Brian Fitzgilbon 19/1/09

Chapter 2. State-Space Theory

2.1 Relationship between the State-Space and **Transfer Function Representations**

Consider the linear Nth order process, with M inputs and P outputs, (for simplicity lets first assume no disturbances):

$$\frac{d}{dt}\underline{x}(t) = A\underline{x}(t) + B\underline{u}(t)$$

$$v(t) = Cx(t) + Du(t)$$

$$\underline{y}(t) = C\underline{x}(t) + D\underline{u}(t)$$

INITIAL CONDITION IN TIME DOMAIN

Now apply the Laplace transform: & (1)

First some revision: $L = \{ x_i(t) \} = \{ x_i(t) \} = \{ x_i(t) \}$

$$L\{\dot{\mathbf{x}}(t)\} = \begin{bmatrix} L\{\dot{\mathbf{x}}_1(t)\} \\ L\{\dot{\mathbf{x}}_2(t)\} \\ \vdots \\ L\{\dot{\mathbf{x}}_N(t)\} \end{bmatrix} = \begin{bmatrix} sX_1(s) \\ sX_2(s) \\ \vdots \\ sX_N(s) \end{bmatrix} - \begin{bmatrix} x_1(0) \\ x_2(0) \\ \vdots \\ x_N(0) \end{bmatrix}$$

L
$$\frac{2}{3}$$
 = $\frac{1}{3}$ X(s) - $\frac{1}{3}$ (C)

Hence the Laplace transform of equation (1) yields:

U(5)=LEu(4)}

Similarly the Laplace transform of equation (2) yields:

$$\underline{Y}(s) = C\underline{X}(s) + D\underline{U}(s)$$

Hence the MIMO transfer function of the process is:

$$G(s) = C(sI - A)^{-1}B + D$$

Now if it is assumed that: $\underline{x}(0) = 0$

 $\left\langle
\begin{bmatrix}
Y_{1}(s) \\
Y_{2}(s) \\
\vdots
\end{bmatrix} = \begin{bmatrix}
G_{11}(s) & G_{12}(s) & \cdots & G_{1M}(s) \\
G_{21}(s) & G_{22}(s) & \cdots & G_{2M}(s)
\end{bmatrix} \begin{bmatrix}
U_{1}(s) \\
U_{2}(s) \\
\vdots & \vdots & \ddots & \vdots
\end{bmatrix}
\right\}$

TRANSFER FUNCTIONS

Consider now an expression for the ith output:

$$Y_t(s) = G_{i1}(s)U_1(s) + G_{i2}(s)U_2(s) + \cdots + G_{iM}(s)U_M(s)$$

PRINCIPLE OF SUPERPOSITION

Note: the efficiency of the state-space model:

The state-space model of an Nth order process with P outputs and M inputs requires: N states

A transfer function matrix model of the same process requires PXM separate transfer functions: each possibly of order N

at worst NXPXM integrators
#STATE SPACE IS THE MINIMAL REPRESENTATION

Rearranging equation (3):

identity
$$(sI-A) \times (s) - AX(s) = BU(s) + x(0)$$

Can now solve for the state by premulyiplying both sides of equation (4) by (sl-A)⁻¹:

$$(sI - A)^{-1}(sI - A)\underline{X}(s) = (sI - A)^{-1}(B\underline{U}(s) + \underline{x}(0))$$

Of course we know that: $\underline{Y}(s) = C\underline{X}(s) + D\underline{U}(s)$

Then we get an expression for the output in terms of the input and the initial state vector: X(s)

$$\underline{Y}(s) = C(sI - A)^{-1}(B\underline{U}(s) + \underline{x}(0)) + D\underline{U}(s)$$

which could be written as:

$$\underline{\underline{Y}(s)} = \underbrace{\left(C(sI - A)^{-1}B + D\right)\underline{U}(s)}_{\underline{Y}_{2,1}(s)} + \underbrace{C(sI - A)^{-1}\underline{x}(0)}_{\underline{Y}_{2,1}(s)}$$

This could be represented by the following block diagram:

TRANSFER FUNCTION

MATRIX

$$Y_{z_1}(s)$$
 $G(s)$
 $Y_{z_2}(s)$
 P
 $Y_{z_3}(s)$

Yz, (6)=> zero input response (free) Y25(5) => zero state response (forced)

