

Applied Data Analysis for Public Policy Studies

Hypothesis Testing

Michele Fioretti SciencesPo Paris 2020-08-25

Packages used in this set of slides

library(tidyverse)
library(infer)
library(moderndive)

Is There Gender Discrimination In Promotions?

- An article published in the *Journal of Applied Psychology* in 1974 investigates whether female employees at Banks are discriminated against.
- 48 supervisors were given *identical* candidate CVs identical up to the first name, which was male or female.
- Many similar experiments have been conducted with other groups. Arabic Names, Black names, Jewish names or other groups that can be identified from typical name choice. [1], [2], [3], ...

Is There Gender Discrimination In Promotions?

- An article published in the *Journal of Applied Psychology* in 1974 investigates whether female employees at Banks are discriminated against.
- 48 supervisors were given *identical* candidate CVs identical up to the first name, which was male or female.
- Many similar experiments have been conducted with other groups. Arabic Names, Black names, Jewish names or other groups that can be identified from typical name choice. [1], [2], [3], ...

library(moderndive) promotions

```
## # A tibble: 48 x 3
        id decision gender
     <int> <fct>
                    <fct>
         1 promoted male
         2 promoted male
         3 promoted male
         4 promoted male
         5 promoted male
         6 promoted male
## 7 7 promoted male
## 8 8 promoted male
         9 promoted male
        10 promoted male
  # ... with 38 more rows
 # for info on the 'dataset'
 ?promotions
 # Data from a 1970's study on whether gender
 # influences hiring recommendations [...]
```


Looking At Promotions


```
promotions %>%
   group_by(gender, decision) %>%
  summarize(n = n()) \%>\%
  mutate(proportion = n / sum(n))
## # A tibble: 4 x 4
## # Groups: gender [2]
    gender decision
                        n proportion
    <fct> <fct>
                    <int>
                              <dbl>
## 1 male
                              0.125
           not.
## 2 male
                      21 0.875
           promoted
## 3 female not
                      10 0.417
## 4 female promoted
                              0.583
```

- 87.5% of "men" were promoted.
- 58.3% of "women" were promoted.
- That's a difference of 87.55 58.3% = 29.2%.
- Is the 29% advantage for men in this sample **conclusive evidence**?
- In a hyopthetical world without gender discrimination, could we have observed a 29% difference by chance?

Imposing A Hypothetical World: No Gender Discriminiation

- Suppose we lived in a world without gender discrimination.
- The label gender in our dataframe would be meaningless.
- Let's randomly reassign gender to each row and see how this affects the result.
- Suppose we have 48 playing cards: 24 red (female) and 24 (black)
- Shuffle the cards, and lay down the cards in a row, record **f** if **red**.

Imposing A Hypothetical World: No Gender Discriminiation

- Suppose we lived in a world without gender discrimination.
- The label gender in our dataframe would be meaningless.
- Let's randomly reassign gender to each row and see how this affects the result.
- Suppose we have 48 playing cards: 24 red (female) and 24 (black)
- Shuffle the cards, and lay down the cards in a row, record **f** if **red**.

```
bind_cols(promotions, promotions_shuffled) #?promotion
## # A tibble: 48 x 6
      id...1 decision...2 gender...3 id...4 decision...5
                                                           gender.
       <int> <fct>
                           <fct>
                                       <int> <fct>
                                                           <fct>
                                                           female
           1 promoted
                          male
                                           1 promoted
           2 promoted
                          male
                                           2 promoted
                                                           female
                          male
                                                           male
           3 promoted
                                           3 promoted
           4 promoted
                          male
                                           4 promoted
                                                           female
                                           5 promoted
                                                           male
           5 promoted
                          male
                                                           male
           6 promoted
                          male
                                           6 promoted
           7 promoted
                          male
                                           7 promoted
                                                           male
           8 promoted
                          male
                                           8 promoted
                                                           female
           9 promoted
                          male
                                           9 promoted
                                                           male
          10 promoted
                                          10 promoted
                                                           female
                           male
## # ... with 38 more rows
```

- Observe how in promotions_shuffled we randomly assigned gender1.
- The decision column is the same!
- What does this now look like?

Reshuffled Promotions


```
promotions %>%
  group_by(gender, decision) %>%
  summarize(n = n()) \%>\%
  mutate(proportion = n / sum(n))
## # A tibble: 4 x 4
## # Groups: gender [2]
    gender decision
                        n proportion
    <fct> <fct>
                    <int>
                               <dbl>
                               0.125
## 1 male
           not
## 2 male
           promoted
                       21 0.875
## 3 female not
                          0.417
## 4 female promoted
                               0.583
promotions_shuffled %>%
  group_by(gender, decision) %>%
  summarize(n = n()) \%>\%
  mutate(proportion = n / sum(n))
## # A tibble: 4 x 4
## # Groups: gender [2]
    gender decision
                        n proportion
    <fct> <fct>
                    <int>
                               <db1>
## 1 male
                               0.25
           not.
## 2 male
                          0.75
           promoted
## 3 female not
                               0.292
## 4 female promoted
                               0.708
```


Sampling Variation?

- In the hypothetical world, the difference was only 4.2%.
- But what's the role of *sampling variation*? How representative of that hypothetical world is 4.2%?
- Let's construct the sampling distribution ourselves!

Sampling Variation?

- In the hypothetical world, the difference was only 4.2%.
- But what's the role of *sampling variation*? How representative of that hypothetical world is 4.2%?
- Let's construct the sampling distribution ourselves!

- 1. You need to shuffle a deck of 48 cards, 24 red, 24 black, and lay out card after card in front of you.
- 2. You do **not** put the cards back into the deck!
- 3. You could use the function sample for example. Look at ?sample to find out more.
- 4. fill in your results into this shared spreadsheet!

sample(promotions\$gender, replace = FALSE) # Note: create a new google csv file

Sampling Variation in Reshuffling

- This distribution was created in our hypothetical scenario: no discrimination.
- We see how sampling variation affects the difference in promotion rates.
- The red line denotes the *observed* difference in the **real world** (29.2%).
- Now: How *likely* is it that the red line is part of this **hypothetical** distribution?

Recap: Permutation vs Bootstrap

- We just did a **permutation test**. We randomly reshuffled and checked if it makes a difference.
- Again Resampling: boostrapping is with replacment, permutation is without.
- Bootstrapping: we put the paper slips back after recording them.
- Permutation: we took card after card from our deck (without putting it back!)

Recap: Permutation vs Bootstrap

- We just did a **permutation test**. We randomly reshuffled and checked if it makes a difference.
- Again Resampling: boostrapping is with replacment, permutation is without.
- Bootstrapping: we put the paper slips back after recording them.
- Permutation: we took card after card from our deck (*without* putting it back!)

- We observed the estimate $\hat{p}_m \hat{p}_f = 29.2\%$ in the real world.
- We *tested* whether in a hypothetical universe with no discrimination, 29.2% likely to occur.
- We concluded *rather not*. We tended to **reject** that hypothesis.
- The real question was: is 29.2% really different from zero? What is the role of sampling variation?

Hypothesis Testing Setup

Hypothesis Test Notation and Definitions

- In Hypothesis testing we compare two competing hypothesis.
 - In our example:

$$egin{aligned} H_0 : & p_m - p_f = 0 \ H_A : & p_m - p_f > 0 \end{aligned}$$

- \circ H_0 stands for the **null hypothesis**, where *no effect* is observed. That's our hypothetical world from above.
- H_A or H_1 is the **alternative** hypothesis. Here, we have a *one-sided* alternative, saying that $p_m>p_f$, ie women are discriminated against. The *two-sided* formulation is just $H_A:p_m-p_f\neq 0$

Hypothesis Test Notation and Definitions

- In Hypothesis testing we compare two competing hypothesis.
 - In our example:

$$egin{aligned} H_0 : & p_m - p_f = 0 \ H_A : & p_m - p_f > 0 \end{aligned}$$

- \circ H_0 stands for the **null hypothesis**, where *no effect* is observed. That's our hypothetical world from above.
- H_A or H_1 is the **alternative** hypothesis. Here, we have a *one-sided* alternative, saying that $p_m>p_f$, ie women are discriminated against. The *two-sided* formulation is just $H_A:p_m-p_f\neq 0$

- A **test statistic** is a summary statistic which we use to summarise a certain aspect of our sample. Here: $\hat{p}_m \hat{p}_f$
- The observed test statistic is the number we get from our real world sample: $\hat{p}_m \hat{p}_f = 29\%$
- The null distribution is the sampling distribution of our test statistic, assuming the Null hypothesis is true. That's our hypothetical world without discrimination.
- We have seen such a null distribution just above:

Null Distribution

- This **is** the sampling distribution of $\hat{p}_m \hat{p}_f$, assuming H_0 is true.
- The red line is the *observed* test statistic.

P-Value and Significance Level lpha

- The **p-value** is the probability of observing a test statistic *more extreme* than the one we obtained, assuming H_0 is true.
- How strong a piece of evidence is it to observe $\hat{p}_m \hat{p}_f = 29\%$ in a world where $p_m p_f = 0$ is assumed true? Very strong? Not so strong?
- How many samples did we obtain that had a difference *greater* than 29%? Many, or not so many?
- The p-value quantifies this by measuring the probability to the right of the red line in the previous plot.

P-Value and Significance Level lpha

- The **p-value** is the probability of observing a test statistic *more extreme* than the one we obtained, assuming H_0 is true.
- How strong a piece of evidence is it to observe $\hat{p}_m \hat{p}_f = 29\%$ in a world where $p_m p_f = 0$ is assumed true? Very strong? Not so strong?
- How many samples did we obtain that had a difference *greater* than 29%? Many, or not so many?
- The p-value quantifies this by measuring the probability to the right of the red line in the previous plot.

- The **significance level** α is a *cutoff* on the p-value.
- We choose it *before* conducting our hypothesis test. It's common to assume $\alpha=5\%$.
- If the p-value falls below the cutoff α , we **reject** the null hypothesis on the grounds that what we observe is too unlikely to happen under the Null.
- Small p-value: The red line is too far from the center of the Null distribution. Observing the red line would have happened with very small probability only.

Conducting Hypothesis Tests

Testing with infer

infer Testing Pipeline

- Here we follow closely the infer workflow given in moderndive.
- We augment our previous pipeline with the hypothesize function, defining the type of null hypothesis.
- Also, we give a formula to specify() this time, instead of only a variable name as before.
- We create the Null Distribution by reshuffling (deck of cards), and not by resampling (pennies).

infer Testing Pipeline

- Here we follow closely the infer workflow given in moderndive.
- We augment our previous pipeline with the hypothesize function, defining the type of null hypothesis.
- Also, we give a formula to specify() this time, instead of only a variable name as before.
- We create the Null Distribution by reshuffling (deck of cards), and not by resampling (pennies).

Back to Reality: What did we *Observe*?

• We computed $\hat{p}_m - \hat{p}_f$ from our *real-world* sample before.

```
obs_diff_prop <- promotions %>%
    specify(decision ~ gender, success = "promoted") %>%
    calculate(stat = "diff in props", order = c("male",
    obs_diff_prop

## # A tibble: 1 x 1
## stat
## <dbl>
## 1 0.292
```

- How does that observed statistic compare the distribution of **this** test statistic, assuming that H_0 is true?
- We **created** that distribution on the previous slide: null_distribution.
- Let's confront null_distribution with obs_diff_prop, and let's compute the pvalue!

Visualize the Null

visualize(null_distribution, bins = 10)

Simulation-Based Null Distribution

- This is the distribution of $\hat{p}_m \hat{p}_f$ under H_0 .
- No Discrimination in that world.

Visualize the P-value

- shade_p_value adds the p-value based on obs_diff_prop, i.e 0.29.
- direction = "right" represents our onesided alternative $H_A:p_m-p_f>0$
- more extreme means bigger difference here, hence more to the right.
- If $H_A:p_m-p_f<0$, we'd set direction = "left"
- The red area is the p-value!
- Is that a big or a small area?

Obtaining the p-value and Deciding to Reject

• Obtain the precise p-value with

```
p_value <- null_distribution %>%
   get_p_value(obs_stat = obs_diff_prop, direction
p_value

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.019
```

• So, the probability of observing a 29% difference in a world with no discrimination is only 1.9%. That probability is due to sampling variation.

Obtaining the p-value and Deciding to Reject

Obtain the precise p-value with

```
p_value <- null_distribution %>%
   get_p_value(obs_stat = obs_diff_prop, direction
p_value

## # A tibble: 1 x 1
## p_value
## <dbl>
## 1 0.019
```

• So, the probability of observing a 29% difference in a world with no discrimination is only 1.9%. That probability is due to sampling variation.

- Suppose we had set lpha=0.001=0.1%
- Given that the p-value is *greater* than α ,

```
\circ i.e. 1.9% > 0.1%, \circ we would fail to reject the null H_0: p_m - p_f = 0.
```

- The p-value was not sufficiently small to convince us in this case.
- What would have happened, had we set cutoff $\alpha = 0.05 = 5\%$ instead?

Testing Errors

- Working with probabilities implies that sometimes, we make an error.
- 29% may be *unlikely* under H_0 , but that doesn't mean it's *impossible* to occur.
- So, it may happen that we sometimes reject H_0 , when in fact it was true.

Testing Errors

- Working with probabilities implies that sometimes, we make an error.
- 29% may be *unlikely* under H_0 , but that doesn't mean it's *impossible* to occur.
- So, it may happen that we sometimes reject H_0 , when in fact it was true.

• This is similar to a verdict reach in a court trial:

	Truly not guilty	Truly guilty
Verdict		
Not guilty verdict	Correct	Type II error
Guilty verdict	Type I error	Correct

• In fact, in hypothesis testing:

	H0 true	HA true
Verdict		
Fail to reject H0	Correct	Type II error
Reject H0	Type I error	Correct

Type I and Type II Errors

- So, there are even two types of errors to make! 😯
- Type I: We convict an innocent person. We Reject a *true* Null.
- Type II: We *fail* to convict a criminal. We *fail* to reject a *wrong* Null.
- We **choose** the frequency of a Type I error by setting α , called the **significance level**.

Type I and Type II Errors

- So, there are even two types of errors to make! 😯
- Type I: We convict an innocent person. We Reject a *true* Null.
- Type II: We *fail* to convict a criminal. We *fail* to reject a *wrong* Null.
- We **choose** the frequency of a Type I error by setting α , called the **significance level**.

- The probability of committing a type II error is called β . The value 1β , i.e. the prob. of *not* making such an error, is called the **power** of a hypothesis test.
- Ideally, $\alpha = \beta = 0$. However, with random sampling this is impossible. Also, both errors are inversely related. (see next slide)
- So, typically we fix α and try to maximize the power of the test.
- Given a certain frequency of convicting an innocent person, we try to make sure we convict as many true criminals as possible.

Type I and II Errors are Inversely related

- $\hat{\theta}$ is *some* test statistic.
- $f(\hat{\theta}|\theta_0)$ and $f(\hat{\theta}|\theta_A)$ are Null and Alternative distributions.
- Changing α moves critical value $\hat{\theta}_c$.
- This example is fully worked out here by Florian Oswald

THANKS

To the amazing moderndive team!

END

	michele.fioretti@sciencespo.fr

