

UNIVERSIDADE FEDERAL DO CEARÁ

CAMPUS DE RUSSAS

Algoritmos em Grafos

Aula 17: Fluxo Máximo em Redes(Push-Relabel)

Professor Pablo Soares

2022.1

Sumário

- 1. Fluxo Máximo em Redes(última aula);
 - a. Rede Residual;
 - b. Caminho aumentante.
- 2. Intuição;
- 3. Pré-Fluxo;
- 4. Operações.
 - a. Push;
 - b. Relabel;
 - c. Algoritmo Genérico Push-Relabel.
 - i. Exemplo.

Intuição

Intuição

Push-Relabel(Pré-fluxo)

• Propriedade de conservação de fluxo não é mantida;

- Um Pré-<u>fluxo</u> é uma uma função f: $Vx V \rightarrow R$;
 - a. $f(V, u) \ge 0$ para todo $u \in V \{s\}$
 - e(u) = f(V, u) (Excesso)
 - b. se $u \in V \{s, t\} \& e(u) > 0$
 - *u* está <u>transbordando</u>
- Também usa-se o conceito de **rede residual**.

- Relabel(u)
 - a. Seja G = (V, E) uma rede com origem s e destino t, e seja f um pré-fluxo em G. Uma função $h: V \rightarrow N$ é uma função de altura se

■
$$h(s) = |V|, h(t) = 0 e h(u) \le h(v) + 1 \forall (u, v) \in E_f$$

- b. Aplica-se quando:
 - e(u) > 0
 - $\forall v \in V, tal que(u, v) \in E_f, h(u) \le h(v)$

Relabel(u)
1.
$$h[u] \leftarrow 1 + min\{ h[v]: (u, v) \in E_f \}$$

Fim.

$$e(u) > 0$$

3/3

3/3

4/4

G = (V, E)

$$\forall v \in V, tal que(u, v) \in E_f, h(u) \le h(v)$$

$$\forall v \in V, \ tal \ que \ (u, v) \in E_f, \ h(u) \leq h(v)$$
Relabel(u)

Relabel(u)

1.
$$h[u] \leftarrow 1 + min\{h[v]: (u, v) \in E_f\}$$

h

0

0

e

 ∞ 3

Vértice

B

D

$$\frac{\text{xemplo Relabel}(u)}{\text{xemplo Relabel}(u)}$$

a. Aprica-se quando.
$$\bullet e(u) > 0$$

0/5

G = (V, E)

C

$$\blacksquare$$
 $\forall v \in$

3/3

$$\forall v \in V, tal que(u, v) \in E_f, h(u) \leq h(v)$$

$$\forall V \subseteq V, \ lat \ Que \ (u, V) \subseteq E_f, \ h(u) \le h(V)$$

$$Relabel(u)$$

$$1 \qquad h[u] = 1 + \min\{h[v]: (u, v) \in F\}$$

Vértice

B

D

10

В

h

0

e

 ∞ 3

Vértice

B

D

h

0

e

 ∞ 3

$$\bullet \quad e(u) > 0$$

$$\forall v \in$$

$$\forall v \in V, \ tal \ que \ (u, v) \in E_f, \ h(u) \le h(v)$$

$$\forall v \in V, \ tat \ que \ (u, v) \in E_f, \ n(u) \leq n(v)$$

Relabel(u)

Relabel(u)

1.
$$h[u] \leftarrow 1 + min\{h[v]: (u, v) \in E_f\}$$

$$\bullet e(u) > 0$$

$$\forall v \in V, tal que(u, v) \in E_f, h(u) \le$$

$$\forall v \in V, \ tal \ que \ (u, v) \in E_f, \ h(u) \le h(v)$$
Relabel(u)

Relabel(u)
$$h[u] \leftarrow 1 + \min\{h[v]: (u, v) \in E_t\}$$

h

0

e

 ∞ 3

B

D

- Push(u, v)
 - a. Seja G = (V, E) uma rede com origem s e destino t, e seja f um pré-fluxo em G.
 - b. Aplica-se quando:
 - e(u) > 0

 - $c_f(u, v) > 0$ h(u) = h(v) + 1

- 1. $d_{f}[u, v] = min(e[u], c_{f}[u, v])$
- 2. $f[u, v] \leftarrow f[u, v] + d_f[u, v]$
- 3. *f[v, u]←- f[u, v]*
- 4. e[u]←e[u] d₄[u, v]
- 5. $e[v] \leftarrow e[v] + d[u, v]$

Fim.

