

Yapay Zeka I: Veri Bilimi ve Makine Öğrenmesine Giriş Sertifika Programı

Doç. Dr. Taner Arsan H. Fuat Alsan, PhD(c) Sena Kılınç, PhD(c)

Tek Değişkenli Doğrusal Regresyon (Univariate Linear Regression)

- $y = w_0 + w_1 x$
- Tek input, tek output temel model
- *x* input (feature)
- y output (prediction)
- Öğrenilen parametreler: w_0 , w_1
- w_0 bias (intercept)
 - x eksenini kestiği nokta
- w_1 weight (slope)
 - doğrunun eğimi

Çok Değişkenli Doğrusal Regresyon (Multivariate Linear Regression)

- $y = w_0 + w_1x_1 + w_2x_2 + w_3x_3 + \dots$
- Çoklu input, tek output
- $x_1, x_2, x_3,...$ input'lar (features)
- y output (prediction)
- Öğrenilen parametreler: w_0 , w_1 , w_2 , w_3 , ...
- w_0 bias
- w_1 , w_2 , w_3 weight'ler
- Tablo türü verilerde kullanışlıdır

Su (x ₁)	pH (<i>x</i> ₂)	Gün Işığı (x_3)	Target (y)
2.22	5.62	128.02	155.0
2.45	5.66	102.55	156.0

Polinom Regressyon (Polynomial Regression)

- Polinom Regresyon, polinom özelliklerine sahip çok değişkenli doğrusal regresyonla uygulanabilir
- Polinom özellikleri üretmek için aşağıdaki kombinasyonlar kullanılır:

•
$$x_1, x_2 \rightarrow 1, x_1, x_2, x_1^2, x_1x_2, x_2^2$$

•
$$y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_1 x_2 + w_5 x_2^2$$

Lojistik Regresyon (Logistic Regression)

- $y = \sigma(w_0 + w_1 x)$
- Sigmoid aktivasyon fonksiyonu ile doğrusal regresyon $\sigma = \frac{1}{1 + e^{-x}}$
- Sigmoid, değerleri [0.0, 1.0] aralığa sıkıştırır
- Sınıflandırma için kullanılır
- Karar sınırı (decision boundary) ile verilerin hangi sınıfa ait olduğuna karar verilir

Lojistik Regresyon (Logistic Regression)

K-Ortalamalar ile Kümeleme (Clustering with K-Means)

- Benzer veri noktaları gruplanır
- Benzerlik metriği kullanılır
 - (örnek: Öklid Mesafesi)
- Denetimsiz (Unsupervised)
 - Etiketsiz veri ile kullanılabilir
- Her kümenin bir merkezi vardır

En Yaygın Başarı Ölçütleri (Metrikleri)

	Regresyon	Sınıflandırma	Kümeleme
Eğitim (Kayıp)	Ortalama Kare Hata (Mean Squarred Error, MSE)	Çapraz Entropi (Cross-Entropy)	Öklid Mesafesi (Euclidean Distance)
Performans (Skor)	R^2	Doğruluk (Accuracy), F-1	Silhouette Score