TABLE I: Known $c\bar{s}$ mesons organized according to s_{ℓ}^P and J^P ; the measured masses are indicated. Allowed possibilities for $D_{sJ}(3040)$ are displayed as $\mathbf{D_{sJ}(3040)}$?.

s_ℓ^P	$\frac{1}{2}$	$\frac{1}{2}^{+}$	$\frac{3}{2}^{+}$	$\frac{3}{2}^{-}$	$\frac{5}{2}^{-}$
(n=1)					
$J^P = s_\ell^P - \frac{1}{2}$	$D_s(1965) (0^-)$	$D_{sJ}(2317) \ (0^+)$	$D_{s1}(2536) (1^+)$	(1^{-})	$D_{sJ}(3040)?(2^-)$
$J^P = s_\ell^P + \frac{1}{2}$	$D_s^*(2112) (1^-)$	$D_{sJ}(2460) \ (1^+)$	$D_{s2}^*(2573) (2^+)$	$D_{sJ}(3040)?(2^-)$	$D_{sJ}(2860)?(3^-)$
(n=2)					
$J^P = s_\ell^P - \frac{1}{2}$	(0^{-})	(0^{+})	$\mathbf{D_{sJ}(3040)?}(1^+)$	(1^{-})	(2^{-})
$J^P = s_\ell^P + \frac{1}{2}$	$D_{sJ}(2710) \ (1^-)$	$\mathbf{D_{sJ}(3040)}?(1^{+})$	(2^{+})	(2^{-})	(3^{-})

 $(D_{sJ}(2860))$ has been assigned to the $s_{\ell} = \frac{5}{2}$ doublet, with a question mark since confirmation is needed).

Some indications about the masses of these states come from potential model calculations. For example, in Ref.[11] the spectrum of heavy-light mesons is computed in the framework of a relativistic quark model (RQM), with results:

$$M(\tilde{D}_{s1})^{(RQM)} = 3114 \text{ MeV}$$

 $M(\tilde{D}'_{s1})^{(RQM)} = 3165 \text{ MeV}$
 $M(D_{s2})^{(RQM)} = 2953 \text{ MeV}$ (3)
 $M(D_{s2}^{*})^{(RQM)} = 2900 \text{ MeV}$.

Notice that, if the identification of $D_{sJ}(2860)$ as the $J_{s_\ell}^P = 3_{5/2}^-$ state were experimentally confirmed, this would disfavor the assignment of $D_{sJ}(3040)$ to its spin partner $D_{s2}^{*\prime}$ with $J_{s_\ell}^P = 2_{5/2}^-$, since a mass inversion in a spin doublet seems unlikely. For a similar reason, one would also disfavor the identification of $D_{sJ}(3040)$ with D_{s2} , although in that case the two mesons would belong to different doublets.

The four classifications for $D_{sJ}(3040)$ in Table I can be discussed computing the allowed strong decays. To this purpose, we work in the heavy quark limit in which the various spin doublets are described by effective fields: H_a for $s_\ell^P = \frac{1}{2}^-$ (a = u, d, s is a light flavour index); S_a and T_a for $s_\ell^P = \frac{1}{2}^+$ and $s_\ell^P = \frac{3}{2}^+$, respectively; X_a and X_a' for the doublets corresponding to orbital angular momentum $\ell = 2$, i.e. $s_\ell^P = \frac{3}{2}^-$ and $s_\ell^P = \frac{5}{2}^-$:

$$H_{a} = \frac{1+\cancel{v}}{2} [P_{a\mu}^{*} \gamma^{\mu} - P_{a} \gamma_{5}]$$

$$S_{a} = \frac{1+\cancel{v}}{2} [P_{1a}^{\prime \mu} \gamma_{\mu} \gamma_{5} - P_{0a}^{*}]$$

$$T_{a}^{\mu} = \frac{1+\cancel{v}}{2} \left\{ P_{2a}^{\mu\nu} \gamma_{\nu} - P_{1a\nu} \sqrt{\frac{3}{2}} \gamma_{5} \left[g^{\mu\nu} - \frac{1}{3} \gamma^{\nu} (\gamma^{\mu} - v^{\mu}) \right] \right\}$$

