DEPARTMENT OF PHYSICS

Tutorials Electromagnetic Theory (Term: Aug to Dec 2019)

- 1. Given $\vec{D} = (2y^2z 8xy)\hat{\imath} + (4xyz 4x^2)\hat{\jmath} + (2xy^2 4z)\hat{k}$. Determine the total charge within a volume 10^{-14} m³ at P (1,-2,3), if the divergence of \vec{D} gives the charge density ρ_v .
- 2. Given $\vec{D} = 9x^3\hat{\imath} + 5y^2\hat{\jmath} + 2z\hat{k}$ Cm⁻². If the divergence of \vec{D} represents the charge density ρ_v , find ρ_v at the point (1,5,9) m.
- 3. Given $\vec{D} = 4x\hat{\imath} + 3y^2\hat{\jmath} + 2z^3\hat{k}$ Cm⁻³. If the divergence of \vec{D} represents the charge density ρ_v , then find the total charge in a volume defined by six planes for which $1 \le x \le 2, 2 \le y \le 3, 3 \le z \le 4$.
- 4. The magnetic field intensity is given in a certain region of space as

$$\vec{H} = \frac{x+2y}{z^2}\hat{j} + \frac{2}{z}\hat{k} \text{ Am}^{-1}.$$

Find the curl of the magnetic field.

- 5. A point charge, Q = 30nC is located at the origin in Cartesian system. Find the electric flux density and the electric field intensity at (1, 3, -4).
- 6. Suppose $A = x^2 z^2 \hat{\imath} 2y^2 z^2 \hat{\jmath} + xy^2 z \hat{k}$. Find $\nabla \cdot A$ at the point P (1,-1, 1).
- 7. A parallel plate capacitor consists of plates of area 10 cm⁻² with separation 10mm and dielectric medium of permittivity \in = 4 \in ₀. Calculate the displacement current, if the voltage applied is 15 sin(1000t) and \in = 4 \in ₀.
- 8. $\vec{A} = x^2 yz\hat{\imath} + xy^2 z\hat{\jmath} + xyz^2 \hat{k}$. Determine curl \vec{A} .
- 9. $\vec{A} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$. Find div A and curl \vec{A} .

$$(\epsilon_0 = 8.854 \times 10^{-12} Fm^{-1})$$