微机原理与接口技术

通用并行IO接口GPIO

华中科技大学 左冬红

AXI GPIO

GPIO寄存器存储空间映射

寄存器名称	偏移地址	初始值	含义
GPIO_DATA	0x0	0	32位宽,通道GPIO_IO数据寄存
			器,D _i 对应GPIO_IO _i
GPIO_TRI	0x4	Oxfffffff	32位宽,通道GPIO_IO控制寄存
			器,Di对应GPIO_IOi的传输方向控
			制。1-输入; 0-输出。
GPIO2_DATA	0x8	0	32位宽,通道GPIO2_IO数据寄存
			器,D _i 对应GPIO2_IO _i
GPIO2_TRI	Охс	Oxfffffff	32位宽,通道GPIO2_IO控制寄存
			器,Di对应GPIO2_IOi的传输方向
			控制。1-输入;0-输出。

GPIO程序控制流程

写GPIO(x)_TRI寄存器配置GPIO(x)数据传输方向 读、写GPIO(x)_DATA数据寄存器

GPIO简单并行数字外设接口电路

GPIO存储空间映射

AXI_GPIO_0接口基地址为0x4000 0000, AXI_GPIO_1接口基地址为0x4001 0000

GPIO	寄存器	地址	有效数据位	读写控制
AXI_GPIO_0	GPIO_DATA	0x4000 0000	D _{15~0}	读
	GPIO_TRI	0×4000 0004	D _{15~0}	写
	GPIO2_DATA	0x4000 0008	D _{15~0}	写
	GPIO2_TRI	0x4000 000c	D _{15~0}	写
AXI_GPIO_1	GPIO_DATA	0x4001 0000	D _{7~0}	写
	GPIO_TRI	0x4001 0004	D _{7~0}	写
	GPIO2_DATA	0x4001 0008	D _{3~0}	写
	GPIO2_TRI	0x4001 000c	D _{3~0}	写

读入16位开关状态

写GPIO(x)_TRI寄存器配置GPIO(x)数据传输方向 读、写GPIO(x)_DATA数据寄存器

unsigned short key; Xil_Out16(0x40000004,0xffff); key = Xil_In16(0x40000000)&0xffff;

16个LED间隔点亮

Xil_Out16(0x4000000c,0x0);

Xil Out16(0x40000008,0x5555);

写GPIO(x)_TRI寄存器配置GPIO(x)数据传输方向

独立开关状态实时反应到对应LED

读、写GPIO(x)_DATA数据寄存器

Xil_Out16(0x40000004,0xffff);//设置AXI_GPIO_0通道GPIO输入Xil_Out16(0x4000000c,0x0);//设置AXI_GPIO_0通道GPIO2输出while (1)

Xil_Out16(0x40000008, Xil_In16(0x40000000)&0xffff);

控制4位七段数码管显示数字0~3

数	1O ₇	106	1O ₅	1O ₄	IO ₃	IO_2	IO ₁	IO ₀	段码
字	(DP)				(CD)				
0	1	1	0	0	0	0	0	0	0xc0
1	1	1	1	1	1	0	0	1	0xf9
2	1	0	1	0	0	1	0	0	0xa4
3	1	0	1	1	0	0	0	0	0xb0

数码管	IO ₃	IO ₂	IO ₁	IO ₀	佐码
控制信号	(COM_3)	(COM ₂)	(COM_1)	(COM_0)	
COM ₃	0	1	1	1	0x7
COM ₂	1	0	1	1	0xb
COM ₁	1	1	0	1	0xd
COM_0	1	1	1	0	0xe


```
unsigned char segcode[8]=\{0xc0,0xf9,0xa4,0xb0\};
unsigned char pos=0xf7;
Xil Out8(0x40010004,0x0);
Xil Out8(0x4001000c,0x0);
while(1){ //循环扫描
      for(i=0;i<4;i++) //4位扫描一遍
         Xil Out8(0x40010000, segcode[i]);//
         Xil Out8(0x40010008,pos); //
         for (j=0; j<10000; j++); //
         pos=pos>>1;//
      pos=0xf7; //
```

4位七段数码管显示数字0~3

写GPIO(x)_TRI寄存器配置GPIO(x)数据传输方向 读、写GPIO(x)_DATA数据寄存器

同一控制程序将各个独立开关SW15~0状态实时反应到对应 LED LD15~0上,同时将16位独立开关SW15~0表示的二进制数 以十六进制形式显示在4位七段数码管上

程序流程图(主)

 $segcode[8] = \{0xc0,0xf9,0xa4,0xb0\}$

Sw = 0x5678

配置GPIO IO工作方式

读入开关状态

输出开关状态到LED

更新数码管显示缓冲区

控制1位数码管显示缓冲区对应位置的段码

segtable[16]= $\{0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e,}$

(i)

(3-i) | 4*i

数字	数位 索引	段码	显示缓 冲区索 引	右移二 进制数 位
5	3	0x92	0	3*4
6	2	0x82	1	2*4
7	1	0xf8	2	1*4
8	0	0x80	3	0*4

程序流程图(子)-更新显示缓冲区

 $segcode[8] = \{0xc0,0xf9,0xa4,0xb0\}$

Sw = 0x5678

segtable[16]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e,}

(i)

(3-i)

4*i

数字	右移二进制数位	数位索引	显示缓冲区索引
5	3*4	3	0
6	2*4	2	1
7	1*4	1	2
8	0*4	0	3

数码管实时显示开关值的程序段

Xil_Out16(0x4001000c,0x0); Xil_Out16(0x40000004,0xffff); Xil_Out16(0x4000000c,0x0); for(int i=0;i<4;i++)
{
 short Key=Xil_In16(0x40000000);//
 Xil_Out16(0x40000008, Key);//
 for(int digit_index=0;digit_index<4;digit_index++)//
 segcode[3- digit_index]=segtable[(Key >> (4*digit_index))&0xf];
 Xil_Out8(0x40010000,segcode[i]);//
 Xil_Out8(0x40010008,poscode[i]); //
 for(int j=0;j<10000;j++);//延射控制
 }
}

小结

- •GPIO特征
 - •输入缓冲
 - •输出锁存
 - •10方向可编程配置,且各位独立控制
- •GPIO编程
 - 写控制寄存器控制输入、输出方向
 - •读写数据寄存器实现输入、输出

下一讲:外设控制器EPC,自学,大字节序实例