SEGURIDAD DE LA INFORMACIÓN

TEMA 4 (PARTE B)

SEGURIDAD Y PRIVACIDAD EN APLICACIONES TELEMÁTICAS

SEGURIDAD EN PAGOS ELECTRÓNICOS

Conceptos generales

- En el ámbito del e-commerce se han desarrollado esquemas de pago electrónico que proporcionan en el mundo digital la misma heterogeneidad que los sistemas de pago tradicionales
- En la mayoría de los sistemas de pagos electrónicos disponibles, los pagos se realizan a través de redes abiertas como Internet
 - pero la correspondencia entre los pagos electrónicos y la transferencia del valor real es realizada y garantizada por los bancos, a través de los sistemas

financieros de compensación

 estos sistemas utilizan para su funcionamiento las redes cerradas de las instituciones bancarias, las cuales son consideradas comparativamente más seguras

- En general, los pagos electrónicos involucran a un <u>comprador y a</u> <u>un vendedor</u>
 - Adicionalmente, existen sistemas que involucran a TTPs
- Más aún, puede existir algún tipo de entidad que ejerza de mediador para la resolución de disputas
 - por lo general, las disputas se resuelven fuera del sistema de pago, y en muchos casos el protocolo ni siquiera especifica cómo gestionarlas

- Existen varias formas de clasificar los sistemas de pagos electrónicos, y dependen de:
 - Cuando el vendedor contacta con el banco para verificar el proceso de pago
 - Cuando el comprador procede con la transacción y carga de dinero en la cuenta del vendedor
 - La cantidad de dinero implicada en cada transacción

Tema 4: Seguridad y Privacidad en Aplicaciones Telemáticas

- Los sistemas de pagos electrónicos se pueden clasificar según cuando el vendedor contacta con el banco:
 - On-line: antes de enviar el producto, el vendedor contacta con la entidad financiera para verificar la validez del pago del comprador

- Off-line: cierto tiempo después de que el vendedor haya aceptado el pago y enviado el producto, realiza el depósito del dinero que le ha dado el comprador
 - para que la entidad financiera lo verifique y lo ingrese en su cuenta
 - es decir, el vendedor no contacta con el banco durante el proceso de compra-venta

- Existe otra forma de clasificar los pagos electrónicos, atendiendo al momento en que se retira el dinero de la cuenta del comprador:
 - Sistemas de pre-pago: el comprador ve decrementada su cuenta bancaria antes de realizar la compra
 - este método se correspondería con los sistemas de monedero electrónico y tarjetas telefónicas
 - éste sería el sistema más análogo al papel moneda tradicional
 - Sistemas de pago instantáneo: cuando al comprador se le realiza el cargo en cuenta justo en el momento de realizar la compra
 - se correspondería con los sistemas actuales de pagos con tarjeta de débito
 - Sistemas de post-pago: cuando Alice realiza la compra, el Banco asegura al vendedor que se le hará efectiva la cantidad acordada
 - pero Alice sólo verá decrementada su cuenta cierto tiempo después de haberse realizado la compra

• Otro criterio de clasificación es **según la cantidad implicada en la transacción**. De esta forma se clasifican los pagos electrónicos como:

- Macropagos: cualquier pago superior a 10 euros
- Pagos: la cantidad está comprendida entre 1 y
 10 euros
- Micropagos: cualquier pago inferior a 1 euro

- Normalmente los pagos inferiores a 10 euros presentan el problema del coste de implementación
 - no tendría sentido utilizar un sistema de pago cuyo coste económico sea de orden de magnitud o superior al importe de la transacción

• Ejemplos de protocolos:

On-line y trazables:

- First Virtual
- CyberCash
- iKP
- SET
- ...

