Differentiating inverse functions (pp. 237-239)

Set-up. Suppose I is an interval, and $f:I\to\mathbb{R}$ is a continuous strictly monotone function. Then J=f(I) is an interval; $g=f^{-1}:J\to I$ is strictly monotone, and continuous (Section 18).

Theorem (29.9)

If f is differentiable at $c \in I$, and $f'(c) \neq 0$, then g is differentiable at d = f(c), and $g'(d) = \frac{1}{f'(c)} = \frac{1}{f'(g(d))}$.

A way to memorize the formula: $\forall y \in J$, f(g(y)) = y. Differentiate both sides at d, using Chain Rule: f'(g(d))g'(d) = 1. This is not a proof! We need to prove g is differentiable at d.

Theorem (Caratheodory – Lecture 27)

Suppose I is an interval, $f: I \to \mathbb{R}$. f is differentiable at $a \in I$ iff \exists function $\phi: I \to \mathbb{R}$, continuous at a, s.t. $f(x) - f(a) = \phi(x)(x - a)$ $\forall x \in I$. Then $\phi(a) = f'(a)$.

Derivatives of inverse functions: proof

Theorem 29.9. Suppose I is an interval, $f: I \to \mathbb{R}$ strictly monotone and continuous, J = f(I), let $g = f^{-1}: J \to \mathbb{R}$. If f is differentiable at $c \in I$, and $f'(c) \neq 0$, then g is differentiable at d = f(c), and $g'(d) = \frac{1}{f'(c)} = \frac{1}{f'(g(d))}$.

Proof. By Caratheodory, we need to show: $\exists \psi : J \to \mathbb{R}$, continuous at d, s.t. $g(y) - g(d) = \psi(y)(y - d) \ \forall y \in J$, and $\psi(d) = \frac{1}{f'(c)}$.

$$\exists \ \phi: I \to \mathbb{R}$$
, continuous at c (with $\phi(c) = f'(c)$), s.t.

$$f(x) - f(c) = \phi(x)(x - c) \ \forall x \in I.$$

$$y - d = f(g(y)) - f(g(d)) = \phi(g(y))(g(y) - g(d)).$$

g is continuous, c = g(d), hence $\phi \circ g$ is continuous at d.

$$f'(c) = \phi(g(d)) \neq 0$$
, hence $\phi \circ g \neq 0$ on a neighborhood of d .

$$g(y) - g(d) = \psi(y)(y - d)$$
, where $\psi(y) = \frac{1}{\phi(g(y))}$ is continuous at d .

$$g'(d) = \frac{1}{\phi(g(d))} = \frac{1}{f'(c)}.$$

Derivatives of rational powers

Example 2, p. 238 $f(x) = x^n$ is differentiable, strictly increasing on $(0,\infty)$; $f'(x) = nx^{n-1} \neq 0$. $f((0,\infty)) = (0,\infty)$. The inverse function: $g(y) = y^{1/n}$. For $y \in (0,\infty)$, $g'(y) = \frac{1}{f'(g(y))} = \frac{1}{n(y^{1/n})^{n-1}} = \frac{1}{n} \cdot \frac{1}{y^{1-1/n}} = \frac{1}{n} y^{1/n-1}$.

If
$$n$$
 is odd, we can view f and g as functions $\mathbb{R} \to \mathbb{R}$. Then $g'(y) = \frac{1}{n} y^{1/n-1}$ for $y < 0$ as well (but not for $y = 0$).

Derivative of
$$h(x) = x^r$$
, $r \in \mathbb{Q}$: $h'(x) = rx^{r-1}$. $r = \frac{m}{n}$, $m \in \mathbb{Z}$, $n \in \mathbb{N}$. $h(x) = x^{m/n} = q(p(x))$, $p(x) = x^{1/n}$, $q(y) = y^m$. $h'(x) = q'(p(x))p'(x) = m(x^{1/n})^{m-1} \cdot \frac{1}{n}x^{1/n-1} = \frac{m}{n}x^{(m-1)/n+1/n-1} = rx^{r-1}$.

Inverse trigonometric functions

Example 3, p. 238 $f(x) = \sin x$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ is continuous and strictly increasing. $f([-\frac{\pi}{2}, \frac{\pi}{2}]) = [-1, 1]$.

