

Multiple linear regression

David Puelz

The multiple linear regression model

Many problems involve more than one independent variable or factor which affects the dependent or response variable.

- More than size to predict house price!
- Demand for a product given prices of competing brands, advertising, house hold attributes, etc.

In SLR, the conditional mean of Y depends on X. The Multiple Linear Regression (MLR) model extends this idea to include more than one independent variable.

The MLR model

Same as always, but with more covariates.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

Recall the key assumptions of our linear regression model:

- The conditional mean of Y is linear in the X_i variables.
- The error term (deviations from line)
 - are normally distributed
 - independent from each other
 - identically distributed (i.e., they have constant variance)

$$Y|X_1...X_p \sim N(\beta_0 + \beta_1 X_1...+\beta_p X_p, \sigma^2)$$

The MLR model

Our interpretation of regression coefficients can be extended from the simple single covariate regression case:

$$\beta_j = \frac{\partial E[Y|X_1, \dots, X_p]}{\partial X_j}$$

Holding all other variables constant, β_j is the average change in Y per unit change in X_j .

The MLR model

T

If p = 2, we can plot the regression surface in 3D.

Consider sales of a product as predicted by price of this product (P1) and the price of a competing product (P2).

$$Sales = \beta_0 + \beta_1 P 1 + \beta_2 P 2 + \epsilon$$

Least squares again!

$$Y = \beta_0 + \beta_1 X_1 \dots + \beta_p X_p + \varepsilon, \quad \varepsilon \sim N(0, \sigma^2)$$

How do we estimate the MLR model parameters?

The principle of Least Squares is exactly the same as before:

- Define the fitted values
- Find the best fitting plane by minimizing the sum of squared residuals.

Least squares

The data...

p1	p2	Sales
5.1356702	5.2041860	144.48788
3.4954600	8.0597324	637.24524
7.2753406	11.6759787	620.78693
4.6628156	8.3644209	549.00714
3.5845370	2.1502922	20.42542
5.1679168	10.1530371	713.00665
3.3840914	4.9465690	346.70679
4.2930636	7.7605691	595.77625
4.3690944	7.4288974	457.64694
7.2266002	10.7113247	591.45483

6

Least squares

Model: $Sales_i = \beta_0 + \beta_1 P1_i + \beta_2 P2_i + \epsilon_i, \ \epsilon \sim N(0, \sigma^2)$

tics
0.99
0.99
0.99
28.42
100.00

ANOVA

	df	SS	MS	F	Significance F
Regression	2.00	6004047.24	3002023.62	3717.29	0.00
Residual	97.00	78335.60	807.58		
Total	99.00	6082382.84			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	115.72	8.55	13.54	0.00	98.75	132.68
p1	-97.66	2.67	-36.60	0.00	-102.95	-92.36
p2	108.80	1.41	77.20	0.00	106.00	111.60

$$b_0 = \hat{\beta}_0 = 115.72$$
, $b_1 = \hat{\beta}_1 = -97.66$, $b_2 = \hat{\beta}_2 = 108.80$, $s = \hat{\sigma} = 28.42$

Plug-in prediction in MLR

Suppose that by using advanced corporate espionage tactics, I discover that my competitor will charge \$10 the next quarter. After some marketing analysis I decided to charge \$8. How much will I sell?

Our model is

Sales =
$$\beta_0 + \beta_1 P1 + \beta_2 P2 + \epsilon$$
, $\epsilon \sim N(0, \sigma^2)$

Our estimates are $b_0 = 115$, $b_1 = -97$, $b_2 = 109$ and s = 28, which leads to

$$Sales = 115 + -97 * P1 + 109 * P2 + \epsilon$$

with $\epsilon \sim N(0, 28^2)$

Plug-in prediction in MLR

By plugging-in the numbers,

Sales =
$$115 + -97 * 8 + 109 * 10 + \epsilon$$

= $437 + \epsilon$

$$\textit{Sales}|P1=8, P2=10 \sim \textit{N}(437, 28^2)$$
 and the 95% Prediction Interval is $(437 \pm 2 * 28)$

Least squares

Just as before, each b_i is our estimate of β_i

Fitted Values: $\hat{Y}_i = b_0 + b_1 X_{1i} + b_2 X_{2i} \dots + b_p X_p$.

Residuals: $e_i = Y_i - \hat{Y}_i$.

Least Squares: Find $b_0, b_1, b_2, \dots, b_p$ to minimize $\sum_{i=1}^n e_i^2$.

In MLR the formulas for the b_i 's are too complicated so we won't talk about them...

Least squares

Residual standard error

The calculation for s^2 is exactly the same:

$$s^{2} = \frac{\sum_{i=1}^{n} e_{i}^{2}}{n-p-1} = \frac{\sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}}{n-p-1}$$

- $-\hat{Y}_i=b_0+b_1X_{1i}+\cdots+b_pX_{pi}$
- The residual "standard error" is the estimate for the standard deviation of ϵ ,i.e,

$$\hat{\sigma} = s = \sqrt{s^2}$$
.

