시스템 위험 분석

2018. 03. 00

위험분석기법

FMEA (고장형태와 영향분석)	시스템 위험분석에 이용되는 정성적, 귀납적 분석방법으로서, 간단하고 적은 노력으로 특별한 훈련없이 모든 요소의 고장을 형태별로 분석하여 그 영향을 검토하는 기법이다.
PHA (예비위험분석)	모든 시스템 안전 프로그램에서의 최초단계 해석으로 시스템의 위험요소가 어떤 위험 상태에 있는가를 정성 적으로 평가하는 분석 방법이다.
THERP (인간오류율예측기법)	인간의 과오를 정량적으로 평가하기 위한 기법으로 제품의 결함을 감소시키고, 인간공학적 대책을 수립하는데 사용되는 분석기법이다.
ETA (사건수분석)	초기사상의 고장 영향에 의해 사고나 재해로 발전해 나가는 과정 분석기법으로 설비의 설계 단계에서부터 사용 단계까지의 각 단계에서 위험을 분석하는 귀납적, 정량적 분석 방법이다.
FTA (결함수 분석법)	재해발생을 연역적 방법으로 재해의 원인을 규명하며, 재해의 정량적 예측이 가능한 분석 방법이다.

PHA의 목표를 달성하기 위한 4가지 특징

- 시스템의 모든 주요 사고를 식별하고 사고를 식별하고 사고 를 대략적으로 표현
- 사고요인의 식별
- 사고를 가정한 후 시스템에 생기는 결과를 식별하고 평가
- 식별된 사고를 파국적, 위기적, 한계적, 무시가능의 4가지 카 테고리로 분류

인간실수확률에 대한 추정기법의 종류

- Critical Incident Technique (CIT: 위급사건기법) 면접법
- Human Error Rate Bank (인간실수 자료은행)
- Task Criticality Rating Analysis Method (직무 위급도 분석)
- Technique for Human Error Rate Prediction (THERP)
- Operator Action Tree (OAT: 조작자 행동 나무)
- Fault Tree Analysis (FTA: 간헐적 사건의 결함나무 분석)
- Human Error Simulator (인간실수 모의실험)
- Event Tree Analysis (ETA: 사건수 분석)

가이드 워드(Guide Words)

• 개요

- 위험 및 운전성 검토(HAZOP)에서 근로자들의 창조적 사고를 유도하여 조작방법이나 오동작을 개선하기 위해 사용하는 워드이다.
- 공정변수(Process parameter)와 함께 사용하여 비정상상태(Deviation) 가 일어날 수 있는 원인을 찾고 결과를 예측함과 동시에 대책을 세우는데 유용하다.

• 종류

No/Not/None	설계 의도의 완전한 부정	
Part of	Part of 성질상의 감소	
As well as	As well as 성질상의 증가	
More/Less	양의 증가 혹은 감소로 양과 성질을 함께 표현한다.	
Other than	완전한 대체	
Reverse	설계의도와 정반대	

FTA에 사용되는 사상기호

생략사상	동상사상	기본사상	결함시상	억제게이트	전이기호	부정게이트
\Diamond				출력 조건 일력	\triangle	

FT 작성 및 분석 순서

- 재해(목표사상)의 상정
- 정보의 수집 및 재해원인 규명
- FT도 작성
- 수식화 및 간소화
- 기계와 인간의 고장률 등 자료 수집
- 발생확률 대입하여 재해 확률 산출
- 결과 평가

결함수분석(FTA)에 의한 재해사례의 연구 순서

- 정상(Top) 사상의 설정
- 재해원인 및 요인 가명
- FT 도 작성
- 개선계획의 작성
- 개선안 신시계획

불(Boolean) 대수의 정리

$$\bullet \ A \cdot A = A$$

• A •
$$0 = 0$$

$$\cdot A \cdot \overline{A} = 0$$

•
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

$$\cdot A + \overline{A} \cdot B = A + B$$

•
$$A + A = A$$

•
$$A + 1 = 1$$

•
$$A + \overline{\Lambda} = 1$$

•
$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

•
$$A(A + B) = A + AB = A$$

컷 셋과 패스 셋

- 개요
 - Cut set : 시스템 내에 포함되어 있는 모든 기본 사상이 일어났을 때 정상사상을 일으키는 기본 사상의 집합
 - Path set : 시스템 내에 포함되는 모든 기본 사상이 일어나지 않았을 때 처음으로 정상사상이 일어나지 않은 기본 사상의 집합
- 컷 셋 구하는 법
 - 가장 하단의 단말에서부터 차례대로 논리식으로 표현한다.
 - 이때 OR연결에 해당하는 논리합으로 묶인 것을 구분해서 표현한다.

