Probeklausur zur Experimentalphysik 3

Prof. Dr. L. Oberauer, Prof. Dr. L. Fabbietti Wintersemester 2013/2014 9. Dezember 2013

Zugelassene Hilfsmittel:

- 1 beidseitig handbeschriebenes DIN A4 Blatt
- 1 nichtprogrammierbarer Taschenrechner

Bearbeitungszeit 90 Minuten. Es müssen nicht alle Aufgaben vollständig gelöst sein, um die Note 1,0 zu erhalten.

Aufgabe 1 (3 Punkte)

Berechnen Sie die Fouriertransformierte $E(\omega)$ einer Gaußschen Funktion $E(t)=e^{(-\frac{t^2}{2\sigma^2})}$. Hinweis: $\int_0^\infty e^{-at^2}\cos(xt)dt=\frac{1}{2}\sqrt{\frac{\pi}{a}}e^{-\frac{x^2}{4a}}$

Lösung:

$$E(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-i\omega t} e^{-\frac{t^2}{2\sigma^2}} dt =$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{t^2}{2\sigma^2}} \cos(\omega t) dt - \frac{i}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{t^2}{2\sigma^2}} \sin(\omega t) dt$$
[1,5]

Der zweite Ausdruck entfällt, da die Integration über den gesamten Bereich bei einer ungeraden Funktion 0 ist. Also:

$$E(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{t^2}{2\sigma^2}} \cos(\omega t) dt = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-\frac{t^2}{2\sigma^2}} \cos(\omega t) dt =$$

$$\sqrt{\frac{2}{\pi}} \frac{1}{2} \sqrt{2\sigma^2 \pi} e^{-\frac{\omega^2 2\sigma^2}{4}} =$$

$$\sigma e^{-\frac{\omega^2 \sigma^2}{2}}$$

 $[1,\!5]$

Aufgabe 2 (4 Punkte)

Eine Lichtwelle hat die Frequenz $\nu = 4 \cdot 10^{14} \text{Hz}$ und die Wellenlänge $\lambda = 500 \text{nm}$.

- (a) Wie groß ist die Phasengeschwindigkeit der Welle?
- (b) Welchen Wert hat der Brechungsindex n des Mediums, in dem sich die Welle ausbreitet?
- (c) Wie groß wären die Frequenz ν_0 und die Wellenlänge λ_0 im Vakuum?
- (d) Erklären Sie anschaulich den Unterschied zwischen Phasengeschwindigkeit und Gruppengeschwindigkeit.

Lösung

(a) Die Phasengeschwindigkeit v einer Welle lässt sich mithilfe der Wellenlänge λ und der Frequenz ν ausdrücken als $v = \lambda \cdot \nu = 500 \text{nm} \cdot 400 \text{THz} = 2 \cdot 10^8 \text{m/s}.$

[1]

(b) Die Phasengeschwindigkeit einer Welle in einem Medium ist mit der Vakuumlichtgeschwindigkeit c_0 über den Brechungsindex verknüpft als

$$v = \frac{c_0}{n} \Rightarrow n = \frac{c_0}{v} = \frac{3 \cdot 10^8 \text{m/s}}{2 \cdot 10^8 \text{m/s}} = 1,5$$

[1]

(c) Die Frequenz der Welle ist unabhängig vom Medium, in dem sich die Welle ausbreitete, also $v_0 = \nu = 400 \mathrm{THz}$. Die Wellenlänge ergibt sich aus $c_0 = \lambda_0 \nu_0$ zu

$$\lambda_0 = \frac{c_0}{\nu_0} = 750 \text{nm}$$

[1]

(d) Die Phasengeschwindigkeit beschreibt die Ausbreitungsgeschwindigkeit einer Wellenfront einer ebenen Welle. Die Gruppengeschwindigkeit hingegen beschreibt die Ausbreitungsgeschwindigkeit des Maximums eines Wellenpakets.

[1]

Aufgabe 3 (7 Punkte)

Gelbes Licht hat in Luft die Wellenlänge 600nm . Ein Strahl dieses Lichts trifft unter einem Einfallswinkel $\alpha=64,15^\circ$ auf eine planparallele Glasplatte der Dicke d=3,0cm. Der Brechungswinkel im Glas ist $\beta=36,87^\circ$.

