Robust Digital Image Stabilization Using the Kalman Filter*

ISL Lab Seminar Han-Sol Kang

INDEX

01 Introduction

02 Camera Trajectory Model

03 FP-Based DIS Algorithm

04 Experimental Results and Analysis

05 Conclusion

1 Introduction

☆ Image Stabilization

[Hand held]

[Mounted on vehicle]

01 Introduction

★ Image Stabilization

1 Introduction

☆ Type of Image Stabilization

☆ Camera Trajectory Model

Camera Trajectory: Represents the intentional motion.

Camera shake: Noise version of intentional motion.

. Camera shake

[Dynamic equation]

$$X_{t} = AX_{t-1} + W_{t}$$

$$Z_{t} = HX_{t} + V_{t}$$

 $X_t(t=0,1,\cdots)$: the state at time t that represents the camera position, velocity, and acceleration

 $Z_t(t=0, 1, \cdots)$: the observed camera position at time t

A, H: the state transition matrix and the measurement one, respectively

Assume that $W_t \sim N(0, Q_t)$ and $V_t \sim N(0, R_t)$ are white Gaussian noise that are independent of each other

X: Intentional motion

Z: Global motion

☆ Camera Trajectory Model

[Initial expected value]

$$\hat{X}_0^+ = E(X_0)$$

$$P_0^+ = E[(X_0 - \hat{X}_0^+)(X_0 - \hat{X}_0^+)^T]$$

- : prior

+ : posterior

[Prediction step]

$$\hat{X}_{t}^{-} = A\hat{X}_{t-1}^{+}$$

$$P_{t}^{-} = AP_{t-1}^{+}A^{T} + Q_{t-1}$$

[Correction step]

$$K_{t} = P_{t}^{-}H^{T}[HP_{t}^{-}H^{T} + R_{t}]^{-1}$$

$$P_t^+ = [I - K_t H] P_t^- -$$

$$\hat{X}_{t}^{+} = \hat{X}_{t}^{-} + K_{t}[Z_{t} - H\hat{X}_{t}^{-}]$$

Motion Model

[Affine transform]

Rigid Body Transformation : Translation + Rotation

Similarity Transformation: Translation + Rotation + Uniform scaling Affine Transformation: Translation + Rotation + Scaling + Shearing

[Rigid Body Transformation (2-D)]

$$\begin{bmatrix} x_t \\ y_t \end{bmatrix} = \begin{bmatrix} \cos \theta_t & -\sin \theta_t \\ \sin \theta_t & \cos \theta_t \end{bmatrix} \begin{bmatrix} x_{t-1} \\ y_{t-1} \end{bmatrix} + \begin{bmatrix} T_t^x \\ T_t^y \end{bmatrix}$$
 (x_t, y_t) : the coordinate at time t θ_t : the rotation angle

$$\rightarrow U_t = F_t U_{t-1} + T_t$$

 T_t^x , T_t^y : the translation in the horizontal and vertical direction, respectively

[Accumulative motion model]

$$\boldsymbol{U}_{t} = \left(\prod_{k=1}^{t} \boldsymbol{F}_{k}\right) \boldsymbol{U}_{0} + \sum_{k=1}^{t} \left(\prod_{j=k+1}^{t} \boldsymbol{F}_{j}\right) \boldsymbol{T}_{k} = \boldsymbol{F}_{t}^{A} \boldsymbol{U}_{0} + \boldsymbol{T}_{t}^{A} \quad \text{where} \quad \prod_{j=k+1}^{t} \boldsymbol{F}_{j} = \begin{pmatrix} \cos \theta' & -\sin \theta' \\ \sin \theta' & \cos \theta' \end{pmatrix} \quad \theta' = \sum_{j=k+1}^{t} \theta_{j}$$

Design of the KF

[Rotation angle at time t]

$$\hat{\theta}_t = \hat{\theta}_{t-1} + n_t$$

 $n_t \sim N(0, \sigma_r)$: white noise with variance σ_r

[Translation (assume constant velocity)]

$$egin{align} \hat{T}^{v}_t &= \hat{T}^{v}_{t-1} + n^{v}_t & \hat{T}^{v}_t &= egin{bmatrix} \hat{T}^{xv}_t \ \hat{T}^{yv}_t \end{bmatrix} \ \hat{T}^{v}_t &= \hat{T}^{v}_t \end{aligned}$$

