Nielsen-Thurston Classificiation Theorem

David Gu

Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

August 3, 2024

Thurston Simple Curve

Figure: The painting on the wall of Berkeley mathematics department the iterations of Thurston simple curve by Thurston and Sullivan.

Taffy Pulling

Figure: 3-Rod Taffy pulling, the number of strands increases exponentially fast.

August 3, 2024

Taffy Pulling

Figure: 3-Rod Taffy pulling, the number of strands increases exponentially fast.

Half Dehn Twist

Figure: A planar homeomorphism, half dehn twist, exchanges the punctures ${\bf 1}$ and ${\bf b}$.

Pseudo-Anosov Map

Figure: The mapping class $f = \sigma_1^{-1}\sigma_2$ on $S_{0,4}$.

Pseudo-Anosov Map

Figure: The first two iterations of c under f.

Fibonacci number $F_0 = 0$, $F_1 = 1$ and $F_i = F_{i-1} + F_{i-2}$. The number of strands of $f^n(c)$ grows exponentially.

Train Track

Figure: Converting $f^2(c)$ into a train track. All the weights are determined by the weights (4,6) by switch conditions.

Definition (Train Track)

A finite graph τ embedded in the surface S, such that

- Each edge of τ is a smooth arc;
- ullet Each vertex of au has well-defined tangent line, called a switch;
- Each edge is with a nonnegative integer called a weight ν (measure) satisifying the switch condition: the sums of the weights on each side of the switch are equal to each other.

Train Track

Figure: Converting $f^2(c)$ into a train track. All the weights are determined by the weights (4,6) by switch conditions.

Definition (Train Track)

A finite graph τ embedded in the surface S, such that

- Each edge of τ is a smooth arc;
- ullet Each vertex of au has well-defined tangent line, called a switch;
- Each edge is with a nonnegative integer called a weight ν (measure) satisifying the switch condition: the sums of the weights on each side of the switch are equal to each other.

Linear Algebra of Train Tracks

Figure: Applying the map f to the train track (τ, ν) , (0, 2), (2, 2) and (6, 4).

$$\begin{pmatrix} x_n \\ y_n \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}^n \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$

Linear Algebra of Train Tracks

Figure: Applying the map f to the train track (τ, ν) , (0, 2), (2, 2) and (6, 4).

$$\lambda = \frac{3 + \sqrt{5}}{2}, v_{\lambda} = \begin{pmatrix} \frac{1 + \sqrt{5}}{2} \\ 1 \end{pmatrix}, \lambda^{-1} = \frac{3 - \sqrt{5}}{2}, v_{\lambda^{-1}} = \begin{pmatrix} \frac{1 - \sqrt{5}}{2} \\ 1 \end{pmatrix}$$

Length Functions

Definition (Length Function)

A homotopically nontrivial closed curve γ in $S_{\it g}$ defines a $\it length$ function

$$I^{\gamma}: \mathsf{Teich}(S_g) o \mathbb{R}_{>0}$$

which assigns to a metric $m \in \text{Teich}(S_g)$ the length $I^{\gamma}(m)$ of the unique closed geodesic to γ .

Let $\mathscr{S}=\mathscr{S}(S_g)$ be the set of all non-trivial simple closed curves in S_g , considered up to isotopy and orientation reversal. Each element $\gamma\in\mathscr{S}$ induces a length function $I^\gamma: \operatorname{Teich}(S_g)\to\mathbb{R}_{>0}$. Indicate with $\mathbb{R}^\mathscr{S}$ the set of all functions $\mathscr{S}\to\mathbb{R}$.

Fenchel-Nielsen Coordinates

Figure: A frame for Fenchel-Nielsen coordinates consists of two essential multicurves μ and ν in minimal position, such that : μ is a pants decomposition; ν decomposes every pair of pants in two hexagons.

Definition (Fenchel-Nielse Coordinates)

A frame induces a Fenchel-Nielsen map $FN: \mathsf{Teich}(S_g) o \mathbb{R}^{3g-3}_{>0} imes \mathbb{R}^{3g-3}_{>0}$,

$$m\mapsto (l_1,\ldots,l_{3g-3},\theta_1,\ldots,\theta_{3g-3}),$$

where $I_i = I^{\gamma_i}(m)$.

