Orthogonal Projections and Orthonormal Bases

Warm-up (a) Find the angle between $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\-1\\1 \end{bmatrix}$.

Solution. Let $\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, and let θ be the angle between \vec{v} and \vec{w} . Then, $\vec{v} \cdot \vec{w} = \|\vec{v}\| \|\vec{w}\| \cos \theta$. We calculate that $\vec{v} \cdot \vec{w} = 1 \cdot 1 + 2 \cdot -1 + 1 \cdot 1 = 0$, so $0 = \|\vec{v}\| \|\vec{w}\| \cos \theta$. Since the lengths $\|\vec{v}\|$ and $\|\vec{w}\|$ are both positive, $\cos \theta = 0$, so $\theta = \frac{\pi}{2}$.

(b) If $\vec{v} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ -2 \end{bmatrix}$, find $\|\vec{v}\|$, the length of \vec{v} .

Solution. By Definition A.6, $\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{6}$.

(c) Find a unit vector in \mathbb{R}^3 that is perpendicular to both $\begin{bmatrix} 1\\3\\2 \end{bmatrix}$ and $\begin{bmatrix} 0\\2\\0 \end{bmatrix}$.

Solution. We are looking for a vector $\vec{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ which has the following three properties:

- It is perpendicular to $\begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$, so $0 = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} = a + 3b + 2c$.
- It is perpendicular to $\begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$, so $0 = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} = 2b$.
- It is a unit vector, so $\vec{v} \cdot \vec{v} = ||\vec{v}||^2$ is 1. That is, $a^2 + b^2 + c^2 = 1$.

From the second property, we see that b=0. Plugging this into the other 2 equations, we get that a+2c=0 and $a^2+c^2=1$. The former says that a=-2c; plugging this into the latter gives

$$5c^2 = 1$$
, so $c = \pm \frac{1}{\sqrt{5}}$. So, there are two possible answers, $\pm \begin{bmatrix} -2/\sqrt{5} \\ 0 \\ 1/\sqrt{5} \end{bmatrix}$.

Vector Review:

(a) The length of a vector $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ is $|\vec{v}| = \sqrt{\vec{v}^T \vec{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$

1

(b) If $|\vec{v}| = 1$, then \vec{v} is called a **unit vector**.

(c) Let α be the angle between two vectors \vec{v} and \vec{w} .

$$\cos\alpha = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|}$$

Note: The number $\cos \alpha$ is called the correlation coefficient. If it is positive, the vectors are positively correlated, if it is negative they are negatively correlated.

A basis $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ is an **orthonormal basis** of V, if all vectors in the basis are perpendicular to each other and have length 1, which means

$$\vec{v}_i \cdot \vec{v}_j = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$$

If they are just orthogonal, they form an orthogonal basis

1. Let V be a subspace of \mathbb{R}^n . For any vector $\vec{x} \in \mathbb{R}^n$, we can write $\vec{x} = \vec{x}^{\parallel} + \vec{x}^{\perp}$ where \vec{x}^{\parallel} is in V and \vec{x}^{\perp} is orthogonal to $V^{(1)}$. Then, \vec{x}^{\parallel} is called the <u>orthogonal projection of \vec{x} onto V</u> and denoted by $\operatorname{proj}_V(\vec{x})$.

Suppose we have an orthonormal basis $(\vec{u}_1, \dots, \vec{u}_m)$ of V; that is, $(\vec{u}_1, \dots, \vec{u}_m)$ is a basis of V with the property that $\vec{u}_1, \dots, \vec{u}_m$ are orthonormal.

(a) Explain why $\operatorname{proj}_V(\vec{x})$ can be written as $\operatorname{proj}_V(\vec{x}) = c_1 \vec{u}_1 + \dots + c_m \vec{u}_m$ for some scalars c_1, \dots, c_m .

Solution. By definition, $\operatorname{proj}_V(\vec{x})$ is a vector in V. On the other hand, $(\vec{u}_1, \ldots, \vec{u}_m)$ is a basis of V, which means that every vector in V can be expressed as a linear combination of the vectors $\vec{u}_1, \ldots, \vec{u}_m$. That is, every vector in V (including the one we're interested in, $\operatorname{proj}_V(\vec{x})$) can be expressed as $c_1\vec{u}_1 + \cdots + c_m\vec{u}_m$ for some scalars c_1, \ldots, c_m .

(b) Since $\vec{x} = \vec{x}^{\parallel} + \vec{x}^{\perp}$, we can use (a) to write

$$\vec{x} = (c_1 \vec{u}_1 + \dots + c_m \vec{u}_m) + \vec{x}^{\perp}.$$

Express the coefficient c_k in terms of $\vec{x}, \vec{u}_1, \ldots, \vec{u}_m$.

