

FCC/IC - TEST REPORT

Report Number : **64.711.14.04572.01** Date of Issue: January 22, 2015

Model : OSK101, SK101

Product Type : Smart Kit

Applicant : GD Midea Air-conditioning Equipment Co.,Ltd.

Address : Midea Industrial District , Beijiao ,Shunde, Foshan, Guangdong, People's

Republic of China

Production Facility : GD Midea Air-conditioning Equipment Co.,Ltd.

Address : Midea Industrial District , Beijiao ,Shunde, Foshan, Guangdong, People's

Republic of China

Test Result : ■ Positive □ Negative

Total pages including Appendices

42

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

1 Table of Contents

1	T	Table of Contents	2
2	Г	Details about the Test Laboratory	3
3	Г	Description of the Equipment Under Test	4
4	S	Summary of Test Standards	5
5	S	Summary of Test Results	6
6	C	General Remarks	7
7	T	Test Setups	8
8	S	Systems test configuration	9
9	T	Technical Requirement	10
9	.1	Conducted Emission	10
9	.2	Conducted peak output power	13
9	.3	6 dB Bandwidth and 99% Occupied Bandwidth	15
9	.4	Spurious RF conducted emissions	19
9	.5	Band edge testing	23
9	.6	Spurious radiated emissions for transmitter and receiver	26
9	.7	Power Spectral Density	30
10	T	Test Equipment List	35
11	S	System Measurement Uncertainty	36
An	nex	x A: Test Setup Photos	37
Δn	1e v	R. FIIT Photos	39

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch

5F, Communication Building, 163 Pingyun Rd, Huangpu Ave. West Guangzhou,

P.R.China

Telephone: +86 20 3832 0668 Fax: +86 20 3832 0478

Test site 2:

Company name: BTL inc.

Add: No.3, Jinshagang 1st Road, ShiXia, Dalang Town, DongGuan,

China.

Telephone: +86-769-83183000 Fax: +86-769-83196000

FCC Registration

Number:

319330

IC Company

Number: 4428B-3

3 Description of the Equipment Under Test

Product: Smart Kit

Model no.: OSK101, SK101

FCC ID: 2ADQOMDNA14

IC: 12575A-MDNA14

Options and accessories: NIL

Rating: 5.0V DC

RF Transmission

Frequency:

WIFI 802.11b/g: 2412~2462MHz

Modulation: DSSS(CCK/QPSK/BPSK)

Antenna Type: PCB

Antenna Gain: Antenna for WIFI

Antenna gain: 2.0dBi

Description of the EUT: The Equipment Under Test (EUT) is a WIFI adaptor.

4 Summary of Test Standards

Test Standards			
FCC Part 15 Subpart C PART 15 - RADIO FREQUENCY DEVICES			
10-1-2013 Edition Subpart C - Intentional Radiators			
RSS-Gen Issue 4 General Requirements and Information for the Certification of			
November 2014 Radio Apparatus			
RSS-210 Issue 8 RSS-210 — Licence-exempt Radio Apparatus (All Frequency			
December 2010	Bands): Category I Equipment		

All the test methods were according to procedures KDB 558074 v03r02 (June 5, 2014) and C63.10 (2013).

5 Summary of Test Results

Technical Requirements						
FCC Part 15 Subr	oart C, RSS-Gen, RS	•				
Test Condition Pages Test Site Test Result						
Conducted Emissions at Mains Terminals	FCC PART 15 C section 15.207 & RSS-Gen clause 8.8	ANSI C63.10: Clause 6.2	10	Site 2	Pass	
Antenna Requirement	FCC PART 15 C section 15.247 (c) and Section 15.203 & RSS-Gen clause 6.7	FCC PART 15 C section 15.247 (c) and Section 15.203	,	ote 1)	Pass	
6 dB Bandwidth	FCC PART 15 C section 15.247 (a)(2) & RSS-210 A8.2(a)	ANSI C63.10: Clause 6.9.1	15	Site 2	Pass	
Maximum Peak Output Power	FCC PART 15 C section 15.247(b)(3) & RSS-210 A8.4(4)	FCC/KDB-558074 D01 v03r01 Clause 9.1.2	13	Site 2	Pass	
Peak Power Spectral Density	FCC PART 15 C section 15.247(e) & RSS-210 A8.2(b)	ANSI C63.10: Clause 6.11.2.3	30	Site 2	Pass	
Conducted Spurious Emission	FCC PART 15 C section 15.209 &15.247(d) & RSS-210 A8.5	ANSI C63.10: Clause 6.7	19	Site 2	Pass	
Radiated Spurious Emission	FCC PART 15 C section 15.209 &15.247(d) & RSS-210 A8.5	ANSI C63.10: Clause 6.4, 6.5 and 6.6	26	Site 2	Pass	
Band Edges Measurement	FCC PART 15 C section 15.247 (d) &15.205 & RSS-210 A8.5	ANSI C63.10: Clause 6.9.2	23	Site 2	Pass	

Note 1: The EUT uses PCB layout antenna, the maximum antenna gain is 2.0dBi. In accordance to §15.203, It is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

OSK101 and SK101 are identical except appearance, so only OSK101 test was performed. This submittal(s) (test report) is intended for FCC ID: 2ADQOMDNA14, IC: 12575A-MDNA14 complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C Rules and RSS-210.