9g - 9 Theorem

Figure: For each component γ_i of a pants decomposition μ , choose a curve γ_i' that intersects γ_i in one or two points and is disjoint from other components of μ . Two cases, depending on whether the two pants adjacent to γ_i are distinct (left) or not (right).

9g - 9 Theorem

Figure: The curves γ_i (red), γ_i' (blue), and $\gamma_i'' = T_{\gamma_i}(\gamma_i')$ (green) when γ_i is adjacent twice to the same pair of pants.

Theorem (9g - 9)

The following map is injective:

$$L: \mathit{Teich}(S_g)
ightarrow \mathbb{R}^{9g-9}_{>0} \ m \mapsto (I^{\gamma_i}(m), I^{\gamma_i'}(m), I^{\gamma_i''}(m))$$

$|\mathsf{Teich}(\mathcal{S}_g)|$ Embeds in $\mathbb{P}(\mathbb{R}^\mathscr{S})$

Consider the infinite-dimensional projective space $\mathbb{P}(\mathbb{R}^{\mathscr{S}})$, let the projection map is

$$\pi: \mathbb{R}^{\mathscr{S}} \to \mathbb{P}(\mathbb{R}^{\mathscr{S}}).$$

Proposition

The composition

$$\pi \circ i : \mathit{Teich}(S_g) o \mathbb{P}(\mathbb{R}^\mathscr{S})$$

is injective.

\mathscr{S} Embeds in $\mathbb{P}(\mathbb{R}^{\mathscr{S}})$

Definition (Geometric Intersection Number)

A simple closed curve $\gamma \in \mathscr{S}$ defines a functional $i(\gamma) \in \mathbb{R}^{\mathscr{S}}$ by setting:

$$i(\gamma)(\eta) := i(\gamma, \eta).$$

Proposition

The composition

$$\pi \circ i : \mathscr{S} \to \mathbb{P}(\mathbb{R}^{\mathscr{S}})$$

is injective.

Proof.

Let $\gamma_1, \gamma_2 \in \mathscr{S}$ be distinct. There is always a curve $\eta \in \mathscr{S}$ with $i(\gamma_1, \eta) \neq 0$ and $i(\gamma_2, \eta) = 0$.

\mathscr{S} Embeds in $\mathbb{P}(\mathbb{R}^{\mathscr{S}})$

Proposition

Consider Teich(S_g) and $\mathscr S$ as subsets of $\mathbb R^{\mathscr S}$, then they are disjoint in $\mathbb P(\mathbb R^{\mathscr S})$.

Proof.

For each $\gamma \in \mathscr{S}$ we have $i(\gamma, \gamma) = 0$, where every curve has positive length on any hyperbolic metric.

Thurston's Compactification Theorem

Theorem (Thurston's Compactification)

The closure $\overline{Teich(S_g)}$ of $Teich(S_g)$ in $\mathbb{P}(\mathbb{R}^{\mathscr{S}})$ is homeomorphic to the closed disk D^{6g-6} . Its interior is $Teich(S_g)$ and its boundary sphere contains \mathscr{S} as a dense subset.

Hyperboloid Model for \mathbb{H}^2

Figure: The hyperboloid model for \mathbb{H}^2 . Teich(S_g) corresponds to the hyperboloid; \mathscr{S} corresponds to the light cone; $\mathbb{R}^{2,1}$ corresponds to the space of $\mathbb{R}^{\mathscr{S}}$ (furthermore the space of geodesic currents); $\langle v_1, v_2 \rangle$ corresponds to $i(\alpha, \beta)$.

- Lorentzian form in $\mathbb{R}^{2,1}$ $\langle v_1, v_2 \rangle = x_1 x_2 + y_1 y_2 - z_1 z_2;$
- The hyperboloid $\langle v, v \rangle = -1$, \mathbb{H}^2 :
- The Light cone $\langle v, v \rangle = 0$, $\partial \mathbb{H}^2$;
- Klein model of \mathbb{H}^2 , compactification.

