Software Requirements Specification for Chess Connect: Online tools combined with on-board vision to improve and share your game

Team #4,
Alexander Van Kralingen
Arshdeep Aujla
Jonathan Cels
Joshua Chapman
Rupinder Nagra

October 4th, 2022

Contents

Ta	able of Revisions	4			
1	Units, Terms, Acronyms, and Abbreviations 1.1 Table of Units	6 6 7 7 7			
2	Introduction2.1 Document Purpose2.2 Characteristics of Intended Reader2.3 Characteristics of Intended User2.4 Stakeholders	8 8 8 8			
3	Problem Description	8			
4	Assumptions	9			
5	5 Constraints				
6	Scope	9			
7	Project Overview 7.1 System Context Diagram 7.2 Behaviour Overview 7.3 Normal Operation 7.3.1 Description 7.3.2 Finite State Machine 7.3.3 Use Cases/Scenarios 7.4 Undesired Scenario Handling	10 11 12 12 12 13 14 14			
8	System Level Variables 8.1 Constants	15 15 15 16			
9	Requirements 9.1 Functional Requirements	16 16 16 17 18			

	9.1.4	Engine Mode	19
	9.1.5	Beginner Mode	20
9.2	Nonfu	nctional Requirements	20
	9.2.1	Look and Feel Requirements	20
	9.2.2	Usability and Humanity Requirements	21
	9.2.3	Performance Requirements	21
	9.2.4	Operational and Environmental Requirements	23
	9.2.5	Maintainability and Support Requirements	23
	9.2.6	Security Requirements	23
	9.2.7	Political and Cultural Requirements	24
	9.2.8	Legal Requirements	24
10 Pha	ase-In l	Plan	2 5
11 Lik	ely Cha	anges	26
12 Unl	likely (Changes	27
13 Tra	ceabili	ty Matrix	27
A Ref	dection		27
		for Success and Learning Approaches	

Table of Revisions

Table 1: Revision History

Date	Developer(s)	Change		
2022-10-04	Jonathan Cels	Template creation and document formatting		
2022-10-04	Jonathan Cels	Non-functional requirements		
2022-10-05	Joshua Chapman	Constants, Monitored Variables, Controlled		
		Variables		
2022-10-05	Alexander Van Kralingen	Added Context Diagram		
2022-10-05	Joshua Chapman	Problem Description, Assumptions		
2022-10-05	Jonathan Cels	Scope, Intended Reader, Stakeholders		
2022-10-05	Multiple	Functional Requirements		
2022-10-05	Arshdeep Aujla	Constraints		
2022-10-05	Alexander Van Kralingen	Added Use Cases/Scenarios. Fixed system con-		
		text diagram position. Added likely change.		
2022-10-05	Rupinder Nagra	Purpose, Likely Changes and Unlikely Changes		
2022 - 10 - 05	Alexander Van Kralingen	Added Undesired Event Handling section and a		
		likely change.		
2022 - 10 - 05	Arshdeep Aujla	Characteristics of Intended User, Stakeholders		
2022 - 10 - 05	Arshdeep Aujla	Reflection		
2022-10-05	Alexander Van Kralingen	Added FSM		
2022-10-19	Jonathan Cels	Added new hazard requirements		
2022-10-23	Alexander Van Kralingen	Fixed FSM, added diagram source code		
2022-11-02	Jonathan Cels	Changed some NFRs		
2023-04-05	Jonathan Cels	Updated table of units to only list units used in		
		the document		
2023-04-05	Jonathan Cels	Slight changes to descriptions of system and		
		problem, assumptions, scope		
2023-04-05	Jonathan Cels	Changed monitored variable s_a through s_g to		
		current_board. Removed button inputs sw_3pos		
		and $tieB_p{1-2}$, replacing them with LCD		
		touchscreen inputs. Added other missing user		
		inputs.		
2023-04-05	Jonathan Cels	Fixed system context diagram to match variables		
2023-04-05	Jonathan Cels	Changed functional requirements to be specified		
		via the respective monitored and controlled vari-		
2022 24 27		ables of the system.		
2023-04-05	Jonathan Cels	Added priority (high, medium, low) to all func-		
		tional requirements. Added a phase-in plan sec-		
		tion specifying timeline and rationale based on		
		requirement priority.		

