

32.14 VECTOR SPACE

(R.G.P.V., Bhopal, III Semester, Dec. 2007)

Let V be a non-empty set and F be the field of real numbers. Let we have two compositions one is plus (+) between two members of V and other is dot (\cdot) between a member of V and member of F . V is said to be vector space if the following properties hold good.

1. Closure property.

$$\forall a, b \in R \Rightarrow a + b \in R.$$

2. Associativity of addition.

For all $\alpha, \beta, \gamma \in V$.

$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma.$$

3. Existence of the neutral element.

There exists an element $0 \in V$, such that

$$\alpha + 0 = 0 + \alpha = \alpha, \text{ for all } \alpha \in V.$$

4. Existence of additive inverse.

For each $\alpha \in V$, there exists $\beta \in V$, such that

$$\alpha + \beta = \beta + \alpha = 0.$$

5. Commutativity of addition.

Axioms

For all $\alpha, \beta \in V$, $\alpha + \beta = \beta + \alpha$

6. Closure property.

$\forall \alpha, \beta \in R \Rightarrow \alpha \cdot \beta \in R$

7. Associativity of scalar multiplication.

For all $x, y \in F$ and $\alpha \in V$

$$x(y\alpha) = (xy)\alpha.$$

8. Distributivity of scalar multiplication over addition.

For all $x \in F$, $\alpha, \beta \in V$,

$$x(\alpha + \beta) = x\alpha + x\beta.$$

9. Distributivity of scalar multiplication over addition in F .

For all $x, y \in F$, $\alpha \in V$.

$$(x+y)\alpha = x\alpha + y\alpha.$$

10. Property of unity.

If 1 be the identity in F , then for all $\alpha \in V$.

$$1 \cdot \alpha = \alpha.$$

Note. Vectors will be denoted by α, β, γ while scalars will be denoted by a, b, c, d or x, y, z .

Theorem 1. Let $V(F)$ be a vector space, and

(i) If α is a non-zero element of V and $a, b \in F$, then

$$a\alpha = b\alpha \Rightarrow a = b$$

(ii) If a is a non-zero element of F and $\alpha, \beta \in V$, then

$$a\alpha = a\beta \Rightarrow \alpha = \beta.$$

Proof. (i) We have,

$$a\alpha = b\alpha \Rightarrow a\alpha - b\alpha = \bar{0} \Rightarrow (a-b)\alpha = \bar{0}.$$

$$\Rightarrow a-b = 0 \quad [\because \bar{\alpha} \neq 0] \Rightarrow a = b.$$

Hence,

$$a\alpha = b\alpha \Rightarrow a = b$$

$$[\alpha \neq \bar{0}]$$

(ii) We have,

$$a\alpha = a\beta \Rightarrow a\alpha - a\beta = \bar{0} \Rightarrow a(\alpha - \beta) = \bar{0}.$$

$$\Rightarrow \alpha - \beta = \bar{0} \quad [\because a \neq 0] \Rightarrow \alpha = \beta.$$

Hence,

$$a\alpha = a\beta \Rightarrow \alpha = \beta$$

$$[a \neq 0]$$

33.19 LINEAR DEPENDENCE AND INDEPENDENCE OF VECTORS

Vectors (matrices) X_1, X_2, \dots, X_n are said to be dependent if

- (1) all the vectors (row or column matrices) are of the same order.
- (2) n scalars $\lambda_1, \lambda_2, \dots, \lambda_n$ (not all zero) exist such that

$$\lambda_1 X_1 + \lambda_2 X_2 + \lambda_3 X_3 + \dots + \lambda_n X_n = 0$$

Otherwise they are linearly independent.

Example 4. Show that the vectors $X_1 = (1, 2, 3)$, $X_2 = (3, -1, 4)$ and $X_3 = (4, 1, 7)$ are linearly dependent.

