

Low Power, Precision Rail-to-Rail Output Op Amp

AD8622/AD8624

FEATURES

Very low offset voltage 125 μV maximum

Supply current: 215 μA/amp typical Input bias current: 200 pA maximum

Low input offset voltage drift: 1.2 $\mu V/^{\circ} C$ maximum

Very low voltage noise: 11 nV/√Hz

Operating temperature: -40°C to +125°C

Rail-to-rail output swing Unity gain stable ±2.5 V to ±15 V operation

APPLICATIONS

Portable precision instrumentation Laser diode control loops Strain gage amplifiers Medical instrumentation Thermocouple amplifiers

GENERAL DESCRIPTION

The AD8622/AD8624 are dual and quad precision rail-to-rail output operational amplifiers with low supply currents of only 350 $\mu A/amplifier$ maximum over temperature and supply voltages. The AD8622/AD8624 also has an input bias current cancellation circuitry that provides a very low input bias current over the full operating temperature.

With a typical offset voltage of only 10 μV , offset drift of 0.5 $\mu V/^{\circ}C$, and noise of only 0.2 μV p-p (0.1 Hz to 10 Hz), they are perfectly suited for applications where large error sources cannot be tolerated. Many systems can take advantage of the low noise, dc precision, and rail-to-rail output swing provided by the AD8622/AD8624 to maximize the signal-to-noise ratio and dynamic range for low power operation. The AD8622/AD8624 are specified for the extended industrial temperature range of $-40^{\circ}C$ to $+125^{\circ}C$. The AD8622 is available in lead-free 8-lead SOIC and MSOP packages, while the AD8624 is available in lead-free 14-lead TSSOP and 16-lead LFCSP packages.

PIN CONFIGURATIONS

Figure 1. 8-Lead Narrow-Body SOIC

Figure 2. 8-Lead MSOP

Figure 3. 14-Lead TSSOP

NOTES

1. NC = NO CONNECT.

2. IT IS RECOMMENDED THAT THE EXPOSED PAD BE CONNECTED TO V-.

Figure 4. 16-Lead LFCSP

Table 1. Low Power Op Amps

Supply	40 V	36 V	12 V to 18 V	6 V		
Single	OP97	OP777	AD8663			
		OP1177				
Dual	OP297	OP727	AD8667	ADA4692-2		
		OP2177				
Quad	OP497	OP747	AD8669	ADA4692-4		
		OP4177				

TABLE OF CONTENTS

7/09—Revision 0: Initial Version

ESD Caution	
Typical Performance Characteristics	
Applications Information	
Input Protection	
Phase Reversal	
Micropower Instrumentation Amplifier	15
Hall Sensor Signal Conditioning	16
Simplified Schematic	17
Outline Dimensions	18
Ordering Guide	19

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—±2.5 V OPERATION

 $\rm V_{SY} = \pm 2.5$ V, $\rm V_{CM} = 0$ V, $\rm T_A = 25^{\circ}C$, unless otherwise specified.

Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			10	125	μV
		-40 °C \leq T _A \leq $+125$ °C			230	μV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		0.5	1.2	μV/°C
Input Bias Current	I _B			30	200	рA
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$			400	рA
Input Offset Current	I _{os}			25	200	рA
		-40 °C $\leq T_A \leq +125$ °C			300	рA
Input Voltage Range		-40 °C $\leq T_A \leq +125$ °C	-1.3		+1.3	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -1.3 \text{ V to } +1.3 \text{ V}$	110	120		dB
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	107			dB
Open-Loop Gain	A_{VO}	$R_L = 10 \text{ k}\Omega, V_O = -2.0 \text{ V to } +2.0 \text{ V}$	118	135		dB
		-40 °C $\leq T_A \leq +125$ °C	109			dB
Input Resistance, Differential Mode	R_{INDM}			1		GΩ
Input Resistance, Common Mode	R_{INCM}			1		ΤΩ
Input Capacitance, Differential Mode	C_{INDM}			5.5		pF
Input Capacitance, Common Mode	C _{INCM}			3		pF
OUTPUT CHARACTERISTICS						
Output Voltage High	V_{OH}	$R_L = 100 \text{ k}\Omega \text{ to ground}$	2.45	2.49		V
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	2.41			V
		$R_L = 10 \text{ k}\Omega \text{ to ground}$	2.40	2.45		V
		-40 °C $\leq T_A \leq +125$ °C	2.36			V
Output Voltage Low	V_{OL}	$R_L = 100 \text{ k}\Omega \text{ to ground}$		-2.49	-2.45	V
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$			-2.41	V
		$R_L = 10 \text{ k}\Omega \text{ to ground}$		-2.45	-2.40	V
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$			-2.36	V
Short-Circuit Current	I _{sc}			±30		mA
Closed-Loop Output Impedance	Z _{OUT}	$f = 1 \text{ kHz}, A_V = 1$		2		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_s = \pm 2.0 \text{ V to } \pm 18.0 \text{ V}$	125	145		dB
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	120			dB
Supply Current/Amplifier	I _{SY}	$I_0 = 0 \text{ mA}$		175	225	μΑ
		-40 °C \leq T _A \leq $+125$ °C			310	μΑ
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF A}_V = 1$		0.28		V/µs
Gain Bandwidth Product	GBP	$R_L = 10 \text{ k}\Omega, C_L = 20 \text{ pF}, A_V = 1$		540		kHz
Phase Margin	Φ_{M}	$R_L = 10 \text{ k}\Omega, C_L = 20 \text{ pF}, A_V = 1$		74		Degrees
NOISE PERFORMANCE						
Voltage Noise	e _n p-p	f = 0.1 Hz to 10 Hz		0.2		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		12		nV/√Hz
Uncorrelated Current Noise Density	i _{n_uncorr}	f = 1 kHz		0.15		pA/√Hz
Correlated Current Noise Density	i _{n_corr}	f = 1 kHz		0.07		pA/√Hz

