Homework 7 Solutions

Ch 19: 1 - 3, 14 - 16, 20, 22, 24, 25, 36, 37, 43, 44, 47

1. Describe $\mathbb{Q}(\sqrt[3]{5})$.

 $\mathbb{Q}(\sqrt[3]{5}) = \mathbb{Q}[x]/\langle x^3 - 5 \rangle$ so one description is as the set of all elements $q(x) + \langle x^3 - 5 \rangle$, where $q(x) = a_0 + a_1 c + a_2 x^2$ (by Euclidean algorithm). Letting $\alpha = x + \langle x^3 - 5 \rangle$, or if you like, let $\sqrt[3]{5} = x + \langle x^3 - 5 \rangle$, then the elements of $\mathbb{Q}[x]/\langle x^3 - 5 \rangle$ are of the form $a_0 + a_1 \alpha + a_2 \alpha^2$ so that

$$\mathbb{Q}(\sqrt[3]{5}) = \{a_0 + a_1(5^{1/3}) + a_2(5^{2/3}) \mid a_0, a_1, a_2 \in \mathbb{Q}\}\$$

Another less useful description is $\mathbb{Q}(\sqrt[3]{5})$ is the smallest field containing \mathbb{Q} as a subfield with a root of $x^3 - 5$.

- **2.** Show that $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$. Clearly, $\sqrt{2} + \sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$ so to get equality, we just need $\sqrt{2}, \sqrt{3} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$. Notice, $(\sqrt{2} + \sqrt{3})(\sqrt{2} + \sqrt{3}) = 2 + 2\sqrt{6} + 3 \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$. So $\sqrt{6} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$. This means $(\sqrt{2} + \sqrt{6})(\sqrt{2} + \sqrt{6}) = 2 + 2\sqrt{2}\sqrt{6} + 6 = 8 + 4\sqrt{3}$, so $\sqrt{3} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$. Similarly, $\sqrt{2} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$.
- **3.** Find the splitting field of $x^3 1$. Let $\omega = e^{i\frac{2\pi}{3}}$ be the principle cubic root unity. Then $x^3 1$ has roots $1, \omega, \omega^2$ and so $\mathbb{Q}(\omega)$ is the splitting field.
- **14.** Find all ring automorphisms of $\mathbb{Q}(\sqrt{5})$ and of $\mathbb{Q}(\sqrt[3]{5})$.

The automorphisms must take roots of the irreducible polynomial to each other. So for $x^2 - 5$ the roots are $\pm \sqrt{5}$, and thus there are two automorphisms, the identity, and $\sqrt{5} \mapsto -\sqrt{5}$.

For x^3-5 the roots are $\sqrt[3]{5}\omega^m$ for m=0,1,2 where $\omega=e^{i\frac{2\pi}{3}}$. Since any automorphism of $\mathbb{Q}(\sqrt[3]{5})$ must send $\sqrt[3]{5}$ to one of $\sqrt[3]{5}\omega^m$ for m=0,1,2, there is only one possibility. Namely, $\sqrt[3]{5}$ must be fixed, and hence there is only the identity automorphism.

Note This is a different question, than understanding the automorphisms of the splitting field $\mathbb{Q}(\sqrt[3]{5}, \omega)$, i.e., $\mathrm{Gal}(x^3 - 5)$.

15. Let F be a field of characteristic p and let $f(x) = x^p - a$ show that f either splits or is irreducible over F.

Let α be a root of f(x) in a field $F \subseteq E$ (possibly E = F), since E is also of characteristic p we have $\alpha^p - a = 0$ so $a = \alpha^p$ and $f(x) = x^p - \alpha^p = (x - \alpha)^p$. If $\alpha \in F$, then f(x) splits over F.

If $\alpha \notin F$ let g(x) be an irreducible factor of f(x). We know, in E, that $g(x) = (x - \alpha)^k$ for some 1 < k < p since $f(x) = (x - \alpha)^p$, but then $g(x) = h(x^p)$ (Theorem 19.6) and so it must be that k = p, hence f(x) = g(x), that is, f(x) is irreducible.

