

Statistical models for count data analysis (part 2)

- Reminder of tricks used / material already presented:
 - conditional likelihood
 - (local) weighted likelihood
 - linear models
- Bringing them together: a more general framework GLMs
- Beyond differential expression: "differential splicing"

Mean-Variance plots: What we see in real data

 $Y_i \sim NB(\mu_i=Ni * \lambda_i, \phi_i)$

Statistical Bioinformatics // Institute of Molecular Life Sciences

Conditional likelihood

Likelihood for single **negative binomial** observation:

$$f(y; \mu, \phi) = P(Y = y) = \frac{\Gamma(y + \phi^{-1})}{\Gamma(\phi^{-1})\Gamma(y + 1)} \left(\frac{1}{1 + \mu\phi}\right)^{\phi^{-1}} \left(\frac{\mu}{\phi^{-1} + \mu}\right)^{y}$$

If all libraries are the same size (i.e. $m_i \equiv m$), the sum $Z = Y_1 + \cdots + Y_n \sim NB(nm\lambda, \phi n^{-1})$

Thus, can form conditional likelihood:

$$l_{Y|Z=z}(\phi) = \left[\sum_{i=1}^{n} \log \Gamma(y_i + \phi^{-1})\right] + \log \Gamma(n\phi^{-1}) - \log \Gamma(z + n\phi^{-1}) - n \log \Gamma(\phi^{-1})$$

Moderated dispersion estimate

Weighted likelihood -- individual loglikelihood plus a weighted version of the common log-likelihood:

$$WL(\phi_g) = l_g(\phi_g) + \alpha l_C(\phi_g)$$

 I_g - quantile-adjusted conditional likelihood

Black: single tag

Blue: common dispersion

Red: Linear combination of the two

Log-Likelihood

Score (1st derivative of LL)

$$\delta = \frac{\phi}{\phi + 1}$$

Dispersion varies with mean: moderate (e.g., weighted likelihood) dispersion towards trend

Institute of Molecular Life Sciences

Abundance

Linear Models (microarray setting)

In general, need to specify:

- Dependent variable
- Explanatory variables (experimental design, covariates, etc.)

More generally:

Analysis of Variance → Linear model

$$E[y_1] = E[y_2] = \alpha_1$$

$$E[y_3] = E[y_4] = \alpha_1 + \alpha_2$$

$$E[y_3] = E[y_4] = \alpha_1 + \alpha_2$$
 $E[y_5] = E[y_6] = \alpha_1 + \alpha_3$

Applications: paired designs, multi-factor designs, interactions

Generalized linear models: a more general framework

Gaussian (normal) distributed response —> various other (common) types.

Three components:

- 1. Probability distribution of response (in exponential family)
- 2. Linear predictor (covariates; design matrix)
- 3. Link function (link mean to linear predictor)

$$E(Y_i) = \mu_i$$

University of

$$g(\mu_i) = \eta_i$$

$$\eta_i = \beta_0 + \beta_1 x_{1i} + ... + \beta_p x_{pi}$$

Linear predictor (covariates)

$$var(Y_i) = \phi V(\mu)$$

Provides a way to link the mean of response to a linear predictor.

Data is not transformed.

Variance is a function of mean.

Common distributions, "Canonical" link functions

Common distributions with typical uses and canonical link functions

Distribution	Support of distribution	Typical uses	Link name	Link function	Mean function
Normal	real: $(-\infty, +\infty)$	Linear-response data	Identity	$X\beta = \mu$	$\mu = X\beta$
Exponential Gamma	${\rm real:}(0,+\infty)$	Exponential-response data, scale parameters	Inverse	$\mathbf{X}\boldsymbol{\beta} = \boldsymbol{\mu}^{-1}$	$\mu = (\mathbf{X}\boldsymbol{\beta})^{-1}$
Inverse Gaussian	real: $(0,+\infty)$		Inverse squared	$\mathbf{X}\boldsymbol{\beta} = \mu^{-2}$	$\mu = (\mathbf{X}\boldsymbol{\beta})^{-1/2}$
Poisson	integer: $[0,+\infty)$	count of occurrences in fixed amount of time/space	Log	$\mathbf{X}\boldsymbol{\beta} = \ln\left(\mu\right)$	$\mu = \exp(\mathbf{X}\boldsymbol{\beta})$
Bernoulli	integer: $[0,1]$	outcome of single yes/no occurrence		$\mathbf{X}\boldsymbol{\beta} = \ln\left(\frac{\mu}{1-\mu}\right)$	$\exp(\mathbf{X}\boldsymbol{\beta})$ 1
Binomial	integer: $[0,N]$	count of # of "yes" occurrences out of N yes/no occurrences			
	integer: $[0,K)$	outcome of single K-way occurrence	Logit		
Categorical	K-vector of integer: $[0,1]$, where exactly one element in the vector has the value 1				$\mu = \frac{\exp(\mathbf{X}\boldsymbol{\beta})}{1 + \exp(\mathbf{X}\boldsymbol{\beta})} = \frac{1}{1 + \exp(-\mathbf{X}\boldsymbol{\beta})}$
Multinomial	K-vector of integer: $\left[0,N ight]$	count of occurrences of different types (1 K) out of N total K-way occurrences			

http://en.wikipedia.org/wiki/Generalized_linear_model

RNA-seq setting – Negative binomial regression

Response is negative binomial (dispersion "fixed" to make it in the exponential family).

Link function (relate mean of response to linear combination of parameters)
For example:

edgeR::glmFit()

Same challenge as last time: getting a good estimate of dispersion

Several choices here:

- Maximum Likelihood (MLE)
- Pseudo-Likelihood (PL)
- Quasi-Likelihood (QL)
- Conditional Maximum Likelihood (CML)
- Approximate Conditional Inference (Cox-Reid)
- quantile-adjusted Maximum Likelihood (qCML)

$$\mathbf{X}oldsymbol{eta} = \ln{(\mu)}$$
 $Y_i \sim \mathsf{NB}(\mu_i, \phi)$

$$(\hat{\lambda}_{MLE}, \hat{\phi}_{MLE}) = \arg \max_{\lambda, \phi} l(\lambda, \phi)$$

$$X^{2} = \sum_{gij} \frac{(y_{gij} - \hat{\mu}_{gi})^{2}}{\hat{\mu}_{gi}(1 + \hat{\phi}_{PL}\hat{\mu}_{gi})} = G(n_{1} + n_{2} - 2)$$

$$D = 2\sum_{gij} \left\{ y_{gij} \log \left[\frac{y_{gij}}{\mu_{gi}} \right] - (y_{gij} + \phi_{QL}^{-1}) \log \left[\frac{y_{gij} + \phi_{QL}^{-1}}{\mu_{gi} + \phi_{QL}^{-1}} \right] \right\}$$

"Cox Reid adjusted profile likelihood" —> Estimation of dispersion parameter

J. R. Statist. Soc. B (1987) 49, No. 1, pp. 1–39

Parameter Orthogonality and Approximate Conditional Inference

D. R. COX†

and

N. REID

Imperial College, London

University of British Columbia, Vancouver

[Read before the Royal Statistical Society at a meeting organized by the Research Section on Wednesday, 8th October, 1986, Professor A. F. M. Smith in the Chair]

SUMMARY

We consider inference for a scalar parameter ψ in the presence of one or more nuisance parameters. The nuisance parameters are required to be orthogonal to the parameter of interest, and the construction and interpretation of orthogonalized parameters is discussed in some detail. For purposes of inference we propose a likelihood ratio statistic constructed from the conditional distribution of the observations, given maximum likelihood estimates for the nuisance parameters. We consider to what extent this is preferable to the profile likelihood ratio statistic in which the likelihood function is maximized over the nuisance parameters. There are close connections to the modified profile likelihood of Barndorff-Nielsen (1983). The normal transformation model of Box and Cox (1964) is discussed as an illustration.

Keywords: ASYMPTOTIC THEORY; CONDITIONAL INFERENCE; LIKELIHOOD RATIO TEST; NORMAL TRANSFORMATION MODEL; NUISANCE PARAMETERS; ORTHOGONAL PARAMETERS

$$Y_i \sim \mathsf{NB}(\mu_i, \phi)$$

$$\mathbf{X}\boldsymbol{\beta} = \ln\left(\mu\right)$$

In this setting, we are trying to get an estimate of dispersion, so the beta (regression) parameters are the "nuisance" parameters.

We turn the problem around later to make inferences about the regression parameters.

University of

Cox-Reid adjusted profile likelihood

The adjusted profile likelihood (APL) for ϕ_g is the penalized log-likelihood

$$APL_g(\phi_g) = \ell(\phi_g; \mathbf{y}_g, \hat{\boldsymbol{\beta}}_g) - \frac{1}{2} \log \det \mathcal{I}_g.$$

where y_g is the vector of counts for gene g, $\hat{\beta}_g$ is the estimated coefficient vector, $\ell()$ is the log-likelihood function and \mathcal{I}_g is the Fisher information matrix.

In this approach, ϕ_g is estimated by maximizing

$$APL_g(\phi_g) + G_0 APL_{Sg}(\phi_g),$$

where G_0 is the weight given to the shared likelihood and $APL_{Sg}(\phi_g)$ is the local shared log-likelihood.

