- 2. $e^{2-i} = e^2 e^{-i} = e^2 (\cos 1 i \sin 1)$.
- 3. $e^{3i\pi} = \cos 3\pi + i \sin 3\pi = -1$.
- 10. The characteristic equation is $r^2 + 4r + 5 = 0$, with roots $r = -2 \pm i$. Hence the general solution is $y = c_1 e^{-2t} \cos t + c_2 e^{-2t} \sin t$.
- 20. The characteristic equation is $r^2+1=0$, with roots $r=\pm i$. Hence the general solution is $y=c_1\cos t+c_2\sin t$. Its derivative is $y'=-c_1\sin t+c_2\cos t$. Based on the first condition, $y(\pi/3)=2$, we require that $c_1+\sqrt{3}\,c_2=4$. In order to satisfy the condition $y'(\pi/3)=-2$, we find that $-\sqrt{3}\,c_1+c_2=-4$. Solving these for the constants, $c_1=1+\sqrt{3}$ and $c_2=\sqrt{3}-1$. Hence the specific solution is a steady oscillation, given by $y(t)=(1+\sqrt{3})\cos t+(\sqrt{3}-1)\sin t$.

Math 204 HW#44

3.3.5.
$$2^{2-i} = e^{(2-i)\ln 2} = e^{2\ln 2} e^{-i\ln 2}$$

$$= e^{2\ln 2} \left(\cos(\ln 2) - i\sin(\ln 2)\right).$$

$$= 4\cos(\ln 2) - 4i\sin(\ln 2)$$

$$= 3.0770 - 2.558i$$

3.3.7.
$$y''-4y'+5y=0$$
.
 $r^2-4r+5=0$, $r_{1,2}=\frac{4+\sqrt{-4}}{2}=2\mp i$.
 $\Delta=16-20=-4$

3.3.11.
$$y'' + 6y' + 10y = 0$$
.
 $1^{2} + 6r + 10 = 0$ $\Rightarrow r_{1/2} = -\frac{6 + \sqrt{-11}}{2} = -3 + i$
 $1 + 2 + 6r + 10 = 0$ $\Rightarrow r_{1/2} = -\frac{6 + \sqrt{-11}}{2} = -3 + i$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 + 36 - 40 = -4$
 $1 +$

3.3.14.
$$9y'' + 3y' - 2y = 0$$
.
 $y''' + \frac{1}{3}y' - \frac{2}{3}y = 0$
 $c^2 + \frac{1}{3}c - \frac{2}{3} = 0$
 $(c + \frac{1}{3})(c - \frac{1}{3}) = 0 \Rightarrow c_1 = \frac{1}{3}, c_2 = \frac{1}{3}$
 $\Rightarrow y(+) = c_1 e^{t/3} + c_2 e^{-\frac{1}{3}t}$

3.3. 18.
$$y'' + 4y' + 5y = 0$$
, $y(0) = 1$, $y'(0) = 0$
 $f^2 + 4x + 5y = 0$
 $A = 16 - 20$
 $= -4$

$$y(1) = c_1 e^{-2t} \cos t + c_2 e^{-2t} \sin t$$

$$y'(1) = -2c_1 e^{-2t} \cos t - c_1 e^{-2t} \sin t - 2c_2 e^{-2t} \sin t + \cos t c_2 e^{-2t}$$

$$y(0) = 1 = c_1 \cdot 1 \cdot 1 + c_2 \cdot 1 \cdot 0 = c_1 \implies c_1 = 1$$

$$y'(0) = 0 = -2c_1 + c_2 \implies c_2 = 2$$

$$y(1) = e^{-2t} \cos t + 2e^{-2t} \sin t$$

$$y(2) = c_1 + c_2 + c_2 \implies c_2 = 2$$

$$y(1) = e^{-2t} \cos t + 2e^{-2t} \sin t$$

$$y(2) = c_1 + c_2 + c_2 + c_3 + c_4 +$$

3.3.23.

