Contents

Conter	nts												
0.1	from other pdf	 											
0.2	proof	 											
	-												

0.1 from other pdf

ma:lifting_order_not_relevant \rangle Lemma 1. Basically $\ell_{\Gamma}^{y}[\ell_{\Delta}[\varphi]] = \ell_{\Delta}[\ell_{\Gamma}^{y}[\varphi]].$

0.2 proof

Definition 2 $(\tau(\iota))$. For an inference ι with $\sigma = \text{mgu}(\iota)$, we define the infinite substitution $\tau(\iota)$ with $\text{dom}(\tau(\iota)) = \text{dom}(\sigma) \cup \{z_s \mid s\sigma \neq s\}$ as follows for a variable x:

$$x\tau(\iota) = \begin{cases} x\sigma & x \text{ is a non-lifting variable} \\ z_{t\sigma} & x \text{ is a lifting variable } z_t \end{cases}$$

If the inference ι is clear from the context, we abbreviate $\tau(\iota)$ by τ .

Definition 3 (Incremental lifting). Let π be a resolution refutation of $\Gamma \cup \Delta$. We define $LI(\pi)$ ($LI_{cl}(\pi)$) to be $LI(\Box)$ ($LI_{cl}(\Box)$), where \Box is the empty clause derived in π .

Let C be a clause in π . For a literal λ in C, we denote the corresponding literal in $\mathrm{LI}_{\mathrm{cl}}(C)$ by λ_{LIcl} , which is exists by lemma 4.

We define LI(C) and $LI_{cl}(C)$ as follows:

Base case. If $C \in \Gamma$, $LI(C) \stackrel{\text{def}}{=} \bot$. If otherwise $C \in \Delta$, $LI(C) \stackrel{\text{def}}{=} \top$.

In any case, $LI_{cl}(C) \stackrel{\text{def}}{=} \ell[C]$.

Resolution. If the clause C is the result of a resolution step ι of $C_1: D \vee l$ and $C_2: E \vee \neg l'$ using a unifier σ such that $l\sigma = l'\sigma$, then define $\mathrm{LI}(C)$ and $\mathrm{LI}_{\mathrm{cl}}(C)$ as follows:

$$\operatorname{LI}_{\operatorname{cl}}(C) \stackrel{\operatorname{def}}{=} \ell[(\operatorname{LI}_{\operatorname{cl}}(C_1) \setminus \{l_{\operatorname{LIcl}}\})\tau] \vee \ell[(\operatorname{LI}_{\operatorname{cl}}(C_2) \setminus \{l_{\operatorname{LIcl}}'\})\tau]$$

- 1. If l is $\Gamma\text{-colored}\colon \mathrm{LI}(C)\stackrel{\mathrm{def}}{=} \ell[\mathrm{LI}(C_1)\tau] \vee \ell[\mathrm{LI}(C_2)\tau]$
- 2. If l is Δ -colored: $LI(C) \stackrel{\text{def}}{=} \ell[LI(C_1)\tau] \wedge \ell[LI(C_2)\tau]$
- 3. If l is grey: $\mathrm{LI}(C) \stackrel{\mathrm{def}}{=} (\ell[l_{\mathrm{LIcl}}\tau] \wedge \ell[\mathrm{LI}(C_2)\tau]) \vee (\neg \ell[l'_{\mathrm{LIcl}}\tau] \wedge \ell[\mathrm{LI}(C_1)\tau])$

Factorisation. If the clause C is the result of a factorisation step ι of C_1 : $l \vee l' \vee D$ using a unifier σ such that $l\sigma = l'\sigma$, then $\mathrm{LI}(C) \stackrel{\mathrm{def}}{=} \ell[\mathrm{LI}(C_1)\tau]$ and $\mathrm{LI}_{\mathrm{cl}}(C) \stackrel{\mathrm{def}}{=} \ell[(\mathrm{LI}_{\mathrm{cl}}(C_1)\setminus\{l'_{\mathrm{LIcl}}\})\tau]$.

vs_clause_plus_literals_equal \rangle Lemma 4. Let C be a clause in a resolution refutation of $\Gamma \cup \Delta$.

