Colles : Suites et Séries

Quentin Canu

19 Septembre 2024

1 Questions de cours

- a. Définition d'une suite convergente vers une limite réelle l.
 - b. Convergence et somme des séries exponentielles.
- a. Définition de suites adjacentes. Condition de convergence et limite.
 - b. Séries géométriques, dérivée et dérivée seconde de raison q. Convergence et somme.
- a. Somme des n premiers entiers.
 - b. Théorèmes de comparaison de séries à termes positifs.

$\mathbf{2}$ **Exercices**

- 1. Étudier la convergence de la série de terme général $u_n = \frac{(n!)^3}{3n!}$.
- a) Montrer que la suite $(x_n)_{n\in\mathbb{N}}$ définie par

$$x_n = \cos\left(\left(n + \frac{1}{n}\right)\pi\right)$$

est divergente.

b) En montrant que $(3+\sqrt{5})^n+(3-\sqrt{5})^n$ est un entier pair pour tout $n\in\mathbb{N}$, en déduire que la suite $(y_n)_{n\in\mathbb{N}}$ définie par

$$y_n = \sin\left(\left(3 + \sqrt{5}\right)^n \pi\right)$$

converge et donner sa limite.

- 3. Soit $u_n = \sqrt{n + \sqrt{n 1 + \sqrt{n 2 + \sqrt{\dots + \sqrt{1}}}}}$ pour $n \ge 1$.
 - a) Déduire une relation de récurrence entre u_n et u_{n+1} .
 - b) Montrer que la suite $\left(\frac{u_n}{\sqrt{n}}\right)$ est bornée.
 - c) En déduire la convergence et la limite de cette suite.
- 4. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels positifs. On pose $v_n=\frac{u_n}{1+u_n}$. Démontrer que $\sum u_n$ et $\sum v_n$ sont de même nature. (Indication : on étudiera la croissance de la fonction $x \mapsto \frac{x}{1+x}$ sur \mathbb{R}_+)

1