0.1 函数性态分析综合

命题 0.1

设 f' 在 $[0,+\infty)$ 一致连续且 $\lim_{x\to+\infty} f(x)$ 存在, 证明 $\lim_{x\to+\infty} f'(x) = 0$.

拿 笔记 本题也有积分版本: 设 f 在 $[0,+\infty)$ 一致连续且 $\int_0^\infty f(x) \, \mathrm{d}x$ 收敛, 则 $\lim_{x \to +\infty} f(x) = 0$.(令 $F = \int_0^x f(x) \, \mathrm{d}x$ 就可以将这个积分版本转化为上述命题)

证明 反证, 若 $\lim_{x\to +\infty} f'(x) \neq 0$, 则可以不妨设存在 $\delta > 0$, $\{x_n\}_{n=1}^{\infty}$, 使得

$$x_n \to +\infty \, \mathbb{E} f'(x_n) \geqslant \delta, \forall n \in \mathbb{N}.$$

由 f' 在 $[0,+\infty)$ 上一致连续可知, 存在 $\eta > 0$, 使得对 $\forall n \in \mathbb{N}$, 都有

$$f'(x) \ge f'(x_n) - \frac{\delta}{2} \ge \frac{\delta}{2}, \forall x \in [x_n - \eta, x_n + \eta].$$

从而对 $\forall n \in \mathbb{N}$, 都有

$$f(x_n + \eta) - f(x_n) = \int_{x_n}^{x_n + \eta} f'(x) dx \geqslant \int_{x_n}^{x_n + \eta} \frac{\delta}{2} dx = \frac{\delta \eta}{2} > 0, \forall x \in [x_n - \eta, x_n + \eta].$$

令 $n \to \infty$, 由 $\lim_{x \to +\infty} f(x)$ 存在可得 $0 \ge \frac{\delta \eta}{2} > 0$, 矛盾! 故 $\lim_{x \to +\infty} f'(x) = 0$. 例题 **0.1** 时滞方程 设 $f \in \mathbb{R}$ 上可微且满足

$$\lim_{x \to +\infty} f'(x) = 1, \quad f(x+1) - f(x) = f'(x), \forall x \in \mathbb{R}.$$

证明存在常数 $C \in \mathbb{R}$ 使得 $f(x) = x + C, \forall x \in \mathbb{R}$.

证明 由 $f(x+1) - f(x) = f'(x), \forall x \in \mathbb{R}$ 及 $f \in D(\mathbb{R})$ 可知 $f' \in C(\mathbb{R})$. 对 $\forall x_1 \in \mathbb{R}$, 固定 x_1 , 记

$$A = \{z > x_1 \mid f'(z) = f'(x_1)\}.$$

由 Lagrange 中值定理及 $f(x+1) - f(x) = f'(x), \forall x \in \mathbb{R}$ 可知

$$\exists x_2 \in (x_1, x_1 + 1) \text{ s.t. } f'(x_1) = f(x_1 + 1) - f(x_1) = f'(x_2).$$

故 $x_2 \in A$, 从而 A 非空. 现在考虑 $y \triangleq \sup A \in (x_1, +\infty)$, 下证 $y = +\infty$. 若 $y < +\infty$, 则存在 $\{z_n'\}_{n=1}^{\infty}$, 使得

$$z'_n \rightarrow y \coprod f'(z'_n) = f'(x_1).$$

两边同时令 $n \to \infty$, 由 $f' \in C(\mathbb{R})$ 可得

$$f'(x_1) = \lim_{n \to \infty} f'(z'_n) = f'(y).$$

又由 Lagrange 中值定理及 $f(x+1) - f(x) = f'(x), \forall x \in \mathbb{R}$ 可得

$$\exists y' \in (y, y+1) \text{ s.t. } f'(y) = f(y+1) - f(y) = f'(y').$$

从而 $y' \in A$ 且 y' > y, 这与 $y = \sup A$ 矛盾! 故 $y = +\infty$. 于是存在 $\{z_n\}_{n=1}^{\infty}$, 使得

$$z_n \to +\infty \mathbb{E} f'(z_n) = f'(x_1).$$

两边同时令 $n \to \infty$, 由 $f' \in C(\mathbb{R})$ 及 $\lim_{x \to \infty} f'(x) = 1$ 可得

$$f'(x_1) = \lim_{n \to \infty} f'(z_n) = \lim_{x \to +\infty} f'(x) = 1.$$

因此由 x_1 的任意性得,存在C为常数,使得 $f(x) = x + C, \forall x \in \mathbb{R}$.

例题 0.2 设 $f \in C^2(\mathbb{R})$ 满足 $f(1) \leq 0$ 以及

$$\lim_{x \to \infty} [f(x) - |x|] = 0. \tag{12.27}$$

证明: (1): 存在 $\xi \in (1, +\infty)$, 使得 $f'(\xi) > 1$.

(2): 存在 $\eta \in \mathbb{R}$, 使得 $f''(\eta) = 0$.

证明 (1) 如果对任何 $x \in (1, +\infty)$, 都有 $f'(x) \le 1$, 那么 $[f(x) - x]' \le 0$ 知 f(x) - x 在 $[1, +\infty)$ 单调递减. 从而

$$-1 \ge f(1) - 1 \ge \lim_{x \to +\infty} [f(x) - x] = \lim_{x \to +\infty} [f(x) - |x|] = 0,$$

这就是一个矛盾! 于是我们证明了 (1).

(2) 若对任何 $x \in \mathbb{R}$, 我们有 $f''(x) \neq 0$. 从而 f''(x) 要么恒大于零, 要么恒小于零, 否则由零点存在定理可得矛盾! 任取 $\xi \in \mathbb{R}$.

当 $f''(x) > 0, \forall x \in \mathbb{R}$, 我们知道 f 在 \mathbb{R} 上是下凸函数. 由 (1) 和下凸函数切线总是在函数下方, 我们知道

$$f(x) \geqslant f(\xi) + f'(\xi)(x - \xi), \forall x > \xi.$$

于是

$$0 = \lim_{x \to +\infty} [f(x) - x] \geqslant \lim_{x \to +\infty} [f(\xi) - f'(\xi)\xi + (f'(\xi) - 1)x] = +\infty,$$

这就是一个矛盾!

当 f''(x) < 0, $\forall x$ ∈ \mathbb{R} , 我们知道 f 在 \mathbb{R} 上是上凸函数. 由 (1) 和上凸函数切线总是在函数上方, 我们有

$$f(x) \leqslant f(\xi) + f'(\xi)(x - \xi), \forall x < \xi.$$

于是

$$0 = \lim_{x \to -\infty} [f(x) + x] \leqslant \lim_{x \to -\infty} [f(\xi) - f'(\xi)\xi + (f'(\xi) + 1)x] = -\infty,$$

这就是一个矛盾! 因此我们证明了 (2).

例题 0.3 设 f 在 [a,b] 上每一个点极限都存在,证明:f 在 [a,b] 有界.