Geodesics

- Let M be a complete hyperbolic manifold, $\mathscr{G}(M)$ indicates the set of all supports of all complete non-trivial geodesics $\mathbb{R} \to M$. We call an element of $\mathscr{G}(M)$ a *geodesic*, we say it is *simple* if it has a simple geodesic parameterization.
- Consider the set $\mathscr{G} = \mathscr{G}(\mathbb{H}^2)$ of lines in \mathbb{H}^2 . A line is determined by its end points

$$\mathscr{G} \leftrightarrow (\partial \mathbb{H}^2 \times \partial \mathbb{H}^2 \setminus \Delta)/\sim$$
,

where $\Delta = \{(a,a)|a \in \partial \mathbb{H}^2\}$ is the diagonal and $(a,b) \sim (b,a)$. \mathscr{G} is homeomorphic to an open Möbius strip.

Geodesics

Proposition

If $S=\mathbb{H}^2/\Gamma$ is a complete hyperbolic surface there is a natural bijection

$$\mathscr{G}(S) \leftrightarrow \mathscr{G}/\Gamma$$
.

Proof.

Every geodesic in S lifts to a Γ -orbit of lines in \mathbb{H}^2 .

Geodesics

Proposition

The Γ -oribit of a line $l \in \mathcal{G}$ is discrete if and only if l projects to a closed geodesic in S_g .

Proof.

Let $\pi(I) \subset S_g$ be the projection of I in S_g . If $\pi(I)$ is not a closed geodesic, since S_g is compact, then there is a small disk $D \subset S_g$ intersecting $\pi(I)$ into infinitely many distinct segments, hence there is a small disk $D \subset \mathbb{H}^2$ intersecting infinitely many lines of the Γ -orbit of I, therefore the Γ -orbit is not discrete.

Geodesics Current

Definition (Geodesic Current)

Let $S_g = \mathbb{H}^2/\Gamma$ be a hyperbolic surface. A geodesic current on S_g is a locally finite Γ -invariant Borel measure on $\mathscr{G} = \mathscr{G}(\mathbb{H}^2)$.

Let $\mathscr{M}(\mathscr{G})$ be the space of all locally finite Borel measures on \mathscr{G} , $\mathscr{C}=\mathscr{C}(S_g)$ be the set of all geodesic currents in S_g .

Geodesics Current for a Closed Geodesic

A closed geodesic γ on $S_g=\mathbb{H}^2/\Gamma$ lifts to a discrete Γ -orbit of lines in \mathbb{H}^2 . The Diract measure on this discrete set is locally finite and Γ -invariant, hence it is a geodesic current.

Proposition

If $l \in \mathcal{G}$ is an atomic point for a geodesic current μ , that is if $\mu(\{l\}) > 0$, then l projects to a closed geodesic in S_g .

We can interpret every closed geodesic in S_g as a particular geodesic current with discrete support. The closed geodesics form a discrete subset in \mathscr{C} . We get an embedding

$$\mathscr{S} \hookrightarrow \mathscr{C}$$
.

Liouville Measure

Definition

Let $\gamma:\mathbb{R}\to\mathbb{H}^2$ be a parameterized geodesic and $U_\gamma\subset \mathscr{G}$ be the open set consisting of all lines intersecting γ , except γ itself. We can parametrize U_γ via the homeomorphism $\mathbb{R}\times(0,\pi)\to U_\gamma$, that sends (t,θ) to the line that intersects γ at the point $\gamma(t)$ with angle θ . Define a volume 2-form on U_γ ,

$$L_{\gamma}=rac{1}{2}\sin heta dt\wedge d heta.$$

Proposition

The charts U_{γ} form a differentiable atlas for \mathscr{G} . The 2-form L_{γ} match up to sign and hence define a measure L on \mathscr{G} .

Liouville Current

Definition (Liouville Current)

Let $S_g = \mathbb{H}^2/\Gamma$ be equipped with a hyperbolic metric. The Liouville measure on \mathscr{G} is $\mathsf{Isom}(\mathbb{H}^2)$ -invariant: in particular it is Γ -invariant and hence defines a current $L \in \mathscr{C}(S_g)$, called the Liouville current.

Every metric $m \in \text{Teich}(S_g)$ induces a Liouville current $L_m \in \mathscr{C}$, and in this way we get a Liouville map

$$\mathsf{Teich}(S_g) o \mathscr{C}$$

that sends m to L_m .

Projective Frame Bundle

We denote by $\mathscr{I}\subset\mathscr{G}\times\mathscr{G}$ the open subset consisting of all pairs of incident distinct lines in \mathbb{H}^2 , which can be interpreted as the set of triples (p,l_1,l_2) with $p\in\mathbb{H}^2$ and l_1,l_2 two distinct vectors in the tangent plane $T_p\mathbb{H}^2$.

