

Where is Deep Learning used?

Digit Recognition

Object Classification Segmentation

Image Captioning

Gameplay Al Translation

Neural Computers
Routing

Why Scale Up?

- Enormous amounts of data
 - MSCOCO: 19 GB
 - ImageNet (1k): 180 GB
 - ImageNet (22k): A few TB
 - Industry: Much larger
- Large neural network architectures
 - 100-200 layers deep today, ~100M-2B parameters
- Faster prototyping
 - Training time: 10s of hours to days (and weeks)

Automatically organized by what matters

Neural Networks

Neural Networks

- Modeled after the human brain
- CNNs repeatedly perform convolutions and nonlinearity operations

Source: Lee et al. <u>"Unsupervised Learning of Hierarchical Representations with Convolutional Deep Belief Networks"</u> (CACM 2011)

Simple CNN Architecture

GoogLeNet [Szegedy et al., 2014]

- ~6.8M parameters
- 22 layers deep

ResNet [He et al., 2016]

- ~2.35M parameters
- 152 layers deep

Stochastic Gradient Descent

- Gist: Improve network weights using samples from a labeled dataset
- Algorithm:
 - Initialize neural network weights (W_0)
 - For t in iterations:
 - **Sample** *b* images from dataset (*B*)
 - Compute loss $L_t(W_{t-1}, B)$
 - **Update** weights using gradients and update rule g: $W_t = g(W_{t-1}, \nabla L_t(W_{t-1}, B), [hyperparameters ...])$
- $\nabla L_t(W, B)$ is an average direction of the gradient over a mini-batch of size b:

$$\nabla L_t(W, B) = \frac{1}{b} \sum_{i=1}^b \nabla \ell(W; (x_i, y_i))$$

Backpropagation Algorithm

- A CNN is a Directed Acyclic Graph (DAG)
- At each layer in backpropagation, derivatives are estimated w.r.t.:
 - Layer parameters (if necessary)
 - Data (chain rule)

Backpropagation Algorithm

- A CNN is a Directed Acyclic Graph (DAG)
- At each layer in backpropagation, derivatives are estimated w.r.t.:
 - Layer parameters (if necessary)
 - Data (chain rule)
- Additional memory storage required for training:
 - D+W+ **∇D+ ∇W**

- Choice of Algorithm
- Parallelism

- Distributed Computing
- Hardware Architectures

- Choice of Algorithm
- Parallelism

- Distributed Computing
- Hardware Architectures

- Choice of Algorithm
- Parallelism

- Distributed Computing
- Hardware Architectures

- Choice of Algorithm
- Parallelism

- Distributed Computing
- Hardware Architectures

- Choice of Algorithm
- Parallelism

- Distributed Computing
- Hardware Architectures

Algorithms

Convolution Algorithms

Most computationally-intensive layer

$$out(x,y)^{f_o} = \sum_{f_i=0}^{N_{if}} \sum_{k_x=0}^{K_x} \sum_{k_y=0}^{K_y} w_{f_i,f_o}(k_x,k_y) *in(x+k_x,y+k_y)^{f_i}$$

- Can be performed directly, or:
 - Via matrix multiplication (im2col)
 [Chellapilla et al., 2006]
 - Via Winograd convolution [Lavin and Gray, 2016]
 - In Fourier domain

Source: Pete Warden's Blog

im2col convolution

Convolution in Fourier Domain

Convolution can be computed using FFT [Mathieu et al., 2014]:

$$y_{(s,j)} = \sum_{i \in f} x_{(s,i)} \star w_{(j,i)} = \sum_{i \in f} \mathcal{F}^{-1} \left(\mathcal{F}(x_{(s,i)}) \circ \mathcal{F}(w_{(j,i)})^* \right)$$

The larger the convolution kernel, the better the performance [Vasilache et al., 2015]:

Sacrificing Accuracy for Performance

- Half-precision (16-bit floating point) [Gupta et al., 2015]
 - Memory is stored in 16-bit format
 - Computations are performed in 32-bits
 - Uses Stochastic Rounding:

$$Round\left(x,\left\langle \mathtt{IL},\mathtt{FL}\right\rangle \right) = \begin{cases} \left\lfloor x\right\rfloor & \text{w.p. } 1 - \frac{x - \left\lfloor x\right\rfloor}{\epsilon} \\ \left\lfloor x\right\rfloor + \epsilon & \text{w.p. } \frac{x - \left\lfloor x\right\rfloor}{\epsilon} \end{cases} \end{cases}$$

Goal: Preserve $\mathbb{E}(Round(x, \langle IL, FL \rangle)) = x$

Sacrificing Accuracy for Performance

Results on MNIST with LeNet:

WL=Word Length (bits)
FL=Fractional Length (bits)

Parallelism

Data Parallelism

Data Parallelism

Data Parallelism

- ✓ Good for forward pass (independent)
- ✓ Backpropagation requires all-to-all communication only when accumulating results

× Requires allocation of all parameters on each processor

Model Parallelism

Model Parallelism

Model Parallelism

- ✓ Parameters can be divided across processors
- × Mini-batch has to be copied to all processors
- × Backpropagation requires all-to-all communication every layer

Hybrid Data/Model Parallelism

 Conjecture[Krizhevsky, 2014]: Most of the computations are performed in the convolutional portion, most of the parameters are stored in the fully connected portion

 Proposed Solution: Use data parallelism on convolutional portion and model parallelism on the FC portion

Hybrid Data/Model Parallelism [Krizhevsky, 2014]

Hybrid Data/Model Parallelism Results

AlexNet, ILSVRC 2012:

