

138

Claim 139: The isolated nucleic acid molecule of claim 110, comprising SEQ ID NO: 8.

139

Claim 140: The isolated nucleic acid molecule of claim 110, consisting of SEQ ID NO: 7.

140

Claim 141: The isolated nucleic acid molecule of claim 110, consisting of SEQ ID NO: 6.

141

Claim 142: The isolated nucleic acid molecule of claim 110, consisting of SEQ ID NO: 7.

142

Claim 143: The isolated nucleic acid molecule of claim 110, consisting of SEQ ID NO: 8.

REMARKS

The preceding amendment is presented in accordance with 37 CFR § 1.121(h). Claims 110-143 will be pending.

The amendment address points 3 and 10 of the office action. The objections to claims 108 and 109 are obviated via the sequence listing. Applicants note that the sequence listing objection was not sent with the June 5 office action, but was telefaxed on June 12, 2001.

Prior to addressing the bases for rejecting the claims, it is worthwhile to discuss what the empirical evidence provided in the application shows.

In example 1, a melanoma cell line is discussed. The prior art describes how various members of the CT family of antigens are expressed by this cell. The cell was used to determine expression of other members of the family. It should be borne in mind that the term "CT antigen" is discussed in the specification.

The cells were studied, using the "SEREX" methodology. This method is known in the art. To perform SEREX, total RNA is removed from cells, converted to cDNA and, a cDNA library is constructed in a vector. In this case, " λ ZAP" was used. The λ ZAP cDNA library was then used to transform E. coli.

After E. coli are transformed, the transformed cells are used to screen samples for antibodies. Allogeneic samples were used in example 1. Essentially, one is determining if the

protein encoded by the cDNA used to transform the E. coli reacts with antibodies in the sample. One knows that the reaction is not with a "native" E. coli protein, because in the SEREX method, such antibodies are "stripped" prior to reaction with the transformants. Applicants refer the examiner to the references cited at page 5, i.e., Sahin, et al, Proc. Natl. Acad Sci USA 92:11810-11813, and U.S. Patent No. 5,698,396, both of which are incorporated by reference. Full details of the SEREX methodology are described in these references. Hence, one knows that, if there are any positives, the reactive protein was from the cDNA library.

The yield in this experiment was high, i.e., there were 65 positives.

Example 2 describes, simply, attempts to identify the positive materials. Standard methods were used.

Table 8, at page 8, shows that of the 65 positives 18 were known CT antigens. Hence, one knows from this that one can identify known members of the CT family. Ten sequences were not identifiable in public sequence libraries. There were also, 33 clones which belonged to the "KOC" family.

Examples 3 and 5 deal with CT antigen, i.e., "CT7." Please see US Patent No. 6,297,364.

Example 6 describes sequence analysis of the 33 members of the family found in the experiments of example 2. As this example makes manifestly clear, two different genes, referred to as KOC-2 and KOC-3 were identified. They were clearly not artifacts, because when a testicular cDNA library was analyzed, again using allogeneic samples, the molecules were found.

In example 7, the DNA expression pattern of the genes was studies. KOC-2 was found in normal tissue, but only testis and, with modification of the assay, in normal kidney cells. This is a "classic" CT expression pattern. As noted in the application, "CT" means "cancer/testis."

The KOC-3 gene was found to be expressed in both cancer and normal cells.

Now, the examiner has rejected all of claims 53-73, 80-84, 108 and 109, arguing that the claims are not supported by either "a specific substantial utility or a well-established utility."

The examiner states that "the specification fails to demonstrate a utility for the nucleic acids of SEQ ID NOS: 5-8, as the specification fails to correlated the presence of the protein encoded by SEQ ID NOS: 5-8 in clinical samples." The examiner then goes on to hypothesize that (i) antibodies can cross react with different proteins, and (ii) that the polynucleotides may

not be expressed due to any of a number of hypotheses. The examiner also states that "under conditions of recombinant expression, epitopes of KOC-2 and 3 which are not normally expressed in a patient within the context of MHC could be expressed by *E. coli*."

All of this is unproven speculation. The facts are the following. Something in the serum of patient NW38 reacted with a protein expressed by cDNA from an allogeneic source. Antibodies were present in the cancer patient's serum. They did not react with an *E. coli* protein because, as has been pointed out, supra, when SEREX is carried out, any reactivity with *E. coli* proteins is eliminated by use of controls. Again, the examiner is directed to the references which describe the SEREX methodology.

With respect to the elaborate argument regarding factors affecting translation of proteins, this is all well and good, but it is irrelevant. It is irrelevant because there were antibodies in the sample analyzed. Antibodies are produced in response to a protein. Hence, at some point, NW38 (the source of the sample), did have the protein in his or her blood. It got there by being expressed. The issue for CT antigens, as was set forth very clearly in the specification, is: are they expressed in individuals with cancer? The evidence indicates that KOC-2 and KOC-3 are so expressed, regardless of what happened to the irrelevant ferritin polypeptide, ornithine decarboxylase, and p glycoprotein discussed by the examiner, and not shown to be cancer antigens. With respect to the failure of protein and mRNA levels to correlate for p53, again, this is irrelevant. Applicants have not claimed a quantitative assay. The correct question is: is the molecule expressed in cancer patients and usable for diagnosis? The correlation of p53 with cancer is too well known to comment on.

With respect to the examiner's hypothetical argument that "antibodies bind to epitopes in proteins and antibodies can cross react with different proteins containing the same or similar proteins," this again ignores the evidence. In the SEREX methodology, antibodies against a host cell, e.g., *E. coli*, are removed in a stripping step. All that is left are antibodies which bind to non-*E. coli* proteins. Applicants used a cDNA library. It is well known that, when using a cDNA library, a single cDNA molecule is used as the transfectant. Hence, if an antibody reacts with a transfected or transformed cell, it must be reacting with the foreign protein, since antibodies to native proteins have been eliminated. Hence, all of the examiner's points are based upon generalizations which do not stand up to analysis when the data are considered. With respect to the statement bridging pages 4-5:

"The data indicating that the KOC-2 polynucleotide was restricted to the normal testis and that the KOC-3 polynucleotide was universal in normal tissues."

This is absolutely an incorrect reading of the data. First of all, there were antibodies against KOC-2 and KOC-3 found in the patient (NW38) sample. Hence, there was no immunotolerance. Second, the data state that "the only positive normal tissue was testis." These do not state that this was the only positive tissue. There is a very big difference. Further, if the examiner is going to argue that levels of expression can vary, then she must concede that, notwithstanding expression of KOC-3 in normal tissue, cancer tissues express it at a level such that an immune response is possible - especially since applicants have shown this.

Turning next to the rejection under 35 USC § 112, the statement of this rejection is not consistent. All claims are rejected, even though the examiner states that the claims are enabling for "polynucleotides comprising SEQ ID NOS: 5-8..." If this is the case, then claims 54-70 and 108 and 109 should not be rejected, as claims 54-70 expressly recite what is said to be enabled, and claims 108 and 109 have nothing to do with the issues raised in the rejection. The rejection recites points "A" and "B," and it is noted that only claims 53, 71-73 and 80-84 are rejected. They are no reasons given for rejecting the remaining claims.

Applicants contacted the examiner regarding this issue on October 22. The undersigned was advised that, if the utility rejection were overcome, then the issue at point 7 would be moot. It is noted that claims 54-70 are not rejected in the discussion following point 7. Claims 53 & 54 were combined to form claim 110. As such, claim 110 and claims dependent thereon cannot be rejected under 35 USC §112.

In view of the foregoing, allowance of this application is believed proper and is urged.

In view of the lack of clarity in this rejection, applicants cannot address it. The examiner is invited to clarify the rejection so it can be addressed. At such time, applicants will respond fully.

Respectfully submitted,

FULBRIGHT & JAWORSKI, L.L.P.

Norman D. Hanson, Esq.
Registration No. 30,946

666 Fifth Avenue
New York, New York 10103-3198
Telephone: 212-318-3168
Telecopier: 212-318-3400

COPY OF PAPERS
ORIGINALLY FILED

<110> Chen, Liao-Tseng
Gare, Ali
Tsang, Solam
Stockert, Elisabeth
Jager, Elke
Knuth, Alexander
Old, Lloyd J.