– Micropagos:

- PayPal
- Google Checkout
- Amazon Payments
- iTunes Store
- •

Tarjetas de crédito

- Problemas en estos medios de pagos:
 - Ataques de escucha
 - Suplantación de identidad (cliente o comerciante)
 - Generación de dato
 - Modificación del dato
 - Etc.
- Soluciones para evitar estos problemas:
 - Mecanismos criptográficos
 - Mecanismos de autenticación de usuarios
 - Firma digitales
 - Certificados digitales

Y protocolos específicos que implementen estas soluciones

Protocolo SSL (protocolo original) vs TLS (protocolo actual)

- SSL (Secure Sockets Layer) es un protocolo de propósito general (como TLS) para establecer conexiones seguras
 - No es un protocolo de pago, pero se usaba por seguridad
 - SSL lo creó originalmente Netscape (1994).
 - La última versión: SSLv3 No se utiliza en la actualidad!!
- TLS (Transport Secure Layer) se creó dentro del IETF
 - Utiliza el mismo formato para la cabecera de los paquetes que SSL
 - La primera versión de TLS puede verse como SSLv3.1, pero difiere en:
 - Número de versión
 - En el código de autenticación del mensaje (MAC)
 - En la función pseudo-aleatoria
 - En los códigos de alerta
 - En la lista de algoritmos de cifrado
 - En los mensajes de verificación del certificado y de finalización
 - En algunas partes del algoritmo criptográfico

- SSL aplica:
 - Criptografía de asimétrica:
 - Gestión de certificados digitales
 - RSA o Diffie-Hellman
 - Criptografía simétrica:
 - DES, 3DES, RC2, RC4 o IDEA

- SSL autentifica al servidor
 - Utilizando certificados digitales X.509 v3
 - Opcionalmente, también puede certificar al cliente
- SSL asegura la integridad de los datos
 - Mediante códigos de autentificación de mensajes (MAC) y una clave secreta
 - MD5 o SHA-1

- Originalmente SSL proveía confidencialidad en el pago electrónico
 - Garantizaba la creación de un canal seguro entre cliente y servidor

Negociación de las credenciales de seguridad y el modo de protección de los canales de comunicación – criptografía de clave pública

Comunicación segura mediante Cifrado simétrico

Tema 4: Seguridad y Privacidad en Aplicaciones Telemáticas

- Sin embargo, SSL presentaba algunos **problemas importantes**:
 - Sólo protege transacciones entre dos puntos, mientras que una transacción electrónica basada en una tarjeta de crédito involucra al menos a un banco
 - SSL no protege al comprador frente al vendedor
 - El vendedor puede obtener información de la tarjeta que podría utilizar en un futuro de forma ilícita
 - No hay mecanismos de autentificación de tarjetas
 - No hay mecanismos de facturación o de gestión de recibos
 - cualquier reclamación queda a la buena voluntad del vendedor

Por tanto, se requerían de otros tipos de protocolos más específicos ...

Protocolo SET (Secure Electronic Transactions)

Protocolo desarrollado en 1996 por VISA y Mastercard
 (+ American Express), en colaboración con:

- IBM
- Microsoft
- Verisign
- RSA
- Netscape
- GTE

- para poder <u>reducir el fraude</u> mercantil
- y garantizar el pago a través de esas mismas redes

• Arquitectura SET:

SET

- A diferencia de SSL, fue diseñado para el comercio electrónico
- Sin embargo, no es un sistema de pago en sí mismo, sino un conjunto de protocolos de seguridad y de formatos estándar
 - que permiten a los usuarios usar de una forma segura a través de Internet la infraestructura ya existente de tarjetas de crédito

Tema 4: Seguridad y Privacidad en Aplicaciones Telemáticas

• SET proporciona:

- Confidencialidad en las comunicaciones entre las entidades que intervienen en la transacción
- Autenticidad, a través del uso de certificados digitales X.509
 - Todas las entidades, incluyendo el cliente, el vendedor y la pasarela de pago, han de tener certificados X.509
 - Es necesario el servicio de una o más Autoridades de Certificación
- Privacidad, porque la información sólo está disponible para las diferentes entidades cuando y donde es necesario
- Integridad
- Reduce las disputas debido al no repudio
- Autorización de pago
- Confirmación de la transacción
- Garantía de pago al vendedor

- Pasos de una transacción:
 - 1. Petición de producto
 - 2. Inicialización: envío de certificados
 - 3. Información del pedido e instrucciones de pago: descripción de la compra
 - 4. Petición de autorización: vendedor-pasarela y pasarela-banco emisor
 - 5. Aprobación de autorización: el banco emisor autoriza el pago
 - **6.** Finalización: el vendedor reclama la cantidad a la pasarela
 - Petición de compensación hacia el banco del vendedor