1 Units, Terms, Acronyms, and Abbreviations

1.1 Table of Units

Throughout this document SI (Système International d'Unités) is employed as the unit system. In addition to the basic units, several derived units are used as described below. For each unit, the symbol is given followed by a description of the unit and the SI name.

symbol	unit	SI
V	electric potential	volt
Ω	resistance	ohm
\mathbf{S}	time	second

1.2 Abbreviations and Acronyms

symbol	description
A	Assumption
API	Application Programming Interface
CSA	Canadian Standards Association
DD	Data Definition
FIDE	International Chess Federation or Fédération Internationale des Échecs
GD	General Definition
GS	Goal Statement
LC	Likely Change
LCD	Liquid Crystal Display
LED	Light-Emmitting Diode
R	Requirement
SRS	Software Requirements Specification
SS	Skills for Success
VnV	Verification and Validation
WCAG	Web Content Accessibility Guidelines

1.3 Mathematical Notation

1.4 Terminology and Definitions

Term	Definition
Legal Move	Moving a single chess piece from one square on the board to another in a way that follows the rules of chess.
Resign	To forfeit or surrender a game of chess.
Draw	To tie a game of chess.
Draw by Agreement	When both players agree to draw instead of continuing to play.
Capture	When a piece moves into the space of an opposing piece following the rules of chess, removing that piece from the game.
Check	A condition that occurs when a player's king is under threat of being captured.
Checkmate	A condition that occurs when a player's king is in check and has no legal moves to escape. This ends the game, and the player who delivered the checkmate wins.
Stalemate	A type of draw that occurs when the king is not in check, but no piece can be moved without putting the king in check.

2 Introduction

2.1 Document Purpose

The purpose of this document is to provide a set of requirements for a system that will integrate over-the-board chess with the online world of chess to assist in learning the game in a flexible manner. This includes a detailed description of our functional and non-functional requirements, including the performance and attributes of our design. The document also includes a project overview showcasing the behaviour with event handling and system diagrams, and the likely and unlikely changes we expect to encounter throughout the development of our product.

2.2 Characteristics of Intended Reader

The document is written with the purpose of guiding development for the Chess Connect team. The intended readers of this document are the developers of Chess Connect, Dr. Spencer Smith, and Nicholas Annable, the teaching assistant assigned to this project. The document is thus written for an audience that is well-versed in formal specification at a university level. This includes models, diagrams, and mathematical notation. Readers should also have a university-level understanding of electrical circuit knowledge.

2.3 Characteristics of Intended User

This project will assist chess players of any level that are looking for a tool to help them learn and study the game. For beginners, the board serves as a learning tutorial and a general introduction to the game, while intermediate and advanced players can use the engine move recommendations to study new lines and specific positions to enhance their chess skills.

2.4 Stakeholders

Stakeholders for this project are the professor and TAs for the course SFWRENG 4G06, as they will be providing the feedback which will directly affect the project's development. Society is also a stakeholder because this project will provide the members of society another gateway to be involved in the community through the game of chess. Lastly, this project will also be relevant to chess tournament organizers looking for a method to easily broadcast and share their games online in real-time.

3 Problem Description

Online chess has functionality for both beginners and experienced players to learn and practice the game. However, these forms of learning emphasize a visual style of learning using a standard keyboard and mouse, while physical boards place emphasis on tactile learning when

learning or studying the game. The highest-rated chess players often use a combination of the two styles to optimize their play. However, no option exists for players of any skill level to integrate their over-the-board and online play with one solution.

Chess Connect plans to centralize these two mediums of studying the game in order to provide flexibility and remove constraints for new players in learning how to play chess.

4 Assumptions

- A1. Users of the board have knowledge of the starting positions and will set them up before the start of a new game.
- A2. Game termination as dictated by the rules of chess FIDE (2018)
- A3. During gameplay, users will not take back moves, except when instructed to do so. When a piece is placed on the board, that move is final.
- A4. Users will have knowledge of the bluetooth setup and connection.

5 Constraints

C1	The cost should not exceed CAD \$750	
Rationale	This is the maximum budget alloted to this project as per the course requirements.	

C2	The project must be completed by the winter semester of 2023
Rationale	This is the allocated time for this project as per the course
Rationale	requirements.

