Dezimale Einheitenvorsätze und 10er Potenzen

<mark>Lösung</mark>

Name: Datum:

Dezimale Einheitenvorsätze, die Faktoren >1 zusammenfassen

Einheitenvorsatz-Zeichen	Name	10 ^x	Faktor	Der pos. Exponent (die Hochzahl) gibt die Anzahl der Nullen an.
T G M k	Tera Giga Mega Kilo	$10^{12} = 10^{9} = 10^{6} = 10^{3} = 10^{12}$	1000 000 000 1000 000 000 1000 000 1000	000

Dezimale Einheitenvorsätze, die Faktoren < 1 zusammenfassen

Einheitenvorsatz-Zeichen	Name	10 ^x	Faktor	Der neg. Exponent gibt die Anzahl der Nachkomma-Stellen an.
m µ n p	Milli Mikro Nano Piko	10-9 =	0,001 0,000 001 0,000 000 001 0,000 000 000 0	001

Übungsaufgaben

Rechnen Sie um:

a) in mA	b) in kW	c) in V
1) 0,003 A = 3 mA	1) 10000 W = 10 kW	1) 30 mV = 0,03 V
2) 3 A = 3000 mA	2) 3 W = 0,003 kW	2) 0,8 kV = 800 V
3) 0,2 A = 200 mA	3) 800 W = 0,8 kW	3) 0,125 kV = 125 V
4) 3,8 A = 3800 mA	4) 20 W = 0,02 kW	4) 200 mV = 0,2 V

Rechnen mit 10er Potenzen

10er Potenzen

$10^{\circ} = 1$	Jede Zahl hoch Null ist immer 1
$10^1 = 10$	Jede Zahl hoch 1 ist die Zahl selbst
$10^a \cdot 10^b = 10^{a+b}$	Zwei Zehnerpotenzen werden multipliziert, indem man die Exponenten addiert
$10^{-a} = \frac{1}{10^a}$	Ein Minus vor dem Exponenten bedeutet, dass die Zehnerpotenz mit positivem Exponenten im Nenner steht
$\frac{10^{a}}{10^{b}} = 10^{a} \cdot 10^{-b} = 10^{a-b}$	Zwei Zehnerpotenzen werden dividiert, indem man die Exponenten subtrahiert
$(10^a)^b = 10^{a \cdot b}$	Zehnerpotenzen werden potenziert, indem man die Exponenten multipliziert

Übungsaufgaben

Berechnen Sie das Ergebnis. Stellen Sie das Ergebnis als Zahlenwert+ Einheitenvorsatz + Einheit dar.

c)
$$10^{\circ} V = 1 V$$

d)
$$1^{\circ} V = 1 V$$

e)
$$2^{0}A = 1A$$

f)
$$10^{3} \cdot 10^{3} \text{ A} = 10^{6} \text{ A} = 1 \cdot 10^{6} \text{ A} = 1 \text{ MA}$$

g)
$$10^{6} \cdot 10^{-3} \text{ W} = 10^{3} \text{ W} = 1 \cdot 10^{3} \text{ W} = 1 \text{ kW}$$

h)
$$10^{-3} \Omega \cdot 10^{6} \text{ A} = 10^{3} \text{ V} = 1 \cdot 10^{3} \text{ V} = 1 \text{ kV}$$

i)
$$3^{\circ}\Omega = 1\Omega$$

j)
$$10^{-6} \cdot 10^{-3} \Omega = 10^{-9} \Omega = 1 \cdot 10^{-9} \Omega = 1 \text{ n}\Omega$$

k)
$$\frac{10^5}{10^3} V = 10^5 \cdot 10^{-3} V = 10^{5-3} V = 10^2 V$$
$$= 10^2 \cdot 1 V = 10^2 \cdot 10^{-3} \cdot 10^3 V$$
$$= 10^2 \cdot 10^{-3} \cdot 10^3 V$$
$$= 10^{2-3} \text{ kV} = 10^{-1} \text{ kV} = 0,1 \text{ kV}$$