笔记 极限存在必然局部有界,本题就是说局部有界可以推出在紧集上有界.在大量问题中会有一个公共现象:即 局部的性质等价于在所有紧集上的性质.证明的想法就是有限覆盖.

证明 对 $\forall c \in [a,b]$, 由 $\lim_{x \to c} f(x)$ 存在可知, 存在 c 的邻域 U_c 和 M > 0, 使得

$$\sup_{x \in U_c \cap [a,b]} |f(x)| \leqslant M_c.$$

注意 [a,b] $\subset \bigcup_{c \in [a,b]} U_c$, 由有限覆盖定理得, 存在 $c_1, c_2, \cdots, c_n \in [a,b]$, 使得

$$[a,b]\subset\bigcup_{k=1}^n U_{c_k}.$$

故 $\sup_{x \in [a,b]} |f(x)| \leq \max_{1 \leq k \leq n} M_k$.

例题 0.4 设 f 是 $(a, +\infty)$ 有界连续函数, 证明对任何实数 T , 存在数列 $\lim x_n = +\infty$ 使得

$$\lim_{n \to \infty} [f(x_n + T) - f(x_n)] = 0.$$

注 因为 $|f(x+T)-f(x)| \ge 0$, 所以

$$0 \leqslant \varliminf_{x \to +\infty} |f(x+T) - f(x)| < \varlimsup_{x \to +\infty} |f(x+T) - f(x)|$$

原结论的反面只用考虑 $\varliminf_{x\to +\infty} |f(x+T)-f(x)|$ 即可. 若 $\varliminf_{x\to +\infty} |f(x+T)-f(x)|=0$,则一定存在子列 $x_n\to +\infty$,使得结论成立. 故原结论的反面就是 $\varliminf_{x\to +\infty} |f(x+T)-f(x)|>0$.

笔记 考虑反证法之后, 再进行定性分析 (画 f(x) 的大致走势图), 就容易找到矛盾.

证明 反证, 假设 <u>lim</u> |f(x+T)-f(x)|>0, 则存在 $\varepsilon_0>0$, X>0, 使得

$$|f(x+T) - f(x)| \ge \varepsilon_0, \quad \forall x \ge X$$
 (1)

令 $g(x) \triangleq f(x+T) - f(x)$,则若存在 $x_1, x_2 \ge X$,使得 $g(x_1) = f(x_1+T) - f(x_1) \ge \varepsilon_0 > 0$, $g(x_2) = f(x_2+T) - f(x_2) \le -\varepsilon_0 < 0$. 不妨设 $x_1 < x_2$,由 g 连续及介值定理可知,存在 $x_3 \in (x_1, x_2)$,使得

$$g(x_3) = f(x_3 + T) - f(x_3) = 0$$

与(1) 式矛盾! 故 $g(x) \triangleq f(x+T) - f(x)$ 在 $[X, +\infty)$ 上要么恒大于 ε_0 , 要么恒小于 ε_0 . 于是不妨设

$$f(x+T) - f(x) \geqslant \varepsilon_0, \quad \forall x \geqslant X$$
 (2)

从而对 $\forall k \in \mathbb{N}$,存在 $X_k \geqslant X$,使得当 $x \geqslant X_1$ 时,有 x + (k-1)T > X. 于是由(1)式可得

$$f(x+kT) - f(x+(k-1)T) \geqslant \varepsilon_0, \quad \forall x \geqslant X_k$$
 (3)

因此对 $\forall n \in \mathbb{N}$, 取 $K_n = \max\{X_1, X_2, \dots, X_k\}$, 则由(3)式可知 f(x+kT) - f(x+(k-1)T), $\forall x \geq K_n$, $\forall k \in \{1, 2, \dots, n\}$ 进而对上式求和可得, 对 $\forall n \in \mathbb{N}$, 都有

$$\sum_{k=1}^{n} [f(x+kT) - f(x+(k-1)T)] = f(x+nT) - f(x) \geqslant n\varepsilon_0, \quad \forall x \geqslant K_n$$

任取 $x_0 \ge K_n$,则 $f(x_0 + nT) - f(x_0) \ge n\varepsilon_0$, $\forall n \in \mathbb{N}$. 令 $n \to \infty$, 得 $\lim_{x \to +\infty} f(x) = +\infty$. 这与 f 在 $(a, +\infty)$ 上有界矛盾!

命题 0.2

1. 设 $f_n \in C[a,b]$ 且关于 [a,b] 一致的有

$$\lim_{n\to\infty} f_n(x) = f(x).$$

证明: 对 $\{x_n\} \subset [a,b]$, $\lim_{n \to \infty} x_n = c$, 有

$$\lim_{n\to\infty} f_n(x_n) = f(c).$$

2. 设 $f_n(x): \mathbb{R} \to \mathbb{R}$ 满足对任何 $x_0 \in \mathbb{R}$ 和 $\{x_n\}_{n=1}^{\infty} \subset \mathbb{R}$, $\lim_{n \to \infty} x_n = x_0$, 都有

$$\lim_{n \to \infty} f_n(x_n) = f(x_0),$$

证明: $f \in C(\mathbb{R})$.

证明

1. 由 f_n 一致收敛到 f(x) 可知, 对 $\forall \varepsilon > 0$, 存在 $N_0 \in \mathbb{N}$, 使得对 $\forall N \geq N_0$, 当 $n \geq N$ 时, 对 $\forall x \in [a,b]$, 都有

$$|f_n(x)-f_N(x)|<\varepsilon.$$

从而由上式可得

$$|f_n(x_n) - f(c)| \le |f_n(x_n) - f_N(x_n)| + |f_N(x_n) - f_N(c)| + |f_N(c) - f(c)|$$

$$\le \varepsilon + |f_N(x_n) - f_N(c)| + |f_N(c) - f(c)|.$$

$$\overline{\lim_{n\to\infty}} |f_n(x_n) - f(c)| \leqslant \varepsilon + |f_N(c) - f(c)|.$$