Solution. $X_1 = (1, 2, 3)$

$$X_2 = (3, -1, 4)$$

$$X_3 = (4, 1, 7)$$

If $\lambda_1 X_1 + \lambda_2 X_2 + \lambda_3 X_3 = 0$

$$\Rightarrow \lambda_1(1, 2, 3) + \lambda_2(3, -1, 4) + \lambda_3(4, 1, 7) = 0$$

$$\Rightarrow [(\lambda_1 + 3\lambda_2 + 4\lambda_3), (2\lambda_1 - \lambda_2 + \lambda_3), (3\lambda_1 + 4\lambda_2 + 7\lambda_3)] = (0, 0, 0)$$

$$\Rightarrow \lambda_1 + 3\lambda_2 + 4\lambda_3 = 0 \quad \dots (1)$$

$$2\lambda_1 - \lambda_2 + \lambda_3 = 0 \quad \dots (2)$$

$$3\lambda_1 + 4\lambda_2 + 7\lambda_3 = 0 \quad \dots (3)$$

Solving (1), (2) and (3), we get

$$\lambda_1 = 1, \lambda_2 = 1 \text{ and } \lambda_3 = 1$$

So, the vectors are linearly dependent.

Proved.

Example 5. Are the vectors

$X_1 = (1, 0, 0)$, $X_2 = (0, 1, 0)$ and $X_3 = (0, 0, 1)$ linearly dependent?

Solution. Consider the matrix equation $\lambda_1 X_1 + \lambda_2 X_2 + \lambda_3 X_3 = 0$

$$\Rightarrow \lambda_1(1, 0, 0) + \lambda_2(0, 1, 0) + \lambda_3(0, 0, 1) = 0$$

$$\Rightarrow (\lambda_1 + 0\lambda_2 + 0\lambda_3, 0\lambda_1 + \lambda_2 + 0\lambda_3, 0\lambda_1 + 0\lambda_2 + \lambda_3) = (0, 0, 0)$$

$$\Rightarrow (\lambda_1, \lambda_2, \lambda_3) = (0, 0, 0)$$

$$\Rightarrow \lambda_1 = 0, \lambda_2 = 0, \lambda_3 = 0$$

As $\lambda_1, \lambda_2, \lambda_3$ all are zero, therefore X_1, X_2, X_3 are linearly independent vectors. **Ans.**

Example 6. Examine the following vectors for linear dependence and find the relation exists

$$X_1 = (1, 2, 4), \quad X_2 = (2, -1, 3), \quad X_3 = (0, 1, 2), \quad X_4 = (-3, 7, 2)$$

Solution. Consider the matrix equation

$$\lambda_1 X_1 + \lambda_2 X_2 + \lambda_3 X_3 + \lambda_4 X_4 = 0$$

$$\Rightarrow \lambda_1(1, 2, 4) + \lambda_2(2, -1, 3) + \lambda_3(0, 1, 2) + \lambda_4(-3, 7, 2) = 0$$

$$\lambda_1 + 2\lambda_2 + 0\lambda_3 - 3\lambda_4 = 0$$

$$2\lambda_1 - \lambda_2 + \lambda_3 + 7\lambda_4 = 0$$

$$4\lambda_1 + 3\lambda_2 + 2\lambda_3 + 2\lambda_4 = 0$$

This is the homogeneous system

$$\begin{bmatrix} 1 & 2 & 0 & -3 \\ 2 & -1 & 1 & 7 \\ 4 & 3 & 2 & 2 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad \text{or} \quad A \lambda = 0$$

$$R_2 \rightarrow R_2 - 2R_1, \quad R_3 \rightarrow R_3 - 4R_1$$

$$\begin{bmatrix} 1 & 2 & 0 & -3 \\ 0 & -5 & 1 & 13 \\ 0 & -5 & 2 & 14 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$R_3 \rightarrow R_3 - R_2$$

$$\begin{bmatrix} 1 & 2 & 0 & -3 \\ 0 & -5 & 1 & 13 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\lambda_1 + 2\lambda_2 - 3\lambda_4 = 0$$

$$-5\lambda_2 + \lambda_3 + 13\lambda_4 = 0$$

$$\lambda_3 + \lambda_4 = 0$$

Let $\lambda_4 = t$,

$$\lambda_3 + t = 0 \Rightarrow \lambda_3 = -t$$

$$-5\lambda_2 - t + 13t = 0 \Rightarrow \lambda_2 = \frac{12t}{5}$$

$$\lambda_1 + \frac{24t}{5} - 3t = 0 \Rightarrow \lambda_1 = \frac{-9t}{5}$$

Hence, the given vectors are linearly dependent.

Substituting the values of sum in (1), we get

33.21 VECTOR SUB SPACES

Let V be a vector space over a field F , then, a non-empty subset W of V is called a vector subspace of V , if W is a vector space in its own right with respect to the addition and scalar multiplication compositions on V , restricted only on points of W .

