DYNAMIC PROGRAMMING

RECAP

WHERE WE ARE

Goal: find an optimal policy for an MDP

 $\pi\in\Pi$ Search the space of policy for an optimal one

$$v_{\pi}(s) \doteq \mathbb{E}[G_t | S_t = s]$$
 Quality of the policy in a state s

$$v_{\pi}(s) = \sum_{a} \left(\pi(a \mid s) r(s, a) + \gamma \sum_{s'} p(s, a, s') v^{\pi}(s') \right)$$
 simpler expression of value

Compute v_{π} by solving a system of equations (becomes expensive if there are many states)

DIRECTION

THIS WEEK

- 1. An iterative method for computing v_{π}
- 2. Ways to use estimates of v_{π} to improve π

THE VALUE OF AN ACTION

DEPENDS ON THE POLICY

$$q_{\pi}(s, a) \doteq \mathbb{E}[G_t | S_t = s, A_t = a]$$

In Bandits, the optimal action was constant $q_*(a) = \mathbb{E}[R_t | A_t = a]$

In MDPs an action can be both the best and worst choice

 $a^* \in \arg\max_{a} q_*(s, a)$ a^* is an optimal action

 $\min_{\pi} q_{\pi}(s, a^*) = \min_{\pi} v_{\pi}(s)$ a^* could also minimize the value of the state

THE VALUE OF AN ACTION

DEPENDS ON THE POLICY

$$\pi(s_0) = a_1, \pi(s_1) = a_1 \qquad r(s_0, a_2, s_2)$$

$$q_{\pi}(s_0, a_1) = 0 + \gamma(-100) + \gamma^2 0 = -\gamma 100$$

$$\pi(s_0) = a_1, \pi(s_1) = a_2$$

$$q_{\pi}(s_0, a_1) = 0 + \gamma 50 + \gamma^2 = \gamma 50$$

TWO SETTINGS

CONTROL VS EVALUATION

Policy Evaluation — compute v_{π} or q_{π}

Prediction settings: predict the value of state or action (supervised learning)

Policy Improvement $-\pi \to \pi'$ such that $\pi' > \pi$

- $\bullet \quad \pi \to \pi' \to \ldots \to \pi_*$
- Control settings: searching for better (or optimal) policies
- This is the settings we ultimately care about

Policy evaluation is a useful step in policy improvement

TWO SETTINGS

CONTROL VS EVALUATION

Policy Evaluation — compute v_{π} or q_{π}

Prediction settings: predict the value of state or action (supervised learning)

Policy Improvement $-\pi \to \pi'$ such that $\pi' > \pi$

- ullet $\pi o \pi' o \ldots o \pi_*$
- Control settings: searching for better (or optimal) policies
- This is the settings we ultimately care about

Policy evaluation is a useful step in policy improvement

RECALL: FUNCTION

SYSTEM OF EQUATIONS

$$v_{1} = r_{1} + \gamma p_{1,1} v_{1} + \gamma p_{1,2} v_{2} + \dots + \gamma p_{1,n} v_{n}$$

$$v_{2} = r_{2} + \gamma p_{2,1} v_{1} + \gamma p_{2,2} v_{2} + \dots + \gamma p_{2,n} v_{n}$$

$$\vdots$$

$$v_{n} = r_{n} + \gamma p_{n,1} v_{1} + \gamma p_{n,2} v_{2} + \dots + \gamma p_{n,n} v_{n}$$

Solve n equations for n unknown variables so that $v = v_{\pi}$

RECALL: FUNCTION

SYSTEM OF EQUATIONS

$$v_{1} \leftarrow r_{1} + \gamma p_{1,1} v_{1} + \gamma p_{1,2} v_{2} + \dots + \gamma p_{1,n} v_{n}$$

$$v_{2} \leftarrow r_{2} + \gamma p_{2,1} v_{1} + \gamma p_{2,2} v_{2} + \dots + \gamma p_{2,n} v_{n}$$

$$\vdots$$

$$v_{n} \leftarrow r_{n} + \gamma p_{n,1} v_{1} + \gamma p_{n,2} v_{2} + \dots + \gamma p_{n,n} v_{n}$$

