Analiza 1

Vid Drobnič

Kazalo

1	Šte	vila	2
	1.1	Naravna števila	2
	1.2	Cela števila	3
	1.3	Racionalna števila	3
	1.4	Dedekindov aksiom in Realna števila	10
	1.5	Posledice Dedekindovega aksioma	17
	1.6	Intervali	18
	1.7	Decimalni ulomki	19
	1.8	Absolutna vrednost	22
	1.9	Kompleksna števila	23
		1.9.1 Lastnosti	26
		1.9.2 Geometrijska interpretacija	27
		1.9.3 Polarni zapis	28
2	O n	nnožicah in preslikavah	30
3	Šte	vilska zaporedja	32
	3.1	Monotona zaporedja	38
	3.2	Podzaporedja	40
	3.3	Računanje z zaporedji	41
	3.4	Cauchyjev pogoj	46
	3.5	Potence z realnimi eksponenti	51

1 Števila

1.1 Naravna števila

- Z njimi štejemo: 1, 2, 3
- $\bullet\,$ Množico naravnih števil označimo z $\mathbb N$

$$\mathbb{N} = \{1, 2, 3, ...\}$$

• Vsako naravno število n ima naslednika n^+ $(n^+ = n + 1)$

Peanovi aksiomi:

 $\mathbb N$ je množica skupaj s pravilom, ki vsakemu naravnemu številu ndodeli njegovega naslednika $n^+\in\mathbb N$ in velja:

- 1. za vse $m, n \in \mathbb{N}$ če $m^+ = n^+$, potem m = n
- 2. obstaja $1 \in \mathbb{N}$, ki ni naslednik nobenega naravnega števila
- 3. Če je $A\subset \mathbb{N}$ in če je $1\in A^{-1}$ in če velja: če $n\in A$, potem $n^+\in A^{-2}$, potem $A=\mathbb{N}$

Aksiom (3) se imenuje aksiom popolne indukcije.

- Naravna števila lahko **seštevamo**, **množimo**.
- N so urejena po velikosti $1, 2, 3, 4, 5, \dots$

$$\{3,5,6,10\} \subset \mathbb{N}$$

$$\{3, 5, 7, 16, 23, \ldots\} \subset \mathbb{N}$$

- Vsaka neprazna podmnožica N ima najmanjši element.
- \bullet V splošnem ne velja³, da ima vsaka neprazna podmnožica $\mathbb N$ največji element.

¹indukcijska baza

²indukcijski korak

³ne velja za vse (množice)

1.2 Cela števila

Označimo jih z Z

$$\mathbb{Z} = \{0, 1, -1, 2, -2, ...\}$$

- ullet Seštevanje in množenje se iz $\mathbb N$ razširita na $\mathbb Z$.
- Poleg tega je definiramo **odštevanje**.
- Množico celih števil uredimo na običajen način.
- Ni res, da bi imela vsaka neprazna podmnožica Z najmanjši element.
- V splošnem deljenje ni definirano $\left(\frac{3}{2}\right)$

1.3 Racionalna števila

Racionalna števila so kvocienti celih števil. Bolj natančno: kvoceinti celih in naravnih števil.

Dva ulomka $\frac{m}{n},\frac{k}{l}$ predstavljata isto racionalno število če: ml=nklahko naredimo:

$$\mathbb{Z} \times \mathbb{N} = \{(m, n), m \in \mathbb{Z}, n \in \mathbb{N}\}\$$

Množico $\mathbb{Z} \times \mathbb{N}$ razdelimo na razrede: urejena para (m, n) in (k, l) sta v istem razredu, če velja ml = nk.

Racionalno število je razred urejenih parov in ga označimo z $\frac{m}{n}.$

$$\mathbb{Q} = \{ \frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N} \}$$

Seštevanje v \mathbb{Q} :

$$\frac{m}{n} + \frac{k}{l} = \frac{ml + kn}{nl}, m, k \in \mathbb{Z}, n, l \in \mathbb{N}$$

Seštevanje ulomkov je dobro definirano:

če je:
$$\frac{m'}{n'} = \frac{m}{n}, \frac{k'}{l'} = \frac{k}{l}$$

potem je: $\frac{m'}{n'} + \frac{k'}{l'} = \frac{m}{n} + \frac{k}{l}$

vemo: m'n = mn' in k'l = kl'

Dokaz:

$$\frac{m'}{n'} + \frac{k'}{l'} = ^{(def)} \frac{m'l' + n'k'}{n'l'} \cdot \frac{mk}{mk} =$$

$$= \frac{m'l'mk + n'k'mk}{n'ml'k} =$$

$$= \frac{m'mk'l + m'nk'k}{m'nk'l} = \frac{ml + nk}{nl} = ^{(def)} = \frac{m}{n} + \frac{k}{l}$$

Množenje v Q:

$$\frac{m}{n} \cdot \frac{k}{l} = \frac{mk}{nl}, m, k \in \mathbb{Z}, n, l, \in, \mathbb{N}$$

Množenje je dobro definirano (izpeljava doma).

Deljenje v \mathbb{Q} :

$$\frac{m}{n}: \frac{k}{l} = \frac{ml}{nk}, m, k \in \mathbb{Z}, n, l \in \mathbb{N}, k \neq 0$$

Lastnosti seštevanja

Naj bo A (številska) množica z operacijama + in \cdot .

Osnovne lastnosti računskih operacij bomo imenovali **aksiomi**. Druge lastnosti izpeljemo iz aksiomov.

A1 asociativnost seštevanja

Za vse
$$a, b, c \in A$$
 velja $(a + b) + c = a + (b + c)$

A2 komutativnost seštevanja

Za vse $a,b\in A$ velja da a+b=b+a

A3 obstoj enote za seštevanje

Obstaja za element $0 \in A$ za katerega velja da: 0 + a = a za vse $a \in A$

A4 obstoj nasprotnega števila (elementa)

Za vsak $a \in A$ obstaja nasprotno število $-a \in A$ za katerega velja: (-a) + a = 0

Opomba: Množica Aza operacijo +, ki ustreza aksiomom od A1 do A4 je **Abelova grupa** za +.

Trditev: Naj (A, +) ustreza aksiomom od A1 do A4.

- (1) $\forall a \in A \text{ ima eno samo nasproton število}$
- (2) **Pravilo krajšanja:** za vse $a, x, y \in A$ velja: $a + x = a + y \Rightarrow x = y$
- (3) -0 = 0

Dokaz:

(1) izberemo poljubno število $a \in A$. Dokazujemo da ima a natanko 1 nasprotni element.

Po A4 nasprotno število obstaja. Denimo, da sta $b,c\in A$ nasprotni števili od a.

$$b + a = 0 \text{ in } c + a = 0$$

$$(a + b) + c \stackrel{\text{A2}}{=} (b + a) + c \stackrel{\text{predp.}}{=} 0 + c \stackrel{\text{A2}}{=} c$$

$$(a + b) + c \stackrel{\text{A2}}{=} (b + a) + c \stackrel{\text{A1}}{=} b + (a + c) \stackrel{\text{A2}}{=} b + (c + a) \stackrel{\text{predp.}}{=} b + 0 \stackrel{\text{A2}}{=} 0 + b \stackrel{\text{A3}}{=} b$$

$$c = b$$

(2)

$$a + x = a + y \stackrel{A4}{\Rightarrow}$$

$$\Rightarrow (-a) + (a + x) = (-a) + (a + y) \stackrel{A1}{\Rightarrow}$$

$$\Rightarrow ((-a) + a) + x = ((-a) + a) + y \stackrel{A4}{\Rightarrow}$$

$$\Rightarrow 0 + x = 0 + y \stackrel{A3}{\Rightarrow}$$

$$\Rightarrow x = y$$

(3)
$$-0 = 0$$

$$0 \stackrel{\text{A4}}{=} (-0) + 0 \stackrel{\text{A2}}{=} 0 + (-0) \stackrel{\text{A3}}{=} -0$$

 $Odštevanje\ v\ A$: razlika števil a in b je vsota a in nasprotnega elementa od b.

$$a - b := a + (-b)$$

b-a je rešitev enačbe a+x=b

Pozor: odštevanje ne ustreza aksiomom od A1 do A4.

Lastnosti množenja

A5 asociativnost množenja

Za vse $a, b, c \in A$ velja: (ab)c = a(bc)

A6 komutativnost množenja

Za vse $a, b, c \in A$ velja: ab = ba

A7 obstoj enote za množenje

 $\exists 1 \in A : 1 \cdot a = a, \text{ za } \forall a \in A$

A8 obstoj obratnega števila (elementa)

Vsak $a \in A, a \neq 0$, ima obratni element, tj.: $a^{-1} \in A : a^{-1} \cdot a = 1$

Množici A z operacijo +, ki ustreza A1-A4, rečemo **grupa za seštevanje** (Abelova grupa).

Množica $A \setminus \{0\}$ z operacijo \cdot , ki ustreza A5-A8 je **grupa za množenje.**

Podobno kot za seštevanje lahko izpeljemo:

Trditev: veljajo:

- (1) Vsak $a \in A \setminus \{0\}$ ima eno samo obratno število
- (2) (pravilo krajšanja za množenje)

Za vsak $a, x, y \in A$ velja: $ax = ay \Rightarrow x = y$

 $(3) 1^{-1} = 1$

A9 Števili 0 in 1 sta različni $0 \neq 1$

A10 Distributivnost

Za vsake $a, b, c \in A$ velja:

$$(a+b)c = ac + bc$$

Def: Množico A z operacijama + in \cdot , ki ustreza aksiomom A1-A10, imenujemo **komutativen**⁴ **obseg** ali **polje**.

Primer: $(\mathbb{Q}, +, \cdot)$ so polje.

V A vpeljemo urejenost z dvema aksiomoma:

A11: Za vsak $a \in A \setminus \{0\}$ velja, da je natanko eno od števil a, -a pozitivno. Število 0 ni niti pozitivno niti negativno. (Število a je negativno, če je število -a pozitivno).

A12: Za vsaka $a, b \in A$ velja: če sta a in b pozitivni števili, potem sta tudi a + b in $a \cdot b$ pozitivni števili.

Def: Če ima obseg $(A, +, \cdot)$ urejenost, ki izpolnjuje A11 in A12, A imenujemo **urejen obseg** (urejeno polje).

Primer: $(\mathbb{Q}, +, \cdot)$ z običajno urejenostjo je urejen obseg.

 $\frac{m}{n}$ je pozitiven, če $m \cdot n > 0$

Def: Naj bo A urejen obseg. Za poljubna $a, b \in A$ definiramo:

Pišemo a>b natanko tedaj, kadar je a-b pozitivno število.

V tem primeru pišemo tudi b < a

V posebnem primeru pišemo a > 0, kadar je a pozitivno število.

Def: Naj bo A urejen obseg. Za poljubna $a, b \in A$

 $a \leq b$ natanko takrat, kadar a < b ali a = b

Trditev: V urejenem obsegu A velja:

(1) Za poljubni števili $a, b \in A$ velja natanko ena od možnosti:

$$a < b, a = b, a > b$$

Sledi iz A11 uporabljen za a - b.

⁴komutativnost se nanaša na komutativnost množenja

- (2) Za poljubne $a, b, c \in A$ velja: če je $a > b \land b > c$, potem a > c (tranzitivnost)
- (3) Za poljubne $a, b, c \in A$ velja: če je a > b, potem a + c > b + c
- (4) Za poljubne $a, b, c, \in A, c > 0$: če je a > b, potem je ac > bc
- (5) Za poljubne $a,b,c,d,\in A$: če je a>b>0 in c>d>0, potem je ac>bd

Dokaz:

(2) $a > b \land b > c \Rightarrow a > c$ Po definiciji: a - b > 0 in b - c > 0Zato po A12:

$$(a-b) + (b-c) > 0$$

 $a + (-b) + b + (-c) > 0$
 $a + 0 + (-c) > 0$
 $a - c > 0$

zato a > c

(3) denimo, da je a > bdokazujemo, da je a + b > b + c, tj: (a + c) - (b + c) > 0

$$(a+c) - (b+c) = a + c + (-(b+c)) =$$

$$a + c + (-b) + (-c) =$$

$$(a + (-b)) + (c + (-c)) =$$

$$a + (-b) = a - b$$

Dokaz da -(b+c) = (-b) + (-c):

-(b+c) je nasprotni element od b+c, kar pomeni da je njuna vsota enaka 0. Če velja -(b+c)=(-b)+(-c), mora biti tudi b+c+(-b)+(-c)=0:

$$b + c + (-b) + (-c) \stackrel{A2,A1}{=} (b + (-b)) + (c + (-c)) \stackrel{A4}{=} 0 + 0 \stackrel{A3}{=} 0$$

Če a > b je a - b > 0, zato je (a+c) - (b+c) > 0, kar pomni a+c > b+c.