再令 $N \to +\infty$, 由 $\lim_{n \to \infty} f_n(x) = f(x)$, $\forall x \in [a, b]$ 可知

$$\overline{\lim}_{n\to\infty} |f_n(x_n) - f(c)| \leqslant \varepsilon.$$

2. 反证, 若 f 在 $x_0 \in \mathbb{R}$ 处不连续, 则存在 $\varepsilon_0 > 0$, 使得 $\forall m \in \mathbb{N}$, 存在 $y_m \in (x_0 - \frac{1}{m}, x_0 + \frac{1}{m})$, 使得

$$|f(y_m) - f(x_0)| \geqslant \varepsilon_0. \tag{4}$$

对 $\forall m \in \mathbb{N}$, 令条件中的 $x_0 = y_m$, $x_n \equiv y_m$, $\forall n \in \mathbb{N}$, 从而由条件可知 $\lim_{n \to \infty} |f_n(y_m) - f(y_m)| = 0$, $m = 1, 2, \dots$, 故 对 $\forall m \in \mathbb{N}$, 存在严格递增的数列 $n_m \to +\infty$, 使得

$$|f_{n_m}(y_m) - f(y_m)| < \frac{\varepsilon_0}{2}. \tag{5}$$

从而由(4)(5)式可知, 对 $\forall m \in \mathbb{N}$, 都有

$$|f(y_{n_m}) - f(x_0)| \geqslant \varepsilon_0, \tag{6}$$

$$|f_{n_m}(y_{n_m}) - f(y_{n_m})| < \frac{\varepsilon_0}{2}. \tag{7}$$

因此由(6)(7)式可得,对 $\forall m \in \mathbb{N}$,都有

$$|f_{n_m}(y_{n_m}) - f(x_0)| \ge |f(y_{n_m}) - f(x_0)| - |f_{n_m}(y_{n_m}) - f(y_{n_m})| \ge \varepsilon_0 - \frac{\varepsilon_0}{2} = \frac{\varepsilon_0}{2}.$$
 (8)

注意到 $y_m \to x_0$, 于是 $y_{n_m} \to x_0$. 从而由已知条件可知 $\lim_{m \to \infty} f_{n_m}(y_{n_m}) = f(x_0)$. 这与(8)式矛盾! 故 $f \in C(\mathbb{R})$.

例题 0.5 设 $g \in C(\mathbb{R})$ 且以 T > 0 为周期, 且有

$$f(f(x)) = -x^3 + g(x). (9)$$

证明: 不存在 $f \in C(\mathbb{R})$, 使得(9)式成立.

证明 由连续的周期函数的基本性质可知, 存在 M > 0, 使得 $|g(x)| \leq M$. 反证, 假设存在 $f \in C(\mathbb{R})$, 使得(9)式成立. 则

$$\lim_{x \to +\infty} f(f(x)) = \lim_{x \to +\infty} \left(-x^3 + g(x) \right) = -\infty, \tag{10}$$

$$\lim_{x \to -\infty} f(f(x)) = \lim_{x \to -\infty} \left(-x^3 + g(x) \right) = +\infty. \tag{11}$$

假设 $\lim_{x\to +\infty} f(x) = A \in \mathbb{R}$, 则存在 $x_n \to +\infty$, 使得 $f(x_n) \to A$. 从而由(9)式可得

$$f(A) = \lim_{n \to \infty} f(f(x_n)) = \lim_{n \to \infty} (-x_n^3 + g(x_n)) = -\infty.$$

上式显然矛盾! 又因为 $f \in C(\mathbb{R})$, 所以 $\lim_{x \to +\infty} f(x) = +\infty$ 或 $-\infty$. 否则, 当 $x \to +\infty$ 时, f(x) 振荡, 则由零点存在定理可知, 存在 $y_n \to +\infty$, 使得 $f(y_n) = 0$, $n = 1, 2, \cdots$. 从而由(10)式可知

$$-\infty = \lim_{x \to +\infty} f(f(x)) = \lim_{n \to \infty} f(f(y_n)) = f(0).$$

显然矛盾!

(i) 若 $\lim_{x \to +\infty} f(x) = +\infty$, 则

$$+\infty = \lim_{x \to +\infty} f(x) = f(+\infty) = \lim_{x \to +\infty} f(f(x)) = \lim_{x \to +\infty} [-x^3 + g(x)] = -\infty.$$

显然矛盾!

(ii) 若 $\lim_{x \to +\infty} f(x) = -\infty$, 则

$$f(-\infty) = \lim_{x \to +\infty} f(f(x)) = \lim_{x \to +\infty} [-x^3 + g(x)] = -\infty.$$
 (12)

从而对上式两边同时作用 f 可得

$$f(-\infty) = f(f(-\infty)) = \lim_{x \to -\infty} [-x^3 + g(x)] = +\infty.$$

$$\tag{13}$$

于是(12)式与(13)式显然矛盾! 综上, $f \in C(\mathbb{R})$ 的解不存在.

例题 0.6

- 1. 设 $f \in C[0, +\infty)$ 是有界的. 若对任何 $r \in \mathbb{R}$, 都有 f(x) = r 在 $[0, +\infty)$ 只有有限个或者无根, 证明: $\lim_{x \to \infty} f(x)$ 存在.
- 2. 设 $f \in C(\mathbb{R})$,n 是一个非 0 正偶数, 使得对任何 $y \in \mathbb{R}$, 都有 $\{x \in \mathbb{R} : f(x) = y\}$ 是 n 元集. 证明: 这样的 f 不存 在.

证明

1. 反证,设 $\lim_{x \to +\infty} f(x)$ 不存在,由 f 有界,可设 $\overline{\lim}_{x \to +\infty} f(x) = A > B = \underline{\lim}_{x \to +\infty} f(x)$. 任取 $C \in (B, A)$,则由 $\overline{\lim}_{x \to +\infty} f(x) = A > C$ 可知,存在 $x_1 \ge 0$,使得 $f(x_1) > C$. 又由 $\underline{\lim}_{x \to +\infty} f(x) = B < C$ 可知,存在 $x_2 > x_1 + 1$,使得 $f(x_2) < C$. 于是再由 $\overline{\lim}_{x \to +\infty} f(x) = A > C$ 可知,存在 $x_3 > x_2 + 1$,使得 $f(x_3) > C$. 又由 $\underline{\lim}_{x \to +\infty} f(x) = B < C$ 可知,存在 $x_4 > x_3 + 1$,使得 $f(x_4) < C$. 依此类推,可得递增数列 $\{x_n\}$,使得

$$x_{n+1} > x_n + 1$$
, $f(x_{2n-1}) > C$, $f(x_{2n}) < C$, $n = 1, 2, \cdots$.

从而由 $f \in C[0, +\infty)$ 及介值定理可得, 对 $\forall n \in \mathbb{N}$, 存在 $y_n \in (x_{2n-1}, x_{2n})$, 使得 $f(y_n) = C$, 矛盾!

2. 设 $x_1 < x_2 < \cdots < x_n$ 是 f 的所有零点, 记 $x_0 = -\infty, x_{n+1} = +\infty$, 则由 f 的连续性及介值定理可知, f 在

 (x_{i-1},x_i) 上不变号. 这里共有 n+1 个区间, 现在考虑 (x_{i-1},x_i) , $i=2,3,\cdots,n$, 这 n-1 个区间. 于是由抽屉原理可知, 这 n-1 个区间中必存在 $\frac{n}{2}$ 区间, 使 f 在这 $\frac{n}{2}$ 个区间内都同号.

