1运算及其性质

【定义1.1】 (运算) 对于集合 A, 称函数 $f:A^n\to A$ 为集合 A 上的一个 n 元运算。

【定义1.2】 (函数封闭) 对于函数 $f:A^n\to B$, 如果 $B\subseteq A$, 称 f 在 A 上封闭。

运算的表示: ①算符,包括*,·,*,⊕,⊗,○等等;②运算表,表示**有穷集**上的一元和二元运算。

运算的性质

【定义1.3】 (交换律) 已知 $\langle A, * \rangle$, 若 $\forall x, y \in A$, 有 x * y = y * x, 称 * 在 A 上可交换。

【定义1.4】 (结合律) 已知 $\langle A, * \rangle$, 若 $\forall x, y, z \in A$, 有 x * (y * z) = (x * y) * z, 称 * 在 A 上可结合。

【结论】(广义结合律)对于可结合的二元运算*,有

$$a_1 * a_2 * \dots * a_n = (a_1 * a_2 * \dots * a_i) * (a_{i+1} * a_{i+2} * \dots * a_i) * (a_{i+1} * a_{i+2} * \dots * a_n)$$

即只要元素相对顺序不变,可以随意添加括号。

进一步地, 若*含具有可交换性, 那么可以随意交换位置。

【定义1.5】 (幂等律) 已知 $\langle A,*\rangle$,若 $\forall x\in A$,有 x*x=x,则称 * 在 A 上满足幂等律。

【定义1.6】 (分配律) 已知 $\langle A, *, \oplus \rangle$, 若 $\forall x, y, z \in A$, 有 $x * (y \oplus z) = (x * y) \oplus (x * z)$ (左分配律) 和 $(y \oplus z) * x = (y * x) \oplus (z * x)$ (右分配律) ,则称运算 * 对于运算 \oplus 是可分配的。

【定义1.7】(吸收律)已知 $\langle A,*,\oplus \rangle$,运算 * 与 \oplus 均为可交换的,若 $\forall x,y \in A$,有 $x*(x\oplus y)=x$ 且 $x\oplus (x*y)=x$,则称运算 * 和 \oplus 满足吸收律。例:幂集 P(S) 上的运算 \cap , \cup 满足吸收律。

单位元相关

【定义1.8】 (单位元) 已知 $\langle A,* \rangle$, $e_l,e_r,e\in A$ 。若有 $\forall x,e_l*x=x$, 则称 e_l 为 * 的左单位元;若有 $\forall x,x*e_r=x$, 则称 e_r 为 * 的右单位元。若 e 既是左单位元,又是右单位元,称 e 为 * 的单位元,即 $\forall x,x*e=e*x=x$ 。

【定理1.1】(左右单位元相等)设 * 是在 A 上的二元运算,具有左单位元 e_l ,右单位元 e_r ,则 $e_l=e_r=e_{\rm s}$

证明: $e_l = e_l * e_r = e_r$, 证毕。

【推论1.1】(单位元的唯一性)二元运算的单位元若存在则唯一。

证明:反证,设有单位元e,e'且 $e \neq e'$ 。又e = e * e' = e',矛盾。原命题得证。

零元相关

【**定义1.9**】 (零元) 已知 $\langle A,* \rangle$, $\theta_l,\theta_r,\theta\in A$ 。若有 $\forall x,\theta_l*x=\theta_l$, 则称 θ_l 为 * 的左零元; 若有 $\forall x,x*\theta_r=\theta_r$, 则称 θ_r 为 * 的右零元。若 θ 既是左零元又是右零元,则称 θ 为 * 的零元,即 $\forall x,\theta*x=x*\theta=\theta$ 。

【定理1.2】 (左右零元相等) 设 * 是在 A 上的二元运算,具有左零元 θ_l ,右零元 θ_r ,则 $\theta_l = \theta_r = \theta$

【推论1.2】 (零元的唯一性) 二元运算的零元若存在则必唯一。

定理1.2和推论1.2的证明与定理1.1、推论1.1相似。

逆元相关

【**定义1.10**】(逆元)已知 $\langle A,*\rangle$,e为*单位元。若x*y=e,则对于*,x是y的左逆元,y是x的右逆元,若x*y=y*x=e,称x是y的逆元,记作 $x=y^{-1}$ 。存在逆元(左逆元,右逆元)的元素称为可逆的(左可逆的,右可逆的)。

【**定理1.3**】 (左右逆元相等) 对于可结合运算 *, 如果 x 有左逆元 y, 右逆元 z, 则 $y=z=x^{-1}$ 。

证明: z = e * z = (y * x) * z = y * (x * z) = y * e = y, 证毕。

【推论1.3】 (逆元唯一) 对于可结合运算*, 逆元若存在则必唯一。

证明: 若对 x 存在逆元 y, z, 则 z = e * z = (y * x) * z = y * (x * z) = y * e = y, 矛盾。原命题得证。

消去律

【定义1.11】 (消去律) 已知 $\langle A, * \rangle$, 若 $\forall x, y, z \in A$, 有

- 若x * y = x * z且 $x \neq \theta$,则y = z(左消去律);
- 若y*x=z*x且 $x\neq\theta$,则y=z(右消去律);

则称 * 满足消去律。

2 代数系统及同态

【定义2.1】 (代数系统) 设 A 为非空集合, Ω 为 A 上运算的集合, π $\langle A, \Omega \rangle$ 为一个代数系统。

- 当 $\Omega = \{f_1, f_2, \dots, f_n\}$ 有限时,代数系统也记为 $\langle A, f_1, f_2, \dots, f_n \rangle$ 。

代数系统还可以表示为 $\langle A, \Omega, c_1, c_2, \dots \rangle$,其中, c_1, c_2, \dots 为代数常数,如单位元等。

【定义2.2】(同类型的代数系统)如果两个代数系统运算个数相同,对应运算元数相同,且代数常数个数相同,则称他们为同类型代数系统。

【定义2.3】 (子代数系统) 设 $V = \langle S, f_1, f_2, \ldots, f_k \rangle$ 是代数系统,对于 $\emptyset \neq B \subseteq S$,如果 B 对于 f_1, f_2, \ldots, f_k 是封闭的,且 B 和 S 含有相同的代数常数,则称 $\langle B, f_1, f_2, \ldots, f_k \rangle$ 是 V 的子代数系统,简称子代数。

- 最大的子代数是 V 本身;最小的子代数是由 V 中所有代数常数构成的集合 B' 进行延拓使其满足封闭性所得到的集合 B 构成的代数系统 $\langle B, f_1, f_2, \ldots, f_k \rangle$ 。
- 最大的子代数和最小的子代数统称为平凡的子代数。
- 若 B 是 S 的真子集,则 B 构成的子代数称为 V 的真子代数。

【定义2.4】 (积代数) 设 $V_1=\langle A,\circ\rangle$, $V_2=\langle B,*\rangle$ 是同类型的代数系统 , \circ 和 * 为二元运算 , 在集合 $A\times B$ 上如下定义二元运算 \oplus :

$$\forall (a_1,b_1), (a_2,b_2) \in A \times B, \quad (a_1,b_1) \oplus (a_2,b_2) = (a_1 \circ a_2, b_1 * b_2)$$

则称 $V = \langle A \times B, \oplus \rangle$ 为 V_1 和 V_2 的积代数,记作 $V_1 \times V_2$,此时也称 V_1, V_2 是 V 的因子代数。

【定理2.1】设 $V_1=\langle A_1,\circ\rangle\,,V_2=\langle B,*\rangle$ 是同类型的代数系统, \circ 和 * 为二元运算, $V=\langle A\times B,\oplus\rangle$ 为 V_1 和 V_2 的积代数,则

- 如果○和*是可交换(可结合、幂等)的,则⊕也是可交换(可结合、幂等)的。
- 如果 e_1, e_2 (θ_1, θ_2) 分别为 \circ 和 * 的单位元(零元),则 $\langle e_1, e_2 \rangle$ $(\langle \theta_1, \theta_2 \rangle)$ 也是 \oplus 的单位元(零元)。
- 如果 x 和 y 分别为 \circ 和 * 的可逆元素,则 $\langle x,y \rangle$ 也是 \oplus 运算的可逆元素,其逆为 $\langle x^{-1},y^{-1} \rangle$ 。

