ON THE DUALITY BETWEEN THE BSC AND QUANTUM PSC

NARAYANAN RENGASWAMY
THE UNIVERSITY OF ARIZONA

JOINT WORK: HENRY D. PFISTER
DUKE UNIVERSITY

ISIT 2021

Binary lineau code
$$C = f_{\Sigma}^{n}$$

=) Dual code $C^{1} = \{x \in f_{\Sigma}^{n} \mid xy^{T} = 0 \forall y \in C\}$

Duality based on linear algebra

- Hartmann-Rudolph [IT'76]

$$\sum_{\chi \in C} \prod_{j=1}^{n} \mu_{j}(\chi_{j}) = \chi^{k-\frac{n}{2}} \sum_{\chi \in C} \prod_{j=1}^{n} \mu_{j}(\hat{\chi}_{j})$$

$$\chi_{\in C} = \chi^{k-\frac{n}{2}} \sum_{\chi \in C} \prod_{j=1}^{n} \mu_{j}(\hat{\chi}_{j})$$

$$\chi_{\in C} = \chi^{k-\frac{n}{2}} \sum_{\chi \in C} \prod_{j=1}^{n} \mu_{j}(\hat{\chi}_{j})$$

$$\chi_{\in C} = \chi^{k-\frac{n}{2}} \sum_{\chi \in C} \prod_{j=1}^{n} \mu_{j}(\hat{\chi}_{j})$$

$$\chi_{\in C} = \chi^{k-\frac{n}{2}} \sum_{\chi \in C} \prod_{j=1}^{n} \mu_{j}(\hat{\chi}_{j})$$

CODE AND CHANNEL DUALITY

• Binary lineau code $C = f_{\Sigma}^{n}$ =) Dual code $C^{\perp} = \{x \in f_{\Sigma}^{n} \mid xy^{\top} = 0 \text{ f } y \in C\}$

Duality based on linear algebra

- Hartmann-Rudolph [IT'76]

$$\sum_{\chi \in C} \prod_{j=1}^{n} \mu_{j}(\chi_{j}) = \chi^{k-\frac{n}{2}} \sum_{\chi \in C} \prod_{j=1}^{n} \hat{\mu}_{j}(\hat{\chi}_{j})$$

$$\chi_{\mathcal{L}} = \chi^{k-\frac{n}{2}} \sum_{\chi \in C} \prod_{j=1}^{n} \hat{\mu}_{j}(\hat{\chi}_{j})$$

. Is there a theory of duality for channels?

• Capacity:
$$I(BEC(E)) + I(BEC(I-E)) = 1$$

· Performance of C on BEC(E) completely characterized by performance of C^L on BEC(I-E)

• Capacity:
$$I(BEC(\varepsilon)) + I(BEC(1-\varepsilon)) = 1$$

· Performance of C on BEC(E) completely characterized by performance of C^L on BEC(I-E)

EXTEND CHANNEL DUALITY BEYOND BEC?

CQ => classical input quantum output

Renes [IT'18] proposed a dual CQ channel

Entropic Duality: $H(W) + H^{\perp}(W^{+}) = \log d^{\perp}$ dûm. of inp

Shannon Entropy: $H = H \rightarrow input$ uncertainty given output

Dual Entropies - See "Quantum Information
Processing with Finite Resources"
by Marco Tomamichel

EXTEND CHANNEL DUALITY BEYOND BEC?

CQ => classical input quantum output

Renes [IT'18] proposed a dual CQ channel

Entropic Duality: $H(W) + H^{\perp}(W^{+}) = \log d^{\perp}$ dûm. of inp

Shannon Entropy: $H = H \rightarrow input$ uncertainty given output

Coding (block error rate) and Secrecy (input decoupling):

$$H = H_{min}$$
, $H^{\perp} = H_{max} = P(W) = 2$ $= \frac{1}{d} 2$ $= Q(W^{\perp})$

Consider
$$W = PSC(\theta)$$
, $W = BSC(\rho = \frac{1-\cos\theta}{2})$

Prove
$$P(W) = B(posterior, uniform)^2 = Q(W)$$

Coding on BC

(block success rate)

(distance between cavesdroppers posterior on secret message and uniform distribution)

- 1. BEC duality via entropies
- 2. Extend entropic approach to PSC-BSC
- 3. Factor graph duality to prove P(W)=Q(W)

BEC CODING - SECRECY DUBLITY

Coding / secrecy with code
$$C:$$
 (generator G)

 $A = \begin{bmatrix} G \end{bmatrix} K: X = \begin{bmatrix} U & S \end{bmatrix} A = UG + SF$

information coset selector

Coding / secrecy with code $CL:$ (generator H)

