Math 51	LU	Instructor: Barker	Exam 1	Fall 2022
Name	e:			
Instructio	ns:			
Dr. Barker has assignments. Yetalk with anyone Please do not to This exam is in on Gradesco	s ma You r one a talk t s du c ope a	ne official course text, your of de available on BYU Learni may use Python code you do about the exam other than I to classmates about the exam e at 10:00pm on Thursda as an uploaded PDF. Your of e well. Please also turn in your learning was an uploaded process.	ng Suite. You may from scratch to export Dr. Barker. You may a until the exams have by, September 29th code should be included.	use your own homework plore ideas. You may not an not use the internet, we been returned in class. Th, 2022. Please turn it added in the PDF. Please
•		ng in order to get credit:		
I have not give	en or	received any unauthorized a	assistance on this ex	am.

SIGNATURE:____

1. Let $A \in \mathbb{R}^{2 \times 2}$ be a matrix that satisfies

$$\sup_{\|x\|_2=1} \|Ax\|_2 = 3, \quad \inf_{\|x\|_2=1} \|Ax\|_2 = 2.$$

What are the singular values of A?

2. Suppose that $A \in \mathbb{C}^{m \times m}$ has an SVD $A = U \Sigma V^*$. Find an eigenvalue decomposition (5.1) of the $2m \times 2m$ hermitian matrix

$$\begin{bmatrix} 0 & A^* \\ A & 0 \end{bmatrix}.$$

3. We have studied the QR and SVD decompositions. This problem develops a variant of the QR decomposition, the QL decomposition. An $m \times m$ matrix of the form

$$K_m = \begin{bmatrix} & & & & 1 \\ & & & 1 \\ & & \ddots & & \\ & 1 & & & \\ 1 & & & & \end{bmatrix} = [k_{ij}],$$

where $k_{i,m-i+1} = 1$, $1 \le i \le m$, and all other entries are zero is termed a reversal matrix and sometimes the reverse identity matrix.

- (a) Show that $K_m^2 = I$ (a very handy feature).
- (b) If A is an $m \times n$ matrix, $m \ge n$, what is the action of $K_m A$? What about AK_n ?
- (c) If R is upper triangular $n \times n$ matrix, what is the form of the product $K_n R K_n$?
- (d) Let $AK_n = \hat{Q}\hat{R}$ be the reduced QR decomposition of AK_n , $m \ge n$. Show that $A = (\hat{Q}K_n)(K_n\hat{R}K_n)$, and from that deduce the decomposition

$$A = QL$$
,

where Q is an $m \times n$ matrix with orthogonal columns, and L is an $n \times n$ lower triangular matrix. This is a reduced QL decomposition.

4. Use the result of Problem 3 to develop a python function lq that takes as input a matrix A and returns Q and L where A = QL is a QL decomposition, and test it with random matrices of sizes 10×7 and 75×50 . Organize your code in a single Python notebook and include it in the PDF you turn in. By test your code, I mean that you compute the QL decomposition, that you verify Q has orthonormal columns, you verify that L is lower triangular, and that you compute $||A - QL||_2$, where A is the random matrix for which you compute the QL decomposition. I should be able to run your single file code and observe that you have done each of these verifications. I should also be able to see this by reading the PDF you turn in. To verify that Q is orthogonal, you might just compute the maximum absolute value of the off-diagonal entries of Q^*Q , for example.