Formale, digitale Methoden und Modelle in den Geschichtswissenschaften. Am Beispiel digital edierter Rechnungsbücher

Christopher Pollin

4. Januar 2020, Graz

Inhaltsverzeichnis

1	Einl	eitung		1
	1.1	Aufba	u der Arbeit und Literaturübersicht	2
	1.2	Relate	d Work	4
2	For	male M	ethoden und Modelle in den Geschichtswissenschaften	7
	2.1	Von de	er erzählenden zur theorieorientierten Geschichtswissenschaft	8
		2.1.1	Geschichte und Geschichtswissenschaft: eine Definition	9
		2.1.2	Hermeneutik	10
		2.1.3	Empirismus	12
		2.1.4	Methoden der Geschichtswissenschaft	13
	2.2	"Quan	tifizierer" und "Traditionalisten": Entwicklung einer formalen Methodik	15
		2.2.1	Interpretation und Theoriebildung	16
	2.3	Model	lbildung als Kern der Digital History	18
		2.3.1	Definition und Terminologie des Modellbegriffs	18
		2.3.2	Modellierung	21
		2.3.3	Forschungsdaten in den Geschichtswissenschaften ¹	23
3	Hist	orische	Rechnungsbücher als Quelle	27
	3.1	Wirtsc	hafts- und Rechnungsbücher	27
	3.2	Digita	Edition Publishing Cooperative for Historical Accounts	
		(DEPCHA)		
		3.2.1	The George Washington Financial Papers	30

Ausführlich habe ich mich mit den theoretischen Grundlagen der Informationswissenschaft, Daten - Information - Wissen, in folgender Arbeit auseinander gesetzt: POLLIN: Vom Suchen, Stöbern und Finden : Information Retrieval am Beispiel der Digitalen Sammlung des Hans Gross Kriminalmuseums.

		3.2.2	Cameron Family Papers, Stagville Accounts	32
		3.2.3	The Wheaton Accounts	34
4	Web	of Dat	a	39
	4.1	Gesch	ichte und Vision des Web of Data	39
		4.1.1	Kritik am Web of Data	40
	4.2	Web o	f Data Stack	41
		4.2.1	Daten als Graph: Resource Description Framework	42
		4.2.2	Klassen und Beziehungen: Resource Description Framework Schema	
			(RDFs)	45
		4.2.3	Abfragesprache: SPARQL	47
	4.3	Forma	lisierung von Modellen: Ontologien	48
		4.3.1	Vom Wissen, über das Semantische Netz zur Ontologie	48
5	Anv	vendung	g formaler Methoden auf Basis einer Ontologie	51
	5.1 Digitale Edition von Historischen Rechnungsbüchern .		le Edition von Historischen Rechnungsbüchern	51
		5.1.1	Grundlagen für digitale Editionen	51
		5.1.2	Digitale Edition und Semantic Web	52
	5.2	Die Bo	ookkeeping-Ontology	53
		5.2.1	TEI Beispiele DEPCHA	53
		5.2.2	Reasoning	55
	5.3	Inform	nationsvisualisierung	56
		5.3.1	Voraussetzungen für die Visualisierung	56
		5.3.2	Multidimensionale Rechnungsbücher – Multiple Views und Interaktion	58
6	Zusa	ammeni	fassung	64

1 Einleitung

Seitdem Menschen sich an Ereignisse oder Erkenntnisse, die für sie wichtig waren, erinnern, existieren auch Formen dieses Wissen zu repräsentieren und zu speichern. Bereits in den ersten Hochkulturen schrieb man nieder, dass jemand bei jemand anderen in der Schuld stand. Bereits um 3000 v. Chr. lässt sich auf Tontafel finden: "Alok schuldet dem Sumar 10 Eimer Korn". Die Dokumentation ökonomischer Abhängigkeiten zwischen Akteuren stellt eine der ersten Formen dar, wie Wissen verschriftlicht und strukturiert wurde. ² Für Historiker*innen liefert diese Zeile ein Indiz auf ein vergangenes Ereignis. Wird es in einen bestimmten historischen Kontext gestellt, so lassen sich Forschungsfragen in den Geschichtswissenschaften formulieren, die dabei helfen, ein Ereignis aus der Vergangenheit zu rekonstruieren und auf diese Weise etwas über die Vergangenheit lernen zu können. Dabei können semantische Strukturen helfen, die innerhalb der schriftlichen Überlieferung – der historischen Quelle – stecken. Im Falle von ökonomischen Abhängigkeiten und Transaktionen lässt sich eine "natürliche" Struktur festmachen, die über die Kulturen und Gesellschaften, sowie Zeiten und geographische Räume vergleichbar ist. Dies gilt für eine Tontafel aus Mesopotamien, einer Abgabenliste einer europäischen Stadt im Mittelalter, einem privaten Rechnungsbuch eines Geschäftsmannes aus dem 19. Jahrhundert in den Vereinigten Staaten von Amerika, sowie für einen Rechnungsbeleg aus heutiger Zeit. Akteure schulden oder transferieren wirtschaftliche Güter oder Geldbeträge an andere Akteure. Die Beschreibung einer solchen semantischen Struktur kann durch ein konzeptuelles Modell erfolgen. Die Anwendung formaler Methoden unter Berücksichtigung eines solchen Modells, kann als Grundlage dafür dienen, Interpretationen der Vergangenheit -"wie es den gewesen sein könnte"3 - mit einer gewissen Datengrundlage zu untermauern. Auf dieser Datengrundlage, die stets offen und nachvollziehbar, sowie in die fachwissenschaftliche Diskussion eingebettet sein muss und deswegen ein konzeptuelles Modell benötigt, können die Interpretationen der Historiker*innen fußen. Die Rekonstruktion, Interpretation und die Einbindung dieser Erkenntnisse in gegenwärtige Diskussion ist die eigentliche Arbeit der Geschichtswissenschaft.

Ziel dieser Arbeit ist eine theoretische und pragmatische Auseinandersetzung mit den Herausforderungen und Möglichkeiten, die formale – und somit auch digitale – Methoden und Modelle in der Geschichtswissenschaft mit sich bringen. Der praktische Anteil dieser Arbeit bezieht sich auf die Anwendung formaler Methoden auf semantisch angereicherte digitale Editionen von historischen Rechnungsbüchern in einem konkreten Projektkontext. Dieser Projektkontext – Digital Edition Publishing Cooperative for Historical Accounts (DEPCHA)⁴ – umfasst eine

²ROBSON, Keith: Accounting numbers as "inscription": Action at a distance and the development of accounting. Accounting, Organizations and Society, 17 1992, Nr. 7.

³Vgl. THALLER, Manfred: Ungefähre Exaktheit. Theoretische Grundlagen und praktische Möglichkeiten einer Formulierung historischer Quellen als Produkte "unscharfer 'Systeme [1984]. Historical Social Research/Historische Sozialforschung. Supplement, 2017, S.159.

⁴NHPRC-Mellon Implementation Grants: Digital Edition Publishing Cooperatives, https://www.archives.gov/nhprc/announcement/depc; Finanziert durch The Andrew W. Mellon Foundation https://mellon.

Kooperation von Partnern aus der USA, koordiniert durch das *Wheaton College Massachusetts*, und dem Zentrum für Informationsmodellierung (ZIM) der Universität Graz. Es setzt sich zum Ziel eine Publikationsplattform für digitale Editionen historischer Rechnungsbücher zu entwickeln und umzusetzen. Eine Herausforderung in diesem Projekt umfasst die Diskussion und Zusammenführung quantitativer und qualitativer Herangehensweisen von Historiker*innen an Forschungsfragen in den Geschichtswissenschaften. Einen zentralen Stellenwert darin hat die sogenannte *Bookkeeping Ontology*, die als konzeptuelles Modell die "natürliche", semantische Struktur von Rechnungsunterlagen beschreibt und im Sinn des *Web of Data* (aka. Semantic Web) implementiert ist.

Diese Arbeit geht nun folgern Forschungsfrage nach:

Inwieweit können Technologien des Web of Data genutzt werden, um geschichtswissenschaftliche Fachdomänen, in diesem Fall die Edition und Analyse von historischen Rechnungsbücher, so zu beschreiben, dass die Anwendung formaler Methoden den geschichtwissenschaftlichen Kritieren gerecht wird und die Zurverfügungstellung als hochstrukturierte Forschungsdaten die weitere Interpretation von Forschungsfragen an die Fachdomäne verbessert?

1.1 Aufbau der Arbeit und Literaturübersicht

Am Anfang der Arbeit steht neben einer allgemeinen theoretischen Diskussion zu Theorien und Methoden in den Geschichtswissenschaften⁵ eine Auseinandersetzung mit der Anwendung formaler Methoden in den Geschichtswissenschaften⁶ unter Einbeziehung von Inhalten aus dem Bereich der historischen Fachinformatik,⁷ der digitalen Geisteswissenschaften⁸ und Digital History.⁹ Ziel ist es, einen Überblick darüber zu verschaffen, welche Ziele die Geschichtswissenschaft verfolgt. Dabei wird besonders Rücksicht auf die "digitale" Komponente^{10,11} in diesem Zusammenhang genommen, um zu zeigen, dass es keine Gegensätze zwischen "analoger" und "digitaler" Geschichtswissenschaft gibt, sondern Synergien.

Das nächste Kapitel versteht sich als Quellenstudie und behandelt den Quellentypus historischer

org/05.06.2019.

⁵JORDAN, Stefan: Theorien und Methoden der Geschichtswissenschaft. 4. Auflage. UTB GmbH, 2018.

⁶THALLER: Historical Social Research/Historische Sozialforschung. Supplement 2017.

⁷THALLER, Manfred: Historical Information Science: Is there such a Thing? New Comments on an old Idea [1993]. Historical Social Research/Historische Sozialforschung. Supplement, 2017.

⁸JANNIDIS, Fotis/KOHLE, Hubertus/REHBEIN, Malte: Digital humanities: eine Einführung. Springer-Verlag, 2017.

⁹GRAHAM, Shawn/MILLIGAN, Ian/WEINGART, Scott: Exploring big historical data: The historian's macroscope. World Scientific Publishing Company, 2015.

¹⁰FÖHR, Pascal: Historische Quellenkritik im Digitalen Zeitalter. Dissertation, Universität Basel, 2017.

¹¹WINTERGRÜN, Dirk: Netzwerkanalysen und semantische Datenmodellierung als heuristische Instrumente für die historische Forschung. Dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2019.

Rechnungsbücher ¹² und ihre Edition. ¹³ In einem zweiten Schritt werden konkreten Editionsprojekten aus dem Projektkontext DEPCHA angeführt. Diese Auswahl umfasst drei Projekte, die *George Washington's Financial Papers*, ¹⁴ die *Wheaton Family Papers* ¹⁵ und die *Stagville Accounts*. ¹⁶

Eine Möglichkeit Modelle¹⁷ zu implementieren, ist mit dem *Web of Data*. Im vierten Kapitel wird auf den Technologie Stack des *Web of Data* eingegangen und so die Grundlage zur konzeptuellen und daraus abgeleiteten formalen Beschreibung von Information im *World Wide Web* erörtert. Dazu ist eine konzeptionelle,¹⁸ technische¹⁹ und kritische²⁰ Diskussion dieses Themenbereiches notwendig. Ein zentraler Aspekt dabei sind die Themen Ontologien²¹ und *Linked Open Data*,²² die dazu dienen können Modelle und Forschungsdaten²³ über das Web auszutauschen.

Der gemeinsame Nenner dieser Projekte besteht neben der zeitlichen und regionalen Einordnung der Quellen, auch der methodische Zugang der Erschließung. Diese erfolgt im Sinne einer digitalen Edition.²⁴ Der dabei verwendete Standard ist die *Text Encoding Initiative (TEI)*.²⁵ Dieses Kapitel widmet sich, wie digitale Edition von historischen Rechnungsbüchern umgesetzt werden können^{26,27} Die digitale Edition in dieser Arbeit versteht sich als quellen-orientierte und inhaltsbezogene Edition, in der nicht jedes textuelle Phänomen ediert werden muss, sondern die semantische Struktur der Quellen im Vordergrund stehen.²⁸ Zur formalen Beschreibung seman-

¹²GLEBA, Gudrun/PETERSEN, Niels: Wirtschafts-und Rechnungsbücher des Mittelalters und der Frühen Neuzeit-Formen und Methoden der Rechnungslegung: Städte. Klöster und Kaufleute. Universitätsverlag Göttingen. 2015.

¹³VOGELER, Georg: Warum werden mittelalterliche und frühneuzeitliche Rechnungsbücher eigentlich nicht digital ediert? In BAUM, Constanze/STÄCKER, Thomas (Hrsg.): Grenzen und Möglichkeiten der Digital Humanities. 2015 (URL: http://www.zfdg.de/sb001_007).

¹⁴The George Washington Financial Papers Project, http://financial.gwpapers.org

¹⁵Wheaton Family Papers, https://digitalrepository.wheatoncollege.edu/handle/11040/7928

¹⁶StagvilleAccounts, https://fromthepage.com/agbedavies/stagville-accounts

¹⁷Dem Modellbegriff folgend nach: STACHOWIAK, Herbert: Allgemeine Modelltheorie. 1973.

¹⁸BERNERS-LEE, Tim/HENDLER, James/LASSILA, Ora: The semantic web. Scientific American, 284 2001, Nr. 5.

¹⁹BERNSTEIN, Abraham/HENDLER, James/NOY, Natasha: A new look at the semantic web. Communications of the ACM, 59 2016, Nr. 9.

²⁰SWARTZ, Aaron: Aaron Swartz's A Programmable Web: An Unfinished Work. Synthesis lectures on the semantic web: Theory and Technology, 3 2013, Nr. 2.

²¹STUCKENSCHMIDT, Heiner: Ontologien: Konzepte, Technologien und Anwendungen. Springer-Verlag, 2009.

²²BAUER, Florian/KALTENBÖCK, Martin: Linked open data: The essentials. Edition mono/monochrom 2011.

²³NEHER, Günther/RITSCHEL, Bernd: Semantische Vernetzung von Forschungsdaten. In STEPHAN BÜTTNER, HANS-CHRISTOPH HOBOHM, Lars Müller (Hrsg.): Handbuch Forschungsdatenmanagement. Band 6, 2011.

²⁴SAHLE, Patrick: Digitale Editionsformen: Textbegriffe und Recodierung. Band 3, Books on Demand, 2013.

²⁵CUMMINGS, James: The text encoding initiative and the study of literature. A Companion to Digital Literary Studies 2013.

²⁶TOMASEK, Kathryn/BAUMAN, Syd: Encoding financial records for historical research. Journal of the Text Encoding Initiative 2013, Nr. 6.

²⁷VOGELER, Georg et al.: The Content of Accounts and Registers in their Digital Edition. XML/TEI, Spreadsheets, and Semantic Web Technologies. In SARNOWSKY, Jürgen (Hrsg.): Konzeptionelle Überlegungen zur Edition von Rechnungen und Amtsbüchern des späten Mittelalters. Göttingen, 2016.

²⁸VOGELER, Georg: The 'assertive edition'. International Journal of Digital Humanities, 2019.

tischer Strukturen kann das *Web of Data* herangezogen werden. Dies soll am Beispiel der *Bookkeeping Ontologie*, ²⁹ einem konzeptuellen Modell zur Beschreibung von Transaktionsprozessen in historischen Rechnungsunterlagen, diskutiert und reflektiert werden. Auf diesem Modell und den Forschungsdaten werden weiter formale Methoden zur Analyse von Rechnungsbüchern im Sinne einer Informationsvisualisierung ³⁰ beschrieben und reflektiert.

1.2 Related Work

Es lässt sich eine Vielzahl von Projekten festmachen, die quantitative, formale und/oder digitale Verfahren zur Bearbeitung und Erschließung von historischen Quellen verwenden und darüber reflektieren. Dabei gibt es auch zahlreiche Beispiele hinsichtlich des Quellentypus der historischen Rechnungsbücher, der digitaler Edition dieser Quellengattung, sowie der Anwendung von *Web of Data* Technologien im Bereich der Geisteswissenschaften.

VASOLD hat in seiner Arbeit in den 1990er Jahren mit der computergestützten Verarbeitung der Itinerar³¹ des Erzbischofs Konrad IV. von Salzburg die Möglichkeiten und den Mehrwert formaler Methoden in den Geschichtswissenschaften gezeigt. Er hat auf Basis eines mittelgroßen Quellenbestandes aus Urkunden und historiographischen Belegen, die Reisetätigkeiten eines Erzbischofes aus dem Mittelalter rekonstruiert, in dem er ein Modell zur formalen Beschreibung der gesammelten Belege entwickelt und diese Daten im quellenorientierten Datenbanksystem Kleio verarbeitet. Kleio ist ein Datenverarbeitungsprogramm, aus den 80iger und 90iger Jahren, das die Arbeit von Historiker*innen unterstützt und die Arbeit mit komplexen (historischen) Daten ermöglicht.³² Als Vorteil dieser Herangehensweise führt VASOLD an, dass durch die Ein- und Ausblendung bestimmter Strukturen und Quellen, sich ein stabiles Bild des Weges einer Person skizzieren lässt.³³

Unter Verwendung der "dynamisch integierten computergestützten Edition" hat PERSTLING das Steirische Marchfutterurbar aus den Jahren 1412 bis 1426 so erschlossen, dass unterschiedliche Bearbeitungsschichten des Dokuments als digitale Edition über das Web nachvollziehbar werden. ³⁴ So wird das Fundament für künftige Erforschungen von beispielsweise Preisen, Mün-

²⁹Bookkeeping Datamodel for Historical Accounts,gams.uni-graz.at/o:depcha.bookkeeping

³⁰PREIM, Bernhard/DACHSELT, Raimund: Interaktive systeme: Band 1: Grundlagen, Graphical User Interfaces, Informationsvisualisierung. 2. Auflage. Berlin / Heidelberg, 2010.

³¹Als Itinerar versteht man nicht nur Reiseberichte, sondern auch die Methode der Rekonstruktion der getätigten Wege einer Person oder Gruppe.

³²HOFFMANN, Barbara/HORN, Klaus: Ehepaare, Eheverläufe und Lebenslauf in Leipzig 1580-1730 KLEIO-Anwendung in einem historischen Forschungsprojekt. Historical Social Research/Historische Sozialforschung, 15 1990, Nr. 3 (55, S.172-174.

³³VASOLD, Gunter: Das Itinerar Erzbischof Konrads IV. von Salzburg: 1291-1312; computergestützte Itinerarer-stellung und Itineraranalyse. Selbstverl. d. Inst. für Geschichte d. Karl-Franzens-Univ. Graz, 1996.

³⁴PERSTLING, Matthias: Multimediale Dokumentation und Edition mehrschichtiger Texte : das steirischlandesfürstliche Marchfutterurbar von 1414/1426. Dissertation, 2013.

zen oder prosopographischen,³⁵ wie auch onomastischen³⁶ Studien gelegt.

BURGHARTZ, CALVI und VOGELER haben eine TEI/XML basierte digitale Edition des Basler Urfehdebuchs X, das Urfehedeeinträge aus den Jahren 1563 bis 1569 beinhaltet, im Web veröffentlicht. Als Urfehde versteht man ein Rechtsmittel in der Neuzeit, um einen Konflikt zweier Parteien zu schlichten. Die digitale Edition liefert eine transkribierte Quelle, die nach einem konzeptuellen Modell semantisch beschrieben wurde. Täter, Tat, Opfer, Strafen und personenbezogene Information werden so maschinenlesbar strukturiert und können weiter ausgewertet werden.³⁷

Da Rechnungsbüchern eine relativ einheitliche und "natürliche" Struktur aufweisen und ihr Inhalt sich für die Anwendung quantitativer und computergestützter Methoden eignet, lassen sich eine Vielzahl von Projekten festmachen, die Rechnungsunterlagen formal ausgewertet haben. Hier sind nur einige wenige angeführt:

Im Projekt "Rechnungsbücher von Bistritz aus den Jahren 1461–1520 ediert", werden Steuerverzeichnisse erschlossen, die einen Einblick in die wirtschaftliche und soziale Struktur der drittgrößten Stadt Siebenbürgens zu dieser Zeit liefern. 38

In einer anderen Kooperation haben BURGHARTZ und VOGELER die "Jahrrechnungen der Stadt Basel" in den Jahren 1535 bis 1610 digital ediert und im Web veröffentlicht. Jedes Rechnungsbuch beschreibt Einkünfte und Ausgaben der Stadt Basel, wie beispielsweise Einnahmen durch das Weinungeld, einer Abgabe an die Stadt, die durch den Ausschank von Wein fällig wurde. Die digitale Edition verfügt über Funktionalitäten einzelne Einträge zu sammeln und Berechnungen damit anzustellen.³⁹

"Die digitale Edition der Augsburger Baumeisterbücher", ⁴⁰ erlaubt den Zugang zu XML-basierten Transkriptionen der Quellen. Sowohl Digitalisate, wie auch Indices zu Personennamen, Orten und Schlagwörtern sind im Web aufrufbar und durchsuchbar. Eine Normalisierung von Namensformen beispielsweise wird über die GND⁴¹ sichergestellt. ⁴²

³⁵Bezeichnet in der Geschichtswissenschaft die systematische Erforschung eines bestimmten Personenkreises.

³⁶Bezeichnet die Namensforschung, die die Verbreitung, Bedeutung und Herkunft von Eigennamen erforscht.

³⁷POLLIN, Christopher/VOGELER, Georg: Semantically Enriched Historical Data. Drawing on the Example of the Digital Edition of the Ürfehdebucher der Stadt Basel". In WHiSe@ ISWC. 2017, S.27-29.

³⁸https://tinyurl.com/rgxw27q, 15.07.2019

³⁹VOGELER et al.: The Content of Accounts and Registers in their Digital Edition. XML/TEI, Spreadsheets, and Semantic Web Technologies, S.11-13, https://gams.uni-graz.at/srbas.

⁴⁰Die Augsburger Baumeisterbücher. Digitale Edition der mittelalterlichen Stadtrechnungen von 1320 bis 1466 https://www.augsburger-baumeisterbuecher.de/

⁴¹Gemeinsame Normdatei, https://www.dnb.de/DE/Professionell/Standardisierung/GND/gnd_node.html

⁴²Würz, Simone: Methoden der Digital Humanities in der Bearbeitung und Erforschung mittelalterlicher Rechnungsbücher. Möglichkeiten und Grenzen am Beispiel der digitalen Edition der Augsburger Stadtrechnungs-

NEUWÖHNER beschreibt ausführlich eine Geschichte der Stadt Paderborn im 17. Jahrhundert, die auf den Einnahmen und Ausgaben der Stadtrechnungen basiert. Nicht die Erfassung und Edition der historischen Quellen liegt in dieser Arbeit im Vordergrund, sondern veranschaulicht sie, wie reichhaltig die geschichtswissenschaftliche Interpretation des Quellentypus Stadtrechnung sein kann, um die finanzielle, wirtschaftliche und soziale Dimension einer Stadt zu erforschen.⁴³

Zuletzt sei die Arbeit von ZIEGLER angeführt, die zwar auch nicht digital ist, aber zeigt, dass die Überlegungen zur Anwendung quantitativer Methoden auf historische Rechnungsbücher dazu führen kann, komplexere Sachverhalte zu bearbeiten, wie etwa den Staatshaushalt Bayerns in der zweiten Hälfte des 15.Jahrhunderts. In seiner Zusammenfassung ist sich ZIEGLER bewusst, dass auf Grund der unscharfen und lückenhaften Datengrundlage es sich nur um eine historische Annäherung handeln kann, die aber dennoch für die Geschichtswissenschaften relevant sind. 44

bücher. In Pätzold, Stefan/Stumpf, Marcus (Hrsg.): Mittelalterliche und frühneuzeitliche Rechnungen als Quellen der landesgeschichtlichen Forschung. Münster, 2016, S.109-113.

⁴³Neuwöhner, Andreas: Haushalt und Finanzen im Spiegel kommunaler Rechnungen: die Stadt Paderborn im 17. Jahrhundert. In Pätzold, Stefan/Stumpf, Marcus (Hrsg.): Mittelalterliche und frühneuzeitliche Rechnungen als Quellen der landesgeschichtlichen Forschung. Münster, 2016, S.11-50.

⁴⁴ZIEGLER, Walter: Studien zum Staatshaushalt Bayerns in der zweiten Hälfte des 15. Jahrhunderts. Die regulären Kammereinkünfte Niederbayerns 1450-1500. München, 1981, S.221-230.

