Frederick National Laboratory for Cancer Research

sponsored by the National Cancer Institute

ATOM Modeling Pipeline (AMPL) for Drug Discovery

S. Ravichandran,
Data Scientist, BIDS, FNLCR

June 8, 2021

Acknowledgements

ATOM Team

Most of the tutorial code chunks came from multple Jupyter notebooks generously shared by the ATOM team.

- Amanda Paulson
- Ben Madej
- Da Shi
- Hiran Ranganathan
- Jessica Mauvais
- Jonathan Allen
- Kevin Mcloughlin
- Sarangan Ravichandran
- Stewart He
- Ya Ju Fan
- Contributions from the following student programs:
 - The Purdue Data Mine; https://datamine.purdue.edu/
 - Butler University
 - Columbia University

Agenda

- Introduction to AMPL (ATOM Modeling Pipeline)
- Why AMPL?
- Goal for today

Data Sources

- ChEMBL: Manually curated repository of small molecules (EMBL/EBI) **ChEMBL**
 - ~1.9 M compounds; ~11K targets
 - https://www.ebi.ac.uk/chembl/
- ExCAPE-DB (EU program)
 - ~ 1M compounds/1.7K targets
 - https://solr.ideaconsult.net/search/excape/#
- Drug Target commons (Univ of Helsinki)
 - ~1.7M cpds; 13K targets
 - http://drugtargetcommons.fimm.fi/

Why combine data?

 ATOM team's experience shows that the combined dataset (Union) models show robustness and performance than individual dataset

A sample dataset

Compound ID	Structure	MW	AlogP	Target	Active	IC50 (uM
CHEMBL2106227	CHEMBL2106227	300.79	4.23	Aurora kinase B	False	1.5
CHEMBL27289	CHEMBL27289	310.78	4.63	Aurora kinase B	False	3
CHEMBL2094620	CHEMBL2094620	317.36	3.05	Aurora kinase B	True	0.10
CHEMBL70633	CHEMBL70663	329.41	4.76	Aurora kinase B	False	> 100
CHEMBL1951415	38	337.40	4.23	Aurora kinase B	False	> 100

Featurizing a molecule: Fingerprints

- Fingerprints
 - Molecules

 fixed-length binary vectors (0s and 1s). indicating presence/absence of certain molecular features
 - One can compare fingerprints of two molecules and identify similarity

									Outcome	
_	ID	SMILES	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Class	
	1	SMILES1	1	1	0	1	0	1	cns	
	2	SMILES2	0	0	0	1	1	0	cns	
	3	SMILES3	1	0	0	1	0	0	Cardiovascular	
	3	SMILES4	1	0	0	1	1	0	Antineoplastic	
	4	SMILES5	1	1	0	1	1	1	Dermatologic	
	•••	•••	•••	•••	•••	•••	•••	•••	•••	
	•••	•••	•••	•••	•••	•••	•••	•••	•••	

Properties or Fingerprint

SMILES → Fingerprint

Featurizing a molecule: Molecular descriptors

- Physicochemical properties
 - Molecular weight, # of Hydrogen bond donors, log partition coefficient etc.
- Mordred
 - ~1800 descriptors
 - Open source software
 - Implemented in AMPL

	ABC	ABCGG	nAcid	nBase	SpAbs_A	SpMax_A	SpDiam_A	SpAD_A	SpMAD_A	LogEE_A	:	SRW10
0	29.198227	19.516970	0	2	49.161634	2.372244	4.744487	49.161634	1.328693	4.541483		10.415502
1	25.731643	19.151718	0	1	42.312870	2.394767	4.762938	42.312870	1.282208	4.422390		10.323283
2	23.132682	16.941805	0	0	38.063201	2.370962	4.741923	38.063201	1.268773	4.312334		10.143881
3	19.924959	16.140292	0	0	32.867760	2.498596	4.828813	32.867760	1.314710	4.170130		10.150621

https://mordred-descriptor.github.io/documentation/master/descriptors.html

Computing Environment

This Photo by Unknown Author is licensed under CC BY-SA-NC

COLAB	NIH HPC Biowulf				
Serverless	Can ask for resources				
Resources are !unlimited and !guaranteed	Resources are guaranteed				
Browser-based	Mostly command-line				
Good for short jobs; explaining AMPL capabilities	Long jobs (HPO)				
Audience: Interns, Workshopattendee (Educational)	Research				

Curation

- Data Curation
 - Organization and integration of data from multiple sources
- Potent Targets
 - Dose-response measurements (Kd, Ki, IC50 and activity) in biochemical assays
 - <= 100 nM
 - Dose response measurements (activity %, % inhibition etc)
 - Different cutoffs for biochemical and cell-based assays
 - Multiple assays (different studies or data resources)
 - Median bioactivity
- Mutation data

Modeling Steps

- Data cleaning, tidying
- Data curation
- Feature engineering
 - Outcome variable IC50 → pIC50
 - Numerical → categorical
- EDA
 - FP → Tonimoto → tSNE
- Aggregate assay
- Diversity plots
- Featurization

Bio-assay with a specific target protein

- Identifying drugs or compounds primary targets and off-targets is a critical task in drug discovery
 - Kinases
 - Target promiscuity -> polypharmacological effects
- Understanding this concept can help us with the drug repurposing efforts
- Many groups collect and curate Target-drug data
 - Diversity of experiments
 - Different bioassay, bioactivity endpoints etc. makes the problem challenging

Useful links

- https://github.com/ATOMconsortium/AMPL
- https://github.com/ravichas/AMPL-workshop-1
- https://github.com/ATOMconsortium/AMPL/tree/Tutorials/atom sci/ddm/examples/tutorials
- https://hpc.nih.gov/apps/ampl.html
- Workshop materials
- https://github.com/ravichas/AMPL-workshop-1