(5) a > b > 0 in c > d > 0

Dokazujemo ac > bd:

$$a > b \stackrel{4}{\Rightarrow} ac > bc \ (c > 0)$$

$$c > d \stackrel{4}{\Rightarrow} bc > bd \ (b > 0)$$

Z upoštevanjem tranzitivnosti (2) dobimo: ac > bd

Racionalna števila predstavimo na številski premici.

Racionalna števila so na številski premici **povsod gosta** tj: na vsakem nepraznem odprtem intervalu leži racionalno število.

Racionalna števila ne pokrijejo številske premice

 $\mathit{Trditev}:$ rešitev enačbe $x^2=2, x>0$ ni racionalno število. $(\sqrt{2}\notin\mathbb{Q})$

Dokaz: Dokazujemo da x ni ulomek.

Dokazujemo s protislovjem.

- \bullet privzamemo, da tisto kar dokazujemo ni res. (predpostavimo, da x je ulomek)
- sklepamo
- skepi nas privedejo v protislovje s predpostavko

$$x = \frac{m}{n}, m, n \in \mathbb{N}$$

Če je x ulomek, ga lahko zapišemo kot okrajšan ulomek, zato sta m in n tuji

si števili.

$$x^{2} = 2 \Rightarrow \left(\frac{m}{n}\right)^{2} = 2$$

$$\frac{m^{2}}{n^{2}} = 2$$

$$m^{2} = 2n^{2}$$

$$2|m^{2} \Rightarrow 2|m$$

$$\exists l \in \mathbb{N} : m = 2l$$

$$4l^{2} = 2n^{2}$$

$$2l^{2} = n^{2}$$

$$2|n^{2} \Rightarrow 2|n$$

$$\rightarrow \leftarrow$$

Dokaz da $2|m^2 \Rightarrow 2|m$: Če je m liho, potem $k \in \mathbb{N}_0$

$$m = 2k + +1$$

$$m^2 = 4k^2 + 4k + 1$$

$$m^2 \text{ je lih}$$

1.4 Dedekindov aksiom in Realna števila

Radi bi skonstruirali številsko množico, ki bo vsaj urejen obseg in, ki zapolni številsko premico.

Dedekindov pristop

Def: Rez je podmonožica $A \subset \mathbb{Q}$, za katero velja:

- (i) $A \neq \emptyset, A \neq \mathbb{Q}$
- (ii) Če je $p \in A$, potem za vsak $q \in \mathbb{Q}$ in q < p, velja $q \in A$
- (iii) za vsak $p \in A$ obstaja $q \in A, q > p$ (A nima največjega elementa)

Def: Množica realnih števil je množica vseh rezov, označimo jo s \mathbb{R} Primer: 16 ustreza rez: $\{p \in \mathbb{Q}; p < 16\} = B$

 $\mathit{Trditev} \colon \mathsf{Preslikava} \ \mathbb{Q} \to \mathbb{R}$ in je definirana s predpisom:

$$q \mapsto \{ p \in \mathbb{Q}; p < q \} = p^*$$

vloži množico racionalnih števil v množico realnih števil.

Vpeljimo računski operaciji v \mathbb{R} .

Def: Naj bosta A in B reza. Vsota rezov A in B je

$$A + B = \{a + b, a \in A, b \in B\}$$

Opomba: Želimo si, da velja $(p+q)^* = p^* + q^*$

Trditev: Če sta A in B reza, potem je tudi A + B rez.

Dokaz(trditev): Denimo da sta A in B reza.

Dokazujemo da je A + B rez:

(i) $A + B \neq \emptyset$

Ker sta A in B reza, po lastnosti (i) obstaja $a \in A$ in $b \in B$. Potem je $a+b \in A+B$. Sledi $A+B \neq \varnothing$

$$A + B \neq \mathbb{Q}$$

Obstaja $c \in \mathbb{Q}, c \notin A$ in obstaja $d \in \mathbb{Q}, d \notin B$.

$$c+d \notin A+B$$

Denimo, da je $c + d \in A + B$.

Potem velja, da je c+d=a+b za $a\in A, b\in B.$

Iz (ii) sledi: c > a in $d > b \Rightarrow a + b < c + d \rightarrow \leftarrow$

(ii) Denimo: $p \in A+B$, dokazujemo da za $q \in \mathbb{Q}, q < p$ velja $\underline{q} \in \underline{A}+\underline{B}$ Obstajata $a \in A$ in $b \in B$, da p=a+b

$$q = a + q - a$$

Če je q - a < b, potem $q - a \in B$

$$q < a + b$$

(iii) A + B nima največjega elementa.

izberimo
$$p \in A + B$$

iščemo $q \in A + B, q > p$

Obstajata
$$a \in A, b \in B$$
, da je $p = a_b$
Obstaja $a' \in A, a' > a$

$$q := a' + b \in A + B$$
$$q > p$$

Ni težko preveriti, da za $(\mathbb{R}, +)$ veljajo A1-A4.

Asociativnost in komutatiovnost se dokaže z operacijami na elementih reza. 0^* je enota za seštevanje.

Nasprotni rez od A:

$$-A = \{r \in \mathbb{Q}, \text{ obstaja } r' \in \mathbb{Q}, r' > r \text{ in } r' + p < 0 \text{ za vse } p \in A\}$$

(i)
$$-A \neq \emptyset$$

 $-A \neq \mathbb{Q}$

$$q + a < 0$$
 za vse $q \in \mathbb{Q}$
 $q = -a$

(ii)
$$q \in -A : r < q$$

 $q + a < 0$ za vse $a \in A$
 $r + a < q + a$ za vse $a \in A$ po tranzitivnosti: $r + a < 0$

(iii) Izberemo poljuben $r \in A$. Iščemo $q \in A, q > r$.

$$q:=\frac{r+r'}{2}(r'>r,r'\in\mathbb{Q}:r'+p<0\text{ za vse }p\in\mathbb{Q})$$

$$q\in\mathbb{Q},r'>q$$

Def: Pravimo da je A pozitiven, če je $0^* \subset A, A \neq 0^*$. Denimo da sta A in B pozitivna reza:

$$A \cdot B = \{ q \in \mathbb{Q}, \text{ obstajata } a \in A, a > 0 \text{ in } b \in B, b > 0, \text{ da je } q < ab \}$$

Želimo $(pq)^* = p^* \cdot q^*, p, q \in \mathbb{Q}$

Def: Naj bosta A in B poljubna reza.

$$A \cdot B = \begin{cases} A \cdot B & A > 0 \land B > 0 \\ -A \cdot (-B) & A > 0 \land B < 0 \\ -(-A) \cdot B & A < 0 \land B > 0 \\ (-A) \cdot (-B) & A < 0 \land B < 0 \end{cases}$$

Če je vsaj eden od rezov enak 0^* , potem $A \cdot B = 0^*$.

Ni težko preveriti, da množenje rezov izpolnjuje A5-A8 in A9, A10.

Enota za množenje je 1*.

Urejenost izplonjuje A11 in A12.

 $(\mathbb{R}, +, \cdot)$ je **urejen obseg** in vsebuje \mathbb{Q} kot **urejen podobseg**.

Cilj: Obseg \mathbb{R} izpolnjuje še dodaten aksion A13 (**Dedekindov aksiom**), ki pove, da \mathbb{R} zapolnjuje številsko premico.

Aksioma A13 obseg \mathbb{Q} ne izpolnjuje.

Def: Naj bo B urejen obseg in $A \subset B$. Pravimo, da je A navzgor omejena, če obstaja $M \in B$, da velja:

$$\forall a \in A : a \leq M$$

 $\forall M$ s to lastnostjo pravimo zgornja meja množice A. Če je $A \subset \mathbb{Q}$ (ali \mathbb{R}) in je množica navzgor omejena, potem ima A neskončno zgornjih mej.

Def: Naj bo A navzgor omejena množica. Če obstaja najmanjša od vseh zgornjih mej množice A v B, jo imenuje natančna zgornja meja množice A.

Torej je $\alpha \in B$ natančna zgornja meja množice A, če velja:

- (i) α je zgornja meja $\forall a \in A : a < \alpha$
- (ii) Če $b \in B, b < \alpha,$ potembni zgornja meja množice A,t.j.: $\exists a \in A: a > b$

Natančno zgornjo mejo množice A imenujemo tudi **supremum** množice A in jo označimo z sup A.

Def: Če obstaja največji element množice A, ga imenujemo **maksimum** množice A in označimo z max A.

Če ima A maksimum, potem velja:

$$\max A \in A \land \forall a \in A : a \le \max A$$

Če ima A maksimum, potem max $A = \sup A$. (Za a v (2) lastnosti definicije supremuma vzamemo max A)

Dokaz:

- (1) $\max A$ je zgornja meja A (po definiciji maksimuma).
- (2) če $b < \max A$, potem b ni zgornja meja (ker je $\max A \in A$, b pa je manjši, velja da b ni zgornja meja od A, ker obstaja nek element is A, ki je večji od b).

Primeri:

1.
$$A = \{x \in \mathbb{Q}, x < 0\} \subset \mathbb{Q}$$

4 je zgornja meja množice A,ker $x \in A, x < 0, 0 < 4 \Rightarrow x < 4$

 $\Rightarrow A$ je navzgor omejena.

0je natančna zgornja meja množice ${\cal A}$

- (a) $x \in A, x < 0$
- (b) Izberemo poljuben $b \in \mathbb{Q}, b < 0$ in dokazujemo, da b ni zgornja meja.

$$b<\frac{b}{2}<0;\frac{b}{2}\in A,\frac{b}{2}>b$$

Množica A nima maksimuma: $0 \notin A$.

$$2. \ C = \{x \in \mathbb{Q}, x^2 < 2\} \subset \mathbb{Q}$$

C je navzgor omejena z 2.

$$x \in C: x^2 < 2 \land 2 < 4 \Rightarrow x^2 < 4 \Rightarrow x < 2$$

- (a) Vsako število $p \in \mathbb{Q}, p^2 > 2$ je zgornja meja množice C.
- (b) Nobeno racionalno število $q\in\mathbb{Q}, q^2<2$ ni zgornja meja množice C.

Vemo: Rešitev enačbe $x^2 = 2, x > 0, x \notin \mathbb{Q}$. Sledi: $C \subset \mathbb{Q}$ nima natančne zgornje meje.

Dokaz:

(a)
$$x^2 < 2 < p^2$$

sledi: $x^2 < p^2 \Rightarrow x < p$ za vse $x \in C$

(b) Iščemo $c \in C$, da je $c > q, c^2 < 2$

$$c := \frac{2q+2}{q+2} = q + \frac{2q+2-q^2-2q}{q+2} = q + \frac{2-q^2>0}{q+2} > 0$$

$$(q^2 < 2)$$

$$c^{2} = \left(\frac{2q+2^{2}}{q+2}\right) = \frac{4(q^{2}+2q+1)}{q^{2}+4q+4}$$

$$c^{2} - 2 = \frac{4q^{2}+8q+4-2q^{2}-8q-8}{(q+2)^{2}} = \frac{2q^{2}-4}{(q+2)^{2}} = \frac{2(q^{2}-2>0)}{(q+2)^{2}} > 0$$

$$q^{2} < 2$$

Podobno kot zgornjo mejo, navzgor omejeno množico, supremum in maskimum, definiramo spodnjo mejo, navzdol omejeno množico, infimum in minimum.

A13 (Dedekindov aksiom): Vsaka neprazna navzgor omejena podmnožica v množici A ima supremum (v množici A).

Def: Če množica $(A, +, \cdot, <)$ izpolnjuje aksiome A1-A13 jo imenujem *poln urejen obseg* (poln se nanaša na A13).

Trditev: $(\mathbb{Q}, +, \cdot, <)$ je urejen obseg, ki ne izpolnjuje A13.

Izrek: vsaka nerpazna navzgor omejena podmnožica v \mathbb{R} ima natančno določeno zgornjo mejo. (\mathbb{R} izpolnjuje A13)

Posledica: $(\mathbb{R}, +, \cdot, <)$ je poln urejen obseg.

