北京大学信息科学技术学院考试试卷

7	诗试科日 :	<u>计算机</u>	组织与体	<u> 系结构</u>	姓名: _		_ 学号:		
夫		202	<u>0</u> 年 <u>6</u>	_月 <u>10</u>	_日	任课教师	j: <u>陆</u>	俊林	
	题号	1	1 1	111	四	五.		总分	
	分数								
	阅卷人								

北京大学考场纪律

- 1、考生进入考场后,按照监考老师安排隔位就座,将学生证放在桌面上。无学生证者不能参加考试,迟到超过15分钟不得入场。在考试开始30分钟后方可交卷出场。
- 2、除必要的文具和主考教师允许的工具书、参考书、计算器以外,其它所有物品(包括空白纸张、手机、或有存储、编程、查询功能的电子用品等)不得带入座位,已经带入考场的必须放在监考人员指定的位置。
- 3、考试使用的试题、答卷、草稿纸由监考人员统一发放,考试结束时收回,一律不准带出考场。若有试题印制问题请向监考教师提出,不得向其他考生询问。提前答完试卷,应举手示意请监考人员收卷后方可离开;交卷后不得在考场内逗留或在附近高声交谈。未交卷擅自离开考场,不得重新进入考场答卷。考试结束时间到,考生立即停止答卷,在座位上等待监考人员收卷清点后,方可离场。
- 4、考生要严格遵守考场规则,在规定时间内独立完成答卷。不准交头接耳,不准偷看、夹带、抄袭或者有意让他人抄袭答题内容,不准接传答案或者试卷等。凡有违纪作弊者,一经发现,当场取消其考试资格,并根据《北京大学本科考试工作与学术规范条例》及相关规定严肃处理。
- 5、考生须确认自己填写的个人信息真实、准确,并承担信息填写错误带来的一切责任与后果。

学校倡议所有考生以北京大学学生的荣誉与诚信答卷,共同维护北京大学的学术 声誉。

以下为试题和答题纸,共 11 页。

第一题 填空题 (共20分)

连通

连通

 M_2 :

 M_5 :

 M_1 :

M₄:

1.	计算机执行指令的基本步骤按顺序是:取指、译码、、、写回。
2.	通常认为第一台存储程序式的电子计算机是。
3.	Intel 4004 的字长为 <u>8</u> 位,首款 MIPS CPU(R2000)的字长为 <u>32</u> 位。
4.	以课程中讲解的 4-bit 第一版乘法器为例,对于二进制数 0010×0011,当第 2 次循环结束时,被乘
	数寄存器、乘数寄存器和乘积寄存器的值分别是 <u>00001000</u> ,0000 <u>,00000110</u> 。(直接写二进制
	数)
5.	以课程中讲解的 4-bit 第一版除法器为例,对于二进制数 0111÷0010,当第 2 次循环结束时,商
	寄存器、除数寄存器和余数寄存器的值是 <u>0000,00001000,00000111</u> 。(直接写二进制数)
6.	在 MIPS 的五级流水线结构中, 计算访存的地址是在
	的五级流水线结构中,计算访存的地址是在 <u>地址生成</u> 阶段完成的。
7.	通常 CMOS 集成电路中,或门由一个 <u>或非</u> 门和一个 <u>非</u> 门构成。
8、	64-bit 数据宽度的 DDR3-1600 SDRAM 的峰值带宽为 12.8GB/s,接口时钟频率为 800MHz,芯片
	内部采用了 <u>8</u> 位数据预取技术,其核心频率是 <u>200</u> MHz。
9、	一个容量为 1GB 的内存,如果不考虑冗余空间,那可以存储 <u>2^33</u> 个二进制位的信息;
	一个传输率为 100Mbps 的内存接口,每秒钟最多能输出 <u>10^8</u> 个二进制位的信息。(填写
	十进制数)
10)、若向一个 SRAM 单元写入 1,则需置 BL=1, BL =0, WL=1。请问,此时 SRAM 结构图中的
	晶体管 M ₁ ~M ₆ 分别处于连通还是关闭状态?在下面空格处填写"连通"或"关闭"。

关闭

连通

 M_3 :

M₆:

关闭

连通

第二题(20分)

现有一段 MIPS 机器代码,见下表 B 列,其汇编语言源代码已残缺不全,见下表 A 列。请以 A 列为 参考,手工反汇编 B 列,填写在 C 列。C 列中标星号(*)的空格必须填写。其它空格不计分,可不填,但对回答本大题中后续小题有作用。

