Monetary and Exchange Rate Policies in a Global Economy

Naoki Yago

The University of Cambridge

January 24, 2025

Introduction

- Foreign exchange intervention (FXI)
 - Central banks buy/sell foreign currency reserves
 - ex. China buys yuan, sells dollar reserves ⇒ yuan expensive
- Classical theory: inflation stabilization (Mundell-Fleming)
- In practice: exchange rate stabilization (Rey'15)
- I construct a theory with both monetary policy and FXI.
 - Which policy should central banks use?

Two Tensions between Theory & Practice

Tension 1:

- Literature: small open economies
- Reality: large open economies use FXI actively

Tension 2:

- <u>Literature</u>: separate objectives
 - Monetary policy \Rightarrow inflation, FXI \Rightarrow exchange rate
- Reality: related objectives
 - ex. Pandemic & war, high inflation
 - Low interest rates and intervention by selling the dollar

What I do

- A large two-country model with monetary policy and FXI based on:
 - Monetary policy in large open economies (Corsetti/Dedola/Leduc'23)
 - FXI in small open economies (Basu/etal'20, Itskhoki/Mukhin'23)
- **Result:** the two policies are interdependent for large countries.
 - FXI affects inflation by dampening/stimulating foreign demand

International Macro in the Past Decades

Intro

Classical Theory (Mundell-Fleming)

International Macro in the Past Decades

Intro

- CB cannot keep monetary independence under free capital mobility even with a flexible exchange rate (Rey'15)
- International spillovers of shocks

International Macro in the Past Decades

Model Takeaway:

Intro

- Without FXI, external shocks weaken the MP independence
 - MP cannot stabilize domestic inflation/output
- FXI improves the MP independence
 - Stabilize inflation/output with small interest rate changes
 - FXI complements the MP

Literature

Intro

- Theory on foreign exchange intervention
 - Gabaix/Maggiori'15, Fanelli/Straub'21: FXI independently of MP
 - Cavallino'19, Amador/etal'20, Basu/etal'21, Itskhoki/Mukhin'23:
 MP and FXI in a small open economy
 - ⇒ Two-country model with both monetary policy and FXI
- Empirical evidence on the effectiveness of FXI
 - Fatum/Hutchison'10, Kuesteiner/Phillips/Villamizar-Villegas'18, Fratzscher/etal'19, Adler/Mano'21, Rodnyansky/Timmer/Yago'24, Dao/Gourinchas/Mano/Yago'24
 - ⇒ Normative implication of FXI
- Non-fundamental volatility of exchange rates
 - Itskhoki/Mukhin'21, Jiang/Krishnamurthy/Lustig'21,23, Devereux/Engel/Wu'23, Engel/Wu'22, Kekre/Lenel'23, Fukui/Nakamura/Steinsson'23
 - ⇒ Role of FXI in stabilizing exchange rates

Roadmap

Step-by-step construction of a large two-country model

- (Corsetti/Dedola/Leduc'23) (Known) starting point: monetary policy
- Model setup: monetary policy & FXI
- Optimal policy under cooperation
- Extension: Dollar pricing
- Sobustness: Optimal policy under non-cooperation

Roadmap

Step-by-step construction of a large two-country model

- (Corsetti/Dedola/Leduc'23) (Known) starting point: monetary policy
 - Define international risk-sharing
 - Inflation-output trade-off due to the lack of risk-sharing
- Model setup: monetary policy & FXI
- Optimal policy under cooperation
- Extension: Dollar pricing
- Sobustness: Optimal policy under non-cooperation

Monetary Policy under Cooperation (Corsetti/Dedola/Leduc'23)

- Two symmetric large open economies: local & US
- Households consume local & US goods, supply labor Details

$$U(C_t) = \log(C_t), \qquad C_t = \left[a^{\frac{1}{\phi}}C_{Lt}^{\frac{\phi-1}{\phi}} + (1-a)^{\frac{1}{\phi}}C_{Ut}^{\frac{\phi-1}{\phi}}\right]^{\frac{\phi}{1-\phi}}$$

- Cannot trade state-contingent asset internationally
- Firms produce goods, price rigidity (Calvo'83)
 - Shocks: productivity and markup
 - Export in own currency
- Global planner sets local and US monetary policy rates

International Risk Sharing (Concept)

- Planner targets **risk-sharing** under cooperation.
 - China supply ↑ → China consumption ↑
 - Cheap yuan \rightarrow US import price \Downarrow , US consumption \uparrow (smoothing)

International Risk Sharing (Definition)

► Incomplete asset market

Risk-sharing wedge = Difference in marginal utilities

$$\begin{split} \tilde{\mathcal{W}}_t &\equiv \widetilde{U'(C_t^*)} - \widetilde{U'(C_t)} - \tilde{e}_t \\ &= \tilde{C}_t - \tilde{C}_t^* - \tilde{e}_t \quad \text{(with log utility)} \end{split}$$

- $\tilde{\mathcal{W}}_t > 0$ (China excess demand) when:
 - $\tilde{C}_t > \tilde{C}_t^*$ (China > US consumption)
 - $\tilde{e}_t \downarrow$ (Yuan is expensive against the dollar)

Lack of Risk Sharing when Goods are Substitutes

- ullet China productivity $\uparrow \uparrow \to {
 m excess}$ demand ($ilde{W} = ilde{C} ilde{C}^* ilde{e} > 0$)
- China consumption $C \uparrow$ but small yuan depreciation $e \uparrow$

Price Setting

▶ Intuition

$$\pi_{Lt} = \beta E_t \pi_{Lt+1} + \kappa \big[\tilde{Y}_{Lt} - \underbrace{2 a (1-a) (\phi-1) \tilde{\mathcal{T}}_t}_{\text{Terms-of-trade gap}} + \underbrace{(1-a) \tilde{\mathcal{W}}_t}_{\text{Risk-sharing wedge}} + \underbrace{\mu_t}_{\text{Markup shock}} \big]$$

