A retrospective analysis of historical data from multi-environment trial evaluation for dry bean ($Phaseolus\ vulgaris\ L.)$ in Michigan

Leonardo Volpato, Francisco E. Gomez, Evan Wright, and Scott Bales

Last compiled on 19 May, 2023

Contents

1	App	pendix	A - Supplementary Tables	6
2	\mathbf{App}	oendix	B - Supplementary Figures	19
3	App	oendix	C - R codes	30
\mathbf{G}	ettin	g start	ced	30
	3.1	Packa	ges	30
	3.2	Data	preparation	30
	3.3	Descri	iptive Stats - Raw data	31
		3.3.1	Box plot dist	31
			3.3.1.1 BB	35
			3.3.1.2 NB	37
			3.3.1.3 SR	39
		3.3.2	GEI Comparisons (loc:year) - BB	40
		3.3.3	GEI Comparisons (loc:year) - NB	41
		3.3.4	GEI Comparisons (loc:year) - SR	42
		3.3.5	Scatter plot	43
		3.3.6	Outliers	44
		3.3.7	Map of locations	45
		3.3.8	Missing values	45
		3.3.9	Coincidence Genotypes	46
	3.4	Predic	eted by year mixed model analysis	47
	3.5	Data	preparation	47
		3.5.1	By year mixed model analysis	47
			3.5.1.1 Preparing dataset	49
		3 5 2	Descriptive variance	49

			3.5.2.1	Beans data set by year	49
			3.5.2.2	Box plot distribution	50
	3.6	Two S	tage mixe	ed model analysis	52
		3.6.1	1st Stag	e mixed model analysis	52
			3.6.1.1	Preparing dataset of Stage I for Stage II	54
		3.6.2	2nd Stag	ge mixed model analysis	55
		3.6.3	By mark	ket classes	55
		3.6.4	Descript	zive variance	58
			3.6.4.1	Box plot distribution	58
			3.6.4.2	Phenotypic variance components	60
			3.6.4.3	Genotyping performance	61
	3.7	Descri	ptive ME	т	61
	3.8	Analyz	zing MET	Г - GGE	64
		3.8.1	GGE bij	plot model	64
	3.9	WAAS	SB index		65
	3.10	WAAS	SBY index	x	65
4	App	endix	D - R c	rodes	65
	4.1	MET	analysis -	Black beans	65
		4.1.1	MET an	nalysis - ASReml	65
		4.1.2	MET an	nalysis - lme4	66
		4.1.3	Printing	the model outputs	67
			4.1.3.1	Likelihood Ratio Tests	67
			4.1.3.2	Detailed parameters	67
			4.1.3.3	Random effects	68
			4.1.3.4	Variance components and genetic parameters	69
		4.1.4	MET - 0	GGE biplot	69
			4.1.4.1	GGE ENV biplot	69
			4.1.4.2	Biplot type 3: Which-won-where	71
		4.1.5	Mean pe	erformance and stability analysis	72
			4.1.5.1	Selection differentials	76
			4.1.5.2	Scenarios of waasby estimation	80
			4.1.5.3	Coincidence index of genotype selection	81
	4.2	MET	analysis -	Navy beans	83
		4.2.1	MET an	nalysis - ASReml	83
		4.2.2	MET an	nalysis - lme4	84
		4.2.3	Printing	the model outputs	85

			4.2.3.1	Likelihood Ratio Tests	Ċ,
			4.2.3.2	Detailed parameters	5
			4.2.3.3	Random effects	6
			4.2.3.4	Variance components and genetic parameters	6
		4.2.4	MET - 0	GGE biplot	7
			4.2.4.1	GGE ENV biplot	7
			4.2.4.2	Biplot type 3: Which-won-where	9
		4.2.5	Mean pe	erformance and stability analysis	0
			4.2.5.1	Selection differentials	3
			4.2.5.2	Scenarios of waasby estimation	7
			4.2.5.3	Coincidence index of genotype selection	8
	4.3	MET	analysis -	Red beans	0
		4.3.1	MET an	nalysis - ASReml	0
		4.3.2	MET an	nalysis - lme4	1
		4.3.3	Printing	g the model outputs	12
			4.3.3.1	Likelihood Ratio Tests	12
			4.3.3.2	Detailed parameters	12
			4.3.3.3	Random effects	3
			4.3.3.4	Variance components and genetic parameters	3
		4.3.4	MET - 0	GGE biplot	14
			4.3.4.1	GGE ENV biplot	14
			4.3.4.2	Biplot type 3: Which-won-where	6
		4.3.5	Mean pe	erformance and stability analysis	7
			4.3.5.1	Selection differentials	1
			4.3.5.2	Scenarios of waasby estimation	4
			4.3.5.3	Coincidence index of genotype selection	5
_		1.	D D	1	_
5			E - R c		
	5.1			lti-env analysis	
	5.2		_	ts - Multi-trait data	
		5.2.1		t	
		5.2.2		t distribuation	
		5.2.3		plot distribuation GY	
		5.2.4		plot distribuation DM	
		5.2.5		plot distribuation PH	
		5.2.6		plot distribuation LD	
		5.2.7	Missing	values	4

	5.2.8	Linear p	phenotypic correlation
5.3	Multi-	trait stab	oility index and selection gains
5.4	Black	beans	
	5.4.1	Multi-tr	rait index selection
	5.4.2	Model o	putputs
		5.4.2.1	Variance plot
		5.4.2.2	Likelihood-ratio test
		5.4.2.3	Variance components
		5.4.2.4	Genetic parameters
		5.4.2.5	Models details
		5.4.2.6	Fixed effects
		5.4.2.7	Environment means
	5.4.3	Selection	n Description
		5.4.3.1	Genotype ranking
		5.4.3.2	Mean performance and stability for GY
		5.4.3.3	Mean performance and stability for DM
		5.4.3.4	Mean performance and stability for PH
		5.4.3.5	Mean performance and stability for LD
5.5	Navy	beans	
	5.5.1	Multi-tr	rait index selection
	5.5.2	Model o	outputs
		5.5.2.1	Variance plot
		5.5.2.2	Likelihood-ratio test
		5.5.2.3	Variance components
		5.5.2.4	Genetic parameters
		5.5.2.5	Models details
		5.5.2.6	Fixed effects
		5.5.2.7	Environment means
	5.5.3	Selection	n Description
		5.5.3.1	Genotype ranking
		5.5.3.2	Mean performance and stability for GY
		5.5.3.3	Mean performance and stability for DM
		5.5.3.4	Mean performance and stability for PH
		5.5.3.5	Mean performance and stability for LD
5.6	Red b	eans	14ϵ
	5.6.1	Multi-tr	rait index selection

		5.6.2	Model o	utputs	. 147
			5.6.2.1	Variance plot	. 147
			5.6.2.2	Likelihood-ratio test	. 148
			5.6.2.3	Variance components	. 149
			5.6.2.4	Genetic parameters	. 149
			5.6.2.5	Models details	. 150
			5.6.2.6	Fixed effects	. 150
			5.6.2.7	Environment means	. 151
		5.6.3	Selection	n Description	. 151
			5.6.3.1	Genotype ranking	. 151
			5.6.3.2	Mean performance and stability for GY	. 153
			5.6.3.3	Mean performance and stability for DM	. 154
			5.6.3.4	Mean performance and stability for PH	. 155
			5.6.3.5	Mean performance and stability for LD	. 156
	5.7	MTMI	E mixed r	model	. 156
		5.7.1	Black be	eans	. 156
		5.7.2	Navy be	eans	. 158
		5.7.3	Red bea	ns	. 160
	5.8	MTMI	E Var Co	mp and corr	. 161
6	Pac	kage R	teference	es	166

References

168

This is the guardenestal metanial for the recoverint A not negrective analysis of historical data from

This is the supplemental material for the manuscript A retrospective analysis of historical data from multi-environment trial evaluation for dry bean (*Phaseolus vulgaris* L.) in Michigan.

The supplementary material is divided into six main sections:

- 1. The first section includes the Supplemental Tables.
- 2. The second section includes the Supplemental Figures.
- 3. The third section provides the R code needed to reproduce the descriptive analysis and methods presented in this manuscript.
- 4. The fourth section offers the R code to replicate the Multi-Environment Trials (MET) analysis.
- 5. The fifth section contains the R code for reproducing the Multi-Trait Multi-Environment analysis.
- 6. The sixth and final section lists the references and literature cited throughout this manuscript.

1 Appendix A - Supplementary Tables

Supplementary Table S1: Commercial names (ComName), code, market class (MktCl), source, release year (RelYear), yield (RangeYield) and maturity (RangeMat) range observed in the Michigan Dry Bean Performance Trials analyzed in the study.

ComName	Code	MktCl	Source	RelYear	RangeYield	RangeMat
213SP	N1	NB	Gentec	NA	1327.08-3808.82	104
ACE	B1	BB	ADM	2019	1602.9 - 4260.38	85 - 90
ADAMS	B2	BB	MSU	2020	1483.23 - 5718.08	87 - 102
ALPENA	N2	NB	MSU	2014	1598.2 - 3581.55	NA
APEX	N3	NB	AAFC-HARROW	2011	1383.51-4483.24	87 - 104
ARGOSY	N4	NB	ACUG	2016	1171.66 - 4475.56	87 - 102
ARMADA	N5	NB	ProVita Seeds	2019	1286.15 - 4927.81	86 - 100
PVT13505	В3	BB	ProVita Seeds	NA	1355.15 - 4726.52	NA
BL13SR1-1	B4	BB	Gentec	NA	1695.75-4286.68	98 - 103
BL1402-15	B5	BB	USDA-ARS	NA	1708.5 - 5097.63	95 - 101
BL15430	$_{\rm B6}$	$^{\mathrm{BB}}$	MSU	NA	1912.4-4159.36	NA
BL15442	B7	BB	MSU	NA	2185.21-4289.16	NA
BL15447	B8	BB	MSU	NA	1593.92-4817.12	NA
BL16501	B9	$_{ m BB}$	MSU	NA	2184.43-4459.89	NA
BL16504	B10	BB	MSU	NA	1704.39-5206.16	NA
BL16506	B11	BB	MSU	NA	1385.56 - 4254.7	NA
BL16507	B12	$_{ m BB}$	MSU	NA	1937.44-4114.39	NA
BL17220	B13	BB	MSU	NA	1716.08 - 5010.39	96 - 102
BL1726-2	B14	BB	USDA-ARS	NA	1327.08 - 4677.09	85 - 92
BL17536	B15	$^{\mathrm{BB}}$	MSU	NA	2024.01-4909.58	NA
BL17691	B16	BB	MSU	NA	2195.96-4982.54	NA
BL17922	B17	BB	MSU	NA	1595.69 - 5468.59	99 - 101
BL18094173	B18	BB	ADM	NA	2333.06-4501.36	101
BL18201	B19	$^{\mathrm{BB}}$	MSU	NA	1891.45 - 5501.6	95 - 101
BL18204	B20	BB	MSU	NA	1424.79-5611.63	90 - 98
BL19309	B21	BB	MSU	NA	1507.6 - 4657.46	87 - 95
BL19330	B22	BB	MSU	NA	1952.66-4736.5	84 - 98
BL19344	B23	BB	MSU	NA	1893.22-5406.24	86 - 104
BL20536	B24	BB	MSU	NA	2486.05-3905.59	103
BL20547	B25	BB	MSU	NA	1355.45-4561.57	87 - 93
BL20591	B26	BB	MSU	NA	1586.82-4802.97	86 - 93
BL20597	B27	BB	MSU	NA	2380.71-4160.69	84 - 92
BL20599	B28	BB	MSU	NA	2616.34-4423.61	102
BL21708	B29	$^{\mathrm{BB}}$	MSU	NA	1771.54-4972.09	100
BL21710	B30	BB	MSU	NA	2590.07-4589.62	101
BL21714	B31	$^{\mathrm{BB}}$	MSU	NA	2217.06-3910.32	100
BL3033350	B32	BB	ADM	NA	1708.92-3438.01	97
BL3035411	B33	BB	ADM	NA	2912.65-3975.99	98
BL3036368	B34	BB	ADM	NA	1174.63-5310.16	93 - 100
BL3036381	B35	$_{ m BB}$	ADM	NA	2068.64-5125.49	87 - 105
BL5058320	B36	BB	ADM	NA	1700.93-3758.7	98
BL7071259	B37	BB	ADM	NA	2402.93 - 4766.15	96
BL7072269	B38	BB	ADM	NA	2030.03-4444.62	98
BLACKBEAR	B39	$_{ m BB}$	ProVita Seeds	2018	974.19-4937.31	90 - 105
BLACKBEARD	B40	BB	ProVita Seeds	2019	1156.46-5436.5	90 - 101
BLACKCAT	B41	$_{ m BB}$	ADM	2014	1517.23-4965.22	NA
BLACKTAILS	B42	BB	ProVita Seeds	2017	889.94-5179.46	87 - 102
BLIZZARD	N6	NB	ProVita Seeds	2017	1065.87-4563.69	88 - 100
BOUNTY	N7	NB	ProVita Seeds	2019	1009.56-4655.82	88 - 100
CALDERA	R1	SR	ProVita Seeds	2018?	1196.06-5385.04	97 - 101
CAYENNE	R2	SR	MSU	2017	1545.11-4682.2	84 - 100
CORAL	R3	SR	MSU	NA	854.25-4077.7	102
DS105WO	N8	NB	DOW	NA	1946.32-4091.65	NA
ECLIPSE	B43	BB	NDSU	2004	1277.47-4595.38	85 - 97
EX1701	N9	NB	TVS	NA	905.46-4163.67	NA

EX1702	N10	NB	TVS	NA	1153.41-4098.98	95 - 101
EX1703	N11	NB	TVS	NA	1656.7-4457.85	NA
EX1708	N12	NB	TVS	NA	670.86-4596.67	98 - 101
EX1711	N13	NB	$ ext{TVS}$	NA	1020.8-5158.16	94 - 98
EX1801	N14	$^{ m NB}$	TVS	NA	1760.95-4096.31	93 - 98
EX1802	N15	NB	TVS	NA	991.05-4569.08	85 - 96
EX1803	N16	$^{ m NB}$	TVS	NA	1191.12-4448.04	85 - 102
EX1804	N17	NB	TVS	NA	1104.54-4184.9	85 - 98
EX1914	N18	NB	TVS	NA	1143.87-4970.85	95 - 100
EX2109	N19	NB	TVS	NA	1118.41-3627.57	97
GTSOB-1723-03	N20	NB	Gentec	NA	1748.11-3260.29	NA
INDI	N21	NB	ADM	2010		90 - 95
					1131.44-4030.38	
LIBERTY	N22	NB	ProVita Seeds	2021	1191.07-5322.3	87 - 100
LORETO	B44	BB	ProVita Seeds	2007	1007.97-4569.47	NA
MEDALIST	N23	$^{ m NB}$	ProVita Seeds	2007	1478.68-4978.47	85 - 101
MERLIN	N24	NB	ProVita Seeds	2010	998.54-4561.73	90 - 102
MERLOT	R4	$_{ m SR}$	USDA/MSU	2002	1356.14-4447.94	NA
MIST	N25	NB	Guelph	2013	921.13-4301	NA
NA14229	N26	NB	MSU	NA	1334.35-4316.25	NA
NA15341	N27	NB	MSU	NA	2200.33-4256.5	NA
NA16401	N28	NB	MSU	NA	1270.06-3186.23	NA
NA16405	N29	NB	MSU	NA		NA
					1923-3834.66	
NA17504	N30	NB	MSU	NA	1864.97-4145.36	NA
NA17506	N31	NB	MSU	NA	1272.67-4366.3	NA
NA18102	N32	NB	MSU	NA	1096.13-3630.12	NA
NA18103	N33	$^{ m NB}$	MSU	NA	1228.86 - 4517.17	86 - 95
NA18109	N34	NB	MSU	NA	1293.85 - 4939.4	NA
NA19226	N35	NB	MSU	NA	2086.6-4376.18	86 - 93
NA19246	N36	NB	MSU	NA	1447.5-4435.73	86 - 95
NA19253	N37	NB	MSU	NA	1520.92-4810.69	87 - 99
NA19285	N38	NB	MSU	NA	1241.64-4030.95	84 - 101
NA20388	N39	NB	MSU	NA	1682.97-4325.13	87 - 92
NA20395	N40	NB	MSU	NA	1241.55-4281.97	98
NA20404	N41	NB	MSU	NA	1536.18-4060.15	85 - 90
NA21511	N42	NB	MSU	NA	1147.41-3920.51	101
NA21525	N43	NB	MSU	NA	1152.87 - 4009.62	100
NAUTICA	N44	$^{ m NB}$	AAFC-HARROW	2004	1020.64-4230.28	86 - 102
NDPOLAR	N45	NB	NDSU	2022	1465.99-3674.75	102
NDTWILIGHT	B45	$_{ m BB}$	NDSU	2020	1270.97-4140.56	84 - 95
NIMBUS	B46	BB	ProVita Seeds	2021	1882.19-5708.71	89 - 103
OACVortex	B47	BB	NA	2019	1539.75-4261.79	101
PVT06063	N46	NB	ProVita Seeds	NA	1848.4-3805.14	NA
PVT12039	N47	NB	ProVita Seeds	NA	904.55-5349.49	87 - 102
PVT12062	N48	NB	ProVita Seeds	NA	1352.32-5853.77	NA
PVT12063	N49	NB	ProVita Seeds	NA	1436.99-5235.81	NA
PVT12064	N50	NB	ProVita Seeds	NA	554.77-4168.64	NA
PVT13049	N51	$^{ m NB}$	ProVita Seeds	NA	1739.78-3849.08	NA
PVT13058	N52	$^{ m NB}$	ProVita Seeds	NA	988.66-4534.09	NA
PVT13066	N53	NB	ProVita Seeds	NA	1638.17 - 4497.35	NA
PVT13490	B48	BB	ProVita Seeds	NA	2128.87-4264.54	NA
PVT13496	B49	BB	ProVita Seeds	NA	1526.42-3442.4	NA
PVT13503	B50	BB	ProVita Seeds	NA	1104.68-3457.17	NA
PVT14068	N54	NB	ProVita Seeds	NA	1273.85-5141.5	87 - 103
PVT14069	N55	NB	ProVita Seeds	NA	2043-4228.37	NA
PVT14075	N56	NB	ProVita Seeds	NA	1692.95-3804.3	104
PVT14078	N57	NB	ProVita Seeds	NA	1622.35-4479.66	87 - 100
PVT14080	N58	NB	ProVita Seeds	NA	1078.05-4217.83	96 - 103
PVT14081	N59	NB	ProVita Seeds	NA	1954.85-3687.03	NA
PVT14084	N60	NB	ProVita Seeds	NA	921.7 - 4564.38	87 - 98
PVT14089	N61	NB	ProVita Seeds	NA	1673.84-4117.56	96 - 100
PVT14496	B51	BB	ProVita Seeds	NA	2017.05-5255.23	NA
PVT14498	B52	BB	ProVita Seeds	NA	1869.43-4938.29	NA
PVT14504	B53	BB	ProVita Seeds	NA	2059.98-5023.2	NA
PVT14505	B54	BB	ProVita Seeds	NA	2881.32-4994.5	NA
PVT14510	B55	BB	ProVita Seeds	NA		NA
1 V 114010	Боо	מם	i iovita seeus	11/1	1477.68-3779.63	INA

PVT14522	B56	$^{\mathrm{BB}}$	ProVita Seeds	NA	1692.75-4231.31	NA
PVT14531	B57	$^{\mathrm{BB}}$	ProVita Seeds	NA	2196.46-3956.91	0 - 95
PVT15610	B58	$^{\mathrm{BB}}$	ProVita Seeds	NA	1369-5461.59	85 - 104
PVT15619	B59	$^{\mathrm{BB}}$	ProVita Seeds	NA	1374.37-5601.63	87 - 105
PVT15629	B60	$^{\mathrm{BB}}$	ProVita Seeds	NA	2890.2-4122.78	87 - 94
PVT16113	N62	NB	ProVita Seeds	NA	1327.08 - 4098.72	100
PVT16590	B61	BB	ProVita Seeds	NA	2232.82-4940.66	89 - 103
PVT16598	B62	$^{\mathrm{BB}}$	ProVita Seeds	NA	2441.91-4340.28	101
PVT16648	B63	BB	ProVita Seeds	NA	2016.09-4804.76	85 - 104
PVT16686	R5	SR	ProVita Seeds	NA	1307.27 - 5053.8	85 - 98
PVT17704	B64	BB	ProVita Seeds	NA	1750.84-4763.96	97 - 104
PVT17708	B65	$^{\mathrm{BB}}$	ProVita Seeds	NA	1726.98 - 4357.16	94 - 101
PVT17715	B66	BB	ProVita Seeds	NA	1988-6014.39	87 - 101
PVT17724	B67	$^{\mathrm{BB}}$	ProVita Seeds	NA	1982.1-4651.46	92 - 98
PVT17751	B68	BB	ProVita Seeds	NA	2465.45-5501.17	85 - 100
PVT17822	R6	SR	ProVita Seeds	NA	2360.38-4868.28	100
PVT17835	R7	SR	ProVita Seeds	NA	654.06-3876.72	100 - 101
PVT17837	R8	SR	ProVita Seeds	NA	1152.23-4547.04	88 - 101
PVT17839	R9	SR	ProVita Seeds	NA	1116.84-4342.43	88 - 101
PVT17875	R10	SR	ProVita Seeds	NA	1826.18-4885.76	84 - 92
PVT19837	R11	SR	ProVita Seeds	NA	2580.93-4075.81	97
SR20627	R12	SR	MSU	NA	1566.02-4226.28	87 - 103
SR20667	R13	SR	MSU	NA	1641.67-4772.77	102
SR20669	R14	SR	MSU	NA	2638.4-4766.99	104
REXETER	N63	NB	Guelph	2011	1178.3-5089.48	NA
ROGUE	N64	NB	Guelph	2020?	1541.54-4112.92	0 - 92
ROSETTA	R15	SR	MSU	2012	1458.75-4738.55	86 - 94
RUBY	R16	SR	ProVita Seeds	2014	1088.14-5052.16	87 - 100
SHANIA	B69	$^{\mathrm{BB}}$	ADM	2008	1629.88-3656.14	NA
SHOCK	N65	NB	ACUG	2017	1548.47-4274.91	86 - 102
SPECTRE	B70	BB	ProVita Seeds	2019	1445.67-5859.47	90 - 102
SR16503	R17	SR	MSU	NA	1419.17-4401.98	NA
SR17603	R18	SR	MSU	NA	1375.77-5617.34	NA
SR17604	R19	SR	MSU	NA	1189.34-4722.51	85 - 103
SR17605	R20	SR	MSU	NA	1326.57-4372.72	NA
SV1893GH	N66	NB	Seminis Seeds	2015	1358.73-4918.82	87 - 104
T9905	N67	NB	TVS/Bred by Hyland	NA	1400.89-4338.23	NA
VALIANT	N68	NB	ProVita Seeds	2019	1045.13-4751.38	86 - 98
VICTORY	N69	NB	ProVita Seeds	2021	1238.93-4889.14	87 - 98
VIGILANT	N70	NB	ProVita Seeds	2012	922.36-4562.16	86 - 98
VIPER	R21	SR	ProVita Seeds	2015	1200.75-5624.94	19 - 102
VISTA	N71	NB	Gentec	1991	1752.27-3372.03	NA
ZENITH	B71	BB	MSU	2014	1172.34-4931.87	87 - 102
ZORRO	B72	$_{ m BB}$	MSU	2008	1157.27-5047.25	88 - 102

Note:

NA = Missing values

Supplementary Table S2: Summary of the results for random- and fixed-effects and overall means for each locations of the grain yield (GY: 2017 - 2022; GY2: only 2021), days to maturity (DM), plant height (PH) and lodging (LD) traits evaluated in the study.

Market.Class	Parameters	GY	GY2	DM	РН	LD
ВВ	LRTG	12.0***	25.1***	30.2***	6.15*	12.3***
BB	LRTGE	216***	3.95*	9.7**	$0.4 \mathrm{ns}$	$1.33 \mathrm{ns}$
BB	E-MS	1373806***	1637595***	152***	23.6**	3.57***
BB	E/B-MS	1775719***	740206***	12.2***	16.9***	0.7**
BB	BA	3004.17	2835	89.9	16.9	1.32
BB	$_{ m HU}$	3461.59	NA	NA	NA	NA
BB	SA	3321.17	3362	91	18.4	1.96
BB	TU	3233.21	3402	94.4	19.1	1.91
BB	Mean	3255.05 + -19.84	3199.25 + -30.37	91.77 + -0.19	18.14 + -0.15	1.73 + -0.04
NB	LRTG	17.2***	17.9***	25.4***	12.1***	36***
NB	LRTGE	83.4***	7.79**	7.23**	6.15*	4.5*
NB	E-MS	1944731***	1493686***	120***	41.2***	2.37***
NB	E/B-MS	1735124***	320888**	12.7***	7.38*	0.92***
NB	BA	2654.03	2732	90.6	17	1.46
NB	$_{ m HU}$	3094	NA	NA	NA	NA
NB	SA	2978.02	3094	89.6	18.5	2.2
NB	TU	2970.59	3195	93.6	19.6	1.97
NB	Mean	2924 + -17.22	3009.36 + -26.04	91.28 + -0.16	18.37 + -0.15	1.87 + -0.04
SR	LRTG	3.33*	0	$2.29 \mathrm{ns}$	8.13**	11.3***
SR	LRTGE	46.3***	11.22***	$2.58 \mathrm{ns}$	$3.83 \mathrm{ns}$	$0.76 \mathrm{ns}$
SR	E-MS	1299967***	1722395***	87.2***	13*	1.24*
SR	E/B-MS	353243**	242390 ns	7.61*	$6.78 \mathrm{ns}$	1.49***
SR	BA	2732.2	2584	89.2	17.5	1.37
SR	$_{ m HU}$	3267.9	NA	NA	NA	NA
SR	SA	3223.4	3335	89.9	17.6	2.01
SR	TU	3367.3	3546	93.5	19.6	2.24
SR	Mean	3147.37 + -32.29	3157.34 + -53.6	90.86 + -0.25	18.23 + -0.24	1.87 + -0.07

Note:

^{*} Significant at P < 0.05. ** Significant at P < 0.01. *** Significant at P < 0.001. ns, nonsignificant. † LRTg and LRTge, Likelihood ratio tests for genotype and interaction gxe. ‡ Vg, Vge and Vr, variance components for genotype, interaction, and residuals, respectively. § E-MS and E/B-MS, mean squares for environment and and block-within-environment, respectively. ¶ Mean, grand mean; # Standart error. NA = Missing values

Supplementary Table S3: Estimated variance components and genetic parameters for grain yield (GY), days to maturity (DM), plant height (PH) and lodging (LD) for 37 Black, 37 Navy and 14 Red Small beans genotypes evaluated in BA, SA, and TU environments during 2021 growing season only.

Black Beans

REML	GY2	DM	РН	LD
$\begin{array}{c} \overline{\hat{\sigma}_{g}^{2}} \\ \widehat{\sigma}_{ge}^{2} \\ \widehat{\sigma}_{ge}^{2} \\ \widehat{\sigma}_{p}^{2} \\ h_{gg}^{2} \\ R_{qei}^{2} \\ h_{gm}^{2} \\ Acc \end{array}$	68572 (32%) [‡]	2.86 (39.5%)	0.63 (10.5%)	0.063 (17.6%)
$\hat{\sigma}_{qe}^2$	17115 (8%)	0.8 (11%)	0.18 (3.0%)	0.02~(5.32%)
$\hat{\sigma}_{\varepsilon}^{2}$	128582 (60%)	3.58 (49.5%)	5.17 (86.4%)	0.27~(77.1%)
$\hat{\sigma}_n^2$	214269	7.24	5.98	0.356
$h_q^{\frac{5}{2}}$	0.32	0.395	0.105	0.176
R_{aei}^2	0.08	0.11	0.0305	0.0532
h_{am}^2	0.81	0.835	0.561	0.682
$egin{smallmatrix} egin{smallmatrix} eta c \\ \end{array}$	0.90	0.914	0.749	0.826
r_{ae}	0.12	0.182	0.0341	0.0645
$cv_{ge} \\ CVg$	8.19	1.84	4.37	14.5
CVr	11.21	2.06	12.5	30.3
CVg/CVr	0.73	0.894	0.349	0.478

Navy Beans

REML	GY2	DM	РН	LD
$\begin{array}{c} \overline{\hat{\sigma}_{g}^{2}} \\ \widehat{\sigma}_{ge}^{2} \\ \widehat{\sigma}_{ge}^{2} \\ \widehat{\sigma}_{p}^{2} \\ \widehat{h}_{gg}^{2} \\ R_{qei}^{2} \\ h_{gm}^{2} \end{array}$	50195 (25.72%)‡	1.97 (32%)	1.36 (19.1%)	0.195 (39.3%)
$\hat{\sigma}_{ae}^{2}$	22779 (11.67%)	0.63~(10.2%)	$0.81\ (11.4\%)$	0.04~(7.19%)
$\hat{\sigma}_{arepsilon}^{2}$	$122206 \ (62.61\%)$	3.56~(57.8%)	4.95~(69.5%)	0.27~(53.5%)
$\hat{\sigma}_{n}^{2}$	195181	6.17	7.12	0.496
h_a^{5}	0.26	0.32	0.191	0.393
R_{qei}^2	0.12	0.102	0.114	0.0719
h_{qm}^{2}	0.74	0.796	0.666	0.851
Acc	0.86	0.892	0.816	0.923
r_{ge}	0.16	0.15	0.141	0.118
$ {CV}g$	7.45	1.54	6.35	23.6
CVr	11.62	2.07	12.1	27.6
CVg/CVr	0.64	0.744	0.524	0.856

Red Beans

REML§	GY2	DM	PH	LD
$\begin{array}{c} \overline{\hat{\sigma}_{g}^{2}} \\ \widehat{\sigma}_{ge}^{2} \\ \widehat{\sigma}_{ge}^{2} \\ \widehat{\sigma}_{p}^{2} \\ h_{G}^{2} \\ R_{qei}^{2} \\ h_{gm}^{2} \\ Acc \end{array}$	$0.1 \; (0.01\%)^{\ddagger}$	0.61 (12.2%)	1.81 (25.3%)	0.18 (34.6%)
$\hat{\sigma}_{qe}^2$	75950 (31.4%)	0.66~(13.2%)	0.35~(4.9%)	0.03~(5.0%)
$\hat{\sigma}_{arepsilon}^2$	165822 (68.59%)	$3.72\ (74.6\%)$	4.99~(69.8%)	0.32~(60.4%)
$\hat{\sigma}_{n}^{2}$	241772	4.98	7.142	0.53
h_G^{Σ}	0.00	0.12	0.2531	0.35
R_{qei}^{2}	0.31	0.13	0.04876	0.05
h_{am}^2	0.00	0.54	0.7728	0.84
$\stackrel{\circ}{Acc}$	0.00	0.73	0.8791	0.91
r_{ae}	0.31	0.15	0.06528	0.07
$\stackrel{r_{ge}}{CVg}$	0.00	0.86	7.307	22.9
CVr	12.90	2.12	12.13	30.2
CVg/CVr	0.00	0.4	0.6022	0.76

 $\hat{\sigma}_G^2, \text{ genotypic variance; } \hat{\sigma}_{GE}^2 \text{ , variance of } G \times E \text{ interaction; } \hat{\sigma}_{\varepsilon}^2 \text{ residual variance; } \hat{\sigma}_P^2 \text{ phenotypic variance; } h_G^2 \text{ broad-sense heritability; } r_{gei}^2 \text{ coefficient of determination for the genotype-vs-environment interaction effects; } h_{gm}^2 \text{ heritability of the genotypic mean; } Acc \text{ accuracy of genotype selection; } r_{GE} \text{ correlation between genotypic values across environments; } CVg \text{ genotypic coefficient of variation; } CVr \text{ residual coefficient of variation; } CVg/CVr \text{ and is the ratio between genotypic and residual coefficient of variation.}^{\ddagger} \text{ Parenthetical values indicate the percentage of the observed phenotypic variance } \hat{\sigma}_P^2. \text{ The genetic parameters were estimated by } h_G^2 = \frac{\hat{\sigma}_G^2}{\hat{\sigma}_G^2 + \hat{\sigma}_{GE}^2 + \hat{\sigma}_e^2}; \text{ where } \hat{\sigma}_G^2 \text{ is the genotypic variance; } \hat{\sigma}_{GE}^2 \text{ is the genotype-by-environment interaction variance; and } \hat{\sigma}_{\varepsilon}^2 \text{ is the residual variance. Coefficient of determination of the interaction effects: } R_{gei}^2 = \frac{\hat{\sigma}_{GE}^2}{\hat{\sigma}_G^2 + \hat{\sigma}_{GE}^2 + \hat{\sigma}_{\varepsilon}^2}; \text{ heribability on the mean basis: } h_{gm}^2 = \frac{\hat{\sigma}_G^2}{[\hat{\sigma}_G^2 + \hat{\sigma}_{GE}^2/e + \hat{\sigma}_e^2/(eb)]} \text{ where } e \text{ and } b \text{ are the number of environments and blocks, respectively; The accuracy of selection: } Acc = \sqrt{h_{GM}^2}; \text{ genotype-environment correlation } r_{GE} = \frac{\hat{\sigma}_g^2}{\hat{\sigma}_G^2 + \hat{\sigma}_{GE}^2}; \text{ genotypic coefficient of variation } CVg = \left(\sqrt{\hat{\sigma}_g^2}/\mu\right) \times 100 \text{ residual coefficient of variation estimated: } CVr = \left(\sqrt{\hat{\sigma}_e^2}/\mu\right) \times 100 \text{ where } \mu \text{ is the grand mean; ratio between genotypic and residual coefficient of variation: } CV_g/CV_r.$

Supplementary Table S4: Selection differential of selected genotypes for mean performance and stability (WAASB index) at black beans. Selected genotypes: B14, B19, B21, B22, B25, B26, B51, B52, B53, B10, B17, B23, B61, B63, B66, B68, B2, B40, B46, B70, B24, B27, B30, B33, B60, B7.

	Mea	an performa	Stab	ility (WAA	SB)	
Geno	BLUPs	Overhall	SD (%)	WAASB	Overhall	SD (%)
B10	3391	3255	4.1787	0.2971	5.152	-94.233
B14	3283	3255	0.8469	2.7163	5.152	-47.278
B17	3281	3255	0.8017	5.4405	5.152	5.598
B19	3316	3255	1.8723	3.6947	5.152	-28.288
B2	3401	3255	4.4717	3.1153	5.152	-39.534
B21	3458	3255	6.2395	3.3874	5.152	-34.253
B22	3285	3255	0.9310	3.1503	5.152	-38.854
B23	3433	3255	5.4621	2.9277	5.152	-43.174
B24	3336	3255	2.4965	2.9964	5.152	-41.841
B25	3398	3255	4.3767	4.8411	5.152	-6.038
B26	3448	3255	5.9262	1.8807	5.152	-63.497
B27	3346	3255	2.8048	2.6129	5.152	-49.285
B30	3373	3255	3.6317	5.7096	5.152	10.821
B33	3344	3255	2.7175	5.7243	5.152	11.106
B40	3377	3255	3.7361	1.5201	5.152	-70.496
B46	3526	3255	8.3099	3.2089	5.152	-37.717
B51	3397	3255	4.3524	1.7499	5.152	-66.035
B52	3359	3255	3.1927	3.1465	5.152	-38.927
B53	3382	3255	3.9096	2.8632	5.152	-44.428
B60	3338	3255	2.5341	2.7706	5.152	-46.224
B61	3381	3255	3.8636	2.4342	5.152	-52.753
B63	3362	3255	3.2767	2.9257	5.152	-43.214
B66	3348	3255	2.8490	1.0713	5.152	-79.207
B68	3523	3255	8.2229	2.7228	5.152	-47.152
B7	3282	3255	0.8249	3.7108	5.152	-27.975
B70	3372	3255	3.6026	1.2369	5.152	-75.993

Supplementary Table S 5: Selection differential of selected genotypes for mean performance and stability (WAASB index) at navy beans. Selected genotypes: N37, N39, N41, N58, N64, N10, N21, N33, N3, N57, N68, N54, N69, N70, N23, N4, N44, N47, N5, N6, N60, N7, N27, N29, N59.

	Mea	an performa	Stab	ility (WAA	SB)	
Geno	BLUPs	Overhall	SD (%)	WAASB	Overhall	SD (%)
N10	2955	2924	1.0472	2.3226	3.912	-40.628
N21	2968	2924	1.5017	1.4534	3.912	-62.846
N23	3056	2924	4.5210	1.7097	3.912	-56.294
N27	3002	2924	2.6588	2.6325	3.912	-32.706
N29	2923	2924	-0.0436	1.4228	3.912	-63.629
N3	3083	2924	5.4533	2.7463	3.912	-29.794
N33	2964	2924	1.3811	2.9489	3.912	-24.618
N37	3049	2924	4.2847	4.6672	3.912	19.310
N39	2991	2924	2.3038	1.5480	3.912	-60.428
N4	3033	2924	3.7392	0.9353	3.912	-76.092
N41	3020	2924	3.2884	3.2316	3.912	-17.391
N44	2935	2924	0.3644	1.1779	3.912	-69.890
N47	3129	2924	7.0024	2.1505	3.912	-45.026
N5	3058	2924	4.5735	1.6651	3.912	-57.435
N54	3056	2924	4.5117	1.8380	3.912	-53.015
N57	3032	2924	3.6901	2.8651	3.912	-26.758
N58	2968	2924	1.4933	3.4484	3.912	-11.849
N59	2963	2924	1.3346	1.8183	3.912	-53.518
N6	2995	2924	2.4132	1.4008	3.912	-64.192
N60	3046	2924	4.1714	0.8606	3.912	-78.000
N64	3036	2924	3.8222	3.9567	3.912	1.146
N68	2990	2924	2.2719	3.6703	3.912	-6.176
N69	3141	2924	7.4060	1.7844	3.912	-54.386
N7	3130	2924	7.0594	1.2604	3.912	-67.779
N70	2928	2924	0.1372	2.8340	3.912	-27.555

Supplementary Table S6: Selection differential of selected genotypes for mean performance and stability (WAASB index) at red beans. Selected genotypes:R10, R13, R18, R1, R2, R21, R11.

	Mea	an performa	Stability (WAASB)			
Geno	BLUPs	Overhall	SD (%)	WAASB	Overhall	SD (%)
R1	3251	3147	3.2992	3.110	6.065	-48.72
R10	3180	3147	1.0359	5.367	6.065	-11.52
R11	3174	3147	0.8525	7.646	6.065	26.06
R13	3160	3147	0.3927	5.114	6.065	-15.68
R18	3278	3147	4.1476	3.705	6.065	-38.92
R2	3209	3147	1.9472	4.060	6.065	-33.06
R21	3313	3147	5.2734	3.143	6.065	-48.19

Supplementary Table S7: BLUP-based indexes for selecting genotypes with performance and stability at black beans.

GEN	Y	HMGV	HMGV_R	RPGV	RPGV_R	HMRPGV	HMRPGV_R	WAASB	WAASB_R	WAASBY	WAASBY_R
B1	3122	3049	54	3083	55	3068	54	2.67	17	67.58	35
B10	3300	3473	10	3489	10	3487	10	0.30	1	89.22	3
B11	3369	2884	62	2987	61	2896	62	10.27	66	41.97	69
B12	2985	3083	53	3121	54	3103	53	5.29	42	61.40	46
B13	3666	3118	52	3136	52	3127	52	2.08	12	70.88	30
B14	3305	3282	32	3296	35	3289	33	2.72	18	74.93	23
B15	3539	3310	30	3419	23	3314	31	12.17	70	52.80	60
B16	3644	3128	51	3228	40	3141	51	12.63	71	44.54	67
B17	2775	3232	35	3278	37	3254	35	5.44	43	67.12	37
B18	3537	3381	25	3431	21	3376	26	8.90	63	62.01	44
B19	3459	3313	29	3351	31	3328	28	3.69	35	74.45	24
B2	3507	3490	8	3509	8	3502	7	3.12	26	81.90	12
B20	3526	2981	58	3006	59	2998	58	3.28	30	62.96	43
B21	3296	3607	4	3619	4	3615	4	3.39	32	85.08	7
B22	3613	3281	33	3301	34	3289	34	3.15	28	73.89	26
B23	2969	3569	6	3581	6	3569	6	2.93	23	84.64	9
B24	2865	3392	23	3403	29	3391	23	3.00	25	77.82	19
B25	2939	3497	7	3515	7	3498	9	4.84	41	76.80	20
B26 B27	2620	3593	5	3602	5	3601	5 24	1.88	11	88.64	4
	3504	3374	26	3405	27	3391		2.61	16	79.60	16
B28 B29	3464 3435	3417 3181	18 40	3459	16 39	3416	19 45	7.97	57 51	65.87 60.15	40 50
B29 B3	3435	2970	40 60	3233 2994	60	3170 2985	45 60	6.90 2.09	51 13	65.83	50 41
B30	3072	3453	12	3471	14	3453	14	5.71	45	72.68	28
B30 B31	3072	3453			41						28 55
B31 B32	3025	2640	43 71	3226 2690	70	3169 2626	46 71	8.14 3.92	58 37	56.61 48.03	63
B33	3546	3397	22	3418	24	3395	22	5.72	46	70.60	31
B34	2857	2976	59	3133	53	2987	59	14.44	72	36.15	71
B35	3182	3033	55	3047	57	3045	55	1.33	6	69.83	33
B36	3190	2849	66	2906	63	2850	66	7.33	56	47.21	66
B37	3496	3425	17	3475	12	3423	18	9.03	64	63.35	42
B38	3143	3363	27	3410	26	3358	27	8.77	62	61.63	45
B39	3806	3180	41	3196	46	3190	40	1.74	9	74.09	25
B4	3487	2804	67	2828	67	2813	67	3.34	31	55.89	56
B40	3171	3447	14	3464	15	3461	13	1.52	8	84.77	8
B41	3006	2853	64	2898	64	2874	64	3.69	34	57.87	53
B41	2948	3136	50	3152	51	3148	49	2.58	15	70.17	32
B43	3110	2857	63	2892	65	2875	63	5.45	44	52.61	61
B44	3440	2919	61	2961	62	2941	61	3.55	33	60.67	49
B45	3228	2673	68	2695	69	2676	69	4.10	38	48.62	62
B46	3439	3720	3	3739	3	3734	3	3.21	29	90.21	2
B47	3411	3179	42	3214	45	3180	41	7.05	52	59.41	51
B48	3432	3162	45	3193	47	3173	43	4.51	40	66.05	39
B49	3476	2643	70	2685	71	2656	70	7.08	53	39.33	70
B5	3210	3305	31	3366	30	3316	30	8.71	61	60.82	48
B50	3489	2104	72	2192	72	2125	72	11.55	67	8.18	72
B51	3209	3485	9	3501	9	3498	8	1.75	10	85.50	5
B52	2586	3414	19	3432	20	3425	17	3.15	27	78.95	17
B53	3426	3451	13	3473	13	3466	12	2.86	21	81.36	13
B54	3129	3729	2	3765	1	3742	1	7.28	55	80.24	14
B55	2854	2657	69	2723	68	2683	68	6.56	47	42.72	68
B56	3491	3013	57	3066	56	3026	57	6.68	48	55.13	57
B57	3415	3209	36	3222	42	3220	37	1.19	3	76.64	21
B58	3201	3194	38	3221	43	3210	38	2.94	24	71.85	29
B59	3184	3161	46	3187	48	3172	44	4.48	39	66.07	38
В6	2594	3139	49	3177	50	3150	48	6.76	49	59.01	52
B60	3386	3386	24	3404	28	3387	25	2.77	20	78.54	18
B61	2031	3462	11	3477	11	3470	11	2.43	14	82.47	11
B62	3853	3403	20	3438	19	3403	21	7.18	54	67.32	36
B63	2652	3428	16	3441	18	3436	16	2.93	22	79.76	15
B64	3039	3204	37	3282	36	3208	39	9.82	65	54.28	58
B65	3221	3142	48	3252	38	3141	50	11.80	68	47.38	65
B66	3164	3401	21	3414	25	3411	20	1.07	2	84.06	10
B67	3414	3320	28	3427	22	3317	29	11.89	69	53.53	59
B68	3452	3732	1	3742	2	3738	2	2.72	19	91.39	1
B69	3283	2849	65	2889	66	2859	65	6.88	50	47.63	64
B7	3244	3274	34	3302	33	3292	32	3.71	36	72.74	27
B70	3438	3437	15	3455	17	3452	15	1.24	5	85.27	6
B71	2828	3164	44	3177	49	3176	42	1.20	4	75.00	22
B72	3319	3015	56	3029	58	3028	56	1.45	7	68.83	34
B8 B9	3348 3219	3192 3153	39 47	3321 3218	32 44	3221 3169	36 47	8.23 8.19	60 59	60.92 56.78	47 54

Supplementary Table S8: BLUP-based indexes for selecting genotypes with performance and stability at navy beans.

