CHEM STRY MARKING SCHEME DELHI - 2013 SET - 56/1/2

Q no.	Ans wers	Marks
1	Frenkel Defect	1
2	4- br o mo-4- met hyl pent -2-ene	1
3	Mond Process/ Vapour phase refining method	1
4	Hydr ogen bondi ng	1
5	$(CH_3)_3 N < CH_3 NH_2 < (CH_3)_2 NH$	1
6	The first ionisation enthalpy of Xe is nearly same as that of oxygen molecule / Q	1
7	CH ₃ CH ₂ OH or et hanol is for med	1
8	CH ₃ COCH ₂ CH(CI) CH ₃ or structure for m	1
9	(i) CH ₃ CH(OH) CH ₃ Gr Q ₃ CH ₃ COCH ₃	1
	(O) (or by any other correct suitable method) OH $+ 3 Br_2$ Br Br	
10	H ₂ O	1
10	(i) $CH_3-CH_2-\overset{\cdots}{\bigcirc}-H + H^{+} \longrightarrow CH_3-CH_2-\overset{\cdots}{\bigcirc}-H$	1/2
	(ii) $CH_3CH_2 - \overset{\circ}{O}: + CH_3 - CH_2 - \overset{\circ}{O} + CH_3CH_2 - \overset{\circ}{O} - CH_2CH_3 + H_2O$	1/2
	(iii) $CH_3CH_2 \xrightarrow{\bullet} - CH_2CH_3 \longrightarrow CH_3CH_2 \xrightarrow{\bullet} -CH_2CH_3 + \overset{\bullet}{H}$	1
11	In o'w type e mulsion, oil acts as dispersed phase and water acts as dispersion medium whereas in w'o type water acts as dispersed phase and oil acts as dispersion medium. Ex. o'w: nilk, vanishing cream(or any other one correct example)	1/2 + 1/2
	w/α butter, cold cream(or any other one correct example)	1/2 + 1/2

$\Delta T_b = K_b m$			1/2
$T_b - T_b^0 = 0.52 \text{ K}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1/2
$T_b - 373.15 \text{ K} = 0.052 \text{ K}$			1/2
$T_{\rm b} = 373.202 {\rm K}$			1/2
			1/2
	$\Lambda_{\rm m} = 0.025 \mathrm{S cm}^{ 1}$		1/2
	$\Lambda_{\rm m} = 125 \mathrm{Scm}^2 \mathrm{mol}^{-1}$		1
	(dedu	act ½ mark for wrong or no unit)	
	Dspersed phase	Ds persion Medium	
(i) Smoke (ii) Mlk	Soli d Li qui d	Gas Ii qui d	1 1
	OR		
Lyophilic sols are solvent	t attracting sols whereas Lyopl	hobic sols are Solvent repelling	1/2 + 1/2
	$T_b - T_b^{\ 0} = 0.52 \text{ K}$ $T_b - 373.15 \text{ K} = 0.052 \text{ K}$ $T_b = 373.202 \text{ K}$ (i) Smoke (ii) M1 k Lyophilic sols are solvential.	$T_b - T_b^{-0} = 0.52 \text{ K kg mol}^{-1} \text{ x} \frac{18 \text{ g}}{180 \text{ gmol}^{-1}} \text{ x} \frac{1}{1 \text{ kg}}$ $T_b - 373.15 \text{ K} = 0.052 \text{ K}$ $T_b = 373.202 \text{ K}$ $A_m = \kappa / C$ $A_m = \frac{0.025 \text{ S cm}^1}{0.20 \text{ mol} \text{ L}^1}$ $A_m = 125 \text{ S c m}^2 \text{ mol}^{-1}$ $(\text{ded}t)$ $Dspersed phase$ $(i) Smoke$ $(ii) M1 \text{ k} \qquad \text{li qui d}$ OR $Lyophilic sols are solvent attracting sols whereas Lyophilic solvents are solvent attracting solvents whereas Lyophilic solvents are solvents attracting solvents are solvents attracting solvents whereas Lyophilic solvents are solvents attracting solvents whereas Lyophilic solvents are solvents attracting solvents whereas Lyophilic solvents are solvents attracting solvents attract$	$T_b - T_b^{-0} = 0.52 \text{ Kkg mol}^{-1} \text{ x} \frac{18 \text{ g}}{180 \text{ gmol}^{-1}} \text{ x} \frac{1}{1 \text{ kg}}$ $T_b - 373.15 \text{ K} = 0.052 \text{ K}$ $T_b = 373.202 \text{ K}$ $A_m = \kappa / C$ $A_m = \frac{0.025 \text{ S cm}^{-1}}{0.20 \text{ mol}} \text{ L}^{-1}$ $A_m = 125 \text{ S cm}^{2} \text{ mol}^{-1}$ $(\text{deduct } \frac{1}{2} \text{ mark for wrong or no unit)}$ $\text{(i) S moke (ii) M1k } \text{Solid Gas (ii) in M1k}$ OR $\text{Lyophilic sds are sol vent attracting sols whereas Lyophobic sols are Sol vent repelling}$

