THE GEOGRAPHY OF INVENTORS AND LOCAL KNOWLEDGE SPILLOVERS IN R&D

Brian C. Fujiy¹ U.S. Census Bureau

UEA 2024 Copenhagen

¹Any opinions and conclusions expressed herein are those of the authors and do not represent the views of the U.S. Census Bureau.

- Research and Development (R&D) \Rightarrow Aggregate innovation \Rightarrow LR Growth
- R&D concentrates in space. Top 3 West German cities

Inventors in Mech. Engineer. 29.86% inventors > Workers 17.39%

• <u>Understudied:</u> causes/consequences of agglomeration economies in R&D

Local Knowledge Spillovers in R&D

- 1. Evidence on local knowledge spillovers in R&D?
- 2. Quantitative importance of spillovers when implementing R&D policies?

- Research and Development (R&D) \Rightarrow Aggregate innovation \Rightarrow LR Growth
- R&D concentrates in space. Top 3 West German cities:

 $\frac{\text{Inventors in } \textit{Mech. Engineer.}}{29.86\% \text{ inventors}} > \frac{\text{Workers}}{17.39\%}$

• Understudied: causes/consequences of agglomeration economies in R&D

Local Knowledge Spillovers in R&D

- 1. Evidence on local knowledge spillovers in R&D?
- 2. Quantitative importance of spillovers when implementing R&D policies?

- Research and Development (R&D) \Rightarrow Aggregate innovation \Rightarrow LR Growth
- R&D concentrates in space. Top 3 West German cities:

 $\frac{\text{Inventors in } \textit{Mech. Engineer.}}{29.86\% \text{ inventors}} > \frac{\text{Workers}}{17.39\%}$

• <u>Understudied:</u> causes/consequences of agglomeration economies in R&D

Local Knowledge Spillovers in R&D

- 1. Evidence on local knowledge spillovers in R&D?
- 2. Quantitative importance of spillovers when implementing R&D policies?

- Research and Development (R&D) \Rightarrow Aggregate innovation \Rightarrow LR Growth
- R&D concentrates in space. Top 3 West German cities:

 $\frac{\text{Inventors in } \textit{Mech. Engineer.}}{29.86\% \text{ inventors}} > \frac{\text{Workers}}{17.39\%}$

• <u>Understudied:</u> causes/consequences of agglomeration economies in R&D

Local Knowledge Spillovers in R&D

- 1. Evidence on local knowledge spillovers in R&D?
- 2. Quantitative importance of spillovers when implementing R&D policies?

- Research and Development (R&D) \Rightarrow Aggregate innovation \Rightarrow LR Growth
- R&D concentrates in space. Top 3 West German cities:

 $\frac{\text{Inventors in } \textit{Mech. Engineer.}}{29.86\% \text{ inventors}} > \frac{\text{Workers}}{17.39\%}$

• <u>Understudied:</u> causes/consequences of agglomeration economies in R&D

Local Knowledge Spillovers in R&D

- 1. Evidence on local knowledge spillovers in R&D?
- 2. Quantitative importance of spillovers when implementing R&D policies?

- Research and Development (R&D) \Rightarrow Aggregate innovation \Rightarrow LR Growth
- R&D concentrates in space. Top 3 West German cities:

 $\frac{\text{Inventors in } \textit{Mech. Engineer.}}{29.86\% \text{ inventors}} > \frac{\text{Workers}}{17.39\%}$

• <u>Understudied:</u> causes/consequences of agglomeration economies in R&D

Local Knowledge Spillovers in R&D

- 1. Evidence on local knowledge spillovers in R&D?
- 2. Quantitative importance of spillovers when implementing R&D policies?

- Research and Development (R&D) \Rightarrow Aggregate innovation \Rightarrow LR Growth
- R&D concentrates in space. Top 3 West German cities:

$$\frac{\text{Inventors in } \textit{Mech. Engineer.}}{29.86\% \text{ inventors}} > \frac{\text{Workers}}{17.39\%}$$

• <u>Understudied:</u> causes/consequences of agglomeration economies in R&D

Local Knowledge Spillovers in R&D

- 1. Evidence on local knowledge spillovers in R&D?
- 2. Quantitative importance of spillovers when implementing R&D policies?

Empirics

- <u>Data:</u> Matched administrative panel on German inventors, 1980-2014
 - ▶ Inventors' technological clusters and patents' citation counts
- Local Knowledge Spillovers in R&D:
 - \blacktriangleright Reunification of Germany in 1990 \Rightarrow arrival of East German inventors in West Germany
 - Quasi-exogenous variation across West German clusters
 - ▶ \uparrow 10% cluster size \Rightarrow \uparrow 4% inventor productivity gains

Empirics

- <u>Data:</u> Matched administrative panel on German inventors, 1980-2014
 - ► Inventors' technological clusters and patents' citation counts
- Local Knowledge Spillovers in R&D.
 - \blacktriangleright Reunification of Germany in 1990 \Rightarrow arrival of East German inventors in West Germany
 - Quasi-exogenous variation across West German clusters
 - ▶ \uparrow 10% cluster size \Rightarrow \uparrow 4% inventor productivity gains

Empirics

- <u>Data:</u> Matched administrative panel on German inventors, 1980-2014
 - ► Inventors' technological clusters and patents' citation counts
- Local Knowledge Spillovers in R&D:
 - ▶ Reunification of Germany in 1990 \Rightarrow arrival of East German inventors in West Germany
 - Quasi-exogenous variation across West German clusters
 - ▶ $\uparrow 10\%$ cluster size $\Rightarrow \uparrow 4\%$ inventor productivity gains

Spatial model of innovation

- Tradable intermediate inputs with endogenous quality
 - 1. Quality determined by firm inventors' R&D
 - 2. R&D subject to spillovers estimated from the data

- 1. Inventor mobility matters
 - ► Complementarity between spillovers and ↓ inventor migration costs
- 2. R&D subsidies matter
 - ▶ Small effect of 25% subsidy from 2020 German R&D Tax Allowance Act
 - Optimal R&D subsidies are place-based

Spatial model of innovation

- Tradable intermediate inputs with endogenous quality
 - 1. Quality determined by firm inventors' R&D
 - 2. R&D subject to spillovers estimated from the data

- 1. Inventor mobility matters
 - ► Complementarity between spillovers and ↓ inventor migration costs
- 2. R&D subsidies matter
 - ► Small effect of 25% subsidy from 2020 German R&D Tax Allowance Act
 - ▶ Optimal R&D subsidies are place-based

Spatial model of innovation

- Tradable intermediate inputs with endogenous quality
 - 1. Quality determined by firm inventors' R&D
 - 2. R&D subject to spillovers estimated from the data

- 1. Inventor mobility matters
 - ► Complementarity between spillovers and ↓ inventor migration costs
- 2. R&D subsidies matter
 - ► Small effect of 25% subsidy from 2020 German R&D Tax Allowance Act
 - Optimal R&D subsidies are place-based

Spatial model of innovation

- Tradable intermediate inputs with endogenous quality
 - 1. Quality determined by firm inventors' R&D
 - 2. R&D subject to spillovers estimated from the data

- 1. Inventor mobility matters
 - Complementarity between spillovers and ↓ inventor migration costs
- 2. R&D subsidies matter
 - ▶ Small effect of 25% subsidy from 2020 German R&D Tax Allowance Act
 - Optimal R&D subsidies are place-based

LITERATURE

Local knowledge spillovers (Empirical): Griliches (1991); Jaffe et al. (1993); Audretsch and Feldman (1996); Jaffe et al. (2000); Thompson (2006); Carlino et al. (2007); Combes et al. (2010); Greenstone et al. (2010); Bloom et al. (2013); Kerr and Kominers (2015); Kantor and Whalley (2019); Moretti (2021); Gruber et al. (2022)

⇒ Contribution: New evidence on these spillovers

Innovation and knowledge spillovers (Quantitative)

- Urban: Eaton and Eckstein (1997); Glaeser (1999); Black and Henderson (1999); Kelly and Hageman (1999); Duranton and Puga (2001); Duranton (2007); Roca and Puga (2017); Duranton and Puga (2019); Davis and Dingel (2019)
- Trade: Ramondo et al. (2016); Hallak and Sivadasan (2013); Atkeson and Burstein (2010);
 Melitz (2003); Eaton and Kortum (2002); Krugman (1980); Akcigit et al. (2021)
- Spatial: Desmet and Rossi-Hansberg (2014); Desmet et al. (2018); Nagy et al. (2016); Mestieri et al. (2021)
- \Rightarrow Contribution: Migration costs + Spillovers \Rightarrow Geography of inventors matters in the aggregate