	<u> </u>		I
	汇编语言代码(A 列)	机器语言代	反汇编代码 (c 列)
		码(B列)	
1.	1 0x1	<u>3c011001</u>	lui \$at,0x1001
2.		342e0040	
3.	\$t7, 1	adc00000	*sw \$zero, 0x0(\$t6)
4.	sw \$t	<u>240f0001</u>	*addiu \$t7, \$zero, 0x1
5.	\$t3, 0	adcf0004	
6.		<u>240b0000</u>	
7.	\$t5, 8	240c0004	
8.		240d0008	
9.		<u>2418002c</u>	74/
10.	LOOP:	24190014	*addiu \$t9, \$zero ,0x14
11.	, \$t3	<u>01cb7820</u>	*add \$t7, \$t6, \$t3
12.		8de80000	*lw \$t0, 0x0(\$t7)
13.	add \$t7, \$t6, \$t4	01cc7820	7
14.	lw	<u>8de90000</u>	,
15.	\$t6, \$t5	<u>01cd7820</u>	
16.		01095020	*add \$t2, \$t0, \$t1
17.		<u>adea0000</u>	*sw \$t2, 0x0(\$t7)
18.		000c5821	*addu \$t3, \$zero, \$t2
19.	move	000d6021	
20.		21ad0004	
21.	EXIT	<u>01b8082a</u>	*slt \$at, \$t5, \$t8
22.	b	10200002	*beq \$at, \$zero, EXIT
23.	EXIT:	<u>0159082a</u>	*slt \$at, \$t2, \$t9
24.		<u>1420fff2</u>	*bne \$at, \$zero, LOOP
			I .

