PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-227309

(43)Date of publication of application: 15.08.2000

(51)Int.CI.

G01B 11/00 B25J 19/04

(21)Application number: 11-027359

(71)Applicant:

OLYMPUS OPTICAL CO LTD

(22)Date of filing:

04.02.1999

(72)Inventor:

KOSAKA AKIO

SAITO AKITO

SHIBAZAKI TAKAO **ASANO TAKEO** MATSUZAKI HIROSHI **FURUHASHI YUKITO**

(54) THREE-DIMENSIONAL POSITION POSTURE SENSING DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a three-dimensional position posture sensing device capable of stably estimating the three-dimensional position posture of an object without being affected by shield and the like.

SOLUTION: A three-dimensional position posture sensing device has an image input means for inputting an image 5 taken by an image device and of which three dimensional position information for a measuring object 1 is known and at least three markers 2 are imaged, a region extraction means extracting the region corresponding to each marker 2 on the image 5, a marker identifying means identifying individual means from the characteristic of outline of the marker 2 in the extracted region, and a position posture operation means operating the three dimensional position posture of the measuring object for the imaging device by using the position on the image 5 of each identified marker 2 and the three dimensional position posture of the measuring object of each marker 2.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特第2000-227309 (P2000-227309A)

(43)公開日 平成12年8月15日(2000.8.15)

(51) Int CL'

說別記号

FΙ

テーマコード (参考)

G01B 11/00 B25J 19/04 G01B 11/00

2F065

B25J 19/04

3F059

零査請求 未請求 請求項の数3 OL (全 25 頁)

(21)出願番号

特顯平11-27359

(22) 出願日

平成11年2月4日(1999.2.4)

(71) 出頭人 000000376

オリンパス光学工業株式会社

東京都渋谷区幅ヶ谷2丁目43番2号

(72)発明者 小坂 明生

東京都渋谷区幡ヶ谷2丁目43番2号 オリ

ンパス光学工業株式会社内

(72)発明者 斉藤 明人

東京都渋谷区幡ヶ谷2丁目43番2号 オリ

ンパス光学工業株式会社内

(74)代理人 100058479

弁理士 鈴江 武彦 (外4名)

最終頁に続く

(54)【発明の名称】 3次元位置姿勢センシング装置

(57) 【要約】

【課題】本発明は、遮蔽などの影響を受けずに、安定に 対象物の3次元位置姿勢を推定することができる3次元 位置姿勢センシング装置をを提供する。

【解決手段】本発明によると、撮像装置により撮像され た、測定対象物に対する3次元位置情報が既知の少なく とも3個のマーカが写っている画像を入力する画像入力 手段と、上記画像上で上記各マーカに対応する領域を抽 出する領域抽出手段と、上記抽出した領域において、マ ーカの外観上の特徴から個々のマーカを特定するマーカ 10 特定手段と、上記特定された各マーカの上記画像上での 位置と、各マーカの測定対象物に対する3次元位置情報 を用いて、上記撮像装置に対する測定対象物の3次元位 置姿勢を演算する位置姿勢演算手段とを有することを特 徴とする3次元位置姿勢センシング装置が提供される。

【特許請求の範囲】

【請求項1】 撮像装置により撮像された、測定対象物 に対する3次元位置情報が既知の少なくとも3個のマー カが写っている画像を入力する画像入力手段と、

上記画像上で上記各マーカに対応する領域を抽出する領 城抽出手段と、

上記抽出した領域において、マーカの外観上の特徴から 個々のマーカを特定するマーカ特定手段と、

上記特定された各マーカの上記画像上での位置と、各マ ーカの測定対象物に対する3次元位置情報を用いて、上10 記損像装置に対する測定対象物の3次元位置姿勢を演算 する位置姿勢演算手段と、

を有することを特徴とする3次元位置姿勢センシング装

【請求項2】 撮像装置により撮像された、測定対象物 に対する3次元位置情報が既知の少なくとも4個のマー カが写っている画像を入力する画像入力手段と、

上記画像上で上記各マーカに対応する領域を抽出する領 域抽出手段と、

個々のマーカを特定するマーカ特定手段と、

上記マーカ特定手段によって特定されたマーカより3つ のマーカを選択するマーカ選択手段と、

上記マーカ選択手段によって選択された3つのマーカの 上記画像上での位置と、各マーカの測定対象物に対する 3次元位置情報を用いて、上記提像装置に対する測定対 象物の3次元位置姿勢を演算するためのパラメータ組を 複数算出するパラメータ組算出手段と、

上記マーカ選択手段によって選択されなかつたマーカに 対して、上記パラメータ組算出手段によつて算出された30 パラメータ組を適用評価することにより、1つのパラメ ータ組を選択するパラメータ組選択手段と、

を有することを特徴とする3次元位置姿勢センシング装

【請求項3】 前記パラメータ組選択手段によつて選択 された1つのパラメータ組に関して、各マーカの測定対 象物に対する3次元位置情報を適用して評価することに より、該バラメータ組を改善するパラメータ改善手段を さらに含むことを特徴とする請求項2記載の3次元位置 姿勢センシング装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、3次元位置姿勢セ ンシング装置に係り、特に、画像撮影装置を利用して対 象物の3次元位置姿勢を推定することにより、対象物の 3次元位置姿勢をセンシングするようにした3次元位置 **姿勢センシング装置に関する。**

[0002]

【従来の技術】一般に、相対的な位置が既知な少なくと も3点のランドマークやマーカを画像撮影により認識 50

し、対象物と撮影装置との相対的位置姿勢関係を推定す る問題は、n点問題の一部として考えられる(文献1: M. A. Fischler and R. C. Boll es, "Random sample consens us:A paradigm for model itting withapplications t o image analysis and auto mated cartography, "Commun ications of the ACM, Vol. 2 4. No. 6, June 1981, pp. 381-3 95参照)。

【0003】この場合、ランドマークあるいはマーカの 個数が3点のみのときには、解が複数個存在することが 知られている。

【0004】このような問題を解決するために、特殊な マーカを利用する方法としては、特開平1-98208 **号公報に開示されている方法などを挙げることができ**

【0005】すなわち、この特開平7-98208号公 --上記抽出した領域において、マーカの外観上の特徴から20 --報に開示されている方法は、大円1個と小円1個の位置 関係を利用するものである。

> 【0006】また、文献2(W. A. Hoff, T. L yon, and K. Nguyen, "Compute r Vision-Based Registrati onTechniques for Augmente d Reallty, "Proc. of Intell igent Robots and Computer VisionXV, Vol. 2904, in Int elligentSystems and Advan ced Manufacturing, SPIE, Bo ston, Massachusetts, Nov. 19 - 21, pp. 538-548, 1996.)では、形 状が同一の複数のマーカを利用して、カメラ画像から3 次元位置姿勢を推定するシステムが閉示されている。

[0007]

【発明が解決しようとする課題】しかるに、上述した特 関平7-98208号公報に開示されているテクニック では、基本的に、大円1個とその付近に定義された小円 1個のみからマーカが定義されるため、次のような欠点 があった。

【0008】(1)大円1個と小円1個の画像内での大 きさが小さいときには、測定誤差が大きくなる。

【0009】(2)大円1個と小円1個が遮蔽や画像処 理上の限界から認識できなかったときには、位置姿勢が 認識できなくなってしまう。

【0010】また、上述した文献2では、複数のマーカ が同一のパターン構造で構成されているときには、マー カ自体を同定することが困難なことが多い。

【0011】これは、遮蔽などの影響によりマーカ群の 一部が認識できないときには、特に問題となる。

Fax:0555845872

【0012】また、環境が複雑な場合には、単一カラー などや白色または黒色だけで構成されるような単純なマ 一力の場合には、マーカと同様なパターンが、環境内に 存在する場合が多く、これらのマーカをマーカでないも のから差異を明らかにしながら認識することが困難であ

【0013】そこで、本発明では、以上のような点に鑑 みてなされたもので、(1) 遮蔽などの影響により、マ 一力群の一部が観察されないときでも、対象物の3次元 位置姿勢を推定することができるようにするとともに、10 (2) 従来のn点問題では、解を確定することができな かった3個のマーカからだけでも位置姿勢を推定するこ とができるようにした、3次元位置姿勢センシング装置 を提供することを目的としている。

[0014]

【課題を解決するための手段】本発明によると、上記課 題を解決するために、(1) 撮像装置により撮像され た、測定対象物に対する3次元位置情報が既知の少なく とも3個のマーカが写っている画像を入力する画像入力 手段と、上記画像上で上記各マーカに対応する領域を抽20…【0.0.1.9】(第1の実施の形態)図1乃至図8を参照 出する領域抽出手段と、上記抽出した領域において、マ ーカの外観上の特徴から個々のマーカを特定するマーカ 特定手段と、上記特定された各マーカの上記画像上での 位置と、各マーカの測定対象物に対する3次元位置情報・ を用いて、上記撮像装置に対する測定対象物の3次元位 置姿勢を演算する位置姿勢演算手段と、を有することを 特徴とする3次元位置姿勢センシング装置が提供され **ప**్ట

【0015】また、本発明によると、上記課題を解決す るために、(2) 振像装置により振像された、測定対 30 象物に対する3次元位置情報が既知の少なくとも4個の マーカが写っている画像を入力する画像入力手段と、上 記画像上で上記各マーカに対応する領域を抽出する領域 抽出手段と、上記抽出した領域において、マーカの外観 上の特徴から個々のマーカを特定するマーカ特定手段 と、上記マーカ特定手段によって特定されたマーカより 3つのマーカを選択するマーカ選択手段と、上記マーカ 選択手段によって選択された3つのマーカの上記画像上 での位置と、各マーカの測定対象物に対する3次元位置 情報を用いて、上記撮像装置に対する測定対象物の3次40 元位置姿勢を演算するためのパラメータ組を複数算出す るパラメータ組算出手段と、上記マーカ選択手段によっ て選択されなかつたマーカに対して、上記パラメータ組 算出手段によつて算出されたパラメータ組を適用評価す ることにより、1つのパラメータ組を選択するパラメー タ組選択手段と、を有することを特徴とする3次元位置 姿勢センシング装置が提供される。

【0016】また、本発明によると、上記課題を解決す るために、(3) 前記パラメータ組選択手段によつて 選択された1つのパラメータ組に関して、各マーカの測 50

定対象物に対する3次元位置情報を適用して評価するこ とにより、茲パラメータ組を改善するバラメータ改善手 段をさらに含むことを特徴とする (2) 記載の 3 次元位 置姿勢センシング装置が提供される。

【0017】すなわち、本発明は、具体的には、位置姿」 勢を推定すべき対象物あるいは対象物付近に、対象物に 対する相対的位置関係があらかじめ決定している『幾何 **学的に固有の特徴を持った固有マーカ(コードマー** カ)』を複数配置し、その複数のマーカを画像撮影装置 により撮影し、画像内から固有マーカ群を抽出するとと もに、そのマーカの幾何学的特徴を抽出かつそのマーカ の同定を行い、そのマーカの対象物に対する3次元位置 と画像撮影装置により撮影された画像内での2次元位置 を利用して、画像撮影装置または他の装置を規定する座 標系における対象物の3次元位置姿勢を推定する方式を 与えるものである。

[0018]

【発明の実施の形態】以下図面を参照して本発明の実施 の形態について説明する。

して第1の実施の形態について説明する。

【0020】図1は、第1の実施の形態による3次元位 置姿勢センシング装置の構成を示すプロック図である。

【0021】図1に示されているように、3次元位置姿 勢を推定すべき対象物1あるいはその付近には、幾何学 的に固有の特徴を持った複数の固有マーカ2 (以下コー ドマーカと略す)が配置されている。

【0022】そして、このコードマーカ2を画像撮影装 置3により撮影し、その撮影した画像5がコンピュータ 4内に転送される。

【0023】ここで、画像撮影装置3は、一般的なTV カメラなどあるいはディジタルビデオカメラなどでよ く、画像撮影装置3から画像5を受け取るコンピュータ 4は、通常のコンピュータであっても特殊な画像処理流 笋装置であっても構わない。

【0024】また、画像撮影装置3としてのTVカメラ がアナログ信号を出力する場合には、コンピュータ4内 には、画像5をディジタル化する装置やユニットが含ま れていてもよい。

【0025】また、画像撮影装置3がディジタルカメラ やディジタルビデオカメラなどの場合には、直接コンピ ュータ4に画像5を転送することにより、コンピュータ 4が画像5をディジタル信号として入力することができ

【0026】このようにして、第1の実施の形態による 3次元位置姿勢センシング装置では、コンピュータ4が 画像撮影装置3から受け取ったコードマーカ2が撮影さ れた画像5を受け取り、それがディジタル画像の形に変 換されるとともに、そのディジタル画像をコンピュータ 4で処理することにより、画像5内からコードマーカ2

