$$Ax = b$$
, with $A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$, $b = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

and with start value $x^{(0)} = (0, 0, 0)^T$.

(a) State the iteration matrix
$$R = -D^{-1}(L+U)$$
, compute its spectral radius $\rho(R)$ and deduce that the Jacobi method converges.

$$D = \begin{pmatrix} 2 & 0 \\ 0 & 2 & 0 \end{pmatrix}$$
 #which we can also write as $0 = 0$ $0 = 0$ $0 = 0$ $0 = 0$

The iteration matrix R=-D'(L+U) comes

from
$$M \chi^{(k)} = b - N \chi^{(k-1)}$$

$$\Rightarrow \chi^{(k)} = m^{-1}b - m^{-1}N \chi^{(k-1)}$$
So, $M = D$ and $N = L + U$

Mote: from Lemma 20.1, e^(k) >0 iff P(R) < 1.

$$L + u = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}, -D' = diag(-\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2})$$

$$R = \begin{pmatrix} -1/2 & 0 & 0 \\ 0 & -1/2 & 0 \\ 0 & 0 & -1/2 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$

The characteristic polynomial is given by det(R-II)=0

$$-\lambda^{3} + \frac{1}{4}\lambda + \frac{1}{4}\lambda = 0$$

$$-\lambda(\lambda^{2} - \frac{1}{2}) = 0$$

$$\Rightarrow 6 = \{0, \frac{1}{12}, -\frac{1}{12}\}$$

$$P(R) = 1/\sqrt{2} < 1$$

Hence fle Jacobi method converges.

(c) Derive the estimate

$$\frac{\|e^{(k)}\|_2}{\|x\|_2} \le \kappa_2(A) \frac{\|r^{(k)}\|_2}{\|b\|_2}$$

and give an upper bound for the number of steps required to get the relative error of the solution below 10^{-6} .

frof. : ble have a SLE given as Ax = b flurefore,

||An||2 = ||b||2

$\frac{\ e^{(k)}\ _{2}}{\ x\ _{2}} \leq \kappa(A) \frac{\ y^{(k)}\ _{2}}{\ b\ _{2}} \frac{\ k\ K + lee}{nofes}$
Note that the relative error of the Solution is $ n-n^{(n)} = e^{(n)} $
IIIII X and that of fee estimate is given by $ \frac{\ Ax - Ax^{(K)}\ }{\ Ax\ } = \frac{\ Y^{(K)}\ }{\ b\ } $
Finding k to achieve $\ e^{c\kappa}\ _2 \leq \varepsilon$ if $\ \kappa\ _2$
$ r^{(k)} _2 \leq \varepsilon$ $ b _2 K(A) $ $ So, recall fat r^{(k)} = Ae^{(k)} = AR^k e_0$
$\frac{\ e_{\mathbf{k}}\ _{2}}{\ \mathbf{k}\ _{2}} \leq \frac{\ \mathbf{A}\ _{2}\ \mathbf{R}\ _{2}^{\mathbf{k}}\ \mathbf{e}_{\mathbf{o}}\ _{2}}{\ \mathbf{b}\ _{2}} \leq \frac{\varepsilon}{\mathbf{K}_{2}(\mathbf{A})}$
MRNK < Ellbliz K2(A) HAU2 Heoll2
K \leq K\pm by
Pg 36, lee Theorem 7.1, Lenma 7.1, note week 2 leefure note leefure week 3. week 3. Week 3. Week 3. Week 3.

 $k \ge k^{\sharp} = \frac{\log(\|A\|_2 \|e^{(0)}\|_2 / \|b\|_2) - \log(\varepsilon_r)}{\log(\|R\|_2^{-1})}$

for the number of steps in order to achieve that $||r^{(k)}||_2 \le \varepsilon_r ||b||_2$. For the above specific data, give an upper bound for the number of steps required to get the relative error of the residual below 10^{-6} .

For this, we need $||r^{(k)}||_2 \leq \varepsilon_r$

$$K^{\#} = \ln(\mathcal{E}_r) + \ln(\|b\|_2) - \ln(\|A\|_2) - \ln(\|e_0\|_2)$$

$$\ln(\|R\|_2)$$

Plugging in the same values as before, we get,

- (d) State the definition of the graph G(B) of a matrix $B \in \mathbb{C}^{n \times n}$. Prove that $B \in \mathbb{C}^{n \times n}$ is irreducible if and only if its graph G(B) is connected.
 - (d) The graph G(B) of B is an oriented graph with vertices $1, \ldots, n$ and edges $i \to j$ if $a_{i,j} \neq 0$. We first show " \Rightarrow " by a contradiction argument. Assume that G(B) is not connected. There is a vertex k to which not all vertices are connected by a chain of edges. Let $S \subsetneq \{1, \ldots, n\}$ denote the set of vertices connected to k. Pick any $j \in S$ and any $i \in \{1, \ldots, n\} \setminus S$. Then