不妨设 f 在这 $\frac{n}{2}$ 个区间内恒大于 0, 记 f 在 $[x_{i-1}, x_i]$ 上的最大值记为 $f(m_i) \triangleq M_i > 0$, 其中 $m_i \in (x_{i-1}, x_i)$, $i = 2, 3, \cdots, n$. 由介值定理知, 至少存在 $c_i \in (x_{i-1}, m_i)$, $c_i' \in (m_i, x_i)$, 使得

$$f(c_i) = f(c'_i) = \frac{1}{2} \min_{2 \le i \le n} M_i > 0, i = 2, 3, \dots, n.$$

注意到在 (x_0, x_1) , (x_n, x_{n+1}) 上 f 必不同号. 否则, 不妨设在 (x_0, x_1) , (x_n, x_{n+1}) 上 f 恒大于 0, 则由 $f \in C(\mathbb{R})$ 可知, 存在 M > 0, 使得 |f(x)| < M, $\forall x \in [x_1, x_{n+1}]$. 从而 $f(x) \ge -M$, $\forall x \in \mathbb{R}$. 这与对 $\forall y \in \mathbb{R}$, f(x) = y 都有根矛盾!

不妨设 f 在 (x_0, x_1) 上恒小于 0,在 (x_n, x_{n+1}) 上恒大于 0,则 f 在 (x_n, x_{n+1}) 上无上界. 否则,存在 $K > \max_{2 \le i \le n} M_i > 0$,使得 f(x) < K, $\forall x \in (x_n, x_{n+1})$. 又因为 f(x) < 0 < K, $\forall x \in (x_0, x_1)$, $f(x) \le \max_{2 \le i \le n} M_i < \infty$

 $K, \forall x \in (x_1, x_n)$. 所以 $f(x) < K, \forall x \in \mathbb{R}$. 这与对 $\forall y \in \mathbb{R}, f(x) = y$ 都有根矛盾! 又 $f(x_n) = 0$, 故至少存在一个 $c \in (x_n, x_{n+1})$, 使得 $f(c) = \frac{1}{2} \min_{2 \le i \le n} M_i > 0$. 综上, 至少有 n+1 个点使得

$$f(x) = \frac{1}{2} \min_{2 \le i \le n} M_i > 0. \ \text{这与} \left\{ x \in \mathbb{R} : f(x) = \frac{1}{2} \min_{2 \le i \le n} M_i \right\} \ \text{是 } n \ \text{元集矛盾}!$$

例题 0.7 设 $f \in C^2[0, +\infty), g \in C^1[0, +\infty)$ 且存在 $\lambda > 0$ 使得 $g(x) \geqslant \lambda, \forall x \geqslant 0$. 若 g' 至多只有有限个零点且

$$f''(x) + g(x)f(x) = 0, \quad \forall x \geqslant 0,$$

证明:f 在 [0,+∞) 有界.

笔记 形式计算分析需要的构造函数: 由条件微分方程可得

$$y'y'' = -gyy' \Rightarrow \frac{(y')^2}{2} = -\int gyy' dx = -\frac{1}{2} \int g dy^2 = -\frac{1}{2}gy^2 + \frac{1}{2} \int y^2 dg$$
$$\Rightarrow (y')^2 = -gy^2 + \int y^2 dg \Rightarrow \frac{(y')^2}{g} + y^2 = \int y^2 dg.$$

于是考虑构造函数 $F_1(x) riangleq \frac{|f'(x)|^2}{g(x)} + f^2(x), F_2(x) riangleq |f'(x)|^2 + g(x)f^2(x).$

证明 因为 g' 至多只有有限个零点, 所以存在 X > 0, 使得 $g'(x) \neq 0$, $\forall x \geq X$. 从而由导数介值性可知, g' 在 $[X, +\infty)$ 上要么恒大于 0, 要么恒小于 0. 令 $F_1(x) \triangleq \frac{|f'(x)|^2}{g(x)} + f^2(x)$, $x \geq X$, 则结合条件 f'' = -gf 可得

$$F_1'(x) = \frac{2f'f''g - g'(f')^2 + 2ff'g}{\varrho^2} = \frac{-2f'fg^2 - g'(f')^2 + 2ff'g^2}{\varrho^2} = -\frac{g'(f')^2}{\varrho^2}.$$
 (14)

(i) 若 $g'(x) > 0, \forall x \ge X$, 则由(14)式可知 $F'(x) \le 0$, 即 F(x) 在 $[X, +\infty)$ 上递减. 于是再结合 $g(x) > \lambda > 0, \forall x > 0$ 可知, 存在 C > 0, 使得

$$f^2(x) \leqslant F_1(x) \leqslant C, \quad \forall x \geqslant X.$$

故 f(x) 在 $[X, +\infty)$ 上有界. 又 $f \in C[0, +\infty)$, 故 f 在 [0, X] 上必有界. 因此 f 在 $[0, +\infty)$ 上有界.

(ii) 若
$$g'(x) < 0, \forall x \ge X$$
, 令 $F_2(x) \triangleq |f'(x)|^2 + g(x)f^2(x)$, 则结合条件 $f'' = -gf$ 可得

$$F_2'(x) = 2f'f'' + g'f^2 + 2gff' = -2f'fg + g'f^2 + 2gff' = g'f^2 \le 0.$$
 (15)

从而 $F_2(x)$ 在 $[X, +\infty)$ 上递减, 于是存在 C' > 0, 使得

$$g(x) f^2(x) \leqslant F_2(x) \leqslant C, \quad \forall x \geqslant X.$$

进而由 $g(x) > \lambda > 0, \forall x > 0$ 可得

$$f^2(x) \leqslant \frac{C}{g(x)} \leqslant \frac{C}{\lambda}, \quad \forall x \geqslant X.$$

故 f(x) 在 $[X, +\infty)$ 上有界. 又 $f \in C[0, +\infty)$, 故 f 在 [0, X] 上必有界. 因此 f 在 $[0, +\infty)$ 上有界. \Box **例题 0.8** 设 a, b > 1 且 $f: \mathbb{R} \to \mathbb{R}$ 在 x = 0 邻域有界. 若

$$f(ax) = b f(x), \quad \forall x \in \mathbb{R}$$

证明:f 在 x = 0 连续.

证明 注意到

$$f(0) = b f(0) \Rightarrow f(0) = 0.$$

由条件可得

$$f(ax) = bf(x) \Rightarrow f(x) = \frac{f(ax)}{h} = \frac{f(a^2x)}{h^2} = \dots = \frac{f(a^nx)}{h^n}, \forall n \in \mathbb{N}.$$
 (16)

因为 f 在 x=0 邻域有界, 所以存在 $\delta > 0$, 使得

$$|f(x)| \le M, \forall x \in (-\delta, \delta).$$
 (17)

从而对 $\forall \varepsilon > 0$, 取 $N \in \mathbb{N}$, 使得

$$\frac{M}{h^N} < \varepsilon. ag{18}$$

于是当 $x \in \left(-\frac{\delta}{a^N}, \frac{\delta}{a^N}\right)$ 时, 结合(16)(17)(18)式, 我们有

$$|f(x)| = \left| \frac{f(a^N x)}{b^N} \right| \leqslant \frac{M}{b^N} < \varepsilon.$$

故 $\lim_{x\to 0} f(x) = f(0) = 0$.

