#### K J Somaiya College of Engineering, Mumbai-77

(CONSTITUENT COLLEGE OF SOMAIYA VIDYAVIHAR UNIVERSITY)
Operational Amplifiers

Presented by: **Prof. Seema Talmale** 









# **Operational Amplifiers**





#### Outline of Presentation

- What is an Op-Amp?
- Characteristics of Ideal and Real Op-Amps
- Common Op-Amp Circuits
- Applications of Op-Amps
- References





## What is an Op-Amp?

An Operational Amplifier (known as an "Op-Amp") is a device that is used to amplify a signal using an external power source

Op-Amps are generally composed of:

Transistors, Resistors, Capacitors

K J Somaiya College of Engineering





# Leading to the advent of the modern IC which is still used even today (1967 – present)



Fairchild µA741



Electrical Schematic of µA741





## Op-Amps and their Math

#### A traditional Op-Amp:



V<sub>+</sub> : non-inverting input

V<sub>\_</sub>: inverting input

V<sub>out</sub> : output

V<sub>s+</sub> : positive power supply

V<sub>s-</sub>: negative power supply

$$V_{out} = K (V_+ - V_-)$$

- The difference between the two inputs voltages (V<sub>+</sub> and V<sub>-</sub>) multiplied by the gain (K, "amplification factor") of the Op-Amp gives you the output voltage
- The output voltage can only be as high as the <u>difference</u> between the power supply  $(V_{s+}/V_{s-})$  and ground (0 Volts)





#### Saturation

Saturation is caused by increasing/decreasing the input voltage to cause the output voltage to equal the power supply's voltage\*



The slope is normally much steeper than it is shown here. Potentially just a few millivolts (mV) of change in the difference between V<sub>+</sub> and V<sub>-</sub> could cause the opamp to reach the saturation level

\* Note that saturation level of traditional Op-Amp is 80% of supply voltage with exception of CMOS opamp which has a saturation at the power supply's voltage





#### Outline of Presentation

- What is an Op-Amp?
- Characteristics of Ideal and Real Op-Amps
- Common Op-Amp Circuits
- Applications of Op-Amps
- References





### An Ideal Op-Amp Characteristics

- Infinite voltage gain
- Infinite input impedance
- Zero output impedance
- Infinite bandwidth
- Zero input offset voltage (i.e., exactly zero out if zero in).
- Slew Rate(SR): The slew rate of an op amp or any amplifier circuit is the rate of change in the output voltage caused by a step change on the input. It is measured as a voltage change in a given time typically V / µs or V / ms. A typical general purpose device may have a slew rate of 10 V / microsecond.





# Ideal versus Real Op-Amps

| Parameter                   | Ideal Op-Amp | Real Op-Amp                       |
|-----------------------------|--------------|-----------------------------------|
| Differential Voltage Gain   | $\infty$     | 10 <sup>5</sup> - 10 <sup>9</sup> |
| Gain Bandwidth Product (Hz) | $\infty$     | 1-20 MHz                          |
| Input Resistance (R)        | $\infty$     | $10^6$ - $10^{12}$ $\Omega$       |
| Output Resistance (R)       | 0            | 100 - 1000 Ω                      |







#### Outline of Presentation

- What is an Op-Amp?
- Characteristics of Ideal and Real Op-Amps
- Common Op-Amp Circuits
- Applications of Op-Amps
- References





## Basic Op-Amp Circuits

- An op-amp amplifies the difference of the inputs V<sub>+</sub> and V<sub>-</sub> (known as the differential input voltage)
- This is the equation for an *open loop* gain amplifier:

$$V_{out} = K(V_+ - V_-)$$

- K is typically very large at around 10,000 or more for IC Op-Amps
- This equation is the basis for all the types of amps we will be discussing





## Open Loop vs Closed Loop Circuit

• A closed loop op-amp has feedback from the output to the input, an open loop op-amp does not







# Op-Amp as Non-Inverting Amplifier

- Amplifies the input voltage by a constant
- Closed loop op-amp
- Voltage input connected to noninverting input
- Voltage output connected to inverting input through a feedback resistor
- Inverting input is also connected to ground
- Non-inverting input is only determined by voltage output







# Op-Amp as Non-Inverting Amplifier

$$V_{non} = V_{inv}$$

But 
$$V_{non} = V_{in}$$
, so  $V_{inv} = V_{in}$ 

$$V_{inv} = V_{out} \left( \frac{R_1}{R_1 + R_2} \right) = V_{in}$$

$$V_{out} = V_{in}(\frac{R_1 + R_2}{R_1})$$

$$A_f = \frac{V_{out}}{V_{in}} = (1 + \frac{R_2}{R_1})$$





Non-Inverting Op-Amp : Circui...

$$V_{out} = Vin (1 + \frac{R_2}{R_1})$$





## Op-Amp as Inverting Amplifier

- Amplifies and inverts the input voltage
- Closed loop op-amp
- Non-inverting input is determined by both voltage input and output
- The polarity of the output voltage is opposite to that of the input voltage
- Input Voltage is connected to inverting terminal
- Output Voltage is fedback to inverting input through a feedback resistor
- Non-inverting input is grounded







## Op-Amp as Inverting Amplifier

Apply KCL at inverting node of OPAMP

$$I_f + I_{in} = 0$$

$$\frac{V_{out}}{R_F} = -\frac{V_{in}}{R_{in}}$$

$$A_f = \frac{V_{out}}{V_{in}} = \frac{-R_f}{R_{in}}$$

$$I_f + I_{in} = 0$$

$$\frac{V_{out}}{R_F} = -\frac{V_{in}}{R_{in}}$$

$$A_f = \frac{V_{out}}{V_{in}} = \frac{-R_f}{R_{in}}$$



$$V_{out} = V_{in} * (R_f/R_{in})$$





# Op-Amp as Adder/Summing Amplifier



$$V_{\text{out}} = -R_{\text{f}} \left( \frac{V_1}{R_1} + \frac{V_2}{R_2} + \dots + \frac{V_n}{R_n} \right)$$





### Op-Amp as Subtractor



$$V_{out} = \frac{V_2(R_3 + R_1)R_4}{(R_4 + R_2)R_1} - \frac{V_1R_3}{R_1}$$

If all resistors are equal:

$$V_{out} = V_2 - V_1$$





#### References

- Op-amps and Linear Integrated Circuits
   By Ramakant A Gaikwad
   Publication: Pearson Education
- Linear Integrated Circuits
   By Choudhary D. Roy & Shail B. Jain
   Publication: New Age International





# Thank you



