predictive

Introduction

- The predictive parser has
 - 1. Input
 - 2. Stack
 - 3. Parsing table
 - 4. Output
 - The input contains a sequence of grammar symbols followed by \$ (right endmarker)
 - The stack contains a sequence of grammar symbols preceded by \$ (bottom stack marker)
 - Initially it contains the start symbol of the grammar preceded by the \$
- The Parsing table is a two-D array M[A,a]
 - A is a nonterminal and a is the current input symbol

Model of a predictive parser

Parsing

- The parser is controlled by a program that behaves as follows:
 - The program determined X, the top stack symbol and a the current input symbol
 - These two symbols determined the action of the parser

Parsing

- There are three possibilities
 - 1. If X = a = \$ then stop and announces successful
 - 2. If $X = a \neq \$$ pop X from the stack and advance the input pointer
 - 3. If X is a nonterminal then the program consult entry **M[A,a]**
 - the entry will be a production or an error
 - If M[A,a]= {X→UVW}
 - the parser replaces X on top of the stack by WVU (U on top)
 - If M[A,a] is an error, the parser calls an error recovery routine

- Initially the input is w\$
- Stack is \$ S
- W is the input string
- S is the start symbol
- Consider the grammar
- E → TE'
- E' →+TE' |∈
- T → FT'
- T' →*FT' | ∈
- F → (E) | id

Predictive parsing Table

- A predictive parsing table for the given grammar is
- Blanks are error entries

	id	+	*	()	\$
115	$E \rightarrow TE'$		HARLE I.	$E \rightarrow TE'$	learn 51	17.1
11		$E' \rightarrow +TE'$			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
T	$T \rightarrow FT'$	All et a bla	erii moi ferin	$T \rightarrow FT'$	grapaterdi	EN PT
		$T' \rightarrow \epsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$F \rightarrow id$			$F \rightarrow (E)$	44	

Fig. 5.24. Parsing table for grammar (5.9).

Predictive parsing program

```
repeat
       let X be the top stack symbol and a the next input symbol;
       if X is a terminal or $ then
           if X = a then
               pop X from the stack and remove a from the input
           else
               ERROR()
       else /* X is a nonterminal */
           if M[X, a] = X \rightarrow Y_1 Y_2 \cdots Y_k then
               begin
                   pop X from the stack;
                   push Y_k, Y_{k-1}, \ldots, Y_1 onto the stack, Y_1 on top
               end
           else
               ERROR()
   end
until
   X = $ /* stack has emptied */
                  Fig. 5.23. Predictive parsing program.
```

example

- Consider w=id + id * id
- The sequence of moves of the predictive parser is as follows

Stack	Input	Output
δE	id + id * id\$	ir č 19 ligimi
\$E'T	id + id * id\$	$E \rightarrow TE'$
\$E'T'F	id + id * id\$	$T \rightarrow FT'$
SE'T'id	id + id * id\$	$F \rightarrow id$
SE'T'	+ id * id\$	
\$E'	+ id * id\$	$T' \rightarrow \epsilon$
E'T+	+ id * id\$	$E' \rightarrow +TE'$
\$E'T	id * id\$	
\$E'T'F	id * id\$	$T \to FT'$
E'T'id	id * id\$	$F \rightarrow id$
\$E'T'	* id\$	
E'T'F*	* id\$	$T' \rightarrow *FT'$
\$E'T'F	id\$	
SE'T'id	id\$	$F \rightarrow id$
SE'T'	\$	
\$ <i>E'</i>	\$	$T' \rightarrow \epsilon$
\$	\$	$E' \rightarrow \epsilon$

Fig. 5.25. Moves by predictive parser.

