Analyse Hilbertienne

<u>Parlie I</u>: Espaces de Hilbert 1) Definition / Exemples 2) Bases Hilbertvennes / Polynômes orthogonause 3) Projection sur un converce / Convergence faible 4) [Optimisation: dase Milgram - Stampacchia] Partie II Analyse de Fourier 1) Series de Fourier 2) Transformée de Fourier 3) La cas discret Partie I Espaces de Hilbert I Définitions - Exemples 1º) Espaces préhilbertiens Définition : 5 Soit E un Kespace vectoriel (K: Rou C). On appelle produit scalaire sur E, toute application (.; .): ExE -> It ⊕ ∀y∈E x→ (x,y) est linéaire b ∀x;y ∈ E (y;x) = (x;y) (IK=R) = (x;y) (IK = C) (x,x) ∈ R+ d Vx ∈ E ; (x,x) = O (=> x=0 (i) E muni d'un produit scalaire (.;.) est unespace préhilbertien

Exemples $\# E = \mathbb{R}^d$ muni de $\langle x, y \rangle = \sum_{i=1}^d x_i y_i$ (canonique) $\# E = \mathbb{C}^d$ muni de $\langle x, y \rangle = \sum_{i=1}^d x_i y_i$ * $E = \ell^2(N) : \left\{ u \in \mathbb{R}^N \mid \sum_{n=0}^{+\infty} |u_n|^2 \mid +\infty \right\}$ muni du produit scalaire $\left\langle u,v \right\rangle : \sum_{n=0}^{+\infty} |u_n|^2 \mid u_n \mid v_n \right\}$

Prop Si F ser d'un Brace E préhilbertien, alors (F; (-;-)) est un espace préhilbertien

Exemples & F = IK[X] on K, [X] ser de & ([0,1]; IK)

Propriété (Imégalité de Cauchy-Schwarz) Soit ($E_i(x,y,y)$ un espace préhilbertien: $|\langle x,y \rangle| \leqslant \sqrt{\langle x,x \rangle} \sqrt{\langle y,y \rangle}$.

Preuve On pase $f: \mathbb{R} \to \mathbb{R}^+$; $E \mapsto \langle x+ty; x+ty \rangle$ On $a: f(t) = t^2 \langle y; y \rangle + 2t \langle x; y \rangle + \langle x; x \rangle \ge 0$ C'est un trinone de signe constant $\Delta = 4 \{\langle x; y \rangle^2 - \langle x; x \rangle \langle y; y \rangle\} \le 0$

Corollaire II. II. E -> PR+; x -> V(x,x) est une norme

Relation entre morme euclidienne et produit scalaire

1 Identité de polarisation: 2/x,y> = ||x+y||2 - ||x||2 - ||y||2

2) Identité du parallilogramme ||x+y||2+ ||x-y||2= 2 { ||x||2+ ||y||2}

Rg. pour le produit hermitien. $2 \text{ Re } \langle x,y \rangle = ||x+y||^2 - ||x||^2 - ||y||^2$ $2 \text{ Im } \langle x,y \rangle = ||x+y||^2 - ||x||^2 - ||y||^2$

Ry L'égalité du parallélogramme suffit pour avoir un espace pre hilbertien grâce à l'identité de polarisation

2º) Orthogonalité

Définition D'Soient & et y EE. On dit que & et y sont orthogonaux si et seulement si {xiy} > 0

(i) Soit $A \subset E$, $A^{\perp} = \{x \in E \mid \langle x, \alpha \rangle = 0 \ \forall \alpha \in A\}$ # A^{\perp} est un sev de E (fermé)

* A = Vect(A) +

(ii) Une famille (xi), =1-n orthogonale si {xix} >=0 Vity

Prop : O Une famille orthogonale sans vecteur nulest libre W Theorème de Pythagore: (x,-x,) orthogonale => ||\(\sum_{i=1}^{n} \times_{i=1}^{n} ||\times_{i=1}^{n} |

Procédé d'orthonormalisation de Gram-Schmidt

Soit $(f_m)_{m \in \mathbb{N}}$ une famille libre d'un espace préhilbertien $(E, \langle \cdot, \cdot \rangle)$ Il esciste une famille orthogonale $(e_m)_{m \in \mathbb{N}}$ telle que pour tont $m \in \mathbb{N}$, $\text{Vect}(f_0 - f_m)$: $\text{Vect}(e_0 - e_m)$

