Structural Optimization for Large-Scale Problems

Lecture 8: Algorithmic models of human behavior

Yurii Nesterov

Minicourse: November 15, 16, 22, 23, 2024 (SDS, Shenzhen)

Rational Choice in Economics

- ► Rational choice assumption is introduced for better understanding and predicting the human behavior.
- ▶ It forms the basis of Neoclassical Economics (1900).
- The player ($Homo\ Economicus \equiv HE$) wants to maximize his Utility Function by an appropriate adjustment of consumption pattern.
- As a consequence, we can speak about *Equilibrium* in the economical systems.
- Existing literature is immense. It concentrates also on ethical, moral, religious, social, and other consequences of rationality. (HE \equiv super-powerful aggressively selfish immoral individualist.)

NB: The only missing topic is the Algorithmic Aspects of rationality.

What do we know now?

- ▶ Starting from 1977 (Complexity Theory, Nemirovski & Yudin), we know that optimization problems in general are *unsolvable*.
- ► They are very difficult (and will be always difficult) for computers, independently on their speed.
- How they can be solved by us, taking into account our natural weakness in arithmetics?

NB: Mathematical consequences of unreasonable assumptions can be disastrous.

Perron paradox: The maximal integer is equal to one.

Proof: Denote by N the maximal integer. Then $1 < N < N^2 < N$.

Hence, N=1.

Compare: Denote by x^* the equilibrium state. Then ...

What we do not know

- In which sense the human beings can solve the optimization problems?
- What is the accuracy of the solution?
- What is the convergence rate?

Main question: What are the optimization <u>methods</u>?

NB:

- Forget about Simplex Algorithm and Interior Point Methods!
- Be careful with gradients (dimension, non-smoothness).

Outline

Intuitive optimization (Random Search)

Rational activity in stochastic environment (Stochastic Optimization)

Models of rational consumption (Primal-dual subgradient methods)

Intuitive Optimization

Problem: $\min_{x \in \mathbb{R}^n} f(x)$, where x is a consumption pattern.

Main difficulties:

- \triangleright High dimension of x (difficult to evaluate/observe).
- ▶ Possible non-smoothness of $f(\cdot)$.

Theoretical advice: apply the Gradient Method

$$x_{k+1}=x_k-hf'(x_k).$$

(In the space of all available products! Never used by the authors (?))

Hint: we live in an uncertain world.

Gaussian smoothing

Let $f : \mathbb{E} \to \mathbb{R}$ be differentiable along any direction at any $x \in \mathbb{E}$.

Let us form its Gaussian approximation

$$f_{\mu}(x) = \frac{1}{\kappa} \int_{\mathbb{E}} f(x + \mu u) e^{-\frac{1}{2}||u||^2} du,$$

where
$$\kappa \stackrel{\text{def}}{=} \int\limits_{\mathbb{R}} e^{-\frac{1}{2}\|u\|^2} du = (2\pi)^{n/2}$$
.

In this definition, $\mu \geq 0$ plays a role of *smoothing parameter*.

Why this is interesting? Define $y = x + \mu u$.

Then
$$f_{\mu}(x)=rac{1}{\mu^n\kappa}\int\limits_{\mathbb{E}}f(y)e^{-rac{1}{2\mu^2}\|y-x\|^2}dy$$
. Hence,

$$\nabla f_{\mu}(x) = \frac{1}{\mu^{n+2}\kappa} \int_{\mathbb{E}} f(y) e^{-\frac{1}{2\mu^2} ||y-x||^2} (y-x) dy$$

$$= \frac{1}{\mu\kappa} \int_{\mathbb{E}} f(x + \mu u) e^{-\frac{1}{2}||u||^2} u \ du \stackrel{(!)}{=} \frac{1}{\kappa} \int_{\mathbb{E}} \frac{f(x + \mu u) - f(x)}{\mu} e^{-\frac{1}{2}||u||^2} u \ du.$$

Properties of Gaussian smoothing

- ▶ If f is convex, then f_{μ} is convex and $f_{\mu}(x) \geq f(x)$.
- ▶ If $f \in C^{0,0}$, then $f_{\mu} \in C^{0,0}$ and $L_0(f_{\mu}) \leq L_0(f)$.
- ▶ If $f \in C^{0,0}(\mathbb{E})$, then, $|f_{\mu}(x) f(x)| \leq \mu L_0(f) n^{1/2}$.

