PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-317313

(43) Date of publication of application: 03.12.1993

(51)Int.Cl.

A61B 8/08 A61B 8/14

(21)Application number : 04-147957

(71)Applicant: ISHIHARA KEN

HITACHI MEDICAL CORP

(22)Date of filing:

15.05.1992

(72)Inventor: ISHIHARA KEN

OGAWA TOSHIO KISHIMOTO SHINJI KONDO TOSHIRO

(54) ULTRASONIC DIAGNOSING APPARATUS

(57)Abstract:

PURPOSE: To display an elastic image showing the hardness of a living body tissue by conducting the operation between two time series tomographic images so as to measure the travel distance and displacement on the respective points on a tomographic image, measuring or estimating the pressure in the body cavity of a diagnosed region of an examinee, and operating the modulus of elasticity of the respective points on a tomographic image from the displacement and pressure to apply hue information.

CONSTITUTION: A displacement measuring means 8 performs the operation between two time series tomographic images obtained by a tomographic scanning means to measure the travel or displacement of the respective points on a tomographic image. A pressure measuring means 9 measures or estimates the pressure in a body cavity of a diagnosed region of an examinee. The elastic modulus operating means 10 operates the modulus of elasticity of the respective points on a tomographic

image from the displacement and pressure obtained in the respective measuring means 8, 9 to generate elastic image data. A hue information converting means 11 applies hue information to the elastic modulus image data input from the elastic modulus operating means 10. In a switching and adding means 12, the black-and- white tomographic image data from the tomographic scanning means and the color elastic image data from the hue information converting means 11 are added or switched to be displayed on an image display means 7.

LEGAL STATUS

[Date of request for examination]

07.05.1999

oomoning 1715

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]
[Date of registration]

3268396

18.01.2002

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-317313

(43)公開日 平成5年(1993)12月3日

(51) Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

A 6 1 B 8/08 8/14 7807-4C 7807-4C

汉州农小园川

審査請求 未請求 請求項の数1(全 7 頁)

(21)出願番号

特願平4-147957

(71)出額人 590004604

石原 謙

(22)出顧日

平成4年(1992)5月15日

兵庫県宝塚市千種1丁目1番地の15

(71)出願人 000153498

株式会社日立メディコ

東京都千代田区内神田1丁目1番14号

(72) 発明者 石 原 謙

兵庫県宝塚市千種1丁目1番地の15

(72)発明者 小 川 俊 雄

千葉県柏市新十余二2番1号 株式会社日

立メディコ技術研究所内

(74)代理人 弁理士 西山 春之

最終頁に続く

(54) 【発明の名称】 超音波診断装置

(57)【要約】

【目的】 超音波診断装置において、生体組織の硬さ又は柔らかさを表す弾性画像を表示する。

【構成】 断層走査手段によって得た時系列の二つの断層像間で演算を行って断層像上の各点の移動量又は変位を計測する変位計測手段8と、被検体の診断部位の体腔内圧力を計測又は推定する圧力計測手段9と、上記各計測手段で求めた変位及び圧力から断層像上の各点の弾性率を演算して弾性画像データを生成する弾性率演算手段10と、この弾性率演算手段10からの弾性画像データを入力して色相情報を付与する色相情報変換手段11と、上記断層走査手段からの白黒の断層像データと色相情報変換野段11からのカラーの弾性画像データとを加算又は切り換える切換加算手段12とを備え、この切換加算手段12からの画像データを画像表示手段7に表示するようにしたものである。これにより、生体組織の硬さ又は柔らかさを表す弾性画像を表示することができる。