Solve *n* equations for *n* unknown variables so that $v = v_{\pi}$

Idea: update the left-hand side with the right-hand side

DEFINITIONS

$$v^{k} = \begin{bmatrix} v_{1}^{k} \\ \vdots \\ v_{n}^{k} \end{bmatrix} = \begin{bmatrix} v^{k}(s_{1}) \\ \vdots \\ v^{k}(s_{n}) \end{bmatrix}$$

 v^k vector of value estimates for each state at iteration k

UPDATE

$$v_i^{\mathbf{k}+\mathbf{1}} = \sum_{a} \pi(a \mid s_i) \left(r(s_i, a) + \gamma \sum_{j} p(s_i, a, s_j) v_j^{\mathbf{k}} \right)$$

FULL SWEEP

$$v_i^{\mathbf{k}+1} = \sum_{a} \pi(a \mid s_i) \left(r(s_i, a) + \gamma \sum_{j} p(s_i, a, s_j) v_j^{\mathbf{k}} \right)$$

 v^k

$$v_i^{\mathbf{k}+1} = \sum_{a} \pi(a \mid s_i) \left(r(s_i, a) + \gamma \sum_{j} p(s_i, a, s_j) v_j^{\mathbf{k}} \right)$$

$$v_i^{\mathbf{k}+1} = \sum_{a} \pi(a \mid s_i) \left(r(s_i, a) + \gamma \sum_{j} p(s_i, a, s_j) v_j^{\mathbf{k}} \right)$$

$$v_i^{\mathbf{k}+1} = \sum_{a} \pi(a \mid s_i) \left(r(s_i, a) + \gamma \sum_{j} p(s_i, a, s_j) v_j^{\mathbf{k}} \right)$$

$$v_i^{\mathbf{k}+\mathbf{1}} = \sum_{a} \pi(a \mid s_i) \left(r(s_i, a) + \gamma \sum_{j} p(s_i, a, s_j) v_j^{\mathbf{k}} \right)$$

FULL SWEEP

$$v_i^{\mathbf{k}+\mathbf{1}} = \sum_{a} \pi(a \mid s_i) \left(r(s_i, a) + \gamma \sum_{j} p(s_i, a, s_j) v_j^{\mathbf{k}} \right)$$

 v_3^{k+1} v_4^{k+1} v^{k+1}

EXAMPLE

 $\frac{\gamma^3}{\gamma^2}$ $\frac{\gamma}{1}$

EXAMPLE

 $\begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix}$

 $\begin{array}{ccc} 0 & v_1^2 = r(s_1, \cdot) + \gamma v_2^1 = 0 + \gamma 0 = 0 \\ 0 & v_2^2 = r(s_2, \cdot) + \gamma v_3^1 = 0 + \gamma 0 = 0 \\ 0 & v_3^2 = r(s_3, \cdot) + \gamma v_4^1 = 0 + \gamma 0 = 0 \\ 1 & v_4^2 = r(s_4, \cdot) + \gamma v_{\pi}(s_{\infty}) = 1 + \gamma 0 = 1 \end{array}$

 $\frac{\gamma^3}{\gamma^2}$ $\frac{\gamma}{\gamma}$ 1 v_{π}

EXAMPLE

 $\mathbf{0}$ 0

 $v_1^3 \qquad v_1^3 = 0 + \gamma v_2^2 = 0$ $v_3^3 \qquad v_2^3 = 0 + \gamma v_3^2 = 0$ $v_4^3 \qquad v_3^3 = 0 + \gamma v_4^2 = 0 + \gamma$ $v_4^3 = 1 + \gamma 0 = 1$

 V_{π}

EXAMPLE

 $\mathbf{0}$ 0

 $0 v_1^3 = 0 + \gamma v_2^2 = 0$ $0 v_2^3 = 0 + \gamma v_3^2 = 0$ $\gamma v_3^3 = 0 + \gamma v_4^2 = 0 + \gamma$ $v_4^3 = 1 + \gamma 0 = 1$

 V_{π}

EXAMPLE

 $\mathbf{0}$ 0

0 0 γ

 $\begin{array}{c|cccc} v_1^4 & v_1^4 = 0 + \gamma v_2^3 = 0 & & \gamma^3 \\ \hline v_2^4 & v_2^4 = 0 + \gamma v_3^3 = \gamma^2 & & \gamma^2 \\ \hline v_3^4 & v_3^4 = 0 + v_4^3 = \gamma & & \gamma \end{array}$ $v_4^4 = 1 + \gamma 0 = 1$

EXAMPLE

 $\mathbf{0}$ 0

0 0 γ

 $\begin{array}{c|cccc} 0 & v_1^4 = 0 + \gamma v_2^3 = 0 & & \gamma^3 \\ \hline \gamma^2 & v_2^4 = 0 + \gamma v_3^3 = \gamma^2 & & \gamma^2 \\ \hline \gamma & v_3^4 = 0 + v_4^3 = \gamma & & \gamma \end{array}$ $v_4^4 = 1 + \gamma 0 = 1$

