Primitives et intégrales des fonctions continues

1. Compléments sur les primitives

Attention: la notation $F(x) = \int f(x) dx$ est abusive. la lettre x n'y est pas muette, et cette notation n'est utilisé que pour les calculs de primitives, mais en aucun cas dans des raisonnements mathématiques.

1.1. Intégration par parties

a) **Principe**: si u et v sont des fonction de classe C^1 sur I, alors

$$\int u'(x)v(x)dx = u(x)v(x) - \int u(x)v'(x)dx$$

Ce résultat permet de remplacer le calcul de $\int u'v$ par celui de $\int uv'$ (quand il est plus simple)

b) Exemples:

Exemple 1:
$$F\left(t\right)=\int te^{2t}dt \text{ sur } \mathbb{R}. \quad \text{On pose } \forall t\in\mathbb{R}, \left\{ \begin{array}{l} u'(t)=e^{2t} \\ v(t)=t \end{array} \right.$$

$$\textit{Exemple 2:} \ G\left(t\right) = \int t \ln t dt \ \text{sur} \]0, +\infty[\ . \quad \text{On pose} \ \forall t>0, \left\{ \begin{array}{l} u'(t) = t \\ v(t) = \ln t \end{array} \right.$$

Exemple 3:
$$H(t) = \int \arctan t dt \operatorname{sur} \mathbb{R}$$
.

c) <u>Application</u>: primitives de la forme $\int P\left(x\right)e^{\alpha x}dx$, avec P polynôme et $\alpha\in\mathbb{C}^{*}$

Ces primitives sont de la forme $Q\left(x\right)e^{\alpha x}+C$, avec $C\in\mathbb{C}$ et Q polynôme de même degré que P

1.2. Changement de variable

a) Sens direct: (facile): soit f une fonction continue sur J, F une primitive de f sur J, et φ une fonction de classe C^1 sur I à valeurs dans J. Alors $F(\varphi(x))$ est une primitive de $\varphi'(x) \times f(\varphi(x))$ sur I, soit

$$\int f(\varphi(x))\varphi'(x) dx = F(\varphi(x)) + C$$

Formellement, on écrit, en posant $y=\varphi\left(x\right)$: $\dfrac{dy}{dx}=\varphi'\left(x\right)$ soit $\boxed{"dy=\varphi'\left(x\right)dx"}$. Alors

$$\int f(\varphi(x)) \varphi'(x) dx = \int f(y) dy = F(y) + C = F(\varphi(x)) + C$$

1

Exemple 1: $F(t) = \int \sin^3 t \cos^2 t dt$: on pose $x = \cos t$

Exemple 2:
$$G(x) = \int (1 + \ln x)^2 \frac{dx}{x}$$

Exemple 3:
$$H\left(x\right)=\int \frac{x^{4}dx}{x^{10}+x^{5}+1}$$
: on pose $t=x^{5}$

b) Sens indirect : supposons $\varphi: J \to I$ bijective et de classe C^1 sur J.

On veut calculer $F\left(x\right)=\int f\left(x\right)dx$ avec le changement de variable $\left\{ \begin{array}{l} x=\varphi\left(t\right)\\ t=\varphi^{-1}\left(x\right)\\ "dx=\varphi'\left(t\right)dt" \end{array} \right. .$ Alors

$$F(x) = \int f(x) dx = \int f(\varphi(t)) \varphi'(t) dt$$

Si cette nouvelle primitive se calcule, alors on trouve

$$\int f(x) dx = \int f(\varphi(t)) \varphi'(t) dt = G(t) + C = G(\varphi^{-1}(x)) + C$$

Exemple 1: $\int \frac{dx}{\operatorname{ch} x} \operatorname{sur} \mathbb{R}$: on pose $t = e^x$

Exemple 2: $\int \frac{d\theta}{\sin \theta} \sup]0, \pi[: \text{ on pose } t = \tan \frac{\theta}{2}$

Exemple 3 : changements de variable affines : $\int \frac{dx}{x^2+a^2}$ puis $\int \frac{dx}{x^2+2x+5}$

1.3. Primitives de la forme $\int \frac{mx+p}{ax^2+bx+c}dx$

a) $\underline{1^{\rm er} \ {\rm cas}}: \Delta = b^2 - 4ac > 0$ Alors le trinôme $ax^2 + bx + c$ admet deux racines réelles λ et μ . On trouve alors deux réels α et β tels que

$$\forall x \notin \{\lambda, \mu\}, \ \frac{mx + p}{ax^2 + bx + c} = \frac{\alpha}{x - \lambda} + \frac{\beta}{x - \mu}$$

Alors sur tout intervalle ne contenant pas λ et μ , $\int \frac{mx+p}{ax^2+bx+c}dx = \alpha \ln|x-\lambda| + \beta \ln|x-\mu| + C$

Exemple:
$$F(x) = \int \frac{dx}{x^2 - 5x + 6} \operatorname{sur} \mathbb{R}$$

b) $\underline{\mathbf{2^{\mathrm{ème}} \, cas}} : \Delta = b^2 - 4ac < 0.F$ est alors définie sur \mathbb{R} .