Labor mobility and innovation + productivity + growth

- Empirical: Kerr (2010); Borjas and Doran (2012); Burchardi and Hassan (2013); Moser et al. (2014); Peri et al. (2015); Bosetti et al. (2015); Kerr and Kominers (2015); Kerr et al. (2017); Bahar et al. (2020); Burchardi et al. (2020); Bernstein et al. (2022); Chattergoon and Kerr (2022)
- Quantitative: Monras (2018); Bryan and Morten (2019); Peters (2019); Arkolakis et al. (2020); Pellegrina and Sotelo (2021); Prato (2021)
- ⇒ Contribution: Quantification of internal mobility of inventors on productivity

EMPIRICS

- 1. Data
- 2. Local Knowledge Spillovers in R&D
 - \Rightarrow The Reunification of Germany
 - \Rightarrow IV

EMPIRICS

- 1. Data
- 2. Local Knowledge Spillovers in R&D

 ⇒ The Reunification of Germany
 - $\Rightarrow IV$

DATA

Final dataset Inventor/year panel

• Source: IAB-FDZ's Linked Inventor Biography (INV-BIO)

• Agents: West German inventors, 1980-2014

• Inventor productivity: # inventor's new patents' citations

• Location: 104 labor markets inventor's establishment

• Patent type: 5 technological areas

** Cluster size: # inventors in techn. area/labor market pair

N Occupation of inventors

▶ Industry of firms

Technological area of patents

➤ Top 10: Electric. engineer.
➤ Top 10: Instruments
➤ Top 10: Chemistry
➤ Top 10: Mechanic. engineer

EMPIRICS

- 1. Data
- 2. Local Knowledge Spillovers in R&D
 - \Rightarrow The Reunification of Germany
 - $\Rightarrow IV$

LOCAL KNOWLEDGE SPILLOVERS IN R&D

Baseline specification

$$\log \left(Z_{da,t}^{i\omega} \right) = \iota_{d,t} + \iota_{a,t} + \iota_{da} + \iota_{\omega} + \iota_{i} + \frac{\beta}{\beta} \log \left(R_{da,t} \right) + \epsilon_{da,t}^{i\omega}$$

where

- $Z_{da,t}^{i\omega}$: # of inventor i's new patents' 5-year forward citations in period t
- $R_{da,t}$: # of inventors in cluster (d,a) in period t

Local Knowledge spillovers in R&D

• Ha: $\beta > 0$

FES

- $\iota_{d,t}$: amenities + labor market shocks
- $\iota_{a,t}$: technological change
- ι_{da} : cluster-specific productivity
- ι_{ω} : firm-specific productivity
- ι_i : sorting from inventor-specific productivity

LOCAL KNOWLEDGE SPILLOVERS IN R&D

Baseline specification

$$\log\left(Z_{da,t}^{i\omega}\right) = \iota_{d,t} + \iota_{a,t} + \iota_{da} + \iota_{\omega} + \iota_{i} + \frac{\beta}{\beta}\log\left(R_{da,t}\right) + \epsilon_{da,t}^{i\omega}$$

where

- $Z_{da.t}^{i\omega}$: # of inventor i's new patents' 5-year forward citations in period t
- $R_{da,t}$: # of inventors in cluster (d,a) in period t

Local Knowledge spillovers in R&D

• Ha: $\beta > 0$

FES

- $\iota_{d,t}$: amenities + labor market shocks
- $\iota_{a,t}$: technological change
- ι_{da} : cluster-specific productivity
- ι_{ω} : firm-specific productivity
- ι_i : sorting from inventor-specific productivity

LOCAL KNOWLEDGE SPILLOVERS IN R&D

Baseline specification

$$\log\left(Z_{da,t}^{i\omega}\right) = \iota_{d,t} + \iota_{a,t} + \iota_{da} + \iota_{\omega} + \iota_{i} + \frac{\beta}{\beta}\log\left(R_{da,t}\right) + \epsilon_{da,t}^{i\omega}$$

where

- $Z_{da.t}^{i\omega}: \#$ of inventor i's $new\ patents$ ' 5-year forward citations in period t
- $R_{da,t}$: # of inventors in cluster (d,a) in period t

Local Knowledge spillovers in R&D

• Ha: $\beta > 0$

FEs

- $\iota_{d,t}$: amenities + labor market shocks
- $\iota_{s,t}$: technological change
- ι_{da}: cluster-specific productivity
- ι_{ω} : firm-specific productivity
- ι_i : sorting from inventor-specific productivity

Endogeneity concerns

- 1. Sorting from inventor unobservable shocks
 - Example: inventors selects into a new cluster where less/more productive
 - Downward/upward bias
- 2. Sorting from cluster unobservable shocks
 - Example: growth expectations for Chemistry in Dusseldorf
 - ► Upward bias

IV

- <u>Ideal experiment:</u> randomize inventors' location ⇒ regress inventor productivity vs cluster size
- The Reunification of Germany in 1990
 - Arrival of East German inventors across West German clusters
 - \Rightarrow quasi-exogenous variation in cluster size

Endogeneity concerns

- 1. Sorting from inventor unobservable shocks
 - Example: inventors selects into a new cluster where less/more productive
 - Downward/upward bias
- 2. Sorting from cluster unobservable shocks
 - ► Example: growth expectations for Chemistry in Dusseldorf
 - Upward bias

\mathbf{IV}

- <u>Ideal experiment:</u> randomize inventors' location ⇒ regress inventor productivity vs cluster size
- The Reunification of Germany in 1990
 - Arrival of East German inventors across West German clusters
 - \Rightarrow quasi-exogenous variation in cluster size

Endogeneity concerns

- 1. Sorting from inventor unobservable shocks
 - Example: inventors selects into a new cluster where less/more productive
 - Downward/upward bias
- 2. Sorting from cluster unobservable shocks
 - ► Example: growth expectations for Chemistry in Dusseldorf
 - ▶ Upward bias

IV

- <u>Ideal experiment:</u> randomize inventors' location ⇒ regress inventor productivity vs cluster size
- The Reunification of Germany in 1990
 - Arrival of East German inventors across West German clusters

Endogeneity concerns

- 1. Sorting from inventor unobservable shocks
 - Example: inventors selects into a new cluster where less/more productive
 - Downward/upward bias
- 2. Sorting from cluster unobservable shocks
 - ▶ Example: growth expectations for Chemistry in Dusseldorf
 - Upward bias

IV

- <u>Ideal experiment:</u> randomize inventors' location ⇒ regress inventor productivity vs cluster size
- The Reunification of Germany in 1990
 - Arrival of East German inventors across West German clusters
 - \Rightarrow quasi-exogenous variation in cluster size

EMPIRICS

- 1. Data
- 2. Local Knowledge Spillovers in R&D
 - \Rightarrow The Reunification of Germany
 - $\Rightarrow IV$

THE REUNIFICATION OF GERMANY

Background

- <u>1961:</u> Migration between East and West Germany ceased in 1961
 - ▶ 17 years after the German Division
 - October 1990: Reunification of Germany begins
 - unexpected and permanent
 - ► East-West migration, including inventors (Hoisl et al., 2016)

EMPIRICS

- 1. Data
- 2. Local Knowledge Spillovers in R&D
 - \Rightarrow The Reunification of Germany
 - $\Rightarrow IV$

Model in first differences

$$\Delta \log \left(Z_{da,t}^{i\omega} \right) = \iota_{d,t} + \iota_{a,t} + \frac{\beta}{\beta} \Delta \log \left(R_{da,t} \right) + \epsilon_{da,t}^{i\omega}$$

$$IV_{da,t} = \sum_{c,c} g_{o,t} \times s_{o,da}$$

Model in first differences

$$\Delta \log \left(Z_{da,t}^{i\omega} \right) = \iota_{d,t} + \iota_{a,t} + \frac{\beta}{\Delta} \log \left(R_{da,t} \right) + \epsilon_{da,t}^{i\omega}$$

$$IV_{da,t} = \sum_{o \in \mathcal{E}} g_{o,t} imes s_{o,da}$$

Model in first differences

$$\Delta \log \left(Z_{da,t}^{i\omega} \right) = \iota_{d,t} + \iota_{a,t} + \frac{\beta}{\beta} \Delta \log \left(R_{da,t} \right) + \epsilon_{da,t}^{i\omega}$$

$$IV_{da,t} = \sum_{o \in \mathcal{E}} g_{o,t} imes s_{o,da}$$

- $g_{o,t} \equiv \log \left(R_{o,t}^{-d,-a} \right)$: # of inventors moved from location $o \in \mathcal{E}$ (in the East) to all West German clusters except to the instrumented cluster (d,a)
- Identification: $\mathbb{E}\left\{\overline{g\epsilon}\right\} = 0$ (Borusyak et al., 2022)

