Examen parcial de Física - ELECTRÒNICA 17 de maig de 2018

Model A

Qüestions: 50% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- T1) En els quatre circuits dibuixats, tots els díodes es caracteritzen per una tensió llindar $V_{\gamma} = 0.7 \text{ V}$ i els Zener amb $V_Z = 6 \text{ V}$. En quin circuit passa corrent pel díode Zener?
 - a) Circuit c.
- b) Circuit b.
- c) Circuit a.
- d) Circuit d.

- **T2)** El díode Zener del circuit de la figura es caracteritza per una tensió llindar $V_{\gamma} = 0.7$ V i una tensió Zener $V_Z = 8$ V. Quina de les afirmacions següents és correcta?
 - a) $I_2 = 100 \text{ mA}$.
 - b) $I_Z = 40 \text{ mA}.$
 - c) $I_2 = 7 \text{ mA}$.
 - d) $I_1 = 80 \text{ mA}$.

T3) Si la tensió llindar dels díodes del circuit de la figura és 0.7 V, i $V_A = 0$ i $V_B = 5$ V, quina és la tensió V_{out} ?

b) 5 V.

c) 0.7 V.

- d) 0 V.
- **T4)** Els paràmetres característics de l'NMOS de la figura són $\beta = 1 \text{ mA/V}^2$ i $V_T = 1 \text{ V}$. Aleshores, el corrent de drenador és

b) 8 mA.

c) 0 mA.

d) 7.5 mA.

- **T5)** En el circuit lògic de la figura, $V_{DD} = 5$ V i els valors de les resistències garanteixen que els NMOS, amb tensió llindar $V_T = 1$ V, estiguin en tall o en la regió òhmica amb valors $V_{DS} \approx 0$ quan V_A i V_B són iguals a 0 o 5 V. En quina situació les intensitats I_1 i I_2 són nul·les simultàniament?
 - a) En cap cas.
 - b) $V_A = V_B = 5 \text{ V}.$
 - c) $V_A = V_B = 0$.
 - d) $V_A = 0$ i $V_B = 5$ V, o $V_A = 5$ V i $V_B = 0$ V.

Examen parcial de Física - ELECTRÒNICA 17 de maig de 2018

Model B

Qüestions: 50% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- **T1)** El díode Zener del circuit de la figura es caracteritza per una tensió llindar $V_{\gamma} = 0.7 \text{ V}$ i una tensió Zener $V_{Z} = 8 \text{ V}$. Quina de les afirmacions següents és correcta?
 - a) $I_1 = 80 \text{ mA}$.
 - b) $I_2 = 100 \text{ mA}.$
 - c) $I_2 = 7 \text{ mA}$.
 - d) $I_Z = 40 \text{ mA}.$

- T2) En el circuit lògic de la figura, $V_{DD} = 5$ V i els valors de les resistències garanteixen que els NMOS, amb tensió llindar $V_T = 1$ V, estiguin en tall o en la regió òhmica amb valors $V_{DS} \approx 0$ quan V_A i V_B són iguals a 0 o 5 V. En quina situació les intensitats I_1 i I_2 són nul·les simultàniament?
 - a) $V_A = V_B = 5 \text{ V}.$
 - b) $V_A = 0$ i $V_B = 5$ V, o $V_A = 5$ V i $V_B = 0$ V.
 - c) $V_A = V_B = 0$.
 - d) En cap cas.
- **T3)** Els paràmetres característics de l'NMOS de la figura són $\beta = 1 \text{ mA/V}^2$ i $V_T = 1 \text{ V}$. Aleshores, el corrent de drenador és

b) 0 mA.

c) 20 mA.

d) 7.5 mA.

T4) Si la tensió llindar dels díodes del circuit de la figura és 0.7 V, i $V_A = 0$ i $V_B = 5$ V, quina és la tensió V_{out} ?

b) 0 V.

c) 4.3 V.

d) 0.7 V.

T5) En els quatre circuits dibuixats, tots els díodes es caracteritzen per una tensió llindar $V_{\gamma} = 0.7 \text{ V}$ i els Zener amb $V_{Z} = 6 \text{ V}$. En quin circuit passa corrent pel díode Zener?

a) Circuit a.

b) Circuit c.

c) Circuit b.

d) Circuit d.

Examen parcial de Física - ELECTRÒNICA 17 de maig de 2018

Problema: 50% de l'examen

En el circuit de la figura és $V_{GS}=5$ V. Quan la resistència al drenador és $R_D=3.6$ k Ω , el transistor NMOS està en saturació i la intensitat val $I_D=1$ mA. La tensió llindar del NMOS és $V_T=1$ V.

