

#### Modelowanie wieloskalowe

# **Metoda Monte Carlo - podstawy**

Dr hab. inż. Łukasz Madej, prof. AGH Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl home.agh.edu.pl/lmadej



# Podstawą metody Monte Carlo jest losowe próbkowanie przestrzeni rozwiązań mające na celu rozwiązanie rozpatrywanego zagadnienia.

Nazwa metody została wprowadzona do powszechnego użytku w latach 40 dwudziestego wieku, przez naukowców pracujących nad rozwojem broni jądrowej w Instytucie Los Alamos.





Metoda ta znalazła zastosowanie do symulacji losowego zachowania się neutronów w materiałach rozszczepialnych.



Wraz z rozwojem mocy obliczeniowych komputerów zaczęto ją wykorzystywać do symulacji wielu **fizycznych i matematycznych** zagadnień.



Pod nazwą Monte Carlo nie kryje się jedna konkretna metoda obliczeniowa, a raczej cała klasa zbliżonych do siebie metod, których podstawowe założenia bazują na jednym algorytmie:

Krok 1: Definicja przestrzeni możliwych danych wejściowych,

**Krok 2:** Losowe określenie danych wejściowych z wcześniej określonej przestrzeni,

**Krok 3:** Przeprowadzenie obliczeń o charakterze probabilistycznym wykorzystując w/w dane wejściowe,

Krok 4: Przeprowadzenie agregacji uzyskanych wyników w jedno rozwiązanie końcowe.



# Proste przykłady

# Określenie liczby $\pi$







#### Gra w Darta



Przy całkowicie losowych rzutach ilość trafień w kwadratowy obszar i ilość trafień w tarcze są proporcjonalne do tych dwóch obszarów

ilosc trafien w okragla tarcze

ilosc trafien w kwadratowy obszar

okragly obszar tarczy obszar kwadratu





```
for (i=0; i<n;i++) {
    x = rand()
    y = rand()
    l = \sqrt{x^2 + y^2}
    if (1 <= r) {
        count++
        }
}
```

 $\frac{\text{ilosc trafien w okragla tarcze}}{\text{ilosc trafien w kwadratowy obszar}} = \frac{\pi r^2}{\left(2r\right)^2} = \frac{\pi}{4}$ 

 $\pi = 4 \frac{\text{ilosc trafien w okragla tarcze}}{\text{ilosc trafien w kwadratowy obszar}}$ 



# Obliczanie całki





#### Pole obszaru: $P=(x_2-x_1)^*m$

$$m = Max f(x)$$



```
for(i=0; i<n;i++) {
       x_i = rand()
        y_i = rand()
       =f(x_i)
             if (y_i \le 1) {
                count++
```

Dokładność obliczeń wzrasta w miarę wzrostu ilości rzutów (losowań) n

$$k = \int_{x_1}^{x_2} f(x) dx = \frac{count}{n} \cdot P$$



# Kluczowy dla dokładności i poprawności metody Monte Carlo jest generator liczb losowych



#### Przykładowe algorytmy należące do grupy metod Monte Carlo to:

- •Bezpośrednia metoda MC,
- Dynamiczna i Kinematyczna metoda MC,
- •Kwantowa metoda MC,
- ·metoda quasi-MC,
- ·łańcuchy Makarova,
- metoda Metropolis,
- •itp.

Metody te znalazły szerokie spektrum zastosowania np. do symulacji zjawisk związanych z:

- •fizyka kwantowa,
- dynamiką molekularną,
- •genetyką,
- •ekonomia itp.

W latach 80 metoda Monte Carlo zaczęła być również szeroko wykorzystywana w inżynierii materiałowej i metalurgii do symulacji np. kinetyki wzrostu ziaren w materiałach jedno fazowych, dwufazowych oraz kompozytach, do symulacji zjawisk rekrystalizacji statycznej i dynamicznej czy też do symulacji procesów spiekania.



#### **Model Potts**

Model Potts nazywany w literaturze również modelem q-Potts jest powszechnie wykorzystywany do symulacji zbiorowego zachowania się struktur komórkowych.

