Practitioner's Docket No.: 796 032 **PATENT**

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the application of:

Takao OHNISHI and Toshikazu HIROTA

Filed: Concurrently Herewith

For:

LIQUID INJECTION APPARATUS

Mail Stop Patent Application Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450 I hereby certify that this paper is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 addressed to Mail Stop Patent Application, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on October 16, 2003 under "EXPRESS MAIL" mailing label number EL 975170277 US.

Elizabeth A. VanAntwerp

SUBMISSION OF CERTIFIED COPIES OF PRIORITY DOCUMENTS

Sir:

The benefit of the filing date of the following prior foreign application filed in the following foreign country is hereby requested for the above-identified application and the priority provided in 35 USC 119 is hereby claimed:

Country	Application Number	Filing Date
Japan	2002-304922	October 18, 2002
Japan	2003-75809	March 19, 2003

In support of this claim, certified copies of the Japanese Applications are enclosed herewith.

Respectfully submitted,

October 16, 2003

Date

SPB/eav

BURR & BROWN P.O. Box 7068 Syracuse, NY 13261-7068

Telephone: (315) 233-8300 Facsimile: (315) 233-8320

Customer No.: 025191

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年10月18日

出 願 番 号

Application Number:

特願2002-304922

[ST.10/C]:

1.

[JP2002-304922]

出 願 人
Applicant(s):

日本碍子株式会社

2003年 6月30日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

PA02-261

【あて先】

特許庁長官 殿

【国際特許分類】

F02M 51/02

【発明者】

【住所又は居所】

愛知県名古屋市瑞穂区須田町2番56号 日本碍子株式

会社内

【氏名】

大西 孝生

【発明者】

【住所又は居所】

愛知県名古屋市瑞穂区須田町2番56号 日本碍子株式

会社内

【氏名】

廣田 寿一

【発明者】

【住所又は居所】

愛知県名古屋市瑞穂区須田町2番56号 日本碍子株式

会社内

【氏名】

武内 幸久

【特許出願人】

【識別番号】

000004064

【氏名又は名称】

日本碍子株式会社

【代理人】

【識別番号】

100088971

【弁理士】

【氏名又は名称】

大庭 咲夫

【選任した代理人】

【識別番号】

100115185

【弁理士】

【氏名又は名称】

加藤 慎治

【先の出願に基づく優先権主張】

【出願番号】

特願2002- 38411

【出願日】

平成14年 2月15日

【手数料の表示】

【予納台帳番号】

075994

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0104913

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 液体噴射装置

【特許請求の範囲】

【請求項1】

液体噴射空間に一端が露呈した液体吐出用ノズル、圧電素子駆動信号により作動される圧電/電歪素子、前記圧電/電歪素子の作動により容積が変化されるとともに前記液体吐出用ノズルの他端が接続されたチャンバー、前記チャンバーに接続された液体供給通路、及び前記液体供給通路と外部とを連通する液体注入口を備えてなる噴射デバイスと、

液体を加圧する加圧手段と、

前記加圧手段により加圧された液体が供給されるとともに、電磁弁開閉用信号により駆動される電磁式開閉弁と同電磁式開閉弁により開閉される吐出孔とを備えてなり、同電磁式開閉弁が駆動されて同吐出孔を開放したとき前記加圧された液体を同吐出孔を介して前記噴射デバイスの液体注入口に吐出する電磁開閉式吐出弁と、

前記圧電素子駆動信号を発生する圧電素子駆動信号発生手段と前記電磁弁開閉 用信号を発生する電磁弁開閉用信号発生手段とを含む電気制御装置とを具備し、

前記電磁開閉式吐出弁から吐出された液体を前記チャンバーの容積変化により 微粒子化して前記液体吐出用ノズルから前記液体噴射空間に液滴として噴射する 液体噴射装置であって、

前記電気制御装置は、少なくとも前記電磁弁開閉用信号の発生又は同電磁弁開閉用信号の発生の停止により前記液体供給通路内の液体の圧力が増大又は減少しているとき、前記圧電素子駆動信号を発生させて前記圧電/電歪素子を作動させるとともに、前記電磁弁開閉用信号が消滅して前記液体供給通路内の液体の圧力が一定の低圧力であるとき前記圧電素子駆動信号を発生しないように構成された液体噴射装置。

【請求項2】

請求項1に記載の液体噴射装置であって、

前記電気制御装置は、前記電磁弁開閉用信号の発生により前記液体供給通路内

の液体の圧力が前記一定の低圧力から増大を開始する直前の時点から前記圧電素 子駆動信号の発生を開始するように構成された液体噴射装置。

【請求項3】

請求項1又は請求項2に記載の液体噴射装置であって、

前記電気制御装置は、前記電磁弁開閉用信号の発生の停止により前記液体供給 通路内の液体の圧力が前記一定の低圧力に減少した直後の時点まで前記圧電素子 駆動信号の発生を継続するように構成された液体噴射装置。

【請求項4】

請求項1乃至請求項3の何れか一項に記載の液体噴射装置であって、

前記電気制御装置は、前記電磁弁開閉用信号により前記液体供給通路内の液体 の圧力が一定の高圧力となっている期間において前記圧電素子駆動信号を発生し ないように構成された液体噴射装置。

【請求項5】

請求項1乃至請求項3の何れか一項に記載の液体噴射装置であって、

前記電気制御装置は、前記電磁弁開閉用信号により前記液体供給通路内の液体の圧力が前記一定の低圧力よりも高い圧力となっているとき前記圧電素子駆動信号を発生させるとともに、前記電磁弁開閉用信号の発生開始直後において液体供給通路内の液体の圧力が急激に増大し、その後、同圧力の増大時における圧力変化率の絶対値よりも小さい絶対値を有する圧力変化率で同液体供給通路内の液体の圧力が次第に減少するように同電磁弁開閉用信号を発生するように構成された液体噴射装置。

【請求項6】

請求項1乃至請求項5の何れか一項に記載の液体噴射装置であって、

前記電気制御装置は、前記液体供給通路内の液体の圧力に応じて前記圧電素子 駆動信号の周波数を変化させるように構成された液体噴射装置。

【請求項7】

請求項6に記載の液体噴射装置において、

前記電気制御装置は、前記液体供給通路内の液体の圧力が大きいほど前記圧電素子駆動信号の周波数が高くなるように同圧電素子駆動信号を変更するように構

成された液体噴射装置。

【請求項8】

請求項1乃至請求項7の何れか一項に記載の液体噴射装置であって、

前記電気制御装置は、前記液体供給通路内の液体の圧力が大きいほど前記圧電素子駆動信号による前記チャンバーの容積変化量を小さくするように構成された液体噴射装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、液体噴射空間内に液体を微粒子化して噴射する液体噴射装置に関する。

[0002]

この種の液体噴射装置には、内燃機関用燃料噴射装置が知られている。内燃機 関用燃料噴射装置は、液体を加圧するための加圧ポンプと電磁式噴射弁とを有し てなる所謂電気制御燃料噴射装置であり、広く実用化されている。ところが、電 気制御燃料噴射装置においては、加圧ポンプで加圧された燃料が電磁式噴射弁の 噴射口より噴射されるようになっているため、特に、電磁式噴射弁の開弁作動時 及び閉弁作動時に噴射される液体の速度(噴射速度)が小さい。このため、噴射 された燃料の液滴の大きさが大きくなり、またその大きさが均一でない。このよ うな燃料の液滴の大きさや大きさの不均一性は、燃焼時の未燃燃料を増加させる ことになり、ひいては有害排出ガスの増加をまねいている。

[0003]

一方、従来より、ピエソ電歪素子の作動により液体供給通路内の液体を加圧し、同液体を微小液滴として吐出口から吐出する液滴吐出装置が提案されている。 (例えば、特許文献1参照)。このような装置は、従来のインクジェット吐出装置の原理(例えば、特許文献2参照。)を応用していて、吐出液滴(噴射される燃料の液滴)を上記電気制御燃料噴射装置に比べて小さく、且つ均一とすることができるので、燃料の微粒子化の点で優れた装置であるといえる。

[0004]

【特許文献1】

特開昭54-90416号公報(第2頁、第5図)

【特許文献2】

特開平6-40030号公報(第2-第3頁、第1図)

[0005]

【発明が解決しようとする課題】

ところで、インクジェット吐出装置は、温度、圧力等の変動が少なく、比較的 定常的な周囲環境下(例えば、事務所、学校等の室内)で使用された場合、液体 を微細な粒子として噴射するという所期の性能を発揮し得る。しかしながら、内 燃機関等の様に、運転条件等の変動等により激しく変動する周囲環境下で使用さ れた場合、上記燃料を微粒子化する性能を十分に発揮することは一般に困難であ る。従って、インクジェット吐出装置の原理を応用した装置であって、内燃機関 のように周囲環境が激しく変化する機械装置に対し、液体の微粒子化を十分に達 成した上で同液体を噴射し得る液体(燃料)噴射装置は未だ提供できていないの が現状である。

[0006]

従って、本発明の目的は、液体噴射空間の状況が激しく変動するような場合であっても、粒径の小さい液滴を安定して噴射することができる液体噴射装置を提供することにある。

[0007]

【発明の概要】

本発明による液体噴射装置は、液体噴射空間に一端が露呈した液体吐出用ノズル、圧電素子駆動信号により作動される圧電/電歪素子、前記圧電/電歪素子の作動により容積が変化されるとともに前記液体吐出用ノズルの他端が接続されたチャンバー、前記チャンバーに接続された液体供給通路、及び前記液体供給通路と外部とを連通する液体注入口を備えてなる噴射デバイスと、液体を加圧する加圧手段と、前記加圧手段により加圧された液体が供給されるとともに、電磁弁開閉用信号により駆動される電磁式開閉弁と同電磁式開閉弁により開閉される吐出孔とを備えてなり、同電磁式開閉弁が駆動されて同吐出孔を開放したとき前記加圧

された液体を同吐出孔を介して前記噴射デバイスの液体注入口に吐出する電磁開閉式吐出弁と、前記圧電素子駆動信号を発生する圧電素子駆動信号発生手段と前記電磁弁開閉用信号を発生する電磁弁開閉用信号発生手段とを含む電気制御装置とを具備し、前記電磁開閉式吐出弁から吐出された液体を前記チャンバーの容積変化により微粒子化して前記液体吐出用ノズルから前記液体噴射空間に液滴として噴射する液体噴射装置であって、前記電気制御装置は、少なくとも前記電磁弁開閉用信号の発生又は同電磁弁開閉用信号の発生の停止により前記液体供給通路内の液体の圧力が増大又は減少しているとき、前記圧電素子駆動信号を発生させて前記圧電/電歪素子を作動させるとともに、前記電磁弁開閉用信号が消滅して前記液体供給通路内の液体の圧力が一定の低圧力であるとき前記圧電素子駆動信号を発生しないように構成されたことを特徴としている。

[0008]

これによれば、加圧手段で加圧された液体が電磁開閉式吐出弁から噴射デバイスへと吐出され、その液体は噴射デバイスのチャンバーの容積変化により微粒子化された後に液体吐出用ノズルから噴射される。このように、液体噴射空間への液体噴射に必要な圧力は加圧手段により発生されることから、適用する機械の運転条件等の変動などにより、液体噴射空間の環境(例えば、圧力や温度)が激しく変動しても、同液体を所望の微細な粒子として安定して噴射、供給することができる。

[0009]

