线性代数基础要点

leolinuxer

August 12, 2020

Contents

1	线性	:代数解决什么问题 [1]	4
	1.1	线性代数的几个基础概念和他们之间的关系	4
2	矩阵	$\in [2]$	5
	2.1	矩阵是一个函数	5
	2.2	矩阵也被称为线性映射	6
	2.3	矩阵函数的工作方式	6
		2.3.1 坐标	7
		2.3.2 映射法则的工作原理	7
	2.4	复合函数和乘法交换律	9
	2.5	从不同角度理解矩阵	9
		2.5.1 从"图形"的角度理解	10
		2.5.2 从线性变换的角度理解	10
		2.5.3 从"运动"的角度理解	10
		2.5.4 小结 [3]	10
	2.6	矩阵与方程组 [3]	10
3	理解	2线性变换和仿射变换 [4]	11
	3.1	线性变换的要点	11
	3.2	从线性函数到线性变换	12
		3.2.1 线性函数与线性变换的关系	12
		3.2.2 矩阵 A 与基	13
	3.3	线性变换的描述方法	13
		3.3.1 用代数方式描述线性变换	13
	0.4	D- that W	1 -

		3.4.1 用代数方式描述仿射变换	15
	3.5	通过线性变换来完成仿射变换	15
4	理解	行列式 [5]	17
	4.1	行列式的来历和本质	17
	4.2	行列式的本质是线性变换的伸缩因子	17
	4.3	行列式大小对变换的影响	17
		4.3.1 行列式 > 0	17
		4.3.2 行列式 = 0	17
		4.3.3 行列式 < 0	18
	4.4	推论	19
5	理解	星正交矩阵 [3]	20
	5.1	正交矩阵的定义	20
	5.2	正交矩阵的性质	20
	5.3	正交矩阵的直观理解	20
6	理解	军矩阵的 「秩」[6]	21
	6.1	「秩」是图像经过矩阵变换之后的空间维度	22
	6.2	「秩」是列空间的维度	22
		6.2.1 列空间	22
		6.2.2 矩阵的变换目标是列空间	22
		6.2.3 两种定义方式的联系	23
	6.3	关于严格性的一个问题	23
	6.4	理解行秩和列秩的关系 [7]	24
7	理解	2相似矩阵 [8]	24
	7.1	通俗解释	24
	7.2	坐标转换	24
	7.3	相似矩阵	25
		7.3.1 变换的细节	25
		7.3.2 对角矩阵	26
8	理解	军二次型 [9]	26
		二次函数(方程)的特点	27
	8.2	通过矩阵来研究二次方程	27
		8.9.1 一次刑斩阵	27

		8.2.2 通过矩阵来研究有什么好处	28
9	理解	矩阵特征值和特征向量 [10]	32
	9.1	几何意义	33
	9.2	从公式进一步理解特征值 [11]	35
	9.3	特征值、特征向量与运动的关系	35
		9.3.1 矩阵的混合	35
	9.4	特征值分解	37
		9.4.1 特征值分解的条件	38
	9.5	特征值、特征向量的应用	38
		9.5.1 控制系统	39
		9.5.2 图片压缩	39
		9.5.3 二次型最优化问题	40
	9.6	特征值的计算方法	40
	9.7	旋转矩阵只有复数特征值	42
	9.8	常见变换对应的特征值和特征向量	43
	9.9	特征值的性质 [12]	44
		9.9.1 特征值和迹、行列式的关系	44
		9.9.2 特征值的幂	44
	9.10	矩阵的特征值和"谱"[3]	45
10	राधा क्रिय	<u>የ</u> ት [1 በ]	40
10		迹 [13] 迹的性质	46
	10.1	沙 的性原	40
11	再论	相似矩阵	46
	11.1	相似矩阵的"迹"、行列式、特征值的关系	46
		11.1.1 迹	46
		11.1.2 行列式	47
		11.1.3 特征值	47
		11.1.4 结论	47
12	押解	奇异值 [14]	47
		定义	
	14.1	12.1.1 与特征值分解的关系 [15]	
	12.2	通俗理解奇异值分解	
	14.4	12.2.1 奇异值的物理解释	
		12.2.1 可升值的初连牌样	
		14.4.4 円井胆/ 桝 (21.12) 円刀 仏・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	IJΙ

13 理解线性微分方程 [16] 52						
13.0.1 一个直观的理解 [17]	. 52					
13.1 微分算子	. 52					
13.2 代数定义	. 53					
13.3 线性微分方程	. 54					
13.3.1 线性微分方程的定义	. 54					
13.3.2 齐次线性方程的解法	. 54					
$13.3.3$ $\mathcal L$ 的特征值、特征向量 \dots	. 54					
13.3.4 解常系数齐次线性微分方程	. 54					
13.3.5 解常系数非齐次线性微分方程	. 54					
13.4 总结	. 55					
14 理解协方差矩阵 [18]						
14.1 方差和协方差的定义	. 55					
14.2 直观理解协方差的物理意义	. 56					
14.3 相关系数	. 57					
14.4 从方差/协方差到协方差矩阵	. 57					
14.5 多元正态分布与线性变换	. 57					
14.6 协方差矩阵的特征值分解	. 60					

1 线性代数解决什么问题 [1]

线性代数研究的是**如何解决线性问题**;如何**把复杂问题线性化**是别的学科的内容,比如《微积分》、《信号与系统》等。

线性代数讨论的线性问题包括:

- 向量、向量空间:
- 关于向量、向量空间的函数,也称为矩阵函数;矩阵可以对向量进行变换
- 对矩阵函数进行坐标变换

1.1 线性代数的几个基础概念和他们之间的关系

- 「基」
- 向量: 描述线性的"东西"(直线、平面、立方体);
- 矩阵可以对向量进行变换; 变换的形式包括:
 - **线性变换**: 旋转、推移、伸缩; 投影之类的**升降维**的操作; 恒等变换(单位变换)、求微商 (线性空间 P[x] 内)、求定积分等

- 仿射变换: 线性变换 + 平移

• 行列式: 代表矩阵变换前后的面积 (体积) 之比

•「秩」

• 相似矩阵

• 二次型

• 特征值和特征向量

「迹」

• 奇异值

2 矩阵 [2]

正确的观点是把矩阵看作函数,这样很多疑惑就可以迎刃而解。

2.1 矩阵是一个函数

我们熟悉的直线函数 ax = y, 把点 (x,0) 映射到点 (0,ax)。

我们通过矩阵: $A\vec{x} = \vec{y}$ 也可以完成这个映射, 令:

$$A = \begin{pmatrix} 0 & 1 \\ a & 0 \end{pmatrix}$$

也可以完成:

$$A\vec{x} = \begin{pmatrix} 0 & 1 \\ a & 0 \end{pmatrix} \begin{pmatrix} x \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ ax \end{pmatrix}$$

对于: $ax = y, x \in \mathbb{R}, y \in \mathbb{R}$ 只能完成实数到实数的映射: $x \to y \implies \mathbb{R} \to \mathbb{R}$

但是对于: $A\vec{x} = \vec{y}, \vec{x} \in \mathbb{R}^n, \vec{y} \in \mathbb{R}^m$ 可以完成更广泛的映射: $\vec{x} \to \vec{y} \implies \mathbb{R}^n \to \mathbb{R}^m$

为了完成这一点,矩阵 A 就不再是系数 a 了,而是一个函数(或者说是映射)。

写成这样,矩阵乘法看起来更像是函数: $A(\vec{x}) = \vec{y}$

从线性方程组的角度来看,也很容易得出矩阵是一个函数的结论来。给定线性方程组

$$\begin{cases} y_1 = x_1 + 2x_2 \\ y_2 = 2x_1 + x_2 \end{cases}$$

按照矩阵形式,可以改写为:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

5

2.2 矩阵也被称为线性映射

假设 \vec{x} 所在平面为 V, 而 \vec{y} 所在平面为 W, \vec{x} 通过矩阵 A 映射到了 \vec{y} , 可以如下表示:

A 这个映射的特殊之处是,V 上的直线通过 A 映射到 W 上也是直线:

所以矩阵也被称为线性映射。

2.3 矩阵函数的工作方式

我们来看看矩阵 A 是如何工作的。为了方便后面的讲解,把之前表示线性映射的 3D 图变为 2D 图:

为了画图方便, \vec{x} 所在平面为 V、 \vec{y} 所在平面为 W,都是二维平面,即 \mathbb{R}^2 。

2.3.1 坐标

研究线性映射,最重要的是搞清楚当前处在哪个基下。我们先来看看: $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \vec{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ 的基。 \vec{x}, \vec{y} 的基默认为各自向量空间下的自然基,其自然基为(即 \mathbb{R}^2 下的自然基):

$$\vec{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \vec{j} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

所以:

$$\vec{x} = x_1 \vec{i} + x_2 \vec{j} \qquad \vec{y} = y_1 \vec{i} + y_2 \vec{j}$$

2.3.2 映射法则的工作原理

为了说清楚映射法则 A 是怎么工作的, 我们把 A 也用一个空间表示, V 会通过 A 映射到 W:

若: $A = \begin{pmatrix} \vec{c_1}, \ \vec{c_2} \end{pmatrix}$ 其中 $\vec{c_1}, \vec{c_2}$ 为 A 的列向量。根据矩阵乘法的规则有: $A\vec{x} = x_1\vec{c_1} + x_2\vec{c_2}$ 则 $A\vec{x}$ 相 当于在 A 空间中,以 $\vec{c_1}, \vec{c_2}$ 为基,坐标为 $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ 的向量:

举例说明 $A\vec{x} = x_1\vec{c_1} + x_2\vec{c_2}$:

$$A = \begin{pmatrix} \vec{c_1}, & \vec{c_2} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

$$A\vec{x} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} c_{11}x_1 & c_{12}x_2 \\ c_{21}x_1 & c_{22}x_2 \end{pmatrix} = x_1 \begin{pmatrix} c_{11} \\ c_{21} \end{pmatrix} + x_2 \begin{pmatrix} c_{12} \\ c_{22} \end{pmatrix} = x_1\vec{c_1} + x_2\vec{c_2}$$

再将 Ax 向量用自然基表示:

$$A = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} \vec{c_1}, & \vec{c_2} \end{pmatrix}$$

$$\Rightarrow \vec{c_1} = c_{11}\vec{i} + c_{21}\vec{j}, \quad \vec{c_2} = c_{12}\vec{i} + c_{22}\vec{j} \quad (\vec{c_1}, \vec{c_2} \mathbf{a} \mathbf{E} \vec{i}, \vec{j}) \text{ bightagh}$$

$$A\vec{x} = x_1\vec{c_1} + x_2\vec{c_2} = x_1c_{11}\vec{i} + x_2c_{12}\vec{i} + x_1c_{21}\vec{j} + x_2c_{22}\vec{j}$$

$$= (x_1c_{11} + x_2c_{12})\vec{i} + (x_1c_{21} + x_2c_{22})\vec{j}$$

$$= \begin{pmatrix} x_1c_{11} + x_2c_{12} \\ x_1c_{21} + x_2c_{22} \end{pmatrix}$$

$$\Rightarrow y_1\vec{i} + y_2\vec{j}$$

所以整体来说,就是基改变,导致向量的坐标发生变化:

2.4 复合函数和乘法交换律

通过 G 把 \vec{x} 映射到 $G(\vec{x})$, 再通过 F 把 $G(\vec{x})$ 映射到 \vec{y} , 矩阵的乘法 FG 可以如下图所示:

所以**矩阵乘法** FG **实际上就是复合函数:** $FG \rightarrow F(G)$

而函数一般是不满足交换律的,比如: $f(x) = sin(x), g(x) = x^2$ 那么: $f(g(x)) = sin(x^2) \neq g(f(x)) = sin^2(x)$ 那么矩阵乘法不满足交换律也很好理解了。

即从复合函数的角度看(矩阵乘法就是复合函数),矩阵乘法不满足交换律是显然的。

2.5 从不同角度理解矩阵

给定矩阵
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
,可以有不同的理解:

2.5.1 从"图形"的角度理解

将 A 理解成以 $\vec{c_1} = \begin{bmatrix} a \\ c \end{bmatrix}$, $\vec{c_2} = \begin{bmatrix} b \\ d \end{bmatrix}$ 为基张成的"**元平行四边形**",此时 A 的行列式 det(A) 就表示以 c_1, c_2 张成的平行四边形的面积;同理,如果 A 是 3×3 的,则 det(A) 代表平行六面体的体积;

2.5.2 从线性变换的角度理解

将 A 理解成线性变换;单独看 A,可以理解成对标准基进行了线性变换(如图);将 A 作用在向量 \vec{x} 上表示对向量 \vec{x} 进行了线性变换,此时 $A\vec{x}$ 更应该写成 $A(\vec{x})$;如果记 $\vec{x'} = A\vec{x}$,其中 x 的基为 \vec{i}, \vec{j} ,x' 的基为 $\vec{i'}, \vec{j'}$,那么矩阵 A 实际上是改变了基,通过 A 把 $\vec{i} \to \vec{i'}, \vec{j} \to \vec{j'}$,或者说矩阵 A 的列就是变换后的 $\vec{i'}, \vec{j'}$;

2.5.3 从"运动"的角度理解

将 *A* 所代表的线性变换进一步理解成一种"运动"((广义的运动);对于运动而言,最重要的当然就是运动的速度和方向,那么:

- 特征值就是运动的速度
- 特征向量就是运动的方向

2.5.4 小结 [3]

坐标系是由线性无关的向量放在一起构成的,只是表示成矩阵的形式而已,而我们将常用的是把矩阵看成运动(线性代数里常称为变换)的描述,用乘法来施加,即矩阵本身描述了一个坐标系,矩阵与矩阵的乘法描述了一个运动。

换句话说:如果矩阵仅仅自己出现,那么他描述了一个坐标系,如果他和另一个矩阵或向量同时出现,而且做乘法运算,那么它表示运动!。

2.6 矩阵与方程组 [3]

当解一个方程组的时候,我们知道,方程组的解只与系数有关。于是,将系数提取出来,放在一起, 就构成了矩阵,而矩阵的行变换就相当于解方程时的加减消元过程(也叫高斯消元法)。 下面我们从方程组解的几何意义来解释方程组 Ax = b 的意义:

- 方程组有解可以理解成空间几何图形有公共交点或者交线(高维度时还可能出现"交面"等情况)
- 方程组有解就说明 b 这个向量能用 A 的列向量线性表示,也可以说 b 这个向量在 A 的列向量所构成的空间中;因为我们可以将矩阵 $A_{n\times m}$ 写成这样列向量的表示形式: $A = [\vec{a_1}, \vec{a_2}, \cdots, \vec{a_n}]$,于是,方程就变成了 $x_1\vec{a_1} + x_2\vec{a_2} + \cdots + x_n\vec{a_n} = b$,也就是说,如果一个方程组有解,就说明 b 这个向量能用 A 的列向量线性表示,也可以说 b 这个向量在 A 的列向量所构成的空间中。

举一个例子,对于方程组
$$\begin{cases} 2x - y = 1 \\ x + y = 5 \end{cases}$$
 的几何意义如下

那么, 无穷解和无解怎么理解呢?

对于第一种解释,无穷解代表有公共相交部分,但是最终形成的不是一个点,而是线或者面或者更高维的东西,而无解代表着没有公共相交的部分。

对于第二种解释,无穷解表示矩阵 A 中的列向量线性相关,所以导致表示方式不唯一。而无解则表示矩阵 A 中的列向量和 b 不在同一个"次元"里,或者说不在一个空间里。如果 A 的列向量和 b 在同一个空间里,那么就需要 A 的维数和 [A,b] 的维数相同。我们知道,矩阵的秩表示向量构成的空间的维数,于是我们知道 r(A) 应该等于 r([A,b]),

3 理解线性变换和仿射变换 [4]

3.1 线性变换的要点

线性变换的几何直观有三个要点:

- 变换前是直线的,变换后依然是直线
- 直线比例保持不变
- 变换前是原点的,变换后依然是原点

比如旋转:对于以原点为中心的正方形,无论怎么旋转,之前的边是直线,之后的边仍然是直线;之前和之后的边长比例保持 1:1;之前中心在原点,之后中心仍然在原点;比如推移:把正方形推移一下(变成平行四边形),直线还是直线;比例还是原来的比例;原点还是原点;比如旋转加推移,仍然保持上面三个性质不变。

3.2 从线性函数到线性变换

3.2.1 线性函数与线性变换的关系

直观地讲,函数就是把x 轴上的点映射到曲线上。比如函数函数y = sin(x),把x 轴上的点映射到了正弦曲线上);还有的函数,比如y = x,是把x 轴上的点映射到直线上,我们称为线性函数;

线性函数其实就是线性变换,为了看起来更像是线性变换,我换一种标记法。

比如对于 y = x, 我们可以认为是把 (a,0) 点映射到 (0,a) 点, 我们称为线性变换 T, 记作:

$$T:(a,0)\to(0,a), a\in\mathbb{R}, b\in\mathbb{R}$$

矩阵的形式很显然如下:

$$\begin{pmatrix} 0 \\ a \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ 0 \end{pmatrix}$$

这样做最直接的好处是, 我们可以轻易的摆脱 x 轴的限制。

只要替换 (a,0) 为平面内所有的点 (a,b),我们就可以对整个平面做变换,该线性变换记作:

$$T:(a,b)\to(b,a)$$

进而可以写作矩阵的形式:

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$

也就是说整个平面的点都可以被变换。

使用线性代数的记号,有:

$$\vec{x} = \begin{pmatrix} a \\ b \end{pmatrix} \quad \vec{y} = \begin{pmatrix} b \\ a \end{pmatrix} \quad A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

即:

$$\vec{y} = A\vec{x}$$

进一步, 既然 \vec{x} , \vec{y} 都是平面上的点, 我们可以认为:

线性变换通过矩阵 A 来表示

而 y = x 只不过是这个 A 的一种特殊情况。

3.2.2 矩阵 A 与基

因为 y = x 是基于直角坐标系的,通过这个转换:

$$y = x \to A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

得到的 A 也是基于直角坐标系的。只是在线性变换中,我们不称为直角坐标系,我们叫做**标准正交** $oldsymbol{k}$ 。

标准正交基是:

$$\vec{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \vec{j} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

它们所张成的线性空间如下:

A 在此基下,完成了镜面反转这个线性变换。

因此, 让我们补完之前的结论:

线性变换通过指定基下的矩阵 A 来表示

3.3 线性变换的描述方法

3.3.1 用代数方式描述线性变换

比如给定一个点 A, 它的坐标为: (a,b);

我们也可以把它看做一个矢量和点以示区别,表示为矩阵: $\vec{A} = \begin{bmatrix} a \\ b \end{bmatrix}$;

用旋转矩阵

$$T_{rotate} = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix}$$

与 \vec{A} 进行矩阵乘法:

$$T_{rotate}\vec{A} = \vec{A}'$$

其中 $\vec{A} = a\vec{i} + b\vec{j}$, $\vec{A}' = a\vec{i}' + b\vec{j}'$

对正方形的每个点都运用 T_{rotate} 就完成了旋转。所以实际上 T_{rotate} 是改变了基,通过 T_{rotate} 对基进行了变换: $\vec{i} \rightarrow \vec{i'}$, $\vec{j} \rightarrow \vec{j'}$

详细点说,实际上,**矩阵的列其实就是变换后的** \vec{i} \vec{j} , 这就是矩阵的真正含义。即对于旋转矩阵:

$$T_{rotate} = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix} \quad \Rightarrow \quad \vec{i'} = \begin{bmatrix} cos(\theta) \\ sin(\theta) \end{bmatrix} \quad \vec{j'} = \begin{bmatrix} sin(\theta) \\ cos(\theta) \end{bmatrix}$$

我们只需要旋转基,就可以完成正方形的旋转。

总结下来,线性变换是通过矩阵乘法来实现的;换句话说,矩阵变换的其实是基。

旋转矩阵的推导

设点 (x,y) 离坐标原点距离 r,与 x 轴夹角 θ_0 ,将点绕原点逆时针旋转 θ ,旋转之后点的坐标为 (x',y')。 显然 (x',y') 与原点距离不变,仍然为 r。

显然如下关系成立:

$$\frac{x'}{r} = \cos(\theta_0 + \theta) = \cos\theta_0 \cos\theta - \sin\theta_0 \sin\theta = \frac{x}{r}\cos\theta - \frac{y}{r}\sin\theta$$

$$\frac{y'}{r} = \sin(\theta_0 + \theta) = \sin\theta_0 \cos\theta - \cos\theta_0 \sin\theta = \frac{y}{r} \cos\theta + \frac{x}{r} \sin\theta$$

整理得到:

$$x' = x\cos\theta - y\sin\theta$$

$$y' = x \sin \theta + y \cos \theta$$

把上面这两个方程写成矩阵形式即可得到旋转矩阵的表达式:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

3.4 仿射变换

仿射变换从几何直观只有两个要点:

- 变换前是直线的,变换后依然是直线
- 直线比例保持不变

少了原点保持不变这一条。比如允许平移:平移后,直线还是直线,比例还是那个比例,但是原点却发生了变化。

因此, 平移不再是线性变化了, 而是仿射变化。

3.4.1 用代数方式描述仿射变换

线性变换是通过矩阵乘法来实现的,仿射变换不能光通过矩阵乘法来实现,还得有加法。 仿射变换表示为:

$$\vec{y} = A\vec{x} + b$$

3.5 通过线性变换来完成仿射变换

将仿射变换的方程式改写下,可以发现仿射变换和线性变换的关系:

$$\vec{y} = A\vec{x} + b \Rightarrow \begin{bmatrix} \vec{y} \\ 1 \end{bmatrix} = \begin{bmatrix} A & \vec{b} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \vec{x} \\ 1 \end{bmatrix}$$

也就是说,增加一个维度后,就可以在高维度通过线性变换来完成低维度的仿射变换。 举个例子:

实际上是z=1与z=0平面上的两个正方形组成的柱子发生了"推移"的线性变换 看上去像是z=1平面上的正方形发生了平移的仿射变化

回忆一下计算机图形学: 描述三维空间中的物体只需要三维向量, 但是计算机图形学变换矩阵都是 4×4 的; 这是因为, 在计算机图形学里应用的图形变换, 实际上是在仿射空间而不是向量空间中进行的。所以计算机图形学的生存空间实际上是仿射空间, 而仿射变换的矩阵表示就是 4×4 的 [3]。

4 理解行列式 [5]

4.1 行列式的来历和本质

人们为了解线性方程组,最终总结出了行列式。行列式的本质是线性变换的伸缩因子。

4.2 行列式的本质是线性变换的伸缩因子

我们还是拿旋转矩阵来举例子:

$$T_{rotate} = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix} \Rightarrow |T_{rotate}| = \begin{vmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{vmatrix} = cos^{2}(\theta) + sin^{2}(\theta) = 1$$