IC: 12575A-MDNA14 complies Subpart C Rules and RSS-210.	with Section 15.207, 15.2	209, 15.247 of the FCC Part 15,		
SUMMARY:				
All tests according to the regula	tions cited on page 5 wer	re		
■ - Performed				
□ - Not Performed				
The Equipment Under Test				
■ - Fulfills the general approva	l requirements.			
□ - Does not fulfill the general	approval requirements.			
Sample Received Date:	November 14, 2014			
Testing Start Date:	December 17, 2014			
Testing End Date:	Testing End Date: December 26, 2014			
- TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch -				
Reviewed by:	Prepar	red by:		
7		Storm		
Tony Liu		Storm Shu		

7 Test Setups

7.1 AC Power Line Conducted Emission test setups

7.2 Radiated test setups

7.3 Conducted RF test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
PC	ASUS	X80L	
Air-conditioner	Midea		
Mobile phone	Samsung	i9300	
WIFI router	TP-LINK	TL-WR745N	

Test software: "USI WIFI mfg_test tool" for WIFI are used to control the EUT in continues transmitting mode.

The system was configured to operate at a signal channel transmitting. The test software allows the configuration and operation at the worst-case duty and the highest transmit power.

Test software: "MSmart" for WIFI are used to control the EUT in normal operation mode. This software could be remote control air-conditioning by Mobile phone and WIFI router.

9 Technical Requirement

9.1 Conducted Emission

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

According to §15.207 & RSS-GEN A7.2.4, conducted emissions limit as below:

Frequency	QP Limit	AV Limit
MHz	dΒμV	dΒμV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

Decreasing linearly with logarithm of the frequency

Conducted Emission

Product Type : Smart Kit M/N : OSK101

Operating Condition : WIFI function on

Test Specification : Live

Comment : AC 120V/60Hz

Conducted Emission

Product Type : Smart Kit M/N : OSK101

Operating Condition : WIFI function on

Test Specification : Neutral

Comment : AC 120V/60Hz

9.2 Conducted peak output power

Test Method

- Use the following spectrum analyzer settings:
 Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured, VBW≥RBW,
 Sweep = auto, Detector function = peak, Trace = max hold
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power

Limits

According to §15.247 (b) (1) and RSS-210 A8.4, conducted peak output power limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Conducted peak output power

WIFI						
Frequency (MHz)	Mode	Measurement (dBm)	Limit	Result		
2412		18.81		Pass		
2437	802.11b	19.03	Pass			
2462		19.59	≤ 30dBm	Pass		
2412		19.32		Pass		
2437	802.11g	19.48		Pass		
2462		19.15		Pass		

9.3 6 dB Bandwidth and 99% Occupied Bandwidth

Test Method

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

		m	 ŀ
_	_1		L

Limit [kHz]	
≥ 500	

Result:

WIFI					
Frequency (MHz)	Mode	6 dB Bandwidth	Result		
2412		7.58	Pass		
2437	802.11b	7.64	Pass		
2462		8.56	Pass		
2412		15.18	Pass		
2437	802.11g	15.19	Pass		
2462		14.76	Pass		

WIFI				
Frequency (MHz)	Mode	99% Bandwidth	Result	
2412		12.72	Pass	
2437	802.11b	12.80	Pass	
2462		12.84	Pass	
2412		16.32	Pass	
2437	802.11g	16.32	Pass	
2462		16.36	Pass	

2437MHz

2462MHz

9.4 Spurious RF conducted emissions

Test Method

- Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span. RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
- 3. The level displayed must comply with the limit specified in this Section. Submit these plots.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

Spurious RF conducted emissions

2437MHz

802.11g 2412MHz

2437MHz

2462MHz

9.5 Band edge testing

Test Method

- 1 Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section. .

Limit:

According to §15.247(d) and RSS-210 A8.5, in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a) and RSS-Gen7.2.2, must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)) and RSS-Gen.

Band edge testing

9.6 Spurious radiated emissions for transmitter and receiver

Test Method

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 3. Use the following spectrum analyzer settings:

 Span = wide enough to fully capture the emission being measured, RBW = 1 MHz for f ≥

 1GHz, 100 kHz for f < 1 GHz, VBW ≥ RBW, Sweep = auto, Detector function = peak,

 Trace = max hold
- 4. Follow the guidelines in ANSI C63.4-2009 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. Set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the duty cycle per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(duty cycle/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Limit

According to part 15.247(d), the radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section 15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter and receiver

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Only data of the worst case was reported.

