15-853: Algorithms in the Real World

Nearest Neighbors in High Dimensions

- Curse of dimensionality
- Representing Documents and Products as Sets, Set similarity
- Minhash for compact set signatures
- Locality sensitive hashing

"BigData"

Previously we have learned about spatial decomposition methods such as kd-trees.

Why do these fail with very high dimensions (d >> dozen)?

 What if the dimension is in the thousands, or millions?

High-degree spaces are lonely places.

Page3

In very high dimensions, the notion of "nearest" may not make much sense anymore.

$$\lim_{dim\to\infty} \frac{\operatorname{dist}_{max} - \operatorname{dist}_{min}}{\operatorname{dist}_{min}} \to 0.$$

Rule of thumb: to use KD-trees, the number of points N must be >> 2^d

Rectangular range 0.5 queries in a unit (hyper)cube:

To find at least one point in a 0.5-hypercube range, assuming uniform distribution:

Dimensions	Minimum N
1	2
2	4
3	8
16	65563
10000	galactic
d	2^d

This lecture discusses data with even hundreds of thousands of dimensions.

Consider a nearest neighbor search with query point at the origin.

To find any point, need to expand the search range very large fraction of the axis length → Most nodes of the Kd-tree must be considered → No benefit of using Kd-tree.

15-853

WORKING WITH HIGH DIMENSIONAL DATA

Challenges

- 1. Presenting high dimensional objects compactly, so that they can be stored in the RAM and quickly compared for similarity.
 - Today: Min-hash signatures for sets
- 2. Finding similar items from a collection of high dimensional objects.
 - Today: Locality sensitive hashing based on minhash

Material based largely on "Mining of Massive Datasets" book by Rajaraman and Ullman (available free for download!)

High Dimensional Data

Examples of high dimensional data:

Representing documents as vectors (or sets)

- "bag of words" (TF-IDF weighting)
- shingles (k-substrings)

"The course will cover both the theory behind the algorithms and case studies..."

```
→ {the: 3, course: 1, will: 1, ...}
```

- **→** [0,0,, 1 ..., 3,0,0,... 1,0,...]
- → For representing sets, only binary values

Extremely sparse, so we use sparse vectors

```
→ [(118,1), (107872,1), (200938, 1) ....]
```

Note: In practice stop-words like "the" would be removed.

High Dimensional Data (cont.)

Collaborative Filtering

- representing movie as a vector of ratings by users
- representing product by binary vector x: x(j) = 1 if user j bought the item, 0 otherwise

Applications of finding Similar (Nearest) Items

- Filter duplicate docs in search engine
- Plagiarism, mirror pages
- · Recommend similar products, movies

Defining Similarity

Similarity metric, "distance", for sets

Jaccard similarity: $\mathrm{SIM}(A,B) := \frac{A \cap B}{A \cup B}$

4 common 18 total

$$SIM(A,B) = 4/18$$

= 2/9

Similarity-Preserving Signatures

Even sparse, the sets of words, shingles or users/ratings are too big to handle efficiently.

Goal: compute a "signature" for each set, so that similar documents have similar signatures (and dissimilar docs are unlikely to have similar signatures). (Note: "hashes" are one type of signature)

Trade-off: length of signature vs. accuracy

Could we use cryptographic signatures?

Characteristic Matrix of Sets

Element num	Set1	Set2	Set3	Set4
0	1	0	0	1
1	0	0	1	0
2	0	1	0	1
3	1	0	1	1
4	0	0	1	0

Stored as a sparse matrix in practice.

Minhashing

Minhash(π) of a set is the number of the row (element) with first non-zero in the permuted order π .

Element num	Set1	Set2	Set3	Set4
1	0	0	1	0
4	0	0	1	0
О	1	0	0	1
3	1	0	1	1
2	0	1	0	1

 Π =(1,4,0,3,2)

Minhash and Jaccard similarity

Theorem:

P(minhash(S) = minhash(T)) = SIM(S,T)

Proof:

X = rows with 1 for both S and T

Y = rows with either S or T have 1, but not both

Z = rows with both 0

Probability that row of type X is before type Y in a random permuted order is _____

Minhash signature

Let h_1 , h_2 , ..., h_n be different minhash functions (i.e different permutations).

