

D E E P N O I D

CFA: Coupled-hypersphere-based Feature Adaptation For Target-Oriented Anomaly Localization (IEEE 2022)

2023.01.31

Presenter: Taewoong Kang twk@deepnoid.com

Abstract

- Anomaly Localization
- Unlike previous studies, we focused on approximating the distribution of normal features with adaptation
- A learnable patch descriptor that learns and embeds target-oriented features
- Scalable memory bank independent of the target dataset

SPADE

- Utilize Memory bank
- Calculated anomaly scores by computing the Euclidean distance

PaDiM

- Define Memory bank by modeling the normal distribution at each location of the feature map (patch-level approach)
- Calculated anomaly scores by using Mahalanobis distance metric

PatchCore

- Used only mid-level feature maps
- Proposed greedy coreset subsampling

Overview

- Performance of anomaly localization depends on the size of the memory bank
 - ->stored as many normal features as possible in a memory bank
 - -> unfitted features may cause risk of overestimated normality and increase the inference time
- => novel approach to produce target-oriented features
 - => we define a novel loss function
 - => we present a scalable memory bank

Figure 1. Overall structure of our proposed method (CFA).

Overview

- The feature maps sampled at each depth of CNN are interpolated to have the same resolution and then concatenated
- Patch feature $\mathcal{F} \in \mathbb{R}^{D \times H \times W}$
- Feature $\mathbf{p}_{t \in \{1,...,HW\}} \in \mathbb{R}^D$
- Patch descriptor $\phi(\cdot): \mathbb{R}^D \to \mathbb{R}^{D'}$ (auxiliary network with learnable parameters)
- Memory bank C

Figure 1. Overall structure of our proposed method (CFA).

CFA

- Coupled-hypersphere-based Feature Adaptation (CFA)
- Extract clustered normal features so that has a high density
- 1. the k-nearest neighbor \mathbf{c}_t^k is searched through the NN search of $\phi(\mathbf{p}_t)$ and \mathcal{C}
- 2. CFA supervises $\phi(\cdot)$ so that \mathbf{p}_t is embedded close to \mathbf{c}_t^k

$$\mathcal{L}_{att} = \frac{1}{TK} \sum_{t=1}^{T} \sum_{k=1}^{K} \max\{0, \mathcal{D}(\phi(\mathbf{p}_t), \mathbf{c}_t^k) - r^2\}$$
 attracting

• (K: hyperparameter the number of NN $T = h \times w$, $\mathcal{D}(\cdot, \cdot)$ is predefined distance metric (Euclidean))

CFA

- To address ambiguous $\phi(\mathbf{p})$ belonging to multiple hyperspheres
- Use hard negative features
- Hard negative features are defined as the K+j-th nearest neighbor \mathbf{c}_t^j

$$\mathcal{L}_{rep} = \frac{1}{TJ} \sum_{t=1}^{T} \sum_{j=1}^{J} \max\{0, r^2 - \mathcal{D}(\phi(\mathbf{p}_t), \mathbf{c}_t^j) - \alpha\}$$

- hyperparameter J is the total number of hard negative features
- hyperparameter α is used to control the balance between \mathcal{L}_{att} and \mathcal{L}_{rep}

 $\mathcal{L}_{CFA} = \mathcal{L}_{att} + \mathcal{L}_{rep}$

Memory Bank Compression

- 1. an initial memory bank C0 is constructed by K-means clustering to all $\phi_0(\mathbf{p}_{t\in\{1,...,T\}})$
- 2. i-th memory bank of the next state Ci is calculated by EMA (exponential moving average) of C_i^{NN} and C_{i-1}
- C_i^{NN} is the set of nearest patch feature

Algorithm 1 Memory Bank Modeling.

```
Require: Patch descriptor \phi, dataset \mathcal{X}, EMA parameter \beta
Initialization: \mathcal{C}_0 \leftarrow \operatorname{KMeans}\phi_0(\mathbf{p})
for i \in \{1, \dots, |\mathcal{X}|\} do
\mathcal{C}_i^{NN} \leftarrow \{\}
for j \in \{1, \dots, |\mathcal{C}|\} do
Y \leftarrow (\phi_i(\mathbf{p}) \cup \mathcal{C}_i^{NN}) \cap (\mathcal{C}_i^{NN})^c
\mathcal{C}_i^{NN} \cup \arg\min_{y \in Y} \left\| y - \mathcal{C}_{i-1}^j \right\|_2
end for
\mathcal{C}_i \leftarrow (1 - \beta) \cdot \mathcal{C}_{i-1} + \beta \cdot \mathcal{C}_i^{NN}
end for
\mathcal{C} \leftarrow \mathcal{C}_{|\mathcal{X}|}
return \mathcal{C}
```