Ni	GEN	Y	HMGV	HMGV_R	RPGV	RPGV_R	HMRPGV	HMRPGV_R	WAASB	WAASB_R	WAASBY	WAASBY_R
NI	N1	2469	2750	55	2765	55	2749	57	5.89	57	41.05	60
N12 2801 2234 60 2245 60 2245 60 2242 60 3.10 33 40.23 62								32				24
N12 2961 2554 69 2545 69 2642 69 5.19 33 40.23 62 N14 2723 3759 57 2751 57 2752 55 50 31 5.58 45 N14 2723 3759 57 2751 57 2752 55 50 31 5.58 45 N16 3144 2855 67 2751 57 2752 55 50 4.22 48 48 49 N17 2977 2717 50 2731 50 2723 59 3.73 48 48 49 53 N18 3037 2779 51 2700 61 2903 61 2.00 19 54 68 61 N19 3090 2445 70 2456 70 2430 70 7.71 66 15.59 71 N2 2802 2688 62 2486 62 2486 62 2486 62 2486 82	N11	2734	2850	41	2905	39	2867	40	8.76	68	37.72	66
N16 3002 2542 08 8 2567 08 2557 08 3.01 31 55.88 43 N16 3032 2542 08 2567 08 2557 08 4.22 N16 3144 2595 07 2606 07 2606 07 2607 N17 3144 2595 07 2607 07 2607 07 2607 N18 3037 2679 01 2700 01 2700 01 2700 01 2608 07 07 1.88 18 49.36 01 1.88 18 18 18 18 18 18 18 18 18 18 18 18 1	N12	2661	2534	69	2545	69	2542	69	3.19	33	40.23	62
NI	N13	2849	2816	44	2827	46	2826	44	0.97	3	65.62	28
Nif 2677 2717 59 2731 59 2733 59 373 42 44 49.36 51 Nif 3037 2679 61 2700 61 2903 61 2.05 19 54.08 41 Nif 3037 2679 61 2700 61 2903 61 2.05 19 54.08 41 Nif 3037 2679 61 2700 61 2903 61 2.05 19 54.08 41 Nif 3037 2679 61 2700 61 2903 61 2.05 19 54.08 41 Nif 3037 2679 61 2700 61 2903 61 2.05 19 54.08 41 Nif 3037 2679 61 2700 61 2903 61 2.01 20 20 Nif 3039 2455 60 2913 60 2403 60 2.01 25 44.12 57 Nif 3039 2695 30 2979 30 2977 25 4.45 8 7.39 14 Nif 2819 2913 2911 3944 1 3417 1 3408 1 6.10 60 75.28 9 Nif 2822 2812 47 2824 47 2821 47 1.57 12 62.98 34 Nif 2822 2812 47 2824 47 2821 47 1.57 12 62.98 34 Nif 2822 2812 47 2824 47 2821 47 1.57 12 62.98 34 Nif 2824 3030 49 3072 20 3006 42 2.33 30 40 72.37 13 Nif 2904 3030 49 3072 20 3006 40 2.03 30 40 77.37 13 Nif 2904 3030 49 3072 20 3006 40 2.03 30 40 77.37 13 Nif 2904 3033 314 31 31 3000 3006 40 2.03 30 40 77.37 13 Nif 2907 2935 32 2947 33 2946 33 1.42 7 70.28 19 Nij 3337 3134 8 3152 8 3150 8 2.75 277 277.15 10 Nij 3337 3134 8 3152 8 3150 8 2.75 277 277.15 10 Nij 3280 2971 29 2981 29 2976 29 2.95 30 68.88 20 Nij 2830 2971 29 2981 29 2976 29 2.95 30 68.88 20 Nij 2830 2971 29 2981 29 2976 29 2.95 30 68.88 20 Nij 3337 314 310 12 3116 11 3101 14 4.677 47.46 4.67 6.62 2.54 Nij 3207 3300 300 3006 20 3006 22 3061 20 3.33 34 6.0 6.0 2.54 Nij 3207 3300 300 3006 20 3006 20 3006 20 3006 20 3006	N14	2723	2739	57	2761	57	2752	55	3.01	31	53.58	43
NIT 2077 2217 59 2731 59 2733 59 3.73 42 44.49 53 NIS 3037 2079 61 2700 61 2.903 61 2.05 19 54.08 41 NIS 3000 2435 70 2456 70 2430 70 7.71 66 15.59 71 NIS 3037 2068 62 2086 62 2086 62 2082 62 3.52 39 40.01 56 NIS 2081 2085 65 2613 68 2611 68 2611 68 2.61 2.61 68 NIS 2091 3091 3091 3411 3417 1 3408 1 61.01 60 72.28 9 NIS 2093 3104 11 3116 12 3115 11 1.71 14 79.06 7 NIS 2093 2093 3104 11 3116 12 3115 11 1.71 14 79.06 7 NIS 2093 2093 3104 11 3116 12 3115 11 1.71 14 79.06 7 NIS 2093 2093 3104 3 2816 50 2808 49 3.75 43 53.92 42 NIS 2093 2093 310 3092	N15	3302	2542	68	2567	68	2557	68	4.22	45	37.58	67
NIS SOST 2070 61 2700 61 2093 61 2.05 19 54.08 41 NIS 3090 2435 70 2.456 70 2.430 70 7.71 66 15.59 71 NIS 2802 2668 62 2886 62 2882 62 2882 62 3.52 39 46.01 55 NIS 2813 2801 65 2613 86 80 2017 62 2614 25 40.01 57 NIS 2813 3894 31 3417 1 3408 1 61.01 60 77.28 11 NIS 2813 3894 31 3417 1 3408 1 61.01 60 77.28 13 NIS 2813 3894 31 3417 1 3408 1 61.01 60 77.28 34 NIS 2822 2812 47 2824 47 2821 47 1.57 12 62.98 34 NIS 2893 2813 43 2855 43 2855 44 2851 47 2.68 24 60.74 37 NIS 2899 2835 43 2855 43 2855 44 2.460 2.68 26 60.74 37 NIS 2897 2033 23 2947 33 2946 33 1.42 7 70.28 19 NIS 2987 2233 23 2947 33 2946 33 1.42 7 70.28 19 NIS 3337 3134 8 3152 8 3150 8 2.75 7 77 70.28 19 NIS 2327 2813 45 2850 44 2823 45 7.49 65 39.31 65 NIS 2219 2508 66 2661 85 2626 65 65 6.51 63 33 32.88 69 NIS 2244 3070 17 3115 13 3060 21 10.51 71 41.41 59 NIS 2327 2813 45 2850 44 2823 45 7.49 65 39.31 65 NIS 2244 3070 17 3115 13 3060 21 10.51 71 41.41 59 NIS 2544 3070 17 3115 13 3060 21 10.51 71 41.41 59 NIS 2544 3070 17 3115 13 3060 21 10.51 71 41.41 59 NIS 2544 3070 17 3115 13 3060 21 10.51 71 41.41 59 NIS 2544 3070 17 3115 13 3060 21 10.51 71 41.41 59 NIS 2544 3070 17 3115 13 3060 21 10.51 71 41.41 59 NIS 2544 3070 17 3115 13 3060 21 10.51 71 41.41 59 NIS 2544 3070 278 308 28 2760 56 31.31 40 40 40 40 40 40 40 4	N16	3144	2595	67	2606	67	2605	67	1.85	18	49.36	51
N19 3090 2435 70 2436 70 2430 70 7.71 66 15.59 71 N2 2802 2605 62 2686 62 2682 62 3.52 39 46.01 56 N20 2913 2601 65 2613 66 2610 66 2.61 25 45.12 57 N21 2903 2605 63 2470 30 2977 30 12077 28 1.60 8 72.39 14 N23 3110 3091 1 3417 12 3417 12 3405 1 1 6.00 64 2.61 25 45.12 57 N23 3110 3091 1 1 3417 12 3417 12 12 14 3405 1 1 6.00 64 2.61 26 2.61 25 45.12 57 N23 3110 3091 1 1 3417 12 3417 12 281 14 1 1 6.00 64 2.61 26 2.61 2	N17	2677	2717	59	2731	59	2723	59	3.73	42	48.49	53
N2 2802 2668 62 2686 62 2682 62 3.52 3.52 3.9 46.01 56.00 20.00	N18	3037	2679	61	2700	61	2693	61	2.05	19	54.08	41
N20 2913 2901 65 2013 66 2610 66 2.61 25 45.12 57 N21 2903 2965 30 2979 30 2977 28 1.45 8 72.39 14 N22 3119 3394 1 3417 1 3408 1 6.10 60 78.28 9 N23 2903 3104 11 3116 12 3115 11 1.71 14 70.06 7 N24 2852 2812 47 2824 47 2821 47 1.07 12 20.28 34 N24 2852 2812 47 2824 47 2821 47 1.07 12 20.28 34 N27 2894 3050 19 3072 20 3066 19 2.63 26 72.57 13 N27 2994 3050 19 3072 20 3066 19 2.63 26 72.57 13 N27 2994 3050 19 3072 20 3066 19 2.63 26 72.57 13 N27 2994 3050 19 3072 20 3066 19 2.63 26 72.57 13 N29 2987 2935 32 2947 33 2946 33 1.42 7 7 70.28 19 N29 2987 2935 32 2947 33 2946 33 1.42 7 7 70.28 19 N30 3337 3134 8 3152 8 3150 8 2.25 275 27 77.15 10 N30 3257 2813 45 2850 44 2823 45 7.49 65 39.31 65 N31 2932 2740 56 2755 58 2750 56 3.13 32 50.24 45 N32 2919 2088 66 2661 65 2666 65 2666 65 6.51 63 32.284 60 N33 3037 2971 3134 8 3134 8 3150 8 2750 56 3.13 32 50.24 45 N33 3037 2971 300 3072 300 3072 300 3072 300 3073 300 3073 300 3077 300 3075 300 3077 300 3077 300 3077 300 3077 300 3077 300 3077 300 3077 300 3077 300 3077 300 3077 300 3077 300 3077 300 3077 300 300	N19	3090	2435	70	2456	70	2430	70	7.71	66	15.59	71
N21 2993 2965 30 2976 30 2977 28 1.45 8 72.39 1.4 N22 3119 3394 1 317 1 316 12 3115 11 1.71 14 79.00 7 N23 2903 3104 11 3176 12 3115 11 1.71 14 79.00 7 N24 2813 2907 51 2812 47 2824 47 2821 47 1.77 12 62.98 N24 2813 2790 51 51 2816 51 2816 51 2816 11 1.77 1 12 62.98 N25 2813 2790 51 51 2816 51 2816 51 2816 11 1.77 1 12 62.98 N27 2994 3059 19 3072 20 3068 40 3.75 43 3.332 42 27 1.77 12 81	N2	2802	2668	62	2686	62	2682	62	3.52	39	46.01	56
N22 3119 3394 1 3417 1 3408 1 6.10 60 78.28 9 N23 2030 3104 11 3116 12 3115 11 1.71 14 70.06 7 N24 2852 2812 47 2824 47 2821 47 1.57 12 62.98 34 N25 2803 2790 51 2816 50 2808 49 3.75 43 53.92 42 N26 2099 2853 44 2855 2812 7 7 2824 47 2821 47 1.57 12 62.98 34 N26 2099 2853 44 2855 2812 7 7 2824 47 2821 47 2.00 21 60.07 7 37 1 N29 2095 2853 44 2855 2812 47 2855 2851 44 2.20 21 60.07 7 37 1 N29 2095 2853 44 2855 281 291 291 291 291 291 291 291 291 291 29	N20	2913	2601	65	2613	66	2610	66	2.61	25	45.12	57
N23 2003 3104 11 3116 12 3115 11 1.71 14 79.06 7 N24 2852 2812 47 2824 47 2821 47 2821 47 1.57 12 62.98 34 N25 2803 2700 51 2816 50 2808 49 3.75 43 53.92 42 N25 2803 2700 51 2816 50 2808 49 3.75 43 53.92 42 N26 2806 2835 43 2855 43 2855 43 2855 43 2851 42 2.60 24 60.74 37 N27 2994 3059 19 3072 20 3066 19 2.63 26 77.57 13 N27 2994 3059 19 3072 20 3066 19 2.63 26 77.57 13 N28 2805 2373 371 2411 71 2390 71 5.55 26 7 72.57 13 N28 2805 2373 371 2411 71 2390 71 5.55 27 7 72.57 13 N28 2805 2373 371 2411 71 2390 71 5.55 27 7 72.57 13 N28 2805 2373 371 2411 71 2390 71 5.55 27 7 72.57 13 N29 2357 2813 38 20 20 275 28 8 3150 8 8 1.72 27 77.15 10 N29 2357 2813 45 2850 44 2823 45 7.49 65 33.1 65 N31 2632 2740 56 2755 58 2750 56 31.33 32 55.25 4 45 N33 2630 2971 29 2981 29 2976 29 2.95 30 65.88 26 N33 2630 2971 29 2981 29 2976 29 2.95 30 65.88 26 N33 2630 2971 29 2981 29 2976 29 2.95 30 65.88 26 N33 2530 2985 26 3068 21 3016 23 8.94 69 47.46 54 N35 2544 3070 17 3115 13 3060 21 10.51 71 41.41 59 N37 3207 3102 12 2 3116 11 3101 14 4.67 47 66 20 25 N38 312 2708 60 270 60 270 60 270 60 6.25 51 11.51 71 41.41 59 N38 312 2708 60 270 60 270 60 270 60 6.25 51 11.51 71 41.41 59 N38 312 2708 60 270 60 270 60 270 60 6.25 51 11.51 71 41.41 59 N38 312 2708 60 270 60 270 60 270 60 6.25 61 11.51 71 41.41 59 N41 3020 3006 20 3066 22 3061 20 3061 20 3.23 34 6 0.00 20 N43 322 2708 54 270 60 270 50 50 50 50 50 50 50 30 50 50 50 50 50 50 50 50 50 50 50 50 50	N21	2993	2965	30	2979	30	2977	28	1.45	8	72.39	14
N24 2852 2812 47 2824 47 2821 47 1.57 12 62.98 34 N25 2862 2812 47 2824 47 1.57 12 62.98 34 N25 2969 2835 43 2855 43 2851 42 2.60 24 60.74 37 N27 2994 3059 19 3072 20 3066 19 2.63 26 72.57 13 N28 2805 2373 71 2401 71 2390 71 5.51 54 20.71 70 N28 19 N29 2875 2935 32 2947 33 2946 33 1.42 7 7 70.28 19 N3 3337 3134 8 3162 8 3150 8 2.75 27 77.15 10 N3 3337 3134 8 3162 8 3150 8 2.75 27 77.15 10 N3 3257 2813 34 5 2805 44 2823 45 7.49 65 30.31 65 10 N3 2825 2813 45 2825 2813 4825				1					6.10	60		
N26 2808 2700 51 2816 50 2808 49 3.75 43 53.92 42 N26 260 24 60.74 37 N27 2994 3059 19 3072 20 3066 19 2.63 26 72.57 13 N27 2994 3059 19 3072 20 3066 19 2.63 26 72.57 13 N27 2994 3059 2373 71 2401 71 2390 71 5.51 5.51 54 20.71 70 N29 2987 2935 32 2947 33 2946 33 1.42 7 7 70.28 19 N39 337 3134 8 3152 8 3150 8 2.75 27 77.15 10 N30 3257 2813 45 2850 44 2823 45 7.49 65 39.31 65 N31 282 2740 75 62 755 58 2750 75 66 3.13 32 25.54 45 N32 2919 2598 66 2661 65 2626 65 6.51 63 32.24 69 N33 2808 2971 29 2981	N23	2903	3104	11	3116	12	3115	11	1.71	14	79.06	7
No.	N24	2852	2812	47	2824	47	2821	47	1.57	12	62.98	34
N2T 2994 3099 19 3072 20 3066 19 2.63 26 72.57 13 N2S 2855 2373 71 2401 71 2390 71 5.51 54 20.71 70 N29 2987 2987 2985 32 2947 33 2946 33 1.42 7 7 70.28 19 N3 3337 3134 8 3152 8 3150 8 2.75 27 77.15 10 N30 3257 2813 45 2850 44 2823 45 7.49 65 39.31 65 N31 2632 2740 56 2755 58 2750 56 313 32 252.44 45 N32 2919 2598 66 2661 65 2626 65 6.51 63 32.24 69 N33 2503 2971 29 2981 29 2981 29 2976 29 2.265 30 65.88 26 N34 2503 2995 26 3068 21 3016 23 8.84 69 47.46 54 N32 2919 2595 60 20 3068 21 3016 23 8.84 69 47.46 54 N32 2919 2595 26 3068 21 3016 23 8.84 69 47.46 54 N32 2919 2925 20 3068 21 3016 23 8.84 69 47.46 54 N33 2503 2971 20 29 281 29 29 276 29 2.265 30 65.88 26 N34 2503 2985 26 3068 21 3016 23 8.84 69 47.46 54 N33 2503 2985 26 3068 21 3016 23 8.84 69 47.46 54 N33 2503 2985 26 3068 21 3016 23 8.84 69 47.46 54 N33 2503 2985 26 3068 21 3016 23 8.84 69 47.46 54 N33 2503 2985 26 3068 21 3016 23 8.84 69 47.46 54 N33 2503 2985 26 3068 21 3016 23 8.84 69 47.46 54 N33 2503 2985 26 3068 21 3016 23 8.84 69 47.46 54 N33 2503 2503 2503 2503 2503 2503 2503 25	N25	2803	2790	51	2816	50	2808	49	3.75	43	53.92	42
N28 2805 2373 71 2401 71 2390 71 5.51 54 20.71 70.8 N29 2875 2935 32 2947 33 2046 33 1.42 7 70.28 19 N3 3337 3134 8 3152 8 3150 8 2.75 27 77.15 10 N3 3337 3134 8 3152 8 3150 8 2.75 27 77.15 10 N3 3337 3134 8 3152 8 3150 8 2.75 27 77.15 10 N3 3257 2813 45 2850 44 2823 45 7.49 65 39.31 65 N31 2632 2740 56 2755 58 2750 56 31.33 32 52.44 45 N32 2919 2598 66 2661 65 2626 65 6.51 6.3 32.24 69 N33 2630 2971 29 2981 29 2976 29 2.95 30 65.88 26 N33 2630 2971 29 2981 29 2976 29 2.95 30 65.88 26 N33 2630 2971 29 3281 39 2076 29 2.95 30 65.88 26 N33 2630 2971 29 3281 39 3273 4 51.31 4 51.31 4 74.66 9 47.46 54 N35 2544 3070 17 3115 13 30600 21 10.51 71 41.41 59 N33 2630 322 3 343 3 3233 4 5.13 4 5.13 49 71.80 17 N37 3207 3102 12 3116 11 3101 14 4.67 47 66.20 25 N38 3112 2708 60 2730 60 2704 60 6.28 62 37.31 68 N39 3035 3005 23 3016 25 3015 24 1.55 11 7.405 12 N18 312 310 305 23 3069 18 3081 18 3079 17 0.94 2 80.27 5 N10 3156 3111 9 3126 10 3156 311 10 4.85 48 65.87 27 N14 3220 3056 31 18 3081 18 3079 17 0.94 2 80.27 5 N14 322 3069 318 3081 18 3079 17 0.94 2 80.27 5 N14 322 3069 318 3081 18 3079 17 0.94 2 80.27 5 N14 322 3069 318 3081 18 3079 17 0.94 2 80.27 5 N14 322 3069 318 3081 18 3079 17 0.94 2 80.27 5 N14 322 3069 318 3081 18 3079 17 0.94 2 80.27 5 N14 322 3069 318 3081 18 3079 17 0.94 2 80.27 5 N14 322 3069 318 3081 18 307 9 17 0.94 2 80.27 5 N14 32 32 3009 31 31 31 31 31 31 31 31 31 31 31 31 31	N26	2969	2835	43	2855	43	2851	42	2.60	24	60.74	37
N29 2987 2935 32 2947 33 2946 33 1.42 7 70.28 19 N3 337 3134 8 3152 8 3150 8 2.75 27 77.15 10 N30 3257 2813 45 2850 44 2823 45 7.49 65 39.31 65 N31 2632 2740 56 2755 58 2750 56 3.31 32 25.24 45 N32 2919 2598 66 2661 65 2626 65 6.51 63 32.44 69 N33 2630 2971 29 2981 29 2976 29 2.95 30 65.88 26 N34 2503 2971 29 2981 29 2976 29 2.95 30 65.88 26 N34 2503 2971 29 2985 26 3068 21 3016 23 8.84 69 47.46 54 N35 2544 3070 17 3115 13 3060 21 10.51 71 41.41 59 N36 2590 3229 3 3243 3 3233 4 5.13 49 71.80 17 N37 3207 3102 12 3116 11 3101 14 4.67 47 66.20 25 N38 3112 2708 60 2730 60 2704 60 6.28 62 37.31 68 N39 3035 3005 23 3016 25 3016 24 1.55 11 74.05 12 N4 3523 3009 18 3081 18 3079 17 0.94 2 80.27 5 N41 3020 3056 20 3066 22 3061 20 3.23 34 6.94 N43 3220 3056 20 3066 22 3061 20 3.23 34 6.90 N43 3220 2795 49 2811 52 2799 51 4.62 46 49.71 50 N43 3220 2795 49 2811 52 2799 51 4.62 46 49.71 50 N44 3156 2921 34 2931 35 2930 34 1.18 4 70.62 18 N44 3156 2921 34 2931 35 2930 34 1.18 4 70.62 18 N44 3156 3111 79 3125 10 3115 10 4.93 35 5.55 52 2821 49 2784 53 6.72 64 40.89 61 N43 3200 3056 20 3066 22 3061 20 3.23 34 6.90 0 20 N42 312 2758 54 2769 54 2769 54 2760 54 3.51 38 51.37 46 N43 3230 316 25 34 2931 35 2930 34 1.18 4 70.62 18 N45 2805 2755 52 2821 49 2784 53 6.72 64 40.89 61 N45 2805 2755 52 2821 49 2784 53 6.72 64 40.89 61 N46 3114 2807 48 2822 45 251 48 3.33 3 6.22 66 2.15 20 83.88 3 N47 2933 3210 5 3225 6 3225 6 2334 3 6.22 66 2.15 20 83.88 3 N47 3139 3161 7 3.190 7 3.181 7 5.23 50 60.86 47.24 55 N49 3159 3161 7 3.190 7 3.181 7 5.23 50 60.86 47.24 55 N49 3159 3161 7 3.190 7 3.181 7 5.23 50 60.86 47.24 55 N49 3159 3161 7 3.190 7 3.181 7 5.23 50 60.86 47.24 55 N49 3159 3161 7 3.190 17 3.181 7 5.23 50 60.86 47.24 55 N49 3159 3161 7 3.190 17 3.180 17 5.50 44 58 N50 3138 2061 63 2679 63 2226 6 2.15 20 8.38 6 63 N50 3138 2061 63 2679 63 2226 6 2.15 20 8.38 6 63 N50 3138 2061 63 2079 63 226 3086 27 2984 37 5.66 4 56 4 56 4 56 4 56 4 56 4 56 4 56	N27	2994	3059	19	3072	20	3066	19	2.63	26	72.57	13
N3 3337 3134 8 3152 8 3150 8 2.75 27 77.15 10 N30 3257 2813 45 2850 44 2823 45 7.49 65 39.31 65 N31 2632 2740 56 2755 58 2750 56 3.13 32 25.54 45 N31 2632 2740 56 2755 58 2750 56 3.13 32 25.54 45 N32 2919 2598 66 2661 65 2626 65 6.51 63 32.84 69 N33 2630 2971 29 2981 29 2976 29 2.95 30 65.88 26 N33 2630 2987 26 3068 21 3016 23 8.94 60 47.46 54 N35 2544 3070 17 3115 13 3060 21 10.51 71 41.41 59 N36 2690 3229 3 3243 3 3233 4 513 49 77.80 17 N37 3207 3102 12 3116 11 3101 14 4.67 47 66.20 25 N38 3112 2708 60 2730 60 2704 60 6.28 62 37.31 68 N39 3035 3005 23 3016 25 3015 24 1.55 11 74.05 12 N40 3156 3111 9 3125 10 3116 24 1.55 11 74.05 12 N41 3020 3056 20 3056 22 3066 22 3061 20 3.23 48 66 86 87 27 N41 3020 3056 20 3056 22 3066 22 3061 20 3.23 44 8 66.87 27 N43 310 20 3056 20 3066 22 3061 20 3.23 44 1.53 48 66.87 27 N44 3150 2768 60 278 60 278 60 2790 60 2704 60 6.28 N43 3114 2808 308 18 3081 18 3079 17 0.94 2 80.27 5 N40 3156 3111 9 3125 10 3115 10 4.43 348 66.87 27 N41 3020 3056 20 3066 22 3061 20 3.23 34 60.80 31 4 60.80 60 20 N43 314 2808 308 308 308 308 308 308 308 308 308	N28	2805	2373	71	2401	71	2390	71	5.51	54	20.71	70
N30 3257 2813 45 2850 44 2823 45 7.49 65 30.31 65 N31 2632 2740 56 2755 58 2750 56 31.3 32 52.54 45 N32 2919 2988 66 2661 65 2626 65 6.51 63 32.84 69 N31 2503 2985 26 3068 21 3016 23 8.94 69 47.46 54 N31 2503 2985 26 3068 21 3016 23 8.94 69 47.46 54 N35 2544 3070 17 3115 13 3060 21 10.51 71 41.41 59 N36 2690 3229 3 3243 3 3233 4 5.13 49 71.80 17 N36 2690 3229 3 3243 3 3333 4 5.13 49 71.80 17 N37 3207 3102 12 3116 11 31101 14 4.67 47 46.20 25 N38 3112 2708 60 2730 60 2704 60 6.28 62 37.31 68 N39 3035 3005 23 3016 25 3015 24 1.55 11 74.05 12 N4 3523 3069 18 3081 18 3079 17 0.94 2 80.27 5 N41 3020 3056 20 3066 22 3061 20 3.23 34 69.60 20 N41 3020 3056 20 3066 22 3061 20 3.23 34 69.60 20 N43 2920 2795 49 2211 52 2790 51 4.52 46 49.71 50 N44 3156 2921 34 2931 35 2930 34 18 4 70.62 18 N45 2805 2785 52 2821 49 2784 53 6.72 64 40.89 61 N46 314 2807 48 2832 45 2819 48 3.23 55 55.95 39 N47 2933 3210 5 3225 6 3222 6 2.15 20 83.58 3 N46 3159 3161 7 3190 7 3181 7 5.23 50 60.60 21 N40 3159 3161 7 3190 7 3181 7 5.23 50 60.60 21 N40 3159 3161 7 3190 7 3181 7 5.23 50 60.60 21 N40 3159 3161 7 3190 7 3181 7 5.23 50 60.60 21 N40 3159 3161 7 3190 7 3181 7 5.23 50 60.60 21 N40 3159 3161 7 3190 7 3181 7 5.23 50 60.60 21 N40 3138 2661 63 2679 63 2671 63 3.377 36 47.24 55 39 N47 2930 2730 284 308 2883 41 2866 43 7.84 67 69 63 N50 2747 29	N29	2987	2935	32	2947	33	2946	33	1.42	7	70.28	19
N31 2632 2740 56 2755 58 2750 56 3.13 32 25.54 45 N32 2919 2598 66 2661 65 2626 65 65.1 63 32.84 69 N33 2630 2971 29 2981 29 2976 29 2.95 30 65.88 26 N34 2503 2985 26 3068 21 3016 23 8.94 60 47.46 54 N35 2544 3070 17 3115 13 3060 21 10.51 71 41.41 59 N36 2690 3229 3 3243 3 3233 4 51.3 49 71.80 17 N37 3207 3102 12 3116 11 3101 14 4.67 47 66.20 25 N38 3112 2708 60 2730 60 2704 60 6.28 62 62 73.31 68 N39 3035 3005 23 3016 25 3015 24 1.55 11 74.05 12 N40 3156 3111 9 3125 10 3115 10 4.93 48 65.87 27 N40 3156 3111 9 3125 10 3115 10 4.93 48 65.87 27 N41 3020 3056 20 3066 22 3061 20 3.23 34 40.67 40.69 20 N42 3312 2758 54 2769 54 2760 54 3.51 38 51.37 46 N44 3156 2921 34 2931 35 2930 34 11.8 4 70.62 18 N45 2805 2785 52 2221 49 2784 53 67.25 61 40.89 61 N46 3114 2907 48 2832 45 2819 48 3.23 35 55.95 39 N47 2933 3210 5 3225 6 3222 6 2.16 3.37 36 69.26 21 N5 3043 3101 13 3115 14 3114 12 1.67 13 79.38 6 N50 3188 2661 63 2679 63 2714 63 3.37 36 67.24 69.26 21 N5 3043 3101 13 3115 14 3114 12 1.67 13 79.38 6 N50 2471 2792 50 2414 51 2808 50 36 44 67.96 21 N5 3043 3101 13 3115 14 3114 12 1.67 13 79.38 6 N50 2471 2799 24 3006 28 3004 25 3004 25 45 40.09 58 N50 3138 2661 63 2679 63 2671 63 3.37 66 26 64.00 31 N5 3043 3101 13 3115 14 3114 12 1.67 13 79.38 6 N5 3043 3005 3056 21 3074 19 3071 18 2.87 29 72.14 64 40.89 61 N5 3043 3005 3056 31	N3	3337	3134	8	3152	8	3150	8	2.75	27	77.15	10
N32 2919 2598 66 2661 65 2626 65 6.51 63 32.84 69 N34 2503 2971 29 2981 29 2976 29 2.95 30 65.88 26 N34 2503 2975 26 3068 21 3016 23 8.94 69 47.46 54 N35 2544 3070 17 3115 13 3066 21 10.51 71 41.41 59 N36 2600 3229 3 3243 3 3233 4 5.13 49 71.80 17 N37 3207 3102 12 3116 11 3101 14 4.67 47 66.20 25 N38 3112 2708 60 2730 60 2704 60 6.28 62 37.31 68 N39 3055 3005 23 3016 25 3015 24 1.55 11 74.05 12 N4 3523 3069 18 3081 18 3079 17 0.94 2 80.27 5 N41 3523 3069 18 3081 18 3079 17 0.94 2 80.27 5 N41 3020 3056 20 3066 22 3061 20 3.23 34 69.60 20 N42 3312 2788 54 2769 54 2760 54 3.51 18 4.93 48 65.87 27 N41 3020 3056 20 3066 22 3061 20 3.23 34 69.60 20 N42 3312 2788 54 2769 54 2769 54 3.51 18 4.52 46 49.71 50 N43 2920 2795 49 2811 52 2799 51 4.52 46 49.71 50 N44 3156 2921 34 2931 35 2030 34 1.18 4 70.62 18 N45 2805 2785 52 2821 49 2784 53 6.72 64 40.89 61 N46 3141 2807 48 2832 45 2819 48 3.23 35 55.95 39 N47 3159 3161 7 3190 7 7 3181 7 5.23 50 69.26 21 N5 3043 3101 13 3115 14 314 12 1.67 36 40.89 61 N5 3043 3101 13 3115 14 314 12 1.67 36 40.89 61 N5 3043 3101 13 3115 14 314 12 1.67 36 40.89 61 N5 3043 3101 13 3115 14 314 12 1.67 36 40.89 61 N5 3043 3101 13 3115 14 314 12 1.67 36 40.89 61 N5 3043 3101 13 3115 14 314 12 1.67 36 40.89 61 N5 3043 3101 13 3115 14 314 12 1.67 36 3.37 36 47.24 55 N5 3043 3101 13 3115 14 3114 12 1.67 36 3.37 36 47.24 55 N5 3043 3101 13 3115 14 3114 12 1.67 36 3.37 36 47.24 55 N5 3043 3101 13 3115 14 3114 12 1.67 36 3.37 36 47.24 55 N5 3043 3101 13 3115 14 3114 12 1.67 36 3.37 36 47.24 55 N5 3043 3101 13 3115 14 3114 12 1.67 36 3.37 36 47.24 55 N5 3043 3101 13 3115 14 3114 12 1.67 36 3.37 36 47.24 55 N5 3043 3101 13 3115 14 3114 12 1.67 36 3.37 36 47.24 45 N5 3043 3101 13 3115 14 3114 12 1.67 36 3.37 36 47.24 45 N5 3043 3101 13 3115 14 3114 12 1.67 36 3.37 36 47.24 45 N5 3043 3101 13 3115 14 3114 12 1.67 36 3.37 36 47.24 45 N5 3043 3101 13 3115 14 3114 12 1.67 36 3.37 36 47.24 45 N5 3043 3101 13 3115 14 3114 12 1.67 36 3.37 36 47.24 47 N5 3043 3101 13 3115 14 3114 12 1.67 36 36 44 40 34.21 40 N5	N30	3257	2813	45	2850	44	2823	45	7.49	65	39.31	65
N32 2919 2598 66 2661 65 2626 65 6.51 63 32.84 69 N33 2630 2971 29 2981 29 2976 29 2.95 30 65.88 26 N34 2503 2985 26 3088 21 3016 23 8.94 69 47.46 54 N35 2544 3070 17 3115 13 3060 21 10.51 71 41.41 59 N36 2600 3229 3 3243 3 3233 4 5.13 49 71.80 17 N37 3207 3102 12 3116 11 3101 14 4.67 47 66.20 25 N38 3112 2708 60 2730 60 2704 60 6.28 62 37.31 68 N39 3055 3005 23 3016 25 3015 24 1.55 11 74.05 12 N4 3523 3069 18 3081 18 3079 17 0.94 2 80.27 5 N40 3166 3111 9 3125 10 3115 10 4.93 48 65.87 27 N41 3020 3066 20 3066 22 3061 20 3.23 34 69.60 20 N42 3312 2788 54 2769 54 2760 54 3.51 38 51.37 46 N43 2920 2705 49 2811 52 2799 51 4.52 46 49.71 50 N44 3166 2921 34 2931 35 2930 34 1.18 4 70.62 18 N45 2805 2785 52 2821 49 2784 53 6.72 64 40.89 61 N46 3141 2807 48 2832 45 2819 48 3.23 35 5.59 39 N47 2933 3210 5 3225 6 3222 6 2.25 6 2.15 20 83.58 3 N48 3200 308 6 326 2 830 6 322 2 3344 3 6.22 61 8.89 5 N49 3159 3161 7 3100 7 7 3181 7 7 5.23 50 69.26 21 N49 3159 3161 7 3100 7 7 3181 7 7 5.23 50 69.26 21 N49 3159 3161 7 3100 7 7 3181 7 7 5.23 50 69.26 21 N50 3138 2661 63 2679 63 2671 66 2748 8 8 5.34 40 54.21 40 N53 2901 2866 39 2901 40 2874 58 8 5 5.34 40 54.21 40 N53 2901 2866 39 2901 40 2874 58 8 5 5.34 40 54.21 40 N53 2901 2866 39 2901 40 2879 39 6.08 5 3.45 40 54.21 40 N53 2901 2866 39 2901 40 2879 39 6.08 5 3.45 40 54.21 40 N53 2901 2866 39 2901 40 2879 39 6.08 5 3.45 40 54.21 40 N53 2901 2866 39 2901 40 2879 39 6.08 5 3.45 40 54.21 40 N53 2901 2866 39 2901 40 2879 39 6.08 5 3.45 40 54.21 40 N53 2901 2866 39 2901 40 2883 41 216 5 6.04 58 5 0.31 49 N57 3100 3066 21 3074 19 3071 18 2.87 7 99 5.74 40 79.88 64 N50 2721 2792 50 2814 51 2898 30 291 1 6 3.06 1 8.85 52 18.84 17 7 8.55 8 8 18.85 8 18.8	N31	2632	2740	56	2755	58	2750	56	3.13	32	52.54	45
N33 2630 2971 29 2981 29 2076 29 2.95 30 65.88 26 N34 2503 2984 69 47.46 54 N35 2544 3070 17 3115 13 3060 21 10.51 71 41.41 59 N36 2690 3229 3 3243 3 3233 4 5.13 49 71.80 17 N37 3207 3102 12 3116 11 3101 14 4.67 47 66.20 25 N38 3112 278 60 2730 60 2704 60 6.28 62 37.31 68 N393 3055 3005 23 3016 25 3015 24 1.55 11 74.05 12 N40 3156 3111 9 3125 10 3115 10 4.93 48 65.87 27	N32	2919	2598	66		65		65	6.51	63	32.84	69
N36 2544 3070 17 3115 13 3060 21 10.51 71 41.41 59 N36 2690 3229 3 3243 3 3233 4 5.13 49 71.80 17 N37 3207 3102 12 3116 11 3101 14 4.67 47 66.20 25 N38 3112 2708 60 2730 60 2704 60 6.28 62 37.31 68 N39 3035 3005 23 3016 25 3015 24 1.55 11 74.05 12 N4 3233 3060 18 3081 18 3079 17 0.94 2 80.27 5 N40 3156 3111 9 3125 10 3115 10 4.93 48 65.87 27 N41 3020 3056 20 3066 22 3061 20 3.23 34 69.60 20 N42 3312 2788 54 2769 54 2760 54 3.51 38 51.37 46 N43 2920 2705 49 2811 52 2799 51 4.52 46 49.71 50 N40 3156 2921 34 2931 35 2930 34 1.18 4 70.62 18 N44 3529 3208 6 3252 2 293 61 4.52 46 49.71 50 N40 315 293 3210 5 3225 6 3222 6 2.15 20 83.58 3 N47 2933 3210 5 3225 6 3222 6 2.15 20 83.58 3 N48 3290 3208 6 3252 2 2 3344 3 6.22 61 6.85 5 2 N49 3159 3161 7 3190 7 3181 7 5.23 50 69.26 21 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.37 36 64 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.54 40 54.21 40 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.44 12 1.67 13 79.38 6 N50 2721 2792 50 2814 51 2808 50 3.44 12 1.67 13 79.38 6 N50 2721 2792 50 2814 51 2808 50 3.44 12 1.67 13 79.38 6 N50 2824 3017 22 3025 23 3023 22 1.40 6 6 74.94 11 N50 2824 2831 37 2825 283 318 24 2966 33 31 247 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	N33	2630	2971	29	2981	29	2976	29	2.95	30	65.88	26
N36 2690 3229 3 3 3243 3 3233 4 5.13 49 71.80 17 N37 3207 3102 12 3116 11 3101 14 4.67 47 66.20 25 N38 3112 2708 60 2730 60 2704 60 6.28 62 37.31 68 N39 3035 3005 23 3016 25 3015 24 1.55 11 74.05 12 N4 3523 3069 18 3081 18 3079 17 0.94 2 80.27 5 N40 3156 3111 9 3125 10 3115 10 4.93 48 65.87 27 N40 3156 3111 9 3125 10 3115 10 4.93 48 65.87 27 N41 3020 3056 20 3066 22 3061 20 3.23 34 69.60 20 N42 3312 2758 54 2769 54 2760 54 3.51 38 51.37 46 N43 3290 2795 54 9 2811 52 2799 51 4.52 46 49.71 50 N44 3156 2921 34 2931 35 2930 34 1.18 4 70.62 18 N46 3114 2807 48 2882 45 2819 48 3.23 35 55.95 39 N47 2933 3210 5 3225 6 3222 6 6 2.15 20 83.58 3 N48 3290 3208 6 3252 2 3234 3 6.22 61 68.95 22 N49 3159 3161 7 3190 7 3181 7 7 5.23 50 69.26 21 N5 3043 3101 13 3115 14 3114 12 1.67 13 79.38 6 N50 3138 2661 63 2679 63 2671 63 278 58 5.34 52 24 43.09 58 N50 2731 88 2671 88 2761 56 2748 58 5.34 52 24 43.09 58 N50 2731 89 2734 58 2761 56 2748 58 5.34 52 24 43.09 58 N50 2731 89 2734 58 2761 56 2748 58 5.34 52 24 43.09 58 N50 2731 89 2734 58 2761 56 2748 58 5.34 52 43.09 58 N50 2731 89 2734 58 2761 56 2748 58 5.34 52 43.09 58 N50 2731 89 36 6 3352 2 3814 51 2808 50 3.64 40 54.21 40 N53 2901 2856 39 2901 40 2879 39 6.08 59 49.35 52 N51 3293 2734 58 2761 56 2748 58 5.34 52 43.09 58 N50 2721 2792 50 2814 51 2808 50 3.64 40 54.21 40 N53 2901 2856 39 2901 40 2879 39 6.08 59 49.35 52 N51 3291 2856 39 2901 40 2879 39 6.08 59 49.35 52 N51 3291 2856 39 2901 40 2879 39 6.08 59 49.35 52 N54 2344 3005 14 3112 15 3109 13 1.44 17 78.50 8 40.00 80.	N34	2503	2985	26	3068	21	3016	23	8.94	69	47.46	54
N37 3207 3102 12 3116 11 3101 14 4.67 47 66.20 25 N38 3112 2708 60 2730 60 2704 60 6.28 62 37.31 68 N39 3035 3005 23 3016 25 3015 24 1.55 11 74.05 12 N4 3232 3099 18 3081 18 3079 17 0.94 2 80.27 5 N40 3156 3111 9 3125 10 3115 10 4.93 48 65.87 27 N41 3020 3056 20 3066 22 3061 22 3061 20 3.33 34 69.60 20 N42 3312 2758 54 2769 54 2769 54 3.51 3.51 38 51.37 46 N45 2920 2705 449 2811 52 2799 51 4.52 46 49.71 50 N44 3156 2921 34 2931 35 2930 34 1.18 4 70.62 18 N45 2805 2755 52 2821 49 2784 53 6.72 64 40.89 61 N46 314 2807 48 2832 45 2819 48 3.23 35 5.595 39 N47 2933 3210 5 3225 6 3222 6 2.15 20 83.58 3 N48 3290 3208 6 3252 2 2334 3 6.22 6 2.15 20 83.58 3 N48 3290 3208 6 3252 2 2334 3 314 12 1.67 13 79.38 6 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3290 2721 2792 50 2814 51 2808 50 3.64 40 54.21 40 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N50 3290 2721 2792 50 2814 51 2808 50 3.64 40 54.21 40 N50 2824 2918 35 2939 34 2916 35 6.04 58 5.34 52 43.09 58 N52 2721 2792 50 2814 51 2808 50 3.64 40 54.21 40 N50 2824 3017 22 3025 23 3023 22 1.40 6 74.94 11 N50 2824 2918 35 2939 34 2916 35 6.04 58 5.34 52 43.09 58 N50 2824 3017 22 3025 23 3023 22 1.40 6 74.94 11 N50 2824 2918 35 2939 34 2916 35 112 50 5.76 56 64.00 31 N50 2824 3017 22 3025 23 3023 22 1.40 6 74.94 11 N50 2824 2918 35 2939 34 2916 35 112 50 5.76 56 64.00 31 N50 2824 3017 22 3025 23 3023 22 1.40 6 74.94 11 N60 2803 2854 289 37 308 290 30 30 3.45 57 57 55 50.44 48 N60 270 2903 255 308 27 2904 27 5.50 53 56.89 38 N60 2704 2990 24 3006 28 3006 27 2994 27 5.	N35	2544	3070	17	3115	13	3060	21	10.51	71	41.41	59