【特許請求の範囲】

【請求項1】 被検体に超音波を送信及び受信する超音 波送受信手段と、この超音波送受信手段からの反射エコ ー信号を用いて運動組織を含む被検体内の断層像データ を所定周期で繰り返して得る断層走査手段と、この断層 走査手段によって得た時系列の断層像データを表示する 画像表示手段とを有する超音波診断装置において、上記 断層走査手段によって得た時系列の二つの断層像間で演 算を行って断層像上の各点の移動量又は変位を計測する 変位計測手段と、上記被検体の診断部位の体腔内圧力を 10 計測又は推定する圧力計測手段と、上記各計測手段で求 めた変位及び圧力から断層像上の各点の弾性率を演算し て弾性画像データを生成する弾性率演算手段と、この弾 性率演算手段からの弾性画像データを入力して色相情報 を付与する色相情報変換手段と、上記断層走査手段から の白黒の断層像データと色相情報変換手段からのカラー の弾性画像データとを加算又は切り換える切換加算手段 とを備え、この切換加算手段からの画像データを上記画 像表示手段に表示するようにしたことを特徴とする超音 波診断装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、超音波を利用して被検 体の診断部位について断層像を得る超音波診断装置に関 し、特に時系列の二つの断層像からその画像上の各点の 弾性率を演算し、生体組織の硬さ又は柔らかさを表す弾 性画像として表示することができる超音波診断装置に関 する。

[0002]

【従来の技術】従来の一般的な超音波診断装置は、被検 体に超音波を送信及び受信する超音波送受信手段と、こ の超音波送受信手段からの反射エコー信号を用いて運動 組織を含む被検体内の断層像データを所定周期で繰り返 して得る断層走査手段と、この断層走査手段によって得 た時系列の断層像データを表示する画像表示手段とを有 して成っていた。そして、被検体内部の生体組織の構造 を例えばBモード像として表示していた。

[0003]

【発明が解決しようとする課題】しかし、従来の超音波 診断装置においては、被検体内部の生体組織の構造は表 40 示することができたが、その生体組織が硬いのかあるい は柔らかいのかを計測して表示することはできなかっ た。従って、例えば血管の診断において、血管の位置や 血流状態は表示できたが、その血管が正常なのかあるい は動脈硬化を起しているのかは画像表示上ではわからな いものであった。

【0004】これに関連して、超音波診断装置におい て、対象臓器の各部分の変位を計測する手法として、時 系列的に連続する2枚の断層像間で差分演算し、この差 分画像から変位を計測することが行われているが、この 50 手段で求めた変位及び圧力から断層像上の各点の弾性率

ようにして抽出した変位のみでは各部分の硬さや柔らか さを計測することは不可能であった。

【0005】これに対して、最近、被検体の体表面から 外力を加え、この外力が生体内部で減衰するカーブを仮 定し、この仮定された減衰カーブから各点における圧力 と変位を求めて弾性率を計測し、この弾性率のデータを 基に弾性画像を得る方法が、「超音波イメージング」第 13巻第2号·1991年4月 (Ultrasonic I maging. Vo 1.13 No.2, April 1991) のJ. オファー著「弾性画像」 (J. Ophier "ELASTOG-RAPHY") の項で提案されてい る。このような弾性画像によれば、生体組織の硬さや柔 らかさを計測して表示することができるが、この方法は 主として腹部などの比較的大きな臓器に対しては有効で あるものの、頚動脈などの比較的小さい臓器や動きの激 しい心臓壁などに対しては、生体内部で力が減衰するカ ーブを仮定するのがむずかしく、弾性率の計測が容易に はできず、弾性画像を得るのが困難と思われる。

【0006】そこで、本発明は、このような問題点に対 処し、時系列の二つの断層像からその画像上の各点の弾 20 性率を演算し、生体組織の硬さ又は柔らかさを表す弾性 画像として表示することができる超音波診断装置を提供 することを目的とする。

[0007]

【課題を解決するための手段】上記目的を達成するため に、本発明による超音波診断装置は、被検体に超音波を 送信及び受信する超音波送受信手段と、この超音波送受 信手段からの反射エコー信号を用いて運動組織を含む被 検体内の断層像データを所定周期で繰り返して得る断層 走査手段と、この断層走査手段によって得た時系列の断 層像データを表示する画像表示手段とを有する超音波診 断装置において、上記断層走査手段によって得た時系列 の二つの断層像間で演算を行って断層像上の各点の移動 量又は変位を計測する変位計測手段と、上記被検体の診 断部位の体腔内圧力を計測又は推定する圧力計測手段 と、上記各計測手段で求めた変位及び圧力から断層像上 の各点の弾性率を演算して弾性画像データを生成する弾 性率演算手段と、この弾性率演算手段からの弾性画像デ ータを入力して色相情報を付与する色相情報変換手段 と、上記断層走査手段からの白黒の断層像データと色相 情報変換手段からのカラーの弾性画像データとを加算又 は切り換える切換加算手段とを備え、この切換加算手段 からの画像データを上記画像表示手段に表示するように したものである。

