Exercises - semantic tableaux method

Exercise 1.1.

Using the semantic tableaux method decide what type (consistent, inconsistent, valid) of a formula is U_j , $j \in \{1,2,...,8\}$. If U_j , $j \in \{1,2,...,8\}$ is consistent, find all its models.

- 1. $U_1 = (p \land q) \lor (\neg p \land \neg r) \rightarrow (q \leftrightarrow r)$;
- 2. $U_2 = (p \lor q \to r) \to (p \lor r \to q)$;
- 3. $U_3 = (p \land q \rightarrow r) \rightarrow (p \rightarrow r) \land q$;
- 4. $U_4 = (q \lor r \to p) \to (p \to r) \land q$;
- 5. $U_5 = (r \lor q) \lor (p \to \neg r) \to (p \leftrightarrow q)$;
- 6. $U_6 = (r \land q) \lor (\neg p \lor \neg r) \rightarrow (p \leftrightarrow q)$;
- 7. $U_7 = (q \land r \rightarrow p) \rightarrow (p \rightarrow r) \land q$;
- 8. $U_8 = (p \land r) \lor (\neg p \land \neg r) \rightarrow (q \leftrightarrow r)$.

Exercise 1.2.

Prove that the following formulas are tautologies using the semantic tableaux method:

- 1. permutation of the premises law: $(p \rightarrow (q \rightarrow r)) \rightarrow (q \rightarrow (p \rightarrow r))$;
- 2. separation of the premises law: $(p \land q \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))$;
- 3. distribution of ' \rightarrow ' over ' \vee ': $(p \rightarrow q \lor r) \leftrightarrow (p \rightarrow q) \lor (p \rightarrow r)$;
- 4. distribution of ' \vee ' over ' \leftrightarrow ': $(p \vee (q \leftrightarrow r)) \leftrightarrow ((p \vee q) \leftrightarrow (p \vee r))$;
- 5. reunion of the premises law: $(p \rightarrow (q \rightarrow r)) \rightarrow (p \land q \rightarrow r)$;
- 6. distribution of implication: $(p \rightarrow (q \rightarrow r)) \leftrightarrow (p \rightarrow q) \rightarrow (p \rightarrow r)$;
- 7. distribution of ' \rightarrow ' over ' \wedge ': $(p \rightarrow q \land r) \leftrightarrow (p \rightarrow q) \land (p \rightarrow r)$;
- 8. distribution of ' \rightarrow ' over ' \leftrightarrow ': $(p \rightarrow (q \leftrightarrow r)) \leftrightarrow ((p \rightarrow q) \leftrightarrow (p \rightarrow r))$.

Exercise 1.3.

Using the semantic tableaux method, decide if the following logical consequences hold or not. If a logical consequence does not hold find an anti-model of it.

- 1. $p \rightarrow (\neg q \lor r \land s), p, \neg s \models \neg q$
- 2. $\neg p \rightarrow (\neg q \rightarrow r), r \lor q \models (\neg p \rightarrow q) \lor r$
- 3. $p \rightarrow (q \lor r \land s), p, \neg r \models q$
- 4. $p \rightarrow q, r \rightarrow t, p \land r \models q \land t$
- 5. $p \land (q \rightarrow r), q \lor r \models p \rightarrow (q \rightarrow r)$
- 6. $p \rightarrow q \models (r \rightarrow t) \rightarrow (p \land r \rightarrow q \land t)$
- 7. $p \land (q \rightarrow r), q \lor r \models p \rightarrow (q \rightarrow r)$
- 8. $p \rightarrow q \lor r \models (p \rightarrow q) \lor (p \rightarrow r)$

A Computational Approach to Classical Logics and Circuits

Exercise 1.4.

Write all the anti-models of the propositional formulas $U_1,...,U_8$ using the semantic tableaux method.

- 1. $U_1 = (p \lor q) \land \neg r \to p \land q \land r$;
- 2. $U_2 = q \land \neg p \land r \rightarrow \neg p \lor \neg (q \land r)$;
- 3. $U_3 = p \rightarrow (q \land r) \lor q \land \neg p$;
- 4. $U_4 = \neg p \lor (\neg q \lor r) \rightarrow q \lor \neg p \lor r$;
- 5. $U_5 = \neg p \lor (\neg q \lor \neg r) \rightarrow q \land \neg p$;
- 6. $U_6 = \neg p \lor (\neg q \land \neg r) \rightarrow q \land \neg p \land r$;
- 7. $U_7 = \neg p \lor \neg (q \land r) \rightarrow q \land \neg p$;
- 8. $U_8 = \neg(\neg p \lor q) \lor r \to \neg p \lor (\neg q \lor r)$.

Exercise 1.5.