6 Scope

The system is called Chess Connect, and will include a software application and physical hardware device. The hardware will take the form of a chess set, and will collect and relay move and piece data. The device will convey the best move for the specific board position as calculated by a chess engine, and will convey legal moves for specific pieces. The device will be connected to the software application, relaying and receiving relevant data. The

software application will model and track the physical device, and will broadcast the data in an accessible format. The application will be constrained to a 2-dimensional model of the hardware device, showing a top-down view of the game.

In-scope items for the system include the following:

- 1. Modeling and tracking a chess game played using the Chess Connect hardware
- 2. Displaying and broadcasting the game state on the Chess Connect software application
- 3. Giving users an option to choose between beginner mode, engine mode, and normal mode
- 4. Informing users when an illegal move is made, or when a user moves out of turn
 - Beginner mode will display legal moves for individual pieces when a chess piece is picked up
 - Engine mode will display the best move as determined by a chess engine for the position
 - Normal mode will disable the engine and beginner mode features. This is intended for regular play between experienced players

The following items are deemed to be **out of scope**:

- 1. FIDE (International Chess Federation) standards for tournament appropriate chess equipment
- 2. Tracking and support for alternate chess variants such as Chess960, Atomic Chess, King of the Hill. More information found here: List of Chess Variants.
- 3. Proper tracking of alternate starting positions like puzzles
- 4. Proper tracking of illegal moves and rule violations when warnings are ignored

7 Project Overview

The Chess Connect project allows two users to play a game of chess on a physical board with the information being transmitted to an online web application over Bluetooth. Currently, there is no way for players to seamlessly switch between playing on a physical board and playing online, but Chess Connect intends to change this by creating a central platform that will provide flexibility and remove barriers for new players looking to learn the game.

7.1 System Context Diagram

The context of the system invloves two integrated but separate system components, as well as two distinct end users.

Figure 1: Overall System Context

7.2 Behaviour Overview

Figure 2: On-board System Context

7.3 Normal Operation

7.3.1 Description

The normal operation of the chess board involves configuring game mode and settings, reading the physical positions and identifiers (magnetic strength) of the pieces, lighting up corresponding LEDs and determining legal moves on the micro-controller. There will be three game modes: Normal Mode (no LED feedback), Engine Mode (best moves calculated by a chess engine and displayed by an LCD display) and Beginner Mode (legal moves displayed by LED when a piece is picked up). The micro-controller will also be simultaneously transmitting data to the server via Bluetooth and receiving responses in the form of "best" moves from the server. The server will be calculating these best moves in real time depending on the configuration of the pieces on the board sent from the chess board, and sending it back over Bluetooth every time it is queried while the game is in "Engine Mode". The server will also be communicating all of this information to a web application where users can tune in and watch the pieces and see game stats in real time.

7.3.2 Finite State Machine

Figure 3: Finite State Machine Detailing Normal System Behaviour. Green indicates initial state, blue indicates waiting for user input and red indicates end state.

7.3.3 Use Cases/Scenarios

7.3.3.1 Normal Mode

Users play the game without any LED feedback. This would typically be a formal match involving players that are familiar with the game. Moves are broadcast to the web application in real time.

7.3.3.2 Engine Mode

Users play the game with LCD feedback indicating which pieces to move to which positions that would be statistically the most probable move to win the game. This game mode would be most likely played as a way to improve one's skill level and to gain a deeper understanding of the game.

7.3.3.3 Beginner Mode

Users play the game with LED feedback on lifting a piece. The lifted piece will be determined by the system and that piece's corresponding legal moves will be illuminated on the board. This game mode is designed to help beginners learn the game of chess.

7.3.3.4 Tournament Play

Since the moves made in the game will be broadcasted live to the internet via the web application, tournaments can be held with spectators watching the game in real time.

7.4 Undesired Scenario Handling

7.4.0.1 Earthquake Scenario

Also known as the "sore loser scenario", when some or all of the pieces are removed from their spaces within a short amount of time, the LCD screen will display an error.

7.4.0.2 Power Loss

When the power to the board is cut, the web application will end the game as a draw. The board will also have to be reconfigured back into the default starting positions for all pieces.

7.4.0.3 Bluetooth Disconnection

On bluetooth disconnection, the board will attempt to reconnect for 30 s. Upon the expiration of this timer, the game will end as a draw.

