Diskretne strukture UNI Vaje 7

- 1. Ali velja
 - (a) $(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$,
 - (b) $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$,
 - (c) $(A + B) \times (C + D) = (A \times C) + (B \times D)$,
 - (d) $(A+B) \times C = (A \times C) + (B \times C)$,
 - (e) $A \times (B \cup C) = (A \times B) \cup (A \times C)$?
- 2. Na množici $A = \{1, 2, 3, 4, 5, 6\}$ definiramo relacijo

$$R = \{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1), (4, 1)\}.$$

- (a) Nariši grafe relacij R, $R^2 = R * R$ in $R^3 = R * R * R$.
- (b) Katere izmed zgornjih relacij so refleksivne, simetrične in/ali tranzitivne?
- 3. Na množici $A = \{1, 2, 3, 4, 5, 6, 7\}$ definiramo relacijo

$$R = \{(1,2), (2,3), (3,4), (4,5), (5,6), (6,7), (7,1)\}.$$

- (a) Relacijo S definiramo kot $S = R \cup \{(1,3)\}$. Izračunaj relacijo S^{10} .
- (b) Pokaži, da je $S^{2019}=U_A$ (kjer je U_A univerzalna relacija na množici A, tj. $U_A=A\times A$).
- (c) Relacijo T definiramo kot $T = R \cup \{(a,b)\}$, kjer je (a,b) poljuben urejen par, ki ni v R. Pokaži, da tudi v tem primeru velja $T^{2019} = U_A$.
- 4. Na množici $A = \{1, 2, \dots, 18\}$ definiramo relacijo R:

$$xRy \Leftrightarrow y-x$$
 je praštevilo.

- (a) Določi definicijsko območje in zalogo vrednosti relacije R.
- (b) Določi množico $\{y \in A \mid 10Ry\}$.
- 5. Naj bo \mathbb{P} množica praštevil. Relacija R na \mathbb{N} je podana s predpisom

$$aRb \Leftrightarrow \forall p \in \mathbb{P} : (p|a \Leftrightarrow p|b).$$

- (a) Pokaži, da je R ekvivalenčna relacija.
- (b) Poišči [2] in [2016].
- (c) Ali obstaja ekvivalenčni razred z enim samim elementom?
- 6. Na $A = \{1, 2, \dots, 100\}$ je podana relacija R s predpisom

$$aRb \Leftrightarrow \forall k \in \mathbb{N}_0 : (2^k | a \Leftrightarrow 2^k | b).$$

- (a) Pokaži, da je R ekvivalenčna relacija.
- (b) Poišči [4].
- (c) Koliko je vseh ekvivalenčnih razredov?
- 7. Naj bo $N = \{0, 1, \neg, \land, \lor, \Rightarrow, \Leftrightarrow, \lor, \downarrow, \uparrow\}$. Na $\mathcal{P}(N)$ definiramo relacijo \leq tako: nabora $A, B \subseteq N$ sta v relaciji, $A \leq B$, natanko tedaj, ko lahko vsak izjavni izraz z vezniki iz A zapišemo v enakovredni obliki z vezniki iz B.
 - (a) Utemelji, da je relacija \leq refleksivna in tranzitivna.
 - (b) Utemelji, da iz $A \subseteq B$ sledi $A \le B$ (za vse $A, B \in \mathcal{P}(N)$).
 - (c) Oglejmo si $A = \{0, \Leftrightarrow\}$ in $B = \{0, \neg, \Leftrightarrow\}$. Ali velja $A \leq B$? Ali velja $B \leq A$?
 - (d) Je relacija \leq simetrična?