Применение методов тропической оптимизации для анализа результатов оценки альтернатив на основе парных сравнений¹

Aгеев В. А. студент кафедры статистического моделирования СПбГУ, vladimir.ageev@me.com,

Кривулин Н. К., д.ф.-м.н., профессор кафедры статистического моделирования СПбГУ, nkk@math.spbu.ru

Аннотация

Рассматривается решение задачи оценки альтернатив на основе парных сравнений при помощи методов тропической оптимизации. Задача нахождения вектора рейтингов альтернатив сводится к задаче аппроксимации матрицы парных сравнений согласованной матрицей в смысле логчебышевской метрики, которая формулируется и решается в терминах тропической математики. Проведен анализ решений задачи в случае, когда полученный вектор рейтингов альтернатив оказывается не единственным(с точностью до положительного множителя).

Введение

Задачи оценки и ранжирования альтернатив возникают в таких областях, как маркетинг, социология, политология и др. Существует ряд методов оценки, в которых одновременно сравниваются несколько альтернатив. Широко применяется метод парных сравнений, опирающийся на одновременное сравнение двух альтернатив [1].

В методе парных сравнений в процессе изучения альтернатив на каждом шаге сопоставляются только два объекта. Результат процедуры – матрица парных сравнений, анализ которой позволяет определить степень предпочтения (рейтинг) каждой альтернативы в отдельности.

В матрицах парных сравнений обычно нарушена транзитивность оценок. Возникает задача аппроксимации таких матриц согласованными матрицами, которые обладают свойством транзитивности.

В настоящей работе развиваются методы решения задачи оценки рейтингов альтернатив при помощи тропической оптимизации [6, 7].

¹Работа выполнена при финансовой поддержке РГНФ, проект №16-02-00059.

Применяется подход, который рассматривает решение задачи как аппроксимацию матриц в лог-чебышевской метрике. В работе описана задача исследования решений, возникающая при условии, что вектор рейтингов альтернатив определен неоднозначно. В этом случае предлагается выбирать из множества решений векторы, которые минимально и максимально различают альтернативы с минимальным и максимальным рейтингами. Для нахождения таких векторов применяются общие методы решения задач тропической оптимизации, разработанные в [8–10].

Задача оценки рейтингов альтернатив на основе парных сравнений

Пусть $\mathbf{A}=(a_{ij})$ – матрица, полученная в результате применения процедуры парных сравнений альтернатив.

Обычно используется мультипликативная шкала, при которой элементы a_{ij} матрицы **A** удовлетворяют условию $a_{ij} = 1/a_{ji} > 0$, откуда следует, что матрица имеет обратно симметричную форму.

Матрица парных сравнений **A** называется согласованной, если ее элементы обладают свойством транзитивности: $a_{ik} = a_{ij}a_{jk}$ для всех i, j и k (см., например, [1]).

Элементы согласованной матрицы **A** могут быть представлены в виде $a_{ij} = x_i/x_j$, где $x_i > 0$ при всех i. Такая матрица однозначно порождается некоторым положительным вектором $\mathbf{x} = (x_i)$. Элементы вектора \mathbf{x} определяют (с точностью до положительного множителя) индивидуальные рейтинги сравниваемых альтернатив, а его нахождение дает решение задачи анализа результатов парных сравнений.

Полученная матрица парных сравнений обычно не является согласованной. Возникает задача аппроксимации несогласованной матрицы парных сравнений $\mathbf{A}=(a_{ij})$ согласованной матрицей $\mathbf{X}=(x_{ij})$, на которой достигается минимум некоторой функции невязки (ошибки) φ :

$$\min_{\mathbf{X}} \quad \varphi(\mathbf{A}, \mathbf{X}). \tag{1}$$

Заметим, что задача (1) может быть представлена как задача нахождения по заданной матрице ${\bf A}$ вектора ${\bf x}$, который определяет аппроксимирующую матрицу ${\bf X}$.