 $n_t^{\nu} \sim N(0, \sigma_T^{\nu})$: white noise with variance σ_T^{ν}

$$Z_{t} = HX_{t} + V_{t} \longrightarrow \begin{bmatrix} \theta_{t}^{o} \\ T_{t}^{ox} \\ T_{t}^{oy} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} X_{t} + \begin{bmatrix} n_{t}^{o\theta} \\ n_{t}^{oT} \\ n_{t}^{oT} \end{bmatrix}$$

The auxiliary variable \hat{T}_{t}^{v} cannot be observed in Z_{t}

Superscript "o" denotes the variables for observed

 $n_t^{o\theta} \sim N(0, \sigma_r^o)$ and $n_t^{oT} \sim N(0, \sigma_T^o)$ are white Gaussian noise

$$Q_t = diag(\sigma_r, 0, \sigma_T^{\nu}, 0, \sigma_T^{\nu}) -$$

$$R_{t} = diag(\sigma_{r}^{o}, \sigma_{T}^{o}, \sigma_{T}^{o})$$

$$\hat{X}_{0}^{+} = (0,0,0,0,0)^{T}$$

$$\begin{bmatrix} \theta_{r}^{o} \\ T_{t}^{ox} \\ T_{r}^{oy} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} X_{t} + \begin{bmatrix} n_{t}^{o\theta} \\ n_{t}^{oT} \\ n_{t}^{oT} \end{bmatrix}$$

$$P_{0}^{+} = diag(\sigma_{r}, \sigma_{T}, \sigma_{T}^{v}, \sigma_{T}, \sigma_{T}^{v}) \qquad \hat{X}_{0}^{+} = E(X_{0}) \\ P_{0}^{+} = E[(X_{0} - \hat{X}_{0}^{+})(X_{0} - \hat{X}_{0}^{+})^{T}]$$

diag(): diagonal matrix

[Z_i accumulative motion]

$$\theta_t^o = \sum_{j=1}^t \theta_j = \theta_{t-1}^o + \widetilde{\theta}_t$$

$$T_t^o = \sum_{k=1}^t \left(\prod_{j=k+1}^t F_j \right) T_k = F_t T_{t-1}^o + \widetilde{T}_t$$
 where
$$\prod_{j=k+1}^t F_j = \left(\sin \theta' - \cos \theta' \right)^{-b} = \sum_{j=k+1}^t \delta_j$$

$$T_t^o = \sum_{k=1}^t \left(\prod_{j=k+1}^t F_j \right) T_k = F_t T_{t-1}^o + \widetilde{T}_t^o \quad \widetilde{\theta}_t \text{ and } \widetilde{T}_t \text{ are computed using } \begin{bmatrix} x_t \\ y_t \end{bmatrix} = \begin{bmatrix} \cos \theta_t & -\sin \theta_t \\ \sin \theta_t & \cos \theta_t \end{bmatrix} \begin{bmatrix} x_{t-1} \\ y_{t-1} \end{bmatrix} + \begin{bmatrix} T_t^x \\ T_t^y \end{bmatrix}$$

where
$$\prod_{j=k+1}^{t} F_{j} = \begin{pmatrix} \cos \theta' & -\sin \theta' \\ \sin \theta' & \cos \theta' \end{pmatrix} \quad \theta' = \sum_{j=k+1}^{t} \theta_{j}$$

$$\widetilde{\theta}_t$$
 and \widetilde{T}_t are computed using $\begin{bmatrix} x_t \\ y_t \end{bmatrix} = \begin{bmatrix} c_t \\ s_t \end{bmatrix}$

$$\begin{bmatrix} \theta_t^o \\ T_t^{ox} \\ T_t^{oy} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} X_t + \begin{bmatrix} n_t^{o\theta} \\ n_t^{oT} \\ n_t^{oT} \end{bmatrix}$$

$$g \begin{bmatrix} x_t \\ y_t \end{bmatrix} = \begin{bmatrix} \cos \theta_t & -\sin \theta_t \\ \sin \theta_t & \cos \theta_t \end{bmatrix} \begin{bmatrix} x_{t-1} \\ y_{t-1} \end{bmatrix} + \begin{bmatrix} T_t^x \\ T_t^y \end{bmatrix}$$