Model in first differences

$$\Delta \log \left(Z_{da,t}^{i\omega} \right) = \iota_{d,t} + \iota_{a,t} + \frac{\beta}{\beta} \Delta \log \left(R_{da,t} \right) + \epsilon_{da,t}^{i\omega}$$

$$IV_{da,t} = \sum_{o \in \mathcal{E}} g_{o,t} imes \mathbf{s}_{o,da}$$

- $s_{o,da} \equiv dist_{o,d}^{-1} \times TechComp_{o,a}$, where
- \Rightarrow dist_{o,d}⁻¹: inverse distance between $o \in \mathcal{E}$ and d
- \Rightarrow TechComp_{o,a}: share of patents of area a in location $o \in \mathcal{E}$

\uparrow CLUSTER SIZE \Rightarrow \uparrow INVENTOR PRODUCTIVITY

	IV		OLS
(1)	(2)	(3)	(4)
0.178	0.309	0.409	0.232
(0.0431)	(0.101)	(0.152)	(0.082)
	✓	✓	√
		\checkmark	\checkmark
132.1	34.14	28.23	
50,778	50,776	50,776	53, 145
	0.178 (0.0431)	(1) (2) 0.178 0.309 (0.0431) (0.101) 132.1 34.14	(1) (2) (3) 0.178 0.309 0.409 (0.0431) (0.101) (0.152)

⇒ Robustness

SPATIAL MODEL OF INNOVATION

- 1. Model
- 2. Taking the model to the data
- 3. R&D policy counterfactuals:
 - $3.1 \Downarrow Inventor migration costs$
 - 3.2 2020 German R&D Tax Allowance Act VS Optimal R&D subsidies

SPATIAL MODEL OF INNOVATION

- 1. Model
- 2. Taking the model to the data
- 3. R&D policy counterfactuals:
 - $3.1 \Downarrow Inventor migration costs$
 - 3.2 2020 German R&D Tax Allowance Act VS Optimal R&D subsidies

MODEL

Geography

• $S \equiv \{1, 2, ..., S\}$ locations $o, d \in S$

Technology

- Final goods
 - Non-tradable
 - \triangleright CES aggregate of intermediate inputs with elast. σ
- Intermediate inputs
 - ► Tradable
 - ► Workers produce inputs
- R&D subsidiary
 - ▶ Owned by colocated intermediate inputs firm
 - ▶ R&D output freely transmitted to intermediate inputs firm
 - ► Inventors produce R&D ⇒ input quality
 - ▶ R&D s.t. Local Knowledge Spillovers

Agents

- Workers and inventors
 - Inelastic labor supply
 - Consume local final good + housing
 - Location choice s.t. migration costs

MODEL

Geography

• $S \equiv \{1, 2, ..., S\}$ locations $o, d \in S$

Technology

- Final goods
 - ▶ Non-tradable
 - \triangleright CES aggregate of intermediate inputs with elast. σ
- Intermediate inputs
 - ▶ Tradable
 - ▶ Workers produce inputs
- R&D subsidiary
 - Owned by colocated intermediate inputs firm
 - ▶ R&D output freely transmitted to intermediate inputs firm
 - ► Inventors produce R&D ⇒ input quality
 - ▶ R&D s.t. Local Knowledge Spillovers

Agents

- Workers and inventors
 - Inelastic labor supply
 - Consume local final good + housing
 - Location choice s.t. migration costs

MODEL

Geography

- $S \equiv \{1, 2, ..., S\}$ locations $o, d \in S$
- **Technology**
 - Final goods
 - ▶ Non-tradable
 - \triangleright CES aggregate of intermediate inputs with elast. σ
 - Intermediate inputs
 - ▶ Tradable
 - ► Workers produce inputs
 - R&D subsidiary
 - ▶ Owned by colocated intermediate inputs firm
 - ▶ R&D output freely transmitted to intermediate inputs firm
 - ► Inventors produce R&D ⇒ input quality
 - ► R&D s.t. Local Knowledge Spillovers

Agents

- Workers and inventors
 - Inelastic labor supply
 - Consume local final good + housing
 - Location choice s.t. migration costs

$$\begin{aligned} \max_{\{P_{od},Q_{od},L_{od}\}} \pi_o &= \sum_d \pi_{od}, \\ s.t. \\ \pi_{od} &= P_{od}Q_{od} - w_o^L L_{od}, \\ L_{od} &= \frac{\tau_{od}Q_{od}}{\mathcal{A}_o}, \\ Q_{od} &= Z_o P_{od}^{-\sigma} P_d^{\sigma-1} X_d. \end{aligned}$$

$$\begin{aligned} \max_{\{P_{od},Q_{od},L_{od}\}} \pi_o &= \sum_d \pi_{od}, \\ s.t. \\ \pi_{od} &= P_{od} Q_{od} - w_o^L L_{od}, \\ L_{od} &= \frac{\tau_{od} Q_{od}}{A_o}, \\ Q_{od} &= Z_o P_{od}^{-\sigma} P_d^{\sigma-1} X_d. \end{aligned}$$

$$\begin{aligned} \max_{\{P_{od},Q_{od},L_{od}\}} \pi_o &= \sum_d \pi_{od}, \\ s.t. \\ \pi_{od} &= P_{od}Q_{od} - w_o^L L_{od}, \\ L_{od} &= \frac{\tau_{od}Q_{od}}{\mathcal{A}_o}, \\ Q_{od} &= Z_o P_{od}^{-\sigma} P_d^{\sigma-1} X_d. \end{aligned}$$

$$\begin{aligned} \max_{\{P_{od},Q_{od},L_{od}\}} \pi_o &= \sum_d \pi_{od},\\ s.t. \\ \pi_{od} &= P_{od}Q_{od} - w_o^L L_{od},\\ L_{od} &= \frac{\tau_{od}Q_{od}}{\mathcal{A}_o},\\ Q_{od} &= Z_o P_{od}^{-\sigma} P_d^{\sigma-1} X_d. \end{aligned}$$

QUALITY OF INTERMEDIATE INPUTS

 $Z_o = \mathbb{Z}_o R_o$

QUALITY OF INTERMEDIATE INPUTS

$$Z_o = \mathbb{Z}_o R_o$$

• R_o : # of inventors in o

QUALITY OF INTERMEDIATE INPUTS

$$Z_o = \mathbb{Z}_o R_o$$

• \mathbb{Z}_o : expected productivity of inventors' ideas

LOCAL KNOWLEDGE SPILLOVERS IN R&D

Productivity of inventors' ideas

$$Z_o^i \sim \mathit{Frechet}\left(lpha, \lambda_o^{rac{1}{lpha}}
ight)$$

where

• $\lambda_o^{\frac{1}{\alpha}} = \mathcal{Z}_o R_o^{\tilde{\gamma}}$, where $R_o^{\tilde{\gamma}}$ and $\tilde{\gamma} \equiv \frac{\gamma}{\alpha}$ are <u>Local Knowledge Spillovers in R&D</u> Expected productivity of inventors' ideas

$$\mathbb{Z}_o = \mathbb{E}\left\{Z_o^i\right\} = \psi \lambda_o^{\frac{1}{\alpha}} = \psi \mathcal{Z}_o R_o^i$$

LOCAL KNOWLEDGE SPILLOVERS IN R&D

Productivity of inventors' ideas

$$Z_o^i \sim \mathit{Frechet}\left(lpha, \lambda_o^{rac{1}{lpha}}
ight)$$

where

• $\lambda_o^{\frac{1}{\alpha}} = \mathcal{Z}_o R_o^{\tilde{\gamma}}$, where $R_o^{\tilde{\gamma}}$ and $\tilde{\gamma} \equiv \frac{\gamma}{\alpha}$ are <u>Local Knowledge Spillovers in R&D</u> Expected productivity of inventors' ideas

$$\mathbb{Z}_{o} = \mathbb{E}\left\{Z_{o}^{i}
ight\} = \psi\lambda_{o}^{rac{1}{lpha}} = \psi\mathcal{Z}_{o}R_{o}^{ ilde{\gamma}}$$

