## Project 1, Ordinary differential equations with Neural Networks and Recurrent Neural Networks

FYS5429/9429, Advanced machine learning and data analysis for the physical sciences, University of Oslo, Norway

Spring semester 2025, deadline March 21

## Solving differential equations with neural networks

Here we describe the possible differential equations we can study first with neural networks and thereafter with recurrent neural networks and/or Autoenconders. Feel free to use own codes or TensorFlow/Keras.PyTorch or toher libraries. Furthermore, you can change the type of differential equations.

The differential equations are given by the so-called Lorenz attractor model, and read

$$\frac{dx}{dt} = \sigma \left( y - x \right),\,$$

where  $\sigma = 10$  is a constant

$$\frac{dy}{dt} = x\left(\rho - z\right) - y,$$

with  $\rho = 28$  and

$$\frac{dz}{dt} = xy - \beta z$$

with  $\beta = 8/3$  as our final constant.

The following function is a simple function which sets up the solution using the ordinary differential library which follows **NumPy**. Here we have fixed the time sted  $\Delta t = 0.01$  and the final time  $t_f = 8$ .

The program sets 100 random initial values and produces inputs and outputs for a neural network calculations. The inputs are given by the values of the array  $\boldsymbol{x}$  (which contains x, y, z as functions of time) for the time step  $\boldsymbol{x}_t$ . The other array defined by  $\boldsymbol{x}_{t+1}$  contains the outputs (or targets) which we want the neural network to reproduce.

```
# Common imports
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
import os
# Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"
if not os.path.exists(PROJECT_ROOT_DIR):
    os.mkdir(PROJECT_ROOT_DIR)
if not os.path.exists(FIGURE_ID):
    os.makedirs(FIGURE_ID)
if not os.path.exists(DATA_ID):
    os.makedirs(DATA_ID)
def image_path(fig_id):
    return os.path.join(FIGURE_ID, fig_id)
def data_path(dat_id):
   return os.path.join(DATA_ID, dat_id)
def save_fig(fig_id):
    plt.savefig(image_path(fig_id) + ".png", format='png')
# Selection of parameter values and setting array for time
dt =0.01; tfinal = 8
t = np.arange(0,tfinal+dt, dt)
beta =8.0/3.0; rho = 28.0; sigma = 10.0
# define the inputs and outputs for the neural networks
nninput = np.zeros((100*len(t)-1,3))
nnoutput = np.zeros((100*len(t)-1,3))
# Define the equations to integrate
def lorenz_derivative(xyz, t0, sigma=sigma,beta=beta,rho=rho):
    x, y, z = xyz
   return [sigma*(x-y), x*(rho-z)-y, x*y-beta*z]
# generate 100 random initial values
x0 = -15.0+30.0*np.random.random((100,3))
```

The input and output variables are those we will start trying our network with. Your first taks is to set up a neural code (either using your own code or TensorFlow/PyTorch or similar libraries)) and use the above data to a prediction for the time evolution of Lorenz system for various values of the randomly chosen initial values. Study the dependence of the fit as function of the architecture of the network (number of nodes, hidden layers and types of activation functions) and various regularization schemes and optimization methods like standard gradient descent with momentum, stochastic gradient descent with batches and with and without momentum and various schedulers for the learning rate.

Feel free to change the above differential equations. As an example, consider the following harmonic oscillator equations solved with the Runge-Kutta to fourth order method. This is a one-dimensional problem and it produces a position  $x_t$  and velocity  $v_t$ . You could now try to fit both the velocities and positions using much of the same recipe as for Lorenz attractor. You will find it convenient to analyze one set of initial conditions first. The code is included here.