- 2. 请问 A 列第 1 行的代码应该是什么?
- 答: lui \$at,0x1001
- 3、这段代码最有可能的功能是什么?
- 答:循环复制数组

参考材料

15	1	HIDC				0	6		
ethe		MIPS	Re	fer	ence D	ata	(2)		
90	ı	CORE INSTRUCTI			A CONTRACTOR STATE OF THE STATE	**************************************		OPCODE	
()	I	CONE INSTRUCTI	ON SE	FOR-	20			/ FUNCT	
pg 7	1	NAME, MNEMO	NIC	MAT		ATION (in Verilog)		(Hex)	
ਰ	1	Add	add	R	R[rd] = R[rs]] + R[rt]	(1)	0 / 20 _{hex}	
S	1	Add Immediate	addi	Ι		+ SignExtImm	(1,2)	8 _{hex}	
E	1	Add Imm. Unsigned				+ SignExtImm	(2)		
T)	1	Add Unsigned	addu	R	R[rd] = R[rs]	78 4.34.3		0 / 21 _{hex}	
3	1	And	and	R	R[rd] = R[rs]		(-)	$0/24_{\mathrm{hex}}$	
de	÷	And Immediate	andi	Ι		& ZeroExtImm	(3)	$c_{ m hex}$	
2. Fold bottom side (columns 3 and 4) together	1	Branch On Equal	beq	I	if(R[rs]==R[PC=PC+4+	rt]) BranchAddr	(4)	4 _{hex}	
ttor		Branch On Not Equa	l bne	I	if(R[rs]!=R[r	t]) BranchAddr	(4)	5 _{hex}	
po	1	Jump	j	J	PC=JumpAd		(5)	2_{hex}	
pld	1	Jump And Link	jal	J	Waste Tallington	;PC=JumpAddr	(5)	3 _{hex}	
FC	1	Jump Register	jr	R	PC=R[rs]	,,	(-)	0 / 08 _{hex}	
4	į.				R[rt]={24'b0	,M[R[rs]			
þ	i	Load Byte Unsigned	IDU	Ι		nExtImm](7:0))	(2)	24 _{hex}	
ca	1	Load Halfword Unsigned	lhu	Ι	R[rt]={16'b0 +Sign	nExtImm](15:0)}	(2)	$25_{ m hex}$	
ate		Load Linked	11	I	R[rt] = M[R[rs]+SignExtImm]	(2,7)	$30_{ m hex}$	
)ar	1	Load Upper Imm.	lui	I	$R[rt] = \{imm$	n, 16°b0}		$f_{ m hex}$	
sel	ì	Load Word	lw	I	R[rt] = M[R[rs]+SignExtImm]	(2)		
2	î	Nor	nor	R	$R[rd] = \sim (R $	[rs] R[rt])		$0/27_{\mathrm{hex}}$	
OII	1	Or	or	R	R[rd] = R[rs]] R[rt]		$0/25_{\rm hex}$	
ati	1	Or Immediate	ori	I	R[rt] = R[rs]	ZeroExtImm	(3)		
for	1	Set Less Than	slt	R	R[rd] = (R[rs]	$[S] \le R[rt]) ? 1 : 0$		$0/2a_{hex}$	
er	ī	Set Less Than Imm.	slti	I	R[rt] = (R[rs]] < SignExtImm)? 1	: 0(2)	$a_{ m hex}$	
. Pull along perforation to separate card	i	Set Less Than Imm. Unsigned	sltiu	I] < SignExtImm) 7 1 : 0	(2,6)	b_{hex}	
alo		Set Less Than Unsig.	sltu	R	R[rd] = (R[rs]	s] < R[rt]) ? 1 : 0	100000000000000000000000000000000000000	0 / 2b _{hex}	
=	1	Shift Left Logical	sll	R	R[rd] = R[rt]	7 (F)		0 / 00 _{hex}	
P	1	Shift Right Logical	srl	R	R[rd] = R[rt]	>> shamt		0 / 02 _{hex}	
-	Ĭ	Store Byte	sb	Ι	M[R[rs]+Sig	nExtImm](7:0) =		28 _{hex}	
	i	Store Dyte	5.0	1	MIDI1:Ci-	R[rt](7:0)	(2)		
÷	ì	Store Conditional	sc	I		nExtImm] = R[rt];] = (atomic) ? 1 : 0	(2,7)	$38_{ m hex}$	
Card ("Green Card")	į.	Store Halfword	sh	I		nExtImm](15:0) =	il A	$29_{ m hex}$	
H		Store Word	222	I	MIDINALICIA	R[rt](15:0)	(2)	2b _{hex}	
ı.e	1	Subtract	sw	R	R[rd] = R[rs]	nExtImm] = R[rt]	(2)	0 / 22 _{hex}	
Ġ	1	Subtract Unsigned	subu	R	R[rd] = R[rs]	78 S	(1)	0 / 23 _{hex}	
ų (ř	Subtract Clisighed			se overflow e			nex	
ar			(2) Sig	nExtI	$mm = \{ 16 \} $ in	nmediate[15]), imm	ediate	}.	
0	1					b'0}, immediate } nmediate[15]}, imme	ediate '	27b0 3	
ate	1		(5) Jur	npAdo	$d\mathbf{r} = \{ PC+4 \}$	[31:28], address, 2't	00}		
	Ī					insigned numbers (v			
IIPS Reference Dat	ì	DACIC INICTOLICT				R[rt] = 1 if pair atom	ic, o ii i	not atomic	
re	1	R opcode	1			rd d		funct	1
efe	L		26 25	rs 21	20 16	rd sham	6.5	funct	
~	1	I opcode		rs	rt	immed	_		1
8	I	5150 T	26 25	21	20 16		4.00.000.000	0	1
Ē	1	J opcode	26.26			address			
-	650	51 2	26 25					0	

ARITHMETIC CORE INSTRUCTION SET								
				FMT/FT				
		FOR-		/ FUNCT				
NAME, MNEMO		MAT		(Hex)				
Branch On FP True		FI	if(FPcond)PC=PC+4+BranchAddr (4)	11/8/1/				
Branch On FP False		FI	if(!FPcond)PC=PC+4+BranchAddr(4)	11/8/0/				
Divide	div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0///1a				
Divide Unsigned	divu	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	0///1b				
FP Add Single	add.s	FR	F[fd] = F[fs] + F[ft]	11/10//0				
FP Add Double	add.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} + {F[ft],F[ft+1]}$	11/11//0				
FP Compare Single	C.X.s*	FR	FPcond = (F[fs] op F[ft]) ? 1 : 0	11/10//y				
FP Compare Double	c.x.d*	FR	$FPcond = ({F[fs],F[fs+1]}) op {F[ft],F[ft+1]})?1:0$	11/11//y				
* (x is eq. 1t, c	or 1e) (op is=	$=$, <, or <=) (γ is 32, 3c, or 3e)					
FP Divide Single	div.s	FR	F[fd] = F[fs] / F[ft]	11/10//3				
FP Divide Double	div.d	FR	{F[fd],F[fd+1]) = {F[fs],F[fs+1]} / {F[ft],F[ft+1]}	11/11//3				
FP Multiply Single	mul.s	FR	F[fd] = F[fs] * F[ft]	11/10//2				
FP Multiply Double	mul.d	FR	{F[fd],F[fd+1]} = {F[fs],F[fs+1]} * {F[ft],F[ft+1]}	11/11//2				
FP Subtract Single	sub.s	FR	F[fd]=F[fs] - F[ft]	11/10//1				
FP Subtract Double	sub.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} - {F[ft],F[ft+1]}$	11/11//1				
Load FP Single	lwc1	I	F[rt]=M[R[rs]+SignExtImm] (2)	31///				
Load FP Double	ldc1	I	F[rt]=M[R[rs]+SignExtImm]; (2) F[rt+1]=M[R[rs]+SignExtImm+4]	35///				
Move From Hi	mfhi	R	R[rd] = Hi	0 ///10				
Move From Lo	mflo	R	R[rd] = Lo	0 ///12				
Move From Control	mfc0	R	R[rd] = CR[rs]	10 /0//0				
Multiply	mult	R	${Hi,Lo} = R[rs] * R[rt]$	0///18				
Multiply Unsigned	multu	R	$\{Hi,Lo\} = R[rs] * R[rt] $ (6)	0///19				
Shift Right Arith.	sra	R	R[rd] = R[rt] >>> shamt	0///3				
Store FP Single	swc1	I	M[R[rs]+SignExtImm] = F[rt] (2)	39///				
Store FP Double	sdc1	I	M[R[rs]+SignExtImm] = F[rt]; (2) M[R[rs]+SignExtImm+4] = F[rt+1]	3d///				

