

The Use of Phone Categories and Cross-Language Modeling for Phone Alignment of Panãra

Emily P. Ahna, Eleanor Chodroffa, Myriam Lapierrea & Gina-Anne Levowa

^aUniversity of Washington, USA

[∂]University of Zurich, CH

1. Motivation

- > Automatic forced alignment aids field linguists, phoneticians, etc.
- > Goal: phone-align Panãra data in a limited data scenario via 2 strategies:
 - Cross-language modeling
 - > E.g. English/French to align Bribri¹
 - Broaden phone categories
 - > Worked for sentence alignment⁴

2. Data

Panãra (ISO: kre)

- Jê language spoken in Brazil
- ~700 speakers

Phoneme Inventory⁶

Consonants

	Bilabial	Alveolar	Palatal	Velar
Singleton obstruent	р	t	S	k
Geminate obstruent	p:	t:	s:	k:
Singleton nasal	m	n	n	ŋ
Geminate nasal	m:	n:		
Approximant	w	ſ	j	

Vowels

Short nasal		Short oral		
ũ	ĩ	u	ш	i
ž ř	ẽ	o	r	e
		э	a	ε
Long nasal		ıl	Long ora]
:	ĩ:	u:	w:	i:
: v	ẽ:	o:	Y :	e:
	I			

Dataset

- 35 min speech, narrative style
- 4 speakers (2 male, 2 female)
- Orthographically transcribed by Myriam Lapierre, corrected with native speakers

3. Pipeline & Methods

Lexicon Manipulation

Broaden phone categories via 2 strategies:

2. Natural classes from SCA⁷ (Sound-Class-Based Phonetic Alignment)

No.	Cl.	Description	Examples	No.	Cl.	Description	Examples
1	A	unrounded back vowels	α, α	15	P	labial plosives	p, b
2	В	labial fricatives	f, β	16	R	trills, taps, flaps	r
3	С	dental / alveolar affricates	ts, dz, tf, dz	17	S	sibilant fricatives	s, z, ∫, ʒ
4	D	dental fricatives	θ, δ	18	Т	dental / alveolar plosives	t, d
5	Е	unrounded mid vowels	e, ε	19	U	rounded mid vowels	э, о
6	G	velar and uvual fricatives	γ , x	20	W	labial approx. / fricative	v, w
7	Н	laryngeals	h, ?	21	Y	rounded front vowels	u, v, y
8	I	unrounded close vowels	і, 1	22	0	low even tones	11, 22
9	J	palatal approxoimant	j	23	1	rising tones	13, 35
10	K	velare and uvular plosives	k, g	24	2	falling tones	51, 53
11	L	lateral approximants	1	25	3	mid even tones	33
12	М	labial nasal	m	26	4	high even tones	44, 55
13	N	nasals	n, ŋ	27	5	short tones	1, 2
14	n	rounded back yowels	Œ D	28	6	complex tones	214

Evaluation

Phone Onset Boundary Accuracy⁸: % of system onsets within 20 ms of manually annotated gold onsets

Panãra **Original Text** Haa mämä jynkjân rasu hapôô Orthography Panãra haː m x̃ m x̃ j w ŋ k j x n r a s u h a p oː **Explicit** Panãra ham <mark>r</mark> m r j w ŋ k j r n r a s u h a p o **No Diacritics** After TIMIT ham <mark>ə</mark> m ə j ɪ ŋ k j ə n r a s u h a p oช Lexicon **English Explicit** Manipulation **Broad** HAM E M E J I N K J E N R A S Y H A P U $(SCA)^7$ **MFA Global** ha: m<mark>o</mark> mojuŋkjonrasuhapo: **English Explicit**

Experiments

1. Language-specific + broaden phones

Panãra-only trained models

- a. Explicit: all Panãra phones
- b. No Diacritics: No length/nasal markers
- c. Broad natural class⁷
- 2. Cross-language + broaden phones

English model trained on TIMIT² (4 hours, 519 speakers from US)

- -"Full": 224 min, 495 speakers
- -"Small": 26 min, 51 speakers
- a. Explicit: all Panãra phones mapped to TIMIT English phones
- b. Broad natural class⁷
- 3. Large, pretrained English model

English MFA⁸ acoustic model 2.2.1 pretrained on 3770 hours speech from US, UK, Nigeria, India

a. Explicit: all Panãra phones mapped to Global English phones

4. Results

- 1. Broadening phone categories improved alignment accuracy in language-specific (Panãra only) training
- 2. Broadening phone categories <u>did</u> **not improve** alignment accuracy in cross-language (English-Panara) training
- 3. A large, pretrained English model outperformed previous strategies.

Trained Dataset	Trained Settings (# phone categories)	Onset Accuracy within 20ms (%)
	Explicit (63)	60.20
Panãra	No Diacritics (29)	62.35
	Broad (17)	61.92
	Explicit Full (46)	62.65
English	Explicit Small (46)	66.09
(TIMIT)	Broad Full (19)	56.07
	Broad Small (19)	61.14
English (Global MFA)	Explicit (100)	69.82

5. Analysis

Phone natural class affected onset accuracy

- 1. Long & Nasal vowel boundaries more difficult than Short & Oral Long & Nasal vowels typologically less common³
- 2. Poor [h] alignment in Fricatives — variable [h] insertion in onsetless syllables⁵
- 3. Poor [r] alignment in Taps vowel insertion within a complex onset⁵, e.g. $/kr\gamma/ \rightarrow [kVr\gamma]$ 'thigh'

6. Conclusion

Summary

- 1. We tested phonetic granularity effects in acoustic modeling and alignment of Panãra
- 2. For best alignment performance: use a large acoustic model for cross-language alignment

Future Work

- > Apply techniques to other language varieties
- > Automatic phone category/granularity discovery
- > Multilingual, language-agnostic alignment

References

- 1. Coto-Solano, R., & Solórzano, S. F. (2017). Comparison of Two Forced Alignment Systems for Aligning Bribri Speech. In CLEI ELECTRONIC JOURNAL.
- 2. Garofolo, J. S. (1993). TIMIT Acoustic Phonetic Continuous Speech Corpus. Linguistic Data Consortium,
- Gordon, M. K. (2016). Phonological Typology. Oxford University Press. 4. Hoffmann, S., & Pfister, B. (2013). Text-to-speech Alignment of Long Recordings Using Universal Phone Models. In Interspeech.
- 5. Lapierre, M. (2023a). The Phonology of Panãra: A Prosodic Analysis. In *International Journal of*
- American Linguistics.
- 6. Lapierre, M. (2023b). The Phonology of Panãra: A Segmental Analysis. In *International Journal of* American Linguistics.
- 7. List, JM. (2012). SCA: Phonetic Alignment Based on Sound Classes. In: Lassiter, D., Slavkovik, M. (eds) New Directions in Logic, Language and Computation.
- 8. McAuliffe et al. (2017). Montreal Forced Aligner: Trainable Text-speech Alignment Using Kaldi. In
- 9. Mortensen et al. (2018). Epitran: Precision G2P for Many Languages. In *LREC*.
- Acknowledgments We thank Hossep Dolatian for idea inspiration, and Bridget Tyree for help with annotations.