Let $S_g = \mathbb{H}^2/\Gamma$, the diagonal action of Γ on \mathscr{I} is properly discontinuous, the map

$$\mathscr{I} \to \mathscr{I}/\Gamma$$

is a topological covering. (p, l_1, l_2) form a frame of $T_p S_g$, \mathscr{I}/Γ is treated as some projective quotient of the frame bundle on S_g .

Geometric Properties of Intersection Form

Proposition (Simple Closed Geodesics)

If $\alpha, \beta \in \mathcal{S}$, the value of the form $i(\alpha, \beta)$ is the geometric intersection of the simple closed curves α and β .

In particular $i(\alpha, \alpha) = 0$, namely $\alpha \in \mathscr{C}$ is on the light cone.

Proposition (Simple Closed Geodesic and Hyperbolic Metric)

If $\alpha \in \mathscr{S}$ and $m \in Teich(S_g)$, the value of the form $i(\alpha, L_m) = I^{\alpha}(m)$ is the length of the geodesic representative of α in the metric m.

The intersection form i on $\mathscr C$ generalizes both the geometric intersection of curves and the length functions on Teichmüller space. The Liouville map $\operatorname{Teich}(S_g) \to \mathcal C$ is injective.

Geometric Properties of Intersection Form

Proposition

Let $s \subset \mathbb{H}^2$ be a geodesic segment of length 1. The lines in \mathbb{H}^2 intersecting s in \mathscr{G} form a set of Liouville measure 1.

Proof.

The set has the measure

$$\int_0^\pi \int_0^I \frac{1}{2} \sin \theta dt d\theta = I \int_0^\pi \frac{1}{2} \sin \theta d\theta = I.$$

ᆜ

Proposition (Hyperbolic Metrics)

If $m \in Teich(S_g)$, the value of the form

$$i(L_m, L_m) = -\pi^2 \chi(S_g).$$

Analogy to Hyperboloid Model

- For each simple closed curve $\alpha \in \mathscr{C}(S_g)$, $i(\alpha, \alpha) = 0$;
- For each hyperbolic metric $m \in \text{Teich}(S_g)$, $i(m,m) = -\pi^2 \chi(S_g)$;
- $\mathscr{S} \hookrightarrow \mathscr{C}$ is injective;
- Teich $(S_g) \hookrightarrow \mathscr{C}$ is injective;
- ullet $\mathscr S$ is dense in the boundary of $\overline{\operatorname{Teich}(S_g)}$

Filling geodesic currents

Definition

We say that a geodesic current $\alpha \in \mathscr{C}$ fills the surface $S_g = \mathbb{H}^2/\Gamma$, if every line in \mathbb{H}^2 intersects transversely at least one line in the support of α

A Liouville measure fills S_g since its support is the whole of \mathscr{G} .

Definition

We say that k closed geodesics $\gamma_1, \gamma_2, \ldots, \gamma_k$ fill S_g if the geodesic current

$$\gamma_1 + \gamma_2 + \cdots + \gamma_k$$

does.

Proposition

Let $\gamma_1, \gamma_2, \dots, \gamma_k$ be closed geodesics. If $S_g \setminus (\gamma_1 \cup \dots \cup \gamma_k)$ consists of polygons, the curves fill S_g .

Compactness Criterion

Proposition (Compactness criterion)

If $\alpha \in \mathscr{C}$ fills S_g , the set of all $\beta \in \mathscr{C}$ with $i(\alpha, \beta) \leq M$ is compact, for all M > 0.

Corollary

The Liouville map $Teich(S_g) \hookrightarrow \mathscr{C}$ is proper and a homeomorphism onto its image.

Corollary

Let $\gamma_1, \ldots, \gamma_k$ be some closed geodesics that fill S_g . The metrics $m \in Teich(S_g)$ with $I^{\gamma_i}(m) \leq M$ form a compact subset of $Teich(S_g)$ for all M > 0.

Projective Currents

Definition

Projectived Current Space The current space $\mathscr C$ is equipped with a multiplication by positive scalars, hence we can define its projectivisation

$$\pi:\mathscr{C}\setminus 0\to \mathbb{P}\mathscr{C}$$

where $\mathbb{P}\mathscr{C} = (\mathscr{C} \setminus 0)/\sim$ with $\alpha \sim \lambda \alpha$ for all $\lambda > 0$.