On fait apparaître la dérivée du dénominateur au numérateur, et on trouve α et β tels que

$$\frac{mx+p}{ax^2+bx+c}dx = \alpha \; \frac{2ax+b}{ax^2+bx+c} + \beta \; \frac{1}{ax^2+bx+c}$$

- On a $\int \frac{2ax+b}{ax^2+bx+c} dx = \ln|ax^2+bx+c| + C$
- Pour $\int \frac{dx}{ax^2 + bx + c}$, on utilise la forme canonique du trinôme, on a deux réels λ et μ tels que

$$\int \frac{dx}{ax^2 + bx + c} = \frac{1}{a} \int \frac{dx}{(x - \lambda)^2 + \mu} = \frac{1}{a\sqrt{\mu}} \arctan \frac{x - \lambda}{\sqrt{\mu}} + C$$

Exemple: $F(x) = \int \frac{x+1}{x^2+x+1} dx \operatorname{sur} \mathbb{R}$

c) <u>Application</u>: calcul de $\int \frac{dx}{x-(a+ib)}$, où $(a,b) \in \mathbb{R}^2$, $b \neq 0$

2. Intégrale sur un segment

2.1. Définition

Soit f une fonction continue sur [a, b] (a < b), et F une primitive quelconque de f sur [a, b].

a) Lemme et définition : le réel $\left[F(t)\right]_a^b = F(b) - F(a)$ ne dépend pas de la primitive F choisie.

On note alors

$$\int_{a}^{b} f(t)dt = \left[F(t)\right]_{a}^{b} = F(b) - F(a) \in \mathbb{R}$$

Cas particulier: $\int_a^b dt = b - a$ $\heartsuit \heartsuit \heartsuit$

b) Remarque importante: dans l'écriture $\int_a^b f(t)dt$, la lettre t est muette, puisqu'elle n'apparait pas dans le résultat (F(b) - F(a)). On peut donc noter indifféremment:

$$I = \int_a^b f(t)dt = \int_a^b f(u)du = \int_a^b f(\xi)d\xi = \int_a^b f(\xi)d\xi$$

En revanche, la notation (impropre) $F(x) = \int f(x)dx$ désigne une **fonction de** x (fonction primitive de f).

c) Interprétation géométrique : on montre que si a < b et $f \geqslant 0$ sur [a,b], alors $\int_a^b f(t)dt$ est la surface du domaine défini par $\left\{ \begin{array}{l} a \leqslant x \leqslant b \\ 0 \leqslant y \leqslant f(x) \end{array} \right.$ en unité d'aire, surface du rectangle défini par le repère orthogonal.

Remarque: si $f \leqslant g$ sur [a,b], alors $\int_a^b (g-f)$ est la surface du domaine défini par $\begin{cases} a \leqslant x \leqslant b \\ f(x) \leqslant y \leqslant g(x) \end{cases}$

2.2. Propriétés élémentaires

a) <u>Linéarité</u>: si f et g sont continues sur I, $(a,b) \in I^2$, et λ , μ deux réels, alors

$$\int_{a}^{b} (\lambda f + \mu g) = \lambda \int_{a}^{b} f + \mu \int_{a}^{b} g$$

 $\textit{Remarque 1:} \ \forall \lambda \in \mathbb{R}, \ \left[f(t) + \overline{g\left(t\right)} \right]_a^b = \left[f(t) \right]_a^b + \left[g(t) \right]_a^b \quad \text{et} \quad \left[\lambda f(t) \right]_a^b = \lambda \left[f(t) \right]_a^b$

Remarque 2: $\forall M \in \mathbb{R}, \ \int_a^b M dt = M(b-a)$ (aire d'un rectangle!) $\heartsuit \heartsuit \heartsuit$

Remarque 3: si $f \in C^1\left([a,b]\right)$, alors $\int_a^b f'(t)dt = f(b) - f(a)$

b) Relation de Chasles : $\forall c \in I , \int_a^b f = \int_a^c f + \int_c^b f$

Remarque 1: $\int_{b}^{a} f = -\int_{a}^{b} f$ et $\int_{a}^{a} f = 0$

Remarque 2: on écrit souvent : $\int_a^b f = \int_{x_0}^b f - \int_{x_0}^a f$

Intégration par parties : si u et v sont de classe C^1 sur [a, b], alors

$$\int_{a}^{b} u'v = \left[uv\right]_{a}^{b} - \int_{a}^{b} uv'$$

ou

$$\int_a^b u'(t)v(t)dt = \left[u(t)v(t)\right]_a^b - \int_a^b u(t)v'(t)dt$$

$$\operatorname{arcsin} tdt.$$

Exemple 1: $I = \int_{0}^{1/2} \arcsin t dt$.