Then for every literal λ in C, there exists a literal λ_{LIcl} in $LI_{cl}(C)$ such that $\lambda_{LIcl} = \ell[\lambda]$ and for resolved or factorised literals l and l' of a resolution or factorisation inference ι , we have that $\ell[l_{LIcl}\tau] = \ell[l'_{LIcl}\tau]$.

Proof. We proceed by induction.

Base case. For $C \in \Gamma \cup \Delta$, $LI_{cl}(C)$ is defined to be $\ell[C]$.

Resolution/Factorisation. Suppose the clause C is the result of a resolution or factorisation inference ι of the clauses \bar{C} with $\sigma = \text{mgu}(\iota)$.

For every literal in C, there exists a predecessor in a clause in \bar{C} . Let λ be a literal C_i with $C_i \in \bar{C}$, such that λ is not the predecessor of the literal being resolved or factorised in ι . Then $\lambda \sigma$ is occurs in C.

define infinite substitutions properly and apply definition here

By the induction hypothesis, $\ell[\lambda]$ occurs in $LI_{cl}(C_i)$. The successor of $\ell[\lambda]$ in $LI_{cl}(C)$ is of the form $\ell[\ell[\lambda]\tau]$. But by Lemma 10, this is nothing else than $\ell[\lambda\tau]$. As no lifting variables occur in λ , we get by the definition of τ that $\ell[\lambda \tau] = \ell[\lambda \sigma]$.

Let l and l' be the resolved or factorised literals. In order to show that $\ell[l_{\text{LIcl}}\tau] = \ell[l'_{\text{LIcl}}\tau]$, consider that by the induction hypothesis, this is nothing else than $\ell[\ell[l]\tau] = \ell[\ell[l']\tau]$. But by applying the same argument as above, this is equivalent to $\ell[l\sigma] = \ell[l'\sigma]$, which is implied by $l\sigma = l'\sigma$. П

Definition 5. $LI^{\Delta}(C)$ ($LI_{cl}^{\Delta}(C)$) for a clause C is defined as LI(C) ($LI_{cl}(C)$) with the difference that in its inductive definition, every lifting $\ell[\varphi]$ for a formula or term φ is replaced by a lifting of only the Δ -terms $\ell_{\Delta}[\varphi]$.

Remark. Many results involving LI(C) ($LI_{cl}(C)$) are valid for $LI^{\Delta}(C)$ ($LI_{cl}^{\Delta}(C)$) in a formulation which is adapted accordingly. This can easily be seen by the following proof idea:

Let f_1, \ldots, f_n be all Γ -colored function or constant symbols, c a fresh constant symbol and g be a fresh n-ary function symbol. Construct a formula t = t such that $t = g(t_1, \ldots, t_n)$, such that $t_i = f_i(c_1, \ldots, c_m)$ for $1 \le i \le n$ where m is the arity of f_i and $c_j = c$ for $1 \le j \le m$. Let $\Delta' = \Delta$ and apply the desired result to the initial clause sets Γ and Δ' .

Under this construction, every originally Γ -colored symbol is now grey, which implies that $LI(C) = LI^{\Delta}(C)$ as well as $LI_{cl}(C) = LI_{cl}^{\Delta}(C)$. But $\Delta \models \varphi \Leftrightarrow \Delta' \models \varphi \text{ for any formula } \varphi.$

 $\langle \text{lemma:no_colored_terms} \rangle$ Lemma 6. Let C be a clause of a resolution refutation π of $\Gamma \cup \Delta$. LI(C) and $\mathrm{LI}_{\mathrm{cl}}(C)$ do not contain colored symbols. $\mathrm{LI}^{\Delta}(C)$ and $\mathrm{LI}_{\mathrm{cl}}^{\Delta}(C)$ do not contain Δ -colored symbols.

> *Proof.* For LI(C) and $LI_{cl}(C)$, consider the following: In the base case of the inductive definitions of LI(C) and $LI_{cl}(C)$, no colored symbols occur. In the inductive steps, any colored symbol which is added by τ to intermediary formulas is lifted.

> For $LI^{\Delta}(C)$ and $LI_{cl}^{\Delta}(C)$, a similar argument goes through by reading colored as Δ -colored.

(lemma:substitute_and_lift)

Lemma 7. Let σ be a substitution and F a formula without Φ -colored terms such that for a set of formulas Ψ , $\Psi \models F$. Then $\Psi \models \ell_{\Phi}[F\sigma]$.

