# Apresentação 2: Análise Exploratória dos Dados

Aluno: Israel Matias do Amaral

Tipo de projeto: TCC 1

Orientadora: Helen

#### TÍTULO PROVISÓRIO

"Análise de discurso de ódio na comunidade gamer do YouTube com o uso de modelos de linguagem"

OU

"Análise de chats de transmissões ao vivo no Youtube em uma sub comunidade gamer de humor negro"

### Índice

- 1. Objetivos, Motivação e Atualizações do Projeto
- 2. Hipótese e Desenho do Experimento
- 3. Mudanças na Estratégia de Análise
- 4. Preparação e Caracterização dos Dados
- 5. Análise Exploratória dos Dados

# Objetivos, Motivação e Atualizações do Projeto

# 1.1 Contextualização e Motivação

# Condenação de Léo Lins reacende debate sobre limites do humor e da liberdade de expressão; veja o que dizem juristas

Justiça condenou humorista a 8 anos e 3 meses de prisão, além do pagamento de multa e indenização por danos morais. Defesa alega que não houve intenção de ofender ninguém.

Por Redação GloboNews e g1 SP

04/06/2025 15h29 · Atualizado há uma semana

## 1.1 Contextualização e Motivação

- A popularização das transmissões ao vivo no YouTube, especialmente na comunidade gamer, trouxe consigo um aumento de comentários ofensivos.
- O problema central é que muitos desses comentários são expressos com ironia e códigos, dificultando sua detecção automática.
- Este projeto foca em uma subcomunidade específica de streamers do Youtube conhecida pelo humor ácido, que combina alto volume de interações com uma alta incidência de linguagem ambígua, tornando-se um ambiente ideal para o estudo.

### 1.1 Contextualização e Motivação



# 1.2 Objetivos do Estudo (Versão Atualizada)

- 1. Entender como um classificador de toxicidade do estado da arte classifica os comentários desta sub comunidade.
- 2. Entender como um classificador lida com linguagem ambígua e codificada.
- 3. Expor possíveis riscos do discurso tóxico/ofensivo mascarado como humor.
- Contribuir para o entendimento dos limites do humor, moderação de conteúdo e liberdade de expressão.

# 2. Hipótese e Desenho do Experimento

# 2.1 Hipótese do Projeto

Hipótese Central: O resultado final depende não apenas do modelo de linguagem escolhido, mas também da estratégia de pré-processamento e do volume de dados utilizado.

Para testar esta ideia, as hipóteses foram formalizadas da seguinte forma:

- Hipótese Nula (H₀): Os fatores do experimento (modelo, pré-processamento, tamanho da base) e suas interações não influenciam significativamente o desempenho da classificação.
- Hipótese Alternativa (H<sub>1</sub>): Pelo menos um dos fatores ou uma de suas interações influencia significativamente o desempenho da classificação.

- A hipótese será investigada por meio de um Projeto Fatorial 2<sup>3</sup> com 3 replicações.
- Fatores e Níveis: Foram escolhidos 3 fatores com 2 níveis cada.

| Fator                 | Níveis                                             |
|-----------------------|----------------------------------------------------|
| modelo_classificador  | BERTimbau vs. LLM (Llama/Deepseek)                 |
| tipo_preprocessamento | Mínimo (Padrão) vs. Direcionado (Limpeza de Ruído) |
| tamanho_base_dados    | Parcial (Amostra) vs. Completa                     |

Variável Resposta: Será a medida de desempenho do classificador. As opções são:

- Contínua: Probabilidade de toxicidade (um valor entre 0 e 1).
- Binária: Rótulo da classificação (tóxico / não tóxico).

A escolha final dependerá da natureza dos dados e dos modelos.

Replicações (3): O experimento será repetido 3 vezes para cada uma das 8 combinações da tabela fatorial, totalizando 24 execuções.

#### Justificativa:

Custo Computacional vs. Benefício Estatístico: r=3 é um ponto de equilíbrio: é um número baixo o suficiente para ser factível, mas já permite uma estimativa inicial da variabilidade (erro experimental), algo que com r=1 ou r=2 é muito impreciso.

#### Conexão dos Elementos:

- A hipótese será testada executando o experimento fatorial 2<sup>3</sup>.
- Os fatores e níveis serão sistematicamente manipulados para observar o efeito na variável resposta.
- As replicações garantirão a validade dos resultados, permitindo aceitar ou rejeitar as hipóteses com base em evidências estatísticas (análise de variância) e, assim, cumprir os objetivos do estudo.

# 3. Mudanças na Estratégia de Análise

## 3. Mudanças na Estratégia de Análise

Desde a proposta inicial, algumas estratégias foram atualizadas:

- Enriquecimento dos Dados: O script de coleta foi aprimorado para capturar metadados adicionais, como likes, visualizações e comentários pós-live.
- Expansão dos Modelos: Além do BERTimbau e ChatGPT, agora consideramos o uso da Perspective API e modelos mais leves como Llama/Deepseek para execução local.
- Aumento da Complexidade Experimental: O projeto evoluiu de um fatorial 2º para um 2³, adicionando o fator tamanho\_base\_dados para avaliar o impacto da quantidade de dados no desempenho.

# 4. Preparação e Caracterização dos Dados

#### 4.1 Fonte e Estrutura dos Dados

Os dados são comentários extraídos de chats ao vivo do YouTube, coletados via API oficial. Eles são divididos em:

chat.csv (mensagens) e metadados.csv (informações da transmissão).

