Бази от данни

Релационна алгебра

доц. д-р Димитър Димитров

Въведение (1)

- Какво е алгебра?
- Какви алгебри познава всеки от нас?

Въведение (2)

- Какви алгебри познава всеки от нас?
 - Елементарна алгебра
 - vs. аритметика
 - Булева алгебра
 - Матрична алгебра
 - Напр. *n×n* матрици върху R

Алгебра

- Операнди
 - Променливи или стойности
- Операции
 - Позволяват създаването на нови стойности от операндите
 - Конструиране на изрази чрез прилагане на операциите върху операнди или други изрази

Релационна алгебра

- Операнди
 - Променливи, които представят релации
 - Константи крайни релации
- Операции
 - 1.Обединение, сечение, разлика
 - 2.Премахващи части от дадена релация
 - 3.Комбиниращи кортежите на две релации
 - 4.И др.

Мотивация (1)

- Защо учим релационна алгебра?
- Предлага прости, но мощни начини да конструираме нови релации от дадени съществуващи
 - Можем да конструираме сложни изрази
- → може да се използва за заявки върху релационни БД
 - Ще наричаме изразите заявки
- Теоретична основа на SQL

Мотивация (2)

- He e цялостна по Тюринг (Turing complete)
 - Недостатъци
 - Предимства
 - SQL цялостен ли е по Тюринг?

Мотивация (3)

- Междинен език за изпълнение на заявките
- Използва се от СУБД
- Изразите могат да бъдат неефективни
- Множество от правила за обработка на алгебрични изрази
- Изразите се преобразуват в други, по-ефективни

Изпълнение на заявки

- Ядро на релационната алгебра (РА)
 - Релациите са множества от кортежи
- Разширена РА
 - Мултимножества

Основни класове операции

- 1. Операции над множества
 - Обединение
 - Сечение
 - Разлика
- 2. Операции, премахващи части от дадена релация
 - Проекция
 - Селекция
- 3. Операции, комбиниращи кортежите на две релации
- Декартово произведение
- 4. Преименуване

Припомняне на познати термини

• Комутативност

$$-a + b = b + a$$

- Асоциативност
 - Мястото на скобите няма значение

$$-a + (b + c) = (a + b) + c$$

$$-a*(b*c) \neq (a*b)*c$$

Операции върху множества (1)

- Множества от какво? :)
- Обединение (∪)
- Сечение (∩)
- Разлика (-)
- Бинарни операции ли са?
- Кои са комутативни?
- Кои са асоциативни?
- Може ли да ги прилагаме върху произволни две релации?

Операции върху множества (2)

- $R(A_1,...,A_n)$ и $S(B_1,...,B_m)$:
 - *n*=*m* (еднаква степен/арност)
 - За всяко i = 1,...,n: dom(A_i)=dom(B_i)
- Съответни оператори в SQL?

Схема на примерна БД

- Studio (<u>name</u>, address, presC#)
- MovieExec (<u>cert#</u>, name, address, networth)
- Movie (<u>title</u>, <u>year</u>, length, inColor, studioName, producerC#)
- MovieStar (<u>name</u>, address, gender, birthdate)
- StarsIn (<u>movieTitle</u>, <u>movieYear</u>, <u>starName</u>)

Операции върху множества – пример (1)

R

name	address	address gender	
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
Mark Hamil	456 Oak Rd., Brentwood	M	8/8/88

S

name	address	ddress gender	
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
Harrison Ford	789 Palm Dr., Beverly Hills	M	7/7/77

Операции върху множества – пример (2)

$R \cap S$	name	address	gender	birthdate
	Carrie Fisher	123 Maple St., Hollywood	F	9/9/99

$R \cup S$	name	address	gender	birthdate
	Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
Harrison Ford		789 Palm Dr., Beverly Hills	M	7/7/77
	Mark Hamil	456 Oak Rd., Brentwood	M	8/8/88

R - S	S name address		gender	birthdate
	Mark Hamil	456 Oak Rd., Brentwood	M	8/8/88

Проекция

- Унарна операция
- π_L(R), където
 L=A₁,...,A_n е списък от атрибути
- Създава нова релация
 - С какви атрибути?
 - С какви кортежи?
- Хоризонтална рестрикция
- SQL: SELECT <u>DISTINCT</u>

Пример

- $\pi_{\text{title,year}}(\text{Movie})=?$
- $\pi_{\text{filmType}}(\text{Movie})=?$

title	year	length	filmType	studioName
Star Wars	1977	124	color	Fox
Mighty Ducks	1991	104	color	Disney
Wayne's World	1992	95	color	Fox

Селекция

- Унарна операция
- $\sigma_C(R)$
- Създава нова релация със същата схема и тези кортежи на R, които удовлетворяват дадено условие C
 - Условие върху атрибутите на R
- Вертикална рестрикция
- Съответни оператори в SQL?