Remark. In an arbitrary vector space V , the sets $\{0\}$ and V are clearly subspaces of V and are known as trivial sub-spaces. However, our interest lies in non-trivial subspaces.

Example 20. Let R be the field of real numbers. Which of the following are subspaces of $V_3(R)$?

- (i) $W_1 = \{(x, 2y, 3z) : x, y, z \in R\}$
- (ii) $W_2 = \{(x, x, x) : x \in R\}$
- (iii) $W_3 = \{(x, y, z) : x, y, z \text{ are rational numbers}\}$

Solution. (i) Here $W_1 = \{(x, 2y, 3z) : x, y, z \in R\}$.

Let $\alpha = (x_1, 2y_1, 3z_1)$ and $\beta = (x_2, 2y_2, 3z_2)$ be any two arbitrary elements of W_1 , then $x_1, y_1, z_1, x_2, y_2, z_2 \in R$. If $a, b \in R$ be any two real numbers, then

$$\begin{aligned} a\alpha + b\beta &= a(x_1, 2y_1, 3z_1) + b(x_2, 2y_2, 3z_2) = (ax_1 + bx_2, 2ay_1 + 2by_2, 3az_1 + 3bz_2) \\ &= [ax_1 + bx_2, 2(ay_1 + by_2), 3(az_1 + bz_2)] \in W_1 \quad [\because ax_1 + bx_2 \text{ etc. } \in R] \end{aligned}$$

$\therefore a, b \in R$ and $\alpha, \beta \in W_1 \Rightarrow a\alpha + b\beta \in W_1$.

Hence, W_1 is a subspace of $V_3(R)$.

(ii) Here $W_2 = \{(x, x, x) : x \in R\}$. Let $\alpha = (x_1, x_1, x_1)$ and $\beta = (x_2, x_2, x_2)$ be any two elements of W_2 , then $x_1, x_2 \in R$. If $a, b \in R$ be any two real numbers, then we have

$$\begin{aligned} a\alpha + b\beta &= a(x_1, x_1, x_1) + b(x_2, x_2, x_2) = (ax_1 + bx_2, ax_1 + bx_2, ax_1 + bx_2) \in W_2 \\ &\quad [\because ax_1 + bx_2 \in W_2] \end{aligned}$$

Hence W_2 is a subspace of $V_3(R)$.

(iii) Here $W_3 = \{(x, y, z) : x, y, z \text{ are rational numbers}\}$.

Let $\alpha = (4, 5, 7)$ be any element of W_3 . If $a = \sqrt{6}$ is an element of R , then

$$a\alpha = \sqrt{6}(4, 5, 7) = (4\sqrt{6}, 5\sqrt{6}, 7\sqrt{6}) \notin W_3. \text{ Since } 4\sqrt{6}, 5\sqrt{6}, 7\sqrt{6} \text{ are not rational numbers.}$$

Consequently, W_3 is not closed with respect to scalar multiplication. Hence, W_3 is not a subspace of $V_3(R)$. Ans.

33.28 BASIS (R.G.P.V., Bhopal, III Semester, Dec. 2006)

Let V be a vector space. A collection of vectors $\alpha_1, \alpha_2, \dots, \alpha_r$ is said to form a basis of V if $\alpha_1, \alpha_2, \dots, \alpha_r$ are linearly independent and if they generate V .

Coordinate of a Vector

Let $V(F)$ be a finite dimensional vector space. Let $B = \alpha_1, \alpha_2, \dots, \alpha_n$ be ordered basis of V . Let $\alpha \in V$. Then there exists a unique n -tuple (x_1, x_2, \dots, x_n) of scalars such that

$$\alpha = x_1 \alpha_1 + x_2 \alpha_2 + \dots + x_n \alpha_n$$

(x_1, x_2, \dots, x_n) is called coordinates of the basis V .

33.29 DIMENSION OR RANK OF A VECTOR SPACE

(R.G.P.V., Bhopal, III Semester, Dec. 2005)

The number of vectors presents in a basis of a vector space V is called the dimension of V . It is denoted by $\dim(V)$.

Example 25. Dimension of the vector space V_4 is 4, since the four vectors $(1, 0, 0, 0)$, $(0, 1, 0, 0)$, $(0, 0, 1, 0)$, and $(0, 0, 0, 1)$ form a basis of V_4 .

Example 26. $\dim(V_n) = n$, since there are n number of vectors in a basis of V_n .

Here, we are mainly concern with finite dimensional vector space. The dimension of vector space may be infinite.