1. Petición del producto

Tema 4: Seguridad y Privacidad en Aplicaciones Telemáticas

2. Inicialización (envío de certificados y autenticación)

3. Información del pedido e instrucciones de pago

4. Petición de autorización

Tema 4: Seguridad y Privacidad en Aplicaciones Telemáticas

5. Aprobación de autorización

Tema 4: Seguridad y Privacidad en Aplicaciones Telemáticas

6. Finalización

Tema 4: Seguridad y Privacidad en Aplicaciones Telemáticas

FIRMA DUAL (en SET) – PRIVACIDAD

- SET introduce una importante innovación técnica: la firma dual
 - El propósito de este tipo de firma es enlazar dos mensajes que han de ir a receptores diferentes
- En este caso, el **cliente** quiere enviar:
 - la información del <u>pago</u> (Payment Information) al banco
 - la información del <u>pedido</u> (Order Information) al comerciante

FIRMA DUAL (en SET) - PRIVACIDAD

- SET introduce una importante innovación técnica: la firma dual
 - El propósito de este tipo de firma es enlazar dos mensajes que han de ir a receptores diferentes
- En este caso, el **cliente** quiere enviar:
 - la información del <u>pago</u> (Payment Information) al banco
 - la información del <u>pedido</u> (Order Information) al comerciante
- Pero se ofrece mayor **privacidad** al cliente si ambos ítems se mantienen por separado:
 - ni el comerciante necesita conocer el número de tarjeta del cliente
 - ni el banco necesita conocer los detalles del pedido del cliente
- No obstante, es necesario que ambos ítems queden enlazados de alguna forma, para una posible <u>resolución de disputas</u> posterior

iiHAY NO REPUDIO!!

Firma dual

PI = Payment Information

OI = Order Information

H = Hash function (SHA-1)

| = Concatenation

PIMD = PI message digest

OIMD = OI message digest

POMD = Payment Order message digest

E = Encryption (RSA)

 PR_c = Customer's private signature key

Petición de compra enviada por el comprador al vendedor:

Tema 4: Seguridad y Privacidad en Aplicaciones Telemáticas

Tema 4: Seguridad y Privacidad en Aplicaciones Telemáticas

Verificación del vendedor:

PIMD

OIMD

Dual

Signature

POMD

Tema 4: Seguridad y Privacidad en Aplicaciones Telemáticas

• Ejercicio 1 y 2:

- Ventajas de uso del SET:
 - Muy seguro y bien diseñado
 - Garantiza autenticación, confidencialidad, integridad, no-repudio y privacidad
 - Si el banco del comprador autoriza el pago, el vendedor tiene la garantía de ese pago (no-repudio)
 - Evita que el vendedor acceda a los datos de la tarjeta
 - Evita que el banco acceda a la información de los productos comprados
- Desventajas de uso del SET:
 - Es dependiente de algoritmos específicos (RSA, DES, SHA1)
 - Gestión de certificados digitales
 - Fuerte esfuerzo para la implantación (especialmente para el vendedor)
 - No adaptado a micropagos

Protocolo Cybercash

- Se basa en el uso de una **pasarela propia** que gestiona los pagos electrónicos
- Permite el uso de cualquier tipo de tarjeta
- Integra el software de cliente (**cyberwallet**) con la red financiera del banco del comprador
- Se realiza la **autenticación** de todas las entidades y el **cifrado** de los datos relativos al pago

- 1. Purchase order (description).
- 2. Payment request (price).
- 3. Payment order (signed by the CyberWallet).
- 4. Redirection of the payment order.
- 5. Verification of the order. Authorization request.
- 6. Request for authorization of the issuer bank.
- 7. Authorization reply (acquirer and gateway).
- 8. Sending the **encrypted bills** (customer and merchant)
- 9. Redirection of the **customer's bill**.

