

TNI	SERTION SORT(A)	cost	times
Insertion-Sort(A)		cosi	umes
1	for $j = 2$ to A. length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 j-1]$.	0	n-1
4	i = j - 1	c_4	n-1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	c_8	n-1

WELCOME TO CS 24!

Problem Solving with Computers-II

Read the syllabus. Know what's required. Know how to get helper and the syllabus.

Enrollment status:

120/120

Waitlist: 23

About me

- Diba Mirza (diba@ucsb.edu)
 - Assistant Teaching Professor, Computer Science
 - PhD (Computer Engineering, UCSD)
- Office hours (starting next week 1/22):
 - W: 11a -noon, F: noon 1p Or by appointment
 - Location: HFH 1155
- You can reach me via
 - Piazza (highly recommended)
 - Email: Include [CS24] on the subject line

Course staff - Learn their names!

TAs Lead tutors

Course staff

TAs

Mohith

Lead tutors

Madhu

Arthur

TAs and tutors:

- One-one help in during "close "open labs"
- Feedback on code
- Any question related to CS, internships, courses, UCSB..

Aesha

Eliza

Dheeraj

Adarsha Iris Tina

About this course

You will learn to:

- Design and implement larger programs that run fast
- Organize data in programs using data structures
- Analyze the complexity of your programs

INSERTION-SORT (A) cost times 1 **for** j = 2 **to** A.length c_1 n2 key = A[j] c_2 n-13 // Insert A[j] into the sorted sequence A[1..j-1]. 0 n-14 i = j-1 c_4 n-15 **while** i > 0 and A[i] > key c_5 $\sum_{j=2}^{n} t_j$ 6 A[i+1] = A[i] c_6 $\sum_{j=2}^{n} (t_j-1)$ 7 i = i-1 c_7 $\sum_{j=2}^{n} (t_j-1)$ 8 A[i+1] = key c_8 n-1

Data Structures and C++

Complexity Analysis

Course Logistics

- Coure website: https://ucsb-cs24.github.io/s19/
- Grading
 - Homeworks: 10%
 - Lab assignments: 15%
 - Programming assignments: 20%
 - Midterm Exams: 25%
 - Final Examination: 30%

NO MAKEUPS ON EXAMS!

- You have 24 hour grace period to submit the labs. DO NOT contact the instructor or TAs for extensions unless you have a real emergency
- To complete the labs you need a college of engineering account. If you don't have one yet, send an email to help@engineering.ucsb.edu

iClickers: You must bring them

- Buy an iClicker at the Bookstore
- Bring your iclicker to class

Required textbook

 Michael Main and Walter Savitch. Data Structures and Other Objects Using C++ (4th edition), Addison-Wesley, 2011.

Recommended textbook

Problem Solving with C++, Walter Savitch, Edition 9

You must attend class and lab sections
You must prepare for class
You must participate in class

Getting help

- Come to office hours and introduce yourself
- Setup a regular time to meet outside of section time with TAs and tutors
- Communicate with the staff in person and remotely on:

PIAZZA!

Clickers out – frequency AC

About you...

What is your familiarity/confidence with programming in C++?

- A. Know nothing or almost nothing about it.
- B. Used it a little, beginner level.
- C. Some expertise, lots of gaps though.
- D. Lots of expertise, a few gaps.
- E. Know too much; I have no life.

About you...

What is your familiarity/confidence with using version control – git or subversion?

- A. Know nothing or almost nothing about it.
- B. Used it a little, beginner level.
- C. Some expertise, lots of gaps though.
- D. Lots of expertise, a few gaps.
- E. Know too much; I have no life.

About you...

What is your familiarity/confidence with C++ memory-management?

- A. Know nothing or almost nothing about it.
- B. Used it a little, beginner level.
- C. Some expertise, lots of gaps though.
- D. Lots of expertise, a few gaps.
- E. Know too much; I have no life.

Clickers, Peer Instruction, and PI Groups

- Find 1-2 students sitting near you. If you don't have any move.
- Introduce yourself.
- This is your initial PI group (at least for today)
- Discuss what you hope to get out of this class.

Procedural Programming

- Break down a problem into sub tasks (functions)
- Algorithm to bake a cake
 - Preheat the oven to 350F
 - Get the ingredients: 2 eggs, 1 cup flour, 1 cup milk
 - Mix ingredients in a bowl
 - Pour the mixture in a pan
 - Place in the over for 30 minutes

Object Oriented Programming: A cake baking example

- Solution to a problem is a system of interacting objects
- An object has attributes and behavior
- What are the objects in this example?
 - 1. Preheat the oven to 350F
 - 2. Get the ingredients: 2 eggs, 1cup flour, 1 cup milk
 - 3. Mix ingredients in a bowl
 - 4. Pour the mixture in a pan
 - 5. Place in the over for 30 minutes

Objects have attributes and behavior: A cake baking example

Object	Attributes	Behaviors
Oven	Size Temperature Number of racks	Turn on Turn off Set temperature
Bowl	Capacity Current amount	Pour into Pout out
Egg	Size	Crack Separate(white from yolk)

A class: pattern for describing similar objects

A generic pattern that is used to describe objects that have similar attributes and behaviors

e.g. a bowl and a pan may be described by the same class

```
class Dish{
    void pourIn( double amount);
    void pourOut(double amount);
    double capacity;
    double currentAmount;
};
```

Objects vs classes

```
class Dish{
    void pourIn( double amount);
    void pourOut(double amount);
    double capacity;
    double currentAmount;
};
//Creating objects of this class
```

Concept: Classes describe objects

- Every object belongs to (is an instance of) a class
- An object may have fields, or variables
 - The class describes those fields
- An object may have methods
 - The class describes those methods
- A class is like a template, or cookie cutter

Concept: Classes are like Abstract Data Types

- An Abstract Data Type (ADT) bundles together:
 - some data, representing an object or "thing"
 - the operations on that data
- The operations defined by the ADT are the only operations permitted on its data
- ADT = classes + information hiding

```
class Dish{
public:
    void pourIn( double amount);
    void pourOut(double amount);
private:
    double capacity;
    double currentAmount;
};
```

Example: A "Rabbit" object

- You could (in a game, for example) create an object representing a rabbit
- It would have attributes:
 - How hungry it is
 - How frightened it is
 - Its location
- And methods:
 - eat, hide, run, dig

Approximate Terminology

- instance = object
- field = instance variable
- method = function
- sending a message to an object = calling a function

Some advice on designing classes

- Always, always strive for a narrow interface
- Follow the principle of information hiding:
 - the caller should know as little as possible about how the method does its job
 - the method should know little or nothing about where or why it is being called
- Make as much as possible private
- Your class is responsible for it's own data; don't allow other classes to easily modify it!

What we have spoken about so far?

- Class = Data + Member Functions.
- Abstract Data Type = Class + information hiding
- How to activate member functions.
- But you still need to learn how to write the bodies of a class's methods.

Next time

Demo converting a procedural program to a OOP style program