APPENDICES BOOKLET

CONTENTS

Appendix	Name	Pages
A	Auckland Rental Data	16-23
В	Lobster Survival Data	24–28
С	Southwest University Test Data	28-31

Auckland Rental Data

Data were collected on the monthly rental and other characteristics of 36 randomly selected apartments in Auckland. We wish to build a model to explain the monthly rental of an apartment. The variables measured were

```
The monthly rental (in NZ$)
 rent
            The apartment size (in square feet)
 size
 beds
            The number of bedrooms (either 1 or 2)
            The age of the apartment building (new, recent, or old)
 age
 downtown
            The distance from the city centre (in miles)
> ## Printing the first six observations.
> head(rent.df)
  rent size beds age downtown
1
  810 1050
                2 Old
                            0.6
2 560 575
                1 01d
                            0.6
3 550 1060
                2 New
                            1.9
4 610 650
                            0.6
                1 0ld
5 800 1007
                2 01d
                            0.3
  435 484
                1 New
                            0.3
> rent.df = within(rent.df, {
      beds.F = factor(beds)
+ })
> summary(rent.df$age)
   New
          Old Recent
    10
            15
                   11
> summary(rent.df$size)
   Min. 1st Qu.
                  Median
                             Mean 3rd Qu.
                                              Max.
          593.8
  450.0
                   800.0
                            791.0
                                     972.5
                                            1225.0
> summary(rent.df$downtown)
   Min. 1st Qu.
                  Median
                             Mean 3rd Qu.
                                              Max.
 0.2000 0.3000
                  0.6000
                           0.9861
                                    1.8000
                                            3.3000
```

> pairs20x(rent.df)

Page 18 of 31

> summary(rent2.fit)

Call:

lm(formula = log(rent) ~ size + downtown + beds.F + age, data = rent.df)

Residuals:

Min 1Q Median 3Q Max -0.14881 -0.04509 -0.01117 0.03061 0.22029

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.6866876 0.0919170 61.868 < 2e-16 ***

size 0.0008595 0.0001548 5.551 4.92e-06 ***

downtown -0.1024085 0.0168748 -6.069 1.15e-06 ***

beds.F2 -0.0076631 0.0657676 -0.117 0.9080

ageOld 0.2591978 0.0385543 6.723 1.89e-07 ***

ageRecent 0.0887542 0.0430398 2.062 0.0479 *

--
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.08653 on 30 degrees of freedom Multiple R-squared: 0.9104, Adjusted R-squared: 0.8955 F-statistic: 60.98 on 5 and 30 DF, p-value: 8.289e-15

```
> rent3.fit = lm(log(rent) ~ size + downtown + age, data = rent.df)
> summary(rent3.fit)
```

Call:

lm(formula = log(rent) ~ size + downtown + age, data = rent.df)

Residuals:

Min 1Q Median 3Q Max -0.14880 -0.04378 -0.01215 0.03145 0.22034

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.695e+00 5.609e-02 101.540 < 2e-16 ***
size 8.434e-04 6.983e-05 12.078 2.94e-13 ***
downtown -1.027e-01 1.640e-02 -6.264 5.80e-07 ***
ageOld 2.593e-01 3.793e-02 6.837 1.16e-07 ***
ageRecent 9.038e-02 4.005e-02 2.256 0.0312 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.08514 on 31 degrees of freedom Multiple R-squared: 0.9104, Adjusted R-squared: 0.8988 F-statistic: 78.73 on 4 and 31 DF, p-value: 8.741e-16 > eovcheck(rent3.fit)

> cooks20x(rent3.fit)

> normcheck(rent3.fit, main = "")

Page 21 of 31

```
> exp(confint(rent3.fit))
                 2.5 %
                            97.5 %
(Intercept) 265.2570610 333.4455396
size
            1.0007013 1.0009863
downtown
            0.8727017 0.9330716
ageOld
            1.1995592 1.4002531
ageRecent
            1.0087282 1.1877668
> 100 * (exp(confint(rent3.fit)[2:5, ]) - 1)
                2.5 %
                           97.5 %
size
           0.07012659 0.09863448
downtown -12.72982697 -6.69283734
ageOld 19.95592060 40.02531162
ageRecent 0.87282378 18.77668023
> ## For a 100-unit change in size.
> 100 * (exp(100 * confint(rent3.fit)[2, ]) - 1)
  2.5 %
          97.5 %
7.26176 10.36092
```

For Question (c) Only

```
> rent4.fit = lm(log(rent) ~ beds.F, data = rent.df)
> summary(rent4.fit)
Call:
lm(formula = log(rent) ~ beds.F, data = rent.df)
Residuals:
             1Q Median
                             3Q
                                    Max
-0.36894 -0.21071 -0.01347 0.16764 0.40800
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.22687 0.05227 119.131 < 2e-16 ***
           beds.F2
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2155 on 34 degrees of freedom
Multiple R-squared: 0.3702, Adjusted R-squared: 0.3517
F-statistic: 19.99 on 1 and 34 DF, p-value: 8.243e-05
```

Lobster Survival Data

Biologists collected data to investigate how a lobster's size affects its survival. In total, they collected 159 juvenile lobsters from their natural habitat, and measured their size. They tethered the lobsters to the ocean floor for one night. Any lobsters that were missing were assumed to have been eaten by a predator. The surviving lobsters were released.

