Министерство образования и науки Российской Федерации Санкт-Петербургский государственный политехнический университет

Институт компьютерных наук и кибербезопасности Высшая школа программной инженерии

Самостоятельная работа №1

Сети и телекоммуникации

Выполнили студенты	
группы 5130904/20101	Коба А.Ю.
	Вдовина С.А.
Преподаватель	Медведев Б.М.

I. Цель

Провести анализ параметров радиосвязи и свойств сигналов сетей 2G, 3G, 4G и Wi-Fi, включая мощность, показатели подключений, скорость передачи данных и задержку, в пределах заданной зоны исследования.

II. Задание

- 1. Установить программное обеспечение Network Cell Info Lite
- 2. Изучить руководство пользователя
- 3. Измерить мощность принимаемого сигнала (RSRP для 4G или RSSI для 3G, 2G, WiFi) в 3 местах (в пределах помещения или в диапазоне 10 метров на улице)
- 4. Записать результаты оценки статистики подключения к сети между 2G, 3G, 4G для контроля включения соответствующего режима работы сети.
- 5. Измерить расстояние до базовой станции по карте
- 6. Измерить скорость передачи данных, задержку (ping) и вариацию задержки (jitter) для одного места измерения мощности сигнала 5 раз с интервалом 2 минуты

III. Обработка результатов

- 1. Рассчитать ожидаемую мощность сигнала по применимым моделям для 2G, 3G, 4G при следующих параметрах:
 - o Частота сигнала определяется как середина используемого в эксперименте диапазона частот Downlink
 - о Мощность передатчика базовой станции сотовой сети 43 дБм.
 - о Коэффициент усиления антенны базовой станции 15 дБ, сотового телефона 0 дБ.
 - о При отсутствии возможности оценить высоту установки антенны базовой станции использовать типовое значение для макросоты или микросоты.
- 2. Рассчитать ожидаемую мощность сигнала для WiFi при следующих параметрах:
 - о Мощность передатчика точки доступа WiFi 20 дБм.
 - о Коэффициент усиления антенны точки доступа и WiFi телефона 0 дБ
- 3. Сравнить результаты расчета мощности сигнала на входе приемника с измерениями
- 4. Определить вероятность нахождения телефона в зоне уверенного приема при условии:
 - о измеренные значения мощности сигнала являются средними значениями случайной величины с нормальным законом распределения и стандартным отклонением, определенным в моделях для 2G, 3G, 4G;
 - о мощность сигнала на входе приемника должна быть больше 100 дБм типового значения чувствительности приёмника, при котором достигается вероятность приема кадра без ошибки не менее 90%.
- 5. Определить среднюю скорость передачи и диапазон изменения скорости для всех режимов работы. Сравнить с максимальной достижимой скоростью передачи и с типовыми значениями из табл. 1.9.
- 6. Определить среднюю задержку (ping) передачи и диапазон изменения задержки для всех режимов работы. Сравнить с типовыми значениями из табл. 1.10. Рассчитать задержку сигнала в радиолинии и определить долю этой величины в общей задержке передачи кадров.

IV. Результаты

1. Ожидаемая мощность

Были проведены измерения в пределах помещения в трех местах, после завершения интервала усреднения записывались результаты

	Мощность							
Режим	Стандарт	Тип	№1 (Дбм)	№2 (Дбм)	№3 (Дбм)			
работы сети								
2 G	EDGE	RSSI	-69	-83	-77			
3 G	HSPA+	RSSI	-81	-93	-81			
4G	LTE+	RSRP	-101	-111	-97			
Wi-Fi	WiFi6	RSSI	-52	-30	-60			

2. Результаты оценки статистики подключения

Для гарантии активации корректного сетевого режима была выполнена проверка настройки нужного режима, а также отсутствие изменений режима работы, управляемых базовой станцией сети, что должно было соответствовать 100%

3. Расстояние до станций

Режим работы сети	№1 (м)	№2 (м)	№3 (м)
2 G	220	225	215
3 G	150	155	145
4G	150	155	145

4. Скоростные измерения передачи данных

	Измерение						
	Режим работы сети	№ 1	№ 2	№3	№4	№5	
2G	Upload (Кбит/с)	56.2 Кбит/с	58.6 Кбит/с	65.8 Кбит/с	57.8 Кбит/с	57.9 Кбит/с	
	Download (Кбит/с)	200.2 Кбит/с	212.6 Кбит/с	207.3 Кбит/с	232.2 Кбит/с	217.6 Кбит/с	

