The smallest grammar problem

Edgar Dorausch 05. Juli 2019

Motivation und Anwendung

Motivation und Anwendung

• Mustererkennung

Motivation und Anwendung

- Mustererkennung
- Kompression

Kontextfreie Grammatik

Eine KFG ist ein Quadrupel $(\Sigma, \Gamma, S, \Delta)$ mit

- \bullet Σ Terminalalphabet
- Γ Nichtterminalalphabet
- S Startsymbol
- Δ Menge von Regeln der Form $T \to \alpha$ $T \in \Gamma$; $\alpha \in (\Sigma \cup \Gamma)^*$

Besonderheit!:

Die Grammatiken sollen nur ein Wort erzeugen. Deshalb:

- Grammatik muss azyklisch sein
- Für jedes $T \in \Gamma$ existiert nur eine Regel in Δ

Expansion eines Strings α

Erhält man durch erschöpfendes Anwenden der Regeln in einer Grammatik bis nur noch Terminale enthalten sind.

Notation: $\langle \alpha \rangle$

Expansionslänge

Anzahl der Zeichen in der Expansion eines Strings α

Notation: $[\alpha] = |\langle \alpha \rangle|$

Größe einer Grammatik G

Anzahl der Zeichen in den rechten Seiten der Grammatikregeln Notation: $m=|\mathcal{G}|=\sum\limits_{(\mathcal{T}\to\alpha)\in\Delta}\langle\alpha\rangle$

Größe der kleinsten Grammatik für einen String: m*

Beispiel

$$G: \left\{ egin{aligned} S
ightarrow rha Tber \ T
ightarrow bar \end{aligned}
ight\}$$

$$\langle S \rangle = rhabarber_barbara$$

 $[S] = 17$
 $|G| = 11$

Approximation Ratio

Sei G_A die Grammatik, die von einem Algorithmus A erzeugt wird.

$$a(n) = \max_{\alpha \in \Sigma^n} \frac{|G_A| \text{ für } \alpha}{m^* \text{ für } \alpha}$$

Approximation Ratio

Sei G_A die Grammatik, die von einem Algorithmus A erzeugt wird.

$$a(n) = \max_{\alpha \in \Sigma^n} \frac{|G_A| \text{ für } \alpha}{m^* \text{ für } \alpha}$$

Worstcase!

Tabelle 1: Landau Notation

$$\begin{array}{ccc} f \in o(g) & "f < g" \\ \text{(Upper bound)} \ f \in \mathcal{O}(g) & "f \leq g" \\ f \in \Theta(g) & "f = g" \\ \text{(Lower bound)} \ f \in \Omega(g) & "f \geq g" \\ f \in \omega(g) & "f > g" \end{array}$$

• Vertex Cover lässt sich auf SGP reduzieren

- Vertex Cover lässt sich auf SGP reduzieren
- Zusammenhang mit Addition Chains (nicht im Vortrag)

Vertex Cover

Suche (minimale) Menge von Knoten, sodass jede Kante mindestens einen dieser Knoten enthält.

Vertex Cover

Suche (minimale) Menge von Knoten, sodass jede Kante mindestens einen dieser Knoten enthält.

Vertex Cover

Suche (minimale) Menge von Knoten, sodass jede Kante mindestens einen dieser Knoten enthält.

(Kein Vertex Cover!)

Vertex Cover

Suche (minimale) Menge von Knoten, sodass jede Kante mindestens einen dieser Knoten enthält.

NP-härte

• Betrachte nur Graphen mit maximalen Knoten-Grad 3

NP-härte

- Betrachte nur Graphen mit maximalen Knoten-Grad 3
- Überführung von Graphen zu Wörtern

NP-härte

- Betrachte nur Graphen mit maximalen Knoten-Grad 3
- Überführung von Graphen zu Wörtern
- Zeige, dass man über die kleinsete Grammatik einen Vertex Cover bestimmen kann

NP-härte

- Betrachte nur Graphen mit maximalen Knoten-Grad 3
- Überführung von Graphen zu Wörtern
- Zeige, dass man über die kleinsete Grammatik einen Vertex Cover bestimmen kann
- Berechne Upper Bound für effiziente Approximation (außer P = NP)

