

Article

A specific synergist for neonicotinoid insecticides: IPPA08, a cisneonicotinoid compound with unique oxabridged substructure

Haibo Bao, Xusheng Shao, Yixi Zhang, Yayun Deng, Xiaoyong Xu, Ze-wen Liu, and Zhong Li

J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.6b01512 • Publication Date (Web): 09 Jun 2016

Downloaded from http://pubs.acs.org on June 10, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

A specific synergist for neonicotinoid insecticides: IPPA08, a

cis-neonicotinoid compound with unique oxabridged substructure

Haibo Bao¹, Xusheng Shao², Yixi Zhang¹, Yayun Deng², Xiaoyong Xu², Zewen Liu¹,

*, Zhong Li², *

¹ Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.

² Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China.

*Corresponding author: Zewen Liu, liuzewen@njau.edu.cn. College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China. Tel/ Fax: +86-25-84399051. Zhong Li, lizhong@ecust.edu.cn. School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China. Tel: +86-21-6425 3540; fax: +86-21-6425 2603.

Abstract

1

2	Insecticide synergists are key components to increase the control efficacy and
3	reduce active ingredient use. Here we describe a novel insecticide synergist with
4	activity specific for insecticidal neonicotinoids. The synergist IPPA08, a
5	cis-configuration neonicotinoid compound with unique oxabridged substructure,
6	could increase the toxicity of most neonicotinoid insecticides belonging to IRAC 4A
7	subgroup against a range of insect species, although IPPA08 itself was almost
8	inactive to insects at synergistic concentrations. Unfortunately, similar effects were
9	observed on the honey bee (Apis mellifera) and the brown planthopper (Nilaparvata
10	lugens) resistant to imidacloprid. IPPA08 did not show any effects on toxicity of
11	insecticides with different targets, which made us to define it as a neonicotinoid
12	specific synergist. Unlike most insecticide synergists by inhibiting activities of
13	detoxification enzymes, IPPA08 showed no effects on enzyme activities. The results
14	revealed that IPPA08 worked as a synergist through a distinct way. Although the
15	modulating insect nicotinic acetylcholine receptors (nAChRs, targets of
16	neonicotinoid insecticides) was supposed a possible mode of action for IPPA08 as a
17	neonicotinoid specific synergist, direct evidences are needed in further studies. In
18	insect pest control, IPPA08 acts as a target synergist to increase neonicotinoid
19	toxicity and reduce the amount of neonicotinoid used. Combinations of IPPA08 and
20	insecticidal neonicotinoids may be developed into new insecticide formulations. In
21	summary, combining an active ingredient with a 'custom' synergist appears to be a
22	very promising approach for the development of effective new insecticide products.

- 23 Key words: neonicotinoid, insecticide synergist, detoxification enzyme, nicotinic
- 24 acetylcholine receptors

Introduction

26	Insect pests threaten human welfare through food destruction and disease
27	transmission. Insecticides are the primary means used to control most of insect pests.
28	Neonicotinoid is the largest insecticide now and have been playing an important role
29	in crop protection and public health since the introduction of imidacloprid in $1990s^{I_{\gamma}}$
30	² . The emergence of imidacloprid initiated the splendid era of neonicotinoids with
31	other six neonicotinoids commercialized ³ . Currently, neonicotinoids have been used
32	in more than 120 countries and areas ³ , sharing more than 24% of total insecticide
33	market in 2014 ⁴ . However, the superiority of neonicotinoids is also challenged by the
34	development of resistance resulting from their frequent and irrational use ⁵ . Another
35	major challenge for neonicotinoids is from the toxicity to honey bees, which has led
36	to a re-evaluation of the overall biological safety of neonicotinoids in Europe and
37	elsewhere ⁶ .
38	To deal with these challenges on neonicotinoids, the first strategy is insecticide
39	structure modification. Neonicotinoid insecticides possess either an electron
40	withdrawing nitro (-NO ₂) or cyano (-CN) group, which have been postulated to
41	contribute directly to their selectivity ⁷ . The -NO ₂ or -CN group in all commercial
42	neonicotinoids is in trans-configuration. However, some cis-configuration
43	neonicotinoid compounds also show good insecticidal activities, which may provide
44	substitutes for imidacloprid and other neonicotinoids, especially in the control of
45	insect pests with high resistance to these <i>trans</i> -configuration insecticides ⁸⁻¹⁰ .
46	Cycloxaprid, discovered by our group, is a <i>cis</i> -neonicotinoid with unique oxabridged

substructure 10, 11, outstanding activity 12 and good safety profiles 13, 14, which has been
newly registrated in China. Insecticide synergists may provide another important
choice to deal with problems in insecticide applications, such as decreasing the
application amount of insecticide active ingredient, and lowering the resistant levels
to insecticides. As a representative example, piperonyl butoxide (PBO) is the most
common synergist of insecticides. Since its invention in 1940s ¹⁵ , PBO makes a great
contribution to the public health and the control of household insect pests in the past
several decades 16. Triphenyl phosphate (TPP), diethyl maleate (DEM) and PBO are
now the most important synergists on insecticides through inhibiting activities of
detoxification enzymes ¹⁷⁻¹⁹ .
In the development of cycloxaprid, its eight-membered homolog, IPPA08 (Fig S1),
was synthesized as a comparison. IPPA08 is almost inactive to insects but has the
unexpected synergistic effects on traditional cis-neonicotinoids. Here we described
the finding of IPPA08 as a specific synergist on neonicotinoids, which works in a
distinct mode from the synergists inhibiting activities of detoxification enzymes