Construction $e_{0} = f_{0}$ $e_{1} = f_{1} - \alpha_{1}^{2} e_{0} \quad \text{et} \quad \langle e_{1}, e_{0} \rangle = 0$ $e_{2} = f_{2} - \alpha_{2}^{2} e_{0} - \alpha_{2}^{4} e_{1} \quad \text{avec} \quad \langle e_{2}, e_{j} \rangle = 0 \quad j = 0, 1.$ $e_{k} = f_{k} - \sum_{j=0}^{k-1} \alpha_{k}^{j} e_{j} \quad \text{avec} \quad \langle e_{k}, e_{j} \rangle = 0 \quad j = 0, \dots, k-1.$

3°) Espaces de Hilbert

Définition Un espace de Hilbert (réel ou hermitien dans le cas complexe) est un espace préhilbertien complet pour la morme $\|.\|:x\mapsto\langle x,x\rangle^{\prime_2}$. Cela signifie: $\forall (x_m)_{n\in\mathbb{N}}$ suite de H. Si pour tout E>0, $\exists N\in\mathbb{N}$ / $\forall n\geq N$ $\forall p\in\mathbb{N}$ $||x_m-x_{m+p}|| \leqslant E$ $(x_m)_{n\in\mathbb{N}}$ de Cauchy) afors

il esciste se & H (unique) to from sem = se

```
Ecemples fondamentaux
            \ell^2(N) = \left\{ u \in \mathbb{C}^N \mid \sum_{m=0}^{+\infty} |u_m|^2 \langle +\infty \right\}
\Omega \subset \mathbb{R}^N L^2(\Omega) = \{f: \Omega \to \mathbb{C} \mid \int_{\Omega} |f'(n)|^2 dn \iff \} (admis)
       Preuve Soit (u^m)_{m \in \mathbb{N}} suite de Cauchy de \ell^2(\mathbb{N}). Pour tout k \in \mathbb{N}, on a |u_k^m - u_k^{m+p}| \leq ||u_k^m - u_k^{m+p}||_{\ell^2(\mathbb{N})}
             Ainsi (un men) suite de Cauchy oh C donc converge vers un E C.
       Montrons que \|u^m - \bar{u}\| \to 0. Soit \varepsilon > 0, il esciste
      NEN/ \forall n \geq N, \forall p \in \mathbb{N} \|u^{n+p} - u^n\| \leq \varepsilon.
Soit N_0 \in \mathbb{N}: on a \sum_{k=0}^{N_0} |u^{m+p} - u^m|^2 \leq \varepsilon^2 \forall p \in \mathbb{N} \forall n \geq N
       A la limite p >+00 \\ \frac{\xi_1}{k=0} |u_k^m - u_k|^2 \leq \xi^2 \leq \xi^2 \leq \xi^2 \leq \tau_1 \text{No.}
       Ainsi Ilum-ull < E pour tout m> N B
    Proposition (Sommabilité) Soit H un espace de Hilbert et (un) nen une suite d'éléments de H . Si la suite est composée d'éléments deux
          à deux orthogonouse et si Zillunli, neil converge alors
         la serie Ziun, n'ent converge dans H. Si Zillunll, n'ent
          converge alors Ziun, NEIN converge dans H
    Preuve Notons va = Zi uj
                Notons v_k = \sum_{j=0}^{n} u_j

Cas 1 \|v_m - v_{m+p}\|^2 = \sum_{j=m+1}^{m+p} \|v_j\|^2 (Theorems de Pythagóre)
                \frac{Cas2}{||v_n - v_p||} \le \frac{\sum_{j=m+1}^{m+p} ||v_j||}{\sum_{j=m+1}^{m+p} ||v_j||}
         Ainsi (vn) rein est une suite de Cauchy dans H donc comberge
```

Il Théorème de Projection sur un convesce et applications

1º) Théorème de projection, projection orthogonale

Théorème Soit H un espace de Hilbert, C un convesce fermé et mon vide de H. Pour tout f E H, il esciste un unique point de C, appelé projection de f sur C dont la distance à f'est minimum. Ce point est caractérisé par

VREC, Be (f-g; h-g) <0

Preuve

Soient g_1 et g_2 cleuse points

Cho reafisant la projection de f sur COn aurait $\|f - g_1\|^2 + \|f - g_2\|^2 = \frac{1}{2} \left\{ \|2f - (g_1 + g_2)\|^2 + \|g_1 - g_2\|^2 \right\}$ Ainsi $\|f - \frac{g_1 + g_2}{2}\|^2 = \frac{1}{2} \left\{ \|f - g_1\|^2 + \|f - g_2\|^2 - \frac{1}{2} \|g_1 - g_2\|^2 \right\}$ $< d(f, C)^2$ si $g_1 \neq g_2$ Doù l'unicité.

