6.2会议记录

♥ 与会人员

- Fan Zhang
- Andreas Markoulidakis
- Hayley Jones
- Jaroslaw Lang

本次会议主要围绕项目设备更新、数据使用与培训进展、数据集描述与背景介绍、SHIELD 数据集的构成与使用方法、数据安全与使用规范等议题展开讨论。

1. 项目设备更新

- Fan Zhang 提到:
 - 。 已收到关于**发送笔记本电脑的邮件**;
 - 。 当前仍在物流/处理阶段,还未实际寄出;
 - 合同和系统访问申请流程已完成。

2. 数据使用与培训进展

- Andreas 提醒: 拿到设备后需:
 - 。 设置 Public Health Scotland 帐号;
 - 。 完成相关数据使用的在线培训。
- Fan Zhang:
 - 。 已完成一个名为 "Research GDPR and Confidentiality" 的培训模块;
 - 。 表示等待账号激活后将继续其他培训。
- Jaroslaw 补充:
 - 完成 MRC Learning System 所有8个模块;
 - 提醒检查是否收到列出所需模块的截图/说明,并建议分享至群聊方便大家同步。

3. 关于数据集描述与背景介绍

1. 数据集初步沟通:

- Andreas 建议提供每个主要数据集的简要描述,以便 Fan 快速了解将接触的数据集。
- Jaroslaw 表示自己正在起草相关内容,但尚未决定是否应该在没有完整说明的前提下就列出数据集名称。

2. 是否需要阅读相关出版物:

- Jaroslaw 提到每个数据库通常都会有一个 PHS(Public Health Scotland)发布的公开出版物, Fan 是否需要阅读这些出版物以便了解每个数据库,还需确认。
- 他请求 Andreas 和 Hayley 提供关于期望的指引,考虑到时间紧张,是否值得投入时间了解这些背景材料。

3. Hayley 的建议:

- Hayley 强调: Fan 需要了解数据的来源、收集和管理方式。
- 她建议 Jaroslaw 简要介绍 SHIELD 数据平台作为入门。

4. 关于 SHIELD 和数据整合背景

1. 苏格兰健康数据的丰富性:

- 。 苏格兰人口约 500 万,地理范围较小,健康数据收集较早,某些数据如住院记录可追溯至 1960 年代。
- 。 数据类型涵盖住院、死亡、接受毒品服务等多方面。

2. 团队的角色:

- Jaroslaw 所在的团队负责收集非法药物使用的统计数据。在苏格兰,有一些项目,吸毒者可以免费获得药物。
- 。 包括注射设备提供服务的数据(用于预防 HIV、肝炎等疾病传播)。

3. 数据来源多样化与整合需求:

- 多个数据集记录着毒品使用者的信息,但来源各异(医院、服务点、死亡登记等)。
- 为构建全面画像,从几个类似的来源观察到有关吸毒者的信息,团队开始申请权限和开展数据链接。

4. 数据链接情况:

链接的数据集覆盖 2009 年至 2023 年, 共整合了约 115,000 名个体的数据。

5. 关于"财政年度"的说明

财政年度定义讨论:

- 。 Jaroslaw 询问 Fan 是否熟悉财政年度(financial year)概念。
- Andreas 解释:并非所有国家都使用自然年作为财政年度;例如苏格兰的财政年度是每年4月1日至次年3月31日。

决定: 使用日历年。

原因: 计算简单,日历年份更容易管理,并与之前的工作更好地保持一致。

。 研究期限: 2015年至2022年, 以项目处方为准。

6. 关于数据时间范围与构建逻辑

1. 按财政年度组织数据:

SHIELD 数据集按财政年度构建,即从 2009年4月1日 至 2023年3月31日(2009/2010 财年起至 2022/2023 财年末)。

2. SHIELD 数据集的构建背景与目标:

- ◎ 数据集作为 毒品使用患病率估计工作的基础,包括用于先前的相关研究和报告。
- 该数据集整合了多个来源的数据,用于形成对毒品使用者更全面的了解。

7. SHIELD 数据集组成(共五个子数据集)

1. SDMD (Scottish Drugs Misuse Database):

- 。 关于人们主动前往毒品服务机构寻求帮助的数据。
- 2015年至2021年3月底
- 。 包括问卷信息、治疗计划(如OAT: Opioid Agonist Treatment)等。
- 。 最多记录5种药物,每种药物都有相应的给药途径。

2. DAISy (Drugs and Alcohol Information System):

- SDMD 的后续系统,从2021年4月起
- 收集内容与 SDMD 类似,但结构与变量可能略有不同。
- Fan 在使用数据时需要注意两个系统间的差异。
- 。 最多记录10种药物,主药物有单独标志。

3. OAT 处方数据:

- 记录接受 阿片类物质替代治疗(OAT)的人员的处方信息。
- 来源于苏格兰的国家处方信息系统(Prescription Information System)。
- 记录由医生开具并由药房发放的阿片类药物替代治疗(OAT)。

- 。 每一行数据是一个具体的处方,含有**支付日期/报销日期**。
- 基于这些日期推断一个人在某段时间内是否正在接受 OAT。

4. 住院数据(Hospitalisation):

- 仅包含因毒品使用而导致的住院事件,不含其他住院记录。
- 。 一人可能有多个住院事件。
- 。 每条记录包含:
 - 入院日期、出院日期
 - 出院是否死亡
 - 原因(药物过量?心血管事件?其他?)
- 分析挑战:住院原因多样,需做事件分类。住院数据的原因分析可能会过于复杂?