Random gradient-free oracle:

- ▶ Generate random $u \in \mathbb{E}$.
- Return $g_{\mu}(x) = \frac{f(x+\mu u)-f(x)}{\mu} \cdot u$.

Random intuitive optimization

Problem: $f^* \stackrel{\text{def}}{=} \min_{x \in Q} f(x)$, where $Q \subseteq \mathbb{E}$ is a closed convex set, and f is a nonsmooth convex function.

Method \mathcal{RS}_{μ} : Choose $x_0 \in Q$.

For $k \geq 0$: a). Generate u_k .

- b). Compute $\Delta_k = \frac{1}{\mu} [f(x_k + \mu u_k) f(x_k)].$
- c). Choose $h_k > 0$.
- c). Update $x_{k+1} = \pi_Q (x_k h_k \Delta_k u_k)$.

NB: 1. μ can be arbitrarily small.

2. Computation of Δ_k can be seen as *intuition*. (Virtual experiment?)

Convergence results

This method generates random $\{x_k\}_{k>0}$.

Denote
$$S_N = \sum_{k=0}^N h_k$$
, $\mathcal{U}_k = (u_0, \dots, u_k)$,

$$\phi_0 = f(x_0)$$
, and $\phi_k \stackrel{\text{def}}{=} E_{\mathcal{U}_{k-1}}(f(x_k))$, $k \geq 1$.

Theorem: Let $\{x_k\}_{k\geq 0}$ be generated by \mathcal{RS}_{μ} with $\mu > 0$. Then,

$$\sum_{k=0}^{N} \frac{h_k}{S_N} (\phi_k - f^*) \le \mu L_0(f) n^{1/2} + \frac{1}{2S_N} \|x_0 - x^*\|^2 + \frac{(n+4)^2}{2S_N} L_0^2(f) \sum_{k=0}^{N} h_k^2.$$

In order to guarantee $E_{\mathcal{U}_{N-1}}(f(\hat{x}_N)) - f^* \leq \epsilon$, we choose

$$\mu = \frac{\epsilon}{2L_0(f)n^{1/2}}, \quad h_k = \frac{R}{(n+4)(N+1)^{1/2}L_0(f)}, \quad N = \frac{4(n+4)^2}{\epsilon^2}L_0^2(f)R^2.$$

Interpretation

- ightharpoonup Disturbance μu_k may be caused by external random factors.
- For small μ , the sign and the value of Δ_k can be interpreted as the intuition.
- We use random experience related to a very small shift along random direction.
- \triangleright The reaction steps h_k are big. (Emotions?)
- ▶ The dimension of x slows down the convergence.

Main ability: implementation of action, which is exactly opposite to the proposed one. (Needs training.)

NB: Optimization method has a form of (over) emotional reaction.

This method does not need a reliable coordinate system.

Optimization in Stochastic Environment

Problem:
$$\min_{x \in Q} [\phi(x) = E(f(x,\xi)) \equiv \int_{\Omega} f(x,\xi) p(\xi) d\xi],$$
 where

- ▶ $f(x,\xi)$ is convex in x for any $\xi \in \Omega \subseteq \mathbb{R}^m$,
- ightharpoonup Q is a closed convex set in \mathbb{R}^n ,
- ▶ $p(\xi)$ is the density of random variable $\xi \in \Omega$.

Assumption: We can generate a sequence of random events $\{\xi_i\}$:

$$\frac{1}{N}\sum_{i=1}^{N}f(x,\xi_i) \stackrel{N\to\infty}{\to} E(f(x,\xi)), \quad x\in Q.$$

Goal: For $\epsilon > 0$ and $\phi^* = \min_{x \in Q} \phi(x)$, find $\bar{x} \in Q$: $\phi(\bar{x}) - \phi^* \le \epsilon$.

Main trouble: For finding δ -approximation to $\phi(x)$, we need $O\left(\left(\frac{1}{\delta}\right)^m\right)$ computations of $f(x,\xi)$.

