

SYMMETRIC MONOCHROMATIC SUBSETS IN COLORINGS OF THE LOBACHEVSKY PLANE

TARAS BANAKH, ARTEM DUDKO, AND DUŠAN REPOVŠ

ABSTRACT. We prove that for each partition of the Lobachevsky plane into finitely many Borel pieces one of the cells of the partition contains an unbounded centrally symmetric subset.

It follows from [B₁] (see also [BP₁, Theorem 1]) that for each partition of the n -dimensional space \mathbb{R}^n into n pieces one of the pieces contains an unbounded centrally symmetric subset. On the other hand, \mathbb{R}^n admits a partition into $(n+1)$ Borel pieces containing no unbounded centrally symmetric subset. For $n=2$ such a partition is drawn at the picture:

Taking the same partition of the Lobachevsky plane H^2 , we can see that each cell B_i does contain a unbounded centrally symmetric subset (for such a set just take any hyperbolic line lying in B_i). We call a subset S of the hyperbolic plane H^2 *centrally symmetric or else symmetric with respect to a point $c \in H^2$* if $S = f_c(S)$ where $f_c : H^2 \rightarrow H^2$ is the involutive isometry of H^2 assigning to each point $x \in H^2$ the unique point $y \in H^2$ such that c is the midpoint of the segment $[x, y]$. The map f_c is called the *central symmetry* of H^2 with respect to the point c .

The following theorem shows that the Lobachevsky plane differs dramatically from the Euclidean plane from the Ramsey point of view.

Theorem 1. *For any partition $H^2 = B_1 \cup \dots \cup B_m$ of the Lobachevsky plane into finitely many Borel pieces one of the pieces contains an unbounded centrally symmetric subset.*

Proof. We shall prove a bit more: given a partition $H^2 = B_1 \cup \dots \cup B_m$ of the Lobachevsky plane into m Borel pieces we shall find $i \leq m$ and an unbounded subset $S \subset B_i$ symmetric with respect to some point c in an arbitrarily small neighborhood of some finite set $F \subset H^2$ depending only on m .

To define this set F it will be convenient to work in the Poincaré model of the Lobachevsky plane H^2 . In this model the hyperbolic plane H^2 is identified with

1991 *Mathematics Subject Classification.* 05D10, 51M09, 54H09.

the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ on the complex plane and hyperbolic lines are just segments of circles orthogonal to the boundary of \mathbb{D} . Let $\overline{\mathbb{D}} = \{z \in \mathbb{C} : |z| \leq 1\}$ be the hyperbolic plane \mathbb{D} with attached ideal line. For a real number $R > 0$ the set $\mathbb{D}_R = \{z \in \mathbb{C} : |z| \leq 1 - 1/R\}$ can be thought as a hyperbolic disk of increasing radius as R tends to ∞ .

On the boundary of the unit disk \mathbb{D} consider the $(m+1)$ -element set

$$A = \{z \in \mathbb{C} : z^{m+1} = 1\}.$$

For any two distinct points $x, y \in A$ by $[x|y] \in \mathbb{D}$ we denote the “Euclidean” midpoint of the arc in $\overline{\mathbb{D}}$ that connects the points x, y and lies on a hyperbolic line in $H^2 = \mathbb{D}$. Then $F = \{[x|y] : x, y \in A, x \neq y\}$ is a finite subset of cardinality $|F| \leq m(m+1)/2$ in the unit disk \mathbb{D} .

We claim that for any open neighborhood W of F in \mathbb{C} one of the cells of the partition $H^2 = B_1 \cup \dots \cup B_m$ contains an unbounded subset symmetric with respect to some point $c \in W$. To derive a contradiction we assume the converse and conclude that for every point $c \in W$ and every $i \leq m$ the set $B_i \cap f_c(B_i)$ is bounded in H^2 .