- π_{Lt} : inflation (local goods consumed by local households)
- \tilde{Y}_{l+} : output gap
- $\tilde{\mathcal{T}}_t$: terms-of-trade gap (import export price)
 - Import price $\tilde{\mathcal{T}}_t \Downarrow \rightarrow \text{consumption } \uparrow$, inflation \uparrow
- $\tilde{\mathcal{W}}_t$: Local excess demand \rightarrow inflation \uparrow
 - (ϕ : substitution of local/US goods, 1-a: trade openness)

Monetary Policy Trade-off: (1) Inflation Targeting

- Local productivity $A_t \uparrow \rightarrow \text{inflation} \downarrow$
 - \rightarrow Interest rate ↓ so that inflation = output gap = 0

Monetary Policy Trade-off: (2) Risk-Sharing Channel

- Assume inflation targeting $(\pi_{Lt} = 0)$ & goods are substitutes
- ullet Local productivity $A_t \Uparrow o ext{demand } ilde{\mathcal{W}}_t \Uparrow o ext{inflation } \pi_{Lt} \Uparrow$
 - ightarrow Interest rate \Uparrow to target inflation ightarrow output gap $ilde{Y}_{Lt} \Downarrow$

Roadmap

Step-by-step construction of a large two-country model

- (Known) starting point: monetary policy
- Model setup: monetary policy & FXI
 - FXI is effective under frictions in international asset trade (Gabaix/Maggiori'15, Itskhoki/Mukhin'23)
 - FXI mitigates the inflation-output trade-off of monetary policy
- Optimal policy under cooperation
- Extension: Dollar pricing
- 5 Robustness: Optimal policy under non-cooperation

FXI: Basic Idea

- Central banks use both MP and FXI
- <u>Data:</u> unhedged returns on savings are different across currencies
 - Uncovered Interest Parity (UIP) deviation (Fama'94)
- Assume households can only borrow/lend in their own currency.
 - ⇒ FXI affects the exchange rate (Gabaix/Maggiori'15, Itskhoki/Mukhin'21)
- Example: China buys the yuan \rightarrow return on yuan < \$
 - Households cannot borrow in yuan to invest in \$
 - (More formally) limits to financial intermediation

UIP Condition (Case 1: No FXI)

▶ Households' net foreign assets

No FXI and UIP shocks (known in Corsetti/Dedola/Leduc'23)

$$\underbrace{E_t \tilde{\mathcal{W}}_{t+1} - \tilde{\mathcal{W}}_t}_{\tilde{\mathcal{W}}_t > 0: \text{ local demand}} = \underbrace{\tilde{r}_t - \tilde{r}_t^* - \left(E_t \tilde{e}_{t+1} - \tilde{e}_t\right)}_{\text{Local} - \$ \text{ return}} = 0$$

- ullet Same return $\,\, o\,\,$ consumption smoothing on average
- When goods are substitutes, $\tilde{\mathcal{W}}_t \neq 0$
 - \rightarrow MP trades off inflation-output

UIP Condition (Case 2: FXI)

▶ Households' net foreign assets

• Formalization of Gabaix/Maggiori'15 gives:

$$\underbrace{E_t \tilde{\mathcal{W}}_{t+1} - \tilde{\mathcal{W}}_t}_{\tilde{\mathcal{W}}_t > 0: \text{ local demand}} = \underbrace{\tilde{r}_t - \tilde{r}_t^* - \left(E_t \tilde{e}_{t+1} - \tilde{e}_t\right)}_{\text{Local} - \$ \text{ return}} = \underbrace{\omega f_t^*}_{\text{FXI}}$$

(ω : intermediation friction, $f_t^* > 0$: buy \$ / sell local)

- Buy \$: \rightarrow \$ expensive $(\tilde{e}_t \uparrow)$, return on local > \$
 - ullet Local demand $ilde{\mathcal{W}}_t \downarrow \!\!\! \downarrow$
 - FXI affects the MP trade-off (My paper's focus)

FXI Affects the Inflation/Output Trade-off

- Buy $\$ \rightarrow \$$ expensive
- Income effect:
 - Local demand $\tilde{\mathcal{W}}_t \downarrow , \; \pi_{Lt} \downarrow \rightarrow \text{ interest rate } \downarrow, \; \tilde{Y}_{Lt} \uparrow \uparrow$
- Substitution effect:
 - Demand shifts from US to local goods, $\tilde{Y}_{Lt} \uparrow \uparrow$

FXI Affects the Inflation/Output Trade-off

- Buy $\$ \rightarrow \$$ expensive
- Income effect:
 - Local demand $\tilde{\mathcal{W}}_t \Downarrow$, $\pi_{Lt} \Downarrow \rightarrow$ interest rate \Downarrow , $\tilde{Y}_{Lt} \uparrow$
- Substitution effect:
 - Demand shifts from US to local goods, $\tilde{Y}_{lt} \uparrow$
- Implications:
 - The planner cares about both domestic and global distortions
 - FXI affects the inflation-output trade-off of monetary policy via changes in the exchange rate and global demand

Roadmap

Step-by-step construction of a large two-country model

- (Known) starting point: monetary policy
- Model setup: monetary policy & FXI
- Optimal policy under cooperation
 - Analytical characterization of optimal MP and FXI rules
 - Calibrate the model and quantify the effect of FXI
 - Show that FXI mitigates the MP trade-off
- Extension: Dollar pricing
- Sobustness: Optimal policy under non-cooperation

Optimal Policy: Cooperation & Commitment

- Planner maximizes the sum of welfare in the two countries
- Minimize the weighted sum of: Dejective function
 - Inflation rate for goods produced in each country (producer-price)
 - Output gap in each country
 - Risk-sharing wedge across countries (Corsetti/Dedola/Leduc'23)
- Analytical FXI rule + quantification
- Calibration: FXI & UIP data for 11 major currencies

Optimal Policy: Cooperation & Commitment

- Planner maximizes the sum of welfare in the two countries
- Minimize the weighted sum of:

 Objective function
 - Inflation rate for goods produced in each country (producer-price)
 - Output gap in each country
 - Risk-sharing wedge across countries
- Case 1: No FXI, inflation-targeting MP (Corsetti/Dedola/Leduc'23)
- Case 2: Optimal FXI, inflation-targeting MP
- Case 3: Optimal MP & FXI