EXAMPLE

 $\mathbf{0}$ 0

0 0 γ

 $\begin{vmatrix} v_1^5 \\ v_1^5 \end{vmatrix} v_1^4 = 0 + \gamma v_2^4 = \gamma^3$ $\begin{vmatrix} v_1^5 \\ v_1^5 \end{vmatrix} v_2^4 = 0 + \gamma v_3^3 = \gamma^2$ $\begin{vmatrix} v_1^5 \\ v_1^5 \end{vmatrix} v_3^4 = 0 + v_4^3 = \gamma$ γ

 V_{π}

EXAMPLE

 $\mathbf{0}$ 0

0 0 γ

 $\begin{array}{|c|c|c|c|c|} \hline \gamma & v_1^4 = 0 + \gamma v_2^4 = \gamma^3 & & \\ \hline \gamma^2 & v_2^4 = 0 + \gamma v_3^3 = \gamma^2 & & \\ \hline \gamma & v_3^4 = 0 + v_4^3 = \gamma & & \\ \hline \end{array}$ $v_4^4 = 1 + \gamma 0 = 1$

 \mathcal{V}_{π}

EXAMPLE

 $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

0 γ

1

 $\frac{\gamma^2}{\gamma}$

 $\frac{\gamma}{\gamma^2}$ $\frac{\gamma}{1}$

 $\frac{\gamma}{\gamma^2}$ $\frac{\gamma}{1}$

 $\frac{\gamma^3}{\gamma^2}$ $\frac{\gamma}{\gamma}$ $\frac{1}{V_{\pi}}$

Scott Jordan

$$r(s_1, \cdot, s_1) = 1$$

$$p(s_1, \cdot, s_1) = 0.9$$

$$r(s_1, \cdot, s_\infty) = 0$$

$$p(s_1, \cdot, s_\infty) = 0$$

$$p(s_1, \cdot, s_\infty) = 0.1$$

$$v_1^{k+1} = p(s_1, \cdot, s_1) \left(r(s_1, \cdot, s_1) + \gamma v_1^k \right) + p(s_1, \cdot, s_\infty) \left(r(s_1, \cdot, s_\infty) + \gamma v_\pi(s_\infty) \right)$$

= 0.9(1 + \gamma v_1^k) + 0.1(0 + \gamma 0) = 0.9 + 0.9\gamma v_1^k

$$\gamma = 0.5$$

0						
v_1^1	v_1^2	v_1^3	v_1^4	v_1^5	v_1^6	

$$v_1^{k+1} = p(s_1, \cdot, s_1) \left(r(s_1, \cdot, s_1) + \gamma v_1^k \right) + p(s_1, \cdot, s_\infty) \left(r(s_1, \cdot, s_\infty) + \gamma v_\pi(s_\infty) \right)$$

= 0.9(1 + \gamma v_1^k) + 0.1(0 + \gamma 0) = 0.9 + 0.9\gamma v_1^k

$$\gamma = 0.5$$

	0	0.9					
1	v_1^1	v_1^2	v_1^3	v_1^4	v_1^5	v_1^6	

$$v_1^{k+1} = p(s_1, \cdot, s_1) \left(r(s_1, \cdot, s_1) + \gamma v_1^k \right) + p(s_1, \cdot, s_\infty) \left(r(s_1, \cdot, s_\infty) + \gamma v_\pi(s_\infty) \right)$$

= 0.9(1 + \gamma v_1^k) + 0.1(0 + \gamma 0) = 0.9 + 0.9\gamma v_1^k

$$\gamma = 0.5$$

0	0.9	1.31				
v_1^1	v_1^2	v_1^3	v_1^4	v_1^5	v_1^6	

$$v_1^{k+1} = p(s_1, \cdot, s_1) \left(r(s_1, \cdot, s_1) + \gamma v_1^k \right) + p(s_1, \cdot, s_\infty) \left(r(s_1, \cdot, s_\infty) + \gamma v_\pi(s_\infty) \right)$$