b)
$$|u(t)| = 10 = 2e^{t/4} \cos \left(\frac{\sqrt{23}}{6} t \right) - \frac{2}{2\sqrt{3}} e^{t/4} \sin \left(\frac{\sqrt{23}}{6} t \right)$$

$$\rightarrow 4 = 10.7538$$

a)
$$+2+2+6=0$$
 $\Gamma_{1,2}=-2+\sqrt{-20}=-1+\sqrt{5}$
 $\Delta=4-2u=-20$ $-t=-1=0$

3.4

- 3. The characteristic equation is $4r^2-8r-5=0$, with roots r=-1/2, 5/2. The general solution is $y(t)=c_1e^{-t/2}+c_2e^{5t/2}$.
- 6. The characteristic equation is $r^2 10r + 25 = 0$, with the double root r = 5. The general solution is $y(t) = c_1 e^{5t} + c_2 t e^{5t}$.

Preoblem 9: The characteristic equation is
$$25r^2-30r+9=0$$
, with noots r , and r_2 . $\Delta=30^2-4.25.9=0$. $r_1=r_2=\frac{30}{2.25}=\frac{3}{5}$ The general solution is $y(t)=c_1e^{\frac{3}{5}t}+t^{2}c_{2}e^{\frac{3}{5}t}$.

Preoblem 12: the characteristic equation is r2-6r+9=0 with mosts r= r= 3. The general solution is, y(t) = $c_1e^{+3t} + t \cdot c_2 \cdot e^{+3t}$ From y(0)=0 we get that, 0= C1 So, y(t)= C2 t e3t. The derivative is $y'(t) = C_2e^{t^3t} + C_2 \cdot t \cdot 3 \cdot e^{t^3t}$ and invoking the nitral condition y'(0)=3we ostain, The solution is $(2e^0 + 0) \rightarrow (2=3)$ The solution is $(y(t) = 3te^0)$, are have $y(t) \rightarrow \infty$.

- 16. The characteristic roots are $r_1 = r_2 = 1/2$. Hence the general solution is given by $y(t) = c_1 e^{t/2} + c_2 t e^{t/2}$. Invoking the initial conditions, we require that $c_1 = 2$, and that $1 + c_2 = b$. The specific solution is $y(t) = 2e^{t/2} + (b-1)t e^{t/2}$. Since the second term dominates, the long-term solution depends on the sign of the coefficient b-1. The critical value is b=1.
- 23. Set $y_2(t) = t^3 v(t)$. Substitution into the differential equation results in $t^2(t^3v'' + 6t^2v' + 6tv) 4t(t^3v' + 3t^2v) + 6t^3v = 0.$

After collecting terms, we end up with $t^5v'' + 2t^4v' = 0$. Hence $v(t) = c_1 + c_2/t$, and thus $y_2(t) = c_1t^3 + c_2t^2$. Setting $c_1 = 0$ and $c_2 = 1$, we obtain $y_2(t) = t^2$.

25. Set $y_2(t) = t^{-1}v(t)$. Substitution into the differential equation into the differential equation results in

$$t^{2}(2t^{-3}v - t^{-2}v' + v''t^{-1} - t^{-2}v') + 3t(v't^{-1} - t^{-2}v) + t^{-1}v = 0.$$

After collecting terms, we end up with tv'' + v' = 0. This equation is linear in variable w = v'. It follows that $v'(t) = t^{-1} + c_1$, and $v(t) = \ln(t) + c_1t + c_2$. Thus $y_2(t) = t^{-1} \ln(t) + c_1tt^{-1} + c_2t^{-1} = t^{-1} \ln(t) + c_1 + c_2t^{-1}$. Setting $c_1 = 0$ and $c_2 = 0$, we obtain $y_2(t) = t^{-1} \ln(t)$.

