Отчёта по лабораторной работе №8

Программирование цикла. Обработка аргументов командной строки.

Камбунду Панлине

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
	3.1 Реализация циклов в NASM	. 6
	3.2 Обработка аргументов командной строки	. 9
	3.3 Задание для самостоятельной работы	. 12
4	Выводы	14

Список иллюстраций

3.1	Создаем каталог с помощью команды mkdir и файл с помощью
	команды touch
3.2	Заполняем файл
3.3	Запускаем файл и проверяем его работу
3.4	Изменяем файл
3.5	Запускаем файл и смотрим на его работу
3.6	Редактируем файл
3.7	Проверяем, сошелся ли наш вывод с данным в условии выводом .
3.8	Создаем файл командой touch
3.9	Заполняем файл
3.10	Смотрим на работу программ
3.11	Создаем файл командой touch
	Заполняем файл
3.13	Смотрим на работу программы
3.14	Изменяем файл
	Проверяем работу файла(работает правильно)
3.16	Создаем файл командой touch
3.17	Пишем программу
	Смотрим на рабботу программы при x1=5 x2=3 x1=4(всё верно)
3.19	Смотрим на рабботу программы при x1=1 x2=3 x1=7(всё верно)

1 Цель работы

Изучить работу циклов и обработкой аргументов командной строки.

2 Задание

Написать программы с использованием циклов и обработкой аргументов командной строки.

3 Выполнение лабораторной работы

3.1 Реализация циклов в NASM

Создаем каталог для программ ЛБ8, и в нем создаем файл (рис. fig. 3.1).

```
paulinedelourdes@fedora:~/work/arch-pc/lab08

paulinedelourdes@fedora:~$ mkdir ~/work/arch-pc/lab08

paulinedelourdes@fedora:~$ cd ~/work/arch-pc/lab08

paulinedelourdes@fedora:~/work/arch-pc/lab08$ touch lab8-1.asm

paulinedelourdes@fedora:~/work/arch-pc/lab08$
```

Рис. 3.1: Создаем каталог с помощью команды mkdir и файл с помощью команды touch

Открываем файл в Midnight Commander и заполняем его в соответствии с листингом 8.1 (рис. fig. 3.2).

Рис. 3.2: Заполняем файл

Создаем исполняемый файл и запускаем его (рис. fig. 3.3).

```
paulinedelourdes@fedora:~/work/arch-pc/lab08$ nasm -f elf lab8-1.asm
paulinedelourdes@fedora:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-1 lab8-1.o
paulinedelourdes@fedora:~/work/arch-pc/lab08$ ./lab8-1

BBeдите N: 10

10

9

8

7

6

5

4

3

2
1
paulinedelourdes@fedora:~/work/arch-pc/lab08$
```

Рис. 3.3: Запускаем файл и проверяем его работу

Снова открываем файл для редактирования и изменяем его, добавив изменение значения регистра в цикле (рис. fig. 3.4).

```
_start:
  mov eax,msgl
  call sprint
  mov ecx, N
  mov edx, 10
  call sread
  mov eax,N
  call atoi
  mov [N],eax
  mov ecx,[N]
label:
  sub ecx,1
  mov [N],ecx
  mov eax,[M]
  call iprintLF
  loop label
```

Рис. 3.4: Изменяем файл

Создаем исполняемый файл и запускаем его (рис. fig. 3.5).

```
paulinedelourdes@fedora:-/work/arch-pc/lab00$ ./lab8-1
Введите N: 10
9
7
5
3
1
Falta de segmentação (núcleo despejado)
paulinedelourdes@fedora:-/work/arch-pc/lab00$
```

Рис. 3.5: Запускаем файл и смотрим на его работу

Регистр есх принимает значения 9,7,5,3,1(на вход подается число 10, в цикле label данный регистр уменьшается на 2 командой sub и loop).

Число проходов цикла не соответсвует числу N, так как уменьшается на 2.

Снова открываем файл для редактирования и изменяем его, чтобы все корректно работало (рис. fig. 3.6).

```
label:

push ecx
sub ecx,1

mov [N],ecx
mov eax,[N]
call iprintLF

pop ecx
loop label
```

Рис. 3.6: Редактируем файл

Создаем исполняемый файл и запускаем его (рис. fig. 3.7).

```
paulinedelourdes@fedora:-/work/arch-pc/lab08$ nasm -f elf lab8-1.asm
paulinedelourdes@fedora:-/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-1 lab8-1.o
paulinedelourdes@fedora:-/work/arch-pc/lab08$ ./lab8-1

BBequre N: 10

8

7

6

5

4

3

2

1

0

Falta de segmentação (núcleo despejado)
paulinedelourdes@fedora:-/work/arch-pc/lab08$
```

Рис. 3.7: Проверяем, сошелся ли наш вывод с данным в условии выводом

В данном случае число проходов цикла равна числу N.

3.2 Обработка аргументов командной строки.

Создаем новый файл (рис. fig. 3.8).

```
paulinedelourdes@fedora:~/work/arch-pc/lab08$ touch lab8-2.asm
paulinedelourdes@fedora:~/work/arch-pc/lab08$
```

Рис. 3.8: Создаем файл командой touch

Открываем файл в Midnight Commander и заполняем его в соответствии с листингом 8.2 (рис. fig. 3.9).

