Examenul de bacalaureat 2012

Proba E.c)

Proba scrisă la MATEMATICĂ

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 7

Filiera teoretică, profilul real, specializarea matematică-informatică

Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$x^2 + mx + 4 = 0$ are soluția $x = 2 \implies m = -4$	3p
	Pentru $m = -4$ cele două mulțimi sunt egale	2p
2.	$x_V = -\frac{b}{2a} = \frac{3}{2}$	2p
	$\Delta = 1$	1p
	$y_V = -\frac{\Delta}{4a} = -\frac{1}{4}$	2p
3.	Condiție: $x > 0$	2p
	$3^{\log_3 x} < 3^0 \Leftrightarrow x < 1$	2p
	$x \in (0,1)$	1p
4.	$p = \frac{\text{nr.cazuri favorabile}}{\text{nr.cazuri posibile}}$	1p
	\overline{ab} cu $a,b \in [1,3,5,7,9]$ sunt 25 de numere \Rightarrow 25 de cazuri favorabile	2p
	\overline{ab} cu $a \in \{1,2,3,,9\}$ şi $b \in \{0,1,2,3,,9\}$ sunt 90 de numere \Rightarrow 90 de cazuri posibile	1p
	$p = \frac{5}{18}$	1p
5.	$\frac{3}{a} = \frac{a}{2a - 3}$	2p
	$\frac{a}{a}$ $\frac{2a-3}{a}$	2p
	$a^2 - 6a + 9 = 0$	_
	a=3	1p
6.	ABC	2p
	$R = \frac{abc}{4S}$ $R = \frac{25}{C}$	2p
	$R = \frac{25}{8}$	1p

SUBIECTUL al II-lea

(30 de puncte)

1.a)	$\begin{pmatrix} -1 & 0 & 0 \end{pmatrix}$		
	$A \pi = $	3].	
	$\det A \pi = 1$	21	,

	Centrul Național de Evaluare și Examinare		
b)	$\left(\cos x \cos y - \sin x \sin y 0 i(\cos x \sin y + \sin x \cos y)\right)$		
	$A(x) \cdot A(y) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & \end{bmatrix}$, pentru orice $x, y \in \mathbb{R}$	3p	
	$A(x) \cdot A(y) = \begin{pmatrix} \cos x \cos y - \sin x \sin y & 0 & i(\cos x \sin y + \sin x \cos y) \\ 0 & 1 & 0 \\ i(\cos x \sin y + \sin x \cos y) & 0 & \cos x \cos y - \sin x \sin y \end{pmatrix}, \text{ pentru orice } x, y \in \mathbb{R}$		
	$A(x+y) = \begin{pmatrix} \cos(x+y) & 0 & i\sin(x+y) \\ 0 & 1 & 0 \\ i\sin(x+y) & 0 & \cos(x+y) \end{pmatrix}, \text{ pentru orice } x, y \in \mathbb{R}$	1p	
	$\left(i\sin\left(x+y\right) 0 \cos\left(x+y\right)\right)$		
	Finalizare	1p	
c)	$A^{2012}(x) = A(2012x)$		
	$A(2012x) = I_3 \Leftrightarrow \cos(2012x) = 1 \text{ si } \sin(2012x) = 0$	1p	
	$x = \frac{k\pi}{1006}, k \in \mathbb{Z}$		
2 ->			
2.a)	$x \circ \frac{1}{2} = \frac{x \cdot \frac{1}{2}}{2x \cdot \frac{1}{2} - x - \frac{1}{2} + 1} = x, \text{ pentru orice } x \in G$	2p	
	$x \circ \frac{1}{2} = \frac{1}{2x \cdot 1} = x$, pentru orice $x \in G$		
	$\frac{1}{2} \cdot x$	2p	
	$\frac{1}{2} \circ x = \frac{\frac{1}{2} \cdot x}{2 \cdot \frac{1}{2} \cdot x - \frac{1}{2} - x + 1} = x, \text{ pentru orice } x \in G$		
	2. 2.	1p	
	Finalizare	-r	
b)	$x \circ x' = \frac{xx'}{2xx' - x - x' + 1} = \frac{x'x}{2x'x - x' - x + 1} = x' \circ x$, pentru orice $x, x' \in G$	1p	
		3р	
	$x \circ x' = \frac{1}{2} \Longrightarrow x' = 1 - x$		
	$x' \in (0,1)$	1p	
c)	f este bijectivă	2p	
	$f(x \circ y) = \frac{1}{x \circ y} - 1 = \frac{(x-1)(y-1)}{xy}$, pentru orice $x, y \in G$	2p	
	$f(x)f(y) = \left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right) = \frac{(x-1)(y-1)}{xy}$, pentru orice $x, y \in G$	1p	

SUBIECTUL al III-lea (30 de puncte)

1.a)	$\lim_{x \to +\infty} \frac{x}{f(x)} = \lim_{x \to +\infty} \frac{2x}{e^x + e^{-x}} = \lim_{x \to +\infty} \frac{2}{e^x - e^{-x}} = $ $= 0$	3p 2p
b)	$f'(x) = \frac{e^x - e^{-x}}{2}, \text{ pentru orice } x \in \mathbb{R}$ $f''(x) = \frac{e^x + e^{-x}}{2}, \text{ pentru orice } x \in \mathbb{R}$	1p 2p
	f''(x) > 0, pentru orice x real, deci f este convexă	2p
c)	$g(x) = \frac{e^{\sqrt{x}} + e^{-\sqrt{x}}}{2} \Rightarrow g'(x) = \frac{e^{\sqrt{x}} - e^{-\sqrt{x}}}{4\sqrt{x}}, \text{ pentru orice } x > 0$	2p
	$x > 0 \Rightarrow \sqrt{x} > 0 \Rightarrow e^{\sqrt{x}} > e^{-\sqrt{x}}$	2p
	$g'(x) > 0 \Rightarrow g$ este strict crescătoare pe $(0, +\infty)$	1p

Ministerul Educației, Cercetării, Tineretului și Sportului Centrul Național de Evaluare și Examinare

	Contra Pagional de Divardate și Examinate	
2.a)	$J_1 = \int_{0}^{\frac{\pi}{2}} \sin t dt$	1p
	$J_1 = -\cos t \Big _0^{\frac{\pi}{2}}$ $J_1 = 1$	2p
	$J_1 = 1$	2 p
b)	$I_{1} = \int_{0}^{1} x \sqrt{1 - x^{2}} dx$ $I_{1} = -\frac{1}{3} \sqrt{\left(1 - x^{2}\right)^{3}} \Big _{0}^{1}$	1p
	$I_1 = -\frac{1}{3}\sqrt{\left(1-x^2\right)^3}\bigg _0^1$	3р
	$I_1 = \frac{1}{3}$	1p
c)	$J_{2n} - J_{2n+2} = \int_{0}^{\frac{\pi}{2}} \sin^{2n} x \cos^{2} x dx$	2p
	Cu schimbarea de variabilă $\sin x = t$ obținem $J_{2n} - J_{2n+2} = \int_{0}^{1} t^{2n} \cdot \sqrt{1 - t^2} dt = I_{2n}$	3p