1969

Time

1900

IoT & SoC Design

Background of IoT Tech: Internet of Things

- IoT and LPWAN: NB-IoT, IPv6
- IoT and MCU/IP: Low Power & Size, 3D NAND
- 3D IC/MEMS/Wearable: Healthcare/Medical, Fitness/Wellness
- Discussion: Vendors, Players

IoT needed Technologies - LPWAN

- LPWAN: NB-IoT, LoRa, Sigfox
- NB-IoT (2016-, via GPRS)
 - Low data rate, low power, low bandwidth
 - Global 900MHz (UniCom 900/1800MHz, TelComm 800MHz)
 - Registered, SIM/eSIM supported
 - 2G Shutdown in 2018; GPRS/GSM needed in long-term
 - Bandwidth 200kHz,
 - Down 160-250kbps, up 160-250(MT)|200(ST)kbps
 - Connection points is 50-100x of current Wi-Fi
 - 20dB gain, is 100x of LTE

IoT and LPWAN

- LoRa (2015)
 - Up to 1000 devices, 5-30km
 - In testing, 100,000 devices?
- •Sigfox (2009, Fr.)

Security by GDPR (General Data Protection Regulation)

Wireless Protocol for Short Distance Comm.

- Wi-Fi
 - 2003 Intel, 11 Mbps, 802.11b → 802.11b/g, a/c/n
- BLE/BC (BR, EDR)
 - BR(Basic Rate), EDR(Enhanced Data Rate); BLE(Bluetooth Low-Energy)
 - 1994-1997 Ericsson; 1998 SIG (Norkia, Apple, Samsung)
- ZigBee (2003-), HomeRF (1997), Thread (2014)

5G Communication

University of Chinese Academy of Science

- Mobile Internet
- 5G standards
- SoC and Memory Designs
 - HPC & MEC
 - HBM & RapidIO

IoT and Internet Protocol

Technology, Compatibility and Security

- Total number of IP addresses:
 - IPv4, 2^{32} = 4.3x10⁹
 - IPv6, 2^{128} = 3.4x10³⁸
- Privacy and Security
- Comparability of Internet Protocol
 - Ex. SIP, Session Initiation Protocol –
 - controlling voice/video over IPv4 → ? IPv6

What happened to IPv6 – Will the IoT

- ... we were all supposed to have abandoned IPV4 and moved to IPV6 by now (12/31/14)
- These 'things' have been predicted (presumably by the same people who predicted the arrival of IPV6) to grow to an army of 50 billion by 2020.

- •The measurement activities below track different aspects of IPv6 deployment on the global Internet:
 - http://www.worldipv6launch.org/measurements/

IPv6 Ready Logo Program

- Spiceworks Report (2014):
 - http://www.spiceworks.com/voit/reports/the

•As service providers bring IPv6 connectivity to the home, users need to make sure the appliances and other devices they buy are capable of using IPv6 as a transport.

IPv6 for IoT

IPv6 Adoption

We are continuously measuring the availability of IPv6 connectivity among Google users. The graph shows the percentage of users that access Google over IPv6.

IoT & SoC Design

Background of IoT Tech: Internet of Things

- IoT and LPWAN: NB-IoT, IPv6
- IoT and MCU/IP: Low Power & Size, 3D NAND
- 3D IC/MEMS/Wearable: Healthcare/Medical, Fitness/Wellness
- Discussion: Vendors, Players

MCU Market in IoT Applications

- Controller: PCs, SmartPhones
- Basic Framework: Routers and Servos
- Nodes: Video, Traffic Lights, E Appliances

MCU Snapshot - a Platform for IoT

- ●1971-1976, Intel 4004 w/ RAM, ROM, MCS-4
 - 4-bit, later 8-bit 8008
- ●1976-1980 MCS-48 8-bit CPU parallel I/O etc
 - RAM, ROM, <4kB, w/o serial I/O
- ●1980-1983, 16-bit, address 64kB
- 1983-late 80s, 16-bit MCS-96 series, up to 120k transistors
- 1990 applied to many areas
 - measure & control, smart meters, complete set, smart interface
 - mobile, auto GPS, PDA, toys, smart appliance, medical
 - total >100k engineers in China are on MCU

Applications:

Automotive IoT/Wearables Appliances Smart Card Medical Industry Control

MCU vs MPU

- •CPU → MPU, MCU, DSP
- MCU is an embedded design
- The first MCU in 1971, TMS 1000
 - By Gary Boone & Michael Cochran of TI
 - ROM, RAM, processor, clock
- Early MCU has 2 ROM types
 - EPROM, ceramic packg. w/ quartz window
 - PROM (OTP), less expensive
- MCU in 1993 w/ EEPROM and Flash by Atmel
- Used in auto, a mid-range auto has 30+ MCU
 - washing m., microwave o., telephone
- Need programs fit in