Obliczenia prowadzone są w zdefiniowanej przestrzeni o regularnym charakterze komórkowym w której każdy element  $S_i$  może przyjmować pewną liczbę stanów q.

Dodatkowo każdy element  $S_i$  posiada określoną liczbę sąsiadów  $S_j$ , j=1,n np. sześciu (n=6) lub ośmiu sąsiadów (n=8)

Hamiltonian takiego układu zdefiniowano w sposób następujący:

$$H = K \sum_{\langle i,j \rangle} \delta_{S_i S_j}$$

$$\langle i,j 
angle$$
 analizowana para sąsiednich elementów  $\delta_{S_iS_j}$  delta Kroneckera  $\delta_{S_iS_j} = \begin{cases} 1 \Leftrightarrow i=j \\ 0 \Leftrightarrow i \neq j \end{cases}$ 



Ewolucja tak zdefiniowanego układu odbywa się z wykorzystaniem np. **algorytmu Metropolis**. Standardowy algorytm składa się z trzech kroków:

**Krok 1:** Wybór elementu *Si* oraz określenie charakteru zmiany jego stanu *q* np. zmiana przynależności do ziarna,

**Krok 2:** Określenie wartości Hamiltonianu lub energii które są wykorzystywane do zaakceptowania proponowanej zmiany lub też jej odrzuceniu,

Krok 3: Inne akcje nie wymienione w krokach 1 i 2.

W takim ujęciu algorytm q-Potts posiada wiele cech wspólnych w metodą automatów komórkowych



Działanie modelu Pottsa sprzężonego z algorytmem Metropolis można prześledzić na przykładzie symulacji zmian mikrostruktury związanych z rozrostem ziaren, rekrystalizacją dynamiczna czy statyczna.





#### Założenia modelu MC





1 MCS

Zbiór stanów komórek – przynależność do ziarna

$$\Omega = \{Q_0, ..., Q_{n-1}\}$$



#### **Etapy algorytu:**

Krok 1: Losowa selekcja elementu o danej orientacji.

| Q1 | Q1 | Q2 |
|----|----|----|
| Q3 | Q3 | Q2 |
| Q3 | Q2 | Q2 |

**Krok 2:** Określenie energii sieci otaczającej rozpatrywany element  $Q_i$ . Energia określana jest z wykorzystaniem standardowej formuły:

$$E = J_{gb} \sum_{\langle i,j \rangle} \left(1 - \delta_{S_i S_j}\right)$$

delta Kroneckera

współczynnik określający energie granicy ziarna

analizowana para sąsiednich elementów

Krok 3: Przypisanie rozpatrywanemu elementowi nowego stanu. Orientacja ta wybierana jest losowo ze zbioru  $\Omega$  dostępnych orientacji.

| Q1 | Q1 | Q2 |
|----|----|----|
| Q3 | Q4 | Q2 |
| Q3 | Q2 | Q2 |

**Krok 4:** Określenie zmiany energii sieci otaczającej rozpatrywany element  $Q_i$  spowodowanej modyfikacją stanu.



| 2 | 2 | 2 |
|---|---|---|
| 3 | 2 | 4 |
| 3 | 3 | 3 |



| 2 | 2  | 2 |
|---|----|---|
| 3 | 14 | 4 |
| 3 | 3  | 3 |



**Krok 5:** Zaakceptowanie nowej orientacji z prawdopodobieństwem *p*:

| $r(\Lambda E)$          | 1 | $\Delta E \le 0$ |
|-------------------------|---|------------------|
| $p(\Delta E) = \langle$ | 0 | $\Delta E > 0$   |

| Q1 | Q1 | Q2 |  |
|----|----|----|--|
| Q3 | Q3 | Q2 |  |
| Q3 | Q2 | Q2 |  |

| Q1 | Q1 | Q2 |
|----|----|----|
| Q3 | Q4 | Q2 |
| Q3 | Q2 | Q2 |







1 MCS

100 MCS

400 MCS





$$n = 50$$









# Efekt zatrzymania rozrostu





**Krok 5:** Zaakceptowanie nowej orientacji z prawdopodobieństwem *p*:

$$p(\Delta E) = \begin{cases} 1 & \Delta E \le 0 \\ \exp(-\frac{\Delta E}{kT}) & \Delta E > 0 \end{cases}$$
a Boltzmana temperatura symulacii (współczynnik modelu MC)

