\mathcal{R} Engine weight alternative to strut force \mathcal{R}
structural box $ \begin{array}{cccc} & \mathcal{P}_{\perp} \\ & \mathcal{T}_{\perp} \\ & \mathcal$
p_o $D_{(\eta)}$ p_s $p(\eta) = \tilde{p}(\eta)$ $D_{(\eta)}$
\mathcal{S}_o \mathcal{S}_o \mathcal{S}_o \mathcal{S}_o \mathcal{S}_o
$\mathcal{M}'_{o} = \cdot \mathcal{M}_{s} \qquad \mathcal{P} n_{s}$ $\mathcal{M}_{(\eta)}$ $0 \qquad \eta_{o} \qquad \eta_{s} \qquad 1$

input_vector = [114115.099, 37.533, 10.697, ..., 2700.0, 817.0]

Sparsity pattern of `surfw()`, using NaN-contamination Inputs (n=38)

Column-compressed sparsity pattern of `surfw()`

	surfw()`, using NaN-contamination Inputs (n=38)
po b b b c co zs lambdat lambdas gammat gammat myolan we neout	neinn dyeinn Winn Wout dywout sweep wbox hboxs hboxs hboxs hboxs cheep sigstrut Ecap Eweb Gcap Gcap Gcap Grap Hrtenweb sigstrut Ecap Eweb Grap Grap Grap
Ss Ms tbwebs tbcaps Elcs Elns GJs So Mo tbwebo tbcapo Elco Elno GJo Astrut lsp cosLs	
Outputs Wscen Wsinn Wsout	
dxWsinn dxWsout dyWsinn dyWsout Wfcen Wfinn Wfout dxWfinn dxWfout dyWfinn dyWfout dyWfinn dyWfout Wweb Wcap Wstrut	
Wcap Wstrut dxWweb dxWcap dxWstrut	

	Sparsity pattern of `surfw()`, using NaN-contamination Inputs (n=38)
	po b bs co co co co co sigestrut fl.t fl.t fl.t fl.t fl.t fl.t fl.t fl.
Outputs (m=37)	Ss Ms tbwebs tbcaps Elcs Elns GJs So Mo tbwebo tbcapo Elco Elno GJo Astrut Isp cosLs Wscen Wsinn Wsout dxWsinn
	dxWsout dyWsinn dyWsout Wfcen
	Wfinn Wfout dxWfinn dxWfout dyWfinn dyWfout Wweb Wcap Wstrut
	dxWweb dxWcap dxWstrut

Step 1:

- Trace sparsity with NaN-propagation
- Compute gradient, take optimization step, etc.

Step 2:

 At next iteration, if any new values for discrete variables are seen, redo the sparsity trace

Step 3:

 Take the union of the new sparsity and the previous one, and use that going forward

X = false negatives!

