Module 5: Dictionaries II

CS 240 - Data Structures and Data Management

Mark Petrick

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2017

Dictionary ADT: Review

A *dictionary* is a collection of *key-value pairs* (KVPs), supporting operations *search*, *insert*, and *delete*.

Realizations

- Unordered array or linked list: $\Theta(1)$ insert, $\Theta(n)$ search and delete
- Ordered array: $\Theta(\log n)$ search, $\Theta(n)$ insert and delete
- Balanced search trees (AVL trees):
 Θ(log n) search, insert, and delete

Self-Organizing Search

- Unordered linked list search: $\Theta(n)$, insert: $\Theta(1)$, delete: $\Theta(1)$ (after a search)
- Linear search to find an item in the list
- Is there a more useful ordering?

Self-Organizing Search

- Unordered linked list search: $\Theta(n)$, insert: $\Theta(1)$, delete: $\Theta(1)$ (after a search)
- Linear search to find an item in the list
- Is there a more useful ordering?
- No: if items are accessed equally likely
- Yes: otherwise (we have a probability distribution for items)
- Optimal static ordering: sorting items by their probabilities of access in non-increasing order minimizes the expected cost of Search.
- Proof Idea: For any other ordering, exchanging two items that are out-of-order according to their access probabilities makes the total cost decrease.

Optimal Static Ordering

A list of elements ordered by non-increasing probability of access has minimum expected access cost

•
$$L = \langle x_1, x_2, \dots, x_n \rangle$$

Expected access cost in L is
$$E(L) = \sum_{i=1}^n P(x_i) T(x_i) = \sum_{i=1}^n P(x_i) \cdot i$$

$$P(x_i) \text{ - access probability for } x_i$$

$$T(x_i) \text{ - position of } x_i \text{ in } L$$

Example $P(a) = 0.3 \ P(b) = 0.5 \ P(c) = 0.2$ $L = \langle a, b, c \rangle$ E(L) = 0.3 + 0.5 * 2 + 0.2 * 3 = 1.9 $L = \langle b, a, c \rangle$ E(L) = 0.5 + 0.3 * 2 + 0.2 * 3 = 1.7

Optimal Static Ordering

A list of elements ordered by non-increasing probability of access has minimum expected access cost

Proof by Contradiction

• $L = \langle x_1, \dots, x_k, x_{k+1}, \dots, x_n \rangle$ Suppose the access cost of L is optimal and there is k such that $P(x_k) < P(x_{k+1})$

$$E(L) = P(x_k) \cdot k + P(x_{k+1}) \cdot (k+1) + \sum_{i \neq k, k+1} P(x_i) \cdot i$$

• Create another list L' by swapping x_k and x_{k+1} .

$$L' = \langle x_1, \ldots, x_{k+1}, x_k \ldots, x_n \rangle$$

$$E(L') = P(x_{k+1}) \cdot k + P(x_k) \cdot (k+1) + \sum_{i \neq k, k+1} P(x_i) \cdot i$$

Fall 2017

5 / 16

• $E(L') - E(L) = P(x_k) - P(x_{k+1}) < 0 \Rightarrow E(L') < E(L)$ Contradiction

Dynamic Ordering

- What if we do not know the access probabilities ahead of time?
- Move-To-Front(MTF): Upon a successful search, move the accessed item to the front of the list
- Transpose: Upon a successful search, swap the accessed item with the item immediately preceding it

Dynamic Ordering

- What if we do not know the access probabilities ahead of time?
- Move-To-Front(MTF): Upon a successful search, move the accessed item to the front of the list
- Transpose: Upon a successful search, swap the accessed item with the item immediately preceding it

Performance of dynamic ordering:

- Both can be implemented in arrays or linked lists.
- Transpose does not adapt quickly to changing access patterns.
- MTF Works well in practice.
- Theoretically MTF is "competitive":
 No more than twice as bad as the optimal "offline" ordering.