[0008]

【作用】このように構成された超音波診断装置は、変位 計測手段により断層走査手段にて得た時系列の二つの断 層像間で演算を行って断層像上の各点の移動量又は変位 を計測し、圧力計測手段で被検体の診断部位の体腔内圧 力を計測又は推定し、弾性率演算手段により上記各計測

を演算して弾性画像データを生成し、色相情報変換手段 で上記弾性率演算手段からの弾性画像データを入力して 色相情報を付与し、さらに切換加算手段により上記断層 走査手段からの白黒の断層像データと色相情報変換手段 からのカラーの弾性画像データとを加算又は切り換える ように動作する。これにより、診断部位の生体組織の硬 さ又は柔らかさを表す弾性画像を、生体組織の構造を表 す断層像と共に、若しくは単独で表示することができ る。

[0009]

【実施例】以下、本発明の実施例を添付図面に基づいて 詳細に説明する。図1は本発明による超音波診断装置の 実施例を示すプロック図である。この超音波診断装置 は、超音波を利用して被検体の診断部位について断層像 を得ると共に、生体組織の硬さ又は柔らかさを表す弾性 画像を表示するもので、図に示すように、探触子1と、 送波回路2と、受信回路3と、整相回路4と、信号処理 部5と、白黒スキャンコンバータ6と、画像表示器7と を有し、さらに変位計測部8と、圧力計測部9と、弾性 率演算部10と、カラースキャンコンバータ11と、切20る手段となるもので、上記白黒スキャンコンバータ6か 換加算器12とを備えて成る。

【0010】上記探触子1は、機械的または電子的にビ ーム走査を行って被検体に超音波を送信及び受信するも ので、図示省略したがその中には超音波の発生源である と共に反射エコーを受信する振動子が内蔵されている。 送波回路 2 は、上記探触子 1 を駆動して超音波を発生さ せるための送波パルスを生成すると共に、内蔵の送波整 相回路により送信される超音波の収束点をある深さに設 定するものである。受信回路3は、上記探触子1で受信 した反射エコーの信号について所定のゲインで増幅する ものである。また、整相回路4は、上記受信回路3で増 幅された受波信号を入力して位相制御し、一点又は複数 の収束点に対して超音波ビームを形成するものである。 さらに、信号処理部5は、上記整相回路4からの受波信 号を入力してゲイン補正、ログ圧縮、検波、輪郭強調、 フィルタ処理等の信号処理を行うものである。そして、 これらの探触子1と送波回路2と受信回路3と整相回路 4と信号処理部5との全体で超音波送受信手段を構成し ており、上記探触子1で超音波ピームを被検体の体内で 一定方向に走査させることにより、1枚の断層像を得る ようになっている。

【0011】白黒スキャンコンバータ6は、上記超音波 送受信手段の信号処理部5から出力される反射エコー信 号を用いて運動組織を含む被検体内の断層像データを超 音波送波周期で得、このデータを表示するためテレビ同 期で読み出すための断層走査手段及びシステムの制御を 行うための手段となるもので、上記信号処理部5からの 反射エコー信号をディジタル信号に変換するA/D変換 器と、このA/D変換器でディジタル化された断層像デ ータを時系列に記憶する複数枚のフレームメモリと、こ 50

れらの動作を制御するコントローラなどとから成る。

【0012】また、画像表示器7は、上記白黒スキャン コンバータ6によって得た時系列の断層像データを表示 する手段となるもので、該白黒スキャンコンバータ6か ら出力され後述の切換加算器12を介して入力した画像 データをアナログ信号に変換するD/A変換器と、この D/A変換器からのアナログビデオ信号を入力して画像 として表示するカラーテレビモニタとから成る。

【0013】ここで、本発明においては、上記白黒スキ 10 ャンコンバータ6の出力側から分岐して変位計測部8が 設けられると共に、これと並列に圧力計測部9が設けら れ、これらの後段には弾性率演算部10が設けられ、か つこの弾性率演算部10の出力側にはカラースキャンコ ンバータ11が設けられ、さらにこのカラースキャンコ ンバータ11と上記白黒スキャンコンバータ6の出力側 には切換加算器12が設けられている。

