Stat 435 Intro to Statistical Machine Learning

Week 10: Time to recap! (and a little more SVM of course)

Richard Li

May 31, 2017

Binary response: $y_i \in \{-1, 1\}$

Maximal margin classifier

$$\underset{\beta_0,\beta_1,\ldots,\beta_p}{\text{maximize}} M \tag{9.9}$$

subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1, \tag{9.10}$$

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip}) \ge M \ \forall i = 1, \ldots, n.$$
 (9.11)

- Support vector classifier
- Support vector classifier (alternative representation)
- Support vector machine

Binary response: $y_i \in \{-1, 1\}$

- Maximal margin classifier
- Support vector classifier

$$\underset{\beta_0,\beta_1,\dots,\beta_p,\epsilon_1,\dots,\epsilon_n}{\text{maximize}} M$$
(9.12)

subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1$$
, (9.13)

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_p x_{ip}) \ge M(1 - \epsilon_i),$$
 (9.14)

$$\epsilon_i \ge 0, \sum_{i=1}^n \epsilon_i \le C,$$
(9.15)

- Support vector classifier (alternative representation)
- Support vector machine

Binary response: $y_i \in \{-1, 1\}$

- Maximal margin classifier
- Support vector classifier

$$\underset{\beta_0,\beta_1,...,\beta_v,\epsilon_1,...,\epsilon_n}{\text{maximize}} M \qquad (9.12)$$

subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1$$
, (9.13)

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i),$$
 (9.14)

$$\epsilon_i \ge 0, \quad \sum_{i=1}^n \epsilon_i \le C,$$
(9.15)

• Support vector classifier (alternative representation)

$$f(x) = \beta_0 + \sum_{i \in S} \alpha_i \langle x, x_i \rangle, \qquad (9.19)$$

Support vector machine

Binary response: $y_i \in \{-1, 1\}$

- Maximal margin classifier
- Support vector classifier
- Support vector classifier (alternative representation)

$$f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \alpha_i \langle x, x_i \rangle, \qquad (9.19)$$

Support vector machine

$$f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \alpha_i K(x, x_i). \tag{9.23}$$

• Yet another way to write support vector classifier

Yet another way to write support vector classifier

$$\underset{\beta_0,\beta_1,\ldots,\beta_p}{\text{minimize}} \left\{ \sum_{i=1}^n \max\left[0, 1 - y_i f(x_i)\right] + \lambda \sum_{j=1}^p \beta_j^2 \right\}, \tag{9.25}$$

Yet another way to write support vector classifier

$$\min_{\beta_0, \beta_1, \dots, \beta_p} \left\{ \sum_{i=1}^n \max \left[0, 1 - y_i f(x_i) \right] + \lambda \sum_{j=1}^p \beta_j^2 \right\}, \tag{9.25}$$

- The first part is a "loss function"
 - ...which is very similar to the loss function we minimize in logistic regression

Yet another way to write support vector classifier

$$\underset{\beta_0,\beta_1,\ldots,\beta_p}{\text{minimize}} \left\{ \sum_{i=1}^n \max\left[0,1-y_i f(x_i)\right] + \lambda \sum_{j=1}^p \beta_j^2 \right\}, \tag{9.25}$$

- The first part is a "loss function"
 - ...which is very similar to the loss function we minimize in logistic regression
- The second part is a ridge penalty!

- In practice, SVM usually used when data is high dimensional
- It tends to be resistant to overfitting because of the regularization

- In practice, SVM usually used when data is high dimensional
- It tends to be resistant to overfitting because of the regularization
- BUT, successful implementation of SVM still depends on careful tunning of

- In practice, SVM usually used when data is high dimensional
- It tends to be resistant to overfitting because of the regularization
- BUT, successful implementation of SVM still depends on careful tunning of
 - C

- In practice, SVM usually used when data is high dimensional
- It tends to be resistant to overfitting because of the regularization
- BUT, successful implementation of SVM still depends on careful tunning of
 - C
 - kernel (imagine you want to cut the skins of an orange by a linear plane)

• Yes that is the formal name...

- Yes that is the formal name...
- A general approach to turn linear functions into nonlinear functions

- · Yes that is the formal name...
- A general approach to turn linear functions into nonlinear functions
- What it does equivalently: transform data into higher dimensional space (without explicitly calculating/storing the transformation)

- · Yes that is the formal name...
- A general approach to turn linear functions into nonlinear functions
- What it does equivalently: transform data into higher dimensional space (without explicitly calculating/storing the transformation)
 - Instead of $\langle x_i, x_j \rangle$, $K(x_i, x_j)$ can be thought of as $\langle x_i', x_j' \rangle$ where x' is of a higher dimension than x.

