Chapter 6 Heapsort

Chi-Yeh Chen 陳奇業 成功大學資訊工程學系

藏行顯光成就共好

Achieve Securely Prosper Mutually

Overview

• Like merge sort, but unlike insertion sort, heapsort's running time is $O(n \lg n)$.

• Like insertion sort, but unlike merge sort, heapsort sorts in place.

from the left up to a point

- Heap A is a nearly complete binary tree.
 - *Height* of node = # of edges on a longest simple path from the node down to a leaf.
 - *Height* of heap = height of root = $\Theta(\lg n)$

ullet A . length, which gives the number of elements in the array

• A . $heap_size$, which represents how many elements in the heap are stored within array A.

• Although $A \begin{bmatrix} 1 \dots A \ . \ length \end{bmatrix}$ may contain numbers, only the elements in $A \begin{bmatrix} 1 \dots A \ . \ heap_size \end{bmatrix}$

- ullet A heap can be stores as an array A
 - Root of trees is A[1]
 - Parent of $A[i] = A[\lfloor i/2 \rfloor]$
 - Left child of A[i] = A[2i]
 - Right child of A[i] = A[2i+1]
 - Computing is fast with binary representation implementation

Parent(i)

 $\overline{_1}$ return $\lfloor i/2 \rfloor$

LEFT(i)

1 return 2i

RIGHT(i)

ı return 2i + 1

Heap property

- Heap property
 - For max-heap (largest element at root), max-heap property: for all nodes i, excluding the root, $A[PARENT(i)] \ge A[i]$.
 - For min-heap (smallest element at root), min-heap property: for all nodes i, excluding the root, $A\left[PARENT(i)\right] \leq A[i]$.
- Maximum element of a max-heap is at the root.
- The heapsort algorithm we'll use max-heaps.

Example

A max-heap

Heap property

- The basic operations on heaps run in time at most proportional to the height of the tree and thus take $O(\lg n)$ time.
 - MAX-HEAPIFY: $O(\lg n)$
 - BUILD-MAX-HEAP: run in linear time O(n).
 - HEAPSORT: $O(n \lg n)$
 - MAX-HEAP-INSERT, HEAP-EXTRACT-MAX, HEAP-INCREASE-KEY and HEAP-MAXIMUM: $O(\lg n)$

- ullet A heap with height h is an almost-complete binary tree (complete at all levels except possibly the lowest)
 - at most $2^{h+1} 1$ elements (if it is complete)
 - at least $2^h 1 + 1 = 2^h$ elements (if the lowest level has just 1 element and the other levels are complete).

• Given an n-element heap of height h, we know that $2^h \le n \le 2^{h+1} - 1 < 2^{h+1}$. Thus, $h \le \lg n < h + 1$. Since h is an integer, $h = \lfloor \lg n \rfloor$.

Maintaining the heap property

- MAX-HEAPIFY is important for manipulating max-heaps. It is used to maintain the max-heap property.
 - Before MAX-HEAPIFY, A[i] may be smaller than its children.
 - Assume left and right subtrees of i are max-heaps.
 - After MAX-HEAPIFY, subtree rooted at i is a max-heap

Pseudocode

MAXHEAPIFY(A, i, n)

```
1 l \leftarrow LEFT(i)

2 r \leftarrow RIGHT(i)

3 if l \leq n and A[l] > A[i] then

4 largest \leftarrow l

5 else

6 largest \leftarrow i

7 if r \leq n and A[r] > A[largest] then

8 largest \leftarrow r

9 if largest \neq i then

10 exchange A[i] \leftrightarrow A[largest]

11 MAXHEAPIFY(A, largest, n)
```


Example

• Run MAX-HEAPIFY on the following heap example.

Analysis of MAX-HEAPIFY

The children's subtrees each have size at most 2n/3

Analysis of MAX-HEAPIFY

•
$$T(n) \le T\left(\frac{2n}{3}\right) + \Theta(1)$$

By case 2 of the master theorem, the solution to this recurrence is $T(n) = O(\lg n)$.

