ĐIỆN TỬ TƯƠNG TỰ

BÀI TẬP

1 DIODE

Cho mạch điện như hình 1 với các tham số sau: Điốt là các van lý tưởng.

Biết $E_1=+2V, E_2=-3V.$ $u_1(t)$ có dạng là một xung tam giác đối xứng qua gốc 0 với biên độ $u_1(t)$ R $\pm U_{1m}=\pm 5V,$ chu kỳ $T_1=20ms.$ Giả thiết $R=1k\Omega;$ $R_t=20k\Omega>>R.$

- a) Phân tích nguyên lý hoạt động của sơ đồ khi có điện áp $u_1(t)$ tác động trong một chu kỳ
- b) Vẽ các đồ thị $u_1(t)$, $u_2(t)$ và $u_2(u_1)$.
- c) Tính các tham số của điện áp $u_2(t)$ ở cả hai bán kỳ dương và âm: biên độ, độ rộng sườn trước, sườn sau, độ rộng đỉnh.

1 DIODE

Cho mạch điện như hình 2, giả thiết các van D_1 , D_2 là lý tưởng ($R_{thuận}$ << R_1 , R_2 << $R_{ngược}$, R_1 << R_2 , điện áp trên $u_1(t)$ điốt mở bằng 0)

Biết $E_1 = +3V$, $E_2 = -2V$. $u_1(t)$ là 1 điện áp tam giác đối xứng qua gốc 0 với biên độ $\pm U_{1m} = \pm 6V$, chu kỳ $T_1 = 30$ ms.

- b) Vẽ các đồ thị $u_1(t)$, $u_2(t)$ và $u_2(u_1)$.
- c) Tính các tham số của điện áp $u_2(t)$ ở cả hai bán kỳ dương và âm: biên độ, độ rộng sườn trước, sườn sau, độ rộng đỉnh.

Hình 2

1 DIODE

Cho sơ đồ như hình bên. Biết R=1(K Ω), $u_{vào}$ =10.sin(2 π ft+45 $^{\circ}$) (vôn), E= -6 (vôn) Điốt Đ là lý tưởng.

- a) Hãy tính toán và vẽ các đổ thị:
 u_{vào}(t),E(t),i_R(t),u_R(t),u_D(t),u_{ra}(t).
- b) Vẽ Đặc tuyến truyền đạt u_{ra}=f(u_{vào}).

2 BJT

Trong mạch điện

- a. Xác định trị phân cực I_C, V_C, V_E, V_{CE}.
- b. Vẽ mạch tương đương xoay chiều với tín hiệu nhỏ (không có C_E)
- c. Tính tổng trở vào Z_i và độ lợi điện thế A_v=v_o/v_i của mạch (không có C_E)
- d. Lập lại câu b, c khi mắc C_E vào mạch.

2 BJT

Trong mạch điện

- a. Vẽ mạch tương đương xoay chiều với tín hiệu nhỏ
- b. Thiết lập công thức tính tổng trở vào Z_i và độ lợi điện thế A_v
- c. Áp dụng bằng số để tính Z_i và A_{v.}

2 BJT

Tính công suất vào, công suất ra và hiệu suất của mạch sau, biết rằng khi có tín hiệu ở ngõ vào dòng I_B sẽ dao động với biên độ đỉnh là 10 mA.

Biết $\pm E = \pm 12V$; $R_1=15kΩ$; $R_3=1kΩ$; $R_5=10kΩ$; $R_6=20kΩ$. Các IC KĐTT là lý tưởng.

- a) Tìm biểu thức tổng quát xác định u_{ra} theo các điện áp vào u₁, u₂, u₃ và các tham số của mạch.
- b) Xác định các giá trị điện trở R_2 , R_4 và R_7 để có quan hệ $u_{ra} = 2u_1 + 4u_2 3u_3$

Chứng tỏ rằng:

$$\mathbf{v_0} = \left(1 + \frac{\mathbf{R_2}}{\mathbf{R_1}} + \frac{2\mathbf{R_2}}{\mathbf{R}}\right) (\mathbf{v_2} - \mathbf{v_1})$$

Cho mạch điện

- a) Phân tích và vẽ đặc tuyến truyền đạt của sơ đồ với giả thiết IC lý tưởng.
- b) Cho $u_V = 9\sin\omega t$, $\pm E = \pm 15V$,

$$R_1 = 10k\Omega, R_2 = 20k\Omega, \pm U_{rmax} = \pm 12V,$$

$$I_{DZ} = 10 \text{mA}, U_{DZ} = 3 \text{V}.$$

- Vẽ và giải thích các điện áp $u_A(t)$; $u_B(t)$ theo $u_v(t)$.
- Tính R₃.

Cho mạch

- a) Vẽ các giản đồ thời gian mô tả hoạt động của mạch
- b) Tính chọn tham số các linh kiện của mạch sao cho tần số điện áp ra thay đổi từ $(10 \div 1000)$ Hz, biết C = 200 nF.

4 Oscillator

Cho mạch dao động

Chứng minh rằng tần số dao động cho bởi

$$f_0 = \frac{1}{2\pi RC} \cdot \frac{1}{\sqrt{6 + 4\frac{R_c}{R}}}$$

4 Oscillator

Cho mạch điện:

 D_1 , D_2 cấu tạo bằng Si có điện thế Zener lần lượt là V_{Z1} và V_Z 1. Chứng minh rằng độ rộng của xung dương của v_0 cho bởi:

$$T_1 = RCLn \frac{1 + \frac{\beta(V_{z2} + 0.7v)}{V_{z1} + 0.7v}}{1 - \beta} \quad v \delta i \quad \beta = \frac{R_2}{R_1 + R_2}$$

2. Chứng minh rằng độ rộng của xung âm của v_0 cho bởi:

$$T_2 = RCLn \frac{1 + \frac{\beta(V_{z1} + 0.7v)}{V_{z2} + 0.7v}}{1 - \beta}$$

- 3. Nếu $V_{Z1} > V_{Z2}$ thì T_1 lớn hơn hay nhỏ hơn T_2 . Giải thích.
- 4. Tìm tần số f của mạch dao động khi $V_{Z1} = V_{Z2} = V_{Z}$

4 Oscillator

Cho mạch

- a) Vẽ các giản đồ thời gian mô tả hoạt động của mạch
- b) Tính chọn tham số các linh kiện của mạch sao cho tần số điện áp ra thay đổi từ $(100 \div 1500)$ Hz, biết $D \subseteq C = 100$ nF.

5 DC Power

Cho mạch điện

Trong đó:

$$u_v = 22V$$
; $U_t = 15V$; $R_2 = 2.2k\Omega$

a. Thuyết minh nguyên lý làm việc.

b. Xác định R_1 và U_{DZ} .

5 DC Power

Cho mạch điện

Trong đó: $U_Z = 6.3V$, $U_D = 0.7V$; $VR = 2.5k\Omega$,

$$R_1 = 7.2k\Omega$$
; $R_2 = 1.8k\Omega$, $E = +20V$

 $I_{Z\,min}=12mA$, $\beta_{Z}=50$; $I_{0\,max}=250mA$.

- a. Phân tích hoạt động.
- b. Viết biểu thức tính E₀ và tính R₃
- c. Xác định công suất tiêu tán trên Tranzito khi dòng $I_{0\,\mathrm{max}}$

