Unit 3: Inferential Statistics for Continuous Data Statistics for Linguists with R - A SIGIL Course

Designed by Marco Baroni¹ and Stefan Evert²

¹Center for Mind/Brain Sciences (CIMeC) University of Trento, Italy

²Institute of Cognitive Science (IKW) University of Osnabrück, Germany

Copyright © 2007-2010 Baroni & Evert

SIGIL (Baroni & Evert)

3b. Continuous Data: Inference

sigil.r-forge.r-project.org

Outline

Inferential statistics

Preliminaries

One-sample tests

Testing the mean Testing the variance Student's *t* test Confidence intervals

3b. Continuous Data: Inference

Inferential statistics Preliminaries

Inferential statistics Preliminaries

Outline

Inferential statistics

Preliminaries

Inferential statistics

SIGIL (Baroni & Evert)

- ► Goal: infer (characteristics of) population distribution from small random sample, or test hypotheses about population
 - \blacktriangleright in particular, we will estimate/test characteristics μ and σ only makes sense if we have a parametric model
- ▶ Nonparametric tests need fewer assumptions, but . . .
 - \blacktriangleright cannot test hypotheses about μ and σ (instead: median, IQR = inter-quartile range, etc.)
 - more complicated and computationally expensive procedures
 - correct interpretation of results often difficult
- ▶ In this session, we assume a Gaussian population distribution
 - sometimes a scale transformation is necessary (e.g. lognormal)

sigil.r-forge.r-project.org SIGIL (Baroni & Evert) 3b. Continuous Data: Inference SIGIL (Baroni & Evert) sigil.r-forge.r-project.org

A note on extremeness

- ▶ Rationale similar to binomial test for frequency data: measure observed statistic in sample, which is compared against expected value \rightarrow if difference is large, reject H_0
- ► Crucial question: what is "large enough"? reject if difference is unlikely to arise by chance
- \blacktriangleright Measuring the extremeness of a single item sampled from Ω
 - ▶ If someone is 195 cm tall, would we consider him unusual?
 - ▶ no absolute scale → "ordinary" defined by central range. i.e. how tall the majority of people we meet are (say, 95%)
 - for Gaussian distribution: range from $\mu 1.96\sigma$ to $\mu + 1.96\sigma$
- ► This suggests the **z-score** measure of extremeness:

$$Z(\omega) := \frac{X(\omega) - \mu}{\sigma}$$

with central range characterised by $|Z| \leq 1.96$

SIGIL (Baroni & Evert)

sigil.r-forge.r-project.org

Inferential statistics Preliminaries

Notation for random samples

- ▶ Random sample of $n \ll m$ items
 - e.g. participants of survey, Wikipedia sample, ...
 - recall importance of completely random selection
- \triangleright Sample described by observed values of r.v. X, Y, Z, ...:

$$x_1, \ldots, x_n; \quad y_1, \ldots, y_n; \quad z_1, \ldots, z_n$$

(don't know which $\omega \in \Omega$ were selected $\rightarrow x_i$ instead of $X(\omega)$)

 \blacktriangleright Mathematically, x_i, y_i, z_i are realisations of random variables

$$X_1, \ldots, X_n$$
; Y_1, \ldots, Y_n ; Z_1, \ldots, Z_n

- $\rightarrow X_1, \dots, X_n$ are independent from each other and each one has the same distribution $X_i \sim X \rightarrow i.i.d.$ random variables
 - this is the formal definition of a random sample

3b. Continuous Data: Inference Inferential statistics 2010-08-04 Preliminaries A note on extremeness

1. NB: we can only calculate such a z-score if we know the true mean μ and s.d. σ of the Gaussian distribution!

Outline

One-sample tests

Testing the mean

Testing the mean

A simple test for the mean

 \triangleright Consider simplest possible H_0 : a point hypothesis

$$H_0: \mu = \mu_0, \sigma = \sigma_0$$

- together with normality assumption, population distribution is completely determined
- ▶ How would you test whether $\mu = \mu_0$ is correct?
- ► An intuitive test statistic is the sample mean

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 with $\bar{x} \approx \mu_0$ under H_0