Case 1: Inflation-Targeting MP, No FXI (Recap)

- ullet Monetary policy follows strict inflation targeting $(\pi_{Lt}=0)$
- Local productivity $A_t \uparrow \uparrow \rightarrow \operatorname{demand} \tilde{\mathcal{W}}_t \uparrow \uparrow$
 - ightarrow Inflation $\pi_{Lt} \Uparrow
 ightarrow$ interest rate \Uparrow , output gap $ilde{Y}_{Lt} \Downarrow$

Case 2: Optimal FXI, Inflation-Targeting MP (Concept)

- ullet Buy \$ o \$ expensive
- Income effect:
 - Local demand $\tilde{\mathcal{W}}_t \downarrow \!\!\!\downarrow$, $\pi_{Lt} \downarrow \!\!\!\downarrow \rightarrow$ interest rate $\downarrow \!\!\!\downarrow$, $\tilde{Y}_{Lt} \uparrow \!\!\!\uparrow$
- Substitution effect:
 - Demand shifts from US to local goods, \tilde{Y}_{Lt} \uparrow

10

Case 2: Optimal FXI, Inflation-Targeting MP (Concept)

- Without FXI, monetary policy trades off inflation and output due to the lack of risk-sharing.
- FXI mitigates this monetary policy trade-off.

Case 2: Optimal FXI, Inflation-Targeting MP (Formal)

Optimal FXI rule:

$$\mathbf{f}_{t}^{*} = -\xi_{Y}\{(\tilde{Y}_{Lt} - E_{t}\tilde{Y}_{Lt+1}) - (\tilde{Y}_{Ut} - E_{t}\tilde{Y}_{Ut+1})\}$$

Transmission:

$$\left(\frac{\partial \tilde{Y}_{\mathit{Lt}}}{\partial A_t}\right)^{\text{No FXI}} < \left(\frac{\partial \tilde{Y}_{\mathit{Lt}}}{\partial A_t}\right)^{\text{FXI}} < 0$$

$$\left(\frac{\partial \tilde{\mathcal{W}}_t}{\partial A_t}\right)^{\text{No FXI}} > \left(\frac{\partial \tilde{\mathcal{W}}_t}{\partial A_t}\right)^{\text{FXI}} > 0$$

Local output $\tilde{Y}_{Lt} \downarrow$ $\rightarrow \text{Buy } (f_t^* > 0)$

Output gap \tilde{Y}_{Lt}

→ less negative

Risk-sharing gap $ilde{\mathcal{W}}_t$

 \rightarrow less positive

Case 3: Optimal MP and FXI (Concept)

- No FXI: Local productivity $A_t \uparrow \uparrow \rightarrow \text{demand } \tilde{\mathcal{W}}_t \uparrow \uparrow$, inflation $\pi_{Lt} \uparrow \uparrow$
- **FXI:** Buy \$ o \$ expensive o demand $\tilde{\mathcal{W}}_t \Downarrow$, inflation $\pi_{Lt} \Downarrow$
- FXI mitigates the inflation-output trade-off of monetary policy.

Case 3: Optimal MP and FXI (Formal)

Optimal MP rule:

$$\begin{aligned} 0 &= \theta \pi_{Lt} + (\tilde{Y}_{Lt} - \tilde{Y}_{Lt-1}) \\ &- \xi_{\mathcal{T}} (\tilde{\mathcal{T}}_t - \tilde{\mathcal{T}}_{t-1}) + \xi_{\mathcal{W}} (\tilde{\mathcal{W}}_t - \tilde{\mathcal{W}}_{t-1}) \end{aligned}$$

Optimal FXI rule:

$$\mathbf{f}_{t}^{*} = -\xi_{Y}\{(\tilde{Y}_{Lt} - E_{t}\tilde{Y}_{Lt+1}) - (\tilde{Y}_{Ut} - E_{t}\tilde{Y}_{Ut+1})\}$$

Interest rate \uparrow (inflation $\pi_{Lt} \downarrow$) when:

- Local output $\tilde{Y}_{Lt} \uparrow$
- Import price $\tilde{\mathcal{T}}_t \Downarrow$ (\rightarrow demand \Uparrow)
- Local demand $\tilde{\mathcal{W}}_t \uparrow$

Local output
$$\tilde{Y}_{Lt} \Downarrow$$
 $\rightarrow \text{Buy } \{ (f_t^* > 0) \}$

Cost-Push Shock (Case 1: No FXI, Optimal MP)

- ullet US cost-push inflation ullet expensive
 - Local demand $\tilde{\mathcal{W}}_t \downarrow$, inflation $\pi_{Lt} \downarrow$
 - ullet US demand for local goods \uparrow , output gap $ilde{Y}_{Lt} \uparrow \uparrow \to {\sf interest\ rate\ } \uparrow$
- External shocks weaken monetary policy independence

Cost-Push Shock (Case 2: Optimal MP & FXI)

- Buy local → local expensive
 - Local demand $\tilde{\mathcal{W}}_t \uparrow$, inflation \uparrow
 - US demand for local goods ↓, output gap ↓ → interest rate ↓

Cost-Push Shock (Case 2: Optimal MP & FXI)

- FXI improves monetary policy independence
 - Stabilizes inflation-output with small interest rate changes
 - Insurance against external shocks
- FXI trades off inflation-output and risk-sharing

Model Takeaway

- Without FXI, external shocks weaken the MP independence
 - MP cannot stabilize domestic inflation/output
- FXI improves the MP independence
 - Stabilize inflation/output with small interest rate changes
 - FXI complements the MP

Model Takeaway

- Without FXI, external shocks weaken the MP independence
 - MP cannot stabilize domestic inflation/output
- FXI improves the MP independence
 - Stabilize inflation/output with small interest rate changes
 - FXI complements the MP
- <u>Literature:</u> separate objectives
 - $\bullet \ \mathsf{MP} \Rightarrow \mathsf{inflation/output}, \quad \mathsf{FXI} \to \mathsf{capital} \ \mathsf{flow} \ (\mathsf{UIP}) \ \mathsf{shocks}$

