Министерство науки и высшего образования Российской Федерации ФГАОУ ВО «Севастопольский государственный университет»

Институт информационных технологий и управления в технических системах

Геоинформационные системы

Лабораторная работа №3 (часть 2)

для студентов всех форм обучения направления подготовки 09.03.03 «Прикладная информатика» профиль: «Геоинформационные технологии»

Севастополь **2020**

Лабораторная работа №3

Исследование технологических процессов создания проектов QuantumGIS (часть 2)

Процедура геопривязки

Цель:

- получение практических навыков работы в геоинформационной системе QuantumGIS;
- изучение технологических процессов создания карт средствами QuantumGIS.

Время: 6 часов

Лабораторное оборудование: персональные компьютеры, выход в сеть Internet, геоинформационная система QuantumGIS.

Краткие теоретические сведения

Растровые данные, как правило, представляют собой оцифрованные (отсканированные или полученные при помощи дигитайзеров) аналоговые материалы (бумажные копии карт, снимки и т.д.).

Естественно, что такие файлы данных не несут в себе информации в машинном представлении о реальном географическом местоположении объектов и требуют проведение специальной процедуры привязки объектов к реальным координатам – геопривязки.

Для получения данных (не требующих проведения процедуры геоприявязки), которые могут быть использованы в качестве подложки для векторизации можно обратиться к картографическому сервису OpenStreetMap или ему подобным, где генерируются ежедневно обновляемые наборы слоев по странам бывшего СССР и регионам РФ: http://download.geofabrik.de/russia.html, рис.

| Image: Accordance | Common |

Рис.3.1. Наборы слоев по регионам РФ на картографическом сервисе OpenStreetMap.

Следует отметить, что данные наборы слоев доступны в виде shape-файлов, которые не являются растровым форматом и, как правило, данный прием используется для редактирования уже существующих наборов данных, однако в некоторых случаях, возможно их использование в качестве подложки для векторизации интересующих областей и создания собственных слоев данных.

Данные наборы можно загрузить и работать с ними в QGIS в режиме отсутствия подключения к Интернету или же, используя подключение к Интернету, осуществлять загрузку непосредственно с сервиса.

Порядок выполнения лабораторной работы №3 (2)

1. Осуществить выгрузку данных по Крымскому федеральному округу из картографического сервиса OpenStreetMap, рис.3.2. http://download.geofabrik.de/russia/crimean-fed-district.html. Изучить состав набора и форматы файлов данных.

Рис.3.2. Данные для выгрузки по Крымскому федеральному округу из картографического сервиса OpenStreetMap.

2. Скачать топографические карты масштаба или воспользоваться файлом, содержащемся в папке «Учебный набор данных

Возможен вариант непосредственного доступа к данным картографического сервиса OpenStreetMap из QGis необходимо скачать и установить дополнительные модули, для этого: активировать *Модули* • *Управление модулями*, рис.3.3. В разделе «Не установленные модули» выбрать **OpenLayers Plugin**, рис.3.4 и установить его.

Рис.3.3. Вызов Диалогового окна установка дополнительных модулей в QGIS.

Рис.3.4. Установка дополнительных модулей в QGIS.

После установки модуля, если имеется доступ в Интернет, возможна загрузка данных непосредственно с картографического сервиса OpenStreetMap, рис.3.5,3.6.

Рис.3.5. Меню загрузки данных с картографических сервисов.

Рис.3.6. Загрузка данных с картографического сервиса OpenStreetMap.

3. Осуществить загрузку и геопривязку растровой топографической карты (согласно варианту — *для одного из двух наборов данных а или б*). Для облегчения поиска требуемого листа карты воспользоваться ресурсами: Карты всего мира: http://loadmap.net/ или Топокарты Генштаба: http://loadmap.net/.

Модуль географической привязки данных называется *Привязка растров* (GDAL) (Georeferencer GDAL) и запускается через *Растр • Привязка растров* (Plugins\Georeferencer), рис.3.7. Если этого модуля в меню Модули нет, необходимо сначала подключить его через *Модули • Управление модулями* (Plugins\Plugin manager).

Рис.3.7. Вызов модуля привязки растра.

В диалоговом окне необходимо вызвать функцию открытия привязываемого растрового изображения, рис.3.8.

Рис.3.8. Модуль привязки растра и вызываемое диалоговое окно задания параметров растра.

Если имеются координаты X и Y (формате DMS (градусы, минуты, секунды), DD (десятичная запись) или спроектированные координаты (mmmm.mm), соответствующие выбранной точке на изображении, возможно применение двух альтернативных процедур:

– координаты подписаны на самом растровом изображении – в таком случае ввод осуществляется вручную, рис.3.9.

