FIGURE 5

1	ATGGAACCTG w n l	AGTGCCTCGG sas	ACATCACCCG d i t	GGTCCTCAAA r v l k		GCAGCCCAAG c s p
61	TCCCCCCACC		C T C C C T C C C T	magaararaa		
0.1	s q p r	CCCCGTGGGA				
	3 9 P I	prg	r g s	hahs	t g r	s pa
121	GGCCTCCCTA	TCTCTGCAGC	GGCTTTTGGA	CCCACTCTCC	CCCCAAMCCA	CCTCCCCCCT
	pas 1		r 1 1	e a l s	a e s	
			alle of the	C d	a 6 5	r s p
181	CCCCAGTGGT	TCCAGTGCGG	GAGGCCAGCC	CGTTCCTGCA	GGGCCTGGGG	AGAGCCCACA
	d p s g		g g q	pvpa	a b a	e s p
						-
241		TCCCCTGCCC	TGAAAAAGCT	CAGTGCAGAG	GCCTCGGCAA	GGCAGCCTCA
	h g w e	s p a	l k k	l s a e	a s a	r q p
301	CACCCTACCT	п сспессол л	C7.EC7.7.CC.CC			
201	g t l a	TCCTCCCCAA s s p				
	чста	s s p	r s r	p g a g	a p g	v a q
361	GCAGTCCTGG	CTGGCCGGAG	TGTCCACCAA	GCCCACAGTC	CCATCTTCAC	7.7.C.C.7.C.C.7.7.E.
	e a s w		v s t	k p t v	p s s	
	**	2		P C V	ב כ ק	e a g
421	CCAGCCAGTC	CCTGTCCAGG	GAAGCCCAGC	TCTGCCAGGG	GGCTGTGTAC	CTAGAAATCA
	i q p v		g s p	a l p g	g c v	p r n
						-
481		ATGTCCGAAG		TGGCTTCTGT	CCCCAAGTAG	GGAGGGCATC
	h f k g	m s e	d			
541	CTCTGCCCAG	TGGAGCTGGG	TCCTCTA CCT	CDECCOMOOM	EEE COCCOT CT	221
601	CCAGCCCCAA	CCTACCACCC	CATCTCACAC	CCCCACCACT	TTGGGCCACA	CCACTGTCTT
661	TGTGTTCCCC	TAAGGGCTCC	TAGGGCCAGG	GGCCAGGACI	CCTCTCCCCAC	ACCCCAACCC
721	AGGCCTGGCT	GTGCCTGCTC	TTGACTTTTG	CCCACCCCTG	GTCCATCCTC	AGGGGAAGGC
781	GTGACATTCT	CCAGGGACAG	GTCCTGGAAG	GGGTGGGGAA	GAGGTAGGTT	CCACCCCCC
841	AGAACCCTGG	AATCCCTCCT	GTGCCTGAGG	CCCTGCCCCC	CAGCATGGAC	TAATCCTCTC
901	CCTACCTCTC	CCTCAGGGCA	GCCCTGTGGC	TGGGACCCTG	GGAACAGCCT	CCCATCCCAC
961	CCAACATGCC	CAAGTGTGGG	GGAATGTTCT	ACAGCAGTGT	AGCCTCCAGC	CCTTCTCTCC
1021	AGGAGGCTTT	GAGAGCCCAA	CTTACTCCCC	TGCAGAGCAG	GAAGGTGGTA	GGTCAAGTGT
1081	GGCCACCATT	GGGGAGACGA	GAAAGAAGTG	GGGCCCCACC	AGATTGCACA	ATGGGAACCT
1141	CAGCTGGCCC	CTGAACAGAG	GACTCAGTTG	TCTCCACCCT	ACACCGCTAT	TCCCTGGAGC
1201	TCAGCCAGGC	GCAGCCTTGG	AAGGAGAAAG	GGCTGGGGTT	ACCTGGCTTG	TCCTCCTCCA
1261	GGAAAGCCCC	CTTCCTCCTC	TGCCCCAGCT	CCCAGCCTGG	CCTCCTCCAG	GCAGGCCCTA
1321	CTCCTCTGCC	CCAGCTCCGG	CTTTCCCCAT	GAGGTTTGTC	CCAGGCATGA	AGAAAGCATC
1381	CAGGGTGCCA	ATGAGTGGGC	CTAGGCCAGA	GGCCCCTCAG	TCCCCAAGGG	TACTGTTTTG
1441 1501	GIGGCCTTTC	AGAGGGTCAA	GGAAGCCCTG	CTTGGGGTAG	AAGGGGCAGG	AGCCCCACAT
TOOT	ORODODITE	GA <u>AATAAA</u> GT	GGAGTGTGCT	GTGCTGAAAA	AAAAAAAA	AAAA

TAA Stop codon

AATAAA Consensus polyadenylation site (underlined)

11/18

FIGURE 10 (continued)

1081	CTCGGCAAGG C	CAGCCTCAGA CCCTAGCTTC	CTCCCCAAGA	TCAAGGCCTG	GAGCAGGTGC
	asar	qpqtla	s s p r	s r p	g a g
1141	CCCCGGTGTT G	CTCAGGAGC AGTCCTGGCT	GGCCGGAGTG	TCCACCAAGC	CCACAGTCCC
	a p g v	aqeqsw	l a g v	s t k	p t v
1201		CAGGAATCC AGCCAGTCCC			3
	p s s e	agi qpv	b a d à	s pa	1 p g
1261	CTGTGTACCT AC	GAAATCATT TCAAGGGGAT	GTCCGAAGAT	TAAGCCTGTG	GCT
	g c v p	rnh f k g	m s e d	78836-FL-R	

14/18

FIGURE 13

Active site residues are underlined below.

