PRÀCTICA 6: ORTOGONALITAT I PROJECCIONS ORTOGONALS (Resum)

PRELIMINARS:

Considerarem dos vectors u i v (vectors columna en Scilab, no ho oblidem) de la mateixa dimensió.

1. Producte escalar:

Es el producte component a component. En matemàtiques escribim $u \cdot v$. En Scilab,

$$u \cdot v = u' * v$$

Observa que hem de trasposar u per a poder realitzar un producte fila \times col i obtenir un escalar. Els vectors u i v són ortogonals si el seu producte escalar és nul. Escribim aleshores $u \perp v$.

2. Norma:

Es la longitud d'un vector (el seu mòdul) que escriurem ||u|| i es calcula com $||u|| = \sqrt{u \cdot u}$. En Scilab,

$$||u|| = norm(u)$$

Un vector es diu unitari si la seua norma és la unitat. Si v és qualsevol vector (no nul), el vector u = v/||v|| és un vector unitari en la direcció de v.

3. Distància:

Com en \mathbb{R} , la distància entre dos vectors, escriurem d(x,y), és la norma de la seua diferència. En Scilab,

$$d(x,y) = norm(x-y)$$

4. Subespai columna. Ortogonalitat:

Si A és una matriu $m \times n$, la podrem escriure en Scilab com

$$A = [u_1, u_2, \dots, u_n]$$

on u_1, u_2, \ldots, u_n són les seues columnes. Anomenem subespai columna de A i escribim Col(A) a l'espai vectorial de \mathbb{R}^m generat per aquestes columnes; és a dir, al conjunt de les combinacions lineals d'aquests vectors. Així, $v \in Col(A)$ si i només si existeix un vector $x \in \mathbb{R}^n$ tal que v = A * x, ja que el producte d'una matriu per un vector es pot veure com el producte de cada component del vector per cada columna de la matriu.

El subespai ortogonal a Col(A), que escriurem $Col(A)^{\perp}$, és el subespai format pels vectors perpendiculars a totes les columnes de A. D'ací,

$$x \in Col(A)^{\perp} \iff A' * x = 0$$

ja que haurem de trasposar A per a convertir columnes en files (recorda que x és vector columna) i poder multiplicar fila \times col. En conseqüència,

$$Col(A)^{\perp} = kernel(A')$$

PROYECCIÓ D'UN VECTOR SOBRE UNA RECTA:

Considerem el vector $x \in \mathbb{R}^n$ i la recta W generada pel vector $a \in \mathbb{R}^n$. El vector x es pot descomposar de forma única com

$$x = x_p + x_\perp$$

on $x_p \in W$ és la seua projecció ortogonal¹ sobre W i x_\perp ortogonal a W. Es tracta de trobar la projecció² \boldsymbol{x}_p . Per a fer-ho tindrem en compte dues condicions:

- $x_p \in W$ doncs existeix $\lambda \in \mathbb{R}$ tal que $x_p = \lambda * a$ (hem de trobar λ)
- $x_{\perp} = x x_p = x \lambda * a$ és ortogonal a W, doncs

$$a'*(x-\lambda*a)=0 \iff a'*x=\lambda a'*a=\lambda*norm^2(A) \implies \lambda=\frac{a'*x}{norm^2(A)}$$

 $D'aci^3$.

$$x_p = \frac{(a' * x)}{norm^2(A)} * a$$

PROYECCIÓ D'UN VECTOR SOBRE UN SUBESPAI:

Es, simplemene, una generalització del cas anterior. Una recta està generada per un vector (columna en Scilab) i un subespai W en general està generat per r vectors columna⁴⁵ de \mathbb{R}^n ; és a dir, W = Col(M), on

$$M = [u_1, u_2, \dots, u_r]$$

De nou $x \in \mathbb{R}^n$ i com abans $x = x_p + x_\perp$, amb $x_p \in W$ i $x_\perp \in W^\perp$. Es tracta de trobar la projecció ortogonal x_p tenint en compte que:

- $x_p \in W$ així que x_p és combinació lineals de les columnes de A i per tant, existe existeix $y \in \mathbb{R}^r$ tal que $x_p = M * y$ (hem de trobar y)
- $x_{\perp} = x x_p = x M * y$ és ortogonal a W, doncs

$$M' * (x - M * y) = 0 \Longrightarrow (M' * M) * y = M' * x$$

Ara, en el cas més favorable, si la matriu $M' * M (r \times r)$ és invertible⁶ (i això ocorre si les columnes de M són vectors linealment independents), podem aïllar $y = inv\left(M'*M\right)*M'*x$, d'on

$$x_p = M * y = \underbrace{M * inv(M' * M) * M'}_{\text{Matriu projecció. } P_W} * x$$

així que la projecció de x sobre W es calcula, simplement, multiplicant la matriu projecció P_W per x.

 $^{^1}$ Observa que el vector x (si no és paral·lel a la recta) forma, amb la seua projecció, un triangle rectangle amb catets x_p i x_{\perp} . La hipotenusa és x.

² En el butlletí s'escriu $\text{Proj}_W(x)$.

³ Aquesta expressió per a x_p és la que apareix en el formulari. En el butlletí es dedueix a partir del vector q unitari en la direcció de la recta. Ambdues són equivalents.

⁴El sistema generador $S = \{u_1, u_2, \dots, u_r\}$ del butlletí. Ací estem simplificant la notació.

 $^{^5}$ Si r=1, W és una recta; si r=2, W serà un pla i així successivament.

 $^{^6}$ Si no ho és, resoldrem el sistema (M'*M)*y=M'*x, trobem y (qualsevol solució condueix a la mateixa projecció) i calculem $x_p = M * y$. Si la matriu és invertible es pot fer així o multiplicant P_W per x. Ambdues condueixen al mateix resultat.

⁷Recorda que en P_W , M no és més que la matriu que té per columnes els generadors de W.