$12a_{0796} \ (K12a_{0796})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{28} + u^{27} + \dots - u^2 - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 28 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{28} + u^{27} + \dots - u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{6} + u^{4} + 2u^{2} + 1 \\ u^{6} + u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{8} + u^{6} + 3u^{4} + 2u^{2} + 1 \\ u^{8} + 2u^{4} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{19} - 2u^{17} - 8u^{15} - 12u^{13} - 21u^{11} - 22u^{9} - 20u^{7} - 12u^{5} - 5u^{3} \\ -u^{19} - u^{17} - 6u^{15} - 5u^{13} - 11u^{11} - 7u^{9} - 6u^{7} - 2u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{14} - u^{12} - 4u^{10} - 3u^{8} - 2u^{6} + 2u^{2} + 1 \\ -u^{16} - 2u^{14} - 6u^{12} - 8u^{10} - 10u^{8} - 6u^{6} - 4u^{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{25} - 2u^{23} + \dots + 6u^{3} + u \\ -u^{27} - 3u^{25} + \dots + u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-4u^{27} - 8u^{25} + 4u^{24} - 44u^{23} + 8u^{22} - 72u^{21} + 40u^{20} - 184u^{19} + 60u^{18} - 240u^{17} + 140u^{16} - 364u^{15} + 148u^{14} - 360u^{13} + 200u^{12} - 336u^{11} + 128u^{10} - 228u^9 + 96u^8 - 108u^7 + 20u^6 - 32u^5 + 4u^3 - 12u^2 + 12u - 10$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
$c_1, c_6, c_7 \\ c_9, c_{10}$	$u^{28} + 5u^{27} + \dots + 2u + 1$
c_2, c_8	$u^{28} - u^{27} + \dots - u^2 - 1$
$c_3, c_4, c_5 \\ c_{11}, c_{12}$	$u^{28} + u^{27} + \dots - 4u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_6, c_7 \\ c_9, c_{10}$	$y^{28} + 37y^{27} + \dots - 34y + 1$
c_2, c_8	$y^{28} + 5y^{27} + \dots + 2y + 1$
$c_3, c_4, c_5 \\ c_{11}, c_{12}$	$y^{28} - 35y^{27} + \dots + 2y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.653471 + 0.778202I	3.53035 + 2.44157I	-1.95206 - 4.13656I
u = 0.653471 - 0.778202I	3.53035 - 2.44157I	-1.95206 + 4.13656I
u = -0.675349 + 0.676658I	1.40633 + 0.49885I	-6.53440 - 1.41082I
u = -0.675349 - 0.676658I	1.40633 - 0.49885I	-6.53440 + 1.41082I
u = 0.733930 + 0.599761I	-6.94317 - 1.86401I	-7.90882 + 0.19524I
u = 0.733930 - 0.599761I	-6.94317 + 1.86401I	-7.90882 - 0.19524I
u = -0.619172 + 0.858733I	0.82022 - 5.33799I	-8.56972 + 7.97469I
u = -0.619172 - 0.858733I	0.82022 + 5.33799I	-8.56972 - 7.97469I
u = -0.204914 + 0.910458I	-12.53370 - 2.51044I	-16.1255 + 4.0009I
u = -0.204914 - 0.910458I	-12.53370 + 2.51044I	-16.1255 - 4.0009I
u = 0.603718 + 0.919286I	-7.98654 + 6.81286I	-10.46299 - 6.27742I
u = 0.603718 - 0.919286I	-7.98654 - 6.81286I	-10.46299 + 6.27742I
u = 0.205807 + 0.816083I	-3.50231 + 2.01539I	-16.4015 - 5.8251I
u = 0.205807 - 0.816083I	-3.50231 - 2.01539I	-16.4015 + 5.8251I
u = -0.930865 + 0.909652I	2.22097 + 2.66758I	-7.83362 - 0.34269I
u = -0.930865 - 0.909652I	2.22097 - 2.66758I	-7.83362 + 0.34269I
u = 0.922794 + 0.925907I	10.83490 - 0.43343I	-6.08489 + 1.46658I
u = 0.922794 - 0.925907I	10.83490 + 0.43343I	-6.08489 - 1.46658I
u = -0.916621 + 0.942227I	13.36070 - 3.37331I	-2.23945 + 2.35871I
u = -0.916621 - 0.942227I	13.36070 + 3.37331I	-2.23945 - 2.35871I
u = 0.906845 + 0.956007I	10.73640 + 7.16764I	-6.31746 - 6.03607I
u = 0.906845 - 0.956007I	10.73640 - 7.16764I	-6.31746 + 6.03607I
u = -0.898590 + 0.970044I	2.02326 - 9.39889I	-8.16467 + 4.89860I
u = -0.898590 - 0.970044I	2.02326 + 9.39889I	-8.16467 - 4.89860I
u = -0.605156	-9.60647	-7.91280
u = -0.191210 + 0.569318I	-0.320623 - 0.807047I	-7.76798 + 8.33007I
u = -0.191210 - 0.569318I	-0.320623 + 0.807047I	-7.76798 - 8.33007I
u = 0.425468	-1.23780	-7.36100

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6, c_7 c_9, c_{10}	$u^{28} + 5u^{27} + \dots + 2u + 1$
c_2, c_8	$u^{28} - u^{27} + \dots - u^2 - 1$
$c_3, c_4, c_5 \\ c_{11}, c_{12}$	$u^{28} + u^{27} + \dots - 4u - 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6, c_7 c_9, c_{10}	$y^{28} + 37y^{27} + \dots - 34y + 1$
c_2,c_8	$y^{28} + 5y^{27} + \dots + 2y + 1$
$c_3, c_4, c_5 \\ c_{11}, c_{12}$	$y^{28} - 35y^{27} + \dots + 2y + 1$