7.4.0.4 Internet Disconnection

On internet disconnection, the server will keep a history of past moves made. On reconnection, the game will be updated to reflect these moves as they are sent through the queue to the hosted interface.

8 System Level Variables

8.1 Constants

Constant	Unit	Value
Chess board width	inches	15
Chess board length	inches	18
Chess board tile width	inches	1.75
Chess board tile length	inches	1.75
Supply Power to Board	V	110 VAC

8.2 Monitored Variables

Variable	Units	Description	
		States of tiles on the board. They are analog	
	sequence	signals converted to digital and the state of the	
current_board	of	tile is determined. The possible states of each tile	
current_board	(sequence	is empty, black/white pawn, black/white rook,	
	of V)	black/white knight, black/white bishop,	
		black/white queen, black/white king.	
		The LCD screen is located in the side of the	
		board. The LCD is a touchscreen display that	
LCD_inputs	Ω	uses a resistor grid input. It controls selection of	
LCD_IIIputs	7.2	user mode (beginner, normal, engine), new game	
		button, as well as draw and resign, and a colour	
		theme change button.	
engine_move	chess	The chess engine API provides best moves into	
engine_move	notation	the system.	

8.3 Controlled Variables

Variable	Units	Description	
		A total of 64 LEDS will be located under the	
$LED_{row}{1-8}$	V	board. They are in the middle of each tile and	
		illuminate based on conditions of the inputs.	
		An LCD Display is located on the chess board to	
LCD_display	V	indicate best moves delivered by the engine, take	
		user inputs, and display errors.	

9 Requirements

9.1 Functional Requirements

The system has two states, the Game Active State and the Game Inactive State. When in the Game Active State, the system can be in one of three possible "user modes". The user modes are Normal Mode, Engine Mode, and Beginner Mode.

Figure 4: Game State Diagram

9.1.1 Game Active State

9.1.1.1 Chess Board

- GA1. Pressing the Resign/Draw button will change the system to the Game Inactive State. Monitored through changes to LCD_inputs from the LCD. (Priority: **High**)
- GA2. Pressing the New Game button will have no effect. Monitored through changes to LCD_inputs from the LCD. (Priority: **Medium**)
- GA3. User Mode selection will have no effect. Monitored through changes to LCD_inputs from the LCD. (Priority: **Low**)

- GA4. Pressing the Theme Change button will change the colours of the LCD screen. Monitored through changes to LCD_inputs from the LCD, and controlled through changes to LCD_display. (Priority: Low)
- GA5. The chess board follows the **Chess Board** section for the respective user mode being played. (Priority: **High**)

9.1.1.2 Data Transfer

GA6. Data transfer follows the **Data Transfer** section for the respective user mode being played. (Priority: **High**)

9.1.1.3 Web Application

- GA7. Entering the Game Active State will reset the game state to the starting position. (Priority: **High**)
- GA8. Game termination of type stalemate or checkmate shall change the system to the Game Inactive State. (Priority: **Medium**)
- GA9. The web application follows the **Web Application** section for the respective user mode being played. (Priority: **High**)

9.1.2 Game Inactive State

9.1.2.1 Chess Board

- GI1. Pressing the New Game button will change the system to the Game Active State if current_board matches the expected starting position. Monitored through changes to LCD_inputs from the LCD. (Priority: **High**)
- GI2. Pressing the New Game button will not change the system state, and will request corrective action if current_board does not match the expected starting position. Monitored through changes to current_board and LCD_inputs from the LCD. Controlled through changes to LCD_display. (Priority: Low)
- GI3. Allow users to switch between user modes, choosing Normal Mode, Engine Mode, or Beginner Mode by using the button on the Game Active screen. Monitored through changes to LCD_inputs from the LCD. (Priority: **High**)
- GI4. Pressing the Resign/Draw button will have no effect. Monitored through changes to LCD_inputs from the LCD. (Priority: **Medium**)
- GI5. Changes to current_board will have no effect. (Priority: Medium)

9.1.2.2 Data Transfer

GI6. The board state data is not sent to the web application when a piece is moved. (Priority: **Medium**)

9.1.2.3 Web Application

- GI7. The web application will display the final game state upon game termination. (Priority: **High**)
- GI8. The web application will display a message with the game termination type (stalemate, checkmate, resignation, draw). (Priority: **Medium**)

9.1.3 Normal Mode

9.1.3.1 Chess Board

- NB1. The system shall store the position, colour, and type of the previously moved piece in current_board. (Priority: **High**)
- NB2. If an illegal move is made, the LCD screen will halt play and request a corrective action. Controlled through changes to LCD_display. (Priority: **Medium**)
- NB3. Allow each player the ability to resign by holding down their respective Resign button for ENDTIME s located on the LCD screen. Monitored through changes to LCD_inputs from the LCD. (Priority: **Medium**)
- NB4. Allow the players the ability to draw by having them both hold down the Draw button for ENDTIME s located on the LCD screen. Monitored through changes to LCD_inputs from the LCD. (Priority: **Medium**)

9.1.3.2 Data Transfer

ND1. The system shall send a representation of the data contained in current_board over the chosen data transfer method as an input to the web application. (Priority: **High**)

9.1.3.3 Web Application

- NA1. The web application will receive a representation of the data contained in current_board. (Priority: **High**)
- NA2. The web application will display the updated game board configuration with the data of the previous move. (Priority: **High**)
- NA3. In event of game termination (stalemate, checkmate, resignation, draw), the web application will display a message with the method of game termination. The system shall change to the Game Inactive State. (Priority: **Low**)

9.1.4 Engine Mode

9.1.4.1 Chess Board

- EB1. The system shall store the position, colour, and type of the previously moved piece in current_board. (Priority: **High**)
- EB2. If an illegal move is made, the LCD screen will halt play and request a corrective action. Controlled through changes to LCD_display. (Priority: **Medium**)
- EB3. Allow each player the ability to resign by holding down their respective Resign button for ENDTIME s located on the LCD screen. Monitored through changes to LCD_inputs from the LCD. (Priority: **Medium**)
- EB4. Allow the players the ability to draw by having them both hold down the Draw button for ENDTIME s located on the LCD screen. Monitored through changes to LCD_inputs from the LCD. (Priority: **Medium**)
- EB5. The system shall display engine_move on the LCD screen. Controlled through changes to LCD_display. (Priority: **High**)

9.1.4.2 Data Transfer

- ED1. The system shall send a representation of the data contained in current_board over the chosen data transfer method as an input to the web application. (Priority: **High**)
- ED2. The system shall send engine_move to the LCD display over the chosen data transfer method. (Priority: **High**)

9.1.4.3 Web Application

- EA1. The web application will receive a representation of the data contained in current_board. (Priority: **High**)
- EA2. The web application will display the updated game board configuration with the data of the previous move. (Priority: **High**)
- EA3. The system shall input the current game position to a chess engine API. (Priority: **High**)
- EA4. The system shall use the chess engine to evaluate the position and calculate the best engine move. (Priority: **High**)
- EA5. The system shall display engine move on the web application. (Priority: Low)
- EA6. In event of game termination (stalemate, checkmate, resignation, draw), the web application will display a message with the method of game termination. The system shall change to the Game Inactive State. (Priority: **Low**)

9.1.5 Beginner Mode

9.1.5.1 Chess Board

- BB1. The system shall store the position, colour, and type of the previously moved piece in current_board. (Priority: **High**)
- BB2. When a user picks up a piece and suspends it in the air for LIFTTIME s, all legal moves starting from that piece's current_board index will be visually indicated on the board. Visual indication controlled through changes to LED_row. (Priority: **High**)
- BB3. If an illegal move is made, the LCD screen will halt play and request a corrective action. Controlled through changes to LCD_display. (Priority: **Medium**)
- BB4. Allow each player the ability to resign by holding down their respective Resign button for ENDTIME s located on the LCD screen. Monitored through changes to LCD_inputs from the LCD. (Priority: **Medium**)
- BB5. Allow the players the ability to draw by having them both hold down the Draw button for ENDTIME s located on the LCD screen. Monitored through changes to LCD_inputs from the LCD. (Priority: **Medium**)

9.1.5.2 Data Transfer

BD1. The system shall send a representation of the data contained in current_board over the chosen data transfer method as an input to the web application. (Priority: **High**)

9.1.5.3 Web Application

- BA1. The web application will receive a representation of the data contained in current_board. (Priority: **High**)
- BA2. The web application will display the updated game board configuration with the data of the previous move. (Priority: **High**)
- BA3. In event of game termination (stalemate, checkmate, resignation, draw), the web application will display a message with the method of game termination. The system shall change to the Game Inactive State. (Priority: **Low**)

9.2 Nonfunctional Requirements

9.2.1 Look and Feel Requirements

9.2.1.1 Appearance Requirements

- LF1. The product shall use white, black, grey, and brown as its primary colours.
- LF2. The product shall use green, red, beige, and blue as its secondary colours.

