Notes

Jackson Loper

January 2019

1 Objective

For any fixed matrix X with entries $X_{cg} \in \{0,1\}$ and any $n \geq 1$, let

$$L = \sum_{c,g} \left((X_{c,g} - .5) \left(\sum_{k=0}^{n} Z_{ck} \alpha_{gk} \right) - \log 2 \cosh \frac{1}{2} \sum_{k=0}^{n} Z_{ck} \alpha_{gk} \right)$$

We here consider the problem of maximizing L with respect to α, z .

We additionally consider the case that we would like to maximize a regularized objective. Specifically, let

$$R^{\alpha} = \sum_{g} -\frac{1}{2} \alpha_g^T D_g^{\alpha} \alpha_g + \alpha_g^T d_g^{\alpha}$$

$$R^{z} = \sum_{c} -\frac{1}{2} z_{c}^{T} D_{c}^{z} z_{c} + z_{c}^{T} d_{c}^{z}$$

where for each g we have D_g^{α} is an $n \times n$ square matrix, d^{α} is a n-vector, and likewise for D^z, d^z . We can incorporate these regularizations by trying to maximize $L + R^{\alpha} + R^z$ instead.

2 What this code provides

- 1. $z, \alpha \leftarrow \text{logistic_svd.numpy_version.initialize}(X)$. Given X, uses SVD to give a reasonable initial estimate for z, α .
- 2. $\alpha' \leftarrow \text{logistic_svd.numpy_version.update_alpha}(X, z, \alpha, D^{\alpha}, d^{\alpha})$. Given $X, D^{\alpha}, d^{\alpha}$ and an initial guess z, α , this function calculates an improved estimate for α' , i.e. $L(z, \alpha) + R^{\alpha}(\alpha) \leq L(z, \alpha') + R^{\alpha}(\alpha')$. Note that, by the symmetry of this problem, this can be used to update z as well.
- 3. $\alpha' \leftarrow \text{logistic_svd.torch_version.update_alpha}(X, z, \alpha, D^{\alpha}, d^{\alpha})$. Same as above, but taking torch tensors as input instead of numpy arrays.
- 4. $L \leftarrow \texttt{logistic_svd.numpy_version.logistic_likelihood}(X, z, \alpha)$. Calculates the (unregularized) objective.

- 5. $L \leftarrow \texttt{logistic_svd.torch_version.logistic_likelihood}(X, z, \alpha)$. Same but for torch
- 6. $L \leftarrow \texttt{logistic_svd.numpy_version.quadratic}(z, D^z, d^z)$. Calculates the regularization.
- 7. $L \leftarrow \texttt{logistic_svd.torch_version.quadratic}(z, D^z, d^z)$. Same but for torch.

3 How the updates work: minorization

Observe that for any initial condition, $\tilde{Z}, \tilde{\alpha}$, we may obtain a simple minorizaton for this problem. Indeed, let

$$M_{cg} = M_{cg}(\tilde{Z}, \tilde{\alpha}) = \frac{\tanh\left(\frac{1}{2}\sum_{k}\tilde{Z}_{ck}\tilde{\alpha}_{gk}\right)}{2\sum_{k}\tilde{Z}_{ck}\tilde{\alpha}_{gk}}$$

$$\kappa_{cg} = \kappa_{cg}(\tilde{Z}, \tilde{\alpha}) = \frac{1}{2}M_{cg}\left(\sum_{k}\tilde{Z}_{ck}\tilde{\alpha}_{gk}\right)^{2} - \log 2 \cosh\frac{1}{2}\sum_{k}\tilde{Z}_{ck}\tilde{\alpha}_{gk}$$

$$\tilde{L}_{M,k}(Z, \alpha) = \sum_{c,g}\left(X_{c,g}\left(\sum_{k}Z_{ck}\alpha_{gk}\right) + \kappa_{cg} - \frac{1}{2}M_{cg}\left(\sum_{k}Z_{ck}\alpha_{gk}\right)^{2}\right)$$