Stochastic subgradients (Ermoliev, Wetz, 70's)

Method: Fix some $x_0 \in Q$ and h > 0. For $k \ge 0$, repeat: generate ξ_k and update $x_{k+1} = \pi_Q(x_k - h \cdot f'(x_k, \xi_k))$.

Output:
$$\bar{x} = \frac{1}{N+1} \sum_{k=0}^{N} x_k$$
.

Interpretation: Learning process in stochastic environment.

Theorem: For
$$h = \frac{R}{L\sqrt{N+1}}$$
, we get $E(\phi(\bar{x})) - \phi^* \leq \frac{LR}{\sqrt{N+1}}$.

NB: This is an estimate for *expected* performance.

Hint: For us, it is enough to ensure a *Confidence Level* $\beta \in (0,1]$:

Prob
$$[\phi(\bar{x}) \geq \phi^* + \epsilon V_{\phi}] \leq 1 - \beta$$
,

where
$$V_{\phi} = \max_{x \in \mathcal{Q}} \phi(x) - \phi^*$$
.

In the real world, we *always* apply solutions with $\beta < 1$.

What do we have now?

After N-steps, we observe a *single* implementation of the random variable \bar{x} with $E(\phi(\bar{x})) - \phi^* \leq \frac{LR}{\sqrt{N+1}}$.

What about the level of confidence?

1. For random $\psi \geq 0$ and T > 0 we have

$$E(\psi) = \int \psi = \int_{\psi \ge T} \psi + \int_{\psi < T} \psi \ge T \cdot Prob [\psi \ge T].$$

2. With $\psi = \phi(\bar{x}) - \phi^*$ and $T = \epsilon V_{\phi}$, we need

$$\frac{1}{\epsilon V_{\phi}}[E(\phi(\bar{x})) - \phi^*] \le \frac{LR}{\epsilon V_{\phi}\sqrt{N+1}} \le 1 - \beta.$$

Thus, we can take $N+1=rac{1}{\epsilon^2(1-eta)^2}\left(rac{LR}{V_\phi}
ight)^2$.

- **NB:** 1. For personal needs, this may be OK. What about $\beta \rightarrow 1$?
- 2. How we increase the confidence level of decisions in our life?

Ask for advice as many people as we can!

Pooling the experience

Individual learning process (Forms an opinion of one expert)

Choose $x_0 \in Q$ and h > 0. For k = 0, ..., N repeat

generate
$$\xi_k$$
, and set $x_{k+1} = \pi_Q(x_k - hf'(x_k, \xi_k))$.

Compute
$$\bar{x} = \frac{1}{N+1} \sum_{k=0}^{N} x_k$$
.

Pooling the experience:

For $j=1,\ldots,K$ compute \bar{x}_j . Generate the output $\hat{x}=\frac{1}{K}\sum_{j=1}^K \bar{x}_j$.

Note: All learning processes start from the same x_0 .

Probabilistic analysis

Theorem. Let $Z_j \in [0, V]$, j = 1, ..., K be independent random variables with the same expectation μ . Then for $\hat{Z}_K = \frac{1}{K} \sum_{i=1}^K Z_i$

$$Prob\left[\hat{Z}_k \geq \mu + \hat{\epsilon}\right] \leq \exp\left(-\frac{2\hat{\epsilon}^2 K}{V^2}\right).$$

Corollary.

Let us choose
$$K = \frac{2}{\epsilon^2} \ln \frac{1}{1-\beta}$$
, $N = \frac{4}{\epsilon^2} \left(\frac{LR}{V_\phi}\right)^2$, and $h = \frac{R}{L\sqrt{N+1}}$.

Then the pooling process implements an (ϵ, β) -solution.

Note: Each 9 in $\beta = 0.9 \cdots 9$ costs $\frac{4.6}{\epsilon^2}$ experts.