また、従来のキャブレター(気化器)は、液滴吐出空間である吸気管内の空間の空気流速に応じて燃料(液体)流量が決定され、霧化の程度も同空気流速に依存して変化したが、上記本発明の液体噴射装置によれば、空気流速に拘らず良好な霧化状態を維持した燃料(液体)を必要量だけ吐出することができる。加えて、本発明による液体噴射装置によれば、従来の燃料噴射用インジェクタのノズル部にアシストエアを供給することで燃料の霧化を促進する装置のように、アシストエアを供給するためのコンプレッサを必ずしも必要としないので、装置を廉価なものとすることができる。

[0010]

さらに、電気制御装置は、少なくとも電磁弁開閉用信号の発生により液体供給 通路内の液体の圧力が増大しているとき、又は電磁弁開閉用信号の発生の停止に より液体供給通路内の液体の圧力が減少しているとき、前記圧電素子駆動信号を 発生させて前記圧電/電歪素子を作動させる。従って、液体の圧力が増大又は減 少中であって同液体の噴射圧力が比較的小さいため、液体の噴射速度が十分では なく、同液体を十分には微粒子化し難い場合であっても、圧電/電歪素子の作動 によるチャンバーの容積変化により同液体を適切に微粒子化することができる。

[0011]

また、前記電磁弁開閉用信号が消滅して前記液体供給通路内の液体の圧力が一定の低圧力(加圧手段により加圧された液体が液体供給通路内には供給されない状態が継続した場合に収束する圧力であって、変化しても良い。)であるとき、即ち、液体が噴射デバイスの液体吐出用ノズルから液体噴射空間に噴射されることがないとき、噴射デバイスは液体を微粒子化するための作動を行う必要がない。そこで上記電気制御装置は、かかる場合に圧電素子駆動信号を発生しないように構成されている。これにより、液体噴射装置による無駄な電力消費を回避することができる。

[0012]

この場合、前記電気制御装置は、前記電磁弁開閉用信号の発生により前記液体 供給通路内の液体の圧力が前記一定の低圧力から増大を開始する直前の時点から 前記圧電素子駆動信号の発生を開始するように構成されることが好適である。

[0013]

これによれば、前記電磁弁開閉用信号の発生により前記液体供給通路内の液体の圧力が上昇を開始する時点、即ち、噴射デバイスの吐出用ノズルから液滴の噴射が開始される可能性がある時点では、既に前記圧電素子駆動信号により圧電/電歪素子が駆動され、液体に振動エネルギーが加わっているから、液体の噴射当初から確実に微粒子化した液滴を噴射することができる。

[0014]

また、前記電気制御装置は、前記電磁弁開閉用信号の発生の停止により前記液体供給通路内の液体の圧力が前記一定の低圧力に減少した直後の時点まで前記圧

電素子駆動信号の発生を継続するように構成されることが好適である。

[0015]

前記電磁弁開閉用信号の発生が停止された時点から暫くの間は、前記液体供給 通路内の液体の圧力は前記一定の低圧力よりも高い圧力となっているから、噴射 デバイスの液体吐出用ノズルから液体の噴射が行われる。従って、上記構成のよ うに、電磁弁開閉用信号の発生の停止により前記液体供給通路内の液体の圧力が 前記一定の低圧力に減少した直後の時点まで圧電素子駆動信号を発生させておけ ば、電磁弁開閉用信号の発生が停止された時点より後の時点であって噴射デバイ スの液体吐出用ノズルから液滴の噴射が行われ続けている時点において、圧電素 子駆動信号により圧電/電歪素子が駆動されて液体に振動エネルギーを加えてお くことができる。この結果、電磁弁開閉用信号の消滅後においても(液体が噴射 されなくなるまで)、液体を確実に微粒子化して噴射することができる。

[0016]

一方、上記何れかの液体噴射装置において、前記電気制御装置は、前記電磁弁 開閉用信号により前記液体供給通路内の液体の圧力が一定の高圧力(この圧力は 多少変化してもよい。)となっている期間において前記圧電素子駆動信号を発生 しないように構成されることも好適である。

[0017]

電磁弁開閉用信号が発生されることにより液体供給通路内の液体の圧力が十分 大きな圧力にまで増大すると、噴射デバイスの吐出用ノズルから液体噴射空間に 噴射される液体の速度(噴射速度、或いは、液柱の移動速度)は十分に大きくな り、液体は表面張力により粒径が比較的小さい液滴となる。従って、このような 場合は、上記構成のように、圧電素子駆動信号を発生しないようにすることによ り液体噴射装置の消費電力を低減することができる。

[0018]

また、前記電気制御装置は、前記電磁弁開閉用信号により前記液体供給通路内の液体の圧力が前記一定の低圧力よりも高い圧力となっているとき前記圧電素子駆動信号を発生させるとともに、前記電磁弁開閉用信号の発生開始直後において液体供給通路内の液体の圧力が増大し、その後、同圧力の増大時における圧力変

化率の絶対値よりも小さい絶対値を有する圧力変化率で同液体供給通路内の液体 の圧力が次第に減少するように同電磁弁開閉用信号を発生させてもよい。

[0019]

これによれば、前記電磁弁開閉用信号の発生開始直後において液体供給通路内の液体の圧力が急激に増大するので、同電磁弁開閉用信号の発生により液滴の噴射が直ちに開始される。また、その後、液体供給通路内の液体の圧力は比較的緩やかに減少し続ける。従って、先に噴射された液滴の速度の方が後に噴射された液滴の速度よりも大きくなる。この結果、液滴同士が衝突して粒径の大きい液滴が形成されてしまう可能性を低減することができる。

[0020]

また、前記電気制御装置は、前記液体供給通路内の液体の圧力に応じて前記圧 電素子駆動信号の周波数を変化させるように構成されることが好適である。

[0021]

液体供給通路内の液体の圧力の大きさは、液体吐出用ノズルから噴射される液体の速度(噴射速度)を決定付けるので、同液体の圧力が異なれば液体の微粒子化の程度も異なることになる。従って、上記構成のように、液体供給通路内の液体の圧力に応じて前記圧電素子駆動信号の周波数を変化させることにより、所望の粒径の液滴を得ることが可能となる。

[0022]

この場合、前記電気制御装置は、前記液体供給通路内の液体の圧力が大きいほど前記圧電素子駆動信号の周波数が高くなるように同圧電素子駆動信号を変更することが好適である。

[0023]

液体供給通路内の液体の圧力が大きいほど、液体吐出用ノズルから噴射される 液体の速度は大きく、同液体吐出用ノズルから噴射される流量が大きくなる。従って、液体供給通路内の液体の圧力が大きいほど高い周波数の圧電素子駆動信号 を付与することにより、同液体の圧力に拘らず微粒子化される液滴の粒径を均一 とすることが可能となる。

[0024]

さらに、前記電気制御装置は、前記液体供給通路内の液体の圧力が大きいほど 前記圧電素子駆動信号による前記チャンバーの容積変化量を小さくするように構 成されることが好適である。

[0025]

液体供給通路内の液体の圧力が大きいほど液体吐出用ノズルから噴射される液体速度は大きくなるので、噴射される液体の粒径は、チャンバーの容積変化量(容積変化量の最大値、即ち、最大容積変化量)を大きくしなくても、同液体の表面張力により比較的小さくなる。従って、液体供給通路内の液体の圧力が大きいときには、チャンバーの容積変化量を小さくしても液体の粒径が過大となることがない。そこで、上記構成のように、液体供給通路内の液体の圧力が大きいほど圧電素子駆動信号による前記チャンバーの容積変化量を小さくすれば、同液体の圧力が大きいときに必要以上の容積変化を発生せしめないようにできるので(即ち、圧電/電歪素子の変形量を必要以上に大きくすることがないので)、液体噴射装置の消費電力を低減することができる。

[0026]

【発明の実施の形態】

以下、本発明による液体噴射装置(液体噴霧装置、液体供給装置、液滴吐出装置)の各実施形態について図面を参照しながら説明する。図1は、本発明による液体噴射装置10の第1実施形態の構成を概略的に示している。この液体噴射装置10は、微粒子化された液体を必要とする機械装置としての内燃機関に適用されている。

[0027]

液体噴射装置10は、内燃機関の吸気管(又は吸気ポート)20等により形成される燃料噴射空間21に、内燃機関の吸気弁22の背面に向けて、微粒子化された液体(液体燃料、例えばガソリン、以下、単に「燃料」と云うこともある。)を噴射するためのものであって、加圧手段としての加圧ポンプ(燃料ポンプ)11、同加圧ポンプを介装した液体供給管(燃料配管)12、液体供給管12の前記加圧ポンプの吐出側に介装されたプレッシャレギュレータ13、電磁開閉式吐出弁14、燃料噴射空間21に噴射する液体を微粒子化するために少なくとも

その壁面に圧電/電歪素子を形成したチャンバーと吐出用ノズルとを備えた噴射 ユニット(噴霧ユニット)15、及び電磁開閉式吐出弁14と噴射ユニット15 とに駆動信号としての電磁弁開閉用信号とチャンバー容積変化用(圧電/電歪素 子作動用)の圧電素子駆動信号とをそれぞれ供給する電気制御装置30を備えて いる。

[0028]

加圧ポンプ11は、液体貯蔵タンク(燃料タンク)23の底部に連通されるとともに同液体貯蔵タンク23から燃料が供給される導入部11aと、液体供給管12に接続された吐出部11bとを備えている。この加圧ポンプ11は、液体貯蔵タンク23内の燃料を前記導入部11aから導入し、この燃料をプレッシャレギュレータ13と電磁開閉式吐出弁14と噴射ユニット15とを介して(仮に、噴射ユニット15の圧電/電歪素子が作動されていない場合であっても)液体噴射空間21に対し噴射し得る圧力(この圧力を「加圧ポンプ吐出圧」と云う。)以上にまで加圧し、同加圧した燃料を前記吐出部11bから液体供給管12内に吐出するようになっている。

[0029]

プレッシャレギュレータ13は、図示しない配管により吸気管21内の圧力が与えられていて、この圧力に基づいて加圧ポンプ11により加圧された燃料の圧力を減圧(又は、調圧)し、同プレッシャレギュレータ13と電磁開閉式吐出弁14との間の液体供給管12内の燃料の圧力が同吸気管21内の圧力よりも所定(一定)圧力だけ高い圧力(この圧力を「調整圧」と云う。)となるように調整するように構成されている。この結果、電磁開閉式吐出弁14が所定時間だけ開弁されると、同所定時間に略比例した燃料量の燃料が吸気管21内の圧力に拘らず同吸気管21内に噴射される。

[0030]

電磁開閉式吐出弁14は、従来より内燃機関の電気制御式燃料噴射装置に広く 採用されている周知のフューエルインジェクタ(電磁開閉式噴射弁)である。図 2は、この電磁開閉式吐出弁14の正面図であって、その先端側部位を同電磁開 閉式吐出弁14の中心線を含む平面にて切断した断面で示すとともに、電磁開閉 式吐出弁14に対して固定された噴射ユニット15を前記平面と同一の平面にて切断した断面で示している。また、図3は、図2に示された電磁開閉式吐出弁14の先端部近傍の同電磁開閉式吐出弁14及び噴射ユニット15の拡大断面図である。

[0031]

この電磁開閉式吐出弁14は、図2に示したように、液体供給管12が接続された液体導入口14aと、同液体導入口14aに連通した燃料通路14bを形成する外筒部14cと、電磁式開閉弁として作動するニードル弁14dと、同ニードル弁14dを駆動する図示しない電磁機構とを備えている。図3に示したように、外筒部14cの先端中央部にはニードル弁14dの先端部と略同一形状の円錐形の弁座部14c-1が設けられるとともに、同弁座部14c-1の頂部(先端部)近傍には外筒部14cの内部(即ち、燃料通路14b)と外筒部14cの外部とを連通する複数の吐出孔(貫通孔)14c-2が設けられている。この吐出孔14c-2は、ニードル弁14d(電磁開閉式吐出弁14)の軸線CLに対して角度θだけ傾斜している。なお、図示しないが、外筒部14cを軸線CLに沿う方向から見た場合、複数の吐出孔14c-2は、同一円周上において等間隔毎に設けられている。

