Ex no: 10

Visualize data using any plotting framework

Aim:

To visualize data using any plotting framework

Procedure:

a) SCATTER PLOT:

- 1. Install and load the ggplot2 package for data visualization.
- 2. Use the iris dataset for plotting.
- 3. Set Sepal.Length as the x-axis and Sepal.Width as the y-axis in the 'aes()' function.
- 4. Assign colors to the points based on the categorical **Species** variable.
- 5. Add scatter plot points to the graph using `geom_point()`, setting the size of the points.
- 6. Add a plot title and label the x-axis and y-axis using `labs()`.
- 7. Apply a minimal theme to the plot for a clean appearance using 'theme_minimal()'.

b) BAR CHART:

- 1. Install and load the ggplot2 package for data visualization.
- 2. Use the iris dataset for plotting.
- 3. Set Species as the x-axis variable in the 'aes()' function.
- 4. Use 'geom_bar()' to create a bar plot representing the count of each species, filling the bars with a steelblue color.
- 5. Add a plot title and label the x-axis as Species and the y-axis as Count using the `labs()` function.
- 6. Apply the theme_minimal() function to give the plot a clean and minimalistic appearance.
- 7. Display the bar plot to visualize the count of different species in the iris dataset.

c) HISTOGRAM:

- 1. Install and load the ggplot2 package for data visualization.
- 2. Use the iris dataset for plotting.
- 3. Set Sepal.Length as the x-axis variable in the 'aes()' function.
- 4. Create a histogram using 'geom_histogram()', specifying a bin width of 0.3, with bars filled in orange and outlined in black.

- 5. Add a plot title and label the x-axis as Sepal Length (cm) and the y-axis as Frequency using the 'labs()' function.
- 6. Apply the theme_minimal() function to give the plot a clean and minimalistic appearance.
- 7. Display the histogram to visualize the distribution of Sepal Length in the iris dataset.

d) BOX PLOT:

- 1. Install and load the ggplot2 package for data visualization.
- 2. Use the iris dataset for plotting.
- 3. Set Species as the x-axis variable and Sepal.Length as the y-axis variable in the `aes()` function, with bars filled based on Species.
- 4. Create a box plot using 'geom_boxplot()'.
- 5. Add a plot title and label the x-axis as Species and the y-axis as Sepal Length (cm) using the `labs()` function.
- 6. Apply the theme_minimal() function to give the plot a clean and minimalistic appearance.
- 7. Display the box plot to visualize the distribution of Sepal Length for each Species.

Program:

a) SCATTER PLOT:

```
b) BAR CHART:
# Install ggplot2 (if not already installed)
install.packages("ggplot2")
# Load the ggplot2 package
library(ggplot2)
# Bar plot of Species counts
ggplot(data = iris, aes(x = Species)) +
 geom bar(fill = "steelblue") + # Adds bars filled with steel blue color
 labs(title = "Count of Different Species in Iris Dataset",
    x = "Species",
    y = "Count") +
 theme minimal()
c) HISTOGRAM:
   # Install ggplot2 (if not already installed)
   install.packages("ggplot2")
   # Load the ggplot2 package
   library(ggplot2)
   # Histogram of Sepal Length
   ggplot(data = iris, aes(x = Sepal.Length)) +
    geom histogram(binwidth = 0.3, fill = "orange", color = "black") + # Adds
    histogram bars
   labs(title = "Histogram of Sepal Length",
      x = "Sepal Length (cm)",
      y = "Frequency") +
    theme minimal()
d) BOX PLOT:
   # Install ggplot2 (if not already installed)
   install.packages("ggplot2")
```

```
# Load the ggplot2 package
library(ggplot2)
# Box plot of Sepal Length for each Species
ggplot(data = iris, aes(x = Species, y = Sepal.Length, fill = Species)) +
geom_boxplot() + # Adds box plot
labs(title = "Box Plot of Sepal Length by Species",
    x = "Species",
    y = "Sepal Length (cm)") +
theme minimal()
```

Output:

a) SCATTER PLOT:

```
> # Install ggplot2 (if not already installed)
> install.packages("ggplot2")
Error in install.packages : Updating loaded packages

> # Load the ggplot2 package
> library(ggplot2)

> # Scatter plot of Sepal.Length vs Sepal.Width, colored by Species
> ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width, color = Species)) +
+ .... [TRUNCATED]
```

Environment History C	onnections Tutorial	
Import Dataset	→ ② 211 MiB → <u>《</u>	
R ▼ ■ Global Environmen	t ·	
Data		
O data	7 obs. of 2 variables	
<pre>hc_complete</pre>	List of 7	
<pre>iris</pre>	150 obs. of 6 variables	
Oiris_data	150 obs. of 4 variables	
iris_scaled	num [1:150, 1:4] -0.898 -1.139 -1.381 -1.50	
<pre>0 kmeans_result</pre>	List of 9	
○ linear_model	List of 12 Q	
<pre>1 logistic_model</pre>	List of 30 Q	
<pre>0 mtcars</pre>	32 obs. of 11 variables	
Osvm_model	List of 31 Q	
① test_data	45 obs. of 5 variables	
O train_data	105 obs. of 5 variables	
① tree_model	List of 14 Q	
Values		
accuracy	0.977777777778	
clusters	int [1:150] 1 1 1 1 1 1 1 1 1 1	
confusion_matrix	'table' int [1:3, 1:3] 14 0 0 0 18 0 0 1 12	
distance_matrix	'dist' num [1:11175] 1.172 0.843 1.1 0.259 1	
heights	num [1:7] 150 160 165 170 175 180 185	
k	3	
predicted_probs	Named num [1:32] 0.461 0.461 0.598 0.492 0.2	
predictions	Factor w/ 3 levels "setosa", "versicolor", :	
sample_indices	int [1:105] 14 50 118 43 150 148 90 91 143 9	
weights	num [1:7] 55 60 62 68 70 75 80	