R&D

• R&D subsidiary maximizes R&D output:

$$egin{aligned} \max_{\{R_o\}} & Z_o - w_o^R R_o \ & s.t. \ & Z_o = \psi \mathcal{Z}_o R_o^{1+\widetilde{\gamma}} \end{aligned}$$

• Demand for inventors

$$\mathbf{w}_{o}^{R}=\psi\mathcal{Z}_{o}R_{o}^{\widetilde{\gamma}}$$

LOCATION CHOICE

• Agent i of type $n = \{L, R\}$ working in o moves to d:

$$U_{od}^{i,n} = \max_{d \in \mathcal{S}} \left\{ \frac{U_{od}^{n}}{\mu_{od}^{n}} \times \epsilon^{i} \right\},\,$$

where

$$V_d^n = \frac{\mathcal{B}_d^n V_d^n}{P_d^\beta r_d^{1-\beta}}$$
: indirect utility

$$V_d^n = \frac{\begin{pmatrix} a & a \\ (1+\overline{\pi})w_d^n \end{pmatrix}}{\beta}$$
: income

$$\mathcal{B}_{d}^{n}$$
: type-specific location amenities

$$\mu_{od}^n$$
: iceberg migration costs

Migration shares:

$$\eta_{od}^{n} = \frac{\left(\frac{U_{d}^{n}}{\mu_{od}^{n}}\right)^{\kappa}}{\sum_{\delta} \left(\frac{U_{\delta}^{n}}{\mu_{o\delta}^{L}}\right)^{\kappa}} , n = \{L, R\}$$

▶ Details

EQUILIBRIUM

Given the exogenous distribution of workers and inventors across locations $\{\overline{R}_o, \overline{L}_o\}_{\forall o \in S}$, fixed supply of housing $\{\overline{H}_o\}_{\forall o \in S}$, location fundamentals $\{\mathcal{Z}_o, \mathcal{A}_o\}_{\forall o \in \mathcal{S}}$, location amenities $\{\mathcal{B}_o^R, \mathcal{B}_o^L\}_{\forall o \in \mathcal{S}}$, migration costs $\{\mu_{od}^R, \mu_{od}^L\}_{\forall o, d \in S, S}$, trade costs $\{\tau_{od}\}_{\forall o, d \in S, S}$, and parameters, an <u>equilibrium</u> is a set of wages $\{w_o^R, w_o^L\}_{\forall o \in S}$, housing rent $\{r_o\}_{\forall o \in S}$, prices $\{P_o\}_{\forall o \in S}$, quantities $\{R_o, L_o, H_o, Q_o\}_{\forall o \in S}$, and quality $\{Z_o\}_{\forall o \in S}$ such that

- 1. workers and inventors maximize utility
- 2. firms maximize profits
- 3. workers and inventors labor markets clear
- 4. housing market clears
- 5. trade is balanced

➤ Equilibrium with RD subsidies

SPATIAL MODEL OF INNOVATION

- 1. Model
- 2. Taking the model to the data
- 3. R&D policy counterfactuals:
 - 3.1 ↓ Inventor migration costs
 - 3.2 2020 German R&D Tax Allowance Act VS Optimal R&D subsidies

TAKING THE MODEL TO THE DATA

- Local Knowledge Spillovers in R&D $(\tilde{\gamma})$
- Migration costs $\{\mu_{od}^n\}^{n=\{L,R\}}$
- Trade costs $\{\tau_{od}\}$
- Location fundamentals $\{A_o, \mathcal{Z}_o\}$
- Location amenities $\{\mathcal{B}_o^n\}^{n=\{L,R\}}$

Local Knowledge Spillovers in R&D ($\tilde{\gamma}$)

• From properties of the Frechet distribution:

$$\log\left(Z_o^i\right) = \widetilde{\gamma}\log\left(R_o\right) + \epsilon_o^i$$

Reduced-form evidence:

$$\Delta \log \left(Z_{oa,t}^{i\omega} \right) = FEs + \underbrace{\beta}_{0.409} \Delta \log \left(R_{oa,t} \right) + \Delta \epsilon_{oa,t}^{i\omega}$$

 \bullet Lanjouw and Schankerman (2004): Elasticity of patent quality to 5-year forward citations = 0.22

$$\Rightarrow \widetilde{\gamma} = (0.22) \beta \approx 0.09 \text{ VS } \widetilde{\gamma} = 0.07 \text{ (Moretti, 2021)}$$

SPATIAL MODEL OF INNOVATION

- 1. Model
- 2. Taking the model to the data
- 3. R&D policy counterfactuals:
 - $3.1 \Downarrow Inventor migration costs$
 - 3.2 2020 German R&D Tax Allowance Act VS Optimal R&D subsidies

SPATIAL MODEL OF INNOVATION

- 1. Model
- 2. Taking the model to the data
- 3. R&D policy counterfactuals:
 - 3.1 ↓ Inventor migration costs
 - 3.2 2020 German R&D Tax Allowance Act VS Optimal R&D subsidies

↓ Inventor migration costs

Reducing migration costs for inventors is key to promote economic activity

- X-axis: $\widehat{\mu_{od}^R} = \mu_{od}^{R^{(1-\kappa)}}$ Y-axis: $\mathbb{E}\left\{ \widehat{\frac{Q_d}{Q_d}} \right\}^{\widetilde{\gamma} = \gamma^*}$

↓ Inventor migration costs

Large heterogeneous effects

- X-axis: $\frac{\widehat{Q_d}}{Q_d}$ Given $\widetilde{\gamma} = 0.09$

↓ Inventor migration costs

Complementarity between spillovers and reduction in inventor migration costs

- X-axis: $\widehat{\mu_{od}^R} = \mu_{od}^{R^{(1-\kappa)}}$ Y-axis: $\mathbb{E}\left\{\frac{\widehat{Q_d}}{Q_d}\right\}^{\widetilde{\gamma}=\gamma^*} \mathbb{E}\left\{\frac{\widehat{Q_d}}{Q_d}\right\}^{\widetilde{\gamma}=0}$

SPATIAL MODEL OF INNOVATION

- 1. Model
- 2. Taking the model to the data
- 3. R&D policy counterfactuals:
 - 3.1 ↓ Inventor migration costs
 - 3.2 2020 German R&D Tax Allowance Act VS Optimal R&D subsidies

2020 GERMAN R&D TAX ALLOWANCE ACT

- 2020 German R&D Tax Allowance Act
 - ▶ 25% subsidy to all R&D expenditures
 - blind to geography

2020 GERMAN R&D TAX ALLOWANCE ACT

The 2020 R&D Act would increase output by 2.2% on average

- X-axis: γ
- Y-axis: $\mathbb{E}\left\{\frac{\widehat{Q_d}}{Q_d}\right\}^{\gamma=\widetilde{\gamma}}$

2020 GERMAN R&D TAX ALLOWANCE ACT

Large heterogeneous effects

• X-axis: $\left\{ \frac{\widehat{Q}_d}{Q_d} \right\}^{\widetilde{\gamma}}$

OPTIMAL R&D SUBSIDIES

- Economy is inefficient due to spillovers ⇒ Which R&D subsidies would make the economy efficient?
- 1. Solve the planner problem

▶ Details

- 2. Back out set of R&D subsidies $\{s_o^*\}$ such that Competitive Equilibrium with R&D subsidies \iff Planner Equilibrium
- 3. Compare $\{s_o^*\}$ with the 2020 German R&D Tax Allowance Act

OPTIMAL R&D SUBSIDIES

Place-based R&D policies: larger subsidies to locations with better fundamentals for R&D

• X-axis: \mathcal{Z}_o

• Y-axis: s_o^*

Conclusions

- Causal estimation of Local Knowledge Spillovers in R&D: Reunification of Germany in 1990
- Built a spatial model of innovation
 - ▶ The geography of inventors matters in the aggregate
- Implementing R&D policies in explicit geography
 - Since inventors are few, of interest to policy-makers to increase output
 - ▶ Spillovers crucial when implementing R&D policies

BIBLIOGRAPHY I

- David S Abrams, Ufuk Akcigit, and Jillian Grennan. Patent Value and Citations: Creative Destruction or Strategic Disruption? Technical report, National Bureau of Economic Research, 2013.
- Ufuk Akcigit, Douglas Hanley, and Nicolas Serrano-Velarde. Back to Basics: Basic Research Spillovers, Innovation Policy, and Growth. *The Review of Economic Studies*, 88(1):1–43, 2021.
- Costas Arkolakis, Sun Kyoung Lee, and Michael Peters. European Immigrants and the United States' Rise to the Technological Frontier. Technical report, mimeo, 2020.
- A. Arundel, G. van de Paal, and L. Soete. Innovation Strategies of Europe's Largest Industrial Firms. Results of the PACE Survey for Information Sources, Public Research, Protection of Innovations and Government Programme. 1995.
- Andrew Atkeson and Ariel Tomas Burstein. Innovation, Firm Dynamics, and International Trade. *Journal of Political Economy*, 118(3):433–484, 2010.
- David B Audretsch and Maryann P Feldman. R&D Spillovers and the Geography of Innovation and Production. *The American Economic Review*, 86(3):630–640, 1996.
- Dany Bahar, Prithwiraj Choudhury, and Hillel Rapoport. Migrant Inventors and the Technological Advantage of Nations. *Research Policy*, 49(9):103947, 2020.

