MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA

(CONCURSO PÚBLICO DE ADMISSÃO AO COLÉGIO NAVAL / CPACN-2013)

NÃO ESTÁ AUTORIZADA A UTILIZAÇÃO DE MATERIAL EXTRA

MATEMÁTICA

1) Sejam
$$P = \left(1 + \frac{1}{3}\right)\left(1 + \frac{1}{5}\right)\left(1 + \frac{1}{7}\right)\left(1 + \frac{1}{9}\right)\left(1 + \frac{1}{11}\right)$$
 e
$$Q = \left(1 - \frac{1}{5}\right)\left(1 - \frac{1}{7}\right)\left(1 - \frac{1}{9}\right)\left(1 - \frac{1}{11}\right). \text{ Qual \'e o valor de } \sqrt{\frac{P}{Q}}?$$

- (A) $\sqrt{2}$
- (B) 2
- (C) √5
- (D) 3
- (E) 5
- 2) Sabendo que ABC é um triângulo retângulo de hipotenusa BC = a, qual é o valor máximo da área de ABC?
 - $(A) \quad \frac{a^2\sqrt{2}}{4}$
 - (B) $\frac{a^2}{4}$
 - $(C) \quad \frac{3a^2\sqrt{2}}{4}$
 - (D) $\frac{3a^2}{4}$
 - (E) $\frac{3a^2}{4}$
- 3) Considere um conjunto de 6 meninos com idades diferentes e um outro conjunto com 6 meninas também com idades diferentes. Sabe-se que, em ambos os conjuntos, as idades variam de 1 ano até 6 anos. Quantos casais podem-se formar com a soma das idades inferior a 8 anos?
 - (A) 18
 - (B) 19
 - (C) 20
 - (D) 21
 - (E) 22

Prova : Amarela Profissão: Matemática

- 4) Seja $A \cup B = \{3,5,8,9,10,12\}$ e $B \cap C_X^A = \{10,12\}$ onde A e B são subconjuntos de X, e C_X^A é o complementar de A em relação a X. Sendo assim, pode-se afirmar que o número máximo de elementos de B é
 - (A) 7
 - (B) 6
 - (C) 5
 - (D) 4
 - (E) 3
- 5) Dada a equação $(2x+1)^2(x+3)(x-2)+6=0$, qual é a soma das duas maiores raízes reais desta equação?
 - (A) 0
 - (B) 1
 - (C) 2
 - (D) 3
 - (E) 4
- 6) Analise a figura a seguir.

A figura acima exibe o quadrado ABCD e o arco de circunferência APC com centro em B e raio AB = 6. Sabendo que o arco AP da figura tem comprimento $\frac{3\pi}{5}$, é correto afirmar que o ângulo PCD mede:

- (A) 36°
- (B) 30°
- (C) 28°
- (D) 24°
- (E) 20°

Prova : Amarela Profissão: Matemática

7) Qual é o valor da expressão

$$\left[\left(3^{0,333...} \right)^{27} + 2^{2^{17}} - \sqrt[5]{239} + \sqrt[3]{\frac{448}{7}} - \left(\sqrt[3]{3} \right)^{3^3} \right]^{\sqrt[7]{92}}$$

- (A) 0,3
- (B) $\sqrt[3]{3}$
- (C) 1
- (D) 0
- (E) -1
- 8) Analise as afirmativas abaixo, em relação ao triângulo ABC.
 - I Seja AB = c, AC = b e BC = a. Se o ângulo interno no vértice A é reto, então $a^2=b^2+c^2$.
 - II Seja AB = c, AC = b e BC = a. Se $a^2 = b^2 + c^2$, então o ângulo interno no vértice A é reto.
 - III- Se M é ponto médio de BC e $AM = \frac{BC}{2}$, ABC é retângulo.
 - IV Se ABC é retângulo, então o raio do seu círculo inscrito pode ser igual a três quartos da hipotenusa.

Assinale a opção correta.

- (A) Apenas as afirmativas I e II são verdadeiras.
- (B) Apenas a afirmativa I é verdadeira.
- (C) Apenas as afirmativas II e IV são verdadeiras.
- (D) Apenas as afirmativas I, II e III são verdadeiras.
- (E) Apenas as afirmativas II, III e IV são verdadeiras.

Prova : Amarela Profissão: Matemática

- 9) Assinale a opção que apresenta o conjunto solução da equação $\frac{(-3)}{\sqrt{x^2-4}}-1=0, \text{ no conjunto dos números reais.}$
 - (A) $\left\{-\sqrt{13},\sqrt{13}\right\}$
 - (B) $\{\sqrt{13}\}$
 - (C) $\left\{-\sqrt{13}\right\}$
 - (D) $\{0\}$
 - (E) Ø
- 10) Seja a, b, x, y números naturais não nulos. Se $a \cdot b = 5$, $k = \frac{2^{(a+b)^2}}{2^{(a-b)^2}}$ e $x^2 y^2 = \sqrt[5]{k}$, qual é o algarismo das unidades do número $(y^x x^y)$?
 - (A) 2
 - (B) 3
 - (C) 5
 - (D) 7
 - (E) 8
- 11) Sabe-se que a média aritmética da soma dos algarismos de todos os números naturais desde 10 até 99, inclusive, é k. Sendo assim, pode-se afirmar que o número $\frac{1}{k}$ é
 - (A) natural.
 - (B) decimal exato.
 - (C) dízima periódica simples.
 - (D) dízima periódica composta.
 - (E) decimal infinito sem período.

