COMP 3711 Design and Analysis of Algorithms

Lecture 7: Intro to Randomized Algorithms

Introduction to Randomized Algorithms

- 1. A Quick Review of Probability
- 2. The Hiring Problem
- 3. Generating a Random Permutation
- 4. Various Other Items
 - Shuffling Cards
 - The Birthday Paradox
 - Coupon Collectors
 - Generating Random Numbers

A quick review of probability theory

A discrete random variable takes on a countable number of distinct values (usually counts).

Expectation. The expectation, E[X], of a discrete random variable X, is defined as:

$$E[X] = \sum_{i} i \cdot \Pr[X = i]$$

Q: Roll a 6-sided dice. What is the expected value?

A:
$$E[X] = \sum_{i=1}^{6} i \cdot \frac{1}{6} = 3.5$$

Q: Roll two dice. What is the expected TOTAL value?

A:
$$E[X] = 2 \cdot \frac{1}{36} + 3 \cdot \frac{2}{36} + 4 \cdot \frac{3}{36} + 5 \cdot \frac{4}{36} + 6 \cdot \frac{5}{36} + 7 \cdot \frac{6}{36} + 8 \cdot \frac{5}{36} + 9 \cdot \frac{4}{36} + 10 \cdot \frac{3}{36} + 11 \cdot \frac{2}{36} + 12 \cdot \frac{1}{36} = 7$$

Q: Roll two dice. What is the expected MAXIMUM value seen on a die?

A:
$$E[X] = 1 \cdot \frac{1}{36} + 2 \cdot \frac{3}{36} + 3 \cdot \frac{5}{36} + 4 \cdot \frac{7}{36} + 5 \cdot \frac{9}{36} + 6 \cdot \frac{11}{36} = 4.47$$

A quick review of probability theory (cont)

Expectation. The expectation, E[X], of a discrete random variable X, is defined as:

 $E[X] = \sum i \cdot \Pr[X = i]$

Q (waiting time for the first success): Coin comes up heads with probability p and tails with probability 1-p. How many flips X until first head is seen (lets call it the waiting time, for later use).

A:

$$E[X] = \sum_{j=1}^{\infty} j \cdot Pr[X = j] = \sum_{j=1}^{\infty} j \cdot (1-p)^{j-1}p = p \sum_{j=1}^{\infty} j \cdot (1-p)^{j-1} = p \cdot \frac{1}{p^2} = \frac{1}{p}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$j-1 \text{ tails 1 head}$$
waiting time=1/p

Exercise on a new series

Show that for
$$0 :$$

$$\sum_{j=1}^{\infty} j(1-p)^{j-1} = \frac{1}{p^2}$$

Hint: use the infinite geometric series, for 0 < x < 1: $\sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \dots = \frac{1}{1-x}$

$$\sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \dots = \frac{1}{1 - x}$$

The solution is similar to the solution for the geometric series.

Set
$$x = 1 - p$$
 $(x < 1)$. Then, $S = \sum_{j=1}^{\infty} j(1-p)^{j-1} = \sum_{j=1}^{\infty} jx^{j-1} = \sum_{k=0}^{\infty} (k+1)x^k = 1 + 2x + 3x^2 + 4x^3 + \cdots$

Multiply with
$$x$$
:
$$xS = \sum_{j=1}^{\infty} jx^j = \sum_{k=0}^{\infty} (k+1)x^{k+1} = x + 2x^2 + 3x^3 + 4x^4 + \cdots$$

Compute
$$S - xS$$
:

Compute
$$S - xS$$
: $S - xS = (1 - x)S = 1 + x + x^2 + x^3 + \dots = \frac{1}{1 - x}$

$$S = \frac{1}{(1-x)^2} = \frac{1}{p^2}$$

Linearity of expectation

(1). Given two random variables X and Y (not necessarily independent),

$$E[X+Y] = E[X] + E[Y].$$

Remark: E[XY] = E[X]E[Y] only when X and Y are independent.

Example: Roll two dice. What is the expected TOTAL value X?