Materials and Methods

Chemicals

Piperonyl butoxide (PBO), triphenyl phosphate (TPP) and diethyl maleate (DEM) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Dinotefuran was generously provided by Bayer CropSciences K.K. (Yuki, Ibaraki, Japan). Sulfoxaflor (97.0%) and flupyradifurone (92.5%) were generously provided by Wuhan

- 69 JINGDING Chemicals Co. Ltd. (Wuhan, China). The representative oxabridged
- 70 neonicotinoids, cycloxaprid and IPPA08, were synthesized and purified as previous
- 71 description¹¹ (Fig. S1). Other insecticides were purchased from Sigma-Aldrich (St.
- 72 Louis, MO, USA). The solubility of IPPA08 in room temperature is greater than 1
- 73 mM (much higher if emulsifier was added) in water and greater than 15 mM in
- 74 acetone.

Insects and Bioassay

- 76 Three field populations of the brown planthopper (Nilaparvata lugens) were
- 77 collected in Guilin (Guangxi, China), Nanjing (Jiangsu, China) and Chainat
- 78 (Thailand) in September 2011. The bioassay was carried out using the topical
- 79 application method 20 . If not be specially noted, insects from Nanjing population
- 80 were used as the material source. The American cockroach (*Periplaneta americana*)
- 81 was provided by Feitian Medicinal Animal Co. Ltd (Danyang, Jiangsu, China) in
- 82 September 2011 and bioassay was performed using the topical application method²¹.
- 83 Aphis gossypii was collected in Hangzhou (Zhejiang, China) in September 2013 and
- 84 bioassay was performed using the aphid-dip bioassay²². Bemisia tabaci was
- 85 collected in Dezhou (Shandong, China) in September 2013 and bioassay was
- 86 performed using the leaf-dipping method²³. Musca domestica was collected in
- 87 Zhenjiang (Jiangsu, China) in September 2013 and bioassay was performed using
- 88 the artificial diet method²⁴. Apis mellifera were purchased from Xishan apiary
- 89 (Institute of Apicultural Research, Chinese Academy of Agricultural Sciences,
- 90 Beijing, China) in September 2014 and bioassay was performed following OECD

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

96	Determination of IPPA08 stability in PBS with different pH
95	Cary, NC) to determine LD_{50} or LC_{50} values based on the bioassay methods.
94	48 h. The data obtained were analyzed using Polo software (LeOra Software Inc.,
93	adjusted according to the insecticides used in the test. The mortality was recorded in
92	sensitivities of tested insect species are different, the concentration of IPPA08 was
91	method for the acute oral toxicity test on honeybees ²⁵ . As the insecticidal

Determination of IPPA08 stability in PBS with different pH

Phosphate buffer saline (PBS) was prepared with pH values of 4.0, 7.2 and 9.0. IPPA08 was dissolved in PBS buffer with the final concentrations of 0.1 mM and 1.0 mM, and incubated at room temperature (28±2 °C) for more than 48 h. Chromatographic analysis was performed using an Agilent 1260 series HPLC System (Agilent Technologies, USA) equipped with a photodiode array detector. Zobarx Extend-C18 Column (250 mm × 4.6 mm; 5 μm particle size) was used with column temperature of 30°C. UV detection wavelength was 345 nm. The mobile phase consisted of methanol and H_2O with isocratic elution at a ratio of 50:50 (v/v). The flow rate was held constant (1.0 ml/min) throughout the process and 5 µl of samples were injected. The analysis time was 6 min and the retention time of IPPA08 was 3.8 min.

Activity determination for three detoxification enzymes

Females (50-56 mg) were homogenized in 500-560 µl extraction buffer (0.1 M Tris-HCl, 0.5% Triton X-100, pH 7.8) and the homogenate was centrifuged at 12,000 g for 15 min. The supernatant was used as the enzyme source for the determination of O-demethylase or N-demethylase activity of P450 monooxygenases,

113	activity of esterases (ESTs) and Glutathione S-transferases (GSTs). Protein
114	concentrations were determined using the bicinchoninic acid (BCA) kit (St. Louis,
115	MO, USA) with bovine serum albumin (BSA) as the standard protein. Enzyme
116	activities were then tested following methods reported before ^{26, 27} .
117	To determine the influence of IPPA08 on enzyme activity, enzymes from female
118	adults were treated in two different ways. In the first one, each female was treated by
119	IPPA08 at dose of 2.5 ng/female, and the survival insects after 48 h were collected
120	for the preparation of enzyme source. Then the enzyme activities were determined
121	and compared to that of untreated insects. In the second one, the enzyme source was
122	first prepared from untreated females and then incubated with IPPA08 at final
123	concentration of 0.5 mM for 2 h. Then the enzyme activities were determined and
124	compared to that of enzyme source without incubation with IPPA08.

126

127

128

129

130

131

132

133

134

Results

IPPA08 toxicity and its effects on imidacloprid toxicities

IPPA08 toxicity was tested on several insect species and compared to imidacloprid and cycloxaprid, two neonicotinoids. IPPA08 had significantly lower toxicity to all tested insects and only caused mortality at relatively high doses, such as above 4.25 ng/female for N. lugens (Fig. 1A) and 25 μg/female for P. americana (Fig. 1B). The calculated LD₅₀/LC₅₀ values for IPPA08 against tested insect species were at least 10 times greater than that of imidacloprid and cycloxaprid (Table 1).