例题 **0.9** 设 $f \in C(\mathbb{R})$ 满足 f(x), $f(x^2)$ 都是周期函数, 证明: f 为常值函数.

证明 由连续周期函数必一致连续可知,f(x), $f(x^2)$ 在 \mathbb{R} 上一致连续. 于是对任意满足 $\lim_{n\to\infty}(x'_n-x''_n)=0$ 的数列 $\{x'_n\}$, $\{x''_n\}$, 都有

$$|f(x'_n) - f(x''_n)|, |f((x'_n)^2) - f((x''_n)^2)| \to 0, \quad n \to \infty.$$
 (19)

设 f(x) 的周期为 T>0, 则对 $\forall c\in\mathbb{R}$, 取 $x_n'=\sqrt{nT+c}, x_n''=\sqrt{nT}$, 显然 $x_n'-x_n''=\frac{c}{\sqrt{nT+c}+\sqrt{nT}}\to 0$. 从而由 (19) 式可得

$$|f((x_n')^2) - f((x_n'')^2)| = f(nT + c) - f(nT) = f(c) - f(0) \to 0.$$

故 $f(c) = f(0), \forall c \in \mathbb{R}$. 故 f 为常值函数.

例题 0.10 计算函数方程 $f(\log_2 x) = f(\log_3 x) + \log_5 x$ 所有 \mathbb{R} 上的连续解.

笔记 注意到

$$f\left(\frac{\ln x}{\ln 2}\right) = f\left(\frac{\ln x}{\ln 3}\right) + \frac{\ln x}{\ln 5}, x > 0.$$

为了凑裂项的形式, 我们待定

$$f\left(\frac{\ln a_n}{\ln 2}\right) = f\left(\frac{\ln a_n}{\ln 3}\right) + \frac{\ln a_n}{\ln 5}, \ n \in \mathbb{N}.$$

注意到我们有两种选择

$$\frac{\ln a_n}{\ln 2} = \frac{\ln a_{n+1}}{\ln 3}, \quad \frac{\ln a_n}{\ln 3} = \frac{\ln a_{n+1}}{\ln 2}.$$

前者公比 $\frac{\ln 3}{\ln 2} > 1$, 后者公比 $\frac{\ln 2}{\ln 3} < 1$, 为了求和方便我们选取后者.

证明 设 $f \in C(\mathbb{R})$, 对 $\forall x \in \mathbb{R}$, 取 $a_1 = x, \ln a_n = \left(\frac{\ln 2}{\ln 3}\right)^{n-1} \cdot \ln x, n \in \mathbb{N}$. 则 $\lim_{n \to \infty} \ln a_n = 0$. 此时有

$$\frac{\ln a_n}{\ln 3} = \frac{\ln a_{n+1}}{\ln 2}, \forall n \in \mathbb{N}.$$

于是由条件可得

$$f\left(\frac{\ln x}{\ln 2}\right) = f\left(\frac{\ln x}{\ln 3}\right) + \frac{\ln x}{\ln 5} \Rightarrow f\left(\frac{\ln a_n}{\ln 2}\right) = f\left(\frac{\ln a_n}{\ln 3}\right) + \frac{\ln a_n}{\ln 5}$$

$$\Rightarrow f\left(\frac{\ln a_n}{\ln 2}\right) = f\left(\frac{\ln a_{n+1}}{\ln 2}\right) + \frac{\ln a_n}{\ln 5}, n = 1, 2, \cdots$$

因此

$$\sum_{n=1}^{\infty} \left[f\left(\frac{\ln a_n}{\ln 2}\right) - f\left(\frac{\ln a_{n+1}}{\ln 2}\right) \right] = \sum_{n=1}^{\infty} \frac{\ln a_n}{\ln 5} = \frac{1}{\ln 5} \cdot \frac{\ln x}{1 - \frac{\ln 2}{\ln 3}}.$$

$$\sum_{n=1}^{\infty} \left[f\left(\frac{\ln a_n}{\ln 2}\right) - f\left(\frac{\ln a_{n+1}}{\ln 2}\right) \right] = f\left(\frac{\ln a_1}{\ln 2}\right) - \lim_{n \to \infty} f\left(\frac{\ln a_{n+1}}{\ln 2}\right) = f\left(\frac{\ln x}{\ln 2}\right) - f(0).$$

故

$$\frac{1}{\ln 5} \cdot \frac{\ln x}{1 - \frac{\ln 2}{\ln 3}} = f\left(\frac{\ln x}{\ln 2}\right) - f(0) \stackrel{y = \frac{\ln x}{\ln 2}}{\Rightarrow} f(y) = f(0) + \frac{y \ln 2 \ln 3}{\ln 5 \ln \frac{3}{2}}.$$

例题 0.11 设 $n \in \mathbb{N}, f \in C^{n+2}(\mathbb{R})$ 使得存在 $\theta \in \mathbb{R}$ 满足对任何 $x, h \in \mathbb{R}$ 都有

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \dots + \frac{f^{(n-1)}(x)}{(n-1)!}h^{n-1} + \frac{f^{(n)}(x+\theta h)}{n!}h^n$$

证明: f 是不超过 n+1 次的多项式.

证明 对 $\forall x, h \in \mathbb{R}$, 由 Taylor 公式可知

$$f^{(n)}(x+\theta h) = f^{(n)}(x) + f^{(n+1)}(x)\theta h + \frac{f^{(n+1)}(\xi)}{2}\theta^2 h^2.$$

再结合条件可得

$$f(x+h) = \sum_{j=0}^{n-1} \frac{f^{(j)}(x)}{j!} h^j + \frac{f^{(n)}(x+\theta h)}{n!} h^n$$

$$= \sum_{j=0}^n \frac{f^{(j)}(x)}{j!} h^j + \frac{f^{(n+1)}(x)\theta h + \frac{f^{(n+1)}(\xi)}{2}\theta^2 h^2}{n!} h^n,$$
(20)

由 Taylor 公式可知

$$f(x+h) = \sum_{j=0}^{n+1} \frac{f^{(j)}(x)}{j!} h^j + \frac{f^{(n+2)}(\eta)}{(n+2)!} h^{n+2}.$$
 (21)

比较(20)式和(21)式得

$$\left[\frac{1}{(n+1)!} - \frac{\theta}{n!}\right] f^{(n+1)}(x) = \left[\frac{\theta^2 f^{(n+2)}(\xi)}{2n!} - \frac{f^{(n+2)}(\eta)}{(n+2)!}\right] h. \tag{22}$$

$$\frac{\theta^2 f^{(n+2)}(\xi)}{2n!} = \frac{f^{(n+2)}(\eta)}{(n+2)!}.$$

对上式令 $h \to 0$, 则 ξ , $\eta \to x$, 故此时就有

$$\frac{f^{(n+2)}(x)}{2n!(n+1)^2} = \frac{f^{(n+2)}(x)}{(n+2)!} \Rightarrow f^{(n+2)}(x) = 0.$$

当 $\theta \neq \frac{1}{n+1}$ 时, 对(22)式令 $h \to 0$, 则 $\xi, \eta \to x$, 故此时就有

$$\left[\frac{1}{(n+1)!} - \frac{\theta}{n!}\right] f^{(n+1)}(x) = 0 \Rightarrow f^{(n+1)}(x) = 0.$$

因此, 无论如何都有 f 是不超过 n+1 次的多项式.

