į=

===

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: De Robertis, Edward M. Bouwmeester, Tewis
- (ii) TITLE OF INVENTION: Endoderm, Cardiac and Neural Inducing Factors
- (iii) NUMBER OF SEQUENCES: 10
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Majestic, Parsons, Siebert & Hsue
 - (B) STREET: Four Embarcadero Center, Suite 1100
 - (C) CITY: San Francisco
 - (D) STATE: California
 - (E) COUNTRY: U.S.A.
 - (F) ZIP: 94111-4106
 - (V) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: RC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: U\$ 08/878,474
 - (B) FILING DATE: 18-JUN-1997
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 60/020,150
 - (B) FILING DATE: 20-JUN-1996
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Siebert, J. Suzanne
 - (B) REGISTRATION NUMBER: 28,758
 - (C) REFERENCE/DOCKET NUMBER: 3100.002US1
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 415/248-5500
 - (B) TELEFAX: 415/362-5418

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 270 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Met Leu Leu Asn Val Leu Arg Ile Cys Ile Ile Val Cys Leu Val Asn 1 5 10 15

Asp Gly Ala Gly Lys His Ser Glu Gly Arg Glu Arg Thr Lys Thr Tyr 20 25 30

Ser Leu Asn Ser Arg Gly Tyr Phe Arg Lys Glu Arg Gly Ala Arg Arg 35 40 45

Ser Lys Ile Leu Leu Val Asn Thr Lys Gly Leu Asp Glu Pro His Ile 50 55 60

Gly His Gly Asp Phe Gly Leu Val Ala Glu Leu Phe Asp Ser Thr Arg 65 70 75 80

Thr His Thr Asn Arg Lys Glu Pro Asp Met Asn Lys Val Lys Leu Phe 85 90 95

Ser Thr Val Ala His Gly Asn Lys Ser Ala Arg Arg Lys Ala Tyr Asn 100 105 110

Gly Ser Arg Arg Asn Ile Phe Ser Arg Arg Ser Phe Asp Lys Arg Asn 115 120 125

Thr Glu Val Thr Glu Lys Pro Gly Ala Lys Met Phe Trp Asn Asn Phe 130 135 140

Leu Val Lys Met Asn Gly Ala Pro Gln Asn Thr Ser His Gly Ser Lys 145 150 155 160

Ala Gln Glu Ile Met Lys Glu Ala Cys Lys Thr Leu Pro Phe Thr Gln
165 170 175

Asn Ile Val His Glu Asn Cys Asp Arg Met Val Ile Gln Asn Asn Leu 180 185 190

Cys Phe Gly Lys Cys Ile Ser Leu His Val Pro Asn Gln Gln Asp Arg 195 200 205

Arg Asn Thr Cys Ser His Cys Leu Pro Ser Lys Phe Thr Leu Asn His 210 215 220

Leu Thr Leu Asn Cys Thr Gly Ser Lys Asn Val Val Lys Val Val Met 225 230 240

Met Val Glu Glu Cys Thr Cys Glu Ala His Lys Ser Asn Phe His Gln 245 250 255

Thr Ala Gln Phe Asn Met Asp Thr Ser Thr Thr Leu His His 260 265 270

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1411 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

GAATTCCTAA AAGCGGCACA GTGCAGGAAC	AGCAAGTCGC	TCAGAAACAC	TGCAGGGTCT	60
AGATATCATA CAATGTTACT AAATGTACTC	AGGATCTGTA	TTATCGTCTG	CCTTGTGAAT	120
GATGGAGCAG GAAAACACTC AGAAGGACGA	GAAAGGACAA	AAACATATTC	ACTTAACAGC	180
AGAGGTTACT TCAGAAAAGA AAGAGGAGCA	CGTAGGAGCA	AGATTCTGCT	GGTGAATACT	240
AAAGGTCTTG ATGAACCCCA CATTGGGCAT	GGTGATTTTG	GCTTAGTAGC	TGAACTATTT	300
GATTCCACCA GAACACATAC AAACAGAAAA	GAGCCAGACA	TGAACAAAGT	CAAGCTTTTC	360
TCAACAGTTG CCCATGGAAA CAAAAGTGCA	AGAAGAAAAG	CTTACAATGG	TTCTAGAAGG	420
AATATTTTT CTCGCCGTTC TTTTGATAAA	AGAAATACAG	AGGTTACTGA	AAAGCCTGGT	480
GCCAAGATGT TCTGGAACAA TTTTTTGGTT	AAAATGAATG	GAGCCCCACA	GAATACAAGC	540
CATGGCAGTA AAGCACAGGA AATAATGAAA	GAAGCTTGCA	AAACCTTGCC	CTTCACTCAG	600
AATATTGTAC ATGAAAACTG TGACAGGATG	GTGATACAGA	ACAATCTGTG	CTTTGGTAAA	660
TGCATCTCTC TCCATGTTCC AAATCAGCAA	GATCGACGAA	ATACTTGTTC	CCATTGCTTG	720
CCGTCCAAAT TTACCCTGAA CCACCTGACG	CTGAATTGTA	CTGGATCTAA	GAATGTAGTA	780
AAGGTTGTCA TGATGGTAGA GGAATGCACG	TGTGAAGCTC	ATAAGAGCAA	CTTCCACCAA	840

