B-Spline Blossoms

CS 418
Interactive Computer Graphics
John C. Hart

B-Spline Rules for Setting Up the Board

B-Spline Rules for Setting Up the Board

Create a knot vector
 (with two extra values at each end)

B-Spline Rules for Setting Up the Board

- Create a knot vector
 (with two extra values at each end)
- 2. Label each control vertex with triples of knots

B-Spline Rules for Setting Up the Board

- Create a knot vector
 (with two extra values at each end)
- 2. Label each control vertex with triples of knots

B-Spline Rules for Setting Up the Board

- Create a knot vector
 (with two extra values at each end)
- 2. Label each control vertex with triples of knots

B-Spline Rules for Setting Up the Board

- Create a knot vector
 (with two extra values at each end)
- 2. Label each control vertex with triples of knots

B-Spline Rules for Setting Up the Board

- Create a knot vector
 (with two extra values at each end)
- 2. Label each control vertex with triples of knots

B-Spline Rules for Setting Up the Board

- Create a knot vector
 (with two extra values at each end)
- 2. Label each control vertex with triples of knots

B-Spline Rules for Setting Up the Board

- Create a knot vector
 (with two extra values at each end)
- 2. Label each control vertex with triples of knots

B-Spline Rules for Setting Up the Board

- Create a knot vector
 (with two extra values at each end)
- 2. Label each control vertex with triples of knots

B-Spline Rules for Winning the Game: Convert a B-Spline to a Bezier Curve

- Bohm Algorithm
- Trick: Think of each segment as a Bezier curve

B-Spline Rules for Winning the Game: Convert a B-Spline to a Bezier Curve

- Bohm Algorithm
- Trick: Think of each segment as a Bezier curve

B-Spline Rules for Winning the Game: Convert a B-Spline to a Bezier Curve

- Bohm Algorithm
- Trick: Think of each segment as a Bezier curve
- Where should the other two control points go for the [2,3] segment?

B-Spline Rules for Winning the Game:

Convert a B-Spline to a Bezier Curve

- Bohm Algorithm
- Trick: Think of each segment as a Bezier curve
- Where should the other two control points go for the [2,3] segment?
- Need to find:

 $\mathbf{p}(2,2,3)$

 $\mathbf{p}(2,3,3)$

B-Spline Rules for Winning the Game:

Convert a B-Spline to a Bezier Curve

- Bohm Algorithm
- Trick: Think of each segment as a Bezier curve
- Where should the other two control points go for the [2,3] segment?
- Need to find:

 $\mathbf{p}(2,2,3)$

 $\mathbf{p}(2,3,3)$

B-Spline Rules for Winning the Game:

Convert a B-Spline to a Bezier Curve

- Bohm Algorithm
- Trick: Think of each segment as a Bezier curve
- Where should the other two control points go for the [2,3] segment?
- Need to find:

$$\mathbf{p}(2,2,3) = 2/3 \ \mathbf{p}(1,2,3) + 1/3 \ \mathbf{p}(4,2,3)$$

 $\mathbf{p}(2,3,3)$

B-Spline Rules for Winning the Game:

Convert a B-Spline to a Bezier Curve

- Bohm Algorithm
- Trick: Think of each segment as a Bezier curve
- Where should the other two control points go for the [2,3] segment?
- Need to find:

$$\mathbf{p}(2,2,3) = 2/3 \ \mathbf{p}(1,2,3) + 1/3 \ \mathbf{p}(4,2,3)$$

 $\mathbf{p}(2,3,3) = 1/3 \ \mathbf{p}(1,2,3) + 2/3 \ \mathbf{p}(4,2,3)$

• Where are the endpoints located?

