

## Agenda

- Organize
- How far am !?
- Size matters
- Technicalities

#### Tips: Tags can be attached



#### Tips: Tags can be attached



### Accounts & Subscriptions



#### Usage Trend By Services







# Where do you see yourself?

















### The Trouble With Monoliths

### Tightly coupled components

All components updated together

Not agile, time to market suffers

Scale by cloning entire apps

All components scaled similarly  $\rightarrow$  expensive



### Microservices

### Do one thing well

Manage independent code and state

Are generally developed by a small cross-functional team

Are built with task-appropriate languages/frameworks

### Are loosely coupled

Communicate over well-defined interfaces/protocols

Have unique names (URI) that can be resolved

Are independently updated

Are independently scaled



## Why?

Higher density - reduce cost

Scale the things that needs scaling

Deliver more and faster

Deploy features independent from each other



## Cloud Maturity Model

#### Existing .NET Application Modernization approaches



- Lift & Shift approaches
- No code-changes

- Architected for the cloud
- Modernize/Refactor/Rewrite

### 1. Cloud Infrastructure ready

Simply Rehost your on-premise application to laaS on Azure

#### **PROS**

- ✓ No re-architect or new code
- ✓ Least effort for quick migration
- ✓ Supported on the least common denominator on Azure



### 1. Cloud Infrastructure ready

#### Simply Rehost your on-premise application to laaS on Azure

#### **PROS**

- ✓ No re-architect or new code
- ✓ Least effort for quick migration
- ✓ Supported on the least common denominator on Azure

#### **CONS**

- Smaller Cloud Value
- × Manual Patching, Upgrades
- × No Automated App Scaling and High Availability



### Modernization Maturity Model



### 2. Cloud DevOps ready

Get more Cloud benefit by **Containerizing** your app with **Windows Server Docker Containers** and deploying them to Azure cloud or on-premises.

#### **PROS**

- ✓ No re-architect or new code
- ✓ Increased density & lower deployment cost
- ✓ Improved productivity and DevOps agility
- ✓ Portability of apps and dependencies
- ✓ High availability and Orchestration with ACS/K8
  and Service Fabric









### Docker Containers

 Docker helps automating the deployment of applications as portable, self-sufficient containers that can run on any cloud or on-premises.

No more:
"It works in my dev machine!...
Why not in production?"

Now it is:
"If it works in Docker, it works in production"

Keywords about WHY Docker?

- Dependencies (self-sufficient)
- Deployment





### Virtual Machines compared to Containers





## Docker and .NET

- .NET Framework images
   Windows Server Core
- .NET Core Docker images xPlat. (Linux & Windows Nano Server)

#### See at **Docker Hub**





### Image2Docker tool

- Ports existing Windows application workloads to Docker
- IIS and ASP.NET apps

   Extract ASP.NET websites
   config/dependencies from a VM or server
- Generates dockerfiles for Windows Docker images, based on analysis of existing Windows machines.
- Open Source community tool, powered by Docker (the company)



## Choosing Orchestrators in Azure

| Azure Product           | Orchestrator            | Description                                                                                                                                                                                        | Good for                                   | Common workloads                                                                                                                                  |
|-------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | Kubernetes              | Kubernetes is an open-source platform<br>for automating deployment, scaling, and<br>operations of application containers<br>across clusters of hosts                                               | Production-ready & Windows/Linux ecosystem | Microservices based on containers                                                                                                                 |
| Azure Container Service | Mesosphere DC/OS  DC/OS | As a datacenter operating system,<br>DC/OS is itself a distributed system, a<br>cluster manager and a container<br>platform                                                                        | Production-ready &<br>Linux ecosystem      | Microservices based on containers                                                                                                                 |
|                         | Docker Swarm            | Docker Swarm is a clustering and scheduling tool for Docker containers. With Swarm, IT administrators and developers can establish and manage a cluster of Docker nodes as a single virtual system | Production-ready &<br>Linux ecosystem      | Microservices based on containers                                                                                                                 |
| Azure Service Fabric    | Service Fabric          | Azure Service Fabric is a distributed systems platform that makes it easy to package, deploy, and manage scalable and reliable microservices                                                       | Production-ready &<br>Linux ecosystem      | <ul> <li>a) Stateful svc &amp; Actors</li> <li>b) Microservices based on plain processes</li> <li>c) Microservices based on containers</li> </ul> |