<120> Isolated Nucleic Acid Molecules Encoding Cancer Associated Antigen, The Antigens Per Se, And Uses Thereof

<130> LUD 5538.1

<140> 09/270,437

<141> 1999 - 03 - 16

<150> 09/061,709

<151> 1998-04-17

<160> 23

<210> 1

<211> 4265

<212> DNA

<213> Homo sapiens

<220>

<400> 1

GTCTGAAGGA	CCTGAGGCAT	TTTGTGACGA	GGATCGTCTC	AGGTCAGCGG	AGGGAGGAGA	60
CTTATAGACC	TATCCAGTCT	TCAAGGTGCT	CCAGAAAGCA	GGAGTTGAAG	ACCTGGGTGT	120
GAGGGACACA	TACATCCTAA	AAGCACCA	GCAGAGGAGG	CCCAGGCAGT	GCCAGGAGTC	180
AAGGTTCCCCA	GAAGACAAAC	CCCCTAGGAA	GACAGGCCAC	CTGTGAGGCC	CTAGAGCACC	240
ACCTTAAGAG	AAGAACAGCT	GTAAGCCGGC	CTTTGTCAGA	GCCATCATGG	GGGACAAGGA	300
TATGCCTACT	GCTGGGATGC	CGAGTCTTCT	CCAGAGTTCC	TCTGAGAGTC	CTCAGAGTTG	360
TCCTGAGGGG	GAGGACTCCC	AGTCTCCTCT	CCAGATTCCC	CAGAGTTCTC	CTGAGAGCGA	420
CGACACCCCTG	TATCCTCTCC	AGAGTCCTCA	GAGTCGTTCT	GAGGGGGAGG	ACTCCTCGGA	480
TCCTCTCCAG	AGACCTCCTG	AGGGGAAGGA	CTCCCAGTCT	CCTCTCCAGA	TTCCCCAGAG	540
TTCTCCTGAG	GGCGACGACA	CCCAGTCTCC	TCTCCAGAAT	TCTCAGAGTT	CTCCTGAGGG	600
GAAGGACTCC	CTGTCTCCTC	TAGAGATTTC	TCAGAGCCCT	CCTGAGGGTG	AGGATGTCCA	660
GTCTCCTCTG	CAGAACCTCG	CGAGTTCTCT	CTTCTCCTCT	GCTTTATTGA	GTATTTCCA	720
GAGTTCCCT	GAGAGTATTTC	AAAGTCCTTT	TGAGGGTTTT	CCCCAGTCTG	TTCTCCAGAT	780
TCCTGTGAGC	GCCGCCTCCT	CCTCCACTTT	AGTGAGTATT	TTCCAGAGTT	CCCCTGAGAG	840
TACTCAAAGT	CCTTTGAGG	GTTTCCCCA	GTCTCCACTC	CAGATTCTG	TGAGCCGCTC	900
CTTCTCCTCC	ACTTTATTGA	GTATTTCCA	GAGTTCCCT	GAGAGAACGT	AGAGAACCTC	960
TGAGGGTTTT	GCACAGTCTC	CTCTCCAGAT	TCCTGTGAGC	TCCCTCCTCGT	CCTCCACTTT	1020
ACTGAGTCTT	TTCCAGAGTT	CCCCTGAGAG	AACTCAGAGT	ACTTTGAGG	GTTTCCCCA	1080
GTCTCCACTC	CAGATTCTG	TGAGCCGCTC	CTTCTCCTCC	ACTTTATTGA	GTATTTCCA	1140
GAGTTCCCT	GAGAGAACCTC	AGAGTACTTT	TGAGGGTTTT	CCCCAGTCTC	CTCTCCAGAT	1200
TCCTGTGAGC	CCCTCCTCT	CCTCCACTTT	AGTGAGTATT	TTCCAGAGTT	CCCCTGAGAG	1260
AACTCAGAGT	ACTTTGAGG	GTTTCCCCA	GTCTCCTCTC	CAGATTCTG	TGAGCTCCTC	1320
CTTCTCCTCC	ACTTTATTGA	GTCTTTCCA	GAGTTCCCT	GAGAGAACCTC	AGAGTACTTT	1380
TGAGGGTTTT	CCCCAGTCTC	CTCTCCAGAT	TCCTGGAAGC	CCCTCCTCT	CCTCCACTTT	1440
ACTGAGTCTT	TTCCAGAGTT	CCCCTGAGAG	AACTCACAGT	ACTTTGAGG	GTTTCCCCA	1500
GTCTCCTCTC	CAGATTCTA	TGACCTCCTC	CTTCTCCTCT	ACTTTATTGA	GTATTTACA	1560
GAGTTCTCT	GAGAGTGCTC	AAAGTGCTT	TGAGGGTTTT	CCCCAGTCTC	CTCTCCAGAT	1620
TCCTGTGAGC	TCCTCTTCT	CCTACACTTT	ATTGAGTCTT	TTCCAGAGTT	CCCCTGAGAG	1680
AACTCACAGT	ACTTTGAGG	GTTTCCCCA	GTCTCCTCTC	CAGATTCTG	TGAGCTCCTC	1740

CTCCTCCTCC TCCACTTTAT TGAGTCTTT CCAGAGTTCC CCTGAGTGT A CTCAAAGTAC 1800
 TTTGAGGGT TTTCCCCAGT CCTCTCTCCA GATTCCCTCAG AGTCCTCCTG AAGGGGAGAA 1860
 TACCCATTCT CCTCTCCAGA TTGTTCCAAG TCTTCCTGAG TGGGAGGACT CCCTGTCTCC 1920
 TCACTACTTT CCTCAGAGCC CCTCTCAGGG GGAGGACTCC CTATCTCCTC ACTACTTTCC 1980
 TCAGAGCCCT CCTCAGGGGG AGGACTCCCT GTCTCCCTCAC TACTTTCCCTC AGAGCCCTCA 2040
 GGGGGAGGAC TCCCTGTCTC CTCACTACTT TCCTCAGAGC CCTCCTCAGG GGGAGGACTC 2100
 CATGTCTCCT CTCTACTTTC CTCAGAGTCC TCTTCAGGGG GAGGAATTCC AGTCTTCTCT 2160
 CCAGAGCCCT GTGAGCATCT GCTCCTCCTC CACTCCATCC AGTCTTCCC AGAGTTTCCC 2220
 TGAGAGTTCT CAGAGTCTC CTGAGGGGCC TGTCAGTCT CCTCTCCATA GTCCCTCAGAG 2280
 CCCTCCTGAG GGGATGCACT CCCAATCTCC TCTCCAGAGT CCTGAGAGTG CTCCTGAGGG 2340
 GGAGGATTCC CTGTCTCCTC TCCAAATTCC TCAGAGTCC CTTGAGGGAG AGGACTCCCT 2400
 GTCTTCTCTC CATTTCCTC AGAGTCTCC TGAGTGGGAG GACTCCCTCT CTCCTCTCCA 2460
 CTTTCCTCAG TTTCCTCCTC AGGGGGAGGA CTTCCAGTCT TCTCTCCAGA GTCCCTGTGAG 2520
 TATCTGCTCC TCCTCCACTT CTTGAGTCT TCCCCAGAGT TTCCCTGAGA GTCCCTCAGAG 2580
 TCCTCCTGAG GGGCCTGCTC AGTCTCCTCT CCAGAGACCT GTCAAGCTCCT TCTTCTCCTA 2640
 CACTTAGCG AGTCTTCTCC AAAGTCTCC TGAGTGGGAG CAGACTCCTC CTGAGGGGCC 2700
 TGCCCAGTCT CCTCTCCAGA GTCCCTGTGAG CTCCTTCCCC TCCTCCACTT CATCGAGTCT 2760
 TTCCCAGAGT TCTCCTGTGA GCTCCTTCCC CTCCTCCACT TCATCGAGTC TTTCCAAGAG 2820
 TTCCCCTGAG AGTCTCTCC AGAGTCTCTG GATCTCCTC TCTCCTCTCCA CTTCATTGAG 2880
 CCCATTCACT GAAGAGTCCA GCAGCCCAAGT AGATGAATAT ACAAGTTCTC CAGACACCTT 2940
 GCTAGAGAGT GATTCCCTGA CAGACAGCGA GTCCCTGATA GAGAGCGAGC CCTTGTTCAC 3000
 TTATACACTG GATGAAAAGG TGGACGAGTT GGCAGCGTTT CTTCTCCTCA AATATCAAGT 3060
 GAAGCAGCCT ATCACAAAGG CAGAGATGCT GACGAATGTC ATCAGCAGGT ACACGGGCTA 3120
 CTTTCCTGTG ATCTTCAGGA AAGCCCGTGA GTTCATAGAG ATACTTTTG GCATTTCCCT 3180
 GAGAGAAGTG GACCCTGATG ACTCCTATGT CTTTGTAAAC ACATTAGACC TCACCTCTGA 3240
 GGGGTGTCTG AGTGATGAGC AGGGCATGTC CCAGAACCGC CTCCTGATTC TTATTCTGAG 3300
 TATCATCTTC ATAAAGGGCA CCTATGCCTC TGAGGAGGTC ATCTGGGATG TGCTGAGTGG 3360
 AATAGGGGTG CGTGTGGGA GGGAGCACTT TGCCCTTGGG GAGCCCAAGG AGCTCCTCAC 3420
 TAAAGTTGG GTGCAGGAAC ATTACCTAGA GTACCGGGAG GTGCCCAACT CTTCTCCTCC 3480
 TCGTTACGAA TTTCCTGTGGG GTCCAAGAGC TCATTCAAGA GTCATTAAGA GGAAAGTAGT 3540
 AGAGTTTTG GCCATGCTAA AGAATACCGT CCCTATTAC TTTCCATCCT CTTACAAGGA 3600
 TGCTTGAAA GATGTGGAAG AGAGAGCCCA GGCCATAATT GACACCACAG ATGATTGAC 3660
 TGCCACAGAA AGTGCAAGCT CCAGTGTCTAT GTCCTCCAGC TTCTCTTCTG AGTGAAGTCT 3720
 AGGGCAGATT CTTCCCTCTG AGTTTGAGG GGGCAGTCGA GTTCTACGT GGTGGAGGGC 3780
 CTGGTTGAGG CTGGAGAGAA CACAGTCTA TTTGCATTTC TGTCCATAT GGGTAGTTAT 3840
 GGGTTTACCC TGTTTACTT TTGGGTATTT TTCAAATGCT TTTCCTATTA ATAACAGGTT 3900
 TAAATAGCTT CAGAACTCTA GTTTATGCAC ATGAGTCGCA CATGTATTGC TGTTTTCTG 3960
 GTTTAAGAGT AACAGTTGA TATTTGTAA AAACAAAAAC ACACCCAAAC ACACCCACATT 4020
 GGGAAAACCT TCTGCCTCAT TTTGTGATGT GTCACAGGTT AATGTGGTGT TACTGTAGGA 4080
 ATTTTCTGA AACTGTGAAG GAACTCTGCA GTTAAATAGT GGAATAAAGT AAAGGATTGT 4140
 TAATGTTTGC ATTTCCCTCAG GTCCCTTAGT CTGTTGTTCT TGAAAACATAA AGATACATAC 4200
 CTGGTTTGCCT TGGCTTACGT AAGAAAGTCG AAGAAAGTAA ACTGTAATAA ATAAAAGTGT 4260
 CAGTG 4265

