Lecture Notes: Compiled by Maqsood Ahmad (A.P. Maths.) for students of CUI, Lahore. (FA20-BSM-A, SP20-BSE-A & B).

Note: (Courtesy) Material for this lecture is selected from Kolman book, Virtual University, Lahore, Virtual COMSATS and Housten University hand outs.

Lecture 12+13 consists of the files named as (LA-Lecture 12+13, Examples of subspaces, Vector Space-applications)

Objective of Lecture 12+13:-

- (1) To check and verify that "whether given set V satisfy axioms of vector space."
- (2) To check and verify that "whether given subset W of a set V satisfy axioms of subspace."
- (3) Whether vector v can be written as "linear combination" of given vectors v_1 , v_2 and v_3 . Linear independence of vectors, Linear span of vectors.

After studying this lecture, You are desired to do

Home Work: Do Questions 1-14 of Exercise 4.2, Questions 5-18 and 32-34 of Exercise 4.3, following link is extremely helpful in this regard.

 $\frac{https://www.slader.com/textbook/9780132296540\text{-}elementary\text{-}linear\text{-}algebra\text{-}with-applications\text{-}9th\text{-}edition/196/}{}$

Chapter 4: Real Vector Spaces

In this chapter, we first recall the notion of 2-vectors (*elements of* R^2) and 3-vectors (*elements of* R^3) along with their properties. As a consequence, we can extend the properties of 3-vectors to n-vectors (*elements of* R^n). Many concepts concerning vectors in R^n can be generalized to other mathematical systems (set of Matrices, set of Polynomials etc.). We can think of a vector space in general, as a collection of objects that behave as vectors do in R^n . The objects of such a set are called vectors. For applications of vector spaces see file named "Vector Spaceapplications". And above all, we all are living in a vector space (3D or R^3).

Section 4.1: Read from book on your own as it just deals with 2-vectors and 3-vectors.

Section 4.2: Definition: (Vector Space)

A **real vector space** is a set V of elements on which we have two operations \oplus and \odot defined with the following properties:

- (a) If \mathbf{u} and \mathbf{v} are any elements in V, then $\mathbf{u} \oplus \mathbf{v}$ is in V. (We say that V is **closed** under the operation \oplus .)
 - (1) $\mathbf{u} \oplus \mathbf{v} = \mathbf{v} \oplus \mathbf{u}$ for all \mathbf{u} , \mathbf{v} in V.
 - (2) $\mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w}) = (\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w}$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V.
 - (3) There exists an element $\mathbf{0}$ in V such that $\mathbf{u} \oplus \mathbf{0} = \mathbf{0} \oplus \mathbf{u} = \mathbf{u}$ for any \mathbf{u} in V.
 - (4) For each \mathbf{u} in V there exists an element $-\mathbf{u}$ in V such that $\mathbf{u} \oplus -\mathbf{u} = -\mathbf{u} \oplus \mathbf{u} = \mathbf{0}$.
- (b) If **u** is any element in V and c is any real number, then $c \odot \mathbf{u}$ is in V (i.e., V is closed under the operation \odot).
 - (5) $c \odot (\mathbf{u} \oplus \mathbf{v}) = c \odot \mathbf{u} \oplus c \odot \mathbf{v}$ for any \mathbf{u} , \mathbf{v} in V and any real number c.
 - (6) $(c+d) \odot \mathbf{u} = c \odot \mathbf{u} \oplus d \odot \mathbf{u}$ for any \mathbf{u} in V and any real numbers c and d.
 - (7) $c \odot (d \odot \mathbf{u}) = (cd) \odot \mathbf{u}$ for any \mathbf{u} in V and any real numbers c and d.
 - (8) $1 \odot \mathbf{u} = \mathbf{u}$ for any \mathbf{u} in V.

The elements of V are called **vectors**; the elements of the set of real numbers R are called **scalars**. The operation \oplus is called **vector addition**; the operation \odot is called **scalar multiplication**. The vector $\mathbf{0}$ in property (3) is called a **zero vector**. The vector $-\mathbf{u}$ in property (4) is called a **negative of u**. It can be shown (see Exercises 19 and 20) that $\mathbf{0}$ and $-\mathbf{u}$ are unique.

Examples of vector spaces: The following examples will specify a non-empty set V along with two operations: addition (\oplus) and scalar multiplication (\odot) ; then we shall verify that the **Ten vector space axioms** are satisfied.

Example 1 Show that the set of all ordered n-tuple \mathbb{R}^n is a vector space under the standard operations of addition and scalar multiplication.

Solution

(i) Closure Property:

Suppose that $\mathbf{u} = (u_1, u_2, ..., u_n)$ and $\mathbf{v} = (v_1, v_2, ..., v_n) \in \mathbf{R}^n$

Then by definition, $\mathbf{u} + \mathbf{v} = (u_1, u_2, ..., u_n) + (v_1, v_2, ..., v_n)$

$$= (u_1 + v_1, u_2 + v_2, ..., u_n + v_n) \in \mathbf{R}^n$$
 (By closure property)

Therefore, \mathbb{R}^n is closed under addition.

