Outline Introduction Review Finding Paths in Tournaments Summary

The Complexity of Finding Paths in Tournaments

Till Tantau

International Computer Schience Institute Berkeley, California

January 30th, 2004

- Introduction
 - What are Tournaments?
 - What Does "Finding Paths" Mean?
- 2 Review
 - Standard Complexity Classes
 - Standard Complexity Results on Finding Paths
- Finding Paths in Tournaments
 - Complexity of: Does a Path Exist?
 - Complexity of: Construct a Path
 - Complexity of: Construct a Shortest Path

- Introduction
 - What are Tournaments?
 - What Does "Finding Paths" Mean?
- 2 Review
 - Standard Complexity Classes
 - Standard Complexity Results on Finding Paths
- Finding Paths in Tournaments
 - Complexity of: Does a Path Exist?
 - Complexity of: Construct a Path
 - Complexity of: Construct a Shortest Path

- Introduction
 - What are Tournaments?
 - What Does "Finding Paths" Mean?
- 2 Review
 - Standard Complexity Classes
 - Standard Complexity Results on Finding Paths
- Finding Paths in Tournaments
 - Complexity of: Does a Path Exist?
 - Complexity of: Construct a Path
 - Complexity of: Construct a Shortest Path

- Introduction
 - What are Tournaments?
 - What Does "Finding Paths" Mean?
- 2 Review
 - Standard Complexity Classes
 - Standard Complexity Results on Finding Paths
- Finding Paths in Tournaments
 - Complexity of: Does a Path Exist?
 - Complexity of: Construct a Path
 - Complexity of: Construct a Shortest Path

Tournaments Consist of Jousts Between Knights

What is a Tournament?

- A group of knights.
- Every two knights have a joust.
- In every joust one knight wins.

Tournaments Consist of Jousts Between Knights

What is a Tournament?

- A group of knights.
- Every two knights have a joust.
- In every joust one knight wins.

Tournaments Consist of Jousts Between Knights

What is a Tournament?

- A group of knights.
- Every two knights have a joust.
- In every joust one knight wins.

Tournaments are Complete Directed Graphs

Definition

A tournament is a

- directed graph,
- with exactly one edge between any two different vertices,
- without self-loops.

Tournaments Arise Naturally in Different Situations

Applicatins in Ordering Theory

Elements in a set need to be sorted.

The comparison relation may be cyclic, however.

Applicatins in Sociology

Several candidates apply for a position.

Reviewers decide for any two candidates whom they prefer.

AStructural Complexity Theory

A language *L* is given and a selector function *f*. It chooses from any two words the one more likely to be in *f*

Tournaments Arise Naturally in Different Situations

Applicatins in Ordering Theory

Elements in a set need to be sorted

The comparison relation may be cyclic, however.

Applicatins in Sociology

Several candidates apply for a position.

Reviewers decide for any two candidates whom they prefer.

AStructural Complexity Theory

A language *L* is given and a selector function *f*. It chooses from any two words the one more likely to be in *f*

Tournaments Arise Naturally in Different Situations

Applicatins in Ordering Theory

Elements in a set need to be sorted.

The comparison relation may be cyclic, however.

Applicatins in Sociology

Several candidates apply for a position.

Reviewers decide for any two candidates whom they prefer.

AStructural Complexity Theory

A language *L* is given and a selector function *f*. It chooses from any two words the one more likely to be in *f*.

- Introduction
 - What are Tournaments?
 - What Does "Finding Paths" Mean?
- 2 Review
 - Standard Complexity Classes
 - Standard Complexity Results on Finding Paths
- Finding Paths in Tournaments
 - Complexity of: Does a Path Exist?
 - Complexity of: Construct a Path
 - Complexity of: Construct a Shortest Path

Input for Path Finding Problems

• A graph G = (V, E), a source $s \in V$ and a target $t \in V$.

Example Input

Input for REACH

• A graph G = (V, E), a source $s \in V$ and a target $t \in V$.

Variants of Path Finding Problems

Reachability Problem: Is there a path from s to t?

Input for REACH

• A graph G = (V, E), a source $s \in V$ and a target $t \in V$.

Example Input

Example Output

"Yes"

Input for the Construction Problem

• A graph G = (V, E), a source $s \in V$ and a target $t \in V$.

Variants of Path Finding Problems

Reachability Problem: Is there a path from *s* to *t*?

Construction Problem: Construct a path from s to t?

Optimization Problem: Construct a shortest path from s to t

Distance Problem: Is the distance of s and t at most d?

