

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS PO Box 1450 Alexandra, Virginia 22313-1450 www.unpto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/666,724	09/19/2003	Kenichi Kawasaki	50T5561.01	6054
36738 7590 07/29/2008 ROGITZ & ASSOCIATES 750 B STREET			EXAMINER	
			LANIER, BENJAMIN E	
SUITE 3120 SAN DIEGO.	CA 92101		ART UNIT	PAPER NUMBER
,			2132	
			MAIL DATE	DELIVERY MODE
			07/29/2008	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/666,724 KAWASAKI ET AL. Office Action Summary Examiner Art Unit BENJAMIN E. LANIER 2132 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. - Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 23 June 2008. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1.2.4-12.14-19.22-24.26.29-37 and 39 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1-2,4-12,14-19,22-24,26,29-37,39 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s) 1) Notice of References Cited (PTO-892) 4) Interview Summary (PTO-413) Paper No(s)/Mail Date. ___ Notice of Draftsperson's Patent Drawing Review (PTO-948) 5) Notice of Informal Patent Application Information Disclosure Statement(s) (PTO/SB/08)

Paper No(s)/Mail Date __

6) Other:

Application/Control Number: 10/666,724 Page 2

Art Unit: 2132

DETAILED ACTION

Response to Amendment

Applicant's amendment filed 23 June 2008 amends claims 1, 5-7, 9, 14-17, 22, 24, 29,
 31, 33, 36, and 37. Claims 3, 13, 20, 21, 25, 27, 28, and 38 have been cancelled.

Response to Arguments

- 2. Applicant argues, "Edensen teaches that encryption can be used in digital systems, and nothing more of relevance." This argument is not persuasive because Figure 1 of Edensen clearly shows the decryption keys being included with the encrypted multimedia data in a single transmission to the projector. Specifically step 126 of Figure 1 shows the encrypted data and decryption codes (i.e. decryption keys) being combined for transmission, and the projector separating the encrypted data and the decryption codes from the transmission (step 130 of Figure 1).
- Applicant's remaining arguments have been considered but are moot in view of the new ground(s) of rejection.

Claim Rejections - 35 USC § 103

- The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all
 obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 5. The factual inquiries set forth in *Graham v. John Deere Co.*, 383 U.S. 1, 148 USPQ 459 (1966), that are applied for establishing a background for determining obviousness under 35 U.S.C. 103(a) are summarized as follows:

Application/Control Number: 10/666,724 Page 3

Art Unit: 2132

Determining the scope and contents of the prior art.

- Ascertaining the differences between the prior art and the claims at issue.
- Resolving the level of ordinary skill in the pertinent art.
- Considering objective evidence present in the application indicating obviousness or nonobviousness.

6 Claims 1, 2, 7, 8, 31-34, 39 are rejected under 35 U.S.C. 103(a) as being unpatentable over Olson, U.S. Publication No. 2003/0117587, in view of Chang, U.S. Publication No. 2002/0183003, and further in view of Nesic, U.S. Patent No. 6,593,895. Referring to claims 1, 2, Olson discloses a projector (Figure 2, 14) that wirelessly (Figure 2, 32 & [0023]) receives uncompressed data ([0041]) from a portable computer (Figure 4, 56 & 58) for display on a screen (Figure 4, 65), which meets the limitation of a source of multimedia data, means for storing multimedia data, and a displayer of multimedia data mounted in a room in which the source is disposed, the source wirelessly transmitting the multimedia data in an uncompressed form to the displayer on a primary link, the displayer is a projector. Olson does not specify using a frequency band of 60 GHz. Chang discloses using rf/microwave signals in the frequency range of 5-105 GHz with bandwidths of 5-20 GHz that provide a minimum data rate of 5-40 Gbps ([0024] & [0043]), which meets the limitation of a primary link at approximately sixty GigaHertz (60GHz), wherein the primary link has a data rate of at least two Giga bits per second (2.0 Gbps) and the primary link has a bandwidth of approximately 2.5 GHz. It would have been obvious to one of ordinary skill in the art at the time the invention was made to transmit the uncompressed data of Olson using rf/microwave signals of Chang in order to take advantage of the high data rate communications possible using a high frequency band (Nesic: Col. 1, lines 11-32), which would have allowed for faster transmission of the uncompressed data of Olson.

