

Estimating the Kinematic State of a Lockbox Puzzle

Yuchen Liu Supervisor: Manuel Baum

Motivation: Understand the articulated objects

Framework

ICP: Iterative closest point

ICP: Iterative closest point

ICP: Iterative closest point

Articulated Object Tracking

$$\hat{\theta} = \arg\min_{\theta} \sum_{\mathbf{u} \in \Omega} ||SDF_{mod}(\mathbf{x}_{\mathbf{u}}; \theta)||^2$$
.

 θ describes the pose of the model

SDF represents "Signed Distance Function", which records the distance between points and the surface of the rigid body.

 $\mathbf{x}_{\mathbf{u}}$ is the position vector of the measured point.

(a) Voxelized hand model

(g) Hand part association

(b) Slice through hand model

(h) Hand composite SDF contours

Observation SDF:

Framework

Intersection Term

$$\iiint \min(0, f_a(x, y, z)) \min(0, f_b(x, y, z)) dxdydz$$

$$\iint \min(0, f_a^2(x, y, z)) dS_B + \iint \min(0, f_b^2(x, y, z)) dS_A$$

Intersection Term

Result

Result

Local Optima

Ground Truth

Conclusion

- 1. Initial guess is crucial
- 2. Improvement to Intersection term
- 3. Future work

Thank you!