$$b_{ij} = 0 (\star$$

since otherwise i would be connected to $j \in S$, but since j is connected to k then also i would be connected to k in contradiction to $i \notin S$. After a suitable permutation $(B = P\tilde{B}P^T)$ we may assume that $S = \{1, \ldots, p\}$ with p < n and let q = n - p. By (\star) the lower left block of size $q \times p$ in \tilde{B} vanishes, hence B is not irreducible. Now, we show " \Leftarrow ". Assume that B is not irreducible. Up to renumbering of the vertices, the graphs of B and \tilde{B} are the same. Therefore, it is sufficient to show that $G(\tilde{B})$ is not connected. Let i > p and $j \le p$ be two vertices of $G(\tilde{B})$ and suppose that there is a chain of edges

$$i = i_0 \rightarrow i_1 \rightarrow \cdots \rightarrow i_k = j$$

connecting them. Necessarily, there is an edge $i_l \to i_{l+1}$ with $i_l > p$ and $i_{l+1} \le p$. But since $\tilde{a}_{i_l,i_{l+1}} = 0$ such an edge cannot exist. Hence, i cannot be connected to j so that $G(\tilde{B})$ is not connected.

2. (SSOR) The <u>symmetric successive over relaxation</u> consists in performing the following iteration:

$$i = 1, \dots, n: \qquad a_{ii}x_i^{(k+\frac{1}{2})} = \omega \left(-\sum_{j=1}^{i-1} a_{ij}x_j^{(k+\frac{1}{2})} - \sum_{j=i+1}^n a_{ij}x_j^{(k)} + b_i \right) - (\omega - 1)a_{ii}x_i^{(k)},$$

$$i = n, \dots, 1: \qquad a_{ii}x_i^{(k+1)} = \omega \left(-\sum_{j=1}^{i-1} a_{ij}x_j^{(k+\frac{1}{2})} - \sum_{j=i+1}^n a_{ij}x_j^{(k+1)} + b_i \right) - (\omega - 1)a_{ii}x_i^{(k+\frac{1}{2})}.$$

Here, $x^{(k)}$ stands for the k^{th} iterate, and $x^{(k+\frac{1}{2})}$ is an intermediate value. Show that SSOR is a linear iterative method with

$$M_{\text{SSOR}}^{-1} = \omega(2 - \omega)(D + \omega U)^{-1}D(D + \omega L)^{-1}.$$

Remark: Recalling that SOR uses $M_{SOR} = \frac{1}{\omega}D + L$ we see that SSOR essentially consists in performing an SOR step followed by a reverse SOR step with $\frac{1}{\omega}D + U$, which explains its name. A couple of SSOR steps sometimes are applied as a preconditioner in CG.

Answer: From the first part of the step we have that

$$a_{ii}x_i^{(k+\frac{1}{2})} + \sum_{j < i} \omega a_{ij}x_j^{(k+\frac{1}{2})} = \omega b_i - \sum_{j=i+1}^n \omega a_{ij}x_j^{(k)} - (\omega - 1)a_{ii}x_i^{(k)}$$

so that, after dividing by ω ,

$$\left(\frac{1}{\omega}D + L\right)x^{(k+\frac{1}{2})} = b - \left(U + (1 - \frac{1}{\omega})D\right)x^{(k)}$$

Similarly, the second part of the step gives

$$\left(\frac{1}{\omega}D + U\right)x^{(k+1)} = b - \left(L + \left(1 - \frac{1}{\omega}\right)D\right)x^{(k+\frac{1}{2})}.$$

Observe that

$$(L + (1 - \frac{1}{\omega})D)(\frac{1}{\omega}D + L)^{-1}$$

$$= (L + \frac{1}{\omega}D + (1 - \frac{2}{\omega})D)(\frac{1}{\omega}D + L)^{-1}$$

$$= I + (1 - \frac{2}{\omega})D(\frac{1}{\omega}D + L)^{-1}$$

$$= I + (\omega - 2)D(D + \omega L)^{-1}.$$
(1)

Inserting the formula for $x^{(k+\frac{1}{2})}$ into the one for $x^{(k)}$ therefore yields

Similarly to (1)

$$\left(\frac{1}{\omega}D + U\right)^{-1}\left(U + \left(1 - \frac{1}{\omega}\right)D\right) = I + \left(D + \omega U\right)^{-1}(\omega - 2)D.$$