Although IPPA08 did not show toxicity at low concentrations/doses, it increased

imidacloprid toxicity. For N. lugens, 23% mortality by 2 ng/female imidacloprid was
increased to 81% when co-applied with IPPA08 at low doses (1.0-4.0 ng/female), at
which IPPA08 alone showed no insecticidal activity (Fig. 1A). Similarly in P.
americana, 19% mortality by 2 µg/female imidacloprid was increased to 74% when
co-applied with IPPA08 at low doses (3.0-15.0 ng/female) at which IPPA08 itself
caused no mortality (Fig. 1B).
The effects of IPPA08 on imidacloprid toxicities were also tested on other insect
species, including A. gossypii, B. tabaci, M. domestica and A. mellifera. Similar
increases in imidacloprid insecticidal activity were also observed in these species,
when imidacloprid was co-applied with IPPA08 at concentrations without direct
toxicity (Table 2). Unfortunately, IPPA08 did not show selectivity in its effects on
imidacloprid activity against the honey bee (A. mellifera).
When testing the influence of IPPA08 on imidacloprid toxicities in N. lugens
populations with different resistance levels to imidacloprid, it was found that IPPA08
had similar synergistic effects on imidacloprid toxicities (Table 3).
Influence of IPPA08 on toxicities of insecticides from different classes
The influence of IPPA08 on the toxicities of other neonicotinoids was tested,
including acetamiprid, thiacloprid, clothianidin, dinotefuran and cycloxaprid. For N .
lugens (Fig. 2A) and P. Americana (Fig. 2B), IPPA08 at low doses (causing no
toxicity by itself) increased the mortalities caused by fixed doses (2 ng/female for <i>N</i> .

lugens, and 2 µg/female for P. Americana) of acetamiprid, thiacloprid and

clothianidin, which was similar to that on imidacloprid. However, IPPA08 showed

little influence on toxicities of dinotefuran and cycloxaprid against both insect

158	species.
159	Based on IRAC Mode of Action Classification Scheme (version 8.1, 2016,
160	http://www.irac-online.org), the above tested insecticides belong to IRAC 4A (Group
161	4, nicotinic acetylcholine receptor competitive modulators). Recently in Group 4,
162	several insecticides were developed belonging to different subgroups, such as
163	sulfoxaflor in Sulfoximines (4C), flupyradifurone in butenolides (4D) and
164	triflumezopyrim in mesoionics (4E). Here the influence of IPPA08 on the toxicities
165	of sulfoxaflor and flupyradifurone was tested, but not including triflumezopyrim
166	because it is difficult to obtain this compound within a short time. In three insect
167	species, N. lugens (Fig. 3A), A. gossypii (Fig. 3B) and B. tabaci (Fig. 3C), IPPA08
168	did not show obvious synergistic effects on sulfoxaflor and flupyradifurone,
169	although the influence on imidacloprid toxicities was significant in these insects.
170	The influence of IPPA08 on the toxicities of insecticides from other classes was
171	also evaluated. IPPA08 had no synergistic effects on insecticides with different
172	targets, such as organophosphates and carbamates acting on insect
173	acetylcholinesterases (AChEs), pyrethroids acting on sodium ionchannels and
174	cyclopentadienes acting on γ -aminobutyric acid (GABA) receptors (Fig. 4).
175	

176

177

178

157

Key properties of IPPA08 as a specific synergist

To exclude the possibility that the synergistic effects were caused by metabolites of IPPA08, such as glutaraldehyde or (nitromethylene)imidazole (NMI), its

hydrolysis was studied. IPPA08 showed the good stability at all test condition	ns,
although a small proportion (1.85-2.10%) was degraded in 51 h at acid condition	ion
with pH of 4.0 (Table 4).	

Many synergists shows synergistic effects on insecticide toxicities, and the synergistic mode of most synergists is through inhibiting the activity of detoxification eznymes, such as PBO inhibiting activities of P450 monooxygenases, TPP inhibiting activities of esterases (ESTs), and DEM inhibiting activities of Glutathione S-transferases (GSTs)¹⁷⁻¹⁹. In order to find out whether IPPA08 had inhibition effects on the activities of three important detoxification enzymes, IPPA08 was either applied to insects or incubated with enzyme solutions, and then the changes in enzyme activities were determined. On female adults treated with IPPA08 at dose of 2.5 ng/female, no significant differences in the activities of P450s, ESTs and GSTs were found when compared to untreated control (Table 5). Incubation of enzyme solution with IPPA08 at final concentration of 0.5 mM did not cause obvious changes in enzyme activities too. The results clearly revealed that IPPA08 had distinct mode of action as a synergist.