2 Formale Methoden und Modelle in den Geschichtswissenschaften

Am ersten August des Jahres 1808 hat ein gewisser *James Haley* 1/4 Pfund Pulver, 1 Pfund Munition und 1 Pfund Zucker zum Preis von 2 Schilling und 6 Pence im Laden der *Stagville Plantage* in *North Carolina* käuflich erworben. Diese Art von Information über die Vergangenheit lässt sich in historischen Rechnungsbüchern finden. Dabei ist nicht der Einzeleintrag von großer Bedeutung für Fragestellungen in den Geschichtswissenschaften, sondern die Aggregation vieler Einzelinformationen, um eine Datengrundlage zu schaffen, auf der eine weitere fachwissenschaftliche Auseinandersetzung – eine Interpretation der Vergangenheit – durch Historiker*innen fußt. 45

Damit diese Datengrundlage ausreichend groß ist und Aussagen nicht nur auf Ausschnitte eines Quellenkorpus reduziert sind, ist es notwendig, formale Verfahren zur Erschließung, Veröffentlichung und Analyse zu verwenden. Auf historische Rechnungsbücher bezogen, können so Berechnungen angestellt werden, die zeigen, wie sich etwa der Preis einer Ware über eine bestimmte Zeitspanne entwickelt hat, oder welche Waren von welchen Akteuren gekauft und verkauft werden. Die Menge an unterschiedlichen Fragestellungen ist groß und wird in Kapitel drei weiter veranschaulicht. Setzt man diese "historischen Fakten" aus der Quelle in einen größerer historischen Zusammenhang und als Diskussionsbeitrag in die fachwissenschaftliche Diskussion, beginnt die "klassische" Arbeit von Historiker*innen.

Im Mittelpunkt dieses Kapitels steht eine Diskussion über **Theorien und Methoden der Geschichtswissenschaften** und einer darauf aufbauenden Auseinandersetzung mit der Entwicklung der Anwendung formaler Verfahren innerhalb des Faches. Es wird der Frage nachgegangen, welche theoretischen und methodischen Herangehensweisen sich in den Geschichtswissenschaften etabliert haben. So stellt sich beispielsweise die Frage was man als "historische Fakten" verstehen kann und wie man sie nachvollziehbar, ohne die Quellen zu verzerren, algorithmisch verarbeiten kann. Bereits in den 1980er Jahren hat man sich im Fachbereich *Historische Fachinformatik* mit diesen Fragen beschäftigt.

Getrieben von einer analytischen Geschichtswissenschaft, in der die Theoriebildung ein zentrales Moment ist, wird die Anwendung formaler und computergestützter Verfahren zur Verarbeitung von Quellen und eine methodische Diskussion darüber immer wichtiger. Aus den Sozialwissenschaften kommend, in der **Historischen Fachinformatik** im Selbstverständnis einer Hilfswissenschaft weiterentwickelt, erleben formale Methoden eine neue Renaissance. Die **Digital Humanities** und die **Digital History** sind zwei Begriffe die dafür stehen. Ein Kernaspekt dieser fachlichen Ausrichtungen ist die Erarbeitung und Anwendung von Modellen, um **histo-**

⁴⁵VOGELER: Warum werden mittelalterliche und frühneuzeitliche Rechnungsbücher eigentlich nicht digital ediert?, 06.06.2019.

⁴⁶BECKER untersucht was als *historische Fakten* verstanden werden kann bzw. wo und wann von diesen gesprochen wird: BECKER, Carl L: What are historical facts? Western Political Quarterly, 8 1955, Nr. 3.

rische Forschungsdaten sinnvoll in eine nutzbare Struktur überführen zu können. So setzt sich dieses Kapitel auch mit einer grundlegenden Erörterung der **Modelltheorie** und Modellbildung in den Geisteswissenschaften bzw. Geschichtswissenschaften auseinander.

2.1 Von der erzählenden zur theorieorientierten Geschichtswissenschaft

"Ich glaube an diese ganze Theoriebedürftigkeit der Geschichte nicht. Die Historie ist eine Kunst, die auf Kenntnissen beruht, und weiter ist sie gar nichts" ⁴⁷

Führte MANN im Jahr 1979 an, um auszudrücken, dass durch die Einführung damals neuartiger, theoretischer Ansätze die Hauptaufgabe der Geschichtswissenschaften – das Erzählen von Geschichten – aufgeweicht wird. Bereits in den 1960er Jahren forderten Historiker wie MOMMSEN, KOCKA oder WEHLER eine "Reform der Geschichtswissenschaft jenseits des Historismus" hin zu einer analytischen und theorieorientierten Geschichtswissenschaft. Ihre Kritik richtet sich an den individualistischen Ansatz des Historismus, der Geschichte als Produkt menschlichen Handelns und nicht als rationales Ergebnis eines gesellschaftlichen Prozesses versteht. Die Kritik richtet sich explizit an dieses zentrale Element des Historismus. Die Errungenschaften der historisch-kritischen Methode, der Quellennähe und der Verwissenschaftlichung des Faches werden stets positiv hervorgehoben. Sie fordern eine stärkere Theoriebildung in der Geschichtswissenschaft und orientieren sich mehr und mehr an der Methodik der benachbarten Sozialwissenschaften, wie etwa der Soziologie. Die reine Nacherzählung der Vergangenheit, wie sie MANN noch einforderte, ist im heutigen Verständnis der Geschichtswissenschaft, ohne Anbindung an jegliche theoretische Fragestellungen, nicht mehr denkbar. Heutzutage ist die Orientierung an Theorien in den Geschichtswissenschaften wichtiger Bestandteil. KOCKA versteht darunter einen expliziten Gebrauch von Modellen, Theorien und Begriffen zur Strukturierung des Gegenstandes. 48 Je stärker man sich beispielsweise mit historischen Fragestellungen, die soziale oder wirtschaftliche Phänomene untersuchen, wie die Beziehungen zwischen sozialen Klassen oder öknomisches Wachstum, steigt auch die Notwendigkeit mehr über die Fragestellungen und Theorien der Sozial- und Wirtschaftswissenschaft zu wissen. 49 So ist ein grundlegendes Verständnis über Modelle der Konjunkturtheorie oder klassentheoretische Konzepte der Sozialgeschichte unabdingbar. 50

Der vermehrte Einsatz formaler Verfahren zur Erschließung, Auswertung und Darstellung von Information in historischen Quellen, befördert diese Notwendigkeit.

⁴⁷Vgl. MANN, Golo: Plädoyer für die historische Erzählung. In KOCKA, Jürgen/NIPPERDEY, Thomas (Hrsg.): Theorie und Erzählung in der Geschichte. München, 1979, S.53.

 ⁴⁸MAGERSKI, Christine et al.: Wie schreibt man Geschichte? Zagreber Germanistische Beiträge, 2009, Nr. 18, S.2.
 ⁴⁹KOCKA, Jürgen: Theorien in der Geschichtswissenschaft. In Theoriedebatte und Geschichtsunterricht: Sozialgeschichte, Paradigmawechsel und Geschichtsdidaktik in der aktuellen Diskussion. Vorträge auf der Jahrestagung des Landesverbandes nordrhein-westfälischer Geschichtslehrer am 23. November 1981 in Essen. Paderborn: Schöningh, 1982, S.6-8.

⁵⁰SCHMIEDER, Felicitas/SOKOLL, Thomas: Theorien und Methoden der Geschichtswissenschaft., S.1.

2.1.1 Geschichte und Geschichtswissenschaft: eine Definition

Gegenstandsbereich der **Geschichte** ist das Handeln der Menschen in der Vergangenheit. Dieses Handeln ist aber für niemanden mehr erlebbar, sondern muss über Belege der Vergangenheit, den Quellen, ob als Überrest oder Tradition, rekonstruiert werden. Die Unterscheidung erfolgt nach DROYSEN zwischen "unabsichtlich" erzeugten Überresten, wie etwa ein Kleidungsstück, das bei einer archäologischen Ausgrabung gefunden wurde, und absichtlich überlieferten Quellen, wie etwa ein Denkmal. Letztere werden als Tradition verstanden. ⁵¹ Bei dieser Einteilung handelt es sich aber um ein Ideal, da für eine genaue Zuordnung das Wissen über die Intention der Schöpferin notwendig wäre.

KIRN führt in seinem Einführungswerk in die Geschichtswissenschaft mehrere Definitionen des Begriffes Geschichte an. Wo HELLPACH über "die bewußte Gestaltung menschlichen Gemeinschaftslebens aus schöpferischem Willen" spricht und die menschliche Handlung in den Vordergrund stellt, ist es für HUIZINGA, aus dem Verständnis von Geschichtswissenschaft als Kulturgeschichte, "die geistige Form, in der sich eine Kultur über ihre Vergangenheit Rechenschaft gibt". Zentral in dieser Menge an Definitionen und Zugängen zur Geschichte ist, dass es sich um die wissenschaftliche Darstellung des Vergangenen handelt.⁵² Zweiter zentraler Aspekt ist, dass der Mensch als gesellschaftliches und kulturelles Wesen etwas über sich selbst, seine vergangenen Gesellschaft- und Kulturformen wissen möchte. Man könnte es als einen Akt der kollektiven Selbstreflexion verstehen. Jedenfalls ist der Begriff mehrdeutig. Geschichte kann als Vergangenheit, Geschichtsforschung oder Geschichtsschreibung verstanden werden. Geschichtsschreibung als Produkt der Geschichtsforschung liegt üblicherweise als Narrativ über vergangene Ereignisse vor. Sie ist jedoch nicht auf die Textform beschränkt, sondern kann auch in anderer Form vorliegen. Dies umfasst mündliche, wie bildliche Überlieferungen oder sämtliche Schöpfungen, die von Menschen erbracht wurden, um in einen Kommunikationsprozess einzutreten.⁵³

Bei DEMANDT finden sich weitere Ausführungen zu den grundlegenden Überlegungen des Begriffes *Geschichte*. Neben dem Mythos, der in vorschriftlichen Zeiten und in erzählerischer Form Vergangenes von einer Generation zu anderen weitergibt, war die Chronistik eine früher Form der verschriftlichten Erinnerung. Chroniken berichten über Ereignisse, ohne die Texte literarisch aufzuarbeiten. Die **Historie**, die *Erkundung der Vergangenheit*, geht noch einen Schritt weiter und versucht Ereigniszusammenhänge einer "wahren" Vergangenheit darzustellen.

Im 16. Jahrhundert entwickelt sich der Begriff Geschichte, der anfangs nur für den Gegenstands-

⁵¹OPGENOORTH, Ernst/SCHULZ, Günther: Einführung in das Studium der Neueren Geschichte. Paderborn / München / Wien / Zürich, 2010, 49–55.

⁵²KIRN, Paul: Einführung in die Geschichtswissenschaft. Berlin, Boston, 2015, S.7-12.

⁵³FRANK, Ingo: Visualisierungswerkzeuge zur Erklärung historischer Ereignisse: geschichtstheoretische Anforderungsanalyse und zeichentheoretisches Rahmenwerk. INF-DH-2018 2018, S.5-7.

bereich der Historie verwendet wurde.⁵⁴ Das moderne Verständnis des Wortes Geschichte umfasst sowohl die Gesamtheit von realen Geschehnissen, als auch den Bericht und die Reflexion darüber.

Zentral in der **modernen Geschichtswissenschaft**, also der Erforschung der Vergangenheit nach wissenschaftlichen Kriterien, ist die Auseinandersetzung mit historischen Quellen, die mittels kritischer Methode untersucht werden. In diesem Prozess müssen die angewandten Methoden, Ideen und Ergebnisse diskutierbar und nachprüfbar sein. ⁵⁵ Jede und jeder soll in der Lage sein, feststellen zu können, ob eine Interpretation eines historischen Sachverhalts durch eine angeführten Quelle belegbar ist. Forschungsgegenstand und Forschungsfrage sind in den Geschichtswissenschaften nicht klar abgegrenzt und die Interessen von Historiker*innen sind interdisziplinär, weswegen auch die angewandte Methodik vielfältig ist. ⁵⁶ Auf die Methoden in den Geschichtswissenschaften wird in Kapitel 2.1.4 detaillierter eingegangen. Zwei grundlegende Strömungen in der Erkenntnis- und Wissenschaftstheorie sind wichtig und werden im Folgenden weiter ausgeführt: die Hermeneutik und der Empirismus.

2.1.2 Hermeneutik

Bei der **Hermeneutik** handelt es sich um eine Theorie der Interpretation und des Verstehens von Texten, die nicht nur auf die Geschichtswissenschaft angewendet wird, sondern auf viele geisteswissenschaftliche oder rechtswissenschaftliche Fächer. DILTHEY betont, "dass das Verstehen [...] die spezifische Operation der Geisteswissen darstellt. ⁵⁷

Im großen Unterschied zu naturwissenschaftlichen Fragestellungen, ist die Vergangenheit nicht in einem Experiment beweis- bzw. widerlegbar. Geprägt wird die Hermeneutik, als Theorie für die Geschichtswissenschaften, unter anderen, von den Arbeiten von SCHLEIERMACHER, der sie zu einer *universellen Theorie des Verstehens* weiterentwickelte, in der jedes Verstehen einen individuellen Prozess darstellt. Für SCHLEIERMACHER ist gerade die Sprache, als Ausdruck der Gedanken von Individuen wichtig.⁵⁸

Aus dem neuen Geschichtsverständnis des 19. Jahrhunderts entwickelte DILTHEY die Hermeneutik zu einer historischen Methodik. Bei ihm wird Verstehen zur essentiellen Methode in den Geisteswissenschaften. Wo Naturwissenschaften die Welt von außen betrachten und gesetzmäßige Erkenntnis, beispielsweise durch das Zählen, Messen und der daraus ableitbaren Regeln, schließen, so ist die Aufgabe der Geisteswissenschaften, die Welt von innen zu verstehen. ⁵⁹

Unter GADAMER wird die Hermeneutik zur Philosophie weiterentwickelt. Es bedarf immer

⁵⁴OPGENOORTH/SCHULZ: Einführung in das Studium der Neueren Geschichte, S.57-58.

⁵⁵DEMANDT, Alexander: Philosophie der Geschichte von der Antike zur Gegenwart. 2011, S.13-32.

⁵⁶REICHE, Ruth/BECKER, Rainer/BENDER, Michael: Verfahren der Digital Humanities in den Geistes-und Kulturwissenschaften. Niedersächsische Staats-und Universitätsbibliothek Göttingen, 2014, S.13.

⁵⁷Vgl. FICARA, Elena: Texte zur Hermeneutik. Von Plato bis heute. Reclam, 2015, S.82.

⁵⁸Vgl. ebd., S.72-81.

⁵⁹ebd., S.82-83.

einem Vorverständnis, um in einen Prozess des Verstehens eintauchen zu können, an dessen Ende nur eine Annäherung an eine Wahrheit möglich ist.⁶⁰ Voraussetzung dafür ist die Frage nach der Anwendung und Konkretisierung der Fragestellung, die GADAMER als grundsätzliche Verwandtschaft von juristischer und hermeneutischer Rationalität beschreibt.⁶¹

Nicht nur unser Wissen über historische Quellen, sondern alles Wissen beruht auf einem Verstehen, das in einer Auslegung unseres Wissens erläutert wird. Verstehen in diesem Sinne ist zirkelförmig. Jemand tritt mit einem gewissen Vorwissen an eine Fragestellung heran. Es werden in der Auseinandersetzung mit der Materie Erfahrungen gesammelt und ein tieferes Verständnis der Thematik erarbeitet. Mit diesem gefestigten Verständnis bewegt man sich im sogenannten hermeneutischen Zirkel, einem iterativen Prozess gleich, weiter fort und erhält auf diese Weise ein besseres Bild zu einem Thema. Eine Problemstellung muss zuerst gefunden, erkannt und verstanden werden, damit sie weiter verarbeitet werden kann. ⁶²

In folgendem Beispiel nach STANGL sind die Wörter "vihe", "verwürckt" oder "fewer" ohne jeglichen Kontext unverständlich. Werden sie aber in ihrem Kontext gelesen, wird die Bedeutung des Textes offensichtlich:

"Item so eyn mensch mit eynem vihe, mann mit mann, weib mit weib, vnkeusch treiben, die haben auch das leinen verwürckt, vnd man soll sie der gemeynen gewonheyt nach mit dem fewer vom leben zum todt richten" ⁶³

Zentrale Begriffe lassen sich häufig erst aus dem Zusammenhang erschließen. Für das vollständige Verstehen des Gesamttextes müssen alle Einzelheiten nachvollziehbar sein. Die hermeneutische Spirale beinhaltet, dass Teilstücke ganzheitlich verstanden oder erweitert werden und sich das Ganze von den Teilaspekten her definieren lässt. Gerade in den Geschichtswissenschaften ist die Berücksichtigung und das Verstehen des Kontextes, in dem eine Aussage über die Vergangenheit steht, essentiell.

Als historisches Verstehen bezeichnet man die Anwendung her - meneutischer Verfahren auf historisches Quellenmaterial. Ziel dieses Verfahrens ist es, geschichtliche Wirklichkeiten im Vergleich mit der Gegenwart deutlich werden zu lassen. Indem der Histori - ker über ähnliche, aber durch einen zeitlichen Abstand getrennte Denkweisen, Erfahrungen, Gefühle und Verhaltensweisen verfügt, wie die Personen seiner Geschichte, kann er Parallelen und Unter - schiede aufzeigen, die ihm als Analogieschluss Ereignisse und Handlungen der Geschichte verständlich

⁶⁰OPGENOORTH/SCHULZ: Einführung in das Studium der Neueren Geschichte, S.19-30.

⁶¹FICARA: Texte zur Hermeneutik. Von Plato bis heute, S.176-178.

⁶²STANGL, Werner: Geschichte der Hermeneutik, https://arbeitsblaetter.stangl-taller.at/ ERZIEHUNGSWISSENSCHAFTGEIST/HermeneutikHistorie.shtml, 01.06.2019.

^{63•}https://arbeitsblaetter.stangl-taller.at/ERZIEHUNGSWISSENSCHAFTGEIST/ HermeneutikZirkel.shtml, 07.11.2019.

erscheinen lassen.

2.1.3 Empirismus

Wissenschaften, die Sachverhalte und Objekte der Welt durch Experimente im Labor, Beobachtung oder Befragung im Feld untersuchen, werden als empirische Wissenschaften zusammengefasst. Als sogenannte Erfahrungswissenschaft, wird Erkenntnis aus der Erfahrung der Welt abgeleitet. Die klassischen Vertreter sind etwa die Disziplinen der Naturwissenschaften, wie die Physik oder Biologie. Die Mathematik, die Philosophie oder auch die Informatik wiederum sind keine empirischen Wissenschaften. In diesen Disziplinen findet keine direkte Beobachtung statt, sondern Aussagen basieren auf einer logischen bzw. formalen Herangehensweise. ⁶⁴ Abbildung 1 zeigt die zentralen Begriffe der Empirie und ihre Wechselwirkung. Als Empirie wird die methodisch-systematische Sammlung von Daten verstanden, die zu einer Hypothese oder deren Widerlegung führt. Die **Deduktion** versteht die Schlussfolgerung gegebener Prämissen auf die logisch zwingenden Konsequenzen und die Induktion beschreibt den abstrahierenden Schluss aus beobachteten Phänomenen auf eine allgemeinere Erkenntnis. 65 Oder anders formuliert: Schlussfolgerung vom Allgemeinen auf das Besondere und umgekehrt. Für die Geschichtswissenschaften bedeutet das Ausgehend von einer Forschungsfrage verschaffen sich so Historiker*innen einen kritischen Überblick über vorhandenes Quellenmaterial, entwickeln eine These und überprüfen diese anhand des Materials. 66

_

⁶⁴FROMMER, Sören: Grundbegriffe aus Theorie, Methode und Wissenschaftsgeschichte. (URL: http://www.historische-archaeologie.de/downloads/grundbegriffe.pdf), 08.11.2019.

⁶⁵Siehe CHALMERS, Alan F: Wege der Wissenschaft: Einführung in die Wissenschaftstheorie. Springer-Verlag, 2007.

⁶⁶JORDAN: Theorien und Methoden der Geschichtswissenschaft, S.45-46.

Abbildung 1: Zusammenhang zwischen Induktion und Deduktion in empirischen Wissenschaften

In der Geschichtswissenschaft werden Textquellen mittels hermeneutischer Methoden interpretiert. Jedoch kann die Geschichtswissenschaft auch als empirische Wissenschaft verstanden werden. Nämlich dann, wenn sie empirische Daten, aus den überlieferten und erschlossenen (edierten) Quellen, im Rahmen einer Hypothese hinsichtlich einer historischen Rekonstruktion der Vergangenheit heranzieht. Wichtig ist zu berücksichtigen, dass es keine absolute Reproduktion der Ergebnisse geben kann, keine Experimente möglich sind und es sich immer um einmalige Untersuchungsgegenstände handelt und damit eine Generalisierung der Art "immer wenn A eintritt, dann folgt B" unmöglich ist. Vertreter einer einheitswissenschaftlichen Position wie HEMPEL aber definieren die Geschichtswissenschaft als Gesetzwissenschaft, 67 wohingegen DILTHEY und WRIGHT den besonderen Charakter hermeneutisch vorgehender Wissenschaften hervorheben. Sie setzen sich gegen eine "blinde" Übernahme naturwissenschaftlicher Erkenntnismodelle auf die Geistes– und Sozialwissenschaften ein. Das Verhältnis dieser beiden wissenschaftlichen Ausrichtungen ist bis heute kontrovers. 68

Aber gerade im Zusammenspiel zwischen empirischer Methoden und der Herangehensweise an Forschungsfragen im Sinne der Hermeneutik kann ein Mehrwert für die Bildung von Hypothesen und die Interpretation eines Themas entstehen. Im Zuge der empirischen Überprüfung von Sachverhalten spielt die Hermeneutik eine wesentliche Rolle bei der Quantifizierung von qualitativen Aussagen. Auch die Interpretation von empirischen Resultaten ist, so STANGL,

⁶⁷Nüssel, Friederike et al.: Offenbarung als Geschichte: Implikationen und Konsequenzen eines theologischen Programms. Vandenhoeck & Ruprecht, 2018, S.79-80.

⁶⁸WELLMER, Albrecht: Georg Henrik von Wright "über "Erklärem" und "Verstehen". 1979 (URL: https://www.jstor.org/stable/42571419).

2.1.4 Methoden der Geschichtswissenschaft

Ein kontrolliertes Verfahren zur Erreichung eines Forschungsziel bzw. zur Gewinnung von Erkenntnis wird als Methode bezeichnet. Die Methodologie beschäftigt sich damit, ob eine gewählte Methode für ein bestimmtes Ziel geeignet ist, oder nicht. Sie sind wichtiger Bestandteil der wissenschaftlichen Arbeit und somit auch ein nicht wegzudenkendes Werkzeug in den Geschichtswissenschaften, wie ein Blick auf die Vielfalt **historischer Hilfswissenschaften**, deren Aufgabe die Erschließung von bestimmten Quellentypen ist, zeigt. Die Hilfswissenschaften bzw. Grundwissenschaften, wie sie auch genannt werden – "als Abzweigungen der allgemeinen historischen Arbeitsform" – haben das Ziel die historischen Quellen aufzubereiten. Sie erstrecken sich von der Paläografie, Kodikologie über die Diplomatik, Insignienkunde und Aktenkunde bis hin zur Genealogie, um nur einige Vertreter zu nennen.

Charakterisiert sind die historischen Hilfswissenschaften durch ihren Bezug zur Quelle. Die äußeren Merkmale einer Quelle (Tinte, Papier, Schrift etc.) stehen den inneren Merkmalen gegenüber und es ist gemeinsames Ziel zu überprüfen, ob eine Quelle authentisch ist, oder nicht. Die Historische Fachinformatik, sozusagen als Vorgänger der Digital History, versteht sich auch als Hilfswissenschaft innerhalb der Geschichtswissenschaften und beschäftigt sich mit der Anwendung und Reflexion von formalen Verfahren im Fach. Sie ist auf der Suche nach in Algorithmen ausdrückbaren, sprich formalisierbaren, Verfahren der Geschichtswissenschaft im Umgang mit historischen Quellen. ⁷²

Neben Methoden der Erschließung historischer Quellen in ihrer Materialisierung als historische Hilfswissenschaften ist die **Quellenkritik** immanente Methode der Geschichtswissenschaft. Die Quellenkritik entwickelte sich aus dem Dreischritt von Heuristik, Kritik und Interpretation. Historiker*innen formulieren eine Fragestellung, als Ergebnis eines spezifischen Forschungsstandes, um eigenen bzw. neue Erkenntnisse über eine Forschungsfrage zu gewinnen. Relevante Quellen werden gesammelt, erschlossen und einer kritischen Prüfung auf Vollständigkeit, Glaubwürdigkeit und Echtheit unterzogen. Die Ergebnisse aus dem Quellenstudium werden mit den Erkenntnissen von Fachkollegen*innen verglichen und in übergeordnete Kontexte eingeordnet. ⁷³ Für DROYSEN mündet die Reflexion auf die historische Methode in eine Theorie der historischen Erkenntnis: der Hermeneutik. Aus diesem Verständnis heraus entstand

⁶⁹STANGL, Werner: Der hermeneutische Zirkel, https://arbeitsblaetter.stangl-taller.at/ ERZIEHUNGSWISSENSCHAFTGEIST/HermeneutikZirkel.shtml, 01.06.2019.

