Forecasting Firm Failure via Random Forests and Logit

Mila Andreani, Lorenzo Bellomo, Andrea Pugnana, Laura State, Jack Tacchi

April 2021

Table of Contents

Introduction

- 1 Introduction
- 2 Dataset + Preprocessing
- 3 Clustering
- 4 Classification
- 5 Results

Research Question

Do Machine Learning algorithms provide better results than traditional statistical methods [1, 2] for firm failure prediction? To answer this question, we are going to present an unsupervised approach based on several clustering algorithms and a supervised approach exploiting two models, Logit and Random Forests.

Data pulling

AIDA covers over 2 million firms starting from 2001.

Around 110k firms are labeled as failed, which account for 5 % of the total firms.

We considered only firms failed after 2011, restricting the sample of failed firms to \sim 21,000.

We randomly sampled other firms in order to attain a total number of 70,000 firms.

Dataset Variables

- The dataset contained several variables related to demographics of the firms and balance sheets data.
- For each of the balance sheet variables we had the lagged version of the same variable, up to 5 years in the past.

Variables in the dataset:

- company name, ateco code, legal form, ID
- location (longitude/lattitude)
- account closing date (last entry)
- number of employees
- total pavables + costs ovr + retained earnings
- profits + revenues + total assets
- shareholder funds, working capital
- fail/no fail

Final Dataset

The sample was reduced further due to missing values.

The final sample contains 37,328 firms.

Roughly 35 % of these are failed firms.

Preprocessing

Standard scaler for the individual variables, i.e. subtract mean and divide by standard deviation, for each column individually.

 $\frac{x_{ij}-\overline{x_i}}{\sigma_i}$ with *i* indexing columns, *j* indexing rows

Clustering

- We take the data from the latest available time point (at time t) and subsample. We use only balance sheet information.
- Clustering follows after a PCA that extracts the two components that explain most variance in the data (approx. 0.6/0.3 as ratio of explained variance).

Clustering Algorithms

- ① Hierarchical Clustering
- 2 K-Means Clustering
- 3 DBSCAN (density-based spatial clustering of applications with noise)
- Mean-Shift Clustering

Hierarchical Clustering

Dendrogram for different linkage functions

Average silhouette score for different linkage functions, and over an increasing number of clusters

KMeans - Density Imbalance

Third application - k = 5

Second application - k = 5

Cluster sizes at the end

9541 20 34 158 201

Clustering - DBSCAN Concept

- Density based algorithm [3]
- Three types of point:
 - Core Points
 - Border Points
 - Noise Points
- Driven by two parameters
 - ϵ : radius
 - min_points: requirement for cluster creation
- Robust to non linearly-separable clusters
- Robust to noise
- Bad results when data has various densities

Clustering - DBSCAN Algorithm

Figure: Green core, Blue border, Red noise

Figure: Cluster labels spread

Clustering - DBSCAN Parameter Estimation

How to estimate parameters?

- Try several min_points
- *Plot* the sorted distances to all the various *min_points* parameters choice
- Pick the elbow of the curve

Figure: A good k-th NN plot

Figure: The harsh reality

Mean-Shift

- Another density-based clustering algorithm [4]
- For each point p:
 - Take the region of interest surrounding p
 - Calculate its centre of mass
 - "Shift" the region of interest to the new centre of mass
 - Repeat until there is no change (mode found)

Mean-Shift

- After performing Mean-Shift for all data points:
 - Group all points within each attraction basin into a cluster

1) Hierarchical Clustering

DBSCAN

2) K-Means Clustering

4) Mean-Shift Clustering bandwidth = 0.25

- General trend of silhouette curves: very high average silhouette score for small numbers of clusters. lower silhouette score with a larger numbers of clusters
- We find similar results for all four clustering algorithms and all tried combinations of parameter settings
- Repeatedly found one very dense and big cluster, even if we "zoom in" it is not possible to get a meaningful sub-partition

Example silhouette plot from hierarchical clustering,

of clusters = 5

Methodology

Our sample comprises 37,328 observations from 2010 to 2020. The 35% of which are failed firms.

The response variables are modeled as:

$$Y_i = f(\mathbf{X}_i, \mathbf{Z}_i)$$

where $Y_i \in [0,1]$.

Predictor variables

By considering Altman (1968), X_i is composed of:

- X_1 : Working Capital/Total Assets
- X₂: Retained Earnings/Total Assets
- X₃: Earnings before Interest and Taxes/Total Assets
- X_4 : Market Value of Equity/ Total Debt
- X₅: Sales/Total Assets

whereas Z_i consists in balance sheet data.

Choice of Variables

- Starting with 62 variables
- Removal of lagged variables, 17 variables remaining (including 4 ratios)
- Removal of variables correlated above a threshold of 0.65, 9 variables remaining (including 3 ratios)

Final Correlations

Results

900

Logistic Regression (Logit)

- Logit
 - Classification algorithm
- Lasso
 - Introduces L1 Normalisation
- Ridge Regression
 - Introduces L2 Normalisation
- Elastic Net
 - Introduces L1 and L2 Normalisation

Random Forests

Ensemble algorithm aimed at mitigating the **bias-variance** trade-off of **decision trees**

A simple example

Let's say I have to weigh my cat, but I have no scales

A simple example

I could ask my friends here their guess!

Results

In Galton's seminal paper (1907)[6] something pretty similar happened.

- Aggregating several opinions can drive to pretty accurate estimates;
- This is the so-called nowadays as Wisdom of the Crowds;
- Random Forests [5] are built on this principle.

Decision Trees

Random Forest

The prediction of the **Random Forest** is computed as the **average** prediction of all the individual decision trees.

Random Forest

Some details of the implementation:

- Bootstrap the training set;
- Randomly extract features you want to use;
- Train a decision tree over this bootstrapped training set with limited features;
- Repeat n times;
- Aggregate trees prediction.

Final results

Model	AUC	Accuracy
Random Forest	0.78	0.81
Logit	0.70	0.78
Lasso	0.71	0.78
Ridge	0.71	0.78
Elastic Net	0.71	0.78

Notes: Lasso and Elastic Net didn't eliminate any variables.

Coefficients

Notes: Coefficients are in the same order of importance for all 4 Logit models

Variable Importance

Random Forest specifications

Model	AUC	Accuracy
All features	0.81	0.83
Top10	0.78	0.81
Top5	0.77	0.80
Ratios+Categories	0.79	0.82
Logit Specification	0.78	0.81
Ratios	0.78	0.81

Conclusions

Machine Learning algorithms allow to extend statistical models by uncovering complex patterns among variables.

References I

Introduction

- ► Edward I. Altman.
 - Financial ratios, discriminant analysis and the prediction of corporate bankruptcy.
 - The Journal of Finance, 23(4):589-609, sep 1968.
- ► Edward I Altman.
 - Predicting financial distress of companies: revisiting the z-score and zeta(R) models.
 - In Handbook of research methods and applications in empirical finance. Edward Elgar Publishing, 2013.
- Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. pages 226–231. AAAI Press, 1996.

References II

Introduction

- ► K. Fukunaga and L. Hostetler.

 The estimation of the gradient of a density function, with applications in pattern recognition.

 pages 32–40. IEEE Transactions on information theory, 1975.
- ► Leo Breiman.
 Random forests.

 Machine learning, 45(1):5–32, 2001.
- Francis Galton.
 Vox populi.
 Nature, 75(1949):450–451, mar 1907.