## Choosing Orchestrators in Azure

| Azure Product           | Orchestrator            | Description                                                                                                                                                                                                    | Good for                                   | Common workloads                                                                                                                                  |
|-------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | Kubernetes              | Kubernetes is an open-source platform<br>for automating deployment, scaling, and<br>operations of application containers<br>across clusters of hosts                                                           | Production-ready & Windows/Linux ecosystem | Microservices based on containers                                                                                                                 |
| Azure Container Service | Mesosphere DC/OS  DC/OS | As a datacenter operating system, DC/OS is itself a distributed system, a cluster manager and a container platform                                                                                             | Production-ready &<br>Linux ecosystem      | Microservices based on containers                                                                                                                 |
|                         | Docker Swarm            | Docker Swarm is a clustering and scheduling<br>tool for Docker containers. With Swarm, IT<br>administrators and developers can establish<br>and manage a cluster of Docker nodes as a<br>single virtual system | Production-ready &<br>Linux ecosystem      | Microservices based on containers                                                                                                                 |
| Azure Service Fabric    | Service Fabric          | Azure Service Fabric is a distributed systems platform that makes it easy to package, deploy, and manage scalable and reliable microservices                                                                   | Production-ready & Linux ecosystem         | <ul> <li>a) Stateful svc &amp; Actors</li> <li>b) Microservices based on plain processes</li> <li>c) Microservices based on containers</li> </ul> |

### Scenario: Deploy to Kubernetes through CI/CD pipelines



### 2. CONS in Cloud DevOps ready

Get more Cloud benefit by Containerizing your app with Windows Server Docker Containers and deploying them to Azure using production orchestration

#### **PROS**

- ✓ No re-architect or new code
- ✓ Increased density & lower deployment cost
- ✓ Improved productivity and DevOps agility
- ✓ Portability of apps and dependencies
- ✓ High availability and Orchestration with ACS/K8
  and Service Fabric

#### CONS

Containerization is an additional step in the learning curve



# Cloud Maturity Model

#### Existing .NET Application Modernization approaches



- Lift & Shift approaches
- No code-changes

- Architected for the cloud
- Modernize/Refactor/Rewrite

### 3. Going to Cloud-Optimized (Full PaaS)

Extend your apps with new services based upon Server less computing, Microservices architecture and PaaS services (AppService) to fully exploit the advantages of the cloud.

### **PROS**

✓ Optimized for long term agility





### 3. Going to Cloud-Optimized (Full PaaS)

Extend your apps with new services based upon Server less computing, Microservices architecture and PaaS services (AppService) to fully exploit the advantages of the cloud.

#### **PROS**

- ✓ Optimized for long term agility
- ✓ Optimized for scale and high availability
- ✓ Modern Architecture with Microservices and Cloud Native technologies





### When to use Azure App Service? (PaaS for Web Apps)



### 3. Going to Cloud-Optimized (Full PaaS)

Extend your apps with new services based upon Server less computing, Microservices architecture and PaaS services (AppService) to fully exploit the advantages of the cloud.

#### **PROS**

- ✓ Optimized for long term agility
- ✓ Optimized for scale and high availability
- ✓ Modern Architecture with Microservices and Cloud Native technologies

#### CONS

 Requires significant code refactoring or rewriting (increased time and budget)





### Modernization Maturity Model

#### Existing .NET Application Modernization: Maturity Models











### SQL is not the only option



# Do you need to build everything?





## Do you need a web server?



### Add Business Value





# DevOps