Then signature for set S is: $SIG(S) = [h_1(S), h_2(S), ..., h_n(S)]$

Now how to compute estimate of the Jaccard similarity between S and T using minhash-signatures?

 $SIM(S,T) \approx \text{ratio of equal elements of } SIG(S) \text{ and } SIG(S)$

Approximating Minhashes

.... But storing huge permutations is also infeasible.

Solution: use a random hash function (for row number) to simulate a permutation.

Properties of random hashes?

We assume the # collisions is small vs. number of items.

Algorithm

For each row r = 0, 1, ..., N-1 of the characteristic matrix:

- 1. Compute $h_1(r)$, $h_2(r)$, ..., $h_n(r)$
- 2. For each column c:
 - 1. If column c has 0 in row r, do nothing
 - 2. Otherwise, for each i = 1,2, ..., n set SIG(i, c) to be min($h_i(r)$, SIG(i, c))

Note: in practice we need to only iterate through the non-zero elements.

Worked example (on blackboard)

Element num	Set1	Set2	Set3	Set4	x + 1 mod 5	3x +1 mod 5
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Signature matrix

	Set1	Set2	Set3	Set4
H1	∞	∞	∞	∞
H2	∞	∞	∞	∞

LOCALITY SENSITIVE HASHING USING MINHASH

Nearest Neighbors

Assume that we construct a 1,000 byte minhash signature for each document.

Million documents can now fit into 1 gigabyte of RAM.

But how much does it cost to find the nearest neighbor of a document?

- Brute force: 1/2 N(N-1) comparisons.

→ Need a way to reduce the number of comparisons.

LSH requirements

A hash function will divide input into large number of buckets. To find nearest neighbors for a query item q, we want to only compare with items in the bucket hash(q): "candidates".

If two A and B are similar, we want the probability that hash(A) = hash(B) be high.

- False positives: sets that are not similar, but are hashed into same bucket.
- False negatives: sets that are similar, but hashed into different buckets.

LSH based on minhash

(do not get confused about the different "hashes")

Idea:

divide the signature matrix rows into b bands of r rows hash the columns in each band with a basic hash-function \rightarrow each band divided to buckets [i.e a hashtable for each band]

If sets S and T have same values in a band, they will be hashed into the same bucket in that band.

For nearest-neighbor, the candidates are the items in the same bucket as query item, in each band.

Analysis

Consider the probability that we find T with query document Q

Let

```
s = SIM(Q,T) = P\{h_i(Q) = h_i(T)\}
```

b = # of bands

r = # rows in one band

What is the probability that rows of signature matrix agree for columns Q and T in one band?

Analysis

s = SIM(Q,T) b = # of bands

r = # rows in one band

Probability that Q and T agree on all rows in a band s^r

Probability that disagree on at least one row $1 - s^r$

Probability that signatures do not agree on any of the bands:

$$(1 - s^r)^b$$

Probability that T will be chosen as candidate: _____

S-curves

r and b are parameters of the system: trade-offs?

Page29

Summary

To build a system that quickly finds similar documents from a corpus:

- 1. Decide a vector presentation of your documents (bag of words, shingles, etc...)
- 2. Generate minhash signature matrix for the corpus.
- 3. Divide signature matrix into bands
- 4. Store each band-column into a hashtable
- 5. To find similar documents, compare to candidate documents for each band only in the same bucket (using minhash signatures or the docs themselves).

 Page 30

More About Locality Sensitive Hashing

Active research area.

Different distance metrics and compatible locality sensitive hash functions:

Euclidean distance → random projections

Cosine distance

Edit distance (strings)

Hamming distance

Rajaraman, Ullman: Mining of Massive Datasets (available for download)