Sequence modeling for product classification

Pietro Mascolo

Flow Comerce

July 31, 2019

This presentation

- Problem statement
- 2 First approach
- A new approach
 - Neural networks
 - Recurrent networks and sequence modeling
- 4 Our classification model
 - Data preparation
 - Evaluation
- Demo

Introduction

Problem statement

We want to classify a generic product into an HS6 code and a brief description in order to determine duty rates for a given origin and destination.

Introduction

Problem statement

We want to classify a generic product into an HS6 code and a brief description in order to determine duty rates for a given origin and destination.

A classically styled pair of leather Chelsea boots, featuring elasticated side panels, heel pull tabs and finished with a subtle...

Introduction

Problem statement

We want to classify a generic product into an HS6 code and a brief description in order to determine duty rates for a given origin and destination.

A classically styled pair of leather Chelsea boots, featuring elasticated side panels, heel pull tabs and finished with a subtle...

description: womens leather boot HS6: 640391

Our initial approach

Initial models

- TFIDF encoded representation of text;
- one model per organization (20-30);
- reasonably accurate.

Initial models

- TFIDF encoded representation of text;
- one model per organization (20-30);
- reasonably accurate.

BUT...

Little to no generalization

...and he huffed and he puffed and he blew the house in...

Problems!!

- TFIDF encoding doesn't capture sequence relationship well!
- Many models to keep track of!
- Hard performance evaluation!
- Some organizations have very little data to work on!
- Some organizations have a very limited catalogue (1 or 2 types of items)!

Problems!!

- TFIDF encoding doesn't capture sequence relationship well!
- Many models to keep track of!
- Hard performance evaluation!
- Some organizations have very little data to work on!
- Some organizations have a very limited catalogue (1 or 2 types of items)!

A new approach

Sequence modeling

We want to:

- Have a single general model;
- capture information regarding patterns in sequences of words;
- be able add a new organization seamlessly (if we have seen the kind of products they sell).

These requirements suggest that we need a more sophisticated method than what we are using.

Sequence modeling

We want to:

- Have a single general model;
- capture information regarding patterns in sequences of words;
- be able add a new organization seamlessly (if we have seen the kind of products they sell).

These requirements suggest that we need a more sophisticated method than what we are using.

Enter Neural Networks...

A primer on neural networks

How Neural Networks learn

Sequence learning - Recurrent Neural Networks

Short Term memory problem - vanishing gradient

The model

The data

Results and evaluation

...and he huffed and he puffed, but he hasn't blown the house in... yet...

Let's see it in action

Demo!

Conclusions and future work