stała Boltzmana

temperatura symulacji (współczynnik modelu MC)





kT=6



400 MCS



#### **Cellular Automata + Monte Carlo**



Dane wejściowe



100 MCS



**200 MCS** 

$$p(\Delta E) = \begin{cases} 1 & \Delta E \le 0 \\ \exp\left(-\frac{\Delta E}{kT}\right) & \Delta E > 0 \end{cases}$$

$$\Delta E > 0$$

 $\Delta E \leq 0$ 

$$E = J_{gb} \sum_{\langle i,j \rangle} \left(1 - \delta_{S_i S_j}\right)$$



Podstawową wadą opisany algorytmu MC jest bardzo długi czas obliczeniowy. Jest to związane z probabilistycznym charakterem modelu.

Większość z proponowanych reorientacji elementów prowadzi do wzrostu energii sieci, a zatem zmiana nie jest akceptowana i nie mamy doczynienia z rozrostem ziarna.

Ten problem jest jeszcze większy w przypadku gdy wzrasta liczba ziaren (liczba możliwych rotacji q) oraz w przypadku symulacji 3D.

# Modyfikacje modelu



Ruch granicy ziarna zachodzi na drodze przeskoku atomu z jednego ziarna do drugiego tylko granica ziarna bierze udział w migracji.

Modyfikacja zakłada podzielenie elementów na dwie grupy: pierwsza to elementy leżące na granicy ziarna, druga to elementy tworzące wnętrze ziarna.

|   | , J |   | - |   |   |    |    |   |
|---|-----|---|---|---|---|----|----|---|
| 4 | 4   | 8 | 8 | 8 | 8 | 11 | 11 | 1 |
| 4 | 4   | 8 | 8 | 8 | 8 | 8  | 11 | 7 |
| 4 | 4   | 8 | 8 | 8 | 8 | 8  | 7  | 7 |
| 4 | 4   | 4 | 8 | 8 | 8 | 8  | 7  | 7 |
| 4 | 4   | 4 | 8 | 8 | 8 | 8  | 7  | 7 |
| 4 | 4   | 4 | 6 | 6 | 6 | 6  | 6  | V |
| 4 | 4   | 4 | 4 | 6 | 6 | 6  | 6  | 6 |
|   |     |   |   |   |   |    |    |   |

Algorytm Metropolis jest zatem wykorzystywany do analizy zmiany orientacji tylko elementów pierwszej grupy.



Kolejna modyfikacja zakłada generowanie nowej orientacji rozpatrywanego elementu nie z pośród q dostępnych orientacji, ale tylko z orientacji sąsiadujących ziaren.

| 4 | 4 | 8 | 8 | 8 | 8 | 11 | 11 | 1 |
|---|---|---|---|---|---|----|----|---|
| 4 | 4 | 8 | 8 | 8 | 8 | 8  | 11 | 7 |
| 4 | 4 | 8 | 8 | 8 | 8 | 8  | 7  | 7 |
| 4 | 4 | 4 | 8 | 8 | 8 | 8  | 7  | 7 |
| 4 | 4 | 4 | 8 | 8 | 8 | 8  | 7  | 7 |
| 4 | 4 | 4 | 6 | 6 | 6 | 6  | 6  |   |
| 4 | 4 | 4 | 4 | 6 | 6 | 6  | 6  | 6 |
|   |   |   |   |   |   |    |    |   |

Kolejna modyfikacja zakłada iż element który został losowo wybrany w danym kroku MC z pośród N dostępnych elementów, nie będzie mógł być wylosowany po raz drugi. Zatem losowanie kolejnego elementu odbywa się ze zbioru (N-k), gdzie k – liczba wylosowanych elementów.



### Model rekrystalizacji statycznej na bazie metody Monte Carlo





# Ruchliwość granicy ziarna

# Rozkład energii zmagazynowanej

# homogeniczny



## heterogeniczny