Proposition

The space $\mathbb{P}\mathscr{C}$ is compact.

Proof.

Pick an $\alpha \in \mathscr{C}$ that fills S_g , the set $C = \{\beta \in \mathscr{C} | i(\alpha, \beta) = 1\}$ is compact. Since α fills S_g , for all $\beta \in \mathcal{C}$, $i(\alpha, \beta) > 0$, hence $\lambda \beta \in C$ for some $\lambda > 0$. $\pi(\mathcal{C}) = \mathbb{P}\mathscr{C}$.

Projective Currents

Figure: The hyperboloid model for \mathbb{H}^2 . Teich(S_g) corresponds to the hyperboloid; \mathscr{S} corresponds to the light cone; $\mathbb{R}^{2,1}$ corresponds to the space of $\mathbb{R}^{\mathscr{S}}$ (furthermore the space of geodesic currents); $\langle v_1, v_2 \rangle$ corresponds to $i(\alpha, \beta)$.

Proposition

The composition $\mathscr{S} \to \mathscr{C} \setminus 0 \to \mathbb{P}\mathscr{C}$ is injective.

Proposition

The composition $Teich(S_g) \to \mathscr{C} \setminus 0 \to \mathbb{P}\mathscr{C}$ is injective and a homemorphism onto its image.

Both \mathscr{S} and $\mathsf{Teich}(S_g)$ are embedded in the projective current space $\mathbb{P}\mathscr{C}$.

Thurston compactification

Figure: The hyperboloid model for \mathbb{H}^2 . Teich(S_g) corresponds to the hyperboloid; \mathscr{S} corresponds to the light cone; $\mathbb{R}^{2,1}$ corresponds to the space of $\mathbb{R}^{\mathscr{S}}$ (furthermore the space of geodesic currents); $\langle v_1, v_2 \rangle$ corresponds to $i(\alpha, \beta)$.

Definition (Compactification)

The closure $\overline{\text{Teich}}(S_g)$ of $\text{Teich}(S_g)$ inside $\mathbb{P}\mathscr{C}$ is called the Thurston compactification of Teichmüller space.

The boundary is

$$\partial \overline{\mathsf{Teich}(S_g)} = \overline{\mathsf{Teich}(S_g)} \setminus \mathsf{Teich}(S_g).$$

Proposition

The Thurston boundary consists of all projective currents $[\alpha]$ with $i(\alpha, \alpha) = 0$.

Geodesic Lamination

Definition (Geodesic Lamination)

A geodesic lamination λ is a set of disjoint simple complete geodesics in S, whose union is a closed subset of S. Each geodesic may be closed or open and is called a *leaf*; their union is the support of λ .

The following examples of geodesic laminations are fundamental:

- ullet a finite set of disjoint closed geodesics in S,
- a set of disjoint lines in H2 whose union is closed.

Definition

A geodesic lamination $\lambda\subset\mathcal{S}_g$ is minimal if it contains no proper non-empty sublamination.

A geodesic lamination $\lambda\subset\mathcal{S}_{\mathbf{g}}$ is minimal if and only if every leaf in λ is dense.

Transverse Measure

Let $\lambda\subset S$ be a geodesic lambination in a hyperbolic surface S. A transverse arc to λ is the support of a simple regular curve $\alpha:[a,b]\to S$ transverse to each leaf of λ , whose end points $\alpha(a)$ and $\alpha(b)$ are not contained in λ .

Definition (Transverse Measure)

A transverse measure for a lamination $\lambda \subset S$ is a locally Borel measure L_{α} on each transverse arc α such that:

- **1** If $\alpha' \subset \alpha$ is a sub-arc of α , the measure $L_{\alpha'}$ is the restriction of L_{α} ;
- **2** the support of L_{α} is $\alpha \cap \lambda$;
- 3 the measure is invariant through isotopies of transverse arcs.

Measured Geodesic Lamination

Definition (Measured Geodesic Lamination)

A measured geodesic lamination is a geodesic lamination equipped with a transverse measure.

