

Spatial Acoustics Library for MATLAB (SALM): A Computational Toolkit for Spatial Audio Processing

César D. Salvador (1), Jorge Treviño (2) and Shuichi Sakamoto (2)

- (1) Research Department and School of Electronic Engineering, Faculty of Engineering, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Peru, cesar.salvador@upc.edu.pe
- (2) Research Institute of Electrical Communication (RIEC) and Graduate School of Information Sciences (GSIS), Tohoku University, Sendai, Japan, jorge.trevino@music.yamaha.com and saka@ais.riec.tohoku.ac.jp
- * Jorge Treviño is currently affiliated with Yamaha Corporation
- ** SALM is available at: https://github.com/cesardsalvador/SpatialAcousticsLibraryMATLAB

Outline

- 1. Introduction
- 2. Structure of SALM
- 3. Geometry
- 4. Use Case 1: Diffuse-Field Equalization of HRTFs
- 5. Use Case 2: Distance Extrapolation of HRTFs
- 6. Future Work
- 7. Conclusion

1. Introduction

- Spatial audio is central to VR, AR, binaural rendering and room acoustics
- Existing MATLAB/Octave libraries for spatial audio:
 - SOFiA (B. Bernschutz et al., 2011)
 - SFS Toolbox (H. Wierstorf and S. Spors, 2012)
 - Aktools (F. Brinkmann and S. Weinzierl, 2017)
 - ITA Toolbox (M. Berzborn et al., 2017)
- Motivation of SALM
 - Each library brings unique strengths and has advanced spatial audio functions
 - SALM complements these efforts by offering a unified framework
 - Emphasis on transform-domain tools and reproducible workflows

1. Introduction – Existing MATLAB/Octave Libraries for Spatial Audio

Library	Description	Spatial-domain processing	Transforms	Transform-domain processing
SOFiA Toolbox [13]	MATLAB library to analyze a sound field captured with a microphone array.	Microphone-array handling; spherical-grid management; visualization of measured fields.	Spherical Fourier transforms.	Modal beamforming; plane-wave decomposition; radial filtering for rigid/open spheres.
Sound field synthesis toolbox [14]	MATLAB/Octave library to synthesize a sound field in an area surrounded by a loudspeaker array.	Driving functions for loudspeaker-array rendering; convolution engine.	Spherical Fourier transforms.	Modal driving filters; binaural rendering from arrays.
AKtools [15]	MATLAB library for the capture, processing, analysis and rendering of spatial audio signals.	Signal generation; convolution engine; room analysis.	Spherical Fourier transforms.	Radial filtering; binaural rendering.
ITA Toolbox [16]	MATLAB toolbox for acoustic measurements and audio signal processing.	Impulse-response measurement; convolution engines for auralization.	Spherical Fourier transforms.	Radial filtering; modal analysis.
SALM	MATLAB library for sound field analysis, processing and synthesis with circular and spherical arrays.	Diffuse-field filter for equalization; free-field translation operator for acoustic centering.	Circular, semicircular, and spherical Fourier transforms.	Distance-varying filter (DVF) for radial extrapolation; boundary-matching filter (BMF) for array signal conversion.

2. Structure of SALM

Special functions

pnm: associated Legendre polynomial

ynm: spherical harmonics

besseljsph: spherical Bessel function besselysph: spherical Neumann function besselhsph: spherical Hankel function dbesseljsph: derivative of besseljsph dbesselhsph: derivative of besselhsph

Spatial-domain functions

diffuseFieldFilter
freeFieldtranslationOperator

Transform functions

cft: circular Fourier transform

icft: inverse circular Fourier transform

flt: semicircular Fourier-Legendre transform

iflt: inverse semicircular Fourier-Legendre transform

sft: spherical Fourier transform

isft: inverse spherical Fourier transform

pinvreg: Tikhonov regularized pseudoinverse

Transform-domain functions

dvf: distance-varying filters

bmf: boundary-matching filters

3. Geometry

 $\vec{r}=(r,\theta,\phi)$ radial distance r azimuthal angle $\theta\in[-\pi,\pi]$ elevation angle $\phi\in[-\frac{\pi}{2},\frac{\pi}{2}]$

Interaural-polar spherical coordinates are also supported. See cart2isph and isph2cart.

4. Use Case 1: Diffuse-Field Equalization of HRTFs

where L is the number of directions.

diffuseFieldFilter

$$\mathcal{H} \longrightarrow \boxed{\mathcal{Q}} \longrightarrow \mathcal{H}_{\mathrm{eq}}$$
 $\mathcal{Q} = |\mathcal{Q}| \exp(j\angle\mathcal{Q})$
 $|\mathcal{Q}| = \left(\frac{1}{\sum_{\ell=1}^{L} |\mathcal{H}_{\ell}|^2 w_{\ell}}\right)^{\frac{1}{2}}$
 $\begin{cases} 0, & \text{zero-phase.} \end{cases}$

$$\angle \mathcal{Q} = \begin{cases} 0, & \text{zero-phase,} \\ \mathfrak{H}\left\{\log\frac{1}{|\mathcal{Q}|}\right\}, & \text{minimum-phase,} \end{cases}$$

4. Use Case 1: Diffuse-Field Equalization of HRTFs

5. Use Case 2: Distance Extrapolation of HRTFs – Geometry

5. Use Case 2: Distance Extrapolation of HRTFs – Ear Centering

freeFieldTranslationOperator

$$\mathcal{T}_{\mathrm{SW}}(\vec{x}_{\mathrm{i}}, \vec{x}_{\mathrm{f}}) = \frac{\|\vec{x}_{\mathrm{s}} - \vec{x}_{\mathrm{i}}\|}{\|\vec{x}_{\mathrm{s}} - \vec{x}_{\mathrm{f}}\|} e^{jk(\|\vec{x}_{\mathrm{s}} - \vec{x}_{\mathrm{i}}\| - \|\vec{x}_{\mathrm{s}} - \vec{x}_{\mathrm{f}}\|)}$$

5. Use Case 2: Distance Extrapolation of HRTFs

Fig. 5. Interpolation along direction using the direct and inverse spherical Fourier transforms S and S^{-1} .

Fig. 6. Extrapolation along distance using the distance-varying filter \mathcal{D}_n .

$$\mathcal{H}(\vec{a}) \longrightarrow \boxed{\mathcal{S}} \longrightarrow \boxed{\mathcal{D}_n} \longrightarrow \boxed{\mathcal{W}_n} \longrightarrow \hat{\mathcal{H}}(\vec{b})$$

Fig. 7. Regularized extrapolation along distance using the window W_n .

Fig. 8. Ear-centered extrapolation along distance using the direct and inverse translators \mathcal{T} and \mathcal{T}^{-1} .

5. Use Case 2: Distance Extrapolation of HRTFs

6. Future Work

- Benchmarking with large SOFA datasets
- Extending to:
 - Circular DVFs
 - Spatial metrics for clarity
- Python port for wider accessibility: SALP
- Integration with perceptual testing frameworks

7. Conclusion

- SALM = unified, extensible, reproducible
- Bridges theory ↔ applications
- Applications: binaural rendering and architectural acoustics
- Contribution to the 3D audio research community

Thanks!

César D. Salvador, Jorge Treviño and Shuichi Sakamoto

SALM is available at: https://github.com/cesardsalvador/SpatialAcousticsLibraryMATLAB

architettibologna