W02002/16566-A2 AX526191 INSP005 PREDICTION INSP005b INSP005a	MEGVGGLWPWVLGLLSLPGVILGAPLASSCAGACGTSFPDGLTPEGTQASGDKDI MSCCLVSPVGAPGICVCPCLSGPGVILGAPLASSCAGACGTSFPDGLTPEGTQASGDKDIMEGVGGLWPWVLGLLSLPGVILGAPLASSCAGACGTSFPDGLTPEGTQASGDKDI
W02002/16566-A2 AX526191 INSP005 PREDICTION INSP005b INSP005a	PAINQGLILEETPESSFLIEGDIIRPSPFRLLSATSNKWPMGGSGVVEVPFLLSSKYDEE PAINQGLILEETPESSFLIEGDIIRPSPFRLLSATSNKWPMGGSGVVEVPFLLSSKYDEE
WO2002/16566-A2 AX526191 INSP005 PREDICTION INSP005b INSP005a	SRQVILEALAEFERSTCIRFVTYQDQRDFISIIPMYGCFSSVGRSGGMQVVSLAPTCLQK SRQVILEALAEFERSTCIRFVTYQDQRDFISIIPMYGCFSSVGRSGGMQVVSLAPTCLQK SHQVILEALAEFERSTCIRFVTYQDQRDFISIIPMYGCFSSVGRSGGMQVVSLAPTCLQK SRQVILEALAEFERSTCIRFVTYQDQRDFISIIPMYGCFSSVGRSGGMQVVSLAPTCLQK SRQVILEALAEFERSTCIRFVTYQDQRDFISIIPMYGCFSSVGRSGGMQVVSLAPTCLQK *:***********************************
W02002/16566-A2 AX526191 INSP005 PREDICTION INSP005b INSP005a	GRGIVLHELMHVLGFWHEHTRADRDRYIRVNWNEILPGFEINFIKSRSSNMLTPYDYSSV GRGIVLHELMHVLGFWHEHTRADRDRYIRVNWNEILPGFEINFIKSRSSNMLTPYDYSSV GRGIVLHELMHVLGFWHEHTRADRDRYIRVNWNEILPGFEINFIKSQSSNMLTPYDYSSV GRGIVLHELMHVLGFWHEHTRADRDRYIRVNWNEILPGFEINFIKSRSSNMLTPYDYSSV GRGIVLHELMHVLGFWHEHTRADRDRYIRVNWNEILPGFEINFIKSQSSNMLTPYDYSSV
W02002/16566-A2 AX526191 INSP005 PREDICTION INSP005b INSP005a	MHYGRLAFSRRGLPTITPLWAPSVHIGQRWNLSASDITRVLKLYGCSPSGPRPRGRG MHYGRLAFSRRGLPTITPLWAPSVHIGQRWNLSASDITRVLKLYGCSPSGPRPRGRGSHA MHYGRLAFSRRGLPTITPLWAPSVHIGQRWNLSASDITRVLKLYGC MHYGRLAFSRRGLPTITPLWAPSVHIGQRWNLSASDITRVLKLYGCSPSGPRPRGRGSHA MHYGRLAFSRRGLPTITPLWAPSVHIGQRWNLSASDITRVLKLYGCSPSGPRPRGRGSHA ************************************

15/18

FIGURE 13 (continued)

WO2002/16566-A2	EWHGRKVT
AX526191	HSTGRSPAPASLSLQRLLEALSAESRSPDPSGSSAGGQPVPAGPGESPHGWESPALKKLS
INSP005 PREDICTION	
INSP005b	HSTGRSPAPASLSLQRLLEALSAESRSPDPSGSSAGGQPVPAGPGESPHGWESPALKKLS
INSP005a	HSTGRSPAPASLSLQRLLEALSAESRSPDPSGSSAGGQPVPAGPGESPHGWESPALKKLS
WO2002/16566-A2	
AX526191	AEASARQPQTLASSPRSRPGAGAPGVAQEQSWLAGVSTKPTVPSSEAGIQPVPVQGSPAL
INSP005 PREDICTION	
INSP005b	AEASARQPQTLASSPRSRPGAGAPGVAQEQSWLAGVSTKPTVPSSEAGIQPVPVQGSPAL
INSP005a	AEASARQPQTLASSPRSRPGAGAPGVAQEQSWLAGVSTKPTVPSSEAGIQPVPVQGSPAL
WO2002/16566-A2	
AX526191	PGGCVPRNHFKGMSED
INSP005 PREDICTION	
INSP005b	PGGCVPRNHFKGMSED
INSP005a	PGGCVPRNHFKGMSED
	•