$$X_{a}^{\mu} = \frac{1+\cancel{v}}{2} \left\{ P_{2a}^{*\mu\nu} \gamma_{5} \gamma_{\nu} \right\}$$
(4)

$$-P_{1a\nu}^{*\prime}\sqrt{\frac{3}{2}}\left[g^{\mu\nu} - \frac{1}{3}\gamma^{\nu}(\gamma^{\mu} - v^{\mu})\right]$$

$$X_a^{\prime\mu\nu} = \frac{1+\rlap/}{2}\left\{P_{3a}^{\mu\nu\sigma}\gamma_{\sigma} - P_{2a}^{*\prime\alpha\beta}\sqrt{\frac{5}{3}}\gamma_{5}\left[g_{\alpha}^{\mu}g_{\beta}^{\nu} - \frac{1}{5}\gamma_{\alpha}g_{\beta}^{\nu}(\gamma^{\mu} - v^{\mu}) - \frac{1}{5}\gamma_{\beta}g_{\alpha}^{\mu}(\gamma^{\nu} - v^{\nu})\right]\right\}$$

with the various operators annihilating mesons of fourvelocity v which is conserved in strong interaction processes (the heavy field operators contain a factor $\sqrt{m_P}$ and have dimension 3/2).

Let us consider decays with the emission of a light pseudoscalar meson. The octet of light pseudoscalar mesons is introduced considering the fields: $\xi = e^{\frac{i\mathcal{M}}{f_{\pi}}}$, $\Sigma = \xi^2$, and the matrix \mathcal{M} containing π, K and η fields $(f_{\pi} = 132 \text{ MeV})$:

$$\mathcal{M} = \begin{pmatrix} \sqrt{\frac{1}{2}}\pi^0 + \sqrt{\frac{1}{6}}\eta & \pi^+ & K^+ \\ \pi^- & -\sqrt{\frac{1}{2}}\pi^0 + \sqrt{\frac{1}{6}}\eta & K^0 \\ K^- & \bar{K}^0 & -\sqrt{\frac{2}{3}}\eta \end{pmatrix}$$
(5)

At the leading order in the heavy quark mass and light meson momentum expansion, the decays $F \to HM$ (F = H, S, T, X, X' and M a light pseudoscalar meson) are described by the Lagrangian interaction terms [12]:

$$\mathcal{L}_{H} = g Tr \Big[\bar{H}_{a} H_{b} \gamma_{\mu} \gamma_{5} \mathcal{A}_{ba}^{\mu} \Big]
\mathcal{L}_{S} = h Tr \Big[\bar{H}_{a} S_{b} \gamma_{\mu} \gamma_{5} \mathcal{A}_{ba}^{\mu} \Big] + h.c.
\mathcal{L}_{T} = \frac{h'}{\Lambda_{\chi}} Tr \Big[\bar{H}_{a} T_{b}^{\mu} (i D_{\mu} \mathcal{A} + i \mathcal{D} \mathcal{A}_{\mu})_{ba} \gamma_{5} \Big] + h.c.
\mathcal{L}_{X} = \frac{k'}{\Lambda_{\chi}} Tr \Big[\bar{H}_{a} X_{b}^{\mu} (i D_{\mu} \mathcal{A} + i \mathcal{D} \mathcal{A}_{\mu})_{ba} \gamma_{5} \Big] + h.c.$$

$$\mathcal{L}_{X'} = \frac{1}{\Lambda_{\chi}^{2}} Tr \Big[\bar{H}_{a} X_{b}^{\prime \mu \nu} [k_{1} \{ D_{\mu}, D_{\nu} \} \mathcal{A}_{\lambda} \\
+ k_{2} (D_{\mu} D_{\lambda} \mathcal{A}_{\nu} + D_{\nu} D_{\lambda} \mathcal{A}_{\mu}) \Big]_{ba} \gamma^{\lambda} \gamma_{5} \Big] + h.c.$$
(6)