This code is an example code that solves Newton's equations of motion with a given force and produces an output which in turn can be used to train a neural network

```
# Common imports
import numpy as np
import pandas as pd
from math import *
import matplotlib.pyplot as plt
import os

# Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"

if not os.path.exists(PROJECT_ROOT_DIR):
    os.mkdir(PROJECT_ROOT_DIR)
```

```
if not os.path.exists(FIGURE_ID):
    os.makedirs(FIGURE_ID)
if not os.path.exists(DATA_ID):
    os.makedirs(DATA_ID)
def image_path(fig_id):
    return os.path.join(FIGURE_ID, fig_id)
def data_path(dat_id):
    return os.path.join(DATA_ID, dat_id)
def save fig(fig id):
    plt.savefig(image_path(fig_id) + ".png", format='png')
def SpringForce(v,x,t):
   note here that we have divided by mass and we return the acceleration
    return -2*gamma*v-x+Ftilde*cos(t*Omegatilde)
def RK4(v,x,t,n,Force):
    for i in range(n-1):
# Setting up k1
        k1x = DeltaT*v[i]
       k1v = DeltaT*Force(v[i],x[i],t[i])
# Setting up k2
        vv = v[i]+k1v*0.5
       xx = x[i]+k1x*0.5
        k2x = DeltaT*vv
       k2v = DeltaT*Force(vv,xx,t[i]+DeltaT*0.5)
# Setting up k3
        vv = v[i]+k2v*0.5
        xx = x[i]+k2x*0.5
        k3x = DeltaT*vv
        k3v = DeltaT*Force(vv,xx,t[i]+DeltaT*0.5)
# Setting up k4
        vv = v[i]+k3v
        xx = x[i]+k3x
        k4x = DeltaT*vv
       k4v = DeltaT*Force(vv,xx,t[i]+DeltaT)
# Final result
        x[i+1] = x[i] + (k1x+2*k2x+2*k3x+k4x)/6.
        v[i+1] = v[i] + (k1v+2*k2v+2*k3v+k4v)/6.
        t[i+1] = t[i] + DeltaT
```

```
# Main part begins here
DeltaT = 0.001
#set up arrays
tfinal = 20 # in dimensionless time
n = ceil(tfinal/DeltaT)
# set up arrays for t, v, and x
t = np.zeros(n)
v = np.zeros(n)
x = np.zeros(n)
# Initial conditions (can change to more than one dim)
x0 = 1.0
v0 = 0.0
x[0] = x0
v[0] = v0
gamma = 0.2
Omegatilde = 0.5
Ftilde = 1.0
# Start integrating using Euler's method
# Note that we define the force function as a SpringForce
RK4(v,x,t,n,SpringForce)
# Plot position as function of time
fig, ax = plt.subplots()
ax.set_ylabel('x[m]')
ax.set_xlabel('t[s]')
ax.plot(t, x)
fig.tight_layout()
save_fig("ForcedBlockRK4")
plt.show()
```

The next step is to include recurrent neural networks.

## Introduction to numerical projects

Here follows a brief recipe and recommendation on how to write a report for each project.

• Give a short description of the nature of the problem and the eventual numerical methods you have used.

- Describe the algorithm you have used and/or developed. Here you may find it convenient to use pseudocoding. In many cases you can describe the algorithm in the program itself.
- Include the source code of your program. Comment your program properly.
- If possible, try to find analytic solutions, or known limits in order to test your program when developing the code.
- Include your results either in figure form or in a table. Remember to label your results. All tables and figures should have relevant captions and labels on the axes.
- Try to evaluate the reliability and numerical stability/precision of your results. If possible, include a qualitative and/or quantitative discussion of the numerical stability, eventual loss of precision etc.
- Try to give an interpretation of you results in your answers to the problems.
- Critique: if possible include your comments and reflections about the exercise, whether you felt you learnt something, ideas for improvements and other thoughts you've made when solving the exercise. We wish to keep this course at the interactive level and your comments can help us improve it.
- Try to establish a practice where you log your work at the computerlab. You may find such a logbook very handy at later stages in your work, especially when you don't properly remember what a previous test version of your program did. Here you could also record the time spent on solving the exercise, various algorithms you may have tested or other topics which you feel worthy of mentioning.

## Format for electronic delivery of report and programs

The preferred format for the report is a PDF file. You can also use DOC or postscript formats or as an ipython notebook file. As programming language we prefer that you choose between C/C++, Fortran2008 or Python. The following prescription should be followed when preparing the report:

- Send us an email in order to hand in your projects with a link to your GitHub/Gitlab repository.
- In your GitHub/GitLab or similar repository, please include a folder which
  contains selected results. These can be in the form of output from your
  code for a selected set of runs and input parameters.

Finally, we encourage you to collaborate. Optimal working groups consist of 2-3 students. You can then hand in a common report.