

Computational Neuroscience Laboratory

Machine Learning II

Autumn 2023

Session 6 – 10/12/2023

Recap of previous ML session

Gradient descent and neural networks

Feature selection

Performance Metrics

Hypothesis testing of ML algorithms

Projects

Classification: A core task

(assume given set of discrete labels) {AD, MCI, PD, ASD, ...}

Alzheimer's disease

The Problem: Semantic Gap

What the computer sees

An image is just a big grid of numbers between [0, 255]:

e.g. 800 x 600 x 3 (3 channels RGB)

Different Challenges

- 3D Volumetric data / 4D Volume+Time / ...
- Scanner and protocol difference
- Intrasubject variabilities of brain structure and function
- Brain disorders/diseases have different pathologies and development patterns
- Data imperfection (motion, blur, missing data, ...)

Linear Classification

Parametric Approach

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Example with an image with 4 pixels, and 3 classes (AD/MCI/NC)

Deep Learning = Hierarchical Compositionality

"Shallow" vs. Deep Learning

"Shallow" models

Deep models

Neural Network

Deep means many hidden layers

Neural Network

Neural Network

$$y = f(x)$$

Using parallel computing techniques to speed up matrix operation

Cost

Given a set of network parameters, each example has a cost value.

Cost can be Euclidean distance or cross entropy of the network output and target

Training

Total Cost

For all training data ...

Total Cost:

$$C(\theta) = \sum_{r=1}^{R} L^{r}(\theta)$$

How bad the network parameters θ is on this task

Find the network parameters θ^* that minimize this value

Gradient Descent

Assume there are only two parameters w₁ and w₂ in a network.

$$\theta = \{w_1, w_2\}$$

Randomly pick a starting point θ^0

Compute the negative gradient at $\theta^{\,0}$

$$-\nabla C(\theta^0)$$

Times the learning rate η

$$-\eta \nabla C(\theta^0)$$

Gradient Descent

Reading assignment

- Convolutional Neural Networks (CNN)
 - https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
 - https://www.kaggle.com/code/shivamb/3d-convolutions-understanding-use-case

Why Feature Selection

- In machine learning, one of the key challenges is to select the right set of features as inputs to a model.
- The features that are used to train a model will have a huge influence on the achieved performance.
- Irrelevant or partially relevant features can negatively impact the performance of a model.

What is Feature Selection?

 Feature selection is the process of selecting a subset of relevant features used to train a machine learning model.

Why is feature selection important?

- Enhanced generalization by reducing overfitting
- Reduces training times
- Increase model interpretability
- Variable redundancy
- Reduces prediction time

- Filter Methods (fast, no/min feature interaction)
 - In this method, the selection of features is done independently of a machine learning algorithm. This method relies on the characteristics of the data to filter features based on a given metric.
 - Examples:
 - Chi-square test
 - Pearson Correlation
 - Mutual Information
 - Minimum Redundancy-Maximum Relevance (mRMR)

Minimum Redundancy-Maximum Relevance

Objective Function:

$$Rel = \sum_{x_i \in X} I(x_i; C)$$

$$Red = \sum_{\substack{x_i, x_j \in X, \\ and \ i \neq j}} I(x_i; x_j)$$

- *X* is the selected feature subset
- x_i , x_j : feature in X
- C is the class labels
- Rel: relevance between X and c
 - Red: redundancy within X

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$
$$= \sum_{x \in X, y \in Y} p(x,y) log_2 \frac{p(x,y)}{p(x)p(y)}$$

Minimum Redundancy-Maximum Relevance

 S is the feature subset, Ω is the pool of all candidate features, the minimum redundancy condition is:

$$\min_{S \subset \Omega} \frac{1}{|S|^2} \sum_{i,j \in S} I(x_i, x_j)$$

where |S| is the number of features in S.

• For classes $c=(c_i,...,c_k)$ the maximum relevance condition maximizes the total relevance of all features in S:

$$\max_{S \subset \Omega} \frac{1}{|S|} \sum_{i \in S} I(x_i, c)$$

H.C. Peng, F.H. Long, and C. Ding, Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy, *IEEE Trans. Pattern Analysis and Machine Intelligence*, vol. 27, no. 8, 2005, pp. 1226–1238.

