10.1: Parametric Equations - Problem Set

Tashfeen Omran

October 2025

Parametric Equations Problem Set

Problems

- 1. For the parametric equations $x = 3t^2 1$, $y = t^3 t$, find the coordinates of the point for t = -2.
- 2. For the parametric equations $x = e^{2t}$, $y = \ln(t+1)$, find the coordinates of the point for t = 0.
- 3. Eliminate the parameter to find the Cartesian equation for x = 2t + 5, y = 4t 1.
- 4. Eliminate the parameter to find the Cartesian equation for $x = \sqrt{t-3}$, y = t+1. State the domain for the resulting equation.
- 5. Eliminate the parameter to find the Cartesian equation for $x = e^{-t}$, $y = 3e^{2t}$.
- 6. Eliminate the parameter to find the Cartesian equation for $x = \frac{1}{t+1}$, $y = \frac{t}{t+1}$.
- 7. Eliminate the parameter to find the Cartesian equation for $x = 5\cos(t)$, $y = 5\sin(t)$.
- 8. Eliminate the parameter to find the Cartesian equation for $x = 4\cos(t) + 1$, $y = 3\sin(t) 2$.
- 9. Eliminate the parameter to find the Cartesian equation for $x = 3\sec(t)$, $y = 4\tan(t)$.
- 10. Eliminate the parameter to find the Cartesian equation for $x = \cos(2t)$, $y = \cos(t)$. (Hint: Use a double-angle identity).
- 11. Sketch the curve for x = t 1, $y = t^2 + 4$ for $-1 \le t \le 2$. Indicate the orientation with an arrow.
- 12. Sketch the curve for $x = t^3 3t$, $y = t^2$. Indicate the orientation.
- 13. Sketch the curve for $x = 2\sin(t)$, $y = \cos^2(t)$. Indicate the orientation.
- 14. Sketch the curve for $x = \sqrt{t}$, y = t 2. What portion of the Cartesian curve is traced? Indicate the orientation.
- 15. Sketch the curve for $x = 4\sin(t)$, $y = 4\cos(t)$ for $0 \le t \le \pi$. Indicate the orientation.
- 16. Sketch the curve for $x = 1 + \ln(t)$, $y = t^2$ for t > 0. Indicate the orientation.
- 17. The path of a particle is given by $x = 2 t^2$, y = t. Sketch the curve and indicate the direction of motion as t increases.
- 18. Sketch the curve defined by $x = e^t$, $y = e^{-t}$. Indicate the orientation.
- 19. A particle moves according to $x = 6\cos(\pi t)$, $y = 6\sin(\pi t)$. How long does it take to complete one full revolution? Is the motion clockwise or counter-clockwise?
- 20. A particle moves on an ellipse given by $x = 5\sin(t)$, $y = 2\cos(t)$, for $0 \le t \le 4\pi$. Describe the motion.
- 21. The position of a particle is given by x = 2t, $y = \cos(\pi t)$. Describe the particle's horizontal and vertical motion. Is the overall motion periodic?
- 22. A Lissajous figure is created by $x = \sin(t)$, $y = \sin(2t)$. Sketch the curve for $0 \le t \le 2\pi$.

- 23. Find a set of parametric equations for the line y = 7x 3.
- 24. Find a set of parametric equations for the parabola $x = y^2 4y + 1$.
- 25. Find a set of parametric equations for the ellipse $\frac{(x-2)^2}{25} + \frac{(y+4)^2}{9} = 1$.
- 26. Find the parametric equations for the line segment starting at (1,6) and ending at (-3,2).
- 27. A projectile is launched from ground level with an initial speed of 100 m/s at an angle of 30°. Using $g \approx 9.8 \text{ m/s}^2$, the parametric equations are $x(t) = (100\cos(30^\circ))t$ and $y(t) = (100\sin(30^\circ))t \frac{1}{2}(9.8)t^2$. Find how long the projectile is in the air.
- 28. The equations for a cycloid (the path traced by a point on a rolling circle of radius r) are $x = r(\theta \sin \theta)$, $y = r(1 \cos \theta)$. Find the position of the point when the circle has rolled a quarter of a turn $(\theta = \pi/2)$ if the radius is 2.
- 29. Two particles have paths given by $\mathbf{r}_1(t) = \langle t+3, t^2 \rangle$ and $\mathbf{r}_2(s) = \langle s-1, 2s \rangle$. Find any intersection points of their paths. Do they collide?
- 30. For the curve given by $x = t^3 3t$ and $y = 3t^2 9$, find the slope of the tangent line at t = 2.

