Follow
$$18^{\frac{1}{6}}$$

When $38^{2} + \frac{1}{4}8 + \frac{1}{4} + \frac{1}{4}8^{\frac{1}{4}} + \frac{3}{8}8^{\frac{1}{4}}$

= $26^{\frac{1}{4}} = \frac{1}{8} \times 2^{\frac{1}{4}} + \frac{1}{4} \times 2^{\frac{1}{4}} + \frac{1}{4} \times 2^{\frac{1}{4}} + \frac{1}{4} \times 2^{\frac{1}{4}}$
 $26^{\frac{1}{4}} = \frac{1}{8} \times 2^{\frac{1}{4}} + \frac{1}{4} \times 2^{\frac$

 $= P(z) has ash z_1 = -1, z_2 = -1/z_3 = c', z_4$ Prop. 8.6: If $Q = 121 (\cos Q + i \sin Q)$ is a not of char. pol. I then E Res (W) $\{171^{t} \cos(tq)\}_{t \in Z}$ Eller (W) { 121 tsin (t. d) } = Z $Z_1 = 1 - 71 + (0s(1))$ Zz = (11. Sin (1) Zu = [71, sin (37) Basis of Mernel: Yt = & 12 hl [cost. Pk) (dun+aur t+..+akrat + sin(t. fk) (but + buzt + .. + bu. rx + 1) + E 2 2 (Cut Cuz + + ... + Cura + -1 Here: $K_c = 2$ $\mathcal{H}_{=1} = \frac{17}{2}$ $\mathcal{H}_{=2} = \frac{37}{2}$ $\mathcal{H}_{=3}$ /t = 1 + sin(t = 3th) = din + sin(t - 1/2) - 621 +(-1) + (C31+ C32-6) + (COS(6.37) + b11 + 608(6.15) $=) y_t = 1 \left(sin(t \cdot \frac{1}{2}) \cdot l_{11} + cos(t \cdot \frac{\pi}{2}) \cdot a_{11} \right)$ +(-1)-t(C21+C22°+) Ox: Number of the same costs for example if there are two 12-11/ and -1 is red root, therefore, TK=2. If there would have been one "-1", then the re would have

Invanance set:

$$\widetilde{W}_1 = W - 1 = \frac{1}{8} B^2 + \frac{1}{4} B - \frac{3}{4} + \frac{1}{4} B + \frac{1}{8} B^{-2}$$

$$\hat{W}_{1}$$
 $\hat{P}(z) = \frac{1}{8}z + \frac{1}{4}z^{3} - \frac{3}{4}z^{2} + \frac{1}{4}z + \frac{1}{8}z = 0$

$$Z_1 = 1$$
, $Z_2 = 1$, $Z_1 + 4Z + 1$

$$\frac{7}{2}$$
 = $\frac{-4}{2}$ + $\frac{74}{4}$ - $\frac{1}{1}$ = $\frac{-3.73}{-3.73}$

$$\{ t = t \} \in \mathcal{I} m(\mathcal{N}_t)$$

Problem 20:

$$W = 1 - 35$$
 $V = \frac{2}{5} \stackrel{?}{=} 36$
 $V = \frac{2}{5} \stackrel{?}{=} 36$

Show that $W \neq V$ eliminate ceas, effect with period length $\ell = 5$.

To show that calculate Basis of hund of filhers. If they eliminate $\ell = 5$, cas $(4h \cdot +) \neq 5$ in $(4h \cdot +)$ with $4h = \frac{2\pi \cdot k}{2}$ should be in the basis.

(i) $W : 700 \text{ks of } p_{VZ}^{WZ}$ and $2i = 2$
 $4i = 2\pi \stackrel{?}{=} i = 1 - 5$ (hom Poldentin 16)

 $2\pi \stackrel{?}{=} i = 2\pi \stackrel{?}{=} i = 1 - 5$ (hom Poldentin 16)

 $2\pi \stackrel{?}{=} i = 2\pi \stackrel{$

Problem 21: Cond. (a): It should leave line hands => The charceelenshic polyn. of Ti respectively Ti = vi - 1 has to have how fold not at Z = 1 $=> p \bar{w}(1) = 0 \approx (p \bar{w})(1) = 0$ derivative Cond. (b) = To should only * eliminate seesand effects with period length e= tt. => P (Z) has to have 100 ts $Z_1 = c_1 + z_2 = -1 + z_3 = -c$ $\Rightarrow p^{W}(z) = C \cdot (z - i)(z + 1)(z + i)$ $= > \rho \, \tilde{W}(z) = C - (z - i)(z + i)(z + i) - z^{q}$

Now proze for conda (b) does inst helpel the requirements of conda (a). (1) $P^{(1)} = 0 = 0 = 0 = 0 = 0$ (2) $P^{(1)} = 0 = 0 = 0 = 0$ (2) $P^{(1)} = 0 = 0 = 0 = 0$ (3) $P^{(1)} = 0 = 0 = 0 = 0$ (4) $P^{(1)} = 0 = 0 = 0 = 0$ (5) $P^{(1)} = 0 = 0 = 0 = 0$ $(2) \left(\rho \overline{w} \right) (1) \stackrel{!}{=} 0$ $(=) (p^{\overline{h}}) (1) = \frac{1}{4} (3+2+1) - 4 = 0$ only pulpilled when q = 3Since of is the order of the line ficher it now to be an integer. * 3t is meant that it should only eliminate seasonal effects with e=4 and no other functions whatsoever, e.f. (-1) (Cn+C126) should also not le climinatel.