

FA-Harris: A Fast and Asynchronous Corner Detector for Event Cameras

Ruoxiang Li¹, Dianxi Shi^{2,3}, Yongjun Zhang², Kaiyue Li¹, Ruihao Li^{2,3}

¹ National University of Defense Technology, China

²Artificial Intelligence Research Center (AIRC), National Innovation Institute of Defense Technology (NIIDT), China

³Tianjin Artificial Intelligence Innovation Center (TAIIC), China

Research Motivation

- The existing visual SLAM systems suffer from several challenges, like high speed motion, high dynamic range, etc.
- The event camera, with the advantages of low latency, low energy consumption, **high temporal resolution** and **high dynamic range**, responds to local, pixel-level brightness changes instead of standard frames.

Research Motivation

- The existing visual SLAM systems suffer from several challenges, like high speed motion, high dynamic range, etc.
- The **event camera**, with the advantages of **low latency**, **low energy consumption**, **high temporal resolution** and **high dynamic range**, responds to local, pixel-level brightness changes instead of standard frames.

But standard vision algorithms can't be applied directly.

Research Motivation

- The existing visual SLAM systems suffer from several challenges, like high speed motion, high dynamic range, etc.
- The **event camera**, with the advantages of **low latency**, **low energy consumption**, **high temporal resolution** and **high dynamic range**, responds to local, pixel-level brightness changes instead of standard frames.

But standard vision algorithms can't be applied directly.

Feature Detection

FA-Harris Detector

FA-Harris Detector

Surface of Active Events (SAE)

$$SAE: (x,y)_e \in \mathbb{R}^2 \mapsto t_e \in \mathbb{R}$$

FA-Harris Detector

Surface of Active Events (SAE)

$$SAE: (x,y)_e \in \mathbb{R}^2 \mapsto t_e \in \mathbb{R}$$

Local SAE

FA-Harris Detector

FA-Harris Detector

Global SAE Construction and Updating

- Our method maintains a global SAE with the size width×height instead of maintaining a local SAE for each pixel in the imaging plane^[2].
- It greatly contributes to the speed-up of our algorithm.

Global SAE Construction and Updating

- Our method maintains a global SAE with the size width×height instead of maintaining a local SAE for each pixel in the imaging plane^[2].
- It greatly contributes to the speed-up of our algorithm.
 - Real-time performance of the methods with our proposed strategy or not.

Scenes	Algorithm	Updating time [s]	Total time [s]
shapes	eHarris* ^[2]	50.64	71.85
	G-eHarris*	0.26	47.27
dynamic	eHarris* ^[2]	219.63	288.15
	G-eHarris*	0.79	147.89
poster	eHarris* ^[2]	556.39	746.73
	G-eHarris*	1.94	375.02
boxes	eHarris* ^[2]	640.33	812.13
	G-eHarris*	2.23	418.82

[2] Vasco et al., Fast event-based Harris corner detection exploiting the advantages of event-driven cameras, IROS 2016.

Global SAE Construction and Updating

- Our method maintains a global SAE with the size width×height instead of maintaining a local SAE for each pixel in the imaging plane^[2].
- It greatly contributes to the speed-up of our algorithm.
 - Real-time performance of the methods with our proposed strategy or not.

Scenes	Algorithm	Updating time [s]	Total time [s]
shapes	eHarris* ^[2]	50.64	71.85
	G-eHarris*	0.26	47.27
dynamic	eHarris* ^[2]	219.63	288.15
	G-eHarris*	0.79	147.89
poster	eHarris* ^[2]	556.39	746.73
	G-eHarris*	1.94	375.02
boxes	eHarris* ^[2]	640.33	812.13
	G-eHarris*	2.23	418.82

 $2 \times$ faster

[2] Vasco et al., Fast event-based Harris corner detection exploiting the advantages of event-driven cameras, IROS 2016.

Corner Candidate Selection and Refinement

• Our method employs a corner candidate selection and refinement strategy.

Corner Candidate Selection and Refinement

- Our method employs a corner candidate selection and refinement strategy.
- Corner candidate selection method subsamples the original event-streams to enhance the real-time performance of our algorithm.

Corner Candidate Selection and Refinement

- Our method employs a corner candidate selection and refinement strategy.
- Corner candidate selection method subsamples the original event-streams to enhance the real-time performance of our algorithm.
- Corner candidate refinement method helps to achieve better accuracy performance.

Event-corners in Spatio-temporal System

[3] Mueggler et al., Fast Event-based Corner Detection, BMVC 2017. [4] Alzugaray et al., Asynchronous Corner Detection and Tracking for Event Cameras in Real Time, RAL 2018.

Comparison

Our proposed method:

can detect the corners with large angles

Events eHarris* Ours

Comparison

Our proposed method:

- can detect the corners with large angles
- can reduce noise and wrong detections

Events Arc* Ours

■ The False Positive Rate (%) of different event-based corner detectors on different scenes.

Scene Alg.	shapes	dynamic	poster	boxes	Overall
Arc*	29.88	18.10	13.34	11.13	14.64
eFAST*	18.62	4.59	3.04	2.67	4.01
eHarris*	13.63	8.15	7.22	7.42	7.75
G-eHarris*	13.46	7.21	6.04	6.04	6.52
Ours	11.68	3.28	1.90	1.61	2.58

■ The accuracy (%) of different event-based corner detectors on different scenes.

Scene Alg.	shapes	dynamic	poster	boxes	Overall
Arc*	55.42	53.50	48.81	48.94	50.10
eFAST*	56.22	54.86	48.30	48.60	50.06
eHarris*	56.97	54.50	49.04	49.26	50.56
G-eHarris*	57.04	54.50	49.02	49.35	50.57
Ours	57.66	55.86	48.91	49.66	50.88

■ Computational performance of different event-based corner detectors.

Algorithm Time per ev [μs/event		Max.event rate [Meps]
Arc*	0.14	7.23
eFAST*	0.40	2.51
eHarris*	5.02	0.21
G-eHarris*	2.69	0.37
Ours	0.66	1.54

■ Computational performance of different event-based corner detectors.

	Algorithm	Time per event $[\mu s/event]$	Max.event rate [Meps]
	Arc*	0.14	7.23
	eFAST*	0.40	2.51
8 x	eHarris*	5.02	0.21
4 x	G-eHarris*	2.69	0.37
	Ours	0.66	1.54

Conclusions

- **Real-time:** 8× faster than eHarris*
- Accuracy: Better performance compared to the previous methods
- Asynchronous: Detects event-corners on event-streams directly

Thanks for your attention!