13

Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.11 BS 27/07/22

CONTINUOUS INTERNAL EVALUATION - 2

Dept: BS	Sem / Div: II / A, B, C, D, E, F	Sub: Advanced Calculus and Numerical Methods	S Code: 21MAT21
Date: 03/08/2022	Time: 9:30-11:00	Max Marks: 40	Elective: N

Note: Answer any 2 full questions, choosing one full question from each part.

Qì	Questions	Marks	RBT	CO's	
	PART A				
1	Find the directional derivative of $\phi = 4xz^3 - 3x^2y^2z$ at (2, -1, 2) along $2\hat{i} - 3\hat{j} + 6\hat{k}$	6	L2	CO2	
	If $\vec{F} = \nabla(x y^3 z^2)$ find div \vec{F} and curl \vec{F} at $(1, -1, 1)$	7	L2	CO2	
	Show that $\vec{F} = (x^2 - yz)\hat{i} + (y^2 - zx)\hat{j} + (z^2 - xy)\hat{k}$ is irrotational and find its scalar potential.	7	L3	CO2	
OR					
2	a If $\vec{F} = 3x^2 \hat{i} + (2xz - y)\hat{j} + z\hat{k}$ Find the work done in moving a particle along the curve $x^2 = 4y$, $3x^3 = 8z$ from $x=0$ to $x=2$	6	L2	CO2	
	Apply Green's theorem to evaluate $\int_{c}^{c} (xy+y^2)dx+x^2dy$ where c is the closed curve bounded by $y=x$ and $y=x^2$	7	L3	CO2	
	Using Stoke's theorem, evaluate $\int_{c} \vec{F} \cdot \hat{dr}$ for $\vec{F} = (x^2 + y^2)\hat{i} - 2xy\hat{j}$ where c is the rectangle bounded by the lines $x = a$, $x = -a$, $y = 0$ and $y = b$	7	L3	CO2	

Page: 1/2

PART B					
3 a Form the partial differential equation from $\phi(x^2+y^2,z-xy)=0$		L1	CO3		
b Solve $\frac{\partial^2 z}{\partial x^2} + z = 0$ given $x = 0$, $z = e^y$ and $\frac{\partial z}{\partial x} = 1$	1 7	L2	CO3		
Derive one- dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial t^2}$	$\frac{u}{x^2}$ 7	L3	CO3		
OR					
4 a Form the partial differential equation from the relation $z = f(x+ay) + g(x-ay)$		L1	CO3		
b Solve $\frac{\partial^2 z}{\partial x^2} = xy$ subject to the conditions that	7	L2	CO3		
$\frac{\partial z}{\partial x} = \log(1+y) \text{when x=1 and z=0 when x=0}$					
c Solve $x(y-z)p+y(z-x)q=z(x-y)$		L2	CO3		

Prepared by: Prof. Madhavi R Pai

HOD: Prof. M Ramanand Ramath