Referring to claim 7, Olson discloses that the computer user can utilize a remote control to the control what the computer transmits to the projector ([0046]), which meets the limitation of control signals are sent between the source and displayer, at least some control signals being useful for establishing a source antenna beam control.

Referring to claim 8, Olson does not specify that the data transmitted is high definition multimedia data. Nesic discloses utilizing microwave and millimeter-wave communication systems at the frequency band of 59-64 GHz for short range high data rate communication for HD video transmissions and TV distribution systems (Col. 1, lines 11-32), which meets the limitation of the data is high definition multimedia data. It would have been obvious to one of ordinary skill in the art at the time the invention was made to transmit high definition uncompressed data in Olson using 60GHz frequency band in order to take advantage of the high data rate communications possible using the 60 GHz frequency band (Nesic: Col. 1, lines 11-32).

Referring to claims 31, 34, Olson discloses a projector (Figure 2, 14) that wirelessly (Figure 2, 32 & [0023]) receives uncompressed data ([0041]) from a portable computer (Figure 4, 56 & 58) for display on a screen (Figure 4, 65), which meets the limitation of a source of multimedia data, a display for the multimedia data, the source wirelessly transmitting the multimedia data in an uncompressed form to the display on a primary link. Olson discloses that the computer user can utilize a remote control to the control what the computer transmits to the projector ([0046]), which meets the limitation of control signals are sent between the source and displayer, at least some control signals being useful for establishing a source antenna beam control. Olson does not specify using a frequency band of 60 GHz. Chang discloses using rf/microwave signals in the frequency range of 5-105 GHz with bandwidths of 5-20 GHz that

Art Unit: 2132

provide a minimum data rate of 5-40 Gbps ([0024] & [0043]), which meets the limitation of a primary link at approximately sixty GigaHertz (60GHz), wherein the primary link has a data rate of at least two and a half Giga bits per second (2.0 Gbps). It would have been obvious to one of ordinary skill in the art at the time the invention was made to transmit the uncompressed data of Olson using rf/microwave signals of Chang in order to take advantage of the high data rate communications possible using a high frequency band (Nesic: Col. 1, lines 11-32), which would have allowed for faster transmission of the uncompressed data of Olson.

Referring to claims 32, 39, Olson does not specify that the data transmitted is high definition multimedia data. Nesic discloses utilizing microwave and millimeter-wave communication systems at the frequency band of 59-64 GHz for short range high data rate communication for HD video transmissions and TV distribution systems (Col. 1, lines 11-32), which meets the limitation of the source of multimedia data is a set-top box like device capable of decoding compressed multimedia content as received from at least one of satellite, cable, terrestrial broadcast, internet streaming, the data is high definition multimedia data. It would have been obvious to one of ordinary skill in the art at the time the invention was made to transmit high definition uncompressed data in Olson using 60GHz frequency band in order to take advantage of the high data rate communications possible using the 60 GHz frequency band (Nesic: Col. 1, lines 11-32).

Referring to claim 33, Olson discloses utilizing LCDs ([0017]), which meets the limitation of the display is a liquid crystal display (LCD).

Claims 4, 35 are rejected under 35 U.S.C. 103(a) as being unpatentable over Olson, U.S.
 Publication No. 2003/0117587, in view of Chang, U.S. Publication No. 2002/0183003, in view

of Nesic, U.S. Patent No. 6,593,895, and further in view of Rao, U.S. Patent No. 5,881,074.

Referring to claims 4, 35, Chang does not specify whether the link is full or half duplex.

However, it would have been obvious to one of ordinary skill in the art at the time the invention was made to implement the link in full-duplex in order to take advantage of the full bandwidth as taught in Rao (Col. 2, lines 9-12), which would benefit the uncompressed data transmissions of Olson.