[0032]

以上の構成により、電磁開閉式吐出弁14においては、ニードル弁14dが電磁機構により駆動されて吐出孔14c-2を開閉し、同吐出孔14c-2が開放されたとき、燃料通路14b内の燃料が同吐出孔14c-2を介して吐出(噴射)される。この状態を「電磁開閉式吐出弁14が開弁する。」と云い、ニードル弁14dが吐出孔14c-2を閉鎖した状態を「電磁開閉式吐出弁14が閉弁する。」と云う。このように吐出される燃料は、吐出孔14-2cがニードル弁14dの軸線CLに対して傾斜していることから、同軸線CLを中心線とする円錐の側面にそって広がるように(コーン状に)噴射される。

[0033]

噴射ユニット15は、図2に示したように、噴射デバイス15Aと、噴射デバイス固定板15Bと、噴射デバイス固定板15Bを保持する保持ユニット15C

と、電磁開閉式吐出弁14の先端を固定するためのスリーブ15Dとを含んでいる。

[0034]

噴射デバイス15Aは、その平面図である図4、及び図4の1-1線に沿った平面で同噴射デバイス15Aを切断した断面図である図5に示したように、各辺が互いに直交するX,Y,Z軸に平行に延びる略直方体形状を有し、順に積層・圧着される複数のセラミックスの薄板体(以下、「セラミックシート」と称呼する。)15a~15fと、セラミックシート15fの外側面(Z軸正方向のX-Y平面に沿った平面)に固着された複数の圧電/電歪素子15gとからなっている。この噴射デバイス15Aは、内部に液体供給通路15-1と、互いに独立した複数(ここでは各列7個で、合計14個)のチャンバー15-2と、各チャンバー15-2と液体供給通路15-1とを連通する複数の液体導入孔15-3と、各チャンバー15-2と噴射デバイス15Aの外部とを連通させるように各一端が液体噴射空間21に実質的に露呈してなる複数の液体吐出用ノズル15-4と、液体注入口15-5とを備えている。

[0035]

液体供給通路15-1は、セラミックシート15cに形成され、長軸及び短軸がそれぞれX軸方向及びY軸方向に沿う長円形の切欠き部の側壁面、セラミックシート15bの平面である上面、及びセラミックシート15dの平面である下面により画定された空間である。

[0036]

複数のチャンバー15-2の各々は、セラミックシート15eに形成され、長軸及び短軸がそれぞれY軸方向及びX軸方向に沿う長円形の切欠き部の側壁面、セラミックシート15dの上面、及びセラミックシート15fの下面により画定された長尺空間(長手方向を有する液体の流路部)である。各チャンバー15-2のY軸方向の一の端部は、液体供給通路15-1の上部にまで延びていて、各チャンバー15-2は、この一の端部にてセラミックシート15dに設けられた直径dを有する中空円筒状の液体導入孔15-3により液体供給通路15-1と連通している。なお、以下においては、前記直径dを単に「導入孔直径d」とも

称呼する。また、各チャンバー15-2のY軸方向の他の端部は、前記液体吐出 用ノズル15-4の他端に接続されている。以上の構成により、前記チャンバー 15-2(流路部)には、液体導入孔15-3から液体吐出用ノズル15-4に 向けて液体が流れるようになっている。

[0037]

複数の液体吐出用ノズル15-4の各々は、セラミックシート15aに設けられた直径がDである中空円筒状の貫通孔であって前記液体噴射空間21に実質的に露呈した一端(液体噴射口,液体噴射空間に露呈した開口)15-4aと、同液体噴射口15-4aからチャンバー15-2に向かって順次大きさ(直径)が大きくなる各セラミックシート15b~15dに形成された中空円筒状の連通孔15-4b~15-4dとにより形成されている。各液体吐出用ノズル15-4の軸線は乙軸と平行となっている。なお、以下においては、前記直径Dを単に「ノズル直径D」とも称呼する。

[0038]

液体注入口15-5は、噴射デバイス15AのX軸正方向端部でY軸方向の略中央部においてセラミックシート15d~15fに設けられた円筒形の貫通孔の側壁により形成された空間であり、液体供給通路15-1と噴射デバイス15Aの外部とを連通するようになっている。液体注入口15-5はセラミックシート15dと15cとの境界平面内にある仮想平面で液体供給通路15-1の上部と接続されている。この仮想平面と対向する液体供給通路15-1を構成する部分、即ち、セラミックシート15bの上面は同仮想平面と平行な平面部となっている。

[0039]

ここで、上記各チャンバー15-2の形状、及び大きさについて付言すると、各チャンバー15-2は、それぞれの長手方向(Y軸方向)中央部(流路部)において、液体の流れる方向と直交する平面(X-Z平面)にて切断した同流路部の断面の形状が略長方形となっている。また、長尺形状である流路部の長軸L(Y軸に沿った長さ)及び短軸W(X軸に沿った長さであって、前記長方形の一辺の長さ)は、それぞれ3.5mmと0.35mmであり、その高さT(Z軸に沿

った長さであって、前記長方形の一辺に直交する辺の長さ)は、0.15mmである。即ち、流路部の断面の形状である長方形において、圧電/電歪素子を備えた一辺(短軸W)の長さに対する、同一辺に直交する辺の長さ(高さT)の比(T/W)は、0.15/0.35=0.43であり、この比(T/W)は0より大きく1より小さいことが望ましい。このように、比(T/W)を選択すれば、圧電/電歪素子15gの振動エネルギーを、チャンバー15-2内の燃料に効率良く伝達することができる。

[0040]

また、液体吐出用ノズルの端部 15-4 a の直径 D と、液体導入孔 15-3 の直径 d は、それぞれ 0.0 3 1 m m、0.0 2 5 m m とした。この場合、前記チャンバー 15-2 の流路の断面の面積 S 1($=W\times T$)は、液体吐出用ノズルの端部 15-4 a の断面積 S 2($=\pi\cdot$ (D / 2) 2)よりも大きく、且つ、液体導入孔 15-3 の断面積 S 3($=\pi\cdot$ (d / 2) 2)よりも大きいことが望ましい。また、液体の微粒子化のためには、断面積 S 2 は断面積 S 3 より大きいことが望ましい。

[0041]

各圧電/電歪素子15gは、平面視で(乙軸正方向から見て)各チャンバー15-2の内側に配設されるようにセラミックシート15fの上面(チャンバー15-2の前記流路部の断面である四角形の一辺を含む壁面)に固着されていて、同各圧電/電歪素子15gの上面及び下面に設けられた図示しない電極間に電気制御装置30の圧電素子駆動信号発生手段(回路)によって付与される圧電素子駆動信号DV(圧電/電歪素子駆動信号DVとも云う。)に基づき作動して(駆動されて)、同セラミックシート15f(チャンバー15-2の上壁)を変形させ、これにより、チャンバー15-2の容積をΔVだけ変化させるようになっている。

[0042]

上記セラミックシート15a~15fと、その積層体の形成方法については、 下記の方法を採用した。

1;粒径が0.1~数μmのジルコニア粉末を用いてセラミックグリーンシート

を形成する。

2;このセラミックグリーンシートに対し、金型パンチとダイを用いた打ち抜き加工を施し、図5に示したセラミックシート15a~15eに対応する切欠き部(チャンバー15-2、液体導入孔15-3、液体供給通路15-1、液体吐出用ノズル15-4、液体注入口15-5(図4を参照)に対応する空隙)を形成する。

3;各セラミックグリーンシートを積層、加熱圧着後、1550℃-2hにて焼成、一体化する。

[0043]

こうして出来あがったセラミックシートの積層体のチャンバー部分に相当する個所の上面に、電極に挟持された圧電/電歪素子15gを形成する。以上により、噴射デバイス15Aが作製される。このように噴射デバイス15Aをジルコニアセラミックスで一体的に形成すれば、ジルコニアセラミックスの特性により、圧電/電歪素子15gによる壁面15fの頻繁な変形に対して高い耐久性を維持し得るとともに、複数の液体吐出用ノズル15-4,15-4…を有する液体噴射デバイスを、全長で数cm以下という小ささで実現でき、且つ、安価に容易に製造することが可能になる。

[0044]

かかる噴射デバイス15Aは、図2及び図3に示したように、噴射デバイス固定板15Bに固定されている。この噴射デバイス固定板15Bは、平面視において噴射デバイス15Aよりも僅かだけ大きい長方形状を有するとともに、噴射デバイス15Aを固定した状態において、同噴射デバイス15Aの各液体噴射口15-4aに対向する位置に図示しない貫通孔を備え、この貫通孔を介して各液体噴射口15-4aを外部に露呈させるようになっている。また、噴射デバイス固定板15Bは、その周辺部において保持ユニット15Cに固定・保持されている

[0045]

保持ユニット15Cは、平面視における外形が前記噴射デバイス固定板15B と同一形状を有し、図1に示したように、その周辺部において図示しないボルト により内燃機関の吸気管20に固定されるようになっている。この保持ユニット 15Cは、図2に示したように、その中央部に電磁開閉式吐出弁14の外筒部1 4cの直径よりも僅かに大きい直径の貫通孔を有していて、その貫通孔に外筒部 14cが挿入されるようになっている。

[0046]

スリーブ(密閉空間形成部材) 15 Dは、図2及び図3に示したように、その内径が電磁開閉式吐出弁14の外筒部14cの外径と等しく、その外径が保持ユニット15 Cの前記貫通孔の内径と等しい円筒形状を有している。スリーブ15 Dの一端は閉塞され、他端は開放されていて、図3に示したように、前記閉塞された端部の中央には噴射デバイス15 Aの液体注入口15-5と略等しい径を有する開口15 D-1が設けられている。また、開口15 D-1を形成する内周側壁面であって前記閉塞された端部の外側には、Oリング溝15 D-1 aが形成されている。

[0047]

そして、電磁開閉式吐出弁14の外筒部14cは、スリーブ15Dの開放端側から同スリーブ15Dの閉塞端の内側に当接するまで圧入され、スリーブ15Dは保持ユニット15Cの前記貫通孔内に圧入される。このとき、前記Oリング溝15D-1aに挿入されたOリング16は、噴射デバイス15Aのセラミックシート15fに当接される。

[0048]

以上により、電磁開閉式吐出弁14と噴射ユニット15とが一体に組み付けられ、電磁開閉式吐出弁14の吐出孔14c-2(吐出孔14c-2が形成されている電磁開閉式噴射弁14の外筒部14cの閉塞端面(閉塞端面外側)、又は、円筒状の外筒部14cの吐出孔14c-2形成面外側と言うこともできる部分)と噴射デバイス15Aの液体注入口15-5との間に、中空円筒状の密閉空間が形成される。また、この状態で、スリーブ15Dの開口(中空円筒状密閉空間)15D-1の中心軸線は、噴射デバイス15Aの液体注入口15-5の中心軸線と一致せしめられるとともに、ニードル弁14dの中心軸線CLと一致せしめられる。以上、説明したように、スリーブ15Dは、前記電磁開閉式吐出弁14の

吐出孔14c-2と前記噴射デバイス15Aの液体注入口(液体注入部)15-5との間に配置され、同吐出孔14c-2と同液体注入口15-5との間に同液体注入口15-5と実質的に同径で、同液体注入口15-5及びニードル弁14 dの各中心軸線CLと中心軸線が一致した中空円筒状の密閉空間を形成するようになっている。

