Soluciones del primer parcial

Ejercicio 1. Consideremos en \mathbb{R}^2 la distancia usual. Calcular el cardinal del conjunto

 $\mathcal{A}=\{D\subseteq\mathbb{R}^2\ :\ \overline{D}=\mathbb{R}^2\ y\ \text{existe una isometría}\ f:\mathbb{Q}^2\to D\}.$

Solución. Primero notamos que \mathcal{A} es un subconjunto del conjunto de partes numerables de \mathbb{R}^2 , que tiene cardinal c como vimos en clase. Por lo tanto $\#\mathcal{A} \leq c$. Veamos que es igual a c.

Observamos que una forma de conseguir un conjunto isométrico a \mathbb{Q}^2 es trasladarlo en el plano. Además es fácil ver que cualquier trasladado de \mathbb{Q}^2 sigue siendo denso en \mathbb{R}^2 . Luego debemos encontrar suficientes trasladados distintos.

Consideremos una recta de pendiente irracional $L=\{(x,\lambda x)\mid x\in\mathbb{R},\lambda\in\mathbb{R}\setminus\mathbb{Q}\}$. Es claro que el único punto de coordenadas racionales por el que pasa esta recta es el (0,0). Por lo tanto, trasladar a \mathbb{Q}^2 por los elementos de esta recta nos dará conjuntos distintos. Observamos que \mathcal{A} contiene al conjunto $\{\mathbb{Q}^2+(x,y)\mid (x,y)\in L\}$. Podemos obtener una biyección de este último conjunto a L dada por

$$\mathbb{Q}^2 + (x,y) \mapsto (x,y)$$
.

Luego ${\mathcal A}$ contiene un subconjunto de cardinal #L = c. Por lo tanto #A \geq c como queríamos.

Ejercicio 2. Sea X un espacio métrico tal que existe un subconjunto $D \subseteq X$ con $\overline{D} = X$ y $\overline{D^c} = X$. Sea F un cerrado de X. Probar que existe $A \subseteq X$ tal que $\partial A = F$.

Solución. Un primer intento podría ser tomar $A = F \cap D = F \setminus D^c$. Sin embargo, al hacer esto puede haber puntos aislados de F que no estén en la frontera de A. Para remediar esto, una posibilidad es remover los puntos de D^c , pero sólo en el interior de F. Eso justifica la siguiente elección.

Proponemos $A = F \setminus (F^{\circ} \cap D)$. Como $A \subseteq F$ y F es cerrado, $\partial A \subseteq F$.

Veamos la otra inclusión. Vamos a dividirla en dos casos. Como F es cerrado, sabemos que $F = \partial F \cup F^{\circ}$.

Primero, sea $x \in F \setminus F^\circ = \partial F$. Como $\partial F \subseteq A$, toda bola centrada en x interseca a A. Además, como $A \subseteq F$, toda bola que interseca a F^c interseca a A^c . Luego toda bola centrada en x interseca tanto a A como a A^c , Y entonces $X \in \partial A$.

Ahora supongamos que $x \in F^{\circ}$. Como tanto D como D^c son densos, toda bola centrada en x contiene elementos de A y de A^c. Entonces $x \in \partial A$.

Ejercicio 3. Sean X, Y dos espacios métricos y $f: X \to Y$ una función que cumple que para todo sucesión de Cauchy $(x_n)_n \subseteq X$, la sucesión $(f(x_n))_n \subseteq Y$ es de Cauchy.

- (a) Probar que f es continua.
- (b) Probar que f podría no ser uniformemente continua.

Solución. (a) Supongamos por el contrario que f no es continua ¹, es decir que existe una sucesión $(x_n)_n \subseteq X$ que converge a un punto x, pero que $(f(x_n))_n$ no converge a f(x). Esta situación está representada por la siguiente figura:

Nuestro objetivo es probar que existe una sucesión de Cauchy $(z_n)_n \subseteq X$ de manera que $(f(z_n)_n)$ no es de Cauchy. Uno estaría tentado a tomar $z_n = x_n$ pero es claro que esto no funciona en general. De alguna manera deberíamos poder explotar el hecho de que f(x) está "lejos" de los valores $f(x_n)_n$ con $n \gg 0$. Como segunda propuesta podemos tomar

$$z_n = \begin{cases} x_{n/2} & \text{si n es par,} \\ x & \text{si n es impar.} \end{cases}$$

Veamos que esta nueva sucesión verifica lo que queríamos (antes de seguir convénzase de esto persiguiendo sobre la figura el recorrido de ambas sucesiones con los dedos). Es claro que $(z_n)_n$ es de Cauchy porque converge a x. Para ver que $(f(z_n))_n$ no es de Cauchy recordemos que como $(f(x_n))_n$ no converge a f(x) debe existir un $\varepsilon>0$ de manera que para todo $n\in\mathbb{N}$ podemos encontrar $N\geq n$ tal que $d(f(x),f(x_n))\geq \varepsilon$. Pero esta última desigualdad implica que $d(f(z_{2N+1}),f(z_{2N}))\geq \varepsilon$, y por ende $(f(z_n))_n$ no es de Cauchy.

