Motivation

Different Predictors

- Neural Networks
- k nearest neighbors
- SVM

Motivation

Different Predictors

- Neural Networks
- k nearest neighbors
- SVM

BUT: All have their limitations. Overfitting (1-nearest neighbor), BlackBox (Neural Networks), How the hell does this work (SVM)...

Motivation

Different Predictors

- Neural Networks
- k nearest neighbors
- SVM

BUT: All have their limitations. Overfitting (1-nearest neighbor), BlackBox (Neural Networks), How the hell does this work (SVM)...

So today: We improve all of them!

Today

Ensemble Learning

- (Iris') Motivation: Wisdom of Crowds
- Basic Terms and Notations
- Overview of methods
- Bagging
- Boosting
- AdaBoost

General

Ensemble Learning consists of

- 1 Train many (weak) classifiers (or regression models)
- 2 Combine them to construct a classifier (regression model) more powerful than any of the individual ones

The Wisdom of Crowds

The Wisdom of Crowds ¹

The **collective knowledge** of a *diverse* and *independent* body of people typically **exceeds** the knowledge of **any single individual** and can be harnessed by voting.

¹ Slides motivated by Josephine Sullivans' http://www.csc.kth.se/utbildning/kth/kurser/DD2431/ml11/schedule/07-ensamble.pdf Compendium slides for "Guide to Intelligent Data Analysis", Springer 2011. (C)Michael R. Berthold, Christian Borgett, Frank Höponer, Frank Hävon and Iris Adä

The Wisdom of Crowds - Really?

Crowd wiser than any individual

- When?
- For which questions?

See **The Wisdom of Crowds** by *James Surowiecki* published in 2004 to see this idea applied to business.

Consider this scenario

Ask each person in the crowd:

Will Mr. X win the general election in country Y?

The Crowds prediction:

MAJORITY answer.

 \longrightarrow This crowd predicts **No**. (Mr. X will not win the election.)

If composition of crowd: 30% EXPERTS. 70% NON-EXPERTS.

and their level of expertise: $\begin{aligned} & \text{P(correct predict}|\text{expert}) = p_e \\ & \text{P(correct predict}|\text{non-expert}) = p_{ne} \end{aligned}$

Let $p_e = .8$ and $p_{ne} = .5$

For a random person from the crowd P(correct predict|individual) = $.3p_e + .7p_{ne} = .59$

Let $p_e=.8$ and $p_{ne}=.5$ P(correct predict|individual) = $p_i=.59$ If crowd contains 50 independent people: P(correct predict|crowd) = $\sum_{k=26}^{50} {50 \choose k} p_i^k (1-p_i)^{50-k} = 0.8745$

Let $p_e = .8$ and $p_{ne} = .5$ P(correct predict|individual) = $p_i = .59$ If crowd contains 50 independent people: P(correct predict|crowd) = $\sum_{k=26}^{50} {50 \choose k} p_i^k (1-p_i)^{50-k}$

This crowd has made a prediction with probability .875 of being correct which is $> p_e$.

It is wiser than each of the experts!

But...

Why didnt I just asked a bunch of experts??

- Large enough crowd → high probability a sufficient number of experts will be in crowd (for any question).
- ullet Random selection o don't make a biased choice in experts.
- For some questions it may be hard to identify a diverse set of experts

But...

Why didnt I just asked a bunch of experts??

- Large enough crowd \rightarrow high probability a sufficient number of experts will be in crowd (for any question).
- ullet Random selection o don't make a biased choice in experts.
- For some questions it may be hard to identify a diverse set of experts

But...

Why didnt I just asked a bunch of experts??

- Large enough crowd \rightarrow high probability a sufficient number of experts will be in crowd (for any question).
- ullet Random selection o don't make a biased choice in experts.
- For some questions it may be hard to identify a diverse set of experts

For a random crowd

Given a **random question** expect each **person** to have a **different level** of **expertise**.

Will it rain tomorrow?

← redness proportional to expertise

For a random crowd

Given a **random question** expect each **person** to have a **different level** of **expertise**.

Will the world go down in 2012?

← redness proportional to expertise

- Diversity of opinion. People in crowd should have a range of experiences, education and opinions. (Encourages independent predictions)
- **Independence.** Prediction by person in crowd is not influenced by other people in the crowd.
- Decentralization. People have specializations and local knowledge
- **Aggregation.** There is a mechanism for aggregating all predictions into one single prediction.

