CSGE602055 Operating Systems CSF2600505 Sistem Operasi Week 05: Virtual Memory

Rahmat M. Samik-Ibrahim (ed.)

University of Indonesia

https://os.vlsm.org/
Always check for the latest revision!

REV251 06-Oct-2020

Operating Systems 202³) — **PJJ from HOME** ZOOM: International [Tue 08-10] — A/Matrix [Tue 10-12]

Week	Schedule & Deadline ¹)	Торіс	OSC10 ²)
Week 00	15 Sep - 21 Sep 2020	Overview 1, Virtualization & Scripting	Ch. 1, 2, 18.
Week 01	22 Sep - 28 Sep 2020	Overview 2, Virtualization & Scripting	Ch. 1, 2, 18.
Week 02	29 Sep - 05 Oct 2020	Security, Protection, Privacy, & C-language.	Ch. 16, 17.
Week 03	06 Oct - 12 Oct 2020	File System & FUSE	Ch. 13, 14, 15.
Week 04	13 Oct - 19 Oct 2020	Addressing, Shared Lib, & Pointer	Ch. 9.
Week 05	20 Oct - 26 Oct 2020	Virtual Memory	Ch. 10.
Week 06	27 Oct - 16 Nov 2020	Concurrency: Processes & Threads	Ch. 3, 4.
	29 Oct 2020	Maulid Nabi	
Week 07	17 Nov - 23 Nov 2020	Synchronization & Deadlock	Ch. 6, 7, 8.
Week 08	24 Nov - 30 Nov 2020	Scheduling + W06/W07	Ch. 5.
Week 09	01 Dec - 07 Dec 2020	Storage, Firmware, Bootloader, & Systemd	Ch. 11.
Week 10	08 Dec - 16 Dec 2020	I/O & Programming	Ch. 12.
	09 Dec 2020	Pil Kada	

¹) The **DEADLINE** of Week 00 is 21 Sep 2020, whereas the **DEADLINE** of Week 01 is 28 Sep 2020, and so on...

²) Silberschatz et. al.: **Operating System Concepts**, 10th Edition, 2018.

³⁾ This information will be on **EVERY** page two (2) of this course material.

STARTING POINT — https://os.vlsm.org/

- □ **Text Book** Any recent/decent OS book. Eg. (**OSC10**)
 Silberschatz et. al.: **Operating System Concepts**, 10th Edition,
 2018. See also http://codex.cs.yale.edu/avi/os-book/OS10/.
 - Resources
 - □ **SCELE** https://scele.cs.ui.ac.id/course/view.php?id=3020. The enrollment key is **XXX**.
 - □ Download Slides and Demos from GitHub.com
 https://github.com/UI-FASILKOM-OS/SistemOperasi/:
 os00.pdf (W00), os01.pdf (W01), os02.pdf (W02), os03.pdf (W03),
 os04.pdf (W04), os05.pdf (W05), os06.pdf (W06), os07.pdf (W07),
 os08.pdf (W08), os09.pdf (W09), os10.pdf (W10).
 - □ Problems https://rms46.vlsm.org/2/:
 195.pdf (W00), 196.pdf (W01), 197.pdf (W02), 198.pdf (W03),
 199.pdf (W04), 200.pdf (W05), 201.pdf (W06), 202.pdf (W07),
 203.pdf (W08), 204.pdf (W09), 205.pdf (W10).
- ☐ Build your own Virtual Guest https://osp4diss.vlsm.org/

Week 05: Memory

- Start
- Schedule
- Week 05
- 4 Week 05
- Virtual Memory
- 6 Memory Allocation Algorothm
- TOP
- 8 06-memory
- Week 05: Check List
- 10 The End

Week 05 Virtual Memory: Topics¹

- Review of physical memory and memory management hardware
- Virtual Memory
- Caching
- Memory Allocation
- Memory Performance
- Working sets and thrashing

¹Source: ACM IEEE CS Curricula 2013

Week 05 Virtual Memory: Learning Outcomes¹

- Explain memory hierarchy and cost-performance trade-offs.
 [Familiarity]
- Summarize the principles of virtual memory as applied to caching and paging. [Familiarity]
- Describe the reason for and use of cache memory (performance and proximity, different dimension of how caches complicate isolation and VM abstraction). [Familiarity]
- Defend the different ways of allocating memory to tasks, citing the relative merits of each. [Assessment]
- Evaluate the trade-offs in terms of memory size (main memory, cache memory, auxiliary memory) and processor speed. [Assessment]
- Discuss the concept of thrashing, both in terms of the reasons it occurs and the techniques used to recognize and manage the problem. [Familiarity]