APL is simply another likelihood, so weighted likelihood still works

WL is the individual log-likelihood plus a weighted version of the **common log**-likelihood:

$$WL(\phi_g) = l_g(\phi_g) + \alpha l_C(\phi_g)$$

L_g - adjusted profile likelihood (or trended version)

Black: single tag

Blue: common dispersion

Red: Linear combination of the two

Score (1st derivative of LL)

Exponential family

$$f(y; heta) = \exp[a(y)b(heta) + c(heta) + d(y)]$$

Distribution	Natural parameter	c	d
Poisson	$\log heta$	$-\theta$	$-\log y!$
Normal	$\frac{\mu}{\sigma^2}$	$-\frac{\mu^2}{2\sigma^2} - \frac{1}{2}\log\left(2\pi\sigma^2\right)$	$-\frac{y^2}{2\sigma^2}$
Binomial	$\log\left(rac{\pi}{1-\pi} ight)$	$n\log{(1-\pi)}$	$\log \binom{n}{y}$

Optional exercise: what are a(), b() and c() for negative binomial?

Note: negative binomial is NOT in exponential family unless dispersion parameter is treated as fixed.

— from Introduction to Generalized Linear Models, Annette Dobson, 2nd edition.

Given dispersion estimates (Cox-Reid APL): estimation, statistical testing of regression parameters

Generalized linear model comes with many advantages:

- 1. Estimation is the same for all response types (so-called Fisher scoring, which effectively turns likelihood maximization into an iteratively reweighted estimation problem)
- 2. Asymptotic theory that lead to i) Wald; ii) Score; or, iii) likelihood ratio tests for parameters of interest (more details). All of these are based on asymptotics ("large" sample approximations) how to choose one that works well in practice?

Large sample theory – Result 1 (Regression parameter estimates are asymptotically normal)

The Wald test follows immediately from the fact that the information matrix for generalized linear models is given by

$$\mathbf{I}(\boldsymbol{\beta}) = \mathbf{X}' \mathbf{W} \mathbf{X} / \phi, \tag{B.9}$$

so the <u>large sample distribution</u> of the maximum likelihood estimator $\hat{\beta}$ is multivariate normal

$$\hat{\boldsymbol{\beta}} \sim N_p(\boldsymbol{\beta}, (\mathbf{X}'\mathbf{W}\mathbf{X})^{-1}\phi).$$
 (B.10)

with mean $\boldsymbol{\beta}$ and variance-covariance matrix $(\mathbf{X}'\mathbf{W}\mathbf{X})^{-1}\phi$.

Tests for subsets of β are based on the corresponding marginal normal distributions.

(Wald test used in DESeq2 package)

University of

Statistical Bioinformatics // Institute of Molecular Life Sciences

$\mathcal{I}(\theta) = \mathbb{E}\left\{ \left[\frac{\partial}{\partial \theta} \log L(\theta; X) \right]^2 \middle| \theta \right\}.$

Large sample theory – Result 2 (score is asymptotically normal)

$$\dot{\ell}_1 = \frac{\partial \ell}{\partial \boldsymbol{\theta}_1}$$

The "score" function is the first derivative (gradient) of the log-likelihood function, is (asymptotically) normally distributed with mean 0 and variance(-covariance) Fisher information.

$$\dot{\ell}_2 = \frac{\partial \ell}{\partial \boldsymbol{\theta}_2}$$

Say, we to test H_0 : θ_2 =0, θ_1 is/are "nuisance" parameter(s)

$$\mathcal{I}_{2.1} = \mathcal{I}_{22} - \mathcal{I}_{21} \mathcal{I}_{11}^{-1} \mathcal{I}_{12}.$$

$$\mathcal{I} = \begin{pmatrix} \mathcal{I}_{11} & \mathcal{I}_{12} \\ \mathcal{I}_{21} & \mathcal{I}_{22} \end{pmatrix}$$

$$S = \dot{\ell}_2^T \mathcal{I}_{2.1}^{-1} \dot{\ell}_2$$

Large sample theory – Result 3 (likelihood ratio test)

$$D = -2 \ln \left(\frac{\text{likelihood for null model}}{\text{likelihood for alternative model}} \right)$$

$$= -2 \ln \left(\text{likelihood for null model} \right) + 2 \ln \left(\text{likelihood for alternative model} \right)$$
http://en.wikipedia.org/wiki/Likelihood-ratio test

General form (exponential family)

$$-2\log\lambda=2\sum_{i=1}^nrac{y_i(ilde{ heta_i}-\hat{ heta_i})-b(ilde{ heta_i})+b(\hat{ heta_i})}{a_i(\phi)}$$
 edgeR::glmLRT()

Again, large sample theory says this is approx. χ^2 with degrees of freedom according to the difference in the number of parameters between null and alternative (assuming they are nested).

