MTH301: Analysis I

Abhimanyu Sethia 190023 sethia@iitk.ac.in

Assignment 11

Question 4

Q4 Suppose $(f_n) \in C[0,1]$ and that $f_n \to f$ uniformly on [0,1]. Is it true that $\int_0^{1-\frac{1}{n}} f_n \to \int_0^1 f$? Explain. Solution:

Yes, the statement is true. The proof is as follows.

We need to show that
$$|\int_0^{1-\frac{1}{n}} f_n - \int_0^1 f| \to 0$$
 as $n \to \infty$.
Now, $|\int_0^{1-\frac{1}{n}} f_n - \int_0^1 f| = |\int_0^1 f - \int_0^{1-\frac{1}{n}} f_n| = |\int_0^1 f - \int_0^{1-\frac{1}{n}} f + \int_0^{1-\frac{1}{n}} f - \int_0^{1-\frac{1}{n}} f_n|$

$$\implies |\int_0^{1-\frac{1}{n}} f_n - \int_0^1 f| \le |\int_0^1 f - \int_0^{1-\frac{1}{n}} f| + |\int_0^{1-\frac{1}{n}} f - \int_0^{1-\frac{1}{n}} f_n|$$

Now, since $f_n \to f$ uniformly in [0,1] and f_n are continuous functions, $f \in C[0,1]$. By Intermediate Value theorem (since f is continuous and [0,1] is closed and connected in \mathbb{R}), f([0,1]) is closed, connected and thereby bounded.

So let
$$X = ||f||_{\infty}$$
.
 $\implies |\int_0^1 f - \int_0^{1 - \frac{1}{n}} f| \le (1 - (1 - \frac{1}{n})) ||f||_{\infty} = \frac{X}{n}$
 $\implies |\int_0^{1 - \frac{1}{n}} f - \int_0^{1 - \frac{1}{n}} f_n| \le (1 - \frac{1}{n}) ||f - f_n||_{\infty}$

Hence, we have from above, $|\int_0^{1-\frac{1}{n}} f_n - \int_0^1 f| \leq \frac{X}{n} + (1-\frac{1}{n}) ||f - f_n||_{\infty}$ As $n \to \infty$, $\frac{X}{n} \to 0$ and $||f - f_n|| \to 0$ (as $f_n \to f$ uniformly on [0,1]). $\Longrightarrow \frac{X}{n} + (1-\frac{1}{n}) ||f - f_n||_{\infty} \to 0$ as $n \to \infty$ $\implies |\int_0^{1-\frac{1}{n}} f_n - \int_0^1 f| \to 0 \text{ as } n \to \infty$ Hence, proved.