ELECTRICAL CHARACTERISTICS—±15 V OPERATION

 $V_{SY} = \pm 15$ V, $V_{CM} = 0$ V, $T_A = 25$ °C, unless otherwise specified.

Table 3.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	V _{os}			10	125	μV
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			230	μV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$		0.5	1.2	μV/°C
Input Bias Current	I _B	,		45	200	pА
•		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$			500	pА
Input Offset Current	I _{os}			35	200	pА
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$			500	pА
Input Voltage Range		,	-13.8		+13.8	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -13.8 \text{ V to } +13.8 \text{ V}$	125	135		dB
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	112			dB
Open-Loop Gain	A _{VO}	$R_L = 10 \text{ k}\Omega, V_O = -13.5 \text{ V to } +13.5 \text{ V}$	125	137		dB
	100	$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	120			dB
Input Resistance, Differential Mode	R _{INDM}	^		1		GΩ
Input Resistance, Common Mode	R _{INCM}			1		ΤΩ
Input Capacitance, Differential Mode	C _{INDM}			5.5		рF
Input Capacitance, Common Mode	C _{INCM}			3		pF
OUTPUT CHARACTERISTICS	IIVCIVI					
Output Voltage High	V _{OH}	$R_L = 100 \text{ k}\Omega$ to ground	14.94	14.97		V
, , ,	On	$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	14.84			V
		$R_L = 10 \text{ k}\Omega$ to ground	14.86	14.89		V
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	14.75			V
Output Voltage Low	V _{OL}	$R_L = 100 \text{ k}\Omega$ to ground		-14.97	-14.94	V
, ,	OL.	$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$			-14.92	V
		$R_L = 10 \text{ k}\Omega$ to ground		-14.89	-14.90	V
		-40 °C $\leq T_A \leq +125$ °C			-14.80	V
Short-Circuit Current	I _{sc}	^		±40		mA
Closed-Loop Output Impedance	Z _{OUT}	$f = 1 \text{ kHz, } A_{V} = 1$		1.5		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = \pm 2.0 \text{ V to } \pm 18.0 \text{ V}$	125	145		dB
		-40 °C $\leq T_A \leq +125$ °C	120			dB
Supply Current/Amplifier	I _{SY}	$I_0 = 0 \text{ mA}$		215	250	μΑ
,	31	-40°C ≤ T _A ≤ +125°C			350	μA
DYNAMIC PERFORMANCE		7				<u> </u>
Slew Rate	SR	$R_1 = 10 \text{ k}\Omega$, $C_1 = 100 \text{ pF}$, $A_v = 1$		0.48		V/µs
Gain Bandwidth Product	GBP	$R_1 = 10 \text{ k}\Omega$, $C_1 = 20 \text{ pF}$, $A_V = 1$		560		kHz
Phase Margin	Φ_{M}	$R_L = 10 \text{ k}\Omega, C_L = 20 \text{ pF}, A_V = 1$		75		Degrees
NOISE PERFORMANCE	- 101	L / TL T F / V				
Voltage Noise	e _n p-p	f = 0.1 Hz to 10 Hz		0.2		μV p-p
Voltage Noise Density	e _n p p	f = 1 kHz		11		nV/√Hz
Uncorrelated Current Noise Density	i _{n_uncorr}	f = 1 kHz		0.15		pA/√Hz
Correlated Current Noise Density	in_uncorr i _{n_corr}	f = 1 kHz		0.06		pA/√Hz

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	±18 V
Input Voltage	±V _{SY}
Input Current ¹	±10 mA
Differential Input Voltage ²	±10 V
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range	−65°C to +150°C
Operating Temperature Range	-40°C to +125°C
Junction Temperature Range	−65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

¹The input pins have clamp diodes to the power supply pins. The input current should be limited to 10 mA or less whenever input signals exceed the power supply rail by 0.5 V.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. This was measured using a standard 4-layer board.

