Laboratório de ECAi05

Universidade Federal de Itajubá – Campus Avançado de Itabira

Disciplina: ECAi05 - Laboratório de Sistemas de Controle I

Objetivo

Este laboratório tem como finalidade calcular e implementar os ganhos de um controlador PD para controle de posição do motor DC. A implementação será realizada no modelo do motor DC utilizando uma simulação computacional que representa o sistema da Quanser. Analisar o erro em regime permanente e a resposta ao distúrbio.

1. Introdução

O controle da posição do motor é uma forma natural de introduzir os benefícios da ação da derivada. Neste laboratório, um controlador PID é projetado para as especificações. O diagrama de blocos de controle PID em malha fechada é mostrado na Figura 1.

Figura 1: Diagrama de blocos em malha fechada do motor DC.

A caixa pontilhada rotulada como motor é o modelo da malha de velocidade em termos da constante K_m do motor, da resistência de armadura do motor R_m e do momento de inércia do motor J_{eq} . A perturbação direta aplicada ao eixo do motor é representada pela variável T_d e a perturbação na tensão é indicada pela variável V_{sd} .

2. Projeto do controle PD

O comportamento do controle de posição do motor é primeiramente analisado usando o controle PD. Ajustando $k_i=0$ na equação de controle do PID. Sendo a lei de controle PD para o sistema dada por

$$u = (k_p + k_d s)(r - y) \tag{1}$$

Combinando o modelo do processo de posição

$$\frac{\Theta_m(s)}{V_m(s)} = \frac{K}{s(\tau s + 1)} \tag{2}$$

com a equação do controlador PD, tem-se a função de transferência do sistema em malha fechada de posição do motor

$$G_{\theta,r} = \frac{K(k_p + k_d s)}{\tau s^2 + (1 + Kk_d)s + Kk_p} \tag{3}$$

Similarmente ao laboratório de controle de velocidade, através do polinômio característico padrão de um sistema em malha fechada, é possível obter os ganhos para o controle em função da frequência natural de oscilação do sistema e do coeficiente de amortecimento. Desse modo, tem-se que o ganho k_p é dado por

$$k_p = \frac{\omega_n^2 \tau}{K} \tag{4}$$

e o ganho k_d dado por

$$k_d = \frac{-1 + 2\zeta\omega_n\tau}{K} \ . \tag{5}$$

3. Instrumento virtual de controle de posição

O primeiro passo é realizar o rastreamento de um referência de entrada dada por uma onda quadrada usando o controlador PID. Efeitos de distúrbios serão analisados através de interação manual. A Figura 2 mostra o instrumento virtual do controle de posição.

Figura 2: Interface para controle de posição.

- 4. Análise de erro em regime permanente
 - (a) Abrir o programa position_control_motor_DC.mdl no Simulink.
 - (b) Em Signal Generator ajustar os parâmetros:
 - Wave form = square
 - Amplitude = 2,00 rad
 - Frequency = 0,20 Hz
 - Units = Hertz
 - (c) Ajustar os parâmetros de controle para:
 - $k_p = 2,00 \text{ V/rad}$
 - $k_i = 0.00 \text{ V/rad}$
 - $k_d = 0.00 \text{ V.s/rad}$
 - (d) Altere o ganho proporcional por passos de 0,25 entre os valores 0 e 4. Examine o comportamento da posição medida com relação ao sinal de referência de entrada. Explique o que acontece?

O aumento de Kp impacta na frequência, aumentando a mesma.

Este aumento na frequência resulta simultaneamente em uma redução do amortecimento, sendo assim a saída oscila mais e apresenta um overshoot maior também.

	um zoom grande para verificar o que acontece. O erro fica cada vez maior de acordo com o aumento de Kp.
(f)	Mantenha $k_p=2,00V/rad$ e incremente o ganho derivativo k_d por passos de 0,01. Veja as mudanças ocorridas no comportamento da posição medida em relação a referência de entrada. O que acontece? Com o aumento do ganho derivativo o comportamento oscilatório é reduzido assim como o erro em regime permanente.
	trole PD de acordo com especificações
	$M_p = e^{\frac{-\pi\zeta}{\sqrt{1-\zeta^2}}}$ $t_a = \frac{4}{\zeta\omega_n}$ (6) $Mp = 9,48 \%$ $t_a = 0,2667 s$
(b)	Calcule o ganho proporcional k_p e o ganho derivativo k_d utilizando as equações (4) e (5). Utilizar τ e K com os valores calculados no Laboratório 3. Kp = 2.84 e Kd = 0,1043. Foram utilizados tal = 0,142 s e K = 31,25
` ,	Inserir os ganhos calculados e executar o programa novamente. Realize a medição do tempo de acomodação e do overshoot. As especificações foram satisfeitas para uma resposta ao degrau? O overshoot ficou dentro do especificado.

(d)	Que efeito a mudança da especificação ζ tem sobre os ganhos? E como essa alteração impacta na resposta da posição medida?
A res	mento de ζ aumenta kd. posta fica mais amortecida: menos overshoot, menor oscilação. n, deixa o sistema mais lento.
(e)	Que efeito a mudança da especificação ω_n tem sobre os ganhos? E como essa alteração impacta na resposta da posição medida? Aumentar ω n também aumenta ambos os ganhos. Faz a resposta ficar mais rápida (menor tempo de acomodação) Mas pode causar overshoot se ζ não for ajustado
6. Aná	lise Resposta para um distúrbio.
(a)	Em Signal Generator ajustar
()	Amplitude = 0,00 rad
	• Frequency = 0,20 Hz
(b)	Ajustar os parâmetros de controle para:
	• $k_p = 2,00 \text{ V/rad}$
	• $k_i = 0.00 \text{ V/rad}$
	• k_d = 0,02 V.s/rad
(c)	Alterar o <i>Manual Switch</i> para que o distúrbio de tensão na entrada seja aplicado. Examine o efeito do distúrbio sobre a posição medida e explique o que acontece?
	Como o integrador está zerado, o a posição é afetada pelo disturbio, se deslocando permanentemente do valor de referência
(d)	Ajustar os parâmetros de controle para:
	• $k_p = 2,00 \text{ V/rad}$
	 k_i = 2,00 V/rad k_d = 0.02 V.s/rad

(e)	Rode o programa novamente, examine o efeito do distúrbio sobre a posição
	medida e explique a diferença da resposta do distúrbio com a ação integral. A ação integral compensa o distúrbio e força a saída a retornar
	ao valor de referência, eliminando o erro permanente.

Atividades Complementares

O relatório deve ser entregue APENAS em formato PDF até **7 dias** após a aula prática conforme tarefa cadastrada no SIGAA. O guia deve ser entregue com os itens preenchidos. As atividades complementares devem ter o <u>enunciado</u>, <u>desenvolvimento</u> e <u>conclusões</u> também anexados ao guia. Não há necessidade de capa e afins, apenas identificação de nome e número de matrícula da dupla.

1. Para as especificações $M_p=10\%$ e $t_a=0,75~[s]$, calcule os ganhos de um controlador PD para o controle de posição do motor DC. Utilize o programa position_control_motor_DC.mdl para fazer as simulações e verificar se as condições de projeto foram atendidas para uma resposta ao degrau. Apresente todos os cálculos via *script* e as imagens da resposta do sistema e do sinal de controle de atuação.