16. Suppose β is a zero of $f(x) = x^4 + x + 1$ in some field extension E of \mathbb{Z}_2 . Write f(x) as a product of linear factors in E[x].

We can perform polynomial division:

$$x^{3} + \beta x^{2} + \beta^{2}x + (1 + \beta^{3})$$

$$x - \beta) x^{4} + x + 1$$

$$\underline{x^{4} - \beta x^{3}}_{\beta x^{3}}$$

$$\underline{\beta x^{3} - \beta^{2} x^{2}}_{\beta^{2} x^{2}} + x$$

$$\underline{\beta^{2} x^{2} - \beta^{3} x}_{(1 + \beta^{3})x + 1}$$

$$\underline{(1 + \beta^{3})x - \beta(1 + \beta^{3})}_{\beta^{4} + \beta + 1} = 0$$

Now

$$x^{3} + \beta x^{2} + \beta^{2} x + \beta^{3} + 1 = x^{2}(\beta + x) + \beta^{2}(\beta + x) + 1$$

$$= (x^{2} + \beta^{2})(x + \beta) + 1 = (x + \beta)^{2}(x + \beta) + 1 = (x + \beta)^{3} + 1$$

$$= (x + \beta)^{3} - 1$$

$$= (x + \beta - 1)((x + \beta)^{2} + (x + \beta) + 1)$$

Now

$$(x+\beta)^2 + (x+\beta) + 1 = x^2 + \beta^2 + x + \beta + 1$$

$$= x^2 + \beta^2 + x + \beta^4 \qquad \text{(since } \beta^4 = -(1+\beta) = 1+\beta\text{)}$$

$$= (x+\beta^2)(x+\beta^2+1)$$

So

$$x^4 + x + 1 = (x - \beta)(x + \beta - 1)(x + \beta^2)(x + \beta^2 + 1)$$

20. Find p(x) in $\mathbb{Q}[x]$ so that $\mathbb{Q}\left(\sqrt{1+\sqrt{5}}\right) = \mathbb{Q}[x]/\langle p(x)\rangle$

$$x^{2} = 1 + \sqrt{5}$$

$$x^{2} - 1 = \sqrt{5}$$

$$(x^{2} - 1)^{2} = 5$$

$$x^{4} - 2x^{2} - 4 = 0$$

We cannot use Theorem 17.4 (Eisenstein's Criteria) to see that $p(x) = x^4 - 2x^2 - 4$ is irreducible. If p(x) were reducible, then $x^4 - 2x^2 - 4 = (x^2 + ax + b)(x^2 + cx + d)$ with $a, b \in \mathbb{Z}$. Since $ax^3 + cx^3 = 0$ we have c = -a and hence we have $x^4 - 2x^2 - 4 = (x^2 + ax + b)(x^2 - ax + d)$. Now we have adx - abx = 0, so either a = 0 or b = d. b = d is not possible since $b^2 \neq -4$ and a = 0 is also not possible since then $x^4 - 2x^2 - 4 = (x^2 + b)(x^2 + d) = x^4 + (b + d)x + bd$ with b + d = -2 and bd = -4, hence b = -2 - d and $(-2 - d)d = -2d + d^2 = -4$ or $d^2 - 2d + 4 = 0$ for an integer d. With some effort, we have shown that p(x) is irreducible.

22. Suppose f(x) and g(x) are relatively prime in F[x] and K is an extension field of F, then f(x) and g(x) remain relatively prime in K[x].

If f(x) and g(x) are relatively prime in F[x], this means that there are h(x) and k(x) in F[x] so that h(x)f(x)+k(x)g(x)=1. (Recall f(x) and g(x) are relatively prime if there is l(x) a non-unit with $l(x) \mid f(x), g(x)$.) But since F[x] is a PID, this means that (f(x)) + (g(x)) = F[X] and this, in turn, means that the desired h(x) and k(x) exist.

But then, h(x)f(x)+k(x)g(x)=1 continues to hold in K[x] so f(x) and g(x) remain relatively prime.

