(132 x 176-dot Graphics LCD Controller/Driver for 65K Colors)

HITACHI

Rev.1.0-1 September, 2002

Description

The HD66766R, color-graphics LCD controller and driver LSI, displays 132-by-176-dot graphics for 65K STN colors. A 16-bit high-speed bus interface and high-speed RAM write function enable efficient data transfer and high-speed rewriting of data to the graphics RAM.

The HD66766R has various functions for reducing the power consumption of a LCD system, such as low-voltage operation of 2.2 V/min., a step-up circuit to generate a maximum of 12-times the LCD drive voltage from the supplied voltage, and voltage-followers to decrease the direct current flow in the LCD drive bleeder-resistors. Combining these hardware functions with software functions, such as a partial display with low-duty drive and standby and sleep modes, allows precise power control. The HD66766R is suitable for any mid-sized or small portable battery-driven product requiring long-term driving capabilities, such as digital cellular phones supporting a WWW browser, bi-directional pagers, and small PDAs.

Features

- 132RGB x 176-dot graphics display LCD controller/driver for 65K STN colors
- low voltage drive and flickerless PWM grayscale drive
- 16-/8-bit high-speed bus interface and Clock Synchronized Serial Interface (SPI)
- High-speed burst-RAM write function
- Writing to a window-RAM address area by using a window-address function
- Bit-operation functions for graphics processing:
 - Write-data mask function in bit units.
 - Logical operation in pixel unit and conditional write function.

Rev. 1.0-1 / September 2002

HD66766R

- Various color-display control functions
 - 65K out of 140K possible colors can be displayed at the same time (grayscale palette incorporated)
 - Vertical scroll display function in raster-row units
 - Partial LCD drive of two screens in any position
- Low-power operation supports:
 - Vcc = 2.2 to 3.6 V (low-voltage)
 - Common driving voltage = 8 to 44 V
 - Segment driving voltage = 2 to 4 V
 - VOUT power voltage = 4.0V to 5.75 V
 - Power-save functions such as the standby mode and sleep mode
 - Internal power supply circuit
 - Programmable drive duty ratios (1/8–1/176) and bias values (1/2–1/13) displayed on LCD
 - Maximum 12-times step-up circuit for liquid crystal drives voltage and voltage inverting circuit
 - 128-step contrast adjuster and voltage followers to decrease direct current flow in the LCD drive bleeder-resistors
- Internal RAM capacity: 46,464 bytes
- 396-segment × 176-common liquid crystal display driver
- n-raster-row AC liquid-crystal drive (C-pattern waveform drive)
- Internal oscillation and hardware reset
- Shift change of segment and common drivers
- COM positioned on both sides in one chip for COG

Type Name

Types	External Dimensions					
HCD667A66RBP	Au-bumped chip straight bump					
HCD667B66RBP	Au-bumped chip laced bump					

Difference between HCD667x66R and HCD667x66

Table 1

Difference	HCD60	67x66R	HCD667x66		
Pad arrangement	Pad No.	Pad Name	Pad No.	Pad Name	
	63	Vcc	63	Vcc	
	63	Vcc	63	Vcc	
	64	Vcc	64	Vcc	
	66	Vcc	66	Vcc	
	67	AVcc	67	Vcc	
	68	AVcc	68	Vcc	
	69	AVcc	69	Vcc	
	70	AVcc	70	Vcc	

■ HD66766R PAD Arrangement (Straight Output Arrangement)

Figure 1 PAD arrangement (Straight)

Table 2

HD66766R PAD Coordinate (Straight)(No.1)

		oordinate (Straig								
No.	pad name	X Y	No. pad name	X Y	No. pad name	X Y	No. pad name	X Y	No. pad name	X Y
	DUMMY1	-9193 -1168	81 OSC1	1284 -1168	161 COM32	9155 -411	241 SEG390	7296 1145	321 SEG310	4256 1145
2	_	-8835 -1168	82 GNDDUM8	1440 -1168	162 COM34	9155 -373	242 SEG389	7258 1145	322 SEG309	4218 1145
	RESET1*	-8678 -1168	83 IM2	1597 -1168	163 COM36	9155 -335	243 SEG388	7220 1145	323 SEG308	4180 1145
	CEP	-8498 -1168 -8398 -1168	84 VCCDUM1	1754 -1168	164 COM38	9155 -297 9155 -259	244 SEG387	7182 1145	324 SEG307 325 SEG306	4142 1145
	CEP CEM	-8398 -1168 -8298 -1168	85 IM1 86 GNDDUM9	1910 -1168 2067 -1168	165 COM40 166 COM42	9155 -259 9155 -221	245 SEG386 246 SEG385	7144 1145 7106 1145	325 SEG306 326 SEG305	4104 1145 4066 1145
	CEM	-8298 -1168 -8198 -1168	87 IM0/ID	2223 -1168	167 COM44	9155 -183	240 SEG383 247 SEG384	7068 1145	327 SEG304	4000 1143
	VCL	-8018 -1168	88 VCCDUM2	2380 -1168	168 COM46	9155 -145	248 SEG383	7030 1145	328 SEG303	3990 1145
_	VCL	-7918 -1168	89 TEST2	2537 -1168	169 COM48	9155 -107	249 SEG382	6992 1145	329 SEG302	3952 1145
	VCL	-7818 -1168	90 TEST1	2693 -1168	170 COM50	9155 -69	250 SEG381	6954 1145	330 SEG301	3914 1145
11	VCL	-7718 -1168	91 GNDDUM10		171 COM52	9155 -31	251 SEG380	6916 1145	331 SEG300	3876 1145
12	VCH	-7538 -1168	92 DUMMY3	3030 -1168	172 COM54	9155 7	252 SEG379	6878 1145	332 SEG299	3838 1145
13	VCH	-7438 -1168	93 DUMMY4	3130 -1168	173 COM56	9155 45	253 SEG378	6840 1145	333 SEG298	3800 1145
14	VCH	-7338 -1168	94 DUMMY5	3230 -1168	174 COM58	9155 83	254 SEG377	6802 1145	334 SEG297	3762 1145
15	VCH	-7237 -1168	95 DUMMY6	3330 -1168	175 COM60	9155 121	255 SEG376	6764 1145	335 SEG296	3724 1145
16	C24+	-7057 -1168	96 DUMMY7	3430 -1168	176 COM62	9155 159	256 SEG375	6726 1145	336 SEG295	3686 1145
17	C24+	-6957 -1168	97 DUMMY8	3530 -1168	177 COM64	9155 197	257 SEG374	6688 1145	337 SEG294	3648 1145
18	C24-	-6857 -1168	98 DUMMY9	3630 -1168	178 COM66	9155 235	258 SEG373	6650 1145	338 SEG293	3610 1145
19		-6757 -1168	99 VREFL	3810 -1168	179 COM68	9155 273	259 SEG372	6612 1145	339 SEG292	3572 1145
20		-6657 -1168	100 VREFL	3910 -1168	180 COM70	9155 311	260 SEG371	6574 1145	340 SEG291	3534 1145
	C23+	-6557 -1168	101 BIASC	4010 -1168	181 COM72	9155 349	261 SEG370	6536 1145	341 SEG290	3496 1145
22		-6457 -1168	102 BIASC	4110 -1168	182 COM74	9155 387	262 SEG369	6498 1145	342 SEG289	3458 1145
23	C23-	-6357 -1168	103 VREFM	4211 -1168	183 COM76	9155 425	263 SEG368	6460 1145	343 SEG288	3420 1145
	C22+	-6257 -1168	104 VREFM	4311 -1168	184 COM78	9155 463	264 SEG367	6422 1145	344 SEG287	3382 1145
_	C22+	-6157 -1168	105 VM	4411 -1168	185 COM80	9155 501	265 SEG366	6384 1145	345 SEG286	3344 1145
	C22- C22-	-6057 -1168 -5957 -1168	106 VM	4511 -1168	186 COM82	9155 539 9155 577	266 SEG365 267 SEG364	6346 1145	346 SEG285	3306 1145
	C22- C21+	-5957 -1168 -5856 -1168	107 VM 108 VM	4611 -1168 4711 -1168	187 COM84 188 COM86	9155 577 9155 615	267 SEG364 268 SEG363	6308 1145 6270 1145	347 SEG284 348 SEG283	3268 1145 3230 1145
	C21+	-5756 -1168	108 VM	4811 -1168	189 COM88	9155 653	269 SEG362	6232 1145	349 SEG282	3192 1145
	C21-	-5576 -1168	110 VSH	4911 -1168	190 COM90	9155 691	270 SEG361	6194 1145	350 SEG281	3154 1145
31		-5476 -1168	111 VSH	5011 -1168	191 COM92	9155 729	271 SEG360	6156 1145	351 SEG280	3116 1145
32	VCI2	-5376 -1168	112 VSH	5111 -1168	192 COM94	9155 767	272 SEG359	6118 1145	352 SEG279	3078 1145
33		-5276 -1168	113 VOUT	5291 -1168	193 COM96	9155 805	273 SEG358	6080 1145	353 SEG278	3040 1145
34	VCI2	-5176 -1168	114 VOUT	5391 -1168	194 COM98	9155 843	274 SEG357	6042 1145	354 SEG277	3002 1145
35	VCI2	-5076 -1168	115 VOUT	5491 -1168	195 COM100	9155 881	275 SEG356	6004 1145	355 SEG276	2964 1145
36	GNDDUM1	-4896 -1168	116 VOUT	5592 -1168	196 COM102	9155 919	276 SEG355	5966 1145	356 SEG275	2926 1145
37	GNDDUM2	-4796 -1168	117 C12+	5772 -1168	197 COM104	9155 957	277 SEG354	5928 1145	357 SEG274	2888 1145
	GNDDUM3	-4696 -1168	118 C12+	5872 -1168	198 COM106	9155 995	278 SEG353	5890 1145	358 SEG273	2850 1145
	GNDDUM4	-4596 -1168	119 C12+	5972 -1168	199 DUMMY12	9193 1183	279 SEG352	5852 1145	359 SEG272	2812 1145
	DB15	-4416 -1168	120 C12+	6072 -1168	200 COM108	8892 1145	280 SEG351	5814 1145	360 SEG271	2774 1145
	DB14	-4259 -1168	121 C12-	6172 -1168	201 COM110	8854 1145	281 SEG350	5776 1145	361 SEG270	2736 1145
	DB13	-4103 -1168	122 C12-	6272 -1168	202 COM112	8816 1145	282 SEG349	5738 1145	362 SEG269	2698 1145
	DB12 DB11	-3946 -1168 -3789 -1168	123 C12- 124 C12-	6372 -1168 6472 -1168	203 COM114 204 COM116	8778 1145 8740 1145	283 SEG348 284 SEG347	5700 1145 5662 1145	363 SEG268 364 SEG267	2660 1145 2622 1145
45	DB10	-3633 -1168	124 C12- 125 C11+	6572 -1168	204 COM116 205 COM118	8740 1145 8702 1145	284 SEG347 285 SEG346	5662 1145 5624 1145	364 SEG267 365 SEG266	2584 1145
	DB10 DB9	-3476 -1168	125 C11+ 126 C11+	6672 -1168	206 COM118	8664 1145	286 SEG345	5586 1145	366 SEG265	2546 1145
47	DB9	-3320 -1168	127 C11+	6772 -1168	207 COM122	8626 1145	287 SEG344	5548 1145	367 SEG264	2508 1145
48	GNDDUM5	-3163 -1168	128 C11+	6872 -1168	208 COM124	8588 1145	288 SEG343	5510 1145	368 SEG263	2470 1145
49	DB7	-3006 -1168	129 C11-	6972 -1168	209 COM126	8550 1145	289 SEG342	5472 1145	369 SEG262	2432 1145
	DB6	-2850 -1168	130 C11-	7073 -1168	210 COM128	8512 1145	290 SEG341	5434 1145	370 SEG261	2394 1145
	DB5	-2693 -1168	131 C11-	7173 -1168	211 COM130	8474 1145	291 SEG340	5396 1145	371 SEG260	2356 1145
52	DB4	-2537 -1168	132 C11-	7273 -1168	212 COM132	8436 1145	292 SEG339	5358 1145	372 SEG259	2318 1145
53	DB3	-2380 -1168	133 VCIOUT	7453 -1168	213 COM134	8398 1145	293 SEG338	5320 1145	373 SEG258	2280 1145
54	DB2	-2223 -1168	134 VCIOUT	7553 -1168	214 COM136	8360 1145	294 SEG337	5282 1145	374 SEG257	2242 1145
55		-2067 -1168	135 VCIOUT	7653 -1168	215 COM138	8322 1145	295 SEG336	5244 1145	375 SEG256	2204 1145
56		-1910 -1168	136 VCIOUT	7753 -1168	216 COM140	8284 1145	296 SEG335	5206 1145	376 SEG255	2166 1145
	GNDDUM6	-1754 -1168	137 VCI1	7933 -1168	217 COM142	8246 1145	297 SEG334	5168 1145	377 SEG254	2128 1145
	RW/RD*	-1597 -1168	138 VCI1	8033 -1168 8133 -1168	218 COM144	8208 1145	298 SEG333	5130 1145	378 SEG253 379 SEG252	2090 1145
	E/WR*/SCL GNDDUM7	-1440 -1168 -1284 -1168	139 VCI1 140 VCI1	8133 -1168 8233 -1168	219 COM146 220 COM148	8170 1145 8132 1145	299 SEG332 300 SEG331	5092 1145 5054 1145	379 SEG252 380 SEG251	2052 1145 2014 1145
61	RS	-1127 -1168	141 VCCDUM3	8413 -1168	221 COM150	8094 1145	301 SEG330	5016 1145	381 SEG250	1976 1145
62	CS*	-971 -1168	142 VCCDUM4	8513 -1168	222 COM150	8056 1145	302 SEG329	4978 1145	382 SEG249	1938 1145
	VCC	-791 -1168	143 RESET3*	8693 -1168	223 COM154	8018 1145	303 SEG328	4940 1145	383 SEG248	1900 1145
	VCC	-690 -1168	144 DUMMY10	8850 -1168	224 COM156	7980 1145	304 SEG327	4902 1145	384 SEG247	1862 1145
	VCC	-590 -1168	145 DUMMY11	9193 -1168	225 COM158	7942 1145	305 SEG326	4864 1145	385 SEG246	1824 1145
	VCC	-490 -1168	146 COM2	9155 -981	226 COM160	7904 1145	306 SEG325	4826 1145	386 SEG245	1786 1145
	AVCC	-390 -1168	147 COM4	9155 -943	227 COM162	7866 1145	307 SEG324	4788 1145	387 SEG244	1748 1145
	AVCC	-290 -1168	148 COM6	9155 -905	228 COM164	7828 1145	308 SEG323	4750 1145	388 SEG243	1710 1145
	AVCC	-190 -1168	149 COM8	9155 -867	229 COM166	7790 1145	309 SEG322	4712 1145	389 SEG242	1672 1145
	AVCC	-90 -1168	150 COM10	9155 -829	230 COM168	7752 1145	310 SEG321	4674 1145	390 SEG241	1634 1145
	AGND	90 -1168	151 COM12	9155 -791	231 COM170	7714 1145	311 SEG320	4636 1145	391 SEG240	1596 1145
	AGND	190 -1168	152 COM14	9155 -753	232 COM172	7676 1145	312 SEG319	4598 1145	392 SEG239	1558 1145
	GND	290 -1168	153 COM16	9155 -715	233 COM174	7638 1145	313 SEG318	4560 1145	393 SEG238	1520 1145
	GND	390 -1168	154 COM18	9155 -677	234 COM176	7600 1145	314 SEG317	4522 1145	394 SEG237	1482 1145
	GND	490 -1168	155 COM20	9155 -639	235 SEG396	7524 1145	315 SEG316	4484 1145	395 SEG236	1444 1145
	GND	590 -1168	156 COM22	9155 -601	236 SEG395	7486 1145	316 SEG315	4446 1145	396 SEG235	1406 1145
	AGND	690 -1168	157 COM24	9155 -563	237 SEG394	7448 1145	317 SEG314	4408 1145	397 SEG234	1368 1145
	AGND DECETA*	791 -1168 971 -1168	158 COM26	9155 -525	238 SEG393	7410 1145	318 SEG313	4370 1145	398 SEG233	1330 1145
	RESET2* OSC2	1127 -1168	159 COM28 160 COM30	9155 -487 9155 -449	239 SEG392 240 SEG391	7372 1145 7334 1145	319 SEG312 320 SEG311	4332 1145 4294 1145	399 SEG232 400 SEG231	1292 1145 1254 1145
00	USC2	112/ -1108	100 COMSU	7133 -449	240 SEG391	1334 1143	320 SEUSII	4474 1143	400 SEG231	143

Table 2 cont.

HD66766R PAD Coordinate (\$traight)(No.2)

No.	pad name	X	Y	No.	pad name	X	Y	No.	pad name	X	Y	No.	pad name	Х	Y
401	SEG230	1216	1145		SEG150	-1862	1145	561	SEG70	-4902	1145	641	COM155	-7980	1145
402	SEG229	1178	1145		SEG149	-1900	1145	562	SEG69	-4940	1145	642	COM153	-8018	1145
403	SEG228	1140	1145	483	SEG148	-1938	1145	563	SEG68	-4978	1145	643	COM151	-8056	1145
404	SEG227	1102	1145		SEG147	-1976	1145	564	SEG67	-5016	1145	644	COM149	-8094	1145
405	SEG226	1064	1145	-	SEG146	-2014	1145	565	SEG66	-5054	1145	645	COM147	-8132	1145
406	SEG225	1026	1145	_	SEG145	-2052	1145	566	SEG65	-5092	1145	646	COM145	-8170	1145
407	SEG224	988	1145	_	SEG144	-2090	1145	567	SEG64	-5130	1145	647	COM143	-8208	1145
408	SEG223	950	1145		SEG143	-2128	1145	568	SEG63	-5168	1145	648	COM141	-8246	1145
409	SEG222	912	1145	489	SEG142	-2166	1145	569	SEG62	-5206	1145	649	COM139	-8284	1145
410	SEG221	874	1145	490	SEG141	-2204	1145	570	SEG61	-5244	1145	650	COM137	-8322	1145
411	SEG220	836	1145	491	SEG140	-2242	1145	571	SEG60	-5282	1145	651	COM135	-8360	1145
412	SEG219	798	1145	492	SEG139	-2280	1145	572	SEG59	-5320	1145	652	COM133	-8398	1145
413	SEG218	760	1145	493	SEG138	-2318	1145	573	SEG58	-5358	1145	653	COM131	-8436	1145
414	SEG217	722	1145	494	SEG137	-2356	1145	574	SEG57	-5396	1145	654	COM129	-8474	1145
415	SEG216	684	1145		SEG136	-2394	1145	575	SEG56	-5434	1145	655	COM127	-8512	1145
416	SEG215	646	1145	496	SEG135	-2432	1145	576		-5472	1145	656	COM125	-8550	1145
417	SEG214	608	1145		SEG134	-2470	1145	577	SEG54	-5510	1145	657	COM123	-8588	1145
418	SEG213	570	1145		SEG133	-2508	1145	578		-5548	1145	658	COM121	-8626	1145
419	SEG212	532	1145		SEG132	-2546	1145	579	SEG52	-5586	1145	659	COM119	-8664	1145
420	SEG211	494	1145		SEG131	-2584	1145	580	SEG51	-5624	1145	660	COM117	-8702	1145
421	SEG210	456	1145		SEG130	-2622	1145	581	SEG50	-5662	1145	661	COM115	-8740	1145
422	SEG209	418	1145		SEG129	-2660	1145	582	SEG49	-5700	1145	662	COM113	-8778	1145
423	SEG208	380	1145	-	SEG128	-2698	1145	583	SEG48	-5738	1145	663	COM111	-8816	1145
424	SEG207	342 304	1145		SEG127 SEG126	-2736 -2774	1145 1145	584 585	SEG47	-5776 -5814	1145	664	COM109 COM107	-8854 -8892	1145
425	SEG206 SEG205	266	1145		SEG126 SEG125	-2774	1145	586	SEG46 SEG45	-5852	1145	666	DUMMY13	-8892	1143
426	SEG205 SEG204	228	1145		SEG125 SEG124	-2812	1145	587		-5890	1145		COM105	-9193	995
428	SEG203	190	1145		SEG123	-2888	1145	588	SEG43	-5928	1145	668	COM103	-9155	957
429	SEG202	152	1145		SEG122	-2926	1145	589	SEG42	-5966	1145	669	COM103	-9155	919
430	SEG201	114	1145		SEG121	-2964	1145	590	SEG41	-6004	1145	670	COM99	-9155	881
431	SEG200	76	1145		SEG120	-3002	1145	591	SEG40	-6042	1145	671	COM97	-9155	843
432	SEG199	38	1145	512	SEG119	-3040	1145	592	SEG39	-6080	1145	672	COM95	-9155	805
433	SEG198	-38	1145	513	SEG118	-3078	1145	593	SEG38	-6118	1145	673	COM93	-9155	767
434	SEG197	-76	1145	514	SEG117	-3116	1145	594	SEG37	-6156	1145	674	COM91	-9155	729
435	SEG196	-114	1145	515	SEG116	-3154	1145	595	SEG36	-6194	1145	675	COM89	-9155	691
436	SEG195	-152	1145		SEG115	-3192	1145	596	SEG35	-6232	1145	676	COM87	-9155	653
437	SEG194	-190	1145		SEG114	-3230	1145	597	SEG34	-6270	1145	677	COM85	-9155	615
438	SEG193	-228	1145		SEG113	-3268	1145	598		-6308	1145	678	COM83	-9155	577
439	SEG192	-266	1145		SEG112	-3306	1145	599	SEG32	-6346	1145	679	COM81	-9155	539
440	SEG191	-304	1145	520	SEG111	-3344	1145	600	SEG31	-6384	1145	680	COM79	-9155	501
441	SEG190	-342 -380	1145		SEG110	-3382	1145 1145	601		-6422	1145		COM77	-9155 -9155	463
442	SEG189 SEG188	-418	1145	522 523	SEG109 SEG108	-3420 -3458	1145	602	SEG29 SEG28	-6460 -6498	1145 1145	682 683	COM75 COM73	-9155	425 387
444	SEG187	-418	1145		SEG108 SEG107	-3496	1145	604		-6536	1145	684	COM73	-9155	349
445	SEG186	-494	1145	-	SEG106	-3534	1145	605	SEG26	-6574	1145		COM69	-9155	311
446	SEG185	-532	1145		SEG105	-3572	1145	606		-6612	1145	686	COM67	-9155	273
447	SEG184	-570	1145	527	SEG104	-3610	1145	607	SEG24	-6650	1145	687	COM65	-9155	235
448	SEG183	-608	1145	528	SEG103	-3648	1145	608	SEG23	-6688	1145	688	COM63	-9155	197
449	SEG182	-646	1145	529	SEG102	-3686	1145	609	SEG22	-6726	1145	689	COM61	-9155	159
450	SEG181	-684	1145	530	SEG101	-3724	1145	610	SEG21	-6764	1145	690	COM59	-9155	121
451	SEG180	-722	1145	531	SEG100	-3762	1145	611	SEG20	-6802	1145	691	COM57	-9155	83
452	SEG179	-760	1145	532	SEG99	-3800	1145	612	SEG19	-6840	1145	692	COM55	-9155	45
453	SEG178	-798	1145		SEG98	-3838	1145	613	SEG18	-6878	1145	693	COM53	-9155	7
454	SEG177	-836	1145		SEG97	-3876	1145	614		-6916	1145	694	COM51	-9155	-31
455	SEG176	-874	1145		SEG96	-3914	1145	615	SEG16	-6954	1145	695	COM49	-9155	-69
456	SEG175	-912	1145		SEG95	-3952	1145	616	SEG15	-6992	1145	696	COM47	-9155	-107
457	SEG174	-950	1145		SEG94	-3990	1145	617	SEG14	-7030	1145	697	COM45	-9155	-145
458 459	SEG173 SEG172	-988	1145		SEG93	-4028 -4066	1145	618	SEG13	-7068	1145	698 699	COM43	-9155 -9155	-183 -221
459	SEG172 SEG171	-1026 -1064	1145		SEG92 SEG91	-4104	1145	620	SEG12 SEG11	-7106 -7144	1145	700	COM41 COM39	-9155 -9155	-259
461	SEG171 SEG170	-11004	1145	-	SEG91 SEG90	-4104	1145	621		-7144	1145	700	COM39 COM37	-9155 -9155	-259
462		-1140	1145		SEG90 SEG89	-4142	1145	622		-7220	1145	702	COM37	-9155	-335
	SEG168	-1178			SEG88	-4218	1145	_	SEG8	-7258			COM33	-9155	
	SEG167	-1216			SEG87	-4256	1145		SEG7		1145		COM31	-9155	-411
	SEG166	-1254	1145		SEG86	-4294	1145	625		-7334	_		COM29	-9155	-449
466		-1292	1145		SEG85	-4332	1145	626		-7372	1145		COM27	-9155	-487
467	SEG164	-1330			SEG84	-4370	1145	627	SEG4		1145		COM25	-9155	-525
468	SEG163	-1368	1145	548	SEG83	-4408	1145	628	SEG3	-7448	1145	708	COM23	-9155	-563
469	SEG162	-1406	1145	549	SEG82	-4446	1145	629	SEG2	-7486		709	COM21	-9155	-601
	SEG161	-1444			SEG81	-4484	1145	630			1145		COM19	-9155	-639
	SEG160	-1482	1145		SEG80	-4522	1145		COM175	-7600			COM17	-9155	-677
472	SEG159	-1520	1145		SEG79	-4560	1145	632		-7638	1145		COM15	-9155	-715
	SEG158	-1558	1145		SEG78	-4598	1145		COM171	-7676			COM13	-9155	-753
	SEG157	-1596	1145		SEG77	-4636	1145		COM169	-7714	1145		COM11	-9155	-791
475		-1634	1145		SEG76	-4674	1145	635		-7752	1145		COM9	-9155	-829
	SEG155	-1672	1145		SEG75	-4712	1145		COM165	-7790	1145		COM7	-9155	-867
477 478	SEG154 SEG153	-1710 -1748	1145 1145		SEG74 SEG73	-4750 -4788	1145 1145	637	COM163 COM161	-7828 -7866	1145 1145		COM5 COM3	-9155 -9155	-905 -943
	SEG153 SEG152	-1786	1145		SEG73 SEG72	-4826	1145		COM161 COM159	-7904			COM1	-9155	-943
480		-1824	1145		SEG72 SEG71	-4864	1145		COM157	-7942	1145	,17	CO1111	1100	701
700	020101	1024	1143	200	52071	-10U+	1173	540	CO111111	1,742	1170				

