24300 HW7

Bin Yu

December 6 2024

Question 1

Prove: if Q is an orthonormal (orthogonal) matrix, then ||Qx|| = ||x|| for any x.

Since Q is orthonormal, we have $Q^TQ = I$. Hence, for any vector x,

$$||Qx||^2 = (Qx)^T(Qx) = x^TQ^TQx = x^Tx = ||x||^2.$$

Taking square roots gives ||Qx|| = ||x||.

By the singular value decomposition, any matrix $A \in \mathbb{R}^{m \times n}$ of rank r can be written as

$$A = U\Sigma V^T$$
,

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthonormal matrices, and

$$\Sigma = \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_r \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \end{pmatrix}_{m \times n},$$

with r = rank(A) and $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$. The remaining singular values are zero.

For any nonzero vector $x \in \mathbb{R}^n$,

$$\frac{\|Ax\|}{\|x\|} = \frac{\|U\Sigma V^T x\|}{\|x\|}.$$

Set $y = V^T x$. Since V is orthonormal, ||y|| = ||x||. Thus,

$$\frac{\|Ax\|}{\|x\|} = \frac{\|U\Sigma y\|}{\|y\|}.$$

 $\|U\Sigma y\|=\|\Sigma y\|$ because U is orthonormal:

$$\frac{\|Ax\|}{\|x\|} = \frac{\|\Sigma y\|}{\|y\|}.$$

If
$$y = (y_1, y_2, ..., y_n)^T$$
, then

$$\Sigma y = (\sigma_1 y_1, \sigma_2 y_2, \dots, \sigma_r y_r, 0, \dots, 0)^T,$$

1

Thus,

$$\|\Sigma y\|^2 = \sum_{i=1}^r \sigma_i^2 y_i^2.$$

Since $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$, and given $r \leq \min(m, n)$:

$$\|\Sigma y\|^2 \le \sigma_1^2 \sum_{i=1}^r y_i^2 \le \sigma_1^2 \|y\|^2.$$

Taking square roots,

$$\|\Sigma y\| \le \sigma_1 \|y\|.$$

$$\frac{\|\Sigma y\|}{\|y\|} \le \sigma_1.$$

Since this holds for all $y \neq 0$:

$$\max_{\|y\| \neq 0} \frac{\|\Sigma y\|}{\|y\|} = \sigma_1.$$

Therefore,

$$||A|| = \max_{||x|| \neq 0} \frac{||Ax||}{||x||} = \sigma_1.$$

Question 2

By definition, the Frobenius norm of A is

$$||A||_{\text{Fro}}^2 = \sum_{i=1}^m \sum_{j=1}^n |A_{ij}|^2.$$

For m by n matrix A:

$$A^{\top}A \in R^{n \times n},$$

and the (j,j)-th entry of $A^{\top}A$ is

$$(A^{\top}A)_{jj} = \sum_{i=1}^{m} A_{ij}^{2}.$$

Therefore, summing over j,

$$\operatorname{Trace}(A^{\top}A) = \sum_{j=1}^{n} (A^{\top}A)_{jj} = \sum_{j=1}^{n} \sum_{i=1}^{m} A_{ij}^{2} = ||A||_{\operatorname{Fro}}^{2}.$$
$$||A||_{\operatorname{Fro}}^{2} = \operatorname{Trace}(A^{\top}A).$$

And,

Trace
$$(AB) = \sum_{i=1}^{m} (AB)_{ii}$$
.

the (i, i)-th element of AB is given by

$$(AB)_{ii} = \sum_{k=1}^{n} A_{ik} B_{ki},$$

Therefore,

$$\operatorname{Trace}(AB) = \sum_{i=1}^{m} \sum_{k=1}^{n} A_{ik} B_{ki}.$$

The matrix BA is $n \times n$, and its (j, j)-th element is

$$(BA)_{jj} = \sum_{l=1}^{m} B_{jl} A_{lj}.$$

Trace(BA) =
$$\sum_{j=1}^{n} (BA)_{jj} = \sum_{j=1}^{n} \sum_{l=1}^{m} B_{jl} A_{lj}$$
.

$$\operatorname{Trace}(AB) = \sum_{i=1}^{m} \sum_{k=1}^{n} A_{ik} B_{ki},$$

$$\operatorname{Trace}(BA) = \sum_{j=1}^{n} \sum_{l=1}^{m} B_{jl} A_{lj}.$$

let i = l and k = j:

$$\operatorname{Trace}(BA) = \sum_{k=1}^{n} \sum_{i=1}^{m} B_{ki} A_{ik}.$$

Since multiplication of scaler is commutative, $A_{ik}B_{ki}=B_{ki}A_{ik}$. Thus,

$$\operatorname{Trace}(AB) = \operatorname{Trace}(BA).$$

By the SVD:

$$A = U\Sigma V^{\top}$$
.

