Inhaltsverzeichnis

1	Zus	ammenfassung	1
	1.1	Homomorphismus	1
	1.2	Kategorien	1
	1.3	Derived Systems	2
		1.3.1 Subsysteme	2
		Subsysteme	2
		Intersection (Schnitt) und Union (Vereinigung)	3
		Verband	4
		Abschluss Operatoren (Closure Operators) & leere Systeme	4
		Inklusions-Homomorphismus	4
		Homomorphe Bilder	5
		1.3.2 Quotient	6
		Kongruenz	6
		Verband	6
		Abschluss Operator	6
		Kernel	6
		Quotient	7
		Natürlicher Homomorphismus	7
		Operatoren auf Relationensfamilien	7
	1.4	Mono, Epi und Isomorphismen	8
		1.4.1 Isomorphismus	8
		1.4.2 Generelle Mono- und Epimorphismen	0
		1.4.3 Spezielle Mono- und Epimorphismen	1
	1.5	Faktorisierungssysteme	2

1 Zusammenfassung

1.1 Homomorphismus

Definition 4 (Def) Zwei algebraische Systeme mit selber Signatur Σ $h:A\to B$ Familie totaler Abbildungen.

Wenn f^A für x definiert ist, dann muss f^B für $h^w(x)$ definiert sein. $[f^B(h^w(x)) = h^v(f^A(x))]$

Notation 5 (Hom. als Familie von Abbildungen (h))

Proposition 6 (Identity) Die Identität ist ein Homomorphismus. $id: A \to A$.

Proposition 7 (Komposition) Wenn $f: A \to B$ und $g: B \to C$ homomorphismen, dann ist $g \circ f$ wieder ein Homomorphismus.

Fact 8 (Eigenschaften von Identitäten und Kompositon) Identitäten kürzbar und Klammern 'verschiebbar' (Assoziativität).

1.2 Kategorien

Definition 9 (Def) $C = (O, M, id, \circ)$ [Objects, Morphism-Sets, Identitäten, Kompositionen]

Identitäten kürzbar und Klammern 'verschiebbar' (Assoziativität).

Definition 12 (Kategorien von Mengen & Abbildungen) $C = (O^{Set}, M^{Set}, id^{Set}, \circ^{Set})$ [Die Klasse aller Mengen, die Menge aller Abbildungen, die identitätische Abbildung, Kompositionen von Abbildungen]

Definition 13 (Kategorien algebraischer Systeme) $Sys(\Sigma)$ ist Kategorie aller Σ Systeme und Homomorphismen zwischen diesen.

 $\underline{\operatorname{Sys}}(\Sigma)$ die Kategorie aller Σ Systeme in der alle Operationsnamen als totale Funktionen interpretiert werden und alle Homomorphismen zwischen diesen.

1.3 Derived Systems

1.3.1 Subsysteme

Subsysteme

Definition 15 (Def) Schwaches Subsystem $(B \subseteq A)$, wenn:

- 1. Die Trägermengen in Teilmengenrelation $B_s \subseteq A_s$
- 2. Wenn Operation im Untersystem definiert ist und y liefert, muss sie auch im "drüber liegendenSSystem sein und y liefern.

Volles Subsystem $B \subseteq_f A$, wenn schwaches Untersystem und:

1.
$$f^A(x) = y$$
 definiert und $x, y \in B_s$ dann $f^B(x) = y$

Geschlossenes Subsystem $B \subseteq_c A$, wenn volles Untersystem und:

1.
$$f^A(x) = y$$
 definiert und $x \in B_s$ dann $y \in B_s$

Proposition 16 (Geschlossene Subsysteme von totalen Systemen) Jedes geschlossene Subsystem eines totalen Systems ist total.

Intersection (Schnitt) und Union (Vereinigung)

Definition 17 Schnitt Sei $\mathfrak{B} = (B^i \subseteq A)_{i \in I}$ ein nicht leere Schnitt. Der Schnitt $\cap \mathfrak{B}$ ist definiert als

- 1. Sortenweiser Schnitt über die Trägermengen $(s \in S: (\cap \mathfrak{B})_s = \bigcap_{i \in I} B_s^i)$.
- 2. Alle Operationen zum sortenweisen Schnitt der Trägermengen $(f \in O: f^{\bigcap \mathfrak{B}} = \bigcap_{i \in I} f^{B^i}).$

Proposition 18 Eigenschaften der Schnitte von Subsystemen

- 1. $\cap \mathfrak{B}$ ist ein algebraisches System. D.h. die Operationen sind wohldefiniert.
- 2. Der Schnitt ist selber Subsystem von A $(\bigcap \mathfrak{B} \subseteq A)$
- 3. Der Schnitt ist Untersystem jedes B^i
- 4. MAIL AN LÖWE: Für alle Untersysteme X von B^i gilt, dass sie Untersystem von $\cap \mathfrak{B}$ sind.

