27/05/2024 - Maternaticas discretas Ude@ (M) 10-12

1. Temas clase anterior

- Tablas de verdad
- Clasificación de las proposiciones; V Tautologías (V) V Contradicciones (F) V Contingencia (V y F)
- Equivalencia: 51 P y Q son equivalentes (P=Q) es poque Pc>O es tantología.

Ejemph: P= - (78) Variable: P_ n=1: f: 2^=2 p | ¬P | ¬(¬P) | P ← > ¬[¬P) | Es tautologia P=7(7P)

_ leyes de Morgan:

- 7 (P / Q) = 7 P √ 7 B 1 LM Para Y
- ~ (P V Q)= ¬P ∧ ~ Q 2 LM face 0

2. Enfoque axiomatica

ecordenos en otros materias: Algebra y Trigonometra (Identidades)

(54)				
Y Z Equivalencia lógica 💍 🥎				
$P \wedge Q \equiv Q \wedge P$	$P \lor Q \equiv Q \lor P$			
$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$P \vee (Q \vee R) \equiv (P \vee Q) \vee R$			
$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \vee R)$	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$			
$P \land P \equiv P$	$P \lor P \equiv P$			
$\neg(\neg P) \equiv P$				
$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$			
$P \wedge V \equiv P$	$P \lor F \equiv P$			
$P \wedge F \equiv F$	$P \lor V \equiv V$			
$P \wedge (P \vee Q) \equiv P$	$PV(P \wedge Q) \equiv P$			
$P \land \neg P \equiv F$	$P \bigvee \neg P \equiv V$			
$P \to Q \equiv \neg P \lor Q$				
$P \to Q \equiv \neg Q \to \neg P$				
$P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$				
	$P \land Q \equiv Q \land P$ $P \land (Q \land R) \equiv (P \land Q) \land R$ $P \land (Q \lor R) \equiv (P \land Q) \lor (P \lor R)$ $P \land P \equiv P$ $\neg (\neg P \land Q) \equiv \neg P \lor \neg Q$ $P \land V \equiv P$ $P \land F \equiv F$ $P \land \neg P \equiv F$ $P \rightarrow Q \equiv$ $P \rightarrow Q \equiv$			

Enfoque axiomatico:

A = B

A A1, A2, ... Ai.- B

A=B

Ejemplos

- Demuestre mediante el uso de identidades lógicas demuestre la ley de la absorción para el
- 2. Demuestre que $\neg (p \lor (\neg p \land q))$ es lógicamente equivalente a $\neg p \land \neg q$
- 3. Pruebe la siguiente equivalencia lógica: $\neg(\neg p \land q) \land (p \lor q) \equiv p$
- 4. Demuestre que $(p \land q) \rightarrow (p \lor q)$ es una tautología.
- 5. Considerar el siguiente argumento: "Si la ley no fue aprobada, entonces la constitución del país queda sin modificaciones. Si la constitución del país queda sin modificaciones no se puede elegir nuevos diputados. O se eligen nuevos diputados o el informe del presidente del país se retrasará. El informe no se retrasó un mes. Por lo que la ley fue aprobada". Verificar su validez por la prueba formal de validez.

Solución:

1. ley de Absorcion para Q: Pr(PAQ) = P

		Y	0	
Nom	bre	Equivalencia lógica		
Conr	nutatividad	$P \wedge Q \equiv Q \wedge P$	$P \lor Q \equiv Q \lor P$	
Asoc	iatividad	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$	
Distr	ibutividad	$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \nearrow R)$	$P \vee (Q \wedge R) \equiv (P \vee Q) \wedge (P \vee R)$	
Idem	potencia 🧷	$P \wedge P \equiv P$	$P \lor P \equiv P$	
Dobl	e negación	$\neg(\neg P) \equiv P$		
Leye	s de Morgan	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$	
Ident	tidad	$P \wedge V \equiv P$	$P \vee F \equiv P$	
Dom	inación	$P \wedge F \equiv \overline{F}$	$P \lor V \equiv V$	
■ Abso	rción	$P \wedge (P \vee Q) \equiv P$	$P \lor (P \land Q) \equiv P$	
Com	plemento	$P \wedge \neg P \equiv F$	$P \vee \neg P \equiv V$	
Impli	cación	$P \to Q \equiv \neg P \lor Q$		
Cont	rarrecíproco	$P \rightarrow Q \equiv \neg Q \rightarrow \neg P$		
Equiv	/alencia	$P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$		