Alignment mark	X	Y
Cross	-9000	-1121
Cross	9000	-1121
Circle(Positive)	-9094	1145
Circle(Negative)	9094	1145
L (Positive)	-9004	1145
L (Negative)	9004	1145

■ HD66766R PAD Arrangement (LacedOutput Arrangement)

Figure 2 PAD arrangement (Laced)

Table 3

HD66766R	PAD	Coordinate	(Laced)	(No.1))

HD66766R PAD Co			V I V	NI.	F			No Landania	V I V	No Lord some	- V	· ·
No. pad name	X Y	No. pad name	X Y	No.		X	Y	No. pad name	X Y	No. pad name	X	Y
1 DUMMY1	-9193 -1168	81 OSC1	1284 -1168	161		9108	-411	241 SEG390	7296 1098	321 SEG310	4256	1098
2 DUMMY2	-8835 -1168	82 GNDDUM8	1440 -1168	162		9201	-373	242 SEG389	7258 1191	322 SEG309	4218	1191
3 RESET1*	-8678 -1168	83 IM2	1597 -1168	163		9108	-335	243 SEG388	7220 1098	323 SEG308	4180	1098
4 CEP 5 CEP	-8498 -1168	84 VCCDUM1 85 IM1	1754 -1168 1910 -1168	164		9201	-297 -259	244 SEG387	7182 1191	324 SEG307 325 SEG306	4142 4104	1191 1098
	-8398 -1168			165		9108 9201		245 SEG386	7144 1098		4066	1191
6 CEM 7 CEM	-8298 -1168 -8198 -1168	86 GNDDUM9 87 IM0/ID	2067 -1168 2223 -1168	166		9108	-221 -183	246 SEG385 247 SEG384	7106 1191 7068 1098	326 SEG305 327 SEG304	4000	1098
8 VCL	-8018 -1168	88 VCCDUM2	2380 -1168	168		9201	-145	248 SEG383	7000 1090	328 SEG303	3990	1191
9 VCL	-7918 -1168	89 TEST2	2537 -1168	169		9108	-107	249 SEG382	6992 1098	329 SEG302	3952	1098
10 VCL	-7818 -1168	90 TEST1	2693 -1168	170		9201	-69	250 SEG381	6954 1191	330 SEG301	3914	1191
11 VCL	-7718 -1168	91 GNDDUM10	2850 -1168	171		9108	-31	251 SEG380	6916 1098	331 SEG300	3876	1098
12 VCH	-7538 -1168	92 DUMMY3	3030 -1168	172		9201	7	252 SEG379	6878 1191	332 SEG299	3838	1191
13 VCH	-7438 -1168	93 DUMMY4	3130 -1168	173		9108	45	253 SEG378	6840 1098	333 SEG298	3800	1098
14 VCH	-7338 -1168	94 DUMMY5	3230 -1168	174		9201	83	254 SEG377	6802 1191	334 SEG297	3762	1191
15 VCH	-7237 -1168	95 DUMMY6	3330 -1168	175		9108	121	255 SEG376	6764 1098	335 SEG296	3724	1098
16 C24+	-7057 -1168	96 DUMMY7	3430 -1168	176		9201	159	256 SEG375	6726 1191	336 SEG295	3686	1191
17 C24+	-6957 -1168	97 DUMMY8	3530 -1168	177		9108	197	257 SEG374	6688 1098	337 SEG294	3648	1098
18 C24-	-6857 -1168	98 DUMMY9	3630 -1168	178		9201	235	258 SEG373	6650 1191	338 SEG293	3610	1191
19 C24-	-6757 -1168	99 VREFL	3810 -1168	179	COM68	9108	273	259 SEG372	6612 1098	339 SEG292	3572	1098
20 C23+	-6657 -1168	100 VREFL	3910 -1168	180	COM70	9201	311	260 SEG371	6574 1191	340 SEG291	3534	1191
21 C23+	-6557 -1168	101 BIASC	4010 -1168	181	COM72	9108	349	261 SEG370	6536 1098	341 SEG290	3496	1098
22 C23-	-6457 -1168	102 BIASC	4110 -1168	182		9201	387	262 SEG369	6498 1191	342 SEG289	3458	1191
23 C23-	-6357 -1168	103 VREFM	4211 -1168	183		9108	425	263 SEG368	6460 1098	343 SEG288	3420	1098
24 C22+	-6257 -1168	104 VREFM	4311 -1168	184		9201	463	264 SEG367	6422 1191	344 SEG287	3382	1191
25 C22+	-6157 -1168	105 VM	4411 -1168	185		9108	501	265 SEG366	6384 1098	345 SEG286	3344	1098
26 C22-	-6057 -1168	106 VM	4511 -1168	186		9201	539	266 SEG365	6346 1191	346 SEG285	3306	1191
27 C22-	-5957 -1168	107 VM	4611 -1168	187		9108	577	267 SEG364	6308 1098	347 SEG284	3268	1098
28 C21+	-5856 -1168	108 VM	4711 -1168	188		9201	615	268 SEG363	6270 1191	348 SEG283	3230	1191
29 C21+	-5756 -1168	109 VSH	4811 -1168	189		9108	653	269 SEG362	6232 1098	349 SEG282	3192	1098
30 C21-	-5576 -1168	110 VSH	4911 -1168	190		9201	691	270 SEG361	6194 1191	350 SEG281	3154	1191
31 C21-	-5476 -1168	111 VSH	5011 -1168	191		9108	729	271 SEG360	6156 1098	351 SEG280	3116	1098
32 VCI2	-5376 -1168	112 VSH	5111 -1168	192		9201	767	272 SEG359	6118 1191	352 SEG279	3078	1191
33 VCI2	-5276 -1168	113 VOUT	5291 -1168	193		9108	805	273 SEG358	6080 1098	353 SEG278	3040	1098
34 VCI2 35 VCI2	-5176 -1168	114 VOUT	5391 -1168 5491 -1168	194		9201 9108	843 881	274 SEG357	6042 1191	354 SEG277 355 SEG276	3002	1191 1098
	-5076 -1168 -4896 -1168	115 VOUT 116 VOUT	5491 -1168 5592 -1168			9201	919	275 SEG356 276 SEG355	6004 1098 5966 1191	355 SEG276 356 SEG275	2964 2926	1191
36 GNDDUM1 37 GNDDUM2	-4796 -1168	116 VOUT 117 C12+	5772 -1168	196		9108	957	276 SEG355 277 SEG354	5966 1191 5928 1098	357 SEG274	2888	1098
38 GNDDUM3	-4696 -1168	118 C12+	5872 -1168	198		9201	995	278 SEG353	5890 1191	358 SEG273	2850	1191
39 GNDDUM4	-4596 -1168	119 C12+	5972 -1168	199			1183	279 SEG352	5852 1098	359 SEG272	2812	1098
40 DB15	-4416 -1168	120 C12+	6072 -1168	200			1191	280 SEG351	5814 1191	360 SEG271	2774	1191
41 DB14	-4259 -1168	121 C12-	6172 -1168	201			1098	281 SEG350	5776 1098	361 SEG270	2736	1098
42 DB13	-4103 -1168	122 C12-	6272 -1168	202			1191	282 SEG349	5738 1191	362 SEG269	2698	1191
43 DB12	-3946 -1168	123 C12-	6372 -1168	203			1098	283 SEG348	5700 1098	363 SEG268	2660	1098
44 DB11	-3789 -1168	124 C12-	6472 -1168	204	COM116	8740	1191	284 SEG347	5662 1191	364 SEG267	2622	1191
45 DB10	-3633 -1168	125 C11+	6572 -1168	205			1098	285 SEG346	5624 1098	365 SEG266	2584	1098
46 DB9	-3476 -1168	126 C11+	6672 -1168	206		8664	1191	286 SEG345	5586 1191	366 SEG265	2546	1191
47 DB8	-3320 -1168	127 C11+	6772 -1168	207			1098	287 SEG344	5548 1098	367 SEG264	2508	1098
48 GNDDUM5	-3163 -1168	128 C11+	6872 -1168	208			1191	288 SEG343	5510 1191	368 SEG263	2470	1191
49 DB7	-3006 -1168	129 C11-	6972 -1168	209			1098	289 SEG342	5472 1098	369 SEG262	2432	1098
50 DB6	-2850 -1168	130 C11-	7073 -1168	210			1191	290 SEG341	5434 1191	370 SEG261	2394	1191
51 DB5	-2693 -1168	131 C11-	7173 -1168	211			1098	291 SEG340	5396 1098	371 SEG260	2356	1098
52 DB4	-2537 -1168	132 C11-	7273 -1168	212			1191	292 SEG339	5358 1191	372 SEG259	2318	1191
53 DB3	-2380 -1168	133 VCIOUT	7453 -1168	213			1098	293 SEG338	5320 1098	373 SEG258 374 SEG257	2280	1098
54 DB2	-2223 -1168	134 VCIOUT	7553 -1168	214			1191	294 SEG337	5282 1191		2242	1191 1098
55 DB1/SDO 56 DB0/SDI	-2067 -1168 -1910 -1168	135 VCIOUT 136 VCIOUT	7653 -1168 7753 -1168	215			1098 1191	295 SEG336 296 SEG335	5244 1098 5206 1191	375 SEG256 376 SEG255	2204 2166	1191
57 GNDDUM6	-1754 -1168	137 VCI1	7933 -1168	217			1098	297 SEG334	5168 1098	377 SEG254	2128	1098
58 RW/RD*	-1597 -1168	138 VCI1	8033 -1168	218			1191	298 SEG333	5130 1191	378 SEG253	2090	1191
59 E/WR*/SCL	-1440 -1168	139 VCI1	8133 -1168	219			1098	299 SEG332	5092 1098	379 SEG252	2052	1098
60 GNDDUM7	-1284 -1168	140 VCI1	8233 -1168	220			1191	300 SEG331	5054 1191	380 SEG251	2014	1191
61 RS	-1127 -1168	141 VCCDUM3	8413 -1168	221			1098	301 SEG330	5016 1098	381 SEG250	1976	1098
62 CS*	-971 -1168	142 VCCDUM4	8513 -1168	222			1191	302 SEG329	4978 1191	382 SEG249	1938	1191
63 VCC	-791 -1168	143 RESET3*	8693 -1168	223	COM154	8018	1098	303 SEG328	4940 1098	383 SEG248	1900	1098
64 VCC	-690 -1168	144 DUMMY10	8850 -1168	224	COM156	7980	1191	304 SEG327	4902 1191	384 SEG247	1862	1191
65 VCC	-590 -1168	145 DUMMY11	9193 -1168	225	COM158	7942	1098	305 SEG326	4864 1098	385 SEG246	1824	1098
66 VCC	-490 -1168	146 COM2	9201 -981		COM160	7904		306 SEG325	4826 1191	386 SEG245	1786	
67 AVCC	-390 -1168	147 COM4	9108 -943		COM162		1098	307 SEG324	4788 1098	387 SEG244	1748	1098
68 AVCC	-290 -1168	148 COM6	9201 -905		COM164		1191	308 SEG323	4750 1191	388 SEG243	1710	1191
69 AVCC	-190 -1168	149 COM8	9108 -867		COM166	7790	1098	309 SEG322	4712 1098	389 SEG242	1672	1098
70 AVCC	-90 -1168	150 COM10	9201 -829		COM168		1191	310 SEG321	4674 1191	390 SEG241	1634	1191
71 AGND	90 -1168	151 COM12	9108 -791		COM170	7714		311 SEG320	4636 1098	391 SEG240	1596	1098
72 AGND	190 -1168	152 COM14	9201 -753		COM172		1191	312 SEG319	4598 1191	392 SEG239	1558	1191
73 GND 74 GND	290 -1168	153 COM16	9108 -715		COM174		1098	313 SEG318	4560 1098	393 SEG238	1520	1098
74 GND 75 GND	390 -1168 490 -1168	154 COM18 155 COM20	9201 -677 9108 -639		COM176 SEG396		1191 1098	314 SEG317 315 SEG316	4522 1191 4484 1098	394 SEG237 395 SEG236	1482 1444	1191 1098
75 GND 76 GND	590 -1168	156 COM20	9201 -601	236			1191	316 SEG316 316 SEG315	4484 1098	396 SEG235	1444	1191
77 AGND	690 -1168	157 COM24	9108 -563		SEG394		1098	317 SEG314	4408 1098	397 SEG234	1368	1098
78 AGND	791 -1168	158 COM26	9201 -525		SEG393		1191	318 SEG313	4370 1191	398 SEG233	1330	1191
79 RESET2*	971 -1168	159 COM28	9108 -487		SEG392		1098	319 SEG312	4332 1098	399 SEG232	1292	1098
80 OSC2	1127 -1168	160 COM30	9201 -449		SEG391		1191	320 SEG311	4294 1191	400 SEG231	1254	1191
				_								

Table 3 cont.

HD66766R PAD Coordinate (Laced XNo.2)

No.	pad name	X	Υ	No.	pad name	X	Υ	No.	pad name	X	Υ	No.	pad name	X	Υ
401	SEG230	1216	1098	481	SEG150	-1862	1098	561	SEG70	-4902	1098	641	COM155	-7980	1191
402	SEG229	1178	1191	482	SEG149	-1900	1191	562	SEG69	-4940	1191	642	COM153	-8018	1098
	SEG228	1140	1098	483	SEG148	-1938	1098		SEG68	-4978	1098	643	COM151	-8056	1191
404	SEG227	1102	1191	484	SEG147	-1976	1191	564	SEG67	-5016	1191	644	COM149	-8094	1098
405 406	SEG226 SEG225	1064 1026	1098 1191	485 486	SEG146 SEG145	-2014 -2052	1098 1191	565 566	SEG66 SEG65	-5054 -5092	1098 1191	645 646	COM147 COM145	-8132 -8170	1191 1098
	SEG224	988	1098	487	SEG144	-2090	1098	567	SEG64	-5130	1098	647	COM143	-8208	1191
408	SEG223	950	1191	488	SEG143	-2128	1191	568	SEG63	-5168	1191	648	COM141	-8246	1098
409	SEG222	912	1098	489	SEG142	-2166	1098	569	SEG62	-5206	1098	649	COM139	-8284	1191
410	SEG221	874	1191	490	SEG141	-2204	1191	570	SEG61	-5244	1191	650	COM137	-8322	1098
411	SEG220	836	1098	491	SEG140	-2242	1098	571	SEG60	-5282	1098	651	COM135	-8360	1191
412	SEG219	798	1191	492	SEG139	-2280	1191	572	SEG59	-5320	1191	652	COM133	-8398	1098
413	SEG218	760	1098	493	SEG138	-2318	1098	573	SEG58	-5358	1098	653	COM131	-8436	1191
414 415	SEG217 SEG216	722 684	1191 1098	494 495	SEG137 SEG136	-2356 -2394	1191 1098	574 575	SEG57 SEG56	-5396 -5434	1191 1098	654 655	COM129 COM127	-8474 -8512	1098 1191
416	SEG215	646	1191	496	SEG135	-2432	1191	576	SEG55	-5472	1191	656	COM125	-8550	1098
417	SEG214	608	1098	497	SEG134	-2470	1098	577	SEG54	-5510	1098	657	COM123	-8588	1191
418	SEG213	570	1191	498	SEG133	-2508	1191	578	SEG53	-5548	1191	658	COM121	-8626	1098
	SEG212	532	1098	499		-2546	1098	579		-5586	1098	659	COM119	-8664	1191
	SEG211	494	1191	500	SEG131	-2584	1191	580	SEG51	-5624	1191	660	COM117	-8702	1098
421	SEG210	456	1098	501	SEG130	-2622	1098	581	SEG50	-5662	1098	661	COM115	-8740	1191
	SEG209	418	1191	502	SEG129	-2660	1191 1098	582	SEG49	-5700	1191	662	COM113	-8778	1098
	SEG208 SEG207	380 342	1098 1191	503 504	SEG128 SEG127	-2698 -2736	1191	583 584	SEG48 SEG47	-5738 -5776	1098 1191	663 664	COM111 COM109	-8816 -8854	1191 1098
	SEG206	304	1098	505	SEG126	-2774	1098	585	SEG46	-5814	1098	665	COM107	-8892	1191
	SEG205	266	1191	506	SEG125	-2812	1191	586	SEG45	-5852	1191	666	DUMMY13	-9193	1183
427	SEG204	228	1098	507	SEG124	-2850	1098	587	SEG44	-5890	1098	667	COM105	-9201	995
428	SEG203	190	1191	508	SEG123	-2888	1191	588	SEG43	-5928	1191	668	COM103	-9108	957
429	SEG202	152	1098	509	SEG122	-2926	1098	589	SEG42	-5966	1098	669	COM101	-9201	919
	SEG201	114	1191	510		-2964	1191	590	SEG41	-6004	1191	670	COM99	-9108	881
	SEG200 SEG199	76 38	1098 1191	511 512	SEG120 SEG119	-3002 -3040	1098 1191	591 592	SEG40 SEG39	-6042 -6080	1098 1191	671 672	COM97 COM95	-9201 -9108	843 805
	SEG198	-38	1098	513	SEG118	-3078	1098	593	SEG38	-6118	1098	673	COM93	-9201	767
	SEG197	-76	1191	514		-3116	1191		SEG37	-6156	1191	674	COM91	-9108	729
435	SEG196	-114	1098	515	SEG116	-3154	1098	595	SEG36	-6194	1098	675	COM89	-9201	691
	SEG195	-152	1191	516	SEG115	-3192	1191	596	SEG35	-6232	1191	676	COM87	-9108	653
	SEG194	-190	1098	517	SEG114	-3230	1098	597	SEG34	-6270	1098	677	COM85	-9201	615
438	SEG193	-228	1191	518	SEG113	-3268	1191	598	SEG33	-6308	1191	678	COM83	-9108	577
439 440	SEG192	-266 -304	1098 1191	519 520	SEG112 SEG111	-3306 -3344	1098 1191	599	SEG32 SEG31	-6346 -6384	1098 1191	679 680	COM81 COM79	-9201 -9108	539 501
441	SEG191 SEG190	-342	1098	521	SEG110	-3382	1098	601	SEG30	-6422	1098	681	COM77	-9201	463
442	SEG189	-380	1191	522	SEG109	-3420	1191	602	SEG29	-6460	1191	682	COM75	-9108	425
443	SEG188	-418	1098	523	SEG108	-3458	1098	603	SEG28	-6498	1098	683	COM73	-9201	387
444	SEG187	-456	1191	524	SEG107	-3496	1191	604	SEG27	-6536	1191	684	COM71	-9108	349
445	SEG186	-494	1098	525	SEG106	-3534	1098	605	SEG26	-6574	1098	685	COM69	-9201	311
446	SEG185	-532	1191	526	SEG105	-3572	1191	606	SEG25	-6612	1191	686	COM67	-9108	273
447 448	SEG184 SEG183	-570 -608	1098 1191	527 528	SEG104 SEG103	-3610 -3648	1098 1191	607	SEG24 SEG23	-6650 -6688	1098 1191	687	COM65 COM63	-9201 -9108	235 197
_	SEG182	-646	1098	529	SEG103	-3686	1098	609	SEG22	-6726	1098	689	COM61	-9201	159
	SEG181	-684	1191	530		-3724	1191	610		-6764	1191		COM59	-9108	121
451	SEG180	-722	1098	531	SEG100	-3762	1098	611	SEG20	-6802	1098	691	COM57	-9201	83
452	SEG179	-760	1191	532	SEG99	-3800	1191	612	SEG19	-6840	1191	692	COM55	-9108	45
	SEG178	-798	1098	533	SEG98	-3838	1098	613		-6878	1098		COM53	-9201	7
	SEG177 SEG176	-836 -874	1191 1098	534 535	SEG97 SEG96	-3876 -3914	1191 1098	614 615		-6916 -6954	1191 1098		COM51 COM49	-9108 -9201	-31 -69
456	SEG175	-912	1191	536	SEG95	-3914	1191	616		-6992	1191		COM47	-9201	-107
457	SEG174	-950	1098	537	SEG94	-3990	1098	617		-7030	1098	697	COM45	-9201	-145
	SEG173	-988	1191	538	SEG93	-4028	1191	618		-7068	1191		COM43	-9108	-183
459	SEG172	-1026	1098	539	SEG92	-4066	1098	619	SEG12	-7106	1098	699	COM41	-9201	-221
	SEG171	-1064	1191	540	SEG91	-4104	1191	620		-7144	1191		COM39	-9108	-259
	SEG170	-1102 -1140	1098 1191	541 542		-4142 -4180	1098 1191	621		-7182 -7220	1098 1191		COM37	-9201	-297
	SEG169 SEG168	-1178	1098	543	SEG89 SEG88	-4218	1098	622 623	SEG8	-7258	1098		COM35 COM33	-9108 -9201	-335 -373
464	SEG167	-1216	1191	544	SEG87	-4256	1191	624	SEG7	-7296	1191		COM31	-9108	-411
465	SEG166	-1254	1098	545	SEG86	-4294	1098	625	SEG6	-7334	1098	705	COM29	-9201	-449
	SEG165	-1292	1191		SEG85	-4332	1191	626	SEG5	-7372	1191	706	COM27	-9108	-487
467	SEG164	-1330		547	SEG84	-4370	1098		SEG4	-7410			COM25	-9201	-525
	SEG163	-1368	1191		SEG83	-4408	1191		SEG3	-7448	1191		COM23	-9108	-563
	SEG162	-1406	1098		SEG82	-4446	1098		SEG2	-7486	1098		COM21	-9201	-601
	SEG161 SEG160	-1444 -1482	1191 1098	550	SEG81 SEG80	-4484 -4522	1191 1098		SEG1 COM175	-7524 -7600	1191 1191		COM19 COM17	-9108 -9201	-639 -677
	SEG159	-1482			SEG79	-4522	1191		COM175 COM173	-7638	1098		COM17 COM15	-9201	-6// -715
	SEG158	-1558	1098		SEG78	-4598	1098		COM173	-7676	1191		COM13	-9201	-753
	SEG157	-1596	1191	554		-4636	1191		COM169	-7714			COM11	-9108	-791
	SEG156	-1634			SEG76	-4674	1098		COM167	-7752	1191	715	COM9	-9201	-829
476	SEG155	-1672	1191	556	SEG75	-4712	1191	636	COM165	-7790	1098	716	COM7	-9108	-867
	SEG154	-1710			SEG74	-4750	1098		COM163	-7828	1191		COM5	-9201	-905
	SEG153	-1748			SEG73	-4788	1191		COM161	-7866	1098		COM3	-9108	-943
	SEG152 SEG151	-1786 -1824			SEG72 SEG71	-4826 -4864	1098 1191		COM159 COM157	-7904 -7942	1191 1098	719	COM1	-9201	-981
700	0_0101	-1024	1131	JUU	5	-7004	1131	040	O IVI I J	-1342	1030				

