The Dual Simplex Method

Combinatorial Problem Solving (CPS)

Javier Larrosa Albert Oliveras Enric Rodríguez-Carbonell

April 17, 2020

■ Abuse of terminology:

Henceforth sometimes by "optimal" we will mean "satisfying the optimality conditions"

If not explicit, the context will disambiguate

The algorithm as explained so far is known as primal simplex: starting with feasible basis, find optimal basis (= satisfying optimality conds.) while keeping feasibility

There is an alternative algorithm known as dual simplex: starting with optimal basis (= satisfying optimality conds.), find feasible basis while keeping optimality

$$\begin{cases} \min -x - y \\ 2x + y \ge 3 \\ 2x + y \le 6 \\ x + 2y \le 6 \\ x \ge 0 \\ y \ge 0 \end{cases} \implies \begin{cases} \min -x - y \\ 2x + y - s_1 = 3 \\ 2x + y + s_2 = 6 \\ x + 2y + s_3 = 6 \\ x, y, s_1, s_2, s_3 \ge 0 \end{cases}$$

$$\begin{cases} \min -6 + y + s_3 \\ x = 6 - 2y - s_3 \\ s_1 = 9 - 3y - 2s_3 \\ s_2 = -6 + 3y + 2s_3 \end{cases}$$

Basis (x, s_1, s_2) is optimal (= satisfies optimality conditions) but is not feasible!

- Let us make a violating basic variable non-negative ...
 - Increase s_2 by making it non-basic: then it will be 0
- while preserving optimality (= optimality conditions are satisfied)
 - $lack If y \text{ replaces } s_2 \text{ in the basis,}$ then $y=\frac{1}{3}(s_2+6-2s_3), -x-y=-4+\frac{1}{3}(s_2+s_3)$
 - If s_3 replaces s_2 in the basis, then $s_3 = \frac{1}{2}(s_2 + 6 3y), -x y = -3 + \frac{1}{2}(s_2 y)$

- Let us make a violating basic variable non-negative ...
 - Increase s_2 by making it non-basic: then it will be 0
- while preserving optimality (= optimality conditions are satisfied)
 - ♦ If y replaces s_2 in the basis, then $y = \frac{1}{3}(s_2 + 6 2s_3), -x y = -4 + \frac{1}{3}(s_2 + s_3)$
 - If s_3 replaces s_2 in the basis, then $s_3 = \frac{1}{2}(s_2 + 6 3y), -x y = -3 + \frac{1}{2}(s_2 y)$
 - lack To preserve optimality, y must replace s_2

$$\begin{cases} \min -6 + y + s_3 \\ x = 6 - 2y - s_3 \\ s_1 = 9 - 3y - 2s_3 \\ s_2 = -6 + 3y + 2s_3 \end{cases} \implies \begin{cases} \min -4 + \frac{1}{3}s_2 + \frac{1}{3}s_3 \\ x = 2 - \frac{2}{3}s_2 + \frac{1}{3}s_3 \\ y = 2 + \frac{1}{3}s_2 - \frac{2}{3}s_3 \\ s_1 = 3 - s_2 \end{cases}$$

$$\begin{cases} \min -6 + y + s_3 \\ x = 6 - 2y - s_3 \\ s_1 = 9 - 3y - 2s_3 \\ s_2 = -6 + 3y + 2s_3 \end{cases} \implies \begin{cases} \min -4 + \frac{1}{3}s_2 + \frac{1}{3}s_3 \\ x = 2 - \frac{2}{3}s_2 + \frac{1}{3}s_3 \\ y = 2 + \frac{1}{3}s_2 - \frac{2}{3}s_3 \\ s_1 = 3 - s_2 \end{cases}$$

Current basis is feasible and optimal!

Outline of the Dual Simplex

- 1. Initialization: Pick an optimal basis.
- Dual Pricing: If all basic values are ≥ 0, then return OPTIMAL.
 Else pick a basic variable with value < 0.
- 3. Dual Ratio test: Find non-basic variable for swapping that preserves optimality, i.e., non-negativity constraints on reduced costs.

If it does not exist, then return INFEASIBLE.

Else swap chosen non-basic variable with violating basic variable.