证明: 利用定义容易得到。

【定义2.5】 (同态映射) 设 $V_1 = \langle A, \circ \rangle$, $V_2 = \langle B, * \rangle$ 是同类型的代数系统, $f: A \to B$, 对 $\forall x, y \in A$ 有 $f(x \circ y) = f(x) * f(y)$, 则称 $f \in V_1$ 到 V_2 的同态映射。

- f 如果是单射, 称为单同态;
- f 如果是满射,称为满同态,此时称 V_2 是 V_1 的同态像,记作 $V_1 \sim V_2$ 或 $A \sim B$;
- f 如果是双射, 称为同构, 也称 V_1 同构于 V_2 , 记作 $V_1 \cong V_2$ 或 $A \cong B$;
- 如果 $V_1 = V_2$ 称为自同态 (注意是 $V_1 = V_2$, 也即 A = B 且运算相同)。

3 半群

【**定义3.1**】 (半群) 一个代数系统 $\langle A, * \rangle$, 其中 A 为非空集合, * 是定义在集合 A 上的二元运算。如果 * 是封闭的,而且是可结合的,那么该代数系统被称为半群。

半群中不一定存在单位元,如〈Z₊,+〉。

【定理3.1】若 $\langle A,* \rangle$ 是一个半群,且 A 为有限集,那么 A 中必然存在等幂元,即 $\exists a \in A, a=a*a$.

证明:因为 A 是一个半群,任选 $a\in A$,则由于封闭性, $a^2=a*a\in A$, $a^3=a*a^2\in A$,……, $a^n\in A$ $(n\in\mathbb{N}_+)$ 。

又因为 A 为有限集,则必然存在 i < j,使得 $a^i = a^j$ 。设 k = j - i,则有 $a^j = a^k * a^i = a^i$,从而

$$\forall m > i, a^{k+m} = a^m$$

必定存在 $n \ge 1$ 使得 $kn \ge i$, 从而,

$$a^{kn} = a^{k+kn} = a^{k+(k+kn)} = \ldots = a^{nk+nk} = a^{nk} * a^{nk}$$

即存在等幂元。

【定义3.2】 (独异点) 若半群 $\langle A,* \rangle$ 中有单位元 e 存在,则称 $\langle A,* \rangle$ 是一个独异点(含幺半群)。也用三元组 $\langle A,*,e \rangle$ 表示。

【**定理3.2**】设 $\langle A, *, e \rangle$ 为一个含幺半群,运算 * 的运算表中的任意两行或两列均不相同。

证明:对于任意两行或两列,必然存在一个位置为和 e 进行运算,此时对 $a \neq b$,有 $a*e=a\neq b=b*e$, $e*a=a\neq b=e*b$,故不存在完全相同的两行或两列,得证。

4群、子群、群元素的阶

【**定义4.1**】 (群) 一个代数系统 $\langle G, * \rangle$, 其中 G 为非空集合,* 是定义在 G 上的二元运算。如果该代数系统是半群,且满足如下性质:

- 存在单位元 e;
- 每个元素均存在逆元,即 $\forall a \in G, \exists a^{-1}$ 。

则称 $\langle G, * \rangle$ 是一个群。也即群是所有元素都可逆的含幺半群。

【定义4.2】 (群的阶)设 $\langle G,*\rangle$ 为一个群,若G是有限集合,则称该群为有限群,集合G的大小称为该群的阶,记作|G|;如果G为无限集合,称该群为无限群。

【定理4.1】 (群的性质) 设 $\langle G,* \rangle$ 是群,则满足如下性质:

- 阶数大于 1 的群必不含有零元; (零元不存在逆元)
- $\forall a,b \in G$, 存在唯一的 $x \in G$, 使得 a * x = b; $(x = a^{-1} * b$, 且逆元唯一)
- $\forall a, b, c \in G$, 若 a * b = a * c, 则 b = c, 即群满足**消去律**; (两边同左乘 a^{-1})
- 其运算表中每一行(每一列)都是 G 元素的一个置换,且每个置换彼此不同;

证明:反证,若不是一个置换则存在 $b \neq c$ 但是有 a * b = a * c,根据消去律即可推得矛盾;置换彼此不同在【定理3.2】中已经证明。

• 除单位元 e 之外,不可能存在等幂元。

证明:反证,若存在 $a \neq e$ 且 a * a = a = a * e,根据消去律可以推得矛盾。

【定义4.3】 (群的等价定义1) 设 $\langle G,* \rangle$ 是一个半群,且存在左单位元 e,任一元素 $a \in G$,都有左逆元 a^{-1} 满足 $a^{-1}*a=e$,则 $\langle G,* \rangle$ 是一个群。(注:左、右单位元 / 逆元任选其一即可)

证明(等价定义1和原定义等价):

- 一方面,
 - $(1)\langle G,*\rangle$ 是一个半群, 封闭性和可结合性成立。
 - (2) 左单位元 e 同时是右单位元,进而根据【推论1.1】是单位元。

$$a * e = e * a * e = ((a^{-1})^{-1} * a^{-1}) * a * (a^{-1} * a)$$

$$\implies a * e = (a^{-1})^{-1} * (a^{-1} * a) * a^{-1} * a = ((a^{-1})^{-1} * a^{-1}) * a = a$$

(3) 左逆元 a^{-1} 同时是右逆元,进而根据【推论1.3】是逆元。

$$a*a^{-1} = e*a*a^{-1} = (a^{-1})^{-1}*a^{-1}*a*a^{-1} = (a^{-1})^{-1}*(a^{-1}*a)*a^{-1} = (a^{-1})^{-1}*a^{-1} = e$$

• 另一方面, 群显然满足此定义中的条件。

【推论4.1】群内元素的左逆元即为逆元;群的左单位元即为单位元。

【定义4.4】 (群的等价定义2) 设 $\langle G,* \rangle$ 是一个半群, $\forall a,b \in G$,若一元一次方程 a*x=b 和 y*a=b 在集合 G 中有解,则 $\langle G,* \rangle$ 是一个群。

证明(等价定义2和等价定义1等价):

• 一方面,根据等价定义1,只需要证明存在左单位元和左逆元即可。

任取 $a = b \in G$, 有 y * b = b 有解 y = e , 从而 eb = b;

又 $\forall a \in G, bx = a$ 有解 x = c,从而 e*a = e*(b*c) = (e*b)*c = b*c = a,即存在左单位元。

取 b = e,则 y * a = e,解得 $y = a^{-1}$ 为左逆元。

• 另一方面,根据【推论4.1】,左右逆元均存在且相等,因此上述两方程有解(作用逆元即可)。

【定义4.5】 (有限群的等价定义3) 设 $\langle G, * \rangle$ 为一个有限半群, $\forall a, b, c \in G$,若 a * b = a * c 有 b = c; 若 b * a = c * a 有 b = c,则 $\langle G, * \rangle$ 是一个群。

证明:设 $G = \{a_1, a_2, \ldots, a_n\}$ 。一方面,从运算表的角度,根据【定理4.1】其运算表每一行每一列均为一个置换,且不相同,因此 $\forall a, b, a*x = b$ 和 y*a = b必然有解。进而由【定义4.4】知是一个群;另一方面,从【定义4.2】除法,由【定理4.1】容易知道满足消去率。

无限群的反例: $\langle \mathbb{Z}_+, + \rangle$ 为半群, 且满足消去律。但是其不含有单位元, 不是群。

【引理4.1】子群 $\langle H, * \rangle$ 中的单位元即为原群 $\langle G, * \rangle$ 的单位元。

证明:设 e_H 为子群的单位元,e 为原群的单位元,则 e_H , $e \in G$ 。

$$e_H * e = e_H = e_H * e_H$$

在群 G 中应用消去律,有 $e = e_H$ 。证毕。

【定理4.2】 (群元素的性质) 设 $\langle G, * \rangle$ 是一个群, $\forall a, b \in G$, 有

• $(a*b)^{-1} = b^{-1}*a^{-1}$

证明: $(b^{-1}*a^{-1})*(a*b) = b^{-1}*(a^{-1}*a)*b = b^{-1}*b = e$,根据【推论4.1】即为逆元。

• $a^{m+n} = a^m * a^n$

• $(a^m)^n = a^{mn}$

【定义4.6】 (子群) 设 $\langle G,* \rangle$ 是一个群, $\emptyset \neq H \subseteq G$,如果 H 在 * 下也构成群,则 $\langle H,* \rangle$ 被称为 $\langle G,* \rangle$ 子群,简写为 $H \leq G$ 。

