Muografía de Grandes Objetos

L. A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Colombia

17 de marzo de 2021

1. Propagación de muones en roca

1.1. El concepto

En este problema abordaremos es la opacidad de la roca estándar al paso de los muones. Estas partículas elementales (que toman su nombre de la letra griega μ) es una partícula elemental masiva que pertenece a la segunda generación de leptones. Su espín es 1/2. Posee carga eléctrica negativa, como el electrón, aunque su masa es 200 veces mayor que la del electrón, y su vida es algo más larga que otras partículas inestables¹. La mayor parte de los muones que llegan a la superficie terrestre provienen de interacciones de los rayos cósmicos y los núcleos de los átomos de la atmósfera². Como son partículas de gran masa, tienen un alto poder de penetración y la pérdida de energía a su paso por distintos materiales puede modelarse mediante la siguiente ecuación diferencial

$$\frac{\mathrm{d}E_{\mu}}{\mathrm{d}X} = -a(E_{\mu}) - b(E_{\mu})E_{\mu} \tag{1}$$

donde E_{μ} es la energía del muón, X la distancia de penetración³, los coeficientes $a(E_{\mu})$ y $b(E_{\mu})$ vienen tabulados dependiendo de la energía⁴. La pérdida de energía que refleja $a(E_{\mu})$ se relaciona con la ionización, mientras que $b(E_{\mu})$, refleja las pérdidas por procesos radiativos.

¹Para más detalles sobre los muones pueden consultar https://en.wikipedia.org/wiki/Muon

²Detalles sobre rayos cósmicos y muones atmosféricos pueden consultarlo en http://pdg.lbl.gov/2015/reviews/rpp2015-rev-cosmic-rays.pdf

³Para consultar el poder de frenado de los materiales para los muones en distintos materiales pueden ver http://pdg.lbl.gov/2016/AtomicNuclearProperties/adndt.pdf

⁴Los valores originales publicados en el Particle Data Group se encuentran en http://pdg.lbl.gov/2016/AtomicNuclearProperties/HTML/standard_rock.html. Sin embargo, para facilitar la lectura hemos, construido una tabla específica para esos coeficientes que la encuentran en https://github.com/nunezluis/MisCursos/blob/main/ClaseUSal/MuonStoppingPower.csv

El paso de muones a través de materiales ha ayudado a inferir variaciones de densidad de variados objetos (desde pirámides hasta volcanes, pasando por containers para transporte de cargas⁵).

1.2. Un modelo de juguete 2D

Aquí supondremos el caso 2D, vale decir un triángulo que simulará un volcán 2D de base 1000m y altura 500m, compuesto de roca estándar. Los muones arribarán a un punto de observación situado a una distancia de 800m de la base del volcán 2D y con una energía que van desde 100GeV.

- 1. Suponga a y b constantes, integre la ecuación (1), despeje la energía de incidencia (antes de atravesar el material) y escríbala en términos de la energía crítica $\epsilon = a/b$, de la energía de salida y de las dimensiones características del material atravesado.
- 2. Supongamos ahora que $a = a(E_{\mu})$ y $b = b(E_{\mu})$ dependen de la energía y por lo tanto $E_{\mu} = E_{\mu}(X)$ no puede ser obtenido analíticamente.
 - a) Entonces integramos numéricamente, para ello desarrolle e implemente un algoritmo que suponga que en un $\Delta X \ll 1$ a y b constantes e integre para obtener la energía al final del intervalo ΔX

$$X_{i+1} = \int_{E_{\mu(i)}}^{E_{\mu(i+1)}} \frac{\mathrm{d}\tilde{E}_{\mu}}{a(E_{\mu(i)}) + b(E_{\mu(i)})\tilde{E}_{\mu}} \iff E_{\mu(i+1)} = \left(E_{\mu(i)} + \epsilon(E_{\mu(i)})\right) e^{-b(E_{\mu(i)}) X_i} - \epsilon(E_{\mu(i)})$$
(2)

con ese valor de la energía final, se buscan en la tabla los valores para $a(E_{\mu(i)})$ y $b(E_{\mu(i)})$ y se vuelve a integrar. Repitiendo ese proceso hasta que el muón haya atravesado todo el material. Ahora la energía crítica es $\epsilon(E_{\mu(i)}) = a(E_{\mu(i)})/b(E_{\mu(i)})$. Nos interesa conocer la energía de todos los muones que atraviesen la estructura y que sean captados en el punto de observación.

b) Quizá se pueda implementar un segundo enfoque si aproximamos la integral por una cuadratura de Gauss Legendre

$$X_t = \int_{E_{\mu \, in}}^{E_{\mu \, out}} \frac{\mathrm{d}\tilde{E}_{\mu}}{a(\tilde{E}_{\mu}) + b(\tilde{E}_{\mu})\tilde{E}_{\mu}} \Rightarrow \int_a^b \mathrm{d}x \, f(x) \approx \sum_{k=1}^N c_k f(x_k)$$

con $f(x_k)$ la función evaluada en los cero de los polinomios de Legendre y los c_k los pesos correspondientes al número de ceros seleccionados.

 $^{^5}$ http://iopscience.iop.org/article/10.1088/2058-7058/27/12/35/pdf

⁶https://www.dropbox.com/s/qm6okf3vxm44u34/MuonStoppingPower.txt?dl=0

Para esa energía de los muones incidentes (100GeV),

- a) grafique, para ambos métodos, la energía de los muones emergentes de la estructura $E_{\mu \ out}(\theta)$, con $0 \le \theta \le \pi/2$, donde θ es el ángulo cenital, medido desde la vertical hasta el suelo.
- b) Compare ambos métodos y determine el número de ceros de los polinomios de Legendre para el segundo método sea comparable con la selección de un paso de integración de $\Delta X \approx 1cm$ en la integral de la ecuación (2) y produzca un error medio de $\langle E_{\mu \ out \ inte}(\theta) E_{\mu \ out \ cuad}(\theta) \rangle \approx 10^{-6}$
- c) Compare los tiempos de ejecución (máquina = CPU y usuario = wall clock) con ambos métodos