# **Vector-Valued Functions**

# 1 Parametric curves



Figure 1: Which curve is a graph of a function?



Figure 2: Is it a graph of a function?



Figure 3: This curve is *not* a graph of a function.

This curve is a circle of radius a centred at  $(\alpha, \beta)$ 

$$(x - \alpha)^2 + (y - \beta)^2 = a^2$$

It is a **parametric curve** which can be represented by the eqs

$$x = \alpha + a \cos t$$
,  $y = \beta + a \sin t$ ,  $0 \le t \le 2\pi$ .

In general in 2-space a parametric curve is

$$x = f(t), \quad y = g(t), \quad t_0 \le t \le t_1.$$

The graph of a function y = f(x) is a parametric curve

$$x = t$$
,  $y = f(t)$ .

The graph of a function x = f(y) is a a parametric curve

$$x = f(t), \quad y = t.$$



Figure 4: A parametric curve in 3-space

$$x = f(t), \quad y = g(t), \quad z = h(t), \quad t_0 \le t \le t_1.$$

These parametric eqs generate a curve in 3-space called the **parametric curve** represented by the eqs, and as t increases the point moves in a specific direction which defines the curve **orientation**.

A parametric curve can be considered as a path of a point particle with the parameter t identified with time.

A parametric curve in n-space is represented by n eqs

$$x_1 = f_1(t), \quad x_2 = f_2(t), \quad \cdots \quad , \quad x_n = f_n(t), \quad t_0 \le t \le t_1.$$

$$\frac{(x-\alpha)^2}{a^2} + \frac{(y-\beta)^2}{b^2} = 1.$$



Figure 5: These are ellipses.

This ellipse can be represented by the eqs

$$x = \alpha + a\cos t\,,\quad y = \beta + b\sin t\,,\quad 0 \le t \le 2\pi\,.$$

$$\frac{(x-\alpha)^2}{a^2} + \frac{(y-\beta)^2}{b^2} = 1.$$

Example 2.

$$\frac{(x-\alpha)^2}{a^2} - \frac{(y-\beta)^2}{b^2} = 1.$$
$$\frac{(x-\alpha)^2}{a^2} - \frac{(y-\beta)^2}{b^2} = -1.$$



Figure 6: These are hyperbolas.

The right (black) branch of the first hyperbola can be represented by the eqs

$$x = \alpha + a \cosh t$$
,  $y = \beta + b \sinh t$ ,  $-\infty < t < \infty$ .

because

$$\cosh t = \frac{e^t + e^{-t}}{2} > 0 \,, \quad \sinh t = \frac{e^t - e^{-t}}{2} \,, \quad \cosh^2 t - \sinh^2 t = 1 \,.$$

HW: Find a representation of the left (blue) branch of the first hyperbola, and similar representations of both branches of the second hyperbola.

Example 1. Ellipse

$$\frac{(x-\alpha)^2}{a^2} + \frac{(y-\beta)^2}{b^2} = 1.$$

Example 2. Hyperbolas

$$\frac{(x-\alpha)^2}{a^2} - \frac{(y-\beta)^2}{b^2} = 1.$$
$$\frac{(x-\alpha)^2}{a^2} - \frac{(y-\beta)^2}{b^2} = -1.$$

Example 3.

$$y = ax^2.$$
$$y^2 = ax.$$



Figure 7: These are parabolas.

They can be represented by the eqs

$$x = t$$
,  $y = at^2$ ,  $x = \frac{1}{a}t^2$ ,  $y = t$ ,  $-\infty < t < \infty$ .

Ellipses, hyperbolas and parabolas are conic sections.

#### Example 4.

$$x = a \cos t$$
,  $y = a \sin t$ ,  $z = vt$ ,  $-\infty < t < \infty$ .  
 $x = a \sin t$ ,  $y = a \cos t$ ,  $z = vt$ ,  $-\infty < t < \infty$ .



Figure 8: These are circular helixes.

Example 5. Line through  $\vec{r_0} = (x_0, y_0, z_0)$  in the direction of the vector  $\vec{v} = (v_x, v_y, v_z)$  $x = x_0 + v_x t$ ,  $y = y_0 + v_y t$ ,  $z = z_0 + v_z t$ ,  $-\infty < t < \infty$ .

Example 5b. Find parametric equations for the line through (2,0,0) and (0,4,3).