Beispiel Graph

$$V = \{a, b, c, d\}$$

$$E = \{\{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}\}$$

Graphen zu String überführen

$$\alpha = \prod_{v_i \in V} (\#v_i \ddagger v_i \#\ddagger)^2 \prod_{v_i \in V} (\#v_i \#\ddagger) \prod_{\{v_i, v_j\} \in E} (\#v_i \#v_j \#\ddagger)$$

Graphen zu String überführen

$$\alpha = \prod_{v_i \in V} (\#v_i \ddagger v_i \#\ddagger)^2 \prod_{v_i \in V} (\#v_i \#\ddagger) \prod_{\{v_i, v_j\} \in E} (\#v_i \#v_j \#\ddagger)$$

$$V = \{a, b, c, d\}; E = \{\{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}\}$$

$$\alpha_{Beispiel} = (\#a \ddagger a \#\ddagger)^2 (\#b \ddagger b \#\ddagger)^2 (\#c \ddagger c \#\ddagger)^2 (\#d \ddagger d \#\ddagger)^2$$

$$\#a \# \ddagger \#b \# \ddagger \#c \# \ddagger \#d \#\ddagger$$

$$\#a \#b \# \ddagger \#a \#c \# \ddagger \#b \#c \# \ddagger \#b \#d \#\ddagger$$

```
\alpha_{Beispiel} = (\#a \ddagger a\#\ddagger)^2 (\#b \ddagger b\#\ddagger)^2 (\#c \ddagger c\#\ddagger)^2 (\#d \ddagger d\#\ddagger)^2
\#a\# \ddagger \#b\# \ddagger \#c\# \ddagger \#d\#\ddagger
\#a\#b\# \ddagger \#a\#c\# \ddagger \#b\#c\# \ddagger \#b\#d\#\ddagger
```

Eigenschaften der kleinsten Grammatik

• Jedes Nichtterminal expandiert zu $\#v_i$, $v_i\#$ oder $\#v_i\#$

```
\alpha_{Beispiel} = (\#a \ddagger a\#\ddagger)^2 (\#b \ddagger b\#\ddagger)^2 (\#c \ddagger c\#\ddagger)^2 (\#d \ddagger d\#\ddagger)^2
\#a\# \ddagger \#b\# \ddagger \#c\# \ddagger \#d\#\ddagger
\#a\#b\# \ddagger \#a\#c\# \ddagger \#b\#c\# \ddagger \#b\#d\#\ddagger
```

Eigenschaften der kleinsten Grammatik

- Jedes Nichtterminal expandiert zu $\#v_i$, $v_i\#$ oder $\#v_i\#$
- ullet Enthält Regeln der Form $T_j o \# v_i$ und $T_j o v_i \#$

```
\alpha_{Beispiel} = (\#a \ddagger a\#\ddagger)^2 (\#b \ddagger b\#\ddagger)^2 (\#c \ddagger c\#\ddagger)^2 (\#d \ddagger d\#\ddagger)^2
\#a\# \ddagger \#b\# \ddagger \#c\# \ddagger \#d\#\ddagger
\#a\#b\# \ddagger \#a\#c\# \ddagger \#b\#c\# \ddagger \#b\#d\#\ddagger
```

Eigenschaften der kleinsten Grammatik

- Jedes Nichtterminal expandiert zu $\#v_i$, $v_i\#$ oder $\#v_i\#$
- ullet Enthält Regeln der Form $T_j o \# v_i$ und $T_j o v_i \#$
- $C = \{v_i \in V | \exists T_j \to \#v_i \#\}$ ist (minimale) Vertex Cover

•
$$m^* = 15|V| + 3|E| + |C|$$

- $m^* = 15|V| + 3|E| + |C|$
- Es ist (*NP*) hart Vertex Cover kleiner als $\frac{145}{144} \cdot |C|$ zu finden $(\frac{145}{144} \approx 1,006944...)$

- $m^* = 15|V| + 3|E| + |C|$
- Es ist (*NP*) hart Vertex Cover kleiner als $\frac{145}{144} \cdot |C|$ zu finden $(\frac{145}{144} \approx 1,006944...)$
- $\rho = \frac{15|V|+3|E|+\frac{145}{144}|C|}{15|V|+3|E|+|C|}$

- $m^* = 15|V| + 3|E| + |C|$
- Es ist (*NP*) hart Vertex Cover kleiner als $\frac{145}{144} \cdot |C|$ zu finden $(\frac{145}{144} \approx 1,006944...)$
- $\bullet \ \ \rho \geq \frac{15|V| + 3 \cdot \frac{3}{2}|V| + \frac{145}{144} (\frac{1}{3}|V|)}{15|V| + 3 \cdot \frac{3}{2}|V| + \frac{1}{3}|V|} = \frac{8569}{8568} \approx 1,0001167...$

Algorithmen

Lower bound bestimmen

• Definiere α (n = $|\alpha|$)

Lower bound bestimmen

- Definiere α (n = $|\alpha|$)
- Bestimme lower bound von m $m \in \Omega(f_l(n))$

Lower bound bestimmen

- Definiere α (n = $|\alpha|$)
- Bestimme lower bound von m $m \in \Omega(f_l(n))$
- Bestimme upper bound von m^* $m^* \in \mathcal{O}(f_u(n))$

Lower bound bestimmen

- Definiere α (n = $|\alpha|$)
- Bestimme lower bound von m $m \in \Omega(f_l(n))$
- Bestimme upper bound von m^* $m^* \in \mathcal{O}(f_u(n))$

$$\Rightarrow a(n) \in \Omega(\frac{f_l(n)}{f_u(n)})$$

LZ78 - Datenstrukturen

• Strings werden als Sequenzen von Paaren (i, c) dargestellt i...Index eines Vorgänger-Paares oder 0; $c \in \Sigma$

LZ78 - Datenstrukturen

- Strings werden als Sequenzen von Paaren (i, c) dargestellt i...Index eines Vorgänger-Paares oder $0; c \in \Sigma$
- Jedes Paar repräsentiert einen Substring

LZ78 - Datenstrukturen

- Strings werden als Sequenzen von Paaren (i, c) dargestellt i...Index eines Vorgänger-Paares oder $0; c \in \Sigma$
- Jedes Paar repräsentiert einen Substring
- Wenn i gleich 0 dann ist dieser Substring gleich c

LZ78 - Datenstrukturen

- Strings werden als Sequenzen von Paaren (i, c) dargestellt i...Index eines Vorgänger-Paares oder $0; c \in \Sigma$
- Jedes Paar repräsentiert einen Substring
- Wenn i gleich 0 dann ist dieser Substring gleich c
- Andernfalls ist der Substring des i-ten Parres gefolgt von c

$$(0,\underline{a})$$
 $(1,b)$ $(0,\underline{b})$ $(2,a)$ $(3,a)$ $(2,b)$ 1 2 3 4 5 6

LZ78 - Algorithmus

 String wird Schrittweise in einem Durchlauf von links nach rechts in eine Sequenz von Paaren übersetzt

- String wird Schrittweise in einem Durchlauf von links nach rechts in eine Sequenz von Paaren übersetzt
- ullet Finde in jedem Schritt das kürzeste Präfix γ des verbleibenden Strings das nicht Expansion eines bereits erzeugten Paars ist

- String wird Schrittweise in einem Durchlauf von links nach rechts in eine Sequenz von Paaren übersetzt
- ullet Finde in jedem Schritt das kürzeste Präfix γ des verbleibenden Strings das nicht Expansion eines bereits erzeugten Paars ist
- Am Ende des Strings muss eventuell ein weiteres Zeichen hinzugefügt werden

- String wird Schrittweise in einem Durchlauf von links nach rechts in eine Sequenz von Paaren übersetzt
- ullet Finde in jedem Schritt das kürzeste Präfix γ des verbleibenden Strings das nicht Expansion eines bereits erzeugten Paars ist
- Am Ende des Strings muss eventuell ein weiteres Zeichen hinzugefügt werden
- Ein neues Paar wird an die Liste angehangen:
 - 1. Wenn da $\gamma = 1$ ist füge $(0, \gamma)$ hinzu

- String wird Schrittweise in einem Durchlauf von links nach rechts in eine Sequenz von Paaren übersetzt
- ullet Finde in jedem Schritt das kürzeste Präfix γ des verbleibenden Strings das nicht Expansion eines bereits erzeugten Paars ist
- Am Ende des Strings muss eventuell ein weiteres Zeichen hinzugefügt werden
- Ein neues Paar wird an die Liste angehangen:
 - 1. Wenn da $\gamma=1$ ist füge $(0,\gamma)$ hinzu
 - 2. Andernfalls ist $\gamma = \alpha c$.
 - α ... Expansion eines Paars mit dem Index i_{α}
 - \Rightarrow Paar: (i, c)