MCU 8051

Architecture and Programming of 8051 Microcontrollers

MCU Application in 2013 Market Segment the transport of Chinack Academy of Science Acade

Category	Revenue, \$M
Consumer	2350
Industrial	4112
Touch	303
Smart Card	3026
Auto	<i>5342</i>
Total	15133

Category	Market %
Consumer	15 . 5
Industrial	27. 2
Touch	2
Smart Card	20
Auto	<i>35. 3</i>
Total	100

IP for IoT – Design and Reuse

Al-Big Data and SoC Design

- Analog & Mixed Signal
- Memory Controller & PHY
- Graphic & Peripheral
- Interface Controller & PHY
- Processor & Microcontroller
- •Memory & Logic Library
- Security
- Multimedia
- Wireline Communication
- Wireless Communication
- Automotive, Platform Level IP, Network-on-Chip

IoT IP Example

Features of IP

- Mobile Digital Home Networking
- **Low-Power, Cost-Sensitive IoT,**
- Mobile, Automotive, Industrial and
- Environmental Applications

Designware IP Subsystems

- Interface IP Subsystems
 - Configurable, customizable and pre-validated
 - DDR, PCIe, USB and Ethernet
- Audio IP Subsystems
 - Integrated HW and SW subsystem w/ "drop-in" functionality
 - 24-bit, DTV, STB
- Sensor and Control Subsystem
 - Integrated HW and SW subsystem
 - Complete, configurable to process D and A sensors etc

IoT & SoC Design

- Background of IoT Tech: Internet of Things
- IoT and LPWAN: NB-IoT, IPv6

- IoT and MCU/IP: Low Power & Size, 3D NAND
- 3D IC/MEMS/Wearable: Healthcare/Medical, Fitness/Wellness
- Discussion: Vendors, Players

Advantage of 2.5D/3D Pkg'd MEMS/ASIC

- SiP support advanced three dimensional interconnect structure for MEMS and ASIC integration
 - Post-CMOS through-silicon vias (TSV)
 - Front-to-front contact array

Vacuum compliant lateral interconnect

Fine-pitch solder balling

IoT and IC Design

- IoT Components
 - Sensors
 - MEMS
 - Other components

Digital MEMS microphones to overtake analog

Source: Solid State Technology, 2012

Wearable Market

- MEMS.journal: Market to expand 7x
- Statistics & Studies: It's all about the wrist
- •Wearable Tech World: Market influencers ...
- By 2021, 5.05x10⁶ wearable Devices are needed (Gartner)

Big Data and Medical

The big-data revolution in US health care

- Right living
- Right care
- Right provider
- Right value
- Right innovation

The biggest value of BD to humankind is medical

In 2014, semicon. patents reduced by 5%; according to Tangseng Luters "2015 Innov. Report", pharm. and biotech patents increased by 12% and 7%!

IoT & SoC Design

Background of IoT Tech: Internet of Things

- IoT and LPWAN: NB-IoT, IPv6
- IoT and MCU/IP: Low Power & Size, 3D NAND
- 3D IC/MEMS/Wearable: Healthcare/Medical, Fitness/Wellness
- Discussion: Vendors, Players

Bluetooth (QCOM) and IoT

- BT: CSRmesh, aptX, cVc Noise Canc. Tech., TrueW-
- Wi-Fi: SoC (27 products), ex. QCA9994,
 - 802.11ac Wave 2; 11ac, 11n, 11a/b/g; 1.733Gbps; MIMO 4x4
- RF: TruSignal Antenna Boost Tech

NB IoT ICs and Applications

- loT IC Designers
 - Who are they?
- Potential Applications for NB IoT
 - Electric meters? Water? N Gas?
 - Smart parking meters/Street lamps?
 - Elevators IoT?
 - Smart logistics? S. Agriculture?
 - S. Manufacturing?
 - Garbage buckets? Hydrants?
 - S. home? S wearables? S construction? S. smoke detectors?

Security in IoT

Security matters

Partners of choice

Security solutions

A Fake Server sending incorrect commands can be used to trigger unplanned events, to send some physical resource (water, oil, electricity, etc.) to an unplanned destination, and so forth.

A Fake Device injecting fake measurements can disrupt the control processes and cause them to react inappropriately or dangerously, or can be used to mask physical attacks.*

IoT & SoC Design

Background of IoT Tech: Internet of Things

- IoT and LPWAN: NB-IoT, IPv6
- IoT and MCU/IP: Low Power & Size, 3D NAND
- 3D IC/MEMS/Wearable: Healthcare/Medical, Fitness/Wellness
- Discussion: Vendors, Players

Summary

Cisco: Internet of Everything (IoE)

