<u>Course</u> > <u>Week 3</u>... > <u>3.16 Co</u>... > Quiz 3

Quiz 3

1

1/1 point (graded) $|A \cup B| = |A| + |B|$ when

- $lap{1}{2} A$ and B are disjoint, $lap{1}{2}$
- ightharpoons A is the complement in B, ightharpoons
- ightharpoons A and B do not intersect, ightharpoons
- lacksquare One of A and B is empty. \checkmark

Submit

1 Answers are displayed within the problem

2

1/1 point (graded)

from slow to fast, rank the functions n^2 , 2^n , n in terms of their growth speed as n increases.

 \bullet $n, n^2, 2^n \checkmark$

Correct: Video: Counting - Cartesian Products Submit Answers are displayed within the problem Answers are displayed within the problem The point (graded) The set of functions P^Q represents: The set of functions from P to P The number of functions from P to P The number of functions from P to P The number of functions from P to P	● $2^n, n, n^2$ ● $2^n, n^2, n$ Answer Correct: Video: Counting - Cartesian Products Submit ● Answers are displayed within the problem 3 1/1 point (graded) For sets P and Q , the notation P^Q represents: ● The set of functions from Q to P ● The number of functions from Q to P • The number of functions from P to Q Answer Correct: Video: Counting - Cartesian Products	
Answer Correct: Video: Counting - Cartesian Products Submit Answers are displayed within the problem Answers are displayed within the problem 13 1/1 point (graded) For sets P and Q , the notation P^Q represents: The set of functions from Q to P The set of functions from P to Q The number of functions from P to Q The number of functions from P to Q Answer Correct: Video: Counting - Cartesian Products Submit	Answer Correct: Video: Counting - Cartesian Products Submit Answers are displayed within the problem Answers are displayed within the problem The point (graded) For sets P and Q , the notation P^Q represents: The set of functions from Q to P The set of functions from P to Q The number of functions from P to Q Answer Correct: Video: Counting - Cartesian Products	\circ n , 2^n , n^2
Answer Correct: Video: Counting - Cartesian Products Submit Answers are displayed within the problem Answers are displayed within the problem Answer Correct: Video: Counting - Cartesian Products Answer Correct: Video: Counting - Cartesian Products Submit	Answer Correct: Video: Counting - Cartesian Products Submit Answers are displayed within the problem Answers are displayed within the problem The point (graded) For sets P and Q , the notation P^Q represents: The set of functions from Q to P The set of functions from P to Q The number of functions from P to Q The number of functions from P to Q Answer Correct: Video: Counting - Cartesian Products	$\bigcirc \ 2^n$, n , n^2
Correct: Video: Counting - Cartesian Products Submit Answers are displayed within the problem Answers are displayed within the problem The point (graded) The set of functions from Q to P The set of functions from Q to P The number of functions from Q to P The number of functions from Q to Q Answer Correct: Video: Counting - Cartesian Products Submit	Correct: Video: Counting - Cartesian Products Submit Answers are displayed within the problem Answers are displayed within the problem The point (graded) The set of functions from Q to $P \checkmark$ The set of functions from P to Q The number of functions from P to P The number of functions from P to P The number of functions from P to P Answer Correct: Video: Counting - Cartesian Products	\circ 2^n , n^2 , n
Answer Sare displayed within the problem Answer Sare displayed within the problem Answer Correct: Video: Counting - Cartesian Products Answer Submit Answer Sare displayed within the problem Answer Submit	Answers are displayed within the problem 3 1/1 point (graded) For sets P and Q , the notation P^Q represents: • The set of functions from Q to P • The set of functions from Q to Q • The number of functions from Q to Q • The number of functions from Q to Q • The number of functions from Q to Q • The number of functions from Q to Q	
