MA 1201 Spring Sem, 2025

- 1. For any two finite sets A and B, the cardinality of A^B is $|A|^{|B|}$.
- 2. Show that countable union of finite set is countable.
- 3. Show that \mathbb{Q}_+ is countable.
- 4. Show that if A is countable, then $A^k = A \times \cdots A(k \text{ times}), k \in \mathbb{N}$ is countable. As a result \mathbb{Q}^k is countable for any $k \in \mathbb{N}$.
- 5. *Prove that the set \mathcal{P} of all polynomials

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

with integral coefficients, that is, where $a_0, a_1, a_2, \ldots, a_n \in \mathbb{Z}$, is countable.

6. *A real number r is called an algebraic number if r is a solution to a polynomial equation

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = 0$$

with integral coefficients. For example, integers, $\sqrt{2}$, $\sqrt[3]{4}$ are algebraic numbers. Prove that the set of algebraic numbers is countable.

- 7. *Let $\mathcal{A} = \{A_i : i \in I\}$, for some index set I, be a set of pairwise disjoint intervals in \mathbb{R} . Show that \mathcal{A} is countable. You can use \mathbb{Q} is 'dense' in \mathbb{R} .
- 8. Prove or disprove: If $\mathcal{B} = \{B_i : i \in I\}$, for some index set I, is a set of pairwise disjoint circles in \mathbb{R}^2 , then \mathcal{B} is countable.
- 9. Prove that the set of all circles in the plane \mathbb{R}^2 having rational radii and centers with rational coordinates is countable.
- 10. Let $\mathcal{C} = \{C_i : i \in I\}$, for some index set I, be a set of pairwise disjoint discs (sets of the form $\{(x,y) : (x-a)^2 + (y-b)^2 < r^2\}$) in \mathbb{R}^2 . Show that \mathcal{C} is countable.
- 11. A real number is called *transcendental* if it is not algebraic. For example, π , e are transcendental numbers. Prove that the set of transcendental numbers is uncountable.
- 12. *Show that the plane \mathbb{R}^2 is not a union of countable number of lines.
- 13. *Show that no power set can be countable, that is, a power set is either finite or uncountable.