

Inference, Statistical Power and Experimental Design

Robin Welsch robin.welsch@aalto.fi human-ai-interaction.com

We can do better!

Let's power up!

Outline

- 1. Sample size planning and experimental design for statistical power
- 2. Determining a minimal effect size of interest
- 3. Thinking beyond *p*-values
- 4. Simulating data to estimate statistical power

Checklist for sample size planning of experimental studies

□s the study's goal defined? ☐ Parameter estimation ■ Exploration ☐ Hypothesis testing → Power analysis □Ressources known? ☐ Time ■ Money □ Personnel \square no limits \rightarrow simple power analysis □ Decision criterion for study success □ *p-value* → Poweranalysis ■ Bayes Factor □ Interval ☐ Data collection as an end in itself ☐ Amount of information (e.g., for qualitative studies)

Recap: Power (test strength) is central to hypothesis testing in experiments.

The goal is to achieve high power without wasting resources → reaching 100 % power would require infinitely many data points.

- Power is the ability to statistically detect an effect that truly exists.
- Higher power reduces the risk of committing a Type II error.
 - (incorrectly accepting the null hypothesis)
 - → Studies with low power and no significant results are not informative.
- Variables influencing power (aiming for >80%)
 - Typ 2 error (alpha) → set to 5 %
 - Sample Size
 - set before the study
 - Effect Size (z.B. cohen's d)
 - has to be estimated

How do I plan my study to find an effect*?

A priori: Power analysis for a betweensubjects study

Determination of N given a specified minimum effect size, power, and alpha.

Hypothesis: Notification tones (audible alerts) lead, on average, to longer daily smartphone usage (in minutes) compared to silent mode.

- Assumptions *t*-test:
 - Comparison of two groups
 - alpha = 5%
 - Power = 80%
 - *SD*_{between} = 40 Minutes
- Minimal effect size of interest → d = 10/40 = .25

A priori: Power analysis for a betweensubjects study

Determination of N given a specified minimum effect size, power, and alpha.

- Assumptions *t*-test:
 - Comparison of two groups
 - alpha = 5%
 - Power = 80%
 - SD_{between} = 40 Minutes
- Minimal effect size of interest → d = 10/40 = .25
- *n* for each group = 252

A-Priori: Poweranalyse für Within-Subjects Studie

Determination of N given a specified minimum effect size, power, and alpha.

 Comparison of smartphone usage (in minutes) with notification tones versus silent mode within a single sample

- Comparison within the sample
- alpha = 5%
- Power = 80%
- SD_{within} = 15 minutes

A-Priori: Poweranalyse für Within-Subjects Studie

Control of person-specific nuisance variables

- Assumptions:
 - Comparison within the sample
 - alpha = 5%
 - Power = 80%
 - SD_{within} = 15 minutes
- Minimal effect size of interest 10 minutes → d = 10/15 = .67
- 20 participants are enough

```
> pwr::pwr.t.test(d=.67,sig.level = .05,power=.80,type="paire
d",alternative = "two.sided")

Paired t test power calculation

n = 19.49243
d = 0.67
sig.level = 0.05
power = 0.8
alternative = two.sided

NOTE: n is number of *pairs*
```

Interactive Task

Go to: https://robwel.shinyapps.io/power_interactive/

Adjust the effect size, sample size, design, and, if applicable, the correlation to achieve over 80% power...

- 1. You are investigating a medium-sized effect (d = .5) in a between-subjects design. How many participants do you need at minimum?
- 2. You are investigating a medium-sized effect (d = .5) using a within-subjects design with a limited sample of 50 participants. How good must your measure be—that is, what minimum correlation is required?
- → How do correlation, sample size, and effect size relate to statistical power?

Interactive Power Analysis

Whats the relation of power, effect size and correlation within subjects?

Sample size for within- and betweensubjects designs

Higher power in a within-subjects design: due to reduced variability from individual differences, since each participant serves as their own control. Power in a between-subjects design: may require larger sample sizes to achieve similar power levels, because variability between individuals can mask effect sizes.

Interim conclusion I

Power analysis for classical statistical inference

- Getting the right sample size and design is important
- Power analysis can calibrate Type-II error
- We can adjust the design of a study to increase power

Questions?