5

Fax: 0555845872

を認識し、そのコードマーカの画像内位置とあらかじめ 登録されているコードマーカの3次元位置とを利用する ことにより、対象物1の画像撮影装置3に対する3次元 位置姿勢を推定するものである。

【0027】なお、本実施の形態では、少なくとも4個のコードマーカが同定できた場合に関して、対象物の位置姿勢を推定する方法に関して解説するものとする。

【0028】そして、少なくとも3個のコードマーカが 同定できた場合に関しては、別の実施の形態で解説する ものとする。 10

【0029】まず、本実施の形態における画像と座標変換に関する基本的な扱いに関して説明しておく。

【0030】基本的に、対象物1と画像撮影装置3は固有の座標系を有しており、画像撮影装置3が撮影した画像5は、カメラ画像面として定義される。

【0031】図2は、この画像撮影装置3と、カメラ画像面と、対象物1が規定するオブジェクト座標系との関係を表したものである。

【0032】ここで、対象物1が規定するオブジェクト c Hmまた 座標系はその原点を0m、その3次元座標を(xm, y-20 (数1)

w, zm)とする。

【0033】一方、画像撮影装置3が規定するカメラ座標系は、その原点を0。、その3次元座標を (x_c, y_c, z_c) とする。

6

【0034】カメラ画像面はその軸が u 軸と v 軸により 構成され、u 軸はカメラ座標系の x c と平行に、 v 軸は y c 軸に平行に取られ、カメラ座標系を規定する z c 軸 が画像撮影装置3の光学系の光軸と一致し、その光軸と カメラ画像面が交わる点(カメラ画像面の中心)が、 (uc, vo)で定義される。

【0035】画像撮影装置3に相対する対象物1の3次元位置姿勢を推定する問題は、カメラ座標系に対するオブジェクト座標系の位置姿勢を推定する問題、含い換えれば、オブジェクト座標系からカメラ座標系への座標変換パラメータ、またはカメラ座標系からオブジェクト座標系への座標変換パラメータを算出する問題に帰着される。

【0036】これを数学的に記述すると、斉次変換行列 cHmまたはmHcを利用して、

$$\begin{bmatrix} x_{c} \\ y_{o} \\ z_{c} \\ 1 \end{bmatrix} = {}_{c}H_{m} \begin{bmatrix} x_{m} \\ y_{m} \\ z_{m} \\ 1 \end{bmatrix} = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{m} \\ y_{m} \\ z_{m} \\ 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_{x} \\ r_{21} & r_{22} & r_{23} & t_{x} \\ r_{31} & r_{32} & r_{33} & t_{x} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{m} \\ y_{m} \\ z_{m} \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x_{m} \\ y_{m} \\ z_{m} \\ 1 \end{bmatrix} = {}_{m}H_{c} \begin{bmatrix} x_{c} \\ y_{c} \\ z_{c} \\ 1 \end{bmatrix} = \begin{bmatrix} R' & t' \\ y_{c} \\ z_{c} \\ 1 \end{bmatrix} = \begin{bmatrix} r'_{11} & r'_{12} & r'_{13} & t_{x} \\ r'_{21} & r'_{22} & r'_{23} & t'_{x} \\ r'_{21} & r'_{22} & r'_{23} & t'_{x} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{c} \\ y_{c} \\ z_{c} \\ 1 \end{bmatrix}$$

$$(2)$$

と沓くことができる。

【0037】ここに、 $R = (r_{ij})$, $R' = (r'_{ij})$ は 3×3 の回転行列を表し、 $t = (t_x, t_y, t_z)$, $t' = (t'_x, t'_y, t'_z)$ は3次元並 進ペクトルを表す。

【0038】以下で詳細に説明するマーカ群 $\{M_i: i=1, 2, \ldots, m\}$ は、あらかじめオブジェクト座 標系での3次元位置が計測されており、それらを $\{x_i=y_i=, y_i=, z_i=\}$ で表現する。

【0039】また、その画像内位置を(u₁, v₁)で記述することとする。

【0040】すると、画像撮影装置3をピンホールカメ40 ラモデルで近似したとき、それらの座標間には、以下の 関係が成立する。

[0041]

【数2】

$$\begin{bmatrix} U_{1} \\ V_{1} \\ W_{1} \end{bmatrix} = \begin{bmatrix} \alpha_{11} & 0 & u_{0} & 0 \\ 0 & \alpha_{1} & v_{0} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} eH_{m} \begin{bmatrix} x_{1}^{m} \\ y_{1}^{m} \\ z_{2}^{m} \\ 1 \end{bmatrix}$$

$$u_{i} = \frac{U_{1}}{W_{1}} \quad v_{1} = \frac{V_{1}}{W_{1}}$$

$$(3)$$

ここに(uo, vo) は画像内の中心、(au, av) 30 はu方向とv方向の拡大率を表し、画像撮影装置3に関 するカメラ内部パラメータであり、カメラキャリブレー ションにより推定できる値である。

【0042】図3は、本実施の形態における幾何学的特徴を持ったコードマーカ2群の一例を表したものである。

【0043】このコードマーカ2は、円形の形状をしており、その大円内には、小円のパターンがコードとして表されている。

【0044】この例では、大円の中央部に小円1個があり、そのまわりに4個の小円が配置されている。

【0045】この5個の小円の白黒(またはカラー)コードにより、各マーカに固有のラベルを付与することができる

【0046】例えば、図3の場合には、コード0からコード11までの12個の異なったコードを生成することができる。

【0047】図4は、本実施の形態における別のコード パターンを表したものである。

【0048】このパターンの場合には、大円の中に7個50の小円を配置することで、各種のコードを生成した場合

る対象物1の3次元位置姿勢を算出する。

5 ページ

を表わしている。

【0049】なお、コードを生成するパターンとして は、これだけには限らす、例えば、図5に示されるよう な、同心円上にコードを付加したものでも構わない。

【0050】ここで、基本的に重要なことは、各マーカ が幾何学的特徴を有しており、それがマーカにラベルを 付加するに足るコードを生成できることである。

【0051】また、マーカ自体は円形でなくてもよく、 例えば、正方形でも正多角形でもよい。

【0052】図6は、本発明において、コンピュータ410 に 画像 5 が入力された後に、対象物 1 の 3 次元位置姿勢 を推定するまでの処理手順を示すフローチャートであ

【0053】以下、各ステップについて簡単に説明す

【0054】(1)ステップ1:画像5を受け取ったコ ンピュータ4は、その画像5の中からコードマーカ2に 対応する領域と推定される候補領域を抽出する。

【0055】(2)ステップ2:コンピュータ4は、上 記ステップ1により抽出された候補領域内を詳細に解析20 【0062】具体的には、画像面(ロ, v)で定義され し、その中からコードマーカ2のコードに対応する幾何 学的特徴を抽出し、そのコードが認識された場合には、 その領域をマーカ領域として、その画像内位置とコード を登録する。

i=(R+G+B)/3, r=R/(R+G+B), g=G/(R+G+B)

に対応する3個のベクトルを算出し、マーカが取りうる 画像内での色パターンの許容値を、次の式

【数4】

imin < i < imax

rmin < r < rmax

gmin < g < gmax

を満たす画像領域を抽出する。

[0063] == T. imin, imax, rmin, rmax, gmin, gmaxなどの値は、あらかじめ 設定しておくものとする。

【0064】次に、領域内の穴埋めを行うことによりマ 一力に対応する領域を決定する。

【0065】ステップ2:次に、抽出された領域がマー カの食であるか否かを判定する。

【0066】基本的に、マーカの形状は円形であるの で、その投影像である画像内での領域は、楕円形で近似 することが可能である。

【0067】従つて、本ステップ2では、マーカの領域 が楕円で近似することができるか否かを判定する。

【0068】この方法としては、文献3(K. Raha rdja and A. Kosaka "Visionbased bin-picking: Recogni tion and localization of multiple complex objects 50

【0056】(3) ステップ3:コンピュータ4は、上 記ステップ2で登録された画像から抽出されたコードマ 一カ2の画像内2次元位置と対象物1に相対する3次元 位置とを利用することにより、画像撮影装置3に対応す

【0057】以下、本実施の形態の中心となるステップ 1,2、3について、より詳細に説明する。

【0058】ステップ1:本実施の形態では、画像撮影 装置3がカラー画像を生成するものとするとともに、コ ードマーカ2としては、図3で示されるようなコードマ 一カ(大円と小円の組み合わせ)からなると仮定する。

【0059】この際、大円の背景色は、ある規定された 色から成り立っており、対象物1内で固有な色であると 仮定する。

【0080】また、小円内のパターンは、白または黒の みのパターンから成り立っていると仮定する。

【0061】マーカの領域は単色から成立しているの で、その単色に敏感な色フィルタをアルゴリズム内に導 入するものとする。

る画像点に関して、カラー画像を構成する3フィルタの 計測値R (赤)、G (緑)、B (青)から、次の式 【数3】

using simple visual s," Proceedings of 1996 IE EE/RSJ International Conf erence on Intelligent Rob 30 ots and Systems, Osaka, Jap an, November 1996) で示されている方 法により行う。

【0069】具体的には、(1)マーカの候補領域と考 えられる各領域を含む直方領域を切り出し、マーカ候補 領域内を1、領域外を0とラベル化する。

【0070】この1でラベル化される領域に対して、穴 埋め処理を行い、内部に存在するラベル0で表される小 傾域を除去する。

【0071】(2)ラベル1で表されるマーカ候補領域 の1次モーメントqoと2次モーメントMを算出する。

【0072】(3)ラベル1で表されるマーカ候補領域 の境界点列の集合をA=(q)として、Aの各点に関し て、以下の式で表される正規化距離 d を算出する。

[0073]

【数5】

$$d = \sqrt{(q - q_0)^T M^{-1} (q - q_0)}$$
 (5)

(4) dの集合Aに対する平均値 μ と標準偏差 σ a を算 出する。

【0074】そして、σaがある閾値よりも小さけれ

ば、マーカ領域として登録するが、そうでなければマー カ領域として登録しない。

【0075】このようにして、栫円であると判定された 場合には、楕円領域内での3値処理により、楕円領域内 で考えられるパターンの抽出を行う。

【0076】具体的には、図7の(a)に示されている ようなマーカ領域に対して、

(1)上記ステップ1で得られた穴埋めされたマーカ領 域に対して、メディアンフィルタなどを施してノイズ成 分を除去する(図7の(b))。

【0077】(2)その領域内の濃淡値(明度)の平均 値μαと標準偏差σαを算出する。

【0078】(3)領域内の各画素の濃度値 g に対し て、ある定められた実数 t を利用し、

- g μ_R > t σ_R ならば、その画素をラベル1
- 2) $g \mu_g < -t \sigma_g$ ならば、その画素をラベルー1
- 3) 1) でも2) でもなければ、その画索をラベル0で ラベル化する。

【0079】こうして得られた領域内で、1,-1,0 で表される小領域を抽出する(図7の(c))。---- --20-- て、すべてのマーカを利用して解の更新を行うようにし

【0080】(4)1または-1でラベル化された小領 域で、マーカ領域の中央にもつとも近い小領域を抽出す

【0081】この小領域をセンターパターンと命名し、 そのセンターパターンと領域の1次モーメントqoと2 次モーメントMを利用し、センターパターンからその他 のパターンまでの正規化距離と正規化角度(楕円領域を 円領域へ変換したときのパターン間角度)を算出する。

【0082】図7の(d) は、このセンターパターンか らその他のパターンまでの正規化距離と正規化角度を算30 出する様子を表している。

【0083】これらの正規化距離とパターン間の正規化 角度がある一定の幾何学的性質を保っていたときには、 このマーカ候補領域は、マーカ領域として認識され、そ の小領域が作るパターンのコードを読みとることによ り、マーカの同定を行うことができる。

【0084】図7の(d)では、図3のコードパターン のコード2として認識されることになる。

【0085】このようにして同定されたマーカ領域は、 その画像内でのセンターパターンの重心位置が、コード40 マーカの位置(ui, vi) (i=1, 2,

3, . . .) として登録される。

【0086】ステップ8:ステップ2で同定されたマー · カの画像内位置(u;, v;) (i=1, 2, 3, . . .) とオブジェクト座標系における3次元マー 力位置 (xiº, yiº, ziº) が与えられたとき、 如何にして式(3)で表される斉次変換行列chm 上を算 出するが、このステップ3の課題である。

【0087】これは、基本的には、上述した文献1

10

es, "Random sample consens us: A paradigm for model f itting with applications to image analysis and aut omatedcartography, "Commun ications of the ACM, Vol. 2... 4, No. 6, June 1981, pp. 381-3 295)で示される方法を以下に示すように変更しながら 行う。

【0088】すなわち、この文献1で紹介されている方 法では、同定されたマーカ群の中から一直線上にない任 意の3個のマーカを選択し、その3個のマーカを利用し てカメラ座標系とオブジェクト座標系間の座標変換パラ メータ解の候補を算出するようにしている。

【0089】しかるに、その座標変換パラメータとして は、最大4種類の解が存在することがわかっているの で、本発明では、その4種類の各解に対して、選択され なかつたマーカ群を利用して解の検証を行うことによ り、解の絞り込みを行うとともに、その解を初期値とし たものである。

【0090】以下、その方法に関して簡単に説明する。 【0091】同定されたマーカ群の中から、ある選択基 準に従って画像内で一直線上にない3個のマーカを選択 する。

【0092】この選択基準としては、

い)を考える。

- (1) カメラ画像面で3個のマーカを頂点とする3角形 の面積が最大となる3個のマーカを選択する方法
- (2) カメラ画像面で3個のマーカを頂点とする3角形 の最大内角が最小である3個のマーカを選択する方法な どが考えられる。

【0093】このようにして得られたマーカをMi(i = 1, 2, 3) とする。

【0094】次に、これら3個のマーカM1(そのモデ ル座標系における3次元位置をPi、(xim, yim, zim)、 画像内位置をQi(ui, vi)と する) に関して、図8に示されるような3個の3角形 **△** $0_c M_i M_j$ (i, j=1, 2, 3; i と j は 等しくな

【0095】これらの3個の3角形に関して、カメラ画 俊系の原点O。から各マーカMiまでの距離をdiと し、マーカM₁, M₁とカメラ座標系原点O_cがなす角 度θijとする。

【0096】また、マーカ M_i , M_j 間の距離を R_{ij} と する.