Some interesting generalizations of NB modeling for RNA-seq (1)

If
$$Y_{ijk}$$
 has a Poisson distribution, then $Var(Y_{ijk}) = \mu_{ik}$.
If Y_{ijk} has an NB2 distribution, then $Var(Y_{ijk}) = \mu_{ik}(1 + \phi \mu_{ik})$.

if
$$Y_{ijk}$$
 has an NBP distribution, then $Var(Y_{ijk}) = \mu_{ik}(1 + \phi \mu_{ik}^{\alpha-1})$.

(generalization of the model: mean-variance relationship)

Di et al., SAGMB 2011 10(1): 24

Some interesting generalizations of NB modeling for RNA-seq (2)

$$\lambda = 2(l(\hat{\beta}) - l(\tilde{\beta})),$$

$$r = \operatorname{sign}(\hat{\psi} - \psi_0)\sqrt{\lambda}$$

Higher order asymptotics

For testing a one-dimensional parameter of interest (q = 1), Barndorff-Nielsen (1986, 1991) showed that a modified directed deviance

$$r^* = r - \frac{1}{r} \log(z) \tag{5}$$

is, in wide generality, asymptotically standard normally distributed to a higher order of accuracy than the directed deviance r itself, where z is an adjustment term to be discussed below. Tests based on high-order asymptotic adjustment to the likelihood ratio statistic, such as r^* or its approximation (explained below), are referred to as higher-order asymptotic (HOA) tests. They generally have better accuracy than corresponding unadjusted likelihood ratio tests, especially in situations where the sample size is small and/or when the number of nuisance parameters (p-q) is large.

Di et al., SAGMB 2013; 12(1): 49-70

Some interesting generalizations of NB modeling for RNA-seq (3)

$$LRT_k = 2\left(\boldsymbol{\ell}_k(\hat{\boldsymbol{\mu}}_k|\boldsymbol{y}_k) - \boldsymbol{\ell}_k(\tilde{\boldsymbol{\mu}}_k|\boldsymbol{y}_k)\right) \longrightarrow LRT_k \sim \Phi_k \chi_q^2 + O_p(n^{-1/2})$$

$$\hat{\Phi}_k = \frac{2(\boldsymbol{\ell}_k(\boldsymbol{y}_k|\boldsymbol{y}_k) - \boldsymbol{\ell}_k(\hat{\boldsymbol{\mu}}_k|\boldsymbol{y}_k))}{n-p}$$

$$F_{QL} = \frac{LRT_k/q}{\hat{\Phi}_k}$$

Accounting for the uncertainty in estimating dispersion

Lund et al., SAGMB 2012; 11(5):8

Offset ξ explicitly in GLM:

 $E[Y] = \mu = g^{-1}(\eta) = g^{-1}(X\beta + \xi)$

Statistical Bioinformatics // Institute of Molecular Life Sciences

Some interesting generalizations of NB modeling for RNA-seq (4)

Integrate sample-specific normalization via offset

Profiles vary from sample to sample: GC content Gene length

DOES NOT change data, use offsets to modify expected mean

Give a sample (or gene)-specific offset to edgeR/DESeq2

Some terms: DTE, DEU, DTU

differential splicing

expression

Digression 1/3: The nature of Affymetrix Probe Level Data

Statistical Bioinformatics // Institute of Molecular Life Sciences

- Data for gene that is DE between heart (red=100% heart) and brain (blue=100% brain).
- 11 mixtures x 3 replicates = 33 samples (33 lines)
- Note the parallelism: probes have different affinities

(Digression 2/3) Differential expression: Affy microarrays

Digression 3/3: "Differential splicing" or "Differential isoform usage": Affy microarrays

$$y_{ik} = g_i + p_k + e_{ik}$$

(back to RNA-seq) Beyond differential expression: differential splicing

Prediction of alternative isoforms from exon expression levels in RNA-Seq experiments

Hugues Richard^{1,*}, Marcel H. Schulz^{1,2}, Marc Sultan³, Asja Nürnberger³, Sabine Schrinner³, Daniela Balzereit³, Emilie Dagand³, Axel Rasche³, Hans Lehrach³, Martin Vingron¹, Stefan A. Haas¹ and Marie-Laure Yaspo³

Sex-specific and lineage-specific alternative splicing in primates

Ran Blekhman, ^{1,4,5} John C. Marioni, ^{1,4,5} Paul Zumbo, ² Matthew Stephens, ^{1,3,5} and Yoav Gilad^{1,5}

¹Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA; ²Keck Biotechnology Laboratory, New Haven, Connecticut 06511, USA; ³Department of Statistics, University of Chicago, Chicago, Illinois 60637, USA

¹Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestr. 73,

²International Max Planck Research School for Computational Biology and Scientific Computing, and

³Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin, Germany

Counting: a few considerations (exon-level)

All the downstream statistical methods start with a count table.