<210> 2
 <211> 1142
 <212> PRT
 <213> Homo sapiens
 <220>
 <400> 2

Met	Gly	Asp	Lys	Asp	Met	Pro	Thr	Ala	Gly	Met	Pro	Ser	Leu	Leu	Gln
					5				10				15		
Ser	Ser	Ser	Glu	Ser	Pro	Gln	Ser	Cys	Pro	Glu	Gly	Glu	Asp	Ser	Gln
					20			25				30			
Ser	Pro	Leu	Gln	Ile	Pro	Gln	Ser	Ser	Pro	Glu	Ser	Asp	Asp	Thr	Leu
					35			40			45				
Tyr	Pro	Leu	Gln	Ser	Pro	Gln	Ser	Arg	Ser	Glu	Gly	Glu	Asp	Ser	Ser
					50			55			60				
Asp	Pro	Leu	Gln	Arg	Pro	Pro	Glu	Lys	Asp	Ser	Gln	Ser	Pro	Leu	

65	70	75	80
Gln Ile Pro Gln Ser Ser Pro Glu Gly Asp Asp Thr Gln Ser Pro Leu			
85	90	95	
Gln Asn Ser Gln Ser Ser Pro Glu Gly Lys Asp Ser Leu Ser Pro Leu			
100	105	110	
Glu Ile Ser Gln Ser Pro Pro Glu Gly Glu Asp Val Gln Ser Pro Leu			
115	120	125	
Gln Asn Pro Ala Ser Ser Phe Phe Ser Ser Ala Leu Leu Ser Ile Phe			
130	135	140	
Gln Ser Ser Pro Glu Ser Ile Gln Ser Pro Phe Glu Gly Phe Pro Gln			
145	150	155	160
Ser Val Leu Gln Ile Pro Val Ser Ala Ala Ser Ser Ser Thr Leu Val			
165	170	175	
Ser Ile Phe Gln Ser Ser Pro Glu Ser Thr Gln Ser Pro Phe Glu Gly			
180	185	190	
Phe Pro Gln Ser Pro Leu Gln Ile Pro Val Ser Arg Ser Phe Ser Ser			
195	200	205	
Thr Leu Leu Ser Ile Phe Gln Ser Ser Pro Glu Arg Ser Gln Arg Thr			
210	215	220	
Ser Glu Gly Phe Ala Gln Ser Pro Leu Gln Ile Pro Val Ser Ser Ser			
225	230	235	240
Ser Ser Ser Thr Leu Leu Ser Leu Phe Gln Ser Ser Pro Glu Arg Thr			
245	250	255	
Gln Ser Thr Phe Glu Gly Phe Pro Gln Ser Pro Leu Gln Ile Pro Val			
260	265	270	
Ser Arg Ser Phe Ser Ser Thr Leu Leu Ser Ile Phe Gln Ser Ser Pro			
275	280	285	
Glu Arg Thr Gln Ser Thr Phe Glu Gly Phe Ala Gln Ser Pro Leu Gln			
290	295	300	
Ile Pro Val Ser Pro Ser Phe Ser Ser Thr Leu Val Ser Ile Phe Gln			
305	310	315	320
Ser Ser Pro Glu Arg Thr Gln Ser Thr Phe Glu Gly Phe Pro Gln Ser			
325	330	335	
Pro Leu Gln Ile Pro Val Ser Ser Phe Ser Ser Thr Leu Leu Ser			
340	345	350	
Leu Phe Gln Ser Ser Pro Glu Arg Thr Gln Ser Thr Phe Glu Gly Phe			
355	360	365	
Pro Gln Ser Pro Leu Gln Ile Pro Gly Ser Pro Ser Phe Ser Ser Thr			
370	375	380	
Leu Leu Ser Leu Phe Gln Ser Ser Pro Glu Arg Thr His Ser Thr Phe			
385	390	395	400
Glu Gly Phe Pro Gln Ser Pro Leu Gln Ile Pro Met Thr Ser Ser Phe			
405	410	415	
Ser Ser Thr Leu Leu Ser Ile Leu Gln Ser Ser Pro Glu Ser Ala Gln			
420	425	430	
Ser Ala Phe Glu Gly Phe Pro Gln Ser Pro Leu Gln Ile Pro Val Ser			
435	440	445	
Ser Ser Phe Ser Tyr Thr Leu Leu Ser Leu Phe Gln Ser Ser Pro Glu			
450	455	460	
Arg Thr His Ser Thr Phe Glu Gly Phe Pro Gln Ser Pro Leu Gln Ile			
465	470	475	480
Pro Val Ser Ser Ser Ser Ser Thr Leu Leu Ser Leu Phe Gln			
485	490	495	
Ser Ser Pro Glu Cys Thr Gln Ser Thr Phe Glu Gly Phe Pro Gln Ser			
500	505	510	
Pro Leu Gln Ile Pro Gln Ser Pro Pro Glu Gly Glu Asn Thr His Ser			
515	520	525	
Pro Leu Gln Ile Val Pro Ser Leu Pro Glu Trp Glu Asp Ser Leu Ser			
530	535	540	