The process of the proposed DIS algorithm

☆ Selection of Good FPs

$$G = \sum_{x=p_x-w_x}^{p_x+w_x} \sum_{y=p_y-w_y}^{p_y+w_y} \begin{bmatrix} I_x^2(x,y) & I_x(x,y)I_y(x,y) \\ I_x(x,y)I_y(x,y) & I_y^2(x,y) \end{bmatrix}$$

 (p_x, p_y) : the point(x, y)

 W_x , W_y : the searching window size

 $I_x(x,y)$, $I_y(x,y)$: spatial derivative of the image frame in the horizontal (vertical) direction

$$\min(\lambda_1, \lambda_2) > \lambda_{thresh}$$

 λ_1, λ_2 : eigen-values of G

 λ_{thresh} : generally set as $\lambda_{thresh} = r\lambda_{max} (0 < r < 1)$ λ_{max} : maximum eigen-value obtained from eigen-values of all points

Property FP Tracking Using KF-Based Prediction

[Current camera motion $\widetilde{\mathbf{M}}_{t}$]

$$\theta_{t}^{o} = \theta_{t-1}^{o} + \widetilde{\theta}_{t}$$

$$T_{t}^{o} = F_{t}T_{t-1}^{o} + \widetilde{M}_{t}$$

$$\mathbf{M}_{t}^{o} = \mathbf{M}_{t-1}^{o} + \widetilde{\mathbf{M}}_{t}$$

 $\widetilde{\mathbf{M}}_t = [\widetilde{ heta}_t, \widetilde{\mathbf{T}}_t]^T$ is obtained by solving the equation $\widetilde{\mathbf{M}}_t^o = \mathbf{M}_{t-1}^o + \widetilde{\mathbf{M}}_t^o$

where the related parameters $\mathbf{M}^o_t = [\theta^o_t, T^o_t]^T$ and $\mathbf{M}^o_{t-1} = [\theta^o_{t-1}, T^o_{t-1}]^T$ are extracted from \hat{X}^-_t and \hat{X}^+_{t-1} , respectively

$$[\mathsf{FP}\,(x_t^i,\,y_t^i)]$$

Finally, the **predicted FP** instead of the previous one (x_{t-1}^i, y_{t-1}^i) is set as the initial position for the correspondence tracking, which reduces the searching range and thus **speeds up the tracking process**

☆ Detection of Scene Change

Assume that N_t pairs of FPs are obtained after finding the correspondence.

$$N_{t} \geq N_{thresh}$$
 : no scene change

If scene change is detected,

new reference frame

Current image frame FPs : re-selection

Parameter of KF: re-initialization

[Irregular condition and the lack of features]

 $N_{t} < N_{thresh}$: scene change?? X

 $\Delta t \ge \Delta T_{thresh}$: reference frame change Δt : time difference between the current detection of scene change and the previous one

Adaptive Measurement-Update of KF

$$R_t = diag(\sigma_r^o, \sigma_T^o, \sigma_T^o)$$
 \times the practical camera shake at different time may be greatly different We develop a new scheme, called and **adaptive KF**

the camera shake results in the sign change of the estimated motion $\mathbf{M}_{_{\it f}}$ offset by their mean values

zero-crossing cases: period 1 > period 2

camera shakes: period 1 > period 2

$$R_t = \begin{cases} R_{t4} & \textit{if} \quad C_t > CT_4 \\ R_{t3} & \textit{if} \quad CT_3 < C_t \leq CT_4 \\ R_{t2} & \textit{if} \quad CT_2 < C_t \leq CT_3 \\ R_{t1} & \textit{if} \quad CT_1 < C_t \leq CT_2 \\ R_{t0} & \text{otherwise} \end{cases} \qquad \begin{matrix} C_t \text{ : the number of zero-crossing} \\ R_{ti} (i = 0 \cdots 4) \text{ : measurement noise with different variance} \\ CT_i (i = 1 \cdots 4) \text{ : predefined threshold} \end{cases}$$

X Compensation of Unintentional Motion

The global motion \mathbf{M}_t^o contains the intentional motion $\hat{\mathbf{M}}_t$ and the unintentional one \mathbf{M}_t^c should be computed first.

