Group	Name	1	2	3	4	5	6	7	Σ
	Svetlana Seliunina								
	Aleksei Zhuravlev								

Technical Neural Networks Assignment Sheet-1

October 2022

Assignment 1

- 1. A lot of simple, interconnected processing units (neurons).
- 2. Modifiable, plastic connections (synapses, synaptic weights).
- 3. Mapping from an input vector to a scalar output value.
- 4. Nonlinear transfer function.

Assignment 2

- 1. Beginning: Early days when basic neural models and learning rules inspired by biological systems where discovered.
- 2. Quite Years: Lack of funding triggered by the proof that perzeptron type network cannot learn Boolean function XOR.
- 3. Renaissance: New multi-layer models and new learning rules caused rise of interest.
- 4. Consolidation: Neural network become widely used and accepted.
- 5. Second start-up: Discoveries of modern paradigms and applications.

Assignment 3

$$\Delta w_{ji} = \alpha \left(t_j - y_j \right) g' \left(h_j \right) x_i$$

where

 α is a small constant called learning rate

g(x) is the neuron's activation function

g' is the derivative of g

 t_i is the target output

 h_j is the weighted sum of the neuron's inputs, $h_j = \sum x_i w_{ji}$ y_j is the actual output, $y_j = g(h_j)$ x_i is the i th input.

Assignment 4

Because layers in MLP are fully connected, number of weights for a 4-layer MLP can be calculated using the following formula:

$$|w_4| = |w_{nh1}| + |w_{h1h2}| + |w_{h2m}| = (n+1)h_1 + (h_1+1)h_2 + (h_2+1)m$$

where +1 indicates BIAS. For 3-layer MLP we get:

$$|w_3| = |w_{nh}| + |w_{hm}| = (n+1)h + (h+1)m = h(n+m+1) + m.$$

If $|w_4| \approx |w_3|$ and $n = 5, h_1 = 21, h_2 = 30, m = 4$:

$$6 \cdot 21 + 22 \cdot 30 + 31 \cdot 4 = 10h + 4$$

$$h = 90.6 \approx 91$$

Assignment 5

Assignment 6

Proof. According to slide 12 of the second lecture, perzeptron can be described as a function $x_2 = -w_1/w_2 \cdot x_1 - w_0/w_2$ separating the 2D-plane in two parts. This function is linear so we need to prove that XOR Boolean function is not linearly separable. We will rewrite this line as

$$L: a \cdot x_1 + b \cdot x_2 + c = 0.$$

If two points lie on the same side of L then $(a \cdot x_{11} + b \cdot x_{21} + c)(a \cdot x_{12} + b \cdot x_{22} + c) > 0$, and if on opposites sides then $(a \cdot x_{11} + b \cdot x_{21} + c)(a \cdot x_{12} + b \cdot x_{22} + c) < 0$.

- 1. Points (0, 0) and (1, 1) lie on the same side: c(a + b + c) > 0.
- 2. Points (1, 0) and (1, 1) lie on the same side: (a + c)(a + b + c) < 0.
- 3. Points (0, 1) and (1, 1) lie on the same side: (b + c)(a + b + c) < 0.

Now we add (2) and (3) together:

$$(a+b+c)(a+b+2c) = (a+b+c)^2 + c(a+b+c) < 0.$$

Because $(a+b+c)^2 \ge 0$, c(a+b+c) < 0 which contradicts (1). L cannot separate this function and therefore, a simple perzeptron without a hidden layer is not capable to implement the Boolean function XOR.

Assignment 7

Error minimization by gradient descent: $\Delta w_{ij} = -\mu \frac{\partial E^*(w_{ij})}{\partial w_{ij}}$ where $E^* = \frac{1}{2} \sum_{m=0}^{M} (\hat{y_m} - y_m)^4$. We will start with the rule for output neuron and skip computations that are similar to those given in the lecture.

$$\frac{\partial E^*(w_{hm})}{\partial w_{hm}} = \frac{\partial E^*(w_{hm})}{\partial net_m} \cdot \frac{\partial net_m}{\partial w_{hm}} = \frac{\partial E^*(w_{hm})}{\partial y_m} \cdot \frac{\partial y_m}{\partial net_m} \cdot \frac{\partial net_m}{\partial w_{hm}}$$

According to the lecture:

$$\frac{\partial y_m}{\partial net_m} = f'(net_m); \frac{\partial net_m}{\partial w_{hm}} = \tilde{out_h}$$

Partial derivative of the error function:

$$\frac{\partial E^*(w_{hm})}{\partial y_m} = \frac{1}{2} \cdot 4 \cdot (\hat{y_m} - y_m)^3 \cdot (-1) = -2(\hat{y_m} - y_m)^3$$

Collecting all together:

$$\Delta w_{hm} = 2\mu(\hat{y_m} - y_m)^3 f'(net_m) \tilde{out_h}$$

$$\delta_m = -\frac{\partial E^*(w_{hm})}{\partial net_m} = 2(\hat{y_m} - y_m)^3 f'(net_m)$$

$$\Delta w_{hm} = \mu \delta_m \tilde{out_h}$$

Rule for hidden neuron:

$$\Delta w_{gh} = \mu \delta_h o \tilde{u} t_g$$

$$\delta_h = -\frac{\partial E^*(w_{gh})}{\partial net_h} = -\frac{\partial E^*(w_{gh})}{\partial o u t_h} \cdot \frac{\partial o u t_h}{\partial net_h} = -\frac{\partial E^*(w_{gh})}{\partial o u t_h} f'(net_h) =$$

$$= \sum_{k=1}^K \underline{\delta_k w_{hk}} f'(net_h)$$

Derivation is the same as for Backpropagation of Error because it does not directly depend on partial derivative of E.

Assignment 8

Programming assignment: