

Bevezetés

Matematika G3 – Differenciálegyenletek Utoljára frissítve: 2025. október 26.

8.1. Differenciálegyenletek osztályozása

Egyenlet	Megadási mód	Rend	Lineáris?
$a) y' = \cosh x - 3xy$	Explicit	1	lineáris
$b) y'' = y'^2 \cos x$	Explicit	2	nem lineáris
c) $(1 + y^{(IV)})^2 - y'' = x^3 y''' + xy$	Implicit	4	nem lineáris
$d) y'' = e^y \ln x$	Explicit	2	nem lineáris

8.2. Izoklinák és vonalelemek

1.
$$y' = y/x$$
 $x > 0$

Izoklinák: $y/x = c \implies y = cx$ – origón áthaladó egyenesek

Vonalelemek: y' = y/x = cx/x = c – állandó meredekségű egyenesek

Megoldásgörbék: y = Cx – origón áthaladó egyenesek

2.
$$y' = -x/y$$
 $y < 0$

Izoklinák: $-x/y = c \implies y = -x/c$ – origón áthaladó egyenesek

Vonalelemek: y' = -x/y = c – állandó meredekségű egyenesek

Megoldásgörbék: $x^2 + y^2 = C$ – origó középpontú félkörök

8.3. Megoldás-e I

Az $(y')^4 + y^2 = -1$ differenciálegyenlet megoldása-e az $y = x^2 - 1$ függvény?

Az első derivált:

$$y'=2x$$
.

Helyettesítsük be a differenciálegyenletbe:

$$(y')^4 + y^2 = (2x)^4 + (x^2 - 1)^2 = 16x^4 + (x^4 - 2x^2 + 1) = 17x^4 - 2x^2 + 1.$$

Mivel ez a kifejezés nem egyenlő -1-gyel minden x értékre, ezért a megadott függvény **nem** megoldása a differenciálegyenletnek.

8.4. Megoldás-e II

Megoldása-e az $y = C_1 \sin 2x + C_2 \cos 2x$ függvény az y'' + 4y = 0 differenciálegyenletnek? Az első és második derivált:

$$y' = 2C_1 \cos 2x - 2C_2 \sin 2x,$$

$$y'' = -4C_1 \sin 2x - 4C_2 \cos 2x.$$

Vegyük észre, hogy y'' = -4y, tehát

$$y'' + 4y = -4y + 4y = 0,$$

tehát a megadott függvény valóban megoldása a differenciálegyenletnek.

8.5. Megoldás-e III

Megoldása-e az $y = \ln x$ függvény az xy'' + y' = 0 differenciálegyenletnek?

Az első és második derivált:

$$y' = \frac{1}{x},$$
$$y'' = -\frac{1}{x^2}.$$

Helyettesítsük be a differenciálegyenletbe:

$$xy'' + y' = x \cdot \left(-\frac{1}{x^2}\right) + \frac{1}{x} = -\frac{1}{x} + \frac{1}{x} = 0,$$

tehát a megadott függvény valóban megoldása a differenciálegyenletnek.

8.6. Cauchy-feladat I

Adja meg az y'' + 4y = 0 differenciálegyenlet y(0) = 0 és y'(0) = 1 kezdeti feltételek melletti megoldását!

Az általános megoldás és annak első deriváltja:

$$y = C_1 \sin 2x + C_2 \cos 2x,$$

 $y' = 2C_1 \cos 2x - 2C_2 \sin 2x.$

Az első egyenletből:

$$y(0) = C_1 \underbrace{\sin 0}_{=0} + C_2 \underbrace{\cos 0}_{=1} = C_2 = 0.$$

A második egyenletből:

$$y'(0) = 2C_1 \underbrace{\cos 0}_{=1} - 2 \cdot 0 \cdot \underbrace{\sin 0}_{=0} = 2C_1 = 1 \implies C_1 = \frac{1}{2}.$$

Tehát a keresett megoldás:

$$y = \frac{1}{2}\sin 2x.$$

8.7. Cauchy-feladat II

Adja meg az y'' + 4y = 0 differenciálegyenlet y(0) = 1 és $y'(\pi/4) = 2$ kezdeti feltételek melletti megoldását!

Az általános megoldás és annak első deriváltja:

$$y = C_1 \sin 2x + C_2 \cos 2x,$$

 $y' = 2C_1 \cos 2x - 2C_2 \sin 2x.$

Az első egyenletből:

$$y(0) = C_1 \underbrace{\sin 0}_{=0} + C_2 \underbrace{\cos 0}_{=1} = C_2 = 1.$$

A második egyenletből:

$$y'(\pi/4) = 2C_1 \underbrace{\cos \pi/2}_{=0} - 2 \cdot 1 \cdot \underbrace{\sin \pi/2}_{=1} = -2 \neq 2.$$

Ellentmondásra jutottunk, tehát a megadott kezdeti feltételek mellett nincs megoldás.

8.8. Görbeseregek differenciálegyenletei

1. $y = cx^2$:

Deriváljuk az egyenletet, és fejezzük ki a c konstansot:

$$y' = 2cx$$
 és $c = \frac{y}{x^2}$ \Longrightarrow $y' = 2\frac{y}{x}$.

2. $x^2 + y^2 = cx$:

Deriváljuk az egyenletet implicit módon:

$$2x + 2yy' = c.$$

Helyettesítsük be az eredeti egyenletbe *c*-t:

$$x^{2} + y^{2} = 2x^{2} + 2yy'x \implies 2xyy' + x^{2} - y^{2} = 0.$$

3. $y = c_1 e^x + c_2 e^{2x}$:

Számítsuk ki az első deriváltat:

$$y' = c_1 e^x + 2c_2 e^{2x}.$$

Számítsuk ki y' - y különbséget:

$$y' - y = (c_1 e^x + 2c_2 e^{2x}) - (c_1 e^x + c_2 e^{2x}) = c_2 e^{2x} \implies c_2 = e^{-2x}(y' - y).$$

A kapott konstanst helyettesítsük be az eredeti egyenletbe:

$$y = c_1 e^x + e^{-2x} (y' - y) e^{2x} = c_1 e^x + y' - y \implies c_1 = e^{-x} (2y - y').$$

Most számítsuk ki a második deriváltat is, és helyettesítsük be a konstansokat:

$$y'' = c_1 e^x + 4c_2 e^{2x}$$

$$= e^{-x} (2y - y') e^x + 4e^{-2x} (y' - y) e^{2x}$$

$$= 2y - y' + 4y' - 4y$$

$$= -2y + 3y'.$$

Végül rendezzük az egyenletet:

$$y'' + 2y - 3y' = 0.$$

8.9. Körök differenciálegyenlete

Adja meg az olyan xy síkban elhelyezkedő körök differenciálegyenletét, amelyek az x-tengelyt az origóban érintik!

Az ilyen körök egyenlete:

$$x^2 + (y - r)^2 = r^2$$
.

Deriváljuk az egyenletet implicit módon:

$$2x + 2(y - r)y' = 0 \implies 2x + 2yy' - 2ry' = 0 \implies r = \frac{x}{y'} + y$$

Helyettesítsük be az eredeti egyenletbe *r*-t:

$$x^{2} + \left(t - \frac{x}{y'} + y\right)^{2} = \left(\frac{x}{y'} + y\right)^{2}.$$