2.1.1 Determining the Poles of a State-Space Model

First some matrix revision: Purn = adj (R) (NXN)

Hence we can write:

$$(sI - A)^{-1} = \frac{adj(sI - A)}{\det(sI - A)} - \frac{adj(sI - A)}{\det(sI - A)} - \frac{adj(sI - A)}{\det(sI - A)}$$

and the transfer function matrix is:

$$G(s) = C(sI - A)^{-1}B + D = \frac{C \operatorname{adj}(sI - A)B}{\det(sI - A)} + D$$

$$= \frac{C \operatorname{adj}(sI - A)B + \det(sI - A)D}{\det(sI - A)} \quad \text{of Polynomials}$$

$$= \frac{C \operatorname{adj}(sI - A)B + \det(sI - A)D}{\det(sI - A)} \quad \text{of Polynomials}$$

Hence G(s) could be written as: $F_{ij}(s) - sealaa$ polynomial in s $G(s) = \begin{bmatrix} F_{1i}(s) & F_{12}(s) & \cdots & F_{1M}(s) \\ E(s) & E(s) & E(s) \\ \hline F_{2i}(s) & F_{2i}(s) & \cdots & F_{2M}(s) \\ E(s) & E(s) & \cdots & E(s) \\ \hline \vdots & \vdots & \ddots & \vdots \\ F_{p_1}(s) & F_{p_2}(s) & \cdots & F_{p_M}(s) \\ E(s) & E(s) & E(s) \end{bmatrix}$ all TF
elements have denominators

The characteristic equation of each tearifier function of G(s) is the same E(s) = 0

Hence the N poles of the Nth order process are given by the N roots of the characteristic polynomial:

$$\det(sI - A) = 0$$

Tutorial: Determine the transfer function and the poles of:

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} u(t)$$

$$\underline{y}(t) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
3 states 3 roles

2.2 How to Obtain the State-Space Representation from the Transfer Function

Consider for simplicity the SISO Nth order process:

$$\frac{Y(s)}{U(s)} = G(s) = \frac{f_r s^r + f_{r-1} s^{r-1} + \dots + f_0}{s^N + e_{N-1} s^{N-1} + \dots + e_0} = \frac{F(s)}{E(s)}$$

SINCE G(s) IS LINEAD

Therefore we can write:

$$\frac{Z(s)}{U(s)} = \frac{1}{E(s)} = \frac{1}{s^N + e_{N-1}s^{N-1} + \dots + e_0}$$

Which could be written as:

$$s^{N}Z(s) = U(s) - e_{N-1}s^{N-1}Z(s) - \dots - e_{1}sZ(s) - e_{0}Z(s)$$

Could be written in matrix form as:

Taking the inverse Laplace transform yields the Nth order

differential equation:

$$\frac{d^{N}}{dt} = u(t) - e_{N-1} \frac{d^{N-1}}{dt^{N-1}} z(t) \dots - e_{0} z(t)$$

Transform this into N first order equations:

Now assign the state vector:

$$\underline{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_N(t) \end{bmatrix} = \begin{bmatrix} z(t) \\ \dot{z}(t) \\ \vdots \\ z^{(N-1)}(t) \end{bmatrix} \qquad \text{NIMTEGRATORS}$$

Then:

$$\frac{d}{dt}\underline{x}(t) = \frac{d}{dt}\begin{bmatrix} z(t) \\ \dot{z}(t) \\ \vdots \\ z^{(N-1)}(t) \end{bmatrix} = \begin{bmatrix} \dot{z}(t) \\ \ddot{z}(t) \\ \vdots \\ z^{N}(t) \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \\ \vdots \\ 2^{N} \end{bmatrix}$$

But we know that:

$$\frac{d^{N}z(t)}{dt^{N}} = U(s) - e_{N-1} \frac{d^{N-1}z(t)}{dt^{N-1}} - \dots - e_{1} \frac{dz(t)}{dt} - e_{0}z(t)$$

$$= \mathcal{U}(t) - e_{N-1} \times \dots - e_{1} \times 2 - e_{0} \times 1$$

2.2.1 The Control Canonical Form

Hence the SISO Nth order process:

NOQUAL (SEO
$$\frac{Y(s)}{U(s)} = G(s) = \frac{f_r s^r + f_{r-1} s^{r-1} + \dots + f_0}{(s^N) + e_{N-1} s^{N-1} + \dots + e_0} =$$

can be represented by the SISO state-space equations:

where:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \\ -e_0 & -e_1 & -e_2 & -e_3 & \cdots & -e_{N-1} \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \\ -e_0 & -e_1 & -e_2 & -e_3 & \cdots & -e_{N-1} \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 1 \\ -e_1 & -e_2 & -e_3 & \cdots & -e_{N-1} \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 1 \\ -e_1 & -e_2 & -e_3 & \cdots & -e_{N-1} \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 1 & \cdots & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & \cdots & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 &$$

*This is called the CONTROL CANONICAL FORM

$$G(s) = \frac{s+2}{s(s+1)(s+2)} = \frac{1}{1s+2}$$

Modelled as the following control canonical form:

 $\underline{\dot{x}}(t) = \begin{bmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \underline{x}(t) + \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} u(t)$ $y(t) = \begin{bmatrix} \mathbf{2} & \mathbf{1} & \mathbf{0} \end{bmatrix} \underline{x}(t)$

where: $x(t) = [x_1(t) \ x_2(t) \ x_3(t)]^T$

$$\frac{dx_1}{dt} = x_2 \quad \frac{dx_2}{dt} = x_3 \quad \frac{dx_3}{dt} = x_3 = Cx_1 - 3x_2 - 4x_3 + u$$

Y= בא, + אב Could be represented as the following simulation diagram:

BUT: Remember the tutorial question of section 2.1.1:

$$\underline{\dot{x}}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & -1 \\ 0 & 0 & -3 \end{bmatrix} \underline{x}(t) + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \underline{x}(t)$$

INCONSIST ENT ??

TWO STATE SPACE MODELS MAVE THE SAME INPUT/OUTPUT BEHAVIOUR. BUT THERE IS ACTUALLY AN INFINITE NUMBER

First some revision: $(QR)^{-1} = R^{-1}Q^{-1}$

The transfer function: $G_2(s) = (T^{-1})(sI - TAT^{-1})^{-1}TB$ $G_2(s) = C(sIT - TAT^{-1}T)^{-1}TB = C(sIT - TA)^{-1}TB$

which then could be written as:

$$G_2(s) = C(T^{-1}sIT - T^{-1}TA)^{-1}B = C(T^{-1}sIT - A)^{-1}B$$

= $C(sT^{-1}sIT - A)^{-1}B$

Tutorial:

- i) Determine the transfer function: G(s)=Y(s)/U(s)
- ii) Transform the state equations using:

$$T = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

- iii) Determine the transfer function of the transformed process
- iv) Represent each system as a simulation diagram

2.3 State Transformation Theory

Consider the linear MIMO process: Nth onder

$$\frac{\dot{x}(t) = A\underline{x}(t) + B\underline{u}(t)}{\underline{y}(t) = C\underline{x}(t)}$$

$$\begin{array}{c}
CRIGINAL \\
REPRESENTATION
\end{array}$$

Consider an arbitrary transformation of the state vector $\underline{x}(t)$ to a new state vector $\underline{z}(t)$:

new state vector
$$\underline{z}(t)$$
:
$$\underline{z}(t) = T_{\underline{z}}(t)$$

$$= 1 \underline{z}(t) \underline{z}(t) \underline{z}(t)$$
investible
(non-zingulas)

Rewrite the state equations: $\underline{z} = T \underline{z}$

Rewrite the state equations:
$$\dot{2} = T \dot{Z}$$

= AT = + Bu(t)

The transformed state-equations are then:

$$\frac{\dot{z}(t) = TAT^{-1}z(t) + TB\underline{u}(t)}{y(t) = CT^{-1}z(t)} = \frac{\dot{z}}{C1} = C1$$

$$\frac{\dot{z}(t) = TAT^{-1}z(t) + TB\underline{u}(t)}{y(t) = C2}$$

Just to prove that this is the same system, only represented differently internally, consider the transfer functions:

Orig.:
$$G(s) = C(sI - A)^{-1}B$$
 Trans.: $G_2(s) = C_2(sI - A_2)^{-1}B_2$

2.4 Solution of the State-Space Equations

Consider the state-equation:

$$\underline{\dot{x}}(t) = A\underline{x}(t) + B\underline{u}(t)$$

Taking Laplace transforms yields:

$$\underline{X}(s) = (sI - A)^{-1} (B\underline{U}(s) + \underline{x}(0))$$

$$\underline{X}(s) = (sI - A)^{-1} B\underline{u} + (sI - A)^{-1}_{x}(0)$$

Now solve for the state trajectory using the inverse Laplace transform: Z(t)=L-1 ZX(s)}

Laplace transform.
$$\chi(t) = L^2 \cdot Z \chi(s)$$

Revision:
$$L^{-1}\{W(s)V(s)\} = w(t) \otimes v(t)$$

$$= \int_0^t w(t-\tau) \sqrt{\tau} d\tau$$
Now if we define: $\Phi(s) = (sI - A)^{-1}$

Then:

Trite:

$$\underline{X}(s) = \Phi(s)\underline{x}(0) + \Phi(s)B\underline{U}(s)$$

Taking inverse Laplace transforms yields: $\chi(t) = \overline{\phi}(t)\chi(0) + \overline{\xi} W(s)V(s)\xi$ Which yields the solution of the state-trajetory in the timedomain as: 2(+) = \$\varphi(t) x(0) + w(t) \varphi(t)\$

$$\underline{x}(t) = \Phi(t)\underline{x}(0) + \int_{0}^{t} \Phi(t-\tau)B\underline{u}(\tau)d\tau$$

Now if we assume that D=0 then: $y(t) = C\underline{x}(t)$

$$\psi(t) = C \Phi(t)_{2}(0) + \int_{0}^{t} C \Phi(t-r) B u(r) dr$$
But since: $\Phi(s) = (sI - A)^{-1}$

Then: $C\Phi(s)B = C(sI - A)^{-1}B = G(s)$ TRANSFER FUNCTION = $G(E) = L^{-1} \frac{2}{5} C \Phi(E) B \frac{MATRIX}{5} = C \Phi(E) B$ The output equation could be rewritten then as:

RESPONSE

 $\underline{y}(t) = C\Phi(t)\underline{x}(0) + \int_{0}^{t} G(t-\tau)\underline{u}(\tau)d\tau$ $C\Phi(t-\tau)B$

If we just concentrate on the zero-state response

An expression for the ith output y_i(t) is:

$$y_{i}(t) = \int_{0}^{t} g_{i1}(t-\tau)u_{1}(\tau)d\tau + \int_{0}^{t} g_{i2}(t-\tau)u_{2}(\tau)d\tau + \dots + \int_{0}^{t} g_{iM}(t-\tau)u_{M}(\tau)d\tau$$

PRINCIPLE OF SUPERPOSITION

2.5 How to Calculate the Transition Matrix Φ(t)

The Laplace-Transform Method 2.5.1

$$\Phi(t) = L^{-1} \{ (sI - A)^{-1} \}$$

Example:

$$\dot{\underline{x}}(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \underline{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$\mathbf{S} \mathbf{I} - \mathbf{A}$$

$$\Phi(s) = (sI - A)^{-1} = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} s-1 \\ -2 + 3 \end{bmatrix} = \frac{1}{5^2 + 3s + 2} \begin{bmatrix} s+3 & 1 \\ -2 & 5 \end{bmatrix}$$

$$\Phi(t) = L^{-1} \{ \Phi(s) \} = \begin{bmatrix} L^{-1} \left\{ \frac{s+3}{(s+2)(s+1)} \right\} & L^{-1} \left\{ \frac{1}{(s+2)(s+1)} \right\} \\ L^{-1} \left\{ \frac{-2}{(s+2)(s+1)} \right\} & L^{-1} \left\{ \frac{s}{(s+2)(s+1)} \right\} \end{bmatrix}$$

Take each term in turn and use partial fractions

Eg.
$$L^{-1}\left\{\frac{s+3}{(s+2)(s+1)}\right\} = \frac{1}{5} \left\{\frac{2}{5+1} + \frac{1}{5+2}\right\}$$