ACTGCACAGT	TTAACATGGA	TACATCTACT	ACCCTGCACC	ATTAAAAGGA	CTGTCTGCCA	900
TACAGTATGG	AAATGCCCAT	TTGTTGGAAT	ATTCGTTACA	TGCTATGTAT	CTAAAGCATT	960
ATGTTGCCTT	CTGTTTCATA	TAACCACATG	GAATAAGGAT	TGTATGAATT	ATAATTAACA	1020
AATGGCATTT	TGTGTAACAT	GCAAGATCTC	TGTTCCATCA	GTTGCAAGAT	AAAAGGCAAT	1080
ATTTGTTTGA	CTTTTTTCTA	CAAAATGAAT	ACCCAAATAT	ATGATAAGAT	AATGGGGTCA	1140
AAACTGTTAA	GGGGTAATGT	AATAATAGGG	ACTAACAACC	AATCAGCAGG	TATGATTTAC	1200
TGGTCACCTG	TTTAAAAGCA	AACATCTTAT	TGGTTGCTAT	GGGTTACTGC	TTCTGGGCAA	1260
AATGTGTGCC	TCATAGGGGG	GTTAGTGTGT	TGTGTACTGA	ATTAATTGTA	TTTATTTCAT	1320
TGTTACAATG	AAGAGGATGT	CTATGTTTAT	TTCACTTTTA	TTAATGTACA	ATAAATGTTC	1380
TTGTTTCTTT	ААААААААА	AAAAACTCGA	G	y		1411

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 318 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Met Ser Arg Thr Arg Lys Val Asp Ser Leu Leu Leu Leu Ala Ile Pro 1 5 10 15

Gly Leu Ala Leu Leu Leu Pro Asn Ala Tyr Cys Ala Ser Cys Glu 20 25 30

Pro Val Arg Ile Pro Met Cys Lys Ser Met Pro Trp Asn Met Thr Lys 35 40 45

Met Pro Asn His Leu His His Ser Thr Gln Ala Asn Ala Ile Leu Ala 50 55 60

Ile Glu Gln Phe Glu Gly Leu Leu Thr Thr Glu Cys Ser Gln Asp Leu 65 70 75 80

Leu Phe Phe Leu Cys Ala Met Tyr Ala Pro Ile Cys Thr Ile Asp Phe 85 90 95

Gln His Glu Pro Ile Lys Pro Cys Lys Ser Val Cys Glu Arq Ala Arq Ala Gly Cys Glu Pro Ile Leu Ile Lys Tyr Arg His Thr Trp Pro Glu Ser Leu Ala Cys Glu Glu Leu Pro Val Tyr Asp Arg Gly Val Cys Ile Ser Pro Glu Ala Ile Val Thr Val Glu Gln Gly Thr Asp Ser Met Pro 145 150 Asp Phe Ser Met Asp Ser Asn Asn Gly Asn Cys Gly Ser Gly Arg Glu His Cys Lys Cys Lys Pro Met Lys Ala Thr Gln Lys Thr Tyr Leu Lys 180 190 Asn Asn Tyr Asn Tyr Val Ile Arg Ala Lys Val Lys Glu Val Lys Val Lys Cys His Asp Ala Thr Ala Ile Val Glu Val Lys Glu Ile Leu Lys Ser Ser Leu Val Asn Ile Pro Lys Asp Thr Val Thr Leu Tyr Thr Asn 225 230 Ser Gly Cys Leu Cys Pro Gln Leu Val Ala Asn Glu Glu Tyr Ile Ile 255 Met Gly Tyr Glu Asp Lys Glu Arg Thr Arg Leu Leu Val Glu Gly 270 Ser Leu Ala Glu Lys Trp Arg Asp Arg Leu Ala Lys Lys Val Lys Arg 280 Trp Asp Gln Lys Leu Arg Arg Pro Arg Lys Ser Lys Asp Pro Val Ala 290 295 300 Pro Ile Pro Asn Lys Asn Ser Asn Ser Arg Gln Ala Arg Ser

315

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1875 base pairs
 - (B) TYPE: nucleic acid

