Representation Theory PSET 1

Nilay Kumar

Last updated: February 12, 2014

Proposition 1. Consider the category of topological abelian groups with continuous homomorphisms between them. Show this category is additive but not abelian.

Proof. We first show that this category is additive, which is straightforward. Let A, B be topological abelian groups, and note that Hom(A, B) is an abelian group, as any two morphisms $f, g : A \to B$ can be added (or subtracted) pointwise to obtain another continuous homomorphism. This operation obviously forms a group (with identity the zero morphism). Note that composition of two morphisms is bilinear, as

$$f(g+h)(x) = f(g(x) + h(x)) = f(g(x)) + f(h(x))$$

and

$$(f+g)(h)(x) = f(h(x)) + g(h(x)).$$

The zero object in this category is the trivial group 0 (topologically a point); clearly $\operatorname{Hom}(0,0) = \{0\}$, the zero morphism. Finally we wish to show the existence of a product. Given topological abelian groups A and B, we define the product as usual to be $A \oplus B = \{(a,b) \mid a \in A, b \in B\}$, where the group operation is performed componentwise. It is clear that $A \oplus B$ is an abelian group; it can be given the usual product topology induced by the topologies of A and B. The new group operation is continuous simply by the componentwise continuity, and similarly for inversion. It is easy to check that $A \oplus B$ satisfies the universal property of products. Similar statements hold for $A \oplus B$ as a coproduct. Hence the category of topological abelian groups is additive.

This category is not abelian, as the following counterexample shows. Consider the group $(\mathbb{R}, +)$ with the usual topology and the group $(\mathbb{Q}, +)$ with the subspace topology. It is clear that \mathbb{R} and \mathbb{Q} , so defined, form topological abelian groups. The inclusion $\iota : \mathbb{Q} \to \mathbb{R}$ is a homomorphism because $\iota(q_1+q_2) = q_1+q_2 = \iota(q_1)+\iota(q_2)$ and continuous by construction of the subspace topology. Suppose the cokernel of ι exists. By definition, the cokernel is a choice of coker ι and ψ making the diagram

commute. But this means that $\psi(q) = 0$ for all $q \in \mathbb{Q}$. As any real number x can be written as $x = \lim_{i \to \infty} x_i$ for some sequence of rationals x_i , continuity implies that $\psi(x) = \psi(\lim_{i \to \infty} x_i) = \lim_{i \to \infty} \psi(x_i) = 0$. Hence ψ is, in fact, the zero map. Notice that if we consider coker ι to be the trivial group 0, it satisfies the universality condition: for any map $\tilde{\psi} : \mathbb{R} \to A$ for some topological abelian group A, we know that $\tilde{\psi}$ is the zero map using the same reasoning as above, and hence $\tilde{\psi}$

clearly factors uniquely through coker ι via $0_{0\to A} \circ \psi$. By the universal property, then, coker $\iota = 0$. Now note that

Image
$$\iota = \ker \psi = \mathbb{R}$$
,

which contradicts the fact that the image of the inclusion of \mathbb{Q} in \mathbb{R} is just \mathbb{Q} . Hence the cokernel of ι cannot exist, and the category of topological abelian groups is not abelian.

Proposition 2. Let $S \to R$ be a homomorphism of rings. It induces the restriction and induction functors between the corresponding categories of modules, $Res: R\text{-}Mod \to S\text{-}Mod$ and $Ind: S\text{-}Mod \to R\text{-}Mod$, where $Ind \ A = R \otimes_S A$ and $Res \ B$ is the module B viewed as an S-module. Show that these functors are adjoint in the sense that $Hom_R(Ind \ A, B) = Hom_S(A, Res \ B)$.

Proof. Recall that for the two functors Res and Ind to be adjoint, there must be a natural bijection for all $A \in S$ -Mod and $B \in R$ -Mod

$$\tau_{AB}$$
: Hom_R(Ind A', B) = Hom_S(A , Res B).

The bijection can be constructed as follows. Given any $\psi \in \operatorname{Hom}_R(\operatorname{Ind} A, B)$ we define a map $\tilde{\psi}: A \to \operatorname{Res} B$ that takes $a \mapsto \psi(1 \otimes a)$. This association is injective, as it depends only on ψ : different ψ yield distinct $\tilde{\psi}$. Conversely, given any map $\tilde{\psi}: A \to \operatorname{Res} B$, we define the map $\psi: \operatorname{Ind} A \to B$ to take $r \otimes_S a \mapsto r \cdot \tilde{\psi}(a)$. This association is also injective, and hence we have a bijection, call it $\tau_{AB}: \operatorname{Hom}_R(\operatorname{Ind} A', B) = \operatorname{Hom}_S(A, \operatorname{Res} B)$.

