Optical flow detection algorithm

1. Use

Source code launch file path: ~/jetcobot_ws/src/opencv_apps/launch

Step 1: Start the camera

roslaunch jetcobot_visual opencv_apps.launch img_flip:=false

• img_flip parameters: Whether the image needs to be flipped horizontally, the default is false.

[usb_cam-test.launch] file opens the [web_video_server] node by default, and you can directly use the [IP:8080] web page to view images in real time.

Step 2: Start the corner detection function of Opencv_apps

roslaunch opencv_apps fback_flow.launch # Optical flow detection algorithm

Each functional case will have a parameter [debug_view], Boolean type, whether to use Opencv to display images, which is displayed by default.

If no display is required, set it to [False], for example

roslaunch opencv_apps contour_moments.launch debug_view:=False

However, after starting in this way, some cases cannot be displayed in other ways, because in the source code, some [debug_view] is set to [False], which will turn off image processing.

2. Display method

rqt_image_view

Enter the following command to select the corresponding topic

rqt_image_view

opencv

The system displays it by default, no need to do anything.

Web viewing

(Same as LAN) Enter IP+port in the browser, for example.

192.168.2.116:8080

For specific IP, use your current virtual machine IP.

3. Effect display

Move the screen and observe the phenomenon.

