KØBENHAVNS UNIVERSITET

Implementering af programmeringssprog - Skriftlig 4 timer

12 23 august 2023

Planlagt: 09:00 - 13:00

Eksamensnr: 12 Plads: EH-0136

Side 1 af 11

Side 2 af 11

1.1

Note: Due to time constrains the set parentheses $\{\}$ are omitted, but should read as e.g. $ec(\{1, 2, 3\})$ = (1, 2, 3...).

Alphabet = $\{f, t\}$

$$ec(1, 2) = (1, 2) =: s0$$

REJ

$$move(s0, f) = ec(3) = (3) =: s1$$

REJ

$$move(s0, t) = ec(3, 4) = (3, 4, 1, 2) =: s2$$
 ACC

$$move(s1, f) = ec(2) = (2) =: s3$$

REJ

$$move(s1, t) = ec(4) = (4, 1, 2) =: s4$$

ACC

$$move(s2, f) = ec(2, 3) = (2, 3) =: s5$$

REJ

$$move(s2, t) = ec(4,3) = s2$$

$$move(s3, f) = ec()$$

undefined

$$move(s3, t) = ec(3, 4) = s2$$

$$move(s4, f) = ec(3) = s1$$

$$move(s4, t) = ec(3,4) = s2$$

$$move(s5, f) = ec(2) = s3$$

$$move(s5, t) = ec(3, 4) = s2$$

$$s' = \{s0, s1, s2, s3, s4, s5\}$$

Side 3 af 11

1.2

Preprocessing: add new, rejecting state 7 with:

- c transition from 0
- c transition from 1
- c transition from 3
- b, c transitions from 5
- b transition from 6
- a, b, c transitions to itself

$$G1 \coloneqq \{1, 4\}$$

$$G2 := \{0, 2, 3, 5, 6, 7\}$$

$G2 := \{0, 2, 3, 5, 6, 7\}$	
G2 a b c	G5 a b c
0 G1 G2 G2 => G3	0 G1 G5 G4 => G7
2 G1 G2 G2 => G3	2 G1 G6 G4=> G7
3 G1 G2 G2=> G3	3 G1 G6 G4=> G8
5 G1 G2 G2=> G3	Split G5 into G7 = $\{0,2\}$ and G8 = $\{3\}$
6 G2 G2 G2=> G4	G7 a b c
7 G2 G2 G2=> G4	0 G1 G7 G4 => G 9
Split G2 into G3 = $\{0, 2, 3, 5\}$	2 G1 G6 G4 => G10
and $G4 = \{6, 7\}$	split G7 into G9 ={ 0 } and G10 ={ 2 }
G3 a b c	
0 G1 G3 G4 => G5	G1 a b c
2 G1 G3 G4=> G5	1 G1 G8 G4 => G11
3 G1 G3 G4=> G5	4 G1 G10 G4 => G12
5 G1 G4 G4=> G6	Split G1 into $G11 = \{1\}$ and $G12 = \{4\}$
Split G3 into G5 = $\{0, 2, 3\}$	
and $G6 = \{5\}$	
=>	

Side 4 af 11

G4 a b c	G9 a b c
6 G4 G4 G4	0 G11 G10 G4
7 G4 G4 G4	G10 a b c
	2 G12 G6 G4
G6 a b c	
5 G11 G4 G4	G11 a b c
	1 G11 G8 G4
G8 a b c	G12 a b c
3 G11 G6 G4 =>	4 G11 G10 G4

Postprocessing: G4 contains the added dead state 7, and can be removed together with transitions to it. The final transition table is:

a. c

b.

G6 G11 - -**REJ** G8 G11 G6 **REJ** G9 G11 G10 -REJ, START G10 G12 G6 **REJ** G11 G11 G8 **ACC** G12 G11 G10 -ACC

Eksamensnummer: 12

Plads: EH-0136 Side 5 af 11

2.1

- a. Yes. s -> 1 X -> 2 X + Y -> 2 X + Y + Y -> 3 Y + Y + Y -> 5 + Y + Y -> 5 ++ Y -> 5 ++
- b. Yes. s -> 1 X -> 3 Y -> 4 Y b -- -> 4 Y b -- b-- -> 5 b--b--
- c. This G generates strings of the alphabet {b, +, -} and describes a palindrome language, e.g. b--+b--. This language requires a counter and is too complex to be handled by regular expressions, a NFA or a DFA, whose scope is limited due to computer's limited memory. That is, this L(G) is irregular.
- d. To eliminate left recursion, we introduce new non-terminals for production $X \rightarrow X + Y(X')$ and $Y \rightarrow Yb(Y')$.

 $S \rightarrow X$

 $X \rightarrow Y X'$

 $X' \rightarrow + Y X'$

X'->

 $Y \rightarrow b - Y'$

 $Y' \rightarrow b - Y'$

Y'->

2.2

a) Compute nullable(N) for all N:

null(S) = false [always because of \$]

null(X) = null(A) && null(B) = ? && ? = true && ? = true && true = true

 $null(A) = null(a) \parallel null(eps) = false \parallel true = true$

 $null(B) = null(bAB) \parallel null(eps) = false \parallel true = true$

b) Compute first(N) for all N:

 $first(S) = first(X) U first(\$) = \{\$\}$ [since =null(X)]

first(X) = first(A) U first(B) [since =null(A), null(B)]

