in organic solvents Diels-Alder reaction and Decarboxylation reaction

3. Ultrasound assisted reactions: sonochemical Simmons-Smith Reaction

(Ultrasonic alternative to Iodine)

- 4 Surfactants for carbon dioxide replacing smog producing and ozone depleting solvents with CO₂ for precision cleaning and dry cleaning of garments.
- 5 Designing of Environmentally safe marine antifoulant.
- 6 Rightfit pigment: synthetic azopigments to replace toxic organic and inorganic pigments.
- An efficient, green synthesis of a compostable and widely applicable plastic (poly lactic acid) made from corn.
- 8 Healthier Fats and oil by Green Chemistry: Enzymatic Inter esterification for production of no Trans-Fats and Oils
- 9 Development of Fully Recyclable Carpet: Cradle to Cradle Carpeting

Future Trends in Green Chemistry:

(10 Lectures) Marks:10

Oxidation reagents and catalysts; Biomimetic, multifunctional reagents; Combinatorial green chemistry; Proliferation of solventless reactions; co crystal controlled solid state synthesis (C²S³); Green chemistry in sustainable development.

Reference Books

- 1. Anastas, P.T. & Warner, J.K.: *Green Chemistry Theory and Practical*, Oxford University Press (1998).
- 2. Matlack, A.S. *Introduction to Green Chemistry*, Marcel Dekker (2001).
- 3. Cann, M.C. & Connely, M.E. *Real-World cases in Green Chemistry*, American Chemical Society, Washington (2000).
- 4. Ryan, M.A. & Tinnesand, M. *Introduction to Green Chemistry*, American Chemical Society, Washington (2002).
- 5. Lancaster, M. *Green Chemistry: An Introductory Text* RSC Publishing, 2nd Edition, 2010.

CEMADSE04P: GREEN CHEMISTRY LAB (60 Lectures/Contact Hours) Marks: 25

1. Safer starting materials

• Preparation and characterization of nanoparticles of gold using tea leaves.

2. Using renewable resources

Preparation of biodiesel from vegetable/ waste cooking oil.

3. Avoiding waste

Principle of atom economy

- Use of molecular model kit to stimulate the reaction to investigate how the atom economy can illustrate Green Chemistry.
- Preparation of propene by two methods can be studied

Triethylamine ion + OH⁻ → propene + trimethylpropene + water

$$H_2SO_4/\Delta$$
1-propanol \longrightarrow propene + water

• Other types of reactions, like addition, elimination, substitution and rearrangement should also be studied for the calculation of atom economy.

4.Use of enzymes as catalysts

•Benzoin condensation using Thiamine Hydrochloride as a catalyst instead of cyanide.

5.Alternative Green solvents

•Extraction of D-limonene from orange peel using liquid CO2 prepared form dry ice.

Mechanochemical solvent free synthesis of azomethines

6. Alternative sources of energy

- Solvent free, microwave assisted one pot synthesis of phthalocyanine complex of copper (II).
- Photoreduction of benzophenone to benzopinacol in the presence of sunlight.

Reference Books

- 1. Anastas, P.T & Warner, J.C. *Green Chemistry: Theory and Practice*, Oxford University Press (1998).
- 2. Kirchoff, M. & Ryan, M.A. *Greener approaches to undergraduate chemistry experiment*. American Chemical Society, Washington DC (2002).
- 3. Ryan, M.A. *Introduction to Green Chemistry*, Tinnesand; (Ed), American Chemical Society, Washington DC (2002).
- 4. Sharma, R.K.; Sidhwani, I.T. & Chaudhari, M.K. I.K. *Green Chemistry Experiment: A monograph International Publishing House Pvt Ltd. New Delhi*. Bangalore CISBN978-93-81141-55-7 (2013).

