

Q13. Let $A = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$ be a matrix, then by Cayley Hamilton theorem the expression for A^{-1} is

(a) $\frac{1}{10}(A - 3I)$ (b) $\frac{1}{10}(A - 5I)$ (c) $\frac{-1}{10}(A - 5I)$ (d) $\frac{-1}{10}(A - 5I)$ Q14. The value of $\frac{dy}{dx}$, where y= $2\sqrt{x} - \frac{1}{2\sqrt{x}}$ is: a) $\frac{1}{\sqrt{x}} + \frac{1}{4x\sqrt{x}}$ b) $\frac{4x-1}{4x\sqrt{x}}$ c) $x + \frac{1}{x\sqrt{x}}$ d) $\frac{4}{\sqrt{x}} + \frac{1}{x\sqrt{x}}$ Q15. The value of $\frac{dy}{dx}$ at x=0 , where y= $\ln(\sec x + \tan x)$ is : d) 2 **Q16.** If $2x + 3y = \cos x$, then $\frac{dy}{dx}$ is. a) (-sinx+2)/3 b) (cosx-2)/3 c) (sinx-2)/3 d) - $(\sin x + 2)/3$ Q17. If $3x^2 - 2xy + 5y^2 = 1$ then $\frac{dy}{dx}$ is
a) $\frac{3x - y}{x - 5y}$ b) $\frac{3x + y}{x - 5y}$ c) $\frac{y-3x}{x-5y}$ d) $\frac{3x-y}{x+5y}$ Q18. If $x = \cos^3 \theta$ and $y = \sin^3 \theta$ then $\frac{dy}{dx}$ is a) $\cot \theta$ b) $\tan \theta$ c) – Q19. If $x = \frac{1}{1-t}$ and $y = 1 + \ln(1-t)$; (t < 1) then $\frac{dy}{dx}$ is c) $-\cot\theta$ d) $-\tan\theta$ d) $\frac{1}{1+t}$ t

Q20. If $y = 2^{\sin x}$ then $\frac{dy}{dx}$ is

a) $2^{\sin x} \log 2$ b) $2^{\sin x}$ c) 0 Q21. $\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx$ is equal to : d) $2^{\sin x} \cos x$ c) a d) - a **Q22.** $\int_{-\pi}^{\frac{\pi}{2}} \sin^2 x \, dx =$ c) π d) 0 Q23. $\int \frac{1}{ax+b} dx$ is equal to a) $\log (ax+b) + c$ b) $\frac{\log(ax+b)}{a} + c$ c) $log (ax + b)^2 + c$ d) None of these Q24. $\int \frac{e^x + xe^x}{\cos^2(xe^x)} dx$ is equal to: a) $\log |x + xe^x| + c$ b) $\sec(xe^x) + c$ c) $\tan(xe^x) + c$ d) $\cot(xe^x) + c$ Q25. $\int \cot x \log(\sin x) dx$ is equal to: a) $\frac{1}{2} (\log(\sin x))^2 + c$ b) $(\log(\sin x))^2 + c$ c) $\frac{1}{2} (\log(\sin x))^2$ d) $\frac{1}{2} (\log(\sin x)) + c$