⁷⁰BLAKSTAD Oskar: Die wissenschaftliche Methode, https://explorable.com/de/die-wissenschaftliche-methode, 28.12.2019.

⁷¹Vgl. Von Brandt, Ahasver: Werkzeug des Historikers: eine Einführung in die historischen Hilfswissenschaften. Band 33, W. Kohlhammer Verlag, 2007, S.10.

⁷²Was ist HFI?, Kurzbeschreibung des Faches und seiner Positionierung http://hfi.uni-graz.at/basisinformation/was-ist-hfi, 23.05.2019.

⁷³JORDAN: Theorien und Methoden der Geschichtswissenschaft, S.43-45.

auch die Anwendung der Hermeneutik als Methode der Geschichtswissenschaft.

Unterschieden werden qualitative und quantitative Methoden. Qualitative Methoden verfolgen im Gegensatz zu quantitativen Methoden einen offeneren und flexibleren Zugang zum Forschungsgegenstand. Es gibt Platz, dass neue Phänomene entdeckt werden können. Der Forschungsprozess wird als dynamisch aufgefasst und es werden Methoden eingesetzt wie Interviews, Inhaltsanalysen und Beobachtungen. Die quantitativen Methoden sind statisch und folgen einem festgelegten Muster. Zu Beginn des Forschungsprozesses müssen Theorien und Modelle über den Gegenstand der Forschung vorliegen. Es werden Hypothesen abgeleitet, die im Forschungsprozess überprüft werden. Hierzu werden Überlegungen angestellt, welche Indikatoren für Forschungsfragen sinnvollerweise messbar sind und die Daten über statistische Verfahren ausgewertet. Die so 'berechneten' Erkenntnisse werden abschließend wieder auf das theoretische Modell bezogen und interpretiert. ⁷⁴ Die Geschichtswissenschaft setzt allgemeine Hypothesen zur Erklärung spezifischer Entwicklungen ein und die Sozialwissenschaften nutzen Daten zur Formulierung von allgemeinen Gesetzmäßigkeiten.

Der Zweck quantitativer und qualitativer Methoden in der Geschichtswissenschaft, die stets als Mittel zum Zweck zu betrachten sind, ist es, Erkenntnis über die Vergangenheit zu gewinnen. ⁷⁵ Gerade in den Geschichtswissenschaften der 1980er war diese eine Auseinandersetzung zwischen "Traditionalisten" und "Quantifizierern".

⁷⁴WOLF, Willi; KÖNIG, E./ZEDLER, P. (Hrsg.): Qualitative versus quantitative Forschung. Band Bd. I: Grundlagen qualitativer Forschung, Beltz, 1995, S.309-329.

⁷⁵JARAUSCH, Konrad Hugo/ARMINGER, Gerhard/THALLER, Manfred: Quantitative Methoden in der Geschichtswissenschaft. Wissenschaftliche Buchgesellschaft, 1985, S.203-206.

2.2 "Quantifizierer" und "Traditionalisten": Entwicklung einer formalen Methodik

"Aber alle Autoren halten daran fest, dass sich die Quantifizierung als ein gewichtiges Werkzeug historischer Analyse erwiesen habe." ⁷⁶

In den 1980iger Jahren standen sich in der Diskussion über den methodischen Zugang zu historischen Quellen zwei Gruppen gegenüber, die sich als "Traditionalisten" und "Quantifizierer" festmachen lassen können. Im Gegensatz zu den "Traditionalisten", die einen hermeneutischen Zugang wählten, um historische Quellen zu verstehen, fokussierten die "Quantifizierer" formale Methoden, wie etwa statistische Verfahren aus den Sozialwissenschaften, um sie auf Quellenkorpora anzuwenden und die daraus gewonnenen empirischen Fakten für ihre Interpretation zu nutzen. SCHRÖDER definiert die historischen Sozialwissenschaften als "theoretisch und methodisch reflektierte, empirische, besonders auch quantitativ gestützte Erforschung sozialer Strukturen und Prozesse in der Geschichte." Die Forschung in der historischen Sozialwissenschaft setzt sich aus folgenden Schritten zusammen:

- Problemauswahl und -formulierung.
- Theorie und Hypothesenbildung
- Methoden und Quellenauswahl (Heuristik)
- Datenerhebung, Verarbeitung, Analyse und Repräsentation

Ergebnis dieser Auseinandersetzung war es, dass im Zusammenhang mit der Anwendung formaler Methoden besonders auf die Nachvollziehbarkeit geachtet werden muss, damit nicht Dinge, die nicht empirisch beweisbar sind, auch nicht so missverstanden werden können. Aus diesem Grund muss die Quelle ohne jegliche Vorannahmen zur Verfügung gestellt werden, einsehbar sein und das angewandte formale Modell bzw. die Methode in ihrer Gänze offen gelegt werden. Dies gilt grundsätzlich für jede Art wissenschaftlicher Arbeit. LATOUR führt an, dass je mehr wissenschaftliche Vorarbeiten und Technologien in einem Erkenntnisprozess stecken, desto undurchsichtiger kann er auch werden. Nicht die interne Komplexität, sondern nur der In- und Output stehen im Vordergrund. Gerade im Hinblick auf eine digitale Verarbeitung von Daten ist dies ein Grundproblem.⁸⁰

Darum wird empfohlen die grundlegenden Annahmen und Definitionen, die in der Verarbeitung

⁷⁶JARAUSCH/ARMINGER/THALLER: Quantitative Methoden in der Geschichtswissenschaft, S.191-206.

⁷⁸Vgl. SCHRÖDER, Wilhelm Heinz: Historische Sozialforschung: Forschungsstrategie-Infrastruktur-Auswahlbibliographie. Historical Social Research, Supplement 1988, Nr. 1, S.5.
⁷⁹Vgl. ebd., S.5-8.

⁸⁰LATOUR, Bruno et al.: Pandora's hope: essays on the reality of science studies. Harvard university press, 1999, S.309.

und anschließenden Interpretation von Quellen verwendet werden in einer, und so haben es bereits Vertreter der Historischen Fachinformatik gefordert, gemeinsamen *knowledge domain* zu formalisieren.⁸¹ Diese *knowledge domain* beschreibt die interne Komplexität einer Fragestellung.

Die Konzepte, Standards und Technologien des *Web of Data* (aka. Semantic Web) und der *Linked Open Data* Paradigmen haben zum Ziel Wissensdomänen als konzeptuelle, maschinenlesbare Modelle zu formalisieren und auf diese Weise strukturierte Daten über das Web zur Verfügung zu stellen. Diese können dazu dienen, die von THALLER geforderten *knowledge domain* für historische Fragestellungen in die Realität umzusetzen. Auf diese Aspekte wird aber erst später in Kapitel 4 und 5 weiter eingegangen.

2.2.1 Interpretation und Theoriebildung

Die Interpretation von neu gewonnenen Ergebnissen ist das eigentliche Ziel der quantitativen Methode. Quantitative Methoden ermöglichen nicht nur einen punktuellen Einblick in einen Quellenbestand, sondern versetzen die Historikerin in die Lage größere Mengen von Belegen zu verarbeiten. Genau darin besteht der Mehrwert qualitativer Methodik und ihre Herausforderung. Es besteht die Gefahr, so JARAUSCH et. al., dass die eigentliche Arbeit, die Interpretation der Quellen, im reinen quantitativen Verarbeiten und Verwalten liegen bleibt. Der Aussagewert der Ergebnisse aus diesen Methoden ist abhängig von einer ganzen Reihe von qualitativen Entscheidungen. Denkt man beispielsweise an die Einordnung von historischen Berufen in einzelne Gruppen, um diese besser gegenüber stellen zu können, so bedarf es einer ausführlichen Argumentation, wie sich diese Gruppen zusammenstellen. Fehlerhafte Vorbedingungen führen zu fehlerhaften Ergebnissen, die wiederum verzerrte Interpretationen mit sich führen können. Gehört ein Kaufmann in die Gruppe des Besitzbürgertums, oder zum alten Mittelstand? Es ist notwendig, dass das Erkenntnisziel eines Verfahrens im Vorhinein definiert wird und das Verhältnis der quantitativen Daten zu den qualitativen Quellen geklärt und diskutiert wird.

Gerade Information aus historischen Quellen ist stark kontextabhängig. ⁸² Bereits 1988 veranschaulichte THALLER das in seinem sogenannten "Preußenbeispiel". Der Begriff "Preußen" bezieht sich im Jahre 1670 auf deutlich andere Koordinaten, als im Jahre 1770. Wer also als "Preuße" zu kategorisieren ist, ist abhängig zu welcher Zeit und an welchem Ort eine Person lebt bzw. geboren wurde. ⁸³ Abgehoben von dieser Frage ist dann, ob jemand sich auch als 'Preuße' verstanden hat. Historische Information ist unscharf, unvollständig, heterogen und mehrdeutig. Die korrekte Interpretation solcher Daten hängt stark von den sich verändernen Parametern ab. Ein Grundsatz ist, dass nicht "alles mit allem" verarbeitet wird, in der Hoffnung so auf noch ungeahnte Erkenntnisse zu stoßen. Es müssen bereits im Vorhinein Überlegungen angestellt werden, inwieweit die innere Logik eines Verfahrens auch geeignet ist um passende Resulta-

⁸¹ THALLER: Historical Social Research/Historische Sozialforschung. Supplement 2017, S.263.

⁸²JARAUSCH/ARMINGER/THALLER: Quantitative Methoden in der Geschichtswissenschaft, S.182-193.

⁸³THALLER: Historical Social Research/Historische Sozialforschung. Supplement 2017, S.264-266.

te zu erzeugen, in denen Verarbeitungsfehler bzw. falsche Annahmen ausgeschlossen werden können. Ein statistischer Zusammenhang heißt noch keine Kausalbeziehung: das Aussterben der Störche kann statistisch einen Einfluss auf den Niedergang der Geburtenrate suggerieren (Korrelation), einen kausalen Zusammenhang gibt es in diesem Beispiel aber nicht (Kausalität). Statistik kann nichts erklären, sondern nur Erklärungsmodelle auf ihre Übereinstimmung mit den Daten überprüfen. Es ist wichtig aus der statistischen Auswertung aufzutauchen und deren Befunde mit der Fachliteratur zu diskutieren. Nur so kann man den aktuellen Wissensstand mit dem alten vergleichen und neue Thesen aufstellen.⁸⁴

Aus diesem Grund ist auch die Theoriebildung für die Anwendung quantitativer Methodik in den Geschichtswissenschaften relevant. KOCKA definiert die Theorie als einen expliziten und konsistenten Satz von verwandten Begriffen, die benützt werden können, historische Zusammenhänge, die nicht aus dem Studium der Quellen alleine abgeleitet werden können, zu strukturieren und zu erklären. So unterscheidet KOCKA sechs Funktionen von Theorie:⁸⁵

- Eine Theorie hilft bei forschungsstrategischen Entscheidungen und grenzt eine Forschungsfrage von anderen ab. Dies erleichtert die Diskussion über einen Forschungsprozess.
- Theorien helfen dabei, besonders für politische, soziale und wirtschaftliche Daten, zu überprüfende Hypothesen aufzustellen. Dies erleichtert es historische Wirklichkeitsbereiche zu kontextualisieren.
- Theorien sollen bei der empirischen Auswertung der verfügbaren Quellen helfen, um eine Hypothese zu überprüfen.
- Theorien helfen dabei den begrifflichen Rahmen für Vergleiche zwischen Gesellschaften und Epochen zu konstruieren.
- Theorien als Rahmen für Kriterien für die historische Periodisierung.
- Theorien helfen dabei Vergangenheit zu gegenwärtigen Fragen und Kontroversen in Beziehung zu setzen.

[ToDo: hier gehört eine kurze Zusammenfassung und ein Abschluss hin]

⁸⁴JARAUSCH/ARMINGER/THALLER: Quantitative Methoden in der Geschichtswissenschaft, S.182-191.

⁸⁵Vgl. SCHRÖDER: Historical Social Research, Supplement 1988, S.10-14.

2.3 Modellbildung als Kern der Digital History

"Im wissenschaftlichen wie außerwissenschaftlichen Sprachgebrauch hat gegenwärtig der Modellbegriff zunehmend Relevanz erlangt. Bei zahlreichen passenden – leider auch unpassenden – Gelegenheiten ist von "Modellen" die Rede." 86

Der Kern der digitalen Geisteswissenschaften, also der Verwendung digitaler Werkzeuge zu Bearbeitung geisteswissenschaftlicher Fragestellungen, ist für PIOTROWSKI zweigeteilt. Zum einen umfasst es die **theoretischen digitalen Geisteswissenschaften**, die sich mit der Erforschung und Entwicklung von Methoden, die für die Erstellung von formalen Modellen in den Geisteswissenschaften nötig sind, und die **angewandten digitalen Geisteswissenschaften**, die die Anwendung dieser Mittel und Methoden zur Erstellung konkreter formaler Modelle in den geisteswissenschaftlichen Disziplinen befördert. ⁸⁷ Zentral in dieser Definition, die gleichrangig neben vielen anderen Definitionen der digitalen Geisteswissenschaften steht, ist der Modellbegriff.

Dieses Kapitel widmet sich der terminologischen Klärung des Modellbegriffs, mit welchen Werkzeugen modelliert werden kann und welche Rolle sie in Hinblick auf (Forschungs)Daten in den Geschichtswissenschaften einnehmen.

2.3.1 Definition und Terminologie des Modellbegriffs.

Bereits 1973 beschreibt STACHOWIAK in seiner Einleitung seiner ausführlichen Abhandlung zur Allgemeinen Modelltheorie, die unscharfe Verwendung des Modellbegriffes. STRACHOWIAK definiert: "Ein Modell ist eine verkürzte, zweckorientierte Abbildung von der Wirklichkeit". 88 Weiter führt er drei Hauptaugenmerkmale von Modellen an: 89

- Abbildung: jedes Modell ist Abbild von einem Teilaspekt der Wirklichkeit
- Verkürzung: jedes Modell ist eine Abstraktion eines Teilaspekts der Wirklichkeit
- **Pragmatismus**: jedes Modell wird deswegen geschaffen, um für jemanden eine Problemstellung innerhalb eines bestimmten Zeitbereiches zu bearbeiten.

Auch KOBLER führt an, dass der Modellbegriff in fast jeder wissenschaftlichen Disziplin auftritt, wobei eine einheitliche Definition des Begriffes nicht vorzufinden ist. Kritik richtet sich oft daran, dass für die Definition des Modellbegriffes andere Konzepte wie *Abstraktion*, *Entität* oder *System* verwendet werden, die wiederum terminologisch unterschiedlich verwendet werden. Im deutschen Sprachgebrauch lässt sich weiters eine Doppelbedeutung des Begriffs

19

⁸⁶STACHOWIAK: Allgemeine Modelltheorie, S.1.

⁸⁷PIOTROWSKI, Michael: Digital Humanities. Computational Linguistics, and Natural Language Processing. Lectures on Language Technology and History 2016.

⁸⁸Vgl. STACHOWIAK: Allgemeine Modelltheorie, S..

⁸⁹Vgl. ebd., S.131–133.

festmachen: als Abbild von Etwas, sowie Vorbild für Etwas (jemand steht Modell beim Malen). 90 Die Notwendigkeit der ersten Bedeutung geht daraus hervor, dass die Erfahrung und das Verstehen der Welt komplex ist. In ihrer Gesamtheit übersteigen sie die kognitiven Fähigkeiten des Menschen, weswegen eine Reduktion von Information notwendig ist. Gerade diese Fertigkeit der Abstraktion und Generalisierung von Abbildern der Realität (von Dingen in der Welt) stellt die Grundlage menschlicher Kultur. Der Fokus in dieser Arbeit betrachtet nun nur externalisierte, niedergeschriebene Modelle, die sich theoretisch in Datenmodelle überführen lassen, da diese Art von Modellen, wie anfangs erwähnt, für die digitalen Geisteswissenschaften und somit für die Digital History relevant sind.

In den unterschiedliche Disziplinen haben Modelle eine abweichende Funktion. In den Ingenieurwissenschaften arbeitet man mit formalen Modellen die einen Sachverhalt, an den man sich so nah wie möglich annähern will, beschreiben und erklären. In den Wirtschaftswissenschaften haben Modelle oft beschreibende Funktion. In der Wissenschaftstheorie werden Theorien in Form von mathematischen Modellen dargestellt. In der Wirtschaftsinformatik, wiederum werden sie für vielfältige andere Aufgaben eingesetzt, sodass man zusammenfassend eine große Menge an Modelltypen festmachen kann. ⁹¹

Den gleichen Prinzipien folgende lassen sich, wie für Methoden, qualitative von quantitativen Modellen unterscheiden. **Qualitative Modelle** beschreiben die wesentlichen Bestandteile und Beziehungen eines Systems. Zentral ist die Diskussion von Mustern, Wechselwirkungen und Strukturen. Es beschreibt beispielsweise welche Reihung Ursachen ein Phänomen bedingen, welche Objekte ihm zugeordnet werden können, oder welche kausalen Zusammenhänge es gibt. **Quantitative Modelle** geben das Regelwerk vor, in welchem Verhältnis sich Zahlen oder empirische Messwerte zueinander verhalten: wie lange dauert ein Prozess an, wieviele Objekte gibt es oder wie hoch ist die Wahrscheinlichkeit von X in Abhängigkeit von Y. Dabei bedarf es einer Konkretisierung qualitativer Begriffe auf der empirischen Ebene. Allerdings bedeutet die schlichte Verwendung von Zahlen noch nicht, dass es sich um ein quantitatives Modell handelt. 92

Eine weitere Unterscheidung von Modellen erfolgt durch statische und dynamische Modelle. In einem **statischen Modell** werden Komponenten und deren Beziehungen zwischen den Komponenten zu einem festen Zeitpunkt beschrieben. In einem **dynamischen Modell** werden prozesshafte Strukturen definiert, sprich Zustände und Zustandsübergang, wie sie etwa durch ein Zustandsübergangsdiagramm beschrieben werden können.

Eine weitere Unterscheidung ist in der Einteilung nicht-formale (informelle), semiformale und formale Modelle gegeben. Existiert keine eindeutige Beschreibungssyntax für ein Modell, es also mittels natürlicher Sprache beschrieben wird, so spricht man von einem **informellen Modell**.

⁹⁰STACHOWIAK: Allgemeine Modelltheorie, S.129.

⁹¹KOBLER, Maximilian: Qualität von Prozessmodellen: Kennzahlen zur analytischen Qualitätssicherung bei der Prozessmodellierung. Logos Verlag Berlin GmbH, 2010, S.41-44.

⁹²WOLF: Qualitative versus quantitative Forschung, S.309–329.

Ein vorzufinden ist, kann als ein solches Modell betrachtet werden. Oft ist dies aber begründet durch die Verwendung natürlicher Sprache nicht immer eindeutig und Eindeutigkeit ist für eine formale Verarbeitung unerlässlich. Betrachtet man beispielsweise den Satz "Ich sah den Mann auf dem Berg mit dem Fernrohr.", so lassen sich fünf Bedeutungen ableiten, je nachdem welche Person, wen, wo mit dem Fernrohr betrachtet. Abbildung 2 veranschaulicht dies.

Abbildung 2: Nichteindeutigkeit nicht-formaler Modelle

Ein **semiformales Modell** ist teilweise exakt. Es verfügt über eine definierte Syntax, spezifiziert aber nicht die ganze Domäne und verfügt über keine semantischen Konstruktionsregeln. Umsetzen lassen sich solche Modelle beispielsweise mit dem Entity-Relationship-Modell (ER-Diagramm), das anschließend ausführlicher beschrieben wird.

Formale Modelle verfügen über eine konkrete Syntax und Semantik. Das erlaubt die formale Definition von Modellen beispielsweise auf Basis deskriptiver Logiken. ⁹³ Für formale Modelle lassen sich Algorithmen formulieren, die es erlauben Daten, die durch ein solches Modell beschrieben sind, automatisiert zu validieren. So beschriebene Modelle lassen sich in Datenmodelle überführen.

Im Gegensatz zum Computer kann der Mensch auch mit informellen Modellen arbeiten. Man kann stark strukturierte und formalisierte Modelle, die algorithmisch genutzt werden können, offenen Modellen gegenüberstellen, in die sich ein Mensch hineindenken kann.

Konzeptuelle oder auch konzeptionelle Modelle (conceptual model) bzw. Informationsmodelle

⁹³ Es gibt unterschiedliche Logiken, die sich in ihrer Ausdrucksmächtigkeit und Entscheidbarkeit unterscheiden.

(information model) sind beispielsweise in der Wirtschaftsinformatik von zentraler Bedeutung. Sie sind ein Werkzeug das die Kommunikation zwischen Informatik, Wirtschaftsinformatik und Wirtschaft erleichtert. ⁹⁴ Genauso können solche Modelle in der interdisziplinären Arbeit zwischen Informatik, digitale Geisteswissenschaft und Geschichtswissenschaft fungieren.

Als **Datenmodelle** versteht man formale Modelle, die von Computern verarbeitbar sind und liegen aus diesem Grund in expliziter und eindeutiger Form vor. Datenmodelle dienen zur Repräsentation von konkreten oder abstrakten Objekte. JANNIDIS führt folgende Funktionen von Datenmodellen an: ⁹⁵

- Maschinelle Verarbeitung
- Kommunikation in der Entwicklung von Algorithmen bzw. Software
- Definition der Struktur der Daten für ein Programm
- Standardisierung im Austausch von Daten

Zusammenfassend lässt sich sagen, dass der Modellbegriff, je nach Disziplin unterschiedlich verwendet wird. Gemeinsam jedoch ist stets die Funktion eine Domäne zu abstrahieren, zu vereinfachen und so zu beschreiben, dass dadurch Kommunikations- und Verstehensprozesse unterstützt werden. Zentral ist auch wie ein Modell beschrieben wird und welche Formen des Modellierens es gibt. Der aktive Prozess eine Domäne und ihre Daten in ein Modell zu überführen nennt man Modellieren.

2.3.2 Modellierung

Drei Besonderheiten hebt JANNIDIS in der Modellierung von Daten in den Geisteswissenschaften hervor: die Historizität und Kontextabhängigkeit von Objekten, die für die geisteswissenschaftliche Analyse essentiell ist, die Unfschärfe von Information und "das systembedingte Primat des Individuellen vor dem Allgemeinen". Historizität meint, dass nicht nur jedes Objekt eine Geschichte aufweist, sondern auch jede Untersuchung eines Objektes. Als unscharf versteht man, dass es keine definitiven und fixen Werte gibt, die aber für eine maschinelle Verarbeitung notwendig sind. Und Letzteres meint, dass in den Geisteswissenschaften oft der Blick auf ein einzelnes Objekt, ein Roman, tendenziell interessanter ist als auf eine Vielzahl. ⁹⁶

In der Modellierung, auf einer konzeptuellen Ebene, ist es notwendig die im Bezug auf den Verwendungszweck wichtigsten Entitäten und ihre Attribute, sowie Relationen zu identifizieren. ⁹⁷ Das Entity-Relationship-Modell (ER-Diagramm) ist eine Notationsformen, die genau

⁹⁴KOBLER: Qualität von Prozessmodellen: Kennzahlen zur analytischen Qualitätssicherung bei der Prozessmodellierung, S.44-47.

⁹⁵JANNIDIS, Fotis: Grundlagen der Datenmodellierung. In Digital Humanities. Springer, 2017, S.99-100.

⁹⁶ebd., S.106-108.

⁹⁷ebd., S.102-104.

auf diesen drei Begriffen beruht: Relationen, Attributen und Entitäten (Klassen). Die Entitäten – alle potenziellen Untersuchungsobjekte – verfügen über Eigenschaften, sogenannte Attribute. Weiters stehen sie zu anderen Entitäten in unterschiedlichen Beziehungen, sogenannten "Relationen". Se Eine gängige Art ER-Diagramme umzusetzen, besonders in der Softwareentwicklung, ist die *Unified Modeling Language* (UML). Dabei handelt es sich um eine Sprache zur Modellierung, Dokumentation und Spezifikation von Systemen und Softwarekomponenten. Als ISO genormte Sprache definiert UML Bezeichner für wichtige Begriffe einer Modellierung und legt mögliche Beziehungen zwischen diesen Begriffen fest. UML definiert weiter grafische Notationen für diese Begriffe und für Modelle statischer Strukturen und dynamischer Abläufe, die man mit diesen Begriffen formulieren kann. Solgende Abbildung veranschaulicht die Bestandteile von UML:

Abbildung 3: Beispiel für ein Klassendiagramm nach UML

Es existiert eine Klasse Kunden, die wiederum zwei Unterklassen Privatkunde und Geschäftskunde besitzt. Die beiden Unterklassen (weißer Pfeil definiert 'hat Superklasse') unterscheiden sich in ihren unterschiedlichen Attributen. Wo die Privatkunde-Klasse aus vorname und nachname vom Datentyp string zusammengestellt wird, verfügt der Geschäftskunde über das Attribut firmenname. Die Linien zwischen den Klassen definieren Relationen und die daneben stehenden Zahlwerte und Symbole die Kardinalität dieser Beziehungen. So hat eine Instanz aus der Klasse Privatkunde eine Relation postAdresse zu einer Klasse Adresse, aber eine Adresse

⁹⁸CHEN, Peter Pin-Shan: The entity-relationship model—toward a unified view of data. ACM Transactions on Database Systems (TODS), 1 1976, Nr. 1.

