

Chapitre VIII – Algorithmique

 ${\sf Bacomathiques-https://bacomathiqu.es}$

TABLE DES MATIÈRES				
I - Définition	1			
II - Instructions	2			
1. Création de variables	2			
2. Affections de valeurs	2			
3. Affichage de variables	4			
III - Blocs d'instructions 5				
1. Définition	5			
2. Les blocs SI et SINON	5			
3. La boucle POUR	6			
4. La boucle TANT QUE	7			
IV - Algorithmes sur l'ordinateur	8			

I - Définition

Un algorithme est une suite finie et ordonnée d'opérations ou d'instructions permettant de résoudre un problème ou d'obtenir un résultat. Ainsi, faire une recette de cuisine ou encore effectuer une division euclidienne à la main sont des exemples d'algorithmes.

Dans ce cours, nous travaillerons à la fois avec des algorithmes Python et des algorithmes "type BAC " .

II - Instructions

1. Création de variables

Créer une variable permet de réserver un espace pour y stocker des données quelconques. On donne un nom à chaque espace pour le repérer : ce sont les noms de variables. Dans certains langages, on leur donne également un type (entier, réel, ...) pour travailler avec (ce qui n'est pas le cas dans Python).

```
En Python:

nombre = 0 # On crée la variable "nombre" et on lui
assigne la valeur O.
chaine = 'Bonjour' # On crée la variable "chaine" et
on lui assigne la valeur 'Bonjour'.
```

Exemple (tiré du sujet de Pondichéry 2017) :

lci nous avons quatre variables : R et S qui sont des réels et n et k qui sont des entiers.

2. Affections de valeurs

Comme dit précédemment, les variables sont des "espaces" dans lequel il est possible de stocker des informations.

Cependant, après avoir créé cet espace, celui-ci est encore vide. C'est pourquoi on doit le "remplir" : c'est l'affectation d'une valeur à une variable.

Il existe plusieurs manières d'affecter une valeur à une variable : soit on lui donne directement sa valeur dans l'algorithme, soit on demande à l'utilisateur d'entrer une valeur (il faut garder à l'esprit que les algorithmes sont faits pour être utilisés par des utilisateurs).

En Python: x = int(input('Veuillez entrer une valeur : ')) # L' utilisateur va entrer une valeur, on la convertir en entier et on va affecter celui-ci à notre variable "x". y = 2*x + 10 # Une fois fait, "y" va prendre la valeur 2 * x + 10. Par exemple, si l'utilisateur entre "10", "y" vaudra 30.

À LIRE 👀

Exemple (tiré du sujet de Pondichéry 2017) :

Ici on donne à S la valeur 0, mais on demande à l'utilisateur d'entrer la valeur de la variable n (l'utilisateur entrera un entier, car la variable n ne peut contenir que des entiers).

Une fois que l'on a affecté une valeur à une variable, il est encore possible de la changer!

3. Affichage de variables

Les algorithmes étant faits pour être utilisés, il faut donc **retourner un résultat** sinon ceux-ci seraient inutiles.

C'est pourquoi, on peut "afficher" les valeurs des variables (les montrer à l'utilisateur).

```
En Python:

print('Voici la valeur de "maVariable" :', maVariable)

# Permet d'afficher la valeur de "maVariable".
```

À LIRE 👀

Exemple (tiré du sujet de Métropole 2017) :

Variables	N et A des entiers naturels
Entrée	Saisir la valeur de A
Traitement	N prend la valeur $0Tant que N - \ln(N^2 + 1) < AN$ prend la valeur $N + 1Fin tant que$
Sortie	Afficher N

Une fois l'algorithme terminé, on affiche la valeur de la variable N (on remarque que N a pris plusieurs valeurs différentes au cours de l'algorithme mais qu'on affiche uniquement la valeur finale de la variable).

III - Blocs d'instructions

1. Définition

Les blocs d'instructions sont des parties de l'algorithme (ce sont des "algorithmes dans l'algorithme") qui s'exécutent suivant certaines conditions propres aux différents blocs d'instructions.