- (a) Skizzieren Sie den Verlauf eines Lichtstrahls, der die Glasplatte durchsetzt und auf der anderen Seite austritt. Bezeichnen Sie die auftretenden Winkel.
- (b) Bestimmen Sie die Frequenz und die Wellenlänge des gelben Lichtes in Glas.
- (c) Bestimmen Sie die Ablenkung s, um die ein Lichtstrahl nach Durchgang durch die Glasplatte gegen seine geradlinige Ausbreitung verschoben ist.

- (d) In einer zweiten Versuchsanordnung soll der Lichtstrahl nach dem Durchgang durch die Glasplatte in das Medium Wasser übertreten (Brechungsindex Wasser $n_{\rm W}=1,3$).
 - Skizzieren Sie in einem zweiten Diagramm den Verlauf eines Lichtstrahls und berechnen Sie den Brechungswinkel γ beim Übergang von Glas nach Wasser.

Lösung

Es sind alle Winkelangagen im folgenden gegen das Lot auf Grenzflächen.

(a) [2]

(b) Für den Brechungs
index gilt das Snelliussche Brechungsgesetz. Für den Übergang zwischen Vakuum/Luft und Glas gilt

$$n_{\text{Vakuum}} \sin \alpha = n_{\text{Glas}} \sin \beta$$

mit $n_{\text{Luft}} \approx n_{\text{Vakuum}} = 1 \text{ und}$

$$n_{\text{Glas}} = \frac{\sin \alpha}{\sin \beta} = \frac{\sin(64, 15^{\circ})}{\sin(36, 87^{\circ})} = \frac{0,900}{0,600} = 1,50$$

[1]

Es gilt $c_0 = f\lambda_0$. Damit gilt

$$f = \frac{c_0}{\lambda_0} = \frac{3 \cdot 10^8 \text{m/s}}{600 \cdot 10^{-9} \text{m}} = 0,50 \cdot 10^{15} \text{s}^{-1} = 5,0 \cdot 10^{14} \text{Hz}$$

Da sich die Frequenz f des Lichts beim Übergang zwischen zwei Medien nicht ändert, gilt für die Lichtgeschwindigkeit in Luft (näherungsweise Vakuum) und Glas $c_{\text{Luft}} = \lambda_{\text{Luft}} f$

und $c_{\text{Glas}} = \lambda_{\text{Glas}} f$. Gleichsetzen liefert

$$\frac{\lambda_{\mathrm{Luft}}}{c_{\mathrm{Luft}}} = \frac{\lambda_{\mathrm{Glas}}}{c_{\mathrm{Glas}}} \Leftrightarrow \lambda_{\mathrm{Glas}} = \frac{c_{\mathrm{Glas}}}{c_{\mathrm{Luft}}} \lambda_{\mathrm{Luft}} = \frac{\lambda_{\mathrm{Luft}}}{n_{\mathrm{Glas}}}$$

Damit erhält man für die Wellenlänge in Glas $\lambda_{\rm Glas}=\frac{\lambda_0}{n_{\rm Glas}}=\frac{600{\rm nm}}{1,50}=400{\rm nm}.$

[1,5]

(c) Nach der Skizze ergeben sich für den Laufweg L im Glas die Winkelbeziehungen

$$\cos \beta = \frac{d}{L} \Leftrightarrow L = \frac{d}{\cos \beta}$$

für den Ablenkungswinkel $(\alpha - \beta)$ im Glas ergibt sich die Winkelbeziehung

$$\sin(\alpha - \beta) = \frac{s}{L}$$

Zusammen ergibt sich

$$s = \frac{d}{\cos \beta} \sin(\alpha - \beta) = \frac{3\text{cm}}{0.8} \cdot 0,4585 = 1,72\text{cm}$$

[1,5]

(d) Hier erhält man

$$\frac{c_{\text{Wasser}}}{c_{\text{Glas}}} = \frac{n_{\text{Glas}}}{n_{\text{W}}} = n_{\text{GW}}$$
$$\frac{\sin \gamma}{\sin \beta} = n_{\text{GW}} = \frac{15}{13}$$
$$\sin \gamma = \frac{15}{13} \cdot 0, 6 = 0,692$$
$$\gamma = 43,82^{\circ}$$

[1]

Aufgabe 4 (4 Punkte)

Unpolarisiertes Licht der Intensität $I_0=I_{0\parallel}+I_{0\perp}$ fällt unter dem Brewster-Winkel auf eine Grenzfläche. Das Reflexionsvermögen R_{\perp} , also der Anteil der reflektierten, senkrecht zur Einfallsebene polarisierten Intensität betrage $R_{\perp}=0,2$.