Pour montrez l'excistence, on considere (gn) new une suite minimisante:

On a $\frac{1}{2} \|g_n - g_m\|^2 = \|f - g_m\|^2 + \|f - g_m\|^2 - 2\|f - \frac{g_n + g_m}{2}\|^2$ $\leq \|f - g_m\|^2 + \|f - g_m\|^2 - 2 d(f; C)^2 \cos \frac{g_n + g_m}{2} eC$ Gomme $\|f_n - g_m\| - 2 df(f)^2 df \|f - g_m\|^2 - 2 d(f; C)^2$, on en déduit que $(g_m)_{n \in \mathbb{N}}$ est une suite che Cauchy che H donc converge dons H. Comme $g_n \in C$ pour tout n, C fermi, on a lum $g_n \in C$ De plus, $\|f - g\|^2 - d(f; C)^2$. Pour la caracterisation.

Soit $h \in C$. Alors pour tout $t \in [0, T]$, $g + t(h - g) \in C$.

D'on pour tout $t \in [0;1]$ $||f-g||^2 \le ||(f-g)+t(g-h)||^2$

Done pour tout $t \in [0;1]$, $t^2 ||f_g||^2 - 2t \operatorname{Re} \langle f_g; h_g \rangle \ge 0$ On divise par $t \to 0^+$ et on passe à la limite $t \to 0^+$ $\operatorname{Re} \langle f_g; h_g \rangle \le 0$

Corollaire Si E est un sous espace vectoriel fermé de H, la projection de f verifie $f - p(f) \in F^{\perp}$. Tout élement $f \in H$ se décompse de manière unique f = g + h, $g \in F$, $h \in F^{\perp}$. On a donc $H = F \oplus F^{\perp}$; $(F^{\perp})^{\perp} = F$; $H^{\perp} = \{0\}$. Si $A \subset H$ alors $(A^{\perp})^{\perp} = Vect(A)$ (adhérena)

Preuve: F etant un ser, on obtient Be $\langle f-g;h \rangle = 0$ $\forall h \in F$ En remplacant h par $e^{i\Theta}h$, on a $\langle f-g;h \rangle = 0$ $\forall h \in F$ Ainsi $h = f-g \in F^{\perp}$ Comme $f-h = g \in F \subset (F^{\perp})^{\perp}$, h est la projection de f sur F^{\perp} J'où $H = F \oplus F^{\perp}$. On a $H = F \oplus F^{\perp} = F^{\perp} \oplus (F^{\perp})^{\perp}$ F^{\perp} est aussi fermé, la décomposition est unique donc $(F^{\perp})^{\perp} = F$.

[en effet $f \in F^{\perp \perp}$ s'éout f = f + 0]. \square

Cordlaire ACH est total (=> Vect (A) = H (=> A = {0}.

20) Théorème de Répresentation de Riesz

Théorème: Pour tout $f \in H$, l'application $v \mapsto \langle v, f \rangle$ est une forme linéaire continue sur H. Réciproquement, si \tilde{f} est une forme linéaire continue, il esciste un unique élément $f \in H$ tel que $\forall v \in H$ $\hat{f}(v) : \langle f; v \rangle$.

Preuve : 0 $|\langle v, f \rangle| \le ||f|| ||v|| || donc |||T_f||| \le ||f||$.