• Case 2: If
$$f(n) = \Theta(n^{\log_b a})$$
, then $T(n) = \Theta(n^{\log_b a} \lg n)$

Analysis of MAX-HEAPIFY

• Time: $O(\lg n)$

• Correctness: Heap is almost-complete binary tree, hence must process $O(\lg n)$ levels, with constant work at each level (comparing 3 items and maybe swapping 2).

• The following procedure, given an unordered array, will produce a max-heap.

BUILD-MAX-HEAP(A, n)

- 1 for $i = \lfloor n/2 \rfloor \ downto \ 1 \ do$
- $\mathbf{MAX}\text{-HEAPIFY}(A, i, n)$

$$[n/2]+1,[n/2]+2,...,n.$$

Assume $A[\lfloor n/2 \rfloor + 1]$ is not a leaf, then LEFT($\lfloor n/2 \rfloor + 1$) $\leq n$ LEFT($\lfloor n/2 \rfloor + 1$)=2($\lfloor n/2 \rfloor + 1$)>2(n/2 - 1 + 1)= $n \rightarrow \leftarrow$

Example

- Building a max-heap from the following unsorted array results in the first heap example.
 - *i* starts off as 5.
 - MAX-HEAPIFY is applied to subtrees rooted at nodes (in order): 16, 2, 3, 1, 4.

		2								
\boldsymbol{A}	4	1	3	2	16	9	10	14	8	7

										10
\boldsymbol{A}	4	1	3	2	16	9	10	14	8	7

Correctness

- A loop invariant is a property of a program loop that is true before (and after) each iteration.
- We must show three things about a loop invariant:
 - Initialization: It is true prior to the first iteration of the loop.
 - Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.
 - Termination: When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.

Correctness

- Loop invariant: At start of every iteration of for loop, each node i+1, i+2,...,n is root of a max-heap.
 - Initialization: We know that each node $\lfloor n/2 \rfloor + 1$, $\lfloor n/2 \rfloor + 2$,..., n is a leaf, which is the root of a trivial max-heap. Since $i = \lfloor n/2 \rfloor$ before the first iteration of the for loop, the invariant is initially true.
 - Maintenance: Children of node i are indexed higher than i, so by the loop invariant, they are both roots of max-heaps. Correctly assuming that $i+1, i+2, \ldots, n$ are all roots of max-heaps, MAX-HEAPIFY makes node i a max-heap root. Decrementing i reestablishes the loop invariant at each iteration.
 - Termination: When i=0, the loop terminates. By the loop invariant, each node, notably node 1, is the root of a max-heap.

- Be careful not to confuse the height of a node (longest distance from a leaf) with its depth (distance from the root).
- If the heap is not a complete binary tree (bottom level is not full), then
 the nodes at a given level (depth) don't all have the same height. For
 example, although all nodes at depth H have height 0, nodes at depth
 H-1 can have either height 0 or height 1.

Analysis

- There are at most $\lceil n/2^{h+1} \rceil$ nodes of height h in any n-element heap.
 - For a complete binary tree, it's easy to show that there are $\left \lceil n/2^{h+1} \right \rceil$ nodes of height h.
 - But the proof for an incomplete tree is tricky and is not derived from the proof for a complete tree.

Proof. By induction on h. Let H be the height of the heap.

Basis: Show that it's true for h=0 (i.e., that # of leaves

$$\leq \lceil n/2^{h+1} \rceil = \lceil n/2 \rceil$$
). In fact, we'll show that the # of leaves $= \lceil n/2 \rceil$.

The tree leaves (nodes at height 0) are at depths H and H-1. They consist of

- ullet all nodes at depth H, and
- the nodes at depth H-1 that are not parents of depth-H nodes.

Let x be the number of nodes at depth H—that is, the number of nodes in the bottom (possibly incomplete) level.