Proof. $\ell_{\Phi}[F\sigma]$ is an instance of F: σ substitutes variables either for terms not containing Φ -colored symbols or by terms containing Φ -colored symbols. For the first kind, the lifting has no effect. For the latter, the lifting only replaces subterms of the terms introduced by the substitution by a lifting variable such that the original structure of F remains invariant as it by assumption does not contain colored terms.

 $\langle \text{lemma:gamma_proves_pide} \rangle$ Lemma 8. For a clause C in a resolution refutation of $\Gamma \cup \Delta$, $\Gamma \models LI^{\Delta}(C) \lor I$

Proof. We proceed by induction of the strengthening $\Gamma \models LI^{\Delta}(C) \vee LI_{cl}^{\Delta}(C_{\Gamma})$.

Base case. For
$$C \in \Gamma$$
, $LI_{cl}^{\Delta}(C_{\Gamma}) = \ell_{\Delta}[C] = C$. Hence $\Gamma \models LI_{cl}^{\Delta}(C_{\Gamma})$.
For $C \in \Delta$, $LI^{\Delta}(C) = \top$, so $\Gamma \models LI^{\Delta}(C)$.

Resolution. Suppose the clause C is the result of a resolution step ι of $C_1: D \vee l$ and $C_2: E \vee \neg l'$ with $\sigma = \text{mgu}(\iota)$.

We define the following abbreviations:

$$\operatorname{LI}_{\operatorname{cl}}^{\Delta}((C_1)_{\Gamma})^* = \operatorname{LI}_{\operatorname{cl}}^{\Delta}((C_1)_{\Gamma} \setminus \{l_{\operatorname{LIcl}^{\Delta}}\})$$

$$\mathrm{LI}^\Delta_{\mathrm{cl}}((C_2)_\Gamma)^* = \mathrm{LI}^\Delta_{\mathrm{cl}}((C_2)_\Gamma \backslash \{ \neg l'_{\mathrm{LIcl}^\Delta} \})$$

Hence the induction hypothesis can be stated as follows:

$$\Gamma \models \mathrm{LI}^{\Delta}(C_1) \vee \mathrm{LI}_{\mathrm{cl}}^{\Delta}((C_1)_{\Gamma})^* \vee (l_{\mathrm{LIcl}^{\Delta}})_{\Gamma}$$

$$\Gamma \models \mathrm{LI}^{\Delta}(C_2) \vee \mathrm{LI}^{\Delta}_{\mathrm{cl}}((C_2)_{\Gamma})^* \vee \neg (l'_{\mathrm{LIcl}^{\Delta}})_{\Gamma}$$

By Lemma 6, $\operatorname{LI}^{\Delta}(C_i)$ and $\operatorname{LI}^{\Delta}_{\operatorname{cl}}(C_i)$ for $i \in \{1, 2\}$ do not contain Δ -colored terms. Hence we are able to apply Lemma 7 in order to obtain

$$\Gamma \stackrel{(\circ)}{\models} \ell_{\Delta}[\mathrm{LI}^{\Delta}(C_1)\tau] \vee \ell_{\Delta}[\mathrm{LI}^{\Delta}_{\mathrm{cl}}((C_1)_{\Gamma})^*\tau] \vee \ell_{\Delta}[(l_{\mathrm{LIcl}^{\Delta}})_{\Gamma}\tau]$$

$$\Gamma \stackrel{(*)}{\vDash} \ell_{\Delta}[\mathrm{LI}^{\Delta}(C_2)\tau] \vee \ell_{\Delta}[\mathrm{LI}^{\Delta}_{\mathrm{cl}}((C_2)_{\Gamma})^*\tau] \vee \neg \ell_{\Delta}[(l'_{\mathrm{LIcl}^{\Delta}})_{\Gamma}\tau]$$

By Lemma 4, we obtain that $\ell_{\Delta}[l_{\text{LIcl}^{\Delta}}\tau] = \ell_{\Delta}[l'_{\text{LIcl}^{\Delta}}\tau]$.

