36-710: Advanced Statistical Theory

Fall 2018

Lecture 21: November 14

Lecturer: Alessandro Rinaldo Scribes: Keith Shannon

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

21.1 Spectral Clustering

Last time, the eigengap condition was:

$$min\left\{q, \frac{p-q}{2}\right\}n$$

however one would expect community detection to be easy if $q \to 0$. In that case, you should compute the two leading eigenvectors of A: $[\hat{v_1}, \hat{v_2}]$ and view this as n points in \mathbb{R}^2 . Then peroform k-means clustering on these n vectors.

See (Lei & Rinaldo 2016) and "Tutorial on Spectral Clustering" by Ulrike von Luxburg.

21.2 Empirical Process Theory

21.2.1 Uniform Law of Large Numbers

Example: $X_1...X_n \sim F_x \ iid$ have empirical cdf:

$$x \mapsto \hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \{x_i \le x\}$$

For each fixed x, $|F_x(x) - \hat{F}_n(x)|$ is easy to bound, as the indicator function is a binomial random variable. However in general, it is hard to bound the supremum $\sup_x |F_x(x) - \hat{F}_n(x)|$. This leads us to:

21.2.2 Empirical Process Theory

If $X_1...X_n \sim P$ iid on $(\mathcal{X}, \mathcal{B})$, and \mathcal{F} is a collection of real-valued function on \mathcal{X} : based on sample $(X_1...X_n)$ construct empirical measure P_n (a random probability measure on $(\mathcal{X}, \mathcal{B})$) such that:

$$\forall A \in \mathcal{B}, P_n(A) \to P(A) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \{ X_i \in A \}$$

21-2 Lecture 21: November 14

For each $f \in \mathscr{F}$, let $Pf = E_P[f(x)]$. So,

$$P_n f = E_{P_n}[f(x)] = \frac{1}{n} \sum_{i=1}^n f(X_i)$$

In Empirical Process Theory, we want to compute usable bounds for:

$$||P - P_n||_{\mathscr{F}} = \sup_{f \in \mathscr{F}} |\frac{1}{n} \sum_{i=1}^n (f(X_i) - E[f(X_i)])|$$

This is a stochastic function over the class of \mathscr{F} . Calculating $E[||P-P_n||_{\mathscr{F}}]$ is hard, see (van der Vaart & Wellner 2001) and (van der Geer 2001). So, the following sections will cover bounding methods.

Examples:

For the example of $(\mathcal{X}, \mathcal{B}) = (\mathbb{R}, \mathcal{B})$:

$$\mathscr{F} = \{(-\infty, z], z \in \mathbb{R}\}.$$
 If $f = (-\infty, z]$, then

$$E_{X \sim F_x}[f(X)] = P(X \le z) = F_x(z)$$

$$P_n f = \frac{1}{n} \sum_{i=1}^n \mathbf{1} \{ X_i \le z \} = \hat{F}_n(z)$$

so,

$$||P - P_n||_{\mathscr{F}} = \sup_{z \in \mathbb{R}} |F_x(z) - \hat{F}_n(z)|$$

For example, if X is a random vector in \mathbb{R}^d , and $||X|| = \sup_{z \in S^{d-1}} z^T X$, let

$$x \in \mathbb{R}^d \mapsto f_z(x) = z^T x$$
, then $\mathscr{F} = \{fz, z \in S^{d-1}\}$.

So we see that sometimes it is natural to express things as the supremum of a stochastic process.

Another example is the operator norm of empirical covariance:

$$||\Sigma - \hat{\Sigma_n}||_{op} = \sup_{z \in S^{d-1}} |z^T (\Sigma - \hat{\Sigma_n}) z|$$

21.2.3 Empirical Risk

Let $\mathscr{P} = \{P_{\theta}, \theta \in \Theta\}$ on $(\mathscr{X}, \mathscr{B})$, and $X_1...X_n \sim P_{\theta^*} \in \mathscr{P}$. This is a classic parametric setup.

Definition: Loss function $\mathscr{L}: \Theta \times \mathscr{X} \to \mathbb{R}_T$

Definition: Risk:

$$R(\theta, \theta^*) = E_{X \sim P_{0*}}[\mathcal{L}(\theta, X)], \ \theta, \theta^* \in \Theta$$

This is the risk of thinking the parameter is θ when it is actually θ^* .

Lecture 21: November 14 21-3

Definition: Empirical Risk:

$$\hat{R}(\theta, \theta^*) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\theta, X_i) = P_n[\mathcal{L}(\theta, X)]$$

Let $\hat{\theta_n} \in argmin_{\theta \in \Theta} \hat{R}(\theta, \theta^*)$

Example: KL Divergence

$$\mathcal{L}(\theta, X) = \ln(\frac{p_{\theta^*}(x)}{p_{\theta}(x)}), \quad p_{\theta} = \frac{dP_{\theta}}{d\mu}$$

$$R(\theta, \theta^*) = KL(P_{\theta^*}, P_{\theta}), \quad E_{P_{\theta^*}}[\ln(\frac{dP_{\theta^*}}{dP_{\theta}}(x))]$$

 p_{θ} is the density of P_{θ} . If $\hat{\theta_n}$ is a minimizer of empirical risk $\hat{R}(\theta, \theta^*)$, then $\hat{\theta_n}$ is an MLE of θ^* .

Aside: Usually when dealing with the supremum of an empirical process $||P - P_n||_{\mathscr{F}}$, it concentrates well around the expected value.

Example : Classification problem to ± 1

$$X_i = (Y_i, Z_i) \in \{-1, 1\} \times \mathbb{R}^d, i = 1...d.$$

Goal: Estimate $f: \mathbb{R}^d \mapsto \{-1, 1\}$ such that $P(f(Z) \neq Y)$ is smallest. That is, $(Z, Y) \sim P_{f^*}$, where f^* is the regression function.

In that case,

$$\mathscr{L}(f,(Z,Y)) = \begin{cases} 1, & f(Z) \neq Y \\ 0, & f(Z) = Y \end{cases}$$

 f^* is the Bayes classifier:

$$f^*(Z) = \begin{cases} 1, \ \psi(Z) \ge \frac{1}{2} \\ -1, \ \psi(Z) < \frac{1}{2} \end{cases}$$

Empirical Risk of a classifier f is:

$$\hat{R}(f, f^*) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \{ f(Z_i) \neq Y_i \}$$

21.2.4 Excess Risk

Let $\hat{\theta_n}$ be the empirical risk minimizer:

$$R(\hat{\theta_n}, \theta^*) = E_{X \sim P_{\theta^*}} [\mathcal{L}(\hat{\theta_n}, X)], \quad X \perp \hat{\theta_n}$$

Definition: Excess Risk is:

$$ER(\hat{\theta_n}, \theta^*) = R(\hat{\theta_n}, \theta^*) - inf_{\theta \in \Theta}R(\theta, \theta^*)$$

The inf can be 0 if $\theta^* \in \Theta$.

21-4 Lecture 21: November 14

The Excess Risk is the difference between risk at the MLE and the smallest possible risk given class Θ . Bounding this will require using a supremum. Letting $\theta_0 = argmin_{\theta \in \Theta} R(\theta, \theta^*)$:

$$ER(\hat{\theta_n}, \theta^*) = R(\hat{\theta_n}, \theta^*) - \hat{R}(\hat{\theta_n}, \theta^*) + \hat{R}(\hat{\theta_n}, \theta^*) - \hat{R}(\theta_0, \theta_x) + \hat{R}(\theta_0, \theta_x) - R(\theta_0, \theta_x)$$

Grouping as follows:

$$T_{1} = R(\hat{\theta_{n}}, \theta^{*}) - \hat{R}(\hat{\theta_{n}}, \theta^{*})$$

$$T_{2} = \hat{R}(\hat{\theta_{n}}, \theta^{*}) - \hat{R}(\theta_{0}, \theta_{x})$$

$$T_{3} = \hat{R}(\theta_{0}, \theta_{x}) - R(\theta_{0}, \theta_{x})$$

$$ER(\hat{\theta_{n}}, \theta^{*}) = T_{1} + T_{2} + T_{3}$$
(21.1)

We can bound the terms separately:

- $T_2 \le 0$
- \bullet The second term in T_3 is the expected value of the first, so we can use LLN
- T_1 is hard to bound. We need to sup out the dependence between \hat{R} and $\hat{\theta}$.

$$T_1 \le \sup_{\theta \in \Theta} \left| \frac{1}{n} \sum_{i=1}^n (\mathcal{L}(\theta, X_i) - E[\mathcal{L}(\theta, X_i)] \right| = ||P_n - P||_{\mathscr{F}}$$

where \mathscr{F} is a class of form $\mathscr{F}=\{\mathscr{L}(\theta,\cdot),\theta\in\Theta\},$ i.e. $x\mapsto\mathscr{L}(\theta,x).$

For example, a discretization argument is a method of suping out.

21.2.5 ULLN: Rademacher Complexities

 \mathscr{F} is our target function class. $X_1^n=(x_1...x_n)\in \mathscr{X}^n.$

$$\mathscr{F}(X_1^n) = \{(f(x_1)...f(x_n)) \in \mathbb{R}^n, f \in \mathscr{F}\} \subset \mathbb{R}^n$$

So the function class specifies a subset of \mathbb{R}^n .

Definition: Empirical Rademacher Complexity of $\mathscr{F}(X_1^n)$ is:

$$R_n(\mathscr{F}(X_1^n)) = E_{\epsilon}[\sup_{f \in \mathscr{F}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i f(x_i) \right|]$$

where $\epsilon = (\epsilon_1...\epsilon_n) \sim \text{Rademacher}, \ \epsilon_i = \pm 1 \ w.p.\frac{1}{2}$

This is the average maximal "correlation" of vectors in $\mathcal{F}(x_1^n)$ with pure noise.

Definition: Rademacher Complexity of \mathscr{F} is:

$$R_n(\mathscr{F}) = E_{X,\epsilon}[\sup_{f \in \mathscr{F}} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i f(x_i) \right|], \quad X = (x_1...x_n) \perp \epsilon = (\epsilon_1...\epsilon_n)$$

This is a measure of how well \mathscr{F} can fit pure noise. If \mathscr{F} is large it will fit noise better, so this measures the complexity of the class.

The main point is that as $n \to \infty$, $R_n(\mathscr{F}) \to 0$ iff $||P_n - P||_{\mathscr{F}} \to 0$ in probability. Also, the rates at which they go to 0 will depend on each other.