Introduction

- How to represent fractional numbers
 - Fixed point
 - IEEE-754 floating point (32 bit)
- Symbolic walk-through in CT1 & CT2
- &Loops (CT3 preview)
 - Conditional branches after CMP
 - Analysing loops
- CT3 Challenge (optional)
- *ARM instruction quick reference

Arithmetic on real numbers 1: Fixed Point

- So far, we have concentrated on integer representations signed or unsigned.
- There is an implicit binary point to the right:

00001101.

In general, the binary point can be in the middle of the word (or off the end!). This is a FIXED POINT representation of real numbers

- ❖ Fixed point arithmetic requires no extra hardware the binary point is in the mind of the programmer, like signed/unsigned the CPU does not care!
- *What is the **resolution** of the two fixed point schemes above?
- Fixed point works equally well with signed and unsigned numbers
 - Fixed point value = integer value * 2^B
 - B is 0 number of fractional bits to RIGHT of binary point
 - B is number of added zeros to LEFT of binary point

B is not known by CPU In mind of programmer

Arithmetic on Real Numbers 2: Floating Point

- Although fixed point representation can cope with numbers with fractions, the range of values that can represented is still limited.
- *Alternative: use the equivalent of "scientific notation", but in binary:

Move binary point 3 places to left: $1.0101_{(2)} \times 2^3$

 $10.5 = 1.3125 \times 8$

- Thus by choosing the correct exponent any number can be represented as a fixed point binary number in range 1.0000 - 1.1111 multiplied by an exponent which is a positive or negative power of 2.
- Equivalently, the binary point is "floating"

IEEE-754 32 bit standard floating point

*32-bit single precision floating point:

$$\begin{vmatrix} x = -1^{s} \times 2^{exp-127} \times 1. frac \\ 5.9 \times 10^{-39} < |x| < 3.4 \times 10^{38} \end{vmatrix}$$

see special cases for smaller numbers

Why not exponent = 128?

- Exp field is unsigned
- ♦ MSB s is sign-bit: 1 => negative
- \star Exponent (power of 2) = exp 127 Note this gives exponent in range [-127,127], and special case exp = 255
- The MSB of the mantissa is ALWAYS '1', therefore it is not stored
 mantissa = 1 + frac*2⁻²³ (mantissa = 1.frac):

Special cases in IEEE-754 representation

ехр	frac	meaning	notes
0	0	+/- 0	The smallest non-zero numbers are used to mean 0, otherwise there is no exact 0!
0	≠ 0	Denorm- alised	The mantissa is equal to 2 ⁻²² frac => mantissa in range 2 ⁻²² - 2
255	0	+/- ∞	The largest exponent is used for special cases
255	≠ 0	NaN	not a number, used for 0/0 etc

IEEE-754 → Decimal

- ❖The number above, C0600000₍₁₆₎, must have negative sign,
- *(subtract 127) Exponent = exp 127 = 1,

$$(add 1.)$$
 mantissa = 1+ $0.11_{(2)} = 1.11_{(2)}$
- $2^1 \times 1.11_{(2)} = -11.1_{(2)} = -3.5$

Note 1.0 is always added to 0.frac to make a mantissa:

 $1.0 \le \text{mantissa} < 2$

Decimal → IEEE 754

- *Floating point arithmetic is typically handled by Floating Point coprocessor (FPU) separate from but connected to the CPU. ARM architecture has FPUs, see latest ARM datasheets for more details.
- We will not consider ARM FPU instructions in this course.

Symbolic Walk-through (SW) in CT1 and CT2

*CT1

- SW always creates a Par statement equivalent to the code
- Use SW on any implementation to create an equivalent Par statement
- Par statements must exactly match for implementation to be correct
 - order of assignments inside Par does not matter

*CT2

- Specification is simple (a Par)
- Use SW on implementation to check it works

```
R10 := -(R4+1)
R1 := -(R1+1)
R2 := 0
R3 := hexadecimal 3A
Par {
   R0 := R1 ; R1 := R2 ;
   R2 := R0 ; R11 := R11
}
```



```
Par {
    R10 := -(R4+1)
    R1 := 0
    R0 := -(R1+1)
    R2 := R0
    R3 := hexadecimal 3A
}
```

Checking code with Symbolic Walk-through

- Check code meets specification
 - Mostly you do this in your head
- ***Be careful not to make mistakes**
 - Do it with pencil and paper
 - Test with specific input values

		R0	R1	R2
		r0	r1	r2
MOV	R2, R0	r0	r1	r0
MOV	R0, R1	r1	r1	r0
SUB	R1, R2, R1	r1	r0-r1	r0
ADD	R1, R1, R1	r1	2r0-2r1	r0
ADD	R1, R1, R1	r1	4r0-4r1	r0
RSB	R2, R0, #11	r1	4r0-4r1	11-r1