例题 0.12

1. 设

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n, \quad n = 1, 2, \cdots$$
 (23)

证明多项式 P_n 的全部根都是实数且分布在 (-1, 1).

- 2. 设 $g(x) = e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$, 证明 g 是只有实根的多项式.
- 笔记 本题第1问叫做 Legendre(勒让德)多项式,第2问叫做 Hermite 多项式.第2问用 Rolle 定理时注意无穷远点也会提供零点.

证明

- 1. 显然 P_n 是 n 次多项式,且 ±1 是 $\frac{d^k}{dx^k}(x^2-1)^n$ 的 n-k 重根 $(0 \le k \le n)$.由 Rolle 定理可知, $\frac{d}{dx}(x^2-1)^n$ 在 (-1,1) 有一个实根.于是再由 Rolle 定理可知, $\frac{d^2}{dx^2}(x^2-1)^n$ 在 (-1,1) 有两个不同实根. 反复利用 Rolle 定理可得, $\frac{d^n}{dx^n}(x^2-1)^n$ 在 (-1,1) 有 n 个不同实根.而 n 次多项式有且仅有 n 个根,故 P_n 的全部根都是实数且分布在 (-1,1) 上.
- 2. 设 $\frac{d^k}{dx^k}(e^{-x^2}) = P_k(x)e^{-x^2}, P_k \in \mathbb{N}, x \in \mathbb$

$$\frac{d^{k+1}}{dx^{k+1}}(e^{-x^2}) = \left[P_k'(x) - 2xP_k(x)\right]e^{-x^2}.$$

令 $P_{k+1}(x) = P_k'(x) - 2xP_k(x)$,则由 P_k 是 k 次多项式可知 $P_{k+1}(x)$ 是 k+1 次多项式. 故由数学归纳法可知 $\frac{d^n}{dx^n}(e^{-x^2}) = P_n(x)e^{-x^2}, \quad P_n \in \mathbb{R}[x], \quad n \in \mathbb{N}.$

因此 $g(x) = e^{-x^2} \frac{d^n}{dx^n} (e^{-x^2}) = P_n(x)$ 是 n 次多项式 $(n \in \mathbb{N})$. 设 P_k 是有 k 个不同实根的多项式, 这 k 个根为

$$x_1 < x_2 < \cdots < x_k$$

从而这 k 个根也是 $P_k(x)e^{-x^2}$ 的根. 由 Rolle 定理可知

$$P_{k+1}(x) = e^{-x^2} \frac{d^k}{dx^k} (e^{-x^2}) = e^{-x^2} \frac{d}{dx} \left(P_k(x) e^{-x^2} \right)$$

在 $(x_{j-1},x_j),j=2,3,\cdots,k$ 有实根. 而 $\lim_{\substack{x\to\pm\infty\\x\to\pm\infty}}P_k(x)e^{-x^2}=0$, 故由 Rolle 定理可知 $P_{k+1}(x)$ 在 $(-\infty,x_1),(x_k,+\infty)$ 上还各有一个实根. 因此 $P_{k+1}(x)$ 有 k+1 个根. 故由数学归纳法可知 $P_n(x)$ 有 n 个实根 $(n\in\mathbb{N})$. 又因为 $g(x)=P_n(x)$ 是 n 次多项式,而 n 次多项式有且仅有 n 个根,所以 $g(x)=P_n(x)$ 是只有实根的多项式.

例题 **0.13** 设 $f \in C^2(\mathbb{R})$ 且 f, f', f'' 都是正值函数. 若存在 a, b > 0 使得

$$f''(x) \le af(x) + bf'(x), \quad \forall x \in \mathbb{R}.$$

求 $f'(x) \leq c f(x)$ 恒成立的最小的 c.

证明 考虑微分方程 y'' = ay + by', 其特征方程为

$$x^{2} - bx - a = 0 \Rightarrow x_{1} = \frac{b + \sqrt{b^{2} + 4a}}{2} > 0, \quad x_{2} = \frac{b - \sqrt{b^{2} + 4a}}{2} < 0.$$

于是

$$f''(x) \leqslant af(x) + bf'(x) \Longleftrightarrow f''(x) - x_1 f'(x) \leqslant x_2 \left[f'(x) - x_1 f(x) \right].$$

$$c'(x) = \frac{g'(x) - x_2 g(x)}{e^{x_2 x}} \leqslant 0 \Rightarrow c(x) \leqslant \lim_{x \to -\infty} c(x) = \lim_{x \to -\infty} \frac{f'(x) - x_1 f(x)}{e^{x_2 x}}, \quad \forall x \in \mathbb{R}.$$

由 f'', f', f > 0 可知 f, f' 递增有下界. 故 $\lim_{x \to -\infty} f(x)$ 和 $\lim_{x \to -\infty} f'(x)$ 都存在. 因此

$$c(x) \leqslant \lim_{x \to -\infty} \frac{f'(x) - x_1 f(x)}{e^{x_2 x}} = 0, \quad \forall x \in \mathbb{R}.$$

即

$$f'(x) \leq x_1 f(x), \quad \forall x \in \mathbb{R}.$$

取
$$f(x) = e^{x_1 x}$$
, 此时等号成立. 故 $c_{\min} = x_1 = \frac{b + \sqrt{b^2 + 4a}}{2}$.

$$f'(x) \le c f(x) < x_1 f(x), \quad \forall x \in \mathbb{R}.$$

但是取当 $f(x) = e^{x_1 x}$ 时, $f'(x) = x_1 f(x)$ 矛盾! 故 $c_{min} = x_1$.

例题 **0.14** 设 $f \in C^n(\mathbb{R}), n \in \mathbb{N}, f^{(k)}(x_0) = 0, k = 0, 1, 2, \dots, n-1$. 若对某个 M > 0 和 $\lambda_0, \lambda_1, \dots, \lambda_{n-2} \ge 0, \lambda_{n-1} \ge 1$ 有不等式

$$|f^{(n)}(x)| \leqslant M \prod_{k=0}^{n-1} |f^{(k)}(x)|^{\lambda_k}, \forall x \in \mathbb{R}.$$

证明 $f(x) \equiv 0$.

