Matemáticas en MTEX Un subtítulo

Resumen

En este texto puedes incluir un resumen del documento. Este informa al lector sobre el contenido del texto, indicando el objetivo del mismo y qué se puede aprender de él.

Andrés Herrera Poyatos

Universidad de Granada andreshp9@gmail.com

$\acute{\mathbf{I}}\mathbf{ndice}$

L.	Ma	temáticas	2
	1.1.	Teoremas, Lemas, Proposiciones y Colorarios	2
	1.2	Figurality V. Figurations	6

1. Matemáticas

Definición 1.1. LATEXes un sistema de composición de textos, orientado a la creación de documentos escritos que presenten una alta calidad tipográfica. Por sus características y posibilidades, es usado de forma especialmente intensa en la generación de artículos y libros científicos que incluyen, entre otros elementos, expresiones matemáticas.

Se presentan en esta sección una serie de ejemplos del funcionamiento de la plantilla para los comandos relacionados con las matemáticas.

1.1. Teoremas, Lemas, Proposiciones y Colorarios

Teorema 1.1. El número $\sqrt{2}$ es irracional.

Demostraci'on. La prueba se realiza por reducci\'on al absurdo. Supongamos que es racional. En tal caso, se puede escribir $\sqrt{2} = \frac{p}{q}$ con $p, q \in \mathbb{N}$ primos relativos. De la igualdad anterior se deduce:

$$2 = \left(\frac{p}{q}\right)^2 = \frac{p^2}{q^2} \Rightarrow 2q^2 = p^2$$

Luego 2 divide a p por ser primo. Entonces, p=2k con $k\in\mathbb{N}.$ Se tiene que:

$$2q^2 = p^2 = 4k^2 \Rightarrow q^2 = 2k^2$$

Análogamente, 2 divide a q. Pero esto contradice que p y q sean primos relativos.

Corolario 1.2. Existen dos números irracionales x, y tales que x^y es racional.

Demostración. Consideramos $y = \sqrt{2}$. Teniendo en cuenta que $\sqrt{2}$ es irracional, si $\sqrt{2}^{\sqrt{2}}$ fuese racional se finaliza la prueba. En caso contrario, podemos tomar $x = \sqrt{2}^{\sqrt{2}}$ teniendo que:

$$x^y = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}\sqrt{2}} = \sqrt{2}^2 = 2$$

Nota. Es cierto que $\sqrt{2}^{\sqrt{2}}$ es irracional por el Teorema de Gelfond-Schneider.

1.2. Ejemplos y Ejercicios

EJEMPLO 1.1: \mathbb{R} no es homeomorfo a \mathbb{R}^2 con la topología usual pues los elementos de \mathbb{R} tienen orden de conexión 1 mientras que los de \mathbb{R}^2 tienen orden de conexión 2.

EJERCICIO 1.1: Probar que en todo anillo R para todo $a \in R$ tal que a-1 es una unidad del anillo y $n \in \mathbb{N}$ se tiene

$$\sum_{i=0}^{n} a^{i} = \frac{a^{n+1} - 1}{a - 1} \tag{1}$$