Comparison (ϵ is not too small $\equiv Q$ is reasonable)

Denote $ ho = \frac{LR}{V_{\phi}}$	Single Expert (SE)	Pooling Experience (PE)
Number of experts	1	$\frac{2}{\epsilon^2} \ln \frac{1}{1-\beta}$
Length of life	$rac{ ho^2}{\epsilon^2(1-eta)^2}$	$rac{4 ho^2}{\epsilon^2}$
Computational efforts	$\frac{\rho^2}{\epsilon^2(1-\beta)^2}$	$rac{8 ho^2}{\epsilon^4}\lnrac{1}{1-eta}$

- Reasonable computational expenses (as compared with Multi-D Integrals)
- Number of experts does not depend on dimension.

Differences

- For low level of confidence, SE may be enough.
- High level of confidence needs independent expertise.
- Average experience of young population has much higher level of confidence, as compared with experience of a long-life wizard.
- ▶ In PE, the confidence level of "experts" is only $\frac{1}{2}$ (!).

Why this can be useful?

- Understanding of the role of existing social an political instruments (education, medias, books, movies, theater, elections, etc.)
- Future changes (Internet, telecommunications)
- Development of new averaging instruments
 (Theory of expertise: mixing opinion of different experts, competitions, etc.)

Individual rationality: Conscious versus Subconscious

NB: Conscious behavior can be irrational.

Subconscious behavior is often rational.

- Animals.
- Children education: First level of knowledge is subconscious.
- ightharpoonup Training in sport (optimal technique \Rightarrow subconscious level).

Examples of subconscious estimates:

- Mental "image processing".
- Tracking the position of your body in space.
- Regular checking of your status in the society (?)

Our model: Conscious behavior based on dynamically updated subconscious estimates.

Model of consumer: What is easy for us?

Question 1: 123 * 456 = ?

Question 2: How often it rains in your country?

Easy questions:

- average salary,
- average gas consumption of your car,
- average consumption of different food,
- average commuting time,

and many other (survey-type) questions.

Main abilities of any person:

- 1. Remember the past experience (often in the form of averages).
- 2. Estimate *probabilities* of some future events, taking into account their *frequencies* in the past.

Guess: We are <u>Statistical</u> Homo Economicus? (SHE)

Main features of SHE

Main passion: Observations.

Main abilities:

- Can select the best variant from several possibilities.
- Can compute average characteristics for some actions.
- Can compute frequencies of some events in the past.
- Can estimate the "faire" prices for products.

As compared with HE: A huge step back in the computational power and informational support.

Theorem: SHE can be rational.

(The proof is constructive.)

Consumption model

Market

- \triangleright There are *n* products with unitary prices p_i .
- Each product is described by some *vector of qualities* $a_j \in \mathbb{R}^m$. Thus, $a_i^{(i)}$ is the *volume* of quality i in the unit of product j.

Consumer SHE

- ▶ Forms and updates the *personal prices* $y \in \mathbb{R}^m$ for qualities.
- \triangleright Can estimate the personal quality/price ratio for product j:

$$\pi_j(y) = \frac{1}{p_j} \langle a_j, y \rangle.$$

► Has standard σ_i for consumption of quality i, $\sum_{i=1}^m \sigma_i y_i = 1$.

Denote
$$A = (a_1, \ldots, a_n), \quad \sigma = (\sigma_1, \ldots, \sigma_m)^T, \quad \pi(y) = \max_{1 \le j \le n} \pi_j(y).$$

Consumption algorithm (CA) for kth weekend

For Friday night, SHE has personal prices y_k , budget λ_k , and an aggregate statistics:

consumption vector of qualities $s_k \in \mathbb{R}^m$, $(s_0 = 0)$.

- 1. Define the set $J_k = \{j : \pi_j(y_k) = \pi(y_k)\}$, containing the products with the best quality/price ratio.
- 2. Form partition $x_k \ge 0$: $\sum_{j=1}^n x_k^{(j)} = 1$, and $x_k^{(j)} = 0$ for $j \notin J_k$.
- 3. Buy all products in volumes $X_k^{(j)} = \lambda_k \cdot x_k^{(j)}/p_j$, $j = 1, \dots, n$.
- 4. Consume the bought products: $s_{k+1} = s_k + AX_k$.
- 5. During the next week, SHE observes the results and forms the personal prices for the next shopping.