Definition 20 Vereinigung Sei $\mathfrak{B} = (B^i \subseteq A)_{i \in I}$ eine nicht leere Vereinigung. Die Vereinigung $\bigcup \mathfrak{B}$ ist definiert als

- 1. Sortenweise Vereinigung der Trägermengen $(s \in S: (\bigcup \mathfrak{B})_s = \bigcup_{i \in I} B_s^i).$
- 2. Alle Operationen zur sortenweisen Vereinigung der Trägermengen $(f \in O: f^{\bigcup \mathfrak{B}} = \bigcup_{i \in I} f^{B^i}).$

Proposition 21 Eigenschaften der Vereinigungen von Subsystemen

- 1. [13] ist ein algebraisches System. D.h. die Operationen sind wohldefiniert.
- 2. Die Vereinigung ist selber Subsystem von A ($\bigcup \mathfrak{B} \subseteq A$)
- 3. B^i ist Untersystem der Vereinigung ($\bigcup \mathfrak{B}$) [Unterschied zum Schnitt!]
- 4. Für alle Obersysteme X von B^i gilt, dass $\bigcup \mathfrak{B}$ Untersystem von X ist [Unterschied zum Schnitt!].

Verband

Proposition 23 Verband von Subsystemen Die Menge von (i) allen (schwachen), (ii) allen vollen und (iii) allen geschlossenen Untersystemen ist ein kompletter Verband bis auf Inklusion.

Abschluss Operatoren (Closure Operators) & leere Systeme

Collorary 24 Abschluss Operatoren $B = (B_s \subseteq A_s)_{s \in S}$, dann gibt es ein kleinstes volles $(\lceil B \rceil_s^f)$ und kleinstes geschlossene $(\lceil B \rceil_s^c)$ Subsystem, dass B enthält.

Definition 25 Leeres System Das leere System \mathcal{I} besteht nur aus leeren Komponenten.

Proposition 26 Leeres System als Untersystem

- 1. \mathcal{I} ist immer das kleinste Subsystem
- 2. $[\mathcal{I}]^f$ ist das kleinste volle Subsystem
- 3. $[\mathcal{I}]^c$ ist das kleinste geschlossene Subsystem

Proposition 27 Eigenschaften von Abschluss Operatoren $x \in \{c, f\}$

- 1. $B \subseteq \lceil B \rceil^x$
- $2. \ B \subseteq B' \implies \lceil B \rceil^x \subseteq \lceil B' \rceil^x$
- 3. $\lceil \lceil B \rceil^x \rceil^x = \lceil B \rceil^x$

Proposition 28 Endlich generierte Systeme A ist endlich erzeugt, wenn $A = |G|^c$ für eine endlich generierte Familie von Mengen $G = (G_s \subseteq A_s)_{s \in S}$

Inklusions-Homomorphismus

Proposition 29 Inklusions-Homomorphismus $A \subseteq B$, der Inklusions-Morphismus $\subseteq: A \to B$ ist definiert für $a \in A_s$ durch $\subseteq (a) = a$

Das Bild eines beliebigen Homorphismus $h:A\to B$ ist ein Untersystem von B.

Homomorphe Bilder

Definition 30 Bild eines Homomorphismus Trägermengen und Operationen werden abgebildet.

Proposition 31 Bild eines Homomorphismus Das Bild eines Homomorphismus ist ein Untersystem.

Proposition 32 Bilder von Kompositionen $h: A \to B \text{ and } k: B \to C$ $k \circ h(A) \subseteq k(B)$

Definition 33 Volle und geschlossene Homomorphismen $h: A \to B$ ist voll bzw. geschlossen wenn das Bild (h(A)) ein volles bzw. geschlossenes Untersystem der Co-Domain B ist: $h(A) \subseteq^x B$ $x \in \{f, c\}$

Definition 35 Konstruktion von Abschlüssen OFFEN Sei A System und $(B_s \subseteq A_s)_{s \in S}$ Familie von Teilmengen auf den Trägermengen. Die Operatoren sind dazu da, um ein Untersystem geschlossen/voll zu machen. Wir definieren