- Algunos problemas:
 - Parte de la información del cliente es conocida por la pasarela, por lo que se pueden analizar los hábitos del cliente
 - Problema de privacidad que no existía en SET
 - Uso de DES (56 bits) y RSA (1024 bits)
- Tras caer en bancarrota, Verisign adquirió los derechos sobre la marca y el protocolo de pago
- Posteriormente Paypal compró la solución a Verisign

Protocolos iKP

- iKP (i = 1, 2, 3) es una familia de protocolos de pago, **basado en criptografía de clave pública**, y desarrollado por IBM
- Estos protocolos (1KP, 2KP, 3KP) se diferencian entre sí en el número de entidades que poseen su propio par de claves públicas
 - Cuanto mayor sea el número de entidades que posean un par <clave pública, clave privada>, mayor es el nivel de seguridad propor-cionado
- La implantación de los protocolos 2KP y 3KP se realiza de forma gradual para conseguir **un pago seguro multiparte** completo, requiriendo una infraestructura de certificación avanzada

• Cada uno de los protocolos consta de seis pasos:

• El contenido de estos pasos varía dependiendo de a qué protocolo nos estemos refiriendo

• Los elementos intercambiados en una transacción iKP, y los campos formados por la combinación de tales elementos, son:

Item	Description	Item
CAN	Customer's account number (e.g., credit card number)	Commor
ID_{M}	Merchant ID; identifies merchant to acquirer	Clear
TID_M	Transaction ID; uniquely identifies the transaction	Cicai
DESC	Description of the goods; includes payment information such as credit card holder's name and bank identification number	SLIP
SALT _C	Random number generated by C; used to randomize DESC and thus ensure privacy of DESC on the M to A link	EncSlip
NONCE _M	Random number generated by a merchant to protect against replay	CERT _x
DATE	Merchant's current date/time	Sig _A
PIN	Customer's PIN which, if present, can be optionally used in 1KP to enhance security	Sig _M
Y/N	Response from card issuer; Yes/No or authorization code	Sig _C
R _C	Random number chosen by C to form CID	
CID	A customer pseudo-ID which uniquely identifies C; computed as $CID = H(R_{C'}, CAN)$	
V	Random number generated in 2KP and 3KP by merchant; used to bind the Confirm and Invoice message flows	

Item	Description	
Common	Information held in common by all parties: PRICE, ID_M , TID_M , DATE, NONCE _M , CID, H(DESC, SALT _C), [H(V)]	
Clear	Information transmitted in the clear: ID_M , TID_M , $DATE$, $NONCE_M$, $H(Common)$, $[H(V)]$	
SLIP	Payment instructions: PRICE, H(Common), CAN, R _C , [PIN]	
EncSlip	Payment instruction encrypted with the public key of the acquirer: PK_A (SLIP)	
CERT _x	Public-key certificate of X, issued by a CA	
Sig _A	Acquirer's signature: SK _A [H(Y/N, H(Common))]	
Sig _M	Merchant's signature in Auth-Request: $SK_M[H(H(Common), [H(V)])]$	
Sig _C	Cardholder's signature: SK _C [H(EncSlip, H(Common))]	

- El **protocolo 1KP** es el más básico. Sólo el Acquirer necesita poseer (y distribuir) su certificado de clave pública CERT_A.
- La información de partida de cada una de las entidades es:

Item	Description
CAN	Customer's account number (e.g., credit card number)
ID_{M}	Merchant ID; identifies merchant to acquirer
TID_{M}	Transaction ID; uniquely identifies the transaction
DESC	Description of the goods; includes payment information such as credit card holder's name and bank identification number
SALT _C	Random number generated by C; used to randomize DESC and thus ensure privacy of DESC on the M to A link
NONCE _M	Random number generated by a merchant to protect against replay
DATE	Merchant's current date/time
PIN	Customer's PIN which, if present, can be optionally used in 1KP to enhance security
Y/N	Response from card issuer; Yes/No or authorization code
R _C	Random number chosen by C to form CID
CID	A customer pseudo-ID which uniquely identifies C: computed as $CID = H(R_c, CAN)$
v	Random number generated in 2KP and 3KP by merchant; used to bind the Confirm and Invoice message flows

