Financial Frictions and Pollution Abatement Over the Life Cycle of Firms

Min Fang University of Florida Po-Hsuan Hsu National Tsing Hua University

Chi-Yang Tsou University of Manchester

September 14, 2024 IWFSAS 2024

Motivation

- ▶ Known: Low inputs in pollution abatement in the aggregate
 - ▶ 2005 EPA: \$5.9b in capital investment, \$20.7b in operating cost
 - ▶ 2005 BEA: \$2,534.7b in physical investment, \$341.9b in R&D investment
 - ▶ Pollution abatement is mainly in operation costs, which is hard to finance

Motivation

- ▶ Known: Low inputs in pollution abatement in the aggregate
 - ▶ 2005 EPA: \$5.9b in capital investment, \$20.7b in operating cost
 - ▶ 2005 BEA: \$2,534.7b in physical investment, \$341.9b in R&D investment
 - Pollution abatement is mainly in operation costs, which is hard to finance
- ▶ New Findings: Abatement activities over firms' life cycle
 - Strong sorting of abatement, investment, total emission, and emission intensity over size, age, and other financial friction indicators

Motivation

- ▶ Known: Low inputs in pollution abatement in the aggregate
 - 2005 EPA: \$5.9b in capital investment, \$20.7b in operating cost
 - ▶ 2005 BEA: \$2,534.7b in physical investment, \$341.9b in R&D investment
 - Pollution abatement is mainly in operation costs, which is hard to finance
- ▶ New Findings: Abatement activities over firms' life cycle
 - Strong sorting of abatement, investment, total emission, and emission intensity over size, age, and other financial friction indicators
- ▶ Unknown: What drives insufficient pollution abatement investment?
 - 1. Research Question: The role of financial frictions over firms' life cycle
 - 2. Economic Implications:

Aggregate outcomes and welfare + Design of environmental policies

Summary of the Paper

Empirical Evidence: Pecking order of investment and abatement

- Financially constrained firms prefer physical investment to pollution abatement
- Lower abatement leads to higher emission intensity

Summary of the Paper

Empirical Evidence: Pecking order of investment and abatement

- ▶ Financially constrained firms prefer physical investment to pollution abatement
- Lower abatement leads to higher emission intensity

Full-blown Quantitative Model:

- ▶ A GE model with heterogeneous firms and financial constraints
- ▶ Formalize the intuition for the joint link btw abatement, emission, inv, and debt
- Quantitatively accounts for a set of empirical evidence

Summary of the Paper

Empirical Evidence: Pecking order of investment and abatement

- ▶ Financially constrained firms prefer physical investment to pollution abatement
- Lower abatement leads to higher emission intensity

Full-blown Quantitative Model:

- ▶ A GE model with heterogeneous firms and financial constraints
- ▶ Formalize the intuition for the joint link btw abatement, emission, inv, and debt
- Quantitatively accounts for a set of empirical evidence

Quantitative Implications:

- ▶ 1: The effect of financial frictions
- ▶ 2: The effect of regulatory penalty
- 3: Environmental policy implications

Empirical Facts

Data and Measurements

Data Sources I: toxic emission, pollution abatement, and env. litigation

- ► Toxic Release Inventory (TRI) Database Data: TRI
- ▶ Pollution Prevention (P2) Database Data: P2
- ▶ Enforcement and Compliance History Online (ECHO) system
- ▶ National Establishment Time-Series (NETS) Database

Data Sources II: financial constraint and other firm characteristics

CRSP, Compustat, and others (BEA, BLS, FRED)

Variables of Interests:

- ▶ Pollution Abatement: sum up the number of new source reduction activities
- ▶ Emission Intensity: sum up raw emissions normalized by sales
- Financial Constraint: total assets, property plant and equipment, age, and SA
- Other Firm Characteristics