[0049]

また、前述したように、前記吐出孔14c-2はニードル弁14dの軸線(従って、中空円筒状密閉空間の軸線)CLに対して角度θだけ傾斜しているから、電磁開閉式吐出弁14から吐出される燃料はスリーブ15Dの開口15D-1の内部(即ち、前記中空円筒状の密閉空間)において噴射デバイス15Aに近づくにつれて軸線CLに対し角度θを持って広がる。換言すると、吐出孔14c-2から吐出された燃料の前記中空円筒状密閉空間の中心軸線CLからの距離が、吐出孔14c-2から前記液体注入口15-5に向う距離の増大に伴って増大する

[0050]

そして、本実施形態においては、そのように吐出される燃料が、スリーブ15 Dの開口15D-1 (即ち、前記中空円筒状の密閉空間)を形成する内周壁面(Oリング溝15D-1 aの内周壁面を除く)、及びその内周壁面を液体供給通路 15-1の前記平面部(セラミックシート15bの上面)まで仮想的に延長して 形成される壁面WP(図3において二点鎖線の仮想線により示す)に到達する前 に、液体供給通路15-1の同平面部に到達するように、前記角度 θ が決定され ている。

[0051]

換言すると、前記電磁開閉式吐出弁14は、前記吐出孔14c-2から吐出される液体の吐出流線(図3に一点鎖線DLで示す)が、前記スリーブ15Dの密閉空間を構成する中空円筒の側壁15D-1及び同側壁15D-1を前記液体供給通路15-1の平面部まで仮想的に延長した側壁WPと交差することなく同液体供給通路15-1の平面部と直接交差するように配置構成されている。

[0052]

以上の構成により、電磁開閉式吐出弁14の吐出孔14c-2から液体注入口15-5を介して液体供給通路15-1に吐出・供給された燃料は、各液体導入孔15-3を介して各チャンバー15-2内に導入される。そして、燃料は、各チャンバー15-2内において振動エネルギーが与えられ、液体吐出用ノズル15-4を介して液体噴射口15-4aから噴射デバイス固定板15Bの貫通孔を介して微細な(微粒子化された)液滴として吸気管20内に噴射される。

[0053]

電気制御装置30は、図6に示したように、エンジン電子制御ユニット31と 、エンジン電子制御ユニット31に接続された燃料噴射電子制御回路32とを備 えている。

[0054]

エンジン電子制御ユニット31は、エンジン回転速度センサ33、及び吸気管圧力センサ34等のセンサと接続されていて、これらのセンサからエンジン回転速度Nや吸気管圧力Pを入力して内燃機関に必要な燃料量及び噴射開始タイミングを決定するとともに、同決定した燃料量及び噴射開始タイミングに関する駆動電圧信号を燃料噴射電子制御回路32に送出するようになっている。

[0055]

燃料噴射電子制御回路32は、燃料噴射制御用マイクロコンピュータ32a、電磁開閉式吐出弁駆動回路部32b、及び圧電/電歪素子駆動回路部32cを備えている。燃料噴射制御用マイクロコンピュータ32aは、エンジン電子制御ユニット31からの前記駆動電圧信号を受信し、この受信した駆動電圧信号に基く制御信号を電磁開閉式吐出弁駆動回路部32b及び圧電/電歪素子駆動回路部32cに送出するようになっている。

[0056]

電磁開閉式吐出弁駆動回路部32bは、タイムチャートである図7に示したように、矩形波の電磁弁開閉用信号INJを電磁開閉式吐出弁14の図示しない電磁機構に出力するようになっている。電磁弁開閉用信号INJが発生されると(即ち、ハイレベル信号(開弁信号)となると)、電磁開閉式吐出弁14のニードル弁14dが移動せしめられて吐出孔14c-2を開放するので、電磁開閉式吐

出弁14から噴射デバイス15Aの液体注入口15-5を介して液体供給通路15-1内に燃料が吐出される。これに対し、電磁弁開閉用信号INJの発生が停止されると(即ち、ローレベル信号(閉弁信号)となると)、ニードル弁14dが吐出孔14c-2を閉鎖するので、燃料の液体供給通路15-1内への吐出が停止される。

[0057]

圧電/電歪素子駆動回路部32cは、図7に示したように、燃料噴射制御用マイクロコンピュータ32aからの制御信号に基いて、圧電/電歪素子15gの図示しない電極間に周波数f(周期T=1/f)の圧電素子駆動信号DVを出力するようになっている。この圧電素子駆動信号DVは、0(V)から所定の最大電位Vmax(V)まで急激に増大し、その後同最大電位Vmaxを短時間だけ維持した後、急激に0(V)に向かって減少する波形を有している。

[0058]

前記圧電素子駆動信号DVの駆動周波数 f は、チャンバー15-2の構造、液体吐出用ノズル15-4の構造、ノズル直径D、導入孔直径 d、圧電/電歪素子 15gのセラミックシート15fの変形を発生させる部分の形状、及び液体の種類等により決定される噴射デバイス15Aの共振周波数(固有振動数)と等しい、例えば、50kHz近傍の周波数に設定されている。

[0059]

なお、電磁弁開閉用信号INJが発生されている(ハイレベル信号となっている)状態が継続すると、液体供給通路15-1内の液体の圧力は一定の高圧力に収束し、液体は液体吐出用ノズル15-4から噴射され続ける。また、電磁弁開閉用信号INJの発生が停止されている(ローレベル信号となっている)状態が継続すると、液体供給通路15-1内の液体の圧力は一定の低圧力に収束する。このとき、液体は、液体吐出用ノズル15-4から噴射されることはない。

[0060]

ここで、上記電磁開閉式吐出弁駆動回路部32b及び上記圧電/電歪素子駆動回路部32cの構成及び作動について、図7及びこれらの電気回路図である図8を参照しながら詳細に説明する。

[0061]

電磁開閉式吐出弁駆動回路部32bは、図8に示したように、2個のシュミットトリガ回路ST1,ST2、3個の電界効果トランジスタ(MOS FET) MS1~MS3、複数の抵抗RST1,RST2,RS1~RS4、及び1個のコンデンサCSを含んで構成されている。このうち、抵抗RST1,RST2は、それぞれシュミットトリガ回路ST1,ST2の出力電流制限用抵抗である。

[0062]

図7に示したように、エンジン電子制御ユニット31から燃料噴射制御用マイクロコンピュータ32aに対してローレベル信号からハイレベル信号に変化する駆動電圧信号INJが送出されると、燃料噴射制御用マイクロコンピュータ32aからシュミットトリガ回路ST1にハイレベル信号からローレベル信号に変化する信号(図示省略)が送出される。また、燃料噴射制御用マイクロコンピュータ32aからシュミットトリガ回路ST2にローレベル信号からハイレベル信号に変化する信号(図示省略)が送出される。

[0063]

これにより、シュミットトリガ回路ST1はハイレベル信号を出力する。従って、電界効果トランジスタMS3はオン状態(導通状態)となり、この結果、電界効果トランジスタMS1もオン状態となる。また、シュミットトリガ回路ST2はローレベル信号を出力するようになるので、電界効果トランジスタMS2はオフ状態(非導通状態)となる。

[0064]

これにより、電源電圧 V P 1 がコンデンサC S 及び電磁開閉式吐出弁14(の電磁機構)に印加され、コンデンサC S が充電される。このとき、電磁開閉式吐出弁14には電流が流れ、インダクタ成分による所定の遅れ時間(所謂、無効噴射時間) T d の経過後にニードル弁14 d が移動を開始する。この結果、電磁開閉式吐出弁14から液体供給通路15-1への液体の吐出が開始し、液体供給通路15-1内の液体圧力が一定の低圧力から上昇を開始する。

[0065]

一方、エンジン電子制御ユニット31から燃料噴射制御用マイクロコンピュー

タ32 a に対してハイレベル信号からローレベル信号に変化する駆動電圧信号 I N J が送出されると、燃料噴射制御用マイクロコンピュータ32 a からシュミットトリガ回路 S T 1 にローレベル信号からハイレベル信号に変化する信号(図示省略)が送出される。また、燃料噴射制御用マイクロコンピュータ32 a からシュミットトリガ回路 S T 2 にハイレベル信号からローレベル信号に変化する信号(図示省略)が送出される。

[0066]

これにより、シュミットトリガ回路ST1はローレベル信号を出力する。従って、電界効果トランジスタMS3はオフ状態となるので、電界効果トランジスタMS1はオフ状態となる。また、シュミットトリガ回路ST2はハイレベル信号を出力するようになるので、電界効果トランジスタMS2はオン状態となる。この結果、電源電圧VP1がコンデンサCS及び電磁開閉式吐出弁14(の電磁機構)に印加されなくなるとともに、コンデンサCSは電界効果トランジスタMS2を介して接地され、同コンデンサCSに充電されていた電荷が放電される。このため、電磁開閉式吐出弁14の通電が停止され、電界効果トランジスタMS2がオン状態となってから所定の時間後にニードル弁14dが初期位置に向けて移動を開始する。従って、電磁開閉式吐出弁14から液体供給通路15-1への液体の吐出量が減少し、この結果、液体供給通路15-1内の液体圧力が前記一定の高圧力から前記一定の低圧力に向けて減少する。

[0067]

以上が電磁開閉式吐出弁駆動回路部32bの作動である。なお、コンデンサC Sは電磁開閉式吐出弁14の電磁機構に電源電圧VP1を印加したとき、同電磁 機構に印加される電圧を保持するように機能している。次に、圧電/電歪素子駆 動回路部32cについて説明する。

[0068]

圧電/電歪素子駆動回路部32cは、図8に示したように、2個のシュミットトリガ回路ST11,ST12、3個の電界効果トランジスタ(MOS FET)MS11~MS13、複数の抵抗RST11,RST12,RS11~RS14、及び2個のコイルL1,L2を含んで構成されている。このうち、抵抗RS

T11, RST12は、それぞれシュミットトリガ回路ST11, ST12の出力電流制限用抵抗である。

[0069]

図7に示したように、エンジン電子制御ユニット31から燃料噴射制御用マイクロコンピュータ32aに対してローレベル信号からハイレベル信号に変化する信号が送出されると、燃料噴射制御用マイクロコンピュータ32aは、この信号に基いて周期T(周波数f=1/T)の経過毎に、シュミットトリガ回路ST11に対し一定幅のパルス(一定の電圧から所定時間だけO(V)となり、その後同一定の電圧に復帰する方形波)を制御信号(図示省略)として出力する。また、燃料噴射制御用マイクロコンピュータ32aは、シュミットトリガ回路ST12に対し、シュミットトリガ回路ST11への制御信号から僅かに遅れて同様なパルスを制御信号として出力する。

[0070]

いま、シュミットトリガ回路ST11に対してパルスが入力されると、シュミットトリガ回路ST11はハイレベル信号を出力する。従って、電界効果トランジスタMS13はオン状態となり、この結果、電界効果トランジスタMS11もオン状態となる。この時点では、シュミットトリガ回路ST12はローレベル信号を出力しているので、電界効果トランジスタMS12はオフ状態を維持している。これにより、電源電圧VP2がコイルL1及び抵抗RS11を介して圧電/電ご素子15gに印加されるので、同圧電/電ご素子15gがセラミックシート15fを変形させ、チャンバー15-2の容積が減少する。

[0071].