9.2.1.2 Style Requirements

LF3. The product shall look and feel similar enough to traditional chess boards and chess pieces that the target audience will recognize the product as a chess set when encountering it for the first time. The level and speed of audience recognition achieved by the design shall be described following the procedure given in Section 5.2.1 of the VnV (Verification and Validation) Plan.

9.2.2 Usability and Humanity Requirements

9.2.2.1 Ease of Use Requirements

- UH1. The system shall require the user to place chess pieces fully on their intended squares.
- UH2. Physical hardware components of the system will not impede the user during play.

9.2.2.2 Personalization and Internationalization Requirements

- UH3. The system will only display information in English.
- UH4. The system will only use the Arabic numerals.

9.2.2.3 Learning Requirements

UH5. The product shall be able to be used by members of the public over with no previous training. Details on the learnability of the system shall be described following the procedure given in Section 5.2.2 of the VnV Plan.

9.2.2.4 Understandability and Politeness Requirements

UH6. All symbols and words shall be similar to historically used Chess symbols. Wall (2003)

9.2.2.5 Accessibility Requirements

UH7. The system shall follow guidelines for correct size and colour contrast ratio for text to the background as stated in the WCAG.

9.2.3 Performance Requirements

9.2.3.1 Speed and Latency Requirements

- PR1. The average time between a user placing down a piece and the visual model response shall be small.
- PR2. The maximum time between a user placing down a piece and the visual model response shall be small.

- PR3. The average time between a user picking up a piece and the visual board indicator response shall be small.
- PR4. The maximum time between a user picking up a piece and the visual board indicator response shall be small. The degree of speed for PR1 through PR4 shall be described following the procedure given in Section 5.2.3 of the VnV Plan.

9.2.3.2 Health and Safety-Critical Requirements

- PR5. The system shall be properly grounded according to the Canadian Electrical Code. CSA (2021)
- PR6. The maximum power on any single wire shall be within the safety limits described in the Canadian Electrical Code.

9.2.3.3 Precision or Accuracy Requirements

PR7. The software application game state will model the game state on the Chess Connect hardware with a high degree of accuracy. The level of accuracy shall be described following the procedure given in Section 5.2.4 of the VnV Plan.

9.2.3.4 Reliability and Availability Requirements

PR8. The product shall be available with a minimum of 95% uptime.

9.2.3.5 Robustness or Fault-Tolerance Requirements

PR9. The software application shall maintain the game state if the connection between the software and hardware systems is interrupted.

9.2.3.6 Capacity Requirements

PR10. The software shall require computer memory to function effectively. The level of memory capacity required shall be described following the procedure given in Section 5.2.5 of the VnV Plan.

9.2.3.7 Scalability or Extensibility Requirements

PR11. The product must support the addition of new features and components.

9.2.3.8 Longevity Requirements

- PR12. The product must be supported while the application remains deployed.
- PR13. The product will depend on the continued support of packages and libraries.

9.2.4 Operational and Environmental Requirements

9.2.4.1 Expected Physical Environment

- OE1. The hardware and software systems shall be close enough to each other to facilitate communication. The degree of proximity required will be 20 meters or less.
- OE2. The area shall be clear of potentially dangerous or harmful environmental factors.

9.2.4.2 Requirements for Interfacing with Adjacent Systems

OE3. The system shall interface with an external server to make requests to a chess engine.

9.2.4.3 Productization Requirements

OE4. The product shall be deployed to a public website where users may access it.

9.2.4.4 Release Requirements

OE5. The product will be tested for bugs and issues. These issues will be fixed and the application will be redeployed accordingly.

9.2.5 Maintainability and Support Requirements

9.2.5.1 Maintenance Requirements

MS1. The product shall be maintained actively by the developers until the Chess Connect team graduates.

