6/9/2016 Coursera

Feedback — Combinatorial Optimization Problems Using ILP

Help Center

You submitted this homework on Sat 9 Nov 2013 1:40 PM PST. You got a score of 59.00 out of 59.00.

In this assignment, we will solve various combinatorial optimization problems by reducing to ILP. We assume that you are able to use an ILP solver: we recommend GLPK as a solver for these assignments.

Question 1

Consider the following 3-SAT instance with 3 Boolean variables x_1, x_2, x_3 and 5 clauses C_1, \ldots, C_5 :

$$(x_1 ext{ OR } x_2 ext{ OR } \neg x_3) \qquad \leftarrow C_1 \ (x_1 ext{ OR } x_2 ext{ OR } x_3) \qquad \leftarrow C_2 \ (x_1 ext{ OR } \neg x_2 ext{ OR } \neg x_3) \qquad \leftarrow C_3 \ (x_1 ext{ OR } \neg x_2 ext{ OR } x_3) \qquad \leftarrow C_4 \ (\neg x_1) \qquad \leftarrow C_5$$

Use an ILP solver to check if the constraints are satisfiable. Type "SAT" if you find that they are satisfiable and type "UNSAT" otherwise.

You entered:

UNSAT

Your Answer		Score	Explanation
UNSAT	✓	5.00	correct

6/9/2016 Coursera

Total

5.00 / 5.00

Question Explanation

Video lecture https://class.coursera.org/linearprogramming-001/lecture/169 shows how to convert from SAT to 0-1 ILP.

Question 2

Rather than ask whether a given formula has a SATisfiable assignment or not, we ask the question what is the maximum number of clauses that can be satisfied at the same time. This is called the MAX-SAT problem. Consider again the following 3-SAT instance with variables x_1, x_2, x_3 and 5 clauses:

$$(x_1 ext{ OR } x_2 ext{ OR } \neg x_3) \leftarrow C_1 \ (x_1 ext{ OR } x_2 ext{ OR } x_3) \leftarrow C_2 \ (x_1 ext{ OR } \neg x_2 ext{ OR } \neg x_3) \leftarrow C_3 \ (x_1 ext{ OR } \neg x_2 ext{ OR } x_3) \leftarrow C_4 \ (\neg x_1) \leftarrow C_5$$

Let y_1, y_2, y_3 be the 0-1 variables corresponding to x_1, x_2, x_3 , respectively. Let z_1 be another 0-1 (binary) variable. Which of the following statements best describe the meaning of the constraint

$$y_1 + y_2 + (1 - y_3) \ge z_1$$

Your Answer		Score	Explanation
$igcup$ If we set z_1 to 1 then the assignment to y_1,y_2,y_3 must satisfy clause C_3 .			
$lacksquare$ If we set z_1 to 1 , the assignment to y_1,y_2,y_3 must satisfy clause C_1 .	~	5.00	Correct

lacksquare If we set z_1 to 1 then the assignment to y_1,y_2,y_3 must satisfy clause C_2

lacksquare If we set z_1 to 0, the assignment to y_1,y_2,y_3 must satisfy clause C_1

Total 5.00 / 5.00

Question 3

Consider again the following 3-SAT instance with variables x_1, x_2, x_3 and 5 clauses:

$$egin{array}{lll} (x_1 & \operatorname{OR} x_2 & \operatorname{OR}
eg x_3) & \leftarrow & C_1 \\ (x_1 & \operatorname{OR} x_2 & \operatorname{OR} x_3) & \leftarrow & C_2 \\ (x_1 & \operatorname{OR}
eg x_2 & \operatorname{OR}
eg x_3) & \leftarrow & C_3 \\ (x_1 & \operatorname{OR}
eg x_2 & \operatorname{OR} x_3) & \leftarrow & C_4 \\ (
eg x_1) & \leftarrow & C_5 \\ \end{array}$$

We wish to find out the maximum number of clauses that can be simultaneously satisfied by a truth assignment. To do so, we use binary variables y_1, y_2, y_3 corresponding to x_1, \ldots, x_3 and the binary variables z_1, \ldots, z_5 corresponding to clauses C_1, \ldots, C_5 .

We set up the following 0-1 ILP but we omit the objective function:

Which of the following should be the objective function to find the maximum number of simultaneously satisfiable clauses?

Your Answer	Score	Explanation
$\odot \min y_1 + y_2 + y_3$		
$\odot \min z_1 + z_2 + z_3 + z_4 + z_5$.		
$\bigcirc \max z_1 + 2z_2 + 3z_3 + 4z_4 + 5z_5$		

 $\bigcirc \max y_1 + y_2 + y_3$

● $\max z_1 + z_2 + z_3 + z_4 + z_5$

✓ 5.00 Correct.

Total 5.00 / 5.00

Question Explanation

hint: if z_i is 1 in a solution \vec{y}, \vec{z} , then the clause C_i will be satisfied.

Question 4

Solve the ILP in the previous question using your favourite ILP solver, and enter the optimal value of the objective function.

