Algoritmi avansaţi - Seminar 7 (săpt. 13 şi 14)

Mihai-Sorin Stupariu

- **1.** Dați exemplu de mulțime $\mathcal{M} = \{A_1, A_2, A_3, A_4, A_5, A_6\}$ din \mathbb{R}^2 astfel ca diagrama Voronoi asociată lui \mathcal{M} să conțină exact patru semidrepte, iar diagrama Voronoi asociată lui $\mathcal{M} \setminus \{A_1\}$ să conțină exact cinci semidrepte. Justificați alegerea făcută.
- 2. a) Fie o mulțime cu n situri necoliniare. Atunci, pentru diagrama Voronoi asociată au loc inegalitățile

$$n_v \le 2n - 5, \quad n_m \le 3n - 6,$$

unde n_v este numărul de vârfuri ale diagramei și n_m este numărul de muchii al acesteia.

- b) Câte vârfuri poate avea diagrama Voronoi \mathcal{D} asociată unei mulțimi cu cinci puncte din \mathbb{R}^2 știind că \mathcal{D} are exact cinci semidrepte? Analizați toate cazurile. Este atins numărul maxim de vârfuri posibile $(n_v = 2n 5)$? Justificați!
- **3.** Fie punctele O = (0,0), $A = (\alpha,0)$, B = (1,1), C = (2,0), D = (1,-1), unde $\alpha \in \mathbb{R}$ este un parametru. Discutați, în funcție de α , numărul de muchii de tip semidreaptă ale diagramei Voronoi asociate mulțimii $\{O, A, B, C, D\}$.
- **4.** (i) Fie punctul A = (1,2). Alegeți două drepte distincte d, g care trec prin A, determinați dualele A^*, d^*, g^* și verificați că A^* este dreapta determinată de punctele d^* și g^* .
- (ii) Determinați duala următoarei configurații: Fie patru drepte care trec printr-un același punct M. Se aleg două dintre ele; pe fiecare din aceste două drepte se consideră câte un punct diferit de M și se consideră dreapta determinată de cele două puncte. Desenați ambele configurații. Completați configurația inițială (adăugând puncte/drepte) astfel încât să obțineți o configurație autoduală (i.e. configurația duală să aibă aceleași elemente geometrice și aceleași incidențe ca cea inițială).
- **5.** a) Fie semiplanele $H: x+y-3 \le 0$ şi $H': -2x+y+1 \le 0$. Daţi exemplu de semiplan H'' astfel ca intersecţia $H \cap H' \cap H''$ să fie un triunghi dreptunghic.
 - b) Fie semiplanele H_1, H_2, H_3, H_4 date de inecuațiile

$$H_1: -y+1 \le 0;$$
 $H_2: y-5 \le 0;$ $H_3: -x \le 0;$ $H_4: x-y+a \le 0,$

unde $a \in \mathbb{R}$ este un parametru. Discutați, în funcție de parametrul a, natura intersecției $H_1 \cap H_2 \cap H_3 \cap H_4$.

6. Scrieți inecuațiile semiplanelor corespunzătoare și studiați intersecția acestora, dacă normalele exterioare ale fețelor standard sunt coliniare cu vectorii

$$(0,1,-1), (0,1,0), (0,0,-1), (0,-1,0), (0,-1,-1).$$

7. (Suplimentar) Demonstrați că arborele parțial de cost minim al lui \mathcal{P} este un subgraf al triangulării Delaunay.