FLOATING-POINT INSTRUCTION FORMATS

FR	opco	de	fmt	ft		fs	fd	funct
	31	26 25	21	20	16 15	11 10	6.5	0
FI	opco	de	fmt	ft		in	nmediate	
	31	26 25	21	20	16 15			0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME NUMBER		USE	PRESERVED ACROSS A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	Yes

Sta 31 Return Add

1

1

I

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.

第三题(20分)

在 MIPS 指令系统基础上简化而成的 MIPS-Lite 指令系统包含如下指令:

- 无符号加法和减法 addu rd,rs,rt
 - subu rd,rs,rt
- 立即数的逻辑或 ori rt,rs,imm16
- 装载和存储一个字(Word) lw rt,rs,imm16 sw rt,rs,imm16
- 条件分支 beq rs,rt,imm16

下图为支持该指令系统的单周期处理器的控制信号和数据通路图,并以 addu 指令为例标出了控制信号的值,请据此回答如下问题。

1. 请分析指令所需的控制信号,将下表填写完整。(注:多位信号的高位在左边)

	addu	subu	ori	lw	sw	beq
RegDst	1	1	0	0	X	Х
ALUSTC	0	0	1	1	1	0
MemtoReg	0	0	0	1	Х	Х
RegWr	1	1	1	1	0	0
MemWr	0	0	0	0	1	0
nPC_sel	0	0	0	0	0	1
ExtOp	Х	Х	0	1	1	Х
ALUctr<1:0>	00 (ADD)	01 (SUB)	10 (OR)	00 (ADD)	00 (ADD)	01 (SUB)

2、如果要将这个单周期处理器改造成 5 级流水线处理器,流水级分别为取指 (I)、译码 (D)、执行 (E)、访存 (M) 和回写 (W)。那在流水线处理器上会出现哪几种"冒险"(harzard)?对于每种冒险,请举出具体指令实例进行说明,然后说明需要如何增加或者修改哪些部件予以解决?

答:

结构冒险:

图中指令与数据存储器分开,不会发生冒险。但可能前一条指令写寄存器 addu \$t1,\$t2,\$t3 位于回写阶段,隔两条指令后一条指令 addu \$t5,\$t1,\$t2 读寄存器位于译码阶段,从而同时发生读写形成结构冒险,需要设置访存的前半周期为写寄存器,译码的后半周读寄存器来避免冒险。

数据冒险:

前一条指令是 addu \$t1,\$t2,\$t3,后一条(或者再后一条)指令是 addu \$t3,\$t1,\$t2,则由于前一条指令仍处于执行(或访存)阶段还未写入寄存器,下一条指令已经位于译码阶段需要读寄存器,从而形成冒险。需要增加从 E 和 M (或 M 和 W) 间的寄存器连回 ALU 的旁路来解决该问题。

控制冒险:

前一条指令是 beq \$t1,\$t2,LOOP 后一条指令是 addu \$t1,\$t2,\$t3,则由于前一条指令可能条件满足需要跳转,然而此时下一条指令已经进入流水线从而发生冒险。需要在流水线中加入判断条件指令加入bubble 的部件。

第四题(20分)

这是是一段 AMBA AHB 总线时序图,请回答下列问题。

1、根据图中的提示,补全所有带数字标号的位置的信号值,填到下表中。如果认为是无关或无法确定的值,标记为"X"。

1	SEQ	2	SEQ	3 SEQ		
4	0x64	5	0x68	6 0x6C	7	X
8	INCR4	9	X		_	
10	X	•				
11	X 1	12	Data(0x68)	13 Data(0x6C)	14	Data(0x70)

2、时钟上升沿 T3 时刻,HREADY 信号为低电平。从总线协议上看,这代表什么含义?这样的信号设置,常用于什么场景?

