Classification des phases du modèle d'Ising 2D à l'aide d'outils du ML

Coraline Letouzé

7 janvier 2021

Le modèle d'Ising

Modèle de spins sur réseau carré Composantes selon $Oz: \sigma_i \in \{+1; -1\}$

Sans champ magnétique :

$$H = -J \sum_{\langle i,j \rangle} \sigma_i \sigma_j$$

J=+1 : ferromagnétisme J=-1 : antiferromagnétisme

Transition de phase : $T_c = 2.27 \ J/k_B$ Résolution exacte : Onsager, 1944

Le modèle d'Ising

0000

Conditions aux bords périodiques

- \rightarrow Symétries :
 - rotations de $\pi/2$
 - parité selon les axes Ox, Oy
 - translations sur le réseau
 - inversion de spin

Les données ferromagnétiques

P. Mehta et al. A high-bias, low-variance introduction to machine learning for physicists. Physics reports, 810, 2019

Données: https://physics.bu.edu/pankajm/ML-Review-Datasets 10000 échantillons (40 \times 40) par T = 0.25, 0.5, ...3.75, 4.0

Ferromagnetic Ising model

T = 0.50

Les données anti-ferromagnétiques

Simulations Monte-Carlo (algorithme de Metropolis) mêmes températures, même taille

20 échantillons par T

Le modèle d'Ising 2D

+ data augmentation : (rotation, parités), inversion de spin

Anti-ferromagnetic Ising model

T=2.25

Analyse en composantes principales (PCA)

Changement de base → VP de la matrice de covariance Valeurs propres

≪ Variance expliquée Réduction de dimensionnalité : de 1600 éléments à 1, 2 ou 3.

Ferromagnétique		
composante	% variance	
1	52.8	
2	0.3	
3	0.2	
Anti-ferromagnétique		
1	35.1	
2	3.8	
3	3.7	

CNN

GaussianScatterPCA.svg. Nicoguaro, Wikipedia, 2016. Licence CC BY 4.0.

Résultats de la PCA

Le modèle d'Ising 2D

Weights of the first component

poids égaux : magnétisation paramètres d'ordre des transitions

poids en damier : magnétisation alternée

PCA et régression logistique

Régression logistique :

$$f_{\omega,i}(x) = \frac{1}{1 + e^{i + \omega x}}$$

Résultats : 11.01 -14.29 ω_1 -0.88 ω_2 0.24 ω_3 Val set 100.0 % 96.3 % Test set

$$|PC1|_C \approx 0.77 \rightarrow \langle T \rangle = 2.29$$

Application aux données antiferromagnétiques

Précision avec 3 PC (40% de variance)

 Validation
 Test

 95.83 %
 91.67 %

Réseau de neurones convolutif (CNN)

Un réseau de neurones artificiels pour l'analyse d'images

CNN 000

Aphex34. Typical CNN, Wikipedia, 2015. Licence CC BY-SA 4.0

Application aux données ferromagnétiques

2 epochs pour apprendre les données d'entraînement

Erreurs à T=2.25 seulement

Optimisation?

Prédiction de température

Architecture : [8, 16, 16]

Loss: MSE

Output: activation 'linear'

Epochs: 3

	MSE	MAE
Val	0.19	0.37
Test	0.17	0.35

 \rightarrow une classe d'écart

CNN oo•

Conclusion

- PCA:
 - paramètre d'ordre
 - ► + RégLog (classification) : très efficace (96%)
 - + DNN (prédiction de T) : médiocre?
- ► CNN:
 - ightharpoonup (classification) : Moyen (pprox 85%)
 - (prédiction de T) : MAE ≈ 0.4