Trabalho c213

2023/2

Dataset

_	degrau 🗶						
1001x1 double							
	1	2	3	4	5	6	
1	5						
2	5						
3	5						
4	5						
5	5						
6	5						
7	5						
8	5						
9	5						
10	5						
11	5						
12	5						
13	5						
14	5						
15	5						
16	5						
17	5						

Resposta em malha aberta

Método de Smith

$$H(s) = \frac{k * e^{-\theta S}}{\tau s + 1}$$

Comparação aproximação e original

Erros em malha aberta e malha fechada

erro = SetPoint - ValorFinal

Método classico

$$H(s) = \frac{Ke^{-\theta}}{\tau s + 1}$$

Tabela 1 – Ziegler Nichols Malha Aberta

Controlador	K _p	T_i	T_d
P	$\frac{\tau}{K\theta}$	-	-
PI	$\frac{0.9\tau}{K\theta}$	$3,33\theta$	-
PID	$\frac{1,2\tau}{K\theta}$	2θ	$0,5\theta$

Método novo

Método da Integral do Erro - IAE

Lembrando que os valores obtidos pela tabela não são as variáveis Kp, Ti e Td isoladas

Fator Adimensional	IAE
$K_P \times K =$	$\frac{1}{\left(\theta/\tau\right)} + 0.2$
$\frac{T_1}{\theta} =$	$ \begin{pmatrix} 0.3 \times \left(\frac{\theta}{\tau}\right) + 1.2 \\ \left(\left(\frac{\theta}{\tau}\right) + 0.08\right) \end{pmatrix} $
$\frac{T_{D}}{\theta}$ =	$1/(90 \times (\theta/\tau))$

Grupos

GRUPO	MÉTODO CLASSICO	MÉTODO NOVO
1	IMC	COHEN E COON
2	CHR 1	COHEN E COON
3	CHR 2	COHEN E COON
4	ZN	COHEN E COON
5	IMC	INTEGRAL DO ERRO
6	CHR 1	INTEGRAL DO ERRO
7	CHR 2	INTEGRAL DO ERRO

Comparação

- Falar sobre o que aprendeu sobre a história e teoria do método novo em comparação com o clássico
- Realizar um ajuste fino nos métodos e fazer uma comparação crítica sobre os resultados

• Crie uma interface que permita com que o usuário entre com os dados os parâmetros do PID e do Setpoint, ele retorna as curvas.

Apresentações

- As apresentações irão ocorrer nas aulas práticas e teórica da semana de 16-18/10/2023.
- Criar um power point com todos as figuras e resultados pedidos.