Рис.3.9. Ввод координат вручную.

– использование уже привязанных слоёв (векторных или растровых), содержащих те же самые объекты, которые есть на привязываемом изображении, а также проекции, подходящей для привязываемого изображения. В таком случае, можно ввести координаты в набор опорных данных, загруженных в QGIS.

Стандартная процедура привязки растровых изображений подразумевает выбор множественных точек на растре, обозначение их координат или выбор соответствующего типа преобразования. Исходя из введённых параметров и данных, модуль вычислит параметры файла привязки.

Примечание: чем больше координат будет введено, тем точнее будет результат.

После того, как контрольные точки добавлены на растровое изображение, необходимо определить параметры преобразования для привязки.

В зависимости от того, как много контрольных точек отмечено, можно использовать различные алгоритмы преобразования. Выбор необходимого алгоритма также зависит от типа и качества входных данных, а также величины геометрического искажения, вносимого в конечный результирующий файл.

На текущий момент доступны следующие алгоритмы:

– линейный алгоритм применяется для создания файла привязки; его отличие от других алгоритмов заключается в том, что он фактически не изменяет сам растр. Этот алгоритм, скорее всего, не будет достаточным в случае, если ведется работа с отсканированным материалом, рис.3.10.

Рис.3.10. Задание параметров преобразования для привязки.

- трансформация Хельмерта совершает простые трансформации с изменением масштаба и вращением;
- многокомпонентные алгоритмы 1-3 порядка являются наиболее широко используемыми алгоритмами привязки и каждый отличается друг от друга степенью искажения, внесенного для того, чтобы соответствовать исходнику, и целевыми контрольными точками. Самый применяемый многокомпонентный алгоритм это трансформация второго порядка, которая допускает определённое искривление. Преобразование первого порядка (афинное) сохраняет коллинеарность и допускает только вращение, перевод и масштабирование;

- алгоритм тонкостенного сплайна более современный метод привязки, дающий возможность ввода в данные местных деформаций. Данный алгоритм очень полезен, когда необходимо привязать растры с низким качеством изображения;
 - проективная трансформация линейное вращение и сдвиг растра;

Тип пересчёта будет, зависеть от исходных данных и конкретной цели операции. Если нет необходимости менять совокупную информацию изображения, то подойдет метод «ближайший сосед», тогда как «кубический» пересчет приведет к более сглаженному результату.

Всего доступно пять различных методов пересчета:

- «ближайший сосед»;
- линейный;
- кубический;
- кубический сплайн;
- Ланцоша.

Для получения привязанного растра также потребуется задать несколько параметров:

- создать файл привязки становится доступным, если используется линейная трансформация. Это означает, что растровое изображение фактически изменяться не будет. В таком случае, поле Целевой растр не активируется потому, что будет создан новый файл привязки. Для всех остальных типов трансформации нужно указать Целевой растр. По умолчанию, в каталоге с исходным растровым изображением будет создан новый файл ([имя файла]_modified);
 - определение Целевой системы координат для привязанного растра;
- создать PDF-карту а также Создать PDF-отчет отчет содержит информацию об использованных параметрах трансформации, изображение невязки и список всех контрольных точек и их среднеквадратических ошибок;
- задать целевое разрешение и определить пиксельное разрешение для выходного растра – по умолчанию разрешение по горизонтали и вертикали равно 1.
- использовать 0 для прозрачности при необходимости может активироваться, если пиксели со значение 0 должны быть показаны прозрачными.
- открыть результат в .qg загружает выходной растр автоматически в QGIS, когда трансформация завершена.

Выбор пункта *Параметры* • *Свойства растра* в меню вызовет диалог свойств привязываемого слоя, рис.3.10, задание которых создаст файл привязки.

- 4. Самостоятельно осуществить загрузку данных OSM региона (по варианту) и осуществить геопривязку растровой топографической карты (согласно варианту ∂ ля одного из набора данных а или δ), используя координаты с загруженных данных OSM.
 - 5. Исследовать параметры трансформации.