(i) Soit \hat{f} finéaire, continue et non mulk. On a $L = Ker \hat{f} \not\subseteq H$ ser fermé, $L^{\perp} \neq \{0\}$. Soit $g \in L^{\perp}$ On a $\hat{f}(g) \neq 0$. Pour tout $v \in H$, on a $v = \frac{\tilde{f}(v)}{\tilde{f}(g)}g + (v - \frac{\tilde{f}(v)}{\tilde{f}(g)}g) \in L^{\perp} \oplus L$

On a $\langle v, g \rangle = \frac{\widehat{f}(v)}{\widehat{f}(g)} \|g\|^2 \Rightarrow \widehat{f}(v) = \langle v, \frac{\widehat{f}(g) g}{\|g\|^2} \rangle$ Corollaire (convolution) Soit T: L2 (TRN) -> Co (TRN) un operateur lineaire, continu, invariant par transfation. Il esciste $g \in L^2(\mathbb{R}^N) / T(f) = f + g$ [] Rappel: 60 (AN): {fonctions continues, limite mulle à l'infini} L'application f -> Tf(0) est une forme lineaire continue sur L2 done it exciste go & L2(RN) telle que Tf(0) = In f(y) go(y) dy Deplus Tx (Tf) = T(Txf) (Txf) (Tx f) $Tf(x) = T_x(Tf)(0) = T(T_xf)(0) = \int_{\mathbb{R}^N} f(x+y) \overline{g_0(y)} dy$ = \ \(\begin{align*} \frac{1}{3} & \frac{1} Propriété: Soit TH->H linéaire continue, il existe une unique TH. H - H lineaure continue telle que ⟨Tx;y⟩ = ⟨x; T*y⟩ ∀x ∈H ∀y ∈ H. Thest Padjoint de T. On a ||T||= ||T*|| Exemple H = Tt (C) T= Tt Definition: T∈ L(H) est autordyoint si T=T Propriété (1) Si Tautoadjoint afors les vap de Tsont réelles (i) VCH ser stable por T, alors V stable par To. (iii) des espaces propres associés à des vap distinctes de T=T sont orthogonouse (iv) $||T|| = \sup_{|bx||=1} |\langle Tx, x \rangle|$. ||bx||=1 $\forall t \in [c,d]$, $|Kx(t)| = \int_{a}^{b} k(t,s)x(s) ds$ afors - Ky(s) = \int_c^d \(\hat{\s,t} \) y(4) dt

III Bases Hilbertiennes

1º) Définition, Exemples

Définition (1) On dit qu'un espace de Hilbert est séparable s'il admet une suite dénombrable et dense

(i) Soit H un espace de H. Ibert séparable. On appelle base H. Ibertienne de H un système orthonormé (em)_{men} qui est total: (eniem) = δ_{mm} et $\overline{\text{Vect}((e_n)_{n\in\mathbb{N}})}$ = H

Théorème Tout espace de Hilbert admet une base Hilbertienne séparable

Preuve: Soit $(f_m)_{n\in\mathbb{N}}$ une suite dense de H. On en extrait une sous famille libre. Le système obtenu (qu'on mote encore (f_n)) n'est plus mé cessairement dense mais reste totale. On applique alors le procédé de Gram-Schmidt: $g_{m+1} = f_{n+1} - \sum_{k=1}^{m} (f_{m+1} \cdot g_k) g_k$ par récurrence et on pose $e_n = \frac{g_n}{\|g_n\|}$.

On a Vect ((fo-fn)): Vect (eo-en) VneN=> (en)neN total B

Théorème Soit H un espace de Hilbert séparable et (en) nen une base hilbertrenne de H. Pour tout élément de H peut s'écrire

f: \(\sum_{m\in N}\) \(\lambda_{i}\) \(\epsi_{n}\) \(\epsi_{m}\) \eta \(\epsi_{n}\) \(\epsi_{m}\) \(

11 f 11 = 2 | cm (f) | avec cm (f) = (f; em)

Propriété (Bessel Passeval) Soit (en) men une famille orthonormale de E. Alors on a equivalence

1) (en)non est une base Hilbertienne de E

② ∀x ∈ E ||x||2 = ∑ |(x;en>)2

3 Vxiy E {x;y>= \frac{50}{20} \langle x;en> \langle y;en>

[Corollaire (en) base H.]