Prova : Amarela Profissão: Matemática

- 12) Uma das raízes da equação do 2° grau $ax^2+bx+c=0$, com a, b, c pertencentes ao conjunto dos números reais, sendo a \neq 0, é igual a 1. Se b-c=5a então, b^c em função de a é igual a
 - (A) $-3a^2$
 - (B) 2^a
 - (C) $2a3^a$
 - (D) $\frac{1}{(2a)^{3a}}$
 - (E) $\frac{1}{2^{(3a)}a^{(3+a)}}$
- 13) Seja ABC um triângulo acutângulo e "L" a circunferência circunscrita ao triângulo. De um ponto Q (diferente de A e de C) sobre o menor arco AC de "L" são traçadas perpendiculares às retas suportes dos lados do triângulo. Considere M, N e P os pés das perpendiculares sobre os lados AB, AC e BC, respectivamente. Tomando MN = 12 e PN = 16, qual é a razão entre as áreas dos triângulos BMN e BNP?
 - $(A) \quad \frac{3}{4}$
 - (B) $\frac{9}{16}$
 - (C) $\frac{8}{9}$
 - (D) $\frac{25}{36}$
 - (E) $\frac{36}{49}$
- 14) Sabe-se que o ortocentro H de um triângulo ABC é interior ao triângulo e seja Q o pé da altura relativa ao lado AC. Prolongando BQ até o ponto P sobre a circunferência circunscrita ao triângulo, sabendo-se que BQ = 12 e HQ = 4, qual é o valor QP?
 - (A) 8
 - (B) 6
 - (C) 5,5
 - (D) 4,5
 - (E) 4

Profissão:

Prova : Amarela

Matemática

15) Analise a figura a seguir.

Na figura acima, a circunferência de raio 6 tem centro em C. De P traca-se os segmentos PC, que corta a circunferência em D, e PA, que corta a circunferência em B. Traça-se ainda os segmentos AD e CB, com interseção em E. Sabendo que o ângulo APC é 15° e que a distância do ponto C ao segmento de reta AB é $3\sqrt{2}$, qual é o valor do ângulo α ?

- (A) 75°
- (B) 60°
- (C) 45°
- (D) 30°
- (E) 15°
- 16) Considere que ABCD é um trapézio, onde os vértices colocados em sentido horário, com bases AB = 10 e CD = 22. Marcam-se na base AB o ponto P e na base CD o ponto Q, tais que AP = 4 e CQ = x. Sabe-se que as áreas dos quadriláteros APQD e PBCQ são iguais. Sendo assim, pode-se afirmar que a medida x é:
 - (A) 10
 - (B) 12
 - (C) 14
 - (D) 15
 - (E) 16
- 17) O maior inteiro "n", tal que $\frac{n^2+37}{n+5}$ também é inteiro, tem como soma dos seus algarismos um valor igual a
 - (A) 6
 - (B) 8
 - (C) 10
 - (D) 12
 - (E) 14

Prova : Amarela

Profissão: Matemática

18) Dado que a e b são números reais não nulos, com $b \neq 4a$, e que 2

$$\begin{cases} 1 + \frac{2}{ab} = 5 \\ \frac{5 - 2b^2}{4a - b} = 4a + b \end{cases}$$
, qual é o valor de $16a^4b^2 - 8a^3b^3 + a^2b^4$?

- (A) 4
- (B) $\frac{1}{18}$
- (C) $\frac{1}{12}$
- (D) 18
- (E) $\frac{1}{4}$
- 19) Sabendo que $2^x \cdot 3^{4y+x} \cdot \left(34\right)^y$ é o menor múltiplo de 17 que pode-se obter para x e y inteiros não negativos, determine o número de divisores positivos da soma de todos os algarismos desse número, e assinale a opção correta.
 - (A) 12
 - (B) 10
 - (C) 8
 - (D) 6
 - (E) 4
- 20) Considere, no conjunto dos números reais, a desigualdade $\frac{2x^2-28x+98}{x-10} \geq 0 \;. \; \text{A soma dos valores inteiros do conjunto solução}$ desta desigualdade, que são menores do que $\frac{81}{4}$, é
 - (A) 172
 - (B) 170
 - (C) 169
 - (D) 165
 - (E) 157

Prova : Amarela Profissão: Matemática

DIRETORIA DE ENSINO DA MARINHA

CONCURSO PÚBLICO de Admissão ao Colégio Naval (CPACN/2013) - A Diretoria de Ensino da Marinha divulga os gabaritos referentes à Prova Escrita de Matemática realizada no dia 19 de outubro de 2013.

PROVA		PROVA		PROVA		PROVA	
AMARELA		AZUL		VERDE		ROSA	
01	В	01	В	01	D	01	E
02	В	02	В	02	E	02	С
03	D	03	С	03	A	03	В
04	В	04	С	04	D	04	А
05	C	05	E	05	A	05	А
06	A	06	E	06	В	06	С
07	C	07	D	07	D	07	D
08	D	80	A	08	E	80	С
09	E	09	D	09	A	09	D
10	E	10	A	10	D	10	D
11	C	11	A	11	В	11	В
12	D	12	E	12	D	12	В
13	A	13	D	13	E	13	В
14	E	14	С	14	В	14	А
15	В	15	D	15	E	15	E
16	A	16	В	16	С	16	E
17	D	17	D	17	С	17	D
18	E	18	В	18	В	18	D
19	D	19	A	19	С	19	А
20	A	20	E	20	А	20	E

OBS: O candidato que desejar interpor recurso da prova escrita, previsto no item 7 do Edital e Instruções ao Candidato, poderá fazê-lo até o dia 04 de novembro de 2013.

BONO Especial N° /13.