A lamination λ formed by a finite set of disjoint closed geodesics γ_1,\ldots,γ_k has a natural transverse measure: for any transverse arc α , the measure L_α on α is just the Dirac measure supported in $\alpha\cap\lambda$. More generally, we may assign a positive weight $a_i>0$ at each γ_i and define a measured geodesic lamination by giving the weight a_i at each intersection $\alpha\cap\gamma_i$. By varying weights we get distinct measured laminations with the same support.

$$\mathcal{S} \subset \mathcal{M} \subset \mathcal{ML} \subset \mathcal{C}$$

Simple closed curves $\mathcal S$, multicurves $\mathcal M$, measured geodesic laminations $\mathcal M\mathcal L$, current space $\mathcal C$.

Measured Geodesic Lamination

The measured geodesic laminations can be represented as colorings (weights) on traintracks.

Theorem

The following homemorphism holds

$$\partial Teich(S_g) = \mathbb{P} \mathscr{M} \mathscr{L} \cong \mathbb{S}^{6g-7}.$$

The set $\mathbb{P}\mathscr{S}$ is dense in PML.

Trichotomy

Let S_g have genus $g \geq 2$. The mapping class group $MCG(S_g)$ acts natually on the whole space $\mathscr C$ of currents in particular on the compactification $\overline{\text{Teich}(S_g)} \cong D^{6g-6}$ of the Teichmüller space.

Definition (Trichotomy)

Let $\varphi \in MCG(S_g)$ be a non-trivial element. By Brouwer's fixed point theorem, φ fixes at least one point in $\overline{Teich(S_g)}$. We say that φ is:

- finite order if it fixes a hyperbolic mertric $m \in \text{Teich}(S_g)$;
- 2 reducible if it fixes a multicurve $\mu \in \mathcal{M}$;
- pseudo-Anosov in all the other cases.

Finite order elements

Proposition

A non-trivial element $\varphi \in MCG(S_g)$ is finite order if and only if it has indeed finite order in $MCG(S_g)$.

Suppose that φ preserves the isotopy class $[m] \in \operatorname{Teich}(Sg)$ of a hyperbolic metric m in S_g . We can choose a representative φ that fixes m. Since the isometry group of a closed hyperbolic manifold is finite, then $\varphi^n = \operatorname{id}$.

Reducible elements

If φ fixes a multicurve μ , one can cut S_g along μ and look at the restriction of φ to the resulting pieces: after extending all the theory to surfaces with boundary, we can hence study inductively each piece. The cases (1) and (2) are not exclusive: there are isometries of hyperbolic surfaces that preserve some multicurve. Both cases are necessary, however: there are finite order elements that are not reducible and reducible maps that are not of finite order.

Pseudo-Anosov Elements

Theorem

Let $\varphi \in MCG(S_g)$ be a pseudo-Anosov element. There are two measured geodesic laminations $\mu_s, \mu_u \in \mathscr{ML}$ and a real number $\lambda > 1$ such that

$$\varphi(\mu_s) = \lambda \mu_s, \quad \varphi(\mu_u) = \frac{1}{\lambda} \mu_u.$$

The laminations μ_s and μ_u are full and minimal, and they altogether fill S_g .

By Brouwer's fixed point theorem, a pseudo-Anosov element φ has a fixed point in $\overline{\text{Teich}(Sg)}$ which is (by definition) neither a metric nor a multicurve. Therefore φ fixes a measured projective lamination $[\mu] \in \mathbb{PML}$ which is minimal and full.

Pseudo-Anosov Elements

Figure: The appropriate lift of φ to \mathbb{H}^2 acts on $\partial \mathbb{H}^2$ with 2k fixed points that are alternatively attractive and repelling. By joining the repelling points we find another lamination μ_u fixed by φ .

Consider the preimage $\tilde{\mu}_s \subset \mathbb{H}^2$ of μ_s , and after replacing φ with a finite power we may choose a lift $\tilde{\varphi}$ of φ that fixes a complementary pologonal region R of $\tilde{\mu}_s$ and its sides, hence in particular its vertices of R. The k vertices of R divide $\partial \mathbb{H}^2$ into $\tilde{\varphi}$ -invariant arcs l_1, \ldots, l_k , corresponding to the sides s_1, \ldots, s_k . Since the endpoints p and q of l_i are attractors, $\tilde{\varphi}$ fixes at least one point in the interior of l_i , which must be repulsive. The closure of the projection of the k green lines is another invariant geodesic lamination μ_{u} .