【0014】上記変位計測部8は、前記白黒スキャンコ ンバータ6によって得られた時系列の二つの断層像間で 演算を行って断層像上の各点の移動量又は変位を計測す ら出力される時系列的に連続する二つの断層像から2次 元相関処理により、断層像上の各点の移動ベクトル(変 位の方向と大きさ)を計測するようになっている。この 移動ベクトルの検出法としては、ブロック・マッチング 法とグラジェント法とがある。プロック・マッチング法 は、画像を例えばN×N画素からなるプロックに分け、 現フレーム中の着目しているプロックに最も近似してい るブロックを前フレームから探し、これを参照して予測 符号化を行うものである。

【0015】圧力計測部9は、被検体13の診断部位の 体腔内圧力を計測又は推定する手段となるもので、図1 に示すように、例えば診断部位の血管14内に圧力セン サ15としてのカテーテルなどを挿入し、この圧力セン サ15で計測した検出信号を取り込んで上記血管14内 の血圧を直接計測するようになっている。しかし、診断 部位の体腔内にカテーテルを挿入するのは被検体に対し 苦痛を与えるので、第二の方法としては、間接的に体腔 内の血圧を推定する方法として、被検体の体表面から計 測されたコロトコフ音から最高及び最低血圧を測定する と共に、血圧波形の立上り及び立下り点は脈波波形から 決定し、これらの四つのパラメータから血圧波形を推定 する方法がある。さらに、第三の方法としては、血中バ プルに対する超音波共振現象を利用して血圧を計測する 方法も考えられる。上記第二又は第三の方法によれば、 被検体に与える苦痛を軽減することができる。

【0016】そして、弾性率演算部10は、上記変位計 測部8及び圧力計測部9でそれぞれ求めた移動量及び圧 力から断層像上の各点の弾性率を演算して弾性画像デー 夕を生成する手段となるもので、圧力の変化を移動量の 変化で除したヤング率を計算して求めるようになってい

40

る。

【0017】また、カラースキャンコンパータ11は、 上記弾性率演算部10から出力される弾性画像データを 入力して赤、緑、青などの色相情報を付与する色相情報 変換手段となるもので、例えば弾性率の大きい画像デー タは赤色コードに変換し、弾性率の小さい画像データは 青色コードに変換するようになっている。

【0018】さらに、切換加算器12は、前記白黒スキ ャンコンバータ6からの白黒の断層像データと上記カラ タとを入力し、両画像データを加算又は切り換える手段 となるもので、白黒の断層像データだけ又はカラーの弾 性画像データだけを出力したり、あるいは両画像データ を加算合成して出力したりするように切り換えるように なっている。そして、この切換加算器12から出力され た画像データが前記画像表示器7へ送られるようになっ

【0019】次に、このように構成された超音波診断装 置の動作について説明する。まず、被検体13の体表面 に接触された探触子 1 に送波回路 2 により高圧電気パル 20 を X m (N k, N l) とする。そして、前フレームの第 スを印加して超音波を打ち出し、診断部位からの反射エ コー信号を上記探触子1で受信する。次に、この受波信 号は、受信回路3へ入力して前置増幅された後、整相回 路4へ入力する。そして、この整相回路4により位相が 揃えられた受波信号は、次の信号処理部5で圧縮、検波 などの信号処理を受けた後、白黒スキャンコンパータ6*

*へ入力する。この白黒スキャンコンバータ6では、上記 受波信号がA/D変換されると共に、時系列的に連続す る複数の断層像データとして内部の複数枚のフレームメ モリに記憶される。

【0020】次に、上記白黒スキャンコンパータ6内に 記憶された断層像データのうち時系列的に連続する2枚 の画像データが順次読み出され、変位計測部8へ入力し て2次元変位分布を求める。この2次元変位分布の算出 は、前述の移動ベクトルの検出法としての例えばプロッ ースキャンコンバータ11からのカラーの弾性画像デー *10* ク・マッチング法によって行うが、以下にこの方法を図 2を参照して詳しく説明する。