Posledica: Vsaka neprazna navzdol omejena podmnožica $\mathbb R$ ima natančno spodnjo mejo.

A neprazna navzdol omejena.

$$-A = \{x; -x \in A\}$$

-Aje neprazna, navzgor omejena (čemspodnja meja od A,je -mzgornja meja od $-A). \Rightarrow -A$ ima supremum in velja: $-\sup A = \inf A$

Dokaz (izrek): Izberemo poljubno neprazno navzgor omejeno podmnožico \mathcal{A} v \mathbb{R} .

$$C = \cup A, A \in \mathcal{A}$$

Dokazati je treba:

- 1. C je rez
- 2. $C = \sup A$
- 1. (i) $C \neq \emptyset$

Ker $\mathcal A$ ni prazna $\exists A\in\mathcal A.$ Torej velja $A\subset C,$ torej $C\neq\varnothing.$ $C\neq\mathbb Q$

Ker je \mathcal{A} omejena, obstaja zgornja meja M množice \mathcal{A} , velja:

$$\forall A \in \mathcal{A} : A \le M$$
$$\forall A \in \mathcal{A} : A \subset M$$

Sledi: $C \subset M$, zato $C \neq \mathbb{Q}$ (ker $M \neq \mathbb{Q}/M$ je rez).

- (ii) $p \in C, q \in \mathbb{Q}, q$ $<math>p \in C \Rightarrow \exists A \in \mathcal{A}$, da je $p \in A$. Ker je A rez, za $q \in \mathbb{Q}, q < p$ velja $q \in A$. Sledi: $q \in C$.
- (iii) $p \in C \Rightarrow \exists q \in \mathbb{Q}, q > p : q \in C \ p \in C \Rightarrow \exists A \in \mathcal{A}$, da je $p \in A$. Ker je $A \text{ rez}, \exists q \in A, q > p$. Sledi: $q \in C$.
- 2. (i) C je zgornja meja A Ker je $A \subset C$ za vse $A \in A$, velja $A \leq C$ za vse $A \in A$. t.j.: C je zgornja meja.
 - (ii) C je natančna zgornja meja \mathcal{A} Izberimo poljuben D < C. Dokazujemo, da D ni zgornja meja \mathcal{A} . Ker je $D < C, D \subset C$ in $D \neq C$, obstaja $p \in \mathbb{Q}, p \in C$ in $p \notin D$. Ker je $p \in C$, obstaja $A \in \mathcal{A}$, da je $p \in A$. Velja: A > D in $A \in \mathcal{A}$ (vemo da sta vsaka reza primerljiva po velikosti.)

Za radovedne: Poleg Dedekinda je realna števila definiral tudi Cantor. Ta je to naredil s Cauchyjevimi zaporedji.

Opomba: Med obsegoma \mathbb{Q} in \mathbb{R} je še veliko obsegov.

Definicija: Pravimo, da je x iracionalno število, če $x \notin \mathbb{Q}$.

Rešitvam polinomskih enačb s celimi koeficienti rečemo algebraična števila.

Primer:
$$\sqrt{2}: x^2 - 2 = 0$$

Niso vsa iracionalna števila algebraična: π, e . Tem pravimo transcendentna števila.

1.5 Posledice Dedekindovega aksioma

 $\bullet\,$ Množica $\mathbb Z$ ni navzgor omejena v $\mathbb R.$

Dokaz: Denimo, da je \mathbb{Z} navzgor omejena v \mathbb{R} . Potem obstaja $M \in \mathbb{R}$, da $M = \sup \mathbb{Z}$. Torej M - 1 ni zgornja meja \mathbb{Z} .

$$\exists a \in \mathbb{Z}, a > M-1$$
$$a+1 > M, a+1 \in \mathbb{Z} \rightarrow \leftarrow$$

• $\forall a \in \mathbb{R} \exists b \in \mathbb{Z} : a < b$

Dokaz: če to ne bi bilo res, bi bilo število a zgornja meja \mathbb{Z} . To pa ni res (prejšnja posledica).

• Arhimedska lastnost: Naj bosta $a, b \in \mathbb{R}^+$. Potem obstaja $n \in \mathbb{N} : na > b$.

Dokaz: Obstajati mora $n\in\mathbb{N}:n>\frac{b}{a}$. Po prejšnji posledici tak nobstaja. \square

• Naj bo $a \in \mathbb{R}^+$. Potem obstaja $n \in \mathbb{N}$, da $\frac{1}{n} < a$.

Dokaz: uporabimo arhimedsko lastnost za n=1.

• Naj bosta a,b poljubni $\mathbb{R},a< b$. Obstaja $q\in \mathbb{Q},$ da velja a< q< b. Dokaz:če je b-a>1, potem obstaja $m\in \mathbb{Z},a< m< b$

 $\{n\in\mathbb{Z}, n\leq a\}$ je navzdol omejena neprazna.

$$\sup\{n \in \mathbb{Z}, n \le a\} = x, x \in \mathbb{Z}$$
$$m := x + 1$$
$$b > m > 0$$

$$b-a>0$$

$$\exists n \in \mathbb{N} : n(b-a) > 1$$

Obstaja $m \in \mathbb{Z} : an < m < nb$.

$$a < \frac{m}{n} < b \square$$

Rečemo tudi: \mathbb{Q} so v \mathbb{R} povsod gosta.

1.6 Intervali

Def: Naj bosta $a, b \in \mathbb{R}, a < b$

- 1. $[a,b] = \{x \in \mathbb{R}, a \le x \le b\}$ zaprti interval
- 2. $(a,b) = \{x \in \mathbb{R}, a < x < b\}$ odprti interval
- 3. $[a,b) = \{x \in \mathbb{R}, a \le x < b\}$ polodprti interval $(a,b] = \{x \in \mathbb{R}, a < x \le b\}$

4.
$$(a, \infty) = \{x \in \mathbb{R}, x > a\}$$

 $[a, \infty) = \{x \in \mathbb{R}, x \ge a\}$
 $(-\infty, a) = \{x \in \mathbb{R}, x < a\}$
 $(-\infty, a] = \{x \in \mathbb{R}, x \le a\}$
 $(-\infty, \infty) = \mathbb{R}$

Def: Naj bo $a \in \mathbb{R}, \varepsilon > 0$. Interval $(a - \varepsilon, a + \varepsilon)$ imenujemo ε -okolica števila a.

 $Okolica točke a je vsaka taka podmnožica v<math display="inline">\mathbb{R},$ ki vsebuje kakšno $\varepsilon\text{-okolico}$ točke a.

1.7 Decimalni ulomki

Vsako $\mathbb R$ število lahko zapišemo kot decimalni ulomek.

Naj bo $x \in \mathbb{R}^+$ in naj bo $n \in \mathbb{N}_0$ največje števliko, ki ne presega x:

$$n \le x < n + 1$$

Interval [n,n+1] razdelimo na 10 enakih delov. Nato poiščemo $n_1 \in \{0,1,2,\ldots,9\}$, da velja:

$$n + \frac{n_1}{10} \le x < n + \frac{n_1 + 1}{10}$$

Postopek nadaljujemo in na ta način sestavimo zaporedje decimalnih približkov za x.

$$\mathcal{A} = \{n, n + \frac{n_1}{10}, n + \frac{n_1}{10} + \frac{n_2}{100}, \ldots\}$$

Trditev: $x = \sup A$

Dokaz:

- (i) \underline{x} je zgornja meja množice $\underline{\mathcal{A}}$ Velja po konstrukciji: $\forall a \in \mathcal{A} : a \leq x$.
- (ii) *x* je najmanjša zgornja meja Denimo da to ni res:

$$y := \sup \mathcal{A} < x$$

$$\exists n \in \mathbb{N} : \frac{1}{n} \le x - y$$

$$\exists p \in \mathbb{N} : \frac{1}{10^p} < \frac{1}{n} < x - y$$

$$y + \frac{1}{10^p} < x$$

$$n + \frac{n_1}{10} + \frac{n_2}{100} + \dots + \frac{n_p}{10^p} \le y$$
$$n + \frac{n_1}{10} + \frac{n_2}{100} + \dots + \frac{n_p + 1}{10^p} \le y + \frac{1}{10^p} < x \to \leftarrow$$

Trditev utemelji, da x lahko zapišemo, kot neskončni decimalni ulomek.

$$x = n_0 + \frac{n_1}{10} + \ldots + \frac{n_p}{10^p} + \ldots = n_0, n_1 n_2 \ldots n_p \ldots$$

Trditev: Naj bosta $x, y \in \mathbb{R}^+$

(1) Denimo, da obstaja $k \in \mathbb{N}_0$, za katerega velja:

$$x = n_0, n_1 n_2 \dots n_{k-1} n_k 99 \dots$$

 $y = n_0, n_1 n_2 \dots n_{k-1} (n_k + 1)00 \dots$

in $n_k \neq 9$, potem x = y.

(2) Za dva različna decimalna zapisa $x \in \mathbb{R}^+$ velja (1).

Dokaz: Naj bo A množica decimalnih preslikav za x.

(1) $\forall a \in \mathcal{A} : y \ge a \ (y \text{ je zgornja meja})$

Zato $y \ge x$ (x je sup A)

Dokzujemo yje natančna zgornja meja od ${\mathcal A}$

Naj bo l > k in a_l l-ti decimalni približek za x.

$$y - a_{l} = \frac{1}{10^{l}}$$
$$y - \frac{1}{10^{l}} = a_{l}$$
$$y - \frac{1}{10^{l}} \le a_{l} < a_{l+1}$$

 $\Rightarrow y - \frac{1}{10^l}$ ni zgornja meja za noben l, torej je y natančna zgornja meja.

(2) x naj ima dva decimalna zapisa:

$$x = n_0, n_1 n_2 \dots$$
$$x = m_0, m_1 m_2 \dots$$

Obstaja najmanjši indeks $k \in \mathbb{N} : n_k \neq m_k$.

Predpostavimo, da je $m_k > n_k$

 $m_0, m_1 m_2 \dots m_k$ je zgornja meja množice decimalnih približkov za x.

$$m_0, m_1 m_2 \dots m_k > m_0, m_1 m_2 \dots m_{k-1} n_k n_{k+1} n_{k+2} \dots$$

Če bi veljajo $n_k < m_k - 1$ (dokazujemo, da je razlika lahko največ 1, t.j: morajo se ponavljati 9-ke)

$$x \le n_0, n_1 n_2 \dots n_{k-1} (n_k + 1) < m_0, m_1 \dots m_{k-1} m_k \le x \to \leftarrow$$

(x < x ni možno)

Če bi bil $m_{k+1} \neq 0$ (ali za indeks l > k):

$$x \leq m_0, m_1 m_2 \dots m_k < m_0, m_1 \dots m_k m_{k+1} \leq x \rightarrow \leftarrow$$

Na podoben način dokažemo, da velja:

$$\forall l \in \mathbb{N} : n_{k+l} = 9$$

Podobno velja tudi za druge osnove. Primer v dvojiškem sistemu bi bil:

$$1101,011 = 1101,010\overline{1}$$

Trditev: Naj bo $x \in \mathbb{R}$. x ima periodičen decimalni zapis natanko tedaj, kadar $x \in \mathbb{Q}$ (tudi končen decimalni zapis je periodičen).

Dokaz: denimo, da je $x \in \mathbb{Q}^+$.

$$x = \frac{m}{n}, m, n \in \mathbb{N}$$

m delimo z n pisno. To pomeni da podpisujemo ostanke. Ker imamo na voljo n različnih ostankov: $o_j \in \{0, 1, \ldots, n-1\}$, se bo med n+1 zaporednimi ostanki vsaj eden zagotovo ponovil. Ko se ostanek ponovi, se ponovi tudi cel zapis, kar je perioda.

Denimo, da ima x periodičen decimalni zapis:

$$x = d, d_1 d_2 \dots d_n \overline{d_{n+1} d_{n+2} \dots d_{n+k}}$$

$$10^k x = d \cdot 10^k + d_1 d_2 \dots d_k, d_{k+1} \dots d_n \dots d_{n+k} \overline{d_{n+1} \dots d_{n+k}}$$

$$10^k x - x \text{ ima končen decimalni zapis} = p \in \mathbb{Q}$$

$$x = \frac{p}{10^k - 1} \in \mathbb{Q} \quad \square$$

1.8 Absolutna vrednost

Def: če je $x \in \mathbb{R}$, potem

$$|x| = \begin{cases} x & \text{\'e } x \ge 0\\ -x & \text{\'e } x < 0 \end{cases}$$

Število |x| imenujemo absolutna vrednost realnega števila x.