Figure 9: This is the line through (2,0,0) and (0,4,3).

Let t = 0 correspond to (2,0,0), and let t = 1 corresponds to (0,4,3). Then,

$$x(0) = x_0 = 2$$
,  $x(1) = x_0 + v_x = 0 \implies v_x = -2$ ,  
 $y(0) = y_0 = 0$ ,  $y(1) = y_0 + v_y = 4 \implies v_y = 4$ ,

$$z(0) = z_0 = 0$$
,  $z(1) = z_0 + v_z = 3 \implies v_z = 3$ .

Thus

$$x = 2 - 2t$$
,  $y = 4t$ ,  $z = 3t$ ,  $-\infty < t < \infty$ .

Example 5. Line through  $\vec{r}_0 = (x_0, y_0, z_0)$  in the direction of the vector  $\vec{v} = (v_x, v_y, v_z)$ 

$$x = x_0 + v_x t$$
,  $y = y_0 + v_y t$ ,  $z = z_0 + v_z t$ ,  $-\infty < t < \infty$ .

Example 6. The same line as in Example 5

$$x = x_0 - \frac{1}{2}v_x t$$
,  $y = y_0 - \frac{1}{2}v_y t$ ,  $z = z_0 - \frac{1}{2}v_z t$ ,  $-\infty < t < \infty$ .

Example 7. The same line as in Examples 5 and 6

$$x = x_0 - \frac{1}{2}v_x(t - t_0), \quad y = y_0 - \frac{1}{2}v_y(t - t_0), \quad z = z_0 - \frac{1}{2}v_z(t - t_0).$$

Example 8. This is a segment of the same line as in Examples 5, 6 and 7

$$x = x_0 + v_x t^3$$
,  $y = y_0 + v_y t^3$ ,  $z = z_0 + v_z t^3$ ,  $-1 \le t \le 1$ .

Example 9. This is a segment of the same line as in Examples 5, 6 and 7 but it is run twice!

$$x = x_0 + v_x(t-1)^2$$
,  $y = y_0 + v_y(t-1)^2$ ,  $z = z_0 + v_z(t-1)^2$ ,  $0 \le t \le 2$ .

 $\exists \infty$  many parametric eqs representing the same curve.

Make a change  $t = \gamma(\tau)$  where  $\gamma(\tau)$  is a one-to-one function on the interval  $\tau_0 \le \tau \le \tau_1$  of interest.



Figure 10:  $\gamma(\tau_0) = t_0$ ,  $\gamma(\tau_1) = t_1$ ;

The parameterisations are considered as equivalent if  $\gamma'(\tau) \neq 0$  for  $\tau_0 \leq \tau \leq \tau_1$ . If  $\gamma'(\tau) > 0$  the curves have the same orientation.

Example.

$$x = \cos t \,, \quad y = \sin t \,,$$
 
$$t = -\tau \quad \Longrightarrow \quad x = \cos \tau \,, \quad y = -\sin \tau \,,$$
 
$$t = \tau - \frac{\pi}{2} \quad \Longrightarrow \quad x = \sin \tau \,, \quad y = -\cos \tau \,.$$

## 2 Vector-Valued Functions



$$\begin{split} x &= f(t), \, y = g(t), \, z = h(t) \\ \vec{r}(t) &= \left(x(t), y(t), z(t)\right) \\ \vec{r}(t) &= f(t)\vec{i} + g(t)\vec{j} + h(t)\vec{k} \end{split}$$
 Thus,  $\vec{r}$  is a function of  $t$ : 
$$\vec{r} = \vec{r}(t).$$

This is a **vector-valued** function of a real variable t.

x(t), y(t), z(t) are **components** of  $\vec{r}(t)$ .

The graph of  $\vec{r}(t)$  is the parametric curve C described by the components of  $\vec{r}(t)$ .

 $\vec{r}(t)$  is called the radius vector for the curve  $\mathcal{C}$ .

The domain of  $\vec{r}(t)$  is the intersection of domains of x(t), y(t), z(t).

It is called the **natural domain** of  $\vec{r}(t)$ .