You entered:

4

•			
			1

Your Answer Score Explanation

4 10.00

Total

10.00 / 10.00

Question Explanation

The ILP must look like this

$$\begin{array}{lllll} \max & z_1+z_2+z_3+z_4+z_5 \\ \text{s.t.} & y_1+y_2+(1-y_3) & \geq & z_1 \\ & y_1+y_2+y_3 & \geq & z_2 \\ & y_1+(1-y_2)+(1-y_3) & \geq & z_3 \\ & y_1+(1-y_2)+y_3 & \geq & z_4 \\ & 1-y_1 & \geq & z_5 \\ & y_1,\dots,y_3,z_1,\dots,z_5 & \in & \{0,1\} \end{array}$$

Question 5

We solved a vertex cover problem with 500 nodes and 12400 edges using the LP relaxation and the rounding procedure in our lecture. The LP relaxation yielded an optimal solution with a cost of 123.4. What can we say about the minimal vertex cover for this problem? Select all the true options.

Your Answer		Score	Explanation
■ The LP relaxation optimal value tells us nothing about the optimal cover since the vertex cover can be ILP infeasible.	~	1.00	Will the ILP arising from vertex cover problem ever be infeasible?
ightharpoonup The cost of the minimal vertex cover is at least 124 .	~	1.00	

$\hfill\Box$ The cost of the optimal vertex cover is exactly 124 vertices.	~	1.00	Does the cost of the vertex cover have to be determined by that of the LP relaxation?
$\ensuremath{\checkmark}$ The minimal vertex cover cost is at most 246	~	1.00	
$\hfill \square$ The cost of the minimal vertex cover is at most 123	~	1.00	We are looking to minimize the objective. what is the right relation between an ILP optimal solution and the optimum for its LP relaxation?
Total		5.00 / 5.00	

Question 6

A county has 7 towns T_1, \ldots, T_7 . A corporation wishes to build supermarkets to serve the people in the county.

- For each town, the corporation can choose to or not to build a super market there. No town can have more than one super-market.
- We would like to minimize the number of super-markets built.
- Each town must have a super-market within a 20 minute driving time.
- The table below shows the driving times between the towns:

Note that driving time from T_i to T_j is assumed to be the same as the reverse driving distance.

Let z_1, \ldots, z_7 denote the decision variables where z_i is 1 if we should build a super market in town T_i and 0 otherwise.

What is the objective function for this problem?

Your Answer		Score	Explanation
$ullet$ $\max 0$: this is just a feasibility problem.			
$igorplus \max z_1 + \dots + z_7$			
$\odot \min z_1 + 2 z_2 + 3 z_3 + 4 z_4 + 5 z_5 + 6 z_6 + 7 z_7$			
$lacksquare$ $\min \ z_1 + z_2 + \cdots + z_7$	~	4.00	Correct
Total		4.00 / 4.00	

Question 7

Recall the drive times below:

Each town must have a super-market within a $20\,$ minute driving time.

Note from the table that T_1, T_2, T_3, T_5 are the only towns within 20 minutes of T_1 .

Which of the following conclusions can be made?

Your Answer		Score	Explanation
$igcup$ A super market must be built in T_1 or all of T_2,T_3 and T_5 must have a super market.			
$lacksquare$ At least one super market must be built in the towns $\{T_1,T_2,T_3,T_5\}$.	~	4.00	Correct
$igcup$ At most one super market must be built in the towns $\{T_1,T_2,T_3,T_5\}$.			
Nothing can be concluded.			
Total		4.00 / 4.00	

Question 8

6/9/2016

Which of the constraints below expresses the requirement that

there must be a super market built within 20 minutes driving time from town T_6

	T_1	T_2	T_3	T_4	T_5	T_6 31 14 31 13 22 0 26	T_7
T_1	0	19	18	22	13	31	23
T_2	19	0	17	22	23	14	32
T_3	18	17	0	14	21	31	32
T_4	22	22	14	0	29	13	17
T_5	13	23	21	29	0	22	19
T_6	31	14	31	13	22	0	26
T_7	23	32	32	17	19	26	0

Your Answer		Score	Explanation
	~	1.00	
$\bigcirc \ z_6 \geq 1$			
$\bigcirc \ z_2+z_4 \geq 1$			
$\bigcirc \ z_1 + z_3 + z_5 + z_7 \geq 1$			
Total		1.00 / 1.00	

Question Explanation

The towns within 20 minutes of T_6 are $T_2\,,T_4$ and T_6 itself.

Question 9

Setup and solve the ILP for the supermarket construction given the data given in the previous problem. What is the smallest number of super markets that we need to construct?

You entered:

2

Your Answer		Score	Explanation
2	~	10.00	Correct
Total		10.00 / 10.00	

Question Explanation

Go through each town T_1, \ldots, T_7 and for each town find out the other towns within 20 minute driving distance. That should yield an inequality constraint.

Question 10

We modify the problem to take into account the cost of constructions (in millions of dollars) for each town:

T_1	T_2	T_3	T_4	T_5	T_6	T_7
12	8	12	10	9	10	7

Rather than minimize the number of super markets, we wish to minimize the cost of constructions while still requiring a supermarket within 20 minutes driving time from each town.

Setup and solve an ILP to find the minimal construction cost obtained? Report the answer in the box below.

You entered:

15

Your Answer		Score	Explanation
15	✓	10.00	
Total		10.00 / 10.00	

Question Explanation

Modify the objective to

