Написано для спільноти Meshtastic Ukraine

Відредаговано 30.01.23 UT6UZ

Увага! Ця стаття є суто освітньою! Автор статті не несе відповідальності за будьякі ваші дії зі зміною вихідного коду прошивки та порушень використання частотного ресурсу країни, в якій ви знаходитесь.

A) Встановлюємо необхідне програмне забезпечення на комп'ютер та з'єднуємо T-Beam з комп'ютером:

1) Visual Studio Code - редактор вихідного коду — текстовий редактор для створення та редагування вихідного коду програм.

https://code.visualstudio.com/

Для версій Windows нижчих за 10-у, шукаємо в інтернеті старі версії Visual Studio Code.

Відкриваємо та в ньому встановлюємо необхідні розширення:

Файл/Налаштування/Розширення CTRL+SHIFT+X

- 1) PlatformIO
- 2) Trunk

2) Git - система управління версіями із розподіленою архітектурою.

https://git-scm.com/downloads

В корні диску «С» створюємо папку з назвою «Meshtastic Firmware» та скачуємо в неї Source code.zip вибраної прошивки, звідси: https://github.com/meshtastic/firmware/releases

та розпаковуємо його!

3) Встановлюємо ESP32 Serial Drivers нам потрібен CH9102

https://meshtastic.org/docs/getting-started/serial-drivers/esp32

Під'єднуємо Т-Веат до комп'ютера **USB кабелем (робимо це** обов'язково з антеною, тому що можемо вивести з строю радіо модуль!!!)

Б) Редагуємо код та заливаємо прошивку:

- 1) В додатку Visual Studio Code відкриваємо папку з прошивкою Файл/відкрити папку CTRL+К CTRL+О
- 2) Далі знаходимо файл RadioInterface.cpp для цього потрібно пройти шляхом src/mesh/RadioInterface.cpp виконавши три пункти:

3) Далі в файлі **RadioInterface.cpp** знаходимо строку за номером №30 та в ньому редагуємо значення максимальної потужності. Замість значення 12dBm ставимо те яке підтримує ваш радіо модуль. Якщо ви не знаєте максимальну потужність вашого радіо модулю, ставимо значення 30dBm, (після прошивки ви зможете виставити потужність в налаштуваннях Devise settings додатку, не вище цього значення.)

4) Зберігаємо файл сткь+ѕ

5) Далі натискаємо на кнопку з виглядом інопланетянина та вибираємо тип нашого модулю, це буде **T-Beam**

```
    RadioInterface.cpp - firmware-2.0.15.aafbde

    Файл Правка Выделение Вид Переход Выполнить
       PLATFORMIO
                                          TIO Home
                                                           RadioInterface.cpp
ď
     V PROJECT TASKS
                               ひ 67 日
                                           src > mesh > 🕒 RadioInterface.cpp > 📵 regions
       > ⊚ rak4631_eink
                                                  #include "RadioInterface.h"
       > 6 rak4631
                                                  #include "Channels.h"
                                                  #include "MeshRadio.h"
       > 🗟 pico
धू
                                                  #include "MeshService.h"
       > all picow
                                                  #include "NodeDB.h"
       > 🗟 station-g1
       > 🗊 t-echo
                                                  #include "configuration.h"
       > 🔂 tbeam0.7
                                                  #include "main.h"
留
       > 🗟 tbeam-s3-core
                                                  #include "sleep.h"
       > 🗟 tbeam
                                                  #include <assert.h>
                                                  #include <pb decode.h>
       > 🗑 tlora-t3s3-v1
ф
                                                  #include <pb encode.h>
       > 6 tlora_v1_3
        🗟 tlora-v1
                                                  #define RDEF(name, freq_start, freq_end, duty_o
           tlora-v2-1-1.6
       > 🗟 ra-v2-1-1.8
                                                           meshtastic_Config_LoRaConfig_RegionCode
         al tlora-v2
                                                              frequency_switching, wide_lora, #na
      QUICK ACCESS
       PIO Home
                                                  const RegionInfo regions[] = {
          Open
          PIO Account
          Inspect
                                                           https://www.thethingsnetwork.org/docs/
          Projects & Configuration
          Libraries
                                                      RDEF(US, 902.0f, 928.0f, 100, 0, 30, true,
          Boards
          Platforms
```

6) Натискаємо на Т-Веат та чекаємо завантаження

7) Після того як завантажилось натискаємо на BUILD та чекаємо щоб збірка склалася без помилок.

8) Якщо все пройшло без проблем, наступним кроком натискаємо на UPLOAD та заливаємо прошивку в наш **T-Beam** пристрій.

SX1268 = 22,0dBm = 158mBt.

Consumption	Transmit Current	t 100mA (Transient current)	
	Receive Current	11mA	
	Sleep Current	2uA (LoRa module deep sleep)	
MAX Transmit Power		22.0dBm(10, 13, 17, 22dBm Selectable)	
Transmit Length		240 Bytes (32, 64, 128, 240 Bytes Selectable)	
Buffer		1000 Bytes	
Working bands		410.125~493.125MHz or 850.125~930.125MHz	
Receive Sensitivity		-147dBm@0.3Kbps (On air)	
Air Speed		0.3K~62.5Kbps (software selectable)	
Interface		UART	
Range		5KM(Sunny day; open area; Antenna: AUX 5dBi, Height 2.5m; Air Speed: 2.4kbp	
Working voltage		5V	
Logic voltage		3.3V	
Working Temperature		-40 ~ 85°C	

(нонейм) кажуть що це SX127X

SX1278 = 14,0dBm = 25mBt.

LoRa T-BEAM V1.1 compare

Chip	SX1278	SX1276	SX1268	SX1262
Frequency	433Mhz	868/915/923Mhz	433/470Mhz	868/915/923Mhz
Power Amplifiers	+14dBm	+14dBm	+22dBm	+22dBm
TX current	120mA	120mA	110mA	110mA
RX current	9.9mA	9.9mA	4.6mA	4.6mA
Programmable Bit	300 kbps	300 kbps	LoRa 62.5 kbps FSK 300 kbps	LoRa 62.5 kbps FSK 300 kbps
Oscillator	тсхо	тсхо	тсхо	тсхо

dBm	Вт
0	1.0 мВт
1	1.3 мВт
2	1.6 мВт
3	2.0 мВт
4	2.5 мВт
5	3.2 мВт
6	4 мВт
7	5 мВт
8	6 мВт
9	8 мВт
10	10 мВт
11	13 мВт
12	16 мВт
13	20 мВт
14	25 мВт
15	32 мВт

dBm	Вт
16	40 мВт
17	50 мВт
18	63 мВт
19	79 мВт
20	100 мВт
21	126 мВт
22	158 мВт
23	200 мВт
24	250 мВт
25	316 мВт
26	398 мВт
27	500 мВт
28	630 мВт
29	800 мВт
30	1.0 BT
31	1.3 Вт

dBm	Вт
32	1.6 Вт
33	2.0 BT
34	2.5 Вт
35	3.2 Вт
36	4.0 BT
37	5.0 BT
38	6.3 Вт
39	8.0 BT
40	10 Вт
41	13 Вт
42	16 Вт
43	20 BT
44	25 BT
45	32 BT
46	40 BT
47	50 BT