Research Proposal: Computational resource management of multi channel controller

Hodai Goldman (Hodaig@cs.bgu.ac.il)

Department of Computer Science, Ben-Gurion University of the Negev, Beer Sheva, Israel

Supervisor: Dr. Gera Weiss

August 22, 2016

1 Background and Problem Statement

Today's computer power allows for consolidation of controllers where a single computer can regulate many control loops, each with its varying needs of computation resources. This brings two research challenges that we intend to attack in the proposed thesis:

- How to schedule control tasks in order to achieve good performance in terms of control measures (overshoot, convergence speed, etc.)?
- What is a good interface for co-design of scheduling and control?

While it is possible to build control systems using standard operating systems, either real-time or desktop with static or with dynamic scheduling schemes, there is an agreed opinion in the control community that these do not serve well for the purpose outlined above [?]. Specifically, desktop type operating systems (Windows, Linux, etc.) schedule for computational efficiency, but do not allow for control performance guarantees of the individual loops. On the other hand, real-time operating systems sacrifice some efficiency for timing predictability, but they do relate timing information with control performance. When using such operating systems for control engineers usually apply controllers that work in a fixed periodic manner so that control behavior becomes deterministic and control performance can be guaranteed. This is not efficient because resources can be better utilized if controllers act at higher frequencies when only when needed. In this work we will develop methods to combine the efficiency of desktop operating systems with the predictability of real-time operating systems in a way that is more suitable for control systems then periods and deadlines

The control loops that we are analyzing are here of the form shown in Figure 1. A physical plant (controlled system) is connected via sensors and actuators...

The current state of the art is that control engineers design control tasks as periodic computations then they specify the required periodic frequency for the task and software engineers design a scheduler that ensures that the periodic frequency requirements are met usually using pre-computed knowledge of the expected (maximum) duration of the tasks. We claim that for control systems we can achieve better performance by using richer and more flexible set of requirements for the tasks. Specifically, we will develop tools with which the control engineers can specify in a natural way features of their control loop that the scheduler will use to allow for dynamic schedules that guarantee required control performance.

Figure 1: A typical control loop system.

2 Case studies

2.1 Vision based controllers for drones

To test our concepts, we will examine the implementation of an autonomously flying quad-rotor in the context of an agriculture case study. Specifically, we will implement a quad-rotor that flies in corridors and greenhouses by a vision based feedback. The challenge in this case study, from our perspective, is that image processing is a heavy computational task that requires careful scheduling in order to preserve the system predictability and stability.

In Section 3 we suggest a novel framework model for such systems that we will implement in this thesis.

2.2 Nano-Satellite

Another interesting case study we will examine is the control of a nano-satellite, in particular scheduling the sensing tasks of IAI^1 nano satellites. Their satellites are controlled by a small and relatively slow processor, and the developers say that the main issue in programing the satellite is how to schedule the sensing tasks. The common approach they are using is to periodically schedule all the sensing task every iteration, and they say that this is the main computational consumption and is too much for their slow processor.

We think that lots of the sensing are unnecessary and the controlling task can be achieved without "most up-to-date" information, some times we can base on good estimation of the sensing value or even use the last value. Although Vision based drones is our main case study, we will also check the possibility to improve the nano-satellite issue with our framework.

¹IAI: Israel Aerospace Industries

Figure 2: Our proposal of a general controller framework. Each control loop (depicted in blue) informs the resource allocator (Scheduler) of its quality of estimation and the allocator allocates accordingly the computation resources among all the control loops. The noise in the sensed data is a function of the amount of computation resources. The more resources are invested in sensing the better (less noisy) sensed data is obtained.

3 Research Plan

Our research plan consists of: (1) Designing a methodology for effective allocation of computational resources in real-time control systems; and then (2) Demonstrating our methodology with a framework for developing such systems and with a case study. The details of these two steps are elaborated below.

3.1 The proposed methodology

The general methodology that we will develop is illustrated in Figure 2. The methodology comes to support an efficient scheduling protocols in modern control systems consisting of a computer that runs many tasks that implement the control laws of independent control loops. The current state of art is that the designers of each control loop specify a fixed rate for invocations of the corresponding control task. In our methodology, shown in Figure 2, there is a strong relation between the *Scheduler* and the control loops. We suggest that each control loop (blue components) will tell the resource allocator (*scheduler*) its level of certainty and the allocator will allocate the CPU time among all the control loops corresponding to the loops certainty in order to maintain some pre-defined specifications of state certainty or

Figure 3: The controller framework we will implement, the *scheduler* will allocate CPU time (< time, cov >) for the *ComputerVision* task base on the state estimation certainty using guarded Automata.

stability.

