1. Theoretical Background

Solar energy is the radiation emitted by the Sun, and it has the remarkable ability to generate heat, initiate chemical reactions, and produce electricity. The quantity of solar energy reaching Earth is significantly more than our current and future energy demands. If effectively captured, this widely available source has the potential to meet all our energy needs. In the 21st century, solar energy is gaining popularity as a renewable energy source due to its limitless supply and environmentally friendly nature. This stands in sharp contrast to finite fossil fuels like coal, petroleum, and natural gas. In simpler terms, solar energy, harnessed properly, could provide a sustainable and clean solution to our growing energy requirements, unlike traditional fossil fuels with their limitations and environmental impact.

2. Solar panels

A solar panel (also known as "PV panels") is a device that converts light from the sun, which is composed of particles of energy called "photons", into electricity that can be used to power electrical loads.

Solar panels can be used for a wide variety of applications including remote power systems for cabins, telecommunications equipment, remote sensing, and of course for the production of electricity by residential and commercial solar electric systems.

• Types of solar panels

There are several types of solar panels available on the market, each with distinct characteristics. Here are the main types:

✓ Monocrystalline Solar Panels:

- Made from pure refined silicon in a pulling process.
- Referred to as "passivated emitter and rear contact" panels.
- Known for high efficiency and sleek aesthetics.

✓ Polycrystalline (Multi-crystalline) Solar Panels:

- Composed of multiple silicon fragments.
- Generally, less expensive than monocrystalline panels.
- Slightly lower efficiency compared to monocrystalline.

✓ Thin-Film Solar Panels:

- Utilize thin layers of photovoltaic material on a substrate.
- Generally less efficient but can be flexible and lightweight.
- Suitable for specific applications like solar shingles and integrated building materials.

✓ Passivated Emitter and Rear Contact (PERC) Solar Panels:

- A type of monocrystalline solar panel with an enhanced design.
- Features a passivation layer for improved efficiency.

The choice of solar panel type depends on factors such as efficiency requirements, space availability, and budget considerations. Monocrystalline panels are often preferred for higher efficiency, while polycrystalline panels may be a cost-effective alternative. Thin-film panels offer flexibility and unique applications, and PERC panels provide enhanced efficiency through advanced design.

3. Inverters

A solar inverter works by taking in the variable direct current, or 'DC' output, from your solar panels and transforming it into alternating 120V/240V current, or 'AC' output. The appliances in your home run on AC, not DC, which is why the solar inverter must change the DC output that is collected by your solar panels.

Once this energy is produced, it is either stored in a battery for later use or sent directly to an inverter (this depends on the type of system you have). When the energy gets sent to the inverter, it is in DC format but your home requires AC. The inverter grabs the energy and runs it through a transformer, which then spits out an AC output. The inverter, in essence, 'tricks' the transformer into thinking that the DC is actually AC, by forcing it to act in a way like AC – the inverter runs the DC through two or more transistors that turn on and off super-fast and feed two varying sides of the transformer.

4. Helioscope

♣ We Are Using Helioscope For Performing Our CEP

Helioscope is the solar industry's leading software platform for designing high-performance solar arrays. Folsom Labs develops Helioscope, an advanced solar PV design & sales tool. It is an online software that gives specific power output from specific area/Location. Helioscope simplifies the process of engineering and selling solar projects by integrating easy layout tools with bankable performance modelling. Helioscope offers CAD caliber layouts, remote shade analysis, and bankable energy yield calculations. It allows anyone to generate solar layouts and performance estimates.

5. Addressing the tasks

✓ Site Selection

So We had to select the place whose annual energy consumption is in kilowatt-hours (kWh), and we are familiar with that place. Therefore, we selected AB Hall UET Taxila.

✓ Load calculation for AB hall

Location	Room Type	Item	Quantity	Wattage	Load
Ground Floor	Small Rooms	Fans	33	120	3960
		Tube lights	66	36	2376
		Led bulbs	33	12	396
	Cubic Room	Fans	72	120	8640
		Tube lights	72	36	2592
		Led bulbs	72	12	864
	Storeroom	Bulbs	5	12	60
		Exhaust fans	3	140	420
		Fans	1	120	120
		PC	1	450	450
		Tube light	3	36	108
	Mess Hall	Lights	15	85	1275
		Fans	17	120	2040
		Refrigerator	1	500	500
		Exhaust	5	140	700
	Mosque	Chiller	2	2000	4000
		Fans	12	120	1440
		Tube lights	12	36	432
		Exhaust fans	4	140	560
First Floor	Small Rooms	Fans	33	120	3960
		Tube lights	66	36	2376
		Led bulbs	33	12	396
	Cubic Room	Fans	72	120	8640
		Tube lights	72	36	2592
		Led bulbs	72	12	864
	Common Room	Tube lights	16	36	576
		Led bulbs	10	12	120

Power	Cond	aration
rower	TEH	eralion.