Approximation Problem: Construct a path from s to t of length

Input for the Construction Problem

• A graph G = (V, E), a source $s \in V$ and a target $t \in V$.

Example Input

Input for the Optimization Problem

• A graph G = (V, E), a source $s \in V$ and a target $t \in V$.

Variants of Path Finding Problems

Reachability Problem: Is there a path from *s* to *t*?

Construction Problem: Construct a path from s to t?

Optimization Problem: Construct a shortest path from *s* to *t*.

Distance Problem: Is the distance of s and t at most d?

Approximation Problem: Construct a path from s to t of length

Input for the Optimization Problem

• A graph G = (V, E), a source $s \in V$ and a target $t \in V$.

Example Input

Input for DISTANCE

- A graph G = (V, E), a source $s \in V$ and a target $t \in V$.
- A maximum distance d.

Variants of Path Finding Problems

Reachability Problem: Is there a path from *s* to *t*?

Construction Problem: Construct a path from s to t?

Optimization Problem: Construct a shortest path from *s* to *t*.

Distance Problem: Is the distance of s and t at most d?

Approximation Problem: Construct a path from s to t of length

Input for DISTANCE

- A graph G = (V, E), a source $s \in V$ and a target $t \in V$.
- A maximum distance d.

Example Input

Example Output

"Yes"

Input for the Approximation Problem

- A graph G = (V, E), a source $s \in V$ and a target $t \in V$.
- An approximation ratio r > 1.

Variants of Path Finding Problems

Reachability Problem: Is there a path from s to t?

Construction Problem: Construct a path from s to t?

Optimization Problem: Construct a shortest path from *s* to *t*.

Distance Problem: Is the distance of s and t at most d?

Approximation Problem: Construct a path from s to t of length

approximately their distance.

Input for the Approximation Problem

- A graph G = (V, E), a source $s \in V$ and a target $t \in V$.
- An approximation ratio r > 1.

Example Input

Example Output

Input for the Approximation Problem

- A graph G = (V, E), a source $s \in V$ and a target $t \in V$.
- An approximation ratio r > 1.

Example Input

Example Output

- Introduction
 - What are Tournaments?
 - What Does "Finding Paths" Mean?
- 2 Review
 - Standard Complexity Classes
 - Standard Complexity Results on Finding Paths
- 3 Finding Paths in Tournaments
 - Complexity of: Does a Path Exist?
 - Complexity of: Construct a Path
 - Complexity of: Construct a Shortest Path

The Classes L and NL are Defined via Logspace Turing Machines

input tape (read only), n symbols

3401234*3143223=

work tape (read/write), O(log n) symbols

42

10690836937182 output tape (write only)

The Classes L and NL are Defined via Logspace Turing Machines

input tape (read only), n symbols

3401234*3143223=

work tape (read/write), *O*(log *n*) symbols

42

10690836937182 output tape (write only)

The Classes L and NL are Defined via Logspace Turing Machines

input tape (read only), n symbols 3401234*3143223= work tape (read/write), $O(\log n)$ symbols 42 10690836937182 output tape (write only)

Logspace Turing Machines Are Quite Powerful

Deterministic logspace machines can compute

- addition, multiplication, and even division
- reductions used in completeness proofs,
- reachability in forests.

Non-deterministic logspace machines can compute

- reachability in graphs.
- non-reachability in graphs,
- satisfiability with two literals per clause.

Logspace Turing Machines Are Quite Powerful

Deterministic logspace machines can compute

- addition, multiplication, and even division
- · reductions used in completeness proofs,
- reachability in forests.

Non-deterministic logspace machines can compute

- reachability in graphs,
- non-reachability in graphs,
- satisfiability with two literals per clause.

The Complexity Class Hierarchy

The Circuit Complexity Classes AC⁰, NC¹, and NC² Limit the Circuit Depth

Circuit Class AC⁰

- O(1) depth
- unbounded fan-in

Examples

- ADDITION $\in AC^0$.
- PARITY $\notin AC^0$.

Circuit Class NC¹

- O(log n) depth
- bounded fan-in

Examples

- PARITY $\in \mathbb{NC}^1$.
- MUTIPLY \in NC¹.
- DIVIDE ∈ NC¹.

Circuit Class NC²

- $O(\log^2 n)$ depth
- bounded fan-in

Examples

• $NL \subseteq NC^2$.

The Circuit Complexity Classes AC⁰, NC¹, and NC² Limit the Circuit Depth

Circuit Class AC⁰

- O(1) depth
- unbounded fan-in

Circuit Class NC¹

- O(log n) depth
- bounded fan-in

Circuit Class NC²

- $O(\log^2 n)$ depth
- bounded fan-in

Examples

- ADDITION \in AC⁰.
- PARITY $\notin AC^0$.