= 0.9(1 + \gamma v_1^k) + 0.1(0 + \gamma 0) = 0.9 + 0.9\gamma v_1^k

$$\gamma = 0.5$$

0	0.9	1.31	1.49			
v_1^1	v_1^2	v_1^3	v_1^4	v_1^5	v_1^6	

$$v_1^{k+1} = p(s_1, \cdot, s_1) \left(r(s_1, \cdot, s_1) + \gamma v_1^k \right) + p(s_1, \cdot, s_\infty) \left(r(s_1, \cdot, s_\infty) + \gamma v_\pi(s_\infty) \right)$$

= 0.9(1 + \gamma v_1^k) + 0.1(0 + \gamma 0) = 0.9 + 0.9\gamma v_1^k

$$\gamma = 0.5$$

0	0.9	1.31	1.49	1.57		
v_1^1	v_1^2	v_1^3	v_1^4	v_1^5	v_1^6	

$$v_1^{k+1} = p(s_1, \cdot, s_1) \left(r(s_1, \cdot, s_1) + \gamma v_1^k \right) + p(s_1, \cdot, s_\infty) \left(r(s_1, \cdot, s_\infty) + \gamma v_\pi(s_\infty) \right)$$

= 0.9(1 + \gamma v_1^k) + 0.1(0 + \gamma 0) = 0.9 + 0.9\gamma v_1^k

$$\gamma = 0.5$$

0	0.9	1.31	1.49	1.57	1.61	
v_1^1	v_1^2	v_1^3	v_1^4	v_1^5	v_1^6	

$$v_1^{k+1} = p(s_1, \cdot, s_1) \left(r(s_1, \cdot, s_1) + \gamma v_1^k \right) + p(s_1, \cdot, s_\infty) \left(r(s_1, \cdot, s_\infty) + \gamma v_\pi(s_\infty) \right)$$

= 0.9(1 + \gamma v_1^k) + 0.1(0 + \gamma 0) = 0.9 + 0.9\gamma v_1^k

$$\gamma = 0.5$$

0	0.9	1.31	1.49	1.57	1.61	• • •	1.636
v_1^1	v_1^2	v_1^3	v_1^4	v_1^5	v_1^6	• • •	v_1^{∞}

$$v_1^{k+1} = p(s_1, \cdot, s_1) \left(r(s_1, \cdot, s_1) + \gamma v_1^k \right) + p(s_1, \cdot, s_\infty) \left(r(s_1, \cdot, s_\infty) + \gamma v_\pi(s_\infty) \right)$$

= 0.9(1 + \gamma v_1^k) + 0.1(0 + \gamma 0) = 0.9 + 0.9\gamma v_1^k

PROPERTIES

$$\lim_{k \to \infty} v^k \to v_{\pi}$$

Can require an infinite number of updates!

In practice, stop when $\|v^{k+1} - v^k\|_{\infty} < \Delta$

 Δ is a small user-specified value

$$\|v^{k+1} - v^k\|_{\infty} = \max_{i} \|v_i^{k+1} - v_i^k\|$$

CONVERGENCE OF v^k

PROOF

$$\lim_{k\to\infty} v^k \to v_{\pi}$$

Great! But we need to prove it.

DEFINITION

 $\mathcal{T} \colon \mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}^{|\mathcal{S}|}$ is a Bellman evaluation operator that iteratively updates v

$$\mathcal{T}(v^k) \doteq v^{k+1}$$

Want to show:

 $\forall x, y \text{ and } \lambda \in [0,1)$

 $d(\mathcal{T}(x), \mathcal{T}(y)) \le \lambda d(x, y)$

DEFINITION CONTRACTION MAPPING

 $f: \mathbb{R}^n \to \mathbb{R}^n$ is a contraction mapping if $\forall x, y \in \mathbb{R}^n$ there exist some $\lambda \in [0,1)$ such that $d\left(f(x), f(y)\right) \leq \lambda d(x,y)$

Where $d: \mathbb{R}^n \to \mathbb{R}$ is a distance function

DEFINITION CONTRACTION MAPPING

Banach Fixed Point Theorem: (paraphrased, see Wikipedia for precise statement)

If f is a contraction mapping, then f has a unique fixed point x^* and

the sequence defined by $x^{k+1} = f(x^k)$ with x^1 chosen arbitrarily converges to x^*

Scott Jordan

DEFINITION CONTRACTION MAPPING

Banach Fixed Point Theorem: (paraphrased; see Wikipedia for precise statement) If f is a contraction mapping, then f has a *unique fixed point* x^* and the sequence defined by $x^{k+1} = f(x^k)$ with x^1 chosen arbitrarily converges to x^*

For us:

- 1. Prove \mathcal{T} is a contraction mapping
- 2. Prove the fixed point is v_{π}