For every $n \in \mathbb{N}$ consider the set

$$C_n = \{c \in W : \bigcup_{i=1}^m B_i \cap f_c(B_i) \subset \mathbb{D}_n\}.$$

We claim that C_n is a coanalytic subset of W . The latter means that the complement $W \setminus C_n$ is analytic, i.e., is the continuous image of a Polish space. Observe that

$$W \setminus C_n = \{c \in W : \exists i \leq m \ \exists x \in \mathbb{D} \setminus \mathbb{D}_n, x \in B_i \text{ and } x \in f_c(B_i)\} = \text{pr}_2(E)$$

where $\text{pr}_2 : \mathbb{D} \times \mathbb{D} \rightarrow \mathbb{D}$ is the projection on the second factor and

$$E = \bigcup_{i=1}^m \{(x, c) \in \mathbb{D} \times W : x \in \mathbb{D} \setminus \mathbb{D}_n, x \in B_i \text{ and } f_c(x) \in B_i\}$$

is a Borel subset of $\mathbb{D} \times W$. Being a Borel subset of the Polish space $\mathbb{D} \times W$, the space E is analytic and so is its continuous image $\text{pr}_2(E) = W \setminus C_n$. Then C_n is coanalytic and hence has the Baire property [Ke, 21.6], which means that C_n coincides with an open subset U_n of W modulo some meager set. The latter means that the symmetric difference $U_n \Delta C_n$ is meager (that is, of the first Baire category in W). Since $C_n \subset C_{n+1}$, we may assume that $U_n \subset U_{n+1}$ for all $n \in \mathbb{N}$. Let $U = \bigcup_{n=1}^{\infty} U_n$ and $M = \bigcup_{n=1}^{\infty} U_n \Delta C_n$.

Taking into account that $W = \bigcup_{n=1}^{\infty} C_n$, we conclude that

$$W \setminus U = \bigcup_{n=1}^{\infty} C_n \setminus \bigcup_{n=1}^{\infty} U_n \subset \bigcup_{n=1}^{\infty} C_n \setminus U_n \subset \bigcup_{n=1}^{\infty} C_n \Delta U_n = M$$

which implies that the open set U has meager complement and thus is dense in W .

We claim that $F \subset h^{-1}(U)$ for some isometry h of the hyperbolic plane $H^2 = \mathbb{D}$.

For this consider the natural action

$$\mu : \text{Iso}(H^2) \times \mathbb{D} \rightarrow \mathbb{D}, \quad \mu : (h, x) \mapsto h(x)$$

of the isometry group $\text{Iso}(H^2)$ of the hyperbolic plane $H^2 = \mathbb{D}$. It is easy to see that for every $x \in \mathbb{D}$ the map $\mu_x : \text{Iso}(H^2) \rightarrow \mathbb{D}$, $\mu_x : h \mapsto h(x)$, is continuous and

open (with respect to the compact-open topology on $\text{Iso}(H^2)$). It follows that the set

$$\bigcap_{x \in F} \mu_x^{-1}(W) = \{h \in \text{Iso}(H^2) : f(F) \subset W\}$$

is an open neighborhood of the neutral element of the group $\text{Iso}(H^2)$.

Taking into account that U is open and dense in W and for every $x \in F$ the map $\mu_x : \text{Iso}(H^2) \rightarrow \mathbb{D}$ is open, we conclude that the preimage the set $\mu_x^{-1}(U)$ is open and dense in $\mu_x^{-1}(W) \subset \text{Iso}(H^2)$. Then the intersection $\bigcap_{x \in F} \mu_x^{-1}(U)$, being an open dense subset of $\bigcap_{x \in F} \mu_x^{-1}(W)$, is not empty and hence contains some isometry h having the desired property: $F \subset h^{-1}(U)$. Since F is finite, there is $R \in \mathbb{N}$ with $F \subset h^{-1}(U_R)$. For a complex number $r \in \mathbb{D}$ consider the set $rA = \{rz : z \in A\} \subset \mathbb{D}$ and let

$$F_r = \{[x|y] : x, y \in rA, x \neq y\} \subset \mathbb{D},$$

where $[x|y]$ stands for the midpoint of the hyperbolic segment connecting x and y in H^2 . It can be shown that for any distinct points $x, y \in A$ the “hyperbolic” midpoint $[rx|ry]$ tends to the “Euclidean” midpoint $[x|y]$ as r tends to 1. Such a continuity yields a neighborhood O_1 of 1 such that $F_r \subset h^{-1}(U_R)$ for all $r \in O_1 \cap \mathbb{D}$.

