

Sumário

- 1. Correspondência entre arcos e ângulos
- 2. Polígonos Inscritíveis e Circunscritíveis

Correspondência entre arcos e ângulos

Ângulo Central

Definição 1

Chama-se **ângulo central** ao ângulo cujo vértice é o centro da circunferência.

- ► A parte da circunferência limitada pelos ponto A e B é denominada **arco da circunferência** e o denotamos por \widehat{AB} .
- ▶ Os pontos A e B são os extremos do arco AB.

Ângulo Central

- ► Há uma ambiguidade na notação para arcos, uma vez que não nos permite distinguir se estamos nos referindo ao arco menor ou ao arco menor.
- Para evitar tal ambiguidade, considera-se outro ponto do arco.
- Na figura abaixo, o arco AB menor é denotado por \widehat{ACB} , enquanto que o maior é denotado por \widehat{ADB} .

Puando não houver dúvidas quanto ao arco que estamos nos referindo, podemos escrever simplesmente \widehat{AB} .

Ângulo Central e Arcos

- ▶ Pode-se estabelecer uma correspondência entre ângulos centrais e arcos de circunferência, de tal modo que a medida de um arco, em graus, não dependa do raio da circunferência.
- Na figura abaixo, os extremos dos arcos $AB \in A'B'$, das duas circunferências concêntricas, correspondem a mesma abertura dos lados do ângulo central α .

Ângulo Central e Arcos

O fato anterior motiva a seguinte definição:

Definição 2

A medida, em graus, de um arco é a medida do ângulo central correspondente.

Notação: $\widehat{AB} = \alpha$.

Figura 1: $\widehat{AB} = \alpha$, $\widehat{CD} = 90^{\circ}$ e $\widehat{EF} = 180^{\circ}$

Unidade de Medida

- ► Se A e B são as extremidades de um diâmetro, os dois arcos congruentes determinados são denominados semicircunferências e sua medida, em graus, é 180°.
- ▶ Do exposto, um arco que mede 1° equivale a $\frac{1}{360}$ da circunferência.
- Para medir arco menores que um grau, utilizamos minuto e segundo, definidos por

Minuto:
$$1' = \frac{1}{60}$$
 do grau

Minuto:
$$1' = \frac{1}{60}$$
 do grau;
Segundo: $1'' = \frac{1}{60}$ do minuto.

Teorema 1

Na mesma circunferência, ou em circunferências congruentes, se duas cordas são congruentes então são congruentes os arcos por elas subentendidos.

Figura 2: AB = A'B'

► Construa os triângulo AOB e A'O'B', onde O e O' são os centros das circunferências congruentes.

- Como
 - ightharpoonup AB = A'B' (hipótese)
 - ▶ AO = A'O' = r e BO = B'O' = r (as circunferências possuem o mesmo raio) os triângulos AOB e A'O'B' são congruentes (LLL).
- Logo, $\widehat{AOB} = \alpha = \widehat{A'O'B'}$ (ângulo oposto aos lados congruentes \overline{AB} e $\overline{A'B'}$), como queríamos demonstrar.

Teorema 2

Teorema Recíproco: Na mesma circunferência ou em circunferências congruentes, se dois arcos são congruentes então são congruentes as cordas correspondentes.

Figura 3: $A\hat{O}B = A'\hat{O}B'$

Demonstração: Exercício.

Ângulo Inscrito

Definição 3

Diz-se que um ângulo está **inscrito** numa circunferência se seu vértice pertence à circunferência e seus lados intersectam a mesma em dois pontos distintos do vértice.

Teorema 3

O ângulo inscrito tem por medida a metade da medida do arco compreendido entre seus lados.

▶ 1° Caso: Um dos lados do ângulo contém um diâmetro.

ightharpoonup O ângulo $\hat{\alpha}$ é externo do triângulo isósceles *AOB*, assim

$$\hat{\alpha} = 2\hat{a} \quad \Rightarrow \quad \hat{a} = \frac{\hat{\alpha}}{2} = \frac{\widehat{BC}}{2},$$

como queríamos demonstrar.

▶ 2º Caso: O centro do círculo fica no interior do ângulo.

Temos que

$$B\widehat{A}C = \alpha + \beta = \frac{\widehat{BD}}{2} + \frac{\widehat{DC}}{2} = \frac{\widehat{BD} + \widehat{DC}}{2} = \frac{\widehat{BC}}{2},$$

pois os arcos \widehat{BD} e \widehat{DC} contém um diâmetro num dos seus lados.

▶ 3º Caso: O centro do círculo fica no exterior do ângulo.

► Temos que

$$B\hat{A}C = B\hat{A}D - C\hat{A}D = \frac{\widehat{BD}}{2} - \frac{\widehat{DC}}{2} = \frac{\widehat{BC}}{2},$$

pois os arcos \widehat{BD} e \widehat{DC} contém um diâmetro num dos seus lados.

Corolário

Corolário 1

O triângulo cujos vértices pertencem a uma circunferência e um dos lados é o diâmetro, é retângulo.

Demonstração: Exercício.

Ângulo de Segmento

Definição 4

Um ângulo é dito de **segmento** se seu vértice pertence à circunferência, um lado é secante e o outro tangente à mesma.

Teorema 4

O ângulo de segmento tem por medida a metade da medida do arco compreendido entre seus lados.

