CARACTERÍSTICAS DE LAS SEÑALES EN TELECOMUNICACIONES

ANALÓGICAS Y DIGITALES

ANALÓGICO Y DIGITAL

- Son el principio fundamental para determinar los aspectos técnicos para la construcción de las redes de telecomunicaciones.
- Por lo cual se debe tener claro la diferencia entre ellas, así como sus características principales.

SEÑALES ANALÓGICAS

DEFINICIÓN: Son aquellas que están representadas por funciones que pueden tomar un número infinito de valores en cualquier intervalo de tiempo.

SEÑALES DIGITALES

DEFINICIÓN: Son aquellas que están representadas por funciones que pueden tomar un cierto número finito de valores en cualquier intervalo de tiempo.

CARACTERÍSTICAS DE LOS SISTEMAS A/D

- Ambos son capaces de transportar señales "inteligentes" que contengan servicios de voz, audio y video.
- Los sistemas analógicos Tx la información en la propia forma de onda que se Tx.
- Los digitales Tx información por medio de pulsos codificados a través de un medio.

CARACTERÍSTICAS DE LOS SISTEMAS A/D

- Existe servicios que desde su origen son analógicos o digitales.
- Las señales analógicas utilizan amplificadores.
- Las señales digitales emplean repetidores regenerativos.
- En la actualidad se emplean más los sistemas digitales como una evolución de los sistemas analógicos.

CARACTERÍSTICAS DE LAS SEÑALES ANALÓGICAS

- Señales Periódicas: Son aquellas que repiten todos sus valores en un espacio de tiempo, es decir, cada cierto tiempo repiten la figura.
- f(t)=f(t+T)
- Donde el valor de T se le denomina periodo.

CARACTERÍSTICAS DE LAS SEÑALES ANALÓGICAS

- Señales Aperiódicas: Son las señales que no repiten sus valores, y por tanto no podemos predecir su evolución.
- Periodo: Es el tiempo que tarda en ejecutar un ciclo.
 Entendemos por ciclo cada repetición de la señal.
- El periodo se mide en segundos, y se emplean más habitualmente los submúltiplos:
 - ms (milisegundos)= 1x10⁻³ segundos,
 - µs (microsegundos)= 1x10⁻⁶ segundos,
 - ns (nanosegundos)= 1x10⁻⁹ segundos,
 - ps (picosegundos)= 1x10⁻¹² segundos.

CARACTERÍSTICAS DE LAS SEÑALES ANALÓGICAS

- Frecuencia (f): Es el número de ciclos que una señal periódica ejecuta por segundo, y su unidad es el Hercio (Hz).
- Habitualmente se usan los múltiplos del Hz:
 - KHz (Kilohercios) = 1x10³ Hz,
 - MHz (Megahercios)= 1x10⁶ Hz,
 - GHz (Gigahercios) = 1x10⁹ Hz,
 - THz (Terahercios) = $1x10^{12}$ Hz.
- f=1/T (seg), su unidad es el Hertz
- T=1/t (Hz), su unidad son segundos

CARACTERÍSTICAS DE LAS SEÑALES ANALÓGICAS

Señales analógicas

- Voltaje continuo
- Puede tener cualquier voltaje
- Voltaje "ondulado" a medida que transcurre el tiempo
- Posibilidad de varias codificaciones

CARACTERÍSTICAS DE LAS SEÑALES DIGITALES

- También son periódicas.
- Estas señales se caracterizan porque poseen un número discreto (limitado) de estados. Si el número de estados posibles es 2, se llaman señales digitales binarias; si poseen más de 2 estados, se llaman señales digitales multinivel.

CARACTERÍSTICAS DE LAS SEÑALES DIGITALES

La duración de los pulsos es igual siempre en las señales que vamos a ver. Esta duración la llamamos "T", y su unidad es el segundo, aunque utilizaremos los submúltiplos.

- Velocidad de modulación (Vm): Es el número de pulsos que una señal digital ejecuta por segundo, su unidad es el BAUDIO.
- se define como el máximo número de cambios de estado de la señal por unidad de tiempo. Se mide en Baudios (Nº de bits/seg.).
 VM= Nº de bits / Tiempo
- La Vm y la duración de los pulsos están relacionados por la siguiente fórmula:
 - [Vm=1/T].