Memory Bank Compression

- Effective adaptation
- C of the proposed method is not affected by $|\mathcal{X}|$

Table 1. Complexity estimates of memory bank modeling and memory bank size.

Methods	Modeling	Memory Bank
SPADE	$\mathcal{O}(\mathcal{X} HWD)$	$\mathcal{G} \in \mathbb{R}^{ \mathcal{X} \times H \times W \times D}$
PaDiM	$\int \mathcal{O}(\mathcal{X} HWD^2)$	$\mathcal{N}(\mu, \mathbf{\Sigma}) \in \mathbb{R}^{H \times W \times D^2}$
PatchCore	$\mathcal{O}(\mathcal{X} HWD')$	$\mathcal{M} \in \mathbb{R}^{ \mathcal{X} \times \gamma(H \times W) \times D'}$
Ours	O(HWD')	$\mathcal{C} \in \mathbb{R}^{\gamma(H \times W \times D)}$

Scoring Function

• Define the anomaly score naively using $\mathcal{D}(\phi(\mathbf{p}_t), \mathbf{c}_t^k)$

$$S_t = \min_k \mathcal{D}(\phi(\mathbf{p}_t), \mathbf{c}_t^k)$$

- But, it can be uncertain which memorized features will match $\phi(\mathbf{p}_t)$
 - (underestimates the nomality)
- Novel scoring function that considers the certainty of $\phi(\mathbf{p}_t)$

$$\mathcal{A}_t = \frac{e^{-\mathcal{S}_t}}{\sum_{k=1}^K e^{-\mathcal{D}(\phi(\mathbf{p}_t), \mathbf{c}_t^k)}} \cdot \mathcal{S}_t$$

Softmin to measure how close the nearest c is compared to the other c

Scoring Function

- Heatmaps are generated from naïve anomaly scores
- k-th heatmap $\mathcal{H}^k = \{\mathcal{D}(\phi(\mathbf{p}_t), \mathbf{c}_t^k) | 1 \leq \bar{t} \leq T\}$ is generated and rearranged so that heatmap has spatial information
- Then certainty score is calculated at all pixel locations to obtain the final output of CFA
- For the same resolution as the input samples, A is properly interpolated, and the Gaussian smoothing of $\sigma = 4$ is applied as post-processing

Qualitative Results

- Red: anomaly score
- Dotted circle: the area of abnormal features
- Triangle: memorized features

Figure 3. Visualization of anomaly score of each patch feature.

Experiments

- All the experiments were performed on MVTec AD benchmark
- Evaluation metric -> AUROC(I-AUROC for detection,P-AUROC for localization), AUPRO(PRO)
- All CNNs were pretrained with ImageNet

Set up

- Extract feature maps corresponding to {C2, C3, C4}
- Patch descripter-> 1x1 CoordConv, initialized to He's initializer, optimized with AdamW, amsgrad
- Batch size 4
- r and α were set to 1e-5, 1e-1

Results

- CFA++: ensembles the results when using cropped images and using only resized samples
- CFA++ shows 0.4% better I-AUROC than PatchCore

Table 2. Image/Pixel-level AUROC (%) of anomaly localization methods on MVTec AD dataset.

Model		SPADE	Patch SVDD	PaDiM	CutPaste	CFLOW	PatchCore	CFA	CFA++
	Textures	96.6	94.5	95.3	98.4	98.7	99.0	99.6	99.8
I-AUROC	Objects	96.0	90.8	95.3	94.1	98.0	99.1	99.2	99.4
	All	96.2	92.1	95.3	95.5	98.3	99.1	99.3	99.5
	Textures	92.9	93.7	95.3	96.9	98.5	97.5	97.2	97.5
P-AUROC	Objects	97.6	96.7	95.3	97.8	98.7	98.3	98.6	98.9
	All	96.0	95.7	97.5	97.5	98.6	98.2	98.2	98.5

Results

- The proposed method guarantees good performance in both localization and detection
- Also, achieves outstanding performance despite using a memory bank with a smaller spatial complexity compared to SPADE, PaDiM, PatchCore

Table 3. Image-level AUROC (%) and Pixel-level AUPRO (%) of anomaly localization methods on RD-MVTec AD dataset.