- Diversity of opinion. People in crowd should have a range of experiences, education and opinions. (Encourages independent predictions)
- Independence. Prediction by person in crowd is not influenced by other people in the crowd.
- Decentralization. People have specializations and local knowledge
- **Aggregation.** There is a mechanism for aggregating all predictions into one single prediction.

- Diversity of opinion. People in crowd should have a range of experiences, education and opinions. (Encourages independent predictions)
- **Independence.** Prediction by person in crowd is not influenced by other people in the crowd.
- Decentralization. People have specializations and local knowledge.
- Aggregation. There is a mechanism for aggregating all predictions into one single prediction.

- Diversity of opinion. People in crowd should have a range of experiences, education and opinions. (Encourages independent predictions)
- **Independence.** Prediction by person in crowd is not influenced by other people in the crowd.
- Decentralization. People have specializations and local knowledge.
- Aggregation. There is a mechanism for aggregating all predictions into one single prediction.

The crowd must be careful

In the analysis of the crowd it is implicitly assumed:

- each person is not concerned with the opinions of others,
- no-one is copying anyone else in the crowd.

In the analysis of the crowd we implicitly assumed:

- The non-experts will predict a completely random wrong answer these will cancel each other out (to some degree).
- However, there may be a systematic and consistent bias in the non-experts predictions.

Back to machine learning

Back to machine learning

We will exploit Wisdom of crowd ideas for specific tasks by

- combining (classifier) predictions and
- aim to combine independent and diverse predictors (classifiers).

We can also use labeled training data

- to identify the expert classifiers in the pool;
- to identify complementary classifiers;
- to indicate how to best combine them.

Basic Terms

- Remember? Bias = model error + algorithmic error
 - Model error: the error we get by selecting a model
 - Algorithmic error: by selecting the algorithm itself and the parameters of the algorithm
- Base-Learning: Fixed Bias / User parameterized
- Meta-Learning: Dynamic bias selection using meta knowledge
- Meta-Knowledge: Knowledge achieved during the learning process

Ensemble Learning for Algorithm Recommendation

Combining base-learners : Categories

Philosophy	Technique
Bagging , Boosting	Variation in data
Stacking	Variation among learners (multi-expert)
Cascading, Delegating	Variation among learners (multi-stage)
Arbitrating	Variation among learners (refereed)
Meta decision trees	Variation in data and among learners

Bagging and Boosting

Bagging and Boosting

- Best-known techniques
- Based on selection of multiple data sub sets
- Meta model is created by combining the base models
- Advantages:
 - Reduces overfitting
 - Most effective when the base learner is highly sensitive to data
 - Typically increases accuracy
- Disadvantages:
 - Interpretability of interpretable base learners is lost

Bagging:

- ullet Select N independent samples of the Training Data
- Learn one model on each of the samples $\rightarrow h_1,...,h_N$
- Classification: Use the class most predicted by all classifiers
- Regression: Use the mean of all prediction

- Tries to learn a weighting for the models
- Later weak learners focus more on the examples that previous weak learners misclassified
- There is no single "best" boosting method

Bagging:

- ullet Select N independent samples of the Training Data
- Learn one model on each of the samples $\rightarrow h_1,...,h_N$
- Classification: Use the class most predicted by all classifiers
- Regression: Use the mean of all prediction

- Tries to learn a weighting for the models
- Later weak learners focus more on the examples that previous weak learners misclassified
- There is no single "best" boosting method

Bagging:

- ullet Select N independent samples of the Training Data
- ullet Learn one model on each of the samples $o h_1,...,h_N$
- Classification: Use the class most predicted by all classifiers
- Regression: Use the mean of all prediction

- Tries to learn a weighting for the models
- Later weak learners focus more on the examples that previous weak learners misclassified
- There is no single "best" boosting method

Bagging:

- ullet Select N independent samples of the Training Data
- ullet Learn one model on each of the samples $o h_1,...,h_N$
- Classification: Use the class most predicted by all classifiers
- Regression: Use the mean of all prediction

- Tries to learn a weighting for the models
- Later weak learners focus more on the examples that previous weak learners misclassified
- There is no single "best" boosting method

Bagging:

- ullet Select N independent samples of the Training Data
- Learn one model on each of the samples $\rightarrow h_1,...,h_N$
- Classification : Use the class most predicted by all classifiers
- Regression : Use the mean of all prediction

- Tries to learn a weighting for the models
- Later weak learners focus more on the examples that previous weak learners misclassified
- There is no single "best" boosting method

Bagging:

- ullet Select N independent samples of the Training Data
- Learn one model on each of the samples $\rightarrow h_1,...,h_N$
- Classification: Use the class most predicted by all classifiers
- Regression: Use the mean of all prediction

- Tries to learn a weighting for the models
- Later weak learners focus more on the examples that previous weak learners misclassified
- There is no single "best" boosting method

Can a set of weak learners create a single strong learner?