Then observe that

$$\tilde{L}_{M,k}(\tilde{Z},\tilde{\alpha}) = L(\tilde{Z},\tilde{\alpha})$$

Furthermore, it is well-known that

$$\tilde{L}_{M,k}(Z,\alpha) \le L(Z,\alpha) \qquad \forall Z,\alpha$$

Thus \tilde{L} is a so-called "minorizer" for L from the initial condition $\tilde{Z}, \tilde{\alpha}$. We can therefore be guaranteed that if we can find Z, α that improves \tilde{L} , it will also improve our value of L. That is, if we can find Z, α such that $\tilde{L}_{M,k}(Z,\alpha) > \tilde{L}_{M,k}(\tilde{Z},\tilde{\alpha})$, then we will also have $L(Z,\alpha) > L(\tilde{Z},\tilde{\alpha})$. This suggests the following iterative process:

- 1. Start with some initial condition $\tilde{Z}, \tilde{\alpha}$.
- 2. Calculate $M(\tilde{Z}, \tilde{\alpha}), k(\tilde{Z}, \tilde{\alpha})$
- 3. Find Z, α such that $\tilde{L}_{M,k}(Z,\alpha) > \tilde{L}_{M,k}(\tilde{Z},\tilde{\alpha})$
- 4. Set $\tilde{Z} \leftarrow Z$, $\tilde{\alpha} \leftarrow \alpha$, go to step 2.

To enact this procedure, the key difficulty is step 3. That is, we need to be able to make progress on the surrogate problem \tilde{L} . It is to this problem we now turn our attention.

4 Progress on the surrogate problem \tilde{L}

Here we consider the problem of optimizing

$$\tilde{L}_{M,k}(Z,\alpha) = \sum_{c,g} \left(X_{c,g} \left(\sum_{k} Z_{ck} \alpha_{gk} \right) - \frac{1}{2} M_{cg} \left(\sum_{k} Z_{ck} \alpha_{gk} \right)^{2} \right)$$

Note we have dropped the κ s that appeared in the previous section, since it is constant with respect to our objects of interest.

This problem can be optimized via coordinate ascent, alternating between Z and α . For example, let us consider only the case that we fix α and try to optimize Z. Note that with α fixed the problem is now separable over the cs. In particular, dropping constants, we see that for each c separately we need to optimize a problem of the form

$$f_c(z_c) = \sum_{g} \left(X_{c,g} \left(\sum_{k} Z_{ck} \alpha_{gk} \right) - \frac{1}{2} M_{cg} \left(\sum_{k} Z_{ck} \alpha_{gk} \right)^2 \right)$$

Take derivatives:

$$\frac{\partial}{\partial z_{ck}} f_c(z_c) = \sum_{q} X_{c,q} \alpha_{gk} - M_{cg} \alpha_{gk} \left(\sum_{k'} Z_{ck'} \alpha_{gk'} \right)$$

Setting equal to zero, we see that the optimal α_q will be achieved by taking

$$\Gamma_{k,k'} = \sum_{g} M_{cg} \alpha_{gk} \alpha_{gk'}$$
$$z_c^* = \Gamma^{-1} \alpha^T X_c$$

We can do the same kind of update for α .

5 Initialization

If we initialize our problem with $Z = \alpha = 0$, our first minorization is given by taking $M_{cq} = \lim_{\epsilon \to 0} \tanh(\epsilon/2)/(2\epsilon) = .25$. This leads to the surrogate problem

$$\tilde{L}_{M,k}(Z,\alpha) = \sum_{c,g} \left(X_{c,g} \left(\sum_k Z_{ck} \alpha_{gk} \right) - \frac{1}{8} \left(\sum_k Z_{ck} \alpha_{gk} \right)^2 \right)$$

It is easy to see that this problem is solved by taking Z, α as the first left and right singular vectors of 4(X - .5), each multiplied by the square root of the corresponding singular value. This gives a good initialization.

6 Regularization

Introducing per-c and per-g quadratic regularizations is straightforward. WLOG, let us consider updating z_c . After the minorization recall that the problem has become separable. The objective for a particular c, with regularization, is then

$$f_c(z_c) = -\frac{1}{2} z_c^T D z_c + d^T z_c + \sum_g \left(X_{c,g} \left(\sum_k Z_{ck} \alpha_{gk} \right) - \frac{1}{2} M_{cg} \left(\sum_k Z_{ck} \alpha_{gk} \right)^2 \right)$$

It is straightforward to see that this leads to the updates

$$\Gamma_{k,k'} = \sum_{g} M_{cg} \alpha_{gk} \alpha_{gk'}$$
$$z_c^* = (\Gamma + D)^{-1} (\alpha^T X_c + d)$$