

Katedra za računarstvo Elektronski fakultet u Nišu

Sistemi baza podataka NoSQL baze podataka

Letnji semestar 2014/2015

- Skladišta podataka pre nastanka RDBMS.
- Skladišta bazirana na hijerarhiji i multideimnzionalnim poljima.
- RDBMS najpopularnije i generičko rešenje za skladištenje podataka.
- Sa ubrzanim razvojem Web aplikacija javila se potreba za drugačijim tehnikama za skladištenje podataka – NoSQL baze podataka.

Uvod

- Relacioni model je predstavljen 1970 godine
- E. F. Codd, "A Relational Model of Data for Large Shared Data Banks"
- Relaciona algebra obezbeđuje deklarativne mehanizme za rad sa skupovima podataka.
- SQL se bazira na relacionoj algebri.

			1		
	lme	Prezime	Indeks	MBR	
	Petar	Petrović	1111	123456	
	Milan	Milanović	2222	654321	
	Jovan	Jovanović	3333	345612	

- Prednosti korišćenja RDBMS:
 - Efikasno skladištenje podataka
 - Podrška za ACID transakcije
 - Podrška za kompleksne SQL upite
 - Ogromna tehnološka baza (različiti DBMS-ovi, alati, programski interfejsi i sl.)

- Četiri osnovne karakteristike podataka na Web-u:
 - Količina podataka
 - Povezanost podataka (relacije)
 - Polustruktuiranost podataka
 - Arhitektura aplikacija koje koriste podatke

- Web aplikacije imaju drugačije potrebe u odnosu na aplikacije za koje su RDBMS razvijane.
- Web aplikacije zahtevaju:
 - Ekstremno veliki broj transakcija u jedinici vremena
 - Dinamička analiza velikih količina podataka
 - Kratko i predvidivo vreme odziva (latency)
 - Skalabilnost (po niskoj ceni)
 - Visok nivo dostupnosti (high availability)
 - Fleksibilnu šemu / polustruktuirane podatke
 - Geografska distribuiranost (veći broj čvorova u kojima se podaci obrađuju, mreža kao problem)

- Web aplikacijama nisu neophodne:
 - Transakcije
 - Kompleksni SQL upiti
 - Stroga konzistentost
 - Integritet podataka
- Nedostaci RDBMS
 - ACID transakcije nisu skalabilne
 - Horizontalno particionisanje
 - Neefikasni spojevi
 - Transakcije zahtevaju nepotrebnu obradu, odnosno unose dodatni "overhead"
 - Šema relacionih baza podataka nije fleksibilna

Scaling Up

- Dodavanje resursa jedinom čvoru u sistemu
 - Dodavanje CPU ili memorije
- Migracija sistema na jaču platformi
- **Prednosti:**
 - Brzo i jednostavno
- **Nedostaci:**
 - Kada se prevaziđu kapaciteti najačeg sistema
 - Cena
 - Zavisnost od samo jednog proizvođača

Skalabilnost

- Scaling Out
 - Dodavanje novih čvorova u sistem
 - Funkcionalana (vertikalna) skalabilnost
 - Grupisanje podataka po funkciji i distribuiranje funkcionalnih grupa u različitim bazama
 - Horizontalna skalabilnost
 - Distribuiranje istih funkcionalnih grupa u različitim bazama
 - Prednosti: fleksibilnost
 - Nedostaci: kompleksnost

- Više čvorova
- Jedna baza podataka

- Zahtevi koje moraju da ispune distribuirane baze podataka:
 - **Consistency** sistem se nalazi u konzistentnom stanju posle svake operacije
 - Svi klijenti vide iste podatke
 - Availability sistem je uvek dostupan ("always on")
 - "no downtime"
 - Tolerancija na otkaz čvorova klijenti uvek imaju pristup nekoj od kopija (replika)
 - Tolerancija na HW/SW promene
 - Partition tolerance sistem funkcioniše čak i u slučaju da ne postoji konekcija između distribuiranih podskupova (pad mreže)
 - Ne samo za čitanje već i za upis

Distribuirane baze podataka

- CAP Teorema (E. Brewer, N. Lynch)
 - U potpunosti je moguće zadovoljiti samo 2 od 3 zahteva.
 - Kompromis oko trećeg zahteva
 - Odustaje se od pristupa "sve ili ništa"
 - Biraju se različiti nivo konzistentnosti, dostupnosti ili particionisanja.
 - Treba prepoznati koja su od CAP pravila neophodna za funkcionisanje sistema.