Exemplo Push(u, v)Vértice Push(u, v) h e

a. Aplica-se quando:
$$e(u) > 0$$

0/2

0/5

0/1

b/10 0/1

0/5

G = (V, E)

В

C

3/3

3/3

4/4

Aprica-se quando.

$$e(u) > 0$$
 $c_f(u, v) > 0$
 $h(u) = h(v) + 1$
 $c_f(u, v) > 0$
 $c_f(u, v) > 0$
 $c_f(u, v) > 0$
 $c_f(u, v) = 0$
 $c_f(u$

1. $d_f[u, v] = min(e[u], c_f[u, v])$

2. $f[u, v] \leftarrow f[u, v] + d_f[u, v]$

3. *f*[*v*, *u*]←- *f*[*u*, *v*]

Exemplo Push(u, v)Vértice Push(u, v) h

a. Aplica-se quando:
$$e(u) > 0$$

$$c(u, v) > 0$$
Vértice e

$$s$$

$$s$$

$$s$$

$$A$$

$$A$$

$$B$$

$$B$$

$$C$$

0/2

0/5

0/1

b/10 0/1

0/5

G = (V, E)

В

C

3/3

3/3

4/4

1. $d_f[u, v] = min(e[u], c_f[u, v])$

2. $f[u, v] \leftarrow f[u, v] + d_f[u, v]$

Exemplo Push(u, v)Vértice Push(u, v) h e

a. Aplica-se quando:
$$e(u) > 0$$

G = (V, E)

1. $d_f[u, v] = min(e[u], c_f[u, v])$

2. $f[u, v] \leftarrow f[u, v] + d_f[u, v]$

3. *f*[*v*, *u*]←- *f*[*u*, *v*]

Exemplo Push(u, v)Vértice Push(u, v) h e

0/2

0/5

0/1

b/10 0/1

0/5

G = (V, E)

В

C

3/3

3/3

4/4

1. $d_f[u, v] = min(e[u], c_f[u, v])$

15

2. $f[u, v] \leftarrow f[u, v] + d_f[u, v]$

3. *f*[*v*, *u*]←- *f*[*u*, *v*]

1. $d_f[u, v] = min(e[u], c_f[u, v])$

2. $f[u, v] \leftarrow f[u, v] + d_f[u, v]$

3. *f*[*v*, *u*]←- *f*[*u*, *v*]

Exemplo Push(u, v)Push(u, v)

Pseudocódigo Push-Relabel 1. para cada vértice u ← V[G] $h[u] \leftarrow e[u] \leftarrow 0$ Push(u, v) 3. fimpara 1. $d_{f}[u, v] = min(e[u], c_{f}[u, v])$ 4. para cada aresta $(u,v) \leftarrow E[G]$ 2. $f[u, v] \leftarrow f[u, v] + d_f[u, v]$ $f[u, v] \leftarrow f[v, u] \leftarrow 0$ 3. *f[v, u]←- f[u, v]* 6. fimpara 4. e[u]←e[u] - d₄[u, v] 7. $h[s] \leftarrow |V|$ 5. $e[v] \leftarrow e[v] + d[u, v]$ para cada u ∈ L.adi[s] Fim. f[s, u] \leftarrow c(s, u) Relabel(u) 10. $f[u, s] \leftarrow -c(s, u)$ 1. $h[u] \leftarrow 1 + min\{ h[v]: (u, v) \in E_f \}$ 11. $e[u] \leftarrow c(s, u)$ Fim. 12. $e[s] \leftarrow e[s] - c(s, u)$ 13. fimpara 14. enquanto existir uma operação de <u>Push</u> ou <u>Relabel</u> faça *15.* selecione uma operação e execute 16. fimenquanto Fim.

Push-Relabel-Generico(G, s)

17

Exercício de Fixação

Determine o fluxo máximo na rede abaixo.

UNIVERSIDADE FEDERAL DO CEARÁ

CAMPUS DE RUSSAS

Algoritmos em Grafos

Aula 17: Fluxo Máximo em Redes(Push-Relabel)

Professor Pablo Soares

2022.1