1/10

		1/10			
ATGGCTTTGG M A L E		GTCAACAGAT S T D	TATTATTATG Y Y Y E	AGGAAAATGA E N E	50
AATGAATGGC M N G	ACTTATGACT T Y D Y	ACAGTCAATA S Q Y	TGAACTGATC 'E L I	TGTATCAAAG C I K E	100
AAGATGTCAG D V R	AGAATTTGCA E F A	AAAGTTTTCC K V F L	TCCCTGTATT P V F	CCTCACAATA L T I	150
GTTTTCGTCA V F V I	TTGGACTTGC G L A	AGGCAATTCC G N S	ATGGTAGTGG M V V A	CAATTTATGC I Y A	200
CTATTACAAG Y Y K	AAACAGAGAA K Q R T	CCAAAACAGA K T D	TGTGTACATC V Y I	CTGAATTTGG L N L A	250
CTGTAGCAGA V A D	TTTACTCCTT	CTATTCACTC L F T L	TGCCTTTTTG P F W	GGCTGTTAAT A V N	300
GCAGTTCATG A V H G	GGTGGGTTTT W V L	AGGGAAAATA G K I	ATGTGCAAAA M C K I	TAACTTCAGC T S A	350
CTTGTACACA L Y T	CTAAACTTTG L N F V	TCTCTGGAAT S G M	GCAGTTTCTG Q F L	GCTTGTATCA A C I S	400
GCATAGACAG I D R	ATATGTGGCA Y V A	GTAACTAAAG V T K V	TCCCCAGCCA P S Q	ATCAGGAGTG S G V	450
	CCTCCATCAT	CTGTTTCTGT	GTCTGGATGG V W M A	CTGCCATCTT A I L	500
GCTGAGCATA L S I	CCCCAGCTGG P Q L V	TTTTTTATAC F Y T	AGTAAATGAC V N D	AATGCTAGGT N A R C	550
GCATTCCCAT I P I	ጥጥጥርርርርርር		CATCAATGAA	AGCATTGATT A L I	600
CAAATGCTAG O M L E	AGATCTGCAT I C I	TGGATTTGTA G F V	GTACCCTTTC V P F L	TTATTATGGG I M G	650
GGTGTGCTAC V C Y	ጥጥጥልጥር ACAG		CATGAAGATG	CCAAACATTA P N I K	700
	ልሮሮሮሮሞልልልል		CAGTCGTTAT	AGTTTTCATT V F I	750
ርጥር እርጥር እ _. እር	-	CATTGTCAAG	TTCTGCCGAG F C R A	CCATAGACAT I D I	. 800
	$C\PsiC\Delta\PsiC\DeltaCC\Delta$	GCTGCAACAT	GAGCAAACGC S K R	ATGGACATCG	850
	CACAGAAAGC	ATCGCACTCT	TTCACAGCTG H S C	CCTCAACCCA	900
አ ጥር ርጥጥጥ እ ጥር	ጥጥጥጥ እጥር <u>ርር</u>	አርር ልጥርጥጥጥር	AAAAACTACG K N Y V	TTATGAAAGT	950
CCCCAACAAA	ጥልጥርርርጥርርጥ	GGAGAAGACA	GAGACAAAGT R Q S	GTGGAGGAGT	
<u> መመረረመመመመር እ</u>	ጥጥርጥር እ ርርርጥ	CCTACAGAGC	CAACCAGTAC T S T	TTTTAGCATT	1050
ጥል ል ልርርጥል ል ል	` ▲ Cጥር Cጥር ጥር ር	СТТТССТТС	GATACATATG D T Y E	AATGATGCTT	1100
	ጥልልልልሮልጥሮጥ	GCCTTATTCT	GAAAAAAAA K K K	AAAAAAM	. 1147