Варианты заданий к лабораторной работе №3 (2)

№	варианты задании к лаооратор	6		
1.	Алтайский край	Новосибирская область		
2.	Белгородская область	Кировская область		
3.	Владимирская область	Ростовская область		
4.	Воронежская область			
5.		Тульская область		
6.	Иркутская область	Саратовская область		
	Костромская область	Магаданская область		
7.	Республика Татарстан	Псковская область		
8.	Красноярский край	Тверская область		
9.	Мурманская область	Республика Бурятия		
10.	Москва и Московская область	Ямало-Ненецкий АО		
11.	Нижегородская область	Смоленская область		
12.	Оренбургская область	Калужская область		
13.	Приморский край	Республика Коми		
14.	Республика Карелия	Тамбовская область		
15.	Рязанская область	Тюменская область		
16.	Курская область	Орловская область		
17.	Сахалинская область	Калужская область		
18.	Ханты-Мансийкий АО	Санкт-Петербург и		
		Ленинградская область		
19.	Челябинская область	Республика Хакасия		
20.	Ульяновская область	Воронежская область		
21.	Орловская область	Республика Марий Эл		
22.	Пензенская область	Ненецкий АО		
23.	Республика Мордовия	Кемеровская область		
24.	Омская область	Новгородская область		
25.	Вологодская область	Краснодарский край и		
		Республика Адыгея		
26.	Липецкая область	Камчатский край		
27.	Мурманская область	Калининградская область		
28.	Белгородская область	Волгоградская область		
29.	Еврейская АО	Брянская область		
30.	Курганская область	Архангельская область		
L	· · · · · · · · · · · · · · · · · · ·	1 .		

Содержание отчета по лабораторной работе №3

В отчете представляются:

- описание форматов файлов данных, составляющих учебные наборы данных;
 - результаты всех этапов привязки растровой карты.

По результатам работы необходимо создать презентацию, содержащую все промежуточные этапы разработки макета карты.

Литература и информационные ресурсы к лабораторной работе №3

- 1. Руководство пользователя к геоинформационной системе QuantumGIS. Методическое пособие к лабораторной работе №2.
- 2. OpenStreetMap Data Extracts. [Электронный ресурс]. Режим доступа: http://download.geofabrik.de/.
- 3. Crimean Federal District. [Электронный ресурс]. Режим доступа: http://download.geofabrik.de/russia/crimean-fed-district.html.
- 4. Цифровые классификаторы карт [Электронный ресурс]. Режим доступа: http://www.gisinfo.ru/classifiers/classifiers.htm#emapbase.
- 5. Спецификация данных для обмена цифровыми топографическими картами в формате GML. [Электронный ресурс]. Режим доступа: http://gistoolkit.ru/download/doc/specgml4topo.pdf.
- 6. Классификатор слоев, семантических характеристик и объектов для отображения на картах, входящих в состав документов территориального планирования РФ. [Электронный ресурс]. Режим доступа: http://gistoolkit.ru/download/classifiers/terrplandoc.pdf.
- 7. Топографические карты советского Генштаба. [Электронный ресурс]. Режим доступа: http://www.varvar.ru/.
 - 8. Карты мира. [Электронный ресурс]. Режим доступа: http://loadmap.net/
- 9. Карандеев А.Ю., Михайлов С. А. Географические информационные системы. Практикум. Базовый курс: Учеб. пособие для ВУЗов / А.Ю. Карандеев, С. А. Михайлов. Липецк, 104 с.
- 10. NextGIS QGIS открытые геотехнологии. [Электронный ресурс]. Режим доступа: http://nextgis.ru/nextgis-qgis/.
- 11. QGIS The Leading Open Source Desktop GIS. Загрузки QGIS [Электронный ресурс]. Режим доступа: http://www.qgis.org/ru/site/forusers/download.html.
- 12. GIS-Lab [Электронный ресурс]. Установка QGIS/GRASS с помощью OSGeo4W. Режим доступа: http://gis-lab.info/qa/qgis-osgeo4w.html
- 13. QGIS The Leading Open Source Desktop GIS. Документация QGIS. [Электронный ресурс]. Режим доступа: http://www.qgis.org/ru/docs/index.html.
- 14. Документация QGIS 2.8 Руководство пользователя QGIS. [Электронный ресурс]. Режим доступа: http://docs.qgis.org/2.8/ru/docs/user_manual/.
- 15. Учебник Quantum GIS. [Электронный ресурс]. Режим доступа: http://wiki.gis-lab.ru/w/Учебник_Quantum_GIS.

Контрольные вопросы

- 1. Что такое геопривязка.
- 2. Перечислить и раскрыть суть алгоритмов преобразования для привязки.
- 3. Перечислить и раскрыть суть различных типов пересчёта.

Требования к содержанию и оформлению отчетов

Отчеты по лабораторным работам оформляются согласно правилам оформления принятыми на кафедре, ГОСТам и ЕСКД.

