Formula Sheet -05

Magnetism and Matter

Sheet Credit: Anjali Singh
PHYSICSWALLAH Lakshya Batch

AND MATTER MAGNETISM

Magnetic dipole moment

SI unit -> Am2

(2) Magnetic Induction or magnetic Induction field or Mag. flux density

$$\phi = \beta \cdot A$$
 $\frac{\Phi}{A} = \beta$

Junits: Tesla (1) = NA'm' = Weber/m2 = 104 Gaus (9)

_		
③	Coulomb's Law of	coulomb's law of
	Flectric Force	Magnetic field°
	F = K2192	$F = \frac{\kappa m_1 m_2}{\kappa^2}$
	K = I	K = 160
	Like charge -3 Repel	
	Unlike " -sAttract	Unlike " -> Attact
	E due to a	B' due to
The state of the		0 0000 1

Unlike " - SAHract	Unlike " - Altrac
E due to a point charge	B' due to a monopole
2-x A	m r A
E = K2	$M_a = km$

$$E_A = \frac{\kappa q}{r^2}$$
 $K = \frac{1}{4\pi\epsilon_0}$
 $K = \frac{1}{4\pi}$
 $K =$

magnetic field lines;

E due to an	B' due to a
electric dipole	magnetic dipole
@ on the axis	6 on the axis
((()	←
1 p (E, E,	m m 82 B1
$\vec{E_a} = \frac{2K\vec{P}}{r^3} \text{ along } \vec{P}$	$\vec{B}_a = \frac{2 \text{km}}{r^3} \text{ along } \vec{M}$
Don equitorial	Q equitorial

@ equitorial

 $tan \propto = \frac{1}{2} tano$ tank = 1 tana