The variables in the data set are

```
Lobster length, measured to the nearest 3 mm
 size
            The number of lobsters of a particular length
 n
 survived
            The number of lobsters of a particular length that survived
> lobster.df = within(lobster.df, {
      p = survived/n
+ })
> lobster.df
   size n survived
     27
          5
                    0 0.0000000
1
2
     30 10
                    1 0.1000000
3
     33 22
                    3 0.1363636
4
     36 21
                    7 0.3333333
5
     39 22
                   12 0.5454545
     42 29
                   17 0.5862069
6
7
                   13 0.7222222
     45 18
                   12 0.7058824
8
     48 17
                    7 0.8750000
9
     51
          8
10
     54
          6
                    6 1.0000000
11
     57
          1
                    1 1.0000000
```

```
> plot(p ~ size, data = lobster.df,
+ xlab = "Lobster size (mm)",
+ ylab = "Proportion survived")
```


> lobster1.fit = lm(p ~ size, data = lobster.df)
> summary(lobster1.fit)

Call:

lm(formula = p ~ size, data = lobster.df)

Residuals:

Min 1Q Median 3Q Max -0.089376 -0.036212 0.000887 0.033829 0.106301

Coefficients:

Residual standard error: 0.06348 on 9 degrees of freedom Multiple R-squared: 0.9719, Adjusted R-squared: 0.9687 F-statistic: 310.8 on 1 and 9 DF, p-value: 2.752e-08

```
> lobster2.fit = glm(p ~ size, family = "binomial", weights = n, data = lobs
> summary(lobster2.fit)
Call:
glm(formula = p ~ size, family = "binomial", data = lobster.df,
   weights = n
Deviance Residuals:
               1Q Median
                                  30
                                           Max
-1.12729 \quad -0.43534 \quad 0.04841 \quad 0.29938 \quad 1.02995
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.89597 1.38501 -5.701 1.19e-08 ***
size
            Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 52.1054 on 10 degrees of freedom
Residual deviance: 4.5623 on 9 degrees of freedom
AIC: 32.24
Number of Fisher Scoring iterations: 4
> plot(lobster2.fit, which = 1)
```


> lobster2.fit\$deviance

[1] 4.562321

> lobster2.fit\$df.residual

[1] 9

> 1 - pchisq(lobster2.fit\$deviance, lobster2.fit\$df.residual)

[1] 0.8706732

> confint(lobster2.fit)

Waiting for profiling to be done...

Waiting for profiling to be done...

Southwest University Test Data

STATS 201 students at Southwest University completed a mid-semester test on 16 April 2018. Each student in the course belongs to one of four 'classes'. The lecturer was interested in whether or not some classes have better students than others, on average.

The variables in the data set are

```
marks The student's score on the test class The student's class; either class1, class2, class3, or class4
```

```
> boxplot(marks ~ class, data = test.df, xlab = "Class",
+ ylab = "Test mark")
```


- > test.fit = lm(marks ~ class, data = test.df)
- > normcheck(test.fit)

> eovcheck(test.fit)

Page 29 of 31

> anova(test.fit)
Analysis of Variance Table

Response: marks

Df Sum Sq Mean Sq F value Pr(>F)

class 3 149.8 49.947 1.4523 0.2319

Residuals 105 3611.1 34.391

> summary(test.fit)

Call:

lm(formula = marks ~ class, data = test.df)

Residuals:

Min 1Q Median 3Q Max -15.9032 -4.0882 0.0139 4.0139 11.5968

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.9861 0.9774 15.333 <2e-16 *** classclass2 2.9171 1.4369 2.030 0.0449 * classclass3 1.9139 1.5267 1.254 0.2128 classclass4 1.1021 1.7258 0.639 0.5245

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.864 on 105 degrees of freedom Multiple R-squared: 0.03984, Adjusted R-squared: 0.01241

F-statistic: 1.452 on 3 and 105 DF, p-value: 0.2319

> confint(test.fit)

2.5 % 97.5 %

(Intercept) 13.04810861 16.924114

classclass2 0.06799374 5.766236

classclass3 -1.11336779 4.941146

classclass4 -2.31977970 4.524028

> multipleComp(test.fit)

```
Estimate Tukey.L Tukey.U Tukey.p class1 - class2 -2.9171147 -6.6684 0.8342 0.1836 class1 - class3 -1.9138889 -5.8997 2.0719 0.5944 class1 - class4 -1.1021242 -5.6075 3.4033 0.9193 class2 - class3 1.0032258 -3.1122 5.1187 0.9200 class2 - class4 1.8149905 -2.8055 6.4355 0.7349 class3 - class4 0.8117647 -4.0011 5.6246 0.9713
```