FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

EIC0010 — FÍSICA I — 1° ANO, 2° SEMESTRE

Nome:

Duração 90 minutos. Respostas certas, 1 ponto, erradas, -0.25. Pode consultar unicamente um formulário de uma folha A4 (frente e verso). Pode usar calculadora ou PC, mas unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros! Use $q = 9.8 \text{ m/s}^2$.

1. A força \vec{F} na figura, horizontal, constante, e com módulo igual a 72 N, faz acelerar os dois blocos sobre uma mesa horizontal. As massas dos blocos são $m_1=6~{\rm kg}~{\rm e}~m_2=18~{\rm kg}$ e o coeficiente de atrito cinético entre os blocos e a mesa é 0.25. Calcule o módulo da força que o bloco do lado esquerdo exerce sobre o bloco do lado direito.

- (**A**) 72.0 N
- (C) 13.5 N
- (E) 54.0 N

- (B) 36.0 N
- (**D**) 9.9 N

Resposta:

- 2. O vetor velocidade de uma partícula, em função do tempo, é: $2t^2 \hat{i} + t^4 \hat{j}$ (unidades SI). Sabendo que a posição da partícula em t = 0 é: $2\hat{i} + 3\hat{j}$, encontre o vetor posição em
 - (A) $2.67 \hat{\imath} + 3.2 \hat{\jmath}$
- **(D)** $4.0\,\hat{\imath} + 4.0\,\hat{\jmath}$
- **(B)** $6.0\,\hat{\imath} + 7.0\,\hat{\jmath}$
- **(E)** $-1.33 \hat{\imath} 2.8 \hat{\jmath}$
- (C) $0.67 \hat{\imath} + 0.2 \hat{\jmath}$

Resposta:

3. A roda na figura tem 12 cm de raio e roda sem deslizar sobre uma superfície plana horizontal. No instante representado na figura, a velocidade do ponto de contacto O é nula e o módulo da velocidade do ponto P é 30 cm/s. Determine o módulo da velocidade do ponto Q, que está à mesma altura do centro C.

- (A) 42.4 cm/s
- (C) 21.2 cm/s
- (E) 28.3 cm/s

- **(B)** 56.6 cm/s
- (**D**) 14.1 cm/s

Resposta:

- 4. Um carro avariado está a ser reboucado por um camião. Através da barra rígida que liga o carro ao camião, o camião exerce uma força \vec{F}_1 sobre o carro e o carro exerce uma força \vec{F}_2 sobre o camião. O camião começa por acelerar desde A até B, mantém velocidade constante entre B e C, e trava entre C e D. Qual das seguintes afirmações é correta?
 - (A) Os sentidos de \vec{F}_1 e \vec{F}_2 são iguais entre B e C.
 - (B) O módulo de \vec{F}_1 é menor que o módulo de \vec{F}_2 entre C e D.

- (C) O módulo de \vec{F}_1 é sempre maior que o módulo de \vec{F}_2
- (**D**) Os sentidos de \vec{F}_1 e \vec{F}_2 são iguais entre C e D.
- (E) Os módulos de \vec{F}_1 e \vec{F}_2 são iguais entre A e B.

Resposta:

- 5. Um disco circular pode rodar livremente à volta do eixo perpendicular ao disco que passa pelo seu centro. Uma força \vec{F} aplicada a uma distância d do eixo produz aceleração angular α . Qual será a aceleração angular se a mesma força for aplicada a uma distância d/2?
 - (A) α
- (C) $\alpha/2$
- (E) 2α

13 de abril de 2016

- (B) 4α
- (D) $\alpha/4$

Resposta:

6. A figura mostra uma caixa cúbica homogénea, com arestas de 240 mm e peso total de 60 N, em repouso sobre uma mesa horizontal. no lado direito da caixa aplica-se uma força horizontal \vec{F} , como mostra a figura. Se o módulo da força \vec{F} for 50 N e o coeficiente de atrito estático com a mesa for suficiente para evitar que a caixa deslize, determine o valor máximo que pode ter a altura h para que a caixa não rode.

- (A) 160 mm
- (C) 180 mm
- (**E**) 150 mm

- (**B**) 200 mm
- (**D**) 144 mm

Resposta:

- 7. A força resultante sobre um objeto de massa 2 kg é $\vec{F} = 1 \hat{\imath} + 9 t \hat{\jmath}$ (SI). Se a velocidade do objeto em t = 0 for $4\hat{i} + 5\hat{j}$ m/s, calcule a velocidade em t = 2 s.
 - (A) $5.0\,\hat{\imath} + 9.0\,\hat{\jmath}$
- **(D)** $1.0\,\hat{\imath} + 9.0\,\hat{\jmath}$
- **(B)** $5.0\,\hat{\imath} + 14.0\,\hat{\jmath}$
- **(E)** $5.0\,\hat{\imath} + 14.0\,\hat{\jmath}$
- (C) $6.0\,\hat{\imath} + 23.0\,\hat{\jmath}$

Resposta:

- **8.** Calcule o ângulo entre os vetores $\vec{a} = 2\hat{i} + 3\hat{j}$ e $\vec{b} = 2\hat{i} \hat{j}$.
 - (A) 82.9°
- (C) 11.3°
- **(E)** 7.13°