Пример

- σlength≥120 AND filmType='color' (Movie)
- Съответна SQL заявка: SELECT * FROM Movie WHERE length >= 120 AND filmType='color';

Movies	title	year	length	filmType	studioName
	Star Wars	1977	124	color	Fox
	Mighty Ducks	1991	104	color	Disney
	Wayne's World	1992	95	color	Paramount

Допълнителен материал: условие при селекция (1)

- Според някои автори е от вида *аθb*, където:
 - *а* е име на атрибут на *R*
 - *b* е име на атрибут на *R* или константа
 - $^{-}$ $\theta \in \{<,>,=,\leq,\geq,\neq\}$ бинарна операция
- Трудно изразяване на по-сложни условия с конюнкция, дизюнкция и отрицание
 - Kaк?

Допълнителен материал: условие при селекция (2)

• Изразяване на по-сложни условия:

$$egin{aligned} \sigma_{arphi \wedge \psi}(R) &= \sigma_{arphi}(R) \cap \sigma_{\psi}(R) \ \sigma_{arphi ee \psi}(R) &= \sigma_{arphi}(R) \cup \sigma_{\psi}(R) \ \sigma_{
eg ee}(R) &= R - \sigma_{arphi}(R) \end{aligned}$$

• Образуват ли базис ∧, ∨ и ¬?

Декартово произведение (1)

- Бинарна
- Комутативна
- Асоциативна
- R×S
- Обща дефиниция (несвързана с РА): $A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$
- РА: двойката (*t*,*u*) е кортеж, образуван от конкатенацията на двата кортежа *t* и *u*

Декартово произведение (2)

- Схемата на R×S се състои от всички атрибути на R и на S
- Aко R и S имат едноименен атрибут A, първо се преименува съответно на R.A и S.A
 - Едва сега може да се каже, че схемата на R×S е обединение на двете схеми
- Брой атрибути на схемата на R×S = ?
- Брой кортежи в $R \times S = ?$
- Съответни оператори в SQL?

Пример

X

Α	R.B	S.B	С	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

Съединения

- Тета-съединение (Theta join)
- Бинарна операция
- R $\bowtie_C S = \sigma_C(R \times S)$
 - Декартово произведение,
 последвано от селекция
 - Схема същата като на R×S

Пример

Α	U.B	U.C	V.B	V.C	D
1	2	3	7	8	10

Видове съединения

- Тета-съединение
- Еквисъединение (Equijoin)
 - Условието включва само съвпадение по атрибутите
- Естествено съединение (Natural join)
 - R⋈S
 - Еквисъединение по всички двойки едноименни атрибути в R и S
 - Отстраняване на повтарящите се атрибути
 - Примери от лекцията за нормализация

Преименуване

- Унарна операция
- ρ_{R2(A1,...,An)}(R1)
- Дава нова схема на релацията R1 R2(A₁,...,A_n)
 - Със същите кортежи
- ρ_s(R) промяна само на името на релацията
- Алтернативни нотации ρ_{a/b}(R) и др.
- SQL AS
- Примери

Основни операции

- Обединение
- Разлика
- Селекция
- Проекция
- Декартово произведение
- Преименуване

- Всички други операции могат да бъдат представени чрез тях
 - Ще ги наричаме допълнителни
 - Напр. сечение

Представяне на допълнителни операции

- $R \cap S = R-(R-S)$
- R $\bowtie_C S = \sigma_C(R \times S)$
- $R(A_1,...,A_n)\bowtie S(B_1,...,B_m) = \pi_{\{A1,...,An\}\cup\{B1,...,Bm\}}(\sigma_C(R\times S))$, където $C = \land \{R.D=S.D|D\in \{A_1,...,A_n\}\cap \{B_1,...,B_m\}\}$
- B SQL има ли значение дали условие е в ON или WHERE при INNER JOIN?