Now we distinguish cases based on the color of the resolved literal:

- Suppose that l is Γ -colored. Then as $\ell_{\Delta}[l_{\mathrm{LIcl}^{\Delta}}\tau] = \ell_{\Delta}[l'_{\mathrm{LIcl}^{\Delta}}\tau]$, we can perform a resolution step on (\circ) and (*), which gives that $\Gamma \vDash \ell_{\Delta}[\mathrm{LI}^{\Delta}(C_1)\tau] \lor \ell_{\Delta}[\mathrm{LI}^{\Delta}_{\mathrm{cl}}((C_1)_{\Gamma})^*\tau] \lor \ell_{\Delta}[\mathrm{LI}^{\Delta}(C_2)\tau] \lor \ell_{\Delta}[\mathrm{LI}^{\Delta}_{\mathrm{cl}}((C_2)_{\Gamma})^*\tau]$. This however is nothing else than $\Gamma \vDash \mathrm{LI}^{\Delta}(C) \lor \mathrm{LI}^{\Delta}_{\mathrm{cl}}(C)$.
- Suppose that l is Δ -colored. Then (\circ) and (*) simply to the following:

$$\Gamma \vDash \ell_{\Delta}[\mathrm{LI}^{\Delta}(C_1)\tau] \lor \ell_{\Delta}[\mathrm{LI}^{\Delta}_{\mathrm{cl}}((C_1)_{\Gamma})^*\tau]$$

$$\Gamma \vDash \ell_{\Delta}[\operatorname{LI}^{\Delta}(C_{2})\tau] \vee \ell_{\Delta}[\operatorname{LI}^{\Delta}_{\operatorname{cl}}((C_{2})_{\Gamma})^{*}\tau]$$

These however imply that $\Gamma \models \operatorname{LI}_{\operatorname{cl}}^{\Delta}((C_1)_{\Gamma})^* \lor \operatorname{LI}_{\operatorname{cl}}^{\Delta}((C_2)_{\Gamma})^* \lor (\ell_{\Delta}[\operatorname{LI}^{\Delta}(C_1)\tau] \land \ell_{\Delta}[\operatorname{LI}^{\Delta}(C_2)\tau])$, which is nothing else than $\Gamma \models \operatorname{LI}^{\Delta}(C) \lor \operatorname{LI}_{\operatorname{cl}}^{\Delta}(C)$.

• Suppose that l is grey. Suppose that M is a model of Γ such that $M \not\models \operatorname{LI}_{\operatorname{cl}}^{\Delta}(C)$, i.e. $M \not\models \ell_{\Delta}[\operatorname{LI}_{\operatorname{cl}}^{\Delta}((C_1)_{\Gamma})^*\tau] \vee \ell_{\Delta}[\operatorname{LI}_{\operatorname{cl}}^{\Delta}((C_2)_{\Gamma})^*\tau]$. Then $M \models \ell_{\Delta}[\operatorname{LI}^{\Delta}(C_1)\tau] \vee \ell_{\Delta}[l_{\operatorname{LI}\operatorname{cl}}^{\Delta}\tau]$ as well as $M \models \ell_{\Delta}[\operatorname{LI}^{\Delta}(C_2)\tau] \vee -\ell_{\Delta}[l'_{\operatorname{LI}\operatorname{cl}}^{\Delta}\tau]$.

Due to $\ell_{\Delta}[l_{\text{LIcl}^{\Delta}}\tau] = \ell_{\Delta}[l'_{\text{LIcl}^{\Delta}}\tau]$, we obtain that

 $M \models (\ell_{\Delta}[l_{\mathrm{LIcl}^{\Delta}}\tau] \land \ell_{\Delta}[\mathrm{LI}^{\Delta}(C_{2})\tau]) \lor (\neg \ell_{\Delta}[l'_{\mathrm{LIcl}^{\Delta}}\tau] \land \ell_{\Delta}[\mathrm{LI}^{\Delta}(C_{1})\tau]),$ which is nothing else than $M \models \mathrm{LI}^{\Delta}(C).$

Factorisation. Suppose the clause C is the result of a factorisation inference ι of $C_1: l \vee l' \vee D$ with $\sigma = \mathrm{mgu}(\iota)$.