 T_{rotate} 的行列式恒等于 1, 意味着旋转不会改变面积。

同理,对于缩放矩阵:

$$T_{scale} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$

$$T_{scale} \vec{X} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} a \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ b \end{bmatrix}$$

$$|T_{scale}| = \begin{vmatrix} a & 0 \\ 0 & b \end{vmatrix} = ab$$

变换后, \vec{i} 对应的坐标会缩放为 a 倍, \vec{j} 对应的坐标会缩放为 b 倍,面积会缩放为原来的 ab 倍;掌握了行列式是线性变换的伸缩因子这一点之后,我们就很容易理解各种行列式的值与线性变换的关系。

4.3 行列式大小对变换的影响

4.3.1 行列式 > 0

- 行列式 > 1, 对于图形有放大的作用
- 行列式 = 1,图形的大小不会变换
- 0 < 行列式 < 1, 对于图形有缩小的作用

4.3.2 行列式 = 0

行列式等于 0, 有一个重要的结论是, 矩阵不可逆。

还是以旋转矩阵为例,通过旋转矩阵,逆时针旋转 45°,旋转矩阵为:

$$T_{rotate}(45^{\circ}) = \begin{bmatrix} cos(45^{\circ}) & -sin(45^{\circ}) \\ sin(45^{\circ}) & cos(45^{\circ}) \end{bmatrix}$$

再通过另外一个旋转矩阵,顺时针旋转 45°,旋转矩阵为:

$$T_{rotate}(-45^{\circ}) = \begin{bmatrix} cos(-45^{\circ}) & -sin(-45^{\circ}) \\ sin(-45^{\circ}) & cos(-45^{\circ}) \end{bmatrix}$$

两次旋转后,原图形看起来就像没有变换过一样,因此: $T_{rotate}(-45^\circ)$ 和 $T_{rotate}(45^\circ)$ 互为逆矩阵。 有的线性变换是可逆的,有的不行,比如行列式 =0 这样的线性变换就是不可逆的。从图像上看,图形会缩成一点 $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$,或者缩成一条直线 $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$;没有矩阵可以把它们恢复成原来的样子。

4.3.3 行列式 < 0

原始图像是这样的:

被行列式 < 0 的矩阵线性变换后是这样的:

4.4 推论

知道了行列式的意义,我们就很容易知道,为什么

- 矩阵乘法不满足交换律: $T_1T_2 \neq T_2T_1$: 因为矩阵乘法相当于复合函数
- 但是: $det(T_1T_2) = det(T_2T_1)$: 因为面积先缩放为 T_1 倍再缩放为 T_2 倍,与先缩放为 T_2 倍再缩放为 T_1 倍等价

同理,可以知道为什么

• 二阶矩阵的行列式是**列**组成的平行四边形的**面积**(对单位正方形进行了缩放)

• 三阶矩阵的行列式是列组成的平行六面体的体积(对单位正方体进行了缩放)

5 理解正交矩阵 [3]

5.1 正交矩阵的定义

如果: $AA^T = E$ (E 为单位矩阵, A^T 表示 "矩阵 A 的转置矩阵") 或 $A^TA = E$, 则 n 阶实矩阵 A 称为正交矩阵。

5.2 正交矩阵的性质

- A^T 是正交矩阵
- A 的各行是单位向量且两两正交
- A 的各列是单位向量且两两正交
- |A| = 1 或 -1
- 正交矩阵的乘积仍是正交矩阵

证明正交矩阵的乘积仍是正交矩阵。

假定 M, N 是正交矩阵, 即:

$$MM^{T} = MM^{-1} = E, NN^{T} = NN^{-1} = E$$

那么:

$$(MN)(MN)^{T} = (MN)(N^{T}M^{T}) = MNN^{T}M^{T} = MEM^{T} = E$$

即 MN 仍是正交矩阵。

5.3 正交矩阵的直观理解

正交矩阵是方块矩阵, 行向量和列向量皆为正交的单位向量。

正交矩阵的定义"行向量和列向量皆为正交的单位向量"带来了另一个好处:**正交矩阵的转置就是 正交矩阵的逆,比普通矩阵求逆矩阵简单多了**。即:

$$MM^{-1} = MM^T = E$$

举例证明上述结论: 给定正交矩阵

$$M = \begin{bmatrix} \vec{x_1}, & \vec{x_2}, & \vec{x_3} \end{bmatrix} = \begin{bmatrix} \vec{y_1} \\ \vec{y_2} \\ \vec{y_3} \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix}$$

因为每行(每列)都是单位长度向量,所以每行点乘自己(每列点乘自己)的结果为1:

$$\vec{x_i} \cdot \vec{x_i} = 1, \quad i = 1, 2, 3$$

$$\vec{y_i} \cdot \vec{y_i} = 1, \quad i = 1, 2, 3$$

因为任意两行(两列)正交,所以就是两行(两列)点乘结果为 0:

$$\vec{x_i} \cdot \vec{x_j} = 0, \quad i \neq j$$

$$\vec{y_i} \cdot \vec{y_j} = 0, \quad i \neq j$$

并且 M 的转置为:

$$M^{T} = \begin{bmatrix} \vec{x_1} \\ \vec{x_2} \\ \vec{x_3} \end{bmatrix} = \begin{bmatrix} \vec{y_1} & \vec{y_2} & \vec{y_3} \end{bmatrix} = \begin{bmatrix} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \\ x_{13} & x_{23} & x_{33} \end{bmatrix}$$

所以,有:

$$MM^{T} = \begin{bmatrix} \vec{y_1} \cdot \vec{y_1} & \vec{y_1} \cdot \vec{y_2} & \vec{y_1} \cdot \vec{y_3} \\ \vec{y_2} \cdot \vec{y_1} & \vec{y_2} \cdot \vec{y_2} & \vec{y_2} \cdot \vec{y_3} \\ \vec{y_3} \cdot \vec{y_1} & \vec{y_3} \cdot \vec{y_2} & \vec{y_3} \cdot \vec{y_3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

不难验证,旋转矩阵

$$T = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

也是正交矩阵,从而有:旋转矩阵的逆矩阵是它的转置矩阵,即:

$$TT^{-1} = TT^T = E$$

一个矩阵是旋转矩阵,当且仅当它是正交矩阵并且它的行列式是单位 1。

正交矩阵的行列式是 ±1; 如果行列式是 -1, 则它包含了一个反射而不是真旋转矩阵。

对于旋转矩阵乘幂,我们可以知道,就是一直旋转,乘了几次就是旋转了几次。当好多个旋转矩阵 (可以不同)连乘时,我们就能理解了,这是把一个向量沿着多个方向旋转的叠加。

6 理解矩阵的「秩」[6]

「秩」是图像经过矩阵变换之后的空间维度

「秩」是列空间的维度

6.1 「秩」是图像经过矩阵变换之后的空间维度

比如给定原始图像为以原点为中心的正方形,通过旋转矩阵 $T_1 = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix}$ 进行变换,变换后的图像是旋转后的正方形(二维);因此,旋转矩阵的「秩」为 2。

换后的图像是旋转后的正方形(二维);因此,旋转矩阵的「秩」为 2。 再通过矩阵 $T_2 = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$ 进行变换,变换后的图像是一根一维的直线;因此,该变换矩阵的「秩」为 1(想象一下 T_2 的基,是长度相等方向相反的两个向量,是线性相关的)。

再通过矩阵 $T_3 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ 进行变换,变换后的图像是一个零维的点;因此,该变换矩阵的「秩」为 0 (想象一下 T_3 的基,是重合的两个原点)。

6.2 「秩」是列空间的维度

6.2.1 列空间

我们通过旋转矩阵来解释什么是列空间;给定旋转矩阵

$$T_{rotate} = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix}$$

该旋转矩阵的列向量分别是 $\vec{i}=\begin{bmatrix}\cos(\theta)\\\sin(\theta)\end{bmatrix}$ 和 $\vec{j}=\begin{bmatrix}-\sin(\theta)\\\cos(\theta)\end{bmatrix}$ 这两个向量不在一条直线上,我们称其为线性无关。

通过改变 a,b 的值,可以用 $a\vec{i}+b\vec{j}$ 来表示二维平面上的所有点。

所以,列空间就是矩阵的列向量所能张成(即通过 $a\vec{i} + b\vec{j}$ 来表示)的空间。

列空间的维度就是「秩」;旋转矩阵的列空间是二维的,所以「秩」就为 2。

6.2.2 矩阵的变换目标是列空间

给定矢量 $\vec{A} = \begin{bmatrix} a \\ b \end{bmatrix}$,同时,矢量 \vec{A} 也可以表示为 $a\vec{i} + b\vec{j}$,其中 \vec{i}, \vec{j} 为基向量。用基来表示的原因是因为矩阵变换的其实是基。

举例子来看看,比如给定旋转矩阵 T_{rotate} 作用在矢量 \vec{A} 上,有:

$$\vec{A}' = T_{rotate} \vec{A}$$

其中, $\vec{A} = a\vec{i} + b\vec{j}$, $\vec{A'} = a\vec{i'} + b\vec{j'}$

所以实际上是 T_{rotate} 是改变了基,通过 T_{rotate} 把 $\vec{i} \rightarrow \vec{i'}, \ \vec{j} \rightarrow \vec{j'}$ 。

如果要说详细点,实际上矩阵的列就是变换后的 \vec{i} , \vec{j} , 这就是矩阵的真正含义。

所以: $\vec{A} = a\vec{i} + b\vec{j} \Rightarrow \vec{A'} = a\vec{i'} + b\vec{j'}$ 实际上是变换到了 T_{rotate} 的列空间。

6.2.3 两种定义方式的联系

用旋转矩阵对二维的正方形进行线性变换,实际上是一个二维空间到另外一个二维空间的变换:

比如对于旋转矩阵,图像从 \vec{i} , \vec{j} 张成的空间,变换到 $\vec{i'}$, $\vec{j'}$ 张成的空间。因为都是二维,所以图像维度不变。

但是对于矩阵 $\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$ 他的列空间是一维的;因此,这个矩阵的「秩」就是 1,用它对二维的正方形进行线性变换,实际上是一个二维空间到另外一个一维空间的变换(即二维正方形会被压缩到一维直线上);

同理,矩阵 $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ 他的列空间是一个点,所以它的「秩」就是 0。

6.3 关于严格性的一个问题

上面说矩阵的「秩」是列空间的维度,这并非完全正确的。

列空间的维度准确来说,是「列秩」,行空间的维度是「行秩」,但是,还好有,「秩」=「列秩」= 「行秩」是恒成立的。所以直接把「列秩」称为「秩」也不算错误。

了解了秩,就很容易回答下面的问题。

我们知道矩阵是做线性变换的,比如说一个 3×2 的矩阵,

从图像上看,平面上的一个矢量被一个 3×2 的矩阵变换到了三维空间:

那么,通过3×2的矩阵能否把一个二维正方形变换为一个三维正方体呢?

