Lecture 4: Planes, Interior Point Testing, Duality

COMPSCI/MATH 290-04

Chris Tralie, Duke University

1/26/2016

Table of Contents

- ▶ Normals and Planes
- Duality

Announcements

- ► Everyone got Mini 1 Part 1 in on time!
- ► Part 2 Due Friday 11:55 PM
- ▶ Drop/Add Tomorrow!
- ► SIGGRAPH Student Volunteers application http://s2016.siggraph.org/student-volunteers

Normals

> Vector in direction perpendicular to object in question

Perpendicular To A 2D Vector

ightharpoonup Negate y and swap: (a,b) o (-b,a)

Normal Form of A Line

Given point \vec{p} and normal \vec{n} , a point \vec{q} is on line if

$$(\vec{q} - \vec{p}) \cdot \vec{n} = 0$$

Normal Form of A Line

$$(\vec{q}-\vec{p})\cdot\vec{n}=0$$

Assume $||\vec{n}|| = 1$ (unit normal)

$$\vec{q} \cdot \vec{n} = \vec{p} \cdot \vec{n} = d(I_1, \text{origin})$$

Normal Form of A Line

$$(\vec{q} - \vec{p}) \cdot \vec{n} = 0$$

Let q = (x, y). Expanding and rewriting as implicit linear equation

$$n_x x + n_y y - d(I_1, \text{origin}) = 0$$

990

Line: Degrees of Freedom

$$n_x x + n_y y - d(l_1, \text{origin}) = 0$$

$$Ax + By + C = 0$$

Implicit form

Normal Form of a Line

 \triangleright What's the line normal of the line y = mx + b?

2D Planes

Given point \vec{p} and normal \vec{n} , a point \vec{q} is on plane if

$$(\vec{q} - \vec{p}) \cdot \vec{n} = 0 \implies \vec{q} \cdot \vec{n} = \vec{p} \cdot \vec{n} = 0$$

(now 3D vectors)

2D Planes

$$n_x x + n_y y + n_z z - d(p, origin) = 0$$

2D Planes

$$Ax + By + Cz + D = 0$$

Ray Intersect Plane

Plane: $(\vec{q} - \vec{p}) \cdot \vec{n} = 0$

Ray: $\vec{r} + t\vec{v}, t \ge 0$

$$t = \frac{-\vec{r} \cdot \vec{r}}{\vec{v} \cdot \vec{n}}$$

Table of Contents

- ► Interior Point Testing

Convex Polygons

Definition extends to 3D polytopes (and any geometric set)

Convex Or Not?

Convex Or Not?

Convex Or Not?

Convex Hull (Segue)

Convex Hull (Segue)

Convex Hull Test

YES

Point Inside Convex Polygon: Area Method

$$\mathsf{Area}(\triangle \textit{abc}) = \mathsf{Area}(\triangle \textit{abd}) + \mathsf{Area}(\triangle \textit{bcd}) + \mathsf{Area}(\triangle \textit{cad})$$

Point Inside Convex Polygon: Area Method

$$\mathsf{Area}(\triangle \textit{abc}) < \mathsf{Area}(\triangle \textit{abd}) + \mathsf{Area}(\triangle \textit{bcd}) + \mathsf{Area}(\triangle \textit{acd})$$

Point Inside Convex Polygon: Area Method

3D Ray Convex Polygon Intersection

Segue: Binary Search

Nonconvex Polygons

Inside or outside??

Nonconvex Polygons

Nonconvex Polygons: Ray Casting

Table of Contents

- ▶ Duality

Points To Lines

$$\overrightarrow{p}: \quad (a,b) \qquad \longrightarrow \qquad p^*: \quad y = ax - b$$

$$1: \quad y = cx + d \qquad \longrightarrow \qquad \overrightarrow{l^*}: \quad (c,-d)$$

Points To Lines

$$\vec{p} > I \iff \vec{I^*} > p^*$$

where ">" means "above"

TODO: Verify this using vectors!

$$\overrightarrow{p}$$
: (a,b) \longrightarrow p^* : $y = ax - b$

1:
$$y = cx + d$$
 \longrightarrow $1*$: $(c,-d)$

What dual problem did we solve??

What dual problem did we solve??