Inverse function:
$$g = f^{-1}: [-1,1] \to [-\frac{\pi}{2},\frac{\pi}{2}]$$
 is called arcsin.

$$f'(x) = \cos x$$
 is positive for $-\frac{\pi}{2} < x < \frac{\pi}{2}$.

$$f\left(-\frac{\pi}{2}\right)=-1$$
, $f\left(\frac{\pi}{2}\right)=1$, hence g is differentiable on $(-1,1)$.

$$g'(y) = \frac{1}{f'(g(y))} = \frac{1}{\cos(g(y))}$$
, for $y \in (-1, 1)$.

$$g(y) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
, hence $\cos g(y) > 0$. $\sin g(y) = f(g(y)) = y$, so

$$\cos g(y) = \sqrt{1 - \sin^2 g(y)} = \sqrt{1 - y^2}.$$

$$\left(\arcsin y\right)' = \frac{1}{\sqrt{1-y^2}}$$

Similarly one can show: $\left| \left(\operatorname{arctan} y \right)' = \frac{1}{1+y^2} \right|$

$$\left(\operatorname{arctan} y\right)' = \frac{1}{1+y^2}$$

Integration: the goals

Goal: find the area under the graph of bounded $f : [a, b] \to \mathbb{R}$.

Strategy:

- Split the subgraph of *f* into thin vertical strips.
- Estimate the area of each strip from above, and from below (by using a rectangle).
- Add areas of these rectangles, find some kind of a limit.

Intergration: definitons (Section 32)

```
If f is bounded on S, let m(f,S) = \inf_{s \in S} f(s), M(f,S) = \sup_{s \in S} f(s). A partition of [a,b] is P = \{a = t_0 < t_1 < \ldots < t_n = b\}. Lower Darboux sum: L(f,P) = \sum_{k=1}^n m(f,[t_{k-1},t_k])(t_k-t_{k-1}). Upper Darboux sum: U(f,P) = \sum_{k=1}^n M(f,[t_{k-1},t_k])(t_k-t_{k-1}). Lower Darboux integral: L(f) = \sup_P L(f,P). Upper Darboux integral: U(f) = \inf_P U(f,P). The inf, sup are taken over all partitions P of [a,b]. For any P, (b-a)m(f,[a,b]) \leqslant L(f,P) \leqslant U(f,P) \leqslant (b-a)M(f,[a,b]), hence L(f), U(f) are finite.
```

Definition (p. 270)

f is integrable if L(f) = U(f). Denote $\int_a^b f = L(f) = U(f)$.

Intergrals: Example 1

Is f(x) = c integrable on [a,b]? If it is, compute the integral. If $P = \{a = t_0 < t_1 < \ldots < t_n = b\}$ is a partition, then, for any k, $m(f,[t_{k-1},t_k]) = \inf_{t \in [t_{k-1},t_k]} f(t) = c$, and $M(f,[t_{k-1},t_k]) = \sup_{t \in [t_{k-1},t_k]} f(t) = c$. $L(f,P) = \sum_{k=1}^n m(f,[t_{k-1},t_k]) (t_k - t_{k-1}) = c \sum_{k=1}^n (t_k - t_{k-1}) = c(b-a) = U(f,P).$ $L(f) = \sup_P L(f,P) = c(b-a). \ U(f) = \inf_P U(f,P) = c(b-a). \ U(f) = L(f), \text{ hence } f \text{ is integrable on } [a,b], \text{ and } \int_a^b f = c(b-a). \ \text{Can you find a geometric interpretation?}$

Intergrals: Example 2

Let $g(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$. Is g integrable on [0,1]? If it is, compute the integral.

If
$$P = \{a = t_0 < t_1 < \dots < t_n = b\}$$
 is a partition, then, for any k , $m(g, [t_{k-1}, t_k]) = \inf_{t \in [t_{k-1}, t_k]} g(t) = 0$, and $M(g, [t_{k-1}, t_k]) = \sup_{t \in [t_{k-1}, t_k]} g(t) = 1$. $L(g, P) = \sum_{k=1}^n m(g, [t_{k-1}, t_k]) (t_k - t_{k-1}) = 0$. $U(g, P) = \sum_{k=1}^n M(g, [t_{k-1}, t_k]) (t_k - t_{k-1}) = \sum_{k=1}^n (t_k - t_{k-1}) = 1$. $L(g) = \sup_P L(g, P) = 0$. $U(g) = \inf_P U(g, P) = 1$. $U(g) \neq L(g)$, hence g is **not integrable** on $[0, 1]$.

We shall show that $U(f) \geqslant L(f)$, for any bounded $f : [a, b] \to \mathbb{R}$.

More about Darboux sums

Aim. We want to show that $U(f) \geqslant L(f)$, for any bounded $f : [a, b] \to \mathbb{R}$.

Notation. For partitions $P = \{a = t_0 < t_1 < \ldots < t_n = b\}$ and $Q = \{a = s_0 < s_1 < \ldots < s_m = b\}$, we say that $P \subset Q$ if $\{t_1, \ldots, t_n\} \subset \{s_1, \ldots, s_m\}$. We say Q is a refinement of P.

