Axler 6.A exercise 9 April 27, 2021

1 | Axler 6.A exercise 9

Suppose $u,v\in V$ and $\|u\|\leq 1$ and $\|v\|\leq 1$. Prove that

$$\sqrt{1 - \|u\|^2} \sqrt{1 - \|u\|^2} \le 1 - |\langle u, v \rangle|$$

2 | **Proof**

We will prove this by showing that the left hand side is less than or equal to an intermediate term, which is less than or equal to the right hand side.

2.1 | Intermediate Value

$$\begin{aligned} |\langle u, v \rangle| &\leq \|u\| \|v\| \\ 1 - \|u\| \|v\| &\leq 1 - |\langle u, v \rangle| \end{aligned}$$

This intermediate value is obtained using the Cauchy-Schwarz inequality.

Now, to show that the square of the left hand side is less than or equal to the square of the right hand side,

$$= (1 - ||u||^2)(1 - ||v||^2)$$

$$= 1 - ||u||^2 - ||v||^2 + ||u||^2||v||^2$$

$$= 1 - (||u||^2 + ||v||^2) + ||u||^2||v||^2$$

$$= 1 - 2||u|||v|| + ||u||^2||v||^2$$

Taproot · 2020-2021 Page 1 of 1