Image Approximation via Semi-Transparent Shape Evolution

Matteo Liotta SM3800072 Optimization for Artificial Intelligence, 2025, UniTS - Final Project

This project is a revisit of the "Genetic-lisa" Peter Braden's project, which aims to recreate images with genetic algorithms.,

It had different implementations over time, from Python to C

The base concept is to evolve an image...

- defined as a series of overlapping shapes
- /w (shape and color) mutation
- /w selection on image fitness
- /w crossover

... to reach a certain level of *similitude* with the original picture.

Similitude which is measured with defined objective function

$$\sum_{\substack{i=1,...,W\\j=1,...,H}} \left(r_{i,j}_{true} - \widehat{r_{i,j}} \right)^{2} + \left(g_{i}, j_{true} - \widehat{g_{i,j}} \right)^{2} + \left(b_{i,j}_{true} - \widehat{b_{i,j}} \right)^{2}$$

Similitude which is measured with defined objective function

How are individuals defined?

How are individuals defined?

Color

In the original code different shapes are proposed, but here we can focus on

- Ellipses
- Rectangle
- Triangles

```
{'type': 'triangle', 'coords': [44, 213, 93, 148, 163, 220]}
```

In the original code different shapes are proposed, but here we can focus on

- Ellipses
- Rectangle
- Triangles

In the original code different shapes are proposed, but here we can focus on

- Ellipses
- Rectangle
- Triangles

```
{'type': 'rectangle', 'coords': [31, 136, 48, 160]}
{'type': 'ellispes', 'coords': [31, 136, 48, 160]}
```

In the original code different shapes are proposed, but here we can focus on

- Ellipses
- Rectangle
- Triangles

Shape Color Definition

Also color could be generated, but the original code introduced (and didn't used) the **prev** input

Shape Color Definition

This will be used inside the individual shape **mutation**: **using the** *prev* parameter we could *eventually* mutate the color avoiding random re-generation

Individuals

The original code proposed a Strain **Class** to handle

- **Genotype** of individuals creation
- **Crossover** for individual creation from parents
- Mutation

Leading to a genotype...

Name	Dna	Fitness value
String	{shapes: {type, coordinates}, colors: color tuple}	Scalar

Individuals

The original code proposed a Strain **Class** to handle

- **Genotype** of individuals creation
- **Crossover** for individual creation from parents
- Mutation

Name	Dna	Fitness value
String	{shapes: {type, coordinates}, colors: color tuple}	Scalar

Evolutionary cycle

Each individual has its own Dna, defined of atomic units: the genes

i-th gene

Individual dna

We start with a parent population: each individual has its dna.

To generate a new individual we select randomly a parent dna and deepcopy it.

Then iterate on parents: change one random gene of in place of another of this offspring

How is crossover defined?

How is crossover defined?

How is crossover defined?

After that, mutation will occur to each new offspring.

How is mutation defined?

Individuals

Three different actions:

- New random shape **appending** to offsprings DNA ————— len<500 and 25% probability
- Shape change and color **change** of a gene ————— *elif 75% probability*

As introduced before, the function has been changed: now we can change a shape **not by deletion** and **random reinsertion**, but deletion and **conditionate reinsertion**.

(modified*) Original way: performances and results

* Changed mutation, reduced shape size, numpy fitness alternative

Example on Notre Dame

The example picture is a Notre Dame colored image I took this year in Paris.

The population initial parameters were

• Image_size: 170 x 256

• Generation_population: 10

Crossover_population: 5

Over 30000 epochs.

The result isn't so good...

In addition, evaluation time is a problem

Why don't we change the approach?

How can we speed up evolution?

Patches idea introduction

The main idea is to take advantage of multi-core processing.

Notice this is related to the number of cores available

Considering that...

- The image must be big enough
- We cannot evolve on different nodes (evaluation problem)

So the idea is to break and cut the image... into smaller pieces...

Patches idea introduction

#processes=8

Patches idea introduction

... and evolve independently each piece.

We would have many advantages:

- Each core could handle evolution independently on a sub part of the image (patch)
- Since shape sizes are canvas related, more precision should be present
- We should notice a **speed increase** since fitness evaluations would be on smaller images, proportional to the number of cores
- Over same number of epochs we end up with core-number times more shapes
- **No assumptions** or reduced set of shapes and colors
- + Now we can measure shape sizes with a parameter

Fitness function revisited

+ we can define an alternative fitness which is the L1 norm:

```
def fitness(self):
        return self._fitness or self._fitness_func()

def _fitness_func(self):
    ref_img = self.reference_image.convert("RGBA")
    draw_img = np.array(self.draw().convert("RGBA"), dtype=np.int16)
    ref_img = np.array(ref_img, dtype=np.int16)
    diff = draw_img[:, :, :3] - ref_img[:, :, :3]
    fitness = np.sum(np.abs(diff))
    self._fitness = fitness
    return fitness
```

Modified way: (compared) performances and results

Time comparison

Original* Project

~30000 Training Epoch

Evolution Time: ~ 1h 30 min

Revisited Project

~ **40000** Training Epoch

Evolution Time: ~ **30 min**

Same parameters
8 processes on 8 core laptop
L1 approximated fitness

Original*

Reference

Revisited

Can we do something more?

^{*} w.r.t. image size

Reference

Small Shapes Evolution 1000 epochs

Big Shapes Evolution 1000 epochs

We see a great improvement with a **higher shape size reduction rate** on fixed number of patches (8)

Small Shapes

Big Shapes

^{*} The size is proportional to patch reference size

We can finally see results with:

- Patches and multiprocessing introduction
- More efficient loss
- Random re-generation avoidance for shapes and colors
- Better shape random generation
- Shape size ratio introduction

Reference

Small Shapes Evolution 50000 epochs

Reference

Small Shapes Evolution 50000 epochs

Final Notre Dame visual comparison

Original*

Reference

Revisited

Original*

Reference Revisited

Small shape revisited

Project References

- [1] The evolution of a Smile, Peter Braden: https://github.com/peterbraden/genetic-lisa/
- [2] Mona Lisa Gif Evolution: https://github.com/peterbraden/genetic-lisa/blob/master/images/lisa-anim.gif
- [3] Vase with Twelve Sunflowers (Arles, August 1888), Van Gogh. Neue Pinakothek, Munich: https://commons.wikimedia.org/wiki/File:Vincent_Willem_van_Gogh_128.jpg
- [4] La persistenza della memoria, Dalì: https://www.analisidellopera.it/wp-content/uploads/2018/10/Dali La persistenza della memoria-1.jpg