Algoritmi avansați

C3 - Triangularea mulțimilor de puncte

Mihai-Sorin Stupariu

Sem. al II-lea, 2022 - 2023

Triangularea unei mulțimi arbitrare de puncte

Triangularea unei mulțimi arbitrare de puncte

► Tema anterioară: triangularea unui poligon (listă ordonată de puncte $(P_1, P_2, ..., P_n)$).

- ► Tema anterioară: triangularea unui poligon (listă ordonată de puncte $(P_1, P_2, ..., P_n)$).
- Are sens să vorbim de triangulare pentru mulțimea $\{P_1, P_2, \dots, P_n\}$?

- ▶ Tema anterioară: triangularea unui poligon (listă ordonată de puncte $(P_1, P_2, ..., P_n)$).
- Are sens să vorbim de triangulare pentru mulțimea $\{P_1, P_2, \dots, P_n\}$?
- Exemplu:

▶ În cele ce urmează vom considera doar mulțimi de puncte din planul \mathbb{R}^2 .

▶ **Definiție.** O **triangulare** a unei mulțimi \mathcal{P} este o subdivizare maximală a acoperirii convexe $Conv(\mathcal{P})$ a lui \mathcal{P} cu triunghiuri ale căror vârfuri sunt elemente ale lui \mathcal{P} (fără autointersecții!)

- ▶ **Definiție.** O **triangulare** a unei mulțimi \mathcal{P} este o subdivizare maximală a acoperirii convexe $\operatorname{Conv}(\mathcal{P})$ a lui \mathcal{P} cu triunghiuri ale căror vârfuri sunt elemente ale lui \mathcal{P} (fără autointersecții!)
- Trebuie făcută distincție între triangulare a unui poligon (P_1, P_2, \ldots, P_n) și triangulare a mulțimii subdiacente $\{P_1, P_2, \ldots, P_n\}$ (coincid dacă poligonul este convex!)

- ▶ **Definiție.** O **triangulare** a unei mulțimi \mathcal{P} este o subdivizare maximală a acoperirii convexe $\operatorname{Conv}(\mathcal{P})$ a lui \mathcal{P} cu triunghiuri ale căror vârfuri sunt elemente ale lui \mathcal{P} (fără autointersecții!)
- Trebuie făcută distincție între triangulare a unui poligon (P_1, P_2, \ldots, P_n) și triangulare a mulțimii subdiacente $\{P_1, P_2, \ldots, P_n\}$ (coincid dacă poligonul este convex!)
- Comentariu: Triangulările mulțimilor de puncte sunt esențiale în grafica pe calculator.

Exemple

(i) 3 puncte necoliniare

Exemple

(ii) 4 puncte necoliniare, nesituate toate pe o aceeași dreaptă

▶ Dată o mulțime de puncte \mathcal{P} și o triangulare \mathcal{T}_P a sa: vârfuri, muchii, triunghiuri.

- Dată o mulțime de puncte \mathcal{P} și o triangulare \mathcal{T}_P a sa: vârfuri, muchii, triunghiuri.
- Legătură cantitativă între aceste elemente?

- Dată o mulțime de puncte \mathcal{P} și o triangulare \mathcal{T}_P a sa: vârfuri, muchii, triunghiuri.
- Legătură cantitativă între aceste elemente?
- ▶ **Propoziție.** Fie \mathcal{P} o mulțime de n puncte din plan nesituate toate pe o aceeași dreaptă. Notăm cu k numărul de puncte de pe frontiera acoperirii convexe $\operatorname{Conv}(\mathcal{P})$. Orice triangulare a lui \mathcal{P} are (2n-k-2) triunghiuri și (3n-k-3) muchii.

- ▶ Dată o mulțime de puncte \mathcal{P} și o triangulare \mathcal{T}_P a sa: vârfuri, muchii, triunghiuri.
- Legătură cantitativă între aceste elemente?
- ▶ **Propoziție.** Fie \mathcal{P} o mulțime de n puncte din plan nesituate toate pe o aceeași dreaptă. Notăm cu k numărul de puncte de pe frontiera acoperirii convexe $\operatorname{Conv}(\mathcal{P})$. Orice triangulare a lui \mathcal{P} are (2n-k-2) triunghiuri și (3n-k-3) muchii.
- **Exemplu:** Cazul unui poligon convex: un poligon convex cu n vârfuri poate fi triangulat cu (n-2) triunghiuri, având (2n-3) muchii.

9 muchii

Demonstrație

Graf:

modurile: puntile initiale (m)

muchile: laturile \(\(\alpha_m = \frac{2}{2}\)

fetele: fetele △ + fata exterioara

 $(m_t + 1)$

Relatie lui Euler: $m - m_m + (m_t + 1) = 2$

· preidente dintre muchii ri fête

ptr. fata exterioura

" perspectiva fetelor"

J nt = .

4□ > 4ⓓ > 4≧ > 4볼 > 월 90

▶ **Problemă.** Se fac măsurători ale altitidinii pentru un teren. Se dorește reprezentarea tridimensională (cât mai sugestivă) . Alternativ: se dorește generarea unui teren pentru o aplicație.

