```
In [1]: def set hadoop config(credentials):
            prefix = "fs.swift.service." + credentials['name']
            hconf = sc. jsc.hadoopConfiguration()
            hconf.set(prefix + ".auth.url", credentials['auth url']+'/v3/auth/tokens')
            hconf.set(prefix + ".auth.endpoint.prefix", "endpoints")
            hconf.set(prefix + ".tenant", credentials['project_id'])
            hconf.set(prefix + ".username", credentials['user_id'])
            hconf.set(prefix + ".password", credentials['password'])
            hconf.setInt(prefix + ".http.port", 8080)
            hconf.set(prefix + ".region", credentials['region'])
            hconf.setBoolean(prefix + ".public", True)
In [5]: | credentials 2 = {
           'auth url': 'https://identity.open.softlayer.com',
           'project':'object_storage_f962b5f8_4788_49ff_aa47_5e4673e53a2b',
           'project id': '1b4094970a544940859cdd585d0f462c',
           'region':'dallas',
           'user id':'cf7b734f80d54703bddedc60fe77bc33',
           'domain id':'4212beab9a7f469391135e26f7219597',
           'domain name':'1141491',
           'username': 'admin c68b1bc189f64a5099a7c50bfd7621dc0de4dbd2',
          'password':"""WX.Lkgg8z_Ud#P61""",
          'filename': 'License Applications.csv',
           'container': 'notebooks',
           'tenantId':'saa0-89a6bc0b359e28-b159885f0f89'
```

```
In [6]: credentials_2['name'] = 'keystone'
set_hadoop_config(credentials_2)
```

```
In [41]: from future import division
         import numpy as np
         from pyspark.sql import SQLContext
         sqlContext = SQLContext(sc)
         # adding the PySpark modul to SparkContext
         sc.addPyFile("https://raw.githubusercontent.com/seahboonsiew/pyspark-csv/master/pyspark_csv.py")
         import pyspark csv as pycsv
         license = sc.textFile("swift://" + credentials_2['container'] + "." + credentials_2['name'] + "/License_Appli
         cations.csv")
         def skip header(idx, iterator):
             if (idx == 0):
                 next(iterator)
             return iterator
         license_header = collisions.first()
         license_header_list = license_header.split(",")
         license_body = license.mapPartitionsWithIndex(skip_header)
         # filter not valid rows
         license body = license body.filter(lambda line : len(line.split(","))>24)
         # create Spark DataFrame using pyspark-csv
         license df = pycsv.csvToDataFrame(sqlContext, license body, sep=",", columns=license header list)
         #license_df.cache()
```

```
In [44]: |license_df.printSchema()
         root
          |-- Application ID: string (nullable = true)
           |-- License Number: string (nullable = true)
           |-- License Type: string (nullable = true)
           -- Application or Renewal: string (nullable = true)
           |-- Business Name: string (nullable = true)
           |-- Status: string (nullable = true)
           |-- Start Date: timestamp (nullable = true)
           |-- End Date: timestamp (nullable = true)
           |-- Temp Op Letter Issued: timestamp (nullable = true)
           |-- Temp Op Letter Expiration: timestamp (nullable = true)
           |-- License Category: string (nullable = true)
           |-- Application Category: string (nullable = true)
           |-- Building Number: string (nullable = true)
           |-- Street: string (nullable = true)
           |-- Street 2: string (nullable = true)
           |-- Unit Type: string (nullable = true)
           |-- Unit: string (nullable = true)
           -- Description: string (nullable = true)
           |-- City: string (nullable = true)
           |-- State: string (nullable = true)
           |-- Zip: string (nullable = true)
           |-- Contact Phone: string (nullable = true)
           |-- Longitude: double (nullable = true)
           |-- Latitude: double (nullable = true)
          |-- Active Vehicles: string (nullable = true)
```

```
In [45]: license_df.take(1)
```