Trditev: Naj bo $x \in \mathbb{R}$. Veljajo:

- (i) $|x| \ge 0$
- (ii) $|x| = 0 \Leftrightarrow x = 0$
- (iii) |x| = |-x|
- (iv) $-|x| \le x \le |x|$
- (v) |x| je razdalja x do 0 na številski premici
- (vi) Trikotniška neenakost: $|x+y| \le |x| + |y|$ za vse $x, y \in \mathbb{R}$
- (vii) $|xy| = |x| \cdot |y|$ za vse $x, y \in \mathbb{R}$

Dokaz:

- (vi) pregledamo vse možnosti glede na predznak
 - $(1) \ x \ge 0, y \ge 0$

$$|x + y| = x + y = |x| + |y|$$

(2) x < 0, y < 0

$$|x + y| = -(x + y) = -x - y = |x| + |y|$$

(3) $x \ge 0, y < 0$

$$\begin{aligned} |x| &= x, |y| = -y \\ x + y &= |x| - |y| \\ |x + y| &= \begin{cases} |x| - |y| & \text{\'e } |x| \ge |y|, \\ |y| - |x| & \text{\'e } |x| < |y| \end{cases} \\ |x + y| &\le |x| + |y| \end{aligned}$$

(4) simetrična (3)

Posledica:

1)
$$||x| - |y|| < |x \pm y| < |x| + |y|$$
 za vse $x, y \in \mathbb{R}$

2)
$$|x_1 + ... + x_n| \le |x_1| + ... + |x_n|$$
 za vse $x_1, ... x_n \in \mathbb{R}$

Dokaz:

1) Za + je desna neenakost trikotniška neenakost.

Leva neenakost:

$$|x| = |(x+y) - y| \le |x+y| + |y|$$

 $|x| - |y| \le |x+y|$

Podobno velja: $|y| - |x| \le |x + y|$

Iz tega sledi: $||x| - |y|| \le |x + y|$

1.9 Kompleksna števila

Motivacija za kompleksna števila je, da bi lahko rešili enačbo:

$$x^2 = -a, a \in \mathbb{R}^+$$

Definicija: Kompleksno število je urejeni par realnih števil: množica vseh kompleknih števil je množica vseh urejenih parov realnih števil, t.j.: $\mathbb{R} \times \mathbb{R}$ in jo označimo s \mathbb{C} .

$$\mathbb{C} = \{(a, b); a, b \in \mathbb{R}\}\$$

Opomba (kdaj sta dve kompleksni števili enaki):

$$\alpha, \beta \in \mathbb{C}, \alpha = (a, b), \beta = (c, d) : \alpha = \beta \iff a = c \land b = d$$

V množico kompleksnih števil vpeljemo računski operaciji:

$$\alpha, \beta \in \mathbb{C}, \alpha = (a, b), \beta = (c, d) \text{ kjer } a, b, c, d \in \mathbb{R}$$

$$\alpha + \beta = (a + c, b + d)$$

$$\alpha \cdot \beta = (ac - bd, ad + bc)$$

Izrek: $(\mathbb{C}, +, \cdot)$ je komutativen obseg. Enota za seštevanje je (0,0), enota za množenja pa (1,0). V \mathbb{C} se ne da vpeljati urejenosti, da bi bil urejen obseg. Drugače povedano: izraz kot npr. z > 0 je nesmiselen.

Dokaz: (veljavnosti nekaterih aksiomov)

(A3)
$$\alpha + (0,0) = (a,b) + (0,0) = (a+0,b+0) = (a,b) = \alpha$$

(A4)
$$\alpha = (a, b) \in \mathbb{C}$$
 $-\alpha = (-a, -b)$

$$(a,b) + (-a,-b) = (a + (-a), b + (-b)) = (0,0) = 0$$

(A7)
$$(a,b) \cdot (1,0) = (1a - 0b, 0a + 1b) = (a,b)$$

(A8)
$$\alpha \in \mathbb{C}, \alpha \neq 0$$
 $\alpha = (a, b)$

$$\alpha^{-1} = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$$
$$\alpha \alpha^{-1} = \left(\frac{a^2 + b^2}{a^2 + b^2}, \frac{-ab + ab}{a^2 + b^2}\right) = (1, 0) = 1 \quad \Box$$

Opomba: Kompleksni števili $(0,0) \equiv 0, (1,0) \equiv 1$ poimenujemo 0 in 1.

Opomba: Preslikava $\mathbb{R} \to \mathbb{C}$ definirana s predpisom $a \mapsto (a, 0)$ inducira vložitev realnih števil v kompleksnem in je usklajena z računskima operacijama.

$$(a,0) + (b,0) = (a+b,0)$$

 $(a,0) \cdot (b,0) = (ab-0 \cdot 0, 0a+0b) = (ab,0)$

Poleg te vložitve, bi si lahko zmislili tudi kakšno drugo, vendar ne bi bila dobra. Npr: $a \mapsto (a, 1)$ ni dobra vložitev, ker že pri seštevanju "pademo ven" iz realnih vrednosti ((a, 1) + (b, 1) + (a + b, 2)).

Torej lahko kompleksna števila (a,0) identificiramo z realnimi: (a,0) = a.

Definicija: Kompleksno število (0,1) označimo z i in ga imenujemo $imagi-narna\ enota$.

$$i^2 = (0,1)(0,1) = (0-1,0\cdot 1+1\cdot 0) = (-1,0) = -1$$

 $(a,b) = (a,0) + (0,b) = (a,0) + (b,0)(0,1) = a+bi$

Od tu naprej bomo kompleksna števila obravnavali kot

$$\mathbb{C} = \{a + bi, a, b \in \mathbb{R}\}\$$

Definirani računski operaciji inducirata običajno računanje s kompleksnimi števili

Definicija: Naj bo $\alpha \in \mathbb{C}, \alpha = a + bi, a, b \in \mathbb{R}$

- število a je realni del kompleksnega števila α in ga označimo: $a=\Re\alpha$
- število b je imaginarni del kompleksnega števila α in ga označimo: $b = \Im \alpha$. Opomba: $\Im \alpha \in \mathbb{R}$.
- ullet številu a-bi rečemo konjugirano število številu lpha in ga označimo z \overline{lpha}
- \bullet šteilo $\sqrt{\alpha\overline{\alpha}}$ imenujemo absolutna~vrednostkompleksnega števila α in označimo $|\alpha|$

Opomba: $\alpha = a + bi, a, b \in \mathbb{R}$

$$\sqrt{\alpha\overline{\alpha}} = \sqrt{(a+bi)(a-bi)} = \sqrt{(a^2-abi+abi+b^2)} = \sqrt{a^2+b^2} \in \mathbb{R} \geq 0$$

$$\alpha \in \mathbb{R} \Rightarrow \sqrt{\alpha \overline{\alpha}} = \sqrt{\alpha^2} = |\alpha|$$

To pojasni, zakaj lahko uporabljamo enako oznako za absolutno vrednost kompleksnega števila, kot za absolutno vrednost realnega števila.

Trditev: Za $\alpha, \beta \in \mathbb{C}$ velja:

(i)
$$\overline{\alpha + \beta} = \overline{\alpha} + \overline{\beta}$$

(ii)
$$\overline{\alpha\beta} = \overline{\alpha}\overline{\beta}$$

(iii)

$$\Re \alpha = \frac{1}{2}(\alpha + \overline{\alpha})$$
$$\Im \alpha = \frac{1}{2i}(\alpha - \overline{\alpha})$$

(iv)
$$\alpha \overline{\alpha} = (\Re \alpha)^2 + (\Im \alpha)^2$$

(v)
$$\overline{\overline{\alpha}} = \alpha$$

$$\begin{aligned} &Dokaz: \text{(ii)} \ \ \alpha = a + bi, & \beta = c + di, a, b, c, d \in \mathbb{R} \\ &\overline{\alpha\beta} = \overline{(a + bi)(c + di)} = \overline{(ac - bd + (ad + bc)i)} = \\ &= ac - bd - (ad + bc)i \end{aligned}$$

$$\overline{\alpha} \cdot \overline{\beta} = \overline{(a+bi)(c+di)} = (a-bi)(c-di) =$$

$$= ac - bd - (ad+bc)i \quad \Box$$

1.9.1 Lastnosti

Za vse $\alpha, \beta \in \mathbb{C}$ velja:

(i)
$$|\alpha| \geq 0$$

(ii)
$$|\alpha| = 0 \iff \alpha = 0$$

(iii)
$$|\alpha| = |\overline{\alpha}|$$

(iv)
$$|\alpha\beta| = |\alpha||\beta|$$

$$(v) |\Re \alpha| \le |\alpha| |\Im \alpha| \le |\alpha|$$

(vi)
$$|\alpha + \beta| \le |\alpha| + |\beta|$$

 $||\alpha| - |\beta|| \le |\alpha \pm \beta| \le |\alpha| + |\beta|$

Dokaz

(iv)
$$|\alpha\beta|^2=(\alpha\beta)(\overline{\alpha\beta})=\alpha\beta\overline{\alpha}\overline{\beta}=|\alpha|^2|\beta|^2$$
 Ker je $|\alpha|\geq 0$, enakost sledi.

(vi)

$$|\alpha + \beta|^2 = (\alpha + \beta)(\overline{\alpha + \beta}) = (\alpha + \beta)(\overline{\alpha} + \overline{\beta}) =$$

$$= \alpha \overline{\alpha} + \alpha \overline{\beta} + \beta \overline{\alpha} + \beta \overline{\beta} =$$

$$= |\alpha|^2 + \alpha \overline{\beta} + \beta \overline{\alpha} + |\beta|^2$$

$$(|\alpha| + |\beta|)^2 = |\alpha|^2 + 2|\alpha||\beta| + |\beta|^2$$
 Dovolj je dokazati $\alpha \overline{\beta} + \beta \overline{\alpha} \le 2|\alpha||\beta|$
$$\alpha \overline{\beta} + \beta \overline{\alpha} = \alpha \overline{\beta} + \overline{\overline{\alpha}} \overline{\overline{\beta}} = \alpha \overline{\beta} + \overline{\alpha} \overline{\overline{\beta}} = 2\Re(\alpha \overline{\beta})$$

$$2\Re(\alpha\overline{\beta}) \le 2|\alpha||\beta|$$
$$|\alpha\overline{\beta}| = |\alpha||\overline{\beta}| = |\alpha||\beta|$$

Neenakost velja zaradi (v).

1.9.2 Geometrijska interpretacija

Pri učenju geometrijske interpretacije toplo priporočam zvezek s skicami. Kot piše v datoteki README.md, skic v teh zapiskih ni in jih verjetno tudi ne bo. Če misliš, da imaš dovolj dobro domišljijo in se znajdeš samo iz tekstovnega opisa, potem pa kar pogumno, čeprav te pogum ne bo pripeljal do znanja.

Kompleksno število $\alpha \in \mathbb{C}$, $\alpha = a + bi$, $a, b \in \mathbb{R}$ predstavimo s točko (a, b) v izbranem koordinatnem sistemu. Te točki nam lahko predstavljata tudi krajevna vektorja in ker kompleksna števila seštevamo po komponentah, se to ujema s seštevanjem vektorjev.

Tako kot nam absolutna vrednost realnega števila predstavlja oddaljenost števila od 0, nam tudi tu absolutna vrednost kompleksnega števila predstavlja oddaljenost števila od izhodišča koordinatnega sistema. Drugače povedano: predstavlja nam "dolžino" tega števila. To lahko vidimo tudi iz enačbe $|\alpha| = \sqrt{(\Re \alpha)^2 + (\Im \alpha)^2}$, ki nam pravzaprav predstavlja pitagorov izrek.

Če si narišemo dve števili α in β v koordinatni sistem in nato vanj vrišemo še njuno vsoto $\alpha + \beta$ po paralelogramskem pravilu za seštevanje vekotjev, opazimo, da dobimo trikotnik s stranicami α, β in $\alpha + \beta$. Za trikotnik pa vemo, da je vsota dolžin dveh stranic v trikotniku večja od dolžine tretje stranice. Iz tu izhaja ime trikotniška neenakost.

1.9.3 Polarni zapis

Lego točke v koordinatnem sistemu lahko podamo s poltrakom skozi izhodišče, na katerem leži točka in z razdaljo od izhodišča.

Poltrak je določen s kotom od pozitivnega poltraka abscisne osi do danega poltraka, meren v pozitivni smeri.