- 8. Claim 5 is rejected under 35 U.S.C. 103(a) as being unpatentable over Olson, U.S. Publication No. 2003/0117587, in view of Chang, U.S. Publication No. 2002/0183003, in view of Nesic, U.S. Patent No. 6,593,895, and in further view of Edenson, U.S. Patent No. 7,006,995. Referring to claim 5, Olson does not disclose the uncompressed data being encrypted prior to being received by the projector. Edenson discloses a projector receiving encrypted data and a decryption key together (Col. 3, line 61 Col. 4, line 2 & Col. 8, lines 28-31), which meets the limitation of encryption keys are multiplexed with the multimedia data on the primary link. It would have been obvious to one of ordinary skill in the art at the time the invention was made for the uncompressed data of Olson to be encrypted prior to being transmitted to the projector in order to render the data virtually useless if intercepted by an unauthorized party as taught by Edenson (Col. 3, line 66 Col. 4, line 2).
- 9. Claims 6, 24, 29-30, 37 are rejected under 35 U.S.C. 103(a) as being unpatentable over Olson, U.S. Publication No. 2003/0117587, in view of Chang, U.S. Publication No. 2002/0183003, in view of Nesic, U.S. Patent No. 6,593,895, and further in view of Tehranchi, U.S. Patent No. 7,242,772. Referring to claims 6, 37, Olson does not disclose the uncompressed data being encrypted prior to being received by the projector. It would have been obvious to one

Art Unit: 2132

of ordinary skill in the art at the time the invention was made to encrypt the uncompressed data being received by the projector in order to protection from data piracy of digital contents as taught by Tehranchi (Col. 1, line 25 - Col. 2, line 3). Tehranchi discloses that the encrypted data is transmitted over a wireless data transmission channel (Figure 1, 32 & Col. 7, lines 53-66). which could be a microwave wireless channel (Col. 7, line 66), and that the decryption key for the data is transmitted over a separate wireless channel with a lower data rate than the wireless data transmission channel (Figure 1, 34 & Col. 8, lines 7-23), which meets the limitation of the displayer and source further communicate encryption keys on a secondary link having a data rate lower than the data rate of the primary link. It would have been obvious to one of ordinary skill in the art at the time the invention was made to transmit the decryption keys over a separate wireless channel having a data rate lower than the data rate of the wireless channel that transmits the encrypted data in order to provide increased security by preventing anyone who can access the data transmission channel from accessing the encrypted data as well as the information needed for decryption (Tehranchi: Col. 3, lines 25-56). Providing the decryption key over a channel having a lower data rate than the data rate of the wireless channel that transmits the encrypted data is preferable since key transmission channel will only need to transfer data on the order of a few Kbytes as opposed to the data transmission channel, which requires a relatively high bandwidth transmission channel (Tehranchi: Col. 8, lines 17-23).

Referring to claims 24, Olson discloses a projector (Figure 2, 14) that wirelessly (Figure 2, 32 & [0023]) receives uncompressed data ([0041]) from a portable computer (Figure 4, 56 & 58) for display on a screen (Figure 4, 65), which meets the limitation of means for storing multimedia data, means for wirelessly receiving, from a transmitter, the multimedia data in