2/10

CCX-CKR CCR9 CCR7 CCR6 STRL33	MALEQNQSTDYYYEENEMNGTYDYSQYELICIK MTPTDFTSPIPNMADDYG-SESTSSM-EDYVNFNFTDFYCEK MDLGKPMKSVLVVALLVIFQVCLCQDEVTDDYIGDNTTVDYTLFESLCSK MSGESMNFSDVFDSSEDYFVSVNTSYYSVDSEMLLCSL MAEHDYHEDYGFSSF-NDSSQEEHQDFL	33
	TM1	
CCX-CKR CCR9 CCR7 CCR6 STRL33	EDVREFAKVFLRVFLTIVFYIGIAGNSMVVAIYAYYKKORTKTDVYILNI NNVROFASHFLPPLYWLVEIVGALGNSLVILVYWYCTRVKTMTDMFULNU KDVRNFKAWFLPIMYSIICFVGILGNGLVVLTYIYFKRLKTMTDTYLLNU QEVROFSRLFMPIAYSLIGVFGILGNILVVITFAFYKKARSMTDVYLLNM QESKVFLPCMYLVVFVCGIVGNSLVLVISIFYHKLQSLTDVFLVNI	83
	TM2 TM3	
CCX-CKR CCR9 CCR7 CCR6 STRL33	AVADLILIFTLPFWAV-NAVHGWVLGKIMCKITSALYTINFVSGMOFILAC ATADLLFLVTLPFWAIA-AADOWKFOTFMCKVVNSMYKMNFYSCVLLIMC AVADTLFLLTLPFWAYS-AAKSWVFGVHFCKLIFAIYKMSFFSGMLLTLC ATADTLFVLTLPFWAVSHATGAWVFSNATCKLLKGIYAINFNCGMLLLTC PLADTVFVCTLPFWAYA-GIHEWVFGOVMCKSLLGIYTTNFYTSMLTLTC	132
	TM4	
CCX-CKR CCR9 CCR7 CCR6 STRL33	ISIDRYVAVTK-VPSQSGVGKPCWIICFCVWMAAILLSIFQLVFYTV ISVDRYIAIAQAMRAHTWREKRLLYSKMVCFTIWVLAAALCIFEILYSQI ISIDRYVAIVQAVSAHRHRARVLLISKLSCVGSAILATVLSIFELLYSDL ISMDRYIAIVQATKSFRLRSRTLPRTKIICLVVWGLSVIISSSTFVFNQK ITVDRFIVVVKATKAYNQQAKRMTWGKVTSLLIWVISLLVSLEQIIYGNV	178
	TM5	
CCX-CKR CCR9 CCR7 CCR6 STRL33	NDNARCIPIFPRY-LGTSMKALIQMEICIGFVVPFLIMGVCYFITA KEESGIAICTMVYPS-DESTKLKSAVLTLKVILGFFLPFVVMACCYTIII QRSSSEQAMRCSLIT-EHVEAF-ITIQVAQMVIGFLVPLLAMSFCYLVII YNTQGSDVCEPKYQTVSEPIRKKLLMLGELLFGFFIPLMFMIFCYTFIV FNLDKL-ICGYHDEAISTVVLATQMTLGFFLPLLTMIVCYSVII	224
	TM6	
CCX-CKR CCR9 CCR7 CCR6 STRL33	RTLMKMPNIKISRFLKVLLTVVIVFIVTOLFYNIVKFCRAIDIIYSLITS HTLIQAKKSSKHKALKVTITVLTVFVLSOFFYNCILLVQTIDAYAMFISN RTLLQARNFERNKAIKVIIAVVVVFIVFOLFYNGVVLAQTVANFNITSST KTLVQAQNSKRHKAIRMIIAVVLVFLACQIFHNMVLLV-TAANLGKMNRS KTLLHAGGFQKHRSLKIIFLVMAVFLLTOMPFNLMKFIRSTHWE	274