PO (PAQ) = (PVP) A (PVQ)

= P v (b r B)

= (PUF) (PUD)

= PV(FAB)

三 タット

= P

Pu (PAB) = P Absorcion para

Justificacion Ley distributiva para el

Idempodencia para el Q

Identidad para el Q

Ley distributiva para el Q de D→I

Dominacion para el Y

Identidad para Q

Nombre	Y Equivalencia lógica		
MOTIBLE	Equivalencia logica		
Conmutatividad	$P \wedge Q \equiv Q \wedge P$	$P \vee Q \equiv Q \vee P$	
Asociatividad	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$P \vee (Q \vee R) \equiv (P \vee Q) \vee R$	
Distributividad	$(P \land (Q \lor R) \equiv (P \land Q) \lor (P \lor R))$	$P \vee (Q \wedge R) \equiv (P \vee Q) \wedge (P \vee R)$	
Idempotencia	$P \wedge P \equiv P$	$P \lor P \equiv P$	
Doble negación	$\neg(\neg P) \equiv P$		
Leyes de Morgan	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$	
[Identidad]	$P \wedge V \equiv P$	$P \vee F \equiv P$	
Dominación	$P \wedge F \equiv F$	$P \lor V \equiv V$	
Absorción	$P \wedge (P \vee Q) \equiv P$	$P \lor (P \land Q) \equiv P$	
Complemento	$P \wedge \neg P \equiv F$	$P \vee \neg P \equiv V$	
Implicación	$P \to Q \equiv \neg P \lor Q$		
Contrarrecíproco	$P \to Q \equiv \neg Q \to \neg P$		
Equivalencia	$P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)$		

2. 7(PV(7PAQ))= 7PA7Q

Procedimiento

= 7 P N (7(7P) V7Q)

= TPA(PV7Q)

= (7PAP) ~ (7P~7Q)

= FV (TPATB)

= (77/70) 1 F

7 P 1 7 Q

Justificación Leng de Morgan para

Ley de Monzon para or

Doble regacion

Distributive pare el 1

Complemento para el 1/2

Prop. communitative para el 0

Identidad para el D

Nombre	Equivalencia lógica		
Conmutatividad	$P \wedge Q \equiv Q \wedge P$	$P \vee Q \equiv Q \vee P$	
Asociatividad	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$	
Distributividad	$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$	
Idempotencia	$P \wedge P \equiv P$	$P \lor P \equiv P$	
Doble negación	$\neg (\neg P) \equiv P$		
Leyes de Morgan	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$	
Identidad	$P \wedge V \equiv P$	$P \vee F \equiv P$	
Dominación	$P \wedge F \equiv F$	$P \lor V \equiv V$	
Absorción	$P \wedge (P \vee Q) \equiv P$	$P \lor (P \land Q) \equiv P$	
Complemento	$P \land \neg P \equiv F$	$P \vee \neg P \equiv V$	
Implicación	$P \to Q \equiv \neg P \lor Q$		
Contrarrecíproco	$P \to Q \equiv \neg Q \to \neg P$		
Equivalencia	$P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P)$		

3. $\neg (\neg P \land Q) \land (P \lor Q) = P$

Procedimiento $\frac{1(PQ) \wedge (PQ) = (IPP) \vee Q \wedge (PQ)}{= (PQQ) \wedge (PQQ)} \qquad (e)$ $= P \vee (QQQ) \wedge (PQQ)$ $= P \vee (QQQ)$ $= P \vee (F)$ $= P \vee (F)$

Justificación

ley de Morgan porn at

Doble negación

Distributividad ILD para el or

Complemento para el or

Identidad pora el or