Wie groß sind die Polarisationsgrade des reflektierten (P_r) und des gebrochenen Lichts (P_t) , in Abhängigkeit des Polarisationsgrads des eingestrahlten Lichts (P_0) ?

Lösung

Für den Reflexionskoeffizienten für parallele Polarisation gilt im Brewsterwinkel $R_{\parallel}=0.$

Für den Polarisationsgrad des reflektierten Lichts gilt also

$$P_r = \frac{I_{0\perp}R_{\perp} - I_{0\parallel}R_{\parallel}}{I_{0\perp}R_{\perp} + I_{0\parallel}R_{\parallel}} = \frac{I_{0\perp} \cdot 0, 2}{I_{0\perp} \cdot 0, 2} = 1$$

Für den Polarisationsgrad des transmittierten Lichts erhält man

$$P_{t} = \frac{I_{0\perp}(1 - R_{\perp}) - I_{0\parallel}(1 - R_{\parallel})}{I_{0\perp}(1 - R_{\perp}) + I_{0\parallel}(1 - R_{\parallel})} = \frac{I_{0\perp} \cdot 0, 8 - I_{0\parallel}}{I_{0\perp} \cdot 0, 8 + I_{0\parallel}}$$
[1]

Zusammen mit der Gleichung für den Polarisationsgrad des einfallenden Lichts

$$P_0 = \frac{I_{0\perp} - I_{0\parallel}}{I_{0\perp} + I_{0\parallel}} \Rightarrow I_{0\perp} = -\frac{I_{0\parallel} \cdot (P_0 + 1)}{P_0 - 1}$$

ergibt sich nach Umformung

$$P_t = \frac{0, 8 \cdot \frac{P_0 + 1}{P_0 - 1} + 1}{0, 8 \cdot \frac{P_0 + 1}{P_0 - 1} - 1} = \frac{1, 8P_0 - 0, 2}{0, 2P_0 - 1, 8}$$

 $[1,\!5]$

Aufgabe 5 (3 Punkte)

Licht fällt senkrecht auf eine Glasplatte mit dem Brechungsindex n=1,5. Der Lichtstrahl wird an beiden Oberflächen gebrochen. Wieviel Prozent der eingestrahlten Energie wird durch die Glasplatte transmittiert? Hinweis: Vernachlässigen Sie Mehrfachreflektionen.

Lösung

Stelle die Intensität des transmittierten Lichts im zweiten Medium dar als

$$I_2 = I_1 - I_{r,1} = I_1 - \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2 I_1$$

[1]

Erhalte nun die Intensität des transmittierten Licht im dritten Medium zu

$$I_3 = I_2 - I_{r,2} = I_2 - \left(\frac{n_2 - n_3}{n_2 + n_3}\right)^2 I_2 = I_2 \left(1 - \left(\frac{n_2 - n_3}{n_2 + n_3}\right)^2\right)$$

Setze die erste in die zweite Gleichung ein und erhalte

$$I_3 = I_1 \left(1 - \left(\frac{n_1 - n_2}{n_1 + n_2} \right)^2 \right) \left(1 - \left(\frac{n_2 - n_3}{n_2 + n_3} \right)^2 \right)$$
[1]

Durch Umstellen erhält man

$$\frac{I_3}{I_1} = \left(1 - \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2\right) \left(1 - \left(\frac{n_2 - n_3}{n_2 + n_3}\right)^2\right) \\
= \left(1 - \left(\frac{1 - 1, 5}{1 + 1, 5}\right)^2\right) \left(1 - \left(\frac{1, 5 - 1}{1, 5 + 1}\right)^2\right) = 0,922 = 92,2\%$$
[1]

Aufgabe 6 (4 Punkte)

Ein Lichtstrahl in Flintglas (n=1,655) trifft auf die Glasoberfläche. Außen auf der Glasoberfläche hat eine unbekannte, durchsichtige Flüssigkeit kondensiert. Der Winkel der Totalreflektion an der Glas-Flüssigkeits-Oberfläche beträgt $53,7^{\circ}$.