- · Yes that is the formal name...
- A general approach to turn linear functions into nonlinear functions
- What it does equivalently: transform data into higher dimensional space (without explicitly calculating/storing the transformation)
 - Instead of $\langle x_i, x_j \rangle$, $K(x_i, x_j)$ can be thought of as $\langle x_i', x_j' \rangle$ where x' is of a higher dimension than x.
 - · e.g., a polynomial kernel

$$K([a, b], [c, d]) = (ac+bd+5)^2 = a^2c^2+2acbd+10ac+10cd+b^2d^2+25$$

- Yes that is the formal name...
- A general approach to turn linear functions into nonlinear functions
- What it does equivalently: transform data into higher dimensional space (without explicitly calculating/storing the transformation)
 - Instead of $\langle x_i, x_j \rangle$, $K(x_i, x_j)$ can be thought of as $\langle x_i', x_j' \rangle$ where x' is of a higher dimension than x.
 - e.g., a polynomial kernel

$$K([a, b], [c, d]) = (ac+bd+5)^2 = a^2c^2+2acbd+10ac+10cd+b^2d^2+25$$

equivalently,

$$\mathcal{K}([a,b],[c,d]) = \langle egin{bmatrix} a^2 \\ b^2 \\ \sqrt{2}ab \\ \sqrt{10}a \\ \sqrt{10}b \\ 5 \end{bmatrix}, egin{bmatrix} c^2 \\ d^2 \\ \sqrt{2}cd \\ \sqrt{10}c \\ \sqrt{10}d \\ 5 \end{bmatrix}
angle$$

- Yes that is the formal name...
- A general approach to turn linear functions into nonlinear functions
- What it does equivalently: transform data into higher dimensional space (without explicitly calculating/storing the transformation)
 - Instead of $\langle x_i, x_j \rangle$, $K(x_i, x_j)$ can be thought of as $\langle x_i', x_j' \rangle$ where x' is of a higher dimension than x.
 - e.g., a polynomial kernel

$$K([a, b], [c, d]) = (ac+bd+5)^2 = a^2c^2+2acbd+10ac+10cd+b^2d^2+25$$

equivalently,

$$K([a,b],[c,d]) = \langle \begin{bmatrix} a^2 \\ b^2 \\ \sqrt{2}ab \\ \sqrt{10}a \\ \sqrt{10}b \\ 5 \end{bmatrix}, \begin{bmatrix} c^2 \\ d^2 \\ \sqrt{2}cd \\ \sqrt{10}c \\ \sqrt{10}d \\ 5 \end{bmatrix} \rangle$$

which transforms our data in \mathbb{R}^2 to \mathbb{R}^5

$$[x_1, x_2] \rightarrow [x_1, x_2, x_1^2 + x_2^2]$$

But You don't need to look for such transformations directly (difficult in high dimensions!), thus "trick" as in "the kernel trick"

- It can be used in regression
- It can be used in PCA
- It can be used in KNN
- In many algorithms where you see x^Tx , chances are the kernel trick can be applied...

One of the last general methods in this course!

So now let's look back at what we have learned in this class

So now let's look back at what we have learned in this class

Exams start in a week...

And I know less than Ion

First of all,

• Believe it or not, you almost finished a book with 400+ pages!

First of all,

• Believe it or not, you almost finished a book with 400+ pages!

Now it's a good time to review how we get here...

• What is statistical learning?

First of all,

• Believe it or not, you almost finished a book with 400+ pages!

- What is statistical learning?
 - Tools for understanding data

First of all,

• Believe it or not, you almost finished a book with 400+ pages!

- What is statistical learning?
 - Tools for understanding data
- In what kind of problems do we need to understand data?

First of all,

• Believe it or not, you almost finished a book with 400+ pages!

- What is statistical learning?
 - Tools for understanding data
- In what kind of problems do we need to understand data?
 - Predictive, an outcome we want to predict
 - · Descriptive, understand relationship and structures in data

First of all,

• Believe it or not, you almost finished a book with 400+ pages!

- What is statistical learning?
 - Tools for understanding data
- In what kind of problems do we need to understand data?
 - Predictive, an outcome we want to predict
 - · Descriptive, understand relationship and structures in data
- What tools have we learned?

Is their an outcome?

Is their an outcome?

- Supervised:
- Unsupervised:

Is their an outcome?

- Supervised:
- Unsupervised:

Is the outcome qualitative or quantitative?

Is their an outcome?

- Supervised:
- Unsupervised:

Is the outcome qualitative or quantitative?

- Linear regression, more regression (stepwise, ridge, lasso, PCR, PLS, etc.), splines, regression trees, GAM, ...
- KNN, LDA, QDA, logistic regression, SVM, decision trees, ...