Pro His Tyr Phe Pro Gln Ser Pro Pro Gln Gly Glu Asp Ser Leu Ser
545 550 555 560
Pro His Tyr Phe Pro Gln Ser Pro Pro Gln Gly Glu Asp Ser Leu Ser
565 570 575
Pro His Tyr Phe Pro Gln Ser Pro Gln Gly Glu Asp Ser Leu Ser Pro
580 585 590
His Tyr Phe Pro Gln Ser Pro Pro Gln Gly Glu Asp Ser Met Ser Pro
595 600 605
Leu Tyr Phe Pro Gln Ser Pro Leu Gln Gly Glu Phe Gln Ser Ser
610 615 620
Leu Gln Ser Pro Val Ser Ile Cys Ser Ser Ser Thr Pro Ser Ser Leu
625 630 635 640
Pro Gln Ser Phe Pro Glu Ser Ser Gln Ser Pro Pro Glu Gly Pro Val
645 650 655
Gln Ser Pro Leu His Ser Pro Gln Ser Pro Pro Glu Gly Met His Ser
660 665 670
Gln Ser Pro Leu Gln Ser Pro Glu Ser Ala Pro Glu Gly Glu Asp Ser
675 680 685
Leu Ser Pro Leu Gln Ile Pro Gln Ser Pro Leu Glu Gly Glu Asp Ser
690 695 700
Leu Ser Ser Leu His Phe Pro Gln Ser Pro Pro Glu Trp Glu Asp Ser
705 710 715 720
Leu Ser Pro Leu His Phe Pro Gln Phe Pro Pro Gln Gly Glu Asp Phe
725 730 735
Gln Ser Ser Leu Gln Ser Pro Val Ser Ile Cys Ser Ser Ser Thr Ser
740 745 750
Leu Ser Leu Pro Gln Ser Phe Pro Glu Ser Pro Gln Ser Pro Pro Glu
755 760 765
Gly Pro Ala Gln Ser Pro Leu Gln Arg Pro Val Ser Ser Phe Phe Ser
770 775 780
Tyr Thr Leu Ala Ser Leu Leu Gln Ser Ser His Glu Ser Pro Gln Ser
785 790 795 800
Pro Pro Glu Gly Pro Ala Gln Ser Pro Leu Gln Ser Pro Val Ser Ser
805 810 815
Phe Pro Ser Ser Thr Ser Ser Leu Ser Gln Ser Ser Pro Val Ser
820 825 830
Ser Phe Pro Ser Ser Thr Ser Ser Leu Ser Lys Ser Ser Pro Glu
835 840 845
Ser Pro Leu Gln Ser Pro Val Ile Ser Phe Ser Ser Ser Thr Ser Leu
850 855 860
Ser Pro Phe Ser Glu Glu Ser Ser Ser Pro Val Asp Glu Tyr Thr Ser
865 870 875 880
Ser Ser Asp Thr Leu Leu Glu Ser Asp Ser Leu Thr Asp Ser Glu Ser
885 890 895
Leu Ile Glu Ser Glu Pro Leu Phe Thr Tyr Thr Leu Asp Glu Lys Val
900 905 910
Asp Glu Leu Ala Arg Phe Leu Leu Lys Tyr Gln Val Lys Gln Pro
915 920 925
Ile Thr Lys Ala Glu Met Leu Thr Asn Val Ile Ser Arg Tyr Thr Gly
930 935 940
Tyr Phe Pro Val Ile Phe Arg Lys Ala Arg Glu Phe Ile Glu Ile Leu
945 950 955 960
Phe Gly Ile Ser Leu Arg Glu Val Asp Pro Asp Asp Ser Tyr Val Phe
965 970 975
Val Asn Thr Leu Asp Leu Thr Ser Glu Gly Cys Leu Ser Asp Glu Gln
980 985 990
Gly Met Ser Gln Asn Arg Leu Leu Ile Leu Ser Ile Ile Phe
995 1000 1005
Ile Lys Gly Thr Tyr Ala Ser Glu Glu Val Ile Trp Asp Val Leu Ser
1010 1015 1020

Gly Ile Gly Val Arg Ala Gly Arg Glu His Phe Ala Phe Gly Glu Pro
 1025 1030 1035 1040
 Arg Glu Leu Leu Thr Lys Val Trp Val Gln Glu His Tyr Leu Glu Tyr
 1045 1050 1055
 Arg Glu Val Pro Asn Ser Ser Pro Pro Arg Tyr Glu Phe Leu Trp Gly
 1060 1065 1070
 Pro Arg Ala His Ser Glu Val Ile Lys Arg Lys Val Val Glu Phe Leu
 1075 1080 1085
 Ala Met Leu Lys Asn Thr Val Pro Ile Thr Phe Pro Ser Ser Tyr Lys
 1090 1095 1100
 Asp Ala Leu Lys Asp Val Glu Glu Arg Ala Gln Ala Ile Ile Asp Thr
 1105 1110 1115 1120
 Thr Asp Asp Ser Thr Ala Thr Glu Ser Ala Ser Ser Ser Val Met Ser
 1125 1130 1135
 Pro Ser Phe Ser Ser Glu
 1140

<210> 3
 <211> 7
 <212> PRT
 <213> Homo sapiens
 <220>
 <400> 3

Pro Gln Ser Pro Leu Gln Ile
 1 5

<210> 4
 <211> 4159
 <212> DNA
 <213> Homo sapiens
 <220>
 <400> 4

GGTGGATGCG	TTTGGGTTGT	AGCTAGGCTT	TTTCTTTCT	TTCTCTTTA	AAACACATCT	60
AGACAAGGAA	AAAACAAGCC	TCGGATCTGA	TTTTCACTC	CTCGTTCTTG	TGCTGGTTC	120
TTACTGTGTT	TGTGTATTTT	AAAGGCGAGA	AGACGAGGGG	AACAAAACCA	GCTGGATCCA	180
TCCATCACCG	TGGGTGGTTT	TAATTTTCG	TTTTTCTCG	TTATTTTTT	TTAAACAACC	240
ACTCTTCACA	ATGAACAAAC	TGTATATCGG	AAACCTCAGC	GAGAACGCCG	CCCCCTCGGA	300
CCTAGAAAGT	ATCTTCAAGG	ACGCCAAGAT	CCCGGTGTCG	GGACCCCTTC	TGGTGAAGAC	360
TGGCTACGCG	TTCGTGGACT	GCCC GGACGA	GAGCTGGGCC	CTCAAGGCCA	TCGAGGCGCT	420
TTCAAGTAAA	ATAGAACTGC	ACGGGAAACC	CATAGAAGTT	GAGCACTCGG	TCCCAAAAAG	480
GCAAAGGATT	CGGAAACTTC	AGATACGAAA	TATCCCGCT	CATTACAGT	GGGAGGTGCT	540
GGATAGTTA	CTAGTCCAGT	ATGGAGTGGT	GGAGAGCTGT	GAGCAAGTGA	ACACTGACTC	600
GGAAACTGCA	GTTGTAATG	TAACCTATTG	CAGTAAGGAC	CAAGCTAGAC	AAGCACTAGA	660
CAAACGTAAAT	GGATTTCACT	TAGAGAATTG	CACCTGAAA	GTAGCCTATA	TCCCTGATGA	720
AATGGCCGCC	CAGCAAAACC	CCTTGCAGCA	GCCCCGAGGT	CGCCGGGGGC	TTGGGCAGAG	780
GGGCTCCTCA	AGGCAGGGGT	CTCCAGGATC	CGTATCCAAG	CAGAAACCAT	GTGATTGCCC	840
TCTGCGCCTG	CTGGTTCCCA	CCCAATTGTT	TGGAGCCATC	ATAGGAAAAG	AAGGTGCCAC	900
CATTGGAAAC	ATCACCAAAC	AGACCCAGTC	TAAAATCGAT	GTCCACCGTA	AAGAAAATGC	960
GGGGGCTGCT	GAGAAAGTCGA	TTACTATCCT	CTCTACTCCT	GAAGGCACCT	CTGCGGCTTG	1020
TAAGTCTATT	CTGGAGATTA	TGCATAAGGA	AGCTCAAGAT	ATAAAATTCA	CAGAAGAGAT	1080
CCCCTGAAAG	ATTTTAGCTC	ATAATAACTT	TGTTGGACGT	CTATTGGTA	AAGAAGGAAG	1140
AAATCTTAAA	AAAATTGAGC	AAGACACAGA	CACTAAAATC	ACGATATCTC	CATTGCAGGA	1200
ATTGACGCTG	TATAATCCAG	AACGCACTAT	TACAGTAAA	GGCAATGTTG	AGACATGTGC	1260
CAAAGCTGAG	GAGGAGATCA	TGAAGAAAAT	CAGGGAGTCT	TATGAAAATG	ATATTGCTTC	1320
TATGAATCTT	CAAGCACATT	TAATTCTGG	ATTAAATCTG	AACGCCTTGG	GTCTGTTCCC	1380

