# IMPLEMENTASI FILTER SPASIAL LINEAR PADA VIDEO STREAM MENGGUNAKAN FPGA HARDWARE ACCELERATOR



# Oleh SULAEMAN H131 16 002

Pembimbing Utama Pembimbing Pertama Penguji : Dr. Eng. Armin Lawi, S.Si., M.Eng.: Supri Bin Hj Amir, S.Si., M.Eng.: 1. Dr. Hendra, S.Si., M.Kom.

2. Nur Hilal A Syahrir, S.Si., M.Si.

PROGRAM STUDI SISTEM INFORMASI
DEPARTEMEN MATEMATIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS HASANUDDIN
MAKASSAR

2021

# **DAFTAR ISI**

| DAFTAR ISI    |         |                                                            |    |  |  |
|---------------|---------|------------------------------------------------------------|----|--|--|
| DAFTA         | R TAB   | EL                                                         | i  |  |  |
| DAFTAR GAMBAR |         |                                                            |    |  |  |
| BAB I         | PEND    | AHULUAN                                                    | 1  |  |  |
| 1.1           | Latar 1 | Belakang                                                   | 1  |  |  |
| 1.2           | Rumus   | san Masalah                                                | ۷  |  |  |
| 1.3           | Tujuar  | Penelitian                                                 | ۷  |  |  |
| 1.4           | Batasa  | nn Masalah                                                 | ۷  |  |  |
| 1.5           | Manfa   | at Penelitian                                              | ۷  |  |  |
| BAB II        | TINJA   | AUAN PUSTAKA                                               | 5  |  |  |
| 2.1           | Landa   | san Teori                                                  | 5  |  |  |
|               | 2.1.1   | Citra Digital                                              | 5  |  |  |
|               | 2.1.2   | Pengolahan Citra Digital                                   | 6  |  |  |
|               | 2.1.3   | Filter Spasial                                             | 8  |  |  |
|               | 2.1.4   | Kernel                                                     | ç  |  |  |
|               | 2.1.5   | Konvolusi                                                  | 10 |  |  |
|               | 2.1.6   | Video Stream                                               | 12 |  |  |
|               | 2.1.7   | FPGA                                                       | 12 |  |  |
|               | 2.1.8   | Evaluasi Kinerja                                           | 13 |  |  |
| 2.2           | Peneli  | tian Terkait                                               | 18 |  |  |
|               | 2.2.1   | Spatial Filtering Based Boundary Extraction in Underwater  |    |  |  |
|               |         | Images for Pipeline Detection: FPGA Implementation         | 18 |  |  |
|               | 2.2.2   | FPGA Implementation of Spatial Filtering techniques for 2D |    |  |  |
|               |         | Images                                                     | 18 |  |  |
|               | 223     | Features of Image Spatial Filters Implementation on FPGA   | 10 |  |  |