CA: Consistency & Availability

- Kompromis oko Partition Tolerance
- Karakteristična za single-site cluster rešenja (lakše je obezbediti da su svi čvorovi u stalnom kontaktu)
- Kada dođe do narušavanja topologije mreže, odnosno do particionisanja mreže, sistem se blokira.
- Primer: dvofazni komit (2PC)

Distribuirane baze podataka

CP: Consistency & Partitioning

- Kompromis za Availability
- Pristup pojedinim podacima može biti privremeno onemogućen ili ograničen
- Ostatak sistema se nalazu u konzistentom/tačnom stanju
- Primer: horizonatalno particionisane baze podataka na većem broju servera (sharded databases)

Distribuirane baze podataka

AP:Availability & Partitioning

- Kompromis za Consistency
- Sistem je dostupan i prilikom narušavanja mrežne topologije
- Neki od podataka koje sistem vraća mogu biti privremeno neažurni (temporarily not up-todate)
- Zahteva strategiju za rešavanje konflikta (conflict resolution strategy)
- Primer: DNS, keš, master/slave replikacija

- CAE trade-off (Amazon)
 - Cost-efficiency
 - High Availability
 - Elasticity
- Biraju se bilo koja dva (C,A, E)
 - Klijent čeka kada je sistem opterećen (C i E)
 - Ukoliko je moguće predvideti opterećenje, moguće je obezbediti A i C rezervisanjem resursa unapred
 - Nepotrebni resursi (over-provisioning) A i E
- Svi žele A, problem je obezbediti C

ACID

Atomicity

Kada se deo transakcije ne izvrši, ne izvrši se čitava transakcija. Baza podataka se ne menja.

Consistency

Transakcija prevodi DB iz jednog konzistentnog stanja u drugo.

Isolation

Transakcija ne vidi nekomitovane izmene iz drugih transakcija

Durability

Komitovane izmene u DB su trajne.

Distribuirane baze podataka

BASE

- CAP varijanta ACID svojstava
- Basically Available
- Soft State
- Eventually Consistent
- ACID forsira konzistentnost podataka dok BASE prihvata da će se konflikti desiti.

- NoSQL baze podataka predstavljaju pokret a ne specifikaciju.
- Prvi put upotrebljen 1998. godine.
- NoSQL != No SQL
- NoSQL == Not Only SQL
- Termin se upotrebljava za sve nerelacione baze podataka (non-RDBMS)

- Internet
- Google
- Bigtable whitepaper (Google) 2006
- Dynamo whitepaper (Amazon) 2007
- Cassandra release (Facebook) 2008
- Voldemort release (LinkedIn) 2009

NoSQL baze podataka

Tipična primena:

- Velike količine podataka (Massive data volumes)
 - Za skladištenje podataka se koristi distribuirana arhitektura
 - Google, Amazon, Facebook 10K-100K servera
- Veliki broj upita (Extreme query workload)
 - Nemogućnost efikasnog izvršavanja spojeva kod RDBMS u takvom okruženju
- Schema evolution
 - Nije jednostavno obezbediti fleksibilnost šeme
 - Promene u šemi se mogu postepeno uvoditi kod NoSQL

- Dobre strane:
 - Fleksibilnost
 - Skalabilnost
 - Jednostavne za korišćenje i u pravljanje
 - Eventually consistent
 - Jeftine
 - Prilagođene potrebama Web aplikacija

- Loše strane:
 - Tehnologija još uvek nije stabilna
 - Ne postoje zajednički standardi
 - Loša podrška za transakcije
 - Loša podrška za pretraživanje podataka
 - Zahteva promenu načina razmišljanja
 - Vrlo je teško naći dva identična scenarija primene.

- Key/Value stores
- Column stores (Extensible records)
- Document stores
- Graph databases

Recent NOSQL database products

Key/Value Store	Columnar or Extensible record	Document Store	Graph DB
Memcached Redis	Google BigTable	CouchDB	Neo4j
Tokyo Cabinet	HBase	MongoDB	FlockDB
Dynamo	Cassandra	SimpleDB	InfiniteGraph
Dynomite	HyperTable	Lotus Domino	
Riak		Bollino	
Project Voldemort		Mnesia	

Key/Value stores

- Key/Value lookups (DHT), Hash
- Jedna vrednost, jedan ključ, nema duplikata, izuzetno brzo
- Skaliranje ogromnih količina podataka
- Projektovane da podnesu velika opterećenja
- Podataka je obično BLOB, DB ne razume strukturu podatka.
- Primer: Riak, Redis, Project Voldemort (Amazon Dynamo whitepaper)

Key/Value stores

Column stores

- BigTable kolonovi
- Rasuta, distribirana multi-dimenzionalan sortirana mapa
- Konceptualno:
 - Jedna tabela, beskonačno velika
 - Svaka vrsta može imati različite kolone (po broju i tipu)
 - Tabela je retko posednuta: |rows|*|columns| > |values|
- Primer: Hbase, Cassandra, Hypertable

Column stores

Document stores

- Key/Value store, value predstavlja polustrukturiani dokument čija je struktura razumljiva DB
- Podaci se mogu pretraživati ne samo po ključu
- Polu-strukturiani dokumenti (XML, JSON)
- Primer: MongoDB, CouchDB, Amazon **SimpleDB**

Document stores

```
"key"

{
type: "Dog",
name: "Stella",
mood: "Happy",
birthdate: 2007-04-01
}
```


Graph databases

- Inspirisane matematičkom teorijom grafova: G= (E,V)
- Modelira se struktura podataka
- Navigacioni model podataka
- Skalabilnost / kompleksnost podataka
- Model: Key/Value parovi za Potege/Čvorove
- Relacije: Potezi između čvorova
- Primer: Neo4j, AllegroGraph, OWLIM

Graph databases