答案是不行。三方的立方体需要存在于用三个正交的基张成的列空间中;如果把 3X2 的向量变换成 $\begin{bmatrix} a & d & 0 \\ b & e & 0 \\ c & f & 0 \end{bmatrix}$; 可以看出来,它的第三个列空间是 0 维的,所以,用该矩阵进行线性变换后,只能将原向量变换到另一个二维的平面上,不能变换到一个三维的空间中。

6.4 理解行秩和列秩的关系 [7]

TBD

7 理解相似矩阵 [8]

相似矩阵的定义是:设 A, B 都是 n 阶矩阵,若有可逆矩阵 P,使:

$$P^{-1}AP = B$$

则称 $B \neq A$ 的相似矩阵, 或说 A 和 B 相似。

7.1 通俗解释

观看同样一部电影,坐在不同的位置,各自眼中看到的电影因为位置不同而有所不同(比如清晰度、 角度),所以说,"第一排看到的电影"和"最后一排看到的电影"是"相似"的。

那么背后什么是不变的呢?是线性变换。

7.2 坐标转换

从数学角度上看,相似变换就是进行了坐标转换。

坐标转换是数学中的常用伎俩,目的是简化运算。比如常见的,把直角坐标系(xy 坐标系)的圆方程换元为极坐标($\rho\theta$ 坐标系)下:

$$x^{2} + y^{2} = a^{2} \Rightarrow \begin{cases} \rho = a \\ \theta \in \mathbb{R} \end{cases}$$

图像也从左边变为了右边:

换元之后的代数式和图像都变简单了。相似变换也是这样的目的。

7.3 相似矩阵

回到开头给出看电影的例子,同一部"电影",不同基"看到"的就是不同的矩阵,也就是说:

相同线性变换,不同基下的矩阵,称为相似矩阵

那怎么得到不同基下的矩阵呢? 让我们来看看变换的细节。

7.3.1 变换的细节

先上一张图,说明不同基下的矩阵的变换思路,这个图有点复杂,请参照之后的解释一起来看:

下面是对图的解释:

• 有两个基: $V_1: \{\vec{i}, \vec{j}\}$ 和 $V_2: \{\vec{i'}, \vec{j}\}$

- $V_1 \rightarrow V_2$, 可以通过 P^{-1} 转换
- $V_2 \rightarrow V_1$, 可以通过 P 转换

整个转换的核心,就是上图正中的文字,解释下:

- $\vec{v'}$ 是 V_2 下的点
- \vec{v} 通过 P 变换为 V_1 下的点,即 $P\vec{v}$
- 在 V_1 下, 通过矩阵 A 完成线性变换, 即 $AP\vec{v}$
- 通过 P^{-1} 重新变回 V_2 下的点,即 $P^{-1}AP\vec{v}$

综上, 我们可以有:

$$B\vec{v'} = P^{-1}AP\vec{v'}$$

那么 B 和 A 互为相似矩阵。

注意,这里的 P 只进行了坐标基之间的变换, **所以** $det(P)=\pm 1$; 但是 A 是线性变换, **所以可以有** $det(A) \neq \pm 1$ 。

7.3.2 对角矩阵

那么为什么我们需要相似矩阵呢?

比如这个矩阵 A:

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

可以这样分解:

$$B = P^{-1}AP = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$$

其中
$$P = P^{-1} = \begin{pmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

B 就是对角矩阵,看上去就很清爽,所以说相似变换就是坐标转换,转换到一个更方便计算的简单坐标系。

8 理解二次型 [9]

二次型就是通过矩阵研究二次函数。

通过矩阵来研究二次函数(方程),这就是线性代数中二次型的重点。

8.1 二次函数(方程)的特点

最简单的一元二次函数就是: $y = x^2$, 给它增加一次项和常数项: $y = x^2 + px + q$ 不会改变它的形状 (只会改变对称轴的位置和在 y 轴的截距)

再看二元二次方程: $x^2 + xy + y^2 = 1$

给它增加一次项也不会改变形状 $x^2 + xy + y^2 + 0.3x = 1$, 只是看上去有些伸缩:

所以,对于二次函数或者二次方程,二**次部分是主要部分,往往研究二次这部分就够了**。

8.2 通过矩阵来研究二次方程

因为二次函数(方程)的二次部分最重要,为了方便研究,我们把含有n个变量的二次齐次函数:

$$f(x_1, x_2, \dots, x_n) = a_{11}x_1^2 + a_{22}x_2^2 + \dots + a_{nn}x_n^2$$
$$+ 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + \dots + 2a_{n-1,n}x_{n-1}x$$

或者二次齐次方程称为二次型。

8.2.1 二次型矩阵

实际上我们可以通过矩阵来表示二次型:

$$x^{2} - xy + y^{2} = 1 \Rightarrow \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & -0.5 \\ -0.5 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 1$$

其中, $\begin{bmatrix} 1 & -0.5 \\ -0.5 & 1 \end{bmatrix}$ 就是二次型。

更一般的:

$$ax^{2} + 2bxy + cy^{2} = 1 \Rightarrow \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 1$$

可以写成更线代的形式:

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 1$$

$$X = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

所以有下面一一对应的关系:

对称矩阵 ⇔ 二次型矩阵 ⇔ 二次型

在线代里面,就是通过一个对称矩阵,去研究某个二次型。

8.2.2 通过矩阵来研究有什么好处

圆锥曲线

我们来看下,这是一个圆:

然后看改变一下二次型矩阵:

所以原来椭圆和圆之间是线性关系(通过矩阵变换就可以从圆变为椭圆)。 继续:

双曲线和圆之间也是线性关系(准确的说是仿射的)。其实圆、椭圆、双曲线之间关系很紧密的,统称为圆锥曲线,都是圆锥体和平面的交线。一个平面在圆锥体上运动,可以得到圆、椭圆、双曲线,这也是它们之间具有线性关系的来源(平面的运动是线性的、或者是仿射的)。

规范化

再改变下矩阵:

这个椭圆看起来有点歪,不太好处理,我们来把它扶正,这就叫做**规范化**。如果我们对矩阵有更深刻的认识,那么要把它扶正很简单。

首先,矩阵代表了运动,包含:

• 旋转

- 拉伸
- 投影

对于方阵, 因为没有维度的改变, 所以就没有投影这个运动了, 只有

- 旋转
- 拉伸

具体到上面的矩阵:

我把这个矩阵进行特征值分解:

对角矩阵
$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$
 列向量是单位特征问量
并且互相正交

对于二次型矩阵,都是对称矩阵,所以特征值分解总可以得到正交矩阵与对角矩阵。特征值分解实际上就是把运动分解了:

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$
即有旋转
也有拉伸

那么我们只需要保留拉伸部分,就相当于把矩阵扶正(图中把各自图形的二次型矩阵标注出来了):

所以,用二次型矩阵进行规范化是非常轻松的事情。

正定

正定是对二次函数有效的一个定义,对方程无效。对于二次型函数, $f(x) = x^T A x$:

- $f(x) > 0, x \neq 0, x \in \mathbb{R}$,则 f为正定二次型,A为正定矩阵
- $f(x) \ge 0, x \ne 0, x \in \mathbb{R}$, 则 f 为半正定二次型, A 为半正定矩阵
- $f(x) < 0, x \neq 0, x \in \mathbb{R}$,则 f 为负定二次型,A 为负定矩阵
- $f(x) \le 0, x \ne 0, x \in \mathbb{R}$, 则 f 为半负定二次型, A 为半负定矩阵
- 以上皆不是,就叫做不定

从图像上看,这是正定:

半正定:

不定:

既然二次型用矩阵来表示了,那么我们能否通过矩阵来判断是否正定呢?**如果矩阵的特征值都大于 0,则为正定矩阵**。

9 理解矩阵特征值和特征向量 [10]

假设我们有一个 n 阶的矩阵 A 以及一个实数 λ ,使得我们可以找到一个非零向量 \vec{x} ,满足:

$$A\vec{x} = \lambda \vec{x}$$

如果能够找到的话,我们就称 λ 是矩阵 A 的特征值,非零向量 \vec{x} 是矩阵 A 的特征向量。

先给一个简短的回答,如果把矩阵看作是运动,对于运动而言,最重要的当然就是运动的速度和方向,那么(我后面会说明一下限制条件):

- 特征值就是运动的速度
- 特征向量就是运动的方向

既然运动最重要的两方面都被描述了,特征值、特征向量自然可以称为运动(即矩阵)的特征。 注意,由于矩阵是数学概念,非常抽象,所以上面所谓的运动、运动的速度、运动的方向都是广义

的,在现实不同的应用中有不同的指代。

9.1 几何意义

给定标准基 \vec{i}, \vec{j} 和向量 \vec{v} :

随便左乘一个矩阵 A, 图像看上去没有什么特殊的:

但是调整下 \vec{v} 的方向,图像看上去就有点特殊了:

可以观察到,调整后的 \vec{v} 和 $A\vec{v}$ 在同一根直线上,只是 $A\vec{v}$ 的长度相对 \vec{v} 的长度变长了。此时,我们就称 \vec{v} 是 A 的特征向量,而 $A\vec{v}$ 的长度是 \vec{v} 的长度的 λ 倍, λ 就是特征值。从而,特征值与特征向量的定义式就是这样的:

^v在A的作用下,保持方向不变 进行比例为λ的伸缩

其实之前的 A 不止一个特征向量,还有另一个特征向量:

容易从 $A\vec{v}$ 相对于 \vec{v} 是变长了还是缩短看出,这两个特征向量对应的特征 λ 值,一个大于 1,一个小于 1。

从特征向量和特征值的定义式还可以看出,特征向量所在直线上的向量都是特征向量:

9.2 从公式进一步理解特征值 [11]

回到特征值和特征向量的定义:

$$A\vec{v} = \lambda \vec{v}$$

可以看出来该公式有如下特点:

- A 为 (作用) 方阵;
- $v \neq A$ 的特征向量;
- $\lambda \in A$ 的特征值,为纯量,就是一个数,可以表示为对角阵。

让我们根据这个式子展开想象:

矩阵的乘法都是线性变换,式子想说明,特征向量在 A 的作用下进行线性变换,效果是特征向量的 λ 倍伸缩。注意:

- 并不是所有向 A 都能被伸缩,只有 \vec{v} 中的向量(特征向量)能被其伸缩;
- 伸缩的尺度 λ 体现 A 的变换能力。

这样的话,如果我们知道了一个方阵的特征值和特征向量,就知道了这个方阵的线性变换能力。

放到应用场景中就是,我们通过特征值就能掌握当前数据在对应方向上的变换能力。所以某些场景中,我们选取较大的特征值们来代表原数据的变换能力,例如: PCA 分析、数据压缩。

9.3 特征值、特征向量与运动的关系

9.3.1 矩阵的混合

一般来说,矩阵我们可以看作某种运动,而二维向量可以看作平面上的一个点(或者说一个箭头)。对于点我们是可以观察的,但是运动我们是不能直接观察的。要观察矩阵所代表的运动,需要把它附加到向量上才观察的出来。

单独做一次矩阵的左乘(运动):

似乎还看不出什么。但是如果我反复运用矩阵乘法的话:

也就是说,反复运用矩阵乘法,矩阵所代表的运动的最明显的特征,即速度最大的方向,就由最大特征值对应的特征向量展现了出来

参见《共轭梯度法中的特征值部分》:

如果矩阵 A 的特征向量为 $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$,对应的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$,那么可以将 \vec{v} 分解为

$$\vec{v} = \xi_1 \vec{v}_1 + \xi_2 \vec{v}_2 + \dots + \xi_n \vec{v}_n$$

那么有:

$$A\vec{v} = A\xi_1 \vec{v}_1 + A\xi_2 \vec{v}_2 + \dots + A\xi_n \vec{v}_n$$

$$= \xi_1 A \vec{v}_1 + \xi_2 A \vec{v}_2 + \dots + \xi_n A \vec{v}_n$$

$$= \xi_1 \lambda_1 \vec{v}_1 + \xi_2 \lambda_2 \vec{v}_2 + \dots + \xi_n \lambda_n \vec{v}_n$$

