

Deep Reinforcement Learning

Núria Armengol Urpí 19.05.2021

ETH zürich

Learning from interaction

When do we want to use Reinforcement Learning (RL)?

- Sequential decision making problem
- Do not know OPTIMAL behaviour yet
- Can evaluate whether behaviours are 'good' or 'bad'

RL interaction loop

Observation: what the agent sees about the current state of the world. Ex: bunch of pixels

Observation: what the agent sees about the current state of the world

State: complete description of the world. Ex: $s_t:[x_t,y_t,v_{x_t},v_{y_t},\alpha_t]$

The policy

$$s_t:[x,y,v_x,v_y,\alpha]$$
 Action \mathbf{a}_t Policy π : Rule for selecting actions

Deterministic $a_t = \pi(s_t)$

Stochastic $a_t \sim \pi(\cdot|s_t)$

The reward

State s_t Reward r_t

$$r \in \mathcal{R}$$

 $\mathcal{R}: \mathcal{S} imes \mathcal{A}
ightarrow \mathbb{R}$

The RL objective

State s_t Reward r_t

Action a_t

$$\pi^* = \arg\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=1}^{T} r(s_t, a_t) \right]$$

Environment

What is deep RL?

Combination of Reinforcement Learning (RL) with deep learning

RL interaction loop

Solve a sequential decision making task by interaction with the environment

Deep neural network (Deep NN)

Deep RL: Train a NN to solve a sequential decision-making task by interacting with the environment.

When do we want to use deep learning?

- 'Deep' refers to using function composition as the building block for the model
- Represent the model as a function of parameters
 For ex. for a 2 layer feed-forward NN:

$$y(x;\theta) = W(\sigma)W_1x + b_1) + b_2$$
 $\theta = \{W_1, W_2, b_1, b_2\}$
Non-linearity

- Approximate a complex function
- Inputs and/or outputs are high-dimensional

The policy

Markov decision processes (MDPs)

- Mathematical formulation of the agent-environment interaction
- Discrete-time stochastic control process

Markov decision process

- ullet Markov decision process $\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{P}, d_1\}$
- ${\cal S}$ state space Set of all valid states $s\in {\cal S}$ (discrete or continuous)
- ${\cal A}$ action space Set of valid actions actions $a\in{\cal A}$ (discrete or continuous)
- ${\cal P}$ -Transition operator Describes the dynamics of the system ${\cal P}(s_{t+1}|s_t,a_t)$
- \mathcal{R} reward function Describes a a reward function $\mathcal{R}:\mathcal{S} imes\mathcal{A} o\mathbb{R}$
- d_1 Initial state distribution

System obeys the **Markov property:** transitions only depend on the most recent state and action, and no prior history.

Action $a_t \in \mathcal{A}$ $a_t \sim \pi_{\theta}(\cdot|s_t)$

Environment $\mathcal{P}(s_{t+1}|s_t, a_t)$

The RL objective

Trajectory $\tau = (s_1, a_1, ..., s_T, a_T)$

$$p_{\pi_{\theta}}(\tau) = d_1(s_1) \prod_{t=1}^{T} \pi_{\theta}(a_t|s_t) p(s_{t+1}|s_t, a_t)$$

$$\theta^* = \arg\max_{\theta} \mathbb{E}_{\tau \sim p_{\pi_{\theta}}(\tau)} \Big[\sum_{t=1}^{T} r(s_t, a_t) \Big]$$
 RL objective

Return or Cumulative reward

CRL

Policy gradients

Evaluating the objective

$$\theta_{k+1} \leftarrow \theta_k + \alpha \nabla_{\theta} E(\theta)$$

Let's compute the gradient!