(ii) Commutative Property

Suppose that $u = (u_1, u_2, ..., u_n)$ and $v = (v_1, v_2, ..., v_n) \in \mathbb{R}^n$

Now
$$\mathbf{u} + \mathbf{v} = (u_1, u_2, ..., u_n) + (v_1, v_2, ..., v_n)$$

$$= (u_1 + v_1, u_2 + v_2, ..., u_n + v_n)$$
 (By closure property)

$$=(v_1+u_1, v_2+u_2, ..., v_n+u_n)$$
 (By commutative law of real numbers)

$$= (v_1, v_2, ..., v_n) + (u_1, u_2, ..., u_n)$$
 (By closure property)

= v + u

Therefore, \mathbb{R}^n is commutative under addition.

(iii) Associative Property

Suppose that
$$\mathbf{u} = (u_1, u_2, ..., u_n), \mathbf{v} = (v_1, v_2, ..., v_n)$$
 and $\mathbf{w} = (w_1, w_2, ..., w_n) \in \mathbf{R}^n$

Now
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = [(u_1, u_2, ..., u_n) + (v_1, v_2, ..., v_n)] + (w_1, w_2, ..., w_n)$$

$$= (u_1 + v_1, u_2 + v_2, ..., u_n + v_n) + (w_1, w_2, ..., w_n)$$
 (By closure property)

$$= ((u_1 + v_1) + w_1, (u_2 + v_2) + w_2, ..., (u_n + v_n) + w_n))$$
 (By closure property)

$$= (u_1 + (v_1 + w_1), u_2 + (v_2 + w_2), ..., u_n + (v_n + w_n))$$
 (By associative law of real numbers)

=
$$(u_1, u_2, ..., u_n) + (v_1 + w_1, v_2 + w_2, ..., v_n + w_n)$$
 (By closure property)

=
$$(u_1, u_2, ..., u_n) + [(v_1, v_2, ..., v_n) + (w_1, w_2, ..., w_n)]$$
 (By closure property)

$$= u + (v + w)$$

Hence \mathbb{R}^n is associative under addition.

(iv) Additive Identity

Suppose $\mathbf{u} = (u_1, u_2, ..., u_n) \in \mathbf{R}^n$. There exists $\mathbf{0} = (0, 0, ..., 0) \in \mathbf{R}^n$ such that $\mathbf{0} + \mathbf{u} = (0, 0, ..., 0) + (u_1, u_2, ..., u_n)$

$$= (0 + u_1, 0 + u_2, ..., 0 + u_n)$$

(By closure property)

$$= (u_1, u_2, ..., u_n) = \mathbf{u}$$

(Existence of identity of real numbers)

Similarly, $u + \theta = u$

Hence $\theta = (0, 0, ..., 0)$ is the additive identity for \mathbf{R}^n .

(v) Additive Inverse

Suppose $u = (u_1, u_2, ..., u_n) \in \mathbb{R}^n$. There exists $-u = (-u_1, -u_2, ..., -u_n) \in \mathbb{R}^n$

Such that $\mathbf{u} + (-\mathbf{u}) = (u_1, u_2, ..., u_n) + (-u_1, -u_2, ..., -u_n)$

$$=(u_1+(-u_1), u_2+(-u_2), ..., u_n+(-u_n))$$

(By closure property)

$$= (0, 0, ..., 0) = \mathbf{0}$$

Similarly, (-u) + u = 0

Hence the inverse of each element of \mathbb{R}^n exists in \mathbb{R}^n .

(vi) Scalar Multiplication

If k is any scalar and $u = (u_1, u_2, ..., u_n) \in \mathbb{R}^n$.

Then by definition, $k \mathbf{u} = k (u_1, u_2, ..., u_n) = (k u_1, k u_2, ..., k u_n) \in \mathbf{R}^n$ (By closure property)

(vii) Distributive Law

Suppose k is any scalar and $\mathbf{u} = (u_1, u_2, ..., u_n), \mathbf{v} = (v_1, v_2, ..., v_n) \in \mathbf{R}^n$

Now
$$k(\mathbf{u} + \mathbf{v}) = k[(u_1, u_2, ..., u_n) + (v_1, v_2, ..., v_n)]$$

$$= k (u_1 + v_1, u_2 + v_2, ..., u_n + v_n)$$

(By closure property)

$$= (k (u_1 + v_1), k (u_2 + v_2), ..., k (u_n + v_n))$$

(By scalar multiplication)