Out[45]: [Row(Application ID=u'10447-2016-RGEV', License Number=u'2004323-DCA', License Type=u'Individual', Applicati
 on or Renewal=u'Renewal', Business Name=u'HONG BO LIANG', Status=u'Issued', Start Date=datetime.datetime(201
 6, 8, 8, 0, 0), End Date=datetime.datetime(2016, 8, 8, 0, 0), Temp Op Letter Issued=None, Temp Op Letter Exp
 iration=None, License Category=u'General Vendor', Application Category=u'Special', Building Number=u'60', St
 reet=u'ROFF ST', Street 2=None, Unit Type=None, Unit=None, Description=None, City=u'STATEN ISLAND', State=
 u'NY', Zip=u'10304', Contact Phone=u'6462807901', Longitude=None, Latitude=None, Active Vehicles=None)]

```
In [46]: license_df.count()
```

Out[46]: 3539

In [21]: !pip install --user seaborn

> Requirement already satisfied (use --upgrade to upgrade): seaborn in /gpfs/global fs01/sym shared/YPProdSpar k/user/saa0-89a6bc0b359e28-b159885f0f89/.local/lib/python2.7/site-packages

In [47]: | %matplotlib inline

import matplotlib.pyplot as plt

matplotlib.patches allows us create colored patches, we can use for legends in plots import matplotlib.patches as mpatches

seaborn also builds on matplotlib and adds graphical features and new plot types import seaborn as sns import pandas as pd

In [48]: license_pd = license_df[['Application ID', 'License Number', 'License Type', 'Application or Renewal', 'Business Name', 'Status', 'Start Date', 'End Date', 'License Category', 'Application Category', 'Building Number', 'Street','City','State','Zip','Contact Phone','Longitude','Latitude', 'Active Vehicles']].toPandas()

In [49]: license_pd.head(2)

Out[49]:

		Application ID	License Number	License Type	Application or Renewal	Business Name	Status	Start Date	End Date	License Category	Application Category	Building Number	Street
•	ומ	10447- 2016-RGEV	2004323- DCA	Individual	Renewal	HONG BO LIANG	Issued			General Vendor	Special	60	ROFF ST
,	1 I	10033- 2015-RDPD	1438257- DCA	Business	Renewal	ALL SOUTH- SHORE MEDICAL SUPPLY INC.	Issued			Dealer In Products	Basic	221	MERRICK RD

In [50]: license_pd.tail(5)

Out[50]:

\vdash	טון	Nullibel	Type	OI REIIEWAI	INATHE		Dale	Dale	Calegory	Category	NUITIDE
	Application ID	License Number	License Type	Application or Renewal	Business Name	Status	Start Date	End Date	License Category	Application Category	Buildir Numbe
3534	14970- 2015-RHIC	1234557- DCA	Business	Renewal	BHALLI, MOHAMMED	Issued	2015- 04-07	2015- 04-08	Home Improvement Contractor	Special	1927
3535	10410- 2015-RHIC	1474094- DCA	Business	Renewal	MIHHEIKIN REMODELING LLC	Issued		2015- 04-08	Home Improvement Contractor	Special	213
3536	14794- 2015-ACRD	2030472- 2-DCA	Business	Application	SAMMY DELI CORP.	Issued	2015- 11-16	2015- 11-17	Cigarette Retail Dealer	Basic	120
3537	10482- 2016-RGEV	1181237- DCA	Individual	Renewal	WILLIAM H SMALLWOOD	Issued	2016- 08-09	2016- 08-09	General Vendor	Special	417
3538	10194- 2015-RHIC	1469724- DCA	Business	Renewal	SM CONTRACTING NY INC.	Denied	2015- 07-29	2015- 07-29	Home Improvement Contractor	Special	993

In [51]: license_pagitudeibekatitude

Out[51]:

	Longitude	Latitude
count	1436.000000	1436.000000
mean	-73.929352	40.724674
std	0.085970	0.082434
min	-74.253761	40.502660
25%	-73.984116	40.670039
50%	-73.932102	40.728010
75%	-73.876380	40.774988
max	-73.707479	40.907194