310

- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

		•				(/
60	GGATTTGGTT	TTAGCCCTAT	AGGTGAATGG	CTCCTGGCAG	TCACACAGGA	GAATTCCCTT
120	GGATTTTTAT	TGAAGGACTT	CAGATAGGAT	TGATTGCTTT	GACACATGAT	TGTTGATTTT
180	TGGGACTAAA	TTGTATTGGA	ATTGTTCATT	TATCTGAGTA	ACTTTTAAAT	CTAATTCTGC
240	TGAGTTGTAG	TAAGGTGGGG	CCATAAACTA	TTTGACTTGC	ACTCCTTGCT	GATAAACTTA
300	AAGTAAGCCT	ATTCCCTCTA	TATTCCCTGT	ATTTTCCCTG	ATGTGCCCAG	TTGCTTTTAC
360	TCATTACTGC	GAAAGTGGAC	CTCGAACAAG	ATAACAATGT	GTTGGGCAGA	ACACATACAG
420	GCTTCGTGTG	TGCTTACTGT	TATTACCCAA	GCGCTTCTCT	ACCTGGACTG	TACTGGCCAT
480	ATGCCCAACC	CATGACCAAG	TGCCATGGAA	TGCAAATCTA	GATCCCCATG	AGCCTGTGCG
540	GAAGGTTTGC	TGAACAGTTT	TCCTGGCAAT	GCCAATGCCA	CAGCACTCAA	ATCTCCACCA
600	GCCCCCATTT	TGCCATGTAT	TCTTTCTGTG	GACCTTTTGT	ATGTAGCCAG	TGACCACTGA
660	GAAAGGGCCA	GTCCGTGTGC	AGCCTTGCAA	GAACCAATTA	TTTCCAGCAT	GTACCATCGA
720	AGCCTGGCAT	TTGGCCAGAG	ACCGGCACAC	CTCATAAAGT	TGAGCCCATT	GGGCCGGCTG
780	ATCGTCACAG	CCCAGAGGCT	TCTGCATCTC	GACAGAGGAG	GCCCGTATAT	GTGAAGAGCT
840	GGAAATTGCG	TTCAAACAAT	TCTCCATGGA	ATGCCAGACT	AACAGATTCA	TGGAACAAGG
900	ACGTATCTCA	AACCCAAAAG	CCATGAAGGC	AAATGCAAGC	GGAGCACTGT	GAAGCGGCAG
960	AAATGCCACG	GGTGAAAGTG	AAGTGAAAGA	ATCAGAGCAA	CAATTATGTA	AGAATAATTA
1020	AACATTCCTA	TTCCCTAGTG	TTCTCAAGTC	GTAAAGGAGA	AATTGTGGAA	ACGCAACAGC
1080	GTTGCCAATG	CCCCCAGCTT	GCTGCTTGTG	ACCAACTCAG	GACACTGTAC	AAGACACAGT
1140	CTAGTGGAAG	CAGGCTTCTA	AAGAGCGTAC	TATGAAGACA	AATTATGGGC	AGGAATACAT
1200	TGGGATCAAA	AGTCAAGCGC	TTGCTAAGAA	AGAGATCGTC	CGAAAAATGG	GATCCTTGGC
1260	AAAAACAGCA	AATTCCCAAC	CCGTGGCTCC	AGCAAAGACC	TCCCAGGAAA	AGCTTCGACG
. 1320	ATGGACTTTG	TGGAAACTCT	GAAAGGTGTA	TAGACTAACG	AGCGCGTAGT	ATTCCAGACA
1380	ACGTTATATT	GCACTACAGC	AAAAGAAATT	GGAAGAGCAA	TTGCATTGTT	AAACTAAGAT
1440	TTCTTTTTT	TCTCCTTTCC	TGATTGTAGT	CTGGTTTAGT	CTACAAGAAG	CTATTGTTTA

TTATAACTAT	ATTTGCACGT	GTTCCCAGGC	AATTGTTTTA	TTCAACTTCC	AGTGACAGAG	1500
CAGTGACTGA	ATGTCTCAGC	CTAAAGAAGC	TCAATTCATT	TCTGATCAAC	TAATGGTGAC .	1560
AAGTGTTTGA	TACTTGGGGA	AAGTGAACTA	ATTGCAATGG	TAAATCAGAG	AAAAGTTGAC	1620
CAATGTTGCT	TTTCCTGTAG	ATGAACAAGT	GAGAGATCAC	ATTTAAATGA	TGATCACTTT	1680
CCATTTAATA	CTTTCAGCAG	TTTTAGTTAG	ATGACATGTA	GGATGCACCT	AAATCTAAAT	1740
ATTTTATCAT	AAATGAAGAG	CTGGTTTAGA	CTGTATGGTC	ACTGTTGGGA	AGGTAAATGC	1800
CTACTTTGTC	AATTCTGTTT	TAAAAATTGC	CTAAATAAAT	ATTAAGTCCT	AAATAAAAA	1860
АААААААА	AAAAA					1875

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 979 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Met Leu Leu Phe Arg Ala Ile Pro Met Leu Leu Gly Leu Met 1 5 10 15

