

DataWhale零基础入门金融风控

贷款违约预测--模调参&模型融合

本次直播的内容

- > 单模型建模调参
- > 多模型融合上分
- ▶ 问题答疑

分享人: 小一

数据分析工程师金融风控爱好者

单模型建模 (1/3)

逻辑回归模型

假设数据服从伯努利分布,

通过极大化似然函数的方法, 运用梯度下降来求解参数,来达到将数据二分类的目的。

优点

- 简单易理解, 可解释性 强
- 训练速度较快,计算量 和特征的数目相关
- 内存资源占用小, 只存 储维度的特征值

> 缺点

- · 需要预处理缺失值和异 常值
- · 不能解决非线性问题
- ・ 准确率并不是很高

树模型

通常是二叉树的形式 少有多叉树存在

▶ 优点

- 简单直观, 生成的决策树 可以可视化展示
- · 数据不需要预处理,不需 要归一化、处理缺失数据
- 既可以处理离散值,也可 以处理连续值

> 缺点

- 决策树算法非常容易 过拟合,导致泛化能 力不强(可进行适当 的剪枝)
- 采用的是贪心算法, 容易得到局部最优解

单模型建模 (2/3)

集成模型

集成方法主要包括 Bagging 和 Boosting,都是将已有的分类或回归算法通过一定方式组合起来,形成一个更加强大的分类

- 基于 Bagging 的集成模型:
 - 随机森林
- 基于 Boosting 的集成模型:
 - Adaboost
 - GBDT
 - XGBoost
 - LightGBM

baggi	ına
Dayy	1119

boosting

> 样本选择上	从原始集中有放回的 选取	每一轮的训练集不变,只是训练集中每个样本在分类器中的 权重发生变化
> 样例权重上	使用均匀取样,所以 每个样本的权重相等	根据错误率不断调整样本的权值,错误率越大则权重越大
> 预测函数上	所有预测函数的权重 相等	每个弱分类器都有相应的权重, 对于分类误差小的分类器会有 更大的权重
并行计算上	各个预测函数可以并 行生成	各个预测函数只能顺序生成, 因为后一个模型参数需要前一 轮模型的结果。

贷款违约预测-建模调参&模型融合

单模型建模 (3/3)

数据集划分

> 留出法

将数据集D划分为两个互斥的集合, 其中一个作训练集,另一个为测试集

> 交叉验证法

将数据集D分为k份,其中k-1份作为训练集,剩余的一份作为测试集

> 自助法

从数据集D中取一个样本作为训练集中的元素,然后把该样本放回,重复该行为m次,未取到的样本为测试集

调参优化

> 贪心调参

依次调整,每一个参数都是局部最优

> 网格搜索

常使用GridSearchCV进行全局参数调整

> 贝叶斯调参

- ・定义优化函数(rf cv)
- 建立模型
- 定义待优化的参数
- 得到优化结果

多模型融合

平均&投票

> 平均

- 简单平均
- 加权平均

> 投票

stacking & blending

> Stacking融合

> Blending融合

Datawhale

一个专注于AI领域的开源组织 了解更多竞赛干货分享√