Direct policy differentiation

$$E(\theta) = \mathbb{E}_{\tau \sim p_{\pi_{\theta}}(\tau)} \Big[r(\tau) \Big] = \int p_{\pi_{\theta}}(\tau) r(\tau) d\tau$$

$$\nabla_{\theta} E(\theta) = \int \nabla_{\theta} p_{\pi_{\theta}}(\tau) r(\tau) d\tau$$

$$\nabla_{\theta} E(\theta) = \mathbb{E}_{\tau \sim p_{\pi_{\theta}}(\tau)} \Big[\nabla_{\theta} \log p_{\pi_{\theta}}(\tau) r(\tau) \Big]$$

$$\nabla_{\theta} E(\theta) = \mathbb{E}_{\tau \sim p_{\pi_{\theta}}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right) r(\tau) \right]$$

The policy gradient

$$\nabla_{\theta} E(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right) \left(\sum_{t=1}^{T} r(s_t, a_t) \right) \right]$$

$$\nabla_{\theta} E(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{i,t}|s_{i,t}) \right) \left(\sum_{t=1}^{T} r(s_{i,t}, a_{i,t}) \right)$$

$$\theta_{k+1} \leftarrow \theta_k + \alpha \nabla_{\theta} E(\theta)$$

REINFORCE: A policy gradient algorithm

- Ronald J. Williams 1992.
- 3 steps:
 - 1. Generate samples by running the current policy π_{θ_k} on the environment
 - 2. Evaluate the gradient $\nabla_{\theta} E(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{i,t}|s_{i,t}) \right) \left(\sum_{t=1}^{T} r(s_{i,t},a_{i,t}) \right)$
 - 3. Do a gradient ascent step $\theta_{k+1} \leftarrow \theta_k + \alpha \nabla_{\theta} E(\theta)$

Intuition behind PG

 $s_t: [x, y, v_x, v_y, \alpha]$

$$\pi_{\theta}(a_t|s_t)$$

 $a_t:[acc,\dot{lpha}]$

Intuition behind PG

$$\theta_{k+1} \leftarrow \theta_k + \alpha \nabla_{\theta} \log p_{\pi_{\theta}}(\tau^*)$$

Update θ in the direction so as to *increase* the value of $\pi_{\theta}(a_t^*|s_t)$ the fastest

Intuition behind PG

$$\theta_{k+1} \leftarrow \theta_k + \alpha \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log p_{\pi_{\theta}}(\tau_i) r(\tau_i)$$

Increase probability of trajectories with positive returns

Decrease probability of trajectories with negative returns

Improving Policy gradients: Some tricks

Reducing variance of the PG estimator

$$\nabla_{\theta} E(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{i,t}|s_{i,t}) \right) \left(\sum_{t=1}^{T} r(s_{i,t}, a_{i,t}) \right)$$

1. Enforcing causality

$$\nabla_{\theta} E(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{i,t}|s_{i,t}) \right) \left(\sum_{t=1}^{T} r(s_{i,t}, a_{i,t}) \right)$$

We are not accounting for the temporal structure of the problem.

Future actions $(a_{t'})$ cannot affect past rewards $(r_t \text{ when } t < t')$.

1. Enforcing causality

$$\nabla_{\theta} E(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{i,t}|s_{i,t}) \left(\sum_{t'=t}^{T} r(s_{i,t'}, a_{i,t'}) \right)$$
Reward-to-go
$$\hat{Q}^{\pi_{\theta}}(s_{t}, a_{t})$$

2. Introducing baselines

$$\nabla_{\theta} E(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log \pi_{\theta}(\tau_i) [r(\tau_i) - \boldsymbol{b}]$$

$$b = \frac{1}{N} \sum_{i=1}^{N} r(\tau_i) \quad \mathbb{E}_{\tau \sim p_{\pi_{\theta}}} \left[\nabla_{\theta} \log \pi_{\theta}(\tau_i) b \right] = 0$$

Subtracting a baseline gives us an *unbiased* estimate

Reduces the variance of the gradient estimator

Policy gradient loop

Limitations of vanilla policy gradient

Policy gradient is an on-policy algorithm.

$$\nabla_{\theta} E(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}(\tau)} \left[\nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau) \right]$$

- 1. Extremely inefficient in terms of number of samples
- 2. Very risky for real-world problems

Policy gradient loop

A Taxonomy of RL algorithms

A Taxonomy of RL algorithms

A Taxonomy of RL algorithms

Deep learning. Autumn Semester.