- ▶ Reject H_0 if difference $\bar{x} \mu_0$ is sufficiently large
 - \blacksquare need to work out sampling distribution of \bar{X}

SIGIL (Baroni & Evert)

2010-08-04

sigil.r-forge.r-project.org

3b. Continuous Data: Inference One-sample tests Testing the mean The sampling distribution of \bar{X}

 $\tilde{X} = \frac{1}{a}(X_1 + \cdots + X_n)$ $\mathbb{E}[\tilde{X}] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[X_{i}] = \frac{1}{n}\sum_{i=1}^{n}\mu = \mu$

- 1. The first question is whether it makes sense to base our test for the mean on the sample average, i.e. whether \bar{X} is a sensible test statistic for μ .
- 2. To answer this question, we need to work out (properties of) the sampling distribution of \bar{X} across different random samples of the same size n.
- 3. A minimal requirement is *unbiasedness*: the test statistic should not systematically indicate a wrong value for μ (possibly after suitable rescaling: $\bar{X} - \mu$ would be just as sensible as a test statistic).
- 4. Unbiasedness is not sufficient to ensure that a test based on \bar{X} is reliable. We also need to know the variability of X, or preferably its complete sampling distribution.
- 5. An important advantage of Gaussian random variables is that \bar{X} also follows a Gaussian distribution. There are only very few other distributions with this property (e.g. Cauchy).

The sampling distribution of \bar{X}

▶ The sample mean is also a random variable:

$$\bar{X} = \frac{1}{n}(X_1 + \cdots + X_n)$$

 $ightharpoonup \bar{X}$ is a sensible test statistic for μ because it is **unbiased**:

$$E[\bar{X}] = E\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}E[X_{i}] = \frac{1}{n}\sum_{i=1}^{n}\mu = \mu$$

► An important property of the Gaussian distribution: if $X \sim N(\mu, \sigma_1^2)$ and $Y \sim N(\mu, \sigma_2^2)$ are independent, then

$$X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

 $r \cdot X \sim N(r\mu_1, r^2\sigma_1^2)$ for $r \in \mathbb{R}$

SIGIL (Baroni & Evert)

3b. Continuous Data: Inference sigil.r-forge.r-project.org

One-sample tests Testing the mean

The sampling distribution of \bar{X}

▶ Since X_1, \ldots, X_n are i.i.d. with $X_i \sim N(\mu, \sigma^2)$, we have

$$X_1 + \dots + X_n \sim N(n\mu, n\sigma^2)$$

$$\bar{X} = \frac{1}{n} (X_1 + \dots + X_n) \sim N(\mu, \frac{\sigma^2}{n})$$

- ullet $ar{X}$ has Gaussian distribution with same μ but smaller s.d. than the original r.v. X: $\sigma_{\bar{X}} = \sigma/\sqrt{n}$
 - explains why normality assumptions are so convenient
 - \square larger samples allow more reliable hypothesis tests about μ
- ▶ If the sample size *n* is large enough, $\sigma_{\bar{x}} = \sigma/\sqrt{n} \rightarrow 0$ and the sample mean \bar{x} becomes an accurate estimate of the true population value μ (law of large numbers)

SIGIL (Baroni & Evert)

3b. Continuous Data: Inference sigil.r-forge.r-project.org

The z test

Now we can quantify the extremeness of the observed value \bar{x} . given the null hypothesis $H_0: \mu = \mu_0, \sigma = \sigma_0$

$$z = \frac{\bar{x} - \mu_0}{\sigma_{\bar{X}}} = \frac{\bar{x} - \mu_0}{\sigma_0 / \sqrt{n}}$$

- \triangleright Corresponding r.v. Z has a standard normal distribution if H_0 is correct: $Z \sim N(0,1)$
- We can reject H_0 at significance level α if

$$\alpha = .05$$
 .01 .001
 $|z| > 1.960$ 2.576 3.291 -qnorm($\alpha/2$)

- ► Two problems of this approach:
 - 1. need to make hypothesis about σ in order to test $\mu = \mu_0$
 - 2. H_0 might be rejected because of $\sigma \gg \sigma_0$ even if $\mu = \mu_0$ is true

SIGIL (Baroni & Evert)

