SESSIBLE OF THE SECOND SECOND

Add USB to your designs

Access devices with .NET

Use On-The-Go and wireless technologies

Discover the power of USB 3.0 and SuperSpeed

JAN AXELSON

THE DEVELOPER'S GUIDE

author of SERIAL PORT COMPLETE

USB Complete

The Developer's Guide
Fourth Edition

Jan Axelson

Lakeview Research LLC Madison, WI 53704

USB Complete: The Developer's Guide, Fourth Edition

by Jan Axelson

Copyright 1999-2009 by Janet L. Axelson

All rights reserved. No part of the contents of this book, except the program code, may be reproduced or transmitted in any form or by any means without the written permission of the publisher. The program code may be stored and executed in a computer system and may be incorporated into computer programs developed by the reader.

The information, computer programs, schematic diagrams, documentation, and other material in this book are provided "as is," without warranty of any kind, expressed or implied, including without limitation any warranty concerning the accuracy, adequacy, or completeness of the material or the results obtained from using the material. Neither the publisher nor the author shall be responsible for any claims attributable to errors, omissions, or other inaccuracies in the material in this book. In no event shall the publisher or author be liable for direct, indirect, special, incidental, or consequential damages in connection with, or arising out of, the construction, performance, or other use of the materials contained herein.

Many of the products and company names mentioned herein are the trademarks of their respective holders. PIC and MPLAB are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. PICBASIC PRO is a trademark of Microchip Technology Inc. in the U.S.A. and other countries.

Published by Lakeview Research LLC, 5310 Chinook Ln., Madison WI 53704 www.Lvr.com

Distributed by Independent Publishers Group (ipgbook.com).

14 13 12 11 10 9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America ISBN13 978-1-931448-08-6

Contents

	Introduction xvii
1	USB Basics
	Uses and Limits
	Benefits for Users
	Benefits for Developers5
	What USB Can't Do7
	USB versus Ethernet10
	USB versus IEEE-139411
	Evolution of an Interface
	USB 1.0
	USB 1.1
	USB 2.0
	USB 3.0
	USB On-The-Go14
	Wireless USB

	Bus Components	15
	Topology	
	Bus Speed Considerations	
	Terminology	
	Division of Labor	
	The Host's Duties	
	The Device's Duties	
	Bus Speeds and Data Throughput	
	Developing a Device	
	Components	
	Tools for Developing	
	Steps in Developing a Project	
	USB 3.0 Frequently Asked Questions	
	Features	
	Compatibility	
	Power	
		. 50
_	Inside USB Transfers	
	Transfer Basics	
	The Essentials	
	Purposes for Communication	
	Managing Data on the Bus	
	Elements of a Transfer	
	Endpoints: the Source and Sink of Data	
	Transaction Types	
	Pipes: Connecting Endpoints to the Host	
	Types of Transfers	
	Stream and Message Pipes	
	USB 2.0 Transactions	
	Transaction Phases	
	Packet Sequences	
	Timing Constraints and Guarantees	
	Timing Constraints and Guarantees	. 1)

	Ensuring Successful Transfers	. 46
	Status and Control	
	Reporting the Status of Control Transfers	49
	Error Checking	50
	SuperSpeed Transactions	. 53
	Packet Types	
	Transferring Data	
	Link Management Packets	
3	A Transfer Type for Every Purpose	
	Control Transfers	. 61
	Availability	
	Structure	
	Data Size	
	Speed	
	Detecting and Handling Errors	
	Device Responsibilities	
	Bulk Transfers	
	Availability	
	Structure	
	Data Size	
	Speed	
	Detecting and Handling Errors	
	Device Responsibilities	
	Interrupt Transfers	
	Availability	
	Structure	
	Data Size	
	Speed	
	Detecting and Handling Errors	
	Device Responsibilities	
	Isochronous Transfers	
	Availability	80
	Structure	80
	Data Size	83
	Speed	84
	Detecting and Handling Errors	85
	Device Responsibilities	85