We introduce the abbreviation $\operatorname{LI}^{\Delta}_{\operatorname{cl}}((C_1)_{\Gamma})^* = \operatorname{LI}^{\Delta}_{\operatorname{cl}}((C_1)\Gamma \setminus \{l_{\operatorname{LIcl}^{\Delta}}, \neg l'_{\operatorname{LIcl}^{\Delta}}\})$ and express the induction hypothesis as follows:

$$\Gamma \vDash \mathrm{LI}^{\Delta}(C_1) \vee \mathrm{LI}^{\Delta}_{\mathrm{cl}}((C_1)_{\Gamma})^* \vee (l_{\mathrm{LIcl}^{\Delta}})_{\Gamma} \vee \neg (l'_{\mathrm{LIcl}^{\Delta}})_{\Gamma}$$

By Lemma 6, $LI^{\Delta}(C_i)$ and $LI^{\Delta}_{cl}(C_i)$ for $i \in \{1, 2\}$ do not contain Δ -colored terms. Hence we are able to apply Lemma 7 in order to obtain

$$\begin{array}{l} \Gamma \overset{(\divideontimes)}{\vDash} \ell_{\Delta}[\operatorname{LI}^{\Delta}(C_1)\tau] \vee \ell_{\Delta}[\operatorname{LI}^{\Delta}_{\operatorname{cl}}((C_1)_{\Gamma})^{\ast}\tau] \vee \ell_{\Delta}[(l_{\operatorname{LIcl}^{\Delta}})_{\Gamma}\tau] \vee \neg \ell_{\Delta}[(l'_{\operatorname{LIcl}^{\Delta}})_{\Gamma}\tau] \\ \text{As by Lemma 4 we get that } \ell_{\Delta}[l_{\operatorname{LIcl}^{\Delta}}\tau] = \ell_{\Delta}[l'_{\operatorname{LIcl}^{\Delta}}\tau], \text{ we can perform a factorisation step on } (\divideontimes) \text{ to obtain that } \Gamma \vDash \ell_{\Delta}[\operatorname{LI}^{\Delta}(C_1)\tau] \vee \ell_{\Delta}[\operatorname{LI}^{\Delta}_{\operatorname{cl}}((C_1)_{\Gamma})^{\ast}\tau] \vee \ell_{\Delta}[(l_{\operatorname{LIcl}^{\Delta}})_{\Gamma}\tau]. \text{ But this is nothing else than } \Gamma \vDash \operatorname{LI}^{\Delta}(C) \vee \operatorname{LI}^{\Delta}_{\operatorname{cl}}(C_{\Gamma}). \end{array}$$

?(def:arrow_quantifier_block)? **Definition 9** (Quantifier block). Let C be a clause in a resolution refutation π of $\Gamma \cup \Delta$ and \bar{x} be the Δ -lifting variables and \bar{y} the Γ -lifting variables occurring in $\mathrm{LI}(C)$ and $\mathrm{LI}_{\mathrm{cl}}(C)$. Q(C) denotes an arrangement of the elements of $\{\forall x_t \mid x_t \in \bar{x}\} \cup \{\exists y_t \mid y_t \in \bar{y}\}$ such that for two lifting variable z_s and z_r , if s is a subterm of r, then z_s is listed before z_r . We denote $Q(\Box)$ by $Q(\pi)$. \triangle

 $\label{eq:lifting_tau_commute} $$ \operatorname{Conjectured Lemma 10.} \ \ell[\ell[\varphi]\tau] = \ell[\varphi\tau]. $$$

```
Proof. proof by induction.

Supp constant: done.

Supp grey function: apply to children.

supp variable: \ell[\ell[x]\tau] = \ell[x\tau]

supp lft var: \ell[\ell[z_t]\tau] = \ell[z_t\tau]

supp col term t

\ell[\ell[t]\tau] = \ell[z_t\tau] = \ell[z_{t\sigma}] = z_{t\sigma} = \ell[t\sigma] = \ell[t\tau]
```

 $\langle \text{lemma:gamma_lifted_lide} \rangle$ Lemma 11. For a clause C of a resolution refutation of $\Gamma \cup \Delta$, $\ell_{\Gamma}[LI^{\Delta}(C) \vee LI_{cl}^{\Delta}(C)] = LI(C) \vee LI_{cl}(C)$.