⁹⁹RUMBAUGH, James/JACOBSON, Ivar/BOOCH, Grady: Unified modeling language reference manual, the. Pearson Higher Education, 2004.

kann mit mehreren Privatkunden verknüpft sein. 100

Man kann nun aus der Klasse *Privatkunde* beliebig viele Instanzen erzeugen. Instanzen entsprechen den eigentlichen Daten, die beispielsweise in einer Datenbank abgelegt werden können. So könne man das oben angeführte konzeptuelle Modell folgendermaßen instanziieren, sodass ein Privatkunde "Christopher Pollin" eine Adresse und ein Konto hat:

Privatkunde -> *vorname* "Christopher" *nachname* "Pollin"

Christopher Pollin" postAdresse "Neubaugasse 1"

Christopher Pollin"konto "Konto 1"

2.3.3 Forschungsdaten in den Geschichtswissenschaften ¹⁰¹

Die Grundlage jeder formalen Verarbeitung sind Daten. Die Definition von Daten, im Sinne der Informationswissenschaft, lässt sich am besten in der Kontextualisierung mit drei anderen Begriffen fassen: Signal, Information und Wissen. Wo Signale eine physikalische Entität darstellen, beispielsweise eine Lichtwelle, versteht man unter Daten Zeichen zur Verarbeitung und Repräsentation von Information. Noch spezifischer wird der Begriff in der Informatik verwendet. In diesem Fach versteht man unter Daten Informationseinheiten, die für Maschinen lesbar und bearbeitbar sind. Von Information spricht man, wenn Daten in einem bestimmten Kontext interpretiert werden. WERSIG, aus einem kybernetischen Verständnis, spricht bei Information von einer "Reduktion von Ungewissheit aufgrund von Kommunikationsprozessen". ¹⁰² Noch eine Hierarchiestufe höher steht der Wissensbegriff. Wissen, so FAVRE-BULLE, ist gegeben, wenn ein kognitiver Agent, beispielsweise ein Mensch, auf Basis von Information eine Handlung in der Welt setzt. ¹⁰³ Folgende Darstellung zeigt die Abhängigkeit dieser 4 Begriffe zueinander, mit einem anwachsen der Komplexität der Struktur, sowie der Anbindung an einen kognitiven Agenten. ¹⁰⁴

¹⁰⁰Vgl JANNIDIS/KOHLE/REHBEIN: Digital humanities: eine Einführung, S.99-108.

¹⁰¹ Ausführlich habe ich mich mit den theoretischen Grundlagen der Informationswissenschaft, Daten - Information - Wissen, in folgender Arbeit auseinander gesetzt: POLLIN: Vom Suchen, Stöbern und Finden: Information Retrieval am Beispiel der Digitalen Sammlung des Hans Gross Kriminalmuseums.

¹⁰²WERSIG, Gernot: Information-Komunikation-Dokumentation. Band 5, Verlag Dokumentation, 1971, S.74.

¹⁰³FAVRE-BULLE, Bernard: Information und Zusammenhang: Informationsfluß in Prozessen der Wahrnehmung, des Denkens und der Kommunikation. Springer, 2001, S.93-97.

¹⁰⁴Eine ausführlichere Auseinandersetzung mit den Begriffen Daten, Information und Wissen findet sich in meiner ersten Abschlussarbeit. POLLIN: Vom Suchen, Stöbern und Finden: Information Retrieval am Beispiel der Digitalen Sammlung des Hans Gross Kriminalmuseums, Masterarbeit Graz, S.20-28.

Abbildung 4: Signal, Daten, Information und Wissen

Entstehen Daten während eines, oder als Ergebnis eines Forschungsprozesses, so spricht man von Forschungsdaten. Damit werden sowohl Daten aus den Naturwissenschaften (Messdaten aus einem Experiment), Sozialwissenschaften (Interviews) oder den Kulturwissenschaften (dokumentierte Beobachtung) zusammengefasst. 105

ANDORFER spricht sich für einen nicht "inflationären Gebrauchs dieses Begriffes" und einer "präzisere Terminologie" im Zusammenhang des Begriffes geisteswissenschaftliche Forschungsdaten aus. Es soll klar definiert sein, was man als Forschungsdaten auffasst und was davon ausgeschlossen ist. Weiters soll es bei den für Fachwissenschafter*innen vertraute Begrifflichkeit bleiben. ¹⁰⁶ Diese Datenpyramide beschreibt, dass aus den Kulturerbeeinrichtungen (Archiv, Bibliothek und Museum), sowie den digitalen Repositorien, die Quellen für die Fachwissenschaftler*innen zur Verfügung gestellt werden. Beispielweise liegen die originalen und analogen historischen Rechnugnsbücher in einem Stadtarchiv. Wird auf Basis dieser Quellen, und man sieht bereits, dass die Pyramide schmäler wird und eine Selektion alle vorhanden Objekte geschieht, eine weitere Leistung produziert, wie etwa eine Transkription des Rechnungsbuch. In diesem Fall kann man von Arbeitsdaten sprechen. Solche Arbeitsdaten sind Forschungsdaten und können in einem geeigneten Repositorium gesichert und verfügbar gemacht werden. Eine weitere Auswahl führt von Arbeitsdaten zu veröffentlichten Publikationen, also ein Aufsatz oder eine digitale Edition, dessen Grundlage die Transkription eines Rechnungsbuch war.

¹⁰⁵KINDLING, Maxi et al.: Forschungsdatenmanagement an Hochschulen: Das Beispiel der Humboldt-Universität zu Berlin. LIBREAS. Library Ideas, 2013, Nr. 23 (URL: https://libreas.eu/ausgabe23/07kindling), 09.06.2019.

¹⁰⁶ANDORFER, Peter: Forschungsdaten in den (digitalen) Geisteswissenschaften. Konkretisierung.(DARIAH-DE Working Papers 14), 2015 (URL: http://webdoc.sub.gwdg.de/pub/ mon/dariah-de/dwp-2015-14.pdf.

Abbildung 5: Datenpyramide geisteswissenschaftlicher Forschungsdaten im institutionellen Kontext nach ANDORFER

Für die Geisteswissenschaften und im speziellen für die Geschichtswissenschaften, in denen viel stärker hermeneutischer Prozess im Vordergrund stehen, ist der Begriff der Forschungsdaten nicht eindeutig. HILTMANN sieht einen engeren und einen weiteren Begriff von Forschungsdaten in den Geschichtswissenschaften. Im engeren Sinne versteht man Metadaten zur Annotationen von historischen Quellen in all ihren Ausprägungen. Als Beispiel ist die archivalische Erschließung eines Quellenkorpus angeführt, damit die Verwahrung und Auffindbarkeit für eine potentielle, wissenschaftliche Auseinandersetzungen ermöglicht wird. Im weiteren Verständnis kann alles, das digital vorhanden ist, zur historischen Quelle und somit zu relevanten Daten für die Geschichtswissenschaft werden. 107

Damit Forschungsdaten nachnutzbar und nachvollziehbar sind bedarf es eines mitgelieferten Modells. Diese Modelle wiederum müssen auf Standards beruhen. Es ist zeitintensiv die Datenmodelle andere zu verstehen und oft ist es leichter sein eigenes Modell zu entwickeln. Ein generelles Problem mit Informationssystem und Forschungsdaten ist, dass sie nur für eine bestimmte Fragestellung bzw. ein bestimmtes Projekt entwickelt wurden. Werden bei der Generation der Forschungsdaten aber bereits Konzepte und Standardisierungen verfolgt, so fällt es leichter die "Datensilos" zu verlassen und die Nachnutzung zu fördern.

Eine erste Form der Standardisierung in den (digitalen) Geisteswissenschaften ist die *Text Enco-ding Initiative* (TEI). Wenn auch die Umsetzungen der TEI nicht einem 'klassischen' Standard

¹⁰⁷Vgl. HILTMANN, Torsten: Forschungsdaten in der (digitalen) Geschichtswissenschaft. Warum sie wichtig sind und wir gemeinsame Standards brauchen. 2018 (URL: https://digigw.hypotheses.org/2622), 09.06.2019..

entspricht, so sind die Überlegungen, wie man Text strukturieren und annotieren kann, sehr wohl standardisiert.

Es ist eine Notwendigkeit, dass Standards auf der einen Seite ausdrucksstark sein müssen, um die unterschiedlichen Problemstellungen fassen zu können, andererseits es sich aber daraus formale Modelle ableiten lassen müssen. THALLER fordert deswegen, dass die Standards zur Beschreibung von Modellen eher beschreibend statt vorschreibend sein sollen. 108

¹⁰⁸THALLER, Manfred: The Need for Standards: Data Modelling and Exchange [1991]. Historical Social Research/Historische Sozialforschung. Supplement, 2017, S.204.

3 Historische Rechnungsbücher als Quelle

In diesem Kapitel wird der Quellentypus Rechnungsbuch als historische Quelle dargestellt. Dazu werden inhaltliche, wie auch äußerliche Eigenschaften von Repräsentanten dieser Quellengattung beschrieben und die dazugehörige Fachliteratur diskutiert. Anfangs wird der Quellentypus an sich beschrieben, gefolgt von einer Beschreibung konkreter digitale Editionsprojekte von Rechnungsbüchern, in denen ein Blick auf die textuelle und semantische Strukturen der Quellen geworfen wird. Weiters wird erörtert, welche geschichtswissenschaftlichen Forschungsfragen sich damit beantworten lassen.

3.1 Wirtschafts- und Rechnungsbücher

Bei Rechnungsbüchern handelt es sich um pragmatisches, oft serielles, zum Teil über Jahrzehnte hinweg erhaltenes, aus dem Alltag der Menschen stammendes Schriftgut, das zur Dokumentation und als Gedächtnisstütze für den Austausch von Waren, Dienstleistungen und Rechten diente. Zu meist auf Papier, aber im Laufe der Zeit mittels unterschiedlichsten Schreib- und Beschreibstoffen und ohne übergeordnete Standards verfasst, folgen sie keinem repräsentativen Zweck. Menschen mussten zumindest über Schreib- und Lesekenntnisse verfügen, die von einfachen Rechenfertigkeiten bis hin zur Erstellung vollständiger Kalkulationen reichen. Das gemeinsame Element dieses differenzierten Quellentypus ist die Ausrichtung auf wirtschaftliche Aktivitäten in Form von Transaktionen. Daraus ergibt sich eine "natürliche" – oft auch textuelle – semantische Struktur, die zeigt, das es sich um ein "Werkzeug des Alltages" gehandelt hat, das man an unterschiedlichen Orten und Zeiten der Menschheitsgeschichte finden kann. ¹⁰⁹ GELBA führt an:

"Wirtschafts- und Rechnungsbücher kennen keinen Grenzen – keine räumlichen, wenig ständische, keine institutionellen Grenzen – und auch keine disziplinären." ¹¹⁰

Eine Transkription allein reicht nicht aus, um die linguistische/textuelle, quantifizierbare und die semantische Dimension einer solchen Quelle abzudecken. Vielmehr ist es die Edition der Quellen, die dabei helfen kann, Forschungsinteresse zu befrieden. So wird die Vielfalt der ableitbaren Inhalte aus Rechnungsbüchern, sowie die Möglichkeiten der "interdisziplinären Erschießung der Quelle Rechnungsbuch" hervorgehoben. Die Herausforderungen der Erschließung der Quelle sind vielfältig: Maß-, Größen- und Gewichtsordnungen und Information zu Geldwerten sind abhängig von Ort und Zeit. Dennoch lassen sich viele Forschungsfragen aus

¹⁰⁹CLIFFORD, Anderson et al.: Modeling semantically Enhanced Digital Edition of Accounts as Historical Method. 2016, S.2.

¹¹⁰Vgl. GLEBA, Gudrun: Rechnen. Wirtschaften. Aufschreiben. Vernetzte Schriftlichkeit – Wirtschafts- und Rechnungsbücher als Quellen klösterlicher Alltagsgeschichte. In PÄTZOLD, Stefan/STUMPF, Marcus (Hrsg.): Mittelaterliche und frühneuzeitliche Rechnungen als Quellen der landesgeschichtlichen Forschung. Münster, 2016, S.51.

unterschiedlichen Disziplinen neben den Geschichtswissenschaften, wie etwa der Historischen Linguistik, der Editions- oder Medienwissenschaft, mit solchen Quellen bearbeiten: wie haben sich Güter, Dienstleistungen und Geldgeschäfte über die Zeit hinweg verändert, welche wirtschaftlichen, aber besonders auch welche kultur- und sozialgeschichtliche Relationen gibt es? Rechnungsbücher gehen nach KLAPP "weit über wirtschafts- und verwaltungsgeschichtliche Aspekte hinausgehen" 111 und so erlauben Fragestellungen dieser Art weitere soziale, gesellschaftliche und wirtschaftliche Implikationen, die uns ein Verständnis darüber geben können, wie das Leben der Menschen in der Vergangenheit ausgesehen haben kann. 112

GLEBA unterscheidet vier Kategorien¹¹³ in diesem Zusammenhang:

- **Urbare** sind Besitzverzeichnisse, in denen Besitzrechte einer Grundherrschaft und der damit verbundenen Abgaben aufgelistet werden. Hier finden sich meist auch Angaben zur Lokalisierung der Liegenschaften.
- Sogenannte **Heberegister** beinhalten die Abgabepflichten an wirtschaftlichen Gütern, wie Arbeit oder Naturalien.
- In Wechselbüchern wird der Wechsel von Menschen in einer anderen Grundherrschaft dokumentiert.
- **Rechnungsbücher** führen vor allem Transaktionen, sprich monetäre Einnahmen und Ausgaben an. Sind aber nicht nur auf diese beschränkt.

BRUCH sieht Rechnungsbücher als geeignete Quelle, aus denen Daten zur Beantwortung der oben angeführten Forschungsfragen extrahiert werden können. Diese können anschließend mittels quantitativen Methoden weiterverarbeitet werden. Am Quellenbestand des *Zisterzienserinnenkloster Pielenhofen bei Regensburg*, der beispielhaft für die Arbeit in diesem Bereich steht, wird diese Vorgehensweise veranschaulicht. Nach einer notwendigen Kontextualisierung der Quelle, datiert auf 1224-1348, wird die wirtschaftliche Situation des Klosters über diesen Zeitbereich hinweg, beschrieben. BRUCH kommt zu folgendem Schluss:¹¹⁴

"Allerdings zeigt sich auch, dass die für ein Jahr gewonnenen Daten miteinander in Beziehung gesetzt werden können: Einnahmen gegenüber Ausgaben, Getreide gegenüber Geld, Schulden

¹¹¹KLAPP, Sabine: Die "Äbtissinnenrechnungen" des Klosters St. Klara auf dem Werth. Alltag und Festtag einer geistlichen Frauengemeinschaft Straßburgs am Ausgang des Mittelalters. Zeitschrift für die Geschichte des Oberrheins Bd. 159, S.14.

¹¹²GLEBA, Gudrun/PETERSEN, Niels: Zur Einleitung. In GLEBA, Gudrun/PETERSEN, Niels (Hrsg.): Wirtschaftsund Rechnungsbücher des Mittelalters und der Frühen Neuzeit-Formen und Methoden der Rechnungslegung: Städte, Klöster und Kaufleute. Universitätsverlag Göttingen, 2015, S.7-10.

¹¹³GLEBA: Rechnen. Wirtschaften. Aufschreiben. Vernetzte Schriftlichkeit – Wirtschafts- und Rechnungsbücher als Quellen klösterlicher Alltagsgeschichte, S.51–54.

¹¹⁴BRUCH, Julia: Die Kunst, Daten in Informationen umzuwandeln. Zur Auswertung eines zisterziensischen Rechnungsbuchs aus dem 13. und 14. Jahrhundert und den Herausforderungen in der Analyse serieller Wirtschaftsquellen. Wirtschafts- und Rechnungsbücher des Mittelalters und der Frühen Neuzeit, S.13-37.

gegenüber Einnahmen und Ausgaben, Klosterinsassen oder der Viehbestand gegenüber den Einnahmen bzw. Ausgaben. [...] So wandeln sich die reinen Daten in Informationen, die zur Beantwortung konkreter Fragestellungen herangezogen werden können."¹¹⁵

BRUCH kommt zum Schluss, dass die Abrechnung durch das Mutterkloster nicht auf einem Rechnungsjahr basiert und so die Bezugszeiträume für die Zahlen nicht zur Gänze nachvollziehbar sind. Die lückenhafte Überlieferung ist eine Momentaufnahme und somit eine mathematischstatistische bzw. quantitative Analyse nur in Ansätzen möglich. Nichtsdestotrotz lassen sich die Daten aus dem Rechnungsbuch in Informationen überführen. Folgendes lässt sich Gegenüberstellen und auf dieser Informationsbasis weiter untersuchen:

- Die Haushaltsführung, sprich Einnahmen und Ausgaben eines Jahres
- Getreide- und Geldeinnahmen bzw. Ausgaben, um die wirtschaftlichen Schwerpunkte des Klosters zu eruieren.
- Schulden können gegen die Einnahmen aufgerechnet werden
- Die Zahl der Klosterinsassen oder der Viehbestand können mit Einnahmen bzw. Ausgaben in Verbindung gebracht werden. Hinzu kommt, dass man, wenn man die unterschiedlichen Visitationszeitpunkte beachtet, Tendenzen ausmachen kann, ob die Wirtschaft prosperierte oder ob die Klöster mit strukturellen Defiziten wirtschafteten.

[ToDo: Zusammenfassung + Übergang]

_

¹¹⁵Vgl. ebd., S.37.

¹¹⁶Bruch: Wirtschafts- und Rechnungsbücher des Mittelalters und der Frühen Neuzeit, S.37-44.

3.2 Digital Edition Publishing Cooperative for Historical Accounts (DEPCHA)

Daten - aus unterschiedlichen Formaten - sollen auf einer gemeinsamen Plattform zusammengeführt werden und adäquate Formen des Retrievals, Discoverys und der Visualisierung eröffnen, um die Arbeit mit den Quellen zu erleichtern. Die Überführung nach RDF auf Basis der im Projektkontext entwickelten *Bookkeeping-Ontologie*, die Transferprozesse historischer Rechnungsbücher formalisiert, erlaubt die Interoperabilität, Verlinkung und Zusammenführung der Informationen im Sinne des *Web of Data* und *Linked Open Data*. Diese Begriffe werden im Kapitel 4 ausführlich behandelt.

3.2.1 The George Washington Financial Papers

Die digitale Edition der *George Washington Financial Papers* (1748-1799) haben zum Ziel die Geschäfts- und Haushaltsakten des US-Präsidenten George Washington über das Web zugänglich zu machen. Basierend auf einer technischen Open Source Lösung, dem Content Management System Drupal, ¹¹⁷ sind Benutzer*innen in der Lage die Transkriptionen der drei Rechnungsbücher (*Ledgers A, B, and C*) von Washington zu lesen, Suchanfragen an die aus den Editionen extrahierten Daten zu stellen, sowie die Daten zu exportieren und lokal weiter zu verarbeiten. Auf diese Weise wird ein Einblick in das Leben der Person George Washington, sowie anderer Themen, wie etwa die materielle Kultur, Sozialgeschichte, Gewerbe und Landwirtschaft dieser Zeit ermöglicht. ¹¹⁸ Beispielhafte Forschungsfragen, die für Historiker*innen im Zuge dieses Editionsprojektes von Interesse sind, lauten wie folgt:

- Wie viel Geld hat Washington jährlich für bestimmte Rohstoffe ausgegeben?
- Welche Rolle spielt der Sklavenhandel in Washingtons wirtschaftlicher Tätigkeit?
- Wie hat sich der Preis bestimmter Rohstoffe über diesen Zeitraum hinweg verändert?
- Wie sieht das Netzwerk der Geschäftspartner rund um Washington aus?
- Wie wurde der Wert der Ware Tabak in verschiedenen Währungen berechnet und bewertet?

Im Laufe seines Lebens trug Washington Tausende von Finanzdokumenten zusammen, in denen er jede Transaktion genau nach modernster Finanzlehre aufzeichnete. Dies umfasste Ausgaben für Lebensmittel und Textilien oder seinen Landsitz in Mount Vernon, sowie Kosten für die Ausbildung seiner Kinder oder die medizinischen Behandlungen für Sklaven. Weiters dokumentiert Washington an wen er Geld verliehen hat, seine Anteile an Firmen oder eingehobene Mieten. Aus den Rechnungsbüchern schließt STERTZER, dass Washington ein versierter Unternehmer

¹¹⁷Drupal, https://www.drupal.org, 12.10.2019

¹¹⁸The George Washington Financial Papers Project, http://financial.gwpapers.org, 08.10.2019.

war, der Innovationen suchte, kalkulierte Risiken einging und aufgrund seiner methodischen Buchführung ein breites Verständnis für die amerikanische Wirtschaft hatte. 119

Abbildung 6 zeigt die erste Seite aus dem Rechnungsbuch *Ledger A* von Washington. Aus der Transkription der ersten 3 Einträge erkennt man eine Struktur, wie sie typisch ist für ein US amerikanisches Rechnungsbuch dieser Zeit ist. Die Überschrift definiert die Debit-Seite der Transaktionen, gekennzeichnet durch die Abkürzung *Dr*, mit der Person *George Fairfax* der nun folgenden Einträge. In der ersten Spalte wird das Datum der Transaktion festgehalten, wie "*Novr 6*" für den 06.11.1750, gefolgt von der Verschriftlichung der Transaktion in der mittleren Spalte. Diese definiert zu meist den Status, Art, Wert und die beteiligten Personen der Transaktion. "*To Ditto*" meint, dass es sich um die zuvor angeführte Person handelt. Für eine formale Verarbeitung müssen diese Phrasen normalisiert werden. Die letzten 3 Spalten stehen für die Währungseinheiten Pfund, Schilling und Pence. Zum Teil werden diese Spalten auch genutzt um eine (Zwischen)Summe zu berechnen. 120

George Fairfax Esqr. Dr

1750 April 2	To John Welton's Order on you	4	10
Octr 7	To Cash lent	2	3
Novr 8	To Ditto paid Robt Worthington & Michl Sweim Chr Govr	17	3

Transkription von drei Einträge von Seite 1 des Ledger Book A

Inhaltlich zusammengefasst findet man 3 Geldzahlungen von George Washington an *George Fairfax* festmachen. Einmal eine Zahlung in Zusammenhang einer weiteren Person *John Welton's Order*, ein anderer Geldbetrag von 2 Pfund und 3 Schilling der verliehen wurde und die Bezahlung für *Robt Worthington & Michl Sweim*.

¹¹⁹STERTZER, Jennifer: Working with the Financial Records of George Washington: Document vs. Data. Digital Studies/le Champ Numérique, 2014 (URL: http://doi.org/10.16995/dscn.57).

¹²⁰Ledger A, 1750 - 1772: pg.1, http://financial.gwpapers.org/?q=content/ledger-1750-1772-pg1

I	George Fairfax Egg " Der"
1750 2pil 2	To John Wellow's Order on are
No0 0	To lash lent. 2 3.
	To Surveying a piece of Land for hick heim 1000 2.3. To lash liceurd of Beny Kutherford
	F11 16 3
700	To Ditto paid homyates for 2p. hens Shoes 1 1
Je6 7. 6	To Ditto for boo brafs hails
	To 2000 6 Ditto of Dillo

Abbildung 6: 1. Seite von George Washington, 1750-72, *Ledger Book A*, Library of Congress, Manuscript Division.

3.2.2 Cameron Family Papers, Stagville Accounts

Das historische Stagville ist eine Tabakplantage nördlich von Durham (North Carolina, USA), die seit dem späten 18. Jahrhundert im Besitz der Familie Bennehan und Cameron ist. Ihr Eigentum, vor Beginn des Amerikanischen Bürgerkriegs, umfasste 30.000 Hektar Land und um die 900 versklavten Menschen, die auf dieser Plantage arbeiten mussten. ¹²¹

Die *Cameron Family Papers* (1767-1892) beinhalten umfangreiche Geschäftsunterlagen im Zusammenhang mit einem Wirtschaftsbetrieb rund um eine Tabakplantage, die Transaktionen zwischen dem Geschäftsladen und den Mitgliedern, sowie unfreien Arbeiter*innen der Gemeinschaft dokumentieren. Beispielsweise findet sich darin ein sogenanntes "*Slave-Ledger*". Dabei handelt es sich um ein separat geführtes Rechnungsbuch, das Transaktionen zwischen dem Geschäft auf der Tabakplantage und versklavten Kunden*innen dokumentiert.

AGBE-DAVIS und BRUMFIELD stellen bei der Untersuchung des "Slave-Ledger" fest, dass die Unterlagen nicht isoliert, sondern nur im Kontext aller Dokumente in den Cameron Family Papers betrachtet werden müssen. Forschungsfragen in diesem Projektkontext sind:

• Wie bezahlen unfreie Arbeiter*innen Güter, die sie im Laden der Plantage erwerben konnten?

¹²¹ BRUMFIELD, Ben/AGBE-DAVIES, Anna: Encoding Account Books Relating to Slavery in the U.S. Modeling semantically Enriched Digital Edition of Accounts, 2015 (URL: https://medea.hypotheses.org/182).

- Welche wirtschaftlichen Abhängigkeiten (Verschuldungen) bestehen zwischen den unterschiedlichen Akteuren?
- Welche Waren werden gemeinsam gekauft?
- Welche soziale Stellung haben sie und inwieweit beeinflusst das ihre Einkäufe.

In folgender Abbildung ist die dritte Seite des Rechnungsbuches aus Stagville dargestellt. ¹²² Der erste Eintrag beschreibt den Kauf eines Schuhmessers zum Preis von 1 Schilling und 6 Pence. Im "Slave-Ledger" verkauft Cameron, aber ein Schuhmesser für 2 Schilling. Ob die Änderung des Preises durch den zeitlichen Unterschied gegeben ist, oder eben durch den sozialen Status der kaufenden Person, ist eine relevante geschichtswissenschaftliche Fragestellung. ¹²³

Abbildung 7: Seite 3 Objektes 00133_sv0061 der Stagville Accounts

Stagville August 1st 1808

69 James Haley Self Dr.

1/4 lb Powder 2/6 1 lb Shot 2/6 1 lb Sugar 2/6 7 6

1 Shoe Knife 1/6 1 6

9 -

Transkription der zweier Einträge auf Seite 3 der Stagville Accounts.

In Abbildung 7 findet sich wieder eine ganz ähnliche Struktur. In der Überschrift wird Ort und Datum, der 1. August 1808, angegeben und alle nun folgenden Einträge beziehen sich darauf. Die tabellarische Struktur verfügt über 5 Spalten. Die erste Spalte enthält eine Referenz auf eine Seite in einem anderen Dokument, in denen die *Credit* gegen geschrieben werden. Die zweite Spalte beinhaltet den Fließtext der Einträge, wobei die Nennung der Person in der ersten Zeile

¹²²Stagville Accounts, From the Page, https://fromthepage.com/agbedavies/stagville-accounts/00133-sv0061/display/7884, 08.10.2019.

¹²³ BRUMFIELD, Ben: The Stagville Accounts in DEPCHA: Plantation Financial Records as Linked Data. From the Page, 2019 (URL: https://content.fromthepage.com/stagville-accounts-in-depcha/).

jede weitere Zeile als einen eigenen Eintrag mit Geldbeträgen in der 4. und 5 Zeile deklariert. Inhaltlich zusammen gefasst hat "James Haley" einen 1/4 Pfund Pulver, einen Pfund Munition und einen Pfund Zucker zum Preis von je 2 Schilling und 6 Pence, sowie ein Schumesser zum Preis von 1 Schilling und 6 Pence käuflich erworben. Die Summer alle Einträge ist somit 9 Schilling, da 1 Schilling 12 Pence entspricht.

3.2.3 The Wheaton Accounts

Die Wheaton Family Papers umfassen mehrere Bücher im Zeitraum von 1828 bis 1859, die unter anderem die finanziellen Geschäfte von Laban Morey Wheaton, einem Geschäftsbesitzer eines dry goods store aus Norton, Massachusetts in den Vereinigten Staaten von Amerika, dokumentieren. Unter dry goods versteht man einen aus dem 17. Jahrhundert stammenden historischen Begriff, der je nach Region zum Teil unterschiedliche Güter zusammenfasst. Darunter werden im Allgemeinen Produkte verstanden, die "trocken" sind, beispielsweise Textilien, Konfektionskleidung, Tabak oder bestimmte Lebensmittel, wie etwa Kartoffel. 124

Die Stadt Norton ist eine charakteristische Kleinstadt im Nordosten der USA, die landwirtschaftlich und von Manufakturen geprägt ist. Sie befindet sich im Hinterland der regional bedeutenden Häfen Boston, New Bedford, Newport and Providence. In einer Geschichte der Stadt Norton von CLARK wird *Laban Morey Wheaton* namentlich genannt. Er lebte von 1796 bis 1865, hat Rechtswissenschaften an der *Brown University* studiert und jahrelang als *Postmaster of Norton* gearbeitet. Er war politisch aktiv und war Vertreter im *Massachusetts General Court*, sowie Mitglied im *Massachusetts Governor's Council*. Weiters war er verheiratet und Angehöriger des Kongregationalismus, einer Form der christlichen Gemeindeverfassung. Die Wheaton Familie besaß eine Milchviehherde und Manufakturen zur Produktion von Baumwollwatte, die *Wheaton Manufacturing Company*, und eine zur Produktion von Strohhüten. ¹²⁵ So gehört Laban Wheaton zu einem der wohlhabensten Männer der Stadt. Sogar ein Portrait von ihm ist bei CLARK überliefert. ¹²⁶

Dry-Goods. html, 23.05.2019, Vgl. COLE, George S: A complete Dictionary of Dry Goods and History of Silk, Linen, Wool and other Fibrous Substances. 1892. 2015.

¹²⁵TOMASEK/BAUMAN: Journal of the Text Encoding Initiative 2013, S.6.

¹²⁶CLARK, George Faber: A History of the Town of Norton, Bristol County, Massachusetts, from 1669-1859. Crosby, Nichols, and Company, and author at Norton, 1859, S.496.

Le M. Wheaton

Abbildung 8: Portrait von Laban Morey Wheaton

Aus dieser Überlieferung über *Laban Morey Wheaton* kann man die These aufstellen, dass er ein mächtiger Mann war. Auf der einen Seite politisch aktiv und politischer Vertreter, auf der anderen Seite vermögend und Besitzer mehrere Immobilien und eines Geschäftes. Gerade der im *daybook* dokumentierte Verkauf von Gütern, in dem Menschen Lebensmittel im Austausch für Arbeit erwerben, zeigt eine gewisse Machtposition. Denn die, nicht vollständig überlieferten Rechnungsbücher von Wheaton, zeigen neben Angaben zu Gütern, Dienstleistungen und Geldbeträgen in den einzelnen Transaktionen, auch eine Vielzahl von Individuen und ihrer Familien, die in Beschäftigung oder anderen Verhältnissen zu Wheaton stehen, oder an die er Objekte, Tiere und Gebäude vermietete. TOMASEK führt an, dass diese Rechnungsbücher detaillierte Informationen über das tägliche Leben der Einwohner*innen in New England geben. Ein städtisches Leben, das durch eine gemischte Land-, sowie Industriewirtschaft im zweiten Quartal des 19. Jahrhunderts, geprägt ist. ¹²⁷

Das Wheaton College Massachusetts stellt die Wheaton Family Papers Dokumente in ihrem digitalen Repositorium online zur Verfügung. ¹²⁸ Die wissenschaftliche Auseinandersetzung erfolgt durch Kathryn Tomasek, Professorin für Geschichte am Wheaton College Massachusetts. Im Zuge des Projektes The Wheaton College Digital History Project wurden Teile der Wheaton Paper, darunter beispielsweise das oben angeführte daybook gemeinsam mit Studierenden transkribiert und mit dem Standard der Text Encoding Iniative (TEI) ausgezeichnet und im Sinne einer Vorarbeit einer digitalen Edition ediert. Der Fokus dieser Arbeiten liegt auf der Erschließung der einzelnen Transaktionen und der damit verbundenen Personen, Güter und Dienstleistungen. ¹²⁹ Teile davon wurden im Zuge des DEPCHA Projektes für die Umsetzung eines

10

¹²⁷CLIFFORD et al.: Modeling semantically Enhanced Digital Edition of Accounts as Historical Method, S.5.

¹²⁸Wheaton Family Papers, https://digitalrepository.wheatoncollege.edu/handle/11040/7928, 19.05.2019.

¹²⁹TOMASEK Project: The Wheaton College Undergradua-Kathryn: Digital History Collection, Research in a Local https://writinghistory.trincoll.edu/teach/ wheaton-college-digital-history-project-tomasek, 23.05.2019. ALEXANDER, Bryan/DAVIS,

Prototyps zur Publikation von semantisch angereicherten, digitalen Edition von Rechnungsbüchern verwendet. 130

Im Alltag dieser Zeit in einer Kleinstadt wie Norton trafen sich Menschen regelmäßig und man kannte sich persönlich. Die systematische Buchführung bot Laban Morey Wheaton eine Möglichkeit, seine Geschäfte von seinen persönlichen Interaktionen zu trennen. Zur Dokumentation dieser Geschäfte führte er mehre Bücher nach dem Prinzip der Doppelten Buchführung und trennte HABEN und SOLL auf zwei Bücher. Transaktionen zwischen lokalen Geschäftspartner*innen und seinen Kund*innen wurden chronologisch im Daybooks erfasst, jeweils mit einem Verweis in der linken Spalte auf der Seite im Hauptbuch, auf der der Geschäftsmann die laufende Schuld des Kunden und die Zeiten, zu denen die Schuld beglichen wurde, erfasst hat. 131 Abbildung 9 zeigt Seite 100 und 101 des Daybooks. An diesem Beispiel soll nun die grundlegende Struktur dieser Quelle beschrieben werden. Die linke Seite beginnt mit einer Überschrift "Norton Tuesday Sept 6 1831". Die ersten Einträge in dieser tabellarischen Struktur beziehen sich nun auf den 6. September des Jahres 1831. An diesem Tag hat "Wheaton Wheeler" einen halben "Burell Corn", also ein halbes Büschel Mais, für den Geldbetrag von 50 Cent erworben. Die Zahl "393' an der ersten Spalte referenziert auf das Hauptbuch und verweist auf eine Seite, auf der Information zum Status der Transaktion zu finden ist und zeigt somit die Doppelte Buchführung. Hier lassen sich auch Wörter wie 'Bill'', "Paid" oder "Settled" vorfinden, die zeigen, dass der Status einer Transaktion "auf Rechnung" erfolgte, bereits bezahlt oder anderweitig beglichen wurde. Die mittlere Spalte nennt die zweite Person, neben Laban Wheaton, die an der Transaktion beteiligt ist: den Käufer. Jede hier angeführte Person steht in einem Geschäftsverhältnis mit Wheaton. Jeweils darunter werden die einzelnen Transaktionen gelistet. In den 4 Spalten rechts werden die Geldbeträge gelistet: in der ersten Spalte die Dollar und in der zweiten die Cent, sowie bei der Zusammenfassung mehrerer Transaktionen zu einer Person auch eine Summe.

Im Textfluss lassen sich zwischen den Einträgen entweder einfache Zahlen "12", "24", oder neue Tagesdaten finden, die eben nun alle folgende Transaktionen einem neuen Datum zuordnen. So steht "12" und "24" auf dieser Seite für den 12. und 24. September und "Oct 8th 1831" ordnet alle folgenden Einträge dem 8. Oktober 1831 zu.

Rechts neben den Akteuren in den Einträgen lässt sich meistens ein "D" bzw. "Dr", seltener ein "C" bzw. "Cr" vorfinden, was für "Debitor" und "Creditor" steht. Dies markiert eine Transaktion mit diesem Partner, welche auf die HABEN bzw. die SOLL Seite gebucht wird.

Rebecca Frost: Should liberal arts campuses do digital humanities? Process and products in the small college world. Debates in the digital humanities, 2012, S.379.

¹³⁰LMW Day Book in DEPCHA, gams.uni-graz.at/o:depcha.wheaton.1, 29.12.2019.

¹³¹TOMASEK/BAUMAN: Journal of the Text Encoding Initiative 2013, S.7-9.

Abbildung 9: Seite 100 des Daybook, 1828-1859a

Die vollständige Transkription der ersten 8 Einträge der Seite 100. Diese zeigen die soeben beschriebenen Strukturen.

Norton Tuesday Sept 6 1831

• •						
	Wheaton Wheeler					
393	Dr To 1/2 Burhell Corn					
	12					
	Samuel Morey Cr					
396	By pension received	120				
	To Expense pd. for certificates L. D100					
	"Do. of power 50x					
	Cash pd. him \$62.00	53	50			
	Thompson Tripp DR					
395	To cash 6/ at Smiths	1	00			
	24					
	Thompson Tripp DR					
395	To cash 30/	5	00			
Oct. 8th 1831						
	Timothy Smith DR					
368	To 6 lb. Lard 10x 6 lb. Lard"7 1/4 lb do 10x	1	33			
Oct 10th						
	Hiram Hodges Dr					
392	To 5 lb11 oz Lard - 19d pr lb					
	71 5 lb11 oz Lard To 4 lb Butter 13 pr lb 72	1	73			
Oct. 11th						
	Timothy Smith Dr					
368	To 6 lbs 14 oz Butter 1/ pr lb 1.15					
	To 14 Qts New Milk 56					
	To 6 Qts & 1 Pt. do 26	1	97			
	Samuel Morey DR					
396	To cash twenty five dollares 25.00	25	00			
	15					
	Mrs. Babcock DR					
Settled	By work from this day pd	\$2	00			

Transkription der Seite 100 des Daybook

TOMASEK verfolgt dabei einen TEI/XML-Ansatz, um die die textuelle Struktur der Quelle und die inhaltliche Struktur der Transaktionen zu beschreiben. Letztere ist schwerer durch reines TEI Markup beschreibbar bzw. für eine weiter Analyse schwere nachnutzbar, da man für eine algorithmische Auswertung diskrete Daten braucht.

(ToDo: Zusammenfassung der 3 Quellen, Übergang zu Web of Data)

4 Web of Data

Das *Semantic Web*, oder wie es seit 2013 vom *World Wide Web Consortium* (W3C) genannt wird, *Web of Data* umfasst einen Stack an Standards und Technologien. ¹³² Dieser Stack dient dazu, Daten und ihre Struktur ausdrucksstark zu beschreiben, sodass Daten maschinenlesbar über das Web verteilt und genutzt werden können. Für die Geisteswissenschaften und die Geschichtswissenschaften im Speziellen eröffnet dieser Technologie Stack, dass Forschungsdaten ausführlich strukturiert, kontextsensitiv, sich selbst beschreibend, genutzt werden können.

Dieses Kapitel dient dazu anfangs die Geschichte, Idee des und Kritik am *Web of Data* zu beschreiben, geht dann auf den Technologie Stack ein und setzt dann einen Schwerpunkt beim Bereich Ontologien. Dieser Schwerpunkt dient dazu, da Ontologien eine maschinenlesbare Umsetzung von Modellen ermöglichen und Kapitel 5 sich mit der sogenannten *Bookkeeping Ontology* beschäftigt, die für das Mapping von historischer Information in historischen Rechungsbüchern verwendet wird.

4.1 Geschichte und Vision des Web of Data

Beim *TED Talk* im Jahre 2009 fordert Tim Burners-Lee das Auditorium auf, mit ihm gemeinsam die Worte zu rufen: "*Raw Data Now!*". ¹³³ Die Vision von Burners-Lee, dem Erfinder des World Wide Web, ist das sogenannte *Semantic Web*:

"The Semantic Web will bring structure to the meaningful content of Web pages, creating an environment where software agents roaming from page to page can readily carry out sophisticated tasks for users." ¹³⁴

Im Gegensatz zum klassischen Web, das als ein Web von Dokumenten betrachtet werden kann, versucht das *Web of Data* Daten aus unterschiedlichen Quellen zu integrieren und miteinander zu verknüpfen. Daten sollen so vorliegen, dass nicht nur Menschen diese in neuen Kontexten nutzen können, sondern auch Softwareagenten. Maschinen sollen in der Lage sein selbständig die Struktur von Daten "verstehen" zu können, um bestimmte Aufgaben umsetzen zu können. Oder anders formuliert: Maschinen sollen in die Lage versetzte werden Inhalte im Web soweit selbstständig verarbeiten können, dass Automatisierung auf Ebene der Bedeutung möglich ist. Ein konkretes Anwendungsszenario, das mit Hilfe des *Web of Data* umgesetzt wird sind verbesserte Suchfunktionalitäten für Informationssysteme, die auch die semantische Ebene miteinbeziehen. TOCHTERMANN und MAURER führen ein Beispiel eines Informationsbedürfnisses einer Person an, die gerne einen Termin mit einem Arzt in Graz vereinbaren möchte, der gleich-

¹³²Linked Data, https://www.w3.org/standards/semanticweb/data.html, 23.11.2019

¹³³BERNERS-LEE Tim: The Next Web, https://www.ted.com/talks/tim_berners_lee_on_the_next_web?language=de, 05.04.2019.

¹³⁴BERNERS-LEE/HENDLER/LASSILA: Scientific American 284 [2001], S.3.

zeitig auch ein Homöopath ist. Diese Person stellt eine Suchanfrage in einer dafür geeigneten Suchmaschine, bestehend aus 4 Wörtern: "Ärzte, Homöopathie, Stadt Graz". Da in einer klassischen Suchmaschine nur das Vorkommen der Wörter berücksichtigt wird, muss die suchende Person sich noch durch die angezeigten Suchergebnisse arbeiten, bis sie den passenden Treffer gefunden hat. Eine Suchmaschine im *Web of Data* ist in der Lage sogenannte Wissensbasen zu befragen, um welche Begriffe es sich hinter den Zeichenketten handelt. ¹³⁵

Dabei handelt es sich aber weder um Maschinen die selbstständig lernen, oder gar eine künstliche Intelligenz, sondern um formalisiertes, maschinenlesbares Wissen. ¹³⁶ Der Wissensbegriff in diesem Zusammenhang entspringt einer informationswissenschaftlichen Perspektive wie bei WERSIG, ¹³⁷ KUHLEN ¹³⁸ oder FAUVR-BULLE ¹³⁹ und sowie im Kapitel 2.3.3 und 4.3 kurz angeführt.

4.1.1 Kritik am Web of Data

Das *Semantic Web* ist nicht erreicht. Zumindest nicht für die Allgemeinheit. Die großen Internetriesen hingegen verfügen über ihre eigene "Semantic Web", in denen sie ihre eigenen Agenten mit ihrer großen Datenmenge arbeiten lassen. So verwendet Google beispielsweise seinen *Knowledge Graph*, um Ergebnisse für Suchanfragen zu verbessern. ¹⁴⁰

Auf der anderen Seite gibt es aber einige Stimmen, die das *Web of Data* in ihrer jetzigen Überlegung kritisieren und es wurde schon vor Jahren als Zukunfsttechnologie totgesagt. Die Kritik richtet sich daran, dass die Überlegungen zu akademisch und technisch zu kompliziert sein. SHIRKY kritisiert, dass der top-down Ansatz, die unflexible, strenge Art der Formalisierung und die zu starke Spezifikation auf einzelne Domänen von Ontologien nicht sinnvoll in einem dezentralen Web funktionieren können. ¹⁴¹ Die Kritik von SWARTZ, der sich ein *Semantic Web* herbeisehnt, richtet sich an den, in seinen Augen noch nicht ausgereiften, Technologie Stack und die zu komplizierten und aufdröselten Standards. Beispielsweise ist für SWARTZ XML im Gegensatz zu JSON zu überladen und kann nur mir mehr Aufwand verarbeitet werden. ¹⁴²

Festzuhalten ist aber, dass im Aufkommen der AI-Forschung, der Künstlichen Intelligenz, Themen wie *Knowledge Graphs* und Wissenbasen, und so auch das *Semantic Web*, wieder interessanter werden. Sie helfen dabei AI-Algorithmen und Entscheidungen zu unterstützen und dabei

¹³⁵PELLEGRINI, Tassilo/BLUMAUER, Andreas: Semantic Web. Wege zur vernetzten Wissensgesellschaft. Berlin [ua] Springer 2006, S.1-2.

¹³⁶ebd., S.1-6.

¹³⁷WERSIG: Information-Komunikation-Dokumentation.

¹³⁸WELLER, Katrin: Ontologien. In KUHLEN, Rainer/SEMAR, Wolfgang/STRAUCH, Dietmar (Hrsg.): Grundlagen der praktischen Information und Dokumentation: Handbuch zur Einführung in die Informationswissenschaft und -praxis. 6. Auflage. Berlin and Bosten. 2013.

¹³⁹FAVRE-BULLE: Information und Zusammenhang: Informationsfluß in Prozessen der Wahrnehmung, des Denkens und der Kommunikation.

¹⁴⁰Whatever Happened to the Semantic Web?, https://twobithistory.org/2018/05/27/semantic-web. html

¹⁴¹SHIRKY, Clay: Ontology is overrated. Categories, Links and Tags 2005.

¹⁴²SWARTZ: Synthesis lectures on the semantic web: Theory and Technology 3 [2013].

	the ACM 59 [20		

"Bedeutung" in großen Mengen an Text zu extrahieren und zu formalisieren. $^{143}\,$

4.2 Web of Data Stack

Um diese Vision in die Tat umzusetzen bedarf es mehrerer aufeinander aufbauender, technischer Grundlagen, die sich im *Semantic Web Stack* manifestieren. In Abbildung 10 werden die Technologien und Standards des *Web of Data* im sogenannten *Semantic Web Stack* dargestellt. Es gibt unterschiedliche Darstellungen dieses Stacks, dennoch zeigt diese Version alle grund-

Abbildung 10: Semantic Web Stack

legende Konzepte. Der *Web of Data Stack* ist von unten nach oben zu lesen. In den Kästchen in denen eine Abkürzung, wie URI oder RDF, angeführt werden, sind Technologien bereits im Einsatz. Die Themen *Trust*, *Proof* etc. sind noch Bestandteil gegenwärtiger Forschung. Grob zusammengefasst beschreiben diese Konzepte, wie eine vertrauenswürdige und 'wahre' Kommunikation zwischen Akteuren im *Web of Data*, sowie die Verschlüsselung und Anwendung sichergestellt werden kann.

Die Basis des Stacks bilden *Uniform Resource Identifier* (URI), die Ressourcen im Web eindeutig identifizieren und *UNICODE* als internationaler Standard zur Zeichenkodierung. Der Syntax Bereich wird mit der *Extensible Markup Language* (XML), einer Auszeichnungssprache zur Strukturieren von Text, ermöglicht, wobei diese Technologie immer mehr durch die *JavaScript Object Notation* (JSON) ersetzt wird. Das *Resource Description Framework* dient dazu Daten im Web auszutauschen und ermöglicht es Daten als Graphen zu beschreiben. Die formalen Regeln für RDF werden mittels *Resource Description Framework Schema* RDFS und

Web Ontology Language (OWL) beschrieben. RDFS erlaubt es Klassen und Beziehungen zwischen Klassen zu beschreiben und OWL ermöglicht es weitere logische Regeln in Modellen abzubilden. SPARQL Protocol And RDF Query Language (SPARQL) ist, vergleichbar mit SQL in der relationalen Datenbankwelt, die graphenbasierte Abfragesprache für RDF Daten. 144 In den folgenden Unterkapiteln werden nun die angeführten Technologien weiter beschrieben. Die Konzepte ohne Technologien, sowie RIF/SWRL werden dabei, da sie für diese Arbeit nicht essentiell sind, nicht behandelt.

4.2.1 Daten als Graph: Resource Description Framework

RDF ist ein Datenmodell zur Darstellung und für den Austausch von Daten im Web. Daten werden in diesem Modell als Ressourcen definiert, wobei eine Ressource alles sein kann: ein Dokument, eine Person, ein physisches Objekt oder ein abstraktes Konzept. Über Ressourcen werden Statements der Form Subjekt-Prädikat-Objekt formuliert. Jedes Statement drückt eine Beziehung zwischen zwei Ressourcen aus. Das Subjekt und das Objekt stehen dabei für die beiden miteinander verbundenen Ressourcen; das Prädikat beschriebt die Art ihrer Beziehung. Diese Zusammensetzung von Subjekt, Prädikat und Objekt werden als Triples bezeichnet. Betrachtet man den Satz "Bob ist befreundet mit Alice", dann lässt sich folgendes Triple extrahieren: <Bob> als Subjekt, <ist befreundet mit> als Prädikat und <Alice> als Objekt. Ob Alice mit Bob befreundet ist, geht aus diesem Statement noch nicht hervor, da jeder Relation in RDF nur eine Richtung definiert. In der graphischen Darstellung wird schnell klar, dass es sich beim RDF Datenmodell um einen gerichtete Graphen handelt, der aus Knoten (Subjekt und Objekt), sowie aus Kanten (Prädikat) besteht, wie Abbildung 11 zeigt.

Abbildung 11: Beispiel eines Tripel, eigene Darstellung, 17.07.2019

SCHREIBER und RAIMOND¹⁴⁶ erklären RDF in einem ausführlichen Beispiel an Hand folgenden Aussagen:

Bob ist eine Person.

Bob ist befreundet mit Alice.

¹⁴⁴HORROCKS, Ian et al.: Semantic web architecture: Stack or two towers? In International Workshop on Principles and Practice of Semantic Web Reasoning. Springer 2005.

¹⁴⁵Vgl. Powers, Shelley: Practical RDF: solving problems with the resource description framework. O'Reilly Media, Inc., 2003, S.16-21.

¹⁴⁶Vgl. SCHREIBER, Guus/RAIMOND, Yves: RDF 1.1 Primer. W3C working group note 2014.

Bob ist geboren am 4. Juli 1990.

Bob interessiert sich für die Mona Lisa.

Die Mona Lisa wurde von Leonardo da Vinci entworfen.

Jede dieser Zeilen steht für ein Triple. *Bob* ist Subjekt in vier der oben genannten Tripeln, *Mona Lisa* tritt zweimal als Objekt und einmal als Subjekt auf. Dies ermöglicht es eine beliebige Menge an Triple zu einem komplexeren Graphen zusammenzusetzen und somit komplexere Sachverhalte beschreiben zu können. Abbildung 12 veranschaulicht das.

Abbildung 12: Visualisierung eines Graphen auf Basis eines RDF-Datensatz.

URI können in allen drei Positionen eines Triple erscheinen. Somit ist jeder Ressource, sowie jeder Beziehung zwischen Ressourcen durch eine URI identifizierbar. URI's sind durch ein erweiterbares Schema definiert, damit Ressourcen im Internet eindeutig adressiert werden können. Um dabei die Einheitlichkeit zu gewährleisten, folgen sie einem vordefinierten Satz von Syntaxregeln, der 5 Komponenten beinhaltet: ¹⁴⁷

URI = scheme:[//authority]path[?query][#fragment]

• *scheme*: Definiert den Kontext und Typ. Bekannte Schemata sind die Webprotokolle *Hyper Text Transfer Protocol* (HTTP) oder das *File Transfer Protocol* (FTP), sowie Notationskonzepte wie *Uniform Resource Name* (URN) oder *Digital Object Identifier* (DOI).

¹⁴⁷Vgl. BERNERS-LEE, Tim/FIELDING, Roy/MASINTER, Larry: Uniform resource identifier (URI): Generic syntax. 2004 – Technischer Bericht (URL: http://www.rfc-editor.org/info/rfc3986).

- *authority*: Verwaltet Instanzen in einem vom Schema definierten Interpretationsraum. Ein Beispiel ist das *Domain Name System*, wie etwa *gams.uni-graz.at*
- *path*: Der Pfad enthält oft hierarchisch organisierte Angaben, die zusammen mit dem Abfrageteil eine Ressource identifizieren und beschreibt den Weg durch die Filestruktur auf einem Server zu einem Dokument.
- *query*: Der Abfrageteil beinhaltet Daten zur Identifizierung von solchen Ressourcen, deren Ort durch die Pfadangabe allein nicht genau angegeben werden kann, wie beispielsweise ein Datensatz aus einer Datenbank.
- *fragment*: Ist der optionale Fragmentbezeichner und referenziert eine Stelle innerhalb einer Ressource. Der Fragmentbezeichner bezieht sich immer nur auf den unmittelbar vorangehenden Teil des URI und wird von einem Hash (#) eingeleitet und entspricht oft einer ID in einem HTML Dokument.

Weiters werden URI in *Uniform Resource Locator* (URL) und *Uniform Resource Name* (URN) unterteilt. Wo URN Namen von Ressourcen eindeutig identifizieren, wie etwa bei ISBN Nummern von Büchern, sind URL die gängigsten URI's, die den Ort einer Ressource adressieren und über einen Webbrowser auch aufrufen können. ¹⁴⁸ Für das Triple *Bob interessiert sich für die Mona Lisa* wird jeder Teilbestand eine URI und in der *Turtle* Serialistion von RDF ergibt es folgenden Code:

```
1 BASE <a href="http://example.org/"> BASE <a href="http://example.org/"> 1 BASE <a href="http://example.org
    2 PREFIX foaf: <a href="http://xmlns.com/foaf/0.1/">http://xmlns.com/foaf/0.1/>
    3 PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>
    4 PREFIX schema: <a href="http://schema.org/">http://schema.org/</a>
                PREFIX dcterms:<http://purl.org/dc/terms/>
                PREFIX wd:<http://www.wikidata.org/entity/>
    7
    8
                  bob#me a foaf:Person;
    9
                                                                    foaf:knows <alice#me> ;
                                                                    schema:birthDate "1990-07-04"^^xsd:date ;
10
11
                                                                    foaf:topic_interest wd:Q12418 .
12
13
                  wd:Q12418 dcterms:title "Mona Lisa" ;
14
                                                                         dcterms:creator <a href="http://dbpedia.org/resource/Leonardo_da_Vinci">http://dbpedia.org/resource/Leonardo_da_Vinci</a>.
```

BASE und *PREFIX* definiert die Namespaces, die als Kurzschreibweise für die *authority* in der URI verwendet werden und jeweils auf ein RDF oder OWL verweisen. Jede Zeile entspricht nur der Formalisierung eines Tripels. Überall stehen URIs, mit Ausnahme von "1990-07-04"

¹⁴⁸ Vgl. Powers: Practical RDF: solving problems with the resource description framework, S.21-22.

und "Mona Lisa". Hierbei handelt es sich um Literale, die bestimmte Datentypen, einmal ein Datum und einmal reinen Text, umfassen.

Verbalisiert bedeutet der Code folgendes: eine Person (bob#me) aus der *Friend of a Friend* (FOAF) Ontolgie kennt eine andere Person (<alice#me>). Weiters hat die ein Geburtsdatum in Form eines normalisierten Datums und ist interessiert an dem Thema (wd:Q12418). Dieses Thema wird nun weiters beschrieben und es handelt sich dabei um den Datensatz zur Mona Lisa in Wikidata, einer freien und offenen Wissensbasis, die von Menschen und Maschinen befüllt und verwaltet wird. ¹⁴⁹

4.2.2 Klassen und Beziehungen: Resource Description Framework Schema (RDFs)

Im vorhergehenden Beispiel wurden <*Bob>* und <*Alice>* der Klasse <*Person>* zu geordnet. Sie sind Instanzen der Klasse <*foaf:Person>*. Desweiteren wurde eine Relation zwischen diesen beiden Personen definiert: *Bob ist befreundet mit Alice*.

Um die Beziehungen zwischen Ressourcen zu beschreiben, liefert das Resource Description Framework Schema (RDFs)¹⁵⁰ eine semantische Erweiterung für RDF. Dies umfasst die Möglichkeit Klassen und Relationen, so genannte Properties, zu definieren und folgt dem Paradigma der Objektorientierung. Es lassen sich auf diese Weise Instanzen von Klassen erzeugen, die alle Eigenschaften der Klasse und ihrer übergeordneten Klassen erben. Blickt man auf das FOAF-Vokabular, 151 das als RDFs umgesetzt ist, so kann man feststellen, dass *foaf:Person* eine Unterklasse von foaf: Agent ist. Weitere Unterklassen davon sind foaf: Group und foaf: Organization. Alle drei Unterklassen haben bestimmte Eigenschaften gemeinsam: sie setzen Handlungen in der Welt. Sie unterscheiden sich aber in den Relationen mit denen sie selbst, oder in Abgrenzung zu anderen Klassen, beschrieben werden können. Eine foaf: Group besteht aus mehreren foaf:Person. Dies wird mittels der Property foaf:member ausgedrückt. Im Gegenzug verfügt foaf: Person über eine Relation foaf: knows, die ausdrückt, dass sich zwei Personen kennen. Die Richtung dieser Relation - wer wen kennt - wird mit den in RDFs mittels den Termen rdfs:Domain und rdfs:Range definiert. Für foaf:knows wird Domain und Range auf die Klasse foaf:Person gesetzt: eine Person kennt eine andere Person. Für die Property foaf:member wird Domain auf foaf: Group und Range auf foaf: Person gesetzt: eine Gruppe besteht aus Personen. Weiter führt RDFs Datentypen ein. Damit lässt sich beschreiben, um welche Art eines Literals es sich handelt. Es kann für die maschinelle Verarbeitung sehr wichtig sein zu wissen, ob es sich um eine Zeichenkette, eine Zahl, eine Datumsangabe oder eine XML Struktur handelt, da mit unterschiedlichen Datentypen andere Operationen einhergehen.

Mit den RDF Properties *rdfs:label* und *rdfs:comment* lassen sich Properties und Classes benennen und beschreiben. Das ist deswegen nötig, da der Fokus einer Klasse nur in bestimmten Kontexten Sinn macht. *rdfs:label* definiert einen menschenlesbaren Namen einer Ressource. Es

¹⁴⁹Wikidata, https://www.wikidata.org, 04.01.2019.

¹⁵⁰BRICKLEY, Dan/GUHA, Ramanathan V/McBRIDE, Brian: RDF Schema 1.1. W3C recommendation, 25 2014.

¹⁵¹FOAF-Specification, http://xmlns.com/foaf/spec/, 29.05.2019.

besteht stets die Möglichkeit in RDF die einzelnen Lables einer Ressource mit Sprachkürzel zu versehen. Die Property rdfs:comment erlaubt es eine verbale Beschreibung zu einer Klasse hinzuzufügen. Am Beispiel von foaf:Person ist das das Label "Person" und die Beschreibung: 'The Person class represents people. Something is a Person if it is a person. We don't nitpic about whether they're alive, dead, real, or imaginary. The Person class is a sub-class of the Agent class, since all people are considered 'agents' in FOAF.".

Daneben existiert auch ein Konstrukt *rdfs:seeAlso*, um ausdrücken, dass es unter folgender URL noch weitere Information zu dieser Ressource gibt. ¹⁵² Folgende Darstellung veranschaulicht die soeben beschriebenen Konstrukte in RDFs und zeigt Unterklassen der Superklasse *foaf:Agent*, zwei Instanzen der Klasse *foaf:Person* und stellt graphisch - durch den Pfeil - *Domain* und *Range* einer Property dar. ¹⁵³

Abbildung 13: RDFs-Beispiel auf Basis des FOAF-Vokabulars

Hinter jeder Klasse, Property und jeder Instanz steht eine URI. Folgendes RDF-Snippet zeigt wie die Klasse *foaf:Person* und *foaf:knows* im FOAF-Vokabular mittels RDFs definiert werden.

```
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#> .
PREFIX foaf:<http://xmlns.com/foaf/0.1/>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

foaf:Person a rdfs:Class ;
 rdfs:label "Person" ;
 rdfs:comment "A person." ;
 rdfs:subClassOf foaf:Agent .

foaf:knows a rdf:Property;
```

¹⁵²BRICKLEY/GUHA/MCBRIDE: W3C recommendation 25 [2014].

¹⁵³HITZLER, Pascal et al.: Semantic Web: Grundlagen. Springer-Verlag, 2007, S.33-88.

```
rdfs:label "knows";
rdfs:comment "A person known by this person (indicating some level of reciprocated interaction between the parties).";
rdfs:domain foaf:Person;
rdfs:range foaf:Person.
```

4.2.3 Abfragesprache: SPARQL

Wie man in der Welt der relationalen Datenbanken mit der Abfragesprache SQL Datenbankabfragen formulieren kann, so kann man mit *SPARQL Protocol And RDF Query Language* RDF Daten bzw. Triple in Graphdatenbanken abfragen. ¹⁵⁴

Folgendes Snippet einer SPARQL-Abfrage zeigt die Syntax dieser Abfragesprache. Ziel dieser Abfrage ist es, alle Ressourcen in einer Graphdendatenbank abzufragen, die über eine *foaf:name* und eine *foaf:knows* Property verfügen. Das Ergebnis wird nach den Personen und Namen gruppiert, also es werden keine Dubletten von URI's zurückgegeben. Als Ausgabe erfolgt eine Tabelle (im XML, JSON oder CSV Datenformat) in der die Namen und die Anzahl der Freunde, definiert als alle Knoten auf die *foaf:know* referenziert.

Mit PREFIX werden die Namespaces definiert. Das reservierte Wort *SELECT* definiert alle Variabeln, diese werden durch ein vorangestelltes Fragezeichen gekennzeichnet, die als Rückgabewert definiert werden. Daneben gibt es in der Version 1.1 von SPARQL Operatoren und Funktionen, wie etwas *COUNT()*, das alle Treffer der *?friend* Variabel zählt und in der *?count Variabel* speichert. Im *WHERE* Bereich werden alle Bedingungen für die Abfrage definiert. Diese Bedinungen entsprechen der Definition eines Teilgraphen, der wiederum eine Teilmenge des gesamten Datenbestandes abbildet. Hier stehen weiter Konstrukte wie *OPTIONAL*, einem logischen Oder, so wie *UNION* einem logischen Und zur Verfügung. Über eine SPARQL-Endpoint können so User über das Web Datenbestände abfragen und mit diesen Arbeiten. ¹⁵⁵

¹⁵⁴GROUP, W3C SPARQL working et al.: SPARQL 1.1 Overview. 2013.

¹⁵⁵DUCHARME, Bob: Learning SPARQL: querying and updating with SPARQL 1.1. O'Reilly, 2013, S.1-45.

4.3 Formalisierung von Modellen: Ontologien

Der Gegenstandsbereich der Ontologie als Disziplin in der Philosophie umfasst alles, das existiert. Das Erkenntnisziel, so MEIXNER, ist auf allgemeiner begrifflicher Ebene zu finden und beschäftigt sich mit der Einteilung des Seins und den Grundstrukturen der Wirklichkeit, sowie der Frage nach dem Wesen der Existenz. Die Ontologie verfolgt nicht das Ziel Erkenntnis über ein Objekt zu erhalten, es beispielsweise zu vermessen oder zu beschreiben, sondern stellt sich die Frage nach welchen allgemeinen Kriterien Objekte im Verhältnis zu ontologischen Begriffen wie Sein, Aktualität, Universalie, Exemplifikation, Sachverhalt oder Individuum stehen. ¹⁵⁶ Der Begriff Ontologie in der Informationswissenschaft bzw. Informatik umfasst ein pragmatisches Konzept zum Austausch und zur Wiederverwendung von formalisierten und gemeinschaftlich verwendeten Wissensstrukturen durch ein gemeinsames Vokabular. Ziel dabei ist es Informationssysteme zu implementieren. Die Spezifikation eines solchen Vokabulars für eine bestimmte Domäne, ob übergeordnet und generalisierend oder fachspezifisch, nennt man Ontologie.

Der Begriff wird in zwei Disziplinen mit jeweils unterschiedlichen Fokus verwendet. Dennoch können Gemeinsamkeiten festgemacht werden. Beide setzen sich mit der Frage auseinander, wie die Welt sinnvoll strukturiert werden kann, damit wir uns besser darin zurecht finden können. In diesem Kapitel wird die informationswissenschaftlichen Dimension des Ontologie-Begriffs und seiner Nutzung in den digitalen Geisteswissenschaften diskutiert und der Frage nachgehen, ob Ontologien ein geeignetes Werkzeug zur Formalisierung von geschichtswissenschaftlichen Domänen darstellen. Dabei soll anfangs "Wissen"kurz aus informationswissenschaftlicher Sicht definiert werden und über das semantische Netz eine Brücke zur Ontologie geschlagen werden.

4.3.1 Vom Wissen, über das Semantische Netz zur Ontologie

Wissen ist eine systeminterne Repräsentation vorliegender Erfahrungen eines kognitiven Agenten zu einer bestimmten Zeit, die einem zu überprüfenden Anspruch auf Gültigkeit ausgesetzt sein muss. Wissen prägt das Handeln und Denken eines Agenten auf den unterschiedlichsten Ebenen und dient zur Lösung von Problemen im weitesten Sinne. Das jeweils aktuelle Wissen bildet einen kontextuellen Rahmen, in dem bestehende und ankommende Information interpretiert und zu neuen Erfahrungen verarbeitet werden. ¹⁵⁷

Diese Definition von Wissen – eine stärker informationswissenschaftliche – hat seinen, neben vielen Definitionen in anderen Fachbereichen, legitimen Ursprung. Unterschiedliche Disziplinen haben andere Fragestellungen und benötigen dafür ein anderes theoretisches Gerüst. Ein Wissensbegriff in der Philosophie, beispielsweise, ist weiter gefasst sein, als ein Wissensbegriff in der Informationswissenschaft, dessen Aufgabe darin besteht als Hilfsmittel in der Entwick-

¹⁵⁶MEIXNER, Uwe: Von der Wissenschaft der Ontologie. Logos (neue Folge), 1 1994.

¹⁵⁷ FAVRE-BULLE: Information und Zusammenhang: Informationsfluß in Prozessen der Wahrnehmung, des Denkens und der Kommunikation.

lung und Umsetzung von Informationssystemen zu fungieren.

Mittels Ontologie lässt sich "Wissen" als Netzwerk beschreiben. Ein Netzwerk ist ein gerichteter Graph, bestehend aus einer Menge von Knoten und einer Menge von Kanten, die die einzelnen Knoten miteinander verknüpfen. Damit lassen sich (fast) beliebige Entitäten und deren Verknüpfungen miteinander abbilden. Die Überlegungen zu einem **semantischen Netz**, als gedanklichen Vorgänger der Ontologie, stammen von QUILIIAN, der damit ein formales Erklärungsmodell für 'die menschliche Repräsentation von Wissen über Worte und ihre Bedeutung als Netzwerk von Begriffen und ihren Relationen' ¹⁵⁸ beschreibt. Semantische Netze können einen Kompromiss zwischen menschenverständlicher Repräsentation einer Domäne und der formalen Verarbeitbarkeit durch eine Maschine darstellen. ¹⁵⁹ Das ist dadurch gegeben, dass die Struktur des Graphen (= Netz), sich einfach in Rechnern als Matrizen abbilden lässt. Dies entspricht den Erörterungen von informellen Modellen in Kapitel 2.3.1.

Die Ontologie ist eine Erweiterung des semantischen Netzes und nach GRUBER kann sie durch ein **4-Tupel** definiert werden. C ist eine Menge von **Klassen** (concepts, classes - Mengen von Entitäten aus der Realität), R eine Menge von **Relationen** (properties - Beziehungen zwischen Klassen), I eine Menge von **Instanzen** (individuals - einzelne Entität aus einer Menge) und A eine Menge von **Axiomen** (axioms - logische Regel). ¹⁶⁰ C und R lassen sich dabei stets als Graph abbilden. Ein Beispiel zur Veranschaulichung:

Es existiert eine Klasse (C) "Katzen", die mit der Relation "ist ein" (R) mit einer Klasse "Säugetier" verbunden ist. Die Individuals (I) "Garfield" und "Tom" sind Instanzen der Klasse "Katzen" und erben alle Eigenschaften, die in der Klasse "Katzen" definiert wurden. Eine Regel kann definiert werden (A), sodass immer wenn eine Klasse eine "ist ein" Verbindung zu einer Klasse wie "Säugetier" hat, es ausgeschlossen ist, dass es eine zweite "ist ein"-Verbindung gibt, die auf eine andere Klasse wie etwa "Vögel" referenziert.

Der Begriff der Ontologie wird terminologisch unscharfe verwendet.¹⁶¹ Zwar sind die Unterschiede klein, aber sind sie dennoch entscheidend und sollen im Folgenden diskutiert werden. Eine der ersten Definitionen des Begriffs der Ontologie stammt von GRUBER:

"An ontology is an explicit specification of a conceptualization "162

Eine "conceptualization" beschreibt den Prozess einer Vereinfachung, aber Fokussierung, ei-

¹⁵⁸STUCKENSCHMIDT: Ontologien: Konzepte, Technologien und Anwendungen.

¹⁵⁹REICHENBERGER, Klaus: Grundlagen semantischer Netze. In Kompendium semantische Netze. Springer, 2010. ¹⁶⁰JOOST BREUKER, Pompeu CASANOVAS/KLEIN, MC/FRANCESCONI, Enrico: The flood, the channels

and the dykes: Managing legal information in a globalized and digital world. Law, Ontologies and the Semantic Web: Channelling the Legal Information Flood, 188 2009.

¹⁶¹Vgl. GRUBER, Thomas: A translation approach to portable ontology specifications. Knowledge acquisition, 5 1993, Nr. 2, S.1.

¹⁶²HOEKSTRA, Rinke: Ontology RepresentationDesign Patterns and Ontologies that Make Sense. In Proceedings of the 2009 conference on Ontology Representation: Design Patterns and Ontologies that Make Sense. Ios Press 2009, S.69.

nes bestimmten Aspekts der Realität. So kann eine Ontologie als Dokumentation eines wissenschaftlichen Prozesses agieren, in dem die Wirklichkeit abstrahiert und reduziert wird und gleichzeitig die Domäne bzw. Forschungsfrage hervorgehoben und amplifiziert wird. ¹⁶³ Unter "explicit" versteht man, dass die Bedeutungen aller von der Ontologie erfassten Begriffe klar und eindeutig definiert sein müssen. Dies beinhaltet alle ihre Eigenschaften, Beschränkungen und Beziehungen, innerhalb, als auch außerhalb der Domäne. ¹⁶⁴ BORST erweitert GRUBERS Definition um "formal specification of a shared conceptualization". ¹⁶⁵ "Formal" ergänzt dabei die Definition um die Notwendigkeit, dass Ontologien maschinenlesbar sein müssen. Erst diese Eigenschaft hebt sie von anderen Methoden zur Formalisierung von konzeptionellen Datenmodellen hervor. Der Zusatz "shared" reflektiert die Tatsache, dass eine Ontologie Wissen erfasst, das durch den Konsens einer Gruppe - z.B. durch einen wissenschaftlichen Diskurs - akzeptiert wird. Eine Ontologie sollte nicht im Stillen von einer Person alleine entwickelt werden, sondern in einem iterativen Prozess (Ontology Engineering) des Austausches und der Diskussion mit anderen entstehen. Ein solcher Prozess kann wie folgt ablaufen:

- Definition der Notwendigkeit und des Zieles einer Ontologie
- Strukturierung des Wissens und konzeptionelle Entwicklung
- Implementierung und Modellierung
- Evaluierung und Dokumentation
- Iteration dieses Prozesses im Austausch mit anderen

Allgemeiner betrachtet definieren LINCKELS & MEINEL eine Ontologie als ein Datenmodell zur Darstellung eines Sets miteinander vernetzter Konzepte innerhalb einer (Fach-)Domäne. 166 WELLER spricht von einer formalen und schematischen Darstellung einer Wissensdomäne auf Basis definierter Regeln und Vokabulars. 167

Zusammengefasst kann gesagt werden, dass sich mittels Ontologien komplexere Sachverhalte so darstellen lassen, dass Mensch und Maschinen in der Lage sind Strukturen, die durch eine Ontologie definierte und standardisierte sind, weiterverarbeiten zu können. Der Mehrwert kann vor allem in der Möglichkeit automatisierter Schlussfolgerungen, im Information Retrieval oder anderen formalen Methoden zur Verarbeitung von Daten liegen. ¹⁶⁸

¹⁶³Vgl. THALLER: Historical Social Research/Historische Sozialforschung. Supplement 2017.

¹⁶⁴SURE, York/STUDER, Rudi: Methodology, tools & case studies for ontology based knowledge management. 2003.

¹⁶⁵BORST, Willem Nico: Construction of engineering ontologies for knowledge sharing and reuse. 1997.

¹⁶⁶LINCKELS, Serge/MEINEL, Christoph: E-librarian service: user-friendly semantic search in digital libraries. Springer Science & Business Media, 2011.

¹⁶⁷WELLER: Ontologien.

¹⁶⁸Vgl JANNIDIS/KOHLE/REHBEIN: Digital humanities: eine Einführung, S.162-178.