It is clear that for any points $x, y \in A$ the map

$$f_{x,y} : \mathbb{D} \rightarrow \mathbb{D}, f_{x,y} : r \mapsto [rx|ry]$$

is open and continuous. Consequently, the preimage $f_{x,y}^{-1}(h^{-1}(M))$ is a meager subset of \mathbb{D} and so is the union $M' = \bigcup_{x,y \in A} f_{x,y}^{-1}(h^{-1}(M))$. So, we can find a non-zero point $r \in O_1 \setminus M'$ so close to 1 that the set rA is disjoint with the hyperbolic disk $h^{-1}(\mathbb{D}_R)$. For this point r we shall get $F_r \cap h^{-1}(M) = \emptyset$.

The set rA consists of $m + 1$ points. Consequently, some cell $h^{-1}(B_i)$ of the partition $\mathbb{D} = h^{-1}(B_1) \cup \dots \cup h^{-1}(B_m)$ contains two distinct points rx, ry of rA . Those points are symmetric with respect to the point

$$[rx|ry] \in F_r \subset h^{-1}(U_R) \setminus h^{-1}(M).$$

Then the images $a = h(rx)$ and $b = h(ry)$ belong to B_i and are symmetric with respect to the point $c = h([rx|ry]) \in U_R \setminus M \subset C_R$. It follows from the definition of C_R that $\{a, b\} \subset B_i \cap f_c(B_i) \subset \mathbb{D}_R$, which is not the case because $rx, ry \notin h^{-1}(\mathbb{D}_R)$. \square

We do not know if Theorem 1 is true for any finite (not necessarily Borel) partition of the Lobachevsky plane H^2 . For partitions of H^2 into two pieces the Borel assumption is superfluous.

Theorem 2. *There is a subset $T \subset H^2$ of cardinality $|T| = 3$ such that for any partition $H^2 = A_1 \cup A_2$ of H^2 into two pieces either A_1 or A_2 contains an unbounded subset, symmetric with respect to some point $c \in T$.*

Proof. Lemma 1 below allows us to find an equilateral triangle $\triangle c_0c_1c_2$ on the Lobachevsky plane H^2 such that the composition $f_{c_2} \circ f_{c_1} \circ f_{c_0}$ of the symmetries with respect to the points c_0, c_1, c_2 coincides with the rotation on the angle $2\pi/3$ around some point $o \in H^2$. Consequently $(f_{c_2} \circ f_{c_1} \circ f_{c_0})^3$ is the identity isometry of H^2 .

We claim that for any partition $H^2 = A_1 \sqcup A_2$ of the Lobachevsky plane into two pieces one of the pieces contains an unbounded subset symmetric with respect

to some point in the triangle $T = \{c_0, c_1, c_2\}$. Assuming the converse, we conclude that the set

$$B = \bigcup_{c \in T} \bigcup_{i=1}^2 A_i \cap f_c(A_i)$$

is bounded. It follows that two points $x, y \in H^2 \setminus B$, symmetric with respect to a center $c \in T$ cannot belong to the same cell A_i of the partition.

Given a point $x_0 \in H^2$ consider the sequence of points x_1, \dots, x_9 defined by the recursive formula: $x_{i+1} = f_{c_i \bmod 3}(x_i)$. It follows that $x_9 = (f_{c_2} \circ f_{c_1} \circ f_{c_0})^3(x_0) = x_0$. Taking x_0 sufficiently far from the center o of rotation we can guarantee that none of the points x_0, \dots, x_9 belongs to B .