- ⟨G,*⟩,⟨{e},*⟩ 都是⟨G,*⟩ 的平凡子群。

【定理4.3】 (子群判定定理) 设 $\langle G,* \rangle$ 是一个群,集合 H 是 G 的非空子集。则 $\langle H,* \rangle$ 是 $\langle G,* \rangle$ 的子群等价于下列之一:

- 判定定理 1: 对于 H 中任意元素 a 和 b, 都有 $a*b^{-1} \in H$;
- 判定定理 2: 任意 $a,b \in H$, $a*b \in H$; 任意 $a \in H$, $a^{-1} \in H$ 。 (简写为 $H*H \subseteq H, H^{-1} \subseteq H$)
- 判定定理 2.5: 如果 H 是有限群,判定定理 2 只需要保留前半部分 $H*H\subseteq H$ 。

证明:注意,下面证明中基于G中已经含有单位元e,事实上,由【引理4.1】其即为H单位元。

- 先证明判定定理 1:
 - (1) 运算 * 满足可结合性;(2) 令 a=b,则有 $a*a^{-1}=e\in H$,原群单位元 e 在子群中,子群单位元存在;
 - (3) 令 a = e,则可知, $\forall b \in H, e * b^{-1} = b^{-1} \in H$,逆元存在;
 - $(4) \forall a, b \in H, a * (b^{-1})^{-1} = a * b \in H$, 满足封闭性。
- 再证明判定定理 2:
 - (1)运算*满足可结合性;(2)条件满足封闭性;(3)条件满足逆元存在;
 - (4) 令 $b = a^{-1}$,则 $a * b = a * a^{-1} = e \in H$,原群单位元 e 在子群中,子群单位元存在;
- 判定定理 2.5 的证明:
 - (1)运算*满足可结合性;(2)条件满足封闭性;

任取 $a \in H$,

- (3) 由封闭性 $a, a^2, a^3, \ldots, a^n, \ldots \in H$,因而必然存在 i < j, $a^i = a^j$,从而 $e = a^{-i} * a^i = a^{j-i}$,即 a^{j-i} 即为原群单位元,且一定在子群中;
- (4) $j-i\geq 1$,分类讨论。若 j-i=1,则 e=a,单位元的逆元即为其本身;若 j-i>1,则 $e=a^{j-i}=a^{j-i-1}*a$ 即可知逆元为 a^{j-i-1} 。

注:可能有很多不同类的元素,每类元素需要找出其的单位元,进而求出其逆元。

【定义4.7】 (子群的交、并、复合) 设 $\langle G,*\rangle$ 有子群 $\langle H_1,*\rangle$, $\langle H_2,*\rangle$, 则

- $\langle H_1 \cap H_2, * \rangle$ 称为子群的交,其是原群的子群。证明显然。
- $\langle H_1 \cup H_2, * \rangle$ 称为子群的并,其不一定是原群的子群。可以寻找两个集合的对称差部分。
- $\langle H_1H_2,*\rangle$ 称为子群的复合,其中 $H_1H_2=\{h_1*h_2\mid h_1\in H_1,h_2\in H_2\}$,其不一定是原群的子群。

【定义4.8】 (群中集合生成的子群)设 $\langle G,* \rangle$ 是一个群,集合 S是 G的非空子集。记 $\langle \cap_{S \subset H, \langle H,* \rangle < \langle G,* \rangle} H,* \rangle$ 是 S 所生成的子群,记为 $\langle (S),* \rangle$ 。

【推论4.2】由定义自然有, $S\subseteq (S)$, $\langle (S),* \rangle$ 是 $\langle G,* \rangle$ 的子群且 (S) 为包含了 S 的能够构成群的最小集合。

【定义4.9】 (群元素的阶) 设 $\langle G,* \rangle$ 是一个群,单位元为 e,任意元素 $a \in G$,定义集合 $S=\{n\in \mathbb{Z}^+: a^n=e\}$ 。

- $\exists S = \emptyset$, 则称 a 的阶为 ∞ , 记作 $|a| = \infty$, 并称 a 为无限元;
- $\exists S \neq \emptyset$, 则称 S 中的最小数 n 为 a 的阶, 记作 |a| = n, 并称 a 为 n 阶元。

【**定理4.4**】 (群元素阶的性质定理1) 设 $\langle G, * \rangle$ 是一个群,单位元为 e。对任意元素 $a \in G$,若 $|a| = k \in \mathbb{N}$,且若存在 $n \in \mathbb{N}$ 使得 $a^n = e$,则有 $k \mid n$ 。

证明: 反证。设n = qk + r,其中 $q \in \mathbb{N}, 0 < r < k$,则

$$e = a^n = a^{qk+r} = (a^k)^q * a^r = e^q * a^r = a^r$$

故 |a| = r < k 与 |a| = k 矛盾。故原命题成立,k|n。

【定理4.5】 (群元素阶的性质定理2) 设 $\langle G,* \rangle$ 是一个群,单位元为 e。对任意元素 $a \in G$,若 $|a|=n\in\mathbb{N}$,且对任意的 $k\in\mathbb{Z}^+$, a^k 的阶为 $\frac{n}{(n,k)}$ 。

证明: 设 $|a^k|=m$,则 $a^{km}=e$,由【定理4.4】有 $n\mid km$,故 $\frac{n}{(n,k)}\mid \frac{k}{(n,k)}m$,由 $\left(\frac{n}{(n,k)},\frac{k}{(n,k)}\right)=1$ 则 $\frac{n}{(n,k)}\mid m$ 。

另一方面, $(a^k)^{rac{n}{(k,n)}}=(a^n)^{rac{k}{(n,k)}}=e$,由【定理4.4】有 $m\mid rac{n}{(n,k)}$ 。

综上, $|a^k| = m = \frac{n}{(n,k)}$.

5 Abelian 群和循环群

【定义5.1】 (Abelian群) 满足交换律的群被称为 Abelian 群。

【定义5.2】 (元素的幂次) 对于群 $\langle G, * \rangle$, 元素 a 的 i 次整数幂完整定义为:

$$a_0 = e$$
, $a^i = a * a * ... * a$, $a^{-i} = a^{-1} * a^{-1} * ... * a^{-1}$

其中, e 也可记为 1。

【定义5.3】 (循环群) 设 $\langle G, * \rangle$ 为群,若 G 中存在元素 a,使得 G 的任意元素都由 a 的幂次组成,则称该群为循环群,有时也记作 $\langle (a), * \rangle$,a 称为群 $\langle G, * \rangle$ 的生成元。

- 循环群一定是 Abelian 群; 是最简单的群, 仅由一个元素生成;
- 分为有限群换群和无限循环群。

【**定理5.1**】 (循环群的形状) 若 $\langle G, * \rangle$ 为一个循环群,则其必有如下形状:

- $G=\{\ldots,a^{-n},\ldots,a^{-2},a^{-1},e=a^0,a,a,a^2,\ldots,a^n,\ldots\}=\{a^n\mid n\in\mathbb{N}\}$ 为无限循环群,群的阶为 ∞ ;
- $G = \{e = a^0, a^1, a^2, \dots, a^{n-1}\}$, 其中 $a^n = e$, 而且对于 $0 \le s, t < n$, $a^s = a^t \iff s = t$ 。 则其为有限循环群,群的阶为 n 。

【推论5.1】(循环群的阶和生成元的阶)循环群的阶和生成元的阶相等。

证明:分类讨论为有限循环群或无限循环群,利用【定理5.2】即证。

【定理5.2】设 $\langle G,* \rangle$ 为阶为 n 的有限循环群, $a \in G$ 是生成元。对任意整数 m,若有 $a^m = e$,则必有 n|m。

证明: 反证。设m = qn + r,其中 $q \in \mathbb{N}, 0 < r < n$ 。

$$e = a^m = a^{qn+r} = a^{qn} * a^r = (a^n)^q * a^r = e * a^r = a^r$$

从而 $a^r = a^0 = e$,矛盾。故原命题成立,即 $n \mid m$ 。

【**定理5.3**】设 $\langle G, * \rangle$ 为无限循环群,则若 $|G| = \infty$,则 G 中仅有两个生成元 a, a^{-1} 。