|         | 2.2.4   | An FPGA-Oriented Algorithm for Real-Time Filtering of     |    |
|---------|---------|-----------------------------------------------------------|----|
|         |         | Poisson Noise in Video Streams, with Application to X-Ray |    |
|         |         | Fluoroscopy                                               | 19 |
|         | 2.2.5   | A real-time video denoising algorithm with FPGA           |    |
|         |         | implementation for Poisson-Gaussian noise                 | 19 |
| BAB III | MET(    | ODE PENENILITIAN                                          | 21 |
| 3.1     | Tahapa  | an Penelitian                                             | 21 |
| 3.2     | Waktu   | dan Lokasi Penelitian                                     | 22 |
| 3.3     | Ranca   | ngan Sistem                                               | 22 |
| 3.4     | Instrur | men Penelitian                                            | 23 |
| BAB IV  | HASII   | L DAN PEMBAHASAN                                          | 24 |
| 4.1     | Impler  | mentasi pada FPGA Development Board                       | 24 |
|         | 4.1.1   | Penerapan Filter Spasial                                  | 24 |
|         | 4.1.2   | Penerapan Filter Spasial dengan Prosesor ARM dan FPGA     | 28 |
|         | 4.1.3   | Proses Evaluasi Kinerja                                   | 29 |
| 4.2     | Analis  | is Kinerja                                                | 33 |
|         | 4.2.1   | Waktu Komputasi                                           | 33 |
|         | 4.2.2   | Frame Rate (FPS)                                          | 34 |
|         | 4.2.3   | Penggunaan CPU                                            | 35 |
|         | 4.2.4   | Penggunaan Memory                                         | 36 |
|         | 4.2.5   | Resident Memory (RES)                                     | 37 |
|         | 4.2.6   | Shared Memory (SHR)                                       | 39 |
|         | 4.2.7   | Virtual Memory (VIRT)                                     | 40 |
| BAB V   | KESI    | MPULAN DAN SARAN                                          | 42 |
| 5.1     | Kesim   | pulan                                                     | 42 |
| 5.2     | Saran   |                                                           | 42 |
| DAFTA   | R PUS   | ТАКА                                                      | 43 |
| I AMDI  | DAN     |                                                           | 15 |

# DAFTAR TABEL

| 4.1 | Tabel perbandingan waktu komputasi dengan menggunakan 50 frame.  | 33 |
|-----|------------------------------------------------------------------|----|
| 4.2 | Tabel perbandingan waktu komputasi dengan menggunakan 200 frame. | 34 |
| 4.3 | Tabel perbandingan FPS dengan menggunakan prosesor ARM dan       |    |
|     | FPGA                                                             | 35 |
| 4.4 | Tabel perbandingan penggunaan CPU dengan menggunakan prosesor    |    |
|     | ARM dan FPGA                                                     | 36 |
| 4.5 | Tabel perbandingan penggunaan memory dengan menggunakan          |    |
|     | prosesor ARM dan FPGA                                            | 37 |
| 4.6 | Tabel perbandingan penggunaan resident memory (RES) dengan       |    |
|     | menggunakan prosesor ARM dan FPGA                                | 38 |
| 4.7 | Tabel perbandingan penggunaan shared memory (SHR) dengan         |    |
|     | menggunakan prosesor ARM dan FPGA                                | 39 |
| 4.8 | Tabel perbandingan penggunaan virtual memory (VIRT) dengan       |    |
|     | menggunakan prosesor ARM dan FPGA                                | 40 |

## DAFTAR GAMBAR

| 2.1  | (a) Contoh citra biner, (b) contoh citra grayscale, (c) contoh citra warna. | 6  |
|------|-----------------------------------------------------------------------------|----|
| 2.2  | Ilustrasi konvolusi pada citra. Sumber: https://indoml.com                  | 11 |
| 2.3  | Struktur FPGA                                                               | 13 |
| 2.4  | FPGA Board Xilinx PYNQ-Z2                                                   | 14 |
| 2.5  | Tampilan program top pada Linux                                             | 15 |
| 2.6  | Kuadran pembagian memory pada Linux                                         | 16 |
| 3.1  | Flowchart tahapan penelitian                                                | 21 |
| 3.2  | Rancangan sistem                                                            | 22 |
| 4.1  | Contoh Frame Grayscale                                                      | 25 |
| 4.2  | Hasil filter Average Blur                                                   | 26 |
| 4.3  | Hasil filter Gaussian Blur                                                  | 26 |
| 4.4  | Hasil filter Laplacian                                                      | 27 |
| 4.5  | Hasil filter Sharpening                                                     | 27 |
| 4.6  | Hasil filter Sobel Horizontal                                               | 28 |
| 4.7  | Hasil filter Sobel Vertical                                                 | 28 |
| 4.8  | Menghitung waktu komputasi dengan library time di Python                    | 30 |
| 4.9  | Tampilan program <b>top</b>                                                 | 30 |
| 4.10 | Menampilkan PID sebuah proses dengan bahasa pemrograman Python.             | 31 |
| 4.11 | Menjalankan program top kemudian menyimpan hasilnya pada file               |    |
|      | arm-laplacian1.txt                                                          | 31 |
| 4.12 | Potongan isi file arm-laplacian1.txt                                        | 32 |
| 4.13 | Isi file arm-laplacian1.csv.                                                | 32 |
| 4.14 | Grafik perbandingan waktu komputasi dengan 50 frame dan 200 frame           | 33 |
| 4.15 | Grafik perbandingan waktu komputasi dengan 50 frame dan 200 frame           | 34 |
| 4.16 | Grafik perbandingan FPS dengan menggunakan prosesor ARM dan                 |    |
|      | FPGA                                                                        | 35 |
| 4.17 | Grafik perbandingan penggunaan CPU dengan menggunakan prosesor              |    |
|      | ARM dan FPGA                                                                | 36 |