Example 27. Each set of $(n+1)$ or more vectors of a finite dimensional vector space $V(F)$ of dimension n is :

(i) linearly dependent

(ii) a basis of $V(F)$

(iii) a subspace of $V(F)$

(iv) linearly independent

(R.G.P.V., Bhopal, III Semester, Dec. 2007, 2006)

Solution. Dimension of vector space $V(F)$ is n , therefore $V(F)$ may have at most n independent vectors. Here the number of vectors are $(n+1)$, so they are linearly dependent.

Ans.

Example 28. Show that the vectors $(1, 0, 0)$, $(1, 1, 0)$, $(1, 1, 1)$ form a basis for R^3 .

(R. G. P. V. Bhopal, III Semester, June 2007)

Solution. Let $a_1, a_2, a_3 \in R$ be such that

$$a_1(1, 0, 0) + a_2(1, 1, 0) + a_3(1, 1, 1) = 0$$

$$(a_1 + a_2 + a_3) + (0 + a_2 + a_3) + (0 + 0 + a_3) = 0 \quad \dots (1)$$

$$a_1 + a_2 + a_3 = 0$$

$$a_2 + a_3 = 0$$

$$a_3 = 0$$

The matrix of the coefficients of the equations is

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\text{Rank}(A) = 3$$

$$a_3 = 0, a_2 = 0 \text{ and } a_1 = 0$$

The non-zero values of a_1, a_2, a_3 do not exist which can satisfy (1).

Thus, $(1, 0, 0), (1, 1, 0)$ and $(1, 1, 1)$ are linearly independent.

Hence, the set of given vectors form a basis of R^3 .

Proved.

Example 29. Show that $\alpha_1 = (1, 0, 0), \alpha_2 = (0, 1, 0), \alpha_3 = (0, 0, 1)$ form a basis of the vectors space V_3 .

Solution. Let a_1, a_2, a_3 be non-zero real numbers.

$$a_1\alpha_1 + a_2\alpha_2 + a_3\alpha_3 = 0$$

$$a_1(1, 0, 0) + a_2(0, 1, 0) + a_3(0, 0, 1) = 0 \quad \dots (1)$$

$$(a_1, a_2, a_3) = 0$$

$$\Rightarrow a_1 = 0, a_2 = 0, a_3 = 0$$

Thus non-zero values of a_1, a_2, a_3 do not exist which can satisfy (1).

Hence, the given system of vectors is linearly independent.

$$\text{Let } \alpha = x_1(1, 0, 0) + x_2(0, 1, 0) + x_3(0, 0, 1)$$

$$= x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3$$

It shows that any vector space V_3 can be expressed as a linear combination of $\alpha_1, \alpha_2, \alpha_3$. So

$\alpha_1, \alpha_2, \alpha_3$ are the generators.

Hence, $\alpha_1, \alpha_2, \alpha_3$ form basis of V .

Proved.

Example 30. Determine whether the following vectors form a basis of R^3 or not

$$(1, 1, 2), (1, 2, 5), (5, 3, 4)$$

Solution. We know that $\dim R^3 = 3$. Thus if the given set of vectors is linearly independent, then it will be a basis of R^3 otherwise not.

Now, for $a_1, a_2, a_3 \in R$

$$a_1(1, 1, 2) + a_2(1, 2, 5) + a_3(5, 3, 4) = (0, 0, 0)$$

$$\Rightarrow (a_1 + a_2 + 5a_3, a_1 + 2a_2 + 3a_3, 2a_1 + 5a_2 + 4a_3) = (0, 0, 0)$$

$$\therefore a_1 + a_2 + 5a_3 = 0 \quad \dots (1)$$

$$a_1 + 2a_2 + 3a_3 = 0 \quad \dots (2)$$

$$2a_1 + 5a_2 + 4a_3 = 0 \quad \dots (3)$$

\therefore The coefficient matrix of these equations is

$$A = \begin{bmatrix} 1 & 1 & 5 \\ 1 & 2 & 3 \\ 2 & 5 & 4 \end{bmatrix}$$

$$\text{Here } |A| = 1(8 - 15) - 1(4 - 6) + 5(5 - 4) = -7 + 2 + 5 = 0$$

Rank of $A \neq 3$

$$a_1 = a_2 = a_3$$

The scalars a_1, a_2, a_3 are not all zero, therefore, the given set S of vectors is linearly dependent and hence the given set of vectors are not basis set.

