Examen del bloc 2 de SIN: Test (1,75 punts)

ETSINF, Universitat Politècnica de València, 13 de gener de 2022

Grup, cognoms i nom: 1,

Marca cada requadre amb una única opció. Puntuació: $\max(0, (\text{encerts} - \text{errors}/3) \cdot 1, 75/9)$.

1 Siguen els següents 3 nodes d'un arbre de classificació amb mostres pertanyents a 3 classes:

c	n_1	n_2	n_3
1	4	5	5
2	5	3	4
3	4	1	2

on cada fila indica el nombre de mostres de cada classe en el node. Quina de les següents desigualtats és certa?

- A) $\mathcal{I}(n_3) < \mathcal{I}(n_2) < \mathcal{I}(n_1)$
- B) $\mathcal{I}(n_2) < \mathcal{I}(n_1) < \mathcal{I}(n_3)$
- C) $\mathcal{I}(n_3) < \mathcal{I}(n_1) < \mathcal{I}(n_2)$
- D) $\mathcal{I}(n_2) < \mathcal{I}(n_3) < \mathcal{I}(n_1)$

2 La probabilitat d'error d'un classificador s'estima que és del 20%. Determina quin és el nombre mínim de mostres de test necessari, M, per aconseguir que l'interval de confiança al 95% del dit error no supere el $\pm 1\%$; açò es, I = [19%, 21%]:

- A) M < 2000.
- B) $2000 \le M < 3500$.
- C) $3500 \le M < 5000$.
- D) $M \ge 5000$.

Suposeu que estem aplicant l'algorisme Perceptró, amb factor d'aprenentatge $\alpha=1$ i marge b=0.1, a un conjunt de 3 mostres bidimensionals d'aprenentatge per a un problema de 2 classes. Se sap que, després de processar les primeres 2 mostres, s'han obtés els vectors de pesos $\mathbf{w}_1=(0,0,1)^t$, $\mathbf{w}_2=(0,0,-1)^t$. Així mateix, se sap que, després de processar l'última mostra, (\mathbf{x}_3,c_3) , s'obtenen els vectors de pesos $\mathbf{w}_1=(-1,-5,-2)^t$, $\mathbf{w}_2=(1,5,2)^t$. Quina de les següents mostres és eixa última mostra?

- A) $((2,4)^t,2)$
- B) $((5,4)^t,2)$
- C) $((5,3)^t,2)$
- D) $((2,5)^t,2)$

- Donat el classificador en 2 classes definit pels seus vectors de pesos $\mathbf{w}_1 = (-3,3)^t$, $\mathbf{w}_2 = (-3,-3)^t$ en notació homogènia, quin dels següents conjunts de vectors **no** definix un classificador equivalent al donat?
 - A) $\mathbf{w}_1 = (-6, 6)^t$, $\mathbf{w}_2 = (-6, -6)^t$
 - B) $\mathbf{w}_1 = (-3, 6)^t, \, \mathbf{w}_2 = (-3, -6)^t$
 - C) $\mathbf{w}_1 = (0,3)^t, \mathbf{w}_2 = (0,-3)^t$
 - D) $\mathbf{w}_1 = (3, -3)^t, \, \mathbf{w}_2 = (3, 3)^t$
- 5 Siga el següent conjunt de dades utilitzat per a entrenar un arbre de classificació amb 5 mostres bidimensionals que pertanyen a 2 classes:

n	1	2	3	4	5
x_{n1}	2	5	4	3	3
x_{n2}	4	1	2	5	2
c_n	1	1	2	2	2

Quantes particions diferents es podrien generar en el node arrel? No consideres les particions en les quals totes les dades s'assignen al mateix node fill.

- A) 7
- B) 8
- C) 5
- D) 6
- Siga M un model de Markov de conjunt d'estats $Q=\{1,2,F\}$ i alfabet $\Sigma=\{a,b\}$. Durant l'aplicació d'una iteració de l'algorisme de reestimació per Viterbi, s'ha obtés un parell "(cadena, camí més probable)" per cada cadena d'entrenament. Seguidament, a partir de tots els parells obtinguts, s'han obtingut els comptes (freqüències absolutes) de transició entre estats mostrats en la taula a la dreta. La normalització correcta d'aquests comptes resultarà en la taula de probabilitats de transició enntre estats:

A	1	2	F
1	4	1	4
2	1	3	2

- A) $\begin{vmatrix} A & 1 & 2 & F \\ 1 & \frac{4}{5} & \frac{1}{4} & \frac{4}{6} \\ 2 & \frac{1}{5} & \frac{3}{4} & \frac{2}{6} \end{vmatrix}$
- B) $\begin{vmatrix} A & 1 & 2 & F \\ 1 & \frac{4}{15} & \frac{1}{15} & \frac{4}{15} \\ 2 & \frac{1}{15} & \frac{3}{15} & \frac{2}{15} \end{vmatrix}$
- D) $\begin{array}{|c|c|c|c|c|c|}
 \hline
 A & 1 & 2 & F \\
 \hline
 1 & \frac{4}{4} & \frac{1}{4} & \frac{4}{4} \\
 2 & \frac{1}{4} & \frac{3}{4} & \frac{2}{4}
 \end{array}$

En un problema de raonament probabilístic corresponent a desplaçaments per carretera, amb les variables aleatòries d'interés: Climatologia (C):{clar(CLA), ennuvolat (NUV), pluja (PLU)}; Lluminositat (L):{dia (DIA), nit (NIT)}; Seguretat (S):{segur (SEG), accident (ACC)}. La probabilitat conjunta de les tres variables ve donada en la taula:

		DIA			NIT	
P(s,l,c)	CLA	NUV	PLU	CLA	NUV	PLU
SEG	0.27	0.23	0.07	0.16	0.07	0.06
ACC	0.02	0.01	0.02	0.02	0.03	0.04

La probabilitat condicional $P(S = ACC \mid L = DIA, C = NUV)$ és:

- A) 0.042
- B) 0.010
- C) 0.240
- D) 0.140
- 8 Siga M el model de Markov representat a la dreta, on t, $0 < t < \frac{1}{4}$, denota la probabilitat de transició de l'estat 1 al 2. Donada la cadena x = abb, la probabilitat de generar x mitjançant el camí 122F, P(abb, 122F), depén de t. Anàlogament, la probabilitat de generar x mitjançant el camí 111F, P(abb, 111F), també depén de t (a través de la probabilitat de transició de l'estat 1 al F). Indica en quin cas P(abb, 111F) > P(abb, 122F):

- A) Mai.
- B) Si i només si $0 < t < \frac{1}{20}$.
- C) Si i només si $0 < t < \frac{1}{10}$.
- D) Sempre, és a dir, $0 < t < \frac{1}{4}$.
- Es té una partició d'un conjunt de dades 3-dimensionals en un nombre de clústers donat, $C \geq 2$. Considereu la transferència de la dada $\mathbf{x} = (1,3,9)^t$ d'un clúster i a altre $j, j \neq i$. Se sap que el clúster i conté 2 dades (comptant \mathbf{x}) i el j 3. Així mateix, se sap que la mitjana del clúster i és $\mathbf{m}_i = (4,8,6)^t$ i la del j $\mathbf{m}_j = (8,10,3)^t$. Si es realitza la dita transferència, es produirà un increment de la suma d'errors quadràtics, ΔJ , tal que:
 - A) $\Delta J < -70$
 - B) $-70 \le \Delta J < -30$
 - C) $-30 \le \Delta J < 0$
 - D) $\Delta J \geq 0$

Examen del bloc 2 de SIN: Problemes (2 punts)

ETSINF, Universitat Politècnica de València, 13 de gener de 2022

Grup, cognoms i nom: 1,

Problema sobre Forward i Viterbi

Siga M un model de Markov de conjunt d'estats $Q=\{1,2,F\}$; alfabet $\Sigma=\{a,b\}$; probabilitats inicials $\pi_1=\frac{2}{4},\pi_2=\frac{2}{4}$; i probabilitats de transició entre estats i d'emissió de símbols:

A	1	2	F
1	<u>2</u> 5	<u>2</u> 5	1 5
2	$\frac{2}{6}$	$\frac{1}{6}$	$\frac{3}{6}$

B	a	b
1	$\frac{1}{4}$	$\frac{3}{4}$
2	$\frac{1}{2}$	$\frac{1}{2}$

Siga x=bb. Es demana:

- 1. (0,75 punts) Realitzeu una traça de l'algorisme Forward per a obtindre la probabilitat amb la qual M genera la cadena x, $P_M(x)$.
- 2. (0,75 punts) Realitzeu una traça de l'algorisme de Viterbi per a obtindre l'aproximació de Viterbi a la probabilitat amb la qual M genera la cadena x, $\tilde{P}_M(x)$.
- 3. (0, 25 punts) A partir de la traça realitzada en l'apartat anterior, determineu un camí més probable amb el qual M genera x.
- 4. (0, 25 punts) Determineu la probabilitat amb la qual M genera x seguint un camí distint al més probable determinat en l'apartat anterior.