Proof. Base case.

$$LI^{\Delta}$$
: easy.

$$LI_{cl}^{\Delta}$$
: By Lemma 1, $\ell_{\Gamma}[\ell_{\Delta}[C]] = \ell[C]$

Resolution.

$$\ell_{\Gamma}[\operatorname{LI}^{\Delta}(C_1) \vee \operatorname{LI}_{\operatorname{cl}}^{\Delta}(C_1)] = \operatorname{LI}(C_1) \vee \operatorname{LI}_{\operatorname{cl}}(C_1).$$

$$\ell_{\Gamma}[\operatorname{LI}^{\Delta}(C_2) \vee \operatorname{LI}_{\operatorname{cl}}^{\Delta}(C_2)] = \operatorname{LI}(C_2) \vee \operatorname{LI}_{\operatorname{cl}}(C_2).$$

$$LI_{cl}^{\Delta}$$
:

$$\ell_{\Gamma}[\operatorname{LI}_{\operatorname{cl}}^{\Delta}(C_1)] = \operatorname{LI}_{\operatorname{cl}}(C_1)$$

$$\ell_{\Delta}[\operatorname{LI}_{c1}^{\Delta}(C_1)\tau] \subseteq \operatorname{LI}_{c1}^{\Delta}(C)$$

$$\ell[\operatorname{LI}_{\operatorname{cl}}(C_1)\tau] \subseteq \operatorname{LI}_{\operatorname{cl}}(C)$$

to show: $\ell_{\Gamma}^{y}[LI_{cl}^{\Delta}(C)] = LI_{cl}(C)$

$$\ell[\ell_{\Gamma}[LI_{cl}^{\Delta}(C_1)]\tau] = \ell[LI_{cl}(C_1)\tau]$$
 IH + same op on both sides

new lemma above

$$\ell[\ell_{\Gamma}[LI_{cl}^{\Delta}(C_1)]\tau] = \ell[LI_{cl}^{\Delta}(C_1)\tau]$$

 LI^{Δ} :

• Supp Γ :

IH:
$$\ell_{\Gamma}[\operatorname{LI}^{\Delta}(C_1)] = \operatorname{LI}(C_1)$$

hence also: $\ell[\operatorname{LI}^{\Delta}(C_1)] = \operatorname{LI}(C_1)$ (by lemma: no Δ -terms in . . .)
 $+ \tau$: $\ell[\operatorname{LI}^{\Delta}(C_1)]\tau = \operatorname{LI}(C_1)\tau$
 $+ \ell$: $\ell[\ell[\operatorname{LI}^{\Delta}(C_1)]\tau] = \ell[\operatorname{LI}(C_1)\tau]$
by new lemma $\ell[\operatorname{LI}^{\Delta}(C_1)\tau] = \ell[\operatorname{LI}(C_1)\tau]$
hence by Lemma 1, $\ell_{\Gamma}[\ell_{\Delta}[\operatorname{LI}^{\Delta}(C_1)\tau]] \subseteq \operatorname{LI}^{\Delta}(C)$
hence $\ell_{\Gamma}[\operatorname{LI}^{\Delta}(C)] \subseteq \operatorname{LI}^{\Delta}(C)$

Factorisation.

Lemma 12. For a clause C of a resolution refutation of $\Gamma \cup \Delta$, $\Gamma \models$ $Q(C)(LI(C) \vee LI_{cl}(C)).$

Proof. By Lemma 11 $\ell_{\Gamma}[LI^{\Delta}(C) \vee LI_{cl}^{\Delta}(C)] = LI(C) \vee LI_{cl}(C)$. By Lemma 8, $\Gamma \models LI^{\Delta}(C) \vee LI_{cl}^{\Delta}(C)$. Hence the terms in $LI^{\Delta}(C) \vee LI_{cl}^{\Delta}(C)$ provide witness terms for the Γ-lifting variables in $LI(C) \vee LI_{cl}(C)$, which are existentially quantified in $Q(C)(LI(C) \vee LI_{cl}(C))$.

Furthermore, the ordering imposed on the quantifiers in Q(C) implies that if a Δ -lifting variable x_s occurs in a witness term for a Γ -lifting variable y_r, y_r is quantified in the scope of the quantifier of x_s as s is a subterm of r. This however ensures that the witness terms are valid.

 $? \\ \texttt{lemma:li_symmetry}? \textbf{ Lemma 13.} \ \ symmetry: \ Q(C)(\text{LI}(C)) \Leftrightarrow Q(\hat{C})(\text{LI}(\hat{C})).$

Proof. todo: copy from other pdf

Theorem 14. same as other pdf