Jupyter Classification with Logistic Regression_Task4 Last Checkpoint: 18 hours ago Trusted File Edit View Run Kernel Settings Help JupyterLab ☐ # Python 3 (ipykernel) ○ **1** + % □ □ ▶ ■ C → Code **☆** □ ↑ ↓ 占 무 i # 1 Import required libraries import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.metrics import (confusion_matrix, classification_report, roc_auc_score, roc_curve, accuracy_score, precision_score, recall_score import matplotlib.pyplot as plt import seaborn as sns # 🔼 Load dataset data = pd.read_csv(r"D:\mydata\Elevate Labs\task4\data.csv", sep=',', encoding='utf-8') print("\nMissing Values:\n", data.isnull().sum()) print("\nData Info:") print(data.info()) print("\nDataset Shape:", data.shape) print("\nFirst 5 rows:\n", data.head()) # 🗾 Drop unwanted columns and handle missing values data = data.drop(['Unnamed: 32'], axis=1, errors='ignore') <class 'pandas.core.frame.DataFrame'> RangeIndex: 569 entries, 0 to 568 Data columns (total 33 columns): Non-Null Count Dtype Column id 569 non-null int64 diagnosis 569 non-null float64 radius_mean 3 texture_mean 569 non-null float64 float64 perimeter_mean 569 non-null 569 non-null float64 5 area_mean 6 smoothness_mean 569 non-null float64 7 compactness_mean 569 non-null float64 float64 8 concavity_mean 569 non-null float64 9 concave points_mean 569 non-null 10 symmetry_mean 569 non-null float64 11 fractal_dimension_mean 569 non-null float64 12 radius_se 569 non-null float64 [29]: # Define features and labels X = data.drop(['id', 'diagnosis'], axis=1, errors='ignore') y = data['diagnosis'].map({'M': 1, 'B': 0}) # Encode malignant as 1, benign as 0 print("\nX shape:", X.shape) print("y shape:", y.shape) print("\nValue Counts:\n", y.value_counts()) # Verify no missing values print("\nAny NaN in X?", X.isna().sum().sum() > 0) print("Any NaN in y?", y.isna().sum() > 0) # 🖪 Split the data safely X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, stratify=y # stratify preserves class balance print("\nTrain size:", X_train.shape, "Test size:", X_test.shape) X shape: (569, 30) y shape: (569,) Value Counts: diagnosis 357 212 Name: count, dtype: int64 Any NaN in X? False Any NaN in y? False Train size: (398, 30) Test size: (171, 30) # 5 Feature scaling scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) # 👩 Train the Logistic Regression model model = LogisticRegression(random_state=42, max_iter=1000) model.fit(X_train_scaled, y_train) # 1 Model predictions y_pred = model.predict(X_test_scaled) y_pred_prob = model.predict_proba(X_test_scaled)[:, 1] # 🛭 Confusion Matrix cm = confusion_matrix(y_test, y_pred) sns.heatmap(cm, annot=True, fmt='d', cmap='Blues') plt.title("Confusion Matrix") plt.xlabel("Predicted") plt.ylabel("Actual") plt.show() # 9 Classification Report print("\nClassification Report:\n", classification_report(y_test, y_pred)) Confusion Matrix - 100 106 1 80 0 -- 60 Actual - 40 60 - 20 0 1 Predicted Classification Report: precision recall f1-score support 0 107 0.96 0.99 0.98 1 64 0.98 0.94 0.96 171 accuracy 0.97 171 macro avg 0.97 0.96 0.97 weighted avg 171 0.97 0.97 0.97 [31]: # 1 / ROC-AUC Curve fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob) roc_auc = roc_auc_score(y_test, y_pred_prob) plt.plot(fpr, tpr, label=f'ROC curve (AUC = {roc_auc:.2f})') plt.plot([0, 1], [0, 1], 'k--') plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("ROC-AUC Curve") plt.legend() plt.show() # 1 Threshold tuning example threshold = 0.6 y_pred_custom = (y_pred_prob >= threshold).astype(int) print(f"\nPerformance at threshold {threshold}:") print(f"Accuracy: {accuracy_score(y_test, y_pred_custom):.3f}") print(f"Precision: {precision_score(y_test, y_pred_custom):.3f}") print(f"Recall: {recall score(y test, y pred custom):.3f}") **ROC-AUC Curve** 1.0 0.8 True Positive Rate 0.6 0.4 0.2 ROC curve (AUC = 1.00) 0.0 0.2 0.8 0.4 0.0 0.6 1.0 False Positive Rate Performance at threshold 0.6: Accuracy: 0.971 Precision: 1.000 Recall: 0.922