Kota φ in $\varphi + 2k\pi$ določata isti poltrak.

Če $\varphi \in [0, 2\pi]$, potem φ imenujemo argument kompleksnega števila.

Če zapišemo $z = x + iy, x, y \in \mathbb{R}$

$$\begin{split} x &= |z|\cos\varphi & |z| &= \sqrt{x^2 + y^2} \\ y &= |z|\sin\varphi & \tan\varphi &= \frac{x}{y} \Rightarrow \varphi = \arctan\frac{x}{y} + k\pi, k \in \{0,1\} \end{split}$$

k=1 za kompleksna števila v II in III kvadrantu, sicer k=0.

Polarni zapis:
$$z = x + iy = |z| \cos \varphi + i|z| \sin \varphi = |z| (\cos \varphi + i \sin \varphi)$$

$$|\cos \varphi + i \sin \varphi| = 1$$

 $\cos\varphi+i\sin\varphi$ leži na enotski krožnici (krožnica s polmerom 1 in središčem v izhodišču).

Množenje v polarnem:

$$z = |z|(\cos \varphi + i \sin \varphi)$$
$$w = |w|(\cos \psi + i \sin \psi)$$

$$zw = |z||w|(\cos\varphi + i\sin\varphi)(\cos\psi + i\sin\psi) =$$

$$= |z||w|(\cos\varphi\cos\psi - \sin\varphi\sin\psi + i\sin\varphi\cos\psi + i\sin\psi\cos\varphi) =$$

$$= |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi))$$

Pri množenju z kompleksnimi števili se abolutni vrednosti zmnižita, kota pa seštejeta

Konjugirana vrednost

$$\overline{z} = |z|(\cos\varphi - i\sin\varphi) = |z|(\cos(-\varphi) + i\sin(-\varphi))$$

Potenciranje

$$z = |z|(\cos \varphi + i \sin \varphi)$$
$$z^{n} = |z|^{n}(\cos n\varphi + i \sin n\varphi)$$

Formuli pravimo *Moivreova formula* (beremo "moavrova") in jo dokažemo z indukcijo.

Korenjenje

Korenjenje nam predstavlja reševanje enačbe $w^n=z,$ kjer $z\in\mathbb{C},n\in\mathbb{N}.$ Rešitvam te en"acbe pravimo n-ti koreni kompleksnega števila z.

Za reševanje najprej število z zapišemo v polarni obliki: $z = |z|(\cos \varphi + i \sin \varphi)$. To storimo tudi s število w: $w = r(\cos \psi + i \sin \psi)$.

To vstavimo v začetno enačbo:

$$r^n = (\cos n\psi + i\sin n\psi) = |z|(\cos \varphi + i\sin \varphi)$$

Kompleksni števili sta enaki, če sta enako oddaljena od izhodišča:

$$r^n = |z|$$

in ležita na istem poltraku. Ustrezna kota se razlikujeta kvečjemu za večkratnik 2π :

$$n\psi = \varphi + 2k\pi, k \in \mathbb{Z}$$
$$\psi = \frac{\varphi}{n} + \frac{2k\pi}{n}, k \in \mathbb{Z}$$

To pomeni, da dobimo:

$$|w| = \sqrt[n]{z} \left(\cos \left(\frac{\varphi}{n} + \frac{2k\pi}{n} \right) + i \sin \left(\frac{\varphi}{n} + \frac{2k\pi}{n} \right) \right), k \in \mathbb{Z}$$

$$\frac{2k\pi}{n} \in [0, 2\pi] \text{ za } k \in [0, 1, \dots, n].$$

Dokaz:

$$k \ge n \Rightarrow k = \ln + o, l, o \in \mathbb{N}_0$$
$$\frac{2k\pi}{n} = \frac{2\pi \ln n}{n} + \frac{2\pi o}{n} = 2l\pi + \frac{2\pi o}{n}$$

To pomeni, da so različni n-ti koreni: $w_0, w_1, \ldots, w_{n-1}$, če je $z \neq 0$.

Opomba: Oznake za koren ni, ker ni enolične rešitve.

Geometrijsko nam rešitve predstavljajo ogljišča pravilnega n-kotnika, ki je včrtan krožnici s polmerom $\sqrt[n]{|z|}$.

Rešitvam enačbe $w^n = 1$ rečemo n-ti koreni enote in ležijo na enotski krožnici.

Osnovni izrek algebre: Vsak nekonstanten polinom s kompleksnimi koeficienti ima kompleksno ničlo.

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n, a_j \in \mathbb{C}$$

2 O množicah in preslikavah

Definicija: Naj bosta A in B množici.

Preslikava f iz množice A v množico B je predpis, ki vsakemu elementu iz množice A priredi natanko en element iz množice B.

Pišemo $f: A \to B$

$$a \in A : a \mapsto f(a) \in B$$

A imenujemo domena ali definicijsko območje, B pa imenujemo kodomena.

Zaloga vrednosti je množica $\{f(a); a \in A\} = Z_f$.

Definicija: Naj bosta A in B množici in $f:A\to B$ preslikava.

Pravimo, da je f surjektivna, če je $B = Z_f$.

Pravimo, da je *f injektivna*, če velja:

$$\forall x, y \in A : x \neq y \Rightarrow f(x) \neq f(y)$$

Ro lahko zapišemo tudi kot:

$$\forall x, y \in A : f(x) = f(y) \Rightarrow x = y$$

Pravimo, da je f bijektivna (povratno enolična), kadar je surjektivna in injektivna.

Definicija: Naj bosta A in B množici, $f:A\to B$ bijektivna preslikava.

Inverzna preslikava $f^{-1}: B \to A$ vsakemu elementu $b \in B$ priredi tisti element $a \in A$, za katerega velja f(a) = b.

 f^{-1} je dobro definirana

 $\forall b \in B \exists a \in A : f(a) = b$, ker je f surjektivna. Ta a je enolično določen, ker je f injektivna; $f(a_1) = f(a) \Rightarrow a_1 = a$.

Definicija: Naj bosta A in B množici.

Pravim, da sta množici ekvipolentni ali enako močni, kadar obstaja bijektivna preslikava $f:A\to B$.

Opomba: če je $f: A \to B$ bijektivna, potem je $f^{-1}: B \to A$ bijekcija.

Opomba: končni množici imata enako moč, kadar imata enako število elementov.

Definicija: Če ima množica Aenako moč kot $\mathbb{N},$ pravimo, da je A števno neskončna.

Če je A števno neskončna, potem obstaja $\mathbb{N} \to A; n \mapsto f(n) = a_n$.

$$A = \{a_1, a_2, \dots a_n\} = \{a_n; n \in \mathbb{N}\}\$$

pri čemer velja: $j \neq k : a_j \neq a_k$.

 $Trditev: \mathbb{N}, \mathbb{Z}, \mathbb{Q}$ so števno neskončna.

Dokaz za \mathbb{Z} : $\{0, 1, -1, 2, -2, \ldots\}$

Pri \mathbb{Q} je dovolj, da dokažemo za nenegativna števila, nato sledi podobno kot za \mathbb{Z} . Za pozitivna število naredimo tabelo 1.

Tabela 1: Dokaz da so $\mathbb Q$ števno nesknočna

Nato števila povežemo po diagonalah $(\frac{1}{1}, \frac{2}{1}, \frac{1}{2}, \frac{3}{1}, \frac{2}{2})$ in izločimo števila ko so se že ponovila (npr: $\frac{2}{2} = \frac{1}{1}$).

 $Izrek: \mathbb{R}$ ni števno neskončna

Dokaz: Denimo da je. Potem $\{a_1, a_2, a_3, \ldots\} = \mathbb{R}$.

 a_i zapišemo kot decimalni ulomek:

$$a_1 = d'_1 d_{11} d_{12} d13 \dots$$

 $a_2 = d'_2 d_{21} d_{22} d23 \dots$
 $a_3 = d'_3 d_{31} d_{32} d33 \dots$

$$x := 0'x_1x_2x_3\ldots \in \mathbb{R}$$

$$x_1 = 1$$
, če je $d_{11} = 0$, sicer $x_1 = 0$, $x_2 = 1$, če je $d_{22} = 0$, sicer $x_2 = 0$

Skonstruirali smo $x \notin \{a_1, a_2, a_3, \ldots\} \to \leftarrow$.

3 Številska zaporedja

DEFINICIJA: Zaporedje realnih števil je preslikava $\mathbb{N} \to \mathbb{R}$. Zapis je:

$$f: \mathbb{N} \to \mathbb{R}$$

 $f(n)$ označimo z a_n

Preslikava f je podana z a_1, a_2, a_3, \ldots

Zaporedje realnih števil podamo s členi a_1, a_2, a_3, \ldots , kar krajše zapišemo $\{a_n\}_{n=1}^{\infty}$, $\{a_n\}$, $(a_n)_{n=1}^{\infty}$ ali pa kar zaporedje a_n .

Opomba: zaporedje $\{a_n\}$ ni množica $\{a_n; n \in \mathbb{N}\}$.

PRIMER:

1) $a_n = 1, n \in \mathbb{N}$ konstantno zaporedje To zaporedje ustreza preslikavi $f(n) = 1, n \in \mathbb{R}$

- 2) $b_n = n, n \in \mathbb{N}$ Takemu zaporedju pravimo, da je podan s splošnim členom. Narišemo lahko njegov graf $\{(n, b_n); n \in \mathbb{N}\}$
- 3) $d_1=1, d_2=1, d_{n+2}=d_n+d_{n+1}, n\in\mathbb{N}$ je rekurzivno podano. Predstavlja Fibonaccijevo zaporedje.
- 4) aritmetično aporedje

$$a_n = a_1 + (n-1)d, n \in \mathbb{N}$$

 $a_1, a_1 + d, a_1 + 2d, \dots$

To lahko zapišemo tudi z rekurzivno zvezo:

$$\begin{cases} a_{n+1} = a_n + d, n \in \mathbb{N} \\ a_1 = a_1 \end{cases}$$

5) geometrijsko zaporedje

$$a_n = a_1 q n - 1, n \in \mathbb{N}$$
$$a_1, a_1 q, a_1 q^2, \dots$$

Zapisano z rekurzivno zvezo:

$$\begin{cases} a_{n+1} = a_n q, n \in \mathbb{N} \\ a_1 = a_1 \end{cases}$$

DEFINICIJA:

• Zaporedje a_n je navzgor omejeno če je zaloga vrednosti preslikave $n \mapsto a_n$ navzgor omejena, t.j.:

$$\exists M \in \mathbb{R} \forall n \in \mathbb{N} : a_n \leq M$$

- Natančna zgornja meja zaporedja a_n je natanc"na zgornja meja zaloge vrednosti preslikave $n \mapsto a_n$ in jo označimo s sup a_n .
- Število M imenujemo zgornja meja zaporedja a_n .
- Analogno definiramo navzdol omejeno, natančno spodnjo mejo inf a_n , max in min.

PRIMER:

$$a_n = \frac{1}{n}, n \in \mathbb{N}$$

navzgor omejeno z 1: $\forall n \in \mathbb{N} : \frac{1}{n} \leq 1$

navzdol omejeno z 0: $\forall n \in \mathbb{N} : \frac{1}{n} \geq 0$

 $\sup \frac{1}{n} = 1$, ker je 1 zgornja meja in $a_1 = 1$.

 $\inf 1/n = 0$ 0 je spodnja meja.

Izberemo $\varepsilon > 0$. Dokazujemo da ε ni spodnja meja. Po arhimedski lastnosti:

$$\exists n \in \mathbb{N} : \frac{1}{n} < \varepsilon$$

$$\max \frac{1}{n} = 1$$

 $\min \frac{1}{n}$ ne obstaja.

DEFINICIJA: Zaporedje a_n konvergira proti $a \in \mathbb{R}$, če:

$$\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \forall n \in \mathbb{N} : n > n_0 \Rightarrow |a_n - a| < \varepsilon$$

Število a imenujemo limita zaporedja in označimo z:

$$a = \lim_{n \to \infty} a_n$$

Če zaporedje a_n konvergira, je a_n konvergentno zaporedje. Sicer je divergentno zaporedje.

$$|a_n - a| < \varepsilon \iff a_n \in (a - \varepsilon, a + \varepsilon)$$

Zunaj ε -te okolice je kvečjemo končnomnogo čelnov.

Zapis $\lim_{n\to\infty}a_n=a$ pomeni, da zaporedje konvergira in njegova limita je a. To ne velja, če zaporedje divergira, ali pa njegova konvergira in njegova limita ni a.

