4.3.10) Prove that any integer whose digits add up to 15 can not be a square or a cube.

Proof. Take $a \in \mathbb{Z}$ and $r \in [-4, 4] \cap \mathbb{Z}$: $a \equiv r \mod 9$. This is a complete set of residues that gives us

$$a^2 \equiv r^2 \mod 9$$

and $a^3 \equiv r^3 \mod 9$

Take c = |b|. The sum of the digits of a negative number is clearly equal to the sum of the digits of its absolute value. Also, it is clear that for every negative cube, there is a corresponding positive cube such that the sum of the digits of b equals the sum of the digits of |b|. It is also clear that the sum of the digits of 0 is not 15. Take digits $d_n \in [0, 9] \cap \mathbb{Z} : \forall c$,

$$c = \sum_{k=0}^{+\infty} d_k 10^k.$$

We have

$$\forall \ c \ \exists \ h : \forall \ n \in [h, +\infty) \cap \mathbb{N}, d_n = 0 \implies c = \sum_{k=0}^{+\infty} d_k 10^k = \sum_{k=0}^{h} d_k 10^k.$$

Take the sum of the digits. We have

$$\sum_{k=0}^{h} d_k.$$

Take b-6. We get

$$\sum_{k=0}^{h} d_k 10^k - 6 = d_0 - 6 + \sum_{k=1}^{h} d_k 10^k$$

If $d_0 < 6$, we should instead take $j = \min\{i : d_i > 0\}$:

$$\sum_{k=0}^{h} d_k 10^k - 6 = d_0 + 4 - 10^j + \sum_{k=1}^{h} d_k 10^k.$$

Take digits $d_n \in [0, 9] \cap \mathbb{Z} : \forall b$,

$$c - 6 = \sum_{k=0}^{h} d_k 10^k - 6 \implies$$

$$\sum_{k=0}^{h} d'_k = \sum_{k=0}^{h} d_k - 6 \quad \forall \ d_0 \ge 6,$$

$$\sum_{k=0}^{h} d'_k = \sum_{k=0}^{h} d_k + 4 - 1 \quad \forall \ d_0 < 6.$$

Take $c \mod 9$. We get $0 \equiv \sum_{k=0}^h d_k' \mod \leftrightarrow 9 \mid \sum_{k=0}^h d_k - 6$. We have $-3 \equiv 6 \mod 9$. $9 \nmid b - 6 \implies$ the digits of b do not add up to 15. Take cases of $b = a^2$ or $b = a^3$. We take r^2 and $r^3 \mod 9$.

$$4^{2} \equiv (-4)^{2} \equiv 7 \mod 9$$

$$2^{2} \equiv (-2)^{2} \equiv 4 \mod 9$$

$$3^{2} \equiv (-3)^{2} \equiv 0 \mod 9$$

$$1^{2} \equiv (-1)^{2} \equiv 1 \mod 9$$

$$0^{2} \equiv 0 \mod 9$$

$$(-4)^3 \equiv 8 \mod 9$$
 $(-3)^3 \equiv 0 \mod 9$ $(-2)^3 \equiv 1 \mod 9$ $(-1)^3 \equiv 8 \mod 9$ $0^3 \equiv 0 \mod 9$ $1^3 \equiv 1 \mod 9$ $2^3 \equiv 8 \mod 9$ $3^3 \equiv 0 \mod 9$ $4^3 \equiv 1 \mod 9$

It is clear that $6 \not\equiv x \ \forall \ x \in \{0,1,4,7,8\} \therefore 9 \nmid b-6$: the digits of a^2 and a^3 never add up to $15 \ \forall \ a \in \mathbb{Z}$.