

Target Population Environments (TPEs) Outline

Target Breeding Program aims to deliver improved varieties.

Why TPE?

- Aligns breeding targets with real-world environmental conditions.
- Enhances relevance and adoption of varieties

Target Regions

Close TPE

Critical selection

Complex environment

Aim to develop varieties that are either broadly adapted across the TPE

Correlations across studies

Analyse G x E Interactions

Sample representative for locations

Genetic Gain in Context of TPE: Extended Breeder's equation

TPE's Role: Improves "r" by better matching selection environments to target environments.

Composition of Genetic Materials in TPE in MET conditions

$$\Delta G(_{MET,TPE}) = i(MET)r_a(MET)r_a(MET,TPE) \sigma_a(TPE)$$

Best Genomic Prediction Strategies

Firstly: $r_{a \ (MET,TPE)} \rightarrow +1$ (Accurate Sample Size and Composition)

• σ_a of equation converges to the well $\sigma_{a(TPE)}$ of equation

If huge G x E conditions, MET & TPE, $r_{a \text{ (MET,TPE)}} < +1$ (Low Prediction Accuracy)

• Such case, lower expected ΔG in TPE, when dealing with MET of training data

Therefore, $r_{a \, (MET,TPE)}$ needs to be careful create training data set

Best Prediction accuracy depends on best quantify training data for MET

Sparse Test Design: Not all genotypes are tested in all environments.

Optimization of Training Set

Unique Sparse Test Design (STD) for Complex Ecosystem

Connecting Locations and capturing dynamic variability, and minimizing Interactions

Example: Implement STD in 2024

Accelerates genetic gain.

Genetic Correlations

-0.5

Breeding values: Ranking

Challenges and Future Directions

- Defining TPE boundaries.
- Well design a training set with GRM
- Integrate G x E and Robust Data Analytical Pipelines

Conclusion – Key Takeaways

- TPE-focused breeding is essential for impactful varietal development.
- Dissecting G × E and using sparse testing are powerful tools to enhance genetic gain.
- Strategic integration of these concepts can transform breeding pipelines.