3.5

- 3. The characteristic equation for the homogeneous problem is $r^2 r 2 = 0$, with roots r = -1, 2. Hence $y_c(t) = c_1 e^{-t} + c_2 e^{2t}$. Set $Y = At^2 + Bt + C$. Substitution into the given differential equation, and comparing the coefficients, results in the system of equations -2A = 4, -2A 2B = 0 and 2A B 2C = -3. Hence $Y = -2t^2 + 2t 3/2$. The general solution is $y(t) = y_c(t) + Y$.
- 5. The characteristic equation for the homogeneous problem is $r^2 2r 3 = 0$, with roots r = -1, 3. Hence $y_c(t) = c_1 e^{-t} + c_2 e^{3t}$. Note that the assignment $Y = Ate^{-t}$ is not sufficient to match the coefficients. Try $Y = Ate^{-t} + Bt^2e^{-t}$. Substitution into the differential equation, and comparing the coefficients, results in the system of equations -4A + 2B = 0 and -8B = -6. This implies that $Y = (3/8)te^{-t} + (3/4)t^2e^{-t}$. The general solution is $y(t) = y_c(t) + Y$.
- 6. The characteristic equation for the homogeneous problem is $r^2 + 2r = 0$ with roots r = 0, -2. Hence $y_c = c_1 + c_2 e^{-2t}$. Note that the assignment $Y = A + B \sin 2t$ is not sufficient to match the coefficients. Try $Y = At + B \sin 2t + C \cos 2t$. Substitution into the differential equation, and comparing the coefficients, results in the system of equations -4(B+C) = 4 and -4(C-B) = 0. This implies that $Y = \frac{5}{2}t \frac{1}{2}\sin 2t \frac{1}{2}\cos 2t$. The general solution is $y(t) = c_1 + c_2 e^{-2t} + \frac{5}{2}t \frac{1}{2}\sin 2t \frac{1}{2}\cos 2t$.
- 9. The characteristic equation for the homogeneous problem is $2r^2 + 3r + 1 = 0$, with roots r = -1, -1/2. Hence $y_c(t) = c_1 e^{-t} + c_2 e^{-t/2}$. To simplify the analysis, set $g_1(t) = t^2$ and $g_2(t) = 3 \sin t$. Based on the form of g_1 , set $Y_1 = A + Bt + Ct^2$. Substitution into the differential equation, and comparing the coefficients, results in the system of equations A + 3B + 4C = 0, B + 6C = 0, and C = 1. Hence we obtain $Y_1 = 14 6t + t^2$. On the other hand, set $Y_2 = D \cos t + E \sin t$. After substitution into the ODE, we find that D = -3/10 and E = 9/10. The general solution is $y(t) = y_c(t) + Y_1 + Y_2$.
- 17. The characteristic equation for the homogeneous problem is $r^2 2r + 1 = 0$, with a double root r = 1. Hence $y_c(t) = c_1 e^t + c_2 t e^t$. Consider $g_1(t) = t e^t$. Note that g_1 is a solution of the homogeneous problem. Set $Y_1 = At^2 e^t + Bt^3 e^t$ (the first term is not sufficient for a match). Upon substitution, we obtain $Y_1 = t^3 e^t / 6$. By inspection, $Y_2 = 4$. Hence the general solution is $y(t) = c_1 e^t + c_2 t e^t + t^3 e^t / 6 + 4$. Invoking the initial conditions, we require that $c_1 + 4 = 2$ and $c_1 + c_2 = 1$. Hence $c_1 = -2$ and $c_2 = 3$.

13. The characteristic equation for the homogeneous problem is $r^2 + r = 0$ with roots $r = -\frac{1}{2} \pm \frac{\sqrt{15}}{2}i$. Hence $y = c_1 e^{-t/2} \cos \sqrt{15}2t + c_2 e^{-t/2} \sin \sqrt{15}2t$. Set $Y = Ae^t + Be^{-t}$. Substitution into the differential equation, and comparing the coefficients, we have $A = \frac{1}{3}$ and $B = -\frac{1}{2}$. The general solution is $y(t) = c_1 e^{-t/2} \cos \frac{\sqrt{15}}{2}t + c_2 e^{-t/2} \sin \frac{\sqrt{15}}{2}t + \frac{1}{3}e^t - \frac{1}{2}e^{-t}$.

21. a) Note that the assignment $Y = A_0t^4 + A_1t^3 + A_2t^2 + A_3t + A_4 + (Bt^2 + B_1t + B_2)e^{-3t} + D\sin 3t + E\cos 3t$ is not sufficient to match the coefficients. Try $Y = t(A_0t^4 + A_1t^3 + A_2t^2 + A_3t + A_4) + t(Bt^2 + B_1t + B_2)e^{-3t} + D\sin 3t + B_2t^2 + B_3t^2 + B_3t^2$

 $E\cos 3t$.