	Ping (MC)	190 мс	197 мс	213 мс	204 мс	194 мс
	Jiter (мc)	23 мс	80 мс	43 мс	34 мс	85 мс
3G	Upload (Мбит/c)	3.9 Мбит/с	1.1 Мбит/с	4.0 Мбит/с	2.1 Мбит/с	2.2 Мбит/с
	Download (Мбит/c)	3.9 Мбит/с	3.3 Мбит/с	4.2 Мбит/с	3.4 Мбит/с	4.0 Мбит/с
	Ping (MC)	42 мс	42 мс	38 мс	53 мс	41 мс
	Jiter (мс)	8 мс	25 мс	21 мс	24 мс	31 мс
4G	Upload (Мбит/с)	19.4 Мбит/с	18.1Мбит/с	13.8 Мбит/с	18.1 Мбит/с	15.2 Мбит/с
	Download (Мбит/c)	11.9 Мбит/с	10.9 Мбит/с	12.4 Мбит/с	13.7 Мбит/с	7.0 Мбит/с
	Ping (MC)	30 мс	42 мс	30 мс	31 мс	36 мс
	Jiter (MC)	8 мс	8 мс	11 мс	8 мс	7 мс

5. Расчет ожидаемой мощности

Требования по расстоянию не выполнены. Честно воспользоваться формулами не могу, но попробую:

Мощность сигнала на входе приемника записывается:

$$P_r = P_t - PL(d) \partial \mathcal{B}_M$$

Вычислим затухание:

• 2G

Воспользуемся формулой для расчета затухания сигнала в условиях города:

$$PL(d) = 46, 3 + 33.9 \cdot \lg(f_c) - 13,82 \cdot \lg(h_{te}) - a(h_{re}) + дБ,$$
 (1.15)

где a(h_{re}) определяется формулой (11),

 $C_{m} = 0 \ д E$ для городов средних размеров и пригородов со средней плотностью деревьев,

 $C_{\rm m} = 3$ дБ для крупных городов.

 $a(h_{re})$ – корректирующий фактор для эффективной высоты мобильной антенны, который является функцией величины зоны обслуживания.

В нашем случае:

$$a(h_{re}) = 3.2(lg(11.75h_{re}))^2 - 4.97, \partial B$$

• 3G

Модель затухания сигнала внутри здания (в логарифмическом масштабе, дБ) представлена в следующей упрощенной версии, основанной на модели COST для помещений.

$$PL(d) = 37 + 30lg(d) + 18.3n^{\frac{(n+2)}{(n+1)}-0.46}, \partial E$$

d – расстояние между датчиком и приемником в метрах, а n – количество этажей на пути

• 4G

В этом случае используем следующую формулу:

$$PL_{3D-UMa-NLOS} = 161.04 - 7.1 \lg(W) + 7.5 \lg(h) - (24.37 - 3.7(h/h_{BS})^2)$$

 $\lg(h_{BS}) + (43.42 - 3.1 \lg(h_{BS})) (\lg(d_{3D}) - 3) + 20 \lg(f_c) -$
 $(3.2 (\lg(17.625))^2 - 4.97) - 0.6(h_{UT} - 1.5) \text{ дБ}, \qquad (1.23)$

где расстояние d_{3D} измеряется в метрах, частота сигнала f_c – в ГГц,

h — средняя высота зданий в диапазоне 5 м < h < 50 м, типовое значение h = 20 м,

W- ширина улицы в диапазоне 5 м < W < 50 м, типовое значение W 20 м,

типовое значение $h_{BS} = 25$ м и 10 м $< h_{BS} < 150$ м, 1.5 м $\le h_{UT} \le 22.5$ м,

• Wi-Fi

Для расстояния от точки меньше 5м:

$$PL(d) = PL_{FS}(d) + x$$
 дБ, при $d \le d_{BP}$

Для расстояния больше 5м:

$$PL(d) = PL_{FS}(d_{BP}) + 3.5*10 log10(d/d_{BP}) + x дБ, при d > d_{BP}$$
, (1.25) где d – расстояние между передатчиком и приемником в метрах,

Затухание сигнала в свободном пространстве найдем по формуле:

$$PL(d) = -20 \cdot lg \left[\frac{\lambda}{4\pi d} \right] - G_t(дБ) - G_r(дБ)$$

при этом коэффициент усиления антенны 0дБ, c = 299792458м/c, $f_c = 5$ ГГц. Мы применяем модель B - cеть малого размера. Мощность сигнала может быть рассчитана по формуле:

$$P_r = P_t - PL(d)$$

 P_t при этом равна 43дБм

Таблица с полученной мощностью:

Режим	No	1	Nº	22	N	<u>0</u> 3
работы сети	Измерение	Расчет	Измерение		Измерение	Расчет
	(дБм)	(дБм)	(дБм)	(дБм)	(дБм)	(дБм)
2G	-69	-52	-83	-87	-77	-85
3 G	-81	-69	-93	-69	-81	-71
4G	-101	-83	-111	-56	-97	-67
Wi-Fi	-52	-46	-30	-47	-60	-46

Расчетные значения мощности сигнала, полученные с помощью стандартных моделей распространения показали ожидаемый порядок величин. Наблюдаемые расхождения между расчетом и измерением (особенно для 3G и 4G) обусловлены влиянием конкретных условий распространения в месте измерения (планировка помещения, материалы стен), не полностью учитываемых усредненными моделями, а также неизвестными точными параметрами базовых станций (реальная высота подвеса, мощность). Наиболее точно модель предсказала уровень сигнала Wi-Fi, что связано с малыми размерами зоны обслуживания и контролируемыми параметрами домашней точки доступа.

- 6. <u>Определение вероятности нахождения телефона в зоне уверенного приема</u> Стандартное отклонение, используемое при расчете, равно 12дБ для 2G и 3G, а для 4G 6дБ соответственно. Мошность сигнала на входе должна быть больше 100дБм
 - 2G Вероятность нахождения телефона в зоне уверенного приема P_{2G} = 0.9759
 - 3G Вероятность нахождения телефона в зоне уверенного приема P_{3G} = 0.8943
 - 4G Вероятность нахождения телефона в зоне уверенного приема P_{4G} = 0.3085

Рассчитанная вероятность нахождения в зоне уверенного приема показала, что условия для сетей 2G и 3G в точках измерения являются отличными (вероятность > 90%). Для сети 4G ситуация хуже: в одной из точек вероятность опускается до \sim 30%, что указывает на нестабильность покрытия и возможные периодические обрывы связи или снижение скорости. Это согласуется с теорией: высокочастотные сигналы (4G Band $7 \sim 2.6$ $\Gamma\Gamma$ ц) сильнее затухают и хуже проникают через стены, чем низкочастотные (2G Band $3 \sim 1.8$ $\Gamma\Gamma$ ц).

7. Определение средней скорости и диапазон изменения скорости для всех режимов Скорости загрузок:

Режим	Измерения					
работы сети	1	2	3	4	5	
2G	0.2	0.21	0.21	0.23	0.22	
3G	3.9	3.3	4.2	3.4	4.0	
4G	11.9	10.9	12.4	13.7	7.0	

Средняя скорость, диапазон изменения, типовые значения:

Режим работы сети	Диапазон (Мбит/с)	Средняя скорость (Мбит/с)	Максимальная скорость	Типовое значение
2G	0.2-0.23	0.214	0.3	0.1
3G	3.3-4.2	3.76	21	4
4G	7-13.7	11.18	150	15

Мы видим, что значения у всех режимов работы сети близки к типовым значениям,ю

8. Определение задержки

Получим среднюю задержку и диапазон ее изменений для всех режимов, а также приведем типовые значения

Режим	Диапазон (мс)	Средняя задержка	Типовое
работы сети		(MC)	значение
2G	190-213	199.6	500
3 G	38-53	43.2	100
4G	30-42	33.8	50

Можно увидеть, что измеренные значения меньше типовых значений Рассчитаем задержку сигнала в радиолинии, как расстояние до вышки, разделенное на скорость света:

Режим работы сети	Расстояние (м)	Задержка сигнала в радиолинии (мс)
2G	220	7.33841e-7
3 G	150	5.00346e-7
4G	150	5.00346e-7

Задержка сигнала в радиоканале составляет незначительную долю от общей задержки передачи для всех типов сетей. Основную часть задержки создают технические устройства сотовых операторов.

V. Вывод

На основе проведенных измерений и расчетов было установлено, что расчетные значения мощности сигнала, хотя и отличаются от измеренных, корректно отражают общую тенденцию более сильного затухания в сетях более высоких поколений. Анализ вероятности нахождения в зоне уверенного приема подтвердил высокую надежность сетей 2G и 3G в зоне исследования и выявил потенциальные проблемы с покрытием сети 4G на частоте 2600 МГц внутри помещения. Основные задержки в сетях формируются на сетевом оборудовании оператора, а не в радиоканале. Полученные практические навыки измерения и анализа параметров сетей связи могут быть использованы для оценки качества обслуживания и планирования сетей.