Étude d'un mouvement rectiligne uniformément accéléré

Julien Bricka, Romain Blondel 1M8, Septembre 2021

But:

Étudier un mouvement uniformément accéléré (MRUA) sur une table inclinée.

Introduction:

Les principaux outils théoriques que nous allons utiliser sont ceux concernant le MRUA. D'autres choses peuvent néanmoins être nécessaire tel que des règles simples de proportionnalité comme la règle de trois. Il faut malgré tout remarqué qu'une expérience, aussi précise soit-elle, ne reproduira pas les conditions exactes indispensables à la précision de la théorie. Cela reste la plus pratique pour étudier cette expérience.

Donc, en quoi consiste le MRUA. Tout d'abord, les notions principales sont :

- La distance en [m]
- Le temps en [s]
- La vitesse $v = \frac{d}{t} \operatorname{en} \left[\frac{m}{s} \right]$
- L'accélération $a = \frac{v}{t}$ en $\left| \frac{m}{s^2} \right|$

Il faut malgré tout gardé à l'esprit que nous calculons une vitesse ou une accélération moyenne car par définition, la vitesse est la variation de distance ($\Delta x = x_2 - x_1$) dans un intervalle de temps ($\Delta t = t_2 - t_1$) et l'accélération, la variation de vitesse ($\Delta v = v_2 - v_1$) dans le temps. Il est donc plus juste d'écrire:

$$v_m = \frac{\Delta x}{\Delta t}$$
 ainsi que $a_m = \frac{\Delta v}{\Delta t}$

D'où, pour avoir une v ou a en un temps instantané, il faudrait avoir Δt le plus petit possible (ce qui est moins utile pour a dans le MRUA car c'est une constante), soit :

$$v(t) = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} \text{ et } a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t}$$
 donc v est la dérivée (ou la tangente) de x en t et a la dérivée de v en t

De ces notions, on en tire l'équation horaire de la vitesse et de la distance ou de la position :

$$a = constante$$

$$v(t) = v_0 + a \cdot t$$

$$x(t) - x_0 = v_0 \cdot t + \frac{1}{2} \cdot a \cdot t^2 \text{ ou } x(t) = x_0 + v_0 \cdot t + \frac{1}{2} \cdot a \cdot t^2$$

qui forment les bases du MRUA.

<u>Résultats :</u>
<u>Distance des points sur l'image et dans la réalité</u>

<u>point</u>	<u>t[s]</u>	distance [cm]	<u>x[m]</u>
0	0.000	0.0	0.000
1	0.036	0.3	0.008
2	0.071	1.0	0.028
3	0.107	1.2	0.033
4	0.143	1.7	0.047
5	0.179	2.5	0.069
6	0.214	3.3	0.092
7	0.250	4.1	0.114
8	0.286	5.1	0.142
9	0.321	6.1	0.169
10	0.357	7.2	0.200
11	0.393	8.4	0.233
12	0.429	9.6	0.267
13	0.464	11.0	0.306
14	0.500	12.5	0.347
15	0.536	14.0	0.389
16	0.571	15.6	0.433
17	0.607	17.3	0.481
18	0.643	19.1	0.531
19	0.679	21.0	0.583
20	0.714	22.9	0.636
21	0.750	24.9	0.692
22	0.786	27.0	0.750
23	0.821	29.1	0.808

Notes:

- le temps est de + $\frac{1}{28}$ secondes entre 2 points
- 18 [cm] sur l'image valent 50[cm] dans la réalité

Vitesse moyenne en chaque points

<u>point</u>	<u>t[s]</u>	<u>x[m]</u>	$\underline{\mathbf{v}_{\mathrm{m}}}[\mathbf{m}/\mathbf{s}]$
0	0.000	0.000	Données insuffisantes
1	0.036	0.008	0.389
2	0.071	0.028	0.350
3	0.107	0.033	0.272
4	0.143	0.047	0.506
5	0.179	0.069	0.622
6	0.214	0.092	0.622
7	0.250	0.114	0.700
8	0.286	0.142	0.778
9	0.321	0.169	0.817
10	0.357	0.200	0.894
11	0.393	0.233	0.933
12	0.429	0.267	1.011
13	0.464	0.306	1.128
14	0.500	0.347	1.167
15	0.536	0.389	1.206
16	0.571	0.433	1.283
17	0.607	0.481	1.361
18	0.643	0.531	1.439
19	0.679	0.583	1.478
20	0.714	0.636	1.517
21	0.750	0.692	1.594
22	0.786	0.750	1.633
23	0.821	0.808	Données insuffisantes

Notes:

• Afin d'avoir la vitesse moyenne, on a utilisé la formule $v_m = \frac{x_{n+1} - x_{n-1}}{t_{n+1} - t_{n-1}}$ donc cela explique l'absence de la première et dernière cellule

Diagrammes

Vitesse[m/s] en fonction du temps[s]

