# 2025-03-27汇报

# 卫星通信系统=>如何接入

# 星链Starlink=>硬件连接示意



#### 国内暂时无法订购



## 卫星通信协议栈典型代表=>CCSDS DVB-S2

| 特性           | CCSDS                             | DVB-S2                                 | Starlink[协议栈高度定制化]        |
|--------------|-----------------------------------|----------------------------------------|---------------------------|
| 适用场景         | 科学和政府航天/空间任务,强调可靠性和适应性,普通用户无法直接接收 | 商业广播和宽带通信,强调频谱<br>效率和高数据速率             | 全球高速互联网接入                 |
| 是否支持<br>星间链路 | 包含支持星间链路的协议栈及射频特性                 | 不支持, 需定制化扩展                            | 支持,基于IP的定制化动态路由,软件定义网络SDN |
| 物理层          | S/X/Ka波段,低阶调制                     | QPSK/8PSK/16APSK/32APSK,<br>适应不同的信噪比环境 | Ka/Ku波段,高阶调制              |

# DVB-S2协议栈的卫星通信系统=>VSAT[VSAT\_USENIX\_2024] [海上VSAT\_SP\_2020]

- 中央集线器——卫星与地面通信系统的中继器,配有大型蝶形天线(天线系统),用于向卫星收发信号
- 卫星——互通中央集线器与端点的数据,不执行任何数据处理/路由/身份验证,可定位在静止轨道GEO,中轨道MEO与低轨道LEO
- 端点——与卫星通信,将接收的数据传达到接收方(下行链路),或通过卫星传输数据至中央集线器(上行链路)



### 终端系统VSAT=>双向数据传输

- **室外单元ODU** 射频前端 ——高增益碟形天线(向地球同步卫星发送和接收信号)、收发器
- **室内单元IDU**——室外机与用户网络之间的接口,包括**调制解调器** 固件 (调制输出信号进行传出、解调输入信号进行接收)、**网络接口** 网络协议 (以太网、WiFi等,连接用户本地网络)

## DVB-S2协议栈的调制解调器与天线等硬件介绍

- 1. 调制解调器: Newtec MDM2200[Newtec MDM2200] [VSAT\_USENIX\_2024]
  - 硬件架构:
    - 。 信号处理模块:包括FPGA、解调器、DAC等,负责将接收到的射频信号转换为数字信号。
    - 微控制器:运行Linux操作系统,负责控制调制解调器的各项功能,如信号处理、配置更新等。
    - 。 **网络接口**: 支持以太网和WiFi, 用于连接用户的本地网络。



#### 协议栈:

- 物理层:采用DVB-S2标准,支持多种调制方式(如QPSK、8PSK)和前向纠错(FEC)
- 数据链路层:使用传输流(MPEG-TS)和多协议封装(MPE)进行数据封装和解封装;可能使用更新的通用流封装(GSE)协议[海上 VSAT SP 2020]
- 网络层: 支持IP over CCSDS, 允许通过卫星链路传输IP数据包
- 传输层: 支持TCP和UDP协议, 用于端到端的数据传输
- **应用层**: 支持HTTP、FTP等应用层协议,用于具体的业务应用

#### 2. 蝶形天线

- 类型: 高增益定向天线,通常直径为0.75米到1米,支持C、Ku、Ka波段。
- 功能: 用于发射和接收卫星信号,确保与卫星之间的通信链路。
- 安装要求: 天线需要精确校准, 确保指向卫星的方位角和仰角正确。

#### 3. 接收/发射信号=>无线电设备 USRP B210=>大规模实验=>2500\$ USRP B200=>小型研究=>1500\$

### **USRP B210** [Satellite Modems\_CCS\_2024]

- 卫星通信接口安全分析与测试工具: AirSecAnalyzer
  - 。 SDR硬件: USRP B210 与正在测试的卫星调制解调器通信,可将GNU Radio生成的低频基带信号转换为射频信号
  - 。 <u>中间件GNU Radio</u>:作为软件数据生成工具SatTest与SDR之间的接口,接收SDR数据解调后传至SatTest;同时通过TCP接收测试数据调制后传至SDR
  - 。 SatTest: 四个典型测试: 信号重放、信号模糊、信号干扰、GNSS攻击



### <u>USRP B200/B200mini</u> [VSAT\_USENIX\_2024]

- 基于USRP B200的信号注入发射器:复制真实的中央集线器传输
  - o gr-dvbrcs: UDP、IP、DVB-RCS、MPE和MPEG-TS层,生成用于初始化调制解调器和发送攻击数据包的比特流
  - 。 gr-dvbdtv:调制比特流,在开源框架GNU Radio模块中实现
  - 。 gr-filter: 信号处理, 滤波以减少信号中码间干扰, 提高信号质量



#### 4.其他接入信号方式[海上VSAT\_SP\_2020]

- **设备组成**:考虑到专业设备造假昂贵,且不会直接出售给消费者(企业对接、通常以每月数千美元的年度合同形式)。使用标准的家庭电视卫星天线和廉价的业余卫星调制解调器,总价不过400\$,虽存在定位不准确、无法保持可接受的吞吐量率,但仍能拦截、解调部分海上VSAT信号流,且可能包含敏感数据
- 数据提取和信号解释:与以往VSAT的MPE协议不同,海上VSAT倾向更复杂的传输模式 16-32APSK调制 以及更新的通用流封装协议 GSE,且无公开可用的软件用于接收与解调,因此开发了GSExtract,允许从原始GSE连续流中恢复任意IP数据包,实施被动攻击



| 数据链路<br>层协议 | 通用流封装GSE                             | 多协议封装MPE                                      |
|-------------|--------------------------------------|-----------------------------------------------|
| 封装粒度        | 通常封装单个或少量的IP数据包,每个GSE帧可以包含一个或多个IP数据包 | 通常封装大量的IP数据包,形成一个大的MPE段,每个MPE<br>段可以包含多个IP数据包 |
| 效率          | 更适合于小数据包传输,减少了封装开销,提高了传<br>输效率       | 更适合于大数据量传输,但可能引入更多的封装开销                       |
| 应用场景        | 适用于实时数据传输、文件传输、以及需要高可靠性 和低延迟的应用场景    | 适用于非实时数据传输、大规模数据分发等应用场景                       |

