Dipartimento di Ingegneria Meccanica e Industriale

Corso di Laurea Automazione Industriale

LABORATORIO DI ROBOTICA INDUSTRIALE E MACCHINE LABORATORIO DI AUTOMATICA

Docente: Prof. Beschi Manuel

Studenti: Fares Peter William - 721654

Mirandola Edoardo – 723993

Pennacchio Manuele – 721965

Introduzione

Identificazione

Modellizzazione

Controllo

Taratura

Risultati

Conclusioni

Introduzione

Identificazione

Modellizzazione

Controllo

Taratura

Risultati

Conclusioni

MODELLIZZAZIONE DELLO SCARA - TRASMISSIONE ELASTICA

$$\begin{cases} J_m \cdot \dot{q_m} = \tau_m - k(q_m - q_c) - h(\dot{q_m} - \dot{q_c}) - h \dot{q_m} \\ J_c \cdot \dot{q_c} = \tau_c + k(q_m - q_c) + h(\dot{q_m} - \dot{q_c}) \end{cases}$$

$$\frac{V_m(s)}{T_m(s)} = \frac{J_c \cdot s^2 + h \cdot s + k}{J_m J_c s^3 + (J_c h + J_m h + J_c h_m) s^2 + (J_c k + J_m k + h h_m) s + h_m k}$$

Introduzione

Identificazione

Modellizzazione

Controllo

Taratura

Risultati

Conclusioni

CONTOLLO PER L'IDENTIFICAZIONE - CLOSED LOOP

ARCHITETTURA DECENTRALIZZATA

MODELLO DEL SISTEMA COPPIA-VELOCITÀ

SEGNALE ECCITANTE

PORTANTE

CHIRP

PARAMETRI	VALORE
Pulsazione	1 [rad/s]
Ampiezza	250[Nm]

PARAMETRI	VALORE
Pulsazione iniziale	10 [rad/s]
Pulsazione finale	3141[rad/s]
Ampiezza	250[Nm]

SEGNALE ECCITANTE (chirp + portante)

GIUNTO 1

CHIRP

- $\omega = 20 \div 3141 \frac{rad}{}$
- A = 250Nm

Portante

- $\omega = 1 \frac{rad}{s}$
- A = 250Nm

Controllore PI giunto 2

- $K_p = 2864$
- $K_i = 10$

Controllore PI giunto 1

- $K_p = 0.01$
- $K_i = 0.1$

GIUNTO 2

CHIRP

- $\omega = 20 \div 3141 \frac{rad}{s}$
- A = 250Nm

Portante

- $\omega = 1 \frac{rad}{s}$
- A = 250Nm

Controllore PI giunto 2

- $K_p = 0.01$
- $K_i = 0.1$

Controllore PI giunto 1

- $K_p = 5729$
- $K_i = 10$

Introduzione

Identificazione

Modellizzazione

Controllo

Taratura

Risultati

Conclusioni

GIUNTO 1 - 3 ord Vs 5 ord

VALIDAZIONE GIUNTO 1

CHIRP

- $\omega = 20 \div 3141 \frac{rad}{s}$
- A = 300Nm

Portante

- $\omega = 2 \frac{rad}{s}$
- A = 130Nm

GIUNTO 2 - 3 ord Vs 5 ord Vs 7 ord

VALIDAZIONE GIUNTO 2

CHIRP

- $\omega = 20 \div 3141 \frac{rad}{s}$
- A = 300Nm

Portante

- $\omega = 2 \frac{rad}{s}$
- A = 130Nm

Introduzione

Identificazione

Modellizzazione

Controllo

Taratura

Risultati

Conclusioni

CONTROLLORE P - TEST

Test 3

CONTROLLORE PI - Back Calculation

Per regole empiriche:

- $K_{aw} \rightarrow \text{guadagno di anti wind-up}$
- $T_t = T_i \rightarrow \text{costante di tempo di tracciamento}$

