

Flattening

Jimmy Lee & Peter Stuckey

Overview

▶ Flattening

- flattening expressions
- unrolling expressions
- arrays
- reification
- predicates
- let expressions

2

Flattening

- The process of taking a
 - model + data + globals definitions
- # And creating
 - a FlatZinc model
 - variables (and parameters)
 - primitive constraints
 - solve item
 - output annotations
- ¥ You can see the result of flattening by
 - in the IDE, use Compile (♯B)
 - from the command line, use mzn2fzn or mzngecode —k (keep) and see .fzn

1

Flattening Expressions

- Simplifying expressions
- Evaluating fixed expressions
- Naming subexpressions (flattening)
- Bounds analysis
 - for newly introduced variables

5

Flattening Expressions Example

★ A small model

```
int: i = 3; int: j = 2;
var int: x; var 0..2: y; var 0..3: z;
x*y + y*z <= i*j;
```

■ The resulting flat model is

```
var int: x;
var 0..2: y;
var 0..3 z;
var 0..6: INT01;
                   pexpression constraint
var int: INT02;
INT01 = y * z;
                    pexpression usage
INT02 = x * y
INT02 + INT01 <=
                expression evaluation
```


A small model

```
int: i = 3; int: j = 2;
var int: x; var 0..2: y; var 0..3: z;
x*y + y*z <= i*j;</pre>
```

■ The resulting FlatZinc is

```
var int: x;
var 0..2: y;
var 0..3: z;
var 0..6: INT01 :: is_defined_var;
var int: INT02 :: is_defined_var;
int_times(y,z,INT01) :: defines_var(INT01);
int_times(x,y,INT02) :: defines_var(INT02);
int_lin_le([1,1],[INT02 INTC12S))
```

Flattening Exercise

■ Write down what you think results from

```
int: i = 3; int: j = 3;
var 0..5: x; var 0..2: y; var 0..3: z;
(x - i) * (x - j) + y + z + i + j >= 0;
```

■ Did you notice the common subexpression

```
var 0..5: x; var 0..2: y; var 0..3: z;
var -3..2: INT01;
var -6..9: INT02;
INT01 = x - 3;
INT02 = INT01 * INT01;
INT02 + y + z + 6 >= 0;
```

■ Don't introduce two names for same exp

8

Flattening Exercise

■ Write down what you think results from

```
int: i = 3; int: j = 3;

var 0..5: x; var 0..2: y; var 0..3: z;

(x - i) * (x - j) + y + z + i + j >= 0;
```

■ Did you notice the common subexpression

```
var 0..5: x; var 0..2: y; var 0..3: z;
var -3..2: INT01 :: is_defined_var;
var -6..9: INT02 :: is_defined_var;
int_lin_eq([1,-1],[x,INT01],3) :: dv(INT01);
int_times(INT01,INT01,INT02) :: dv(INT02);
int_lin_le([-1,-1,-1],[z,y,INT02],6);
```

■ Don't introduce two names for same exp

q

Common Subexpression Elimination (CSE)

■ While flattening mzn2fzn checks

if the expression has been seen beforeif so it uses the same name

■ CSE is vital for
 ■ CSE is vital for

small modelsefficient models

■ But its not perfect, e.g.

```
(x - y) * (y - x) >= y - x;
```

Leads to

```
int_lin_eq([1,-1,-1],[x,y,INT01],0);
int_lin_eq([1,-1,-1],[y,x,INT02],0);
int_times(INT01,INT02,INT03);
int_le(INT02,INT03);
```

10

Bounds Analysis

- Tight bounds on variables
 - help the solver
 - reduce the size of unrolling (see later)
- When introducing a variable
 - \circ INT01 = exp
 - determine 1 = minimum possible value of exp
 - and u = maximum possible values of exp.
 - o declare var 1..u: INT01;

11

Bounds Analysis Example

■ What bounds are determined for

```
var -2..2: x;
var 0..4: y;
constraint x * x + y * y <= 6;</pre>
```

■ Resulting FlatZinc

```
var -2..2: x;
var 0..2: y;
var 0..4: INT01;
var 0..6: INT02;
constraint INT01 = x * x;
constraint INT02 = y * y;
constraint INT01 + INT02 <= 6;</pre>
```

■ Could be improved (presolve is coming)

12

Linear Expressions

Linear constraints are one of the most important kind of constraint

```
important kind of constraint
int: k = 4;
constraint x + 2*(y - x) + z <= k*z;

# Naively

constraint INT01 = y - x;
constraint INT02 = 2*INT01;
constraint INT03 = x + INT02;
constraint INT04 = INT03 + z;
constraint INT05 = 4 * z;
constraint INT04 <= INT05;

# Simplified
constraint int_lin_le([-1,2,-3],[x,y,z],0);

# dfgfd</pre>
```

