電子學實驗紀錄及報告

實驗 8 雙極性接面電晶體(BJT)之特性

組別: 第五組

學號: B0921251 B0921252

姓名: 陳彦儒、黃鼎翔

實驗日期: 2022/04/22

壹、 實驗數據:

表 8 - A

電晶體(BJT)的編號	β DC (<i>h</i> FE) 測量值
2N2222A	278
2SC1815	272
2SA1015	250
2N3904	186

表 8 - B

電阻	色碼標示值	電表測量值	
RB	33 kΩ	32.7 kΩ	
Rc	100 Ω	97.8 Ω	

表 8 - C

VCE(測量值)	基極電流 IB=50uA		基極電流 IB=100uA		基極電流 IB=150uA	
	VRC(測量)	Ic(計算)	V _{RC(測量)}	Ic(計算)	V _{RC(} 測量)	Ic(計算)
0.2 V	0.86 V	8.79 mA	1.47 V	15.03 mA	3.49 V	35.69 mA
0.3 V	1.09 V	11.15 mA	2.13 V	21.78 mA	3.60 V	36.81 mA
0.6 V	1.12 V	11.45 mA	2.43 V	24.85 mA	3.70 V	37.83 mA
1.0 V	1.22 V	12.47 mA	2.49 V	25.46 mA	3.78 V	38.65 mA
2.0 V	1.23 V	12.58 mA	2.62 V	26.79 mA	4.19 V	42.84 mA
4.0 V	1.31 V	13.39 mA	3.03 V	30.98 mA	4.98 V	50.92 mA
6.0 V	1.42 V	14.52 mA	3.53 V	36.09 mA	5.84 V	59.71 mA
8.0 V	1.56 V	15.95 mA	3.98 V	40.7 mA	6.50 V	66.46 mA

請列出詳細計算過程:

$$Ic = \frac{V_{RC}(\cancel{N} \cdot \cancel{B} \cdot \cancel{a})}{R_c} = \frac{V_{RC}(\cancel{N} \cdot \cancel{B} \cdot \cancel{a})}{97.8\Omega}$$

圖 8-A 電晶體集極特性曲線

貳、 問題與討論:

I. 目前所獲得的特性曲線,假如有一個電晶體,它有一個較高的βρc值時,你能預期這些曲線將會如何變化?

Ans: 所有曲線將會上升。

II. 根據由實驗所獲得的數據,電晶體的最大功率消耗為多少?

Ans: 答案會有些微不同,依本實驗用的電晶體其最大功率消耗是 8V×3 mA=24mW III. 電晶體的 α_{DC} 是集極電流 I_{C} 除以射極電流 I_{E} 。利用上述定義以及 I_{E} = I_{C} + I_{B} 的關係式,證明 α_{DC} 可以下式表示之 α_{DC} =

$$\frac{\beta DC}{\beta DC+1} \circ \beta_{DC} = \frac{Ic}{IB}$$

Ans:
$$\alpha = \frac{Ic}{IB} = \frac{Ic}{Ic + IB} = \frac{Ic/IB}{\frac{Ic}{IB} + \frac{IB}{IB}} = \frac{\beta DC}{\beta DC + 1}$$

IV. 假如電晶體的基極端開路,則 VCE 的值將會是多少?解釋你的答案。

Ans: VCE 將會等於 Vcc,沒有基極電流就不會有集極電流,因此直流電流 Vcc 就會跨於電晶體上。

參、 實驗心得:

B0921251 陳彥儒

這次的實驗蠻簡單的,我們一下子就做完了,雖然很簡單,但 是學到的新東西比前幾次實驗還多,同時我們也了解到可以先去找 元件的 datasheet 再來實際檢測 BJT 如此一來會增加檢測時的效率。

B0921252 黃鼎翔

這次的實驗過程雖然簡單但是確實讓我們了解了電晶體的性 質,也讓我們了解到了電晶體的特性。