Alignment mark	Χ	Υ
Cross	-9000	-1121
C1035	9000	-1121
Circle(Positive)	-9094	1145
Circle(Negative)	9094	1145
L (Positive)	-9004	1145
L (Negative)	9004	1145

HD66766R Block Diagram Description

Figure 3 HD66766R Block Diagram Description

Pin Functions

Pin Functional Description Table 4

Signals	Number of Pins	I/O	Connected to	Functions				
IM2-1,	3	I	GND or V _{CC}	Selects the MPU interface mode:				
IM0/ID				IM2 IM1 IM0/ID0 MPU Interface mode				
				GND GND GND 68 system 16-bit bus interface				
				GND GND Vcc 68 system 8-bit bus interface				
				GND Vcc GND 80 system 16-bit bus interface				
				GND Vcc Vcc 80 system 8-bit bus interface				
				Vcc GND ID Clock synchronized serial interface				
				When a serial interface is selected, the IM0 pin is used as the ID setting for a device code.				
CS*	1	I	MPU	Selects the HD66766R: Low: HD66766R is selected and can be accessed High: HD66766R is not selected and cannot be accessed Must be fixed at GND level when not in use.				
RS	1	I	MPU	Selects the register. Low: Index/status High: Control				
				For a register or a synchronous clock interface, fixed to the Vcc or GND level.				
E/WR*/SCL	1	I	MPU	For a 68-system bus interface, serves as an enable signal to activate data read/write operation. For an 80-system bus interface, serves as a write strobe signal and writes data at the low level.				
				For a synchronous clock interface, serves as the synchronous clock signal.				
RW/RD*	1	I	MPU	For a 68-system bus interface, serves as a signal to select data read/write operation. Low: Write High: Read For an 80-system bus interface, serves as a read strobe signal and reads data at the low level.				
				For a synchronous clock interface, fixed to the Vcc or GND level.				
DB0/SDI	1	I/O	MPU	Serves as a 16-bit bi-directional data bus. For an 8-bit bus interface, data transfer uses DB15-DB8; fix unused DB7-DB0 to the Vcc or GND level.				
				For a clock-synchronous serial interface, serves as the serial data input pin (SDI). The input level is read on the rising edge of the SCL signal.				
DB1/SDO	1	I/O	MPU	Serves as a 16-bit bi-directional data bus. For an 8-bit bus interface, data transfer uses DB15-DB8; fix unused DB7-DB0 to the Vcc or GND level.				
				For a clock-synchronous serial interface, serves as a serial data output pin (SDO). Successive bit values are output on the falling edge of the SCL signal.				

Rev. 1.0-1 / September 2002

Table	4	cont.
-------	---	-------

Signals	Number of Pins	of I/O	Connected to	Functions
DB2-DB15	14	I/O	MPU	Serves as a 16-bit bi-directional data bus. For an 8-bit bus interface, data transfer uses DB15-DB8; fix unused DB7-DB0 to the Vcc or GND level.
				For a synchronous clock interface or unused pins, fixed to the Vcc or GND level.
SEG1– SEG396	396	O	LCD	Output signals for segment drive. In the display-off period (D1–0 = 00, 01) or standby mode (STB = 1), all pins output GND level. The SGS bit can change the shift direction of the segment signal. For example, if SGS = 0, RAM address 0000 is output from SEG1. If SGS = 1, it is output from SEG396. SEG1, SEG4, SEG7, display red (R), SEG2, SEG5, SEG8, display green (G), and SEG3, SEG6, SEG9, display blue (B) (SGS = 0).
COM1- COM176	176	O	LCD	Output signals for common drive. In the display-off period $(D1-0=00,01)$ sleep mode $(SLP=1)$ or standby mode $(STB=1)$, all pins output GND level. The CMS bit can change the shift direction of the common signal. For example, if CMS = 0, driver outputs from COM1 to COM176. If CMS = 1, driver outputs COM176 to COM1. Note that start position of the common driver output is changed by screen diving position function.
VCH, VCL	2	_	Capacitor for stabilization, shot key barrier diode or external power supply	Selection level for the common signal. When internal power supply is used, connect the capacitors for stabilization to VCH AND VCL, and shot key barrier diode to VCL. When internal power supply is not used, supply external voltage.
VM	1		Capacitor for stabilization or external power supply	Non-selection level for the common signal. When internal operational amplifier is used, it is output of the internal operational amplifier and connect the capacitors for stabilization. When internal operational amplifier is not used, supply external voltage.
VSH	1		Capacitor for stabilization or external power supply	Selection level for the segment signal. When internal operational amplifier is used, it is output of the internal operational amplifier and connect the capacitors for stabilization. When internal operational amplifier is not used, supply external voltage.
VciOUT	1	_	Vci1 and capacitor for stabilization or open	Outputs a regulated voltage derived from Vcc. Connect a capacitor for stabilization. When this pin is not used, leave it open.
Vci1	1		VciOUT or power supply	Voltage-input pin for step-up circuit 1. When the Vci adjuster is used, input the power supply from VciOUT. When not used, input the external power supply.
Vci2	1	_	Capacitor for stabilization or open	Connect capacitor for stabilization. When the internal power supply circuit is not used, leave this pin open.
VOUT	1	_	Step-up capacitance	A voltage that doubles or triples the voltage between Vci1 and GND is output here. The step-up factor can be set in an internal register.
C11+, C11-	2	_	Step-up capacitance	When step-up circuit is used, connect a step-up capacitor.

Rev. 1.0-1 / September 2002

Table 4 cont.

Signals	Number of Pins	I/O	Connected to	Functions
C12+, C12-	2		Step-up capacitance	When step-up circuit is used, connect a step-up capacitor.
C21+, C21-	2	_	Step-up capacitance	When step-up circuit is used, connect a step-up capacitor.
C22+, C22-	2	_	Step-up capacitance	When step-up circuit is used, connect a step-up capacitor.
C23+, C23-	2	_	Step-up capacitance	When step-up circuit is used, connect a step-up capacitor.
C24+, C24-	2	_	Step-up capacitance	When step-up circuit is used, connect a step-up capacitor.
CEP, CEM	2		Step-up capacitance or open	Connect a step-up capacitor to generate VCL level by VCH and VM. When step-up circuit is not used, leave this pin open.
VREFL	1	_	VCC or external power supply	Inputs reference voltage for LCD drives power supply. Input lower level than Vcc. Since input current does not run, level input, which is divided by resistors, is also possible.
VREFM	1	_	Capacitor for stabilization or external power supply	Connect capacitor for stabilization for internal power supply. When internal operational amplifier is not used, supply external voltage.
BIASC	1	_	Capacitor for stabilization or open	Connect capacitor for stabilization for internal power supply.
VCC, GND	2	_	Power supply	VCC: + 2.2 V to + 3.6 V; GND (logic): 0 V
AVCC	1	_	_	VCC for power supply circuit. Input the same level of voltage as VCC.
AGND	1	_	_	GND for power supply circuit.
OSC1, OSC2	2	I/O	Oscillation-resistor	Connect an external resistor for R-C oscillation. When providing clocks from outside, input clock to OCS1 and leave OSC2 open.
RESET*	1	I	MPU or external R-C circuit Open unused pins	Reset pin. Initializes the LSI when low. Must be reset after power-on. Since HCD66766RBP has three RESET pins, use one pin and open unused two pins.
VccDUM	1	О	Input pins	Outputs the internal VCC level; shorting this pin sets the adjacent input pin to the VCC level.
GNDDUM	1	О	Input pins	Outputs the internal GND level; shorting this pin sets the adjacent input pin to the GND level.
Dummy	1		_	Dummy pad. Must be left disconnected.
TEST1, TEST 2	2	I	GND	Test pin. Must be fixed at GND level.

Block Function Description

System Interface

The HD66766R has five high-speed system interfaces: an 80-system 16-bit/8-bit bus, a 68-system 16-bit/8-bit bus, and a Clock synchronized serial interface. The IM2-0 pins select the interface mode. The HD66766R has three 16-bit registers: an index register (IR), a write data register (WDR), and a read data register (RDR). The IR stores index information from the control registers and the GRAM. The WDR temporarily stores data to be written into control registers and the GRAM, and the RDR temporarily stores data read from the GRAM. Data written into the GRAM from the MPU is first written into the WDR and then is automatically written into the GRAM by internal operation. Data is read through the RDR when reading from the GRAM, and the first read data is invalid and the second and the following data are normal.

Execution time for instruction excluding oscillation start is 0-clock cycle and instructions can be written in succession.

 Table 5
 Register Selection (8/16 Parallel Interface)

80-seri	es Bus	68-serie	s Bus	
WR	RD	R/W	RS	Operations
0	1	0	0	Writes indexes into IR
1	0	1	0	Reads internal status
0	1	0	1	Writes into control registers and GRAM through WDR
1	0	1	1	Reads from GRAM through RDR

 Table 6
 Register Selection (Clock synchronized Serial Interface)

Start bytes

R/W Bit	RS Bit	Operations
0	0	Writes indexes into IR
1	0	Reads internal status
0	1	Writes into control registers and GRAM through WDR
1	1	Reads from GRAM through RDR

Bit Operation

The HD66766R supports the following functions. A write data mask function that selects data into the GRAM in bit units, and a logic operation function that performs logic operations or conditional determination on the display data set in the GRAM and writes into the GRAM. With the 16-bit bus interface, these functions can greatly reduce the processing lord of the MPU graphics software the display data in the GRAM at high speed. For details, see the Graphics Operation Function section.

Address Counter (AC)

The address counter (AC) assigns address to the GRAM. When an address set instruction is written into the IR, the address information is sent from the IR to the AC. After writing into the GRAM, the AC is automatically incremented by 1 (or decrement by 1). After reading from the GRAM, the AC is not updated.

Graphics RAM (GRAM)

The graphics RAM (GRAM) has twelve bits/pixel and stores the bit-pattern data of 132 x 176 bytes.

PWM Grayscale Palette Circuit

The grayscale palette generates a PWM signal, which corresponds to specified grayscale level. Any 65K out of the 140K possible colors can be displayed at the same time.

Gravscale Control Circuit

The grayscale control circuit performs 16-grayscale control with the pulse width modulation (PWM) method for grayscale display for each color.

Timing Generator

The timing generator generates timing signals for the operation of internal circuits such as the GRAM. The RAM read timing for display and internal operation timing by MPU access is generated separately to avoid interference with one another.

Oscillation Circuit (OSC)

The HD66766R can provide R-C oscillation simply through the addition of an external oscillation-resistor between the OSC1 and OSC2 pins. The appropriate oscillation frequency for operating voltage, display size, and frame frequency can be obtained by adjusting the external-resistor value. Clock pulses can also be supplied externally. Since R-C oscillation stops during the standby mode, current consumption can be reduced.

Liquid Crystal Display Driver Circuit

The liquid crystal display driver circuit consists of 176 common signal drivers (COM1 to COM176) and 396 segment signal drivers (SEG1 to SEG396).

Display pattern data from GRAM is latched to the 396-bit latch circuit. The latched data then enables the segment signal drivers to generate drive waveform outputs. The common driver outputs one of the VCH, VM or VCL voltage level. The SGS bit can change the shift direction of 396-bit data for the segment. The CMS bit can also change the shift direction for the common by selecting an appropriate direction for the device-mounting configuration.

When display is off, or during the standby or sleep mode, all the above common and segment signal drivers output the GND level, halting the display.

LCD drive power supply circuit

LCD drive power supply circuit generates VCH, VSH, VM and VCL voltage level to drive LCD panel.

GRAM ADDRESS DIAGRAM (HD66766R)

Table 7 Relationship between GRAM address and display position (SGS = "0")

SEG/C0	OM pins	S1	S2	S3	S4	S5	Se	S7	S8	83	S10	110	S12		S385	S386	S387	S388	5389	S390	S391	S392	S393	S394	S395	5396
CMS=0	CMS=1	DB 15		DB 0	DB 15		DB 0	DB 15		DB 0	DB		DB 0		DE 15		DB 0	DB _		DB	DB .		DB 0	DB 15		DB 0
COM1	COM176		000	<u></u> "Н		001			002		"000	03"				080		"00	81"	н		082	 "H)83"F	Ť
COM2	COM175		100		"0	101	"H	"O	102	"H	"010					180			81"			182		"0 <i>′</i>	83"F	╗
сомз	COM174	"0:	200	"Н	"0	201	"H	"02	202	"H	"02	03'	Ή			280		"02	81"	Н		282		"02	283"F	┨
COM4	COM173	"0:	300	"H	"C	301	1"H		302		"030	03"	Н			380		"03				382		"03	383"F	╗
COM5	COM172	"O-	400	"Н	"0	401	"H	"O ₄	402	"H	"040	03"	Н		"0	480	"H	"04	81"	Н	"04	182	"H	"04	183"F	$\overline{\Box}$
COM6	COM171	"0	500	"Н	"0	501	"H	"0	502	"H	"050)3"I	+		"0	580	"H	"05	81"	Н	"05	582	"H	"05	583"F	$\overline{\Box}$
COM7	COM170	"0	600	"Н	"00	601	"H	"00	602	"H	"060	03"	Н		"0	680	"H	"06	81"	Н	"06	82	"H	"06	83"F	$\overline{\Box}$
COM8	COM169	"0	700	"Н	"0	701	"H	"0	702	"H	"070)3"	Н		"0	780	"H	"07	81"	Н	"07	782	T.	"07	783"H	1
СОМ9	COM168	"0	800	"H	"0	801	"H	"08	302	"H	"080	03"	Н		"0	880	"H	"08	81"	Н	"08	382	"H	"08	383"F	\Box
COM10	COM167	"0	900	"Н	"0	901	"H	"09	902	"H	"09	03"	Н		"0	980	"H	"09	81"	Н	"09	982	"H	"09	983"F	\Box
COM11	COM166	"0.	A00)"H	"0,	A01	"H	"0	402	"H	"0A)3"	Н		"0	A80	"H	"0A	81"	Ή	"0/	482	"H	"0/	\83"H	\exists
COM12	COM165	"0	B00)"H	"01	B01	"H	"OI	B02	"H	"0B)3"	Н		"0	B80	"H	"0B	81"	Ή	"OI	382	"H	"OI	383"H	1
COM13	COM164	"0	C00)"H	"00	C01	"H	"00	C02	"H	"0C	03"	Н		"0	C80	"H	"0C	:81"	Ή.	"00	C82	!"H	"00	C83"H	1
COM14	COM163	"0	D00)"H	"01	D01	"H	"OI	D02	"H	"0D	03"	н		"0	D80	"H	"0D	81"	Ή	10"	D82	!"H	10"	083"H	┨
COM15	COM162	"0	E00)"H	"0	E01	l"H	"0	E02	!"H	"0E	03"	Н		"0	E80	"H	"0E	81"	Ή	"OI	E82	Τ.	"OI	83"H	\exists
COM16	COM161	"0	F00)"H	"01	F01	"H	"0	F02	"Н	"0F	03"	Н		"0	F80	"H	"0F	81"	Ή	"OI	-82	"H	"OI	-83"H	1
COM17	COM160	"1	000	"Н	"10	001	"H	"1	002	"H	"10)3"	Н	• • • • • • • • • • • • • • • • • • • •	"1	080	"H	"10	81"	Н	"10)82	"Н	"10)83"H	1
COM18	COM159	"1	100	"H	"11	01"	Ή_	"1	102	"H	"110)3"I	1	• • • • • • • • • • • • • • • • • • • •	"1	180'	'H	"11	81"	Н	"1′	182	"H	"11	83"H	1
COM19	COM158	"1:	200	"Н	"12	201'	"H	"1:	202	"H	"120)3"	Н		"1	280	"H	"12	81"	Н	"12	282	"H	"12	283"F	┨
COM20	COM157	"1:	300	"Н	"13	301'	"H	"1	302	"H	"130)3"	Н		"1	380	"H	"13	81"	Н	"13	382	"H	"13	383"F	┨
=	1111		Ξ			=			Ξ			=				1111			111			Ξ			Ē	
COM169	COM8	"A	800)"H	"A	801	"H	"A	802	!"H	"A80)3"l	+		"A	1880)"H	"A8	381'	"H	"A	882	2"H	"A8	383"F	$\overline{\Box}$
COM170	COM7	"А	900)"H	"A	901	"H	"A	902	!"H	"A90)3"l	1		"A	1980)"H	"A9	81'	"H	"A	982	2"H	"A9	983"F	1
COM171	COM6	"А	A00	D"H	"A	A01	"H	"A	A02	2"H	"AA()3"I	4		"Α	\A80	H"("AA	\81'	"H	"A	A82	H"2	"AA	\83"H	1
COM172	COM5	"A	B00)"H	"A	B01	"H	"A	B02	2"H	"AB()3"I	1		"Α	\B80)"H	"AE	881'	"H	"Al	B82	2"H	"AE	883"F	1
COM173	COM4	"A	C0()"H	"A	C01	I"H	"A	C02	2"H	"AC)3"I	1		"A	C80)"H	"AC	281'	"H	"A	C82	2"H	"AC	283"H	1
COM174	СОМЗ	"A	D00	D"H	"A	D01	I"H	"A	D02	2"H	"AD()3"	1		"Α	\D80)"H	"AE	81	"H	"A	D82	2"H	"AE)83"H	1
COM175	COM2	"A	E00)"H	"A	E01	"Н	"A	E02	2"H	"AE)3"	Н		"/	۹E80	D"H	"AE	81	"H	"A	E82	2"H	"Al	83"H	1
COM176	COM1	"A	F00)"H	"А	F01	"H	"A	F02	!"H	"AF)3"I	1		" <i>F</i>	\F80)"H	"AF	81'	"Н	"A	F82	2"H	"Al	83"F	1