Discussion

There is an ongoing dilemma between the necessity for chemical insecticide use and the risks from potential adverse effects. Ways to cope with this dilemma include reducing pesticide use, increasing unit activity and selectivity, and reducing the rate of insecticide resistance development²⁸. An important strategy is the development of

synergists to increase insecticide toxicity and reduce the amount of active ingredient.
Here, we found that IPPA08, a cis-neonicotinoid with unique oxabridged
substructure, showed significantly synergistic effects on neonicotinoid insecticides,
currently the most important class of insecticides. IPPA08 significantly increased
toxicities of several neonicotinoid insecticides against a range of insect species,
although IPPA08 itself was almost inactive to insects at synergistic concentrations.
Unfortunately, the synergistic effects of IPPA08 showed little selectivity among
insect species and IPPA08 increased imidacloprid toxicity against honey bees at a
level similar to other insect species. IPPA08 also produced similar effects in
combination with imidacloprid on several N. lugens populations with different
imidacloprid resistance levels suggesting that IPPA08 cannot increase susceptibility
to neonicotinoids if resistance has already developed.
IPPA08 only showed its synergistic effects on neonicotinoids specifically, but was
without any effects on the toxicity of insecticides from other classes, such as
organophosphates, carbamates, pyrethroids and cyclopentadienes. Until now, most
successful synergists act as inhibitors of metabolic enzymes, such as P450
monooxygenases and other detoxification enzymes ^{17, 29} . PBO is the most commonly
used insecticide synergist ¹⁵ , which has made a great contribution to the control of
malaria mosquito vectors and insect vectors of other diseases. PBO is also
commonly used in formulations made for the control of urban pest insects 16 .
However, IPPA08 did not show any inhibition on the activity of three important
detoxification enzymes, in either treating insects directly by IPPA08 or incubating

enzymes with IPPA08. The results indicated that IPPA08 worked as a synergist in a
way different from inhibiting activities of detoxification enzymes, and did not
obtained its specificity on neonicotinoids through inhibiting activity of some specific
enzymes which happens to only metabolize neonicotinoids. Detoxification enzymes
play important roles in insecticide resistances, such as P450s monooxygenases in
imidacloprid resistance in N . $lugens^{30, 31}$. In N . $lugens$ with different imidacloprid
resistance conferred by the enhance activity of detoxification enzymes, IPPA08
showed similar effects to synergize imidacloprid, which also supported the supposal
that IPPA08 did not exert its synergism by inhibiting enzyme activities.
Neonicotinoids act on insect nicotinic acetylcholine receptors (nAChRs), which
play crucial roles in chemical-to-electrical transduction by mediating fast cholinergic
synaptic transmission ³² . As a prototypical member of Cys-loop receptors, nAChRs
mediate fast cholinergic synaptic transmission in both vertebrate and invertebrate
nervous systems and have been investigated as targets of many clinical drugs and
insecticides ³² . On mammalian nAChRs, two types of allosteric modulators, NS1738
as the representative member of type I modulator and PNU-120596 as type II
modulator, can changes the pharmacological properties through modulating the
receptor protein, which could be recognized as synergists for the agonist drugs on
mammalian nAChRs ^{33, 34} . IPPA08 may also possess its synergistic effects through
modulating insect nAChRs, which conferred its specificity for neonicotinoids acting
on insect nAChRs. Of course, such supposal needed direct evidences, which will be
in further studies, and the present study only provided some implicit cues for such

supposal. IPPA08 likely only showed obvious effects on neonicotinoids belonging to
4A subgroup in Group 4 of IRAC Mode of Action Classification Scheme (version
8.1, 2016, http://www.irac-online.org), but not significantly synergize neonicotinoids
belonging to other subgroups, such as 4C and 4D. Even among neonicotinoids in 4A
subgroup, IPPA08 showed little effects on the toxicity of dinotefuran, which may be
because of the difference in chemical structures and acting sites on insect nAChRs.
In contrast to dinotefuran, all of the other commercial neonicotinoid insecticides in
4A subgroup contain a chlorinated heterocyclic (chloropyridyl or chlorothiazolyl)
group ³⁵ , and dinotefuran was also thought to act on the distinct site(s) from other
neonicotinoids ³⁶ . IPPA08 also showed little effects on the toxicity of cycloxaprid,
whose mode of action is still unknown. The -NO2 or -CN group in all commercial
neonicotinoids is in trans-configuration, but cycloxaprid has the group in
cis-configuration and was with unique oxabridged substructure, which may give it
possibility to act on distinct site(s) of insect nAChRs ^{10, 11} . If really through
modulating insect nAChRs, IPPA08 may modify the microstructure of binding site(s)
for most commercial neonicotinoids in 4A subgroup, which consequently increase
the binding affinity of these neonicotinoids on insect nAChRs. However, dinotefuran,
cycloxaprid and neonicotinoids belonging to non-4A subgroups may have the
distinct site(s) from these neonicotinoids, and IPPA08 modulation may not change
the microstructure of this distinct binding site(s).

Conflict of interest

267	The authors declare no competing financial interest.
268	
269	Acknowledgement
270	We would like to thank Prof. John Casida (University of California, Berkeley,
271	California, USA) and Prof. Xuhong Qian (East China University of Science and
272	Technology, Shanghai, China) for their comments during manuscript preparation.
273	This work was supported by National Natural Science Foundation of China
274	(31322045 and 31130045) and Jiangsu Science Fund for Distinguished Young
275	Scholars (BK20130028).