Алгебрични изрази

- Пример от училище:
- 3+(5+a)*2

Приоритет на операциите в РА

- Приоритет от висок към нисък:
 - Унарни операции селекция, проекция, преименуване
 - Декартово произведение и съединение
 - Сечение
 - Обединение и разлика
- Използване на скоби, където е необходимо

РА – примерен израз

- Movies (title,year,length,filmType,studioName)
- Имената и годините на всички филми на студио Fox, които са дълги поне 100 минути
- π_{title,year}(σ_{length≥100 AND studioName='Fox'}(Movie))
 или
- $\pi_{\text{title,year}}(\sigma_{\text{length}\geq 100}(\text{Movie})) \cap \pi_{\text{title,year}}(\sigma_{\text{studioName}='\text{Fox'}}(\text{Movie}))$

Линейна нотация

- Вместо дълъг израз можем да запишем последователност от присвоявания
 - Подобно на код на C++/Java/JS/...
- Имена на временни релации
- Имплицитно преименуване на атрибути чрез схемите на новите релации
 - Пример: $S(a,b) := \sigma_{C}(R)$
 - := или ←

Линейна нотация — пример

- Имената и годините на всички филми на студио Fox, които са дълги поне 100 минути
- LongMovies := $\sigma_{length \ge 100}(Movie)$ FoxMovies := $\sigma_{studioName='Fox'}(Movie)$ LongFoxMovies := LongMovies \cap FoxMovies Result := $\pi_{title,year}(LongFoxMovies)$

Представяне на изрази чрез дървета

• Пример от университета:

$$3+(5+a)*2$$

- Ползи
 - Лесно за разбиране
 - Приоритети, няма скоби, ...
 - Лесно за модификация
 - Удобно за алгоритми за оптимизация

Представяне на изрази от РА чрез дървета

- Листа (операнди) релации
- Вътрешни възли операции, приложени към техните наследници

Пример

• $\pi_{\text{title,year}}(\sigma_{\text{length} \geq 100}(\text{Movie})) \cap \pi_{\text{title,year}}(\sigma_{\text{studioName='Fox'}}(\text{Movie}))$

 Помощен инструмент за преобразуване SQL → PA и визуализация на дървета:

https://nireas.iee.ihu.gr/relax/calc.htm

- SQL декларативен език
 - Какво, а не как
- Еквивалентни преобразувания, водещи до по-ефективни за изчисление изрази
 - По-бързи заявки

- Как би могло да стане?
- Еднакви поддървета може да се изчисляват само веднъж
- По-важно: намаляване на средния размер на междинните релации
- Генериране на няколко алтернативи и избиране на достатъчно добра
- Перфектната оптимизация би отнела много време, затова компромисни решения

- Стратегии
 - Статични правила / евристики
 - Откриване на шаблони
 - Не се гледат екземпляри на релациите
 - Оптимизация, базирана на цена
 - Гледат се и данни
 - Избира се по-добър измежду няколко плана
 - AI (машинно обучение) защо не?

- Predicate Pushdown
- Селекциите да се извършват по-близо до източника на данни
- Намаляване на размера на междинните релации
- Как би изглеждала заявката, ако трябваше ние да укажем филтриране преди JOIN?

```
SELECT s.name, e.cid
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
AND e.grade = 'A'
```


- Аналогично: Projection Pushdown
- Използване само на необходимите атрибути

```
SELECT s.name, e.cid
FROM student AS s, enrolled AS e
WHERE s.sid = e.sid
AND e.grade = 'A'
```


• Декорелация

```
SELECT name FROM sailors AS S
WHERE EXISTS (
SELECT * FROM reserves AS R
WHERE S.sid = R.sid
AND R.day = '2018-10-15'
)
```

```
SELECT name
FROM sailors AS S, reserves AS R
WHERE S.sid = R.sid
AND R.day = '2018-10-15'
```

- Пренареждане на съединенията
 - Няма значение в какъв ред пишем INNER
 JOIN операции в една заявка
 - СУБД съхранява статистики брой различни стойности в колона и т.н.
 - По тях може да се пресметне груба оценка колко кортежа биха съдържали междинните релации

• Пример: 1000 проекта, 10 различни програмни езика и т.н.

• 100+5000+50=5150 100+50+10000=10150 очаквани междинни резултати

Упражнения

• Още заявки върху Movies

Въпроси?