NMOS AND CMOS INVERTER CHARACTERISTICS

AMIRTHA PRASAD

22BEC1002

AIM:

To analyze the characteristics of NMOS inverter with resistive load and CMOS inverter.

TOOLS REQUIRED:

Linux operated computing system, Cadence® Virtuoso, gpdk 180nm technology library

NMOS INVERTER:

PROCEDURE:

- 1. Create a schematic.
- 2. Configure DC Analysis with the input gate voltage Vgs as the component parameter and sweep range of 0 to 1.8V
 - Plot the drain current ID.
- 3. Define the resistance R as a variable parameter "x"
 - Configure dc analysis for various drain source voltage Vds by defining it as the component parameter and sweep range of 0 to 1.8V
 - Plot the drain current ID
 - Perform the parametric analysis for various values of R which is defined as "x".

SCREENSHOTS:

1. NMOS INVERTER CIRCUIT WITH RESISTIVE LOAD:

2. CHARACTERISTICS:

3. INVERTER WITH VARIABLE RESISTOR:

4. PARAMETRIC ANALYSIS:

INFERENCE:

- 1. From the graphs, till Vgs<Vth in cut-off region, (input: logic 0) it is seen that NMOS does not conduct. Hence no current and voltage drop across resistance is 0. Vout=Vdd. Output logic: 1.
- 2. If Vgs is slightly greater than Vth, (linear), there is a potential drop in resistance and device starts conducting. This si called transition period and Vout<Vdd(slightly).
- 3. In saturation region where Vgs>>Vth input logic is 1. Increase in Id results in very high potential drop in resistance. Vout is close to 0.
- 4. Disadvantage of NMOS inverter is that to get ideal characteristics, we need high value of resistance which will take up large area.

CMOS CHARACTERISTICS:

PROCEDURE:

- 1. Create a schematic and define the input pattern as
 - One value=1.8
 - Zero value=0
 - Rise time=1ps
 - Fall time=1ps
 - Period = 25 ns
 - Source type= bit
 - Pattern parameter=10110
 - Apply \rightarrow OK
- 2. Perform transient analysis and obtain the transient signals
- 3. Perform dc analysis and varying it from 0 to 1.8V and the output to be plotted as the output voltage.
- 4. Create the symbol of inverters and do transient analysis.

SCREENSHOTS:

1. SCHEMATIC FOR TRANSIENT ANALYSIS:

2. TRANSIENT ANALYSIS:

3. DC ANALYSIS SCHEMATIC:

4. DC CHARACTERISTICS:

5. SYMBOL CREATION FOR INVERTER:

6. TRANSIENT ANALYSIS:

INFERENCES:

- 1. CMOS inverter solves the problem in NMOS since it does not have a resistance.
- 2. If logic 1 is given, NMOS is switched on and switch is closed between S and D. Since both S and D are grounded, output is 0 (pull-down).
- 3. If logic 0 is given, PMOS is switched on and S and D are connected to each other giving Vout=Vdd, in other words, logic 1 output is obtained (pull-up).