

Áreas y Volúmenes de Figuras en el espacio

 $V = a^3$

 $A_{Lat} = 2(a \cdot b + b \cdot c + a \cdot c)$

$$V = a \cdot b \cdot c$$

$$A_{Lat} = 4 \cdot \pi \cdot r^2 \qquad V = \frac{4}{3} \cdot \pi \cdot r^3$$

Cilira dura	6	D:::/:::-!!
Cilindro	Cono	Pirámide
h	h	h hc
$A_{Lat} = 2 \cdot \pi \cdot r \cdot h$	$A_{Lat} = \pi \cdot r \cdot g \qquad g = \sqrt{h^2 + r^2}$	$A_{\text{Lat}} = \frac{Perímetro_{\text{Base}} \cdot h_c}{2}$
$A_{Total} = 2 \cdot \pi \cdot r \cdot (r+h)$	$A_{Total} = \pi \cdot r \cdot (r + g)$	$A_{Total} = A_{lat} + A_{Base}$
$V = \pi \cdot r^2 \cdot h$	$V = \frac{1}{3}\pi \cdot r^2 \cdot h$	$V = \frac{1}{3} \cdot A_{base} \cdot h$

