Using Structured Events to Predict Stock Price Movement: An Empirical Investigation

Xiao Ding[†], Yue Zhang[‡], Ting Liu[†], Junwen Duan[†]

†Research Center for Social Computing and Information Retrieval

Harbin Institute of Technology, China

{xding, tliu, jwduan}@ir.hit.edu.cn

[‡]Singapore University of Technology and Design

yue_zhang@sutd.edu.sg

Summary

- What
 - News events predict stock trend
- Why

- Apple has sued Samsung Electronics for copying 'the look and feel' of its iPad tablet and iPhone smartphone.
- {"Apple", "sued", "Samsung", "Electronics", "copying", ...}
- Previous works model events based on shallow features
 - Bag-of-words, named entities and noun phrases
- How
 - Model events based on structured entity-relation information
 - Open Information Extraction
 - Use deep neural networks to predict

Method

- Event representation
 - E = (O1, P, O2, T)
 - Actor O1 performs action P on object O2 at timestamp T
- Event extraction
 - Event phrase extraction
 - Syntactic constraint
 - Lexical constraint
 - Argument extraction
- Event generalization
 - WordNet
 - VerbNet

Sep 3, 2013 - Microsoft agrees to buy Nokia's mobile phone business for \$7.2 billion.

=>

(Actor = Microsoft, Action = buy, Object = Nokia's mobile phone business, Time = Sep 3, 2013)

Instant view: Private sector adds 114,000 jobs in July: ADP.

=>

(Private sector, adds, 114,000 jobs)

(Private sector, adds, 114,000 jobs)

=>

(private sector, multiply_class, 114,000 job)

Method (Cont.)

Deep Neural Network Model

$$y_{cls} = f(net_{cls}) = \sigma(\mathbf{w_{cls}} \cdot \mathbf{y_2})$$
(1)

$$y_{2k} = \sigma(\mathbf{w_{2k}} \cdot \mathbf{y_1}) \quad (k \in [1, |y_2|])$$

$$y_{1j} = \sigma(\mathbf{w_{1j}} \cdot \Phi(d_n)) \quad (j \in [1, |y_1|])$$
(2)

(Microsoft, buy, Nokia's mobile phone business)

=>

(#arg1=Microsoft, #action=get class, #arg2=Nokia's mobile phone business, #arg1 action=Microsoft get class, #action arg2=get class Nokia's mobile phone business, #arg1 action arg2=Microsoft get class Nokia's mobile phone business)

Huang

Experiments

• Data

- Reuters and Bloomberg
- S&P 500, 15 individual shares
- Metrics
 - Accuracy
 - MCC

$$MCC =$$

$$\frac{TP \cdot TN - FP \cdot FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$
(3)

Figure 3: Overall development experiment results

		1 day	1 week	1 month
1 layer	Accuracy	58.94%	57.73%	55.76%
	MCC	0.1249	0.0916	0.0731
2 layers	Accuracy	59.60%	57.73%	56.19%
	MCC	0.1683	0.1215	0.0875

Table 2: Different numbers of hidden layers

	title	content	content +	bloomberg
			title	title + title
Acc	59.60%	54.65%	56.83%	59.64%
MCC	0.1683	0.0627	0.0852	0.1758

Table 3: Different amounts of data

Google Inc.								
Company News		Sector	News	All News				
Acc	MCC	Acc	MCC	Acc	MCC			
67.86%	0.4642	61.17%	0.2301	55.70%	0.1135			
	Boeing Company							
Compan	Company News		Sector News		All News			
Acc	MCC	Acc	MCC	Acc	MCC			
68.75%	0.4339	57.14%	0.1585	56.04%	0.1605			
Wal-Mart Stores								
Company News		Sector News		All News				
Acc	MCC	Acc	MCC	Acc	MCC			
70.45%	0.4679	62.03%	0.2703	56.04%	0.1605			