BIBLIOGRAPHY II

- Shai Bernstein, Rebecca Diamond, Abhisit Jiranaphawiboon, Timothy McQuade, and Beatriz Pousada. The contribution of high-skilled immigrants to innovation in the united states. Technical report, National Bureau of Economic Research, 2022.
- Duncan Black and Vernon Henderson. A Theory of Urban Growth. *Journal of Political Economy*, 107(2):252–284, 1999.
- Knut Blind, Jakob Edler, Rainer Frietsch, and Ulrich Schmoch. Motives to Patent: Empirical Evidence from Germany. *Research policy*, 35(5):655–672, 2006.
- Nicholas Bloom, Mark Schankerman, and John Van Reenen. Identifying Technology Spillovers and Product Market Rivalry. Econometrica, 81(4):1347-1393, 2013.
- George J Borjas and Kirk B Doran. The Collapse of the Soviet Union and the Productivity of American Mathematicians. *The Quarterly Journal of Economics*, 127(3):1143–1203, 2012.
- Kirill Borusyak, Peter Hull, and Xavier Jaravel. Quasi-Experimental Shift-share Research Designs. *The Review of Economic Studies*, 89(1):181–213, 2022.
- Valentina Bosetti, Cristina Cattaneo, and Elena Verdolini. Migration of Skilled Workers and Innovation: A European Perspective. *Journal of International Economics*, 96(2):311–322, 2015.

BIBLIOGRAPHY III

- Christian Broda and David E Weinstein. Globalization and the Gains from Variety. The Quarterly Journal of Economics, 121(2):541–585, 2006.
- Gharad Bryan and Melanie Morten. The Aggregate Productivity Effects of Internal Migration: Evidence from Indonesia. *Journal of Political Economy*, 127(5): 2229–2268, 2019.
- Konrad B Burchardi and Tarek A Hassan. The Economic Impact of Social Ties: Evidence from German Reunification. *The Quarterly Journal of Economics*, 128 (3):1219–1271, 2013.
- Konrad B Burchardi, Thomas Chaney, Tarek Alexander Hassan, Lisa Tarquinio, and Stephen J Terry. Immigration, Innovation, and Growth. Technical report, National Bureau of Economic Research, 2020.
- Gerald A Carlino, Satyajit Chatterjee, and Robert M Hunt. Urban Density and the Rate of Invention. *Journal of Urban Economics*, 61(3):389–419, 2007.
- Brad Chattergoon and William R Kerr. Winner takes all? tech clusters, population centers, and the spatial transformation of us invention. *Research Policy*, 51(2): 104418, 2022.

BIBLIOGRAPHY IV

- Wesley M Cohen, Akira Goto, Akiya Nagata, Richard R Nelson, and John P Walsh. R&D Spillovers, Patents and the Incentives to Innovate in Japan and the United States. *Research policy*, 31(8-9):1349–1367, 2002.
- Pierre-Philippe Combes, Gilles Duranton, Laurent Gobillon, and Sébastien Roux. Estimating Agglomeration Economies with History, Geology, and Worker Effects. In *Agglomeration Economics*, pages 15–66. University of Chicago Press, 2010.
- Katrin Cremers, Max Ernicke, Fabian Gaessler, Dietmar Harhoff, Christian Helmers, Luke McDonagh, Paula Schliessler, and Nicolas Van Zeebroeck. Patent litigation in Europe. European Journal of Law and Economics, 44(1):1–44, 2017.
- Donald R Davis and Jonathan I Dingel. A Spatial Knowledge Economy. American Economic Review, $109(1):153-70,\ 2019.$
- Klaus Desmet and Esteban Rossi-Hansberg. Spatial Development. American Economic Review, 104(4):1211–43, 2014.
- Klaus Desmet, Dávid Krisztián Nagy, and Esteban Rossi-Hansberg. The Geography of Development. *Journal of Political Economy*, 126(3):903–983, 2018.
- Emmanuel Duguet and Isabelle Kabla. Appropriation Strategy and the Motivations to Use the Patent System: an Econometric Analysis at the Firm Level in French Manufacturing. In *The Economics and Econometrics of Innovation*, pages 267–305. Springer, 2000.

BIBLIOGRAPHY V

- Gilles Duranton. Urban Evolutions: The Fast, the Slow, and the Still. American Economic Review, 97(1):197–221, 2007.
- Gilles Duranton and Diego Puga. Nursery Cities: Urban Diversity, Process Innovation, and the Life Cycle of Products. *American Economic Review*, 91(5): 1454–1477, 2001.
- Gilles Duranton and Diego Puga. Urban Growth and its Aggregate Implications. Technical report, National Bureau of Economic Research, 2019.
- Jonathan Eaton and Zvi Eckstein. Cities and Growth: Theory and Evidence from France and Japan. *Regional Science and Urban Economics*, 27(4-5):443–474, 1997.
- Jonathan Eaton and Samuel Kortum. Technology, Geography, and Trade. *Econometrica*, 70(5):1741–1779, 2002.
- Edward L Glaeser. Learning in Cities. *Journal of Urban Economics*, 46(2):254–277, 1999.
- Michael Greenstone, Richard Hornbeck, and Enrico Moretti. Identifying Agglomeration Spillovers: Evidence from Winners and Losers of Large Plant Openings. *Journal of Political Economy*, 118(3):536–598, 2010.
- Zvi Griliches. The Search for R&D spillovers. National Bureau of Economic Research Working Paper Series, (w3768), 1991.

BIBLIOGRAPHY VI

- Jonathan Gruber, Simon Johnson, and Enrico Moretti. Place-Based Productivity and Costs in Science. Technical report, National Bureau of Economic Research, 2022.
- Bronwyn H Hall, Adam B Jaffe, and Manuel Trajtenberg. The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools, 2001.
- Juan Carlos Hallak and Jagadeesh Sivadasan. Product and Process Productivity: Implications for Quality Choice and Conditional Exporter Premia. *Journal of International Economics*, 91(1):53–67, 2013.
- Dietmar Harhoff, Francis Narin, Frederic M Scherer, and Katrin Vopel. Citation Frequency and the Value of Patented Inventions. *Review of Economics and Statistics*, 81(3):511–515, 1999.
- Karin Hoisl, Dietmar Harhoff, Matthias Dorner, Tina Hinz, and Stefan Bender. Social Ties or Patent Quality Signals-Evidence from East German Inventor Migration. In *Academy of Management Proceedings*, volume 2016, page 13594. Academy of Management Briarcliff Manor, NY 10510, 2016.
- Adam B Jaffe, Manuel Trajtenberg, and Rebecca Henderson. Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations. the Quarterly Journal of Economics, 108(3):577–598, 1993.

BIBLIOGRAPHY VII

- Adam B Jaffe, Manuel Trajtenberg, and Michael S Fogarty. Knowledge Spillovers and Patent Citations: Evidence from a Survey of Inventors. *American Economic Review*, 90(2):215–218, 2000.
- Shawn Kantor and Alexander Whalley. Research Proximity and Productivity: Long-term Evidence from Agriculture. *Journal of Political Economy*, 127(2): 819–854, 2019.
- Morgan Kelly and Anya Hageman. Marshallian Externalities in Innovation. Journal of Economic Growth, 4(1):39-54, 1999.
- Sari Pekkala Kerr, William Kerr, Çağlar Özden, and Christopher Parsons. High-skilled migration and agglomeration. *Annual Review of Economics*, 9: 201–234, 2017.
- William R Kerr. Breakthrough inventions and migrating clusters of innovation. Journal of urban Economics, 67(1):46–60, 2010.
- William R Kerr and Scott Duke Kominers. Agglomerative Forces and Cluster Shapes. Review of Economics and Statistics, 97(4):877–899, 2015.
- Leonid Kogan, Dimitris Papanikolaou, Amit Seru, and Noah Stoffman. Technological Innovation, Resource Allocation, and Growth. *The Quarterly Journal of Economics*, 132(2):665–712, 2017.