3b. Continuous Data: Inference sigil.r-forge.r-project.org

One-sample tests Testing the variance

Outline

One-sample tests

Testing the variance

3b. Continuous Data: Inference 2010-08-04 One-sample tests Testing the mean \Box The z test

- 1. Recall that sampling distribution of \bar{X} describes how the sample average varies across different random samples of the same size n from the same population satisfying H_0 (think of many sociologists taking surveys of 100 random people each).
- 2. We reject H_0 if the observed value of \bar{X} is sufficiently improbable according to the sampling distribution, i.e. unlikely to happen by chance if H_0 were true.
- 3. Note that for the binomial test in Unit 2, the sampling distribution of the passive count X was discrete. Now the test statistic \bar{X} has a continuous distribution described by a density function.
- 4. R function gnorm and other functions for working with probability distributions will be explained in a moment.
- 5. If we overestimate $\sigma \ll \sigma_0$, the z test might fail to reject $\mu = \mu_0$ even though it clearly isn't true.

A test for the variance

• An intuitive test statistic for σ^2 is the sum of squares

$$V = (X_1 - \mu)^2 + \cdots + (X_n - \mu)^2$$

- ▶ Squared error $(X \mu)^2$ is σ^2 on average → $E[V] = n\sigma^2$
 - ▶ reject $\sigma = \sigma_0$ if $V \gg n\sigma_0^2$ (variance larger than expected)
 ▶ reject $\sigma = \sigma_0$ if $V \ll n\sigma_0^2$ (variance smaller than expected)

 - \square sampling distribution of V shows if difference is large enough
- ▶ Rewrite *V* in the following way:

$$V = \sigma^2 \left[\left(\frac{X_1 - \mu}{\sigma} \right)^2 + \dots + \left(\frac{X_n - \mu}{\sigma} \right)^2 \right]$$
$$= \sigma^2 (Z_1^2 + \dots + Z_n^2)$$

with $Z_i \sim N(0,1)$ i.i.d. standard normal variables

A test for the variance

▶ Statisticians have worked out the distribution of $\sum_{i=1}^{n} Z_i^2$ for i.i.d. $Z_i \sim N(0,1)$, known as the chi-squared distribution

$$\sum_{i=1}^n Z_i^2 \sim \chi_n^2$$

with *n* degrees of freedom (df = n)

- ► The χ_n^2 distribution has expectation $\mathrm{E}[\sum_i Z_i^2] = n$ and variance $\mathrm{Var}[\sum_i Z_i^2] = 2n$ → confirms $\mathrm{E}[V] = n\sigma^2$
- ▶ Appropriate rejection thresholds for V can be obtained with R
 - $ightharpoonup \chi_n^2$ distribution is not symmetric, so one-sided tail probabilities are used (with $\alpha' = \alpha/2$ for two-sided test)
- Again, there are two problems:
 - 1. need to make hypothesis about μ in order to test $\sigma = \sigma_0$
 - 2. H_0 easily rejected for $\mu \neq \mu_0$, even though $\sigma = \sigma_0$ may be true

SIGIL (Baroni & Evert)

3b. Continuous Data: Inference sigil.r-forge.r-project.org

One-sample tests Testing the variance

Intermission: Distributions in R

- ▶ R can compute density functions and tail probabilities or generate random numbers for a wide range of distributions
- ► Systematic naming scheme for such functions:

density function of Gaussian (normal) distribution dnorm()

pnorm() tail probability

qnorm() quantile = inverse tail probability

rnorm() generate random numbers

- Available distributions include Gaussian (norm), chi-squared (chisq), t(t), F(f), binomial (binom), Poisson (pois), ... you will encounter many of them later in the course
- ► Each function accepts distribution-specific parameters

3b. Continuous Data: Inference One-sample tests 2010-08-04 Testing the variance A test for the variance

- 1. This variance test is even more sensitive to a violation of the assumption $\mu = \mu_0$ than the z test is against $\sigma = \sigma_0$.
- 2. We need to estimate true μ from the sample data!
- 3. But first, let us take a short intermission: This is a good moment for a hands-on session on working with distributions in R.