2. Les blocs SI et SINON

Les blocs **SI** et **SINON** sont des blocs d'instructions très utilisés qui permettent de tester une condition : si elle est réalisée, on va exécuter les instructions se situant sous le bloc SI et sinon, on va exécuter celles se situant sous le bloc SINON.

En Python: \[\times = 2 \ # \ On \ attribue \ \hat{a} \ "x" \ la \ valeur 2. \\ if \ \times = 3: \ # \ Si \ "x" \ est \ \equiv gal \ \hat{a} \ 3... \\ print('"x" \ est \ \equiv gal \ \hat{a} \ 3.') \ # \ \ \ \ Alors \ on \ affiche \\ ce \ message \ Mais \ ici, \ "x" \ vaut \ 2 \ donc \ ce \ message \ ne \\ sera \ jamais \ affich\equiv \\ else: \ # \ Sinon... \\ print('"x" \ n\'est \ pas \ \equiv gal \ \hat{a} \ 3.') \ # \ \ \ \ \ On \ \ affiche \\ ce \ message.

À LIRE 99

Exemple (test de parité) :

Variables	N et R sont des entiers
Entrée	Saisir la valeur de N
Traitement	SI E(N/2) = N/2 : R = 0 SINON : R = 1
Sortie	Afficher R

Si la partie entière de $\frac{N}{2}$ est égale à $\frac{N}{2}$ (ce n'est vrai que pour les entiers pairs), alors on donne à R la valeur 0. Sinon on lui donne la valeur 1.

En fin d'algorithme, on affiche la valeur de R : soit 0 si N est pair, soit 1 si N est impair.

3. La boucle POUR

La **boucle POUR** est un bloc d'instruction qui s'exécute et qui va faire prendre à une variable toutes les valeurs comprises dans un ensemble d'entiers.

En Python: for i in range(-5, 6): # Pour chaque entier entre -5 (inclus) et 6 (exclu)... print(i) # ... On affiche cet entier.

À LIRE 👀

Exemple (calcul des termes d'une suite) :

Variables	U est un réel N et n sont des entiers
Entrée	Saisir la valeur de N
Traitement	Affecter à u la valeur 1 Pour n allant de 1 à N : Affecter à u la valeur $u + 1/n$
Sortie	Afficher <i>n</i> Afficher <i>u</i>

Cet algorithme permet de calculer les termes d'une suite $(u_n)_{n\in\mathbb{N}}$ définie par récurrence :

$$\begin{cases} u_0 = 1 \\ u_{n+1} = u_n + \frac{1}{n} \end{cases}$$
 pour n entier.

On demande à l'utilisateur d'entrer une variable N, et pour n variant de 1 jusqu'à N (n prendra tour à tour les valeurs 1, 2, 3, ..., N-1, N), on va calculer les termes de la suite.

4. La boucle TANT QUE

Cette boucle, différente de la boucle POUR permet d'exécuter son bloc d'instructions tant qu'une certaine condition est valable.

```
En Python:

x = 100 # On affecte à "x" la valeur 100.

while x > 10: # Tant que x est supérieur à 10...

x = x / 2 # On divise x par 2 (i.e. on affecte à "

x" la valeur x/2).

print(x) # On affiche la valeur de "x".
```

À LIRE 99

Exemple (tiré du sujet de Métropole 2017) :

Variables	N et A des entiers naturels
Entrée	Saisir la valeur de A
Traitement	N prend la valeur $0Tant que N - \ln(N^2 + 1) < AN$ prend la valeur $N + 1Fin tant que$
Sortie	Afficher N

lci, tant que $N - \ln(N^2 + 1)$ est inférieur à A, on affecte une nouvelle valeur à la variable N

IV - Algorithmes sur l'ordinateur

Il est possible de tester et de vous entraı̂ner aux algorithmes sur votre ordinateur, voire directement sur votre smartphone!

Divers logiciels à télécharger, dont certains ne nécessitant pas d'installation sont disponibles :

