Лекция 1

Ilya Yaroshevskiy

10 февраля 2021 г.

Содержание

1	теория погрешности		
	1.1	Значащие цифры	1
	1.2	Верные цифры	2
	1.3	Распространение погрешности	2
2	Одн	юмерная минимизация функций	2
	2.1	Прямые методы	2
		2.1.1 Метод дихотомии	3
1	\mathbf{T}	еория погрешности	
O	гклон	ение от теоретического решения Виды погрешности:	
	1. He	еустранимая погрешность	
	Π_I	ример. Физические величины, другие константы	
	2. Ус	странимая погрешнеость Связана с методом решения	
	(;	 а) Погрешность модели Связана с матиматической формулировкой задачи. Она плохо отображает реальную м дель 	0-
	(1	о) Остаточная погрешность(Погрешноть аппроксимации)	
	(с) Погрешность округления	

- \bullet X^* точное решение
- \bullet X- Приближенное решение

Нецелые числа

(d) Накапливаемая погрешность

- $X^* X$ погрешность
- $\Delta X = |X^* X|$ абсолютная погрешность $\Delta_X \geq |X^* X|$, т.е.

$$X - \Delta_X \le X^* \le X + \Delta_X$$

• $\delta X = \left|\frac{X^* - X}{|X|}\right|$ — относительная погрешость $\delta_X \geq \left|\frac{X^* - X}{|X|}\right|$ — предельная относительная погрешность

1.1 Значащие цифры

Определение. Все цифры в изображении отличные от нуля, и нули если они содержатся между значащими цифрами, или расположены в конце числа и указывают на сохранение разряды точности. Нули стоящие левее, отличной от нуля цифры, не являются значащимицифрами Между ненулевыми, или указывающие на точность

 $\Pi p u м e p. \underbrace{0.00}_{\text{незнач.}} 2080$

 Π ример. $689000 = 0.689 \cdot 10^6 - 3$ значащие цифры $689000 = 0.689000 \cdot 10^6 - 6$ значащих цифр

1.2 Верные цифры

Если, значащая цифра приближенного значения, находящаяся в разряде, в котором выполняется условие — абсолютное значение погрешности не превосходит половину уиницы этого разряда $\Delta \leq 0.5 \cdot 10^k$, где k — номер разряда, то она называется верной

Пример.
$$a = 3.635$$
 $\Delta a = 0.0003$

(3)
$$k = 0$$
 $\frac{1}{2} \cdot 10^0 = \frac{1}{2} \ge \Delta a$

(6)
$$k = -1 \frac{1}{2} \cdot 10^{-1} = 0.05 \ge \Delta a$$

(3)
$$k = -2 \frac{1}{2} \cdot 10^{-2} = 0.005 \ge \Delta a$$

(5)
$$k = -3 \frac{1}{2} \cdot 10^{-3} = 0.0005 \ge \Delta a$$

1.3 Распространение погрешности

Пример.
$$\frac{\sqrt{2}-1}{\sqrt{2}+1}^3 = (\sqrt{2}-1)^6 = (3-2\sqrt{2})^3 = 99-70\sqrt{2}$$

 $\sqrt{2}$

$$\frac{7}{5} = 1.4$$

$$\frac{17}{12} = 1.41666$$

$$\frac{707}{500} = 1.414$$

$$\sqrt{2} = 1.4142145624$$

$$\Delta_{(x \cdot y)} \approx |Y| \Delta_X + |X| \Delta_Y
\Delta_{(\frac{x}{y})} \approx \left| 1Y | \Delta_X + \left| \frac{X}{Y^2} | \Delta_Y \right| \right|
\Delta u	=	f(x_1 + \Delta x_1, \dots, x_n + \Delta x_n) - f(x_1, \dots, x_n)								
\Delta U	=	df(x_1, \dots, x_n)	= \left	\sum_{i=1}^n \frac{\partial u}{\partial x_i} \Delta x_i \right	\le \sum_{i=1}^n \left	\frac{\partial u}{\partial x_i} \right	\cdot	\Delta x_i		
\delta u	= \frac{1}{	u	} = \sum_{i=1}^n \left	\frac{\partial u}{\partial x_i} \cdot \frac{1}{u} \right	\cdot	\Delta x_i	= \sum_{i=1}^n \left	\frac{\partial \ln u}{\partial x_i} \right	\cdot	\Delta x_i
\delta_u = \sum_{i=1}^n \left| \frac{\partial \ln u}{\partial x_i} \right| \cdot |\Delta x_i|
\delta_{(X+Y)} = \left| \frac{X}{X+Y} \right| \delta_X + \left| \frac{Y}{X+Y} \right| \delta_Y$$
(1)

2 Одномерная минимизация функций

2.1 Прямые методы

Не требуют вычисление производной. Могут использовать только известные значения.

2.1.1 Метод дихотомии

$$x_{1} = \frac{b+a-\delta}{2} \quad x_{2} = \frac{b+a+\delta}{2}$$

$$\tau = \frac{b-x_{1}}{b-a} = \frac{x_{2}-a}{b-a} \to \frac{1}{2}$$

$$X^{*}[a_{i},b_{i}] \quad \frac{b_{i}-a_{i}}{2} \le \varepsilon$$

$$(2)$$

- 1. x_1 и x_2 ; вычислить $f(x_1)$ и $f(x_2)$
- 2. $f(x_1)$ и $f(x_2)$
 - Если $f(x_1) \leq f(x_2) \rightarrow [a, x_2]$, т.е. $b = x_2$
 - Иначе $[x_1, b] \to [x_1, b]$, т.е. $a = x_1$
- 3. $\varepsilon_n = \frac{b-a}{2} \ (n$ номер итерации)

 - Если $\varepsilon_n \leq \varepsilon$, заврешить поиск(шаг 4)
- 4. $x^* \approx \overline{x} = \frac{a+b}{2}$ $f^* \approx f(\overline{x})$

 $\frac{2}{} \quad \delta \in (0,2\varepsilon)$ Число итерций $n \geq \log_2 \frac{b-a-\delta}{2\varepsilon-\delta}$