Pecking Order: Firm Grouping based on Size

Pecking Order: More Facts and Takeaway

Additional evidence of the pecking order

- ▶ Same strong sorting on different measures of Size, Age, FF indicators
- ▶ Significant regression coefficients with the same measures

Pecking Order: More Facts and Takeaway

Additional evidence of the pecking order

- ▶ Same strong sorting on different measures of Size, Age, FF indicators
- Significant regression coefficients with the same measures

Takeaways:

- ▶ Observation: Small/young/constrained firms prefer investment to abatement
- ▶ Underlying: The interplay of FFs, firm growth (through inv.), and environment

The Pecking Order of Investment and Abatement

The Model in One Page

Production and Pollution

• Production: $y_{jt} = z_{jt} k_{jt}^{\alpha}$

• Pollution: $e_{jt} = y_{jt} \times \frac{\bar{e}}{1 + \gamma a_{jt}}$

• Regulation: $\tau_{jt}e_{jt}$

Financial Frictions and Decisions

▶ Collateral constraint: $b_{jt+1} \le \theta k_{jt+1}$ | Cannot issue equity: $d_{jt+1} \ge 0$

▶ Chooses: debt b_{jt+1} , capital k_{jt+1} , and abatement $a_{jt+1} \ge 0$

Recursive Problem for Firms (π_d as exogenous exit risk)

$$v(z_{jt}, n_{jt}) = \max_{a_{jt+1}, k_{jt+1}, b_{jt+1}} d_{jt} + \mathbf{E_t} \left\{ \Lambda_{t+1} \left[\pi_d n_{jt+1} + (1 - \pi_d) v(z_{jt+1}, n_{jt+1}) \right] \right\}$$
(1)

$$d_{jt} \equiv n_{jt} - k_{jt+1} - a_{jt+1} + \frac{b_{jt+1}}{1 + r_t} \ge 0,$$
 (2)

$$n_{jt+1} \equiv z_{jt+1} k_{it+1}^{\alpha} + (1 - \delta) k_{jt+1} - \tau_{jt+1} e_{jt+1} - b_{jt+1}, \tag{3}$$

Households Welfare

• $W_t = log C_t - \zeta log E_t$, ζ stands for disutility from pollution

Key Trade-offs with Financial Frictions

- ▶ Def: $\mu_t(z, n)$: Lagrange multiplier on collateral constraints
- ▶ Def: $\lambda_t(z, n)$: Lagrange multiplier on nonnegative dividend
- ▶ FOC for Physical Capital:

$$\underbrace{1 + \lambda_t(z, n)}_{\text{marginal cost}} = \mathbf{E}_t \left\{ \Lambda' \left[\left(\pi_d + (1 - \pi_d)(1 + \lambda_{t+1}(z', n')) \right) \right. \\ \left. \times \left(\left(1 - \frac{\tau' \bar{e}}{1 + \gamma a'} \right) MPK(z', k') + (1 - \delta) \right) \right] \right\} + \underbrace{\theta \mu_t(z, n)}_{\text{relax borrowing constrains}}$$

FOC for Pollution Abatement:

$$\underbrace{1 + \lambda_t(z, n)}_{\text{marginal cost}} \ge \mathbf{E}_t \left\{ \Lambda' \left[\left(\pi_d + (1 - \pi_d)(1 + \lambda_{t+1}(z', n')) \right) \underbrace{\frac{\gamma \tau' \bar{e}}{(1 + \gamma a')^2} z' k'^{\alpha}}_{\text{marginal benefit of abatement}} \right] \right\}$$

▶ Investment generates an additional return by relaxing borrowing constraint

Decision Rules: Investment vs Abatement

Decision Rules: Total Emission vs Emission Intensity

Quantitative Implications

- Raw emission increases in net worth
- Emission intensity decreases in net worth

Quantitative Assessments

Parameterization and Validation

Parameterization

- We parameterize the model to carefully match firm distributions in the US
- ▶ We match penalties to the litigation costs across firms in the US