Preuve On pose $f_m = \sum_{k=0}^{m} c_k(f) e_k$. On verifie que $\{f - f_m; e_m \} = 0$ pour tout $m \leq m$. Cela signifie que $f_m = P \text{Vect}(e_o - e_m)$ $\{f\}$. D'après le théorème de P_g thagore $\|f_m\|^2 = \sum_{k=0}^{m} |c_k(f)|^2 \leq \|f\|^2 = \sum_{k=0}^{m} |c_k(f)|^2 \leq \|$

2°) Polymômes Orthogonaure

Théorème Soit I un intervalle de PR et $p: I \rightarrow J_0+\infty[$ une fonction mesurable (poids). Si il existe a > 0 tq $\int_{\mathbb{T}} e^{a|x|} p(x) dx < +\infty$ afors la famille de polynômes orthogonouse associés à p induit une base hilbertienne de $L^2(I;p) := \{ f: I \rightarrow \mathbb{R} \mid \int_{\mathbb{T}} f^2(x) p(x) dx < +\infty \}$ $\frac{P_{reuve}}{}$: On mote (P_m) fa famille de polynômes orthogonouse associée à p (procédé de Gram-Schmidt à partir de $(x^h)_{m \in \mathbb{N}}$). $L^2(I,p)$ est un espace de Hilbert donc (P_m) base hilbertienne ssi

 $Vect(P_{n;n\in\mathbb{N}}) = L^{2}(\mathbb{T}, p) = Vect(x^{m}, m\in\mathbb{N})$ $Soit Vect(x^{m}; m\in\mathbb{N})^{\perp} = \{0\}.$

Soit
$$f \in \text{Vect}((x^m), m \in \mathbb{N})^{\perp}$$

 $\varphi: \mathbb{R} \to \mathbb{R} \xrightarrow{z \mapsto 1} (x) \varphi(x) f(x)$ $\varphi|_{\mathbb{R}/\mathbb{I}} = 0$
 $\varphi(x) : \int_{\mathbb{L}^2} \int_{\mathbb{L}^2} f \varphi \in \mathbb{L}^1$

 $\varphi: \mathbb{R} \to \mathbb{C}$, $y \mapsto \int_{\mathbb{R}} e^{-iy^{2}x} \varphi(x) dx$ qu' on peut prolonger en une fonction holomorphe sur $V_{a} = \{z \in \mathbb{C} | |Im_{\overline{z}}| / \frac{a}{2} \}$ $\forall z \in U_{a} \quad \varphi(z) = \int_{\mathbb{R}} (-ix)^{m} \varphi(x) e^{-iz^{2}x} dx = (\varphi^{(n)}(0) = 0)$ $\Rightarrow \varphi$ est identiquement mulle sur $U_{a} \Rightarrow f = 0$

Exemples

The Polynomes de Hermite
$$I = IR$$
 et $\rho(x) = e^{-x^2}$

$$P_0(x) = 1 ; P_1(x) = x; P_2(x) = x^2 - \frac{1}{2} \qquad P_m(x) = \frac{(-1)^m}{2^m} e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$$

Polynômes de Legendre
$$I = [-1;1]$$
 et $p(x) = 1$

$$P_{n}(x) = 1; P_{1}(x) = x \cdot P_{2} = x^{2} - \frac{1}{3}$$

$$P_{m}(x) = \frac{m!}{(2n)!} \frac{d^{m}}{dx^{m}} \left((x^{2} - 1)^{m} \right)$$

Pla La propriété n'est intéressante que pour I mon borné. Sur I borné les polynômes sont denses dons L²(I) (Weierstrass)

3)
$$w(x) = \frac{1}{\sqrt{1-x^2}}$$
 et $I = J - 1, 1[$

$$T_0 = 1 \quad T_1 = X \qquad T_{m+2} = 2X T_{m+1} - T_m$$

Autre définition $T_m(\cos\theta) = \cos(m\theta)$ Polynôme Tcheby chev

Propriété D Pm possède m racines réelles

(w) Les m racines de Pm sont entre les racines de Pm+7.

Definition Deux suites (fk) ken (gk) ken sont bi orthogonales	
ss: <fk; g=""> = 8k,8.</fk;>	
Corollaire (Pu) (gu) paire de bases de Riesz duales	
(1) (gh) biorthogonals. (1) for the sport of the service of the s	
Prop Si (fus Ven) base de Riesz afors il existe A,B/	
Allf112 & E! 1 < f; fu>(2 & B1) f 1/2	(
The (fu) base on Riesz si Vect (fu) = Het il existe A,B / \(\forall (cu) surte on air - A \(\int \left[cu] \left[\int \left] \(\int \left[\int \left] \(\int \left[\int \left] \left[\int \left[\int \left] \(\int \left[\int \left[\int \left] \right] \(\int \left[\int \left] \\ \(\int \left[\int \left] \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	10n/2
I Convergence faible / Optimisation	
10) Convergence faible	
Définition: Soit H un espace de Hilbert, On dit que la suite (un) de H converge faiblement vers u EH (on mote un \rightarrow u) si et seulement si (un; v) -> (u; v) \ \forall vEH.	
Rg: Si on mote Tu v → (v;u) ∈ Le(H), un > u signific que Tun converge simplement vers Tu dans Le(H)	
Propriété () si un -> u (un-u -,0) (convergence forte) alors un -> u () u est unique : c'est la limite faible de (un)	
Un excemple fondamental; Soit Kemmen une base Hilbertienne de Harbertienne de Harbertienne de (mais en X>0)	
Preuve: Soit MEH, afors Hull's Zi Knjeny' (Parsonal)	