Roadmap

Step-by-step construction of a large two-country model

- (Known) starting point: monetary policy
- Model setup: monetary policy & FXI
- Optimal policy under cooperation
- Extension: Dollar pricing
 - Optimal FXI volume is large under dollar pricing
 - Transmission is asymmetric: FXI stabilizes local inflation more
 - Popularity of FXI in a dollarized world
- Sobustness: Optimal policy under non-cooperation

Dollar Pricing

- Bridge the gap between:
 - Dollar dominance in international trade (Gopinath/etal'20)
 - Capital flow management in international finance (Itskhoki/Mukhin'23)
- Assume both exports and imports are invoiced in dollars

Dollar Pricing: Key Properties

- Identical local goods have different prices in different currencies despite the same marginal cost of production
 - Strong \$ ⇒ Chinese goods are more expensive in \$ than yuan
 - $\Delta_{Lt} \equiv \mathcal{E}_t P_{Lt}^* / P_{Lt}
 eq 1$: Price of local goods in \$ / local currency
 - Central banks target the price dispersion wedge Δ_{Lt}
 (Engel'11, Corsetti/Dedola/Leduc'20)
- Exchange rate has limited effect on US import prices

Dollar Pricing: Optimal Policy

Consider US cost-push inflation.

- Optimal FXI is increasing in the price-dispersion wedge (Δ_{Lt})
 - ullet \$ expensive o local good is expensive in \$ $(\Delta_{Lt} \uparrow)$ o sell \$
- Optimal FXI volume is larger under dollar pricing
- Transmission of FXI is asymmetric
 - Decreases local consumer inflation more
 - Increases US consumer inflation less
- FXI is powerful under dollar pricing

Roadmap

Step-by-step construction of a large two-country model

- (Known) starting point: monetary policy
- Model setup: monetary policy & FXI
- Optimal policy under cooperation
- Extension: Dollar pricing
- Sobustness: Optimal policy under non-cooperation
 - FXI stabilizes inflation/output but worsens the risk-sharing
 - Abstract from full strategic interaction in repeated games

Robustness: Non-Cooperative Equilibrium

- CB in each country maximizes domestic objective
 - Abstract from full strategic interaction in repeated games
- Assumptions:
 - CBs target domestic inflation/output gap (Bodenstein/etal'23)
 - Local CB uses both MP & FXI
 - US (Fed) uses only MP

▶ Maximization & optimal rules

Optimal FXI under Inflation-Targeting MP (Recap)

- No FXI: US cost-push inflation $\Uparrow \to \$$ expensive $\to \tilde{Y}_{Lt} \Uparrow$
- **FXI** (Cooperation): Sell $\$ \rightarrow \$$ cheap $\rightarrow \tilde{Y}_{Lt} \Downarrow$

Maximization & optimal rules

Full Impulse Response

Optimal FXI under Inflation-Targeting MP

- ullet FXI (Non-Cooperation) stabilizes local output: $E_t ilde{Y}_{Lt+1} = ilde{Y}_{Lt}$
 - Sell \$ more than cooperation
 - Stabilizes the output gap, destabilizes the risk-sharing

Conclusion

- A two-country framework with monetary policy and FXI
 - Characterize optimal MP and FXI rules
- Without FXI, MP faces an inflation-output trade-off
- FXI mitigates this trade-off & improves MP independence
 - FXI insulates countries from global business cycles
- Challenges:
 - Identification of FXI, empirical analysis (Rodnyansky/Timmer/Yago'24)
 - How to combine FXI with capital control and macroprudential policy (Basu/etal'20)

Appendix

Monetary Policy and FXI: Recent Examples

- Low interest rate policy during the pandemic and war:
 - China and India set a record low of 4% interest rate.
 - Brazil lowered the rate to 2%.
 - Japan set a negative interest rate.
- FXI by large open economies:
 - China and Japan have 3.5 trillion and 1.4 trillion dollars of foreign exchange reserves
 - 40% of the world's reserves, 20-30% of Chinese/Japanese GDP
 - US monitoring list for gaining unfair competitive advantage in trade
 - World foreign exchange reserves fell by 1 trillion dollars in 2021-22.
 - China and Brazil sold 38 billion and 25 billion dollars in 2020.
 - India and Japan sold 32 billion and 63 billion dollars in 2022.

Literature on MP and FXI in Open Economy

	(1) Monetary Policy	(2) FX Intervention	(3) Both MP and FXI
(a) Small Open Economy	Gali & Monacelli (2005) Clarida, Gali & Gertler (2001) Kollmann (2002) Corsetti & Pesenti (2005) Faia & Monacelli (2008) Egorov and Mukhin (2023)	Fanelli & Straub (2021) Davis, Devereux & Yu (2023) Ottonello, Perez & Witheridge (2024)	Cavallino (2019), Amador et al. (2020) Basu et al. (2020) Itskhoki & Mukhin (2023)
(b) Large Open Economies (Two- country)	Clarida, Gali & Gertler (2002) Benigno & Benigno (2003, 2006) Devereux & Engel (2003), Engel (2011) Corsetti, Dedola & Leduc (CDL) (2010, 2020, 2023)	Gabaix & Maggiori (2015) Maggiori (2022)	This Paper

Literature on MP & FXI in a Small Open Economy

- Cavallino (2019)
 - Cost for central banks: FX purchase lowers the FX return
 - Profit for intermediaries: opposite carry trade position against central banks
 - Domestic intermediaries share $\beta=1$: loss = profit, $\beta<1$: loss > profit
- Basu et al. (2020) (IMF Integrated Policy Framework)
 - $\bullet \ \, {\sf Sudden\ stop} \Rightarrow {\sf a\ monetary\ easing\ relaxes\ banks'\ domestic\ borrowing\ constraint\ but\ depreciation\ tightens\ their\ external\ borrowing\ constraint}$
 - FX sales limit the depreciation and improves the trade-off
- Itskhoki and Mukhin (2023)
 - MP and FXI eliminate nominal and financial frictions separately
 - Without FXI, MP trades off inflation and exchange rate stabilization
- My paper:
 - FXI trades off the internal (inflation) & external objectives (exchange rate, purchasing power)
 - Cooperative MP & FXI in two large countries