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthonormal matrices, and

$$\Sigma = \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_r \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \end{pmatrix} \in R^{m \times n},$$

with $r = \operatorname{rank}(A)$ and $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$.

Starts from:

$$||A||_{\text{Fro}}^2 = \text{Trace}(A^{\top}A).$$

Substitute $A = U\Sigma V^{\top}$:

$$A^{\top}A = (U\Sigma V^{\top})^{\top}(U\Sigma V^{\top}) = V\Sigma^{\top}U^{\top}U\Sigma V^{\top}.$$

Since U is orthonormal, $U^{\top}U = I$. Thus

$$A^{\top}A = V\Sigma^{\top}\Sigma V^{\top}$$
.

Therefore,

$$||A||_{\text{Fro}}^2 = \text{Trace}(A^{\top}A) = \text{Trace}(V\Sigma^{\top}\Sigma V^{\top}).$$

Using the cyclic property of the trace,

$$\operatorname{Trace}(V\Sigma^{\top}\Sigma V^{\top}) = \operatorname{Trace}(\Sigma^{\top}\Sigma V^{\top}V).$$

Since $V^{\top}V = I$, we have

$$\operatorname{Trace}(V\Sigma^{\top}\Sigma V^{\top}) = \operatorname{Trace}(\Sigma^{\top}\Sigma).$$

The matrix $\Sigma^{\top}\Sigma$ is a diagonal matrix whose diagonal entries are the squared singular values $\sigma_1^2, \sigma_2^2, \dots, \sigma_r^2$ (and zeros for any remaining diagonal elements if $r < \min(m, n)$). Thus,

$$\operatorname{Trace}(\Sigma^{\top}\Sigma) = \sum_{j=1}^{r} \sigma_{j}^{2}.$$

we have shown that

$$||A||_{\text{Fro}}^2 = \sum_{j=1}^r \sigma_j^2.$$

Question 3

(1)

First, consider $A^{\top} = (U\Sigma V^{\top})^{\top} = V\Sigma^{\top}U^{\top}$. Since Σ has the form:

$$\Sigma = \begin{pmatrix} D \\ 0 \end{pmatrix}$$
 where $D = \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_r)$.

Thus,

$$A^{\top} = V \Sigma^{\top} U^{\top} = V \begin{pmatrix} D & 0 \end{pmatrix} U^{\top}.$$

Consider a vector $x \in \mathbb{R}^m$. Then

$$A^{\top}x = V \begin{pmatrix} D & 0 \end{pmatrix} U^{\top}x.$$

Let $y = U^{\top}x$. Since U is orthonormal, y is just the coordinates of x in the basis formed by the columns of U:

$$U^{\top} x = y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}.$$

$$A^{\top}x = V \begin{pmatrix} D & 0 \end{pmatrix} y = V \begin{pmatrix} Dy_{1:r} \\ 0 \end{pmatrix} = V \begin{pmatrix} \sigma_1 y_1 \\ \sigma_2 y_2 \\ \vdots \\ \sigma_r y_r \\ 0 \\ \vdots \\ 0 \end{pmatrix},$$

where $y_{1:r} = (y_1, y_2, \dots, y_r)^{\top}$ are the first r components of y.

Since
$$V = [v_1 \ v_2 \ \cdots \ v_n]$$
:

$$A^{\top}x = \sigma_1 y_1 v_1 + \sigma_2 y_2 v_2 + \dots + \sigma_r y_r v_r.$$

Here no vectors v_{r+1}, \ldots, v_n appear in this linear combination. As x varies over all of R^m , the vector (y_1, \ldots, y_r) can produce any vector in R^r . Therefore, $A^{\top}x$ can produce any linear combination of v_1, \ldots, v_r , which shows:

$$\operatorname{range}(A^{\top}) \subseteq \operatorname{span}(v_1, \dots, v_r).$$