N38 3112 2708 60 2730 60 2704 60 6.28 62 37.31 68 N39 3035 3005 23 3016 25 3015 24 1.55 11 74.05 12 N4 3523 3069 18 3081 18 3079 17 0.94 2 80.27 5 N40 3156 3111 9 3125 10 3115 10 4.93 48 65.87 27 N41 3020 3056 20 3066 22 3061 20 3.23 34 60.60 20 N42 3312 2758 54 2769 54 2760 54 3.51 38 51.37 46 N43 3290 2795 49 2811 52 2799 51 4.52 46 49.71 50 N44 3156 2921 34 2931 35 2930 34 1.18 4 70.62 18 N45 2805 2785 52 2821 49 2784 53 6.72 64 40.89 61 N46 3114 2807 48 2832 45 2819 48 3.23 35 55.95 39 N48 3290 3208 6 3252 2 3234 3 6.22 61 68.95 22 N49 3159 3161 7 3190 7 3181 7 5.23 50 69.26 21 N5 3043 3101 13 3115 14 3114 12 1.67 13 79.38 6 N50 3138 2661 63 2679 63 2671 56 2748 58 5.34 52 43.09 58 N51 293 2734 58 2761 56 2748 58 5.34 52 43.09 58 N51 2930 2734 58 2761 56 2748 58 5.34 52 43.09 58 N52 2721 2792 50 2814 51 280 2879 39 6.08 59 49.35 52 N54 2344 3005 14 3112 15 3109 13 1.84 17 78.50 8 N55 2019 3109 10 3136 9 3124 9 90 37 31 1.84 17 78.50 8 N55 2019 3109 10 3136 9 3124 9 37 39 6.08 59 49.35 52 N54 2344 3005 14 3112 15 3109 13 1.84 17 78.50 8 N55 2019 3109 10 3136 9 3124 9 37 37 64 17 78.50 8 N56 2521 2918 35 2939 34 2916 35 604 58 50.31 49 N56 2521 2918 35 2939 34 2916 35 604 58 50.31 49 N57 3100 3056 21 3074 19 3071 18 2.87 29 72.14 16 N58 2261 2953 31 2975 31 2969 30 34 3.45 17 78.50 8 N50 233 205 6 30 2901 40 2879 39 6.08 59 49.55 52 N54 2344 3005 14 3112 15 3109 13 1.84 17 78.50 8 N57 3209 3208 6 32 2939 34 2916 35 604 58 50.31 49 N57 3100 3056 21 3074 19 3071 18 2.87 29 72.14 16 N58 2261 2953 31 2975 31 2969 30 34 3.5 604 58 50.31 49 N57 3100 3056 21 3074 19 3071 18 286 50 3.64 60 67 4.94 11 N58 2261 2953 31 2975 31 2969 30 34 3.5 60 67 4.94 11 N58 2261 2953 31 2975 31 2969 30 34 3.5 60 67 4.94 11 N58 2261 2953 31 2975 31 2969 30 34 35 5.28 51 50.86 63 N60 2824 3017 22 3025 23 3023 22 1.40 6 7.494 11 N58 2261 2953 31 2975 31 2969 30 34 35 5.28 51 50.89 38 N67 2803 2655 64 2655 64 2665 64 2669 64 2266 51 1.82 66 5 87.42 1 N70 3025 2894 36 2914 36 2914 36 2929 55 1.26 5 87.42 1 N70 3052 2894 36 2914 36 2914 36	N36	2690	3229	3	3243	3	3233	4	5.13	49	71.80	17
N39 3035 3005 23 3016 25 3015 24 1.55 11 74.05 12 N4 3523 3069 18 3081 18 3081 17 0.94 2 80.27 5 N40 3156 3111 9 3125 10 3115 10 4.93 48 65.87 27 N41 3020 3056 20 3066 22 3061 20 3.23 34 69.60 20 N42 3312 2758 54 2769 54 2760 54 3.51 38 51.37 46 N43 2920 2795 49 2811 52 2799 51 4.52 46 49.71 50 N44 3156 2921 34 2931 35 2930 34 1.18 4 70.62 18 N45 2805 2785 52 2821 49 2784 53 6.72 64 40.89 61 N46 314 2807 48 2832 45 2819 48 3.23 35 55.95 39 N47 2933 3210 5 3225 6 3222 6 2.15 20 83.58 3 N48 3290 3208 6 3252 2 3334 3 6.22 61 68.95 22 N49 3159 3161 7 3190 7 3181 7 5.23 50 69.26 21 N5 3043 3101 13 3115 14 3114 12 1.67 13 79.88 6 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N51 3293 2734 58 2761 56 2748 58 58 5.34 52 43.09 58 N52 2721 2792 50 2814 51 2808 50 3.64 40 540 58 N53 2901 2856 39 2901 40 2879 39 6.08 59 49.35 52 N54 3109 10 3136 9 3124 9 5.76 56 64.00 31 N55 2619 3109 10 3136 9 3124 9 5.76 56 64.00 31 N57 3100 3056 21 3074 19 3071 18 2.87 29 72.14 16 N58 262 2973 31 2973 38 298 34 298 39 6.08 59 49.35 52 N56 252 2953 31 2975 31 2975 31 2965 31 287 297 291 40 2879 39 6.08 59 49.35 52 N57 3100 3056 21 3074 19 3071 18 2.87 29 72.14 16 N58 261 2953 31 2975 31 2965 31 2975 31 2966 31 3.44 9 5.76 56 64.00 31 N57 3100 3056 21 3074 19 3071 18 2.87 29 72.14 16 N58 262 2973 38 308 28 308 29 30 38 2893 38 5.28 51 37 39.48 64 N61 3122 2973 28 3018 24 2965 31 9.45 70.88 16.00 31 N59 2847 2990 24 3006 28 3004 25 1.82 16 72.37 15 N6 2824 3017 22 3025 23 3023 22 1.40 6 74.94 11 N60 2602 3091 15 3101 16 3101 16 3101 15 0.86 1 81.68 4 N61 3122 2973 28 3018 24 2965 31 9.45 70.56 65 84.00 31 N60 2602 3091 15 3101 16 3101 16 3101 15 0.86 1 81.68 4 N61 3122 2973 38 2907 38 2993 38 5.28 51 5.99 44 N62 3122 2973 28 3018 24 2966 31 9.46 67 39.48 64 N61 3122 2973 28 3018 24 2966 31 9.46 67 39.48 64 N61 3122 2973 28 3018 24 2966 31 9.46 67 39.48 64 N61 3122 2973 38 2907 38 2993 38 5.28 51 5.99 44 N62 2784 2891 37 2912 37 2894 37 5.71 55 50.44 48 N61 3100 3056 2871 38 2995 38 2893 38 5.28 51 50.99 44 N63 3160 2871 38 2995 53 308	N37	3207	3102	12	3116	11	3101	14	4.67	47	66.20	25
N40 3523 3069 18 3081 18 3079 17 0.94 2 80.27 5 N40 3156 3111 9 3125 10 3115 10 4.93 48 65.87 27 N41 3020 3056 20 3066 22 3061 20 3.23 34 69.60 20 N42 3312 2758 54 2769 54 2760 54 3.51 38 51.37 46 N43 3290 2795 49 2811 52 2799 51 4.52 46 49.71 50 N44 3156 2921 34 2931 35 2930 34 1.18 4 70.62 18 N45 2805 2785 52 2821 49 2784 53 6.72 64 40.89 61 N46 3114 2807 48 2832 45 2819 48 3.23 35 55.95 39 N47 2933 3210 5 3225 6 3222 6 2.15 20 83.58 3 N48 3290 3208 6 3252 2 3234 3 6.22 61 68.95 22 N49 3159 3161 7 3190 7 3181 7 5.23 50 69.26 21 N5 3034 3101 13 3115 14 3114 12 1.67 13 79.38 6 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N51 3293 2734 58 2761 56 2748 58 58 44 40 54 21 40 N53 2901 2856 39 2901 40 2879 39 6.08 59 49.35 52 N52 2721 2792 50 2814 51 2808 50 3.64 40 54.21 40 N53 2901 2856 39 2901 40 2879 39 6.08 59 49.35 52 N54 2344 3095 14 3112 15 3109 13 18 44 17 78.50 8 N55 2619 3109 10 3136 9 3104 19 3071 18 2.87 29 72.14 16 N58 2521 2918 35 2939 34 2916 35 6.04 58 50.31 49 N57 3100 3056 21 3074 19 3071 18 2.87 29 72.14 16 N58 2621 2918 35 2939 34 2916 35 6.04 58 50.3 14 17 78.50 8 N55 2619 3109 10 3136 9 3104 19 3071 18 2.87 29 72.14 16 N58 2621 2918 35 2939 34 2916 35 6.04 58 50.31 49 N57 3100 3056 21 3074 19 3071 18 2.87 29 72.14 16 N58 2621 2918 35 2939 34 2916 35 6.04 58 50.31 49 N57 3100 3056 21 3074 19 3071 18 2.87 29 72.14 16 N59 2947 2990 24 3006 28 3004 25 1.82 16 72.37 15 N60 2602 3091 15 3101 16 3101 15 0.86 1 81.68 4 N61 3122 2973 28 3018 24 2965 31 2846 43 7.84 67 39.48 64 N63 3160 2871 38 2907 38 2893 38 5.28 51 52.99 44 N66 2784 2891 37 2912 37 2894 37 5.71 55 50.44 48 N61 3122 2973 28 3018 24 3242 25 1.78 15 50.44 48 N62 3132 2851 40 2883 41 2846 43 7.84 67 39.48 64 N63 3160 2871 38 2907 38 2893 38 5.28 51 52.99 144 N60 2802 3091 15 3101 16 3101 15 0.86 1 18.68 4 N61 3122 2973 28 3018 24 2966 31 284 2965 31 52.99 44 N63 3160 2871 38 2907 38 2893 38 5.28 51 52.99 144 N60 2802 3091 25 3008 27 2994 27 5.50 53 368 38 N62 3132 2851 40 2883 41 2846 43 7.84 67 39.48 614 2.28 50.87 47 N70 3025 2894	N38	3112	2708	60	2730	60	2704	60	6.28	62	37.31	68
N40 3156 3111 9 3125 10 3115 10 4.93 48 65.87 27 N41 3020 3056 20 3066 22 3061 20 3.23 34 66.60 20 N42 3312 2758 54 2769 54 2760 54 3.51 38 51.37 46 N43 2920 2795 49 2811 52 2799 51 4.52 46 49.71 50 N44 3156 2921 34 2931 35 2930 34 1.18 4 70.62 18 N45 2805 2785 52 2821 49 2784 53 6.72 64 40.89 61 N45 2805 2785 52 2821 49 2784 53 6.72 64 40.89 61 N47 2933 3210 5 3225 6 3222 6 2.15 20 83.58 3 N47 2933 3210 5 3225 6 3222 6 2.15 20 83.58 3 N48 3290 3208 6 3252 2 2 3234 3 6.22 61 68.95 22 N49 3159 3161 7 3190 7 3181 7 5.23 50 69.26 21 N5 3043 3101 13 3115 14 3114 12 1.67 13 79.38 6 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N51 3293 2734 58 2676 56 3248 50 3.64 40 54.21 40 N53 2901 2856 39 2901 40 2879 39 6.08 59 49.35 52 N54 2344 3095 14 3112 15 3109 13 1.84 17 78.50 8 N52 2721 2792 50 2814 51 2808 50 3.64 40 54.21 40 N53 2901 2856 39 2901 40 2879 39 6.08 59 49.35 52 N55 2619 3109 10 3136 9 3124 9 5.76 56 64.00 31 N55 201 3095 14 3112 15 3109 13 1.84 17 78.50 8 N55 221 1898 35 2039 306 28 3004 25 1.82 16 7.37 15 N56 2521 2918 35 2939 34 2916 35 6.04 58 50 3.64 40 54.21 40 N57 3100 3056 21 3074 19 3071 18 2.87 299 72.14 16 N58 2261 2953 31 2975 31 2966 30 3.45 77 18 2.87 299 72.14 16 N58 2261 2953 31 2975 31 2966 30 3.45 77 18 2.87 299 72.14 16 N58 2261 2953 31 2975 31 2966 30 3.45 77 15 50 50 44 N61 3102 2973 38 283 318 24 2965 31 9.45 70 39.86 63 N52 2973 38 283 318 24 2965 31 9.45 70 39.86 63 N52 2973 38 2893 38 5.28 51 5.299 44 N61 312 2973 38 2893 38 5.28 51 5.299 44 N61 312 2973 32 28 3018 24 2965 31 9.45 70 39.86 63 N62 2871 38 2907 38 2893 38 5.28 51 5.299 44 N61 312 2873 302 2655 64 2675 64 2669 64 2.48 22 5.08 74 2 50 50 50 50 50 50 50 50 50 50 50 50 50	N39	3035	3005	23	3016	25	3015	24	1.55	11	74.05	12
N41 3020 3056 20 3066 22 3061 20 3.23 34 69.60 20 N42 3312 2758 54 2769 54 2760 54 3.51 38 51.37 46 N43 2920 2755 49 2811 52 2799 51 4.52 46 49.71 50 N44 3156 2921 34 2931 35 2930 34 1.18 4 70.62 18 N45 2805 2785 52 2821 49 2784 53 6.72 64 40.89 61 N46 3114 2807 48 2832 45 2819 48 3.23 35 55.95 39 N47 2933 3210 5 3225 6 3222 6 6 2.15 20 83.58 3 N48 3290 3208 6 3252 2 2334 3 6.22 61 68.95 22 N49 3159 3161 7 3190 7 3181 7 5.23 50 69.26 21 N5 3043 3101 13 3115 14 3114 12 1.67 13 79.38 6 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N51 3293 2734 58 2761 56 2748 58 5.34 52 43.09 58 N52 2721 2792 50 2814 51 2808 50 3.64 40 54.21 40 N53 2901 2856 39 2901 40 2879 39 6.08 59 49.35 52 N54 2344 3095 14 3112 15 3109 13 1.84 17 78.50 8 N55 2519 3109 10 3136 9 3124 9 5.76 56 64.00 31 N56 2521 2918 35 2939 34 2916 35 6.04 58 50.31 49 N57 3100 3056 21 3074 19 3071 18 2.87 29 72.14 16 N58 2261 2953 31 2975 31 2969 30 344 57 64.10 30 N59 2947 2990 24 3006 28 3004 25 1.82 16 72.37 15 N60 2602 3091 15 3101 16 3101 16 3101 15 0.86 1 N50 2824 3017 22 3025 23 3023 22 1.40 6 72.37 15 N62 284 3017 22 3025 23 3023 22 1.40 6 74.94 11 N60 2602 3091 15 3101 16 3101 15 0.86 1 81.68 4 N61 3122 2973 28 3018 24 2966 31 37 844 67 39.86 64 N62 3132 2851 40 2883 41 2846 43 7.84 67 39.86 64 N62 3132 2851 40 2883 41 2846 43 7.84 67 39.86 64 N63 3160 2871 38 2907 38 2893 38 322 2 1.40 6 74.94 11 N60 2602 3091 15 3101 16 3101 15 0.86 1 81.68 4 N61 3122 2973 28 3018 24 2965 31 9.47 5.50 53 56.89 38 N62 3132 2851 40 2883 41 2846 43 7.84 67 39.86 64 N63 3160 2871 38 2907 38 2893 38 38 5.28 51 5.29 9 44 N63 3160 2871 38 2907 38 2893 38 38 5.28 51 5.29 9 44 N60 2602 3091 15 3101 16 3101 15 0.86 1 1 81.68 4 N61 3122 2973 28 3018 24 2966 42 266 64 2.48 22 50.87 47 N60 2784 2891 37 2990 25 3008 27 2994 27 5.50 53 56.89 38 N67 2803 2824 32 2851 40 2883 41 2846 43 7.84 67 39.86 63 N62 3132 2851 40 2883 41 2846 43 7.84 67 39.86 63 N62 3132 2851 40 2883 41 2846 43 7.84 67 39.86 63	N4	3523	3069	18	3081	18	3079	17	0.94	2	80.27	5
N42 3312 2758 54 2769 54 2760 54 3.51 38 51.37 46 N43 2920 2795 49 2811 52 2799 51 4.52 46 49.71 50 N44 3156 2921 34 2931 35 2930 34 1.18 4 70.62 18 N45 2805 2785 52 2821 49 2784 53 6.72 64 40.89 61 N46 3114 2807 48 2832 45 2819 48 3.32 35 55.95 39 N47 2933 3210 5 3225 6 3222 6 2.15 20 83.58 3 N48 3290 3208 6 3252 2 2334 3 6.22 61 68.95 22 N49 3159 3161 7 3190 7 3181 7 5.23 50 69.26 21 N5 3043 3101 13 3115 14 3114 12 1.67 13 79.38 6 N50 3138 2661 63 2679 63 2671 63 3271 63 3.37 36 47.24 55 N51 3293 2734 58 2761 56 2748 58 5.34 52 43.09 58 N52 2721 2792 50 2814 51 2808 50 3.64 40 54.21 40 N53 2901 2856 39 2901 40 2879 39 6.08 59 49.35 52 N54 2344 3095 14 3112 15 3109 13 1.84 17 78.50 8 N55 2619 3109 10 3136 9 3124 9 5.76 56 64.00 31 N56 2521 2918 35 2939 34 2916 35 6.04 58 50.31 49 N57 3100 3056 21 3074 19 3074 19 3071 18 2.87 29 72.14 16 N58 2261 2953 31 2975 31 2969 30 3.45 37 64.10 30 N59 2947 2990 24 3006 28 3004 25 1.82 16 7.93 19.86 63 N60 2002 3091 15 3101 16 3101 15 0.86 1 1 82.87 29 72.14 16 N51 3132 2851 40 2883 41 2846 43 7.84 67 39.86 64 N61 3122 2973 28 3018 24 2966 31 9.45 70 39.86 63 N62 3132 2851 38 2907 38 2894 37 284 49 275 55 50.44 48 N61 3122 2973 28 3018 24 2965 31 9.45 70 39.86 63 N62 3132 2851 38 2907 38 2894 37 5.51 55 50.44 48 N63 3160 2871 38 2981 37 2912 37 2884 49 275 55 50.44 48 N63 3160 2871 38 2981 37 2912 37 2884 49 2965 31 9.45 70 39.86 63 N62 3132 2851 38 2907 38 2893 38 5.28 51 9.45 70 39.86 63 N62 3132 2851 30 308 27 2994 27 5.55 55 55.44 48 N64 2731 3078 16 3090 17 3082 16 3.96 44 67.96 23 N65 2784 2891 37 2912 37 2894 37 5.51 55 50.44 48 N66 2790 2990 25 3008 27 2994 27 5.55 55 55 56.89 38 N67 2803 2824 42 2860 42 2854 41 2.55 23 61.81 35	N40		3111	9		10						
N42 3312 2758 54 2769 54 2760 54 3.51 38 51.37 46 N43 3290 2795 49 2811 52 2799 51 4.52 466 49.71 50 N44 3156 2921 34 2931 35 2930 34 1.18 4 70.62 18 N45 2805 2785 52 2821 49 2784 53 6.72 64 40.89 61 N46 3114 2807 48 2832 45 2819 48 3.23 35 55.95 39 N47 2933 3210 5 3225 6 3222 6 2.15 20 83.58 3 N48 3290 3208 6 3252 2 2334 3 6.22 61 68.95 22 N49 3159 3161 7 3190 7 3181 7 5.23 50 69.26 21 N5 3043 3101 13 3115 14 3114 12 1.67 13 79.38 6 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N51 3293 2734 58 2761 56 2748 58 5.34 52 43.09 58 N52 2721 2792 50 2814 51 2808 50 3.64 40 54.21 40 N53 2901 2856 39 2901 40 2879 39 6.08 59 49.35 52 N54 2344 3095 14 3112 15 3109 13 1.84 17 78.50 8 N55 2619 3109 10 3136 9 3124 9 5.76 56 64.00 31 N56 2521 2918 35 2939 34 2916 35 6.04 58 50.31 49 N57 3100 3056 21 3074 19 3074 19 3071 18 2.87 29 72.14 16 N58 2261 2953 31 2975 31 2969 30 3.45 37 64.10 30 N59 2947 2990 24 3006 28 3004 25 1.89 10.80	N41	3020	3056	20	3066	22	3061	20	3.23	34	69.60	20
N43 2920 2795 49 2811 52 2799 51 4.52 46 49.71 50 N44 3156 2921 34 2931 35 2930 34 1.18 4 70.62 18 N45 2805 2785 52 2821 49 2784 53 6.72 64 40.89 61 N46 3114 2807 48 2832 45 2819 48 3.23 35 55.95 39 N47 2933 3210 5 3225 6 3222 6 2.15 20 83.58 3 N48 3290 3208 6 3252 2 3234 3 6.22 61 68.95 22 N49 3159 3161 7 3190 7 3181 7 5.23 50 69.26 21 N5 3043 3101 13 3115 14 3114 12 1.67 13 79.38 6 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N51 3293 2734 58 2761 56 2748 58 5.34 52 43.09 58 N52 2721 2792 50 2814 51 2808 50 3.64 40 54.21 40 N53 2901 2856 39 2901 40 2879 39 6.08 59 49.35 52 N54 2344 3095 14 3112 15 3109 13 1.84 17 78.50 8 N55 2619 3109 10 3136 9 3124 9 5.76 56 64.00 31 N56 2521 2918 35 2939 34 2916 35 6.04 58 50.31 49 N57 3100 3056 21 3074 19 3071 18 2.87 29 72.14 16 N58 2261 2953 31 2975 31 2969 30 3.45 37 64.10 30 N59 2947 2990 24 3006 28 3004 25 1.82 16 72.37 15 N6 2824 3017 22 3025 23 3023 22 1.40 6 74.94 11 N60 2602 3091 15 3101 16 3101 15 0.86 1 1 81.68 4 N61 3122 2973 28 3018 24 2965 31 9.45 70 39.86 63 N62 3132 2851 40 2883 41 2846 43 7.84 67 39.86 63 N66 2700 2990 25 3008 27 2994 27 5.50 53 56.89 38 N67 274 2984 274 2990 34 3008 26 3001 26 3.96 44 67.96 23 N66 276 2984 27 3008 26 3001 26 3.67 41 65.18 299 N69 3192 3230 2 2 3243 4 3229 5 3029 5 5 1.26 5 8.74 2 1 N70 3025 2894 36 2914 36 2909 36 28.30 12 6 3.67 41 65.18 299 N69 3192 3230 2 2 3243 4 3229 5 5 5.24 50.12 55 5.44 48 N61 3102 2973 28 3018 24 2965 31 9.45 70 39.86 63 N62 2761 2984 27 3008 26 3001 26 3.67 41 65.18 299 N69 3192 3230 2 2 3243 4 3242 2 1.78 15 86.14 2 N70 3025 2894 36 2914 36 2909 36 2.83 28 63.18 33 N71 3007 2781 53 2295 5 5 522 2 5 5 5.26 5 5 8.74 2 1 N70 3025 2894 36 2914 36 2909 36 2.83 28 63.18 33 N71 3007 2781 5 53 2286 42 2866 42 2854 41 2.55 2 33 61.21 35												
N44 3156 2921 34 2931 35 2930 34 1.18 4 70.62 18 N45 2805 2785 52 2821 49 2784 53 6.72 64 40.89 61 N46 3114 2807 48 2832 45 2819 48 3.23 35 55.55 39 N47 2933 3210 5 3225 6 3222 6 2.15 20 83.58 3 N48 3290 3208 6 3252 2 3234 3 6.22 61 68.95 22 N49 3159 3161 7 3190 7 3181 7 5.23 50 69.26 21 N5 3043 3101 13 3115 14 3114 12 1.67 13 79.38 6 N50 3138 2661 63 2679 63 <t< td=""><td>N43</td><td>2920</td><td>2795</td><td>49</td><td></td><td>52</td><td></td><td>51</td><td></td><td>46</td><td></td><td>50</td></t<>	N43	2920	2795	49		52		51		46		50
N45 2805 2785 52 2821 49 2784 53 6.72 64 40.89 61 N46 3114 2807 48 2832 45 2819 48 3.23 35 55.95 39 N47 2933 3210 5 3225 6 3222 6 2.15 20 83.58 3 N48 3290 3208 6 3252 2 3234 3 6.22 61 68.95 22 N5 3043 3101 13 3115 14 3114 12 1.67 13 79.38 6 N50 3138 2661 63 26761 56 2748 58 5.34 52 43.09 58 N51 3293 2734 58 2761 56 2748 58 5.54 52 44.09 55 N51 3293 2734 58 2761 56 2748 58 5.54 52 44.09 51.22 44.09 55 723	N44	3156										
N46 3114 2807 48 2832 45 2819 48 3.23 35 55,55 39 N47 2933 3210 5 3225 6 3222 6 2.15 20 83.58 3 N48 3290 3208 6 3252 2 3234 3 6.22 61 68.95 22 N49 3159 3161 7 3190 7 3181 7 5.23 50 69.26 21 N5 3043 3101 13 3115 14 3114 12 1.67 13 79.38 6 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N51 3293 2734 58 2761 56 2748 58 5.34 52 43.09 58 N52 2721 2792 50 2814 51 2808 50 3.64 40 54.21 40 N53 2901	N45	2805	2785	52	2821	49	2784	53		64	40.89	
N47 2933 3210 5 3225 6 3222 6 2.15 20 83.58 3 N48 3290 3208 6 3252 2 3234 3 6.22 61 68.95 22 N49 3159 3161 7 3190 7 3181 7 5.23 50 69.26 21 N5 3043 3101 13 3115 14 3114 12 1.67 13 79.38 6 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N51 3293 2734 58 2761 56 2748 58 5.34 52 43.09 58 N52 2721 2792 50 2814 51 2808 50 3.64 40 54.21 40 N53 2901 2856 39 2901 40 2879 39 6.08 59 49.35 52 N54 2344 3095 14 3112 15 3109 13 1.84 17 78.50 8 N55 2619 3109 10 3136 9 3124 9 5.76 56 64.00 31 N56 2521 2918 35 2939 34 2916 35 6.04 58 50.31 49 N57 3100 3056 21 3074 19 3071 18 2.87 29 72.14 16 N58 2261 2953 31 2975 31 2969 30 3.45 37 64.10 30 N59 2947 2990 24 3006 28 3004 25 1.82 16 72.37 15 N6 2824 3017 22 3025 23 3023 22 1.40 6 74.94 11 N60 2602 3091 15 3101 16 3101 15 0.86 1 81.68 4 N61 3122 2973 28 3018 24 2965 31 9.45 70 39.86 63 N62 3132 2973 28 3018 24 2965 31 9.45 70 39.86 63 N62 3132 2871 38 2997 38 288 3018 24 2965 31 9.45 70 39.86 63 N62 3132 2871 38 2997 38 288 3018 24 2965 31 9.45 70 39.86 63 N62 3132 2871 38 2997 38 288 3018 24 2965 31 9.45 70 39.86 63 N62 3132 2871 38 2997 38 2883 41 2846 43 7.84 67 39.48 64 N63 3160 2871 38 2997 38 2883 41 2846 43 7.84 67 39.48 64 N63 3160 2871 38 2997 38 2883 41 2846 43 7.84 67 39.48 64 N63 3160 2871 38 2997 38 2893 38 5.28 51 52.99 44 N64 2731 3078 16 3090 17 3082 16 3.96 44 67.96 23 N65 2784 2891 37 2912 37 2894 37 5.71 55 5.04 48 N66 2790 2990 25 3008 27 2994 27 5.50 53 56.89 38 N67 2803 2655 64 2675 64 2669 64 2.48 22 50.87 47 N68 2716 2984 27 3008 26 3001 26 3.67 41 65.18 29 N69 3192 3230 2 3243 4 3242 2 1.78 15 86.14 2 N70 3025 2894 36 2914 36 2995 5 3299 5 5 1.26 5 5 87.42 1 N70 3025 2894 36 2914 36 2995 5 3299 5 5 1.26 5 5 87.42 1 N70 3025 2894 36 2914 36 2914 36 2909 36 2.83 288 63.18 33 N71 3007 2781 53 2795 53 2794 52 1.50 10 60.89 36 N8 2859 2842 42 2860 42 2854 41 2.52 23 66.12 35 50.29 36 2854 2826 2854 242 2860 42 2854 41 2.52 23 66.12 35 50.40 2854 2854 41 2.55 23 66.12 35 50.40 2854 2854 41 2.55 23 66.12 35 50.40 2854 2854 41 2.55 23 66.12 35 50.40 2854 2854 4												
NA8 3290 3208 6 3252 2 3234 3 6.22 61 68.95 22 N49 3159 3161 7 3190 7 3181 7 5.23 50 69.26 21 N5 3043 3101 13 3115 14 3114 12 1.67 13 79.38 6 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N51 3293 2734 58 2761 56 2748 58 5.34 52 43.09 58 N52 2721 2792 50 2814 51 2808 50 3.64 40 54.21 40 N53 2901 2856 39 2901 40 2879 39 6.08 59 49.35 52 N54 2344 3095 14 3112 15	N47	2933			3225							3
N49 3159 3161 7 3190 7 3181 7 5.23 50 69.26 21 N5 3043 3101 13 3115 14 3114 12 1.67 13 79.38 6 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N51 3293 2734 58 2761 56 2748 58 5.34 52 43.09 58 N52 2721 2792 50 2814 51 2808 50 3.64 40 54.21 40 N53 2901 2856 39 2901 40 2879 39 6.08 59 49.35 52 N54 2344 3095 14 3112 15 3109 13 1.84 17 78.50 8 N55 2619 3109 10 3136 9 3124 9 5.76 56 64.00 31 N56 2521	N48	3290	3208	6	3252	2	3234	3			68.95	22
N5 3043 3101 13 3115 14 3114 12 1.67 13 79.38 6 N50 3138 2661 63 2679 63 2671 63 3.37 36 47.24 55 N51 3293 2734 58 2761 56 2748 58 5.34 52 43.09 58 N52 2721 2792 50 2814 51 2808 50 3.64 40 54.21 40 N53 2901 2856 39 2901 40 2879 39 6.08 59 49.35 52 N54 2344 3095 14 3112 15 3109 13 1.84 17 78.50 8 N55 2619 3109 10 3136 9 3124 9 5.76 56 64.00 31 N57 251 2918 35 2939 34	N49	3159	3161	7		7				50	69.26	21
N51 3293 2734 58 2761 56 2748 58 5.34 52 43.09 58 N52 2721 2792 50 2814 51 2808 50 3.64 40 54.21 40 N53 2901 2856 39 2901 40 2879 39 6.08 59 49.35 52 N54 2344 3095 14 3112 15 3109 13 1.84 17 78.50 8 N55 2619 3109 10 3136 9 3124 9 5.76 56 64.00 31 N56 2521 2918 35 2939 34 2916 35 6.04 58 50.31 49 N57 3100 3056 21 3074 19 3071 18 2.87 29 72.14 16 N57 3100 3056 21 3074 19												
N51 3293 2734 58 2761 56 2748 58 5.34 52 43.09 58 N52 2721 2792 50 2814 51 2808 50 3.64 40 54.21 40 N53 2901 2856 39 2901 40 2879 39 6.08 59 49.35 52 N54 2344 3095 14 3112 15 3109 13 1.84 17 78.50 8 N55 2619 3109 10 3136 9 3124 9 5.76 56 64.00 31 N56 2521 2918 35 2939 34 2916 35 6.04 58 50.31 49 N57 3100 3056 21 3074 19 3071 18 2.87 29 72.14 16 N57 3100 3056 21 3074 19 3071 18 2.87 29 72.14 16 N57 3100 <td>N50</td> <td>3138</td> <td>2661</td> <td>63</td> <td>2679</td> <td>63</td> <td>2671</td> <td>63</td> <td>3.37</td> <td>36</td> <td>47.24</td> <td>55</td>	N50	3138	2661	63	2679	63	2671	63	3.37	36	47.24	55
N53 2901 2856 39 2901 40 2879 39 6.08 59 49.35 52 N54 2344 3095 14 3112 15 3109 13 1.84 17 78.50 8 N55 2619 3109 10 3136 9 3124 9 5.76 56 64.00 31 N56 2521 2918 35 2939 34 2916 35 6.04 58 50.31 49 N57 3100 3056 21 3074 19 3071 18 2.87 29 72.14 16 N59 2947 2990 24 3006 28 3004 25 1.82 16 72.37 15 N6 2824 3017 22 3025 23 3023 22 1.40 6 74.94 11 N60 2602 3091 15 3101 16	N51	3293	2734	58	2761	56	2748	58	5.34	52	43.09	58
N53 2901 2856 39 2901 40 2879 39 6.08 59 49.35 52 N54 2344 3095 14 3112 15 3109 13 1.84 17 78.50 8 N55 2619 3109 10 3136 9 3124 9 5.76 56 64.00 31 N56 2521 2918 35 2939 34 2916 35 6.04 58 50.31 49 N57 3100 3056 21 3074 19 3071 18 2.87 29 72.14 16 N59 2947 2990 24 3006 28 3004 25 1.82 16 72.37 15 N6 2824 3017 22 3025 23 3023 22 1.40 6 74.94 11 N60 2602 3091 15 3101 16	N52	2721		50								
N54 2344 3095 14 3112 15 3109 13 1.84 17 78.50 8 N55 2619 3109 10 3136 9 3124 9 5.76 56 64.00 31 N56 2521 2918 35 2939 34 2916 35 6.04 58 50.31 49 N57 3100 3056 21 3074 19 3071 18 2.87 29 72.14 16 N58 2261 2953 31 2975 31 2969 30 3.45 37 64.10 30 N59 2947 2990 24 3006 28 3004 25 1.82 16 72.37 15 N6 2824 3017 22 3025 23 3023 22 1.40 6 74.94 11 N60 2602 3091 15 3101 16 3101 15 0.86 1 81.68 4 N61 3122												
N55 2619 3109 10 3136 9 3124 9 5.76 56 64.00 31 N56 2521 2918 35 2939 34 2916 35 6.04 58 50.31 49 N57 3100 3056 21 3074 19 3071 18 2.87 29 72.14 16 N58 2261 2953 31 2975 31 2969 30 3.45 37 64.10 30 N59 2947 2990 24 3006 28 3004 25 1.82 16 72.37 15 N6 2824 3017 22 3025 23 3023 22 1.40 6 74.94 11 N60 2602 3091 15 3101 16 3101 15 0.86 1 81.68 4 N61 3122 2973 28 3018 24												
N56 2521 2918 35 2939 34 2916 35 6.04 58 50.31 49 N57 3100 3056 21 3074 19 3071 18 2.87 29 72.14 16 N58 2261 2953 31 2969 30 3.45 37 64.10 30 N59 2947 2990 24 3006 28 3004 25 1.82 16 72.37 15 N6 2824 3017 22 3025 23 3023 22 1.40 6 74.94 11 N60 2602 3091 15 3101 16 3101 15 0.86 1 81.68 4 N61 3122 2973 28 3018 24 2965 31 9.45 70 39.86 63 N62 3132 2851 40 2883 41 2846 43												
N57 3100 3056 21 3074 19 3071 18 2.87 29 72.14 16 N58 2261 2953 31 2975 31 2969 30 3.45 37 64.10 30 N59 2947 2990 24 3006 28 3004 25 1.82 16 72.37 15 N6 2824 3017 22 3025 23 3023 22 1.40 6 74.94 11 N60 2602 3091 15 3101 16 3101 15 0.86 1 81.68 4 N61 3122 2973 28 3018 24 2965 31 9.45 70 39.86 63 N62 3132 2851 40 2883 41 2846 43 7.84 67 39.48 64 N62 3132 2851 38 2997 38		2521		35		34		35		58		
N58 2261 2953 31 2975 31 2969 30 3.45 37 64.10 30 N59 2947 2990 24 3006 28 3004 25 1.82 16 72.37 15 N6 2824 3017 22 3025 23 3023 22 1.40 6 74.94 11 N60 2602 3091 15 3101 16 3101 15 0.86 1 81.68 4 N61 3122 2973 28 3018 24 2965 31 9.45 70 39.86 63 N62 3132 2851 40 2883 41 2846 43 7.84 67 39.48 64 N63 3160 2871 38 2907 38 2893 38 5.28 51 52.99 44 N64 2731 3078 16 3090 17		3100	3056									
N59 2947 2990 24 3006 28 3004 25 1.82 16 72.37 15 N6 2824 3017 22 3025 23 3023 22 1.40 6 74.94 11 N60 2602 3091 15 3101 16 3101 15 0.86 1 81.68 4 N61 3122 2973 28 3018 24 2965 31 9.45 70 39.86 63 N62 3132 2851 40 2883 41 2846 43 7.84 67 39.48 64 N63 3160 2871 38 2907 38 2893 38 5.28 51 52.99 44 N64 2731 3078 16 3090 17 3082 16 3.96 44 67.96 23 N65 2784 2891 37 2912 37												
N6 2824 3017 22 3025 23 3023 22 1.40 6 74.94 11 N60 2602 3091 15 3101 16 3101 15 0.86 1 81.68 4 N61 3122 2973 28 3018 24 2965 31 9.45 70 39.86 63 N62 3132 2851 40 2883 41 2846 43 7.84 67 39.88 63 N63 3160 2871 38 2907 38 2893 38 5.28 51 52.99 44 N63 3160 2871 38 2907 38 2893 38 5.28 51 52.99 44 N64 2731 3078 16 3090 17 3082 16 3.96 44 67.96 23 N65 2784 2891 37 2912 37 2894 37 5.71 55 50.44 48 N66 2790 <td></td>												
N60 2602 3091 15 3101 16 3101 15 0.86 1 81.68 4 N61 3122 2973 28 3018 24 2965 31 9.45 70 39.86 63 N62 3132 2851 40 2883 41 2846 43 7.84 67 39.48 64 N62 3132 2851 40 2883 41 2846 43 7.84 67 39.48 64 N63 3160 2871 38 2907 38 2893 38 5.28 51 52.99 44 N64 2731 3078 16 3090 17 3082 16 3.96 44 67.96 23 N65 2784 2891 37 2912 37 2894 37 5.71 55 50.44 48 N66 2790 2990 25 3008 27	N6			22								11
N61 3122 2973 28 3018 24 2965 31 9.45 70 39.86 63 N62 3132 2851 40 2883 41 2846 43 7.84 67 39.48 64 N63 3160 2871 38 2907 38 2893 38 5.28 51 52.99 44 N64 2731 3078 16 3090 17 3082 16 3.96 44 67.96 23 N65 2784 2891 37 2912 37 2894 37 5.71 55 50.44 48 N66 2790 2990 25 3008 27 2994 27 5.50 53 56.89 38 N67 2803 2655 64 2675 64 2669 64 2.48 22 50.87 47 N68 2716 2984 27 3008 26 <td></td>												
N62 3132 2851 40 2883 41 2846 43 7.84 67 39.48 64 N63 3160 2871 38 2907 38 2893 38 5.28 51 52.99 44 N64 2731 3078 16 3090 17 3082 16 3.96 44 67.96 23 N65 2784 2891 37 2912 37 2894 37 5.71 55 50.44 48 N66 2790 2990 25 3008 27 2994 27 5.50 53 56.89 38 N67 2803 2655 64 2675 64 2669 64 2.48 22 50.87 47 N68 2716 2984 27 3008 26 3001 26 3.67 41 65.18 29 N69 3192 3230 2 3243 4												
N63 3160 2871 38 2907 38 2893 38 5.28 51 52.99 44 N64 2731 3078 16 3090 17 3082 16 3.96 44 67.96 23 N65 2784 2891 37 2912 37 2894 37 5.71 55 50.44 48 N66 2790 2990 25 3008 27 2994 27 5.50 53 56.89 38 N67 2803 2655 64 2675 64 2669 64 2.48 22 50.87 47 N68 2716 2984 27 3008 26 3001 26 3.67 41 65.18 29 N69 3192 3230 2 3243 4 3242 2 1.78 15 86.14 2 N7 2930 3218 4 3229 5 3299 5 1.26 5 87.42 1 N70 3025												
N64 2731 3078 16 3090 17 3082 16 3.96 44 67.96 23 N65 2784 2891 37 2912 37 2894 37 5.71 55 50.44 48 N66 2790 2990 25 3008 27 2994 27 5.50 53 56.89 38 N67 2803 2655 64 2675 64 2669 64 2.48 22 50.87 47 N68 2716 2984 27 3008 26 3001 26 3.67 41 65.18 29 N69 3192 3230 2 3243 4 3242 2 1.78 15 86.14 2 N7 2930 3218 4 3229 5 3229 5 1.26 5 87.42 1 N70 3025 2894 36 2914 36	N63											
N65 2784 2891 37 2912 37 2894 37 5.71 55 50.44 48 N66 2790 2990 25 3008 27 2994 27 5.50 53 56.89 38 N67 2803 2655 64 2675 64 2669 64 2.48 22 50.87 47 N68 2716 2984 27 3008 26 3001 26 3.67 41 65.18 29 N69 3192 3230 2 3243 4 3242 2 1.78 15 86.14 2 N7 2930 3218 4 3229 5 3229 5 1.26 5 87.42 1 N70 3025 2894 36 2914 36 2909 36 2.83 28 63.18 33 N71 3007 2781 53 2795 53 2794 52 1.50 10 60.89 36 N8 2859 2842 42 2860 42 2854 41 2.52 23 61.21 35												
N66 2790 2990 25 3008 27 2994 27 5.50 53 56.89 38 N67 2803 2655 64 2675 64 2669 64 2.48 22 50.87 47 N68 2716 2984 27 3008 26 3001 26 3.67 41 65.18 29 N69 3192 3230 2 3243 4 3242 2 1.78 15 86.14 2 N7 2930 3218 4 3229 5 3229 5 1.26 5 87.42 1 N70 3025 2894 36 2914 36 2909 36 2.83 28 63.18 33 N71 3007 2781 53 2795 53 2794 52 1.50 10 60.89 36 N8 2859 2842 42 2860 42 2854 41 2.52 23 61.21 35												
N67 2803 2655 64 2675 64 2669 64 2.48 22 50.87 47 N68 2716 2984 27 3008 26 3001 26 3.67 41 65.18 29 N69 3192 3230 2 3243 4 3242 2 1.78 15 86.14 2 N7 2930 3218 4 3229 5 3229 5 1.26 5 87.42 1 N70 3025 2894 36 2914 36 2909 36 2.83 28 63.18 33 N71 3007 2781 53 2795 53 2794 52 1.50 10 60.89 36 N8 2859 2842 42 2860 42 2854 41 2.52 23 61.21 35												
N68 2716 2984 27 3008 26 3001 26 3.67 41 65.18 29 N69 3192 3230 2 3243 4 3242 2 1.78 15 86.14 2 N7 2930 3218 4 3229 5 3229 5 1.26 5 87.42 1 N70 3025 2894 36 2914 36 2909 36 2.83 28 63.18 33 N71 3007 2781 53 2795 53 2794 52 1.50 10 60.89 36 N8 2859 2842 42 2860 42 2854 41 2.52 23 61.21 35												
N69 3192 3230 2 3243 4 3242 2 1.78 15 86.14 2 N7 2930 3218 4 3229 5 3229 5 1.26 5 87.42 1 N70 3025 2894 36 2914 36 2909 36 2.83 28 63.18 33 N71 3007 2781 53 2795 53 2794 52 1.50 10 60.89 36 N8 2859 2842 42 2860 42 2854 41 2.52 23 61.21 35												
N7 2930 3218 4 3229 5 3229 5 1.26 5 87.42 1 N70 3025 2894 36 2914 36 2909 36 2.83 28 63.18 33 N71 3007 2781 53 2795 53 2794 52 1.50 10 60.89 36 N8 2859 2842 42 2860 42 2854 41 2.52 23 61.21 35												
N70 3025 2894 36 2914 36 2909 36 2.83 28 63.18 33 N71 3007 2781 53 2795 53 2794 52 1.50 10 60.89 36 N8 2859 2842 42 2860 42 2854 41 2.52 23 61.21 35												
N71 3007 2781 53 2795 53 2794 52 1.50 10 60.89 36 N8 2859 2842 42 2860 42 2854 41 2.52 23 61.21 35												
N8 2859 2842 42 2860 42 2854 41 2.52 23 61.21 35												
N9 2755 2812 46 2823 48 2821 46 1.47 9 63.27 32			2812									

