Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Звіт

з лабораторної роботи № 6

"Проектування і аналіз алгоритмів пошуку"

Виконав(ла)	<u></u>	
,	(шифр, прізвище, ім'я, по батькові)	
Перевірив		
	(прізвище, ім'я, по батькові)	

Київ 2023

3MICT

1	МЕТА ЛАБОРАТОРНОЇ	РОБОТИ	.ERROR! BOOK	MARK NOT
DEFINED				

2 ЗАВДАННЯ ERROR! BOOKMARK NOT DEF	FINED.
3 ВИКОНАННЯ	8
3.1 ПСЕВДОКОД АЛГОРИТМУ	8
3.2 Аналіз часової складності	8
3.3 ПРОГРАМНА РЕАЛІЗАЦІЯ АЛГОРИТМУ	8
3.3.1 Вихідний код	8
3.3.2 Приклади роботи	8
3.4 ТЕСТУВАННЯ АЛГОРИТМУ	9
3.4.1 Часові характеристики оцінювання	9
3.4.2 Графіки залежності часових характеристик оцінюваняя	від
розміру структури Error! Bookmark not d	lefined.
ВИСНОВОК ERROR! BOOKMARK NOT DER	FINED.
КРИТЕРІЇ ОЦІНЮВАННЯ ERROR! BOOKMARK NOT DEF	FINED.

1 МЕТА ЛАБОРАТОРНОЇ РОБОТИ

Мета роботи – вивчити основні підходи аналізу обчислювальної складності алгоритмів пошуку оцінити їх ефективність на різних структурах даних.

2 ЗАВДАННЯ

Згідно варіанту (таблиця 2.1), написати алгоритм пошуку за допомогою псевдокоду (чи іншого способу за вибором).

Провести аналіз часової складності пошуку в гіршому, кращому і середньому випадках і записати часову складність в асимптотичних оцінках.

Виконати програмну реалізацію алгоритму на будь-якій мові програмування для пошуку індексу елемента по заданому ключу в масиві і двохзв'язному списку з фіксацією часових характеристик оцінювання (кількість порівнянь).

Для варіантів з **Хеш-функцією** замість масиву і двохзв'язного списку використати безіндексну структуру даних розмірності *n*, що містить пару ключзначення рядкового типу. Ключ — унікальне рядкове поле до 20 символів, значення — рядкове поле до 200 символів. Виконати пошук значення по заданому ключу. Розмірність хеш-таблиці регулювати відповідно потребам, а початкову її розмірність обрати самостійно.

Провести ряд випробувань алгоритму на структурах різної розмірності (100, 1000, 5000, 10000, 20000 елементів) і побудувати графіки залежності часових характеристик оцінювання від розмірності структури.

Для проведення випробувань у варіантах з хешуванням рекомендується розробити генератор псевдовипадкових значень полів структури заданої розмірності.

Зробити висновок з лабораторної роботи.

Таблиця 2.1 – Варіанти алгоритмів

№	Алгоритм пошуку
1	Метод Хеш-функції (Хешування FNV 32), вирішення колізій методом
	ланцюжків
2	Метод Хеш-функції (Хешування MurmurHash2), вирішення колізій
	методом ланцюжків

Метод Хеш-функції (Хешування MurmurHash2a), вирішення колізій
методом ланцюжків
Метод Хеш-функції (Хешування РЈW-32), вирішення колізій методом
ланцюжків
Метод Хеш-функції (Хешування Пірсона), вирішення колізій методом
ланцюжків
Метод Хеш-функції (Хешування Дженкінса), вирішення колізій
методом ланцюжків
Метод Хеш-функції (Хешування FNV 32), вирішення колізій методом
відкритої адресації з лінійним пробуванням
Метод Хеш-функції (Хешування MurmurHash2), вирішення колізій
методом відкритої адресації з лінійним пробуванням
Метод Хеш-функції (Хешування MurmurHash2a), вирішення колізій
методом відкритої адресації з лінійним пробуванням
Метод Хеш-функції (Хешування РЈW-32), вирішення колізій методом
відкритої адресації з лінійним пробуванням
Метод Хеш-функції (Хешування Пірсона), вирішення колізій методом
відкритої адресації з лінійним пробуванням
Метод Хеш-функції (Хешування Дженкінса), вирішення колізій
методом відкритої адресації з лінійним пробуванням
Метод Хеш-функції (Хешування FNV 32), вирішення колізій методом
відкритої адресації з квадратичним пробуванням
Метод Хеш-функції (Хешування MurmurHash2), вирішення колізій
методом відкритої адресації з квадратичним пробуванням
Метод Хеш-функції (Хешування MurmurHash2a), вирішення колізій
методом відкритої адресації з квадратичним пробуванням
Метод Хеш-функції (Хешування РЈW-32), вирішення колізій методом
відкритої адресації з квадратичним пробуванням