Val Leu Gln Thr Asp Cys Glu Ile Ala Gln Tyr Tyr Ile Asp Glu Glu
20 25 30

Glu Pro Pro Gly Thr Val Ile Ala Val Leu Ser Gln His Ser Ile Phe 35 40 45

Asn Thr Thr Asp Ile Pro Ala Thr Asn Phe Arg Leu Met Lys Gln Phe 50 55 60

Asn Asn Ser Leu Ile Gly Val Arg Glu Ser Asp Gly Gln Leu Ser Ile 65 70 75 80

Met Glu Arg Ile Asp Arg Glu Gln Ile Cys Arg Gln Ser Leu His Cys 85 90 95

Asn Leu Ala Leu Asp Val Val Ser Phe Ser Lys Gly His Phe Lys Leu 100 105 110

Leu Asn Val Lys Val Glu Val Arg Asp Ile Asn Asp His Ser Pro His Phe Pro Ser Glu Ile Met His Val Glu Val Ser Glu Ser Ser Ser Val Gly Thr Arg Ile Pro Leu Glu Ile Ala Ile Asp Glu Asp Val Gly Ser 150 Asn Ser Ile Gln Asn Phe Gln Ile Ser Asn Asn Ser His Phe Ser Ile 165 170 Asp Val Leu Thr Arg Ala Asp Gly Val Lys Tyr Ala Asp Leu Val Leu Met Arg Glu Leu Asp Arg Glu Ile Gln Pro Thr Tyr Ile Met Glu Leu 205 195 200 Leu Ala Met Asp Gly Gly Val Pro Ser Leu Ser Gly Thr Ala Val Val 210 215 Asn Ile Arg Val Leu Asp Phe Asn Asp Asn Ser Pro Val Phe Glu Arg Ser Thr Ile Ala Val Asp Leu Val Glu Asp Ala Pro Leu Gly Tyr Leu 250 Leu Leu Glu Leu His Ala Thr Asp Asp Glu Gly Val Asn Gly Glu 260 Ile Val Tyr Gly Phe Ser Thr Leu Ala Ser Gln Glu Val Arg Gln Leu 280 Phe Lys Ile Asn Ser Arg Thr Gly Ser Val Thr Leu Glu Gly Gln Val 295 300 Asp Phe Glu Thr Lys Gln Thr Tyr Glu Phe Glu Val Gln Ala Gln Asp 305 310 320 Leu Gly Pro Asn Pro Leu Thr Ala Thr Cys Lys Val Thr Val His Ile Leu Asp Val Asn Asp Asn Thr Pro Ala Ile Thr Ile Thr Pro Leu Thr 345 Thr Val Asn Ala Gly Val Ala Tyr Ile Pro Glu Thr Ala Thr Lys Glu 360 Asn Phe Ile Ala Leu Ile Ser Thr Thr Asp Arg Ala Ser Gly Ser Asn

375

380

Gly Gln Val Arg Cys Thr Leu Tyr Gly His Glu His Phe Lys Leu Gln 385 390 395 Gln Ala Tyr Glu Asp Ser Tyr Met Ile Val Thr Thr Ser Thr Leu Asp 410 Arg Glu Asn Ile Ala Ala Tyr Ser Leu Thr Val Val Ala Glu Asp Leu 420 425 430 Gly Phe Pro Ser Leu Lys Thr Lys Lys Tyr Tyr Thr Val Lys Val Ser Asp Glu Asn Asp Asn Ala Pro Val Phe Ser Lys Pro Gln Tyr Glu Ala Ser Ile Leu Glu Asn Asn Ala Pro Gly Ser Tyr Ile Thr Thr Val Ile 480 465 470 Ala Arg Asp Ser Asp Ser Asp Gln Asn Gly Lys Val Asn Tyr Arg Leu 490 Val Asp Ala Lys Val Met Gly Gln Ser Leu Thr Thr Phe Val Ser Leu 505 Asp Ala Asp Ser Gly Val Leu Arg Ala Val Arg Ser Leu Asp Tyr Glu 520 Lys Leu Lys Gln Leu Asp Phe Glu Ile Glu Ala Ala Asp Asn Gly Ile 530 Pro Gln Leu Ser Thr Arg Val Gln Leu Asn Leu Arg Ile Val Asp Gln 550 555 Asn Asp Asn Cys Pro Val Ile Thr Asn Pro Leu Leu Asn Asn Gly Ser **570**. 575 Gly Glu Val Leu Leu Pro Ile Ser Ala Pro Gln Asn Tyr Leu Val Phe 580 590 585 Gln Leu Lys Ala Glu Asp Ser Asp Glu Gly His Asn Ser Gln Leu Phe 595 600 Tyr Thr Ile Leu Arg Asp Pro Ser Arg Leu Phe Ala Ile Asn Lys Glu 615 610 Ser Gly Glu Val Phe Leu Lys Lys Gln Leu Asn Ser Asp His Ser Glu 635 Asp Leu Ser Ile Val Val Ala Val Tyr Asp Leu Gly Arg Pro Ser Leu 650 655 645

Ser Thr Asn Ala Thr Val Lys Phe Ile Leu Thr Asp Ser Phe Pro Ser Asn Val Glu Val Val Ile Leu Gln Pro Ser Ala Glu Glu Gln His Gln 675 680 Asp Met Ser Ile Ile Phe Ile Ala Val Leu Ala Gly Gly Cys Ala 690 695 Leu Leu Leu Ala Ile Phe Phe Val Ala Cys Thr Cys Lys Lys Lys 710 Ala Gly Glu Phe Lys Gln Val Pro Glu Gln His Gly Thr Cys Asn Glu 730 Glu Arg Leu Leu Ser Thr Pro Ser Pro Gln Ser Val Ser Ser Ser Leu 740 750 Ser Gln Ser Glu Ser Cys Gln Leu Ser Ile Asn Thr Glu Ser Glu Asn 760 Cys Ser Val Ser Ser Asn Gln Glu Gln His Gln Gln Thr Gly Ile Lys 775 His Ser Ile Ser Val Pro Ser Tyr His Thr Ser Gly Trp His Leu Asp 785 790 795 800 Asn Cys Ala Met Ser Ile Ser Gly His Ser His Met Gly His Ile Ser 805 810 815 Thr Lys Asp Ser Gly Lys Gly Asp Ser Asp Phe Asn Asp Ser Asp Ser Asp Thr Ser Gly Glu Ser Gln Lys Lys Ser Ile Glu Gln Pro Met Gln Ala Gln Ala Ser Ala Gln Tyr Thr Asp Glu Ser Ala Gly Phe Arg His 850 Ala Asp Asn Tyr Phe Ser His Arg Ile Asn Lys Gly Pro Glu Asn Gly 865 870 875 Asn Cys Thr Leu Gln Tyr Glu Lys Gly Tyr Arg Leu Ser Tyr Ser Val 890 Ala Pro Ala His Tyr Asn Thr Tyr His Ala Arg Met Pro Asn Leu His 900 905 910 Ile Pro Asn His Thr Leu Arg Asp Pro Tyr Tyr His Ile Asn Asn Pro

