E7020e

HARDWARE #2

SWITCHING

MECHANICAL

Push-button

Toggle switch

Rotary switch

Rotary encoder

Relay

• • •

ELECTRONIC

Transistor (BJT, MOSFET, ...)

Solid State Relay (SSR)

Optocoupler

H-Bridge

• • •

MECHANICAL SWITCHES

Momentary ("on" only while you press it)

Latching ("stateful")

Pole (P) = number of circuits / "inputs"

Throw (T) = number of positions / "outputs" per circuit

SPST (Single pole, single throw) = Single circuit with single output (on/off)

SPDT (Single pole, double throw) = Single circuit with two outputs (on1/on2)

DPDT (Double pole, double throw) = Two circuits with two outputs (on Ia-on Ib/on2a-on2b)

Rated for max voltage, current, number of operations

Debouncing

DEBOUNCING

Two pieces of metal slamming together \rightarrow contact bounce

Single press \rightarrow multiple fast presses / releases, lasting several milliseconds

Problem for MCU (interrupts)

Multiple events from single press

Hardware (RC, IC)

Software (timer/counter)

SWITCHING

MECHANICAL

Push-button

Toggle switch

Rotary switch

Rotary encoder

Relay

• • •

ELECTRONIC

Transistor (BJT, MOSFET, ...)

Solid State Relay (SSR)

Optocoupler

H-Bridge

• • •

ELECTRONIC SWITCHING

LOW SIDE SWITCHING

Turn on/off the return path

NMOS

MCU can sink more current than it can source

Most common

Load has high potential even when switched off (potential safety issue)

HI SIDE SWITCHING

Turn on/off the power source

PMOS

PMOS has higher channel resistance than NMOS → higher power loss

NMOS possible using "gate driver"

Safety

ELECTRONIC SWITCHING

MOSFET

Low "on" resistance

Body diode - only be used in one direction, the other way it acts like a diode

AC - Use two back-to-back

Cheap

OPTO COUPLER

Light controlled transistor Isolates logic and load circuits

SOLID-STATE RELAY

Use MOSFETS inside

Configured as an "ideal" switch

Isolates logic and load circuits

AC & DC

ELECTRONIC SWITCHING

H-BRIDGE

DC motors

Switch direction

Available as IC

SWITCHING

MECHANICAL

Push-button

Toggle switch

Rotary switch

Rotary encoder

Relay

• • •

ELECTRONIC

Transistor (BJT, MOSFET, ...)

Solid State Relay (SSR)

Optocoupler

H-Bridge

• • •

SERIAL COMMUNICATION

"One bit at a time"
Baudrate

SYNCHRONOUS

Clock + Data lines

SPI

ASYNCHRONOUS

UART

No clock line Agreed upon Baudrate

SERIAL COMMUNICATION

CHIP-TO-CHIP

SPI

I²C

UART

. . .

BOARD-TO-BOARD

USB

ETHERNET

RS-232

. . .

SPI Serial Peripheral Interface

Synchronous

4 wires (SCLK, MOSI, MISO, NCS)

Chip-to-chip communication

One master (aka "controller")

Multiple slaves (aka "peripherals")

Shared clock and data lines

Chip select pin

High speed (push-pull drivers, usually Mbits)

Full duplex (can read and write simultaneously)

Only master can drive the communication

SPI Serial Peripheral Interface

MODE

CPOL = Clock polarity CPHA = Clock phase

Mode	CPOL	СРНА
0	0	0
1	0	1
2	1	0
3	1	1

UART Universal Asynchronous Receiver/Transmitter

Asynchronous (no clock line)

Agreed upon protocol, for example:

9600 8NI

9600 baud, 8 data bits, no parity, I stop bit

2 wires – RX & TX

+ (optional) flow control (RTS, CTS)

Point-to-point

Full duplex (can read and write simultaneously)

Both ends can initiate communication

Lower speed (no clock → sampling @ 16x rate)

2C INTER-INTEGRATED CIRCUIT

Synchronous

2 wires – SCL & SDA

Open drain (needs pull-up resistors)

One master, multiple slaves

Addressing scheme (7 bit, 10 bit)

Only master can initiate communication

ANALOG SIGNALS

ANALOG

Continuous signal

DIGITAL

Discrete time

Discrete value

ADC ANALOG-TO-DIGITAL CONVERTER

Samples the analog voltage Sample rate Bit depth

Successive approximation converter Sigma-delta ADC

. . .

CONSIDER

Resolution

Speed

Precision

Power

Cost

ADC ANALOG-TO-DIGITAL CONVERTER

ACCURACY

NYQUIST/SHANNON SAMPLING THEOREM

Minimum sampling frequency should be at least twice as high as max significant frequency fs > 2 x fmax

Example: I2-bit converter
Reference Vref = 3.3V
Sampling time Ts= Ims,
fs = IkHz

Number of possible values: $N = 2^{12} = 4096$ Resolution, $Q = Vref/N \approx 0.8mV$

Analog anti-alias filter: $flp \approx I/(Ts \times 5) = 200Hz$

ADC ANALOG-TO-DIGITAL CONVERTER

Figure 12. STM32F401xD/xE LQFP64 pinout

QUADRATURE DECODER

Rotary encoders
Linear / optical encoders etc

INCREMENTAL

Number of steps Direction

QEI peripheral in MCU

USE CASES

Turn on/off
Adjust on/off time
Control voltage/current
Dim LEDs, Lamps...
Motor torque/speed
Servos
Loudspeakers

PWM PULSE-WIDTH MODULATION

DUTY CYCLE

ON vs OFF time

Averaging filter (LPF)

BLOCK DIAGRAM

USB DEVICE 1.9V **PSU** SENSOR MCU CRYSTAL **PROGRAMMER** SWD (DEBUG PROBE)

LET'S KICAD