Семинары по байесовским методам

Евгений Соколов sokolov.evg@gmail.com

5 февраля 2016 г.

2 Нормальный дискриминантный анализ

Нормальный дискриминантный анализ — это частный случай байесовской классификации, когда предполагается, что функции правдоподобия классов $p(x \mid y)$ являются нормальными.

§2.1 Векторное дифференцирование

Выведем формулы векторного дифференцирования, которые пригодятся нам при работе с плотностями нормальных распределений.

Задача 2.1. Покажите, что

$$\nabla_X a^T X b = a b^T,$$

где $a \in \mathbb{R}^m$, $b \in \mathbb{R}^n$, $X \in \mathbb{R}^{m \times n}$.

Решение. Вспомним, что производная по матрице — это матрица частных производных по компонентам этой матрицы. Найдем их:

$$\frac{\partial}{\partial x_{ij}} a^T X b = \frac{\partial}{\partial x_{ij}} \sum_{k=1}^m \sum_{s=1}^n x_{ks} a_k b_s = a_i b_j.$$

Таким образом,

$$\nabla_X a^T X b = a b^T = (a_i b_j)_{i,j} = a b^T.$$

Задача 2.2. Покажите, что

$$\nabla_X \log \det X = X^{-T}$$
,

где $X \in \mathbb{R}^{n \times n}$ — положительно определенная матрица 1 .

¹ Если матрица не положительно определена, то ее определитель может быть отрицательным или равным нулю, и логарифм от него будет неопределен.

Решение. Запишем производную по x_{ij} :

$$\frac{\partial}{\partial x_{ij}} \log \det X = \frac{1}{\det X} \frac{\partial \det X}{\partial x_{ij}}.$$

Вспомним теорему Лапласа из линейной алгебры и несколько связанных с ней определений. Минором M_{ij} матрицы X называется определитель матрицы, полученной из X вычеркиванием i-й строки и j-го столбца 2 . Алгебраическим дополнением C_{ij} матрицы X называется величина $(-1)^{i+j}M_{ij}$. Теорема Лапласа гласит, что определитель матрицы X можно выразить через ее алгебраические дополнения:

$$\det X = \sum_{k=1}^{n} x_{kj} C_{kj}. \tag{2.1}$$

Вернемся к вычислению производной $\partial \det X/\partial x_{ij}$. Заметим, что в разложении (2.1) все алгебраические дополнения вычисляются по матрицам, в которых отсутствует элемент x_{ij} , и поэтому они могут быть вынесены за знак производной. Получаем, что

$$\frac{\partial \det X}{\partial x_{ij}} = \frac{\partial}{\partial x_{ij}} \sum_{k=1}^{n} x_{kj} C_{kj} = \sum_{k=1}^{n} C_{kj} \frac{\partial}{\partial x_{ij}} x_{kj} = C_{ij}.$$

Отсюда следует, что

$$\nabla_X \log \det X = \frac{1}{\det X} (C_{ij})_{i,j=1}^n = \frac{1}{\det X} (X^*)^T.$$

Матрица $X^* = (C_{ji})$, составленная из алгебраических дополнений к матрице X, называется союзной или npucoedunehhoй. Из линейной алгебры известно, что союзная матрица пропорциональна обратной:

$$X^{-1} = \frac{1}{\det X} X^*.$$

Учитывая это, получаем:

$$\nabla_X \log \det X = \frac{1}{\det X} (X^*)^T = \frac{1}{\det X} (X^{-1} \det X)^T = \frac{\det X}{\det X} X^{-T} = X^{-T}.$$

Задача 2.3. Покажите, что

$$\nabla_X \log \det X^{-1} = -X^{-T},$$

где $X \in \mathbb{R}^{n \times n}$ — положительно определенная матрица.