24. Describe the elements of $\mathbb{Q}(\sqrt[4]{2})$ over $\mathbb{Q}(\sqrt{2})$.

$$\mathbb{Q}[x]/\langle x^4 - 2 \rangle = \mathbb{Q}(\sqrt{2})[x]/\langle x^2 - \sqrt{2} \rangle = \mathbb{Q}(\sqrt[4]{2})$$
 and so

$$\mathbb{Q}(\sqrt[4]{2}) = \{a + b\sqrt[4]{2} \mid a, b \in \mathbb{Q}(\sqrt{2})\} = \{a + b \, 2^{1/4} + c \, 2^{1/2} + d \, 2^{3/2} \mid a, b, c, d \in \mathbb{Q}\}$$

25. What can you say about the order of the splitting field of $x^5 + x^4 + 1 = (x^2 + x + 1)(x^3 + x + 1)$ over \mathbb{Z}_2 ?

Let α be a root of $x^2 + x + 1$, that is, $\alpha = x + \langle x^2 + x + 1 \rangle$ in $\mathbb{Z}_2[x]/\langle x^2 + x + 1 \rangle$. So

$$\mathbb{Z}_2(\alpha) = \{a + b\alpha \mid a, b \in \mathbb{Z}_2\} = \{0, 1, \alpha, 1 + \alpha\}$$

and the multiplication table is

$$\begin{array}{c|cccc} & \alpha & 1+\alpha \\ \hline \alpha & 1+\alpha & 1 \\ 1+\alpha & 1 & \alpha \end{array}$$

Here is how you get this, $\alpha^2 = x^2 + \langle x^2 + x + 1 \rangle$, $(\alpha + 1)^2 = \alpha^2 + 1$ (Recall that $(a+b)^2 = a^2 + b^2$ here.), and $\alpha(1+\alpha) = \alpha^2 + \alpha$. First we compute α^2 :

$$\begin{array}{r}
1 \\
x^2 \overline{\smash)x^2 + x + 1} \\
\underline{x^2} \\
x + 1
\end{array}$$

So $x^2 = x + 1 \pmod{x^2 + x + 1}$ so $\alpha^2 = \alpha + 1$. Hence $(\alpha + 1)^2 = \alpha^2 + 1 = \alpha + 2 = \alpha$ and $\alpha(\alpha + 1) = \alpha^2 + \alpha = 2\alpha + 1 = 1$.

We know that if $g(x) = x^3 - x + 1$ factored in $\mathbb{Z}_2(\alpha)$, then there must be one linear factor and hence a root in $\mathbb{Z}_2(\alpha)$, but we can check that this is not the case.

$$g(\alpha) = \alpha^3 + \alpha + 1 = \alpha^2 \alpha + \alpha^2 = \alpha^2 (\alpha + 1) = (\alpha + 1)^2 = \alpha \neq 0$$

and

$$g(\alpha + 1) = (\alpha + 1)^3 + (\alpha + 1) + 1 = (\alpha + 1)^2(\alpha + 1) + \alpha = \alpha(\alpha + 1) + \alpha = 1 + \alpha \neq 0$$

We already know that g(0) and g(1) are not 0. So we see that g(x) is still irreducible over $\mathbb{Z}_2(\alpha)$. Let β be a root of g(x), that is, $\beta = x + \langle g(x) \rangle$ in $\mathbb{Z}_2(\alpha)$. Then $[\mathbb{Z}_2(\alpha, \beta) : \mathbb{Z}_2(\alpha)] = 3$ and hence $|\mathbb{Z}_2(\alpha,\beta)| = 4^3 = 64$. Notice $[\mathbb{Z}_2(\alpha,\beta):\mathbb{Z}_2] = [\mathbb{Z}_2(\alpha,\beta):\mathbb{Z}_2(\alpha)][\mathbb{Z}_2(\alpha):\mathbb{Z}_2] = 3 \cdot 2 = 6$ and so $\mathbb{Z}_2(\alpha,\beta) = 2^6 = 64$.