Note that n-x is odd, because the n-x nodes above the bottom level form a complete binary tree, and a complete binary tree has an odd number of nodes. Thus if n is odd, x is even, and if n is even, x is odd.

 If n is odd, then x is even, so all nodes have siblings—i.e., all internal nodes have 2 children. Thus (see Exercise B.5-3), # of internal nodes = # of leaves-1.

So, n= # of nodes = # of leaves+ # of internal nodes = 2 # of leaves-1.

Thus, # of leaves =
$$\frac{(n+1)}{2} \le \left| \frac{n}{2} \right|$$
. (The latter equality holds because n is odd.)

• If n is even, then x is odd, and some leaf doesn't have a sibling. If we gave it a sibling, we would have n+1 nodes, where n+1 is odd, so the case we analyzed above would apply. Observe that we would also increase the number of leaves by 1, since we added a node to a parent that already had a child. By the odd-node case above, #

of leaves+1=
$$\frac{(n+1)}{2} \le \left\lceil \frac{n}{2} \right\rceil + 1$$
. (The latter equality holds because n is even.)

• In either case, # of leaves
$$\leq \left\lceil \frac{n}{2} \right\rceil$$
.

Inductive step: Show that if it's true for height h-1, it's true for h. Let n_h be the number of nodes at height h in the n-node tree T.

Consider the tree T' formed by removing the leaves of T. It has $n'=n-n_0$ nodes. We know from the base case that $n_0=\left\lceil\frac{n}{2}\right\rceil$, so

$$n' = n - n_0 \le n - \left\lceil \frac{n}{2} \right\rceil = \left\lceil \frac{n}{2} \right\rceil.$$

• Note that the nodes at height h in T would be at height h-1 in T'. Letting n'_{h-1} denote the number of nodes at height h-1 in T', we have $n_h=n'_{h-1}$

By induction, we can bound n'_{h-1} :

$$n_h = n'_{h-1} \le \left\lceil \frac{n'}{2^h} \right\rceil \le \left\lceil \frac{\left\lfloor \frac{n}{2} \right\rfloor}{2^h} \right\rceil \le \left\lceil \frac{\frac{n}{2}}{2^h} \right\rceil = \left\lceil \frac{n}{2^{h+1}} \right\rceil$$

Analysis

- Analysis of BUILD-MAX-HEAP
 - Simple bound: O(n) calls to MAX-HEAPIFY, each of which takes $O(\lg n)$ time $\to O(n \lg n)$.
 - Tighter analysis: Have $\leq \lceil n/2^{h+1} \rceil$ nodes of height h, and height of heap is $\lfloor \lg n \rfloor$.
 - The Time required by MAX-HEAPIFY when called on a node of height h is $\mathrm{O}(h)$, so the total cost of BUILD-MAX-HEAP is

$$\sum_{h=0}^{\lfloor \lg n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h) = O\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h}\right)$$

- Evaluate the last summation by substituting x = 1/2 in the formula $\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$ for |x| < 1.
- Thus, the running time of BUILD-MAX-HEAP is O(n).

$$\sum_{h=0}^{\infty} \frac{h}{2^h} = \frac{1/2}{(1-1/2)^2} = 2$$

Building a min-heap

 Building a min-heap from an unordered array can be done by calling MIN-HEAPIFY instead of MAX-HEAPIFY, also taking linear time.

