Search III

- 1. Dijkstra's Algorithm
 - a. Pros:
 - i. Works with arbitrary (positive) edge weights
 - b. Cons:
 - i. Still blind
 - ii. Not feasible for large graphs O(|E| + |V|log|V|) runtime, O(|V| + |E|) memory
 - c. Can we make this less blind?
- 2. Making Dijkstra Less Blind
 - a. Only a single goal state
 - i. If more than one: add an artificial goal state
 - b. Design goal:
 - i. Make Dijkstra's algorithm aware of the goal state
 - ii. Choose to expand paths that lead "towards" the goal
 - iii. Rather than sort by true path cost (i.e. known path cost)
 - 1. Sort by estimated path cost from $src \rightarrow goal$

iv.

- c. How to estimate the path cost from $src \rightarrow goal$?
 - i. Utility function

- 3. Utilities and Estimating Cost to Goal
 - a. Utility function estimates path cost from a vertex to the goal
 - b. Total estimated cost from $src \rightarrow goal = true path cost + estimated cost$

True path cost Estimated cost "to go"

If we're here c.

- d. Warning: when we get shortest path so far:
 - i. Dijkstra claims that's the correct answer (to wherever that path leads)
 - ii. Are we breaking that by sorting by $src \rightarrow goal cost$?
- 4. Utility Constraints
 - a. Cost function = path cost + utility cost (heuristic)
 - b. As long as utility is admissible & consistent: A* is optimal
 - i. Admissible = never overestimates the true cost (i.e. utility is optimistic)
 - Consistent = triangle inequality but for action spaces: ii.

Cost of vertex u (to god) $\leq c(u, a, v) + f(v)$ Cost of vertex v (to goal)

Cost of using action a to transition from u to v

1.

iii. Every consistent utility (heuristic is admissible

5. BFS Example

Actions: {

Goal function: (

b.

6. The A* Algorithm

- a. Dijkstra's algorithm (mostly)
 - i. Gets shortest path so far based on total estimated cost $\operatorname{src} \to \operatorname{goal}$
 - ii. Everything else is the same as Dijkstra
- b. Dijkstra's algorithm where path comparison is done via $\operatorname{src} \to \operatorname{goal}$
 - i. Rather than true path cost (Dijkstra)
- c. Warning: utility (heuristic) needs to be engineered for every world
 - i. Consistency is determined on a world-by-world basis