Transmitting spurious emission test result as below:

802.11b - 2412MHz Test Result

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB)	Emission Level (dBuV/m)	Limit (dBµV/m)	Detector	Antenna Polarity	Result
47.46	40.97	-13.09	27.88	40	QP	V	Pass
288.02	51.68	-12.26	39.42	46	QP	Η	Pass
2390	26.09	33.35	59.44	74	PK	V	Pass
2390	15.74	33.35	49.09	54	AV	V	Pass
4804	79.10	-32.98	46.12	74	PK	V	Pass
4804	68.54	-32.98	35.56	54	AV	V	Pass
2390	27.04	33.35	60.39	74	PK	Η	Pass
2390	15.73	33.35	49.08	54	AV	Н	Pass
4804	83.16	-32.98	50.18	74	PK	Н	Pass
4804	72.62	-32.98	39.64	54	AV	Н	Pass

802.11b - 2437MHz Test Result

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB)	Emission Level (dBuV/m)	Limit (dBµV/m)	Detector	Antenna Polarity	Result
288.02	51.68	-12.26	39.42	46	QP	Н	Pass
47.46	41.51	-13.09	28.42	40	QP	V	Pass
4880	82.05	-32.95	49.10	74	PK	V	Pass
4880	69.25	-32.95	36.30	54	AV	V	Pass
4880	79.07	-32.95	46.12	74	PK	Н	Pass
4880	69.88	-32.95	36.93	54	AV	Н	Pass

802.11b - 2462MHz Test Result

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB)	Emission Level (dBuV/m)	Limit (dBµV/m)	Detector	Antenna Polarity	Result
45.52	36.86	-12.82	24.04	40	QP	V	Pass
288.02	49.95	-12.26	37.69	46	QP	Н	Pass
2483.5	28.41	33.37	61.78	74	PK	V	Pass
2483.5	17.01	33.37	50.38	54	AV	V	Pass
4960	76.08	-32.92	43.16	74	PK	V	Pass
4960	67.83	-32.92	34.91	54	AV	V	Pass
2483.5	28.10	33.37	61.47	74	PK	Н	Pass
2483.5	17.00	33.37	50.37	54	AV	Н	Pass
4960	82.05	-32.92	49.13	74	PK	Н	Pass
4960	70.16	-32.92	37.24	54	AV	Н	Pass

802.11g - 2412MHz Test Result

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB)	Emission Level (dBuV/m)	Limit (dBµV/m)	Detector	Antenna Polarity	Result
45.52	37.45	-12.82	24.63	40	QP	V	Pass
288.02	49.79	-12.26	37.53	46	QP	Н	Pass
2390	27.12	33.35	60.47	74	PK	Н	Pass
2390	15.84	33.35	49.19	54	AV	Н	Pass
4824	83.14	-32.97	50.17	74	PK	Н	Pass
4824	70.65	-32.97	37.68	54	AV	Н	Pass
2390	26.09	33.35	59.44	74	PK	V	Pass
2390	15.79	33.35	49.14	54	AV	V	Pass
4824	85.87	-32.97	52.90	74	PK	V	Pass
4824	72.43	-32.97	39.46	54	AV	V	Pass

802.11g - 2437MHz Test Result

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB)	Emission Level (dBuV/m)	Limit (dBµV/m)	Detector	Antenna Polarity	Result
384.05	47.21	-10.88	36.33	46	QP	Н	Pass
45.52	35.41	-12.82	22.59	40	QP	V	Pass
4874	84.25	-32.95	51.30	74	PK	V	Pass
4874	71.07	-32.95	38.12	54	AV	V	Pass
4874	85.64	-32.95	52.69	74	PK	Н	Pass
4874	73.72	-32.95	40.77	54	AV	Н	Pass

802.11g - 2462MHz Test Result

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB)	Emission Level (dBuV/m)	Limit (dBµV/m)	Detector	Antenna Polarity	Result
45.52	34.98	-12.82	22.16	40	QP	V	Pass
288.02	49.94	-12.26	37.68	46	QP	Н	Pass
2483.5	23.56	33.37	55.57	74	PK	Н	Pass
2483.5	13.73	33.37	45.74	54	AV	Н	Pass
4924	83.22	-32.93	50.29	74	PK	Н	Pass
4924	71.42	-32.93	38.49	54	AV	Н	Pass
2483.5	29.41	33.37	61.42	74	PK	V	Pass
2483.5	13.72	33.37	45.73	54	AV	V	Pass
4924	84.12	-32.93	51.19	74	PK	V	Pass
4924	71.13	-32.93	38.20	54	AV	V	Pass

Remark:

- (1) QP Emission Level= Antenna Factor +Cable Loss + Reading PK Emission Level= Antenna Factor +Cable Loss Amp. factor + Reading AV Emission Level= PK Emission Level+20log(dutycycle)
- AV Emission Level= PK Emission Level+20log(dutycycle)

 (2) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- (3) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.