| 4.18 | Grafik perbandingan penggunaan memory dengan menggunakan    |    |
|------|-------------------------------------------------------------|----|
|      | prosesor ARM dan FPGA                                       | 37 |
| 4.19 | Grafik perbandingan penggunaan resident memory (RES) dengan |    |
|      | menggunakan prosesor ARM dan FPGA                           | 38 |
| 4.20 | Grafik perbandingan penggunaan shared memory (SHR) dengan   |    |
|      | menggunakan prosesor ARM dan FPGA                           | 39 |
| 4.21 | Grafik perbandingan penggunaan virtual memory (VIRT) dengan |    |
|      | menggunakan prosesor ARM dan FPGA                           | 40 |

## **DAFTAR LAMPIRAN**

## **BABI**

## **PENDAHULUAN**

## 1.1 Latar Belakang

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper. (Putra 2010)

# BAB II TINJAUAN PUSTAKA

## 2.1 Landasan Teori

# BAB III METODE PENENILITIAN

# BAB IV HASIL DAN PEMBAHASAN

#### BAB V

#### **KESIMPULAN DAN SARAN**

## 5.1 Kesimpulan

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

#### 5.2 Saran

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

#### **DAFTAR PUSTAKA**

- Asano, Shuichi, Tsutomu Maruyama, and Yoshiki Yamaguchi (2009). "Performance comparison of FPGA, GPU and CPU in image processing". In: 2009 International Conference on Field Programmable Logic and Applications, pp. 126–131. DOI: 10.1109/FPL.2009.5272532.
- Biswas, Priyabrata (2019). "Introduction to FPGA and its Architecture". https://towardsdatascience.com/introduction-to-fpga-and-its-architecture-20a62c14421c. Accessed on 2020-06-18.
- Castellano, G. dkk. (Jan. 2019). "An FPGA-Oriented Algorithm for Real-Time Filtering of Poisson Noise in Video Streams, with Application to X-Ray Fluoroscopy". In: *Circuits, Systems, and Signal Processing*. DOI: 10.1007/s00034-018-01020-x.
- Cheung, Peter (2019). "Introduction to FPGAs". http://www.ee.ic.ac.uk/pcheung/teaching/ee2\_digital/Lecture2-IntroductiontoFPGAs.pdf. Accessed on 2020-04-19.
- Cong, Jason dkk. (2018). "Understanding Performance Differences of FPGAs and GPUs". In: *Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays*. FPGA '18. Monterey, CALIFORNIA, USA: Association for Computing Machinery, p. 288. ISBN: 9781450356145. DOI: 10. 1145/3174243.3174970. URL: https://doi.org/10.1145/3174243.3174970.
- Gonzalez, Rafael C. and Richard E. Woods (2001). "Digital Image Processing". 2nd. ISBN-13: 978-0201180756. Upper Saddle River, New Jersey 07458: Prentice Hall.
- Jingbo, Xu dkk. (Aug. 2011). "A New Method for Realizing LOG Filter in Image Edge Detection". In: *The 6th International Forum on Strategic Technology*. DOI: 10.1109/IFOST.2011.6021127.
- Kerrisk, Michael (2020). "(Top) Linux Manual Page". https://www.man7.org/linux/man-pages/man1/top.1.html. Accessed on 2021-02-2.
- Kowalczyk, Marcin, Dominika Przewlocka, and Tomasz Krvjak (Oct. 2018). "Real-Time Implementation of Contextual Image Processing Operations for 4K Video Stream in Zynq UltraScale+ MPSoC". In: 2018 Conference on Design and

