

planetmath.org

Math for the people, by the people.

ordering of self-adjoints

Canonical name OrderingOfSelfadjoints
Date of creation 2013-03-22 17:30:37
Last modified on 2013-03-22 17:30:37
Owner asteroid (17536)

Last modified by asteroid (17536)

Numerical id 7

Author asteroid (17536)

Entry type Theorem Classification msc 46L05

Let \mathcal{A} be a http://planetmath.org/CAlgebra C^* -algebra. Let \mathcal{A}^+ denote the set of positive elements of \mathcal{A} and \mathcal{A}_{sa} denote the set of self-adjoint elements of \mathcal{A} .

Since \mathcal{A}^+ is a http://planetmath.org/Cone5proper convex cone (see this http://planetmath.org/PositiveElement3entry), we can define a partial order \leq on the set \mathcal{A}_{sa} , by setting

$$a \leq b$$
 if and only if $b - a \in \mathcal{A}^+$, i.e. $b - a$ is positive.

Theorem - The relation \leq is a partial order relation on \mathcal{A}_{sa} . Moreover, \leq turns \mathcal{A}_{sa} into an ordered topological vector space.

0.0.1 Properties:

- $a \le b \implies c^* a c \le c^* b c$ for every $c \in \mathcal{A}$.
- If a and b are invertible and $a \le b$, then $b^{-1} \le a^{-1}$.
- If \mathcal{A} has an identity element e, then $-\|a\|e \leq a \leq \|a\|e$ for every $a \in \mathcal{A}_{sa}$.
- $\bullet \ -b \le a \le b \ \Rightarrow \ \|a\| \le \|b\|.$

0.0.2 Remark:

The proof that \leq is partial order makes no use of the self-adjointness. In fact, \mathcal{A} itself is an ordered topological vector space under the relation \leq .

However, it turns out that this ordering relation provides its most usefulness when restricted to self-adjoint elements. For example, some of the above would not hold if we did not restrict to A_{sa} .