その後、シュミットトリガ回路ST11に入力されているパルスが消滅する。これにより、シュミットトリガ回路ST11はローレベル信号を出力するようになるので、電界効果トランジスタMS13及びMS11がともにオフ状態となる。この時点でも、シュミットトリガ回路ST12にはパルスは入力されない。従って、シュミットトリガ回路ST12はローレベル信号を出力しているため、電界効果トランジスタMS12はオフ状態を維持している。この結果、圧電/電歪素子15gは充電された電荷を保持し、同圧電/電歪素子15gの電極間電位は

最大値Vmaxに維持される。

[0072]

その後、燃料噴射制御用マイクロコンピュータ32 a は、前述したパルスをシュミットトリガ回路 S T 1 2 のみに入力する。これにより、シュミットトリガ回路 S T 1 2 はハイレベル信号を出力するようになるので、電界効果トランジスタ M S 1 2 はオン状態となる。この結果、圧電/電歪素子15 g は抵抗 R S 1 2、コイル L 2、及び電界効果トランジスタ M S 1 2 を介して接地され、圧電/電歪素子15 g に充電されていた電荷が放電される。このため、圧電/電歪素子15 g は初期の形状に復帰し始め、チャンバー15-2の容積は増大する。

[0073]

前述したように、このような作動は、周期T(周波数f = 1/T)の経過毎に繰り返され、これにより、チャンバー15-2内の液体に振動エネルギーが伝達される。以上が、圧電/電歪素子駆動回路部32cの作動である。

[0074]

なお、本明細書において、「電磁弁開閉用信号INJを発生する」とは、電磁弁14に電界効果トランジスタMS1等を介して電源電圧VP1を印加することを云い、「電磁弁開閉用信号INJの発生を停止する」とは電磁弁14への同電源電圧VP1の印加を停止することを云う。また、「圧電素子駆動信号DVを発生する」とは、圧電/電歪素子15gを上記周波数f(周期T)で充放電することを云い、「圧電素子駆動信号DVの発生を停止する」とは圧電/電歪素子15gに対して繰り返される上記充放電を停止すること(即ち、圧電/電歪素子15gを電界効果トランジスタMS12を介して接地し続けることを開始すること)を云う。

[0075]

次に、上記のように構成した液体噴射装置10の作動について、図9のタイムチャートを参照しながら説明する。エンジン電子制御ユニット31は、エンジン回転速度N、及び吸気管圧力P等のエンジン運転状態に基づいて電磁開閉式吐出弁14を開弁させている時間(燃料吐出時間Tfuel)を決定するとともに、同電磁開閉式吐出弁14を開弁させ始めるタイミング(開弁タイミング)を決定する

。ここでは、今回の開弁タイミングが図9の時点t2であるとする。

[0076]

そして、エンジン電子制御ユニット31は、時点t2から僅かな時間(電磁開閉式吐出弁14の電磁機構が有するインダクタンスに起因する遅れ時間である、所謂、無効噴射時間Td)だけ前の時点t1よりも更に所定時間だけ前の時点t0になったとき、圧電/電歪素子15gの作動開始指示信号を燃料噴射制御用マイクロコンピュータ32aに送出する。また、時点t1となると、同時点t1から無効噴射時間Tdと上記決定した燃料吐出時間Tfuelの合計時間が経過するまで、駆動電圧信号を燃料噴射制御用マイクロコンピュータ32aに送出する。

[0077]

燃料噴射制御用マイクロコンピュータ32aは、前記圧電/電歪素子15gの作動開始指示信号を受信すると、圧電/電歪素子駆動回路部32cに制御信号を送出し、時点t0から前述した周波数fの圧電素子駆動信号DVを圧電/電歪素子15gの電極間に対して発生する。また、燃料噴射制御用マイクロコンピュータ32aは、前記駆動電圧信号を受信すると、電磁開閉式吐出弁駆動回路部32bに制御信号を送出し、時点t1から電磁弁開閉用信号INJ(ハイレベル信号)を電磁開閉式吐出弁14に対して発生する。

[0078]

時点 t 1 から僅かに遅れた時点 t 2 となると(即ち、電磁開閉式吐出弁 1 4 の無効噴射時間 T d が経過すると)、ニードル弁 1 4 d が移動されるために吐出孔 1 4 c - 2 が開放され(即ち、電磁開閉式吐出弁 1 4 が開弁され)、燃料通路 1 4 b 内の燃料が吐出孔 1 4 c - 2 からスリーブ 1 5 D の中空円筒状密閉空間、及び噴射デバイス 1 5 A の液体注入口 1 5 - 5 を介して同噴射デバイス 1 5 A の液体供給通路 1 5 - 1 内に吐出・供給され始める。この結果、液体供給通路 1 5 - 1 内の液体の圧力は、図 9 (B) に示したように上昇を開始する。

[0079]

そして、時点t2以降において、チャンバー15-2内の燃料の圧力が十分な 圧力(燃料噴射空間21に燃料を噴射するのに十分な圧力)まで上昇すると、図 10に示したように、燃料は液体噴射口15-4aの端面から吸気管20内の液 体噴射空間21に向けて押し出される(噴射される)。このとき、圧電/電歪素子15gの作動による振動エネルギーが同チャンバー15-2内において燃料に加えられているから、同燃料にくびれ部が発生し、同燃料はその先端部において同くびれ部からちぎれるように離脱する。この結果、均一で精細に微粒子化された燃料が吸気管21内に噴射される。

[0080]

このように、電気制御装置30は、電磁弁開閉用信号INJを発生させることにより液体供給通路内15-1の液体の圧力が時点t2にて前記一定の低圧力から増大を開始する直前の時点t0から圧電素子駆動信号DVの発生を開始する。

[0081]

従って、噴射デバイス15Aの液体吐出用ノズル15-4から液体の噴射が開始される可能性がある時点では、既に圧電素子駆動信号DVにより圧電/電歪素子15gが駆動されて液体に振動エネルギーが加わっている。この結果、液体の噴射当初から確実に微粒子化した液滴を噴射することができる。

[0082]

時点t1から前記決定された無効噴射時間Tdと燃料吐出時間Tfuelの合計時間が経過してエンジン電子制御ユニット31からの駆動電圧信号が消滅する時点t3となると、燃料噴射制御用マイクロコンピュータ32aは電磁開閉式吐出弁駆動回路部32bに再び制御信号を送出し、同電磁開閉式吐出弁駆動回路32bにより電磁弁開閉用信号INJの発生を停止する。

[0083]

また、燃料噴射制御用マイクロコンピュータ32aは、時点t3よりも所定時間だけ遅れた時点であって、液体供給通路15-1内の液体の圧力が電磁開閉式吐出弁14が閉弁しているときの定常的な圧力である前記一定の低圧力に低下する時点t4(時点t3の直後の時点t4)まで圧電素子駆動信号DVの圧電/電歪素子15gへの印加を継続し、同時点t4にて圧電素子駆動信号DVの発生を停止する。

[0084]

このように、電気制御装置30は、電磁弁開閉用信号INJの発生の停止によ

り液体供給通路 1 5 - 1 内の液体の圧力が前記一定の低圧力に減少した直後の時点 t 4 まで圧電素子駆動信号 D V の発生を継続する。

[0085]

電磁弁開閉用信号INJの発生が停止された時点t3から暫くの間は、液体供給通路15-1内の液体の圧力は前記一定の低圧力よりも高い圧力となっているから、噴射デバイス15Aの液体吐出用ノズル15-4から液体の噴射が行われ続ける。従って、電磁弁開閉用信号INJの発生の停止により液体供給通路15-1内の液体の圧力が前記一定の低圧力に減少した時点の直後の時点t4まで圧電素子駆動信号DVを発生させておく。

[0086]

これにより、電磁弁開閉用信号INJの発生が停止された時点t3より後の時点であって噴射デバイス15Aの液体吐出用ノズル15-4から液体の噴射が行われ続けている時点においては、圧電素子駆動信号DVにより圧電/電歪素子15gが駆動され続けるので、液体に振動エネルギーを加えておくことができる。この結果、電磁弁開閉用信号INJの消滅後(発生の停止後)においても液体が液体噴射空間21に噴射されなくなるまで、同液体を確実に微粒子化して噴射することができる。

[0087]

なお、上記実施形態において、電磁開閉式吐出弁14から吐出される液体の単位時間あたりの吐出量(吐出流量)をQ(cc/分)とし、電磁開閉式吐出弁14から噴射デバイス15Aの吐出用ノズル15-4の先端までの間に形成される液体流路の体積をV(cc)とするとき、その比(V/Q)が0.03以下となるように構成しておくことが好適である。

[0088]

ここで、前記体積 V は、スリーブ 1 5 D が形成する中空円筒状密閉空間、液体注入口 1 5 - 5、液体供給通路 1 5 - 1、チャンバー 1 5 - 2、液体導入孔 1 5 - 3、及び液体吐出用ノズル 1 5 - 4 の体積の総和である。

[0089]

また、図9に示したように、電磁弁開閉用信号INJがハイレベル信号となっ

ている時間を内燃機関の吸気弁22が開弁している時間内のみとなるように設定することが好適である。このようにすれば、液体噴射装置10により噴射された燃料が吸気弁22に到達したときには同吸気弁22が開弁しており、同燃料が吸気弁22の背面などに付着することなく直接的に気筒内に吸入されるように構成することができ、微粒子化して噴射された燃料が直接気筒内に吸入されることになる。この結果、噴射された燃料が吸気弁22や吸気管20の壁面に付着することがないので、内燃機関の燃費の向上、及び排出ガス中の未燃ガス量の低減を図ることができる。

[0090]

なお、液体吐出用ノズル15-4から噴射される微粒子化された燃料(液滴、噴霧滴)の速度を、吸気弁22のリフト量、及び/又は吸気管内の吸気流速(風速)に応じて変更することが好適である。これによれば、微粒子化されて噴射された燃料が、壁面に一層付着することなく、直接に気筒内に吸入されるようにすることができる。液体吐出用ノズル15-4から噴射される微粒子化された燃料の速度は、圧電/電歪素子15gに対する圧電素子駆動信号DVの波形(特に、同信号DVの上昇速度、又は最高電圧)を変更すること、又は、電磁開閉式吐出弁14に供給される燃料の圧力(燃圧)を変更することにより、変更することができる。また、その燃圧は、プレッシャレギュレータ13の調整圧を変更すること、あるいは、プレッシャレギュレータ13を備えない場合等においては、加圧ポンプ吐出圧を変更することにより、変更することができる。

[0091]

次に、本発明による液体噴射装置10の第2実施形態について説明する。第2 実施形態に係る液体噴射装置10は、第1実施形態に係る液体噴射装置10に対 して、電磁弁開閉用信号INJ及び圧電素子駆動信号DVの発生のさせ方を異な らせた点においてのみ相違している。従って、以下、係る相違点を中心としてタ イムチャートである図11を参照しながら説明する。

[0092]

第2実施形態においては、電磁開閉式吐出弁14が開弁することにより、液体 供給通路15-1内の液体圧力が前記一定の高圧力となって安定している期間(図11の時点t13~t15の期間)、圧電/電歪素子15gの作動(同圧電/電歪素子15gの作動による燃料の微粒子化)を停止する。

[0093]

より具体的に述べると、図11の(A)に示したエンジン電子制御ユニットからの駆動電圧信号が時点t11にて発生されると、燃料噴射制御用マイクロコンピュータ32aは電磁開閉式吐出弁駆動回路部32bに電磁弁開閉用信号INJを発生させる。これにより、上記無効噴射時間Tdの経過後である時点t12にて電磁開閉式吐出弁14が開弁するので、図11(C)に示したように、液体供給通路15-1内の液体の圧力は上昇を開始する。

[0094]