276 References

- 277 1. Elbert, A.; Haas, M.; Springer, B.; Thielert, W.; Nauen, R., Applied aspects of
- 278 neonicotinoid uses in crop protection. *Pest Manage. Sci.* **2008**, *64*, 1099-1105.
- 279 2. Jeschke, P.; Nauen, R., Neonicotinoids-from zero to hero in insecticide
- 280 chemistry. Pest Manage. Sci. 2008, 64, 1084-1098.
- 281 3. Peter, J.; Ralf, N.; Michael, S.; Alfred, E., Overview of the status and global
- strategy for neonicotinoids. J. Agric. Food Chem. 2010, 59, 2897-2908.
- 283 4. Bass, C.; Denholm, I.; Williamson, M. S.; Nauen, R., The global status of insect
- resistance to neonicotinoid insecticides. *Pestic. Biochem. Physiol.* **2015**, *121*, 78-87.
- 285 5. Andrew, J. C.; Stefano, R.; Marco, S.; Russell, S., Target-site resistance to
- 286 neonicotinoids. J. Chem. Biol. 2014, 7, 125-128.
- 287 6. Raine, N. E.; Gill, R. J., Tasteless pesticides affect bees in the field. Nature
- **288 2015**, *521*, 38-40.
- 289 7. Tomizawa, M.; Casida, J. E., Neonicotinoid insecticide toxicology: Mechanisms
- of selective action. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 247-C-241.
- 8. Tian, Z.; Shao, X.; Li, Z.; Qian, X.; Huang, Q., Synthesis, insecticidal activity,
- and gsar of novel nitromethylene neonicotinoids with tetrahydropyridine fixed cis
- 293 configuration and exo-ring ether modification. J. Agric. Food Chem. 2007, 55,
- 294 2288-2292.
- 9. Xu, X.; Bao, H.; Shao, X.; Zhang, Y.; Yao, X.; Liu, Z.; Li, Z., Pharmacological
- 296 characterization of cis-nitromethylene neonicotinoids in relation to imidacloprid
- binding sites in the brown planthopper, Nilaparvata lugens. Insect Mol. Biol. 2010,

- 298 *19*, 1-8.
- 299 10. Shao, X.; Lee, P. W.; Liu, Z.; Xu, X.; Li, Z.; Qian, X., Cis-configuration: A new
- tactic/rationale for neonicotinoid molecular design. J. Agric. Food Chem. 2011, 59,
- 301 2943-2949.
- 302 11. Shao, X.; Fu, H.; Xu, X.; Xu, X.; Liu, Z.; Li, Z.; Qian, X., Divalent and
- 303 oxabridged neonicotinoids constructed by dialdehydes and nitromethylene analogues
- of imidacloprid: Design, synthesis, crystal structure, and insecticidal activities. J.
- 305 Agric. Food Chem. **2010**, 58, 2696-2702.
- 306 12. Cui, L.; Sun, L.; Yang, D.; Yan, X.; Yuan, H., Effects of cycloxaprid, a novel
- 307 cis-nitromethylene neonicotinoid insecticide, on the feeding behaviour of sitobion
- 308 avenae. Pest Manage. Sci. 2012, 68, 1484-1491.
- 309 13. Zhang, J.; Fu, Q.; Wang, H.; Li, J.; Wang, W.; Yang, Z.; Zhang, S.; Ye, Q.; Li,
- 310 C.; Li, Z., Enantioselective uptake and translocation of a novel chiral neonicotinoid
- 311 insecticide cycloxaprid in youdonger (Brassica campestris subsp. Chinensis).
- 312 *Chirality* **2013**, *25*, 686-691.
- 313 14. Liu, X.; Xu, X.; Li, C.; Zhang, H.; Fu, Q.; Shao, X.; Ye, Q.; Li, Z., Degradation
- 314 of chiral neonicotinoid insecticide cycloxaprid in flooded and anoxic soil.
- 315 *Chemosphere* **2015**, *119*, 334-341.
- 316 15. Tozzi, A., 1 a brief history of the development of piperonyl butoxide as an
- 317 insecticide synergist. In *Piperonyl butoxide*, Jones, D. G., Ed. Academic Press:
- 318 London, UK, 1999; pp 1-5.
- 319 16. Jewess, D. J., Piperonyl butoxide: The insecticide synergist. Edited by d.G.

- 320 Jones. Integr. Pest Manage. Rev. 2000, 5, 147-148.
- 321 17. Matthews, H. B.; Casida, J. E., Properties of housefly microsomal cytochromes
- 322 in relation to sex, strain, substrate specificity, and apparent inhibition and induction
- by synergist and insecticide chemicals. *Life Sci.* **1970**, *9*, 989-1001.
- 324 18. Wang, S. P.; Hu, X. X.; Meng, Q. W.; Muhammad, S. A.; Chen, R. R.; Li, F.;
- 325 Li, G. Q., The involvement of several enzymes in methanol detoxification in
- 326 Drosophila melanogaster adults. Comp. Biochem. Physiol. B Biochem. Mol. Biol.
- **2013**, *166*, 7-14.
- 328 19. Wang, Z.; Zhao, Z.; Abou-Zaid, M. M.; Arnason, J. T.; Liu, R.;
- Walshe-Roussel, B.; Waye, A.; Liu, S.; Saleem, A.; Caceres, L. A.; Wei, Q.; Scott, I.
- 330 M., Inhibition of insect glutathione s-transferase (gst) by conifer extracts. Arch.
- 331 *Insect Biochem. Physiol.* **2014**, 87, 234-249.
- 332 20. Liu, Z. W.; Han, Z. J.; Wang, Y. C.; Zhang, L. C.; Zhang, H. W.; Liu, C. J.,
- 333 Selection for imidacloprid resistance in *Nilaparvata lugens*: Cross-resistance
- patterns and possible mechanisms. *Pest Manage. Sci.* **2003**, *59*, 1355-1359.
- 335 21. Scott, J. G.; Cochran, D. G.; Siegfried, B. D., Insecticide toxicity, synergism and
- resistance in the german cockroach (Dictyoptera: Blattellidae). J. Econ. Entomol.
- **1990**, *83*, 1698-1703.
- 338 22. Chandrasena, D.; Difonzo, C.; Byrne, A., An aphid-dip bioassay to evaluate
- 339 susceptibility of soybean aphid (Hemiptera: Aphididae) to pyrethroid,
- 340 organophosphate, and neonicotinoid insecticides. J. Econ. Entomol. 2011, 104,
- 341 1357-1363.

