1. Identificación de Entidades

Se han identificado las principales entidades involucradas en la información:

- Elección: Información sobre cada elección.
- Zona: Detalles geográficos como país, región, departamento, y municipio.
- Partido Político: Información sobre los partidos políticos.
- Raza: Clasificación de grupos étnicos.
- Votos: Detalles de votos segmentados por nivel educativo.
- **Sexo:** Clasificación por sexo.

Entidades y Atributos

Elección

- Atributos:
 - ID_Elección (PK): Identificador único para cada elección, tipo entero (int), autoincremental.
 - Nombre_Elección: Nombre descriptivo de la elección, tipo cadena de caracteres (varchar 255)
 - Año_Elección: Año en que se realiza la elección (int).
 - ID_Zona (FK): Clave foránea que referencia al identificador de la zona (ID_Zona) en la tabla Zona, tipo entero (int).
- **Descripción:** Define cada elección, vinculándola a todos los niveles geográficos relevantes, desde el municipio hasta el país.

Zona

• Atributos:

- ID_Zona (PK): Identificador único para cada zona, tipo entero (int), autoincremental.
- Nombre: Nombre de la zona, tipo cadena de caracteres (varchar 255)
- ID_ZonaPadre (FK): Identificador de la zona padre, tipo entero (int). Este campo puede ser null si la zona es un país.
- **Tipo:** Define el nivel de la zona (país, región, departamento, municipio), tipo cadena de caracteres (varchar) con un máximo de 50 caracteres.
- **Descripción**: Representa las distintas divisiones geográficas. Cada zona, excepto 'país', tiene un 'ID_ZonaPadre' que refiere a su nivel superior (por ejemplo, un departamento refiere a una región).

Partido Político

• Atributos:

- ID_Partido (PK): Identificador único para cada partido político, tipo entero (int), autoincremental.
- Nombre_Partido: Nombre completo del partido político, tipo cadena de caracteres (varchar) con un máximo de 255 caracteres.
- Acronimo: Acrónimo representativo del partido, tipo cadena de caracteres (varchar 100)
- **Descripción:** Contiene la información referente a los partidos políticos que participan en las elecciones.

Raza

• Atributos:

- ID_Raza (PK): Identificador único para cada grupo étnico, tipo entero (int), autoincremental.
- Raza: Nombre del grupo étnico, tipo cadena de caracteres (varchar 255)
- **Descripción:** Clasifica los grupos étnicos de los votantes en las elecciones.

Votos

Atributos:

- ID_Votos (PK): Identificador único para cada conjunto de votos, tipo entero (int), autoincremental.
- **Analfabetos:** Número de votos provenientes de personas analfabetas, tipo numérico grande (bigint).
- **Primaria:** Número de votos de personas con educación primaria, tipo numérico grande (bigint).
- **Nivel_Medio:** Número de votos de personas con educación de nivel medio, tipo numérico grande (bigint).
- Universitarios: Número de votos de personas con educación universitaria, tipo numérico grande (bigint).
- **Descripción:** Almacena la información sobre los votos segmentados por el nivel educativo de los votantes.

Sexo

• Atributos:

- ID_Sexo (PK): Identificador único para cada clasificación de sexo, tipo entero (int), autoincremental.
- **Descripcion:** Descripción del sexo (ejemplo: Masculino, Femenino), tipo cadena de caracteres (varchar) con un máximo de 50 caracteres.
- **Descripción:** Clasifica a los votantes por su sexo.

Reglas aplicadas para normalización:

1. Primera Forma Normal (1NF)

Objetivo: Eliminar los grupos repetitivos en tablas individuales, crear una tabla separada para cada conjunto de datos relacionados y asignar una clave primaria única a cada tabla.

Forma de aplicación:

• **Datos originales:** Toda la información está en una única tabla con columnas repetidas para <u>Sexo y Raza.</u>

Transformación:

- Se separaron los datos en múltiples tablas (Eleccion, Zona, Partido Politico, Raza, Votos, Sexo) con sus propios atributos específicos.
- Cada tabla tiene una clave primaria (ID_Elección, ID_Zona,
 ID Partido, etc.) que garantiza la unicidad de cada fila.

2. Segunda Forma Normal (2NF)

Objetivo: Asegurarse de que cada atributo "no clave" de la tabla sea funcionalmente dependiente de la totalidad de la clave primaria.

Forma de aplicación:

• **Datos originales:** Atributos como el nombre del partido, raza o datos de votos estaban mezclados con otros datos, creando dependencias parciales.

• Transformación:

 Los atributos específicos que dependen de una parte de la clave primaria se movieron a nuevas tablas. Por ejemplo, los datos de votos se segmentaron en una tabla "Votos" donde cada tipo de voto es funcionalmente dependiente solo de ID Votos.

3. Tercera Forma Normal (3NF)

Objetivo: Asegurarse de que los atributos no clave de una tabla no tengan dependencias entre sí.

Forma de aplicación:

• **Datos originales:** Los campos como Nombre_Partido y Acronimo que son dependientes entre sí estaban en la misma tabla.

Transformación:

 Creación de la tabla Partido Politico con Nombre_Partido y Acronimo que elimina dependencias transitivas, ya que estos datos solo dependen de ID Partido.

4. Forma Normal de Boyce-Codd (BCNF)

Objetivo: Reforzar aún más las reglas de la 3NF cuando hay múltiples candidatos a clave primaria.

Forma de aplicación:

 Transformación: Las claves primarias y foráneas fueron cuidadosamente asignadas para asegurar que cada tabla esté en BCNF, donde cada determinante es una superclave.

Implementaciones Adicionales:

- Integridad Referencial: Las claves foráneas (por ejemplo, ID_Zona en Eleccion refiere a Zona) se implementaron para mantener la consistencia entre las tablas.
- **Jerarquía de Zonas:** La tabla Zona utiliza un campo ID_ZonaPadre para crear una relación jerárquica, lo que quiere decir Cada zona excepto 'país' tiene un 'ID_ZonaPadre' que refiere a su nivel superior (por ejemplo, un departamento refiere a una región).

Modelo entidad - relacion