ACCCACTTCA GGGATGCCAC CTCCCACCTC AGGGCCCCCT TCAGCCATGA CTCCTCCCTA 1440
 CCCGCAGTT GAGCAATCAG AAACGGAGAC TGTTCATCAG TTTATCCCAG CTCTATCAGT 1500
 CGGTGCCATC ATCGGCAAGC AGGGCCAGCA CATCAAGCAG CTTTCTCGCT TTGCTGGAGC 1560
 TTCAATTAAG ATTGCTCCAG CGGAAGCACC AGATGCTAAA GTGAGGATGG TGATTATCAC 1620
 TGGACCACCA GAGGCTCAGT TCAAGGCTCA GGGAAAGAATT TATGGAAAAA TTAAAGAAGA 1680
 AAACCTTGT AGTCCTAAAG AAGAGGTGAA ACTTGAAAGCT CATATCAGAG TGCCATCCTT 1740
 TGCTGCTGGC AGAGTTATTG GAAAAGGAGG CAAACGGTG AATGAACTTC AGAATTGTC 1800
 AAGTGCAGAA GTTGTGTC CTCGTGACCA GACACCTGAT GAGAATGACC AAGTGGTTGT 1860
 CAAAATAACT GGTCACTTCT ATGCTTGCCA GGTTGCCAG AGAAAAATTTC AGGAAATTCT 1920
 GACTCAGGTA AAGCAGCACC AACAAACAGAA GGCTCGCAA AGTGGACAC CTCAGTCAAG 1980
 ACGGAAGTAA AGGCTCAGGA AACAGCCCCAC CACAGAGGCA GATGCCAAAC CAAAGACAGA 2040
 TTGCTTAACC AACAGATGGG CGCTGACCCC CTATCCAGAA TCACATGCAC AAGTTTTAC 2100
 CTAGCCAGTT GTTCTGAGG ACCAGGCAAC TTTTGAACTC CTGTCCTGT GAGAATGTAT 2160
 ACTTTATGCT CTCTGAAATG TATGACACCC AGCTTAAAAA CAAACAAACA AACAAACAAA 2220
 AAAAGGGTGG GGGAGGGAGG GAAAGAGAAG AGCTCTGCAC TTCCCTTTGT TGTAGTCTCA 2280
 CAGTATAACA GATATTCTAA TTCTTCTTAA TATTCCCCA TAATGCCAGA AATTGGCTTA 2340
 ATGATGCTTT CACTAAATTG ATCAAATAGA TTGCTCTAA ATCCAATTGT TAAAATTGGA 2400
 TCAGAATAAT TATCACAGGA ACTTAAATGT TAAGCCATTA GCATAGAAAA ACTGTTCTCA 2460
 GTTTTATTTT TACCTAACAC TAACATGAGT AACCTAAGGG AAGTGCTGAA TGGTGGTGGC 2520
 AGGGGTATTA AACGTGCATT TTACTCAAC TACCTCAGGT ATTCACTGAA ACAATGAAAA 2580
 GCAAAATTGT TCCCTTTTT TGAAAATTTT ATATACTTTA TAATGATAGA AGTCCAACCG 2640
 TTTTTAAAAA AATAAATTAA AATTTAAACA GCAATCAGCT AACAGGCAA TTAAGATTTT 2700
 TACTTCTGGC TGGTGACAGT AAAGCTGGAA AATTAAATTTC AGGGTTTTT GAGGCTTTTG 2760
 ACACAGTTAT TAGTTAAATC AAATGTTCAA AAATACGGAG CAGTGCCTAG TATCTGGAGA 2820
 GCAGCACTAC CATTATTCT TTCATTATA GTTGGAAAG TTTTGACGG TACTAACAAA 2880
 GTGGTCGCAG GAGATTGAGG AACGGCTGGT TTAAATGGCT TCAGGAGACT TCAGTTTTT 2940
 GTTAGCTAC ATGATTGAAT GCATAATAAA TGCTTGTGC TTCTGACTAT CAATACCTAA 3000
 AGAAAAGTGCA TCAGTGAAGA GATGCAAGAC TTTCAACTGA CTGGCAAAAA GCAAGCTTTA 3060
 GCTTGTCTTA TAGGATGCTT AGTTGCCAC TACACTTCAG ACCAATGGGA CAGTCATAGA 3120
 TGGTGTGACA GTGTTAACAC GCAACAAAAG GCTACATTTC CATGGGGCCA GCACTGTCA 3180
 GAGCCTCACT AAGCTATTTT GAAGATTTT AAGCACTGAT AAATTAAAAA AAAAAAAA 3240
 AAATTAGACT CCACCTTAAG TAGTAAAGTA TAACAGGATT TCTGTATACT GTGCAATCAG 3300
 TTCTTGAAA AAAAAGTCAA AAGATAGAGA ATACAAGAAA AGTTTNGGG ATATAATTG 3360
 AATGACTGTG AAAACATATG ACCTTTGATA ACGAACTCAT TTGCTCACTC CTTGACAGCA 3420
 AAGCCAGTA CGTACAATTG TGGTGGGTGT GGGTGGTCTC CAAGGCCACG CTGCTCTCTG 3480
 AATTGATTTT TTGAGTTTG GNTTGNAGA TGATCACAGN CATGTTACAC TGATCTTNA 3540
 GGACATATNT TATAACCCTT TAAAAAAAATCCCCCTGC TCATTCTTAT TTCGAGATGA 3600
 ATTCGATAC AGACTAGATG TCTTCTGAA GATCAATTAG ACATTNTGAA AATGATTAA 3660
 AGTGTTCCTC TTAATGTTCT CTGAAAACAA GTTTCTTTG TAGTTTAAAC CAAAAAAAGTG 3720
 CCCTTTTGT CACTGGTTTC TCCTAGCATT CATGATTTT TTTTCACACA ATGAATTAAA 3780
 ATTGCTAAAAT TCATGGACTG GCTTCTGGT TGGATTTCAG GTAAGATGTG TTTAAGGCCA 3840
 GAGCTTTCT CAGTATTGAT TTTTTTCCC CAATATTGAT TTTTTAAAGA ATATACACAT 3900
 AGGAGCTGCA TTTAAAACCT GCTGGTTAA ATTCTGTCA ATTCACTTC TAGCCTTTA 3960
 GTATGGCNAA TCANAATTAA CTTTACTTA AGCATTGTA ATTGGAGTA TCTGGTACTA 4020
 GCTAAGAAAT AATTCACTAA TTGAGTTTG TACTCNCCAA ANATGGGTCA TTCCTCATGN 4080
 ATAATGTNCC CCCAATGCAG CTTCATTTC CAGANACCTT GACGCAGGAT AAATTTTTC 4140
 ATCATTAGG TCCCCAAAAA 4159

<210> 5
 <211> 1708
 <212> DNA
 <213> Homo sapiens
 <220>
 <400> 5

AGGGACGCTG	CCGCACCGCC	CCAGTTTACCC	CCGGGGAGCC	ATCATGAAGC	TGAATGGCCA	60
CCAGTTGGAG	AACCATGCC	TGAAGGTCTC	CTACATCCCC	GATGAGCAGA	TAGCACAGGG	120
ACCTGAGAAT	GGGCGCCGAG	GGGGCTTTGG	CTCTCGGGGT	CAGCCCCGCC	AGGGCTCACC	180
TGTGGCAGCG	GGGGCCCCAG	CCAAGCAGCA	GCAAGTGGAC	ATCCCCCTTC	GGCTCCTGGT	240

-GCCCACCCAG	TATGTGGGTG	CCATTATTGG	CAAGGAGGGG	GCCACCATCC	GCAACATCAC	300
AAAACAGACC	CAGTCCAAGA	TAGACGTGCA	TAGGAAGGAG	AACGCAGGTG	CAGCTGAAAA	360
AGCCATCAGT	GTGCACTCCA	CCCCTGAGGG	CTGCTCTCC	GCTTGTAAAGA	TGATCTTGGG	420
GATTATGCAT	AAAGAGGCTA	AGGACACCAA	AACGGCTGAC	GAGGTTCCCC	TGAAGATCCT	480
GGCCCATAAT	AACTTGTAG	GGCGTCTCAT	TGGCAAGGA	GGACGGAACC	TGAAGAAGGT	540
AGAGCAAGAT	ACCGAGACAA	AAATCACCAT	CTCCTCGTTG	CAAGACCTTA	CCCTTACAA	600
CCCTGAGAGG	ACCATCACTG	TGAAGGGGGC	CATCGAGAAT	TGTTGCAGGG	CCGAGCAGGA	660
AATAATGAAG	AAAGTTCGGG	AGGCCTATGA	GAATGATGTG	GCTGCCATGA	GCTCTCACCT	720
GATCCCTGGC	CTGAACCTGG	CTGCTGTAGG	TCTTTCCCA	GCTTCATCCA	GCGCAGTCCC	780
GCCGCCTCCC	AGCAGCGTTA	CTGGGGCTGC	TCCCTATAGC	TCCTTATGC	AGGCTCCCGA	840
GCAGGAGATG	GTGCAGGTGT	TTATCCCCGC	CCAGGCAGTG	GGCGCCATCA	TCGGCAAGAA	900
GGGGCAGCAC	ATCAAACAGC	TCTCCCGGTT	TGCCAGCGCC	TCCATCAAGA	TTGCACCACC	960
CGAAACACCT	GACTCAAAG	TTCGTATGGT	TATCATCACT	GGACGCCAG	AGGCCAATT	1020
CAAGGCTCAG	GGAAAGAATCT	ATGGCAAAC	CAAGGAGGAG	AACTTCTTG	GTCCCAAGGA	1080
GGAAAGTGAAG	CTGGAGACCC	ACATACGTGT	GCCAGCATCA	GCAGCTGGCC	GGGTCAATTGG	1140
CAAAGGTGGA	AAAACGGTGA	ACGAGTTGCA	GAATTGACG	GCAGCTGAGG	TGGTAGTACC	1200
AAGAGACCAG	ACCCCTGATG	AGAACGACCA	GGTCATCGTG	AAAATCATCG	GACATTCTA	1260
TGCCAGTCAG	ATGGCTAAC	GGAAAGATCCG	AGACATCCGT	GCCCAGGTTA	AGCAGCAGCA	1320
TCAGAAGGGG	CAGAGTAACC	AGGCCAGGGC	ACGGAGGAAG	TGACCAGCCC	CTCCCTGTCC	1380
CTTNGAGTCC	AGGACAACAA	CGGGCAGAAA	TCGAGAGTGT	GCTCTCCCCG	GCAGGCCTGA	1440
GAATGAGTGG	GAATCCGGGA	CACNTGGGCC	GGGCTGTAGA	TCAGGTTTGC	CCACTTGATT	1500
GAGAAAGATG	TTCCAGTGAG	GAACCTGAT	CTNTCAGCCC	CAAACACCCA	CCCAATTGGC	1560
CCAACACTGT	NTGCCCTCG	GGGTGTAGA	AATTNTAGCG	CAAGGCACTT	TTAACACGTGG	1620
ATTGTTAAA	GAAGCTCTCC	AGGCCACC	AAGAGGGTGG	ATCACACCTC	AGTGGGAAGA	1680
AAAATAAAAT	TTCCCTTCAGG	TTTAAAAA				1708