The heapsort algorithm

HEAPSORT(A, n)

- 1 BUILD-MAX-HEAP(A, n)
- 2 for $i = n \ downto \ 2 \ do$
- \mathbf{a} exchange $A[1] \leftrightarrow A[i]$
- 4 MAX-HEAPIFY(A, 1, i-1)

Example: Heapsort Algorithm

Analysis

- Analysis of heapsort
 - BUILD-MAX-HEAP: O(n)
 - for loop: n-1 times
 - Exchange elements: O(1)
 - MAX-HEAPIFY: $O(\lg n)$

Total time: $O(n \lg n)$

- ullet The worst-case running time of HEAPSORT is $\Omega(n {
 m lg} n)$
 - Whenever we have an array that is already sorted, we take linear time to convert it to a max-heap and then $n \lg n$ time to sort it.
- ullet When all elements are distinct, the best-case running time of HEAPSORT is $\Omega(n \lg n)$
 - T. I. Fenner and A. M. Frieze, "On the Best Case of Heapsort"

Analysis

• Though heapsort is a great algorithm, it is usually not quite as fast as quicksort for large n.

• On the other hand, unlike quicksort, its performance is guaranteed.

Priority queue

- Heap implementation of priority queue
 - Max-priority queues are implemented with max-heaps. Min-priority queues are implemented with min-heaps similarly.
- Max Priority Queues
 - ullet Maintains a dynamic set of S of elements.
 - Each with an associated value called a key.
 - Max-priority queue supports dynamic-set operations:
 - INSERT(S, x): inserts element x into set S.
 - MAXIMUM(S): returns elements of S with largest key.
 - EXTRACT-MAX(S): removes and returns element of S with largest key.
 - INCREASE-KEY(S, x, k): increases value of element x's key to k. Assume $k \ge x$'s current key value.

- Min-priority queue supports similar operation:
 - INSERT(S, x): inserts element x into set S.
 - MINIMUM(S): returns element of S with smallest key.
 - EXTRACT-MIN(S): removes and returns element of S with smallest key.
 - DECREASE-KEY(S, x, k): decreases value of element x's key to k. Assume $k \le x$'s current key value.

• Finding the maximum element

• Getting the maximum element is easy: it's the root.

HEAP-MAXIMUM(A)

ı return A[1]

• Time: $\Theta(1)$

HEAP-MAXIMUM(A) returns 7

Extracting max element

- Given the array *A*:
 - Make sure heap is not empty
 - Make a copy of the maximum element (the root).
 - Make the last node in the tree the new root.
 - Re-heapify the heap, with one fewer node.
 - Return the copy of the maximum element.

HEAP-EXTRACT-MAX(A, n)

- 1 if n < 1 then
- **error** "heap underflow"
- $a max \leftarrow A[1]$
- 4 $A[1] \leftarrow A[n]$
- 5 MAX-HEAPIFY(A, 1, n-1) ▶remakes heap
- 6 return max

Analysis: constant time assignments plus time for MAX-HEAPIFY.

• Time: $O(\lg n)$

Increasing key value

- Given set S, element x and new key value k:
 - Make sure $k \ge x$'s current key.
 - Update x's key value to k.
 - Traverse the tree upward comparing x to its parent and swapping keys if necessary, until x's key in smaller than parent's key.

HEAP-INCREASE-KEY(A, i, key)

- 1 if key < A[i] then
- **error** "new key is smaller than current key"
- $a A[i] \leftarrow key$
- 4 while i > 1 and A[PARENT(i)] < A[i] do
- s exchange $A[i] \leftrightarrow A[PARENT(i)]$
- $i \leftarrow PARENT(i)$

• Analysis: Upward path from node i has length $O(\lg n)$ in an n-element heap.

• Time: $O(\lg n)$

Inserting into the heap

- Given a key k to insert into the heap:
 - Insert a new node in the key last position in the tree with $key \infty$
 - Increase the $-\infty$ key to k using the HEAP-INCREASE-KEY procedure defined above.

MAX-HEAP-INSERT(A, key, n)

- $1 A[i+1] \leftarrow -\infty$
- **2** HEAP-INCREASE-KEY(A, n+1, key)

• Analysis: constant time assignments plus time for HEAP-INCREASE-KEY

• Time: $O(\lg n)$

• Min-priority queue operations are implemented similarly with minheaps.

藏行顯光 成就共好

Achieve Securely Prosper Mutually

