

Search for New Physics with Anomaly Detection approach at the LHC

 $\langle\langle\langle\langle$ Thesis defense 23/09/2024 $\rangle\rangle\rangle\rangle$

0 0 0 0 0 0 0 0 0 0 0 0 0

Valerio Tinari 1998628

What's Anomaly Detection?

-01-

Dataset

LHC Anomaly
Detection
Challenge
dataset

-02-

Model

Transformer for events reconstruction

-03-

Training

Model training and performance evaluation

-04-

00000

0000

Anomaly Detection

<><< Anomalies are data with no normal behavior >>>>

Looking for outliers

What is an outliner?

"An outlier is an observation which deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism." Hawkins, Identification of Outliers (1980)

Trying to answer many questions left

after the discovery of the Higgs boson

Model agnostic: it does not rely on a specific theoretical model.

Where is the church?

Rome from the Janiculan Hill

How is it done?

Supervised vs Unsupervised

Model is trained over <u>normal/background</u> <u>events only</u>, then it is tested over normal and anomaly data

Reconstruction loss distribution is used to estimate model perfomances and discrimanate between background and signal

00000

0000

Dataset

<<<<

1.1 M events analysed

LHC Olympics 2020

dataset

What does the original dataset look like?

Background events:

1 M events pp --> jet jet

QCD events

Signal events:

100 k events

pp -> Z' -> XY -> jet-jet

Data generated in a

MonteCarlo simulation Delphes

Data are detector coordinates (pT, eta, phi);

particles -> array (1.1M,210)

A resonance is used in the signal dataset because the dijet final state offers a complex topology for hiding new physics

Coordinates and jet reconstruction

Reconstruction applied to data

$$\eta = -ln \Big(tanrac{ heta}{2}\Big)$$

Reconstruction radius R=1

For each one of the 1.1M events, 2 leading jet are selected, so we get: 2.2 M data after algorithm

Data distribution

Data before (left) and after (right) rotation

before

after

Normalized data

Distribution for normalized data, before (left) and after (right) rotation

Standard scaler:

where x = pt, η , Φ

Distribution for Normalized reconstructed events

Distribution for Normalized reconstructed events

after

Distribution for transformed data, before (left) and after (right) normalization

Based on: "A robust anomaly finder based on autoencoders" T.S. Roy et A.H. Vijay

00000

0000

Model

<<<<

"Attention is all you need"

Transformer architecture

What is it inside the model?

(B,N,emb_dim)

B=batch size_>512; N=constituents->50; F=Features->3 Input dim=3, embed dim=128, hidden dim=256 n layers= 5-32-4; num head= 8-8-2 (normal-rotated-tranformed)

Attention Block

Let's look inside a layer

Based on: "Attention is all you need" by A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. Gomez, L. Kaiser and I. Polosukhin

Part 04

Parameters and loss

Unsupervised training

Set	BCK	Signal
Training	72.7% = 1.6M	0%
Validation	9.1% = 200k	0%
Testing	9.1% = 200k	9.1% = 200k

$$|MSE_{loss} = ||x - \hat{x}||^2$$

 $|AS = ||x - \hat{x}||$

linalg.norm -> Frobenius norm

Num epochs = 50

LearningRate = 1e-6

Training results

What did we get after training loop?

anti-k_⊤ dataset rotated dataset

transformed dataset

Overfitting --> less training epochs needed

Results without rotation

If we don't apply rotation, we get...

No detection at all!!!

$$TPR = rac{TP}{TP + FN} \;\;\; ext{,} \;\; ext{FPR} = rac{ ext{FP}}{ ext{FP} + ext{TN}}$$

Results with rotation

If we apply rotation, we get...

Significant imporovement but not the best

Results with transformation

If we transform our data, do we find a new particle?

The best result: detection

Thanks for the attention

00000000000000

Valerio Tinari