- 1. Konstanten dazu: $\lceil B \rceil^0 = B \cup \left(\left\{ y \in A_s :: f^A(*) = (p, y, q), f \in O_{\epsilon, v} \right\} \right)_{s \in S}$
- 2. Notwendige Funktionswerte: $\lceil B \rceil^{i+1} = \left(\lceil B \rceil^i_s \cup \left\{ y \in A_s \ :: \ f^A(x) = (p,y,q), \ f \in O_{w,v}, \ x \in \left(\lceil B \rceil^i \right)^w, \ |w| \ge 1 \right\} \right)_{s \in S}$
- 3. 1 und 2 zusammen: $\lceil B \rceil^* = \bigcup_{i \in \mathbb{N}_0} \lceil B \rceil^i$
- 4. Macht es voll: $\hat{B} = \left(B, \, \left(f^A \cap (B^w \times B^v)\right)_{f \in O_{w,v}}\right)$
- 5. Macht es geschlossen (3 und 4 zusammen): $\widetilde{B} = \widehat{\lceil B \rceil}^*$

Proposition 36 Konstruktion von Abschlüssen $[B]^f = \widehat{B} \text{ und } [B]^c = \widetilde{B}$

Lemma 37 Abschlüsse und Homomorphismen $h: A \to C$ und $B_s \subseteq A_s$ Familie von Teilmengen der Trägermengen von A. Dann gilt: $h(\lceil B \rceil^c) \subseteq \lceil \underline{h}(B) \rceil^c$

Abbildung 1.1: Abschlüsse und Homomorphismen

1.3.2 Quotient

Kongruenz

Definition 38 Kongruenzrelation Äquirel &: $x \equiv^w x'$, $f^A(x) = y$, $f^A(x') = y' \Rightarrow y \equiv^v y'$

Proposition 39 Schnitt von Kongruenzen $(\equiv_i)_{i\in I}$ auf A: $\bigcap_{i\in I}\equiv^i$ ist Kongruenz auf A.

Verband

Corollary 40 Verband von Kongruenzen Die Menge $\mathfrak{C}^A = \{ \equiv :: \equiv \text{ist Kongruenz auf } A \}$ von Kongruenzrelationen auf einem algebraischen System A ist ein vollständiger Verband bis auf Inklusion.

Abschluss Operator

Corollary 41 Abschluss Operator Kleinste Kongruenz $\lceil r \rceil_A$ auf A die r enthält.

Kernel

Definition 42 Kern eines Homomorphismus Kern h^{\equiv} beinhaltet all die Elemente, die durch den Homomorphismus h auf das Gleiche abgebildet werden. $h_s^{\equiv} = \{(a_1, a_2) :: h_s(a_1) = h_s(a_2)\}$

Proposition 43 Kern h^{\equiv} ist eine Kongruenz auf der h-Domain.

Proposition 44 Kern einer Komposition $m^{\equiv} \subseteq (n \circ m)^{\equiv}$

Quotient

Definition 45 Quotient Gegeben System A und \equiv auf A. Der Quotient A_{\equiv}

- 1. Kongruente Elemente der Trägermenge in eine Äquivalenzklasse schmeissen.
- 2. $f^{A|=}([x]^w) = [y]^v$, wenn $f^A(x) = y$

Proposition 46 Quotient von totalen Systemen Jeder Quotient eines totalen Systems ist total.

Natürlicher Homomorphismus

Proposition 47 Natürlicher Homomorphismus Bildet Elemente der Trägermengen in ihre jeweilige Äquivalenzklasse ab $(\equiv: A \to A_{\mid \equiv})$.

Proposition 48 Natürlicher Homomorphismus Jeder natürlicher Homomorphismus ist geschlossen.

Proposition 49 Kongruenz Theorem \equiv^1 und \equiv^2 sind Kongruenzen auf A, sodass $\equiv^1 \subseteq \mathbb{Z}$, dann gibt es einen Homomorphismus \equiv^{2-1} : $A_{\mid \equiv^1} \to A_{\mid \equiv^2}$ mit $\equiv^{2-1} \circ \equiv^1 = \equiv^2$.

Operatoren auf Relationensfamilien

Proposition 50 Operatoren auf Relationensfamilien

- 1. Symmetrie
- 2. Reflexivität
- 3. $r_s^1 = r_s$

- 4. Rekursiver Verkettung
- 5. $r^* = \text{Vereinigung von 1 bis 4}$
- 6. $c^0(r)_s = r_s$

7.
$$c^{i+1}(r)_s = c^i(r)_s \cup \{(y_i, y_i') :: f \in O_{w,psq}, i = |p| + 1, x (c^i(r))^w x', f^A(x) = y, f^A(x') = y'\}$$

8. Vereinigung von 6 und 7

Lemma 51

- 1. r^* ist Familie transitiver Relationen.
- 2. $c^*(r)$ erfüllt Kongruenzbedingungen (Definition 38)

Lemma 52 Wenn eine Relation $r \subseteq A \times A$ reflexiv ist und $r \subseteq s \subseteq A \times A$, dann ist s auch reflexiv.

