CI. Grupo A. Hoja 1. Volumen y conjuntos de medida cero

Problema 1. Probar que un conjunto acotado $A \subset \mathbb{R}^n$ tiene volumen cero si y sólo si para todo $\varepsilon > 0$ existen rectángulos S_1, \ldots, S_m tales que

$$A \subset \bigcup_{i=1}^{m} S_i$$
 y $\sum_{i=1}^{n} \nu(S_i) < \varepsilon$

Problema 2. Probar que si $A_i \subset \mathbb{R}^n$ tiene medida cero para todo $i \in \mathbb{N}$, entonces $A = \bigcup_{i=1}^{\infty} A_i$ también.

Problema 3. Encontrar un conjunto acotado que tenga medida cero pero para el que el volumen no esté bien definido.

Problema 4. Demostrar que si A es un conjunto con volumen que tiene medida cero, necesariamente $\nu(A) = 0$.

Problema 5. Probar que $\{0\} \times [0,1] \subset \mathbb{R}^2$ tiene volumen cero.

Problema 6. Probar que el conjunto de Cantor tiene medida cero.

Problema 7. Probar que si A es compacto y tiene medida cero, entonces $\nu(A) = 0$.

Problema 8. Dado un conjunto $B \subset \mathbb{R}^n$, definimos su medida exterior de Lebesgue como

$$\lambda(B) = \inf\{\sum_{i=1}^{\infty} \nu(S_i) : (S_i)_{i=1}^{\infty} \text{ recubrimiento por rectángulos abiertos}\}.$$

Probar que si B tiene volumen bien definido, entonces $\nu(B) = \lambda(B)$.

Problema 9. Probar que si B_k son disjuntos dos a dos y con volumen bien definido, y $B = \bigcup_{k=1}^{\infty} B_k$ también tiene volumen bien definido, entonces

$$\nu(B) = \sum_{k=1}^{\infty} \nu(B_k) .$$

Problema 10 Probar que si K_n tiene volumen $\forall n$, con $K_n \subset K_{n+1}$ y $A = \bigcup_{n=1}^{\infty} K_n$ tiene volumen, entonces

$$\nu(A) = \lim_{n} \nu(K_n) .$$

Problema 11 Sea q_n una enumeración de los racionales en (0,1), y sea

$$A = \bigcup_{n=1}^{\infty} (q_n - r_n, q_n + r_n),$$

con $r_n \leq \frac{1}{2^{n+2}}$ y tal que $(q_n - r_n, q_n + r_n) \subset (0, 1)$. Probar que el complementario de A en [0, 1] es un compacto que no tiene volumen bien definido.