Chapter Four Finite Differences

Introduction:

Consider a function y = f(x) defined on (a, b), x and y are the independent and dependent variables respectively. If the points x_0, x_1, \ldots, x_n are taken at equidistance that is, $x_i = x_0 + ih$, for $i = 0, 1, 2, \ldots, n$, then the value of y, when $x = x_i$, is denoted by y_i , where $y_i = f(x_i)$. Here, the values of x are called arguments and the values of y are called as *entries*. The interval y_i is called the difference interval. The differences $y_1 - y_0, y_2 - y_1, \ldots, y_n - y_{n-1}$ are called the first differences of the function y and are denoted by $\Delta y_0, \Delta y_1, \ldots, \Delta y_{n-1}$ etc. That is

$$\Delta y_0 = y_1 - y_0, \ \Delta y_1 = y_2 - y_1, ..., \ \Delta y_{n-1} = y_n - y_{n-1}$$
 (4.1)

The symbol Δ in these equations is called the *difference operator*.

Finite differences deal with the changes that take place in the value of a function f(x) due to finite changes in x. Finite difference operators include, forward difference operator, backward difference operator, shift operator, central difference operator and mean operator.

4.1. Shift Operators

Activity4.1: Let $f(x) = x^2 + 2x - 4$. Find f(x + h), f(x + 2h) and f(x + 3h). **Shift operator, E:**

Definition 4.1. The shift operator E of a function f denoted by Ef(x) is defined as

$$Ef(x) = f(x + h)$$
 or $Ey_i = y_{i+1}$

Hence, shift operator shifts the function value y_i to the next higher value y_{i+1} . The second shift operator is given as follow.

$$E^{2}f(x) = E[Ef(x)] = E[f(x + h)] = f(x + 2h)$$

E is linear and obeys the law of indices. And hence the generalized shift operator is given by

$$E^{n}f(x) = f(x + nh)$$
 or $E^{n}y_{i} = y_{i+nh}$

The inverse shift operator denoted by E^{-1} is defined as

$$E^{-1}f(x) = f(x-h)$$

In a similar manner, second and higher inverse operators are given by

$$E^{-2}f(x) = f(x-2h)$$
 and $E^{-n}f(x) = f(x-nh)$

The more general form of shift operator E is given by

$$E^r f(x) = f(x + rh)$$

Where ra nonzero rational number (that is, r is positive as well as negative rationals).

Example 4.1: Let $f(x) = x^2 + 3x$. Find the first three shift operators.

Solution: the first three shift operators are Ef(x), $E^2f(x)$ and $E^3f(x)$. Thus

$$Ef(x) = f(x+h) = (x+h)^2 + 3(x+h)$$

$$= x^{2} + 2xh + h^{2} + 3x + 3h = x^{2} + 3x + 2xh + h^{2} + 3h$$

$$E^{2}f(x) = Ef(x+h) = f(x+2h) = (x+2h)^{2} + 3(x+2h)$$

$$= x^2 + (4h + 3)x + 4h^2 + 6h$$

And
$$E^3 f(x) = E^2 f(x+h) = Ef(x+2h) = f(x+3h) = (x+3h)^2 + 3(x+3h)$$

= $x^2 + (6h+3)x + 9h(h-1)$

Average operator, μ : The average operator μ is defined as

$$\mu f(x) = \frac{1}{2} [f(x+h/2) + f(x-h/2)]$$

$$\mu y_i = [y_{i+1/2} + y_{i-1/2}]$$

That is

4.2. Forward difference operators

Definition 4.2: The forward difference or simply difference operator is denoted by Δ and is defined as $\Delta f(x) = f(x+h) - f(x)$

or writing in terms of y, at x = xi, this above equation becomes

$$\Delta f(x_i) = f(x_i + h) - f(x_i)$$
 or $\Delta y_i = y_{i+1} - y_i$, $i = 0, 1, 2, ..., n - 1$

The differences of the first differences are called the *second differences* and they are denoted by $\Delta^2 y_0, \Delta^2 y_1, \dots, \Delta^2 y_{n-1}$.

Hence
$$\Delta y_{o} = y_{1} - y_{o}, \quad \Delta y_{1} = y_{2} - y_{1}, ..., \quad \Delta y_{n-1} = y_{n} - y_{n-1}$$

$$\Delta^{2} y_{o} = \Delta y_{1} - \Delta y_{o} = (y_{2} - y_{1}) - (y_{1} - y_{o}) = y_{2} - 2y_{1} + y_{o}$$

$$\Delta^{2} y_{1} = \Delta y_{2} - \Delta y_{1} = (y_{3} - y_{2}) - (y_{2} - y_{1}) = y_{3} - 2y_{2} + y_{1}$$

$$\Delta^{3} y_{o} = \Delta^{2} y_{1} - \Delta^{2} y_{o} = (y_{3} - 2y_{2} + y_{1}) - (y_{2} - 2y_{1} + y_{o}) = y_{3} - 3y_{2} + 3y_{1} - y_{o}$$

$$\Delta^{3} y_{1} = y_{4} - 3y_{3} + 3y_{2} - y_{1}, \text{ etc.}$$

In general, we have

Also,
$$\Delta^{n+1}f(x) = \Delta[\Delta^n f(x)], \quad i.e., \Delta^{n+1}y_i = \Delta[\Delta^n y_i], \quad n = 0, 1, 2, ...$$
Also, $\Delta^{n+1}f(x) = \Delta^n[f(x+h) - f(x)] = \Delta^n f(x+h) - \Delta^n f(x)$
and $\Delta^{n+1}y_i = \Delta^n y_{i+1} - \Delta^n y_i, \quad n = 0, 1, 2, ...$

Where Δ^0 is call an identity operator. That is $\Delta^0 f(x) = f(x)$ and $\Delta^1 = \Delta$ The tabular representation for forward difference is put as follow.

Table 4.1. Forward difference table

X	у	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$	
x_o	y_o						
		Δy_o					
x_1	y_1		$\Delta^2 y_o$				
		Δy_1		$\Delta^3 y_o$			
x_2	y_2		$\Delta^2 y_1$		$\Delta^4 y_o$		
		Δy_2		$\Delta^3 y_1$		$\Delta^5 y_o$	
x_3	y_3		$\Delta^2 y_2$		$\Delta^4 y_1$		
		Δy_3		$\Delta^3 y_2$			
x_4	y_4		$\Delta^2 y_3$				
		Δy_4					
x_5	y_5						

The forward differences for the arguments x_0, x_1, \ldots, x_5 are shown in Table 4.1. Table 4.1 is called a *diagonal difference table* or *forward difference table*. The first term in Table 4.1 is y_0 and is called the *leading term*. The differences $\Delta y_0, \Delta^2 y_0, \Delta^3 y_0, \ldots$, are called the *leading differences*. Similarly, the differences with fixed subscript are called *forward differences*.

Example 4.2.

1. Construct a forward difference table for the following data

х	0	10	20	30
у	0	0.174	0.347	0.518

Solution: The forward difference table for the given data is shown below.

Table4.2. Forward difference table for the above data

$\boldsymbol{\mathcal{X}}$	y	Δy	$\Delta^2 y$	$\Delta^3 y$
0	0			
		0.174		
10	0.174		-0.001	
		0.173		-0.001
20	0.347		-0.002	
		0.171		

30	0.518			
----	-------	--	--	--

2. Draw the forward difference table for $y = f(x) = x^3 + 2x + 1$, for x = 1,2,3,4,5.

Solution: The forward difference table is given below.

Table 4.3. Forward difference table for (2)

х	y = f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$
1	4				
		2			
2	6		1		
		3		-1	
3	9		0		3
		3		2	
4	12		2		
		5			
5	17				

4.3. Backward difference operators

Definition 4.3: The backward difference operator denoted by ∇ is defined as

$$\nabla f(x) = f(x) - f(x - h).$$

This equation can be written as

$$\nabla y_i = y_i - y_{i-1}, i = n, n-1, \dots, 1.$$

$$\nabla y_n = y_n - y_n, \quad \nabla y_n = y_n - y_n. \tag{4.2}$$

or $\nabla y_1 = y_1 - y_0$, $\nabla y_2 = y_2 - y_1$,, $\nabla y_n = y_n - y_{n-1}$ (4.2) The differences in equation (4.2) are called *first differences*. The *second differences* are denoted $\nabla^2 y_2, \nabla^2 y_3, \dots, \nabla^2 y_n$ by:

Hence

$$\begin{array}{lll} \nabla^2 y_2 &= \nabla (\nabla y_2) &= \nabla (y_2 - y_1) = \nabla y_2 - \nabla y_1 = (y_2 - y_1) - (y_1 - y_0) = y_2 - 2y_1 + y_0. \\ \text{Similarly,} & \nabla^2 y_3 &= y_3 - 2y_2 + y_1, \nabla^2 y_4 = y_4 - 2y_3 + y_2, \text{ and so on.} \\ \text{In general, we have:} & \nabla^{\pmb{k}} y_{\pmb{i}} = \nabla^{\pmb{k}-1} y_{\pmb{i}} - \nabla^{\pmb{k}-1} y_{\pmb{i}-1}, \; \pmb{i} = \pmb{n}, \pmb{n} - \pmb{1}, \dots, \pmb{k} \end{array}$$

In general, we have:
$$\nabla^{k} y_{i} = \nabla^{k-1} y_{i} - \nabla^{k-1} y_{i-1}$$
, $i = n, n-1, ..., k$

Where $\nabla^0 y_i = y_i$, and hence $\nabla^1 y_i = \nabla y_i$ The backward differences written in a tabular form is shown in Table 4.4 below. In Table 4.4, the differences $\nabla^n y$ with a fixed subscript 'i' lie along the diagonal upward sloping.

Table 4.4: Backward difference table

х	у	∇y	$\nabla^2 y$	$\nabla^3 y$	$\nabla^4 y$
x_0	y_0				
		∇y_1			
x_1	y_1		$\nabla^2 y_2$		
		∇y_2		$\nabla^3 y_3$	
x_2	y_2		$\nabla^2 y_3$		$\nabla^4 y_4$
		∇y_3		$\nabla^3 y_4$	
x_3	y_3		$\nabla^2 y_4$		
		∇y_4			
χ_4	y_4				

Table 4.4 is called the backward difference or horizontal table.

Example 4.3:

1. Construct the backward difference table of the following and find $\nabla^2 y_2$, $\nabla^2 y_3$ and $\nabla^3 y_3$.

x	0	10	20	30
у	0	0.174	0.347	0.518

Solution: The backward difference of this problem is given as follow.

Table 4.5: backward difference table

x	у	∇y	$\nabla^2 y$	$\nabla^3 y$
0	0			
		0.174		
10	0.174		-0.001	
		0.173		-0.001
20	0.347		-0.002	
		0.171		
30	0.518			

Here $\nabla^2 y_2 = -0.001$, $\nabla^2 y_3 = -0.002$ and $\nabla^3 y_3 = -0.001$. 2. Obtain the backward differences for the function $f(x) = x^3$ from x = 1 to 1.05 to two decimals chopped and find ∇y_5 , $\nabla^2 y_5$, $\nabla^3 y_5$, $\nabla^4 y_5$ and $\nabla^5 y_5$.

Solution: The backward difference table is computed as below.

Table 4.6: backward difference table

x	у	∇y	$\nabla^2 y$	$\nabla^3 y$	$\nabla^4 y$	$\nabla^5 y$
1.00	1					
		0.030				
1.01	1.030		0.001			
		0.031		-0.001		
1.02	1.061		0.000		0.002	
		0.031		0.001		-0.003
1.03	1.092		0.001		-0.001	
		0.032		0.000		
1.04	1.124		0.001			
		0.033				
1.05	1.157					

 $abla y_5 = 0.033,
abla^2 y_5 = 0.001,
abla^3 y_5 = 0.000,
abla^4 y$

-0.001, $\nabla^5 y_5 = -0.003$

Here,

3. Find the missing term in the table below.

\boldsymbol{x}	0	1	2	3	4
у	3	2	3	?	11

Solution: Let the missing term be a, then using backward difference table, we have;

Table 4.7: backward difference

X	у	∇y	$\nabla^2 y$	$\nabla^3 y$	$\nabla^4 y$
0	3				
		-1			
1	2		2		
		1		a – 6	
2	3		a-4		
		a-3		18 - 4a	
3	а		14 - 2a		
		11 - a			

1.	11		
4	11		

From the table we see that a - 6 = 0, and hence the missing term is 6.

Exercise 4.3:

1. Construct a backward difference table for the following data.

х	45	55	65	75
у	20	60	120	180

- 2. If *m* is a positive integer and the interval of differencing is 1, show that $x^m = x(x-1) \dots [x-1]$ (x-1)].
- 3. Find the missing term in the table below.

x	0	1	2	3	4
y	1	3	13	?	81

4.4. Central difference operators

Activity 4.4: Let $f(x) = e^x + 2$. Compute f(x + h/2) - f(x - h/2) for h = 0, 1, 2, 3.

