Technical Impacts on Voltage from Home EV Charging: A Case Study in Cusco, Peru

Derian Carlos Tairo Garcia Erick Alberto Somocurcio Holguín

November 8, 2024

Table of Contents

- 1. Introduction
- 1.1 Objectives
- 1.2 Context
- 2. Case Study
- 3. Results
- 4. Conclusions

Objectives

- Create a detailed database for OpenDSS to simulate EVs connection.
- Simulated several scenarios of EVs connection.
- Analyze the technical impacts (Voltage magnitude) of EVs on Cusco's electrical grid.

Substation Quencoro 138/10.5KV AMT QU02 - Cusco

AMT QU02 - SED022

SED022 - Parameters

```
clear
Set DefaultBaseFrequency = 60
set datapath = C:\...\QU02\
New Circuit.SED022 basekV=10.5 pu=1.0 angle=0 frequency=60 phases=3
!! LoadShapes
new Loadshape.Shape_01 npts=24 interval=1.0 csvfile=demand_daily_01.bxt
...
new Loadshape.Shape_14 npts=24 interval=1.0 csvfile=demand_daily_14.bxt

New Loadshape.ev_shape_1 npts=24 interval=1 mult=(file=profile_ev1_3kw.bxt) useactual=false
New Loadshape.ev_shape_2 npts=24 interval=1 mult=(file=profile_ev2_3kw.bxt) useactual=false
New Loadshape.ev_shape_3 npts=24 interval=1 mult=(file=profile_ev3_3kw.bxt) useactual=false
!! Transformer

New Transformer.SED022 phases=3 windings=2 buses=(sourcebus, 1) conns=(delta, wye) kvs=(10.5, 0.22) kvas=(100, 100) %loadloss=0 xhl=5
```

SED022 - Parameters

```
!! LineCode
```

New LineCode.AUT_AL-3x120 nphases=3 R1=0.253 X1=0.098 R0=0.253 X0=0.098 Units=km

!! Lines

new Line.TBT001 Bus1=1 Bus2=2 length=0.09688 phases=3 units=km linecode=AUT_AL-3x120 new Line.TBT002 Bus1=2 Bus2=3 length=0.09688 phases=3 units=km linecode=AUT_AL-3x120

new Line,TBT013 Bus1=13 Bus2=14 length=0.02158 phases=3 units=km linecode=AUT AL-3x120

II Loads

new Load.LOAD1 bus1=1 phases=3 kV=0.22 kW=1 PF=1 model=1 Daily=Shape_01 status=variable new Load.LOAD2 bus1=2 phases=3 kV=0.22 kW=1 PF=1 model=1 Daily=Shape_02 status=variable

new Load.LOAD13 bus1=13 phases=3 kV=0.22 kW=1 PF=1 model=1 Daily=Shape_13 status=variable new Load.LOAD14 bus1=14 phases=3 kV=0.22 kW=1 PF=1 model=1 Daily=Shape_14 status=variable

!! Monitors for each node Redirect Monitors_3.txt

set controlmode=static set mode=daily

Solve

II Show Results

Demand Profile - Base Case

Figure: Demand Profile - Base Case.

SED022 - Parameters EVs

new Load.EV_LOAD1 bus1=1 phases=3 kV=0.22 kW=3 PF=1 model=1 Daily=ev_shape_1 status=variable new Load.EV_LOAD2 bus1=6 phases=3 kV=0.22 kW=3 PF=1 model=1 Daily=ev_shape_2 status=variable new Load.EV_LOAD3 bus1=7 phases=3 kV=0.22 kW=3 PF=1 model=1 Daily=ev_shape_3 status=variable

EV profiles, N1, N6, N13

Figure: EV profiles.

Results

Voltage profiles for Node 1

Figure: Voltage profiles for the N1 (House recharge).

Results

Voltage profiles for Node 6 (Office recharge).

Figure: Voltage profiles for the N6.

Results

Voltage profiles for Node 13 (Fast recharge).

Figure: Voltage profiles for the N13.

Correction of the voltage magnitude

Charging power reduced from 3 kW to 1 kW

Figure: Voltage profiles for the N13.

AMT QU02 - SED022

AMT QU02 - SED022

Nodo 8

Conclusions

- The distribution company lacks a systematized database, making it difficult to manage data efficiently and conduct accurate analysis.
- In some cases, the data showed inconsistencies, which could affect the reliability of results and decision-making.
- The connection of electric vehicles causes voltage issues in the grid, particularly at the busbars where fast charging stations were installed. These issues need to be addressed to avoid overloads or voltage drops that could impact grid stability.
- Real data demonstrated that the integration of EVs into the grid requires a detailed study. Computational tools like OpenDSS are essential for conducting accurate simulations and assessing their impact on the network.
- OpenDSS is a versatile tool that supports detailed analysis and allows for automation in generating multiple scenarios, making it crucial for efficient planning and decision-making.