Solutions

Problem 1

Given $x = 3t^2 - 1$, $y = t^3 - t$. For t = -2: $x = 3(-2)^2 - 1 = 3(4) - 1 = 12 - 1 = 11$. $y = (-2)^3 - (-2) = -8 + 2 = -6$. The point is (11, -6).

Problem 2

Given $x = e^{2t}$, $y = \ln(t+1)$. For t = 0: $x = e^{2(0)} = e^0 = 1$. $y = \ln(0+1) = \ln(1) = 0$. The point is (1, 0).

Problem 3

From x=2t+5, solve for t: $t=\frac{x-5}{2}$. Substitute into the y equation: $y=4\left(\frac{x-5}{2}\right)-1=2(x-5)-1=2x-10-1$. The Cartesian equation is $\mathbf{y}=2\mathbf{x}-11$.

Problem 4

From $x = \sqrt{t-3}$, square both sides: $x^2 = t-3$, so $t = x^2 + 3$. Substitute into the y equation: $y = (x^2 + 3) + 1$. The Cartesian equation is $\mathbf{y} = \mathbf{x}^2 + \mathbf{4}$. Since $x = \sqrt{t-3}$, x must be non-negative. The domain is $\mathbf{x} \ge \mathbf{0}$.

Problem 5

From $x = e^{-t}$, we can write $t = -\ln(x)$. Alternatively, notice $x = e^{-t} \implies \frac{1}{x} = e^{t}$. Also $y = 3e^{2t} = 3(e^{t})^{2}$. Substitute $e^{t} = \frac{1}{x}$: $y = 3\left(\frac{1}{x}\right)^{2}$. The Cartesian equation is $\mathbf{y} = \frac{3}{\mathbf{x}^{2}}$.

Problem 6

From $x=\frac{1}{t+1}$, solve for t: $x(t+1)=1\Longrightarrow xt+x=1\Longrightarrow t=\frac{1-x}{x}$. Substitute into the y equation: $y=\frac{\frac{1-x}{x}}{\frac{1-x}{x}+1}=\frac{\frac{1-x}{x}}{\frac{1-x+x}{x}}=\frac{\frac{1-x}{x}}{\frac{1}{x}}=1-x$. A simpler way: Notice that $x+y=\frac{1}{t+1}+\frac{t}{t+1}=\frac{1+t}{t+1}=1$. The Cartesian equation is $\mathbf{y}=\mathbf{1}-\mathbf{x}$.

Problem 7

Recognize that this fits the Pythagorean identity. $\cos(t) = x/5$ and $\sin(t) = y/5$. Since $\cos^2(t) + \sin^2(t) = 1$, we have $(\frac{x}{5})^2 + (\frac{y}{5})^2 = 1$. The Cartesian equation is $\mathbf{x^2} + \mathbf{y^2} = \mathbf{25}$, a circle centered at the origin with radius 5.

Problem 8

Isolate the trigonometric terms: $\cos(t) = \frac{x-1}{4}$ and $\sin(t) = \frac{y+2}{3}$. Using $\cos^2(t) + \sin^2(t) = 1$: $\left(\frac{x-1}{4}\right)^2 + \left(\frac{y+2}{3}\right)^2 = 1$. This is the equation of an ellipse centered at (1, -2).

Problem 9

Isolate the trigonometric terms: $\sec(t) = x/3$ and $\tan(t) = y/4$. Use the identity $\sec^2(t) - \tan^2(t) = 1$. $\left(\frac{x}{3}\right)^2 - \left(\frac{y}{4}\right)^2 = 1$. This is the equation of a hyperbola.

ms is the equation of a hyperbola.

Use the double-angle identity for cosine: $\cos(2t) = 2\cos^2(t) - 1$. From the parametric equations, we have $x = \cos(2t)$ and $y = \cos(t)$. Substitute these into the identity: $x = 2y^2 - 1$. This is the equation of a parabola opening to the right. Since $y = \cos(t)$, $-1 \le y \le 1$.

Problem 11

Points: $t = -1 \implies (-2,5)$, $t = 0 \implies (-1,4)$, $t = 2 \implies (1,8)$. The curve is a parabola $(y = (x+1)^2 + 4)$ opening upwards. The orientation is from left to right.

 ${\tt problem11_sketch.png}$

Problem 12

This is a self-intersecting curve. At t=0, point is (0,0). At $t=\pm\sqrt{3}$, x=0, so it crosses the y-axis. The curve starts from the bottom left, moves up and right, loops at the origin, and then moves up and left.

problem12_sketch.png

Eliminate parameter: $x = 2\sin(t) \implies \sin(t) = x/2$. $y = \cos^2(t) = 1 - \sin^2(t) = 1 - (x/2)^2 = 1 - x^2/4$. This is a parabola opening downwards. Since $x = 2\sin(t)$, we have $-2 \le x \le 2$. The particle oscillates back and forth along this parabolic arc. At t = 0, point is (0,1). At $t = \pi/2$, point is (2,0). At $t = \pi$, point is (0,1). The orientation moves from (0,1) to (2,0) and back.

problem13_sketch.png

Problem 14

Eliminate parameter: $x=\sqrt{t} \implies t=x^2$. Substitute: $y=x^2-2$. This is a parabola. Restriction: Since $x=\sqrt{t},\ t\geq 0$ and $x\geq 0$. So, only the right half of the parabola is traced. Orientation: $t=0 \implies (0,-2),\ t=4 \implies (2,2)$. The curve moves upwards and to the right.

problem14_sketch.png

Problem 15

This is a circle $x^2 + y^2 = 16$. The interval $0 \le t \le \pi$ traces a semi-circle. $t = 0 \implies (0,4)$. $t = \pi/2 \implies (4,0)$. $t = \pi \implies (0,-4)$. The orientation is **clockwise** along the right semi-circle.

Eliminate parameter: $x=1+\ln(t) \implies \ln(t)=x-1 \implies t=e^{x-1}$. Substitute into y: $y=(e^{x-1})^2=e^{2x-2}$. This is an exponential curve. As t increases from near 0 to ∞ , $\ln(t)$ goes from $-\infty$ to ∞ , so x covers all real numbers. The orientation is from left to right.

problem16_sketch.png

Problem 17

Eliminate parameter: t = y. Substitute into x: $x = 2 - y^2$. This is a parabola opening to the left with vertex at (2,0). Orientation: As t increases, y increases. The particle moves up along the parabola.

Notice that $y = e^{-t} = 1/e^t = 1/x$. The curve is the hyperbola y = 1/x. Restriction: Since $e^t > 0$ for all t, both x and y are positive. The curve is restricted to the first quadrant. Orientation: As t increases from $-\infty$ to ∞ , $x = e^t$ increases from 0 to ∞ . The orientation is from left to right along the hyperbola branch.

Problem 19

The equations describe a circle of radius 6. The period T is found when the argument of sine/cosine completes a 2π cycle. $\pi T = 2\pi \implies T = 2$. It takes **2 seconds** to complete one revolution. To find direction, check points: $t = 0 \implies (6,0)$. $t = 0.5 \implies (0,6)$. The motion is from the positive x-axis to the positive y-axis, which is **counter-clockwise**.

Problem 20

The curve is an ellipse $\frac{x^2}{25} + \frac{y^2}{4} = 1$. The interval length is 4π , which is two full 2π cycles. Direction: $t = 0 \implies (0,2)$. $t = \pi/2 \implies (5,0)$. The motion is from the positive y-axis to the positive x-axis, which is **clockwise**. The particle traverses the entire ellipse **twice in a clockwise direction**.

Horizontal motion: x=2t. The particle moves to the right at a constant speed. Vertical motion: $y=\cos(\pi t)$. The particle oscillates vertically between -1 and 1 with a period of $T=2\pi/\pi=2$. The overall motion is not periodic in the sense of returning to a starting point, because the x coordinate always increases. The particle moves along a cosine wave that is stretched horizontally.

Problem 22

This curve traces a "figure-eight" shape. It starts at (0,0), moves into the first quadrant, crosses the origin at $t = \pi$, moves into the fourth quadrant, and returns to the origin at $t = 2\pi$.

problem22_sketch.png

Problem 23

The simplest parameterization is to let x = t. Then substitute into the equation to find y. $\mathbf{x} = \mathbf{t}$, $\mathbf{y} = 7\mathbf{t} - 3$.

Problem 24

Since the equation gives x in terms of y, it's easiest to let y = t, $\mathbf{y} = \mathbf{t}$, $\mathbf{x} = \mathbf{t^2} - 4\mathbf{t} + 1$.