Using the semantic tableaux method, prove the following properties in predicate logic:

- 1. '\(\exists \) semi-distributive over '\(\lambda\)': \(\begin{aligned}
 &\begin{aligned}
 &\begin{aligned}
 &\delta(\exists)(A(x) \lambda B(x)) \rightarrow (\exists)A(x) \lambda (\exists)B(x) \rightarrow (\exists)A(x) \lambda (\exists)A(x) \rightarrow (\exists)A(x) \rightarrow
- 2. ' \forall ' is semi-distributive over ' \forall ': $\models (\forall x)A(x) \lor (\forall x)B(x) \to (\forall x)(A(x) \lor B(x))$ and $\not\models (\forall x)(A(x) \lor B(x)) \to (\forall x)A(x) \lor (\forall x)B(x)$
- 3. '\(\exists \) is semi-distributive over '\(\to \)': $\models ((\exists x) A(x) \to (\exists x) B(x)) \to (\exists x) (A(x) \to B(x)) \text{ and }$ $\models (\exists x) (A(x) \to B(x)) \to ((\exists x) A(x) \to (\exists x) B(x))$
- 4. ' \forall ' is semi-distributive over ' \rightarrow ': $\models (\forall x)(A(x) \rightarrow B(x)) \rightarrow ((\forall x)A(x) \rightarrow (\forall x)B(x)) \text{ and}$ $\models ((\forall x)A(x) \rightarrow (\forall x)B(x)) \rightarrow (\forall x)(A(x) \rightarrow B(x))$
- 5. $\models (\exists x)(A(x) \rightarrow B(x)) \rightarrow ((\forall x)A(x) \rightarrow (\exists x)B(x))$ and $\not\models ((\exists x)A(x) \rightarrow (\exists x)B(x)) \rightarrow (\forall x)(A(x) \rightarrow B(x))$
- 6. '\(\exists\) 'is distributive over '\(\forall\)' \(\exists\) (\(\exists\) (A(x) \(\times\) B(x)) \(\exists\) (\(\exists\) A(x) \(\times\) (\(\exists\) (B(x))
- 7. ' \forall ' is distributive over ' \wedge ' $\models (\forall x)(A(x) \land B(x)) \leftrightarrow (\forall x)A(x) \land (\forall x)B(x)$
- 8. $\vdash (\exists x)(P(x) \to Q(x)) \leftrightarrow ((\forall x)P(x) \to (\exists x)Q(x))$

A Computational Approach to Classical Logics and Circuits

Exercise 1.6.

Check the validity of the following first-order formulas using the semantic tableaux method:

- 1. $U_1 = (\forall x)(\forall y)P(x, y) \leftrightarrow (\exists x)(\forall y)P(x, y)$;
- 2. $U_2 = (\exists x)(\forall y)P(x,y) \leftrightarrow (\forall y)(\exists x)P(x,y)$;
- 3. $U_3 = (\forall y)(\exists x)P(x, y) \leftrightarrow (\exists y)(\exists x)P(x, y)$;
- 4. $U_4 = (\forall x)(\forall y)P(x,y) \leftrightarrow (\forall y)(\forall x)P(x,y)$;
- 5. $U_5 = (\forall y)(\forall x)P(x,y) \leftrightarrow (\forall x)(\exists y)P(x,y)$;
- 6. $U_6 = (\exists y)(\exists x)P(x,y) \leftrightarrow (\exists x)(\forall y)P(x,y)$;
- 7. $U_7 = (\exists y)(\exists x)P(x,y) \leftrightarrow (\forall x)(\exists y)P(x,y)$;
- 8. $U_8 = (\exists y)(\exists x)P(x,y) \leftrightarrow (\exists x)(\exists y)P(x,y)$.

Exercise 1.7.

Using the semantic tableaux method check whether the following logical consequences hold.

- 1. $(\forall x)(P(x) \rightarrow Q(x)), (\forall x)P(x) \models (\forall x)Q(x)$;
- 2. $(\forall x)(\forall y)(Q(x,y) \rightarrow P(x,y)), (\forall z)Q(z,z) \models (\forall x)P(x,x)$;
- 3. $P(a), (\forall x)(P(x) \rightarrow P(f(x))) \models (\forall x)P(x)$;
- 4. $(\exists x)(\forall y)(P(x,y) \rightarrow R(x)), (\forall x)(\forall y)P(x,y) \models (\exists z)R(z)$;
- 5. $(\forall x)(P(x) \rightarrow Q(x)), (\exists x)P(x) \models (\exists x)Q(x);$
- 6. $(\forall x)(\exists y)(P(x,y) \rightarrow Q(x,y)), (\exists z)P(z,z) \models (\forall x)Q(x,x);$
- 7. $(\exists x)(\forall y)(Q(x,y) \rightarrow P(x,y)), (\forall z)Q(z,z) \models (\exists x)P(x,x);$
- 8. $(\forall x)(\forall y)(P(x,y) \rightarrow P(y,x)) \models (\forall x)P(x,x)$.