Abschlussklausur

Computernetze

10. Juni 2016

Name:
Vorname:
Matrikelnummer:
Mit meiner Unterschrift bestätige ich, dass ich die Klausur selbständig bearbeite und das ich mich gesund und prüfungsfähig fühle. Mir ist bekannt, dass mit dem Erhalt der Aufgabenstellung die Klausur als angetreten gilt und bewertet wird.
Unterschrift:

- Tragen Sie auf allen Blättern (einschließlich des Deckblatts) Ihren Namen, Vornamen und Ihre Matrikelnummer ein.
- Schreiben Sie Ihre Lösungen auf die vorbereiteten Blätter. Eigenes Papier darf nicht verwendet werden.
- Legen Sie bitte Ihren Lichtbildausweis und Ihren Studentenausweis bereit.
- Als Hilfsmittel ist ein selbständig vorbereitetes und handschriftlich einseitig beschriebenes DIN-A4-Blatt zugelassen.
- Als Hilfsmittel ist ein Taschenrechner zugelassen.
- \bullet Mit Bleistift oder Rotstift geschriebene Ergebnisse werden nicht gewertet.
- Die Bearbeitungszeit beträgt 90 Minuten.
- Schalten Sie Ihre Mobiltelefone aus.

Bewertung:

Aufgabe:	1	2	3	4	5	6	7	8	9	10	11	12	13	Σ	Note
Maximale Punkte:	10	3	8	8	9	4	6	4	8	8	10	6	6	90	_
Erreichte Punkte:															

Name:	Vorname:	Matr.Nr.:	
Aufgabe 1)		Punkte:	
Maximale Punkte: 2+5+1	+1+1=10		

a) Erklären Sie den Unterschied zwischen serieller und paralleler Datenübertragung.

b) Es existieren unterschiedliche Netzwerktopologien (Bus, Ring, Stern, Maschen, Baum und Zelle). Schreiben Sie in jede Zeile der folgenden Tabelle <u>eine</u> Netzwerktopologie, die zur jeweiligen Aussage passt.

Aussage	Topologie
Mobiltelefone (GSM-Standard) verwenden diese Topologie	
Diese Topologie enthält einen Single Point of Failure	
Thin Ethernet und Thick Ethernet verwenden diese Topologie	
WLAN mit Access Point verwendet diese Topologie	
WLAN ohne Access Point verwendet diese Topologie	
Token Ring (logisch) verwendet diese Topologie	
Ein Kabelausfall führt zum kompletten Netzwerkausfall	
Diese Topologie enthält keine zentrale Komponente	
Moderne Ethernet-Standards verwenden diese Topologie	
Token Ring (physisch) verwendet diese Topologie	

Für jede korrekte Antwort gibt 0,5 Punkte. Für jede falsche Antwort gibt es 0 Punkte.

- c) Nennen Sie zwei Systeme, die nach dem Simplex-Prinzip arbeiten.
- d) Nennen Sie zwei Systeme, die nach dem Duplex-Prinzip (Vollduplex) arbeiten.
- e) Nennen Sie zwei Systeme, die nach dem Halbduplex-Prinzip arbeiten.

Name:	vorname:	Matr.Nr.:	
Aufgab	$_{\rm P}$ 2)	Dunleto	
ruigab		Punkte:	

Maximale Punkte: 3

Eine MP3-Datei mit einer Dateigröße von $30*10^6$ Bits soll von Endgerät A zu Endgerät B übertragen werden. Die Signalausbreitungsgeschwindigkeit beträgt $200.000\,\mathrm{km/s}$. A und B sind direkt durch eine $10.000\,\mathrm{km}$ lange Verbindung miteinander verbunden. Die Datei wird als eine einzelne $30*10^6$ Bits große Nachricht übertragen. Es gibt keine Header oder Trailer ($Anh\ddot{a}nge$) durch Netzwerkprotokolle.

Berechnen Sie die Übertragungsdauer (Latenz) der Datei, wenn die Datentransferrate zwischen beiden Endgeräten 1 Mbps ist.

Aufgabe 3)

Punkte:

Maximale Punkte: 2+2+2+2=8

- a) Warum ist der Außenleiter (der Schirm) von Koaxialkabeln mit der Masse (Grundpotential) verbunden und umhüllt den Innenleiter vollständig?
- b) Was ist ein Transceiver?
- c) Warum ist diese Formel in Computernetzen hilfreich? (Zu welchem Zweck wird die Formel verwendet?)

$$((+Nutzdaten) + (Störung)) - ((-Nutzdaten) + (Störung)) = 2 * Nutzdaten$$

d) Warum ist es nicht möglich, Kabel mit Schirmung zwischen unterschiedlichen Gebäuden zu verlegen?

Name:	Vorname:	Matr.Nr.:
Aufgab	e 4)	Punkte:
J	te: 2+2+1,5+1+0,5+0,5+0,5=	8
a) Nennen Si	e zwei Vorteile, die die Verwend	dung eines Hubs mit sich bringt.
b) Was ist ein	ne Kollisionsdomäne?	
c) Was sagt of	lie 5-4-3-Repeater-Regel?	
d) Warum ex	istiert die 5-4-3-Repeater-Rege	1?
\square physiscl		Protokolle der Sicherungsschicht? gische Netzwerkadressen esen?
g) Welches P	rotokoll verwendet Ethernet fü	r die Auflösung der Adressen?