Ans.

Example 32. Show that the set $S = \{(1, 0, 0), (1, 1, 0), (1, 1, 1), (0, 1, 0)\}$ is not a basis set.

Solution. Let $a_1, a_2, a_3, a_4 \in R$ be such that

$$a_1(1, 0, 0) + a_2(1, 1, 0) + a_3(1, 1, 1) + a_4(0, 1, 0) = 0$$

$$\Rightarrow (a_1 + a_2 + a_3 + 0a_4, 0a_1 + a_2 + a_3 + a_4, 0a_1 + 0a_2 + a_3 + 0a_4) = (0, 0, 0)$$

$$\Rightarrow a_1 + a_2 + a_3 = 0, a_2 + a_3 + a_4 = 0, a_3 = 0$$

The coefficient matrix of these equations are in the matrix form.

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Here,

$$|A| = 1(1 - 0) = 1 \neq 0$$

$$\Rightarrow R(A) = 3$$

\therefore The scalars a_1, a_2, a_3, a_4 are not all zero, therefore, the given set S of vectors is linearly dependent and hence S is not a basis set. Proved.

Example 33. Show that the set $S = \{(1, 0, 0), (1, 1, 0), (1, 1, 1), (0, 1, 0)\}$ is not a basis set.

34.1 LINEAR TRANSFORMATIONS

Let U and V be two vector spaces over the same field F . Then, a mapping T of U into V is called a linear transformation or a homomorphism of U into V , if

$$(i) T(\alpha + \beta) = T(\alpha) + T(\beta) \quad \forall \alpha, \beta \in U \text{ and } (ii) T(a\alpha) = aT(\alpha) \quad \forall a \in F, \alpha \in U.$$

The conditions (i) and (ii) above can be combined as

$$T(a\alpha + b\beta) = aT(\alpha) + bT(\beta) \quad \forall a, b \in F, \forall \alpha, \beta \in U$$

A transformation of U into itself is called a linear operator.

A one-one linear transformation of U onto V is called an isomorphism. In case, there exist an isomorphism of U onto V , we say that U is isomorphic to V and we write, $U \cong V$.

(i) **Zero Transformation.** If $U(F)$ and $V(F)$ be two vector spaces over the same field F , then the mapping $\hat{0}: U \rightarrow V$ defined by $\hat{0}(x) = 0, \forall x \in U$ is said to be **zero transformation**. $\hat{0}$ is called **zero operator**.

(ii) **Identity Transformation (or Identity operator).** If $V(F)$ is a vector space, then the mapping $T: V \rightarrow V$ defined by $T(v) = v \quad \forall v \in V$ is called an **identity transformation**. T is called **identity operator**.

Theorem 1. To prove that zero operator is linear operator.

Proof. Let $U(F)$ and $V(F)$ be two vector spaces over the same field F . Let $\hat{0}: U \rightarrow V$ defined by $\hat{0}(x) = 0 \quad \forall x \in U$ be the zero operator.

Let $\alpha, \beta \in U$ and $a, b \in F$, then $\hat{0}(a\alpha + b\beta) = 0 = 0 + 0 = a\hat{0}(\alpha) + b\hat{0}(\beta)$.

Hence, $\hat{0}$ is a linear operator.

Proved.

Theorem 2. To prove that identity operator is linear operator.

Proof. Let T be the identity operator on $V(F)$. Then $T(x) = x, \forall x \in V$.

Let $\alpha, \beta \in V$ and $a, b \in F$, then $a\alpha + b\beta \in V$

$$\begin{aligned} \text{Now, } T(a\alpha + b\beta) &= a\alpha + b\beta && \{\text{by definition of } T\} \\ &= aT(\alpha) + bT(\beta) && [\because \alpha = T(\alpha), \beta = T(\beta)] \end{aligned}$$

Hence, T is a linear operator.

Proved.

Example 1. Show that the translation mapping $f: V_2(R) \rightarrow V_2(R)$ defined by

$$f(x, y) = (x + 2, y + 3) \text{ is not linear.}$$

Solution. Here $\bar{0} = (0, 0)$ is the zero vector of $V_2(R)$. Thus, by definition of f , we have
 $f(\bar{0}) = f(0, 0) = (0+2, 0+3) = (2, 3) \neq 0$.
Since f does not map the zero vector onto the zero vector, hence f is not linear.
Proved

Example 2. Prove that: $T: R^2 \rightarrow R^2$
 $T(x_1, x_2) = (x_1, 0)$, is a linear transformation.