Our proposal is general and may be applicable in a wide range of applications. However, in this initial phase of the research, we believe that it is better to focus on a specific sub-domain and solve all technical issues in order to prove the concept. In this thesis we will develop and implement the framework shown in Figure 3: a vision based controller for drone.

As shown in Figure 3, the suggested control system framework have strong relation between the tasks scheduler to the control loops, in this case the estimation task (State Estimation) accuracy strongly depends on the sensing task (Computer Vision) and there both collaborate with the scheduler in order to achieve they control objectives (g.e. stability). In this framework the scheduler is part of the control logic and therefore it can make scheduling decisions based on the current control state, the scheduling of Computer Vision task is depends on the accuracy of state estimation. For example if the vision is clear the Computer Vision will produce good measurement of the System and therefore good accuracy will be achieved so the Scheduler can allocate less computation time to the heavy Computer Vision task and still remain stable and allocate more CPU to others control loops or some background tasks (like navigation).

The above collaboration requires to re-adjust some parts of the controlling system, e.g. the *State Estimator* needs to work with variable error covariance of *Computer Vision* measurement and the *Computer Vision* needs to be able run within variable time limits, and also the tasks predefined requirements need to be re-adjust in order to define the relation between tasks, like *Computer Vision* and *State Estimator*. Below we will dive in each part of the above system (Figure 3) and explain how it will be adjusted (changed) and how we will achieve that adjustment in our demonstration.

Finally, we need to re-consider the system Analyzing technique because variable sensing characteristics (*Computer Vision* time limits) will lead to variable estimation characteristics...

3.1.1 Sensors (Computer Vision Based Sensor)

Computer Vision Based Sensor is the module that is responsible for taking picture or series of pictures and for producing measurements of quantities such as speed and position relative to the environment. In our research we will use the Computer Vision in order to detect two dimensional movement in the camera surface (i.e. the drone speed). There are many such algorithms (optical flow), they differ by their running time and by the accuracy of the solution, mostly more time lead to more accuracy.

In our case we need to be able to control the Computer Vision running time and to have some good knowledge of the solution accuracy in order to achieve optimal state estimation (see Section 3.1.2). We assume that the Computer Vision error is spread normally, and we will use the error covariance as the solution accuracy. We believe that this is a reasonable assumption because it is the sum of many independent random variables, as follows. Optic flow algorithms usually go by identifying similar regions in consecutive pictures and then averaging the distances that each feature "traveled". Assuming that the error in measurement of each feature is independent of the other errors, we get that the total error is the average of independent random variables. We will validate this assumption by experimentation with different parameters of different algorithms.

In order to control the running time, we will use a "contract based" vision algorithms proposed by Pant [4]. This type of algorithms run until we stop them, and when we stop them they will provide a solution with accuracy that is proportional to the amount of time it was running. That way we can control the solution accuracy by controlling the running time. In our implementation, in order to lower the complexity, we will pre-define few different "operation modes" of the $Computer\ Vision\ task$, that differ by their running time and they are identified by a pair $\langle RunTime, Covariance \rangle$ where Covariance is the error covariance of running time RunTime.

3.1.2 State Estimator

3.1.3 Control Tasks

The control task itself (ControlLaw) is responsible for reducing the difference between the current state (x) where $\tilde{x} = x +$ "estimation error" (in Figure 2) and the target state (u in Figure 2), by changing the drone motors speed. This task is usually a very low CPU consumer and been well studied [?], hence, in this thesis we will use a well known technique from control theory called \mathbf{PID}^2 . In this technique the control output is based on the physical knowledge of the system dynamics, and have 3 variable parameters (P, I and D) that define the controller convergence behavior. This is also the technique used in the APM software (Section efsec:APM) that we will use and we will not change it.

3.1.4 Computation Resource Scheduler: Automata Based Scheduler

Real-time systems are mostly composed of multiple real-time tasks, tasks with time constraint, for example task that must response within specified time constraints. The purpose of scheduler is to allocate the limited computational resources (CPU time) within all the task in the system, in real-time systems the scheduler must allocate each task enough resources to overcome that task's time constraints, to do so, we must have well defined communication interface between the real-time tasks and the scheduler.

The most common way of describing the requirements of a real-time component is to specify a period, sometimes along with a deadline, which gives the frequency at which the component must execute. The designer of the component makes sure that the performance objectives will be met as long as the component is executed consistent with its period. Specifying resource requirements using periods has advantages due to simplicity and analyzability, but has limited expressiveness [1].