Name:	Vorname:	Matr.Nr.:
Auf	gabe 5)	Punkte:
Maximale	e Punkte: 1+1+1+1+1+2+2=9	
a) Ner	nnen Sie zwei Leitungscodes, die zwei Signalpe	egel verwenden.
b) Ner	nen Sie zwei Leitungscodes, die drei Signalpe	gel verwenden.
,	nnen Sie zwei Leitungscodes, die einen Signalpe enwert 1 garantieren.	egelwechsel bei jedem Bit mit dem
,	nnen Sie zwei Leitungscodes, die garantieren, chverteilt ist.	das die Belegung der Signalpegel
	rum garantieren nicht alle Leitungscodes einen genen Bit?	Signalpegelwechsel bei jedem über-
f) Was	s ist ein Scrambler und wofür wird er verwend	let?

g) Wie wird die Effzienz von Leitungscodes berechnet?

Name:	Vorname:	Matr.Nr.:

Aufgabe 6)

Punkte:											

Maximale Punkte: 4

a) Kodieren Sie die Bitfolge mit 4B5B und NRZI und zeichnen Sie den Signalverlauf.

• 0010 1111 0001 1010

Achtung: Nehmen Sie an, das der initiale Signalpegel bei NRZI der Signalpegel 1 (Low Signal) ist.

Bezeichnung	4B	5B	Funktion
0	0000	11110	0 hexadezimal
1	0001	01001	1 hexadezimal
2	0010	10100	2 hexadezimal
3	0011	10101	3 hexadezimal
4	0100	01010	4 hexadezimal
5	0101	01011	5 hexadezimal
6	0110	01110	6 hexadezimal
7	0111	01111	7 hexadezimal
8	1000	10010	8 hexadezimal
9	1001	10011	9 hexadezimal
A	1010	10110	A hexadezimal
В	1011	10111	B hexadezimal
С	1100	11010	C hexadezimal
D	1101	11011	D hexadezimal
E	1110	11100	E hexadezimal
F	1111	11101	F hexadezimal

Name:	Vorname:	Matr.Nr.:	
Aufgabe	,	Punkte:	
		in ihren Weiterleitungstabellen?	
b) Was passiert, einer Bridge e	_	t kein Eintrag in der Weiterleitu	ngstabelle
c) Welches Prot	okoll verwenden Bridges um	Kreise zu vermeiden?	
d) Was ist ein S	pannbaum?		
e) Was ist ein vo	ollständig geswitchtes Netzv	verk?	

Name:	Vorname:	Matr.Nr.:	
Aufgabe	8)	Punkte:	

Maximale Punkte: 4

Die Existenz von Übertragungsfehlern kann mit CRC-Prüfsummen nachgewiesen werden. Sollen Fehler nicht nur erkannt, sondern auch korrigiert werden können, müssen die zu übertragenen Daten entsprechend kodiert werden. Fehlerkorrektur kann man mit dem Vereinfachten Hamming Code realisieren, der in der Vorlesung Computernetze besprochen wurde.

Prüfen Sie, ob die folgende Nachricht korrekt übertragen wurde: 00111101

Name:	Vorname:	Matr.Nr.:	
Aufgabe	•	Punkte:	
,	en speziellen Eigenschaften d unerkannte Kollisionen beim	les Übertragungsmediums von Funl Empfänger?	knetzer
b) Was ist der N	Network Allocation Vector (N	NAV) und wofür wird er verwendet?)
c) Was ist das (Contention Window (CW) un	nd wofür wird es verwendet?	
,	inen Vorteil und einen Nach send (RTS) und Clear To Se	teil bei der Verwendung der Steuer nd (CTS)?	rahmer

Name:	Vorname:	Matr.Nr.:
Aufgabe	e 10)	Punkte:
Maximale Punkte:	2+2+2+2=8	
,	ck haben Router in Comput e auch den Unterschied zu L	
/	ck haben Layer-3-Switches i e auch den Unterschied zu R	-
c) Welchen Zwe	ck haben Gateways in Com	puternetzen?
d) Warum sind selten nötig?	Gateways in der Vermittlur	ngsschicht von Computernetzen heutzutage

Name:	Vorname:	Matr.Nr.:	
-------	----------	-----------	--

Aufgabe 11)

Punkte:

Maximale Punkte: 10

Es sollen 4.000 Bytes Nutzdaten via IP-Protokoll übertragen werden.

Das IP-Paket muss fragmentiert werden, weil es über mehrere physische Netzwerke transportiert wird, deren $\mathrm{MTU} < 4.000\,\mathrm{Bytes}$ ist.

	LAN A	LAN B	LAN C
Vernetzungstechnologie	Ethernet	PPPoE	ISDN
MTU [Bytes]	1.500	1.492	576
IP-Header [Bytes]	20	20	20
max. Nutzdaten [Bytes]	1.480	1.472	556

Zeigen Sie grafisch den Weg, wie das Paket fragmentiert wird und wie viele Bytes Nutzdaten jedes Fragment enthält.

d) Was gibt die Ack-Nummer in einem TCP-Segment an?

Name:	Vorname:	Matr.Nr.:
Aufgab Maximale Punkt	,	Punkte:
a) Beschreibe	n Sie das Silly Window Syndro	om und seine Auswirkungen.
b) Wie funkti	oniert Silly Window Syndrom	Avoidance?
c) Warum vei	waltet der Sender bei TCP zw	vei Fenster und nicht nur ein einziges?