# طراحی و تحلیل الگوریتم ها

دکتر امیر لکی زاده استادیار گروه مهندسی کامپیوتر دانشگاه قم

#### **Greedy Algorithms**

ویژگی اصلی:

در هر گام بهترین تصمیم را می گیرد و لذا لزوما بهترین جواب را به دست نمی دهد.

Suppose we have a set  $S = \{a_1, a_2, \dots, a_n\}$  of *n* proposed *activities* that wish to use a resource, such as a lecture hall, which can be used by only one activity at a time.

Each activity  $a_i$  has a *start time*  $s_i$  and a *finish time*  $f_i$ , where  $0 \le s_i < f_i < \infty$ . If selected, activity  $a_i$  takes place during the half-open time interval  $[s_i, f_i)$ .

Activities  $a_i$  and  $a_j$  are **compatible** if the intervals  $[s_i, f_i)$  and  $[s_j, f_j)$  do not overlap (i.e.,  $a_i$  and  $a_j$  are compatible if  $s_i \ge f_j$  or  $s_j \ge f_i$ ).

The *activity-selection problem* is to select a maximum-size subset of mutually compatible activities. For example, consider the following set *S* of activities, which we have sorted in monotonically increasing order of finish time:

| i     | 1 | 2 | 3 | 4 | 5 | 6 | 7  | 8  | 9  | 10 | 11 |
|-------|---|---|---|---|---|---|----|----|----|----|----|
| $s_i$ | 1 | 3 | 0 | 5 | 3 | 5 | 6  | 8  | 8  | 10 | 12 |
| $f_i$ | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |

$$S_{ij} = \{ a_k \in S : f_i \le s_k < f_k \le s_j \} ,$$

so that  $S_{ij}$  is the subset of activities in S that can start after activity  $a_i$  finishes and finish before activity  $a_j$  starts. In fact,  $S_{ij}$  consists of all activities that are compatible with  $a_i$  and  $a_i$  and are also compatible with all activities that finish no later than  $a_i$  finishes and all activities that start no earlier than  $a_i$  starts.

we add fictitious activities  $a_0$  and  $a_{n+1}$  and adopt the conventions that  $f_0 = 0$  and  $s_{n+1} = \infty$ . Then  $S = S_{0,n+1}$ , and the ranges for i and j are given by  $0 \le i$ ,  $j \le n+1$ .

We can further restrict the ranges of i and j as follows. Let us assume that the activities are sorted in monotonically increasing order of finish time:

$$f_0 \le f_1 \le f_2 \le \dots \le f_n < f_{n+1}$$
 (16.1)

We claim that  $S_{ij} = \emptyset$  whenever  $i \ge j$ . Why?

 $A_{ij}$ 

c[i, j]

c[i, j] = 0 whenever  $S_{ij} = \emptyset$ ;

c[i, j] = 0 for  $i \ge j$ .

$$c[i, j] = c[i, k] + c[k, j] + 1$$
.

$$c[i, j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset, \\ \max_{\substack{i < k < j \\ a_k \in S_{ij}}} \{c[i, k] + c[k, j] + 1\} & \text{if } S_{ij} \neq \emptyset. \end{cases}$$

#### Theorem 16.1

Consider any nonempty subproblem  $S_{ij}$ , and let  $a_m$  be the activity in  $S_{ij}$  with the earliest finish time:

$$f_m = \min\{f_k : a_k \in S_{ij}\} .$$

Then

- 1. Activity  $a_m$  is used in some maximum-size subset of mutually compatible activities of  $S_{ij}$ .
- 2. The subproblem  $S_{im}$  is empty, so that choosing  $a_m$  leaves the subproblem  $S_{mj}$  as the only one that may be nonempty.

**Proof** We shall prove the second part first, since it's a bit simpler. Suppose that  $S_{im}$  is nonempty, so that there is some activity  $a_k$  such that  $f_i \le s_k < f_k \le s_m < f_m$ . Then  $a_k$  is also in  $S_{ij}$  and it has an earlier finish time than  $a_m$ , which contradicts our choice of  $a_m$ . We conclude that  $S_{im}$  is empty.

To prove the first part, we suppose that  $A_{ij}$  is a maximum-size subset of mutually compatible activities of  $S_{ij}$ , and let us order the activities in  $A_{ij}$  in monotonically increasing order of finish time. Let  $a_k$  be the first activity in  $A_{ij}$ . If  $a_k = a_m$ , we are done, since we have shown that  $a_m$  is used in some maximum-size subset of mutually compatible activities of  $S_{ij}$ . If  $a_k \neq a_m$ , we construct the subset  $A'_{ij} = A_{ij} - \{a_k\} \cup \{a_m\}$ . The activities in  $A'_{ij}$  are disjoint, since the activities in  $A_{ij}$  are,  $a_k$  is the first activity in  $A_{ij}$  to finish, and  $f_m \leq f_k$ . Noting that  $A'_{ij}$  has the same number of activities as  $A_{ij}$ , we see that  $A'_{ij}$  is a maximum-size subset of mutually compatible activities of  $S_{ij}$  that includes  $a_m$ .

```
RECURSIVE-ACTIVITY-SELECTOR (s, f, i, n)

1 m \leftarrow i + 1

2 while m \leq n and s_m < f_i \triangleright Find the first activity in S_{i,n+1}.

3 do m \leftarrow m + 1

4 if m \leq n

5 then return \{a_m\} \cup \text{RECURSIVE-ACTIVITY-SELECTOR}(s, f, m, n)

6 else return \emptyset
```

```
GREEDY-ACTIVITY-SELECTOR (s, f)

1 n \leftarrow length[s]

2 A \leftarrow \{a_1\}

3 i \leftarrow 1

4 for m \leftarrow 2 to n

5 do if s_m \geq f_i

6 then A \leftarrow A \cup \{a_m\}

7 i \leftarrow m

8 return A
```

#### *16.1-3*

Suppose that we have a set of activities to schedule among a large number of lecture halls. We wish to schedule all the activities using as few lecture halls as possible. Give an efficient greedy algorithm to determine which activity should use which lecture hall.

(This is also known as the *interval-graph coloring problem*. We can create an interval graph whose vertices are the given activities and whose edges connect incompatible activities. The smallest number of colors required to color every vertex so that no two adjacent vertices are given the same color corresponds to finding the fewest lecture halls needed to schedule all of the given activities.)

#### **Greedy Steps**

#### مراحل ارائه یک الگوریتم به روش حریصانه:

- 1. Determine the optimal substructure of the problem.
- 2. Develop a recursive solution.
- 3. Prove that at any stage of the recursion, one of the optimal choices is the greedy choice. Thus, it is always safe to make the greedy choice.
- 4. Show that all but one of the subproblems induced by having made the greedy choice are empty.
- 5. Develop a recursive algorithm that implements the greedy strategy.
- 6. Convert the recursive algorithm to an iterative algorithm.

## **Greedy Steps**

Greedy-choice property

Optimal substructure