Modelação de base de dados

Exemplo de Sistema de LOGIN

Tiago Silva Marinho - 8998

Índice

Índice das Figuras	2
Resumo	3
Introdução	4
Desenvolvimento	5
Modelo Conceptual da Base de Dados	5
Identificação das Entidades e respetivos atributos	5
Relacionamentos entre Entidades	7
Diagrama E-R da base de dados	8
Modelo Lógico da Base de Dados	9
Identificação das Entidades e respetivos atributos	9
Relacionamentos entre Entidades	10
Modelo Relacional da base de dados	10
Modelo Físico da Base de Dados	11
Apreciação crítica	13
WEBGRAFIA	14
Ληργος	15

Índice das Figuras

Figura 1- entidade USER	5
Figura 2- entidade SESSION	
Figura 3- entidade GAMES	
Figura 4- relação USER_SESSION	
Figura 5- Diagrama-ER	
Figura 6- MR entidade GAMES	
Figura 7- MR entidade USER	
Figura 8- MR entidade SESSION	
Figura 9- MR relação USER SESSION	
Figura 10- Modelo Relacional	
Figura 11- anexo 1	
Figura 12- anexo 2	

Resumo

O presente trabalho consiste na modelação da base de dados de um sistema com controle de acesso baseado em funções (Sistema Login).

Este Sistema permite proteger os dados confidenciais do sistema e garantir que apenas os utilizadores autorizados (admin) têm acesso aos dados, informações e processos requeridos ao desempenho das suas respetivas funções.

Para este modo eu criei 1 diagrama E-R, 1 modelo relacional e 1 modelo físico da base de dados (em sql).

No total para o sistema de login eu criei 3 entidades: user, session e games Sendo as tabelas user e funcao usadas para o login

Palavras-chave:

Controle de Acesso, RBAC, utilizador, função, permissão, SGDB, MySQL, SQL. Livrario, query, login, registo, admin e user

Introdução

Este sistema de login permite-nos fornecer aos utilizadores diferentes níveis de acesso, tendo por base as funções desempenhadas por eles.

Para a suade e bom funcionamento deste sistema, deve-se seguir 3 regras primárias:

- Regra 1 Atribuição de função Um utilizador pode exercer a permissão, se tiver atribuída uma função.
- Regra 2 Autorização de função A função ativa de um utilizador deve ser autorizada para o utilizador. Com a Regra 1, esta regra garante que os utilizadores possam aceder à sua sessão e junto com a sessão, as suas funções para as quais estão autorizados.
- Regra 3 Autorização de permissão Um utilizador pode exercer uma permissão somente se a permissão for autorizada para a função ativa do utilizador. Com as Regras 1 e 2, essa regra garante que os utilizadores possam exercer apenas as permissões para as quais estão autorizados.

Para o melhor entendimento faremos um exemplo, imaginemos um sistema simples, onde cada utilizador pode ter uma das seguintes funções: administrador, técnico ou programador, conforme a tabela.

PERMISSÃO	Sessão/Session				
	administrador	programador	técnico		
editar	sim	sim	não		
apagar	sim	não	não		
ler	sim	sim	sim		

Como se pode ver, todos os utilizadores têm permissão de leitura, mas apenas os utilizadores com perfil administrador têm permissão para apagar.

Durante a realização deste trabalho realizei 3 modelos, para o melhor entendimento e a melhor documentação do trabalho. Estes modelos serão falados a maior detalhe no "DESENVOLVIMENTO".

Desenvolvimento

Modelo Conceptual da Base de Dados.

O modelo conceptual de uma base de dados é construído fundamentalmente por três tipos de elementos: entidades, atributos e os relacionamentos entre as entidades. O diagrama E-R (Entidade-Relacionamento) é utilizado como representação visual do modelo conceptual da base de dados.

Pretendemos implementar um sistema de controle de acesso que restringe o acesso ao sistema, apenas a utilizadores autorizados, que podem ter diferentes tipos de permissões no sistema. Considerando que, sessão indica o cargo que define um nível de autoridade dentro do sistema e permissões no modo de acesso aos recursos do sistema. Os utilizadores do sistema não recebem diretamente as permissões, apenas as adquirem por meio da função (ou funções) desempenhada(s).

Identificação das Entidades e respetivos atributos

Foram identificadas as entidades UTILIZADOR, FUNÇÃO e LIVRO.