5. 死亡数据(Drug-Related Deaths):

- 。 包含与毒品相关的死亡记录。
- 。 每人一行,包含:
 - 死亡日期
 - 编码: 主因和次因(如药物使用导致中风死亡)
- · 分析中需判断:是否使用**主因、次因**,还是两者结合来定义"与毒品相关的死亡"。
- → 数据通过链接形成一体化结构,每一行对应一个个体。个体可能出现在所有五个数据集中,也可能 仅出现在其中一个,如死亡记录中。

8. 如何使用这些数据进行分析

- 1. 建立研究队列(Cohort):
 - 。 你将获得一个数据抽取文件,包含自 SHIELD 数据集筛选出的若干列。
 - 。 基于 **OAT 处方数据** 建立 "阿片类依赖者"队列,即所有接受 OAT 的个体。

2. 事件追踪与风险评估:

- 。 对每个人追踪:
 - 是否依赖可卡因(来自 DAISy)
 - 是否发生住院(医院数据)研究因药物过量或其他不良事件(如心血管疾病)导致的住院情况。探讨这些健康事件如何与 OAT 接受者的病程和风险相关联。
 - 进一步将死亡数据与 OAT 队列个体关联,分析死亡事件在队列中的发生及其模式。

9. 数据安全与使用规范

• 数据敏感性高(个人健康数据):

- 。 涉及真实个体,有可能被识别。
- 只能在 Public Health Scotland (PHS) 环境下访问与分析:
 - 。 不可将数据导出至个人电脑、大学电脑或任何非PHS设备。
 - 即使使用PHS配发的笔记本电脑,也不能在本地硬盘存储数据。
 - 所有操作必须通过 PHS 的**服务器远程文件系统**完成。

Jaroslaw 可协助:

。 一旦你获得 PHS 的笔记本,他会引导你熟悉登录服务器、访问文件等技术操作。

10. 研究问题结构(PECO风格)

Component Example for Your Study

Population 苏格兰地区在 2015–2022 年间接受 **阿片类替代治疗(OAT)** 的个体(即被识别为阿片类药物依赖者)。该人群来自 SHIELD 数据集中整合的 OAT 处方数据。

Exposure 在接受 OAT 的同时也使用 **可卡因**(Cocaine),即构成 **C&O(可卡因与阿片类)多重药物使用**。可卡因使用情况主要来自 DAISy 和 SDMD 数据库中的记录。

Comparator 只使用阿片类药物(未使用可卡因)的 OAT 接受者。即在接受 OAT 治疗期间或之后,没有暴露于可卡因使用的个体。

Outcome 药物过量事件(致命/非致命)、死亡率、OAT保留情况及其他健康损害或过早死亡

10. Research Question Structure (PECO Style)

Component	Example for Your Study
Population	Individuals in Scotland who received Opioid Agonist Treatment (OAT) between 2015 and 2022 (i.e., identified as opioid-dependent). This population is derived from the OAT prescription data integrated in the SHIELD dataset.
Exposure	Concurrent use of Cocaine while receiving OAT, i.e., constituting C&O (Cocaine and Opioid) polydrug use. Cocaine use is mainly recorded in the DAISy and SDMD databases.
Comparator	OAT recipients who only use opioids (not using cocaine). That is, individuals who have not been exposed to cocaine use during or after OAT treatment.

11. 下一步计划

- 会议时间安排:
 - 。 最好在周五,每两周开一小时。
 - 每个月最好有一次面对面会议。
 - 让另一位主管主席马特·希克曼Matt Hickman参加尽可能多的会议将会非常有用。
 - Clare Jarvis (HPRU in Behavioural Science and Evaluation Admin Mailbox <u>admin-hprubse@bristol.ac.uk</u>) 可以帮忙告知 Matt Hickman 的可用时间。
- 海报截止日期和时间表规划:
 - 请在7月18日中午12点前提交海报。
 - 。 邀请 Andreas 和其他人参加7月22日(周二)上午的海报会议。

Order Time Name Programme intro 9:30 Unit leads

- 1 9:40 Amy Stapleton Medical Statistics and Health Data Science
- 2 9:50 Fan Zhang Medical Statistics and Health Data Science
- 开始背景阅读(Andreas和Matthew)
- 等待您的笔记本电脑从PHS
 - Jaroslaw将为笔记本电脑提供后勤支持。