Lemma 53 Gegeben symmetrische Relation r, dann $c^*(r)$ und r^* auch symmetrisch.

Lemma 54 Gegeben Relation r auf einem totalen A. R erfüllt Kongruenzbedingung (Def 38). Dann erfüllt auch r^* die Kongruenzbedingung.

Proposition 55 Konstruktion der generierten Kongruenz A total und r, dann $\lceil r \rceil = (c^* (sym (r \cup r^0)))^*$.

1.4 Mono, Epi und Isomorphismen

1.4.1 Isomorphismus

Definition 57 Sektion, Retraktion und Isomorphismus Morphiums $m:A\to B$ in einer Kategorie C.

- 1. m ist Sektion wenn $m^{-1} \circ m = id_A$
- 2. m ist Retraktion wenn $m \circ m^{-1} = id_B$
- 3. m ist Isomorphismus wenn 1 und 2.

Proposition 58/59 Kompositionen von Sektion/Retraktion

- 1. n, m Sektionen/Retraktionen $\Rightarrow n \circ m$ Sektion/Retraktion.
- 2. $n \circ m$ Sektion/Retraktion \Rightarrow m ist Sektion/ n ist Retraktion.

Proposition 60 Eigenschaften von Isomorphismen

- 1. Alle Identitäten sind Isomorphismen
- 2. m Isomorphismus $\Rightarrow m^{-1}$ Isomorphismus.
- 3. n, m Isomorphismen $\Rightarrow n \circ m$ Isomorphismus.
- 4. $n \circ m$ Isomorphismus und (m Retraktion oder n Sektion) \Rightarrow m und n Isomorphismen.
- 5. Isomorphismus $i: a \to b \Rightarrow a \approx b$ ist eine Äquivalenz.

Proposition 61 Isomorphismus in Set Kategorie Set, Map $f: a \rightarrow b$

- 1. f ist Sektion, wenn f injektiv ist und $a \neq \emptyset$
- 2. f ist Retraktion, wenn f surjektiv
- 3. f ist Isomorphismus, wenn f bijektiv

Proposition 62 Notwendige Bedingungen für Isomorphismen in $Sys(\Sigma)$ $h:A\to B$ ist Isomorphismus in $Sys(\Sigma)\Rightarrow$

- 1. h ist injektiv in allen Komponenten
- 2. h ist surjektiv in allen Komponenten
- 3. h ist voll

Proposition 63 Hinreichende Bedingungen für Isomorphismen in $Sys(\Sigma)$ Wenn h bijektiv (Prop 62: 1 und 2) und voll (Prop 62: 3) ist, dann ist es ein Isomorphismus.

Corollar 64 Ismomorphismus $Sys(\Sigma)$ und $Sys(\Sigma)$

- 1. Die Isomorphismen und $Sys(\Sigma)$ sind bijektive und volle Homomorphismen.
- 2. Die Isomorphismen und $Sys(\Sigma)$ sind bijektive Homomorphismen.

1.4.2 Generelle Mono- und Epimorphismen

Monomorphismus

Definition 65 (Def)

$$m \circ p = m \circ q \Rightarrow p = q$$

Proposition 66

Jede Sektion ist monisch.

Proposition 67 (Komposition)

- (1) $n, m \text{ monic} \Rightarrow n \circ m \text{ monic}$.
- (2) $n \circ m$ monic $\Rightarrow m$ monic.

Proposition 68 (Geschlossen unter Iso)

 $m: a \to b$ ist monisch, $a \approx a', b \approx b'$ $\Rightarrow \approx \circ m \circ \approx : a' \to b'$ ist mono.

Definition 69 (Abstraktes Subobjekt)

Abstraktes Subobjekt $(a, m: a \rightarrow b)$ eines Objektes b in Kategorie C

- ist ein Objekt $a \in C$
- zusammen mit einem Mono $m:a\rightarrowtail b$

Zwei Subobjekte

- $(a_1, m_1 : a_1 \rightarrow b)$
- $-(a_2, m_2: a_2 \rightarrow b)$

des selben Objektes b sind die selben abstrakten Subobjekte wenn es einen Iso \approx : $a_1 \to a_2$ gibt, so dass $m_1 = m_2 \circ \approx$.

