Exercise 1: Multivariate Regression

Consider the multivariate regression setting on $\mathcal{X} \subset \mathbb{R}^p$ without target features, i.e., $\mathcal{Y} = \mathbb{R}$ and $\mathcal{T} = \{1, \dots, m\}$. Furthermore, consider the approach of learning a (simple) linear model $f_j(\mathbf{x}) = \mathbf{a}_j^{\top} \mathbf{x}$ for each target j independently. For this purpose, we would face the following optimization problem:

$$\min_{A} \|Y - \mathbf{X}A\|_F^2,$$

where $\|B\|_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^m B_{i,j}^2}$ is the Frobenius norm for a matrix $B \in \mathbb{R}^{n \times m}$ and

$$\mathbf{X} = \begin{bmatrix} (\mathbf{x}^{(1)})^{\top} \\ \vdots \\ (\mathbf{x}^{(n)})^{\top} \end{bmatrix}, \qquad A = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_m \end{bmatrix}, \qquad Y = \begin{bmatrix} \mathbf{y}^{(1)} \\ \vdots \\ \mathbf{y}^{(n)} \end{bmatrix}.$$

- (a) Show that $\hat{A} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}Y$ is the optimal solution in this case (provided that $\mathbf{X}^{\top}\mathbf{X}$ is invertible).
- (b) Assume that the data $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \mathcal{X} \times \mathcal{Y}^m$ is generated according to the following statistical model

$$(y_1,\ldots,y_m) = \mathbf{y} = (\mathbf{x}^{(i)})^{\top} A^* + \boldsymbol{\epsilon}^{\top},$$

where $A^* \in \mathbb{R}^{p \times m}$ and $\epsilon \sim \mathcal{N}(\mathbf{0}, \Sigma)$. Furthermore, $\epsilon^{(i)}$ are independent across all samples. Show that the maximum likelihood estimate for A^* coincides with the estimate in (a).

(c) Write a function implementing a gradient descent routine for the optimization of this linear model. Start with (for R):

```
#' @param step_size the step_size in each iteration
#' @param X the feature input matrix X
#' @param Y the score matrix Y
#' @param A a starting value for the parameter matrix
#' @param eps a small constant measuring the changes in each update step.
#' Stop the algorithm if the estimated model parameters do not change
#' more than \textbackslash{}code\{eps\}.
#' @return a parameter matrix A
gradient_descent <- function(step_size, X, Y, A, eps=1e-8){
    # >>> do something <<< return(A)
}</pre>
```

Hint: You have computed the gradient in (a).

- (d) Run a small simulation study by creating 20 data sets as indicated below and test different step sizes α (fixed across iterations) against each other and against the state-of-the-art routine for linear models (in R, using the function lm, in Python, e.g., sklearn.linear_model.LinearRegression).
 - Compare the difference in the estimated parameter matrices \hat{A} using the mean squared error, i.e.,

$$\frac{1}{m \cdot p} \sum_{i=1}^{p} \sum_{j=1}^{m} (\mathbf{a}_{i,j}^* - \hat{\mathbf{a}}_{i,j})^2$$

and summarize the difference over all 100 simulation repetitions.

¹Of course, in an iid fashion and the \mathbf{x} 's are independent of the $\boldsymbol{\epsilon}$'s.

• Compare the estimation also with the James-Stein estimate of A^* , which is given by

$$A^{JS} = \left(\mathbf{a}_1^{JS} \dots \mathbf{a}_m^{JS}\right),\,$$

where

$$\mathbf{a}_{j}^{JS} = \left(1 - \frac{(m-2)\sigma^{2}}{n\|\hat{\mathbf{a}}_{j} - \mathbf{a}_{j}^{*}\|_{2}^{2}}\right)(\hat{\mathbf{a}}_{j} - \mathbf{a}_{j}^{*}) + \mathbf{a}_{j}^{*}, \quad j = 1, \dots, m.$$

and $\hat{\mathbf{a}}_j$ is the MLE for the jth target parameter.

```
# settings
n <- 10000
p <- 100
m <- 6
nr_sims <- 20
# create data (only once)
X <- matrix(rnorm(n*p), ncol=p)</pre>
A_truth <- matrix(runif(p*m, -2, 2), ncol=m)
f_truth <- X%*%A_truth
# create result object
result_list <- vector("list", nr_sims)
for(sim_nr in nr_sims)
    # create response
    Y \leftarrow f_{truth} + rnorm(n*m, sd = 2)
    # >>> do something <<<
    # save results in list (performance, time)
    result_list[[sim_nr]] <- add_something_meaningful_here</pre>
}
```