- 342 23. Feng, Y.; Wu, Q.; Wang, S.; Chang, X.; Xie, W.; Xu, B.; Zhang, Y.,
- 343 Cross-resistance study and biochemical mechanisms of thiamethoxam resistance in
- B-biotype Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manage. Sci. 2010, 66,
- 345 313-318.
- 24. Chapman, P. A.; Morgan, C. P., Insecticide resistance in *Musca domestica* L.
- 347 from eastern england. *Pestic. Sci.* **1992**, *36*, 35-45.
- 25. Chemistry, Test no. 213: Honeybees, acute oral toxicity test. *Oecd Guidelines*
- for the Testing of Chemicals **2004**, volume 1, 1-8(8).
- 350 26. Yu, S. J., Interactions of allelochemicals with detoxication enzymes of
- insecticide-susceptible and resistant fall armyworms. Pestic. Biochem. Physiol.
- **1984**, *22*, 60-68.
- 353 27. Hung, C. F.; Kao, C. H.; Liu, C. C.; Lin, J. G.; Sun, C. N., Detoxifying enzymes
- of selected insect species with chewing and sucking habits. J. Econ. Entomol. 1990,
- 355 *83*, 361-365.
- 356 28. Tabashnik, B. E., Managing resistance with multiple pesticide tactics: Theory,
- evidence, and recommendations. J. Econ. Entomol. 1989, 82, 1263-1269.
- 358 29. Tong, F.; Bloomquist, J. R., Plant essential oils affect the toxicities of carbaryl
- and permethrin against aedes aegypti (diptera: Culicidae). J. Med. Entomol. 2013,
- *50*, 826-832.
- 30. Ding, Z.; Wen, Y.; Yang, B.; Zhang, Y.; Liu, S.; Liu, Z.; Han, Z., Biochemical
- mechanisms of imidacloprid resistance in Nilaparvata lugens: Over-expression of
- 363 cytochrome P450 CYP6AY1. Insect Biochem. Mol. Biol. 2013, 43, 1021-1027.

- 364 31. Bass, C.; Puinean, A. M.; Zimmer, C. T.; Denholm, I.; Field, L. M.; Foster, S.
- 365 P.; Gutbrod, O.; Nauen, R.; Slater, R.; Williamson, M. S., The evolution of
- insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem.
- 367 *Mol. Biol.* **2014**, *51*, 41-51.
- 368 32. Matsuda, K.; Buckingham, S. D.; Kleier, D.; Rauh, J. J.; Grauso, M.; Sattelle, D.
- 369 B., Neonicotinoids: Insecticides acting on insect nicotinic acetylcholine receptors.
- 370 Trends Pharmacol. Sci. 2001, 22, 573-580.
- 33. Hurst, R. S.; Hajós, M.; Raggenbass, M., A novel positive allosteric modulator
- 372 of the α7 neuronal nicotinic acetylcholine receptor: In vitro and in vivo
- 373 characterization. *J. Neurosci.* **2005**, *25*, 4396-4405.
- 34. Timmermann, D. B.; Gronlien, J. H.; Kohlhaas, K. L.; Nielsen, E. O.; Dam, E.;
- Jorgensen, T. D.; Ahring, P. K.; Peters, D.; Holst, D.; Christensen, J. K.; Malysz, J.;
- 376 Briggs, C. A.; Gopalakrishnan, M.; Olsen, G. M., An allosteric modulator of the
- 377 alpha7 nicotinic acetylcholine receptor possessing cognition-enhancing properties in
- 378 vivo. J. Pharmacol. Exp. Ther. **2007**, 323, 294-307.
- 35. Liu, Z.; Williamson, M. S.; Lansdell, S. J.; Han, Z.; Denholm, I.; Millar, N. S.,
- 380 A nicotinic acetylcholine receptor mutation (Y151S) causes reduced agonist potency
- to a range of neonicotinoid insecticides. J. Neurochem. **2006**, 99, 1273-1281.
- 382 36. Miyagi, S.; Komaki, I.; Ozoe, Y., Identification of a high-affinity binding site
- for dinotefuran in the nerve cord of the american cockroach. Pest Manag Sci 2006,
- 384 *62*, 293-298.