For this bijection to be natural, for any $f: A \to A', g: B \to B'$ the diagrams

$$\operatorname{Hom}_R(\operatorname{Ind} A',B) \xrightarrow{\operatorname{Ind} f^*} \operatorname{Hom}_R(\operatorname{Ind} A,B)$$

$$\downarrow^{\tau_{A'B}} \qquad \qquad \downarrow^{\tau_{AB}}$$

$$\operatorname{Hom}_S(A',\operatorname{Res} B) \xrightarrow{f^*} \operatorname{Hom}_S(A,\operatorname{Res} B)$$

and

$$\operatorname{Hom}_S(A,\operatorname{Res}\,B) \xrightarrow{\operatorname{Res}\,g^*} \operatorname{Hom}_S(A,\operatorname{Res}\,B')$$

$$\downarrow^{\tau_{AB}^{-1}} \qquad \qquad \downarrow^{\tau_{AB'}^{-1}}$$

$$\operatorname{Hom}_R(\operatorname{Ind}\,A,B) \xrightarrow{g^*} \operatorname{Hom}_R(\operatorname{Ind}\,A,B')$$

must commute. Let us start with the first diagram, on the top left. Given a ψ : Ind $A' \to B$, we want that

$$f^*(\tau_{A'B}(\psi)) = \text{Ind } f^*(\tau_{AB}(\psi)).$$

It is straighforward to see that both of these are equal to a map that takes $a \mapsto \psi(1 \otimes f(a))$. Similarly, given a $\tilde{\psi}: A \to \text{Res } B$, we want that

$$\tau_{AB'}^{-1}(\text{Res }g^*(\psi)) = g^*(\tau_{AB}^{-1}(\psi)).$$

Both of these yield a map that takes $r \otimes a \mapsto r \cdot g(\tilde{\psi}(a))$. Hence the bijection τ_{AB} is natural, and we find that Res and Ind are adjoint functors.

Proposition 3. Show that every module in category \mathcal{O} is finitely generated as a $\mathcal{U}\mathfrak{n}_-$ -module.

Proof. Take some M in \mathcal{O} . We know that M is a finitely-generated $\mathcal{U}\mathfrak{g}$ -module, say with generators v_i . Note that $\mathcal{U}\mathfrak{g} \cdot v_i = \mathcal{U}\mathfrak{n}_- \otimes \mathcal{U}\mathfrak{h} \otimes \mathcal{U}\mathfrak{n} \cdot v_i$ generates M. Furthermore, $\mathcal{U}\mathfrak{n} \cdot v_i$ is a finite dimensional vector space for each i. Acting by $\mathcal{U}\mathfrak{h}$ simply scales, and thus acting by $\mathcal{U}\mathfrak{n}_-$ must generate M from these finite dimensional vector spaces. Hence if e_{j_i} is a basis for $\mathcal{U}\mathfrak{n} \cdot v_i$, the e_{j_i} generate a finite-dimensional $\mathcal{U}\mathfrak{b}$ -submodule of M that generates M as a $\mathcal{U}\mathfrak{n}_-$ -module.

Proposition 4. For $V_1, V_2 \in Obj \mathcal{O}$, consider the tensor product $V_1 \otimes V_2$. Show that it is in \mathcal{O} is one of the factors is finite-dimensional, but not in general.

Proof. Let \mathfrak{g} semisimple have the root decomposition $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}$. Recall that the BGG category \mathcal{O} is defined to be the full subcategory of $\mathcal{U}\mathfrak{g}$ -Mod whose objects M satisfy the conditions

- 1. M is a finitely generated $\mathcal{U}\mathfrak{g}$ -module;
- 2. M is \mathfrak{h} -semisimple, that is, M is a weight module: $M = \bigoplus_{\lambda \in \mathfrak{h}^*} M_{\lambda}$;
- 3. M is locally n-finite: for each $v \in M$, the subspace $U n \cdot v$ of M is finite dimensional.