 $= (k u_1 + k v_1, k u_2 + k v_2, ..., k u_n + k v_n)$ (By Distributive Law) $= (k u_1, k u_2, ..., k u_n) + (k v_1, k v_2, ..., k v_n)$ (By closure property) $= k (u_1, u_2, ..., u_n) + k (v_1, v_2, ..., v_n)$ (By scalar multiplication) $= k \boldsymbol{u} + k \boldsymbol{v}$ (viii) Suppose k and l be any scalars and $\mathbf{u} = (u_1, u_2, ..., u_n) \in \mathbf{R}^n$ Then (k + l) $\mathbf{u} = (k + l) (u_1, u_2, ..., u_n)$ $=((k+1)u_1, (k+1)u_2, ..., (k+1)u_n)$ (By scalar multiplication) $= (k u_1 + l u_1, k u_2 + l u_2, ..., k u_n + l u_n)$ (By Distributive Law) $= (k u_1, k u_2, ..., k u_n) + (l u_1, l u_2, ..., l u_n)$ (By closure property) $= k (u_1, u_2, ..., u_n) + l (u_1, u_2, ..., u_n)$ (By scalar multiplicatio = k u + l u(ix) Suppose k and l be any scalars and $\mathbf{u} = (u_1, u_2, ..., u_n) \in \mathbf{R}^n$ Then $k(l \mathbf{u}) = k [l(u_1, u_2, ..., u_n)]$ $= k (l u_1, l u_2, ..., l u_n)$ (By scalar multiplicatio $= (k (l u_1), k (l u_2), ..., k (l u_n))$ (By scalar multiplication) $= ((k l)u_1, (k l)u_2, ..., (k l)u_n)$ (By associative law) $= (k l) (u_1, u_2, ..., u_n)$ (By scalar multiplication) = (k l) u(x) Suppose $u = (u_1, u_2, ..., u_n) \in \mathbf{R}^n$ Then $1 \mathbf{u} = 1 (u_1, u_2, ..., u_n)$ $= (1u_1, 1u_2, ..., 1u_n)$ (By scalar multiplication) $= (u_1, u_2, ..., u_n) = \mathbf{u}$ (Existence of identity in scalrs)

Hence, \mathbf{R}^n is the real vector space with the standard operations of addition and scalar multiplication.

Note: For n = 1, 2, 3, we get three important vector spaces, namely, R (the real numbers), R^2 (the vectors in the plane), and R^3 (the vectors in 3-space), respectively.

Example 2:

Show that the set V of all 2x2 matrices with real entries is a vector space if vector addition is defined to be matrix addition and vector scalar multiplication is defined to be matrix scalar multiplication.

$$V = M_{22} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} | a_{ij} \in R$$

Solution Suppose that $\mathbf{u} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix}, \mathbf{v} = \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} \in \mathbf{V}$ and k and l be two any scalars.

(i) Closure property To prove axiom (i), we must show that u + v is an object in V: that is, we must show that u + v is a 2x2 matrix. But this is clear from the definition of matrix

addition, since
$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} + \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} = \begin{bmatrix} u_{11} + v_{11} & u_{12} + v_{12} \\ u_{21} + v_{21} & u_{22} + v_{22} \end{bmatrix}$$
(By closure property)

(ii) Commutative property Now it is very easy to verify the Axiom (ii)

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} + \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} = \begin{bmatrix} u_{11} + v_{11} & u_{12} + v_{12} \\ u_{21} + v_{21} & u_{22} + v_{22} \end{bmatrix}$$
(By closure property)
$$= \begin{bmatrix} v_{11} + u_{11} & v_{12} + u_{12} \\ v_{21} + u_{21} & v_{22} + u_{22} \end{bmatrix}$$
(Commutative property of real numbers)
$$= \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} + \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \mathbf{v} + \mathbf{u}$$

(iii) Associative property
$$(u+v)+w = \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix} + \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} + \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix}$$

$$= \begin{bmatrix} u_{11}+v_{11} & u_{12}+v_{12} \\ u_{21}+v_{21} & u_{22}+v_{22} \end{bmatrix} + \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix}$$
(By closure property)
$$= \begin{bmatrix} (u_{11}+v_{11})+w_{11} & (u_{12}+v_{12})+w_{12} \\ (u_{21}+v_{21})+w_{21} & (u_{22}+v_{22})+w_{22} \end{bmatrix}$$

$$= \begin{bmatrix} u_{11}+(v_{11}+w_{11}) & u_{12}+(v_{12}+w_{12}) \\ u_{21}+(v_{21}+w_{21}) & u_{22}+(v_{22}+w_{22}) \end{bmatrix}$$
(By associative property of real numbers)

$$= \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} + \begin{bmatrix} v_{11} + w_{11} & v_{12} + w_{12} \\ v_{21} + w_{21} & v_{22} + w_{22} \end{bmatrix}$$

$$= \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} + \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} + \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

Therefore, V is associative under '+'.

(iv) **Additive Identity** Now to prove the axiom (iv), we must find an object θ in V s that $\theta + v = v + \theta = v$ for all u in V. This can be done by defining $\theta = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

$$\mathbf{0} + \mathbf{u} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \begin{bmatrix} 0 + u_{11} & 0 + u_{12} \\ 0 + u_{21} & 0 + u_{22} \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \mathbf{u}$$

and similarly $u + \theta = u$.

