- The Ising Model & Quantum Mechanical Ground State
 - Fixed spins rotate (magnet needle of a compass)
 - o Interact with each other, but also influenced by external fields
 - Schrödinger equation
 - Calculate and find lowest energy: lower equation is derived how to calculate the energy observable (expectation value) in our case
 - Linear chain solution is obvious, for triangle already for three sites non-trivial
 - o We have: triangular, hexagonal, linear, square lattices. With or without periodicity
- Solution through exact Diagonalization
 - Same Problem as before, but new Hamiltonian -> orthogonal external field
 - Canonical spin base system
 - o Hamiltonian can be evaluated to matrix 2ⁿ time, solving for eigenvalues even harder
- Solutions with neural Quantum States
 - o Example for a denser Parametrization: positions of out-of-line spins, in reality more complicated
 - Iterative methods require not solving the whole equation, but approximating the solutions to a very high degree
 - Monte Carlo (random sampling and evaluating).
 - We do variational monte Carlo, diffusion monte Carlo is alternative method also described in the thesis. Based on imaginary time evolution
- New Idea: Why Graphs should help
 - Probably custom encoding not available for each problem
 - Universal representation, no need for custom encoding
 - Non needed connections are masked automatically (explain example)
- Transformers: short overview
 - Motivated by translation
 - Attention pictured, but not enough time to explain. Ask each site, what information about each other site they want, then incorporate as weighted sum
 - o Expensive, but proven to work and effective
- From the Transformer to the Metaformer
 - First explain the modifications done to the transformer: Input embedding different (positional, not mentioned later but important), head not classifier token, but pooling head
 - o Replace the elements attention, convolution, pooling
 - Explain, there are different pooling/convolution operations, as well as the graph versions. Convolution comes now
- Depthwise Convolutions and Separable Convolutions
 - Idea out of the mobile net paper
 - Expensive large kernels get replaced by independent, separated kernels.
 - o Depthwise convolution sufficient for us, as recombination is done by the MLP
- Now where exactly come Graphs into play?
 - Already established operators / networks can be used on graph data
 - Example for pooling
 - Augmentation of the attention operation to only attend to relevant neighbors
- Image Classification
 - o Stress, that we now talk about results of the image processing portion
 - o Same hyperparameters were used for all models!
- Conventional Convolutions and Graph Convolutions
 - $\circ\hspace{0.4cm}$ Show the theory: on tensor data, convolutions and graph convolutions are equivalent
 - Experiment confirms this
 - o Difference is caused by the different use of the deterministic random number generator
- Comparison of different Token Mixers: Visualized
 - Accuracy & Convergence: Transformer -> Graph Transformer -> Conformer -> Graph Conformer -> Poolformer

- Comparison of different Token Mixers: Quantized
 - o Explain metrics briefly: lower is always better except for accuracy.
 - o Poolformer most efficient and fast. Then Conformer -> show trend is the other way around
 - Depending on use-case need to choose different framework
 - o Graph element may even bring benefits in performance -> inductive bias
- Comparison to Established Architectures
 - Stress, that we now talk about Ground state search again!!
 - o Here every model approximately same number of parameters
 - o RBM (Restricted Boltzmann Machine) was not able to parametrize wavefunction, all others were
 - Show that there is kind of a trend, but no definite line
 - One SPECIFIC lattice and one SPECIFIC model was chosen
- · Resiliency to the Choice of Lattice Encoding
 - o Explain, how the structure may influence the memory encoding
 - o To break symmetry and provide fair comparison, random shuffeling
 - o Worse performance for CNN than for graph network
- Differences across the Phase Diagram
 - o Explain what the parameters h and J were again and what lambda is.
 - o Motivate why phase transitions would make the problem harder
 - o Show that metaformer barely performs different, as state gets more complicated. CNN tanks precision
- Conclusion
 - Compatibility
 - Resiliency encoding
 - Customizability
 - Computational potential (transformer backbone)
 - Stability in phase transition region
- Future Work
 - Employ in related technical fields
 - o Better implementation of graph algorithm (in thesis worse, but should be more efficient)
 - o Make wavefuntions more complex and see if it utilizes the metaformers potential more