答:

从设备尚未准备好,让主设备维持信号一周期。常用于内存控制器向 CPU 返回尚未准备好数据,还在行选/列选等过程中。

3、上图描绘的这个总线传输,是 AHB 总线诸多类型的传输中使用非常广泛的一种,请描述该类型传输的主要特点和用途。

答:

该类型是 BURST 连发传输

特点是支持大量数据的连续传输,还有递增 INCR 和回卷 WARP 两种方式。

用途可用于外设和主存之间的传输或者主存内部数据大量传输。

第五题(20分)

有人使用带并行接口芯片8255A的计算机系统设计了一个方案,完成如下功能:使用8个拨码开关(K7~K0)输入二进制数,两个LED显示管上显示对应的十六进制数。例如,拨码开关(K7~K0)输入为"10100111",则LED显示管上显示"A7"。输入改变后,输出随之改变,并可以反复输入。

下图中的外设器件与8255A的连接已有其他人去完成,拨码开关连接到8255A的端口A,低位和高位的LED灯分别连接到端口B和端口C。现在由你按后续的要求完成驱动程序代码。

补全下面的 x86 汇编程序,实现该设计方案。程序应有完整框架(必要的数据定义和段声明等),包含 8255A 的初始化代码、运行控制代码等,可以完成题目要求的全部功能。要求对自行填写的每行代码加注释说明,并回答已有代码注释中的问题。

```
DATA SEGMENT
1)
   SSEGCODE DB 3FH, 06H, 5BH, 4FH, 66H, 6DH, 7DH, 07H
2)
            DB 7FH, 67H, 77H, 7CH, 39H, 5EH, 79H, 71H
3)
4)
       ASSUME CS: CODE, DS: DATA
5)
6)
       START: MOV
                   AX, DATA
7)
              MOV
                   DS, AX
8)
              MOV
                  AL, 90H
                                ;设置控制字为均按方式 0,端口 A 输入,BC 输出
              OUT
                   63H, AL
9)
       RDPORTA:
10)
11)
              ΙN
                   AX, 60H
12)
              AND
                   AL, OFH
13)
14)
                   BX, OFFSET SSGCODE
              MOV
15)
              XLAT
                                     ; 从 B 输出
16)
              OUT
                    61H, AL
17)
              MOV
                   AX, XXXXH
18)
       DELAY: DEC
                   AX
                                 ; 循环延时
19)
              JNZ
                   DELAY
                                  问题 1: 这里向 AH 中写入数据,什么地方会用到?
20)
              MOV
                   AH, 1
                                  问题 2 和 3: INT 是什么指令? 会产生什么操作?
21)
              INT
                    16H
                                 ;问题 4 和 5:什么条件下会发生转移?条件码在哪里设置?
22)
                   RDPORTA
23)
                   AH, 4CH
24)
25) CODE ENDS
26)
答:
问题 1:
中断控制程序会判断是否有按键按下
问题 2:
中断指令
问题 3:
INT x 会产生 x 类型中断, 进入对应中断控制程序
问题 4:
无按键按下
问题 5:
```

在中断控制程序中设置

附加材料

I/O 端口地址分配

地址空间	器件/接口适配器	实际使用端口
0060~007FH	并行接口片 8255A	0060~0063H

并行通信接口 8255A

重要引脚信号说明

- 片选控制: CS; 读控制: RD; 写控制:_WR
- 端口 A: PA7~PA0;端口 B: PB7~PB0 均为 8 位的端口,但端口 A 的功能更为丰富,可 分别设定为输入端口或输出端口
- 端口 C: PC7~PC0 分成两个 4 位的端口,可分别设定为输入端口或 输出端口;也可作为端口 A 和端口 B 的"握手" 信号
- 复位: RESET; 地址: A1、A0; 数据: D7~D0

内部端口

$\mathbf{A_1}$	$\mathbf{A_0}$	端口
0	0	端口A
0	1	端口B
1	0	端口C
4	1	控制端口

状态字

控制字