¹Source: ACM IEEE CS Curricula 2013

Virtual Memory

- Reference: (OSC10-ch10 demo-w05)
- Virtual Memory: Separation Logical from Physical.
- Virtual Address Space: logical view.
- Demand Paging
- Page Flags: Valid / Invalid
- Page Fault
- Demand Paging Performance
- Copy On Write (COW)
- Page Replacement Algorithm
 - Reference String
 - First-In-First-Out (FIFO)
 - Belady Anomaly
 - Optimal Algorithm
 - Least Recently Used (LRU)
 - LRU Implementation
 - Lease Frequently Used (LFU)
 - Most Frequently Used (MFU)

Allocation Algorothm

- Page-Buffering Algorithms
- Allocation of Frames
- Fixed Allocation
- Priority Allocation
- Global vs. Local Allocation
- Non-Uniform Memory Access (NUMA)
- Thrashing
- Working-Set Model
- Shared Memory via Memory-Mapped I/O
- Kernel
 - Buddy System Allocator
 - Slab Allocator

TOP

Figure: top

TOP (2)

	@rmsba:	se: ~			· ·	-				
гоо ×					@je ×			@r ×		. × @r × 👬 🔻
				, 1 user						
				unning, 1						
				sy, 0.0			0.0 wa,			si, 0.0 st
KiB Me		8197060			L 52 used		.908 fre		191512 but	
KiB Sv	vap:	683004	tota	ι,	0 used	, 683	004 fre	ee.	639140 cad	ched Mem
	USER	PR	NI	VIRT	RES	SHR S		**********		COMMAND
518		20	0	162032	112		225.2	0.0	1882:33	
3448	100000	20	0	0	0	0 5		0.0		kworker/0:2
3198		20	0	0	0	0 S		0.0		kworker/4:0
3062		20	0	0	0	0 S		0.0		kworker/1:2
3289		20	0	0	0	0 S		0.0		kworker/6:1
	root	20	0	0	0	0 S		0.0		rcu_sched
3376		20	0	0	0	0 S		0.0		kworker/5:0
1914		20	0	0	0	0 S		0.0		kworker/2:1
_	root	20	0	28684	4736	3012 S		0.1	0:02.91	
2	root	20	0	0	0	0 5		0.0		kthreadd
3	root	20	0	0	0	0 S		0.0		ksoftirqd/0
5	root	0	- 20	0	0	0 S		0.0		kworker/0:+
8	root	20	0	0	0	0 5		0.0	0:00.00	
9	root	rt	0	0	0	0 S		0.0		migration/0
10	root	rt	0	0	0	0 S		0.0		watchdog/0
11		rt	0	0	0	0 S		0.0		watchdog/1
1000	root	rt	0	0	0	0 S		0.0		migration/1
13	root	20	0	0	0	0 S	0.0	0.0	0:06.80	ksoftirqd/1

Figure: "h" = help

TOP (3)

```
@rmsbase: ~
      | @r... × |
Fields Management for window 1:Def, whose current sort field is %CPU
  Navigate with Up/Dn, Right selects for move then <Enter> or Left commits,
   'd' or <Space> toggles display, 's' sets sort. Use 'q' or <Esc> to end!
 PID
          = Process Id
                            TTY
                                     = Controlling T
                                                       USED
                                                                = Res+Swap Size
 USFR
          = Effective Use
                            TPGTD
                                     = Tty Process G
                                                       nsIPC
                                                                = IPC namespace
 PR
          = Priority
                             SID
                                     = Session Id
                                                       nsMNT
                                                                = MNT namespace
 NI
          = Nice Value
                            nTH
                                     = Number of Thr
                                                       nsNET
                                                                = NET namespace
 VIRT
          = Virtual Image
                             P
                                     = Last Used Cpu
                                                       nsPID
                                                                = PID namespace
 RES
          = Resident Size
                            TIME
                                     = CPU Time
                                                       nsUSER
                                                                = USER namespac
 SHR
                            SWAP
                                                       nsUTS
                                                                = UTS namespace
          = Shared Memory
                                     = Swapped Size
          = Process Statu
                            CODE
                                     = Code Size (Ki
 %CPU
         = CPU Usage
                            DATA
                                     = Data+Stack (K
 %MEM
         = Memory Usage
                            nMai
                                     = Major Page Fa
 TIME+
          = CPU Time, hun
                            nMin
                                     = Minor Page Fa
 COMMAND = Command Name/
                            nDRT
                                     = Dirty Pages C
 PPID
          = Parent Proces
                            WCHAN
                                     = Sleeping in F
 UID
                                     = Task Flags <s
          = Effective Use
                            Flags
 RUID
                            CGROUPS = Control Group
          = Real User Id
 RUSER
                            SUPGIDS = Supp Groups I
          = Real User Nam
 SUID
          = Saved User Id
                            SUPGRPS = Supp Groups N
 SUSER
          = Saved User Na
                            TGID
                                     = Thread Group
 GID
                             ENVIRON = Environment v
          = Group Id
 GROUP
          = Group Name
                            vMj
                                     = Major Faults
  PGRP
          = Process Group
                            vMn
                                     = Minor Faults
```