Supplementary Table S9: BLUP-based indexes for selecting genotypes with performance and stability at red beans.

GEN	Y	$_{ m HMGV}$	HMGV_{R}	RPGV	RPGV_R	HMRPGV	${\rm HMRPGV}_{\rm R}$	WAASB	WAASB_R	WAASBY	WAASBY_R
R1	3213	3307	5	3332	5	3331	5	3.11	3	70.44	3
R10	2995	3174	8	3206	8	3193	7	5.37	10	54.74	7
R11	3170	3181	7	3212	7	3183	8	7.65	16	47.05	11
R12	3420	3005	13	3027	14	3014	14	5.44	12	41.75	14
R13	3020	3155	9	3180	9	3163	9	5.11	9	53.00	8
R14	2762	3681	1	3724	1	3679	1	11.37	19	69.93	4
R15	3083	2990	15	3012	15	3001	16	5.42	11	40.95	16
R16	2903	2987	16	3005	16	3003	15	1.54	1	52.65	9
R17	3363	3006	12	3096	10	3014	13	14.62	21	18.25	20
R18	2835	3323	4	3370	4	3360	4	3.70	6	71.93	2
R19	3040	3030	10	3080	11	3063	10	5.49	13	46.71	12
R2	2956	3233	6	3258	6	3251	6	4.06	7	62.28	6
R20	2981	2819	20	2939	18	2873	19	12.06	20	17.67	21
R21	3274	3420	3	3445	3	3444	3	3.14	4	78.03	1
R3	2978	2850	19	2875	20	2872	20	3.50	5	38.31	17
R4	3494	3018	11	3040	13	3036	11	2.56	2	52.00	10
R5	3201	3003	14	3047	12	3031	12	6.31	14	41.72	15
R6	3786	3474	2	3504	2	3482	2	8.32	18	65.20	5
R7	3073	2722	21	2794	21	2765	21	7.67	17	21.26	19
R8	2930	2933	17	2972	17	2965	17	4.22	8	43.20	13
R9	3546	2860	18	2919	19	2900	18	6.72	15	32.45	18

Supplementary Table S10: Selection differential of the WAASBY index for 27 Black, 29 Nayv and 12 Red beans.

Black Beans

Factor	Trait	Xo [‡]	Xs§	SD (%) [¶]	Sense
FA 1	GY	3,201	3,258	57.92 (1.81)	Increase
FA 1	LD	1.73	1.63	-0.1 (-5.556)	Decrease
FA 2	DM	91.78	91.90	0.12 (0.1324)	Decrease
FA 2	PH	18.15	18.34	0.19(1.063)	Increase

Navy Beans

Factor	Trait	Xo [‡]	X_S §	SD (%)¶	Sense
FA 1	GY	3,006	3,145	138.90 (4.619)	Increase
FA 1	DM	91.25	91.54	$0.29 \ (0.3184)$	Decrease
FA 1	PH	18.34	19.69	1.35(7.371)	Increase
FA 1	LD	1.88	1.65	-0.22 (-11.85)	Decrease

Red Beans

Factor	Trait	Xo [‡]	Xs§	SD (%) [¶]	Sense
FA 1	РН	18.25	20.07	1.82 (9.966)	Increase
FA 1	LD	1.87	1.91	0.04(2.104)	Decrease
FA 2	GY	3,156	3,162	5.92(0.1875)	Increase
FA 2	$_{ m DM}$	90.85	90.88	$0.03 \ (0.02776)$	Decrease

GY, grain yield; PH, plant height; DM, days to maturity; LD, lodging;[‡] Xo, mean for WAASBY index of the original population; [§] Xs, mean for WAASBY index of the selected genotypes (BB: B55, B1, B29, B20, B28; NB: N38, N6, N61, N35, N52, N22; SR: R2, R13); SD, Selection differential; [¶]% of SD in parenthesis.

2 Appendix B - Supplementary Figures

Data source. https://mawn.geo.msu.edu.

Supplementary Figure S1: Box plot distribuation from the weather data collected by location from 2017 to 2022 cultivation years. Data were scaled to better plot visualization. Weather data obtained using dairly average value from planting to harvesting. TU: Tuscola, SA: Sanilac, HU: Huron, and BA: Bay locations.

atmp_max: Max Air Temperature (1.5m), atmp_min: Min Air Temperature (1.5m), mstr0_max: Max Soil Moisture (0-30cm), mstr0_min: Min Soil Moisture (0-30cm), mstr1_max: Max Soil Moisture (30-60cm), mstr1_min: Min Soil Moisture (30-60cm), pcpn: Precipitation, relh_max: Max Relative Humidity (1.5m), relh_min: Min Relative Humidity (1.5m), rpet: Reference Potential Evapotranspiration, sden_max: Max Solar Flux, soil0_max: Max Soil Temperature (5cm), soil0_min: Min Soil Temperature (5cm), soil1_max: Max Soil Temperature (10cm), soil1_min: Min Soil Temperature (10cm), srad: Total Solar Flux, wspd_max: Max Wind Speed (3m). GGDtotal: Growing Degree-Day Calculations in Celsius (C) given by: (max - min)/2 - 10

Supplementary Figure S2: Box plot distribuation from the weather data collected by year from 2017 to 2022 cultivation locations. Data were scaled to better plot visualization. Weather data obtained using dairly average value from planting to harvesting. TU: Tuscola, SA: Sanilac, HU: Huron, and BA: Bay locations.

atmp_max: Max Air Temperature (1.5m), atmp_min: Min Air Temperature (1.5m), mstr0_max: Max Soil Moisture (0-30cm), mstr0_min: Min Soil Moisture (0-30cm), mstr1_max: Max Soil Moisture (30-60cm), mstr1_min: Min Soil Moisture (30-60cm), pcpn: Precipitation, relh_max: Max Relative Humidity (1.5m), relh_min: Min Relative Humidity (1.5m), rpet: Reference Potential Evapotranspiration, sden_max: Max Solar Flux, soil0_max: Max Soil Temperature (5cm), soil0_min: Min Soil Temperature (5cm), soil1_max: Max Soil Temperature (10cm), soil1_min: Min Soil Temperature (10cm), srad: Total Solar Flux, wspd_max: Max Wind Speed (3m). GGDtotal: Growing Degree-Day Calculations in Celsius (C) given by: (max - min)/2 - 10

Supplementary Figure S3: Combination of box and density plots for between subjects comparisons by locations (left) and year (right) of grain yield (GY in Kg/ha) for black (BB), Navy (NB) and Small Red (SR) beans. BA: Bay, HU: Huron, SA:Sanilac, TU: Tuscola locations.

Supplementary Figure S4: Combination of box and violin plots along with jittered data points and grand mean values for between subjects comparisons by locations of grain yield (GY) for black (BB), Navy (NB) and Small Red (SR) beans. Pairwise Games-Howell test used. Comparisons showing only significant values. BA: Bay, HU: Huron, SA:Sanilac, TU: Tuscola. Pairwise Games-Howell test used. Comparisons showing only significant between the pairs of environments

Supplementary Figure S5:Proportion of the phenotypic variance for 71 Black (BB), 72 Navy (NB), and 21 Red (SR) beans for grain yield in Kg/ha (GY: 2017 - 2022; GY2: only 2021) days to maturity (DM, days), plant height (PH, cm) and lodging (LD,scale) traits evaluated in the study. * Significant at P < 0.05. ** Significant at P < 0.01. *** Significant at P < 0.001. ns, nonsignificant.

Supplementary Figure S6: Genotype's performance across the environments for Black (BB), Navy (NB), and Small Red (SR) beans using the estimated means (BLUEs) values. BA: Bay, HU: Huron, SA:Sanilac, TU: Tuscola locations

Supplementary Figure S7:Mean performance (a) and stability (b) for grain yield (GY) of 72 black beans genotypes. The vertical dashed and solid lines shows, respectivelly, the mean of the selected genotype and the overall mean for both mean performance and WAASB index.

Supplementary Figure S8: Mean performance (a) and stability (b) for grain yield (GY) of 71 navy beans genotypes. The vertical dashed and solid lines shows, respectivelly, the mean of the selected genotype and the overall mean for both mean performance and WAASB index.

Supplementary Figure S9: Mean performance (a) and stability (b) for grain yield (GY) of 21 red beans genotypes. The vertical dashed and solid lines shows, respectivelly, the mean of the selected genotype and the overall mean for both mean performance and WAASB index.

Supplementary Figure S10: BLUP-based stability indexes coincidence index (CI) using selection intensity of 20 top genotypes. BB, black; NB, navy; SR, red beans.

Supplementary Figure S11: Ranks of dry beans genotypes (a: 72 black, b:71 navys and c: 21 small red/pink) considering different weights for stability and yielding. The most-left ranks were obtained considering the stability only. The most right-ranks were obtained considering the grain yield only. Between the extremes, the ranks were obtained different weights for stability and yielding. The four clusters represent four classes of genotypes: (1) Poorly productive and unstable genotypes; (2) productive but unstable genotypes; (3) stable but poorly productive genotypes; and (4), highly productive and stable genotypes. The ranks highlighted by a black rectangle are the same from those BLUPs predicted to WAASBY index and the red rectangle box are the selected genotypes by the Multi-Trait Stability Index (MTSI).

3 Appendix C - R codes

Getting started

The present analysis aims to dissect the genotype by environment interaction study (aka GEI) using a data set from the Dry Beans breeding program at Michigan State University - MSU.

The trait in study is the grain yield (GY) per plot (lb/plot) adjusted to the international measurements (Kg/ha). A previous data analysis (not shown here) was done to perform the historical data mining and adjust of raw data. Besides the GY, plant height (PH), date of maturity (DM) and lodging (LD) were investigate using a subset from 2021, which contains the all the data available.

The main focus of this manuscript, as describe in the published paper, is to investigate the varieties performance of GY across four locations at different Michigan counties. However, the MTME (three locations and 4 traits) also was studied in this manuscript when available (only in 2021 in Bay, Tuscola and Sanilac sites). Thus, different types of analysis will be performed in order to study the GEI in the Multi-Environment-Trials (MET) data to provide better varieties recommendations to the Dry Beans breeding program, which:

- ✓ Multi-Environment Trials Genotype x Environment Interaction to grain yield (GY)
- ⊠ Mean performance and stability of multiple traits

3.1 Packages

This document was prepared on 2023-05-19.

The analysis was done using the R Statistical language (v4.2.2; R Core Team, 2022) on Windows 10 x64, using the packages rmarkdown (v2.19), ggpmisc (v0.5.1), ggpp (v0.5.0), gridExtra (v2.3), magrittr (v2.0.3), Matrix (v1.5.1), mapdata (v2.3.1), maps (v3.4.1), spData (v2.2.1), asremlPlus (v4.3.40), asreml (v4.1.0.160), tidyquant (v1.0.6), data.table (v1.14.4), flextable (v0.8.3), lubridate (v1.9.0), purrr (v0.3.5), raster (v3.6.3), ggcorrplot (v0.1.4), ggdist (v3.2.1), tibble (v3.1.8), rcartocolor (v2.0.0), metan (v1.17.0), ggstatsplot (v0.10.0), sf (v1.0.9), sp (v1.5.1), ggforce (v0.4.1), PerformanceAnalytics (v2.0.4), broom (v1.0.2), quantmod (v0.4.20), xts (v0.12.2), openxlsx (v4.2.5.1), timechange (v0.1.1), naniar (v0.6.1), TTR (v0.24.3), statgenGxE (v1.0.5), tigris (v2.0), plyr (v1.8.8), ggplot2 (v3.4.0), forcats (v0.5.2), stringr (v1.5.0), tidyverse (v1.3.2), dplyr (v1.0.10), tidyr (v1.2.1), readr (v2.1.3), cowplot (v1.1.1), nadiv (v2.17.2), DT (v0.26), zoo (v1.8.11) and kableExtra (v1.3.4).

3.2 Data preparation

18

```
add_header_lines("Dry Beans varieties trial") %>%
  theme_design2()
}
```

Dry Beans varieties trial codename year_loc name repmkt loc year gy_kg_ha 213SP N₁ 1NB 17_BA BA 17 213SP N₁ 1NB 17 HU HU 17 213SP N1 1NB 17_SA SA 17 213SP N1 1NB 17_TU TU 17 213SP N1 1NB 18 BA BA 18

18 HU

HU

1NB

Varieties Dry Beans data set from 2017 to 2022

Header data set showing the 6 first entry

N₁

213SP

```
# Data adjustment
# All the effect columns must be as a factor to run in ASReml-r.
cols <- c("rep", "name", "loc", "year", "mkt", "year_loc")
data_beans[cols] <- lapply(data_beans[cols], factor)
data_beans <- data.table(data_beans)</pre>
```

3.3 Descriptive Stats - Raw data

Data set distribution, checking data and locations of study.

```
data_beans = read.csv("data/DataBean_MET_GYv2.csv",h=T, stringsAsFactors = T)

# Data adjustment
# All the effect columns must be as a factor to run in ASReml-r.
cols <- c("rep", "name", "loc", "year", "mkt", "year_loc")
data_beans[cols] <- lapply(data_beans[cols], factor)
data_beans <- data.table(data_beans)</pre>
```

3.3.1 Box plot dist.

```
#print(plotDM_stats_mkt_loc)
plotDM_stats_mkt_year<- grouped_ggbetweenstats(data=data_beans, x= year, y=gy_kg_ha, type
ylab= "GY", xlab = "Years",
                             plot.type = "boxviolin", grouping.var = mkt )
#print(plotDM stats mkt year)
print(arrange_ggplot(plotDM_stats_mkt_loc,plotDM_stats_mkt_year))
a<- ggplot(data=data_beans, aes(x=reorder(loc, -gy_kg_ha), y=gy_kg_ha, fill=loc)) +
 ggdist::stat_halfeye(
   adjust = 0.5,
   justification = -0.1,
   .width = 0,
   point_colour = NA
 ) +
 geom_boxplot(
   width = .12,
  # outlier.color = NA,
   alpha = 0.5)+
 tidyquant::theme_tq()+
 facet_wrap("year")+
 facet_grid("mkt") +
 tidyquant::scale_fill_tq() +
 scale_x_discrete(expand = c(0.03,0)) +
 scale_y = continuous(limits = c(1000,6000), breaks = seq(1000, 6000, by = 1000)) +
 theme(axis.text.x=element_text(angle = 90),
       strip.text=element blank(),
       legend.position = "none",
       panel.grid = element_blank())+
 labs(title="GY (kg/ha)",
      subtitle="Data distribution by location",
      caption=NULL, x=NULL, y=NULL)
b<- ggplot(data=data_beans, aes(x=reorder(year, -gy_kg_ha), y=gy_kg_ha, fill=year)) +
 ggdist::stat_halfeye(
   adjust = 0.5,
   justification = -0.1,
   .width = 0,
   point_colour = NA
 ) +
 geom_boxplot(
   width = .12,
   #outlier.color = NA,
   alpha = 0.5)+
 tidyquant::theme_tq()+
 facet_wrap("loc")+
 facet_grid("mkt") +
 tidyquant::scale_fill_tq() +
 scale_x_discrete(expand = c(0.03,0)) +
```



```
data_beans_plotBB<- droplevels(subset(data_beans, mkt=="BB"))

stats_results_BB<- ggbetweenstats(data=data_beans_plotBB, x= loc, y=gy_kg_ha) %>%

extract_stats()

#print(stats_results_BB$pairwise_comparisons_data$p.value)

stats_results_BB2<- stats_results_BB$pairwise_comparisons_data %>%

dplyr::mutate(groups = purrr::pmap(.l = list(group1, group2), .f = c)) %>%

dplyr::arrange(group1)%>%

filter(p.value <= 0.05)

bb1<- ggplot(data=data_beans_plotBB, aes(x=reorder(loc, -gy_kg_ha), y=gy_kg_ha,

fill=loc)) +</pre>
```

```
ggdist::stat_halfeye(
    adjust = 0.5,
    justification = -0.1,
    .width = 0,
    point_colour = NA
  ) +
  geom_boxplot(
   width = .12,
   # outlier.color = NA,
   alpha = 0.5)+
  tidyquant::theme tq()+
  #facet_grid("loc")+
  tidyquant::scale_fill_tq() +
  scale_x_discrete(expand = c(0.03,0)) +
  scale_y = continuous(limits = c(1000, 10000), breaks = seq(1000, 10000, by = 1000)) +
  theme(axis.text.x=element_blank(),
        strip.text=element_blank(),
        legend.position = "none",
        panel.grid = element_blank())+
  labs(title="GY (kg/ha)",
       subtitle="Data distribution by location",
       caption=NULL, x=NULL, y="BB")
bb1 < -bb1 +
  ggsignif::geom_signif(
    comparisons = stats_results_BB2$groups,
   map_signif_level = TRUE,
   tip_length = 0.01,
   textsize
                    = 2.7,
   y_position = c(5900, 6700, 7500,8300, 9100),
annotations = as.character(stats_results_BB2$expression),
                   = NULL,
                    = TRUE,
   na.rm
   parse
                     = TRUE
  )
```

```
data_beans_plotBB<- droplevels(subset(data_beans, mkt=="BB"))

stats_results_BB<- ggbetweenstats(data=data_beans_plotBB, x= year, y=gy_kg_ha) %>%
    extract_stats()

#print(stats_results_BB$pairwise_comparisons_data$p.value)

stats_results_BB3<- stats_results_BB$pairwise_comparisons_data %>%
dplyr::mutate(groups = purrr::pmap(.1 = list(group1, group2), .f = c)) %>%
    dplyr::arrange(group1) %>%
    filter(p.value <= 0.05)

bb2<- ggplot(data=data_beans_plotBB, aes(x=reorder(year, -gy_kg_ha), y=gy_kg_ha,
    fill=year)) +
    ggdist::stat_halfeye(
    adjust = 0.5,</pre>
```

```
justification = -0.1,
   .width = 0,
   point_colour = NA
 ) +
 geom_boxplot(
  width = .12,
  # outlier.color = NA,
   alpha = 0.5)+
 tidyquant::theme_tq()+
 #facet_grid("loc")+
 tidyquant::scale fill tq() +
 scale_x_discrete(expand = c(0.03,0)) +
 scale_y = continuous(limits = c(1000, 10000), breaks = seq(1000, 10000, by = 1000)) +
 theme(axis.text.x=element_blank(),
      strip.text=element_blank(),
       legend.position = "none",
      panel.grid = element_blank())+
 labs(title="GY (kg/ha)",
      subtitle="Data distribution by year",
      caption=NULL, x=NULL, y=NULL)
bb2<-bb2 +
 ggsignif::geom_signif(
   comparisons = stats_results_BB3$groups,
   map_signif_level = TRUE,
  tip_length = 0.01,
  textsize
                 = 2.7,
   na.rm
                 = TRUE,
                  = TRUE
   parse
```

3.3.1.1 BB

```
data_beans_plotBB<- droplevels(subset(data_beans, mkt=="NB"))

stats_results_BB<- ggbetweenstats(data=data_beans_plotBB, x= loc, y=gy_kg_ha) %>%

extract_stats()

#print(stats_results_BB$pairwise_comparisons_data$p.value)

stats_results_BB2<- stats_results_BB$pairwise_comparisons_data %>%

dplyr::mutate(groups = purrr::pmap(.1 = list(group1, group2), .f = c)) %>%

dplyr::arrange(group1)%>%

filter(p.value <= 0.05)

nb1<- ggplot(data=data_beans_plotBB, aes(x=reorder(loc, -gy_kg_ha), y=gy_kg_ha,
 fill=loc)) +</pre>
```

```
ggdist::stat_halfeye(
   adjust = 0.5,
   justification = -0.1,
    .width = 0,
   point_colour = NA
  ) +
  geom_boxplot(
   width = .12,
   # outlier.color = NA,
   alpha = 0.5)+
  tidyquant::theme tq()+
  #facet_grid("loc")+
  tidyquant::scale_fill_tq() +
  scale_x_discrete(expand = c(0.03,0)) +
  scale_y = continuous(limits = c(1000, 10000), breaks = seq(1000, 10000, by = 1000)) +
  theme(axis.text.x=element_blank(),
       strip.text=element_blank(),
        legend.position = "none",
       panel.grid = element_blank())+
  labs(
       caption=NULL, x=NULL, y="NB")
nb1 < -nb1 +
  ggsignif::geom_signif(
   comparisons = stats_results_BB2$groups,
   map_signif_level = TRUE,
   tip_length = 0.01,
   textsize
                    = 2.7,
                 = c(5900, 6700, 7500, 8300, 9100),
   y_position
   annotations = as.character(stats_results_BB2$expression),
test = NULL,
   na.rm
                    = TRUE,
                     = TRUE
   parse
```

```
data_beans_plotBB<- droplevels(subset(data_beans, mkt=="NB"))

stats_results_BB<- ggbetweenstats(data=data_beans_plotBB, x= year, y=gy_kg_ha) %>%
    extract_stats()

#print(stats_results_BB$pairwise_comparisons_data$p.value)

stats_results_BB3<- stats_results_BB$pairwise_comparisons_data %>%
dplyr::mutate(groups = purrr::pmap(.1 = list(group1, group2), .f = c)) %>%
    dplyr::arrange(group1) %>%
    filter(p.value <= 0.05)

nb2<- ggplot(data=data_beans_plotBB, aes(x=reorder(year, -gy_kg_ha), y=gy_kg_ha,
    fill=year)) +
    ggdist::stat_halfeye(
    adjust = 0.5,
    justification = -0.1,</pre>
```

```
.width = 0,
   point_colour = NA
 ) +
 geom_boxplot(
  width = .12,
  # outlier.color = NA,
   alpha = 0.5)+
 tidyquant::theme_tq()+
 #facet_grid("loc")+
 tidyquant::scale_fill_tq() +
 scale x discrete(expand = c(0.03,0)) +
 scale_y = continuous(limits = c(1000, 10000), breaks = seq(1000, 10000, by = 1000)) +
 theme(axis.text.x=element_blank(),
       strip.text=element_blank(),
       legend.position = "none",
      panel.grid = element_blank())+
 labs(
      caption=NULL, x=NULL, y=NULL)
nb2 < -nb2 +
 ggsignif::geom_signif(
   comparisons = stats_results_BB3$groups,
   map_signif_level = TRUE,
  tip_length = 0.01,
                 = 2.7,
   textsize
  = NULL,
   test
                 = TRUE,
   na.rm
   parse
                  = TRUE
 )
```

3.3.1.2 NB

```
data_beans_plotBB<- droplevels(subset(data_beans, mkt=="SR"))

stats_results_BB<- ggbetweenstats(data=data_beans_plotBB, x= loc, y=gy_kg_ha) %>%

extract_stats()

#print(stats_results_BB$pairwise_comparisons_data$p.value)

stats_results_BB2<- stats_results_BB$pairwise_comparisons_data %>%

dplyr::mutate(groups = purrr::pmap(.1 = list(group1, group2), .f = c)) %>%

dplyr::arrange(group1)%>%

filter(p.value <= 0.05)

sr1<- ggplot(data=data_beans_plotBB, aes(x=reorder(loc, -gy_kg_ha), y=gy_kg_ha,

fill=loc)) +
 ggdist::stat_halfeye(</pre>
```

```
adjust = 0.5.
   justification = -0.1,
   .width = 0,
   point_colour = NA
  ) +
  geom_boxplot(
   width = .12,
   # outlier.color = NA,
   alpha = 0.5)+
  tidyquant::theme_tq()+
  #facet grid("loc")+
  tidyquant::scale_fill_tq() +
  scale_x_discrete(expand = c(0.03,0)) +
  scale_y = continuous(limits = c(1000, 10000), breaks = seq(1000, 10000, by = 1000)) +
  theme(
        strip.text=element_blank(),
       legend.position = "none",
       panel.grid = element_blank())+
  labs(
       caption=NULL, x="Locations", y="SR")
sr1<-sr1 +
  ggsignif::geom_signif(
   comparisons = stats_results_BB2$groups,
   map_signif_level = TRUE,
   tip_length = 0.01,
   textsize
                    = 2.7,
   y_position = c(5900, 6700, 7500,8300, 9100),
   annotations
                  = as.character(stats_results_BB2$expression),
                  = NULL,
   test
   na.rm
                    = TRUE,
                    = TRUE
   parse
  )
data_beans_plotBB<- droplevels(subset(data_beans, mkt=="SR"))</pre>
stats_results_BB<- ggbetweenstats(data=data_beans_plotBB, x= year, y=gy_kg_ha) %>%

    extract_stats()

#print(stats_results_BB$pairwise_comparisons_data$p.value)
stats_results_BB3<- stats_results_BB$pairwise_comparisons_data %>%
dplyr::mutate(groups = purrr::pmap(.l = list(group1, group2), .f = c)) %>%
 dplyr::arrange(group1) %>%
 filter(p.value <= 0.05)
```

fill=year)) +

.width = 0,

ggdist::stat_halfeye(
 adjust = 0.5,

justification = -0.1,

sr2<- ggplot(data=data_beans_plotBB, aes(x=reorder(year, -gy_kg_ha), y=gy_kg_ha,

```
point_colour = NA
 ) +
 geom_boxplot(
  width = .12,
  # outlier.color = NA,
   alpha = 0.5)+
 tidyquant::theme_tq()+
 #facet_grid("loc")+
 tidyquant::scale_fill_tq() +
 scale_x_discrete(expand = c(0.03,0)) +
 scale_y = continuous(limits = c(1000, 10000), breaks = seq(1000, 10000, by = 1000)) +
 theme(
       strip.text=element_blank(),
       legend.position = "none",
       panel.grid = element_blank())+
 labs(
      caption=NULL, y=NULL, x="Years")
sr2<- sr2 +
 ggsignif::geom_signif(
   comparisons = stats_results_BB3$groups,
   map_signif_level = TRUE,
   tip_length = 0.01,
                = 2.7,
   textsize
   = NULL,
                 = TRUE,
   na.rm
                  = TRUE
   parse
```

3.3.1.3 SR Box plot distribution for each market class in this study across years and locations.

3.3.2 GEI Comparisons (loc:year) - BB

Box plots for between-subjects comparisons by locations using the R package ggstatsplot.

• Black beans (BB) Pairwise Games-Howell test used. Comparisons showing only significant

3.3.3 GEI Comparisons (loc:year) - NB

Box plots for between-subjects comparisons by locations using the R package ggstatsplot. - Navy beans (NB) Pairwise Games-Howell test used. Comparisons showing only significant

3.3.4 GEI Comparisons (loc:year) - SR

Box plots for between-subjects comparisons by locations using the R package ggstatsplot. - Black beans (SR) Pairwise Games-Howell test used. Comparisons showing only significant

3.3.5 Scatter plot

For further insight into the correlation structure between trials a scatter plot matrix can be made using the package statgenGxE

3.3.6 Outliers

Check for common errors in multi-environment trial by market class data using the R package metan However, the data set was cleaned before at a previous analysis not shown in this vignette using the criteria for GY:

- yield ≤ 0.5 | yield ≥ 7.5 (considering yield as Lb per plot)
- moisture >= 30 | moisture <= 5 (considering moisture in %)

At this point yield data will not be removed anymore, but we can check it out for further investigation, if it was needed.

```
out_beans<- find_outliers(data_beans, by=mkt, var = gy_kg_ha, plots = F)</pre>
```

Trait: gy_kg_ha Number of possible outliers: 9 Line(s): 1113 2052 4478 4522 4539 4620 4739 4740 4761 Proportion: 0.3% Mean of the outliers: 3320 Maximum of the outliers: 5854 | Line 4539 Minimum of the outliers: 554.8 | Line 4739 With outliers: mean = 3015 | CV = 26.27% Without outliers: mean = 3014 | CV = 25.93%

Trait: gy_kg_ha Number of possible outliers: 10 Line(s): 127 1910 3723 3993 4161 4358 5630 6302 6638 6710 Proportion: 0.4% Mean of the outliers: 4313 Maximum of the outliers: 6014 | Line 6302 Minimum of the outliers: 889.9 | Line 3993 With outliers: mean = 3298 | CV = 25.57% Without outliers: mean = 3294 | CV = 25.21%

Trait: gy_kg_ha Number of possible outliers: 4 Line(s): $533\ 1422\ 1951\ 1975$ Proportion: 0.4% Mean of the outliers: 4355 Maximum of the outliers: 5625 | Line 1951 Minimum of the outliers: 654.1 | Line 533 With outliers: mean = 3139 | CV = 27.68% Without outliers: mean = 3134 | CV = 27.29%

#out_beans

• No outliers removed after the data inspection based on the Breeder expertise.

3.3.7 Map of locations

This figure represent all counties locations evaluated in this study at Michigan, midwest in the USA.

```
source("utils/map.R")
print(MI_trials_beans_map)
```


3.3.8 Missing values

```
data_beans.miss.f<- data_beans %>%
  unite(name_year_loc, c(name, year_loc), remove = F) %>%
  group_by(name_year_loc) %>%
  dplyr::summarise(Mean = mean(gy_kg_ha, na.rm = TRUE)) %>%
  filter(!is.na(Mean))

data_beans.miss<- data_beans %>%
  unite(name_year_loc, c(name, year_loc), remove = F)
```

Missing values (NA)

Missing genotypes by market classes

3.3.9 Coincidence Genotypes

Genotypes coincidentes across years combinations

arrange_ggplot(plotB, plotN, plotSR,ncol = 1)

```
source("utils/Coinc.R")

#> [1] "The coincidence file is present"
```


Coincidence genotypes per year and combinations of years across locations for each market class.

3.4 Predicted by year mixed model analysis

To predict the BLUPs per year and plot it versus year: BLUPs prediction for the vector of the variable GY in the ith genotype, and jth loc within year.

3.5 Data preparation

```
#setwd("G:/Shared
    drives/Bean_Lab/Volpato/GxE_Variety_trials_Scott/Manuscript/Suppl_mat/TemplateResults-main")
data_beans = read.csv("data/DataBean_MET_GYv2.csv",h=T, stringsAsFactors = T)

# Data adjustment
# All the effect columns must be as a factor to run in ASReml-r.
cols <- c("rep", "name", "loc","year", "mkt", "year_loc")
data_beans[cols] <- lapply(data_beans[cols], factor)
data_beans <- data.table(data_beans)</pre>
```

3.5.1 By year mixed model analysis

The BLUPS will be estimated using a mixed-effect model and these values obtained by year using a loop with ASRem1 and storage into the list.

The following mixed model was used to estimate the BLUPs of each genotype within year with one value per genotype per year (random effects are underlined in all equations):

$$Y_{ijl} = \mu + G_i + E_l + \beta_{jl} + GE_{il} + \varepsilon_{ijl}$$

where Y_{ijl} is the response variable (e.g., grain yield) observed in the jth repetion of the ith genotype in the lth location (i=1, 2, ..., g; j=1, 2, ..., b; l=1, 2, ..., e); μ is the grand mean; $\underline{G_i}$ is the effect of the ith genotype; E_l is the effect of the lth location (env); β_{jl} is the effect of the jth rep with the lth location; $\underline{GE_{il}}$ is the interaction effect of the ith genotype nested within the lth location; and ε_{ijl} is the random error, in witch with $G_i \sim N(0, \sigma_G^2)$, $GE_{il} \sim N(0, \sigma_{GE}^2)$, and $\varepsilon_{ijl} \sim N(0, \sigma_{\varepsilon}^2)$, all independent, where G_G^2 is the genotype (name) variance, GS_{GE}^2 is the interaction genotype x environment variance, and σ_{ε}^2 is the mean error variance across experiments.

```
## Analysis per site and mkt class
mkt_n <- levels(data_beans$mkt)</pre>
Envs <- levels(data beans$year)</pre>
stgI_list <- matrix(data=list(), nrow=length(Envs), ncol=1,</pre>
                     dimnames=list(Envs, c("BLUPS")))
mkt <- nlevels(data_beans$mkt)</pre>
for(k in 1:mkt){
  bk <- levels(data_beans$mkt)</pre>
  cj <- bk[k]
  #print(cj)
  data beans temp <- droplevels(subset(data beans, mkt==cj))</pre>
  for (i in Envs){
    #i=Envs[1]
    Edat <- droplevels(subset(data_beans_temp, year==i))</pre>
    #print(i)
mod.1 <- asreml(fixed</pre>
                           = gy_kg_ha ~ loc + loc:rep,
                      random = ~ name + name:loc,
                                  = Edat,
                      data
                                 = predict.asreml(classify = "name"),
                      predict
                                 = F,
                      trace
                      maxit
                                   = 500)
   # print(summary.asreml(mod.1)$varcomp)
    # wald(mod.1)
  blup.1<- data.table((mod.1$predictions$pvals[1:3]))</pre>
  names(blup.1) <- c("name", "yield", "se")</pre>
  blup.1$mkt<- cj
    stgI list[[i, "BLUPS"]] <- blup.1 # put all the results of Stage 1 in the list
   # rm(Edat, mod.1, blue, blup.1)
```

```
}
  if(k==1){stgI_list.1<-stgI_list}else{stgI_list.1<-rbind(stgI_list.1, stgI_list)}
}</pre>
```

3.5.1.1 Preparing dataset Merging the original data to have all the factors in the final table with: name, year, and mkt

```
##### Unlist the results of Stage I and format as data.table #####
blups_stageI <- data.table(ldply(stgI_list.1[, "BLUPS"], data.frame, .id="year"))
blues_stage.I <- blups_stageI[order(blups_stageI$year,blups_stageI$mkt),]
# Change the order of columns
blues_stage.I <- blues_stage.I %>%
    dplyr::select(year, name, mkt, se, yield)
str(blues_stage.I)
```

Classes 'data.table' and 'data.frame': 984 obs. of 5 variables: $\$ year : Factor w/ 6 levels "17","18","19",…: 1 1 1 1 1 1 1 1 1 1 ... $\$ name : Factor w/ 164 levels "B1","B10","B11",…: 1 2 3 4 5 6 7 8 9 10 ... $\$ mkt : chr "BB" "BB" "BB" "BB" ... $\$ se : num 141.3 98.7 113.8 113.8 355.7 ... $\$ yield: num 2727 3579 2947 3092 2959 ... - attr(*, ".internal.selfref")=

3.5.2 Descriptive variance

3.5.2.1 Beans data set by year

Dry Beans varieties trial					
year	name	mkt	se	yield	
17	B1	ВВ	141.29	2,727	
17	B10	ВВ	98.73	3,579	
17	B11	BB	113.83	2,947	
17	B12	ВВ	113.83	3,092	
17	B13	ВВ	355.72	2,959	
17	B14	BB	355.72	2,959	
Beans data set by year					
Header data set showing the 6 first entry					

3.5.2.2 Box plot distribution Pairwise Games-Howell test used. Comparisons showing only significant

Combination of box and violin plots along with jittered data points for between subjects comparisons by years of grain yield (GY) for black (BB), Navy (NB) and Red (SR) beans. Pairwise Games-Howell test used. Comparisons showing only significant values.

```
str(blues_stage.I)
```

Classes 'data.table' and 'data.frame': 984 obs. of 5 variables: $\$ year : Factor w/ 6 levels "17","18","19",…: 1 1 1 1 1 1 1 1 1 1 ... $\$ name : Factor w/ 164 levels "B1","B10","B11",…: 1 2 3 4 5 6 7 8 9 10 ... $\$ mkt : chr "BB" "BB" "BB" "BB" ... $\$ se : num 141.3 98.7 113.8 113.8 355.7 ... $\$ yield: num 2727 3579 2947 3092 2959 ... - attr(*, ".internal.selfref")=

```
blues_stage.I$year <- as.numeric(blues_stage.I$year)

blues_stage.I$year[blues_stage.I$year == 1] <- 17

blues_stage.I$year[blues_stage.I$year == 2] <- 18

blues_stage.I$year[blues_stage.I$year == 3] <- 19

blues_stage.I$year[blues_stage.I$year == 4] <- 20

blues_stage.I$year[blues_stage.I$year == 5] <- 21

blues_stage.I$year[blues_stage.I$year == 6] <- 22</pre>
```

```
beans_desc <- desc_stat(blues_stage.I, yield, stats = ("ci.t, hmean, n, se"), by = mkt)
#print(beans_desc)

beans_desc<-beans_desc[-c(2)]

colnames(beans_desc)<- c("MKT","CI", "Mean", "N", "SE")

beans_desc<-data.frame(beans_desc, row.names =T)

#rownames(beans_desc) <- NULL</pre>
```


Combination of box and violin plots along with jittered data points for between subjects comparisons by years of grain yield (GY) for black (BB), Navy (NB) and Red (SR) beans. Pairwise Games-Howell test used. Comparisons showing only significant values.

3.6 Two Stage mixed model analysis

The following pipeline will be used: 1-Stage = BLUEs estimation for the vector of the variable GY in the ith genotype, and jth year within loc. Then the BLUEs from the 1-Stage (Yik) will be used to predict the BLUPs (Yijl) of the ith genotype in the lth location and jth rep in the 2-Stage in which this second model have name and loc effects as random.

3.6.1 1st Stage mixed model analysis

```
#rm(list=ls())
data_beans = read.csv("data/DataBean_MET_GYv2.csv",h=T, stringsAsFactors = T)
#str(data_beans)
# Data adjustment
# All the effect columns must be as a factor to run in ASReml-r.
cols <- c("rep", "name", "loc","year", "mkt", "year_loc")
data_beans[cols] <- lapply(data_beans[cols], factor)
data_beans <- data.table(data_beans)</pre>
```

The BLUES will be estimated using a mixed-effect model. The BLUEs will be obtained by location using a loop with ASReml and storage into the list.

The following mixed model was used to estimate the BLUEs of each genotype within location with one value per genotype per experiment and rep, for the first step (random effects are underlined in all equations):

$$Y_{ik} = \mu + G_i + S_k + GS_{ik} + \varepsilon_{ik}$$

where Y_{ik} is the observed yield in the *i*th genotype and *k*th year, μ is the overall mean, G_i is the effect of the *i*th genotype, S_k is the effect of the *k*th year, GS_{ik} is the effect of the interaction between the ith genotype and the kth year, and ε_{ik} are the residual, with $S_k \sim N(0, \sigma_Y^2)$, $GS_{ik} \sim N(0, \sigma_Y^2)$, and $\varepsilon_{ik} \sim N(0, \sigma_\varepsilon^2)$, all independent, where σ_Y^2 is the year variance, and σ_ε^2 is the mean error variance across experiments.

```
#> `summarise()` has grouped output by 'name'. You can override using the `.groups` argument.
#> `summarise()` has grouped output by 'name'. You can override using the `.groups` argument.
#> `summarise()` has grouped output by 'name'. You can override using the `.groups` argument.
#> `summarise()` has grouped output by 'name'. You can override using the `.groups` argument.
#> `summarise()` has grouped output by 'name'. You can override using the `.groups` argument.
#> `summarise()` has grouped output by 'name'. You can override using the `.groups` argument.
#> `summarise()` has grouped output by 'name'. You can override using the `.groups` argument.
#> `summarise()` has grouped output by 'name'. You can override using the `.groups` argument.
#> `summarise()` has grouped output by 'name'. You can override using the `.groups` argument.
#> `summarise()` has grouped output by 'name'. You can override using the `.groups` argument.
#> `summarise()` has grouped output by 'name'. You can override using the `.groups` argument.
#> `summarise()` has grouped output by 'name'. You can override using the `.groups` argument.
#> `summarise()` has grouped output by 'name'. You can override using the `.groups` argument.
*> `summarise()` has grouped output by 'name'. You can override using the `.groups` argument.
*> `summarise()` has grouped output by 'name'. You can override using the `.groups` argument.
*> `summarise()` has grouped output by 'name'. You can override using the `.groups` argument.
*> `summarise()` has grouped output by 'name'. You can override using the `.groups` argument.
```

```
## Loop to get the year effect corrected by year
## Only genotypes present in years
#str(data_beans)
data_beans$var_years <- as.factor(data_beans$var_years)</pre>
year <- nlevels(data_beans$var_years)</pre>
## Analysis per site and mkt class
#mkt_n <- levels(data_beans$mkt)</pre>
Envs <- levels(data_beans$loc)</pre>
stgI_list <- matrix(data=list(), nrow=length(Envs), ncol=1,</pre>
                      dimnames=list(Envs, c("BLUES")))
mkt <- nlevels(data_beans$mkt)</pre>
for (y in 1:year) {
  by <- levels(data_beans$var_years)</pre>
  cy \leftarrow by[y]
  data_beans_temp1 <- droplevels(subset(data_beans, var_years==cy))</pre>
if(y == 1) \{next\}
}else {
  for(k in 1:mkt){
  bk <- levels(data_beans_temp1$mkt)</pre>
  cj \leftarrow bk[k]
  #print(cj)
```

```
data_beans_temp2 <- droplevels(subset(data_beans_temp1, mkt==cj))</pre>
  for (i in Envs){
    #i=Envs[1]
    Edat <- droplevels(subset(data_beans_temp2, loc==i))</pre>
    #print(i)
   data
                                = Edat,
                predict = predict.asreml(classify = "name:rep",vcov=TRUE, aliased =
                 \hookrightarrow T),
                    trace
                               = F,
                    maxit
                               = 500)
   # print(summary.asreml(mod.1)$varcomp)
    # wald(mod.1)
  blue.1<- data.table((mod.1$predictions$pvals[1:4]))</pre>
  names(blue.1) <- c("name", "rep", "yield", "se")</pre>
  blue.1$mkt<- cj
  blue.1$var years<- cy
    stgI list[[i, "BLUES"]] <- blue.1 # put all the results of Stage 1 in the list
   rm(Edat, mod.1, blue, blue.1)
   }
   if(k==1){stgI_list.1<-stgI_list}else{stgI_list.1<-rbind(stgI_list.1, stgI_list)}</pre>
}
}
  if(y==2){stgI_list.2<-stgI_list.1}else{stgI_list.2<-rbind(stgI_list.2, stgI_list.1)}</pre>
}
```

3.6.1.1 Preparing dataset of Stage I for Stage II Merging the original data to have all the factors in the final table with: name, loc, mkt, rep

```
##### Unlist the results of Stage I and format as data.table #####
blues_stageI <- data.table(ldply(stgI_list.2[, "BLUES"], data.frame, .id="loc"))
blues_stage.I <- blues_stageI[order(blues_stageI$loc,blues_stageI$name),]
blues_stage.I.SEmean <- blues_stage.I %>%
    dplyr::summarise(Mean_SE = mean(se, na.rm = TRUE))
print(blues_stage.I.SEmean)
```

 $Mean_SE~1~433.5$

```
#str(blues_stage.I)
```

```
# Change the order of columns
blues_stage.I <- blues_stage.I %>%
    dplyr::select(loc, name, rep, mkt, yield)
```

3.6.2 2nd Stage mixed model analysis

The following linear mixed model with interaction effect will be used in the 2-Stage in order to investigate the multi-environment trials (MET) as follow:

$$\underline{Y_{ijl}} = \mu + \underline{G_i} + E_l + \beta_{jl} + \underline{GE_{il}} + \underline{\varepsilon_{ijl}}$$

where Y_{ijl} is the response variable (e.g., grain yield) observed in the jth repetion of the ith genotype in the lth location (i=1, 2, ..., g; j=1, 2, ..., b; l=1, 2, ..., e); μ is the grand mean; $\underline{G_i}$ is the effect of the ith genotype; E_l is the effect of the lth location (env); β_{jl} is the effect of the jth rep with the lth location; $\underline{GE_{il}}$ is the interaction effect of the ith genotype nested within the lth location; and ε_{ijl} is the random error, in witch with $G_i \sim N(0, \sigma_G^2)$, $GE_{il} \sim N(0, \sigma_{GE}^2)$, and $\varepsilon_{ijl} \sim N(0, \sigma_\varepsilon^2)$, all independent, where G_G^2 is the genotype (name) variance, GS_{GE}^2 is the interaction genotype x environment variance, and σ_ε^2 is the mean error variance across experiments.

