OSQN Drift in a Quartz-Oscillator Loop

Lab Worksheet - rev B-0.1 (bench-ready)

0 Mission Recap

Probe the **Observer-State Quantum Number (OSQN)** prediction that a *sealed-loop* quartz reference will exhibit a tiny, phase-coherent frequency ripple when an "observer channel" is logically prepared—even if the channel is never activated.

TORUS says the ripple shows up as

 $\Delta f \pm f014 \ (side-bands) and/orf \ 10-6 \ f0 \ f \ \ in \ 10^{-6} \ \pm 14f0 \ (side-bands) \ \ dot \ f \ \sin \ 10^{-6} \ \pm 14f0 \ (side-bands) \ \ dot \ f \ \sin \ 10^{-6} \ \$

within a $\,$ -signature dwell window of 10–120 s after preparation.

1 Bill of Materials (US \$120 total)

\mathbf{Qty}	Part
1	TCXO 10 MHz (Abracon ASTX-13 or similar) -or- watch-grade 32.768 kHz crystal + CMOS in
1	MCU board (STM32 "Nucleo-64", Teensy 4.1, or RP2040)
1	20 MHz logic analyzer / USB scope (Saleae-type)
1	Low-noise linear 3.3 V supply (LT3045, ADM7150)
1	Faraday box or metal cookie-tin + RF gasket tape
	SMA / BNC cables, breadboard or SMT adapter, thin PTFE wire
_	DS18B20 temperature probe (optional)

Everything above is vendor-agnostic; grab the closest equivalents you have on hand.

2 Circuit Snapshot

markdown

CopyEdit

+3V3 TCXO 10 MHz SMA tee

STM32 TIM2 CH1 (count edges)

Logic-analyzer CH0

GND

Optional "observer channel":

TCXO PPS out *not* connected (stub trace)

MCU pin X high-Z input (logically configured)

If you use a 32 kHz watch crystal: build a Pierce oscillator around a CMOS inverter (e.g., 74LVC1G04) and route the output exactly as above.

3 Test-Run Matrix

Run ID	Box Lid	"Observer channel" prep	Duration	\mathbf{G}
B-0 Baseline	Closed	OFF (pin left floating, MCU ignores)	2 h	Est
B-1 Prepared	Closed	ON (pin configured as digital in, though nothing ever toggles)	2 h	Loc
B-2 Dormant	Open	ON	1 h	Iso
B-3 Sham	Closed	OFF but MCU toggles a dummy GPIO elsewhere	1 h	Gu

Repeat each run twice on different days if possible.

4 Measurement Procedure

- 1. Warm-up oscillator 15 min (TCXO) or 30 min (watch crystal).
- 2. MCU captures rising-edge timestamps (e.g., 100 ms gate, 32-bit timer).
- 3. Stream timestamp, cycles CSV over USB; \log with minicom or pythonserial.
- 4. Simultaneously tap the RF line with logic analyzer; record 60 s bursts at 50 MS/s for FFT later.
- 5. After each run, save environment notes: box temp, supply voltage, room activity.

5 Data-Analysis Recipe (Python)

python

CopyEdit

import pandas as pd, numpy as np, scipy.signal as ss, matplotlib.pyplot as plt

$$df = pd.read_csv('B1.csv', names=['t','N'])$$

f_inst = df.N.diff()/df.t.diff() # instantaneous freq

allan_tau, allan_dev, _ = allantools.oadev(f_inst, rate=10, data_type='freq')

FFT for side-bands

fs = 50e6

sig = np.load('burst_B1.npy')

f, Pxx = ss.welch(sig, fs, nperseg=2**20, scaling='density')

 $side_{mask} = (np.abs(f - f0/14) < 0.1) (np.abs(f + f0/14) < 0.1)$

 $peak = 10*np.log10(Pxx[side_mask].max())$

Positive criterion:

- Allan-dev bump at 10–120 s and
- Side-band peak > -80 dBc at either f0 \pm f0/14f_0 \pm f_0/14f0 \pm f0/14

If both fail \rightarrow TORUS-NEGATIVE for this construct.

6 Expected TORUS Signal

Parameter	Nominal value
Carrier f0f_0f0	$10\ 000\ 000\ \mathrm{Hz}\ (\mathrm{TCXO})\ /\ 32\ 768\ \mathrm{Hz}\ (\mathrm{watch})$
-side-band offset	$f0/14f_0/14f_0/14$ 714 285.7 Hz / 2340.57 Hz
Predicted amplitude	−70 dBc −80 dBc (persistent)
Drift slope	f'/f0 1×10–6\dot f/f_0 \sim 1 × 10^{-6}f'/f0 1×10–6 over 1 min window

A null run should sit below -100 dBc and show white-FM Allan slope.

7 Troubleshooting & Noise Killers

- Use shielded can + feed-through caps if mains hum shows in PSD.
- Power from a linear bench supply (no laptop USB).
- Place the MCU outside the Faraday box; bring coax through copper tape feed-through.
- Compare two crystals in same box to cancel ambient temp drift (Δ -frequency method).

8 Reporting Template

Example
Abracon ASTX-13-33-10.000 MHz
32.7 ± 0.2
2.1×10^{-1}
7.4×10
-79.5 dBc (persistent 180 s)
TORUS-POSITIVE (125)

9 Next If Positive

- Symbolic ladder residuals feed your measured Δf into solver; crosscheck with Catalan & (3) ratios.
- Halcyon sync test stream live drift into a sandbox agent; watch for loss-cone collapse in learning curve.

10 Next If Negative

- Swap oscillator type (watch TCXO).
- Run same protocol in a different lab or at a different latitude (geomagnetic sanity check).
- $\bullet~$ Escalate to optical cavity (100 MHz) for extra decade of resolution.

Ready for Bench Power-On

Copy this sheet to the lab notebook, wire it up, and start logging. Ping me with your first CSV or burst capture and I'll crunch the Allan/FFT pipeline for you.