The point x_0 belongs either to A_1 or to A_2 . We lose no generality assuming that $x_0 \in A_2$. Since the points $x_0, x_1 \notin B$ are symmetric with respect to c_0 and $x_0 \in A_2$, we get that $x_1 \in H^2 \setminus A_2 = A_1$. By the same reason x_1, x_2 cannot simultaneously belong to A_1 and hence $x_2 \in A_2$. Continuing in this fashion we conclude that x_i belongs to A_1 for odd i and to A_2 for even i . In particular, $x_9 \in A_1$, which is not possible because $x_9 = x_0 \in A_2$. \square

Lemma 1. *There is an equilateral triangle $\triangle ABC$ on the Lobachevsky plane such that the composition $f_C \circ f_B \circ f_A$ of the symmetries with respect to the points A, B, C coincides with the rotation on the angle $2\pi/3$ around some point O .*

Proof. For a positive real number t consider an equilateral triangle $\triangle ABC$ with side t on the Lobachevsky plane. Let M be the midpoint of the side AB and l be the line through C that is orthogonal to the line CM . Consider also the line p that is orthogonal to the line AB and passes through the point P such that A is the midpoint between P and M . Observe that $|PM| = |AB| = t$ and for sufficiently small t the lines p and l intersect at some point O .

It is easy to see that the composition $f_B \circ f_A$ is the shift along the line AB on the distance $2t$ and hence the image $f_B \circ f_A(O)$ of the point O is the point symmetric to O with respect to the point C . Consequently, $f_C \circ f_B \circ f_A(O) = O$, which means

that the isometry $f_C \circ f_B \circ f_A$ is a rotation of the Lobachevsky plane around the point O on some angle φ_t .

To estimate this angle, consider the point X such that P is the midpoint between X and M . Then $|XM| = 2t$ and consequently, $f_B \circ f_A(X) = M$ while $X' = f_C \circ f_B \circ f_A = f_C(M)$ is the point on the line CM such that C is the midpoint between X' and M . It follows that $|X'X| \leq |XM| + |MX'| < 2t + 2t = 4t$.

Observe that for small t the point X' is near to the point, symmetric to X with respect to O , which means that the angle $\varphi_t = \angle XOX'$ is close to π for t close to zero. On the other hand, for very large t the lines p and l on the Lobachevsky plane do not intersect. So we can consider the smallest upper bound t_0 of numbers t for which the lines l and p meet. For values $t < t_0$ near to t_0 the point O tends to infinity as t tends to t_0 . Since the length of the side XX' of the triangle $\triangle XOX'$ is bounded by $4t_0$ the angle $\varphi_t = \angle XOX'$ tends to zero as O tends to infinity. Since the angle φ_t depends continuous on t and decreases from π to zero as t increases from zero to t_0 , there is a value t such that $\varphi_t = 2\pi/3$. For such t the composition $f_C \circ f_B \circ f_A$ is the rotation around O on the angle $2\pi/3$. \square

SOME COMMENTS AND OPEN PROBLEMS

In contrast to Theorem 1, Theorem 2 is true for the Euclidean plane E^2 even in a stronger form: for any subset $C \subset E^2$ not lying on a line and any partition $E^2 = A_1 \cup A_2$ one of the cells of the partition contains an unbounded subset symmetric with respect to some center $c \in C$, see [B₂].

Having in mind this result let us call a subset C of a Lobachevsky or Euclidean space X *central for (Borel) k-partitions* if for any partition $X = A_1 \cup \dots \cup A_k$ of X into k (Borel) pieces one of the pieces contains an unbounded monochromatic subset $S \subset X$, symmetric with respect to some point $c \in C$. By $c_k(X)$ (resp. $c_k^B(X)$) we shall denote the smallest size of a subset $C \subset X$, central for (Borel) k -partitions of X . If no such a set C exists, then we put $c_k(X) = \infty$ (resp. $c_k^B(X) = \infty$) where ∞ is assumed to be greater than any cardinal number. It follows from the definition that $c_k^B(X) \leq c_k(X)$.