▶ **Problemă.** Se fac măsurători ale altitidinii pentru un teren. Se dorește reprezentarea tridimensională (cât mai sugestivă) . Alternativ: se dorește generarea unui teren pentru o aplicație.

▶ **Problemă.** Se fac măsurători ale altitidinii pentru un teren. Se dorește reprezentarea tridimensională (cât mai sugestivă) . Alternativ: se dorește generarea unui teren pentru o aplicație.

Problematizare - continuare

► **Problemă (reformulată).** Cum "comparăm triangulările" unei mulțimi de puncte fixate?

Problematizare - continuare

- ► **Problemă (reformulată).** Cum "comparăm triangulările" unei mulțimi de puncte fixate?
- **Exemplu.** Măsurători ale altitudinii.

580

570

Problematizare - continuare

- ► **Problemă (reformulată).** Cum "comparăm triangulările" unei mulțimi de puncte fixate?
- **Exemplu.** Măsurători ale altitudinii.

Triangulare 1

Triangulare 2

Întrebări naturale: (i) Există o triangulare "convenabilă" a unei mulțimi de puncte? (ii) Cum poate fi determinată eficient o astfel de triangulare?

Fixată: o mulțime de puncte \mathcal{P} . În cele ce urmează vom presupune că \mathcal{P} este o mulțime de puncte din planul \mathbb{R}^2 .

- Fixată: o mulțime de puncte \mathcal{P} . În cele ce urmează vom presupune că \mathcal{P} este o mulțime de puncte din planul \mathbb{R}^2 .
- ▶ Fie \mathcal{T} o triangulare a lui \mathcal{P} cu m triunghiuri. Fie $\alpha_1, \alpha_2, \ldots, \alpha_{3m}$ unghiurile lui \mathcal{T} , ordonate crescător. **Vectorul unghiurilor lui** \mathcal{T} **este** $A(\mathcal{T}) = (\alpha_1, \alpha_2, \ldots, \alpha_{3m})$.

- Fixată: o mulțime de puncte \mathcal{P} . În cele ce urmează vom presupune că \mathcal{P} este o mulțime de puncte din planul \mathbb{R}^2 .
- ▶ Fie \mathcal{T} o triangulare a lui \mathcal{P} cu m triunghiuri. Fie $\alpha_1, \alpha_2, \ldots, \alpha_{3m}$ unghiurile lui \mathcal{T} , ordonate crescător. **Vectorul unghiurilor lui** \mathcal{T} **este** $A(\mathcal{T}) = (\alpha_1, \alpha_2, \ldots, \alpha_{3m})$.
- ▶ Relație de ordine pe mulțimea triangulărilor lui \mathcal{P} : ordinea lexicografică pentru vectorii unghiurilor. Fie \mathcal{T} și \mathcal{T}' două triangulări ale lui \mathcal{P} . Atunci $A(\mathcal{T}) > A(\mathcal{T}')$ dacă $\exists i$ astfel ca $\alpha_j = \alpha'_j$, $\forall 1 \leq j < i$ și $\alpha_i > \alpha'_i$.

- Fixată: o mulțime de puncte \mathcal{P} . În cele ce urmează vom presupune că \mathcal{P} este o mulțime de puncte din planul \mathbb{R}^2 .
- ▶ Fie \mathcal{T} o triangulare a lui \mathcal{P} cu m triunghiuri. Fie $\alpha_1, \alpha_2, \ldots, \alpha_{3m}$ unghiurile lui \mathcal{T} , ordonate crescător. **Vectorul unghiurilor lui** \mathcal{T} **este** $A(\mathcal{T}) = (\alpha_1, \alpha_2, \ldots, \alpha_{3m})$.
- ▶ Relație de ordine pe mulțimea triangulărilor lui \mathcal{P} : ordinea lexicografică pentru vectorii unghiurilor. Fie \mathcal{T} și \mathcal{T}' două triangulări ale lui \mathcal{P} . Atunci $A(\mathcal{T}) > A(\mathcal{T}')$ dacă $\exists i$ astfel ca $\alpha_j = \alpha'_j$, $\forall 1 \leq j < i$ și $\alpha_i > \alpha'_i$.
- ▶ Triangulare unghiular optimă: \mathcal{T} astfel ca $A(\mathcal{T}) \geq A(\mathcal{T}')$, pentru orice triangulare \mathcal{T}' .

Exemplu - cazul unui patrulater convex

Exemplu - cazul unui patrulater inscriptibil

Exemplu - cazul unui patrulater inscriptibil

În acest caz triunghiurile formate de diagonale au "cele mai mici unghiuri" congruente, deci nu putem distinge între cele două diagonale.