 $B = \begin{bmatrix} E \end{bmatrix} K: X = \begin{bmatrix} S' & U' \end{bmatrix} B = S'E + U'H$
 $K = \begin{bmatrix} K & K \\ K & K \end{bmatrix} K = K$

coding with C on $BEC(E)$ secrecy with codes of CL on CL

Message perfectly recovered CL

maximal secrecy

$$PSC(\theta): \chi \in \{0,1\} \mapsto |(-1)^{\chi}\theta\} := \begin{bmatrix} \cos \frac{\theta}{2} \\ (-1)^{\chi}\sin \frac{\theta}{2} \end{bmatrix} \quad (qubit)$$

Symmetry:
$$Z|\theta\rangle = |-\theta\rangle$$
, $Z|-\theta\rangle = |\theta\rangle$; $Z=[0,-1]$

Symmetry:
$$Z|\theta\rangle = |-\theta\rangle$$
, $Z|-\theta\rangle = |\theta\rangle$; $Z=\begin{bmatrix}1 & 0 \\ 0 & -1\end{bmatrix}$
 $= \sum_{i=1}^{n} \frac{PSC(\theta)^{\otimes n}}{1} > Z(c)|\theta\rangle^{\otimes n}$; $Z(c) = \sum_{i=1}^{n} Z^{c_i}$

PURE-STATE CHANNEL (PSC)

PSC(8):
$$\chi \in \{0,1\} \longrightarrow |(-1)^{\chi_0}\rangle := \begin{bmatrix} \cos \frac{\sigma}{2} \\ -1)^{\chi_0} \sin \frac{\sigma}{2} \end{bmatrix}$$
 (qubit)

Symmetry:
$$Z|0\rangle = |-0\rangle$$
, $Z|-0\rangle = |0\rangle$; $Z=\begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$

$$=) \quad C \in \mathbb{F}_{2}^{1} \longrightarrow PSC(0)^{\otimes n} \longrightarrow Z(c) \mid 0 \rangle^{m}; \quad Z(c) = \bigotimes_{i \in I} Z^{i}$$

Construct matrix \$\overline{\Psi}_{1\text{x}}\$ columns are \$Z(c) |0\rangle^{\sigma}\$, cec

> Von Neumann entropy = Shannon entropy of eigenvalues

ENTROPIC VIEW OF PSC-BSC DUALITY

Lemma: $M = 2^k \vec{D}^{\dagger} \vec{D}$ diagonalized by the Fourier browsform on \vec{L}_2^k . The eigenvalues of \vec{L}_2^k and $e^{1/s=0} = 2^k \vec{D}^{\dagger} \vec{D}^{\dagger}$ are $\left\{2^{\frac{k}{2}} \hat{s}(h), h \in \vec{L}_2^k\right\}$.

H(Y|s=0), $e^{1/s=0} = \sum_{k \in \vec{L}_2^k} 2^{\frac{k}{2}} \hat{s}(h) \cdot kg \frac{1}{2^{\frac{k}{2}} \hat{s}(h)} = H(s'|y')$ posterior for secrecy on BSC with $c^{\frac{1}{2}}$.

ENTROPIC VIEW OF PSC-BSC DUALITY

Lemma:
$$I'=2^k \overline{D}^{\dagger} \overline{D}$$
 diagonalized by the Fourier bransform on \mathbb{Z}_2^k . The eigenvalues of I' and $e^{V_1S=0}=2^k \overline{D}^{\dagger}$ are $\{2^{-k/2}\widehat{S}(h), h\in \mathbb{Z}_2^k\}$.

 $H(Y|S=0)_{e^{V_1S=0}}=\sum_{k\in \mathbb{Z}_2^k} 2^{-k/2}\widehat{S}(h)$ by $\frac{1}{2^{-k/2}\widehat{S}(h)}=H(S'|Y')$ posterior for secrecy on BSC with C^{\perp}/M $= H(U|Y,S=0)_{e^{V_1S=0}}=H(V|S=0)_{e^{V_1S=0}}=H(Y|S=0)_{e^{V_1S=0}}=0$ $= K+0-H(S'|Y')$

BEC: H(U| E, Xx,S) + H(S'| E, X') = K

PROOF OF P(W) = Q(W1) FOR PSC-BSC SOUARE ROOT MEASUREMENT: $T := \overline{T} (\overline{T}^{\dagger} T)^{1/2}]^{-1}$ (SRM)

Solumns [14], $j \in [2^{k}]$ of T define rank-1 projectors

optimal for decoding binary linear codes on PSC 1-P(W) = Prob. [block error] = \frac{1}{2^k} \sum_{i \in I} \text{ineed to compute it;}

PROOF OF P(W) = Q(W1) FOR PSC-BSC SQUARE ROOT MEASUREMENT: IT := I (IT) (SRM)

-> columns {|Y|}, je[z*] of I define rank-1 projectors

-> optimal for decoding binary linear codes on BC 1-P(W) = Prob. [block error] = \frac{1}{2^k} \sum_{i \in I} \frac{\frac{1}{2^k} \sum_{i \in I} \frac{1}{2^k} \text{i} \text{i} \text{i} \text{i} \text{inced to compute}}{\text{i} \in \text{i}} Elder-Forney '01: $PP = F\Sigma F^{\dagger}$, $\Sigma = \text{diag}(\{\sigma(h), h\in Z_{2}^{k_{2}}\})$ Fourier transform on $Z_{2}^{k_{2}}$.