Repeating for the other three terms

$$\Phi(t) = \begin{pmatrix} 2e^{-t} - e^{-2t} & e^{-t} - e^{-2t} \\ -2e^{-t} + 2e^{-2t} & -e^{-t} + 2e^{-2t} \end{pmatrix}$$

Matrix Exponential Method 2.5.2

Consider first the <u>zero-input</u> response: $u(t) = 0 \forall t$

SOLUTION
$$\underline{x}(t) = \Phi(t)\underline{x}(0)$$

which is of course the solution to:

Revision: Consider first the scalar differential equation:

$$\dot{x}(t) = ax(t)$$

If the initial condition is x(0), then this is solved to yield:

$$\chi(t) = e^{at}\chi(0)$$

Now considering:

$$\dot{\underline{x}}(t) = A\underline{x}(t)$$

Propose the solution:

Proof:

We know the solution is $\underline{x}(t) = \Phi(t)\underline{x}(0)$

Hence we can write:

$$\underline{\ddot{x}}(t) = \frac{d^2}{dt^2} (\Phi(t)\underline{x}(0)) = \frac{d^2\Phi}{dt^2} \underline{x}(0)$$

$$\underline{\underline{x}}(t) = \frac{d^3}{dt^3} (\Phi(t)\underline{x}(0)) = \frac{d^3\Phi}{dt^3} \underline{x}(0)$$

 $d_{3}^{2} = A \Phi(t)$ $d_{1}^{2} = A^{2} \Phi(t)$ $d_{1}^{3} = A^{3} \Phi(t)$

In fact we could write

$$\frac{d^{i}}{dt^{i}}\Phi(t) = A^{i}\Phi(t)$$

This will be true if

e if:

$$\Phi(t) = I + \frac{At}{1!} + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \cdots$$
efine the matrix exponential function as:

We will now define the matrix exponential

$$e^{At} = I + \frac{At}{1!} + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \cdots$$

$$\underline{\dot{x}}(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \underline{\dot{x}}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

Approximate Φ(t) to four terms using the matrix exponential

method:

$$\frac{\mathbf{I}}{e^{-tt}} \approx \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \frac{t}{1!} + \begin{bmatrix} -1 & -2 \\ 2 & 3 \end{bmatrix} \frac{t^2}{2!} + \begin{bmatrix} 2 & 3 \\ -3 & -4 \end{bmatrix} \frac{t^3}{3!}$$

Hence we can write:

Now look of
$$\underline{x} : A\underline{x}$$

$$\underline{x}(t) = \frac{d}{dt} (\Phi(t)\underline{x}(0)) = \frac{d\Phi}{dt} \underline{x}(0)$$

$$\underline{x}(t) = \frac{d^2}{dt^2} (\Phi(t)\underline{x}(0)) = \frac{d^2\Phi}{dt^2} \underline{x}(0)$$

$$\underline{x} : A\underline{x} = A\underline{A}\underline{A}(\underline{L})\underline{x}(0)$$

$$\underline{x} : A\underline{x} : A\underline{x} = A\underline{A}\underline{A}(\underline{L})\underline{x}(0)$$

$$\underline{x} : A\underline{x} :$$

THIS IS AN APPROXIMATION -IT IS ONLY USEFUL IF & IS SMALL

2.5.3 Using Cayley Hamilton Theory

The Cayley Hamilton theory states that any NxN matrix A

$$A = \beta_{i0}I + \beta_{i1}A + \beta_{i2}A^2 + \cdots \beta_{i \text{ N-1}} A^{\text{N-1}}$$

ASIDE A MATRIX OBEYS ITS OWN CHARACTED ISTIC EQUATION

Example: $A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$ $A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$ $A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$ $A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$ $A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$ $A = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ $A = \begin{bmatrix} 0 &$ N=2

$$\Phi(t) = e^{At} = I + \frac{At}{1!} + \frac{A^2t^2}{2!} + \cdots$$

By Cayley Hamilton theory:

$$\begin{array}{ll} \mathbf{i=0} & A^{N} = \beta_{00}I + \beta_{01}A + \beta_{02}A^{2} + \cdots + \beta_{0(N-1)}A^{N-1} \\ \mathbf{i=1} & A^{N+1} = \beta_{10}I + \beta_{11}A + \beta_{12}A^{2} + \cdots + \beta_{1(N-1)}A^{N-1} \\ \mathbf{i=1} & A^{N+2} = \beta_{20}I + \beta_{21}A + \beta_{22}A^{2} + \cdots + \beta_{2(N-1)}A^{N-1} \\ \mathbf{i=0} & A^{N+\infty} = \beta_{\infty0}I + \beta_{\infty1}A + \beta_{\infty2}A^{2} + \cdots + \beta_{\infty(N-1)}A^{N-1} \\ \end{array}$$