Actor	Information Items
Customer	DESC, CAN, PK _{CA} , [PIN], <u>CERT</u> _A
Merchant	DESC, PK _{CA} , CERT _A
Acquirer	SK _A , CERT _A

- El **protocolo 1KP** es el más básico. Sólo el Acquirer necesita poseer (y distribuir) su certificado de clave pública CERT_A.
- La información de partida de cada una de las entidades es:

Actor	Information Items
Customer	DESC, CAN, PK _{CA} , [PIN], CERT _A
Merchant	DESC, PK _{CA} , CERT _A
Acquirer	SK _A , CERT _A

Los pasos del protocolo son:

Item	Description
Common	$\label{eq:local_equation} Information held in common by all parties: $$PRICE, ID_M, TID_M, DATE, NONCE_M, CID, H(DESC, SALT_C), [H(V)]$$
Clear	Information transmitted in the clear: $ID_{M'}$, $TID_{M'}$, DATE, NONCE _{M'} , H(Common), [H(V)]
LIP	Payment instructions: PRICE, H(Common), CAN, R _{C'} [PIN]
EncSlip	Payment instruction encrypted with the public key of the acquirer: PK_A (SLIP)
CERT _x	Public-key certificate of X, issued by a CA
ig _A	Acquirer's signature: SK _A [H(Y/N, H(Common))]
ig _M	$\begin{aligned} & \text{Merchant's signature in Auth-Request:} \\ & \text{SK}_{M}[H(H(Common), [H(V)])] \end{aligned}$
ig_C	Cardholder's signature: SK _c [H(EncSlip, H(Common))]

Tema 4: Seguridad y Privacidad en Aplicaciones reiematicas

• Ejercicio 3:

Pasos en detalle:

- 1. $SALT_C$, $H(R_C, CAN)$
- 2. ID_M , TID_M , DATE, $NONCE_M$, $H(PRICE, ID_M, TID_M, DATE, NONCE_M, H(R_C, CAN), H(DESC, SALT_C))$
- 3. P_{KA} (PRICE, H(PRICE, ID_M, TID_M, DATE, NONCE_M, H(R_C, CAN), H(DESC, SALT_C)), CAN, R_C, [PIN])
- **4.** ID_M , TID_M , DATE, $NONCE_M$, $H(PRICE, ID_M, TID_M, DATE, NONCE_M, H(R_C, CAN), H(DESC, SALT_C))$, $H(DESC, SALT_C)$,

P_{KA} (PRICE, H(PRICE, ID_M, TID_M, DATE, NONCE_M, H(R_C, CAN), H(DESC, SALT_C)), CAN, R_C, [PIN])

