Lesson 16	:
I. Lagrang	ge's Equations (cont'd) (MLS 4.2)
	Properties of Rigid Bodies (MLS 4.2.2)
II. Lagrangi	ian of Open-Chain Robot (MLS 4.3.1)
I. Lagrang	e's Equations (cont'd)
_	
· Recall:	$L(q,\dot{q}) := K(q,\dot{q}) - P(q)$
	Langrangian kinetic potential energy energy
	energy energy
_,	
Ine	EOM of a mechanical system is given by:
	$\frac{\partial}{\partial t} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = \gamma$
Ganar I	- dL
Generall	ized momentum: $p_i = \frac{\partial L}{\partial \dot{q}_i}$
dt	p: = DL p if RHS is zero, then conservation of momentum
	(> = 04)
	conservative forces and kinetic terms
Breau au	of HW4: Hamilton's Method uses
,	$K = \begin{cases} 8 \\ \in \mathbb{R}^{2n} \end{cases}$ with set of $2n \ 1^{st}$ order ODEs
	p District Set of 2h 1 side ones

Def: The	Hamiltonian function $H(q, p) \in \mathbb{R}^l$ given by
	H(q,p) = K(q,p) + P(q)
	H(q,p) = K(q,p) + P(q) teinetic potential energy energy
→> See	HW4 for Hamilton's equations.
F F ()	
	ing mass Find equation of motion (Earl):
3	
	P=m·v = p=ma=F
11.	mÿ = F _g = -mg
	ÿ = -9
	let's try with E-L:
	$K = \frac{1}{2}m\dot{y}^2$ $P = mgy$
⇒	$L = K - P = \frac{1}{2}m\dot{y}^2 - mgy$
E-	$L: \frac{\lambda}{\Delta t} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial \dot{q}} = 0$
	at di dy
	$\frac{d}{dt}(m\dot{y})-(-mg)=0$
	mÿ + mg = 0
	<u><u><u> </u></u></u>

where
$$\hat{\Gamma}^2 = \begin{bmatrix} -(z^2+y^2) & xy & xz \\ -(x^2+z^2) & yz \\ & -(x^2+y^2) \end{bmatrix}$$

Then,

 $T_{xx} = -\int \rho(r)(-z^2-y^2) dxdydz$ (Moment of Inertia)

$$= \int \rho(r)(z^2+y^2) dxdydz$$

$$\vdots (x = I_{xx} cox for any, vet.)$$

$$cox about x-axis, if x-axis is principal axis, if x-axis is principal axis, if x-axis is principal axis.

Then,

Then,

$$I_{xy} = -\int \rho(r)(z^2+y^2) dxdydz$$

$$\vdots (x = I_{xx} cox for any, vet.)$$

$$cox about x-axis, if x-axis is principal axis, if x-axis$$$$

Products	of inertia:	1 2		
T _{×y} =	of inertia:	xy dx	dydz	
=	-p \\ \frac{\hat{h}}{2} \\ \fr	$\left(\frac{1}{2}x^2y\Big _{x=-\frac{1}{2}}^{x=\frac{1}{2}}\right)$	dy dz	= 0 = I _{x2} = I _{y2}
	cts of inertia o	= 0		
	cipal (here, lo		com and	
				7
⇒ I •	$\frac{m}{12}(w^2+h^2)$	= (12 (12 h2)) 0	
		0	$\frac{m}{12}(\ell^2)$	- w ²)]
⇒ M =	m I 3x3 0) ₂ / ₃ = m	I_{3r3}	0 323
	$= \begin{bmatrix} wI_{3\times3} & 0 \\ 0_{3\times3} & 0 \end{bmatrix}$		0343	$ \begin{bmatrix} w^2 + h^2 & O & O \\ O & \ell^2 + h^2 & O \\ O & O & \ell^2 + w^2 \end{bmatrix} $