(v) Additive Inverse Now to prove the axiom (v) we must show that each object u has a negative -u such that u + (-u) = 0 = (-u) + 0. Defining the negative of u to be

$$-\mathbf{u} = \begin{bmatrix} -u_{11} & -u_{12} \\ -u_{21} & -u_{22} \end{bmatrix}.$$

$$\mathbf{u} + (-\mathbf{u}) = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} + \begin{bmatrix} -u_{11} & -u_{12} \\ -u_{21} & -u_{22} \end{bmatrix} = \begin{bmatrix} u_{11} + (-u_{11}) & u_{12} + (-u_{12}) \\ u_{21} + (-u_{21}) & u_{22} + (-u_{22}) \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \mathbf{0}$$

Similarly, (-u) + u = 0

(vi) Scalar Multiplication

Axiom (vi) also holds because for any real number k we have

$$k\mathbf{u} = k \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \begin{bmatrix} ku_{11} & ku_{12} \\ ku_{21} & ku_{22} \end{bmatrix}$$
 (By closure property)

so that k u is a 2x2 matrix and consequently is an object in V.

(vii) Distributive Law

$$k(\mathbf{u} + \mathbf{v}) = k \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} + \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix}$$

$$= k \begin{bmatrix} u_{11} + v_{11} & u_{12} + v_{12} \\ u_{21} + v_{21} & u_{22} + v_{22} \end{bmatrix} = \begin{bmatrix} k(u_{11} + v_{11}) & k(u_{12} + v_{12}) \\ k(u_{21} + v_{21}) & k(u_{22} + v_{22}) \end{bmatrix}$$

$$= \begin{bmatrix} ku_{11} + kv_{11} & ku_{12} + kv_{12} \\ ku_{21} + kv_{21} & ku_{22} + kv_{22} \end{bmatrix} = \begin{bmatrix} ku_{11} & ku_{12} \\ ku_{21} & ku_{22} \end{bmatrix} + \begin{bmatrix} kv_{11} & kv_{12} \\ kv_{21} & kv_{22} \end{bmatrix}$$

$$= k \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} + k \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} = k\mathbf{u} + k\mathbf{v}$$

$$(\text{viii)} \ (k+l)\mathbf{u} = (k+l) \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \begin{bmatrix} (k+l)u_{11} & (k+l)u_{12} \\ (k+l)u_{21} & (k+l)u_{22} \end{bmatrix}$$

$$= \begin{bmatrix} ku_{11} + lu_{11} & ku_{12} + lu_{12} \\ ku_{21} + lu_{21} & ku_{22} + lu_{22} \end{bmatrix} = \begin{bmatrix} ku_{11} & ku_{12} \\ ku_{21} & ku_{22} \end{bmatrix} + \begin{bmatrix} lu_{11} & lu_{12} \\ lu_{21} & lu_{22} \end{bmatrix}$$

$$= k \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} + l \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = k\mathbf{u} + l\mathbf{u}$$

(ix)
$$k(l\mathbf{u}) = k \left(l \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} \right) = k \begin{bmatrix} lu_{11} & lu_{12} \\ lu_{21} & lu_{22} \end{bmatrix}$$

$$= \begin{bmatrix} k(lu_{11}) & k(lu_{12}) \\ k(lu_{21}) & k(lu_{22}) \end{bmatrix} = \begin{bmatrix} (kl)u_{11} & (kl)u_{12} \\ (kl)u_{21} & (kl)u_{22} \end{bmatrix} = (kl) \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = (kl)\boldsymbol{u}$$

(x) Finally axiom (x) is a simple computation

$$1\mathbf{u} = I \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \begin{bmatrix} Iu_{11} & Iu_{12} \\ Iu_{21} & Iu_{22} \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} = \mathbf{u}$$

Hence the set of all 2x2 matrices with real entries is vector space under matrix addition and matrix scalar multiplication.

Note: $V = M_{m \times n} = Set$ of all matrics of order mn is vector space and $M_{2 \times 2}$ is subspace of $M_{m \times n}$.

Example 3: Show that set of all polynomials of degree less or equal to n is vector space.

Solution: We Know,

 $V = P_n(t) = \{a_nt^n + a_{n-1}t^{n-1} + \dots + a_2t^2 + a_1t + a_0: a_i \in R\}$ i.e. V is set of all polynomials of degree less or equal to n.

Let
$$p(t), q(t), r(t) \in V$$
, then

$$p(t) = a_n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0$$
 and

$$q(t) = b_n t^n + b_{n-1} t^{n-1} + \dots + b_1 t + b_0$$

$$r(t) = c_n t^n + c_{n-1} t^{n-1} + \dots + c_1 t + c_0$$

Property

We define $p(t) \oplus q(t)$ as

$$p(t) \oplus q(t) = (a_n + b_n)t^n + (a_{n-1} + b_{n-1})t^{n-1} + \dots + (a_1 + b_1)t + (a_0 + b_0).$$

If c is a scalar, we also define $c \odot p(t)$ as

$$c \odot p(t) = (ca_n)t^n + (ca_{n-1})t^{n-1} + \dots + (ca_1)t + (ca_0).$$

We now show that P_n is a vector space.