3.6.3 By market classes

• Getting the files for the individually market classes

```
blues_stage.I_BB <- droplevels(subset(blues_stage.I, mkt=="BB"))
blues_stage.I_NB <- droplevels(subset(blues_stage.I, mkt=="NB"))
blues_stage.I_SR <- droplevels(subset(blues_stage.I, mkt=="SR"))</pre>
```

```
blues_stage.I_table1<- blues_stage.I %>%
  group_by(loc, rep, mkt) %>%
  dplyr::summarise(count = length(name))

blues_stage.I_table1<- blues_stage.I_table1[,3:4]
blues_stage.I_table1<- blues_stage.I_table1[1:3,]

blues_stage.I_table1</pre>
```

mkt	count
factor	integer
ВВ	72
NB	71
SR	21

```
str(blues_stage.I_BB)
```

Classes 'data.table' and 'data.frame': 1152 obs. of 5 variables: $\$ loc : Factor w/ 4 levels "BA", "HU", "SA",..: 1 1 1 1 1 1 1 1 1 1 ... $\$ name : Factor w/ 72 levels "B13", "B14", "B19",..: 1 1 1 1 2 2 2 2 3 3 ... $\$ rep : Factor w/ 4 levels "1", "2", "3", "4": 1 2 3 4 1 2 3 4 1 2 ... $\$ mkt : Factor w/ 1 level "BB": 1 1 1 1 1 1 1 1 1 1 1 ... $\$ yield: num 2626 2874 2391 3000 2851 ... - attr(*, ".internal.selfref")=

```
if (knitr::is_html_output()) {
    print_table(blues_stage.I_BB)
}else{

flextable(head(blues_stage.I_BB)) %>%
    add_footer_lines(
        c("Black beans data set",
          "Header data set showing the 6 first entry")) %>%
    autofit() %>%
    add_header_lines("Dry Beans varieties trial") %>%
    theme_design2()
}
```

Dry Beans varieties trial						
loc	name	rep	mkt	yield		
ВА	B13	1	ВВ	2,626		
ВА	B13	2	ВВ	2,874		
ВА	B13	3	ВВ	2,391		
ВА	B13	4	ВВ	3,000		
ВА	B14	1	ВВ	2,851		
ВА	B14	2	ВВ	3,235		
Black bea	ans data set					
Header d	ata set showing t	he 6 first entry	,			

f (lmitming html output()) [

```
if (knitr::is_html_output()) {
   print_table(blues_stage.I_NB)
}else{

flextable(head(blues_stage.I_NB)) %>%
   add_footer_lines(
        c("Navy beans data set",
```

```
"Header data set showing the 6 first entry")) %>%
  autofit() %>%
  add_header_lines("Dry Beans varieties trial") %>%
  theme_design2()
}
```

Dry Beans varieties trial						
loc	name	rep	mkt	yield		
BA	N12	1	NB	2,505		
ВА	N12	2	NB	2,642		
ВА	N12	3	NB	2,862		
ВА	N12	4	NB	1,323		
ВА	N13	1	NB	2,451		
BA	N13	2	NB	2,673		

```
if (knitr::is_html_output()) {
    print_table(blues_stage.I_SR)
}else{

flextable(head(blues_stage.I_SR)) %>%
    add_footer_lines(
        c("Red beans data set",
            "Header data set showing the 6 first entry")) %>%
    autofit() %>%
    autofit() %>%
    add_header_lines("Dry Beans varieties trial") %>%
    theme_design2()
}
```

Dry Beans varieties trial					
loc	name	rep	mkt	yield	
BA	R10	1	SR	2,296	
BA	R10	2	SR	2,676	
Red bear	ıs data set				
Header d	ata set showing t	he 6 first entry	,		

Dry Beans varieties trial						
loc	name	rep	mkt	yield		
BA	R10	3	SR	3,440		
BA	R10	4	SR	2,580		
BA	R12	1	SR	3,001		
BA	R12	2	SR	2,716		
Red bean	s data set					
Header da	ata set showing t	he 6 first entry	1			

3.6.4 Descriptive variance

3.6.4.1 Box plot distribution

• Box plots for between-subjects comparisons by locations using the R package ggstatsplot.

Pairwise Games-Howell test used. Comparisons showing only significant

Figure S4: Combination of box and violin plots along with jittered data points for between subjects comparisons by locations of grain yield (GY) for black (BB), Navy (NB) and Red (SR) beans. Pairwise Games-Howell test used. Comparisons showing only significant values. BA: Bay, HU: Huron, SA:Sanilac, TU: Tuscola.

```
data beans var = read.csv("data/VarStack.csv",h=T, stringsAsFactors = T)
data_beans_var$trait <- factor(data_beans_var$trait, levels=c("GY1", "GY2", "DM", "PH",

    "LD"))

ggplot(data_beans_var, aes(x = trait, y = Freq, fill = Comp, label = Comp)) +
  geom_bar(stat = "identity") +
  #qeom_text(size = 3, position = position_stack(vjust = 0.5)) +
  facet_wrap("mkt") +
  geom_text(aes(label = round(Freq, 2), x = trait, y = Freq), data = data_beans_var,size
  = 5, position = position_stack(vjust = 0.5),fontface = "bold") +
  labs(y = "Proportion of phenotypic variance", fill = "", x = NULL) +
  theme classic() +
  #theme(strip.background = element blank()) +
  scale_fill_manual(values=c("#CC6666", "#9999CC", "#66CC99"),
                    labels = c("Res", "G", "GxE")) +
  theme(legend.position = "bottom",
       axis.text.x=element text(face="bold", size = 12),
       axis.text.y=element_blank(),
        axis.ticks.y = element_blank(),
        axis.title.y=element_text(face="bold", size = 14) ,
        legend.text = element_text(size = 12, face="bold"), ) +
  scale_y_continuous(expand = expansion(mult = c(0, 0.01)))
```


Proportion of the phenotypic variance for three dry beans traits evaluated across three locations. GY1, grain yield from 2017 to 2022; GY2, grain yield only in 2021; DM, days to maturity; PH, plant height; LD, lodging.

3.6.4.2 Phenotypic variance components

```
blues_stage.I_BB_ge<- na.omit(blues_stage.I_BB)</pre>
stab_bb <- ge_plot(blues_stage.I_BB_ge, type = 1,</pre>
        env = loc,
        gen = name,
        resp = yield) + xlab("") + ylab("Genotypes") +
theme(axis.text.x = element_text(size = 8, angle = 90, vjust = 0.5, hjust = 1),
      axis.text.y = element_text(size = 7, angle = 0, vjust = 0.5, hjust = 1),
      legend.position ="none", plot.title=element_text(hjust=0.5)) +
 labs(title = "BB")
#print (stab_bb)
blues_stage.I_NB_ge<- na.omit(blues_stage.I_NB)</pre>
stab_nb <- ge_plot(blues_stage.I_NB_ge, type = 1,</pre>
        env = loc,
        gen = name,
        resp = yield) + xlab("Locations") + ylab("") +
theme(axis.text.x = element_text(size = 8, angle = 90, vjust = 0.5, hjust = 1),
      axis.text.y = element_text(size = 7, angle = 0, vjust = 0.5, hjust = 1),
      legend.position ="none", plot.title=element_text(hjust=0.5)) +
  labs(title = "NB")
#print (stab_nb)
blues_stage.I_SR_ge<- na.omit(blues_stage.I_SR)</pre>
stab_sr <- ge_plot(blues_stage.I_SR_ge, type = 1,</pre>
        env = loc,
        gen = name,
        resp = yield) + xlab("") + ylab("") +
theme(axis.text.x = element_text(size = 8, angle = 90, vjust = 0.5, hjust = 1),
      axis.text.y = element_text(size = 7, angle = 0, vjust = 0.5, hjust = 1),
      legend.position ="right",
      plot.title=element_text(hjust=0.5)) +
 labs(fill="GY(Kg/ha)", title = "SR")
#print (stab sr)
print(arrange_ggplot(stab_bb, stab_nb,stab_sr))
```


Genotype's performance across the environments for Black (BB), Navy (NB), and Small Red (SR) beans using the estimated means (BLUEs) from the 1-stage mixed model analysis.

3.6.4.3 Genotyping performance

3.7 Descriptive MET

• Genetic correlations across environment using the Unstructured (US) variance-covariance structure.

This mixed model will be used only for genotype x environment correlations in order to investigate the GEI correlations.

```
mod.us.bb <- asreml(fixed = yield ~ loc + loc:rep ,</pre>
                         random
                                      = ~ name:us(loc) ,
                                      = blues_stage.I_BB,
                                      = predict.asreml(classify = "name"),
                         predict
                         trace
                                      = F,
                         maxit
                                      = 500)
#print(wald(mod.us.bb))
#print(summary.asreml(mod.us.bb)$varcomp)
f=summary(mod.us.bb)$varcomp[1:10,1]
z=matrix(0, 4,4)
z[upper.tri(z) | row(z) == col(z)] \leftarrow f
corf=z/sqrt(diag(z)%*%t(diag(z)))
#corf
```

```
rownames(corf)=c(
"BA",
"HU",
"SA",
"TU")
colnames(corf)=rownames(corf)
plotBB<- ggcorrplot(corf, colors = c("#6D9EC1", "white", "#E46726"),</pre>
          title = "
                                        Black Beans",
           show.legend = F,
legend.title = "rgg" ,lab_size=5,tl.srt = 90,type = c("upper"), lab = T,digits = 4,
outline.color = "white", pch.col = "white", tl.col = "blue", show.diag = FALSE)
## genetic correlation: manual estimation
# corr.loc_BA_HU<-summary(mod.us.bb)$varcomp[2,1] /
# sqrt(summary(mod.us.bb)$varcomp[1,1]*summary(mod.us.bb)$varcomp[3,1])
# print(plotBB)
mod.us.nb <- asreml(fixed = yield ~ loc + loc:rep ,</pre>
                        random
                                   = ~ name:us(loc) ,
                                    = blues_stage.I_NB,
                         data
                        predict = predict.asreml(classify = "name"),
trace = F,
                                   = 500)
                        maxit
#print(wald(mod.us.nb))
#print(summary.asreml(mod.us.nb)$varcomp)
f=summary(mod.us.nb)$varcomp[1:10,1]
z=matrix(0, 4,4)
z[upper.tri(z) | row(z) == col(z)] \leftarrow f
corf=z/sqrt(diag(z)%*%t(diag(z)))
#corf
rownames(corf)=c(
"BA",
"HU",
"SA",
"TU")
colnames(corf)=rownames(corf)
#corf<- as_tibble(corf,rownames=NA)</pre>
plotNB<-ggcorrplot(corf, colors = c("#6D9EC1", "white", "#E46726"),</pre>
           title = "
                                       Navy Beans",
           show.legend = F,
legend.title = "r" ,lab_size=5,tl.srt = 90,type = c("upper"), lab = T,digits = 4,
outline.color = "white",pch.col = "white", tl.col = "blue",show.diag = FALSE)
## genetic correlation: manual estimation
corr.loc<-summary(mod.us.nb)$varcomp[2,1] /</pre>
```

```
sqrt(summary(mod.us.nb)$varcomp[1,1]*summary(mod.us.nb)$varcomp[3,1])
#print(plotNB)
mod.us.sr <- asreml(fixed = yield ~ loc + loc:rep ,</pre>
                        random
                                    = ~ name:us(loc) ,
                                    = blues_stage.I_SR,
                        data
                        predict = predict.asreml(classify = "name"),
                        trace = F,
                                    = 50000)
#print(wald(mod.us.sr))
#print(summary.asreml(mod.us.sr)$varcomp)
f=summary(mod.us.sr)$varcomp[1:10,1]
z=matrix(0, 4, 4)
z[upper.tri(z) | row(z) == col(z)] \leftarrow f
corf=z/sqrt(diag(z)%*%t(diag(z)))
#corf
rownames(corf)=c(
"BA",
"HU",
"SA",
"TU")
colnames(corf)=rownames(corf)
#corf<- as_tibble(corf,rownames=NA)</pre>
plotSR<- ggcorrplot(corf, colors = c("#6D9EC1", "white", "#E46726"),</pre>
           title = "
                                        Small Red Beans",
           #show.legend = F,
legend.title = "Rge" ,lab_size=5,tl.srt = 90,type = c("upper"), lab = T,digits = 4,
outline.color = "white",pch.col = "white", tl.col = "blue",show.diag = FALSE)
## genetic correlation: manual estimation
corr.loc<-summary(mod.us.sr)$varcomp[2,1] /</pre>
  sqrt(summary(mod.us.sr)$varcomp[1,1]*summary(mod.us.sr)$varcomp[3,1])
#print(plotSR)
```

```
arrange_ggplot(plotBB,plotNB, plotSR,ncol = 3)
```


3.8 Analyzing MET - GGE

Genotype plus Genotype-vs-Environment interaction (GGE) model has been widely used to genotype evaluation and mega-environment identification in multi-environment trials (MET). This model considers a GGE (i.e., G + GE) biplot, which is constructed by the first two symmetrically scaled principal components (PC1 and PC2) derived from singular value decomposition of environment-centered MET data. The GGE biplot graphically displays G plus GE of a MET in a way that facilitates visual genotype evaluation and mega-environment identification Yan, Kang, Ma, Woods, & Cornelius (2007a).

3.8.1 GGE biplot model

The mean yield of genotype i in environment j is commonly described by a general linear model

$$\hat{y}_{ij} + \mu + \alpha_i + \beta_j + \phi_{ij}$$

where \hat{y}_{ij} is the mean yield of genotype i in environment j, i = 1, ..., g; j = 1, ..., e being g and e the numbers of genotypes and environments, respectively; μ is the grand mean; α_i is the main effect of the genotype i; β_j is the main effect of the environment j, and ϕ_{ij} is the interaction effect between genotype i and environment j. In the Genotype plus Genotype-vs-Environment interaction (GGE) model the α_i term is is deleted from the above model and then the environment-centered data matrix, ϕ_{ij} , is subjected to SVD Yan & Kang (2003) and Yan et al. (2007a). Explicitly, we have

$$\phi_{ij}=\hat{y}_{ij}-\mu-\beta_j=\sum_{k=1}^p\xi_{ik}^*\eta_{jk}^*$$

where $\xi_{ik}^* = \lambda_k^{\alpha} \xi_{ik}$; $\eta_{jk}^* = \lambda_k^{1-\alpha} \eta_{jk}$ being λ_k the kth eigenvalue from the SVD (k = 1, ...p), with $p \leq min(e, g)$; α is the the singular value partition factor for the Principal Component (PC) k; ξ_{ik}^* and η_{jk}^* are the PC scores for genotype i and environment j, respectively.

The function gge() from the R package metan Olivoto et al. (2019) according to Yan & Kang (2003) was deployed to produce the GGE model in this study.

3.9 WAASB index

The function waasb() function computes the Weighted Average of the Absolute Scores considering all possible IPCA from the Singular Value Decomposition of the BLUPs for genotype-vs-environment interaction effects obtained by an Linear Mixed-effect Model Olivoto et al. (2019), as follows:

$$WAASB_i = \sum_{k=1}^p |IPCA_{ik} \times EP_k| / \sum_{k=1}^p EP_k$$

where $WAASB_i$ is the weighted average of absolute scores of the *i*th genotype; $IPCA_{ik}$ is the scores of the *i*th genotype in the *k*th IPCA; and EP_k is the explained variance of the *k*th PCA for k = 1, 2, ..., p, p = min(g-1; e-1).

3.10 WAASBY index

Simultaneous selection for mean performance and stability

The waasby index is used for genotype ranking considering both the stability (waasb) and mean performance (y) based on the following model Olivoto et al. (2019).

$$waasby_i = \frac{(rY_i \times \theta_Y) + (rW_i \times \theta_W)}{\theta_Y + \theta_W}$$

where $waasby_i$ is the superiority index for the *i*-th genotype; rY_i and rW_i are the rescaled values (0-100) for the response variable (y) and the stability (WAAS or WAASB), respectively; θ_Y and θ_W are the weights for mean performance and stability, respectively.

4 Appendix D - R codes

4.1 MET analysis - Black beans

4.1.1 MET analysis - ASReml

Running MET using ASReml - only to comparison of variance components with metan outputs

Df	Sum.of.Sq	Wald.statistic	Pr.Chisq.
numeric	numeric	numeric	numeric
1	1,368,373,852	7,427.1	0
3	7,396,784	40.1	0
12	21,308,617	115.7	0
	184,240		

summ.bb.met.asreml<- data.frame(summary.asreml(mod.met.asreml.bb1)\$varcomp)
summ.bb.met.asreml</pre>

component	std.error	z.ratiobound	X.ch
numeric	numeric	numericcharacter	numeric
48,605.0	17,987.9	2.7P	0
164,940.6	21,008.6	7.9P	0
184,240.9	9,279.9	19.9P	0

```
#print(summary.asreml(mod.met.asreml.bb1)$bic)
mod.met.asreml.bb<- data.table((mod.met.asreml.bb1$predictions$pvals[1:3]))
names(mod.met.asreml.bb) <- c("name", "yield_BLUPS_MET", "SE")
####</pre>
```

4.1.2 MET analysis - lme4

Running MET using metan R package Olivoto et al. (2019).

```
#> Method: REML/BLUP
```

#> Random effects: GEN, GEN:ENV

#> Fixed effects: ENV, REP(ENV)

#> Denominador DF: Satterthwaite's method

P-values for Likelihood Ratio Test of the analyzed traits

model yield COMPLETE NA GEN 5.40e-04 GEN:ENV 5.48e-49

All variables with significant (p < 0.05) genotype-vs-environment interaction

4.1.3 Printing the model outputs

4.1.3.1 Likelihood Ratio Tests The output LRT contains the Likelihood Ratio Tests for genotype and genotype-vs-environment random effects.

```
data_mod_bb_test <- get_model_data(mixed_mod.bb, "lrt")</pre>
```

#> Class of the model: waasb

#> Variable extracted: lrt

data_mod_bb_test

VAR	model	npar	logLik	AIC	LRT	Df	Pr(>Chisq)
character	character	integer	numeric	numeric	numeric	numeric	numeric
yield	GEN	18	-8,314.1	16,664.3	12.0	1	0.0
yield	GEN:ENV	18	-8,416.4	16,868.7	216.4	1	0.0

```
#customize the display of numbers and other data in a tibble
# old <- options(pillar.sigfig = 6)
#
# blues_stage.I_BB %>%
# group_by(loc) %>%
# dplyr::summarise(Mean = mean(yield, na.rm = TRUE))
```

```
data_mod_bb_det <- get_model_data(mixed_mod.bb, "details")</pre>
```

4.1.3.2 Detailed parameters

#> Class of the model: waasb

#> Variable extracted: details

data_mod_bb_det

Parameters	yield
character	character
Mean	3255.05
SE	19.84
SD	655
CV	20.13
Min	805.92 (B13 in HU)
Max	5310.16 (B34 in HU)
MinENV	BA (3004.17)
MaxENV	HU (3461.59)
MinGEN	B50 (2031.07)
n: 12	

4.1.3.3 Random effects The output LRT contains the Likelihood Ratio Tests for genotype and genotype-vs-environment random effects.

```
#customize the display of numbers and other data in a tibble
old <- options(pillar.sigfig = 8)

data_mod_bb_var <- get_model_data(mixed_mod.bb, "vcomp")</pre>
```

- #> Class of the model: waasb
- #> Variable extracted: vcomp

data_mod_bb_var

Group	yield
character	numeric
GEN	48,616.4
GEN:ENV	164,935.3
Residual	184,240.5

```
old <- options(pillar.sigfig = 4)
data_mod_bb_comp <- get_model_data(mixed_mod.bb)</pre>
```

4.1.3.4 Variance components and genetic parameters

#> Class of the model: waasb

#> Variable extracted: genpar

data_mod_bb_comp

Parameters	yield
character	numeric
Phenotypic variance	397,792.2
Heritability	0.1
GEIr2	0.4
h2mg	0.5
Accuracy	0.7
rge	0.5
CVg	6.8
CVr	13.2
CV ratio	0.5

4.1.4 MET - GGE biplot

Genotype plus Genotype-vs-Environment interaction (GGE). Mega-environment identification in multi-environment trials (MET) according to $(\mathbf{W}?)$. Yan et al. 2007

4.1.4.1 GGE ENV biplot GGE biplot done using:

- sd: each value is divided by the standard deviation of its corresponding environment.
- environment: environment-centered (G+GE)
- **environment**: singular value is entirely partitioned into the environment eigenvectors, also called column metric preserving

```
size.text.env = 4.5,
          plot_theme = theme_metan(grid = "both",color.background =

    transparent_color()),
         axis_expand = 1.5,
         col.alpha.circle = 0.8,
         shape.gen = NA,
         col.gen = NA,
         size.text.lab = NA,
         size.text.gen = NA,
         leg.lab=c('Env'),
        #title = FALSE
         )
gge_model.bb <- gge(blues_stage.I_BB, loc, name, yield,</pre>
                    centering = "environment", #1
                    scaling = "sd", #2Y
                    svp = "environment")#2)
b <- plot(gge_model.bb, type = 6,</pre>
          size.text.env = 5,
          plot_theme = theme_metan(grid = "both",color.background =

    transparent_color()),
         axis_expand = 1.5,
        # col.alpha.circle = 100,
          col.alpha.circle = 0.8,
         size.text.lab = 13,
       #title = FALSE
        )
 arrange_ggplot(a, b,
                guides = "collect",
  tag_levels = "a",
  tag_prefix = "(",
  tag_suffix = ")")
```


4.1.4.2 Biplot type 3: Which-won-where GGE biplot done using:

- sd: each value is divided by the standard deviation of its corresponding environment.
- environment: environment-centered (G+GE)
- **genotype**: singular value is entirely partitioned into the environment eigenvectors, also called column metric preserving

4.1.5 Mean performance and stability analysis

WAASP index and BLUPs to estimate stability analysis.

```
#blues_stage.I_BB<- na.omit(blues_stage.I_BB)

waasb_model_bb <-
    waasb(blues_stage.I_BB,
        env = loc,
        gen = name,
        rep = rep,
        resp = yield,
        random = "gen", #Default
        verbose = TRUE,
        wresp = 60) #weight for response variable 60 and 40 for yielding and stability,
        respectively)</pre>
```

```
waasb_model<- waasb_model_bb$yield$model</pre>
#waasb_ind <- qmd(waasb_model_bb, "WAASB")</pre>
#print_tbl(waasb_ind)
#desc <- c("Selected cultivar providing greater performance and stability for GY")
waasp_plot <- plot_scores(waasb_model_bb, type = 3,</pre>
         title = FALSE,
         size.tex.gen = 4,
         size.tex.env = 4,
         size.tex.lab = 13,
        \# \ highlight = c("B55", "B1", "B29", "B20", "B28"),
        plot_theme = theme_metan(grid = "both",color.background = transparent_color())
        ) +
  geom_mark_rect(aes(filter = Code %in% c("B17", "B46", "B10", "B14"),
               label.fontsize = 10,
               show.legend = F,
               con.cap = 0,
               con.colour = "red",
               color = "red",
               expand = 0.015,
               label.buffer = unit(10, "cm"))+
#theme_gray()+
theme(legend.position = c(0.1, 0.9),
      legend.background = element_blank(),
      legend.title = element blank(),
      aspect.ratio = 1) +
 labs(x = "GY")
print(waasp_plot)
```



```
waasb_model_meanY<-mean(waasb_model$WAASB)
waasb_model_meanY<-mean(waasb_model$Y)

selected <- waasb_model %>%
    dplyr::filter(Y >= waasb_model_meanY & WAASB <= waasb_model_meanWaasb)

selected_table <- selected

if (knitr::is_html_output()) {
    print_table(selected_table)
}else{
    selected_table[,1:8]
}</pre>
```

type	Code	Υ	PC1	PC2	PC3	WAASB	PctResp
character	character	numeric	numeric	numeric	numeric	numeric	numeric
GEN	B14	3,299.5	1.7	4.6	3.1	2.7	69.6
GEN	B19	3,369.1	-0.5	-8.0	-7.6	3.7	73.4
GEN	B21	3,665.5	5.0	0.9	-1.8	3.4	89.7
n: 26							

type	Code	Υ	PC1	PC2	PC3	WAASB	PctResp
character	character	numeric	numeric	numeric	numeric	numeric	numeric
GEN	B22	3,305.2	-2.3	-2.2	-7.5	3.2	69.9
GEN	B25	3,539.1	4.7	8.2	-0.2	4.8	82.8
GEN	B26	3,644.3	0.9	3.2	-3.1	1.9	88.5
GEN	B51	3,537.4	-2.4	1.3	-0.3	1.7	82.7
GEN	B52	3,458.7	-4.3	2.3	-0.5	3.1	78.4
GEN	B53	3,507.4	-3.4	2.1	2.3	2.9	81.0
n: 26							

#selected\$Code

```
#Create a data frame with BLUPS - selected and non-selected
blups_sel <-
  gmd(waasb_model_bb, "blupge") %>%
  add_cols(SELECTED = ifelse(GEN %in% selected$Code, "yes", "no")) %>%
   dplyr::rename(BLUPs_sel = yield) %>%
 droplevels()
blups_sel_mean<-
  gmd(waasb_model_bb, "blupge") %>%
  add_cols(SELECTED = ifelse(GEN %in% selected$Code, "yes", "no")) %%
 filter(SELECTED == "yes") %>%
  dplyr::summarise(mean_GY = mean(yield,na.rm = TRUE), n = n())
# Create a data frame with the waasb index - selected and non-selected
waasb_sel <-
  gmd(waasb_model_bb, "WAASB") %>%
  add_cols(SELECTED = ifelse(GEN %in% selected$Code, "yes", "no")) %%
 dplyr::rename(WAASB_sel = yield) %>%
  droplevels()
#str(waasb_sel)
waasb_sel_mean<-
  gmd(waasb_model_bb, "WAASB") %>%
  add_cols(SELECTED = ifelse(GEN %in% selected$Code, "yes", "no")) %%
 filter(SELECTED == "yes") %>%
 dplyr::summarise(mean_GY = mean(yield, na.rm = TRUE), n = n())
p1<- plot_selected(blups_sel, GEN, BLUPs_sel, mean_sel = blups_sel_mean$mean_GY) +
 labs(y = "GY")
p3<- plot_selected(waasb_sel, GEN, WAASB_sel, mean_sel = waasb_sel_mean$mean_GY) +
```

```
labs(y = "WAASB index")

arrange_ggplot(p1, p3,
    guides = "collect",
    tag_levels = "a",
    tag_prefix = "(",
    tag_suffix = ")")
```


Mean performance (a) and stability (b) for grain yield (GY) of 72 Black beans genotypes. The vertical dashed and solid lines shows, respectively, the mean of the selected genotype and the overall mean for both mean performance and WAASB index

4.1.5.1 Selection differentials Percentage (SD_gain in %) gain from the selected genotypes compared to the general mean.

```
blups_sel2 <-
gmd(waasb_model_bb, "blupg") %>%
add_cols(SELECTED = ifelse(GEN %in% selected$Code, "yes", "no")) %>%
    dplyr::rename(BLUPs_sel = yield) %>%
droplevels()
```

- #> Class of the model: waasb
- #> Variable extracted: blupg

```
blups_sel_mean2<-
  gmd(waasb_model_bb, "blupg") %>%
  add_cols(SELECTED = ifelse(GEN %in% selected$Code, "yes", "no")) %>%
  filter(SELECTED == "yes") %>%
 dplyr::summarise(mean_GY = mean(yield, na.rm = TRUE), n = n())
#> Class of the model: waasb
#> Variable extracted: blupg
SD blups<- as tibble((blups sel mean2$mean GY/mean(blups sel2$BLUPs sel, na.rm = T))
→ -1)*100
SD_WAASP<- as_tibble((waasb_sel_mean$mean_GY /mean(waasb_sel$WAASB_sel, na.rm = T))
→ -1)*100
SD_comb<- full_join(SD_blups, SD_WAASP, by = "value") %>%
  dplyr::rename(SD_gain = value) %>%
 tibble::add_column(Comp_name = c('BLUPs', 'WAASB')) %>%
 relocate(Comp_name)
SD_comb$n_selected<- blups_sel_mean2$n
SD_comb
```

Comp_name	SD_gain	n_selected	
character	numeric	integer	
BLUPs	3.7	26	
WAASB	-41.9	26	

```
blups_sel2$mean_blup <- mean(blups_sel2$BLUPs_sel, na.rm = T)</pre>
waasb_sel$mean_waasb <- mean(waasb_sel$WAASB_sel, na.rm = T)</pre>
#str(waasb sel)
data comb<- merge(blups sel2, waasb sel, by = c("GEN", "SELECTED"))
#names(data_comb)
## SD for each genotype
data_sel_perc <- data_comb %>%
rowwise %>%
 mutate(Perc_blup_gain = ((BLUPs_sel/mean_blup)*100)-100) %>%
 mutate(Perc WAASB gain = ((WAASB sel/mean waasb)*100)-100) %>%
 as tibble()
# data_sel_perc_mean <- data_sel_perc %>%
  dplyr::filter(SELECTED == "yes")
# mean(data_sel_perc_mean$Perc_blup_gain)
if (knitr::is_html_output()) {
print_table(data_sel_perc)
```

```
}else{
data_sel_perc[,1:7]
}
```

GEN	SELECTED	BLUPs_sel	mean_blup	WAASB_sel	mean_waasb	Perc_blup_gain
character	character	numeric	numeric	numeric	numeric	numeric
B1	no	3,173.6	3,255.1	2.7	5.2	-2.5
B10	yes	3,391.1	3,255.1	0.3	5.2	4.2
B11	no	3,110.5	3,255.1	10.3	5.2	-4.4
B12	no	3,185.4	3,255.1	5.3	5.2	-2.1
B13	no	3,197.5	3,255.1	2.1	5.2	-1.8
B14	yes	3,282.6	3,255.1	2.7	5.2	0.8
B15	no	3,337.8	3,255.1	12.2	5.2	2.5
B16	no	3,240.1	3,255.1	12.6	5.2	-0.5
B17	yes	3,281.1	3,255.1	5.4	5.2	0.8

GEN	SELECTED	BLUPs_sel	WAASB_sel	Perc_blup_gain	Perc_WAASB_gain
character	character	numeric	numeric	numeric	numeric
B1	no	3,173.6	2.7	-2.5	-48.3
B10	yes	3,391.1	0.3	4.2	-94.2
B11	no	3,110.5	10.3	-4.4	99.3
B12	no	3,185.4	5.3	-2.1	2.7
n: 72					

SELECTED	BLUPs_sel	WAASB_sel	Perc_blup_gain	Perc_WAASB_gain
character	numeric	numeric	numeric	numeric
no	3,197.5	2.1	-1.8	-59.6
yes	3,282.6	2.7	0.8	-47.3
no	3,337.8	12.2	2.5	136.2
no	3,240.1	12.6	-0.5	145.1
yes	3,281.1	5.4	0.8	5.6
	character no yes no no	character numeric no 3,197.5 yes 3,282.6 no 3,337.8 no 3,240.1	character numeric numeric no 3,197.5 2.1 yes 3,282.6 2.7 no 3,337.8 12.2 no 3,240.1 12.6	character numeric numeric numeric no 3,197.5 2.1 -1.8 yes 3,282.6 2.7 0.8 no 3,337.8 12.2 2.5 no 3,240.1 12.6 -0.5

```
##BLUPs indexes
stab_blups_bb<- blup_indexes(waasb_model_bb)
stab_blups_bb<- as_tibble(stab_blups_bb$yield)

data_waasby <- waasb_model_bb$yield$model %>%
    dplyr::filter(type != "ENV") %>%
    dplyr::select("Code", "WAASBY", "OrWAASBY") %>%
    dplyr::rename(GEN = Code)

stab_blups_bb<- stab_blups_bb %>%
    full_join(data_waasby, by = "GEN")

if (knitr::is_html_output()) {
    print_table(stab_blups_bb)
}else{
    stab_blups_bb[,1:8]
}
```

GEN	Υ	HMGV	HMGV_R	RPGV	RPGV_Y	RPGV_R	HMRPGV
character	numeric						
B1	3,122.0	3,048.9	54	1.0	3,083.2	55	0.9
B10	3,299.5	3,473.1	10	1.1	3,489.4	10	1.1
B11	3,369.1	2,884.2	62	0.9	2,986.8	61	0.9
B12	2,984.7	3,083.1	53	1.0	3,121.1	54	1.0
B13	3,665.5	3,118.1	52	1.0	3,136.3	52	1.0
B14	3,305.2	3,282.3	32	1.0	3,295.9	35	1.0
B15	3,539.1	3,310.4	30	1.1	3,419.2	23	1.0
n: 72							

GEN	Υ	HMGV	HMGV_R	RPGV	RPGV_Y	RPGV_R	HMRPGV
character	numeric						
B16	3,644.3	3,128.3	51	1.0	3,228.3	40	1.0
B17	2,774.6	3,232.1	35	1.0	3,278.4	37	1.0

```
# library(openxlsx)
# write.xlsx(stab_blups_bb, "./data/blups_bb_2.xlsx")
```

4.1.5.2 Scenarios of waasby estimation Planning different scenarios of waasby estimation by changing the weights assigned to the stability and the mean performance according to Olivoto et al. (2019)

```
scenarios <- wsmp(waasb_model_bb,progbar = F)

scen1<- plot(scenarios, type = 1) +
    theme(axis.text.y = element_text(size=8))

scen2<-plot(scenarios, type = 2) +
    theme(axis.text.y = element_text(size=8))

arrange_ggplot(scen1, scen2,
    guides = "collect",
    legend.position = "right",
    tag_levels = "a",
    tag_prefix = "(",
    tag_suffix = ")")</pre>
```


4.1.5.3 Coincidence index of genotype selection Computes the coincidence index (Hamblin and Zimmermann, 1986) as follows:

$$CI = \frac{A-C}{M-C} \times 100$$

where A is the number of selected genotypes common to different methods; C is the number of expected genotypes selected by chance; and M is the number of genotypes selected according to the selection intensity.

```
coinc_1 <- stab_blups_bb %>% dplyr::select(GEN,HMRPGV_R) %>% arrange(HMRPGV_R)
coinc_2 <- stab_blups_bb %>% dplyr::select(GEN,RPGV_R) %>% arrange(RPGV_R)
coinc_3 <- stab_blups_bb %>% dplyr::select(GEN,HMGV_R) %>% arrange(HMGV_R)
coinc_4 <- stab_blups_bb %>% dplyr::select(GEN,OrWAASBY) %>% arrange(OrWAASBY)
coinc_5 <- stab_blups_bb %>% dplyr::select(GEN,WAASB_R) %% arrange(WAASB_R)
selc_perc<- round(nrow(stab_blups_bb)*0.2)</pre>
coinc 1.1 <-1
coinc_1.2 <- coincidence_index(sel1 = coinc_1$GEN[1:selc_perc],</pre>
                                         sel2 = coinc_2$GEN[1:selc_perc],
                                         total = 72)/100
coinc_1.3 <- coincidence_index(sel1 = coinc_1$GEN[1:selc_perc],</pre>
                                         sel2 = coinc_3$GEN[1:selc_perc],
                                         total = 72)/100
coinc_1.4 <- coincidence_index(sel1 = coinc_1$GEN[1:selc_perc],</pre>
                                         sel2 = coinc_4$GEN[1:selc_perc],
                                         total = 72)/100
coinc_1.5 <- coincidence_index(sel1 = coinc_1$GEN[1:selc_perc],</pre>
```

```
sel2 = coinc_5$GEN[1:selc_perc],
                                          total = 72)/100
coinc_2.2 <-1
coinc_2.3 <- coincidence_index(sel1 = coinc_2$GEN[1:selc_perc],</pre>
                                          sel2 = coinc_3$GEN[1:selc_perc],
                                          total = 72)/100
coinc_2.4 <- coincidence_index(sel1 = coinc_2$GEN[1:selc_perc],</pre>
                                          sel2 = coinc_4$GEN[1:selc_perc],
                                          total = 72)/100
coinc_2.5 <- coincidence_index(sel1 = coinc_2$GEN[1:selc_perc],</pre>
                                          sel2 = coinc_5$GEN[1:selc_perc],
                                          total = 72)/100
coinc_3.3<- 1
coinc_3.4 <- coincidence_index(sel1 = coinc_3$GEN[1:selc_perc],</pre>
                                          sel2 = coinc_4$GEN[1:selc_perc],
                                          total = 72)/100
coinc_3.5 <- coincidence_index(sel1 = coinc_3$GEN[1:selc_perc],</pre>
                                          sel2 = coinc_5$GEN[1:selc_perc],
                                          total = 72)/100
coinc 4.4 <- 1
coinc_4.5 <- coincidence_index(sel1 = coinc_4$GEN[1:selc_perc],</pre>
                                          sel2 = coinc_5$GEN[1:selc_perc],
                                          total = 72)/100
coinc 5.5 <- 1
coinc<- c(coinc_1.1,coinc_1.2,coinc_2.2,coinc_1.3,coinc_2.3,</pre>
          coinc_3.3,coinc_1.4, coinc_2.4, coinc_3.4,
          coinc 4.4, coinc 1.5, coinc 2.5,
          coinc_3.5, coinc_4.5,
          coinc_5.5
z=matrix(0,5,5)
z[upper.tri(z) | row(z) == col(z)] \leftarrow coinc
rownames(z)=c(
"HMRPGV",
"RPGV",
'HMGV',
'WAASBY',
'WAASB')
colnames(z)=rownames(z)
plotBB<- ggcorrplot(z, colors = c("#6D9EC1", "gray", "#E46726"),</pre>
           show.legend = T,
legend.title = "CI" ,lab_size=5,tl.srt = 90,type = c("upper"), lab = T,digits = 4,
outline.color = "white", pch.col = "white", tl.col = "blue", show.diag = F) +
 labs(title = "BLUP-based stability indexes coincidence at BB",
           subtitle = "Selection intensity of 20% top genotypes")
print(plotBB)
```


4.2 MET analysis - Navy beans

4.2.1 MET analysis - ASReml

Running MET using ASReml - only to comparison of variance components with metan outputs

Pr.Chisq.	Wald.statistic	Sum.of.Sq	Df
numeric	numeric	numeric	numeric
0	9,420.3	1,636,916,005	1
0	66.9	11,631,057	3
0	119.8	20,821,488	12
		173,765	

summ.nb.met.asreml<- data.frame(summary.asreml(mod.met.asreml.nb1)\$varcomp)
summ.nb.met.asreml</pre>

X.ch	z.ratiobound	std.error	component
numeric	numericcharacter	numeric	numeric
0	3.1P	11,258.8	34,501.8
0	6.1P	11,918.4	72,760.9
0	19.8P	8,797.2	173,765.2

```
#print(summary.asreml(mod.met.asreml.nb1)$bic)
mod.met.asreml.nb<- data.table((mod.met.asreml.nb1$predictions$pvals[1:3]))
names(mod.met.asreml.nb) <- c("name", "yield_BLUPS_MET", "SE")
###</pre>
```

4.2.2 MET analysis - lme4

Running MET using metan R package Olivoto et al. (2019).