We saw that we can calculate

$$E[X] = 2 \cdot \frac{1}{36} + 3 \cdot \frac{2}{36} + 4 \cdot \frac{3}{36} + 5 \cdot \frac{4}{36} + 6 \cdot \frac{5}{36} + 7 \cdot \frac{6}{36} + 8 \cdot \frac{5}{36} + 9 \cdot \frac{4}{36} + 10 \cdot \frac{3}{36} + 11 \cdot \frac{2}{36} + 12 \cdot \frac{1}{36} = 7$$

Easier way is to let X_1 , X_2 be the random variables that are values of first and second die. Then $E[X_1] = 3.5$, $E[X_2] = 3.5$ and by *Linearity of Expectation*

$$E[X_1+X_2] = E[X_1] + E[X_2] = 3.5 + 3.5 = 7.$$

Exercise Coupon Collector

Coupon collector. Each box of cereal contains a coupon. There are n different types of coupons. Assuming a box contains each type of coupon equally likely, how many boxes do you need to open to have at least one coupon of each type?

Solution.

- Stage i = number of boxes to open between having i and i + 1 distinct coupons.
- What is the probability p of success at stage 0?
- . 1
- What is the probability p of success at stage i?
- $p = \frac{n-\iota}{n}$
- Let X_i = number of boxes to open at stage i (waiting time at stage i)
- What is the expected value of X_i ?
- What is the expected number of boxes you are expected to open in total?

$$E[X] = \sum_{i=0}^{n-1} E[X_i] = \sum_{i=0}^{n-1} \frac{n}{n-i} = n \sum_{i=1}^{n} \frac{1}{i} = \Theta(n \log n) \qquad (\because \sum_{i=1}^{n} 1/i = \Theta(\log n))$$

Indicator random variables

An indicator random variable X only takes values 0 or 1: E[X] = Pr[X = 1].

Example. Shuffle a deck of n cards; turn them over one at a time; try to guess each card (n guesses in total). Assume you can't remember what's already been turned over and just guess a card from full deck uniformly at random.

- Q. What is the expected number of correct guesses?
- A. (surprisingly effortless using linearity of expectation)
- Let $X_i = 1$ if i^{th} guess is correct and 0 otherwise.
- Let $X = \text{number of correct guesses} = X_1 + \cdots + X_n$.
- $E[X_i] = \Pr[X_i = 1] = 1/n$.
- $E[X] = E[X_1] + \dots + E[X_n] = 1/n + \dots + 1/n = 1.$

Exercise on Guessing Cards with Memory

Guessing with memory. Shuffle a deck of n cards; turn them over one at a time; try to guess each card. You remember all the cards that have been turned over.

Q. What's the expected number of correct guesses?

A.

- Let $X_i = 1$ if i^{th} guess is correct and 0 otherwise.
- Let $X = \text{number of correct guesses} = X_1 + \cdots + X_n$.
- $E[X_i] = \Pr[X_i = 1] = 1/(n-i+1)$.
- $E[X] = E[X_1] + \dots + E[X_n] = \frac{1}{n} + \dots + \frac{1}{2} + \frac{1}{1} = \Theta(\log n)$.

Will now use this to analyze a simple RANDOMIZED algorithm

The Hiring Problem

```
\begin{aligned} & \text{Hire-Assistant}(n): \\ & best \leftarrow 0 \\ & \text{for } i \leftarrow 1 \text{ to } n \\ & \text{interview candidate } i \\ & \text{if candidate } i \text{ is better than } best \text{ then} \\ & & \text{hire candidate } i \end{aligned}
```

Q: How many people are hired in the worst case and when;

Q: How to avoid the randomness of the input

A: Insert randomness in the algorithm itself

The Hiring Problem: Randomized Algorithm

```
Hire-Assistant(n):

randomly permute all n candidates

best \leftarrow 0

for i \leftarrow 1 to n

interview candidate i

if candidate i is better than best then

hire candidate i

best \leftarrow i
```

Q: What is the expected number of hires?

A: Similar to Guessing Cards with Memory

- Let $X_i = 1$ if you hire candidate i and 0 otherwise.
- Set $X = \text{number of hires} = X_1 + \cdots + X_n$.
- $E[X_i] = \Pr[X_i = 1] = 1/i$. (Among the first *i* candidates, the best has probability 1/i to be placed at the last position.)

•
$$E[X] = E[X_1] + \dots + E[X_n] = 1 + \frac{1}{2} + \dots + \frac{1}{n-1} + \frac{1}{n} = \Theta(\log n)$$
.

Exercise The Birthday Paradox

Problem: Suppose there are n=365 days in a year, and every person's birthday falls on one of the n days with equal probability.

There are k people in a room. How large should k be for us to expect two people in the room to have the same birthday?