Households (Details)

CRRA, CES bundle of local and US goods

$$U(C_t, L_t) = \frac{C_t^{1-\sigma}}{1-\sigma} - \zeta_I \frac{L_t^{1+\eta}}{1+\eta}, \quad C_t = \left[a^{\frac{1}{\phi}} C_{Lt}^{\frac{\phi-1}{\phi}} + (1-a)^{\frac{1}{\phi}} C_{Ut}^{\frac{\phi-1}{\phi}} \right]^{\frac{\varphi}{1-\phi}}$$

$$C_{Lt} = \left[\int_0^1 C_t(I)^{\frac{\theta-1}{\theta}} dj \right]^{\frac{\theta}{1-\theta}}, \quad C_{Ut} = \left[\int_0^1 C_t(u)^{\frac{\theta-1}{\theta}} du \right]^{\frac{\theta}{1-\theta}}$$

- $oldsymbol{\sigma} = \phi = 1$: log and Cobb-Douglas utility (Cole/Obstfeld '91)
- Budget constraint:

$$P_{Lt}C_{Lt} + P_{Ut}C_{Ut} + \frac{B_t}{R_t} = B_{t-1} + W_tL_t + \Pi_t + T_t$$

Solution to Households' Problem

- ullet Euler equation for the local bond: $eta R_t E_t \left(rac{C_{t+1}}{C_t}
 ight)^{-\sigma} = 1$
- Labor supply equation: $C_t^{\sigma} L_t^{\eta} = \frac{W_t}{P_t}$
- Demand for local and US goods:

$$C_{Lt} = a \left(rac{P_{Lt}}{P_t}
ight)^{-\phi} C_t, \quad C_{Ut} = (1-a) \left(rac{P_{Ut}}{P_t}
ight)^{-\phi} C_t$$

Demand for differentiated goods produced within each country:

$$C_t(I) = \left(\frac{P_t(I)}{P_{Lt}}\right)^{-\theta} C_{Lt}, \quad C_t(u) = \left(\frac{P_t(u)}{P_{Lt}}\right)^{-\theta} C_{Ut}$$

Firms' Maximization Problem

- Producer currency pricing (PCP): law of one price $P_t(I) = \mathcal{E}_t P_t^*(I)$
- ullet Firms cannot reset price with probability ξ (Calvo'83)

$$\max_{\{P_{t}(I), \mathcal{E}_{t}P_{t}^{*}(I)\}} E_{t} \left\{ \sum_{k=0}^{\infty} Q_{t,t+k} \xi^{k} \left(\begin{array}{c} (1+\tau_{t}) \left[P_{t}(I) Y_{t+k}(I) + \mathcal{E}_{t}P_{t}^{*}(I) Y_{t+k}^{*}(I) \right] \\ -MC_{t+k}(I) \left[Y_{t+k}(I) + Y_{t+k}^{*}(I) \right] \end{array} \right) \right\}$$

New Keynesian Phillips Curve:

$$\pi_{Lt} = \beta E_t \pi_{Lt+1} + \kappa \Big[\tilde{Y}_{Lt} - \underbrace{2 \textit{a} (1-\textit{a}) (\phi-1) \tilde{\mathcal{T}}_t}_{\text{Terms-of-trade gap}} + \underbrace{(1-\textit{a}) \tilde{\mathcal{W}}_t}_{\text{Risk-sharing wedge}} + \underbrace{\mu_t}_{\text{Markup shock}} \Big]$$

- Slope of NKPC: $\kappa = (1 \xi)(1 \xi\beta)/\xi$
- Shocks: productivity A_t and markup $\mu_t = \theta/(\theta-1)(1-\tau_t)$

Intuition on NKPC

Effects of terms-of-trade gap: (Clarida/Gali/Gertler'02)

- ullet Consider US output $ilde{Y}_{Ut} \uparrow \! \uparrow$, local appreciation, import price $\Downarrow (ilde{\mathcal{T}}_t \Downarrow)$
- ullet $\phi > 1$: Local and US goods are substitutes
 - ullet Import price ψ , local consumption $C_t \uparrow via$ risk sharing
 - Marginal cost $w_t = \frac{V'(L_t)}{U'(C_t)} \uparrow$, inflation $\pi_{Lt} \uparrow$
- ullet $\phi < 1$: Local and US goods are complements
 - Export price $\Uparrow \to \mathsf{marginal}$ benefit of export \Uparrow , inflation $\pi_{\mathit{Lt}} \Downarrow$

Effect of demand gap: (Corsetti/Dedola/Leduc'10)

• $\mathcal{W}_t \Uparrow = U'(\mathcal{C}_t) \Downarrow \to \text{marginal cost } w_t = \frac{V'(L_t)}{U'(\mathcal{C}_t)} \Uparrow$, inflation $\pi_{Lt} \Uparrow$

Monetary Policy Trade-off: Special Case

- Assume inflation targeting $(\pi_{Lt} = 0) \& \text{trade elasticity} = 1$
- ullet Local productivity $A_t \Uparrow$ has no effect on $ilde{\mathcal{W}}_t$
 - \rightarrow Inflation = output gap = 0 (No trade-offs)

