TABLE II: SAYAC Instruction Set

[15:12]	[11:10]	[9]	[8]	[7:4]	[3:0]	Instruction	Notation					
0000		•	•		Re	Reserved						
0001					Re	eserved						
0010	00	0	0	rs1	rd	LDR	$R_f(rd) \le MEM(R_f(rs1))$					
			1	rs1	rd	LIR	$R_f(rd) \leq IO(R_f(rs1))$					
		1	0			LDB	$R_b(rd) \le MEM(R_f(rs1))$					
			1			LIB	$R_f(rd) \le IO(R_b(5) + R_f(rs1))$					
	01	0	0	rs1	rd	STR	$MEM(R_f(rd)) <= R_f(rs1)$					
			1	rs1	rd	SIR	$IO(R_f(rd)) \leq R_f(rs1)$					
		1	0			STB	$MEM(R_b(3) + R_f(rd)) \le R_f(rs1)$					
			1			SIB	$IO(R_b(5) + R_f(rd)) \le R_f(rs1)$					
	10	S	0	rs1	rd	JMR	$PC \leq PC + R_f(rs1)$					
							$R_f(rd) \le PC + 1$, if $s=1$					
			1	rs1	rd	JMB	$PC \leq IO(R_b(rd) + rs1)$					
							$R_f(15) \le IO(R_b(rd))$, if s=1					
	11			imm		JMI	PC <= PC + SE"imm"					
							$R_f(rd) \leq PC + 1$					
0011	r	s2		rs1	rd	ANR	$R_f(rd) \le R_f(rs1) \text{ AND } R_f(rs2)$					
0100		imm				ANI	$R_f(rd) \le R_f(rd)$ AND USE"imm"					
0101			im	nm	rd	MSI	R _f (rd) <= SE"imm"					
0110			im	ım	rd	MHI	R _f (rd) 'MSB <= "imm"					
0111	r	s2		rs1		SIR	$R_f(rd) \le R_f(rs1) LS \pm R_f(rs2)$					
1000	r	s2	rs1		rd	SAR	$R_f(rd) \leq R_f(rs1) AS \pm R_f(rs2)$					
1001	r	s2		rs1		ADR	$R_f(rd) \le R_f(rs1) + R_f(rs2)$					
1010	r	s2	rs1		rd	SUR	$R_f(rd) \le R_f(rs1) - R_f(rs2)$					
1011			imm		rd	ADI	$R_f(rd) \le R_f(rd) + SE''imm''$					
1100			imm		rd	SUI	$R_f(rd) \le R_f(rd) - SE''imm''$					
1101	r	s2	rs1		rd	MUL	$R_f(rd) \ll R_f(rs1) \times R_f(rs2)$ 'LSB					
						$R_f(rd+1) \le R_f(rs1) \times R_f(rs2)$ 'MSB						
1110	r	rs2 rs1		rd	DIV	$R_f(rd) \ll R_f(rs1) \div R_f(rs2)$ 'Quo						
							$R_f(rd+1) \le R_f(rs1) \mod R_f(rs2)$ 'Rem					
1111	00	0	0	0000	0000	MEC	PRV <= U-Mode					
							EnvironmentCallException = 1					
			1	rs1	rd	CMR	$flags \leftarrow Cmp(R_f(rs1), R_f(rd))$					
		1		imm	rd	CMI	flags <= Cmp(R _f (rd) , SE"imm")					
	01	0	flag	gs interpretation bits	rd	BRC	PC <= R _f (rd) if flag					
		1	flag	gs interpretation bits	rd	BRR	$PC \le PC + R_f(rd)$ if flag					
	10	0		shim		SHI	$R_f(rd) \le R_f(rd) LS \pm "shim"$					
		1		shim	rd		$R_f(rd) \le R_f(rd) AS \pm "shim"$					
	11	0	0	rs1	rd	NTR	$R_f(rd) \le 1sComp(R_f(rs1))$					
			1		rd		$R_f(rd) \le 2sComp(R_f(rs1))$					
		1	0		rd	NTD	$R_f(rd) \le 1sComp(R_f(rd))$					
			1		rd		$R_f(rd) \le 2sComp(R_f(rd))$					
		l	L	<u> </u>	I	l	13.77.77					

SAYAC REFERENCE MANUAL

Description	Transfers execution to the address contained in immediate
	value relative to the current instruction pointer and saves the
	address of the next instruction in register rd.
Instruction Type	I
Instruction Fields	r _d = Index of destination register
	Imm = 6-bit signed immediate value

For branch instructions, PC is determined based on satisfying a condition. The condition is presented in 5 bits locating in Instruction [8:4] named as **F**lag **I**nterpretation **B**its, FIB[4:0]. Table 1 shows different conditions and FIB configuration.

		FIB[4:0]									
eq	X	X	0	0	0						
lt	X	X	0	0	1						
gt	X	X	0	1	0						
gt/eq	X	X	0	1	1						
lt/eq	X	X	1	0	0						
neq	X	X	1	0	1						

BRC

	Opc	ode		Opcode-Extended			FIB					\mathbf{r}_{d}			
1	1	1	1	0	1	0									

BRC	Branch Conditional
Instruction	Branch Registered with Condition
Operation	If (FIB) then PC \leftarrow r_d
Assembler Syntax	BRC FIB r _d
Example	BRC 0x01 r ₂
Description	If Flag Interpretation Bits (FIB) are true, then transfers
	program control to the instruction at the address specified
	by register r _d
Instruction Type	R
Instruction Fields	r _d = Index of destination register
	FIB = 5-bit compare flag interpretation bits

$\mathbf{B}\mathbf{R}\mathbf{R}$

	Орс	ode		Opcode-Extended			ocode-Extended FIB					\mathbf{r}_{d}			
1	1	1	1	0	1	1									

BRR	Branch Conditional Relative
Instruction	Branch Registered Relative with Condition
Operation	If (FIB) then $PC \leftarrow PC + r_d$
Assembler Syntax	BRR FIB r _d
Example	BRR 0x01 r ₂
Description	If Flag Interpretation Bits (FIB) are true, then transfers
	program control to the instruction to the address
	contained in register rd relative to the current instruction
	pointer.
Instruction Type	R
Instruction Fields	r _d = Index of destination register
	FIB = 5-bit compare flag interpretation bits