#> Method: REML/BLUP

#> Random effects: GEN, GEN:ENV

#> Fixed effects: ENV, REP(ENV)

#> Denominador DF: Satterthwaite's method

P-values for Likelihood Ratio Test of the analyzed traits

model yield COMPLETE NA GEN 3.41e-05 GEN:ENV 6.69e-20

All variables with significant (p < 0.05) genotype-vs-environment interaction

4.2.3 Printing the model outputs

4.2.3.1 Likelihood Ratio Tests The output LRT contains the Likelihood Ratio Tests for genotype and genotype-vs-environment random effects.

```
data_mod_nb_test <- get_model_data(mixed_mod.nb, "lrt")</pre>
```

#> Class of the model: waasb

#> Variable extracted: lrt

 $data_mod_nb_test$

VAR	model	npar	logLik	AIC	LRT	Df	Pr(>Chisq)
character	character	integer	numeric	numeric	numeric	numeric	numeric
yield	GEN	18	-8,123.2	16,282.4	17.2	1	0.0
yield	GEN:ENV	18	-8,156.3	16,348.7	83.4	1	0.0

```
#customize the display of numbers and other data in a tibble
# old <- options(pillar.sigfig = 6)
#
# blues_stage.I_NB %>%
# group_by(loc) %>%
# dplyr::summarise(Mean = mean(yield, na.rm = TRUE))
```

```
data_mod_nb_det <- get_model_data(mixed_mod.nb, "details")</pre>
```

4.2.3.2 Detailed parameters

#> Class of the model: waasb

#> Variable extracted: details

data_mod_nb_det

Parameters	yield			
character	character			
Mean	2924			
n: 12				

Parameters	yield
character	character
SE	17.22
SD	565.35
CV	19.34
Min	1096.13 (N32 in BA)
Max	4939.4 (N34 in TU)
MinENV	BA (2654.03)
MaxENV	HU (3094)
MinGEN	N28 (2260.58)
n: 12	

4.2.3.3 Random effects The output LRT contains the Likelihood Ratio Tests for genotype and genotype-vs-environment random effects.

```
old <- options(pillar.sigfig = 8)

data_mod_nb_var <- get_model_data(mixed_mod.nb, "vcomp")

#> Class of the model: waasb

#> Variable extracted: vcomp

data_mod_nb_var
```

yield
numeric
34,502.1
72,760.9
173,765.0

```
old <- options(pillar.sigfig = 4)
data_mod_nb_comp <- get_model_data(mixed_mod.nb)</pre>
```

4.2.3.4 Variance components and genetic parameters

- #> Class of the model: waasb
- #> Variable extracted: genpar

data_mod_nb_comp

Parameters	yield
character	numeric
Phenotypic variance	281,028.0
Heritability	0.1
GEIr2	0.3
h2mg	0.5
Accuracy	0.7
rge	0.3
CVg	6.4
CVr	14.3
CV ratio	0.4

4.2.4 MET - GGE biplot

Genotype plus Genotype-vs-Environment interaction (GGE). Mega-environment identification in multi-environment trials (MET) according to $(\mathbf{W}?)$. Yan et al. 2007

4.2.4.1 GGE ENV biplot GGE biplot done using:

- sd: each value is divided by the standard deviation of its corresponding environment.
- environment: environment-centered (G+GE)
- environment: singular value is entirely partitioned into the environment eigenvectors, also called column metric preserving

```
size.text.gen = NA,
         leg.lab=c('Env')
         #title = FALSE
         )
gge_model.nb <- gge(blues_stage.I_NB, loc, name, yield,</pre>
                     centering = "environment", #1
                     scaling = "sd", #2Y
                     svp = "environment")#2)
b <- plot(gge_model.nb, type = 6,</pre>
             size.text.env = 5,
          plot_theme = theme_metan(grid = "both",color.background =

    transparent_color()),
         axis_expand = 1.5,
        # col.alpha.circle = 100,
          col.alpha.circle = 0.8,
         size.text.lab = 13
        #title = FALSE
        )
 arrange_ggplot(a, b,
                guides = "collect",
  tag_levels = "a",
  tag_prefix = "(",
  tag_suffix = ")")
```


4.2.4.2 Biplot type 3: Which-won-where GGE biplot done using:

- sd: each value is divided by the standard deviation of its corresponding environment.
- environment: environment-centered (G+GE)
- **genotype**: singular value is entirely partitioned into the environment eigenvectors, also called column metric preserving

4.2.5 Mean performance and stability analysis

WAASP index and BLUPs to estimate stability analysis.

```
waasb_model_nb <-
waasb(blues_stage.I_NB,
    env = loc,
    gen = name,
    rep = rep,
    resp = yield,
    random = "gen", #Default
    verbose = TRUE,
    wresp = 60) #weight for response variable 60 and 40 for yielding and stability,
        respectively)</pre>
```

```
#> P-values for Likelihood Ratio Test of the analyzed traits
#>
     model yield
#> COMPLETE
             NA
      GEN 3.41e-05
#>
#>
  GEN:ENV 6.69e-20
#> -----
#> All variables with significant (p < 0.05) genotype-vs-environment interaction
waasb_model<- waasb_model_nb$yield$model</pre>
waasp_plot <- plot_scores(waasb_model_nb, type = 3,</pre>
        title = FALSE,
        size.tex.gen = 4,
        size.tex.env = 4,
        size.tex.lab = 13,
       \# highlight = c("N38", "N6", "N61", "N35", "N52", "N22"),
       plot_theme = theme_metan(grid = "both",color.background = transparent_color())
      ) +
 geom_mark_rect(aes(filter = Code %in% c("N70", "N37", "N69", "N60"),
                  ),
            label.fontsize = 10,
            show.legend = F,
            con.cap = 0,
            con.colour = "red",
            color = "red",
            expand = 0.005,
            label.buffer = unit(10, "cm"))+
#theme_gray()+
theme(legend.position = c(0.1, 0.9),
     legend.background = element_blank(),
     legend.title = element_blank(),
     aspect.ratio = 1) +
```

labs(x = "GY")
print(waasp_plot)


```
waasb_model_meanV<-mean(waasb_model$WAASB)
waasb_model_meanY<-mean(waasb_model$Y)

selected <- waasb_model %>%
    dplyr::filter(Y >= waasb_model_meanY & WAASB <= waasb_model_meanWaasb)

selected_table <- selected

if (knitr::is_html_output()) {
    print_table(selected_table)
}else{

selected_table[,1:8]
}</pre>
```

type	Code	Y	PC1	PC2	PC3	WAASB	PctResp
character	character	numeric	numeric	numeric	numeric	numeric	numeric
GEN	N37	3,143.7	-8.6	0.3	1.9	4.7	70.0
GEN	N39	3,037.0	-1.1	-1.3	3.0	1.5	61.5
GEN	N41	3,090.0	-3.0	4.8	1.4	3.2	65.7
n: 25							

Code	Y	PC1	PC2	PC3	WAASB	PctResp
character	numeric	numeric	numeric	numeric	numeric	numeric
N58	2,993.3	3.7	3.3	3.1	3.4	58.0
N64	3,118.8	-5.3	-2.7	2.7	4.0	68.0
N10	2,969.3	3.1	-0.3	3.4	2.3	56.1
N21	2,993.8	-0.1	-3.8	1.3	1.5	58.1
N33	2,987.3	-4.9	-0.9	1.3	2.9	57.6
N3	3,206.6	2.1	-1.5	6.2	2.7	74.9
	N58 N64 N10 N21 N33	N58 2,993.3 N64 3,118.8 N10 2,969.3 N21 2,993.8 N33 2,987.3	N58 2,993.3 3.7 N64 3,118.8 -5.3 N10 2,969.3 3.1 N21 2,993.8 -0.1 N33 2,987.3 -4.9	N58 2,993.3 3.7 3.3 N64 3,118.8 -5.3 -2.7 N10 2,969.3 3.1 -0.3 N21 2,993.8 -0.1 -3.8 N33 2,987.3 -4.9 -0.9	N58 2,993.3 3.7 3.3 3.1 N64 3,118.8 -5.3 -2.7 2.7 N10 2,969.3 3.1 -0.3 3.4 N21 2,993.8 -0.1 -3.8 1.3 N33 2,987.3 -4.9 -0.9 1.3	N58 2,993.3 3.7 3.3 3.1 3.4 N64 3,118.8 -5.3 -2.7 2.7 4.0 N10 2,969.3 3.1 -0.3 3.4 2.3 N21 2,993.8 -0.1 -3.8 1.3 1.5 N33 2,987.3 -4.9 -0.9 1.3 2.9

#selected\$Code

```
#Create a data frame with BLUPS - selected and non-selected
blups_sel <-
  gmd(waasb_model_nb, "blupge") %>%
  add_cols(SELECTED = ifelse(GEN %in% selected$Code, "yes", "no")) %>%
   dplyr::rename(BLUPs_sel = yield) %>%
  droplevels()
blups_sel_mean<-
  gmd(waasb_model_nb, "blupge") %>%
  add_cols(SELECTED = ifelse(GEN %in% selected$Code, "yes", "no")) %%
 filter(SELECTED == "yes") %>%
  dplyr::summarise(mean_GY = mean(yield,na.rm = TRUE), n = n())
# Create a data frame with the waasb index - selected and non-selected
waasb_sel <-
  gmd(waasb_model_nb, "WAASB") %>%
  add_cols(SELECTED = ifelse(GEN %in% selected$Code, "yes", "no")) %%
 dplyr::rename(WAASB_sel = yield) %>%
  droplevels()
#str(waasb_sel)
waasb_sel_mean<-
  gmd(waasb_model_nb, "WAASB") %>%
  add_cols(SELECTED = ifelse(GEN %in% selected$Code, "yes", "no")) %%
 filter(SELECTED == "yes") %>%
 dplyr::summarise(mean_GY = mean(yield, na.rm = TRUE), n = n())
p1<- plot_selected(blups_sel, GEN, BLUPs_sel, mean_sel = blups_sel_mean$mean_GY) +
 labs(y = "GY")
p3<- plot_selected(waasb_sel, GEN, WAASB_sel, mean_sel = waasb_sel_mean$mean_GY) +
```

```
labs(y = "WAASB index")

arrange_ggplot(p1, p3,
  guides = "collect",
  tag_levels = "a",
  tag_prefix = "(",
  tag_suffix = ")")
```


Mean performance (a) and stability (b) for grain yield (GY) of 71 Navy beans genotypes. The vertical dashed and solid lines shows, respectively, the mean of the selected genotype and the overall mean for both mean performance and WAASB index

4.2.5.1 Selection differentials Percentage (SD_gain in %) gain from the selected genotypes compared to the general mean.

```
blups_sel2 <-
gmd(waasb_model_nb, "blupg") %>%
add_cols(SELECTED = ifelse(GEN %in% selected$Code, "yes", "no")) %>%
    dplyr::rename(BLUPs_sel = yield) %>%
droplevels()
```

- #> Class of the model: waasb
- #> Variable extracted: blupg

```
blups_sel_mean2<-
  gmd(waasb_model_nb, "blupg") %>%
  add_cols(SELECTED = ifelse(GEN %in% selected$Code, "yes", "no")) %%
  filter(SELECTED == "yes") %>%
 dplyr::summarise(mean_GY = mean(yield, na.rm = TRUE), n = n())
#> Class of the model: waasb
#> Variable extracted: blupg
SD blups<- as tibble((blups sel mean2$mean GY/mean(blups sel2$BLUPs sel, na.rm = T))
→ -1)*100
SD_WAASP<- as_tibble((waasb_sel_mean$mean_GY /mean(waasb_sel$WAASB_sel, na.rm = T))
→ -1)*100
SD_comb<- full_join(SD_blups, SD_WAASP, by = "value") %>%
  dplyr::rename(SD_gain = value) %>%
 tibble::add_column(Comp_name = c('BLUPs', 'WAASB')) %>%
 relocate(Comp_name)
SD_comb$n_selected<- blups_sel_mean2$n
SD_comb
```

Comp_name	SD_gain	n_selected
character	numeric	integer
BLUPs	3.2	25
WAASB	-42.4	25

```
blups_sel2$mean_blup <- mean(blups_sel2$BLUPs_sel, na.rm = T)</pre>
waasb_sel$mean_waasb <- mean(waasb_sel$WAASB_sel, na.rm = T)</pre>
#str(waasb sel)
data comb<- merge(blups sel2, waasb sel, by = c("GEN", "SELECTED"))
#names(data_comb)
## SD for each genotype
data_sel_perc <- data_comb %>%
rowwise %>%
 mutate(Perc_blup_gain = ((BLUPs_sel/mean_blup)*100)-100) %>%
 mutate(Perc WAASB gain = ((WAASB sel/mean waasb)*100)-100) %>%
 as tibble()
# data_sel_perc_mean <- data_sel_perc %>%
  dplyr::filter(SELECTED == "yes")
# mean(data_sel_perc_mean$Perc_blup_gain)
if (knitr::is_html_output()) {
 print_table(data_sel_perc)
```

```
}else{
data_sel_perc[,1:7]
}
```

GEN	SELECTED	BLUPs_sel	mean_blup	WAASB_sel	mean_waasb	Perc_blup_gain
character	character	numeric	numeric	numeric	numeric	numeric
N1	no	2,820.0	2,924.0	5.9	3.9	-3.6
N10	yes	2,954.6	2,924.0	2.3	3.9	1.0
N11	no	2,899.6	2,924.0	8.8	3.9	-0.8
N12	no	2,682.8	2,924.0	3.2	3.9	-8.2
N13	no	2,867.6	2,924.0	1.0	3.9	-1.9
N14	no	2,826.9	2,924.0	3.0	3.9	-3.3
N15	no	2,701.3	2,924.0	4.2	3.9	-7.6
N16	no	2,723.6	2,924.0	1.9	3.9	-6.9
N17	no	2,802.9	2,924.0	3.7	3.9	-4.1

GEN	SELECTED	BLUPs_sel	WAASB_sel	Perc_blup_gain	Perc_WAASB_gain
character	character	numeric	numeric	numeric	numeric
N1	no	2,820.0	5.9	-3.6	50.6
N10	yes	2,954.6	2.3	1.0	-40.6
N11	no	2,899.6	8.8	-0.8	123.9
N12	no	2,682.8	3.2	-8.2	-18.4
n: 71					

		WAASB_sel	Perc_blup_gain	Perc_WAASB_gain
character	numeric	numeric	numeric	numeric
no	2,867.6	1.0	-1.9	-75.2
no	2,826.9	3.0	-3.3	-23.0
no	2,701.3	4.2	-7.6	7.9
no	2,723.6	1.9	-6.9	-52.7
no	2,802.9	3.7	-4.1	-4.6
r	no no no	2,867.6 no 2,826.9 no 2,701.3 no 2,723.6	2,867.6 1.0 2,826.9 3.0 2,701.3 4.2 2,723.6 1.9	2,867.6 1.0 -1.9 2,826.9 3.0 -3.3 2,701.3 4.2 -7.6 2,723.6 1.9 -6.9

```
##BLUPs indexes
stab_blups_nb<- blup_indexes(waasb_model_nb)
stab_blups_nb<- as_tibble(stab_blups_nb$yield)

data_waasby <- waasb_model_nb$yield$model %>%
    dplyr::filter(type != "ENV") %>%
    dplyr::select("Code", "WAASBY", "OrWAASBY") %>%
    dplyr::rename(GEN = Code)

stab_blups_nb<- stab_blups_nb %>%
    full_join(data_waasby, by = "GEN")

if (knitr::is_html_output()) {
    print_table(stab_blups_nb)
}else{

stab_blups_nb[,1:8]
}
```

GEN	Υ	HMGV	HMGV_R	RPGV	RPGV_Y	RPGV_R	HMRPGV
character	numeric						
N1	2,468.6	2,750.2	55	0.9	2,764.8	55	0.9
N10	2,809.0	2,933.7	33	1.0	2,954.2	32	1.0
N11	2,734.1	2,849.5	41	1.0	2,905.1	39	1.0
N12	2,660.6	2,533.6	69	0.9	2,545.2	69	0.9
N13	2,848.7	2,816.4	44	1.0	2,826.8	46	1.0
N14	2,722.7	2,739.4	57	0.9	2,761.4	57	0.9
N15	3,302.2	2,541.6	68	0.9	2,566.7	68	0.9
n: 71							

GEN	Υ	HMGV	HMGV_R	RPGV	RPGV_Y	RPGV_R	HMRPGV
character	numeric						
N16	3,143.7	2,595.2	67	0.9	2,606.1	67	0.9
N17	2,676.8	2,716.8	59	0.9	2,730.8	59	0.9

```
# library(openxlsx)
# write.xlsx(stab_blups_nb, "./data/blups_nb_2.xlsx")
```

4.2.5.2 Scenarios of waasby estimation Planning different scenarios of waasby estimation by changing the weights assigned to the stability and the mean performance according to Olivoto et al. (2019).

```
scenarios <- wsmp(waasb_model_nb,progbar = F)

scen1<- plot(scenarios, type = 1) +
    theme(axis.text.y = element_text(size=8))

scen2<-plot(scenarios, type = 2) +
    theme(axis.text.y = element_text(size=8))

arrange_ggplot(scen1, scen2,
    guides = "collect",
    legend.position = "right",
    tag_levels = "a",
    tag_prefix = "(",
    tag_suffix = ")")</pre>
```


4.2.5.3 Coincidence index of genotype selection Computes the coincidence index (Hamblin and Zimmermann, 1986) as follows:

$$CI = \frac{A-C}{M-C} \times 100$$

where A is the number of selected genotypes common to different methods; C is the number of expected genotypes selected by chance; and M is the number of genotypes selected according to the selection intensity.

```
coinc_1 <- stab_blups_nb %>% dplyr::select(GEN,HMRPGV_R) %>% arrange(HMRPGV_R)
coinc_2 <- stab_blups_nb %>% dplyr::select(GEN,RPGV_R) %>% arrange(RPGV_R)
coinc_3 <- stab_blups_nb %>% dplyr::select(GEN,HMGV_R) %>% arrange(HMGV_R)
coinc_4 <- stab_blups_nb %>% dplyr::select(GEN,OrWAASBY) %>% arrange(OrWAASBY)
coinc_5 <- stab_blups_nb %>% dplyr::select(GEN,WAASB_R) %% arrange(WAASB_R)
selc_perc<- round(nrow(stab_blups_nb)*0.2)</pre>
coinc 1.1 <-1
coinc_1.2 <- coincidence_index(sel1 = coinc_1$GEN[1:selc_perc],</pre>
                                         sel2 = coinc_2$GEN[1:selc_perc],
                                         total = 71)/100
coinc_1.3 <- coincidence_index(sel1 = coinc_1$GEN[1:selc_perc],</pre>
                                         sel2 = coinc_3$GEN[1:selc_perc],
                                         total = 71)/100
coinc_1.4 <- coincidence_index(sel1 = coinc_1$GEN[1:selc_perc],</pre>
                                         sel2 = coinc_4$GEN[1:selc_perc],
                                         total = 71)/100
coinc_1.5 <- coincidence_index(sel1 = coinc_1$GEN[1:selc_perc],</pre>
```

```
sel2 = coinc_5$GEN[1:selc_perc],
                                          total = 71)/100
coinc_2.2 <-1
coinc_2.3 <- coincidence_index(sel1 = coinc_2$GEN[1:selc_perc],</pre>
                                          sel2 = coinc_3$GEN[1:selc_perc],
                                          total = 71)/100
coinc_2.4 <- coincidence_index(sel1 = coinc_2$GEN[1:selc_perc],</pre>
                                          sel2 = coinc_4$GEN[1:selc_perc],
                                          total = 71)/100
coinc_2.5 <- coincidence_index(sel1 = coinc_2$GEN[1:selc_perc],</pre>
                                          sel2 = coinc_5$GEN[1:selc_perc],
                                          total = 71)/100
coinc_3.3<- 1
coinc_3.4 <- coincidence_index(sel1 = coinc_3$GEN[1:selc_perc],</pre>
                                          sel2 = coinc_4$GEN[1:selc_perc],
                                          total = 71)/100
coinc_3.5 <- coincidence_index(sel1 = coinc_3$GEN[1:selc_perc],</pre>
                                          sel2 = coinc_5$GEN[1:selc_perc],
                                          total = 71)/100
coinc 4.4 <- 1
coinc_4.5 <- coincidence_index(sel1 = coinc_4$GEN[1:selc_perc],</pre>
                                          sel2 = coinc_5$GEN[1:selc_perc],
                                          total = 71)/100
coinc 5.5 <- 1
coinc<- c(coinc_1.1,coinc_1.2,coinc_2.2,coinc_1.3,coinc_2.3,</pre>
          coinc_3.3,coinc_1.4, coinc_2.4, coinc_3.4,
          coinc 4.4, coinc 1.5, coinc 2.5,
          coinc_3.5, coinc_4.5,
          coinc_5.5
z=matrix(0,5,5)
z[upper.tri(z) | row(z) == col(z)] \leftarrow coinc
rownames(z)=c(
"HMRPGV",
"RPGV",
'HMGV',
'WAASBY',
'WAASB')
colnames(z)=rownames(z)
plotNB<- ggcorrplot(z, colors = c("#6D9EC1", "gray", "#E46726"),</pre>
           show.legend = T,
legend.title = "CI" ,lab_size=5,tl.srt = 90,type = c("upper"), lab = T,digits = 4,
outline.color = "white", pch.col = "white", tl.col = "blue", show.diag = F) +
 labs(title = "BLUP-based stability indexes coincidence at NB",
           subtitle = "Selection intensity of 20% top genotypes")
print(plotNB)
```


4.3 MET analysis - Red beans

4.3.1 MET analysis - ASReml

Running MET using ASReml - only to comparison of variance components with metan outputs

Df	Sum.of.Sq	Wald.statistic	Pr.Chisq.
numeric	numeric	numeric	numeric
1	457,238,258	3,083.4	0.0
3	5,392,039	36.4	0.0
12	4,238,922	28.6	0.0
	148,291		

```
summ.sr.met.asreml<- data.frame(summary.asreml(mod.met.asreml.sr1)$varcomp)
summ.sr.met.asreml</pre>
```

component	std.error	z.ratiobound	X.ch
numeric	numeric	numericcharacter	numeric
31,775.8	22,260.3	1.4P	0
104,069.5	26,514.2	3.9P	0
148,291.7	13,802.9	10.7P	0

```
#print(summary.asreml(mod.met.asreml.sr1)$bic)
mod.met.asreml.sr<- data.table((mod.met.asreml.sr1$predictions$pvals[1:3]))
names(mod.met.asreml.sr) <- c("name", "yield_BLUPS_MET", "SE")
###</pre>
```

4.3.2 MET analysis - lme4

Running MET using metan R package Olivoto et al. (2019).

#> Method: REML/BLUP

#> Random effects: GEN, GEN:ENV

#> Fixed effects: ENV, REP(ENV)

#> Denominador DF: Satterthwaite's method

P-values for Likelihood Ratio Test of the analyzed traits

model yield COMPLETE NA GEN 6.80e-02 GEN:ENV 9.94e-12

All variables with significant (p < 0.05) genotype-vs-environment interaction

4.3.3 Printing the model outputs

4.3.3.1 Likelihood Ratio Tests The output LRT contains the Likelihood Ratio Tests for genotype and genotype-vs-environment random effects.

```
data_mod_sr_test <- get_model_data(mixed_mod.sr, "lrt")</pre>
```

#> Class of the model: waasb

#> Variable extracted: lrt

 ${\tt data_mod_sr_test}$

VAR	model	npar	logLik	AIC	LRT	Df	Pr(>Chisq)
character	character	integer	numeric	numeric	numeric	numeric	numeric
yield	GEN	18	-2,385.1	4,806.1	3.3	1	0.1
yield	GEN:ENV	18	-2,406.6	4,849.1	46.3	1	0.0

```
#customize the display of numbers and other data in a tibble
# old <- options(pillar.sigfig = 6)
#
# blues_stage.I_SR %>%
# group_by(loc) %>%
# dplyr::summarise(Mean = mean(yield, na.rm = TRUE))
```

```
data_mod_sr_det <- get_model_data(mixed_mod.sr, "details")</pre>
```

4.3.3.2 Detailed parameters

#> Class of the model: waasb

#> Variable extracted: details

data_mod_sr_det

Parameters	yield		
character	character		
Mean	3147.37		
n: 12			

Parameters	yield
character	character
SE	32.29
SD	583.92
CV	18.58
Min	1325.5 (R7 in BA)
Max	4868.28 (R6 in SA)
MinENV	BA (2731.73)
MaxENV	TU (3367.38)
MinGEN	R7 (2761.81)
n: 12	

4.3.3.3 Random effects The output LRT contains the Likelihood Ratio Tests for genotype and genotype-vs-environment random effects.

```
old <- options(pillar.sigfig = 8)

data_mod_sr_var <- get_model_data(mixed_mod.sr, "vcomp")

#> Class of the model: waasb

#> Variable extracted: vcomp

data_mod_sr_var
```

Group	yield
character	numeric
GEN	31,774.8
GEN:ENV	104,069.3
Residual	148,290.9

```
old <- options(pillar.sigfig = 4)
data_mod_sr_comp <- get_model_data(mixed_mod.sr)</pre>
```

4.3.3.4 Variance components and genetic parameters

- #> Class of the model: waasb
- #> Variable extracted: genpar

data_mod_sr_comp

Parameters	yield
character	numeric
Phenotypic variance	284,135.1
Heritability	0.1
GEIr2	0.4
h2mg	0.5
Accuracy	0.7
rge	0.4
CVg	5.7
CVr	12.2
CV ratio	0.5

4.3.4 MET - GGE biplot

Genotype plus Genotype-vs-Environment interaction (GGE). Mega-environment identification in multi-environment trials (MET) according to $(\mathbf{W}?)$. Yan et al. 2007

4.3.4.1 GGE ENV biplot GGE biplot done using:

- sd: each value is divided by the standard deviation of its corresponding environment.
- environment: environment-centered (G+GE)
- environment: singular value is entirely partitioned into the environment eigenvectors, also called column metric preserving

```
size.text.gen = NA,
         leg.lab=c('Env'),
         #title = FALSE
         )
gge_model.sr <- gge(blues_stage.I_SR, loc, name, yield,</pre>
                     centering = "environment", #1
                     scaling = "sd", #2Y
                     svp = "environment")#2)
b <- plot(gge_model.sr, type = 6,</pre>
               size.text.env = 5,
          plot_theme = theme_metan(grid = "both",color.background =

    transparent_color()),
         axis_expand = 1.5,
        # col.alpha.circle = 100,
          col.alpha.circle = 0.8,
         size.text.lab = 13,
        #title = FALSE
        )
  arrange_ggplot(a, b,
                guides = "collect",
  tag_levels = "a",
  tag_prefix = "(",
  tag_suffix = ")")
```


4.3.4.2 Biplot type 3: Which-won-where GGE biplot done using:

- sd: each value is divided by the standard deviation of its corresponding environment.
- environment: environment-centered (G+GE)
- **genotype**: singular value is entirely partitioned into the environment eigenvectors, also called column metric preserving

4.3.5 Mean performance and stability analysis

WAASP index and BLUPs to estimate stability analysis.

```
waasb_model_sr <-
waasb(blues_stage.I_SR,
    env = loc,
    gen = name,
    rep = rep,
    resp = yield,
    random = "gen", #Default
    verbose = TRUE,
    wresp = 60) #weight for response variable 60 and 40 for yielding and stability,
        respectively)</pre>
```

```
#> P-values for Likelihood Ratio Test of the analyzed traits
#>
     model yield
#> COMPLETE
             NA
      GEN 6.80e-02
#>
  GEN:ENV 9.94e-12
#>
#> -----
#> All variables with significant (p < 0.05) genotype-vs-environment interaction
waasb_model<- waasb_model_sr$yield$model</pre>
waasp_plot <- plot_scores(waasb_model_sr, type = 3,</pre>
        title = FALSE,
        size.tex.gen = 4,
        size.tex.env = 4,
        size.tex.lab = 13,
        #highlight = c('R13', "R2"),
       plot_theme = theme_metan(grid = "both",color.background = transparent_color())
      ) +
 geom_mark_rect(aes(filter = Code %in% c("R13", "R11", "R21", "R1"),
                  ),
            label.fontsize = 10,
            show.legend = F,
            con.cap = 0,
            con.colour = "red",
            color = "red",
            expand = 0.01,
            label.buffer = unit(10, "cm"))+
#theme_gray()+
theme(legend.position = c(0.1, 0.9),
     legend.background = element_blank(),
     legend.title = element_blank(),
     aspect.ratio = 1) +
```

labs(x = "GY")
print(waasp_plot)


```
waasb_model_meanV<-mean(waasb_model$WAASB)
waasb_model_meanY<-mean(waasb_model$Y)

selected <- waasb_model %>%
    dplyr::filter(Y >= waasb_model_meanY & WAASB <= waasb_model_meanWaasb)

selected_table <- selected

if (knitr::is_html_output()) {
    print_table(selected_table)
}else{

selected_table[,1:8]
}</pre>
```

Code	Υ	PC1	PC2	PC3	WAASB	PctResp
character	numeric	numeric	numeric	numeric	numeric	numeric
R10	3,213.0	-7.5	-2.3	7.0	5.4	44.1
R13	3,170.3	-0.8	11.6	-0.3	5.1	39.9
R18	3,419.7	1.3	-3.4	14.3	3.7	64.2
R1	3,363.4	-3.2	-2.7	4.2	3.1	58.7
	character R10 R13 R18	character numeric R10 3,213.0 R13 3,170.3 R18 3,419.7	character numeric numeric R10 3,213.0 -7.5 R13 3,170.3 -0.8 R18 3,419.7 1.3	character numeric numeric numeric R10 3,213.0 -7.5 -2.3 R13 3,170.3 -0.8 11.6 R18 3,419.7 1.3 -3.4	character numeric numeric numeric numeric R10 3,213.0 -7.5 -2.3 7.0 R13 3,170.3 -0.8 11.6 -0.3 R18 3,419.7 1.3 -3.4 14.3	character numeric numeric numeric numeric numeric R10 3,213.0 -7.5 -2.3 7.0 5.4 R13 3,170.3 -0.8 11.6 -0.3 5.1 R18 3,419.7 1.3 -3.4 14.3 3.7

type	Code	Y	PC1	PC2	PC3	WAASB	PctResp
character	character	numeric	numeric	numeric	numeric	numeric	numeric
GEN	R2	3,273.6	3.2	6.0	0.9	4.1	50.0
GEN	R21	3,494.5	-3.0	-2.6	5.4	3.1	71.5
GEN	R11	3,200.8	-13.6	-0.6	-7.8	7.6	42.9

#selected\$Code

```
#Create a data frame with BLUPS - selected and non-selected
blups sel <-
  gmd(waasb_model_sr, "blupge") %>%
  add_cols(SELECTED = ifelse(GEN %in% selected$Code, "yes", "no")) %>%
   dplyr::rename(BLUPs_sel = yield) %>%
  droplevels()
blups_sel_mean<-
  gmd(waasb_model_sr, "blupge") %>%
  add_cols(SELECTED = ifelse(GEN %in% selected$Code, "yes", "no")) %>%
  filter(SELECTED == "yes") %>%
  dplyr::summarise(mean_GY = mean(yield,na.rm = TRUE), n = n())
# Create a data frame with the waasb index - selected and non-selected
waasb_sel <-
  gmd(waasb_model_sr, "WAASB") %>%
  add_cols(SELECTED = ifelse(GEN %in% selected$Code, "yes", "no")) %%
 dplyr::rename(WAASB_sel = yield) %>%
  droplevels()
#str(waasb sel)
waasb_sel_mean<-
  gmd(waasb_model_sr, "WAASB") %>%
  add_cols(SELECTED = ifelse(GEN %in% selected$Code, "yes", "no")) %>%
  filter(SELECTED == "yes") %>%
  dplyr::summarise(mean_GY = mean(yield,na.rm = TRUE), n = n())
p1<- plot_selected(blups_sel, GEN, BLUPs_sel, mean_sel = blups_sel_mean$mean_GY) +
 labs(y = "GY")
p3<- plot_selected(waasb_sel, GEN, WAASB_sel, mean_sel = waasb_sel_mean$mean_GY) +
 labs(y = "WAASB index")
arrange_ggplot(p1, p3,
  guides = "collect",
 tag_levels = "a",
 tag_prefix = "(",
 tag_suffix = ")")
```


Mean performance (a) and stability (b) for grain yield (GY) of 24 Small Red beans genotypes. The vertical dashed and solid lines shows, respectively, the mean of the selected genotype and the overall mean for both mean performance and WAASB index

4.3.5.1 Selection differentials Percentage (SD_gain in %) gain from the selected genotypes compared to the general mean.

```
blups_sel2 <-
  gmd(waasb_model_sr, "blupg") %>%
  add_cols(SELECTED = ifelse(GEN %in% selected$Code, "yes", "no")) %>%
    dplyr::rename(BLUPs_sel = yield) %>%
 droplevels()
#> Class of the model: waasb
#> Variable extracted: blupg
blups_sel_mean2<-
  gmd(waasb_model_sr, "blupg") %>%
  add_cols(SELECTED = ifelse(GEN %in% selected$Code, "yes", "no")) %>%
  filter(SELECTED == "yes") %>%
  dplyr::summarise(mean_GY = mean(yield,na.rm = TRUE), n = n())
#> Class of the model: waasb
#> Variable extracted: blupg
SD_blups<- as_tibble((blups_sel_mean2$mean_GY/mean(blups_sel2$BLUPs_sel, na.rm = T))
→ -1)*100
SD_WAASP<- as_tibble((waasb_sel_mean$mean_GY /mean(waasb_sel$WAASB_sel, na.rm = T))
→ -1)*100
SD_comb<- full_join(SD_blups, SD_WAASP, by = "value") %>%
  dplyr::rename(SD_gain = value) %>%
  tibble::add_column(Comp_name = c('BLUPs', 'WAASB')) %>%
  relocate(Comp_name)
SD_comb$n_selected<- blups_sel_mean2$n</pre>
SD_comb
```

Comp_name	SD_gain	n_selected
character	numeric	integer
BLUPs	2.4	7
WAASB	-24.3	7

```
blups_sel2$mean_blup <- mean(blups_sel2$BLUPs_sel, na.rm = T)
waasb_sel$mean_waasb <- mean(waasb_sel$WAASB_sel, na.rm = T)

#str(waasb_sel)
data_comb<- merge(blups_sel2, waasb_sel, by = c("GEN", "SELECTED"))
#names(data_comb)
## SD for each genotype</pre>
```

```
data_sel_perc <- data_comb %>%
  rowwise %>%
  mutate(Perc_blup_gain = ((BLUPs_sel/mean_blup)*100)-100) %>%
  mutate(Perc_WAASB_gain = ((WAASB_sel/mean_waasb)*100)-100) %>%
  as_tibble()

# data_sel_perc_mean <- data_sel_perc %>%
  # dplyr::filter(SELECTED == "yes")

# mean(data_sel_perc_mean$Perc_blup_gain)

if (knitr::is_html_output()) {
  print_table(data_sel_perc)
}else{
  data_sel_perc[,1:7]
}
```

GEN	SELECTED	BLUPs_sel	mean_blup	WAASB_sel	mean_waasb	Perc_blup_gain
character	character	numeric	numeric	numeric	numeric	numeric
R1	yes	3,251.2	3,147.4	3.1	6.1	3.3
R10	yes	3,180.0	3,147.4	5.4	6.1	1.0
R11	yes	3,174.2	3,147.4	7.6	6.1	0.9
R12	no	3,076.7	3,147.4	5.4	6.1	-2.2
R13	yes	3,159.7	3,147.4	5.1	6.1	0.4
R14	no	3,451.4	3,147.4	11.4	6.1	9.7
R15	no	3,069.8	3,147.4	5.4	6.1	-2.5
R16	no	3,068.5	3,147.4	1.5	6.1	-2.5
R17	no	3,113.8	3,147.4	14.6	6.1	-1.1

GEN	SELECTED	BLUPs_sel	WAASB_sel	Perc_blup_gain	Perc_WAASB_gain
character	character	numeric	numeric	numeric	numeric
R1	yes	3,251.2	3.1	3.3	-48.7
R10	yes	3,180.0	5.4	1.0	-11.5
R11	yes	3,174.2	7.6	0.9	26.1
R12	no	3,076.7	5.4	-2.2	-10.4
R13	yes	3,159.7	5.1	0.4	-15.7
R14	no	3,451.4	11.4	9.7	87.5
R15	no	3,069.8	5.4	-2.5	-10.6
R16	no	3,068.5	1.5	-2.5	-74.6
R17	no	3,113.8	14.6	-1.1	141.0

```
##BLUPs indexes
stab_blups_sr<- blup_indexes(waasb_model_sr)
stab_blups_sr<- as_tibble(stab_blups_sr$yield)

data_waasby <- waasb_model_sr$yield$model %>%
    dplyr::filter(type != "ENV") %>%
    dplyr::select("Code", "WAASBY", "OrWAASBY") %>%
    dplyr::rename(GEN = Code)

stab_blups_sr<- stab_blups_sr %>%
    full_join(data_waasby, by = "GEN")

if (knitr::is_html_output()) {
    print_table(stab_blups_sr)
}else{

stab_blups_sr[,1:8]
}
```

GEN	Υ	HMGV	HMGV_R	RPGV	RPGV_Y	RPGV_R	HMRPGV
character	numeric						
R1	3,213.0	3,307.4	5	1.1	3,332.3	5	1.1
R10	2,995.1	3,173.5	8	1.0	3,205.9	8	1.0
n: 21							

Y	HMGV	HMGV_R	RPGV	RPGV_Y	RPGV_R	HMRPGV
numeric	numeric	numeric	numeric	numeric	numeric	numeric
3,170.3	3,181.2	7	1.0	3,211.9	7	1.0
3,419.7	3,005.0	13	1.0	3,027.2	14	1.0
3,019.6	3,155.4	9	1.0	3,179.9	9	1.0
2,761.8	3,681.0	1	1.2	3,723.7	1	1.2
3,082.8	2,990.4	15	1.0	3,012.4	15	1.0
2,903.1	2,987.0	16	1.0	3,005.0	16	1.0
3,363.4	3,005.7	12	1.0	3,095.9	10	1.0
	3,170.3 3,419.7 3,019.6 2,761.8 3,082.8 2,903.1	numeric numeric 3,170.3 3,181.2 3,419.7 3,005.0 3,019.6 3,155.4 2,761.8 3,681.0 3,082.8 2,990.4 2,903.1 2,987.0	numeric numeric numeric 3,170.3 3,181.2 7 3,419.7 3,005.0 13 3,019.6 3,155.4 9 2,761.8 3,681.0 1 3,082.8 2,990.4 15 2,903.1 2,987.0 16	numeric numeric numeric numeric 3,170.3 3,181.2 7 1.0 3,419.7 3,005.0 13 1.0 3,019.6 3,155.4 9 1.0 2,761.8 3,681.0 1 1.2 3,082.8 2,990.4 15 1.0 2,903.1 2,987.0 16 1.0	numeric numeric numeric numeric numeric 3,170.3 3,181.2 7 1.0 3,211.9 3,419.7 3,005.0 13 1.0 3,027.2 3,019.6 3,155.4 9 1.0 3,179.9 2,761.8 3,681.0 1 1.2 3,723.7 3,082.8 2,990.4 15 1.0 3,012.4 2,903.1 2,987.0 16 1.0 3,005.0	numeric numeric numeric numeric numeric numeric 3,170.3 3,181.2 7 1.0 3,211.9 7 3,419.7 3,005.0 13 1.0 3,027.2 14 3,019.6 3,155.4 9 1.0 3,179.9 9 2,761.8 3,681.0 1 1.2 3,723.7 1 3,082.8 2,990.4 15 1.0 3,012.4 15 2,903.1 2,987.0 16 1.0 3,005.0 16

```
# library(openxlsx)
# write.xlsx(stab_blups_sr, "./data/blups_sr_2.xlsx")
```

4.3.5.2 Scenarios of waasby estimation Planning different scenarios of waasby estimation by changing the weights assigned to the stability and the mean performance according to Olivoto et al. (2019).

```
scenarios <- wsmp(waasb_model_sr,progbar = F)

scen1<- plot(scenarios, type = 1) +
    theme(axis.text.y = element_text(size=8))

scen2<-plot(scenarios, type = 2) +
    theme(axis.text.y = element_text(size=8))

arrange_ggplot(scen1, scen2,
    guides = "collect",
    legend.position = "right",
    tag_levels = "a",
    tag_prefix = "(",
    tag_suffix = ")")</pre>
```


 $\#plot_eigen(waasb_model_sr, size.lab = 14, size.tex.lab = 14)$

4.3.5.3 Coincidence index of genotype selection Computes the coincidence index (Hamblin and Zimmermann, 1986) as follows:

$$CI = \frac{A-C}{M-C} \times 100$$

where A is the number of selected genotypes common to different methods; C is the number of expected genotypes selected by chance; and M is the number of genotypes selected according to the selection intensity.

```
sel2 = coinc_4$GEN[1:selc_perc],
                                          total = 21)/100
coinc_1.5 <- coincidence_index(sel1 = coinc_1$GEN[1:selc_perc],</pre>
                                          sel2 = coinc_5$GEN[1:selc_perc],
                                          total = 21)/100
coinc_2.2 <-1
coinc_2.3 <- coincidence_index(sel1 = coinc_2$GEN[1:selc_perc],</pre>
                                          sel2 = coinc_3$GEN[1:selc_perc],
                                          total = 21)/100
coinc_2.4 <- coincidence_index(sel1 = coinc_2$GEN[1:selc_perc],</pre>
                                          sel2 = coinc_4$GEN[1:selc_perc],
                                          total = 21)/100
coinc_2.5 <- coincidence_index(sel1 = coinc_2$GEN[1:selc_perc],</pre>
                                          sel2 = coinc_5$GEN[1:selc_perc],
                                          total = 21)/100
coinc_3.3<- 1
coinc_3.4 <- coincidence_index(sel1 = coinc_3$GEN[1:selc_perc],</pre>
                                          sel2 = coinc_4$GEN[1:selc_perc],
                                          total = 21)/100
coinc_3.5 <- coincidence_index(sel1 = coinc_3$GEN[1:selc_perc],</pre>
                                          sel2 = coinc_5$GEN[1:selc_perc],
                                          total = 21)/100
coinc_4.4 <- 1
coinc 4.5 <- coincidence index(sel1 = coinc 4$GEN[1:selc perc],</pre>
                                         sel2 = coinc_5$GEN[1:selc_perc],
                                          total = 21)/100
coinc_5.5 <- 1
coinc<- c(coinc_1.1,coinc_1.2,coinc_2.2,coinc_1.3,coinc_2.3,</pre>
          coinc_3.3, coinc_1.4, coinc_2.4, coinc_3.4,
          coinc_4.4, coinc_1.5, coinc_2.5,
          coinc_3.5, coinc_4.5,
          coinc_5.5)
z=matrix(0,5,5)
z[upper.tri(z) | row(z) == col(z)] \leftarrow coinc
rownames(z)=c(
"HMRPGV",
"RPGV",
'HMGV',
'WAASBY',
'WAASB')
colnames(z) = rownames(z)
plotSR<- ggcorrplot(z, colors = c("#6D9EC1", "gray", "#E46726"),</pre>
           show.legend = T,
legend.title = "CI" ,lab_size=5,tl.srt = 90,type = c("upper"), lab = T,digits = 4,
outline.color = "white",pch.col = "white", tl.col = "blue",show.diag = F) +
  labs(title = "BLUP-based stability indexes coincidence at SR",
           subtitle = "CSelection intensity of 20% top genotypes")
```

print(plotSR)

5 Appendix E - R codes

5.1 Multi-trait Multi-env analysis

5.2 Descriptive Stats - Multi-trait data

- GY data set: were obtained from the adjusted data in the 2nd-stage mixed models analysis.
- PH, PM, and LD were obtained from the coincident locations (TU, BA and SA) in 2021 only.

5.2.1 Data set

```
data_beans_compl = read.csv("data/data_beans_Multi-trait.csv",h=T, stringsAsFactors = T)
data_beans_compl<- data_beans_compl[,-c(1:2)]
colnames(data_beans_compl)<- c('name', 'loc', 'mkt', 'rep', 'GY', 'DM', 'PH', "LD")
#str(data_beans_compl)

# Data adjustment
# All the effect columns must be as a factor to run in ASReml-r.
cols <- c("rep", "name", "loc", "mkt")
data_beans_compl[cols] <- lapply(data_beans_compl[cols], factor)</pre>
```

```
data_beans_compl <- data.table(data_beans_compl)
data_beans_compl</pre>
```

name	loc	mkt	rep	GY	DM	PH	LD
factor	factor	factor	factor	numeric	numeric	numeric	numeric
B1	ВА	ВВ	1	2,481.7	89	16	1
B1	ВА	ВВ	2	3,279.0	90	18	1
B1	ВА	ВВ	3	2,479.2	90	14	1
B1	ВА	ВВ	4	1,911.4	89	15	1
B2	ВА	ВВ	1	3,159.8	90	20	2
B2	ВА	ВВ	2	3,424.3	89	19	1
B2	ВА	ВВ	3	2,655.0	91	15	2
B2	ВА	ВВ	4	2,923.2	92	18	2
B4	BA	BB	1	2,565.5			

n: 1056

Number of genotype per market class:

```
data_beans_compl_count<- data_beans_compl%>%
  means_by(name, mkt, na.rm = TRUE)%>%
  group_by(mkt) %>%
  dplyr::summarise(n = n())

data_beans_compl_count
```

mkt	n
factor	integer
BB	37
NB	37
SR	14

5.2.2 Box plot distribuation

```
## Data visualization
```

```
#print(c)
a<- ggplot(data=data_beans_compl, aes(x=reorder(loc, -DM), y=DM, fill=loc)) +
  geom_boxplot()+
  facet_grid("mkt")+
 theme_bw()+
  theme(axis.text.x=element_text(angle = 90),
        strip.text=element text(face="bold"), legend.position = "none")+
  labs(title="Days to Plant DM in days (DPM)",
       caption=NULL, x=NULL, y=NULL)
#print(a)
b<- ggplot(data=data_beans_compl, aes(x=reorder(loc, -PH), y=PH, fill=loc)) +
 geom_boxplot()+
 facet_grid("mkt")+
  theme_bw()+
  theme(axis.text.x=element_text(angle = 90),
        strip.text=element_text(face="bold"), legend.position = "none")+
  labs(title="Plant PH in cm (PH)",
       caption=NULL, x=NULL, y=NULL)
d<- ggplot(data=data_beans_compl, aes(x=reorder(loc, -LD), y=LD , fill=loc)) +
  geom_boxplot()+
  facet_grid("mkt")+
  theme bw()+
  theme(axis.text.x=element_text(angle = 90),
        strip.text=element_text(face="bold"), legend.position = "none")+
  labs(title="Lodging ratings (LD)",
       caption=NULL, x=NULL, y=NULL)
c<- ggplot(data=data_beans_compl, aes(x=reorder(loc, -GY), y=GY , fill=loc)) +
  geom_boxplot()+
  facet_grid("mkt")+
  theme_bw()+
  theme(axis.text.x=element_text(angle = 90),
        strip.text=element_text(face="bold"), legend.position = "none")+
  labs(title="Grain yield (GY)",
       caption=NULL, x=NULL, y=NULL)
#print(a)
arrange_ggplot(c,a,b,d)
```


Box Plot for grain yield (GY), date of maturity (DM), Plant height (PH), and Lodging (LD) across environment

5.2.3 Scatter plot distribuation GY

Scatterplot matrix of trials for grain yield (GY). The diagonal shows the distribution and the bottom left shows the scatter points for DM in each location.