Example.

$$\vec{r}(t) = \sqrt{t-1} \, \vec{i} + \ln(3-t) \vec{j} + \frac{1}{t-2} \vec{k} \,.$$

$$D(\vec{r}) = [1,2) \cup (2,3) \,.$$

# 3 Vector form of a line segment



If  $\vec{r}_0$  is a vector with its initial point at O then the line through the terminal point

 $\vec{r}_0$  and parallel to  $\vec{v}$  is

$$\vec{r} = \vec{r}(t) = \vec{r}_0 + t \, \vec{v}.$$

So, 
$$\vec{r}(0) = \vec{r}_0$$
,  $\vec{r}(1) = \vec{r}_1 = \vec{r}_0 + \vec{v}$ 

$$\Rightarrow \vec{r}(t) = \vec{r_0} + t(\vec{r_1} - \vec{r_0}) = (1 - t)\vec{r_0} + t\vec{r_1}$$

This is a **two-point form** of a line.

If  $0 \le t \le 1$ , then  $\vec{r} = (1 - t)\vec{r_0} + t\vec{r_1}$  represents the line segment from  $\vec{r_0}$  to  $\vec{r_1}$ .

## 4 Calculus of Vector-valued Functions

$$\lim_{t \to a} \vec{r}(t) = \left( \lim_{t \to a} x(t) \right) \vec{i} + \left( \lim_{t \to a} y(t) \right) \vec{j} + \left( \lim_{t \to a} z(t) \right) \vec{k},$$

where all the three limits must exist.

A vector-valued function is continuous at t=a (or on an interval I) if all its components are. Then

$$\lim_{t \to a} \vec{r}(t) = \vec{r}(a) \quad \forall a \in I.$$

Derivative of  $\vec{r}$  with respect to t is the following vector

$$\vec{r}'(t) = x'(t)\vec{i} + y'(t)\vec{j} + z'(t)\vec{k}$$
.

 $\vec{r}(t)$  is differentiable if all its components are.

Notations

$$\frac{d}{dt}\vec{r}(t)$$
,  $\frac{d\vec{r}}{dt}$ ,  $\vec{r}'(t)$ ,  $\vec{r}'$ ,  $\dot{\vec{r}}(t)$ ,  $\dot{\vec{r}}$ ,  $\frac{d}{dt}[\vec{r}(t)]$ .

#### **Derivative Rules**

- 1.  $\frac{d}{dt} \left[ a \, \vec{r}_1(t) + b \, \vec{r}_2(t) \right] = a \, \vec{r}_1'(t) + b \, \vec{r}_2'(t)$ , a, b are const
- 2.  $\frac{d}{dt} [f(t) \vec{r}(t)] = f'(t) \vec{r}(t) + f(t) \vec{r}'(t),$



If  $\vec{r}'(t) \neq 0$  and it is positioned with its initial point at the terminal point of  $\vec{r}$  then  $\vec{r}'$  is tangent to C and points in the direction of increasing parameter.

In mechanics it is velocity of a particle moving along C.

Example.

$$\vec{r}(t) = 2\cos\frac{\pi}{2}t\,\vec{i} + \sqrt[3]{1 + 3e^{2t}}\,\vec{j} + \int_{1}^{\ln t} \frac{e^{3u}}{u}du\,\vec{k}\,.$$
$$\vec{r}'(t) = ?$$

## 5 Tangent lines to graphs of vector-valued functions



Let P be a point on the graph  $\mathcal{C}$  of a VV function  $\vec{r}(t)$ , and let  $\vec{r}'(t_0) \neq 0$  where  $\vec{r}(t_0)$  is the radius vector from O to P.

Then,  $\vec{r}'(t_0)$  is a **tangent vector** to  $\mathcal{C}$  at P, and the line through P that is parallel to  $\vec{r}'(t_0)$  is the tangent line to C at P.

The tangent line is given by the vector eq

$$\vec{R}(t) = \vec{r_0} + t \, \vec{v_0} \,, \quad \vec{v_0} = \vec{r}'(t_0) \,, \quad \vec{r_0} = \vec{r}(t_0) \,.$$

The unit tangent vector is  $\vec{T} = \frac{\vec{v}}{|\vec{v}|} = \frac{\vec{r}'}{|\vec{r}'|}$ .

