

Modules 2: K-Nearest Neighbors (KNN)

6 Learning Objectives

- Understand how KNN works (Classification & Regression)
- Know how to measure distance and normalize data (Feature Scaling)
- Know how to choose appropriate K using Elbow Method
- Understand Decision Boundary
- · Practice KNN in Python

What is KNN?

K-Nearest Neighbors is a Supervised Learning algorithm.

Principle: A new sample will be assigned the label of the majority of the nearest samples in the feature space.

Characteristics

- Non-parametric: does not assume data distribution
- Lazy learner: does not learn in advance, only stores data → computes during prediction
- Also known as instance-based / memory-based learning

Conceptual Example

A new image looks like both a **cat** and a **dog** \rightarrow KNN compares features with labeled cat & dog images, calculates **distance**, sees which is closest \rightarrow classifies by majority vote.

How It Works

- Choose K (number of nearest neighbors)
- Calculate distance between new point and all training points
- Sort by distance in ascending order
- Select K nearest points
- Classification/Prediction:
 - Classification: choose the majority class
 - Regression: average the values

Distance Metrics Formulas

Distance Metrics in Data Science

▼ Euclidean Distance

$$d(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

Parameters:

• x, y: two data points

• x_i, y_i : feature values at position i

• n: number of features

• d(x,y): linear distance

Example:

$$x = (2,3)$$
 , $y = (5,7)$

$$d = \sqrt{(2-5)^2 + (3-7)^2} = \sqrt{25} = 5$$

Use case: measures proximity in continuous space (L2 norm)

▼ Manhattan Distance

$$d(x,y) = \sum_{i=1}^n |x_i - y_i|$$

Parameters:

• x_i, y_i : feature values at position i

• n: number of dimensions

Example:

$$x=\left(2,3
ight)$$
 , $y=\left(5,7
ight)$

$$d = |2 - 5| + |3 - 7| = 3 + 4 = 7$$

Use case: suitable for data with outliers; measures along "city block" distance (L1)

▼ Minkowski Distance (generalized)

$$d(x,y) = \left(\sum_{i=1}^n |x_i-y_i|^p
ight)^{1/p}$$

Parameters:

• p: order of norm (1=L1, 2=L2,...)

• x_i, y_i : feature values

Example:

$$x=(2,3)$$
 , $y=(5,7)$, $p=3$ $d=(|2-5|^3+|3-7|^3)^{1/3}=(27+64)^{1/3}pprox 4.32$

Use case: generalized formula, adjusts sensitivity to distant points using p

▼ Hamming Distance

$$d(x,y) = \frac{ ext{Number of different positions}}{n}$$

Parameters:

- x, y: two vectors/strings of equal length
- *n* : number of elements

Example:

$$x=\left[1,0,1,1
ight]$$
 , $y=\left[1,1,1,0
ight]$

Different at 2/4 positions $\Rightarrow d = rac{2}{4} = 0.5$

Use case: used for discrete or binary data

Feature Scaling (Normalization)

Note: KNN is sensitive to scale → **must normalize data**.

▼ Z-score Standardization

$$z = \frac{x - \mu}{\sigma}$$

Parameters:

- x: original value
- μ : mean
- σ : standard deviation

Example:

$$x=180$$
 , $\mu=170$, $\sigma=10$

$$z = \frac{180 - 170}{10} = 1$$

Use case: transforms data to mean 0, standard deviation 1

▼ Min-Max Normalization

$$x' = rac{x - x_{min}}{x_{max} - x_{min}}$$

Parameters:

• x: original value

• x_{min}, x_{max} : min, max of feature

• x': value in [0,1]

Example:

$$x=70$$
 , $x_{min}=50$, $x_{max}=100$

$$x' = \frac{70 - 50}{100 - 50} = 0.4$$

Use case: preserves ratio between values, bounds data to [0,1]

Decision Boundary

Decision Boundary in KNN

- KNN creates non-linear classification boundaries
- Boundary depends on K and data distribution:
- Small K → curved boundary, sensitive to noise
- Large K → smooth boundary, more stable but may underfit

Elbow Method – Choosing Optimal K

Error Rate(K) = 1 - Accuracy(K)

Parameters:

ullet K: number of neighbors to test

• Accuracy(K): accuracy with K

Example:

If $K=1\Rightarrow 85\%$, $K=3\Rightarrow 90\%$, $K=15\Rightarrow 89\%$

→ "Elbow" around **K=3-5** (accuracy increase slows down)

Use case: choose K at the elbow point where error reduction slows

Regression with KNN

KNN can also be used for **regression** (instead of choosing a class, we take the average of target values).

Regression Prediction Formula

$$\hat{y} = rac{1}{K} \sum_{i=1}^K y_i$$

Parameters:

• K: number of nearest neighbors

• y_i : target value of K nearest neighbors

• \hat{y} : predicted value

Example:

5 nearest neighbors have values [4,5,6,5,4]

$$\hat{y} = (4+5+6+5+4)/5 = 4.8$$

Evaluation Formula (Mean Squared Error)

$$MSE = rac{1}{m}\sum_{i=1}^m (y_i - \hat{y}_i)^2$$

Parameters:

• y_i : actual value

• \hat{y}_i : predicted value

• m: number of samples

Example:

Actual [3,3], predicted [2.8,3.2]:

$$MSE = \frac{(3-2.8)^2 + (3-3.2)^2}{2} = 0.04$$

Parameters in scikit-learn

```
KNeighborsClassifier(
    n_neighbors=5,
    weights='distance',
    metric='minkowski',
    p=2,
    algorithm='auto',
    n_jobs=-1
)
```

Parameter	Description & Example
n_neighbors	Number of neighbors (K). K=3 \rightarrow consider 3 nearest points
weights	'uniform': all points equal weight 'distance': closer points have more influence
metric	Distance calculation method ('euclidean' , 'manhattan' , 'minkowski' , 'hamming')
р	Minkowski order: 1=L1, 2=L2
algorithm	Neighbor search method: 'auto', 'kd_tree', 'ball_tree', 'brute'
n_jobs	Number of CPU cores for parallel processing (-1 uses all)

Practical Examples ▼ Classification – Iris Dataset

```
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
# Load data
X, y = load_iris(return_X_y=True)
# Split data
X_train, X_test, y_train, y_test = train_test_split(
  X, y, test_size=0.3, random_state=42
)
# Feature scaling
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# Train model
knn = KNeighborsClassifier(
  n_neighbors=5,
  metric='euclidean',
```

```
weights='distance'
)
knn.fit(X_train, y_train)

# Predict and evaluate
y_pred = knn.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))
```

▼ Regression – Boston Housing

```
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean_squared_error
# Load data
X, y = load_boston(return_X_y=True)
# Split data
X_train, X_test, y_train, y_test = train_test_split(
  X, y, test_size=0.2, random_state=42
)
# Feature scaling
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# Train model
knn_reg = KNeighborsRegressor(
  n_neighbors=5,
  weights='distance',
  metric='minkowski',
  p=2
knn_reg.fit(X_train, y_train)
```

Predict and evaluate
y_pred = knn_reg.predict(X_test)
print("MSE:", mean_squared_error(y_test, y_pred))

Advantages & Disadvantages

Advantages

- Simple, easy to understand, no training required
- Effective with non-linear data
- Easy to extend to regression
- No assumptions about data distribution

Disadvantages

- Slow computation with large datasets
- Sensitive to feature scale & noise
- Need to choose K appropriately
- Performance degrades with high dimensions (curse of dimensionality)

Summary

Component	Content
Algorithm Type	Supervised, Non-parametric, Lazy learner
Applications	Classification, Regression
Distance Metrics	Euclidean, Manhattan, Minkowski, Hamming
Need Normalization?	Yes (very important)
Choose K	Elbow Method
Default Metric	Minkowski (p=2 → Euclidean)

Component	Content
Regression Evaluation	MSE
Library	sklearn.neighbors

Formula Notation Table

Symbol	Meaning
x_i,y_i	Feature value at position i of two points
n	Number of dimensions (feature dimension)
p	Minkowski order
μ,σ	Mean & standard deviation
x_{min},x_{max}	Min, max value of feature
K	Number of neighbors
m	Number of samples
MSE	Mean Squared Error
d(x,y)	Distance between two points
\hat{y}	Predicted value