h-

-7100

Théorème (admis) Toute suite faiblement convergente dans un espace de Hilbert est bornée.

Di C'est une conséquence de Barnach-Steinhaus: E Barnach F EVN $f_n \in \mathcal{L}_c(E; f)$ cvs vers $f: E_-, f$ alors $f \in \mathcal{L}_c(E; f)$. \square

Théorème (Banach-Alaoglu) Toute suite bonnée dans un espace de Hilbert possède une sous suite foublement convergante.

Preuve On fait la preuve dans le cas H = l2(N)

On suppose que $(u^m)_{m \in \mathbb{N}}$ est une suite bonnée de H $\|u^n\| \le 1$. Alors pour tout $k \in \mathbb{N}$, on a $\|u_k^m\| \le \|u^n\| \le 1$.

Pour k=0: il existe une sous suite ($u_0^{(n)}$) convergent vers u_0 da suite ($u_0^{(n)}$) est bornée: il existe $u_0^{(n)}$ in $u_0^{(n)}$ $u_0^{(n)}$ $u_0^{(n)}$ $u_0^{(n)}$ et on a toujours $u_0^{(n)}$ $u_0^{(n)}$

Pasons $\Psi(n) = \Psi_0 \circ - \circ \Psi_n(n)$. Afors pour tout $k \in \mathbb{N}$ $u_k \longrightarrow \overline{u_k}$. Soit $N \in \mathbb{N}$: On a $\sum_{k=0}^{N} (u_k)^2 \leq 1$

D'où [MR) = 1. A la limite n-10, on a

 $\sum_{k=0}^{N} (\overline{u}_k)^2 \leq 1 \Rightarrow (\overline{u}) \in \ell^2(N)$

Enfin si $v \in \ell^2(N)$ $\stackrel{t\infty}{\sum} v_k u_k \stackrel{t\infty}{\longrightarrow} \stackrel{t\infty}{\sum} v_k \overline{u_k}$ d'après le théorème de CVD \square

They (i) Cas Hilbert separable => isométrie à l'2(IN) (Parseval)
(ii) quelconque => H <- Vect (Mn) nEIN)

2º) Convercité et oplimisation

Théorème (Barach Sorks) Soit H un espace de Hilbert et (um)nein dans H convergeant faiblement vers MEH = \(\frac{1}{2}\) (My(n)) nEN qui converge fortement vers u au sens de Césars

 $\frac{\mathcal{M}\varphi(0)^{+-} + \mathcal{M}\varphi(0)}{m+1} \rightarrow \mathcal{M}$

On suppose u=0. On choisit $\varphi(0)=0$. Supposes avoir construit $\varphi(y)$ avec $0 \in \{1, k-1\}$. Comme $u_n = 0$, $\forall j \in \{0, k-1\}$. $\{u_{\varphi(j)}, u_n\} \in \{1, k-1\}$ $\{u_{\varphi(j)}, u_n\} \in \{1, k-1\}$ $\{u_{\varphi(j)}, u_n\} \in \{1, k-1\}$.

Bonach - Steinhaus

 $= \frac{\sum_{j=0}^{k} \frac{\| M \varphi(j)\|^{2}}{(k+1)^{2}} + 2 \sum_{j=1}^{k} \frac{\sum_{j=0}^{k} \frac{\| M \varphi(j), M \varphi(j) \|}{(k+1)^{2}}}{\sum_{j=1}^{k} \frac{1}{(k+1)^{2}}}$ $= O(\frac{1}{b}) \xrightarrow{b \to \infty} O \qquad \square$

Prop Soit H un Hilbert, C un sous ensemble convesce fermé

Si un \(\sum \text{u} \) et \(u_n \in C \) \(\text{Vn} \(= \second \text{u} \in C \)

D'après Banach Saks, $\exists \varphi: N \to N \land fg \xrightarrow{M : \varphi(0)} \xrightarrow{f : M : \varphi(n)} \longrightarrow u$

et My(n) E C Vn eN 13

Optimisation Soit H un Hilbert et CCH convexe fevrné et $f: C \to \mathbb{R}$ une fonction convexe et fermé continue. Afors f faiblement s.c.i $u_n \to u$, $u_n \in C \Rightarrow f(u) < funium <math>f(u_n)$

Si C borné ou f coercitire (f(||x||=+0)=+0) afors f minimal sur C f strictement convexe = unicité.

Preuce I (vn) sous suite de (un) to lim f (vn) = luminf f (un) Par continuité de $f\left(\frac{v_{\varphi(S)}}{v_{\varphi(S)}}\right) \longrightarrow f(u)$. A la limite f(u) < liminf f(un) Si f définie sur Chornée on f coeraitre. On aboisit une sute minimisate $(\omega_n) / f(\omega_n) \longrightarrow \inf f(\omega)$, On a (ω_n)_{n∈N} bornée. A une sous suite près, ω∈ C ω_n ⊃ u ∈ C et $f(u) < \text{luminf } f(w_n) = \inf_{\omega \in C} f(\omega)$ Théorème (d'asc Milgram) Soit H un espace de Hilbert réel

Theoreme (dasc Milgram) Soit H un espace de Hilbert réel et a HxH -, R bilinéaire, continue et symétrique et corcine ie $\exists C,c>0; |a(u;v)| \in C||u|| ||v|||, |a(u;u)| \geq c||u||^2$ Pour tont $f \in H' \exists ! u \in H/ a(u;v) = \langle f;v \rangle_{H'_{i}H} \forall v \in H$.

et u est l'unique minimum de $J(v) = \frac{1}{2}a(v;v) - \langle f;v \rangle$

D'après la propriété précédete, J'est continue, coercive, convexe $\exists ! u \in H$ qui minimise J (strictement convexe) $J(u+tv) \geq J(u) \quad \forall t \quad \forall v$

$$\frac{1}{2} a \left(u_{+}tv, u_{+}tv\right) = \frac{1}{2} a(u_{i}u) + t a(u_{i}v) + \frac{t^{2}}{2} a(v_{i}v)$$

$$= \int (u_{+}tv) - J(u) = t \left[a(u_{i}v) - \langle f_{i}v \rangle_{H,H}\right] + \frac{t^{2}}{2} a(v_{i}v) \geq 0$$

On divise par t50 et to ot =) a(u,v) = Xf; v)H,H.

Exemple d'application
$$J(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 - \langle f; u \rangle$$

 $\Rightarrow \int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} f v \quad \forall v \in H = ?$
 $-\int_{\Omega} div(\nabla u) v = \int_{\Omega} f v \Rightarrow -\Delta u = f$

Théorème (Stampacchia) H Hilbert, C converce fermé mon vide a bilinéaire, continue, coercive

 $[a(u,v)] \leq C[|u|| ||v||]$ $a(u,u) \geq c ||u||^2$

Y J∈H' ∃! N ∈ C / Yv ∈ C a(u, v - u) > (f; v - u)

D'après Riesa 3 Au EH/ a(u,v) = (Au;v) = (Au;v)

 $a(u;v-u) \ge \langle f;v-u \rangle$ (c) $\langle \rho(f-Au);v-u \rangle \ge \langle f;v-u \rangle$ (d) $\langle \rho(f-Au);v-u \rangle \le 0$ (e) $\langle \rho(f-Au)+u-u;v-u \rangle \le 0$ (f) $\langle \rho(f-Au)+u-u \rangle \le 0$

 $\|P_{K}(p(f-Au)+u)-P_{K}(p(f-Av)+v)\|^{2} \leq \|pA(v-u)-(v-u)\|^{2}$ $= \|v-u\|^{2}-2p(A(v-u),v-u)+p^{2}\|A(v-u)\|^{2}$ $\leq (1-2pc+p^{2}C)\|v-u\|^{2}$ $\leq (1-2pc+p^{2}C)\|v-u\|^{2}$