Лекция 19

Ирибиний Определенный интеграл (им-сиры Римана) Определение интеграла Римана Определение интеграла Римана

🔪 Рассмотрим задачу вычисления площади кривей трапеции. Пусть функция f определена на [a,b] и пусть $a = x_0 < x_1 < \ldots < x_n < x$ $x_n = b$. Зафиксируем произвольным образом $\xi_i \in [x_{i-1}, x_i]$ и составим сумму

Тогда площадь кривой трапециі

$$S \approx \sum_{i=1}^{n} f(\xi_i) \Delta x_i.$$

Определение 19.1. *Разбиением* отрезка [a,b] называется любая конечная система его точек x_0, \ldots, x_n такая, что $a = x_0 < x_1 < x_2 < \ldots < x_n = b$.

Будем обозначать разбиение отрезка [a, b] через P.

Определение 19.2. Разбиением отрезка [a,b] с отмеченными точками $\xi_i \in [x_{i-1},x_i]$ называется разбиением P с указанными точками $\xi_i, i = \overline{1, n}$, и обозначается $(P, \boldsymbol{\xi})$, где $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n).$

Определение 19.3. Разбиение P' называется *продолжением разбиения* P, если оно получено из Р добавлением новых точек разбиения.

Определение 19.4. *Мелкостью разбиения*
$$P$$
 называется величина $\lambda(P) = \max_{1 \leqslant i \leqslant n} (x_i - x_{i-1}).$

Определение 19.5. Величина $\sigma(f;(P,\pmb{\xi})) = \sum_{i=1}^n f(\xi_i) \Delta x_i$ называется *интегральной* суммой Римана функции f.

Определение 19.6. Число J называется интегралом Римана функции f на [a,b], если

$$J = \lim_{\lambda(P) \to 0} \sigma(f; (P, \boldsymbol{\xi})) \tag{19.1}$$

и этот предел не зависит ни от разбиения отрезка [a,b], ни от выбора точек $\xi_i \in$ $[x_{i-1}, x_i], i = 1, n.$

Другими словами, писло J называется интегралом Римана функции f на [a,b], если $\forall \varepsilon>0$ $\exists \delta>0$ такая, что для произвольного разбиения P с отмеченными точками ξ_i $(i=\overline{1,n})$ при $\lambda(P) < \delta$ выполняется неравенство $|J-\sigma(f;(P,\xi))| < \varepsilon$.

Обозначим

$$J = \int_{a}^{b} f(x) dx.$$

13(x)1FW AXEX

Полагают

$$\int_{a}^{a} f(x) dx = 0, \qquad \int_{a}^{b} \frac{f(x) dx = -\int_{b}^{a} f(x) dx}{f(x) dx}.$$

Если функция $f:[a,b]\to\mathbb{R}$ интегрируема по Риману, то записывают $f\in R[a,b]$. Теорема 19.1. (Критерий Коши существования интеграла). Для существования предела (19.1) необходимо и достаточно, чтобы $\forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall (P', \xi')$ и $(P'', \boldsymbol{\xi}''), \lambda(P') < \delta$ и $\lambda(P'') < \delta$ выполнялось условие

$$|\sigma(f; (P', \xi')) - \sigma(f; (P'', \xi''))| < \varepsilon.$$

Теорема 19.2. Если $f \in R[a, b]$, то f ограничена на [a, b].

Доказательство. От противного. Пусть f не ограничена на [a,b] и пусть фиксировано некоторое разбиение P этого отрезка. В силу неограниченности f на [a,b] она является неограниченной по крайчей мере на одном отрезке разбиения P. Пусть для определенности функция f не ограничена на $[x_0, x_1]$, тогда на этом отрезке существует последовательность $\xi_1^{(n)} \in [x_0,x_1], \ n=1,2,\dots$ такая, что $\lim_{n\to\infty} f(\xi_1^{(n)}) = \infty.$

$$\lim_{n \to \infty} f(\xi^{(n)}) = \infty.$$

Зафиксируем каким-либо образом точки $\xi_i \in [x_{i-1}, x_i], \ i = \overline{2,n}.$ Тогда сумма $\sum_{i=2}^{n} f(\xi_i) \Delta x_i$ будет иметь численное значение. Тогда

$$\lim_{\lambda(P)\to 0} \sigma(f;(P,\boldsymbol{\xi})) = \lim_{\lambda(P)\to 0} \left(f(\xi_1^{(n)}) \Delta x_1 + \sum_{i=2}^n f(\xi_i) \Delta x_i \right) = \infty.$$

Следовательно, не может быть конечного предела (19.1), то есть $f \notin R[a,b]$, что противоречит условию теоремы.

Замечание 19.1. Из ограниченности функции f, вообще говоря, не следует её ин-J:X-R nazoyona X, -evu] M>0: тегрируемость.

Рассмотрим функцию Дирихле:

$$f(x) = \begin{cases} 1, & \text{если } x\text{-рациональное число;} \\ 0, & \text{если } x\text{-иррациональное число,} & x \in [0,1]. \end{cases}$$

Функция f(x) ограничена на [0,1]. Покажем, что она не интегрируема на [0,1]. Зафиксируем произвольное разбиение P отрезка [0,1]. Если выбрать точки $\xi_i \in$ $[x_{i-1},x_i],\;i=\overline{1,n}$ рациональными, то получим

$$\sigma(f;(P,\boldsymbol{\xi})) = \sum_{i=1}^{n} f(\xi_i) \Delta x_i = \sum_{i=1}^{n} \Delta x_i = 1,$$

если ξ_i - иррационально, то

$$\sigma(f; (P, \boldsymbol{\xi})) = \sum_{i=1}^{n} f(\xi_i) \Delta x_i = 0 \cdot \sum_{i=1}^{n} \Delta x_i = 0 \cdot 1 = 0$$

$$\Rightarrow \# \lim_{\lambda(P) \to 0} \sigma(f; (P, \boldsymbol{\xi})) \Rightarrow f \notin R[a, b].$$

Если \tilde{P} - продолжение разбиения P, то все или некоторые отрезки $[x_{i-1},x_i]$ разбиваются точками x_{ij} . Тогда $\Delta x_{i,j}=x_{i,j}-x_{i,j-1}$ и $\sum_{i=1}^{n_i}\Delta x_{i,j}=\Delta x_i$.