5 Anwendung formaler Methoden auf Basis einer Ontologie

Das abschließende Kapitel verbindet die theoretischen Überlegungen mit den technischen Ausführungen und skizziert die Arbeit, die im Zuge des Projektes Digital Edition Publishing Cooperative for Historical Accounts (DEPCHA)¹⁶⁹ umgesetzt wurde. In diesem Projekt wird ein gemeinsamer Publikation-Hub für historische Rechnungsbücher implementiert. Im Zentrum steht die Entwicklung und Nutzung einer Ontologie, einer formalen Beschreibung eines konzeptuellen Models zur Standardisierung von Buchungstransaktionen in historischen Rechnungsunterlagen. Dabei wird ein im Web of Data, sowie ein Linked Open Data Zugang verfolgt. Das heißt, dass neben der Transkription und digitalen Edition der Rechnungsbücher, sowie der Verfügugnstellung der Digitalisate der Quellen, hochstrukturierte RDF-Daten existieren, die auf Grundlage der sogenannten Bookkeeping-Ontology formalisiert sind und Referenzen auf Normdaten und LOD-Vokabularien setzen. Mit diesem Zugang soll die Nachprüfbarkeit, die Sicherstellung und die Nachnutzbarkeit der Forschungsdaten und aller darauf aufbauenden quantitativen Methoden und deren Ergebnisse gewährleistet sein. Dabei spielt die Bookkeeping-Ontology - im THALLER'schen Sinne als knowledge domain - eine zentrale Rolle.

In diesem Kapitel wird zuerst auf die digitale Edition historischen Rechnungsbüchern und die dazu nötigen Standards, wie die TEI, eingegangen werden. Darauf aufbauend wird die semantische Anreicherung der digital edierten historischen Quellen im Projektkontext von DEPCHA diskutiert, wofür eine detailierte Beschreibung der domänenspezifischen Bookkeeping-Ontology notwendig ist. Abschließend auf die Repräsentation dieser Daten am Beispiel der Informationsvisualisierung von historischer Information in Rechnungsbüchern eingegangen.

5.1 Digitale Edition von Historischen Rechnungsbüchern

5.1.1 Grundlagen für digitale Editionen

"Edition ist die erschließende Wiedergabe von historischen Dokumenten"¹⁷⁰

Grundlage geisteswissenschaftlicher Forschung ist die Erschließung und Verfügbarmachung von textuellen Quellen. Das Institut für Dokumentologie und Editorik (IDE) versteht unter Erschließung die historisch-kritische Auseinandersetzung mit einem Text, unter Wiedergabe die Repräsentation bereits existierender Texte, unter *Dokument* ein allgemeines, pluralistisches Textverständnis und unter historisch, die Auseinandersetzung mit Texten, die eine historische Distanz zum Edierenden aufweisen. Die Überwindung dieser Distanz, so das IDE, ist das das

¹⁶⁹ gams.uni-graz.at/depcha

¹⁷⁰SAHLE, Patrick: Vom editorischen Fachwissen zur digitalen Edition: Der Editionsprozeß zwischen Quellenbeschreibung und Benutzeroberfläche. In THALLER, Manfred (Hrsg.): FUNDUS - Forum für Geschichte und ihre Quellen. Universität Köln, 2003 (URL: http://webdoc.sub.gwdg.de/edoc/p/fundus/2/sahle.pdf), S.76.

Ziel der Edition. 171

Dieser Zugang wird von Disziplinen wie der Editionsphilologie oder eben den historischen Hilfswissenschaften verfolgt. Geprägt von der Anwendung computergestützte Methoden zur Erstellung, Erforschung und Verbreitung von Quellen, spricht man in den digitalen Geisteswissenschaften von digitalen Editionen. Für die Umsetzung kommen weitere Fachwissenschaften, wie die Datenvisualisierung, Historische Fachinformatik oder Computerlinguistik hinzu, damit digital Editionen ein wertvolles Werkzeug für die wissenschaftliche Arbeit werden.

5.1.2 Digitale Edition und Semantic Web

Der nächste Schritt? Semantic Web und digitale Editionen. Vogeler Assertiv Edition

¹⁷¹Editionsbegriff des Institut für Dokumentologie und Editorik, https://www.i-d-e.de/themen/editorik/, 23.11.2019.

5.2 Die Bookkeeping-Ontology

Die *Bookkeeping Ontology* ist ein konzeptionelles Modell zur formalen Beschreibung von Transaktionen in historischen Rechnungsunterlagen. Es wurde in einem Ontologie-Engineering-Prozess entwickelt, an dem Historiker*innen, Softwareentwickler*innen und digitale Geisteswissenschaftler*innen beteiligt waren.

Eine Transaktion besteht aus mindestens einem Transfer. Jeder Transfer umfasst den Austausch von Dingen, die quantifizierbar sind, von einem Akteur zum anderen. Solche sogenannte *Measurable* lassen sich in Geldbeträge, sowie wirtschaftliche Güter unterteilen. Geldbeträge sind dadurch gekennzeichnet, dass sie aus eine Zahl und einer Währung bestehen, wie etwa 10 US Dollar. Weiters gibt es spezielle Formen von Geldbeträgen, wie etwa Steuern, die eine einseitige Geldabgabe definieren, sowie Preise, die den monetären Wert eines Wirtschaftsgutes beschreiben. Die wirtschaftlichen Güter wiederum werden aufgeteilt in Waren – bestehend aus Menge, Einheit und Art, wie 1 Sack Erdäpfel – und Dienstleistungen, die eine zeitliche Komponente mit sich bringen können. Die Akteure diesen Transfers können Individuen, Gruppen, Organisationen oder Kontent sein. Die Ontologie erlaubt es explizit zu formulieren von wem an wen *Measurable* transferiert werden.

Weiters ist die Verbindung zur historischen Quelle bzw. zum jeweiligen Eintrag wichtiger Bestandteil der Ontologie. Ein Eintrag ist ein Informationsfragment und Beleg eines Ereignisses einer Transaktion in der Vergangenheit. Neben dieser Referenz besteht die Möglichkeit jede Transaktion in seiner zeitliche, räumliche und inhaltlichen Dimension, also der Zordnung zu einem bestimmten, durch die Forschungsfrage geprägten Kontext, zu beschreiben.

Ein bk:Transfer kann von einem bk:Agent durchgeführt werden, also jemand übernimmt den Transferprozess. Bei der Verbuchung der Transaktion wird eine Transaktion im Sinne der doppelten Buchhaltung auf die Haben oder Soll Seite gebucht.

ToDo 172

ToDo¹⁷³ Ein DH Rechnungsprojekt¹⁷⁴

5.2.1 TEI Beispiele DEPCHA

¹⁷²CLIFFORD et al.: Modeling semantically Enhanced Digital Edition of Accounts as Historical Method, S.9-12.

¹⁷³WÜRZ: Methoden der Digital Humanities in der Bearbeitung und Erforschung mittelalterlicher Rechnungsbücher. Möglichkeiten und Grenzen am Beispiel der digitalen Edition der Augsburger Stadtrechnungsbücher, S.101-109.

¹⁷⁴ebd., S.109-113.

```
4
     a bk:Transaction> ;
 5
     bk:consistsOf <#Transfer-1>, <#Transfer-2> ;
     bk:when "1808-08-01";
6
7
     bk:text "1/4 lb Powder 2/6 1 lb Shot 2/6 7 6" .
8
9 <#Transfer-1>
10
     a bk:Transfer ;
     bk:transfers <#Measurable-1> ;
11
     bk:from <#stagville> ;
12
     bk:to <#pers.2> .
13
14
15 <#Transfer-2>
     a bk:Transfer ;
16
17
     bk:transfers <#Measurable-2-1> ;
18
     bk:from <#pers.2> ;
19
     bk:to <#stagville> .
20
21 <#Measurable-1>
22
     a bk:Commodity;
23
     bk:unit <wiki:Q100995>;
24
     bk:quantity "0.25";
     bk:commodity <wikivQ2908004>;
25
     bk:price <#Price-1> ;
26
27
     bk:text "1/4 lb Powder" .
28
29 <#Measurable-2-1>
30
     a bk:Money ;
31
     bk:unit <wiki:Q213142>;
32
     bk:quantity "7" .
33
34
    <#pers.2>
35
     a bk:Between;
36
     bk:name "James Haley".
```


Abbildung 14: Graphische Darstellung des RDF

5.2.2 Reasoning

Der Ontology Editor Protégé erlaubt es, eine Ontologie und die darin enthaltenen Daten (Individuals) einem Reasoning - dem Abarbeiten aller Vorhanden Regeln in einer Ontologie auf Basis einer deskriptiven Logik - zu unterziehen. Für solche Zwecke gibt es natürlich auch API's und Bibliotheken in Programmiersprachen. ¹⁷⁵ Das Reasoning gilt als ein essentieller Baustein im Design, der Entwicklung, der Wartung und in der praktischen Anwendung einer Ontologie. Das Ergebnis davon sind Inferenzen. Inferenzen sind neu hergeleitete Schlussfolgerungen auf Basis der formalen Regeln einer Ontologie. ¹⁷⁶ Die Überprüfung strukturierter Daten mittels logischen Schlussfolgerungen kann dazu dienen, größere Datenmengen auf ihre Konsistenz und somit auch auf ihre Qualität hin zu prüfen, da logische Inkonsistenzen als Fehlermeldung angezeigt werden.

¹⁷⁵MUSEN, Mark A: The protégé project: a look back and a look forward. AI matters, 1 2015, Nr. 4.

¹⁷⁶DENTLER, Kathrin et al.: Comparison of reasoners for large ontologies in the OWL 2 EL profile. Semantic Web, 2 2011, Nr. 2.

5.3 Informationsvisualisierung

"The time of diagrammatic thinking is upon us. We need graphical interfaces for multidimensional and multimedia authoring that take advantage of computers' abilities to aggregate, synthesize, and organize arguments along multiple axes" 177

Arbeitet man mit historischen Rechnungsbüchern, so arbeitet man mit einer Vielzahl von Informationsfragmenten. Für Forschungsfragen ist oft der Blick auf das Ganze interessant und so auf die Aggregation und Synthese der einzelnen Belge. BURDICK sieht gerde im Aufkommen der digitalen Geisteswissenschaften die Zeit reif die Ergebnisse der computgestützen Verarbeitung multidimensional zu visualisieren. Die Informationsvisualisierung ist eine Methode, die dabei helfen kann Erklärungen historischer Ereignisse, die aus der Zusammenschau vieler Quellen und Entitäten zusammenkommen, zu argumentieren und sichtbar zu machen. ¹⁷⁸ Sie dient nicht dazu eine "historische Wahrheit" abzubilden, die auf einer Zahlenbasis errechnet wurde, sondern kann vielmehr ein Werkzeug im hermeneutischen Prozess sein, um eine Domäne besser verstehen zu können.

Als Visualisierung versteht man – neben dem eigenständigen Fach aus dem Bereich *Human-Computer Interaction* – die Anwendung computerbasierter, interaktiver und visueller Repräsentation von abstrakten, nicht-physikalischen Daten, die eine Hilfestellung für den Erkenntnisgewinn sind. Die Daten können sowohl quantitativer, wie etwas geographische Koordinaten oder Messwerte, sowie qualitativer Natur sein. Die Fachliteratur unterscheidet zwei Herangehensweisen. Wo die **Scientific Visualization** die Welt so darstellt, wie sie ist, beispielsweise die naturgetreue Darstellung des menschlichebn Körpers, wird in der **Information Visualization** ein Datenbestand in neuen (abstrakten) Informationsräumen, wie etwa in einem Koordinatensystem dargestellt. MUNZER fasst dies zusammen als "*Its scientific visualization when the spatial representation is given. Its Information Visualization when the spatial representation is chosen".* Im Falle von Rechnungsbüchern, und den Geschichtwissenschaften generell, kann man stets von einer Informationsvisualisierung ausgehen. Eine naturgetreue Darstellung historischer Ereignisse ist nie möglich.

5.3.1 Voraussetzungen für die Visualisierung

Die Menschliche Wahrnehmung ist multimodal. Es entstehen unterschiedliche Repräsentation in unserem Bewusstsein auf Basis der aufgenommen Wahrnehmungen unserer Umgebung. Bei der Umsetzung von Anwendungen der Informationsvisualisierung sind für PREIM und DACH-

¹⁷⁷BURDICK, Anne et al.: Digital_Humanities. Mit Press, 2012, S.119.

¹⁷⁸FRANK: INF-DH-2018 2018, S.3-5.

¹⁷⁹MUNZNER, Tamara: Process and pitfalls in writing information visualization research papers. In Information visualization. Springer, 2008, S.134-153).

SELT folgende Dimensionen zu berücksichtigen: 180

- Zielgruppe: für wen ist die Visualisierung konzipiert?
- Aufgabe: welches Ziel wird mit der Darstellung verfolgt; was soll dargestellt werden?
- Daten: auf welchen Grundlage fußt die Darstellung?
- Repräsentation: welche Formen der Repräsentation werden für die Darstellung genutzt?
- Medium: wo wird es ausgegeben; wo kann man damit arbeiten?

Auf das DEPCHA Projekt gemünzt, wird mit einer Visualisierung das Ziel verfolgt, für ein fachwissenschaftliches Publikum eine größere Menge historischer Information von Transaktionen über das Web so aufzubereiten dass aus der Aggregation der historischen Information neue Erkenntnisse gewonnen werden können. So kann die visuelle Repräsentation von historischer Information in den Rechnungsbüchern zur Bearbeitung von relevanten Forschungsfragen herangezogen werden. Die Zielsetzung der Visualisierungen liegt darin die Dimensionen der Rechnungsbücher, das heißt die beteiligten Akteure, die Wirtschaftsgüter, die Geldbeträge jeweils in ihrem historischen Kontext, für Anwender*innen, im Sinne einer quellenbasierten Arbeitsplattform erfahrbar zu machen. Diese Arbeitsplattform soll Fachwissenschaftler*innen erlauben, sowohl den Einzelbeleg aus der Quelle, als auch die Aggregation der Information einer ausgewählten Menge von Belegen zu erkunden und selbstständig organisieren zu können. Diese zwei Zugangsarten kann man als *Close Viewing*, der "klassische" Zugang punktelle Quellen manuell zu analysieren, und *Distant Viewing*, die eine Form der formalen Methodik mit sich bringen muss, bezeichnen. 181

Allgemein kann man sagen, dass das Ziel der Informationsvisualisierung der Gewinn neuer Erkenntnis ist. Wichtig ist das Entdecken neuer Zusammenhänge, die erst in einem größeren Kontext sichtbar werden (*Discovery*), das Treffen von zuverlässigen Entscheidungen (*Descision making*), die explorative Analyse von Informationsräumen (*Exploration*), sowie das Sichtbarmachen von Erklärungen (*Explanation*). Gerade für eine fehlerhafte, unscharfe oder inhomogene Datenbasis kann die menschliche Exploration von Daten sehr effektiv sein. Das Organisieren in DEPCHA umfasst die Selektion und das Filtern von Ergebnissen, die durch das *Discovery* der Visualisierungen gegeben sind. Die explorative Analyes, sowie eine Sichtbarmachung von Erklärungen durch Darstelungen kann vorher entworfene Thesen zu einem aus einem Rechnungsbuch abgleiteten Sachverhalt stützen.

¹⁸⁰PREIM/DACHSELT: Interaktive systeme: Band 1: Grundlagen, Graphical User Interfaces, Informationsvisualisierung, S.437-440.

¹⁸¹SCHUBERT, Charlotte: Tagungsbericht: HT 2014: Close Reading and Distant Reading. Methoden der Altertumswissenschaften in der Gegenwart. In H-Soz-Kult. Göttingen, 2014 (URL: www.hsozkult.de/conferencereport/id/tagungsberichte-5625).

¹⁸²PREIM/DACHSELT: Interaktive systeme: Band 1: Grundlagen, Graphical User Interfaces, Informationsvisualisierung, S.439-444.

Eine weitere Zielsetzung liegt darin, dass eine Visualisierung dabei helfen kann, die Datenqualität der digitalen Edition zu verbessern. Größere Mengen an ähnlich strukturierter Information bergen ein erhöhtes Risiko, dass sich während der manuellen Annotation Fehler einschleichen. Durch die Visualisierung der Daten ist es leichter Workflows aufzusetzen, in dem die Visualisierung des Quellenkorpus genutzt werden kann, um fehlerhafte Transkriptionen oder falsche Zuordnungen bestimmter Entitäten – wie etwa die Normalisierung von Personen, Gütern oder Maßeinheiten – besser entscheiden zu können.

Um die notwendige Dimension, nach denen eine mögliche Visualisierung umgesetzt werden kann, festzumachen zu können, muss ein Modell definiert werden. Da im Projekt DEPCHA Rechnungsbüchern aus unterschiedlichen Kontexten zusammengeführt werden, bedarf es eines konzeptuellen Modells, um dieses Mapping herzustellen. Die Kategorien, die im Mapping abgebildet werden sollen, entsprechen auch den Dimensionen, die für eine Visualisierung der Informationsobjekte, ihrer Attribute und Relationen, relevant sind. Geldbeträge und Mengenangaben werden als quantitative Daten verstanden, da sie arithmetische Operationen erlauben, wohingegen Kategorien von Gütern und Währungen qualitative Daten darstellen, die für die Beschreibung, Ordnung und Gruppierung dienslich sind. 183

Multidimensionale Rechnungsbücher – Multiple Views und Interaktion

GLEBA und PETERSEN heben die Vielfalt der Inhalte in Rechnungsbüchern, sowie die Möglichkeiten der "interdisziplinären Erschießung der Quelle Rechnungsbuch" hervor. 184 und auch VOGELER sieht in Rechnungsbüchern multidimensionale Quellen. 185

Ein Credo der Informationsvisualisierung ist es, eine Domäne in mehreren Dimensionen darzustellen, vom Großen ins Detail zu gehen (overview first), dort zu filtern und in die Daten eintauchen zu können, um anschließend auf die Detailebene vorzudringen. Um die Vielfalt der Ebenen und Dimensionen von historischen Rechnungsbüchern auch nutzen zu können, bedarf es auch eine Vielzahl an Repräsentationen. Deswegen bedarf es multipler Perspektiven auf ein Thema. Dies wird in der Informationsvisualisierung als Multiple Views zusammengefasst. 186

Ein gelungenes Projekt zur Datenvisualisierung wirtschaftlicher Daten, das Multiple Views anbietet, ist der Atlas of Economic Complexity.. 187 Es soll stellvertretend für eine moderne Webanwendung stehen, die ähnliche Informationsobjekte repräsentiert. Eine Anlehnung von Darstellungen historischer Information an den Atlas of Economic Complexity scheint sinnvoll. So

¹⁸³ebd., S.448-450.

¹⁸⁴GLEBA/PETERSEN: Wirtschafts-und Rechnungsbücher des Mittelalters und der Frühen Neuzeit-Formen und Methoden der Rechnungslegung: Städte, Klöster und Kaufleute, S.7-10.

¹⁸⁵VOGELER et al.: The Content of Accounts and Registers in their Digital Edition. XML/TEI, Spreadsheets, and Semantic Web Technologies

¹⁸⁶PREIM/DACHSELT: Interaktive systeme: Band 1: Grundlagen, Graphical User Interfaces, Informationsvisualisierung, S.452-462.

¹⁸⁷ Atlas of Economic Complexity, http://atlas.cid.harvard.edu, 09.12.2019

verfügt diese Anwendung über unterschiedliche Visualisierungsformen für Warenexport und -import von Ländern. Sogenannte *Product Treemaps* werden verwendet, um die Größe und Kategorisierung von Exporten und Importen darzustellen, eine *Geo Map* erlaubt die geographische Kontextualisierung dieser Werte auf einer Karte und ein *Stacked Chart* erlaubt es die Veränderung über die Zeit hinweg zu erfahren. Weiters verfügt die Webseite über mehrere Nutzer*innenfunktionalitäten zum Filtern und Selektieren der Daten. Folgender Abbildung veranschaulicht die *Product Treemap* der Exporte der Vereinigten Staaten von Amerika aus dem Jahr 2016.

Abbildung 15: Screenshot der Product Treemap des Atlas of Economic Complexity, Exporte der USA im Jahr 2016

Die Treemap, die man in dieser Abbildung sieht, erlaubt es hierarchische Strukturen und Größenverhältnisse darzustellen. Dazu werden Rechtecke proportional zur Größe der darzustellenden Dateneinheit ineinander verschachtelte. Historiker*innen arbeiten oft mit Klassifikationen, um Information besser ordnen zu können. So erlaubt eine Treemap den schnellen Blick darauf, welche Güter und Dienstleistungen, nach welchen Kategorien geordnet und in welchen Größenverhältnisse zueinander stehen.

Eine weitere Form der Repräsentation sind *Bar Charts* (Säulendiagramme). Sie sind ein klassischer Weg, um Häufigkeitsverteilungen darzustellen, sind aber auf eine bestimmte Anzahl an Ausprägungen (Säulen) begrenzt. Jede dieser Säulen auf der X-Achse kann beispielsweise ein Geschäftsjahr mit den Einnahmen bzw. Ausgaben in einem Rechnungsbuch darstellen. Da der

Zeitraum eins einzelnen Buches sich mit bis zu 15 Säulen abdecken lässt – jede Säule entspricht einem Jahr – kann eine geeignete Darstellung sein. Ein *Stacked Chart* erlaubt es eine weiter Dimension in ein Bar Chart einzufügen, um Einkünfte und Ausgaben weiter kategorisieren zu können. Beispielsweise könnten diese Dimensionen die einzelnen Akteure sein, die an den Geldflüssen beteiligt sind. Rechnungsbücher können aus einer Vielzahl von Perspektiven betrachtet werden: welche Güter, Akteure und Geldbeträge kommen vor und welche sozialen und gesellschaftlichen Implikationen könnten daraus abgeleitet werden.

Prototypisch wurde auf der in RDF modellierten Datengrundlage mittels SPARQL eine Datenbankabfragen formuliert und das so gewonnene JSON Ergebnisse als Input an die Datenvisualisierungssoftware *Tableau Desktop*¹⁸⁸ übergeben. Bei den folgenden zwei Beispielen handelt es sich um Visualisierungen, wie sie sinnvollerweise für Rechnugnsbücher umgesetzt werden könnten.

Abbildung 16: Treemap nach Häufigkeit von Waren und Dienstleistungen. Gruppiert nach tierischen (hellgrün) und pflanzliche (dunkelgrün) Lebensmittel, Dienstleistungen (orange), Rohstoffen (hellblau), Textilien (türkis) und sonstigen Waren (dunkelblau)

In dieser Ansicht, einer Treemap Ansicht der wirtschaftlichen Güter, entspricht die Größe der Rechtecke der Häufigkeit wie oft ein Gut in allen Transaktionen des Wheaton Daybooks vorkommt. Eine besondere Problemstellung dabei ist die Repräsentation bzw. Umrechnung von unterschiedlichen Maßeinheiten auf normalisierte Werte, die dann gegenübergestellt werden können. So stünden 100 bushel potatoes, 20 feet lumber gegenüber. Deswegen wurde in die-

¹⁸⁸Tableau Desktop, https://www.tableau.com/de-de/products/desktop, 09.12.2019.

ser Darstellung nur die absolute Anzahl, wie oft etwas genannt wird dargestellt. In dieser Ansicht werden 3 Hauptgruppen unterschieden: Lebensmittel (grün), Dienstleistungen (orange) und Waren (blau). Diese wurden, um eine weitere Hierarchieebene einzufügen, weiter unterteilt in pflanzliche (dunkelgrün) und tierische (hellgrün) Lebensmittel, Rohstoffe (hellblau), Textilien (dunkelblau) und andere Waren (türkis). Im DEPCHA Projekt sind die Hierarchien, nach denen die Rechtecke angeordnet werden, durch Thesauri, die von den Fachwissenschaftler*innen definiert werden, vorgegeben. Diese Hierarchien müssen demzufolge sinnvoll auf die Quellen und die Forschungsfragen abgestimmt werden.

In Abbildung 16 zeigt sich sofort der Schwerpunkt der Geschäfte von Wheaton: pflanzliche Produkte, vor allem Kartoffel, Mais, Äpfel und Roggen, sowie Fleisch und Milchprodukte, Arbeit als Dienstleistung und verarbeitetes Holz (*lumber*) als Rohstoff. Daneben gibt es eine Vielzahl von Gütern, die selten gehandelt werden, wie etwa Bücher. Diese befindet sich im stark geschachtelten dunkel blauen Bereich.

Neben den Warenflüssen, sind die Geldflüsse ein zentraler Bestandteil der Daten. Folgende Darstellung zeigt die Geldflüsse an L.M. Wheaton für jedes Jahr. Jede Farbe auf den einzelnen Säulen repräsentiert einen Akteur. Personen wie etwa Wheaton Wheeler (hellroter Balken), ein Verwandter von L.M. Wheaton, kommt sehr regelmäßig in den Laden, kauft aber nur Lebensmittel und Alltagsgegenstände zu niedrigeren Geldbeträgen, gleichzeitig verrichtet er auch öfters Arbeit für L.M. Wheaton.

Es lässt sich daraus schließen, und solche Interpretationen sind die Zielsetzung dieser Darstellungen, dass Wheaton Wheeler aus einem niederen sozialen Status stammt und in einer gewissen Abhängigkeit zu L.M. Wheaton steht. Weiters erhält ein User so einen Überblick, in welchen Jahren niedrigere oder größere Einnahmen zustande kamen, und über die einzelnen Akteure und ihrer Frequenz.