	More about Time-critical Transfers	. 86
	Bus Bandwidth	86
	Device Capabilities	86
	Host Capabilities	
	Host Latencies	
1	Enumeration	
4	Enumeration:	
	How the Host Learns about Devices	
	The Process	. 90
	Enumeration Steps	90
	Device Removal	96
	Tips for Successful Enumeration	96
	Descriptors	. 97
	Types	
	Device	
	Device_Qualifier	. 102
	Configuration	
	Other_Speed_Configuration	
	Interface Association	
	Interface	. 107
	Endpoint	. 110
	SuperSpeed Endpoint Companion	. 112
	String	. 113
	Binary Object Store and Device Capability	. 114
	Other Standard Descriptors	. 115
	Microsoft OS Descriptors	
	Updating Descriptors to USB 2.0	. 116
5	Control Transfers:	
9		
	Structured Requests for Critical Data	
	Elements of a Control Transfer	
	Setup Stage	
	Data Stage	
	Status Stage	
	Handling Errors	
	Device Firmware	122

	Standard Requests	124
	Get Status	126
	Clear Feature	127
	Set Feature	128
	Set Address	129
	Get Descriptor	130
	Set Descriptor	131
	Get Configuration	132
	Set Configuration	132
	Get Interface	133
	Set Interface	
	Synch Frame	
	Set SEL	
	Set Isochronous Delay	135
	Other Requests	136
	Class-Specific Requests	
	Vendor-Defined Requests	136
6	Chip Choices	
	Components of a USB Device	137
	Inside a USB 2.0 Controller	138
	Other Device Components	139
	Simplifying Device Development	142
	Device Requirements	
	Chip Documentation	
	Driver Choices	144
	Debugging Tools	144
	USB Microcontrollers	147
	Microchip PIC18F4550	
	Cypress EZ-USB	152
	ARM	156
	Controllers that Interface to CPUs	156
	ST-NXP Wireless ISP1582	
	PLX Technology NET2272	157
	FTDLUSBUART and USB FIFO	

/	Device Classes	
	Elements and Use	. 163
	Approved Specifications	164
	Elements of a Class Specification	164
	Defined Classes	. 165
	Audio	165
	Communications	169
	Content Security	176
	Device Firmware Upgrade	177
	Human Interface	180
	IrDA Bridge	183
	Mass Storage	184
	Personal Healthcare	
	Printer	
	Smart Card	
	Still Image Capture	
	Test and Measurement	
	Video	
	Implementing Non-standard Functions	
	Choosing a Driver	
	Using a Generic Driver	
	Converting from RS-232	
	Converting from the Parallel Port	
	PC-to-PC Communications	205
3	How the Host Communicates	
	Device Drivers	200
	The Layered Driver Model	
	User and Kernel Modes	
	Inside the Layers	
	Applications	
	Kernel-mode Client Drivers	
	Rus and Host Controller Drivers	

	Writing Drivers	217
	Kernel-mode Drivers	218
	User-mode Drivers	218
	Testing Tools	218
	Using GUIDs	219
	Device Setup GUIDs	
	Device Interface GUIDs	
9	Matching a Driver to a Device	
	Using the Device Manager	223
	Viewing Devices	
	Property Pages	
	Device Information in the Registry	
	The Hardware Key	
	The Class Key	
	The Driver Key	
	The Service Key	
	Inside INF Files	
	Structure and Syntax	
	Device-specific Values	
	Using Device Identification Strings	
	Finding a Match	
	When to Provide an INF File	
	Tools and Diagnostic Aids	
	Tips for Using INF Files	
	What the User Sees	
		241
10	Detecting Devices	
	A Brief Guide to Calling API Functions	243
	Managed and Unmanaged Code	244
	Managing Data	248
	Finding Your Device	252
	Obtaining the Device Interface GUID	
	Requesting a Pointer to a Device Information Set	
	Identifying a Device Interface	
	Requesting a Structure with the Device Path Name	
	Extracting the Device Path Name	
	Closing Communications	261