Entidade USER

Atributos: username, email, id, password e create datetime

Figura 1- entidade USER

Entidade Session (Sessão)

Atributos: nome, id, descricao

Figura 2- entidade SESSION

Entidade GAMES

Atributos: id, tipo, empresa, nome e anocreacao

Figura 3- entidade GAMES

Relacionamentos entre Entidades

Foram identificadas as seguintes relações:

• Entre as Entidades USER e SESSION

A relação é do tipo um para muitos (1:N) com participação obrigatória de ambas as entidades:

- o Um utilizador tem uma ou e somente uma sessão.
- o Uma **sessão** é desempenhada por um ou vários utilizadores.

Figura 4- relação USER_SESSION

Não existe relação entre GAMES e as outras tabelas

Diagrama E-R da base de dados

O modelo conceptual da base de dados RBAC é representado no seguinte diagrama E-R

Figura 5- Diagrama-ER

Modelo Lógico da Base de Dados

Identificação das Entidades e respetivos atributos

O modelo lógico, descreve como os dados e os relacionamentos serão armazenados na base de dados e define como será implementado no SGBD.

O SGDBR escolhido é MySQL. O modelo relacional permite representar as entidades respetivas relações como tabelas. Para isso, basta converter as relações, identificadas anteriormente, no modelo relacional.

A relação entre as entidades UTILIZADOR e SESSION é uma relação do tipo um para muitos (1:N) com participação obrigatória de ambas as entidades:

Figura 6- MR entidade GAMES

A tabela GAMES não está relacionada a outra base de dados

Figura 7- MR entidade USER

Um utilizador só pode ter 1 sessão: USER ou ADMIN.

Figura 8- MR entidade SESSION

Uma sessão (user ou admin) pode ser desempenhada por um ou vários utilizadores (se houver mais do que 1 admin ou mais do que 1 utilizador).

Relacionamentos entre Entidades

Relação USER_SESSION:

Figura 9- MR relação USER_SESSION

- Relação muitos para 1 (1 para muitos) entre USER e SESSION
- Não existe uma relação entre GAMES com outras TABELAS

Modelo Relacional da base de dados

O modelo relacional da base de dados RBAC é representado no seguinte diagrama

Figura 10- Modelo Relacional

Modelo Físico da Base de Dados

No Modelo físico são detalhados os componentes da estrutura física da base de dados, como tabelas, campos e chaves. O script do modelo físico é composto por uma sequência de comandos SQL, que quando executados criam a base de dados, tabelas e registos.

De seguida, é apresentado o script de criação da base de dados.

CRIAR E USAR BASE DE DADOS:

CREATE DATABASE loginsystem;

Use loginsystem;

CRIAR TABLE GAMES:

CREATE TABLE IF NOT EXISTS `loginsystem`. `games` (

'id' INT NOT NULL AUTO_INCREMENT,

'tipo' VARCHAR(255) NOT NULL,

'nome' VARCHAR(255) NOT NULL,

'empresa' VARCHAR(255) NOT NULL,

`anocreacao` VARCHAR(4) NULL DEFAULT NULL,

PRIMARY KEY ('id'));

CRIAR TABLE FUNCAO:

CREATE TABLE IF NOT EXISTS `loginsystem`.`session` (

'id' INT NOT NULL AUTO INCREMENT,

'nome' VARCHAR(45) NOT NULL,

'descricao' VARCHAR(300) NULL,

PRIMARY KEY ('id'));

CRIAR TABLE USERS:

```
CREATE TABLE IF NOT EXISTS 'loginsystem'.'users' (
 'id' INT NOT NULL AUTO INCREMENT,
 'username' VARCHAR(50) NOT NULL,
 'email' VARCHAR(50) NOT NULL,
 'password' VARCHAR(50) NOT NULL,
 `create_datetime` DATETIME NOT NULL,
 `session_id` INT NOT NULL,
 PRIMARY KEY ('id'),
 INDEX `fk_users_session_idx` (`session_id` ASC),
 CONSTRAINT 'fk users session'
 FOREIGN KEY ('session_id')
  REFERENCES 'loginsystem'.'session' ('id')
  ON DELETE NO ACTION
  ON UPDATE NO ACTION)
AUTO INCREMENT = 3;
```

INSERIR EM FUNCAO, AS FUNCOES ADMIN E USER

```
INSERT INTO `session` (`id`, `nome`, `descricao`) VALUES
(1, 'Admin', 'System admin'),
(2, 'User', 'System user');
```

INSERIR USER ROOT (ADMIN) NA BASE DE DADOS

INSERT INTO 'users' ('id', 'username', 'email', 'password', 'create datetime', 'session id') VALUES (1, 'root', 'root', '63a9f0ea7bb98050796b649e85481845', '2023-06-23 16:53:00',1);

Apreciação crítica

Esta proposta de trabalho é uma boa oportunidade para desenvolver habilidades em programação e gestão de projetos. O objetivo principal é implementar um sistema de logins em PHP ou Java, com a realização de planeamento, modelação da base de dados e implementação de pelo menos duas funcionalidades. Além disso, é importante garantir que cada usuário seja encaminhado para a página correta e que o projeto seja devidamente documentado.

