IT-Security (ITS) B1

DIKU, E2025

Today's agenda

Recap

Key exchange

Key management

Certificates

Recap: Security goals and crypto primitives

Don't worry about the details of RSA, AES, or SHA1

Focus on the bigger picture of what we achieve with

- symmetric and asymmetric ciphers
- cryptographic hash functions
- message authentication codes
- digital signatures

Key management

Many keys to protect

Master key

Session key

Signature key

Data encryption key

Key encryption key

...

Key derivation functions and sessions keys

Protect during entire lifecycle

Key exchange

Key exchange options include

Pre-distribution

Generated and distributed "ahead of time" e.g. physically

Distribution

Generated by a trusted third party (TTP) and sent to all parties

Agreement

Generated by all parties working together

Asymmetric

Is e really yours?

Basic authenticated key exchange

Alice (claimant)

shared secret: $W_{\mbox{AB}}$

I am Alice, here is some evidence that I know our shared Alice-Bob secret

Yes, but that looks old. Here's a random number

Okay, here is fresh evidence combining our secret and the random number you just sent

Bob (verifier)

shared secret: W_{AB}

With a trusted third party

Developing a key distribution scheme

Situation:

A and B want to exchange keys remotely

Both A and B share a key (K_AS, K_BS) with a trusted third party, S

At the end, we want to achieve:

A and B know a new key K_AB

No one but A, B, and possibly S knows K_AB

A and B know that K_AB is newly generated

Kerberos

More key management risks

Attack	Short description
replay	reusing a previously captured message in a later protocol run
reflection	replaying a captured message to the originating party
relay	forwarding a message in real time from a distinct protocol run
interleaving	weaving together messages from distinct concurrent protocols
middle-person	exploiting use of a proxy between two end-parties
dictionary	using a heuristically prioritized list in a guessing attack
forward search	feeding guesses into a one-way function, seeking output matches
pre-capture	extracting client OTPs by social engineering, for later use

Key agreement

Basic idea

If you wanted to exchange secret paints

Basic idea

Choose a function f such that

$$f(a,f(b)) = f(b,f(a))$$

And

 $f^{-1}(x)$ is hard

Solution by Diffie-Hellman, 1976

Computational Diffie-Hellman assumption

Diffie-Hellman: toy example

- 1. Alice and Bob agree to use a modulus p = 23 and base g = 5 (which is a primitive root modulo 23).
- 2. Alice chooses a secret integer $\mathbf{a} = \mathbf{6}$, then sends Bob $A = g^{\mathbf{a}} \mod p$
 - $A = 5^6 \mod 23 = 8$
- 3. Bob chooses a secret integer b = 15, then sends Alice $B = g^b \mod p$
 - $B = 5^{15} \mod 23 = 19$
- 4. Alice computes $s = B^a \mod p$
 - $s = 19^6 \mod 23 = 2$
- 5. Bob computes $s = A^b \mod p$
 - $s = 8^{15} \mod 23 = 2$
- Alice and Bob now share a secret (the number 2).

Is e really yours?

Public-key infrastructure (PKI)

A system for the creation, storage, and distribution of **digital certificates** which are used to verify that a particular public key belongs to a certain entity

Field name	Contents or description
Version	X.509v3 or other versions
Serial-Number	uniquely identifies certificate, e.g., for revocation
	issuing CA's name
Issuer	
Validity-Period	specifies dates (Not-Before, Not-After)
Subject	owner's name
Public-Key info	specifies (Public-Key-Algorithm, Key-Value)
extension fields (optional)	Subject-Alternate-Name/SAN-list,
	Basic-Constraints, Key-Usage,
	CRL-Distribution-Points (and others)
Signature-Algorithm	(algorithmID, parameters)
Digital-Signature	signature of Issuer

Types of PKI: CA model

Types of PKI: Web of trust

PKI components and lifecycle

Certificate validation

- 1. Not expired
- 2. Not revoked
- 3. Its signature verifies
- 4. Stated use matches intended use
- 5. Signed by CA that is trusted OR chain that leads to a CA that is trusted

Chain of trust

Browsing untrusted sites

Trust in browsers

Browsers come pre-configured with a set of root CAs. Do you trust all these CAs (to authenticate properly, to avoid/inform of breaches)?

CA providers

Revocation of certificates

Certificate revocation list (CRL):

A list of (serial numbers for) certificates that have been revoked, and therefore, entities presenting those (revoked) certificates should no longer be trusted

Online Certificate Status Protocol (OCSP):

Protocol used for obtaining the revocation status of an X.509 digital certificate

CA breach

DigiNotar

Article Talk

From Wikipedia, the free encyclopedia

DigiNotar BV was a Dutch certificate authority from 1998 to 2011. It was acquired in January 2011 by VASCO and subsequently declared bankrupt in September of the same year. [1][2] The company was hacked in June 2011 and it issued hundreds of fraudulent certificates, some of which were used for man-in-the-middle attacks on Iranian Gmail users.

Short-lived certificates

Documentation Get Help Blog Donate V About Us V

Donate Now

Blog

Announcing Six Day and IP Address Certificate Options in 2025

By Josh Aas · January 16, 2025

This year we will continue to pursue our commitment to improving the security of the Web PKI by introducing the option to get certificates with six-day lifetimes ("short-lived certificates"). We will also add support for IP addresses in addition to domain names. Our longer-lived certificates, which currently have a lifetime of 90 days, will continue to be available alongside our six-day offering. Subscribers will be able to opt in to short-lived certificates via a certificate profile mechanism being added to our ACME API.