Let p(t) and q(t), as before, be elements of P_n ; that is, they are polynomials of degree $\leq n$ or the zero polynomial. Then the previous definitions of the operations \oplus and \odot show that $p(t) \oplus q(t)$ and $c \odot p(t)$, for any scalar c, are polynomials of

Property1 (commutative law)

$$q(t) + p(t) = (b_n + a_n) t^n + (b_{n-1} + a_{n-1}) t^{n-1} + \dots + (b_1 + a_1) + (b_0 + a_0) = p(t) + q(t)$$

Property2(Associative law)

Let p(t), q(t), and $r(t) \in V$. Then it is evident/obvious that

$$p(t) + (q(t) + r(t)) = (p(t) + q(t)) + r(t)$$

Property3 (Additive identity) $0 = 0 = 0t^n + 0t^{n-1} + 0t^{n-2} + \cdots + 0t + 0$

Property4 (Additive inverse) $s(t) = 2t^n - 5t^{n-1} + t^{n-2} + \dots - 6t + \sqrt{7}$

$$-s(t) = -2t^{n} + 5t^{n-1} - t^{n-2} + \dots + 6t - \sqrt{7}$$

- (b) Properties of scalar Multiplication.
- (5) for scalar $c \in R$ and $p(t), q(t) \in V$

$$c.(p(t) + q(t)) = c.p(t) + c.q(t) - - - (5)$$

$$\begin{aligned} L.H.S &= c. \left(p(t) + q(t) \right) \\ &= c. \left(\left(a_n + b_n \right) t^n + \left(a_{n-1} + b_{n-1} \right) t^{n-1} + \dots + \left(a_1 + b_1 \right) t \right. \\ &+ \left. \left(a_0 + b_0 \right) \right) \end{aligned}$$

=
$$c \cdot (a_n + b_n) t^n + c \cdot (a_{n-1} + b_{n-1}) t^{n-1} + \dots + c \cdot (a_1 + b_1) t + c \cdot (a_0 + b_0)$$

$$= (c a_n + c b_n) t^n + (c a_{n-1} + c b_{n-1}) t^{n-1} + \dots + (c a_1 + c b_1) t + (c a_0 + c b_0)$$

$$= (c a_n t^n + c a_{n-1} t^{n-1} + \dots + c a_1 t + c a_0) + (c b_n t^n + c b_{n-1} t^{n-1} + \dots + c b_1 t + c b_0)$$

$$= c. (a_n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0) + c. (b_n t^n + b_{n-1} t^{n-1} + \dots + b_1 t + b_0)$$

$$= c.P(t) + c.q(t) = R.H.S$$

degree $\leq n$ or the zero polynomial. That is, $p(t) \oplus q(t)$ and $c \odot p(t)$ are in P_n so that (a) and (b) in Definition 4.4 hold. To verify property (1), we observe that

$$q(t) \oplus p(t) = (b_n + a_n)t^n + (b_{n-1} + a_{n-1})t^{n-1} + \dots + (b_1 + a_1)t + (a_0 + b_0),$$

and since $a_i + b_i = b_i + a_i$ holds for the real numbers, we conclude that $p(t) \oplus q(t) = q(t) \oplus p(t)$. Similarly, we verify property (2). The zero polynomial is the element 0 needed in property (3). If p(t) is as given previously, then its negative, -p(t), is

$$-a_nt^n - a_{n-1}t^{n-1} - \cdots - a_1t - a_0.$$

We shall now verify property (6) and will leave the verification of the remaining properties to the reader. Thus

$$(c+d) \odot p(t) = (c+d)a_nt^n + (c+d)a_{n-1}t^{n-1} + \dots + (c+d)a_1t + (c+d)a_0$$

$$= ca_nt^n + da_nt^n + ca_{n-1}t^{n-1} + da_{n-1}t^{n-1} + \dots + ca_1t + da_1t + ca_0 + da_0$$

$$= c(a_nt^n + a_{n-1}t^{n-1} + \dots + a_1t + a_0) + d(a_nt^n + a_{n-1}t^{n-1} + \dots + a_1t + a_0)$$

$$= c \odot p(t) \oplus d \odot p(t).$$

Remark We show later that the vector space P_n behaves algebraically in exactly the same manner as R^{n+1} .

$$V = P_n(t) = \{a_n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0 : a_i \in R\}$$

$$V = P_n(t) = \{(a_n, a_{n-1}, a_{n-2}, \dots, a_1, a_0) : a_i \in R\} = R^{n+1}$$

Note: In Example 3, For n=1,2,3, we get special cases $P(t)=\{a_0+a_1t:a_i\in R\}$ (all linear functions or straight lines in 2D), $P_2(t)=\{a_0+a_1t+a_2t^2:a_i\in R\}$ (all parabolas and straight lines) and $P_3(t)=\{a_0+a_1t+a_2t^2+a_3t^3:a_i\in R\}$ (all cubic functions, all parabolas and straight lines), respectively. Since $P_n(t)$ is a vector space so are the P(t), $P_2(t)$ and $P_3(t)$.

Exercise 4.2 (Important)

See separate file named (some solved problems of 4.2)

Section 4.3: Definition (Subspace)

Let V be a vector space and W a nonempty subset of V. Then W is said to be a subspace of V if following three properties hold in W

- (1) The zero vector of **V** is in **W**. (optional)
- (2) For each vector \mathbf{u} and \mathbf{v} in \mathbf{W} we have $\mathbf{u} \oplus \mathbf{v}$ in \mathbf{W} .
- (3) For each $u \in W$ and each scalar $c \in R$, we get $c \odot u \in W$.