Evidence for Limits to Arbitrage: UIP Deviation

Country	Currency	α_0	(s.e.)	β_1	(s.e.)	$\chi^2(\alpha_0=\beta_1=0)$	\mathbb{R}^2
Australia	AUD	-0.001	(0.002)	-1.63***	(0.48)	16.3***	0.014
Austria	ATS	0.002	(0.002)	-1.75***	(0.58)	9.5***	0.023
Belgium	BEF	-0.0002	(0.002)	-1.58***	(0.39)	17.5***	0.025
Canada	CAD	-0.003	(0.001)	-1.43***	(0.38)	19.1***	0.013
Denmark	DKK	-0.001	(0.001)	-1.51***	(0.32)	25.4***	0.025
France	FRF	-0.001	(0.002)	-0.84	(0.63)	1.9	0.007
Germany	DEM	0.002	(0.001)	-1.58***	(0.57)	7.9**	0.015
Ireland	IEP	-0.002	(0.002)	-1.32***	(0.38)	12.3***	0.020
Italy	ITL	-0.002	(0.002)	-0.79**	(0.33)	7.0**	0.013
Japan	JPY	0.006***	(0.002)	-2.76***	(0.51)	28.9***	0.038
Netherlands	NLG	0.003	(0.002)	-2.34***	(0.59)	16.0***	0.041
Norway	NOK	-0.0003	(0.001)	-1.15***	(0.39)	10.4***	0.013
New Zealand	NZD	-0.001	(0.002)	-1.74***	(0.39)	28.3***	0.038
Portugal	PTE	-0.002	(0.002)	-0.45**	(0.20)	5.9*	0.019
Spain	ESP	0.002	(0.003)	-0.19	(0.46)	2.8	0.001
Sweden	SEK	0.0001	(0.001)	-0.42	(0.50)	0.9	0.002
Switzerland	CHF	0.005***	(0.002)	-2.06***	(0.55)	13.9***	0.026
UK	GBP	-0.003**	(0.001)	-2.24***	(0.60)	14.2***	0.028
Panel, pooled		0.0002	(0.001)	-0.79***	(0.15)	22.3***	
Panel, fixed eff.				-1.01***	(0.21)	19.1***	

Source: Valchev (2015).

- If households could invest freely in two currencies, the excess return is zero (uncovered interest rate parity holds). However, UIP does not hold in data.
- Fama (1985) regression: $e_{t+1} e_t (i_t i_t^*) = \alpha_0 + \beta_1(i_t i_t^*) + \epsilon_t$
- When $\beta_1 < 0$, high interest rate currency appreciates in future = positive return

Friction in International Asset Market

- ullet China buys the yuan $\, o\,$ return on yuan < \$
- ullet Financiers are risk-averse ightarrow risk premium on \$

• Risk-averse financiers trade local & US bonds (Itskhoki/Mukhin'21)

$$\max_{d_t} E_t \left\{ -\frac{1}{\omega} \exp\left(-\omega^F \bar{R}_t d_t\right) \right\}$$

- $\omega^F > 0$: risk aversion
- \bar{R}_t : local \$ bond return ($\neq 0$ when risk-averse)
- dt: local bond purchases (\$ sales)

UIP condition (General Case)

▶ UIP simple case

$$\underbrace{E_t \tilde{\mathcal{W}}_{t+1} - \tilde{\mathcal{W}}_t}_{\Delta \text{ Demand gap}} = \underbrace{\tilde{r}_t - \tilde{r}_t^* - E_t \Delta \tilde{e}_{t+1}}_{\text{UIP deviation}} = \underbrace{\chi_1(n_t^* - f_t)}_{\text{Noise trader buys $ (n_t^*)$}} - \underbrace{\chi_2 b_t}_{\text{HHs' savings}}$$

where
$$\omega_1 \equiv m_n(\omega \sigma_e^2/m_d)$$
, $\omega_2 \equiv \bar{Y}(\omega \sigma_e^2/m_d)$ for finite $(\omega \sigma_e^2/m_d)$.

- The risk aversion ω is scaled so that $\omega \sigma_e^2$ is finite and nonzero and risk premium is first-order. (Hansen/Sargent'11)
- I assume $\omega_2 = 0$ for analytical traceability.
 - The financial sector's population (m_d financiers and m_n traders) is larger than households.

International Asset Market: Details

- ullet $ar{R}_t \equiv R_t R_t^* rac{\mathcal{E}_{t+1}}{\mathcal{E}_t}$: local \$ bond return
- Zero net position (aggregate):

$$B_t/R_t + \mathcal{E}_t B_t^*/R^* = 0, \quad U_t/R_t + \mathcal{E}_t U_t^*/R^* = 0,$$

 $D_t/R_t + \mathcal{E}_t D_t^*/R^* = 0, \quad F_t/R_t + \mathcal{E}_t F_t^*/R^* = 0$

Market clearing:

$$B_t + U_t + D_t + F_t = 0$$
, $B_t^* + U_t^* + D_t^* + F_t^* = 0$

Loss Function (PCP, Details)

$$\mathcal{L} = -E_0 \sum_{t=0}^{\infty} \beta^t \frac{1}{2} \begin{bmatrix} \left(\tilde{Y}_{Lt}^2 + \tilde{Y}_{Ut}^2 \right) + \frac{\theta}{\kappa} \left(\pi_{Lt}^2 + \pi_{Ut}^{*2} \right) \\ -\frac{2a(1-a)(\phi-1)}{4a(1-a)(\phi-1)+1} \left(\tilde{Y}_{Lt} - \tilde{Y}_{Ut} \right)^2 \\ +\frac{2a(1-a)\phi}{4a(1-a)(\phi-1)+1} \tilde{\mathcal{W}}_t^2 \end{bmatrix},$$

where
$$\tilde{Y}_{Lt} - \tilde{Y}_{Ut} = [\{4a(1-a)(\phi-1)+1\}\frac{\tilde{\mathcal{T}}_t}{\mathcal{T}_t} + (2a-1)\tilde{\mathcal{W}}_t].$$

- ullet Local supply $ilde{Y}_{Lt} \uparrow \!\!\! \uparrow \to \mathsf{local}$ currency cheap, import price $ilde{\mathcal{T}}_t \uparrow \!\!\! \uparrow$
- $\tilde{\mathcal{W}}_t \neq 0$ under incomplete asset market
 - Under complete market, local productivity ↑
 - → local HHs lend to US HHs to smooth consumption

Calibration

- Estimate the effect of FXI on UIP deviation
 - 2000-23, quarterly, 11 major currencies against the dollar
 - UIP deviation: exchange rate forecast & interbank rate (Bloomberg)
 - FXI: central bank websites, FRED, IMF data (Adler/etal'23)
- Identify FXI via deviation from estimated policy rules

(Fratzscher/etal'19, Rodnyansky/Timmer/Yago'24)

• Result: sell \$ (1% of GDP) \rightarrow UIP \Downarrow by 0.51pp (local return \Downarrow)

Countries / Summary Statistics

Countries:

- Australia, Brazil, Canada, China, Euro area, India, Japan, Korea, Russia, Switzerland, and the United Kingdom
 - <u>Robustness:</u> exclude small-open economies (Australia, Canada, Korea, and Switzerland) and managed exchange rate regime (China)

Summary Statistics of FXI:

	Mean	Median	SD	p25	p75	p90	Max	Obs
Sell Dollars (Billions)	10.19	2.09	24.65	0.74	7.73	22.10	179.88	262
Buy Dollars (Billions)	14.66	5.53	25.71	1.59	13.21	33.79	164.17	448
•								
	Mear	Media:	n SD	p25	p75	p90	Max	Obs
Sell Dollars (% GDP)	0.48	0.18	0.92	0.06	0.52	1.09	9.11	262
Buy Dollars (% GDP)	0.91	0.35	1.79	0.13	1.02	2.08	19.86	448

Parameter Values

Table 1: Parameter Values

Value	Description	Notes
$\beta = 0.995$	Discount factor (local)	Annual interest rate = 2%
$\sigma = 2$	Relative risk aversion	Itskhoki and Mukhin (2021)
$\eta = 0.35$	Inverse Frisch elasticity	Bodenstein et al. (2023)
$\zeta_I = 13.3$	Labor disutility (local)	${\sf Steady\text{-}state\ labor} = 1/3$
a = 0.88	Home bias of consumption	Bodenstein et al. (2023)
$\phi = 2.0$	CES Local & US goods	Bodenstein et al. (2023)
$\theta=10$	CES differentiated goods	$Price\ markup = 11\%$
$\xi_p = 0.60$	Calvo price stickiness	Duration of four quarters
$ar{\pi}=1$	Steady-state inflation	
$\chi = 1.42$	UIP coefficient on FXI	$\Delta(\textit{UIP})/\Delta(\textit{FXI}/\textit{GDP}) = 0.47$
$\rho_{\rm a}=0.97$	Persistence of productivity shock	Itskhoki and Mukhin (2021)
$ ho_{\mu}=$ 0.2	Persistence of markup shock	Bodenstein et al. (2023)
$\sigma_a = 0.015$	SD of productivity shock	Bodenstein et al. (2023)
$\sigma_{\mu}=0.019$	SD of markup shock	Bodenstein et al. (2023)

Identification of FXI

Identify direct effect of FXI by deviations from an FXI policy rule

$$FXI_{i,t} = \alpha + \beta X_{i,t-1} + \gamma_i + \epsilon_{i,t}$$

- $FXI_{c,t}$: FXI in country i, quarter t (> 0: sell \$, % over GDP)
- $X_{i,t-1}$: controls (lagged)
 - Past FXI over GDP ratio, trend/volatility of the spot exchange rate, UIP deviation, VIX, local/US policy rates, consumer price inflation, unemployment rate, current account over GDP ratio
- γ_i : country fixed effect

First-step Regression

Dependent Variable	FXI / G	DP (%)
	(1)	(2)
Lagged FXI / GDP (%)	0.129***	0.283***
	(0.040)	(0.056)
Lagged Exchange Depreciation (%)	0.005	0.006
	(0.014)	(0.011)
Lagged Exchange Volatility (%)	0.089	0.006
	(0.062)	(0.044)
Lagged UIP Deviation (p.p.)	0.010	0.012**
	(0.007)	(0.006)
Lagged log(VIX)	-0.135	-0.065
	(0.203)	(0.162)
Lagged Policy Rate (Local)	-0.078*	-0.030
	(0.046)	(0.032)
Lagged Policy Rate (US)	0.041	-0.077*
	(0.048)	(0.040)
Lagged CPI Inflation (%)	0.041	0.026
	(0.039)	(0.026)
Lagged Unemployment Rate (%)	0.004	-0.003
	(0.055)	(0.035)
Lagged Current Account / GDP (%)	-0.115***	-0.069*
	(0.031)	(0.038)
R ²	0.176	0.259
N	627	309
Country Fixed Effect	✓	✓
Exclude Small Economy		✓
Exclude Managed Exchange Rate		✓

• 74 - 82% of variation in intervention cannot be explained.

Estimating the Effect of FXI on UIP Deviation

Dependent Variable	$\mathit{UIP}_t - \mathit{UIP}_{t-1}$				
	(1)	(2)	(3)	(4)	
Net \$ Sales / GDP (%)	-0.589**	-0.509**	-1.599***	-1.106***	
	(0.264)	(0.212)	(0.182)	(0.178)	
R^2	0.004	0.013	0.009	0.020	
N	706	392	367	212	
Country Fixed Effect	✓	✓	✓	✓	
Identified		✓		✓	
Exclude Small Economy			✓	✓	
Exclude Fixed Exchange Rate			✓	✓	

- Sell \$ (1% of GDP) \rightarrow UIP \Downarrow by 0.5-0.6 pp (local return \Downarrow)
- More effective without small economies (Swiss franc: liquid)

Optimal FXI + Inflation-Targeting MP (Productivity)

The local policy rate can increase (buy \$) or decrease (to target inflation).

Optimal MP and FXI Rules (Details)

Optimal FXI Rule:
$$(\xi_{Y} > 0 \text{ if } \sigma \phi > 1 - \frac{1}{2a} \ (<\frac{1}{2}))$$

$$f_{t}^{*} = -\xi_{Y}\{(\tilde{Y}_{Lt} - E_{t}\tilde{Y}_{Lt+1} - (\tilde{Y}_{Ut} - E_{t}\tilde{Y}_{Ut+1})\} \text{ where}$$

$$\xi_{Y} = \frac{2a(\sigma \phi - 1) + 1}{2a\phi\chi} \times (\text{const})$$

Impulse Response to a Local Productivity Increase

Impulse Response to a US Markup Increase

NKPC and Loss Function under Dollar Pricing

- NKPCs for local goods in LC (π_{Lt}) and (π_{Lt}^*) , US goods in (π_{Ut}^*)
 - ullet Local good inflation depends on the LOOP deviation (Δ_{Lt})