また、燃料噴射制御用マイクロコンピュータ32aは、時点t11から無効噴射時間Tdが経過した時点t12となったか否かをモニターし、同時点t12になったと判定すると圧電/電歪素子駆動回路部32cに圧電素子駆動信号DVを発生させる。その後、液体供給通路15-1内の液体の圧力が前記所定の一定の高圧力になる時点t13となると、燃料噴射制御用マイクロコンピュータ32aは、圧電/電歪素子駆動回路部32cに圧電素子駆動信号DVの発生を停止させる。時点t12~t13の時間は予め定められ、燃料噴射制御用マイクロコンピュータ32a内に記憶されている。

[0095]

なお、液体供給通路 1 5 - 1 内の液体圧力を検出する圧電/電歪素子を別途設置するとともに、同圧電/電歪素子の信号を燃料噴射制御用マイクロコンピュータ 3 2 a に入力し、この圧電/電歪素子の信号に基いて液体供給通路 1 5 - 1 内の液体圧力が前記所定の高圧力となったことを検出した時点で圧電素子駆動信号 D V の発生を停止させるように同燃料噴射制御用マイクロコンピュータ 3 2 a を構成してもよい。

[0096]

その後、時点 t 1 4 にてエンジン電子制御ユニットからの駆動電圧信号が消滅すると、燃料噴射制御用マイクロコンピュータ32 a は電磁開閉式吐出弁駆動回路部32 b に電磁弁開閉用信号 I N J の発生を停止させる。これにより、時点 t

14から僅かな時間だけ後の時点 t 15 (即ち、コンデンサCSの放電が進んで電磁開閉式吐出弁 14が閉弁を開始する時点)にて、電磁開閉式吐出弁 14が閉弁を開始するので、図11 (C)に示したように、液体供給通路 15-1内の液体の圧力は減少を開始する。

[0097]

一方、燃料噴射制御用マイクロコンピュータ32 a は、時点 t 1 4 から予め定められた所定の時間が経過した時点 t 1 5 となったか否かをモニターし、同時点 t 1 5 になったと判定すると圧電/電歪素子駆動回路部32 c に圧電素子駆動信号DVを再び発生させる。その後、液体供給通路15-1内の液体の圧力が前記所定の一定の低圧力になる時点 t 1 6 となると、燃料噴射制御用マイクロコンピュータ32 a は、圧電/電歪素子駆動回路部32 c に圧電素子駆動信号DVの発生を停止させる。時点 t 15~t 16の時間は予め定められ、燃料噴射制御用マイクロコンピュータ32 a 内に記憶されている。

[0098]

なお、この場合においても、液体供給通路 1 5 - 1 内の液体圧力を検出する圧電/電歪素子を別途設置するとともに、同圧電/電歪素子の信号を燃料噴射制御用マイクロコンピュータ 3 2 a に入力し、この圧電/電歪素子の信号に基いて液体供給通路 1 5 - 1 内の液体圧力が前記一定の低圧力となったことを検出した時点で圧電素子駆動信号 D V の発生を停止させるように同燃料噴射制御用マイクロコンピュータ 3 2 a を構成してもよい。

[0099]

以上、説明したように、第2実施形態に係る液体噴射装置10は、前記電気制御装置30が電磁弁開閉用信号INJにより液体供給通路15-1内の液体の圧力が一定の高圧力となっている期間(時点t13~t15)において圧電素子駆動信号DVを発生しないように構成されている。

[0100]

電磁弁開閉用信号INJが発生されることにより液体供給通路15-1内の液体の圧力が十分大きな圧力(前記一定の高圧力)にまで増大すると、噴射デバイス15Aの液体吐出用ノズル15-4から液体噴射空間21に噴射される液体の

速度(噴射速度、或いは、液柱の移動速度)は十分に大きくなり、液体は表面張力により粒径が比較的小さい液滴となる。従って、このような場合(時点t 13 ~t 15)は、本第2実施形態のように、圧電素子駆動信号DVを発生しないようにすることで、液体噴射装置10の消費電力を低減することができる。

[0101]

次に、本発明による液体噴射装置10の第3実施形態について説明する。第3 実施形態に係る液体噴射装置10は、第1実施形態に係る液体噴射装置10に対して、電磁弁開閉用信号INJ及び圧電素子駆動信号DVの発生のさせ方を異ならせた点においてのみ相違している。従って、以下、係る相違点を中心としてタイムチャートである図12を参照しながら説明する。なお、図12の(B)は、後述する電磁弁開閉用信号INJのデューティ比(又は、平均電流)を示している。

[0102]

第3実施形態においては、電磁開閉式吐出弁14の開弁に基いて液体供給通路15-1内の液体の圧力が前記一定の低圧力よりも高い圧力となっているとき、換言すると、液体吐出用ノズル15-4から液体が噴射される可能性があるとき、圧電素子駆動信号DVを発生させ続ける。また、電磁弁開閉用信号INJは、その発生開始直後において液体供給通路15-1内の液体の圧力が急激に増大し、その後、同圧力の増大時における圧力変化率の絶対値よりも小さい絶対値を有する圧力変化率で同液体供給通路15-1内の液体の圧力が次第に(緩やかに、徐々に)減少(暫減)するように、発生せしめられる。

[0103]

より具体的に述べると、図12の(A)に示したエンジン電子制御ユニット31からの駆動電圧信号が時点t21にて発生されると、燃料噴射制御用マイクロコンピュータ32aは電磁開閉式吐出弁駆動回路部32bに電磁弁開閉用信号INJを発生させる。このとき、燃料噴射制御用マイクロコンピュータ32aは、時点t21及び時点t21の直後において、電磁開閉式吐出弁駆動回路部32bの電界効果トランジスタMS1が連続的にオン状態を維持し、電界効果トランジスタMS2が連続的にオン状態を維持するように、各シュミットトリガ回路ST

1, ST2に制御信号を発生する。換言すると、電磁開閉式吐出弁14に対し、所定の周期Tpの間にO(V)と電源電EVP1(V)との間で変化するパルス状の電圧であって、そのデューティ比(=(VP1(V)である時間)/Tp)が100%である電圧を付与する。以下、このデューティ比を、単に「電磁弁開閉用信号 INJのデューティ比」と称呼する。

[0104]

これにより、無効噴射時間Tdの経過後である時点t22にて電磁開閉式吐出 弁14のニードル弁14dが最大移動位置に向けて移動を開始し、吐出孔14c -2が開放され始めるので、図12(C)に示したように、液体供給通路15-1内の液体の圧力は所定の増大率α1で急激に上昇を開始する。また、燃料噴射 制御用マイクロコンピュータ32aは、時点t22から圧電/電歪素子駆動回路 部32cに圧電素子駆動信号DVを発生させる。

[0105]

その後、液体供給通路 1 5 - 1 内の液体の圧力が前記一定の高圧力になる時点 t 2 3 となると、燃料噴射制御用マイクロコンピュータ 3 2 a は、電磁開閉式吐 出弁 1 4 に印加されている電磁弁開閉用信号 I N J の前記デューティ比を次第に 減少させる。この結果、電磁式開閉吐出弁 1 4 のニードル弁 1 4 d が初期位置に 向けて徐々に移動し始めるので、吐出孔 1 4 c - 2 の開口面積が次第に減少する 。従って、液体供給通路 1 5 - 1 内の液体の圧力が所定の減少率 α 2 で減少を開 始する。このとき減少率 α 2 の絶対値は増大率 α 1 の絶対値よりも小さくなる。

[0106]

その後、時点 t 2 4 にてエンジン電子制御ユニット 3 1 からの駆動電圧信号が 消滅すると、燃料噴射制御用マイクロコンピュータ 3 2 a は電磁開閉式吐出弁 1 4 に印加されている電磁弁開閉用信号 I N J の前記デューティ比を更に急激に減 少させる。そして、燃料噴射制御用マイクロコンピュータ 3 2 a は、電磁開閉式 吐出弁 1 4 に印加されている電磁弁開閉用信号 I N J の前記デューティ比が 0 % となる時点 t 2 5 にて同電磁弁開閉用信号 I N J の発生を停止する。

[0107]

この結果、時点t24から、電磁式開閉吐出弁14のニードル弁14dが初期

位置に向けてより速く移動するので、吐出孔14c-2の開口面積が急激に減少する。従って、液体供給通路15-1内の液体の圧力は、時点t24より後の時点 t26から前記減少率 $\alpha2$ の絶対値よりも大きい絶対値を有する所定の減少率 $\alpha3$ で急激な減少を開始し、時点 t27にて前記一定の低圧力となる。なお、時点 t24 から時点 t26までの時間は、ニードル弁144 の作動遅れにより生じるである。

[0108]

一方、燃料噴射制御用マイクロコンピュータ32aは、時点t22から圧電素子駆動信号DVを発生させ続けていて、時点24から予め定められている時間が経過する時点t27にて同圧電素子駆動信号DVの発生を停止する。

[0109]

なお、この場合においても、液体供給通路 1 5 - 1 内の液体圧力を検出する圧電/電歪素子を別途設置するとともに、同圧電/電歪素子の信号を燃料噴射制御用マイクロコンピュータ 3 2 a に入力し、この圧電/電歪素子の信号に基いて液体供給通路 1 5 - 1 内の液体圧力が前記一定の低圧力となったことを検出した時点で圧電素子駆動信号 D V の発生を停止させるように同燃料噴射制御用マイクロコンピュータ 3 2 a を構成してもよい。

[0110]

以上、説明したように、第3実施形態に係る液体噴射装置10は、前記電気制御装置30が、電磁弁開閉用信号INJにより液体供給通路15-1内の液体の圧力が一定の低圧力よりも高い圧力となっているとき(時点t22~t27)、圧電素子駆動信号DVを発生させるとともに、電磁弁開閉用信号INJの発生開始直後(時点t22~t23)において液体供給通路15-1内の液体の圧力が増大し、その後、同圧力の増大時における圧力変化率α1の絶対値(|α1|)よりも小さい絶対値(|α2|)を有する圧力変化率α2で同液体供給通路15-1内の液体の圧力が次第に減少するように同電磁弁開閉用信号INJを発生させるように構成されている。

[0111]

これによれば、電磁弁開閉用信号INJの発生開始直後(時点t22~t23)

)において液体供給通路 1 5 - 1 内の液体の圧力が急激に増大するので、同電磁 弁開閉用信号 I N J の発生により液滴の噴射が直ちに開始される。また、その後 、液体供給通路 1 5 - 1 内の液体の圧力は比較的緩やかに(減少率 α 2 で)減少 し続ける。従って、先に噴射された液滴の速度の方が後に噴射された液滴の速度 よりも大きくなる。この結果、液体吐出用ノズル 1 5 - 4 から噴射された液滴同 士が液体噴射空間 2 1 内で衝突して粒径の大きい液滴が形成されてしまう可能性 を低減することができる。

[0112]

次に、本発明による液体噴射装置10の第4実施形態について説明する。第4 実施形態に係る液体噴射装置10は、第1実施形態に係る液体噴射装置10に対 して、電磁弁開閉用信号INJ及び圧電素子駆動信号DVの発生のさせ方を異な らせた点においてのみ相違している。従って、以下、係る相違点を中心としてタ イムチャートである図13を参照しながら説明する。

[0113]

第4実施形態においては、電磁開閉式吐出弁14の開弁及び閉弁により液体供給通路15-1内の液体の圧力が増大及び減少しているときは、同液体の圧力が前記一定の高圧力となっているときよりも、圧電素子駆動信号DVの周波数 f が低い値に設定される。換言すると、液体供給通路15-1内の液体の圧力が前記一定の高圧力より小さいときは、チャンバー15-2の容積変化の周期が長い時間に設定される。

[0114]

