1 Capítulo 1

1.1 Questão 1

Demonstração. Para demonstrarmos que $X = A \cup B$, provaremos que **1.** $X \subset (A \cup B)$ e **2.** $(A \cup B) \subset X$.

- **1.** Sabemos que $\forall A$ e $\forall B$, $A \subset (A \cup B)$ e $B \subset (A \cup B)$. Da 2^a hipótese, $A \subset (A \cup B)$ e $B \subset (A \cup B) \Rightarrow X \subset (A \cup B)$.
- **2.** Da 1^a hipótese, $x \in A \Rightarrow x \in X$ e $y \in B \Rightarrow y \in X$. Assim, todo elemento de A ou de B também pertence a X. Mais formalmente: $z \in A$ ou $z \in B \Rightarrow z \in X$. Portanto, $(A \cup B) \subset X$.

De **1.** e **2.**,
$$X = (A \cup B)$$
.

1.2 Questão 2

Enunciado Dados os conjuntos A e B, seja X um conjunto com as seguintes propriedades:

$$1^{a} X \subset A \in X \subset B$$
$$2^{a} Y \subset A \in Y \subset B \Rightarrow Y \subset X$$
Prove que $X = A \cap B$.

Demonstração. Para demonstrarmos que $X = A \cap B$, provaremos que 1. $X \subset (A \cap B)$ e 2. $(A \cap B) \subset X$.

- **1.** Da 1^a hipótese, segue que: $x \in X \Rightarrow x \in A$ e $x \in X \Rightarrow x \in B$. Assim, todo elemento de X pertence também aos conjuntos A e B. Portanto, $x \in X \Rightarrow x \in A$ e $x \in B$. Logo, $x \in X \Rightarrow x \in (A \cap B)$. Donde concluímos que $X \subset (A \cap B)$.
- **2.** Sabemos que $\forall A \in \forall B, (A \cap B) \subset A \in (A \cap B) \subset B$. Da 2^a hipótese, temos que $(A \cap B) \subset A \in (A \cap B) \subset B \Rightarrow (A \cap B) \subset X$. Portanto, $(A \cap B) \subset X$.

De **1.** e **2.**,
$$X = (A \cap B)$$
.