Mitigation options in the transportation sector

Development drives car ownership

Figure TS.14: Vehicle ownership and income per capita as a time line per country [Figure 5.2].

Note: data are for 1900–2002, but the years plotted vary by country, depending on data availability.

Source: IPCC AR4 WG 3, ch 5

Future transport energy consumption

Figure 5.3: Projection of transport energy consumption by region and mode Source: WBCSD, 2004a.

Source: IPCC AR4 WG 3, ch 5

Oil import dependency

Country	Oil import as %	Expected Oil
	of consumption	import as % of
	2007	consumption 2030
USA	65	62
EU-27	82	92
Australia/Nw	92	89
Zealand		
China	51	74
India	72	92

Share of transportation in global GHG emissions

How transport emissions can be reduced

- Reduce demand
- Shift mode of transport
- Improve efficiency
- Change fuel

Transportation demand reduction

- Build compact cities
- Create livable city centres
- Increase price of transportation
- Telecommuting
- Provide recreational areas in/close to city

Commercial transport mitigation technologies

2030

Transport modes

Bus Rapid Transit Systems are a success in developing country mega cities

Copenhagen bicycle programme

- Convert streets into pedestrian area
- Reduce traffic parking gradually
- Turn parking lots into public spaces
- Keep buildings dense and low
- Maintain human scale
- Create residential buildings in city centre
- Encourage student city living
- Make city attractive in all seasons
- Good bike infrastructure
- Provide easy rental bikes

City transportation, 1995 (% of trips)

CO2 intensity of transport modes (developing countries)

	Load factor (average occu- pancy)	CO ₂ -eq emissions per passenger-km (full energy cycle)
Car (gasoline)	2.5	130-170
Car (diesel)	2.5	85-120
Car (natural gas)	2.5	100-135
Car (electric) ^{a)}	2.0	30-100
Scooter (two-stroke)	1.5	60-90
Scooter (four-stroke)	1.5	40-60
Minibus (gasoline)	12.0	50-70
Minibus (diesel)	12.0	40-60
Bus (diesel)	40.0	20-30
Bus (natural gas)	40.0	25-35
Bus (hydrogen fuel cell) ^{b)}	40.0	15-25
Rail Transit ^{c)}	75% full	20-50

Note: All numbers in this table are estimates and approximations and are best treated as illustrative.

a) Ranges are due largely to varying mixes of carbon and non-carbon energy sources (ranging from about 20–80% coal), and also the assumption that the battery electric vehicle will tend to be somewhat smaller than conventional cars.

b) Hydrogen is assumed to be made from natural gas.

c) Assumes heavy urban rail technology ('Metro') powered by electricity generated from a mix of coal, natural gas and hydropower, with high passenger use (75% of seats filled on average).

Fuel efficiency of current new cars

88 g CO2/km (best)

104 g CO2/km

But the average is still high

All Cars	
CO ₂ emission ratings	# of models in the CO; range
0 g/km > 100 g/km	32
101 g/km > 120 g/km	429
121 g/km > 150 g/km	1258
151 g/km > 165 g/km	963
166 g/km > 185 g/km	1003
186 g/km > 225 g/km	818
225 g/km plus	525

How to improve fuel efficiency?

- Lighter cars
- Smaller cars
- Better aerodynamics
- Hybrid electric
- More rapid penetration of new cars
- Scrapping gaz guzzlers
- 3333

CO2 intensity of freight transport modes

Freight transport mode	Average CO2 emissions (grams per ton-kilometre)	Remarks
Inland shipping	31	
Ocean shipping	14	Varies from 8 for bulk tankers to 25 for container ships and 124 for refrigerated cargo ships
Rail	23	Mix of electric and diesel trains
Road	123	Varies from 92 for heavy trucks to 400 for light trucks

Biofuels production

Ethanol and Biodiesel Production, 2000-2008

How much does biofuel really reduce CO2?

Figure 5.10: Reduction of well-to-wheels GHG emissions compared to conventionally fuelled vehicles

Note: bars indicate range of estimates. Source: IEA, 2004c; EUCAR/CONCAWE/JRC, 2006.

Source: IPCC AR4 WG 3, ch 5

Biofuel costs

Figure 5.9: Comparison of cost for various biofuels with those for gasoline and diesel Source: IEA, 2006b.