Complex Engineering Problem

Dr.	Faisal	Masood
$\boldsymbol{\nu}$	I aisai	Masouu

		Exhaust fans	4	140	560
		LED	1	55	55
Second Floor	Small Rooms	Fans	33	120	3960
		Tube lights 66		36	2376
		Led bulbs	33	12	396
	Cubic Room	Fans	72	120	8640
		Tube lights	72	36	2592
		Led bulbs	72	12	864
All Floors	Washrooms	Tube lights	72	36	2592
		Led bulbs	24	12	288
		Exhaust fans	24	140	3360

Total load=74760W

After adding safety factor =74760*1.5=112140W So, we are going to design a 115 kw On grid system for AB hall

6. Designing 115kw On Grid system Using Hellioscope

✓ First hand calculations

✓ Specifications of Tiger Neo N-type 78HL4-BDV 590-610 Watt

LINEAR PERFORMANCE WARRANTY

- 12 Year Product Warranty
- **30** Year Linear Power Warranty
- **0.40%** Annual Degradation Over 30 years

SPECIFICATIONS										
Module Type	JKM590N-	78HL4-BDV	JKM595N-7	8HL4-BDV	JKM600N-7	8HL4-BDV	JKM605N-7	78HL4-BDV	JKM610N-2	78HL4-BDV
	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT
Maximum Power (Pmax)	590Wp	444Wp	595Wp	447Wp	600Wp	451Wp	605Wp	455Wp	610Wp	459Wp
Maximum Power Voltage (Vmp)	44.91V	41.89V	45.08V	42.00V	45.25V	42.12V	45.42V	42.23V	45.60V	42.35V
Maximum Power Current (Imp)	13.14A	10.59A	13.20A	10.65A	13.26A	10.71A	13.32A	10.77A	13.38A	10.83A
Open-circuit Voltage (Voc)	54.76V	52.02V	54.90V	52.15V	55.03V	52.27V	55.17V	52.41V	55.31V	52.54V
Short-circuit Current (Isc)	13.71A	11.07A	13.79A	11.13A	13.87A	11.20A	13.95A	11.26A	14.03A	11.33A
Module Efficiency STC (%)	21.1	1%	21.2	29%	21.4	46%	21.64%		21.82%	
Operating Temperature (°C)				-40°C~+85°C						
Maximum system voltage					1500VD	C (IEC)				
Maximum series fuse rating					30)A				
Power tolerance					0~+	-3%				
Temperature coefficients of Pmax	<				-0.30	%/°C				
Temperature coefficients of Voc					-0.25	%/°C				
Temperature coefficients of Isc					0.046%/°C					
Nominal operating cell temperate	ure (NOCT))			45±	2°C				
Refer. Bifacial Factor					80±	:5%				

7. On Helioscope

✓ Mechanical part

✓ Explanation (hand)

Mechanical Part explanation:

- Azimuth angle: In pakitan aiming for an azimuth angle of approximately 180 (South-facing) is ideal.
- Tilt Angle: Till angle is in correspondence with Latitude. Ratitude of Taxida is 33.74 that's why we are wing an angle of 34°.
- SPan/lise: It is the relationship b/w the dictance or span b/w rows of solar modules and the height or lise of the pannels.

 * For better performance it should be b/w 1.2-1.5.

1 1 should be
1.5 of the pannel

- GCR Ratio of Anay area to ground area.

 * For fixed tilt angle 0.17-0.68.
- Frame spacing As clear from name it is a distance or spacing between frames.
 - * To avoid shading it should be 0.8 it 2.2 ft.
- <u>Setback</u> It is barically a dictance from the boundary.

 * It should be large enough to avoid shading.

8. Keep outs

9. Electrical

✓ Explanation (hand)

✓ Specifications of SUN2000-40KTL-M3

SUN2000-30/36/40KTL-M3 Technical Specification

Technical Specification	SUN2000-30KTL-M3	SUN2000-36KTL-M3	SUN2000-40KTL-M							
		Efficiency								
Max. Efficiency		98.7%								
European Efficiency	98.4%									
		Input								
Max. Input Voltage 1		1,100 V								
Max. Current per MPPT		26 A								
Max. Short Circuit Current per MPPT		40 A								
Start Voltage		200 V								
MPPT Operating Voltage Range ²		200 V ~ 1000 V								
Rated Input Voltage		600 V								
Number of Inputs		8								
Number of MPP Trackers		4								
		Output								
Rated AC Active Power	30,000 W	36,000 W	40,000 W							
Max. AC Apparent Power	33,000 VA 3	40,000 VA	44,000 VA							
Rated Output Voltage	1	30 Vac / 400 Vac / 480 Vac, 3W/N+P	E							
Rated AC Grid Frequency		50 Hz / 60 Hz								
Rated Output Current	43.3 A	52.0 A	57.8 A							
Max. Output Current	47.9 A	58.0 A	63.8 A							
Adjustable Power Factor Range		0.8 LG 0.8 LD								
Max. Total Harmonic Distortion		< 3%								
		Protection								
Input-side Disconnection Device		Yes								
Anti-islanding Protection		Yes								
AC Overcurrent Protection		Yes								
DC Reverse-polarity Protection		Yes								
PV-array String Fault Monitoring		Yes								
DC Surge Arrester		Yes								
AC Surge Arrester		Yes								
DC Insulation Resistance Detection		Yes								
Residual Current Monitoring Unit		Yes								
Arc Fault Protection		Yes								
Ripple Receiver Control		Yes								
Integrated PID Recovery 4		Yes								