14; is a function of $\{\sigma(h), h\in Z_{2}^{k_{2}}\}$.

Factor Graph Durlity to Compute oth)

Overlap Function: $S(g) := (0|^{10}n^2(g)|_{4})^{10} = (0.50)^{11} \cdot (g)$ Fourier transform: $\hat{S}(h) = \frac{1}{\sqrt{2}k} \sum_{g \in \mathcal{I}_{2}k}^{1} \cdot (-1)^{11} \cdot (0.50)^{11} \cdot (g)$ Eldar-Forney of: $o(h) = 2^{k/4} \cdot (3.64) \leftarrow to$ be computed

FACTOR GRAPH DUALITY TO COMPUTE ofh)

Overlap Function:
$$S(g) := (g|g) Z(g)|g = (gS) W_H(g)$$

Fourier transform: $S(h) = \frac{1}{\sqrt{2}} Z(g)|g = (gS) W_H(g)$

Fourier transform:
$$\hat{s}(h) = \frac{1}{\sqrt{2^k}} \sum_{g \in \mathcal{I}_k}^{\infty} (-1)^g (coso)^{-k} (coso)^{-k}$$

Eldar-Forney'01:
$$\sigma(h) = 2^{k/4}\sqrt{3(h)} \leftarrow to be computed$$

Embed in
$$\mathbb{Z}_{1}^{h}$$
: $\hat{S}(y) = \frac{1}{\sqrt{2^{h}}} \sum_{x \in \mathbb{Z}_{1}^{h}} \mathbb{I}(x \in C) \left(-1\right)^{xy^{T}} \left(\cos \theta\right)^{\omega_{H}(x)}$

Factor graph
$$\sum_{x \in \mathbb{Z}_{2}} \mathbb{I}(x \in \mathbb{C}) \prod_{j \in \mathbb{Z}_{2}} \mathbb{I}(\hat{x} \in \mathbb{C}^{1}) \prod_{j \in \mathbb{Z$$

COMPLETING PROOF OF P(W) = Q(W) Lemma: Closed form expression for 3(h) o(h) = 2K4 (3(h)) and 14/3 a function of o(h) Lemma: $|\langle v_g | \phi_t \rangle|^2 = \frac{\hat{\sigma}(g \theta t)^2}{2^k}$

Completing Proof of
$$P(W) = Q(W^{\perp})$$

Lemma: Closed form expression for $3(h)$
 $\sigma(h) = 2^{k/4}\sqrt{3(h)}$ and $|V_{y}\rangle$ a function of $\sigma(h)$

Lemma: $|\langle V_{y}|P_{t}\rangle|^{2} = \hat{\sigma}(g\otimes t)^{2}/2^{k}$ Bhattacharyya coefficient

Theorem: $1-P_{c}(W) = P(W) = B(\frac{\hat{s}}{W^{\perp}},\frac{1}{2^{k}})^{2}$ coefficient

optimal decoupling of secret from intercepted information!

CONCLUSION

- · Reviewed BEC duality (coding-secrecy)
- Channel duality: W = PSC(0), $W^{\perp} = BSC(\frac{1-CoSO}{2})$
 - -> Generalized BEC entropic relations
 - \rightarrow Proved $P(W) = Q(W^{\perp})$ avoided more complicated quantum tools
- . In artiv: 2103.19225, discuss more and also about secrety on PSC + coding on BSC

BEC CODING DUALITY

Consider coding on BEC(
$$\mathcal{E}$$
) with code C

oracd indices

Let $V = \{z \in C \mid z_{e^{-1}} \neq z_{e^{-1}}\}$; $y = \text{received vector}$
 $H_{e^{-1}} = H_{e^{-1}} = H_{e^{-1}$

EXTEND CHANNEL DUALITY BEYOND BEC? CQ => classical input quantum output Renes [IT'18] proposed a dual CQ channel Primal (W): inp 12> Unitary out ancilla 10> Unitary traced out

Stinespring's representation of quartum channels

EXTEND CHANNEL DUALITY BEYOND BEC? CQ => classical input quantum output Renes [IT'18] proposed a dual CQ channel Primal (W): inp 12> Unitary out ancilla 10> Unitary traced out FT of { |z>: ZE Za] < Dual (W^{\perp}) : inp $|\hat{x}\rangle$ —Unitary out out