【0097】このとき距離R12, R23, R31と角度 θ_{12} , θ_{23} , θ_{31} は既知の値となるが、 d_1 , d_2 , d_3 3は未知の値となる。

【0098】逆に言えば、距離 d1, d2, d3を算出 (M. A. Fischler and R. C. Boll 50 することができれば、オブジェクト座標系からカメラ座

11

標系への座標変換パラメータを算出することができる。 【0099】以下この点に関して解説する。

【0100】(1) 距離R₁₂、R₂₃, R₃₁の第出方法 R₁₂は点P₁ と点P₂ 間のユークリッド距離として算出 される。

【0101】同様に、R23、R31はそれぞれ、点P2と

 P_3 、点 P_3 と P_1 間のユークリッド距離として算出される。

【0102】 (2) 角度 θ_{12} , θ_{23} , θ_{31} の算出方法 マーカ M_1 , M_3 とカメラ座標系の原点0。とがなす角 度 θ_{13} は以下のように算出することができる。まず、

【数6】

(ũi, vì)を(uì, vì)の正規化された座標値とすると、

$$\tau_i = \frac{u_1 - u_0}{\alpha_u} \qquad \forall i = \frac{v_1 - v_0}{\alpha_v}$$

正規化された画像点(\widetilde{U}_i , \widetilde{V}_i)は、カメラ座標系でzc=1に対応する(xc,yx)に 対応することから、ベクトル(\widetilde{U}_i , \widetilde{V}_i ,1)と(\widetilde{U}_i , \widetilde{V}_i ,1)のなす角度が θ ijであるので、

$$\cos\theta_{ij} = \frac{\overline{u_i}\overline{u_j} - \overline{v_i}\overline{v_j} + 1}{\sqrt{\overline{u_i}^2 + \overline{v_i}^2 + 1}\sqrt{\overline{u_j}^2 + \overline{v_j}^2 + 1}} = \frac{\frac{u_i - u_0}{\alpha_u} \frac{u_j - u_0}{\alpha_u} + \frac{v_i - v_0}{\alpha_v} \frac{v_j - v_0}{\alpha_v} + 1}{\sqrt{\frac{(u_i - u_0)^2}{\alpha_u} + (\frac{v_i - v_0}{\alpha_v})^2 + 1}\sqrt{\frac{(u_j - u_0)^2}{\alpha_v} + (\frac{v_j - v_0}{\alpha_v})^2 + 1}}$$

で与えられる。

-【0103】このようにして、3個の角度をその余弦よ20 omated cartography, "Commu b算出することができる。 nications of the ACM Vol.

【0104】(3) 距離d_i(i=1, 2, 3) の算出 3角形0cM₁M₂, 0cM₂M₃, 0cM₃M₁に対 して第2余弦定理を適用すれば、

【数7】

 $R_{12} = d_1^2 + d_2^2 - 2d_1d_2\cos\theta$ 12 $R_{23} = d_2^2 + d_3^2 - 2d_2d_3\cos\theta$ 23

 $R_{31} = d_3^2 + d_1^2 - 2d_3d_1\cos\theta_{31}$

が導かれる。

【0105】これらの3つの式において、未知数は d_1 , d_2 , d_3 の3個であり、制約式も3つであるので、理論的には上式を満たす解 $\{(d_1(k), d_2(k), d_3(k)): k=1, 2, 3, 4\}$ が存在する。

【0106】その解法に関しては、上述した文献1 (M. A. Fischler and R. C. Bolles, "Random sample consensus: A paradigm for model fitting with applications 40

(l̃i, V̄i,1)と (xic,yic, zic)は平行であるから、

to image analysis and automated cartography, "Communications of the ACM, Vol. 24, No. 6, June 1981, pp. 381-395) で詳しく述べられているように、この方程式には最大4個の解が存在することがわかっており、その解が4次方程式の解として数値解析的に解くことが可能でも5

【0107】(4)解(d₁, d₂, d₃)の検証と最適解の選択

基本的には、最大4個の解の中で1個だけが正しい解を 30 与えるものである。

【0108】上記の解の中で、どの解が正しいかを検証するのが、このステップである。

【0109】各解(d_1 , d_2 , d_3)について、カメラ座標系Cでのマーカ位置(x_1 , y_1 , z_1)を算出する方法について解説する。

【0110】カメラ座標系原点Cからマーカまでの距離がdiであり、その画像内位置が(ui, vi) であり、

【数8】

$$d_i = \sqrt{(x_i^c)^2 + (y_i^c)^2 + (z_i^c)^2}$$
 $D_i = \sqrt{(x_i^c)^2 + (y_i^c)^2 + 1}$

が成立し、

【数9】

$$x_i^c = \frac{d_i}{D_i} \ \widetilde{u_i} \qquad y_i^c = \frac{d_i}{D_i} \ \widetilde{v_i} \qquad z_i^c = \frac{d_i}{D_i}$$

と書くことができる。

【0111】いま、オブジェクト座標系でのマーカ位置50

$$\begin{bmatrix} x_i^c \\ y_i^c \\ z_i^c \end{bmatrix} = R \begin{bmatrix} x_i^m \\ y_i^m \\ z_i^m \end{bmatrix} + t$$

と書かれる。

$$\begin{bmatrix} x_{mean}^{c}, y_{mean}^{c}, z_{mean}^{c} \end{bmatrix}, \begin{bmatrix} x_{mean}^{m}, y_{mean}^{m}, z_{mean}^{m} \end{bmatrix}, z \neq \delta z,$$

$$\begin{bmatrix} x_{i}^{c} - x_{mean}^{c} \\ y_{i}^{c} - y_{mean}^{c} \\ z_{i}^{c} - z_{mean}^{c} \end{bmatrix} = R \begin{bmatrix} x_{i}^{m} - x_{mean}^{m} \\ y_{i}^{m} - y_{mean}^{m} \\ z_{i}^{m} - z_{mean}^{m} \end{bmatrix}$$

$$\mathbf{t} = \begin{bmatrix} x_{mean}^{c} \\ y_{mean}^{c} \\ z_{mean}^{c} \end{bmatrix} - R \begin{bmatrix} x_{mean}^{m} \\ y_{mean}^{m} \\ z_{mean}^{m} \end{bmatrix}$$

が成立し、並進ベクトルと回転行列を別々の式で算出す ることができる。

【0114】i=1, 2, 3に対して、上記方程式を解 く方法としては、quaternion法(四元数法)20~て、そのオブジェクト座標系における3次元位置(x; がある。

【0115】この方法の詳細は文献3(B, K, P, H orn, "Closed-formsolution of absolute orientation u sing unit quaternions, "Jo urnal of Optical Society of America A, VO1. 4, No. 4, 1 987, pp. 629-642.) に述べられているの で、その詳細はここでは省略する。

【0116】このようにR. tが算出されると、斉次変30 換行列 c Hmは式(1), (2) により計算することが

【0117】以上のことを4個の解に対して繰り返すこ とにより、cHm (1), cHm (2), cHm (3), cHm (4) の4個の解を算出することができ る。

【0118】さて、同定されたコードマーカのうち最初 の選択されなかつたコードマーカをM4,

M5, . . . , Mmとする。

【0119】次に、各斉次変換行列解cHm(k)(k40 =1, 2, 3, 4) に対して、解として最もふさわしい 解を、これらM₄, M₅, . . . , M_mを利用して決定 . する方法を説明する。

【0120】(1)各解cHm(k)に対する評画関数 dist(k)を最小にするkを、以下のステップで算 出する。

[0121] (2) SRCHm(k) (k=1, 2,3, 4) に関して以下の方法により、dist(k)を 算出する。

【0122】a) dist(k):=0と評価関数を初50 選択する。

【0112】ここに、Rは回転行列を表し、tは並進べ クトルを表す。 【0113】いま、両座標系でのマーカ群の重心ベクト

【数11】

期化する。

【0123】b)同定されたが最初の3個に選択されな かったマーカ M_j ($j=4,5,\ldots,m$) につい m, yjm, zjm) を、cHm(k) を利用してカメ ラ画像面に変換する。

【0124】その投影画像点を(uj´, vj´)とす る。これは、

【数12】

$$\begin{bmatrix} U'_{j} \\ V'_{j} \\ W'_{j} \end{bmatrix} = \begin{bmatrix} \alpha_{u} & 0 & u_{0} & 0 \\ 0 & \alpha_{v} & v_{0} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} eH_{m}(k) \begin{bmatrix} x_{j}^{m} \\ y_{j}^{m} \\ z_{j}^{m} \\ 1 \end{bmatrix}$$
$$u'_{j} = \frac{U'_{j}}{W'_{i}} \quad v'_{j} = \frac{V'_{j}}{W'_{i}}$$

により算出することができる。

【0126】続いて、マーカMjの実際に画像内で測定 された2次元位置(uj, vj)と投影画像点(u j´, vj´)との2乗誤差c;を算出する。

【0126】この2乗誤差ejは、以下のようにして算 出することができる。

[0127]

 $e_j = (u_j - u_j)^2 + (v_j - v_j)^2$ そして、dist(k)は、

【数13】

dist(k) =
$$\sum_{j=4}^{m} e_j = \sum_{j=4}^{m} \{(u'_j - u_j)^2 + (v'_j - v_j)^2\}$$

で求められる。

【0128】(3)以上のようにして求められたdis t (k) が最小となる斉次変換行列の解cHm (k)を

9 1 -6

Fax: 0555845872

【0129】要約すると、上記のステップで求められる 最適解 c H m (k) は、コードマーカM₁, M₂, M₃ から生成される解のうち、他のマーカM4,

 M_5, \ldots, M_m が最も支持する解を選択するもので ある。

【0130】(5)解の更新

上記ステップ(4)で選択された解cHm(k)は、コ ードマーカM1, M2, M3から推定されたものであ り、他のマーカM4、M5、...、Mmに対する測定 値を利用したものではない。

【0131】そこで、本ステップ(5)では、上記ステ

ップ(4)で算出された解cHm(k)を初期推定値c $Hm^{(0)}$ として、すべてのコードマーカMi (i=1, 2, ..., m) により、この解の更新を行う。 【0132】すなわち、cHmを角度成分(roll (ϕ_z) -pitch (ϕ_y) -yaw (ϕ_x)) と並 進成分(tx, ty, tx)に展開して、6次元未知変 数p=(ϕ_x , ϕ_y , ϕ_z ; t_x , t_y , t_z) とし、 ,その初期推定値を p (0) = (φ x (0) , φ y (0) , φ z (0); tx(0). ty(0), tz(0)) と定義する。 【0133】具体的には、