In [52]: import requests, StringIO, pandas as pd, json, re
import matplotlib as plt
%matplotlib inline

d = license_pd['License Type'].value_counts()

print d

Business 1773 Individual 1766

Name: License Type, dtype: int64

```
In [53]: %matplotlib inline
          labels = d.keys()
          i = 0
          sizes = []
          while i < len(d):</pre>
              sizes.append(d.get(labels[i]))
              i += 1
          colors = ['yellowgreen', 'mediumpurple']
          plt.pyplot.pie(sizes, # data
labels=labels, # slice labels
colors=colors, # array of colours
                  autopct='%1.1f%%', # print the values inside the wedges
                  shadow=True, # enable shadow
                   startangle=0
                                       # starting angle
          plt.pyplot.axis('equal')
          plt.pyplot.title('Percentage of license granted\n Business vs Individual\n\n')
          plt.pyplot.show()
```

Percentage of license granted Business vs Individual


```
In [55]: d = license_pd['Status'].value_counts()
    valList = []
    for val in d.keys():
        valList.append(d[val])
    plt.pyplot.bar(range(len(d)), valList, align='center')
    plt.pyplot.xticks(range(len(d)), d.keys())
    plt.pyplot.grid(True)
    plt.pyplot.xlabel('Status')
    plt.pyplot.ylabel('number of Licence')
    plt.pyplot.title('Number of Licence Vs Licence Status\n')
    plt.pyplot.show()
```

Number of Licence Vs Licence Status

66]: license_pd['	State'].value_co	unts()		
56]: NY	3310			
- NJ	115			
PA	22			
СТ	10			
TX	9			
VA	6			
CA	5			
DE	5			
ОН	5			
FL	4			
NC	4			
MA	2			
CO	2			
MD	2			
NH	2			
IL	2			
MI	2			
MO	2			
PHILIPPINES	1			
OK	1			
Cheshire	1			
GA	1			
AZ	1			
UT	1			
IN	1			
NE	1			
SURREY	1			
KS	1			
SC	1			
KY	1			
LONDON	1			
WA	1			
Name: State,	dtype: int64			

```
In [60]: %matplotlib inline
          import colorsys
          df = license pd['License Category'].value counts()
          others=0
         list ={}
         for val in df.keys():
              if df[val] < 100:</pre>
                 others = others + df[val]
              else:
                 list[val] = df[val]
         list['others'] = others
         labels = list.keys()
          i = 0
         values = []
          while i < len(list):</pre>
             values.append(list.get(labels[i]))
              i= i+1
          explode = []
          for k in labels:
              explode.append(0.05)
         HSV tuples = [(x*1.0/i, 1, 1)  for x in range(i)]
          RGB tuples = map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples)
          patches, texts = plt.pyplot.pie(values,colors= RGB_tuples, explode=explode, startangle=90, radius=1.2)
          plt.pyplot.legend(patches, labels, loc='best', bbox_to_anchor=(-0.1, 1.),fontsize=12)
          plt.pyplot.axis('equal')
          plt.pyplot.title('Licence issued in different category\n')
          plt.pyplot.show()
```

Licence issued in different category

In [61]: #Application Status Distribution by Group

df1 = license_pd[['Application or Renewal','Status','State']]
counts = df1.groupby(['Application or Renewal','Status']).size();
counts

Out[61]: Application or Renewal Status

Application	Denied	120
	Issued	1605
	Pending	20
	Withdrawn	9
Renewal	Denied	39
	Issued	1726
	Pending	20
dtype: int64		

```
In [64]: import seaborn as sns
         import matplotlib as plt
         %matplotlib inline
         #adjust settings
         sns.set_style("white")
         plt.pyplot.figure(figsize=(15,10))
         #create scatterplots
         plt.pyplot.scatter(license_pd.Longitude, license_pd.Latitude, alpha=0.05, s=4, color='black')
         #adjust more settings
         plt.pyplot.title('Latitute and Longitude of Applicants Business Address\n\n', size=25)
         plt.pyplot.xlim((-75,-72))
         plt.pyplot.ylim((40.4,41))
         plt.pyplot.xlabel('Longitude', size=20)
         plt.pyplot.ylabel('Latitude',size=20)
         plt.pyplot.show()
```

Latitute and Longitude of Applicants Business Address

In []: