TD 6 : Chaîne de Markov, classification des états

Notations : $x \leadsto y$ la relation transitive « y est accessible à partir de l'état x » $x \sim y$ la relation d'équivalence « x et y communiquent »

Exercice 1:

On considère sur $E = \{1, \dots, 6\}$ la matrice de transition P (incomplète)

$$P = \begin{pmatrix} \cdot & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & \cdot & 0 & \frac{3}{4} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & \cdot & 0 & 0 \\ \frac{1}{4} & 0 & \frac{1}{2} & 0 & \cdot & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdot \end{pmatrix}$$

- 1. Compléter la matrice P pour en faire une matrice de transition.
- 2. Représenter le graphe (orienté) de la chaîne de Markov.
- 3. Quels sont les états récurrents et transitoires de cette chaîne? Déterminer toutes les classe d'équivalences d'états pour la relation \sim .
- 4. Refaire l'exercice en changeant la valeur de P(5,6) à $\frac{1}{4}$.

Exercice 2:

Soit P une matrice de transition sur E dénombrable.

1. Montrer que $x \rightsquigarrow y$ si et seulement s'il existe $n \ge 0$ et des états a_1, \ldots, a_{n-1} de E tels que

$$P(x, a_1) > 0, P(a_1, a_2) > 0, \dots, P(a_{n-1}, y) > 0.$$

Montrer qu'il existe des états $x, a_1, \ldots, a_{n-1}, y$ tous distincts entre eux.

Soit Q une autre matrice de transition sur E vérifiant

$$\forall x, y \in E, x \neq y, \quad P(x, y) > 0 \implies Q(x, y) > 0.$$

2. Montrer que si $x \rightsquigarrow y$ pour P alors $x \rightsquigarrow y$ pour Q. En déduire que si la chaîne associée à P est irréductible alors il en est de même pour celle associée à Q.

Exercice 3:

Soit une chaîne de Markov à valeurs dans E de matrice de transition P. On suppose qu'il existe un état $x_0 \in E$ tel que

$$\begin{cases} \forall x \in E \setminus \{x_0\} \,, & x_0 \leadsto x & i.e. \ x_0 \ \text{conduit à tout autre état} \ x \\ \forall x \in E, & \mathbf{P}_x \left[\tau_{x_0} < +\infty\right] = 1, & \text{on atteint} \ x_0 \ \text{en un temps fini} \end{cases}$$

où $\tau_{x_0} = \inf\{n \ge 0, X_n = x_0\}$. Montrer que la chaîne est récurrente irréductible.

Exercice 4:

On considère la chaîne de Markov $(X_n)_{n\geqslant 0}$ sur ${\bf N}$ de noyau de transition P défini par

$$\forall n \ge 0, \quad P(n,0) = p_n, \quad P(n,n+1) = 1 - p_n,$$

où pour tout $n \ge 0, p_n \in]0,1[$.

- 1. Montrer que la chaîne est irréductible.
- 2. Montrer que la chaîne est récurrente si et seulement si $\sum_{n=0}^{\infty} p_n = +\infty$ (étudier la récurrence en 0).

3. Etudier la récurrence dans les 3 cas : $p_n = p$ pour tout $n \ge 0$, $p_n = \frac{1}{n+1}$ et $p_n = \alpha^n$ ($\alpha \in]0,1[$).

Exercice 5:

On considère un serveur informatique qui reçoit des requêtes informatiques. Pour traiter ces requêtes informatiques, le serveur crée une *file d'attente* des requêtes. On suppose que le temps de traitement d'une requête est constant (le même pour toutes les requêtes) et que le serveur ne peut traîter qu'une requête à la fois. On considère que le temps est discret et l'unité de temps correspond à ce temps de traitement constant.

On note ξ_{n+1} le nombre de requêtes arrivant pendant la période de temps [n, n+1[et on suppose que la suite $(\xi_n)_{n\geqslant 1}$ est une suite i.i.d. de loi μ .

On note X_n le nombre de requêtes dans la file d'attente à l'instant n et l'on suppose X_0 indépendant de la suite $(\xi_n)_{n\geqslant 1}$.

- 1. Montrer que $(X_n)_{n\geqslant 0}$ est une chaîne de Markov homogène et déterminer sa matrice de transition.
- 2. Montrer que si $\mathbf{E}\left[\xi_{1}\right] > 1$ alors $\lim_{n} X_{n} = +\infty$ p.s. En déduire que la chaîne est transitoire.
- 3. Montrer que si $\mathbf{E}[\xi_1] < 1$ alors l'état 0 est récurrent.

Exercice 6:

Soit $(X_n)_{n\geqslant 0}$ une chaîne de Markov sur E de matrice de transition P. On note $\mathscr{F}_n=\sigma(X_0,\ldots,X_n)$ et \mathbf{F} la filtration $(\mathscr{F}_n)_{n\geqslant 0}$. On suppose la chaîne récurrente irréductible.

1. Soit $\tau = \inf\{n \ge 1, X_n \ne X_0\}$. Montrer que τ est un **F**-temps d'arrêt fini p.s. et déterminer sa loi. Déterminer la loi de X_{τ} .

On définit la suite de variables aléatoires $(\tau_n)_{n\geqslant 0}$ par récurrence

$$\tau_0 = 0, \quad \tau_{n+1} = \inf\{k > \tau_n, X_k \neq X_{\tau_n}\}$$

- 2. Monter que $(\tau_n)_{n\geqslant 0}$ est une suite de F-temps d'arrêt finis p.s.
- 3. On pose pour tout $n \ge 0$, $Y_n = X_{\tau_n}$. Montrer que $(Y_n)_{n \ge 0}$ est une chaîne de Markov et déterminer sa matrice de transition.

Cette chaîne est-elle irréductible?

Exercice 7:

On considère une chaîne de Markov $(X_n)_{n\geqslant 0}$ sur E dénombrable de matrice P. Soit $C\subset E$. On note $\tau_C=\inf\{n\geqslant 0, X_n\in C\}$ le temps d'entrée dans C.

1. Montrer que $u(x) = \mathbf{P}_x \left[\tau_C < +\infty \right]$ est solution de

$$u(x) = \begin{cases} 1 & \text{si } x \in C \\ Pu(x) & \text{si } x \notin C \end{cases}$$

2. Montrer que $v(x) = \mathbf{E}_x [\tau_C]$ est solution de

$$v(x) = \begin{cases} 0 & \text{si } x \in C \\ 1 + Pv(x) & \text{si } x \notin C \end{cases}$$