\mathcal{L}^p és l^p terek, Minkowski- és Hölder-egyenlőtlenségek

- **1.** Konkrét példa segítségével mutassuk meg, hogy általában az $\mathcal{L}^1(\Omega, \mathbb{F})$ és $\mathcal{L}^2(\Omega, \mathbb{F})$ terek egyike se tartalmazza a másikat; vagyis, hogy van olyan Ω tartomány és f függvény, hogy $f \in \mathcal{L}^1(\Omega, \mathbb{F})$ viszont $f \notin \mathcal{L}^2(\Omega, \mathbb{F})$, de olyan is van, hogy $f \notin \mathcal{L}^1(\Omega, \mathbb{F})$ miközben $f \in \mathcal{L}^2(\Omega, \mathbb{F})$.
- **2.** Legyen $\Omega \subset \mathbb{R}^n$ egy véges térfogatú tartomány. Tartalmazza-e az $\mathcal{L}^1(\Omega, \mathbb{F})$ és $\mathcal{L}^2(\Omega, \mathbb{F})$ terek közül az egyik a másikat? Ha igen, melyik melyiket?
- 3. Legyen S egy legföljebb megszámlálható halmaz. Tartalmazza-e az $l^1(S, \mathbb{F})$ és $l^2(S, \mathbb{F})$ terek közül az egyik a másikat? Ha igen, melyik melyiket?
- **4.** Konkrét példával igazoljuk, hogy $\|\cdot\|_{\frac{1}{2}}$ az $\mathcal{L}^{\frac{1}{2}}([0,1],\mathbb{R})$ téren nem norma!
- **5.** Tekintsük az $f(x) := \frac{1}{\sqrt[4]{x} + \sqrt[2]{x}}$ képlettel definiált $\mathbb{R}^+ \to \mathbb{R}^+$ függvényt. Milyen *p*-normája véges f-nek?
- **6.** Mi a legjobb c konstans, melyre a $|\int_0^\infty e^{-x} f(x) dx|^4 \le c \int_0^\infty |f(x)|^4 dx$ egyenlőtlenség mindig teljesül?
- 7. Ha b egy nemnegatív számokból álló sorozat és $\sum_{k=1}^{\infty} 2^k |b_k|^3 = 1$, akkor legföljebb mekkora lehet $\sum_{k=1}^{\infty} b_k^2$ értéke? Adjunk meg konkrétan egy olyan sorozatot, mellyel ez a maximális érték el is érhető!
- **8.** Az f,g függvényekről annyit tudunk, hogy $\int_0^1 |f(x)|^4 dx \le 5$ és $\int_0^1 |g(x)|^{\frac{3}{2}} dx \le 8$. A Minkowski- és Hölder-egyenlőtlenségek segítségével adjunk (nem feltétlen optimális) fölső korlátot az $I := \int_0^1 |xf(x) + g(x)|^{\frac{3}{2}}$ integrál értékére!
- 9. Legyen $f:[0,\infty)\to\mathbb{R}R$ egy olyan függvény, melyre $\int_0^\infty f(x)^2dx\leq 1$, valamint $\int_0^\infty f(x)^{10}dx\leq 1$ 6. A Minkowski- és Hölder-egyenlőtlenségek megfelelő alkalmazásával igazoljuk a

$$\int_0^\infty |f(x) + e^{-x}|^4 dx \le \left[\left(\frac{1}{4} \right)^{\frac{1}{4}} + 2^{\frac{1}{4}} \right]^4$$

egyenlőtlenséget!