Empirical Validation

- Quasi-Natural Experiments of Anti-recharacterization Laws (Causal evidence)
- ▶ More pollution abatement from smaller firms when the constraint is relaxed

Effects of Financial Frictions I: Distribution

Figure: Environmental Distribution in Stationary Equilibrium

Implication on Distribution:

- ► Financial frictions inhibit firms from growing ⇒ Lower abatement
- ► Lower abatement ⇒ Higher emission intensity ⇒ Therefore, stay dirtier

Effects of Financial Frictions II: Aggregation

Table: : The Aggregate Effects of Financial Frictions

Outcomes	Output	Capital	Consump.	Abatement	Emission	Intensity
Frictionless	4.8	17.0	2.9	0.17	25.4	5.4
Baseline	4.0	13.2	2.6	0.14	23.1	6.2
% Changes	-20%	-29%	-12%	-21%	-10%	+13%

Financial frictions inhibit firms from growing

- => low abatement ⇒ higher emission
- => much lower output ⇒ lower emission
- => emission intensity is higher
 - * Quantitatively speaking, about 13% higher in the economy

Effects of Financial Frictions III: Optimal Regulation

Figure: Welfare Implications Decomposition Conditional on Penalty μ_{τ}

Preference matters:

- ▶ Baseline model generates 1.8% welfare gain from optimal regulation
- ▶ Completely different cases with other preferences

Effects of Financial Frictions III: Optimal Regulation

Figure: Welfare Implications Decomposition Conditional on Penalty μ_{τ}

Optimal penalty implications:

- Off-setting between consumption loss and environmental gain
- ▶ A higher optimal penalty for the economy without financial frictions
- ▶ Aggregate gain of regulation policy is reduced by about 40% (3% vs 1.8%)

Green Loan Policy: Implementation

We implement the green loan interventions in an extension of our baseline model by modifying the collateral constraint.

Firms can now use certificates of their pollution a batement costs as additional collateral to apply for a green loan from the government up to θ_a .

The new collateral constraint would be:

$$b_{jt+1} \le \theta_k k_{jt+1} + \theta_a a_{jt+1},\tag{4}$$

We take the case that $\theta_a = 1$

Green Loan Policy: Decision

Figure: Green Loan Effects on Decision Rules and Distributions

Green Loan Policy: Aggregate Effects

Panal A: Allocation of Green Loans

Table: : The Allocation and Aggregate Effects of Green Loan Policies ($\theta_a=1$)

Fanel A: Atlocation of Green Loans									
Outcomes	Total $\sum b$	Green $\sum b_g$	Used $\frac{\sum \Delta a}{\sum b_g}$	Washed $\frac{\sum \Delta k}{\sum b_g}$	New $\sum \theta_k \Delta k$				
Baseline	5.30	0.00	-	-	-				
Green Loan	5.37	0.04	0.002	0.038	0.03				
% to Total $\sum b$	+1.32%	+0.75%	+0.04%	+0.71%	+0.56%				
% to Green $\sum b_{g}$	-	-	5%	95%	75%				
Panel B: Aggregate Effects of Green Loan Policies									
Outcomes	Output	Capital	Consump.	Abatement	Emission	Emission Intensity			
Baseline	4.04	13.25	2.58	0.137	23.14	6.16			
Green Loan	4.06	13.32	2.59	0.139	23.11	6.12			
% Changes	+0.5%	+0.5%	+0.4%	+1.5%	-0.1%	-0.6%			

Conclusion

Conclusion

- Theory guided empirical work on corporate environmental decisions
- ► Key Findings:
 - Financial constraints significantly affect abatement investment
 - Constrained firms prioritize physical capital over abatement
- General equilibrium model to quantitatively account for:
 - ▶ Firm life-cycle patterns, the trade-off between investment and abatement
 - Substantial less welfare gain from regulation due to financial frictions
- Policy suggestions
 - Credit intervention policies (works well even under imperfect monitoring)