15	(i)	
	$PCl_5 \xrightarrow{heat} PCl_3 + Cl_2$	1
	(ii)	
	4 H ₃ PO ₃ heat 3 H ₃ PO ₄ + PH ₃	1
	(Full marks may be given if equation is not balanced)	
16	 (a) Cu, because in +1 oxidation state it has stable 3d¹⁰ configuration. (b) Mn²⁺, V³⁺: because of the presence of unpaired electrons in 3d orbital. 	$\frac{1/2 + 1/2}{1/2 + 1/2}$
	(if only one ion is mentioned deduct ½ mark)	
17	 (a) ZnS, preferential wetting of sul phi de ore by oil / affinity of sul phi de ore for oil. (b) Silica reacts with FeOi inpurity and remove it in the form of slag (FeSi O₃) / silica acts as a flux and removes the impurity in the form of slag / or equation 	1/2 + 1/2
	$Fe O + Si O_2 (fl ux) \qquad Fe Si O_3 (sl ag)$	1
18	(a) Due to its symmetrical structure, p-isomer forms more compact structure / fits better in the crystal lattice.	
	(b) Because it is a race mic mixture / does not rotate the plane polarised light / net rotation of the mixture is zero.	1+1
19	The cell reaction: $Fe(s) + 2H^{+}(aq) \rightarrow Fe^{2+}(aq) + H_{2}(g)$	
	$E_{cell} = 0.44 \text{ V}$	
	Ner nst equation	
	$E_{\text{cell}} = E_{\text{cell}}^{0} - \frac{0.059 \log [\text{Fe}^{2+}]}{2}$	1

	$E_{\text{cell}} = 0.44 \text{ V} - \underline{0.059} \log \underline{(0.001 \text{ M})} $ $2 \qquad (1 \text{ M})^2$	1/2
	$= 0.44 \text{ V} - \frac{0.059}{2} \log(10^3)$	
	= 0.44 V + 0.0885 V	1/2
	=0.5285 V (deduct ½ mark for wrong or no unit)	1
20	 (i) Due to incomplete filling of d-orbitals, transition metals show variable oxidation states. (ii) Because of Lanthanoid Contraction. (iii) Because of their ability to show multiple / variable oxidation states. 	1 x 3=3
	OR	
20	(i) $G_2 O^{2-} + 6Fe^{2+} + 14H \rightarrow 2G^{3+} + 6Fe^{3+} + 7H_2 O$	
	(ii) $2G O_4^{2-} + 2H \rightarrow G_2 O_2^{2-} + H_2 O$	
	(iii) $2 \text{Mn } Q^{-} + 5 \text{C}_{2} Q^{2-} + 16 \text{H}^{\dagger} \rightarrow 2 \text{Mn}^{2+} + 10 \text{CO}_{2} + 8 \text{H}_{2} \text{O}$	1 x 3=3
	(Accept only bal anced equation)	
21	(a) p-t ype se mi conduct or	
	(b) Ferromagnetism (c) I mpurity defect / Cation vacancy defect	1x3=3
22		113-3
	When K_2SQ_1 is dissolved in water, ions are produced. Total number of ions produced = 3	
	i=3	1/2
	$\pi = i CRT \qquad = i x \underline{n} x R x T$ V	1/2
		1

	$\pi = 3 \text{ x}$ $\frac{2.5 \times 10^{2} \text{ g}}{174 \text{ g mol}^{-1}}$ $\frac{1}{2L}$ $\frac{1}{2$	1
	π = 5. 27 x 10 ³ at m	1
	(deduct ½ mark for wrong or no unit)	
23	(i) Styrene C ₆ H ₃ CH=CH ₂	1/2 + 1/2
	(ii) He hyl enegl yeol and Terepht halic acid	
	HOH ₂ C - CH ₂ OH +HOOC—COOH	1/2 + 1/2
	(iii) Tetrafluor oet hene CF ₂ =CF ₂	1/2 + 1/2
24	(a) Sodi u m Benzoat e (b) To i mpart antiseptic properties (c) Tranquilizers	1 x 3=3
25	(i) Sonali: Concerned for the society, socially active and helpful to others. Principal: Caring commanding and serious about the welfare of students. (or any other suitable values) (ii) Vitamins B and C	
26	(i) A=C ₆ H ₃ CN B=C ₆ H ₃ COOH C=C ₆ H ₃ CONH ₂	½x3=1 ½
	(ii) $A=C_6$ H_8 NH_2 $B=C_6$ H_8 N_2 $C=C_6$ H_8 OH	1/2x3=1 1/2
27.	(i) Ioni zati on iso meris m (ii) Optical Iso meris m (iii) Coordinati on Iso meris m	1x3=3
28	(a) (i) Resonating structures of carboxyl at eion are more stablethan phenoxideion structures.	

