VLSI Lab Report Assignment 2 Annexure 1

BCSE 4th Year 2nd Semester

Name: Priti Shaw

Roll No.: 001710501076

Batch: A3

Submission Date: 06th April 2021

1. Description

Design 16 X 4 encoder using 4 X 2 encoders using generate statement. Write test bench using loop statements(for and while).

An encoder in digital electronics is a one-hot to binary converter. That is if there are 2ⁿ input lines, and at most only one of them will ever be high, the binary code of this 'hot' line is produced on the n-bit output lines. A 16-to-4 encoder has 16 input lines and 4 output lines.

2. Block Diagram

3. Circuit Diagram

4. Truth table

	Input															Output			
i ₁₅	i ₁₄	i ₁₃	i ₁₂	i ₁₁	i ₁₀	i ₉	i ₈	i ₇	i ₆	i ₅	i ₄	i ₃	i ₂	i ₁	i ₀	O ₃	02	O ₁	O ₀
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	1	1
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	1
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	1	0
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

5. Entity

```
entity Annexure2 is
    Port ( input : in STD_LOGIC_VECTOR (15 downto 0);
        output : out STD_LOGIC_VECTOR (3 downto 0));
end Annexure2;
```

6. Architecture

```
architecture Behavioral of Annexure2 is
component QuestionTwo Part2 is
    Port ( ii : in STD_LOGIC_VECTOR (3 downto 0);
           oo : out STD_LOGIC_VECTOR (1 downto 0));
end component;
signal p: std logic vector(3 downto 0);
begin
p(0) <= input(0) or input(1) or input(2) or input(3);</pre>
p(1) <= input(4) or input(5) or input(6) or input(7);</pre>
p(2) <= input(8) or input(9) or input(10) or input(11);</pre>
p(3) <= input(12) or input(13) or input(14) or input(15);
c5: QuestionTwo_Part2 port map(p, output(3 downto 2));
gen1: for k in 0 to 3 generate
      cc: QuestionTwo_Part2 port map(input(((4*k)+3) downto (4*k)),
output(1 downto 0));
end generate;
end Behavioral;
```

7. TestBench

a) Using for loop

```
ENTITY Annexure2_TestBench IS
END Annexure2_TestBench;

ARCHITECTURE behavior OF Annexure2_TestBench IS
    -- Component Declaration for the Unit Under Test (UUT)
    COMPONENT Annexure2
```

```
PORT(
         input : IN std_logic_vector(15 downto 0);
         output : OUT std_logic_vector(3 downto 0)
        );
   END COMPONENT;
   --Inputs
  signal input : std_logic_vector(15 downto 0) := (others => '0');
  signal output : std_logic_vector(3 downto 0);
BEGIN
     -- Instantiate the Unit Under Test (UUT)
  uut: Annexure2 PORT MAP (
          input => input,
         output => output
        );
  stim_proc: process
     variable j: integer;
  begin
           for j in 0 to 15 loop
                  if j=0 then
                        input(j)<='1';
                        input(15)<='0';
                        wait for 1 ps;
                  else
                        input(j-1)<='0';
                        input(j)<='1';
                        wait for 1 ps;
                  end if;
           end Loop;
  end process;
END;
```

b) Using while loop

```
ENTITY Annexure2_TestBench IS
END Annexure2_TestBench;
```

```
ARCHITECTURE behavior OF Annexure2_TestBench IS
   COMPONENT Annexure2
   PORT(
         input : IN std_logic_vector(15 downto 0);
        output : OUT std_logic_vector(3 downto 0)
        );
   END COMPONENT;
   --Inputs
  signal input : std_logic_vector(15 downto 0) := (others => '0');
   --Outputs
   signal output : std_logic_vector(3 downto 0);
BEGIN
      -- Instantiate the Unit Under Test (UUT)
  uut: Annexure2 PORT MAP (
          input => input,
          output => output
        );
   stim_proc: process
     variable j: integer;
   begin
           j:=0;
            while j<16 loop
                  if j=0 then
                        input(j)<='1';
                        input(15)<='0';
                        wait for 1 ps;
                  else
                        input(j-1)<='0';
                        input(j)<='1';
                        wait for 1 ps;
                  end if;
           j:=j+1;
            end Loop;
  end process;
END;
```

8. Timing Diagram

a) Using For loop

b) Using While loop