✓ Single line diagram

10. Advanced

11. Helioscope report

Performance ratio is 84.1%

	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,726.8	
	POA Irradiance	1,976.1	14.49
Irradiance	Shaded Irradiance	1,954.4	-1,19
(kWh/m²)	Irradiance after Reflection	1,900.3	-2.89
	Irradiance after Soiling	1,862.3	-2.09
	Total Collector Irradiance	1,862.3	0.09
	Nameplate	214,551.2	
	Output at Irradiance Levels	213,857.6	-0.39
	Output at Cell Temperature Derate	202,326.1	-5.49
Energy	Output After Mismatch	195,708.9	-3.39
(kWh)	Optimal DC Output	194,882.2	-0.49
	Constrained DC Output	194,881.9	0.09
	Inverter Output	191,763.8	-1.69
	Energy to Grid	191,343.0	-0.29
Temperature	Metrics		
	Avg. Operating Ambient Temp		25.2°
	Avg. Operating Cell Temp		35.4°
Simulation M	etrics		
		Operating Hours	457
		Solved Hours	457

Description	Con	dition	Set 1										
Weather Dataset	TMY	, 10kr	n Grid	, m	ete	eonon	n (met	eono	rm)				
Solar Angle Location	Met	eo La	t/Lng										
Transposition Model	Pere	z Mo	del										
Temperature Model	San	dia M	odel										
	Rac	k Typi	2		а		b		1	Tempe	rature	Delta	
T Madal	Fixed Tilt				-3	3.56	-0.07	75	3	3°C			
Temperature Model Parameters	Flush Mount				-2	2.81	-0.04	155	()°C			
	Eas	t-Wes	t		-3	3.56	-0.07	75	3	3°C			
	Car	port			-3	3.56	-0.07	75	3	3°C			
Soiling (%)	J	F	M	A	٩	M	J	J	Α	S	0	N	D
	2	2	2	2	2	2	2	2	2	2	2	2	2
Irradiation Variance	5%												
Cell Temperature Spread	4° C												
Module Binning Range	-2.59	% to 2	.5%										
AC System Derate	0.50	96											
Module	Mod	dule					Uploaded By			Characterization			
Characterizations	2	600N ko Sol	-78HL4 ar)	4-BI	DV		Helio				Sheet acterization, PAN		
Component	Dev	ice						Up By	load	ed	Characterization		
Characterizations			-40KTL uawei)		3 (400V)		HelioScope		cope	Spec Sheet		

□ Compo	onents	
Component	Name	Count
Inverters	SUN2000-40KTL-M3 (400V) (2022) (Huawei)	3 (120.0 kW)
AC Home Runs	1/0 AWG (Aluminum)	3 (1,224.6 ft)
Strings	10 AWG (Copper)	12 (2,598.0 ft)
Module	Jinko Solar, JKM600N-78HL4-BDV (600W)	192 (115.2 kW)

Description	•	Combiner Poles			String Size Stringing Strategy				
Wiring Zone - 5-18 Along Racking									
Field Segn		Outomballan	Tile	Antonialo	latara Garage	Funna Clas	F	Madulas	D
Field Segn	nents Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
	Racking	Orientation Portrait (Vertical)			Intrarow Spacing 20.4 ft	Frame Size	Frames	Modules 120	Power

✓ Shading Report

Shading by Fie	ld Segmer	nt								
Description	Tilt	Azimuth	Modules	Nameplate	Shaded Irradiance	AC Energy	TOF ²	Solar Access	Avg TSRF ²	
Field Segment 1	34.0°	180.0°	120	72.0 kWp	1,941.4kWh/m ²	119.5 MWh ¹	100.0%	98.2%	98.3%	
Field Segment 2	34.0°	180.0°	72	43.2 kWp	1,976.1kWh/m ²	71.9 MWh ¹	100.0%	100.0%	100.0%	
Totals, weighted by k	Wp		192	115.2 kWp	1,954.4kWh/m ²	191.3 MWh	100.0%	98.9%	98.9%	
	¹ approximate, varies based on inverter performance ² based on location Optimal POA Irradiance of 1,975.8kWh/m² at 33.0° tilt and 180.8° azimuth									

■ Solar Access by Month												
Description	jan	feb	mar	apr	may	jun	jul	aug	sep	oct	nov	dec
Field Segment 1	99%	98%	98%	98%	98%	98%	98%	98%	98%	99%	99%	99%
Field Segment 2	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Solar Access, weighted by kWp	99.2%	99.0%	98.9%	98.8%	98.7%	98.6%	98.6%	98.7%	98.9%	99.1%	99.2%	99.2%
AC Power (kWh)	12,977.6	11,225.1	16,184.2	16,676.8	18,339.5	16,722.0	16,264.5	16,116.1	17,897.9	18,897.8	17,109.2	12,932.3

✓ Monthly Production Chart

✓ System Losses