For reverse inclusion, for any vector $w \in \operatorname{span}(v_1, \ldots, v_r)$. We can write $w = \sum_{i=1}^r c_i v_i$ for some scalars c_i . If we let $y_{1:r} = (c_1/\sigma_1, \ldots, c_r/\sigma_r)$ and $y_{r+1:m} = 0$, and set x = Uy (since U is orthonormal), then by the same calculation $A^{\top}x = w$. Therefore, every vector in $\operatorname{span}(v_1, \ldots, v_r)$ can be attained by $A^{\top}x$ for some x. Thus

$$\operatorname{range}(A^{\top}) = \operatorname{span}(v_1, \dots, v_r).$$

(2)

the null space of A^{\top} :

$$\text{null}(A^{\top}) = \{ x \in R^m : A^{\top} x = 0 \}.$$

From the previous part,

$$A^{\top} = V (D \quad 0) U^{\top}.$$

If $A^{\top}x = 0$, then

$$V(D,0)U^{\top}x = 0.$$

Set $y = U^{\top}x$:

$$(D,0)y = 0 \implies Dy_{1:r} = 0.$$

Since D is invertible (all $\sigma_i > 0$), $Dy_{1:r} = 0$ implies $y_1 = \cdots = y_r = 0$.

Therefore,

$$y = \begin{pmatrix} 0 \\ y_{r+1:m} \end{pmatrix}$$

for some $y_{r+1:m} \in \mathbb{R}^{m-r}$.

From x = Uy (since U is orthonormal), we have

$$x = U \begin{pmatrix} 0 \\ y_{r+1:m} \end{pmatrix} = y_{r+1}u_{r+1} + \dots + y_m u_m.$$

Thus, any vector in null(A^{\top}) is a linear combination of u_{r+1}, \ldots, u_m . Conversely, if x is in the span of u_{r+1}, \ldots, u_m , then $U^{\top}x$ has zeros in the first r components, ensuring (D,0)y=0 and thus $A^{\top}x=0$.

Therefore:

$$\operatorname{null}(A^{\top}) = \operatorname{span}(u_{r+1}, \dots, u_m).$$

Question 4

(1)

Given:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

The singular values of A are the square roots of the eigenvalues of $A^{\top}A$. First, compute A^{\top} :

$$A^{\top} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Now, compute $A^{\top}A$:

$$A^{\top} A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$
$$A^{\top} A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

=

Let λ be an eigenvalue. solve $\det(A^{\top}A - \lambda I) = 0$:

$$A^{\top}A - \lambda I = \begin{pmatrix} 3 - \lambda & 1 & 1 \\ 1 & 1 - \lambda & 1 \\ 1 & 1 & 1 - \lambda \end{pmatrix}.$$

Solve:

$$-\lambda^{3} + 5\lambda^{2} - 4\lambda = -\lambda(\lambda^{2} - 5\lambda + 4) = -\lambda(\lambda - 4)(\lambda - 1) = 0$$

The eigenvalues are $\lambda_1 = 4, \lambda_2 = 1, \lambda_3 = 0$.

The singular values σ_i of A are the square roots of these eigenvalues:

$$\sigma_1 = \sqrt{4} = 2$$
, $\sigma_2 = \sqrt{1} = 1$, $\sigma_3 = \sqrt{0} = 0$.

Thus, the nonzero singular values of A are 2 and 1, and the rank of A is r=2.

An SVD of A is $A = U\Sigma V^{\top}$, where

$$\Sigma = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Find V from the eigenvectors of $A^{\top}A$.

The matrix V is formed from the orthonormal eigenvectors of $A^{\top}A$.

For $\lambda_1 = 4$: Solve $(A^{\top}A - 4I)v = 0$.

$$A^{\mathsf{T}}A - 4I = \begin{pmatrix} -1 & 1 & 1\\ 1 & -3 & 1\\ 1 & 1 & -3 \end{pmatrix}.$$

An eigenvector is (2, 1, 1). Normalize it:

$$||(2,1,1)|| = \sqrt{4+1+1} = \sqrt{6}.$$

So

$$v_1 = \frac{1}{\sqrt{6}} \begin{pmatrix} 2\\1\\1 \end{pmatrix}.$$

For $\lambda_2 = 1$: Solve $(A^{\top}A - I)v = 0$.

