S207 The Physical World

Bookmark

Useful constants

magnitude of the acceleration $g = 9.81 \text{ m s}^{-2}$

due to gravity (on Earth)

Newton's universal $G = 6.673 \times 10^{-11} \,\mathrm{N} \,\mathrm{m}^2 \,\mathrm{kg}^{-2}$

gravitational constant

Avogadro's constant $N_{\rm m} = 6.022 \times 10^{23} \, {\rm mol}^{-1}$

Boltzmann's constant $k = 1.381 \times 10^{-23} \,\mathrm{J \, K^{-1}}$

molar gas constant $R = 8.314 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$

permittivity of free space $\varepsilon_0 = 8.854 \times 10^{-12} \,\mathrm{C}^2 \,\mathrm{N}^{-1} \,\mathrm{m}^{-2}$

 $1/4\pi\varepsilon_0 = 8.988 \times 10^9 \,\mathrm{N}\,\mathrm{m}^2\,\mathrm{C}^{-2}$

permeability of free space $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{T}\,\mathrm{m}\,\mathrm{A}^{-1}$

speed of light in vacuum $c = 2.998 \times 10^8 \,\mathrm{m \, s^{-1}}$

Planck's constant $h = 6.626 \times 10^{-34} \,\mathrm{J s}$

 $\hbar = h/2\pi = 1.055 \times 10^{-34} \,\mathrm{J \, s}$

Rydberg constant $R = 1.097 \times 10^7 \,\mathrm{m}^{-1}$

Bohr radius $a_0 = 5.292 \times 10^{-11} \,\text{m}$

atomic mass unit amu (or u) = 1.6605×10^{-27} kg

charge of proton $e = 1.602 \times 10^{-19} \,\mathrm{C}$

charge of electron $-e = -1.602 \times 10^{-19} \,\mathrm{C}$

electron rest mass $m_e = 9.109 \times 10^{-31} \,\mathrm{kg}$

charge to mass ratio of the $-e/m_e = -1.759 \times 10^{11} \,\mathrm{C \, kg^{-1}}$

electron

proton rest mass $m_{\rm p} = 1.673 \times 10^{-27} \,\mathrm{kg}$

neutron rest mass $m_{\rm p} = 1.675 \times 10^{-27} \,\mathrm{kg}$

radius of the Earth $6.378 \times 10^6 \,\mathrm{m}$

mass of the Earth $5.977 \times 10^{24} \,\mathrm{kg}$

mass of the Moon $7.35 \times 10^{22} \,\mathrm{kg}$

mass of the Sun $1.99 \times 10^{30} \,\mathrm{kg}$

average radius of Earth orbit $1.50 \times 10^{11} \,\mathrm{m}$

average radius of Moon orbit $3.84 \times 10^8 \,\mathrm{m}$

S207 The Physical World

Bookmark

SI unit conversions [The fundamental units are: m; kg; s; A; K, mol.]
--

Quantity	Unit	Conversion
speed	${ m m~s^{-1}}$	
acceleration	${ m m~s^{-2}}$	
angular speed	$\rm rad\ s^{-1}$	
angular acceleration	$\rm rad\ s^{-2}$	
linear momentum	${\rm kg}{\rm m}{\rm s}^{-1}$	
angular momentum	kgm^2s^{-1}	
force	newton (N)	$1 \text{ N} = 1 \text{ kg m s}^{-2}$
energy	joule (J)	1 J = 1 N m
		$= 1 \text{ kg m}^2 \text{ s}^{-2}$
torque	Nm	
power	watt (W)	$1 \text{ W} = 1 \text{ J s}^{-1}$
pressure	pascal (Pa)	$1 \text{ Pa} = 1 \text{ N m}^{-2}$
frequency	hertz (Hz)	$1 \text{ Hz} = 1 \text{ s}^{-1}$
charge	coulomb (C)	1 C = 1 A s
potential difference	volt (V)	$1 \text{ V} = 1 \text{ J C}^{-1}$
electric field	$N C^{-1}$	$1 \text{ N C}^{-1} = 1 \text{ V m}^{-1}$
resistance	ohm (Ω)	$1~\Omega=1~\mathrm{V~A^{-1}}$
capacitance	farad (F)	$1 F = 1 A s V^{-1}$
inductance	henry (H)	$1 H = 1 V s A^{-1}$
magnetic field	tesla (T)	$1 T = 1 N s m^{-1} C^{-1}$
		$= 1 \text{ kg s}^{-2} \text{ A}^{-1}$

Useful conversions

1 degree ≈ 0.01745

1 radian ≈ 57.30 degrees

absolute zero: $0 \text{ K} = -273.15 \,^{\circ}\text{C}$

1 electronvolt (eV) = $1.602 \times 10^{-19} \,\text{J}$

Derivatives

[A, n, k and ω are constants; x, y, and z are functions of t]

	-
х	$\frac{\mathrm{d}x}{\mathrm{d}t}$
A	0
t^n	nt^{n-1}
sin ω t	$\omega \cos \omega t$
$\cos \omega t$	$-\omega \sin \omega t$
e ^{kt} Ay	ke ^{kt}
Ay	$A\frac{\mathrm{d}y}{\mathrm{d}t}$
y + z	$\frac{\mathrm{d}y}{\mathrm{d}t} + \frac{\mathrm{d}z}{\mathrm{d}t}$