Solution. A very useful technique when working with orthonormal (or even just orthogonal) vectors is to dot with one of them. If we dot the equation $\vec{x} = (c_1 \vec{u}_1 + \dots + c_m \vec{u}_m) + \vec{x}^{\perp}$ with \vec{u}_k , we get

$$\vec{x} \cdot \vec{u}_k = (c_1 \vec{u}_1 + \dots + c_m \vec{u}_m + \vec{x}^\perp) \cdot \vec{u}_k$$

Now, \vec{u}_k is orthogonal to almost all of the vectors in the sum $c_1\vec{u}_1 + \cdots + c_m\vec{u}_m + \vec{x}^{\perp}$. First, it's perpendicular to \vec{x}^{\perp} because \vec{x}^{\perp} is perpendicular to all vectors in V, and $\vec{u}_k \in V$. It's also perpendicular to all of the $c_i\vec{u}_i$ except for $c_k\vec{u}_k$. So, our previous expression simplifies to:

$$\vec{x} \cdot \vec{u}_k = c_k (\vec{u}_k \cdot \vec{u}_k)$$

We know that $\vec{u}_k \cdot \vec{u}_k = ||\vec{u}_k||^2 = 1$ (the fact that $\vec{u}_1, \dots, \vec{u}_m$ are orthonormal means they all have length 1), so this simplifies even more to just:

$$\vec{x} \cdot \vec{u}_k = c_k$$

⁽¹⁾When we say \vec{x}^{\perp} is orthogonal to V, we mean that \vec{x}^{\perp} is orthogonal to every vector in V.

(c) Write a formula for $\operatorname{proj}_V(\vec{x})$ in terms of $\vec{x}, \vec{u}_1, \dots, \vec{u}_m$.

Solution. We just put together what we did in the previous two parts. We said in (a) that

$$\operatorname{proj}_{V}(\vec{x}) = c_1 \vec{u}_1 + \dots + c_m \vec{u}_m,$$

and we found in (b) that $c_k = \vec{x} \cdot \vec{u}_k$. So,

$$proj_{V}(\vec{x}) = (\vec{x} \cdot \vec{u}_{1})\vec{u}_{1} + (\vec{x} \cdot \vec{u}_{2})\vec{u}_{2} + \dots + (\vec{x} \cdot \vec{u}_{m})\vec{u}_{m}$$

(d) In coming up with this formula for $\operatorname{proj}_V(\vec{x})$, where was it important that $(\vec{u}_1, \dots, \vec{u}_m)$ be an orthonormal basis of V?

Solution. The fact that $\vec{u}_1, \ldots, \vec{u}_m$ were orthonormal was key in (b); if the vectors had not been orthonormal, we would not have been able to come up with a simple formula for the coefficients c_1, \ldots, c_m .

- 2. Let V be the plane 2x + 2y + z = 0, $\vec{u}_1 = \begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \end{bmatrix}$, and $\vec{u}_2 = \begin{bmatrix} -2/3 \\ 1/3 \\ 2/3 \end{bmatrix}$. Let $\vec{x} = \begin{bmatrix} 1 \\ 4 \\ 8 \end{bmatrix}$.
 - (a) Verify that (\vec{u}_1, \vec{u}_2) is an orthonormal basis of V.

Solution. A basis of V consists of any two non-parallel vectors in V, so \vec{u}_1 and \vec{u}_2 clearly form a basis of V (they are both in V, and they are not parallel). To check that \vec{u}_1 and \vec{u}_2 are orthonormal, we compute some dot products:

$$\vec{u}_1 \cdot \vec{u}_1 = 1$$

$$\vec{u}_1 \cdot \vec{u}_2 = 0$$

$$\vec{u}_2 \cdot \vec{u}_2 = 1$$

So, \vec{u}_1 and \vec{u}_2 really are orthonormal.

(b) Find $\operatorname{proj}_V(\vec{x})$. (Check that your answer is reasonable by computing the difference $\vec{x} - \operatorname{proj}_V(\vec{x})$. What should be true about this vector?)

Solution. We are given an orthonormal basis (\vec{u}_1, \vec{u}_2) of V. Therefore, by #1(c),

$$\begin{aligned} \text{proj}_{V}(\vec{x}) &= (\vec{x} \cdot \vec{u}_{1}) \vec{u}_{1} + (\vec{x} \cdot \vec{u}_{2}) \vec{u}_{2} \\ &= 3 \vec{u}_{1} + 6 \vec{u}_{2} \\ &= \begin{bmatrix} -3 \\ 0 \end{bmatrix} \end{aligned}$$

Then, $\vec{x} - \operatorname{proj}_V(\vec{x}) = \begin{bmatrix} 4 \\ 4 \\ 2 \end{bmatrix}$; this should be orthogonal to V (it is what we called \vec{x}^{\perp} in #1), and it is!

Let $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ be an orthonormal basis of V, and Q be the matrix containing the basis vectors as column vectors. Then the projection onto the space V is given by the matrix $P = QQ^T$, where Q^T is the transpose matrix.

3. (T/F) If $\vec{u}_1, \ldots, \vec{u}_m$ are orthonormal vectors in \mathbb{R}^n , then must they be linearly independent.