920

Val Ala Asn Arg Met His Ala Glu Tyr Glu Arg Asp Leu Val Asn Arg 930 935 940

Ser Ala Thr Leu Ser Pro Gln Arg Ser Ser Ser Arg Tyr Gln Glu Phe 945 950 955 960

Asn Tyr Ser Pro Gln Ile Ser Arg Gln Leu His Pro Ser Glu Ile Ala 965 970 975

Thr Thr Phe

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3655 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

AACTTTGATT CTTCAAGATG CTGCTTCTCT TCAGAGCCAT TCCAATGCTG CTGTTGGGAC	120
ANCIII GII GII GII GII GII GII GII GII GII	
maxmaammm xaxxxaxax mamaxxxmma accoramna combana comba	
TGATGGTTTT ACAAACAGAC TGTGAAATIG CCCAGTACIA CATAGATGAA GAAGAACCCC	240
CTGGCACTGT AATTGCAGTG TTGTCACAAC ACTCCATATT TAACACTACA GATATACCTG	300
CAACCAATTT CCGTCTAATG AAGCAATTTA ATAATTCCCT TATCGGAGTC CGTGAGAGTG	360
ATGGGCAGCT GAGCATCATG GAGAGGATTG ACCGGGAGCA AATCTGCAGG CAGTCCCTTC	420
ACTGCAACCT GGCTTTGGAT GTGGTCAGCT TTTCCAAAGG ACACTTCAAG CTTCTGAACG	480
TGAAAGTGGA GGTGAGAGAC ATTAATGACC ATAGCCCTCA CTTTCCCAGT GAAATAATGC	540
ATGTGGAGGT GTCTGAAAGT TCCTCTGTGG GCACCAGGAT TCCTTTAGAA ATTGCAATAG	600
ATGAAGATGT TGGGTCCAAC TCCATCCAGA ACTTTCAGAT CTCAAATAAT AGCCACTTCA	660
GCATTGATGT GCTAACCAGA GCAGATGGGG TGAAATATGC AGATTTAGTC TTAATGAGAG	720
AACTGGACAG GGAAATCCAG CCAACATACA TAATGGAGCT ACTAGCAATG GATGGGGGTG	780

TACCATCACT	ATCTGGTACT	GCAGTGGTTA	ACATCCGAGT	CCTGGACTTT	AATGATAACA	840
GCCCAGTGTT	TGAGAGAAGC	ACCATTGCTG	TGGACCTAGT	AGAGGATGCT	CCTCTGGGAT	900
ACCTTTTGTT	GGAGTTACAT	GCTACTGACG	ATGATGAAGG	AGTGAATGGA	GAAATTGTTT	960
ATGGATTCAG	CACTTTGGCA	TCTCAAGAGG	TACGTCAGCT	ATTTAAAATT	AACTCCAGAA	1020
CTGGCAGTGT	TACTCTTGAA	GGCCAAGTTG	ATTTTGAGAC	CAAGCAGACT	TACGAATTTG	1080
AGGTACAAGC	CCAAGATTTG	GGCCCCAACC	CACTGACTGC	TACTTGTAAA	GTAACTGTTC	1140
ATATACTTGA	TGTAAATGAT	AATACCCCAG	CCATCACTAT	TACCCCTCTG	ACTACTGTAA	1200
ATGCAGGAGT	TGCCTATATT	CCAGAAACAG	CCACAAAGGA	GAACTTTATA	GCTCTGATCA	1260
GCACTACTGA	CAGAGCCTCT	GGATCTAATG	GACAAGTTCG	CTGTACTCTT	TATGGACATG	1320
AGCACTTTAA	ACTACAGCAA	GCTTATGAGG	ACAGTTACAT	GATAGTTACC	ACCTCTACTT	1380
TAGACAGGGA	AAACATAGCA	GCGTACTCTT	TGACAGTAGT	TGCAGAAGAC	CTTGGCTTCC	1440
CCTCATTGAA	GACCAAAAAG	TACTACACAG	TCAAGGTTAG	TGATGAGAAT	GACAATGCAC	1500
CTGTATTTTC	TAAACCCCAG	TATGAAGCTT	CTATTCTGGA	AAATAATGCT	CCAGGCTCTT	1560
ATATAACTAC	AGTGATAGCC	AGAGACTCTG	ATAGTGATCA	AAATGGCAAA	GTAAATTACA	1620
GACTTGTGGA	TGCAAAAGTG	ATGGGCCAGT	CACTAACAAC	ATTTGTTTCT	CTTGATGCGG	1680
ACTCTGGAGT	ATTGAGAGCT	GTTAGGTCTT	TAGACTATGA	AAAACTTAAA	CAACTGGATT	1740
TTGAAATTGA	AGCTGCAGAC	AATGGGATCC	CTCAACTCTC	CACTCGCGTT	CAACTAAATC	1800
TCAGAATAGT	TGATCAAAAT	GATAATTGCC	CTGTGATAAC	TAATCCTCTT	CTTAATAATG	1860
GCTCGGGTGA	AGTTCTGCTT	CCCATCAGCG	CTCCTCAAAA	CTATTTAGTT	TTCCAGCTCA	1920
AAGCCGAGGA	TTCAGATGAA	GGGCACAACT	CCCAGCTGTT	CTATACCATA	CTGAGAGATC	1980
CAAGCAGATT	GTTTGCCATT	AACAAAGAAA	GTGGTGAAGT	GTTCCTGAAA	AAACAATTAA	2040
ACTCTGACCA	TTCAGAGGAC	TTGAGCATAG	TAGTTGCAGT	GTATGACTTG	GGAAGACCTT	2100
CATTATCCAC	CAATGCTACA	GTTAAATTCA	TCCTCACCGA	CTCTTTTCCT	TCTAACGTTG	2160
AAGTCGTTAT	TTTGCAACCA	TCTGCAGAAG	AGCAGCACCA	GATCGATATG	TCCATTATAT	2220
TCATTGCAGT	GCTGGCTGGT	GGTTGTGCTT	TGCTACTTTT	GGCCATCTTT	TTTGTGGCCT	2280
GTACTTGTAA	AAAGAAAGCT	GGTGAATTTA	AGCAGGTACC	TGAACAACAT	GGAACATGCA	2340

