Let E be a vector space over \mathbb{C} .

Definition 1 (Hermitian) A map $A \in \text{End E}$ is Hermitian iff

$$\langle Ax, y \rangle = \langle x, Ay \rangle$$

Theorem 2 (finite spectral theorem) Suppose $E \cong \mathbb{C}^n$ is hermitian. Then

- E has eigenvectors that are an orthonormal basis of E.
- All eigenvalues of E are real.

Proof. By the fundamental theorem of algebra, the characterestic polynomial

$$|A - \chi I|$$

has a root. Hence A has an eigenvalue-eigenvector pair λ , e. But

$$\lambda \langle e, e \rangle = \langle e, Ae \rangle = \langle Ae, e \rangle = \overline{\lambda} \langle e, e \rangle$$

thus $\lambda = \overline{\lambda}$. Ergo, $\lambda \in \mathbb{R}$.

Now consider $A|e^{\perp}$. Suppose $\langle x,e\rangle=0$. Then

$$0 = \lambda \langle x, e \rangle = \langle x, Ae \rangle = \langle Ax, e \rangle$$

Hence $A|e^{\perp} \in End(e^{\perp})$. Induction on dimension proves the theorem.

1

For vectors v, u, let vu denote pointwise multiplication.

Corollary 3 (diagonalization) If $A \in End E$, then

$$A = P^{-1}(\nu_{-})P$$

where P is unitary and $v \in E$ is real.

Definition 4 (standard part of map)

$$\begin{array}{cccc} st_X: & (*X \to *Y) & \to & (X \to Y) \\ & (st \, f)(x) & \coloneqq & st \big(f(^*x)\big) \end{array}$$

Theorem 5 (infinite spectral theorem) Suppose E is a Hilbert space. If $A \in \text{End E}$ is hermitian, then

$$A = P^{-1}(v)P$$

with P unitary and $\nu \in P(E)$ real.

Proof. Consider a nonstandard model of functional analysis. Fix a hyperfinite-dimensional subspace F such that

$${}^{\sigma}E\subseteq F\subseteq {}^{*}E$$

There is some hermitian $B \in End\ F$ such that $B|^{\sigma}E = {}^*A|^{\sigma}E$. This B simultaneously satisfies hermitian-ness and $B({}^*e) = {}^*(Ae)$ for each e in some (standard) basis of E. Such a B exists, internal to a sufficiently saturated model.

By *-transferring diagonalization, there is some unitary $P \in End\ F$ and real $\nu \in F$ such that

$$B = P^{-1}(\nu_{-})P \tag{1}$$

It suffices to recover the standard diagonalization from the hyperfinite case. Let

$$\tilde{E} = P({}^{\sigma}E)$$

be a standard Hilbert space. Define $\widetilde{st}(x) = y$ when $y \in \widetilde{E}$ and $x \simeq y$. Then

$$\begin{array}{rcl} \widetilde{st}\,P & = & P|_E & : & E & \rightarrow & \tilde{E} \\ \widetilde{st}\left(P^{-1}\right) & = & P^{-1}|_{\tilde{E}} & : & \tilde{E} & \rightarrow & E \end{array}$$

hence $\widetilde{\operatorname{st}}(P^{-1}) = (\widetilde{\operatorname{st}}P)^{-1}$ and

$$\widetilde{\operatorname{st}}(v)x = \widetilde{\operatorname{st}}(v^*x) = (\widetilde{\operatorname{st}}v)x = (\widetilde{\operatorname{st}}v)x$$

By construction, st B = A, hence eq. (1) becomes

$$A = (\widetilde{st} P)^{-1} (\widetilde{st} \nu_{-}) \widetilde{st}(P)$$