FIG. 2A

TM7

CCX-CKR CCR9 CCR7 CCR6 STRL33	CNMSKRMDĪJAIQVTĒSTALFHSCLNPILYVFMGASFKNYVMKV CAVSTNIDICFQVTQTLAFFHSCLNPVLYVFVGERFRRDLVKTLKNLGCI CELSKQLNIJAYDVTYSLJACVRCCVNPFLYAFIGVKFRNDIFKLFKDLGCL CQSEKLIGYTKTVTĒVLAFLHCCLNPVLYAFIGQKFRNYFLKILKDLWCV YYAMTSFHYTIMVTĒALAYLRACLNEVLYAEVSLKFRKNFWKLVKDIGCL	
CCX-CKR CCR9 CCR7 CCR6 STRL33	AKKYGSWRRQRQSVEEFPFDSEGPTEPTSTESI SQA-QWVSFTRREGSLK-LSSMLLETTSGALSL SQE-QLRQWSSCRHIRR-SSMSVEAETTTTFSP RRKYKSSGFSCAGRYSENISRQTSETADNDNASSFTM PYLGVSHQWKSSEDNSKTFSASHNVEATSMFQL	350

FIG. 2A (CONTINUED)

FIG. 2B

FIG. 2C

FIG. 3A

FIG. 3B

FIG. 3C

FIG. 4A

FIG. 4A (CONTINUED)

FIG. 4B

9/10

5'upstream CCXCKR	ATGCAGCATC	TCGTTTATAA	AAGGCAACTA	GTGAAATTTA	GTGCAAATGC	50
5'upstream CCXCKR	TGAGAGAATT	TATTTAACTT	ATTTAAATTA	AATTTATAAA 	TAACATCAAA	100
5'upstream CCXCKR	ATAAAAAATA	AATTTAATTT	AAATAAACCA	AGTAATTTGC	TATTTTCGTT	150
5'upstream CCXCKR	TTTATTCAAT	TTGTTGTAGA	TATACTTTTA	CGATTCACAA	AATTATGTAT	200
5'upstream CCXCKR	GTAAAGATTA	TAACACTATT	TATTCTTTTT	AGTTAAAATC	TAATTAATT	250
5'upstream CCXCKR	TTCATATTTT	AAAAATCATT	TTTACATAAA	AGTCTTCACT	TTTATTTAGG	300
5'upstream CCXCKR	ATTTAATGAT	TAAGAAAATT	CTCCAGGGCA	TTATGTTTAT	TGTCCTGTTC	350
5'upstream CCXCKR	AAATCCAAGC	TCTTTCACAC	AGAATTGTAC	AAGCAAAGTT	TGAGTAACTA	400
5'upstream CCXCKR	ATCTTGGGGT	CATATTCCAA	TGTGGCTCCC	ATTAAAGCAT	TTCAAAGAGT	450
5'upstream CCXCKR	GCTAGATTCA	GGCTCACATA	TGTTACAGCA	ACAGGCTATA	CTCTAGGGAA	500
5'upstream CCXCKR	AGAACAAAAC	AGCTTGATAG			TATTTAGACA	550
5'upstream CCXCKR	AATATCTATC	CTGTATTCTC		TION START AGATTGGAGC	CATGGCTTTG -ATGGCTTTG	600 9
5'upstream CCXCKR	GAACAGAACC GAACAGAACC	-GTCAACAGA AGTCAACAGA	TTATTATTAT TTATTATTAT	GAGGA-AAAI	GAAATGAATG GAAATGAATG	649 58
5'upstream CCXCKR	GCACTIATGA	CTACAGTCA	TATGAACTGA		AGAAGATQ <u>TC</u>	685 108
5'upstream CCXCKR	AGAGAAGAGA AGAGAA	CAGAGGATAT	GG-ACAGGGT GGAAAAGTTI	TCCTCCCTGT	ATTOCTCACC ATTOCTCACA	734 147
5'upstream CCXCKR	ATAG ATAGITTTCG	TCATTGGACT	TGCAGGCAAT	TCCATGGTAG	TGGCAATTTA	740 197
5'upstream CCXCKR	TGCCTATTAC	AAGAAACAGA	GAACCAAAAC	AGATGTGTAC	ATCCTGAATT	740 247
5'upstream CCXCKR	TGGČTGTAGC	AGATTTACTC	CTTCTATTCA	CTCTGCCTT	TTGGGCTGTT	740 297
5'upstream CCXCKR	AATGCAGTTC	ATGGGTGGGT	TTTAGGGAAA	A ATAATGTGCA	A AAATAACTTC	740 347