We have a lot of information on the numbers $c_k^B(E^n)$ and $c_k(E^n)$ for Euclidean spaces E^n , see [B₂]. In particular, we known that

- (1) $c_2(E^n) = c_2^B(E^n) = 3$ for all $n \geq 2$;
- (2) $c_3(E^3) = c_3^B(E^3) = 6$;
- (3) $12 \leq c_4^B(E^4) \leq c_4(E^4) \leq 14$;
- (4) $n(n+1)/2 \leq c_n^B(E^n) \leq c_n(E^n) \leq 2^n - 2$ for every $n \geq 3$.

Much less is known on the numbers $c_k^B(H^n)$ and $c_k^B(H^n)$ in the hyperbolic case. Theorem 2 yields the upper bound $c_2(H^2) \leq 3$. In fact, 3 is the exact value of $c_2(H^n)$ for all $n \geq 2$.

Proposition 1. $c_2^B(H^n) = c_2(H^n) = 3$ for all $n \geq 2$.

Proof. The upper bound $c_2(H^n) \leq c_2(H^2) \leq 3$ follows from Theorem 2. The lower bound $3 \leq c_2^B(H^n)$ will follow as soon as for any two points $c_1, c_2 \in H^n$ we construct a partition $H^n = A_1 \cup A_2$ in two Borel pieces containing no unbounded set, symmetric with respect to a point c_i . To construct such a partition, consider the line l containing the points c_1, c_2 and decompose l into two half-lines $l = l_1 \sqcup l_2$. Next, let H be an $(n-1)$ -hyperplane in H^n , orthogonal to the line l . Let S be the unit sphere in H centered at the intersection point of l and H . Let $S = B_1 \cup B_2$

be a partition of S into two Borel pieces such that no antipodal points of S lie in the same cell of the partition. For each point $x \in H^n \setminus l$ consider the hyperbolic plane P_x containing the points x, c_1, c_2 . The complement $P_x \setminus l$ decomposes into two half-planes $P_x^+ \cup P_x^-$ where P_x^+ is the half-plane containing the point x . The plane P_x intersects the hyperplane H by a hyperbolic line containing two points of the sphere S . Finally put

$$A_i = l_i \cup \{x \in H^2 \setminus l : P_x^+ \cap B_i \neq \emptyset\}$$

for $i \in \{1, 2\}$. It is easy to check that $A_1 \sqcup A_2 = H^n$ is the desired partition of the hyperbolic space into two Borel pieces none of which contains an unbounded subset symmetric with respect to one of the points c_1, c_2 . \square

The preceding proposition implies that the cardinal numbers $c_2(H^n)$ are finite.

Problem 1. *For which numbers k, n are the cardinal numbers $c_k(H^n)$ and $c_k^B(H^n)$ finite? Is it true for all $k \leq n$?*

Except for the equality $c_2(E^n) = 3$, we have no information on the numbers $c_k(E^n)$ with $k < n$.

Problem 2. *Calculate (or at least evaluate) the numbers $c_k(E^n)$ and $c_k(H^n)$ for $2 < k < n$.*

In all the cases where we know the exact values of the numbers $c_k(E^n)$ and $c_k^B(E^n)$ we see that those numbers are equal.

Problem 3. *Are the numbers $c_k(E^n)$ and $c_k^B(E^n)$ (resp. $c_k(H^n)$ and $c_k^B(H^n)$) equal for all k, n ?*

Having in mind that each subset not lying on a line is central for 2-partitions of the Euclidean plane, we may ask about the same property of the Lobachevsky plane.