Obtaining a Handle	262
Requesting a Communications Handle	
Closing the Handle	
Detecting Attachment and Removal	
About Device Notifications	
Registering for Device Notifications	
Capturing Device Change Messages	
Reading Device Change Messages	
Retrieving the Device Path Name in the Message	271
Stopping Device Notifications	275
11 Human Interface Devices:	
Using Control and Interrupt Transfers	2
What is a HID?	
Hardware Requirements	
Firmware Requirements	
Descriptors	
The HID Interface	
HID Class Descriptor	
Report Descriptors	
HID-specific Requests	
Get Report	
Get Idle	
Get Protocol	
Set Report	
Set Idle	
Set Protocol	292
Transferring Data	293
Writing Firmware	
Tools	293
12 Human Interface Devices: Reports	
Report Structure	295
Using the HID Descriptor Tool	
Control and Data Item Values	
Item Format	

The Main Item Type	298
	ns298
	302
The Global Item Type	302
	303
	304
	306
	307
	Format
	ms311
The Local Item Type	311
	314
	314
12 Human Interfess Davie	oo, Hoot Application
3 Human Interface Device	
HID API Functions	
- ·	he HID
	317
	ta318
	ns319
Identifying a Device	
Č	duct ID
	pabilities323
	s
<u> </u>	Buttons and Values327
Sending and Receiving Reports	327
Sending an Output Report to th	ne Device
	he Device
	Device
Reading a Feature Report from a	a Device
Closing Communications	343

14 Using WinUSB for **Vendor-Defined Functions** Using Vendor-defined Control Transfers................ 368 15 All About Hubs

16	6 Managing Power	
	Power Options	. 389
	Voltages	390
	Using Bus Power	390
	Power Needs	
	Informing the Host	
	Battery Charging	
	Hub Power	. 396
	Power Sources.	
	Over-current Protection	
	Power Switching	
	Saving Power	. 399
	USB 2.0 Link Power Management	
	Suspend State	
	Sleep State	
	SuperSpeed Power Management	
	Power Management under Windows	407
17	Testing and Debugging	
	Tools	. 409
	Hardware Protocol Analyzers	
	Software Protocol Analyzers	
	Traffic Generators	
	Testing	
	Compliance	
	Windows Logo	
1 0	C	
10	Packets on the Bus	
	USB 2.0	
	Low Speed and Full Speed Bus States	
	High Speed Bus States	
	Data Encoding	
	Staying Synchronized	
	Timing Accuracy	
	Inter-Packet Delay	
	Test Modes	
	1 00t 1710deu	• • • • •

Su	ıperSpeed	436
	Data Scrambling	436
	Encoding	436
	Link Layer	
	Reset	438
19 T	he Electrical and Mechanical Interf	ace
	SB 2.0 Transceivers	
	Cable Segments	
	Low- and Full-Speed Transceivers	
	High-speed Transceivers	
	Signal Voltages	
US	SB 2.0 Cables	
	Conductors	450
	Connectors	451
	Detachable and Captive Cables	453
	Cable Length	
	Bus Length	
	Inter-Chip Connections	
US	SB 3.0	456
	Transmitters and Receivers	
	Cables	457
En	suring Signal Quality	
	Sources of Noise	
	Balanced Lines	
	Twisted Pairs	
	Shielding	
	Edge Rates	
	Isolated Interfaces	
Go	oing Wireless	
	Certified Wireless USB	
	Cypress WirelessUSB	
	Other Options	468

0 Hosts for Embedded Systems	
USB On-The-Go	472
Capabilities and Limits	472
The OTG Connector	472
The A-Device and B-Device	472
Requirements for an OTG Device	473
The OTG Descriptor	479
Feature Codes for HNP	480
Other Host Options	480
Requirements	481
Device Ports	
Controller Chips	482
Microcontrollers	483
Interface Chips	484
Index	. 487

Introduction

This book is for developers who are involved with designing or programming devices that use the Universal Serial Bus (USB) interface. If you are a hardware designer, if you write firmware that resides inside USB devices, or if you write applications that communicate with devices, this book is for you.