17	Метод Хеш-функції (Хешування Пірсона), вирішення колізій методом
	відкритої адресації з квадратичним пробуванням
18	Метод Хеш-функції (Хешування Дженкінса), вирішення колізій
	методом відкритої адресації з квадратичним пробуванням
19	Метод Хеш-функції (Хешування FNV 32), вирішення колізій методом
	відкритої адресації з подвійним хешуванням
20	Метод Хеш-функції (Хешування MurmurHash2), вирішення колізій
	методом відкритої адресації з подвійним хешуванням
21	Метод Хеш-функції (Хешування MurmurHash2a), вирішення колізій
	методом відкритої адресації з подвійним хешуванням
22	Метод Хеш-функції (Хешування РЈW-32), вирішення колізій методом
	відкритої адресації з подвійним хешуванням
23	Метод Хеш-функції (Хешування Пірсона), вирішення колізій методом
	відкритої адресації з подвійним хешуванням
24	Метод Хеш-функції (Хешування Дженкінса), вирішення колізій
	методом відкритої адресації з подвійним хешуванням
25	Однорідний бінарний пошук
26	Метод Шарра
27	Пошук Фібоначчі
28	Інтерполяційний пошук
29	Метод Хеш-функції (Хешування FNV 32), вирішення колізій методом
	ланцюжків
30	Метод Хеш-функції (Хешування MurmurHash2), вирішення колізій
	методом ланцюжків
31	Метод Хеш-функції (Хешування MurmurHash2a), вирішення колізій
	методом ланцюжків
32	Однорідний бінарний пошук
33	Метод Шарра
34	Пошук Фібоначчі

35	Інтерполяційний пошук
1	

3 ВИКОНАННЯ

3.1 Псевдокод алгоритму

...

3.2 Аналіз часової складності

...

- 3.3 Програмна реалізація алгоритму
- 3.3.1 Вихідний код

```
#include "stdafx.h"
#include <iostream>
#include <ctime>
#include <iomanip>
using namespace std;
...
```

3.3.2 Приклади роботи

На рисунках 3.1 i 3.2 показані приклади роботи програми для пошуку індекса елемента за ключем для масиву на 100 елементів і двохзв'язного списку на 1000 елементів.

Рисунок 3.1 – Пошук елемента в масиві на 100 елементів

Рисунок 3.2 – Пошук елемента в двохзв'язному списку на 1000 елементів

3.4 Тестування алгоритму

3.4.1 Часові характеристики оцінювання

В таблиці 3.1 наведені характеристики оцінювання числа порівнянь при пошуку елемента і числа звертань при «двійковому пошуку» для масивів різної розмірності і двохзв'язних списків різної розмірності.

Таблиця 3.1 – Характеристики оцінювання алгоритму двійкового пошуку

Розмірність	Число порівнянь в	Число звертань	Число
масиву/списку/	масиві/двохзв'язному	до елементів	звертань до
структури	списку/хеш-таблиці	масиву	елементів
			двохзв'язного
			списку
100			
1000			
5000			
10000			
20000			

3.4.2 Графіки залежності часових характеристик оцінювання від розмірності структури

На рисунку 3.3 показані графіки залежності часових характеристик оцінювання від розмірності масиву і двохзв'язного списку.

Рисунок 3.3 – Графіки залежності часових характеристик оцінювання

висновок

В рамках виконання даної лабораторної роботи...