Definition 4.4: The central difference operator is denoted by the symbol δ and is defined by

$$\delta f(x) = f(x + h/2) - f(x - h/2)$$

where h is the interval of differencing.

In terms of y, the first central difference is written as

$$\delta y_i = y_{i+1/2} - y_{i-1/2}$$

where

$$y_{i+1/2} = f(x_i + h/2) \text{ and } y_{i-1/2} = f(x_i - h/2).$$

Hence

$$\delta y_{1/2} = y_1 - y_0, \delta y_{3/2} = y_2 - y_1, ..., \delta y_{n-1/2} = y_n - y_{n-1}.$$

The second central differences are given by

$$\delta^2 y_i = \delta y_{i+1/2} - \delta y_{i-1/2} = (y_{i+1} - y_i) - (y_i - y_{i-1}) = y_{i+1} - 2y_i + y_{i-1}$$

In general:
$$\delta^n y_i = \delta^{n-1} y_{i+1/2} - \delta^{n-1} y_{i-1/2}.$$

$$\delta^n y_i = \delta^{n-1} y_{i+1/2} - \delta^{n-1} y_{i-1/2}.$$

The central difference table for the seven arguments $x_0, x_1, ..., x_6$ is given in table 4.7.

Table 4.8 central difference table

CCIIti	ii diiic	iciice tabi					
X	y	δу	$\delta^2 y$	$\delta^3 y$	$\delta^4 y$	$\delta^5 y$	$\delta^6 y$
x_0	y_0						
		$\delta y_{1/2}$					
x_1	y_1		$\delta^2 y_1$				
		$\delta y_{3/2}$		$\delta^{3}y_{3/2}$			
x_2	y_2		$\delta^2 y_2$		$\delta^4 y_2$		
		$\delta y_{5/2}$		$\delta^3 y_{5/2}$		$\delta^5 y_{5/2}$	
x_3	y_3		$\delta^2 y_3$		$\delta^4 y_3$		$\delta^6 y_3$
		$\delta y_{7/2}$		$\delta^3 y_{7/2}$		$\delta^5 y_{7/2}$	
x_4	y_4		$\delta^2 y_4$		$\delta^4 y_4$	·	
		$\delta y_{9/2}$		$\delta^{3}y_{9/2}$			
x_5	y_5	,	$\delta^2 y_5$,			
		$\delta y_{11/2}$					
x_6	y_6						
			1 1 11 00				

It is noted in table 4.7 that all the odd differences have fraction suffices and all the even differences are integral suffices.

Exercise 4.4:

1. Construct the central difference table for

x	1	2	3	4	5
у	4	6	9	12	17

2. Let $f(x) = x \sin x$. Formulate the central difference table for x = 0, 2, 4, 6, 8, 10.

4.5. Properties of the operators

Activity 4.5: 1. Let
$$f(x) = 6$$
, find $\Delta f(x)$.

2. Let
$$f(x) = x^2 + 5x + 3$$
. Compute $\Delta E f(x)$.

Properties of Δ .

- 1. If c is a constant then $\Delta c = 0$.
- 2. $\Delta[f(x) \pm g(x)] = \Delta f(x) \pm \Delta g(x)$
- 3. $\Delta[cf(x)] = c\Delta f(x)$, for a constant c.
- 4. If m and n are positive integers, then $\Delta^m \Delta^n f(x) = \Delta^{m+n} f(x)$
- 5. $\Delta[f(x)g(x)] = f(x)\Delta g(x) + g(x)\Delta f(x)$

6.
$$\Delta \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)\Delta f(x) - f(x)\Delta g(x)}{g(x)g(x+h)}$$

$$f(x) = c$$

Hence
$$f(x+h) = c$$
, h is the interval of differencing.
Then $\Delta f(x) = f(x+h) - f(x) = c - c = 0$ or $\Delta c = 0$

Proof (2):
$$\Delta[f(x) + g(x)] = [f(x+h) + g(x+h)] - [f(x) + g(x)]$$
$$= f(x+h) - f(x) + g(x+h) - g(x)$$

$$= f(x+h) - f(x) + g(x+h) - g(x)$$

= $\Delta f(x) + \Delta g(x)$

Similarly:
$$\Delta[f(x) - g(x)] = \Delta f(x) - \Delta g(x)$$
 and hence
$$\Delta[f(x) \pm g(x)] = \Delta f(x) \pm \Delta g(x)$$

