Tensors for signal and frequency estimation in subspace-based methods: when they are useful?

Nikita Khromov, Nina Golyandina

St. Petersburg State University Department of Statistical Modeling

DD.09.2025, CDAM'2025

Introduction to Singular Spectrum Analysis (SSA)

Problems that can be solved by SSA-related methods:

- Signal extraction
- Frequency estimation
- Smoothing and Noise reduction
- Signal decomposition (Trend and Periodicity extraction)
- Forecasting
- Missing data imputation
- Change in structure detection
- Many others. . .

SSA Materials

Books:

- J.Elsner and A.Tsonis. Singular Spectrum Analysis: A New Tool in Time Series Analysis, Plenum, 1996.
- N.Golyandina, V.Nekrutrin and A.Zhigljavsky. Analysis of Time Series Structure: SSA and Related Techniques, CRC Press, 2001.
- S.Sanei and H.Hassani. Singular Spectrum Analysis for Biomedical Signals, CRC Press, 2016.
- N.Golyandina, A.Korobeynikov and A.Zhigljavsky. Singular spectrum analysis with R, Springer, 2018.
- N.Golyandina and A.Zhigljavsky. Singular Spectrum Analysis for Time Series, Springer, 2013, 2020 (2nd Edition).

Implementations:

- R Package: Rssa https://CRAN.R-project.org/package=Rssa
- Python Package: py-ssa-lib (less features) https://pypi.org/project/py-ssa-lib

SSA Decomposition example

Decomposition of time series:

- Low-frequency component + high-frequency component
- Signal + noise
- Trend + Seasonality + Noise

example-image.pdf

^{*}Some data*: demonstration of series decomposition with SSA

ESPRIT Frequency estimation example

ESPRIT — SSA-related method for parameters estimation

```
example-image.pdf
```

Pole motion data probably

- Estimate interpretation
- Estimate interpretation

Complex Time Series

Common origins of complex-valued time series:

- Can be constructed from two related features
- Arise as a result of applying the Fourier transform to real data

SSA Algorithm: Embedding

Input: time series $X = (x_1, x_2, \dots, x_N)$, window length L, signal rank r.

9 Embedding. Constructing the *L-Trajectory* Hankel matrix $\mathbf{X} \in \mathbb{C}^{L \times K}$ from the series X, where K = N - L + 1:

$$\mathbf{X} = \mathcal{T}^{(L)}(\mathsf{X}) = \begin{pmatrix} x_1 & x_2 & x_3 & \dots & x_K \\ x_2 & x_3 & x_4 & \dots & x_{K+1} \\ x_3 & x_4 & x_5 & \dots & x_{K+2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_L & x_{L+1} & x_{L+2} & \dots & x_N \end{pmatrix}$$

SSA Algorithm: Decomposition, Grouping, Reconstruction

- ② **Decomposition**. Constructing the singular value decomposition (SVD) of matrix \mathbf{X} : $\mathbf{X} = \sum_{j=1}^{\mathrm{rank}\,\mathbf{X}} \sqrt{\lambda_j} U_j V_j^{\mathrm{H}} = \sum_{j=1}^{\mathrm{rank}\,\mathbf{X}} \widehat{\mathbf{X}}_j$ where \mathbf{H} denotes Hermitian conjugation, U_j and V_j are left and right singular vectors of \mathbf{X} , $\sqrt{\lambda_j}$ its singular values in descending order.
- **3 Grouping**. Grouping the terms $\widehat{\mathbf{X}}_j$ from the decomposition related to the signal: $\mathbf{S} = \sum_{j=1}^r \widehat{\mathbf{X}}_j = \Pi_r \mathbf{X}$, where Π_r is the projector onto the space of matrices with rank not greater than r.
- **Quantity Reconstruction**. Applying projection onto the space of Hankel matrices: $\widetilde{\mathbf{S}} = \Pi_{\mathcal{H}} \widehat{\mathbf{S}}$, and return to the series form: $\widetilde{\mathsf{S}} = \left(\mathcal{T}^{(L)}\right)^{-1}(\widetilde{\mathbf{S}})$

Series rank

Definition

Series X has rank d < N/2, if the rank of its L-trajectory matrix equals d for any L such that $d \leq \min(L, N - L + 1)$.

If such d exists, then X is called a series of finite rank.