GPUs	Batch size	Top-1 error	Time	Speedup
1	(128, 128)	42.33%	98.05h	1x
2	(256, 256)	42.63%	50.24h	1.95x
2	(256, 128)	42.27%	50.90h	1.93x
4	(512, 512)	42.59%	26.20h	3.74x
4	(512, 128)	42.44%	26.78h	3.66x
8	(1024, 1024)	43.28%	15.68h	6.25x
8	(1024, 128)	42.86%	15.91h	6.16x

Distributed Computing

Distributed Deep Learning

- Runs on a computer cluster
- Each node runs partially autonomously
- Inter-node communication from time to time

- Best result is gathered from the nodes
- Training data can be split to per-node "shards"

Distributed Deep Learning – Opportunities

- Increased memory:
 - More data
 - More parameters
- Fault tolerance
 - Protection against node crashes
- Improved stochasticity

Distributed Deep Learning – Determining Factors

- Computational independence
- Communication efficiency
- Network congestion
- Load balancing
- Points of failure

Distributed Synchronous SGD

- Communication step is added to the algorithm:
 - Initialize neural network weights (W_0)
 - For t in iterations:
 - Sample b images from dataset (B)
 - Compute loss $L_t(W_{t-1}, B)$
 - Synchronize weights across workers
 - Update weights using gradients and update rule g

Source: Basics of Message-Passing

- The step requires all nodes to have the same data ($\Sigma \nabla W$)
 - This collective operation is also called AllReduce
- Different ways to implement, depending on message size and network topology

Distributed Deep Learning – DistBelief

- Distributed learning infrastructure used at Google [Dean et al., 2012]
- Each model replica has the same parameters, but optimizes different data
 - Replicas are divided among several machines
- Two distributed optimization schemes for training:
 - Online Downpour SGD
 - Batch Sandblaster LBFGS

Handles slow and faulty replicas

Asynchronous SGD – HOGWILD!

- To achieve coherency in distributed SGD, nodes must synchronize w.r.t. parameters:
 - Each thread draws a random example i from the training data.
 - Acquire a lock on the current state of parameters θ.
 - Thread reads θ .
 - Thread updates $\theta \leftarrow (\theta \alpha \nabla L(f_{\theta}(x_i), y_i))$.
 - Release lock on θ .
- *HOGWILD!* [Niu et al., 2011] removes this synchronization:

Each thread draws a random example i from the training data.

- Thread reads current state of θ .
- Thread updates $\theta \leftarrow (\theta \alpha \nabla L(f_{\theta}(x_i), y_i))$.

Asynchronous SGD – HOGWILD!

- HOGWILD!:
 - Proven to converge in sparse problems
 - Provides near-linear scaling
 - Assumes shared-memory architecture (e.g., multicore CPUs)
- Formulates ML problems as hypergraphs G = (V, E) where:
 - $w^* = \operatorname{argmin}_w f(w) = \operatorname{argmin}_w \sum_{e \in E} f_e(w_e)$
 - Each hyperedge $e \in E$ represents subsets of [n]
 - w_e is reduced to coordinates in e

Source: Wikipedia

Algorithm 1 HOGWILD! update for individual processors

- loop
- 2: Sample e uniformly at random from E
- Read current state x_e and evaluate $G_e(x_e)$
- 4: for $v \in e$ do $x_v \leftarrow x_v \gamma G_{ev}(x_e)$
- 5: end loop

Distributed Deep Learning – Downpour SGD

- Relaxation of HOGWILD! for distributed systems
- Algorithm:
 - Divide training data into subsets and run a replica on each subset
 - Every n_{fetch} iterations, fetch up-to-date parameters from server
 - Every n_{push} iterations, push local gradients to server
- Note that parameter shards may be "out-of-sync"

Distributed Deep Learning – Sandblaster LBFGS

- Coordinator process issues commands (dot product, scaling, multiplication, etc.) to slave nodes, each processing a different parameter shard
- Communication is sparser
 - Most of the information is stored locally
 - Coordinator messages are small
 - Slaves fetch parameters at the beginning of each batch, send gradients once in a while for fault tolerance
- Employs computation replication and load balancing
 - Nodes that finish their job get more jobs
 - If one node is slow, additional nodes get the same job

DistBelief Results – Time

DistBelief Results – Accuracy

Project Adam

- Extends DistBelief with system-level support
 - Fast data serving mechanisms (e.g., with augmentation)
 - Better heterogeneous system management
 - Parameter server node optimization
- Bottom-up communication redesign
 - Control message, data message separation
 - Inter-node communication reduction
 - Weight differences are sent instead of weights
- Only system to train ImageNet22k

Hardware

Specialized Hardware

- GPU
 - Thousands of cores, massively parallel (5-14 TFLOP/s per card)
 - Multi-GPU nodes further increase training performance (using data/model parallelism)
 - Drawback: Hard to program efficiently. Solution: Specialized libraries (CUDNN)
- FPGA
 - Specialized for certain operations (e.g. convolutions)
 - Drawbacks: Even harder to program
- Convolutional Processing Units

Deep Learning with GPUs

- A distributed GPU-based system[Coates et al., 2013] was shown to run DistBelief-scale problems (1000 machines) with 3 multi-GPU nodes
- 3 tiers of concurrency: GPU, model parallelism, nodes

Time for a single mini-batch gradient update of a sparse autoencoder

Specialized Hardware

Two approaches:

Mapping neurons to hardware

Custom processing elements

Specialized Hardware – ANNA

Specialized Hardware – DianNao

 Instead of building the neural network on a circuit, creates a Neural Function Unit (NFU)

- Operations reflect the different layers
- Each operation (conv., pooling, FC) takes up to three stages at computations (or less)
 - Computation
 - Reduction
 - Activation

Conclusions

- Many acceleration opportunities
- Architectures keep changing, and with them new techniques arise
- Algorithms can be modified (to some extent)
 - Proven "shortcuts" can be taken

Questions?