uncompressed form on a primary link. Olson does not specify using a frequency band of 60 GHz. Chang discloses using rf/microwave signals in the frequency range of 5-105 GHz with bandwidths of 5-20 GHz that provide a minimum data rate of 5-40 Gbps ([0024] & [0043]), which meets the limitation of a primary link at approximately sixty GigaHertz (60GHz), wherein the primary link has a data rate of at least two and two tenths Giga bits per second (2.0 Gbps), such that unless the transmitter is in the same room as the multimedia player the multimedia player substantially cannot receive the multimedia data. It would have been obvious to one of ordinary skill in the art at the time the invention was made to transmit the uncompressed data of Olson using rf/microwave signals of Chang in order to take advantage of the high data rate communications possible using a high frequency band (Nesic: Col. 1, lines 11-32), which would have allowed for faster transmission of the uncompressed data of Olson. Olson does not disclose the uncompressed data being encrypted prior to being received by the projector. It would have been obvious to one of ordinary skill in the art at the time the invention was made to encrypt the uncompressed data being received by the projector in order to protection from data piracy of digital contents as taught by Tehranchi (Col. 1, line 25 - Col. 2, line 3). Tehranchi discloses that the encrypted data is transmitted over a wireless data transmission channel (Figure 1, 32 & Col. 7, lines 53-66), which could be a microwave wireless channel (Col. 7, line 66), and that the decryption key for the data is transmitted over a separate wireless channel with a lower data rate than the wireless data transmission channel (Figure 1, 34 & Col. 8, lines 7-23), which meets the limitation of the displayer and source further communicate encryption keys on a secondary link having a data rate lower than the data rate of the primary link. It would have been obvious to one of ordinary skill in the art at the time the invention was made to transmit the decryption keys

Art Unit: 2132

over a separate wireless channel having a data rate lower than the data rate of the wireless channel that transmits the encrypted data in order to provide increased security by preventing anyone who can access the data transmission channel from accessing the encrypted data as well as the information needed for decryption (Tehranchi: Col. 3, lines 25-56). Providing the decryption key over a channel having a lower data rate than the data rate of the wireless channel that transmits the encrypted data is preferable since key transmission channel will only need to transfer data on the order of a few Kbytes as opposed to the data transmission channel, which requires a relatively high bandwidth transmission channel (Tehranchi: Col. 8, lines 17-23).

Referring to claim 29, Olson discloses that the computer user can utilize a remote control to the control what the computer transmits to the projector ([0046]), which meets the limitation of control signals are sent between the source and displayer, at least some control signals being useful for establishing a source antenna beam control.

Referring to claim 30, Olson does not specify that the data transmitted is high definition multimedia data. Nesic discloses utilizing microwave and millimeter-wave communication systems at the frequency band of 59-64 GHz for short range high data rate communication for HD video transmissions and TV distribution systems (Col. 1, lines 11-32), which meets the limitation of the data is high definition multimedia data. It would have been obvious to one of ordinary skill in the art at the time the invention was made to transmit high definition uncompressed data in Olson using 60GHz frequency band in order to take advantage of the high data rate communications possible using the 60 GHz frequency band (Nesic: Col. 1, lines 11-32).

10. Claims 9-12, 16 are rejected under 35 U.S.C. 103(a) as being unpatentable over Olson, U.S. Publication No. 2003/0117587, in view of Chang, U.S. Publication No. 2002/0183003, in

Art Unit: 2132

view of Nesic, U.S. Patent No. 6,593,895, and further in view of Rao, U.S. Patent No. 5,881,074. Referring to claims 9, 11, 12, Olson discloses a projector (Figure 2, 14) that wirelessly (Figure 2, 32 & [0023]) receives uncompressed data ([0041]) from a portable computer (Figure 4, 56 & 58) for display on a screen (Figure 4, 65), which meets the limitation disposing a multimedia transmitter and a multimedia receiver in a room, establishing a wireless link between the transmitter and receiver, wirelessly transmitting a multimedia signal on a link from the transmitter to the receiver. Olson does not specify using a frequency sufficiently high that the signal substantially cannot be received outside the room. Chang discloses using rf/microwave signals in the frequency range of 5-105 GHz with bandwidths of 5-20 GHz that provide a minimum data rate of 5-40 Gbps ([0024] & [0043]), which meets the limitation of a frequency sufficiently high that the signal substantially cannot be received outside the room, the frequency is approximately sixty GigaHertz (60 GHz), the link has a data rate of at least two Giga bits per second (2.0 Gbps). It would have been obvious to one of ordinary skill in the art at the time the invention was made to transmit the uncompressed data of Olson using rf/microwave signals of Chang in order to take advantage of the high data rate communications possible using a high frequency band (Nesic: Col. 1, lines 11-32), which would have allowed for faster transmission of the uncompressed data of Olson. Nesic does not specify whether the link is full or half duplex. However, it would have been obvious to one of ordinary skill in the art at the time the invention was made to implement the link in full-duplex in order to take advantage of the full bandwidth as taught in Rao (Col. 2, lines 9-12), which would benefit the uncompressed data transmissions of Olson.