Exemple 2: soit $u_n = \int_0^1 x^n \sqrt{1-x} \ dx$. Montrer que $\forall n \geqslant 1, \ u_n = \frac{2n}{3} (u_{n-1} - u_n)$.

Calculer u_0 et u_1 .

2.3. Intégration des fonctions complexes

Soit $f = f_1 + if_2 : I \to \mathbb{C}$ continue sur I (i.e. f_1 et f_2 réceles continues sur I): on pose

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} f_{1}(t) dt + i \int_{a}^{b} f_{2}(t) dt$$

Autrement dit

$$\operatorname{Re} \int_{a}^{b} f(t) dt = \int_{a}^{b} \operatorname{Re} f(t) dt \quad \text{et} \quad \operatorname{Im} \int_{a}^{b} f(t) dt = \int_{a}^{b} \operatorname{Im} f(t) dt$$

On montre alors que la relation de Chasles et la linéarité restent vraie pour les fonctions complexes :

$$\forall \left(f,g\right) \text{ continues complexes, } \forall \left(\lambda,\mu\right) \in \boxed{\mathbb{C}^{2}}, \int_{a}^{b} \left(\lambda f\left(t\right) + \mu g\left(t\right)\right) dt = \lambda \int_{a}^{b} f\left(t\right) dt + \mu \int_{a}^{b} g\left(t\right) dt$$

Exemple: calcul de $I = \int_{1}^{\pi} e^{t} \cos 3t \, dt$

2.4. Changement de variable

Principe: soit f continue sur l'intervalle I, et φ de classe C^1 sur $[\alpha, \beta]$ à valeurs dans I. Alors:

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt = \int_{\alpha}^{\beta} f(\varphi(u)) \varphi'(u) du$$

 $\left[\int_{\varphi(\alpha)}^{\varphi(\beta)} f\left(t\right) dt = \int_{\alpha}^{\beta} f\left(\varphi\left(u\right)\right) \varphi'\left(u\right) du\right]$ **Remarque:** on peut écrire $\int_{\varphi(\alpha)}^{\varphi(\beta)} f\left(t\right) dt = \int_{\alpha}^{\beta} f\left(\varphi\left(t\right)\right) \varphi'\left(t\right) dt \text{ puisque } t \text{ et } u \text{ sont muettes.}$

C'est ingérable dans la pratique. Le changement de variable dans les intégrales est purement formel.

Exemples: dans la pratique, on pose

$$t=arphi\left(u
ight)$$
 : alors $\dfrac{dt}{du}=arphi'\left(u
ight)$: donc formellement " $dt=arphi'\left(u
ight)du$ "

Lorsque de plus φ est bijective on pose $\begin{cases} t = \varphi(u) \\ u = \varphi^{-1}(t) \\ dt = \varphi'(u) du \end{cases}$: alors

$$\int_{a}^{b} f(t) dt = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} f(\varphi(u)) \varphi'(u) du$$

Attention: ne pas oublier de changer les bornes

Exemple 1: calcul de
$$I = \int_{-1}^{1} \sqrt{1-t^2} dt$$
 en posant $t = \sin \theta$ puis $J = \int_{-R}^{R} \sqrt{R^2-t^2} dt$

Exemple 2: montrer, en posant
$$t=\frac{1}{x}$$
, que $\forall a>0,\; \int_{1/a}^a \frac{\ln t}{1+t^2}\,dt=0.$

c) **Applications**: soit f une fonction continue sur \mathbb{R} .

(i) Parité: si
$$f$$
 est **paire**, alors $\forall a > 0$,
$$\boxed{\int_{-a}^{a} f(t) dt = 2 \int_{0}^{a} f(t) dt}$$
 si f est **impaire**, alors $\forall a > 0$,
$$\boxed{\int_{-a}^{a} f(t) dt = 0}$$

(ii) Périodicité: si
$$f$$
 est T -**périodique**, alors $\forall (a,b) \in \mathbb{R}^2$, $\int_{a+T}^{b+T} f(t) dt = \int_a^b f(t) dt$ $\forall a \in \mathbb{R}$, $\int_a^{a+T} f(t) dt = \int_0^T f(t) dt$

Exemple : étudier la parité de
$$f: x \to \int_x^{2x} e^{-t^2} dt$$

2.5. Lien entre primitives et intégrales :

a) Expression des primitives : soit $f: I \to \mathbb{R}$ continue, et $a \in I$.

