Finding the True MVP*

An NBA Analysis Through Linear Regression

Yan B. Mezhiborsky

December 2, 2024

First sentence. Second sentence. Third sentence. Fourth sentence.

Table of contents

1	Intr	oduction	2
2	Dat	a	2
	2.1	Overview	2
	2.2	Measurement	2
	2.3	Outcome variables	2
	2.4	Predictor variables	3
3	Мо	del	3
	3.1	Model set-up	3
		3.1.1 Model justification	5
		3.1.2 Model Results	5
4	Res	ults	7
5	Disc	cussion	8
	5.1	First discussion point	8
	5.2	Second discussion point	8
	5.3	Third discussion point	8
	5.4	Weaknesses and next steps	8
Αļ	pend	dix	9
Α	Add	litional data details	9

^{*}Code and data are available at: https://github.com/RohanAlexander/starter_folder.

В	Model details	9
	B.1 Posterior predictive check	9
	B.2 Diagnostics	9
Re	ferences	10

1 Introduction

Overview paragraph

Estimand paragraph

Results paragraph

Why it matters paragraph

Telegraphing paragraph: The remainder of this paper is structured as follows. Section 2....

2 Data

2.1 Overview

We use the statistical programming language R (R Core Team 2023).... Our data (Toronto Shelter & Support Services 2024).... Following Alexander (2023), we consider...

Overview text

2.2 Measurement

Some paragraphs about how we go from a phenomena in the world to an entry in the dataset.

2.3 Outcome variables

Add graphs, tables and text. Use sub-sub-headings for each outcome variable or update the subheading to be singular.

Some of our data is of penguins (?@fig-bills), from Horst, Hill, and Gorman (2020).

Talk more about it.

And also planes (?@fig-planes). (You can change the height and width, but don't worry about doing that until you have finished every other aspect of the paper - Quarto will try to make it look nice and the defaults usually work well once you have enough text.)

Talk way more about it.

2.4 Predictor variables

Add graphs, tables and text.

Use sub-sub-headings for each outcome variable and feel free to combine a few into one if they go together naturally.

3 Model

The goal of our modelling strategy is twofold. Firstly,...

Here we briefly describe the Bayesian analysis model used to investigate... Background details and diagnostics are included in Appendix B.

3.1 Model set-up

Define y_i as the number of seconds that the plane remained a loft. Then β_i is the wing width and γ_i is the wing length, both measured in millimeters.

$$\begin{split} y_i | \mu_i, \sigma &\sim \text{Normal}(\mu_i, \sigma) & (1) \\ \mu_i &= \pi_i + \alpha_i + \rho_i + \beta_i + \xi_i + \omega_i & (2) \\ \mu &\sim \text{Normal}(0, 2.5) & (3) \\ \pi &\sim \text{Normal}(0, 2.5) & (4) \\ \alpha &\sim \text{Normal}(0, 2.5) & (5) \\ \rho &\sim \text{Normal}(0, 2.5) & (6) \\ \beta &\sim \text{Normal}(0, 2.5) & (7) \\ \xi &\sim \text{Normal}(0, 2.5) & (8) \\ \omega &\sim \text{Normal}(0, 2.5) & (9) \end{split}$$

(10)

```
# Fit a linear regression model
lm_model <- lm(MVP_index ~ PTS + AST + TRB + BLK + STL + WS, data = nba_master)
# View the summary of the model
summary(lm_model)</pre>
```

 $\sigma \sim \text{Exponential}(1)$

```
Call:
lm(formula = MVP_index ~ PTS + AST + TRB + BLK + STL + WS, data = nba_master)
Residuals:
              1Q
                  Median
                              3Q
-0.27967 -0.06232 -0.00013 0.06198 0.33044
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1545172 0.0136329 11.33 <2e-16 ***
PTS
           0.0337247 0.0005182 65.08 <2e-16 ***
           0.0445034 0.0012761 34.88 <2e-16 ***
AST
TRB
           0.0295472 0.0010966 26.95 <2e-16 ***
           BLK
STL
           0.1060966 0.0056427 18.80 <2e-16 ***
WS
           Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.09672 on 1536 degrees of freedom
Multiple R-squared: 0.8992,
                            Adjusted R-squared: 0.8988
F-statistic: 2284 on 6 and 1536 DF, p-value: < 2.2e-16
next_year_mvp_stats <- mvp_table %>%
 filter(Year == 2024) %>% # Replace with the target year
 select(PTS, AST, TRB, BLK, STL, WS)
# Predict MVP_index for the next year's MVP
predicted_index_mvp_table <- predict(lm_model, newdata = next_year_mvp_stats)</pre>
print(paste("Predicted MVP Index (mvp_table):", predicted_index_mvp_table))
[1] "Predicted MVP Index (mvp_table): 2.45027833674002"
next_year_real_mvp_stats <- merged_real_mvp %>%
 filter(Year == 2024) %>% # Replace with the target year
 select(PTS, AST, TRB, BLK, STL, WS)
# Predict MVP_index for the next year's MVP
predicted index_real mvp <- predict(lm model, newdata = next_year_real_mvp_stats)</pre>
print(paste("Predicted MVP Index (merged_real_mvp):", predicted_index_real_mvp))
```

[1] "Predicted MVP Index (merged_real_mvp): 2.40118723560444"

3.1.1 Model justification

We expect a positive relationship between the size of the wings and time spent aloft. In particular...