所以:

$$A^i \vec{v} = \xi_1 \lambda_1^i \vec{v}_1 + \xi_2 \lambda_2^i \vec{v}_2 + \dots + \xi_n \lambda_n^i \vec{v}_n$$

所以会越来越贴合到最大的特征值对应的特征空间上。

但是,上面的推论有一个重要的条件:特征向量正交,这样变换后才能保证变换最大的方向在基方向。如果特征向量不正交就有可能不是变化最大的方向。所以我们在实际应用中,都要去找正交基。但是特征向量很可能不是正交的,那么我们就需要奇异值分解了。

9.4 特征值分解

我们知道,对于矩阵 A 可以对角化的话,可以通过相似矩阵进行下面这样的特征值分解:

$$A = P\Lambda P^{-1}$$

其中 Λ 为对角阵, P 的列向量是单位化的特征向量。

证明方法:

给定矩阵 A_{n*n} 的 n 个线性无关的特征向量,按列组成方阵,即:

$$S: [\vec{x_1}, \vec{x_2}, \cdots, \vec{x_n}]$$

那么有:

$$AS = A[\vec{x_1}, \vec{x_2}, \cdots, \vec{x_n}]$$

$$= [\lambda_1 \vec{x_1}, \lambda_2 \vec{x_2}, \cdots, \lambda_n \vec{x_n}]$$

$$= [\vec{x_1}, \vec{x_2}, \cdots, \vec{x_n}] \Lambda$$

$$= S\Lambda$$

其中 Λ 为特征值组成的对角矩阵,因为假设组成特征向量矩阵 S 的 n 个特征向量线性无关,所以 S 可 $\dot{\omega}$,从上式中就可以推导出对角化以及特征值分解的公式:

$$S^{-1}AS = \lambda$$
$$A = S^{-1}\lambda S$$

说的有点抽象,我们拿个具体的例子来讲:

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

按照后文的特征值的计算方法计算后可知:

$$\lambda_1 = 3 \Rightarrow \vec{x_1} = \begin{bmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}$$

$$\lambda_2 = 1 \Rightarrow \vec{x_2} = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}$$

所以有:

对角矩阵
$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$
 列向量是单位特征向量 并且互相正交

对于方阵而言,矩阵不会进行维度的升降,所以矩阵代表的运动实际上只有两种:旋转和拉伸,所以最后的运动结果就是这两种的合成。

我们再回头看下刚才的特征值分解,实际上把运动给分解开了:

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$
即有旋转
也有拉伸

9.4.1 特征值分解的条件

矩阵可以被特征值分解的条件为:

- 1. 矩阵是方阵。(SVD 分解无此要求);
- 2. 方阵 $A_{n \times n}$ 可以做特征值分解的充要条件是其有 n 个线性无关的特征向量。

9.5 特征值、特征向量的应用

特征值越大,说明矩阵在对应的特征向量上的方差越大,功率越大,信息量越多。

应用到最优化中,意思就是对于 R 的二次型,自变量在这个方向上变化的时候,对函数值的影响最大,也就是该方向上的方向导数最大。

应用到数据挖掘中,意思就是最大特征值对应的特征向量方向上包含最多的信息量,如果某几个特征值很小,说明这几个方向信息量很小,可以用来降维,也就是删除小特征值对应方向的数据,只保留大特征值方向对应的数据,这样做以后数据量减小,但有用信息量变化不大。

9.5.1 控制系统

当 $\lambda = 1$, 系统最终会趋于稳定。

9.5.2 图片压缩

比如说,有下面这么一副 512×512 的图片(方阵才有特征值,所以找了张正方形的图):

这个图片可以放到一个矩阵里面去,就是把每个像素的颜色值填入到一个 512×512 的矩阵 A 中。根据之前描述的有:

$$A = P\Lambda P^{-1}$$

其中, Λ 是对角阵, 对角线上是从大到小排列的特征值。

我们在 [公式] 中只保留前面 50 个的特征值(也就是最大的 50 个, 其实也只占了所有特征值的百分之十), 其它的都填 0, 重新计算矩阵后, 恢复为下面这样的图像:

效果还可以,其实一两百个特征值之和可能就占了所有特征值和的百分之九十了,其他的特征值都 可以丢弃了。

9.5.3 二次型最优化问题

二次型 $y = x^T R x$,其中 R 是已知的二阶矩阵,y = [1, 0.5; 0.5, 1],x 是二维列向量, $x = [x_1; x_2]$,求 y 的最小值。

求解很简单,讲一下这个问题与特征值的关系。对 R 特征分解,特征向量是 [-0.7071; 0.7071] 和 [0.7071; 0.7071],对应的特征值分别是 0.5 和 1.5。然后把 y 的等高线图画一下:

从图中看,函数值变化最快的方向,也就是曲面最陡峭的方向,归一化以后是 [0.7071; 0.7071],嗯哼,这恰好是矩阵 R 的一个特征值,而且它对应的特征向量是最大的。因为这个问题是二阶的,只有两个特征向量,所以另一个特征向量方向就是曲面最平滑的方向。这一点在分析最优化算法收敛性能的时候需要用到。二阶问题比较直观,当 R 阶数升高时,也是一样的道理。

9.6 特征值的计算方法

我们对原式来进行一个很简单的变形:

$$A\vec{x} = \lambda \vec{x}$$
$$(A - \lambda I)\vec{x} = 0$$

这里的 I 表示单位矩阵,如果把它展开的话,可以得到一个 n 元的齐次线性方程组。这个我们已经很熟悉了,这个齐次线性方程组要存在非零解,那么需要系数行列式

$$|A - \lambda I| = 0$$

(原文疑似有误,这里已修正,待验证)

我们将这个行列式展开:

$$\begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} - \lambda \end{vmatrix}$$

这是一个以 λ 为未知数的一元n次方程组,n次方程组在复数集内一共有n个解。我们观察上式,可以发现 λ 只出现在正对角线上,显然,A的特征值就是方程组的解。因为n次方程组有n个复数集内的解,所以矩阵A在复数集内有n个特征值。

我们举个例子,尝试一下:

$$A = \begin{bmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{bmatrix}$$

那么 $f(\lambda) = (a_{11} - \lambda)(a_{22} - \lambda) - a_{12}a_{21} = \lambda^2 - (a_{11} + a_{22})\lambda + |A|$,我们套入求根公式可以得出使得 $f(\lambda) = 0$ 的两个根 λ_1, λ_2 ,有:

$$\lambda_1 + \lambda_2 = a_{11} + a_{22}$$
$$\lambda_1 \lambda_2 = |A|$$

这个结论可以推广到所有的 n 都可以成立,也就是说对于一个 n 阶的方阵 A,都可以得到:

$$\lambda_1 + \lambda_2 + \dots + \lambda_n = a_{11} + a_{22} + \dots + a_{nn}$$
$$\lambda_1 \lambda_2 \cdots \lambda_n = |A|$$

参考 [19], 对于 2×2 的矩阵 $A = [A_{11}, A_{12}; A_{21}, A_{22}]$, 有:

行列式和迹:

$$det(A) = A_{11}A_{22} - A_{12}A_{21}$$

$$Tr(A) = Tr(A_{11}) + Tr(A_{11})$$

特征值:

$$\lambda^2 - \lambda \cdot Tr(A) + det(A) = 0$$

$$\lambda_1 = \frac{Tr(A) + \sqrt{Tr(A)^2 - 4det(A)}}{2} \quad \lambda_2 = \frac{Tr(A) - \sqrt{Tr(A)^2 - 4det(A)}}{2}$$

$$\lambda_1 + \lambda_2 = Tr(A) \quad \lambda_1 \lambda_2 = det(A)$$

特征向量:

$$v_1 \propto \begin{bmatrix} A_{12} \\ \lambda_1 - A_{11} \end{bmatrix}$$
 $v_2 \propto \begin{bmatrix} A_{12} \\ \lambda_2 - A_{11} \end{bmatrix}$

逆:

$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} A_{22} & -A_{12} \\ A_{21} & A_{11} \end{bmatrix}$$

9.7 旋转矩阵只有复数特征值

可以想一下,对于旋转矩阵,除了零向量。没有其他向量可以在平面上旋转而不改变方向的,所以旋转矩阵对应的矩阵没有实数特征值和实数特征向量,但是有复数特征特征值和特征向量。而且特征值和特征向量是成对出现的。将特征值写成指数形式,它的幅值代表伸长或者缩小的程度,相角代表 Ax 和 x 之间的夹角。

例如, 当 $\theta = 30^{\circ}$ 时, 对应的旋转矩阵为:

$$T = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

求解 $|T - \lambda I| = 0$,有:

$$\lambda_{1,2} = \frac{\sqrt{3}}{2} \pm \frac{1}{2}i$$

更通用的形式:

$$T = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

求解 $|T - \lambda I| = 0$,有:

$$\lambda_{1,2} = a \pm \sqrt{-b^2} = a \pm bi$$

9.8 常见变换对应的特征值和特征向量

	Scaling	Unequal scaling	Rotation	Horizontal shear	Hyperbolic rotation
Illustration		1 1 1 1			
Matrix	$\begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$	$\left[egin{array}{cc} k_1 & 0 \ 0 & k_2 \end{array} ight]$	$\begin{bmatrix} c & -s \\ s & c \end{bmatrix}$ $c = \cos \theta$ $s = \sin \theta$	$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} c & s \\ s & c \end{bmatrix}$ $c = \cosh \varphi$ $s = \sinh \varphi$
Characteristic polynomial	$(\lambda-k)^2$	$(\lambda-k_1)(\lambda-k_2)$	$\lambda^2-2c\lambda+1$	$(\lambda-1)^2$	$\lambda^2-2c\lambda+1$
Eigenvalues, λ_i	$\lambda_1=\lambda_2=k$	$egin{aligned} \lambda_1 &= k_1 \ \lambda_2 &= k_2 \end{aligned}$	$\lambda_1 = e^{{f i} heta} = c + s{f i} \ \lambda_2 = e^{-{f i} heta} = c - s{f i}$	$\lambda_1=\lambda_2=1$	$\lambda_1 = e^{arphi} \ \lambda_2 = e^{-arphi},$
Algebraic mult., $\mu_i = \mu(\lambda_i)$	$\mu_1=2$	$\mu_1=1\\\mu_2=1$	$egin{aligned} \mu_1 &= 1 \ \mu_2 &= 1 \end{aligned}$	$\mu_1=2$	$egin{aligned} \mu_1 &= 1 \ \mu_2 &= 1 \end{aligned}$
Geometric mult., $\gamma_i = \gamma(\lambda_i)$	$\gamma_1=2$	$egin{array}{l} \gamma_1 = 1 \ \gamma_2 = 1 \end{array}$	$egin{array}{l} \gamma_1 = 1 \ \gamma_2 = 1 \end{array}$	$\gamma_1=1$	$egin{array}{l} \gamma_1 = 1 \ \gamma_2 = 1 \end{array}$
Eigenvectors	All nonzero vectors	$egin{aligned} u_1 &= egin{bmatrix} 1 \ 0 \end{bmatrix} \ u_2 &= egin{bmatrix} 0 \ 1 \end{bmatrix} \end{aligned}$	$egin{aligned} u_1 &= egin{bmatrix} 1 \ -\mathbf{i} \end{bmatrix} \ u_2 &= egin{bmatrix} 1 \ +\mathbf{i} \end{bmatrix} \end{aligned}$	$u_1 = egin{bmatrix} 1 \ 0 \end{bmatrix}$	$u_1 = egin{bmatrix} 1 \ 1 \end{bmatrix}$