(b) Cualquier función continua $f: X \to Y$ que no sea uniformemente continua y que tenga dominio completo satisface estos requisitos (por ejemplo la función elevar

 $^{^1\}mbox{Este}$ mismo argumento funciona sin apelar al contrarrecíproco, pero escribirlo así nos da una excusa para motivar un poco más la solución.

al cuadrado $(\cdot)^2 : \mathbb{R} \to \mathbb{R}$). En efecto, si $(x_n)_n$ es una sucesión de Cauchy en X, en particular tiene que ser convergente y por continuidad $(f(x_n))_n$ converge también (y en particular es de Cauchy).

Ejercicio 4. Definimos en $\ell_{\infty}:=\{(\alpha_n)_{n\in\mathbb{N}}\subset\mathbb{R}\ :\ (\alpha_n)_{n\in\mathbb{N}}\ \text{está acotada}\}$ la distancia

$$d(a,b) = \sum_{n=1}^{\infty} \frac{|a_n - b_n|}{n^2}.$$

Probar que (ℓ_{∞}, d) es separable y no es completo.

Solución. En clase vimos que $\{(a_n)_{n\in\mathbb{N}}:a_n\in\mathbb{Q} \text{ eventualmente nula}\}$ es numerable. Veamos que es un subconjunto denso de (ℓ_∞,d) . Es claro que es un subconjunto, pues las sucesiones eventualmente nulas están acotadas. Para ver que es denso, tomamos $a\in\ell_\infty$. Como a es acotada, la serie

$$\sum_{n=1}^{\infty} \frac{|a_n|}{n^2}$$

converge. Luego, dado $\varepsilon > 0$ existe un n_0 tal que

$$\sum_{n=n_0}^{\infty} \frac{|\alpha_n|}{n^2} \leq \frac{\epsilon}{2}.$$

Ahora, por densidad de \mathbb{Q} , para cada \mathfrak{a}_n con $1 \leq n < n_0$ elegimos que $b_n \in \mathbb{Q}$ tal que $|\mathfrak{a}_n - b_n| \leq \frac{\epsilon}{2n_0}$. Armamos una sucesión q, definida por

$$q_n = \begin{cases} b_n & \text{si } n < n_0, \\ 0 & \text{si } n \ge n_0. \end{cases}$$

Es claro por construcción que $d(\alpha,q) \le \epsilon$. Luego $\{(\alpha_n)_{n \in \mathbb{N}} : \alpha_n \in \mathbb{Q} \text{ eventualmente nula}\}$ es un denso numerable, $y(\ell_\infty,d)$ es separable.

En cuanto a la no completitud de este espacio métrico, consideremos la sucesión de sucesiones $(A_k)_k \subseteq \ell_\infty$ definida como

$$A_k = (1, \sqrt{2}, \dots, \sqrt{k}, 0, 0, \dots)$$

y veamos que es de Cauchy pero que no es convergente. Para la primera afirmación basta observar que si $\mathbf{k} < \mathbf{m}$

$$d(A_k, A_m) = \sum_{n=k+1}^m \frac{1}{n^{3/2}} \xrightarrow[k,m\to\infty]{} 0$$

dado que la serie $\sum_{n\geq 1} 1/n^{3/2}$ es convergente. Por otro lado supongamos que $(A_k)_k$ converge a una sucesión $A=(\mathfrak{a}_1,\mathfrak{a}_2,\dots)$ en ℓ_∞ y lleguemos a una contradicción. Fijemos un $n\in\mathbb{N}$ y tomemos un número natural k más grande que n. Entonces

$$\frac{|a_n - \sqrt{n}|}{n^2} \le d(A, A_k) \xrightarrow[k \to \infty]{} 0.$$

Esto nos dice que $\alpha_n = \sqrt{n} \ y$ por lo tanto la sucesión límite debe ser

$$A = (1, \sqrt{2}, \dots, \sqrt{n}, \dots),$$

lo cual es absurdo porque la misma no está acotada.