CPE 3500

Embedded Digital Signal Processing

Lab 4: Analog to Digital Conversion using ADC and DMA

Anindita Deb

• Task-1:

This is the SWV window before delay.

This is SWV after the delay for 1Hz


```
fid = fopen('val.bin'); % file should be in the working directory
data = fread(fid,inf,'float'); % put 'float' instead of int if your data is float type.
fclose(fid);

figure; |
stem(data,'filled','LineWidth',2);
set(gca,'FontSize',14)
grid on;
xlabel('n','FontSize',16);
ylabel('x[n]','FontSize',16);
title("Val for 1Hz Signal"); % This is the title of the plot (modify for each different plot)
```


5Hz


```
fid = fopen('val2.bin'); % file should be in the working directory
data = fread(fid,inf,'float'); % put 'float' instead of int if your data is float type.
fclose(fid);

figure;
stem(data,'filled','LineWidth',2);
set(gca,'FontSize',14)
grid on;
xlabel('n','FontSize',16);
ylabel('x[n]','FontSize',16);
title("Val for 5Hz Signal"); % This is the title of the plot (modify for each different plot)
```



```
fid = fopen('val3.bin'); % file should be in the working directory
data = fread(fid,inf,'float'); % put 'float' instead of int if your data is float type.
fclose(fid);

figure;
stem(data,'filled','LineWidth',2);
set(gca,'FontSize',14)
grid on;
xlabel('n','FontSize',16);
ylabel('x[n]','FontSize',16);
title("Val for 15Hz Signal"); % This is the title of the plot (modify for each different plot)
```


• Task-2:

Live Expression screenshot and sampling rate calculation.

	Expression	Туре	Value
9 microseconds	w val2	uint32_t	206
	real_val		Failed to evaluate
	**= timer_counter2	uint32_t	9

• Task-3:

1Hz

```
fid = fopen('val5|.bin'); % file should be in the working directory
data = fread(fid,inf,'float'); % put 'float' instead of int if your data is float type.
fclose(fid);

figure;
stem(data,'filled','LineWidth',2);
set(gca,'FontSize',14)
grid on;
xlabel('n','FontSize',16);
ylabel('x[n]','FontSize',16);
title("1Hz Signal"); % This is the title of the plot (modify for each different plot)
```


100Hz

```
fid = fopen('val4.bin'); % file should be in the working directory
data = fread(fid,inf,'float'); % put 'float' instead of int if your data is float type.
fclose(fid);

figure;
stem(data,'filled','LineWidth',2);
set(gca,'FontSize',14)
grid on;
xlabel('n','FontSize',16);
ylabel('x[n]','FontSize',16);
title("100Hz Signal"); % This is the title of the plot (modify for each different plot)
```


Conclusion:

There were some strange errors that were raised when I started task 1. The values were defined as multiple definitions (though by commenting the section they were defined showed the error "no definition for the variable"). Professor Tekes and I resorted to change the variable names by adding a 2 to the original names and it ran smoothly after that point. The live expressions page was bugged as it didn't show up in the debugging menu when I needed to check the variable expression change. I was able to find it from one of the hidden bars eventually.

The rest of the lab went smoothly after that point.