Robotika in računalniško zaznavanje (RRZ)

3D računalniški vid

Danijel Skočaj Univerza v Ljubljani Fakulteta za računalništvo in informatiko

v7.0

3D računalniški vid

Kamera z luknjico

Preslikava med 3-D in 2-D prostorom

- Preslikava iz 3-D svetovnega koordinatnega sistema (poravnanega s kamero) (X,Y,Z) v 2-D koordinatni sistem slike (x,y)
- Perspektivna transformacija iz 3-D v 2-D:
 - $(X,Y,Z) \to (x,y)$

$$y = -f\frac{Y}{Z} \qquad x = -f\frac{X}{Z}$$

- Več točk iz 3-D se lahko preslika v eno točko v 2-D
- Preslikava iz 3-D v 2-D ni enolična
- Preslikava iz 2-D v 3-D
 - (x,y) -> (X,Y,Z)
 - Več neznank kot parametrov
 - Potrebujemo vsaj dve kameri!

Ilustrativni primeri...

Anamorfoza (angl., anamorphosis)

Stereo vid

Bistveno lažje z dvemi pogledi...

http://www.well.com/~jimg/stereo/stereo_list.html

Stereo kamere

Stereo vid

- Preslikava iz 2-D v 3-D
 - $(x_l, y_l), (x_r, y_r) \rightarrow (X, Y, Z)$
 - Dispariteta $(x_r x_l)$ zakodira razdaljo
- Dva problema stereo vida:
 - Korespondenca: kateri deli leve slike in kateri deli desne slike so projekcija istega elementa v prostoru?
 - Iskanje parov korespondenčnih točk
 - Rekonstrukcija: kako izračunamo 3D položaj elementa v prostoru, če imamo podane par korespondenčnih točk in informacijo o geometriji sistema?
 - Triangulacija

Triangulacija

Vzporedni kameri:

$$\frac{x_r - x_l}{f} = \frac{b}{Z} \qquad Z = \frac{bf}{x_r - x_l} \qquad X = -\frac{b}{2} \frac{(x_r + x_l)}{(x_r - x_l)} \quad Y = -\frac{b}{2} \frac{(y_r + y_l)}{(x_r - x_l)}$$

Korespondenca

Kateri deli leve slike in kateri deli desne slike so projekcija istega elementa v prostoru?

Korespondenca

- Predpostavki:
 - Večina točk na prizoru je vidnih z obeh pogledov
 - Korespondenče regije so si podobne
- Dva podproblema:
 - Katere elemente primerjati?
 - Geometrična omejitev (epipolarna geometrija)
 - Kako primerjati?
 - Korelacijske metode
 - Metode, ki temeljijo na značilnicah

Geometrična omejitev

- Vzporedni kameri:
 - Vzporedni slikovni ravnini

 Korespondenčne točke iščemo v isti vrstici slikovnih elementov

Geometrična omejitev

- V splošnem:
 - Korespondenčni točki ne ležita več v isti vrstici slike

Potrebujemo dodatne geometrične omejitve

Epipolarna omejitev

- Vsaka točka v 3-D prostoru definira epipolarno ravnino, ki gre skozi to točko in centra projekcij obeh kamer
- Iskanje korespondenčne točke lahko omejimo na epipolarno premico: presečišče med epipolarno in slikovno ravnino

Stereo rekonstrukcija

V primeru vzporednih kamer so epipolarne premice vodoravne

V nevzporednih sistemih je iskanje kor. točk težje

Premice za iskanje naj sovpadajo z epipolarnimi premicami!

Rektifikacija stereo slik

- Reprojeciraj slikovni ravnini na skupno ravnino, ki je vzoredna z osnovno premico
- Izračunaj dve homografiji transformaciji, ki preslikata levo in desno slikovno ravnino
- Poenostavi iskanje korespondenc

C. Loop & Z. Zhang,

Primera

Homografija

Dva pogleda na isti ravninski (ploščat) predmet:

Homografija: preslikava med dvema ravninama

Računanje homografije

Štiri korespondenčne točke:

$$wx' = Hx$$

$$w\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

 Elemente matrike H lahko izračunamo z direktno linearno transformacijo (DLT)!

Primer aplikacije

Homografija med delom slike in kvadratom

Flagellation of Christ (Piero della Francesca)

Povečan del tal

Primerjanje delov slik

- Korelacijske metode
 - Primerjamo regije (podokna) na obeh slikah s pomočjo korelacije
 - To lahko delamo v veliko točkah na sliki
 - Dobimo precej gosto disparitetno sliko
 - Zahteva teksturirane scene
- Metode, ki temeljijo na značilnicah
 - Izračunamo (redke) značilnice na slikah ter jih opišemo (npr. robovi, koti, SIFT, ipd.)
 - Računamo ujemanje med značilnicami (razdalje med njimi)
 - Dobimo redko disparitetno sliko

Rekonstrukcija

- Triangulacija
- Preprosto v primeru vzporednih kamer
 - Epipolarne premice so vodoravne na sliki
- Bolj zapleteno v splošnem
 - Izračun fundamentalne matrike
 - Poravnava slik
- Poznati moramo parametre kamer
 - Kalibracija!

Parametri stereo sistema

- Notranji parametri kamere:
 - Goriščna razdalja
 - Središčna točka
 - Oblika slikovnih elementov (merilo, nagib)
 - (Distorzija leče)
- Zunanji parametri kamere
 - Translacija kamere
 - Rotacija kamere
 v svetovnem koordinatnem sistemu
- Parametre dobimo s kalibracijo

Disparitetna slika

mag. delo Sandi Gec

mag. delo Sandi Gec

Geometrija iz večih pogledov

Multiple vew geometry

Struktura iz gibanja

Structure from motion

Globinski senzor s kodirano svetlobo

Kamera in projektor

Globinski senzor s kodirano svetlobo

- Kinect
 - IR projektor
 - IR kamera
 - RGB kamera

TOF kamere

- Time-of-flight kamere
- Čas potovanja impulza

Globina s spreminjanjem goriščne razd.

Depth from defocus

Oblika iz senc

Shape from shading