Figure: Moving Fields: "f"

TOP (4)

```
@rmsbase: ~
      @r... × @r... × @r... × @je... × @r... × @r... ×
                                                           @r... × @r... × @r... ×
Fields Management for window 1:Def, whose current sort field is %CPU
  Navigate with Up/Dn, Right selects for move then <Enter> or Left commits,
   'd' or <Space> toggles display, 's' sets sort. Use 'g' or <Esc> to end!
 PID
         = Process Id
                            SUID
                                    = Saved User Td
                                                       vMn
                                                               = Minor Faults
                                    = Saved User Na
                                                               = IPC namespace
 VIRT
         = Virtual Image
                            SUSFR
                                                      nsIPC
 RES
         = Resident Size
                            GID
                                                      nsMNT
                                    = Group Id
                                                               = MNT namespace
 SHR
         = Shared Memory
                            GROUP
                                    = Group Name
                                                      nsNET
                                                               = NET namespace
 SWAP
         = Swapped Size
                            PGRP
                                    = Process Group
                                                      nsPID
                                                               = PID namespace
 CODE
         = Code Size (Ki
                            TTY
                                    = Controlling T
                                                      nsUSER
                                                               = USER namespac
 DATA
         = Data+Stack (K
                            TPGID
                                                      nsUTS
                                                               = UTS namespace
                                    = Tty Process G
 USED
         = Res+Swap Size
                            SID
                                    = Session Id
 nDRT
         = Dirty Pages C
                            nTH
                                    = Number of Thr
 PPID
         = Parent Proces
                            P
                                    = Last Used Cpu
 %MEM
         = Memory Usage
                            TIME
                                    = CPU Time
 USER
         = Effective Use
                            nMaj
                                    = Major Page Fa
 PR
         = Priority
                            nMin
                                    = Minor Page Fa
 NI
         = Nice Value
                            WCHAN
                                    = Sleeping in F
         = Process Statu
                            Flags
                                    = Task Flags <s
 %CPU
         = CPU Usage
                            CGROUPS = Control Group
 TIME+
         = CPU Time. hun
                            SUPGIDS = Supp Groups I
                            SUPGRPS = Supp Groups N
 COMMAND = Command Name/
 UID
                            TGID
         = Effective Use
                                    = Thread Group
 RUID
                            ENVIRON = Environment v
         = Real User Id
 RUSER
         = Real User Nam
                            vMi
                                    = Maior Faults
```

Figure: Moving Fields

TOP(5)

	@rmsbase: ~/I	Downloads						
гоо ×	@r ×	@r × (@r × [@	or ×	e × @r.	× Ог	× @r	× @r × @r × @r ×
								.54, 0.58
						ng, 0 :		
								.0 hi, 0.0 si, 0.0 st
								12936516 buff/cache
KiB Sv	vap: 10 0	90444 to	otal,	994752	free,	5692	used.	12649780 avail Mem
PID	VIRT							nDRT
100000000000000000000000000000000000000	2377296					1642748		
1234	278216	87880	59116		2288		87880	
	2683572		1493/6	0		1856708		
	1687448			0		1179008		
2841		50860		0	292		50860	
						1474084		
	2047252					1587052		
32501			27960		76	373220	33500	
	8554396					7954584		
	2391592					1717824		
	2198448					1532152		
1292 2514	020224	0 34304	26028	0	0	440064	24204	
The second second second					36	448864		
	4515228					3757984		
32495	33488	3380	2836		96	1264 1716		
2412	44036 423204	11380			212			
A STATE OF THE OWNER, THE PARTY NAMED IN			5264		152			
2512	685824	74188	36868	0	552	399836	74188	0

