## DMA Domácí úkol č. 7a

Tento úkol vypracujte po přednášce a před cvičením, na druhé straně je řešení. Pokud vám něco není jasné, zeptejte se na cvičení nebo na konzultaci.

1. Pro řetězec písmen w definujeme jeho délku l(w) jako počet znaků.

Uvažujme relaci  $\mathcal{R}$  na množině A konečných řetězců (třeba latinské abecedy, ale klidně si zkuste i jinou) danou předpisem

$$w_1 \mathcal{R} w_2 \iff l(w_1) = l(w_2),$$

tedy porovnáváme řetězce podle jejich délky.

- a) Dokažte, že tato relace je ekvivalence.
- b) Vyberte si z kalendáře pět jmen (náhodně či řízeně). Pro tuto množinu řetězců nakreslete graf relace  $\mathcal{R}$  a vypište komponenty. Napište rozklad množiny odpovídající této relaci.

Poznámka: Když kreslíme graf ekvivalence, tak pro zjednodušení nekreslíme smyčky a namísto obousměrných šipek tam a zpět prostě kreslíme spojnice.

- 2. Pro následující zobrazení T odhadněte, zda jsou prostá, na, popřípadě bijekce. Nemusíte to dokazovat.
- a)  $T: \{\text{nějaká množina lidí z ČR}\} \mapsto \mathbb{N}, T(\text{člověk}) = \text{jeho rodné číslo.}$
- b)  $T: \{\text{nenulov\'e polynomy}\} \mapsto \mathbb{N}_0, T(p) = \deg(p).$
- c)  $T: \mathbb{R}^2 \to \mathbb{R}^2, T(a,b) = (b,a).$

## Řešení:

1. a) Dokážeme reflexivitu, symetrii a tranzitivitu, rovnou pro relaci na celých čísel, je to stejná práce, pak to platí i pro všechny podmnožiny.

**R**: Nechť  $w \in \mathbb{Z}$ . l(w) = l(w) a tedy  $w \mathcal{R} w$ .

**S**: Nechť  $w_1, w_1 \in \mathbb{Z}$ . Jestliže  $w_1 \mathcal{R} w_2$ , pak  $l(w_1) = l(w_2)$ , proto i  $l(w_2) = l(w_1)$  a tedy  $w_2 \mathcal{R} w_1$ .

**T**: Nechť  $w_1, w_2, w_3 \in \mathbb{Z}$ . Jestliže  $w_1 \mathcal{R} w_2$  a  $w_2 \mathcal{R} w_3$ , pak  $l(w_1) = l(w_2)$  a  $l(w_2) = l(w_3)$ . Proto i  $l(w_1) = l(w_3)$  a tedy  $w_1 \mathcal{R} w_2$ .

b) Vybral jsem  $A = \{\text{Petr,Pavel,Petra,Pavla,Jan}\}.$ 





Komponenty:

 $[Petr]_{\mathcal{R}} = \{Petr\},\$ 

 $[Pavel]_{\mathcal{R}} = [Petra]_{\mathcal{R}} = [Pavla]_{\mathcal{R}} = \{Pavel, Petra, Pavla\},$ 

 $[\operatorname{Jan}]_{\mathcal{R}} = {\operatorname{Jan}}.$ 

Rozklad:

$$\{Petr, Pavel, Petra, Pavla, Jan\} = \{Petr\} \cup \{Pavel, Petra, Pavla\} \cup \{Jan\}.$$

- ${f 2.}$  a) T je doufejme prosté (v 90. letech se ukázalo, že není, byl to docela průšvih, ale snad už to spravili). Protože jsou rodná čísla desetimístná, tak nikdo nemá rodné číslo 13. Takže T není na. Není to bijekce.
- b) T není prosté (a proto ani bijekce), protože třeba  $T(x^2 + 1) = 2 = T(x^2)$ .

T je na: Pro každé  $n \in \mathbb{N}_0$  najdeme polynom, který pak T pošle na toto n, jmenovitě nějaký polynom stupně n. Například  $T(x^n) = n$ .

c) Tohle by měla být bijekce (prosté i na). Když ve dvou různých vektorech prohodím složky, tak budou zase různé. A ke každému vektoru  $(c,d) \in \mathbb{R}^2$  se umím dostat pomocí T, stačí začít s prohozeným vektorem (d,c).