证明: 若 $|G| = \infty$ 且 a 为生成元,则任意 $b = a^k \in G$,有 $b = (a^{-1})^{-i}$,从而 a^{-1} 也是生成元。

若 G 中还有其他生成元 $b=a^m$,则必然存在 n 使得 $a=b^n=(a^m)^n=a^{mn}$,从而 $a^{mn-1}=e$ 。

由于 $\langle G, * \rangle$ 为无限群,则只可能 mn-1=0,即 m=1, n=1,b=a,故生成元唯一。

【引理5.1】 (裴蜀定理) as + bt = m 有整数解 (s,t) 当且仅当 $(s,t) \mid m$ 。

【定理5.4】设 $\langle G, * \rangle$ 为循环群,若 $|G| = n \in \mathbb{N}$,则G内有 $\varphi(n)$ 个生成元。

证明:设 a 是一个生成元,则其他生成元一定能表示为 a 的幂次,设生成元 $b=a^r$,则 $\exists t, b^t=(a^r)^t=a^{rt}=a$,从而 $a^{rt-1}=e$,则必有 $n\mid (rt-1)$ 。即 $\exists q, rt+qn=1$,由裴蜀定理,(r,n)=1,从而生成元的个数为 $\varphi(n)$ 。证毕。

【定理5.5】 (循环群的子群) 设 $\langle G,*\rangle$ 为一个循环群,则

- 其子群一定是循环群;
- $\Xi \langle G, * \rangle$ 是无限循环群,则除平凡子群 $\langle \{e\}, * \rangle$ 外,其他子群也是无限群;
- 若 $\langle G,* \rangle$ 为有限循环群且生成元为 a,阶为 n,若其子群 $\langle H,* \rangle$ 中元素最小正整数幂为 a^k ,则 $|H|=\frac{n}{n}$ 。

证明:

- 设其子群 $\langle H,*\rangle$ 内元素最小正整数幂为 a^k ,则由封闭性、逆元存在性, $a^{sk}\in H(s\in\mathbb{Z})$ 。如果说明了对于任意 $b=a^n\in H(n\geq k)$ 都有 $k\mid n$ 即可说明 $\langle H,*\rangle$ 为循环群。反证,设存在 n=qk+r,其中 $q\in\mathbb{N}, 0< r< k$,则 $b=a^n=a^{qk+r}=a^{qk}*a^r$,进而 $a^r=a^{n-qk}=a^n*a^{-qk}$,由于 $a^{-qk}\in H, a^n\in H$ 故 $a^r\in H$,与假设(最小正整数幂)矛盾。原命题得证明,即子群 $\langle H,*\rangle$ 一定是由 a^k 为生成元的循环群。
- 由上条,子群一定是循环群。反证,若某以 a^k 为生成元的子群为有限群,则必定存在 n, $(a^k)^n=e$,即 $a^{kn}=e$,从而群 $\langle G,*\rangle$ 不是无限循环群,矛盾。原命题成立,即无限循环群的子群是无限循环群。
- 设 |H|=d。上上条已证, a^k 为子群生成元。首先说明 $k\mid n$ 。反证,若 $k\nmid n$,首先有 $n\leq kd$,则 $\exists m,mk< n\leq (m+1)k$,从而 $a^{(m+1)k-n}=a^{(m+1)k}\in H$ 且 (m+1)k-n< k,与 H 中元素最小正整数幂是 k 矛盾。一方面, $(a^k)^{n/k}=a^n=e$,则 $d\mid \frac{n}{k}$;另一方面,由于 $(a^k)^d=e$,因此由【定理5.2】有 $n\mid kd$,从而 $\frac{n}{k}\mid d$ 。进而 $|H|=d=\frac{n}{k}$ 。

【推论5.2】 若 $\langle G,*\rangle$ 为有限循环群旦生成元为 a,阶为 n,若其子群 $\langle H,*\rangle$ 中元素最小正整数幂为 a^k ,则 a^k 为子群 $\langle H,*\rangle$ 生成元旦 $k\mid n$ 。

证明见【定理5.5】证明第1、3条。

【**定理5.6**】设 $\langle G, * \rangle$ 是 n 阶循环群,则对于 n 的每一个正因子 d, $\langle G, * \rangle$ 有且仅有一个 d 阶子群。

证明:设 n/d=k。则首先,令 $H=\{(a^k)^m|m\in\mathbb{Z}\}\subseteq G$,则 H 为 a^k 生成的集合,下面证明 $\langle H,*\rangle$ 是一个群。可结合性、封闭性满足,单位元逆元显然存在;且由于 |G|=n,因此容易说明 |H|=d。其次,若有两个 d 阶子群 $\langle H,*\rangle$, $\langle H',*\rangle$,且后者的最小正幂次元素为 $a^{k'}$,则有 $n\mid k'd\Longrightarrow k'd=qn\Longrightarrow k'=\frac{qn}{d}=kq$,因此 $H'\subseteq H$,又 |H'|=|H|,故 H'=H,唯一性得证。

【推论5.3】对于有限循环群,子群个数就等于群的阶的正因子个数。

【推论5.4】对于 n 阶循环群, $\langle (a),* \rangle$,若 $\langle (a^k),* \rangle$ 为子群,则必然有 $k \mid n$,且 $|(a^k)| = n/k = d$

6 陪集与指数

【**定义6.1**】 (陪集)设 $\langle H,* \rangle$ 是 $\langle G,* \rangle$ 的一个子群, $a \in G$,则集合 $aH = \{a*h|h \in H\}$ (或集合 $Ha = \{h*a|h \in H\}$)被称为 H在 G中的左陪集(右陪集)。

【定理6.1】 (陪集的性质) 设 $\langle H,* \rangle$ 是 $\langle G,* \rangle$ 的一个子群, $a,b \in G$,则 $\langle H,* \rangle$ 的左陪集具有如下性质:

- $H = eH, a \in aH$;
- |aH| = |H|;
- $a \in H \iff aH = H$;
- $\forall x \in aH, aH = xH$;
- $\forall a,b \in G$,要么 aH = bH,要么 $aH \cap bH = \emptyset$ 。

证明:

- $\forall x \in H \subseteq G, e*x = x$, 从而 H = eH; 又由于 $e \in H$, 所以 $a*e = a \in aH$ 。
- 首先, $|aH| \le |H|$ 。反证,若 |aH| < |H|,则 $\exists h_1, h_2 \in H(h_1 \ne h_2), a*h_1 = a*h_2$,根据消去律,有 $h_1 = h_2$,矛盾。因此 |aH| = |H|。
- 充分性: 由于 aH = H, 则 $\forall h \in H, a*h = h' \in H$, 从而 $a = h'*h^{-1} \in H$ (根据群的性质)。必要性: $a \in H$, 则 $\forall a*h \in aH, a*h \in H$, 即 $aH \subseteq H$; 同时 $\forall h \in H, a^{-1}*h \in H$, 从而 $a*a^{-1}*h = h \in aH$, 即 $H \subseteq aH$; 综上, H = aH。
- $\forall x=a*h'\in aH$,一方面 $\forall x*h\in xH, x*h=a*h'*h=a*(h'*h)\in aH$,从而 $xH\subseteq aH$;另一方面 $\forall a*h\in aH, a*h=x*h'^{-1}*h=x*(h'^{-1}*h)\in xH$,从而 $aH\subseteq xH$,即 aH=xH。
- 若 $aH \cap bH \neq \emptyset$, 即 ∃ $g \in aH \cap bH$, ∃ $h_1, h_2 \in H, a*h_1 = b*h_2$, 从而 ∀ $a*h \in aH$, 有 $a*h = a*h_1*h_1^{-1}*h = b*(h_2*h_1^{-1}*h) \in bH$, 即 $aH \subseteq bH$, 同理 $bH \subseteq aH$, 则bH = aH。
 - 【注】上述过程可以简写为 $aH = a(h_1H) = (ah_1)H = (bh_2)H = b(h_2H) = bH$ 。