Bringing all similar terms in A together: $e^{At} = \alpha_{0}(t)I + \alpha_{1}(t)A + \alpha_{2}(t)A^{2} + \cdots + \alpha_{N-1}(t)A^{N-1}$ $\forall_{0}(t) = I + \beta_{00} \quad t \\ N_{1} + \beta_{10} \quad t \\ \frac{t^{N+1}}{(N+1)!} + \beta_{20} \quad \frac{t^{N+2}}{(N+2)!}$ scalbe X((t) = 1: + 3 + 1 + Bithing + ...

How to find the scalar functions of time:

From a singular variable decomposition of A, then every eigenvalue λ_i of A must also satisfy:

REFLACE
$$\theta^{\lambda_t} = \alpha_0(t) + \alpha_1(t)\lambda_t + \alpha_2(t)\lambda_t^2 + \cdots + \alpha_{N-1}(t)\lambda_t^{N-1}$$

Revision: The eigenvalues of A are the roots of:

If we have N distinct eigenvalues of A: $\lambda_1, \lambda_2, \dots, \lambda_N$

The eigenvalues of A are roots of: 2 eigenvalues 21.22

$$\det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} = 0$$

$$\lambda = 3$$

$$\lambda_1 = 3$$

Since N=2 then we can write: $e^{At} = \alpha_0(t)I + \alpha_1(t)A$ This equation must be obeyed by the eigenvalues of A: FOR THESE

$$e^{3t} = \alpha_0(t) + \alpha_1(t)(3)$$

 $e^{-t} = \alpha_0(t) + \alpha_1(t)(-1)$

By
$$21, 22$$

$$e^{-t} = \alpha_0(t) + \alpha_1(t)(-1)$$

$$(e^{3t} - e^{-t}) = 3d.(t) + d.(t) = 1 + d.(t) = 1 + d.(t) = 1$$

$$e^{4t} - \frac{1}{2}(e^{3t} + 3e^{-t})t + \frac{1}{2}(e^{3t} - e^{-t}) = 2$$

$$d_0(t) = \frac{3t}{2} + \frac{3t}{2}$$

 $e^{At} = \frac{1}{4} (e^{3t} + 3e^{-t})I + \frac{1}{4} (e^{3t} - e^{-t}) \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \quad \text{do(t)} = \frac{e^{3t} 33e^{-t}}{L_{+}}$

$$= \left(\frac{e^{3t} + e^{t}}{2} - \frac{e^{3t} - e^{t}}{2} \right)$$

2.6 The Discrete State Space Equations

Consider the MIMO process:

CONTINUOUS
$$\underline{\dot{x}}(t) = A\underline{x}(t) + B\underline{u}(t)$$

AIME $y(t) = C\underline{x}(t)$

The state trajectory is given by:

$$\underline{x}(t) = \Phi(t)\underline{x}(0) + \int_{0}^{t} \Phi(t-\tau)B\underline{u}(\tau)d\tau$$

Where the initial state at time 0 is $\underline{x}(0)$

Now consider that the initial time is to, with initial state: 2 (60)

Then the trajectory could be rewritten as:
$$\underline{x(t)} = \underbrace{f(t-t_0)}_{x}(t_0) + \int_{t_0}^{t} \underbrace{f(t-t)}_{t_0} Bu(t) dt$$