Skip Lists

- Randomized data structure for dictionary ADT
- A hierarchy of ordered linked lists
- A skip list for a set S of items is a series of lists S_0, S_1, \dots, S_h such that:
 - ▶ Each list S_i contains the special keys $-\infty$ and $+\infty$
 - List S_0 contains the keys of S in non-decreasing order
 - ▶ Each list is a subsequence of the previous one, i.e., $S_0 \supseteq S_1 \supseteq \cdots \supseteq S_h$
 - List S_h contains only the two special keys

Skip Lists

- A skip list for a set S of items is a series of lists S_0, S_1, \cdots, S_h
- A two-dimensional collection of positions: levels and towers
- Traversing the skip list: after(p), below(p)


```
skip-search(L, k)
L: A skip list, k: a key
1. p \leftarrow \text{topmost left position of } L
2. S \leftarrow stack of positions, initially containing p
3. while below(p) \neq null do
4. p \leftarrow below(p)
5. while key(after(p)) < k do
   p \leftarrow after(p)
6.
7. push p onto S
   return S
```

- S contains positions of the largest key **less than** k at each level.
- after(top(S)) will have key k, iff k is in L.
- drop down: $p \leftarrow below(p)$
- scan forward: $p \leftarrow after(p)$

Example: Skip-Search(S, 87)

Petrick (SCS, UW) CS240 - Module 5 Fall 2017 10 / 16

- Skip-Insert(S, k, v)
 - ▶ Randomly compute the height of new item: repeatedly toss a coin until you get tails, let *i* the number of times the coin came up heads
 - Search for k in the skip list and find the positions p_0, p_1, \dots, p_i of the items with largest key less than k in each list S_0, S_1, \dots, S_i (by performing Skip-Search(S, k))
 - ▶ Insert item (k, v) into list S_j after position p_j for $0 \le j \le i$ (a tower of height i)

Example: Skip-Insert(S, 52, v) Coin tosses: H,T $\Rightarrow i = 1$

Example: Skip-Insert(S, 52, v)

Coin tosses: $H,T \Rightarrow i = 1$

Skip-Search(S, 52)

Example: Skip-Insert(S, 52, v)

Coin tosses: $H,T \Rightarrow i = 1$

Example: Skip-Insert(S, 100, v) Coin tosses: H,H,H,T $\Rightarrow i = 3$

Example: Skip-Insert(S, 100, v) Coin tosses: H,H,H,T $\Rightarrow i = 3$ Skip-Search(S, 100)

Petrick (SCS, UW) CS240 - Module 5 Fall 2017 13 / 16

Example: Skip-Insert(S, 100, v) Coin tosses: H,H,H,T $\Rightarrow i = 3$

Height increase

- Skip-Delete(S, k)
 - Search for k in the skip list and find all the positions p_0, p_1, \ldots, p_i of the items with the largest key smaller than k, where p_j is in list S_j . (this is the same as Skip-Search)
 - ▶ For each *i*, if $key(after(p_i)) == k$, then remove $after(p_i)$ from list S_i
 - ightharpoonup Remove all but one of the lists S_i that contain only the two special keys

Petrick (SCS, UW) CS240 - Module 5 Fall 2017 14 / 16

Example: Skip-Delete(S, 65)

Example: Skip-Delete(S, 65)

Skip-Search(S, 65)

Example: Skip-Delete(S, 65)

Petrick (SCS, UW) CS240 - Module 5 Fall 2017 15 / 16

Summary of Skip Lists

- Expected space usage: O(n)
- Expected height: $O(\log n)$ A skip list with n items has height at most $3\log n$ with probability at least $1-1/n^2$
- *Skip-Search*: $O(\log n)$ expected time
- *Skip-Insert*: $O(\log n)$ expected time
- *Skip-Delete*: $O(\log n)$ expected time
- Skip lists are fast and simple to implement in practice