Now $\mathbb{Z}_2(\alpha, \beta) = \mathbb{Z}_2(\alpha)(\beta) = \mathbb{Z}_2(\alpha)(\beta)$ and

$$\mathbb{Z}_2(\alpha)(\beta) = \{a_0 + a_1\beta + a_2\beta^2 \mid a_i \in \mathbb{Z}_2(\alpha)\}\$$

whereas

$$\mathbb{Z}_2(\beta)(\alpha) = \{a_0 + a_1 \alpha \mid a_i \in \mathbb{Z}_2(\beta)\}\$$

In either case, we have that a typical element of $\mathbb{Z}_2(\alpha,\beta)$ has the form

$$(a_0 + a_1\beta + a_2\beta^2) + (b_0 + b_1\beta + b_2\beta^2)\alpha = a_0 + b_0\alpha + a_1\beta + b_1\beta\alpha + a_2\beta^2 + b_2\alpha\beta^2$$
$$= c_0 + c_1\alpha + c_2\beta + c_3\alpha\beta + c_4\beta^2 + c_5\alpha\beta^2$$

where $c_i \in \mathbb{Z}_2$.

36. Find the splitting field for $x^4 + 1 = (x^2 + x + 2)(x^2 + 2x + 2)$ over \mathbb{Z}_3 .

Let α be a root for $x^2 + x + 2$, the elements of $\mathbb{Z}_3(\alpha)$ are of the form $a_0 + a_1\alpha$ and these are

$$0, 1, 2, \alpha, 2\alpha, 1 + \alpha, 1 + 2\alpha, 2 + \alpha, 2 + 2\alpha$$

Note that $\alpha^2 = -\alpha - 1 = 2 + 2\alpha$ with this, we can compute all other multiples. Let's check the status of $g(x) = x^2 + 2x + 1$

$$g(\alpha) = \alpha^2 + 2\alpha + 1 = 2 + 2\alpha + \alpha + 1 = 0$$

So g(x) already has a root in $\mathbb{Z}_3(\alpha)$ and hence splits. So the splitting field of $x^4 + 1$ is $\mathbb{Z}_3(\alpha)$.

Note Not the differences between (25) and (36). When doing iterated extensions, what happens depends on whether the roots from one extension are already roots of a future extension.

37. This is sort of stated poorly. Obviously, if there is smallest field containing F and a_1, \ldots, a_n , then

$$\bigcap \{E \mid F \subseteq E \text{ and } \{a_1, \dots, a_n\} \subset E\}$$

must be this smallest field, by definition of "smallest":)

The point is that the intersections of fields is a field; this is easy.

43. Let $F = \mathbb{Z}_p(t)$ and $f(x) = x^p - t$. Show that f(x) is irreducible and has multiple roots.

 $f'(x) = px^{p-1} = 0$ since F has characteristic p. Thus f(x) and f'(x) do have a common factor in F[x], namely f(x). Thus f(x) has repeated roots.

By exercise (15) above, f(x) is irreducible unless it splits in F. It f(x) splits over F, then $t = \alpha^p = (p(t)/q(t))^p$ for some $p(t), q(t) \in \mathbb{Z}_p[t]$ with $q(t) \neq 0$ and

$$t(a_0 + a_1t + \dots + a_nt^n)^p = (b_0 + b_1t + \dots + b_mt^m)^p$$

hence deg(LHS) = np + 1 = mp = deg(RHS), which absurd. So f(x) is irreducible over F.

44. Let f(x) be an irreducible polynomial over a field F. Prove that the number of distinct zeros of f(x) in a splitting field divides deg f(x).

If the characteristic of F is 0, then there are $\deg(f(x))$ distinct roots. If $\operatorname{char}(F) = p$, then $f(x) = (x - a_1)^m \cdots (x - a_k)^m$ where $km = \deg(f)$. This follows from the corollary to Theorem 19.9.

47. What is the splitting field of $f(x) = x^3 - 2$ over $\mathbb{Q}(\sqrt[3]{2})$? What is the splitting field over $\mathbb{Q}(\sqrt{3}i)$?

We know that the splitting field of f(x) is $E = \mathbb{Q}(\sqrt[3]{2}, \omega)$ where $\omega = e^{i\frac{2\pi}{3}} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$. So

$$E = \mathbb{Q}(\sqrt[3]{2})(\omega) = \mathbb{Q}(\sqrt[3]{2})(\sqrt{3}i) = \mathbb{Q}(\sqrt{3}i)(\sqrt[3]{2})$$