MSBD5004 Mathematical Methods for Data Analysis Homework 1

Due date: 30 September, Friday

- 1. Consider the vector space \mathbb{R}^n .
 - (a) Check that $\|x\|_{\infty} = \max_{1 \le i \le n} |x_i|$ is indeed a norm on \mathbb{R}^n .
 - (b) Prove that: for any $x \in \mathbb{R}^n$,

$$\|\boldsymbol{x}\|_{\infty} = \lim_{p \to \infty} \|\boldsymbol{x}\|_{p}.$$

(c) Prove the inequality

$$\|\boldsymbol{x}\|_{\infty} \leq \|\boldsymbol{x}\|_{1} \leq n \|\boldsymbol{x}\|_{\infty}, \quad \forall \boldsymbol{x} \in \mathbb{R}^{n}.$$

2. For any $\mathbf{A} \in \mathbb{R}^{m \times n}$, we have defined

$$\|A\|_2 = \max_{x \in \mathbb{R}^n, \|x\|_2 = 1} \|Ax\|_2$$

- (a) Prove that $\|\cdot\|_2$ is a norm on $\mathbb{R}^{m\times n}$.
- (b) Prove that $\|\mathbf{A}\mathbf{x}\|_2 \leq \|\mathbf{A}\|_2 \|\mathbf{x}\|_2$ for any $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{x} \in \mathbb{R}^n$.
- (c) Prove that $\|\mathbf{A}\mathbf{B}\|_{2} \leq \|\mathbf{A}\|_{2} \|\mathbf{B}\|_{2}$ for all $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$.
- 3. Let a_1, a_2, \ldots, a_m be m given real numbers. Prove that a median of a_1, a_2, \ldots, a_m minimizes

$$\sum_{i=1}^{m} |a_i - b|$$

over all $b \in \mathbb{R}$.

- 4. Suppose that the vectors x_1, \ldots, x_N in \mathbb{R}^n are clustered using the K-means algorithm, with group representatives z_1, \ldots, z_k .
 - (a) Suppose the original vectors x_i are nonnegative, i.e., their entries are nonnegative. Explain why the representatives z_j output by the K-means algorithm are also nonnegative.
 - (b) Suppose the original vectors x_i represent proportions, i.e., their entries are nonnegative and sum to one. (This is the case when x_i are word count histograms, for example.) Explain why the representatives z_j output by the K-means algorithm also represent proportions (i.e., their entries are nonnegative and sum to one).
 - (c) Suppose the original vectors x_i are Boolean, i.e., their entries are either 0 or 1. Give an interpretation of $(z_j)_i$, the *i*-th entry of the *j* group representative.
- 5. Suppose that the vectors x_1, \ldots, x_N in \mathbb{R}^n are clustered using the K-means algorithm, with groups G_1, \ldots, G_k and group representatives z_1, \ldots, z_k . Prove that the sequence of objective function values

$$J = \sum_{j=1}^k \sum_{i \in G_j} \| m{x}_i - m{z}_j \|_2^2$$

produced by the K-means algorithm is non-increasing.

- 6. Consider the set of infinite sequences. We have defined the vector space $\ell_{\infty} := \{ \boldsymbol{a} \mid \|\boldsymbol{a}\|_{\infty} < +\infty \}$ with norm $\|\cdot\|_{\infty}$. For each $k \geq 1$, let $\boldsymbol{a}_k = \{\underbrace{1,1,...,1}_{k \text{ times}},0,0,\ldots\} \in \ell_{\infty}$. Prove that $\boldsymbol{a}_k \not\to \boldsymbol{b} := (1,1,1,...)$ in ℓ_{∞} with $\|\cdot\|_{\infty}$.
- 7. Let X be a vector space with norm $\|\cdot\|$. Prove the following results.
 - (a) If $\{c_k\}$ is a convergent sequence in \mathbb{R} and $\{a_k\}$ is a convergent sequence in X with limits c and a respectively, then $\{c_k \cdot a_k\}$ is a convergent sequence in X with limit $c \cdot a$.
 - (b) If $\{a_k\}$ and $\{b_k\}$ are convergent sequences in X with limits a and b respectively, then $\{a_k + b_k\}$ is a convergent sequence in X with limit a + b.