

Model Development Phase Template

Date	15 July 2024
Team ID	739682
Project Title	Space X Falcon 9 First Stage Landing Success Predictor
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

Logistic Regression Model

```
[ ] lr=LogisticRegression()
lr.fit(x_train,y_train)
lr_pred=lr.predict(x_test)

[ ] lr_accuracy=accuracy_score(y_test,lr_pred)
lr_precision=precision_score(y_test,lr_pred)
lr_recall=recall_score(y_test,lr_pred)
lr_f1_score=f1_score(y_test,lr_pred)
lr_auc_score=roc_auc_score(y_test,lr_pred)
lr_auc_score=roc_auc_score(y_test,lr.pred)
lr_accuracy

ひ lr_accuracy
```

Decision Tree Classifier model

```
[ ] dt=DecisionTreeClassifier()
    dt.fit(x_train,y_train)
    dt_pred=dt.predict(x_test)

dt_accuracy = accuracy_score (y_test, dt_pred)
    dt_precision=precision_score (y_test, dt_pred)
    dt_recall=recall_score(y_test, dt_pred)
    dt_f1_score=f1_score(y_test, dt_pred)
    dt_auc_score=roc_auc_score (y_test, dt.pred)
```


KNN Classifier model

```
[ ] knn = KNeighborsClassifier()
knn.fit(x_train, y_train)
knn_pred= knn.predict(x_test)
knn_accuracy = accuracy_score (y_test, knn_pred)
knn_precision= precision_score (y_test, knn_pred)
knn_recall = recall_score (y_test, knn_pred)
knn_f1_score=f1_score(y_test, knn_pred)
knn_auc_score = roc_auc_score (y_test, knn.predict_proba (x_test) [:, 1])
```

Random Forest Model

```
3] rf=RandomForestClassifier()
    rf.fit(x_train, y_train)
    rf_pred= rf.predict(x_test)

4] rf_accuracy = accuracy_score (y_test, rf_pred)
    rf_precision = precision_score (y_test, rf_pred)
    rf_recall = recall_score (y_test, rf_pred)
    rf_fl_score = fl_score (y_test, rf_pred)
    rf_auc_score = roc_auc_score (y_test, rf.pred)
    rf_auc_score = roc_auc_score (y_test, rf.predict_proba (x_test) [:, 1])
```

Model Validation and Evaluation Report:

Model	Classification Report	F1 Score	Confusion Matrix
Logistic Regression	[91] print(classification_report(y_test,lr_pred)) precision recall f1-score support 0 1.00 0.75 0.86 4 1 0.93 1.00 0.97 14 accuracy 0.94 18 macro avg 0.97 0.88 0.91 18 weighted avg 0.95 0.94 0.94 18	96%	[52] cm = confusion_matrix(y_test, lr_pred) cm array([[3, 1],
Decision Tree	93] print(classification_report(y_test,dt_pred)) precision recall f1-score support 0 0.80 1.00 0.89 4 1 1.00 0.93 0.96 14 accuracy 0.94 18 macro avg 0.90 0.96 0.93 18 weighted avg 0.96 0.94 0.95 18	96%	<pre>cm = confusion_matrix(y_test, dt_pred) cm array([[4, 0],</pre>

KNN	print(classification_re	recall f1-score 1.00 0.89 0.93 0.96 0.94 0.96 0.93		96%	<pre>cm = confusion_matrix(y_test, knn_pred) cm array([[4, 0],</pre>
Random Forest	accuracy macro avg		e support 9 4 6 14 4 18 3 18	96%) cm = confusion_matrix(y_test, rf_pred) cm r array([[4, 0], [1, 13]])