- Where are the endpoints located?
- Need to find:

$$\mathbf{p}(2,2,2) =$$

$$p(3,3,3) =$$

- Where are the endpoints located?
- Need to find:

$$\mathbf{p}(2,1,2) =$$

$$\mathbf{p}(3,4,3) =$$

$$\mathbf{p}(2,2,2) =$$

$$\mathbf{p}(3,3,3) =$$

- Where are the endpoints located?
- Need to find:

$$\mathbf{p}(2,1,2) =$$

$$\mathbf{p}(3,4,3) =$$

$$\mathbf{p}(2,2,2) =$$

$$\mathbf{p}(3,3,3) =$$

- Where are the endpoints located?
- Need to find:

$$\mathbf{p}(2,1,2) = 1/3 \ \mathbf{p}(0,1,2) + 2/3 \ \mathbf{p}(3,1,2)$$
 $\mathbf{p}(3,4,3) =$
 $\mathbf{p}(2,2,2) =$
 $\mathbf{p}(3,3,3) =$

- Where are the endpoints located?
- Need to find:

$$\mathbf{p}(2,1,2) = 1/3 \ \mathbf{p}(0,1,2) + 2/3 \ \mathbf{p}(3,1,2)$$
 $\mathbf{p}(3,4,3) =$
 $\mathbf{p}(2,2,2) =$
 $\mathbf{p}(3,3,3) =$

- Where are the endpoints located?
- Need to find:

$$\mathbf{p}(2,1,2) = 1/3 \ \mathbf{p}(0,1,2) + 2/3 \ \mathbf{p}(3,1,2)$$
 $\mathbf{p}(3,4,3) = 2/3 \ \mathbf{p}(3,4,2) + 1/3 \ \mathbf{p}(3,4,5)$
 $\mathbf{p}(2,2,2) = \mathbf{p}(3,3,3) =$

- Where are the endpoints located?
- Need to find:

$$\mathbf{p}(2,1,2) = 1/3 \ \mathbf{p}(0,1,2) + 2/3 \ \mathbf{p}(3,1,2)$$
 $\mathbf{p}(3,4,3) = 2/3 \ \mathbf{p}(3,4,2) + 1/3 \ \mathbf{p}(3,4,5)$
 $\mathbf{p}(2,2,2) = \mathbf{p}(3,3,3) =$

- Where are the endpoints located?
- Need to find:

$$\mathbf{p}(2,1,2) = 1/3 \ \mathbf{p}(0,1,2) + 2/3 \ \mathbf{p}(3,1,2)$$

 $\mathbf{p}(3,4,3) = 2/3 \ \mathbf{p}(3,4,2) + 1/3 \ \mathbf{p}(3,4,5)$
 $\mathbf{p}(2,2,2) = 1/2 \ \mathbf{p}(2,1,2) + 1/2 \ \mathbf{p}(2,3,2)$
 $\mathbf{p}(3,3,3) =$

- Where are the endpoints located?
- Need to find:

$$\mathbf{p}(2,1,2) = 1/3 \ \mathbf{p}(0,1,2) + 2/3 \ \mathbf{p}(3,1,2)$$

$$\mathbf{p}(3,4,3) = 2/3 \ \mathbf{p}(3,4,2) + 1/3 \ \mathbf{p}(3,4,5)$$

$$\mathbf{p}(2,2,2) = 1/2 \mathbf{p}(2,1,2) + 1/2 \mathbf{p}(2,3,2)$$

$$\mathbf{p}(3,3,3) = 1/2 \mathbf{p}(3,2,3) + 1/2 \mathbf{p}(3,4,3)$$

- Where are the endpoints located?
- Need to find:

$$\mathbf{p}(2,1,2) = 1/3 \ \mathbf{p}(0,1,2) + 2/3 \ \mathbf{p}(3,1,2)$$

$$\mathbf{p}(3,4,3) = 2/3 \ \mathbf{p}(3,4,2) + 1/3 \ \mathbf{p}(3,4,5)$$

$$\mathbf{p}(2,2,2) = 1/2 \mathbf{p}(2,1,2) + 1/2 \mathbf{p}(2,3,2)$$

$$\mathbf{p}(3,3,3) = 1/2 \mathbf{p}(3,2,3) + 1/2 \mathbf{p}(3,4,3)$$