Table 8 Relationship between GRAM data and output pin

GRAM DATA	DB 15	DB 14	DB 13	DB 12	DB 11	DB 10	DB 9	DB 8	DB 7	DB 6	DB 5	DB 4	DB 3	DB 2	DB 1	DB 0
Selected palette		PK	(pale	tte			PK	palet	te + F	RC			P	K pale	tte	
Output pin		SE	G (3n	+1)			S	SEG (3n+2	2)			SE	G (3n	+3)	

Note: n = Lower 8 bits address (0 to 131)

Table 9 Relationship between GRAM address and display position (SGS = "1")

SEG/C	OM pins	S2 S3	S4 S5 S6	S7 S8 S9	S10 S11 S12	 S385 S386 S387	S388 S389 S390	S391 S392 S393	S394 S395 S396
CMS=0	CMS=1	DB DB 0 15	DB DB 0 15	DB DB 0 15	DB DB 0 15	DB DB 0 15	DB DB 0 15	DB DB 0 15	DB DB 0 15
COM1	COM176	"0083"H	"0082"H	"0081"H	"0080"H	 "0003"H	"0002"H	"0001"H	"0000"H
COM2	COM175	"0183"H	"0182"H	"0181"H	"0180"H	 "0103"H	"0102"H	"0101"H	"0100"H
СОМЗ	COM174	"0283"H	"0282"H	"0281"H	"0280"H	 "0203"H	"0202"H	"0201"H	"0200"H
COM4	COM173	"0383"H	"0382"H	"0381"H	"0380"H	 "0303"H	"0302"H	"0301"H	"0300"H
COM5	COM172	"0483"H	"0482"H	"0481"H	"0480"H	 "0403"H	"0402"H	"0401"H	"0400"H
COM6	COM171	"0583"H	"0582"H	"0581"H	"0580"H	 "0503"H	"0502"H	"0501"H	"0500"H
COM7	COM170	"0683"H	"0682"H	"0681"H	"0680"H	 "0603"H	"0602"H	"0601"H	"0600"H
COM8	COM169	"0783"H	"0782"H	"0781"H	"0780"H	 "0703"H	"0702"H	"0701"H	"0700"H
COM9	COM168	"0883"H	"0882"H	"0881"H	"0880"H	 "08030"H	"0802"H	"0801"H	"0800"H
COM10	COM167	"0983"H	"0982"H	"0981"H	"0980"H	 "0903"H	"0902"H	"0901"H	"0900"H
COM11	COM166	"0A83"H	"0A82"H	"0A81"H	"0A80"H	 "0A03"H	"0A02"H	"0A01"H	"0A00"H
COM12	COM165	"0B83"H	"0B82"H	"0B81"H	"0B80"H	 "0B03"H	"0B02"H	"0B01"H	"0B00"H
COM13	COM164	"0C83"H	"0C82"H	"0C81"H	"0C80"H	 "0C03"H	"0C02"H	"0C01"H	"0C00"H
COM14	COM163	"0D83"H	"0D82"H	"0D81"H	"0D80"H	 "0D03"H	"0D02"H	"0D01"H	"0D00"H
COM15	COM162	"0E83"H	"0E82"H	"0E81"H	"0E80"H	 "0E03"H	"0E02"H	"0E01"H	"0E00"H
COM16	COM161	"0F83"H	"0F82"H	"0F81"H	"0F80"H	 "0F03"H	"0F02"H	"0F01"H	"0F00"H
COM17	COM160	"1083"H	"1082"H	"1081"H	"1080"H	 "1003"H	"1002"H	"1001"H	"1000"H
COM18	COM159	"1183"H	"1182"H	"1181"H	"1180"H	 "1103"H	"1102"H	"1101"H	"1100"H
COM19	COM158	"1283"H	"1282"H	"1281"H	"1280"H	 "1203"H	"1202"H	"1201"H	"1200"H
COM20	COM157	"1383"H	"1382"H	"1381"H	"1380"H	 "1303"H	"1302"H	"1301"H	"1300"H
=	=	" "	=	=	=	:	=	Ē	Ē
COM169	COM8	"A883"H	"A882"H	"A881"H	"A880"H	 "A803"H	"A802"H	"A801"H	"A800"H
COM170	COM7	"A983"H	"A982"H	"A981"H	"A980"H	 "A903"H	"A902"H	"A901"H	"A900"H
COM171	COM6	"AA83"H	"AA82"H	"AA81"H	"AA80"H	 "AA03"H	"AA02"H	"AA01"H	"AA00"H
COM172	COM5	"AB83"H	"AB82"H	"AB81"H	"AB80"H	 "AB03"H	"AB02"H	"AB01"H	"AB00"H
COM173	COM4	"AC83"H	"AC82"H	"AC81"H	"AC80"H	 "AC03"H	"AC02"H	"AC01"H	"AC00"H
COM174	СОМЗ	"AD83"H	"AD82"H	"AD81"H	"AD80"H	 "AD03"H	"AD02"H	"AD01"H	"AD00"H
COM175	COM2	"AE83"H	"AE82"H	"AE81"H	"AE80"H	 "AE03"H	"AE02"H	"AE01"H	"AE00"H
COM176	COM1	"AF83"H	"AF82"H	"AF81"H	"AF80"H	 "AF03"H	"AF02"H	"AF01"H	"AF00"H

Table 10 Relationship between GRAM data and output pin

GRAM DATA	DB 15	DB 14	DB 13	DB 12	DB 11	DB 10	DB 9	DB 8	DB 7	DB 6	DB 5	DB 4	DB 3	DB 2	DB 1	DB 0
Selected palette		Pk	(pale	tte			PK	palet	te + F	RC			Pk	(pale	tte	
Output pin		SEG	396	3-3n)			S	EG (3	395-3	n)			SEC	394 (394	-3n)	

Note: n = Lower 8 bits address (0 to 131)

Instructions

Outline

The HD66766R uses the 16-bit bus architecture. Before the internal operation of the HD66766R starts, control information is temporarily stored in the registers described below to allow high-speed interfacing with a high-performance microcomputer. The internal operation of the HD66766R is determined by signals sent from the microcomputer. These signals, which include the register selection signal (RS), the read/write signal (R/W), and the data bus signals (DB15 to DB0), make up the HD66766R instructions.

- There are eight categories of instructions that:
- Specify the index
- Read the status
- Control the display
- Control power management
- Process the graphics data
- Set internal GRAM addresses
- Transfer data to and from the internal GRAM
- Set grayscale level for the internal grayscale palette table

Normally, instructions that write data are used the most. However, an auto-update of internal GRAM addresses after each data write can lighten the microcomputer program load. Because instructions are executed in 0 cycles, they can be written in succession.

Instruction Descriptions

Index: IR

The index instruction specifies the RAM control indexes (R00h to R3Fh). It sets the register number in the range of 000000 to 111001 in binary form. However, R40 to R44 are disabled since they are test registers.

Figure 4 Index Instruction

Status Read: SR

The status read instruction reads the internal status of the HD66766R.

L7–0: Indicate the driving raster-row position where the liquid crystal display is being driven.

C6–0: Read the contrast setting values (CT6-0)

Figure 5 Status Read Instruction

Start Oscillation (R00h)

The start oscillation instruction restarts the oscillator from the halt state in the standby mode. After issuing this instruction, wait at least 10 ms for oscillation to stabilize before issuing the next instruction. (See the Standby Mode section.)

If this register is read forcibly, "0766"H is read.

Figure 6 Start Oscillation Instruction

Driver Output Control (R01h)

Figure 7 Driver Output Control Instruction

CMS: Selects the output shift direction of a common driver. When CMS = 0, COM1 shifts to COM176. When CMS = 1, COM176 shifts to COM1.

SGS: Selects the output shift direction of the segment driver. When SGS = 0, data are output SEG1 to SEG396. When SGS = 1, data are output SEG396 to SEG1. When SGS = 0, SEG1 pin assigns the color display to <R><G>. When SGS = 1, SEG396 pin assigns <R><G>. Re-write to the RAM when intending to change the SGS bit.

NL4-0: Specify the LCD drive duty ratio. The duty ratio can be adjusted for every eight raster-rows. GRAM address mapping does not depend on the setting value of the drive duty ratio.

Table 11 NL Bits and Drive Duty

						LCD drive	Common d	river used
NL4	NL3	NL2	NL1	NL0	Display Size	duty cycle	CMS="0"	CMS="1"
0	0	0	0	0	396 x 8 dots	1/8 Duty	Com1 - Com8	Com176 - Com169
0	0	0	0	1	396 x 16 dots	1/16 Duty	Com1 - Com16	Com176 - Com161
0	0	0	1	0	396 x 24 dots	1/24 Duty	Com1 - Com24	Com176 - Com153
0	0	0	1	1	396 x 32 dots	1/32 Duty	Com1 - Com32	Com176 - Com145
0	0	1	0	0	396 x 40 dots	1/40 Duty	Com1 - Com40	Com176 - Com137
0	0	1	0	1	396 x 48 dots	1/48 Duty	Com1 - Com48	Com176 - Com129
0	0	1	1	0	396 x 56 dots	1/56 Duty	Com1 - Com56	Com176 - Com121
0	0	1	1	1	396 x 64 dots	1/64 Duty	Com1 - Com64	Com176 - Com113
0	1	0	0	0	396 x 72 dots	1/72 Duty	Com1 - Com72	Com176 - Com105
0	1	0	0	1	396 x 80 dots	1/80 Duty	Com1 - Com80	Com176 - Com97
0	1	0	1	0	396 x 88 dots	1/88 Duty	Com1 - Com88	Com176 - Com89
0	1	0	1	1	396 x 96 dots	1/96 Duty	Com1 - Com96	Com176 - Com81
0	1	1	0	0	396 x 104 dots	1/104 Duty	Com1 - Com104	Com176 - Com73
0	1	1	0	1	396 x 112 dots	1/112 Duty	Com1 - Com112	Com176 - Com65
0	1	1	1	0	396 x 120 dots	1/120 Duty	Com1 - Com120	Com176 - Com57
0	1	1	1	1	396 x 128 dots	1/128 Duty	Com1 - Com128	Com176 - Com49
1	0	0	0	0	396 x 136 dots	1/136 Duty	Com1 - Com136	Com176 - Com41
1	0	0	0	1	396 x 144 dots	1/144 Duty	Com1 - Com144	Com176 - Com33
1	0	0	1	0	396 x 152 dots	1/152 Duty	Com1 - Com152	Com176 - Com25
1	0	0	1	1	396 x 160 dots	1/160 Duty	Com1 - Com160	Com176 - Com17
1	0	1	0	0	396 x 168 dots	1/168 Duty	Com1 - Com168	Com176 - Com9
1	0	1	0	1	396 x 176 dots	1/176 Duty	Com1 - Com176	Com176 - Com1

LCD-Driving-Waveform Control (R02h)

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	0	0	0	0	0	RST	В/С	EOR	0	0	NW5	NW4	NW3	NW2	NW1	NW0

Figure 8 LCD-Driving-Waveform Control Instruction

B/C: When B/C = 0, a B-pattern waveform is generated and alternates in every frame for LCD drive. When B/C = 1, a C-pattern waveform is generated and alternates in each raster-row specified by bits EOR and NW4–NW0 in the LCD-driving-waveform control register. For details, see the n-raster-row Reversed AC Drive section.

EOR: When the C-pattern waveform is set (B/C = 1) and EOR = 1, the odd/even frame-select signals and the n-raster-row reversed signals are EORed for alternating drive. EOR is used when the LCD is not alternated by combining the set values of the number of the LCD drive duty ratio and the n raster-row. For details, see the n-raster-row Reversed AC Drive section.

RST: When RST = 1, software reset function is started. This function is the same as hardware RESET pin. It takes 10 clock cycle period. This bit is automatically cleared after reset function is completed. Therefore, before 10-clock cycle other instruction can not be issued. Do not set the RST bit during stand-by mode.

NW5–0: Specify the number of raster-rows n that will alternate at the C-pattern waveform setting (B/C = 1). NW5–NW0 alternate for every set value + 1 raster-row, and the first to the 64th raster-rows can be selected.

Power Control 1 (R03h)

Power Control 2 (R0Ch)

Figure 9 Power Control Instruction

BS3-0: The LCD drive bias value is set. The LCD drive bias value can be selected according to its drive duty ratio and voltage.

BT2–0: The output factor of step-up circuit is switched. The LCD drive voltage level can be selected according to its drive duty ratio and bias. Lower amplification of the step-up circuit consumes less current.

BT3: Operation/halt of voltage inverting circuit is set. BT3="0": voltage-inverting circuit is halted. BT3="1": voltage-inverting circuit is operated. See the Power-on/off Sequence section to be activated.

Rev. 1.0-1 / September 2002

HD66766R

DC2-0: The operating frequency in the step-up circuit is selected. When the step-up operating frequency is high, the driving ability of the step-up circuit becomes high, but the current consumption is increased. Adjust the frequency considering the step-up ability and the current consumption.

AP1–0: The amount of fixed current from the fixed current source in the operational amplifier for the LCD is adjusted. When the amount of fixed current is large, the LCD driving ability and the display quality become high, but the current consumption is increased. Adjust the fixed current considering the display quality and the current consumption. During no display, when AP1-0 = "00", the current consumption can be reduced by ending the operational amplifier and step-up circuit operation.

VC2-0: Set an adjustment factor for the Vci1 voltage (VC2-0).

SLP: When SLP = 1, the HD66766R enters the sleep mode, where the internal display operations are halted except for the R-C oscillator, thus reducing current consumption. Only the following instructions can be executed during the sleep mode.

Power control (BS2-0, BT3-0, DC2-0, AP1-0, SLP, STB)

During the sleep mode, the other GRAM data and instructions cannot be updated although they are retained.

STB: When STB = 1, the HD66766R enters the standby mode, where display operation completely stops, halting all the internal operations including the internal R-C oscillator. Further, no external clock pulses are supplied. For details, see the Standby Mode section. Only the following instructions can be executed during the standby mode.

a. Standby mode cancel (STB = "0")

b. Start oscillation

During the standby mode, the GRAM data and instructions may be lost. To prevent this, they must be set again after the standby mode is canceled.

The VSH voltage should be controlled to be less than supply voltage or device proof voltage level since VCH voltage level is generated by bias amplifier ratio corresponding to LCD driving bias value and boosting ratio of the step-up circuit 2.

Table 12 Display bias setting table

Determine the LCD drive bias according to its display duty, and select combination of boosting ratio of the step-up circuit 2 and bias amplifier ratio so as not to exceed voltage control of Vci2 and VCH. See the LCD Voltage Generation Circuit regarding how to determine the LCD drive bias, VCH voltage and contrast adjustment for the following settings.

LCD driving	Booster ratio of the step-up					Bias ratio	Vci2 (Vci2≤VOU	VCH
bias	circuit 2 (ND2)	BS3	BS2	BS1	BS0	(NB)	T-0.5V)	(VCH≤22V)
	x 2	0	0	0	0	0.75	1.50 x VM	Vci2 x 2
1/2	x 3	-	-	-	-	N/A	-	-
	x 4	-	-	-	-	N/A	-	-
	x 2	0	1	0	0	1.25	2.50 x VM	Vci2 x 2
1/4	x 3	0	0	0	1	0.825	1.75 x VM	Vci2 x 3
	x 4	-	-	-	ı	N/A	-	-
	x 2	1	0	1	1	1.75	3.50 x VM	Vci2 x 2
1/6	x 3	0	0	1	1	1.165	2.33 x VM	Vci2 x 3
	x 4	-	-	-	-	N/A	-	-
	x 2	-	-	-	ı	N/A	=	=
1/8	x 3	1	0	0	0	1.50	3.00 x VM	Vci2 x 3
	x 4	0	0	1	0	1.125	2.25 x VM	Vci2 x 4
	x 2	-	-	-	ı	N/A	-	-
1/9	x 3	1	0	1	0	1.675	3.35 x VM	Vci2 x 3
	x 4	0	1	0	0	1.25	2.50 x VM	Vci2 x 4
	x 2	-	-	-	-	N/A	-	-
1/10	x 3	1	1	0	0	1.825	3.65 x VM	Vci2 x 3
	x 4	0	1	1	0	1.375	2.75 x VM	Vci2 x 4
	x 2	ı	-	-	ı	N/A	-	-
1/11	x 3	1	1	0	1	2.00	4.00 x VM	Vci2 x 3
	x 4	1	0	0	0	1.50	3.00 x VM	Vci2 x 4
	х 3	-	-	-	-	N/A	-	-
1/12	x 4	1	0	0	1	1.625	3.25 x VM	Vci2 x 4
	x 5	0	1	0	1	1.3	2.60 x VM	Vci2 x 5
	x 3	-	-	-	-	N/A	-	-
1/13	x 4	1	0	1	1	1.75	3.45 x VM	Vci2 x 4
	x 5	0	1	1	1	1.4	2.80 x VM	Vci2 x 5

Table 13 Display bias setting table

VC2	VC1	VC0	Vci1 control range
0	0	0	0.92 x Vcc
0	0	1	0.87 x Vcc
0	1	0	0.83 x Vcc
0	1	1	0.8 x Vcc
1	0	0	0.76 x Vcc
1	0	1	0.73 x Vcc
1	1	0	0.68 x Vcc
1	1	1	Vci1 control amplifier suspends.
			(Vci1 can be supplied externally.)

Table 14 AP bits and amount of fixed current

AP1	AP0	Amount of fixed current in the operational amplifier
0	0	Operational amplifier and booster do not operate.
0	1	Small
1	0	Middle
1	1	Large

Table 15 Output voltage ratio of the booster 1 and 2

ВТ2	T2 BT1 BT0		VOUT output of the booster 1 (Use VOUT within the range of 4.0 to 5.75V.)	VCH output of the booster 2 (Set VCH lower than 22.0V.)
0	0	0	2 x Vci1	2 x Vci2
0	0	1	3 x Vci1	2 x Vci2
0	1	0	2 x Vci1	3 x Vci2
0	1	1	3 x Vci1	3 x Vci2
1	0	0	2 x Vci1	4 x Vci2
1	0	1	3 x Vci1	4 x Vci2
1	1	0	2 x Vci1	5 x Vci2
1	1	1	3 x Vci1	5 x Vci2

Set the factor of the booster 2 according to voltage of Vci2 and VCH.

When the factor is set low, current consumption can be lowered.

Table 16 Operating clock frequency of the Booster 1 and 2

DC2	DC1	DC0	Operating clock frequency in the booster 1	Operating clock frequency in the voltage inverting circuit and the booster 2
0	0	0	32-divided clock	32-divided clock
0	0	1	64-divided clock	32-divided clock
0	1	0	32-divided clock	64-divided clock
0	1	1	64-divided clock	64-divided clock
1	0	0	32-divided clock	96-divided clock
1	0	1	64-divided clock	96-divided clock
1	1	0	32-divided clock	128-divided clock
1	1	1	64-divided clock	128-divided clock

Operation of voltage inverting circuit

Table 17

BT3	VCL output of the voltage inverting circuit
	(Set VCL no lower than -22.0V.)
0	Halt boosting
1	Output voltage between VCH and VM by inverting

Set activation of voltage inverting circuit with output of the booster 2 stable. *See the Power-on/off Sequence section.

DB 15 Contrast Control (R04h)

Figure 10 Contrast Control Instruction

CT6-0: These bits control the LCD drive voltage to adjust 128-step contrast.

Table 18 Contrast control

CT6	CT5	CT4	CT3	CT2	CT1	СТО	Contrast
0	0	0	0	0	0	0	1.016R (Minimum)
0	0	0	0	0	0	1	1.008R
0	0	0	0	0	1	0	1.000R
0	0	0	0	0	1	1	0.992R
0	0	0	0	1	0	0	0.984R
:	:	:	:	:	:	:	:
:		:	:	:	:	:	:
1	1	1	1	1	1	0	0.008R
1	1	1	1	1	1	1	0.000R (Maximum)

VR2–0: These bits amplifies 1.1 to 3.4 times the VREFL as output voltage VREFM of LCD drive reference voltage generation circuit. The VREFM should be smaller than VOUT level.

Table 19 Contrast control

VR2	VR1	VR0	VREFM voltage
0	0	0	VREFL x 1.1
0	0	1	VREFL x 1.3
0	1	0	VREFL x 1.4
0	1	1	VREFL x 1.5
1	0	0	VREFL x 1.7
1	0	1	VREFL x 1.8
1	1	0	VREFL x 3.4

Entry Mode (R05h)

Compare resister (R06h)

The write data sent from the microcomputer is modified in the HD66766R and written to the GRAM. The display data in the GRAM can be quickly rewritten to reduce the load of the microcomputer software processing. For detail, see the Graphics Operation Function section.

Figure 11 Compare Resister Instruction

HWM: When HWM=1, data can be written to the GRAM at high speed. In high-speed write mode, four words of data are written to the GRAM in a single operation after the writing to RAM four times. Write to RAM four times, otherwise the four words cannot be written to the GRAM. Thus, set the lower 2 bits to 0 when setting the RAM address. For details, see the High-Speed RAM Write Mode section.

I/D1-0: When I/D1-0 = "1", the address counter (AC) is automatically incremented by 1 after the data is written to the GRAM. When I/D1-0 = "0", the AC is automatically decremented by 1 after the data is written to the GRAM. The increment/decrement setting of the address counter by I/D1-0 is done independently for the upper (AD15-8) and lower (AD7-0) addresses. The AM bit sets the direction of moving through the addresses when the GRAM is written to.

AM set the automatic update method of the AC after the data is written to the GRAM. When AM="0", the data is continuously written in parallel. When AM = "1", the data is continuously written vertically. When window address range is specified, the GRAM in the window address range can be written to according to the I/D1-0 and AM settings.

SPR: When SPR=1, 4096colors are displayed. 12 bit (DB11-DB0) are used for this display. Refer to "4096 color display function" in page 57 for details.

Note: When a window address range has been set the GRAM can only be written to within that range.

Figure 12 Address Direction Settings

LG2-0: Compare the data read from the GRAM by the microcomputer with the compare resisters (CP15-0) by a compare/logical operation and writes the results to GRAM. For details, see the Logical/Compare Operation Function.

CP15-0: Set the compare resister for the compare operation with the data read from the GRAM or written by the microcomputer.

Note: The write data mask (WM15-0) is set by the resister in the (20) RAM Write Data Mask section.

Figure 13 Logical/Compare Operation for the GRAM

Display Control (R07h)

Figure 14 Display Control

VLE2–1: When VLE1 = 1, a vertical scroll is performed in the 1^{st} screen. When VLE2 = "1", a vertical scroll is performed in the 2^{nd} screen. Vertical scrolling on the two screens can be independently controlled.