Primeri:

1)
$$a_n = 1, n \in \mathbb{N}$$

$$\lim_{n\to\infty} a_n = 1$$

Izberemo poljuben $\varepsilon > 0$: $|a_n - 1| = |1 - 1| = 0 < \varepsilon$ za vse $n \in \mathbb{N}$.

$$2) \ b_n = \frac{1}{n}, n \in \mathbb{N}$$

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

Po arhimedski lastnosti:

$$\begin{aligned} \forall \varepsilon > 0 : \exists m : \frac{1}{m} < \varepsilon \\ n \geq m : \frac{1}{n} \leq \frac{1}{m} \\ -\varepsilon < \frac{1}{n} \leq \frac{1}{m} < \varepsilon \end{aligned}$$

$$\forall n \in \mathbb{N}, n \ge m : \frac{1}{n} \in (-\varepsilon, \varepsilon)$$

3)
$$c_n = (-1)^n \frac{1}{n}$$

$$\lim_{n \to \infty} c_n = 0$$

ker:

$$\left| (-1)^n \frac{1}{n} - 0 \right| = \frac{1}{n} < \varepsilon$$

po prejšnjem primeru

4)
$$d_n = (-1)^n$$

zaporedje divergira

Denimo, da je x limita tega zaporedja:

- če x=-1 : $\varepsilon=1$, zunaj $(-1-\varepsilon,-1+\varepsilon)=(-2,0)$ ležijo vsi sodi členi zaporedja, ki jih je neskončno, zato -1 ni limita.
- Analogno za x = 1.

•
$$x \neq 1 \land x \neq -1$$

$$d = \min\{|x - 1|, |x + 1|\}$$

velja:

$$1 \notin (x - \frac{d}{2}, x + \frac{d}{2})$$
$$-1 \notin (x - \frac{d}{2}, x + \frac{d}{2})$$

Vsi členi zaporedja ležijo izven tega intervala, zato x ni limita. Sledi: d_n divergira.

Trditev: Konvergentno zaporedje ima eno samo limito.

Dokaz: Denimo da sta a in b limiti zaporedja a_n .

Izberemo poljuben $\varepsilon > 0$: $\exists n_a \forall n : n > n_a \Rightarrow |a_n - a| < \varepsilon$ $\exists n_b \forall n : n > n_b \Rightarrow |a_b - a| < \varepsilon$

$$|a - b| = |(a - a_n) + (a_n - b)| \le |a - a_n| + |a_n - b| < 2\varepsilon$$

$$\forall \varepsilon > 0 : |a - b| < 2\varepsilon \Rightarrow |a - b| = 0 \Rightarrow a = b$$

Trditev: Konvergentno zaporedje je omejeno

DOKAZ: Denimo, da je a_n konvergentno zaporedje z limito a. Izberemo $\varepsilon = 1$ in po definiciji velja:

$$\exists n_0 \in \mathbb{N} \forall n \geq n_0 : |a_n - a| < \varepsilon = 1$$

Lahko skonstruiramo množico členov, ki so izven ε -te okolice a. Tej množici dodamo tudi zgornjo mejo okolice $a+\varepsilon=a+1$. Ker je izven okolice končnomnogo členov, ima ta množica maksimum:

$$\max\{a+1, a_1, a_2, \dots, a_{n_0-1}\} = M$$

Za vsak n velja: $a_n \leq M$, ker če $n \leq n_0 - 1$, je a_n v zgornji množici, ki smo ji doličili maksimum, če $n \geq n_0$ je a_n v okolici a, to pomeni $a_n < a+1$, a+1 je v zgornji množici, ki smo ji določili maksimum.

Analogno lahko naredimo za spodnjo mejo.

Ni vsako omejeno zaporedje konvergentno. Primer: $a_n = (-1)^n, n \in \mathbb{N}$.

DEFINICIJA: Naj bo a_n zaporedje. Število s je $stekaličče zaporedja <math>a_n$, če v vsaki okolici s leži neskončno členov zaporedja.

PRIMER:
$$a_n = (-1)^n, n \in \mathbb{N}$$

Vemo, da ni konvergentno. -1 in 1 sta stekališči a_n , ker vvsi členi z lihimi indeksi ležijo na $(-1 - \varepsilon, -1 + \varepsilon)$ za $\varepsilon > 0$. Analgono za 1 in sode člene.

Opombi:

- 1) s je stekališče $\iff \forall \varepsilon \in \mathbb{R}, \varepsilon > 0$ je $|a_n s| < \varepsilon$ izpolnjen za neskončno mnogo indeksov n.
- 2) Če je zaporedje a_n konvergentno z limito a, potem je a edino stekališče zaporedja a_n , ker na (a b, a + b) ležijo vsi, razen končno mnogo členov.

Primeri:

- 1) Zaporedje s 3 stekališči: $a_n = n \mod 3$.
- 2) Zaporedje z 2 stekališčama, ki ima same različne člene: $a_n = (-1)^n \left(1 + \frac{1}{n}\right)$
- 3) Zaporejde z neskončno stekališči:

$$1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, \dots$$

Stekališča zaporedja so vsa naravna števila.

4) Ali ima zaporedje neštevno stekališč? Da.

Obstaja bijekcija $\mathbb{N} \to \mathbb{Q}$.

$$\mathbb{Q} = \{a_1, a_2, a_3, \ldots\}$$

Stekališča zaporedja $a_n: x \in \mathbb{R}, \varepsilon > 0$ na $(x-\varepsilon, x+\varepsilon)$ leži neskončno nogo \mathbb{Q} števil, torej neskončno mnogo členov zaporedja. Zato je x stekališče.

5) Divergentno zaporedje brez stekališč: $a_n = n$.

TRDITEV: Če vsaka okolica števila $s \in \mathbb{R}$ vsebuje člen zaporedja $a_n, a_n \neq s$, potej je s stekališče a_n .

DOKAZ: Izberemo poljuben $\varepsilon > 0$. Obstaja $n_1 \in \mathbb{N} : a_{n_1} \in (s - \varepsilon, s + \varepsilon), a_{n_1} \neq s$. Definiramo razdaljo: $d_1 = |s - a_{n_1}|$. Obstaja $n_2 : a_{n_2} \in (s - d_1, s + d_1), a_{n_2} \neq s, n_1 \neq n_2$. Postopek nadaljujemo \square .

Izrek: Vsako omejeno zaporedje ima stekališče.

Dokaz: Ker je zaopredje a_n omejeno, ima spodnjo mejo m in zgornjo mejo M.

$$\mathcal{U} = \{ u \in \mathbb{R}; a_n < u \text{ je izpolnjeno za končno mnogo členov zaporedja} \}$$

$$m \in \mathcal{U}, M + 1 \notin \mathcal{U}$$

 $\Rightarrow \mathcal{U}$ je navzgor omejena in neprazna, torej obstaja sup $\mathcal{U} = s$.

Izberemo $\varepsilon > 0$.:

- $s + \varepsilon \notin \mathcal{U} : a_n < s + \varepsilon$ je izpolnjena za neskončno mnogo členov.
- $s \varepsilon : \exists u \in (s \varepsilon, s] \cap \mathcal{U}$. Ker $u \in \mathcal{U}, s \varepsilon < u$, je $s \varepsilon \in \mathcal{U}$, zato velja da $a_n < s \varepsilon$ velja za končno mnogo členov zaporedja.

Sledi: na $[s-\varepsilon,s+\varepsilon)$ leži neskončno mnogo členov zaporedja. s je stekališče.

3.1 Monotona zaporedja

DEFINICIJA:

- Zaporedje a_n je naraščajaoče, če velja: $\forall n \in \mathbb{N} : a_{n+1} \geq a_n$.
- Zaporedje a_n je padajoče, če velja: $\forall n \in \mathbb{N} : a_{n+1} \leq a_n$.
- Zaporedje a_n je strogo naraščajaoče, če velja: $\forall n \in \mathbb{N} : a_{n+1} > a_n$.
- Zaporedje a_n je strogo padajoče, če velja: $\forall n \in \mathbb{N} : a_{n+1} < a_n$.
- Zaporedje a_n je monotono, če je zaporedje bodisi naraščajoče, ali padajoče.
- Zaporedje a_n je strogo monotono, če je zaporedje bodisi strogo naraščajoče, ali strogo padajoče.

PRIMER:

- 1) $a_n = -n$ (strogo) padajoče
- 2) $a_n = 1$ naraščajoče ali padajoče
- 3) $a_n = \frac{1}{n}$ je padajoče in navzdol omejeno
- 4) $a_n = (-1)^n$ ni ne padajoče ne naraščajoče

Trditev: Monotono zaporedje je konvergentno natanko tedaj, kadar je omejeno. Če je zaporedje a_n naraščajoče in navzgor omejeno potem:

$$\lim_{n \to \infty} a_n = \sup a_n$$

Če je zaporedje a_n padajoče in navzdol omejeno potem:

$$\lim_{n \to \infty} a_n = \inf a_n$$

Dokaz za v eno stran že vemo.

Dokaz: (v drugo stran ekvivalence)

Denimo, da je zaporedje a_n naraščajoče in navzgor omejeno. Ker je a_n navzgor omejeno: $\exists a := \sup a_n$.

Dokazujemo a_n konjugira protia

Izberemo poljubene $\varepsilon > 0$. Ker $a - \varepsilon$ ni zgornja meja zaporedja: $\exists n_0 \in \mathbb{N} : a_{n_0} > a - \varepsilon$. Ker je zaporedje a_n naraščajoče in navzgor omejeno z a velja:

$$n \ge n_0 : a - \varepsilon < a_{n_0} \le a_n \le a$$

 $\forall n \ge n_0 a_n \in (a - \varepsilon, a + \varepsilon)$

Sledi: $a = \lim_{n \to \infty} a_n$

Analogno za navzdol omejeno padajoče zaporedje.

PRIMER: $a_n = \frac{1}{\sqrt{n}}, n \in \mathbb{N}$

Najprej dokažemo, da je a_n padajoče zaporedje, t.j:

$$\frac{1}{\sqrt{n+1}} \le \frac{1}{\sqrt{n}}$$
$$\sqrt{n} \le \sqrt{n+1}$$

Vemo, da je navzdol omejeno z 0. Ker je padajoče in navzdol omejeno, je konvergentno.

 $\lim_{n\to\infty} \underline{a_n} = 0$

Vemo: $\lim_{n\to\infty} a_n = \inf a_n = a$

Vemo, da a ni negativen, ker so vsi členi zaporedji zaporedja pozitivini. Če bi a>0:

$$a_n \ge a$$

$$\frac{1}{\sqrt{n}} \ge a$$

$$\frac{1}{n} \ge a^2 > 0 \text{ za vse } n \in \mathbb{N}$$

Zaradi arhimedske lastnosti vemo, da to ni res. $\rightarrow \leftarrow$

Torej a ni negativen in a ni pozitivne, torej $a = 0 \Rightarrow \lim_{n \to \infty} a_n = 0$.

3.2 Podzaporedja

Podzaporedje zaporedja a_n je zaporedje, ki vsebuje samo nekatere člene zaporedja a_n v enakem vrstnem redu.

$$a_1, y_2, y_3, a_4, \dots$$

DEFINICIJA: Naj bo a_n zaporedje in naj bo n_j strogo naraščajoče zaporedje naravnih števil. Zaporedje $(a_{n_j})_{j=1}^{\infty}$ je podzaporedje $(a_n)_{n=1}$.

Primeri:

- 1) $(a_n)_{n=1}^{\infty}$ zaporedje podzaporedje $(a_n)_{n=1}^{\infty}$
- 2) $b_n = (-1)^n, n \in \mathbb{N}$ ni konvergentno, ima dve stekališči $b_{2n-1} = -1$ za vsak $n \in \mathbb{N}$: b_1, b_3, b_5, \ldots je podzaporedje lihih členov. Podobno lahko naredimo podzaporedje sodih členov. Podzaporedja lihih in sodih členov sta konvergentna.

Trditev Naj bo a_n zaporedje. Če je a_n konvergentno, potem je konvergentno tudi vsako njegovo podzaporedje $(a_{n_j})_{j=1}^{\infty}$ in velja:

$$\lim_{n \to \infty} a_n = \lim_{j \to \infty} a_{n_j}$$

Dokaz: Naj bo $a = \lim_{n \to \infty} a_n$

Izberemo poljuben $\varepsilon > 0$. Vemo: $\exists n_0 \in \mathbb{N} \forall n \geq n_0 : |a_n - a| < \varepsilon$

Potem velja:

$$j \ge n_0 : |a_{n_i} - a| < \varepsilon$$

 $\text{ker je } n_j \ge n_{n_0} \ge n_0$

OPOMBA: Če neko podzaporedje danega zaporedja konvergira, ni nujno, da je dano zaporedje konvergentno. Primer: $(-1)^n$.

