12ML:: Basics

Notation

 \mathcal{X} : p-dim. input space

Usually we assume $\mathcal{X} = \mathbb{R}^p$, but categorical **features** can also occur \mathcal{Y} : **target space**

E.g.:
$$\mathcal{Y} = \mathbb{R}$$
, $\mathcal{Y} = \{0,1\}$, $\mathcal{Y} = \{-1,1\}$, $\mathcal{Y} = \{1,\ldots,g\}$
 $\mathbf{x} = (x_1,\ldots,x_p)^T \in \mathcal{X}$: feature vector

 $y \in \mathcal{Y}$: target / label / output

 \mathbb{P}_{xy} : Joint probability distribution on $\mathcal{X} imes \mathcal{Y}$

p(x,y) or $p(x,y \mid \theta)$: joint probability density function (pdf)

 $(x^{(i)}, y^{(i)})$: i -th observation or instance

 $\mathcal{D} = \left(\left(\mathsf{x}^{(1)}, \mathsf{y}^{(1)} \right), \ldots, \left(\mathsf{x}^{(n)}, \mathsf{y}^{(n)} \right) \right)$

data set with *n* observations.

 $\mathcal{D}_{\mathsf{train}}$, $\mathcal{D}_{\mathsf{test}}$: data for training and testing

Often, $\mathcal{D} = \mathcal{D}_{\mathsf{train}} \dot{\cup} \; \mathcal{D}_{\mathsf{test}}$.

 $f(\mathsf{x})$ or $f(\mathsf{x} \mid \boldsymbol{\theta}) \in \mathbb{R}$ or \mathbb{R}^g : prediction function (**model**)

We might suppress θ in notation.

 $h(\mathsf{x}) \text{ or } h(\mathsf{x}|\boldsymbol{ heta}) \in \mathcal{Y}$

Discrete prediction for classification.

 $\boldsymbol{\theta} = (\theta_1, \theta_2, ..., \theta_d) \in \Theta$: model parameters

Some models may traditionally use different symbols.

 \mathcal{H} : hypothesis space

f lives here, restricts the functional form of f.

$$\epsilon = y - f(x)$$
 or $\epsilon^{(i)} = y^{(i)} - f(x^{(i)})$

Residual in regression.

yf(x) or $y^{(i)}f(x^{(i)})$: **margin** for binary classification

With, $\mathcal{Y}=\{-1,1\}$.

 $\pi_k(x) = \mathbb{P}(y = k \mid x)$: **posterior probability** for class k, given x In case of binary labels we might abbreviate $\pi(x) = \mathbb{P}(y = 1 \mid x)$.

 $\pi_k = \mathbb{P}(y = k)$: **prior probability** for class k

In case of binary labels we might abbreviate $\pi=\mathbb{P}(y=1)$.

 $\mathcal{L}(m{ heta})$ and $\ell(m{ heta})$: Likelihood and log-Likelihood for a parameter $m{ heta}$

These are based on a statistical model.

 \hat{y} , \hat{f} , \hat{h} , $\hat{\pi}_k(x)$, $\hat{\pi}(x)$ and $\hat{\theta}$

These are learned functions and parameters (These are estimators of corresponding functions and parameters).

Concepts

Model: $f: \mathcal{X} \to \mathbb{R}^g$ is a function that maps feature vectors to predictions.

Learner: takes a data set with features and outputs (**training set**, $\in \mathcal{X} \times \mathcal{Y}$) and produces a **model** (which is a function $f : \mathcal{X} \to \mathbb{R}^g$)

Learning = Representation + Evaluation + Optimization.

Representation: (Hypothesis space) Defines which kind of model structure of f can be learned from the data.

Example: Linear functions, Decision trees etc.

Evaluation: A metric that quantifies how well a specific model performs on a given data set. Allows us to rank candidate models in order to choose the best one.

Example: Squared error, Likelihood etc.

Optimization: Efficiently searches the hypothesis space for good models

Example: Gradient descent, Quadratic programming etc.

Loss function: The "goodness" of a prediction f(x) is measured by a loss function L(y, f(x)) Through **loss**, we calculate the prediction error and the choice of the loss has a major influence on the final model **Risk Minimization:** The ability of a model f to reproduce the association

between x and y that is present in the data \mathcal{D} can be measured by the average loss: the **empirical risk**.

$$\mathcal{R}_{\mathsf{emp}}(f) = \frac{1}{n} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right).$$

Learning then amounts to **empirical risk minimization** – figuring out which model f has the smallest average loss:

$$\hat{f} = \operatorname*{arg\,min}_{f \in \mathcal{H}} \mathcal{R}_{\operatorname{emp}}(f).$$

Regression Losses

Basic Idea (L2 loss/ squared error):

$$L(y, f(x)) = (y - f(x))^2$$
 or $L(y, f(x)) = 0.5(y - f(x))^2$

Convex and differentiable.

Tries to reduce large residuals (if residual is twice as large, loss is 4 times as large)

Basic Idea (L1 loss/ absolute error):

$$L(y, f(x)) = |y - f(x)|$$

Convex and more robust

No derivatives for = 0, y = f(x), optimization becomes harder

 $\hat{f}(x) = \text{median of } y | x$

Classification

We want to assign new observations to known categories according to criteria learned from a training set.

Assume we are given a classification problem:

$$x \in \mathcal{X}$$
 feature vector $y \in \mathcal{Y} = \{1, \dots, g\}$ categorical output variable (label) $\mathcal{D} = \left(\left(\mathbf{x}^{(1)}, y^{(1)}\right), \dots, \left(\mathbf{x}^{(n)}, y^{(n)}\right)\right)$ observations of x and y

Classification usually means to construct g discriminant functions: $f_1(\mathbf{x}),\ldots,f_g(\mathbf{x})$, so that we choose our class as $h(\mathbf{x})=\arg\max_k f_k(\mathbf{x})$ for $k=1,2,\ldots,g$

Linear Classifier:

If the functions $f_k(x)$ can be specified as linear functions, we will call the classifier a *linear classifier*.

Note: All linear classifiers can represent non-linear decision boundaries in our original input space if we include derived features. For example: higher order interactions, polynomials or other transformations of x in the model.

Binary classification: If only 2 classes exist

We can use a single discriminant function $f(x) = f_1(x) - f_2(x)$.