SPT: When SPT = 1, the 2-division LCD drive is performed. For details, see the Screen-division Driving Function section.

B/W: When B/W = "1", displayed data can be "all" or "all off" regardless GRAM contents. (B/W = "1", REV = "0": all pixel on, B/W = "1", REV = "1": all pixel off) When B/W = "1", grayscale palette has to be default value.

REV: Displays all character and graphics display sections with reversal when REV = 1. For details, see the Reversed Display Function section. Since the grayscale level can be reversed, display of the same data is enabled on normally-white and normally-black panels.

D1–0: Display is on when D1 = "1" and off when D1 = 0. When off, the display data remains in the GRAM, and can be displayed instantly by setting D1 = "1". When D1 is "0", the display is off with all of the SEG/COM pin outputs set to the GND level. Because of this, the HD66766R can control the charging current for the LCD with AC driving.

When D1–0 = "01", the internal display of the HD66766R is performed although the display is off. When D1-0 = "00", the internal display operation halts and the display is off.

Table 20 D Bits and Operation

D 1	D0	SEG/COM Output	HD66766R Internal Display Operation
0	0	GND	Halt
0	1	GND	Operate
1	0	Unlit display	Operate
1	1	Display	Operate

Notes: 1. Writing from the microcomputer to the GRAM is independent from the state of D1–0.

2. In the sleep and standby modes, D1-0=00. However, the register contents of D1-0 are not modified.

Frame Cycle Control (R0Bh)

_R/W RS	DB1	5 DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
W 1	0	0	0	0	0	0	DIV1	DIV0	0	0	0	0	RTN3	RTN2	RTN1	RTN0

Figure 15

RTN3-0: Set the line retrace period (RTN3-0) to be added to raster-row cycles. The raster-row cycle becomes long according to the number of clocks set at RTN3-0.

DIV1-0: Set the division ratio of clocks for internal operation (DIV1-0). Internal operations are driven by clocks which are frequency divided according to the DIV1-0 setting. Frame frequency can be adjusted along with the line retrace period (RTN3-0). When changing the drive-duty, adjust the frame frequency. For details, see the Frame Frequency Adjustment Function section.

Table 21 RTN Bits and Clock Cycles

RTN3	N3 RTN2 RTN1 RTN1		Line retrace period (Clock Cycles)	Clock Cycles per one raster-row	
0	0	0	0	0 clock	26 clock
0	0	0	1	1 clock	27 clock
0	0	1	0	2 clock	28 clock
0	0	1	1	3 clock	29 clock
:	:	:	:	:	:
1	1	1	0	14 clock	40 clock
1	1	1	1	15 clock	41 clock

Table 22 DIV Bits and Clock Frequency

DIV1	DIV0	Division ratio	Internal Operation Clock Frequency
0	0	1	fosc / 1
0	1	2	fosc / 2
1	0	4	fosc / 4
1	1	8	fosc / 8

^{*} fosc=R-C oscillation frequency

Formula for the frame frequency

Vertical Scroll Control (R11h)

Figure 16 Vertical Scroll Control Instruction

VL17-10: Specify the display-start raster-row at the 1^{st} screen display for vertical smooth scrolling. Any raster-row from the first to 176^{th} can be selected. After the 176^{th} raster-row is displayed, the display restarts from the first raster-row. The display-start raster-row (VL17-10) is valid only when VLE1 = "1". The raster-row display is fixed when VLE1 = "0". (VLE1 is the 1^{st} -screen vertical-scroll enable bit.)

VL27-20: Specify the display-start raster-row at the 2^{nd} screen display. The display-start raster-row (VL27-20) is valid only when VLE2 = "1". The raster-row display is fixed when VLE2 = "0". (VLE2 is the 1^{st} -screen vertical-scroll enable bit.)

I	able	23

	_	_	VL24 VL14	_			_	Display start line
0	0	0	0	0	0	0	0	1'st raster - row
0	0	0	0	0	0	0	1	2'nd raster - row
0	0	0	0	0	0	1	0	3'rd raster - row
:	:	:	:	:	:	:	:	:
1	0	1	0	1	1	1	0	175'th raster -
1_	0	1	0	1	1	1	1	176'th raster -

Note: Do not set over the 176th ("AF"H) raster - row

1st Screen Driving Position (R14h)

2nd Screen Driving Position (R15h)

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
W	1	SE17	SE16	SE15	SE14	SE13	SE12	SE11	SE10	SS17	SS16	SS15	SS14	SS13	SS12	SS11	SS10
w	1	SE27	SE26	SE25	SE24	SE23	SE22	SE21	SE20	SS27	SS26	SS25	SS24	SS23	SS22	SS21	SS20

Figure 17

SS17–0: Specify the driving start position for the first screen in a line unit. The LCD driving starts from the 'set value + 1' common driver.

SE17–0: Specify the driving end position for the first screen in a line unit. The LCD driving is performed to the 'set value + 1' common driver. For instance, when SS17-10 = "07"H and SE17-10 = "10"H are set, the LCD driving is performed from COM8 to COM17, and non-selection driving is performed from COM1 to COM7, COM18 and others. Ensure that $SS17-10 \le SE17-10 \le "AF"H$. For details, see the Screen-division Driving Function section.

SS27–0: Specify the driving start position for the second screen in a line unit. The LCD driving starts from the 'set value + 1' common driver. The second screen is driven when SPT = "1".

SE27–0: Specify the driving end position for the second screen in a line unit. The LCD driving is performed to the 'set value + 1' common driver. For instance, when SPT = "1", SS27–20 = "20"H, and SE27–20 = "4F"H are set, the LCD driving is performed from COM33 to COM80. Ensure that SS17– $10 \le SE17-10 \le SE27-20 \le SE27-20 \le "AF"H$. For details, see the Screen-division Driving Function section.

Horizontal RAM Address Position (R16h)

Vertical RAM Address Position (R17h)

R/W	RS	DB15	DB14	1 DB	13 D	B12 [DB11	DB10	DB9	DB8	DB7	DB6 [DB5 D	B4 DI	33 DB	2 DB1	DB0
W	1	HEA7	HEA6	HEA5	HEA4	HEA3	HEA2	HEA1	HEA0	HSA7	HSA6	HSA5	HSA4	HSA3	HSA2	HSA1	HSA0
W	1	VEA7	VEA6	VEA5	VEA4	VEA3	VEA2	VEA1	VEA0	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0

Figure 18 Horizontal/Vertical RAM Address Position Instruction

HSA5-0/HEA5-0: Specify the horizontal start/end positions of a window for access in memory. Data can be written to the GRAM from the address specified by HEA7-0 from the address specified by HSA5-0. Note that an address must be set before RAM is written to. Ensure $00h \le HSA7-0 \le HEA7-0 \le 83h$

VSA7-0/VEA7-0: Specify the vertical start/end positions of a window for access in memory. Data can be written to the GRAM from the address specified by VEA7-0 from the address specified by VSA7-0. Note that an address must be set before RAM is written to. Ensure "00" $h \le VSA7-0 \le VEA7-0 \le "AF$ " h.

Figure 19 Window Address Setting Range

Note:

- 1. Ensure that the window address area is within the GRAM address space.
- 2. In high-speed write mode, data are written to GRAM in four-words.

 Thus, dummy write operations should be inserted depending on the window address area. For details, see the High-Speed Burst RAM Write Function section.

RAM Write Data Mask (R20h)

Figure 20 RAM Write Data Mask Instruction

WM15–0: In writing to the GRAM, these bits mask writing in a bit unit. When WM15 = "1", this bit masks the write data of DB11 and does not write to the GRAM. Similarly, the WM10 to 0 bits mask the write data of DB15 to 0 in a bit unit. When HDZ = "1", mask processing is performed for 12-bit data after dither processing. For details, see the Write Data Mask Function section.

RAM Address Set (R21h)

Figure 21 RAM Address Set Instruction

AD15–0: Initially set GRAM addresses to the address counter (AC). Once the GRAM data is written, the AC is automatically updated according to the AM and I/D bit settings. This allows consecutive accesses without resetting addresses. Once the GRAM data is read, the AC is not automatically updated.

GRAM address setting is not allowed in the standby mode. Ensure that the address is set within the specified window address.

Table 24 GRAM Address Range

AD15 to AD0	GRAM Setting
"0000"H to "0083"H	Bitmap data for COM1
"0100"H to "0183"H	Bitmap data for COM2
"0200"H to "0283"H	Bitmap data for COM3
"0300"H to "0383"H	Bitmap data for COM4
:	• •
"AC00"H to "AC83"H	Bitmap data for COM173
"AD00"H to "AD83"H	Bitmap data for COM174
"AE00"H to "AE83"H	Bitmap data for COM175
"AF00"H to "AF83"H	Bitmap data for COM176

Write Data to GRAM (R22h)

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
		WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD
W	1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Figure 22 Write Data to GRAM Instrction

WD15–0: Write 16-bit data to the GRAM; This data calls each grayscale palette. After a write, the address is automatically updated according to the AM and I/D bit settings. During the stand by mode, the GRAM cannot be accessed.

GRAM write data during normal mode

Figure 23

Rev. 1.0-1 / September 2002

Table	25										
				GRAM	data set	tting					
R4	R3	R2	R1	R0							
G5	G4	G3	G2	G1	G0						
B4	В3	B2	B1	B0				Grayscal	le palette		
0	0	0	0	0	0	PK05	PK04	PK03	PK02	PK01	PK00
0	0	0	0	1	0	PK15	PK14	PK13	PK12	PK11	PK10
0	0	0	1	0	0	PK25	PK24	PK23	PK22	PK21	PK20
0	0	0	1	1	0	PK35	PK34	PK33	PK32	PK31	PK30
0	0	1	0	0	0	PK45	PK44	PK43	PK42	PK41	PK40
0	0	1	0	1	0	PK55	PK54	PK53	PK52	PK51	PK50
0	0	1	1	0	0	PK65	PK64	PK63	PK62	PK61	PK60
0	0	1	1	1	0	PK75	PK74	PK73	PK72	PK71	PK70
0	1	0	0	0	0	PK85	PK84	PK83	PK82	PK81	PK80
0	1	0	0	1	0	PK95	PK94	PK93	PK92	PK91	PK90
0	1	0	1	0	0	PK105	PK104	PK103	PK102	PK101	PK100
0	1	0	1	1	0	PK115	PK114	PK113	PK112	PK111	PK110
0	1	1	0	0	0	PK125	PK124	PK123	PK122	PK121	PK120
0	1	1	0	1	0	PK135	PK134	PK133	PK132	PK131	PK130
0	1	1	1	0	0	PK145	PK144	PK143	PK142	PK141	PK140
0	1	1	1	1	0	PK155	PK154	PK153	PK152	PK151	PK150
1	0	0	0	0	0	PK165	PK164	PK163	PK162	PK161	PK160
1	0	0	0	1	0	PK175	PK174	PK173	PK172	PK171	PK170
1	0	0	1	0	0	PK185	PK184	PK183	PK182	PK181	PK180
1	0	0	1	1	0	PK195	PK194	PK193	PK192	PK191	PK190
1	0	1	0	0	0	PK205	PK204	PK203	PK202	PK201	PK200
1	0	1	0	1	0	PK215	PK214	PK213	PK212	PK211	PK210
1	0	1	1	0	0	PK225	PK224	PK223	PK222	PK221	PK220
1	0	1	1	1	0	PK235	PK234	PK233	PK232	PK231	PK230
1	1	0	0	0	0	PK245	PK244	PK243	PK242	PK241	PK240
1	1	0	0	1	0	PK255	PK254	PK253	PK252	PK251	PK250
1	1	0	1	0	0	PK265	PK264	PK263	PK262	PK261	PK260
1	1	0	1	1	0	PK275	PK274	PK273	PK272	PK271	PK270
1	1	1	0	0	0	PK285	PK284	PK283	PK282	PK281	PK280
1	1	1	0	1	0	PK295	PK294	PK293	PK292	PK291	PK290
1	1	1	1	0	0	PK305	PK304	PK303	PK302	PK301	PK300
1	1	1	1	1	0	PK315	PK314	PK313	PK312	PK311	PK310

Note: When G0 = 1, selective grayscale for G pixel is the middle grayscale between the upper grayscale and the selective grayscale.

Read Data from GRAM (R22h)

Figure 24 Read Data from GRAM Instruction

RD15–0: Read 16-bit data from the GRAM. When the data is read to the microcomputer, the first-word read immediately after the GRAM address setting is latched from the GRAM to the internal read-data latch. The data on the data bus (DB15–0) becomes invalid and the second-word read is normal.

Figure 25 GRAM Read Sequence

Gray Scale Palette Control (R30h to R3Fh)

Table 26 Grayscale Palette Control Instruction

	R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
R30	w	1	0	0	PK 15	PK 14	PK 13	PK 12	PK 11	PK 10	0	0	PK 05	PK 04	PK 03	PK 02	PK 01	PK 00
R31	w	1	0	0	PK 35	PK 34	PK 33	PK 32	PK 31	PK 30	0	0	PK 25	PK 24	PK 23	PK 22	PK 21	PK 20
R32	w	1	0	0	PK 55	PK 54	PK 53	PK 52	PK 51	PK 50	0	0	PK 45	PK 44	PK 43	PK 42	PK 41	PK 40
R33	w	1	0	0	PK 75	PK 74	PK 73	PK 72	PK 71	PK 70	0	0	PK 65	PK 64	PK 63	PK 62	PK 61	PK 60
R34	w	1	0	0	PK 95	PK 94	PK 93	PK 92	PK 91	PK 90	0	0	PK 85	PK 84	PK 83	PK 82	PK 81	PK 80
R35	w	1	0	0	PK 115	PK 114	PK 113	PK 112	PK 111	PK 110	0	0	PK 105	PK 104	PK 103	PK 102	PK 101	PK 100
R36	w	1	0	0	PK 135	PK 134	PK 133	PK 132	PK 131	PK 130	0	0	PK 125	PK 124	PK 123	PK 122	PK 121	PK 120
R37	w	1	0	0	PK 155	PK 154	PK 153	PK 152	PK 151	PK 150	0	0	PK 145	PK 144	PK 143	PK 142	PK 141	PK 140
R38	w	1	0	0	PK 175	PK 174	PK 173	PK 172	PK 171	PK 170	0	0	PK 165	PK 164	PK 163	PK 162	PK 161	PK 160
R39	w	1	0	0	PK 195	PK 194	PK 193	PK 192	PK 191	PK 190	0	0	PK 185	PK 184	PK 183	PK 182	PK 181	PK 180
R3A	w	1	0	0	PK 215	PK 214	PK 213	PK 212	PK 211	PK 210	0	0	PK 205	PK 204	PK 203	PK 202	PK 201	PK 200
R3B	٧	1	0	0	PK 235	PK 234	PK 233	PK 232	PK 231	PK 230	0	0	PK 225	PK 224	PK 223	PK 222	PK 221	PK 220
R3C	w	1	0	0	PK 255	PK 254	PK 253	PK 252	PK 251	PK 250	0	0	PK 245	PK 244	PK 243	PK 242	PK 241	PK 240
R3D	w	1	0	0	PK 275	PK 274	PK 273	PK 272	PK 271	PK 270	0	0	PK 265	PK 264	PK 263	PK 262	PK 261	PK 260
R3E	w	1	0	0	PK 295	PK 294	PK 293	PK 292	PK 291	PK 290	0	0	PK 285	PK 284	PK 283	PK 282	PK 281	PK 280
R3F	w	1	0	0	PK 315	PK 314	PK 313	PK 312	PK 311	PK 310	0	0	PK 305	PK 304	PK 303	PK 302	PK 301	PK 300

PK31–0: Specify the grayscale level for thirty-two palettes from the 52-grayscale level. For details, see the Grayscale Palette and the Grayscale Palette Table sections.

Instruction List (HD66766R)

Table 27

					-					Upp	er Co	de						Low	er Co	de								
Reg. No.	Register Name	R/ W	RS	DB 15	DB 14	DB 13	DB 12	DB 11	DB 10	DB 9	DB 8	DB 7	DB 6	DB 5	DB 4	DB 3	DB 2	DB 1	DB 0	Description	Exe cu- tion Cyc le	ı						
IR	Index	0	0	*	*	*	*	*	*	*	*	*	ID6	ID5	ID4	ID3	ID2	ID1	ID0	Sets the index register value.	0	Not						
SR	Status read	1	0	L7	L6	L5	L4	L3	L2	Ll	L0	0	C6	C5	C4	C3	C2	Cl	C0	Reads the driving raster-row position (L7–0) and contrast setting (C6–0).	0	=						
R00h	Start oscillation	0	1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	1	Starts the oscillation mode.		Note						
	Device code read	1	1	0	0	0	0	0	1	1	1	0	1	1	0	0	1	1	0	Reads 0766H.	0							
R01h	Driver output control	0	1	0	0	0	0	0	0	CM S	SGS	0	0	0	NL4	NL3	NL2	NL1	NL0	Sets the common driver shift direction (CMS), segment driver shift direction (SGS) and driving duty ratio (NL4-0).	0	_						
R02h	LCD- driving- waveform control	0	1	0	0	0	0	0	RST	B/C	EOR	0	0	NW 5	NW 4	NW 3	NW 2	NW 1	NW 0	Sets LCD drive AC waveform (B/C), and EOR output (EOR) or the number of n-raster-rows (NW5-0) at C-pattern AC drive.	0	_						
R03h	Power control 1	0	1	BS3	BS2	BS1	BS0	BT3	BT2	BTI	вто	0	DC2	DC1	DC0	AP1	AP0	SLP	STB	Sets the sleep mode (SLP), standby mode (STB), LCD power on (API– 0), boosting cycle (DC2–0), boosting output multiplying factor (BT2–0), operation of voltage inverting circuit (BT3) and LCD drive bias value (BS3–0).		_						
R04h	Contrast control	0	1	0	0	0	0	0	VR2	VR1	VR0	0	CT6	CT5	CT4	CT3	CT2	CTI	CT0	Sets the regulator adjustment (VR2 $-$ 0) and contrast adjustment (CT6 $-$ 0).								
R05h	Entry mode	0	1	SPR	0	0	0	0	0	HWM	0	0	0	I/D1	I/D0	AM	LG2	LG1	LG0	Specifies AC counter mode (AM), increment/decrement mode (I/D1 – 0), high-speed write mode (HWM).		Note						
R06h	Compare Resister	0	1	CP1 5	CP1 4	CP1	CP1 2	CP1	CP1 0	CP9	CP8	CP7	CP6	CP5	CP4	CP3	CP2	CP1	CP0	Specifies the compare resister (CP15-0),		-						
R07h	Display control	0	1	0	0	0	0	0	VLE2	VLEI	SPT	0	0	0	0	B/W	REV	D1	D0	Specifies display on (D1-0), black- and-white reversed display (REV), pixel on/off mode (ALB), screen division driving (SPT) and vertical scroll .(VLE2-1)	0	_						
R0Bh	Frame frequency control	0	1	0	0	0	0	0	0	DIV 1	DIV 0	0	0	0	0	RTN 3	RTN 2	RTN 1	RTN 0	Specifies the line retrace period (RTN3-0) and operating clock frequency division ratio (DIV1-0).	0	=						
R0Ch	Power control 2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	VC2	VCI	VC0	Sets the adjustment factor for the Vci voltage (VC2-0).	0	-						
Rllh	Vertical scroll control	0	1	VL2 7	VL2 6	VL2 5	VL2 4	VL2 3	VL2 2	VL2	VL2 0	VL1 7	VL1 6	VL1 5	VL1 4	VL1 3	VL1 2	VL1 1	VL1 0	Sets the 1 st screen display start raster- row (VL17-10) and 2 nd screen display start raster-row (VL27-20).	0	=						
R14h	I st screen driving position	0	1	SE 17	SE 16	SE 15	SE 14	SE 13	SE 12	SE 11	SE 10	SS 17	SS 16	SS 15	SS 14	SS 13	SS 12	SS 11	SS 10	Sets the 1 st screen driving start position (SS17–10) and 1 st screen driving end position (SE17–10).		=						
R15h	2 nd screen driving position	0	1	SE 27	SE 26	SE 25	SE 24	SE 23	SE 22	SE 21	SE 20	SS 27	SS 26	SS 25	SS 24	SS 23	SS 22	SS 21	SS 20	Sets 2 nd screen driving start position (SS27–20) and 2 nd screen driving end position (SE27–20).		=						
R16h	Horizontal RAM address position	0	1	HE A7	HEA 6	HEA 5	HEA 4	HEA 3	HEA 2	HEA 1	HEA 0	HSA 7	HSA 6	HSA 5	HSA 4	HSA 3	HSA 2	HSA 1	HSA 0	A Sets start (HSA7–0) and end (HEA7–0) of the horizontal RAM address range.		=						
R17h	Vertical RAM address position	0	1	VEA 7	VEA 6	VEA 5	VEA 4	VEA 3	VEA 2	VEA 1	VEA 0	VSA 7	VSA 6	VSA 5	VSA 4	VSA 3	VSA 2	VSA 1	VSA 0	A Sets start (VSA7-0) and end (VEA7-0) of the vertical RAM address range.		-						
R20h	RAM write data mask	0	1	WM	Specifies write data mask (WM15-	0	-																					

R36h Grayscale

R37h Grayscale

R38h Grayscale

R39h Grayscale

R3Ah Grayscale

R3Bh Grayscale

R3Ch Grayscale

R3Dh Grayscale

R3Eh Grayscale

R3Fh Grayscale

palette

Rev. 1.0-1 / September 2002

Execu-

Instruction List (cont.)