DEFINICIJA: Rep zaporedja je zaporedje, ki ga dobimo iz danega zaporedja tako, da izpustimo prvih končno mnogo členov.

Zaporedje je konvergentno natanko tedaj, kadar je konvergenten njegov rep.

PRIMER:
$$1, 2, 4, 16, 36, 16, 4, 2, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots$$

3.3 Računanje z zaporedji

TRDITEV: Naj bosta a_n in b_n konvergentni zaporedji. Tedaj konvergirajo tudi naslednja zaporedja:

- $a_1 + b_1, a_2 + b_2, \dots, a_n + b_n, \dots$
- $a_1 b_1, a_2 b_2, \ldots, a_n b_n, \ldots$
- $a_1b_1, a_2b_2, \ldots, a_nb_n, \ldots$

in velja:

- $\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$
- $\lim_{n\to\infty} (a_n b_n) = \lim_{n\to\infty} a_n \lim_{n\to\infty} b_n$
- $\lim_{n\to\infty} (a_n b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$

Dokaz

Vsota: Izberemo poljuben $\varepsilon > 0$: $a = \lim_{n \to \infty} a_n, b = \lim_{n \to \infty} b_n$.

$$|(a_n + b_n) - (a + b)| = |(a_n - a) + (b_n - b)| \le |a_n - a| + |b_n - b| \le 2\varepsilon \text{ za } n \ge \max\{n_a, n_b\}$$

Produkt:

$$|a_n b_n - ab| = |a_n b_n - ab_n + ab_n - ab| = |b_n (a_n - a) + a(b_n - b)| \le |b_n (a_n - a)| + |a(b_n - b)|$$

Ker je b_n konvergentno, je omejeno: $\exists M_b \forall n \in \mathbb{N} : |b_n| < M_b$

$$\leq M_b|a_n - a| + |a||b_n - b| \leq \varepsilon$$
 če $n \geq \max\{n_a, n_b\}$

ker vemo:
$$|a_n - a| \le \frac{\varepsilon}{2M_b}$$
 za $n \ge n_a$ in $|b_n - b| \le \frac{\varepsilon}{2|a|}$ za $n \ge n_b$.

POSLEDICA: Če je a_n konvergentno zaporedje in $\lambda \in \mathbb{R}$, potem je zaporedje $\lambda a_1, \lambda a_2, \ldots$ konvergentno in velja:

$$\lim_{n \to \infty} \lambda a_n = \lambda \lim_{n \to \infty} a_n$$

Dokaz je enak kot dokaz za produkt limit, kjer $b_n = \lambda$.

Ker veljajo pravila za dva člena, veljajo tudi za končno mnogo.

TRDITEV: Naj bo a_n konvergentno zaporedje in $\forall n \in \mathbb{N} a_n \neq 0$ in $\lim_{n \to \infty} a_n \neq 0$. Potem je zaporedje

$$\frac{1}{a_1}, \frac{1}{a_2}, \dots, \frac{1}{a_n}, \dots$$

konvergetno in velja:

$$\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{\lim_{n \to \infty} a_n}$$

Dokaz: $a = \lim_{n \to \infty} a_n$

$$\left|\frac{1}{a_n} - \frac{1}{a}\right| = \left|\frac{a - a_n}{a_n a}\right| = \frac{|a - a_n|}{|a||a_n|} \le \frac{|a - a_n|}{|a|\eta} < \varepsilon \text{ za dovolj velike } n$$

 $|a_n|$ lahko omejino stran od 0, t.j.: $\exists \eta > 0 \forall n \in \mathbb{N} : |a_n| \geq \eta$

Konstrukcija η : Zunaj $\left(a-\frac{|a|}{2},a+\frac{|a|}{2}\right)$ leži končno mnogo členov zaporedja.

$$\eta := \min \left\{ \left| a - \frac{|a|}{2} \right|, \left| a + \frac{|a|}{2} \right|, |a_1|, |a_2|, \dots, |a_{n_0}| \right\}$$

POSLEDICA: Naj bosta a_n in b_n konvergentni zaporedji, $\forall n \in \mathbb{N} : b_n \neq 0$, $\lim_{n \to \infty} b_n \neq 0$. Potem je zaporedje $\frac{a_n}{b_n}$ konvergentno in velja:

$$\lim_{n \to \infty} \frac{a_n}{b_n} \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$$

IZREK O SENDVIČU: Naj bodo a_n, b_n, c_n taka zaporedja, da

$$\forall n \in \mathbb{N} : a_n \le b_n \le c_n$$

Če sta zaporedji a_n in c_n konvergentni in $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n$, potem je b_n konvergentno in velja:

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n$$

PRIMER:
$$b_n = \sqrt{n+1} - \sqrt{n}$$

$$\sqrt{n+1} - \sqrt{n} = \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}}$$
$$0 \le \sqrt{n+1} - \sqrt{n} \le \frac{1}{2\sqrt{n}}$$

 $\ker\,\lim\nolimits_{n\to\infty}0=0\text{ in }\lim\nolimits_{n\to\infty}\frac{1}{2\sqrt{n}}=0\text{:}$

$$\lim_{n \to \infty} b_n = 0$$

Dokaz izreka:

$$L = \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n$$

Vzamemo poljuben $\varepsilon > 0$:

$$\exists n_a : n \ge n_a \to |a_n - L| < \varepsilon$$
$$\exists n_c : n \ge n_c \to |c_n - L| < \varepsilon$$

Če vzamemo $n \ge \max\{n_a, n_c\} : L - \varepsilon < a_n \le b_n \le c_n < L + \varepsilon$.

Torej $b_n \in (L - \varepsilon, L + \varepsilon)$ za vse $n \ge \max\{n_a, n_c\}$. Zato b_n konvergira proti L

TRDITEV: Naj bosta a_n in b_n konvergetni zaporedji. Če $a_n \leq b_n$ za vse $n \in \mathbb{N}$, potem velja $\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n$. **Opomba:** Trditev s strogimi neenačaji v splošnem ne velja.

$$a_n = 0, b_n = \frac{1}{n}, a_n < b_n$$
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$

Primer: Obravnavaj konvergenco zaporedja (Newtnova formula):

$$x_1 = 2$$

$$x_{n+1} = x_n - \frac{x_n^2 - 2}{2x_n}$$

Zaporedje je s to rekurzivno zvezo dobro definirano, t.j.: $\forall n \in \mathbb{N} : x_n \neq 0$

$$x_{n+1} = x_n - \frac{x_n^2 - 2}{2x_n} = \frac{2x_n^2 - x_n^2 + 2}{2x_n} = \frac{x_n^2 + 2}{2x_n} > 0$$

Če $x_n \neq 0$ potem $x_{n+1} \neq 0$. To lahko preverimo tudi z indukcijo.

Dokažemo lahko, da: \underline{x}_n je padajoče

$$x_{n+1} = x_n - \frac{x_n^2 - 2}{2x_n}$$

Če je $\frac{x_n^2-2}{2x_n} > 0$, potem je padajoče. Dovolj je dokazati, da je $x_n^2-2 \geq 0$, ker tedaj iz rekurzivne zveze sledi: $x_{n+1} \leq x_n$.

$$x_{n+1}^2 = \left(\frac{x_n^2 + 2}{2x_n}\right)^2 - 2 = \frac{x_n^4 + 4x_n^2 + 4 - 8x_n^2}{4x_n^2} = \frac{x_n^4 - 4x_n^2 + 4}{4x_n^2} = \frac{(x_n^2 - 2)^2}{4x_n^2} \ge 0$$

 x_n je padajoče in navzdol omejeno, zato je konvergentno. Torej lahko izračunamo limito. Velja:

$$x_{n+1} = \frac{x_n^2 + 2}{2x_n}$$
$$2x_n x_{n+1} = x_n^2 + 2$$

in vemo:

$$\exists \lim_{n \to \infty} x_n =: x$$

Ker je x_{n+1} rep zaporedja x_n , je konvergentno in ima isto limito kot x_n . Ker s konvergentnimi zaporedji lahko računamo:

$$\lim_{n \to \infty} (2x_n x_{n+1}) = \lim_{n \to \infty} (x_n^2 + 2)$$
$$2x^2 = x^2 + 2$$
$$x^2 = 2$$
$$x = \pm \sqrt{2}$$

vemo $x \ge 0$, torej

$$\lim_{n\to\infty} x_n = \sqrt{2}$$

IZREK: Naj bo $I_n = [a_n, b_n], a_n < b_n$ zaporedje vloženih zaprtih intervalov, t.j.:

$$\forall n \in \mathbb{N} : [a_{n+1}, b_{n+1}] \subset [a_n, b_n]$$

Denimo, da zaporedje njihovih dolžin konvergira proti nič:

$$\lim_{n\to\infty} (b_n, a_n) = 0$$

Tedaj obstaja natanko eno število $c \in \bigcap_{n=1}^{\infty} I_n$

DOKAZ: a_n je naraščajoče zaporedje, b_n je padajoče zaporedje. Obe zaporedji sta omejeni (navzdol z a_1 in navzgor z b_1). Zato sta obe konvergentni. Zato $\lim_{n\to\infty} (b_n - a_n) = \lim_{n\to\infty} b_n - \lim_{n\to\infty} a_n$.

$$\Rightarrow \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n =: c$$

$$\forall n \in \mathbb{N} : c \in I_n$$

$$c = \sup a_n : a_n \le c$$

$$c = \inf b_n : c \le b_n$$

$$c \in [a_n, b_n]$$

Dokaz, da je število c eno samo doma.

IZREK: Naj bo a_n zaporedje. Število b je stekališče zaporedja a_n natanko tedaj, kadar obstaja podzaporedje zaporedja a_n , ki konvergira proti s.

Dokaz:

(\Leftarrow) Denimo, da podzaporedje a_{n_j} konvergira proti s. Dokazujemo, da je s stekališče a_n .

Izberemo poljuben $\varepsilon > 0$. Obstaja j_0 , da za vsak $j \geq j_0$ velja:

$$a_{n_i} \in (s - \varepsilon, s + \varepsilon)$$

Torej je na $s-\varepsilon, s+\varepsilon$ neskončno členov zaporedja. Zato je s stekališče.

 (\Rightarrow) Denimo, da je s stekališče zaporedja a_n . Za dokaz bomo skonstruirali tako zaporedje, da bo konvergiralo proti s. Naj bo

$$U_m = \left(s - \frac{1}{m}, s + \frac{1}{m}\right)$$

Na U_1 obstaja neskončno mnogo členov zaporedja, zato lahko izberemo $a_{n_1} \in U_1.$

Na U_2 obstaja neskončno mnogo členov zaopredja, zato obstaja:

$$n_2 > n_1 \wedge a_{n_2} \in U_2$$

Ta postopek induktivno nadaljujemo. Recimo, da že imamo:

$$a_{n_1}, a_{n_2}, \ldots, a_{n_k}, \text{ da } n_1 < n_2 < \ldots n_k \text{ in vsak } a_{n_i} \in U_i$$

Na intervalu U_{k+1} obstaja neskoncčno členov zaporedja, zato obstaja $n_{k+1} > n_k$ in $a_{n_{k+1}} \in U_{k+1}$

Podzaporedje a_{n_1} konvergira proti s po konstrukciji.

3.4 Cauchyjev pogoj

Zanima nas opis konvergence brez sklicevanja na limito. a_n je konvergentno, če obstaja $a \in \mathbb{R}$:

$$\forall \varepsilon \exists n_0 \forall n \ge n_0 : |a_n - a| < \varepsilon$$

Definicija: Zaporedje a_n izpolnjuje Cauchyjev pogoj, če velja:

$$\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \forall n, m \ge n_0 : |a_n - a_m| < \varepsilon$$

Če zaporedje izpolnjuje Cauchyjev pogoj, pravimo, da je zaporedje *Cauchyjevo*.

IZREK: Zaporedje realnih števil a_n je konvergentno natanko tedaj, kadar je Cauchyjevo.

