Computer Organization and Architecture

2 A Top-Level View of Computer Function and Interconnection

Tongwei Ren

Sep. 10, 2018

Review

- Concepts
 - Computer, architecture, organization
- The von Neumann machine
 - Idea: main memory storing programs and data
 - Components: central arithmetical, central control, memory, input / output
- Moore's law and its consequence
- Computer performance
 - System clock, CPI, MIPS, MFLOPS, benchmarks

Computer

the von Neumann machine

A Top-Level Overview

Computer Components

- Data and instructions are stored in a single read-write memory
- The contents of this memory are addressable by location, without regard to the type of data contained there
- Execution occurs in a sequential fashion (unless explicitly modified) from one instruction to the next

Incommensurate Scaling

Computer Components: Memory

- Data and instructions are stored in a single read-write memory
- The contents of this memory are addressable by location, without regard to the type of data contained there

- Problem
 - The speed of transferring data between main memory and CPU fails to keep up with the speed of CPU

Solution

- Add a cache or other buffering scheme to reduce the frequency of memory access and increase data transfer rate
- Increase the number of bits retrieved one-time

• ...

- Constraints
 - Capacity: larger is better
 - Speed: keep up with the processor
 - Cost: reasonable to other components
- Relationship between constraints
 - Shorter access time, greater cost per bit

- Requirement
 - Large capacity for data storage

High speed for performance

Solution

 Employ a memory hierarchy than rely on a single memory component

Computer Components: I/O

 Exchange data gathered from external sources with CPU and memory

- Problem
 - I/O performance cannot keep up with the increase of CPU speed

- Solution
 - Buffering
 - New interface techniques

• ...

Computer Components: CPU

- Execution occurs in a sequential fashion (unless explicitly modified) from one instruction to the next
- Data and instructions are stored in a single read-write memory
- The contents of this memory are addressable by location, without regard to the type of data contained there

- Problem
 - CPU remains idle when waiting for I/O devices
- Solution
 - Interrupt: a mechanism by which other modules (e.g. I/O) may interrupt normal sequence of processing

- Interrupt detection
 - Add interrupt cycle into instruction cycle

Multiple interrupts

Sequential interrupt processing

Nested interrupt processing

Computer Components: Bus

 Bus is a communication pathway connecting two or more devices

Interconnection solution

- Data transfer type
 - Any bus lines can be classified into three functional groups
 - Data lines: move data between system modules
 - Address lines: designate the source or destination of the data on the data bus and address I/O ports
 - Control lines: control the access to and the use of the data and address lines

Summary

- A top-level view of computer
- Computer component
 - Memory: cache, memory hierarchy
 - I/O: buffer
 - CPU: interrupt
 - Bus: type

Thank You

rentw@nju.edu.en

