Receiver Operating Characteristic (ROC) Curves

Statistics for proteomics

William E Fondrie
University of Washington

https://willfondrie.com/b)

What are receiver operating characteristic (ROC) curves?

- First used in WWII for the analysis of radio signals
- Assess performance at a binary classification task:
 - Does this patient have this disease?
 - Is this tissue cancerous?
 - Do these two proteins interact?

Our example binary classification task

Predict whether a patient has a disease from the abundance

of a single protein biomarker.

 Measurements from 20 cases and 20 controls

How well does our biomarker perform?

Sensitivity and specificity are useful metrics

- Sensitivity is the proportion of positives (cases) that are correctly identified.
- Specificity is the proportion of negatives (controls) that are correctly identified.

How do we calculate sensitivity and specificity?

How do we calculate sensitivity and specificity?

How do we calculate sensitivity and specificity?

TPR = True Positive Rate, FPR = False Positive Rate

TPR = True Positive Rate, FPR = False Positive Rate

TPR = True Positive Rate, FPR = False Positive Rate

TPR = True Positive Rate, FPR = False Positive Rate

TPR = True Positive Rate, FPR = False Positive Rate

TPR = True Positive Rate, FPR = False Positive Rate

TPR = True Positive Rate, FPR = False Positive Rate

TPR = True Positive Rate, FPR = False Positive Rate

TPR = True Positive Rate, FPR = False Positive Rate

How do we evaluate ROC curves?

 The dashed line indicates the performance of randomly guessing.

How do we evaluate ROC curves?

- The dashed line indicates the performance of randomly guessing.
- The area under the curve (AUC) provides an overall measure of performance.

How do we evaluate ROC curves?

- The dashed line indicates the performance of randomly guessing.
- The area under the curve (AUC) provides an overall measure of performance.

ROC curves can be misleading when the classes are imbalanced

What if we had only 5 cases and 95 controls in our data?

There are many other metrics we can use

