

Dr. Jan-Willem Liebezeit Lukas Fuchs Niklas Eiermann SoSe 2024

12 Übungspunkte

Übungen zu: Mathematik für Informatik II

Blatt 04

Abgabedatum: 16.05.24, 12 Uhr

# 1. (NA) Minifragen

- 1. Für welche  $x,y\in\mathbb{R}^n$  gilt die Dreiecksungleichung (N3) in Bemerkung 8.2.4 mit "<" anstatt " $\leq$ "?
- 2. Zeigen oder widerlegen Sie für eine Matrix  $A \in M(n \times n, \mathbb{R})$  mit  $n \in \mathbb{N}$ :
  - Wenn A eine Nullzeile hat, ist det A immer gleich 0.
  - Wenn A eine Nullspalte hat, ist det A immer gleich 0.
- 3. Zeigen oder widerlegen Sie: det(A + B) = det(A) + det(B).
- 2. (A) Berechne mit möglichst wenig Aufwand die Determinanten folgender Matrizen:

$$A = \begin{pmatrix} 1 & -2 & 3 & 1 & -1 \\ 2 & 1 & 3 & -1 & 0 \\ 0 & -1 & 0 & 2 & 0 \\ 0 & 3 & 0 & 5 & 0 \\ 0 & 2 & 0 & 0 & 0 \end{pmatrix} \in M(5 \times 5, \mathbb{R}).$$

$$B = \begin{pmatrix} 2 & 0 & 1 & 0 & -1 \\ 3 & 0 & 2 & 0 & 0 \\ 3 & 0 & -2 & 0 & 0 \\ 0 & 3 & 0 & 5 & 0 \\ 0 & 2 & 0 & 1 & 0 \end{pmatrix} \in M(5 \times 5, \mathbb{R}).$$

$$(1)$$

$$C = \begin{pmatrix} 2 & 0 & 1 & 0 \\ 3 & 1 & 2 & 0 \\ 3 & 1 & -2 & 1 \\ 1 & 3 & 0 & 0 \end{pmatrix} \in M(4 \times 4, \mathbb{R}).$$

$$D = \begin{pmatrix} 2 & 2 & 1 & 1 & -2 \\ 3 & 1 & 1 & 1 & 0 \\ 3 & 0 & -2 & 2 & 3 \\ 1 & 3 & 0 & 0 & -2 \\ 1 & -1 & 1 & 1 & 0 \end{pmatrix} \in M(5 \times 5, \mathbb{R}).$$

$$(2)$$

(1)

### 3. (A)

(a) Für jedes  $n \in \mathbb{N}$  betrachten wir die Matrizen

$$A_{n} = \begin{pmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & -1 & \ddots & 0 \\ 0 & -1 & 2 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & -1 \\ 0 & \dots & 0 & -1 & 2 \end{pmatrix}, B_{n} = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 2 & 2 & 3 & \dots & n \\ 3 & 3 & 3 & \dots & n \\ \vdots & & & \vdots \\ n & n & n & \dots & n \end{pmatrix} \in M(n \times n, \mathbb{R}).$$

Wir definieren  $d_n := \det(A_n)$  für alle  $n \in \mathbb{N}$  und  $d_0 := 1$ .

i) Zeigen Sie die Rekursionsgleichung 
$$d_{n+1} = 2d_n - d_{n-1}$$
 (2)

- ii) Folgern Sie per Induktion  $d_n = n + 1$  für alle  $n \in \mathbb{N}$ . (2)
- iii) Zeigen Sie außerdem  $\det(B_n) = (-1)^{n+1}n$  für alle  $n \in \mathbb{N}$ . (2)

#### 4. (A)

(a) Es seien  $x_1, \ldots, x_n \in \mathbb{R}$ . Zeigen Sie (z.B. durch vollständige Induktion), dass

$$\begin{vmatrix} x_1^0 & x_1^1 & \dots & x_1^{n-1} \\ \vdots & \vdots & & \vdots \\ x_n^0 & x_n^1 & \dots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i)$$

gilt. (2)

- (b) Sei  $A \in M(n \times n, \mathbb{R})$  eine Matrix, deren Spaltenvektoren eine Orthonormalbasis bilden. Zeigen Sie: det  $A \in \{-1, 1\}$ . (1)
- (c) Sei  $A \in M(n \times n, \mathbb{R})$  eine Matrix mit  $A = -A^{\top}$  und n ungerade. Zeigen Sie: det A = 0. (1)
- (d) Sei  $A \in M(n \times n, \mathbb{R})$  invertierbar. Zeigen Sie:  $\det(A^{-1}) = (\det A)^{-1}$ . (1)
- (e) Seien  $A, S \in M(n \times n, \mathbb{K})$  und S invertierbar. Zeigen Sie:  $B := S^{-1}AS$  und A haben die gleiche Determinante. (1)

### 5. (A) Das charakteristische Polynom

Seien

$$A_1, A_2 \in M(3 \times 3, \mathbb{R}), \ A_1 = \begin{pmatrix} 2 & 1 & -2 \\ -6 & -5 & 8 \\ -2 & -2 & 3 \end{pmatrix}, \ A_2 = \begin{pmatrix} 10 & -3 & -9 \\ -18 & 7 & 18 \\ 18 & -6 & -17 \end{pmatrix}.$$

(a) Stellen Sie jeweils das sogenannte charakteristische Polynom

$$P_A(x) = \det(A - x \cdot I_3)$$

 $mit x \in \mathbb{R} \text{ für } A \in \{A_1, A_2\} \text{ auf }.$  (2)

(b) Bestimmen Sie die Nullstellen von  $P_{A_1}(x)$  und  $P_{A_2}(x)$ . (2)

- (c) Sei nun  $X_A$  jeweils die Menge der bestimmten Nullstellen von  $P_A(x)$  in Aufgabenteil b) für  $A \in \{A_1, A_2\}$ . Bestimmen Sie die Lösungsmenge des Gleichungssystems (A xI)v = 0 für jeweils alle Nullstellen  $x \in X_A$  für beide  $A \in \{A_1, A_2\}$ .
  - (2)
- 6. (T),(NA) Berechnen Sie die Determinanten folgender Matrizen über  $\mathbb{R}$ :

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 3 & 4 & 5 & 6 \\ 1 & 4 & 6 & 8 & 10 \end{pmatrix},$$

$$B = \begin{pmatrix} 1 & 2 & 8 & 9 & 14 & -8 \\ 3 & 1 & 3 & 4 & -4 & -1 \\ 4 & 0 & 0 & 3 & 9 & -1 \\ 0 & 0 & 0 & 0 & 7 & 6 \\ 0 & 0 & 0 & 0 & 8 & 7 \\ -2 & 0 & 0 & 0 & 0 & 11 \end{pmatrix}.$$

# Erläuterungen zur Bearbeitung und Abgabe:

- (NA) Die Lösung dieser Aufgabe müssen Sie nicht aufschreiben und abgeben.
  - (A) Die Lösung dieser Aufgabe schreiben Sie bitte auf und geben Sie ab.
  - (T) Die Aufgabe dient der Vorbereitung auf das Tutorium. Sie sollten sie mindestens in groben Zügen verstanden und durchdacht haben.
    - Die Abgabe der Lösungen erfolgt einzeln auf Moodle als einzelne PDF Datei.
    - Wir korrigieren auf jedem Übungsblatt nur jeweils zwei Aufgaben. Eine Aufgabe wird von uns festgelegt, die andere dürfen Sie sich aussuchen. Schreiben Sie dazu bitte auf jede Abgabe eine Erst- und Zweitpräferenz von Aufgaben, die wir korrigieren sollen.