Upper Code

Reg. No.	Register Name	R/ W	RS	DB 15	DB 14	DB 13	DB 12	DB 11	DB 10	DB 9	DB 8	DB 7	DB 6	DB 5	DB 4	DB 3	DB 2	DB 1	DB 0	Description	tion Cycle
R21h	RAM address set	0	1				AD15-	8 (upper)					ADe	5–0 (lov	ver)				Initially set the RAM address to the address counter (AC).	0
R22	RAM data write	0	1			1	Write da	ta (uppe	er)					1	Write da	ta (lowe	er)			Writes data to the RAM.	0
	RAM data read	1	1			1	Read dat	a (uppe	r)					1	Read da	ta (lowe	r)			Reads data from the RAM.	0
R30h	Grayscale palette control (1)	0	1	0	0	PK15	PK14	PK13	PK12	PK11	PK10	0	0	PK05	PK04	PK03	PK02	PK01	PK00	Specifies the grayscale palette.	0
R31h	Grayscale palette control (2)	0	1	0	0	PK35	PK34	PK33	PK32	PK31	PK30	0	0	PK25	PK24	PK23	PK22	PK21	PK20	Specifies the grayscale palette.	0
R32h	Grayscale palette control (3)	0	1	0	0	PK55	PK54	PK53	PK52	PK51	PK50	0	0	PK45	PK44	PK43	PK42	PK41	PK40	Specifies the grayscale palette.	0
R33h	Grayscale palette control (4)	0	1	0	0	PK75	PK74	PK73	PK72	PK71	PK70	0	0	PK65	PK64	PK63	PK62	PK61	PK60	Specifies the grayscale palette.	0
R34h	Grayscale palette control (5)	0	1	0	0	PK95	PK94	PK93	PK92	PK91	PK90	0	0	PK85	PK84	PK83	PK82	PK81	PK80	Specifies the grayscale palette.	0
R35h	Grayscale	0	1	0	0	PK	PK	PK	PK	PK	PK	0	0	PK	PK	PK	PK	PK	PK	Specifies the grayscale palette.	0

PK PK PK PK PK

PK

185 184 183 182

PK PK

225

PK PK PK PK PK

265

PK

PK PK PK PK PK

143 142 141

205 204 203 202 201

224 223

200

PK

221

302

Lower Code

1. "*" means doesn't matter. Note:

2. High-speed write mode is available only for the RAM writing.

312 311

PK

211

231

251

PK

PK

155

PK 195

PK

PK PK PK PK PK PK

275 274 273 272 271 270

PK

PK

193 192 191

Reset Function

The HD66766R is internally initialized by RESET input. Reset the gate driver/Power supply IC as its settings are not automatically reinitialized when the HD66766R is reset. The reset input must be held for at least 200 ms. Do not access the GRAM or initially set the instructions until the R-C oscillation frequency is stable after power has been supplied (10 ms).

Instruction Set Initialization:

- 1. Start oscillation executed
- 2. Driver output control (NL4–0 = "10101", SGS = "0", CMS = "0")
- 3. B-pattern waveform AC drive (B/C = "0", EOR = "0", NW5-0 = "000000")
- 4. Power control 1 (DC2–0 = "000", AP1–0 = "00": LCD power off, STB = "0": Standby mode off, SLP = "0", BS2-0 = "000", BT2-0 = "000")
- 5. Contrast control (Weak contrast VR3-0 = "0000", CT6-0 = "0000000")
- 6. Entry mode set (SPR="0", HWM = "0", I/D1-0 = "11": Increment by 1, AM = "0": Horizontal move, LG2-0="000":Replace mode)
- 7. Compare resister: (CP15-0 = "000000000000000"
- 8. Display control (VLE2–1 = "00": No vertical scroll, SPT = "0", REV = "0", D1–0 = "00": Display off)
- 9. Frame cycle control (DIV1-0 = "00": 1-divided clock, RTN3-0: No line retrace period)
- 10. Power control 2 (VC2-0 = "000")
- 11. Vertical scroll (VL27–20 = "00000000", VL17–10 = "00000000")
- 12. 1st screen division (SE17-10 = "11111111", SS17-10 = "00000000")
- 13. 2nd screen division (SE27-20 = "111111111", SS27-20 = "00000000")
- 14. Horizontal RAM address position (HEA7-0 = "10000011", HSA7-0 = "00000000")
- 15. Vertical RAM address position (VEA7-0 = "10101111", VSA7-0 = "00000000")
- 16. RAM write data mask (WM11–0 = "000"H: No mask)
- 17. RAM address set (AD15–0 = "0000"H)
- 18. Grayscale Palette

```
(PK0 = "000000", RK1= "000011", PK2= "000110", PK3= "001000",

PK4= "001010", PK5= "001100", PK6= "001110", PK7= "001111",

PK8= "010000", PK9= "010001", PK10= "010010", PK11= "010011",

PK12= "010100", PK13= "010101", PK14= "010110", PK15= "010111",

PK16 = "011000", PK17= "011001", PK18= "011010", PK19= "011011",

PK20= "011100", PK21= "011101", PK22= "011110", PK23= "100000",

PK24= "100010", PK25= "100100", PK26= "100110", PK31= "101000",

PK28 = "101011", PK29= "101110", PK30= "110001", PK31= "110100",)
```

GRAM Data Initialization:

This is not automatically initialized by reset input but must be initialized by software while display is off (D1-0 = "00").

Output Pin Initialization:

- 1. LCD driver output pins (SEG/COM): Output GND level
- 2. Oscillator output pin (OSC2): Output oscillation signal

Parallel Data Transfer

16-bit Bus Interface

Setting the IM2/1/0 (interface mode) to the "GND"/"GND" level allows 68-system E-clock-synchronized 16-bit parallel data transfer. Setting the IM2/1/0 to the "GND"/"Vcc"/"GND" level allows 80-system 16-bit parallel data transfer. When the number of buses or the mounting area is limited, use an 8-bit bus interface.

Figure 26 Interface to 16-bit Microcomputer

8-bit Bus Interface

Setting the IM2/1/0 (interface mode) to the "GND"/"GND" /"Vcc" level allows 68-system E-clock-synchronized 8-bit parallel data transfer using DB15–DB8 pins. Setting the IM2/1/0 to the "GND"/"Vcc" level allows 80-system 8-bit parallel data transfer. The 16-bit instructions and RAM data are divided into eight upper/lower bits and the transfer starts from the upper eight bits. Fix unused pins DB7–DB0 to the "Vcc" or "GND" level. Note that the upper bytes must also be written when the index register is written to.

Figure 27 Interface to 8-bit Microcomputer

Note: Transfer synchronization function for an 8-bit bus interface

The HD66766R supports the transfer synchronization function which resets the upper/lower counter to count upper/lower 8-bit data transfer in the 8-bit bus interface. Noise causing transfer mismatch between the eight upper and lower bits can be corrected by a reset triggered by consecutively writing a "00"H instruction four times. The next transfer starts from the upper eight bits. Executing synchronization function periodically can recover any runaway in the display system

Figure 28 8-bit Transfer Synchronization

Serial Data Transfer

Setting the IM2 pin to the "Vcc" level and the IM1 pin to the "GND" level allows standard clock-synchronized serial data transfer, using the chip select line (CS*), serial transfer clock line (SCL), serial input data line (SDI), and serial output data line (SDO). For a serial interface, the IM0/ID pin function uses an ID pin. If the chip is set up for serial interface, the DB15-2 pins which are not used must be fixed at "Vcc" or "GND".

The HD66766R initiates serial data transfer by transferring the start byte at the falling edge of CS* input. It ends serial data transfer at the rising edge of CS* input.

The HD66766R is selected when the 6-bit chip address in the start byte transferred from the transmitting device matches the 6-bit device identification code assigned to the HD66766R. The HD66766R, when selected, receives the subsequent data string. The least significant bit of the identification code can be determined by the ID pin. The five upper bits must be "01110". Two different chip addresses must be assigned to a single HD66766R because the seventh bit of the start byte is used as a register select bit (RS): that is, when RS = "0", data can be written to the index register or status can be read, and when RS = "1", an instruction can be issued or data can be written to or read from RAM. Read or write is selected according to the eighth bit of the start byte (R/W bit). The data is received when the R/W bit is "0", and is transmitted when the R/W bit is "1".

After receiving the start byte, the HD66766R receives or transmits the subsequent data byte-by-byte. The data is transferred with the MSB first. All HD66766R instructions are 16 bits. Two bytes are received with the MSB first (DB15 to 0), then the instructions are internally executed. After the start byte has been received, the first byte is fetched internally as the upper eight bits of the instruction and the second byte is fetched internally as the lower eight bits of the instruction.

Five bytes of RAM read data after the start byte are invalid. The HD66766R starts to read correct RAM data from the sixth byte.

Table 28 Start Byte Format

Transfer Bit	S	1	2	3	4	5	6	7	8
Start byte format	Transfer start			Device	ID code	;		RS	R/W
Start byte format	Transfer start	0	1	1	1	0	ID	KS	IV W

Note: The IM0/ID pin selects ID bit.

Table 29 RS and R/W Bit Function

RS	R/W	Function
0	0	Sets index register
0	1	Reads status
1	0	Writes instruction or RAM data
1	1	Reads RAM data

a) Timing of basic data-transfer through clock synchronized serial interface

Figure 29 Procedure for transfer through the clock synchronized serial inrface (a)

b) Timing of consecutive data transfer through clock synchronized serial interface

Figure 30 Procedure for transfer through the clock synchronized serial interface (b)

C) Transfer data read from GRAM

Figure 31 Procedure for transfer through the clock synchronized serial interface (c)

d) Status Read / Instruction Read

One byte invalid dummy data are read after start byte. 2nd data is valid from GRAM.

Figure 32 Procedure for transfer through the clock synchronized serial interface (d)

High-Speed Burst RAM Write Function

The HD66766R has a high-speed burst RAM-write function that can be used to write data to RAM in one-fourth the access time required for an equivalent standard RAM-write operation. This function is especially suitable for applications that require the high-speed rewriting of the display data, for example, display of color animations, etc.

When the high-speed RAM-write mode (HWM) is selected, data for writing to RAM is once stored to the HD66766R internal register. When data is selected four times per word, all data is written to the on-chip RAM. While this is taking place, the next data can be written to an internal register so that high-speed and consecutive RAM writing can be executed for animated displays, etc.

Figure 33 Flow of Operation in High-Speed Consecutive Writing to RAM

^{*} The lower two bits of the address must be set in the following way in high-speed write mode. When D0 becomes 0, the lower two bits of the address must be set to "11". Wen D1 becomes 1, the lower two bits of the address must be set to "00".

Note: When a high-speed RAM write is canceled, the next instruction must only be executed after the RAM write execution time has elapsed.

Figure 34 Example of the Operation of High-Speed Consecutive Writing to RAM

Note the following when using high-speed RAM write mode.

Notes: 1. The logical and compare operation cannot be used.

- 2. Data is written to RAM each four words. When an address is set, the lower two bits in the address must be set to the following values.
 - *When I/D0=0, the lower two bits in the address must be set to "11" and be written to RAM. *When I/D0=1, the lower two bits in the address must be set to "00" and be written to RAM.
- 3. Data is written to RAM each four words. If less than four words of data is written to RAM, the last data will not be written to RAM.
- 4. When the index register and RAM data write ("22"H) have been selected, the data is always written first. RAM cannot be written to and read from at the same time. HWM must be set to "0" while RAM is being read.
- 5. High-speed and normal RAM write operations cannot be executed at the same time. The mode must be switched and the address must then be set.
- 6. When high-speed RAM write is used with a window address-range specified, dummy write operation may be required to suit the window address range-specification. Refer to the High-Speed RAM Write in the Window Address section.

Table 30 Comparison between Normal and High-Speed RAM Write Operations

	Normal RAM Write (HWM=0)	High-Speed RAM Write (HWM=1)			
Logical operation function	Can be used	Cannot be used			
Compare operation function	Can be used	Cannot be used			
Write mask function	Can be used	Can be used			
RAM address set	Can be an aified be and	ID0 bit=0: Set the lower two bits to 11			
RAM address set	Can be specified by word	ID0 bit=1: Set the lower two bits to 00			
RAM read	Can be read by word	Cannot be used			
RAM write	Can be written by word	Dummy write operations may have to be inserted according to a window address-range specification			
Window address	Can be set by word	Can be set by four words			

High-Speed RAM Write in the Window Address

When a window address range is specified, RAM data which is in an optional window area can be rewritten consecutively and quickly by inserting dummy write operations so that RAM access counts become 4N as shown in the tables below.

Dummy write operations may have to be inserted as the first or last operations for a row of data, depending on the horizontal window-address range specification bits (HSA1 to 0, HEA1 to 0). The number of dummy write operations of a row must be 4N.

Table 31 Number of Dummy Write Operations in High-Speed RAM Write (HSA Bits)

HSA1	HSA0	Number of Dummy Write Operations to be Inserted at the Start of a Row
0	0	0
0	1	1
1	0	2
1	1	3

Table 32 Number of Dummy Write Operations in High-Speed RAM Write (HEA Bits)

HEA1	HEA0	Number of Dummy Write Operations to be Inserted at the End of a Row
0	0	3
0	1	2
1	0	1
1	1	0

Each row of access must consist of 4 x N operations, including the dummy writes.

Horizontal access count = first dummy write count + write data count + last dummy write count = 4 x N

An example of high-speed RAM write with a window address-range specified is shown below. The window address-range can be rewritten to consecutively and quickly by inserting two dummy writes at the start of a row and three dummy writes at the end of a row, as determined by using the window address-range specification bits (HSA1 to 0= "10", HEA1 to 0= "00").

Note1) The address set for the high-speed RAM write must be 00 or 11 according to the value of I/D0 bit. Only RAM in the speicfied window address-range will be overwritten.

Figure 35 Example of the High-Speed RAM write with a window address-range specification

Window Address Function

When data is written to the on-chip GRAM, a window address-range which is specified by the horizontal address register (start: HSA7-0, end: HEA7-0) or the vertical address register (start: VSA7-0, end: VEA7-0) can be written to consecutively.

Data is written to addresses in the direction specified by the AM bit (increment/decrement). When image data, etc. is being written, data can be written consecutively without thinking a data wrap by doing this. The window must be specified to be within the GRAM address area described below. Addresses must

be set within the window address.

[Restriction on window address-range settings]

(horizontal direction) "00"H \leq HSA7- $0 \leq$ HEA7- $0 \leq$ "83"H

(vertical direction) "00" $H \le VSA7-0 \le VEA7-0 \le "AF" H$

[Restriction on address settings during the window address]

(RAM address) $HSA7-0 \le AD7-0 \le HEA7-0$

VSA7-0 ≤ AD15-8 ≤ VEA7-0

Note: In high-speed RAM-write mode, the lower two bits of the address must be set as shown below according to the value of the ID0 bit.

ID0=0: The lower two bits of the address must be set to "11".

ID0=1: The lower two bits of the address must be set to "00"

Window address-range specification area HSA5-0=10H, HSE5-0=2FH

VSA7-0=20H, VEA7-0=5FH

I/D0=1 (increment)
AM=0 (horizontal writing)

Figure 36 Example of Address Operation in the Window Address Specification

Graphic Operation Function

The HD66766R can greatly reduce the load of the microcomputer graphics software processing through the 16-bit bus architecture and internal graphics-bit operation function. This function supports the following:

- 1. A write data mask function that selectively rewrites some of the bits in the 16-bit write data.
- 2. A conditional write function that compares the write data and compare-bit data and writes the data sent from the microcomputer only when the conditions match. Even if the display size is large, the display data in the graphics RAM (GRAM) can be quickly rewritten. The graphics bit operation can be controlled by combining the entry mode resister. The bit set value of the RAM-write –data mask resister, and the write from the microcomputer.

	Bit	Setting		
Operation Mode	I/D	AM	LG2-0	Operation and Usage
Write mode 1	0 /1	0	000	Horizontal data replacement, horizontal - border drawing
Write mode 2	0 /1	1	000	Vertical data replacement, vertical - border drawing
Write mode 3	0 /1	0	110,111	Conditional horizontal data replacement, horisontal - border drawing
Write mode 4	0 /1	1	110,111	Conditional vertical data replacement, vertical - border drawing

Table 33 Graphics operation

Figure 37 Graphics Operation flow

Write-data Mask Function

The HD66766R has a bit-wise write-data mask function that controls writing the 16-bit data from the microcomputer to the GRAM. Bits that are "0" in the write-data mask register (WM15–0) cause the corresponding DB bit to be written to the GRAM. Bits that are "1" prevent writing to the corresponding GRAM bit to the GRAM; the data in the GRAM is retained. This function can be used when only one-pixel data is rewritten or the particular display color is selectively rewritten.

Figure 38 Write-data Mask Function Operation

Graphics Operation Processing

1. Write mode 1: AM = 0, LG2-0 = "000"

This mode is used when the data is horizontally written at high speed. It can also be used to initialize the graphics RAM (GRAM) or to draw borders. The write-data mask function (WM15-0) are also enabled in these operations. After writing, the address counter (AC) automatically increments by 1 (I/D=1) or decrements by 1 (I/D=0) , and automatically jumps to the counter edge one-raster below after it has reached the left or right edge of the GRAM.

Figure 39 Writing Operation of Write Mode 1

2. Write mode 2: AM = 1, LG2-0 = "000"

This mode is used when the data is vertically written at high speed. It can also be used to initialize the GRAM, develop the font pattern in the vertical direction, or draw borders. The write-data mask function (WM15-0) are also enabled in these operations. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the upper-right edge (I/D = 1) or upper-left egde (I/D = 0) following the I/D bit after it has reached the lower edge of the GRAM.

Figure 40 Operation of Write Mode 2

3. Write mode 3: AM = 0, LG2-0 = 110/111

This mode is used when the data is holizontally written by comparing the write data and the set value of the compare resister (CP7-0). When the result of the comparison in a byte unit satisfies the condition write-data mask function (WM15-0) are also enabled. After writing , the address counter (AC) automatically increments by 1 (I/D=1) or decrements by 1 (I/D=0), and automatically jumps to the counter edge one-raster-raw below after it has reached the left or right edge of the GRAM.

Figure 41 Operation of Write Mode 3

4. Write mode 4: AM = 1, LG2-0 = 110/111

This mode is used when a vertical comparison is performed between the write data and the set value of the compare resister (CP15-0) to write the data . When the result by the comparison in a byte unit satisfies the condition, the write data sent from the microcomputer is written to the GRAM. In this operation, write data mask function (WM15-0) are also enabled. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the upper-right edge (I/D=1) or upper-left edge (I/D=0) following the I/D bit after it has reached the lower edge of the GRAM.

Notes: 1. The bit area data in the GRAM indicated by (*) is not changed. 2. After writing to address "AF00"H the AC jumps to "0001"H.

Figure 42 Writing Operation of Write Mode 4

4096 colors Display Function

HD66766R is equipped with 4096 colors display function. When setting SPR bit = 1, it operates 4096 color display function, and uses 16 bits instead of 12 bits. Upper 4 bits are invalid when operating 4096 colors display function. While operating 4096 colors display function, write mode 3 and 4 in graphic operation are not usable.

Figure 43 4096 color display data write and read format

Table 34 4,096 color R, G, B data and selective grayscale palette

R, G, B data	Selective grayscale palette	R, G, B data	Selective grayscale palette
0000	PK0	1000	PK17
0001	PK2	1001	PK19
0010	PK4	1010	PK21
0011	PK6	1011	PK23
0100	PK8	1100	PK25
0101	PK10	1101	PK27
0110	PK12	1110	PK29
0111	PK14	1111	K31

Grayscale Palette

The HD66766R incorporates a grayscale palette to simultaneously display 65K of the 140,608 possible colors. The grayscales consist of 32 6-bit palettes. The 52-stage grayscale levels can be selected from the 6-bit palette data.

For the display data, the four-bit data in the GRAM written from the microcomputer is used. In this palette, a pulse-width control system (PWM) is used to eliminate flicker in the LCD display. The time over which the LCDs are switched on is adjusted according to the level and grayscales are displayed so that flicker is reduced and grayscales are clearly displayed.

Figure 44 Grayscale Palette Control

Grayscale Palette Table

The grayscale register that is set for each palette register (PK) can be set to any level. 52-grayscale lighting levels can be set according to palette values ("000000" to "110100").

Table 35 Grayscale Control Level

		Grayscale Control Level				
0	0	0	0	0	0	Unlit level*1
0	0	0	0	0	1	1/52level
0	0	0	0	1	0	2/52level
0	0	0	0	1	1	3/52level
0	0	0	1	0	0	4/52level
0	0	0	1	0	1	5/52level
0	0	0	1	1	0	6/52level
0	0	0	1	1	1	7/52level
0	0	1	0	0	0	8/52level
0	0	1	0	0	1	9/52level
0	0	1	0	1	0	10/52level
0	0	1	0	1	1	11/52level
0	0	1	1	0	0	12/52level
0	0	1	1	0	1	13/52level
0	0	1	1	1	0	14/52level
0	0	1	1	1	1	15/52level
0	1	0	0	0	0	16/52level
0	1	0	0	0	1	17/52level
0	1	0	0	1	0	18/52level
0	1	0	0	1	1	19/52level
0	1	0	1	0	0	20/52level
0	1	0	1	0	1	21/52level
0	1	0	1	1	0	22/52level
0	1	0	1	1	1	23/52level
0	1	1	0	0	0	24/52level
0	1	1	0	0	1	25/52level
0	1	1	0	1	0	26/52level
0	1	1	0	1	1	27/52level
0	1	1	1	0	0	28/52level
0	1	1	1	0	1	29/52level
0	1	1	1	1	0	30/52level
0	1	1	1	1	1	31/52level
1	0	0	0	0	0	32/52level

→ Next Page continued

Rev. 1.0-1 / September 2002

1	0	0	0	0	1	33/52level
1	0	0	0	1	0	34/52level
1	0	0	0	1	1	35/52level
1	0	0	1	0	0	36/52level
1	0	0	1	0	1	37/52level
1	0	0	1	1	0	38/52level
1	0	0	1	1	1	39/52level
1	0	1	0	0	0	40/52level
1	0	1	0	0	1	41/52level
1	0	1	0	1	0	42/52level
1	0	1	0	1	1	43/52level
1	0	1	1	0	0	44/52level
1	0	1	1	0	1	45/52level
1	0	1	1	1	0	46/52level
1	0	1	1	1	1	47/52level
1	1	0	0	0	0	48/52level
1	1	0	0	0	1	49/52level
1	1	0	0	1	0	50/52level
1	1	0	0	1	1	51/52level
1	1	0	1	0	0	All lit level*2

Notes: 1. The unlit level corresponds to a black display when a normally-black color-LCD panel is used, and a white display when a normally-white color-LCD panel is used.