4. Update: Update the tableau and go to 2.

- To understand better how the dual simplex works: theory of duality
- We can get lower bounds on LP optimum value by adding constraints in a convenient way

$$\begin{cases} \min -x - y \\ 2x + y \ge 3 \\ 2x + y \le 6 \\ x + 2y \le 6 \\ x \ge 0 \\ y \ge 0 \end{cases} \Rightarrow \begin{cases} \min -x - y \\ 2x + y \ge 3 \\ -2x - y \ge -6 \\ -x - 2y \ge -6 \\ x \ge 0 \\ y \ge 0 \end{cases} -x - 2y \ge -6$$

In general we can get lower bounds on LP optimum value by linearly combining constraints with convenient multipliers

$$\begin{cases} \min -x - y \\ 2x + y \ge 3 \\ -2x - y \ge -6 \\ -x - 2y \ge -6 \\ x \ge 0 \\ y \ge 0 \end{cases}$$

$$\begin{array}{ccccc}
1 \cdot (& 2x + y & \geq & 3 &) \\
2 \cdot (& -2x - y & \geq & -6 &) \\
1 \cdot (& x & \geq & 0 &)
\end{array}$$

$$\begin{array}{rcl}
2x + y & \geq & 3 \\
-4x - 2y & \geq & -12 \\
x & \geq & 0
\end{array}$$

$$-x-y \geq -9$$

There may be different choices, each giving a different lower bound

■ In general:

$$\begin{cases} \min -x - y \\ 2x + y \ge 3 \\ -2x - y \ge -6 \\ -x - 2y \ge -6 \\ x \ge 0 \\ y \ge 0 \end{cases}$$

$$\mu_{1} \cdot (2x + y \geq 3)
\mu_{2} \cdot (-2x - y \geq -6)
\mu_{3} \cdot (-x - 2y \geq -6)
\mu_{4} \cdot (x \geq 0)
\mu_{5} \cdot (y \geq 0)$$

$$2\mu_1 x + \mu_1 y \geq 3\mu_1$$

$$-2\mu_2 x - \mu_2 y \geq -6\mu_2$$

$$-\mu_3 x - 2\mu_3 y \geq -6\mu_3$$

$$\mu_4 x \geq 0$$

$$\mu_5 y \geq 0$$

$$(2\mu_1 - 2\mu_2 - \mu_3 + \mu_4) x + (\mu_1 - \mu_2 - 2\mu_3 + \mu_5) y \ge 3\mu_1 - 6\mu_2 - 6\mu_3$$

If $2\mu_1 - 2\mu_2 - \mu_3 + \mu_4 = -1$, $\mu_1 - \mu_2 - 2\mu_3 + \mu_5 = -1$, $\mu_1 \geq 0$, $\mu_2 \geq 0$, $\mu_3 \geq 0$, $\mu_4 \geq 0$, $\mu_5 \geq 0$, then $3\mu_1 - 6\mu_2 - 6\mu_3$ is a lower bound

We can skip the multipliers of the non-negativity constraints

■ We have:

$$\begin{cases} \min -x - y \\ 2x + y \ge 3 \\ -2x - y \ge -6 \\ -x - 2y \ge -6 \\ x \ge 0 \\ y \ge 0 \end{cases}$$

$$\mu_{1} \cdot (2x + y \geq 3)$$

$$\mu_{2} \cdot (-2x - y \geq -6)$$

$$\mu_{3} \cdot (-x - 2y \geq -6)$$

$$2\mu_{1}x + \mu_{1}y \geq 3\mu_{1}$$

$$-2\mu_{2}x - \mu_{2}y \geq -6\mu_{2}$$

 $-\mu_3 x - 2\mu_3 y \ge -6\mu_3$

$$(2\mu_1 - 2\mu_2 - \mu_3) x + (\mu_1 - \mu_2 - 2\mu_3) y \ge 3\mu_1 - 6\mu_2 - 6\mu_3$$

- Imagine $2\mu_1 2\mu_2 \mu_3 \le -1$. In the coefficient of x we can "complete" $2\mu_1 - 2\mu_2 - \mu_3$ to reach -1 by adding a suitable multiple of $x \ge 0$ (the multiplier will be the slack)
- If $2\mu_1 2\mu_2 \mu_3 \le -1$, $\mu_1 \mu_2 2\mu_3 \le -1$, $\mu_1 \ge 0$, $\mu_2 \ge 0$, $\mu_3 \ge 0$, then $3\mu_1 6\mu_2 6\mu_3$ is a lower bound

Best possible lower bound with this "trick" can be found by solving

$$\begin{cases}
\max & 3\mu_1 - 6\mu_2 - 6\mu_3 \\
 & 2\mu_1 - 2\mu_2 - \mu_3 \le -1 \\
 & \mu_1 - \mu_2 - 2\mu_3 \le -1 \\
 & \mu_1, \mu_2, \mu_3 \ge 0
\end{cases}$$

How far will it be from the optimum?