Bagging:

- ullet Select N independent samples of the Training Data
- Learn one model on each of the samples $\rightarrow h_1,...,h_N$
- Classification : Use the class most predicted by all classifiers
- Regression: Use the mean of all prediction

Boosting:

- Tries to learn a weighting for the models
- Later weak learners focus more on the examples that previous weak learners misclassified
- There is no single "best" boosting method

Can a set of weak learners create a single strong learner?

Bagging:

- ullet Select N independent samples of the Training Data
- Learn one model on each of the samples $\rightarrow h_1,...,h_N$
- Classification : Use the class most predicted by all classifiers
- Regression: Use the mean of all prediction

Boosting:

- Tries to learn a weighting for the models
- Later weak learners focus more on the examples that previous weak learners misclassified
- There is no single "best" boosting method

Can a set of weak learners create a single strong learner?

Bagging:

- ullet Select N independent samples of the Training Data
- Learn one model on each of the samples $\rightarrow h_1,...,h_N$
- Classification: Use the class most predicted by all classifiers
- Regression: Use the mean of all prediction

Boosting:

- Tries to learn a weighting for the models
- Later weak learners focus more on the examples that previous weak learners misclassified
- There is no single "best" boosting method

Boosting

One boosting method after Schapire

Training:

- Create c_1 : weak learner on a sample t_1 of the data
- ullet Create t_2 : sample which is 50% miss classified by c_1
- Create c_2 : weak learner on the sample t_2
- Create t_3 : subset of the data where c_1 predicts differently than c_2
- Create c_3 : weak learner on the sample t_3

Classification :

- Classify with c_1 and c_2
- ullet If unequal, use c_3 as final classification

Stacking and Cascade Generalization

- Stacking uses differences among learners
- Two levels of learning
 - Base learners are trained, each on the whole data set
 - Meta learners are created on meta data (e.g. predicted class) obtained in level 1
- Two levels of classifying
 - Base learner are used on data point
 - ② Meta learners are applied on base learner prediction:

- Stacking uses differences among learners
- Two levels of learning
 - Base learners are trained, each on the whole data set
 - 2 Meta learners are created on meta data (e.g. predicted class) obtained in level 1
- Two levels of classifying
 - Base learner are used on data point
 - Meta learners are applied on base learner prediction

- Stacking uses differences among learners
- Two levels of learning
 - Base learners are trained, each on the whole data set
 - 2 Meta learners are created on meta data (e.g. predicted class) obtained in level 1
- Two levels of classifying
 - Base learner are used on data point
 - Meta learners are applied on base learner prediction

- Stacking uses differences among learners
- Two levels of learning
 - 1 Base learners are trained, each on the whole data set
 - 2 Meta learners are created on meta data (e.g. predicted class) obtained in level 1
- Two levels of classifying
 - Base learner are used on data point
 - ② Meta learners are applied on base learner prediction:

- Stacking uses differences among learners
- Two levels of learning
 - Base learners are trained, each on the whole data set
 - 2 Meta learners are created on meta data (e.g. predicted class) obtained in level 1
- Two levels of classifying
 - Base learner are used on data point
 - 2 Meta learners are applied on base learner predictions

- Stacking uses differences among learners
- Two levels of learning
 - 1 Base learners are trained, each on the whole data set
 - 2 Meta learners are created on meta data (e.g. predicted class) obtained in level 1
- Two levels of classifying
 - Base learner are used on data point
 - 2 Meta learners are applied on base learner prediction

- Stacking uses differences among learners
- Two levels of learning
 - Base learners are trained, each on the whole data set
 - 2 Meta learners are created on meta data (e.g. predicted class) obtained in level 1
- Two levels of classifying
 - Base learner are used on data point
 - 2 Meta learners are applied on base learner predictions

Cascade Generalization

Stacking: Base learners are used parallel

- Here: Base learners are used in a sequence with "partial" meta learners
- Knowledge from previous classifiers can be used in later ones
- After each base learner the data set is adjusted using the new information

