

IT2070 – Data Structures and Algorithms

Lecture 09
String Matching Algorithms

Contents

- String Matching
- The naïve string matching algorithm
- The Rabin-Karp Algorithm
- Finite automata

String Matching

- The problem of finding occurrence(s) of a pattern string within another string or body of text.
- There are many different algorithms for efficient searching.
- String matching is a very important subject in the wider domain of text processing.

Applications

 In string matching problems, it is required to find the occurrences of a pattern in a text.

Applications

- Text processing
- Text-editing e.g. Find and Change in word
- Computer security (virus detection, password checking)
- DNA sequence analysis.
- Data communications (header analysis)

Example

String Matching problem

- We formulize the *String Matching problem* as follows.
- We assume that the text is an array **T[1..n]** of length **n** and the pattern is an array **P[1..m]** of length **m**.
- We further assume that the elements of P and T are characters drawn from a finite alphabet Σ .
- For example we may have $\Sigma = \{0,1\}$ or $\Sigma = \{a,b,...z\}$.
- The character arrays P and T are often called Strings of characters.

String Matching problem(contd.)

• We say that pattern P occurs with shift s in text T (or, equivalently that pattern P occurs beginning at position s+1 in text T)

$$0 \le s \le n - m \text{ and } T[s + 1... s + m] = P[1..m].$$

If P occurs with shift **s** in **T**, then we call s a **valid shift**; otherwise we call **s** an **invalid shift**.

S = 3 is a valid shift because

 $0 \le 3 \le 13-4$ and T[3 +1... 3 +4] = P[1...4].

Here, n = 13 m = 4 s = 3

String Matching problem(contd.)

The string-matching problem is the problem of finding all valid shifts with which a given pattern *P* occurs in a given text *T*.

The naive string-matching algorithm

• The naïve algorithm finds all valid shifts using a loop that checks the condition P[1..m] = T[s+1..s+m] for each of the n-m+1 possible values of s.

When does worst case happen?

Worst case Analysis

- This algorithm takes O((n-m+1)m) in the worst case
- There are at most n-m +1 shifts
- m is to compare each string after shifting
- Therefore worst case takes O((n-m+1)m)
- E.g. In above example

Comparing for each shift

Best case analysis

No of shifts (13-4+1)

No of comparisons O((n-m+1) 1)

The Rabin-Karp Algorithm

Professor.Richard Karp Harvard University

Professor Michel Rabin Harvard University

Invented by Professor Richard Karp an Professor Michel Rabin in 1984.

The Rabin-Karp Algorithm

Given Text

Find the occurrence of pattern 3 1

Using modulo 13

3 | 1 | 4 | 1 | 5

Method

- Take the window size of the pattern
- Start from the beginning of the text taking windows
- Calculate the modulo value of that window
- Check it with the modulo value of the pattern

The Rabin-Karp Algorithm(contd.)

- Let us assume that the input alphabet is {0,1,2,...,9},so that each character is a decimal digit.
- We can then view a string of k consecutive characters as representing a length-k decimal number.
- The character string 31425 thus corresponds to the decimal number 31,425.

The Rabin-Karp Algorithm

All the hits should be checked further.

Analysis of Rabin-Karp

- Comparing only the modulo value does not guarantee that the exact pattern is found.
- On the other hand, if modulo values are not matched, then we definitely know that it is not the pattern.
- All the hits must be tested further to see if the hit is a valid shift or just a spurious hit.
- This testing can be done by explicitly checking the condition P[1..m] = T[s + 1..s + m]
- If q is large enough, then we can hope that spurious hits occur infrequently enough that the cost of the extra checking is low.

Worst case & Best case

- If all the hits are spurious hits then we have to check each of those.
- Therefore the worst case occurs when all the hits are spurious hits
 - If all the hits are neither spurious hits nor valid hits we don't have to check each of those.
 - Therefore the best case occurs when no hits occurred

String matching with finite automata

- Many string-matching algorithms build a finite automaton that scans the text string *T* for all occurrences of the pattern *P*.
- This section presents a method for building such an automaton.
- These string-matching automata are very efficient: they examine each text character *exactly once*, taking constant time per text character.

Definition of a finite automaton

A *finite automaton M* is a 5-tuple (Q, q_o , A, Σ , δ), where

- **Q** is a finite set of **states**,
- $q \in Q$ is the *start state*,
- $A \subseteq Q$ is a distinguished set of *accepting states*,
- \sum is a finite *input alphabet*,
- δ is a function from $Q \times \Sigma$ into $Q_{,,}$ called the **transition function** of M.

Example

A simple two-state finite automaton with state set $\mathbf{Q} = \{0,1\}$, start state $\mathbf{q}_0 = 0$,

Accepting state A = 1

input alphabet $\Sigma = \{a,b\}$

A tabular representation of the transition function δ

	in		
state	a	b	
0	1	0	
1	0	0	

Finite automata(contd.)

- Directed edges represent transitions.
- For example, the edge from state 1 to state 0 labeled **b** indicates δ (1, b) = 0.
- This automaton accepts those strings that end in an odd number of a's.
- For example, the sequence of states this automaton enters for input **abaaa** (including the start state) is (0, 1, 0, 1, 0, 1), and so it accepts this input.
- For input **abbaa**, the sequence of states is (0, 1,0,0, 1,0), and so it rejects this input.

Example. Accepts all strings ending in the string ababaca.

- (a) A state-transition diagram for the string-matching automaton that accepts all strings ending in the string ababaca. State 0 is the start state, and state 7 (shown blackened) is the only accepting state. A directed edge from state i to state j labeled a represents $\delta(i, a) = j$. The right-going edges forming the "spine" of the automaton, shown heavy in the figure, correspond to successful matches between pattern and input characters. The left-going edges correspond to failing matches. Some edges corresponding to failing matches are not shown; by convention, if a state i has no outgoing edge labeled a for some $a \in \Sigma$, then $\delta(i, a) = 0$.
- (b) The corresponding transition function δ , and the pattern string P = ababaca. The entries corresponding to successful matches between pattern and input characters are shown shaded.
- (c) The operation of the automaton on the text T = abababacaba. Under each text character T [i] is given the state $\varphi(Ti)$ the automaton is in after processing the prefix Ti. One occurrence of the pattern is found, ending in position 9.

input			t													
state	a	b	C	P												
0	1	0	0	a												
1	1	2	0	b												
2	3	0	0	a												
3	1	4	0	b												
4	5	0	0	a												
5	1	4	6	С	i	— 1	2	3	4	5	6	7	8	9	10	11
6	7	0	0	a	T[i]	— а	b	a	b	a	b	a	С	a	b	a
7	1	2	0		state $\phi(T_i)$	0 1	2	3	4	5	4	5	6	7	2	3
		22244														
		(b)							(c)							

Summary

- String Matching
- The naïve string matching algorithm
- The Rabin-Karp Algorithm
- Finite automata