1 Fondamenti del modello E/R e Relazionale

1.1 Chiave Candidata

Una chiave è un sottoinsieme non vuoto minimale di attributi che vincola le istanze di uno schema a non contentere tuple distinte che coincidono nel valore degli attributi della chiave.

Definizione 1. Dato uno schema relazionale

$$R(A_1, A_2, \ldots, A_n)$$

definiamo chiave (candidata) un sottoinsieme K non vuoto minimale di A_1, \ldots, A_n

$$K = \{K_1, \dots, K_n\} \subseteq \{A_1, \dots, A_n\}$$

tale che

- 1. $\forall r \text{ istanza legale } di \ R, \ \forall t_1, t_2 \in r$ $t_1 \neq t_2 \Longrightarrow t_1[K_1] \neq t_2[K_1] \lor \cdots \lor t_1[K_m] \neq t_2[K_m].$
- 2. $\nexists Y \subset K$ t.c. vale 1.

1.2 Chiave Esterna

Una chiave esterna viene definita mediante un vincolo sulle istanze di due schemi. Tale vincolo impone che per ogni tupla dell'istanza di R_1 esista una tupla dell'istanza di R_2 che coincida in R_1 nei valori degli attributi indicati.

Definizione 2. Dati due schemi relazionali, appartenenti allo stesso schema di DB,

$$R_1(A_1, A_2, \dots, A_n)$$

 $R_2(B_1, B_2, \dots, B_n)$

definiamo vincolo di chiave esterna un'espressione del tipo

$$R_1[A'_1,\ldots,A'_k] \sqsubseteq_{FK} R_2[B'_1,\ldots,B'_k]$$

dove A'_1, \ldots, A'_k è un sottoinsieme di attributi di R_1 e $K = \{B'_1, \ldots, B'_k\}$ è una chiave di R_2 .

1.3 Dipendenza Funzionale

Una dipendenza funzionale è un legame tra insieme di attributi. Tale legame impone che nelle istanze di R deve valere il vincolo per cui, per ogni coppia di $tuple\ t_1,t_2$ appartenenti a quell'istanza, se t_1 e t_2 coincidono nel primo attributo di X, nel secondo e nell' α -esimo, allora devono coincidere in tutti gli attributi riportati su Y.

Definizione 3. Dato uno schema relazionale

$$R(A_1, A_2, \ldots, A_n)$$

e due insiemi di attributi

$$X = \{X_1, \dots, X_{\alpha}\} \subseteq \{A_1, \dots, A_n\}$$
$$Y = \{Y_1, \dots, Y_{\beta}\} \subseteq \{A_1, \dots, A_n\}$$

definiamo dipendenza funzionale un'espressione del tipo

$$X \to Y$$

che impone, $\forall t_1, t_2 \in r$,

$$t_1[X_1] = t_2[X_1] \wedge \cdots \wedge t_1[X_\alpha] = t_2[X_\alpha] \Longrightarrow t_1[Y_1] = t_2[Y_1] \wedge \cdots \wedge t_1[Y_\beta] = t_2[Y_\beta]$$