# Conceitos de Stress e Strain Longitudinais Prof. Dr. Cássio Sanguini Sergio

Departamento de Física, Universidade Federal de Roraima

Boa Vista, 11 de novembro de 2019

#### Conteúdo

| Notas iniciais |                                        | 1 |
|----------------|----------------------------------------|---|
| 1              | A definição de stress longitudinal     | 2 |
| 2              | A definição de strain longitudinal     | 2 |
| 3              | O diagrama stress-strain               | 2 |
| 4              | A tradução dos termos para o português | 4 |

#### Notas iniciais

Nota 1: O início do artigo não trata da tradução dos termos para o português, mas, sim, trata de explicar os significados dos conceitos utilizando os termos em inglês.

Nota 2: A tradução ficará para a parte final do artigo.

#### 1 A definição de stress longitudinal

Um corpo de prova é tracionado conforme a Figura 1. É tracionado por forças que atuam ao longo do eixo do corpo. Uma força de intensidade F age normal à seção transversal do corpo. Seção transversal de área A. Nesse ensaio de tração, a força que atua na seção transversal gera um stress no corpo de prova. Stress  $\sigma$  determinado pela relação:

$$\sigma = \frac{F}{A}.\tag{1}$$

O stress (1) é chamado de stress normal, visto que é decorrente de uma força normal. Se pensar que a força também é uma força longitudinal, pode-se dizer que (1) é um stress longitudinal.

#### 2 A definição de strain longitudinal

Sem stress, o corpo de prova tem comprimento  $L_0$ . O stress altera o comprimento do corpo. Modifica pelo valor  $\Delta L$ . Então, o stress causa um strain no corpo de prova. Strain  $\epsilon$  determinado pela relação:

$$\epsilon = \frac{\Delta L}{L_0}.\tag{2}$$

O strain (2) é chamado de strain longitudinal, pelo fato de ser causado por um stress longitudinal.

### 3 O diagrama stress-strain

Um corpo de prova submetido a um stress longitudinal  $\sigma$  sofre um strain longitudinal  $\epsilon$ . A força que atua no corpo modifica seu comprimento (modifica o valor de  $\epsilon$ ), ademais, a mesma força também pode modificar a área da sua seção transversal (modificar o valor de  $\sigma$ ). Uma máquina de ensaio stress-strain é projetada para fazer a medição da variação do comprimento longitudinal e da área da seção

transversal, em função da força aplicada no corpo de prova. O diagrama stressstrain  $(\sigma \times \epsilon)$  é construído graficando os valores do stress  $\sigma$  (eixo y) em função dos valores do strain  $\epsilon$  (eixo x).

A região inicial do diagrama stress-strain obedece a lei de Hook, por isso é chamada de região elástica:

$$F = k\Delta L. \tag{3}$$



Figura 1: Um corpo de prova em um ensaio de tração.

Dividindo (3) pela área de seção transversal, mostra-se que o stress  $\sigma$  é diretamente proporcional ao strain  $\epsilon$ :

$$\sigma = E\epsilon. \tag{4}$$

A constante E é chamada de módulo de elasticidade ou módulo de Young. Visto que  $\epsilon$  é adimensional, E possui a mesma unidade de  $\sigma$ : Pascal (Pa), sendo 1Pa =  $1\text{N/m}^2$ .

A Figura 2 mostra a região elástica do diagrama stress-strain referente a uma liga de alumínio utilizada principalmente em aplicações aeroespaciais e de defesa (Pujari Srinivasa Rao, 2018). O módulo de elasticidade é igual a 75 GPa (Hibbeler, 2011). Como se vê, o stress  $\sigma=450$  MPa causa o strain  $\epsilon=0,006$  mm/mm: quer dizer, causa alteração de 0,006 mm, a cada 1 mm de liga sem stress, segundo a definição (2).



Figura 2: Diagrama stress-strain. Zona elástica da liga de alumínio  $E=75~\mathrm{GPa}$  (Hibbeler, 2011).

Tabela 1: PREFIXOS DAS UNIDADES

| Nome | Símbolo   | Valor    |
|------|-----------|----------|
| kilo | k         | $10^{3}$ |
| mega | ${\bf M}$ | $10^{6}$ |
| giga | G         | $10^{9}$ |
|      |           |          |

## 4 A tradução dos termos para o português

Stress tem a mesma unidade da tensão mecânica:  $N/m^2$ . Strain relaciona-se com alteração de comprimento: o corpo de prova é tracionado ou comprimido, de maneira geral, é deformado. Por isso, Conceitos de Stress e Strain Longitudinais é traduzido como:

Conceitos de Tensão e Deformação Longitudinais

#### Referências

Hibbeler, R. (2011). Mechanics of Materials. Pearson, ISBN 978-0136022305, 8th edition. \$4\$

Pujari Srinivasa Rao, Koona Ramji, B. S. (2018). Surface integrity of wire EDMed aluminum alloy: A comprehensive experimental investigation. Journal of King Saud University - Engineering Sciences, Volume 30 (4), Pages 368-376.