- 5. Cann, M.C. & Connelly, M. E. *Real world cases in Green Chemistry*, American Chemical Society (2008).
- 6. Cann, M. C. & Thomas, P. Real world cases in Green Chemistry, American Chemical Society (2008).
- 7. Lancaster, M. *Green Chemistry: An Introductory Text* RSC Publishing, 2ndEdition, 2010.
- 8. Pavia, D.L., Lampman, G.M., Kriz, G.S. & Engel, R.G. *Introduction to OrganicLaboratory Techniques: A Microscale and Macro Scale Approach*, W.B.Saunders, 1995.

CEMADSE05T: INORGANIC MATERIALS OF INDUSTRIAL IMPORTANCE (Credits: Theory-06, Practicals-02)

60 Lectures Marks: 50

Silicate Industries:

(16 Lectures) Marks: 12

Glass: Glassy state and its properties, classification (silicate and non-silicate glasses). Manufacture and processing of glass. Composition and properties of the following types of glasses: Soda lime glass, lead glass, armoured glass, safety glass, borosilicate glass, fluorosilicate, coloured glass, photosensitive glass.

Ceramics: Important clays and feldspar, ceramic, their types and manufacture. Hightechnology ceramics and their applications, superconducting and semiconducting oxides, fullerenes carbon nanotubes and carbon fibre.

Cements: Classification of cement, ingredients and their role, Manufacture of cement and thesetting process, quick setting cements.

Fertilizers:

(8 Lectures) Marks: 06

Different types of fertilizers. Manufacture of the following fertilizers: Urea, ammonium nitrate, calcium ammonium nitrate, ammonium phosphates; polyphosphate, superphosphate, compound and mixed fertilizers, potassium chloride, potassium sulphate.

Surface Coatings:

(10 Lectures) Marks: 06

Objectives of coatings surfaces, preliminary treatment of surface, classification of surface coatings. Paints and pigments-formulation, composition and related properties. Oil paint, Vehicle, modified oils, Pigments, toners and lakes pigments, Fillers, Thinners, Enamels, emulsifying agents. Special paints (Heat retardant, Fire retardant, Eco-friendly paint,

Plastic paint), Dyes, Wax polishing, Water and Oil paints, additives, Metallic coatings (electrolytic and electroless), metal spraying and anodizing.

Batteries:

(6 Lectures) Marks: 06

Primary and secondary batteries, battery components and their role, Characteristics of Battery. Working of following batteries: Pb acid, Li-Battery, Solid state electrolyte battery. Fuel cells, Solar cell and polymer cell.

Alloys:

(10 Lectures) Marks: 08

Classification of alloys, ferrous and non-ferrous alloys, Specific properties of elements in alloys. Manufacture of Steel (removal of silicon decarbonization, demanganization, desulphurization dephosphorisation) and surface treatment (Ar and heat treatment, nitriding, carburizing). Composition and properties of different types of steels.

Catalysis:

(6 Lectures) Marks: 06

General principles and properties of catalysts, homogenous catalysis (catalytic steps and examples) and heterogenous catalysis (catalytic steps and examples) and their industrial applications, Deactivation or regeneration of catalysts.

Phase transfer catalysts, application of zeolites as catalysts.

Chemical explosives:

(4 Lectures) Marks: 06

Origin of explosive properties in organic compounds, preparation and explosive properties of lead azide, PETN, cyclonite (RDX). Introduction to rocket propellants.

Reference Books

- 1. E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK.
- 2. R. M. Felder, R. W. Rousseau: *Elementary Principles of Chemical Processes*, Wiley Publishers, New Delhi.
- 3. W. D. Kingery, H. K. Bowen, D. R. Uhlmann: *Introduction to Ceramics*, Wiley Publishers, New Delhi.
- 4. J. A. Kent: Riegel's *Handbook of Industrial Chemistry*, CBS Publishers, New Delhi.
- 5. P. C. Jain, M. Jain: *Engineering Chemistry*, Dhanpat Rai & Sons, Delhi.
- 6. R. Gopalan, D. Venkappayya, S. Nagarajan: *Engineering Chemistry*, Vikas Publications, New Delhi.