For classification:

- Only the last model is used
- Which incorporates the knowledge of previous models (all base methods are used)

Cascading and Delegating

Cascading and Delegating

- Untill now: all base classifiers are used for classification
- Here: Multistage classifiers, not all are required for classification
- Main advantage: faster classification

Cascading

- Multilearner version of boosting
- Uses learned confidence of previous models
- Train base learner h_i using knowledge from previous base learner...
- ...on data, which was most probably misclassified by previous learners
- Classify: go through all base models, stop and use as classification if the model has a confidence greater than epsilon

Delegating

- Cascading: all instances are used in each step
- Delegating: only instances below confidence threshold are processed in the next step
- Idea:
 - Use everything and test for which data points you are good enough
 - Pass the remaining work to someone else.
 - If there is no someone else, ... guess

Advantages:

- Still understandable (no model combination)
- Improved efficiency, due to the decreasing number of examples.

Ada Boost - Details

Some properties

• Freund & Schapire (1995)

Some properties

- Freund & Schapire (1995)
- AB is a linear classification algorithm

Some properties

- Freund & Schapire (1995)
- AB is a linear classification algorithm
- AB has good generalization properties (Avoids overfitting as long as the training data is not too noisy)

Some properties

- Freund & Schapire (1995)
- AB is a linear classification algorithm
- AB has good generalization properties (Avoids overfitting as long as the training data is not too noisy)
- AB is a feature selector

Terminology

- Strong classifier : $\sum_{t=1}^{T} (\alpha_t h_t(x))$
- Where $h_t(x)$ is a weak classifier weighted by α_t
- Classification result: $H(x) = sgn\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

Comment: $h_t(x)$'s can be thought of as simple features

Algorithm Ada Boost

Initialize weight of x_i with $D_0(i) = \frac{1}{m}$

for t = 1, ..., T: do

1. $h_t =$ "Weak-Learner"

Calculate error $\epsilon_t = \sum_{i=1}^m D_t(i)\delta_{(y_i,h_t(x_i))}$

- 3. Calculate weight of learner $\alpha_t = \log \frac{1-\epsilon_t}{\epsilon_t}$
- 4. Update the weights $D_t(i)$ of all x_i

end for

$$H(x) = sgn\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Algorithm Ada Boost

Initialize weight of x_i with $D_0(i) = \frac{1}{m}$

for t = 1, ..., T: do

1. $h_t =$ "Weak-Learner"

Calculate error $\epsilon_t = \sum_{i=1}^m D_t(i)\delta_{(y_i,h_t(x_i))}$

- 3. Calculate weight of learner $\alpha_t = \log \frac{1-\epsilon_t}{\epsilon_t}$
- 4. Update the weights $D_t(i)$ of all x_i

end for

$$H(x) = sgn\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Ada Boost - Weak Learners

Algorithm Weak learner

Train a set H of many many weak-learners h on the data Return the one h with the lowest weighted classification error $h = \arg\min_{h_i \in H} \epsilon = \arg\min_{h_i \in H} \left(\sum_{i=1}^m D(i)\delta_{(y_i,h_t(x_i))}\right)$

Make sure : $\epsilon < 0.5$

Algorithm Ada Boost

Initialize weight of x_i with $D_0(i) = \frac{1}{m}$

for t = 1, ..., T: do

- 1. $h_t =$ "Weak-Learners"
- 2. Calculate error $\epsilon_t = \sum_{i=1}^m D_t(i) \delta_{(y_i,h_t(x_i))}$
- 3. Calculate weight of learner $\alpha_t = \log \frac{1-\epsilon_t}{\epsilon_t}$
- 4. Update the weights $D_t(i)$ of all x_i

end for

$$H(x) = sgn\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Algorithm Ada Boost

Initialize weight of x_i with $D_0(i) = \frac{1}{m}$

for t = 1, ..., T: do

- 1. $h_t =$ "Weak-Learners"
- 2. Calculate error $\epsilon_t = \sum_{i=1}^m D_t(i) \delta_{(y_i, h_t(x_i))}$
- 3. Calculate weight of learner $\alpha_t = \log \frac{1-\epsilon_t}{\epsilon_t}$
- 4. Update the weights $D_t(i)$ of all x_i

end for

$$H(x) = sgn\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Algorithm Ada Boost