accumulative motion model
$$U_t = \left(\prod_{k=1}^t F_k\right) U_0 + \sum_{k=1}^t \left(\prod_{j=k+1}^t F_j\right) T_k = F_t^A U_0 + T_t^A$$

$$U_t^o = F_t^{Ao} U_o + T_t^{Ao}$$

$$\hat{U}_t = \hat{F}_t^A U_o + \hat{T}_t^A$$

$$\hat{U}_t = \hat{F}_t^A U_o + \hat{T}_t^A$$

$$\hat{U}_t = \hat{F}_t^{Ac} U_o^b + (\hat{T}_t^A - F_t^{Ac} T_t^{Ao})$$

[Unintentional motion]

$$\begin{aligned} \theta_t^c &= \theta_t^o - \hat{\theta}_t \\ T_t^c &= \hat{T}_t^A - F_t^{Ac} T_t^{Ao} = \hat{T}_t - \begin{bmatrix} \cos \theta_t^c & -\sin \theta_t^c \\ \sin \theta_t^c & \cos \theta_t^c \end{bmatrix} T_t^o \end{aligned}$$

[Compensated image frame]

$$I_{t}^{c} \begin{bmatrix} x \\ y \end{bmatrix} = I_{t} \begin{bmatrix} \cos \theta_{t}^{c} & -\sin \theta_{t}^{c} \\ \sin \theta_{t}^{c} & \cos \theta_{t}^{c} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} T_{t}^{cx} \\ T_{t}^{cy} \end{bmatrix}$$

104 Experimental Results and Analysis

☆ Sample image

- (a): small motions less than 2 pixels and high frequent jiggles.
- (b): small motion less than or equal to 1 pixel and irregular conditions.
- (c): small motions less than 2 pixels and high frequent rotational and translational jiggles.

Parameter

$$r = 0.1$$
, $N_0 = 100$, $N_{thresh} = 5$, $\Delta T_{thresh} = 10$, $\Delta T_p = 10$, $p = 20$

Adaptive KF

$$\Delta T_p = 10$$
, $CT_1 = 1$, $CT_2 = 3$, $CT_3 = 5$, $CT_4 = 7$, $R_{t1} = 4R_{t0}$, $R_{t2} = 20R_{t0}$, $R_{t3} = 40R_{t0}$, $R_{t4} = 80R_{t0}$

where R_{t0} depends on specific applications and is usually set as $R_{t0} = 1.0$

104 Experimental Results and Analysis

Example

- (a) : Original image frames
- (b): Stabilized image frames

***** Effectiveness of Motion Prediction With KF

COMPARISON OF TRACKING SPEED IN FPS UNIT

Video Seq.	With MP	Without MP
Island	33.33	31.66
Road	31.66	31.66
University	31.94	30.55

10 times

avg : over 100 frames

(b)

104 Experimental Results and Analysis

☆ Performance of Adaptive KF

- (1) high-frequency jiggles exist in the horizontal direction
- (2) the amount of jiggles between the 30 and 50th frames changes frequently

- (a): Performance with adaptive KF
- (b): Performance without adaptive KF

104 Experimental Results and Analysis

☆ Computational Complexity

COMPUTATION TIME IN MS/FRAME UNIT

Video Seq.	100 frames	150 frames	210 frames
Island	30.0	33.3	38.1
Road	31.6	33.3	38.0
University	31.3	40.0	39.9

COMPUTATION TIME FOR DIFFERENT PARTS IN MS UNIT

Video Seq.	FP-Sel	C-GIM	C-UM
Island	108.0	8.6	28.8
Road	112.1	8.5	29.0
University	109.9	10.5	28.8

PROCESSING SPEED FOR VIDEO SEQUENCES WITH DIFFERENT RESOLUTION

Resolution	Pixel ratio	C-GIM (ms)	C-UM (ms)	Speed (fps)
720×480	4.5	8.6	28.8	26.23
640×480	4	10.0	24.3	29.08
320×240	1	2.8	6.5	106.78

05 Conclusion

We proposed a **new DIS algorithm** which can obtain a good stabilized performance in **real time**.

(KLT tracker + Kalman filter)

The intentional motion is obtained with the proposed adaptive Kalman filter

The developed algorithm has better robustness against irregular conditions than the conventional ones.

Q & A