- (a) Was ist der Brechungsindex der Flüssigkeit?
- (b) Wenn die Flüssigkeit entfernt wird, welchen minimalen Wert hat dann der Winkel der Totalreflektion an der Glas-Luft Fläche?
- (c) Berechnen Sie, ob mit dem Einfallswinkel aus b) in der Konfiguration mit der Flüssigkeit (wie in Aufgabenteil a)) ein Anteil des Strahls transmittiert wird.

Lösung

Wir wenden das *Snellius*sche Gesetz an den Glas-Flüssigkeit- und Flüssigkeit-Luft-Grenzflächen an, um den Brechungsindex der unbekannten Flüssigkeiten zu bestimmen.

(a) Es gilt

$$\sin \theta_c = \frac{n_{\rm Flüssigkeit}}{n_{\rm Glas}} \Leftrightarrow n_{\rm Flüssigkeit} = n_{\rm Glas} \sin \theta_c = (1,655) \sin(53,7^\circ) = 1,33$$
[1]

(b) Nach Entfernung der Flüssigkeit erhält man

$$\theta_c = \arcsin \frac{1}{n_{Clos}} = 37, 2^{\circ}$$

(c) Wende nun das Snelliussche Gesetz an der Glas-Flüssigkeits-Grenzfläche an:

$$n_{\text{Glas}} \sin \theta_1 = n_{\text{Flüssigkeit}} \sin \theta_2 \Leftrightarrow \theta_2 = \sin^{-1} \left(\frac{n_{\text{Glas}}}{n_{\text{Flüssigkeit}}} \sin \theta_1 \right) = 48,8^{\circ}$$

Da θ_2 auch der Auftreffwinkel auf der Flüssigkeit-Luft-Grenzfläche ist und es größer als der kritische Winkel für totale interne Reflexion an dieser Grenzfläche ist, wird kein Licht austreten.

[2]

Aufgabe 7 (6 Punkte)

In einem Experiment wird unpolarisiertes Licht durch eine Blende auf ein mit Flüssigkeit gefülltes Becken geworfen. Senkrecht zu der Einfallsrichtung wird das Streulicht durch einen Polarisationsfilter P_1 beobachtet. Die Durchlassrichtung des Polarisationsfilters P_1 sei θ_1 (gemessen zur positiven z-Achse in der yz-Ebene) und ist veränderbar.

- (a) Bestimmen Sie die Abhängigkeit der beobachteten Intensität vom Winkel θ_1 nach Durchgang durch den Polarisationsfilter P_1 .
- (b) Nun wird ein weiterer Polarisationsfilter P_2 bei Blende 2 vor das Becken eingebracht. Seine Durchlassrichtung sei zunächst festgehalten bei $\theta_2 = \pi/2$ (relativ zur positiven z-Achse in der xz-Ebene). Bestimmen Sie für diese Anordnung erneut die Abhängigkeit der beobachteten Intensität vom Winkel θ_1 nach Durchgang durch den Polarisationsfilter P_1 .
- (c) Am Ende wird nun auch der Polarisationsfilter P_2 freigeschalten, so dass θ_2 variabel ist. Bestimmen Sie mit den allgemeinen Einstellungen für θ_1 und θ_2 die Abhängigkeit der beobachteten Intensität vom Winkel θ_1 nach Durchgang durch den Polarisationsfilter P_1 .

Geben Sie für alle Ihre Antworten eine kurze, nachvollziehbare Begründung an!