We conclude that
$$x^{(k+1)} = \frac{1}{(\frac{1}{\omega}D + U)^{-1}(2 - \omega)D(D + \omega L)^{-1}b} + \frac{(I + (D + \omega U)^{-1}(\omega - 2)D)x^{(k)}}{(\frac{1}{\omega}D + U)^{-1}(\omega - 2)D(D + \omega L)^{-1}}(U + (1 - \frac{1}{\omega})D)x^{(k)} + \frac{(I + D + \omega U)^{-1}(\omega - 2)D\omega(D + \omega L)^{-1}}{(D + \omega L)^{-1}}(U + (1 - \frac{1}{\omega})D)x^{(k)} + \frac{M_{\text{SSOR}}^{-1}(U + (1 - \frac{1}{\omega})D)x^{(k)}}{(D + \omega L)^{-1}}(U + (1 - \frac{1}{\omega})D)x^{(k)} + \frac{M_{\text{SSOR}}^{-1}(U + (1 - \frac{1}{\omega})D)x^{(k)}}{(D + \omega L)^{-1}}(U + (1 - \frac{1}{\omega})D)x^{(k)} + \frac{M_{\text{SSOR}}^{-1}(U + (1 - \frac{1}{\omega})D)x^{(k)}}{(D + \omega L)^{-1}}(U + (1 - \frac{1}{\omega})D)x^{(k)} + \frac{M_{\text{SSOR}}^{-1}(U + (1 - \frac{1}{\omega})D)x^{(k)}}{(D + \omega L)^{-1}}(U + (1 - \frac{1}{\omega})D)x^{(k)} + \frac{M_{\text{SSOR}}^{-1}(U + (1 - \frac{1}{\omega})D)x^{(k)}}{(D + \omega L)^{-1}}(U + (1 - \frac{1}{\omega})D)x^{(k)} + \frac{M_{\text{SSOR}}^{-1}(U + (1 - \frac{1}{\omega})D)x^{(k)}}{(D + \omega L)^{-1}}(U + (1 - \frac{1}{\omega})D)x^{(k)} + \frac{M_{\text{SSOR}}^{-1}(U + (1 - \frac{1}{\omega})D)x^{(k)}}{(D + \omega L)^{-1}}(U + (1 - \frac{1}{\omega})D)x^{(k)} + \frac{M_{\text{SSOR}}^{-1}(U + (1 - \frac{1}{\omega})D)x^{(k)}}{(D + \omega L)^{-1}}(U + (1 - \frac{1}{\omega})D)x^{(k)} + \frac{M_{\text{SSOR}}^{-1}(U + (1 - \frac{1}{\omega})D)x^{(k)}}{(D + \omega L)^{-1}}(U + (1 - \frac{1}{\omega})D)x^{(k)} + \frac{M_{\text{SSOR}}^{-1}(U + (1 - \frac{1}{\omega})D)x^{(k)}}{(D + \omega L)^{-1}}(U + (1 - \frac{1}{\omega})D)x^{(k)} + \frac{M_{\text{SSOR}}^{-1}(U + (1 - \frac{1}{\omega})D)x^{(k)}}{(D + \omega L)^{-1}}(U + (1 - \frac{1}{\omega})D)x^{(k)} + \frac{M_{\text{SSOR}}^{-1}(U + (1 - \frac{1}{\omega})D)x^{(k)}}{(D + \omega L)^{-1}}(U + (1 - \frac{1}{\omega})D)x^{(k)} + \frac{M_{\text{SSOR}}^{-1}(U + (1 - \frac{1}{\omega})D)x^{(k)}}{(D + \omega L)^{-1}}(U + (1 - \frac{1}{\omega})D)x^{(k)} + \frac{M_{\text{SSOR}}^{-1}(U + (1 - \frac{1}{\omega})D)x^{(k)}}{(D + \omega L)^{-1}}(U + (1 - \frac{1}{\omega})D)x^{(k)} + \frac{M_{\text{SSOR}}^{-1}(U + (1 - \frac{1}{\omega})D)x^{(k)}}{(D + \omega L)^{-1}}(U + (1 - \frac{1}{\omega})D)x^{(k)} + \frac{M_{\text{SSOR}}^{-1}(U + (1 - \frac{1}{\omega})D)x^{(k)}}{(D + \omega L)^{-1}}(U + (1 - \frac{1}{\omega})D)x^{(k)} + \frac{M_{\text{SSOR}}^{-1}(U + (1 - \frac{1}{\omega})D)x^{(k)}}{(D + \omega L)^{-1}}(U + (1 - \frac{1}{\omega})D)x^{(k)} + \frac{M_{\text{SSOR}}^{-1}(U + (1 - \frac{1}{\omega})D)x^{(k)}}{(D + \omega L)^{-1}}(U + (1 - \frac{1}{\omega})D)x^{(k)} + \frac{M_{\text{SSOR}}^{-1}(U + (1 - \frac{1}{\omega})D)x^{(k)}}{(D + \omega L)^{-1}}(U + (1 - \frac{1}{\omega})D)x^{(k)} + \frac{M_{\text{SSOR}}^{$$

