

Bayesian Statistics and Hierarchical Bayesian Modeling for Psychological Science

Lecture 05

Lei Zhang

Social, Cognitive and Affective Neuroscience Unit (SCAN-Unit)

Department of Cognition, Emotion, and Methods in Psychology

Bayesian warm-up?

- You are curious how much of the surface is covered in water.
- You will toss the globe up in the air.
- You will record whether or not the surface under your right index finger is water (W) or land (L).
- You might observe: W L W W W L W L W
- \rightarrow 6/9 = 0.666667?
- Is it right? If not, what to do next?

A Data Story of the Globe

- The true proportion of water covering the globe is ϑ .
- A single toss of the globe has a probability ϑ of producing a water (W) observation.
- It has a probability $(I \vartheta)$ of producing a land (L) observation.
- Each toss of the globe is independent of the others.

Update

cognitive model

statistics

- order doesn't matter
- 2/3 is most likely
- others are not ruled out

Solve it by Grid Approximation

discrete parameters

$$p(\theta \mid D) = \frac{p(D \mid \theta)p(\theta)}{\sum_{\theta^*} p(D \mid \theta^*)p(\theta^*)}$$

continuous parameters

$$p(\theta \mid D) = \frac{p(D \mid \theta)p(\theta)}{\int p(D \mid \theta^*)p(\theta^*)d\theta^*}$$

cognitive model

statistics

computing

Binomial Model - Grid Approximation

compute likelihood at each value in grid
likelihood <- dbinom(w, size = N, prob = theta_grid)</pre>

compute product of likelihood and prior
unstd.posterior <- likelihood * prior

standardize the posterior, so it sums to 1
posterior <- unstd.posterior / sum(unstd.posterior)</pre>

$$p(\theta \mid D) = \frac{p(D \mid \theta)p(\theta)}{\int p(D \mid \theta^*)p(\theta^*)d\theta^*}$$

$$p(w \mid N, heta) = \left| egin{array}{c} N \ w \end{array} \right| heta^w (1 - heta)^{N-w}$$

Binomial Model – Grid Approximation

20 points posterior probability 0.10 -0.05 -0.00 0.25 0.00 0.50 0.75 1.00 probability of water

cognitive model

statistics

Impact of Prior

0.5

0.5

 \propto

0

0.5

cognitive model

statistics

cognitive model

Exercise VII

computing

statistics

.../BayesCog/02.binomial_globe/_scripts/binomial_globe_grid.R

TASK: run a grid approximation with grid_size = 50

How do I know which likelihood to use?

cognitive model

statistics

computing

The distribution zoo

What if I have multiple parameters?

grid approximation for 2 parameters?
5 parameters?
10 parameters?

$$p(\theta \mid D) = \frac{p(D \mid \theta)p(\theta)}{\int p(D \mid \theta^*)p(\theta^*)d\theta^*}$$

$$p(data) = \int_{\mathsf{All}\theta_1} \int_{\mathsf{All}\theta_2} p(data, \theta_1, \theta_2) \mathrm{d}\theta_1 \mathrm{d}\theta_2$$

$$p(data) = \int_{\mu_1} \int_{\sigma_1} \dots \int_{\mu_{100}} \int_{\sigma_{100}} \underbrace{p(data \mid \mu_1, \sigma_1, ..., \mu_{100}, \sigma_{100})}_{\text{likelihood}} \times \underbrace{p(\mu_1, \sigma_1, ..., \mu_{100}, \sigma_{100})}_{\text{prior}} \times \underbrace{p(\mu_1, \sigma_1, ..., \mu_{100}, \sigma_{100})}_{\text{prior}}$$

$$d\mu_1 d\sigma_1 ... d\mu_{100} d\sigma_{100},$$

- Analytical solutions (often does not exist)
- Grid approximation (takes too long)
- Markov Chain Monte Carlo

$$p(\theta \mid D) \propto p(D \mid \theta) p(\theta)$$

MARKOV
CHAIN
MONTE
CARLO

cognitive model
statistics
computing

Solving the Problem by Approximation

cognitive model

statistics

computing

$$p(\theta \mid D) \propto p(D \mid \theta) p(\theta)$$

Deterministic Approximation

→ Variational Bayes

Stochastic Approximation

→ Sampling Methods

An MCMC Robot

cognitive model statistics

An MCMC Robert in 3D

cognitive model

statistics

Sampling Example: Discrete

cognitive model statistics

computing

MCMC trace

True distribution

Kruschke (2015)

Sampling Example: Continuous

cognitive model statistics

cognitive model statistics

computing

Visual Example

Let's watch a video!

cognitive model

statistics

- Rejection sampling
- Importance sampling
- Metropolis algorithm
- Gibbs sampling → JAGS
- HMC sampling*

Stan!

