L'équilibre d'un kite

2024 - Romain LAMBERT

Résumé

Ce bureau d'étude a pour sujet l'équilibre du Kite, sa condition d'existence et sa stabilité. L'objectif final étant de déterminer des paramètres optimaux tels que le towpoint.

I. L'ÉQUILIBRE DU KITE

A. X_T

le point d'application d'un effort est une notion importante. Si celui de l'effort aérodynamique et du poids sont couramment utilisés, le point d'application de la tension des lignes influence beaucoup les performances d'un kite. De plus, le bridage d'un kite change considérablement la façon dont se répartie la tension dans les lignes et l'angle d'équilibre au zénith d'un kite. Ainsi, afin de capturer l'influence du bridage sur les performances d'un kite, on définit X_T comme étant le point d'intersection entre la corde moyenne d'un kite et l'axe de la tension des lignes. Ainsi, X_T permet de lié la géométrie du bridage et son influence sur la dynamique du kite.

FIGURE 1. Xt

Isoler les ensembles $\{kite\}$ et $\{kite+bridage\}$ permet de montrer X_T est le point d'application de l'ensemble du bridage, le long de la corde. En effet :

Pour l'équilibre des moments appliqué à l'ensemble $\{kite\}$, en le X_T :

$$F_{Poid}(x_G - x_T) + Faero(x_{aero} - x_T) = 0 \tag{1}$$

Pour l'équilibre des moments appliqué à l'ensemble $\{kite+bridage\}, X_T$:

$$F_{Poid}(x_G - x_T) + Faero(x_{aero} - x_T) + \sum_{i=A}^{D} F_{lignei}(x_{lignei} - x_T) = 0$$
(2)

D'où:

$$\sum_{i=A}^{D} F_{lignei}(x_{lignei} - x_T) = 0 \tag{3}$$

Ce qui, par définition, montre que X_T est le point d'application de la résultante de tension de l'ensemble du bridage projeté sur la corde.

B. Différence entre X_T et Tow Point

On définit le Tow Point par le projeté orthogonal du point d'attache entre les lignes et le bridage sur la corde moyenne du kite.

FIGURE 2. Différence entre x_{TP} et x_{T}

Le schéma 2 montre que le towpoint (x_{TP}) et x_T forment un angle α_0 avec le point d'attache entre les lignes et le bridage. Ainsi, dans le cas où les lignes forment un angle de $\frac{\pi}{2}$ avec la corde moyenne du kite, Tow Point et x_T sont confondus.

De plus, x_{TP} est purement géométrique là où x_T lie géométrie et aérodynamique.

On peut lier ces deux positions par la relation suivante :

$$x_{TP} = x_T + d * tan(\alpha_0) \tag{4}$$

où d est la distance du point d'attache entre les lignes et le bridage à la corde moyenne, divisé par la corde profil.

FIGURE 3. Equilibre du kite

On écrit l'équilibre statique de {kite+bridage}, en X_T du kite :

$$\begin{cases}
L = P + Tsin(\theta) \\
D = Tcos(\theta) \\
0 = C_{M_0} + (x_T - x_F)(Lcos(\alpha) + Dsin(\alpha)) - Pcos(\alpha)(x_T - x_G)
\end{cases}$$
(5)

Ainsi, en considérant $\alpha << 1$, on a :

$$\begin{cases} \frac{L-P}{D} = tan(\theta) \\ \theta = \frac{\pi}{2} - \alpha + \alpha_0 \\ x_T = \frac{Lx_F - Px_G - C_{M_0}}{L - P} \end{cases}$$
 (6)

Il semblerait donc que le calcul (CFD, VSM, ...) des polaires aérodynamiques ($L(\alpha)$ et $D(\alpha)$) permettent de trouver le X_T optimal afin d'optimiser la finesse au zénith.

Exemple : Pour $\alpha_{optimal}=21^{\circ},\ C_D=0.19$ et $C_L=1.35,$ on trouve en appliquant l'équation 6 :

$$\begin{cases}
\alpha_0 = -12^{\circ} \\
\theta = 81^{\circ} \\
x_T = 0.22
\end{cases}$$
(7)

avec
$$P=21kg, x_F=0.25, x_G=0.5, \frac{1}{2}\rho Sv^2=\frac{1}{2}1.225*(50m^2)*(14*0.514m/s)^2$$
 et $C_{M_0}=0$

De plus, avec $d=\frac{6.9m}{4.56m}=1.51m$ pour une $50m^2$ (d'après SurfPlan). On a finalement : $x_{TP}=-0.10$

Ce resultat semble correct en ordre de grandeur (comme celui de x_{TP}) mais pas "exacte"; comparé aux observations expérimentales. On comprend donc l'importance de déterminer chaque grandeur, notamment les coefficients aérodynamiques, avec davantage de précision!

II. CONDITION D'EXISTENCE DE L'ÉQUILIBRE DU KITE

- A. Angle d'élévation minimal
- B. Angle d'élévation maximal

III. STABILITÉ DU KITE