In this thesis one of the main subjects, as we said above (Section 3), is to develop a methodology for allocation resources, we will focus on how should engineers describe the requirements of a real-time component. We will develop automata based methodology and scheduler based on the work of Rajeev [1] and Merav [2], and demonstrate how they improve the controlling of real fling drones (Section 3.2). We will use finite automata over infinite words as specification framework for resource requirements, automata

 $^{^2\}mathrm{PID}$ controller - A proportional-integral-derivative controller

Figure 4: Example of guarded automata for our vision based sensor task, in this example the task has two operation modes, $\mathbf{s_{slow}}$ which perform slow but more accurate vision computation and $\mathbf{s_{fast}}$ which is less accurate but faster, every time slot exactly one of the mode will be executed.

can be more expressive, for describe more specific requirements, and they are composable, it is easy to compose all the tasks requirements into one automata.

Each infinite path on the composed automata is a scheduling that satisfy all the tasks requirements. To simplify, We will assume that the resource is allocated in discrete slots of some fixed duration in the style of time-triggered architecture [1]. In this architecture the scheduler only need to "walk through" the composed automata, this is of course fast and easy computational task. In order to assure that we not exceed the time slot duration, each task will have pre-defined maximum duration time like "deadline" in the traditional architecture. Now we can verify all the possible scheduling steps of a single time slot (all the transitions of the composed automata), we can summarize the total slot "deadline" as follows:

 $\forall edge \ e \ (\sum_{t \in Guard(e)} deadline(t)) \leq slot \ duration$

if we find edge e that (slot scheduling step) that goes beyond the maximum duration we will remove it from the automata so we never exceed the time slot duration.

Let's take for example of that automata based interface for the system in Figure 3. Assume we have two operation modes of the vision based sensor, (1) s_{slow} a very accurate operation mode that takes significant amount of time to execute, and (2) s_{fast} a less accurate operation mode but takes less time to execute. In each time slot we can execute one of them and get the sensing process done, but if we use only s_{slow} we may not have enough time to execute all the tasks, on the other hand if we use only s_{fast} we will have

Figure 5: Example of guarded automata for our state estimator, in this example the estimator has two operation modes, est_1 correspond to $\operatorname{s}_{\operatorname{slow}}$ (Figure 4) and est_2 correspond to $\operatorname{s}_{\operatorname{fast}}$ (Figure 4).

Inferior estimates. Figure 4 shows an example guarded automata that guide the schedule, with the automata we can express reach specifications, in this example execute s_{slow} is always allowed but if we need faster sensing we can use s_{fast} but only once in a row if the estimation error is not bad, or even twice in a row if the estimation error is good.

The estimation error $(est_{good} \text{ and } est_{bad})$ in the Figure is a function of the estimation error covariance $(cov(x-\tilde{x}) \text{ in Figure 3})$, if $cov(x-\tilde{x})$ is small then $est_{good} = true$, if is normal then $est_{normal} = true$ end $est_{bad} = true$ if $cov(x-\tilde{x})$ is bigger then some boundary. This value $(cov(x-\tilde{x}))$ is calculated by the state estimator task (Section 3.1.2).

Each of this operation modes $(s_{slow} \text{ and } s_{fast})$ have different accuracy, noted by cov(v) in Figure 3, and if we want to get optimal estimation the state estimator mast be configure correspondingly, i.e the sensing error covariance should be adjusted to the correct value (s_{slow}) , an easy solution for specifying this is by the guarded automata in Figure 5, which define two operation modes of the state estimator, est_1 and est_2 , that correspond to $cov(s_{slow})$ and $cov(s_{fast})$. So of course if we sense in mode s_{slow} we must estimate with mode est_1 , and if we sense in mode s_{fast} we must estimate with mode est_2 .

3.2 Experimental environment

3.2.1 Drones

3.2.2 Ardu-Pilot-Mega as base controller software

4 Preliminary Results

Blablabla said Nobody [2]. Blablabla said Nobody [3]. Blablabla said Nobody [1].

References

- [1] Rajeev Alur and Gera Weiss. Rtcomposer: A framework for real-time components with scheduling interfaces. 8th ACM/IEEE Conference on Embedded Software, 2008.
- [2] Merav Bukra. GameComposer: A Framework for Dynamic Scheduling. Master's thesis, Ben-Gurion University, Israel, October 2014.
- [3] Ardupilot Developers. ArduPilot Mega (APM): open source controller for quad-copters. www.arducopter.co.uk.
- [4] Yash Vardhan Pant, Kartik Mohta, Houssam Abbas, Truong X. Nghiem, Joseph Devietti, and Rahul Mangharam. Co-design of anytime computation and robust control (supplemental). Technical Report UPenn-ESE-15-324, Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, May 2015.