Учитывая, что элементы матриц ${\bf A}$ и ${\bf X}$ положительны, в качестве функции ошибки можно взять лог-чебышевскую метрику с основанием

логарифма, большим единицы:

$$\rho(\mathbf{A}, \mathbf{X}) = \max_{i,j} |\log a_{ij} - \log x_{ij}|.$$

В силу монотонности логарифма, свойств элементов матрицы парных сравнений A и согласованной матрицы X, задачу (1) можно сформулировать как задачу нахождения такого вектора $\mathbf{x} = (x_i)$, при котором достигается

$$\min_{\mathbf{x}} \quad \max_{i,j} a_{ij} x_j / x_i. \tag{2}$$

Предположим, что для матрицы парных сравнений А найдено множество различных векторов рейтингов альтернатив \mathcal{S} . Чтобы охарактеризовать это множество, найдем в нем векторы, которые являются в некотором смысле наилучшим и наихудшим решениями задачи оценки рейтингов альтернатив. В качестве наилучшего может выступать вектор, который максимально различает (дифференцирует) альтернативы с наибольшим и наименьшим рейтингами, а как наихудшее – вектор, минимально различающий эти альтернативы.

Определить такие решения можно путем минимизации и максимизации максимального отношения между компонентами вектора х, которое записывается в виде

$$\max_{i} x_i / \min_{i} x_i = \max_{i} x_i \times \max_{i} x_i^{-1}. \tag{3}$$

Задачи нахождения на множестве ${\cal S}$ наихудшего и наилучшего решений в указанном выше смысле принимают вид

$$\min_{\mathbf{x} \in \mathcal{S}} \quad \max_{i} x_{i} \times \max_{i} x_{i}^{-1},
\max_{\mathbf{x} \in \mathcal{S}} \quad \max_{i} x_{i} \times \max_{i} x_{i}^{-1}. \tag{5}$$

$$\max_{\mathbf{x} \in \mathcal{S}} \quad \max_{i} x_i \times \max_{i} x_i^{-1}. \tag{5}$$

Ниже задачи (2), (4) и (5) формулируются в терминах тропической математики и решаются с помощью методов тропической оптимизации.

Элементы тропической математики

Приведем основные определения и обозначения тропической математики, необходимые для последующего описания задач тропической оптимизации и их решений (см., например, [2–5]).

Рассмотрим множество неотрицательных вещественных чисел \mathbb{R}_+ , замкнутое относительно операции сложения \oplus , заданной как max, и операции умножения \otimes , заданной стандартным образом. Элементы 0 и 1 являются нейтральными по сложению и умножению соответственно. Полученное идемпотентное полуполе обозначается $\mathbb{R}_{\max,\times}=(\mathbb{R}_+,\max,\times,0,1)$ и в литературе обычно называется тах-алгеброй.

Матрицы размерности $m \times n$ над \mathbb{R}_+ образуют множество $\mathbb{R}_+^{m \times n}$. Матричные операции соответствуют обычным, где скалярные операции сложения и умножения заменяются на операции \oplus и \otimes .

Любой ненулевой матрице $\mathbf{A}=(a_{ij})\in\mathbb{R}_+^{m\times n}$ отвечает мультипликативно сопряженная матрица $\mathbf{A}^-=(a_{ij}^-)\in\mathbb{R}_+^{n\times m}$, в которой $a_{ij}^-=a_{ji}^{-1}$, если $a_{ji}\neq 0$, иначе $a_{ij}^-=0$.

След матрицы $\mathbf{A} = (a_{ij}) \in \mathbb{R}_+^{n \times n}$ вычисляется по формуле

$$\operatorname{tr} \mathbf{A} = a_{11} \oplus a_{22} \oplus \cdots \oplus a_{nn}.$$

Натуральная степень n матрицы \mathbf{A} определяется обычным путем: $\mathbf{A}^0 = \mathbf{I}, \ \mathbf{A}^n = \mathbf{A}\mathbf{A}^{n-1}, \ \text{где } \mathbf{I}$ – единичная матрица.

Спектральным радиусом матрицы $\mathbf{A} \in \mathbb{R}_+^{n \times n}$ называется скаляр, который находится следующим образом:

$$\lambda = \operatorname{tr} \mathbf{A} \oplus \operatorname{tr}^{1/2}(\mathbf{A}^2) \oplus \cdots \oplus \operatorname{tr}^{1/n}(\mathbf{A}^n).$$

Для любой матрицы $\mathbf{A} \in \mathbb{R}_+^{n \times n}$ определена матрица

$$\mathbf{A}^* = \mathbf{I} \oplus \mathbf{A} \oplus \cdots \oplus \mathbf{A}^{n-1}.$$

Матрица ${\bf A}$ без нулевых элементов является обратно симметрической, если ${\bf A}^-={\bf A}.$

Векторы-столбцы над \mathbb{R}_+ порядка n образуют множество \mathbb{R}_+^n . Векторы, все элементы которых равны 0 или 1, обозначаются как $\mathbf{0}$ или $\mathbf{1}$. Векторные операции выполняются по обычным правилам с заменой арифметического сложения и умножения на операции \oplus и \otimes .

