

Introduction of LTE-Advanced DL/UL MIMO

Juho Lee

(juho95.lee@samsung.com)

Samsung Electronics

September 11, 2009

Outline

- I. LTE MIMO
- II. CoMP in LTE-A
- III. DL MIMO in LTE-A
- IV. UL MIMO in LTE-A

LTE MIMO – Downlink (1/4)

Introduction of multi-antenna technologies

Transmit diversity

Single user MIMO (SU-MIMO)

- Open-loop
- Closed-loop

Multi-user MIMO (MU-MIMO)

Closed-loop rank-1 precoding

Dedicated beamforming

LTE MIMO – Downlink (2/4)

design principles

Anti-fading

- Transmit diversity
- Open-loop spatial multiplexing

Spectral efficiency ↑

Spatial multiplexing

SNR 个

- Dedicated beamforming
- Codebook-based precoding

Channel adaptive

- Closed-loop precoding
- Rank adaptation

CRS*-based

- Codebook-based precoding
- Except for dedicated beamforming

*CRS: Cell-specific (or Common) Reference Signal

LTE MIMO – Downlink (3/4)

Features of transmit diversity

- Cell-specific transmit diversity scheme
- One scheme for all the control channels but synchronization signals
- Support for fallback operation
- SFBC (2TxAnt), SFBC+FSTD (4TxAnt)

Features of open-loop spatial multiplexing

- Large delay CDD (Cyclic Delay Diversity)
- Support for rank adaptation
 - Rank-1 OL-SM = Transmit diversity
 - Up to 2 codewords transmissions
- No precoding (2TxAnt), Precoder cycling (4TxAnt)

LTE MIMO – Downlink (4/4)

Features of closed-loop spatial multiplexing

- Codebook-based precoding due to CRS-based transmissions
- Codebook subset restriction
- Support for rank adaptation
 - Up to 2 codeword transmissions

Features of MU-MIMO

- Codebook-based precoding
- Developed under the assumption of highly correlated Tx antennas

Features of dedicated beamforming

Non-codebook based precoding relying on DRS (Dedicated Reference Signal)

Design principles of precoder codebook

- Constant modulus for equal power utilization
- Nested property for rank adaptation/override
- Constraint alphabet (8PSK) for computation complexity reduction

LTE MIMO - Uplink

No support for spatial multiplexing

Support for antennaselection transmit diversity

- Open-loop: implementation issue
- Closed-loop: indication of transmit antenna in the UL grant

Support for MU-MIMO

Introduction of orthogonal DM-RS* in UL

*DM-RS: DeModulation Reference Signal

MIMO enhancements in LTE-A

Goals of MIMO enhancements in LTE-A

- Increase the peak rates
- Improve the system level performance
- Support various transmission schemes with a universal structure

Scopes of LTE-A MIMO

- DL higher order MIMO
- Enhanced DL MU-MIMO
- Uplink spatial multiplexing
- Uplink transmit diversity with multiple Tx antennas
- Coordinated Multi-Point transmission/reception (CoMP)

CoMP – Downlink

Joint processing

Fast cell selection

Coordinated scheduling / coordinated beamforming

LTE Rel-9

- Following work items are under discussions in 3GPP RAN1
 - Positioning support
 - Dual stream beamforming
- Dual stream beamforming
 - Extension of DRS-based beamforming to support spatial multiplexing
 - Forward compatible to LTE-A (Rel-10)
 - Introduction of CDM (Code Domain Multiplexing) DM-RS

LTE-A MIMO – Downlink (1/3)

Major features of LTE-A DL MIMO

- Up to 8 transmit antennas
 - Up to rank-8 transmissions
 - Up to 2 codewords transmissions
- Extension of non-codebook based precoding
 - Introduction of new reference signals (CSI-RS and DM-RS)
 - Commonality with MU-MIMO, CoMP
- Reuse of LTE Rel-8 transmit diversity schemes
- Enhanced MU-MIMO
 - Enabling improved precoding by virtue of DM-RS
 - Examples of precoding schemes
 - » Zero Forcing based
 - » SLR (Signal to Leakage Ratio) based

Feedback

Explicit vs Implicit vs SRS-based vs Hybrid

LTE-A MIMO – Downlink (2/3)

Codeword to layer mapping

LTE-A MIMO – Downlink (3/3)

CRS-based vs DM-RS-based

CRS-based

DM-RS-based

LTE-A MIMO – Uplink (1/4)

Major features of LTE-A UL MIMO

- Introduction of spatial multiplexing
 - Layer shifting: FFS
 - HAR-ACK spatial bundling with layer shifting
 - No HARQ-ACK spatial bundling and no layer shifting
- Codebook-based precoding
 - Rank-dependent codebook
 - Cubic Metric (CM) Preserving/Friendly
 - No nested property
 - Constraint alphabet
- Precoded DM-RS based transmissions
- Introduction of transmit diversity
 - PUCCH transmit diversity: Spatial Orthogonal-Resource Transmit Diversity (SORTD)
- Default operation mode: UL Single Antenna Port Mode

LTE-A MIMO – Uplink (2/4)

Codebook for 2 Tx antennas

Rank-1 (Size=6)

From 2TxAnt codebook of LTE Rel-8

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ j \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -j \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\$$

Antenna selection precoders

$$\begin{array}{c|c}
\hline
1 \\
\hline
\sqrt{2} \\
\hline
0
\end{array}, \begin{array}{c|c}
\hline
1 \\
\hline
\sqrt{2} \\
\hline
1
\end{array}$$

Rank-2 (Size=1)

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

LTE-A MIMO – Uplink (3/4)

Codebook for 4 Tx antennas

Rank-1 (Size=24)

Constant Modulus

Antenna-pair tun-off

LTE-A MIMO – Uplink (4/4)

Rank-2 (Size=16)

CM-preserving

$$\frac{1}{2} \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & -j \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ -j & 0 \\ 0 & 1 \\ 0 & j \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ -j & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ -j & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -j \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ j & 0 \\ 0 & 1 \\ 0 & j \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ j & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}$$

$$\frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 0 & 1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

Rank-3

FFS: CM-preserving vs CM-friendly

Rank-4

Summary