385	Figure captions
386	Figure 1. IPPA08 toxicity and its synergistic effects on imidacloprid toxicity. (A)
387	The IPPA08 toxicity and its effects on imidacloprid (2 ng/female) toxicity against
388	Nilaparvata lugens. (B) IPPA08 toxicity and its effects on imidacloprid (2 µg/female)
389	toxicity against Periplaneta americana. Data are the means of at least six
390	independent experiments \pm SEM.
391	Figure 2. Effects of IPPA08 on the toxicity of neonicotinoid insecticides. (A) The
392	effects in Nilaparvata lugens. The dose for each neonicotinoid insecticide was 2
393	ng/female, and IPPA08 doses were listed in the figure. (B) The effects in <i>Periplaneta</i>
394	americana. The dose for each neonicotinoid insecticide was 2 μg /female, and
395	IPPA08 doses were listed in the figure. Data are means of at least six independent
396	experiments \pm SEM.
397	Figure 3. Effects of IPPA08 on the toxicity of sulfoxaflor (Sul) and flupyradifurone
398	(Flu) compared with imidacloprid (Imi). (A) The effects in Nilaparvata lugens. The
399	doses for imidacloprid, sulfoxaflor and flupyradifurone were 2.00, 0.25 and 0.25
400	ng/female, and IPPA08 dose was 2.00 ng/female. (B) The effects in Aphis gossypii.
401	The concentations for three insecticides were 0.50, 0.50 and 0.25 mg/L, and IPPA08
402	concentration was 0.50 mg/L. (C) The effects in Bemisia tabaci. The concentrations
403	for three insecticides were 100, 20 and 20 mg/L, and IPPA08 concentation was 100
404	mg/L. Data are means of at least six independent experiments \pm SEM.
405	Figure 4. Effects of IPPA08 on the toxicity of insecticides from different classes
406	against Nilaparvata lugens. The doses for test insecticides are shown under the

- insecticide name. IPPA08 doses were listed in the figure. Data are means of at least
- 408 six independent experiments \pm SEM.
- **Figure S1.** Chemical structures of imidacloprid, cycloxaprid and IPPA08.

410 Tables

Table 1. Insecticidal activities of three compounds against different insect species

Insect species	Testing method	Neonicotinoids	Slope±SE	LD ₅₀ /LC ₅₀ (95% FL) ^a
Nilan amiata	Topical	Imidacloprid	1.742	7.545 (6.103-9.628)
Nilaparvata	application	Cycloxaprid	1.879	1.016 (0.905-1.143)
lugens	(ng/female)	IPPA08		>100
D : 1 .	Topical	Imidacloprid	2.315	12.477 (10.514-15.302)
Periplaneta	application	Cycloxaprid	1.898	17.003 (15.427-19.138)
americana	$(\mu g/female)$	IPPA08		>250
	Insect	Imidacloprid	1.821	1.272 (1.102-1.534)
Aphis 	Dipping	Cycloxaprid	1.574	0.913 (0.797-1.068)
gossypii	(mg/L)	IPPA08	1.328	65.160 (50.395-86.683)
Bemisia	Leaf	Imidacloprid	1.433	635.518 (488.361-827.046)
tabaci	Dipping	Cycloxaprid	1.690	94.557 (81.362-110.502)
	(mg/L)	IPPA08		>10000
1.6	Artificial	Imidacloprid	1.646	2.679 (2.375-3.214)
Musca	diet	Cycloxaprid	1.596	1.133 (0.984-1.320)
domestica	(g/L)	IPPA08		>100
Apis	Oral feeding	Imidacloprid	2.513	1.542 (1.393-1.726)
mellifera	$(\times 10^{-2} \mu g/$	Cycloxaprid	2.408	3.116 (2.872-3.423)
-	worker)	IPPA08	1.704	36.227 (32.526-41.708)

Data are the means of at least six independent experiments \pm SEM. ^a LD₅₀ values are provided for *Nilaparvata lugens*, *Periplaneta Americana* and *Apis mellifera*, and LC₅₀ values are provided for other insect species, which is the same in the following tables.

Table 2. The synergistic effects of IPPA08 on imidacloprid in different insect species

Insect	Test method	IPPA08 Con. ^a	Imidacloprid LD ₅₀ /LC ₅₀	95% CI	Slope	SR ^b
species	Topical	0	7.545	6.103-9.628	1.742	1.00
Nilaparvata	application	1.25	1.696	1.344-2.157	1.622	4.45
lugens	ng/female	2.5	1.032	0.854-1.203	1.475	7.31
	Topical	0	12.477	10.514-15.302	2.315	1.00
Periplaneta	application	2.5	3.851	3.307-4.572	1.836	3.24
americana	μg/female	3.75	2.244	1.956-2.718	1.724	5.56
		0	1.272	1.102-1.534	1.821	1.00
Aphis	Insect	1.5	0.361	0.310-0.418	1.633	3.52
gossypii	dipping mg/L	3.5	0.166	0.131-0.215	1.474	7.63
_		0	635.518	488.361-827.046	1.433	1.00
Bemisia	Leaf dipping mg/L	200	164.642	125.271-209.832	1.276	3.86
tabaci		600	91.971	73.468-118.570	1.562	6.91
		0	2.679	2.375-3.214	1.646	1.00
Musca	Artificial diet	0.5	0.632	0.542-0.780	1.411	4.24
domestica	g/L	1.25	0.445	0.376-0.529	1.358	6.02
Apis	Oral feeding	0	1.542	1.393-1.726	2.513	1.00
mellifera	(×10 ⁻² μg	0.1	0.366	0.323-0.444	1.972	4.21
v	/worker)	0.25	0.231	0.198-0.272	1.765	6.67

^aIPPA08 at the concentrations showed no insecticidal activities against the test insects. ^bSR, synergism ratio. Data are the means of at least six independent experiments ± SEM.