▶ Conceptul de muchie ilegală. Fie $A, B, C, D \in \mathbb{R}^2$ fixate astfel ca ABCD să fie un patrulater convex; fie \mathcal{T}_{AC} , \mathcal{T}_{BD} triangulările date de diagonalele AC, respectiv BD. Muchia AC este ilegală dacă $\min A(\mathcal{T}_{AC}) < \min A(\mathcal{T}_{BD})$.

- ▶ Conceptul de muchie ilegală. Fie $A, B, C, D \in \mathbb{R}^2$ fixate astfel ca ABCD să fie un patrulater convex; fie \mathcal{T}_{AC} , \mathcal{T}_{BD} triangulările date de diagonalele AC, respectiv BD. Muchia AC este ilegală dacă $\min A(\mathcal{T}_{AC}) < \min A(\mathcal{T}_{BD})$.
- Criteriu geometric pentru a testa dacă o muchie este legală: muchia AC, adiacentă cu triunghiurile ΔACB şi ΔACD este ilegală dacă şi numai dacă punctul D este situat în interiorul cercului circumscris ΔABC.

- Criteriu numeric / analitic pentru a testa dacă o muchie este ilegală.
 - ▶ Pentru puncte $A = (x_A, y_A), B = (x_B, y_B), C = (x_C, y_C), D = (x_D, y_D)$:

$$\Theta(A, B, C, D) = \begin{vmatrix} x_A & y_A & x_A^2 + y_A^2 & 1 \\ x_B & y_B & x_B^2 + y_B^2 & 1 \\ x_C & y_C & x_C^2 + y_C^2 & 1 \\ x_D & y_D & x_D^2 + y_D^2 & 1 \end{vmatrix}$$

- Criteriu numeric / analitic pentru a testa dacă o muchie este ilegală.
 - ▶ Pentru puncte $A = (x_A, y_A), B = (x_B, y_B), C = (x_C, y_C), D = (x_D, y_D)$:

$$\Theta(A, B, C, D) = \begin{vmatrix} x_A & y_A & x_A^2 + y_A^2 & 1 \\ x_B & y_B & x_B^2 + y_B^2 & 1 \\ x_C & y_C & x_C^2 + y_C^2 & 1 \\ x_D & y_D & x_D^2 + y_D^2 & 1 \end{vmatrix}$$

- ▶ (i) Punctele A, B, C, D sunt conciclice $\Leftrightarrow \Theta(A, B, C, D) = 0$.
 - (ii) Fie A, B, C astfel ca ABC să fie un viraj la stânga. Un punct D este situat în interiorul cercului circumscris $\triangle ABC \Leftrightarrow \Theta(A, B, C, D) > 0$.

Exemplu

▶ **Concluzie:** Dacă muchia *AC* este ilegală, printr-un *flip* (înlocuirea ei cu *BD*), cel mai mic unghi poate fi mărit (local). Printr-un flip, vectorul unghiurilor crește.

- ► Concluzie: Dacă muchia AC este ilegală, printr-un flip (înlocuirea ei cu BD), cel mai mic unghi poate fi mărit (local). Printr-un flip, vectorul unghiurilor crește.
- ▶ Concluzie (reformulare): Fie \mathcal{T} o triangulare cu o muchie ilegală e, fie \mathcal{T}' triangularea obținută din \mathcal{T} prin flip-ul muchiei e. Atunci $A(\mathcal{T}') > A(\mathcal{T})$.

- ▶ Concluzie: Dacă muchia AC este ilegală, printr-un flip (înlocuirea ei cu BD), cel mai mic unghi poate fi mărit (local). Printr-un flip, vectorul unghiurilor crește.
- ▶ Concluzie (reformulare): Fie \mathcal{T} o triangulare cu o muchie ilegală e, fie \mathcal{T}' triangularea obținută din \mathcal{T} prin flip-ul muchiei e. Atunci $A(\mathcal{T}') > A(\mathcal{T})$.
- ➤ **Triangulare legală:** nu are muchii ilegale. **Fapt:** O triangulare legală a unei mulțimi cu *n* puncte poate fi determinată printr-un algoritm incremental randomizat, cu complexitate-timp medie *O*(*n* log *n*).

Triangulări unghiular optime vs. triangulări legale

- ▶ **Propoziție.** Fie P o mulțime de puncte din plan.
 - (i) Orice triangulare unghiular optimă este legală.
 - (ii) Dacă \mathcal{P} este în poziție generală (oricare patru puncte nu sunt conciclice), atunci există o unică triangulare legală, iar aceasta este unghiular optimă.

Triangulări unghiular optime vs. triangulări legale

- ▶ **Propoziție.** Fie P o mulțime de puncte din plan.
 - (i) Orice triangulare unghiular optimă este legală.
 - (ii) Dacă P este în poziție generală (oricare patru puncte nu sunt conciclice), atunci există o unică triangulare legală, iar aceasta este unghiular optimă.
- ▶ **Teoremă.** Fie \mathcal{P} o mulțime de n puncte din plan, în poziție generală. Triangularea unghiular optimă poate fi construită, folosind un algoritm incremental randomizat, în timp mediu $O(n \log n)$, folosind O(n) memorie medie.