Lemma (32.2; proof is optional)

Suppose $f:[a,b]\to\mathbb{R}$ is bounded. If P and Q are partitions of [a,b], and $P\subset Q$, then $L(f,P)\leqslant L(f,Q)$, and $U(f,P)\geqslant U(f,Q)$.

Lemma (32.3)

If P and Q are partitions of [a,b], and $f:[a,b]\to\mathbb{R}$ is bounded, then $L(f,P)\leqslant U(f,Q)$.

Proof.
$$L(f, P) \leq L(f, P \cup Q) \leq U(f, P \cup Q) \leq U(f, Q)$$
.

Proof of $L(f, P) \leq L(f, Q)$, Lemma 32.2 (optional)

Induction on |Q|: suffices to prove $L(f, P) \leq L(f, Q)$ for |Q| = |P| + 1:

$$P = \{a = t_0 < t_1 < \ldots < t_n = b\},\$$

$$Q = \{a = t_0 < \dots < t_{j-1} < u < t_j < \dots < t_n = b\}.$$

$$L(f, P) = \sum_{k=1}^{j-1} m(f, [t_{k-1}, t_k]) (t_k - t_{k-1})$$

$$+ m(f, [t_{j-1}, t_j]) (t_j - t_{j-1})$$

$$+ \sum_{k=j}^{n} m(f, [t_{k-1}, t_k]) (t_k - t_{k-1}).$$

$$L(f,Q) = \sum_{k=1}^{j-1} m(f,[t_{k-1},t_k]) (t_k - t_{k-1})$$

$$+ m(f,[t_{j-1},u]) (u - t_{j-1}) + m(f,[u,t_j]) (t_j - u)$$

$$+ \sum_{k=j}^{n} m(f,[t_{k-1},t_k]) (t_k - t_{k-1}).$$

Properties of U and L

If
$$P = \{a = t_0 < t_1 < \dots < t_n = b\}$$
, $Q = \{a = t_0 < \dots < t_{j-1} < u < t_j < \dots < t_n = b\}$, then
$$L(f,Q) - L(f,P) = m(f,[t_{j-1},u])(u-t_{j-1}) + m(f,[u,t_j])(t_j-u) - m(f,[t_{j-1},t_j])(t_j-t_{j-1}) \geqslant m(f,[t_{j-1},t_j])(u-t_{j-1}) + m(f,[t_{j-1},t_j])(t_j-u) - m(f,[t_{j-1},t_j])(t_j-t_{j-1}) = 0.$$

Thus,
$$L(f, P) \leq L(f, Q)$$
.

Theorem (Theorem 32.4)

If $f:[a,b]\to\mathbb{R}$ is bounded, then $L(f)\leqslant U(f)$.

Proof.
$$L(f) = \sup_Q L(f, Q)$$
. $\forall P, Q, L(f, Q) \leq U(f, P)$. Thus, $L(f) = \sup_Q L(f, Q) \leq U(f, P)$, for any P . $L(f) \leq \inf_P U(f, P) = U(f)$.

Remark. From the definition, f is integrable when U(f) = L(f). We only need to check $U(f) \leq L(f)$ to establish integrability.

Integrals: Example

```
Is h(x) = x integrable on [0, b]? If it is, compute \int_0^b h.
If P = \{a = t_0 < t_1 < \ldots < t_n = b\} is a partition, then, for any k,
m(h, [t_{k-1}, t_k]) = \inf_{t \in [t_{k-1}, t_k]} h(t) = t_{k-1}, and
M(h,[t_{k-1},t_k]) = \sup_{t \in [t_{k-1},t_k]} h(t) = t_k.
L(h,P) = \sum_{k=1}^{n} t_{k-1}(t_k - t_{k-1}), \ U(h,P) = \sum_{k=1}^{n} t_k(t_k - t_{k-1}).
To make computations easier, consider "equal" partitions
P_n = (0 < \frac{b}{n} < \frac{2b}{n} < \dots < \frac{(n-1)b}{n} < b) (that is, t_k = \frac{kb}{n}).
L(h, P_n) = \sum_{k=1}^n \frac{(k-1)b}{n} \frac{b}{n} = \frac{b^2}{n^2} \sum_{k=1}^n (k-1) = \frac{b^2}{n^2} \frac{n(n-1)}{n} = \frac{b^2}{n^2} (1 - \frac{1}{n}).
L(h) \geqslant \sup_{n} L(h, P_n) = \lim_{n} L(h, P_n) = \frac{b^2}{2}. Similarly,
U(h) \leq \lim_n U(h, P_n) = \frac{b^2}{2}. However, U(h) \geq L(h), hence
U(h) = L(h) = \frac{b^2}{2}. Thus, h is integrable, with \int_0^b h = \frac{b^2}{2}.
Can you interpret this geometrically?
```