Table 4: Individual stock prediction results

Figure 4: Individual stock prediction experiment results

	S&P 500 Index Prediction		Individual Stock Prediction					
			Google Inc.		Boeing Company		Wal-Mart Stores	
	Accuracy	MCC	Accuracy	MCC	Accuracy	MCC	Accuracy	MCC
dev	59.60%	0.1683	67.86%	0.4642	68.75%	0.4339	70.45%	0.4679
test	58.94%	0.1649	66.97%	0.4435	68.03%	0.4018	69.87%	0.4456

Table 5: Final experimental results on the test dataset

Deep Learning for Event-Driven Stock Prediction

Xiao Ding^{†*}, Yue Zhang[‡], Ting Liu[†], Junwen Duan[†]

[†]Research Center for Social Computing and Information Retrieval

Harbin Institute of Technology, China

{xding, tliu, jwduan}@ir.hit.edu.cn

[‡]Singapore University of Technology and Design

yue_zhang@sutd.edu.sg

Summary

- What
 - Use news events and deep learning to predict stock trend
- Why
 - Structured events are sparse
 - Diminishing effects of events
- How
 - Make event representations more dense
 - Neural tensor network
 - Combine short-term and long-term effects
 - Deep convolutional neural network

(Actor = Nvidia fourth quarter results, Action = miss, Object = views) (Actor = Delta profit, Action = didn't reach, Object = estimates)

Method

- Event representation and extraction
- Event embedding

$$R_1 = f(O_1^T T_1^{[1:k]} P + W \begin{bmatrix} O_1 \\ P \end{bmatrix} + b)$$

Algorithm 1: Event Embedding Training Process

Input: $\mathcal{E} = (E_1, E_2, \cdots, E_n)$ a set of event tuples; the model EELM

Output: updated model EELM'

1 random replace the event argument and got the corrupted event tuple

```
2 \mathcal{E}^r \leftarrow (E_1^r, E_2^r, \cdots, E_n^r)

3 while \mathcal{E} \neq [\ ] do

4 | loss \leftarrow max(0, 1 - f(E_i) + f(E_i^r) + \lambda \|\Phi\|_2^2

5 | if loss > 0 then

6 | Update(\Phi)

7 | else

8 | \mathcal{E} \leftarrow \mathcal{E}/\{E_i\}

9 return EELM
```

Method (Cont.)

Deep Prediction Model

$$Q_j = W_1^T U_{j-l+1:j}$$

$$V_j = \max Q(j, \cdot),$$

$$V^C = (V^l, \bar{V}^m, V^s)$$

Experiment

- Data and Metrics
- Comparisons

- **WB-NN**: word embeddings input and standard neural network prediction model [Ding *et al.*, 2014];
- **WB-CNN**: word embeddings input and convolutional neural network prediction model (this paper);
- **E-CNN**: structured events tuple [Ding *et al.*, 2014] input and convolutional neural network prediction model (this paper);
- **EB-NN**: event embeddings input (this paper) and standard neural network prediction model [Ding *et al.*, 2014];
- **EB-CNN**: event embeddings input and convolutional neural network prediction model (this paper).

	Acc	MCC
Luss and d'Aspremont [2012]	56.42%	0.0711
Ding et al. [2014] (E-NN)	58.94%	0.1649
WB-NN	60.25%	0.1958
WB-CNN	61.73%	0.2147
E-CNN	61.45%	0.2036
EB-NN	62.84%	0.3472
EB-CNN	$\boldsymbol{65.08\%}$	0.4357

(a) Accuarcy

(b) MCC

	Index Prediction		Individual Stock Prediction		
	Acc	MCC	Acc	MCC	Profit
Luss [2012]	56.38%	0.07	58.74%	0.25	\$8,671
Ding [2014]	58.83%	0.16	61.47%	0.31	\$10,375
EB-CNN	64.21%	0.40	65.48%	0.41	\$16,774