■ Best possible lower bound with this "trick" can be found by solving

$$\begin{cases} \max & 3\mu_1 - 6\mu_2 - 6\mu_3 \\ & 2\mu_1 - 2\mu_2 - \mu_3 \le -1 \\ & \mu_1 - \mu_2 - 2\mu_3 \le -1 \\ & \mu_1, \mu_2, \mu_3 \ge 0 \end{cases}$$

- How far will it be from the optimum?
- A best solution is given by $(\mu_1, \mu_2, \mu_3) = (0, \frac{1}{3}, \frac{1}{3})$

$$\begin{array}{rccccc}
0 \cdot (& 2x + y & \geq & 3 &) \\
\frac{1}{3} \cdot (& -2x - y & \geq & -6 &) \\
\frac{1}{3} \cdot (& -x - 2y & \geq & -6 &)
\end{array}$$

Matches the optimum!

Dual Problem

- If we multiply constraints $Ax \geq b$ by multipliers y^T we get $y^TAx \geq y^Tb$
- Given an LP (called primal)

$$\min c^T x$$

$$Ax \ge b$$

$$x \ge 0$$

its dual is the LP

$$\max_{} y^T b \qquad \qquad \max_{} b^T y$$

$$y^T A \leq c^T \qquad \text{or equivalently} \qquad A^T y \leq c$$

$$y^T \geq 0 \qquad \qquad y \geq 0$$

- \blacksquare Primal variables associated with columns of A
- \blacksquare Dual variables (multipliers) associated with rows of A
- Objective and right-hand side vectors swap their roles

Dual Problem

■ Prop. The dual of the dual is the primal.

Proof:

$$\max b^T y \qquad -\min (-b)^T y$$

$$A^T y \le c \qquad \Longrightarrow \qquad -A^T y \ge -c$$

$$y \ge 0 \qquad \qquad y \ge 0$$

$$-\max -c^T x \qquad \min c^T x$$

$$(-A^T)^T x \le -b \qquad \Longrightarrow \qquad Ax \ge b$$

$$x > 0 \qquad x > 0$$

We say the primal and the dual form a primal-dual pair

Dual Problem

Proof:

$$\begin{array}{ccc}
\min & c^T x \\
Ax = b \\
x \ge 0
\end{array} \implies \begin{array}{c}
\min & c^T x \\
Ax \ge b \\
-Ax \ge -b \\
x \ge 0
\end{array}$$

$$\max_{A^T y_1 - b^T y_2} b^T y_1 - b^T y_2$$

$$A^T y_1 - A^T y_2 \le c \qquad \Longrightarrow \qquad \max_{A^T y} b^T y$$

$$y_1, y_2 > 0$$

$$A^T y \le c$$

Th. (Weak Duality) Let (P, D) be a primal-dual pair

If x is feasible solution to P and y is feasible solution to D then $b^T y \leq c^T x$

Proof:

$$c-A^Ty\geq 0$$
, i.e., $c^T-y^TA\geq 0$, and $x\geq 0$ imply $c^Tx-y^TAx\geq 0$.

So $c^T x \ge y^T A x$, and

$$c^T x \ge y^T A x = y^T b = b^T y$$

- \blacksquare Feasible solutions to D give lower bounds on P
- lacktriangle Feasible solutions to P give upper bounds on D
- Will the two optimum values be always equal?

- \blacksquare Feasible solutions to D give lower bounds on P
- lacktriangle Feasible solutions to P give upper bounds on D
- Will the two optimum values be always equal?
- **Th.** (Strong Duality) Let (P, D) be a primal-dual pair

If any of P or D has a feasible solution and a finite optimum then the same holds for the other problem and the two optimum values are equal.

Proof (Th. of Strong Duality):

By symmetry it is sufficient to prove only one direction. Wlog. let us assume P is feasible with finite optimum.

■ Proof (Th. of Strong Duality):

By symmetry it is sufficient to prove only one direction. Wlog. let us assume P is feasible with finite optimum.

After executing the Simplex algorithm to P we find B optimal feasible basis. Then:

- $lacktriangle c_{\mathcal{B}}^T B^{-1} a_j \le c_j$ for all $j \in \mathcal{R}$ (optimality conds hold)

So $c_{\mathcal{B}}^T B^{-1} A \leq c^T$.

Hence $\pi^T := c_{\mathcal{B}}^T B^{-1}$ is dual feasible: $\pi^T A \leq c^T$, i.e., $A^T \pi \leq c$

■ Proof (Th. of Strong Duality):

By symmetry it is sufficient to prove only one direction. Wlog. let us assume P is feasible with finite optimum.