3 I/1 point (graded) For sets P and Q , the notation P^Q represents: The set of functions from Q to P The set of functions from P to Q The number of functions from P to P The number of functions from P to P The number of functions from P to P Submit	3 1/1 point (graded) For sets P and Q , the notation P^Q represents: • The set of functions from Q to P • The set of functions from P to Q • The number of functions from P to Q • The number of functions from P to Q • Answer Correct: Video: Counting - Cartesian Products	Submit
For sets P and Q , the notation P^Q represents: The set of functions from Q to P The set of functions from P to Q The number of functions from Q to P The number of functions from P to Q Answer Correct: Video: Counting - Cartesian Products Submit	For sets P and Q , the notation P^Q represents: The set of functions from Q to P The set of functions from P to Q The number of functions from P to Q The number of functions from P to Q Answer Correct: Video: Counting - Cartesian Products	Answers are displayed within the problem
For sets P and Q , the notation P^Q represents: The set of functions from Q to P The set of functions from P to Q The number of functions from Q to P The number of functions from P to Q Answer Correct: Video: Counting - Cartesian Products Submit	For sets P and Q , the notation P^Q represents: The set of functions from Q to P The set of functions from P to Q The number of functions from P to Q The number of functions from P to Q Answer Correct: Video: Counting - Cartesian Products	3
For sets P and Q , the notation P^Q represents: The set of functions from Q to P The set of functions from P to Q The number of functions from Q to P The number of functions from P to Q Answer Correct: Video: Counting - Cartesian Products Submit	For sets P and Q , the notation P^Q represents: The set of functions from Q to P The set of functions from P to Q The number of functions from Q to P The number of functions from P to Q Answer Correct: Video: Counting - Cartesian Products	
 The set of functions from Q to P ✓ The set of functions from P to Q The number of functions from Q to P The number of functions from P to Q Answer Correct: Video: Counting - Cartesian Products Submit	 The set of functions from Q to $P \checkmark$ The set of functions from P to Q The number of functions from Q to P The number of functions from P to Q Answer Correct: Video: Counting - Cartesian Products	
 The set of functions from P to Q The number of functions from Q to P The number of functions from P to Q Answer Correct: Video: Counting - Cartesian Products Submit	 The set of functions from P to Q The number of functions from Q to P The number of functions from P to Q Answer Correct: Video: Counting - Cartesian Products	
 The number of functions from Q to P The number of functions from P to Q Answer Correct: Video: Counting - Cartesian Products Submit	 The number of functions from Q to P The number of functions from P to Q Answer Correct: Video: Counting - Cartesian Products	$ullet$ The set of functions from Q to $P \ldot$
O The number of functions from P to Q Answer Correct: Video: Counting - Cartesian Products Submit	The number of functions from P to Q Answer Correct: Video: Counting - Cartesian Products	lacksquare The set of functions from P to Q
Answer Correct: Video: Counting - Cartesian Products Submit	Answer Correct: Video: Counting - Cartesian Products	ullet The number of functions from Q to P
Correct: Video: Counting - Cartesian Products Submit	Correct: Video: Counting - Cartesian Products	lacksquare The number of functions from P to Q
Correct: Video: Counting - Cartesian Products Submit	Correct: Video: Counting - Cartesian Products	
	Submit	
Answers are displayed within the problem		Submit
Answers are displayed within the problem		
	Answers are displayed within the problem	Answers are displayed within the problem

1/1 point (graded)

Let X be the set of 26 English letters. Then $|\{(x,y): x,y\in X, x
eq y\!\!\!/|=$

- 26 × 25

 ✓
- extstyle 26 imes26
- 026 + 26
- \circ 26 + 25

Answer

Correct: Video: Counting - Mix It Up

Submit

1 Answers are displayed within the problem

5

1/1 point (graded)

If $G=\{0,2,4,6,8\}$, then what is $|G^4|$?

- \bullet 5^4
- $^{\circ}$ 4^{5}
- $\ \, \circ \ \, 5\times 4\times 3\times 2\times 1$
- 0 + 2 + 4 + 6 + 8

Answer

Correct: Video: Counting - Mix It Up

Submit

1 Answers are displayed within the problem

© All Rights Reserved