

ALPACA

Automated Landmarking through Point-cloud Alignment and Correspondence Analysis

Arthur Porto Louisiana State University

Geometric morphometrics

Suite of analytical techniques aimed at studying shape variation through annotation of landmarks corresponding to anatomical structures of interest

Homo sapiens child

Thin-plate spline deformation grid

Homo sapiens adult

Morphometrics – System agnostic

Genetic contexts e.g., Apert syndrome

Ecological contexts e.g., Leaf shape

Evolutionary contexts
e.g., Tyrannosaur
Schaeffer et al, 2020

Challenges of Geometric Morphometrics

Though popular, geometric morphometrics is nonetheless a labor-intensive process, usually relying on manual annotation of landmarks by a trained expert.

e.g., digitizers

e.g., software

Manual - Time consuming

66 (type 1) + 336 (sliding) + 736 (semi)

Manual - Intra- and inter-observer error

FIGURE 4 Box plot of Procrustes distances within and among observers, methods, and taxa. Darkened bars represent the median value for each group, boxes show the interquartile range (25th to 75th percentile), and the whiskers extend to 1.5 times the interquartile range. Outliers are designated by circles

Automated approaches have advantages

Automated methods improve researchers' ability to sample phenotypes in three ways:

* Increase spatial resolution

* Increase sample size

* Reduce subjectivity (reproducible)

Automated approaches face challenges

* Resources

- Personnel: imaging scientist
- <u>Hardware</u>: automation = as much as 10 CPU/hours per specimen

* System-specificity

e.g. Devine et al 2020

- Algorithms: species-specific and hard to generalize
- Algorithms : hard to deploy

ALPACA

Intuitive

Users with no prior experience in image analysis could use it

Lightweight

Run in minutes (much less time than manual digitization)

General

Can be applied to any structure of interest, given some limitations in the degree of shape variation

Most automated approaches rely on registration techniques

Registration

is the process of finding the optimal transformation to maximize correspondence between a template (model) and a specimen

ALPACA is a bit different

Key aspect

Sparse representation can be used to find for alignment

How sparse? User has control over it

ALPACA pipeline overview

Rigid alignment

Objective: Find the optimal rotation, translation and scaling of the source structure in order to match the target one, starting from arbitrary positions in 3D space

Rigid - Challenge

Main challenge: How to prevent local optima?

Rigid – Our approach

To find the initial rough alignment, ALPACA uses local geometric descriptors (=semantically rich)

Fast Point Feature Histogram

Rigid – Local registration

Refine initial alignment using iterative closest point

Point-to-plane ICP

Deformation

Objective: Find the non-linear geometric transformation necessary to map two images onto a common coordinate system.

Deformation

Challenge: Accurately representing biological deformations, and doing so in a reasonable amount of time

Deformable - CPD

Coherent Point Drift – imposes constraints on the deformation in the form of motion coherence among neighbors

Deformable – Structure specific

The deformable step has two regularization parameters (α and β). These parameters will typically have to be modified to better serve your own needs.

Initial development - Four datasets

Mouse (N=62)

Gorilla

Chimpanzee (N=11)

(N=18)

- Craniofacial bias

(N=23)

Since publishing - Other groups

Cochlea

Ant Mandible

Sclerites

Dentition

Femur

Fish skull

Mouse mandible

Dentists – Pre/Post Surgery

Check our paper for details of validation

Accepted: 11 July 2021

DOI: 10.1111/2041-210X.13689

RESEARCH ARTICLE

ALPACA: A fast and accurate computer vision approach for automated landmarking of three-dimensional biological structures

Arthur Porto^{1,2} | Sara Rolfe^{3,4} | A. Murat Maga^{4,5}

¹Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA

²Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, USA

³Friday Harbor Laboratories, University of Washington, San Juan Island, WA, USA

⁴Center for Development Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA

⁵Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA

Abstract

1. Landmark-based geometric morphometrics has emerged as an essential discipline for the quantitative analysis of size and shape in ecology and evolution. With the ever-increasing density of digitized landmarks, the possible development of a fully automated method of landmark placement has attracted considerable attention. Despite the recent progress in image registration techniques, which could provide a pathway to automation, three-dimensional (3D) morphometric data are still mainly gathered by trained experts. For the most part, the large infrastructure requirements necessary to perform image-based registration, together with its system specificity and its overall speed, have prevented its wide dissemination.

Advantages - ALPACA

Fast – No acceleration (2 min), Acceleration – Slicer (20s), Python (6s)

High-throughput – Can be run on batch to process thousands of specimens on a personal computer in a matter of hours/day

High dimensional - Allows high-dimensional characterization of 3D structures with no significant impact on inference speed

Easily generalizable – Can be used to landmark any 3D structure

User interface – Has a simple 3D Slicer (point-and-click) user interface

Shortcomings - ALPACA

Mostly intraspecific/closely related species – Although it can work in certain interspecific contexts (e.g. apes), it is a pipeline that is most useful when shape deviations are not extreme.

Complete objects – Although robust to localized damage, ALPACA can breakdown when significant portions of the object are missing.

Gorilla mouse?

Missing incisors

Conclusion

* Geometric morphometrics provides tools that are useful for shape analysis and that are system-agnostic

* Automation of landmark data collection is now possible given the explosion in computer vision approaches

*Automation can increase the scale and reproducibility of biological research

Thanks!

Sara Rolfe

Murat Maga

Kelly Diamond

Chi Zhang

Emma Sherratt

Matt Tocheri

SlicerMorph Workshop participants

3D Slicer & Open3D Developers

... and many others

