Data Mining

K — Nearest Neighbors and Classifiers Evaluation

Dr. Wedad Hussein wedad.hussein@cis.asu.edu.eg

Dr. Mahmoud Mounir mahmoud.mounir@cis.asu.edu.eg

Chapter 8. Classification: Basic Concepts

- Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods
- K-Nearest Neighbors
- Model Evaluation

- K-Nearest Neighbors (KNN) is a supervised learning algorithm where the result of new instance query is classified based on majority of K-nearest neighbor category.
- The purpose of this algorithm is to classify a new object based on attributes and training samples.
- KNN used neighborhood classification as the prediction value of the new query instance.

Given data instance

$$X1 = 3$$
 and $X2 = 7$

Determine the suitable class of this instance using KNN algorithm.

X1	X2	Class
7	7	Bad
7	4	Bad
3	4	Good
1	4	Good

Here is step by step on how to compute K-nearest neighbors KNN algorithm:

- Determine parameter K = number of nearest neighbors.
- Calculate the distance between the query-instance and all the training samples.
- Sort the distance and determine nearest neighbors based on the K-th minimum distance.
- Gather the category of the nearest neighbors.
- Use simple majority of the category of nearest neighbors as the prediction value of the query instance

Here is step by step on how to compute K-nearest neighbors KNN algorithm:

- Determine parameter K = number of nearest neighbors.
 - Suppose k = 3
- Calculate the distance between the query-instance and all the training samples.
 - We will use the Euclidean distance

X1	X2	Distance
7	7	$\sqrt{(7-3)^2+(7-7)^2}=4$
7	4	$\sqrt{(7-3)^2+(4-7)^2}=5$
3	4	$\sqrt{(3-3)^2+(4-7)^2}=3$
1	4	$\sqrt{(1-3)^2+(4-7)^2} = \sqrt{13} = 3.6$

 Sort the distance and determine nearest neighbors based on the K-th minimum distance.

X1	X2	Distance	Ranked distance	Is it included in the 3-Nerest Neighbors
7	7	4	3	Yes
7	4	5	4	No
3	4	3	1	Yes
1	4	3.6	2	Yes

Gather the category of the nearest neighbors.

X1	X2	Distance		Is it included in the 3-Nerest Neighbors	Class
7	7	4	3	Yes	Bad
7	4	5	4	No	
3	4	3	1	Yes	Good
1	4	3.6	2	Yes	Good

 Use simple majority of the category of nearest neighbors as the prediction value of the query instance

X1	X2	Distance	Ranked distance	Is it included in the 3-Nerest Neighbors	Class
7	7	4	3	Yes	Bad
7	4	5	4	No	
3	4	3	1	Yes	Good
1	4	3.6	2	Yes	Good

- Use simple majority of the category of nearest neighbors as the prediction value of the query instance
 - We have 2 good and 1 bad,
 - We conclude that data instance X1 = 3 and X2 = 7 is included in Good category.

Example

Chapter 8. Classification: Basic Concepts

- Classification: Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods
- K-Nearest Neighbors
- Model Evaluation

Model Evaluation and Selection

- Evaluation metrics: How can we measure accuracy? Other metrics to consider?
- Use validation test set of class-labeled tuples instead of training set when assessing accuracy
- Methods for estimating a classifier's accuracy:
 - Holdout method, random subsampling
 - Cross-validation
 - Bootstrap
- Comparing classifiers:
 - Confidence intervals
 - Cost-benefit analysis and ROC Curves

Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

Actual class\Predicted class	C ₁	¬ C ₁
C_1	True Positives (TP)	False Negatives (FN)
¬ C ₁	False Positives (FP)	True Negatives (TN)

Example of Confusion Matrix:

Actual class\Predicted	buy_computer	buy_computer	Total
class	= yes	= no	
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

- Given m classes, an entry, $CM_{i,j}$ in a confusion matrix indicates # of tuples in class i that were labeled by the classifier as class j
- May have extra rows/columns to provide totals

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity

A\P	C	Ç	
С	TP	FN	Р
¬C	FP	TN	N
	Ρ'	N'	All

 Classifier Accuracy, or recognition rate: percentage of test set tuples that are correctly classified

$$Accuracy = \frac{TP + TN}{ALL}$$

Error rate:

Error rate =
$$1 - accuracy$$
, or
$$Error rate = \frac{FP + FN}{ALL}$$

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity

A\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	P'	N'	All

Sensitivity (Recall):

- What % of <u>positive tuples</u> did the classifier label as <u>positive</u>?
- True Positive recognition rate

Sensitivity =
$$\frac{TP}{P} = \frac{TP}{TP+FN}$$

Specificity:

- What % of <u>negative tuples</u> did the classifier label as <u>negative</u>?
- True Negative recognition rate

Specificity =
$$\frac{TN}{N} = \frac{TN}{FP+TN}$$

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity

A\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	P'	N'	All

Precision:

what % of tuples that the classifier
 labeled as positive are actually positive

Precision =
$$\frac{TP}{P}$$
 = $\frac{TP}{TP+FP}$

Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

Actual class\Predicted class	Positive (H _o is True)	Negative (H _o is False)
Positive (Do not reject H _o)	(TP)	(FN) Type (II) Error
Negative (Reject H _o)	(FP) Type (I) Error	(TN)

Example of Confusion Matrix:

Actual class\Predicted	buy_computer	buy_computer	Total
class	= yes	= no	
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

Classifier Evaluation Metrics: Example (1)

Actual Class\Predicted class	cancer = yes	cancer = no Tota		Recognition(%)	
cancer = yes	90 210 300 30.00 (sens		30.00 (sensitivity		
cancer = no	140	9560	9700	98.56 (specificity)	
Total	230	9770	10000	96.50 (accuracy)	

- Precision = TP/TP+FP = 90/230 = 39.13%
- Sensitivity (Recall) = TP/P = 90/300 = 30.00%
- Specificity = TN/N = 9560/9700 = 98.56%
- Accuracy = TP+TN/ALL = 90+9560/10000 = 96.50%

A\P	С	¬C	
C	TP	FN	Р
¬C	FP	TN	N
	P'	N'	All

Classifier Evaluation Metrics: Example (2)

		Pre	edicted	
		Α	В	С
Actual	Α	95	3	2
	В	5	90	5
	С	15	0	85

- a) The recognition rate.
- b) The sensitivity of Class C.
- c) The error rate.
- a) Recognition rate = 95+90+85/300 = 90%
- **b) Sensitivity (Recall) = TP/P = 85/100 = 85%**
- c) Error rate = 1- recognition rate = 1-0.9 = 0.1 = 10%