A modelação da base de dados é um passo crítico, pois influencia a estruturação do sistema como um todo. A exigência de apresentar o modelo conceptual, lógico e físico da base de dados é uma boa prática, pois permite a compreensão de como os dados são organizados e como as informações são armazenadas.

A implementação das funcionalidades de registro de novo usuário e login é fundamental para a realização do sistema de logins. É importante garantir a segurança das informações dos usuários e a privacidade de seus dados pessoais, como senhas e informações de contato.

O encaminhamento de cada usuário para a página correta também é uma etapa importante, pois garante a experiência do usuário e a eficiência do sistema. É importante que o sistema seja capaz de identificar automaticamente o tipo de usuário e encaminhá-lo para a página correta.

Por fim, a exigência de documentação do projeto, incluindo o código-fonte, a descrição do projeto, o relatório do projeto e o planeamento, é uma boa prática de desenvolvimento de software. Isso permite que outras pessoas possam entender e contribuir para o projeto, além de ajudar a equipe a manter-se organizada e focada nos objetivos.

WEBGRAFIA

GITHUB:

Repositório de TiagoMarinho-8998 (Tiago Silva Marinho);

https://github.com/TiagoMarinho-8998/Project-MiniPAP.git

Caldas da Saúde 4784-907 AREIAS STS

\$ 252830900 \$ 252830909

ESCOLA PROFISSIONAL DO INSTITUTO NUN'ALVRES

AVALIAÇÃO MODULAR			Ano Letivo 2022/2023
PROPOSTA DE TRABALHO			Data: 26-06-2022
Curso:	: Técnico de Gestão e Programação de Sistemas Informáticos		Turma: 21
Disciplina:	PSI – Programação e Sistemas de Informação		
Módulo:	M15 – Linguagem de Definição de Dados		
Docente:	Sofia Pinto		

PROPOSTA DE TRABALHO

Implemente um sistema de Logins em PHP ou JAVA.

REATE NEW USER: Enter firstName => john Enter lastName => pires Enter userName => jpires23 Enter password =>

INSTRUÇÕES:

- Realizar o planeamento, identificando principais †arefas e estimando o tempo necessário para a sua resolução.
- Realizar a modelação da Base de Dados da aplicação. Desenhe o modelo conceptual (diagrama E-R), modelo lógico (modelo relacional) e modelo físico (script) da base de dados.
- Implementar na aplicação pelo menos duas funcionalidades:
 - o registar novo utilizador (insert BD)
 - o realizar login.
- Assegurar que no processo de acesso à aplicação, cada utilizador é encaminhado conforme a sua função:
 - o Utilizador: direcionado para página Principal.
 - Administrador: direcionado para página Administração.
- Guardar em Repositório, no GitHub:
 - o Aplicação (código-fonte devidamente formatado e comentado)
 - o Descrição do projeto (ficheiro readme)
 - Relatório do Projeto (conforme estrutura relatório PAP) em pdf.

Figura 11- anexo 1

Caldas da Saúde 4784-907 AREIAS STS

ESCOLA PROFISSIONAL DO INSTITUTO NUN'ALVRES Instituto de Formação Profissional Albino de Sousa Cruz

- o Planeamento (identificação da tarefa, previsão de tempo, elemento(s) da equipa responsável) em pdf
- o Commit devem conter breve descrição.

ENTREGA NO GOOGLE CLASSROOM:

- · Entregar link, do repositório.
- Relatório em pdf.

COTAÇÃO:

1	modelação da BD e implementação de mini projeto	Elabora modelos concetual, lógico e físico da BD	Projeto estruturado e organizado em pastas	Conexão BD funciona adequadam ente	Cria Novo utilizador e guarda dados na BD	Realiza direcioname nto de user/admin	Participa com empenho (github commits)	Entrega sem atraso repositório e relatorio (classroom)	planeamento adequado	
		60	10	20	30	20	30	10	20	-

Bom trabalho, Sofia Pinto

Figura 12- anexo 2