Proof (3):
$$\Delta[cf(x)] = [cf(x+h) - cf(x)]$$
$$= c[f(x+h) - f(x)]$$

$$= c\Delta f(x)$$

Proof (4)
$$\Delta^{m} \Delta^{n} f(x) = \left(\overbrace{\Delta \times \Delta \times ... \times \Delta}^{m \ factors} \right) \left(\overbrace{\Delta \times \Delta \times ... \times \Delta}^{n \ factors} \right) f(x)$$
$$= \left(\overbrace{\Delta \times \Delta \times \Delta \times ... \times \Delta}^{m + n \ factors} \right) f(x)$$

Similarly we can prove (5) and (6).

Relations between the operators Summary of operators

operators	Definition
Forward difference operator Δ	$\Delta f(x) = f(x+h) - f(x)$
Backward difference operator ∇	$\nabla f(x) = f(x+h) - f(x)$
Central difference operator δ	$\delta f(x) = f(x+h/2) - f(x-h/2)$
Shift operator E	Ef(x) = f(x+h)
Average operator μ	$\mu f(x) = 0.5[f(x+h/2)-f(x-h/2)]$

1. For the operators Δ and E, we have the following.

$$\Delta = E - 1$$
 and $E = \Delta + 1$

Proof:
$$\Delta f(x) = f(x+h) - f(x)$$
 and $Ef(x) = f(x+h)$

This implies that
$$\Delta f(x) = Ef(x) - f(x)$$

$$= (E-1)f(x)$$

$$\Rightarrow \qquad \Delta = E-1$$
And
$$E = \Delta + 1$$

$$2. E\Delta f(x) = E(f(x+h) - f(x)) = Ef(x+h) - Ef(x)$$

$$= f(x+2h) - f(x+h)$$

$$= \Delta f(x+h)$$

$$= \Delta Ef(x)$$

$$E\Delta = \Delta E$$

Hence $E\Delta = \Delta E$

Example 4.5: Show that $\Delta \log f(x) = \log(1 + \frac{\Delta f(x)}{f(x)})$

Solution: Let *h* be the interval of differencing

$$f(x+h) = Ef(x) = (\Delta+1)f(x) = \Delta f(x) + f(x)$$

$$\Rightarrow \frac{f(x+h)}{f(x)} = \frac{\Delta f(x)}{f(x)} + 1$$

Taking logarithms on both sides we get

$$\log \left[\frac{f(x+h)}{f(x)} \right] = \log \left[1 + \frac{\Delta f(x)}{f(x)} \right]$$

$$\Rightarrow \qquad \log f(x+h) - \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)} \right]$$

$$\Rightarrow \qquad \Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)} \right]$$

Example 4.5: Evaluate $(\frac{\Delta^2}{E})x^3$

Solution: Let h be the interval of differencing:
$$\left(\frac{\Delta^2}{E}\right) x^3 = (\Delta^2 E^{-1}) x^3$$

 $= (E-1)^2 E^{-1} x^3$ (Since $\Delta = E-1$)
 $= (E^2 - 2E + 1) E^{-1} x^3$
 $= (E-2 + E^{-1}) x^3$
 $= Ex^3 - 2x^3 + E^{-1} x^3$
 $= (x+h)^3 - 2x^3 + (x-h)^3$
 $= 6xh$

Note: If h = 1, then $\left(\frac{\Delta^2}{E}\right) x^3 = 6x$

Example 4.6: Prove that $e^x = \frac{\Delta^2}{E} e^x \cdot \frac{Ee^x}{\Delta^2 e^x}$, the interval of differencing being h.