2. The all-lit level corresponds to a white display when a normally-black color-LCD panel is used, and a black display when a normally-white color-LCD panel is used

RGB pixel data and Grayscale level

Table 36 G pixel data and output level

G pixel data	Output level	G pixel data	Output level
000000	PK0	100000	PK16
000001	(PK0+PK1)/2	100001	(PK16+PK17)/2
000010	PK1	100010	PK17
000011	(PK1+PK2)/2	100011	(PK17+PK18)/2
000100	PK2	100100	PK18
000101	(PK2+PK3)/2	100101	(PK18+PK19)/2
000110	PK3	10110	PK19
0000111	(PK3+PK4)/2	100111	(PK19+PK20)/2
001000	PK4	101000	PK20
001001	(PK4+PK5)/2	101001	(PK20+PK21)/2
001010	PK5	101010	PK21
001011	(PK5+PK6)/2	101011	(PK21+PK22)/2
001100	PK6	101100	PK22
001101	(PK6+PK7)/2	101101	(PK22+PK23)/2
001110	PK7	101110	PK23
001111	(PK7+PK8)/2	101111	(PK23+PK24)/2
010000	PK8	110000	PK24
0100001	(PK8+PK9)/2	110001	(PK24+PK25)/2
010010	PK9	110010	PK25
010011	(PK9+PK10)/2	110011	(PK25+PK26)/2
010100	PK10	110100	PK26
010101	(PK10+PK11)/2	110101	(PK26+PK27)/2
010110	PK11	110110	PK27
010111	(PK11+PK12)/2	110111	(PK27+PK28)/2
011000	PK12	111000	PK28
011001	(PK12+PK13)/2	111001	(PK28+PK29)/2
011010	PK13	111010	PK29
011011	(PK13+PK14)/2	111011	(PK29+PK30)/2
011100	PK14	111100	PK30
011101	(PK14+PK15)/2	111101	(PK30+PK31)/2
011110	PK15	111110	PK31
011111	(PK15+PK16)/2	111111	PK31

Table 37 R, B pixel data and output level

R, B pixel data	Output level	R, B pixel data	Output level
00000	PK0	10000	PK16
00001	PK1	10001	PK17
00010	PK2	10010	PK18
00011	PK3	10011	PK19
00100	PK4	10100	PK20
00101	PK5	10101	PK21
00110	PK6	10110	PK22
00111	PK7	10111	PK23
01000	PK8	11000	PK24
01001	PK9	11001	PK25
01010	PK10	11010	PK26
01011	PK11	11011	PK27
01100	PK12	11100	PK28
01101	PK13	11101	PK29
01110	PK14	11110	PK30
01111	PK15	11111	PK31

Setting flow for low power consumption instruction Sleep Mode

Setting the sleep mode bit (SLP) to "1" puts the HD66766R in the sleep mode, where the device stops all internal display operations, thus reducing current consumption. Specifically, LCD operation is completely halted. Here, all the SEG (SEG1 to SEG396) and COM (COM1 to COM176) pins output the "GND" level, resulting in no display. If the AP1-0 bits in the power control register are set to "00" in the sleep mode, the LCD drive power supply can be turned off, reducing the total current consumption of the LCD module.

Table 38 Comparison of Sleep Mode and Standby Mode

Function	Sleep Mode (SLP = "1")	Standby Mode (STB = "1")
LCD control	Turned off	Turned off
R-C oscillation circuit	Operates normally	Operation stopped
Master/slave signal	Operation stopped	Operation stopped

Standby Mode

Setting the standby mode bit (STB) to "1" puts the HD66766R in the standby mode, where the device stops completely, halting all internal operations including the R-C oscillation circuit, thus further reducing current consumption compared to that in the sleep mode. Specifically, all the SEG (SEG1 to SEG396) and COM (COM1 to COM176) pins for the time-sharing drive output the GND level, resulting in no display. If the AP1-0 bits are set to "00" in the standby mode, the LCD drive power supply can bet turned off. During the standby mode, no instructions can be accepted other than the start-oscillation instruction. To cancel the standby mode, issue the start-oscillation instruction to stabilize R-C oscillation before setting the STB bit to "0". When multi-chips are operated, be sure to be set to the standby mode from the slave level.

Figure 45 Procedure for Setting and Canceling Standby Mode

Setting flow for power supply and display instruction

Power-on / off Sequence

To prevent pulse lighting of LCD screens at power-on/off, the power-on/off sequence is activated as shown below. However, since the sequence depends on LCD materials to be used, confirm the conditions by using your own system.

Figure 46 Power-on Sequence

Figure 47 Power-off Sequence

Power-off sequence

Normal case

Note: When hardware reset is input during the power-off period, the D1-0 bits are cleared to "00" and SEG/COM output is forcibly lowered to the GND levels.

Figure 48 Power-off sequence

Partial Sequence Setting Flow

Note: Change only BT2-0 with BT3-0 = "1"

Figure 49 Normal to partial display

Figure 50 Partial to normal display

Oscillation Circuit

The HD66766R can oscillate between the OSC1 and OSC2 pins using an internal R-C oscillator with an external oscillation resistor. Note that in R-C oscillation, the oscillation frequency is changed according to the external resistance value, wiring length, or operating power-supply voltage. If Rf is increased or power supply voltage is decreased, the oscillation frequency decreases. For the relationship between Rf resistor value and oscillation frequency, see the Electric Characteristics Notes section.

1) External clock mode

Figure 51 Oscillation Circuits

HD66766R

The relationship between the SEG and COM output levels is as shown in the following figure. While the display is off, SEG and COM outputs go to GND level.

Figure 52 Relationship with SEG/COM Output Level

Frame-Frequency Adjustment Function

The HD66766R has an on-chip frame-frequency adjustment function. The frame frequency can be adjusted by the instruction setting (DIV, RTN) during the LCD drive as the oscillation frequency is always the same. When the display duty is changed, the frame frequency can be adjusted to be the same. If the oscillation frequency is set to high, an animation or a static image can be displayed in suitable ways by changing the frame frequency. When a static image is displayed, the frame frequency can be set low and the low-power consumption mode can be entered. When high-speed screen switching, for an animated display, etc. is required, the frame frequency can be set high.

Relationship between LCD Drive Duty and Frame Frequency

The relationship between the LCD drive duty and the frame frequency is calculated by the following expression. The frame frequency can be adjusted in the retrace-line period bit (RTN) and in the operation clock division bit (DIV) by the instruction.

```
(Formula for the frame frequency)

fosc

Frame frequency = 

Clock cycles per raster-row × division ratio × 1/duty cycle

fosc: R-C oscillation frequency

Duty: drive duty (NL bit)

Clock cycles per raster-row: (RTN + 26) clock cycles

Division ratio: DIV bit
```

Example Calculation 1 Setting the maximum frame frequency to 60 Hz

Display duty: 1/176

Retrace-line period: 0 clock (RTN3-0 = "0000") Operation clock division ratio: 1 division

 $fosc = 60 \text{ Hz} \times (0 + 26) \text{ clock} \times 1 \text{ division} \times 176 \text{ lines} = 275 \text{ (kHz)}$

In this case, the R-C oscillation frequency becomes 275 kHz. The external resistance value of the R-C oscillator must be adjusted to be 275 kHz. The display duty can be changed by the partial display, etc. and the frame frequency can be the same by setting the RNT bit and DIV bit to achieve the following.

(Partial display): Display duty: 1/40

Retrace-line period: 1 clock (RTN3-0 = "0002") Operation clock division ratio: 3 division

Frame frequency = $275 \text{ kHz}/((3+26) \text{ clock} \times 4 \text{ division} \times 40 \text{ lines}) = 59.2 \text{ (Hz)}$

Example Calculation 2 Switching the frame frequency to suit animation/static image display

(Animation display): Frame frequency: 90 Hz

Display duty: 1/176
Retrace-line period: 0 clock (RTN)

Retrace-line period: 0 clock (RTN3-0 = "0000") Operation clock division ratio: 1 division

 $fosc = 90 \text{ Hz} \times (0 + 26) \text{ clock} \times 1 \text{ division} \times 176 \text{ lines} = 412 \text{ (kHz)}$

(Static image display): Frame frequency: 90 Hz

Display duty: 1/176

Retrace-line period: 1 clock (RTN3-0 = "1101") Operation clock division ratio: 1 division

Frame frequency: $412 \text{ kHz/} ((13 + 26) \text{ clock} \times 1 \text{ division} \times 176 \text{ lines}) = 60.0 \text{ (Hz)}$

n-raster-row Reversed AC Drive

The HD66766R supports not only the LCD reversed AC drive in a one-frame unit (B-pattern waveform) but also the n-raster-row reversed AC drive which alternates in an n-raster-row unit from one to 64 raster-rows (C-pattern waveform). When a problem affecting display quality occurs, such as cross-talk at high-duty driving of more than 1/64 duty, the n-raster-row reversed AC drive (C-pattern waveform) can improve the quality.

Determine the number of raster-rows n (NW bit set value + 1) for alternating after confirmation of the display quality with the actual LCD panel. However, if the number of AC raster-rows is reduced, the LCD alternating frequency becomes high. Because of this, the charge or discharge current is increased in the LCD cells.

Notice: Specify the number of AC drive raster-rows and the necessity of EOR so that the DC bias is not generated to the LCD.

Figure 53 Example of an AC Signal under n-raster-row Reversed AC Drive

Screen-division Driving Function

The HD66766R can select and drive two screens at any position with the screen-driving position registers (R14h and R15h). Any two screens required for display are selectively driven and a duty ratio is lowered by LCD-driving duty setting (NL4-0), thus reducing LCD-driving voltage and power consumption. For the 1st division screen, start line (SS17-10) and end line (SE17-10) are specified by the 1st screen-driving position register (R14h). For the 2nd division screen, start line (SS27-20) and end line (SE27-20) are specified by the 2nd screen-driving position register (R15h). The 2nd screen control is effective when the SPT bit is "1". The total count of selection-driving lines for the 1st and 2nd screens must correspond to the LCD-driving duty set value.

1/24 duty driving on 2 screen

- -Driving duty: NL4-0 = "00010" (1/24 duty)
- -1st screen setting: SS17-10 = "00"H, SE17-10 = "06" H
- -2nd screen setting: SS27-20 = "19"H, SE27-20 = "29" H, SPT = "1"

Figure 54 Display example in 2-screen division driving

Restrictions on the 1st/2nd Screen Driving Position Register Settings

The following restrictions must be satisfied when setting the start line (SS17-10) and end line (SE17-10) of the 1st screen driving position register (R14h) and the start line (SS27-20) and end line (SE27-20) of the 2nd screen driving position register (R15h) for the HD66766R. Note that incorrect display may occur if the restrictions are not satisfied.

Table 39 Restrictions on the 1st/2nd Screen Driving Position Register Settings

	1st Screen Driving (SPT = 0)	2nd Screen Driving (SPT = 1)
Register setting	SS17-10 ≤SE17-0 ≤ "AF"H	SS17-10 ≤ SE17-10 < SS27-20 ≤SE27-20 ≤ "AF"H
Display operation	 Time-sharing driving for COM pins (SS1+1) to (SE1+1) Non-selection level driving for others 	 Time-sharing driving for COM pins (SS1+1) to (SE1+1) and (SS2+1) to (SE2+1) Non-selection level driving for others

Notes: 1. When the total line count in screen division driving settings is less than the duty setting, non-selection level driving is performed without the screen division driving setting range.

- 2. When the total line count in screen division driving settings is larger than the duty setting, the start line, the duty-setting line and the lines between them are displayed and non-selection level driving is performed for other lines.
- 3. For the 1st screen driving, the SS27-20 and SE27-20 settings are ignored.

LCD Voltage Generation Circuit

Figure 58 shows a configuration of the HD66766R LCD drive voltage generation circuit. It consists of step-up circuit 1 that doubles or triples the voltage that is applied to Vci1, step-up circuit 2 that multiplies the voltage from step-up circuit 1 by two to five times, and polarity circuit that generates a VCL level by inverting the VCH level centered around the VM level. These circuits generate VCH and VCL that are power supply for COM outputs. The LCD driving level for SEG outputs (VSH and VM) are generated by dividing resistance at the VREF level.

Figure 55 Configuration of internal power circuit

- ote: 1) Use condenser with character B.
 - 2) Condensers with asterisk (*) need resist pressure more than 25V.
 - 3) Insert shot-key barrier diode. (VF = 0.6V / 20mA, VR>=30V)

Notes: 1. Generate an output voltage (VOUT) from step-up circuit 1 within the range from 4.0 to 5.75V.

- 2. Do not allow the output voltage (VCH) from step-up circuit 2 to exceed 22 V.
- 3. Do not allow the output from Vci2 to exceed VOUT voltage.
- 4. When capacitor with polarity is used, be sure that an inverted voltage is not applied to it in any state of the system.
- 5. Vci1 is used as both the reference voltage input and power supply in the step-up circuit. Keep sufficient LCD drive current.
- 6. Rated voltage of capacitors possible to be used are as described below. Required voltage depends on used panels. When actual voltage is less than 16V, capacitors with 16V rated voltage can be used.

6.3V: VREFM, VciOUT, C11, C12, VOUT, BIASC, Vci2, C21, C22, C23, VSH, VM 25V(16V): VCH, CE, VCL

LCD Drive Voltage

The required voltage can be calculated by applying the following expressions. Drive voltages are standard; generate a voltage to suit the panel to be used.

VSH-VM, VM-VSL
$$\frac{1}{2}\sqrt{\frac{2\sqrt{N}}{\sqrt{N}-1}}$$
 x Vth Vth: Threshold voltage of the LCD panel to be used. N: Display duty cycle. VCH-VM, VM-VCL $\frac{1}{2}\sqrt{\frac{2N\sqrt{N}}{\sqrt{N}-1}}$ x Vth

LCD Drive Bias

An optimal bias can be calculated by applying the following expression. The value that has been calculated is theoretically optimal. If a lower bias value than the optimal value is used to drive the LCD, contrast may be reduced depending on lighting conditions. However, the power consumption can be reduced by lowering the drive voltage. Adjust the value according to the system to be used.

Bias value =
$$\frac{1}{\sqrt{N}}$$

How to determine the VCH voltage

 $VCH = N_B \times N_{D2} \times VSH$

N_B: Bias ratio

 $N_{\rm D2}$: Step-up factor of the step-up circuit 2

Contrast adjustment

 R_B : Contrast resistance (0.000R to 1.016R) VSH = VREFM x 2R / (Rb + 2R)

Table 40

	CT setting value											
СТ6	CT5	CT4	СТЗ	CT2	CT1	СТО	Rb resist value					
0	0	0	0	0	0	0	1.016R					
0	0	0	0	0	0	1	1.008R					
0	0	0	0	0	1	0	1.000R					
0	0	0	0	0	1	1	0.992R					
0	0	0	0	1	0	0	0.984R					
					:							
1	1	1	1	1	1	0	0.008R					
1	1	1	1	1	1	1	0.000R					

Figrue 56

How to determine the power setting value

1. Determine LCD drive bias

Determine LCD drive bias first. LCD drive bias is theoretically (1/SQRT (display duty)) optimal; however, the total drive voltage can be reduced by lowering bias ratio. Consider the display quality, the drive voltage and the current consumption.

2. Determine VOUT voltage

Determine factor of Vc1 regulator and step-up factor so as to set output voltage, VOUT of step-up circuit 1 4.0 to 5.75V, setting input voltage Vci2 of step-up circuit 2 more than +0.5V. Since the entire electric power for driving LCD is supplied from step-up circuit, subsequent voltage fall need to be considered.

3. Segment drive voltage calculation

Segment output drive voltage is calculated by the following expression.

$$Vseg = \sqrt{\frac{2 \times B}{(B-1)}} \times VTH$$

B : LCD drive bias ratio

Vth: LCD threshold voltage

4. Common drive voltage calculation

Common output drive voltage is calculated by the following expression.

$$Vcom = \frac{Vseg}{2} \times (B+1)$$

B : LCD drive bias ratio

5. Determine input voltage of step-up circuit 2

Determine input voltage of step-up circuit 2. This voltage is determined by dividing Vcom voltage by step-up factor; lower factors are used for low current consumption. Vci2 voltage need to be less than VOUT voltage (4.0 to 5.75 V)- 0.5V.

Example of register setting on power supply

Examples of register setting values on power supply are described below.

Example 1: 1/176 duty ratio, Vcc = VREFL = 3.0V, 1/13 bias

BS3-0 = H'8: bias adjustment 1.4 times

BT2-0 = H'4 : step-up circuit 1 2 times step-up circuit 2 5 times

BT3 = H'1 : operate voltage inverting circuit

DC2-0 = H'6 step-up circuit 1 frequency 32 clocks step-up circuit 2 frequency 128 clocks

TBD

AP1-0 = H'1 : low fixed current in the amplifier

VC2-0 = H'0 : Vci1 = 0.92 x Vcc = 2.75 V

VR2-0 = H'0 : $VREFM = 1.1 \times VREFL$

CT6-0 : appropriate contrast setting values

Rev. 1.0-1 / September 2002

HD66766R

Example 2: 1/176 duty ratio, Vcc = VREFL = 2.4V, Vci = 2.8V, 1/13 bias

BS2-0 = H'8: bias adjustment 1.4 times

BT2-0 = H'4 : step-up circuit 1 2 times step-up circuit 2 5 times

BT3 = H'1 : operate voltage inverting circuit

DC2-0 = H'6 : step-up circuit 1 frequency 32 clocks step-up circuit 2 frequency 128 clocks

TBD

AP1-0 = H'1 : low fixed current in the amplifier

VC2-0 = H'4 : internal Vci1 regulator off 2.8V directly supplied to Vci1

VR3-0 = H'2 : $VREFM = 1.4 \times VREFL$

CT6-0 : appropriate contrast setting values

Example 3: Partial display, 1/24 duty ratio, Vcc = 2.4V, Vci = 2.8V, 1/4 bias

BS2-0 = H'0: bias adjustment 1.25 times

BT2-0 = H'0 : step-up circuit 1 2 times step-up circuit 2 2 times

BT3 = H'1 : operate voltage inverting circuit

DC2-0 = H'6 : step-up circuit 1 frequency 64 clocks step-up circuit 2 frequency 128 clocks

TBD

AP1-0 = H'1 : low fixed current in the amplifier

VC2-0 = H'4 : internal Vci1 regulator off

VR3-0 = H'2 : $VREG 1 = 1.4 \times VREFL$

CT6-0 : appropriate contrast setting values

HD66766R power supply level correlation

Figure 57 HD66766R Power supply level correlation

Connection of condenser related to the magnification of step up circuit 1

(2) 3 times step-up circuit (3 x Vci1)

Connection of condenser related to the magnification of step up circuit 2

(1) 2 times step-up circuit (2 x Vci2)

(2) 3 times step-up circuit (3 x Vci2)

(3) 4times step-up circuit (4 x Vci2)

(4) 5times step-up circuit (5 x Vci2)

Absolute Maximum Ratings

Table 41

Item	Symbol	Unit	Value	Notes*
Power supply voltage (1)	Vcc	V	-0.3 to + 4.6	1, 2
Power supply voltage (2)	Vcil	V	-0.3 to + 4.6	1, 3
Power supply voltage (3)	VCH-VCL	V	-0.3 to + 46	1, 4
Input voltage	Vt	V	-0.3 to Vcc + 0.3	1
Operating temperature	Topr	°C	-40 to +85	1, 5
Storage temperature	Tstg	°C	-55 to + 110	1

Notes: 1. If the LSI is used above these absolute maximum ratings, it may become permanently damaged. Using the LSI within the following electrical characteristic limit is strongly recommended for normal operation. If these electrical characteristic conditions are also exceeded, the LSI will malfunction and cause poor reliability.

- 2. Vcc ≥ GND must be maintained
- 3. Vcil \geq GND must be maintained.
- 4. VCH ≥ GND must be maintained GND ≥ VCL must be maintained
- 5. For die and wafer products, specified up to 85 °C.