Limitations of power analysis

- focuses on classical statistical inference with p-values
- Complex study study designs(e.g., RCT)
 - Analytical solutionis not possible
- Ressources are unrealistic for small effects
 - Use repeated measures
- Effect size has to be estimated
 - Hard in novel research areas

Limitations of power analysis

- focuses on classical statistical inference with p-values
- Complex study study designs(e.g., RCT)
 - Analytical solutionis not possible
- Ressources are unrealistic for small effects
 - Use repeated measures
- Effect size has to be estimated
 - Hard in novel research areas

How do I estimate the size of the effect for power analysis?

Identify hypothesis with the smallest effect

Run power analysis for statistical model that tests this effect

My data

>1600 data points

CHI has smaller effect sizes than cogntive science

Robin's rule of thumb

- 1. Find published effect sizes in Cognitive Science and HCI
- 2. <u>Halve the effect size be conservative (accounts for publication bias)</u>
- 3. Run power analysis
- 4. See if you can still run the study within the scope of your resources

Interim conclusion II

Minimal effect of interest

- Expecting too large effects is unrealistic
- Prior studies can guide the way
- We can use conservative estimates in the absence sufficient information

Questions?

Limitations of power analysis

- focuses on classical statistical inference with p-values
- Complex study study designs(e.g., RCT)
 - Analytical solutionis not possible
- Ressources are unrealistic for small effects
 - Use repeated measures
- Effect size has to be estimated
 - Hard in novel research areas

Thinking beyond *p*-values

Bayesian Learning

Bayesian and classical inference comparison

Recap 1

- Classical power analysis isn't directly applicable to Bayesian methods
- Bayesian statistics
 - Bayes Rule: Posterior = Likelihood×Prior
 - Prior: Initial beliefs about parameters before seeing data
 - Likelihood: Probability of observing the data for a given parameter value
 - Posterior: Updated beliefs after incorporating the data
 - Produces full distributions, not just point estimates → degree of hypothesis confirmation after seeing the data
 - Allows direct probability statements (e.g. "95% chance effect > 0")
 - Enables evidence quantification

Bayesian and classical comparison

Recap 2

- Question Asked
 - Classical (Frequentist): "If the null hypothesis is true, how surprising are our data?"
 - Bayesian: "Given the data we observed, how plausible is each hypothesis?"
- Core Probability
 - Frequentist: $P(data|H0) \rightarrow Compute p-value to assess rarity under H₀.$
 - Reject H_0 if $p < \alpha$ (fixed Type I error rate).
 - "Assuming no effect, there's only a 1% chance of seeing data this extreme."
 - Power analysis checks how likely it is to detect a true effect given the threshold
 - Bayesian: P(H|data)

 P(data|H) P(H)

 Derive posterior probability of hypotheses.
 - Declare support if posterior probability > threshold (e.g. 0.95) or Bayes factor above cutoff (e.g. BF₁₀ > 3) but also gradual statements are possible
 - "Given these data, there's a 95% chance the effect is positive."
 - Bayesian assurance/power simulates how much data is needed to learn enough from the data to make a decision

Bayesian Power?

T-test with different priors how quickly we reach decision criterion of posterior >.95

- As the curves rise, you see how quickly each prior reaches our 95 % posterior-probability cutoff:
- Steeper curve → less data needed: the stronger the prior (larger Cauchy scale), the faster P(δ>0) crosses 0.95.
- Rightward shift → more data needed: with weaker priors or smaller N, you need larger samples to hit 95 % certainty.

Bayesian Power (P(δ >0|data)>0.95) vs. Sample \$\footnote{\alpha}\$

Interim conclusion III

Power analysis for bayesian statistical inference

- We can update the prior based on simulated data to see how updating informs our decision
- Priors are critical for "power" of bayesian testing
- Gradual statements are also possible effects do not exist or not but after seeing the data, the probability of effect existence is xx%

Questions?

Limitations of power analysis

- focuses on classical statistical inference with p-values
- Complex study study designs(e.g., RCT)
 - Analytical solution is not possible
- Ressources are unrealistic for small effects
 - Use repeated measures
- Effect size has to be estimated
 - Hard in novel research areas

Using simulation for estimating power in classical inference

Tutorial

- t-test (simulation and analytical solution)
- Wilcoxon-test simulation and kruskal-wallis ANOVA
- Maybe: Nested repeated measures data

Questions?