results

```
In [ ]: plot_image_color(l_color, 'input image in color')
```

input image in color

02. plot the input image in gray

In []: plot_image_gray(I, 'input image in grey')

input image in grey

03. plot the (forward) first derivative I_x and I_y of input gray image I with Neumann boundary condition

```
n [ ]: | plot_image_gray_2x1(lx, ly, <mark>'$|_x$','$|_y$')</mark>
```


04. plot the second derivative I_{xx} and I_{yy} of input gray image I with Neumann boundary condition

```
In [ ]: plot_image_gray_2x1(lxx, lyy, '$1_{xx}$', '$1_{yy}$')
```


05. plot the original image and its solution of the heat equation with 10, 100, 1000 iterations

```
In [ ]: plot_image_gray_2x2(I, u10, u100, u1000, 'original $I$', '$u(t=10)$', '$u(t=100)$', '$u(t=1000)$')
```

original *I*

$$u(t = 100)$$

06. plot the (forward) first derivative of the solution of the heat equation with 10 iterations

```
In [ ]: plot_image_gray_2x1(u10_x, u10_y, '$u_x(t=10)$', '$u_y(t=10)$')
```


07. plot the (forward) first derivative of the solution of the heat equation with 100 iterations

```
In [ ]: plot_image_gray_2x1(u100_x, u100_y, '$u_x(t=100)$', '$u_y(t=100)$')
```


08. plot the (forward) first derivative of the solution of the heat equation with 1000 iterations

```
In [ ]: plot_image_gray_2x1(u1000_x, u1000_y, '$u_x(t=1000)$', '$u_y(t=1000)$')
```