최소 컷 셋과 최소 패스 셋 구하는 법

- 최소 컷 셋 구하는 법
 - 가장 하단의 단말에서부터 차례대로 논리식으로 표현한다.
 - 중복을 배제하고, 부울 대수 등을 이용하여 간략화한다.
 - 최종적으로 남은 논리식에서 OR연결에 해당하는 논리합으로 묶인 것을 구분해서 표현한다.
- 최소 패스 셋 구하는 법
 - 주어진 FT도에서 AND를 OR로, OR를 AND로 바꾼다.
 - 가장 하단의 단말에서부터 차례대로 논리식으로 표현한다.
 - 중복을 배제하고, 부울 대수 등을 이용하여 간략화한다.
 - 최종적으로 남은 논리식에서 OR연결에 해당하는 논리합으로 묶인 것을 구분해서 표현한다.
 - 이렇게 해서 구해진 최소 컷 셋이 원래 FT도의 최소 패스 셋이 된다.

Safe-T-Score

• 동일한 사업장의 연도별 안전성 비교 방법을 말한다.

• 점수가 +2.0이상이면 과거에 비해 안전성이 심각하게 퇴보했다는 것이 -2.0 ~ +2.0 사이의 값은 과거와 비교하여 큰 차이가 없음을, -2.0 이하의 경우는 과거보다 안전성이 개선되어 졌음을 의미한다.

1. 다음은 위험을 분석하는 방법들에 대한 설명이다. () 안을 채우시오.

(1)	시스템 위험분석에 이용되는 정성적, 귀납적 분석방법으로서, 간단하고 적은 노력으로 특별한 훈련없이 모든 요소의 고장을 형태별로 분석하여 그 영향을 검토하는 기법이다.
(2)	모든 시스템 안전 프로그램에서의 최초단계 해석으로 시스템의 위험요소가 어떤 위험 상태에 있는가를 정성 적으로 평가하는 분석 방법이다.
(3)	인간의 과오를 정량적으로 평가하기 위한 기법으로 제품의 결함을 감소시키고, 인간공학적 대책을 수립하는데 사용되는 분석기법이다.
(4)	초기사상의 고장 영향에 의해 사고나 재해로 발전해 나가는 과정 분석기법으로 설비의 설계 단계에서부터 사용 단계까지의 각 단계에서 위험을 분석하는 귀납적, 정량적 분석 방법이다.
((5))	재해발생을 연역적 방법으로 재해의 원인을 규명하며, 재해의 정량적 예측이 가능한 분석 방법이다.

2. [보기]중에서 인간과오 불안전 분석가능 도구를 고르시오.

[보기]
① FTA ② ETA ③ HAZOP ④ THERP
⑤ CA ⑥ FMEA ⑦ PHA ⑧ MORT

3. hazop 기법에 사용되는 가이드 워드에 관한 의미를 영문으로 쓰시오

설계 의도의 완전한 부정을 의미한다.	(1)
성질상의 감소를 의미한다.	(2)
성질상의 증가를 의미한다.	(3)
양의 증가 혹은 감소로 양과 성질을 함께 표현한다.	(4)
완전한 대책을 의미한다.	((5))
설계의도의 정반대를 의미한다.	(6)

4. FTA에 사용되는 사상기호들이다. () 안을 채우시오

5. 결함수분석 (FTA)에 의한 재해사례의 연구 단계를 표시한 표이다. () 안을 채우시오.

1단계	(①)의 설정	
2단계	(②) 규명	
3단계	(③) 작성	
4단계	개선계획의 작성	
5단계	개선안 실시계획	

6. FT의 각 단계별 내용이 [보기]와 같을 때 올바른 순서대로 번호를 나열하시오

[보기]

- ① 정상사상의 원인이 되는 기초사상을 분석한다.
- ② 정상사상과의 관계는 논리게이트를 이용하여 도해한다.
- ③ 분석현상이 된 시스템을 정의한다.
- ④ 이전단계에서 결정된 사상이 조금 더 전개가 가능한지 검사한다.
- ⑤ 정성·정량적으로 해석 평가한다.
- ⑥ FT를 간소화한다.

- 7. 다음은 FTA에서 사용하는 용어에 대한 설명이다. () 안을 채우시오.
 - ·(①): 시스템 내에 포함되어 있는 모든 기본 사상이 일어났을 때 정상사상을 일으키는 기본 사상의 집합
 - ·(②): 시스템 내에 포함되는 모든 기본 사상이 일어나지 않았을 때처음으로 정상사상이 일어나지 않은 기본 사상의 집합

- 8. 다음 물음에 답하시오.
 - ① 동일한 사업장의 연도별 안전성을 비교하는 방법의 명칭을 쓰시오.
 - ② ①의 값을 구하는 식을 쓰시오.
 - ③ 결과값이 0.2로 나왔을 때 안전성 평과결과는?

Thank you