Residuals in MLR

As in the SLR model, the residuals in multiple regression are purged of any linear relationship to the independent variables. Once again, they are on average zero.

Because the fitted values are an exact linear combination of the X's they are not correlated to the residuals.

We decompose Y into the part predicted by X and the part due to idiosyncratic error.

$$Y = \hat{Y} + e$$

$$\bar{e}=0$$
; $\operatorname{corr}(X_j,e)=0$; $\operatorname{corr}(\hat{Y},e)=0$

Residuals in MLR

Consider the residuals from the Sales data:

Fitted values in MLR

Another great plot for MLR problems is to look at Y (true values) against \hat{Y} (fitted values).

If things are working, these values should form a nice straight line. Can you guess the slope of the blue line?

Fitted values in MLR

Now, with P1 and P2...

- First plot: Sales regressed on P1 alone...
- Second plot: Sales regressed on P2 alone...
- Third plot: Sales regressed on P1 and P2

Intervals for individual coefficients

As in SLR, the sampling distribution tells us how close we can expect b_j to be from β_j

The LS estimators are unbiased: $E[b_j] = \beta_j$ for j = 0, ..., d.

We denote the sampling distribution of each estimator as

$$b_j \sim N(\beta_j, s_{b_j}^2)$$

Intervals for individual coefficients

Intervals and *t*-statistics are exactly the same as in SLR.

- A 95% C.I. for β_j is approximately $b_j \pm 2s_{b_i}$
- The t-stat: $t_j = \frac{(b_j \beta_j^0)}{s_{b_j}}$ is the number of standard errors between the LS estimate and the null value (β_j^0)
- As before, we reject the null when t-stat is greater than 2 in absolute value
- Also as before, a small p-value leads to a rejection of the null
- Rejecting when the p-value is less than 0.05 is equivalent to rejecting when the $|t_j|>2$

In Excel... Do we know all of these numbers?

Regression Statistics				
Multiple R	0.99			
R Square	0.99			
Adjusted R Square	0.99			
Standard Error	28.42			
Observations	100.00			

ANOVA

	df	SS	MS	F	Significance F
Regression	2.00	6004047.24	3002023.62	3717.29	0.00
Residual	97.00	78335.60	807.58		
Total	99.00	6082382.84			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	115.72	8.55	13.54	0.00	98.75	132.68
p1	-97.66	2.67	-36.60	0.00	-102.95	-92.36
p2	108.80	1.41	77.20	0.00	106.00	111.60

95% C.I. for
$$\beta_1 \approx b1 \pm 2 \times s_{b_1}$$

$$[-97.66 - 2 \times 2.67; -97.66 + 2 \times 2.67] = [-102.95; -92.36]$$

The Sales Data:

- Sales: units sold in excess of a baseline
- P1: our price in \$ (in excess of a baseline price)
- P2: competitors price (again, over a baseline)

- If we regress Sales on our own price, we obtain a somewhat surprising conclusion... the higher the price the more we sell!!

 It looks like we should just raise our prices, right? NO, not if you have taken this statistics class!

- The regression equation for Sales on own price (P1) is:

$$Sales = 211 + 63.7P1$$

If now we add the competitors price to the regression we get

$$Sales = 116 - 97.7P1 + 109P2$$

- Does this look better? How did it happen?
- Remember: -97.7 is the affect on sales of a change in P1 with P2 held fixed!!

- How can we see what is going on? Let's compare Sales in two different observations: weeks 82 and 99.
- We see that an increase in P1, holding P2 constant, corresponds to a drop in Sales!

 Note the strong relationship (dependence) between P1 and P2II

 Let's look at a subset of points where P1 varies and P2 is held approximately constant...

 For a fixed level of P2, variation in P1 is negatively correlated with Sales!!

- Below, different colors indicate different ranges for P2...

- Summary:

- A larger P1 is associated with larger P2 and the overall effect leads to bigger sales
- With P2 held fixed, a larger P1 leads to lower sales
- MLR does the trick and unveils the "correct" economic relationship between Sales and prices!