より具体的に述べると、エンジン電子制御ユニット31からの駆動電圧信号が時点t31にて発生されると、燃料噴射制御用マイクロコンピュータ32aは電磁開閉式吐出弁駆動回路部32bに電磁弁開閉用信号INJを発生させる。これにより、無効噴射時間Tdか経過した時点t32にて液体供給通路15-1内の液体の圧力が上昇を開始し、時点t33にて前記一定の高圧力となる。

[0115]

かかる液体圧力上昇期間(時点t32~t33)において、燃料噴射制御用マイクロコンピュータ32aは、第1の周波数f1の圧電素子駆動信号DVを圧電

/電歪素子駆動回路部32cにより発生させる。つまり、圧電/電歪素子15gに印加されている圧電素子駆動信号DVの周波数fを第1の周波数f1に設定する。

[0116]

その後、液体供給通路 1 5 - 1 内の液体の圧力が前記一定の高圧力になる時点 t 3 3 となると、燃料噴射制御用マイクロコンピュータ 3 2 a は、圧電/電歪素 子 1 5 g に印加されている圧電素子駆動信号 D V の周波数 f を第 1 の周波数 f 1 よりも大きい第 2 の周波数 f 2 に設定する。なお、係る周波数 f の変更は、燃料 噴射制御用マイクロコンピュータ 3 2 a からシュミットトリガ回路 S T 1 1 , S T 1 2 に送出されるパルスの周期 T (図 7 を参照。)を変更する (短くする) こ とにより行われる。

[0117]

その後、時点t34にてエンジン電子制御ユニット31からの駆動電圧信号が 消滅すると、燃料噴射制御用マイクロコンピュータ32aは電磁開閉式吐出弁1 4に印加されている電磁弁開閉用信号INJの発生を停止する。この結果、時点 t34から所定の時間が経過した時点t35にて、液体供給通路15-1内の液 体の圧力が減少し始め、時点t36にて前記一定の低圧力となる。

[0118]

一方、燃料噴射制御用マイクロコンピュータ32aは、時点t34から所定の時間が経過して時点t35となったか否かをモニタしていて、同時点t35になると圧電/電歪素子駆動回路部32cに印加されている圧電素子駆動信号DVの周波数fを第1の周波数f1に再び設定する。また、燃料噴射制御用マイクロコンピュータ32aは、時点t35~t36に相当する時間を予め記憶していて、時点t35から同記憶している時間が経過した時点t36にて同圧電素子駆動信号DVの発生を停止する。

[0119]

なお、この場合においても、液体供給通路15-1内の液体圧力を検出する圧電/電歪素子を別途設置するとともに、同圧電/電歪素子の信号を燃料噴射制御用マイクロコンピュータ32aに入力し、この圧電/電歪素子の信号に基いて液

体供給通路15-1内の液体圧力が前記一定の高圧力及び低圧力となったことを 検出した時点で、それぞれ圧電素子駆動信号DVの周波数を変更させ及び同圧電 素子駆動信号DVの発生を停止させるように同燃料噴射制御用マイクロコンピュ ータ32aを構成してもよい。

[0120]

以上、説明したように、第4実施形態に係る液体噴射装置10は、電気制御装置30が、液体供給通路15-1内の液体の圧力に応じて圧電素子駆動信号DVの周波数を変化させるように構成されている。即ち、電気制御装置30は、液体供給通路15-1内の液体の圧力が大きくなるほど高い周波数を有する圧電素子駆動信号DVを圧電/電歪素子15gに与え、これによりチャンバー15-2の容積変化の周波数を高くする。

[0121]

液体供給通路 15-1内の液体の圧力の大きさは、液体吐出用ノズル 15-4 から噴射される液体の速度(噴射速度)を決定付けるので、同液体の圧力が異なれば液体の微粒子化の程度も異なることになる。従って、上記第4 実施形態のように、液体供給通路 15-1内の液体の圧力に応じて前記圧電素子駆動信号 DVの周波数 f を変化させることにより、所望の粒径の液滴を得ることが可能となる

[0122]

また、上記第4実施形態においては、液体供給通路15-1内の液体の圧力が大きいほど圧電素子駆動信号DVの周波数fが高くなるように変更されている。このように構成するのは、液体供給通路15-1内の液体の圧力が大きいほど、液体吐出用ノズル15-4から噴射される液体の速度は大きく、同液体吐出用ノズル15-4から噴射される流量(単位時間あたりに液体吐出用ノズル15-4から液体噴射空間21内に押し出される液柱の長さ)が大きくなるので、液体供給通路15-1内の液体の圧力が大きいほど高い周波数fの圧電素子駆動信号DVを圧電/電歪素子15gに付与することにより、同液体の圧力に拘らず微粒子化される液滴の粒径を均一とすることが可能となるからである。なお、上記実施形態では、圧電素子駆動信号DVの周波数fは第1周波数f1と第2周波数f2

の2段階に変更されていたが、同周波数 f は液体供給通路 1 5 - 1 内の液体の圧力に応じて連続的に変更されてもよい。

[0123]

次に、本発明による液体噴射装置10の第5実施形態について説明する。第5 実施形態に係る液体噴射装置10は、第1実施形態に係る液体噴射装置10に対 して、電磁弁開閉用信号INJ及び圧電素子駆動信号DVの発生のさせ方を異な らせた点においてのみ相違している。従って、以下、係る相違点を中心としてタ イムチャートである図14を参照しながら説明する。

[0124]

第5実施形態においては、第2実施形態と同様に、電磁開閉式吐出弁14が開 弁することにより、液体供給通路15-1内の液体圧力が前記一定の高圧力となって安定している期間(図14の時点t13~t15の期間)、圧電/電歪素子 15gの作動(同圧電/電歪素子15gの作動による燃料の微粒子化)を停止す る。また、液体供給通路15-1内の液体の圧力が増大及び減少している期間(時点t12~t13、時点t15~t16)では、同液体の圧力が大きいほど圧 電素子駆動信号DVによるチャンバー15-2の容積変化量を小さくする。

[0125]

より具体的に述べると、時点 t 1 2~t 1 3 の期間においては、時間経過とともに液体供給通路 1 5 - 1 内の液体の圧力が増大する。従って、燃料噴射制御用マイクロコンピュータ 3 2 a は、圧電/電歪素子 1 5 g への電源電圧 V P 2 の印加開始と次の電源電圧 V P 2 の印加開始との間の周期 T を変えることなく各電圧印加時間を時間経過とともに短くする。

[0126]

即ち、図15に示したように、電源電圧VP2の電圧印加開始タイミング間(時点 t 4 1~t 4 5の時間、及び時点 t 4 5~t 4 9の時間)の周期Tを一定に維持しながら、各電圧印加時間であるシュミットトリガ回路ST11の出力信号がハイレベルになっている時間Tp1,Tp3,Tp5を時間経過とともに順に短くする。これにより、液体供給通路15-1内の液体の圧力が増大するに従って圧電/電歪素子15gに加わる最大電圧Vmaxが小さくなるので、圧電/電歪

素子の一作動あたりの変位量が小さくなり、チャンバー15-2の一回の容積変 化における容積変化量 Δ V も次第に小さくなる。

[0127]

同様に、図14に示した時点 t 15~ t 16の期間においては、時間経過とともに液体供給通路15-1内の液体の圧力が減少する。従って、燃料噴射制御用マイクロコンピュータ32 a は、圧電/電歪素子15gへの電源電圧VP2の印加を開始する周期Tを変えることなく各電圧印加時間を時間経過とともに長くする。即ち、電圧印加時間であるシュミットトリガ回路ST11の出力信号がハイレベルになっている時間を時間経過とともに長くする。これにより、液体供給通路15-1内の液体の圧力が減少するにつれて圧電/電歪素子の一作動あたりの変位量が大きくなり、チャンバー15-2の一回の容積変化における容積変化量 Δ V が次第に大きくなる。

[0128]

このように、第5実施形態に係る液体噴射装置10は、電気制御装置30が、 液体供給通路15-1内の液体の圧力が大きいほど圧電素子駆動信号DVによる チャンバー15-1の容積変化量を小さくするように構成されている。

[0129]

液体供給通路15-1内の液体の圧力が大きいほど液体吐出用ノズル15-4から噴射される液体速度は大きくなるので、噴射される液体の粒径は、チャンバーの容積変化量ΔV(容積変化量の最大値、即ち、最大容積変化量)を大きくしなくても、同液体の表面張力により比較的小さくなる。従って、液体供給通路15-1内の液体の圧力が大きいほど圧電素子駆動信号DVによるチャンバー15-2の容積変化量ΔVを小さくする上記第5実施形態によれば、必要以上のチャンバー15-2の容積変化を発生せしめないようにできるので(即ち、圧電/電歪素子15gの変形量を必要以上に大きくすることがないので)、液体噴射装置10の消費電力を低減することができる。

[0130]

なお、上記第5実施形態においては、液体供給通路15-1内の液体の圧力が 前記一定の高圧力となっているとき(時点t13~t15)、圧電素子駆動信号 DVの発生を停止していたが、図16に示したように、圧電素子駆動信号DVを継続的に発生させてもよい。また、第4実施形態と第5実施形態とを組み合わせ、液体供給通路15-1内の液体の圧力が大きいほど圧電素子駆動信号DVの周波数が高く、且つ、同液体の圧力が大きいほど圧電素子駆動信号DVによるチャンバー15-2の容積変化量 Δ Vを小さくするように構成してもよい。

[0131]

以上、説明したように、本発明の実施形態に係る各液体噴射装置によれば、燃料が加圧ポンプ11で加圧され、燃料がその圧力によって吸気管20内の液体噴射空間21に噴射されるから、液体噴射空間21内の圧力(吸気圧)が変動した場合であっても、所望の燃料量の燃料を安定的に噴射することができた。

[0132]

また、燃料には噴射デバイス15Aのチャンバー15-2の容積変化により振動エネルギーが与えられ、同燃料は微粒子化されるように液体吐出用ノズル15-4aから噴射される。この結果、本液体噴射装置は、極めて精細に微細化された液滴を噴射することができた。更に、噴射デバイス15Aは、複数のチャンバー15-2と複数の吐出用ノズル15-4を備えているから、仮に燃料中に気泡が発生した場合でも、同気泡が細かく分断され易く、その結果、気泡の存在による噴射量の大きな変動を回避することができた。

[0133]

また、電磁開閉式吐出弁14の吐出孔14c-2から液体供給通路15-1に向う距離が増大するのに伴って、吐出孔14c-2から吐出される燃料の前記中空円筒状密閉空間の中心軸線CLからの距離が増大するように、吐出孔14c-2からの燃料吐出方向が定められているから、スリーブ15Dの形成する前記中空円筒状密閉空間の広い部分において吐出される燃料の流れが生じることになる。その結果、特に、前記密閉空間の電磁開閉式吐出弁14の吐出孔14c-2近傍の角部(図3において黒塗りの三角印を付すことで示した部分)に気泡が生じ難く、或いは同角部に生じた気泡の排出性能が向上する。従って、上記各液体噴射装置は、燃料の圧力上昇が気泡により阻害され難いので、燃料の圧力を期待通り増大させることができ、内燃機関等の機械装置が要求する噴射量及び噴射タイ

ミングで燃料の液滴を噴射することが可能となった。

[0134]

また、上記各液体噴射装置は、前記電磁開閉式吐出弁14から吐出された液体が前記吐出用ノズル15-4から前記液体噴射空間21に噴射されるまでの間に、同液体の流れが少なくとも一回(本例においては4回)略直角に曲げられるように構成されている。

[0135]