Referring to claim 10, Olson does not specify that the data transmitted is high definition multimedia data. Nesic discloses utilizing microwave and millimeter-wave communication systems at the frequency band of 59-64 GHz for short range high data rate communication for HD video transmissions and TV distribution systems (Col. 1, lines 11-32), which meets the limitation of the data is high definition multimedia data. It would have been obvious to one of ordinary skill in the art at the time the invention was made to transmit high definition uncompressed data in Olson using 60GHz frequency band in order to take advantage of the high data rate communications possible using the 60 GHz frequency band (Nesic: Col. 1, lines 11-32).

Referring to claim 16, Olson discloses that the computer user can utilize a remote control to the control what the computer transmits to the projector ([0046]), which meets the limitation of control signals are sent between the source and displayer, at least some control signals being useful for establishing a source antenna beam control.

11. Claim 14 is rejected under 35 U.S.C. 103(a) as being unpatentable over Olson, U.S. Publication No. 2003/0117587, in view of Chang, U.S. Publication No. 2002/0183003, in view of Nesic, U.S. Patent No. 6,593,895, in view of Rao, U.S. Patent No. 5,881,074, and further in view of Edenson, U.S. Patent No. 7,006,995. Referring to claim 14, Olson does not disclose the uncompressed data being encrypted prior to being received by the projector. Edenson discloses a projector receiving encrypted data and a decryption key together (Col. 3, line 61 - Col. 4, line 2 & Col. 8, lines 28-31), which meets the limitation of encryption keys are multiplexed with the multimedia data on the primary link. It would have been obvious to one of ordinary skill in the art at the time the invention was made for the uncompressed data of Olson to be encrypted prior

Art Unit: 2132

to being transmitted to the projector in order to render the data virtually useless if intercepted by an unauthorized party as taught by Edenson (Col. 3, line 66 – Col. 4, line 2).

- Claim 15 is rejected under 35 U.S.C. 103(a) as being unpatentable over Olson, U.S. 12. Publication No. 2003/0117587, in view of Chang, U.S. Publication No. 2002/0183003, in view of Nesic, U.S. Patent No. 6,593,895, in view of Rao, U.S. Patent No. 5,881,074, and further in view of Tehranchi, U.S. Patent No. 7,242,772. Referring to claim 15, Olson does not disclose the uncompressed data being encrypted prior to being received by the projector. It would have been obvious to one of ordinary skill in the art at the time the invention was made to encrypt the uncompressed data being received by the projector in order to protection from data piracy of digital contents as taught by Tehranchi (Col. 1, line 25 - Col. 2, line 3). Tehranchi discloses that the encrypted data is transmitted over a wireless data transmission channel (Figure 1, 32 & Col. 7, lines 53-66), which could be a microwave wireless channel (Col. 7, line 66), and that the decryption key for the data is transmitted over a separate wireless channel with a lower data rate than the wireless data transmission channel (Figure 1, 34 & Col. 8, lines 7-23), which meets the limitation of encryption keys are communicated between the transmitter and receiver on a secondary link. It would have been obvious to one of ordinary skill in the art at the time the invention was made to transmit the decryption keys over a separate wireless channel in order to provide increased security by preventing anyone who can access the data transmission channel from accessing the encrypted data as well as the information needed for decryption (Tehranchi: Col. 3, lines 25-56).
- Claims 17-18, 22-23 are rejected under 35 U.S.C. 103(a) as being unpatentable over
 Olson, U.S. Publication No. 2003/0117587, in view of Nesic, U.S. Patent No. 6,593,895, and in

