Bonus 02 - MATH 722

Boren(Wells) Guan

Date: February 26, 2024

Problem

Let f be holomorphic on a neighbourhood of $\overline{D}(0,1)$. Assume that the restriction of f to $\overline{D}(0,1)$ is one-to-one and f' is nowhere zero on $\overline{D}(0,1)$. Prove that in fact f is one-to-one on a neigbourhood of $\overline{D}(0,1)$.

Sol.

Let $D_n = D(0, 1 + n^{-1})$ and if the conclusion is not correct, then we can always find $x_n, y_n \in D(0, 1 + n^{-1})$ such that $f(x_n) = f(y_n)$, and since x_n, y_n is in $\overline{D}(0, 2)$. Then there exists x, y such that $x_n \to x, y_n \to y$ with $|x|, |y| \le 1$, and $f(x) - f(y) = \lim_{n \to \inf ty} f(x_n) - f(y_n) = 0$, if $x \ne y$ there will be a contradiction and hence x = y, which is also impossible since we know $f'(x) \ne 0$ and we may assume there exists $\delta > 0$ such that $Ref'(y) > \epsilon > 0$ for some ϵ whenever $|y - x| < \delta$, then for any $p, q \in D(x, \delta)$, we have

$$Re(f(p)-f(q))=Re(\int_{\overline{qp}}f'(\xi)d\xi)=\int_{\overline{qp}}Ref'(\xi)d\xi\geq \epsilon|p-q|$$

which means f should be one-to-one around x, the proof is the same when $Im(f'(x)) \neq 0$. Then we know $x_n, y_n \to x$ with $f(x_n) = f(y_n)$, which is a contradiction. Therefore, f should be one-to-one on D_n for some integer n.