One-sample tests Testing the variance

Intermission: Distributions in R

```
> x <- rnorm(50, mean=100, sd=15) # random sample of 50 IQ scores
> hist(x, freq=FALSE, breaks=seq(45,155,10)) # histogram
> xG <- seq(45, 155, 1) # theoretical density in steps of 1 IQ point
> vG <- dnorm(xG, mean=100, sd=15)
> lines(xG, vG, col="blue", lwd=2)
# Now do the same for a chi-squared distribution with 5 degrees of freedom
# (hint: the parameter you're looking for is df=5)
pchisq(10, df=5, lower.tail=FALSE) # tail prob. for \sum_{i} Z_{i}^{2} \geq 10
```

qchisq(0.05, df=5, lower.tail=FALSE) # one-sided test

What is the appropriate rejection criterion for a variance test with $\alpha = 0.05$?

The sample variance

ldea: replace true μ by sample value \bar{X} (which is a r.v.!)

$$V' = (X_1 - \bar{X})^2 + \cdots + (X_n - \bar{X})^2$$

- terms are no longer i.i.d. because \bar{X} depends on all X_i
- ▶ We can work out the distribution of V' for n=2:

$$V' = (X_1 - \bar{X})^2 + (X_2 - \bar{X})^2$$

$$= (X_1 - \frac{X_1 + X_2}{2})^2 + (X_2 - \frac{X_1 + X_2}{2})^2$$

$$= (\frac{X_1 - X_2}{2})^2 + (\frac{X_2 - X_1}{2})^2 = \frac{1}{2}(X_1 - X_2)^2$$

where $X_1 - X_2 \sim N(0, 2\sigma^2)$ for i.i.d. $X_1, X_2 \sim N(\mu, \sigma^2)$ one can also show that $X_1 - X_2$ and \bar{X} are independent

3b. Continuous Data: Inference sigil.r-forge.r-project.org

One-sample tests Testing the variance

Sample variance and the chi-squared test

▶ This motivates the following definition of sample variance S^2

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

with sampling distribution $(n-1)S^2/\sigma^2 \sim \chi_{n-1}^2$

- S^2 is an unbiased estimator of variance: $E[S^2] = \sigma^2$
- We can use S^2 to test H_0 : $\sigma = \sigma_0$ without making any assumptions about the true mean $\mu \rightarrow \text{chi-squared test}$
- Remarks
 - compare sample variance $(\frac{1}{n-1})$ with population variance $(\frac{1}{m})$
 - $\rightarrow \chi^2$ distribution doesn't have parameters σ^2 etc., so we need to specify the distribution of S^2 in a roundabout way
 - independence of S^2 and \bar{X} will play an important role later

The sample variance

▶ We now have

$$V' = \sigma^2 \left(\frac{X_1 - X_2}{\sigma\sqrt{2}}\right)^2 = \sigma^2 Z^2$$

with $Z^2 \sim \chi_1^2$ because of $X_1 - X_2 \sim N(0.2\sigma^2)$

For n > 2 it can be shown that

$$V' = \sum_{i=1}^{n} (X_i - \bar{X})^2 = \sigma^2 \sum_{j=1}^{n-1} Z_j^2$$

with $\sum_i Z_i^2 \sim \chi_{n-1}^2$ independent from \bar{X}

- proof based on multivariate Gaussian and vector algebra
- notice that we "lose" one degree of freedom because one parameter $(\mu \approx \bar{x})$ has been estimated from the sample

One-sample tests Testing the variance

Chi-squared test of variance in R

```
> x <- Survey$height # sample data: n items
```

> n <- length(x)

Chi-squared test for a hypothesis about the s.d. (with unknown mean)

 $\# H_0$: $\sigma = 13$ (one-sided test against $\sigma > \sigma_0$)

> sigma0 <- 13

> S2 <- sum((x - mean(x))^2) / (n-1) # unbiased estimator of σ^2

> X2 <- (n-1) * S2 / sigma0^2 # has χ^2 distribution under H_0

> pchisq(X2, df=n-1, lower.tail=FALSE)

Here's a trick to carry out a two-sided test (try e.g. with $\sigma_0 = 20$)

alt.higher <- S2 > sigma0^2

2 * pchisq(X2, df=n-1, lower.tail=!alt.higher)

sigil.r-forge.r-project.org

One-sample tests Student's t test

Outline

One-sample tests

Student's t test

SIGIL (Baroni & Evert)

3b. Continuous Data: Inference sigil.r-forge.r-project.org

One-sample tests Student's t test

Student's t test for the mean

▶ Because \bar{X} and S^2 are independent, we find that

$$T \sim t_{n-1}$$
 under $H_0: \mu = \mu_0$

Student's *t* distribution with df = n - 1 degrees of freedom

▶ In order to carry out a one-sample t test, calculate the statistic

$$t = \frac{\bar{x} - \mu_0}{\sqrt{s^2/n}}$$

and reject H_0 : $\mu = \mu_0$ if |t| > C

- \blacktriangleright Rejection threshold *C* depends on df = n-1 and desired significance level α (in R: -qt($\alpha/2$, n-1))
 - \square close to z-score thresholds for n > 30

SIGIL (Baroni & Evert)

3b. Continuous Data: Inference sigil.r-forge.r-project.org

One-sample tests Student's t test

Student's t test for the mean

- ▶ Now we have the ingredients for a test of H_0 : $\mu = \mu_0$ that does not require knowledge of the true variance σ^2
- ▶ In the z-score for \bar{X}

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

replace the unknown true s.d. σ by the sample estimate $\hat{\sigma} = \sqrt{S^2}$, resulting in a so-called **t-score**:

$$T = \frac{\bar{X} - \mu_0}{\sqrt{S^2/n}}$$

▶ William S. Gosset worked out the precise sampling distriution of T and published it under the pseudonym "Student"

3b. Continuous Data: Inference sigil.r-forge.r-project.org

3b. Continuous Data: Inference 2010-08-04 One-sample tests Student's t test

Student's t test for the mean

1. TODO – mathematical explanation of the "miracle" that cancels out

One-sample t test in R

we will use the same sample x of size n as in the previous example

```
# Student's t-test for a hypothesis about the mean (with unknown s.d.)
\# H_0: \mu = 165 \text{ cm}
```

- > mu0 <- 165
- > x.bar <- mean(x) # sample mean \bar{x}
- > s2 <- sum((x x.bar)^2) / (n-1) # sample variance s^2
- $> s2 < sd(x)^2 \# easier with built-in function (check equality!)$
- > t.score <- (x.bar mu0) / sqrt(s^2 / n) # t statistic
- > print(t.score) # positive indicates $\mu > \mu_0$, negative $\mu < \mu_0$
- > -qt(0.05/2, n-1) # two-sided rejection threshold for |t| at $\alpha = .05$
- # Mini-task: plot density function of t distribution for different d.f.
- > t.test(x, mu=165) # agrees with our "manual" t-test # Note that t.test() also provides a confidence interval for the true μ !

3b. Continuous Data: Inference sigil.r-forge.r-project.org

One-sample tests Confidence intervals

Confidence intervals

- \blacktriangleright If we do not have a specific H_0 to start from, estimate confidence interval for μ or σ^2 by inverting hypothesis tests
 - ▶ in principle same procedure as for binomial confidence intervals
 - ▶ implemented in R for t test and chi-squared test
- ▶ For t test, confidence interval has a particularly simple form. so we can carry out the procedure by hand
 - we'll write $\hat{\mu} = \bar{x}$ here to emphasise its use as estimator
- ▶ Given $H_0: \mu = a$ for some $a \in \mathbb{R}$, we reject H_0 if

$$|t| = \left| \frac{\hat{\mu} - a}{\sqrt{s^2/n}} \right| > C$$

with $C \approx 2$ for $\alpha = .05$ and n > 30

- ▶ This leads to $\hat{\mu} C \cdot s / \sqrt{n} < \mu < \hat{\mu} + C \cdot s / \sqrt{n}$
 - origin of the "±2 standard deviations" rule

Confidence intervals

Outline

One-sample tests

Confidence intervals

One-sample tests Confidence intervals

Switch to blackboard mode ...

SIGIL (Baroni & Evert) 3b. Continuous Data: Inference sigil.r-forge.r-project.org