笔记 因为原不等式是绝对值不等式, 所以考虑两个微分方程

$$f^{(n)} = f^{(n-1)} \cdot g \Rightarrow \frac{f^{(n)}}{f^{(n-1)}} = g \Rightarrow \ln f^{(n-1)} = \int_{x_0}^x g(y) dy + C \Rightarrow f^{(n-1)} = Ce^{\int_{x_0}^x g(y) dy}.$$

$$f^{(n)} = -f^{(n-1)} \cdot g \Rightarrow \frac{f^{(n)}}{f^{(n-1)}} = -g \Rightarrow \ln f^{(n-1)} = -\int_{x_0}^x g(y) \mathrm{d}y + C \Rightarrow f^{(n-1)} = Ce^{-\int_{x_0}^x g(y) \mathrm{d}y}.$$

分离常量得到构造函数 $c_1(x) \triangleq \frac{f^{(n-1)}(x)}{e^{\int_{x_0}^x g(y) \mathrm{d}y}}, c_2(x) \triangleq f^{(n-1)}(x)e^{\int_{x_0}^x g(y) \mathrm{d}y}.$ 回顾双绝对值问题的构造函数, 我们需要的构造函数应是 $C_1(x) \triangleq c_1^2(x) = \frac{[f^{(n-1)}(x)]^2}{e^{2\int_{x_0}^x g(y) \mathrm{d}y}}, C_2(x) \triangleq c_2^2(x) = [f^{(n-1)}(x)]^2e^{2\int_{x_0}^x g(y) \mathrm{d}y}.$

证明 由条件可知

$$|f^{(n)}(x)| \leqslant |f^{(n-1)}(x)| \cdot g(x)$$

其中
$$g(x) = M \prod_{k=1}^{n-1} |f^{(k)}(x)|^{\lambda_k - 1}$$
. 从而 $f^{(n)}(x)f^{(n-1)}(x) \leq |f^{(n)}(x)f^{(n-1)}(x)| \leq |f^{(n-1)}(x)|^2 \cdot g(x)$.

(24)

令 $C_1(x) \triangleq \frac{[f^{(n-1)}(x)]^2}{\frac{2\int_{x_0}^x g(y) dy}{}}$,则由 (24) 式可知

$$C_1'(x) = \frac{2f^{(n-1)}(x)f^{(n)}(x) - 2g(x)[f^{(n-1)}(x)]^2}{e^{2\int_{x_0}^x g(y)\mathrm{d}y}} \leq 0.$$

故 $C_1(x) \leqslant C_1(x_0) = 0, \forall x \geqslant x_0$. 因此 $C_1(x) = 0, \forall x \geqslant x_0$. 进而 $f^{(n-1)}(x) = 0, \forall x \geqslant x_0$. 令 $C_2(x) \triangleq [f^{(n-1)}(x)]^2 e^{2\int_{x_0}^x g(y) dy}$, 则由 (24) 式可知

$$C_2'(x) = \left[2f^{(n-1)}(x)f^{(n)}(x) + 2g(x)(f^{(n-1)}(x))^2\right]e^{2\int_{x_0}^x g(y)dy} \geqslant 0.$$

故 $C_2(x) \leqslant C_2(x_0) = 0, \forall x \leqslant x_0$. 因此 $C_2(x) = 0, \forall x \leqslant x_0$. 进而 $f^{(n-1)}(x) = 0, \forall x \leqslant x_0$. 综上, $f^{(n-1)}(x) \equiv 0, x \in \mathbb{R}$. 又 $f^{(k)}(x_0) = 0, k = 0, 1, \dots, n-1, \text{ if } f(x) \equiv 0.$

例题 0.15 设 f 是直线上的非常值连续周期函数. 若 $g \in C(\mathbb{R})$ 且 $\overline{\lim_{x \to +\infty}} \frac{|g(x)|}{x} = +\infty$, 证明: $f \circ g$ 不是周期函数.

笔记 $\overline{\lim} |g(x+\delta)-g(x)|=+\infty$. 的证明类似函数 Stolz 定理的证明. 实际上就是利用了上极限版的函数 Stolz 定 理, 只不过我们之前并没有写出这个定理,

证明 若 $f \circ g$ 是周期函数,则由连续周期函数必一致连续可知 $f \circ g$ 在 \mathbb{R} 上一致连续. 设 f 的周期为 T > 0, 记 $a \triangleq \max f - \min f > 0$, 则存在 $\delta > 0$, 使

$$|f(g(x)) - f(g(y))| < a, \forall |x - y| \le \delta.$$
(25)

先证 $\overline{\lim}_{x \to +\infty} |g(x+\delta) - g(x)| = +\infty$. 若 $\overline{\lim}_{x \to +\infty} |g(x+\delta) - g(x)| \neq +\infty$, 则存在 A > 0, 使 $|g(x+\delta) - g(x)| \leqslant A$, $\forall x \geqslant 0$. 对 $x \in [n\delta, (n+1)\delta), n \in \mathbb{N}$, 我们有

$$\left| \frac{g(x)}{x} \right| \leqslant \frac{|g(x - n\delta)|}{n\delta} + \sum_{k=0}^{n-1} \left| \frac{g(x - k\delta) - g(x - (k+1)\delta)}{n\delta} \right| \leqslant \frac{1}{n\delta} \sup_{x \in [0, \delta]} |g(x)| + \frac{A}{\delta}.$$

故 $\overline{\lim_{x \to +\infty}} \left| \frac{g(x)}{x} \right| \leqslant \frac{A}{\delta}$ 矛盾! 因此 $\overline{\lim_{x \to +\infty}} \left| g(x+\delta) - g(x) \right| = +\infty$. 于是存在 $x_0 \in \mathbb{R}$, 使得 $\left| g(x_0+\delta) - g(x_0) \right| \geqslant T$. 由介值 存在 $s,t \in [x_0,x_0+\delta]$, 使得 $f(g(s)) = \max f$, $f(g(t)) = \min f$. 从而由 (25) 式可知

$$a = |f(g(s)) - f(g(t))| < a$$

矛盾! 故 $f \circ g$ 不是周期函数 ($f \circ g$ 甚至不是一致连续函数).

例题 **0.16** 已知 $f(x) \in C[a,b]$, 且

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} x f(x) dx = 0.$$

证明:f(x) 在 (a,b) 上至少 2 个零点.