9.2.5.2 Supportability Requirements

N/A

9.2.5.3 Adaptability Requirements

- MS2. The software application will be able to be hosted on Apple, Windows, and Linux devices.
- MS3. The product shall be accessible from any web browser.

9.2.6 Security Requirements

9.2.6.1 Access Requirements

SR1. Only the Chess Connect team are able to modify the software system.

9.2.6.2 Integrity Requirements

- SR2. The product will not store game data after a game has concluded.
- SR3. The system shall locally maintain the current game state, making no changes until a connection is restablished.
- SR4. The system shall alert the user that a connection has been lost.
- SR5. The system shall prompt the user to take an appropriate hazard-specific action.

9.2.6.3 Privacy Requirements

SR6. The product will not store or collect user data.

9.2.6.4 Audit Requirements

SR7. Requirements shall be easy to follow and verify against both the system and the VnV plan in order to facilitate regular inspections.

9.2.6.5 Immunity Requirements

N/A

9.2.7 Political and Cultural Requirements

9.2.7.1 Cultural Requirements

PC1. The product will not use and terms or symbols that are deemed offensive to any culture.

9.2.7.2 Political Requirements

N/A

9.2.8 Legal Requirements

9.2.8.1 Compliance Requirements

LR1. The system shall comply with the Canadian Electrical Code CSA (2021).

9.2.8.2 Standards Requirements

LR2. The product shall follow WCAG.

10 Phase-In Plan

Priority	Requirements	Absolute Deadline	Rationale
HIGH	GA1, GA5, GA6, GA7,	2023-02-12-11:59pm	High priority
	GA9, GI1, GI3, GI7,		requirements are vital
	NB1, ND1, NA1, NA2,		requirements that define
	EB1, EB5, ED1, ED2,		the core system
	EA1, EA2, EA3, EA4,		behaviour. These should
	BB1, BB2, BD1, BA1,		be completed first and
	BA2		be fully implemented in
			time for the rev-0 demo
			on February 13th.
MEDIUM	GA2, GA8, GI4, GI5,	2023-03-27-11:59pm	Medium priority
	GI6, GI8, NB2, NB3,		requirements are
	NB4, EB2, EB3, EB4,		important to the
	BB3, BB4, BB5		facilitation of the higher
			priority requirements.
			These typically deal
			with navigation, errors,
			and variable control to
			support the system.
			These should be
			implemented as part of
			the final product roughly
			a week before the final
			demo on April 1st,
			leaving some time for
LOW	CA2 CA4 CI2 NA2	2002 04 01 10	integration and testing.
LOW	GA3, GA4, GI2, NA3,	2023-04-01-10am	Low priority requirements deal with
	EA5, EA6, BA3		less important parts of
			the system, edge cases,
			and non-vital
			functionality. These are
			mostly self-contained
			and are to be
			implemented only after
			high and medium
			priority requirements are
			fully functional.

11 Likely Changes

- LC1. Reviewing past games allows players to evaluate their own positions with a better understanding on how to play in future games. We will use databases such as MySQL and MongoDB in order to store these games for users to view.
- LC2. An additional user mode, Study Mode, that will allow users to set up puzzles that do not start from the default position. It will allow users to practice a specific phase of the game, including the ability to take back moves without having to play out a full game with an opponent. This mode is meant to be used individually, also allowing a user to use and study the board without the necessity of another player.
- LC3. Online chess has extensive communities on existing platforms. To promote code reusability, the Chess Connect online platform will interface with popular existing websites. Users of the board have the capability to share their games with a larger community via these platforms in addition to the custom web application. These sites include, but are not limited to, Chess.com and Lichess.
- LC4. An additional game setting to enable either white or black to be a "computer" opponent will be implemented in Engine Mode. The user will be able to set a skill level for the computer, and moves will be displayed as squares lit up by the on-board LEDs.
- LC5. The backend/database programming languages and frameworks previously listed are subject to change depending on the use of the data transfer functionality, in which comptibility to the hardware would play a role in picking our technology stack.
- LC6. The load capacity of our system is initially set low for the first edition of this application. As demand for the application increases, the load capacity must also increase to support a larger user base.
- LC7. The method of data transfer is subject to change depending on interfacing between the hardware and software. Examples of these are Bluetooth and USB connected to the board.
- LC8. The dimensions of the chess board are subject to change based the 3D-printed designs we use for the pieces.
- LC9. When pieces are lost, power is cut or data transmission is cut, the current result is ending the game as a draw. Adding the ability for the board to start from any state would allow the players to resume from where they left off. This would require several other options such as "which colour starts", "pausing the game" and "resume from last saved configuration".

