

#### Dr. Nick Feamster Professor

# Software Defined Networking

In this course, you will learn about software defined networking and how it is changing the way communications networks are managed, maintained, and secured.

## **Module 1: History of SDN**

- This lesson: Active Networks
- What are active networks?
  - Motivation for active networks
  - Technologies behind active networks
- How do active networks relate to SDN?
- The legacy of active networks

# **Evolution of Supporting Technologies** (Three Lessons)

 Central network control: Dates back (at least) to AT&T's network control point (1980s)

 Programmability in networks: Active networks (1990s)

 Network virtualization: Switchlets, XEN, VINI (1990s)

#### **What are Active Networks?**

- Networks where switches perform custom computations on packets
- Examples (and motivation)
  - Trace program running at each router
  - Middleboxes: firewalls, proxies, application services

## **Origins of Active Networks**

- DARPA research community (1994-1995)
- Identified problems with today's networks
  - Difficulty of integrating new technology
  - Poor performance due to redundant operations at several protocol layers
  - Difficulty accommodating new services

## **Motivation for Active Networks**

- Accelerating innovation
  - Internet innovation relies on consensus
  - Takes ten years from prototype to deployment (standardization, procurement, deployment)

- Active nodes allow routers to download new services into the infrastructure
  - User-driven innovation

# Idea: Messages Carry Procedures & Data



- Active routers coexist with legacy routers
- Each programmable switch can perform additional processing

## User "Pulls" and Technology "Push"

- User Pull (demand)
  - Proliferation of firewalls, proxies, transcoders, etc.
  - Goal: Replace ad hoc approaches
- Technology Push (enablers)
  - Safe execution of mobile code, Java applets
  - OS support
    - Scout: real-time communications
    - Exokernel: safe access to low-level resources
    - SPIN: trustworthy code generation

## **Two Different Approaches**

- Capsules ("integrated")
  - Every message is a program. Active nodes evaluate content carried in packets.
  - Code dispatched to execution environment
- Programmable Switches ("discrete")
  - Custom processing functions run on the routers
  - Packets are routed through programmable nodes
  - Program depends on the packet header

# Capsules (example)



#### Type

Forwarding routine to be executed (carries code by reference)

#### Previous address

 Where to get the forwarding routine from if it is not available in the present node

#### Dependent Fields

Parameters for the forwarding code

#### Payload

Header + data of higher layers

## **Some Previous Notable Projects**

- ANTS (MIT): Packet capsules (Java programs)
  - Some limitations for QoS guarantees. Arizona implemented Joust JVM to provide better real-time performance.
- SwitchWare (Penn): Programmable switch, scripting language to support invocation of switchlets
- Smart Packets (BBN): Network management
- Open Signaling (Columbia): NetScript, a language to provide programmable processing of packet streams.
- Tempest (Cambridge): Switchlets (more next time)

## What happened?

- Timing was off
  - No clear application (pre-data center/cloud)
  - Hardware support wasn't cheap -- everyone was using ASICs, whereas now TCAMs, FPGAs, NPUs.
- Some missteps
  - Security, special languages for safe code, packets carrying code
  - End user as programmer (vs. network operator)
  - Interoperability
- In contrast: OpenFlow did a good job grappling with backwards compatible with switch hardware.
  - Simple firmware upgrade.
  - Switch hardware already supported the basics.

# The Legacy of Active Networks for SDN

 Programmable functions in network to enable innovation

- Demultiplexing programs on packet headers
  - Planetlab, Flowvisor, GENI, etc. all use this

 Paying attention to middleboxes and how these functions are composed