Now let $V, W \in \text{Obj } \mathcal{O}$. Consider the tensor product $V \otimes W$. We claim that $V \otimes W$ satisfies properties 2 and 3, but will satisfy property 1 only if one of V, W is finite-dimensional. Hence $V \otimes W$ is in category \mathcal{O} if and only if one of V, W is finite-dimensional.

It is fairly obvious that condition 2 is preserved: given $V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda}$ and $W = \bigoplus_{\mu \in \mathfrak{h}^*} W_{\mu}$. Then we can write:

$$V\otimes W=\bigoplus_{\lambda,\mu\in\mathfrak{h}^*}V_\lambda\otimes W_\mu.$$

Since the Lie algebra acts on tensor products as derivations, $V_{\lambda} \otimes W_{\mu}$ is a space with weight $\lambda + \mu$. We can regroup the direct sum to be over all possible $\nu = \lambda + \mu$, which gives us a weight decomposition for $V \otimes W$. Now let us check condition 3. Take some $v \otimes w \in V \otimes W$. The action of some $n \in \mathfrak{n}$ on $v \otimes w$ is as

$$n \cdot (v \otimes w) = n \cdot v \otimes w + v \otimes n \cdot w.$$

Repeated application via the action of Un will annihilate $v \otimes w$, as repeated application of Un annihilates by hypothesis v and w.

Next we show that condition 1 is preserved if one of V or W is finite-dimensional; Let V be finite dimensional. Denote by $\{v_i\}$, $\{w_i\}$ the basis of of V and the generators of W respectively. Let us show that $v_i \otimes w_j$ form a set of generators of $V \otimes W$. Denote by M the submodule of $V \otimes W$ generated by $v_i \otimes w_j$. Clearly $v \otimes w_j \in M$ for any $v \in V$. If we act by some $X \in \mathfrak{g}$, we find that

$$X \cdot (v \otimes w_j) = X \cdot v \otimes w_j + v \otimes X \cdot w_j.$$

The left hand side and the first term on the right are contained in M so $v \otimes X \cdot w_j \in M$. Repeated application of \mathfrak{g} shows that $v \otimes p \cdot w_j \in M$ where p is a PBW monomial, but since the w_j generate W under the application of such monomials, we find that M is in fact all of $V \otimes W$.

Finally, let us show that the tensor product of two infinite-dimensional modules in \mathcal{O} does not lie in \mathcal{O} . Take $\mathfrak{g} = \mathfrak{sl}_2 = \mathbb{C} f \oplus \mathbb{C} h \oplus \mathbb{C} e$ and consider the two Verma modules M_{λ} , M_{μ} for $\lambda \neq \mu$ both not even. The weights of M_{λ} are $\lambda - 2i$ for $i \in \mathbb{Z}$ and $\mu - 2j$ for $j \in \mathbb{Z}$ because there exist vectors $v_{\lambda} \in M_{\lambda}$ and $v_{\mu} \in M_{\mu}$ that generate the respective modules. Consider now $M_{\lambda} \otimes M_{\mu}$. Suppose that $m_i \in M_{\lambda} \otimes M_{\mu}$ are a finite set of generators. The m_i can be written as finite sums of fundamental tensors $v_a \otimes v_b$ (with weight, say, a + b). Now consider the vector $v_x \otimes v_y + \sum_i m_i$, where x + y is not a weight that already appears in any of the m_i and whose difference from such weights is not

a factor of two. This is possible since the Verma modules have infinitely negative weights and λ, μ are not both even. For a concrete example, consider $M_2 \otimes M_3$. Take the vector $v_3 \otimes v_2 + v_1 \otimes v_2$, for example: it which has monomials of weights of 5 and 3. The claim is simply that any finite set of generators m_i will not be able to generate $v_x \otimes v_y + \sum_i m_i$ if x and y are suitably chosen (e.g. if our generating set is $\{v_3 \otimes v_2, v_1 \otimes v_2\}$ then $v_3 \otimes v_2 + v_1 \otimes v_2 + v_1 \otimes v_0$ is not spanned by the set). Hence there is no finite $\mathcal{U}\mathfrak{g}$ -generating set for $M_{\lambda} \otimes M_{\mu}$.

Proposition 5. Consider the action of GL(3) on polynomials of degree d in x_1, x_2, x_3 . Resolve this representation by Verma modules.