Рис. 3.9: Заполняем файл

Создаем исполняемый файл и проверяем его работу, указав аргументы (рис. fig. 3.10).

```
paulinedelourdes@fedora:-/work/arch-pc/lab08$ nasm -f elf lab8-2.asm
paulinedelourdes@fedora:-/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-2 lab8-2.o
paulinedelourdes@fedora:-/work/arch-pc/lab08$ ./lab8-2 l 2 '3'
1
2
3
paulinedelourdes@fedora:-/work/arch-pc/lab08$
```

Рис. 3.10: Смотрим на работу программ

Програмой было обработано 3 аргумента.

Создаем новый файл lab8-3.asm (рис. fig. 3.11).

```
paulinedelourdes@fedora:~/work/arch-pc/lab08$ touch lab8-3.asm
paulinedelourdes@fedora:~/work/arch-pc/lab08$
```

Рис. 3.11: Создаем файл командой touch

Открываем файл и заполняем его в соответствии с листингом 8.3 (рис. fig. 3.12).

Рис. 3.12: Заполняем файл

Создаём исполняемый файл и запускаем его, указав аргументы (рис. fig. 3.13).

```
paulinedelourdes@fedora:~/work/arch-pc/lab08$ nasm -f elf lab8-3.asm
paulinedelourdes@fedora:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-3 lab8-3.o
paulinedelourdes@fedora:~/work/arch-pc/lab08$ ./lab8-3 12 13 7 10 5
Результат: 47
paulinedelourdes@fedora:~/work/arch-pc/lab08$
```

Рис. 3.13: Смотрим на работу программы

Снова открываем файл для редактирования и изменяем его, чтобы вычислялось произведение вводимых значений (рис. fig. 3.14).

```
next:
    cmp ecx,0h
    jz _end
    pop eax
    call atoi
    mul esi
    mov esi,eax
    loop next
_end:
```

Рис. 3.14: Изменяем файл

Создаём исполняемый файл и запускаем его, указав аргументы (рис. fig. 3.15).

```
paulinedelourdes@fedora:-/work/arch-pc/lab08$ mc

paulinedelourdes@fedora:-/work/arch-pc/lab08$ nasm -f elf lab8-3.asm

paulinedelourdes@fedora:-/work/arch-pc/lab08$ ld -m elf_1386 -o lab8-3 lab8-3.o

paulinedelourdes@fedora:-/work/arch-pc/lab08$ ./lab8-3 5 3 4

Pe3ynbrar: 60

paulinedelourdes@fedora:-/work/arch-pc/lab08$
```

Рис. 3.15: Проверяем работу файла(работает правильно)

3.3 Задание для самостоятельной работы

ВАРИАНТ-20

Напишите программу, которая находит сумму значений функции ⋈(⋈) для ⋈
 = ⋈1, ⋈2,..., ⋈⋈, т.е. программа должна выводить значение ⋈(⋈1) + ⋈(⋈2) + ... +
 ⋈(⋈⋈). Значения ⋈⋈ передаются как аргументы. Вид функции ⋈(⋈) выбрать из таблицы 8.1 вариантов заданий в соответствии с вариантом, полученным при выполнении лабораторной работы № 7. Создайте исполняемый файл и проверьте его работу на нескольких наборах ⋈ = ⋈1, ⋈2,..., ⋈⋈.

Создаем новый файл (рис. fig. 3.16).

```
paulinedelourdes@fedora:-/work/arch-pc/lab08$ touch lab8-4.asm
paulinedelourdes@fedora:-/work/arch-pc/lab08$
```

Рис. 3.16: Создаем файл командой touch

Открываем его и пишем программу, которая выведет сумму значений, получившихся после решения выражения 3(10+x) (рис. fig. 3.17).

Рис. 3.17: Пишем программу

Транслируем файл и смотрим на работу программы (рис. fig. 3.18).

```
paulinedelourdes@fedora:~/work/arch-pc/lab08 Q = x

paulinedelourdes@fedora:~/work/arch-pc/lab08$ nasm -f elf lab8-4.asm
paulinedelourdes@fedora:~/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-4 lab8-4.o
paulinedelourdes@fedora:~/work/arch-pc/lab08$ ./lab8-4 5 3 4
Функция: f(x) = 30 + 3x
Результат: 369
paulinedelourdes@fedora:~/work/arch-pc/lab08$
```

Рис. 3.18: Смотрим на рабботу программы при x1=5 x2=3 x1=4(всё верно)

Транслируем файл и смотрим на работу программы (рис. fig. 3.19).

```
paulinedelourdes@fedora:-/work/arch-pc/lab08$ nasm -f elf lab8-4.asm
paulinedelourdes@fedora:-/work/arch-pc/lab08$ ld -m elf_i386 -o lab8-4 lab8-4.o
paulinedelourdes@fedora:-/work/arch-pc/lab08$ ./lab8-4 5 3 4
$\text{PyHKUM9: f(x) = 30 + 3x}
$\text{Pesyntat: 369}
$\text{paulinedelourdes@fedora:-/work/arch-pc/lab08$ \[ \]
```

Рис. 3.19: Смотрим на рабботу программы при x1=1 x2=3 x1=7 (всё верно)

4 Выводы

Мы научились решать программы с использованием циклов и обработкой аргументов командной строки.