Example.

$$\vec{r}(t) = a \sin t \, \vec{i} + a \cos t \, \vec{j} + v \, t \, \vec{k} \,,$$

$$\vec{r}'(t) = ?$$
,  $|\vec{r}'(t)| = ?$ ,  $\vec{T}(t) = ?$ ,  $\vec{R}(t)$  at  $t = \frac{\pi}{3}$ ?,

# 6 Derivatives of dot and cross products



$$\vec{r}_1 = (x_1, y_1, z_1), \quad \vec{r}_2 = (x_2, y_2, z_2).$$

$$\vec{r}_1 \cdot \vec{r}_2 = x_1 x_2 + y_1 y_2 + z_1 z_2$$
  
=  $|\vec{r}_1| |\vec{r}_2| \cos \alpha = \vec{r}_2 \cdot \vec{r}_1$ 



$$\vec{r}_{1} \times \vec{r}_{2} = +(y_{1}z_{2} - y_{2}z_{1}) \vec{i}$$

$$-(x_{1}z_{2} - x_{2}z_{1}) \vec{j}$$

$$+(x_{1}y_{2} - x_{2}y_{1}) \vec{k}$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \end{vmatrix} = -\vec{r}_{2} \times \vec{r}_{1}$$

$$|\vec{r}_{1} \times \vec{r}_{2}| = |\vec{r}_{1}| |\vec{r}_{2}| \sin \alpha ,$$

$$\vec{r}_{1} \times \vec{r}_{2} \perp \vec{r}_{1} \text{ and } \vec{r}_{2} .$$

$$(\vec{r}_1 \times \vec{r}_2)_i = \sum_{j,k=1}^3 \epsilon_{ijk} x_j y_k = \epsilon_{ijk} x_j y_k ,$$

where  $\epsilon_{123} = 1$ , and  $\epsilon_{ijk}$  is skew-symmetric with respect to i, j, k:

$$\epsilon_{ijk} = -\epsilon_{jik} = -\epsilon_{kji} = -\epsilon_{ikj} = \epsilon_{jki} = \epsilon_{kij}$$
.

We used Einstein's summation rule: sum over repeated indices.

$$\begin{split} \frac{d}{dt}(\vec{r}_1\cdot\vec{r}_2) &= \frac{d\vec{r}_1}{dt}\cdot\vec{r}_2 + \vec{r}_1\cdot\frac{d\vec{r}_2}{dt}\,,\\ \frac{d}{dt}(\vec{r}_1\times\vec{r}_2) &= \frac{d\vec{r}_1}{dt}\times\vec{r}_2 + \vec{r}_1\times\frac{d\vec{r}_2}{dt}\,. \end{split}$$

**Theorem.** If  $|\vec{r}(t)|$  is a constant then  $\vec{r}(t) \cdot \vec{r}'(t) = 0$ .

Proof:

$$\begin{split} \frac{d}{dt}(\vec{r}\cdot\vec{r}) &= \frac{d}{dt}|\vec{r}|^2 = 0\,,\\ \frac{d}{dt}(\vec{r}\cdot\vec{r}) &= \frac{d\vec{r}}{dt}\cdot\vec{r} + \vec{r}\cdot\frac{d\vec{r}}{dt} = 2\vec{r}\cdot\frac{d\vec{r}}{dt}\,, \end{split}$$

Thus,  $\vec{r}(t) \perp \vec{r}'(t)$ , and  $\vec{T}(t) \perp \vec{T}'(t)$ .

Example. A curve on the surface of a sphere that is centred at the origin has  $|\vec{r}(t)|$ =const, thus  $\vec{r}(t) \perp \vec{r}'(t)$ .

## 7 Integrals of Vector-valued Functions

$$\int_{a}^{b} \vec{r}(t)dt = \left(\int_{a}^{b} x(t)dt\right)\vec{i} + \left(\int_{a}^{b} y(t)dt\right)\vec{j} + \left(\int_{a}^{b} z(t)dt\right)\vec{k}$$

Example 1.

$$\int_0^1 (\sqrt{3t+1}\,\vec{i} + e^{2t}\vec{j} + 3\sin(\pi t)\vec{k}\,)dt = ?$$

### Rules of integration

$$\int_{a}^{b} (c_1 \vec{r_1}(t) + c_2 \vec{r_2}(t)) dt = c_1 \int_{a}^{b} \vec{r_1}(t) dt + c_2 \int_{a}^{b} \vec{r_2}(t) dt$$