- a) Trobeu el valor del paràmetre característic β del transistor.
- b) Calculeu la diferència de potencial V_{DS} per $R_D=3.6~\mathrm{k}\Omega.$
- c) Si s'incrementa progressivament el valor de la resistència al drenador, per a quin valor de R_D el transistor començarà a treballar en zona òhmica?
- d) Calculeu la intensitat I_D i la diferència de potencial V_{DS} per $R_D=50~\mathrm{k}\Omega.$

RESOLEU EN AQUEST MATEIX FULL

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	d	d
T2)	b	d
T3)	a	a
T4)	b	c
T5)	a	d

Resolució del Model A

- T1) En el circuit d) el díode rectificador està polaritzat inversament, i es comporta com un interruptor obert que no deixa passar corrent, mentre que el Zener està polaritzat directament i la fem de 5 V és superior a la tensió llindar de 0.7 V. En els altres circuits no passa corrent pel díode Zener.
- T2) El Zener està en polarització inversa. Si no conduís, per les resistències circularia una intensitat 20/(100+100) = 0.1 A i la ddp als extrems del Zener seria $(100 \Omega)(0.1 \text{ A}) = 10 \text{ V}$, que és superior a $V_Z = 8 \text{ V}$, la qual cosa no té sentit. Per tant, condueix i la ddp als seu extrems és $V_Z = 8 \text{ V} = (100 \Omega)I_2$, d'on trobem $I_2 = 80 \text{ mA}$, $I_1 = (20-8)/100 = 120 \text{ mA}$ i $I_Z = 120-80 = 40 \text{ mA}$.
- T3) El díode amb $V_A = 0$ no està polaritzat directament i es comporta com un interruptor obert que no deixa passar corrent. El díode amb $V_B = 5$ V està polaritzat directament, deixa passar corrent i la tensió als seus borns $(V_B V_{\text{out}})$ és la tensió llindar $V_{\gamma} = 0.7$ V, és a dir, $V_B V_{\text{out}} = V_{\gamma}$. Per tant, $V_{\text{out}} = V_B V_{\gamma} = 4.3$ V.
- T4) Al circuit, $V_{DS} = V_{GS} = 5$ V perquè la porta G i el drenador D estan connectats al mateix punt de 5 V i la font S està connectada a Terra $(V_S = 0)$. Per tant, $V_{GT} = V_{GS} V_T = 5 1 = 4$ V, que és més petit que $V_{DS} = 5$ V i, en conseqüencia, l'nMOS està en saturació amb $I_D = (\beta/2)(V_{GT})^2 = 8$ mA.
- **T5)** Si $V_A = 5$ V o $V_B = 5$ V, el transistor corresponent no estarà en tall i circularà I_1 . A més, estarà en la regió òhmica amb $V_{DS} \approx 0$, la qual cosa implicarà que el tercer transistor (el de més a la dreta) estarà en tall amb $I_2 = 0$. I si $V_A = V_B = 0$, els dos transistors estaran en tall amb $I_1 = 0$. Però llavors el tercer transistor estarà en òhmica i circularà I_2 . Per tant, la resposta correcta és "en cap cas".

Resolució del Problema

a) Si el transistor està en saturació és

$$I_D = \frac{\beta}{2}(V_{GS} - V_T)^2 \Rightarrow \beta = \frac{2I_D}{(V_{GS} - V_T)^2} = \frac{2 \times 1 \text{ mA}}{(5 \text{ V} - 1 \text{ V})^2} = 0.125 \text{ mA/V}^2$$

b) Serà

$$V_{DS} = 20 \text{ V} - R_D I_D = 20 \text{ V} - 3.6 \text{ k}\Omega \times 1 \text{ mA} = 20 \text{ V} - 3.6 \text{ V} = 16.4 \text{ V}$$

c) El transistor deixarà d'estar en saturació quan sigui

$$V_{DS} < V_{GS} - V_T \Rightarrow 20 \text{ V} - R_D I_D < V_{GS} - V_T \Rightarrow R_D > \frac{20 \text{ V} - (V_{GS} - V_T)}{I_D}$$

Substituïm els valors numèrics

$$R_D > \frac{20 \text{ V} - 4 \text{ V}}{1 \text{ mA}} = 16 \text{ k}\Omega$$

d) Segons el resultat de l'apartat anterior, per $R_D=50~\mathrm{k}\Omega$ el transistor NMOS està en zona òhmica, llavors és

$$I_D = \beta[(V_{GS} - V_T)V_{DS} - \frac{1}{2}V_{DS}^2] = 0.125[4V_{DS} - \frac{1}{2}V_{DS}^2]$$

Però, per altra banda ha de ser

$$V_{DS} = 20 \text{ V} - R_D I_D = 20 \text{ V} - 50 I_D \Rightarrow I_D = \frac{20 - V_{DS}}{50}$$

Igualem les dues expressions per a I_D

$$0.125[4V_{DS} - \frac{1}{2}V_{DS}^2] = \frac{20 - V_{DS}}{50}$$

amb la qual cosa arribem a la següent equació de segon grau

$$3.125V_{DS}^2 - 26V_{DS} + 20 = 0$$

Que té dues solucions possibles

$$V_{DS} = \frac{26 \pm \sqrt{26^2 - 4 \times 3.125 \times 20}}{2 \times 3.125} = \frac{26 \pm 20.64}{6.25}$$

La solució corresponent a l'arrell positiva, és

$$V_{DS} = \frac{26 + 20.64}{6.25} = 7.46 \text{ V} > V_{GS} - V_T$$

per tant l'hem de desestimar, així doncs ens quedem amb l'arrel negativa

$$V_{DS} = \frac{26 - 20.64}{6.25} = 0.86 \text{ V}$$

Finalment trobem la intensitat

$$I_D = \frac{20 - V_{DS}}{50} = \frac{20 - 0.86}{50} = 0.38 \text{ mA}$$