Міністерство освіти і науки України Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського"

3ВІТ з лабораторної роботи №4 Діаграма Вороного

з дисципліни: Алгоритмічні основи обчислювальної геометрії та комп'ютерної графіки

Виконав:

студент групи КМ-32

Терпіловський Нікіта

Київ КПІ ім. Ігоря Сікорського 2024

Завдання

Розробити програмний засіб, який знаходить центри ваги зв'язаних областей множини точок, заданих координатами, та будує діаграму Вороного для центрів ваги. Результат візуалізується на координатній площині та зберігається у файл у графічному форматі

Виконання роботи

1) Зчитування даних:

Зчитування координат точок здійснюється з текстового файлу за допомогою методу numpy.loadtxt

Формат файлу: кожен рядок містить координати однієї точки у вигляді "х у"

2) Визначення зв'язаних областей:

Для подання множини точок на полотні було створено двовимірний масив розміру полотна за допомогою numpy.zeros

Зв'язані області визначаються за допомогою функції scipy.ndimage.label, яка ідентифікує множини сусідніх точок

3) Розрахунок центрів ваги:

Для кожної зв'язаної області знайдено центр ваги (середнє арифметичне координат точок). Обчислення виконано за допомогою numpy.argwhere для визначення точок певної області та numpy.mean для знаходження середнього значення координат

4) Побудова діаграми Вороного:

Діаграма Вороного була побудована для множини центрів ваги з використанням scipy.spatial.Voronoi та візуалізована за допомогою scipy.spatial.voronoi_plot_2d

5) Візуалізація:

Всі точки початкового датасету нанесені чорним кольором із насиченістю 10% за допомогою matplotlib.pyplot.scatter

Центри ваги були відображені червоними колами діаметром 5 пікселів Розмір полотна було встановлено 960х540 пікселів через параметр figsize

6) Збереження результатів:

Зображення зберігається у файл формату PNG за допомогою matplotlib.pyplot.savefig

Використані бібліотеки та методи

1) NumPy:

numpy.loadtxt: для зчитування координат із файлу

numpy.zeros: для створення полотна

numpy.argwhere: для знаходження точок у певній області

питру.теап: для розрахунку центрів ваги

2) SciPy:

scipy.ndimage.label: для визначення зв'язаних областей scipy.spatial.Voronoi: для побудови діаграми Вороного scipy.spatial.voronoi_plot_2d: для візуалізації діаграми Вороного

3) Matplotlib:

matplotlib.pyplot.scatter: для нанесення точок і центрів ваги matplotlib.pyplot.savefig: для збереження графіка у файл