After executing the Simplex algorithm to P we find B optimal feasible basis. Then:

- $lacktriangle c_{\mathcal{B}}^T B^{-1} a_j \le c_j$ for all $j \in \mathcal{R}$ (optimality conds hold)

So
$$c_{\mathcal{B}}^T B^{-1} A \leq c^T$$
.

Hence $\pi^T := c_{\mathcal{B}}^T B^{-1}$ is dual feasible: $\pi^T A \leq c^T$, i.e., $A^T \pi \leq c$

Moreover,
$$c_{\mathcal{B}}^T \beta = c_{\mathcal{B}}^T B^{-1} b = \pi^T b = b^T \pi$$

By the theorem of weak duality, π is optimum for D

■ Proof (Th. of Strong Duality):

By symmetry it is sufficient to prove only one direction.

Wlog. let us assume P is feasible with finite optimum.

After executing the Simplex algorithm to P we find B optimal feasible basis. Then:

- $lacktriangle c_{\mathcal{B}}^T B^{-1} a_j \le c_j$ for all $j \in \mathcal{R}$ (optimality conds hold)

So $c_{\mathcal{B}}^T B^{-1} A \leq c^T$.

Hence $\pi^T := c_{\mathcal{B}}^T B^{-1}$ is dual feasible: $\pi^T A \leq c^T$, i.e., $A^T \pi \leq c$

Moreover, $c_{\mathcal{B}}^T \beta = c_{\mathcal{B}}^T B^{-1} b = \pi^T b = b^T \pi$

By the theorem of weak duality, π is optimum for D

- If B is an optimal feasible basis for P, then simplex multipliers $\pi^T:=c_{\mathcal{B}}^TB^{-1}$ are optimal feasible solution for D
- We can solve the dual by applying the simplex algorithm on the primal
 - We can solve the primal by applying the simplex algorithm on the dual

Prop. Let (P, D) be a primal-dual pair

- (1) If P has a feasible solution but is unbounded, then D is infeasible
- (2) If D has a feasible solution but is unbounded, then P is infeasible

Proof:

Let us prove (1) by contradiction.

If y were a feasible solution to D,

by the weak duality theorem, objective of P would be lower bounded!

(2) is proved by duality.

Prop. Let (P, D) be a primal-dual pair

- (1) If P has a feasible solution but is unbounded, then D is infeasible
- (2) If D has a feasible solution but is unbounded, then P is infeasible
- And the converse?
 Does infeasibility of one imply unboundedess of the other?

Prop. Let (P, D) be a primal-dual pair

- (1) If P has a feasible solution but is unbounded, then D is infeasible
- (2) If D has a feasible solution but is unbounded, then P is infeasible
- And the converse?
 Does infeasibility of one imply unboundedess of the other?

min
$$3x_1 + 5x_2$$
 max $3y_1 + y_2$
 $x_1 + 2x_2 = 3$ $y_1 + 2y_2 = 3$
 $2x_1 + 4x_2 = 1$ $2y_1 + 4y_2 = 5$
 x_1, x_2 free y_1, y_2 free

```
\begin{array}{cccc} \text{Primal unbounded} & \Longrightarrow & \text{Dual infeasible} \\ \text{Dual unbounded} & \Longrightarrow & \text{Primal infeasible} \\ \text{Primal infeasible} & \Longrightarrow & \text{Dual} \left\{ \begin{array}{c} \text{infeasible} \\ \text{unbounded} \end{array} \right. \\ \text{Dual infeasible} & \Longrightarrow & \text{Primal} \left\{ \begin{array}{c} \text{infeasible} \\ \text{unbounded} \end{array} \right. \end{array}
```

Karush Kuhn Tucker Opt. Conds.

Consider a primal-dual pair of the form

$$\begin{array}{ll} \min \ c^T x \\ Ax = b \\ x \geq 0 \end{array} \quad \begin{array}{ll} \max \ b^T y \\ A^T y \leq c \end{array} \quad \begin{array}{ll} \max \ b^T y \\ A^T y + w = c \\ w \geq 0 \end{array}$$

Karush-Kuhn-Tucker (KKT) optimality conditions are

- $\begin{array}{ll} \bullet \ Ax = b & \bullet \ x, w \geq 0 \\ \bullet \ A^Ty + w = c & \bullet \ x^Tw = 0 \ \mbox{(complementary slackness)} \end{array}$
- They are necessary and sufficient conditions for optimality of the pair of primal-dual solutions (x, (y, w))
- Used, e.g., as a test of quality in LP solvers

Karush Kuhn Tucker Opt. Conds.

$$\begin{array}{ll}
\min \ c^T x & \max \ b^T y \\
(P) \ Ax = b & (D) \ A^T y + w = c \\
x \ge 0 & w \ge 0
\end{array}$$

(KKT)

- \bullet Ax = b
- $\bullet \ A^T y + w = c$
- \bullet $x, w \geq 0$
- $\bullet x^T w = 0$
- Th. (x, (y, w)) is solution to KKT iff x optimal solution to P and (y, w) optimal solution to D

Proof:

$$\Rightarrow$$
 By $0 = x^T w = x^T (c - A^T y) = c^T x - b^T y$, and Weak Duality

 $\Leftarrow x$ is feasible solution to P, (y, w) is feasible solution to D.

By Strong Duality $x^Tw=x^T(c-A^Ty)=c^Tx-b^Ty=0$ as both solutions are optimal

Consider a primal-dual pair of the form

- lacksquare Let us denote by a_1 , ..., a_n the columns of A, i.e., $A=(a_1,\ldots,a_n)$
- \blacksquare Let B be a basis of P. Let us see how we can get a basis of D.

Assume that the basic variables are the first m: $B = (a_1, \ldots, a_m)$.

Then
$$R = (a_{m+1}, \dots, a_n)$$
.

If slacks w are split into $w_{\mathcal{B}}^T = (w_1, \dots, w_m)$, $w_{\mathcal{R}}^T = (w_{m+1}, \dots, w_n)$, then

$$A^{T}y + w = \begin{pmatrix} a_{1}^{T}y \\ \vdots \\ a_{m}^{T}y \\ \hline a_{m+1}^{T}y \\ \vdots \\ a_{n}^{T}y \end{pmatrix} + \begin{pmatrix} w_{1} \\ \vdots \\ w_{m} \\ \hline w_{m+1} \\ \vdots \\ w_{n} \end{pmatrix} = \begin{pmatrix} B^{T}y + w_{\mathcal{B}} \\ \hline R^{T}y + w_{\mathcal{R}} \end{pmatrix}$$

Hence we have

$$A^T y + w = \begin{pmatrix} B^T y + w_{\mathcal{B}} \\ \hline R^T y + w_{\mathcal{R}} \end{pmatrix}$$

 \blacksquare Then the matrix of the system in the dual problem D is

$$\left(\begin{array}{c|c|c}
B^T & I & 0 \\
\hline
R^T & 0 & I
\end{array}\right) \left(\begin{array}{c|c}
y \\
w_{\mathcal{B}} \\
w_{\mathcal{R}}
\end{array}\right)$$

■ Now let us consider the submatrix of vars y and vars w_R :

$$\hat{B} = \begin{pmatrix} B^T & 0 \\ \hline R^T & I \end{pmatrix}$$

■ Note \hat{B} is a square $n \times n$ matrix

lacksquare Dual variables $\hat{\mathcal{B}} = (y, w_{\mathcal{R}})$ determine a basis of D:

$$\hat{B} = \begin{pmatrix} B^T & 0 \\ \hline R^T & I \end{pmatrix}$$

$$\hat{B}^{-1} = \begin{pmatrix} B^{-T} & 0 \\ \hline -R^T B^{-T} & I \end{pmatrix}$$

lacksquare Dual variables $\hat{\mathcal{B}} = (y, w_{\mathcal{R}})$ determine a basis of D:

$$\hat{B} = \begin{pmatrix} B^T & 0 \\ \hline R^T & I \end{pmatrix}$$

$$\hat{B}^{-1} = \begin{pmatrix} B^{-T} & 0 \\ \hline -R^T B^{-T} & I \end{pmatrix}$$

- In the next slides we answer the following questions:
 - 1. If basis \hat{B} of the dual D is feasible, what can we say about basis B of the primal P?
 - 2. If basis \hat{B} of the dual D is optimal (satisfies the optimality conds.), what can we say about basis B of the primal P?
 - 3. If we apply the simplex algorithm to the dual D using basis B, how does that translate into the primal P and its basis B?

Relating Bases

lacksquare Dual variables $\hat{\mathcal{B}} = (y, w_{\mathcal{R}})$ determine a basis of D:

$$\hat{B} = \begin{pmatrix} B^T & 0 \\ \hline R^T & I \end{pmatrix}$$

$$\hat{B}^{-1} = \begin{pmatrix} B^{-T} & 0 \\ \hline -R^T B^{-T} & I \end{pmatrix}$$

- In the next slides we answer the following questions:
 - 1. If basis \hat{B} of the dual D is feasible, what can we say about basis B of the primal P?
 - 2. If basis \hat{B} of the dual D is optimal (satisfies the optimality conds.), what can we say about basis B of the primal P?
 - 3. If we apply the simplex algorithm to the dual D using basis \hat{B} , how does that translate into the primal P and its basis B?
- lacktriangle Recall that each variable w_i in D is associated to a variable x_i in P.
- lacksquare Note that w_i is $\hat{\mathcal{B}}$ -basic iff x_i is not \mathcal{B} -basic

Dual Feasibility = **Primal Optimality**

■ If \hat{B} is feasible for dual D, what about B in primal P?

$$\hat{B}^{-1}c = \begin{pmatrix} B^{-T} & 0 \\ -R^T B^{-T} & I \end{pmatrix} \begin{pmatrix} c_{\mathcal{B}} \\ c_{\mathcal{R}} \end{pmatrix} = \begin{pmatrix} B^{-T} c_{\mathcal{B}} \\ -R^T B^{-T} c_{\mathcal{B}} + c_{\mathcal{R}} \end{pmatrix}$$

- There is no restriction on the sign of $y_1, ..., y_m$
- Variables w_i have to be non-negative. But

$$-R^T B^{-T} c_{\mathcal{B}} + c_{\mathcal{R}} \ge 0 \quad \text{iff} \quad c_{\mathcal{R}}^T - c_{\mathcal{B}}^T B^{-1} R \ge 0$$

Dual Feasibility = **Primal Optimality**

■ If \hat{B} is feasible for dual D, what about B in primal P?

$$\hat{B}^{-1}c = \begin{pmatrix} B^{-T} & 0 \\ -R^T B^{-T} & I \end{pmatrix} \begin{pmatrix} c_{\mathcal{B}} \\ c_{\mathcal{R}} \end{pmatrix} = \begin{pmatrix} B^{-T} c_{\mathcal{B}} \\ -R^T B^{-T} c_{\mathcal{B}} + c_{\mathcal{R}} \end{pmatrix}$$

- There is no restriction on the sign of $y_1, ..., y_m$
- Variables w_i have to be non-negative. But

$$-R^T B^{-T} c_{\mathcal{B}} + c_{\mathcal{R}} \ge 0 \quad \text{iff} \quad c_{\mathcal{R}}^T - c_{\mathcal{B}}^T B^{-1} R \ge 0 \quad \text{iff} \quad d_{\mathcal{R}}^T \ge 0$$

Dual Feasibility = **Primal Optimality**

■ If \hat{B} is feasible for dual D, what about B in primal P?

$$\hat{B}^{-1}c = \begin{pmatrix} B^{-T} & 0 \\ -R^T B^{-T} & I \end{pmatrix} \begin{pmatrix} c_{\mathcal{B}} \\ c_{\mathcal{R}} \end{pmatrix} = \begin{pmatrix} B^{-T} c_{\mathcal{B}} \\ -R^T B^{-T} c_{\mathcal{B}} + c_{\mathcal{R}} \end{pmatrix}$$

- There is no restriction on the sign of $y_1, ..., y_m$
- Variables w_i have to be non-negative. But

$$-R^T B^{-T} c_{\mathcal{B}} + c_{\mathcal{R}} \ge 0 \quad \text{iff} \quad c_{\mathcal{R}}^T - c_{\mathcal{B}}^T B^{-1} R \ge 0 \quad \text{iff} \quad d_{\mathcal{R}}^T \ge 0$$

- lacksquare is dual feasible iff $d_j \geq 0$ for all $j \in \mathcal{R}$
- Dual feasibility is primal optimality!

Dual Optimality = **Primal Feasibility**

- If \hat{B} satisfies the optimality conds. for dual D, what about B in primal P?
- Non $\hat{\mathcal{B}}$ -basic vars: $w_{\mathcal{B}}$ with costs (0)
- \blacksquare $\hat{\mathcal{B}}$ -basic vars: $(y \mid w_{\mathcal{R}})$ with costs $(b^T \mid 0)$
- Matrix of non $\hat{\mathcal{B}}$ -basic vars: $\left(\frac{I}{0}\right)$
- \blacksquare Optimality condition: $0 \ge \text{reduced costs } (\text{maximization!})$

$$0 \ge (0) - (b^{T} \mid 0) \left(\frac{B^{-T}}{-R^{T}B^{-T}} \mid I\right) \left(\frac{I}{0}\right) =$$

$$(0) - (b^{T}B^{-T} \mid 0) \left(\frac{I}{0}\right) = -b^{T}B^{-T} = -(B^{-1}b)^{T}$$

Dual Optimality = **Primal Feasibility**

- If \hat{B} satisfies the optimality conds. for dual D, what about B in primal P?
- Non $\hat{\mathcal{B}}$ -basic vars: $w_{\mathcal{B}}$ with costs (0)
- \blacksquare $\hat{\mathcal{B}}$ -basic vars: $(y \mid w_{\mathcal{R}})$ with costs $(b^T \mid 0)$
- Matrix of non $\hat{\mathcal{B}}$ -basic vars: $\left(\frac{I}{0}\right)$
- \blacksquare Optimality condition: $0 \ge \text{reduced costs } (\text{maximization!})$

$$0 \ge \left(\begin{array}{cc|c} 0 \end{array} \right) - \left(\begin{array}{c|c} b^T & 0 \end{array} \right) \left(\begin{array}{c|c} B^{-T} & 0 \\ \hline -R^T B^{-T} & I \end{array} \right) \left(\begin{array}{c|c} I \\ \hline 0 \end{array} \right) = \\ \left(\begin{array}{c|c} 0 \end{array} \right) - \left(\begin{array}{c|c} b^T B^{-T} & 0 \end{array} \right) \left(\begin{array}{c|c} I \\ \hline 0 \end{array} \right) = -b^T B^{-T} = -(B^{-1}b)^T = -\beta^T \quad \text{iff} \quad \beta \ge 0$$

Dual Optimality = **Primal Feasibility**

- If \hat{B} satisfies the optimality conds. for dual D, what about B in primal P?
- Non $\hat{\mathcal{B}}$ -basic vars: $w_{\mathcal{B}}$ with costs (0)
- \blacksquare $\hat{\mathcal{B}}$ -basic vars: $(y \mid w_{\mathcal{R}})$ with costs $(b^T \mid 0)$
- Matrix of non $\hat{\mathcal{B}}$ -basic vars: $\left(\frac{I}{0}\right)$
- \blacksquare Optimality condition: $0 \ge \text{reduced costs } (\text{maximization!})$

$$0 \ge \left(\begin{array}{c|c} 0 \end{array} \right) - \left(\begin{array}{c|c} b^T & 0 \end{array} \right) \left(\begin{array}{c|c} B^{-T} & 0 \\ \hline -R^T B^{-T} & I \end{array} \right) \left(\begin{array}{c|c} I \\ \hline 0 \end{array} \right) = \\ \left(\begin{array}{c|c} 0 \end{array} \right) - \left(\begin{array}{c|c} b^T B^{-T} & 0 \end{array} \right) \left(\begin{array}{c|c} I \\ \hline 0 \end{array} \right) = -b^T B^{-T} = -(B^{-1}b)^T = -\beta^T \quad \text{iff} \quad \beta \ge 0$$

- In the dual problem, for all $1 \le p \le m$, var w_{k_p} cannot improve objective function iff $\beta_p \ge 0$
- Dual optimality is primal feasibility!

Improving a Non-Optimal Solution

- Next we apply the simplex algorithm to basis \hat{B} in the dual problem D and translate it to the primal problem P
- Let p (where $1 \le p \le m$) be such that $\beta_p < 0$. I.e., the reduced cost of non-basic dual variable w_{k_p} is positive. So by giving w_{k_p} a larger value we can improve the dual objective value. If w_{k_p} takes value $t \ge 0$:

$$\begin{pmatrix} y(t) \\ w_{\mathcal{R}}(t) \end{pmatrix} = \hat{B}^{-1}c - \hat{B}^{-1}te_p =$$

$$= \begin{pmatrix} B^{-T}c_{\mathcal{B}} \\ d_{\mathcal{R}} \end{pmatrix} - \begin{pmatrix} B^{-T} & 0 \\ -R^{T}B^{-T} & I \end{pmatrix} \begin{pmatrix} te_{p} \\ 0 \end{pmatrix} = \begin{pmatrix} B^{-T}c_{\mathcal{B}} - tB^{-T}e_{p} \\ d_{\mathcal{R}} + tR^{T}B^{-T}e_{p} \end{pmatrix}$$

Dual objective value improvement is

$$\Delta Z = b^T y(t) - b^T y(0) = -tb^T B^{-T} e_p = -t\beta^T e_p = -t\beta_p = t(-\beta_p)$$

Improving a Non-Optimal Solution

- lacksquare Of all basic dual variables, only $w_{\mathcal{R}}$ variables need to be ≥ 0
- For $j \in \mathcal{R}$

$$w_j(t) = d_j + ta_j^T B^{-T} e_p = d_j + te_p^T B^{-1} a_j = d_j + te_p^T \alpha_j = d_j + t\alpha_j^p$$

where α_j^p is the *p*-th component of α_j . Hence:

$$w_j(t) \ge 0 \iff d_j + t\alpha_j^p \ge 0$$

- If $\alpha_i^p \geq 0$ the constraint is satisfied for all $t \geq 0$
- lacktriangle If $\alpha_j^p < 0$ we need $\frac{d_j}{-\alpha_j^p} \ge t$
- Best improvement achieved with

$$\Theta_D := \min\{\frac{d_j}{-\alpha_j^p} \mid \alpha_j^p < 0\}$$

lacksquare Variable w_q is blocking when $\Theta_D=rac{d_q}{-lpha_q^p}$

Improving a Non-Optimal Solution

1. If $\Theta_D = +\infty$ (there is no $j \in \mathcal{R}$ such that $\alpha_j^p < 0$):

Value of dual objective can be increased infinitely.

Dual LP is unbounded.

Primal LP is infeasible.

2. If $\Theta_D < +\infty$ and w_q is blocking:

When setting $w_{k_p} = \Theta_D$, non-negativity constraints of basic vars of dual are respected

In particular,
$$w_q(\Theta_D) = d_q + \Theta_D \alpha_q^p = d_q + (\frac{d_q}{-\alpha_q^p}) \alpha_q^p = 0$$

We can make a basis change:

- ullet In dual: w_{k_p} enters $\hat{\mathcal{B}}$ and w_q leaves
- In primal: x_{k_p} leaves \mathcal{B} and x_q enters

Update

- We do not actually need to form the dual LP: it is enough to have a representation of the primal LP
- lacksquare New basic indices: $\bar{\mathcal{B}}=(k_1,\ldots,k_{p-1},q,k_{p+1}\ldots,k_m)$
- New dual objective value: $\bar{Z} = Z \Theta_D \beta_p$
- New dual basic sol: $\bar{y} = y \Theta_D \rho_p$ $\bar{d}_j = d_j + \Theta_D \alpha_j^p$ if $j \in \mathcal{R}$, $\bar{d}_{k_p} = \Theta_D$
- New primal basic sol: $\bar{\beta}_p = \Theta_P$, $\bar{\beta}_i = \beta_i \Theta_P \alpha_q^i$ if $i \neq p$ where $\Theta_P = \frac{\beta_p}{\alpha_q^p}$

Algorithmic Description

1. Initialization: Find an initial dual feasible basis \mathcal{B} Compute B^{-1} , $\beta=B^{-1}b$, $y^T=c_{\mathcal{B}}^TB^{-1}$, $d_{\mathcal{R}}^T=c_{\mathcal{R}}^T-y^TR$, $Z=b^Ty$

2. Dual Pricing:

If for all $i \in \mathcal{B}, \beta_i \geq 0$ then return OPTIMAL Else let p be such that $\beta_p < 0$. Compute $\rho_p^T = e_p^T B^{-1}$ and $\alpha_j^p = \rho_p^T a_j$ for $j \in \mathcal{R}$

3. Dual Ratio test: Compute $\mathcal{J} = \{j \mid j \in \mathcal{R}, \alpha_j^p < 0\}$. If $\mathcal{J} = \emptyset$ then return INFEASIBLE Else compute $\Theta_D = \min_{j \in \mathcal{J}} (\frac{d_j}{-\alpha_j^p})$ and q st. $\Theta_D = \frac{d_q}{-\alpha_q^p}$

Algorithmic Description

4. Update:

$$\bar{\mathcal{B}} = \mathcal{B} - \{k_p\} \cup \{q\}$$

$$\bar{Z} = Z - \Theta_D \beta_p$$

Dual solution

$$ar{y} = y - \Theta_D \rho_p$$
 $ar{d}_j = d_j + \Theta_D \alpha_j^p \text{ if } j \in \mathcal{R}, \ ar{d}_{k_p} = \Theta_D$

Primal solution

Compute
$$\alpha_q = B^{-1}a_q$$
 and $\Theta_P = \frac{\beta_p}{\alpha_q^p}$ $\bar{\beta}_p = \Theta_P$, $\bar{\beta}_i = \beta_i - \Theta_P\alpha_q^i$ if $i \neq p$

$$\bar{B}^{-1} = EB^{-1}$$

Go to 2.

Primal vs. Dual Simplex

PRIMAL

DUAL

- Can handle bounds efficiently
 - Can handle bounds efficiently (not explained here)

Many years of research and implementation Developments in the 90's made it an alternative

■ There are classes of LP's for which it is the best

- Nowadays on average it gives better performance
- Not suitable for solving LP's with integer variables
- Suitable for solving LP's with integer variables