Име: курс: гр. Φ H:

Задача 1. (5 точки) Подредете в асимптотично растящ ред функциите:

$$(n!)^2$$
, $2^{n!}$, $\lg(n!)$, $\sum_{i=1}^n \sqrt{i}$, 2^{2^n} , $(\sqrt{2})^{\lg n^2}$

Задача 2. (4 точки) Решете следните рекурентни уравнения:

A)
$$T(n) = 4T\left(\frac{n}{3}\right) + n \lg n$$

B)
$$T(n) = 6T(n-1) - 9T(n-2) + n^2 \cdot 2^n$$

B)
$$T(n) = 2T\left(\frac{n}{3}\right) + T\left(\frac{n}{4}\right) + n$$

$$\Gamma$$
) $T(n) = 2T\left(\frac{n}{2}\right) + n^2$

Задача 3. (6 точки) Дадена е следната рекурсивна функция:

$$|T(0,k) = k T(n+1,k) = T(n,k) + T(n,k+1)$$

Да се докаже, че T(n, P(n)) < n! за всеки положителен полином P(n).

Задача 4. (5 точки) Да се докаже, че за естествено число n, следният алгоритъм връща n^3 :

Задача 5. (4 точки)

 \mathcal{A} иамет δp на масив от цели числа ще наричаме най-голямото произведение на два, различни по позиция, негови елемента.

Предложете алгоритъм с време O(n), който намира диаметъра на масив с $n \ge 2$ елемента.

Задача 6. (4 точки)

Ще казваме, че масив от цели числа a[n] е 65лнисm ако първите му $\left\lceil \frac{n}{2} \right\rceil$ елемента са сортирани, а останалата част от масива или е празна или също е вълниста.

Докажете, че няма алгоритъм, който по даден масив от цели числа a[n], за време O(n) формира вълнист масив от елементите на a.

Кратки решения:

Задача 1. Правилният ред е:

$$(\sqrt{2})^{\lg n^2} < \lg(n!) < \sum_{i=1}^n \sqrt{i} < (n!)^2 < 2^{2^n} < 2^{n!}$$

1.

$$\left(\sqrt{2}\right)^{\lg n^2} = 2^{\lg n} = n < n \lg n \approx \lg(n!)$$

2.

$$\lg(n!) = n \lg n < n\sqrt{n} = \sum_{i=1}^{n} \sqrt{i}$$

3.

$$\sum_{i=1}^n \sqrt{i} \approx n\sqrt{n} < (n!)^2$$

4.

Тъй като
$$\lg(n!)^2 \approx n \lg n < 2^n = \lg 2^{2^n}$$
, то $(n!)^2 < 2^{2^n}$

5.

Тъй като
$$2^n < n!$$
, то $2^{2^n} < 2^{n!}$

Задача 2.

A) Тъй като $n \lg n = O(n^{\log_3 4 - \varepsilon})$ за достатъчно малко $\varepsilon > 0$, то от първия случай на Master теоремата имаме $T(n) = \Theta(n^{\log_3 4})$.

Б) От допълнителната работа n получаваме $T(n) = \Omega(n)$. Коректността на твърдението $\exists n_0 \ \forall n \geq n_0 \ T(n) \leq c. n$ за достатъчно голяма константа c се показва чрез прилагане на индукционното предположение за n. Оттук T(n) = O(n), откъдето $T(n) = \Theta(n)$.

В) Общото решение на T(n) има вида $T(n) = \lambda_1 2^n + \lambda_2 n \cdot 2^n + \lambda_3 n^2 \cdot 2^n + \lambda_4 3^n + \lambda_5 n \cdot 3^n = \Theta(n \cdot 3^n)$.

 Γ) Тъй като $n^2 = \Omega(n^{1+\varepsilon})$ за достатъчно малко $\varepsilon > 0$ и освен това е изпълнено уловието за регулярност с константа c = 1/2, то от третия случай на Master теоремата имаме $T(n) = \Theta(n^2)$.

Задача 3. Лесно се проверява, че:

$$T(n,k) = \sum_{i=0}^{n} {n \choose i} (k+i) \le (n+k) \cdot 2^{n}$$

Сега $T(n,P(n)) \leq (n+P(n)).2^n < n!$, което е вярно за всеки положителен полином P(n).

Задача 4.

На всяка итерация от цикъла $s=j^3,\ t=3j^2-3j+1,\ a\ m=6j.$ Коректността на тази инварианта се проверява непосредствено.

Задача 5.

Нека a_0 , a_1 и b_0 , b_1 са съответно двата най-малки и двата най-големи елемента на масива. Намирането им отнема време O(n). Диаметърът на масива е по-голямото от a_0 . a_1 и b_0 . b_1 .

Задача 6.

Вълнист масив може да се сортира за линейно време - сортираме рекурсивно дясната половина и mergeваме с лявата. Това отнема време: $T(n) = T\left(\frac{n}{2}\right) + \Theta(n)$, което от Master теоремата има решение $T(n) = \Theta(n)$.

Оттук идва и долната граница $\Omega(n \log n)$ за формиране на вълнист масив.