- Categóricas: autor, canal, id\_video, titulo
- Quantitativas Discretas: espectadores\_atuais, likes, visualizacoes, comentarios
- Quantitativas Contínuas: timestamp, data\_publicacao, data\_inicio\_live
- Texto Livre: mensagem, descricao

#### 4.2 Status de Prontidão dos Dados

O conjunto de dados está **parcialmente pronto** para a fase de experimentação, com os seguintes progressos e pendências:

- Coleta e Volume: A fase de coleta está em sua etapa final, com um volume total que se aproxima de 1 milhão de comentários de mais de 100 lives. Para a análise exploratória dos dados, fez-se um recorte de 10 dias.
- **Estruturação e Limpeza:** Os dados coletados possuem alta integridade, sem valores ausentes nas colunas essenciais. Os scripts para a limpeza de ruídos (remoção de links, menções de usuário e alongamentos de palavras), que correspondem a um dos níveis do fator "pré-processamento" no experimento, já foram desenvolvidos e estão prontos para serem aplicados.
- Rotulagem (Pendente): A etapa de rotulagem manual de um subconjunto dos dados, que servirá como base para o treinamento e teste dos modelos, é a principal pendência.

# 5. Análise Exploratória dos Dados

## 5. Análise Exploratória dos Dados

A análise a seguir foi feita no recorte de 10 dias (264.791 mensagens).

| Canal          | Live Count | Total Mensagens |
|----------------|------------|-----------------|
| REnanPLAY      | 6          | 133.031         |
| LUANGAMEPLAY   | 4          | 59.992          |
| Diego Sheipado | 8          | 39.490          |
| BiahKov        | 5          | 16.968          |
| CAVALÃO 2      | 7          | 15.310          |

## Análise 1: Estatísticas Globais por Transmissão

| Variável              | Média    | Mediana  |
|-----------------------|----------|----------|
| quantidade_mensagens  | 8.826,30 | 3.332,50 |
| tamanho_mensagem      | 31,81    | 29,89    |
| tempo_entre_mensagens | 27,35    | 15,70    |

Variância significativa nas métricas, com médias e medianas indicando possível distribuição assimétrica.

# Análise 2: Quantidade de mensagens por transmissão



#### Insight:

 A maioria das transmissões tem engajamento moderado, enquanto algumas apresentam volumes excepcionalmente altos, sugerindo a necessidade de considerar outliers em análises futuras.

# Análise 3: Quantidade de mensagens por canal



#### Insight:

 Os canais mostram padrões variados de engajamento, com alguns exibindo maior volume e variabilidade, enquanto outros mantêm transmissões mais homogêneas.

# Análise 4: Volume de mensagens por canal e dia



#### Insight:

 A visualização revela picos de atividade concentrados em alguns canais e dias, com outros apresentando uma distribuição mais uniforme, sugerindo padrões recorrentes de engajamento.

# Análise 5: Correlação entre Inscritos x Média de Mensagens por Transmissão



#### Insight:

 Há uma correlação positiva fraca entre o número de inscritos e a média de mensagens por transmissão, com R² de 0,11, indicando que apenas 11% da variabilidade nas mensagens pode ser explicada pelos inscritos.

# **Análise 6:** Verificação de Distribuição Teórica de quantidade\_mensagens



#### Insight:

 Os dados têm uma cauda longa à direita, típica de fenômenos onde poucos eventos extremos dominam (ex.: lives com alto engajamento).

# Análise 7: Nuvem de palavras mais frequentes nos chats

 Após a criação de uma lista de stopwords customizada e agressiva (com 168 palavras), foi possível remover o ruído superficial (como "jogo", "live", nomes de streamers) e revelar os termos que caracterizam a cultura e a linguagem interna da comunidade analisada.

```
# Junta todas as listas de categorias em uma única lista final.
custom_stop_words = (
    stopwords_conectivos +
    stopwords_verbos +
    stopwords_adjetivos_adverbios +
    stopwords_interjeicoes_girias +
    stopwords_ofensas +
    stopwords_contexto_geral +
    stopwords_contexto_topicos +
    stopwords_contexto_streamers +
    stopwords_misc
)
```

A nuvem de palavras a seguir contém termos pejorativos, gírias e linguagem que podem ser considerados sensíveis. O objetivo é analisar de forma crítica a cultura de comunicação desses espaços, e não endossar o conteúdo.



# Conclusões da Análise Exploratória

- Diferenças claras de engajamento entre os canais.
- Alguns canais se destacam por alto volume de mensagens e devem ser considerados com cuidado na normalização das análises.
- A presença de transmissões com altíssima interação sugere que será importante:
  - Detectar e avaliar os outliers, tratando-os apenas quando forem inconsistentes com o comportamento esperado do conjunto de dados.
  - Levar em conta o canal nas análises futuras, já que ele pode influenciar os resultados e gerar diferenças no volume de mensagens entre as transmissões.
- Canais menores têm distribuições mais concentradas e previsíveis.
- A distribuição lognormal de quantidade\_mensagens reforça a necessidade de abordar a assimetria e
  os outliers, guiando a escolha de métodos estatísticos adequados na próxima fase.
- A análise do vocabulário valida a premissa de que a comunidade utiliza linguagem codificada, justificando a investigação sobre o pré-processamento como um fator crucial.