IP you don't remember the
If you don't remember the past, You are condemned to repeat it.
You are condemned to repeat it.

Fibonacii Sevice. index: 12345678 value: 0 1 1 2 3 5 8 13 a Find nth Fibonacci Number ! Recurrence Relation: F(n) = F(n-1) + F(n-2) Parudo Code int Fib (int n) { 19 (n \(2) \)

Yelvan (n-1); return Fib (n-1) + Fib(n-2);

When can DP be used 2 1) Optimal Substructure Time Complexity If you can find optimal solution to a problem using optimal solutions of smaller problems (sub-problems) F(n) = F(n-1) + F(n-2) | Sum (n) = Sum(n-1)+1 2) Overlapping 206-problems. Repidition of 2015-problems Total func calls > Total Unique fun calls

H Memoization

P Storing results of estades (sub-problems)

to use them in Jutore.

Perudo Code (Fibonacci Using DP)
int dp [n+1] = d-13, dp[i]=0, dp[i]=1
Int Fib (int n) { Store bgc cases
if (dp[n]!=-1) I checking if previously calculded
int are \$\frac{1}{2} \text{Fib(n.i)} + \text{Fib(n.i)} \tag{Calculating are }. dp[n] = are; \tag{Zetore} return are; \tag{Treturn the are}
3

Two Ways of solving a DP Problem

Top Down Bottom up. Trecursive Code -> iterative code T Mor space would be To More control on needed Space. - Eagler to write + Not as Easy as Top down to rade To Memoization is used. Tabulution.

(ib Bottom

int dp [n+1]; dp[i]=0, dp[2] => 1

for (inti=3; i=n; i++) {

dp [i] = dp [i-i] + dp [i-2];

Te: O(n)

Sc: 0(n)

can be reduced. Jeforn dp[n]. to 0(1) using 2 Vasiables.

Given N steps. Find the no of ways of reaching the NAN stair. At a time, you can climb 1 ctar or 2 stoig EXI N=1 , ars= 1 Exz n=2, ars=2 1=3 ans=3

Steps to solve DP
j) Element of Chorce.
$\frac{1}{\sqrt{n-1}}$
To reach not stair > n-2
→ N-2
2) What does a state represent.
int ways (n) => No of ways to reach
nth star.
3) Accusrene relation
ways (n) => ways (n-1) + ways (n-2)
lacktriangle
4) Which state gives you final arewer.
return ways (n);

Oz Let's Party You are at a pasty. There aren n prople 1) Dance alone 2) Donce with someone How many different ways of dancing 18 there. 1=1 az= 1 (12)n=3

Steps to solve DP
Derson Dense alone Person Dense apartner L Choose a partner L donce.
donce.
2) What does a state represent.
int ways (n) = no of ways to make n people
3) Paccosrene relation
ways (n) $\Rightarrow \omega ays(n-1) + (n-1)^{\times} \omega ays(n-2)$
4) Which state gives you final arewer.
return ways (n);

$$\frac{\mathcal{E}_{1}}{\mathcal{E}_{1}} \qquad n=1 \qquad a_{1}=1$$

$$\mathcal{E}_{1} \qquad n=2 \qquad a_{2}=1$$

$$(1,2) \qquad (12)$$

$$\mathcal{E}_{x3}$$
 $n=3$ $(1,2,3)$ $(23,1)$ $(31,2)$

$$\sum_{n=1}^{\infty} P\left(1,2,3,4\right), \left(12,3,4\right)$$

$$\left(23,1,4\right), \left(31,2,4\right)$$

(H1, 2,3), (41,23) (42, 1,3), (42, 13) (43, 1,2), (43,12)