EE288 Data Conversions/Analog Mixed-Signal ICs Spring 2018

Lecture 15: DAC Introduction

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Course Schedule – Subject to Change

Date	Topics
24-Jan	Course introduction and ADC architectures
29-Jan	Converter basics: AAF, Sampling, Quantization, Reconstruction
31-Jan	ADC dynamic performance metrics, Spectrum analysis using FFT
5-Feb	ADC & DAC static performance metrics, INL and DNL
7-Feb	OPAMP and bias circuits review
12-Feb	SC circuits review
14-Feb	Sample and Hold Amplifier - Reading materials
19-Feb	Flash ADC and Comparators: Regenerative Latch
21-Feb	Comparators: Latch offset, preamp, auto-zero
26-Feb	Finish Flash ADC
28-Feb	DAC Architectures - Resistor, R-2R
5-Mar	DAC Architectures - Current steering, Segmented
7-Mar	DAC Architectures - Capacitor-based
12-Mar	SAR ADC with bottom plate sampling
14-Mar	SAR ADC with top plate sampling
19-Mar	Midterm Review
21-Mar	Midterm exam
26-Mar	Spring break
28-Mar	Spring break
2-Apr	Pipelined ADC stage - comparator, MDAC, x2 gain
4-Apr	Pipelined ADC bit sync and alignment using Full adders
9-Apr	Pipelined ADC 1.5bit vs multi-bit structures
11-Apr	Fully-differential OPAMP and Switched-capacitor CMFB
16-Apr	Single-slope ADC
18-Apr	Oversampling & Delta-Sigma ADCs
23-Apr	Second- and higher-order Delta-Sigma Modulator.
25-Apr	Hybrid ADC - Pipelined SAR
30-Apr	Hybrid ADC - Time-Interleaving
2-May	ADC testing and FoM
7-May	Project presentation 1
8-May	Project presentation 2
14-May	Final Review
20-May	Project Report Due by 6 PM

DAC 1

Midterm Exam on March 21

DAC

$$V_{out} = V_{ref}(b_1 2^{-1} + b_2 2^{-2} + \dots + b_N 2^{-N}) = V_{ref}B_{in}$$

DAC

$$N = \# \ of \ bits$$

$$V_{FS} = full \ scale \ output$$

$$\Delta = min. \ step \ size \rightarrow 1LSB$$

$$\Delta = \frac{V_{FS}}{2^N}$$

$$or \ N = log_2 \frac{V_{FS}}{\Delta} \rightarrow resolution$$

DAC Architectures

- Various D/A architecture
 - Resistor string DAC
 - Charge Redistribution DAC
 - Current source type
- Static performance
 - Limited by component matching
 - Architectures
 - Unit element
 - Binary weighted
 - Segmented
 - Performance improvement via dynamic element matching
- Dynamic performance
 - Limited by timing errors causing glitches

Resistor String DAC

Resistor String DAC with Decoder

Folded Resistor String DAC

Multiple Resistor String DAC

DAC operation based on capacitive voltage division

 \rightarrow Make Cx & Cy function of incoming DAC digital word

- E.g. "Binary weighted"
- B+1 capacitors & B switches (Cs built of unit elements → 2^B units of C)

$$V_{out} = \frac{\sum_{i=0}^{B-I} b_i \, 2^i C}{2^B C} V_{ref}$$

Example: 4Bit DAC- Input Code 1011

$$V_{out} = \frac{2^{0}C + 2^{1}C + 2^{3}C}{2^{4}C}V_{ref} = \frac{11}{16}V_{ref}$$

- Sensitive to parasitic capacitor @ output
 - If C_p constant → gain error
 - If C_p voltage dependant \rightarrow DAC nonlinearity
- Large area of caps for high DAC resolution (10bit DAC ratio 1:512)
- Monotonicity depends on element matching (more later)

$$V_{out} = -\frac{\sum\limits_{i=0}^{B-1}b_{i}2^{i}C}{C_{I}}V_{ref} \; , \quad C_{I} = 2^{B}C \quad \rightarrow V_{out} = -\frac{\sum\limits_{i=0}^{B-1}b_{i}2^{i}}{2^{B}}V_{ref}$$

- Opamp helps eliminate the parasitic capacitor effect by producing virtual ground at the sensitive node since C_p has zero volts at start & end
 - Issue: opamp offset & speed- also double capacitor area

Charge Redistribution DAC with Split Cap

- Split array→ reduce the total area of the capacitors required for high resolution DACs
 - E.g. 10bit regular binary array requires 1024 unit Cs while split array (5&5) needs 64 unit Cs
 - Issue: Sensitive to series capacitance parasitic capacitor

Bridge Cap

$$C = \frac{C_B C_L}{C_B + C_L}$$

$$C_B + C_L = C_B C_L$$

$$C_B(C_L-1)=C_L$$

$$C_B(C_L-1)=C_L$$

$$C_B = \frac{C_L}{C_L - 1}$$

Current Based DAC using Binary Weighted R

Current Based DAC using R-2R Ladder

R-2R DAC basics:

Simple R networkdivides both voltage& current by 2

Increase # of bits by replicating circuit

R-2R Resistance Ladder

$$R'_4 = 2R$$
 $R_4 = 2R || 2R = R$
 $R'_3 = R + R_4 = 2R$
 $R_3 = 2R || R'_3 = R$

$$I_1 = \frac{V_{ref}}{2R}$$
 $I_2 = \frac{V_{ref}}{4R}$ $I_3 = \frac{V_{ref}}{8R}$

$$I_2 = \frac{V_{ref}}{4R}$$

$$I_3 = \frac{V_{ref}}{8R}$$

Current Based DAC using R-2R Ladder

$$I_r = V_{ref}/(2R)$$

$$V_{out} = R_F \sum_{i=1}^{N} \frac{b_i I_r}{2^{i-1}} = V_{ref} \left(\frac{R_F}{R}\right) \sum_{i=1}^{N} \frac{b_i}{2^i}$$

Key Point: R-2R ladder D/A converters produce binary-weighted currents without the need for a complete array of binary-weighted resistors. Instead, only 2:1 component ratios are needed, a significant savings for high-resolution converters.

Unit Element Current Source DAC

- "Unit elements" or thermometer
- 2^B-1 current sources & switches
- Suited for both MOS and BJT technologies
- Monotonicity does not depend on element matching and is guaranteed
- Output resistance of current source → gain error
 - Cascode type current sources higher output resistance → less gain error

Unit Element DAC Principle

Binary Weighted Current Source DAC

- "Binary weighted"
- B current sources & switches (2^B-1 unit current sources but less # of switches)
- Monotonicity depends on element matching →not guaranteed

Binary Weighted DAC Principle

Implementation of Weighted Elements

Segmented DAC

Objective:

Compromise between unit-element and binary-weighted DAC

· Approach:

B₁ MSB bits → unit elements B₂ LSB bits → binary weighted

$$B_{Total} = B_1 + B_2$$

- INL: unaffected same as either architecture
- DNL: Worst case occurs when LSB DAC turns off and one more MSB DAC element turns on → Same as binary weighted DAC with (B₂+1) # of bits
- Number of switched elements: (2^{B1}-1) + B₂