【数14】

により与えられる。

【数16】

1, 2, ..., m) に関して、

$$cH_{m} = \begin{bmatrix} \cos \phi_{x} \cos \phi_{y} & \cos \phi_{x} \sin \phi_{x} \sin \phi_{x} - \sin \phi_{x} \cos \phi_{x} & \cos \phi_{x} \sin \phi_{y} \cos \phi_{x} + \sin \phi_{x} \sin \phi_{x} & k_{y} \\ \sin \phi_{x} \cos \phi_{y} & \sin \phi_{x} \sin \phi_{x} \cos \phi_{x} \cos \phi_{x} & \sin \phi_{x} \sin \phi_{y} \cos \phi_{x} - \cos \phi_{x} \sin \phi_{x} \\ -\sin \phi_{y} & \cos \phi_{y} \sin \phi_{x} + \cos \phi_{x} \cos \phi_{x} & \sin \phi_{x} \sin \phi_{y} \cos \phi_{x} - \cos \phi_{x} \sin \phi_{x} \\ \cos \phi_{y} \cos \phi_{x} & \cos \phi_{y} \sin \phi_{x} & \cos \phi_{y} \cos \phi_{x} & k_{y} \\ \cos \phi_{y} \cos \phi_{y} & \cos \phi_{x} \sin \phi_{x} \cos \phi_{x} \cos \phi_{x} & \cos \phi_{x} \cos \phi_{x} \cos \phi_{x} \cos \phi_{x} \cos \phi_{x} & k_{y} \\ \sin \phi_{x} \cos \phi_{y} & \sin \phi_{x} \cos \phi_{x$$

により定義される。

- 【0.1-3-4】これをオブジェクト座標系でのマーカ 3 次 20 - 【0.1-3 6】この式を整理すると、各マーカM;(i = 元位置(xin, yin, zin)と、そのカメラ画像 面での位置(ui, vi)の関係を利用しながら、6次 元位置姿勢パラメータャ=(φェ, φυ, φε; tx, ty, tg)を更新することを考える。

【0135】オブジェクト座標系でのマーカ3次元位置 (xiⁿ, yiⁿ, ziⁿ) と、そのカメラ画像面での 位置(ui、vi)の関係は

【数15】

$$\begin{bmatrix} U_i \\ V_l \\ W_i \end{bmatrix} = \begin{bmatrix} \alpha_u & 0 & u_0 & 0 \\ 0 & \alpha_u & v_0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} eHm \begin{bmatrix} x_i^m \\ y_i^m \\ z_i^m \\ 1 \end{bmatrix}$$
$$u_l = \frac{U_l}{W_i} \quad v_i = \frac{V_l}{W_i}$$

なる2次制約式によって表現され、6次元パラメータの 初期推定値p(0) = (φ_x(0), φ_y(0), φ_z(0); tx(0) . ty(0) , t_x(0)) を用いて、6次元パラ メータ $p = (\phi_x, \phi_y, \phi_z; t_x, t_y, t_z)$ を 推定する問題となる。

【0137】この問題はよく知られた非線形方程式問題 であり、多くの文献がその解法を紹介しているので、こ こではその詳細を述べない。

【0138】このようにして6次元パラメータは、すべ てのマーカの測定値を利用して更新され、オブジェクト 座標系からカメラ座標系への座標変換パラメータが算出 される。

【0139】すなわち、対象物1と画像撮影装置3との 間の位置関係を算出することができる。

【0140】以上のような第1の実施の形態によれば、 マーカ群の一部が遮蔽されて検出できなかった場合で も、検出されたマーカだけから対象物1と画像撮影装置 3との間の3次元位置関係を算出することができる。

【0141】また、マーカの検出に際しては、マーカ固 有のコードを利用することにより、マーカ同定の借頼性 が従来技術に比べて格段に向上させることができるの で、より安定な位置姿勢計測を実現することができる。

【0142】 (第2の実施の形態) 次に、第2の実施の 形態について説明する。

ファナツク 技術管理室 Fax: 0555845872

10 ページ

17

【0143】上述した第1の実施の形態では、画像撮影 装置3としてカラー画像を生成できるものを仮定し、そ の色情報を利用することにより、マーカ領域を抽出する ようにしている。

【0144】これに対し、本第2の実施の形態では、カ ラー画像を用いずにモノクロ画像を撮影する画像撮影装 置3を利用し、マーカが独自に持つ幾何学的構造を画像 内から抽出することにより、マーカ領域を抽出するよう にしている。

【0145】また、本第2の実施の形態では、抽出され10 たマーカ領域の領域の大きさの情報を利用してカメラ座 標系からマーカまでの距離の初期推定値を算出すること により、マーカの数が3個のときでも、安定的に対象物 1と画像撮影装置3間の3次元位置姿勢パラメータを算 出することができるようにしている。

【0146】上述した第1の実施の形態のようにカラー 画像を利用する方式では、複雑な環境下で照明光が変化 する場合には、単一色領域を抽出したり、単純な関値処 理によってマーカに対応する領域を正確に抽出すること

【0147】本実施の形態で説明する方式では、このよ うな複雑な環境下でもロバストに3次元位置姿勢推定が 行えるように、マーカが独自に持つ幾何学的関係を画像 内から抽出することを行う。

【0148】本実施の形態の基本的な構成は図1で示さ れた構成と同様であり、その処理のステップは、図6で 示された方法と同様であるが、ステップ1では、画像撮 影装置3がカラー画像の代わりにモノクロ画像をコンピ ュータ4に送出する。

【01.49】また、ステップ2では、カラー画像の代わ30 りにモノクロ画像からマーカ領域が抽出される点が異な

【0150】また、ステップ3においては、マーカ領域 からマーカを同定するのに必要となるコードが検出され るとともに、マーカ領域自体の大きさの情報が抽出され る点が異なる。

【0151】さらに、ステップ4においては、マーカ領 域の大きさの情報も利用しながら、対象物1と画像撮影 装置3との間の3次元位置姿勢パラメータが算出され

【0152】以下、その詳細を、ステップ2、3、4に ついて解説する。

【0153】なお、本実施の形態でも、コードマーカと しては、図3で示されるような円形マーカを想定して解 説する。

【0154】ステップ2:図9は、第2の実施の形態に おけるステップ2での処理の手順を示すフローチャート である。

【0155】ステップ11では、画像撮影装置3により 送出されたモノクロ画像が、コンピュータ4内のメモリ50 をすべて満たしているか否かを判定条件とすればよい。

領域に記憶された後、その画像配列I(u, v)に対し て、メディアンフィルタなどの平滑化フィルタを適用 し、マーカ領域内に存在する微細なテクスチャや画像に 含まれるノイズ成分を除去する。

【0156】続いて、ステップ12では、平滑化された 画像について領域分割アルゴリズムを適用し、画像を領 域分割する。

【0157】この領域分割アルゴリズムとしては、上述 した文献3 (K. Rahardjaand A. Kos aka "Vision-based bin-pick ing:Recognition and local ization of multiple compl ex objects using simplevi sual cues, "Proceedings of 1996 IEEE/RSJ Internatio nal Conference on Intelli gent Robots and Systems, O saka, Japan, November 1996) に示されているSpedge-and-Medge方法 - が困難な場合が多い。----- - - - - - - - - - - - - - - - 20... や、..文献4-(T. Pavlidis and Y. Li ow, "Integrating region gr owing and edge detection n, "IEEE Transactions attern Analysis and Machi ne Intelligence, Vol. 12, N o. 3, pp. 225-233, 1990) に示される Splitーand-Merge方法や、Cannyエ ッジ抽出方法で抽出したエッジ成分を連結して領域分割 する方法など、どのような方法でもよい。

> 【0158】次に、ステップ13では、このようにして 分割される各領域に関して、その領域の幾何学的特徴量 を計算する。

【0159】例えば、その領域kに対して『面積A

(k)』、『大きさL(k)』、『濃度の平均値m

(k)』、『濃度の標準偏差 s (k)』などを算出す る。

【0160】これらの特徴量が、マーカとして取りうる。 値として妥当であるか否かを関値処理により判定する。

【0161】具体的には、上記各特徴量が、あらかじめ 定められた範囲内の値であるか否かを見ればよい。

【0162】例えば、上記各特徴量が、面積A(k)、 大きさL(k)、濃度の平均値m(k)、濃度の標準偏 差 g (k)の場合には、

【数17】

Amin < A(k) < AmaxLmin < L(k) < Lmaxmmin < m(k) < mmaxsmin < s(k) < smax

11 ベージ

19

【0163】ここで、Amin, Amaxなどの値は、対象物1の大きさ、コードマーカ2の大きさ・色、画像撮影装置3と対象物1の距離の上限と下限などを考慮することにより、あらかじめ設定できるものである。

【0164】このようにして分割された領域の中からマーカに対応すると思われる領域の1次候補が選択される。

【0165】続いて、ステップ14では、第1次選択で 候補とされた領域に関して、その領域がコードマーカ領域として妥当であるか否かを詳細に判定する。

【0166】この場合、基本的にコードマーカの外形は、図3に示されるように円形であるので、その画像内での投影像は楕円で近似することができる。

【0167】そこで、第1次選択で候補とされた領域が、楕円であるか否かを詳細に判定する。

【0168】この判定方法については、第1の実施の形態の場合と同様であるので、ここでは省略する。

【0169】これでステップ2は終了する。

【0170】ステップ3:このステップ3において、第 1の実施の形態の場合と原画像がカラー画像ではなく、20 モノクロ画像であることが異なるが、その処理の方法は 第1の実施形態の場合と同様であるので、ここではその 解説を省略する。

【0171】ステップ4:ステップ3で、コードマーカ が同定できた後、ステップ4へ引き継がれる情報は、各 コードマーカに対して、オブジェクト座標系におけるコ 20

ードマーカの3次元位置(x_i [®], y_i [®], z_i [®])、 カメラ画像面における位置(u_i , v_i)、コードマー カの画像内における桁円近似に基づく長軸の長さ r_i である。

【0172】本ステップでは、コードマーカの画像内における楕円近似の長軸の長さriを利用して、カメラ座標系から各コードマーカまでの距離diの初期推定値を 算出し、その初期推定値を有効に利用することで対象物1と画像撮影装置3との間の3次元位置関係を計測する り方法を解説する。

【0173】(1) 画像撮影装置3からマーカ2までの 距離の初期推定値の第出

以上のようにしてマーカが同定できた場合には、そのマーカ2と画像撮影装置3との間の距離の初期推定値を第 出する。

【0174】以下この方法を説明する。

【0175】図10に示すように、マーカの中心を P_i 、カメラの焦点を0。とするとともに、カメラ像面 と0。 P_i の交点を Q_i とすると、 Q_i はマーカ像の中 心であると判断することができる。

【0176】また、マーカの3次元モデルを半径R_iの球で近似し、マーカの像を楕円で近似するとき、その画像内の楕円の長軸の長さをr_iとする。

[0177]

【数18】

画像点(ui, vi)に対する正規化された画像点(ữi, ữi)との間には、

$$\widetilde{\mathbf{u}_i} = \frac{\mathbf{u}_i - \mathbf{u}_0}{\alpha_{II}}$$
, $\widetilde{\mathbf{v}_i} = \frac{\mathbf{v}_i - \mathbf{v}_0}{\alpha_{V}}$

ここで実際のカメラシステムでは、αυ≈ανが成立している。そこで

$$\alpha_{uv} = \frac{1}{2} (\alpha_u + \alpha_v)$$

でこれらの値を近似することとする。すると正規化された カメラ画像面における楕円の長軸の長さ7iは

$$\widetilde{r_i} = \frac{1}{\alpha_{ij}} r_i$$

正規化された楕円の長軸とマーカ球の間には、以下の関係式が近似的に成り立つ:

$$\frac{R_i}{\cos\theta_i}: \widetilde{r_i} = z_i: 1$$

ここに、 θ_1 はカメラの光軸と OP_1 がなす角度であり、 z_1 は P_1 のカメラ座標系におけるz 値である。 【O178】 そして、 z_1 と d_1 の間には、以下の関係

が成立するから、 【数19】

21

22

はは以下のように表現できる。

Fax: 0555845872

$$d_i = \frac{R_i}{r_i \cos^2 \theta_i}$$

 $z_i = d_i \cos \theta_i$

すなわち

$$d_i = \frac{\alpha_{UV}R_i}{n\cos^2\theta_i}$$

いまfiの測定にるriの誤差が見積もられると、diに関する誤差 8 diは

$$\delta d_i = -\frac{\alpha_{uv}R_i}{\eta^2 \cos^2\theta_i} \delta r_i$$

従って、diに関すkる誤差分散 σ d²は、 η の誤差分散 σ r²を利用して、

$$\sigma_{di}^2 = \left(\frac{\alpha_{uv}R_i}{r_i^2\cos^2\theta_i}\right)^2 \sigma_{ri}^2$$

と表現することができる。

【0179】(2)対象物1と画像扱影装置3間の3次 元位置姿勢推定

カメラ座標系Ocでのマーカ位置(xic, yic, 2 ic) を算出する方法についてまず解説し、続いてオブ ジェクト座標系とカメラ座標系間の座標変換パラメータ の算出について解説する。

【0180】各マーカ;とマーカ;に対して、その3次 -- ······ -- ····· -- · ····· 20 元的距離をRij、カメラ視点Oc (焦点位置) と Qi, Qjがなす角度をθi;とすると、 【数20】

