Price Optimization in Excel

Methodology

- 1. Plot each quantity and price without outliers.
- 2. Fit a logarithmic trendline to each scatterplot via Excel.

- 3. Calculate price and quantity that will bring max revenue.
 - Since revenue (booking \$) is price * quantity, revenue = $x \cdot y$
 - Max revenue occurs at the point where the derivative of the equation $x \cdot y = 0$
 - For example, for the curve above, $x \cdot y = x(4207.5 1128 \ln(x))$
 - \rightarrow Revenue = $f(x) = x(4207.5 1128 \ln(x))$
 - $f'(x) = (4207.5 1128 \ln(x)) + x(\frac{-1128}{x}) = 3079.5 1128 \ln(x)$
 - \rightarrow 1128 ln(x) = 3079.5
 - $\rightarrow \ln(x) = \frac{3079.5}{1128}$
 - $\rightarrow x = e^{\frac{567515}{1128}} \approx 15$
 - \rightarrow Plug x into logarithmic equation to solve for y
 - $\rightarrow y = 4207.5 1128 \ln(15) \approx 1152.82$
 - → Max revenue = \$1152.82 x 15 = \$17,292.3

Optimization Results

The curve is better fitted when the dataset has lower variability, as is the case in the second graph.