ATGAAGAACG CCTGTTAAGC ACCCCATCTC CCCAGTCGGT CTCTTCTTCT TTGTCTCAGT 2400 CTGAGTCATG CCAACTCTCC ATCAATACTG AATCTGAGAA TTGCAGCGTG TCCTCTAACC 2460 AAGAGCAGCA TCAGCAAACA GGCATAAAGC ACTCCATCTC TGTACCATCT TATCACACAT 2520 CTGGTTGGCA CCTGGACAAT TGTGCAATGA GCATAAGTGG ACATTCTCAC ATGGGGCACA 2580 TTAGTACAAA GGACAGTGGC AAAGGAGATA GTGACTTCAA TGACAGTGAC TCTGATACTA 2640 GTGGAGAATC ACAAAAGAAG AGCATTGAGC AGCCAATGCA GGCACAAGCC AGTGCTCAAT 2700 ACACAGATGA ATCAGCAGGG TTCCGACATG CCGATAACTA TTTCAGCCAC CGAATCAACA 2760 AGGGTCCAGA AAATGGGAAC TGCACATTGC AATATGAAAA GGGCTATAGA CTGTCTTACT 2.820 CTGTAGCTCC TGCTCATTAC AATACCTACC ATGCAAGAAT GCCTAACCTG CACATACCGA 2880 ACCATACCCT TAGAGACCCT TATTACCATA TCAATAATCC TGTTGCTAAT CGGATGCACG 2940 CGGAATATGA AAGAGATTTA GTCAACAGAA GTGCAACGTT ATCTCCGCAG AGATCGTCTA 3000 GCAGATACCA AGAATTCAAT TACAGTCCGC AGATATCAAG ACAGCTTCAT CCTTCAGAAA 3060 3120 TTGCTACAAC CTTTTAATCA TTAGGCATGC AAGTGAGAAT GCACAAAGGC AAGTGCTTTA GCATGAAAGC TAAATATATG GAGTCTCCCC TTTCCCTCTG ATGGATGGGG GGAGACACAG 3180 GACAGTGCAT AAATATACAG CTGCTTTCTA TTTGCATTTC ACTTGGGAAT TTTTTGTTTT 3240 TTTTACATAT TTATTTTCC TGAATTGAAT GTGACATTGT CCTGTCACCT AACTAGCAAT 3300 TAAATCCACA GACCTACAGT CAAATATTTG AGGGCCCCTG AAACAGCACA TCAGTCAGGA 3360 CCTAAAGTGG CCTTTTTACT TTTAGCAGCT CCTGGGTCTG CCCTCTGTGT TAATCAGCCC 3420 CTGGTCAAGT CCTGAGTAGG ATCATGGCGT TTTTATATGC ATCTCACCTA CTTTGGACGT 3480 GATTTACACA TAATAGGAAA CGCTTGGTTT CAGTGAAGTC TGTGTTGTAT ATATTCTGTT 3540 ATATACACGC ATTTTGTGTT TGTGTATATA TTTCAAGTCC ATTCAGATAT GTGTATATAG 3600 TGCAGACCTT GTAAATTAAA TATTCTGATA CTTTTTCCTC AATAAATATT TAAAT 3655

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 323 amino acids
 - (B) TYPE: amino acid

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Met Val Cys Cys Gly Pro Gly Arg Met Leu Leu Gly Trp Ala Gly Leu
1 10 15

