

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Департамент математического и компьютерного моделирования

Курсовой проект «Метод вырожденных ядер для решения уравнения Фредгольма 2-го рода»

по дисциплине «Математическое и компьютерное моделирование»

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Выполнил студент гр. Б9120-01.03.02миопд <u>Агличеев А.О.</u> (ΦUO) (nodnucb) Проверил доцент, к.ф.-м.н. <u>Колобов А.Г.</u> (ΦUO) (nodnucb) « 23 » января 2023 г.

г. Владивосток 2024

Содержание

1	Введение	3			
2	Основная часть	4			
	2.1 Постановка задачи	4			
	2.2 Описание алгоритма решения задачи	5			
	2.3 Описание тестов, использованных для отладки	6			
	2.4 Вычислительные эксперименты	8			
3	Заключение	11			
4	Список использованных источников				
5	Приложения (тексты программ)	12			

1 Введение

Объектом исследования являются численные методы решения задач математической физики, а также программное обеспечение, реализующее эти методы.

Цель работы — ознакомиться с численными методами решения задач математической физики решить предложенные типовые задачи, сформулировать выводы по полученным решениям, отметить достоинства и недостатки методов, сравнить удобство использования и эффективность работы каждой использованной программы, приобрести практические навыки и компетенции, а также опыт самостоятельной профессиональной деятельности, а именно:

- создать алгоритм решения поставленной задачи и реализовать его, протестировать программы;
- освоить теорию вычислительного эксперимента; современных компьютерных технологий;
- приобрести навыки представления итогов проделанной работы в виде отчета, оформленного в соответствии с имеющимися требованиями, с привлечением современных средств редактирования и печати.

Работа над курсовым проектом предполагает выполнение следующих задач:

- дальнейшее углубление теоретических знаний обучающихся и их систематизацию;
- получение и развитие прикладных умений и практических навыков по направлению подготовки;
- овладение методикой решения конкретных задач;
- развитие навыков самостоятельной работы;
- развитие навыков обработки полученных результатов, анализа и осмысления их с учетом имеющихся литературных данных;

- приобретение навыков оформления описаний программного продукта;
- повышение общей и профессиональной эрудиции.

Изученный студентом в ходе работы материал должен способствовать повышению его качества знаний, закреплению полученных навыков и уверенности в выборе путей будущего развития своих профессиональных способностей.

2 Основная часть

2.1 Постановка задачи

Интегральные уравнения – функциональное уравнение, которое содержит интегральное преобразование над искомой функцией.

В достаточно общем случае линейные интегральные уравнения могут быть представлены в виде

$$g(x)y(x) - \lambda \int_{\Omega} K(x,s)y(s)ds = f(x), x \in Q$$

, где K(x,s) - ядро, f(x) - правая часть уравнения с область определения Q, λ - параметр уравнения, y(s) - искомая функция с область определения Ω .

Если Ω постоянная и $g(x) \neq 0$, то интегральное уравнение в этом случае есть уравнение Фредгольма 2-го рода

$$y(x) - \lambda \int_{a}^{b} K(x, s)y(s)ds = f(x)$$
(1)

В данной курсовой работе решение уравнения Фредгольма 2-го рода будем искать с помощью метода вырожденных ядер.

2.2 Описание алгоритма решения задачи

Ядро K(x,s) называется вырожденным, если оно представимо в виде

$$K(x,s) \approx \sum_{i=1}^{n} \alpha_i(x)\beta_i(s)$$

, где функции $\alpha_i(x)$ и $\beta_i(s)$ линейно независимы на отрезке [a,b].

Данный метод основан на том, что для интегрального уравнения с вырожденным ядром может быть получено точное решение. Заменим в 1 ядро K(x,s) вырожденным

$$y(x) - \lambda \int_{a}^{b} \left[\sum_{i=1}^{n} \alpha_{i}(x)\beta_{i}(s) \right] y(s)ds = f(x)$$
 (2)

$$y(x) - \lambda \sum_{i=1}^{n} \alpha_i(x) \int_a^b \beta_i(s) y(s) ds = f(x)$$

Если обозначить

$$\int_{a}^{b} \beta_{i}(s)y(s) = C_{i}$$

, то можно получить следующую форму решения:

$$y(x) = f(x) + \lambda \sum_{i=1}^{n} C_i \alpha_i(x)$$
(3)

Подставляя 3 в 2, получим:

$$C_i - \lambda \sum_{j=1}^n C_j \int_a^b \alpha_j(s) \beta_j(s) ds = \int_a^b \beta_i(s) f(s) ds$$

Если ввести обозначения,

$$A_{ij} = \int_{a}^{b} \alpha_{j}(s)\beta_{j}(s)ds$$

$$f_{ij} = \int_{a}^{b} \beta_i(s) f(s) ds$$

, получим

$$C_i - \lambda \sum_{j=1}^n A_{ij} C_j = f_i$$

Получаем СЛАУ относительно C_i . Решив эту систему получим решение уравнения в виде 3. Если ядро не является вырожденным, то его можно аппроксимировать таковым и, применив данный метод, получить приближенное решение. В данной работе для аппроксимации ядра будет использовать первые 3 члена разложения в ряд Тейлора и аппроксимация интерполяционным многочленом Лагранжа с помощью 3 точек.

2.3 Описание тестов, использованных для отладки

Для тестов было выбрано следующее интегральное уравнения с известным точным решением:

$$y(x) - \int_{0}^{1} x^{2} \cos(xs)y(s)ds = x - x \sin x - \cos x + 1, \ y = x$$

Рис. 1: Графики решения ИУ

x	Точное решение	Лагранж	Тейлор
0	0	0	0
0,1	0,1	0,1	0,1
0,2	0,2	0,2	0,2
0,3	0,3	0,29999	0,3
0,4	0,4	0,4	0,4
0,5	0,5	0,5	0,5
0,6	0,6	0,6	0,60001
0,7	0,7	0,69999	0,70002
0,8	0,8	0,8	0,80004
0,9	0,9	0,9	0,90008
1	1	1	1,0001

2.4 Вычислительные эксперименты

$$y(x) - \int_{0}^{1} \frac{\sin(0.6xs)}{s} y(s)ds = x$$

Аппроксимация ядра многочленом Лагранжа

Рис. 2: Графики решения ИУ

x	Лагранж	Тейлор
0	0	0
0,1	0,14302	0,14257
0,2	0,28566	0,28506
0,3	0,42793	0,42741
0,4	0,56981	0,56952
0,5	0,56982	0,56952
0,6	0,85247	0,85277
0,7	0,99324	0,93375
0,8	1,13362	1,13420
0,9	1,27362	1,27406
1	1,41326	1,41325

$$y(x) - \int_{0}^{1} \frac{xs}{1 + 0.1xs} y(s) ds = e^{-x}$$

Рис. 3: Графики решения ИУ

x	Лагранж	Тейлор
0	1	1
0,1	0,94386	0,94386
0,2	0,89654	0,89653
0,3	0,85718	0,85714
0,4	0,82500	0,82491
0,5	0,79930	0,79913
0,6	0,77942	0,77917
0,7	0,76480	0,76444
0,8	0,75492	0,75444
0,9	0,74930	0,74868
1	0,74751	0,74673

$$y(x) - \int_{0}^{1} (1+s)(e^{0.2xs} - 1)y(s)ds = \frac{1}{x}$$

Рис. 4: Графики решения ИУ

x	Лагранж	Тейлор
0	∞	∞
0,1	10,03433	10,03437
0,2	5,06910	5,06914
0,3	3,42762	3,43766
0,4	2,63991	2,63993
0,5	2,17596	2,17595
0,6	1,87910	1,87906
0,7	1,67791	1,67784
0,8	1,53667	1,53658
0,9	1,43554	1,435456
1	1,362622	1,36255

3 Заключение

В результате работы над курсовым проектом были реализованы метод вырожденных ядер для решения уравнения Фредгольма 2-го рода. Метод были протестирован и отлажены на тестовом примере, а затем применен для вычислительных экспериментов.

Приобрел практические навыки владения:

- современными численными методами решения задач линейной алгебры;
- основами алгоритмизации для численного решения задач линейной алгебры на языке программирования Python 3;
- инструментальными средствами, поддерживающими разработку программного обеспечения для численного решения задач линейной алгебры;

а также навыками представления итогов проделанной работы в виде отчета, оформленного в соответствии с имеющимися требованиями, с привлечением современных средств редактирования и печати.

4 Список использованных источников

- 1. Верлань А.Ф. Интегральные уравнения: методы, алгоритмы, программы/ А.Ф. Верлань, В.С. Сизиков Киев: Наукова думка, 1986 г. 544 с.
- 2. Колобов А.Г. Лабораторные работы по Численным методам / А.Г. Колобов, Л.А. Молчанова Владивосток: Изд-во Дальневост. ун-та, 2007 г. 36 с.

5 Приложения (тексты программ)

```
import math
import numpy as np
import scipy.integrate as integrate
import matplotlib.pyplot as plt
def K(x, s):
    return (1+s)*(np.e**(0.2*x*s)-1)
def f(x):
    return 1/x
def lagrange():
    interval = np.linspace(0, 1, 3)
    betas = []
    alphas = []
    numerators = []
    for i in range(len(interval)):
        denominator = 1
        numerators.append([lambda x: 1])
        for j in range(len(interval)):
            if i == j:
                continue
            numerators[i].append(lambda z, bound_j=j: z-interval[bound_j])
            denominator *= (interval[i] - interval[j])
        alphas.append(lambda p, bound_i=i, bound_den=denominator: (math.prod
   (num(p) for num in numerators[bound_i]) /
```

```
bound_den))
        betas.append(lambda s, bound_i=i: K(interval[bound_i], s))
    return alphas, betas
def solve_system(alphas, betas):
   fs = np.array([integrate.quad(lambda x: beta(x) * f(x), 0, 1)[0] for
   beta in betas])
   A = []
    for beta in betas:
        row = [integrate.quad(lambda x: beta(x) * alpha(x), 0, 1)[0] for
   alpha in alphas]
       A.append(row)
    A = np.array(A)
   A = -1 * A
    for i in range(len(betas)):
        A[i][i] = 1 + A[i][i]
    return np.linalg.solve(A, fs)
def u(x, cs, alphas):
    alpha_values = np.array([alpha(x) for alpha in alphas])
    return f(x) + alpha_values.dot(cs)
```