正規化された画像点(G[N])は、カメラ座標系でzc=1に対応する(xc,yc) に対応することから、ベクトル(Oï, Vi, 1)と(Oj, Vj, 1)のなす角度が θ ij であるので

$$\cos\theta = \frac{\overrightarrow{U_{i}}\overrightarrow{U_{j}} + \overrightarrow{V_{i}}\overrightarrow{V_{j}} + 1}{\sqrt{\overrightarrow{U_{i}}^{2} + \overrightarrow{V_{j}}^{2} + 1}} = \frac{\frac{u_{i} - u_{0}}{\alpha u} \frac{u_{j} - u_{0}}{\alpha u} + \frac{v_{i} - v_{0}}{\alpha v} \frac{v_{j} - v_{0}}{\alpha v} + 1}{\sqrt{\frac{(u_{j} - u_{0})^{2}}{\alpha u}^{2} + (\frac{v_{i} - v_{0}}{\alpha v})^{2} + 1}} = \frac{\frac{u_{i} - u_{0}}{\alpha u} \frac{u_{j} - u_{0}}{\alpha u} + \frac{v_{i} - v_{0}}{\alpha v} \frac{v_{j} - v_{0}}{\alpha v} + 1}{\sqrt{\frac{(u_{j} - u_{0})^{2}}{\alpha v}^{2} + (\frac{v_{j} - v_{0}}{\alpha v})^{2} + 1}}$$

で与えられる。

【0181】各マーカの基準座標系での3次元位置は確 定しているので、マーカ間の距離もあらかじめ確定して いる。

【0182】いま、この距離をaijとすれば、三角形の 余弦定埋から

【数21】

$$f_{ij} = d_i^2 + d_j^2 - 2d_i d_i \cos \theta_{ij} - R_{ij} = 0$$

が成立しなければならない。

【0183】従って、前ステップで求められたd;の推 定値と d_i の誤差分散ならびに $cos(\theta_{ij})$ の誤差 分散を利用することにより、diの初期値を更新するこ

とができる。

【0184】このように diの初期値を更新する方法と しては、

- (1) ニュートン法を利用する方法
- (2) 準ニュートン法を利用する方法
- (3) カルマンフィルタを利用する方法 など多くの方法が挙げられる。

【0185】本実施の形態では(3)のカルマンフィル 40 タを利用して解を算出する方法について述べる。

【0186】上記で説明されている距離 d_i (i=1, 2, . . . , n) を変数とするベクトルpを定義し、そ の初期分散行列をS、すなわち

【数22】

$$p = \begin{bmatrix} d_1, d_2, ..., d_n \end{bmatrix}^\mathsf{T}, \quad \mathsf{S} = \mathsf{diag} \left(\sigma_1 2, \sigma_2 2, ..., \sigma_n ^2 \right)$$
としたとき、 $q_{ij} = \begin{bmatrix} u_i, v_i, u_j, v_j \end{bmatrix}^\mathsf{T}$ を測定ベクトルとして、
$$\frac{\partial f_{ij}}{\partial p} = \begin{bmatrix} 0 & \cdots & 0 & \frac{\partial f_{ij}}{\partial d_i} & 0 & \cdots & 0 \end{bmatrix}$$
なる微分を考える。ここに $\frac{\partial f_{ij}}{\partial d_i} = 2d_1 - 2d_j \cos \theta_{ij} & \frac{\partial f_{ij}}{\partial d_j} = 2d_j - 2d_j \cos \theta_{ij}$
であり、
$$\frac{\partial f_{ij}}{\partial q_{ij}} = \begin{bmatrix} -2d_i d_j & \frac{\partial \cos \theta_{ij}}{\partial u_i} & -2d_i d_j & \frac{\partial \cos \theta_{ij}}{\partial v_j} & -2d_i d_j & \frac{\partial \cos \theta_{ij}}{\partial v_j} & -2d_i d_j & \frac{\partial \cos \theta_{ij}}{\partial v_j} \\ \\ -2d_i d_j & \frac{\partial \cos \theta_{ij}}{\partial u_i} & -2d_i d_j & \frac{\partial \cos \theta_{ij}}{\partial v_j} & -2d_i d_j & \frac{\partial \cos \theta_{ij}}{\partial v_j} & -2d_i d_j & \frac{\partial \cos \theta_{ij}}{\partial v_j} \\ \\ -2d_i d_j & \frac{\partial \cos \theta_{ij}}{\partial u_i} & -2d_i d_j & \frac{\partial \cos \theta_{ij}}{\partial v_j} & -2d_i d_j & \frac{\partial \cos \theta_{ij}}{\partial v_j} & -2d_i d_j & \frac{\partial \cos \theta_{ij}}{\partial v_j} \\ \\ -2d_i d_j & \frac{\partial \cos \theta_{ij}}{\partial u_i} & \frac{\nabla i_i h_i h_j - \frac{\nabla i_i h_j}{h_j}}{h_i^2 h_j^2} & \alpha_v & \frac{\nabla i_i h_i h_j - \frac{\nabla i_i h_j}{h_j}}{h_i^2 h_j^2} & \alpha_v & \frac{\nabla i_i h_i h_j - \frac{\nabla i_i h_j}{h_j}}{h_i^2 h_j^2} & \alpha_v & \frac{\nabla i_i h_i h_j - \frac{\nabla i_i h_j}{h_j}}{h_i^2 h_j^2} & \alpha_v & \frac{\nabla i_i h_j}{h_i^2 h_j$$

で示される繰り返し演算を行うことにより、求めるべき ベクトルゥを更新することができる。

【0187】このpはカメラ座標系の原点からマーカ位 置までの距離に対応する。

【0188】この距離が推定できると、第1の実施の形態で説明した方法と同様にして、オブジェクト座標系からカメラ座標系への座標変換パラメータを算出することができる。

【0189】以上、第2の実施の形態によれば、原画像50

としてカラー画像を利用する必要がないため、より安価なシステムを構成することができるとともに、最低3個のコードマーカを使用する場合でも、対象物と画像撮影装置間の3次元位費関係を計測することができる。

【0190】(第3の実施の形態) 次に、第3の実施の 形態について説明する。

【0191】上記第1及び第2の実施の形態においては、原画像からマーカ領域と思われる領域を抽出するのに、原画像と同じサイズの画像を利用するようにしてい

14 ベージ

25

る。

【0192】しかるに、本発明では、基本的にマーカに対応する領域は、円形や多角形などの単純な形状をしており、その内部背景は均一な色などで構成されていることから、原画像と同じサイズの画像を処理しなくてもマーカ領域と想定される領域を抽出することが可能である。

【0198】そこで、本実施の形態では、原画像をいったん縮小し、縮小された画像に対して、第1または第2の実施の形態において、マーカ領域を抽出するととも 10に、縮小画像内で抽出されたマーカの位置を利用して、原画像でのマーカ領域の位置を推定するとともに、原画像サイズでのマーカ領域内で、コードマーカの同定を行うことにより、原画像サイズでのマーカ領域抽出に関わる処理時間を短縮することができる手法を説明するものである。

【0194】説明の関係上、本実施の形態では、第2の 実施の形態で説明した方法に関して、縮小を生成して処理を行う場合について説明する。

【0195】しかしながら、第1の実施の形態で説明し20 ある。 た方法への適用も容易であることは言うまでもない。 【0210】以下、

【0196】本実施の形態では、画像の大きさを原画像から1/16に縮小した場合について、説明する。

【0197】基本的には、図6のステップ1におけるマーカ領域の抽出を縮小画像で行うものである。

【0198】サブステップ1:原画像を1/18に縮小する(行方向に1/4、列方向に1/4とする)。

【0199】いま、原画像の画像配列を(i, j)とし、縮小画像の画像配列を(is, js)とすると、i=4*is+0, i=4*is+1. i=4*is+302. i=4*is+3の各Iに対して、かつj=4*js+0, j=4*js+1, j=4*js+2, j=4*js+3に対するJにおける16両素の平均値を(is, js)の画素値とすることで、縮小画像を作成する。

【0200】サブステップ2:サブステップ1で作成された縮小画像に対して、マーカに対応すると予想される領域を抽出する。

【0201】この抽出方法は、第1の実施の形態または 第2の実施の形態で述べられた方法と同様である。 4

【0202】サブステップ3:サブステップ2で抽出された領域の位置座標(is, js)を4倍ずつすることにより、原画像におけるマーカ領域を推定する。

【0208】以上のような第3の実施の形態で説明した 手法をとることにより、原画像の大きさに比べて1/1 6の大きさの縮小画像を処理することで、マーカと想定 される領域を抽出することができるので、全体の処理を 高速化することができる。

【0204】 (第4の実施の形態) 次に、第4の実施の 形態について説明する。 26

【0205】この第4の実施の形態では、コードマーカ 以外のランドマーク点を利用して、位置姿勢推定の精度 を向上する方法について説明する。

【0206】これまでに解説した第1万至第3の実施の 形態による方法では、コードマーカと呼ばれるマーカの 3次元位置モデルとその画像への投影像の2次元位置と の関係のみを利用して、コードマーカが規定する対象物 と画像撮影装置間の3次元位置姿勢を推定するようにし ている。

【0207】このような方法は、コードマーカを多数利用することができる場合、または計測精度があまり必要ないときにはよい。

【0208】しかしながら、高精度の位置姿勢推定が要求される場合には、より多くのマーカ3次元モデル特徴と画像内での観測点の対応関係が必要となる。

【0209】以下に述べる第4の実施の形態による手法では、コードマーカ以外のモデル特徴を利用し、該モデル特徴と観測された画像特徴の対応関係を増加させることにより、より高精度の位置姿勢推定を実現するものである。-----

【0210】以下、このようなモデル特徴のことをランドマークと呼ぶことにし、そのランドマークをどのように画像内から抽出し、かつ抽出されたランドマークを利用して、どのように対象物1の位置姿勢を推定するかについて、幾つかの実施例に基づいて解説する。

【0211】(実施例1)まず、実施例1として、コードマーカ位置以外のモデル特徴として、すでに認識された近接するコードマーカの位置を利用してモデル特徴の画像内位置を利用し、コードマーカ以外のモデル特徴の位置を推定するとともに、その推定された位置付近の画像特徴を抽出し、モデル特徴と画像特徴間の対応関係を利用して、対象物の位置姿勢を推定する手法を説明する。

【0212】いま、オブジェクト座標系で、コードマーカ0, 1, . . . , m-1が位置ベクトル p_0 , p_1 , . . . , p_{m-1} で表され、ランドマークkの位置ベクトル p_k が、 p_0 , p_1 , . . . , p_{m-1} で線形結合で表されるとすると(b_0 , b_1 , . . . , b_{m-1} は定数)、

【数23】

 p_k = β o p_0 + β 1 p_1 + ... + β m-1 p_m -1 その画像内での位置 q_k = (u_k, v_k) は、コードマーカの画像内計測値 q_0 = $(u_0, v_0$ "), q_1 = (u_1, v_1) , q_{m-1} = (u_{m-1}, v_{m-1}) を利用して

【数24】

 $q_k \sim \beta cq_0 + \beta 1q_1 + \dots + \beta_{m-1}q_{m-1}$ で予測することができる。

【0213】この予測値を利用し、qkの近傍で最も確 50 からしいランドマーク画像内から抽出することになる。

15 ベージ

27

【0214】図11は、画像内からランドマークを抽出 する一例を示しており、ここでは、この図11にあるよ うな例についてを考える。

【0215】この例では、コードマーカ0、1、2があ らかじめ抽出されていると仮定し、それら3個のコード マーカのちようど重心の位置に円形のランドマークが配 置されている場合を考える。

【0216】すると、画像内で抽出されたコードマーカ 0、1,2の画像内位置の重心を取り、その重心付近で ある適当な大きさのウィンドウを設定し、そのウィンド10 ウ領域内にある円形の領域を関値法で抽出することによ り、ランドマークkの抽出を行うことができる。

【0217】このようにしてランドマークkに対応する 領域が抽出されると、その領域の重心位置が、ランドマ ークkの位置として登録される。

【0218】このようにして、コードマーカ群とランド マーク群が抽出され、画像内での位置が算出されると、 第1の実施の形態で述べたような位置推定方法で対象物 1の位置姿勢を推定することができる。

態で説明したように、まず、最初にコードマーカ群を利 用して対象物位置姿勢を推定し、対象物1の初期推定値 を算出したのち、第1の実施の形態の解の更新の方法で 述べたような方法により、ランドマーク群の画像内位置 とオブジェクト座標系における位置を利用することで、 対象物1の位置姿勢の推定値を更新することができる。

【0220】(実施例2)ここで述べる実施例2の手法 では、あらかじめ抽出されたコードマーカを利用して、 対象物1の3次元位置姿勢の初期推定値を算出するとと もに、その初期推定値を利用して、ランドマークの画像 30 内でのあるべき予測位置の推定値を算出し、その推定位 置付近で、ランドマークを探索する。