CONTROLLORE PI - TEST

FILTRO PASSA BASSO - IMPLEMENTAZIONE

$$V_o(k) = (0.3333 \cdot V_i(k) + 0.3333 \cdot V_i(k-1) \neq \dots -0.3333 \cdot V_o(k-1))$$

$$\tau = 0.001s \to \omega_{\tau} = \frac{1}{\tau} = 1000 \frac{rad}{s}$$

FILTRO PASSA BASSO - TEST

FILTRO NOTCH - IMPLEMENTAZIONE

$$F_N(s) = \frac{s^2 + 2 \cdot \omega_n \cdot xci_z \cdot s + \omega_n^2}{s^2 + 2 \cdot \omega_n \cdot xci_p \cdot s + \omega_n^2}$$

$$c2d(F_N, st, 'tustin')$$

$$F_{N_d}(z) = \frac{0.6 \cdot z^2 - 0.6667 \cdot z + 0.5111}{z^2 - 0.6667 \cdot z + 0.1111}$$

da z alle differenze

$$\begin{aligned} V_o(k) &= 0.6 \cdot V_i(k) - 0.6667 \cdot V_i(k-1) + 0.5111 \cdot V_i(k-2) + \dots \\ &+ 0.6667 \cdot V_o(k-1) - 0.1111 \cdot V_o(k-2) \end{aligned}$$

$$\omega_n = 1000 \frac{rad}{s}$$

$$xci_p = 1$$

$$xci_z = 0.1$$

FILTRO NOTCH - TEST

 $noise(t) = 0.1 \cdot sin(\omega \cdot t)$

- $Xci_p = 1$
- $Xci_{z} = 0.09$ $\omega_{n} = 656 \frac{rad}{s}$

SCHEMA DI CONTROLLO CASCADE CONTROL

CASCADE CONTROL LOOP INTERNO

CASCADE CONTROL

LOOP ESTERNO

CASCADE CONTROL TEST 5

CASCADE CONTROL - TEST

Errore sulla posizione <10⁻⁵

Introduzione

Identificazione

Modellizzazione

Controllo

Taratura

Risultati

Conclusioni

TARATURA LOOP INTERNO

FILTRI

Scelta filtro notch per attenuare la risonanza Scelta filtro passa basso per attenuare il rumore

ωt e KP

Scelta di wt in base:

- Attenuazione della risonanza di almeno 6dB
- Margine di fase per tipologia di risposta e stabilità

PARAMETRI Ki e Kaw

Si è deciso di mettere la ωi circa una decade prima di ωt per alzare il diagramma della fase

VERIFICA

Controllo di Gm e Pm per la stabilità e si Ms per la robustezza del controllore

TARATURA LOOP ESTERNO

Scelta filtro passa basso per attenuare il rumore

Scelta di wt in base:

Margine di fase per tipologia di risposta e stabilità

Controllo di Gm e Pm per la stabilità e si Ms per la robustezza del controllore

GIUNTO 1 - loop interno - filtri

GIUNTO 1 - loop interno - controllore

GIUNTO 1 - loop esterno

GIUNTO 2 - loop interno - filtri

GIUNTO 2 - loop interno - controllore

GIUNTO 2 - loop esterno

Introduzione

Identificazione

Modellizzazione

Controllo

Taratura

Risultati

Conclusioni

REST_TIME = 0.5

MAX ACC = 5

SCORE = 32.18

AGGIUNTA AZIONE FEEDFOWARD COPPIA

MAX ACC = 12

SCORE = 33.77

Introduzione

Identificazione

Modellizzazione

Controllo

Taratura

Risultati

Conclusioni

TARATURA

- Introduzione di algoritmi per la taratura per una migliore che considerano Ms, Gm e Pm
- > Basare la funzione di costo non solo sul modello ma anche sulla risposta della simulazione per tener conto anche delle azioni di feedfoward e saturazione del sistema

FEEDFOWARD

Si potrebbe pensare di inserire il feedfoward anche nell'anelo esterno per aumentare le prestazioni del controllore, e di inserire all'interno della funzione anche il già esistente il peso dello oggetto spostato

IDENTIFICAZIONE

Introdurre un controllore che nella fase di identificazione si occupi di inserire i freni nel caso il sistema diverga e annulli il test

Dipartimento di Ingegneria Meccanica e Industriale

Corso di Laurea Automazione Industriale

GRAZIE PER L'ATTENZIONE

Per ulteriori informazioni visitare: https://github.com/EdoGitMira/Progetto LAB Automatica.git