Stochastische Modelle

12. Übung

Aufgabe 47. Es sei $\{N(t): t \geq 0\}$ ein Erneuerungsprozess mit auf dem Intervall [0, 10] gleichverteilten Zwischenankunftszeiten. Bestimmen Sie näherungsweise eine Lösung der Gleichung $P(N(1440) > \alpha) = 0.05$.

Aufgabe 48. Bei einer Versicherungsgesellschaft treffen finanzielle Forderungen gemäß eines Poisson-Prozesses mit Intensität $\lambda > 0$ ein. Die Höhe der nten Forderung werde durch eine diskrete Zufallsvariable X_n beschrieben. Nehmen Sie an, dass X_1, X_2, \ldots unabhängige identisch verteilte Zufallsvariablen sind mit $E(X_1) = \mu < \infty$ und $Var(X_1) = \sigma^2 < \infty$. Ferner seien X_1, X_2, \ldots unabhängig von dem Poisson-Prozess. Es bezeichne G(t) die Gesamthöhe aller bis zur Zeit t eingetroffenen Forderungen. Berechnen Sie E[G(t)] und Var[G(t)] für alle $t \geq 0$.

Aufgabe 49. Es sei $(T_n)_{n=0}^{\infty}$ eine Folge von reellen Zufallsvariablen mit

$$P(0 = T_0 < T_1 < T_2 < \dots) = P(\lim_{n \to \infty} T_n = \infty) = 1.$$

Es sei $N(t) := \max\{n \in \mathbb{N}_0 : T_n \leq t\}, t \geq 0$. Nehmen Sie an, dass $\{N(t) : t \geq 0\}$ ein Prozess mit unabhängigen Zuwächsen ist und dass, für $0 \leq s < t$, die Verteilung von N(t) - N(s) nur von der Differenz t - s abhängt.

(a) Sei $t_0 > 0$ und für jedes $n \in \mathbb{N}$ sei X_n die Anzahl der Intervalle

$$\left(0,\frac{1}{n}t_0\right],\left(\frac{1}{n}t_0,\frac{2}{n}t_0\right],\ldots,\left(\frac{n-1}{n}t_0,\frac{n}{n}t_0\right],$$

die mindestens einen der Punkte T_1, T_2, \ldots enthalten.

- (i) Welche Verteilung hat X_n ?
- (ii) Bestimmen Sie für jedes $k \in \mathbb{N}_0$ den Grenzwert $\lim_{n\to\infty} P(X_n = k)$.
- (iii) Berechnen Sie $P(N(t_0) = k)$ für alle $k \in \mathbb{N}_0$.
- (b) Zeigen Sie: Es existiert ein $\lambda > 0$, so dass für alle $0 \le s < t$, N(t) N(s) eine Poisson-Verteilung mit Parameter $\lambda(t-s)$ hat.