Receiving emission test result as below:

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB)	Emission Level (dBuV/m)	Limit (dBµV/m)	Detector	Antenna Polarity	Result
47.46	40.97	-13.09	27.88	40	QP	V	Pass
103.72	46.41	-15.64	30.77	43.5	QP	V	Pass
45.52	34.92	-12.82	22.10	40	QP	Н	Pass
384.05	46.94	-10.88	36.06	46	QP	Н	Pass
1000- 25000				74	AV	Н	Pass
1000- 25000				74	PK	V	Pass

Remark:

- (1) QP Emission Level= Antenna Factor +Cable Loss + Reading PK Emission Level= Antenna Factor +Cable Loss Amp. factor + Reading AV Emission Level= PK Emission Level+20log (duty cycle)
- (2) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- (3) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section RSS-Gen.

9.7 Power Spectral Density

Test Method

- 5. Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span. RBW = 3 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 6. Allow the trace to stabilize. Set the marker on the peak of the maximum emission recorded.
- 7. The level displayed must comply with the limit specified in this Section. Submit these plots.
- 8. Repeat above procedures until all frequencies measured were complete.

		n	м	•
_	ı			L

Limit	
PSD	
≤ 8dBm/3KHz	

Power spectral density

Test result:

Frequency (MHz)	Mode	Measurement (dBm/3KHz)	Limit	Result
2402		-4.90		Pass
2440	802.11b	-4.83		Pass
2480		-4.79	≤ 8dBm/3KHz	Pass
2412		-15.65	≥ oubiii/3N⊓Z	Pass
2437	802.11g	-13.28		Pass
2462		-13.66		Pass

Plots:

802.11b 2412MHz

2462MHz

2437MHz

2462MHz

10 Test Equipment List

List of Test Instruments

	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE	
CE	LISN	EMCO	3816/2	00052765	Mar. 29, 2015	
	LISN	R&S	ENV216	101447	Mar. 29, 2015	\boxtimes
	Test Cable	N/A	C_17	N/A	Mar. 14, 2015	\boxtimes
	EMI TEST RECEIVER	R&S	ESCS30	833364/017	Mar. 29, 2015	
	50Ω Terminator	SHX	TF2-3G-A	08122902	Mar. 29, 2015	\boxtimes
С	Spectrum Analyzer	R&S	FSP 40	100185	Nov. 11, 2014	
RE <1 GHz	Antenna	Schwarbeck	VULB9160	9160-3232	Mar. 29, 2015	\boxtimes
	Amplifier	HP	8447D	2944A09673	Mar. 29, 2015	\boxtimes
	Receiver	AGILENT	N9038A	MY52130039	Aug. 23, 2015	\boxtimes
	Test Cable	N/A	C-01_CB03	N/A	Jul. 01, 2015	\boxtimes
	Controller	СТ	SC100	N/A	N/A	\boxtimes
RE > 1 GHz	Antenna	ETS	3115	00075789	Mar. 29, 2015	\boxtimes
	Amplifier	Agilent	8449B	3008A02274	Mar. 29, 2015	\boxtimes
	Receiver	AGILENT	N9038A	MY52130039	Aug. 23, 2015	\boxtimes
	Test Cable	HUBER+SUHNE R	C-48	N/A	Apr. 30, 2015	
	Controller	СТ	SC100	N/A	N/A	\boxtimes
	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Feb. 22, 2015	
	Microwave Preamplifier With Adaptor	EMC INSTRUMENT	EMC26540 45	980039 & HA01	Feb. 22, 2015	
	Active Loop Antenna	R&S	HFH2-Z2	830749/020	Mar. 29, 2015	

C - Conducted RF tests

- Conducted peak output power
- 6dB bandwidth
- 20dB bandwidth and 99% Occupied Bandwidth
- Carrier frequency separation
- Number of hopping frequencies
- Dwell Time
- Power spectral density*
- Spurious RF conducted emissions
- Band edge

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty

Items	Extended Uncertainty		
Radiated spurious emission	4.32dB (30MHz-1GHz) 2.27dB (1GHz -25GHz)		
Conducted spurious emission	2.10dB(30MHz-25GHz)		
Bandwidth test	1*10 ⁻⁹		
Conducted emission	2.4dB		

Annex A: Test Setup Photos

Radiated emission

Conducted emission

Annex B: EUT Photos

Speaker

Top view

Bottom view

Side view

Internal Photos