- **5.** Y/N, Sig_A
- 6. Y/N, Sig_A

CAN Customer's account number (e.g., credit card number) ID _M Merchant ID; identifies merchant to acquirer TID _M Transaction ID; uniquely identifies the transaction DESC Description of the goods; includes payment information such as credit card holder's name and bank identification number SALT _C Random number generated by C; used to randomize DESC and thus ensure privacy of DESC on the M to A link NONCE _M Random number generated by a merchant to protect against replay DATE Merchant's current date/time PIN Customer's PIN which, if present, can be optionally used in 1KP to enhance security Y/N Response from card issuer; Yes/No or authorization code R _C Random number chosen by C to form CID CID A customer pseudo-ID which uniquely identifies C; computed as CID = H(R _C , CAN) V Random number generated in 2KP and 3KP by merchant; used to bind the Confirm and Invoice message flows	Item	Description	
TID _M Transaction ID; uniquely identifies the transaction DESC Description of the goods; includes payment information such as credit card holder's name and bank identification number SALT _C Random number generated by C; used to randomize DESC and thus ensure privacy of DESC on the M to A link NONCE _M Random number generated by a merchant to protect against replay DATE Merchant's current date/time PIN Customer's PIN which, if present, can be optionally used in 1KP to enhance security Y/N Response from card issuer; Yes/No or authorization code R _C Random number chosen by C to form CID CID A customer pseudo-ID which uniquely identifies C; computed as CID = H(R _C , CAN) V Random number generated in 2KP and 3KP by merchant; used to bind the	CAN	Customer's account number (e.g., credit card number)	
DESC Description of the goods; includes payment information such as credit card holder's name and bank identification number SALT _C Random number generated by C; used to randomize DESC and thus ensure privacy of DESC on the M to A link NONCE _M Random number generated by a merchant to protect against replay DATE Merchant's current date/time PIN Customer's PIN which, if present, can be optionally used in 1KP to enhance security Y/N Response from card issuer; Yes/No or authorization code R _C Random number chosen by C to form CID CID A customer pseudo-ID which uniquely identifies C; computed as CID = H(R _C , CAN) V Random number generated in 2KP and 3KP by merchant; used to bind the	ID _M	Merchant ID; identifies merchant to acquirer	
holder's name and bank identification number SALT _C Random number generated by C; used to randomize DESC and thus ensure privacy of DESC on the M to A link NONCE _M Random number generated by a merchant to protect against replay DATE Merchant's current date/time PIN Customer's PIN which, if present, can be optionally used in 1KP to enhance security Y/N Response from card issuer; Yes/No or authorization code R _C Random number chosen by C to form CID CID A customer pseudo-ID which uniquely identifies C; computed as CID = H(R _C , CAN) V Random number generated in 2KP and 3KP by merchant; used to bind the	TID _M	Transaction ID; uniquely identifies the transaction	
privacy of DESC on the M to A link NONCE _M Random number generated by a merchant to protect against replay DATE Merchant's current date/time PIN Customer's PIN which, if present, can be optionally used in 1KP to enhance security Y/N Response from card issuer; Yes/No or authorization code R _C Random number chosen by C to form CID CID A customer pseudo-ID which uniquely identifies C; computed as CID = H(R _C , CAN) V Random number generated in 2KP and 3KP by merchant; used to bind the	DESC		
DATE Merchant's current date/time PIN Customer's PIN which, if present, can be optionally used in 1KP to enhance security Y/N Response from card issuer; Yes/No or authorization code R _c Random number chosen by C to form CID CID A customer pseudo-ID which uniquely identifies C; computed as CID = H(R _c , CAN) V Random number generated in 2KP and 3KP by merchant; used to bind the	SALT _C		
PIN Customer's PIN which, if present, can be optionally used in 1KP to enhance security Y/N Response from card issuer; Yes/No or authorization code R _C Random number chosen by C to form CID CID A customer pseudo-ID which uniquely identifies C; computed as CID = H(R _C , CAN) V Random number generated in 2KP and 3KP by merchant; used to bind the	NONCE _M	Random number generated by a merchant to protect against replay	
enhance security Y/N Response from card issuer; Yes/No or authorization code R _C Random number chosen by C to form CID CID A customer pseudo-ID which uniquely identifies C; computed as CID = H(R _C , CAN) V Random number generated in 2KP and 3KP by merchant; used to bind the	DATE	Merchant's current date/time	
$\begin{array}{ll} R_C & Random \ number \ chosen \ by \ C \ to \ form \ CID \\ CID & A \ customer \ pseudo-ID \ which \ uniquely \ identifies \ C; \ computed \ as \\ CID = H(R_C, \ CAN) \\ V & Random \ number \ generated \ in \ 2KP \ and \ 3KP \ by \ merchant; \ used \ to \ bind \ the \\ \end{array}$	PIN		
CID A customer pseudo-ID which uniquely identifies C; computed as $ CID = H(R_{\rm C}, CAN) $ V Random number generated in 2KP and 3KP by merchant; used to bind the	Y/N	Response from card issuer; Yes/No or authorization code	
$CID = H(R_{\rm C}, CAN)$ $V \qquad Random number generated in 2KP and 3KP by merchant; used to bind the$	R _C	Random number chosen by C to form CID	
	CID		
	v		