证明 设 $F_1(x) = \int_a^x f(t) dt$, 则 $F_1(a) = F_1(b) = 0$. 再设 $F_2(x) = \int_a^x F_1(t) dt = \int_a^x \left[\int_a^t f(s) ds \right] dt$, 则 $F_2(a) = 0$, $F_2(x) = 0$

$$0 = \int_{a}^{b} x f(x) dx = \int_{a}^{b} x F_{1}'(x) dx = \int_{a}^{b} x dF_{1}(x) = x F_{1}(x) \Big|_{a}^{b} - \int_{a}^{b} F_{1}(x) dx = -F_{2}(b).$$

于是由 Rolle 中值定理可知, 存在 $\xi \in (a,b)$, 使得 $F_2'(\xi) = F_1(\xi) = 0$. 从而再由 Rolle 中值定理可知, 存在 $\eta_1 \in$ $(a,\xi),\eta_2 \in (\xi,b), \ \text{\'et} \ F_1'(\eta_1) = F_1'(\eta_2) = 0. \ \text{\'et} \ f(\eta_1) = f(\eta_2) = 0.$

例题 **0.17** 已知 $f(x) \in C[a,b]$, 且

$$\int_{a}^{b} x^{k} f(x) dx = 0, k = 0, 1, 2, \dots, n.$$

证明: f(x) 在 (a,b) 上至少 n+1 个零点

笔记 利用分部积分转换导数的技巧. 证明 令 $F(x) = \int_a^x \int_a^{x_n} \cdots \int_a^{x_3} \left[\int_a^{x_2} f(x_1) dx_1 \right] dx_2 \cdots dx_n$. 则 $F(a) = F'(a) = \cdots = F^{(n)}(a) = 0$, $F^{(n+1)}(x) = f(x)$. 由

$$0 = \int_{a}^{b} f(x) dx = \int_{a}^{b} F^{(n+1)}(x) dx = F^{(n)}(x) \Big|_{a}^{b} = F^{(n)}(b),$$

$$0 = \int_{a}^{b} x f(x) dx = \int_{a}^{b} x F^{(n+1)}(x) dx = \int_{a}^{b} x dF^{(n)}(x) = x F^{(n)}(x) \Big|_{a}^{b} - \int_{a}^{b} F^{(n)}(x) dx = -F^{(n-1)}(b),$$

$$0 = \int_{a}^{b} x^{n} f(x) dx = \int_{a}^{b} x^{n} F^{(n+1)}(x) dx = \int_{a}^{b} x^{n} dF^{(n)}(x) = x^{n} F^{(n)}(x) \Big|_{a}^{b} - n \int_{a}^{b} x^{n-1} F^{(n)}(x) dx$$
$$= -n \int_{a}^{b} x^{n-1} F^{(n)}(x) dx = \dots = (-1)^{n} n! \int_{a}^{b} F'(x) dx = (-1)^{n} n! F(b).$$

从而 $F(b) = F'(b) = \cdots = F^{(n)}(b) = 0$. 于是由 Rolle 中值定理可知, 存在 $\xi_1^1 \in (a,b)$, 使得 $F'(\xi_1^1) = 0$. 再利 用 Rolle 中值定理可知存在 $\xi_1^2, \xi_2^2 \in (a,b)$, 使得 $F''(\xi_1^2) = F''(\xi_2^2) = 0$. 反复利用 Rolle 中值定理可得, 存在 $\xi_1^{n+1}, \xi_2^{n+1}, \cdots, \xi_{n+1}^{n+1} \in (a,b)$, 使得 $F^{(n+1)}(\xi_1^{n+1}) = F^{(n+1)}(\xi_2^{n+1}) = \cdots = F^{(n+1)}(\xi_{n+1}^{n+1}) = 0$. 即 $f(\xi_1^{n+1}) = f(\xi_2^{n+1}) = \cdots = f(\xi_n^{n+1})$ $f(\xi_{n+1}^{n+1}) = 0.$

例题 0.18 已知 $f(x) \in D^2[0,1]$, 且

$$\int_0^1 f(x) \, \mathrm{d}x = \frac{1}{6}, \int_0^1 x f(x) \, \mathrm{d}x = 0, \int_0^1 x^2 f(x) \, \mathrm{d}x = \frac{1}{60}.$$

证明: 存在 $\xi \in (0,1)$, 使得 $f''(\xi) = 16$.

笔记 构造 $g(x) = f(x) - (8x^2 - 9x + 2)$ 的原因: 受到上一题的启发, 我们希望找到一个 g(x) = f(x) - p(x), 使得

$$\int_0^1 x^k g(x) dx = \int_0^1 x^k [f(x) - p(x)] dx = 0, \quad k = 0, 1, 2.$$

成立. 即

$$\int_0^1 x^k f(x) dx = \int_0^1 x^k p(x) dx, \quad k = 0, 1, 2.$$

待定 $p(x) = ax^2 + bx + c$, 则代入上述公式, 再结合已知条件可得

$$\frac{1}{6} = \int_0^1 p(x) dx = \int_0^1 \left(ax^2 + bx + c \right) dx = \frac{a}{3} + \frac{b}{2} + c,$$

$$0 = \int_0^1 x p(x) dx = \int_0^1 \left(ax^3 + bx^2 + cx \right) dx = \frac{a}{4} + \frac{b}{3} + \frac{c}{2},$$

$$\frac{1}{60} = \int_0^1 x^2 p(x) dx = \int_0^1 \left(ax^4 + bx^3 + cx^2 \right) dx = \frac{a}{5} + \frac{b}{4} + \frac{c}{3}.$$

解得:a = 8, b = -9, c = 2. 于是就得到 $g(x) = f(x) - (8x^2 - 9x + 2)$.

$$\int_0^1 x^k g(x) dx = 0, \quad k = 0, 1, 2.$$

再令
$$G(x) = \int_0^x \left[\int_0^t \left(\int_0^s g(y) dy \right) ds \right] dt$$
,则 $G(0) = G'(0) = G''(0) = 0$, $G'''(x) = g(x)$.利用分部积分可得
$$0 = \int_0^1 g(x) dx = \int_0^1 G'''(x) dx = G''(1),$$

$$0 = \int_0^1 xg(x) dx = \int_0^1 xG'''(x) dx = \int_0^1 xdG''(x) = xG''(x) \Big|_0^1 - \int_0^1 G''(x) dx = -G'(1),$$

$$0 = \int_0^1 x^2g(x) dx = \int_0^1 x^2G'''(x) dx = \int_0^1 x^2dG''(x) = x^2G''(x) \Big|_0^1 - 2\int_0^1 xG''(x) dx$$

$$= -2\int_0^1 xdG'(x) = 2\int_0^1 G'(x) dx - 2xG'(x) \Big|_0^1 = 2G(1).$$

从而 G(1) = G'(1) = G''(1) = 0. 于是由 Rolle 中值定理可知, 存在 $\xi_1^1 \in (0,1)$, 使得 $G'(\xi_1^1) = 0$. 再利用 Rolle 中值定理可知, 存在 $\xi_1^2, \xi_2^2 \in (0,1)$, 使得 $G''(\xi_1^2) = G''(\xi_2^2) = 0$. 反复利用 Rolle 中值定理可得, 存在 $\xi_1^3, \xi_2^3, \xi_3^3 \in (0,1)$, 使得 $G'''(\xi_1^3) = G'''(\xi_2^3) = G'''(\xi_3^3) = 0$. 即 $g(\xi_1^3) = g(\xi_2^3) = g(\xi_3^3) = 0$. 再反复利用 Rolle 中值定理可得, 存在 $\xi \in (0,1)$, 使得 $g''(\xi) = 0$. 即 $f''(\xi) = 16$.