【定理6.2】 设 $\langle G, * \rangle$ 是一个群,且有子群为 $\langle H, * \rangle$ 。 $a, b \in G$,则左陪集 aH = bH 等价于 $a^{-1} * b \in H$ 或 $b^{-1} * a \in H$; 类似的,右陪集 Ha = Hb 等价于 $b * a^{-1} \in H$,或 $a * b^{-1} \in H$ 。

证明:下面仅证明 $aH=bH\Longleftrightarrow a^{-1}*b\in H$,其余同理可证。必要性:因为 aH=bH,则 $\exists h_1,h_2\in H$, $a*h_1=b*h_2$,即 $a^{-1}*b=h_1*h_2^{-1}\in H$;充分性: $a^{-1}*b=h\in H$,则 $b=ah\in aH$,即 $b\in aH$,根据【定理6.1】有,aH=bH。

【定义6.2】群 $\langle G, * \rangle$ 有子群 $\langle H, * \rangle$,定义

 $S_L = \{G$ 关于H的所有左陪集 $\}, S_R = \{G$ 关于H的所有右陪集 $\}$,则 H 在 G 中的指数 [G:H] 定义为 S_L (S_R) 的势。当集合 S_L (S_R) 是有限集时,H 在 G 中的指数 [G:H] 就等于 G 关于 H 的左(右)陪集个数。

【定理6.3】 (Lagrange 定理) 设 $\langle G,* \rangle$ 是有限群, $\langle H,* \rangle$ 是它的子群, 则 $|H| \mid |G|$, 即

$$|G| = [G:1] = [G:H] \times [H:1] = [G:H] \times |H|$$

注: 这里将子群 $\langle \{e\}, * \rangle$ 中的 $\{e\}$ 简写为 1。

【定理6.4】设 $\langle G,* \rangle$ 是 n 阶群,则 $\langle G,* \rangle$ 中任意元素 a 的阶都是 n 的因子,且有 $a^n=e$ 。

证明:由于 $\langle (a),*\rangle$ 是 $\langle G,*\rangle$ 的子群,且是以 a 为生成元的循环群,设这个子循环群的阶为 m,则 |a|=|(a)|=m,由 Lagrange 定理有 |(a)| |G| 即 m|n,从而任意元素 a 的阶都是 n 的因子。同时,有 n=km,从而 $a^n=a^km=(a^m)^k=e^k=e$ 。

【 $\mathbf{M6.1}$ 】阶为素数的 p 群一定是循环群。

证明:从群中任取一个非单位元元素 a 构成循环群,则 a 生成的子群一定是循环群且该子群的阶 n 一定满足 n|p,由于 $a\neq e$,从而 $n\neq 1$,从而 n=p,即原群一定是循环群。

【例6.2】阶数为 4 的群 $\langle G, * \rangle$ 要么是循环群,要么是 Klein 四元群。

证明: 若该四元群中存在阶数为 4 的元素 a, 那么 a 是生成元,原群是循环群。否则由【定理6.4】,G 中只有阶数为 1 或 2 的元素,阶数为 1 的元素只有 e, 那么其余三个元素 a, b, c 阶数均为2,所以 $a^2=b^2=c^2=e$ 。考虑 a*b,显然 $a*b\neq a$, $a*b\neq b$ (若等则消去律后 a=e 或 b=e), $a*b\neq e$ (若等则 a=b),所以 a*b=c,所得到的运算表即 Klein 四元群的运算表

【定理6.5】设 A,B 是群 $\langle G,* \rangle$ 的两个有限子群,那么有 $|AB|=rac{|A| imes|B|}{|A\cap B|}$,其中

$$AB = \{a*b|a \in A, b \in B\} = \cup_{a \in A} aB$$

证明: $\Diamond A \cap B = C$, 则 $C \neq A$ 的子群。 \Diamond

$$S_1 = AB = \cup_{a \in A} aB, \quad S_2 = AC = \cup_{a \in A} aC, \quad T_1 = \{aB | a \in A\}, \quad T_2 = \{aC | a \in A\}$$

那么 $|S_1|=|AB|$, $|S_2|=|A|$ 。 定义映射 $f:aB\to aC$,则满射显然,下面证明其为单射: (反证) 若有 $a,a'\in A(aB\ne a'B)$, f(aB)=aC=a'C=f(a'B),则由【定理6.2】, $a^{-1}*a'\in C=A\cap B$,故 $a^{-1}*a'\in B$,从而 aB=a'B,矛盾。从而 f 为双射,即 $|T_1|=|T_2|$ 。

由于 $|AB|=|S_1|=|T_1| imes|B|$, $|A|=|S_2|=|T_2| imes|C|=|T_2| imes|A\cap B|$,从而联立有 $|AB|=\frac{|A| imes|B|}{|A\cap B|}$ 。

【引理6.1】若群 $\langle G, * \rangle$ 中只有一阶、二阶元,则 $\langle G, * \rangle$ 为交换群。

证明: 一阶元 e 和任何元素运算显然满足可交换,对于任意二阶元 a,b,有 a*a=e,b*b=e,且 $a*b\in G$,满足 (a*b)*(a*b)=e,从而 $b^{-1}*a^{-1}*a*b*a*b=b^{-1}*a^{-1}\Longrightarrow a*b=b*a$ 。综上群满足可交换。

【例6.3】证明6阶群中有且仅有一个3阶子群。

证明:设6阶群为 $\langle G, * \rangle$,选择任意元素 $a \in G$,则|a| | |G| = 6,从而|a| = 1, 2, 3, 6。

- 先证明存在3阶子群。反证,若不存在3阶子群,则同时也不存在6阶子群(若有6阶子群即为循环群 G,设其生成元 b,则 b^2 必然可以生成三阶子群)。因此 G 中只有一阶、二阶元,则 $\langle G,*\rangle$ 可交换。设 $G=\{e,a_1,a_2,a_3,a_4,a_5\}$,则 a_1,a_2,a_3,a_4,a_5 都是二阶元,考察 a_1*a_2 ,则和【例6.3】类似, $a_1*a_2\neq e,a_1*a_2\neq a_1,a_1*a_2\neq a_2$,故 $a_1*a_2=a_3$ 或 a_4 或 a_5 ,从而 $\langle \{e,a_1,a_2,a_1*a_2\},*\rangle$ 形成了一个群,同时也是 $\langle G,*\rangle$ 的子群,该子群的阶是4而原群阶为6,不满足 Lagrange 定理,因此存在3阶子群。
- 再证明唯一性,设 $\langle G,* \rangle$ 中有两个三阶子群 $\langle A,* \rangle$, $\langle B,* \rangle$, 令 $K=A\cap B$, 则 $\langle K,* \rangle$ 是 $\langle A,* \rangle$, $\langle B,* \rangle$ 的子群,根据 Lagrange 定理, $|K| \mid |A| = |B| = 3$,从而 |K| = 1 或 3。若 K=1 ,则 $K=A\cap B=\{e\}$,那么根据【定理6.5】, $|AB| = \frac{|A| \times |B|}{|A\cap B|} = \frac{3\times 3}{1} = 9$,但是 $AB\subseteq G$ 从而 $|AB| \leq |G| = 6$,矛盾,从而 K=3。于是 $|A| = |B| = |A\cap B|$,故 A=B,唯一性得证。

7 正规子群与商群

【定义7.1】 设 $\langle G,* \rangle$ 是群, $H \leq G$ 。若 $\forall a \in G, aH = Ha$,则称 $\langle H,* \rangle$ 是 $\langle G,* \rangle$ 的正规子群(不变子群),记作 $H \lhd G$ 。

【定理7.1】 (正规子群的判定) 设有群 $\langle G, * \rangle$, $H \leq G$, 则下面四个说法等价:

- $H \triangleleft G$
- ullet $\forall a \in G, aHa^{-1} = H$
- $\forall a \in G, aHa^{-1} \subseteq H$
- $ullet \ orall a \in G, h \in H, aha^{-1} \in H$

证明:

- ① \rightarrow ②: aH = Ha, $\mathbb{N} \ aHa^{-1} = H$;
- ② \rightarrow ③: $aHa^{-1} = H$, 则 $aHa^{-1} \subseteq H$;
- 3) \rightarrow 4): $aHa^{-1} \subseteq H$, $\mathbb{N} \forall aha^{-1} \in aHa^{-1}, aha^{-1} \in H$.
- ④→①: 一方面, $\forall a \in G, h \in H, \exists h' \in H, aha^{-1} = h'$,从而 $ah = h'a \in Ha$,故 $aH \subseteq Ha$; 另一方面, $\forall a \in G(a^{-1} \in G), h \in H, \exists h' \in H, a^{-1}ha = h'$,从而 $ha = ah' \in aH$,故 $Ha \subseteq aH$ 。故 aH = Ha。

【定理7.2】 设 $\langle G, * \rangle$ 是群,且 H < G,H 的任意两个左陪集的乘积仍然为左陪集,则 $H \lhd G$ 。

证明: $\forall a,b \in G, \exists c \in G, aHbH = cH$, 则首先有 $ab = (ae)(be) \in aHbH = cH$, 由【定理 6.1】, abH = cH, 故 aHbH = abH。从而 $\forall h \in H, a \in G$,有 $aha^{-1}h \in aHa^{-1}H = aa^{-1}H = H$ 。所以 $aha^{-1} \in H$,从而由【定理7.1】有, $H \triangleleft G$ 。

【定理7.3】设 $\langle G,* \rangle$ 是群,且 $H \lhd G, H' \leq G$,则 $H \cdot H' \leq G, H' \cdot H \leq G$ 。

证明:本定理是【引理8.1】直接推论。

【例7.1】设 $\langle G, * \rangle$ 是群, $H \leq G$,且[G:H] = 2,证明 $H \triangleleft G$ 。

证明: 任取 $a \notin H$, 则 $G = H \cup aH$; 同理 $G = H \cup Ha$, 而且 $H \cap Ha = H \cap aH = \emptyset$, 从而 Ha = aH, 即 $H \lhd G$ 。

【定理7.4】 设 $\langle G,* \rangle$ 是群,且 $H \lhd G$,则 H 的任意两个左陪集的乘积仍然为左陪集。

证明: $\forall a,b \in G, h,h' \in H$,有 $ahbh' \in aHbH$,又 $ahbh' = a(hb)h' \in a(Hb)H = a(bH)H = abH$,证毕。

【定义7.2】 (正规子群定义陪集之间的代数结构:商群)设 $\langle G,* \rangle$ 是群, $H \lhd G$, 形成 G 陪集的集合 (划分)

$$\{aH|a\in G\}=G/H$$

定义集合之间的运算 $aH \cdot bH$ (简写为 aHbH) 为 $aH \cdot bH = abH$ 。

则该运算在G/H上满足:

- 封闭性
- 可结合性 (aHbHcH = abcH = aH(bHcH))
- 单位元存在 (H = eH)
- 逆元存在 $((aH)^{-1} = a^{-1}H)$

故 $\langle G/H, \cdot \rangle$ 是群, 称为商群。

注: *H* ⊲ *G* 是定义商群的必要前提。

【定理7.5】商群 $\langle G/H,\cdot \rangle$ 的阶是 $|G/H|=[G:H]=rac{|G|}{|H|}$ 。

8 同态与同构、群同态、群同态基本定理

【**定理8.1**】 若两个代数系统 $\langle A_1, * \rangle$ 和 $\langle A_2, \circ \rangle$ 之间存在满同态映射 $f: A_1 \to A_2$,则有如下性质:

- 若 $\langle A_1,* \rangle$ 满足交换律或结合律,则 $\langle A_2,\circ \rangle$ 也满足交换律或结合律。
- 若 $\langle A_1, * \rangle$ 中有单位元e,则 $\langle A_2, \circ \rangle$ 也有单位元f(e)。
- 若 $\langle A_1,*\rangle$ 中任意元素 $a\in A_1$ 存在逆元 a^{-1} ,则 $\langle A_2,\circ\rangle$ 中 f(a) 一定存在逆元 $f(a^{-1})$ 。

证明: 首先, 根据条件, $\forall a, b \in A_1, f(a * b) = f(a) \circ f(b), f(x)(x \in A_1)$ 取遍 A_2 .

- 若 $\forall a,b \in A_1$, $f(a) \circ f(b) = f(a*b) = f(b*a) = f(b) \circ f(a)$; 若 $\forall a,b,c \in A_1$, $f(a) \circ f(b) \circ f(c) = f(a*b*c) = f(a*(b*c)) = f(a) \circ (f(b) \circ f(c))$.
- 若 $\forall a \in A_1, a = e * a$, 则 $f(a) = f(e * a) = f(e) \circ f(a)$, 即 f(e) 为单位元。
- 若 $\forall a \in A_1, a^{-1} * a = e$,则 $f(e) = f(a^{-1} * a) = f(a^{-1}) \circ f(a)$,从而 $f(a^{-1})$ 为f(a)逆元。

注: 性质3对于非满同态也成立。对于满同态可以强化为: 只要 A_1 中的任意元素有逆元, A_2 中的任意元素就有逆元。

【例8.1】试证明:任意无限循环群都与 $\langle \mathbb{Z}, + \rangle$ 同构。

证明: 设无限循环群 $\langle (a), * \rangle$,则定义映射 $f(a^k) = k$,显然 $f:(a) \to \mathbb{Z}$ 。首先,因为 $\langle (a), * \rangle$ 是无限循环群,所以必不存在 $i \neq j, a^i = a^j$,从而 f 是单射;又因为 $\forall k \in \mathbb{Z}, \exists a^k \in (a), f(a^k) = k$,所以 f 是满射;综上 f 是双射。最后, $f(a^i * a^j) = f(a^{i+j}) = i + j = f(a^i) + f(a^j)$ 。证毕。

【定理8.2】若给出了群 $\langle G, * \rangle$ 到群 $\langle G', \circ \rangle$ 的同态映射 f, 则

- 若 $H \leq G$,则 $f(H) \leq G'$;特别地, $f(G) \leq G'$ 。
- 若H' < G', (f为单射),则 $f^{-1}(H') = \{a | a \in G, f(a) \in H'\} \le G$ 。

证明:

- $\forall f(a), f(b) \in f(H)$, 即 $a, b \in H$, 有 $f(a) \circ (f(b))^{-1} = f(a) \circ f(b^{-1}) = f(a * b^{-1}) \in f(H)$, 根据【定理4.3】,又因为 $f: G \to G'$,则 $f(H) \subseteq G$,从而 $f(H) \le G'$ 。
- $\forall a,b\in f^{-1}(H')$,即 $f(a),f(b)\in H'$,从而 $f(a*b^{-1})=f(a)\circ f(b^{-1})=f(a)\circ (f(b))^{-1}\in H'$,从而 $a*b^{-1}\in f^{-1}(H')$

【定义8.1】(零同态)设 $\langle G,*\rangle$, $\langle G',\circ\rangle$ 是两个群,定义映射 $f:x\to e'$,其中 $x\in G$,e'是G'中单位元,则f(x*y)=e',因此f是 $\langle G,*\rangle$ 到 $\langle G',\circ\rangle$ 的一个同态,称为**零同态**。零同态存在于任意两个群中。

【定理8.3】群同态的复合仍然是群同态,群同构的逆仍是群同构。

证明:

- 设群 $\langle G, * \rangle$, $\langle G', \circ \rangle$ 间存在同态映射 f , $\langle G', \circ \rangle$, $\langle G'', \oplus \rangle$ 中存在同态映射 g , 则 $\forall a,b \in G, (g \circ f)(a*b) = g(f(a) \circ f(b)) = g(f(a)) \oplus g(f(b))$ 因此群同态的复合仍是群同态。
- 设 $\langle G, * \rangle \cong \langle G', \circ \rangle$, 同构映射为 f。则 $\forall b, b' \in G'$,设 $f^{-1}(b) = a, f^{-1}(b') = a'$,从而 $f^{-1}(b \circ b') = f^{-1}(f(a) \circ f(a')) = f^{-1}(f(a*a')) = a*a' = f^{-1}(b)*f^{-1}(b')$,由于 f 是双射,所以 f^{-1} 是双射,从而 $\langle G', \circ \rangle \cong \langle G, * \rangle$ 。

【注】为方便,在下面的内容中,在运算不重要时默认依次为 $*, \circ$,此时将群 $\langle G, * \rangle$ 简单记为 G。

【定义8.2】 (自然同态) 若 $N \lhd G$, 则定义 G 到商群 G/N 的映射 h:h(x)=xN。则 h 是从 G 到商群 G/N 的同态映射,称为自然同态。