Любому ненулевому вектору-столбцу $\mathbf{x} = (x_i) \in \mathbb{R}^n_+$ соответствует вектор-строка $\mathbf{x}^- = (x_i^-)$, где $x_i^- = x_i^{-1}$, если $x_i \neq 0$, иначе $x_i^- = 0$.

Вектор без нулевых элементов называется регулярным.

Вектор $\mathbf{b} \in \mathbb{R}_+^m$ линейно зависит от векторов $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}_+^m$, если его можно задать в виде линейной комбинации $\mathbf{b} = x_1 \mathbf{a}_1 \oplus \dots \oplus x_n \mathbf{a}_n$ с коэффициентами $x_1, \dots, x_n \in \mathbb{R}_+$.

Решение задач оценки предпочтений

Выше указано, что задача аппроксимации матрицы парных сравнений ${\bf A}$ согласованной матрицей ${\bf X}$ в смысле лог-чебышевской метрики

эквивалентна задаче (2). Заменим обычные операции в (2) на операции идемпотентного полуполя $\mathbb{R}_{\max,\times}$ и перейдем к векторной форме записи. Полученная задача тропической оптимизации имеет вид

$$\min_{\mathbf{x}} \quad \mathbf{x}^{-} \mathbf{A} \mathbf{x}. \tag{6}$$

Заметим, что ее решением является вектор рейтингов альтернатив. Представим результат решения задачи (6) (см. [6,7]).

Теорема 1. Пусть **A** – обратно симметрическая матрица со спектральным радиусом λ и пусть $\mathbf{A}_{\lambda} = \lambda^{-1}\mathbf{A}$. Тогда минимум в задаче (6) совпадает с λ , а все регулярные решения имеют вид

$$x = A_{\lambda}^* u$$
, $u > 0$.

Анализ решений

Сформулируем в терминах тропической математики задачи минимизации (4) и максимизации (5) для нахождения решений, минимально и максимально дифференцирующих альтернативы с наибольшим и наименьшим рейтингами.

Пусть по матрице парных сравнений ${\bf A}$ найдены векторы рейтингов альтернатив в виде ${\bf x}={\bf B}{\bf u},\,{\bf u}>{\bf 0}$, где ${\bf B}$ – матрица, полученная из ${\bf A}_\lambda^*$ удалением столбцов, линейно зависимых от остальных.

Максимальное отношение (3) между компонентами вектора \mathbf{x} в терминах полуполя $\mathbb{R}_{\max,\times}$ с учетом представления $\mathbf{x} = \mathbf{B}\mathbf{u}$ имеет вид

$$\mathbf{1}^T \mathbf{x} \mathbf{x}^- \mathbf{1} = \mathbf{1}^T \mathbf{B} \mathbf{u} (\mathbf{B} \mathbf{u})^- \mathbf{1}.$$

Задачи (4) и (5) принимают форму задач тропической оптимизации

$$\min_{\mathbf{u}} \quad \mathbf{1}^T \mathbf{B} \mathbf{u} (\mathbf{B} \mathbf{u})^{-1}, \tag{7}$$

$$\max_{\mathbf{u}} \quad \mathbf{1}^T \mathbf{B} \mathbf{u} (\mathbf{B} \mathbf{u})^{-} \mathbf{1}. \tag{8}$$

После нахождения решений ${\bf u}$ этих задач соответствующие векторы рейтингов альтернатив восстанавливаются по формуле ${\bf x}={\bf B}{\bf u}.$

Наихудшее дифференцирующее решение

На основе решения задачи минимизации, предложенного в [10], найдем решение задачи (7). Введем процедуру разреживания матрицы. **Лемма 1.** Пусть $\mathbf{B} = (\mathbf{b}_j)$ – матрица для задачи (7) со столбцами $\mathbf{b}_j = (b_{ij})$ и $\Delta = (\mathbf{B}(\mathbf{1}^T\mathbf{B})^-)^-\mathbf{1}$. Определим разреженную матрицу $\widehat{\mathbf{B}} = (\widehat{b}_{ij})$ с элементами $\widehat{b}_{ij} = b_{ij}$, если $b_{ij} \geq \Delta^{-1}\mathbf{1}^T\mathbf{b}_j$, и $\widehat{b}_{ij} = 0$ иначе.

Тогда замена матрицы ${\bf B}$ на $\widehat{\bf B}$ в условии задачи (7) не изменит множество решений и минимум, который на нем достигается.