Examples of Subspaces:

See uploaded file with name "examples of subspaces."

Definition (Linear combination of vectors)

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be vectors in a vector space V. A vector \mathbf{v} in V is called a **linear combination** of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ if

$$\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_k \mathbf{v}_k = \sum_{i=1}^k a_i \mathbf{v}_i$$

for some real numbers a_1, a_2, \ldots, a_k .

See figure below to understand geometric interpretation of linear combination of two vectors.

Examle 1(LC): Let v_1 , v_2 and v_3 be vectors in \mathbb{R}^3 , such that $v_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$

$$\begin{bmatrix} 6 \\ 4 \\ 2 \end{bmatrix}, v_3 = \begin{bmatrix} 4 \\ -1 \\ 8 \end{bmatrix}.$$
 Show that $v = \begin{bmatrix} 9 \\ 2 \\ 7 \end{bmatrix}$ is a linear combination of v_1, v_2 and v_3 .

Solution: Consider definition of L.C. $v = a_1v_1 + a_2v_2 + a_3v_3 \dots \dots (1)$, Our goal is to find scalars a_1 , a_2 and a_3 .

$$\begin{cases} (1) \Rightarrow \begin{bmatrix} 9 \\ 2 \\ 7 \end{bmatrix} = a_1 \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} + a_2 \begin{bmatrix} 6 \\ 4 \\ 2 \end{bmatrix} + a_3 \begin{bmatrix} 4 \\ -1 \\ 8 \end{bmatrix}, \\ \begin{bmatrix} 9 \end{bmatrix} \begin{bmatrix} a_1 \end{bmatrix} \begin{bmatrix} 6a_2 \end{bmatrix} \begin{bmatrix} 4a_3 \end{bmatrix}$$

$$\begin{bmatrix} 9 \\ 2 \\ 7 \end{bmatrix} = \begin{bmatrix} a_1 \\ 2a_1 \\ -a_1 \end{bmatrix} + \begin{bmatrix} 6a_2 \\ 4a_2 \\ 2a_2 \end{bmatrix} + \begin{bmatrix} 4a_3 \\ -a_3 \\ 8a_3 \end{bmatrix}$$

$$\begin{bmatrix} 9 \\ 2 \\ 7 \end{bmatrix} = \begin{bmatrix} a_1 + 6a_2 + 4a_3 \\ 2a_1 + 4a_2 - a_3 \\ -a_1 + 2a_2 + 8a_3 \end{bmatrix}$$

Equating both sides we get,

$$a_1 + 6a_2 + 4a_3 = 9$$
;
 $2a_1 + 4a_2 - a_3 = 2$;
 $-a_1 + 2a_2 + 8a_3 = 7$

Observe: The problem of **linear combination** boils down to a problem of **non-homogeneous** system of linear equations. I believe you can find scalars using Gauss-Elimination method (Echelon form). Here we go.

$$[A|b] = \begin{bmatrix} 1 & 6 & 4 & | & 9 \\ 2 & 4 & -1 & | & 2 \\ -1 & 2 & 8 & | & 7 \end{bmatrix} R_2 - 2R_1 \sim \begin{bmatrix} 1 & 6 & 4 & | & 9 \\ 0 & -8 & -9 & | & -16 \\ 0 & 8 & 12 & | & 16 \end{bmatrix}$$

$$R_3 + R_2 \sim \begin{bmatrix} 1 & 6 & 4 & | & 9 \\ 0 & -8 & -9 & | & -16 \\ 0 & 0 & 3 & | & 0 \end{bmatrix} \begin{bmatrix} \frac{R_2}{-8} \\ \frac{R_3}{3} \end{bmatrix} \sim \begin{bmatrix} 1 & 6 & 4 & | & 9 \\ 0 & 1 & 9/8 & | & 2 \\ 0 & 0 & 1 & | & 0 \end{bmatrix}$$

Now rewrite this equivalent simple system,

$$a_3 = 0$$
; $a_2 + \frac{9}{8}a_3 = 2$; $a_1 + 6a_2 + 4a_3 = 9$

Using backward substitution, we get $a_3 = 0$; $a_2 = 2$; $a_1 = -3$

Hence
$$\begin{bmatrix} 9 \\ 2 \\ 7 \end{bmatrix} = -3 \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} + 2 \begin{bmatrix} 6 \\ 4 \\ 2 \end{bmatrix} + 0 \begin{bmatrix} 4 \\ -1 \\ 8 \end{bmatrix}$$
.

DEFINITION 4.8

Let S be a set of vectors in a vector space V. If every vector in V is a linear combination of the vectors in S, then the set S is said to **span** V, or V is spanned by the set S; that is, span S = V.

Examle 2 (Spanning set): Let $S = \{v_1, v_2, v_3\}$ be vectors in \mathbb{R}^3 , such that $v_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 6 \\ 4 \\ 2 \end{bmatrix}$, $v_3 = \begin{bmatrix} 4 \\ -1 \\ 8 \end{bmatrix}$. Whether these vectors span \mathbb{R}^3 ?

Solution: The set of vectors v_1 , v_2 and v_3 spans R^3 if every vector in R^3 can be written as a linear combination (L.C.) of v_1 , v_2 and v_3 .