b) BAR CHART:

```
> # Install ggplot2 (if not already installed)
> install.packages("ggplot2")
Error in install.packages : Updating loaded packages

> # Load the ggplot2 package
> library(ggplot2)

> # Bar plot of Species counts
> ggplot(data = iris, aes(x = Species)) +
+ geom_bar(fill = "steelblue") + # Adds bars filled with steel blue color
+ .... [TRUNCATED]
```

Environment History C	Connections Tutorial	T
	▼ 🔰 205 MiB ▼ 🎻	25
R 🕶 🤚 Global Environmen	t • Q	
Data		
O data	7 obs. of 2 variables	
<pre>hc_complete</pre>	List of 7	
<pre>0 iris</pre>	150 obs. of 6 variables	
O iris_data	150 obs. of 4 variables	
iris_scaled	num [1:150, 1:4] -0.898 -1.139 -1.381 -1.50	
<pre>Means_result</pre>	List of 9	
○ linear_model	List of 12	
<pre>1 logistic_model</pre>	List of 30	
<pre>mtcars</pre>	32 obs. of 11 variables	
s∨m_model	List of 31	
🔾 test_data	45 obs. of 5 variables	
🔾 train_data	105 obs. of 5 variables	
<pre>tree_model</pre>	List of 14	
Values		
accuracy	0.977777777778	
clusters	int [1:150] 1 1 1 1 1 1 1 1 1 1	
confusion_matrix		
distance_matrix	'dist' num [1:11175] 1.172 0.843 1.1 0.259 1	
heights	num [1:7] 150 160 165 170 175 180 185	
k	3	
predicted_probs	Named num [1:32] 0.461 0.461 0.598 0.492 0.2	
predictions sample_indices	Factor w/ 3 levels "setosa", "versicolor",: int [1:105] 14 50 118 43 150 148 90 91 143 9	
weights	num [1:7] 55 60 62 68 70 75 80	-
WEIGHTS		

c) HISTOGRAM:

```
> # Install ggplot2 (if not already installed)
> install.packages("ggplot2")
Error in install.packages : Updating loaded packages
> # Load the ggplot2 package
> library(ggplot2)
> # Histogram of Sepal Length
> ggplot(data = iris, aes(x = Sepal.Length)) +
+ geom_histogram(binwidth = 0.3, fill = "orange", color = "black") +
+ .... [TRUNCATED]
```


d) BOX PLOT:

```
> # Install ggplot2 (if not already installed)
> install.packages("ggplot2")
Error in install.packages : Updating loaded packages
> # Load the ggplot2 package
> library(ggplot2)
> # Box plot of Sepal Length for each Species
> ggplot(data = iris, aes(x = Species, y = Sepal.Length, fill = Species)) +
+ geom_boxplot() + # Adds .... [TRUNCATED]
```

Environment History C	onnections Tutorial	
	→ 2 08 MiB → 《	
R ▼	t ·	
Data		
① data	7 obs. of 2 variables	
<pre>hc_complete</pre>	List of 7	
<pre>iris</pre>	150 obs. of 6 variables	
Oiris_data	150 obs. of 4 variables	
iris_scaled	num [1:150, 1:4] -0.898 -1.139 -1.381 -1.50	
<pre>Means_result</pre>	List of 9	
○ linear_model	List of 12 Q	
<pre>logistic_model</pre>	List of 30 Q	
<pre>ntcars</pre>	32 obs. of 11 variables	
s∨m_model	List of 31 Q	
O test_data	45 obs. of 5 variables	
🕩 train_data	105 obs. of 5 variables	
<pre>tree_model</pre>	List of 14 Q	
Values		
accuracy	0.977777777778	
clusters	int [1:150] 1 1 1 1 1 1 1 1 1 1	
confusion_matrix	- / -	
distance_matrix	'dist' num [1:11175] 1.172 0.843 1.1 0.259 1	
heights	num [1:7] 150 160 165 170 175 180 185	
k	3	
predicted_probs	Named num [1:32] 0.461 0.461 0.598 0.492 0.2	
predictions	Factor w/ 3 levels "setosa", "versicolor",:	
sample_indices	int [1:105] 14 50 118 43 150 148 90 91 143 9	
weights	num [1:7] 55 60 62 68 70 75 80	

Result:

Thus the implementation of clustering techniques – Hierarchical and K-Means using R programming has been executed successfully.