Bayesian Statistics and Hierarchical Bayesian Modeling for Psychological Science

Lecture 06

Lei Zhang

Social, Cognitive and Affective Neuroscience Unit (SCAN-Unit) Department of Cognition, Emotion, and Methods in Psychology

Bayesian warm-up?

cognitive model statistics

Stan and RStan

cognitive model statistics

Steps of Bayesian Modeling, with Stan

cognitive model

computing

A data story Think about how the data might arise.

It can be descriptive or even causal.

Write a Stan program (*.stan).

Update Educate your model by feeding it the data.

Bayesian Update:

update the prior, in light of data, to produce posterior.

Run Stan using RStan (PyStan, MatlabStan etc.)

Evaluate Compare model with reality.

Revise your model.

Evaluate in RStan and ShinyStan.

McElreath (2016)

28

- I. Stan program read into memory
- 2. Source-to-source transformation into C++
- 3. C++ compiled and linked (takes a while)
- 4. Run Stan program
- 5. Posterior analysis / interface


```
data {
   int<lower=0> N;
   int<lower=0,upper=1> y[N];
}
parameters {
   real<lower=0,upper=1> theta;
}
model {
   y ~ bernoulli(theta);
}
```

```
The property of the control of the c
```

Stan Language

model blocks

```
data {
//... read in external data...
transformed data {
//... pre-processing of data ...
parameters {
//... parameters to be sampled by HMC ...
transformed parameters {
//... pre-processing of parameters ...
model {
//... statistical/cognitive model ...
generated quantities {
//... post-processing of the model ...
```

cognitive model

statistics

REVISIT BINOMIAL MODEL

Binomial Model

cognitive model

statistics

computing

WLWWLWLW

$$p\left(w\mid N, heta
ight)=\left|egin{array}{c}N\w\end{array}
ight| heta^{w}(1- heta)^{N-w}$$

 $w \sim \text{Binomial}(N, \theta)$

reads as:

w is distributed as a binomial distribution, with number of trials N, and success rate ϑ .

Graphical Model Notations

cognitive model

statistics

computing

	continuous	discrete
unobserved	θ	δ
observed	y	N

Lee & Wagenmakers (2013)

Binomial Model

WLWWLWLW

$$p\left(w \mid N, heta
ight) = \left|egin{array}{c} N \ w \end{array}
ight| heta^w (1- heta)^{N-w}$$

 $\theta \sim \text{Uniform}(0, 1)$

 $w \sim \text{Binomial}(N, \theta)$

	continuous	discrete
unobserved	θ	δ
observed	y	N

Binomial Model

statistics computing

WLWWLWLW

$$p\left(w\mid N, heta
ight)=\left|egin{array}{c}N\w\end{array}
ight| heta^{w}(1- heta)^{N-w}$$


```
data
    int<lower=0> w;
    int<lower=0> N;
parameters {
    real<lower=0,upper=1> theta;
model {
    w ~ binomial(N, theta);
```

cognitive model

statistics

computing

Running Binomial Model with Stan

.../BayesCog/02.binomial_globe/_scripts/binomial_globe_main.R

```
> R.version
R version 3.5.1 (2018-07-02)
> stan_version()
[1] "2.18.0"
```

cognitive model

statistics

computing

Model Summary

```
> print(fit_globe)
Inference for Stan model: binomial_globe_model.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.
```

```
      mean
      se_mean
      sd
      2.5%
      25%
      50%
      75%
      97.5%
      n_eff
      Rhat

      theta
      0.64
      0.00
      0.14
      0.35
      0.54
      0.65
      0.74
      0.87
      1278
      1

      lp___
      -7.72
      0.02
      0.69
      -9.77
      -7.89
      -7.46
      -7.27
      -7.21
      1824
      1
```

Samples were drawn using NUTS(diag_e) at Tue Apr 09 12:44:04 2019. For each parameter, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

Gelman-Rubin convergence diagnostic (Gelman & Rubin, 1992)

AN JEST 101

Happy Computing!