- Architectures for Signal and Image Processing (DASIP). DOI: 10.1109/DASIP.2018. 8597105.
- Madhusudana, Pavan C. dkk. (2020). "Capturing Video Frame Rate Variations via Entropic Differencing". In: *IEEE Signal Processing Letters* 27, pp. 1809–1813. DOI: 10.1109/LSP.2020.3028687.
- Putra, Darma (2010). "Pengolahan Citra Digital". ISBN-13: 978-979-29-1443-6. Jl. Beo 38-40, Yogyakarta 55281: Penerbit Andi.
- Raj, S.M. Alex, Rita Maria Abraham, and M.H. Supriya (Sept. 2016). "Spatial Filtering Based Boundary Extraction in Underwater Images for Pipeline Detection: FPGA Implementation". In: *International Journal of Computer Science and Information Security (IJCSIS)*. Vol. 14, No. 9.
- Rinaldi, Munir (2004). "Pengolahan Citra Digital dengan Pendekatan Algoritmik". ISBN: 979-3338296. Bandung: Penerbit Informatika.
- S, Lars dkk. (2020). "The Linux System Adminstrator's Guide Chapter 6. Memory Management". https://tldp.org/LDP/sag/html/vm-intro.html. Accessed on 2021-02-22.
- Sadangi, Sushant dkk. (May 2017). "FPGA Implementation of Spatial Filtering techniques for 2D Images". In: *IEEE International Conference On Recent Trends in Electronics Information & Communication Technology (RTEICT)*.
- Silbershatz, Avi, Peter Baer Galvin, and Greg Gagne (2009). "Operationg System Concepts". ISBN: 978-0-470-12872-5. John Wiley and Sons, Inc.
- Silva, Eduardo A.B. da and Gelson V. Mendonca (2005). "4 Digital Image Processing". In: *The Electrical Engineering Handbook*. Ed. by Wai-Kai Chen. Burlington: Academic Press, pp. 891–910. ISBN: 978-0-12-170960-0. DOI: https://doi.org/10.1016/B978-012170960-0/50064-5.
- Sutoyo, T. dkk. (2009). "Teori Pengolahan Citra Digital". ISBN-13: 978-979-29-0974-6. Jl. Beo 38-40, Yogyakarta 55281: Penerbit Andi.
- Tan, Xin dkk. (Feb. 2014). "A Real-time Video Denoising Algorithm with FPGA Implementation for Poisson-Gaussian Noise". In: *J Real-Time Image Proc.* DOI: 10.1007/s11554-014-0405-2.

- Ustyukov, Dmitry I., Alex I. Efimov, and Dmitry A. Kolchaev (June 2019). "Features of Image Spatial Filters Implementation on FPGA". In: *Mediterranean Conference On Embedded Computing (Meco)*.
- Xilinx (2020). "Field Programmable Gate Array (FPGA)". https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html. Accessed on 2020-04-17.
- Yang, Ching-Chung (Sept. 2013). "Finest Image Sharpening by Sse of the Modified Mask Filter Dealing with Highest Spatial Frequencies". In: *OPTIK*. DOI: 10.1016/j.ijleo.2013.09.070.
- Zhao, Jin (Apr. 2015). "Video/Image Processing on FPGA". Master thesis. Worcester Polytechnic Institute.

## **LAMPIRAN**