

math库和random库

嵩 天 北京理工大学

数学库及其使用

math库中常用的数学函数

函数	数学表示	含义
圆周率pi	π	π的近似值,15位小数
自然常数e	е	e的近似值,15位小数
ceil(x)	[x]	对浮点数向上取整
floor(x)	[x]	对浮点数向下取整
pow(x,y)	X _À	计算x的y次方
log(x)	lg x	以e为基的对数,
log10(x)	log ₁₀ x	以10为基的对数,
sqrt(x)	\sqrt{x}	平方根

数学库及其使用

math库中常用的数学函数

函数	数学表示	含义
exp(x)		e的x次幂,
degrees(x)		将弧度值转换成角度
radians(x)		将角度值转换成弧度
sin(x)	sin x	正弦函数
cos(x)	cos x	余弦函数
tan(x)	tan x	正切函数
asin(x)	arcsin x	反正弦函数,x∈[-1.0,1.0]
acos(x)	arccos x	反余弦函数,x∈[-1.0,1.0]
atan(x)	arctan x	反正切函数,x∈[-1.0,1.0]

■ random库中常用的函数

函数	含义
seed(x)	给随机数一个种子值,默认随机种子是系 统时钟
random()	生成一个[0, 1.0)之间的随机小数
uniform(a,b)	生成一个a到b之间的随机小数
randint(a,b)	生成一个a到b之间的随机整数
randrange(a,b,c)	随机生成一个从a开始到b以c递增的数
choice(<list>)</list>	从列表中随机返回一个元素
shuffle(<list>)</list>	将列表中元素随机打乱
sample(<list>,k)</list>	从指定列表随机获取k个元素

■ 示例

```
>>> from random import *
>>> random()
0.7129609089373519
>>> uniform(1,10)
4.645197683144932
>>> randint(1,10)
5
>>> randrange(0,10,2)
0
```


■ 示例

```
>>> ra=[0,1,2,3,4,5,6,7,8,9]
>>> choice(ra)
5
>>> shuffle(ra)
>>> ra
[5, 7, 6, 2, 0, 8, 4, 9, 3, 1]
>>> sample(ra,4)
[6, 2, 3, 7]
>>>
```


■调用seed()函数,重置随机种子

```
>>> seed(10)
>>> uniform(1,10)
6.142623352209221
>>> uniform(1,10)
4.860001492076032
```


■再次设定相同的随机种子

```
>>> seed(10)
>>> uniform(1,10)
6.142623352209221
>>> uniform(1,10)
4.860001492076032
```

当设定相同的种子后,每次调用随机函数后生成的随机

数都是相同的。这就是随机种子的作用。

- 因为计算机是一个确定设备,不能生成真正的随机数。 所以,由计算机产生的随机数都是由一个种子开始的伪 随机序列。
- 相同的随机种子产生相同的伪随机数序列,也有利于程序的验证执行。