Lösung

(a) In der Flüssigkeit werden Herz'sche Dipole zum Schwingen angeregt. Der Strahl der senkrecht zur Ausbreitungsrichtung ausgekoppelt wird, hat demnach nur noch eine Komponente die parallel zur z-Richtung schwingt. Demnach erhält man nach Durchgang durch den Polarisationsfilter maximale Intensität für $\theta_1=0^\circ$ bzw $\theta_1=180^\circ$ und minimale Intensität

für $\theta_1=90^\circ$ bzw. $\theta_1=270^\circ$. Die Amplitude verhält sich demnach $\sim |\cos\theta_1|$. Für die Intensität gilt damit:

$$I(\theta_1) \propto I_0 \cos^2 \theta_1$$

[2]

(b) Da nun die Herz'schen Dipole nur noch in x-Richtung schwingen, wird kein Licht mehr senkrecht zur Ausbreitungsrichtung ausgekoppelt. Die Beobachtbare Intensität nach P_1 ist somit für alle Winkel θ_1 gleich Null.

$$I(\theta_1) = 0$$

[2]

(c) Der Ausgekoppelte Strahl verhält sich zu θ_2 wie der in Aufgabe (a) beschriebene Strahl zu θ_1 . Er hat somit eine Intensität $\sim \cos^2\theta_2$. Der Polarisationsfilter P_1 wurde schon in Aufgabenteil (a) behandelt, und muss nun noch auf die ausgekoppelte Strahlintensität angewendet werden. Man erhält

$$I(\theta_1, \theta_2) \propto I_0 \cos^2 \theta_1 \cos^2 \theta_2$$
.

[2]

Aufgabe 8 (5 Punkte)

a) Ausgehend von der Gleichung

$$\sin(\frac{\alpha + \delta_{min}}{2}) = n\sin(\frac{\alpha}{2})$$

aus der Vorlesung für die symmetrische Durchstrahlung eines Prismas zeigen Sie, dass für kleine Winkel α folgt, dass $\delta \approx (n-1)\alpha$.

Lösung:

Wenn α sehr klein ist, ist auch δ_{min} sehr klein. Daher wird die angegebene Gleichung durch die Kleinwinkelnäherung zu:

$$\frac{\alpha + \delta_{min}}{2} \approx n \frac{\alpha}{2} \tag{1}$$

und dies ist

$$\delta_{min} \approx (n-1)\alpha \tag{2}$$

[1]

b) Ein Prisma hat einen Brechungsindex von n=1.60 und ist so positioniert, dass einfallendes Licht minimal abgelenkt wird. Finden Sie den minimalen Ablenkwinkel δ_{min} für einen Scheitelwinkel $\alpha=45^{\circ}$.

Lösung:

$$\sin(\frac{\alpha + \delta_{min}}{2}) = n\sin(\frac{\alpha}{2}) \tag{3}$$

$$\sin(\frac{\alpha + \delta_{min}}{2}) = 0.61\tag{4}$$

$$\rightarrow \delta_{min} = 30.51^{\circ} \tag{5}$$

[1]

c) Ein Lichtstrahl fällt durch ein Prisma mit Scheitelwinkel $\alpha=50^\circ$. Durch Drehen des Prismas wird der Strahl unterschiedlich stark abgelenkt; das Minimum liegt hier bei 30° . Bestimmen Sie den Brechungsindex des Prismas.

Lösung:

$$n = \frac{\sin(\frac{\alpha + \delta_{min}}{2})}{\sin(\frac{\alpha}{2})} = 1.52 \tag{6}$$

[1]

d) Ein Lichtstrahl trifft auf einen ebenen Spiegel mit einem Winkel von 45° (siehe Abbildung). Nach der Spiegelung verläuft der Strahl durch ein Prisma mit Brechungsindex n=1.50 und Scheitelwinkel $\alpha=4^{\circ}$. Um welchen Winkel muss der Spiegel gedreht werden, wenn die Gesamtablenkung 90° betragen soll?

Lösung:

Weil α klein ist, kann man das Prisma auch als Keilplatte sehen. Die Ablenkung ist dann gegeben durch

$$\delta = (n-1)\alpha = 2^{\circ} \tag{7}$$

[1]

Der Spiegel selbst bewirkt bereits eine Ablenkung des Strahls um 90°, also muss er gedreht werden, um die 2° Ablenkung auszugleichen. In diesem Fall muss der Spiegel also um $\frac{1}{2}(2^{\circ}) = 1^{\circ}$ gedreht werden; für die Anordnung in der Abbildung gegen den Uhrzeigersinn.

[1]