Beispiel

aabbababaab€

Beispiel

aabbababaab€

(0,a) <mark>ab</mark>bababaab€

Beispiel

aabbababaab€

(0,a) abbababaab€

(0,a) (1,b) bababaab€

Beispiel

aabbababaab€

(0,a) abbababaab€

(0,a) (1,b) bababaab€

(0,a) (1,b) (0,b) ababaab \in

```
aabbababab€
(0,a) abbababab€
(0,a) (1,b) bababaab€
(0,a) (1,b) (0,b) ababaab€
(0,a) (1,b) (0,b) (2,a) baab€
```

```
aabbababab\in (0,a) abbababab\in (0,a) (1,b) bababaab\in (0,a) (1,b) (0,b) ababaab\in (0,a) (1,b) (0,b) (2,a) baab\in (0,a) (1,b) (0,b) (2,a) (3,a) ab\in
```

```
aabbababab€
(0,a) abbababaab€
(0,a) (1,b) bababaab€
(0,a) (1,b) (0,b) ababaab€
(0,a) (1,b) (0,b) (2,a) baab€
(0,a) (1,b) (0,b) (2,a) (3,a) ab€
(0,a) (1,b) (0,b) (2,a) (3,a) (2,€)
```

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

•
$$|\alpha_k| = k \frac{k+1}{2} + (1+k)(k+1)^2$$

= $k^3 + \frac{7}{2}k^2 + \frac{7}{2}k + 1$

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

- $|\alpha_k| = k \frac{k+1}{2} + (1+k)(k+1)^2$ = $k^3 + \frac{7}{2}k^2 + \frac{7}{2}k + 1$
- $n = |\alpha_k| \in \Theta(k^3)$

UpperBound m^*

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

•
$$m^* \in \mathcal{O}(1 + \log(\frac{k^2 + k}{2}) + \log(k + 1)^2 + 1 + \log(k))$$

UpperBound m*

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

- $m^* \in \mathcal{O}(1 + \log(\frac{k^2 + k}{2}) + \log(k + 1)^2 + 1 + \log(k))$
- $m^* \in \mathcal{O}(\log k)$

UpperBound m*

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

- $m^* \in \mathcal{O}(1 + \log(\frac{k^2 + k}{2}) + \log(k + 1)^2 + 1 + \log(k))$
- $m^* \in \mathcal{O}(\log k)$
- $m^* \in \mathcal{O}(\log n^{\frac{1}{3}}) = \mathcal{O}(\log n)$

LowerBound m

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

• String wird in zwei Phasen in eine Paar-Sequenz übersetzt

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

- String wird in zwei Phasen in eine Paar-Sequenz übersetzt
- Erste Phase: alle Strings a...ak zu Paaren übersetzt

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

- String wird in zwei Phasen in eine Paar-Sequenz übersetzt
- Erste Phase: alle Strings a...ak zu Paaren übersetzt
- Zweite Phase: a^iba^j für alle $i,j \in [0,k]$ wird ein Paar erstellt

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

- String wird in zwei Phasen in eine Paar-Sequenz übersetzt
- Erste Phase: alle Strings a...ak zu Paaren übersetzt
- Zweite Phase: a^iba^j für alle $i,j \in [0,k]$ wird ein Paar erstellt
- $m \in \Omega(\sum_{z=1}^{k} z + (k+1)^2) = \Omega(k^2)$

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

- String wird in zwei Phasen in eine Paar-Sequenz übersetzt
- Erste Phase: alle Strings a...ak zu Paaren übersetzt
- Zweite Phase: a^iba^j für alle $i,j \in [0,k]$ wird ein Paar erstellt
- $m \in \Omega(\sum_{z=1}^{k} z + (k+1)^2) = \Omega(k^2)$
- $m \in \Omega(n^{2/3})$

LowerBound

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

• $m^* \in \mathcal{O}(\log n)$

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

- $m^* \in \mathcal{O}(\log n)$
- $m \in \Omega(n^{2/3})$

$$\alpha_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

- $m^* \in \mathcal{O}(\log n)$
- $m \in \Omega(n^{2/3})$
- $a(n) \in \Omega(\frac{n^{2/3}}{\log n})$

Algorithmen - global algorithms

TODO

$$a^2 + b^2 = c^2$$

Algorithmen - LZ77 variant

TODO

Basiert anscheinend auf $BB[\alpha]$ – Trees