Is their an outcome?

- Supervised:
- Unsupervised:

Is the outcome qualitative or quantitative?

- Linear regression, more regression (stepwise, ridge, lasso, PCR, PLS, etc.), splines, regression trees, GAM, ...
- KNN, LDA, QDA, logistic regression, SVM, decision trees, ...

Do you want to reduce or enrich the complexity?

- Regularization: stepwise, ridge, and lasso regression, ...
- Non-linear: polynomial regression, splines, local regression, GAM, ...

Is their an outcome?

- Supervised:
- Unsupervised:

Is the outcome qualitative or quantitative?

- Linear regression, more regression (stepwise, ridge, lasso, PCR, PLS, etc.), splines, regression trees, GAM, ...
- KNN, LDA, QDA, logistic regression, SVM, decision trees, ...

Do you want to reduce or enrich the complexity?

- Regularization: stepwise, ridge, and lasso regression, ...
- Non-linear: polynomial regression, splines, local regression, GAM, ...

Do we care about model interpretability or just prediction accuracy

• See figure 2.7 of text book (page 25)

Common considerations

THE Bias-Variance Trade-Off

Model selection: Cross-validation

• Model selection: AIC, BIC, C_p , adjusted R^2 , ...

Common considerations

THE Bias-Variance Trade-Off

• Model selection: Cross-validation

• Model selection: AIC, BIC, C_p , adjusted R^2 , ...

Reducing variance: bagging, boosting, random forest

Common considerations

THE Bias-Variance Trade-Off

- Model selection: Cross-validation
- Model selection: AIC, BIC, C_p , adjusted R^2 , ...
- Reducing variance: bagging, boosting, random forest

Related reoccurring topics (in high dimensional data)

- Simpler model is more favorable: Penalization
- More flexible model is more favorable (if can be computed efficiently): Kernel methods

A quick ride in statistical learning land

But incomplete and not meant as the full material for final!

- MSE
- Can you still derive it? (midterm problem)

- MSE
- Can you still derive it? (*midterm problem*)
- Where does variance and bias come from? (Week5)

- MSE
- Can you still derive it? (midterm problem)
- Where does variance and bias come from? (Week5)
- Implications, e.g., correct model does not always give best MSE (midterm, Week5)

- MSE
- Can you still derive it? (midterm problem)
- Where does variance and bias come from? (Week5)
- Implications, e.g., correct model does not always give best MSE (midterm, Week5)
- Bayes classifier / Bayes error rate (HW1, Week1)

Then there came a 'simple' problem

Then there came a 'simple' problem

• Derivation (*HW2*)

Then there came a 'simple' problem

- Derivation (HW2)
- Interpretation, tests, diagnostics (week2)

Then there came a 'simple' problem

- Derivation (HW2)
- Interpretation, tests, diagnostics (week2)
- Extensions (week2)
 - Interaction (interpretation!)
 - Qualitative predictors

- Logistic regression
 - Derivation

- Logistic regression
 - Derivation
- LDA and QDA (HW3)
 - Decision boundary (week5)

- Logistic regression
 - Derivation
- LDA and QDA (HW3)
 - Decision boundary (week5)
 - Extensions (Midterm)

- Logistic regression
 - Derivation
- LDA and QDA (HW3)
 - Decision boundary (week5)
 - Extensions (Midterm)
 - Bayes theorem / Bayes error rate (HW1, Week3, Midterm)

- Logistic regression
 - Derivation
- LDA and QDA (HW3)
 - Decision boundary (week5)
 - Extensions (Midterm)
 - Bayes theorem / Bayes error rate (HW1, Week3, Midterm)
- KNN
 - Intuition

- Logistic regression
 - Derivation
- LDA and QDA (HW3)
 - Decision boundary (week5)
 - Extensions (Midterm)
 - Bayes theorem / Bayes error rate (HW1, Week3, Midterm)
- KNN
 - Intuition
 - Why it might not be a good idea sometimes? (HW6)

Then a little more complication with the outcome

- Logistic regression
 - Derivation
- LDA and QDA (HW3)
 - Decision boundary (week5)
 - Extensions (Midterm)
 - Bayes theorem / Bayes error rate (HW1, Week3, Midterm)
- KNN
 - Intuition
 - Why it might not be a good idea sometimes? (HW6)

Of course, later we learned something more complicated

Then a little more complication with the outcome

- · Logistic regression
 - Derivation
- LDA and QDA (HW3)
 - Decision boundary (week5)
 - Extensions (Midterm)
 - Bayes theorem / Bayes error rate (HW1, Week3, Midterm)
- KNN
 - Intuition
 - Why it might not be a good idea sometimes? (HW6)

Of course, later we learned something more complicated

- (GAM)
- Classification tree
- SVM (related to logistic regression! Sec 9.5 textbook)

Then we did a brief detour to learn about some magic tricks of creating testing data from nowhere (and had a midterm, eww!)