Probabilistic Artificial Intelligence. Autumn Semester.

Dynamic Programming and Optimal Control. Autumn Semester

Recommended Courses

Lectures for UC Berkeley CS 182: Deep Learning.

Spinning up in Deep RL. Open Al.

Sources

Appendix

Computing policy gradients

Direct policy differentiation

$$E(\theta) = \mathbb{E}_{\tau \sim p_{\pi_{\theta}}(\tau)} \left[r(\tau) \right] \int p_{\pi_{\theta}}(\tau) r(\tau) d\tau$$

$$\nabla_{\theta} E(\theta) = \int \nabla_{\theta} p_{\pi_{\theta}}(\tau) r(\tau) d\tau = \begin{bmatrix} \text{Convenient identity (the log-derivative trick):} \\ \nabla_{\theta} p_{\pi_{\theta}}(\tau) = p_{\pi_{\theta}}(\tau) \frac{\nabla_{\theta} p_{\pi_{\theta}}(\tau)}{p_{\pi_{\theta}}(\tau)} = p_{\pi_{\theta}}(\tau) \nabla_{\theta} \log p_{\pi_{\theta}}(\tau) \end{bmatrix}$$

$$\nabla_{\theta} p_{\pi_{\theta}}(\tau) = p_{\pi_{\theta}}(\tau) \frac{\nabla_{\theta} p_{\pi_{\theta}}(\tau)}{p_{\pi_{\theta}}(\tau)} = p_{\pi_{\theta}}(\tau) \nabla_{\theta} \log p_{\pi_{\theta}}(\tau)$$

$$= \int p_{\pi_{\theta}}(\tau) \nabla_{\theta} \log p_{\pi_{\theta}}(\tau) r(\tau) d\tau =$$

We can express the integral as an expected value under the trajectory distribution $p_{\pi_{ heta}}(au)$ now \odot

$$\nabla_{\theta} E(\theta) = \mathbb{E}_{\tau \sim p_{\pi_{\theta}}(\tau)} \left| \nabla_{\theta} \log p_{\pi_{\theta}}(\tau) r(\tau) \right| \quad \text{How to compute this term?}$$

Direct policy differentiation

$$\begin{aligned} p_{\pi_{\theta}}(\tau) &= d_1(s_1) \prod_{t=1}^{T} \pi_{\theta}(a_t|s_t) p(s_{t+1}|s_t, a_t) \\ \log p_{\pi_{\theta}}(\tau) &= \log d_1(s_1) \prod_{t=1}^{T} \pi_{\theta}(a_t|s_t) p(s_{t+1}|s_t, a_t) = \\ &= \log d_1(s_1) + \sum_{t=1}^{T} \log \pi_{\theta}(a_t|s_t) + \log p(s_{t+1}|s_t, a_t) \\ \nabla_{\theta} E(\theta) &= \mathbb{E}_{\tau \sim \pi_{\theta}(\tau)} \Big[\nabla_{\theta} \big[\log p(s_1) + \sum_{t=1}^{T} \log \pi_{\theta}(a_t|s_t) + \log p(s_{t+1}|s_t, a_t) \big] r(\tau) \Big] \\ &\qquad \qquad \log p_{\pi_{\theta}}(\tau) \end{aligned}$$

The policy gradient

$$\nabla_{\theta} E(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right) \left(\sum_{t=1}^{T} r(s_t, a_t) \right) \right]$$

$$\nabla_{\theta} E(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{i,t}|s_{i,t}) \right) \left(\sum_{t=1}^{T} r(s_{i,t}, a_{i,t}) \right)$$

$$\theta_{k+1} \leftarrow \theta_k + \alpha \nabla_{\theta} E(\theta)$$