Consider what happens to the state vector over a time step T: t. = hT

Consider what happens to the state vector over a time step T:
$$t = bT$$

$$\underbrace{t}_{k-t} \underbrace{t}_{k-t} \underbrace{t$$

If we assume that a zero-order hold (ZOH) is utilised:

$$\underline{x}((k+1)T) = \Phi(T)\underline{x}(kT) + \int_{kT}^{(k+1)T} \Phi((k+1)T - \tau)Bd\tau \underline{u}(kT)$$

$$\underline{x}((k+1)T) = \Phi(T)\underline{x}(kT) - \int_{T}^{0} \Phi(\eta)Bd\eta \,\underline{u}(kT)$$

And simplifying the notation:

(HA) T -> (K+1)

$$\underline{x}(k+1) = \Phi(T)\underline{x}(k) + \int_{0}^{T} \Phi(\eta)Bd\eta \,\underline{u}(k)$$

This yields the discrete-time state-space equations:

$$\underline{x}(k+1) = (A_d)\underline{x}(k) + (B_d)\underline{u}(k)$$

$$\underline{y}(k) = \widehat{C}\underline{x}(k)$$

$$B_d = \int \overline{\Phi}(\eta)Bd\eta$$

where:

Tutorial:

$$\begin{split} \frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} &= \begin{bmatrix} 0 & 1 \\ -2 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ y(t) &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \end{split}$$

i) Determine the discrete-time state-space representation, assuming a ZOH, and sample time T=0.2 seconds. ii) If u(t) = 1 $\forall t > 0^+$, $x_1(0) = x_2(0) = 1$, determine and sketch the responses for the states x1, x2, and the output y(t). iii) Use Simulink to compare the responses of both the continuous and discrete process models.

Discrete Transfer Function Matrix 2.6.1

Consider the MIMO discrete time system: $Z = \chi(b+1)^{\frac{1}{2}} = \chi(z)$

$$\underline{x}(k+1) = A_d \underline{x}(k) + B_d \underline{u}(k)$$
$$y(k) = C\underline{x}(k)$$

Taking Z transforms:

$$z\underline{X}(z) = A_d \underline{X}(z) + B_d \underline{U}(z)$$

$$\underline{Y}(z) = C\underline{X}(z)$$

Hence we can write:

Hence we can write.

$$(zT-AL)X(z) = BLU(z)$$
 $X(z) = (zT-AL)^{-1}B_{2}U(z)$

Which yields the following:

Which could be constructed as:

following:

$$\underline{Y}(z) = C(zI - A_d)^{-1}B_d\underline{U}(Z)$$

MATRIX IS: e(ZI-Ad) B

The poles of the discrete time process on the Z plane are given by the roots of the characteristic equation:

$$\det(zI - A_d) = 0$$

2.6.2 Realisation of Digital Filters

Consider the discrete-time transfer function for a SISO process:
$$\frac{Y(z)}{U(z)} = G(z) = \frac{z^{-d} \left(b_1 z^{-1} + b_2 z^{-2} + \dots + b_m z^{-m}\right)}{1 - a_1 z^{-1} - a_2 z^{-2} - \dots - a_n z^{-n}} = \frac{B(z)}{A(z)}$$

This could be constructed as:

$$U(z) \longrightarrow \boxed{\frac{1}{A(z)}} \xrightarrow{Q(z)} B(z) \longrightarrow Y(z)$$

 $(1-a_1z^{-1}-a_2z^{-2}-\cdots-a_nz^{-n})Q(z)=U(z)$ $Q(z)=U(z)+\alpha_1z^{-1}Q(z)+\alpha_2z^{-2}Q(z)+\cdots+\alpha_nz^{-n}Q(z)$ Taking inverse Z transforms yields:

$$q(k) = a_1 q(k-1) + a_2 q(k-2) + \dots + a_n q(k-n) + u(k)$$

For the output equation:
$$\theta(z) = Y(z)$$

$$z^{-d} (b_1 z^{-1} + b_2 z^{-2} + \dots + b_m z^{-m}) Q(z) = Y(z)$$

y(b) = b, q(b-d-1) + b2q(k-d-2) + ... + bmq(k-d-m)

JUST FOR THIS DIAGRAM u(h) (4+m) > N q (k-1) 9 (h-2) ON

Tutorial:

Use this diagram to develop the following control-canonical state-space representation from the transfer function given above:

$$y(k) = \left[\underline{0}_{cl}^T \mid b_1 \quad b_2 \quad \cdots \quad b_m \right] \underline{x}(k)$$