I)
$$\frac{10^{3}}{10^{-2}} A = 10^{3} \cdot 10^{-(-2)} A = 10^{3+2} A = 10^{5} A$$
$$= 10^{5} \cdot 1 A = 10^{5} \cdot 10^{-3} \cdot 10^{3} A$$
$$= 10^{5} \cdot 10^{-3} \cdot 10^{3} A$$
$$= 10^{5-3} kA = 10^{2} kA = 100 kA$$

oder
$$10^5 \cdot 1 \text{ A} = 10^5 \cdot 10^{-6} \cdot 10^6 \text{ A}$$

= $10^5 \cdot 10^{-6} \cdot 10^6 \text{ A}$
= $10^{5-6} \text{ MA} = 10^{-1} \text{ MA} = 0.1 \text{ MA}$

m)
$$\frac{10^4}{10^6} \Omega = 10^{-2} \Omega = 0.01 \Omega = 10 \text{ m}\Omega$$

n)
$$(10^{2})^{3} A = 10^{6} A = 1MA$$

o)
$$(10^{2})^{-4}V = 10^{-8} V = 10^{-8} \cdot 1 V$$

$$= 10^{-8} \cdot 10^{9} \cdot 10^{-9} V$$

$$= 10^{-8} \cdot 10^{9} \cdot 10^{-9} V$$

$$= 10^{-8+9} \text{ nV}$$

$$= 10^{1} \text{ nV}$$

$$= 10 \text{ nV}$$
oder
$$10^{-8} \cdot 10^{6} \cdot 10^{-6} \text{ V}$$

$$= 10^{-8} \cdot 10^{6} \cdot 10^{-6} \text{ V}$$

$$= 10^{-8+6} \mu\text{V}$$

$$= 10^{-2} \mu\text{V}$$

$$= 0,01 \mu\text{V}$$

p)
$$(10^{-2})^4 \Omega = 10^{-8} \Omega = 10 \text{ n}\Omega$$

q)
$$(10^{-3})^{-4}$$
 W= 10^{12} W = 1 TW

r)
$$(10^{3})^{4}$$
 s = 10^{12} s = 1 Ts

s)
$$3 \cdot 10^3 \text{ mA} = 3 \text{ A}$$

t)
$$8 \text{ m}\Omega \cdot 2 \text{ kA} = 16 \text{ V}$$

u)
$$7 \text{ kV} \cdot 3 \text{ kA} = 21 \text{ MW}$$

$$v) \qquad \frac{12 \text{ mV}}{6 \text{ kA}} = 2 \mu\Omega$$

w)
$$\frac{12 \text{ mV}}{6 \text{ mA}} = 2 \Omega$$

$$\frac{12 \text{ kV}}{6 \text{ mA}} = 2 \text{ M}\Omega$$

y) In einer Zeit von 30 s floss ein Strom von 3 A bei einer Spannung von 10000 kV. Geben sie die Energiekosten in € an, wenn 1 kWh 27cent kostet.

Gegeben:
$$t = 30 \text{ s} = 3 \cdot 10^{1} \text{ s}$$

 $I = 3 \text{ A}$

$$U = 10000 \text{ kV}$$
 = 1 · 10⁴ · kV = 10⁴ · 10³ V = 10⁴⁺³ V = 10⁷ V

Grundpreis k: 1 kWh kostet 27 cent

1kWh =
$$1 \cdot 10^3 \text{ W} \cdot 3600 \text{ s}$$

= $1 \cdot 10^3 \text{ W} \cdot 36 \cdot 10^2 \text{ s}$
= $36 \cdot 10^{3+2} \text{ Ws}$
= $36 \cdot 10^5 \text{ Ws}$

$$k = \frac{27 \cdot 10^{-2} \in }{36 \cdot 10^{5} \text{ Ws}} = \frac{27 \cdot 10^{-2} \cdot 10^{-5} \in }{36 \text{ Ws}} = \frac{27 \cdot 10^{-7} \in }{36 \text{ Ws}}$$

/ kürzen (9) oder Taschenrechner

$$= \frac{\cancel{3} \cancel{7} \cdot 10^{-7} \in}{\cancel{3} 6 \text{ Ws}} = \frac{\cancel{3} \cdot 10^{-7} \in}{4 \text{ Ws}}$$

Gesucht: Gesamtenergiekosten K: $K = W \cdot k$

Formeln:
$$W = U \cdot I \cdot t$$
 (1)

$$K = W \cdot k$$
 (2)

Lösung: W =
$$U \cdot I \cdot t$$
 (1) / einsetzen der gegebenen Werte
= $10^7 V \cdot 3 A \cdot 3 \cdot 10^1 s$ / sortieren
= $3 \cdot 3 \cdot 10^7 \cdot 10^1 VAs$ / Berechnung

$$= 9 \cdot 10^{7+1} \text{ Ws} = 9 \cdot 10^8 \cdot \text{Ws}$$

K = W · k (2)
= 9 · 10⁸ · Ws ·
$$\frac{3 \cdot 10^{-7} \, €}{4 \, \text{Ws}}$$

= 9 · 10⁸ · Ws · $\frac{3 \cdot 10^{-7} \, €}{4 \, \text{Ws}}$
= 9 · $\frac{3}{4}$ · 10⁸ · 10⁻⁷ €
= 6,75 · 10 €

= 67,5 € Die Energiekosten betragen 67,5 €