Epimorphismus

Definition 73 (Def)

$$p \circ e = q \circ e \Rightarrow p = q$$

Proposition 74

Jede Retraktion ist episch.

Proposition 75 (Komposition)

- (1) $n, m \text{ epic} \Rightarrow n \circ m \text{ epic.}$
- (2) $n \circ m$ epic $\Rightarrow n$ epic.

Proposition 76 (Epi ist abstr. 'notion')

 $m: a \to b$ ist episch, $a \approx a'$, $b \approx b'$ $\Rightarrow \approx \circ m \circ \approx : a' \to b'$ ist episch.

Definition 77 (Abstrakter Quotient)

Abstrakter Quotient $(b, e: a \rightarrow b)$ eines Objektes a in Kategorie C

- ist ein Objekt $b \in C$
- zusammen mit einem Epi $e: a \rightarrow b$

Zwei Quotienten

- $-(b_1, e_1: a \to b_1)$
- $-(b_2, e_2: a \to b_2)$

des selben Objektes a sind die selben abstrakten Quotienten, wenn es einen Iso \approx : $b_1 \rightarrow b_2$ gibt, so dass $\approx \circ e_1 = e_2$.

Monomorphismus

Proposition 70 (Monische Retraktion)

Eine monische Retraktion ist ein Isomorphismus.

Proposition 71 (Mono in Set)

Hom. in Set ist monisch \Leftrightarrow er injektiv ist.

Proposition 72 (Mono in $Sys(\Sigma)$)

Hom. in $Sys(\Sigma)$ ist monisch \Leftrightarrow er injektiv in allen Komponenten ist.

Epimorphismus

Proposition 78 (Epische Sektionen)

Eine epische Sektion ist ein Isomorphismus

Proposition 79 (Epi in Set)

Hom. in Set ist episch \Leftrightarrow er surjektiv ist.

Proposition 80 (Hinreichende Bedingungen für Epis in $Sys(\Sigma)$)

surjektive Homomorphismus in $Sys(\Sigma)$ ist episch.

Proposition 82 (Epi in $Sys(\Sigma)$))

Hom. in $Sys(\Sigma)$ ist episch \Leftrightarrow das kleinste, geschlossene Subsystem von B induziert durch das Bild von h übereinstimmt mit B, das heißt: $\lceil h(A) \rceil^C = B$.

1.4.3 Spezielle Mono- und Epimorphismen

Extremale Monomorphismus

Definition 83 (Extremaler Mono)

Mono $m: a \to b$ ist extremal, wenn für jede Zerlegung $m = f \circ e$ gilt: ist e episch dann ist e auch Iso.

Proposition 84

Jede Sektion ist ein extremaler Mono.

Proposition 85 (Komposition)

 $n \circ m$ extremal Mono $\Rightarrow m$ extremal Mono. $e \circ f$ extremal Epi $\Rightarrow e$ extremal Epi.

Extremale Epimorphismus

Definition 89 (Extremale Epis)

Epi $e:a\to b$ ist extremal, wenn für jede Zerlegung $e = m \circ f$ gilt: ist m monisch dann muss m auch Iso sein.

Proposition 90

Jede Retraktion ist ein extremaler Epi.

Proposition 91 (Komposition)

Extremale Monomorphismus

Proposition 86 (Extr. Mon. ist abstr. 'Notion')

 $m: a \to b$ ist extremaler Mono, $a' \approx a$, $b \approx b' \Rightarrow \approx \circ m \circ \approx$ ist extremaler Mono.

Notiz: Jeder Mono ist Set ist extremal.

Proposition 87 (Extr. Mono in $Sys(\Sigma)$) Hom. in $Sys(\Sigma)$ ist extremaler Mono \Leftrightarrow er injektiv und geschlossen.

Extremale Epimorphismus

Proposition 92 (Extr. Epi ist abstr. 'Notion')

 $e: a \to b$ ist extremaler Epi, $a' \approx a$, $b \approx b'$ $\Rightarrow \approx \circ e \circ \approx$ ist extremaler Epi.

Notiz: Jeder Epi ist Set ist extremal. Extremale Epis sind ein geeignetes Modell zur Abstraktion von Quotienten in $Sys(\Sigma)$

Proposition 93 (Extr. Epi in $Sys(\Sigma)$) Hom. in $Sys(\Sigma)$ ist extremaler Epi \Leftrightarrow er surjektiv und voll.

1.5 Faktorisierungssysteme