

Applications

- Targetting similar people or objects
 - Student tutorial groups
 - Hobby groups
 - Health support groups
 - Customer groups for marketing
 - Organizing e-mail
- Spatial clustering
 - Exam centres
 - Locations for a business chain
 - Planning a political strategy

3

Measurement of similarity

Nominal (categorical) variables

d(x,y) = 1 - m/n

m = no of matches among n attributes, or

m = sum of weights of matching attributes, and n is the sum of weights of all attributes

- Numeric variables
 - Euclidean, manhattan, minkowski,...
 - Ordinal
 - z = (rank-1)/(M-1) where M is maximum rank
- Above are examples
 - Similarity is ultimately application dependent
 - Requires various kinds of preprocessing
 - Scaling: Convert all attributes to have same range
 - z-score: z = (value-mean)/m where m is the mean absolute deviation

4

Evaluating Clustering Quality

- Minimize squared error
 Here m_i is the mean (or other centre) of cluster i
- $E = \sum_{i=1}^{N} \sum_{x \in C_i} d(x, m_i)^2$
- Can also use absolute error
- Can be used to find best initial random means in kmeans.

16

Measuring Cluster Distances

- Single link: Minimum distance
- Complete link: Maximum distance
- Average link: Average distance

18

Density-based Methods: e.g. DBSCAN

- Neighbourhood: Records within distance of ε from given record
- Core point: Record whose neighbourhood contains at least μ records.
- Find all core points and create a cluster for each of them.
- If core point Y is in the neighbourhood of core point X, then merge the clusters of X and Y.
- Repeat above step for all core points until clusters do not change.

20

Mining Outliers using Clustering

- Outliers are data points that deviate significantly from the norm.
- Useful in fraud detection, error detection (in data cleaning), etc.
- Technique:
 - Apply any clustering algorithm
 - Treat clusters of very small size as containing only outliers

21