Find My Mates に向けた解法の提案と実機での性能評価 Solving Find My Mates and evaluation on Domestic Standard Robot

矢野 優雅 1* 福田 有輝也 1 小野 智寛 1 田向 権 1,2

Yuga Yano¹, Yukiya Fukuda¹, Tomohiro Ono¹, and Hakaru Tamukoh^{1,2}

1 九州工業大学大学院生命体工学研究科

¹ Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Japan

² ニューロモルフィック AI ハードウェア研究センター

² Research Center for Neuromorphic AI Hardware, Kyushu Institute of Technology, Japan

Abstract: Abstract (English) comes here.....

1 序論

1.1 RoboCup@Home

RoboCup@Home は,ホームサービスロボットの技 術発展を目的に開催されている競技会である,本競技 会では,人間とロボットの協調を目標の一つに掲げてお り, 音声認識や物体認識, ナビゲーションといった動的 環境におけるテストが行われている . そのため , より現 実環境を想定した性能評価をすることができ,非常に注 目を集めているリーグとなっている . RoboCup@Home には, Open Platform, Domestic Standard Platform (DSPL), Social Standard Platform という3つのリー グがある. 私たちの参加している DSPL では, トヨタ 社が開発した Human Support Robot (HSR)を標準 機に採用しテストを行っている.図1に,HSRの外観 と搭載されているデバイスを示す. HSR は移動台車や アームに加えて, RGB-D カメラやマイクが搭載されて おり,認識を通して多様なヒューマンインタラクショ ンを行うことができる.

本研究では,ヒューマンインタラクションの性能をはかる $Find\ My\ Mates$ というテストに向けて,その解法を提案するとともに, $HSR\ Coper Mes$ を行い $RoboCup@Home\ Coper Mes$ での性能評価を行う.

図 1: トヨタ社が開発した HSR

1.2 Find My Mates

本章では,RoboCup@Home で行われる Find My Mates (FMM)というタスクについて述べる.FMM では,4人のゲストが1人のホストを訪れたという状況を想定している.FMM は,1人のホストの家に訪れた4人のゲストをロボットが探し,その場所,名前に加えて人物の特徴をホストに報告するというタスクである.そのため,人物を3次元的に認識する技術と,それぞれのゲストの特徴を抽出する属性推定の技術が必要になる.更に,ロボットは事前にゲストの名前を知らされていないため,音声認識を通してゲストの名前を知る必要がある.

*連絡先:九州工業大学大学院生命体工学研究科人間知能システム工学専攻

〒 808-0135 福岡県北九州市若松区ひびきの 2-4 E-mail: yano.yuuga158@mail.kyutech.jp

2 関連研究

3 提案手法

本章では,FMMで満点を取得する解法と,HSRに実装した機能について述べる.

3.1 FMM に向けた解法

私達は FMM で満点を取得するために,次のような解法を提案する.初めに,ロボットを部屋の中央までナビゲーションを行い,部屋全体を見渡しながら人物認識を行う.ここで,Depth 画像も用いることで,認識した人が map 上のどこにいるのかを算出する.算出した人物の位置情報を基に,各ゲストの正面までナビゲーションを行い,名前を聞く.更に,属性推定の手法を用いて,ゲストの性別を推定する.

最後に,取得したすべての情報(人物の画像,位置, 名前,性別)を集約した1枚の画像を作成し,ヘッド ディスプレイに表示することでホストに伝える.

3.2 音声認識

近年ではスマートフォンなどの普及により、Siri などのクラウドを用いた音声認識の精度が非常に高くなっている.しかし、RoboCup@Home では会場のネットワークが不安定である場合が想定され、安定したクラウド上での音声認識が困難である.また、ネットワークの課題は一般の家庭環境においても想定されるものであり、オフラインでの音声認識技術を利用することは非常に有効である.そこで本研究では、vosk[3] と呼ばれるオフラインの手法を用いて音声認識を行う.

3.2.1 辞書設定

RoboCup@Homeでは,タスクに登場する人物は本名を使用するのではなく,事前に公開している名前リストから毎回ランダムに決定され名前を割り当てられる.この名前リストには,男性用と女性の用の名前が約10個ずつ用意されている.ただし,名前だけで性別の区別ができないようにするために,男性と女性で共通している名前も存在する.今回は,この vosk を使用する際に名前リストをもとにした辞書を作成し,名前の音声認識精度向上を行う.辞書を設定していない場合では,名前を話してもまったく違う単語として認識されることがほとんどであったが,辞書設定をすることで認識率は飛躍的に向上した.

3.3 ノイズ除去

RoboCup@Home は実際の家庭環境を模したフィールドで行われるが、実際の家庭環境と異なる点もある。その一つが、周囲のノイズが大きいことである。RoboCup@Home の他にも、サッカーリーグやレスキューリーグが同時に行われているため、実際の家庭環境では起きないような大きなノイズが発生する。本研究では、音声認識の精度を高めるために、ノイズ除去[4] を音声認識の前段に組み込み、精度を高めている。

3.4 人物認識

本研究では人物認識の手法に Lightweight Human Pose Estimation[5] を用いた.本手法は......... RGB 画像から人物認識を行った後, Depth 画像を参照することで, 3 次元的な位置を推定する.図2に,人物の3次元的な位置推定アルゴリズムを示す.

図 2: 人物位置推定アルゴリズム

3.5 ロケーション報告

図表の参照例:図??,表?? 参考文献の引用例:[?][?]

4 性能評価

5 結論

謝辞

参考文献

- [1] Author, A., Author, B.: JSAI SIGs Conference Paper Format Sample, *International Journal of Examples*, Vol. 19, No. 4, pp. 1–2 (2007)
- [2] 第一著者, 第二著者: 人工知能学会研究会原稿フォーマットサンプル, International Journal of Examples, Vol. 19, No. 4, pp. 1-2 (2007)
- [3] https://alphacephei.com/vosk/
- [4] Sainburg, T., Thielk, M., and Gentner, T. Q., "Finding, visualizing, and quantifying latent structure across diverse animal vocal repertoires, "Public Library of Science PLoS computational biology, Vol.16, No.10, pp.e1008228, 2020.
- [5] Osokin, D. "Real-time 2d multi-person pose estimation on cpu: Lightweight openpose." arXiv preprint arXiv:1811.12004 (2018).