CLAIMS

- 1. A deconvolution method of agile pulse repetition time sampled signals $x(t_m)$ comprising the following steps:
 - combining the pulses with the same carrier frequency in a burst;
 - transforming the obtained signals from time to frequency domain; and
 - deconvoluting of a spectra of the frequency domain.
- 2. The deconvolution method according to claim 1, further comprising computing of the discrete Fourier transform of the samples by frequency within the time to frequency transformation step.
- 3. The deconvolution method according to claim 1, further comprising, within the time to frequency transformation step, the following sub-steps:
 - computing a sampling scheme spectrum; and
 - searching L non-zero components of the sampling scheme spectrum.
- 4. The deconvolution method according to claim 2 further comprising, within the time to frequency transformation step, the following sub-steps:
 - computing a sampling scheme spectrum; and
 - searching L non-zero components of the sampling scheme spectrum.
- 5. The deconvolution method according to claim 1 further comprising, if $x(t_m)$ is an irregular pulse repetition time sampled signal, an irregular samples $x(t_m)$ to regular zero-padded samples $r(iT_c)$ conversion step between the combination and the time to frequency transformation steps].
- 6. The deconvolution method according to claim 2 further comprising, if $x(t_m)$ is an irregular pulse repetition time sampled signal, an irregular samples $x(t_m)$ to regular zero-padded samples $r(iT_c)$ conversion step between the combination and the time to frequency transformation steps.
- 7. The deconvolution method according to claim 3 further comprising, if $x(t_m)$ is an irregular pulse repetition time sampled signal, an irregular

samples $x(t_m)$ to regular zero-padded samples $r(iT_{\varepsilon})$ conversion step between the combination and the time to frequency transformation steps.

- 8. The deconvolution method according to claim 4 further comprising, if $x(t_m)$ is an irregular pulse repetition time sampled signal, an irregular samples $x(t_m)$ to regular zero-padded samples $r(iT_{\varepsilon})$ conversion step between the combination and the time to frequency transformation steps.
- 9. The deconvolution method according to claim 1 further comprising, between the time to frequency transformation step and the deconvolution step, the following steps:
 - isolating of the clutter spectra by assuming clutter spreads over more than a few range gates;
 - estimating of the clutter spectral lines from the mean and the width of the isolated clutter spectra; and
 - subtracting of the estimated clutter spectra from the total spectrum.
 - 10. A deconvolution system of agile pulse repetition time sampled signal $x(t_m)$ comprising:
 - means for combining the pulses with the same frequency in a burst;
 - means for transforming these pulses from time to frequency domain;
 and
 - means for deconvolving of the spectra.
- 11. The deconvolution system according claim 10, further comprising means for converting irregular samples $x(t_m)$ to regular zero-padded samples $r(iT_\varepsilon)$, these means for converting receiving the irregular pulses grouped by frequency from the means for combining and transmits the zero-padded samples to the means for transforming.
- 12. The deconvolution system according to claim 11, further comprising between the means for transforming and the means for deconvolving:
 - means for isolating the clutter spectra in dft(r) by assuming clutter spreads over more than a few range gates;

- means for estimating the clutter spectral lines from the mean and the width of the isolated clutter spectra; and
- means for subtracting the estimated clutter spectra from the total spectrum.
- 13. The deconvolution system according to claim 12, further comprising between the means for transforming and the means for deconvolving:
 - means for isolating the clutter spectra in dft(r) by assuming clutter spreads over more than a few range gates;
 - means for estimating the clutter spectral lines from the mean and the width of the isolated clutter spectra; and
 - means for subtracting the estimated clutter spectra from the total spectrum dft(r).
 - 14. An emitting/receiving system comprising:

an antenna;

a reference oscillator;

means for synthesising a carrier frequency connected to the reference oscillator:

means for synthesising a pulse repetition frequency connected to the reference oscillator; and

an analogue to digital converter and a processor comprising the processor implements the deconvolution method according to claim 1.

15. An emitting/receiving system comprising:

an antenna;

a reference oscillator;

means for synthesising a carrier frequency connected to the reference oscillator, means for synthesising a pulse repetition frequency connected to the reference oscillator; and

an analogue to digital converter and a processor comprising the processor implements the deconvolution method according to claim 2.

16. The emitting/receiving system comprising:

an antenna;

a reference oscillator:

means for synthesising a carrier frequency connected to the reference oscillator, means for synthesising a pulse repetition frequency connected to the reference oscillator; and

an analogue to digital converter and a processor comprising the processor implements the deconvolution method according to claim 5.

- 17. The deconvolution method according to claim 1, wherein said method is performed in a radar system.
- 18. The deconvolution system according to claim 10, whrein said system is a radar system.
- 19. The emitting/receiving system according to claim 14, wherein said system is a radar system.
- 20. The method according to claim 1, wherein said method is performed as an anti-jamming method.