Skolornas Matematiktävling

Svenska Dagbladet Svenska Matematikersamfundet

Final den 28 november 1965

- 1. ABC är en spetsvinklig triangel. Fotpunkten till höjderna mot BC, CA och AB kallas A', B' resp. C'. Uttryck vinklarna i triangeln i A'B'C' med hjälp av vinklarna i triangeln ABC. Visa därefter att den största vinkeln i A'B'C' är \geq den största vinkeln i ABC. Hur skall ABC vara beskaffad för att likhet skall gälla?
- 2. Bestäm alla par av naturliga tal x och y sådana att

$$x^3 - y^3 = 999.$$

Bevis erfordras för att man funnit alla lösningar.

- 3. Visa att det för varje $x \ge 1/2$ finns ett heltal n så att $|x n^2| \le \sqrt{x 1/4}$.
- 4. Visa att det finns konstanter A och B så att A > B och så att

$$\frac{f(1/(1+2x))}{f(x)}$$

är oberoende av x om f definieras genom relationen

$$f(t) = \frac{1 + At}{1 + Bt}$$

för alla $t \neq -1/B$.

Betrakta därefter talen a_n , som definieras genom att $a_0 = 1$ och

$$a_{n+1} = \frac{1}{1+2a_n}, \quad n = 0, 1, 2, \dots$$

Försök genom att i stället studera talen $f(a_0)$, $f(a_1)$, $f(a_2)$, ... bestämma värdet av a_n för godtyckligt n.

5. Betrakta alla reella polynom $f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$, sådana att $|f(x)| \le 1$, då $-1 \le x \le 1$. Visa att det finns ett tal $M < \infty$ så att $|a_3| \le M$ för alla sådana polynom. Försök att bestämma så lågt värde som möjligt på M.