Unrolling

14

- Models are typically not fixed size
- # Iterative constraints are everywhere

```
int: n; set of int: OBJ = 1..n;
array[OBJ] of int: size;
array[OBJ] of int: value;
int: limit;
array[OBJ] of var int: x;
constraint forall(i in OBJ)(x[i] >= 0);
constraint sum(i in OBJ)(size[i]*x[i])<= limit;
solve maximize sum(i in OBJ)(value[i]*x[i]);
n = 4;
size = [5,8,9,12];
value = [3,5,7,8];
limit = 29;</pre>
```


Unrolling

Iteration in MiniZinc is generator calls

```
sum(i in OBJ)(size[i]*x[i]) <= limit;</pre>
```

Which are really comprehensions

```
sum([ size[i]*x[i]| i in OBJ ]) <= limit;</pre>
```

★ Array comprehensions

15

Unrolling conjunction and forall

- Top level conjunctions
- ejust split into separate constraints

```
constraint forall(i in OBJ)(x[i] >= 0);
```

Generates

```
array[1..4] of var bool: c = [x[1] >= 0, x[2] >= 0, x[3] >= 0, x[4] >= 0]; constraint forall(c);
```

The result is

```
constraint x[1] >= 0;

constraint x[2] >= 0;

constraint x[3] >= 0;

constraint x[4] >= 0;
```

16

Flattening objectives

■ Objectives in FlatZinc are single variables

```
solve maximize sum(i in OBJ)(value[i]*x[i]);
```

Unrolls to

17

Unrolling

■ The final version of knapsack

•after linear constraint simplification

```
array[1..4] of var int: x;
var int: INT10;
constraint x[1] >= 0;
constraint x[2] >= 0;
constraint x[3] >= 0;
constraint x[4] >= 0;
constraint 5*x[1] + 8*x[2] + 9*x[3] + 12*x[4]
<= 29;
constraint INT10 = 3*x[1] + 5*x[2] + 7*x[3] + 8*x[4];
solve maximize INT10;</pre>
```

18

Unrolling

■ The final version of knapsack

•after linear constraint simplification

19

Array Translation

- ★ Arrays in FlatZinc
 - are one dimensional
 - start from index 1
- MiniZinc arrays need to be translated
 - modify multi-dimensional lookups to 1D
 - shift indices.
- **#** Translation

```
array[l1..u1, l2..u2] of int: x;
expression x[i,j]
array[1..(u1-l1+1)*(u2-l2+1)] of int: x;
    x[(i - l1)*(u2-l2+1) + (j - l2 + 1)]
```

20

Array Translation Example

■ Example 2D array

```
array[0..2,0..2] of var 0..2: x;
constraint sum(i in 0..2)(x[i,i]) <= 1;
constraint x[x[1,1],1] = 2;
# Flattening</pre>
```

```
array[0..2,0..2] of var 0..2: x;
constraint x[0,0] + x[1,1] + x[2,2] <= 1;
var int: INT01 = x[1,1];
```

■ Converting to 1D

constraint x[INT01,1] = 2;

```
array[1..9] of var 0..2: x;
constraint x[1] + x[5] + x[9] <= 1;
var int: INT01 = x[5];
var int: INT02 = INT01 * 3 + (1 + 1);
constraint x[INT02] = 2;</pre>
```

21

Element Constraints

- The ability to lookup the entry in array using a variable index is crucial to the modelling power of MiniZinc (and other CP modelling languages)
- # element constraint provides this functionality

```
•array_int_element(index, array, result)
•encodes array[index] = result
```

```
constraint x[INT02] = 2;
```

■ Becomes

```
constraint array_int_element(INT02,x,2)
```

22

if-then-else-endif

```
* Flattening if b then t else e endif
```

```
•evaluate b (assuming it is fixed)
•if true then replace with t
•else replace with e
```

When b is not fixed

23

24

Flattening Boolean Expressions

Recall that solvers only take a conjunction of constraints

```
• so how do we translate e.g. x > 0 -> bool2int(y > 0 / z > 0) + t >= u;
```

- We need to be able to "name" constraints
- Reification of a constraint c creates

```
a constraint b ↔ c
b is true iff c holds
b is false iff c does not hold
```

FlatZinc primitives reified constraints

```
e.g. int_lin_le(constants, variables, lhs)int_lin_le_reif(constants, variables, lhs, bool)
```