【0021】図2において、現フレームを第mフレーム とし、前フレームを第 (m-1) フレームとする。そし て、各フレーム上の画像をN×N画素からなる複数のプ ロックに分ける。ここで、画像上の移動物体は、第(m -1) フレームのA1の位置から、第mフレームのA2の 位置へ移動したとする。このような状態で、第mフレー ムを符号化対象フレームとして、N×N画素からなる各 ブロック中の左上端の画素位置 (Nk, N1) における値 (m-1) フレーム上で位置を (i, j) だけずらした プロック中の左上端の画素位置(Nk+i, Nl+j)に おける値をXm-1 (Nk+i, Nl+j) とする。そこ で、第(m-1) フレームにおけるプロックと第mフレ ームにおけるブロックとの差分の絶対値和Sijを次式で 計算する。

$$Sij = \sum_{p=0}^{N-1} \sum_{q=0}^{N-1} |X_m| (Nk+p, Nl+q)$$

 $-X_{R-1}$ (Nk+p+i, Nl+q+j) ... (1)

そして、位置の移動を示す(i, j)を種々変えていろ いろなSijを計算し、その最小値を求め、このときの※

$$|\Delta L| = \sqrt{i^2 + j^2} \cdot p$$

となる。ただし、pは画素ピッチである。

【0022】このようにして求めた変位△Lの時間変化 の様子を表すと、例えば図3(a)に示すようになる。 サンプリング間隔Sは、図3(c)に示す撮像時間Tと 同一であり、例えば1~100ms程度である。そして、こ の変位△Lの時間変化の波形は、1心拍に対応して略同 て、2次元変位分布がΔL/Lとして求められる。

【0023】一方、圧力計測部9においては、血管14 内に挿入された圧力センサ15によって血圧が計測さ★

$$Y_n = \frac{\Delta P}{\Delta I / I}$$

このようにして求めた弾性率Ymの時間変化の様子を表 すと、例えば図3(c)に示すようになる。この場合、 撮像時間Tごとの各サンプリング点において、上記の式 (3) を用いて演算される。なお、図3 (c) において ※ (i, j) を移動ベクトルとする。この移動ベクトル、 すなわち変位を△Lとすると、

... (2)

★れ、その計測信号が上記圧力計測部9に保持されてい る。このようにして計測された圧力 ΔPの時間変化の様 子を表すと、例えば図3(b)に示すようになる。ここ でも、サンプリング間隔Sは、図3(c)に示す撮像時 間Tと同一である。

【0024】次に、上記変位計測部8及び圧力計測部9 一波形を繰り返している。この結果、式(2)を用い 40 から出力されたそれぞれの計測信号は、弾性率演算部 10へ入力し、次式によって弾性率(ヤング率)Ymが演 算される。

... (3)

算を2次元的に行う。すなわち、前記変位計測部8にお いて2次元的な変位測定が可能であるので、上記式 (3) により、2次元的な弾性率Ymの分布を得ること が可能となる。これにより、時系列的に連続する各画像 は、画像上の1画素の時間変化を表しているが、この演 50 ごとの各点の弾性率が求められ、2次元の弾性画像デー 夕が連続的に得られる。

【0025】図4は被検体13の診断部位の血管14を 模式的に示す説明図である。破線で示す血管14′が収 縮状態であり、実線で示す血管14が拡張状態であると する。血管内部の血圧変化ΔPに対応して血管壁がΔL だけ変化する様子を表している。このことから、同じ圧 力の変化 Δ Pに対して、変位 Δ Lが大きい場合は柔らか い血管であり、変位△Lが小さい場合は硬い血管である と言える。従って、前述の式(3)からわかるように、 柔らかい血管の場合は求めた弾性率Ymの値が小さくな 10 り、硬い血管の場合は弾性率Ymの値が大きくなる。す なわち、逆に、式(3)により弾性率Ymを求めると、 その値の大小により生体組織の硬さ又は柔らかさを計測 することができる。