Основные правила по оформлению отчетной документации:

Параметры страницы: A4 (21×29,7), ориентация – книжная (допускается использовать альбомную ориентацию страницы для выполнения схем и таблиц).

Поля: левое -2.5, верхнее -1.5, нижнее -1.5, правое -1.

Нумерация страницы — внизу, справа. Нумерация ведется с титульного листа, номер на титульном листе не ставиться.

Шрифт Times New Roman, кегль 14, интервал – одинарный.

Заголовки разделов: абзацный отступ -0, выравнивание по центру, шрифт - жирный, нумерация - арабскими цифрами, точка в конце названия раздела не ставиться.

Заголовки подразделов (допускается три уровня, например 1.1., 1.1.1.): абзацный отступ $-1.25 \div 1.5$, выравнивание по ширине, шрифт - жирный, точка в конце названия подраздела не ставиться.

Основной текст: абзацный отступ $-1.25 \div 1.5$, выравнивание по ширине, шрифт - обычный.

Нумерация рисунков и таблиц — сквозная внутри раздела (например, в разделе 1 — рис. 1.1., рис. 11.2 и т.д., или табл. 1.1., табл. 1.2. и т.д.).

Рисунки помещаются после упоминания их в тексте и имеют подпись, размещаемую под рисунком без абзацного отступа и имеющую выравнивание по центру и точку на конце названия (например, Рис.1.1. Название.).

Таблицы размещаются после ссылки на них в тексте. Название приводится над таблицей, без абзацного отступа с выравниванием по центру, без точки на конце названия (например (Таблица 2.2. Название).

Допускается выносить рисунки и таблицы в Приложения. В этом случае ссылка должна содержать номер приложения (например: рис.1.1. Приложения 1 или табл.А1 Приложения A).

Основная часть должна содержать ссылки на используемую литературу или информационные источники, список которых приводится после раздела Выводы и перед Приложениями. Ссылка заключается в квадратные скобки (например – [1], [5,7], [3–6].

Приложения нумеруются арабскими цифрами (Приложение 1, Приложение 2) или обозначаются русскими заглавными буквами в порядке их следования (Приложение А, Приложение Б). Слово Приложение....выравнивается по правому краю и имеет жирный шрифт. Название приложение располагается на следующей строке, без абзацного отступа, выравнивание по центру, шрифт – жирный.

По завершению изучения курса у студента должен быть сформировать набор отчетов (Приложение №1), сведенных в единый документ и имеющий единый титульный лист (Приложение №2), на котором отражаются результаты прохождения этапов изучения дисциплины.

Каждый раздел этого документа является отчетом по выполнению соответствующей лабораторной работы (обязательные разделы и правила выполнения отчетов представлены в Приложении 1).

Сформированный документ, с отметками о выполнении всех лабораторных работ обязателен для представления на итоговом контроле и является подтверждением о допуске к итоговому контролю.

К отчету прилагается папка с файлами — результатами выполнения лабораторной работы (данная папка должна так же находится на сетевом диске в папке проектов изучаемой дисциплины), название папки ГИСиТ фамилия.

Организация защиты и критерии оценивания выполнения лабораторных работ

К защите представляется отчет, включающий в себя результаты выполнения лабораторной работы, выполненный согласно правилам и единый титульный лист, на котором отмечаются результаты выполнения заданий.

К отчетам прилагается электронный носитель, содержащий папки с файлами – результатами выполнения работы, файлами отчетов и презентациями (если требуется в задании) созданных в ходе выполнения лабораторных работ.

На проверку теоретической подготовки, проводимой по контрольным вопросам, отводиться 5–6 минут.

Степень усвоения теоретического материала оценивается по следующим критериям:

• оценка «отлично» выставляется, если:

- последовательно, четко, связно, обоснованно и безошибочно с использованием принятой терминологии изложен учебный материал, выделены главные положения, ответ подтвержден конкретными примерами, фактами;
- самостоятельно и аргументировано сделан анализ, обобщение, выводы, установлены межпредметные (на основе ранее приобретенных знаний) и внутрипредметные связи, творчески применены полученные знания в незнакомой ситуации;
- самостоятельно и рационально используются справочные материалы, учебники, дополнительная литература, первоисточники; применяется систему условных обозначений при ведении записей, сопровождающих ответ; используются для доказательства выводы из наблюдений и опытов, ответ подтверждается конкретными примерами;
- допускает не более одного недочета, который легко исправляется по требованию преподавателя.