If the signal S is a series of finite rank, then it is generally recommended to use rank(S) as parameter r in the SSA method

Series rank examples

- rank of S with $s_n = A\sin(2\pi\omega n + \varphi)$, $0 < \omega < 1/2$, equals 2
- rank of S with $s_n = A \exp(\alpha n)$, $\alpha \in \mathbb{C}$, equals 1

Signal Model

What we consider a signal $S = (s_1, s_2, \ldots, s_N)$:

- The trajectory matrix $S = \mathcal{T}^{(L)}(S)$ is rank-deficient (\implies the time series is of some finite rank: $\operatorname{rank}(S) = r$)
- Any signal S can be represented in the form of a finite sum:

$$s_n = \sum_j p_j(n) \exp(\alpha_j n + i(2\pi\omega_j n + \varphi_j)),$$

where $p_j(n)$ is a polynomial in n

• Real case:

$$s_n = \sum_j p_j(n) \exp(\alpha_j n) \sin(2\pi\omega_j n + \varphi_j),$$

ESPRIT method estimates damping factors $lpha_j$ and frequencies ω_j

ESPRIT Algorithm: General Idea

$$s_n = \sum_{j=1}^{2} \exp(\alpha_j n + i(2\pi\omega_j n + \varphi_j)) = A_1 z_1^n + A_2 z_2^n$$

where $A_j = \exp(i\varphi_j)$, $z_j = \exp(\alpha_j + i2\pi\omega_j)$

Signal subspace basis is given by

$$\mathbf{M} = \begin{pmatrix} z_1 & z_2 \\ z_1^2 & z_2^2 \\ \vdots & \vdots \\ z_1^L & z_2^L \end{pmatrix} \Rightarrow \overline{\mathbf{M}} = \underline{\mathbf{M}} \begin{pmatrix} z_1 \\ & z_2 \end{pmatrix} \Rightarrow \underline{\mathbf{M}}^- \overline{\mathbf{M}} = \begin{pmatrix} z_1 \\ & z_2 \end{pmatrix}$$

where M denotes M without the first row, \underline{M} — without the last \underline{M}^- denotes the pseudoinverse of \underline{M}

ESPRIT Algorithm

Input: same as in SSA: X, L, r

- $\textbf{0} \ \, \textbf{Embedding}. \ \, \textbf{X} = \mathcal{T}^{(L)}(\textbf{X})$
- ② Decomposition. $\mathbf{X} = \sum_{j=1}^{\mathrm{rank}\,\mathbf{X}} \sqrt{\lambda_j} U_j V_j^{\mathrm{H}}$, $\mathbf{U}_r = [U_1:U_2:\ldots:U_r]$
- **§** Estimation. Finding eigenvalues z_j of matrix $\underline{\mathbf{U}}_r^-\overline{\mathbf{U}}_r$ Using $z_j = \exp(\alpha_j + \mathrm{i} 2\pi\omega_j)$ parameters α_j and ω_j can be found

Multi-Channel Time Series, MSSA

$$\mathbf{X} = \left(\mathbf{X}^{(1)}, \, \mathbf{X}^{(2)}, \, \dots, \, \mathbf{X}^{(P)} \right), \qquad \mathbf{X}^{(p)} = \left(x_1^{(p)}, \, x_2^{(p)}, \, \dots, \, x_N^{(p)} \right) - \text{channels}$$

The only change in the algorithms — Embedding step:

$$\mathbf{X} = \mathcal{T}_{\text{MSSA}}^{(L)}(\mathsf{X}) = \left[\mathbf{X}^{(1)} : \mathbf{X}^{(2)} : \dots : \mathbf{X}^{(P)}\right],$$
$$\mathbf{X}^{(p)} = \mathcal{T}^{(L)}(\mathsf{X}^{(p)})$$

When to chose MSSA over SSA for each channel:

- All channels have "similar" structure
- "Supporting" channels with lower noise level

Intoduction of Tensors

Tensor SVD Extensions:

- Higher-Order SVD (HOSVD)
- Canonical Polyadic Decomposition (CPD)
- T-SVD
- $(L_r, L_r, 1)$ -Decomposition

Mapping Time Series to Tensor

$$X = (x_1, x_2, \ldots, x_N)$$

$$\mathsf{X} = \left(\mathsf{X}^{(1)},\,\mathsf{X}^{(2)},\,\ldots,\,\mathsf{X}^{(P)}\right)$$

