Siddhartha Chandra

http://cvn.ecp.fr/personnel/siddhartha/

A214, Batiment Annexe Dumas, Centrale-Supélec Paris Grande Voie des Vignes, Chatenay Malabry 92290 France $robinch and ra 19@gmail.com\\+33-(0)650727678$

Education

2014-today	PhD in Machine Vision	
	INRIA Galen & Centrale-Supélec Paris	
2007 – 2013	Bachelor of Technology (Honours) $+$ M.S. by Research	
	IIIT Hyderabad. CGPA: 9.3/10	
2006 – 2007	AIEEE All India Rank 2532 (99.64 percentile)	
	IIT All India Rank 3879 (99.14 percentile)	
2004 – 2006	${f ISC} \; {f XII}^{th} \; {f Board}$	
	Overall Percentage: 94.0% St. Joseph's College, Allahabad	
2004	${f ICSE} \; {f X}^{th} \; {f Board}$	
	Overall Percentage: 95.4% St. Joseph's College, Allahabad	

Research Positions

2014-today	PhD Student, INRIA Galen & Centrale-Supélec Paris
	Research Advisor: Prof. Iasonas Kokkinos
2009 – 2013	Research Assistant, Center for Visual Information Technology, IIIT Hyderabad
2010-2011	Research student visitor, Visual Geometry Group, University of Oxford

Research Activities, Interests

 \star Deep Learning \star Structured Prediction \star Recurrent Networks

Publications

2016	Deep, Dense, and Low-Rank Gaussian Conditional Random Fields. Siddhartha
	Chandra, Iasonas Kokkinos. ArXiV Report
2016	Fast, Exact and Multi-Scale Inference for Semantic Image Segmentation with
	Deep Gaussian CRFs. Siddhartha Chandra, Iasonas Kokkinos. ECCV, Netherlands
2016	Human Joint Angle Estimation and Gesture Recognition for Assistive Robotic
	Vision. Alp Guler, Siddhartha Chandra, Iasonas Kokkinos et.al. Oral, ECCV Workshop
2015	Accurate Human-Limb Segmentation in RGB-D images for Intelligent Mobility
	Assistance Robots. Siddhartha Chandra, S. Tsogkas, I. Kokkinos. Oral, ICCV Workshop
2015	Surface Based Object Detection in RGBD Images. Siddhartha Chandra, Grigoris
	Chrysos, Iasonas Kokkinos. Oral Presentation, BMVC, Wales
2013	Partial Least Squares Kernel for Computing Similarities between Video Se-
	quences. Siddhartha Chandra, C.V. Jawahar. Oral Presentation, ICPR, Japan
2013	Sparse Discriminative Fisher Vectors in Visual Classification. Vinay Garg, Sid-
	dhartha Chandra, C.V. Jawahar. ICVGIP, India
2012	Learning Non-Linear Supspaces using K-RBMs. Siddhartha Chandra, Shailesh Ku-
	mar, C.V. Jawahar. CVPR, USA
2012	Learning Hierarchical Bag of Words using Naive Bayes Clustering. Siddhartha
	Chandra, Shailesh Kumar, C.V. Jawahar. ACCV, Korea

Relevant Research Projects

Deep Learning

Multi-Scale Inference for Dense-Labeling Tasks with Deep Gaussian CRF

Learning multi-scale pairwise interactions via Gaussian-CRFs for a variety of dense-labeling and regression tasks in an end-to-end deep learning architecture.

Human Pose ROS	Real-Time Human Joint Angle Estimation (part of successfully concluded EU Project) Research for MOBOT (EU Project): deep learning pipeline implemented for real-time performance on the Robotics Operating System.
Deep Learning	Facial Landmark Localization using Deep Structured Prediction End-to-end deep DPMs for face detection and landmark localization.
Deep Learning	LSTMs for semantic segmentation (Ongoing) Training conditional LSTMs for semantic segmentation.
Deep Learning	Human part segmentation in RGB-D Images Learning to parse humans in RGB-D images from diverse data using deep networks.
Pictorial Structures	Surface based Object Detection for RGB-D Images Emploing 3-D models for better initializing a mixture of Deformable Part Models.
3-D Modelling	3-D Modelling and Description of 3-D surfaces Modelling Feature Extraction for Point Correspondences in 3-D meshes
$\begin{array}{c} {\rm Detection} \\ {\rm Tracking} \\ {\rm Recognition} \end{array}$	Detecting, Tracking and Recognizing Humans in Hollywood Movies Deformable parts based model to detect human upper bodies in video frames, tracking, and recognition based on colour features.

Relevant Programming Projects

- * Efficient Implementation of the Conjugate Gradients Method for sparse, dense systems on the GPU in Caffe using cudablas, and cudasparse libraries.
- * Caffe Implementation for end-to-end training of Gaussian CRFs.
- \star Caffe Implementation for end-to-end training of conditional Spatial-LSTMs.
- \star Real-Time Human-Pose Estimation framework using Caffe and ROS.

Relevant Courses Taken

Research	Machine Learning, Computer Vision, Pattern Recognition, Digital Image Processing, Artifi-
	cial Intelligence, Computer Graphics, Speech Systems
Other	Data Structures, Algorithms, Theory of Computation, Operating Systems, Computer Orga-
	nization, Software Engineering, Database Management, Compilers, Computer Networks

Other Positions

- * Working as System Administrator for CVN, Centrale-Supélec Paris. Setting up GPU servers.
- * Worked as **System Administrator** for CVIT, IIIT Hyderabad. Familiar with Sun-Grid Engine, among other Linux Administration tools.
- * Worked as a **Teaching Assistant** for the following courses at IIIT Hyderabad through the $3^{rd} 5^{th}$ year: Computer Vision (1 semester), C Programming (2 semesters), Algorithms (1 semester), Information Technology (2 semesters).

Skill Set

Programming	C, C++, Python, Bash, MATLAB
${\bf Frameworks}$	Caffe, ROS, Eigen, CUDA, SPAMS
Server Side	ModPython, PHP