How to get one?

- annotation-based? What about novel genes?
- gene-level versus transcript-level?
 versus exon-level?
- ambiguities
- junctions?

Figure 1. Flattening of gene models: This (fictional) gene has three annotated transcripts involving three exons (light shading), one of which has alternative boundaries. We form counting bins (dark shaded boxes) from the exons as depicted; the exon of variable length gets split into two bins.

Anders et al. 2012 Genome Research

A 4	•	41.	
IVI	œ	u	100

Detecting differential usage of exons from RNA-seq data

Simon Anders, ^{1,2} Alejandro Reyes, ¹ and Wolfgang Huber European Molecular Biology Laboratory, 69111 Heidelberg, Germany

DEXSeq

Transcript inventory versus differential expression

Shotgun RNA-seq data can be used both for identification of transcripts and for differential expression analysis. In the former, one annotates the regions of the genome that can be expressed, i.e., the exons, and how the pre-mRNAs are spliced into transcripts. In differential expression analysis, one aims to study the regulation of these processes across different conditions. For the method described here, we assume that a transcript inventory has already been defined, and focus on differential expression.

DEXSeq – general structure: exon-level models

We use generalized linear models (GLMs) (McCullagh and Nelder 1989) to model read counts. Specifically, we assume K_{ijl} to follow a negative binomial (NB) distribution:

$$K_{ijl} \sim NB \left(\text{mean} = s_j \mu_{ijl}, \text{dispersion} = \alpha_{il} \right),$$
 (1)

where α_{il} is the dispersion parameter (a measure of the distribution's spread; see below) for counting bin (i, l), and the mean is predicted via a log-linear model as

$$\log \mu_{ijl} = \beta_i^{\mathrm{G}} + \beta_{il}^{\mathrm{E}} + \beta_{i\rho_i}^{\mathrm{C}} + \beta_{i\rho_i l}^{\mathrm{EC}}.$$
 (2)

i – gene

j – sample ... ρ_i is condition (categorical)

I – bin

β^G – baseline "expression strength"

 β^E – "exon" (bin) effect

β^C – condition effect

βEC – condition x "exon" interaction

(DEXSeq

vignette)

DEXSeq: sig. interaction terms = differential exon usage

Figure 6: Fitted splicing

The plot represents the estimated effects, as in Figure 3, but after subtraction of overall changes in gene expression.

Percent spliced in (psi) -- MISO

http://genes.mit.edu/burgelab/miso/docs/: "currently, MISO does not handle replicates / groups of samples in any special way" —> rMATs (Shen et al., PNAS, 2014)

Isoform-level estimation: cufflinks (kallisto, salmon, RSEM), cuffdiff2; many

From estimated isoform abundance from set of (assembled) transcripts, use Jenson-Shannon (JS) divergence to determine change in the mix of transcripts between conditions.

DTU —> dirichlet-multinomial distribution

Estimated:

• transcript ratios

$$\Pi = (\pi_1, \pi_2, \pi_3)$$

Multinomial:
$$P(\mathbf{Y} = \mathbf{y} | \mathbf{\Pi} = \pi) = \binom{n}{\mathbf{y}} \prod_{j=1}^k \pi_j^{y_j}$$

Dirichlet:
$$P(\mathbf{\Pi}=\pi) = \frac{\Gamma(\gamma_+)}{\prod_{j=1}^k \Gamma(\gamma_j)} \prod_{j=1}^k \pi_j^{\gamma_j-1}, \gamma_+ = \sum_{j=1}^k \gamma_j$$

Dirichlet-multinomial:
$$P(\mathbf{Y} = \mathbf{y}) = \binom{n}{\mathbf{y}} \frac{\Gamma(\gamma_+)}{\Gamma(n+\gamma_+)} \prod_{j=1}^k \frac{\Gamma(y_j + \gamma_j)}{\Gamma(\gamma_j)}, \gamma_j = \pi_j \gamma_+$$

Observed:

transcript counts

$$Y = (y_1, y_2, y_3)$$

gene expression

$$n = \sum_{j=1}^{\kappa} y_j$$