$$A^{\top} A - I = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

An eigenvector is (-1,1,1). Normalize it:

$$\|(-1,1,1)\| = \sqrt{1+1+1} = \sqrt{3}.$$

So

$$v_2 = \frac{1}{\sqrt{3}} \begin{pmatrix} -1\\1\\1 \end{pmatrix}.$$

For $\lambda_3 = 0$: Solve $A^{\top}Av = 0$. An eigenvector is (0, 1, -1).

$$||(0,1,-1)|| = \sqrt{0+1+1} = \sqrt{2}.$$

$$v_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}.$$

Thus,

$$V = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{3}} & 0\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} \end{pmatrix}.$$

For u_1 :

$$Av_1 = A\left(\frac{1}{\sqrt{6}} \begin{pmatrix} 2\\1\\1 \end{pmatrix}\right) = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \cdot 2 + 0 \cdot 1 + 0 \cdot 1\\1 \cdot 2 + 0 \cdot 1 + 0 \cdot 1\\1 \cdot 2 + 1 \cdot 1 + 1 \cdot 1 \end{pmatrix} = \frac{1}{\sqrt{6}} \begin{pmatrix} 2\\2\\4 \end{pmatrix} = \frac{2}{\sqrt{6}} \begin{pmatrix} 1\\1\\2 \end{pmatrix}.$$

Divide by $\sigma_1 = 2$:

$$u_1 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\1\\2 \end{pmatrix}.$$

For u_2 :

$$Av_2 = A\left(\frac{1}{\sqrt{3}} \begin{pmatrix} -1\\1\\1 \end{pmatrix}\right) = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \cdot (-1) + 0 \cdot 1 + 0 \cdot 1\\1 \cdot (-1) + 0 \cdot 1 + 0 \cdot 1\\1 \cdot (-1) + 1 \cdot 1 + 1 \cdot 1 \end{pmatrix} = \frac{1}{\sqrt{3}} \begin{pmatrix} -1\\-1\\1 \end{pmatrix}.$$

Divide by $\sigma_2 = 1$ (no change):

$$u_2 = \frac{1}{\sqrt{3}} \begin{pmatrix} -1\\ -1\\ 1 \end{pmatrix}.$$

Since U is orthonormal and must have 3 orthonormal columns, we find u_3 orthogonal to u_1 and u_2 . A suitable choice is:

$$u_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.$$

Check that u_3 is orthogonal to both u_1 and u_2 . It is. Thus:

$$U = \begin{pmatrix} \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \end{pmatrix}.$$

We have:

$$\Sigma = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \Sigma^+ = \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

The pseudo inverse is:

$$A^{+} = V\Sigma^{+}U^{\top}.$$

$$A^{+} = \begin{pmatrix} \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & 0\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}}\\ \frac{-1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}}\\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0 \end{pmatrix}.$$

$$A^{+} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ -\frac{1}{4} & -\frac{1}{4} & \frac{1}{2}\\ -\frac{1}{4} & -\frac{1}{4} & \frac{1}{2} \end{pmatrix}.$$

(2)

The minimum norm solution to

$$\min_{x \in R^3} \|Ax - b\|$$

is given by:

$$x* = A^+b.$$

$$b = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}.$$

Thus:

$$A^{+}b = \begin{pmatrix} 1/2 & 1/2 & 0 \\ -1/4 & -1/4 & 1/2 \\ -1/4 & -1/4 & 1/2 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}.$$

$$(1/2) * 0 + (1/2) * 2 + 0 * 2 = 1.$$

$$(-1/4) * 0 + (-1/4) * 2 + (1/2) * 2 = (-1/2) + 1 = 1/2.$$

$$(-1/4) * 0 + (-1/4) * 2 + (1/2) * 2 = (-1/2) + 1 = 1/2.$$

So:

$$x^* = \begin{pmatrix} 1\\ \frac{1}{2}\\ \frac{1}{2} \end{pmatrix}.$$

Question 5: Stability and Conditioning

Given: For $\beta > 1$, let

$$A = \frac{1}{25} \begin{pmatrix} 3 & 4 \\ -4 & 3 \end{pmatrix} \begin{pmatrix} \beta & 0 \\ 0 & 1/\beta \end{pmatrix} \begin{pmatrix} 3 & 4 \\ -4 & 3 \end{pmatrix}.$$

$$U = \frac{1}{5} \begin{pmatrix} 3 & 4 \\ -4 & 3 \end{pmatrix}.$$

since,

$$U^TU = \frac{1}{25} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 3 & 4 \\ -4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

U is an orthonormal matrix.

In SVD, we need V^T and U are orthonormal matrix, so we can choose $V^T = U$, where

$$V^{\top} = \frac{1}{5} \begin{pmatrix} 3 & 4 \\ -4 & 3 \end{pmatrix}.$$

The singular values of A are determined by the diagonal matrix with entries β and $1/\beta$. Thus, we have:

$$\Sigma = \begin{pmatrix} \beta & 0 \\ 0 & 1/\beta \end{pmatrix}.$$

SVD of A:

$$A = U\Sigma V^{\top} = \begin{pmatrix} \frac{1}{5} \begin{pmatrix} 3 & 4 \\ -4 & 3 \end{pmatrix} \end{pmatrix} \begin{pmatrix} \beta & 0 \\ 0 & 1/\beta \end{pmatrix} \begin{pmatrix} \frac{1}{5} \begin{pmatrix} 3 & 4 \\ -4 & 3 \end{pmatrix} \end{pmatrix}.$$
$$A = U\Sigma V^{\top}.$$

(2)

We know

$$x = A^{-1}b = V\Sigma^{-1}U^{\top}b$$

Here,

$$\Sigma^{-1} = \begin{pmatrix} 1/\beta & 0 \\ 0 & \beta \end{pmatrix}.$$

$$U^{\top} = \frac{1}{5} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix}, \quad b = \frac{1}{25} \begin{pmatrix} 3 \\ -4 \end{pmatrix}.$$

$$U^{\top} b = \frac{1}{5} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix} \frac{1}{25} \begin{pmatrix} 3 \\ -4 \end{pmatrix} = \frac{1}{125} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 3 \\ -4 \end{pmatrix} = \frac{1}{125} \begin{pmatrix} 25 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{5} \\ 0 \end{pmatrix}$$

Next:

$$\Sigma^{-1}U^{\top}b = \begin{pmatrix} 1/\beta & 0 \\ 0 & \beta \end{pmatrix} \begin{pmatrix} 1/5 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{5\beta} \\ 0 \end{pmatrix}.$$

multiply by V

$$x_1 = V \begin{pmatrix} 1/(5\beta) \\ 0 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 1/(5\beta) \\ 0 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 3/(5\beta) \\ 4/(5\beta) \end{pmatrix} = \begin{pmatrix} 3/(25\beta) \\ 4/(25\beta) \end{pmatrix}.$$

$$x_1 = \begin{pmatrix} \frac{3}{25\beta} \\ \frac{4}{25\beta} \end{pmatrix}.$$

(3)

For x_2 :

$$\begin{split} U^\top b &= \frac{1}{5} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix} \frac{1}{25} \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \frac{1}{125} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix}. \\ U^\top b &= \frac{1}{125} \begin{pmatrix} 0 \\ 25 \end{pmatrix} = \begin{pmatrix} 0 \\ 1/5 \end{pmatrix}. \end{split}$$

Apply Σ^{-1} :

$$\Sigma^{-1}U^{\top}b = \begin{pmatrix} 1/\beta & 0\\ 0 & \beta \end{pmatrix} \begin{pmatrix} 0\\ 1/5 \end{pmatrix} = \begin{pmatrix} 0\\ \beta/5 \end{pmatrix}.$$

Multiply by V:

$$x_2 = V \begin{pmatrix} 0 \\ \beta/5 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 0 \\ \beta/5 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -(4\beta)/5 \\ (3\beta)/5 \end{pmatrix} = \begin{pmatrix} -\frac{4\beta}{25} \\ \frac{3\beta}{25} \end{pmatrix}.$$

(4)

We have:

$$x_1 = \begin{pmatrix} \frac{3}{25\beta} \\ \frac{4}{25\beta} \end{pmatrix}, \quad x_2 = \begin{pmatrix} -\frac{4\beta}{25} \\ \frac{3\beta}{25} \end{pmatrix}.$$

As $\beta \to \infty$, $x_1 \to (0,0)$ and x_2 grows without bound. The two b vectors differ only slightly in direction, yet their solutions differ dramatically for large β . This shows that A is ill-conditioned.

The condition number of A is approximately β^2 , which grows large with β , making the solution highly sensitive to changes in b.