BIBLIOGRAPHY VIII

- Samuel S Kortum. Research, patenting, and technological change. *Econometrica: Journal of the Econometric Society*, pages 1389–1419, 1997.
- Oliver Krebs and Michael Pflüger. On the road (again): Commuting and local employment elasticities in germany. 2021.
- Paul Krugman. Scale Economies, Product Differentiation, and the Pattern of Trade. The American Economic Review, 70(5):950–959, 1980.
- Jean O Lanjouw and Mark Schankerman. Patent quality and research productivity: Measuring innovation with multiple indicators. *The economic journal*, 114(495): 441–465, 2004.
- Marc J Melitz. The Impact of Trade on Intra-industry Reallocations and Aggregate Industry Productivity. *Econometrica*, 71(6):1695–1725, 2003.
- Martí Mestieri, Enrico Berkes, and Ruben Gaetani. Cities and Technological Waves. 2021.
- Joan Monras. Economic Shocks and Internal Migration. 2018.
- Enrico Moretti. The Effect of High-tech Clusters on the Productivity of Top Inventors. American Economic Review, 111(10):3328–75, 2021.
- Petra Moser, Alessandra Voena, and Fabian Waldinger. German Jewish émigrés and US invention. American Economic Review, 104(10):3222–55, 2014.

BIBLIOGRAPHY IX

- Dávid Krisztián Nagy et al. City Location and Economic Development. *Princeton University, mimeograph*, 2016.
- Nikolaos Papageorgiadis and Wolfgang Sofka. Patent enforcement across 51 countries—Patent enforcement index 1998–2017. *Journal of World Business*, 55(4): 101092, 2020.
- Heitor S Pellegrina and Sebastian Sotelo. Migration, Specialization, and Trade: Evidence from Brazil's March to the West. Technical report, National Bureau of Economic Research, 2021.
- Giovanni Peri, Kevin Shih, and Chad Sparber. STEM workers, H-1B visas, and productivity in US cities. $Journal\ of\ Labor\ Economics,\ 33(S1):S225–S255,\ 2015.$
- Michael Peters. Market Size and Spatial Growth: Evidence from Germany's Post-war Population Expulsions. *Unpublished manuscript*, 2019.
- Michael Peters. Market Size and Spatial Growth: Evidence from Germany's Post-war Population Expulsions. *Econometrica*, 90(5):2357–2396, 2022.
- Robert H Pitkethly. Intellectual Property Strategy in Japanese and UK Companies: Patent Licensing Decisions and Learning Opportunities. *Research Policy*, 30(3): 425–442, 2001.

BIBLIOGRAPHY X

- Marta Prato. The Global Race for Talent: Brain Drain, Knowledge Transfer and Growth. *mimeo*, 2021.
- Natalia Ramondo, Andrés Rodríguez-Clare, and Milagro Saborío-Rodríguez. Trade, Domestic Frictions, and Scale Effects. *American Economic Review*, 106(10): 3159–84, 2016.
- Jorge De La Roca and Diego Puga. Learning by Working in Big Cities. *The Review of Economic Studies*, 84(1):106–142, 2017.
- H.J. Schalk, U.C. Tager, and S Brander. Wissensverbreitung und Diffusionsdynamik im Spannungsfeld zwischen innovierenden und imitierenden Unternehmen. Ifo-Institut fur Wirtschafts-forschung, Munchen, 1999.
- Peter Thompson. Patent Citations and the Geography of Knowledge Spillovers: Evidence from Inventor- and Examiner-added Citations. *The Review of Economics and Statistics*, 88(2):383–388, 2006.
- Manuel Trajtenberg. A Penny for your Quotes: Patent Citations and the Value of Innovations. *The RAND Journal of Economics*, pages 172–187, 1990.

DISTRIBUTION OF INVENTORS, BY OCCUPATION

Occupation	Share
Technical research and development, construction, and	19.23%
production planning and scheduling	
Machine-building and automotive industry	19.10%
Mechatronics, energy electronics and electrical engineering	15.77%
Mathematics, biology, chemistry and physics	15.74%
Business management and organization	10.36%
Others	19.8%

▶ Back to data

DISTRIBUTION OF ESTABLISHMENTS, BY INDUSTRY

Industry	Share
Manufacturing, mining and quarrying and other industry	38.59%
Wholesale and retail trade, transportation and storage,	18.76%
accommodation and food service activities	
Real estate activities	12.90%
Professional, scientific, technical, administration	7.87%
and support service activities	
Financial and insurance activities	5.56%
Construction	5.31%
Agriculture, forestry and fishing	4.84%
Information and communication	3.15%
Public administration, defence, education, human health	2.29%
and social work activities	
Other services	0.68%

DISTRUTION OF PATENTS, BY TECHNOLOGICAL CLASS

Technological area	Share
Mechanical engineering	38.39%
Chemistry	25%
Electrical engineering	18.09%
Instruments	12.64%
Other fields	5.85%

TOP 10 CITIES: ELECTRICAL ENGINEERING

Code	City	Share
59	Stuttgart	15.0968
80	Munchen	13.7764
90	Regensburg	5.9419
97	Nurnberg	4.5334
96	Erlangen	4.0492
65	Karlsruhe	4.0052
60	Boblingen	2.7728
74	Reutlingen	2.7288
41	Soest	2.5528
43	Frankfurt am Main	2.2007

TOP 10 CITIES: INSTRUMENTS

Code	City	Share
59	Stuttgart	13.5844
80	Munchen	8.7328
64	Heidenheim	6.5068
96	Erlangen	5.7648
60	Boblingen	4.9657
43	Frankfurt am Main	4.1095
70	Rottweil	4.0525
68	Freiburg	3.4246
90	Regensburg	2.9680
65	Karlsruhe	2.8538

TOP 10 CITIES: CHEMISTRY

Code	City	Share
24	Dusseldorf	11.0110
59	Stuttgart	10.7340
5	Hamburg	7.2022
80	Munchen	6.3019
43	Frankfurt am Main	5.6094
81	Altotting	2.9085
25	Essen	2.7008
29	Koln	2.4238
74	Reutlingen	2.4238
96	Erlangen	2.2853

TOP 10 CITIES: MECHANICAL ENGINEERING

Code	City	Share
59	Stuttgart	15.8658
80	Munchen	8.1403
60	Boblingen	5.8589
43	Frankfurt am Main	3.5776
77	Ravensburg	3.3183
96	Erlangen	3.1973
65	Karlsruhe	3.0936
7	Wolsfburg	2.5924
24	Dusseldorf	2.5406
62	Heilbronn	2.4714

GERMAN PATENT SYSTEM

- Patent systems in Germany:
 - ▶ West Germany: German Patent Office (DPA)
 - East Germany: Office of Inventions and Patents (AfEP)
- Legal frameworks almost identical before reunification
- Merged after reunification
 - ▶ Integration of 13.5 million patent documents

▶ Back to the Reunification

THE EXODUS TO THE WEST

OLS MODELS, BASELINE SPECIFICATION

	(1)	(2)	(3)	(4)	(5)	(6)
$\log\left(R_{da,t}\right)$	0.0705	0.111	0.0985	0.109	0.0896	0.175
	(0.0256)	(0.0170)	(0.0166)	(0.0385)	(0.0358)	(0.0660)
$\iota_{d,t}$		✓	✓	√	✓	✓
$\iota_{a,t}$			\checkmark	\checkmark	\checkmark	\checkmark
ι_{da}				\checkmark	\checkmark	\checkmark
ι_ω					\checkmark	\checkmark
ι_i						\checkmark
Ν	177, 301	177, 300	177, 300	177, 294	162,803	84, 639
R^2	0.008	0.053	0.064	0.079	0.246	0.700

