following loads acting perpendicular to the plane of the wall:

- 1. The wind load specified in Chapter 26.
- 2. The earthquake load specified in Chapter 12.
- 3. 10 psf (0.48 kN/m^2) .

The loading at which breakaway walls are intended to collapse shall not exceed 20 psf (0.96 kN/m²) unless the design meets the following conditions:

- Breakaway wall collapse is designed to result from a flood load less than that which occurs during the base flood.
- 2. The supporting foundation and the elevated portion of the building shall be designed against collapse, permanent lateral displacement, and other structural damage due to the effects of flood loads in combination with other loads as specified in Chapter 2.

5.4 LOADS DURING FLOODING

5.4.1 Load Basis

In flood hazard areas, the structural design shall be based on the design flood.

5.4.2 Hydrostatic Loads

Hydrostatic loads caused by a depth of water to the level of the DFE shall be applied over all surfaces involved, both above and below ground level, except that for surfaces exposed to free water, the design depth shall be increased by 1 ft (0.30 m).

Reduced uplift and lateral loads on surfaces of enclosed spaces below the DFE shall apply only if provision is made for entry and exit of floodwater.

5.4.3 Hydrodynamic Loads

Dynamic effects of moving water shall be determined by a detailed analysis utilizing basic concepts of fluid mechanics.

EXCEPTION: Where water velocities do not exceed 10 ft/s (3.05 m/s), dynamic effects of moving water shall be permitted to be converted into equivalent hydrostatic loads by increasing the DFE for design purposes by an equivalent surcharge depth, d_h , on the headwater side and above the ground level only, equal to

$$d_h = \frac{aV^2}{2g} \tag{5.4-1}$$

where

V = average velocity of water in ft/s (m/s) g = acceleration due to gravity, 32.2 ft/s² (9.81 m/s²) a = coefficient of drag or shape factor (not less than 1.25)

The equivalent surcharge depth shall be added to the DFE design depth and the resultant hydrostatic pressures applied to, and uniformly distributed across, the vertical projected area of the building or structure that is perpendicular to the flow. Surfaces parallel to the flow or surfaces wetted by the tail water shall be subject to the hydrostatic pressures for depths to the DFE only.

5.4.4 Wave Loads

Wave loads shall be determined by one of the following three methods: (1) by using the analytical procedures outlined in this section, (2) by more advanced numerical modeling procedures, or (3) by laboratory test procedures (physical modeling).

Wave loads are those loads that result from water waves propagating over the water surface and striking a building or other structure. Design and construction of buildings and other structures subject to wave loads shall account for the following loads: waves breaking on any portion of the building or structure; uplift forces caused by shoaling waves beneath a building or structure, or portion thereof; wave runup striking any portion of the building or structure; wave-induced drag and inertia forces; and wave-induced scour at the base of a building or structure, or its foundation. Wave loads shall be included for both V-Zones and A-Zones. In V-Zones, waves are 3 ft (0.91 m) high, or higher; in coastal floodplains landward of the V-Zone, waves are less than 3 ft high (0.91 m).

Nonbreaking and broken wave loads shall be calculated using the procedures described in Sections 5.4.2 and 5.4.3 that show how to calculate hydrostatic and hydrodynamic loads.

Breaking wave loads shall be calculated using the procedures described in Sections 5.4.4.1 through 5.4.4.4. Breaking wave heights used in the procedures described in Sections 5.4.4.1 through 5.4.4.4 shall be calculated for V-Zones and Coastal A-Zones using Eqs. 5.4-2 and 5.4-3.

$$H_b = 0.78d_s (5.4-2)$$

where

 H_b = breaking wave height in ft (m) d_s = local still water depth in ft (m)