- 1. Codes linéaires
- 2. Matrice de code linéaire
 - 1. Forme reduite:
 - 1. Regles:
 - 2. Codage systematique
 - 3. Exemple
 - 4. Exemple
- 3. Code cyclique
 - 1. <u>Définition</u>
 - 2. Remarque
 - 1. Exemple:
 - 3. Remarque
 - 4. Ideal
 - 5. Théoreme 1
 - 6. Théoreme 2

Codes linéaires

- C s.e.v $(\mathbb{Z}/2\mathbb{Z})^n$
- Dualité $C^{\perp} = \{u \in (\mathbb{Z}/2\mathbb{Z})^n | \forall v \in Cu.v = \vec{0}\}$
- $\dim(\mathbf{C}) + \dim(\mathbf{C})^{\perp} = n$

$$u \in \mathcal{C}^{\perp} \iff \forall v \in \mathcal{C} \ u.v = 0$$

Matrice de code linéaire

On peut représenter code V (s.e.v) comme une matrice : matrice de la base du code C

 $si \dim C = k$

$$\begin{pmatrix} b_1 \\ \vdots \\ b_k \end{pmatrix}$$

vecteur d'une base de C

$$\uparrow k \begin{pmatrix}
 & n & \longrightarrow \\
k & & & \\
\downarrow & & & &
\end{pmatrix}$$

$$u \in \mathcal{C} \iff \exists l_1, \cdots, l_k | u = l_1 b 1, \cdots, l_k b_k$$

- Message m
- erreur e
- reçu r

1. Forme reduite:

$$(\mathbf{I}_k|\mathbf{A}) = \mathbb{M}_R$$

1.1. Regles:

- permuter des lignes
- remplacer des ligne par des combinaisons linéaire
- multiplier par une constante
- permuter des colonne
- ⇒ matrice equivalente

1.2. Codage systematique

$$(x_1, \cdots, c_k) \sim (x_1, \cdots, c_k).$$
 $\mathbb{M}_R = (x_1, \cdots, c_k).$ $(I_k|A) = (x_1, \cdots, c_k, (x_1, \cdots, c_k).A)$ $(x_1, \cdots, c_k).$ $C_R = (x_1, x_2, x_3, x_1 + x_2 + x_3, x_1 + x_3, x_2 + x_3)$ $< u, p(u) > u \text{ mot a coder } p(u) \text{ bits de contrôle}$

$$C_{R} = \begin{array}{c} c_{1} + c_{2} \\ c_{1} \\ c_{4} \end{array} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

1.3. Exemple

C' engendré par:

$$\begin{pmatrix} a \\ b \\ c \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{array}{c} a \\ a+b \\ d+a \\ a+b+c \end{array} \left(\begin{array}{cccccc} 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right)$$

 $G = (C \text{ engendr\'e par } G) = (Id_k|A)$

Alors $H = (A^t.Id_{n-k})$ alors H^t engendre C^{\perp}

$$\mathbf{H}.\mathbf{G} = (\mathbf{A}^t.\mathbf{Id}_{n-k})(Id_k\mathbf{A}^t) = (\mathbf{A}^t + \mathbf{A}^t) = (0)$$

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} H = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$
Tout vecteur de

 $HestorthogonaltoutvecteurdeG.H^t$ est une matrice de C^{\perp}

 \mathbf{H}^t est une base de l'othogonal de \mathbf{C} $c \in \mathbf{C} \Longleftrightarrow (c)\mathbf{H}.\vec{\mathbf{0}}$

1.4. Exemple

 $u = 10111 \ u \in \mathbb{C}$?

$$(10111). \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} = (0,1)$$

 $\mathbf{donc}\ u\notin\mathbf{C}$

 $v = 11101 \ v \in \mathbf{C}$?

$$(11101). \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} = (0,0)$$

donc $v \in C$

 \mathbf{H}^t est une base de l'orthogonal de \mathbf{C}

On a donc :

$$c \in \mathbf{C} \iff c.\mathbf{H}^t = \vec{0}$$

Code cyclique

$$F = \mathbb{Z}/2\mathbb{Z} F^n = (\mathbb{Z}/2\mathbb{Z})^n$$

$$F^n \longrightarrow F^n$$

Décalage $S:(x_0,\cdots,x_{n-1})\longrightarrow (x_{n-1},x_0,x_1,\cdots,x_{n-2})$

1. Définition

 ${\bf C}$ est un code cyclique $\Longleftrightarrow {\bf C}$ est un code linéaire invariant par décalage $({\bf C}=s({\bf C}))$

exemple: C = (000), (110), (011), (101) C est un cycle

$$\prod : (a_0, \dots, a_{n-1}) \sim a_0 + a_1 X + \dots + a_{n-1} X^{n-1}$$

 $\prod : (a_0, \cdots, a_{n-1})$ le polynome de $\mathrm{F}[\mathrm{X}/(\mathrm{X}^n-1)]$

2. Remarque

dans $F[X/(X^n-1)]$ le décalage correspond au produit par X.

$$\begin{split} \mathbf{P}(\mathbf{X}) &= a_0 +, \dots + a_{n-1}.\mathbf{X}^{n-1} \\ \left\{ \begin{array}{l} \mathbf{X}.\mathbf{P}(\mathbf{X}) &= a_0.\mathbf{X} +, \dots + a_{n-1}.\mathbf{X}^n \\ \mathbf{X}.\mathbf{P}(\mathbf{X}) &= a_{n-1} + a_0.\mathbf{X} +, \dots + a_{n-2}.\mathbf{X}^{n-1} (\mathrm{mod}[\mathbf{X}^n - 1]) \\ \mathbf{X}.\mathbf{P}(\mathbf{X}) &= \mathbf{S}(\mathbf{p}(\mathbf{X})) \\ \mathbf{X}.\mathbf{P}(\mathbf{X}) &= \prod (\mathbf{S}(\prod^{-1}(\mathbf{p}))) \end{array} \right. & (\mathrm{mod}[\mathbf{X}^n - 1]) \end{split}$$

2.1. Exemple:

$$\prod(\mathbf{C}) = (0, 1+x, x+x^2, 1+x^2)$$

$$(0, 110, 011, 101)$$

$$\prod(\mathbf{C}) = (0, 1+x, x+x^2, 1+x^2)$$
.

3. Remarque

 $F[X/(X^n-1)]$ est un anneau sur A

4. Ideal

I est un **Idéal** \Longrightarrow

- $0 \in I$
- $\forall a, b \in I \Longrightarrow a \pm b \in I$
- $\forall r \in A \text{ et } \forall a \in I \Longrightarrow a.r \in I$

 \mathbb{Z} les idéaux de \mathbb{Z} sont les $n\mathbb{Z}$ $n\mathbb{Z} = \{p.n|p \in \mathbb{Z}\}$

 $\text{Id\'eal est } \textit{principal} \Longleftrightarrow \exists g \in \mathbf{I} \ \mathsf{tq} \ \mathbf{I} = < g > = \{g.x | x \in \mathbf{A}\}$

5. Théoreme 1

Dans $F[X/(X^n-1)]$ tout idéal est principal

6. Théoreme 2

C est un code cyclique $\iff \prod(C)$ est principal