Examples

- PARITY \in NC¹.
- MUTIPLY \in NC¹.
- DIVIDE $\in NC^1$.

Examples

• $NL \subseteq NC^2$.

The Circuit Complexity Classes AC⁰, NC¹, and NC² Limit the Circuit Depth

Circuit Class AC0

- O(1) depth
- unbounded fan-in

Circuit Class NC¹

- O(log n) depth
- bounded fan-in

Circuit Class NC²

- $O(\log^2 n)$ depth
- bounded fan-in

Examples

- ADDITION \in AC⁰.
- PARITY $\notin AC^0$.

Examples

- PARITY $\in NC^1$.
- MUTIPLY \in NC¹.
- DIVIDE \in NC¹.

Examples

• $NL \subseteq NC^2$.

The Complexity Class Hierarchy

Outline

- Introduction
 - What are Tournaments?
 - What Does "Finding Paths" Mean?
- 2 Review
 - Standard Complexity Classes
 - Standard Complexity Results on Finding Paths
- Finding Paths in Tournaments
 - Complexity of: Does a Path Exist?
 - Complexity of: Construct a Path
 - Complexity of: Construct a Shortest Path

All Variants of Finding Paths in Directed Graphs Are Equally Difficult

Fact

REACH and DISTANCE are NL-complete.

Corollary

For directed graphs, we can solve

- the reachability problem in logspace iff L = NL.
- the construction problem in logspace iff L = NL.
- the optimization problem in logspace iff L = NL.
- the approximation problem in logspace iff L = NL

All Variants of Finding Paths in Directed Graphs Are Equally Difficult

Fact

REACH and DISTANCE are NL-complete.

Corollary

For directed graphs, we can solve

- the reachability problem in logspace iff L = NL.
- the construction problem in logspace iff L = NL.
- the optimization problem in logspace iff L = NL.
- the approximation problem in logspace iff L = NL.

The Complexity Class Hierarchy

FindingPaths in Forests and Directed Paths is Easy, But Not Trivial

Fact

REACH_{forest} and DISTANCE_{forest} are L-complete.

Fact

REACH_{path} and DISTANCE_{path} are L-complete.

The Complexity Class Hierarchy

Outline

- Introduction
 - What are Tournaments?
 - What Does "Finding Paths" Mean?
- 2 Review
 - Standard Complexity Classes
 - Standard Complexity Results on Finding Paths
- Finding Paths in Tournaments
 - Complexity of: Does a Path Exist?
 - Complexity of: Construct a Path
 - Complexity of: Construct a Shortest Path

Definition of the Tournament Reachability Problem

Definition

Let REACH_{tourn} contain all triples (T, s, t) such that

- T = (V, E) is a tournament and
- there exists a path from s to t.

The Tournament Reachability Problem is Very Easy

Theorem

 $REACH_{tourn} \in AC^{0}$.

Implications

- The problem is "easier" than REACH and even REACH_{path}
- REACH ≤^{AC^U}_m REACH_{tourn}

The Tournament Reachability Problem is Very Easy

Theorem

 $REACH_{tourn} \in AC^{0}$.

Implications

- The problem is "easier" than REACH and even REACH_{path}.
- REACH $\leq_{m}^{AC^{0}}$ REACH_{tourn}.

The Complexity Class Hierarchy

Outline

- Introduction
 - What are Tournaments?
 - What Does "Finding Paths" Mean?
- 2 Review
 - Standard Complexity Classes
 - Standard Complexity Results on Finding Paths
- Finding Paths in Tournaments
 - Complexity of: Does a Path Exist?
 - Complexity of: Construct a Path
 - Complexity of: Construct a Shortest Path

Finding a Shortest Path Is as Difficult as the Distance Problem

Definition

Let DISTANCE_{tourn} contain all tuples (T, s, t, d) such that

- T = (V, E) is a tournament in which
- the distance of s and t is at most d.

The Tournament Distance Problem is Hard

Theorem

DISTANCE_{tourn} is NL-complete.

→ Skip Proof

Corollary

Shortest path in tournaments can be constructed in logarithmic space, iff L = NL.

Corollary

DISTANCE $\leq_{m}^{AC^{0}}$ DISTANCE_{tourn}.

The Tournament Distance Problem is Hard

Theorem

DISTANCE_{tourn} is NL-complete.

→ Skip Proof

Corollary

Shortest path in tournaments can be constructed in logarithmic space, iff L = NL.

