

Stat GR5205 Lecture 6

Jingchen Liu

Department of Statistics Columbia University

Diagnosis – graphical analysis

Diagnosis – box plot

Diagnosis – quantile-quantile plot

Diagnosis – quantile-quantile plot

Diagnosis – residuals

Some possible deviation away from the assumption

Diagnostic test

- ► Pure significant test
- ► Equal variance test: Brown-Forsythe test and Levene's test

Diagnostic test

- ► Pure significant test
- ▶ Equal variance test: Brown-Forsythe test and Levene's test

Howard Levene

Transformation 101

▶ Logarithm!

Box-Cox tranformation

$$f_{\lambda}(y)$$

- $f_{\lambda}(y) = (y^{\lambda} 1)/\lambda$ if $\lambda \neq 0$; $f_{\lambda}(y) = \log y$, if $\lambda = 0$.
- \triangleright Choice of λ : maximum likelihood estimate
- ▶ library{car}: box.cox.powers

Box-Cox tranformation

$$f_{\lambda}(y)$$

- $f_{\lambda}(y) = (y^{\lambda} 1)/\lambda$ if $\lambda \neq 0$; $f_{\lambda}(y) = \log y$, if $\lambda = 0$.
- ▶ Choice of λ : maximum likelihood estimate
- ► library{car}: box.cox.powers

Box-Cox tranformation

$$f_{\lambda}(y)$$

- $f_{\lambda}(y) = (y^{\lambda} 1)/\lambda$ if $\lambda \neq 0$; $f_{\lambda}(y) = \log y$, if $\lambda = 0$.
- ▶ Choice of λ : maximum likelihood estimate
- ▶ library{car}: box.cox.powers

Some other transformations

$$y \in [0, 1]$$

- ▶ Logit transform: $\log \frac{y}{1-y}$
- ▶ Probit transform: $F^{-1}(y)$ where $F(x) = P(Z \le x)$
- etc.

Some other transformations

$$y$$
 ∈ [0, 1]

- ▶ Logit transform: $\log \frac{y}{1-y}$
- ▶ Probit transform: $F^{-1}(y)$ where $F(x) = P(Z \le x)$
- etc.

Some other transformations

$$y$$
 ∈ [0, 1]

- ▶ Logit transform: $\log \frac{y}{1-y}$
- ▶ Probit transform: $F^{-1}(y)$ where $F(x) = P(Z \le x)$
- etc.

An unbiased estimator

$$\hat{\sigma}^2 = \frac{(Y - \hat{Y})^\top (Y - \hat{Y})}{n - p - 1}$$

- ▶ The distribution of $\hat{\sigma}^2$
- Prediction

$$\hat{Y} = X(X^{\top}X)^{-1}X^{\top}Y$$

► Hat matrix

$$H = X(X^{\top}X)^{-1}X^{\top}$$

An unbiased estimator

$$\hat{\sigma}^2 = \frac{(Y - \hat{Y})^\top (Y - \hat{Y})}{n - p - 1}$$

- ▶ The distribution of $\hat{\sigma}^2$
- Prediction

$$\hat{Y} = X(X^{\top}X)^{-1}X^{\top}Y$$

Hat matrix

$$H = X(X^{\top}X)^{-1}X^{\top}$$

An unbiased estimator

$$\hat{\sigma}^2 = \frac{(Y - \hat{Y})^\top (Y - \hat{Y})}{n - p - 1}$$

- ▶ The distribution of $\hat{\sigma}^2$
- Prediction

$$\hat{Y} = X(X^{\top}X)^{-1}X^{\top}Y$$

Hat matrix

$$H = X(X^{\top}X)^{-1}X^{\top}$$

An unbiased estimator

$$\hat{\sigma}^2 = \frac{(Y - \hat{Y})^\top (Y - \hat{Y})}{n - p - 1}$$

- ▶ The distribution of $\hat{\sigma}^2$
- Prediction

$$\hat{Y} = X(X^{\top}X)^{-1}X^{\top}Y$$

► Hat matrix

$$H = X(X^{\top}X)^{-1}X^{\top}$$

Projection

Joint distribution

 $ightharpoonup \hat{eta}$ and $\hat{\sigma}^2$ are independent.

Hypothesis testing

► Hypothesis testing

$$H_0: \beta_i = \beta_i^0 \quad H_1: \beta_i \neq \beta_i^0$$

Z-statistic

$$Z - stat = \frac{\beta_i - \beta_i^2}{SD(\hat{\beta}_i)}$$

► *t*-statistic

$$t - stat = \frac{\hat{\beta}_i - \beta}{SE(\hat{\beta}_i)}$$

Hypothesis testing

► Hypothesis testing

$$H_0: \beta_i = \beta_i^0 \quad H_1: \beta_i \neq \beta_i^0$$

► Z-statistic

$$Z - stat = \frac{\hat{\beta}_i - \beta_i^0}{SD(\hat{\beta}_i)}$$

► t-statistic

$$t - stat = \frac{\hat{\beta}_i - \beta}{SE(\hat{\beta}_i)}$$

Hypothesis testing

Hypothesis testing

$$H_0: \beta_i = \beta_i^0 \quad H_1: \beta_i \neq \beta_i^0$$

► Z-statistic

$$Z - stat = \frac{\hat{\beta}_i - \beta_i^0}{SD(\hat{\beta}_i)}$$

t-statistic

$$t - stat = \frac{\hat{\beta}_i - \beta_i^0}{SE(\hat{\beta}_i)}$$

Confidence interval

$$ightharpoonup \sigma^2$$
 known

$$\hat{\beta}_i \pm q(1-\alpha/2)SD(\hat{\beta}_i)$$

$$\triangleright \sigma^2$$
 unknown

$$\hat{\beta}_i \pm t_{n-p-1}(1-\alpha/2)SE(\hat{\beta}_i)$$

Confidence interval

$$\triangleright \sigma^2$$
 known

$$\hat{\beta}_i \pm q(1-\alpha/2)SD(\hat{\beta}_i)$$

 $\triangleright \sigma^2$ unknown

$$\hat{\beta}_i \pm t_{n-p-1}(1-\alpha/2)SE(\hat{\beta}_i)$$

Prediction

- ▶ Prediction $x^{\top}\hat{\beta}$
- ▶ Prediction error

$$SD(x^{\dagger}\hat{\beta}) = x^{\dagger}SD(\hat{\beta})x = \sigma^2 x^{\dagger} (X^{\dagger}X)^{-1}$$

- Prediction of future observations
- ► Simultaneous interval

$$\hat{Y} \pm \lambda SE(\hat{Y})$$

where

$$\lambda^2 = (p+1)F(1-\alpha; p+1, n-p-1)$$

Prediction

- ▶ Prediction $x^{\top}\hat{\beta}$
- Prediction error

$$SD(x^{\top}\hat{\beta}) = x^{\top}SD(\hat{\beta})x = \sigma^2 x^{\top}(X^{\top}X)^{-1}x$$

- Prediction of future observations
- Simultaneous interval

$$\hat{Y} \pm \lambda SE(\hat{Y})$$

where

$$\lambda^2 = (p+1)F(1-\alpha; p+1, n-p-1)$$

Prediction

- ▶ Prediction $x^{\top}\hat{\beta}$
- Prediction error

$$SD(x^{\top}\hat{\beta}) = x^{\top}SD(\hat{\beta})x = \sigma^2 x^{\top}(X^{\top}X)^{-1}x$$

- Prediction of future observations
- Simultaneous interval

$$\hat{Y} \pm \lambda SE(\hat{Y})$$

where

$$\lambda^2 = (p+1)F(1-\alpha; p+1, n-p-1)$$

Prediction

- ▶ Prediction $x^{\top}\hat{\beta}$
- Prediction error

$$SD(x^{\top}\hat{\beta}) = x^{\top}SD(\hat{\beta})x = \sigma^2 x^{\top}(X^{\top}X)^{-1}x$$

- Prediction of future observations
- Simultaneous interval

$$\hat{Y} \pm \lambda SE(\hat{Y})$$

where

$$\lambda^2 = (p+1)F(1-\alpha; p+1, n-p-1).$$

Extrapolation: one predictor and multiple predictors

Linear model is a good local approximation.

ANOVA

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

$$R^2 = \frac{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

- ▶ 50 samples
- ▶ 5 Asian, 15 African American, 30 Whites
- Weight and height
- Coding of the design matrix

Figure: Height (inch) versus log-weight (log-lb)

$$\log(\textit{weight}) = \beta_0 + \beta_1 \textit{height} + \varepsilon$$

$$\log(\textit{weight}) = \beta_0 + \beta_A \textit{sian} l_A \textit{sian} + \beta_B \textit{lack} l_B \textit{lack} + \beta_1 \textit{height} + \varepsilon$$

$$\log(\textit{weight}) = eta_0 + eta_1 \textit{height} + arepsilon$$

$$\log(\textit{weight}) = \beta_0 + \beta_{\textit{Asian}} \textit{I}_{\textit{Asian}} + \beta_{\textit{Black}} \textit{I}_{\textit{Black}} + \beta_1 \textit{height} + \varepsilon$$

$$\log(weight) = \beta_0 + \beta_{Asian}I_{Asian} + \beta_{Black}I_{Black} + \beta_1 height + \beta_{Asian}HI_{Asian}height + \beta_{Black}HI_{Black}height +$$

$$\log(\textit{weight}) = eta_0 + eta_1 \textit{height} + arepsilon$$

$$\log(\textit{weight}) = eta_0 + eta_{\textit{Asian}} \emph{I}_{\textit{Asian}} + eta_{\textit{Black}} \emph{I}_{\textit{Black}} + eta_1 \textit{height} + \epsilon$$

$$\log(\textit{weight}) = \beta_0 + \beta_{\textit{Asian}} I_{\textit{Asian}} + \beta_{\textit{Black}} I_{\textit{Black}} + \beta_1 \textit{height} + \beta_{\textit{Asian}, H} I_{\textit{Asian}} \textit{height} + \beta_{\textit{Black}, H} I_{\textit{Black}} \textit{height} + \varepsilon$$

Galileo's experiment

$$distance = \beta_0 + \beta_1 height + \beta_2 height^2 + \varepsilon$$

Galileo's experiment

variable	coefficient	standard error	t-statistic	<i>p</i> -value
intercept	199.91	16.8	11.93	0.0003
height	0.71	0.075	9.5	0.0007
_height ²	- 0.00034	0.000067	5.15	0.007

$$R^2 = 0.99$$
 $\hat{\sigma} = 13.6$

Galileo's experiment

$$distance = \beta_0 + \beta_1 height + \beta_2 height^2 + \beta_3 height^3 + \varepsilon$$

The extra sum-of-squares F test

- ► Question: is there any difference among the three groups aside from that due to height difference
- ► The formulation

$$\log(\mathit{weight}) = eta_0 + eta_{\mathit{Asian}} + eta_{\mathit{Black}} + eta_1$$
height $+ arepsilon$

► The hypotheses

$$H_0: eta_{Asian} = eta_{Black} = 0$$
 $H_1:$ otherwise

The extra sum-of-squares F test

- ▶ Question: is there any difference among the three groups aside from that due to height difference
- The formulation

$$\log(\textit{weight}) = eta_0 + eta_{\textit{Asian}} + eta_{\textit{Black}} + eta_1 \textit{height} + arepsilon$$

► The hypotheses

$$H_0: \beta_{Asian} = \beta_{Black} = 0$$
 $H_1:$ otherwise

The extra sum-of-squares F test

- ► Question: is there any difference among the three groups aside from that due to height difference
- The formulation

$$\log(\textit{weight}) = eta_0 + eta_{\textit{Asian}} + eta_{\textit{Black}} + eta_1 \textit{height} + arepsilon$$

▶ The hypotheses

$$H_0: \beta_{Asian} = \beta_{Black} = 0$$
 $H_1:$ otherwise

The full model versus the reduced model

► Full model (*H*₁)

$$\log(\textit{weight}) = eta_0 + eta_{\textit{Asian}} + eta_{\textit{Black}} + eta_1 \textit{height} + arepsilon$$

ightharpoonup Reduced model (H_0)

$$\log(\textit{weight}) = \beta_0 + \beta_1 \textit{height} +$$

Comparing the full model against the reduce model

The full model versus the reduced model

► Full model (*H*₁)

$$\log(\textit{weight}) = eta_0 + eta_{\textit{Asian}} + eta_{\textit{Black}} + eta_1 \textit{height} + arepsilon$$

► Reduced model (*H*₀)

$$\log(\textit{weight}) = \beta_0 + \beta_1 \textit{height} + \varepsilon$$

► Comparing the full model against the reduce model

The full model versus the reduced model

► Full model (*H*₁)

$$\log(\textit{weight}) = \beta_0 + \beta_{\textit{Asian}} + \beta_{\textit{Black}} + \beta_1 \textit{height} + \varepsilon$$

▶ Reduced model (H₀)

$$\log(\textit{weight}) = \beta_0 + \beta_1 \textit{height} + \varepsilon$$

Comparing the full model against the reduce model

► ANOVA of the full model

$$SST = SSR_{full} + SSE_{full}$$

► ANOVA of the reduced model

$$SST = SSR_{reduced} + SSE_{reduced}$$

$$SSE_{extra} = SSE_{reduced} - SSE_{full} > 0$$

- ightharpoonup Reject H_0 if SSE_{extra} is large
- ► Distribution of SSR_{extra}

► ANOVA of the full model

$$SST = SSR_{full} + SSE_{full}$$

ANOVA of the reduced model

$$SST = SSR_{reduced} + SSE_{reduced}$$

$$SSE_{extra} = SSE_{reduced} - SSE_{full} > 0$$

- \triangleright Reject H_0 if SSE_{extra} is large
- ▶ Distribution of SSR_{extra}

► ANOVA of the full model

$$SST = SSR_{full} + SSE_{full}$$

ANOVA of the reduced model

$$SST = SSR_{reduced} + SSE_{reduced}$$

$$SSE_{extra} = SSE_{reduced} - SSE_{full} > 0$$

- \triangleright Reject H_0 if SSE_{extra} is large
- ▶ Distribution of *SSR*_{extra}

► ANOVA of the full model

$$SST = SSR_{full} + SSE_{full}$$

ANOVA of the reduced model

$$SST = SSR_{reduced} + SSE_{reduced}$$

$$SSE_{extra} = SSE_{reduced} - SSE_{full} > 0$$

- ▶ Reject H_0 if SSE_{extra} is large
- ▶ Distribution of SSR_{extra}

► ANOVA of the full model

$$SST = SSR_{full} + SSE_{full}$$

ANOVA of the reduced model

$$SST = SSR_{reduced} + SSE_{reduced}$$

$$SSE_{extra} = SSE_{reduced} - SSE_{full} > 0$$

- ▶ Reject H_0 if SSE_{extra} is large
- Distribution of SSR_{extra}

Extra sums of squares test

Test statistic

$$F - statistic = \frac{SSE_{extra}/(p_{full} - p_{reduced})}{SSE_{full}/(n - p_{full})}$$

source	sum of sq	d.f.	mean sq	F-stat	<i>p</i> -value
regression	190	1	190	78	< 0.0001
residual	180	74	2.4		
total	370	75			

source	sum of sq	d.f.	mean sq	<i>F</i> -stat	<i>p</i> -value
between group	196	6	33	13	< 0.0001
residual	174	69	2.5		
total	370	75			

$$F - statisitc = \frac{(196 - 190)/5}{174/69} = 0.48$$