【定义8.3】 (同态核) 若 $f:G\to G'$ 为群同态,e,e' 分别为 G,G' 单位元,则同态核定义为 $\ker f\stackrel{def}{=}\{x|x\in G,f(x)=e'\}$ 。

【定理8.4】 $\ker f \triangleleft G$ 。

证明:

- 首先有 $e \in \ker f$,则 $\ker f \neq \emptyset$ 。
- $\forall a,b \in \ker f, f(a*b^{-1}) = f(a) \circ f(b^{-1}) = f(a) \circ (f(b))^{-1} = e' \circ (e')^{-1} = e'$,同时 $\ker f \subseteq G$,从而 $\ker f \not \equiv G$ 的子群。
- $\forall a \in G, a' \in \ker f, f(a*a'*a^{-1}) = f(a) \circ f(a') \circ (f(a))^{-1} = f(a) \circ e' \circ (f(a))^{-1} = e'$ 。 从而有 $a*a'*a^{-1} \in \ker f$,由【定理7.1】, $\ker f \lhd G$ 。

【**定理8.5**】若有群同态 $f:G \to G'$,则 f 是单射 $\iff \ker f = \{e\}$ 。

证明:

- $e \in \ker f$, f 是单射,则任意 $x \in G, x \neq e$,有 $f(x) \neq f(e) = e'$,从而 $\ker f = \{e\}$ 。
- 若 $\ker f = e$, 且有 $x, y \in G$, f(x) = f(y), 则 $e' = f(x) \circ (f(y))^{-1} = f(x * y^{-1})$, 从而 $x * y^{-1} \in e$, 从而 $x * y^{-1} = e$, 从而 x = y。 故 f 是单射。

【定理8.6】 (同态基本定理) 设 $f: G \to G'$, 令 $N = \ker f$, 则有 $G/N \cong f(G)$ 。

证明:记 $N=\ker f$,则由 Kernel 的定义,N 一定是 G 的正规子群。定义 $\delta:G/N\to f(G)$ 为 $\delta(aN)=f(a)$ 。下面证明 δ 为同构映射。

- $\forall aN, bN \in G/N, \delta(aN \cdot bN) = \delta(abN) = f(a*b) = f(a) \circ f(b) = \delta(aN) \circ \delta(bN)$.
- 对于 aN=bN,有 $a*b^{-1}\in N$,从而 $e'=f(a*b^{-1})=f(a)\circ (f(b))^{-1}$,即 f(a)=f(b),故 $\delta(aN)=f(a)=f(b)=\delta(bN)$,从而 δ 是映射。
- 由上条知,最多有 |G/N| 个不同 $f(\cdot)$ 取值,且对于任意取值 f(a')=b, $\exists a$,使得 aN=a'N 且 $aN\in G/N$,使得 $\delta(aN)=\delta(a'N)=f(a')=f(a)$,从而 δ 是满射。
- 若由 $aN \neq bN$ 但 $\delta(aN) = f(a) = f(b) = \delta(bN)$,则 $e' = f(a) \circ (f(b))^{-1} = f(a * b^{-1})$,从 而 $a * b^{-1} \in \ker f = N$,所以 aN = bN,矛盾,从而 δ 是单射。

综上, δ 为同构映射, 从而 $G/N \cong f(G)$ 。

【**引理8.1**】若 $A, B \in G$ 的子群且满足 AB = BA,则 AB 也是 G 的子群。

证明: $\forall a_1*b_1, a_2*b_2 \in AB$,由 $(a_1*b_1)*(a_2*b_2)^{-1}=a_1*b_1*b_2^{-1}*a_2^{-1} \in ABA=AAB=AB$ 及 $AB\subseteq G$,根据【定理 4.3】, $AB\subseteq G$ 。

【定理8.7】 (第一同构定理) 若 A 和 B 都是群 G 的子群,且 $B \lhd G$,则 $AB/B \cong A/(A \cap B)$ 。 证明:

- 根据【定理7.3】, $AB \leq G$ 是群; 同时 $A \cap B$ 显然是群。
- $B \triangleleft G$, $B \subseteq AB \subseteq G$, 从而根据定义可知 $B \triangleleft AB$ 。
- $\forall b \in A \cap B$, 有 $b \in A \coprod b \in B$; $\forall a \in A$, $a*b*a^{-1} \in A$, 同时由于 $B \lhd G$, 且 $A \subseteq G$, 根据【定理7.1】, $a \in A \subseteq G$, 从而 $a*b*a^{-1} \in B$ 。综上 $a*b*a^{-1} \in A \cap B$,即 $A \cap B \lhd A$ 。
- 定义映射 $\delta:A\to AB/B$ 为 $\delta(a)=aB$,首先 δ 是一个同态, $\delta(a*b)=abB=aB\cdot bB=\delta(a)\cdot \delta(b);\;\;$ 其次 δ 是一个满同态(满同态是为了说明 $\delta(A)=AB/B)\;\;\text{。同时 ker }\delta=\{a|a\in A,\delta(a)=aB=B\},\;\;$ 根据陪集的性质【定理6.1】有 ker $\delta=\{a|a\in A,a\in B\}=A\cap B,\;\;$ 从而由同态基本定理,有

$$A/(A \cap B) = A/\ker \delta \cong \delta(A) = AB/B \Longrightarrow AB/B \cong A/(A \cap B)$$

【引理8.2】 (第二同构定理引理) 已知群 G,G' 中存在满同态映射 f,且 $H' \triangleleft G'$, $H = f^{-1}(H')$,则有 $H \triangleleft G$ 且 $G/H \cong G'/H'$ 。

证明:

- 根据【定理8.2】, $H \leq G$ 。此外, $\forall h \in H, g \in G$, $f(g*h*g^{-1}) = f(g) \circ f(h) \circ (f(g))^{-1}$, 由于 $H' \lhd G'$,从而 $f(g*h*g^{-1}) \in H'$,从而 $g*h*g^{-1} \in H$ 。即 $H \lhd G$ 。
- 构造映射 $\phi:G'\to G'/H'$ 为自然同态,显然自然同态为满同态,则 $\phi\circ f:G\to G'/H'$ 为满同态。

 $\ker \phi \circ f = \{x|x \in G, \phi(f(x)) = H'\} = \{x|x \in G, f(x)H' = H'\} = \{x|x \in G, f(x) \in H'\} = |H|$,从而由同态基本定理, $G/\ker \phi \circ f \cong G'/H'$,即 $G/H \cong G'/H'$ 。

【定理8.8】 (第二同构定理) 若 $N \triangleleft G$, $H \triangleleft G$, 且 $H \subseteq N$, 则 $G/N \cong (G/H)/(N/H)$ 。

证明: 首先显然有 $H \triangleleft N$ 。

- $N/H \leq G/H$; 由于 $N \lhd G$, 有 $gng^{-1} \in N$, 从而 $gH \cdot nH \cdot g^{-1}H = (gng^{-1})H \in N/H$, 从而 $N/H \lhd G/H$ 。
- 映射 $f:G \to G/H$ 为自然满同态。则 $f^{-1}(N/H)=N$,利用【引理8.2】得 $G/N \cong (G/H)/(N/H)$ 。

9 群的直积

【定义9.1】 (两个群的直积) 若 $\langle G_1,*\rangle$, $\langle G_2,\circ\rangle$ 为两个群,在这两个集合的笛卡尔积上定义二元运算 $(a_1,b_1)\cdot(a_2,b_2)=(a_1*a_2,b_1\circ b_2)$ 。则 $\langle G_1\times G_2,\cdot\rangle$ 形成群,称为 G_1 和 G_2 的直积,简记为 $G_1\times G_2$ 。

【**定理9.1**】 $\langle G_1, * \rangle, \langle G_2, \circ \rangle$ 为两个群,则

- 若 G_1 单位元 e_1 , G_2 单位元 e_2 , 则 $G_1 imes G_2$ 有单位元 (e_1,e_2) ;
- 若 $(a,b) \in G_1 \times G_2$, 则 $(a,b)^{-1} = (a^{-1},b^{-1})$;
- $\exists G_1, G_2$ 有限群,则 $G_1 \times G_2$ 也是有限群,且 $|G_1 \times G_2| = |G_1||G_2|;$
- 若 G_1, G_2 是交换群,则 $G_1 \times G_2$ 也是交换群。

