

Institut für Technische Informatik

20.11.2017

- Goats & Grass
 - Goats look for grass to eat
 - Goats are "blind", i.e., they just move randomly without a specific target
 - Grass is static
- Cats & Dogs
 - Dogs look for cats in their range of sight
 - If the dog notices one or more cats, it follows one of them
 - Cats escape from dogs! If they see a dog, they run in the opposite direction
 - Let's create a NetLogo model...

Cats & Dogs

cat

 First step: create two different breeds breed [dogs dog]
 breed [cats cat]

dog

Second step: create k dogs

```
to setup-dogs
ask n-of k patches [
sprout-dogs 1 [
set shape "dog"
set color blue
set size 1
]
]
end
```

sprout number [commands]
sprout-<bre>sprout-<bre>commands]

- Creates *number* new turtles on the current patch.
- The new turtles have random integer headings and color, but can immediately run commands

(same step applies to cats)

heading

- Built-in turtle variable indicating the direction the turtle is facing (can be a number ≥ 0 and ≤ 359)
- Heading 0 → turtle facing "north", heading 90 → turtle facing "east", ...

towards

- Reports the heading from the input agent to the given agent
- If the wrapping path is shorter, it will use the wrapped path
- The variant towardsxy x y will report the heading from the turtle or patch towards the point (x,y)
- **Beware!** Asking for the heading from an agent to itself or an agent on the same location will cause a runtime error!

face

- Set the caller agent's heading towards the specified agent
- If the caller and the agent are at the same position, the caller's heading will not change
- facexy x y sets the caller's heading towards the point (x,y)

in-radius

 Reports an agentset that includes only those agents from the original agentset whose distance from the center of the patch in which the caller is located is ≤ than the input number (it can include the calling agent itself)

```
ask turtles [
    ask patches in-radius 3 [
    set pcolor red
]
```

Each turtle makes a red splotch around itself

- in-radius
 - Example

```
ask patches [
set pcolor green
]

ask n-of 10 patches [
sprout 1 [
set color blue
set size 1

ask patches in-radius 3 [
set pcolor red
]

]
end
```


distance

- Reports the distance from the current agent to the given turtle or patch
- The distance to or from a patch is measured from the center of the patch and wrapped distances are used
- distancexy x y reports the distance from the calling agent to the specified the point (x,y)

- Cats & Dogs
 - Third step: move dogs

```
to go
ask cats [ move-cats ]
ask dogs [ move-dogs ]
end
```


Head towards a cat

```
to move-dogs
set heading towards target-dogs sight-dogs
;; move dog
;; eat cats
end
```

- Cats & Dogs
 - Find cats in the neighborhood

```
to-report target-dogs [radius]

[ ;; Check if there is any cat in the neighborhood report one-of cats in-radius radius
]
[ ;; Do something else
]
end
```


 Move-cats is built similarly, but cats move in the opposite direction w.r.t. dogs (rt 180)!

Cats & Dogs

Let's imagine the following parameters:

total dogs: 1 total cats: 10 sight cats: 5 sight dogs: 10

movement cats: 1 unit / tick movement dogs: 1 unit / tick

What will happen if we simulate this?

Adaptation in Natural Systems

- Direct communication among components of self-organizing system
 - Flock of birds, school of fishe, swarm of bees...

- Attraction and repulsion rules
 - 1. Keep minimum distance from other objects
 - 2. Match speed of neighbors
 - 3. Move towards the perceived center of mass of fish/birds/bees in the neighborhood
- Adaptation
 - Obstacle avoidance
 - Escaping predators

Adaptation in Natural Systems

- Example: Swarms of bees
 - Each bee monitors the number of bees in the neighborhood
 - Follow the direction of other bees (i.e., follow the average heading of the other bees in the neighborhood, if any)

to-report average_bees_heading report atan sum [sin heading] of other bees in-radius radius sum [cos heading] of other bees in-radius radius end

atan x y reports the arctangent, in degrees (0-360) of x/y.

Let's simulate this!

School of Fish

- Fish cluster in groups
 - For hunting food (higher chances to identify food and inform the others)
 - For reproduction
 - For defense
 - A higher number of fish can identify a predator quicker
 - A predator having more targets at the same time worsens its efficiency

→ The school of fish is mainly a protection system that increases the probability of surviving to predators

School of Fish

- Fish maneuver to avoid predators
 - Flash expansion

2

School of Fish

- Fish maneuver to avoid predators
 - Fountain effect

Exercise 3: School of Fish

- Create a NetLogo model of school of fish, to show that being part of a school actually increases the probability of survival to predators
 - Two different breeds (fish, sharks)
 - Sharks look for fish and target them
 - Fish try to escape
 - Sharks eat fish to survive (energy)

- Escape in the opposite direction of the shark or follow the average heading of the school
- Actual behavior is ruled by the variable α
- Goal: show a school of fish generating a flash expansion

Exercise 3: School of Fish

- Explore the role of α
- α is a variable with range [0, 1]
 - Vector S: heading to escape from the shark
 - Vector F: average heading of the other fishe around
 - The final heading of the fish is $H = (\alpha S) + ((1 \alpha)F)$
 - Extended task: change your model and generate also a fountain-effect behaviour of the school of fish
 - Deadline is Sunday, 09.12.2018, at 23:59 CET
 - Follow the instructions carefully!

Questions?