	(ii)—ve charge is dispersing on two electronegative oxygens in carboxylate ion whereas on one oxygen in phenoxide ion	1 . 1
	(b)	1+1
	Zn- Hg i) CH₃- CO CH₃ → CH₃- CH₂- CH₃ conc. HCl	
	ii)	
	$\begin{array}{c} O \\ I \\ C \\ I \\ Pd - BaSO_4 \end{array} \longrightarrow \begin{array}{c} CHO \\ Benzoyl \ chloride \end{array}$ Benzaldehyde	
	Benzoyl chloride Benzaldehyde	
	dil. № OH iii) CH₃- CHO→ CH₃- CH(OH) – CH₂- CHO→ CH₃- CH=CH- CHO - H₂ O	1x3=3
	(or by any other correct suitable method) OR	
28	(a)	
	(i)	
	H—C—OH + H—C OK	
	Н	
	(ii)	
	Br - CH ₂ COOH	

	O ₂ N CHO	1 x3=3
	(i) <u>Rehanal and Propanal</u> : Ethanal gives yellow ppt of Iodoform (CH ₃) on addition of Na OH/ I ₂ whereas Propanal does not give this test. (or any other suitable test) (ii) <u>Renzoic acid and Phenol</u> : Add neutral FeO ₃ to both, phenol gives purple/violet colouration whereas Benzoic acid does not give this test or / Add Na HCO ₃ to both, Benzoic acid will give brisk effervescence whereas phenol does not give this test. (or any other suitable test)	1+1
29	(a) (i) rate= k[A] ² [B] (ii) Rate will increase 9 times of the actual rate of reaction. (iii) Rate will increase 8 times of the actual rate of reaction.	1x3=3
	$k = \underbrace{2\ 303}_{t} \log \underbrace{\left[A_{\underline{\bullet}} \right]}_{\left[A_{\underline{\bullet}} \right]}$	1/2
	$k = \underbrace{2303 \log 100}_{40 \text{mi n}} \frac{100}{70}$	
	$k = \underline{2303} x 0.155 = 0.00892 \text{mi n}^{-1}$ $t_{1/2} = \underline{0.693}$	1/2
	$ \begin{array}{ccc} & k \\ t_{1/2} & \underline{0.693} & \underline{m} & n \\ & 0.00892 \\ t_{1/2} & = 77.7 & \underline{m} & n \end{array} $	1/2
	OR	

(a)	
$t_{99\%} = \frac{2.303}{k} \log \frac{100}{1}$	1/2
$t_{90\%} = \frac{2\ 303}{k} \ \log \frac{100}{10}$	1/2
on comparision $ \underline{t}_{99\%} = \underline{log}_{100} $ $ \underline{t}_{90\%} = \underline{log}_{10} $	1/2
Hence $t_{99\%} = 2 t_{90\%}$ (or solved by any other correct suitable method)	1/2
(b)	
$Slope = \frac{-Ea}{2303}R$	1
	1
$-4250 \text{ K} = - \frac{\text{Ea}}{2\ 303\ \text{x}\ 8\ 314\ \text{J}\ \text{K}^1\ \text{mol}^{-1}}$	
Ea = 81375 J mol ⁻¹ or 81.375 kJ mol ⁻¹	1
(i) Because of smaller size of F-atom/ shorter bond length, the electron –electron repulsion a mong the lone pairs is greater in F_2 than G_2 (ii) Due to hydrogen bonding in NH_3 .	1.1
(b)	1+1
(i) Br P	
	t $_{99\%}=\frac{2.303}{k}$ $\log\frac{100}{10}$ on comparision t $_{99\%}=\frac{\log 100}{\log 10}$ to $_{90\%}=\log 10$ (or solved by any other correct suitable method) (b) Strope = $\frac{Ea}{2.303 \times 8.314 \text{ J K}^1 \text{ mol}^{-1}}$ Ea = 81375 J mol ⁻¹ or 81.375 kJ mol ⁻¹ (i) Because of smaller size of F-atom/shorter bond length, the electron -electron repulsion a mong the lone pairs is greater in F2 than Ω_2 (ii) Due to hydrogen bonding in NH3.

(ii)

1+1

Sh. S K Munj d

Prof. RD Shukla

Dr. K N Uppadhya

Mr. Rakesh Dhawan

Ms. Neeru Sofat

Mr. Virendra Singh

Dr (Mrs.) Sangeet a Bhatia

Mr. K Mr. Abdul Raheem

Mr. D A Nishra

Mr. Deshbir Singh

M. Akhileshwar Mishra