We can use maths by including latex between dollar signs, for instance θ .

3.1.2 Model Results

```
library(dplyr)
# Filter MVPs from 2014 to 2024 from `mvp_table`
mvp_table_filtered <- mvp_table %>%
  filter(Year >= 2014 & Year <= 2024) %>%
  select(Year, Player, MVP_index)
# Filter MVPs from 2014 to 2024 from `merged_real_mvp`
real_mvp_filtered <- merged_real_mvp %>%
  filter(Year >= 2014 & Year <= 2024) %>%
  select(Year, Player, MVP_index)
# Get stats for predicting the 2025 MVP_index from `mvp_table`
next_year_mvp_stats <- mvp_table %>%
  filter(Year == 2025) %>%
  select(PTS, AST, TRB, BLK, STL, WS)
predicted_index_mvp_table <- NA</pre>
if (nrow(next_year_mvp_stats) > 0) {
  predicted index mvp_table <- predict(lm_model, newdata = next_year_mvp_stats)</pre>
# Get stats for predicting the 2025 MVP index from `merged_real mvp`
next_year_real_mvp_stats <- merged_real_mvp %>%
  filter(Year == 2025) %>%
  select(PTS, AST, TRB, BLK, STL, WS)
predicted_index_real_mvp <- NA</pre>
if (nrow(next_year_real_mvp_stats) > 0) {
  predicted_index_real_mvp <- predict(lm_model, newdata = next_year_real_mvp_stats)</pre>
```

```
}
# Combine results from 2014-2024 and add the 2025 predicted index
results_table <- bind_rows(</pre>
  mvp_table_filtered %>% mutate(Source = "mvp_table"),
  real_mvp_filtered %>% mutate(Source = "merged_real_mvp")
# Add 2025 predictions to the table
results_table <- results_table %>%
  mutate(
    Predicted_2025_Index = case_when(
      Source == "mvp_table" ~ predicted_index_mvp_table,
      Source == "merged_real_mvp" ~ predicted_index_real_mvp,
      TRUE ~ NA_real_
    )
  )
# View the table
print(results_table)
```

	Year	Player	MVP_index	Source	Predicted_2025_Index
1	2014	Kevin Durant	2.405868	mvp_table	NA
2	2015	Russell Westbrook	2.398289	mvp_table	NA
3	2016	Stephen Curry	2.278181	mvp_table	NA
4	2017	Russell Westbrook	2.362328	mvp_table	NA
5	2018	James Harden	2.297349	mvp_table	NA
6	2019	James Harden	2.456584	mvp_table	NA
7	2020	James Harden	2.263751	mvp_table	NA
8	2021	Nikola Jokić	2.119867	mvp_table	NA
9	2022	Nikola Jokić	2.260379	mvp_table	NA
10	2023	Joel Embiid	2.156639	mvp_table	NA
11	2024	Luka Dončić	2.200904	mvp_table	NA
12	2019	${\tt Giannis} \ {\tt Antetokounmpo}$	2.292537	${\tt merged_real_mvp}$	NA
13	2020	${\tt Giannis} \ {\tt Antetokounmpo}$	2.154718	${\tt merged_real_mvp}$	NA
14	2018	James Harden	2.297349	${\tt merged_real_mvp}$	NA
15	2023	Joel Embiid	2.156639	${\tt merged_real_mvp}$	NA
16	2014	Kevin Durant	2.405868	${\tt merged_real_mvp}$	NA
17	2021	Nikola Jokić	2.119867	${\tt merged_real_mvp}$	NA
18	2022	Nikola Jokić	2.260379	${\tt merged_real_mvp}$	NA
19	2024	Nikola Jokić	2.157337	${\tt merged_real_mvp}$	NA
20	2017	Russell Westbrook	2.362328	${\tt merged_real_mvp}$	NA

21 2015	Stephen Curry	2.128396 merged_real_mvp
22 2016	Stephen Curry	2.278181 merged_real_mvp

NA NA

4 Results

Our results are summarized in **?@tbl-modelresults**.

Scatter: Year vs. MVP Index (Merged Real MVPs)

5 Discussion

5.1 First discussion point

If my paper were 10 pages, then should be be at least 2.5 pages. The discussion is a chance to show off what you know and what you learnt from all this.

5.2 Second discussion point

Please don't use these as sub-heading labels - change them to be what your point actually is.

5.3 Third discussion point

5.4 Weaknesses and next steps

Weaknesses and next steps should also be included.

Appendix

- A Additional data details
- **B** Model details
- **B.1** Posterior predictive check
- **B.2 Diagnostics**

Checking the convergence of the MCMC algorithm

References

- Alexander, Rohan. 2023. Telling Stories with Data. Chapman; Hall/CRC. https://tellingstorieswithdata.com/.
- Horst, Allison Marie, Alison Presmanes Hill, and Kristen B Gorman. 2020. palmerpenguins: Palmer Archipelago (Antarctica) penguin data. https://doi.org/10.5281/zenodo.3960218.
- R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- Toronto Shelter & Support Services. 2024. Deaths of Shelter Residents. https://open.toronto.ca/dataset/deaths-of-shelter-residents/.