FIRST and FOLLOW

 In order to fill the entries of a predictive parsing table we require two functions which are associated with a grammar G

FIRST

- If α is any string of grammar symbols. Let FIRST(α) be the set of terminals that begin strings derived from α
- If $\alpha \Rightarrow^* \in$, then \in is also in FIRST(α)

2. FOLLOW

- For FOLLOW(A), for nonterminal A, is the set of terminals a that can appear immediately to the right of A in some sentential form
- S \Rightarrow * α Aa β for some α and β
- If A can be the rightmost symbol in some sentential form then add \$ to FOLLOW(A)

Compute FIRST(X)

- 1. If X is terminal, then FIRST(X) is {X}
- 2. If X is nonterminal and $X \rightarrow a \alpha$ is a production, then add a to FIRST(X)
 - If X→ \in , then add \in to FIRST(X)
- 3. If $X \rightarrow Y_1 Y_2 \dots Y_K$ is a production, then
 - For all i such that all of Y₁...Y_{i-1} are nonterminals and FIRST(Y_j) contains ∈ for j=1,2,...,i-1, add every non -∈ symbol in FIRST(Y_i) to FIRST(X)
 - If ∈ is in FIRST(Y_j) for all j=1,2,...,k then add ∈ to FIRST(X)

Compute FOLLOW(X)

- 1. \$ is in FOLLOW(S), where S is the start symbol
- 2. If there is a production $A \rightarrow \alpha B\beta$, $\beta \neq \in$, then everything in FIRST(β) but \in is in FOLLOW(B)
- 3. If there is a production $A \rightarrow \alpha B$ or a production $A \rightarrow \alpha B$ β where FIRST(β) contains \in , then everything in FOLLOW(A) is in FOLLLOW(B)

Application

- Consider the grammar G given below
- $E \rightarrow TE'$
- E' →+TE' |∈
- T →FT'
- T' →*FT' | ∈
- $F \rightarrow (E) \mid id$
- FIRST(E)= FIRST(T)=FIRST(F)={(, id}
- FIRST(E`)={+, ∈}
- FIRST(T`}={*, ∈}
- FOLLOW(E)=FOLLOW(E`)={),\$}
- FOLLOW(T)=FOLLOW(T`)={+,),\$}
- FOLLOW(F)={+,*,),\$}

Construction of Parsing table

- The idea behind the algorithm is
 - $-A\rightarrow \alpha$ is a production with a in FIRST(α)
 - Then whenever A is on the top stack and a the current input symbol the parser expand A by α
 - $-\alpha = \in \text{ or } \alpha \Rightarrow^* \in$
 - Expand A by ∈ if the current input is in FOLLOW(A)
 - or if \$ is on the input and \$ is in FOLLOW(A)

Algorithm for constructing a predictive parsing table

- Input: Grammar G
- Output: Parsing table M
- Method
- 1. For each production $A\rightarrow \alpha$ of the grammar do step 2 and 3
- 2. For terminal a in FIRST(α), add A $\rightarrow \alpha$ to M[A,a]
- 3. If \in is in FIRST(α), add $A \rightarrow \alpha$ to M[A,b] for each terminal b in FOLLOW(A)
 - 1. If \in is in FIRST(α) and φ is in FOLLOW(A), add $A \rightarrow \alpha$ to M[A, φ]
- 4. Make each undefined entry of M error

	id	+	*	()	\$
E	$E \rightarrow TE'$		HAR ELL	$E \rightarrow TE'$	Jeanna 51	77.71
-		$E' \rightarrow +TE'$			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
T	$T \rightarrow FT'$	SELECT A PROPERTY	rarii moi fastul	$T \rightarrow FT'$	grap tredi	e and e and
		$T' \rightarrow \epsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
	$F \rightarrow id$			$F \rightarrow (E)$	44	

Fig. 5.24. Parsing table for grammar (5.9).

LL(1) Grammars

- A grammar G is LL(1) iff whenever $A \rightarrow \alpha \mid \beta$ are two distinct productions of G the following conditions hold:
 - 1. For no terminal a do α and β derive strings beginning with a
 - 2. At most one of α and β can derive an empty string
 - 3. If $\beta \Rightarrow^* \in$ then α does not derive any strings beginning with a terminal in FOLLOW(A)

LL(1) Grammars

 A grammar whose parsing table has no multiply defined entries is said to be LL(1)

Not an LL(1)

а	b	e	and any	1	2
$S \rightarrow a$	1	union de la companya	$S \rightarrow iCtSS'$	Ť	11000
		$S' \rightarrow \epsilon$			
		$S' \rightarrow eS$		9	S' - E

Fig. 5.26. Parsing table.