```
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv('survey lung cancer.csv')
```

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIGUE	ALLERGY	WHEEZING	ALCOHOL CONSUMING	COUGHING	SHOR OF B
0	М	69	1	2	2	1	1	2	1	2	2	2	
1	М	74	2	1	1	1	2	2	2	1	1	1	
2	F	59	1	1	1	2	1	2	1	2	1	2	

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIGUE	ALLERGY	WHEEZING	ALCOHOL CONSUMING	COUGHING	SHORT OF BR
304	F	56	1	1	1	2	2	2	1	1	2	2	
305	М	70	2	1	1	1	1	2	2	2	2	2	
306	М	58	2	1	1	1	1	1	2	2	2	2	
307	М	67	2	1	2	1	1	2	2	1	2	2	
308	М	62	1	1	1	2	1	2	2	2	2	1	

df.	san	nple()												
		GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIGUE	ALLERGY	WHEEZING	ALCOHOL CONSUMING	COUGHING	SHORTNE OF BREA
29	7	F	47	2	2	1	2	2	2	2	2	1	2	

```
df.shape
(309, 16)
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 309 entries, 0 to 308
Data columns (total 16 columns):
                           Non-Null Count Dtype
    Column
0 GENDER
                           309 non-null
                                          object
    AGE
                           309 non-null
                                          int64
    SMOKING
                           309 non-null
                                          int64
    YELLOW_FINGERS
                           309 non-null
                                          int64
    ANXIETY
                           309 non-null
                                          int64
    PEER PRESSURE
                           309 non-null
                                          int64
    CHRONIC DISEASE
                           309 non-null
                                          int64
    FATIGUE
                           309 non-null
                                          int64
    ALLERGY
                           309 non-null
                                          int64
    WHEEZING
                           309 non-null
                                          int64
10 ALCOHOL CONSUMING
                           309 non-null
                                          int64
                           309 non-null
                                           int64
12 SHORTNESS OF BREATH
                           309 non-null
                                          int64
13 SWALLOWING DIFFICULTY 309 non-null
                                          int64
14 CHEST PAIN
                           309 non-null
                                          int64
15 LUNG CANCER
                           309 non-null
                                          object
dtypes: int64(14), object(2)
memory usage: 38.8+ KB
```

	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIGUE	ALLERGY	WHEEZING	ALCOH CONSUMI
count	309.000000	309.000000	309.000000	309.000000	309.000000	309.000000	309.000000	309.000000	309.000000	309.0000
mean	62.673139	1.563107	1.569579	1.498382	1.501618	1.504854	1.673139	1.556634	1.556634	1.5566
std	8.210301	0.496806	0.495938	0.500808	0.500808	0.500787	0.469827	0.497588	0.497588	0.4975
min	21.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.0000
25%	57.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.0000
50%	62.000000	2.000000	2.000000	1.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.0000
75%	69.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.0000
max	87.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.0000

df.dtypes	
	0
GENDER	object
AGE	int64
SMOKING	int64
YELLOW_FINGERS	int64
ANXIETY	int64
PEER_PRESSURE	int64
CHRONIC DISEASE	int64
FATIGUE	int64
ALLERGY	int64
WHEEZING	int64
ALCOHOL CONSUMING	int64
COUGHING	int64
SHORTNESS OF BREATH	int64
SWALLOWING DIFFICULTY	int64
CHEST PAIN	int64
LUNG_CANCER	object
dtype: object	

df.isnull().sum()

encoding

x and y break train test split standard scalar model train

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['LUNG_CANCER'] = le.fit_transform(df['LUNG_CANCER'])
df['GENDER'] = le.fit_transform(df['GENDER'])
x = df.drop('LUNG_CANCER',axis=1)
y = df['LUNG_CANCER']
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_test = sc.transform(x_test)
from sklearn.svm import SVC
model = SVC()
model.fit(x_train,y_train)
 ▼ SVC (1) (?)
SVC()
model.score(x_train,y_train)*100,model.score(x_test,y_test)*100
(94.73684210526315, 96.7741935483871)
y_pred = model.predict(x_test)
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test,y_pred)
array([[ 1, 1],
       [ 1, 59]])
from sklearn.metrics import accuracy_score, classification_report
print("Accuracy:", accuracy_score(y_test,y_pred))
print("\nClassification Report:\n", classification_report(y_test, y_pred))
Accuracy: 0.967741935483871
Classification Report:
               precision
                            recall f1-score
                                               support
                             0.50
                                       0.50
           0
                   0.50
                                                    2
           1
                   0.98
                             0.98
                                       0.98
                                                   60
                                       0.97
                                                   62
    accuracy
                             0.74
                   0.74
                                       0.74
   macro avg
                                                   62
weighted avg
                   0.97
                             0.97
                                       0.97
                                                   62
Start coding or generate with AI.
```