AN7158N

Dual 7.5W Audio Power Amplifier Circuit

Overview

The AN7158N is an integrated circuit designed for power amplifier of 7.5W (16V, $4\Omega)$ output with low noise and low distortion, and it suits TV set with multi-sound. Stereo operation is enabled due to incorporating two amplifiers on one chip. 12-pin SIL package enabled compact and high-densely mounted set.

■ Features

- Incorporating protection circuits (surge, thermal protection and etc.)
- · Automatic operating point stabilizer circuit
- Low distortion, low 1/f noise
- Low shock noise from power ON/OFF operation
- Better channel separation
- Fewer external components

■ Block Diagram

■ Absolute Maximum Ratings (Ta= 25°C)

Parameter	Symbol	Rating	Unit
Supply Voltage Note 1)	V_{CC}	24	V
Supply Voltage Note 2)	V_{CC}	20	V
Supply Current	I_{CC}	4	A
Power Dissipation (Ta= 45°C)	P_{D}	30	W
Operating Ambient Temperature	$T_{ m opr}$	<i>−</i> 30 ~ + 75	°C
Storage Temperature	T_{stg}	− 55 ~ + 150	°C

Without signal $V_{\text{CC}} = 24 \text{V}$ (For non-stabilized supply) Operation $V_{\text{CC}} = 20 \text{V}$ (For stabilized supply) Note 1)

Note 2)

■ Electrical Characteristics (Ta = 25°C)

• V_{CC} =13.2V, R_L = 4Ω , f=1kHz

Parameter	Symbol	Condition	min.	typ.	max.	Unit
Quiescent Circuit Current	I_{CQ}	$V_i = 0 mV$	40	70	120	mA
Voltage Gain	Gv	$V_i = 3mV$	52	54	56	dB
Output Power	Po	THD = 10%	4.8	5.5		W
Total Harmonic Distortion	THD	$V_i = 3mV$		0.15	1	%
Output Noise Voltage	V _{no}	$R_g = 10k\Omega$		1	3	mV
Channel Balance	СВ	V 2V		0	1	dB
Separation	Sep.	$V_i = 3mV$	45	50		dB
Ripple Rejection Ratio	RR	$f = 60$ Hz, $R_g = 600\Omega$		40		dB

• $V_{CC} = 16V$, $R_L = 8\Omega$, f = 1kHz

Parameter	Symbol	Condition	min.	typ.	max.	Unit
Quiescent Circuit Current	I_{CQ}	$V_i = 0mV$	40	80	140	mA
Voltage Gain	Gv	$V_i = 4mV$	52	54	56	dB
Output Power	Po	THD = 10%	4	4.5	_	W
		$R_L = 4\Omega$, THD = 10%		7.5	_	W
Total Harmonic Distortion	THD	$V_i = 4mV$		0.1	1	%
Output Noise Voltage	V_{no}	$R_g = 10k\Omega$		1	3	mV
Crosstalk	CT	$V_i = 4mV$, $R_g = 10k\Omega$	45		_	dB

■ Printed Circuit Board Layout

■ Pin Descriptions

Pin No.	Pin Name	Pin No.	Pin Name
1	V_{CC}	7	Bootstrap Ch.2
2	Output Ch.1	8	N.F.B Ch.2
3	GND	9	Input Ch.2
4	Input Ch.1	10	GND
5	N.F.B Ch.1	11	Output Ch.2
6	Bootstrap Ch.1	12	Ripple Filter