7. Sharma, B.K. & Gaur, H. *Industrial Chemistry*, Goel Publishing House, Meerut (1996).

CEMADSE05P: INORGANIC MATERIALS OF INDUSTRIAL IMPORTANCE LAB (60 Lectures/Contact Hours) Marks: 25

- 1. Determination of free acidity in ammonium sulphate fertilizer.
- 2. Estimation of Calcium in Calcium ammonium nitrate fertilizer.
- 3. Estimation of phosphoric acid in superphosphate fertilizer.
- 4. Electroless metallic coatings on ceramic and plastic material.
- 5. Determination of composition of dolomite (by complexometric titration).
- 6. Analysis of (Cu, Ni); (Cu, Zn) in alloy or synthetic samples.
- 7. Analysis of Cement.
- 8. Preparation of pigment (zinc oxide).

Reference Books

- 1. E. Stocchi: *Industrial Chemistry*, Vol-I, Ellis Horwood Ltd. UK.
- 2. R. M. Felder, R. W. Rousseau: *Elementary Principles of Chemical Processes*, Wiley Publishers, New Delhi.
- 3. W. D. Kingery, H. K. Bowen, D. R. Uhlmann: *Introduction to Ceramics*, Wiley Publishers, New Delhi.
- 4. J. A. Kent: Riegel's *Handbook of Industrial Chemistry*, CBS Publishers, New Delhi.
- 5. P. C. Jain, M. Jain: Engineering Chemistry, Dhanpat Rai & Sons, Delhi.
- 6. R. Gopalan, D. Venkappayya, S. Nagarajan: Engineering Chemistry, Vikas
- 7. Publications, New Delhi.
- 8. Sharma, B.K. & Gaur, H. *Industrial Chemistry*, Goel Publishing House, Meerut (1996).

CEMADSE06T: POLYMER CHEMISTRY

(Credits: Theory-06, Practicals-02)

Theory: 60 Lectures Marks: 50

Introduction and history of polymeric materials:

(04 Lectures) Marks: 04

Different schemes of classification of polymers, Polymer nomenclature, Molecular forces and chemical bonding in polymers, Texture of Polymers.

Functionality and its importance:

(08 Lectures) Marks: 06

Criteria for synthetic polymer formation, classification of polymerization processes, Relationships between functionality, extent of reaction and degree of polymerization. Bifunctional systems, Poly-functional systems.

Kinetics of Polymerization:

(08 Lectures) Marks: 06

Mechanism and kinetics of step growth, radical chain growth, ionic chain (both cationic and anionic) and coordination polymerizations, Mechanism and kinetics of copolymerization, polymerization techniques.

Crystallization and crystallinity:

(04 Lectures) Marks: 04

Determination of crystalline melting point and degree of crystallinity, Morphology of crystalline polymers, Factors affecting crystalline melting point.

Nature and structure of polymers:

(04 Lectures) Marks: 04

5. UT

Structure Property relationships.

Determination of molecular weight of polymers:

(08 Lectures) Marks: 06

(*Mn,Mw*, etc) by end group analysis, viscometry, light scattering and osmotic pressure methods. Molecular weight distribution and its significance. Polydispersity index.

Glass transition temperature (Tg) and determination of Tg:

(08 Lectures) Marks: 04

Free volume theory, WLFequation, Factors affecting glass transition temperature (Tg).

Polymer Solution:

(08 Lectures) Marks: 06

Criteria for polymer solubility, Solubility parameter, Thermodynamicsof polymer solutions, entropy, enthalpy, and free energy change of mixing of polymers solutions, Flory- Huggins theory, Lower and Upper critical solution temperatures.

Properties of Polymer:

(10 Lectures) Marks: 10

(Physical, thermal, Flow & Mechanical Properties).