Решение.

$$\nabla_X \log \det X^{-1} = \nabla_X \log(\det X)^{-1} = -\nabla_X \log \det X = -X^{-T}.$$

² Строго говоря, минор - это определитель произвольной подматрицы, но здесь нам понадобятся миноры именно такого вида

§2.2 Нормальное распределение

Одномерное нормальное распределение. Случайная величина x имеет нормальное распределение, если ее плотность имеет вид

$$p(x \mid \mu, \sigma^2) = \mathcal{N}(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

Вычисляя соответствующие интегралы, можно показать, что параметры μ и σ^2 соответствуют матожиданию и дисперсии:

$$\mathbb{E}x = \mu;$$

$$\mathbb{D}x = \sigma^2.$$

Центральная предельная теорема гласит, что среднее арифметическое независимых одинаково распределенных случайных величин стремится к нормальному распределению:

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right)\xrightarrow{d}\mathcal{N}(x\mid 0,\sigma^{2}),$$

где μ и σ^2 — матожидание и дисперсия данных случайных величин.

Известно, что нормальное распределение имеет легкие хвосты — вероятность того, что нормальная случайная величина отклонится от своего среднего больше, чем на 3σ , не превышает 0.3%. Этот факт называют «правилом трех сигм».

Многомерное нормальное распределение. Случайный вектор $x = (x_1, \dots, x_d)$ имеет многомерное нормальное распределение, если его плотность имеет вид

$$p(x \mid \mu, \Sigma) = \mathcal{N}(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} (\det \Sigma)^{1/2}} \exp\left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right).$$

Матрица Σ должна быть симметричной и положительно определенной.

Вычисляя соответствующие интегралы, можно показать, что параметры μ и Σ соответствуют матожиданию и ковариационной матрице:

$$\mathbb{E}x = \mu;$$

$$\mathbb{E}(x - \mu)(x - \mu)^T = \Sigma;$$

$$\mathbb{D}x_i = \Sigma_{ii};$$

$$Cov(x_i, x_j) = \mathbb{E}(x_i - \mu_i)(x_j - \mu_j) = \Sigma_{ij}.$$

Можно показать, что все моменты многомерной случайной величины выражаются через среднее μ и ковариационную матрицу Σ .

Существует обобщение центральной предельной теоремы на многомерный случай, которое гласит, что среднее арифметическое независимых одинаково распределенных случайных векторов стремится к многомерному нормальному распределению:

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right)\stackrel{d}{\to}\mathcal{N}(x\mid 0,\Sigma),$$

где μ и Σ — матожидание и ковариационная матрица случайных величин.

Линии уровня плотности нормального распределения соответствуют линиям уровня квадратичной формы $(x-\mu)^T \Sigma^{-1} (x-\mu)$ и представляют собой эллипсы. Ранее мы подробно выводили вид линий уровня таких квадратичных форм, когда сталкивались с расстоянием Махалонобиса (см. семинары по метрическим методам).

§2.3 Нормальный дискриминантный анализ

Оптимальный байесовский классификатор при бинарной функции потерь имеет вид

$$a(x) = \operatorname*{arg\,max}_{y \in Y} p(y) p(x \mid y).$$

В нормальном дискриминантном анализе предполагается, что распределения объектов внутри классов $p(x \mid y)$ — нормальные:

$$p(x \mid y) = \mathcal{N}(x \mid \mu_y, \Sigma_y).$$

Параметрами алгоритма являются средние μ_y и ковариационные матрицы классов Σ_y , которые оцениваются по выборке методом максимального правдоподобия.

Задача 2.4. Выведите оценку максимального правдоподобия на вектор матожиданий μ_y , если к классу у относятся объекты выборки $X_y = \{x_1, \dots, x_m\}$.

Решение. Для краткости будем обозначать вектор матожиданий и ковариационную матрицу для класса y через μ и Σ . Нам нужно решить задачу

$$p(X_y \mid \mu, \Sigma) = \prod_{i=1}^{m} \mathcal{N}(x_i \mid \mu, \Sigma) \to \max_{\mu}.$$

Перейдем к логарифму:

$$\log p(X_y | \mu, \Sigma) = -\frac{m}{2} \log \det \Sigma - \frac{1}{2} \sum_{i=1}^{m} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu) + \text{const.}$$