Solution. Let $a, b \in R$ and $x = (x_1, x_2)$ and $y = (y_1, y_2) \in R^2$

$$\begin{aligned} \text{We see } T &= T\{a(x_1, x_2) + b(y_1, y_2)\} \\ &= T\{(ax_1, ax_2) + (by_1, by_2)\} \\ &= T\{(ax_1 + by_1, ax_2 + by_2)\} \\ &= (ax_1 + by_1, 0) \\ &= (ax_1, 0) + (by_1, 0) \\ &= a(x_1, 0) + b(y_1, 0) \\ &= aT(x_1) + bT(y_1). \end{aligned}$$

Proved

So, T is a linear transformation.

Example 3. Show that the mapping $f: V_2(R) \rightarrow V_3(R)$ defined by

$f(a, b) = (a, b, 0)$ is a linear transformation. (R.G.P.V. Bhopal, III Semester, Dec. 2007)

Solution. Let $\alpha = (a_1, b_1), \beta = (a_2, b_2) \in V_2(R)$

$$\begin{aligned} \text{If } a, b \in F, \text{ then } f(a\alpha + b\beta) &= f[a(a_1, b_1) + b(a_2, b_2)] \\ &= f[(aa_1, ab_1) + (ba_2, bb_2)] \\ &= f(aa_1 + ba_2, ab_1 + bb_2) \\ &= (aa_1 + ba_2, ab_1 + bb_2, 0) \\ &= a(a_1, b_1, 0) + b(a_2, b_2, 0) \\ &= af(\alpha) + bf(\beta) \end{aligned}$$

Proved

Hence, f is a linear transformation.

Example 4. Show that the mapping $f: V_3(R) \rightarrow V_2(R)$ defined by $f(a, b, c) = (c, a+b)$ is a linear transformation.

Solution. Let $\alpha = (a_1, b_1, c_1), \beta = (a_2, b_2, c_2) \in V_3(R)$. If $a, b, c \in R$, then

$$\begin{aligned} f(a\alpha + b\beta) &= f[a(a_1, b_1, c_1) + b(a_2, b_2, c_2)] = f[(aa_1 + ba_2, ab_1 + bb_2, ac_1 + bc_2)] \\ &= (ac_1 + bc_2, aa_1 + ba_2 + ab_1 + bb_2) \quad [\text{By definition of } f] \\ &= (ac_1, aa_1 + ab_1) + (bc_2, ba_2 + bb_2) = a(c_1, a_1 + b_1) + b(c_2, a_2 + b_2) \\ &= af(\alpha) + bf(\beta) \end{aligned}$$

Proved

Hence, f is a linear transformation.

Example 5. Show that the mapping $f: V_2(R) \rightarrow V_2(R)$ defined by $f(x, y) = (x^3, y^3)$ is not a linear transformation.

Solution. Let $\alpha = (x_1, y_1), \beta = (x_2, y_2) \in V_2(R)$, then

$$\begin{aligned} f(\alpha + \beta) &= f[(x_1, y_1) + (x_2, y_2)] = f[(x_1 + x_2, y_1 + y_2)] = [(x_1 + x_2)^3, (y_1 + y_2)^3] \\ &\neq (x_1^3 + x_2^3, y_1^3 + y_2^3) \\ &\neq (x_1^3, y_1^3) + (x_2^3, y_2^3) \\ &\neq f(\alpha) + f(\beta) \end{aligned}$$

Hence, f is not a linear transformation.

Proved

Example 6. Show that the mapping $f: V_3(R) \rightarrow V_2(R)$ defined by $f(a, b, c) = (a - b, a + c)$ is linear transformation. (R.G.P.V., Bhopal, III Semester, Dec. 2006)

Solution. Let $\alpha, \beta \in V_3$

$$\alpha = (a_1, b_1, c_1), \quad \beta = (a_2, b_2, c_2)$$

$$\begin{aligned} f(\alpha + \beta) &= f[(a_1, b_1, c_1) + (a_2, b_2, c_2)] \\ &= f[(a_1 + a_2, b_1 + b_2, c_1 + c_2)] \\ &= f[a_1 + a_2 - b_1 + b_2, a_1 + a_2, c_1 + c_2] \\ &= f[a_1 - b_1 + a_2 + b_2 + a_1 + c_1, a_2 + c_2] \\ &= (a_1 - b_1, a_1 + c_1) + (a_2 + b_2, a_2 + c_2) \\ &= f(a_1, b_1, c_1) + f(a_2, b_2, c_2) \\ &= f(\alpha) + f(\beta) \end{aligned}$$

