

Master Thesis: Characterizing the fractal dimension of molecular clouds

Supervisors: Assoz. Prof. Alvaro Hacar, Univ.-Prof. Oliver Hahn

Research Seminar, 11/06/2025

Introduction

Rationale:

- Molecular clouds are filamentary and self-similar, forming hierarchies of substructures (Elmegreen & Falgarone 1996).
- Observations show filaments fragment into smaller sub-filaments.

Goals:

- Quantify fractal geometry of the Orion Molecular Cloud.
- Trace changes in fractal dimension with column density.
- Link fractal features to mass-size scaling and star formation modes.

© ESA/Herschel/André et al.

Methods I: Perimeter-Area Relation

Fractal dimension D quantifies the boundary complexity.

Perimeter-Area Relation:

$$P \propto \sqrt{A}^D$$

• For a fixed length, a smooth perimeter encloses a larger area than a complicated one.

- For a smooth shape, $P \approx \sqrt{A}$ and thus D = 1.
- As the perimeter becomes more contorted and doubles back on itself, $P \approx A$ and D approaches 2.

(1)

P-A Scaling

Methods II: Proving self-similarity

Global Fractal Dimension

- Different large and small-scale structures follow different perimeter-area (PA) relations.
- A consistent PA scaling suggests no characteristic scale.
- → Structure is self-similar.
- → Indicates fractal geometry.

P-A Diagram (Lovejoy, 1982)

Methods III: D vs. Column Density

Local Fractal Dimension

$$D(N) = 2 \cdot \frac{\log(P)}{\log(A)} \tag{2}$$

- Explore how D varies with column density N.
- Link changes in *D* to **physical processes**:
- Gravitational collapse
 - Mass-size scaling
 - Star formation modes
- Accompanied by simulations

Data: Orion A & B

- ESA's Herschel:
 - Far-infrared and submillimiter
 - Great dynamic range.
- Angular resolution:
 - 36 arcsec
 - $\sim 2 \times 10^{20} \ cm^{-2} < N < 5 \times 10^{23} \ cm^{-2}$

Herschel Dust Emission (Lombardi et al. 2014)

From the Data to the Results

- Apply a column density threshold.
- · Identify regions above the threshold.

$$\circ A = \sum A'$$

$$\circ P = \sum P'$$

- Each threshold yields
 - One point in the $\log(P)$ vs $\log(A)$ plot (Global D).
 - \circ One point for D by inverting the relation (Local D).

Area and Perimeter for an example threshold.

Results I: Self-similarity

PA Relation for Orion B

- Good fits of the perimeter-area relation.
- Lack of characteristic length scales.
- Self-similarity across scales.
- · Agreeance with literature.

Results II: Simulations

Assessing D across Controlled Structures

- Gaussian Random Fields (GRFs):
 - GRFs with power-law spectra → scale-free
 - GRFs with peaked spectra → characteristic scale
- Resolution effects: up to 20% variation.
- · Artifacts: low pixel counts.

Peaked GRF, R2=0.51

Simulations of GRFs

Results III: D vs. Column Density

Fragmentation at Different Depths

- Varying visualizations:
 - Intercept handling
 - Formula definition
- Simulations reveal a trend in D
- Reflects fragmented networks of hierarchical structures
 - Increase in complexity.
- Local vs. Global D: interpretation is key.

Fractal Dimension Across Column Density

Results IV: Regional Analysis

Mass-Size Relation

- D measured for individual structures at each threshold
- Mass and size extracted per structure
- Compared to expected scaling for:
 - Filamentary: A = 10
 - Spheroidal: A=3

 $\mathsf{Mass}\text{-}\mathsf{Size}\text{-}D\;\mathsf{Diagram}$

Outlook

So far:

- Evidence points toward self-similar processes shaping cloud structure.
- Consistent trends observed in both simulations and real data.
- Fractal Dimension
 - \circ Global: 1.36 ± 0.02 and 1.40 ± 0.01 for Orion A and B.
 - Local: Trends capturing complexity of networks.

Next steps:

- · Extend simulations and assess robustness.
- Investigate deeper links to physical processes.

References

- Elmegreen, B. G., & Falgarone, E. (1996). A Fractal Origin for the Mass Spectrum of Interstellar Clouds, ApJ, 471, 816. [ADS]
- Mandelbrot, B. B. (1982). The Fractal Geometry of Nature. W. H. Freeman. [ADS]
- Lombardi, M., Bouy, H., Alves, J., & Lada, C. J. (2014). Herschel-Planck dust optical depth and column density maps, A&A, 566, A45. [ADS]
- Lovejoy, S. (1982). Area-perimeter relation for rain and cloud areas, Science, 216(4542), 185–187. [PDF]
- Sánchez, N., Alfaro, E. J., & Pérez, E. (2005). The Fractal Dimension of Projected Clouds, ApJ, 625(2), 849–855. [PDF]
- Beattie J., Federrath C., Klessen R. S., & Schneider N. (2019). The relation between the true and observed fractal dimensions of turbulent clouds [ADS]