

DLD Lab-03 Special Purpose Gates

Instructor: Mazhar Iqbal

EL227 – Digital Logic Design-Lab

SEMESTER SPRING 2021

FEBRUARY 6, 2023

NATIONAL UNIVERSTIY OF COMPUTER AND EMERGING SCIENCES, FAST- PESHAWAR CAMPUS

Department Of Computer Science

Contents

1.	Objectives:	2
	Outcomes:	
3.	Equipment Required:	2
4.	Implementation of X-OR gate using X-OR IC:	. 2
5.	Implementation of X-NOR gate using X-NOR IC:	. 3
6.	Test the functionality of 2-Input XOR Gate.	. 5
7.	Test the functionality of 2-Input XNOR Gate using XOR and NOT gates	5

1. Objectives:

To become familiar with Boolean algebra and using a Boolean expression to implement X-OR and X-NOR gates using basic AND, OR and NOT gates.

2. Outcomes:

Students should be able to: Implement XOR gates and XNOR gates using basic gates and debug a circuit.

3. Equipment Required:

- DEV-2765E Trainer Board/ Multisim 14.2 /Logic.ly
- 7404 hex NOT (Inverter) gate IC
- 7408 quad 2-input AND gate IC
- 7432 quad 2-input OR gate IC
- 7486 quad 2-input XOR gate IC
- 4077 quad 2-input XNOR gate IC

4. Implementation of X-OR gate using X-OR IC:

Quad 2-input XOR gate 7486

Truth Table

Inp	Output	
X	Y	Z
0	0	
0	1	
1	0	
1	1	

Boolean Representation for X-OR Gate is:

$$A \oplus B = \overline{A}.B + A.\overline{B}$$

Gate Diagram of the above Boolean function:

Truth Table

A	В	Ā	B	Ā.B	A.B	$\overline{\mathbf{A}}.\mathbf{B} + \mathbf{A}.\overline{\mathbf{B}}$ $= \mathbf{Z}_{out}$
0	0					
0	1					
1	0					
1	1					

5. Implementation of X-NOR gate using X-NOR IC:

Quad 2-input XNOR gate 4077

Truth Table

Inp	Output	
X	Y	Z
0	0	
0	1	
1	0	
1	1	

Boolean Representation for X-NOR Gate is:

$$A + B = \overline{A.B} + A.B$$

Gate Diagram of the above Boolean function:

Truth Table

A	В	Ā	B	Ā. B	A.B	$\overline{A}.\overline{B} + A.B$ = Q
0	0					
0	1					
1	0					
1	1					

Procedure

- 1. Connect the trainer board with the power supply
- 2. Mount the corresponding gate IC's on the board.
- 3. Connect pin 14 to +5 V and pin 7 to GND of all ICs.
- 4. Wire the circuit according to the diagram given above.
- 5. Apply all the combinations of inputs and observe the output on the LED to verify the truth table of the circuit. Also debug the circuit at intermediate points.
- 6. Test the functionality of 2-Input XOR Gate.
- 7. Test the functionality of 2-Input XNOR Gate using XOR and NOT gates.