An **antiderivative** for a v-v function  $\vec{r}(t)$  is a v-v function  $\vec{R}(t)$  such that

$$\vec{R}'(t) = \vec{r}(t) \implies \int \vec{r}(t)dt = \vec{R}(t) + \vec{C}$$

Example 2.

$$\int (\frac{1}{t+1}\vec{i} + t\cos(t^2 - 1)\vec{j})dt = ?$$

Integration properties

$$\frac{d}{dt} \int \vec{r}(t)dt = \vec{r}(t)$$
 and  $\int \vec{r}'(t)dt = \vec{r}(t) + \vec{C}$ 

### Fundamental Theorem of Calculus

$$\int_{a}^{b} \vec{r}(t)dt = \vec{R}(t) \Big|_{a}^{b} = \vec{R}(b) - \vec{R}(a)$$

Example 3.

$$\int_0^1 \left(\frac{1}{t+1}\vec{i} + t\cos(t^2 - 1)\vec{j}\right)t = ?$$

Example 4. Find  $\vec{r}(t)$  given that

$$\vec{r}'(t) = (\frac{1}{t+1}, t\cos(t^2 - 1)), \vec{r}(1) = (1, 3)$$

## 8 Arc Length Parametrisation

We say that  $\vec{r}(t)$  is **smoothly parameterised** or that  $\vec{r}(t)$  is a **smooth function** of t if  $\vec{r}'(t)$  is continuous and  $\vec{r}'(t) \neq 0$  for any allowed value of t.

Geometrically it implies that the tangent vector  $\vec{r}'(t)$  varies continuously along the curve. For this reason a smoothly parameterised function is said to have a **continuously turning tangent vector**.

Example 1.

$$\vec{r}(t) = a\cos t\,\vec{i} + a\sin t\,\vec{j} + vt\,\vec{k}\,, \quad \vec{r}'(t) = ?$$

Example 2.

$$\vec{r}(t) = t^2 \vec{i} + t^3 \vec{j}, \quad \vec{r}'(t) = ?$$

### Change of Parameter



Figure 11: Parameters: time; distance travelled; angle  $\phi$ 

A change of parameter in a v-v function  $\vec{r}(t)$  is a substitution  $t = g(\tau)$  that produces a new v-v function  $\vec{r}(g(\tau))$  having the same graph as  $\vec{r}(t)$ .

Example. Find a change of parameter  $t = g(\tau)$  for the circle  $\vec{r}(t) = \cos t \, \vec{i} + \sin t \, \vec{j}$ ,  $0 \le t \le 2\pi$  such that the circle is traced (a) counterclockwise; (b) clockwise; as  $\tau$  increases over the interval [0,1].

#### Chain rule:

$$\frac{d\vec{r}}{d\tau} = \frac{d\vec{r}}{dt} \frac{dt}{d\tau}, \quad t = g(\tau).$$

A change of parameter  $t = g(\tau)$  in which  $\vec{r}(g(\tau))$  is smooth if  $\vec{r}(t)$  is smooth is called a smooth change of parameter.

It requires  $dt/d\tau \neq 0 \ \forall \tau$  and  $dt/d\tau$  continuous. If  $dt/d\tau > 0$  it is positive change of parameter, if  $dt/d\tau < 0$  it is negative.

### Arc Length as a Parameter



The arc length L of a parametric curve  $x = x(t), y = y(t), z = z(t), a \le t \le b$ :

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt$$

In a vector form  $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$ 

$$\frac{d\vec{r}}{dt} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k} \implies \left| \frac{d\vec{r}}{dt} \right| = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2}$$

$$\implies L = \int_a^b \left| \frac{d\vec{r}}{dt} \right| dt = \int_a^b |\vec{r}'(t)| dt.$$

Example.

$$x = a \cos t$$
  $y = a \sin t$   $z = vt$   $0 \le t \le \pi$   $L = ?$ 

The length of arc measured along the curve from some fixed reference point can serve as a parameter.

1. Select an arbitrary point on the curve C to serve as a reference point O.

$$s=-2$$
  $s=-1$   
- dir  $s=0$   
+ dir

- 2. Choose one direction along C to be **positive**, and the other to be **negative**.
- 3. If P is a point on C, let s be the "signed" arc length along C from O to P, where s is positive/negative if P is in +/- parts of C.
- 4. x = x(s), y = y(s), z = z(s) is called an arc length parametrisation of the curve. It depends on the reference point and direction.

Example.

$$x = a\cos t$$
,  $y = a\sin t$ ,  $0 \le t \le 2\pi$ 

15

### Finding arc length parameterisation



$$s = \int_{t_0}^t \left| \frac{d\vec{r}}{du} \right| \, du$$

Since  $\frac{ds}{dt} = \left| \frac{d\vec{r}}{dt} \right| > 0$  it is a positive

change of parameter from t to s.

Example 1.

$$\vec{r} = \cos t \, \vec{i} + \sin t \, \vec{j} + t \, \vec{k}$$

Example 2. A line through  $\vec{r}_0$  and parallel to  $\vec{v}$ 

### Properties of arc length parameterisation

- 1.  $\forall t, \left| \frac{ds}{dt} \right| = \left| \frac{d\vec{r}}{dt} \right| > 0$  (it is speed).
- 2.  $\forall s$ , the tangent vector has length 1:  $\left|\frac{d\vec{r}}{ds}\right| = \left|\frac{ds}{ds}\right| = 1$
- 3. If  $\left|\frac{d\vec{r}}{dt}\right| = 1 \ \forall t$ , then  $\forall t_0, s = t t_0$  is the arc length parameter that as the reference point at  $t = t_0$ .

# 9 Unit Tangent, Normal and Binormal Vectors

The unit tangent vector:

$$\vec{T}(t) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|} \,.$$

The unit normal vector to  $\mathcal{C}$  at t:

$$\vec{N}(t) = \frac{\vec{T}'(t)}{|\vec{T}'(t)|}, \qquad \vec{N}(t) \perp \vec{T}(t).$$

Example.

$$\vec{r} = a\cos t\,\vec{i} + a\sin t\,\vec{j} + vt\,\vec{k}$$



Figure 12: In 2-d  $\exists$  two unit vectors  $\bot \vec{T}$ . In 3-d  $\exists \infty$  vectors  $\bot \vec{T}$ .

### Inward unit normal vectors in 2-space



Figure 13:  $\phi(t)$  increases:  $d\phi/dt > 0$ .  $\phi(t)$  decreases:  $d\phi/dt < 0$ .

Let  $\phi(t)$  be the angle from the positive x-axis to  $\vec{T}(t)$ , and let  $\vec{n}(t)$  be the unit vector that results when  $\vec{T}(t)$  is rotated counterclockwise through an angle of  $\pi/2$ :

$$\vec{T}(t) = \cos\phi \, \vec{i} + \sin\phi \, \vec{j} \,, \qquad \vec{n}(t) = -\sin\phi \, \vec{i} + \cos\phi \, \vec{j} \,,$$
 
$$\frac{d\vec{T}}{dt} = \frac{d\vec{T}}{d\phi} \frac{d\phi}{dt} = (-\sin\phi \, \vec{i} + \cos\phi \, \vec{j}) \frac{d\phi}{dt} = \vec{n}(t) \frac{d\phi}{dt} \,.$$

Thus,  $\frac{d\vec{I}}{dt}$  and  $\vec{N}$  always point towards the concave side of C.  $\vec{N}$  is also called the **inward** unit normal if it is in 2-space.

Binormal vector in 3-space is

$$\vec{B}(t) = \vec{T}(t) \times \vec{N}(t) ,$$
 
$$\vec{T} \perp \vec{N} , \quad \vec{T} \perp \vec{B} , \quad \vec{N} \perp \vec{B} ,$$
 
$$|\vec{T}| = |\vec{N}| = |\vec{B}| = 1 .$$



Thus,  $\vec{T}, \vec{N}, \vec{B}$  are three mutually orthogonal vectors, and they determine right-handed coordinate system in 3-space, which is called the TNB-frame or Frenet frame.