For any real number

$$\begin{aligned} f(k\alpha) &= f[k(a_1, b_1, c_1)] \\ &= f(ka_1, kb_1, kc_1) \\ &= (ka_1 - kb_1, ka_1 + kc_1) \\ &= k(a_1 - b_1, a_1 + c_1) \\ &= kf(a_1, b_1, c_1) \\ &= kf(\alpha) \end{aligned}$$

So, f is a linear transformation from V_3 to V_2 .

Proved.

Example 7. Show that the function $T: V_2 \rightarrow V_2$ defined by $T(x, y) = (x^2, y^2)$ is not a linear transformation.

34.2 MATRIX OF A LINEAR TRANSFORMATION

Consider the simultaneous equations given below:

$$\begin{aligned}2x_1 + 3x_2 - x_3 &= 2 \\5x_1 - 6x_2 - 3x_3 &= 10 \\x_1 + x_2 + x_3 &= 8\end{aligned}$$

The left hand side of the equations can be considered as the linear transformations of T

$$T \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_1 + 3x_2 - x_3 \\ 5x_1 - 6x_2 - 3x_3 \\ x_1 + x_2 + x_3 \end{bmatrix} = \begin{bmatrix} 2 & 3 & -1 \\ 5 & 6 & -3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

we can write the formula $A: T_A(X) = AX$

In general for $m \times n$ matrix the transformation is $TA : R^n \rightarrow R^m$
such transformation is called matrix transformation.

For example, the matrix $\begin{bmatrix} 1 & 5 & 3 \\ 2 & 7 & 9 \\ 4 & 1 & 2 \end{bmatrix}$ gives matrix transformation

$$T \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 + 5x_2 + 3x_3 \\ 2x_1 + 7x_2 + 9x_3 \\ 4x_1 + x_2 + 2x_3 \end{bmatrix} = \begin{bmatrix} 1 & 5 & 3 \\ 2 & 7 & 9 \\ 4 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

This can also be written horizontally

$$T : R^3 \rightarrow R^3, [x_1, x_2, x_3] \rightarrow [x_1 + 5x_2 + 3x_3, 2x_1 + 7x_2 + 9x_3, 4x_1 + x_2 + 2x_3]$$

This transformation is not matrix transformation because it can not be expressed as $A X$ for constant matrix A .

Example 11. The matrix of linear mapping $T : R^3 \rightarrow R^3$ given by $T(a, b, c) = (a, b, 0)$ relative to standard basis is

$$(i) \begin{bmatrix} 0 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix} \quad (ii) \begin{bmatrix} 2 & 0 & 1 \\ 1 & 2 & 0 \\ 2 & 1 & 0 \end{bmatrix} \quad (iii) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad (iv) \begin{bmatrix} 2 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

(R.G.P.V., Bhopal, III Semester, Dec. 2006)

Solution. The standard basis of R^3 is $B = (e_1, e_2, e_3)$, where $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$ and $e_3 = (0, 0, 1)$

Thus by definition of T , we have

$$\begin{aligned} T(e_1) &= T(1, 0, 0) = (1, 0, 0) = 1(1, 0, 0) + 0(0, 1, 0) + 0(0, 0, 1) \\ &= 1e_1 + 0e_2 + 0e_3 \end{aligned}$$

$$\begin{aligned} T(e_2) &= T(0, 1, 0) = (0, 1, 0) = 0(1, 0, 0) + 1(0, 1, 0) + 0(0, 0, 1) \\ &= 0e_1 + 1.e_2 + 0.e_3 \end{aligned}$$

$$\begin{aligned} T(e_3) &= T(0, 0, 1) = (0, 0, 1) = 0(1, 0, 0) + 0(0, 1, 0) + 1(0, 0, 1) \\ &= 0e_1 + 0e_2 + e_3 \end{aligned}$$

Hence, the coefficient matrix is $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and its transpose

matrix is $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$[T, B] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Ans. (iii) is correct

Function or Mapping

Let there be two non-empty sets X and Y and there is some rule or correspondence which assigns to each element $x \in X$, a unique element $y \in Y$, then this rule or correspondence which is said to be a *mapping* or a *function* and denoted by f , i.e., $f: X \rightarrow Y$ and read as ' f is a function of X to Y ' or f is a 'mapping of X to Y '.