12 Unlikely Changes

- UC1. Since overarching idea of the project is integration between over the board and online chess, a web application will be necessary.
- UC2. There must be sensors to locate the pieces in order to solve tracking and object detection.
- UC3. The most popular and easy to use chess engine is Stockfish, which is open source and includes a well-written API documentation. This will likely be the engine we will be using for predicting future moves.
- UC4. As a learning application, giving beginners the ability to learn quickly is a big priority, so the application will include a beginner mode to help familiarize players with the movement of the chess pieces.
- UC5. Although the back-end/database technologies are subject to change, the front-end will make use of our past members' experience in user interface design. For this reason, the technologies previously mentioned for front-end are unlikely to change.

13 Traceability Matrix

A1	GI1
A2	BB3
A3	BB2, BB3
A4	UH1
BA1	UH5
7.3.2.1	NB1, NB2, NB3, ND1, NA1, NA3,
7.3.2.2	EB1, EB2, EB3, EB4 ED1, ED2, EA1, EA2, EA3, EA4, EA5, EA6
7.3.2.3	BB1, BB2, BB3, BB4, BB5, BD1, BA1, BA2
7.4.0.4	PR9
7.4.0.5	PR9
PR11	LC1, LC2, LC3, LC4, LC5, LC6, LC7, LC8, LC9
LF2	BB2, BB3

A Reflection

A.1 Skills for Success and Learning Approaches

- SS1. Proper unit tests must be created for the integration between the web application and micro-controller. The web application will be made using React so this a skill that will have to be learned. React is a popular front-end framework that encompasses all of the core front-end technologies such as HTML, CSS, and Javascript. This required knowledge will be acquired by reading documentation and studying open-source projects. This will be done by group members Jonathan Cels, Rupinder Nagra, and Alexander Van Kralingen.
- SS2. The back-end system will likely be created using Python and its related frameworks, which is a popular setup for back-end stacks in the field of web development. It will also be useful to acquire knowledge in relational and non-relational databases such as MySQL and MongoDB. These skills will have to be learned by also reading online documentation and blog forums. This will be done by Rupinder Nagra.
- SS3. Continuous integration/deployment will have to be used in the project. These skills will be learned by reviewing the tutorials related to this topic as well as reading online documentation. This will be done by member Alexander Van Kralingen.
- SS4. The micro-controller will need to be set up to use Bluetooth to communicate between the web application and the micro-controller. This will be learned by reading the documentation for the Bluetooth hardware chosen. The skills required for this will be learned by members Jonathan Cels, Joshua Chapman, and Alexander Van Kralingen.
- SS5. The micro-controller will need to be programmed with the rules of chess. The rules of chess can be found through online resources, with various packages and libraries also able to implement them. This will be done by member Joshua Chapman.
- SS6. Utilisation of a Hall sensors to identify unique chess pieces using magnets is required. Knowledge of installing and soldering hardware components will have to be learned. This knowledge will be acquired by reading blog posts by people who have used these components and watching tutorial videos on media platforms such as YouTube. This will be done by member Arshdeep Aujla and Joshua Chapman.
- SS7. The relation between the inputs and outputs will have to be mapped using Karnaugh Maps and State Machine Tables. This will be learned by reviewing related course materials from previous/current years. This will be done by member Arshdeep Aujla.

References

- CSA. Canadian Electrical Code. CSA Group, 2021.
- Interal Chess Federation FIDE. Fide laws of chess. https://www.fide.com/FIDE/handbook/LawsOfChess.pdf, 2018.
- List of Chess Variants. List of chess variants, Sep 2022. URL https://en.wikipedia.org/wiki/List_of_chess_variants.
- Bill Wall. History of chess sets and symbols. https://www.chesscentral.com/pages/chess-sets-pieces-boards/a-history-of-chess-pieces-and-chess-sets.html, 2003. Accessed: 2022-10-04.
- WCAG. Web content accessibility guidelines 2 overview. https://www.w3.org/WAI/standards-guidelines/wcag/#intro, 2018. Accessed: 2022-10-05.