Leu Val Leu Ala Ala Leu Cys Leu Leu Gln Val Pro Gly Ala Gln Ala 20 25 30

Ala Ala Cys Glu Pro Val Arg Ile Pro Leu Cys Lys Ser Leu Pro Trp
35 40 45

Asn Met Thr Lys Met Pro Asn His Leu His His Ser Thr Gln Ala Asn 50 55 60

Ala Ile Leu Ala Met Glu Gln Phe Glu Gly Leu Leu Gly Thr His Cys 65 70 75 80

Ser Pro Asp Leu Leu Phe Phe Leu Cys Ala Met Tyr Ala Pro Ile Cys 85 90 95

Thr Ile Asp Phe Gln His Glu Pro Ile Lys Pro Cys Lys Ser Val Cys 100 105 110

Glu Arg Ala Arg Gln Gly Cys Glu Pro Ile Leu Ile Lys Tyr Arg His

Ser Trp Pro Glu Ser Leu Ala Cys Asp Glu Leu Pro Val Tyr Asp Arg 130 135 140

Gly Val Cys Ile Ser Pro Glu Ala Ile Val Thr Ala Asp Gly Ala Asp 145 150 155 160

Phe Pro Met Asp Ser Ser Thr Gly His Cys Arg Gly Ala Ser Ser Glu 165 170 175

Arg Cys Lys Cys Lys Pro Val Arg Ala Thr Gln Lys Thr Tyr Phe Arg 180 185 190

Asn Asn Tyr Asn Tyr Val Ile Arg Ala Lys Val Lys Glu Val Lys Met
195 200 205

Lys Cys His Asp Val Thr Ala Val Val Glu Val Lys Glu Ile Leu Lys 210 215 220

Ala Ser Leu Val Asn Ile Pro Arg Asp Thr Val Asn Leu Tyr Thr Thr 225 230 235 240

Ser Gly Cys Leu Cys Pro Pro Leu Thr Val Asn Glu Glu Tyr Val Ile
Met Gly Tyr Glu Asp Glu Glu Arg Ser Arg Leu Leu Leu Val Glu Gly
Ser Ile Ala Glu Lys Trp Lys Asp Arg Leu Gly Lys Lys Val Lys Arg
Trp Asp Met Lys Leu Arg His Leu Gly Leu Gly Lys Thr Asp Ala Ser
305 Ser Thr Gln Asn Gln Lys Ser Gly Arg Asn Ser Asn Pro Arg Pro
310 Asp Ser

•

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2176 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

AAGCCTGGGA CCATGGTCTG CTG	CGGCCCG GGACGGATGC	TGCTAGGATG	GGCCGGGTTG	60
CTAGTCCTGG CTGCTCTCTG CCT	GCTCCAG GTGCCCGGAG	CTCAGGCTGC	AGCCTGTGAG	120
CCTGTCCGCA TCCCGCTGTG CAA	GTCCCTT CCCTGGAACA	TGACCAAGAT	GCCCAACCAC	180
CTGCACCACA GCACCCAGGC TAA	CGCCATC CTGGCCATGG	AACAGTTCGA	AGGGCTGCTG	240
GGCACCCACT GCAGCCCGGA TCT	TCTCTTC TTCCTCTGTG	CAATGTACGC	ACCCATTTGC	300
ACCATCGACT TCCAGCACGA GCC	CATCAAG CCCTGCAAGT	CTGTGTGTGA	GCGCGCCGA	360
CAGGGCTGCG AGCCCATTCT CAT	CAAGTAC CGCCACTCGT	GGCCGGAAAG	CTTGGCCTGC	420
GACGAGCTGC CGGTGTACGA CCG	CGGCGTG TGCATCTCTC	CTGAGGCCAT	CGTCACCGCG	480
GACGGAGCGG ATTTTCCTAT GGA	TTCAAGT ACTGGACACT	GCAGAGGGGC	AAGCAGCGAA	540
CGTTGCAAAT GTAAGCCTGT CAG	SAGCTACA CAGAAGACCT	ATTTCCGGAA	CAATTACAAC	600

[Page 15]

TATGTCATCC	GGGCTAAAGT	TAAAGAGGTA	AAGATGAAAT	GTCATGATGT	GACCGCCGTT	660
GTGGAAGTGA	AGGAAATTCT	AAAGGCATCA	CTGGTAAACA	TTCCAAGGGA	CACCGTCAAT	720
CTTTATACCA	CCTCTGGCTG	CCTCTGTCCT	CCACTTACTG	TCAATGAGGA	ATATGTCATC	780
ATGGGCTATG	AAGACGAGGA	ACGTTCCAGG	TTACTCTTGG	TAGAAGGCTC	TATAGCTGAG	840
AAGTGGAAGG	ATCGGCTTGG	TAAGAAAGTC	AAGCGCTGGG	ATATGAAACT	CCGACACCTT	900
GGACTGGGTA	AAACTGATGC	TAGCGATTCC	ACTCAGAATC	AGAAGTCTGG	CAGGAACTCT	960
AATCCCCGGC	CAGCACGCAG	CTAAATCCTG	AAATGTAAAA	GGCCACACCC	ACGGACTCCC	1020
TTCTAAGACT	GGCGCTGGTG	GACTAACAAA	GGAAAACCGC	ACAGTTGTGC	TCGTGACCGA	1080
TTGTTTACCG	CAGACACCGC	GTGGCTACCG	AAGTTACTTC	CGGTCCCCTT	TCTCCTGCTT	1140
CTTAATGGCG	TGGGGTTAGA	TCCTTTAATA	TGTTATATAT	TCTGTTTCAT	CAATCACGTG	1200
GGGACTGTTC	TTTTGCAACC	AGAATAGTAA	ATTAAATATG	TTGATGCTAA	GGTTTCTGTA	1260
CTGGACTCCC	TGGGTTTAAT	TTGGTGTTCT	GTACCCTGAT	TGAGAATGCA	ATGTTTCATG	1320
TAAAGAGAGA	ATCCTGGTCA	TATCTCAAGA	ACTAGATATT	GCTGTAAGAC	AGCCTCTGCT	1380
GCTGCGCTTA	TAGTCTTGTG	TTTGTATGCC	TTTGTCCATT	TCCCTCATGC	TGTGAAAGTT	1440
ATACATGTTT	ATAAAGGTAG	AACGGCATTT	TGAAATCAGA	CACTGCACAA	GCAGAGTAGC	1500
CCAACACCAG	GAAGCATTTA	TGAGGAAACG	CCACACAGCA	TGACTTATTT	TCAAGATTGG	1560
CAGGCAGCAA	AATAAATAGT	GTTGGGAGCC	AAGAAAAGAA	TATTTTGCCT	GGTTAAGGGG	1620
CACACTGGAA	TCAGTAGCCC	TTGAGCCATT	AACAGCAGTG	TTCTTCTGGC	AAGTTTTTGA	1680
TTTGTTCATA	AATGTATTCA	CGAGCATTAG	AGATGAACTT	ATAACTAGAC	ATCTGTTGTT	1740
ATCTCTATAG	CTCTGCTTCC	TTCTAAATCA	AACCCATTGT	TGGATGCTCC	CTCTCCATTC	1800
TAAATAAATA	TTGGCTTGCT	GTATTGGCCA	GGAAAAGAAA	GTATTAAAGT	ATGCATGCAT	1860
GTGCACCAGG	GTGTTATTTA	ACAGAGGTAT	GTAACTCTAT	AAAAGACTAT	AATTTACAGG	1920
ACACGGAAAT	GTGCACATTT	GTTTACTTTT	TTTCTTCCTT	TTGCTTTGGG	CTTGTGATTT	1980
TGGTTTTTGG	TGTGTTTATG	TCTGTATTTT	GGGGGGTGGG	TAGGTTTAAG	CCATTGCACA	2040
TTCAAGTTGA	ACTAGATTAG	AGTAGACTAG	GCTCATTGGC	CTAGACATTA	TGATTTGAAT	2100