USB is versatile enough to serve a multitude of device functions. Familiar USB peripherals include mice, keyboards, drives, printers, speakers, and cameras. USB is also suitable for data-acquisition units, control systems, and other devices with specialized functions, including one-of-a-kind designs. The right choices of device hardware, software drivers and development tools and techniques can ease the path to designing devices that perform their functions without error or user aggravation. This book will guide you along the way.

What's Inside

The USB specifications are the ultimate authority on the USB interface, but by design they omit advice, example code, and other information that applies to specific device hardware, software, and other tools and products. This book

bridges the gap between the specifications and real-world designs and will save you time and trouble when developing devices and the software to access them.

These are some of the questions this book answers:

- How do USB devices communicate? I don't attempt to restate everything in the USB specifications. Instead, my focus is on what you need to know to develop devices that communicate efficiently and reliably.
- How can I decide if my device should use a USB interface? Find out whether
 your device should use USB or another interface. If the choice is USB,
 you'll learn how to decide which of USB's four speeds—including USB
 3.0's SuperSpeed—and which of USB's four transfer types are appropriate
 for your application.
- What controller chip should my device use? Every USB device contains an
 intelligent controller to manage USB communications. Dozens of silicon
 providers offer controller chips with different architectures and abilities.
 This book will help you select a controller based on your project's needs,
 your budget, and your preferences for chip architecture, programming languages, and tools.
- How can applications communicate with my devices? On a PC, an application
 accesses a USB device by communicating with a driver the operating system
 has assigned to the device. You'll learn if your device can use a class driver
 provided by the host's operating system. For devices that don't fit a supported class, you can explore options such as Microsoft's WinUSB driver,
 other generic drivers, and custom drivers. Example code shows how to
 detect and communicate with devices from Visual Basic and Visual C#
 applications.
- What firmware does my device need to support USB communications? Find out how to write firmware that enables your device to respond to USB requests and events and exchange data for any purpose.
- Does my device need its own power supply? The USB interface can provide
 power to devices, including charging current for battery-powered devices.
 Learn how to determine if a design can obtain all of its power from the bus,
 how to meet USB's requirements for conserving power, and how to charge
 battery-powered devices from the bus.
- How can I implement wireless communications? The Wireless USB specification defines a way for USB devices to communicate without wires. Other industry standards and vendor technologies offer additional options. Learn which technology is right for your device.

xviii

- How can my device access other USB devices? Find out how to develop a host for an embedded system or a USB On-The-Go device that can function as both a USB device and a limited-capability host that accesses other USB devices.
- How can I ensure reliable communications? All devices must respond to requests and other events on the USB port. The host computer must detect attached devices, locate appropriate drivers, and exchange data with the devices. This book provides tips, example code, and information about debugging software and hardware to help with these tasks.

To understand the material in the book, it's helpful to have some experience with digital logic, application programming for PCs and writing embedded code for peripherals. You don't have to know anything about USB.

What's New

The core of USB has remained much the same since the release of USB 1.0 in 1996. But the interface has expanded to support faster bus speeds, improved power management, more device classes, wireless communications, dual-role devices (device and host), and more. Plus, new and improved chips and development tools have eased the task of developing devices and software to access them.

This edition is revised and updated throughout. All new in the Fourth Edition is an introduction to USB 3.0 and the SuperSpeed bus. You'll also learn how to use Microsoft's WinUSB driver to access devices that perform vendor-specific functions. Topics with major updates include device-controller chips, technologies for wireless USB communications, protocols for conserving power, and USB device classes.

I provide example code for applications in both Visual Basic and Visual C#. For device firmware, I discuss using both microengineering Labs' PICBASIC PROTM and Microchip Technology's MPLAB® C compiler.

Updates and More

To find out more about developing USB devices and the software that communicates with them, I invite you to visit my USB Central page at *www.Lvr.com*. You'll find code examples and links to articles, products, tools, and other information related to developing USB devices.

Corrections and updates to the book will also be available at *www.Lvr.com*. If you find an error, please let me know.