【0221】そして、ランドマークが同定できた場合に は、そのランドマークのオブジェクト座標系での3次元 位置と画像内での2次元位置を利用して、対象物1の3 次元位置姿勢の推定値を更新するものである。

【0222】以下、その方法について説明する。

【0223】いま、画像内からコードマーカ0,

1, ..., m-1 が同定されたと仮定すると、これら のオブジェクト座標系での3次元位置座標を画像内で計40 測された2次元座標を利用して、対象物1の3次元位置 姿勢を推定することができる。

【0224】この方法は、第1あるいは第2の実施の形 態で示した方法と同様である。

【0225】いま、この3次元位置姿勢の初期推定値を c Hmとする。

【0226】また、ランドマークkのオブジェクト座標 系における位置を(xk、yk、zk)とすると、ラン ドマークkの画像内における予測値(uk, vk)は式 (3), (4) により算出することができる。

【0227】この予測値(uk,vk)の周辺で、画像 内からランドマークを抽出・同定することができる。

【0228】このようにして、各ランドマークを抽出・ 同定できた場合には、実施例2で説明したのと同様にし て、対象物1の3次元位置姿勢の推定値を更新すること ができる。

【0229】以上、述べたような手法を利用すれば、コ ードマーカ以外のランドマークを利用して、対象物の3 次元位置姿勢を推定することが可能となり、よりロバス トで正確な位置姿勢推定を行うことがてきる。

【0230】また、この手法により、あらかじめ登録し ておくべきコードマーカの数を減少させることもでき

【0231】(第5の実施の形態)この第5の実施の形 態では、画像撮影装置以外の装置と対象物間の3次元位 置姿勢を推定する手法を説明する。

【0232】これまでに説明してきた第1乃至4の実施 の形態は、いずれも、対象物1と画像撮影装置3間の位 質関係を計測する例である。

【021-9】また、別の方法としては、第2の実施の形20. 【0.23-3】しかるに、より実際的な例の場合として、 図1に示される画像撮影装置3とコンピュータ4は、あ るシステムにおいて、対象物1の位置姿勢を推定する位 置センサとして利用される場合がある。

> 【0234】この際には、画像撮影装置3とコンピュー タ4からなる位置センサを含むシステム内に別の装置が あり、その別の装置が規定する座標系をシステムが基準 とするシステム座標系と考えることが多い。

> 【0235】図12は、第5の実施の形態で想定される 構成を表したブロック図である。

> 【0236】すなわち、図12に示すように、コードマ 一カ122が装着された対象物121を撮影する画像撮 影装置123が画像データをデータ処理装置であるコン ピュータ124に送出し、コンピュータ124はその面 像データを解析することにより、対象物121が規定す るオブジェクト座標系から画像撮影装置123が規定す るカメラ座標系への座標変換パラメータを算出する。

> 【0237】一方、コンピュータ124は、画像撮影装 **置123が規定するカメラ座標系から基準座標系を規定** する装置125が規定する基準座標系への座標変換パラ メータをあらかじめ格納している。

> 【0238】その座標変換パラメータを利用して、コン ピュータ124は、オブジェクト座標系から該基準座標 系への座標変換パラメータを算出する。

> 【0239】いま、基準座標系を規定する装置125に 対して、画像撮影装置123がキャリブレーションでき ていると仮定する。

【0240】より具体的には、画像撮影装置123が規 定するカメラ座標系0cと基準座標系0rの間の関係が 斉次変換行列ェHc(カメラ座標系から基準座標系への 50 斉次変換行列)で決定されていると仮定する。

【0241】コンピュータ124が画像からマーカ群を 同定し、カメラ座標系での対象物121の3次元位置姿 勢を推定したとすると、オブジェクト座標系からカメラ 座標系への座標変換パラメータを算出することができ、 それはcHmで表すことができる。

【0242】これら2個の斉次変換行列から、オブジェ クト座標系から基準座標系への斉次変換行列を、以下の ように算出することができる。

[0243]

【数25】

rHm = rHc cHm

このことにより、基準座標系における対象物121の3 次元位置姿勢を推定することができる。

【0244】本第5の実施の形態によりわかるように、 本発明を別の装置のための位置姿勢センサとして利用す ることも可能である。

【0245】(第6の実施の形態)この第6の実施の形 態では、本発明をセンサブロープ(ワイヤレスセンサブ ローブ)について適用する場合について説明する。

【0.2.4.6】近年、-8次元オブジェクトの3次元点を計20 - 【0.2.6.1】そして、それを原点としてオブジェクト座 測するために、センサブローブが多く開発されるように なってきている。

【0247】その手法としては、Flash Poin tのような光学的センサを利用する方法、磁気センサを 利用する方法などがある。

【0248】Flash Pointのような発光ダイ オードを利用する光学的センサの場合には、高精度で計 測できることはあるが、センサプローブと装置間をワイ ヤで接続する必要があるので、操作性の問題がある。

【0249】一方、磁気センサの場合には、ワイヤレス 30 での計測が可能であるが、金属の器具などが周辺にある とノイズの影響が大であるという問題点がある。

【0250】本実施の形態は、これらの問題点を解決す べく発明されたワイヤレスでかつ電磁波などの影響を受 けないセンサプローブに適用した場合である。

【0251】具体的には、センサプローブ自体に第1の 実施の形態または第2の実施の形態で説明したようなコ ードマーカを装着することにより、画像撮像装置からセ ンサプローブまでの位置姿勢を推定し、センサプローブ が探針する位置を推定するものである。

【0252】以下、具体的に、このセンサプローブに適 用した場合について解説する。

【0253】図13は、この第6の実施の形態による樽 成を表すブロック図である。

【0254】すなわち、図13に示すように、探針され るべき物体X139をセンサプローブ138で探針す

【0255】そのセンサプローブ138には、これまで の実施の形態で説明してきたようなコードマーカ (2. 122) が装着されており、そのコードマーカを画像版50

影装置133が撮影する。

【0256】そして、画像撮影装置133で撮影された 画像データは、コンピュータ134に送信される。

【0257】コンピュータ134は、画像撮影装置13 3から送信される画像データに基づいて画像解析するこ とにより、まず、画像撮影装置133に対するセンサプ ロープ138の位置姿勢パラメータを計測する。

【0258】この場合、センサプロープ138が基準と すべき座標系は、コンピュータ134に接続された基準 10 座標系を規定する装置136により規定されており、コ ンピュータ134はその基準座標系に合致した探針点の 3次元位置データ137を該基準座標系を規定する装置 136に送出する。

【0259】図14は、センサブローブ138の例を表 したものである。

【0260】この図14において、センサプローブに は、その先端に探針すべき針がついており、その針の先 端が、第1または第2の実施の形態で述べられたような オブジェク座標系の原点として定義される。

標系を規定するXm 軸、Ym 軸、Zm 軸の3軸が定義さ れる。

【0262】また、このセンサブローブには、第1の実 施の形態や第2の実施の形態で解説したような複数のコ ードマーカが装着されている。

【0263】そのコードマーカの位置はオプジェクト座 **標系上であらかじめ確定されていると仮定し、その3次** 元应標を (xim, yim, zim) とする。

【0264】このとき画像撮影装置133で、このコー ドマーカが撮影され、その画像がコンピュータ134で 解析されることにより、オブジェクト座標系から画像撮 影装置133が規定するカメラ座標系への座標変換パラ メータを算出することができる。

【0265】すなわち、オブジェクト座標系から画像提 影装置133が規定するカメラ座標系への斉次変換行列 を算出することができる。すなわち、

【数26】

$$\begin{bmatrix} x_i^c \\ y_i^c \\ z_i^c \\ 1 \end{bmatrix} = {}_{c}H_{m} \begin{bmatrix} x_i^m \\ y_i^m \\ z_i^m \\ 1 \end{bmatrix} = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_i^m \\ y_i^m \\ z_i^m \\ 1 \end{bmatrix}$$

で表現されるcHmを算出することができる。

【0266】さて、センサプロープ138の針の先端が オブジェクト座標系の原点と一致することから、(xi n, yin, 2in) = (0, 0, 0) を代入すると、 針先端のカメラ座標系における3次元位置を算出するこ とができる。

【0267】その値は並進ベクトルtそのものの値とな

31

る。

【0268】画像撮影装置133がある基準座標系Rに おいて、キャリブレーションされている場合を考える。

【0269】すなわち、図13で示されたように、他の装置136の座標系で画像撮影装置133が規定されている場合を考える。

【0270】この場合には、画像撮影装置133から基準座標系への斉次変換行列rHcがあらかじめ較正されていると考えることができる。

【0271】従って、基準座標系におけるセンサプロー10 ブ138の先端の3次元座標(xir, yir,

zir)は、

【数27】

$$\begin{bmatrix} x_i^r \\ y_i^r \\ z_i^r \\ 1 \end{bmatrix} = {}_rH_c \begin{bmatrix} x_i^c \\ y_i^c \\ z_i^c \\ 1 \end{bmatrix} = {}_rH_c eH_m \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

で表されることになる。......

【0272】これにより、本センサブローブは基準座標系における探針点の3次元位置を提供することができる。

【0273】そして、本実施の形態によれば、従来技術では実現できなかったワイヤレスのセンサプローブを実現することができることになる。

【0274】 (第7の実施の形態) この第7の実施の形態では、ステレオカメラを利用するようにした場合について説明する。

【0275】これまで説明してきた実施の形態は、画像30 撮影装置が撮影する画像1枚を使用して対象物と画像撮 影装置間の位置関係を計測する場合についてである。

【0276】本実施の形態では、画像撮影装置が複数あり、それらと対象物間の位置関係を計測する方法について解説する。

【0277】本方式によれば、検出されるベきコードマーカの数が3個の場合でも、安定的に位置姿勢推定が可能となる。

【0278】基本的に、本実施の形態では、画像撮影装置間のキャリプレーション(画像撮影装置間の相対的位40 置が確定していること)があらかじめなされている場合 に関してのみ、解説するものとする。

【0279】また、画像撮影装置としては2台の場合の みを説明するが、2台を越える複数台の画像撮影装置へ 32

の拡張は容易である。

【0280】図15は、本実施の形態による方式の概念 図を表したプロック図である。

【0281】すなわち、図15に示すように、あらかじめ相対的位置が確定した複数(但し、この例ではステレオカメラを利用する例として左右の2台)の画像撮影装置203、204からの撮影画像データがデータ処理装置であるコンピュータ205へ送出される。

【0282】コンピュータ205は、あらかじめオブジェクト座標系における位置が確定しているコードマーカ(202)位置を利用することにより、各画像撮影装置203,204と対象物201あるいは一部の画像撮影装置203または204と対象物201との間の3次元位置関係を計測する。

【0283】本実施の形態においては、複数の画像撮影 装置を有するため、複数の画像撮影装置は、全撮影装置 は基準とするセンサ基準座標系に基づいてキャリプレー ションされていると仮定する。

【0284】すわなち、各画像撮影装置」に関して、セ-20. ンサ基準座標系で規定される3次元点(xi³, 類 yi³, zi²)が画像撮影装置」において、画像位置(ui³, vi³)で観測されたとすると、すでにキャリブレーションにより確定している斉次変換行列iHsを利用して、

【数28】

$$\begin{bmatrix} U_{ij} \\ V_{ij} \\ W_{ij} \end{bmatrix} = \begin{bmatrix} \alpha_{0} & 0 & 0 & 0 & 0 \\ 0 & \alpha_{0} & v_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} jH_{s} \begin{bmatrix} x_{i}^{s} \\ y_{i}^{s} \\ z_{i}^{s} \\ 1 \end{bmatrix}$$

$$u_{ij} = \frac{U_{ij}}{W_{ij}} \quad v_{ij} = \frac{V_{ij}}{W_{ij}}$$

と記述することができる。

【0285】ここに、αμ¹, αμ¹, μ₀¹, ν₀¹ は、画像撮影装置 j に関するカメラ内部パラメータであ り、カメラキャリブレーションにより確定した値であ る。

【0286】もし、オブジェクト座標系で規定される3 次元点(x_i , y_i , z_i) を考えると、その画 像撮影装置jでの位置(u_i j, v_i J) は、以下の式 により記述できる。

[0287]

【数29】

$$\begin{bmatrix} U_{ij} \\ V_{ij} \\ W_{ij} \end{bmatrix} = \begin{bmatrix} \alpha_{ij} & 0 & u_{0} & 0 \\ 0 & \alpha_{ij} & v_{0} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad jH_{s} \text{ sHm} \begin{bmatrix} x_{i}^{m} \\ y_{i}^{m} \\ z_{i}^{m} \\ 1 \end{bmatrix}$$
(100)

$$u_i l = \frac{U_i l}{W_{ij}} \quad v_i l = \frac{V_i l}{W_{ij}}$$

そこで、本実施の形態で解決すべき問題は、上記の式で 表現されているオブジェクト座標系からセンサ基準座標 10 系への座標変換パラメータ s Hmを如何にして推定する かと言う問題である。

【0288】図16は、本実施の形態の処理手順を表したフローチャートである。

【0289】本方式においては、左右面像を左右の画像 撮影装置から受け取り、各画像内からコードマーカを同 定し、その画像内位置を算出する(ステップS11, S 12, S13)。

【0290】左右画像の両方から同定できたコードマー カに関して、そのコードマーカのセンサ基準座標系での20. 3次元位置を左右画像内位置から算出する。

【0291】こうしてセンサ基準座標系で算出された3次元位置座標とオブジェクト座標系で規定された3次元位置座標とを利用することにより、オブジェクト座標系からセンサ基準座標系への座標変換パラメータを算出する(ステップS14)。

【0292】各画像からコードマーカを同定するステップ(S11, S12, S13)までは、第1の実施の形態や第2の実施の形態の場合と同様であるので、ここではステップS14において、左右の画像の両者から同定30されたコードマーカの画像内位置座標から、どのように

してオブジェクト座標系からセンサ基準座標系への座標 変換パラメータを算出するかを説明する。

【0293】いま、左画像から得られたコードマーカ i の画像内位置座標を (u_i^1, v_i^1) 、右画像から得られたコードマーカ i の画像内位置座標 (u_i^2, v_i^2) とする。

【0294】このとき、センサ基準座標系での3次元推 定値は、以下のようにして算出することができる。

[0295]

【数30】

を定義したのち、(u_1 ¹, v_1 ¹)と(u_1 ², v_1 ²)を正規化し、

【数31】

$$\widetilde{u}_1 = \frac{u_1 1 - u_2 1}{\alpha u_1^{-1}}, \ \widetilde{v}_1 = \frac{v_1 1 - v_2 1}{\alpha v_1^{-1}}, \ \widetilde{u}_1^2 = \frac{u_1 2 - u_2^2}{\alpha u_2^{-2}}, \ \widetilde{v}_1^2 = \frac{v_1^2 - v_2^2}{\alpha v_2^{-2}}$$

を算出する。すると、式 (100) から、 【数32】

$$\begin{bmatrix} r_{11}^1 - \widetilde{U}_1^1 r_{31}^1 & r_{12}^1 - \widetilde{U}_1^1 r_{32}^1 & r_{13}^1 - \widetilde{U}_1^1 r_{33}^1 \\ r_{21}^1 - \widetilde{V}_1^1 r_{31}^1 & r_{22}^1 - \widetilde{V}_1^1 r_{32}^1 & r_{23}^1 - \widetilde{V}_1^1 r_{33}^1 \\ r_{41}^2 - \widetilde{U}_1^2 r_{31}^2 & r_{42}^2 - \widetilde{U}_1^2 r_{32}^2 & r_{13}^2 - \widetilde{U}_1^2 r_{33}^2 \end{bmatrix} \begin{bmatrix} x_1^8 \\ y_1^8 \\ x_1^8 \end{bmatrix} = \begin{bmatrix} -t_x^1 + \widetilde{U}_1^1 t_2^1 \\ -t_y^1 + \widetilde{V}_1^1 t_2^1 \\ -t_y^2 + \widetilde{U}_1^2 t_2^2 \end{bmatrix}$$

が得られる。ここで

$$A = \begin{bmatrix} r_{11}^{1} - \widetilde{U}_{1}^{1}r_{31}^{1} & r_{12}^{1} - \widetilde{U}_{1}^{1}r_{32}^{1} & r_{13}^{1} - \widetilde{U}_{1}^{1}r_{33}^{1} \\ r_{21}^{1} - \widetilde{V}_{1}^{1}r_{31}^{1} & r_{22}^{1} - \widetilde{V}_{1}^{1}r_{32}^{1} & r_{23}^{1} - \widetilde{V}_{1}^{1}r_{33}^{1} \\ r_{11}^{2} - \widetilde{U}_{1}^{2}r_{31}^{2} & r_{12}^{2} - \widetilde{U}_{1}^{2}r_{32}^{2} & r_{13}^{2} - \widetilde{U}_{1}^{2}r_{33}^{2} \end{bmatrix}, b = \begin{bmatrix} -t_{x}^{1} + \widetilde{U}_{1}^{1}t_{z}^{1} \\ -t_{y}^{1} + \widetilde{V}_{1}^{1}t_{z}^{1} \\ -t_{y}^{2} + \widetilde{U}_{1}^{2}t_{z}^{2} \end{bmatrix}$$

とおけば、 【数34】

$$\begin{bmatrix} x_1^8 \\ y_1^5 \\ z_1^8 \end{bmatrix} = (A^T A)^{-1} A^T b$$

として得られる。

【0296】この式により得られた3次元位置姿勢推定50

値(x_1 ^s, y_1 ^s, z_1 ^s)とオブジェクト座標系内での3次元位置(x_1 ⁿ, y_1 ⁿ, z_1 ⁿ)は、以下の回転行列Rと並進ベクトルtにより関連づけられ、第1の実施の形態または第2の実施の形態で説明したような、quaternion法によりその回転行列Rと並進ベクトルtを求めることができる。

【0297】また、このステレオ法では、検出されるべきコードマーカの数は最低で3個あればよい。

35

【0298】これにより、オブジェクト座標系からセンサ基準座標系への座標変換パラメータ s Hmを算出することが可能となる。ここに

【数35】

$$_{8}H_{m} = \begin{bmatrix} R & t \\ 0 & t \end{bmatrix}$$

が成立する。

【0299】本実施の形態によれば、互いにキャリブレーションされた複数の画像撮影装置を利用することにより、コードマーカの数が少ない場合でも、安定した位置10姿勢センシング機能を実現することができる。

【0300】本実施の形態は、単一の画像撮影装置を利用したに比べて2倍のコードマーカを利用して位置姿勢を推定することと等価となり、遮蔽などの影響で数少ないマーカしか検出できない場合や、複雑な環境下で、画像撮影装置が撮影する画像内にノイズ成分が多く含まれる場合には、特に有効な方法となる。

【0301】そして、上述したような第1乃至第7の実 上で上記各マーカに対応する領域を抽出する領域抽出工施の形態で示した本発明の明細書には、特許請求の範囲 程と、上記抽出した領域において、マーカの外観上の特に示した請求項1乃至3以外に、以下のような付記1.20 強から個々のマーカを特定するマーカ特定工程と、上記乃至36.として示すような発明が含まれている。 マーカ特定工程によつて特定されたマーカより3つのマ

【0303】付記2. 撮像装置により撮像された、測定対象物に対する3次元位置情報が既知のマーカが写っている画像を入力する画像入力手段と、上記入力された画像を縮小する画像縮小手段と、上記縮小された画像上で上記各マーカに対応する領域を抽出する領域抽出手段と、上記抽出された各マーカの上記画像上での位置と、40各マーカの測定対象物に対する3次元位置情報を用いて、上記撮像装置に対する測定対象物の3次元位置姿勢を演算する位置姿勢演算手段と、を有することを特徴とする3次元位置姿勢センシング装置。

【0304】付記3.上記測定対象物の特徴部分を画像より抽出する特徴部分抽出手段と、上記抽出した特徴部分の画像上の位置より、上記演算された測定対象物の位置姿勢を補正する手段をさらに含むことを特徴とする付記1または付記2記載の3次元位置センシング装置。

【0305】付記4. 画像を解析して、この画像を撮影50

36

した撮影装置に対する測定対象物の位置姿勢を測定する方法であり、撮像装置により操像された、測定対象物に対する3次元位置情報が既知の少なくとも3個のマーカが写っている画像を入力する画像入力工程と、上記面出する領域を抽出する領域を抽出する領域において、マーカの外観上の特徴から個々のマーカを特定するマーカ特定工程と、上記協定された各マーカの上記画像上での位置と、各マーカの測定対象物に対する3次元位置情報を用いて、上記協像装置に対する測定対象物の3次元位置姿勢を演算する位置姿勢演算工程と、を有することを特徴とする3次元位置姿勢センシング方法。

【0306】付記5. 画像を解祈して、この画像を撮影 した撮影装置に対する測定対象物の位置姿勢を測定する 方法であり、撮像装置により撮像された、測定対象物に 対する3次元位置情報が既知の少なくとも4個のマーカ が写つている画像を入力する画像入力工程と、上記画像 上で上記各マーカに対応する領域を抽出する領域抽出工 程と、上記抽出した領域において、マーカの外観上の特 マーカ特定工程によつて特定されたマーカより3つのマ ーカを選択するマーカ選択工程と、上記マーカ選択工程 によって選択された3つのマーカの上記画像上での位置 と、各マーカの測定対象物に対する3次元位置情報を用 いて、上記撮像装置に対する測定対象物の3次元位置姿 勢を演算するためのパラメータ組を複数算出するパラメ ータ組算出工程と、上記マーカ選択工程によって選択さ れなかったマーカに対して、上記パラメータ組算出工程 によつて算出されたパラメータ組を適用評価することに より、1つのパラメータ組を選択するパラメータ組選択 工程と、を有することを特徴とする3次元位置姿勢セン シング方法。

【0307】付記6. 前記パラメータ組選択工程によって選択された1つのパラメータ組に関して、各マーカの測定対象物に対する3次元位置情報を適用して評価することにより、該パラメータ租を改善するパラメータ改善工程をさらに含むことを特徴とする付記5記載の3次元位置姿勢センシング方法。

【0308】付記7. 画像を解析して、この画像を撮影した撮影装置に対する測定対象物の位置姿勢を測定する方法であり、撮像装置により撮像された、測定対象物に対する3次元位置情報が既知の少なくとも3個のマーカが写っている画像を入力する画像入力工程と、上記面像上で上記各マーカに対応する領域を抽出する領域抽出主。と、上記抽出した領域において、マーカの外観上の特徴から個々のマーカを特定するマーカ特定工程と、上記推定されたマーカの両像上での大きさから、マーカまでの距離を推定する距離推定工程と、上記推定された各マーカまでの距離と、このマーカの上記画像上での位置と、このマーカの測定対象物に対する3次元位置情報を

37

Fax: 0555845872

用いて、上記撮像装置に対する測定対象物の3次元位置 姿勢を演算する位置姿勢演算工程と、を有することを特 徴とする3次元位置姿勢センシング方法。

【0309】付記8. 画像を解析して、この画像を撮影した撮影装置に対する測定対象物の位置姿勢を測定する方法であり、操像装置により撮像された、測定対象物に対する3次元位置情報が既知のマーカが写っている画像を入力する画像入力工程と、上記入力された画像を縮小する画像縮小工程と、上記縮小された画像上で上記各マーカに対応する領域を抽出する領域抽出工程と、上記抽10出された各マーカの上記両像上での位置と、各マーカの測定対象物に対する3次元位置情報を用いて、上記撮像装置に対する測定対象物の3次元位置複数を演算する位置姿勢演算工程と、を有することを特徴とする3次元位置姿勢を対シング方法。

【0310】付記9.上記測定対象物の特徴部分を画像 いる画像を入力させ、上記画像上で上記各マーカに対対 より抽出する特徴部分抽出工程と、上記抽出した特徴部 する領域を抽出させ、上記抽出した領域において、マー かの画像上の位置より、上記演算された測定対象物の位 カの外観上の特徴から個々のマーカを特定させ、上記を選案勢を補正する工程をさらに含むことを特徴とする付 定されたマーカの画像上での大きさから、マーカまでで記7または付記8記載の3次元位置姿勢センシング方--20--距離を推定させ、上記推定された各マーカまでの距離 法。 と、このマーカの上記画像上での位置と、このマーカ

【0311】付記10. コンピュータによって画像を解析して、この画像を撮影した撮影装置に対する測定対象物の位置姿勢を測定するための処理プログラムを記録した記録媒体であり、上記処理プログラムはコンピュータに、撮像装置により振像された、測定対象物に対する3次元位置情報が既知の少なくとも3個のマーカが写っている画像を人力させ、上記抽出した領域において、マーカの外観上の特徴から個々のマーカを特定させ、上記特30定された各マーカの上記画像上での位置と、各マーカの定された各マーカの上記画像上での位置と、各マーカの測定対象物に対する3次元位置情報を用いて、上記操像装置に対する測定対象物の3次元位置姿勢を演算させる、ことを特徴とする3次元位置姿勢を演算させる、ことを特徴とする3次元位置姿勢を演算させる、ことを特徴とする3次元位置姿勢を対算させる、ことを特徴とする3次元位置姿勢を対算させるプラムを記録した記録媒体。