OLS MODELS, ROBUSTNESS

	Panel A: $\log(1+Z)$						
	(1)	(2)	(3)	(4)	(5)	(6)	
EPO	0.117	0.143	0.224	0.184	0.0859	0.173	
	(0.0186)	(0.0173)	(0.0135)	(0.0319)	(0.0349)	(0.0679)	
EU	0.142	0.193	0.255	0.203	0.103	0.245	
	(0.0208)	(0.0162)	(0.0178)	(0.0461)	(0.0463)	(0.0864)	
$\iota_{d,t}$		✓	✓	✓	✓	✓	
$\iota_{a,t}$			\checkmark	\checkmark	\checkmark	\checkmark	
$\iota_{\sf da}$				\checkmark	\checkmark	\checkmark	
ι_ω					\checkmark	\checkmark	
ι_i						\checkmark	
Ν	177, 301	177, 300	177, 300	177, 294	162,803	84, 639	

OLS MODELS, ROBUSTNESS

		Panel B: IHS (Z)					
	(1)	(2)	(3)	(4)	(5)	(6)	
DPMA	0.0847	0.135	0.118	0.130	0.108	0.217	
	(0.0326)	(0.0209)	(0.0205)	(0.0475)	(0.0440)	(0.0798)	
EPO	0.140	0.171	0.266	0.223	0.102	0.214	
	(0.0219)	(0.0204)	(0.0160)	(0.0389)	(0.0431)	(0.0810)	
EU	0.142	0.193	0.255	0.203	0.103	0.245	
	(0.0208)	(0.0162)	(0.0178)	(0.0461)	(0.0463)	(0.0864)	
$\iota_{d,t}$		✓	✓	✓	✓	✓	
$\iota_{a,t}$			\checkmark	\checkmark	\checkmark	\checkmark	
$\iota_{\sf da}$				\checkmark	\checkmark	\checkmark	
ι_ω					\checkmark	\checkmark	
ι_i						\checkmark	
Ν	177, 301	177, 300	177, 300	177, 294	162,803	84, 639	

OLS MODELS, 5-YEAR PERIODS

	(1)	(2)	(3)	(4)	(5)	(6)
$\log(1+Z)$	0.0291	0.0472	0.0449	0.0707	0.0664	0.0907
	(0.0096)	(0.007)	(0.0073)	(0.0146)	(0.0135)	(0.0215)
IHS(Z)	0.0368	0.060	0.0568	0.0902	0.0850	0.116
	(0.0124)	(0.0089)	(0.0094)	(0.0187)	(0.0171)	(0.0273)
$\iota_{d,t}$		√	✓	✓	✓	✓
$\iota_{a,t}$			\checkmark	\checkmark	\checkmark	\checkmark
$\iota_{ extsf{da}}$				\checkmark	\checkmark	\checkmark
ι_ω					\checkmark	\checkmark
ι_i						\checkmark
N	177, 301	177, 300	177, 300	177, 294	162,803	84, 639

IV MODELS, ROBUSTNESS

	Panel	A: Δ log (1	+ Z)
	(1)	(2)	(3)
EPO	0.164	0.139	0.209
	(0.0422)	(0.0723)	(0.117)
${ m EU}$	0.210	0.270	0.343
	(0.0436)	(0.0907)	(0.143)
$\iota_{d,t}$		✓	✓
$\iota_{a,t}$			\checkmark
KP – F	132.1	34.14	28.23
N	50,778	50,776	50,776

IV MODELS, ROBUSTNESS

	Panel B: $\Delta IHS(Z)$		
	(1)	(2)	(3)
DPMA	0.215	0.380	0.498
	(0.0514)	(0.122)	(0.184)
EPO	0.182	0.144	0.237
	(0.0494)	(0.0849)	(0.140)
EU	0.235	0.304	0.393
	(0.0588)	(0.104)	(0.168)
$\iota_{d,t}$		✓	✓
$\iota_{a,t}$			\checkmark
KP – F	132.1	34.14	28.23
N	50,778	50,776	50,776

IV MODELS, 5-YEAR PERIODS

	(1)	(2)	(3)
$\Delta \log (1+Z)$	0.0367	0.0865	0.0849
	(0.0232)	(0.0331)	(0.0428)
$\Delta IHS(Z)$	0.0464	0.109	0.104
	(0.0295)	(0.0420)	(0.0543)
$\iota_{d,t}$		✓	✓
$\iota_{a,t}$			\checkmark
KP – F	85.96	26.64	38.15
N	100, 234	100, 228	100, 228

DISCUSSIONS

- $1. \ \ {\rm Do\ citations\ measure\ productivity?}$
- 2. Exposure instead of knowledge spillovers?
- 3. Comparison to previous estimates

DO CITATIONS MEASURE PRODUCTIVITY?

- Positive relationship between number of citations and proxies for productivity, such as patent value (Kogan et al., 2017; Hall et al., 2001; Harhoff et al., 1999; Trajtenberg, 1990)
- More recently, preliminary evidence of a inverse U-shaped relationship between number of citations and patent value in the data Abrams et al. (2013)
 - Productive vs strategic patents
 - ► Are German patents mostly productive or strategic?
- Literature on firm surveys about their incentives to patent (Blind et al., 2006; Cohen et al., 2002; Pitkethly, 2001; Duguet and Kabla, 2000; Schalk et al., 1999; Arundel et al., 1995)
 - ▶ Main motive of German firms to file patents: protection of ideas ⇒ productive ⇒ positive relationship

EXPOSURE INSTEAD OF KNOWLEDGE SPILLOVERS?

- Identification threat: # citations reflect higher exposure of an inventor's ideas
 - upward bias
- 2 arguments against this concern:
 - 1. Germany reports one of the largest number of patent litigation cases (Cremers et al., 2017), and exhibits one of the highest cross-country levels of patent enforcement (Papageorgiadis and Sofka, 2020).
 - 2. Estimations based on EPO citations

Comparison to previous estimates

- Carlino et al. (2007): \uparrow 10% population $\Rightarrow \uparrow$ 1.95% rate of patenting per-capita across US MAs
 - 1. Inventor productivity VS US MAs patenting rates
 - 2. Knowledge spillovers in R&D VS Overall knowledge spillovers
 - 3. Identification from natural experiment VS Controls
- Moretti (2021): \uparrow 10% cluster size $\Rightarrow \uparrow$ 0.5% inventor productivity
 - 1. Long-run vs short-run elasticities
 - 2. Germany vs US

MICROFOUNDATION: GENERATION OF IDEAS

- Innovation a la Kortum (1997)
- Consider inventor *i* living in *o*
- Steps:
 - 1. Inventor i draws idea $j \in [1, T_o]$ with productivity Z^{ij}
 - 2. Selects the best idea, so $Z_o^i = \max_{j=1,...,T_o} Z^{ij}$
 - 3. If $T_o \sim Poisson(\lambda_o)$ and $Z^{ij} \sim Pareto(\alpha)$ $\Rightarrow Z_o^i \sim Frechet(\alpha, \lambda_o^{\frac{1}{\alpha}}),$ where λ_o is the spillover function

MICROFOUNDATION I: LINEAR IMPROVEMENT

- Steps:
 - 1. Inventors R_o show up to work and line up
 - 2. first in line receives blueprint, improves it, passes it over
- Endogenous quality:

$$Z_o = \mathbb{Z}_o R_o$$

where $\mathbb{Z}_o^{\omega} \equiv \mathbb{E}\left\{Z_o^{i\omega}\right\} = \Gamma\left(1 - \frac{1}{\alpha}\right) \lambda_o^{\frac{1}{\alpha}}$, where $\Gamma(\cdot)$ is the Gamma function

MICROFOUNDATION II: NECESSARY TASKS

- Steps:
 - 1. A blueprint is continuum of necessary tasks $\mathcal{T} \equiv [0, 1]$
 - 2. Aggregate quality improvements

$$Z_{o} = \exp\left(\int_{\mathcal{T}} \log\left(Z_{o}\left(t\right)\right) dt\right)$$

3. Quality of task $t \in \mathcal{T}$

$$Z_{o}(t) = Z(t)R_{o},$$

where Z(t) is drawn from Z_o^i

4. Rewrite quality as

$$Z_o = \exp\left(\frac{\overline{\gamma}}{\alpha}\right) \lambda_o^{\frac{1}{\alpha}} R_o,$$

where $\overline{\gamma}$ is Euler's constant

DEMAND OF INTERMEDIATES

• Final good: CES aggregator of intermediates

$$Q_d = \left(\sum_o Z_o^{\frac{1}{\sigma}} Q_{od}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

Demand for intermediates:

$$Q_{od} = Z_o P_{od}^{-\sigma} P_d^{\sigma-1} X_d,$$

where
$$X_d \equiv P_d Q_d$$
, and $P_d^{1-\sigma} = \sum_o Z_o P_{od}^{1-\sigma}$.