Minimum Redundancy-Maximum Relevance

The mRMR feature set optimizes these two conditions simultaneously, either in quotient form:

$$\max_{S \subset \Omega} \left\{ \frac{\sum_{i} I(x_{i}, c)}{\frac{1}{|S|} \sum_{i,j \in S} I(x_{i}, x_{j})} \right\}$$

or in difference form:

$$\max_{S \subset \Omega} \left\{ \sum_{i} I(x_i, c) - \frac{1}{|S|} \sum_{i, j \in S} I(x_i, x_j) \right\}$$

H.C. Peng, F.H. Long, and C. Ding, Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy, *IEEE Trans. Pattern Analysis and Machine Intelligence*, vol. 27, no. 8, 2005, pp. 1226–1238.

- Filter Methods (fast, no/min feature interaction)
- Wrapper Methods (slow, more accurate, considers feature interaction)
 - In this method, feature selection is based on a search criteria where a model is initially trained on a subset of features. Based on the inferences drawn from the previous model, we decide to either add or remove features.
 - Examples:
 - Recursive Feature Elimination (greedy)

Selecting the best subset

- Filter Methods (fast, no/min feature interaction)
- Wrapper Methods (slow, more accurate, considers feature interaction)
- Embedded Methods (more reliable feature estimates, reduce overfitting, robust to outliers, higher computational costs)
 - Embedded methods use the qualities of both the filter and wrapper methods.
 With this method, feature selection is embedded within the ML algorithm.
 - LASSO regularization: Lasso uses L1 regularization/penalty. It shrinks some parameters or feature coefficients to zero. It uses logistic regression to train a model with L1 penalty term to evaluate the coefficients of different variables and remove those variables with zero coefficients.

$$\sum_{i=1}^n (Y_i - \sum_{j=1}^p X_{ij}eta_j)^2 + \lambda \sum_{j=1}^p |eta_j|$$

Set of all features

Generate the subset performance

Selecting the best subset

- Filter Methods (fast, no/min feature interaction)
- Wrapper Methods (slow, more accurate, considers feature interaction)
- Embedded Methods (more reliable feature estimates, reduce overfitting, robust to outliers, higher computational costs)
 - Lasso regularization.
 - Tree based random forest.
 - XGBoost
 - LightGBM
 - CatBoost...

Reading assignment 5

- An Introduction to Variable and Feature Selection, Journal of Machine Learning Research 2003
 - https://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf
- Make sure you understand
 - mRMR
 - LASSO feature selection

Which Classifier is better?

Almost as many answers as there are performance measures! (e.g., UCI Breast Cancer)

Algo	Acc	RMSE	TPR	FPR	Prec	Rec	F	AUC	Info S
NB	71.7	.4534	.44	.16	.53	.44	.48	.7	48.11
C4.5	75.5	.4324	.27	.04	.74	.27	.4	.59	34.28
3NN	72.4	.5101	.32	.1	.56	.32	.41	.63	43.37
Ripp	71	.4494	.37	.14	.52	.37	.43	.6	22.34
SVM	69.6	.5515	.33	.15	.48	.33	.39	.59	54.89
Bagg	67.8	.4518	.17	.1	.4	.17	.23	.63	11.30
Boost	70.3	.4329	.42	.18	.5	.42	.46	.7	34.48
RanF	69.23	.47	.33	.15	.48	.33	.39	.63	20.78

This and following slides courtesy of Nathalie Japkowicz, University of Ottawa

Which Classifier is better? Ranking the results

Algo	Acc	RMSE	TPR	FPR	Prec	Rec	F	AUC	Info S
NB	3	5	1	7	3	1	1	1	2
C4.5	1	1	7	1	1	7	5	7	5
3NN	2	7	6	2	2	6	4	3	3
Ripp	4	3	3	4	4	3	3	6	6
SVM	6	8	4	5	5	4	6	7	1
Bagg	8	4	8	2	8	8	8	3	8
Boost	5	2	2	8	7	2	2	1	4
RanF	7	6	4	5	5	4	7	3	7

A Few Confusion Matrix-Based Performance

Measures

True class → Hypothesized class V	Pos	Neg
Yes	TP	FP
No	FN	TN
	P=TP+FN	N=FP+TN

- Accuracy = (TP+TN)/(P+N)
- **Precision** = TP/(TP+FP)
- Recall/TP rate = TP/P
- **FP Rate** = FP/N
- **ROC Analysis** moves the threshold between the positive and negative class from a small FP rate to a large one. It plots the value of the Recall against that of the FP Rate at each FP Rate considered.

