Exercise 1: Sets, Functions and Graphs

Answer:

Important notations:

- Curly brackets (i.e. {}) represent a set.
- The empty set is written as \emptyset .
- $x \in A$ means x is an element of the set A, and $y \notin A$ means that y is not an element of A.
- \wedge and \vee mean and and or, respectively.
- Natural numbers: $\mathbb{N} = \{1, 2, 3, \dots\}$. (By some definitions $0 \in \mathbb{N}$, by others $0 \notin \mathbb{N}$)
- Integers: $\mathbb{Z} = \{0, \pm 1, \pm 2, \dots\}.$
- Rational numbers: $\mathbb{Q} = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0 \right\}$.
- Real numbers: $\mathbb{R} = \{x \mid x \in (-\infty, \infty)\}.$ (The formal definition is too complicated for this course^a)
- Complex numbers: $\mathbb{C} = \{x + iy \mid x, y \in \mathbb{R}, \ i^2 = -1\}.$

Problem 1: Sets

- 1. Write the following sets explicitly:
 - (a) $A = \{x \in \mathbb{N} \mid 1 < x \le 7\}$
 - (b) $A = \{ x \in \mathbb{Z} \mid x < 5 \}$
 - (c) $A = \{x \in \mathbb{R} \mid x^2 = -1\}$
 - (d) $A = \{x \in \mathbb{N} \land x \in \mathbb{Q}\}$
 - (e) $A = \{x \in \mathbb{R} \mid x^2 3x 4 = 0\}$
 - (f) $A = \{x \in \mathbb{R} \mid x < 5 \land x \ge 2\}$
- 2. Determine the relation between the sets:
 - (a) \mathbb{R} , \mathbb{Q} , \mathbb{Z} , \mathbb{N}
 - (b) $A = \{1, 2, 3\}, B = \{1, 2\}$
 - (c) $A = \emptyset$, $B = \{2, -5, \pi\}$
 - (d) $A = \mathbb{Z}, B = \{\pm x \mid x \in \mathbb{N} \cup \{0\}\}\$
 - (e) $A = \left\{ \pi, e, \sqrt(2) \right\}, B = \mathbb{Q}$
- 3. Using Venn diagrams, show the following relations:
 - (a) $A \cup B = B \cup A$
 - (b) $A \cap B = B \cap A$
 - (c) $(A \cup B) \cup C = A \cup (B \cup C)$
 - (d) $(A \cap B) \cap C = A \cap (B \cap C)$
 - (e) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - (f) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - (g) $(A \cup B)^C = A^C \cap B^C$
 - (h) $(A \cap B)^C = A^C \cup B^C$

aSome formal definitions can be found here: https://en.wikipedia.org/wiki/Construction_of_the_real_numbers.

- 4. Cartesian products:
 - (a) What is the Cartesian product of $A = \{x, y, z\}$ and $B = \{a, b, c\}$?
 - (b) Is the following true: (x, a) = (a, x)?
 - (c) What is B^2 ? What is A^3 ?
- 5. Extra: Prove that $\sqrt{2}$ is irrational. (In formal writing: $\nexists p,q\in\mathbb{Z}\to\sqrt{2}=\frac{p}{q}$. Simply written: $\sqrt{2}\notin\mathbb{Q}$)

Problem 2: Functions

1. Which of the following figures represent functions? Which of these functions are injective, surjective and/or bijective?

- 2. Which of the following functions are injective over \mathbb{R} ?
 - (a) $f(x) = x^2$
 - (b) $f(x) = x^3$
 - (c) $f(x) = \sin(x)$
 - (d) $f(x) = \log(x)$

(in the context of this course, $\log(x)$ is the natural logarithm, also known as $\ln(x)$)

- (e) f(x) = |x|
- (f) $f(x) = \sqrt{x}$
- 3. Find the images of the functions from 2.
- 4. For each of the injective functions from 2, find its inverse.
- 5. For each of the non injective functions from 2, find a domain over which it is injective.

Find the inverse of the following functions (over \mathbb{R}):

- 1. f(x) = x + 5
- 2. $f(x) = x^7$
- 3. $f(x) = \frac{1}{3x-1}$
- 4. $f(x) = x^2 + 1$
- 5. $f(x) = e^{-x}$

Problem 3: Graphs

- 1. Which of the above graphs are:
 - (1) Connected?
 - (2) Complete?
 - (3) Directed?
- 2. What are dist (A, B) and dist (A, E) for these graphs?