证明: (3) 显然; (1) (2) (4) 见【定理2.1】。

【例9.1】用 C_n 表示 n 阶循环群,(n,s)=1,证明: $C_n \times C_s \cong C_{ns}$ 。

证明: $C_n=(a), |a|=n, C_s=(b), |b|=s$,则 ((a,b))为 $C_n\times C_s$ 子群,设 |(a,b)|=d 且单位元 (e_a,e_b) ,由于 $(a,b)^{ns}=(a^{ns},b^{ns})=(e,e')$,所以 d|ns。又因为 $(e,e')=(a,b)^d=(a^d,b^d)$,所以 n|d,s|d。又因为 (n,s)=1,所以 ns|d。因此 ns=d,即 |((a,b))|=ns,从而 $((a,b))=C_n\times C_s$,所以 ns|d0。为 ns1。为 ns2。为 ns3。

【定义9.2】给定群 G 的 $k(k \geq 2)$ 个子集 S_1, S_2, \ldots, S_k ,如果 $\forall a \in G$,都存在 $a_i \in S_i (i = 1, 2, \ldots, k)$,使得 $a = a_1 * a_2 * \ldots * a_k$,则称 G 中元素可以表示为 S_1, S_2, \ldots, S_k 中元素之积。又若 $\forall a \in G$,若 $a_1 * a_2 * \ldots * a_k = a = b_1 * b_2 * \ldots * b_k$ 则有 $a_i = b_i (i = 1, 2, \ldots, k)$,则 称 G 中元素可以唯一表示为 S_1, S_2, \ldots, S_k 中元素之积。

【定理9.2】若 $G_1 \leq G, G_2 \leq G$,且 G 中元素可表示成 G_1, G_2 元素乘积,则该表示是唯一的,当且仅当

- $G_1 \cap G_2 = \{e\};$
- 或 G 的单位元 e 可以唯一的表示成 G_1, G_2 元素乘积。

证明:

- 先证必要性,显然 $e \in G_1, e \in G_2$,从而 $e \in G_1 \cap G_2$ 。若 $\exists a \in G_1 \cap G_2$,则 $a^{-1} \in G_1 \cap G_2$ 。则 $e = a * a^{-1} = e * e$,因为表示唯一,所以 $a = a^{-1} = e$,从而 $G_1 \cap G_2 = \{e\}$ 。
- 再证充分性,若 $\exists g_1,g_1'\in G_1,g_2,g_2'\in G_2$,使得 $a=g_1*g_2=g_1'*g_2'$,则 $g_1^{-1}*g_1'=g_2\times g_2'^{-1}=t$,从而 $t\in G_1\cap G_2$,则 t=e,从而 $g_1=g_1',g_2=g_2'$,即表示唯一。
- 条件二和条件一等价。证明显然。

【**定理9.3**】若 $G_1 \leq G, G_2 \leq G$,且 G 中的元素可以唯一表示为 G_1, G_2 中元素的乘积,则 $G_1 \triangleleft G, G_2 \triangleleft G$ 等价于 $\forall a \in G_1, b \in G_2, a * b = b * a$ 。

证明:由【定理9.2】知 $G_1 \cap G_2 = \{e\}$ 。

- 若 $G_1 \triangleleft G, G_2 \triangleleft G$,则 $\forall a \in G_1, b \in G_2$, $b^{-1} * a * b \in G_1, a * b * a^{-1} \in G_2$,从而 $(b^{-1} * a * b) * a^{-1} \in G_1$ 同时 $b^{-1} * (a * b * a^{-1}) \in G_2$,则 $b^{-1} * a * b * a^{-1} \in G_1 \cap G_2$,即 $b^{-1} * a * b * a^{-1} = e$,即 a * b = b * a。
- $\forall a \in G_1, t \in G$, 有 t = a' * b, 从而 $t * a * t^{-1} = a' * b * a * b^{-1} * a'^{-1} = a \in G_1$, 所以 $G_1 \lhd G_0$ 同理 $G_2 \lhd G_0$

【**定义9.3**】 (内部直积) 若 $G_1 \triangleleft G, G_2 \triangleleft G$,且 G 中元素可以唯一表示为 G_1, G_2 中元素的乘积,则称 G 为 G_1, G_2 的内部直积,记作 $G = G_1 \times G_2$ 。

【定理9.4】若 $G = G_1 \times G_2$,则 $G \cong G_1 \times G_2$ 。

定义映射 $f: G_1 \times G_2 \to G$ 为 f((a,b)) = a * b,则

 $f((a,b)\cdot(c,d)) = f(a*c,b*d) = a*c*b*d = a*c*b*d = a*b*c*d = f((a,b))*f((c,d))$

(由【定理9.3】), 所以 f 是同态。

• 显然 *f* 是双射。

综上, $G \cong G_1 \times G_2$ 。

【定理9.5】若 $A \lhd G$, $B \lhd G \coprod G = A \times B$, $N \lhd A$, 则有 $N \lhd G \coprod G/N \cong (A/N) \times B$ 。证明:

- $\forall n \in N, x \in G, \exists a \in A, b \in B$, 满足 x = a * b, 从而 $x * n * x^{-1} = a * b * n * b^{-1} * a^{-1} = a * n * a^{-1}$ (运用【定理9.3】),又根据 $N \lhd A$, $x * n * x^{-1} = a * n * a^{-1} \in N$,从而 $N \lhd G$ 。
- 对任意 $x\in G$,若 $x=a*b(a\in A,b\in B)$,则定义 $f:G\to (A/N)\times B$,令 f(x)=(aN,b),则

 $f(x*y)=f(a_1*b_1*a_2*b_2)=f(a_1*a_2*b_1*b_2)=((a_1*a_2)N,b_1*b_2)=(a_1N,b_1)\cdot(a_2N,b_2)$,从而 $f(x*y)=f(x)\cdot f(y)$,因此 f 是同态。又

 $\ker f=\{g|g=a*b\in G, a\in A, b\in B, (aN,b)=(N,e)\}$,从而

 $\ker f=\{g|g=a*b\in G, a\in A, b\in B, a\in N, b=e\}=N$,显然 f 是满射,由【定理8.6】同态基本定理有 $G/N\cong (A/N)\times B$ 。

【**定义9.4**】 (有限个群的直积) 设 G_1, G_2, \ldots, G_n 为 n 个群,则 $G_1 \times G_2 \times \ldots \times G_n$ 关于·运算 $(a_1, a_2, \ldots, a_n) \cdot (b_1, b_2, \ldots, b_n) = (a_1 \oplus_1 b_1, a_2 \oplus_2 b_2, \ldots, a_n \oplus_n b_n)$ 形成了一个群,称为 G_1, G_2, \ldots, G_n 的直积,记作 $G_1 \times G_2 \times \ldots \times G_n$ 。

【定理9.6】(有限个群的直积的性质)类似【定理9.1】,对有限个群的直积也有:

- 若对 $i=1,2,\ldots,n$, G_i 单位元 e_i , 则 $G_1\times G_2\times\ldots\times G_n$ 有单位元 (e_1,e_2,\ldots,e_n) ;
- 若 $(a_1,a_2,\ldots,a_n)\in G_1 imes G_2 imes\ldots imes G_n$,则 $(a_1,a_2,\ldots,a_n)^{-1}=(a_1^{-1},a_2^{-1},\ldots,a_n^{-1})$;
- 若 $G_i(i=1,2,\ldots,n)$ 有限群,则 $G_1 \times G_2 \times \ldots \times G_n$ 是有限群,且 $|G_1 \times G_2 \times \ldots \times G_n| = \prod_{i=1}^n |G_i|$;
- 若 G_i $(i=1,2,\ldots,n)$ 交换群,则 $G_1 \times G_2 \times \ldots \times G_n$ 是交换群。

证明:和【定理9.1】完全类似。

【**定理9.7**】若 G 是其正规子群 G_1, G_2, \ldots, G_n 的内部直积,有 $G \cong G_1 \times G_2 \times \ldots \times G_n$ 。

证明:和【定理9.4】完全类似。