• оценка «хорошо» ставится, если:

дан полный и правильный ответ на основе изученных теорий; допущены незначительные ошибки и недочеты при воспроизведении изученного материала, определения понятий, неточности при использовании научных терминов или в выводах и обобщениях из наблюдений и опытов; материал излагает в определенной логической последовательности;

- самостоятельно выделены главные положения в изученном материале; на основании фактов и примеров проведено обобщение, сделаны выводы, установлены внутрипредметные связи.
- допущены одна негрубая ошибку или не более двух недочетов, которые исправлены самостоятельно при требовании или при небольшой помощи преподавателя; в основном усвоил учебный материал.

• оценка «удовлетворительно» ставится, если:

- усвоено основное содержание учебного материала, но имеются пробелы в усвоении материала, не препятствующие дальнейшему изучению; материал излагает несистематизированно, фрагментарно, не всегда последовательно;
- показана недостаточная сформированность отдельных знаний и умений;
 выводы и обобщения аргументируются слабо, в них допускаются ошибки;
- допущены ошибки и неточности в использовании научной терминологии, даются недостаточно четкие определения понятий; в качестве доказательства не используются выводы и обобщения из наблюдений, фактов, опытов или допущены ошибки при их изложении;
- обнаруживается недостаточное понимание отдельных положений при воспроизведении текста учебника (записей, первоисточников) или неполные ответы на вопросы преподавателя, с допущением одной – двух грубых ошибок.

• оценка «неудовлетворительно» ставится, если:

- не усвоено и не раскрыто основное содержание материала; не сделаны выводы и обобщения;
- не показано знание и понимание значительной или основной части изученного материала в пределах поставленных вопросов или показаны слабо сформированные и неполные знания и неумение применять их к решению конкретных вопросов и задач по образцу;
- при ответе (на один вопрос) допускается более двух грубых ошибок, которые не могут быть исправлены даже при помощи преподавателя;
- не даются ответы ни на один их поставленных вопросов.

Оценка выполнения лабораторных работ проводится по следующим критериям

• оценка «отлично» ставится, если студент:

- творчески планирует выполнение работы;
- самостоятельно и полностью использует знания программного материала;
- правильно и аккуратно выполняет задание;
- умеет пользоваться литературой и различными информационными источниками;
- выполнил работу без ошибок и недочетов или допустил не более одного недочета

• оценка «хорошо» ставится, если студент:

- правильно планирует выполнение работы;

- самостоятельно использует знания программного материала;
- в основном правильно и аккуратно выполняет задание;
- умеет пользоваться литературой и различными информационными источниками;
- выполнил работу полностью, но допустил в ней: не более одной негрубой ошибки и одного недочета или не более двух недочетов.

• оценка «удовлетворительно» ставится, если студент:

- допускает ошибки при планировании выполнения работы;
- не может самостоятельно использовать значительную часть знаний программного материала;
- допускает ошибки и неаккуратно выполняет задание;
- затрудняется самостоятельно использовать литературу и информационные источники;
- правильно выполнил не менее половины работы или допустил:
 - не более двух грубых ошибок или не более одной грубой и одной негрубой ошибки и одного недочета;
 - не более двух— трех негрубых ошибок или одной негрубой ошибки и трех недочетов;
 - при отсутствии ошибок, но при наличии четырех-пяти недочетов.

• оценка «неудовлетворительно» ставится, если студент:

- не может правильно спланировать выполнение работы;
- не может использовать знания программного материала;
- допускает грубые ошибки и неаккуратно выполняет задание;
- не может самостоятельно использовать литературу и информационные источники;
- допустил число ошибок недочетов, превышающее норму, при которой может быть выставлена оценка «3»;
- если правильно выполнил менее половины работы;
- не приступил к выполнению работы;
- правильно выполнил не более 10% всех заданий.

Приложение 1

Образец оформления и содержания отчета по лабораторной работе

Лабораторная работа №					
Тема:					
Цель:					
1. Краткие теоретические сведения по изучаемой теме					
2. Отчет о выполнении задания (согласно плану, представленному и методических указаниях)					
 Выводы					
 Список литературы и информационных источников					
 Приложения					

Приложение 2

Образец единого титульного листа к отчетам по лабораторным работам

Министерство науки и высшего образования Российской Федерации ФГАОУ ВО «Севастопольский государственный университет»

Институт информационных технологий и управления в технических системах

Кафедра «Информационные системы»

Сводный отчет по лабораторному практикуму по дисциплине «Геоинформационные системы»

No	0	Поличи			
п/п	Теория	Лз	Итог	Дата	Подпись
1					
2					
3					
4					
зачет					

Выполнил: студент(ка) группы	
ФИО	

Принял: должность ФИО