Conditional branches

see quick reference slide 11

Code	Condition for branch taken	
CMP R0,#0 BEQ LOOP	R0 = 0	
CMP R5, R4 BNE LOOP	R5 ≠ R4	
CMP R10,#0 BGE LOOP	R10 ≥ 0	
CMP R1, #-1 BGT LOOP	R1 > -1	
CMP R1, #100 BLE LOOP	R1 ≤ 100	
CMP R1, #5 SUB R1, R1, #1 BLT LOOP1 BEQ LOOP2	R1 < 5: LOOP1 R1 = 5: LOOP2	CMP writes status Status is then tested by BEQ etc Status is unchanged until another CMP

Loops and Labels

Blank lines don't matter

```
START MOV R0, #10

MOV R1, #0

LOOP SUB R0, R0, #1

ADD R1, R1, #2

CMP R0, #0

BNE LOOP
```

```
MOV R0, #10
MOV R1, #0
LOOP

SUB R0, R0, #1
ADD R1, R1, #2
CMP R0, #0
BNE LOOP
```

Analysing Assembly Loops

```
Loop:
Par {
  R0 := R0-1
   R1 := R1+2
       R_0: contents of R0
       R_1: contents of R1
Loop constant:
                2R_0 + R_1
Inside loop
Start and end: 2R_0 + R_1 = 20
```

```
MOV R0, #10

MOV R1, #0

LOOP SUB R0, R0, #1

ADD R1, R1, #2

CMP R0, #0

BNE LOOP

; what is R0 here?
; what is R1 here?
```

```
After loop: R_0 = 0 \Rightarrow R_1 = 20
```

Analysing Assembly Loops (2)

```
Loop:

Par {

R0 := R0-1

R1 := R1+2
}

R_0 : \text{contents of } R0

R_1 : \text{contents of } R1
```

Loop constant:

 $2R_0 + R_1$

Inside loop

Start and end: $2R_0 + R_1 = 0$

```
MOV R0, #0

MOV R1, #0

LOOP SUB R0, R0, #1

ADD R1, R1, #2

CMP R0, #0

BNE LOOP

; what is R0 here?
; what is R1 here?
```

What is the bug?

After loop: $R_0 = 0 \Rightarrow R_1 = 0$

Analysing Assembly Loops (3)

```
Loop:
Par {
                   R_0: contents of R0
  R0 := R0-1
                   R_1: contents of R1
  R1 := R1+2
```

```
MOV R0, #10
     MOV R1, #0
LOOP SUB RO, RO, #1
     ADD R1, R1, #2
     CMP R0, #0
     BGE LOOP
 what is R0 here?
  what is R1 here?
```

```
Loop Constant: 2R_0 + R_1
```

Start of Loop: $2R_0 + R_1 = 20 \land R_0 \ge 0$ BGE => R0 \ge 0 when looping

End of Loop: $2R_0 + R_1 = 20 \land R_0 \ge -1$ R0 := R0-1 => R0 ≥ -1

After Loop:

BGE => R0 < 0 after loop
$$R_0 < 0 \land \\ 2R_0 + R_1 = 20 \land \\ R_0 \ge -1$$

$$\Rightarrow \begin{array}{ccc} R_0 & = & -1 & \land \\ R_1 & = & 22 \end{array}$$

Analysing Assembly Loops (2a)

```
Loop:
Par {
  R0 := R0-1
  R1 := R1+2
       R_0: contents of R0
       R_1: contents of R1
Loop constant:
                2R_0 + R_1
Inside loop
```

```
MOV R0, #0
     MOV R1, #0
     CMP R0, #0
     BEQ LOOPEND
LOOP SUB R0, R0, #1
     ADD R1, R1, #2
     CMP R0, #0
     BNE LOOP
LOOPEND
 what is R0 here?
 what is R1 here?
```

After loop: $R_0 = 0 \Rightarrow R_1 = 0$

Start and end: $2R_0 + R_1 = 0$

What type of loop is this?

Analysing Assembly Loops (2b)

```
MOV R0, #0
     MOV R1, #0
     CMP R0, #0
     BEQ LOOPEND
LOOP SUB R0, R0, #1
     ADD R1, R1, #2
     CMP R0, #0
     BNE LOOP
LOOPEND
  what is R0 here?
 what is R1 here?
```

```
MOV R0, #0
     MOV R1, #0
LOOP CMP RO, #0
     BEQ LOOPEND
     SUB R0, R0, #1
     ADD R1, R1, #2
     B LOOP
LOOPEND
; what is R0 here?
; what is R1 here?
```

While loop optimisation

CT3 Challenge (optional)

- Must it be the same code as my CT3 submission?
 - No
- Must I keep to no more than 50 instructions?
 - Yes
- *How fast should my code be?
 - My answer is < 100,000 cycles for 1,999
 - Competitive
- Which instructions can I use?
 - MOV,MVN,ADD,SUB,RSB
 - EOR,AND,ORR
 - B,BEQ,BNE,BGE,BGT,BLE,BLT

ARM Quick Reference

- Compact guide to all of the ARM instruction set that is examined
- *Will be needed from CT4 onwards.
- Get used to using it since this reference (and no other) is allowed during tests
- Online links (on the lectures and handouts page):
 - Full size
 - Normal size 4 slides per page