Observations and Calculations

Given Concentration of EDTA solution = 0.01 M

S. No.	Volume of EDTA used from the burette
1	17.4 mL
2	17.5 mL
3	17.5 mL

1 mole Ca reacts with 1 mole of EDTA to form of the Ca-EDTA complex.

Moles of Calcium = Moles of EDTA (Molarity x Volume) of Calcium = (Molarity x Volume) of EDTA

Molarity of Calcium x 50 mL = 0.01 M x Volume of EDTA (Burette Reading)

Suppose Burette Reading is 17.5 mL

Molarity of Calcium = $(0.01 \times 17.5)/50$

Molarity of Calcium= $3.5 \times 10^{-3} \text{ M} = 0.0035 \text{ M}$

Thus, the solution contains 0.0035 moles/Liter of calcium

Grams/Liter of calcium = 0.0035 x 40.08 (Atomic Weight of Calcium) = 0.140 g/L

The amount of EDTA consumed includes the small amount of Mg ions added