DHANAMANJURI UNIVERSITY

Examination-2022 (Dec)

Four year course B.Sc./B.A. 1st Semester

Name of Programme: B.Sc./B.A. Mathematics(Honours)

Paper Type : Core

Paper Code : CMA-101 Paper Title : Calculus

Full Marks: 80

Pass Marks: **Duration: 3 Hours** 32

The figures in the margin indicate full marks for the questions: Answer all the question.

1. Choose and rewrite the correct answer for each of the following: $1 \times 5 = 5$

a) The n^{th} derivative of $\frac{1}{x+a}$ is

$$i) \frac{(-1)^n n!}{(x+a)^n}$$

ii)
$$\frac{(-1)^{n+1}(n+1)!}{(x+a)^{n+1}}$$

iii)
$$\frac{(-1)^n n!}{(x+a)^{n+1}}$$

$$iv)\frac{(-1)^{n+1}n!}{(x+a)^n}$$

- b) If $x = r \cos \theta$, $y = r \sin \theta$, then the value of $\frac{\delta \theta}{\delta x}$ is
 - i) $\frac{\sin\theta}{r}$

iii) $\cos \theta$

- ii) $\frac{\cos \theta}{r}$ iv) $\frac{-\sin \theta}{r}$
- c) The radius of curvature of the curve $y = log \sin x$ at the point (x, y) is
 - i) cosec x

ii) sec x

iii) cot x

- iv) tan x
- d) If $f(x,y) = \frac{x^3 + y^3}{x y}$, then the function f(x,y) is a homogeneous of degree
 - i) 3

ii) 2

iii) 1

iv) 0

- e) The area of the asteroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ is
 - i) $\frac{3}{4}\pi a^2$

ii) $\frac{4}{3}\pi a^2$

iii) $\frac{3}{8}\pi a^2$

iv) $\frac{8}{3}\pi a^2$

2. Write very short answer for each of the following questions:

 $1 \times 6 = 6$

- a) State Leibnitz Theorem .
- b) In the mean value theorem f(b) = f(a) + (b-a)f'(c) if $f(x) = 2x^2$, a = 0 and b = 2, then find the value of c.
- c) Define continuity of the function f(x, y) at a point(a, b).
- d) Write down the expression for the radius of the curvature of the Cartesian equation y = f(x).
- e) Write the value of $\int_0^{\frac{\pi}{2}} \cos^3 x dx$.
- f) What is meant by concavity?

3. Write short answer for each of the following questions: $3\times9=27$

- a) Find the n^{th} derivative of $e^{ax+b} \sin x$.
- b) Evaluate: $\lim_{x\to 0} (\frac{1}{(x^2)} \frac{1}{(sin^2x)})$.
- c) Show that $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2}$ does not exist.
- d) If $u = \tan^{-1}(\frac{y}{x})$ then show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y} = 0$.
- e) Find the asymtotes of $x^3 + 2x^2y + xy^2 x + 1 = 0$.

- f) Find the point of inflexion of curve $x = \log(\frac{y}{x})$.
- g) If $U_n = \int_0^{\frac{\pi}{2}} \sin^n \theta \ d\theta$ and n > 1, then prove that $U_n = \frac{n-1}{n} U_{n-2} + \frac{1}{2}$.
- h) Find the length of the arc of the curve

$$x = e^{\theta} \sin \theta$$

$$y = e^{\theta} \cos \theta$$

from
$$\theta = 0$$
 to $\theta = \frac{\pi}{2}$.

i) Find the area of the segment cut off from the parabola $y^2 = 4x$ by the line y = x.

4. Answer any two of the following questions:

$$2 \times 6 = 12$$

- a) If $y = \tan^{-1} x$, then prove that $(1+x^2)y_{n+1} + 2nxy_n + n(n-1)y_{n-1} = 0$. Hence also find the value of $(y_n)_0$.
- b) State and prove Rolle's theorem.
- c) State and prove Taylor's with Lagrange's form of remainder.
- d) Find the values of a and b in order that $\lim_{x\to 0} \frac{x(1+a\cos x)-b\sin x}{x^3}$ may be equal to 1.

5. Answer any three of the following questions:

$$6 \times 2 = 12$$

a) If
$$u = \tan^{-1} \frac{x^3 + y^3}{x - y}$$
 prove that

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \delta y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = (1 - 4\sin^{2} u)\sin 2u.$$

b) If
$$\frac{x^2}{a^2+u} + \frac{y^2}{b^2+u} + \frac{z^2}{c^2+u} = 1$$
, prove that

$$u_x^2 + u_y^2 + u_z^2 = 2(xu_x + yu_y + zu_z).$$

c) Examine $f(x,y) = x^3 + y^3 - 3axy$ for maximum and minimum value.

- d) If ρ_1 and ρ_2 be the radii of curvature at the ends of a focal chord of the parabola $y^2=4ax$, then prove that $\rho_1^{\frac{-2}{3}}+\rho_2^{\frac{-2}{3}}=(2a)^{\frac{-2}{3}}$.
- e) Find the characteristics of the curve $y(x^2 + 4) = 8$ and then trace it.

6. Answer any two of the following questions:

- $6 \times 2 = 12$
- a) Find the reduction formula for $\int \tan^n x \, dx$ and hence or otherwise find the value of $\int \tan^6 x \, dx$.
- b) The circle $x^2 + y^2 = a^2$ revolves round the x-axis, show that the surface area and volume of the whole sphere generated are $4\pi a^2$ and $\frac{4}{3}\pi a^3$ respectively.
- c) Change the order of the integration in the double integral $\int_0^{a\cos\alpha} dx \int_{x\tan\alpha}^{\sqrt{a^2-x^2}} f(x,y) dx dy.$
- d) Prove by evaluating the repeated integrals that

$$\int_0^1 dx \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dy \neq \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dx.$$
