Sparse attention transformers

Как есть сейчас

Сложность на одном слое — $O(n^2)$:

Для каждого токена сопоставляем пары ключ-значение для каждого токена предыдущего слоя

Output

Откуда пришла идея?

Внимание... Спасибо за внимание

- S шаблон связности. $S = \{S_1, \dots, S_n\}$
- Attend $(\mathbf{X}, \mathcal{S}) = \left(a(\mathbf{x}_i, S_i)\right)_{i \in \{1, ..., L\}}$

$$a(\mathbf{x}_i, S_i) = \operatorname{softmax}\left(\frac{(\mathbf{x}_i \mathbf{W}^q)(\mathbf{x}_j \mathbf{W}^k)_{j \in S_i}^{\top}}{\sqrt{d_k}}\right) (\mathbf{x}_j \mathbf{W}^v)_{j \in S_i}$$

• Разбиваем $\mathcal S$ на непересекающиеся подмножества:

$$A_i^{(m)} \subset S_i, m = 1, \dots, p$$

ullet Если (j,a,b,c,\ldots,i) — путь, то $j\in A_a^{(1)}, a\in A_b^{(2)}, b\in A_c^{(3)},\ldots$

Love Attention Sparse Attention Is All You Need

Strided attention

- $\ell \sim \sqrt{n}$
- Смотрит на предыдущие ℓ токенов в порядке
 С-memory-order и на пиксели в той же колонке

$$A_i^{(1)} = \{t, t+1, \dots, i\}, \text{ where } t = \max(0, i-\ell)$$

 $A_i^{(2)} = \{j : (i-j) \mod \ell = 0\}$

Fixed attention

 Смотрит до начала строки и на с колонок справа

• $c \in \{8, 16, 32\}, \ell \in \{128, 256\}$

fixed attention.

$$A_i^{(1)} = \{j : \lfloor \frac{j}{\ell} \rfloor = \lfloor \frac{i}{\ell} \rfloor \}$$

$$A_i^{(2)} = \{j : j \mod \ell \in \{\ell - c, \dots, \ell - 1\} \}$$

Как строить модель?

1. Один тип sparse attention на каждый слой, с каждым новым слоем чередовать

$$\operatorname{attention}(\mathbf{X}) = \operatorname{Attend}(\mathbf{X}, A^{(n \pmod{p})}) \mathbf{W}^{o}$$

2. Одна голова, область внимания — объединение областей

$$\operatorname{attention}(\mathbf{X}) = \operatorname{Attend}(\mathbf{X}, \bigcup_{m=1}^{p} A^{(m)}) \mathbf{W}^{o}$$

3. Multi-head, головы выбираются как в первых двух пунктах

Итоги

Model	Bits per byte
CIFAR-10	
PixelCNN (Oord et al., 2016)	3.03
PixelCNN++ (Salimans et al., 2017)	2.92
Image Transformer (Parmar et al., 2018)	2.90
PixelSNAIL (Chen et al., 2017)	2.85
Sparse Transformer 59M (strided)	2.80
Enwik8	
Deeper Self-Attention (Al-Rfou et al., 2018)	1.06
Transformer-XL 88M (Dai et al., 2018)	1.03
Transformer-XL 277M (Dai et al., 2018)	0.99
Sparse Transformer 95M (fixed)	0.99
ImageNet 64x64	
PixelCNN (Oord et al., 2016)	3.57
Parallel Multiscale (Reed et al., 2017)	3.7
Glow (Kingma & Dhariwal, 2018)	3.81
SPN 150M (Menick & Kalchbrenner, 2018)	3.52
Sparse Transformer 152M (strided)	3.44
Classical music, 5 seconds at 12 kHz	
Sparse Transformer 152M (strided)	1.97

Model	Bits per byte	Time/Iter
Enwik8 (12,288 context)		
Dense Attention	1.00	1.31
Sparse Transformer (Fixed)	0.99	0.55
Sparse Transformer (Strided)	1.13	0.35
CIFAR-10 (3,072 context)		
Dense Attention	2.82	0.54
Sparse Transformer (Fixed)	2.85	0.47
Sparse Transformer (Strided)	2.80	0.38

Table 3. We observe increased compression of Enwik8 with longer contexts, suggesting the Sparse Transformer can effectively incorporate long-term dependencies.

Minimum context length during evaluation	Bits per byte
6,144 tokens	0.9952
9,216 tokens	0.9936
10,752 tokens	0.9932
11,904 tokens	0.9930
12,096 tokens	0.9922
12,160 tokens	0.9908

Неужели всё идеально?

He Bi-directional

Решение:

 Насколько хорошо это будет работать в конкретной задаче?

Спасибо за внимание!

Надеюсь, оно не было слишком sparse

[послушать]

Литература

https://arxiv.org/abs/1904.10509

https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html

https://www.geeksforgeeks.org/sparse-transformer-stride-and-fixed-factorized
-attention

https://www.youtube.com/watch?v=KwKr_e7xBQ4