Solution: We know that: Ef(x) = f(x+h), then $Ee^x = e^{x+h}$

Again
$$\Delta e^{x} = e^{x+h} - e^{x} = e^{x}(e^{h} - 1)$$

$$\Rightarrow \qquad \Delta^{2}e^{x} = e^{x} \cdot (e^{h} - 1)^{2}$$
Hence
$$\left(\frac{\Delta^{2}}{E}\right)e^{x} = (\Delta^{2}E^{-1})e^{x} = \Delta^{2}e^{x-h} = e^{-h}(\Delta^{2}e^{x})$$

$$= e^{-h}e^{x}(e^{h} - 1)^{2}$$

Therefore, the right hand side $= e^{-h}e^x(e^h - 1)\frac{e^{x+h}}{e^x(e^h - 1)} = e^x$

Relation between E and V:
$$\nabla f(x) = f(x) - f(x-h) = f(x) - E^{-1}f(x)$$

 $\Rightarrow \qquad \nabla = 1 - E^{-1}$
 $\Rightarrow \qquad \nabla = \frac{E-1}{E}$

Example 4.7: Prove that (a) $(1 + \Delta)(1 - \nabla) = 1$ (b) $\Delta \nabla = \Delta - \nabla$

Solution: a)
$$(1 + \Delta)(1 - \nabla)f(x) = EE^{-1}f(x)$$

$$= Ef(x - h)$$

$$= f(x) = 1 \cdot f(x)$$
Thus $(1 + \Delta)(1 - \nabla) = 1$.
b) $\Delta \nabla f(x) = (E - 1)(1 - E^{-1})f(x)$

$$= (E - 1)[f(x) - f(x - h)]$$
And $(\Delta - \nabla)f(x) = ((E - 1) - (1 - E^{-1}))f(x)$

$$= (E - 1)[f(x) - f(x - h)]$$
Therefore $\Delta \nabla = \Delta - \nabla$.
1. $\delta = E^{1/2} - E^{-1/2}$
Proof: We know that $\delta [f(x)] = f(x + h/2) - f(x - h/2)$

$$= E^{1/2}f(x) - E^{-1/2}f(x)$$

$$= (E^{1/2} - E^{-1/2})f(x)$$
Which implies that $\delta = E^{1/2} - E^{-1/2}$
2. $\Delta = E\nabla = \nabla E = \delta E^{1/2}$
Proof: $E\nabla f(x) = E[f(x) - f(x - h)]$

$$= Ef(x) - Ef(x - h)$$

$$= Ef(x + h) - f(x) = \Delta f(x)$$
Thus $E\nabla = \Delta$
Again $\nabla Ef(x) = \nabla f(x + h)$

$$= f(x + h) - f(x) = \Delta f(x)$$
Hence we have $\nabla E = \Delta$
Also $\delta E^{1/2} f(x) = \delta f(x + h/2)$

$$= f(x + h) - f(x) = \Delta f(x)$$
Which implies $\delta E^{1/2} = \Delta$
From (1), (2) and (3), we have that $\Delta = E\nabla = \nabla E = \delta E^{1/2}$
3. $\Delta \nabla = \nabla \Delta = \delta^2$
Proof: $\Delta \nabla = \delta^2$
Therefore from (1) and (2), we have, $\Delta \nabla = \nabla \Delta = \delta^2$
Therefore from (1) and (2), we have, $\Delta \nabla = \nabla \Delta = \delta^2$
Example 4.8: Find $\Delta^3 (1 - 3x)(1 - 2x)1 - x$.
Solution: Let $f(x) = (1 - 3x)(1 - 2x)1 - x$.
Solution: Let $f(x) = (1 - 3x)(1 - 2x)1 - x$.
Solution: Let $f(x) = (-6)31 = -36$.

- 1. Show that: a) $\Delta \nabla = \Delta \nabla$ b) $\nabla = \Delta E^{-1}$ c) $E^n = (1 + \Delta)^n$
- 2. Find the following a) Δe^{ax} b) $\Delta^2(3e^x)$ c) $\frac{\Delta}{1+x^2}$ d) $\Delta \sin(ax+b)$
- 3. Let $v_o = 1$, $v_1 = 5$, $v_2 = 10$, $v_3 = 30$, $v_4 = 30$. Find $\Delta^4 v_o$. 4. Construct table of forward, backward and central differences of the following.

a) 70 80 90

- b) $f(x) = x^2 + 6x 9$, for x = 1,2,3,4,6,7,8296 324
 - - c) $f(x) = e^x + 2x$ for x = 0,1,2,3,4,5
 - d) $f(x) = \ln(x^2)$ for x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6
- 2. Find the missing term of the following.

a) 17 38 8 b)

х	0	1	2	3	4
y	1	-2	-1	?	37

- 5. Given $u_0 = 5$, $u_1 = 24$, $u_2 = 81$, $u_3 = 200$, $u_4 = 100$ and $u_5 = 8$. Find $\Delta^5 u_0$.