<210> 6
 <211> 3412
 <212> DNA
 <213> Homo sapiens
 <220>
 <400> 6

GGCAGCGGAG	GAGGCGAGGA	GCGCCGGGTA	CCGGGCGGGG	GGAGCCGCGG	GCTCTCGGGG	60
AAGAGACGGA	TGATGAACAA	GCTTTACATC	GGGAACCTGA	GCCCCGCCGT	CACCGCCGAC	120
GACCTCCGGC	AGCTCTTGG	GGACAGGAAG	CTGCCCTGG	CGGGACAGGT	CCTGCTGAAG	180
TCCGGCTACG	CCTTCGTGGA	CTACCCCGAC	CAGAACTGGG	CCATCCGCGC	CATCGAGACC	240
CTCTCGGGTA	AAGTGGAAATT	GCATGGAAA	ATCATGGAAG	TTGATTACTC	AGTCTCTAAA	300
AAGCTAAGGA	GCAGGAAAAT	TCAGATTGCA	AACATCCCTC	CTCACCTGCA	GTGGGAGGTG	360
TTGGATGGAC	TTTTGGCTCA	ATATGGGACA	GTGGAGAATG	TGGAACAAGT	CAACACAGAC	420
ACAGAAACCG	CCGTTGTCAA	CGTCACATAT	GCAACAAGAG	AAGAAGCAAA	AATAGCCATG	480
GAGAAGCTAA	GCGGGCATCA	GTGGAGAAC	TACTCCTTCA	AGATTCCTTA	CATCCCGAT	540
GAAGAGGTGA	GCTCCCTTC	GCCCCCTCAG	CGAGCCCAGC	GTGGGGACCA	CTCTCCCGG	600
GAGCAAGGCC	ACGCCCTGG	GGGCCACTTCT	CAGGCCAGAC	AGATTGATT	CCCGCTGCGG	660
ATCCTGGTCC	CCACCCAGTT	TGTTGGTGC	ATCATCGGAA	AGGAGGGCTT	GACCATAAAG	720
AAACATCACTA	AGCAGACCCA	GTCCCGGGTA	GATATCCATA	GAAAAGAGAA	CTCTGGAGCT	780
GCAGAGAAGC	CTGTCACCAT	CCATGCCACC	CCAGAGGGGA	CTCTGAAGC	ATGCCGCATG	840
ATTCTTGAAA	TCATGCAAGAA	AGAGGCAGAT	GAGACCAAAAC	TAGCCGAAGA	GATTCTCTG	900
AAAATCTTGG	CACACAATGG	CTTGGTTGGA	AGACTGATTG	GAAAAGAAGG	CAGAAATTG	960
AAGAAAATTG	AAACATGAAAC	AGGGACCAAG	ATAACAAATCT	CATCTTGTCA	GGATTGAGC	1020
ATATACAACC	CGGAAAGAAC	CATCACTGTG	AAGGGCACAG	TTGAGGGCCTG	TGCCAGTGCT	1080
GAGATAGAGA	TTATGAAGAA	GCTCGTGAG	GCCTTGAAGA	ATGATATGCT	GGCTGTTAAC	1140
CAACAAGCCA	ATCTGATCCC	AGGGTTGAAC	CTCAGCGCAC	TTGGCATCTT	TTCAACAGGA	1200
CTGTCGTG	TATCTCCACC	AGCAGGGCCC	CGCGGAGCTC	CCCCCGCTGC	CCCCTACAC	1260
CCCTTCACTA	CCCACCTCCGG	ATACTTCTCC	AGCCTGTACC	CCCATCACCA	GTTTGGCCCG	1320
TTCCCGCATC	ATCACTCTTA	TCCAGAGCAG	GAGATTGTGA	ATCTCTTCA	CCCAACCCAG	1380
GCTGTGGCG	CCATCATCGG	GAAGAAGGGG	GCACACATCA	AACAGCTGGC	GAGATTCGCC	1440
GGAGCCTCTA	TCAAGATTGC	CCCTGCGGAA	GGCCAGACG	TCAGCGAAAG	GATGGTCATC	1500
ATCACCGGGC	CACCGGAAGC	CCAGTTCAAG	GCCCAGGGAC	GGATCTTGG	GAAACTGAAA	1560

- GAGGAAAAC TCTTTAACCC CAAAGAAGAA GTGAAGCTGG AAGCGCATAT CAGAGTGC 1620
 TCTTCCACAG CTGGCCGGGT GATTGGCAAA GGTGGCAAGA CCGTGAACGA ACTGCAGAAC 1680
 TTAACCAGTG CAGAAGTCAT CGTGCCTCGT GACCAAACGC CAGATGAAAA TGAGGAAGTG 1740
 ATCGTCAGAA TTATCAGGGCA CTTCTTTGCT AGCCAGACTG CACAGCGCAA GATCAGGGAA 1800
 ATTGTACAAC AGGTGAAGCA GCAGGAGCAG AAATACCCTC AGGGAGTCCG CTCACAGCGC 1860
 AGCAAGTGAG GCTCCCACAG GCACCAGCAA AACAAACGGAT GAATGTAGCC CTTCCAACAC 1920
 CTGACAGAAT GAGACCAAAC GCAGCCAGCC AGATCGGGAG CAAACCAAAG ACCATCTGAG 1980
 GAATGAGAAG TCTGCAGGG CCGCCAGGG CTCCTGCCAG GCCCTGAGAA CCCCAGGGGC 2040
 CGAGGAGGGG CGGGGAAGGT CAGCCAGGTT TGCCAGAAC ACCGAGCCCC GCCTCCCGCC 2100
 CCCCAGGGCT TCTGCAGGCT TCAGCCATCC ACTTCACCAT CCACTCGGAT CTCTCCTGAA 2160
 CTCCCACGAC GCTATCCCTT TTAGTTGAAC TAACATAGGT GAACGTGTT AAAGCCAAGC 2220
 AAAATGCACA CCCTTTTCT GTGGCAAAATC GTCTCTGTAC ATGTGTGTAC ATATTAGAAA 2280
 GGGAAAGATGT TAAGATATGT GGCGCTGTGGG TTACACAGGG TGCCTGCAGC GGTAATATAT 2340
 TTTAGAAATA ATATATCAA TAACCTCAACT AACTCCAATT TTTAATCAAT TATTAATTTT 2400
 TTTTCTTTT TAAAGAGAAA GCAGGCTTT CTAGACTTTA AAGAATAAAAG TCTTTGGGAG 2460
 GTCTCACGGT GTAGAGAGGA GCTTGAGGC CACCCGCACA AAATTCAACCC AGAGGGAAAT 2520
 CTCGTCGGAA GGACACTCAC GGCAGTTCTG GATCACCTGT GTATGTCAAC AGAAGGGATA 2580
 CCGTCTCCTT GAAGAGGGAA CTCGTCACT CCTCATGCCT GTCTAGCTCA TACACCCATT 2640
 TCTCTTGCT TCACAGGTT TAAACTGGTT TTTTGACATAC TGCTATATAA TTCTCTGTCT 2700
 CTCTCTGTTT ATCTCTCCCC TCCCTCCCT CCCCTTCTTC TCCATCTCCA TTCTTTGAA 2760
 TTTCCATCATC CCTCCATCTC AATCCCGTAT CTACGCACCC CCCCCCCCCC AGGCAAAGCA 2820
 GTGCTCTGAG TATCACATCA CACAAAAGGA ACACAAAGCGA AACACACAAA CCAGCCTCAA 2880
 CTTACACTTG GTTACTCAAA AGAACAAAGAG TCAATGGTAC TTGTCCCTAG GTTTTGGAAAG 2940
 AGGAAAACAG GAACCCACCA AACCAACCAA TCAACCAAAC AAAGAAAAAA TTCCACAATG 3000
 AAAGAATGTA TTTTGTCTTT TTGCAATTTTG GTGTATAAGC CATCAATATT CAGCAAATG 3060
 ATTCCTTTCT TTAAAAAAA AAATGTGGAG GAAAGTAGAA ATTACCAAG GTTGTGGCC 3120
 CAGGGCGTTA AATTACACAGA TTTTTTAAC GAGAAAAAACACAGAAGAA GCTACCTCAG 3180
 GTGTTTTAC CTCAGCACCT TGCTCTGTG TTTCCCTTAG AGATTTGTAA AAGCTGATAG 3240
 TTGGAGCATT TTTTATTTT TTTAATAAAA ATGAGTGTGG AAAAATAA GATATCAACT 3300
 GCCAGCCTGG AGAAGGTGAC AGTCCAAGTG TGCAACAGCT GTCTGAATT GTCTCCGCT 3360
 AGCCAAGAAC CNATATGGCC TTCTTTGGA CAAACCTTGA AAATGTTAT TT 3412