FIRM OPTIMIZATION

• Firms maximize profits:

$$\begin{aligned} \max_{\{P_{od},Q_{od},L_{od}\}} \pi_o &= \sum_d \pi_{od}, \\ s.t. \\ \pi_{od} &= P_{od}Q_{od} - w_o^L L_{od}, \\ L_{od} &= \frac{\tau_{od}Q_{od}}{\mathcal{A}_o}, \\ Q_{od} &= Z_o P_{od}^{-\sigma} P_d^{\sigma-1} X_d. \end{aligned}$$

• FOCs wrt $\{P_{od}, Q_{od}, L_{od}\}$ yields markup pricing:

$$P_{od} = \overline{m} \frac{\tau_{od} w_o^L}{A_o}$$

DEMAND OF FINAL GOODS

- Preferences of agents of workers (n = L) and inventors (n = R)
- Preferences local final good (q_d^n) + housing (h_d^n) + location amenities (\mathcal{B}_d^n) :

$$\max_{\left\{q_d^n, h_d^n\right\}} U_d = \mathcal{B}_d^n \left(\frac{q_d^n}{\beta}\right)^\beta \left(\frac{h_d^n}{1 - \beta}\right)^{1 - \beta}$$
$$s.t. P_d q_d^n + r_d h_d^n = V_d^n,$$

where V_d^n is the agent's income, and β is the expenditure share on local final goods.

• Indirect utility:

$$U_d^n = \frac{\mathcal{B}_d^n V_d^n}{P_d^\beta r_d^{1-\beta}}$$

• Income:

$$egin{aligned} V_d^n &= \left(1+\overline{\pi}\right)w_d^n + \left(1-eta\right)V_d^n, \ V_d^n &= rac{\left(1+\overline{\pi}\right)w_d^n}{eta}. \end{aligned}$$

MARKET CLEARING: LABOR

Inventors

• Supply:

$$R_d = \sum_o \eta_{od}^R \overline{R}_o$$

• Demand:

Workers

• Supply:

$$L_d = \sum_o \eta_{od}^L \overline{L}_o$$

• Demand: not necessary due to Walras's Law

TRADE BALANCE

• Income:

$$Y_o = \frac{\left(1 + \overline{\pi}\right) \left(w_o^L L_o + w_o^R R_o\right)}{\beta}$$

• Expenditure:

$$X_o = \sum_d \chi_{od} X_d$$

• Trade balance:

$$Y_o = X_o$$

MARKET CLEARING: HOUSING

• Supply:

$$H_o = \overline{H}_o$$

• Demand:

$$r_o = \frac{(1-\beta) Y_o}{H_o}$$

EQUILIBRIUM WITH R&D SUBSIDIES

Given the exogenous distribution of workers and inventors across locations $\{\overline{R}_o, \overline{L}_o\}_{\forall o \in \mathcal{S}}$, fixed supply of housing $\{\overline{H}_o\}_{\forall o \in \mathcal{S}}$, location fundamentals $\{\mathcal{Z}_o, \mathcal{A}_o\}_{\forall o \in \mathcal{S}}$, location amenities $\{\mathcal{B}_o^R, \mathcal{B}_o^L\}_{\forall o \in \mathcal{S}}$, migration costs $\{\mu_{od}^R, \mu_{od}^L\}_{\forall o, d \in \mathcal{S}, \mathcal{S}}$, trade costs $\{\tau_{od}\}_{\forall o, d \in \mathcal{S}, \mathcal{S}}$, R&D subsidies $\{s_o\}_{\forall o \in \mathcal{S}}$, and parameters, an equilibrium with R&D subsidies is a set of wages $\{w_o^R, w_o^L\}_{\forall o \in \mathcal{S}}$, housing rent $\{r_o\}_{\forall o \in \mathcal{S}}$, prices $\{P_o\}_{\forall o \in \mathcal{S}}$, quantities $\{L_o, R_o, H_o, Q_o\}_{\forall o \in \mathcal{S}}$, and quality $\{Z_o\}_{\forall o \in \mathcal{S}}$ such that

- 1. workers and inventors maximize utility
- 2. firms maximize profits
- 3. workers and inventors labor markets clear
- 4. housing market clears
- 5. government's budget is balanced
- 6. trade is balanced

MIGRATION COSTS: $\{\mu_{od}^R, \mu_{od}^L\}$

• Iceberg migration costs:

$$\mu_{od}^{n} = \rho_{0}^{n} dist_{od}^{\rho_{1}^{n}} \exp\left(-\frac{\epsilon_{od}^{n}}{\kappa}\right)$$

- $\{\rho_0^n\}$:
 - ► Targets: 10-year average migration rates
 - $ightharpoonup \left\{ \widehat{\rho}_0^L, \widehat{\rho}_0^R \right\} = \{25\%, 26.4\%\}$
- $\{\rho_1^n\}$: Elasticities of migration costs to distance
 - Migration gravity equations:

▶ Results

$$\log (\eta_{od,t}^n) = \iota + \iota_{o,t} + \iota_{d,t} - \rho_n \kappa \log (dist_{od}) + \epsilon_{od,t}^n, \ n = \{R, L\}$$

▶ Given $\kappa = 2.12$ (Peters, 2022), PPML:

$$\left\{\rho_1^R, \rho_1^L\right\} = \left\{\frac{1.254}{2.12}, \frac{1.277}{2.12}\right\}$$

Trade costs: τ_{od}

Iceberg trade costs:

$$au_{od} = \xi_0 dist_{od}^{\xi_1}$$

- ξ_0 :
 - ► <u>Target:</u> 50% share of total intra-regional trade (Ramondo et al., 2016)
- ξ_1 : Elasticity of trade costs to distance
 - ▶ No data on internal data
 - ► Given $\sigma = 2.5$ (Broda and Weinstein, 2006), follow Krebs and Pflüger (2021): $\xi_1 = \frac{1.56}{\sigma 1}$

LOCATION FUNDAMENTALS $\{A_o, \mathcal{Z}_o\}$

Given parameter values $\{\psi, \widetilde{\gamma}\}$, and data on wages and population $\{w_o^R, R_o\}$, there is a unique set of values for location fundamentals for R&D $\{\mathcal{Z}_o\}$ that that is consistent with the aggregate demand for inventors. Then, given trade costs $\{\tau_{od}\}$, parameter values $\{\psi, \sigma, \widetilde{\gamma}\}$, and data on wages and population $\{w_o^R, w_o^L, R_o, L_o\}$, there is a unique set of values for location fundamental for production $\{\mathcal{A}_o\}$ that is consistent with the data.

LOCATION AMENITIES $\left\{\mathcal{B}_o^R, \mathcal{B}_o^L\right\}$

Given the exogenous distribution of workers and inventors across locations $\{\overline{R}_o, \overline{L}_o\}_{\forall o \in \mathcal{S}}$, fixed supply of housing $\{\overline{H}_o\}_{\forall o \in \mathcal{S}}$, trade costs $\{\tau_{od}\}$, migration costs $\{\mu_{od}^R, \mu_{od}^L\}$, fundamental location productivities $\{\mathcal{Z}_o, \mathcal{A}_o\}$, parameter values $\{\alpha, \psi, \kappa, \sigma, \beta\}$, and data on wages and population $\{w_o^R, w_o^L, R_o, L_o\}$, there is a unique set of values for fundamental location amenities $\{\mathcal{B}_o^R, \mathcal{B}_o^L\}$ that is consistent with the data.

PLANNER PROBLEM

$$\max\left(\frac{\overline{L}}{\overline{L}+\overline{R}}\right)\sum_{o}\overline{U}_{o}^{L}+\left(\frac{\overline{R}}{\overline{L}+\overline{R}}\right)\sum_{o}\overline{U}_{o}^{R},$$

where

$$\begin{split} \overline{U}_o^L &= \Gamma\left(\frac{\kappa-1}{\kappa}\right) \left(\sum_d \left(\frac{U_d^L}{\mu_{od}^L}\right)^\kappa\right)^{\frac{1}{\kappa}}, \\ \overline{U}_o^R &= \Gamma\left(\frac{\kappa-1}{\kappa}\right) \left(\sum_d \left(\frac{U_d^R}{\mu_{od}^R}\right)^\kappa\right)^{\frac{1}{\kappa}}, \end{split}$$

and

- Labor market clears
 - Inventor market clears
 - Housing market clears
 - Final good market clears
 - Intermediate input market clears