$$\begin{split} \pi_{Lt} &= \beta \pi_{Lt+1} + \kappa \{ (\sigma + \eta) \tilde{Y}_{Lt} - (1-a)[2a(\sigma\phi - 1)(\tilde{\mathcal{T}}_t + \tilde{\Delta}_{Lt}) + (\tilde{D}_t + \tilde{\Delta}_{Lt})] + \mu_t \} \\ \pi_{Lt}^* &= \beta \pi_{Lt+1}^* + \kappa \{ (\sigma + \eta) \tilde{Y}_{Lt} - (1-a)[2a(\sigma\phi - 1)(\tilde{\mathcal{T}}_t + \tilde{\Delta}_{Lt}) + (\tilde{D}_t + \tilde{\Delta}_{Lt})] - \tilde{\Delta}_{Lt} + \mu_t^* \} \\ \pi_{Ut}^* &= \beta \pi_{Ut+1}^* + \kappa \{ (\sigma + \eta) \tilde{Y}_{Ut} + (1-a)[2a(\sigma\phi - 1)\tilde{\mathcal{T}}_t - \tilde{D}_t] + \mu_t^* \} \end{split}$$

• Loss function depends on the LOOP deviation (Δ_{Lt}) :

$$\mathcal{L} = -E_0 \sum_{t=0}^{\infty} \beta^t \frac{1}{2} \left[\begin{array}{l} (\sigma + \eta) \left(\tilde{Y}_{Lt}^2 + \tilde{Y}_{Ut}^2 \right) + \frac{\theta}{\kappa} \left(a \pi_{Lt}^2 + (1-a) \pi_{Lt}^{*2} + \pi_{Ut}^{*2} \right) \\ - \frac{2a(1-a)(\sigma\phi - 1)\sigma}{4a(1-a)(\sigma\phi - 1) + 1} \left(\tilde{Y}_{Lt} - \tilde{Y}_{Ut} \right)^2 \\ + \frac{2a(1-a)\phi}{4a(1-a)(\sigma\phi - 1) + 1} \left(\tilde{W}_t + \Delta_{Lt} \right)^2 \end{array} \right]$$

Dollar Pricing: Optimal Monetary Policy

Optimal monetary policy under DCP when FXI is not available:

$$\begin{split} 0 &= \theta a \pi_{Lt} + (\tilde{C}_t - \tilde{C}_{t-1}) + \frac{2a(1-a)\phi}{2a(\phi-1)+1} \frac{\sigma-1}{\sigma} (\tilde{\mathcal{W}}_t - \tilde{\mathcal{W}}_{t-1} + \tilde{\Delta}_t - \tilde{\Delta}_{t-1}) \\ 0 &= \theta [(1-a)\pi_{Lt}^* + \pi_{Ut}^*] - (\tilde{C}_t^* - \tilde{C}_{t-1}^*) - \frac{2a(1-a)\phi}{2a(\phi-1)+1} \frac{\sigma-1}{\sigma} (\tilde{\mathcal{W}}_t - \tilde{\mathcal{W}}_{t-1} + \tilde{\Delta}_t - \tilde{\Delta}_{t-1}) \end{split}$$

- Local: trades off local inflation and demand growth.
- US: trades off international dollar price inflation and demand growth.
- When $\sigma \neq 1$, MP also trades off the LOOP deviation.

Dollar Pricing: Optimal Monetary Policy and FXI

Optimal monetary policy and FXI under DCP:

$$\begin{split} 0 &= \tilde{Y}_{Lt} + \theta[a\pi_{Lt} + (1-a)\pi_{Lt}^*], \\ 0 &= \tilde{Y}_{Ut} + \theta\pi_{Ut}^* + \gamma_{\Delta_{Lt}} - \gamma_{\Delta_{Lt-1}}, \\ \gamma_{\Delta_{Lt}} &= -\frac{4a(1-a)}{2a-1}(\tilde{\Delta}_{Lt} + \tilde{W}_t) + \theta\frac{1}{2a-1} \\ &\qquad \times [a\pi_{Lt} - ((1-a)\pi_{Lt}^* + \pi_{Ut}^*)] - (2a-1)[a\pi_{Lt} + (1-a)\pi_{Lt}^* + \pi_{Ut}^*] \\ f_t &= n_t^* + \frac{\theta}{2a\chi_1} E_t[a\pi_{Lt+1} + (1-a)\pi_{Lt+1}^* + \pi_{Ut+1}^*] \\ &\qquad + \frac{2a-1}{2a(1-a)\chi_1} (E_t \gamma_{\Delta t+t} - \gamma_{\Delta t}). \end{split}$$

- Local: MP trades off local inflation and output growth.
- US: MP trades off US inflation, output growth, LOOP deviation, and demand gap.
- FXI responds to the LOOP deviation.

Maximization Problem (Non-Cooperation)

▶ Back

• The local CB solves:

$$\begin{split} \max \mathcal{L} &= -E_0 \sum_{t=0}^{\infty} \beta^t \frac{1}{2} \left[\tilde{Y}_{Lt}^2 + \frac{\theta}{\kappa} \pi_{Lt}^2 \right] \quad \text{s.t.} \\ \pi_{Lt} &= \beta E_t \pi_{Lt+1} + \kappa \big[\tilde{Y}_{Lt} - 2 \mathsf{a} (1-\mathsf{a}) (\phi-1) \tilde{\mathcal{T}}_t + (1-\mathsf{a}) \tilde{\mathcal{W}}_t, \\ E_t \tilde{\mathcal{W}}_{t+1} - \tilde{\mathcal{W}}_t &= -\bar{\omega} f_t \end{split}$$

Optimal MP & FXI rules:

$$\begin{aligned} 0 &= \theta \pi_{Lt} + \frac{\sigma + \eta}{\sigma + \eta - \frac{(1-a)(\sigma-1)}{2a(\phi-1)+1}} (\tilde{Y}_{Lt} - \tilde{Y}_{Lt-1}) \\ E_t \tilde{Y}_{Lt+1} &= \tilde{Y}_{Lt} \quad (E_t \tilde{\pi}_{Lt+1} = 0) \end{aligned}$$

Non-Cooperative FXI, Inflation-Targeting MP

Non-Cooperative MP and FXI