 $\vec{T}, \vec{N}, \vec{B}$  in arc length parametrisation

$$\vec{T}(t) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|} = \vec{r}'(s) ,$$
 
$$\vec{N}(t) = \frac{\vec{T}'(t)}{|\vec{T}'(t)|} = \frac{\vec{r}''(s)}{|\vec{r}''(s)|} ,$$
 
$$\vec{B}(t) = \vec{T}(t) \times \vec{N}(t) = \frac{\vec{r}'(t) \times \vec{r}''(t)}{|\vec{r}'(t) \times \vec{r}''(t)|} = \frac{\vec{r}'(s) \times \vec{r}''(s)}{|\vec{r}''(s)|} .$$

Curvature



For a line  $\frac{d\vec{T}}{ds} = 0$ . If  $\mathcal{C}$  bends slightly then  $\vec{T}$  undergoes a gradual change of direction; if  $\mathcal{C}$  bends sharply then  $\vec{T}$  undergoes a rapid change of direction. Thus,  $\frac{d\vec{T}}{ds}$  is a measure of "sharpness" of  $\mathcal{C}$ . In 3-space one should study  $\frac{d\vec{T}}{ds}$ ,  $\frac{d\vec{N}}{ds}$ ,  $\frac{d\vec{B}}{ds}$ . **Definition.** If  $\mathcal{C}$  is a smooth curve that is parameterised by arc length, then the **curvature** 

of C is

$$\kappa = \kappa(s) = \left| \frac{d\vec{T}}{ds} \right| = |\vec{r}''(s)|.$$

Thus,  $\vec{T}'(s) = \kappa \vec{N}$ .

Example 1.

$$\vec{r} = \vec{r}_0 + s \vec{u}$$

Example 2.

$$\vec{r} = a\cos\frac{s}{a}\vec{i} + a\sin\frac{s}{a}\vec{i}, \quad 0 \le s \le 2\pi a$$

### Curvature for arbitrary parametrisation

$$\kappa(t) = \left| \frac{d\vec{T}}{ds} \right| = \left| \frac{d\vec{T}}{dt} \right| \left| \frac{ds}{dt} \right| = \frac{\left| \vec{T}'(t) \right|}{\left| \vec{r}'(t) \right|},$$

$$\vec{r}'(t) = \left| \vec{r}'(t) \right| \vec{T}(t) \implies \vec{r}''(t) = \left| \vec{r}'(t) \right|' \vec{T}(t) + \left| \vec{r}'(t) \right| \vec{T}'(t).$$
Then, 
$$\vec{T}'(t) = \left| \vec{T}'(t) \right| \vec{N}(t) \text{ and } \left| \vec{T}'(t) \right| = \kappa(t) \left| \vec{r}'(t) \right|$$

$$\implies \vec{T}'(t) = \kappa(t) \left| \vec{r}'(t) \right| \vec{N}(t)$$

$$\implies \vec{T}''(t) = \left| \vec{r}'(t) \right|' \vec{T}(t) + \kappa(t) \left| \vec{r}'(t) \right|^2 \vec{N}(t)$$

$$\vec{T}(t) \times \vec{r}''(t) = \frac{1}{\left| \vec{r}'(t) \right|} \vec{r}'(t) \times \vec{r}''(t) = \kappa(t) \left| \vec{r}'(t) \right|^2 \vec{B}(t)$$

$$\implies \kappa(t) = \frac{\left| \vec{r}'(t) \times \vec{r}''(t) \right|}{\left| \vec{r}'(t) \right|^3}$$
Example.

s.

$$\vec{r} = a\cos t\,\vec{i} + a\sin t\,\vec{j} + vt\,\vec{k}$$

### Radius of curvature

If a curve  $\mathcal{C}$  in 2-space has nonzero curvature  $\kappa$  at P then the circle of radius  $\rho = 1/\kappa$ sharing a common tangent with  $\mathcal{C}$  at P, and centred on the concave side of the curve at P, is called the **osculating** circle or circle of curvature at P. The osculating circle and  $\mathcal{C}$  have equal curvatures at P. The radius  $\rho$  is called the radius of curvature at P, and the centre of the circle is the centre of curvature at P.

In 2-space we saw that

$$\vec{T}(\phi) = \cos \phi \, \vec{i} + \sin \phi \, \vec{j} \implies \frac{d\vec{T}}{ds} = \frac{d\vec{T}}{d\phi} \frac{d\phi}{ds}$$

$$\implies \kappa(s) = \left| \frac{d\vec{T}}{ds} \right| = \left| \frac{d\vec{T}}{d\phi} \right| \left| \frac{d\phi}{ds} \right| = \left| \frac{d\phi}{ds} \right|.$$

Thus, the curvature in 2-space is the magnitude of the rate of change of  $\phi$  with respect to