- (**B**) 97.1°
- (**D**) 60.3°

Resposta:

9.		na trajetória. Det	ermine a expressão	com velocidade de 12 m/s, inclinada 30° por cima da hori zontal. Desprezando a resistência do ar, calcule a altura		
	(A) $\frac{3s^2}{t}$	(B) $18 s^3$	(D) $3s^3$	máxima atingida		
	t	(B) $18 s^3$ (C) $6 s$	(E) 3 s	(A) 5.2 m (B) 7.1 m	(C) 4.3 m (D) 8.9 m	(E) 10.7 m
	Resposta:			Resposta:	,	
10.	Num gráfico da velocidade em função do tempo, a aceleração tangencial num instante t_1 é igual a:			No instante em que o bloco B desce com velocidade 12 cm/s com que velocidade se desloca o bloco A para cima?		
	(A) A ordenada da curva em t_1 .					
	(B) O ângulo entre a tangente em t_1 o eixo do abcissas.				YM	
	(C) O declive da curva em t_1 .					
	(D) O comprimento da curva entre $t = 0$ e $t = t_1$.			A		
	(E) A área sob a curva entre $t = 0$ e $t = t_1$. Resposta:					
11.	A posição de um po do tempo, é dada p termine a distância t=10.5 s.	pela expressão $s =$	$42t - 3t^2$ (SI). De-		B	
	(A) 147 m	(C) 36.75 m	(E) 257.25 m	(A) 12 cm/s	(D) 4	cm/s
	(B) 183.75 m	(D) 39.75 m		(B) 24 cm/s	(E) 6	•
	Resposta:			(C) 36 cm/s	(L) 0	ciii, b
12.	Calcule o valor da componente tangencial da aceleração dum ponto, num instante em que o vetor velocidade é $2\hat{\imath} + 3\hat{\jmath}$ e o vetor aceleração é $-6\hat{\imath} + 8\hat{\jmath}$ (unidades SI). (A) 9.43 m/s^2 (C) 34.0 m/s^2 (E) 3.33 m/s^2 (B) 12.0 m/s^2 (D) 9.98 m/s^2			Resposta:		
				Um homem empurra um bloco de madeira sobre uma su perfície horizontal. Sobre o bloco está pousado um livro Considerando as forças seguintes:		
				2. Peso do livro.		
13.				A velocidade de uma partícula, em função do tempo, é dada pela expressão: $2t^2 \hat{\imath} + (t^4 + 1) \hat{\jmath}$ (unidades SI). Determine o valor da aceleração tangencial a_t em $t = 1$.		
	Quais dessas forças atuam sobre o bloco de madeira?					
	_			(A) 1 e 2	(C) 1 e 3	(E) 2 e 3
	(A) 4 (B) 2.83	(C) 5.66 (D) 6.59	(E) 8	(B) 1	(D) 1, 2 e 3	
	Resposta:			Resposta:		
14.	Calcule o momento de inércia de uma esfera com raio de 3 centímetros e massa 452 gramas, que roda à volta de um eixo tangente à superfície da esfera, sabendo que o momento de inércia de uma esfera de raio R e massa m à volta do eixo que passa pelo centro é $2 m R^2/5$. (A) $2.91 \times 10^{-4} \text{ kg·m}^2$ (D) $3.25 \times 10^{-4} \text{ kg·m}^2$			Quando um avião acelera desde o repouso, na pista de descolagem, a expressão da sua aceleração tangencial e $4-2.5\times 10^{-5}v^2$ (em unidades SI), onde v é o valor da velocidade do avião. Para conseguir levantar voo, a velocidade mínima do avião no fim da pista deve ser de 250 km/h. Determine o comprimento mínimo, em metros, que deverá ter a pista de descolagem.		
	(A) 2.91×10^{-1} kg (B) 8.14×10^{-5} kg	- ,		(A) 994	(C) 704	(E) 612
	(C) $5.70 \times 10^{-4} \text{ kg}$	()	$3 \times 10^{-4} \text{ kg} \cdot \text{m}^2$	(B) 824	(D) 1251	
	Resposta:			Resposta:		
15.	Num objeto com massa de 0.4 kg atuam unicamente duas forças externas: $4\hat{\imath} - 5\hat{\jmath}$ e $7\hat{\imath} + 10\hat{\jmath}$ (ambas em newtons). Determine o módulo da aceleração do centro de massa do objeto.			Determine o módulo da aceleração de Vénus à volta do Sol, sabendo que a distância média entre o Sol e Vénus é 1.08×10^{11} m e que Vénus demora 224.7 dias a completa uma volta em torno do Sol (admita uma órbita circular).		
	(A) 26.7 m/s^2 (B) 20.1 m/s^2	(C) 40.0 m/s ² (D) 30.2 m/s ²	(E) 60.4 m/s^2	(A) 9.70×10^{-25} (B) 6.52 m/s^2	(E) 3.	$44 \times 10^7 \text{ m/s}^2$ $50 \times 10^4 \text{ m/s}^2$
		, , , , ,		(C) 1.13×10^{-2}	m/s²	
	Resposta:			Resposta:		

Respostas

1. E

6. D

11. B

16. A

2. A

7. E

12. E

17. E

3. C

8. A

13. C

18. C

4. E

9. B

14. C

19. E

5. C

10. C

15. D

20. C