The set X is called the *domain* of the given function f and the set Y of all the values assumed by it is called its *Range* or *Image set*. Also Y is called the *co-domain* of f .

y is sometimes known as image of x and written as $y = f(x)$. Here $f(x)$ is read as 'image of x under the rule f ' or simply ' f of x '. The rule f is also known as *mapping* or *transformation* or *operator* and x is also known as *pre-image* of y .

Fig. 4.3

A function whose range has a single element is said to be *constant function*.

Diagrammatical representation of $y = f(x)$ with a rule f defined by $x \rightarrow f(x)$ is shown in Fig. 4.3.

(If $y = x^2$, then the rule f is $x \rightarrow x^2$
which is shown in Fig. 4.4 for positive integral values of x .

Fig. 4.4

Functions defined as sets of ordered pairs. Given two non-empty sets X and Y , a function f from X to Y is a subset of $X \times Y$ provided

- (i) $\forall x \in X, (x, y) \in f$ for some $y \in Y$, i.e., \exists (there exists) a rule f so that every element of X has image.
- (ii) $(x, y) \in f$ and $(x, y') \in f \Rightarrow y = y'$, i.e., the image is unique.

The graph of f is defined as the subset of $X \times Y$ given by $\{(x, f(x)) : x \in X\}$, and that range of f as the set of all images under f given by $f[X] = \{y \in Y : y = f(x) \text{ for some } x \in X\} = \{f(x) : x \in X\}$.

In case $A \subset X$ then the set $\{f(x) : x \in A\}$ is known as the *image* of A under f and denoted by $f[A]$. Also if $B \subset Y$, then the set $\{x \in X : f(x) \in B\}$ is known as the *inverse image* of B under f and denoted by $f^{-1}[B]$.

Extension and Restriction of a function. Given two functions f and g such that f contains the domain of g and $f(x) = g(x) \forall x$ in the domain of g , the function f is said to be the *extension* of g and g is said to be the *restriction* of f .

Real and Complex functions. If range of f consists of real numbers, f is said to be a *real function* and if its range consists of complex numbers, f is said to be a *complex function*.

Onto and Into Mappings. If the range is completely filled up, the mapping is said to be *onto* and if the range is not completely filled up then it is *into*. In other words, if \exists at least one $y \in Y$ which is not an $f(x)$ for any $x \in X$, then the mapping f is said to be *into* otherwise it is said to be *onto* or *surjective*. The surjective function is also known as a *surjection* or an *epimorphism*.

One-one and Many-one Mappings. Given two non-empty sets X and Y , if two different elements in X always have different images under the rule f , then f is said to be a *one-one mapping* or an *injection* or *monomorphism* of X into (onto) Y and if the two or more different elements of X have the same image under f , then f is said to be a *many-one mapping* of X into (onto) Y .

Diagrammatical representation of such functions are shown in Figs. 4.5, 4.6, 4.7, 4.8.

Fig. 4.5

A function which is both surjective and injective is known as *bijection*, i.e., a one-one onto mapping is also known as a *bijection* and a bijection of a set X onto itself is known as *Permutation of X* .

Fig. 4.6

If $f: X \rightarrow Y$, f is one-one if $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2) \forall x_1, x_2 \in X$. In case f is *into*, the range of f is proper subset of Y , i.e., $f[X] \subset Y$ and $f[X] \neq Y$.

Fig. 4.7

Fig. 4.8

In case f is *onto*, the range of f is equal to Y , i.e., $f[X] = Y$.

Inverse mapping. Let f represent a function (mapping) which is both *onto* and *one-one* defined as $f: X \rightarrow Y$, then its inverse mapping $f^{-1}: Y \rightarrow X$ is defined as below:

$\forall y \in Y$, if we find the unique element $x \in X$ s.t. $f(x) = y$ then x is defined to be $f^{-1}(y)$, i.e., $f^{-1}(y) = \{x : x \in X, f(x) = y\}$ which follows that $f^{-1}(y)$ is always a subset of X .

Diagrammatical representation of an inverse mapping is shown in Fig. 4.9.

One-one onto mapping is often called as *one-to-one correspondence*. Thus if f is a one-to-one correspondence between X and Y , then f^{-1} is a one-to-one correspondence between Y and X .

Fig. 4.9