Теорема 19.3. Для того, чтобы ограниченная функция f была интегрируема по Риману на [a,b] достаточно, чтобы $\forall \varepsilon>0 \; \exists \delta>0: \; \forall$ разбиения $P: \; \lambda(P)<\delta$ выполнялось неравенство

$$\sum_{i=1}^{n} \omega(f, \Delta_i) \Delta x_i < \varepsilon, \tag{19.2}$$

где $\omega(f,\Delta_i)=\sup_{x_1,x_2\in\Delta_i}|f(x_1)-f(x_2)|$ - колебание функции f на Δ_i . Δ_i

Доказательство. Сначала оценим разность

$$|\sigma(f; (\tilde{P}, \boldsymbol{\xi})) - \sigma(f; (P, \boldsymbol{\xi}))|,$$

где \tilde{P} - продолжение разбиения P.

Имеем

$$|\sigma(f; (\tilde{P}, \tilde{\boldsymbol{\xi}})) - \sigma(f; (P, \boldsymbol{\xi}))| = |\sum_{i=1}^{n} \sum_{j=1}^{n_{i}} f(\xi_{ij}) \Delta x_{ij} - \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i}| =$$

$$= |\sum_{i=1}^{n} \sum_{j=1}^{n_{i}} (f(\xi_{ij}) - f(\xi_{i})) \Delta x_{ij}| \leq \sum_{i=1}^{n} \sum_{j=1}^{n_{i}} |f(\xi_{ij}) - f(\xi_{i})| \Delta x_{ij} \leq$$

$$\leq \sum_{i=1}^{n} \sum_{j=1}^{n_{i}} \omega(f, \Delta_{i}) \Delta x_{ij} = \sum_{i=1}^{n} \omega(f, \Delta_{i}) \Delta x_{i}. \quad (19.3)$$

Пусть $(P', \boldsymbol{\xi'})$ и $(P'', \boldsymbol{\xi''})$ - произвольные разбиения [a,b] с отмеченными точками и f удовлетворяет (19.2), при этом $\lambda(P') < \delta$ и $\lambda(P'') < \delta$. Рассмотрим разбиение $\tilde{P} = P' \cup P''$ - продолжение P' и P''. Тогда в силу (19.3) имеем

 $|\sigma(f; (P, \tilde{\boldsymbol{\xi}})) - \sigma(f; (P', \boldsymbol{\xi'}))| < \frac{\varepsilon}{2},$ $|\sigma(f; (\tilde{P}, \tilde{\boldsymbol{\xi}})) - \sigma(f; (P'', \boldsymbol{\xi''}))| < \frac{\varepsilon}{2}.$

$$\begin{split} |\sigma(f;(P',\boldsymbol{\xi'})) - \sigma(f;(P'',\boldsymbol{\xi''}))| = \\ &= |\sigma(f;(P',\boldsymbol{\xi'})) - \sigma(f;(\tilde{P},\tilde{\boldsymbol{\xi}}))| + |\sigma(f;(\tilde{P},\tilde{\boldsymbol{\xi}})) - \sigma(f;(P'',\boldsymbol{\xi''}))| < \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \Rightarrow 0 \end{split}$$

 $\Rightarrow f \in R[a,b]$ (смотри критерий Коши).

Теорема 19.4. Если $f \in C[a,b]$, то $f \in R[a,b]$.

 \mathcal{A} оказательство. По теореме Кантора, если $f \in C[a,b]$, то она является равномерно непрерывной на [a,b], то есть $\forall \varepsilon > 0 \ \exists \delta > 0 : \ \omega(f,\Delta_i) < \frac{\varepsilon}{b-a}$ при $\Delta x_i < \delta$. Тогда

 $\forall P: \ \lambda(P) < \delta$ получаем $\sum_{i=1}^n \omega(f, \Delta_i) \Delta x_i < \frac{\varepsilon}{b-a} \sum_{i=1}^n \Delta x_i = \frac{\varepsilon}{b-a} (b-a) = \varepsilon \Rightarrow$ выполняется условие теоремы $3 \Rightarrow f \in R[a, b].$

Теорема 19.5. Если $f:[a,b]\to\mathbb{R}$ - монотонная функция, то $f\in R[a,b].$

Доказательство. Если f - постоянная функция, то $\sum_{i=1}^{n} f(\xi_i) \Delta x_i = c \sum_{i=1}^{n} \Delta x_i = c(b-a)$ и $\lim_{\lambda(P)\to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i = c(b-a)$, то есть $f \in R[a,b]$.

Считая, что f не является постоянной функцией, положим $\delta=\frac{\varepsilon}{|f(b)-f(a)|},$ где ε - произвольное заданное число. Тогда при $\lambda(P)<\delta$ имеем

$$\sum_{i=1}^{n} \omega(f, \Delta_i) \Delta x_i < \delta \sum_{i=1}^{n} \omega(f, \Delta_i) =$$

$$= \delta \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| \le \delta |\sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))| =$$

$$= \delta |f(b) - f(a)| = \varepsilon \Rightarrow$$

 $\Rightarrow f \in R[a,b]$

Для монотонной функции $\omega(f,[a,b]) = |f(b) - f(a)|.$