<210> 7
 <211> 1946
 <212> DNA
 <213> Homo sapiens
 <220>
 <400> 7

GCTGTAGCGG AGGGGCTGGG GGGCTGCTCT GTCCCCTTCC TTGCGCGCTG CGGCCCTCAGC 60
 CCACCCAGAG GCCGGGGTGG GAGGGCGAGT GCTCAGCTTC CCGGGTTAGG AGCCGAAAAA 120
 TTCAAATCCG AAATATTCCA CCCCAGCTCC GATGGGAAGT ACTGGACAGC CTGCTGGCTC 180
 AGTATGGTAC AGTAGAGAAC TGTGAGCAAG TGAACACCGA GAGTGAGACG GCAGTGGTGA 240
 ATGTCACCTA TTCCAACCGG GAGCAGACCA GGCAAGCCAT CATGAAGCTG AATGCCACC 300
 AGTTGGAGAA CCATGCCCTG AAGGTCTCCT ACATCCCCGA TGAGCAGATA GCACAGGGAC 360
 CTGAGAATGG GCGCCGAGGG GGCTTGGCT CTCGGGGTCA GCCCCGCCAG GGCTCACCTG 420
 TGGCAGCGGG GGCCCCAGCC AAGCAGCAGC AAGTGGACAT CCCCCCTTCGG CTCCTGGTGC 480
 CCACCCAGTA TGTGGGTGCC ATTATTGGCA AGGAGGGGC CACCATCCGC AACATCACAA 540
 AACAGACCCA GTCCAAGATA GACGTGCATA GGAAGGAGAA CGCAGGTGCA GCTGAAAAAG 600
 CCATCAGTGT GCACTCCACC CCTGAGGGCT GCTCCTCCGC TTGTAAGATG ATCTGGAGA 660
 TTATGCATAA AGAGGCTAAG GACACCAAA CGGCTGACGA GGTTCCCCTG AAGATCCTGG 720
 CCCATAATAA CTTTGTAGGG CGTCTCATTG GCAAGGAAGG ACAGAACCTG AAGAAGGTAG 780
 AGCAAGATAC CGAGACAAAA ATCACCATCT CCTCGTGTCA AGACCTTAC CTTTACAACC 840
 CTGAGAGGAC CATCACTGTG AAGGGGGCCA TCGAGAATTG TTGCAAGGGCC GAGCAGGAAA 900
 TAATGAAGAA AGTCAGGGAG GCCTATGAGA ATGATGTGGC TGCCATGAGC TCTCACCTGA 960
 TCCCTGGCCT GAACCTGGCT GCTGTAGGTC TTTTCCAGC TTCACTCCAGC GCAGTCCCGC 1020
 CGCCTCCAG CAGCGTTACT GGGGCTGCTC CCTATAGCTC CTTTATGAGC GCTCCCGAGC 1080
 AGGAGATGGT GCAGGTGTTT ATCCCCGCC AGGCAGTGGG CGCCATCATC GGCAAGAAGG 1140
 GGCAGCACAT CAAACAGCTC TCCCGGTTTG CCAGCGCCTC CATCAAGATT GCACCAACCG 1200

AACACACCTGA CTCCAAAGTT CGTATGGTTA TCATCACTGG ACCGCCAGAG GCCCAATTCA 1260
 AGGCTCAGGG AAGAACATAT GGCAAACCTCA AGGAGGAGAA CTTCTTGGT CCCAAGGAGG 1320
 AAGTGAAGCT GGAGACCAC ATACGTGTGC CAGCATCAGC AGCTGGCCGG GTCATTGGCA 1380
 AAGGTGGAAA AACGGTGAAC GAGTTGCAGA ATTTGACGGC AGCTGAGGTG GTAGTACCAA 1440
 GAGACCAGAC CCCTGATGAG AACGACCAGG TCATCGTCAA AATCATCGGA CATTCTATG 1500
 CCAGTCAGAT GGCTCAACGG AAGATCCGAG ACATCCCTGGC CCAGGTTAAG CAGCAGCATC 1560
 AGAAGGGACA GAGTAACCAG GCCCAGGCAC GGAGGAAGTG ACCAGCCCCC CCTGTCCCT 1620
 TNGAGTCCAG GACAACAAACG GGAGAATACT GAGAGTGTGC TCTCCCGGG AGGCCTGAGA 1680
 ATGAGTGGGA ATCCGGGACA CNTGGGCCGG GCTGTAGATC AGGTTTGCCC ACTTGATTGA 1740
 GAAAGATGTT CCAGTGAGGA ACCCTGATCT NTCAGCCCCA AACACCCACC CAATTGGCCC 1800
 AACACTGTNT GCCCCCTCGGG GTGTCAGAAA TTNTAGCGCA AGGCACCTTT AAACGTGGAT 1860
 TGTTTAAAGA AGCTCTCCAG GCCCCACCAA GAGGGTGGAT CACACCTCAG TGGGAAGAAA 1920
 AATAAAATTT CCTTCAGGTT TAAAAA 1946