Reification Example

■ Consider the expression

```
x > 0 \rightarrow bool2int(y > 0 / z > 0) + t >= u;
```

Then flattening is analogous to other expressions

```
constraint BOOL01 <-> x > 0; constraint BOOL02 <-> y > 0; constraint BOOL03 <-> z > 0; constraint BOOL04 <-> BOOL02 /\ BOOL03; constraint INT01 = bool2int(BOOL04); constraint BOOL05 <-> INT01 + t >= u; constraint BOOL01 -> BOOL05
```

25

Reification Example

■ Consider the expression

```
x > 0 -> bool2int(y > 0 /\ z > 0) + t >= u;
```

Then flattening is analogous to other expressions

26

Flattening Boolean Expressions

■ Avoiding negative contexts

```
•push negation down to the bottom level
x > 0 -> bool2int(y > 0 /\ z > 0) + t >= u;
•becomes
not x > 0 \/ bool2int(y > 0 /\ z > 0) + t >= u;
•becomes
x <= 0 \/ bool2int(y > 0 /\ z > 0) + t >= u;
•becomes
constraint BOOL01 <-> x <= 0;
constraint BOOL02 <-> y > 0;
constraint BOOL03 <-> z > 0;
constraint BOOL04 <-> BOOL02 /\ BOOL03;
constraint INT01 = bool2int(BOOL04);
constraint BOOL05 <-> INT01 + t >= u;
constraint BOOL01 \/ BOOL05
```

Flattening Predicates and Functions

- Predicates and functions act like macros
 - when we see an expression including them we expand it with the arguments, then flatten

```
\circ f(x1, x2, ..., xn) = exp(x1, x2, ..., xn)
```

■ Replace f(arg1, arg2, ..., argn) by

exp(arg1, arg2, ..., argn)

28

27

Flattening Predicates and Functions Example

29

Flattening Predicates and Functions Example

30

Flattening Predicates and Functions Example

31

Flattening Predicates and Functions Example

■ Then flatten

```
constraint abs(a - c) + abs(b - d) >= 4 \/ (a = c /\ b = d);
```

■ becomes

```
constraint INT01 = a - c;
constraint INT02 = abs(INT01);
constraint INT03 = b - d;
constraint INT04 = abs(INT03);
constraint BOOL01 <-> INT02 + INT04 >= 4
constraint BOOL02 <-> a = c;
constraint BOOL03 <-> b = d;
constraint BOOL04 <-> BOOL02 /\ BOOL03
constraint BOOL01 \/ BOOL04;
```

32

Flattening Predicates with no definition

If a global constraint *g* is native to a solver their is only a definition, not a declaration:

```
predicate
    alldifferent(array[int] of var int: a);
```

- # How do we translate g(x1, ..., xn)
- In the root context
 - eleave unchanged (send to the solver)
- In a reified context?

```
otry to use: g_reif(x1, ..., xn,b)
```

■ This might fail if it does not exist!

33

Flattening predicates with no definition

```
predicate
        alldifferent(array[int] of var int: a);
predicate alldifferent_reif(
        array[int] of var int: a, var bool: b) =
    b <-> forall(i, j in index_set(a) where i < j)
        (a[i] != a[j]);</pre>
```

■ Example code

```
constraint alldifferent([x,y,z]);
constraint alldifferent([y,z,t]) -> x = 0;
```

```
constraint alldifferent([x,y,z]); constraint b <-> (y != z /\ y != t /\ z != t); constraint b -> x = 0;
```

34

Flattening Let Expressions

- Let expressions allow us to introduce new variables
- - variables declarations
 - primitive constraints
- New variables must be "floated" to the top level
- Rename copies of new variables
- ****** Complexities for relational semantics
 - partial functions,
 - local constraints

35

Flattening Let Expressions

- # Flattening
 - exp(let { var int: x; constraint c } in exp2(x))
- # rename variable to be new
 - exp(let { var int: y; constraint c } in exp2(y))
- mame local constraint by new boolean
 - exp(let { var int: y; var bool: b = c; constraint b; } in exp2(y))
- float out variable declarations to top, and float constraint to nearest enclosing Boolean context

36

■ Consider the code

```
constraint not (8>=sum(i in 1..2)(sqrt(a[i])));
function var int:sqrt(var int: x) =
   let { var int: y;
   constraint y * y = x /\ y >= 0 } in y;
```

■ Unrolling the sum gives

```
constraint not 8 >=
  (let { var int: y;
    constraint y * y = a[1] /\ y >= 0} in y) +
  (let { var int: y;
    constraint y * y = a[2] /\ y >= 0} in y);
```