【0312】付記11.コンピュータによって画像を解析して、この画像を撮影した撮影装置に対する測定対象物の位置姿勢を測定するための処理プログラムを記録した記録媒体であり、上記処理プログラムはコンピュータに、撮像装置により撮像された、測定対象物に対する340次元位置情報が既知の少なくとも4個のマーカが写っている両像を入力させ、上記画像上で上記各マーカに対する領域を抽出させ、上記抽出した領域において、マーカの外観上の特徴から個々のマーカを選択させ、上記選択された3つのマーカの上記画像上で位置と、各マーカの測定対象物に対する3次元位置情報を用いて、上記提供された3つのパラメータ組を複数算出させ、上記選択されなかったマーカに対して、上記算出されたパラメータ組を適50

38

用評価することにより、1つのパラメータ組を選択させる、ことを特徴とする3次元位置姿勢センシングプログラムを記録した記録媒体。

付記12.上記処理プログラムは、コンピュータにさらに、前記選択された1つのパラメータ組に関して、各マーカの測定対象物に対する3次元位置情報を適用して評価することにより、該パラメータ組を改善させることを特徴とする付記11記載の3次元位置姿勢センシング処理プログラムを記録した記録媒体。

【0313】付記18. コンピュータによって画像を解析して、この画像を撮影した撮影装置に対する測定対象物の位置姿勢を測定するための処理プログラムを記録した記録媒体であり、上記処理プログラムはコンピュータに、撮像装置により撮像された、測定対象物に対する3次元位置情報が既知の少なくとも3個のマーカが写っている画像を入力させ、上記画像上で上記各マーカに対っている領域を抽出させ、上記画像上で上記をおって、上記時定されたの人間を推定させ、上記推定された各マーカまでの距離と、このマーカの上記画像上での位置と、このマーカの測定対象物の3次元位置管報を用いて、上記撮像装置に対する測定対象物の3次元位置姿勢を演算させる、ことを特徴とする3次元位置姿勢を対望プルラムを記録した記録媒体。

【0314】付記14. コンピュータによつて画像を解析して、この画像を撮影した撮影装置に対する測定対象物の位置姿勢を測定するための処理プログラムを記録した記録媒体であり、上記処理プログラムはコンピュータに、撮像装置により撮像された、測定対象物に対する3次元位置情報が既知のマーカが写っている画像を入力させ、上記入力された画像を縮小させ、上記縮小された画像上で上記各マーカに対応する領域を抽出させ、上記抽出された各マーカの上記画像上での位置と、各マーカの測定対象物に対する3次元位置情報を用いて、上記撮像装置に対する測定対象物の3次元位置姿勢を演算させる、ことを特徴とする3次元位置姿勢センシング処理プログラムを記録した記録媒体。

【0315】付記15.上記処理プログラムは、コンピュータにさらに、上記測定対象物の特徴部分を画像より抽出させ、上記抽出した特徴部分の画像上の位置より、上記演算された測定対象物の位置姿勢を補正させることを特徴とする付記13または付記14記載の3次元位置センシング処理プログラムを記録レた記録媒体。

【0316】付記16、表面に識別マークが配されたマーカであり、上記識別マークの外形が円形であることを特徴とするマーカ。

【0317】(効果)この付記16.のマーカによると、画像から識別マークを抽出する場合に、識別マークの外形が円形であるので、その抽出処理が容易である。

21 ベージ

39

【0318】すなわち、酸別マークの外形が四角とか三角ではマーク部分の向きによっては画像上の図形の形状が大幅に異なり認識が困難であるのに対し、識別マークの外形が円形であるならマーク部分の向きによっても楕円になるだけであり、画像上の認識処理が容易となる。【0319】付記17.表面に識別マークが配されたマーカであり、上記識別マークが、外形が円形である背景部と、この背景部の内部に配設された複数の所定パターンを有し、上記複数の所定パターンを有し、上記複数の所定パターンを有し、上記複数の所定パターンをもし、上記複数の所定パターンをもし、20320】(効果)この付記17.のマーカによると、付記16.のマーカによる上述の効果に加えて、領域内の輝度や色度を分析してマーカを特定可能であるという効果を有している。

【0321】付記18、表面に識別マークが配されたマーカであり、上記識別マークが外形が円形である背景部と、この背景部の中心に配された中心印と、上記中心印を囲む同心円上に等間隔で配された複数の周辺印とを有し、上記中心印と周辺印の着色の組み合わせで、マーカを特定可能であることを特徴とするマーカ。 20322】(効果)この付記18、のマーカによると、付記16、のマーカによる上述の効果に加えて、領域内の輝度や色度を分析してマーカを特定可能であるという効果を有している。

【0323】付記19. 表面に 課別マークが配されたマーカであり、上記識別マークが、外形が円形である背景部と、この背景部の内部に配された半径の異なる複数の同心円とを有し、上記同心円の間の領域の着色の組み合わせで、マーカを特定可能であることを特徴とするマーカ。

【0324】付記20. 位置測定に供されるプローブであり、測定対象に当接する部位である当接部と、該プローブを識別する識別マークが表面に配されたマーク部と、を具備することを特徴とするプローブ。

【0325】付記21.対象物あるいは対象物付近に装着された3次元位置が既知な複数のマーカを、画像撮影装置を利用して撮影しマーカの画像内位置を計測することにより、対象物との相対的3次元位置姿勢を計測する装置において、複数のマーカに対応する領域を前記マーカの画像内から抽出する手段と、該マーカに対応する領域の画像内での幾何学的特徴を算出することにより、個々の該マーカを同定する手段と、該マーカの3次元位置に基づいて、対象物と画像撮影装置間の相対的3次元位置姿勢を推定する手段と、を具備したことを特徴とする3次元位置姿勢センシング装置。

【0326】付記22、個々のマーカ内にはコード化されたパターンが配されることを特徴とする付記21記載の3次元位置姿勢センシング装置。

【0327】付記23. 前記マーカ領域の画像内での幾何学的特徴を算出し該マーカを同定する手段は、画像内50

40

のマーカ領域の大きさを計測し、前記対象物と画像撮影 装置間の相対的3次元位置姿勢を推定する手段は、該マ ーカ領域の大きさの計測値に基づいて画像撮影装置とマ ーカ間の距離の初期値を算出し、該初期値に基づいて対 象物と画像撮影装置間の相対的3次元位置姿勢を算出す ることを特徴とする付記21記載の3次元位置姿勢セン シング装置。

【0328】付記24.前記画像振影装置は他の装置に 装着されており、画像撮影装置と該他の装置間の3次元 位置姿勢関係が既知あるいは別途計測可能であるとき、 上記対象物と画像撮影装置間の相対的な3次元位置姿勢 を利用することにより、対象物と該他の装置間の3次元 位置姿勢を計測することを特徴とする付記21記載の3 次元位置姿勢センシング装置。

【0329】付記25. 前記相対的距離推定値が実現可能である範囲をとるマーカのみを利用して推定値を算出することを特徴とする付記23載の3次元位置姿勢センシング装置。

【0331】付記27.前記マーカとしては、円形のマーカであり、そのマーカの画像内での投影像を楕円として近似し、楕円の長軸の長さを利用して、画像撮影装置からマーカまでの距離を推定することを特徴とする付記23記載の3次元位置姿勢センシング装置。

【0332】付記28. 前記マーカとしては、円形のカラーマーカを利用することを特徴とする付記27. 記載の3次元位置姿勢センシング装置。

【0333】付記29.前記マーカの形状として円形を利用し、マーカ内のコードとして、小円の色の異なるバターンを利用することを特徴とする付記22記載の3次元位置姿勢センシング装置。

【0334】付記30.前記マーカとしては、同心円上に色の異なるパターンを生成することを特徴とする付記22記載の3次元位置姿勢センシング装置。

【0335】付記31. 前記円形マーカの方向情報を付加して3次元位置センシングを行うことを特徴とする付記27記載の3次元位置姿勢センシング装置。

【0338】付記32.原画像からマーカ領域を抽出する際、原画像の縮小画像を作成し、該縮小画像内からマーカに対応すると想定される領域の候補を抽出し、該候補領域が原画像内で対応する領域を算出したのち、原画像内の領域でマーカに対応する領域を抽出・認識することを特徴とする付記21記載の3次元位置姿勢センシング装員。

【0337】付記33. 固有の幾何学的特徴を有するマーカが認識されたのち、そのマーカの2次元または3次

元位置関係を利用して、固有の幾何学的特徴を持たない 別マーカを画像内から抽出し、該別マーカの画像内位置 と3次元位置を利用して、対象物と画像撮影装置間の3 次元位置姿勢パラメータを更新することを特徴とする付 記21記載の3次元位置姿勢センシング装置。

【0338】付記34. 前記画像撮影装置は、複数の画 像を撮影し、該複数の画像を利用することを特徴とする 付記21記載の3次元位置姿勢センシング装置。

【0339】付記35. マーカ群がセンサプローブの表 面に装着され、該センサプローブを対象物として取り扱 10 うことで、センサプローブの相対的位置姿勢を推定する とともに、センサプローブのプローブ先端の位置を計測 することを特徴とする付記21記載の3次元位置姿勢セ ンシング装置。

【0340】付記36、マーカ形状が正多角形であるこ とを特徴とする付記23記載の3次元位置姿勢センシン グ装置。

[0341]

【発明の効果】本発明は、以上のような方式を採用する ことにより、従来の方法では困難であった遮蔽などの影 20 カ像の中心であると判断することを示した図である。 響を受けずに、ロバストに(安定に)対象物の3次元位 **置姿勢を推定することができる。**

【0342】それゆえ、本発明の3次元位置姿勢センシ ング装置は、画像撮影装置または他の装置を規定する座 標系における対象物の3次元位置を推定することによ り、ロボットによる対象物の把持や、対象物の検査など に有効的に利用することができる。

【0343】従って、以上説明したように、本発明によ れば、(1) 遮蔽などの影響により、マーカ群の一部が 観察されないときでも、対象物の3次元位置姿勢を推定30 することができるようにするとともに、(2)従来のn 点問題では、解を確定することができなかった3個のマ 一カからだけでも位置姿勢を推定することができるよう にした、3次元位置姿勢センシング装置を提供すること が可能となる。

【図面の簡単な説明】

【図1】図1は、第1の実施の形態による3次元位置姿 勢センシング装置の構成を示すブロック図である。

【図2】図2は、図1の画像撮影装置3と、カメラ画像 面と、対象物1が規定するオブジェクト座標系との関係40 を表した図である。

【図3】図3は、第1の実施の形態における幾何学的特 徴を持ったコードマーカ2群の一例を表した図である。

【図4】図4は、第1の実施の形態における別のコード パターンを表した図である。

【図5】図6は、第1の実施の形態における別のコード パターンを表した図である。

【図6】図6は、第1の実施の形態において、対象物1 の3次元位置姿勢を推定するまでの処理手順を表したフ ローチャートである。

【図7】図7は、第1の実施の形態において、コードバ ターンの抽出処理過程を表した図である。

【図8】図8は、第1の実施の形態において、得られた 3個のマーカMiに関して想定される3個の3角形 AO 。MiMjを示す図である。

【図9】図9は、第2の実施の形態におけるステップ2 での処理の手順を示すフローチャートである。

【図10】図10は、第2実施の形態において、マーカ の中心をPi、カメラの焦点をO。とするとともに、カ メラ像面と 0。Piの交点をQiとすると、Qiはマー

【図11】図11は、第4の実施の形態において、画像 内からランドマークを抽出する一例を示した図である。

【図12】図12は、第5の実施の形態で想定される構 成を表したブロック図である。

【図13】図13は、第6の実施の形態による構成を表 すブロック図である。

【図14】図14は、第6の実施の形態によるセンサプ ローブ138の例を表した図である。

【図15】図15は、第7の実施の形態の概念図を表し たブロック図である。

【図16】図16は、第7の実施の形態の処理手順を表 したフローチャートである。

【符号の説明】

1, 121, 201, …対象物、

2, 122, 202…マーカ

3, 123, 133, 203, 204…画像摄影装置、

[図5]

4, 124, 134, 205…コンピュータ、

125,136…基準座標系を規定する装置、

138…センサプロープ、

139…探針される物体X。

【図4】

23 ベージ

P. 33/33

25 ページ

フロントページの続き

(72)発明者 集▲崎▼ 隆男

東京都渋谷区幡ヶ谷2丁目43番2号 オリ

ンパス光学工業株式会社内

(72)発明者 淺野 武夫

東京都渋谷区幡ヶ谷2丁目43番2号 オリ

ンパス光学工業株式会社内

(72) 発明者 松崎 弘

東京都渋谷区幡ヶ谷2丁目43番2号 オリ

ンパス光学工業株式会社内

(72)発明者 古橋 幸人

東京都渋谷区幡ヶ谷2丁目43番2号 オリ

ンパス光学工業株式会社内

F ターム(参考) 2F065 AA04 AA37 AA54 AA58 DD03

DD04 DD08 FF04 JJ03 JJ16

JJ23 JJ26 LL30 QQ41 QQ42

3F059 DA02 DB03 DB09 FA05 FB12