Source: IPCC AR4 WG 3, ch 5

Global GHG abatement cost curve beyond business-as-usual – 2030

Note: The curve presents an estimate of the maximum potential of all technical GHG abatement measures below €60/tCO₂e if each lever was pursued aggressively. It is not a forecast of what role different abatement measures and technologies will play.

McKinsey&Company

2030 biofuel potential

- Baseline: 3% of total road transport energy (92 Mtoe = ~4 EJ)
- Policy case: 5-10% (150-300 MToe= ~6-12 EJ)
- Technology scenarios: 13-25% by 2050
- Sustainability criteria

Source: IPCC AR4 WG 3, ch 5

Biofuel, help or hindrance?

Pro

- Oil import reduction
- New cash crop
- Rural fuel source
- Some CO2 reduction

Con

- First generation poor CO2 reduction
- High cost per tonne of CO2 avoided
- Can compete with food production
- Can lead to additional deforestation
- Huge subsidies

China: >120 million e-bikes and e-scooters in use

Electric cars you can buy now

CO2 intensity of transport modes (developing countries)

	Load factor (average occu- pancy)	CO ₂ -eq emissions per passenger-km (full energy cycle)
Car (gasoline)	2.5	130-170
Car (diesel)	2.5	85-120
Car (natural gas)	2.5	100-135
Car (electric) ^{a)}	2.0	30-100
Scooter (two-stroke)	1.5	\$3-9 0
Scooter (four-stroke)	1.5	40-60
Minibus (gasoline)	12.0	50-70
Minibus (diesel)	12.0	40-60
Bus (diesel)	40.0	20-30
Bus (natural gas)	40.0	25-35
Bus (hydrogen fuel cell) ^{b)}	40.0	15-25
Rail Transit ^{c)}	75% full	20-50

Note: All numbers in this table are estimates and approximations and are best treated as illustrative.

USA: 60-130 gCO2/km

a) Ranges are due largely to varying mixes of carbon and non-carbon energy sources (ranging from about 20–80% coal), and also the assumption that the battery electric vehicle will tend to be somewhat smaller than conventional cars.

b) Hydrogen is assumed to be made from natural gas.

c) Assumes heavy urban rail technology ('Metro') powered by electricity generated from a mix of coal, natural gas and hydropower, with high passenger use (75% of seats filled on average).

Costs of plug-in hybrid electric vehicles

Near-term incremental costs	CONVENTIONAL HYBRID	PLUG-IN HYBRID (with a 40-mile all-electricity range)
incremental costs		
Battery	\$2,000	\$17,500
Other	\$1,500	\$1,500
Annual fuel savings	\$480	\$705
Payback (years)	7.3	27.0
Long-term incremental costs		
Battery	\$600	\$3,500
Other	\$1,000	\$1,000
Annual fuel savings	\$480	\$705
Payback (years)	2.9	6.4

Measure	Total oil	CO2 emissions	Other benefits
	consumption	reduction	
	reduction (%	compared to BaU	
	from BaU)	(GtCO2/yr	
Reduce demand	low	low	Congestion can
			benefit more
Modal shift	moderate	moderate	Congestion can
passenger transport			benefit considerably
Modal shift freight	negligible	negligible	
transport			
Efficiency passenger	10	0.75	
road transport			
Efficiency freight	2-5	0.1-0.4	
road transport			
Biofuel	5-10	0.1-0.4	Sustainability
			constraints could
			reduce this amount
Electricity	low	negligible	
Hydrogen	negligible	negligible	
More efficient	n/a	0.28	
airline transport			
Freight shipping	n/a	0.3-0.4	
Rail	negligible	low	
TOTAL		1.6-2.3	

Car fuel efficiency assumptions IPCC scenario

Case	Average fuel efficiency new vehicle (mpg)	% improvement compared to 2001
2001	30.6	
2030 baseline	43.2	40
2030 advanced	49.2	60
2030 hybrid	70.7	130
2030 diesel	58.1	90
2030 diesel hybrid	82.5	170

•New car sales in 2015: 20% hybrids; 2030: 75%

•Oil savings 2030: 6-11 EJ = 5-10% (from baseline)

•Costs (at oil price > \$60/b): mostly negative

Hydrogen fuel cell vehicle

Changes in lifestyle and behaviour patterns can contribute to climate change mitigation

Figure TS.14: Vehicle ownership and income per capita as a time line per country [Figure 5.2].

Note: data are for 1900–2002, but the years plotted vary by country, depending on data availability.