37

Flattening Let Expressions Example

■ Consider the code

```
constraint not 8 >= sum(i in 1..2)(sqrt(a[i]));
function var int:sqrt(var int: x)
    :: promise_total =
    let { var int: y;
    constraint y * y = x /\ y >= 0 } in y;
```

■ Renaming the local variables gives

```
constraint not 8 >=
  (let { var int: y1;
    constraint y1*y1 = a[1] /\ y1>=0} in y1) +
  (let { var int: y2;
    constraint y2*y2 = a[2] /\ y2>=0} in y2);
```

38

■ Consider the code

```
constraint not 8 >= sum(i in 1..2)(sqrt(a[i]));
function var int:sqrt(var int: x) =
   let { var int: y;
   constraint y * y = x /\ y >= 0 } in y;
```

Naming booleans gives

```
constraint not 8 >=
  (let { var int: y1; constraint b1;
  var bool: b1 = (y1*y1 = a[1]) /\ y1>=0} in y1)+
  (let { var int: y2; constraint b2;
  var bool: b2 = (y2*y2 = a[2]) /\ y2>=0} in y2);
```

39

Flattening Let Expressions Example

■ Consider the code

```
constraint not 8 >= sum(i in 1..2)(sqrt(a[i]));
function var int:sqrt(var int: x) =
   let { var int: y;
   constraint y * y = x /\ y >= 0 } in y;
```

Nearest enclosing Boolean context

```
constraint not 8 >=
(let { var int: y1; constraint b1;
  var bool: b1 = y1*y1 = a[1] /\ y1>=0} in y1) +
(let { var int: y2; constraint b2;
  var bool: b2 = y2*y2 = a[2] /\ y2>=0} in y2);
```

40

■ Consider the code

```
constraint not 8 >= sum(i in 1..2)(sqrt(a[i]));
function var int:sqrt(var int: x) =
   let { var int: y;
   constraint y * y = x /\ y >= 0 } in y;
```

Float out declarations and constraints

```
var int: y1;
var bool: b1 = (y1*y1 = a[1] /\ y1>=0);
var int: y2;
var bool: b2 = (y2*y2 = a[2] /\ y2>=0);
constraint not (b1 /\ b2 /\ 8 >= y1 + y2);
```

41

Flattening Let Expressions Example

■ Consider pushing negations

```
constraint 8 < sum(i in 1..2)(sqrt(a[i]));
function var int:sqrt(var int: x) =
   let { var int: y;
   constraint y * y = x /\ y >= 0 } in y;
```

Float out declarations and constraints

```
var int: y1;
var bool: b1 = (y1*y1 = a[1] /\ y1>=0);
var int: y2;
var bool: b2 = (y2*y2 = a[2] /\ y2>=0);
constraint 8 < y1 + y2;
constraint b1;
constraint b2;</pre>
```

42

■ Consider pushing negations

```
constraint 8 < sum(i in 1..2)(sqrt(a[i]));
function var int:sqrt(var int: x) =
   let { var int: y;
   constraint y * y = x /\ y >= 0 } in y;
```

■ Simplify true Booleans

```
var int: y1;
var int: y2;

constraint 8 < y1 + y2;
constraint y1*y1 = a[1] /\ y1>=0;
constraint y2*y2 = a[2] /\ y2>=0;
```

43

Flattening Let Expressions Example

■ Consider pushing negations

```
constraint 8 < sum(i in 1..2)(sqrt(a[i]));
function var int:sqrt(var int: x) =
   let { var int: y;
   constraint y * y = x /\ y >= 0 } in y;
```

Flatten top level conjunctions

```
var int: y1;
var int: y2;
constraint 8 < y1 + y2;
constraint y1*y1 = a[1];
constraint y1>=0;
constraint y2*y2 = a[2];
constraint y2>=0;
```

44

Relational Semantics and Partial Functions

- Local variables defined by partial functions
- eneed careful treatment
- ** The failure of the partial function must be captured in the right context (nearest)

```
var {-3,-2,-1,1,2,3}: y1;
var int: x = 9 div y1;
var bool: b2 <-> y != 0;
constraint b2 -> y1 = y;
constraint (x * y != 9 /\ b2) -> y != 2;
```

45

Overview

- Understanding how MiniZinc works
 - helps in debugging models
 - helps in understanding why different modeling approaches are preferable
- - converts MiniZinc to a
 - conjunction of primitive constraints
 - which is what a solver can handle

46