Cross validation

- Cross validation
 - Different approaches (week4)

- Cross validation
 - Different approaches (week4)
 - How they compare? (week6)

- Cross validation
 - Different approaches (week4)
 - How they compare? (week6)
- Bootstrap

- Cross validation
 - Different approaches (week4)
 - How they compare? (week6)
- Bootstrap
 - Used for getting variance of estimator

- Cross validation
 - Different approaches (week4)
 - How they compare? (week6)
- Bootstrap
 - Used for getting variance of estimator
 - Used in bagging

- Cross validation
 - Different approaches (week4)
 - How they compare? (week6)
- Bootstrap
 - Used for getting variance of estimator
 - Used in bagging
 - Properties (HW8)

- Subset selection (*HW4*)
 - Algorithms, how do MSE change at each step

- Subset selection (*HW4*)
 - Algorithms, how do MSE change at each step
- Shrinkage (ridge and lasso) (week6, week7, week8, HW4, HW5)
 - Derivation

- Subset selection (*HW4*)
 - Algorithms, how do MSE change at each step
- Shrinkage (ridge and lasso) (week6, week7, week8, HW4, HW5)
 - Derivation
 - Properties (exact zero, degrees of freedom, ...)

- Subset selection (*HW4*)
 - Algorithms, how do MSE change at each step
- Shrinkage (ridge and lasso) (week6, week7, week8, HW4, HW5)
 - Derivation
 - Properties (exact zero, degrees of freedom, ...)
- Dimension reduction (week8)
 - PCR and PLS
 - Intuitive understanding

- Subset selection (HW4)
 - Algorithms, how do MSE change at each step
- Shrinkage (ridge and lasso) (week6, week7, week8, HW4, HW5)
 - Derivation
 - Properties (exact zero, degrees of freedom, ...)
- Dimension reduction (week8)
 - PCR and PLS
 - Intuitive understanding
- Why high-dimension is difficult?
 - curse of dimensionality (week6, HW6)

- Subset selection (HW4)
 - Algorithms, how do MSE change at each step
- Shrinkage (ridge and lasso) (week6, week7, week8, HW4, HW5)
 - Derivation
 - Properties (exact zero, degrees of freedom, ...)
- Dimension reduction (week8)
 - PCR and PLS
 - Intuitive understanding
- Why high-dimension is difficult?
 - curse of dimensionality (week6, HW6)

Then we took a step back and started thinking about non-linearity

Then we took a step back and started thinking about non-linearity

• Step functions, polynomial regressions, and regression splines (HW6)

Then we took a step back and started thinking about non-linearity

- Step functions, polynomial regressions, and regression splines (*HW6*)
- Smoothing splines (HW6)

Then we took a step back and started thinking about non-linearity

- Step functions, polynomial regressions, and regression splines (HW6)
- Smoothing splines (HW6)
- Generalized Additive Models (HW7)

Trees

Then we learned a completely new set of exotic skills that seem so simple but so difficult at the same time

Trees

Then we learned a completely new set of exotic skills that seem so simple but so difficult at the same time

• Regression and decision trees (HW7, week9)

Trees

Then we learned a completely new set of exotic skills that seem so simple but so difficult at the same time

- Regression and decision trees (HW7, week9)
- Bagging, boosting, and random forest(week9)

SVM and unsupervised learning

Then there's the recent stuff, and they should still be fresh in your memory

There's a lot lot more to statistical learning

Three-Eyed Raven: You won't be here forever. You won't be an old man in a tree. But before you leave, you must learn.

Bran Stark: Learn what?

Three-Eyed Raven: Hmm let's see, bias-variance tradeoff, regression, classification, cross-validation, regularization, model selection, dimension reduction splines, GAMs, trees, bagging, boosting, random forests, support vector machines, PCA, LDA, QDA, ...

(Again, true script from Game of Thrones: Oathbreaker (#6.3))

There's a lot lot more to statistical learning

Three-Eyed Raven: You won't be here forever. You won't be an old man in a tree. But before you leave, you must learn.

Bran Stark: Learn what?

Three-Eyed Raven: Hmm let's see, bias-variance tradeoff, regression, classification, cross-validation, regularization, model selection, dimension reduction splines, GAMs, trees, bagging, boosting, random forests, support vector machines, PCA, LDA, QDA, ...

(Again, true script from Game of Thrones: Oathbreaker (#6.3))

Course evaluation closing on Friday! https://uw.iasystem.org/survey/174515 Thank you!