Table 3. The synergistic effects of IPPA08 on imidacloprid in *Nilaparvata lugens* with different resistance levels to imidacloprid

Population	IPPA08 Con.	Imidacloprid LD ₅₀	95% CI	Slope	SR ^b
Guilin (RR ^a =23.25)	0 1.25 2.5	3.209 0.669 0.425	2.854-3.706 0.581-0.795 0.374-0.480	2.227 1.741 1.790	1.00 4.80 7.55
Nanjing (RR=54.67)	0 1.25 2.5	7.545 1.696 1.032	6.103-9.628 1.344-2.157 0.854-1.203	1.742 1.622 1.475	1.00 4.45 7.31
Chainat (RR=115.38)	0 1.25 2.5	15.922 3.951 2.095	14.111-18.294 3.326-4.817 1.714-2.503	2.354 1.663 1.527	1.00 4.03 7.60

 aRR , resistance ratio; bSR , synergism ratio. The test method is the topical application and the unit for LD_{50} values is ng/female. Data are the means of at least six independent experiments \pm SEM.

Table 4. The stability of IPPA08 in PBS buffer at different pH

Treatment	рН	Con.	Peak area I ^a	Peak area II ^b	Detection	Degradation
Heatment		(mM)	(mAU·s)	$(mAU \cdot s)$	time	rate (%)
T1	4.0	0.1	425.50±4.59	417.61±4.45	51 h	1.85
T2	4.0	1.0	3500.51±37.55	3427.11±36.72	51 h	2.10
T3	7.2	0.1	437.17±4.63	431.43±4.74	35 d	1.31
T4	7.2	1.0	4133.73±44.54	4094.71±44.51	35 d	0.94
T5	9.0	0.1	447.47±5.03	447.35±4.78	119 h	0.03
T6	9.0	1.0	3629.62±39.24	3613.41±39.17	118 h	0.45

^aDetection at 0 h after the dissolution of IPPA08 in the buffer. ^bDetection of IPPA08 in the buffer at the time mentioned in the column of Detection time.

444445446

447

448

449

442443

Table 5. The influences of IPPA08 on the activities of detoxification enzymes

Enzyme	Insects treated with IPPA08		Enzymes incubated with IPPAC	
	CK	Treatment	CK	Treatment
P450-OD (pmol·min ⁻¹ ·mg ⁻¹)	7.33±0.66	8.21±1.02	6.84±1.02	6.39±0.86
P450-ND (pmol·min ⁻¹ ·mg ⁻¹)	13.16±1.65	12.74±2.18	11.47±1.37	11.23±1.23
CarE (μmol·min ⁻¹ ·mg ⁻¹)	1.83±0.22	1.69±0.17	1.66±0.21	1.71±0.28
GSTs (μmol·min ⁻¹ ·mg ⁻¹)	104.47±11.82	113.80±13.05	92.15±10.82	97.50±18.35

P450-OD/P450-ND, O-demethylase/N-demethylase activity of P450 monooxygenases; ESTs, esterases; GSTs, glutathione S-transferases. Data are means of at least six independent experiments \pm SEM.

450 Table of graphic

Figure 1. IPPA08 toxicity and its synergistic effects on imidacloprid toxicity. (A) The IPPA08 toxicity and its effects on imidacloprid (2 ng/female) toxicity against Nilaparvata lugens. (B) IPPA08 toxicity and its effects on imidacloprid (2 μ g/female) toxicity against Periplaneta americana. Data are the means of at least six independent experiments \pm SEM. 636x567mm (72 x 72 DPI)

Figure 2. Effects of IPPA08 on the toxicity of neonicotinoid insecticides. (A) The effects in Nilaparvata lugens. The dose for each neonicotinoid insecticide was 2 ng/female, and IPPA08 doses were listed in the figure. (B) The effects in Periplaneta americana. The dose for each neonicotinoid insecticide was 2 μ g/female, and IPPA08 doses were listed in the figure. Data are means of at least six independent experiments \pm SEM. 476x636mm (72 x 72 DPI)

Figure 3. Effects of IPPA08 on the toxicity of sulfoxaflor (Sul) and flupyradifurone (Flu) compared with imidacloprid (Imi). (A) The effects in Nilaparvata lugens. The doses for imidacloprid, sulfoxaflor and flupyradifurone were 2.00, 0.25 and 0.25 ng/female, and IPPA08 dose was 2.00 ng/female. (B) The effects in Aphis gossypii. The concentrations for three insecticides were 0.50, 0.50 and 0.25 mg/L, and IPPA08 concentration was 0.50 mg/L. (C) The effects in Bemisia tabaci. The concentrations for three insecticides were 100, 20 and 20 mg/L, and IPPA08 concentration was 100 mg/L. Data are means of at least six independent experiments ± SEM.

215x404mm (72 x 72 DPI)

Figure 4. Effects of IPPA08 on the toxicity of insecticides from different classes against Nilaparvata lugens. The doses for test insecticides are shown under the insecticide name. IPPA08 doses were listed in the figure. Data are means of at least six independent experiments \pm SEM. $494x299mm (72 \times 72 DPI)$