Example Code

At the start of each code example, a sidehead indicates the programming language:

Sidehead	Programming Language	Provider
VB	Visual Basic .NET	Microsoft
VC#	Visual C# .NET	Microsoft
PBP	PICBASIC PRO	microEngineering Labs, Inc.
C18	MPLAB C compiler for PIC18 CPUs	Microchip Technology Inc.

The .NET code is compatible with the .NET Framework Version 2.0 and later. Example applications are available for free download from *www.Lvr.com*.

Abbreviations

This book uses the abbreviations and symbols below to express quantities and units:

Multipliers

Symbol	Description	Multiplier
p	pico	10 ⁻¹²
n	nano	10-9
μ	micro	10 ⁻⁶
m	milli	10-3
k	kilo	10^{3}
K	kilo	2 ¹⁰ (1024)
M	mega	10^6 or 2^{20} depending on context
G	giga	10^9 or 2^{30} depending on context

Electrical

Symbol	Description
A	ampere
F	farad
Ω	ohm
V	volt

Time

Symbol	Description
S	second
Hz	Hertz (cycles per second)

Distance

Symbol	Description
in.	inch
ft	foot
m	meter

Data

Symbol	Description
b	bit
В	byte
bps	bits per second

Number Systems

Binary values have a trailing subscript "b". Example: 10100011_b . An exception is when it's clear from the context that the values are binary. Example: *Set bits 6..5 to 01*.

Hexadecimal values have a trailing "h". Example: A3h.

All other values are decimal. Example: 163.

Acknowledgements

USB is much too big a topic to write about without help. I have many people to

My technical reviewers provided feedback that helped make the book as complete and accurate as possible. With that said, every error in this book is mine and mine alone. A big thanks to Paul E. Berg, Greg Burk, Robert Dunstan, John Garney, Bill Jacobus, Kosta Koeman, and Matt Leptich.

Others I want to thank for their support are Phyllis Brown of J. Gordon Electronic Design, Michael DeVault of DeVaSys Embedded Systems, Traci Donnell of the USB-IF, David Flowers of Microchip Technology, Inc., Laurent Guinnard of Ellisys, Tim Harvey of CWAV, Inc., Blake Henry of Bitwise Systems, John Hyde of *usb-by-example.com*, Rahman Ismail and Jeff Ravencraft of Intel Corporation, Dr. Bob Miller of Trace Systems, Inc., and Jeff Schmoyer of microEngineering Labs, Inc.

For their help with the previous editions this edition builds on, thanks to Joshua Buergel, Gary Crowell, Fred Dart, Wendy Dee, Lucio DiJasio, Keith Dingwall, Dave Dowler, Mike Fahrion, David Goll, John M. Goodman, Lane Hauck, David James, Christer Johansson, Geert Knapen, Alan Lowne, Jon Lueker, Brad Markisohn, Rich Moran, Bob Nathan, Walter Oney, Amar Rajan, Marc Reinig, Rawin Rojvanit, Glenn M. Roberts, Robert Severson, Craig R. Smith, and Dave Wright.

I hope you find the book useful and welcome your comments at jan@Lvr.com.

sample content of USB Complete: The Developer's Guide (Complete Guides series)

- The Meaning of It All: Thoughts of a Citizen-Scientist online
- click Crusader Castles in the Holy Land 1097-1192 (Fortress) book
- Nighttime Is My Time online
- download Radio Shangri-La: What I Learned in Bhutan, the Happiest Kingdom on Earth
- read Rousseau and the Social Contract (Routledge Philosophy Guidebooks)
- http://hasanetmekci.com/ebooks/Austro-Hungarian-Albatros-Aces-of-World-War-1--Aircraft-ofthe-Aces.pdf
- http://www.uverp.it/library/China-on-the-Mind.pdf
- http://test1.batsinbelfries.com/ebooks/Nighttime-Is-My-Time.pdf
- http://drmurphreesnewsletters.com/library/Big-Porn-Inc--Exposing-the-Harms-of-the-Global-Pornography-Industry.pdf
- http://test1.batsinbelfries.com/ebooks/The-Courage-of-the-Early-Morning--A-Biography-of-the-Great-Ace-of-World-War-I.pdf