On peut considérer la fonction F définie pour tout $x \in I$ par $F(x) = \int_a^{\boxed{x}} f(t) dt$

Alors

$$F: x \to \int_a^x f(t)dt$$
 est LA primitive de f sur I qui s'annule en a .

Exemple 1:
$$\forall x \in]0, +\infty[$$
, $\ln x = \int_1^x \frac{dt}{t}$

Exemple 2: si
$$F\left(x\right)=\int_{0}^{x}\frac{dt}{\sqrt[3]{1+t^{4}}}$$
, alors F est dérivable sur \mathbb{R} et $\forall x\in\mathbb{R},\ F'\left(x\right)=\frac{1}{\sqrt[3]{1+x^{4}}}$

Remarque 1: cela explique la notation des primitives $F(x) = \int f(x)dx$: la notation rigoureuse est $F(x) = \int_a^x f(t)dt$, où a est un réel quelconque de I.

Remarque 2: la primitive qui vaut b en a a pour expression : $\forall x \in I, \ F(x) =$

b) Fonctions des bornes : soient f continue sur I et u et v dérivables sur J à valeurs dans I.

On considère la fonction

$$\Phi: x \to \int_{u(x)}^{v(x)} f(t)dt$$

Montrer que Φ est dérivable sur J et calculer Φ' .

Exemple: $\forall x > 0$, on note $F(x) = \int_{1}^{\sqrt{x}} e^{-t^2} dt$. Montrer que F est dérivable sur $]0, +\infty[$, et calculer F'

2.6. Intégrales et inégalités

On supposera f et g continues sur [a, b].

- a) Positivité et croissance :

 - (i) Positivité: $si\ f\ vérifie\ \forall t\in[a,b]\ , \quad f(t)\geqslant 0, \ alors \quad \int_a^b f(t)dt\geqslant 0$ (ii) Croissance: $si\ \forall t\in[a,b]\ , \quad f(t)\leqslant g(t), \ alors \quad \int_a^b f(t)dt\leqslant \int_a^b g(t)dt$
- **b)** <u>Inégalité de la moyenne</u>: si $\forall t \in [a,b], \ m \leqslant f(t) \leqslant M, \ alors \ m(b-a) \leqslant \int_a^b f(t)dt \leqslant M(b-a)$

On a aussi l'autre conséquence très utilisée :

$$\boxed{ \text{si } g \geqslant 0 \text{ sur } [a,b] \text{, et } \forall t \in [a,b] \text{, } 0 \leqslant f(t) \leqslant M \text{, alors } \int_a^b f(t)g(t)dt \leqslant M \int_a^b g(t)dt }$$

- $\underline{ \text{G\'en\'eralisation de l'in\'egalit\'e triangulaire} : \left| \left| \int_a^b f(t) dt \right| \leqslant \int_a^b |f(t)| \, dt$
 - **Remarque 1:** en particulier, si $|f| \leq M$, alors $\left| \int_a^b f(t) g(t) dt \right| \leq \int_a^b |f(t)| |g(t)| dt \leq M \int_a^b |g(t)| dt$
 - **Remarque 2:** si a et b sont quelconques, on a $\left| \int_a^b f(t) dt \right| \le \left| \int_a^b |f(t)| dt \right|$

Remarque 3 : inégalité vraie pour f complexe (en TD).

d) Nullité: si f est positive continue sur [a,b] et $\int_a^b f = 0$ alors f est nulle sur [a,b]

Dont un énoncé équivalent est

si
$$f$$
 est positive continue sur $[a,b]$ et n'est pas identiquement nulle, alors $\int_a^b f > 0$

- **Exemples:**
 - **Exemple 1:** soit $I_n = \int_0^1 \frac{t^n}{\sqrt{1+t}} dt$. Montrer que (I_n) converge vers 0.
 - **Exemple 2:** montrer que $f: x \to \int_{1}^{x} \frac{\sin t}{t^2} dt$ est bornée sur $[1+\infty[$
 - **Exemple 3:** inégalité des accroissements finis : montrer que $\forall (x,y) \in \mathbb{R}^2, \ |\sin y \sin x| \leq |y x|$

6