<210> 8
 <211> 3283
 <212> DNA
 <213> Homo sapiens
 <220>
 <400> 8

GGCAGCGGAG GAGGCGAGGA GCGCCGGGTA CCGGGCCGGG GGAGCCGCGG GCTCTCGGGG 60
 AAGAGACGGA TGATGAACAA GCTTTACATC GGGAACCTGA GCCCCGCCGT CACCGCCGAC 120
 GACCTCCGGC AGCTCTTGG GGACAGGAAG CTGCCCCCTGG CGGGACAGGT CCTGCTGAAG 180
 TCCGGCTACG CCTTCGTGGA CTACCCCGAC CAGAACTGGG CCATCCGCGC CATCGAGACC 240
 CTCTCGGGTA AAGTGGAAATT GCATGGAAA ATCATGGAAG TTGATTACTC AGTCTCTAAA 300
 AAGCTAAGGA GCAGGAAAAT TCAGATTGCA AACATCCCTC CTCACCTGCA GTGGGAGGTG 360
 TTGGATGGAC TTTTGGCTCA ATATGGGACA GTGGAGAATG TGGAACAAGT CAACACAGAC 420
 ACAGAAACCG CCGTTGTCAA CGTCACATAT GCAACAAAGAG AAAAGCAAA AATAGCCATG 480
 GAGAAGCTAA GCGGGCATCA GTTGAGAAC TACTCCTTCA AGATTTCTCA CATCCGGAT 540
 GAAGAGGTGA GCTCCCTTC GCCCCCTCAG CGAGCCCAGC GTGGGGACCA CTCTCCCGG 600
 GAGCAAGGCC ACGCCCTGG GGGCACTTCT CAGGCCAGAC AGATTGATT CCCGCTGC 660
 ATCCTGGTCC CCACCCAGTT TGTGGTGCC ATCATCGGAA AGGAGGGCTT GACCATAAAG 720
 AACATCACTA AGCAGACCCA GTCCCGGGTA GATATCCATA GAAAAGAGAA CTCTGGAGCT 780
 GCAGAGAAGC CTGTCACCAT CCATGCCACC CCAGAGGGG CTTCTGAAGC ATGCCCATG 840
 ATTCTTGAAA TCATGCAAGA AGAGGCAGAT GAGACCAAAAC TAGCCGAAGA GATTCTCTG 900
 AAAATCTTGG CACACAATGG CTTGGTTGGA AGACTGATTG GAAAAGAAGG CAGAAATTG 960
 AAGAAAATTG AACATGAAAC AGGGACCAAG ATAACAAATCT CATCTTGC GGGATTGAGC 1020
 ATATACAACC CGGAAAGAAC CATCACTGTG AAGGGCACAG TTGAGGGCTG TGCCAGTGCT 1080
 GAGATAGAGA TTATGAAGAA GCTGCGTGAG GCCTTGAAA ATGATATGCT GGCTGTTAAC 1140
 ACCCACTCCG GATACTTCTC CAGCTGTAC CCCCACATCACC AGTTGGCCC GTTCCCGCAT 1200
 CATCACTCTT ATCCAGAGCA GGAGATTGTG AATCTCTTCA TCCCAACCCA GGCTGTGGC 1260
 GCCATCATCG GGAAGAAGGG GGCACACATC AAACAGCTGG CGAGATTGCG CGGAGCCTCT 1320
 ATCAAGATTG CCCCTGCGGA AGGCCAGAC GTCAGCGAAA GGATGGTCAT CATCACCGGG 1380
 CCACCGGAAG CCCAGTTCAA GGCCCAGGGG CGGATCTTG GAAAAGTGA AGAGGAAAC 1440
 TTCTTTAACCC CAAAGAAGA AGTGAAGCTG GAAGCGCATA TCAGAGTGCC CTCTCCACA 1500
 GCTGGCCGGG TGATTGGCAA AGGTGGCAAG ACCGTGAACG AACTGCAGAA CTTAACCAAGT 1560
 GCAGAAGTCA TCGTGCTCG TGACCAAACG CCAGATGAAA ATGAGGAAGT GATGTCAGA 1620
 ATTATCGGGC ACTTCTTGC TAGCCAGACT GCACAGCGA AGATCAGGG AATTGTACAA 1680
 CAGGTGAAGC AGCAGGAGCA GAAATACCCCT CAGGGAGTCG CCTCACAGCG CAGCAAGTGA 1740
 GGCTCCCACA GGCACCAAGCA AAACAAACGGA TGAATGTAGC CTTCCAACA CCTGACAGAA 1800
 TGAGACCAAA CGCAGCCAGC CAGATCGGGA GCAAACAAA GACCACATCGA GGAATGAGAA 1860
 GTCTGCGGAG GCGGCCAGGG ACTCTGCCGA GGCCCTGAGA ACCCCAGGGG CCGAGGAGGG 1920
 GCGGGGAAGG TCAGCCAGGT TTGCCAGAAC CACCGAGCCC CGCCTCCCGC CCCCCAGGGC 1980
 TTCTGCAGGC TTCAGCCATC CACTTCACCA TCCACTCGGA TCTCTCCTGA ACTCCACGA 2040
 CGCTATCCCT TTTAGTTGAA CTAACATAGG TGAACGTGTT CAAAGCCAAG CAAAATGCAC 2100
 ACCCTTTTC TGTGGCAAAT CGTCTCTGTA CATGTGTGTA CATATTAGAA AGGGAAGATG 2160
 TTAAGATATG TGGCCTGTGG GTTACACAGG GTGCCCTGCAG CGGTAATATA TTTTAGAAAT 2220
 AATATATCAA ATAACCTAAC TAACCTCAAAT TTTTAATCAA TTATTAATT TTTTTCTTT 2280

TTAAAGAGAA AGCAGGCTT TCTAGACTTT AAAGAATAAA GTCTTGGGA GGTCTCACGG 2340
TGTAGAGAGG AGCTTGAGG CCACCCGCAC AAAATTCAAC CAGAGGGAAA TCTCGTCGGA 2400
AGGACACTCA CGGCAGTTCT GGATCACCTG TGTATGTCAA CAGAAGGGAT ACCGTCCTCCT 2460
TGAAGAGGAA ACTCTGTCAC TCCTCATGCC TGTCTAGCTC ATACACCCAT TTCTCTTGC 2520
TTCACAGGTT TTAAACTGGT TTTTGACATA CTGCTATATA ATTCTCTGTC TCTCTCTGTT 2580
TATCTCTCCC CTCCCTCCCC TCCCCTCTT CTCCATCTCC ATTCTTTGA ATTCCTCAT 2640
CCCTCCATCT CAATCCCGTA TCTACGCACC CCCCCCCCCC CAGGCAAAGC AGTGCTCTGA 2700
GTATCACATC ACACAAAAGG AACAAAAGCG AAACACACAA ACCAGCCTCA ACTTACACTT 2760
GGTTACTCAA AAGAACAAAGA GTCAATGGTA CTTGTCCTAG CGTTTGGA GAGGAAAACA 2820
GGAACCCACC AAACCAACCA ATCAACCAAA CAAAGAAAAA ATTCCACAAAT GAAAGAATGT 2880
ATTTTGTCTT TTTGCATTTT GGTGTATAAG CCATCAATAT TCAGCAAAT GATTCTTTC 2940
TTTAAAAAAA AAAATGTGGA GGAAAGTAGA AATTACCAA GGTTGTTGGC CCAGGGCGTT 3000
AAATTACACAG ATTTTTTAA CGAGAAAAAC ACACAGAAGA AGCTACCTCA GGTGTTTTA 3060
CCTCAGCACC TTGCTCTTGT GTTCCCTTA GAGATTGT AAAGCTGATA GTTGGAGCAT 3120
TTTTTATT TTTTAATAAA AATGAGTTGG AAAAAAAATA AGATATCAAC TGCCAGCCTG 3180
GAGAAGGTGA CAGTCCAAGT GTGCAACAGC TGTCTGAAT TGTCTCCGC TAGCCAAGAA 3240
CCNATATGGC CTTCTTTGG ACAAAACCTTG AAAATGTTA TTT 3283

<210> 9
<211> 21
<212> DNA
<213> Homo sapiens
<220>
<400> 9
gaagtatct tcaaggacgc c 21

<210> 10
<211> 22
<212> DNA
<213> Homo sapiens
<220>
<400> 10
ctgcaagggg ttttgctggg cg 22

<210> 11
<211> 22
<212> DNA
<213> Homo sapiens
<220>
<400> 11
tccttgcgcg ctgcggcctc ag 22

<210> 12
<211> 23
<212> DNA
<213> Homo sapiens
<220>
<400> 12
ccaactggtg gccattcagc ttc 23

<210> 13
<211> 22
<212> DNA
<213> Homo sapiens
<220>
<400> 13
gctttggg gacaggaagg tc 22

<210> 14
<211> 22

<212> DNA
<213> Homo sapiens
<220>
<400> 14
gacgttgaca acggcggtt ct 22

<210> 15
<211> 12
<212> DNA
<213> artificial sequence
<220>
<221> adaptor
<222> 1...12
<400> 15
aatttgcgtt ga 12

<210> 16
<211> 12
<212> DNA
<213> artificial sequence
<220>
<221> adaptor
<222> 1...12
'00> 16
tttgttca tg 12

'00> 17
'1> 12
'2> DNA
<213> artificial sequence
<220>
<221> adaptor
<222> 1...12
<400> 17

aattttccct cg 12

<210> 18
<211> 24
<212> DNA
<213> artificial sequence
<220>
<221> adaptor
<222> 1...24
<400> 18

agcactctcc agcctctcac catg 24

<210> 19
<211> 24
<212> DNA
<213> artificial sequence
<220>
<221> adaptor
<222> 1...24
<400> 19
accgacgtcg actatcatg catg 24

<210> 20
<211> 24

*<212> DNA
<213> artificial sequence
<220>
<221> adaptor
<222> 1...24
<400> 20

aggcaactgt gctatccgag catg 24

<210> 21
<211> 8
<212> DNA
<213> artificial sequence
<220>
<221> adaptor
<222> 1...8
<400> 21

gtgagagg 8

<210> 22
<211> 8
<212> DNA
<213> artificial sequence
<220>
<221> adaptor
<222> 1...8
<400> 22

catggatg 8

<210> 23
<211> 8
<212> DNA
<213> artificial sequence
<220>
<221> adaptor
<222> 1...8
<400> 23

ctcggtata 8