Opomba: Za zaporedje racionalnih števil ta izrek ne velja. Obstaja zaporedje $q_n, q_n \in \mathbb{Q}$, q_n je Cauchyjevo ni pa konvergentno v \mathbb{Q} . Npr. zaporedje racionalnih približkov za $\sqrt{2}$.

Dokaz:

 (\Rightarrow) Denimo, da zaporedje a_n konvergira proti a. Za poljuben $\varepsilon>0$ po definiciji konvergence velja:

$$\exists n_0 \forall n \geq n_0 : |a_n - a| < \varepsilon$$

Za $n, m \ge n_0$ velja:

$$|a_n - a_m| = |a_n - a + a - a_m| \le |a_n - a| + |a - a_m| < 2\varepsilon$$

Torej je zaporedje Cauchyjevo.

 (\Leftarrow) Denimo, da je a_n Cauchyjevo.

Potem je a_n omejeno

$$\exists n_0 : \forall n, m \geq n_0 : |a_n - a_m| < 1 = \varepsilon$$

Zato je $|a_n - a_{n_0}| < 1$ za vse $n \ge n_0$. (Namesto m vzamemo n_0 , saj vstreza pogoju)

Torej vsi členi razen $a_1, a_2, \ldots, a_{n_1}$ ležijo na $(a_{n_0} - 1, a_{n_0} + 1)$. Zato je a_n omejeno.

Vemo, da ima vsako omejeno zaporedje stekališče s. Trdimo $\underline{s}=\varliminf_{n\to\infty}\underline{a_n}$

Izberemo poljuben $\varepsilon > 0$. Denimo, da je zunaj $(s - \varepsilon, s + \varepsilon)$ neskončno členov zaporedja. Potem bi zunaj $s - \varepsilon, s + \varepsilon$ obstajalo omejeno podzaporejde zaporedja a_n , zato ima to podzaporeje stekališče $t, t \neq s$. t je stekališče a_n .

Cauchyjevo stekališče nima nikoli dveh različnih stekališč.

Denimo, da sta s in t stekališči.

$$d = |s - t|$$

Na $(s-\frac{d}{3},s+\frac{d}{3})$ leži neskončno členov zaporedja.

Na $(t-\frac{d}{3},t+\frac{d}{3})$ leži neskončno členov zaporedja.

Če bi bilo zaporedje Cauchyjevo, $\exists n_0 \forall n, m \geq n_0 : |a_n - a_m| < \frac{d}{3}$. Pridemo v protislovje s prejšnjima dvema izjavama. $\rightarrow \leftarrow$

IZREK: Vsako omejeno zaporedje, ki ima eno stekališče je konvergentno (v dokazu prejšnjega izreka (če si naredil domačo nalogo, tudi na dolgo)).

Opomba: Izrek (zelo očitno) ne velja za neomejena zaporedja.

DEFINICIJA: Naj bo a_n zaporedje. Pravimo, da zaporedje a_n konvergira proti neskončno, če velja:

$$\forall M \in \mathbb{R} \exists n_o \in \mathbb{N} \forall n \in \mathbb{N}, n > n_0 : a_n > M$$

V tem primeru pišemo:

$$\lim_{n\to\infty} a_n = \infty$$

Zaporedje, ki konvergira proti neskončno **ni** konvergentno. Z drugimi besedami: zaporedij, ki konvergirajo proti ∞ **ne** štejemo med konvergentna zaporedja.

Podobno definiramo tudi $\lim_{n\to\infty} a_n = -\infty$:

$$\forall m \in \mathbb{R} \exists n_0 \forall n \in \mathbb{N}, n \geq n_0 : a_n \leq m$$

PRIMER: a_n : $\lim_{n\to\infty} a_n = \infty$

 $b_n = n^{(-1)^n}$ ne konvergira proti neskončno.

Nekaj posebnih zaporedij:

Trditev: Naj bo $a \in \mathbb{R}$

- 1) $|a| < 1 \Rightarrow a^n$ konvergentno z limito 0
- 2) $a > 1 \Rightarrow a^n$ konvergira proti ∞

Dokaz:

1) $a \in (0,1)$ zaporedje a^n je padajoče: $a^{n+1} < a^n$ in navzdol omejeno z 0, zato je konvergetno.

Naj bo $b_n = a^n$ in $b_{n+1} = a^{n+1} = ab_n$. Vemo:

$$b = \lim_{n \to \infty} b_n$$

Torej:

$$b = \lim_{n \to \infty} b_{n+1} = \lim_{n \to \infty} (ab_n) = a \lim_{n \to \infty} b_n = ab$$
$$b(1 - a) = 0$$

Ker $a \neq 1$ velja b = 0.

Če $a \in (-1,0)$ velja:

$$-|a|^n \le a^n \le |a|^n$$

Za $|a|^n$ velja zgoren dokaz. Nato lahko uporabimo izrek o sendviču, zaradi katerega velja:

$$\lim_{n\to\infty} a^n = 0$$

2) $a > 1 : a^n$ je naraščajoče

Če bi bilo omejeno, bi bilo konvergentno. Po prejšnjem dokazu bi dobili $\lim_{n\to\infty}a_n=0$, kar ni mogoče, ker je zaporedje naraščajoče in so vsi členi pozitivni. Torej a_n ni omejeno.

Zato
$$\lim_{n\to\infty} a^n = \infty$$

Ker je a_n neomejeno, za $M \in \mathbb{R}$ obstaja $n_0 : a^{n_0} \ge M$. Ker je naraščajoče velja:

$$\forall n \ge n_0 : a^n \ge M$$

TRDITEV: Za vsak a > 0 in vsak $m \in \mathbb{N}$ obstaja natanko en x0, ki reši enačbo $x^m = a$. To rešitev označimo z $\sqrt[m]{a}$. Veljajo osnovne lastnosti za $\sqrt[m]{a}$:

 $a, b > 0, m, n \in \mathbb{N}$

$$\sqrt[m]{ab} = \sqrt[m]{a} \sqrt[m]{b}$$

$$\sqrt[n]{a^m} = (\sqrt[n]{a})^m$$

$$\sqrt[nm]{a} = \sqrt[m]{\sqrt[n]{a}}$$

$$\sqrt[np]{a^{nq}} = \sqrt[p]{a^q}$$

$$\sqrt[p]{a^q} \sqrt[n]{a^m} = \sqrt[pn]{a^{qn}} \sqrt[np]{a^{mp}} = \sqrt[np]{a^{qno+np}}$$

DEFINICIJA: Naj bo $a > 0, a \in \mathbb{R}, m, n \in \mathbb{N}$. Pišemo $a^{\frac{n}{m}} = \sqrt[m]{a_n}$

$$a^0 = 1$$

$$a^{-\frac{n}{m}} = \frac{1}{a^{\frac{n}{m}}}$$

Naj bo $q \in \mathbb{Q}$. Obstajata $m \in \mathbb{Z}, n \in \mathbb{N} : q = \frac{m}{n}$.

$$a^q = a^{\frac{m}{n}}$$

Opomba: Je dobro definirano, ker ni odvisno od izbere ulomka (ena izmed lastnosi nam dovoljuje "krajšanje")

TRDITEV: Naj bo $a \in \mathbb{R}, a > 0, p, q \in \mathbb{Q}$. Velja:

$$a^{pq} = (a^p)^q$$
$$a^p a^1 = a^{p+q}$$
$$a^p b^p = (ab)^p$$

Trditev: Za $a \in \mathbb{R}, a > 0$ velja: $\lim_{n \to \infty} \sqrt[n]{a} = 1$

Dokaz: a > 1:

$$\sqrt[n]{a} \ge \sqrt[n+1]{a}$$
$$a^{n+1} \ge a^n$$

Zaporedje je padajoče. Ker je navzdol omejeno z0 (tudi z1), je konvergetno in njegova limiti $\geq 1.$

Denimo, da je $\lim_{n\to\infty} \sqrt[n]{a} = L > 1$:

$$\sqrt[n]{a} \ge L > 1$$
$$\forall n \in \mathbb{N} : a \ge L^n$$

Ker je L > 1, L^n konvergira proti ∞ , kar pomeni, da bo presegel a. Torej protislovje \longleftrightarrow .

Zato je L=1.

Za
$$a < 1$$
 je podoben dokaz (DN).

Trditev: $\lim_{n\to\infty} \sqrt[n]{n} = 1$

Dokaz:

$$n = \left(\sqrt[n]{n}\right)^n = \left(\left(\sqrt[n]{n} - 1\right) + 1\right)^n =$$

$$= 1 + \binom{n}{1}\left(\sqrt[n]{n} - 1\right) + \binom{n}{2}\left(\sqrt[n]{n} - 1\right)^2 + \dots \ge$$

$$\ge \binom{n}{2}\left(\sqrt[n]{n} - 1\right)^2 = \frac{n(n-1)}{2}\left(\sqrt[n]{n} - 1\right)^2$$

Dobili smo:

$$0 \le \frac{n(n-1)}{2} \left(\sqrt[n]{n} - 1\right)^2 \le n$$

torej velja:

$$0 \leq \frac{n-1}{2} \left(\sqrt[n]{n} - 1 \right)^2 \leq 1$$

 $za n \ge 2.$

Po izeku o sendviču velja: $\lim_{n\to\infty} \left(\sqrt[n]{n}-1\right)=0$

IZREK: Zaporedje $a_n = \left(1 + \frac{1}{n}\right)^n$ je konvergentno. Njegovo limito označimo z:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Dokaz: a_n je naraščajoče

$$a_n = \left(1 + \frac{1}{n}\right)^n = 1 + \binom{n}{1}\frac{1}{n} + \binom{n}{2}\frac{1}{n^2} + \dots + \binom{n}{k}\frac{1}{n^k} + \dots + \binom{n}{n}\frac{1}{n^n}$$
$$\binom{n}{k}\frac{1}{n^k} = \frac{n!}{k!(n-k)!} \cdot \frac{1}{n^k} = \frac{1}{k!} \cdot \frac{n(n-1)(n-2)\dots(n-k+1)}{nnnn\dots n}$$

Ker je v števu in imenvolacu tega ulomka enako števil, lahko naredimo rečemo:

$$\frac{1}{k!} \cdot \frac{n(n-1)(n-2)\dots(n-k+1)}{nnnn\dots n} = \underbrace{\frac{1}{k!}(1-\frac{1}{n})(1-\frac{2}{n})\dots(1-\frac{k-1}{n})}_{k-1}$$

Torej velja:

$$a_n = 1 + 1 + \frac{1}{2!} (1 - \frac{1}{n}) + \frac{1}{3!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) + \dots + \frac{1}{n!} (\dots)$$

$$a_{n+1} = 1 + 1 + \frac{1}{2!} (1 - \frac{1}{n}) + \frac{1}{3!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) + \dots + \frac{1}{n!} (\dots) + \frac{1}{(n+1)!} (\dots)$$

Prva dva člena sta enaka, nato pa se začnejo razlikovati v oklepajih:

$$1 - \frac{1}{n} \le 1 - \frac{1}{n+1}$$

Prav tako ima zaporedje a_{n+1} en člen več kota zaporedje a_n . Iz tega sledi: $a_n \leq a_{n+1}$

 a_n je navzgor omejeno

$$a_n = 1 + 1 + \frac{1}{2!} (1 - \frac{1}{n}) + \frac{1}{3!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) + \dots \le$$

$$\le 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots + \frac{1}{n!} \le 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{n-1}} =$$

$$= 1 + \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} \le 1 + \frac{1}{\frac{1}{2}} = 3$$

Sledi, da je a_n konvergentno.

3.5 Potence z realnimi eksponenti

$$a > 0, x \in \mathbb{R}, a^x$$
 $r_n \stackrel{n \to \infty}{\longrightarrow} x, r_n \in \mathbb{Q}$

- Če r_n konvergira, potem a^{r_n} konvergira.
- Če $r_n \stackrel{n \to \infty}{\longrightarrow} x, s_n \stackrel{n \to \infty}{\longrightarrow} x, r_n, s_n \in \mathbb{Q}$, potem velja: $\lim_{n \to \infty} a^{r_n} = \lim_{n \to \infty} a^{s_n}$

$$a^x := \lim_{n \to \infty} a^{r_n}$$
, kjer $r_n \stackrel{n \to \infty}{\longrightarrow}, r_n \in \mathbb{Q}$

Trditev: Naj bo $a \in \mathbb{R}, a > 0$. Potem:

$$\forall \varepsilon > 0 \exists \delta > 0 \forall h \in \mathbb{Q}, |h| < \delta : |a^h - 1| < \varepsilon$$