Rev. 1.0-1 / September 2002

DC Characteristics (V $_{\rm CC}$ = 2.2 to 3.6 V, VCH-VCL=8V to 44V, Ta = –40 to +85 $^{\circ}C*^{1}$)

Table 42

Item	Symbol	Unit	Test Condition	Min	Тур	Max	Notes
Input high voltage	V_{IH}	V	$V_{CC} = 2.2 \text{ to } 3.6 \text{ V}$	0.7 V _{CC}	_	V _{CC}	2, 3
Input low voltage	$V_{\rm IL}$	V	$V_{CC} = 2.2 \text{ to } 3.6 \text{ V}$	-0.3	_	0.15V _{CC}	2, 3
Output high voltage (1) (DB0-15 pins)	V_{OH1}	V	$I_{OH} = -0.1 \text{ mA}$	0.75V _{CC}	_	_	2
Output low voltage (1) (DB0-15 pins)	V _{OL1}	V	$V_{CC} = 2.2 \text{ to } 2.4 \text{ V},$ $I_{OL} = 0.1 \text{ mA}$	_	_	$0.2~\mathrm{V_{CC}}$	2
			$VCC = 2.4 \text{ to } 3.6 \text{ V},$ $I_{OL} = 0.1 \text{ mA}$	—	_	$0.15V_{CC}$	2
Driver ON resistance (SEG pins)	R_{SEG}	kΩ	$\pm Id = 0.05 \text{ mA},$ $V_{LCD} = 3 \text{ V}$	_	0.35	3	4
Driver ON resistance (COM pins)	R _{COM}	kΩ	$\pm Id = 0.05 \text{ mA},$ $V_{CH} - V_{CL} = 44 \text{ V}$	_	0.90	3	4
I/O leakage current	I_{Li}	μΑ	$Vin = 0$ to V_{CC}	-1	_	1	5
Current consumption during normal operation (V_{CC} – GND)	${ m I}_{ m OP}$	μΑ	R-C oscillation $V_{CC} = 3.0 \text{ V}$, $VCH = 20\text{V}$, $VM = 1.6\text{V}$, $VCL = -16.8\text{V}$, $Ta = 25^{\circ}\text{C}$ $f_{OSC} = 276$ Khz (1/176 duty), $1/12$ Bias CT minimum AP minimum, display all 0 Step-up $1 = \text{two times}$ Step-up $2 = \text{five times}$ $VCI1 = 0.92 \times VCC$	<u> </u>	480.	600	6
Current consumption during standby mode	I_{ST}	μΑ	$V_{CC} = 3 \text{ V, Ta} = 25^{\circ}\text{C}$		0.1	5	_
(V _{CC} – GND)			$Vcc = 3V$, $Ta = 85^{\circ}C$		_	50	
VREFL input voltage	VREFL	V	$Vcc = 2.2V \sim 3.6V$	_	_	Vcc	
VREFM output voltage	VREFM	V	$VOUT = 4.0V \sim 5.75V$		_	VOUT -0.5	
Step up circuit 1 output voltage	VOUT	V		4.0		5.75	
Step up circuit 2 output voltage	VCI2	V		_	_	VOUT – 0.5	

Rev. 1.0-1 / September 2002

Step up circuit characteristics

Table 43

Item	Terminal	Unit	Test Condition	Min	Typ	Max	Notes
Step up circuit 1	VOUT	V	VCC = 3.0 [V] Vci step up factor = 0.92 Step up factor : two times Step up cycle: 32 divided cycle Load voltage = 400 [µA]	5.25	5.48	_	_
Step up circuit 2	VCH	V	VCC = 3.0 [V] VOUT = 5.5 [V] VREFL = 3.0 [V] VREFM = 1.1 x VREFL Constant current of operation amplifier: small Contrast adjustment value = 0.000R 1/12 bias Step up cycle of step up circuit 2: 96 divided cycle Step up factor: Five times Load current = 20 [uA]	21.2	21.3	_	(9)
Step up circuit 3	VCL	V	VCC = 3.0 [V] VOUT = 5.5 [V] VREFL = 3.0 [V] VREFM = 1.1 x VREFL Constant current of operation amplifier: small Contrast adjustment value = 0.000R 1/12 bias Step up cycle of polarity inversion circuit: 96 divided cycle Step up factor: Five times Load current = 20 [uA]	-21.0	-21.2	_	(9)

AC Characteristics (V $_{CC}$ = 2.2 to 3.6 V, Ta = –40 to +85 $^{\circ}C^{*1}$)

Table 44 Clock Characteristics (V_{CC} = 2.2 to 3.6 V)

Item	Symbol	Unit	Test Condition	Min	Typ	Max	Notes
External clock frequency	fcp	kHz	$V_{CC} = 2.2 \text{ to } 3.6 \text{ V}$	151	275	640	7
External clock duty ratio	Duty	%	$V_{CC} = 2.2 \text{ to } 3.6 \text{ V}$	45	50	55	7
External clock rise time	trcp	μs	$V_{CC} = 2.2 \text{ to } 3.6 \text{ V}$	_	_	0.2	7
External clock fall time	tfcp	μs	$V_{CC} = 2.2 \text{ to } 3.6 \text{ V}$	_	_	0.2	7
R-C oscillation clock	f_{OSC}	kHz	$Rf = 200k\Omega$,	220	275	330	8
			$V_{CC} = 3 \text{ V}$				

68-system Bus Interface Timing Characteristics

Table 45 Normal Write Mode (HWM=0)

(Vcc = 2.2 to 2.4 V)

Item		Symbol	Unit	Test Cond	ition	Min	Typ	Max
Enghla anala tima	Write	t _{CYCE}	ns	Figure 1	600	_		
Enable cycle time	Read	t_{CYCE}	ns	Figure 1	800	_	_	
Enoble high level pulse width	Write	PW_{EH}	ns	Figure 1	90	_	_	
Enable high-level pulse width	Read	PW_{EH}	ns	Figure 1	350	_		
Enoble love lovel pulse width	Write	PW_{EL}	ns	Figure 1	300	_	_	
Enable low-level pulse width	Read	PW_{EL}	ns	Figure 1	400	_	_	
Enable rise/fall time		t_{Er}, t_{Ef}	ns	Figure 1	_	_	25	
Set up time (RS, R/W to E, CS*)		t_{ASE}	ns	Figure 1	10	_	_	
Address hold time		t_{AHE}	ns	Figure 1	5	_		
Write data set up time		t_{DSWE}	ns	Figure 1	60	_	_	
Write data hold time		t_{HE}	ns	Figure 1	15	_	_	
Read data delay time	•	t_{DDRE}	ns	Figure 1			200	_
Read data hold time		t_{DHRE}	ns	Figure 1	5	_		_

Table 46 High-Speed Write Mode (HWM=1)

(Vcc = 2.2 to 2.4 V)

Item		Symbol	Unit	Test Condition	Min	Typ	Max
Enable avaletime	Write	t_{CYCE}	ns	Figure 1	200	_	
Enable cycle time	Read	t_{CYCE}	ns	Figure 1	800	_	
Enable high-level pulse width	Write	PW_{EH}	ns	Figure 1	90	_	
Enable filgii-level pulse widui	Read	PW_{EH}	ns	Figure 1	350	_	
Enable low-level pulse width	Write	PW_{EL}	ns	Figure 1	90	_	
Eliable low-level pulse width	Read	PW_{EL}	ns	Figure 1	400	_	
Enable rise/fall time		t_{Er}, t_{Ef}	ns	Figure 1	_	_	25
Set up time (RS, R/W to E, CS*)		t_{ASE}	ns	Figure 1	10	_	
Address hold time		t_{AHE}	ns	Figure 1	5		
Write data set up time		t_{DSWE}	ns	Figure 1	60	_	
Write data hold time		t_{HE}	ns	Figure 1	15	_	
Read data delay time		t_{DDRE}	ns	Figure 1	_	_	200
Read data hold time		t_{DHRE}	ns	Figure 1	5	_	

Normal Write Mode (HWM=0)

Table 47 (Vcc = 2.4 to 3.6 V)

Item		Symbol	Unit	Test Condition	Min	Тур	Max	Note
Enable cycle time	Write	t_{CYCE}	ns	Figure 1	200	_	_	_
	Read	t _{CYCE}	ns	Figure 1	300	_	_	_
Enable high-level pulse width	Write	PW_{EH}	ns	Figure 1	40	_	_	_
	Read	PW_{EH}	ns	Figure 1	150	_	_	_
Enable low-level pulse width	Write	PW_{EL}	ns	Figure 1	100	_	_	_
	Read	PW_{EL}	ns	Figure 1	100	_	_	
Enable rise/fall time		t_{Er}, t_{Ef}	ns	Figure 1	_	_	25	
Set up time (RS, R/W to E, CS*)		+	ns	Figure 1 -	10	_	_	Using status read
Set up time (KS, K/W to E, CS-)		t_{ASE}	115	rigule i -	0	_	_	Not using status read
Address hold time		t_{AHE}	ns	Figure 1	2	_	_	_
Write data set up time		$t_{ m DSWE}$	ns	Figure 1	60	_	_	_
Write data hold time		t_{HE}	ns	Figure 1	2	_	_	_
Read data delay time		$t_{ m DDRE}$	ns	Figure 1	_	_	100	_
Read data hold time		t_{DHRE}	ns	Figure 1	5	_	_	_

High-Speed Write Mode (HWM=1)

Table 48 (Vcc = 2.4 V to 3.6 V)

Item		Symbol	Unit	Test Condition	Min	Тур	Max	Note
Enable cycle time	Write	t _{CYCE}	ns	Figure 1	100	_	_	_
	Read	t _{CYCE}	ns	Figure 1	300	_	_	_
Enable high-level pulse width	Write	PW_{EH}	ns	Figure 1	40	_	_	_
	Read	PW_{EH}	ns	Figure 1	150	_	_	_
Enable low-level pulse width	Write	PW_{EL}	ns	Figure 1	40	_	_	_
	Read	PW_{EL}	ns	Figure 1	100	_	_	_
Enable rise/fall time		t_{Er}, t_{Ef}	ns	Figure 1	_	_	25	_
Set up time (RS, R/W to E, CS*)		t	ns	Figure 1	10	_	_	Using status read
Set up time (KS, K/W to E, CS-)		t_{ASE}	115	rigure i	0	_	_	Not using status read
Address hold time		t_{AHE}	ns	Figure 1	2	_	_	_
Write data set up time		t_{DSWE}	ns	Figure 1	60	_	_	_
Write data hold time		t_{HE}	ns	Figure 1	2	_	_	_
Read data delay time		$t_{ m DDRE}$	ns	Figure 1	_	_	100	_

80-system Bus Interface Timing Characteristics

Normal Write Mode (HWM=0)

Table 49 (Vcc = 2.2 to 2.4 V)

Item		Symbol	Unit	Test Condition	Min	Тур	Max
Bus cycle time	Write	t _{CYCW}	ns	Figure 2	600	_	
	Read	t _{CYCR}	ns	Figure 2	800	_	_
Write low-level pulse width		PW_{LW}	ns	Figure 2	90	_	_
Read low-level pulse width		PW_{LR}	ns	Figure 2	350	_	_
Write high-level pulse width		PW_{HW}	ns	Figure 2	300	_	_
Read high-level pulse width		PW_{HR}	ns	Figure 2	400	_	_
Write/Read rise/fall time		t _{WRr, WRf}	ns	Figure 2	_	_	25
Setup time		t_{AS}	ns	Figure 2	10	_	_
(RS to CS*, WR*, RD*)							
Address hold time		t_{AH}	ns	Figure 2	5	_	_
Write data set up time		t_{DSW}	ns	Figure 2	60	_	_
Write data hold time		t_H	ns	Figure 2	15	_	_
Read data delay time		$t_{\rm DDR}$	ns	Figure 2	_	_	200
Read data hold time		t_{DHR}	ns	Figure 2	5	_	_

High-Speed Write Mode (HWM=1)

Table 50 (Vcc = 2.2 to 2.4 V)

Item		Symbol	Unit	Test Condition	Min	Тур	Max
Bus cycle time	Write	t_{CYCW}	ns	Figure 2	200		_
	Read	t_{CYCR}	ns	Figure 2	800		_
Write low-level pulse width		PW_{LW}	ns	Figure 2	90		_
Read low-level pulse width		PW_{LR}	ns	Figure 2	350		_
Write high-level pulse width		PW_{HW}	ns	Figure 2	90		_
Read high-level pulse width		PW_{HR}	ns	Figure 2	400		_
Write/Read rise/fall time		t _{WRr, WRf}	ns	Figure 2	_		25
Set up time		t _{AS}	ns	Figure 2	10		_
(RS to CS*, WR*, RD*)							
Address hold time		t_{AH}	ns	Figure 2	5		_
Write data set up time		$t_{ m DSW}$	ns	Figure 2	60		_
Write data hold time		t _H	ns	Figure 2	15		_
Read data delay time		$t_{\rm DDR}$	ns	Figure 2	_	_	200
Read data hold time		t_{DHR}	ns	Figure 2	5	_	_

Normal Write Mode (HWM = 0)

Table 51 (Vcc = 2.4 to 3.6 V)

Item		Symbol	Unit	Test Condition	Min	Тур	Max	Note
Bus cycle time	Write	t _{CYCW}	ns	Figure 2	200	_	_	
	Read	t _{CYCR}	ns	Figure 2	300	_	_	
Write low-level pulse width		PW_{LW}	ns	Figure 2	40	_	_	
Read low-level pulse width		PW_{LR}	ns	Figure 2	150	_	_	
Write high-level pulse width		PW_{HW}	ns	Figure 2	100	_	_	
Read high-level pulse width		PW_{HR}	ns	Figure 2	100	_	_	
Write/Read rise/fall time		t _{WRr, WRf}	ns	Figure 2	_	_	25	
Set up time			na	Figure 2 -	10	_	_	Using status read
(RS to CS*, WR*, RD*)		t_{AS}	ns	riguie 2 -	0	_	_	Not using status read
Address hold time		t_{AH}	ns	Figure 2	2	_	_	
Write data setup time		t_{DSW}	ns	Figure 2	60	_	_	
Write data hold time		t _H	ns	Figure 2	2	_	_	
Read data delay time		t_{DDR}	ns	Figure 2	_	_	100	
Read data hold time		t_{DHR}	ns	Figure 2	5	_	_	

High-Speed Write Mode (HWM=1)

Table 52 (Vcc = 2.4 to 3.6 V)

Item		Symbol	Unit	Test Condition	Min	Тур	Max	Note
Bus cycle time	Write	t _{CYCW}	ns	Figure 2	100	_	_	
	Read	t _{CYCR}	ns	Figure 2	300	_	_	
Write low-level pulse width		PW_{Lw}	ns	Figure 2	40	_		
Read low-level pulse width		PW_{LR}	ns	Figure 2	150	_		
Write high -level pulse width		PW_{HW}	ns	Figure 2	40	_		
Read high -level pulse width		PW_{HR}	ns	Figure 2	100	_		
Write/Read rise/fall time		t _{wRr} , _{wRf}	ns	Figure 2	_	_	25	
Set up time		4		Eigung 2	10	_		Using status read
(RS to CS*, WR*, RD*)		t_{AS}	ns	Figure 2	0	_		Not using status read
Address hold time		t _{AH}	ns	Figure 2	2	_		
Write data set up time		t_{DSW}	ns	Figure 2	60	_		
Write data hold time		t _H	ns	Figure 2	2	_	_	
Read data delay time		t_{DDR}	ns	Figure 2	_	_	100	
Read data hold time		$t_{\rm DHR}$	ns	Figure 2	5	_	_	

Clock Synchronized Serial Interface Timing Characteristics

Table 53 (Vcc = 2.2 to 2.4 V)

Item		Symbol	Unit	Test Condition	Min	Typ	Max
Section to the section of the sectio	Write (received)	t_{SCYC}	us	Figure 3	0.1	_	20
Serial clock cycle time	Read (transmitted)	t_{SCYC}	us	Figure 3	0.25		20
Social alcole bink lavel mules width	Write (received)	t_{SCH}	ch ns Figure 3		40	_	_
Serial clock high-level pulse width	Read (transmitted)	t_{SCH}	ns	Figure 3	120	_	_
Serial clock low-level pulse width	Write (received)	t_{SCL}	ns	Figure 3	40		
	Read (transmitted)	t_{SCL}	ns	Figure 3	120	_	_
Serial clock rise/fall time		$t_{\rm scr, scf}$	ns	Figure 3	_	_	20
Chip select set up time		t_{CSU}	ns	Figure 3	20	_	_
Chip select hold time		t_{CH}	ns	Figure 3	60	_	
Serial input data set up time		t_{SISU}	ns	Figure 3	30	_	_
Serial input data hold time		t_{SIH}	ns	Figure 3	30	_	
Serial input data delay tin	t_{SOD}	ns	Figure 3	_	_	130	
Serial input data hold time		t_{SOH}	ns	Figure 3	5	_	

Table 54 (Vcc = 2.4 to 3.6 V)

Item		Symbol	Unit	Test Condition	Min	Typ	Max
	Write (received)	t_{SCYC}	us	Figure 3	0.076	_	20
Serial clock cycle time	Read	t_{SCYC}	us	Figure 3	0.15	_	20
	(transmitted)						
	Write (received)	t_{SCH}	ns	Figure 3	40	_	_
Serial clock high-level pulse width	Read	t_{SCH}	ns	Figure 3	70	_	
	(transmitted)						
	Write	t_{SCL}	ns	Figure 3	35	_	_
Serial clock low-level pulse width	(received)						
Serial clock low-level pulse width	Read	t_{SCL}	ns	Figure 3	70	_	_
	(transmitted)						
Serial clock rise/fall time		$t_{scr, scf}$	ns	Figure 3	—	_	20
Chip select set up time		t_{CSU}	ns	Figure 3	20	_	
Chip select hold time		t_{CH}	ns	Figure 3	60	_	_
Serial input data set up time		t_{SISU}	ns	Figure 3	30	_	
Serial input data hold time		t_{SIH}	ns	Figure 3	30	_	_
Serial output data delay time		t_{SOD}	ns	Figure 3			130
Serial output data hold time		t_{SOH}	ns	Figure 3	5		

Reset Timing Characteristics ($V_{CC} = 2.2$ to 3.6 V)

Table 55

Item	Symbol	Unit	Test Condition	Min	Тур	Max
Reset low-level width	t_{RES}	ms	Figure 4	1	_	_
Reset rise time	t_{rRES}	ms	Figure 4	_	_	10

Electrical Characteristics Notes

- 1. For bare die and wafer products, specified up to 85°C.
- 2. The following three circuits are I pin, I/O pin, O pin configurations.

Pins: RESET*, CS*, E/WR, RW/RD, RS, OSC1, IM2-1, IM0/ID, TEST1, TEST2

Pins: OSC2

Figure 64

Figure 65

Pins: DB15 -DB2,

DB1/SD0, DB0/SD1

Figure 66 I/O Pin Configuration

- 3. The TEST1, TEST2 pins must be grounded and the IM2/1 and IM0/ID pins must be grounded or connected to Vcc.
- 4. Applies to the resistor value (RSEG) between VSH, GND pins and segment signal pins.
- 5. This excludes the current flowing through output drive MOSs.

- 6. This excludes the current flowing through the input/output units. The input level must be fixed high or low because through current increases if the CMOS input is left floating. Even if the CS pin is low or high when an access with the interface pin is not performed, current consumption does not change.
- 7. Applies to the external clock input (figure).

Figure 67 External Clock Supply

- 8. Applies to the internal oscillator operations using external oscillation resistor Rf (figure and table).
- 9. Set VCI2 to maintain the relation VCI2 =< VOUT-0.5V.

Since the oscillation frequency varies depending on the OSC1 and OSC2 pin capacitance, the wiring length to these pins should be minimized.

Figure 68 Internal Oscillation

External Resistance	R-C Oscillation Frequency: fosc						
(Rf)	Vcc = 1.8V	Vcc = 2.2 V	Vcc = 2.4 V	Vcc = 3.0 V	Vcc = 3.6 V		
75 kΩ	364	495	559	631	687		
130 kΩ	263	345	381	421	453		
180 kΩ	210	270	295	323	344		
200 kΩ	193	245	266	290	307		
240 kΩ	174	218	236	256	270		
280 kΩ	156	194	210	226	238		
$360 \mathrm{k}\Omega$	129	158	170	182	191		
470 kΩ	102	122	129	137	142		

Table 56 External Resistance Value and R-C Oscillation Frequency (Referential Data)

Step-up circuit loading characteristics (Reference data)

(1) Step-up circuit 1 – loading characteristic

Measureing condition

Ta = 25C, VCC = 3.0 [V], Oscillation frequency = 250 [kHz]

(2) Vci1 step-up magnification = 0.92, Step-up magnification two times

Figure 69 Step-up circuit 1- load characteristic (AP=01 amplifier constant voltage: small)

Figure 70 Step-up circuit 1- load characteristic (AP=10 amplifier constant voltage: medium)

Figure 71 Step-up circuit 1- load characteristic (AP=11 amplifier constant voltage: large)

(2) Step-up circuit 2 – loading characteristic

Measureing condition

Ta = 25C, VCC = 3.0 [V], Oscillation frequency = 250 [kHz]

Vci1 step-up magnification = 0.92, Step-up circuit 1: step-up magnification two times

32 divided frequency, VREFM = $1.1 \times VREFL$, CT = 0.00R1/12 Bias

Step-up circuit 2: Five times step-up

Figure 72 Step-up circuit 2- load characteristic (AP=01 amplifier constant voltage: small)

Figure 73 Step-up circuit 2- load characteristic (AP=10 amplifier constant voltage: medium)

Figure 74 Step-up circuit 2- load characteristic (AP=11 amplifier constant voltage: large)

(3) Polarity inversion circuit – loading characteristic

Measureing condition

Ta = 25C, VCC = 3.0 [V], Oscillation frequency = 250 [kHz]

Vci1 step-up magnification = 0.92, Step-up circuit 1 step-up magnification two times

32 divided frequency, VREFM = 1.1 x VREFL, CT = 0.00R 1/12 Vias

Step-up circuit 2: Five times

Figure 75 Polarity inversion circuit – Load characteristic (AP=01 amplifier constant current: small)

Figure 76 Polarity inversion circuit - Load characteristic (AP=10 amplifier constant current: medium)

Figure 77 Polarity inversion circuit - Load characteristic (AP=11 amplifier constant current: large)

Load Circuits

AC Characteristics Test Load Circuits

Figure 78 Load Circuit

Timing Characteristics

68-system Bus Operation

Figure 79 68-system Bus Timing

Notes: 1) PWEH is specified in the overlapped period when CS* is low and E is high.

2) Parallel data transfer is enabled on the DB15-8 pins when the 8-bit bus interface is used. Fix the DB7-0 pins to Vcc or GND.

80-system Bus Operation

Figure 80 80-system Bus Timing

- Note1) PWLW and PWLR are specified in the overlapped period when CS* is low and WR* or RD* is low.
- Note2) Parallel data transfer is enabled on the DB15-0 pins when the 8-bit bus interface is used. Fix the DB7-0 pins to Vcc or GND.

Clock Synchronized Serial Interface Operation

Figure 81 Clock Synchronized Serial Interface Timing

Reset Operation

Figure 82 Reset Timin

Additional Issue

HD66766R Contrast fluctuation on RAM access

Hitachi one-chip driver; HD66766R has contrast fluctuation while accessing the internal RAM. This phenomenon occurs according to the structure of external circuit and the usage of HD66766R. Please have a clear understanding of the phenomenon and measures described below before using HD66766R.

1. Contrast fluctuation

When HD66766R is mounted on glass, the grand terminal gets contact with resistance of ITO wiring. HD66766R has 8 GNDs, 4 AGNDs for power supply circuit, and another 4 GNDs for RAM and Logic. When all the GNDs are connected on glass with ITO, transferring display data to the internal RAM at high-speed causes high current consumption. And resistance of ITO wiring connected with GND terminal raises the voltage. The raised voltage is amplified with a step-up circuit, and it results in a decrease of VCH/VCL voltage causing contrast fluctuation on display. Figure 1 shows the mechanism of the phenomenon. Figure 2 shows decrease of VCH voltage according to RAM access frequency and resistance of ITO wiring. (The value shown in Figure 2 is the actual data of a typical sample of HD66766R measured by Hitachi's jig.)

2. Measures

ITO patterns on glass must be separated as shown in Figure 3. (Even if GND bumps are separated on LSI, if ITO patterns on glass are connected, GND level rises up in RAM circuit and Logic circuit.) Also, GND resistor should be designed to be less than 10 Ω , considering the decrease of VCH voltage caused by the raise of GND voltage.

Figure 1 Influence of ITO wiring resistance

Figure 2 VCH voltage decrease depending on RAM access frequency and Resistance of ITO wiring

Figure 3 Recommended ITO Connection Pattern (HCD667X66)

Figure 4 Recommended ITO Connection Pattern (HCD667X66R)

Rev. 1.0-1 / September 2002

Maintenance history report

Rev.	Date	Contents
1.0	August 8, 2002	First release
1.1	September 17, 2002	P74 2.Determine VOUT voltage Line2 From "4.0 to 5.5V" to "4.0 to 5.75 V"
		P74 5.Determine input voltage of step-up circuit2 Line 3 From "4.5 to 5.75V)-0.5V" to "(4.0 to 5.75V)-0.5V