PROOF CONTRACTION MAPPING

$$\begin{aligned} d(v, v') &= \|v - v'\|_{\infty} = \max_{i} |v_{i} - v'_{i}| \\ &\|\mathcal{T}(v) - \mathcal{T}(v')\|_{\infty} = \max_{i} |\mathcal{T}(v)_{i} - \mathcal{T}(v')_{i}| \\ &= \max_{i} \left| \sum_{a} \pi(a \mid s_{i}) \left(r(s_{i}, a) + \gamma \sum_{j} p(s_{i}, a, s_{j}) v_{j} \right) - \sum_{a} \pi(a \mid s_{i}) \left(r(s_{i}, a) + \gamma \sum_{j} p(s_{i}, a, s_{j}) v'_{j} \right) \right| \\ &= \max_{i} \left| \sum_{a} \pi(a \mid s_{i}) \left(r(s_{i}, a) - r(s_{i}, a) + \gamma \sum_{j} p(s_{i}, a, s_{j}) (v_{j} - v'_{j}) \right) \right| \\ &= \max_{i} \left| \sum_{a} \pi(a \mid s_{i}) \gamma \sum_{j} p(s_{i}, a, s_{j}) (v_{j} - v'_{j}) \right| \end{aligned}$$

PROOF CONTRACTION MAPPING

We know that
$$\left| \sum_{i} (x_i - y_i) \right| \leq \sum_{i} \left| (x_i - y_i) \right|$$

$$\|\mathcal{T}(v) - \mathcal{T}(v')\|_{\infty} = \max_{i} \left| \sum_{a} \pi(a \mid s_i) \gamma \sum_{j} p(s_i, a, s_j) (v_j - v'_j) \right|$$

$$\leq \max_{i} \sum_{a} \pi(a \mid s_i) \gamma \sum_{j} p(s_i, a, s_j) \left| v_j - v_j' \right|$$

PROOF CONTRACTION MAPPING

$$\|\mathcal{T}(v) - \mathcal{T}(v')\|_{\infty} = \max_{i} \left| \sum_{a} \pi(a \mid s_{i}) \gamma \sum_{j} p(s_{i}, a, s_{j}) (v_{j} - v'_{j}) \right|$$

$$\leq \max_{i} \sum_{a} \pi(a \mid s_{i}) \gamma \sum_{j} p(s_{i}, a, s_{j}) \left| v_{j} - v'_{j} \right|$$

$$\leq \max_{i} \max_{a} \frac{\pi(a \mid s_{i}) \gamma \sum_{j} p(s_{i}, a, s_{j}) \left| v_{j} - v'_{j} \right|}{\leq \max_{i} \max_{a} \gamma \sum_{j} p(s_{i}, a, s_{j}) \left| v_{j} - v'_{j} \right|}$$

$$\leq \max_{i} \max_{a} \gamma \max_{j} \frac{p(s_{i}, a, s_{j})}{\leq 1} \left| v_{j} - v'_{j} \right|$$

$$\leq \max_{i} \max_{a} \gamma \max_{i} \frac{p(s_{i}, a, s_{j})}{\leq 1} \left| v_{j} - v'_{j} \right|$$

$$\leq \max_{i} \max_{a} \gamma \max_{i} \frac{p(s_{i}, a, s_{j})}{\leq 1} \left| v_{j} - v'_{j} \right|$$

PROOF CONTRACTION MAPPING

$$\|\mathcal{T}(v) - \mathcal{T}(v')\|_{\infty} \le \gamma \max_{j} \left| v_{j} - v'_{j} \right| = \gamma d(v, v')$$

For $\gamma \in [0,1)$, since $d\left(\mathcal{T}(v),\mathcal{T}(v')\right) \leq \gamma d(v,v')$ then \mathcal{T} is a contraction mapping

Scott Jordan

PROOF FIXED POINT IS v_{π}

Let v^* be the fixed point of \mathcal{T} (not the optimal value function)

We have that $v^* = \mathcal{T}(v^*)$, so $\forall i$

$$v_i^* = \mathcal{T}(v^*)_i$$

$$= \sum_{a} \pi(a \mid s_i) \left(r(s_i, a) + \gamma \sum_{j} p(s_i, a, s_j) v_j^* \right)$$

This is the Bellman equation, and it is only true for $v=v^\pi$, so $v^*=v_\pi$.

NEXT CLASS

WHAT YOU SHOULD DO

Quiz due Tonight night: Dynamic Programming

Monday: Policy Iteration and Value Iteration