Figura 4: $\hat{CAB} = \frac{\widehat{AC}}{2}$

A tangente \overline{AB} é perpendicular ao diâmetro \overline{AD} .

▶ Logo, $\alpha + \beta = 90^{\circ}$, de onde segue que:

$$B\widehat{A}C = 90^{\circ} - C\widehat{A}D = \frac{\widehat{AD}}{2} - \frac{\widehat{DC}}{2} = \frac{\widehat{AD} - \widehat{DC}}{2} = \frac{\widehat{AC}}{2}.$$

Exercício: Justifique as igualdades.

Ângulo Excêntrico Interno

Definição 5

Um **ângulo excêntrico interno** é aquele cujo vértice é interior a circunferência.

Teorema 5

O ângulo excêntrico interno tem por medida a metade da soma das medidas do arco compreendido entre seus lados e do arco compreendido entra as semirretas opostas aos lados do mesmo.

Figura 5:
$$\hat{A} = \frac{\hat{ED} + \hat{BC}}{2}$$

▶ O ângulo $\theta = B\hat{A}C$ é externo do triângulo ADB.

Logo,

$$B\widehat{A}C = \alpha + \beta = \frac{\widehat{ED}}{2} + \frac{\widehat{BC}}{2} = \frac{\widehat{ED} + \widehat{BC}}{2},$$

pois α e β são ângulos inscritos na circunferência dada.

Ângulo Excêntrico Externo

Definição 6

Um **ângulo excêntrico externo** é aquele cujo vértice é exterior a circunferência e seus lados são secantes, ou tangentes, ou uma secante e uma tangente à mesma.

Quando os lados desse ângulo são tangentes, o mesmo é denominado circunscrito à circunferência.

Teorema 6

O ângulo excêntrico externo tem por medida a metade da diferença das medidas dos arcos compreendidos entre seus lados.

Caso 1: Os dois lados são secantes.

- O ângulo $\beta = A\hat{B'}B$ é externo do triângulo PB'A.
- Logo,

$$\beta = \alpha + \hat{P} = \frac{\widehat{A'B'}}{2} + \hat{P}$$

de onde segue que

$$\hat{P} = \beta - \frac{\widehat{A'B'}}{2} = \frac{\widehat{AB}}{2} - \frac{\widehat{A'B'}}{2} = \frac{\widehat{AB} - \widehat{A'B'}}{2}$$
 (Justifique as igualdades).

- ► Caso 2: Os dois lados são tangentes.
- ► Caso 3: Um lado é secante e o outro é tangente.

Demonstração: Exercício.

Polígonos Inscritíveis e Circunscritíveis

Polígono Inscrito

Definição 7

Diz-se que um polígono está **inscrito** numa circunferência quando todos os seus vértices pertencem à mesma.

Quadrilátero Inscrito

Neste caso, diz-se que a circunferência está circunscrita ao polígono.

Polígono Circunscrito

Definição 8

Diz-se que um polígono está **circunscrito** a uma circunferência quando todos os seus lados são tangentes à mesma.

Quando isso ocorre, diz-se que a circunferência está inscrita no polígono.

Teorema 7

Todo triângulo é inscritível.

Demonstração: As mediatrizes dos lados de um triângulo se interceptam em um único ponto *O* (circuncentro), equidistante dos vértices.

Logo, se AO = BO = CO = r, tomando a circunferência de centro em O e raio r, inscrevemos o triângulo dado.

Teorema 8

Todo triângulo é circunscritível.

Demonstração: Exercício.

Teorema 9

Em todo quadrilátero inscrito numa circunferência, os ângulos opostos são suplementares.

Figura 6: $\hat{A} + \hat{C} = 180^{\circ} \, \text{e} \, \, \hat{B} + \hat{D} = 180^{\circ}$

- ► Observe que: $\hat{A} = \frac{\widehat{BCD}}{2}$ e $\hat{C} = \frac{\widehat{DAB}}{2}$.
- Assim,

$$\hat{A} + \hat{C} = \frac{\widehat{BCD}}{2} + \frac{\widehat{DAB}}{2}$$
$$= \frac{360^{\circ}}{2} = 180^{\circ}.$$

Teorema 10

Em todo quadrilátero circunscrito, a soma de dois lados opostos é igual à soma dos outros dois.

Figura 7: AB + DC = AD + BC

- Como os lados do quadrilátero são tangentes à circunferência, teremos:
 - ightharpoonup BP = BQ;
 - \triangleright AP = AS;
 - ightharpoonup DS = DR;
 - ightharpoonup CR = CQ.

- ▶ De fato, seja O o centro da circunferência. Tome os segmentos \overline{BO} , \overline{OP} e \overline{OQ} .
- ► Como *P* e *Q* são os pontos de tangência, $\hat{OPB} = \hat{QB} = 90^{\circ}$.

- ▶ Os triângulos retângulos *OPB* e *OQB* possuem um cateto congruente (OP = OQ = r) e a hipotenusa em comum, ambos são congruentes.
- ▶ Portanto, os lados retantes BP e BQ são congruentes.
- A demonstração das outras igualdades segue de modo análogo.

Somando-se os membros das desigualdades, obtemos:

$$(AP + PB) + (DR + RC) = (AS + BQ) + (DS + CQ)$$

= $(AS + SD) + (BQ + QC)$

de onde segue que

$$AB + DC = AD + BC$$
,

como queríamos demonstrar.