【0026】上記のようにして求められた弾性画像デー 夕は、次にカラースキャンコンパータ11へ入力して、 色相情報に変換される。ここでは、弾性率Ymが大きく 硬い組織の画像データについては例えば赤色コードに変 換し、弾性率Ymが小さく柔らかい組織の画像データに*

$$\beta = \frac{\ln (P/Ps)}{R/Rs-1}$$

ただし、Pは血管内圧、Psは基準内圧(最低血圧又は1 00mmHg)、Rは血管内圧Pにおける血管外半径、Rsは 基準内圧Psに対する血管外半径。である。このβは、※

$$E_{P} = \frac{\delta P}{\delta R / R}$$

ただし、δは増分を示す。である。従って、この式

(5) は、前述の式(3)の表現と等価であるが、生理★

$$Einc = \frac{\delta P}{\delta R_0} \cdot \frac{2 (1 - v^2) \cdot Ri^2 \cdot R_0}{(R_0^2 - Ri^2)}$$

ただし、Roは血管外半径、Riは血管内半径、vはポア ソン比(血管壁は非圧縮性とみなせるので0.5とす る)。である。この増分弾性係数Eincは、動脈壁の物 性を表すと考えられ、医学的には極めて重要なパラメー タである。

【0031】また、図1に示す例では、被検体13の体 表面に探触子1を接触させる場合について説明したが、 本発明はこれに限らず、経食道探触子又は血管内探触子 を用いる場合でも同様に適用できる。

[0032]

【発明の効果】本発明は以上のように構成されたので、 変位計測手段により断層走査手段にて得た時系列の二つ の断層像間で演算を行って断層像上の各点の移動量又は 変位を計測し、圧力計測手段で被検体の診断部位の体腔 内圧力を計測又は推定し、弾性率演算手段により上記各 計測手段で求めた変位及び圧力から断層像上の各点の弾 性率を演算して弾性画像データを生成し、色相情報変換 手段で上記弾性率演算手段からの弾性画像データを入力 して色相情報を付与し、さらに切換加算手段により上記 断層走査手段からの白黒の断層像データと色相情報変換 50 整相回路、 5…信号処理部、

*ついては青色コードに変換する。その後、切換加算器1 2を介して、白黒の断層像と加算合成され、又は単独で 画像表示器7へ送られ、その画面に画像表示される。図 5はその画像表示例を示す説明図であり、白黒のBモー ド像16の一部分をカラー化された弾性画像17で置換

した例を示している。これ以外にも、Bモード像16に よる全体像の上に、カラー化された弾性画像17を重畳 して表示してもよい。その他、種々の変形した組み合わ せにより表示してもよい。

【0027】なお、以上の弾性画像の形成については、 前述の式(3)では生体組織のヤング率Ymを求めて弾 性画像データを生成する例を説明したが、本発明はこれ に限らず、他のパラメータを用いて弾性率を演算しても よい。例えば、スティフネスパラメータβ,圧弾性係数 Ep, 増分弾性係数 Eincなどの動脈壁の硬さや物性を記 述するパラメータを用いてもよい。

【0028】ここで、上記スティフネスパラメータ β は、

... (4)

※血管壁材質のみならず、血管壁の厚さと径とを含むパラ メータである。

【0029】また、圧弾性係数Epは、

... (5)

★学的には上記の用語で定義されている。

【0030】さらに、増分弾性係数Eincは、

手段からのカラーの弾性画像データとを加算又は切り換 えることができる。これにより、診断部位の生体組織の 硬さ又は柔らかさを表す弾性画像を、生体組織の構造を 表す断層像と共に、若しくは単独で表示することができ る。従って、例えば血管の診断において、その血管が正 常なのかあるいは動脈硬化を起しているのかを画像表示 上で診断可能とすることができる。

... (6)

【図面の簡単な説明】

【図1】 本発明による超音波診断装置の実施例を示す 40 プロック図、

2次元変位分布を求めるブロック・マッチン 【図2】 グ法を説明するための図、

【図3】 求めた変位、圧力、弾性率の時間変化の様子 を示すグラフ、

【図4】 診断部位の血管を模式的に示す説明図、

【図5】 得られたBモードの断層像及び弾性画像の表 示例を示す説明図。

【符号の説明】

3 … 受信回路、 4 … 1…探触子、 2…送波回路、 6…白黒スキャンコン

キャンコンバータ、 12…切換加算器、 13…被検

【図1】

フロントページの続き

(72)発明者 岸 本 眞 治 千葉県柏市新十余二2番1号 株式会社日 立メディコ技術研究所内

(72)発明者 近 藤 敏 郎 千葉県柏市新十余二2番1号 株式会社日 立メディコ技術研究所内