Следующий результат приводит к полному решению задачи.

Лемма 2 (О наихудшем дифференцирующем решении). Пусть \mathbf{B} – разреженная матрица для задачи (7), \mathcal{B} – множество матриц, полученных из \mathbf{B} фиксацией одного ненулевого элемента в каждой строке с обращением всех остальных элементов в 0.

Тогда минимум в задаче (7) равен $\Delta = (\mathbf{B}(\mathbf{1}^T\mathbf{B})^-)^-\mathbf{1}$, а наихудший дифференцирующий вектор имеет вид

$$\mathbf{x} = \mathbf{B}(\mathbf{I} \oplus \Delta^{-1}\mathbf{B}_1^{-}\mathbf{1}\mathbf{1}^T\mathbf{B})\mathbf{v}, \quad \mathbf{v} > \mathbf{0}, \quad \mathbf{B}_1 \in \mathcal{B}.$$

Наилучшее дифференцирующее решение

Для решения задачи (8) используем следующее утверждение, которое опирается на результаты, полученные в [9] и [10].

Лемма 3 (О наилучшем дифференцирующем решении). Пусть $\mathbf{B} = (\mathbf{b}_j)$ – матрица со столбцами $\mathbf{b}_j = (b_{ij})$. Обозначим через \mathbf{B}_{sk} матрицу, полученную из \mathbf{B} обращением в нуль всех элементов, кроме элемента b_{sk} .

Тогда максимум в задаче (8) равен $\Delta = \mathbf{1}^T \mathbf{B} \mathbf{B}^- \mathbf{1}$, а наилучший дифференцирующий вектор имеет вид

$$\mathbf{x} = \mathbf{B}(\mathbf{I} \oplus \mathbf{B}_{sk}^{-}\mathbf{B})\mathbf{u}, \quad \mathbf{u} > \mathbf{0}, \quad k = \arg\max_{j} \mathbf{1}^{T}\mathbf{b}_{j}\mathbf{b}_{j}^{-}\mathbf{1}, \quad s = \arg\max_{i} b_{ik}^{-1}.$$

Заключение

В работе рассмотрена проблема нахождения вектора рейтингов альтернатив по матрице парных сравнений и представлено ее решение на основе применения методов тропической математики. Изучена задача анализа решений в случае, когда вектор рейтингов альтернатив не может быть однозначно определен, и предложен подход к ее решению.

Литература

- Саати Т. Принятие решений. Метод анализа иерархий / пер. с англ.
 Р. Г. Вачнадзе. М.: Радио и связь, 1993. 315 с.
- [2] Маслов В. П., Колокольцов В. Н. Идемпотентный анализ и его применение в оптимальном управлении. М.: Физматлит, 1994. 144 с.
- [3] Heidergott B, Olsder G. J., van der Woude J. Max plus at work. Princeton Series in Applied Mathematics. Princeton: Princeton University Press, 2006. 226 p.
- [4] Golan J. S. Semirings and affine equations over them. Vol. 556 of Mathematics and Its Applications. New York: Springer, 2003. 256 p.
- [5] Кривулин Н. К. Методы идемпотентной алгебры в задачах моделирования и анализа сложных систем. СПб.: Изд-во С.-Петерб. ун-та, 2009. 256 с.
- [6] Krivulin N. Using tropical optimization techniques to evaluate alternatives via pairwise comparisons // Proc. 7th SIAM Workshop on Combinatorial Scientific Computing / eds A. H. Gebremedhin, E. G. Boman, B. Ucar. Philadelphia: SIAM, 2016. P. 62–72.
- [7] Кривулин Н. К., Гладких И. В. Построение согласованной матрицы парных сравнений в маркетинговых исследованиях на основе методов тропической математики // Вестн. С.-Петерб. ун-та. Сер. 8. Менеджмент. 2015. Вып. 1. С. 3–43.
- [8] Krivulin N. Extremal properties of tropical eigenvalues and solutions to tropical optimization problems // Linear Algebra Appl. 2015. Vol. 468. P. 211–232.
- [9] Krivulin N. A maximization problem in tropical mathematics: A complete solution and application examples // Informatica. 2016. Vol. 27, N 3. P. 587–606.
- [10] Krivulin N. Solving a tropical optimization problem via matrix sparsification // Relational and Algebraic Methods in Computer Science. Vol. 9348 of Lecture Notes in Comput. Sci. / eds W. Kahl, M. Winter, J. N. Oliveira. Cham: Springer, 2015. P. 326–343.