Analysis:

- Define $X_{ij} = 1$ if person i and person j have the same birthday, and 0 otherwise.
- We know $E[X_{ij}] = \Pr[X_{ij} = 1] = 1/n$.
- Let $X = \sum_{1 \le i < j \le k} X_{ij}$ be the number of pairs of people having the same birthday.
- We have $E[X] = E\left[\sum_{1 \le i \le k} X_{ij}\right] = {k \choose 2} \frac{1}{n} = \frac{k(k-1)}{2n}$
- So, when $\frac{k(k-1)}{2n} \ge \frac{(k-1)^2}{2n} \ge 1$, or $k \ge \sqrt{2n} + 1 \approx 28$, we expect to see at least one pair of people having the same birthday.

Generating a Random Permutation

- Our solution to Hiring problem required randomly ordering the interview order of the applicants
- Mathematically, we wanted to find a random permutation (ordering of the applicants. How can we do this?
- There are n! different permutations of n items. An algorithm that generates a random permutation would generate each one with probability 1/n!
- Computers normally only allow you to choose a random integer in a range. How can we use a procedure that generates a random integer to generate a random permutation?
- On next page we assume that our computer has a procedure Random(1,i) that generates a random uniform integer between 1 and i. (uniform means that each integer has same probability of occurring)

How to Generate a Random Permutation

RandomPermute(A):

 $n \leftarrow A.length$

for $i \leftarrow 1$ to n

swap A[i] with A[Random(1,i)]

1	2	3	4	5	6	7	8	9	10	i = 1	Random(1, i) = 1
2	1	3	4	5	6	7	8	9	10	i = 2	Random(1, i) = 1
2	3	1	4	5	6	7	8	9	10	i = 3	Random(1,i) = 2
4	3	1	2	5	6	7	8	9	10	i = 4	Random(1, i) = 1
4	3	1	2	5	6	7	8	9	10	<i>i</i> = 5	Random(1, i) = 5
4	6	1	2	5	3	7	8	9	10	<i>i</i> = 6	Random(1, i) = 2
4	6	1	2	5	3	7	8	9	10	i = 7	Random(1, i) = 7
4	6	1	8	5	3	7	2	9	10	i = 8	Random(1, i) = 4
9	6	1	8	5	3	7	2	4	10	i = 9	Random(1,i) = 1
9	6	1	8	10	3	7	2	4	5	<i>i</i> = 10	Random(1, i) = 5

How to Generate a Random Permutation-Proof of Correctness

- Precise meaning of a "random permutation": Each different permutation is output with probability 1/n!
- We will show by induction on i that, after the i-th iteration, A[1..i] has been randomly permuted,
 - Base case i = 1: trivial
 - Assume $A[1..n-1]=(a_1,...,a_j,...,a_{n-1})$ has been randomly permuted after n-1 iterations of the algorithm.
 - Consider any permutation $(a_1, ..., a_n)$ for A[1..n]. What's the probability that $A[1..n] = (a_1, ..., a_n)$ after the n-th iteration?
 - Let a'_n be the element at position n before the permutation, and j = Random(1, n).
 - Then $(a_1, ..., a_n)$ has been created from $(a_1, ..., a_j, ..., a_{n-1})$ by swapping a'_n with a_j .
 - By the induction hypothesis the probability of producing $(a_1, ..., a_i, ..., a_{n-1})$ is 1/(n-1)!.
 - The probability of selecting a specific j is 1/n.
 - Thus the probability of $(a_1, ..., a_n)$ is $1/(n-1)! \cdot 1/n \cdot 1 = 1/n!$.

How does a computer generate a random number?

Pseudorandom numbers:

- Computed by a deterministic algorithm from a "seed".
- If the "seed" is unknown, then it's difficult to predict the next number to be generated.
 - Often use current machine time as the seed.
- Higher difficulty needs more complicated algorithms.

```
- rand: "linear generator" x_n = (214013x_{n-1} + 2531011) \mod 2^{32}
```

- -ranlux48
- knuth b
- http://en.cppreference.com/w/cpp/numeric/random

True random numbers:

- Electronic noise, thermal noise, atmospheric noise, etc.
- Expensive and slow
- http://www.random.org

How Humans Do Shuffling

Riffle shuffle

Analysis:

- $\frac{3}{2}\log n$ riffle shuffles can shuffle a deck of n cards to produce a distribution that is close to uniform [Bayer & Diaconis, 1992].
- For n=52, 8 shuffles are good, 7 also OK.