最后一列貌似有问题, 见下方证明

证明:

$$\begin{split} M_1 &= [k, 0; 0, k] \to (k - \lambda)^2 = 0 \to \lambda_1 = \lambda_2 = k \\ M_2 &= [k_1, 0; 0, k_2] \to (k_1 - \lambda)(k_2 - \lambda) = 0 \to \lambda_1 = k_1, \lambda_2 = k_2 \\ M_3 &= [c, -s; s, c], c = \cos \theta, s = \sin \theta \to \lambda^2 - 2c\lambda + 1 = 0 \to \lambda_1 = c + s\mathbf{i}, \lambda_2 = c - s\mathbf{i} \\ M_4 &= [1, k; 0, 1], \to (\lambda - 1)^2 = 0 \to \lambda_1 = \lambda_2 = 1 \\ M_5 &= [c, s; s, c], c = \cos \theta, s = \sin \theta \to \lambda^2 - 2c\lambda + c^2 - s^2 = 0 \to \lambda_1 = c + s, \lambda_2 = c - s \end{split}$$

9.9 特征值的性质 [12]

9.9.1 特征值和迹、行列式的关系

$$\lambda_1 + \lambda_2 + \dots + \lambda_n = tr(A)$$

$$\lambda_1 \cdot \lambda_2 \cdot \dots \cdot \lambda_n = det(A)$$

9.9.2 特征值的幂

已知:

$$A\mathbf{x} = \lambda \mathbf{x}$$

有:

$$A^2$$
x = $A(A$ **x** $) = A(\lambda$ **x** $) = \lambda(A$ **x** $) = \lambda^2$ **x**

也就是 A^2 特征值为 λ^2 , 特征向量跟 A 相同, 还可以继续推出:

$$A^k \mathbf{x} = \lambda^k \mathbf{x}$$

$$A^{-1}\mathbf{x} = \frac{1}{\lambda}\mathbf{x}$$

同时这里我们可能会想要注意 $\lambda \neq 0$,但实际上如果 $\lambda = 0$,那就是 $A\mathbf{x} = 0$,A 不可逆。还有:

$$e^{At}\mathbf{x} = e^{\lambda t}\mathbf{x}$$

这个式子的推导可以用泰勒展开:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

实际上最早特征值和特征向量就是为了解决微分方程出现的。

还有:如果 $n \times n$ 矩阵有 n 个特征向量,我们当然就可以用它来做一组基,可以把空间中任何向量写成:

$$\mathbf{v} = c_1 \mathbf{x} + \dots + c_n \mathbf{x}$$

$$A^{k}\mathbf{v} = A^{k}c_{1}\mathbf{x}_{1} + \dots + A^{k}c_{n}\mathbf{x}_{n}$$

$$= c_{1}A^{k}\mathbf{x}_{1} + \dots + c_{n}A^{k}\mathbf{x}_{n}$$

$$= c_{1}\lambda_{1}^{k}\mathbf{x}_{1} + \dots + c_{n}\lambda_{1}^{k}\mathbf{x}_{n}$$

9.10 矩阵的特征值和"谱"[3]

矩阵的特征值有时会被称为谱,这和特征值的物理意义有关。如果你学过线性系统理论或者振动分析类的课程,就会知道,一阶线性微分方程组对应的矩阵的特征值,就是系统的固有频率。我们知道,凡是叫谱的东西,都是可以分解的,比如光谱。那么这个矩阵可不可以分解呢?答案是肯定的:我们可以将一个具有良好性能的矩阵分解成多个作用的叠加。

在数学中有一个谱定律(Spectral theorem),也叫谱分解或者特征值分解。它的核心内容如下:一个矩阵 A 可表示为如下线性组合

$$A = \lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3 + \cdots$$

其中, $P_1, P_2, P_3, \dots, P_n$ 称为 A 的谱族, $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n$ 等表示特征值。

这里做了两个假设: 1) 矩阵 A 是可以对角化的; 2) 所有特征值都是不同的(这个不是必须的,只是为了结果比较清晰)。

对于可对角化的矩阵 A 我们可以将它表示成这样:

$$A = P \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} P^{-1}$$

这里将 P 拆成列向量, P^{-1} 拆成行向量: $P = [p_1, p_2, \cdots, p_n], P^{-1} = [q_1, q_2, \cdots, q_n]^T$,于是可以得到矩阵:

$$P_1 = p_1 q_1, P_2 = p_2 q_2, \cdots, P_n = p_n q_n,$$

如果特征值相同,只要矩阵 *A* 可对角化,上面的分解也是可以进行的。把相同特征值的块合并在一起就可以,从它的应用角度来说这样处理是合理的。

从这里我们可以看出,**一个变换(矩阵)可由它的所有特征值和谐族完全表示。特征值和谐族的乘积就代表了它对矩阵** A **的贡献率**——说的通俗一点就是能量(power)或者权重 (weight)。这样,能量多的、权重大的部分当然重要,问题的主要矛盾就凸显出来了! 当然,也可以这样理解: 把特征值看成坐标,谱族看成基。于是,一组基 + 一组坐标就表示了一个对象——矩阵 A。

同理可参考《共轭梯度法》中的特征值和谱半径部分。

10 理解迹 [13]

线性代数中,把方阵的对角线之和称为"迹",即对于给定的矩阵:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

$$Tr(A) = \sum_{i}^{n} a_{ii}$$

"迹"就是线性变换藏在矩阵中痕迹。

10.1 迹的性质

已知 A, B 是两个 $n \times n$ 的矩阵, k 是一个常数, 则:

- $tr(kA) = k \cdot tr(A)$
- tr(A+B) = tr(A) + tr(B)
- tr(AB) = tr(BA)

•

11 再论相似矩阵

11.1 相似矩阵的"迹"、行列式、特征值的关系

给定矩阵 $A \setminus B$, 已知 A, B 互为相似矩阵, 即 $B = P^{-1}AP$, 那么:

11.1.1 迹

相似矩阵的"迹"都相等。证明如下:

$$B = P^{-1}AP \Rightarrow$$

$$tr(B) = tr(P^{-1}AP)$$

$$= tr(P^{-1}(AP))$$

$$= tr((AP)P^{-1})$$

$$= tr(A)$$

11.1.2 行列式

因为 A, B 代表同一个线性变换,而根据行列式的意义,行列式代表的是线性变换的伸缩比例。既然是比例,那么也和坐标无关,即:

$$det(A) = det(B) = 1$$

所以行列式是一个相似不变量。

11.1.3 特征值

根据特征值分解的定义,特征值矩阵 Λ :

$$\Lambda = Q^{-1}AQ$$

这里用 Q 是为了和之前的 P 进行区别。可见, Λ 和 A, B 也是相似矩阵。所以: 对 A, B 求特征值矩阵都得到的是同一个 Λ (特征向量有所不同,因为在不同的基下)

11.1.4 结论

更一般的,可以得到这两个相似不变量和特征值的关系分别为:

- $\underline{\dot{w}} = \lambda_1 + \lambda_2 + \cdots$
- 行列式 = $\lambda_1 \cdot \lambda_1 \cdots$

12 理解奇异值 [14]

奇异值与特征值相对应。特征值固然方便使用,但其对原矩阵为**方阵**的限制为实际情况下所难得的。自然,我们就需要一种更一般化的特征提取方式,这里的特征我们叫奇异值 (singular value),而这种方式正是奇异值分解 (singular-value decomposition (SVD))。所以,该分解和结果的意义与特征值类似,但拓展了适用范围 [11]。

12.1 定义

$$M = U\Sigma V^* \Rightarrow egin{dcases} M: m imes n$$
矩阵
$$N: m imes m$$
酉矩阵, U 的列是 M 的正交**输出**基向量
$$\Sigma: m imes n$$
的对角阵,对角元素非负 (奇异值);其余元素均为 0
$$V^*: n imes n$$
酉矩阵,是 V 的转置, V 的列是 M 的正交**输入**基向量

注: N 和 V 都是酉矩阵 (unitary matrix), 即满足:

$$U^TU = I.V^TV = I$$

需要注意的是, 奇异值分解结果并不唯一。

12.1.1 与特征值分解的关系 [15]

首先,矩阵可以认为是一种线性变换,而且这种线性变换的作用效果与基的选择有关。以 Ax = b 为例,x 是 m 维向量,b 是 n 维向量,m,n 可以相等也可以不相等,表示矩阵可以将一个向量线性变换到另一个向量,这样一个线性变换的作用可以包含**旋转、缩放和投影**三种类型的效应。

奇异值分解正是**对线性变换这三种效应的一个析构**。给定奇异值分解 $A = \mu \Sigma \sigma^T$, μ , σ 是**两组正交单位向量**, Σ 是对角阵,表示奇异值;它表示我们找到了 μ , σ 这样两组基,A 矩阵的作用是将一个向量从 σ 这组正交基向量的空间**旋转**到 μ 这组正交基向量空间,并对每个方向进行了一定的**缩放**,缩放因子就是各个**奇异值**。如果 σ 维度比 μ 大,则表示还进行了投影。可以说奇异值分解将一个矩阵原本混合在一起的三种作用效果,分解出来了。

而特征值分解其实是**对旋转和缩放两种效应的归并**(有投影效应的矩阵不是方阵,没有特征值)。特征值,特征向量由 $Ax = \lambda x$ 得到,它表示如果一个向量 v 处于 A 的特征向量方向,那么 Av 对 v 的线性变换作用只是一个**缩放**。也就是说,求特征向量和特征值的过程,我们找到了这样一组基,在这组基下,矩阵的作用效果仅仅是存粹的**缩放**。对于实对称矩阵,特征向量正交,我们可以将特征向量式子写成 $A = x\lambda x^T$,这样就和奇异值分解类似了,就是 A 矩阵将一个向量从 x 这组基的空间旋转到 x 这组基的空间,并在每个方向进行了缩放,由于前后都是 x,就是没有旋转或者理解为旋转了 0 度。

总结一下,特征值分解和奇异值分解都是给一个矩阵(线性变换)找一组特殊的基:

- 特征值分解找到了特征向量这组基,在这组基下该线性变换只有缩放效果。
- 奇异值分解则是找到另一组基,这组基下线性变换的旋转、缩放、投影三种功能独立地展示出来了

特征值分解其实是一种找特殊角度,让旋转效果不显露出来,所以并不是所有矩阵都能找到这样巧妙的角度。仅有缩放效果,表示、计算的时候都更方便,但是这样的基很多时候不再正交了,又限制了一些应用。

12.2 通俗理解奇异值分解

给定一个变换矩阵 A = [1, -2; 1, 2], 通过一个单位圆来观察:

把这个单位圆的每一点都通过 A 进行变换,得到一个椭圆(我把单位圆保留下来了,作为一个比较):

对 A 进行奇异值分解:

$$A = \begin{bmatrix} 1 & -2 \\ 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} -0.707 & -0.707 \\ 0.707 & -0.707 \end{bmatrix} \begin{bmatrix} 2.828 & 0 \\ 0 & 1.414 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

实际上,将 A 分为了两个"分力":

$$A = \begin{bmatrix} -0.707 & -0.707 \\ 0.707 & -0.707 \end{bmatrix} \begin{bmatrix} 2.828 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} -0.707 & -0.707 \\ 0.707 & -0.707 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1.414 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

我们来看看第一个"分力", $\begin{bmatrix} -0.707 & -0.707 \\ 0.707 & -0.707 \end{bmatrix} \begin{bmatrix} 2.828 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -2 \\ 0 & 2 \end{bmatrix}, 作用在单位圆这个"橡皮筋"上的效果:$