Problem 4. *Is any subset $C \subset H^2$ not lying on a line central for (Borel) 2-partitions of the Lobachevsky plane H^2 ?*

Finally, let us ask about the numbers $c_k^B(H^2)$ and $c_k(H^2)$. Observe that Theorem 1 guarantees that $c_k^B(H^2) \leq \mathfrak{c}$ for all $k \in \mathbb{N}$. Inspecting the proof we can see that this upper bound can be improved to $c_k^B(H^2) \leq \text{non}(\mathcal{M})$ where $\text{non}(\mathcal{M})$ is the smallest cardinality of a non-meager subset of the real line. It is clear that $\aleph_1 \leq \text{non}(\mathcal{M}) \leq \mathfrak{c}$. The exact location of the cardinal $\text{non}(\mathcal{M})$ on the interval $[\aleph_1, \mathfrak{c}]$ depends on axioms of Set Theory, see [Bl]. In particular, the inequality $\aleph_1 = \text{non}(\mathcal{M}) < \mathfrak{c}$ is consistent with ZFC.

Problem 5. *Is the inequality $c_k^B(H^2) \leq \aleph_1$ provable in ZFC? Are the cardinals $c_k^B(H^2)$ countable? finite?*

The latter problem asks if H^2 contains a countable (or finite) central set for Borel k -partitions of the Lobachevsky plane. Inspecting the proof of Theorem 1 we can see that it gives an “approximate” answer to this problem:

Proposition 2. *For any $k \in \mathbb{N}$ there is a finite subset $C \subset H^2$ of cardinality $|C| \leq k(k+1)/2$ such that for any partition $H^2 = B_1 \cup \dots \cup B_k$ of H^2 into k Borel pieces and for any open neighborhood $O(C) \subset H^2$ of C one of the pieces B_i contains an unbounded subset $S \subset B_i$ symmetric with respect to some point $c \in O(C)$.*

Remark 1. For further results and open problems related to symmetry and colorings see the surveys [BP₂], [BVV] and the list of problems [BBGRZ, §4].

REFERENCES

- [B₁] T.Banakh, *Solutions of certain problems of I.V.Protasov from the combinatorics of colorings*, U Svit Matematyky, **3**:1 (1997), 8–11 (in Ukrainian).
- [B₂] T.Banakh, *On a cardinal group invariant related to partition of abelian groups*, Mat. Zametki, 64:3 (1998), 341–350.
- [BBGRZ] T.Banakh, B.Bokalo, I.Guran, T.Radul, M.Zarichnyi, *Problems from the Lviv topological seminar*, in: Open Problems in Topology, II (E.Pearl ed.), Elsevier, 2007, P.655–667.
- [BP₁] T.Banakh, I.Protasov, *Asymmetric partitions of abelian groups*, Mat. Zametki, **66** (1999), 10–19.
- [BP₂] T.Banakh, I.Protasov, *Symmetry and colorings: some results and open problems*, Izv. Gomel Univ. Voprosy Algebry. **4** (2001), 5–16.
- [BVV] T.Banakh, O.Verbitsky, Ya.Vorobets, *A Ramsey treatment of symmetry*, 2000, Electronic J. of Combinatorics. 7:1 (2000) R52. – 25p.
- [Bl] A.Blass, *Combinatorial Cardinal Characteristics of the Continuum*, in: Handbook of Set Theory (M. Foreman, M. Magidor, A. Kanamoried, eds.), Springer, 2007.
- [Ke] A.Kechris, Classical Descriptive Set Theory, Springer, 1995.

(T. Banakh) DEPARTMENT OF MATHEMATICS, LVIV NATIONAL UNIVERSITY, LVIV, UKRAINE,
AND INSTYTUT MATEMATYKI, AKADEMIA ŚWIĘTOKRZYSKA, KIELCE, POLAND

E-mail address: tbanakh@yahoo.com

(A. Dudko) KHARKIV NATIONAL UNIVERSITY, KHARKIV, UKRAINE

E-mail address: artemdudko@rambler.ru

(D. Repovš) INSTITUTE FOR MATHEMATICS, PHYSICS AND MECHANICS, UNIVERSITY OF LJUBLJANA, JADRANSKA 19, LJUBLJANA, SLOVENIA

E-mail address: dusan.repovs@fmf.uni-lj.si