 $first(A) = first(a) U first(eps) = \{a\} [since !=null(a)]$

Eksamensnummer: 12 Plads: EH-0136 Side 6 af 11

simplifying $first(X) = \{a, b\}$

c) Write constraints on follow sets:

$$0. S \rightarrow X$$
\$

1.
$$\{\$\} <= follow(X)$$

[because first(
$$\$$$
) = { $\$$ }]

$$1. X \rightarrow A B$$

2.
$$\{b\} \leq follow(A)$$

[because first(B) =
$$\{b\}$$
]

3.
$$follow(X) \ll follow(B)$$

2.
$$A \rightarrow a$$

$$3.A \rightarrow \epsilon$$

$$4.B \rightarrow b A B$$

4.
$$\{b\} <= follow(A)$$

[because first(B) =
$$\{b\}$$
]

$$5. \text{ follow}(B) \leq \text{follow}(B)$$

$$5.B \rightarrow \epsilon$$

d) Find least solution:

Seed rules $\{a1,...,an\} \le follow(N): 1., 2., 4.$

Propagation rules follow(N1) \leq follow(N2): 3., 5.

set	seed	prop1	final
follow(X)	\$ [1.]		\$
follow(A)	b [2.] , [4.]		b
follow(B)		\$ [3.]	\$

e) Compute look-ahead sets:

$$la (S \rightarrow X\$) = first(X\$) = first (X) U \{\$\} = \{a, b, \$\}$$

$$la(X \rightarrow AB) = first(A) U follow(X) = \{a, \$\}$$

$$la (A \rightarrow a) = first(a) = \{a\}$$

OK: disjoint

$$la (A \rightarrow) = first(eps) U follow(A) = \{b\}$$

$$la (B \rightarrow bAB) = first(bAB) = \{b\}$$

Implementering af programmeringssprog - Skriftlig 4 timer 12

Eksamensnummer: 12 Plads: EH-0136 Side 7 af 11

 $la (B \rightarrow) = first(eps) U follow(B) = \{\$\}$

OK: disjoint

f. Write a recursive-descent parser for non-terminals S and B:

3.2

a.

- -1 Apply rule (IV): both root nodes are the same type constructor, unify hteir children.
- -2 unify(list(alpha), beta); apply rule III : union (list(alpha), beta) => beta = list(alpha)
- -3 unify(alpha, list(int)); apply rule III: union(alpha, list(int)) => alpha = list(int)
- -4 unify(char, gamma); apply rule III: union(char, gamma) => gamma = char

Modify 2 after 3: beta = list(list(int))

Plads: EH-0136 Side 8 af 11

Eksamensnummer: 12

12

b. alpha = list(int); beta = list(list(int)); gamma = char.

c. list(list(int)) * list(int) * char

4.

t0 =: 1

v1 =: t0

LABEL lab1 //start repeat-until loop

t1 := v1

t1 := t1 * 4

t1 := t1 + v3

t2 := M[t1]

t3 =: 10

IF t2 > t3 THEN lab2 ELSE lab3 //lab2 if FALSE

LABEL lab2

t5 := 0 //Cond returns false

LABEL lab3

t5 := 1 //Cond returns true

t7 := v1

v1 := CALL f100(t7, t5)

t8 := v1

t8 := t8 *4

Eksamensnummer: 12 Plads: EH-0136 Side 9 af 11

```
t8 := t8 + v3
t9 := 5
M[8] := t9
t10 := v1
t11 := CALL f200(t10)
IF t11= 0 THEN lab1 ELSE lab4
LABEL lab4
                                       // after repeat-until loop
4.2
      y, 51(x)
 lw
 slt
      R1, y, z
 bne R1, R0, lab1
 i
      lab2
lab3:
 slt
       R1, z, y
 beq R1, R0, lab5
lab4:
```

```
5.1
a.
A) In {a, b, d} =? gen {} U (out {a, c, d} \ kill {c}) = {a, d}
B) In {a, b, d} =? gen {} U (out {a, c, d} \ kill {}) = {a, c, d}
C) In {a, b, d} =? gen {c, b} U (out {a, c, d} \ kill {}) = {a, b, c, d}
D) In {a, b, d} =? gen {b, c} U (out {a, c, d} \ kill {c}) = {a, d, b, c}
E) None of the above: CORRECT
b. A) In {b, d} =? gen {b, d} U (out {a} \ kill {a}) = {b, d} CORRECT
B) In {b, d} =? gen {a} U (out {a} \ kill {}) = {a}
C) In {b, d} =? gen {b, d, e} U (out {a} \ kill {a}) = {b, d, e}
D) In {b, d} =? gen {b, d} U (out {a} \ kill {}) = {a, b, d}
```

Side 10 af 11

5.2 a and b.

i	succ[i]	gen[i]	kill[i]	1. out	1. in	2.out	2.in
1	2	X	X	y, x	у, х	y, x	y, x
2	3			y, x	у, х	y, x	y, x
3	4	y, x	a	x, a	y, x	x, a	y, x
4	5	a	y	x, a	x, a	y, x, a	x, a
5	6	x, a	X	X	x, a	y, x	y, x, a
6	2, 7	X		X	X	y, x	y, x
7	8			X	X	X	X
8		Х			X		Х

c and d.

i	kill	out	interferes
1	X	y, x	У
3	a	x, a	x
4	у	y, x, a	x
5	X	y, x	у

NB: 4: y:= a, thus y does not interfere with a

Eksamensnummer: 12

Plads: EH-0136 Side 11 af 11

e. Nodes a and y have < 2 neighbors, so we can start with either of them.

Node	neighbors	color
X		1
У	X	2
a	X	2