CARACTERÍSTICAS DE LAS SEÑALES DIGITALES

- Velocidad de transmisión: Es el número de bits que se envían o reciben por segundo en un sistema de transmisión de datos, independientemente de si los mismos contienen información o no.
- La velocidad de transmisión y la velocidad de modulación coincide en los sistemas binarios, y en cualquier caso están relacionados por la siguiente fórmula:
 - [Vt=Vmx*Nº de bits del pulso].

Velocidad de transferencia de datos

 Está dad por la cantidad media de bits que se transmiten entre dos sistemas de datos.

$$V_{\textit{Transf}} = \frac{Cantidad \ de \ bits \ transmitidos}{Tiempo \ empleado}$$

Velocidad real de transferencia de datos

- Se denomina así a la cantidad de bits transmitidos en la unidad de tiempo, con la condición que el receptor los considere válidos.
 - VT > VTransf > VR.Transf

Capacidad de un canal:

- Es la velocidad de transmisión máxima que se puede alcanzar en el canal. La capacidad de un canal va a estar limitada por el ancho de banda.
- La capacidad es el doble del ancho de banda. Cuando por un canal se pueden transmitir n estados de señalización

Esta formula se aplica a los canales sin ruido: C = 2W * log 2 N donde N es la cantidad de niveles.

- Para los canales con ruido, la capacidad es:
 C = W* log 2 (1 + S/R) bits/seg.
- W = ancho de banda, S/R = relación señal ruido

La Atenuación

- Es el debilitamiento de la señal, debido a la resistencia eléctrica que presentan tanto el canal como los demás elementos que intervienen en la transmisión, el debilitamiento se manifiesta en un descenso de la amplitud de la señal transmitida.
- La atenuación no afecta por igual a todas las frecuencias, cuanta mayor frecuencia lleva una señal, más posibilidades tiene de producirse la atenuación.

El Retardo

Es el aumento en el tiempo de la propagación de una señal.

Perturbaciones en una transmisión

Hay tres tipos de perturbaciones:

- Ruido
- Distorsión
- Interferencia

El Ruido

- Es la aparición de una señal no deseada, de naturaleza auditiva en el medio de transmisión, la línea se puede ver afectada por cuatro tipos de ruidos:
 - Ruido Térmico
 - Ruido Impulsivo
 - Diafonía
 - Intermodulación.
 - Eco

- Ruido Térmico.- Es inevitable y es debido a las altas o bajas temperaturas a las que está sometida la línea de transmisión, de modo que aunque sea pequeño siempre va a existir.
- Ruido Impulsivo.- Es el ruido ocasionado por agentes ajenos a la línea de transmisión. Por ejemplo, un fenómeno meteorológico, el rayo. Es de corta duración y de gran amplitud.

- Diafonia.- Aparece a partir del hecho físico de que al circular una corriente eléctrica por un conductor se genera un campo magnético en torno al mismo y si cerca de este conductor se encuentra un segundo conductor que también está transmitiendo, el campo magnético generado por el primero se superpone con el segundo.
- Ej. cuando hablamos por teléfono y se oye a otra persona. La forma de evitar este tipo de ruido es o bien, apantallando los cables o entrelazando unos cables con otros.

Intermodulación.- Este ruido está relacionado con el comportamiento no lineal del medio de transmisión y consiste en la aparición de frecuencias que son suma o diferencias de la señal que se transmite.

Eco.- Consiste en la aparición de una señal no deseada de las mismas características pero atenuada y retrasada en el tiempo respecto de esta

Distorsión

Es una perturbación que produce la deformación de la señal en un sistema de comunicaciones. Dado que por las características físicas el sistema de comunicaciones está restringido a determinadas frecuencias y recordando el desarrollo de Fourier resulta que la distorsión estará dada por la falta de las señales de frecuencias no aceptadas por el sistema de comunicaciones.

Interferencia

 Dicha perturbación es debida a señales provenientes de otras transmisiones, las cuales debido a la proximidad de las frecuencias se mezclan con las de la señal que se transmite.