Table 3. Thermal Resistance

Package Type	θ_{JA}	θ _{JC}	Unit
8-Lead SOIC_N (R-8)	120	45	°C/W
8-Lead MSOP (RM-8)	142	45	°C/W
14-Lead TSSOP (RU-14)	112	35	°C/W
16-Lead LFCSP (CP-16-17)	55	14	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² Differential input voltage is limited to 10 V or the supply voltage, whichever is less.

TYPICAL PERFORMANCE CHARACTERISTICS

 $T_A = 25$ °C, unless otherwise noted.

Figure 5. Input Offset Voltage Distribution

Figure 6. Input Offset Voltage Drift Distribution

Figure 7. Input Offset Voltage vs. Common-Mode Voltage

Figure 8. Input Offset Voltage Distribution

Figure 9. Input Offset Voltage Drift Distribution

Figure 10. Input Offset Voltage vs. Common-Mode Voltage

Figure 11. Input Bias Current vs. Temperature

Figure 12. Input Bias Current vs. Common-Mode Voltage

Figure 13. Output Voltage to Supply Rail vs. Load Current

Figure 14. Input Bias Current vs. Temperature

Figure 15. Input Bias Current vs. Common-Mode Voltage

Figure 16. Output Voltage to Supply Rail vs. Load Current

Figure 17. Output Voltage to Supply Rail vs. Temperature

Figure 18. Supply Current vs. Supply Voltage

Figure 19. Open-Loop Gain and Phase vs. Frequency

Figure 20. Output Voltage to Supply Rail vs. Temperature

Figure 21. Supply Current vs. Temperature

Figure 22. Open-Loop Gain and Phase vs. Frequency

Figure 23. Closed-Loop Gain vs. Frequency

Figure 24. Output Impedance vs. Frequency

Figure 27. Output Impedance vs. Frequency

Figure 25. CMRR vs. Frequency

Figure 28. CMRR vs. Frequency

Figure 29. PSRR vs. Frequency

Figure 30. Small-Signal Overshoot vs. Load Capacitance

Figure 31. Large-Signal Transient Response

Figure 32. PSRR vs. Frequency

Figure 33. Small-Signal Overshoot vs. Load Capacitance

Figure 34. Large-Signal Transient Response

Figure 35. Small-Signal Transient Response

Figure 36. Negative Overload Recovery

Figure 37. Positive Overload Recovery

Figure 38. Small-Signal Transient Response

Figure 39. Negative Overload Recovery

Figure 40. Positive Overload Recovery

Figure 41. Output Step vs. Settling Time

Figure 42. Voltage Noise Density vs. Frequency

Figure 43. Current Noise Density vs. Frequency

Figure 44. Output Step vs. Settling Time

Figure 45. Voltage Noise Density vs. Frequency

Figure 46. Current Noise Density vs. Frequency

Figure 47. 0.1 Hz to 10 Hz Noise

Figure 48. THD + Noise vs. Amplitude

Figure 49. 0.1 Hz to 10 Hz Noise

Figure 50. THD + Noise vs. Amplitude

Figure 51. THD + Noise vs. Frequency

Figure 52. Channel Separation vs. Frequency

Figure 53. THD + Noise vs. Frequency

APPLICATIONS INFORMATION INPUT PROTECTION

The maximum differential input voltage that can be applied to the AD8622/AD8624 is determined by the internal diodes connected across its inputs and series resistors at each input. These internal diodes and series resistors limit the maximum differential input voltage to $\pm 10~\rm V$ and are needed to prevent base-emitter junction breakdown from occurring in the input stage of the AD8622/AD8624 when very large differential voltages are applied. In addition, the internal resistors limit the currents that flow through the diodes. However, in applications where large differential voltages can be inadvertently applied to the device, large currents may still flow through these diodes. In such a case, external resistors must be placed at both inputs of the op amp to limit the input currents to $\pm 10~\rm mA$ (see Figure 54).

Figure 54. Input Protection

PHASE REVERSAL

An undesired phenomenon, phase reversal (also known as phase inversion) occurs in many op amps when one or both of the inputs are driven beyond the specified input voltage range (IVR), in effect reversing the polarity of the output. In some cases, phase reversal can induce lockups and even cause equipment damage as well as self destruction.

The AD8622/AD8624 amplifiers have been carefully designed to prevent output phase reversal when both inputs are maintained within the specified input voltage range. In addition, even if one or both inputs exceed the input voltage range but remain within the supply rails, the output still does not phase reverse. Figure 55 shows the input/output waveforms of the AD8622/AD8624 configured as a unity-gain buffer with a supply voltage of $\pm 15~\rm V$.

Figure 55. No Phase Reversal

MICROPOWER INSTRUMENTATION AMPLIFIER

The AD8622 is a dual, high precision, rail-to-rail output op amp operating at just 215 μA quiescent current per amplifier. Its ultralow offset, offset drift, and voltage noise, combined with its very low bias current and high common-mode rejection ratio (CMRR), are ideally suited for high accuracy and micropower instrumentation amplifier.

Figure 56 shows the classic 2-op-amp instrumentation amplifier with four resistors using the AD8622. The key to high CMRR for this instrumentation amplifier are resistors that are well matched from both the resistive ratio and the relative drift. For true difference amplification, matching of the resistor ratio is very important, where R3/R4 = R1/R2. Assuming perfectly matched resistors, the gain of the circuit is 1+R2/R1, which is approximately 100. Tighter matching of two op amps in one package, like the AD8622, offers a significant boost in performance over the classical 3-op-amp configuration. Overall, the circuit only requires about 430 μA of supply current.

Figure 56. Micropower Instrumentation Amplifier

HALL SENSOR SIGNAL CONDITIONING

The AD8622/AD8624 is also highly suitable for high accuracy, low power signal conditioning circuits. One such use is in Hall sensor signal conditioning (see Figure 57). The magnetic sensitivity of a Hall element is proportional to the bias voltage applied across it. With 1 V bias voltage, the Hall element consumes about 2.5 mA of supply current and has a sensitivity of 5.5 mV/mT typical. To reduce power consumption, bias voltage must be reduced, but at the risk of lower sensitivity. The only way to achieve higher sensitivity is by introducing a gain using a precision micropower amplifier. The AD8622/AD8624, with all its features, is well suited to amplify the sensitivity of the Hall element.

The ADR121 is a precision micropower 2.5 V voltage reference. A precision voltage reference is required to hold a constant current so that the Hall voltage only depends on the intensity of the mag-

netic field. Using the 4.12k:98.8k resistive divider, the bias voltage of the Hall element is reduced to 100 mV, leading to only 250 μA of power consumption. The 3-op-amp in-amp configuration of the AD8622/AD8624 then increases the sensitivity to 55 mV/mT. The key to high CMRR for this in-amp configuration are resistors that are well matched (where R1/R2 = R3/R4) from both the resistive ratio and relative drift. The resistors are important in determining the performance over manufacturing tolerances, time and temperature. At least 1% or better resistors are recommended. Using the AD8622/AD8624 to amplify the sensor signal can reduce power while also achieving higher sensitivity. The total current consumed is just 1.2 mA, resulting in 21× improvement in sensitivity/power.

1. USE MATCHED RESISTORS FOR IN-AMP.

2. FOR INFORMATION ON C1, C2, AND C3, REFER TO ADR121 DATA SHEET.

Figure 57. Hall Sensor Signal Conditioning

SIMPLIFIED SCHEMATIC

Figure 58. Simplified Schematic

OUTLINE DIMENSIONS

Figure 59. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012-A A CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 60. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8)

Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.

Figure 61. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 4 mm × 4mm Body, Very Very Thin Quad (CP-16-17) Dimensions shown in millimeters

Figure 62. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
AD8622ARMZ	−40°C to +125°C	8-Lead MSOP	RM-8	A1P
AD8622ARMZ-REEL	-40°C to +125°C	8-Lead MSOP	RM-8	A1P
AD8622ARMZ-R7	-40°C to +125°C	8-Lead MSOP	RM-8	A1P
AD8622ARZ	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8622ARZ-REEL	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8622ARZ-REEL7	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8624ACPZ-R2	−40°C to +125°C	16-Lead LFCSP_WQ	CP-16-17	
AD8624ACPZ-R7	-40°C to +125°C	16-Lead LFCSP_WQ	CP-16-17	
AD8624ACPZ-RL	-40°C to +125°C	16-Lead LFCSP_WQ	CP-16-17	
AD8624ARUZ	-40°C to +125°C	14-Lead TSSOP	RU-14	
AD8624ARUZ-RL	−40°C to +125°C	14-Lead TSSOP	RU-14	

¹ Z = RoHS Compliant Part.

AD8622/AD8624
AUOD///AUOD/4

NOTES