Take any arbitrary vector say $v = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ from R^3 .

Consider $v = a_1v_1 + a_2v_2 + a_3v_3 \dots \dots (1)$, Our goal is to find scalars a_1 , a_2 and a_3 in terms of a, b and c.

$$(1) \Rightarrow \begin{bmatrix} a \\ b \\ c \end{bmatrix} = a_1 \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} + a_2 \begin{bmatrix} 6 \\ 4 \\ 2 \end{bmatrix} + a_3 \begin{bmatrix} 4 \\ -1 \\ 8 \end{bmatrix},$$

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a_1 \\ 2a_1 \\ -a_1 \end{bmatrix} + \begin{bmatrix} 6a_2 \\ 4a_2 \\ 2a_2 \end{bmatrix} + \begin{bmatrix} 4a_3 \\ -a_3 \\ 8a_3 \end{bmatrix}$$

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a_1 + 6a_2 + 4a_3 \\ 2a_1 + 4a_2 - a_3 \\ -a_1 + 2a_2 + 8a_3 \end{bmatrix}$$

Equating both sides we get,

$$a_1 + 6a_2 + 4a_3 = a$$
; $2a_1 + 4a_2 - a_3 = b$; $-a_1 + 2a_2 + 8a_3 = c$

Observe: The problem of **spanning set for vector space** boils down to a problem of non-homogeneous system of linear equations. I believe you can find scalars using Gauss-Elimination method. Here we go.

$$[A|b] = \begin{bmatrix} 1 & 6 & 4 & | & a \\ 2 & 4 & -1 & | & b \\ -1 & 2 & 8 & | & c \end{bmatrix} \begin{bmatrix} R_2 - 2R_1 \\ R_3 + R_1 \end{bmatrix} \sim \begin{bmatrix} 1 & 6 & 4 & | & a \\ 0 & -8 & -9 & | & b - 2a \\ 0 & 8 & 12 & | & c + a \end{bmatrix}$$

$$R_{3} + R_{2} \sim \begin{bmatrix} 1 & 6 & 4 & | & a \\ 0 & -8 & -9 & | & b - 2a \\ 0 & 0 & 3 & | & b + c - a \end{bmatrix} \xrightarrow{\frac{R_{2}}{-8}} \sim \begin{bmatrix} 1 & 6 & 4 & | & a \\ 0 & 1 & 9/8 & | & (2a - b)/8 \\ 0 & 0 & 1 & | & (b + c - a)/3 \end{bmatrix}$$

Now, rewrite this equivalent simple system,

$$a_3 = \frac{b+c-a}{3}$$
; $a_2 + \frac{9}{8}a_3 = \frac{2a-b}{8}$; $a_1 + 6a_2 + 4a_3 = a$

Using backward substitution, we get

$$a_{2} + \frac{9}{8} \left(\frac{b+c-a}{3} \right) = \frac{2a-b}{8}$$

$$a_{2} = \frac{2a-b}{8} - \frac{9}{8} \left(\frac{b+c-a}{3} \right) = \left(\frac{6a-3b-9b-9c+9a}{24} \right) = \left(\frac{15a-12b-9c}{24} \right)$$

$$= \left(\frac{5a-4b-3c}{8} \right)$$

$$a_1 + 6a_2 + 4a_3 = a$$

$$\rightarrow a_1 = a - 6a_2 - 4a_3 = a - 6\left(\frac{5a - 4b - 3c}{8}\right) - 4\left(\frac{b + c - a}{3}\right) = \frac{20b + 11c - 17a}{12}$$

$$a_3 = \frac{b + c - a}{3} \; ; \; a_2 = \frac{5a - 4b - 3c}{8} \; ; \; a_1 = \frac{20b + 11c - 17a}{12}$$

Hence given set of vectors v_1 , v_2 and v_3 spans R^3 .

Verification of answer: a=9, b=2, c=7, Then
$$a_1 = \frac{40+77-153}{12} = -3$$

$$a_2 = \frac{45-8-21}{8} = 2; \ a_3 = \frac{2+7-9}{3} = 0$$

$$a_1v_1 + a_2v_2 + a_3v_3 = 0$$

$$a_1e_1 + a_2e_2 + a_3e_3 = 0$$

$$a_1\begin{bmatrix} 1\\0\\0 \end{bmatrix} + a_2\begin{bmatrix} 0\\1\\0 \end{bmatrix} + a_3\begin{bmatrix} 0\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

$$\begin{bmatrix} a_1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ a_2 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

DEFINITION 4.9

The vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ in a vector space V are said to be **linearly dependent** if there exist constants a_1, a_2, \dots, a_k , not all zero, such that

$$\sum_{j=1}^{k} a_j \mathbf{v}_j = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_k \mathbf{v}_k = \mathbf{0}.$$
 (1)

Otherwise, $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are called **linearly independent**. That is, $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent if, whenever $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_k\mathbf{v}_k = \mathbf{0}$,

$$a_1=a_2=\cdots=a_k=0.$$

Examle 3: (Linear Independent): Let v_1 , v_2 and v_3 be vectors in \mathbb{R}^3 , such that

$$v_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, v_2 = \begin{bmatrix} 6 \\ 4 \\ 2 \end{bmatrix}, v_3 = \begin{bmatrix} 4 \\ -1 \\ 8 \end{bmatrix}$$
. Are these vectors linearly independent?