Problem 25

This is an ellipse centered at (2,-4) with semi-major axis a=5 and semi-minor axis b=3. Use the standard parameterization for an ellipse: $\frac{x-h}{a}=\cos(t)$ and $\frac{y-k}{b}=\sin(t)$. $\mathbf{x}=\mathbf{2}+\mathbf{5}\cos(\mathbf{t}), \mathbf{y}=-\mathbf{4}+\mathbf{3}\sin(\mathbf{t})$ for $0\leq t\leq 2\pi$.

Problem 26

Use the formula $x(t) = x_1 + (x_2 - x_1)t$ and $y(t) = y_1 + (y_2 - y_1)t$ for $0 \le t \le 1$. x(t) = 1 + (-3 - 1)t = 1 - 4t. y(t) = 6 + (2 - 6)t = 6 - 4t. So, $\mathbf{x} = \mathbf{1} - \mathbf{4}\mathbf{t}$, $\mathbf{y} = \mathbf{6} - \mathbf{4}\mathbf{t}$ for $0 \le t \le 1$.

Problem 27

The projectile is in the air until y(t) = 0. $y(t) = (100\sin(30^\circ))t - 4.9t^2 = (100 \cdot 0.5)t - 4.9t^2 = 50t - 4.9t^2$. Set y(t) = 0: t(50 - 4.9t) = 0. The solutions are t = 0 (launch) and $t = 50/4.9 \approx 10.2$. The projectile is in the air for approximately **10.2 seconds**.

Given r = 2 and $\theta = \pi/2$. $x = 2(\pi/2 - \sin(\pi/2)) = 2(\pi/2 - 1) = \pi - 2$. $y = 2(1 - \cos(\pi/2)) = 2(1 - 0) = 2$. The position is $(\pi - 2, 2)$.

Problem 29

Intersection points occur when coordinates are equal, but not necessarily at the same time parameter. Set $x_1(t) = x_2(s)$ and $y_1(t) = y_2(s)$. $t+3=s-1 \implies s=t+4$. $t^2=2s$. Substitute s into the second equation: $t^2=2(t+4) \implies t^2=2t+8 \implies t^2-2t-8=0$. (t-4)(t+2)=0, so t=4 or t=-2. If t=4, the point on path 1 is $(4+3,4^2)=(7,16)$. If t=-2, the point on path 1 is $(-2+3,(-2)^2)=(1,4)$. The intersection points are (7,16) and (1,4).

Collision: Does t = s? Set $x_1(t) = x_2(t)$ and $y_1(t) = y_2(t)$. $t + 3 = t - 1 \implies 3 = -1$, which is impossible. There is **no collision**.

Problem 30

The slope of the tangent line is given by $\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$. $x = t^3 - 3t \implies \frac{dx}{dt} = 3t^2 - 3$. $y = 3t^2 - 9 \implies \frac{dy}{dt} = 6t$. So, $\frac{dy}{dx} = \frac{6t}{3t^2 - 3} = \frac{2t}{t^2 - 1}$. At t = 2, the slope is $\frac{2(2)}{2^2 - 1} = \frac{4}{4 - 1} = \frac{4}{3}$. The slope at t = 2 is 4/3.

Concept Checklist

- Evaluating Points from Parametric Equations: Problems 1, 2
- Eliminating the Parameter (Algebraic Methods):
 - Linear/Polynomial: Problem 3
 - Radical Expressions: Problem 4
 - Exponential/Logarithmic Expressions: Problems 5, 16
 - Rational Expressions: Problem 6
- Eliminating the Parameter (Trigonometric Identities):
 - Circles $(\sin^2 + \cos^2 = 1)$: Problem 7
 - Ellipses $(\sin^2 + \cos^2 = 1)$: Problem 8
 - Hyperbolas ($\sec^2 \tan^2 = 1$): Problem 9
 - Double-Angle Identities: Problem 10
- Sketching Curves and Determining Orientation:
 - Parabolas: Problems 11, 14, 17
 - Self-Intersecting Curves: Problem 12
 - Oscillating Motion on an Arc: Problem 13
 - Semi-circles/Arcs: Problem 15
 - Hyperbolas: Problem 18
 - Lissajous Figures: Problem 22
- Analyzing Motion (Period, Direction, Description): Problems 19, 20, 21
- Parameterizing a Cartesian Equation:
 - Line: Problem 23
 - Parabola: Problem 24
 - Ellipse: Problem 25
- Applications:
 - Line Segments: Problem 26
 - Projectile Motion: Problem 27
 - Cycloid: Problem 28
- Advanced Topics:
 - Intersection vs. Collision: Problem 29
 - Calculus (Derivatives/Tangent Slopes): Problem 30