Mod	del	Textures	Objects	All
VAE	I-AUROC	54.7	65.8	62.1
(ResNet18)	P-AUPRO	23.1	30.2	27.8
CFA++	I-AUROC	98.6	95.5	96.5
(ResNet18)	P-AUPRO	81.1	82.2	81.8
SPADE	I-AUROC	84.6	88.2	87.2
(WRN50-2)	P-AUPRO	75.6	65.8	69.0
PaDiM	I-AUROC	92.4	92.1	92.1
(WRN50-2)	P-AUPRO	77.8	70.8	73.1
CFA++	I-AUROC	99.7	98.3	98.7
(WRN50-2)	P-AUPRO	82.2	83.7	83.2

Results

Table 4. Performance comparison of image-level AUROC (%) on each class of MVTec AD dataset. Red, blue, and bold stand for the first, second, and third places

Class	SPADE	Patch SVDD	PaDiM	CutPaste	CFLOW	PatchCore	CFA	CFA++
Bottle	-	98.6	-	98.2	100	100.0	100.0	100.0
Cable	-	90.3	-	81.2	97.6	99.5	99.8	99.8
Capsule	-	76.7	-	98.2	97.7	98.1	97.3	99.2
Carpet	-	92.9	-	93.9	98.7	98.7	97.3	99.5
Grid	-	94.6	-	100.0	99.6	98.2	99.2	99.9
Hazelnut	-	92.0	-	98.3	100.0	100.0	100.0	100.0
Leather	-	90.9	-	100.0	100.0	100.0	100.0	100.0
Metal nut	-	94.0	-	99.9	99.3	100.0	100.0	100.0
Pill	-	86.1	-	94.9	96.8	96.6	97.9	97.9
Screw	-	81.3	-	88.7	91.9	98.1	97.3	97.3
Tile	-	97.8	-	94.6	99,9	98.7	99.4	100.0
Toothbrush	-	100.0	-	99.4	99.7	100.0	100.0	100.0
Transistor	-	91.5	-	96.1	95.2	100.0	100.0	100.0
Wood	-	96.5	-	99.1	99.1	99.2	99.7	99.7
Zipper	-	97.9	-	99.9	98.5	99.4	99.6	99.6
Average	96.2	92.1	95.3	95.5	98.3	99.1	99.3	99.5

Ablation Study

- Normality was underestimated due to biased features −⟩ low performance
- Normal features are more densely clustered → better performance
- Clustered more discriminatively -> best performance
- ResNet18 uses relatively small feature dimensions which may increase ambiguity, so Lrep effectively solved the problem

Table 5. Image/Pixel-level AUROC (%) of the proposed method according to \mathcal{L}_{att} and \mathcal{L}_{rep} on MVTec AD dataset.

Backbone	\mathcal{L}_{att}	\mathcal{L}_{rep}	I-AUROC	P-AUROC
			83.7	92.4
ResNet18	✓		97.8	97.8
	✓	\checkmark	98.9	98.1
			85.9	94.0
WRN50-2	✓		99.1	98.3
	✓	\checkmark	99.5	98.5

Ablation Study

- Feature reduction ratio γ_d
- Patch reduction ratio γ_c
- CFA was compressed as $\frac{\gamma_d \gamma_c}{|\mathcal{X}|}$

Table 6. Pixel-level AUROC (%) of the proposed method with additional memory bank compression on MVTec AD dataset.

Backbone	γ_d	γ_c	P-AUROC	Throughput
WRN50-2	1	1	98.45	48
	1/2	1/2	98.44	93 (1.9x)
	1/4	1/4	98.44	132 (2.8x)
	1/8	1/8	98.36	172 (3.6x)

Visualization

Conclusion

- Solve bias problem with CFA (to obtain target-oriented features)
- Lightweight memory bank