• **主动攻击**:由于信号高度定向,需要攻击者位于目标附近,且需要使用**昂贵而复杂的无线电设备**等条件限制,主动攻击历来少受关注,但卫星网络独特的物理特性光速延迟,为TCP会话劫持提供了理想条件

### • TCP劫持过程:

- 。 从地面后台发送的TCP-SYN包和相关序列号同时到达合法接收方和窃听方
- 。 攻击者用接收到的序列号生成**SYN-ACK响应**,并通过低延迟有线互联网连接传输。由于**光速延迟**,攻击者的响应几乎可以保证先到达。



# 无线电设备与调制解调器接入卫星方式比较

- 无线电设备:适合研究和原型开发,具有高灵活性和低成本优势[VSAT\_USENIX\_2024]
- 调制解调器:适合商业部署,具有高性能和易用性优势[海上VSAT\_SP\_2020]
- **搭配使用**:通过共用天线系统和计算机实现数据交换和协同处理,结合两者的优势进行卫星通信研究和实验[Satellite Modems\_CCS\_2024]

#### 1. 区别

| 维度    | USRP B200/B200mini | Newtec MDM2200 |
|-------|--------------------|----------------|
| 设备类型  | 软件定义无线电 (SDR)      | 专用调制解调器        |
| 灵活性   | 高 (支持多种协议和调制方式)    | 低 (内置固定协议)     |
| 成本    | 低                  | 高              |
| 开发友好性 | 高(适合研究和原型开发)       | 低 (适合商业部署)     |
| 性能    | 中等 (受限于硬件和软件)      | 高(专为卫星通信优化)    |
| 易用性   | 低 (需要编程和配置)        | 高(提供图形化界面)     |

#### 2. 共同点

天线系统: 都需要抛物面天线、LNA和滤波器信号处理: 都需要解调和处理卫星信号应用场景: 都可用于卫星通信研究和实验

### 3. USRP B210/B200/B200mini详细分析比较

| 参数   | USRP B210                     | USRP B200                          | USRP B200mini                   |
|------|-------------------------------|------------------------------------|---------------------------------|
| 通道数  | 双通道 (全双工)                     | 单通道 (半双工)                          | 单通道 (半双工)                       |
| 应用场景 | <b>复杂信号处理</b> :如星间链路仿真、动态路由测试 | <b>单链路通信</b> :如卫星遥测、DVB-S2<br>信号接收 | <b>简单实验</b> :如频谱监测、信号重放攻<br>击测试 |
| 尺寸   | 较大 (适合固定实验环境)                 | 中等 (便携性较好)                         | 小型 (便携性最佳)                      |
| 供电   | USB 或外部电源                     | USB 或外部电源                          | USB 供电                          |
| 价格   | 较高                            | 中等                                 | 较低                              |

## 4. 例=>USRP B210/B200/B200mini/RTL-SDR 配置与连接

#### 设备清单:

○ USRP B210/B200/B200mini: 软件定义无线电 (SDR) 硬件

。 天线: 根据卫星频段选择 (如: 抛物面天线用于Ku波段, 螺旋天线用于L波段)

。 低噪声放大器 (LNA) : 提升接收信号的信噪比 (如: Nooelec's SAMbird+GOES)

○ **同轴电缆与适配器**: 低损耗电缆 (如: LMR-400) 和对应接口 (SMA/N型)

• **计算机**:安装Ubuntu或支持UHD驱动的系统



## 连接步骤:

- 天线 → LNA → USRP B210/B200/B200mini/RTL SDR → 计算机: 通过同轴电缆按顺序连接天线、LNA, 并接入USRP的RX端口, 最后使用USB 3.0线缆连接USRP与计算机
- 。 供电: 若使用高增益天线或LNA, 需外接电源 (如USB供电不足时使用独立电源)
- 确定目标卫星参数:

- 。 频率: 如亚洲7号卫星的Ku波段下行频率为12.5 GHz
- 极化方式: 水平 (H) 或垂直 (V) , 需与天线匹配
- 。 符号率与调制方式: 如DVB-S2 QPSK, 符号率30 MSym/s
- 使用GNU Radio接收信号:验证硬件连接

sudo uhd\_images\_downloader # 下载FPGA镜像
sudo apt install gnuradio # 安装GNU Radio

uhd\_find\_devices # 检测USRP是否被识别 uhd\_fft -f 12.5e9 -s 10e6 # 查看12.5 GHz频段频谱(替换为你的卫星频率)

#### • 验证信号接收:

- 频谱特征:
  - 在频谱仪中观察是否存在明显的信号峰(带宽与符号率匹配)
  - 例: DVB-S2信号的带宽为符号率的1.2倍 (30 MSym/s → 36 MHz带宽)
- 星座图:
  - 若信号为QPSK,星座图应显示4个聚集点;若解调正确,点越集中,信噪比越高