Corollary

DISTANCE $\leq_{\mathsf{m}}^{\mathsf{AC}^0}$ DISTANCE_{tourn}.

The Tournament Distance Problem is Hard

Theorem

DISTANCEtourn is NL-complete.

→ Skip Proof

Corollary

Shortest path in tournaments can be constructed in logarithmic space, iff L = NL.

Corollary

DISTANCE $\leq_{m}^{AC^{0}}$ DISTANCE_{tourn}.

- Is input (G, s, t) in REACH?
- Map G to G'.
- Query: $(G', s', t', 3) \in DISTANCE_{tourn}$?

Correctness

- A path in G induces a length-3 path in G'
- A length-3 path in G' induces a path in G'.

Example

 $G: S \leftarrow \longrightarrow t$

- Is input (G, s, t) in REACH?
- Map G to G'.
- Query: $(G', s', t', 3) \in DISTANCE_{tourn}$?

- A path in G induces a length-3 path in G'
- A length-3 path in G' induces

- Is input (G, s, t) in REACH?
- Map G to G'.
- Query: $(G', s', t', 3) \in DISTANCE_{tourn}$?

- A path in G induces a length-3 path in G'
- A length-3 path in G' induces

- Is input (G, s, t) in REACH?
- Map G to G'.
- Query: $(G', s', t', 3) \in \mathsf{DISTANCE}_{\mathsf{tourn}}$?

- A path in G induces a length-3 path in G'
- A length-3 path in G' induces

- Is input (G, s, t) in REACH?
- Map G to G'.
- Query: $(G', s', t', 3) \in DISTANCE_{tourn}$?

- A path in G induces a length-3 path in G'
- A length-3 path in G' induces

- Is input (G, s, t) in REACH?
- Map G to G'.
- Query: $(G', s', t', 3) \in DISTANCE_{tourn}$?

- A path in G induces a length-3 path in G'
- A length-3 path in G' induces
 a path in G'

- Is input (G, s, t) in REACH?
- Map G to G'.
- Query: $(G', s', t', 3) \in DISTANCE_{tourn}$?

- A path in G induces a length-3 path in G[/]
- A length-3 path in G' induces

- Is input (G, s, t) in REACH?
- Map G to G'.
- Query: $(G', s', t', 3) \in DISTANCE_{tourn}$?

- A path in G induces a length-3 path in G'
- A length-3 path in G' induces
 a path in G'

- Is input (G, s, t) in REACH?
- Map G to G'.
- Query: $(G', s', t', 3) \in \mathsf{DISTANCE}_{\mathsf{tourn}}$?

- A path in G induces a length-3 path in G'
- A length-3 path in G' induces

- Is input (G, s, t) in REACH?
- Map G to G'.
- Query: $(G', s', t', 3) \in \mathsf{DISTANCE}_{\mathsf{tourn}}$?

- A path in G induces a length-3 path in G'.
- A length-3 path in G' induces a path in G'.

- Is input (G, s, t) in REACH?
- Map G to G'.
- Query: $(G', s', t', 3) \in \mathsf{DISTANCE}_{\mathsf{tourn}}$?

- A path in G induces a length-3 path in G'.
- A length-3 path in G' induces a path in G'.

- Is input (G, s, t) in REACH?
- Map G to G'.
- Query: $(G', s', t', 3) \in \mathsf{DISTANCE}_{\mathsf{tourn}}$?

- A path in G induces a length-3 path in G'.
- A length-3 path in G' induces a path in G'.

- Is input (G, s, t) in REACH?
- Map G to G'.
- Query: $(G', s', t', 3) \in \mathsf{DISTANCE}_{\mathsf{tourn}}$?

- A path in G induces a length-3 path in G'.
- A length-3 path in G' induces a path in G'.

The Complexity Class Hierarchy

Outline

- Introduction
 - What are Tournaments?
 - What Does "Finding Paths" Mean?
- 2 Review
 - Standard Complexity Classes
 - Standard Complexity Results on Finding Paths
- Finding Paths in Tournaments
 - Complexity of: Does a Path Exist?
 - Complexity of: Construct a Path
 - Complexity of: Construct a Shortest Path

Summary

- First point.
- Second point.
- Third point.

For Further Reading

Topics on Tournaments.

Holt, Rinehart, and Winston, 1968.

Arfst Nickelsen and Till Tantau.

On reachability in graphs with bounded independence number.

In Proc. of COCOON 2002, Springer-Verlag, 2002.

Till Tantau

A logspace approximation scheme for the shortest path problem for graphs with bounded independence number.

In *Proc. of STACS 2004*, Springer-Verlag, 2002. In press.