可怜的"橡皮筋"被拉成了一根线段。 我们来看看第二个"分力", $\begin{bmatrix} -0.707 & -0.707 \\ 0.707 & -0.707 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1.414 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \text{ 作用在单位圆这个}$ "橡皮筋"上的效果:

可怜的"橡皮筋"被拉成了另外一根线段。

这两个"分力"一起作用的时候,可以想象(画面自行脑补),单位圆这个"橡皮筋"被拉成了椭圆:

12.2.1 奇异值的物理解释

同上文, 奇异值分解实际上把矩阵的变换分为了三部分:

旋转

- 拉伸
- 投影

举例子(方阵没有投影,不过不影响这里思考):

旋转 (都是单位正交矩阵)

单位圆先被旋转(作用
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
),是没有形变的; 再进行拉伸(作用 $\begin{bmatrix} 2.828 & 0 \\ 0 & 1.414 \end{bmatrix}$),这里决定了单位圆的形状,奇异值分别是椭圆的长轴和短轴; 最后,被旋转到最终的位置(作用 $\begin{bmatrix} -0.707 & -0.707 \\ 0.707 & -0.707 \end{bmatrix}$),这一过程也没有发生形变;

12.2.2 奇异值分解 (SVD) 的方法

给定 $m \times n$ 的矩阵 A, 有 $A^T A$ 是 $n \times n$ 的方阵, 我们用这个方阵求特征值可以得到:

$$(A^T A)v_i = \lambda_i v_i$$

这里得到的 v_i 就是右奇异向量;此外,可以得到:

$$\sigma_i = \sqrt{\lambda_i}$$

$$u_i = \frac{1}{\sigma_i} A v_i$$

这里的 σ_i 就是奇异值, u_i 就是左奇异向量;奇异值 σ 和特征值类似,在矩阵 Σ 中也是按照从大小小的顺序排列,而且 σ 的值减小的特别快,在很多情况下,前 10% 甚至 1% 的奇异值之和就占了全部

奇异值之和的 90% 以上。也就是说可以用前 r 个大的奇异值来近似描述矩阵,即:

$$A_{m \times n} \approx U_{m \times r} \Sigma_{r \times r} V_{r \times n}^T$$

13 理解线性微分方程 [16]

线性微分方程为什么有"线性"这两个字?为什么线性微分方程的通解包含 e^x ?

13.0.1 一个直观的理解 [17]

方程本质是一种约束,微分方程就是在世界上各种各样的函数中,约束出一类函数。对于一阶微分方程

$$\frac{dy}{dt} = \lambda y$$

我们发现如果我将变量 y 用括号 [] 包围起来,微分运算的结构和线性代数中特征值特征向量的结构 意是如此相似:

$$\frac{d}{dy}[y] = \lambda[y]$$

$$T\{x\} = \lambda\{x\}$$

这就是一个求解特征向量的问题,只不过"特征向量"变成函数。并且我们知道只有 $e^{\lambda t}$ 满足这个式子。为什么选择指数函数而不选择其他函数,因为指数函数是特征函数。为什么指数函数是特征? 我们从线性代数的特征向量的角度来解释。

$$T[e^{\lambda t}] = \lambda[e^{\lambda t}]$$

这已经很明显了, $e^{\lambda t}$ 就是"特征向量"。于是,很自然的将线性代数的理论应用到线性微分方程中。那么指数函数就是微分方程(实际物理系统)的特征向量。用特征向量作为基表示的矩阵最为简洁。

13.1 微分算子

对于多项式函数: $f(x) = 1 + 2x + 3x^2$ 我们以 $\vec{i} = 1, \vec{j} = x, \vec{k} = x^2$ 为基(关于多项式的基,可以参看《线性代数应该这样学》这样的高等代数教材),可以把它转为向量:

$$f(x) = 1 + 2x + 3x^2 \Rightarrow \vec{f} = \begin{pmatrix} 1\\2\\3 \end{pmatrix}$$

画出来图来就是(三个坐标轴分别表示 $1, x, x^2$ 这三个基,当然这里有点不严格,准确来说,三个基并不是两两正交的):

我们定义 D 为微分算子: $D=\frac{d}{dx}$ 那么有: $D(f(x))=\frac{df(x)}{dx}=2+6x$ 还可以把 D 写成一个矩阵(对于更高次的多项式,D 的矩阵是类似的)(?? 如何得到??): $D=\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

然后通过矩阵来完成求导操作:

$$D\vec{f} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \end{pmatrix} \Rightarrow D(f(x)) = 2 + 6x$$

从图像上看,就是把通过 D 矩阵把 $\vec{f} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ 投影到 1-x 平面:

这样看来,**微分算子** D **也是一个线性变换**。

13.2 代数定义

在数学中,只要符合下面两个性质的就是线性变换 (T代表变换):

• 可加性: $T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$

• 齐次性: $T(a\vec{x}) = aT(\vec{x})$

比如,我们有两个多项式函数: $f(x) = 1 + 2x + 3x^2, g(x) = 2 + 3x + 4x^2$, 那么容易验证,D 是一个线性变换:

• 可加性: D(f(x) + g(x)) = D(f(x)) + D(g(x)) = 5 + 14x

• 齐次性: D(af(x)) = aD(f(x)) = a(2+6x)

进一步的,D 的多项式组合: $\mathcal{L} = a_0 + a_1 D + a_2 D^2 + \cdots + a_n D^n, a_0, a_1, \cdots, a_n \in \mathbb{C}$ 也是线性变换,这一点可以自行去验证。

13.3 线性微分方程

既然 D 的多项式组合 \mathcal{L} 是线性变换,那么线性微分方程为什么是"线性"的,答案呼之欲出。

13.3.1 线性微分方程的定义

定义下式为常系数 (因为 a_0, a_1, \dots, a_n 是常数) 线性微分方程: $\mathcal{L}(y) = f(x)$

如果, f(x) = 0, 则为常系数齐次线性微分方程: $\mathcal{L}(y) = 0$

如果, $f(x) \neq 0$, 则为常系数非齐次线性微分方程: $\mathcal{L}(y) = f(x), f(x) \neq 0$

如果 a_0, a_1, \dots, a_n 是 x 的函数,那么就是变系数线性微分方程,暂不讨论这种情况。

解释一下: $\mathcal{L}(y) = 0$ 可以类比于齐次线性方程: $A\vec{x} = 0$, 所以我们称 $\mathcal{L}(y) = 0$ 为齐次线性微分方程。不光是可以这么类比,实际上解法都是一样的。我们先来看看齐次线性方程是怎么解的。

13.3.2 齐次线性方程的解法

对于齐次线性方程: $A\vec{x} = 0$ 我们怎么解?

我们知道,A 的特征值和特征向量满足下面这个等式: $A\vec{x} = \lambda \vec{x}, \vec{x} \neq 0$

那么特征值 $\lambda = 0$ 对应的特征向量 \vec{x} 必定是 A 的解。

13.3.3 £ 的特征值、特征向量

那么 \mathcal{L} 的特征值和特征向量是多少?

根据特征值和特征向量的定义,对于 $\mathcal{L} = D$ 有: $\mathcal{L}(e^{nx}) = D(e^{nx}) = ne^{nx}$ 所以,其特征值为 $\lambda = n$,特征向量为 e^{nx} 。

所以, e^{nx} 出现了,为什么线性微分方程的通解里面有 e^{nx} ,是因为 e^{nx} 是 D 的特征向量。

同理, 对于 $\mathcal{L} = D^2 - 2D - 8$ 有: $(D^2 - 2D - 8)(e^{nx}) = (n^2 - 2n - 8)e^{nx}$ 所以, 其特征值为 $\lambda = n^2 - 2n - 8$, 特征向量为 e^{nx} 。

13.3.4 解常系数齐次线性微分方程

万事具备,我们开始解方程吧。

对于: D(y) = 0 实在太简单了, $y = C, C \in \mathbb{R}$ 。

对于: $y'' - 2y' - 8y = 0 \Rightarrow \mathcal{L}(y) = (D^2 - 2D - 8)(y) = 0$ 对于此 \mathcal{L} , 求它的 0 特征值: $\lambda = n^2 - 2n - 8 = 0 \Rightarrow n_1 = 4, n_2 = -2$

对应的特征向量为, e^{4x} , e^{-2x} ,这两个特征向量线性无关,因此得到解为: $y = C_1 e^{4x} + C_2 e^{-2x}$ 如果得到的特征值相同,那么就需要另外讨论一下。

13.3.5 解常系数非齐次线性微分方程

对于非齐次线性微分方程: $(D^2 - 2D - 8)(y) = e^{2x}$ 可以类比线性方程的解的结构:

先求出齐次方程的解,然后根据初始条件得到一个特解 y^* ,得到: $y = C_1 e^{4x} + C_2 e^{-2x} + y^*$ 还有一种做法,因为: $(\frac{1}{2}D-1)e^{2x}=0$ 所以可以得到: $(\frac{1}{2}D-1)\underbrace{(D^2-2D-8)(y)}_{e^{2x}}=0$ 得到一个新的齐次线性微分方程,然后根据刚才介绍的方法进行求解。不过这样就需要求解三次方程,或许比特解法复杂一些,这里只是展示一下理解了线性微分方程的含义之后,我们可以更灵活的处理。

13.4 总结

- 因为 £ 是线性的, 所以线性微分方程是线性的
- 因为 e^{nx} 是 \mathcal{L} 的特征向量,所以通解里面有 e^{nx}

14 理解协方差矩阵 [18]

14.1 方差和协方差的定义

在统计学中,**方差**是用来度量**单个随机变量的离散程度**,而**协方**差则一般用来刻画**两个随机变量的相似程度**,其中,**方差**的计算公式为:

$$\sigma_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

其中,n 表示样本量,符号 \bar{x} 表示观测样本的均值。

在此基础上, 协方差的计算公式被定义为

$$\sigma(x,y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

在公式中,符号 \bar{x},\bar{y} 分别表示两个随机变量所对应的观测样本均值,据此,我们发现: 方差 σ_x^2 可视作随机变量 x 关于其自身的协方差 $\sigma(x,x)$ 。

也可以写为:

$$Cov(\mathbf{X}, \mathbf{Y}) = E[(\mathbf{X} - \mu_{\mathbf{x}})(\mathbf{Y} - \mu_{\mathbf{y}})]$$

14.2 直观理解协方差的物理意义

两个变量在变化过程中是同方向变化?还是反方向变化?同向或反向程度如何?两个变量间变换趋势的这种联系,就可以用两个变量的协方差来描述。

- 两个变量同向变化(同时变大或变小),协方差是正的;
- 两个变量反向变化(一个变大,另一个缩小),协方差是负的;

从公式出发来理解一下,给定两个随机变量:

这时,我们发现每一时刻 $\mathbf{X} - \mu_x$ 的值与 $\mathbf{Y} - \mu_y$ 的值的"正负号"一定相同。所以,像上图那样,当他们同向变化时, $\mathbf{X} - \mu_x$ 与 $\mathbf{Y} - \mu_y$ 的乘积为正;同理,如果是反向运动,那么求平均的时候就是负数了;如果是随机运动,则正负可能会抵消掉。

总结一下,如果协方差为正,说明 X , Y 同向变化,协方差越大说明同向程度越高;如果协方差为负,说明 X , Y 反向运动,协方差越小说明反向程度越高。

14.3 相关系数

一般情况下,相关系数的公式为:

$$\rho = \frac{Conv(\mathbf{X}, \mathbf{Y})}{\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}}$$

就是用 $X \times Y$ 的协方差除以X的标准差和Y的标准差。

相关系数也可以看成协方差:一种剔除了两个变量量纲影响、标准化后的特殊协方差。

既然是一种特殊的协方差, 那它:

- 1. 也可以反映两个变量变化时是同向还是反向,如果同向变化就为正,反向变化就为负。
- 2. 由于它是标准化后的协方差,因此更重要的特性来了:它消除了两个变量变化幅度的影响,而只是单纯反应两个变量每单位变化时的相似程度。

14.4 从方差/协方差到协方差矩阵

根据方差的定义, 给定 d 个随机变量 $x_k, k = 1, 2, \dots, d$, 则这些**随机变量的方差**为:

$$\sigma(x_k, x_k) = \frac{1}{n-1} \sum_{i=1}^{n} (x_{ki} - \bar{x_k})^2, \quad k = 1, 2, \dots, d$$

其中,为方便书写, $x_k i$ 表示随机变量 x_k 中的第 i 个观测样本,n 表示样本量,每个随机变量所对应的观测样本数量均为 n。

对于这些随机变量,我们还可以根据协方差的定义,求出两两之间的协方差,即

$$\sigma(x_m, x_k) = \frac{1}{n-1} \sum_{i=1}^{n} (x_{mi} - \bar{x}_m)(x_{ki} - \bar{x}_k)$$

因此, 协方差矩阵为:

$$\Sigma = \begin{bmatrix} \sigma(x_1, x_1) & \cdots & \sigma(x_1, x_d) \\ \vdots & & \vdots \\ \sigma(x_d, x_1) & \cdots & \sigma(x_d, x_d) \end{bmatrix} \in \mathbb{R}^{d \times d}$$

其中,对角线上的元素为各个随机变量的方差,非对角线上的元素为两两随机变量之间的协方差,根据协方差的定义,我们可以认定: **矩阵** Σ **为对称矩阵** (symmetric matrix),其大小为 $d \times d$ 。

14.5 多元正态分布与线性变换

单变量正态分布的公式为:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

其中, μ 是期望, σ^2 是方差。

假设一个向量 x 服从均值向量为 μ 、协方差矩阵为 Σ 的多元正态分布 (multi-variate Gaussian distribution),则有:

$$p(\mathbf{x}) = |2\pi\Sigma|^{\frac{1}{2}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)}$$

(看得出来, 多变量的协方差矩阵 Σ 和单变量的方差 σ^2 是对应的)

令该分布的均值向量为 $\mu=0$,由于指数项外面的系数 $|2\pi\Sigma|^{\frac{1}{2}}$ 通常作为常数,故可将多元正态分布简化为:

$$p(\mathbf{x}) \propto exp\left(-\frac{1}{2}\mathbf{x}^T \Sigma^{-1}\mathbf{x}\right)$$

假定 $\mathbf{x} = (x_1, x_2)$, 即 \mathbf{x} 是包含两个随机变量的向量,则协方差矩阵可写成如下形式:

$$\Sigma = \begin{bmatrix} \sigma(x_1, x_1) & \sigma(x_1, x_2) \\ \sigma(x_2, x_1) & \sigma(x_2, x_2) \end{bmatrix} \in \mathbb{R}^2$$

用单位矩阵 (identity matrix)I 作为协方差矩阵,随机变量 x_1 和 x_2 的方差均为 1,则生成如干个随机数如图所示。

在生成的若干个随机数中,每个点的似然为

$$L(\mathbf{x}) \propto exp(-\frac{1}{2}\mathbf{x}^T\mathbf{x})$$

(回忆: 似然性是用于在已知某些观测所得到的结果时,对有关事物的性质的参数进行估计。似然函数是给定联合样本值 x 下关于 (未知)参数 θ 的函数,即: $L(\theta|x) = f(x|\theta)$ 。)

对图中的所有点考虑一个线性变换 (linear transformation): $\mathbf{t} = A\mathbf{x}$, 我们能够得到:

经过线性变换的二元正态分布, 先将原图的纵坐标压缩 0.5 倍, 再将所有点逆时针旋转 30° 得到

在线性变换中,矩阵 A 被称为变换矩阵 (transformation matrix),为了将原图中的点经过线性变换得到我们想要的图,其实我们需要构造两个矩阵:

- 尺度矩阵 (scaling matrix): $S = \begin{bmatrix} S_{x_1} & 0 \\ 0 & S_{x_2} \end{bmatrix}$
- 旋转矩阵 (rotation matrix) $R = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$

变换矩阵、尺度矩阵和旋转矩阵三者的关系为:

$$A = RS$$

在这个例子中,尺度矩阵为 $S=\begin{bmatrix}1&0\\0&0.5\end{bmatrix}$,旋转矩阵为 $R=\begin{bmatrix}\cos(\frac{\pi}{6})&-\sin(\frac{\pi}{6})\\\sin(\frac{\pi}{6})&\cos(\frac{\pi}{6})\end{bmatrix}=\begin{bmatrix}\frac{\sqrt{3}}{2}&-\frac{1}{2}\\\frac{1}{2}&\frac{\sqrt{3}}{2}\end{bmatrix}$,故变换矩阵为

$$A = RS = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{4} \\ \frac{1}{2} & \frac{\sqrt{3}}{4} \end{bmatrix}$$

另外,需要考虑的是,经过了线性变换, \mathbf{t} 的分布是什么样子呢? 将 $\mathbf{x} = A^{-1}\mathbf{t}$ 代入前面的似然 $L(\mathbf{x})$,有 (??? 如何推导出来 \mathbf{t} ???):

$$L(\mathbf{t}) \propto exp(-\frac{1}{2}(A^{-1}\mathbf{t})^T(A^{-1}\mathbf{t})) = exp(-\frac{1}{2}\mathbf{t}^T(AA^T)^{-1}\mathbf{t})$$

由此可以得到,多元正态分布的协方差矩阵为

$$\Sigma = AA^{T} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{4} \\ \frac{1}{2} & \frac{\sqrt{3}}{4} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ -\frac{1}{4} & \frac{\sqrt{3}}{4} \end{bmatrix} = \begin{bmatrix} \frac{13}{16} & \frac{3\sqrt{3}}{16} \\ \frac{3\sqrt{3}}{16} & \frac{7}{16} \end{bmatrix}$$

按照协方差的公式对比推导一遍结果:

根据题目中的条件,已知 $\bar{x_1}, \bar{x_2} = 0, \sigma(x_1, x_1) = 1, \sigma(x_1, x_2) = 0, \sigma(x_2, x_1) = 0, \sigma(x_2, x_2) = 1$;

因为 $\mathbf{t} = A\mathbf{x}$, 设 A = [a, b; c, d] 那么有: $t_1 = ax_1 + bx_2, t_2 = cx_1 + dx_2$, 则:

$$\sigma(t_1, t_1) = \frac{1}{n-1} \sum_{i} (t_{1i} - \bar{t_1})(t_{1i} - \bar{t_1}) = a^2 \sigma(x_1, x_1) + ab\sigma(x_1, x_2) + ab\sigma(x_2, x_1) + b^2 \sigma(x_2, x_2) = a^2 + b^2$$

$$\sigma(t_1, t_2) = \frac{1}{n-1} \sum_{i} (t_{1i} - \bar{t_1})(t_{2i} - \bar{t_2}) = ac\sigma(x_1, x_1) + ad\sigma(x_1, x_2) + bc\sigma(x_2, x_1) + bd\sigma(x_2, x_2) = ac + bd$$

$$\sigma(t_2, t_1) = \frac{1}{n-1} \sum_{i} (t_{2i} - \bar{t_2})(t_{1i} - \bar{t_1}) = ac\sigma(x_1, x_1) + ad\sigma(x_1, x_2) + bc\sigma(x_2, x_1) + bd\sigma(x_2, x_2) = ac + bd$$

$$\sigma(t_2, t_2) = \frac{1}{n-1} \sum_{i} (t_{2i} - \bar{t_2})(t_{2i} - \bar{t_2}) = c^2 \sigma(x_2, x_2) + cd\sigma(x_1, x_2) + cd\sigma(x_2, x_1) + d^2 \sigma(x_2, x_2) = c^2 + d^2$$

$$\mathbb{H} \ \Sigma = [a^2 + b^2, ac + bd; ac + bd, c^2 + d^2];$$

同理,按照 $\Sigma = AA^T$ 也可以得到同样的结果。

14.6 协方差矩阵的特征值分解

回顾关于特征值分解的内容: 对于对称矩阵 Σ , 可能存在一个特征值分解 (eigenvalue decomposition, EVD):

$$\Sigma = U\Lambda U^T$$

其中,U 的每一列都是相互正交的特征向量,且是单位向量,满足 $UU^T=I$, Λ 对角线上的元素是从大到小排列的特征值,非对角线上的元素均为 0。

当然,这条公式在这里也可以很容易地写成如下形式:

$$\Sigma = (U\Lambda^{\frac{1}{2}})(U\Lambda^{\frac{1}{2}})^T = AA^T$$

其中, $A = U\Lambda^{\frac{1}{2}}$,因此,通俗地说,**任意一个协方差矩阵都可以视为线性变换的结果**。 在上面的例子中,**特征向量构成的矩阵为**:

$$U = R = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

特征值构成的矩阵为:

$$\Lambda = SS^T = \begin{bmatrix} s_y^2 & 0 \\ 0 & s_z^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{4} \end{bmatrix}$$

到这里,我们发现:**多元正态分布的概率密度是由协方差矩阵的特征向量控制旋转** (rotation),特征值控制尺度 (scale),除了协方差矩阵,均值向量会控制概率密度的位置,在原图中,均值向量为 0,

References

- [1] "为什么学习线性代数?" [Online]. Available: https://www.matongxue.com/madocs/2112/
- [2] "如何理解矩阵乘法? ." [Online]. Available: https://www.matongxue.com/madocs/555/
- [3] 黎文科, 神奇的矩阵.
- [4] "如何通俗的解释仿射变换?" [Online]. Available: https://www.matongxue.com/madocs/244/
- [5] "行列式的本质是什么?" [Online]. Available: https://www.matongxue.com/madocs/247/
- [6] "如何理解矩阵的「秩」." [Online]. Available: https://www.matongxue.com/madocs/254/
- [7] "为什么矩阵行秩等于列秩?" [Online]. Available: https://www.matongxue.com/madocs/290/
- [8] "如何理解相似矩阵?" [Online]. Available: https://www.matongxue.com/madocs/491/
- [9] "如何理解二次型?" [Online]. Available: https://www.matongxue.com/madocs/271/
- [10] "如何理解矩阵特征值和特征向量?." [Online]. Available: https://www.matongxue.com/madocs/228/
- [11] "备查手册-特征值与奇异值." [Online]. Available: https://zhuanlan.zhihu.com/p/67577324
- [12] "特征值和特征向量." [Online]. Available: https://zhuanlan.zhihu.com/p/95836870
- [13] "如何理解矩阵的迹?" [Online]. Available: https://www.matongxue.com/madocs/483/
- [14] "如何通俗地理解奇异值?" [Online]. Available: https://www.matongxue.com/madocs/306/
- [15] "矩阵的奇异值与特征值有什么相似之处与区别之处." [Online]. Available: https://www.zhihu.com/question/19666954/answer/54788626
- [16] "如何理解线性微分方程?" [Online]. Available: https://www.matongxue.com/madocs/513/
- [17] 黎文科, 神奇的矩阵-第二季.
- [18] "如何直观地理解「协方差矩阵」?" [Online]. Available: https://zhuanlan.zhihu.com/p/37609917
- [19] M. S. P. Kaare Brandt Petersen, The Matrix Cookbook. http://matrixcookbook.com.