

Group Theory

Homework Assignment 13

Spring, 2020

1. The basis of the real Lie algebra $L = sl(2, \mathbb{R})$ is given by

$$b_1 = \frac{1}{2} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}, \ b_2 = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ b_3 = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Find the representation matrices of the basis elements b_1 , b_2 , and b_3 in the adjoint representation.

- 2. Continue from the previous problem. Find the Killing forms $B(b_p, b_q)$ for p, q = 1, 2, 3.
- 3. Choose the basis of the semi-simple complex Lie algebra \tilde{L} such that each basis element is a member of some subspace \tilde{L}_{γ} . The adjoint representation matrix ad(h) of each element h in the Cartan subalgebra H is a diagonal matrix with zero diagonal elements corresponding to the basis elements of $\tilde{L}_0 = H$ and with diagonal element $\gamma(h)$ corresponding to each basis element of \tilde{L}_{γ} (for $\gamma \in \Delta$). Show that

$$B(h,h') = \sum_{\gamma \in \Delta} (\dim \tilde{L}_{\gamma}) \gamma(h) \gamma(h') \text{ for all } h,h' \in H.$$

4. Consider the complexification \tilde{L} of L = su(2). The basis elements are given by

$$a_1 = \frac{1}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \ a_2 = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ a_3 = \frac{1}{2} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}.$$

The basis of the Cartan subalgebra H is given by $h_1 = a_3$. Verify that the two non-zero roots are α_1 and $-\alpha_1$ with $\alpha_1(h_1) = i$.

5. Continue from the previous problem. Find the values of $B(h_1, h_1)$ and $\langle \alpha_1, \alpha_1 \rangle$.