Solution: Consider $0 = a_1v_1 + a_2v_2 + a_3v_3 \dots \dots (1)$, Our goal is to find scalars a_1 , a_2 and a_3 .

$$(1) \Rightarrow \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = a_1 \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} + a_2 \begin{bmatrix} 6 \\ 4 \\ 2 \end{bmatrix} + a_3 \begin{bmatrix} 4 \\ -1 \\ 8 \end{bmatrix},$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} a_1 \\ 2a_1 \\ -a_1 \end{bmatrix} + \begin{bmatrix} 6a_2 \\ 4a_2 \\ 2a_2 \end{bmatrix} + \begin{bmatrix} 4a_3 \\ -a_3 \\ 8a_3 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} a_1 + 6a_2 + 4a_3 \\ 2a_1 + 4a_2 - a_3 \\ -a_1 + 2a_2 + 8a_3 \end{bmatrix}$$

Equating both sides we get,

$$a_1 + 6a_2 + 4a_3 = 0$$
;
 $2a_1 + 4a_2 - a_3 = 0$;
 $-a_1 + 2a_2 + 8a_3 = 0$

Observe: The problem of **linear independence** boils down to a problem of **homogeneous** system of linear equations. I believe you can find scalars using Gauss-Elimination method. Here we go.

$$[A|b] = \begin{bmatrix} \mathbf{1} & \mathbf{6} & \mathbf{4} & | & 0 \\ \mathbf{2} & \mathbf{4} & -\mathbf{1} & | & 0 \\ -\mathbf{1} & \mathbf{2} & \mathbf{8} & | & 0 \end{bmatrix} \begin{matrix} R_2 - 2R_1 \\ R_3 + R_1 \end{matrix} \sim \begin{bmatrix} \mathbf{1} & \mathbf{6} & \mathbf{4} & | & 0 \\ \mathbf{0} & -\mathbf{8} & -\mathbf{9} & | & 0 \\ \mathbf{0} & \mathbf{8} & \mathbf{12} & | & 0 \end{bmatrix}$$

$$R_3 + R_2 \sim \begin{bmatrix} 1 & 6 & 4 & | & 0 \\ 0 & -8 & -9 & | & 0 \\ 0 & 0 & 3 & | & 0 \end{bmatrix} = \begin{bmatrix} \frac{R_2}{-8} \\ \frac{R_3}{3} \end{bmatrix} \sim \begin{bmatrix} 1 & 6 & 4 & | & 0 \\ 0 & 1 & 9/8 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{bmatrix}$$

Now rewrite this equivalent simple system,

$$a_3 = 0$$
; $a_2 + \frac{9}{8}a_3 = 0$; $a_1 + 6a_2 + 4a_3 = 0$

Using backward substitution, we get $a_3 = 0$; $a_2 = 0$; $a_1 = 0$

Hence given set of vectors are linearly independent.

Examle 2:

In R^3 let

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \text{and} \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

The vector

$$\mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix}$$

is a linear combination of v_1 , v_2 , and v_3 if we can find real numbers a_1 , a_2 , and a_3 so that

$$a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3 = \mathbf{v}.$$

Substituting for \mathbf{v} , \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 , we have

$$a_1 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + a_2 \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + a_3 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix}.$$

Equating corresponding entries leads to the linear system (verify)

$$a_1 + a_2 + a_3 = 2$$

 $2a_1 + a_3 = 1$
 $a_1 + 2a_2 = 5$.

Solving this linear system by the methods of Chapter 2 gives (verify) $a_1 = 1$, $a_2 = 2$, and $a_3 = -1$, which means that **v** is a linear combination of **v**₁, **v**₂, and **v**₃. Thus

$$v = v_1 + 2v_2 - v_3$$
.

Figure 4.21 shows \mathbf{v} as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 .

Figure 4.21 is just for explanation, not to draw in exam.

Examle 2: The set **W** of all 2×3 matrices of the form $\begin{bmatrix} a & b & c \\ a & 0 & 0 \end{bmatrix}$, where

c = a + b, is a subspace of $M_{2\times 3}$. Show that every vector in \mathbf{W} is a **linear combination** of $w_1 = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ and $w_2 = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$.

Solution:
$$W = \left\{ \begin{bmatrix} a & b & c \\ a & 0 & 0 \end{bmatrix} : c = a + b; a, b, c \in R \right\}$$

Consider $w \in W$, Then

$$w = \begin{bmatrix} a & b & c \\ a & 0 & 0 \end{bmatrix} = \begin{bmatrix} a & b & a+b \\ a & 0 & 0 \end{bmatrix} = \begin{bmatrix} a & 0 & a \\ a & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & b & b \\ 0 & 0 & 0 \end{bmatrix}$$
$$= a \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} = aw_1 + bw_2$$

Hence every vector in W can be written as linear combination of w_1 and w_2 .