درس جبر خطی نیمسال اول ۰۴–۰۳ استاد: دکتر ربیعی و رمضانی

دانشکده مهندسی کامپیوتر

سرى سوم حل تمرين

د. فرض کنید $v \in V$ و $\|u\| \le 1$ و $\|u\| \le 1$. ثابت کنید که:

$$\sqrt{1 - \|u\|^2} \sqrt{1 - \|v\|^2} \le 1 - |\langle u, v \rangle|$$

نون کنید v_1,\ldots,v_n پایههای یکه متعامد فضای V بوده و v_1,\ldots,v_n بردارهایی در v_1,\ldots,v_n بایههای یکه متعامد فضای v_1,\ldots,v_n بوده و v_1,\ldots,v_n بردارهایی در v_1,\ldots,v_n

$$||e_j - v_j|| < \frac{1}{\sqrt{n}}$$

ثابت کنید v_1, \ldots, v_n برای V پایه هستند.

 $\epsilon>0$ که $v_i.v_j<-\epsilon$ داشته باشیم i
eq j داشته باشیم یکه باشند به طوری که برای هر i
eq j داشته باشیم $v_1,v_2,\ldots,v_m\in R^n$ که $v_i.v_j<-\epsilon$ و عددی ثابت است. نشان دهید:

$$m \leq 1 + \frac{1}{\epsilon}$$

باشند. $R o R^n$ باشند. به صورت f ,g باشند.

(آ) نشان دهید:

$$\langle f,g
angle'=\langle f',g
angle+\langle f,g'
angle$$
 : غرض کنید که c عددی مثبت باشد و c غددی c غددی c غددی مثبت باشد و c

۵. فرض كنيد a،b،c،d اعداد حقيقي مثبت باشند. نشان دهيد:

$$16 \le (\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d})(a+b+c+d)$$

۶. به ازای چه مقادیری از b ، a حاصل عبارت مقابل کمینه می شود؟

$$\int_0^{\pi} (1 - a\sin(t) - b\sin(3t))^2 dt$$