What is claimed is:

1. A m	ethod for controlling the braking system of a motor vehicle,
	in which, in order to prevent the vehicle from rolling away following a braked
standst	till, a first braking-force value is set independently of the driver at at least one wheel of
the vel	nicle and is held for a specified limited holding time (T0),
wherei	n
	the angle of gradient (a) of the roadway in the longitudinal direction of the vehicle is
ascerta	nined and
	the holding time (T0) is a function of the angle of gradient (α) ascertained.
2. The	method as recited in Claim 1,
wherei	in, in the event that an intention on the part of the driver to drive off is registered during
the spe	ecified holding time (T0),
_	the specified holding time (T0) is cut short and
_	from this point on a second braking-force value is maintained independently of the
driver	for a specified extended holding time (T1).
3. The	method as recited in Claim 2,
wherei	in .
_	the extended holding time (T1) is a function of the angle of gradient (α) ascertained.
4. The	method as recited in Claim 3,
wherei	in the extended holding time (T1) is a function of the ascertained angle of gradient (α)
in such	n a way
_	that the extended holding time assumes its maximum value when the angle of gradient
(α) exe	ceeds a specified positive limiting value.

wherein the driver's intention to drive off is registered through the operation of the

NY01 684071 v1 9

5. The method as recited in Claim 2,

accelerator pedal.

- 6. The method as recited in Claim 1, wherein the holding time is a continuous function of the angle of gradient (α).
- 7. The method as recited in Claim 3, wherein the extended holding time is a continuous function of the angle of gradient (α).
- 8. The method as recited in Claim 1, wherein, under the stipulation that the angle of gradient (α) has a negative sign in the case of a downhill standing-start operation and that the angle of gradient (α) has a positive sign in the case of an uphill standing-start operation, the holding time (T0) either remains constant or
- 9. The method as recited in Claim 3, wherein, under the stipulation that the angle of gradient (α) has a negative sign in the case of a downhill standing-start operation and that the angle of gradient (α) has a positive sign in the case of an uphill standing-start operation, the extended holding time (T1) either remains constant or increases with an increasing angle of gradient (α).
- 10. The method as recited in Claim 1, wherein the first braking-force value is equal to the second braking-force value.
- 11. A device for controlling the braking system of a motor vehicle,

increases with an increasing angle of gradient (α).

— containing roll-away prevention means, by which, to prevent the vehicle from rolling away following a braked standstill, a first braking-force value is set independently of the driver at at least one wheel of the vehicle and is held for a specified limited holding time (T0),

wherein furthermore

- means for ascertaining the gradient are included, which ascertain the angle of gradient
 (α) of the roadway in the longitudinal direction of the vehicle and
- the roll-away prevention means are designed in such a way that the holding time (T0) is a function of the angle of gradient (α) ascertained.

NY01 684071 v1 10