TTGTGTTGTT TAATGCTCCA TCAAGATGTC TAATAAAAGG AATATGGTTG TCAACAGAGA CGACAACAAC AACAAA

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 325 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met Val Cys Gly Ser Pro Gly Gly Met Leu Leu Arg Ala Gly Leu
1 10 15

Leu Ala Leu Ala Leu Cys Leu Leu Arg Val Pro Gly Ala Arg Ala 20 25 30

Ala Ala Cys Glu Pro Val Arg Ile Pro Leu Cys Lys Ser Leu Pro Trp 35 40 45

Asn Met Thr Lys Met Pro Asn His Leu His His Ser Thr Gln Ala Asn 50 55 60

Ala Ile Leu Ala Ile Glu Gln Phe Glu Gly Leu Leu Gly Thr His Cys 65 70 75 80

Ser Pro Asp Leu Leu Phe Phe Leu Cys Ala Met Tyr Ala Pro Ile Cys 85 90 95

Thr Ile Asp Phe Gln His Glu Pro Ile Lys Pro Cys Lys Ser Val Cys 100 105 110

Glu Arg Ala Arg Gln Gly Cys Glu Pro Ile Leu Ile Lys Tyr Arg His 115 120 125

Ser Trp Pro Glu Asn Leu Ala Cys Glu Glu Leu Pro Val Tyr Asp Arg 130 135 140

Gly Val Cys Ile Ser Pro Glu Ala Ile Val Thr Ala Asp Gly Ala Asp 145 150 155 160

Phe Pro Met Asp Ser Ser Asn Gly Asn Cys Arg Gly Ala Ser Ser Glu 165 170 175

Arg Cys Lys Cys Lys Pro Ile Arg Ala Thr Gln Lys Thr Tyr Phe Arg Asn Asn Tyr Asn Tyr Val Ile Arg Ala Lys Val Lys Glu Ile Lys Thr 200 195 Lys Cys His Asp Val Thr Ala Val Val Glu Val Lys Glu Ile Leu Lys 210 Ser Ser Leu Val Asn Ile Pro Arg Asp Thr Val Asn Leu Tyr Thr Ser 225 Ser Gly Cys Leu Cys Pro Pro Leu Asn Val Asn Glu Glu Tyr Ile Ile 250 Met Gly Tyr Glu Asp Glu Glu Arg Ser Arg Leu Leu Val Glu Gly 270 260 Ser Ile Ala Glu Lys Trp Lys Asp Arg Leu Gly Lys Lys Val Lys Arg 280 275 Trp Asp Met Lys Leu Arg His Leu Gly Leu Ser Lys Ser Asp Ser Ser 300 295 Asn Ser Asp Ser Thr Gln Ser Gln Lys Ser Gly Arg Asn Ser Asn Pro 320 310 315 305 Arg Gln Ala Arg Asn 325

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICJ:
 - (A) LENGTH: 1893 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

GGCGGAGCGG GCCTTTTGGC	GTCCACTGCG	CGGCTGCACC	CTGCCCCATC	TGCCGGGATC	60
ATGGTCTGCG GCAGCCCGGG	AGGGATGCTG	CTGCTGCGGG	CCGGGCTGCT	TGCCCTGGCT	120
GCTCTCTGCC TGCTCCGGGT	GCCCGGGGCT	CGGGCTGCAG	CCTGTGAGCC	CGTCCGCATC	180
CCCCTGTGCA AGTCCCTGCC	CTGGAACATG	ACTAAGATGC	CCAACCACCT	GCACCACAGC	240

[Page 18]

ATAACTAGAC	ATCTGCTGTT	ATCACCATAG	TTTTGTTTAA	TTTGCTTCCT	TTTAAATAAA	1860
CCCATTGGTG	AAAGTCAAAA	АААААААА	AAA			1893