Solution. To decide whether $\vec{u}_1, \ldots, \vec{u}_m$ are linearly independent, we should look for linear relations among them; in particular, we are wondering whether there could be nontrivial linear relations among them. Suppose we have a linear relation among them:

$$c_1 \vec{u}_1 + c_2 \vec{u}_2 + \dots + c_m \vec{u}_m = \vec{0}$$

A particularly useful technique when working with orthonormal vectors is to dot with one of the vectors, so let's dot this equation with \vec{u}_k :

$$c_1(\vec{u}_1 \cdot \vec{u}_k) + c_2(\vec{u}_2 \cdot \vec{u}_k) + \dots + c_m(\vec{u}_m \cdot \vec{u}_k) = \vec{0} \cdot \vec{u}_k$$

The right side is clearly just 0. On the left side, \vec{u}_k is orthogonal to all of the other \vec{u}_i , so there is only one non-zero term:

$$c_k(\vec{u}_k \cdot \vec{u}_k) = 0$$

Since $\vec{u}_1, \dots, \vec{u}_m$ are orthonormal, \vec{u}_k has length 1, so $\vec{u}_k \cdot \vec{u}_k = 1$:

$$c_k = 0$$

What have we just shown? If we have a linear relation $c_1\vec{u}_1 + \cdots + c_m\vec{u}_m$, then we've shown that all of the c_k are 0; in other words, the only linear relation among $\vec{u}_1, \ldots, \vec{u}_m$ is the trivial one; this exactly says that $\vec{u}_1, \ldots, \vec{u}_m$ are linearly independent.

- 4. Suppose that we want to fit a line to the data points (-1,3), (0,1), and (1,1).
 - (a) Do you expect the slope of the line to be positive, negative, or zero?

Solution. Looking at the data points, we see that the best-fit line should have negative slope.

(b) Find the best-fit line. (You will do a similar question in PSet12, but there you need to use a different formula)

Solution. We will talk about this again later. For now you just need to know how to use the given formula as in HW12 to find this line.

- 5. In each part, you are given a subspace V of some \mathbb{R}^n . Describe V^{\perp} . (we call V^{\perp} the orthogonal complement of V)
 - (a) y = 3x in \mathbb{R}^2 .

Solution. This is a line in \mathbb{R}^2 , so the orthogonal complement is the line through the origin perpendicular to y = 3x, or the line $y = -\frac{1}{3}x$.

(b)
$$y = 3x$$
 in \mathbb{R}^3 .

Solution. This is a plane in \mathbb{R}^3 , so the orthogonal complement is the line through the origin perpendicular to this plane. This plane can be expressed as 3x - y + 0z = 0, so a normal vector for the

plane is
$$\begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix}$$
. Therefore, the orthogonal complement of the given plane is the line span $\begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix}$

(c) span
$$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
.

Solution. This is a line in \mathbb{R}^3 , so the orthogonal complement is the plane normal to this line, which is exactly the plane x + 2y + 3z = 0.

- 6. Let V be an m-dimensional subspace of \mathbb{R}^n . Consider the linear transformation $\operatorname{proj}_V : \mathbb{R}^n \to \mathbb{R}^n$.
 - (a) What is im proj_V? What is rank proj_V?

Solution. The image of proj_V is simply V itself. We know that the rank of a matrix or linear transformation is the same as the dimension of its image. So, $\operatorname{rank}\operatorname{proj}_V=\dim(\operatorname{im}\operatorname{proj}_V)=\dim V=m$.

(b) What is $\ker \operatorname{proj}_{V}$? What is its dimension?

Solution. By definition, $\ker \operatorname{proj}_V$ consists of all vectors \vec{x} in \mathbb{R}^n such that $\operatorname{proj}_V(\vec{x}) = \vec{0}$. That is, it consists of all vectors \vec{x} in \mathbb{R}^n whose projection is $\vec{0}$. So, $\ker \operatorname{proj}_V$ consists of all vectors which are perpendicular to V (i.e., perpendicular to all vectors in V); that is, $\ker \operatorname{proj}_V = V^{\perp}$.

By the rank-nullity theorem, $\dim(\operatorname{im}\operatorname{proj}_V) + \dim(\ker\operatorname{proj}_V) = n$. Therefore, $\dim(\ker\operatorname{proj}_V) = n - \dim(\operatorname{im}\operatorname{proj}_V) = n - \dim(\operatorname{im}\operatorname{proj}_V) = n$.

7. See PSet12 #2 and #3 about expectation, variance, covariance, standard deviation, and the correlation coefficient, and about finding the best linear fit for some given data!

- You should understand how we use the dot product to define geometric ideas like the length of a vector and the angle between two vectors in \mathbb{R}^n .
- You should understand what it means for a collection of vectors to be *orthonormal*, and you should be able to determine whether given vectors are orthonormal.
- You should understand the *orthogonal complement* of a subspace of \mathbb{R}^n and be able to visualize it in simple cases (in \mathbb{R}^2 or \mathbb{R}^3).