Genentech

A Member of the Roche Group

Adding Conditional Control to Diffusion Models with Reinforcement Learning

Yulai Zhao*¹², Masatoshi Uehara²*, Gabriele Scalia², Tommaso Biancalani², Sergey Levine³, Ehsan Hajiramezanali²

¹Princeton University, ²Genentech, ³University of California, Berkeley

Background

- A pre-trained conditional diffusion model excels at modeling p(x|c).
- For example, in Stable
 Diffusion, c∈C is a prompt,
 and x∈X is the image
 generated according to this
 prompt.
- Many tailored DMs are able to generate biological sequences (e.g., DDSM).
- In practice, we often want to add additional controls into pre-trained diffusion models, e.g.
 - Stable Diffusion.
 - existing condition: prompts
 - new condition: certain layouts or backgrounds.
 - DDSM tailored for generating DNA enhancers.
 - existing condition: activity level in HepG2
 - new condition: activity level in other cell lines such as K562.

Settings

- Given the pre-trained model, which enables us to sample from p^{pre} (x|c): C → ∆(X).
- Goal: add new conditional controls y∈Y such that we can sample from p(x|c,y).
- Assume we can access to offline data:

 $D = \{(c^{(i)}, x^{(i)}, y^{(i)})\}_{i=1}^{n}$

where conditional distribution is denoted by p^o(y|x,c).

Target Distribution

our goal is to obtain a diffusion model such that we can sample from

 $p_{\gamma}(\cdot|c,y) \propto (p^{\prime}(y|\cdot,c))^{\gamma} p^{pre}(\cdot|c)$ where γ represents the strength of the additional guidance.

Methodology & Results

Our goal: adding control via fine-tuning

Roadmap

RL-based Fine-tuning

Methodology

Advantages of Our Approach

Theoretical justification (incomplete)

★ Compared to classifier-free guidance

Our method demonstrates superiority by leveraging the conditional independence.

• Example 1: Y \perp C | X. Then $p^{\flat}(y|x,c) = p^{\flat}(y|x)$

 This means we only need (x,y) sample pairs to train the classifier, rather than triplets (c,x,y).

Example 2 (multi-task): Y₁ ⊥ Y₂ | C, X, Y₁ ⊥ C | X and Y₂ ⊥ C | X. Then

$$\log p^{\flat}(y_1, y_2 | x, c) = \log p^{\flat}(y_1 | x) + \log p^{\flat}(y_2 | x)$$

- This means we only need (x,y₁) and (x,y₂) pairs.
- Significantly simplifying dataset construction: classifier free guidance must require quadruples (c,x,y₁,y₂)!

Results

Example 1: Compressibility

Example 2: Compressibility & Aestheticness

Experimental Details

Settings

Experiments

Extension: conditioned on continuous y

- We can use the model fine-tuned on discretized y and interpolate discrete class embeddings for continuous y.
- This naive approach can achieve R²=0.95

Conclusions

- We introduce an RL-based fine-tuning approach for conditioning pre-trained diffusion models on new additional labels.
- Compared to classifier-free guidance, our proposed method allows for leveraging the conditional independence, thereby greatly simplifying the construction of the offline dataset.
- We also theoretically justify our approach and build the connection with classifier-based guidance.
- Future work includes applying this method to design DNA enhancers and 5'UTR.
- The goal is achieve cell-specific promoters design!