Brief introduction to preparation, structure, properties and application of the following polymers: polyolefins, polystyrene and styrene copolymers, poly(vinyl chloride) and related polymers, poly(vinyl acetate) and related polymers, acrylic polymers, fluoro polymers, polyamides and related polymers. Phenol formaldehyde resins (Bakelite, Novalac), polyurethanes, silicone polymers, polydienes,

Polycarbonates, Conducting Polymers, [polyacetylene, polyaniline, poly(p-phenylene sulphide polypyrrole, polythiophene)].

<u>Reference Books</u>

- 1.R.B. Seymour & C.E. Carraher: *Polymer Chemistry: An Introduction*, Marcel Dekker, Inc. New York, 1981.
- 2.3.G. Odian: F.W. Billmeyer: *Principles of PolymerizationTextbook of Polymer Science*, 4th Ed. Wiley, 2004., 2_{nd} Ed. Wiley Interscience, 1971.
 - 4. P. Ghosh: Polymer Science & Technology, Tata McGraw-Hill Education, 1991.
 - 5. R.W. Lenz: *Organic Chemistry of Synthetic High Polymers*. Interscience Publishers, New York, 1967.

CEMADSE06P: POLYMER CHEMISTRY LAB (60 Lectures/Contact Hours) Marks: 25

- 1.Free radical solution polymerization of styrene (St) / Methyl Methacrylate (MMA) / Methyl Acrylate (MA) / Acrylic acid (AA).
 - a) Purification of monomer
 - b) Polymerization using benzoyl peroxide (BPO) / 2,2'-azo-bisisobutylonitrile (AIBN)
 - 2. Preparation of nylon 66/6
 - 3. Interfacial polymerization, preparation of polyester from isophthaloyl chloride (IPC) and phenolphthalein
 - 4. Redox polymerization of acrylamide
 - 5. Precipitation polymerization of acrylonitrile
 - 6. Preparation of urea-formaldehyde resin
 - 7. Preparations of novalac resin/resold resin.

8. Microscale Emulsion Polymerization of Poly(methylacrylate).

Polymer characterization

- 1. Determination of molecular weight by viscometry:
 - (a) Polyacrylamide-aq.NaNO₂ solution
 - (b) (Poly vinyl proplylidine (PVP) in water
- 2. Determination of the viscosity-average molecular weight of poly(vinyl alcohol) (PVOH) and the fraction of "head-to-head" monomer linkages in the polymer.
- 3. Determination of molecular weight by end group analysis: Polyethylene glycol (PEG) (OH group).
- 4. Testing of mechanical properties of polymers.
- 5. Determination of hydroxyl number of a polymer using colorimetric method.

Polymer analysis

- 1. Estimation of the amount of HCHO in the given solution by sodium sulphite method
- 2. Instrumental Techniques
- 3. IR studies of polymers
- 4. DSC analysis of polymers
- 5. Preparation of polyacrylamide and its electrophoresis

Reference Books

- 1. M.P. Stevens, *Polymer Chemistry: An Introduction*, 3rd Ed., Oxford University Press, 1999.
- 2. H.R. Allcock, F.W. Lampe & J.E. Mark, *Contemporary Polymer Chemistry*, 3rd ed. Prentice-Hall (2003)
- 3. F.W. Billmeyer, *Textbook of Polymer Science*, 3rd ed. Wiley-Interscience (1984)
- 4. J.R. Fried, *Polymer Science and Technology*, 2nd ed. Prentice-Hall (2003)
- 5. P. Munk & T.M. Aminabhavi, *Introduction to Macromolecular Science*, 2nd ed. John Wiley & Sons (2002)
- 6. L. H. Sperling, *Introduction to Physical Polymer Science*, 4th ed. John Wiley & Sons (2005)
- 7. M.P. Stevens, *Polymer Chemistry: An Introduction* 3rd ed. Oxford University Press (2005).
- 8. Seymour/ Carraher's Polymer Chemistry, 9th ed. by Charles E. Carraher, Jr. (2013).

^{*}at least 7 experiments to be carried out.