Abbildung 17: Geldfluss nach Jahren (x-Achse) und Summe der Geldflüsse (y-Achse). Stacks nach einzelnen Akteuren.

FRANK¹⁸⁹ führt 4 Beispiele von Projekten an, die die Methoden der Informationsvisualisierung so nutzen, dass sie zentraler Bestandteil zur Bearbeitung einer geisteswissenschaftlichen Forschungsfrage und zur Überprüfung der Ergebnisse dient. Im politikwissenschaftlichen CEWS-Projekt (Alker et al., 2001) behandelt multiperspektivische Konfliktforschung und leistet seinen Beitrag zur Methoden- und Werkzeugentwicklung. So wird im Projekt Modallogik als formaler Rahmen für die kontrafaktische Analyse von möglichen Konfliktverläufen eingesetzt und die auf Husserl zurückgehende generative Phänomenologie wird zur Analyse der Perspektiven von historischen Akteuren (Konfliktparteien) auf Konfliktereignisse vorgeschlagen. Pellon (2010) kommt aus dem Bereich In

Gemeinsam haben alle diese Projekte, dass der Ausgangspunkt für die Visualisierung zum einen Daten sind, zum anderen ein Modell, dass den Daten Struktur verleiht und so die formale Verarbeitung in Hinblick auf eine Forschungsfrage erlaubt.

¹⁸⁹Frank: INF-DH-2018 2018.

Die Auseinandersetzung mit diesem Thema hat mir ein wesentlich besseres Verständnis vermittelt, welche Ziele und welche Herausforderungen mit Methoden der Informationsvisualisierung einhergehen. Sie können ein starkes Werkzeug sein, um bestimmte Inhalte in den Rechnungsbüchern hervorzuheben, müssen aber auf vielen Ebenen gut durchdacht sein, damit sich nicht die "vergangene Wirklichkeit" verzerren. Von der Forschungsfrage (was soll gezeigt werden), der Darstellung (wie wird es dargestellt), den Daten (woraus wird es erzeugt), sowie der Interaktion damit (was kann ich damit tun) bedarf eines durchdachten Plans. Darstellungen dürfen nicht zu speziell sein und etwas repräsentieren, das nur für eine einzige Forschungsfrage bzw. einzelnes Rechnungsbuch von Inte-resse ist, dürfen aber auch nicht zu allgemein sein, sodass daraus keine generischen Lösungen möglich sind.

6 Zusammenfassung

Literatur

- **ALEXANDER, Bryan/DAVIS, Rebecca Frost:** Should liberal arts campuses do digital humanities? Process and products in the small college world. Debates in the digital humanities, 2012, S.368–389
- ANDORFER, Peter: Forschungsdaten in den (digitalen) Geisteswissenschaften. Versuch einer Konkretisierung.(DARIAH-DE Working Papers 14), 2015 (URL: http://webdoc.sub.gwdg.de/pub/mon/dariah-de/dwp-2015-14.pdf)
- BAUER, Florian/KALTENBÖCK, Martin: Linked open data: The essentials. Edition mono/monochrom 2011
- **BECKER, Carl L:** What are historical facts? Western Political Quarterly, 8 1955, Nr. 3, 327–340
- BERNERS-LEE, Tim/FIELDING, Roy/MASINTER, Larry: Uniform resource identifier (URI): Generic syntax. 2004 Technischer Bericht (URL: http://www.rfc-editor.org/info/rfc3986)
- **BERNERS-LEE, Tim/HENDLER, James/LASSILA, Ora:** The semantic web. Scientific American, 284 2001, Nr. 5, S.34–43
- **BERNSTEIN, Abraham/HENDLER, James/Noy, Natasha:** A new look at the semantic web. Communications of the ACM, 59 2016, Nr. 9, 1–5
- **BORST, Willem Nico:** Construction of engineering ontologies for knowledge sharing and reuse. 1997
- BRICKLEY, Dan/GUHA, Ramanathan V/McBRIDE, Brian: RDF Schema 1.1. W3C recommendation, 25 2014, 2004–2014
- **Bruch, Julia:** Die Kunst, Daten in Informationen umzuwandeln. Zur Auswertung eines zisterziensischen Rechnungsbuchs aus dem 13. und 14. Jahrhundert und den Herausforderungen in der Analyse serieller Wirtschaftsquellen. Wirtschafts- und Rechnungsbücher des Mittelalters und der Frühen Neuzeit
- BRUMFIELD, Ben: The Stagville Accounts in DEPCHA: Plantation Financial Records as Linked Data. From the Page, 2019 (URL: https://content.fromthepage.com/stagville-accounts-in-depcha/)
- **BRUMFIELD, Ben/AGBE-DAVIES, Anna:** Encoding Account Books Relating to Slavery in the U.S. Modeling semantically Enriched Digital Edition of Accounts, 2015 (URL: https://medea.hypotheses.org/182)

- BURDICK, Anne et al.: Digital_Humanities. Mit Press, 2012
- **CHALMERS, Alan F:** Wege der Wissenschaft: Einführung in die Wissenschaftstheorie. Springer-Verlag, 2007
- **CHEN, Peter Pin-Shan:** The entity-relationship model—toward a unified view of data. ACM Transactions on Database Systems (TODS), 1 1976, Nr. 1, 9–36
- **CLARK, George Faber:** A History of the Town of Norton, Bristol County, Massachusetts, from 1669-1859. Crosby, Nichols, and Company, and author at Norton, 1859
- **CLIFFORD, Anderson et al.:** Modeling semantically Enhanced Digital Edition of Accounts as Historical Method. 2016
- **COLE, George S:** A complete Dictionary of Dry Goods and History of Silk, Linen, Wool and other Fibrous Substances. 1892. 2015
- **CUMMINGS, James:** The text encoding initiative and the study of literature. A Companion to Digital Literary Studies 2013
- **DEMANDT**, Alexander: Philosophie der Geschichte von der Antike zur Gegenwart. 2011
- **DENTLER, Kathrin et al.:** Comparison of reasoners for large ontologies in the OWL 2 EL profile. Semantic Web, 2 2011, Nr. 2, S.71–87
- **DUCHARME, Bob:** Learning SPARQL: querying and updating with SPARQL 1.1. O'Reilly, 2013
- FAVRE-BULLE, Bernard: Information und Zusammenhang: Informationsfluß in Prozessen der Wahrnehmung, des Denkens und der Kommunikation. Springer, 2001
- FICARA, Elena: Texte zur Hermeneutik. Von Plato bis heute. Reclam, 2015
- FÖHR, Pascal: Historische Quellenkritik im Digitalen Zeitalter. Dissertation, Universität Basel, 2017
- **FRANK, Ingo:** Visualisierungswerkzeuge zur Erklärung historischer Ereignisse: geschichtstheoretische Anforderungsanalyse und zeichentheoretisches Rahmenwerk. INF-DH-2018 2018
- **FROMMER, Sören:** Grundbegriffe aus Theorie, Methode und Wissenschaftsgeschichte. 〈URL: http://www.historische-archaeologie.de/downloads/grundbegriffe.pdf〉
- GLEBA, Gudrun: Rechnen. Wirtschaften. Aufschreiben. Vernetzte Schriftlichkeit Wirtschafts- und Rechnungsbücher als Quellen klösterlicher Alltagsgeschichte. In Pätzold, Stefan/Stumpf, Marcus (Hrsg.): Mittelalterliche und frühneuzeitliche Rechnungen als Quellen der landesgeschichtlichen Forschung. Münster, 2016, 51–65

- GLEBA, Gudrun/PETERSEN, Niels: Wirtschafts-und Rechnungsbücher des Mittelalters und der Frühen Neuzeit-Formen und Methoden der Rechnungslegung: Städte, Klöster und Kaufleute. Universitätsverlag Göttingen, 2015
- GLEBA, Gudrun/PETERSEN, Niels: Zur Einleitung. In Gleba, Gudrun/Petersen, Niels (Hrsg.): Wirtschafts-und Rechnungsbücher des Mittelalters und der Frühen Neuzeit-Formen und Methoden der Rechnungslegung: Städte, Klöster und Kaufleute. Universitätsverlag Göttingen, 2015, 7–11
- **GRAHAM, Shawn/MILLIGAN, Ian/WEINGART, Scott:** Exploring big historical data: The historian's macroscope. World Scientific Publishing Company, 2015
- GROUP, W3C SPARQL working et al.: SPARQL 1.1 Overview. 2013
- **GRUBER, Thomas:** A translation approach to portable ontology specifications. Knowledge acquisition, 5 1993, Nr. 2, S.199–220
- HILTMANN, Torsten: Forschungsdaten in der (digitalen) Geschichtswissenschaft. Warum sie wichtig sind und wir gemeinsame Standards brauchen. 2018 (URL: https://digigw.hypotheses.org/2622)
- HITZLER, Pascal et al.: Semantic Web: Grundlagen. Springer-Verlag, 2007
- **HOEKSTRA, Rinke:** Ontology RepresentationDesign Patterns and Ontologies that Make Sense. In Proceedings of the 2009 conference on Ontology Representation: Design Patterns and Ontologies that Make Sense. Ios Press 2009, S.1–236
- HOFFMANN, Barbara/HORN, Klaus: Ehepaare, Eheverläufe und Lebenslauf in Leipzig 1580-1730 KLEIO-Anwendung in einem historischen Forschungsprojekt. Historical Social Research/Historische Sozialforschung, 15 1990, Nr. 3 (55, 171–198
- **HORROCKS, Ian et al.:** Semantic web architecture: Stack or two towers? In International Workshop on Principles and Practice of Semantic Web Reasoning. Springer 2005, 37–41
- **JANNIDIS, Fotis:** Grundlagen der Datenmodellierung. In Digital Humanities. Springer, 2017, 99–108
- **JANNIDIS, Fotis/KOHLE, Hubertus/REHBEIN, Malte:** Digital humanities: eine Einführung. Springer-Verlag, 2017
- JARAUSCH, Konrad Hugo/ARMINGER, Gerhard/THALLER, Manfred: Quantitative Methoden in der Geschichtswissenschaft. Wissenschaftliche Buchgesellschaft, 1985
- JOOST BREUKER, Pompeu CASANOVAS/KLEIN, MC/FRANCESCONI, Enrico: The flood, the channels and the dykes: Managing legal information in a globalized and

- digital world. Law, Ontologies and the Semantic Web: Channelling the Legal Information Flood, 188 2009, S.3
- **JORDAN, Stefan:** Theorien und Methoden der Geschichtswissenschaft. 4. Auflage. UTB GmbH, 2018
- **KINDLING, Maxi et al.:** Forschungsdatenmanagement an Hochschulen: Das Beispiel der Humboldt-Universität zu Berlin. LIBREAS. Library Ideas, 2013, Nr. 23 (URL: https://libreas.eu/ausgabe23/07kindling)
- KIRN, Paul: Einführung in die Geschichtswissenschaft. Berlin, Boston, 2015
- KLAPP, Sabine: Die "Äbtissinnenrechnungen" des Klosters St. Klara auf dem Werth. Alltag und Festtag einer geistlichen Frauengemeinschaft Straßburgs am Ausgang des Mittelalters. Zeitschrift für die Geschichte des Oberrheins Bd. 159
- **KOBLER, Maximilian:** Qualität von Prozessmodellen: Kennzahlen zur analytischen Qualitätssicherung bei der Prozessmodellierung. Logos Verlag Berlin GmbH, 2010
- KOCKA, Jürgen: Theorien in der Geschichtswissenschaft. In Theoriedebatte und Geschichtsunterricht: Sozialgeschichte, Paradigmawechsel und Geschichtsdidaktik in der aktuellen Diskussion. Vorträge auf der Jahrestagung des Landesverbandes nordrhein-westfälischer Geschichtslehrer am 23. November 1981 in Essen. Paderborn: Schöningh, 1982, S.7–27
- **LATOUR, Bruno et al.:** Pandora's hope: essays on the reality of science studies. Harvard university press, 1999
- **LINCKELS, Serge/MEINEL, Christoph:** E-librarian service: user-friendly semantic search in digital libraries. Springer Science & Business Media, 2011
- **MAGERSKI, Christine et al.:** Wie schreibt man Geschichte? Zagreber Germanistische Beiträge, 2009, Nr. 18, S.3–19
- MANN, Golo: Plädoyer für die historische Erzählung. In Kocka, Jürgen/Nipperdey, Thomas (Hrsg.): Theorie und Erzählung in der Geschichte. München, 1979, S.40–56
- MEIXNER, Uwe: Von der Wissenschaft der Ontologie. Logos (neue Folge), 1 1994, S.375–399
- **MUNZNER, Tamara:** Process and pitfalls in writing information visualization research papers. In Information visualization. Springer, 2008, S.134–153
- **MUSEN, Mark A:** The protégé project: a look back and a look forward. AI matters, 1 2015, Nr. 4, S.4–12

- NEHER, Günther/RITSCHEL, Bernd: Semantische Vernetzung von Forschungsdaten. In Stephan Büttner, Hans-Christoph Hobohm, Lars Müller (Hrsg.): Handbuch Forschungsdatenmanagement. Band 6, 2011, S.169–190
- **NEUWÖHNER, Andreas:** Haushalt und Finanzen im Spiegel kommunaler Rechnungen: die Stadt Paderborn im 17. Jahrhundert. In **Pätzold, Stefan/Stumpf, Marcus (Hrsg.):** Mittelalterliche und frühneuzeitliche Rechnungen als Quellen der landesgeschichtlichen Forschung. Münster, 2016, 11–50
- NÜSSEL, Friederike et al.: Offenbarung als Geschichte: Implikationen und Konsequenzen eines theologischen Programms. Vandenhoeck & Ruprecht, 2018
- **OPGENOORTH, Ernst/SCHULZ, Günther:** Einführung in das Studium der Neueren Geschichte. Paderborn / München / Wien / Zürich, 2010
- **PELLEGRINI, Tassilo/BLUMAUER, Andreas:** Semantic Web. Wege zur vernetzten Wissensgesellschaft. Berlin [ua] Springer 2006
- **PERSTLING, Matthias:** Multimediale Dokumentation und Edition mehrschichtiger Texte : das steirisch-landesfürstliche Marchfutterurbar von 1414/1426. Dissertation, 2013
- **PIOTROWSKI, Michael:** Digital Humanities. Computational Linguistics, and Natural Language Processing. Lectures on Language Technology and History 2016
- **POLLIN, Christopher:** Vom Suchen, Stöbern und Finden: Information Retrieval am Beispiel der Digitalen Sammlung des Hans Gross Kriminalmuseums. 2017
- **POLLIN, Christopher/Vogeler, Georg:** Semantically Enriched Historical Data. Drawing on the Example of the Digital Edition of the Ürfehdebucher der Stadt Basel". In WHiSe@ ISWC. 2017, S.27–32
- **POWERS, Shelley:** Practical RDF: solving problems with the resource description framework. O'Reilly Media, Inc., 2003
- **PREIM, Bernhard/DACHSELT, Raimund:** Interaktive systeme: Band 1: Grundlagen, Graphical User Interfaces, Informationsvisualisierung. 2. Auflage. Berlin / Heidelberg, 2010
- REICHE, Ruth/BECKER, Rainer/BENDER, Michael: Verfahren der Digital Humanities in den Geistes-und Kulturwissenschaften. Niedersächsische Staats-und Universitätsbibliothek Göttingen, 2014
- **REICHENBERGER, Klaus:** Grundlagen semantischer Netze. In Kompendium semantische Netze. Springer, 2010, S.3–19

- **ROBSON, Keith:** Accounting numbers as "inscription": Action at a distance and the development of accounting. Accounting, Organizations and Society, 17 1992, Nr. 7, 685–708
- **RUMBAUGH, James/JACOBSON, Ivar/BOOCH, Grady:** Unified modeling language reference manual, the. Pearson Higher Education, 2004
- SAHLE, Patrick: Vom editorischen Fachwissen zur digitalen Edition: Der Editionsprozeß zwischen Quellenbeschreibung und Benutzeroberfläche. In Thaller, Manfred (Hrsg.): FUNDUS Forum für Geschichte und ihre Quellen. Universität Köln, 2003 (URL: http://webdoc.sub.gwdg.de/edoc/p/fundus/2/sahle.pdf), 76–102
- **SAHLE, Patrick:** Digitale Editionsformen: Textbegriffe und Recodierung. Band 3, Books on Demand, 2013
- **SCHMIEDER, Felicitas/SOKOLL, Thomas:** Theorien und Methoden der Geschichtswissenschaft.
- SCHREIBER, Guus/RAIMOND, Yves: RDF 1.1 Primer. W3C working group note 2014
- **SCHRÖDER, Wilhelm Heinz:** Historische Sozialforschung: Forschungsstrategie-Infrastruktur-Auswahlbibliographie. Historical Social Research, Supplement 1988, Nr. 1
- SCHUBERT, Charlotte: Tagungsbericht: HT 2014: Close Reading and Distant Reading. Methoden der Altertumswissenschaften in der Gegenwart. In H-Soz-Kult. Göttingen, 2014 (URL: www.hsozkult.de/conferencereport/id/tagungsberichte-5625)
- SHIRKY, Clay: Ontology is overrated. Categories, Links and Tags 2005
- STACHOWIAK, Herbert: Allgemeine Modelltheorie. 1973
- STERTZER, Jennifer: Working with the Financial Records of George Washington: Document vs. Data. Digital Studies/le Champ Numérique, 2014 (URL: http://doi.org/10.16995/dscn.57)
- **STUCKENSCHMIDT, Heiner:** Ontologien: Konzepte, Technologien und Anwendungen. Springer-Verlag, 2009
- **SURE, York/STUDER, Rudi:** Methodology, tools & case studies for ontology based knowledge management. 2003
- **SWARTZ, Aaron:** Aaron Swartz's A Programmable Web: An Unfinished Work. Synthesis lectures on the semantic web: Theory and Technology, 3 2013, Nr. 2, S.1–64
- **THALLER, Manfred:** Historical Information Science: Is there such a Thing? New Comments on an old Idea [1993]. Historical Social Research/Historische Sozialforschung. Supplement, 2017, 260–286

- **THALLER, Manfred:** The Need for Standards: Data Modelling and Exchange [1991]. Historical Social Research/Historische Sozialforschung. Supplement, 2017, S.203–220
- **THALLER, Manfred:** Ungefähre Exaktheit. Theoretische Grundlagen und praktische Möglichkeiten einer Formulierung historischer Quellen als Produkte "unscharfer 'Systeme [1984]. Historical Social Research/Historische Sozialforschung. Supplement, 2017, S.138–159
- **TOMASEK, Kathryn/BAUMAN, Syd:** Encoding financial records for historical research. Journal of the Text Encoding Initiative 2013, Nr. 6
- VASOLD, Gunter: Das Itinerar Erzbischof Konrads IV. von Salzburg: 1291-1312; computergestützte Itinerarerstellung und Itineraranalyse. Selbstverl. d. Inst. für Geschichte d. Karl-Franzens-Univ. Graz, 1996
- VOGELER, Georg: Warum werden mittelalterliche und frühneuzeitliche Rechnungsbücher eigentlich nicht digital ediert? In Baum, Constanze/Stäcker, Thomas (Hrsg.): Grenzen und Möglichkeiten der Digital Humanities. 2015 (URL: http://www.zfdg.de/sb001_007)
- **VOGELER, Georg:** The 'assertive edition'. International Journal of Digital Humanities, 2019, 1–14
- VOGELER, Georg et al.: The Content of Accounts and Registers in their Digital Edition. XM-L/TEI, Spreadsheets, and Semantic Web Technologies. In Sarnowsky, Jürgen (Hrsg.): Konzeptionelle Überlegungen zur Edition von Rechnungen und Amtsbüchern des späten Mittelalters. Göttingen, 2016, S.13–41
- **VON BRANDT, Ahasver:** Werkzeug des Historikers: eine Einführung in die historischen Hilfswissenschaften. Band 33, W. Kohlhammer Verlag, 2007
- WELLER, Katrin: Ontologien. In Kuhlen, Rainer/Semar, Wolfgang/Strauch, Dietmar (Hrsg.): Grundlagen der praktischen Information und Dokumentation: Handbuch zur Einführung in die Informationswissenschaft und -praxis. 6. Auflage. Berlin and Bosten, 2013, S.S.207–218
- WELLMER, Albrecht: Georg Henrik von Wright "über "Erklärem" und "Verstehen". 1979 (URL: https://www.jstor.org/stable/42571419)
- **WERSIG, Gernot:** Information-Komunikation-Dokumentation. Band 5, Verlag Dokumentation. 1971
- **WINTERGRÜN, Dirk:** Netzwerkanalysen und semantische Datenmodellierung als heuristische Instrumente für die historische Forschung. Dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2019

- WOLF, Willi; König, E./zedler, P. (Hrsg.): Qualitative versus quantitative Forschung. Band Bd. I: Grundlagen qualitativer Forschung, Beltz, 1995, S.309–329
- WÜRZ, Simone: Methoden der Digital Humanities in der Bearbeitung und Erforschung mittelalterlicher Rechnungsbücher. Möglichkeiten und Grenzen am Beispiel der digitalen Edition der Augsburger Stadtrechnungsbücher. In Pätzold, Stefan/Stumpf, Marcus (Hrsg.): Mittelalterliche und frühneuzeitliche Rechnungen als Quellen der landesgeschichtlichen Forschung. Münster, 2016, 101–113
- **ZIEGLER, Walter:** Studien zum Staatshaushalt Bayerns in der zweiten Hälfte des 15. Jahrhunderts. Die regulären Kammereinkünfte Niederbayerns 1450-1500. München, 1981

Abbildungsverzeichnis

1	Zusammenhang zwischen Induktion und Deduktion in empirischen Wissen-	
	schaften, https://de.wikipedia.org/wiki/Empirie\#/media/Datei:Indul	ktion-Deduktion
	svg, 09.11.2019	12
2	Nichteindeutigkeit nicht-formaler Modelle, KÖNIG Bettina: Vorlesung "Mo-	
	dellierungsmethoden der Informatik", http://www.ti.inf.uni-due.de/filea	dmin/
	$\verb"public/teaching/mod/slides/ws201112/einfuehrung.pdf", 10.06.2019~.$	20
3	Beispiel für ein Klassendiagramm nach UML, https://de.wikipedia.org/	
	wiki/Unified_Modeling_Language, 10.06.2019	22
4	Signal, Daten, Information und Wissen. POLLIN Christopher: Vom Suchen,	
	Stöbern und Finden: Information Retrieval am Beispiel der Digitalen Samm-	
	lung des Hans Gross Kriminalmuseums, Masterarbeit Graz, S.21	24
5	Datenpyramide geisteswissenschaftlicher Forschungsdaten im institutionellen	
	Kontext, ANDORFER, Peter: Forschungsdaten in den (digitalen) Geisteswis-	
	senschaften: Versuch einer Konkretisierung, 2015, S.14	25
6	1. Seite von George Washington, 1750-72, <i>Ledger Book A</i> , Library of Congress,	
	Manuscript Division, STERTZER Jennifer: http://doi.org/10.16995/dscn.	
	57	32
7	Seite 3 des Objektes 00133_sv0061 der Stagville Accounts, https://fromthepag	e.
	com/agbedavies/stagville-accounts/00133-sv0061/display/7884	33
8	Portrait von Laban Morey Wheaton, Vgl. CLARK, George Faber: A History of	
	the Town of Norton, Bristol County, Massachusetts, from 1669-1859. Crosby,	
	Nichols, and Company, and author at Norton, 1859, S.497	35
9	Seite 100 des Daybook, http://hdl.handle.net/11040/17982, 1828-1859	
10	Semantic Web Stack, https://en.wikipedia.org/wiki/Semantic_Web_Stac	
10	29.12.2019	41
11	Beispiel eines Tripel	42
12	Visualisierung eines Graphen auf Basis eines RDF-Datensatz, https://www.	
	w3.org/TR/rdf11-primer/, 10.04.2019	43
13	RDFs-Beispiel auf Basis des FOAF-Vokabulars, eigene Darstellung	46
14	Graphische Darstellung des RDF, eigene Darstellung, 01.06.2019	55
15	Screenshot der Product Treemap des Atlas of Economic Complexity, Exporte	33
13	der USA im Jahr 2016, atlas.cid.harvard.edu 09.12.2019	59
16	Treemap nach Häufigkeit von Waren und Dienstleistungen. Gruppiert nach tie-	
10	rischen (hellgrün) und pflanzliche (dunkelgrün) Lebensmittel, Dienstleistungen	
	(orange), Rohstoffen (hellblau), Textilien (türkis) und sonstigen Waren (dunkel-	
		60
	blau), eigene Darstellung, erstellt mit Tableau Desktop	UU

17 Geldfluss nach Jahren (x-Achse) und Summe der Geldflüsse (y-Achse). Stacks nach einzelnen Akteuren, eigene Darstellung, erstellt mit Tableau Desktop . . . 62