

Interpretability Analyses of a Deep Reinforcement Learning Model of Sensory-Place Association

Juan Mendez¹, Andrea Pierré², Jason Ritt³, Alexander Fleischmann⁴

1. Williams College, 2. University of Massachusetts Lowell, 3. Carney Institute for Brain Science, Brown University, 4. Dept. of Neuroscience, Brown University

Introduction

- We aimed to explore the underlying computational principles of both artificial and biological learning, in particular "sensory-place association" learning¹. As a first step, we sought to gain interpretability into the learning process of a reinforcement learning (RL) digital agent.
- The experimental approach involves a mouse learning to associate an odor cue with a position on a triangular arena to receive a reward.
- The *computational* approach involves using an RL agent implemented with a Deep Q-Network (DQN)² to solve an analogous task in a digital arena.

- The *East/West* task emphasizes the learning of <u>allocentric</u> spatial representations
- The Left/Right task emphasizes the learning of egocentric spatial representations

How can we gain interpretability into RL agent learning?

Hidden Layers - 512 nodes each Cue Sio alor, Oder A, Oder Bit Cartesian From North port Cartesian From Sin head direction Si

- The network takes in Odor Cue, and four different encodings of Position and Head Direction
- An episode is a complete sequence of initialization to reward/failure. The agent is trained over 350 episodes

Weights Activations

 Hierarchical clustering and strongest weight paths can help us see what inputs the network pays attention to

Activations Behavior

PCA can help us find patterns in the activations, which we can link to behavior using policy maps. SHAP helps us see feature importance

Results

Behavior

The network assigns importance to Odor and Cartesian coords

Hidden nodes in first layer split based on NoOdor weight

Odor inputs frequently implicated in strongest weight paths Input Feature Frequency, Move Forward

Activations Conclusions & Future Directions

 The agent encodes differences between the Upper and Lower triangle, and maintains a spatial map for each

Behavior

• The agent behaves differently in the Upper and Lower triangle (corresponding to different reward locations), and assigns more importance to Odor and Cartesian coordinates

Weights

Weights may help modulate Odor activation differences

Future directions include compressing network size via an autoencoder to reduce the amount of complexity, as well as conduct input perturbation experiments

References

(1) McKissick O, Klimpert N, Ritt JT, Fleischmann A. Odors in space. Front Neural Circuits. 2024 Jun 24;18:1414452. doi: 10.3389/fncir.2024.1414452. PMID: 38978957; PMCID: PMC11228174.

(2) Mnih, V., Kavukcuoglu, K., Silver, D. *et al.* Human-level control through deep reinforcement learning. *Nature* **518**, 529–533 (2015). https://doi.org/10.1038/nature14236

Acknowledgments

 Thanks to the Leadership Alliance and the Carney Institute for Brain Science at Brown University for offering the research program!