Item	Description
Common	Information held in common by all parties: $PRICE, ID_{M}, TID_{M}, DATE, NONCE_{M}, CID, H(DESC, SALT_{C}), \ [H(V)]$
Clear	Information transmitted in the clear: $ID_{M'} TID_{M'} DATE$, $NONCE_{M'} H(Common)$, $[H(V)]$
SLIP	Payment instructions: PRICE, H(Common), CAN, $R_{C'}$ [PIN]
EncSlip	Payment instruction encrypted with the public key of the acquirer: PK_A (SLIP)
$CERT_X$	Public-key certificate of X, issued by a CA
Sig_A	Acquirer's signature: $SK_{A}[H(Y/N, H(Common))]$
Sig_M	$\begin{aligned} & Merchant's \ signature \ in \ Auth-Request: \\ & SK_{M}[H(H(Common), \ [H(V)])] \end{aligned}$
$\operatorname{Sig}_{\operatorname{C}}$	Cardholder's signature: SK _C [H(EncSlip, H(Common))]

- Las desventajas de uso de 1KP son:
 - El cliente se autentica utilizando sólo un número de tarjeta de crédito y, opcionalmente, un PIN, en lugar de firmas digitales
 - El vendedor no se autentica ni ante el cliente ni ante el Acquirer
 - Ni el vendedor ni el cliente proporcionan evidencias de intervención en la transacción

- En el **protocolo 2KP**, además del Acquirer, cada <u>vendedor</u> necesita tener un par *<clave pública, clave privada>*, y está obligado a distribuir su certificado CERT_M al cliente y al Acquirer
- La información de partida de cada una de las entidades es:

Actor	Information Items
Customer	DESC, CAN, PK _{CA} , CERT _A
Merchant	DESC, PK _{CA} , CERT _A , SK _M , CERT _M
Acquirer	PK _{CA} , SK _A , CERT _A

Los pasos del protocolo son:

Protocolo Millicent

- En algunos escenarios hay que transferir una cantidad muy pequeña (<u>micropago</u>), y por ello, hay que buscar la forma más <u>eficiente y económica</u> posible de hacerlo
 - minimizando el tráfico y los recursos utilizados, para que los costes de realizar el pago sean mínimos en comparación el pago en sí mismo
- Para reducir los costes operacionales se utilizan varias soluciones:
 - servicios de prepago
 - autorizaciones off-line
 - agrupación de la facturación de los micropagos en lotes
 - reducción del coste computacional
 - la criptografía de clave pública no es la más adecuada pues resulta cara, e incluso, los criptosistemas simétricos pueden ser cuestionables
 - cada vez más se aplica el empleo de funciones hash
 - sin embargo, conlleva también la imposibilidad de proporcionar servicios de <u>no-repudio</u>

- Un ejemplo es **Millicent** que utiliza <u>cifrado simétrico</u>, y <u>no utiliza</u> <u>procesamiento on-line</u>
 - Además de clientes y comerciantes, en Millicent existe la figura del agente de negocios (posiblemente una institución financiera)
 - El sistema utiliza una forma de moneda electrónica, el scrip
 - los scrips vienen a ser "cupones electrónicos" que representan dinero, con los que el comprador obtiene la mercancía del vendedor
- Para un cliente no sería eficiente comprar lotes de scrips a cada uno de los potenciales vendedores del sistema
 - se puede suponer que, durante un periodo, las compras de un cliente a varios comerciantes alcanzarán un importe equivalente a un macropago
 - la función principal del agente de negocios es la de vender a cada cliente, y dentro de un mismo lote mixto, scrips de distintos vendedores

- 1. Compra-Venta de scrips de A
- 3. Envío de scrips de agente
- Envío de scrips de A
- 7. Envío de producto

- 2. Compra de scrips de agente (macropago)
- 4. Compra de scrips de A (micropago mediante scrips de agente
- 6. Petición producto + micropago mediante scrips de A

Fuente: http://magsastre.eresmas.com/3-6comer.html

- El modelo a tres bandas (cliente, vendedor y bróker) ayuda a tener cierto grado de <u>anonimato</u> por parte del comprador:
 - el agente conoce la identidad del comprador y su número de tarjeta de crédito, pero nunca llega a conocer qué producto compra
 - el vendedor sabe lo que el cliente compra, pero desconoce su identidad
- Otros sistemas de micropago son:
 - Subscrip
 - Kleline
 - Flattr
 - M-coin
 - etc.