1

Beer Data (from an MBA class)

- nbeer number of beers before getting drunk
- height and weight

Is number of beers related to height?

$$nbeers = \beta_0 + \beta_1 height + \epsilon$$

Regression Statistics				
Multiple R	0.58			
R Square	0.34			
Adjusted R Square	0.33			
Standard Error	3.11			
Observations	50.00			

ANOVA

	df	SS	MS	F	Significance F
Regression	1.00	237.77	237.77	24.60	0.00
Residual	48.00	463.86	9.66		
Total	49.00	701.63			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-36.92	8.96	-4.12	0.00	-54.93	-18.91
height	0.64	0.13	4.96	0.00	0.38	0.90

Yes! Beers and height are related...

$$nbeers = \beta_0 + \beta_1 weight + \beta_2 height + \epsilon$$

Regression Statistics	
Multiple R	0.69
R Square	0.48
Adjusted R Square	0.46
Standard Error	2.78
Observations	50.00

ANOVA

	df	SS	MS	F	Significance F
Regression	2.00	337.24	168.62	21.75	0.00
Residual	47.00	364.38	7.75		
Total	49.00	701.63			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-11.19	10.77	-1.04	0.30	-32.85	10.48
weight	0.09	0.02	3.58	0.00	0.04	0.13
height	0.08	0.20	0.40	0.69	-0.32	0.47

What about now?? Height is not necessarily a factor...

The correlations:

- If we regress "beers" only on height we see an effect. Bigger heights go with more beers.
- However, when height goes up weight tends to go up as well...
 in the first regression, height was a proxy for the real cause of
 drinking ability. Bigger people can drink more and weight is a
 more accurate measure of "bigness".

 In the multiple regression, when we consider only the variation in height that is not associated with variation in weight, we see no relationship between height and beers.

$$nbeers = \beta_0 + \beta_1 weight + \epsilon$$

Regression Statistics				
Multiple R	0.69			
R Square	0.48			
Adjusted R	0.47			
Standard E	2.76			
Observatio	50			

ANOVA

	df	SS	MS	F	Significance F
Regressior	1	336.0317807	336.0318	44.11878	2.60227E-08
Residual	48	365.5932193	7.616525		
Total	49	701.625			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-7.021	2.213	-3.172	0.003	-11.471	-2.571
weight	0.093	0.014	6.642	0.000	0.065	0.121

Why is this a better model than the one with weight and height??

In general, when we see a relationship between y and x (or x's), that relationship may be driven by variables "lurking" in the background which are related to your current x's.

This makes it hard to reliably find "causal" relationships. Any correlation (association) you find could be caused by other variables in the background... correlation is NOT causation

Any time a report says two variables are related and there's a suggestion of a "causal" relationship, ask yourself whether or not other variables might be the real reason for the effect. Multiple regression allows us to control for all important variables by including them into the regression. "Once we control for weight, height and beers are NOT related"!!

correlation is NOT causation

also...

- http://www.tylervigen.com/spurious-correlations

Back to Baseball − Let's try to add AVG on top of OBP 🗡

Regression Statistics				
Multiple R	0.948136			
R Square	0.898961			
Adjusted R Square	0.891477			
Standard Error	0.160502			
Observations	30			

ANOVA

	df	SS	MS	F	Significance F
Regression	2	6.188355	3.094177	120.1119098	3.63577E-14
Residual	27	0.695541	0.025761		
Total	29	6.883896			

	Coefficients	andard Errc	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-7.933633	0.844353	-9.396107	5.30996E-10	-9.666102081	-6.201163
AVG	7.810397	4.014609	1.945494	0.062195793	-0.426899658	16.04769
OBP	31.77892	3.802577	8.357205	5.74232E-09	23.9766719	39.58116

$$R/G = \beta_0 + \beta_1 AVG + \beta_2 OBP + \epsilon$$

Is AVG any good?

Back to Baseball - Now let's add SLG

Regression Statistics					
Multiple R	0.955698				
R Square	0.913359				
Adjusted R Square	0.906941				
Standard Error	0.148627				
Observations	30				

ANOVA

	df	SS	MS	F	Significance F
Regression	2	6.28747	3.143735	142.31576	4.56302E-15
Residual	27	0.596426	0.02209		
Total	29	6.883896			

	Coefficients	andard Errc	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-7.014316	0.81991	-8.554984	3.60968E-09	-8.69663241	-5.332
OBP	27.59287	4.003208	6.892689	2.09112E-07	19.37896463	35.80677
SLG	6.031124	2.021542	2.983428	0.005983713	1.883262806	10.17899

$$R/G = \beta_0 + \beta_1 OBP + \beta_2 SLG + \epsilon$$

What about now? Is SLG any good

Back to Baseball

Correlations					
AVG	1				
OBP	0.77	1			
SLG	0.75	0.83	1		

- When AVG is added to the model with OBP, no additional information is conveyed. AVG does nothing "on its own" to help predict Runs per Game...
- SLG however, measures something that OBP doesn't (power!) and by doing something "on its own" it is relevant to help predict Runs per Game. (Okay, but not much...)

Things to remember:

- Intervals are your friend! Understanding uncertainty is a key element for sound business decisions.
- Correlation is NOT causation!
- When presented with a analysis from a regression model or any analysis that implies a causal relationship, skepticism is always a good first response! Ask question... "is there an alternative explanation for this result"?
- Simple models are often better than very complex alternatives... remember the trade-off between complexity and generalization (more on this later)