Notation:

- Let \mathbf{X}_j be an $n_j \times p$ matrix of rank q. Let $\mathbf{X} = (\mathbf{X}_1', \mathbf{X}_2', ..., \mathbf{X}_m')'$ and assume that \mathbf{X} has full rank p.
- Let \mathbf{W}_j and $\mathbf{\Phi}_j$ be $n_j \times n_j$ matrices of full rank; denote $\mathbf{W} = \bigoplus_{j=1}^m \mathbf{W}_j$ and $\mathbf{\Phi} = \bigoplus_{j=1}^m \mathbf{\Phi}_j$.
- Let $\mathbf{M} = (\mathbf{X}'\mathbf{W}\mathbf{X})^{-1}$ and $\mathbf{H} = \mathbf{X}\mathbf{M}\mathbf{X}'\mathbf{W}$.
- Let $(\mathbf{I} \mathbf{H})_i$ denote the rows of $\mathbf{I} \mathbf{H}$ corresponding to cluster j.
- Let $\mathbf{D}_j = \mathbf{\Phi}_j^C$, where $\mathbf{\Phi}_j^C$ is the upper-triangular Cholesky decomposition of $\mathbf{\Phi}_j$.

Consider the adjustment matrices

$$\mathbf{A}_j = \mathbf{D}_j' \mathbf{B}_j^{+/2} \mathbf{D}_j,$$

where $\mathbf{B}_{j} = \mathbf{D}_{j} (\mathbf{I} - \mathbf{H})_{j} \mathbf{\Phi} (\mathbf{I} - \mathbf{H})_{j}' \mathbf{D}_{j}'$ and $\mathbf{B}_{j}^{+/2}$ denotes the symmetric square root of the Moore-Penrose inverse of \mathbf{B}_{j} . Then in order for \mathbf{V}^{R} to be exactly model-unbiased, we must have that

$$\mathbf{X}_{i}'\mathbf{W}_{j}\mathbf{D}_{i}'\mathbf{B}_{i}^{+}\mathbf{B}_{j}\mathbf{D}_{j}\mathbf{W}_{j}\mathbf{X}_{j} = \mathbf{X}_{i}'\mathbf{W}_{j}\mathbf{D}_{i}'\mathbf{D}_{j}\mathbf{W}_{j}\mathbf{X}_{j},\tag{1}$$

where \mathbf{B}_{i}^{+} is the Moore-Penrose inverse of \mathbf{B}_{j} .

Now consider the rank-decomposition of $(\mathbf{I} - \mathbf{H})_j = \mathbf{C}\mathbf{R}$ for $n_j \times r$ matrix \mathbf{C} with full column-rank and \mathbf{R} is $r \times N$ with full row-rank. Then it can be verified that

$$\mathbf{B}_{i}^{+} = \mathbf{D}_{j} \mathbf{C} \left(\mathbf{C}' \mathbf{D}_{j}' \mathbf{D}_{j} \mathbf{C} \right)^{-1} \left(\mathbf{R} \mathbf{\Phi} \mathbf{R}' \right)^{-1} \left(\mathbf{C}' \mathbf{D}_{j}' \mathbf{D}_{j} \mathbf{C} \right)^{-1} \mathbf{C}' \mathbf{D}_{j}'$$

and therefore that

$$\mathbf{B}_{j}^{+}\mathbf{B}_{j} = \mathbf{D}_{j}\mathbf{C}\left(\mathbf{C}'\mathbf{D}_{j}'\mathbf{D}_{j}\mathbf{C}\right)^{-1}\mathbf{C}'\mathbf{D}_{j}'.$$

Thus, the question is to identify conditions on X_i under which the following equality holds:

$$\mathbf{X}_j'\mathbf{W}_j\mathbf{D}_j'\mathbf{D}_j\mathbf{C}\left(\mathbf{C}'\mathbf{D}_j'\mathbf{D}_j\mathbf{C}\right)^{-1}\mathbf{C}'\mathbf{D}_j'\mathbf{D}_j\mathbf{W}_j\mathbf{X}_j = \mathbf{X}_j'\mathbf{W}_j\mathbf{D}_j'\mathbf{D}_j\mathbf{W}_j\mathbf{X}_j.$$

Equivalently, under what conditions are the columns of $\mathbf{D}_j \mathbf{W}_j \mathbf{X}_j$ in the column space of $\mathbf{D} (\mathbf{I} - \mathbf{H})_j$? One approach to answering this question would be to find an explicit expression for \mathbf{C} in terms of the components of $(\mathbf{I} - \mathbf{H})_j$. Not yet sure how to do that.... Also, I would speculate that a necessary condition may be that each column of \mathbf{X} must be identified in more than one cluster.