A Confusion Matrix

Issues with Accuracy

True class →	Pos	Neg
Yes	200	100
No	300	400
	P=500	N=500

True class →	Pos	Neg
Yes	400	300
No	100	200
	P=500	N=500

- Both classifiers obtain 60% accuracy
- They exhibit very different behaviours:
 - On the left: weak positive recognition rate/strong negative recognition rate
 - On the right: strong positive recognition rate/weak negative recognition rate

Issues with Precision/Recall

True class →	Pos	Neg
Yes	200	100
No	300	400
	P=500	N=500

True class →	Pos	Neg
Yes	200	100
No	300	0
	P=500	N=100

- Both classifiers obtain the same precision and recall values of 66.7% and 40% (Note: the data sets are different)
- They exhibit very different behaviors:
 - Same positive recognition rate
 - Extremely different negative recognition rate: strong on the left / nil on the right
- Note: Accuracy has no problem catching this!

Is the AUC the answer?

- Many researchers have now adopted the AUC (the area under the ROC Curve).
- The principal advantage of the AUC is that it is more robust than Accuracy in class imbalanced situations.
- Indeed, given a 95% imbalance (in favour of the negative class, say), the accuracy of the default classifier that issues "negative" all the time will be 95%, whereas a more interesting classifier that actually deals with the issue, is likely to obtain a worse score.
- The AUC takes the class distribution into consideration.

RMSE

The Root-Mean Squared Error (RMSE) is usually used for regression, but can also be used with probabilistic classifiers. The formula for the RMSE is:

RMSE(f) = sqrt(
$$1/m \sum_{i=1}^{m} (f(x_i) - y_i)^2)$$
)

where m is the number of test examples, $f(x_i)$, the classifier's probabilistic output on x_i and y_i the actual label.

RMSE(f) RMSE(f)

ID	f(x _i)	y i	$(f(x_i) - y_i)^2$	
1	.95	1	.0025	DMCE(f) = 00rt/1/5 *
2	.6	0	.36	RMSE(f) = sqrt(1/5 *
3	.8	1	.04	= sqrt(0.975
4	.75	0	.5625	
5	.9	1	.01 Mach	ine Learning for Neuroimaging - Autumn 2023

RMSE(f) =
$$sqrt(1/5 * (.0025+.36+.04+.5625+.01))$$

= $sqrt(0.975/5) = 0.4416$

Performance Metric for Regression Tasks

- Error
 - RMSE
 - MAE

- Correlation
 - Squared Correlation (R2)

Question

In a segmentation task, what are the most popular performance

measures?

k-fold Cross-Validation

In Cross-Validation, the data set is divided into k folds and at each iteration, a different fold is reserved for testing and all the others, used for training the classifiers.

Projects

- Start discussing your project ideas with us
- Email us
- Office hours and meetings?

- Human Connectome Project (HCP)
- Alzheimer's Disease Neuroimaging Initiative:
 ADNI
- Parkinson's Progression Markers Initiative (PPMI)
- OASIS Brains Open Access Series of Imaging Studies
- ABIDE Autism Brain Imaging Data Exchange International Neuroimaging Data-sharing Initiative
- Multimodal Brain Tumor Segmentation Challenge 2020 (BraTS)
- Dataset of your interest

Project Proposal

A 2-page document (including references) with the following sections

- 1. Problem statement (clear input/output)
- 2. Motivation (why the problem is important)
- 3. Prior work
 - a) Key challenges of the problem
 - b) Challenges taken care of by the prior work, what is remained
- 4. Contribution (if any)
- 5. Technical Details
- 6. Datasets and Performance Metrics
- 7. Experiments Plan
- 8. Team Members