NB: Only Item 5 is not defined.

Updating the personal prices for qualities

Denote by $\hat{s}_k = \frac{1}{k} s_k$ the vector of average consumptions.

Assumption. 1. During the week, SHE performs regular detections of the most deficient quality by computing $\psi_k = \min_{1 \le i \le m} \hat{s}_k^{(i)}/\sigma_i$.

2. Detection is done with random additive errors. SHE observes

$$E_{\epsilon}\left(\min_{1\leq i\leq m}\left\{\frac{\hat{s}_{k}^{(i)}}{\sigma_{i}}+\epsilon_{i}\right\}\right).$$

Thus, any quality has a chance to be detected as the worst one.

3. We define ξ_i as the frequency of detecting the quality i as the most deficient one with respect to \hat{s}_k , $\sum_{i=1}^m \xi_i = 1$.

The personal prices can be found from $\xi_i = \sigma_i y_k^{(i)}$ (this is the *relative importance* of quality *i*).

This is it. Where is Optimization? Objective Function, etc.?

Algorithmic aspects

1. If ϵ_i are doubly-exponentially i.i.d. with variance μ , then

$$y_k^{(i)} = \frac{1}{\sigma_i} \exp\left\{-\frac{s_k^{(i)}}{k\sigma_i\mu}\right\} / \sum_{j=1}^m \exp\left\{-\frac{s_k^{(j)}}{k\sigma_j\mu}\right\}$$

Therefore, $y_k = \arg\min_{\langle \sigma, y \rangle = 1} \left\{ \langle s_k, y \rangle + \gamma d(y) \right\}$,

where $\gamma = k\mu$, $d(y) = \sum_{i=1}^{m} \sigma_i y^{(i)} \ln(\sigma_i y^{(i)})$ (prox-function).

- **2.** $AX_k = \lambda_k A\left[\frac{x_k}{p}\right] \equiv \lambda_k g_k$, where $g_k \in \partial \pi(y_k)$ (subgradient).
- **3.** Hence, s_k is an accumulated *model* of function $\pi(y)$.

Hence, CA is a primal-dual method for solving the (dual) problem

$$\min_{y\geq 0} \left\{ \pi(y) \equiv \max_{1\leq i\leq m} \frac{1}{p_i} \langle a_i, y \rangle : \langle \sigma, y \rangle = 1 \right\}.$$

NB: $\pi(y)$ is nonsmooth \Rightarrow Marginal utilities do not work!

Comments

1. The primal problem is

$$\max_{u,\tau} \{ \tau : Au \ge \tau \sigma, \ u \ge 0, \ \langle p, u \rangle = 1 \}.$$

We set $u_k = [x_k/p]$ and approximate u^* by averaging $\{u_k\}$.

- 2. No "computation" of subgradients (we just buy). Model is updated implicitly (we just eat).
- **3.** CA is an example of *unintentional* optimization.

(Other examples in the nature: Fermat principle, etc.)

- **4.** SHE does not recognize the objective. However, it exists. SHE is rational by behavior, not by the goal (which is absent?).
- **5.** Function $\pi(y)$ measures the positive appreciation of the market. By minimizing it, we develop a pessimistic vision of the world.
- **6.** For an easier life, allow a bit of irrationality. (Smoothed objective, faster rate of convergence.)

Conclusion

Optimization patterns are widely presented in the life. Examples:

- 1. Collaboration between industry, science and government (L. 1)
- 2. Algorithm of the growth under increasing pressure.
- 3. This lecture: Existence of Life Standards results in rational behavior.

Def: Consumer is called *rational* if there exists an *Objective Function* for which his consumption behavior can be seen as an optimizing strategy. (*Weak rationality*?)

Compare: "... if he maximizes his <u>utility</u>." (To be changed?)

Objective Function can be implicit (not fully understandable).

Example:
$$\min_{y \in \Delta_m} \left[\pi(y) = \max_{1 \le j \le m} \frac{1}{p_j} \langle a_j, y \rangle \right]$$
 means

minimization of the excitation from shopping (???)

What a strange "utility"!

Guess: Rationality and Pessimism are two sides of the same coin. (to be discussed)