Art Unit: 2132

further view of Edenson, U.S. Patent No. 7,006,995, Referring to claims 17-18, 23, Olson discloses a projector (Figure 2, 14) that wirelessly (Figure 2, 32 & [0023]) receives uncompressed data ([0041]) from a portable computer (Figure 4, 56 & 58) for display on a screen (Figure 4, 65), which meets the limitation of means for storing multimedia data, means for wirelessly transmitting, to a receiver, the multimedia data in uncompressed form on a link, the multimedia data is transmitted from the computer to the receiver on a primary link. Olson does not specify using a frequency band of 60 GHz. Nesic discloses utilizing microwave and millimeter-wave communication systems at the frequency band of 59-64 GHz for short range high data rate communication for HD video transmissions and TV distribution systems (Col. 1, lines 11-32), which meets the limitation of a link having a frequency of approximately sixty GigaHertz (60 GHz) such that unless the receiver is in the same room as the computer it substantially cannot receive the multimedia data, the multimedia data is high definition (HD) multimedia data. It would have been obvious to one of ordinary skill in the art at the time the invention was made to transmit the uncompressed data of Olson using 60GHz frequency band in order to take advantage of the high data rate communications possible using the 60 GHz frequency band (Nesic: Col. 1, lines 11-32), which would have allowed for faster transmission of the uncompressed data of Olson, Olson does not disclose the uncompressed data being encrypted prior to being received by the projector. Edenson discloses a projector receiving encrypted data and a decryption key together (Col. 3, line 61 - Col. 4, line 2 & Col. 8, lines 28-31), which meets the limitation of encryption keys are multiplexed with the multimedia data on the link. It would have been obvious to one of ordinary skill in the art at the time the invention was made for the uncompressed data of Olson to be encrypted prior to being transmitted to the projector in order to

Page 14

Application/Control Number: 10/666,724

Art Unit: 2132

render the data virtually useless if intercepted by an unauthorized party as taught by Edenson (Col. 3, line 66 – Col. 4, line 2).

Referring to claim 22, Olson discloses that the computer user can utilize a remote control to the control what the computer transmits to the projector ([0046]), which meets the limitation of control signals are sent between the source and displayer, at least some control signals being useful for establishing a source antenna beam control.

- 14. Claim 19 is rejected under 35 U.S.C. 103(a) as being unpatentable over Olson, U.S. Publication No. 2003/0117587, in view of Nesic, U.S. Patent No. 6,593,895, in view of Edenson, U.S. Patent No. 7,006,995, and further in view of Rao, U.S. Patent No. 5,881,074. Referring to claim 19, Nesic does not specify whether the link is full or half duplex. However, it would have been obvious to one of ordinary skill in the art at the time the invention was made to implement the link in full-duplex in order to take advantage of the full bandwidth as taught in Rao (Col. 2, lines 9-12), which would benefit the uncompressed data transmissions of Olson.
- 15. Claim 26 is rejected under 35 U.S.C. 103(a) as being unpatentable over Olson, U.S. Publication No. 2003/0117587, in view of Chang, U.S. Publication No. 2002/0183003, in view of Nesic, U.S. Patent No. 6,593,895, in view of Tehranchi, U.S. Patent No. 7,242,772, and further in view of Rao, U.S. Patent No. 5,881,074. Referring to claim 26, Chang does not specify whether the link is full or half duplex. However, it would have been obvious to one of ordinary skill in the art at the time the invention was made to implement the link in full-duplex in order to take advantage of the full bandwidth as taught in Rao (Col. 2, lines 9-12), which would benefit the uncompressed data transmissions of Olson.

Conclusion

Art Unit: 2132

 Any inquiry concerning this communication or earlier communications from the examiner should be directed to BENJAMIN E. LANIER whose telephone number is (571)272-

3805. The examiner can normally be reached on M-Th 6:00am-4:30pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Gilberto Barron can be reached on 571-272-3799. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Benjamin E Lanier/ Primary Examiner, Art Unit 2132