Figure: Write Configuration .toprc: "W"

06-memory

```
/* Copyright (C) 2016-2018 Rahmat M. Samik-Ibrahim
 * https://rahmatm.samik-ibrahim.vlsm.org/
 * This program is free script/software. This program is distributed in the
 * hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
 * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * REVO4 Mon Mar 12 17:33:30 WIB 2018
 * START Mon Oct 3 09:26:51 WIB 2016
 */
#define MSIZEO 0x10000
#define MSIZE1 0x10008
#define MSTZE2 0x10009
#define MSTZE3 0x1000A
#define MSIZE4 0x20978
#define MSIZE5 0x20979
#define MSIZE6 0x2097A
#define MSIZE7 0xF0000
#define MSTZE8 0x10000
#define MSTZE9 0x1000
#define LINE
#define MAXSTR 80
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
void printLine(int line) {
   while(line-- > 0) putchar('x');
  putchar('\n'):
  fflush(NULL):
```

06-memory (2)

```
void main (void) {
   int
        msize[] = {MSIZE0, MSIZE1, MSIZE2, MSIZE3, MSIZE4,
                    MSIZE5, MSIZE6, MSIZE7, MSIZE8, MSIZE97:
   int ii. ii:
   int myPID = (int) getpid();
   char strSYS1[MAXSTR], strOUT[MAXSTR];
   char* chrStr = strSYS1:
   char* chrPTR:
   printLine(LINE):
   sprintf(strSYS1, "top -b -n 1 -p%d | tail -5", myPID);
   system (strSYS1);
   sprintf(strSYS1, "top -b -n 1 -p%d | tail -1", mvPID);
  for (ii=0; ii< (sizeof(msize)/sizeof(int)); ii++){
     chrStr = malloc(msize[ii]);
     fgets(strOUT, sizeof(strOUT)-1, popen(strSYS1, "r"));
     strOUT[(int) strlen(strOUT)-1]='\0':
     printf("%s [%X]\n", strOUT, msize[ii]);
     free(chrStr):
   7
  for (ii=0: ii< (sizeof(msize)/sizeof(int)): ii++){
     chrPTR = chrStr = malloc(msize[ii]):
     for (ii=0:ii<msize[ii]:ii++)
         *chrPTR++='x':
     fgets(strOUT, sizeof(strOUT)-1, popen(strSYS1, "r"));
      strOUT[(int) strlen(strOUT)-1]='\0':
     printf("%s [%X]\n", strOUT, msize[ii]);
     free(chrStr);
  }
}
```

06-memory (2)

>>>> \$./06-memory 7239132 free, KiB Mem: 8197060 total, 957928 used, 192520 buffers KiB Swap: 660108 cached 683004 total, 0 used, 683004 free. Mem PID VIRT RES SHR. SWAP CODE DATA USED nDRT [10000] [10008] Γ100091 [1000A] [20978] [20979] [2097A] [F0000] [10000] [1000]

06-memory (3)

4362	4376	1200	1068	0	4	524	1200	0 [1000]
4362	4376	1200	1068	0	4	524	1200	0 [10000]
4362	4376	1276	1068	0	4	524	1276	0 [10008]
4362	4376	1276	1068	0	4	524	1276	0 [10009]
4362	4376	1284	1068	0	4	524	1284	0 [1000A]
4362	4376	1284	1068	0	4	524	1284	0 [20978]
4362	4376	1352	1068	0	4	524	1352	0 [20979]
4362	4376	1352	1068	0	4	524	1352	0 [2097A]
4362	5340	2144	1068	0	4	1488	2144	0 [F0000]
4362	5340	2324	1068	0	4	1488	2324	0 [10000]
4362	5340	2324	1068	0	4	1488	2324	0 [1000]
>>>>> \$								

Week 05: Check List (Deadline: Monday, 26-Oct-2020).

- Starting Point: https://os.vlsm.org/
- ☐ Week 05: Assignment (more details in **os05.pdf**).
 - Read: (OSC10 chapter 10)
 - TBA.
- \square The "Assignment Day" is every Thursday morning.
- ☐ This page is https://os.vlsm.org/Slides/check05.pdf.

The End

- ☐ This is the end of the presentation.
- extstyle ext
- This is the end of the presentation.