5.2.4 Scatter plot distribuation DM

Scatterplot matrix of trials for days of maturity (DM). The diagonal shows the distribution and the bottom left shows the scatter points for DM in each location.

5.2.5 Scatter plot distribuation PH

Scatterplot matrix of trials for plant height (PH). The diagonal shows the distribution and the bottom left shows the scatter points for PH in each location.

5.2.6 Scatter plot distribuation LD

Scatterplot matrix of trials for lodging (LD). The diagonal shows the distribution and the bottom left shows the scatter points for LD in each location.

5.2.7 Missing values

```
#str(data_beans_compl)
gg_miss_fct(data_beans_compl,fct = mkt)+ggtitle("Missing values (NA)") +
    theme(axis.text.x=element_text(face="bold", size = 12),
        axis.text.y = element_text(face = "bold",size = 12) ,
        title = element_text(face = "bold",size = 14))
```


Missing genotypes by market classes

5.2.8 Linear phenotypic correlation

Pearson's linear correlation between the studied traits. The lower diagonal shows the scatter plot where the environments are mapped with different point colors (BA = green, SA = salmon, TU = cyan)

5.3 Multi-trait stability index and selection gains

- For this study, the goal to response variables GY, DM, PH and LD are:
 - GY: higher (increase)
 - DM: smaller (decrease)
 - PH: higher (increase)
 - LD: smaller (decrease)
- The weights for the response variable are:
 - GY: 60 (60 yielding and 40 stability)
 - DM: 40 (40 maturity and 60 stability)
 - PH: 40 (40 height and 60 stability)
 - LD: 40 (40 lodging and 60 stability)
- Selection intensity (SI) of 20%

5.4 Black beans

```
data_beans_BB <- droplevels(subset(data_beans_compl, mkt == "BB"))
data_beans_BB <- droplevels(na.omit(data_beans_BB))
#str(data_beans_BB)</pre>
```

5.4.1 Multi-trait index selection

```
waasb_model_bb.1 <- waasb(data_beans_BB,</pre>
        env = loc,
        gen = name,
        rep = rep,
        resp = everything(),
        random = "gen", #Default
        verbose = F,
        wresp = c(60, 40, 40, 40),
        mresp = c("h,l,h,l") ) #'GY', 'DM', 'PH', LD
          #weight for response variable 60 and 40 for yielding and stability,
           → respectively)
options(digits = 3)
mtsi1 = mtsi(waasb_model_bb.1, index = "waasby", SI = 20, mineval = 1, verbose = F)
Sel_waasb <- sel_gen(mtsi1)</pre>
mtsi1_resul<- mtsi1$sel_dif_trait</pre>
if (knitr::is_html_output()) {
 print_table(mtsi1_resul[,1:6])
}else{
mtsi1_resul[,1:6]
```

VAR	Factor	Xo	Xs	SD	SDperc
character	character	numeric	numeric	numeric	numeric
GY	FA 1	3,200.6	3,258.5	57.9	1.8
LD	FA 1	1.7	1.6	-0.1	-5.6
DM	FA 2	91.8	91.9	0.1	0.1
PH	FA 2	18.1	18.3	0.2	1.1

5.4.2 Model outputs

```
plot(waasb_model_bb.1,
type = "vcomp", # Chose the type of plot.
width.bar = 1, # No spaces between the bars
size.line = 0.3) + # Controls the size of the line
geom_hline(yintercept = 0.5, linetype = 2) # Add the dashed line
```

5.4.2.1 Variance plot

get_model_data(waasb_model_bb.1, "lrt")

5.4.2.2 Likelihood-ratio test

#> Class of the model: waasb

#> Variable extracted: lrt

VAR	model	npar	logLik	AIC	LRT	Df	Pr(>Chisq)
character	character	integer	numeric	numeric	numeric	numeric	numeric
GY	GEN	14	-2,333.5	4,695.1	25.1	1	0.0
GY	GEN:ENV	14	-2,322.9	4,673.9	4.0	1	0.0
DM	GEN	14	-720.5	1,469.0	30.2	1	0.0
DM	GEN:ENV	14	-710.2	1,448.5	9.7	1	0.0
PH	GEN	14	-733.1	1,494.3	6.1	1	0.0
PH	GEN:ENV	14	-730.3	1,488.5	0.4	1	0.5
LD	GEN	14	-289.8	607.5	12.3	1	0.0
LD	GEN:ENV	14	-284.3	596.6	1.3	1	0.2

VAR	model	npar	logLik	AIC	LRT	Df	Pr(>Chisq)
character	character	integer	numeric	numeric	numeric	numeric	numeric

get_model_data(waasb_model_bb.1, "vcomp")

5.4.2.3 Variance components

#> Class of the model: waasb

#> Variable extracted: vcomp

Group	GY	DM	PH	LD
character	numeric	numeric	numeric	numeric
GEN	68,571.6	2.9	0.6	0.1
GEN:ENV	17,115.1	0.8	0.2	0.0
Residual	128,582.1	3.6	5.2	0.3

get_model_data(waasb_model_bb.1, "genpar")

5.4.2.4 Genetic parameters

#> Class of the model: waasb

#> Variable extracted: genpar

Parameters	GY	DM	PH	LD
character	numeric	numeric	numeric	numeric
Phenotypic variance	214,268.9	7.2	6.0	0.4
Heritability	0.3	0.4	0.1	0.2
GEIr2	0.1	0.1	0.0	0.1
h2mg	0.8	0.8	0.6	0.7
Accuracy	0.9	0.9	0.7	0.8
rge	0.1	0.2	0.0	0.1
CVg	8.2	1.8	4.4	14.5

Parameters	GY	DM	PH	LD
character	numeric	numeric	numeric	numeric
CVr	11.2	2.1	12.5	30.3
CV ratio	0.7	0.9	0.3	0.5

get_model_data(waasb_model_bb.1, "details")

5.4.2.5 Models details

#> Class of the model: waasb

#> Variable extracted: details

Parameters	GY	DM	PH	LD
character	character	character	character	character
Mean	3199.25	91.77	18.14	1.73
SE	30.37	0.19	0.15	0.04
SD	544.12	3.32	2.67	0.67
CV	17.03	3.63	14.75	38.72
Min	1601.88 (B43 in BA)	84 (B22 in BA)	10 (B27 in BA)	1 (B1 in BA)
Max	4524.05 (B26 in BA)	101.5 (B61 in TU)	28 (B40 in SA)	4 (B25 in SA)
MinENV	BA (2828.83)	BA (89.91)	BA (16.86)	BA (1.32)
MaxENV	TU (3405.26)	TU (94.44)	TU (19.13)	SA (1.96)
MinGEN	B45 (2570.2)	B45 (87.33)	B60 (16.85)	B14 (1.25)
n: 14				

get_model_data(waasb_model_bb.1, "fixed")

5.4.2.6 Fixed effects

#> Class of the model: waasb

#> Variable extracted: fixed

VAR	SOURCE	Sum Sq	Mean Sq	NumDF	DenDF	F value	Pr(>F)
character	character	numeric	numeric	integer	numeric	numeric	numeric
GY	ENV	3,275,190.1	1,637,595.1	2	243.1	12.7	0.0
GY	ENV:REP	6,661,855.0	740,206.1	9	229.8	5.8	0.0
DM	ENV	303.7	151.9	2	221.8	42.4	0.0
DM	ENV:REP	110.2	12.2	9	232.4	3.4	0.0
PH	ENV	47.2	23.6	2	267.7	4.6	0.0
PH	ENV:REP	152.1	16.9	9	233.3	3.3	0.0
LD	ENV	7.1	3.6	2	260.5	13.0	0.0
LD	ENV:REP	6.1	0.7	9	233.1	2.5	0.0

```
get_model_data(waasb_model_bb.1, "blupge") %>%
means_by(ENV)
```

5.4.2.7 Environment means

#> Class of the model: waasb

#> Variable extracted: blupge

ENV	GY	DM	PH	LD
factor	numeric	numeric	numeric	numeric
BA	2,835.2	89.9	16.9	1.3
SA	3,362.1	91.0	18.4	2.0
TU	3,401.9	94.4	19.1	1.9

5.4.3 Selection Description

5.4.3.1 Genotype ranking

• Varieties ranking based on the multi-trait stability index. Selected varieties are highlighted in red.

```
# Get the random effects
#get_model_data(waasb_model_bb.1, what = "ranef")

mtsi1_value<- mtsi1$MTSI

#plot(mtsi1,arrange.label = TRUE)</pre>
```


Cultivars ranking based on the multi-trait stability index. Selected cultivars are highlighted in red.

```
Sel_waasb
```

```
#> [1] "B68" "B1" "B40" "B21" "B39"
```

```
p1<- plot_selected(blups_sel, GEN, GY, blups_sel_mean_GY$mean_GY)
p2<- plot_selected(waasb_sel, GEN, GY, waasb_sel_mean_GY$mean_GY) + labs(y = "WAASB
        index")

arrange_ggplot(p1, p2,
        guides = "collect",
        tag_levels = "a",</pre>
```

```
tag_prefix = "(",
tag_suffix = ")")
```


Mean performance (a) and stability (b) for grain yield (GY) of 27 black beans genotypes. The vertical dashed and solid lines shows, respectively, the mean of the selected genotype and the overall mean for both mean performance and WAASB index

5.4.3.2 Mean performance and stability for GY

Mean performance (a) and stability (b) for days of maturity (DM) of 27 black beans genotypes. The vertical dashed and solid lines shows, respectively, the mean of the selected genotype and the overall mean for both mean performance and WAASB index

5.4.3.3 Mean performance and stability for DM

Mean performance (a) and stability (b) for plant height (PH) of 27 black beans genotypes. The vertical dashed and solid lines shows, respectively, the mean of the selected genotype and the overall mean for both mean performance and WAASB index

5.4.3.4 Mean performance and stability for PH

Mean performance (a) and stability (b) for lodging (LD) of 27 black beans genotypes. The vertical dashed and solid lines shows, respectively, the mean of the selected genotype and the overall mean for both mean performance and WAASB index

5.4.3.5 Mean performance and stability for LD

5.5 Navy beans

```
data_beans_NB <- droplevels(subset(data_beans_compl, mkt == "NB"))
data_beans_NB <- droplevels(na.omit(data_beans_NB))
#str(data_beans_NB)</pre>
```

5.5.1 Multi-trait index selection

```
waasb_model_nb.1 <- waasb(data_beans_NB,
        env = loc,
        gen = name,
        rep = rep,
        resp = everything(),
        random = "gen", #Default
        verbose = F,
        wresp = c(60, 40, 40, 40),</pre>
```

VAR	Factor	Xo	Xs	SD	SDperc
character	character	numeric	numeric	numeric	numeric
GY	FA 1	3,006.1	3,145.0	138.9	4.6
DM	FA 1	91.3	91.5	0.3	0.3
PH	FA 1	18.3	19.7	1.4	7.4
LD	FA 1	1.9	1.7	-0.2	-11.9

5.5.2 Model outputs

```
plot(waasb_model_nb.1,
type = "vcomp", # Chose the type of plot.
width.bar = 1, # No spaces between the bars
size.line = 0.3) + # Controls the size of the line
geom_hline(yintercept = 0.5, linetype = 2) # Add the dashed line
```

5.5.2.1 Variance plot

get_model_data(waasb_model_nb.1, "lrt")

5.5.2.2 Likelihood-ratio test

#> Class of the model: waasb

#> Variable extracted: 1rt

VAR	model	npar	logLik	AIC	LRT	Df	Pr(>Chisq)
character	character	integer	numeric	numeric	numeric	numeric	numeric
GY	GEN	14	-2,501.2	5,030.4	17.9	1	0.0
GY	GEN:ENV	14	-2,496.2	5,020.3	7.8	1	0.0
DM	GEN	14	-763.5	1,555.0	25.4	1	0.0
DM	GEN:ENV	14	-754.4	1,536.8	7.2	1	0.0
PH	GEN	14	-803.6	1,635.2	12.1	1	0.0
PH	GEN:ENV	14	-800.6	1,629.3	6.1	1	0.0
LD	GEN	14	-335.4	698.9	36.0	1	0.0
LD	GEN:ENV	14	-319.7	667.4	4.5	1	0.0

get_model_data(waasb_model_nb.1, "vcomp")

5.5.2.3 Variance components

#> Class of the model: waasb

#> Variable extracted: vcomp

Group	GY	DM	PH	LD
character	numeric	numeric	numeric	numeric
GEN	50,195.5	2.0	1.4	0.2
GEN:ENV	22,779.4	0.6	0.8	0.0
Residual	122,206.2	3.6	4.9	0.3

get_model_data(waasb_model_nb.1, "genpar")

5.5.2.4 Genetic parameters

#> Class of the model: waasb

#> Variable extracted: genpar

Parameters	GY	DM	РН	LD
character	numeric	numeric	numeric	numeric
Phenotypic variance	195,181.1	6.2	7.1	0.5
Heritability	0.3	0.3	0.2	0.4
GEIr2	0.1	0.1	0.1	0.1
h2mg	0.7	0.8	0.7	0.9
Accuracy	0.9	0.9	0.8	0.9
rge	0.2	0.2	0.1	0.1
CVg	7.4	1.5	6.3	23.6
CVr	11.6	2.1	12.1	27.6
CV ratio	0.6	0.7	0.5	0.9

get_model_data(waasb_model_nb.1, "details")

5.5.2.5 Models details

#> Class of the model: waasb

#> Variable extracted: details

Parameters	GY	DM	PH	LD
character	character	character	character	character
Mean	3009.36	91.28	18.37	1.87
SE	26.04	0.16	0.15	0.04
SD	483.58	3.02	2.84	0.77
CV	16.09	3.31	15.46	41.04
Min	1618.91 (N35 in BA)	85 (N15 in BA)	10 (N38 in SA)	1 (N3 in BA)
Max	4313.9 (N36 in SA)	100 (N57 in SA)	29 (N23 in SA)	4 (N47 in BA)
MinENV	BA (2737.08)	SA (89.57)	BA (17.05)	BA (1.46)
MaxENV	TU (3195.31)	TU (93.57)	TU (19.57)	SA (2.19)
MinGEN	N15 (2272.31)	N15 (87.82)	N15 (15.27)	N15 (1)
n: 14				

get_model_data(waasb_model_nb.1, "fixed")

5.5.2.6 Fixed effects

#> Class of the model: waasb

#> Variable extracted: fixed

VAR	SOURCE	Sum Sq	Mean Sq	NumDF	DenDF	F value	Pr(>F)
character	character	numeric	numeric	integer	numeric	numeric	numeric
GY	ENV	2,987,371.0	1,493,685.5	2	247.7	12.2	0.0
GY	ENV:REP	2,887,992.3	320,888.0	9	250.1	2.6	0.0
DM	ENV	240.1	120.0	2	251.3	33.7	0.0

VAR	SOURCE	Sum Sq	Mean Sq	NumDF	DenDF	F value	Pr(>F)
character	character	numeric	numeric	integer	numeric	numeric	numeric
DM	ENV:REP	114.4	12.7	9	250.3	3.6	0.0
PH	ENV	82.4	41.2	2	254.2	8.3	0.0
PH	ENV:REP	66.4	7.4	9	247.6	1.5	0.2
LD	ENV	4.7	2.4	2	262.2	8.9	0.0
LD	ENV:REP	8.3	0.9	9	249.5	3.5	0.0

```
get_model_data(waasb_model_nb.1, "blupge") %>%
  means_by(ENV)
```

5.5.2.7 Environment means

#> Class of the model: waasb

#> Variable extracted: blupge

ENV	GY	DM	PH	LD
factor	numeric	numeric	numeric	numeric
BA	2,732.0	90.6	17.0	1.5
SA	3,094.1	89.6	18.5	2.2
TU	3,195.3	93.6	19.6	2.0

5.5.3 Selection Description

5.5.3.1 Genotype ranking

• Varieties ranking based on the multi-trait stability index. Selected varieties are highlighted in red.

```
# Get the random effects
#get_model_data(waasb_model_nb.1, what = "ranef")

mtsi1_value<- mtsi1$MTSI

#plot(mtsi1, arrange.label = TRUE)

p2 = plot(mtsi1, SI = 20, radar = FALSE) +
    coord_flip() +
    theme_bw() +
    labs(x = "Genotypes", y = "multi-trait stability index") +
    theme(legend.position = c(0.2, 0.9),</pre>
```

```
legend.background = element_blank(),
    legend.key = element_blank(),
    legend.title = element_blank())
print(p2)
```


Cultivars ranking based on the multi-trait stability index. Selected cultivars are highlighted in red.

Sel_waasb

```
#> [1] "N41" "N7" "N69" "N37" "N60" "N24"
```


Mean performance (a) and stability (b) for grain yield (GY) of 29 navy beans genotypes. The vertical dashed and solid lines shows, respectively, the mean of the selected genotype and the overall mean for both mean performance and WAASB index

5.5.3.2 Mean performance and stability for GY

Mean performance (a) and stability (b) for days of maturity (DM) of 29 navy beans genotypes. The vertical dashed and solid lines shows, respectively, the mean of the selected genotype and the overall mean for both mean performance and WAASB index

5.5.3.3 Mean performance and stability for DM

Mean performance (a) and stability (b) for plant height (PH) of 29 navy beans genotypes. The vertical dashed and solid lines shows, respectively, the mean of the selected genotype and the overall mean for both mean performance and WAASB index

5.5.3.4 Mean performance and stability for PH

Mean performance (a) and stability (b) for lodging (LD) of 29 navy beans genotypes. The vertical dashed and solid lines shows, respectively, the mean of the selected genotype and the overall mean for both mean performance and WAASB index

5.5.3.5 Mean performance and stability for LD

5.6 Red beans

```
data_beans_SR <- droplevels(subset(data_beans_compl, mkt == "SR"))
data_beans_SR<- droplevels(na.omit(data_beans_SR))
#str(data_beans_SR)</pre>
```

5.6.1 Multi-trait index selection

VAR	Factor	Xo	Xs	SD	SDperc
character	character	numeric	numeric	numeric	numeric
PH	FA 1	18.3	20.1	1.8	10.0
LD	FA 1	1.9	1.9	0.0	2.1
GY	FA 2	3,155.9	3,161.8	5.9	0.2
DM	FA 2	90.8	90.9	0.0	0.0

```
#print_table(mtsi1_resul[,1:6])
```

5.6.2 Model outputs

```
plot(waasb_model_sr.1,
type = "vcomp", # Chose the type of plot.
width.bar = 1, # No spaces between the bars
size.line = 0.3) + # Controls the size of the line
geom_hline(yintercept = 0.5, linetype = 2) # Add the dashed line
```

5.6.2.1 Variance plot

get_model_data(waasb_model_sr.1, "lrt")

5.6.2.2 Likelihood-ratio test

#> Class of the model: waasb

#> Variable extracted: 1rt

VAR	model	npar	logLik	AIC	LRT	Df	Pr(>Chisq)
character	character	integer	numeric	numeric	numeric	numeric	numeric
GY	GEN	14	-1,005.1	2,038.1	-0.0	1	1.0
GY	GEN:ENV	14	-1,011.2	2,050.3	12.2	1	0.0
DM	GEN	14	-302.1	632.2	2.3	1	0.1
DM	GEN:ENV	14	-302.3	632.5	2.6	1	0.1
PH	GEN	14	-323.0	674.0	8.1	1	0.0
PH	GEN:ENV	14	-319.1	666.2	0.4	1	0.5
LD	GEN	14	-147.4	322.7	13.0	1	0.0
LD	GEN:ENV	14	-141.3	310.5	0.8	1	0.4

get_model_data(waasb_model_sr.1, "vcomp")

5.6.2.3 Variance components

#> Class of the model: waasb

#> Variable extracted: vcomp

Group	GY	DM	PH	LD
character	numeric	numeric	numeric	numeric
GEN	0.0	0.6	1.7	0.2
GEN:ENV	75,950.2	0.6	0.3	0.0
Residual	165,821.6	3.8	5.1	0.3

get_model_data(waasb_model_sr.1, "genpar")

5.6.2.4 Genetic parameters

#> Class of the model: waasb

#> Variable extracted: genpar

Parameters	GY	DM	PH	LD
character	numeric	numeric	numeric	numeric
Phenotypic variance	241,771.8	5.1	7.1	0.5
Heritability	0.0	0.1	0.2	0.3
GEIr2	0.3	0.1	0.0	0.0
h2mg	0.0	0.5	0.8	0.8
Accuracy	0.0	0.7	0.9	0.9
rge	0.3	0.1	0.1	0.1
CVg	0.0	0.9	7.1	22.9
CVr	12.9	2.1	12.4	30.2
CV ratio	0.0	0.4	0.6	0.8

get_model_data(waasb_model_sr.1, "details")

5.6.2.5 Models details

#> Class of the model: waasb

#> Variable extracted: details

Parameters	GY	DM	PH	LD
character	character	character	character	character
Mean	3157.34	90.86	18.23	1.87
SE	53.6	0.25	0.24	0.07
SD	638.78	2.95	2.8	0.85
CV	20.3	3.26	15.42	45.39
Min	1643.85 (R10 in BA)	85 (R5 in BA)	10 (R5 in SA)	1 (R2 in BA)
Max	4876.34 (R10 in TU)	97 (R9 in TU)	23.59 (R12 in TU)	4.5 (R16 in TU)
MinENV	BA (2579)	BA (89.17)	BA (17.45)	BA (1.36)
MaxENV	TU (3546.13)	TU (93.51)	TU (19.59)	TU (2.24)
MinGEN	R15 (2875.55)	R13 (88.92)	R16 (15.71)	R12 (1.33)
n: 14				

get_model_data(waasb_model_sr.1, "fixed")

5.6.2.6 Fixed effects

#> Class of the model: waasb

#> Variable extracted: fixed

VAR	SOURCE	Sum Sq	Mean Sq	NumDF	DenDF	F value	Pr(>F)
character	character	numeric	numeric	integer	numeric	numeric	numeric
GY	ENV	3,444,789.9	1,722,394.9	2	101.3	10.4	0.0
GY	ENV:REP	2,181,509.9	242,390.0	9	98.2	1.5	0.2
DM	ENV	174.4	87.2	2	99.8	22.9	0.0

VAR	SOURCE	Sum Sq	Mean Sq	NumDF	DenDF	F value	Pr(>F)
character	character	numeric	numeric	integer	numeric	numeric	numeric
DM	ENV:REP	68.4	7.6	9	98.5	2.0	0.0
PH	ENV	26.0	13.0	2	111.3	2.5	0.1
PH	ENV:REP	61.0	6.8	9	97.9	1.3	0.2
LD	ENV	2.5	1.2	2	108.6	3.9	0.0
LD	ENV:REP	13.4	1.5	9	98.4	4.6	0.0

```
get_model_data(waasb_model_sr.1, "blupge") %>%
  means_by(ENV)
```

5.6.2.7 Environment means

#> Class of the model: waasb

#> Variable extracted: blupge

ENV	GY	DM	PH	LD
factor	numeric	numeric	numeric	numeric
BA	2,583.6	89.2	17.5	1.4
SA	3,334.8	89.9	17.6	2.0
TU	3,546.1	93.5	19.6	2.2

5.6.3 Selection Description

5.6.3.1 Genotype ranking

• Varieties ranking based on the multi-trait stability index. Selected varieties are highlighted in red.

```
# Get the random effects
#get_model_data(waasb_model_sr.1, what = "ranef")

mtsi1_value<- mtsi1$MTSI

#plot(mtsi1, arrange.label = TRUE)

p2 = plot(mtsi1, SI = 20, radar = FALSE) +
    coord_flip() +
    theme_bw() +
    labs(x = "Genotypes", y = "multi-trait stability index") +
    theme(legend.position = c(0.2, 0.9),</pre>
```

```
legend.background = element_blank(),
    legend.key = element_blank(),
    legend.title = element_blank())
print(p2)
```


Cultivars ranking based on the multi-trait stability index. Selected cultivars are highlighted in red.

Sel_waasb

#> [1] "R19" "R2"

```
p1<- plot_selected(blups_sel, GEN, GY, blups_sel_mean_GY$mean_GY)
p2<- plot_selected(waasb_sel, GEN, GY, waasb_sel_mean_GY$mean_GY) + labs(y = "WAASB index")

arrange_ggplot(p1, p2,
guides = "collect",
tag_levels = "a",
tag_prefix = "(",
tag_suffix = ")")</pre>
```


Mean performance (a) and stability (b) for grain yield (GY) of 12 red bens genotypes. The vertical dashed and solid lines shows, respectively, the mean of the selected genotype and the overall mean for both mean performance and WAASB index

5.6.3.2 Mean performance and stability for GY

Mean performance (a) and stability (b) for days of maturity (DM) of 12 red beans genotypes. The vertical dashed and solid lines shows, respectively, the mean of the selected genotype and the overall mean for both mean performance and WAASB index

5.6.3.3 Mean performance and stability for DM

```
p1<- plot_selected(blups_sel, GEN, PH, blups_sel_mean_PH$mean_PH)
p2<- plot_selected(waasb_sel, GEN, PH, waasb_sel_mean_PH$mean_PH) + labs(y = "WAASB
index")

arrange_ggplot(p1, p2,
guides = "collect",
tag_levels = "a",
tag_prefix = "(",
tag_suffix = ")")
```


Mean performance (a) and stability (b) for plant height (PH) of 12 red beans genotypes. The vertical dashed and solid lines shows, respectively, the mean of the selected genotype and the overall mean for both mean performance and WAASB index

5.6.3.4 Mean performance and stability for PH

Mean performance (a) and stability (b) for lodging (LD) of 12 red beans genotypes. The vertical dashed and solid lines shows, respectively, the mean of the selected genotype and the overall mean for both mean performance and WAASB index

5.6.3.5 Mean performance and stability for LD

5.7 MTME mixed model

5.7.1 Black beans

```
data_beans_BB.sc<- rbind(data_beans_BB.sc.BA,data_beans_BB.sc.SA, data_beans_BB.sc.TU)
#dim(data_beans_BB)
#dim(data_beans_BB.sc)
data_beans_BB<- cbind(data_beans_BB, data_beans_BB.sc)</pre>
\#str(data\_beans\_BB)
#dim(data_beans_BB)
mod MTME.bb <- asreml(fixed = cbind(GY, DM, PH, LD) ~ trait:rep + trait, # trait:rep -1,
                    random = ~ us(trait):name + us(trait):name:loc, #name:us(loc)
                     \#residuals = \neg dsum(\neg us(name)/loc),
                    residuals = ~ units:us(trait),
                    data = data_beans_BB,
                    trace = F,
                    maxit = 10000.
                     predict = predict.asreml(classify = "name:loc:trait") )
#update.asreml(mod_MTME.bb)
d1<- data.frame(wald(mod_MTME.bb))</pre>
d2<- data.frame(summary.asreml(mod_MTME.bb)$varcomp)</pre>
# results as data.table
blup.mtme.bb<- data.table((mod MTME.bb$predictions$pvals[1:6])) # set the BLUP
# d1
#
               Df Sum. of. Sq Wald. statistic Pr. Chisq.
                                  0.323 9.88e-01
# trait
               4
                    0.323
# trait:rep
               12
                    55.248
                                   55.248 1.63e-07
# residual (MS) NA
                  1.000
                                       NA
                                                NA
# d.2.
                           component std.error z.ratio bound X.ch
# trait:name!trait_GY:GY
                             0.25787 0.0798 3.2327 P 0.0
                            0.11359 0.0692 1.6409
                                                        P 0.0
# trait:name!trait DM:GY
                            0.36827 0.1091 3.3752
                                                         P 0.0
# trait:name!trait DM:DM
# trait:name!trait PH:GY
                             0.08661 0.0496 1.7466
                                                         P 0.0
                            0.09752 0.0570 1.7104
                                                         P 0.0
# trait:name!trait PH:DM
# trait:name!trait PH:PH
                            0.11734 0.0545 2.1547
                                                         P 0.0
                            P 0.0
# trait:name!trait_LD:GY
# trait:name!trait_LD:DM
                             0.05215 0.0652 0.7996
                                                          P 0.0
# trait:name!trait_LD:PH
                            0.01736 0.0451 0.3845
                                                         P 0.0
# trait:name!trait_LD:LD
                           0.15495
                                        0.0707 2.1911
                                                         P 0.0
# trait:name:loc!trait_GY:GY 0.07426
                                                         B 0.0
                                           NA
                                                   NA
# trait:name:loc!trait_DM:GY -0.00742
                                           NA
                                                   NA
                                                         B 0.0
# trait:name:loc!trait_DM:DM
                            0.07241
                                           NA
                                                   NA
                                                         B 0.0
# trait:name:loc!trait_PH:GY -0.01275
                                                          B 0.0
                                                   NA
```

```
# trait:name:loc!trait PH:DM 0.00149
                                                       B 0.0
# trait:name:loc!trait_PH:PH
                          0.06344
                                         NA
                                                 NA
                                                       B 0.0
# trait:name:loc!trait LD:GY 0.04234
                                         NA
                                                 NA
                                                       B 0.0
# trait:name:loc!trait_LD:DM -0.00585
                                                      B 0.0
                                         NA
                                                 NA
# trait:name:loc!trait LD:PH -0.01030
                                         NA
                                                 NA
                                                       B 0.0
# trait:name:loc!trait_LD:LD 0.09790
                                                 NA
                                                      B 0.0
                                         NA
                                                      F 0.0
# units:trait!R
                           1.00000
                                         NA
                                                 NA
# units:trait!trait GY:GY
                           0.66440
                                      0.0488 13.6191
                                                      P 0.0
# units:trait!trait DM:GY
                           0.09813 0.0354 2.7707
                                                      P 0.0
# units:trait!trait DM:DM
                          0.53533 0.0443 12.0755
                                                      P 0.0
# units:trait!trait PH:GY
                          0.14825 0.0430 3.4472
                                                      P 0.0
                          0.02495
                                      0.0380 0.6564
                                                      P 0.0
# units:trait!trait PH:DM
# units:trait!trait PH:PH
                          0.80001 0.0651 12.2932
                                                      P 0.0
# units:trait!trait_LD:GY
                          0.04123
                                      0.0465 0.8857
                                                      P 0.0
                            0.11857
                                      0.0416 2.8483
# units:trait!trait_LD:DM
                                                      P 0.0
                                                       P 0.2
# units:trait!trait_LD:PH
                            0.00104
                                      0.0485 0.0214
# units:trait!trait_LD:LD
                                      0.0686 11.5024
                                                       P 0.0
                            0.78932
```

5.7.2 Navy beans

```
data_beans_NB <- droplevels(data_beans_compl[which(data_beans_compl$mkt=="NB")])</pre>
#data_beans_NB <- na.omit(data_beans_NB)</pre>
#str(data beans NB)
#TU
data_beans_NB.sc.TU <- droplevels(subset(data_beans_NB, loc="TU"))</pre>
data_beans_NB.sc.TU <-scale(data_beans_NB.sc.TU[,5:8])
#dim(data_beans_NB.sc.TU)
data_beans_NB.sc.BA <- droplevels(subset(data_beans_NB, loc=="BA"))</pre>
data_beans_NB.sc.BA <-scale(data_beans_NB.sc.BA[,5:8])</pre>
data_beans_NB.sc.SA <- droplevels(subset(data_beans_NB, loc=="SA"))</pre>
data_beans_NB.sc.SA <-scale(data_beans_NB.sc.SA[,5:8])</pre>
#data beans NB.sc<- scale(data beans NB[,5:6])
data_beans_NB<- data_beans_NB %>%
  dplyr::select(name, loc, mkt,rep)
data_beans_NB.sc<- rbind(data_beans_NB.sc.BA,data_beans_NB.sc.SA, data_beans_NB.sc.TU)
#dim(data_beans_NB)
#dim(data_beans_NB.sc)
data_beans_NB<- cbind(data_beans_NB, data_beans_NB.sc)</pre>
#str(data_beans_NB)
#data_beans_NB <- na.omit(data_beans_NB)</pre>
mod_MTME.nb <- asreml(fixed = cbind(GY, DM, PH, LD) ~ trait:rep + trait, # trait:rep -1,
                       random = ~ us(trait):name + us(trait):name:loc, #name:us(loc)
```

```
#residuals = ~dsum(~us(name)/loc),
                    residuals = ~ units:us(trait),
                    data = data_beans_NB,
                    trace = F,
                    maxit = 10000,
                    predict = predict.asreml(classify = "name:loc:trait") )
#update.asreml(mod MTME.nb)
#update.asreml(mod MTME)
d1<- data.frame(wald(mod MTME.nb))</pre>
d2<-data.frame(summary.asreml(mod_MTME.nb)$varcomp)</pre>
# results as data.table
blup.mtme.nb<- data.table((mod_MTME.nb$predictions$pvals[1:6])) # set the BLUP
# d.1
              Df Sum.of.Sq Wald.statistic Pr.Chisq.
#
                                 0.663 9.56e-01
# trait
                   0.663
               4
# trait:rep
              12
                    63.914
                                 63.914 4.33e-09
# residual (MS) NA
                   1.000
                                     NA
                                               NA
# d2
                           component std.error z.ratio bound X.ch
# trait:name!trait GY:GY
                           0.28345 0.0865 3.278 P 0
                           0.18415
# trait:name!trait DM:GY
                                       0.0733 2.514
                                                        P
                                                             0
                           0.33087
                                       0.1036 3.195
                                                        P
# trait:name!trait DM:DM
                                                             0
                          0.12097
# trait:name!trait PH:GY
                                      0.0620 1.951
                                                        P
                                                             0
# trait:name!trait PH:DM
                          0.06994 0.0646 1.083
                                                       P
# trait:name!trait_PH:PH
                           0.22001 0.0765 2.875
                                                       P
                                                           0
# trait:name!trait_LD:GY
                            0.15304
                                       0.0820 1.867
                                                        P
                                                             0
                            0.23406 0.0922 2.539
# trait:name!trait_LD:DM
                                                        P
                                                             0
# trait:name!trait_LD:PH
                           -0.06152 0.0715 -0.860
                                                        P
                            0.42545
                                                       P
# trait:name!trait_LD:LD
                                       0.1305 3.261
                                                           0
                           0.08495
# trait:name:loc!trait_GY:GY
                                       0.0408 2.081
                                                        P
# trait:name:loc!trait_DM:GY -0.00607
                                       0.0315 -0.192
                                                        P
                                                             0
# trait:name:loc!trait DM:DM 0.09322
                                       0.0442 2.107
# trait:name:loc!trait_PH:GY -0.01022
                                       0.0325 -0.315
                                                        P
                                                           0
# trait:name:loc!trait PH:DM
                           0.04445
                                       0.0323 1.376
                                                        P
# trait:name:loc!trait_PH:PH 0.05325
                                       0.0464
                                              1.148
                                                        P
                                                             0
# trait:name:loc!trait LD:GY -0.01023 0.0285 -0.359
                                                       P
                                                             0
# trait:name:loc!trait LD:DM -0.03865
                                       0.0282 - 1.372
                                                       P
                                                             0
# trait:name:loc!trait_LD:PH -0.00769
                                       0.0288 - 0.267
                                                        P
                                                             0
                                       0.0351 0.956
                                                       P
# trait:name:loc!trait_LD:LD 0.03354
                                                             0
# units:trait!R
                            1.00000
                                         NA
                                                 NA
                                                       F
                                                           0
                            0.61060
                                       0.0475 12.845
# units:trait!trait_GY:GY
                                                        P
                                                             0
# units:trait!trait_DM:GY
                                       0.0355 -1.093
                                                        P
                           -0.03874
                                                             0
                                                        P
# units:trait!trait DM:DM
                           0.54619
                                       0.0461 11.851
                           0.12173
# units:trait!trait_PH:GY
                                       0.0416
                                              2.928
                                                       P
                                                            0
# units:trait!trait_PH:DM
                           -0.02890
                                       0.0380 -0.760
                                                        P
                                                             0
# units:trait!trait_PH:PH
                          0.73727
                                       0.0625 11.803
                                                        P
                                                             0
# units:trait!trait_LD:GY
                           0.01485
                                       0.0377 0.393
                                                        P
# units:trait!trait_LD:DM
                            0.04894
                                       0.0351
                                               1.396
```

```
# units:trait!trait_LD:PH -0.04851 0.0408 -1.190 P 0
# units:trait!trait_LD:LD 0.57031 0.0503 11.330 P 0
```

5.7.3 Red beans

```
## MTME mixed model Small Red - Pink Beans
# This model is not working! Too many missing genotypes and few genotypes available for
→ thos market class.
data_beans_SR <- droplevels(data_beans_compl[which(data_beans_compl$mkt=="SR")])
#data_beans_SR <- na.omit(data_beans_SR)
\#dim(data\_beans\_SR)
#TU
data_beans_SR.sc.TU <- droplevels(subset(data_beans_SR, loc="TU"))</pre>
data_beans_SR.sc.TU <-scale(data_beans_SR.sc.TU[,5:8])</pre>
#dim(data_beans_SR.sc.TU)
data_beans_SR.sc.BA <- droplevels(subset(data_beans_SR, loc="BA"))</pre>
data_beans_SR.sc.BA <-scale(data_beans_SR.sc.BA[,5:8])</pre>
data beans SR.sc.SA <- droplevels(subset(data beans SR, loc=="SA"))
data_beans_SR.sc.SA <-scale(data_beans_SR.sc.SA[,5:8])</pre>
#data_beans_SR.sc<- scale(data_beans_SR[,5:6])
data_beans_SR<- data_beans_SR %>%
  dplyr::select(name, loc, mkt,rep)
#dim(data_beans_SR)
data_beans_SR.sc<- rbind(data_beans_SR.sc.BA,data_beans_SR.sc.SA, data_beans_SR.sc.TU)
#dim(data_beans_SR)
#dim(data_beans_SR.sc)
data_beans_SR<- cbind(data_beans_SR, data_beans_SR.sc)
#str(data_beans_SR)
mod_MTME.sr <- asreml(fixed = cbind(GY, DM, PH, LD) ~ trait:rep + trait, # trait:rep -1,
            random = ~ us(trait):name + us(trait):name:loc, #name:us(loc)
            \#residuals = \neg dsum(\neg us(name)/loc),
            residuals = ~ units:us(trait),
            data = data_beans_SR,
            trace = F,
            maxit = 10000,
            predict = predict.asreml(classify = "name:loc:trait") )
#update.asreml(mod_MTME.sr)
d1<- data.frame(wald(mod_MTME.sr))</pre>
```

```
d2<- data.frame(summary.asreml(mod_MTME.sr)$varcomp)</pre>
# d1
#
            Df Sum. of. Sq Wald. statistic Pr. Chisq.
                0.0747 0.0747 9.99e-01
# trait
            4
            12 58.7787
                           58.7787 3.77e-08
# trait:rep
# residual (MS) NA 1.0000
                               NA
                                        NA
# d2
#
                       component std.error z.ratio bound X.ch
# trait:name!trait GY:GY
                       0.014673
                                    NA
                                          NA
                                              B 0.0
# trait:name!trait_DM:GY
                       0.002083
                                    NA
                                          NA
                                                B 0.0
                                    NA
                                          NA
# trait:name!trait_DM:DM
                       0.000615
                                               B 0.0
# trait:name!trait_PH:GY
                       0.007643
                                    NA
                                          NA
                                               B 0.0
NA
                                          NA
                                              B 0.0
                                             B 0.0
                                    NA
                                         NA
                                    NA
                                          NA
                                               B 0.0
NA
                                          NA
                                               B 0.0
# trait:name!trait_LD:PH
                       -0.009582
                                    NA
                                         NA
                                               B 0.0
# trait:name!trait_LD:LD
                                    NA
                                          NA
                                               B 0.0
                       0.032827
# trait:name:loc!trait GY:GY 0.257368
                                               B 0.0
                                    NA
                                          NA
# trait:name:loc!trait_DM:GY -0.140886
                                               B 0.0
                                    NA
                                          NA
# trait:name:loc!trait DM:DM 0.427960
                                    NA
                                          NA
                                                B 0.0
# trait:name:loc!trait PH:GY -0.094343
                                    NA
                                          NA
                                               B 0.0
# trait:name:loc!trait PH:DM -0.293548
                                    NA
                                          NA
                                               B 0.0
# trait:name:loc!trait_PH:PH 0.490821
                                               B 0.0
                                    NA
                                          NA
                                         NA
# trait:name:loc!trait_LD:GY 0.257104
                                    NA
                                               B 0.0
# trait:name:loc!trait LD:DM -0.198700
                                    NA
                                          NA
                                               B 0.0
# trait:name:loc!trait_LD:PH -0.051090
                                    NA
                                          NA
                                               B 0.0
# trait:name:loc!trait_LD:LD 0.320474
                                    NA
                                           NA
                                               B 0.0
                                             F 0.0
# units:trait!R
                       1.000000
                                    NA
                                          NA
P 0.0
P 0.0
                                                P 0.0
                                               P 0.0
# units:trait!trait PH:DM
                    0.046331 0.0705
                                        0.657
                                               P 0.0
                      0.757329
                                               P 0.0
# units:trait!trait_PH:PH
                                 0.1005 7.538
# units:trait!trait LD:GY
                     -0.025897 0.0648 -0.400
                                                P 0.1
# units:trait!trait_LD:DM 0.108011
                                 0.0672 1.608 P 0.0
# units:trait!trait LD:PH
                                 0.0661 -0.265
                                               P 0.0
                       -0.017539
# units:trait!trait LD:LD
                                                P 0.0
                       0.634711
                                 0.0852
                                       7.451
```

