Image Blurring

Pablo Macías Landa Septiembre 2018

Resumen

Utilizando opency y matrices se hizo un promedio de una matriz de 5x5 para poder obtener el blur de la imágen que utilizamos.

Introducción

Para las pruebas de la multiplicación de matrices se utilizó el equipo con las siguientes especificaciones:

- Laptop
- 8th Gen Intel Core i7-8750H processor, 6 Cores/12 Threads, 2.2GHz/4.1GHz (Base/Max Turbo), 9MB Cache
- Mobile Intel HM370 Chipset
- NVIDIA® GeForce® GTX 1060 Max-Q Design (6GB GDDR5 VRAM, Optimus™ Technology)
- 16GB dual-channel SO-DIMM (DDR4, 2667MHz)
- 256GB M.2 SSD (NVMe PCle 3.0 x4)

Desarrollo

1. CPU

Threads	Tiempo (ms)
0	99.645439

2. CPU Threads

Threads	Tiempo (ms)
5	23.472897
6	21.429157
7	32.133183
8	28.239723
9	25.612900

10	23.747053
11	22.637253
12	23.211555
13	25.600931

3. CUDA

x	у	Tiempo (ms)
16	16	0.276348
32	32	0.272116
64	64	0.058879
96	96	0.057988
128	128	0.057383

Conclusiones

En este caso podemos ver que a diferencia del ejercicio pasado la mejor combinación del bloque fue 64x64, lo que me da a entender que no siempre la misma configuración dará el mejor resultado en todos los casos incluso usando la misma computadora. En CPU si dio los mismos tipos de resultados, por lo que donde es más irregular es en GPU.