$$\begin{array}{l} \bullet & (\frac{1}{12}D + u)^{-1}(u + (1 - \frac{1}{12})D) \\ = (\frac{1}{12}D + u)^{-1}(u + \frac{1}{12}D + (1 - \frac{2}{12})D) \\ = \underline{\Gamma} + (\frac{1}{12}D + u)^{-1}(1 - \frac{2}{12})D \\ = \underline{\Gamma} + [\frac{1}{12}(D + \omega u)]^{-1} \frac{1}{12}(\omega - 2)D \\ = \underline{\Gamma} + \omega(D + \omega u)^{-1}(\omega - 2)D \\ = \underline{\Gamma} + (D + \omega u)^{-1}(\omega - 2)D \end{array}$$

$$-M_{ssor} = \frac{1}{\omega} \left(D + \omega L \right) \chi^{(k)} - M_{ssor} \left(u + \left[1 - \frac{1}{\omega} \right] D \right) \chi^{(k)}$$

$$= -M_{ssor} \left(\frac{1}{\omega} D + L + u + \left(1 - \frac{1}{\omega} \right) D \right) \chi^{(k)}$$

$$= -M_{SSR}(D+L+u)\chi^{(k)}$$

$$= -M_{SSR}(D+L+u)\chi^{(k)}$$

Answer: From the first part of the step we have that

$$a_{ii}x_i^{(k+\frac{1}{2})} + \sum_{j$$

so that, after dividing by ω ,

$$\left(\frac{1}{\omega}D + L\right)x^{(k+\frac{1}{2})} = b - \left(U + (1 - \frac{1}{\omega})D\right)x^{(k)}$$

Similarly, the second part of the step gives

$$\left(\frac{1}{\omega}D + U\right)x^{(k+1)} = b - \left(L + \left(1 - \frac{1}{\omega}\right)D\right)x^{(k+\frac{1}{2})}.$$

Observe that

$$(L + (1 - \frac{1}{\omega})D)(\frac{1}{\omega}D + L)^{-1}$$

$$= (L + \frac{1}{\omega}D + (1 - \frac{2}{\omega})D)(\frac{1}{\omega}D + L)^{-1}$$

$$= I + (1 - \frac{2}{\omega})D(\frac{1}{\omega}D + L)^{-1}$$

$$= I + (\omega - 2)D(D + \omega L)^{-1}.$$
(1)

Inserting the formula for $x^{(k+\frac{1}{2})}$ into the one for $x^{(k)}$ therefore yields

$$(\frac{1}{\omega}D + U)x^{(k+1)} = b - (L + (1 - \frac{1}{\omega})D)(\frac{1}{\omega}D + L)^{-1}(b - (U + (1 - \frac{1}{\omega})D)x^{(k)})$$

$$= -(\omega - 2)D(D + \omega L)^{-1}b$$

$$+ (U + (1 - \frac{1}{\omega})D)x^{(k)}$$

$$+ (\omega - 2)D(D + \omega L)^{-1}(U + (1 - \frac{1}{\omega})D)x^{(k)}.$$

Similarly to (1)

$$\left(\frac{1}{\omega}D + U\right)^{-1} \left(U + \left(1 - \frac{1}{\omega}\right)D\right) = I + \left(D + \omega U\right)^{-1} (\omega - 2)D.$$

We conclude that

$$x^{(k+1)} = \left(\frac{1}{\omega}D + U\right)^{-1}(2 - \omega)D(D + \omega L)^{-1}b$$

$$+ \left(I + (D + \omega U)^{-1}(\omega - 2)D\right)x^{(k)}$$

$$+ \left(\frac{1}{\omega}D + U\right)^{-1}(\omega - 2)D(D + \omega L)^{-1}(U + (1 - \frac{1}{\omega})D)x^{(k)}$$

$$= M_{\text{SSOR}}^{-1}b + x^{(k)}$$

$$+ \left(D + \omega U\right)^{-1}(\omega - 2)D\omega(D + \omega L)^{-1}\frac{1}{\omega}(D + \omega L)x^{(k)}$$

$$- M_{\text{SSOR}}^{-1}(U + (1 - \frac{1}{\omega})D)x^{(k)}$$

$$= M_{\text{SSOR}}^{-1}b - M_{\text{SSOR}}^{-1}(-M_{\text{SSOR}})x^{(k)}$$

$$- M_{\text{SSOR}}^{-1}\left(\frac{1}{\omega}D + L + U + (1 - \frac{1}{\omega})D\right)x^{(k)}$$

$$= D + L + U = A$$

$$= M_{\text{SSOR}}^{-1}b - M_{\text{SSOR}}^{-1}\left(\underbrace{A - M_{\text{SSOR}}}_{\text{SSOR}}\right)x^{(k)}$$

$$= N_{\text{SSOR}}^{-1}(b - N_{\text{SSOR}}x^{(k)}).$$