Date: E((vogu)) JUTORIAL 6 Solution: 1 Minimum spanning true: - A minimum spanning teu (MST) or minimum weight Spanning due is a subset of the edges of a connected edge-weighted undirected graph that connects all the vertices together, neithout any cycles and with the minimum possible total edge weight Applications: i) Consider n Station are to be linked using a communication nelwork and lying of commu nication link between any two Station involve a cost. The ideal solution would be to enact a subgraph termed as minimum cost spanning (i) Suppose you meant to construct highways 0 Or vailroads spanning several cities then we 0 can use the concept of minimum spanning true 0 111) Disign LAN. Laying pipelines connecting offshore drilling 0 sites, refineries and consume markets. 0 C-9 Solution: - 2 0 Time complenity of Brim's algorithm 0 013 Space complerity of Brim to algorithm 013 C13 013 CLO

					ate
	Time Compl	enity of	N Ksunb	01000	0:-0(E(wgv))
	space comple	nety o	L Krusko	elia Ala	o:- 0 (1V1)
	1.0	0	6 Contract		
(line complex	rity of	Dijkstra	Algo: -	0(02).
0	pace complex	nity of	Dij Kstea A	Algo:	0 (192)
1	Time comple Space comple	enity of	Bellman	ford:	O(E)
		9 8	- Con man	r-jora.	000,
Solu	tion: 3		Condt 3	BOOLA	almin !
			7 6	0	
	4	2) (3		
	11	-	7/14		
0	111	1	16 4	1	29
	8 (7)-	(6) -	3-1	0
		1	2	(0)	
\rightarrow	Kruskal's	algori	ithm.		tapiecs
	O	V	W	00	w
	6	+	9	17	11 ×
	5	6 A	2 /	3 5	14 X
	0	1	AV	11	
	2	S	AN		
	6	8	6 X		
	2	3	ナレ		
	7	8	7 X		
	0	+	0 V		
		2	8 X		14, 13, 14, 18 P. W.
	4	3	91		
	4	5	OX		

4+8+1+2+4+2+7+9=37 Bms.

Solution: 4

- The shortest path may changes. The of edges in different number of edges in different paths from 's'to't! for enample: Lit shortest path be of weight Is and has edge 5. Let there be another path with 2 edge and total weight 25. The weight of the Shortest path is increased by 5 10 and becomes 15 + 50. Weight of the other path is increased by 2 10 and becomes 25 + 20 so the shortest both changes to the other path weight as 45
- we multiply all edges weight by 10, the shortest path don't change. The seeason is simple, weight of all path from 's' 60%! ge mulliplied by same amount. The no. of edges en a path don't matter. It is like changing dimets of weight.

	Date
Solution: -5	
Dijk Stra Algori	ithm
100	
S 2 3 9 7 4	6
5 0 2	
node Shortest dista	nce from source note
N. S	b wit cooks to
V 9 10 10 10 10 10 10 10 10 10 10 10 10 10	ton enancyle:
y T	
Bellman ford algorithm	5 Papalolo
1 st - (S) (D) (R)	5 00 not have
grad -> & W W	(y) -apole
3 3ud -> (3) (0) (1)	(4)
3 44 - 3 0 0 6	099
13 ° (S) 211 9 11	
5 2	9