Information Theory, Fall 2014	Iftach Haitner
Problem set	5
January 7, 2015	Due: January 28

- Please submit the handout in class, or email the grader.
- Write clearly and shortly using sub-claims if needed. The emphasize in most questions is on the proofs (no much point is writing a "solution" w/o proving its correctness)
- For Latex users, a solution example can be found in the course web site.
- It is allowed to work in (small) groups, but please write the id list of your partners in the solution file, and each student should write his solution by *himself* (joint effort is only allowed in the "thinking phase")

- 1. Let $\pi = (P, V)$ be a protocol with $\Pr\left[(\widetilde{P}, V) = 1\right] \leq \varepsilon$ for any s-size \widetilde{P} , and for $k \in \mathbb{N}$ let $\pi^{(k)} = (P^{(k)}, V^{(k)})$ be the k-fold sequential repetition of π . Prove that $\Pr\left[(\widetilde{P^{(k)}}, V^{(k)}) = 1^k\right] \leq \varepsilon^k$ for any $(s kc_\pi)$ -size $\widetilde{P^{(k)}}$, where c_π is the communication size (i.e., number of bits sent) of π .
- 2. Let (E, D) be a perfectly correct encryption scheme for messages of length n and keys of length ℓ . Let $K \leftarrow \{0, 1\}^{\ell}$. For each of the following cases find the best lower bound for ℓ .
 - (a) $D(\mathsf{E}_K(m_0)||\mathsf{E}_K(m_1)) \le \varepsilon$ for any $m_0, m_1 \in \{0, 1\}^n$.
 - (b) $SD(E_K(m_0), E_K(m_1)) \le \varepsilon$ for any $m_0, m_1 \in \{0, 1\}^n$.
- 3. Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be (s,ε) -OWF, and let $\mathcal{H} = \{h: \{0,1\}^n \mapsto \{0,1\}^n\}$ be 2-universal family. Define g over $\{0,1\}^n \times \{0,1\}^n \times \mathcal{H} \times [n]$ by $g(x,r,h,i) = (f(x),r,h,h(x)_{1,\dots,i},b(x,r))$, for b being the Goldreich-Levin hardcore predicate (i.e., $b(x,r) = \langle x,r \rangle_2$). Find good as you can vales for s' and ε' such that $g(U_{2n},H,I)$ has (s',ε') -entropy $H(g(U_{2n},H,I)) + \frac{1}{2n}$, for $H \leftarrow \mathcal{H}$ and $I \leftarrow [n]$. You can assume that \mathcal{H} is samplabe an evaluated by a size n algorithm.

¹The parties interacts in k independent random sequential repetitions of π (i.e., the i+1 iteration stars after the i'th iteration ends), and $V^{(k)}$ accepts if the verifiers accept in $all\ k$ iterations.