即ち、本液体噴射装置においては、電磁開閉式吐出弁14から吐出された液体の流れは、先ず、液体注入口15-5と液体供給通路15-1とが直交しているので、同液体注入口15-5と同液体供給通路15-1との接続部で直角に曲げられる。次に、液体供給通路15-1の長軸方向はX軸と平行であり、液体導入孔15-3の中心軸はZ軸と平行であるから、液体供給通路15-1と液体導入孔15-3の接続部において、液体の流れは直角に曲げられる。

[0.136]

更に、チャンバー15-2の長軸はY軸と平行であり、液体導入孔15-3の中心軸はZ軸と平行であるから、チャンバー15-2と液体導入孔15-3の接続部において、液体の流れは直角に曲げられる。また、チャンバー15-2の長軸はY軸と平行であり、液体吐出用ノズル15-4の軸線はZ軸と平行であるから、チャンバー15-2と液体吐出用ノズル15-4の接続部においても液体の流れは直角に曲げられる。

[0137]

そして、このような構成によれば、電磁開閉式吐出弁14から吐出された液体の流れが少なくとも一回略直角に曲げられるから、電磁開閉式吐出弁14の開弁に伴う液体圧力の脈動が低減され、安定した液滴の噴射を行うことが可能となる。換言すると、電磁開閉式吐出弁14の開弁に伴う液体の動圧が静圧となり、その静圧下で燃料が噴射されることになる。この結果、燃料を各液体吐出用ノズル15-4から安定して噴射することが可能となった。

[0138]

特に、上記各液体噴射装置は、噴射デバイス15Aが共通の液体供給通路15

-1に接続された複数のチャンバー15-2,15-2…を有し、且つ、電磁開閉式吐出弁14から吐出された液体の流れが液体注入口15-5と液体供給通路15-1との接続部で略直角に曲げられるので、液体供給通路15-1内の液体の圧力が安定する。従って、各チャンバー15-2,15-2…内における液体の圧力が静圧となって安定するので、同各チャンバー15-2,15-2…に接続された各液体吐出用ノズル15-4,15-4…から吐出される液滴を均一なものとすることができた。

[0139]

また、前記電磁開閉式吐出弁14は、前記吐出孔14c-2から吐出される液体(燃料)の吐出流線(図3に一点鎖線DLで示す)が、前記スリーブ15Dの中空円筒状密閉空間を構成する側壁15D-1及び同側壁15D-1を前記液体供給通路15-1の平面部(セラミックシート15bの上面)まで仮想的に延長した側壁WPと交差することなく同液体供給通路15-1の平面部と直接交差するように配置構成されている。

[0140]

この結果、電磁開閉式吐出弁14から吐出された液体が、その運動エネルギー(流速)を高い状態に維持しながら、液体供給通路15-1の平面部に到達するから、液体は前記平面部にて、中空円筒状密閉空間の吐出孔14c-2側に向けて強く反射される。これにより、反射された液体の流れが中空円筒状密閉空間の吐出孔14c-2近傍の角部(図3に黒塗りの三角印を付すことで示した部分)に滞留する気泡を排出するので、液体中に存在する気泡の量が減少する。従って、上記各液体噴射装置は、液体の圧力上昇が気泡により一層阻害され難くなり、液体の圧力を期待通り増大させることができるため、内燃機関が要求する噴射量及び噴射タイミングで液滴を噴射することが可能となった。

[0141]

更に、上記各実施形態の各液体吐出用ノズル15-4の軸線はZ軸と平行となっているから、各吐出用ノズル15-4から液体噴射空間21に吐出された液滴が飛行中に実質的に互いに交わることがないので、燃料液滴同士が同液体噴射空間21において衝突して大きな液滴とならない。これにより、均一で霧化状態の

良好な燃料噴霧を形成することができた。

[0142]

また、上記各実施形態に係る液体噴射装置は、電気制御装置30が、少なくとも電磁弁開閉用信号INJの発生又は同電磁弁開閉用信号INJの発生の停止により液体供給通路15-1内の液体の圧力が増大又は減少しているとき、圧電素子駆動信号DVを発生させて圧電/電歪素子15gを作動させるとともに、電磁弁開閉用信号INJが消滅して液体供給通路15-1内の液体の圧力が一定の低圧力であるとき圧電素子駆動信号DVを発生しないように構成されている。

[0143]

従って、液体供給通路 1 5 - 1 (及びチャンバー 1 5 - 2) 内の液体の圧力が増大又は減少中であって同液体の噴射圧力が比較的小さいため、液体の噴射速度が十分ではなく、同液体の噴射速度に依るだけでは同液体を十分には微粒子化し難い場合であっても、圧電/電歪素子 1 5 gの作動によるチャンバー 1 5 - 2 の容積変化により同液体を適切に微粒子化することができた。

[0144]

また、電気制御装置30は、電磁弁開閉用信号INJが消滅して液体供給通路15-1内の液体の圧力が一定の低圧力(加圧手段により加圧された液体が液体供給通路15-1内には供給されない状態が継続した場合に収束する圧力)であるとき、即ち、液体が噴射デバイス15Aの液体吐出用ノズル15-4から液体噴射空間21に噴射されることがないとき、噴射デバイス15Aは液体を微粒子化するための作動を行う必要がないので、圧電素子駆動信号DVを発生しないようになっている。これにより、液体噴射装置による無駄な電力消費を回避することができた。

[0145]

なお、本発明は上記各実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記実施形態の液体噴射装置は、吸気管(吸気ポート)内に燃料を噴射する形式のガソリン内燃機関に適用されていたが、本発明による液滴噴射装置を、気筒内に燃料を直接噴射する所謂「直噴式ガソリン内燃機関」に適用することもできる。即ち、従来のフューエル

インジェクタを用いた電気制御式燃料噴射装置により気筒内に直接的に燃料を噴射すると、シリンダーとピストンとの隙間(クレビス)に燃料が溜まることがあり、未燃HC(ハイドロカーボン)量が増大する場合があったのに対し、本発明による液体噴射装置を用いて気筒内に直接的に燃料を噴射すると、燃料が微粒子化された状態で気筒内に噴射されるので、気筒内壁面への燃料付着量が低減でき、あるいはシリンダーとピストンとの隙間に侵入する燃料量を低減できるから、未燃HCの排出量を低減することができる。

[0146]

更に、本発明による液滴噴射装置を、ディーゼルエンジン用の直噴インジェクタとして用いることも有効である。即ち、従来のインジェクタによれば、特にエンジンの低負荷時には燃料圧力が低いことから、微粒子化した燃料を噴射することができないという問題がある。この場合、コモンレール方式の噴射装置を用いれば、エンジン低回転時でもある程度まで燃料圧力を高圧化できるので噴射燃料の微粒子化を促進できるものの、エンジン高回転時に比べれば燃料圧力は低いから、燃料を十分に微粒子できない。これに対し、本発明による液体噴射装置は、エンジンの負荷に拘らず(即ち、エンジンが低負荷時であっても)、圧電/電歪素子15gの作動により燃料を微粒子化するものであるから、十分に微粒子化された燃料を噴射することができる。

【図面の簡単な説明】

- 【図1】 内燃機関に適用した本発明の第1実施形態に係る液体噴射装置の概略 を示した図である。
- 【図2】 図1に示した電磁開閉式吐出弁と噴射ユニットを示した図である。
- 【図3】 図2に示した電磁開閉式吐出弁の先端部近傍の同電磁開閉式吐出弁及 び噴射ユニットの拡大断面図である。
- 【図4】 図2に示した噴射デバイスの平面図である。
- 【図5】 図4の1-1線に沿った平面にて噴射デバイスを切断した断面図である。
- 【図6】 図1に示した電気制御装置の詳細なブロック図である。
- 【図7】 図6に示した電気制御装置において発生する信号等を示したタイムチ

セートである。

- 【図8】 図6に示した電気制御装置の詳細回路図である。
- 【図9】 (A) は電磁開閉式吐出弁に付与される電磁弁開閉用信号を、(B) は液体供給通路内の液体圧力を、(C) は圧電/電歪素子に付与される圧電素子 駆動信号を、及び(D) は吸気弁の開弁時期を示したタイムチャートである。
- 【図10】 図1に示した液体噴射装置から噴射される液体の状態を示した図である。
- 【図11】 本発明の第2実施形態に係る液体噴射装置の作動を示したタイムチャートである。
- 【図12】 本発明の第3実施形態に係る液体噴射装置の作動を示したタイムチャートである。
- 【図13】 本発明の第4実施形態に係る液体噴射装置の作動を示したタイムチャートである。
- 【図14】 本発明の第5実施形態に係る液体噴射装置の作動を示したタイムチャートである。
- 【図15】 第5実施形態に係る液体噴射装置において、液体供給通路内の液体 圧力が増大している期間における圧電素子駆動信号等を示したタイムチャートで ある。
- 【図16】 本発明の第5実施形態に係る液体噴射装置の変形例の作動を示した タイムチャートである。

【符号の説明】

10…液体噴射装置、11…加圧ポンプ、11a…導入部、11b…吐出部、12…液体供給管、14…電磁開閉式吐出弁、14c…外筒部、14c-2…吐出孔、14d…ニードル弁、15…噴射ユニット、15A…噴射デバイス、15B…噴射デバイス固定板、15C…保持ユニット、15a~15f…セラミックシート、15g…圧電/電歪素子、15-1…液体供給通路、15-2…チャンバー、15-3…液体導入孔、15-4…液体吐出用ノズル、15-4a…液体噴射口、15-5…液体注入口、20…吸気管、21…燃料噴射空間、30…電気制御装置。

【書類名】 図面【図1】

【図2】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【書類名】 要約書

【要約】

【課題】 噴射開始時及び噴射終了時において、粒径の小さい液滴を安定して噴射することができるとともに、消費電力が小さい液体噴射装置を提供すること。

【解決手段】 液体噴射装置10は、圧電/電歪素子を備えた噴射ユニット15 と、同噴射ユニットに加圧された燃料を吐出する電磁開閉式吐出弁14と、電気 制御装置30とを含む。電気制御装置は、エンジンの運転状態に基いて電磁開閉 式吐出弁に対し電磁弁開閉用信号を発生し、これにより、電磁開閉式吐出弁から 噴射ユニットに加圧された液体燃料が供給される。電気制御装置は、少なくとも 前記電磁弁開閉用信号の発生又は発生の停止により噴射ユニット内の液体の圧力 が増大又は減少しているとき圧電/電歪素子を作動させて噴射燃料の微粒子化を 行う。一方、前記電磁弁開閉用信号が消滅して噴射ユニット内の液体圧力が一定 の低圧力であるとき圧電/電歪素子を作動させず、電力消費量を抑制する。

【選択図】 図1

認定・付加情報

特許出願の番号

特願2002-304922

受付番号

50201574364

書類名

特許願

担当官

第三担当上席

0092

作成日

平成14年10月23日

<認定情報・付加情報>

【提出日】

平成14年10月18日

【特許出願人】

【識別番号】

000004064

【住所又は居所】

愛知県名古屋市瑞穂区須田町2番56号

【氏名又は名称】

日本碍子株式会社

【代理人】

申請人

【識別番号】

100088971

【住所又は居所】

愛知県名古屋市中村区太閤3丁目1番18号 名

古屋KSビル プロスペック特許事務所

【氏名又は名称】

大庭 咲夫

【選任した代理人】

【識別番号】

100115185

【住所又は居所】

愛知県名古屋市中村区太閤3丁目1番18号 名

古屋KSビル プロスペック特許事務所

【氏名又は名称】

加藤 慎治

出願人履歴情報

識別番号

[000004064]

1. 変更年月日

1990年 8月24日

[変更理由]

新規登録

住 所

愛知県名古屋市瑞穂区須田町2番56号

氏 名

日本碍子株式会社