Modern Digital System Design Final Project

Tyler Bowen, Matt Pope, Steven Mathew

Input Select Module

<u>Inputs</u>

btn -> increment button reset -> reset button

Outputs

user_choice -> 4 bit user choice

Full Adder Module

$$F = \sum m(1,2,4,7)$$

$$F = A'B'C + A'BC' + AB'C' + ABC$$

$$F \text{ is 1 when an odd number of inputs are 1.}$$

$$XOR \text{ is 1 when an odd number of inputs are 1.}$$

$$F = (A \land B) \land C$$

$$G = \sum m(3, 5, 6, 7)$$

 $G = -11 + 1 - 1 + 11 - 1$
 $G = BC + AC + AB$

F = A ^ B ^ C

Ripple Carry Adder Subtractor Module

<u>Inputs</u>

A -> 4 bits

B -> 4 bits

C0 -> carry in (mode select)

Outputs

S -> 4 bit sum or difference C4 -> carry out

This module takes two 4 bit inputs A and B and a carry in C0 that functions as the mode selector. If the carry in is 0, A and B are added. If the carry in is 1, subtraction is performed by inverting the bits of B and adding 1 from the carry in. The module has a 5 bit output. The sum S represents the lower 4 bits of the output. C4 represents the most significant 5th bit of the output.

Output Splitter Module

<u>Inputs</u>

bin -> 5 bit binary result from adder mode_select -> mode select

Outputs

out1 -> 4 bits to decoder out2 -> 4 bits to decoder

This module takes the 5 bit result from the adder subtractor and turns it into two 4 bit outputs using equations derived from solving K-maps. This module also takes the mode selector as an input. When mode select is 1 (subtraction), the module flips the most significant bit of the 5 bit result before interpreting it. This has to be done to ensure the proper output on the display.

Output Splitter Truth Table

Decimal	Α	В	С	D	E	13	12	I1	10	J3	J2	J1	J0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0	0	0	0	1
2	0	0	0	1	0	0	0	0	0	0	0	1	0
3	0	0	0	1	1	0	0	0	0	0	0	1	1
4	0	0	1	0	0	0	0	0	0	0	1	0	0
5	0	0	1	0	1	0	0	0	0	0	1	0	1
6	0	0	1	1	0	0	0	0	0	0	1	1	0
7	0	0	1	1	1	0	0	0	0	0	1	1	1
8	0	1	0	0	0	0	0	0	0	1	0	0	0
9	0	1	0	0	1	0	0	0	0	1	0	0	1
10	0	1	0	1	0	0	0	0	1	0	0	0	0
11	0	1	0	1	1	0	0	0	1	0	0	0	1
12	0	1	1	0	0	0	0	0	1	0	0	1	0
13	0	1	1	0	1	0	0	0	1	0	0	1	1
14	0	1	1	1	0	0	0	0	1	0	1	0	0
15	0	1	1	1	1	0	0	0	1	0	1	0	1
16	1	0	0	0	0	0	0	0	1	0	1	1	0
17	1	0	0	0	1	0	0	0	1	0	1	1	1
18	1	0	0	1	0	0	0	0	1	1	0	0	0

Decimal	Α	В	С	D	E	13	12	11	10	J3	J2	J1	J0
-9	1	0	1	1	1	1	0	1	0	1	0	0	1
-8	1	1	0	0	0	1	0	1	0	1	0	0	0
-7	1	1	0	0	1	1	0	1	0	0	1	1	1
-6	1	1	0	1	0	1	0	1	0	0	1	1	0
-5	1	1	0	1	1	1	0	1	0	0	1	0	1
-4	1	1	1	0	0	1	0	1	0	0	1	0	0
-3	1	1	1	0	1	1	0	1	0	0	0	1	1
-2	1	1	1	1	0	1	0	1	0	0	0	1	0
-1	1	1	1	1	1	1	0	1	0	0	0	0	1

13 & I1

CE	DE							
AB	000	001	011	010	110	111	101	100
00	0	1	3	2	6	7	7 5	4
01	8	9	11	10	14	15	5 13	12
	1	1	1	1	1	1	1	1
11	24	25	27	26	30	3:	1 29	28
10	16	17	19	18	22	1	3 21	20

$$13 = \sum m(23,24,25,26,27,28,29,30,31)$$

13 = 11 - - - + 1 - 111

I3 = AB + ACDE

I1 = AB + ACDE (I3 and I1 are identical)

I2 = 0 (I2 is always equal to 0 so does not require a K map)

$$I0 = \sum m(10,11,12,13,14,15,16,17,18)$$

 $I0 = 0101 - + 011 - - + 10000 - + 10010$
 $I0 = A'BC'D + A'BC + AB'C'D' + AB'C'DE'$

$$J3 = \sum m(8,9,18,23,24)$$

 $J3 = 0100 - + 11000 + 10010 + 10111$
 $J3 = A'BC'D' + ABC'D'E' + AB'C'DE' + AB'CDE$

$$J2 = \sum m(4,5,6,714,15,16,17,25,26,27,28)$$

$$J2 = 1000 - + 1 - 001 + 110 - 1 + 1101 - + 0111 - + 001 - -$$

$$J2 = AB'C'D' + AC'D'E + ABC'E + ABC'D + A'BCD + A'B'C$$

$$J1 = \sum_{i=0}^{n} (2,3,6,7,12,13,16,17,25,26,29,30)$$

$$J1 = 00 - 1 - + 0110 - + - 1101 + 11 - 10 + 1 - 001 + 1000 -$$

$$J1 = A'B'D + A'BCD' + BCD'E + ABDE' + AC'D'E + AB'C'D'$$

$$J0 = \sum m(1,3,5,7,9,11,13,15,17,23,25,27,29,31)$$

$$J0 = - \cdot 001 + 0 \cdot 011 + \cdot 1011 + \cdot \cdot 111 + 0 \cdot 101 + \cdot 1101$$

$$J0 = C'D'E + A'C'DE + BC'DE + CDE + A'CD'E + BCD'E$$

2 to 1 Multiplexer Module

<u>Inputs</u>

A -> 4 bit binary

B -> 4 bit binary

S -> Selector

Outputs

F -> 4 bit binary

F = S ? B : A;

If S is 1, select B. Otherwise, select A.

S	F
0	Α
1	В

Anode Selector Module

<u>Inputs</u>	<u>Outputs</u>
clock	anode selector

clk —	Anode Selector Module	anode selector
-------	-----------------------------	-------------------

Clock (rising edge)	Anode Selector (current)	Anode Selector (next)		
0 -> 1	0	1		
0 -> 1	1	0		

4 Bit 7 Segment Decoder Module

d

<u>Inputs</u> bin -> 4 bit binary input A B C D a b c d e f g 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 4 bit 7 Segment seg7 Decoder 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 10001111111 10011111011 1 0 1 0 X X X X X X X b f 1 0 1 1 X X X X X X X X 1 1 0 0 X X X X X X X 1 1 0 1 X X X X X X X X е C 1 1 1 0 X X X X X X X X

1 1 1 1 X X X X X X X X

Outputs

seg7 -> 7 bit LED cathode outputs, active high assumes common anode LEDs

Top Module

