Minimal Proof System of Matching Logic

Formal Systems Laboratory

November 10, 2017

Propositional₁ $\varphi_1 \to (\varphi_2 \to \varphi_1)$

Propositional₂ $(\varphi_1 \to (\varphi_2 \to \varphi_3)) \to ((\varphi_1 \to \varphi_2) \to (\varphi_1 \to \varphi_3))$

Propositional₃ $(\neg \varphi_1 \rightarrow \neg \varphi_2) \rightarrow (\varphi_2 \rightarrow \varphi_1)$

Variable Substitution $\forall x. \varphi \rightarrow \varphi[y/x]$

Distributiony $\forall x. (\varphi_1 \to \varphi_2) \to (\varphi_1 \to \forall x. \varphi_2)$

if x does not occur free in φ_1

Barcan $\sigma(\ldots, \exists x.\varphi, \ldots) \leftrightarrow \exists x.\sigma(\ldots,\varphi,\ldots)$

if x does not occur free

in the left-hand side of the double implication

*Membership Symbol $x \in \sigma(\dots, \varphi_i, \dots) \to \exists y.y \in \varphi_i \land x \in \sigma(\dots, y, \dots)$

*Membership \neg $x \in \neg \varphi_1 \to \neg (x \in \varphi_1)$

*Membership \exists $x \in \forall y. \varphi \rightarrow \forall y. (x \in \varphi)$

where x is distinct from y

*Definedness [x]

N From φ deduce $\neg \sigma(\neg \varphi)$

Modus Ponens From φ_1 and $\varphi_1 \to \varphi_2$ deduce φ_2

Universal Generalization From φ deduce $\forall x.\varphi$

EQUATIONAL SUBSTITUTION From $\varphi_1 \leftrightarrow \varphi_2$ deduce $\varphi_3[\varphi_1/x] \leftrightarrow \varphi_3[\varphi_2/x]$

Framing From $\varphi_1 \to \varphi_2$ deduce $\sigma(\varphi_1) \to \sigma(\varphi_2)$

*Introduction \in From φ deduce $x \in \varphi$

If x does not occur free in φ

*Elimination \in From $x \in \varphi$ deduce φ

If x does not occur free in φ