Найдем производную по μ и приравняем ее к нулю:

$$\nabla_{\mu} \log p(X_y \mid \mu, \Sigma) = -\frac{1}{2} \nabla_{\mu} \left(\sum_{i=1}^{m} x_i^T \Sigma^{-1} x_i - 2 \sum_{i=1}^{m} x_i^T \Sigma^{-1} \mu + \sum_{i=1}^{m} \mu^T \Sigma^{-1} \mu \right) =$$

$$= -\frac{1}{2} \left(-2 \sum_{i=1}^{m} \underbrace{\Sigma^{-T}}_{=\Sigma^{-1}} x_i + \sum_{i=1}^{m} 2\Sigma^{-1} \mu \right) =$$

$$= \Sigma^{-1} \left(m\mu - \sum_{i=1}^{m} x_i \right) =$$

$$= 0.$$

Домножая слева на матрицу Σ , получаем

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x_i.$$

Задача 2.5. Выведите оценку максимального правдоподобия на ковариационную матрицу Σ , если к классу у относятся объекты выборки $X_y = \{x_1, \dots, x_m\}$.

Решение. Как и в предыдущей задачи, будем обозначать вектор матожиданий и ковариационную матрицу для класса y через μ и Σ .

Для удобства перейдем в правдоподобии к матрице точности $\Lambda = \Sigma^{-1}$:

$$\log p(X_y | \mu, \Lambda) = -\frac{m}{2} \log \det \Lambda^{-1} - \frac{1}{2} \sum_{i=1}^{m} (x_i - \mu)^T \Lambda(x_i - \mu) + \text{const.}$$

Найдем производную по Λ и приравняем ее к нулю:

$$\nabla_{\Lambda} \log p(X_y | \mu, \Lambda) = -\frac{m}{2} \nabla_{\Sigma} \log \det \Lambda^{-1} - \frac{1}{2} \sum_{i=1}^{m} \nabla_{\Lambda} (x_i - \mu)^T \Lambda(x_i - \mu) =$$

$$= \frac{m}{2} \underbrace{\Lambda^{-T}}_{=\Lambda^{-1}} - \frac{1}{2} \sum_{i=1}^{m} (x_i - \mu)(x_i - \mu)^T =$$

$$= 0$$

Отсюда

$$\Lambda = \frac{1}{m} \left(\sum_{i=1}^{m} (x_i - \mu)(x_i - \mu)^T \right)^{-1}.$$

Переходя обратно к ковариационной матрице Σ , получаем

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu)(x_i - \mu)^T.$$

2.3.1 Линейный дискриминант Фишера

Если предположить, что ковариационные матрицы классов равны, и оценивать их по всей выборке, то мы получим алгоритм, называемый *линейным дискриминан- том Фишера*. Можно показать, что он является линейным:

$$a(x) = \underset{y \in Y}{\operatorname{arg\,max}} (\langle w_y, x \rangle + w_{0y}),$$

причем $w_y = \Sigma^{-1} \mu_y$. В случае двух классов $(Y = \{-1, +1\})$ классификатор принимает вид

$$a(x) = \operatorname{sign}(\langle w, x \rangle + b) \quad w = \Sigma^{-1}(\mu_2 - \mu_1). \tag{2.2}$$

Разберем другую интерпретацию линейного дискриминанта Фишера. Будем классифицировать объекты следующим образом: выберем прямую с направляющим вектором w и спроецируем объект на нее; если значение проекции окажется больше порога -b, то отнесем объект к классу +1, иначе к классу -1. Таким образом, классификатор будет иметь вид $a(x) = \text{sign}(\langle w, x \rangle + b)$. Обучение классификатора сводится

к поиску проекционной прямой. Будем выбирать ее так, чтобы после проецирования разброс точек из одного класса был как можно меньше, а расстояние между центрами классов было как можно больше. Формализуем эти требования. Обозначим через m_k центр k-го класса, $k \in Y$:

$$m_k = \frac{1}{N_k} \sum_{i: y_i = k} x_i.$$

Пусть s_k^2 — внутриклассовая дисперсия класса k:

$$s_k^2 = \sum_{i:y_i=k} (w^T x_i - w^T m_k)^2.$$

В качестве меры «сгруппированности» точек внутри своих классов возьмем сумму внутриклассовых дисперсий $s_{-1}^2 + s_{+1}^2$. В качестве меры расстояния между центрами проекций классов («межклассовой дисперсии») возьмем квадрат расстояния между этими центрами: $(w^T m_{-1} - w^T m_{+1})^2$. Чтобы совместить минимизацию первой величины и максимизацию второй, возьмем в качестве функционала их отношение. Получим следующую оптимизационную задачу:

$$J(w) = \frac{(w^T m_{-1} - w^T m_{+1})^2}{s_{-1}^2 + s_{+1}^2} \to \max_{w}.$$

Распишем данный функционал:

$$J(w) = \frac{(w^{T}m_{-1} - w^{T}m_{+1})^{2}}{s_{-1}^{2} + s_{+1}^{2}} =$$

$$= \frac{(w^{T}(m_{-1} - m_{+1}))^{2}}{\sum_{i:y_{i}=-1} (w^{T}(x_{i} - m_{-1}))^{2} + \sum_{i:y_{i}=+1} (w^{T}(x_{i} - m_{+1}))^{2}} =$$

$$= \frac{w^{T}(m_{-1} - m_{+1})(m_{-1} - m_{+1})^{T}w}{\sum_{i:y_{i}=-1} w^{T}(x_{i} - m_{-1})(x_{i} - m_{-1})^{T}w + \sum_{i:y_{i}=+1} w^{T}(x_{i} - m_{+1})(x_{i} - m_{+1})^{T}w} =$$

$$= \frac{w^{T}(m_{-1} - m_{+1})(m_{-1} - m_{+1})^{T}w}{w^{T}\left(\sum_{i:y_{i}=-1} (x_{i} - m_{-1})(x_{i} - m_{-1})^{T} + \sum_{i:y_{i}=+1} (x_{i} - m_{+1})(x_{i} - m_{+1})^{T}\right)w}.$$

Введем обозначения для ковариационных матриц:

$$S_b = (m_{-1} - m_{+1})(m_{-1} - m_{+1})^T;$$

$$S_w = \sum_{i:y_i = -1} (x_i - m_{-1})(x_i - m_{-1})^T + \sum_{i:y_i = +1} (x_i - m_{+1})(x_i - m_{+1})^T.$$

Тогда функционал примет вид

$$J(w) = \frac{w^T S_b w}{w^T S_w w} \to \max_w.$$

Нам понадобится следующее правило векторного дифференцирования.

Задача 2.6. Покажите, что если $f: \mathbb{R}^d \to \mathbb{R}$ и $g: \mathbb{R}^d \to \mathbb{R}$ — вещественные функции, то

$$\nabla_x \frac{f(x)}{g(x)} = \frac{g(x)\nabla_x f(x) - f(x)\nabla_x g(x)}{g^2(x)}.$$

Воспользуемся полученным правилом, чтобы вычислить градиент функционала J(w) и приравнять его нулю:

$$\nabla_w J(w) = \frac{(S_b + S_b^T)w(w^T S_w w) - (S_w + S_w^T)w(w^T S_b w)}{(w^T S_w w)^2} =$$

$$= 2 \frac{S_b w(w^T S_w w) - S_w w(w^T S_b w)}{(w^T S_w w)^2} =$$

$$= 0.$$

Приходим к уравнению

$$S_b w(w^T S_w w) = S_w w(w^T S_b w). \tag{2.3}$$

Пусть минимум функционала J(w) достигается на векторе w_* . Тогда этот вектор удовлетворяет уравнению (2.3). Поскольку классификатор (2.2) зависит только от направления вектора w и не зависит от его длины, мы можем проигнорировать скалярные множители. Получаем:

$$S_w w_* = \underbrace{\frac{w_*^T S_w w_*}{w_*^T S_b w_*}}_{\in \mathbb{R}} S_b w_* \propto \underbrace{\frac{w_*^T S_b w_*}{e^{\mathbb{R}}}}_{\in \mathbb{R}} S_b w_* \propto \underbrace{(m_{-1} - m_{+1})}_{\in \mathbb{R}} \underbrace{(m_{-1} - m_{+1})}_{\in \mathbb{R}} \times \underbrace{(m_{-1} - m_{+1})}_{\in \mathbb{R}}.$$

Значит,

$$w_* = S_w^{-1}(m_{-1} - m_{+1}).$$

Мы пришли к такому же вектору весов w, который может быть получен при нормальном дискриминантном анализе в предположении о равенстве ковариационных матриц классов.