Initialize weight of x_i with $D_0(i) = \frac{1}{m}$

for t = 1, ..., T: do

- 1. $h_t =$ "Weak-Learners"
- 2. Calculate error $\epsilon_t = \sum_{i=1}^m D_t(i) \delta_{(y_i, h_t(x_i))}$
- 3. Calculate weight of learner $\alpha_t = \log \frac{1-\epsilon_t}{\epsilon_t}$
- 4. Update the weights $D_t(i)$ of all x_i

end for

$$H(x) = sgn\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

Update of the weights of the training samples

Update weights an normalize them

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \exp\left(-\alpha_t y_i h_t(x_i)\right)$$

$$Z_t = \sum_{i=0}^{m} D_t(i) \exp\left(-\alpha_t y_i h_t(x_i)\right)$$

Update of the weights of the training samples

Update weights an normalize them

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \exp\left(-\alpha_t y_i h_t(x_i)\right)$$

$$Z_t = \sum_{i=0}^{m} D_t(i) \exp\left(-\alpha_t y_i h_t(x_i)\right)$$

Comment

- Weight of correct classified examples is decreased
- Weight of incorrect classified examples is increased

0

$$\exp(-\alpha y h(x_i)) = \begin{cases} <1 & y = h(x_i) \\ >1 & y \neq h(x_i) \end{cases}$$

Weighting the weak-learners "Upper-Bound Theorem"

Primary goal is to minimize

$$\epsilon_{tr}(H) = \frac{1}{m} |\{i : H(x_i \neq y_i)\}|$$

Global error is bounded by

$$\epsilon_{tr} \leq_{t=1}^{T} Z_t$$

$$Z_t = \sum_{i=0}^{m} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

Weighting the weak-learners

That's why

Weighting the weak-learners

That's why

• Minimizing $Z_t = \sum_{i=0}^m D_t(i) \exp\left(-\alpha_t y_i h_t(x_i)\right)$ results in a minimization of the global error

Weighting the weak-learners

That's why

- Minimizing $Z_t = \sum_{i=0}^m D_t(i) \exp\left(-\alpha_t y_i h_t(x_i)\right)$ results in a minimization of the global error
- Upper-Bound can be minimized by ...

 - 2 ... with an optimal weight α_t

Weighting the weak-learners

That's why

- Minimizing $Z_t = \sum_{i=0}^m D_t(i) \exp\left(-\alpha_t y_i h_t(x_i)\right)$ results in a minimization of the global error
- Upper-Bound can be minimized by ...
 - ① Choosing the optimal hypothesis h_t ...
 - 2 ... with an optimal weight α_t
- Minimizing Z_t results in $\alpha_t = \log \frac{1-\epsilon_t}{\epsilon_t}$

Advantages

- Very simple to implement
- Feature selection on very large features spaces
- Fairly good generalization

Advantages

- Very simple to implement
- Feature selection on very large features spaces
- Fairly good generalization

Disdvantages

- Can overfit in presence of noise
- Unclear which weak-learning algorithm fits best for a given problem

Ensemble Learning

• ... combines multiple base learners into one powerful meta learner

- ... combines multiple base learners into one powerful meta learner
- ... can be used as a tool for algorithm recommendation

- ... combines multiple base learners into one powerful meta learner
- ... can be used as a tool for algorithm recommendation
- ... can be used to guess algorithms parameters

- ... combines multiple base learners into one powerful meta learner
- ... can be used as a tool for algorithm recommendation
- ... can be used to guess algorithms parameters
- ... various methods exist:

- ... combines multiple base learners into one powerful meta learner
- ... can be used as a tool for algorithm recommendation
- ... can be used to guess algorithms parameters
- ... various methods exist:
 - Bagging and Boosting

- ... combines multiple base learners into one powerful meta learner
- ... can be used as a tool for algorithm recommendation
- ... can be used to guess algorithms parameters
- ... various methods exist:
 - Bagging and Boosting
 - Stacking and Cascade Generalization

- ... combines multiple base learners into one powerful meta learner
- ... can be used as a tool for algorithm recommendation
- ... can be used to guess algorithms parameters
- ... various methods exist:
 - Bagging and Boosting
 - Stacking and Cascade Generalization
 - Cascading and Delegating

- ... combines multiple base learners into one powerful meta learner
- ... can be used as a tool for algorithm recommendation
- ... can be used to guess algorithms parameters
- ... various methods exist:
 - Bagging and Boosting
 - Stacking and Cascade Generalization
 - Cascading and Delegating
 - ... and more