Contrôle de cours 1 (1 heure)

octobre 2022
1 20
bremout!
1
multiple de 6.
•
Bu
tion f est-elle
ve 1,43
cmage onc. elle

Nom:

Prénom:

Classe:

N.B.: Le barème est sur 20.

Tres bon debre

Un peu de logique

mais il faut revoir & dinon

3/3,5 Exercice 1 (3,5 points)

1. Soient P, Q et R trois assertions. Donner la négation de « $P \wedge Q$ », « $P \vee (Q \wedge R)$ » et de « $P \Longrightarrow Q$ » 7(PAQ) = 7PV7Q Let 7(PV(QAR)) = 7PAT(QMR)

2. Soit $x \in \mathbb{R}$. Mettre les symboles \Longrightarrow , \Longleftrightarrow ou \Longleftrightarrow à la place des pointillés.

1) $x < 1 \implies x \le 1$. 2) $x^2 + x - 6 > 0 \implies x > 2$. 3) $\ln(x) = 3 \implies x = e^3$. 4) x multiple de 3 $\implies x = e^3$.

Ensembles et fonctions

Exercice 2 (6 points) 5/6

Soient E et F deux ensembles et $f: E \longrightarrow F$.

1. Donner la définition mathématique (avec les quantificateurs) de « f est injective »

 $\forall (x_1, x_2) \in \mathcal{E}$, $f(x_1) = f(x_2) = x_2 = x_2$

2. Donner la définition mathématique (avec les quantificateurs) de « f est surjective »

Vy EF, Jae EE, y=f(x)

3. Prenons le cas E = F = [1, 5].

(a) Dessiner (graphe, patates...) une fonction $f: E \longrightarrow F$ vérifiant $f(\{1,2,5\}) = \{1,4\}$. Votre fonc injective? surjective? Justifiez.

antecedents. Done elle n'est pas suggetive.

• Il n'existe pas de se pour les propriétes ne senont pas veneties.

(b) Dessiner (graphe, patates...) une fonction $f: E \longrightarrow F$ bijective telle que $f^{-1}(\{3,5\}) = \{3,4\}$.

Intégration 3

Exercice 3 (4,5 points) 2,5/4,5

1. Sans intégration par parties ni changement de variable, calculer $I = \int_0^1 x \sqrt{x^2 + 1} \, dx$.

2. Énoncer proprement le théorème d'intégration par parties sans oublier ses hypothèses.

3. Démontrer soigneusement la formule d'intégration par parties.

=>
$$[u(be)v(be)]_a = \int u'(bc)v(bc)dx + \int_a^b v'(be)u(bc)dx$$
=> $\int_b^b u'(be)v(bc)dx = Cu(bc)v(be) \int_a^b - \int_b^b v'(be)u(bc)dx$

4 Dénombrement

Exercice 4 (2,5 points)	1	,5,	12,5	>
-------------------------	---	-----	------	---

On considère l'ensemble $E = \{a, b, c, d, e\}.$

Compléter la fin des phrases suivantes :

- 1. Le nombre de 5-uplets de E sans répétition est ...5! = 240
- 2. Le nombre de 3-uplets de E avec répétition est $\frac{1}{2}$
- 3. Le nombre de 4-uplets de E sans répétition et commençant par a est
- 4. Le nombre de sous-ensembles de E est 2^5 .
- 5. Le nombre de sous-ensembles à 3 éléments de E est $(\frac{5}{3}) = \frac{5!}{(5-3)!3!} = 10$

Exercice 5 (3,5 points)

1,5/3,5

Soient $n \in \mathbb{N}$ et $k \in [0, n]$.

1. Rappeler l'expression de $\binom{n}{k}$ et rappeler ce que compte cette quantité.

(n) = n: Elle compte le nombre de (k ellements) parmis!

(K) (n-K)!K! n elements enombles à K élément

Considérans un ensemble E de cardinal n parmis n élèments

2. Considérons un ensemble E de cardinal n.

Expliquer (d'un point de vue dénombrement) pour quoi il y a autant de sous-ensembles de E à k éléments que de sous-ensembles de E à n-k éléments. Démontrer ensuite cette affirmation par le calcul.

Sout |R| = (R) et |R| = (R-R) Sout $R \in \mathcal{A}$ donce S : |R| = R.

Il y a bijection donce.

C: $RR \rightarrow R_{n-1}$ (est injective to |A| = R alon |A| = n-k.

V(A, A, E) $\in CRR^{2}$ $|A_{n} = |A_{n}| = |A_{n}| = |A_{n}|$ Cest surjective.

VBC R_{n-1} $|A \in R_{n}$ |A = |B| $|A \cap R_{n}| = |A_{n}|$ Nous values demention que (R) = (R-R) bijective entre de (R) = (R-R).

Donc (R-R) : (R-R) : (R-R)! (R-R) : (R-R)! : (R-R)!