5.8 MTME Var Comp and corr

• Variance Component and correlations analysis

```
# Black
#traits
a=summary(mod_MTME.bb)$varcomp[1:10,1]
z=matrix(0, 4,4)
```

```
z[upper.tri(z) | row(z) == col(z)] \leftarrow a
cora=z/sqrt(diag(z)%*%t(diag(z)))
#cora
#int traits - locations
b=summary(mod_MTME.bb)$varcomp[11:20,1]
z=matrix(0, 4,4)
z[upper.tri(z) | row(z) == col(z)] \leftarrow b
corb=z/sqrt(diag(z)%*%t(diag(z)))
#corb
# Navys
#traits
c=summary(mod_MTME.nb)$varcomp[1:10,1]
z=matrix(0, 4,4)
z[upper.tri(z) | row(z) == col(z)] \leftarrow c
corc=z/sqrt(diag(z)%*%t(diag(z)))
#corc
#int traits - locations
d=summary(mod_MTME.nb)$varcomp[11:20,1]
z=matrix(0, 4,4)
z[upper.tri(z) | row(z) == col(z)] \leftarrow d
cord=z/sqrt(diag(z)%*%t(diag(z)))
#cord
corr=as.matrix(bdiag(cora,corb, corc, cord))
rownames(corr)=c(
  "BB_GY",
  "BB_DM",
  "BB_PH",
  "BB_LD",
  "BB_Loc-GY",
  "BB_Loc-DM",
  "BB Loc-PH",
  "BB_Loc-LD",
  "NB GY",
  "NB_DM",
  "NB PH",
  "NB_LD",
  "NB_Loc-GY",
  "NB_Loc-DM",
  "NB_Loc-PH",
  "NB_Loc-LD")
colnames(corr)=rownames(corr)
corr1<- as_tibble(corr)</pre>
```

```
corr1<- corr1 %>%
  tidyr::pivot_longer(
    cols = everything(),
    names_to = "var",
    values_to = "corr")
corr1<-corr1 %>%
  dplyr::filter(corr != 0) %>%
  dplyr::filter(corr != 1)
names=c(
  "G GY-DM_BB",
  "G GY-PH_BB",
  "G GY-LD_BB",
  "G PH-DM_BB",
  "G DM-LD_BB",
  "G PH-LD_BB",
  "GxE GY-DM BB",
  "GxE GY-PH_BB",
  "GxE GY-LD_BB",
  "GxE PH-DM_BB",
  "GxE DM-LD_BB",
  "GxE PH-LD_BB",
  "G GY-DM_NB",
  "G GY-PH_NB",
  "G GY-LD_NB",
  "G PH-DM_NB",
  "G DM-LD NB",
  "G PH-LD_NB",
  "GxE GY-DM_NB",
  "GxE GY-PH_NB",
  "GxE GY-LD_NB",
  "GxE PH-DM_NB",
  "GxE DM-LD_NB",
  "GxE PH-LD_NB"
  )
names2=c(
 "GY-DM",
  "GY-PH",
  "GY-LD",
  "PH-DM",
  "DM-LD",
  "PH-LD",
  "GY-DM",
  "GY-PH",
  "GY-LD",
  "PH-DM",
  "DM-LD",
  "PH-LD",
```

```
"GY-DM",
  "GY-PH",
  "GY-LD",
  "PH-DM",
  "DM-LD",
  "PH-LD".
  "GY-DM".
  "GY-PH",
  "GY-LD",
  "PH-DM",
  "DM-LD",
  "PH-LD"
  )
corr1$names<-names
corr1$names2<-names2
# Create new_id using dplyr only
corr1 <- corr1 %>%
 mutate(mkt = str_split(names, "_", simplify = TRUE)[ , 2])
#str(corr1)
branded_colors <- c("#00798c", "#d1495b", "#edae49",
                    "#66a182", "#2e4057", "#8d96a3")
ggplot(data=corr1, aes(x=names, y=corr, fill = names2)) +
  geom_bar(stat="identity", position=position_dodge())+
 geom_text(aes(label=mkt), vjust=-0.2, color="black",
            position = position_dodge(width = 1), size=4, fontface="bold")+
  scale_fill_brewer(palette="Paired")+
  theme_minimal() +
  theme(axis.text.x=element_blank(),
        strip.text=element_text(face="bold")) +
 scale_fill_manual(values=branded_colors) +
labs(caption=NULL, x=NULL, y="Rge", fill = 'Traits') +
  scale_y_continuous(limits=c(-0.8, 0.8), n.breaks = 10) +
  geom_vline(xintercept = 12.47) +
  annotate(geom="text", x=6.6, y=0.8, label="G", size=5, fontface="bold",
           color="black") +
  annotate(geom="text", x=18.5, y=0.8, label="GxE", size=5, fontface="bold",
           color="black")
```


 $cat("\n\n\pagebreak\n")$

6 Package References

- Allaire J, Xie Y, McPherson J, Luraschi J, Ushey K, Atkins A, Wickham H, Cheng J, Chang W, Iannone R (2022). rmarkdown:Dynamic Documents for R. R package version 2.19, https://github.com/rstudio/rmarkdown.Xie Y, Allaire J, Grolemund G (2018). R Markdown: The Definitive Guide. Chapman and Hall/CRC, Boca Raton, Florida. ISBN9781138359338, https://bookdown.org/yihui/rmarkdown.Xie Y, Dervieux C, Riederer E (2020). R Markdown Cookbook. Chapman and Hall/CRC, Boca Raton, Florida. ISBN 9780367563837,https://bookdown.org/yihui/rmarkdown-cookbook.
- Aphalo P (2022). ggpmisc: Miscellaneous Extensions to 'ggplot2'. R package version 0.5.1,https://CRAN.R-project.org/package=ggpmisc.
- Aphalo P (2022). ggpp: Grammar Extensions to 'ggplot2'. R package version 0.5.0,https://CRAN.R-project.org/package=ggpp.
- Auguie B (2017). gridExtra: Miscellaneous Functions for "Grid" Graphics. R package version 2.3,https://CRAN.R-project.org/package=gridExtra.
- Bache S, Wickham H (2022). magrittr: A Forward-Pipe Operator for R. R package version 2.0.3,https://CRAN.R-project.org/package=magrittr.
- Bates D, Maechler M, Jagan M (2022). *Matrix: Sparse and Dense Matrix Classes and Methods*. R package version 1.5-1,https://CRAN.R-project.org/package=Matrix.
- Becker OScbRA, Brownrigg. ARWRvbR (2022). mapdata: Extra Map Databases. R package version 2.3.1,https://CRAN.R-project.org/package=mapdata.
- Becker OScbRA, Minka ARWRvbRBEbTP, Deckmyn. A (2022). maps: Draw Geographical Maps. R package version 3.4.1,https://CRAN.R-project.org/package=maps.
- Bivand R, Nowosad J, Lovelace R (2022). *spData: Datasets for Spatial Analysis*. R package version 2.2.1,https://CRAN.R-project.org/package=spData.
- Brien C (2022). asremlPlus: Augments 'ASReml-R' in Fitting Mixed Models and Packages Generally in Exploring PredictionDifferences. R package version 4.3.40, https://CRAN.R-project.org/package=asremlPlus.
- Butler D (2021). asreml: Fits the Linear Mixed Model. R package version 4.1.0.160, <www.vsni.co.uk>.
- Dancho M, Vaughan D (2022). tidyquant: Tidy Quantitative Financial Analysis. R package version 1.0.6,https://CRAN.R-project.org/package=tidyquant.
- Dowle M, Srinivasan A (2022). data.table: Extension of data.frame. R package version 1.14.4,https://CRAN.R-project.org/package=data.table.
- Gohel D, Skintzos P (2022). flextable: Functions for Tabular Reporting. R package version 0.8.3,https://CRAN.R-project.org/package=flextable.
- Grolemund G, Wickham H (2011). "Dates and Times Made Easy with lubridate." Journal of Statistical Software, 40(3), 1-25.https://www.jstatsoft.org/v40/i03/.
- Henry L, Wickham H (2022). purr: Functional Programming Tools. R package version 0.3.5,https://CRAN.R-project.org/package=purrr.
- Hijmans R (2022). raster: Geographic Data Analysis and Modeling. R package version 3.6-3,https://CRAN.R-project.org/package=raster.
- Kassambara A (2022). ggcorrplot: Visualization of a Correlation Matrix using 'ggplot2'. R package version 0.1.4,https://CRAN.R-project.org/package=ggcorrplot.
- Kay M (2023). ggdist: Visualizations of Distributions and Uncertainty. doi:10.5281/zenodo. 3879620https://doi.org/10.5281/zenodo.3879620, R package version 3.2.1, https://mjskay.github.io/ggdist/.
- Müller K, Wickham H (2022). tibble: Simple Data Frames. R package version 3.1.8,https://CRAN.R-project.org/package=tibble.
- Nowosad J (2018). 'CARTOColors' Palettes. R package version 1.0, https://nowosad.github.io/reartocolor.
- Olivoto T, L'ucio AD (2020). "metan: an R package for multi-environment trial analysis." Methods in Ecology and Evolution, 11(6), 783-789. doi:10.1111/2041-210X.13384 https://doi.org/10.1111/2041-210X.13384.
- Patil I (2021). "Visualizations with statistical details: The 'ggstatsplot' approach." Journal of Open Source Software, 6(61), 3167. doi:10.21105/joss.03167 https://doi.org/10.21105/joss.03167, https://

- doi.org/10.21105/joss.03167.
- Pebesma E (2018). "Simple Features for R: Standardized Support for Spatial Vector Data." The R Journal, 10(1), 439-446.doi:10.32614/RJ-2018-009 https://doi.org/10.32614/RJ-2018-009, https://doi.org/10.32614/RJ-2018-009.
- Pebesma EJ, Bivand RS (2005). "Classes and methods for spatial data in R." R News, 5(2), 9-13.https://CRAN.R-project.org/doc/Rnews/.Bivand RS, Pebesma E, Gomez-Rubio V (2013). Applied spatial data analysis with R, Second edition. Springer, NY.https://asdar-book.org/.
- Pedersen T (2022). *ggforce: Accelerating 'ggplot2'*. R package version 0.4.1, https://CRAN.R-project.org/package=ggforce.
- Peterson BG, Carl P (2020). PerformanceAnalytics: Econometric Tools for Performance and Risk Analysis. R package version 2.0.4, https://CRAN.R-project.org/package=PerformanceAnalytics.
- R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
- Robinson D, Hayes A, Couch S (2022). broom: Convert Statistical Objects into Tidy Tibbles. R package version 1.0.2,https://CRAN.R-project.org/package=broom.
- Ryan JA, Ulrich JM (2022). quantmod: Quantitative Financial Modelling Framework. R package version 0.4.20,https://CRAN.R-project.org/package=quantmod.
- Ryan JA, Ulrich JM (2022). xts: eXtensible Time Series. R package version 0.12.2,https://CRAN.R-project.org/package=xts.
- Schauberger P, Walker A (2022). openxlsx: Read, Write and Edit xlsx Files. R package version 4.2.5.1,https://CRAN.R-project.org/package=openxlsx.
- Spinu V (2022). timechange: Efficient Manipulation of Date-Times. R package version 0.1.1,https://CRAN.R-project.org/package=timechange.
- Tierney N, Cook D, McBain M, Fay C (2021). naniar: Data Structures, Summaries, and Visualisations for Missing Data. Rpackage version 0.6.1, https://CRAN.R-project.org/package=naniar.
- Ulrich J (2021). TTR: Technical Trading Rules. R package version 0.24.3, https://CRAN.R-project.org/package=TTR.
- van Rossum B (2022). statgenGxE: Genotype by Environment (GxE) Analysis. R package version 1.0.5,https://CRAN.R-project.org/package=statgenGxE.
- Walker K (2022). tigris: Load Census TIGER/Line Shapefiles. R package version 2.0,https://CRAN. R-project.org/package=tigris.
- Wickham H (2011). "The Split-Apply-Combine Strategy for Data Analysis." *Journal of Statistical Software*, 40(1), 1-29.https://www.jstatsoft.org/v40/i01/.
- Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4,https://ggplot2.tidyverse.org.
- Wickham H (2022). forcats: Tools for Working with Categorical Variables (Factors). R package version 0.5.2,https://CRAN.R-project.org/package=forcats.
- Wickham H (2022). stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.5.0, https://CRAN.R-project.org/package=stringr.
- Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L, Hester J, Kuhn M, Pedersen L, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H(2019). "Welcome to the tidyverse." Journal of Open Source Software, 4(43), 1686. doi:10.21105/joss.01686https://doi.org/10.21105/joss.01686.
- Wickham H, François R, Henry L, Müller K (2022). dplyr: A Grammar of Data Manipulation. R package version 1.0.10,https://CRAN.R-project.org/package=dplyr.
- Wickham H, Girlich M (2022). *tidyr: Tidy Messy Data*. R package version 1.2.1, https://CRAN.R-project.org/package=tidyr.
- Wickham H, Hester J, Bryan J (2022). readr: Read Rectangular Text Data. R package version 2.1.3,https://CRAN.R-project.org/package=readr.
- Wilke C (2020). cowplot: Streamlined Plot Theme and Plot Annotations for 'ggplot2'. R package version 1.1.1,https://CRAN.R-project.org/package=cowplot.
- Wolak ME (2012). "nadiv: an R package to create relatedness matrices for estimating non-additive genetic variances in animal models." Methods in Ecology and Evolution, 3(5), 792-796.

- Xie Y, Cheng J, Tan X (2022). DT: A Wrapper of the JavaScript Library 'DataTables'. R package version 0.26,https://CRAN.R-project.org/package=DT.
- Zeileis A, Grothendieck G (2005). "zoo: S3 Infrastructure for Regular and Irregular Time Series." *Journal of StatisticalSoftware*, 14(6), 1-27. doi:10.18637/jss.v014.i06 https://doi.org/10.18637/jss.v014.i06.
- Zhu H (2021). kableExtra: Construct Complex Table with 'kable' and Pipe Syntax. R package version 1.3.4,https://CRAN.R-project.org/package=kableExtra.

References

- Aguate, F., Crossa, J., & Balzarini, M. (2019). Effect of Missing Values on Variance Component Estimates in Multienvironment Trials. *Crop Science*, 59(2), 508–517. https://doi.org/10.2135/cropsci2018.03.0209
- Ahakpaz, F., Abdi, H., Neyestani, E., Hesami, A., Mohammadi, B., Mahmoudi, K. N., ... Alipour, H. (2021). Genotype-by-environment interaction analysis for grain yield of barley genotypes under dryland conditions and the role of monthly rainfall. *Agricultural Water Management*, 245, 106665. https://doi.org/10.1016/j.agwat.2020.106665
- Bänziger, M., & Cooper, M. (2001). Breeding for low input conditions and consequences for participatory plant breeding examples from tropical maize and wheat. *Euphytica*, 122:503519, 18. https://doi.org/10.1023/A:1017510928038
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using **Lme4**. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01
- Bernardeli, A., Rocha, J. R. A. S. de C., Borém, A., Lorenzoni, R., Aguiar, R., Silva, J. N. B., ... Lamas Costa, M. D. (2021). Modeling spatial trends and enhancing genetic selection: An approach to soybean seed composition breeding. *Crop Science*, 61(2), 976–988. https://doi.org/10.1002/csc2.20364
- Bernardo, R. (2014). Essentials of plant breeding. Woodbury, Minnesota: Stemma Press.
- Boer, M. P., Wright, D., Feng, L., Podlich, D. W., Luo, L., Cooper, M., & van Eeuwijk, F. A. (2007). A Mixed-Model Quantitative Trait Loci (QTL) Analysis for Multiple-Environment Trial Data Using Environmental Covariables for QTL-by-Environment Interactions, With an Example in Maize. *Genetics*, 177(3), 1801–1813. https://doi.org/10.1534/genetics.107.071068
- Buntaran, H., Forkman, J., & Piepho, H.-P. (2021). Projecting results of zoned multi-environment trials to new locations using environmental covariates with random coefficient models: Accuracy and precision. *Theoretical and Applied Genetics*, 134(5), 1513–1530. https://doi.org/10.1007/s00122-021-03786-2
- Buntaran, H., Piepho, H., Schmidt, P., Rydén, J., Halling, M., & Forkman, J. (2020). Cross-validation of stagewise mixed-model analysis of Swedish variety trials with winter wheat and spring barley. *Crop Science*, 60(5), 2221–2240. https://doi.org/10.1002/csc2.20177
- Butler, D. G., Cullis, B. R., Gilmour, A. R., Gogel, B. J., & Thompson, R. (n.d.). ASReml estimates variance components under a general linear. 188.
- Cichy, K. A., Wiesinger, J. A., Berry, M., Nchimbi-Msolla, S., Fourie, D., Porch, T. G., ... Miklas, P. N. (2019). The role of genotype and production environment in determining the cooking time of dry beans (*Phaseolus Vulgaris* L.). *Legume Science*, 1(1). https://doi.org/10.1002/leg3.13
- Colombari Filho, J. M., de Resende, M. D. V., de Morais, O. P., de Castro, A. P., Guimarães, É. P., Pereira, J. A., ... Breseghello, F. (2013). Upland rice breeding in Brazil: A simultaneous genotypic evaluation of stability, adaptability and grain yield. *Euphytica*, 192(1), 117–129. https://doi.org/10.1007/s10681-013-0922-2
- Costa-Neto, G. M. F., Morais Júnior, O. P., Heinemann, A. B., de Castro, A. P., & Duarte, J. B. (2020). A novel GIS-based tool to reveal spatial trends in reaction norm: Upland rice case study. *Euphytica*, 216(3), 37. https://doi.org/10.1007/s10681-020-2573-4
- Costa-Neto, G., Fritsche-Neto, R., & Crossa, J. (2021). Nonlinear kernels, dominance, and envirotyping data increase the accuracy of genome-based prediction in multi-environment trials. *Heredity*, 126(1), 92–106. https://doi.org/10.1038/s41437-020-00353-1
- Costa-Neto, G., Galli, G., Carvalho, H. F., Crossa, J., & Fritsche-Neto, R. (n.d.). EnvRtype: A software to interplay environics and quantitative genomics in agriculture. 64.
- Crespo-Herrera, L., Howard, R., Piepho, H.-P., Pérez-Rodríguez, P., Montesinos-Lopez, O., Burgueño, J., ... Crossa, J. (2021). Genome-enabled prediction for sparse testing in multi-environmental wheat trials.

- The Plant Genome, 14(3), e20151. https://doi.org/10.1002/tpg2.20151
- Crossa, J., Fritsche-Neto, R., Montesinos-Lopez, O. A., Costa-Neto, G., Dreisigacker, S., Montesinos-Lopez, A., & Bentley, A. R. (2021). The Modern Plant Breeding Triangle: Optimizing the Use of Genomics, Phenomics, and Environics Data. Frontiers in Plant Science, 12, 651480. https://doi.org/10.3389/fpls. 2021.651480
- da Silva, K. J., Teodoro, P. E., da Silva, M. J., Teodoro, L. P. R., Cardoso, M. J., Godinho, V. de P. C., ... Menezes, C. B. (2021a). Identification of mega-environments for grain sorghum in Brazil using GGE biplot methodology. *Agronomy Journal*, 113(4), 3019–3030. https://doi.org/10.1002/agj2.20707
- da Silva, K. J., Teodoro, P. E., da Silva, M. J., Teodoro, L. P. R., Cardoso, M. J., Godinho, V. de P. C., ... Menezes, C. B. (2021b). Identification of mega-environments for grain sorghum in Brazil using GGE biplot methodology. *Agronomy Journal*, 113(4), 3019–3030. https://doi.org/10.1002/agj2.20707
- DeLacy, I. H., Basford, K. E., Cooper, M., Bull, J. K., & McLaren, C. G. (1996). Analysis of multi-environment trials an historical perspective. *Plant Adaptation and Crop Improvement.*, 39–124. Retrieved from https://www.cabdirect.org/cabdirect/abstract/19961610824
- Dramadri, I. O., Nkalubo, S. T., Kramer, D. M., & Kelly, J. D. (2021a). Genome-wide association analysis of drought adaptive traits in common bean. *Crop Science*, 61(5), 3232–3253. https://doi.org/10.1002/csc2.20484
- Dramadri, I. O., Nkalubo, S. T., Kramer, D. M., & Kelly, J. D. (2021b). Genome-wide association analysis of drought adaptive traits in common bean. *Crop Science*, 61(5), 3232–3253. https://doi.org/10.1002/csc2.20484
- Fehr, W. R. (n.d.). Stages of Soybean Development. 12.
- Ferreira, F. M., de Carvalho Rocha, J. R. do A. S., Alves, R. S., Malikouski, R. G., Peixoto, M. A., Suellen Sales de Oliveira, ... Bhering, L. L. (2021). GGE biplot-based genetic selection to guide interspecific crossing in Corymbia spp. *Bragantia*. https://doi.org/10.1590/1678-4499.20210195
- Finlay, K., & Wilkinson, G. (1963). The analysis of adaptation in a plant-breeding programme. Australian Journal of Agricultural Research, 14(6), 742. https://doi.org/10.1071/AR9630742
- Gabriel, K. R. (2002). Goodness of fit of biplots and correspondence analysis. *Biometrika*, 89(2), 423–436. https://doi.org/10.1093/biomet/89.2.423
- Galli, G., Horne, D. W., Collins, S. D., Jung, J., Chang, A., Fritsche-Neto, R., & Rooney, W. L. (2020). Optimization of UAS-based high-throughput phenotyping to estimate plant health and grain yield in sorghum. *The Plant Phenome Journal*, 3(1). https://doi.org/10.1002/ppj2.20010
- Gauch, H. G. (1988). Model Selection and Validation for Yield Trials with Interaction. *Biometrics*, 44(3), 705. https://doi.org/10.2307/2531585
- Gauch, H. G. (Ed.). (1992). Statistical Analysis of Regional Yield Trials: AMMI Analysis of Factorial Designs (1st edition). Amsterdam; New York: Elsevier Science.
- Gauch, Hugh. G., & Zobel, R. W. (1997). Identifying Mega-Environments and Targeting Genotypes. *Crop Science*, 37(2), 311–326. https://doi.org/10.2135/cropsci1997.0011183X003700020002x
- GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and A. (n.d.). Retrieved June 7, 2022, from https://www.routledge.com/GGE-Biplot-Analysis-A-Graphical-Tool-for-Breeders-Geneticists-and-Agronomists/Yan-Kang/p/book/9780367454791
- Gilmour, A. R., Gogel, B. J., Cullis, B. R., Welham, S. J., & Thompson, R. (2015). ASReml User Guide Release 4.1 Functional Specification (HP1 1ES). Retrieved from http://www.vsni.co.uk/
- González-Barrios, P., Díaz-García, L., & Gutiérrez, L. (2019). Mega-Environmental Design: Using Genotype × Environment Interaction to Optimize Resources for Cultivar Testing. *Crop Science*, 59(5), 1899–1915. https://doi.org/10.2135/cropsci2018.11.0692
- Gurumurthy, S., Singh, J., Basu, P. S., Meena, S. K., Rane, J., Singh, N. P., & Hazra, K. K. (2022). Increased significance of chickpea (Cicer arietinum L.) Senescence trait under water-deficit environment. *Environmental Challenges*, 8, 100565. https://doi.org/10.1016/j.envc.2022.100565
- Hamblin, J., & Zimmermann, M. J. de O. (1986). Breeding Common Bean for Yield in Mixtures. In J. Janick (Ed.), *Plant Breeding Reviews* (pp. 245–272). https://doi.org/10.1002/9781118061015.ch8
- Happ, M. M., Graef, G. L., Wang, H., Howard, R., Posadas, L., & Hyten, D. L. (2021). Comparing a Mixed Model Approach to Traditional Stability Estimators for Mapping Genotype by Environment Interactions and Yield Stability in Soybean [Glycine max (L.) Merr.]. Frontiers in Plant Science, 12, 630175. https://doi.org/10.3389/fpls.2021.630175

- Hartung, J., & Piepho, H. (2021). Effect of missing values in multi-environmental trials on variance component estimates. *Crop Science*, 61(6), 4087–4097. https://doi.org/10.1002/csc2.20621
- Heilig, J. A., Wright, E. M., & Kelly, J. D. (2017). Symbiotic Nitrogen Fixation of Black and Navy Bean under Organic Production Systems. *Agronomy Journal*, 109(5), 2223–2230. https://doi.org/10.2134/agronj2017.01.0051
- Henderson, C. R. (1975). Best Linear Unbiased Estimation and Prediction under a Selection Model. *Biometrics*, 31(2), 423. https://doi.org/10.2307/2529430
- Hoyos-Villegas, V., O'Connor, J. R., Heslop, A. D., Hilditch, A., Jahufer, M. Z. Z., & Barrett, B. A. (2019). Rate of Genetic Gain for Persistence to Grazing and Dry Matter Yield in White Clover across 90 Years of Cultivar Development. *Crop Science*, 59(2), 537–552. https://doi.org/10.2135/cropsci2018.07.0471
- Hoyos-Villegas, V., Wright, E. M., & Kelly, J. D. (2016). GGE Biplot Analysis of Yield Associations with Root Traits in a Mesoamerican Bean Diversity Panel. *Crop Science*, 56(3), 1081–1094. https://doi.org/10.2135/cropsci2015.10.0609
- Huang, X., Jang, S., Kim, B., Piao, Z., Redona, E., & Koh, H.-J. (2021a). Evaluating Genotype × Environment Interactions of Yield Traits and Adaptability in Rice Cultivars Grown under Temperate, Subtropical and Tropical Environments. *Agriculture*, 11(6), 558. https://doi.org/10.3390/agriculture11060558
- Huang, X., Jang, S., Kim, B., Piao, Z., Redona, E., & Koh, H.-J. (2021b). Evaluating Genotype × Environment Interactions of Yield Traits and Adaptability in Rice Cultivars Grown under Temperate, Subtropical and Tropical Environments. *Agriculture*, 11(6), 558. https://doi.org/10.3390/agriculture11060558
- Isik, F., Holland, J., & Maltecca, C. (2017). Genetic Data Analysis for Plant and Animal Breeding. https://doi.org/10.1007/978-3-319-55177-7
- Kamfwa, K., Cichy, K. A., & Kelly, J. D. (2015). Genome-Wide Association Study of Agronomic Traits in Common Bean. *The Plant Genome*, 8(2). https://doi.org/10.3835/plantgenome2014.09.0059
- Kang, M. S. (2020). Genotype-environment interaction and stability analyses: An update. In M. S. Kang (Ed.), Quantitative genetics, genomics and plant breeding (2nd ed., pp. 140–161). https://doi.org/10.1079/9781789240214.0140
- Katuuramu, D. N., Luyima, G. B., Nkalubo, S. T., Wiesinger, J. A., Kelly, J. D., & Cichy, K. A. (2020a). On-farm multi-location evaluation of genotype by environment interactions for seed yield and cooking time in common bean. *Scientific Reports*, 10(1), 3628. https://doi.org/10.1038/s41598-020-60087-2
- Katuuramu, D. N., Luyima, G. B., Nkalubo, S. T., Wiesinger, J. A., Kelly, J. D., & Cichy, K. A. (2020b). On-farm multi-location evaluation of genotype by environment interactions for seed yield and cooking time in common bean. *Scientific Reports*, 10(1), 3628. https://doi.org/10.1038/s41598-020-60087-2
- Katuuramu, D. N., Wiesinger, J. A., Luyima, G. B., Nkalubo, S. T., Glahn, R. P., & Cichy, K. A. (2021). Investigation of Genotype by Environment Interactions for Seed Zinc and Iron Concentration and Iron Bioavailability in Common Bean. Frontiers in Plant Science, 12, 670965. https://doi.org/10.3389/fpls. 2021.670965
- Kelly, James D., Awale, H. E., Wiersma, A. T., & Wright, E. M. (2021). Registration of "Adams" black bean. *Journal of Plant Registrations*, 15(2), 253–259. https://doi.org/10.1002/plr2.20063
- Kelly, James D., & Cichy, K. A. (2012). Dry Bean Breeding and Production Technologies. In M. Siddiq & M. A. Uebersax (Eds.), Dry Beans and Pulses Production, Processing and Nutrition (1st ed., pp. 23–54). https://doi.org/10.1002/9781118448298.ch2
- Kelly, James D., Kolkman, J. M., & Schneider, K. (1998). Breeding for yield in dry bean (Phaseolus vulgaris L.). *Euphytica*, 102(343–356), 14. https://doi.org/10.1023/A:1018392901978
- Kelly, James D., Varner, G. V., Cichy, K. A., & Wright, E. M. (2015). Registration of "Alpena" Navy Bean. Journal of Plant Registrations, 9(1), 10–14. https://doi.org/10.3198/jpr2014.04.0025crc
- Koundinya A.V.V., Ajeesh B.R., Vivek H., Sheela M.N., Mohan C., & Asha K.I. (2021). Genetic parameters, stability and selection of cassava genotypes between rainy and water stress conditions using AMMI, WAAS, BLUP and MTSI. *Scientia Horticulturae*, 281, 109949. https://doi.org/10.1016/j.scienta.2021. 109949
- Krause, M. D., Dias, K. O. G., Singh, A. K., & Beavis, W. D. (2022). Using large soybean historical data to study genotype by environment variation and identify mega-environments with the integration of genetic and non-genetic factors [Preprint]. https://doi.org/10.1101/2022.04.11.487885
- Ligarreto-Moreno, G., & Pimentel-Ladino, C. (2022). Grain yield and genotype x environment interaction in bean cultivars with different growth habits. *Plant Production Science*, 25(2), 232–241. https://doi.

- org/10.1080/1343943X.2021.1981141
- Lin, C. S., & Binns, M. R. (1988). A SUPERIORITY MEASURE OF CULTIVAR PERFORMANCE FOR CULTIVAR × LOCATION DATA. Canadian Journal of Plant Science, 68(1), 193–198. https://doi.org/10.4141/cjps88-018
- MacQueen, A. H., White, J. W., Lee, R., Osorno, J. M., Schmutz, J., Miklas, P. N., ... Juenger, T. E. (2020). Genetic Associations in Four Decades of Multienvironment Trials Reveal Agronomic Trait Evolution in Common Bean. *Genetics*, 215(1), 267–284. https://doi.org/10.1534/genetics.120.303038
- Malosetti, M., Bustos-Korts, D., Boer, M. P., & van Eeuwijk, F. A. (2016). Predicting Responses in Multiple Environments: Issues in Relation to Genotype × Environment Interactions. *Crop Science*, 56(5), 2210–2222. https://doi.org/10.2135/cropsci2015.05.0311
- Malosetti, M., Ribaut, J.-M., & van Eeuwijk, F. A. (2013a). The statistical analysis of multi-environment data: Modeling genotype-by-environment interaction and its genetic basis. Frontiers in Physiology, 4. https://doi.org/10.3389/fphys.2013.00044
- Malosetti, M., Ribaut, J.-M., & van Eeuwijk, F. A. (2013b). The statistical analysis of multi-environment data: Modeling genotype-by-environment interaction and its genetic basis. Frontiers in Physiology, 4. https://doi.org/10.3389/fphys.2013.00044
- Miklas, P. N., Kelly, J. D., Beebe, S. E., & Blair, M. W. (2006). Common bean breeding for resistance against biotic and abiotic stresses: From classical to MAS breeding. *Euphytica*, 147(1), 105–131. https://doi.org/10.1007/s10681-006-4600-5
- Miklas, P. N., Kelly, J. D., & Cichy, K. A. (2022a). Dry Bean Breeding and Production Technologies. In Dry Beans and Pulses (pp. 29–56). https://doi.org/10.1002/9781119776802.ch2
- Miklas, P. N., Kelly, J. D., & Cichy, K. A. (2022b). Dry Bean Breeding and Production Technologies. In M. Siddiq & M. A. Uebersax (Eds.), *Dry Beans and Pulses* (1st ed., pp. 29–56). https://doi.org/10.1002/9781119776802.ch2
- Millet, E., Welcker, C., Kruijer, W., Negro, S., Nicolas, S., Praud, S., ... Bauland, C. (2016). Genome-wide analysis of yield in Europe: Allelic effects as functions of drought and heat scenarios. *Plant Physiology*, pp.00621.2016. https://doi.org/10.1104/pp.16.00621
- Mrode, R. A. (2014). Linear models for the prediction of animal breeding values (3rd ed). Boston, MA: CABI.
- Nataraj, V., Bhartiya, A., Singh, C. P., Devi, H. N., Deshmukh, M. P., Verghese, P., ... Gupta, S. (2021). WAASB-based stability analysis and simultaneous selection for grain yield and early maturity in soybean. *Agronomy Journal*, 113(4), 3089–3099. https://doi.org/10.1002/agj2.20750
- Olivoto, T., Lúcio, A. D. C., Silva, J. A. G., Marchioro, V. S., Souza, V. Q., & Jost, E. (2019). Mean Performance and Stability in Multi-Environment Trials I: Combining Features of AMMI and BLUP Techniques. *Agronomy Journal*, 111(6), 2949–2960. https://doi.org/10.2134/agronj2019.03.0220
- Olivoto, T., Lúcio, A. D. C., Silva, J. A. G., Sari, B. G., & Diel, M. I. (2019). Mean Performance and Stability in Multi-Environment Trials II: Selection Based on Multiple Traits. *Agronomy Journal*, 111(6), 2961–2969. https://doi.org/10.2134/agronj2019.03.0221
- Olivoto, T., Nardino, M., Meira, D., Meier, C., Follmann, D. N., Souza, V. Q., ... Baretta, D. (2021). Multi-trait selection for mean performance and stability in maize. *Agronomy Journal*, 113(5), 3968–3974. https://doi.org/10.1002/agj2.20741
- Philipo, M., Ndakidemi, P. A., & Mbega, E. R. (2021). Environmentally stable common bean genotypes for production in different agro-ecological zones of Tanzania. *Heliyon*, 7(1), e05973. https://doi.org/10.1016/j.heliyon.2021.e05973
- Piepho, H.-P. (2018). Allowing for the structure of a designed experiment when estimating and testing trait correlations. *The Journal of Agricultural Science*, 156(1), 59–70. https://doi.org/10.1017/S0021859618000059
- Piepho, H.-P., Edmondson, R., & Yaseen, M. (n.d.). Tutorial Analysis of Some Agricultural Experiments.
 46.
- Pour-Aboughadareh, A., Khalili, M., Poczai, P., & Olivoto, T. (2022). Stability Indices to Deciphering the Genotype-by-Environment Interaction (GEI) Effect: An Applicable Review for Use in Plant Breeding Programs. *Plants*, 11(3), 414. https://doi.org/10.3390/plants11030414
- Qureshi, A. M. I., & Sadohara, R. (2019). Breeding Dry Beans (Phaseolus vulqaris L.) With Improved Cooking and Canning Quality Traits. In A. M. I. Qureshi, Z. A. Dar, & S. H. Wani (Eds.), Quality

- Breeding in Field Crops (pp. 173–191). https://doi.org/10.1007/978-3-030-04609-5_8
- Rakshit, S., K N, G., Gomashe, S., Swapna, M., More, A., Gadakh, S., ... Bhat, P. (2014). GGE biplot analysis of genotype × environment interaction in rabi grain sorghum [Sorghum bicolor (L.) Moench]. *Indian Journal of Genetics and Plant Breeding*, 74, 558–563. https://doi.org/10.5958/0975-6906.2014. 00889.X
- Resende, M. D. V. de. (2016a). Software Selegen-REML/BLUP: A useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16(4), 330–339. https://doi.org/10.1590/1984-70332016v16n4a49
- Resende, M. D. V. de. (2016b). Software Selegen-REML/BLUP: A useful tool for plant breeding. *Crop Breeding and Applied Biotechnology*, 16(4), 330–339. https://doi.org/10.1590/1984-70332016v16n4a49
- Resende, R. T., Piepho, H.-P., Rosa, G. J. M., Silva-Junior, O. B., e Silva, F. F., de Resende, M. D. V., & Grattapaglia, D. (2021). Environics in breeding: Applications and perspectives on envirotypic-assisted selection. *Theoretical and Applied Genetics*, 134(1), 95–112. https://doi.org/10.1007/s00122-020-03684-z
- Rodrigues, F. C., Silva, F. C. S., Carneiro, P. C. S., Peternelli, L. A., Bhering, L. L., & da Silva, F. L. (2022). Environmental stratification in trials of unbalanced multiyear soybean (Glycine max (l.) Merril) via the integration of GGE Biplot graphs and networks of environmental similarity. *Euphytica*, 218(6), 71. https://doi.org/10.1007/s10681-022-02994-1
- Rosales, M. A., Ocampo, E., Rodríguez-Valentín, R., Olvera-Carrillo, Y., Acosta-Gallegos, J., & Covarrubias, A. A. (2012). Physiological analysis of common bean (Phaseolus vulgaris L.) Cultivars uncovers characteristics related to terminal drought resistance. *Plant Physiology and Biochemistry*, 56, 24–34. https://doi.org/10.1016/j.plaphy.2012.04.007
- Shukla, G. K. (1972). Some statistical aspects of partitioning genotype-environmental components of variability. *Heredity*, 29(2), 237–245. https://doi.org/10.1038/hdy.1972.87
- Siddiq, M., & Uebersax, M. A. (Eds.). (2022). Dry Beans and PulsesProduction, Processing, and Nutrition (Second Edition). https://doi.org/10.1002/9781119776802.fmatter
- Singamsetti, A., Shahi, J. P., Zaidi, P. H., Seetharam, K., Vinayan, M. T., Kumar, M., ... Madankar, K. (2021). Genotype × environment interaction and selection of maize (Zea mays L.) Hybrids across moisture regimes. *Field Crops Research*, 270, 108224. https://doi.org/10.1016/j.fcr.2021.108224
- Singh, B., Das, A., Parihar, A. K., Bhagawati, B., Singh, D., Pathak, K. N., ... Gupta, S. (2020a). Delineation of Genotype-by-Environment interactions for identification and validation of resistant genotypes in mungbean to root-knot nematode (Meloidogyne incognita) using GGE biplot. Scientific Reports, 10(1), 4108. https://doi.org/10.1038/s41598-020-60820-x
- Singh, B., Das, A., Parihar, A. K., Bhagawati, B., Singh, D., Pathak, K. N., ... Gupta, S. (2020b). Delineation of Genotype-by-Environment interactions for identification and validation of resistant genotypes in mungbean to root-knot nematode (Meloidogyne incognita) using GGE biplot. Scientific Reports, 10(1), 4108. https://doi.org/10.1038/s41598-020-60820-x
- Smith, A., Norman, A., Kuchel, H., & Cullis, B. (2021a). Plant Variety Selection Using Interaction Classes Derived From Factor Analytic Linear Mixed Models: Models With Independent Variety Effects. Frontiers in Plant Science, 12, 737462. https://doi.org/10.3389/fpls.2021.737462
- Smith, A., Norman, A., Kuchel, H., & Cullis, B. (2021b). Plant Variety Selection Using Interaction Classes Derived From Factor Analytic Linear Mixed Models: Models With Independent Variety Effects. Frontiers in Plant Science, 12, 737462. https://doi.org/10.3389/fpls.2021.737462
- Smith, M. R., Dinglasan, E., Veneklaas, E., Polania, J., Rao, I. M., Beebe, S. E., & Merchant, A. (2022). Effect of Drought and Low P on Yield and Nutritional Content in Common Bean. Frontiers in Plant Science, 13, 814325. https://doi.org/10.3389/fpls.2022.814325
- Tize, I., Fotso, A. K., Nukenine, E. N., Masso, C., Ngome, F. A., Suh, C., ... Hanna, R. (2021). New cassava germplasm for food and nutritional security in Central Africa. *Scientific Reports*, 11(1), 7394. https://doi.org/10.1038/s41598-021-86958-w
- Tokatlidis, I. S., Papadopoulos, I. I., Baxevanos, D., & Koutita, O. (2010). Genotype × Environment Effects on Single-Plant Selection at Low Density for Yield and Stability in Climbing Dry Bean Populations. *Crop Science*, 50(3), 775–783. https://doi.org/10.2135/cropsci2009.08.0459
- Uebersax, M. A., Cichy, K. A., Gomez, F. E., Porch, T. G., Heitholt, J., Osorno, J. M., ... Bales, S. (2022a). Dry beans (*Phaseolus Vulgaris* L.) As a vital component of sustainable agriculture and food security—A review. *Legume Science*. https://doi.org/10.1002/leg3.155
- Uebersax, M. A., Cichy, K. A., Gomez, F. E., Porch, T. G., Heitholt, J., Osorno, J. M., ... Bales, S. (2022b).

- Dry beans (Phaseolus vulgaris L.) As a vital component of sustainable agriculture and food security—A review. Legume Science. https://doi.org/10.1002/leg3.155
- USDA-NASS. (2022). Crop Values Summary 2021. 48.
- van Eeuwijk, F. A., Bustos-Korts, D. V., & Malosetti, M. (2016a). What Should Students in Plant Breeding Know About the Statistical Aspects of Genotype × Environment Interactions? *Crop Science*, 56(5), 2119–2140. https://doi.org/10.2135/cropsci2015.06.0375
- van Eeuwijk, F. A., Bustos-Korts, D. V., & Malosetti, M. (2016b). What Should Students in Plant Breeding Know About the Statistical Aspects of Genotype × Environment Interactions? *Crop Science*, 56(5), 2119–2140. https://doi.org/10.2135/cropsci2015.06.0375
- Vandemark, G. J., Brick, M. A., Osorno, J. M., Kelly, J. D., & Urrea, C. A. (2015). Edible Grain Legumes. In S. Smith, B. Diers, J. Specht, & B. Carver (Eds.), CSSA Special Publications (pp. 87–123). https://doi.org/10.2135/cssaspecpub33.c5
- Verma, A., & Singh, G. P. (2021). Stability, Adaptability Analysis of Wheat Genotypes by AMMI with BLUP for Restricted Irrigated Multi Location Trials in Peninsular Zone of India. *Agricultural Sciences*, 12(03), 198–212. https://doi.org/10.4236/as.2021.123013
- Volpato, L., Alves, R. S., Teodoro, P. E., Vilela de Resende, M. D., Nascimento, M., Nascimento, A. C. C., ... Borém, A. (2019). Multi-trait multi-environment models in the genetic selection of segregating soybean progeny. *PLOS ONE*, 14(4), e0215315. https://doi.org/10.1371/journal.pone.0215315
- Wang, W., Wright, E. M., Uebersax, M. A., & Cichy, K. (2021). A pilot-scale dry bean canning and evaluation protocol. *Journal of Food Processing and Preservation*, 00(e16171), e16171. https://doi.org/10.1111/jfpp.16171
- Yan, W. (2002). Singular-Value Partitioning in Biplot Analysis of Multienvironment Trial Data. Agronomy Journal, 94(5), 990. https://doi.org/10.2134/agronj2002.0990
- Yan, W. (2015). Mega-environment Analysis and Test Location Evaluation Based on Unbalanced Multiyear Data. Crop Science, 55(1), 113–122. https://doi.org/10.2135/cropsci2014.03.0203
- Yan, W. (2016). Analysis and Handling of G × E in a Practical Breeding Program. Crop Science, 56(5), 2106–2118. https://doi.org/10.2135/cropsci2015.06.0336
- Yan, W., Hunt, L. A., Sheng, Q., & Szlavnics, Z. (2000). Cultivar Evaluation and Mega-Environment Investigation Based on the GGE Biplot. Crop Science, 40(3), 597–605. https://doi.org/10.2135/cropsci2000.403597x
- Yan, W., & Kang, M. S. (2002a). GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists. https://doi.org/10.1201/9781420040371
- Yan, W., & Kang, M. S. (2002b). *GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists*. Boca Raton, Fla: CRC Press.
- Yan, W., & Kang, M. S. (2003). GGE biplot analysis: A graphical tool for breeders, geneticists, and agronomists. Boca Raton, Fla: CRC Press.
- Yan, W., Kang, M. S., Ma, B., Woods, S., & Cornelius, P. L. (2007a). GGE Biplot vs. AMMI Analysis of Genotype-by-Environment Data. *Crop Science*, 47(2), 643–653. https://doi.org/10.2135/cropsci2006.06.0374
- Yan, W., Kang, M. S., Ma, B., Woods, S., & Cornelius, P. L. (2007b). GGE Biplot vs. AMMI Analysis of Genotype-by-Environment Data. *Crop Science*, 47(2), 643–653. https://doi.org/10.2135/cropsci2006.06.0374
- Yan, W., & Tinker, N. A. (2006a). Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science, 86(3), 623–645. https://doi.org/10.4141/P05-169
- Yan, W., & Tinker, N. A. (2006b). Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science, 86(3), 623–645. https://doi.org/10.4141/P05-169
- Yohannes, S., Loha, G., & Gessese, M. K. (2020). Performance Evaluation of Common Bean (Phaseolus Vulgaris L.) Genotypes for Yield and Related Traits at Areka, Southern Ethiopia. Advances in Agriculture, 2020, 1–8. https://doi.org/10.1155/2020/1497530
- Zuffo, A. M., Steiner, F., Aguilera, J. G., Teodoro, P. E., Teodoro, L. P. R., & Busch, A. (2020). Multi-trait stability index: A tool for simultaneous selection of soya bean genotypes in drought and saline stress. *Journal of Agronomy and Crop Science*, 206(6), 815–822. https://doi.org/10.1111/jac.12409
- Zuiderveen, G. H., Padder, B. A., Kamfwa, K., Song, Q., & Kelly, J. D. (2016). Genome-Wide Association Study of Anthracnose Resistance in Andean Beans (Phaseolus vulgaris). *PLOS ONE*, 11(6), e0156391.

 $\rm https://doi.org/10.1371/journal.pone.0156391$