Article Recommendation System

By Team 404

Building a simple, yet sophisticated Article Recommender System

The User

The User

Analysing the user of the article recommender system.

- Definite Taste
- Taste not very volatile
- Few actions per day
- Can be categorised into different types

Model Requirements

Which model would best suite our user?

- A model capable of grouping similar types of items on the basis of their content.
- A model which can group people on the basis of their affinities.
- A model which is steadfast
- A model which works well with very few actions, however takes these actions into account before recommending a new set of items

The Data

- From CI&T's Internal Communication platform (DeskDrop).
- Contains a real sample of 12 months logs (Mar. 2016 Feb. 2017)
- Contains about 73k logged users interactions on more than 3k public articles shared in the platform.
- The training set contains the first (as per timestamp) 80% of the data.
- The testing data contains the remaining 20%.

The Model

The Model

A bird eye view of the model.

- Different algorithms for new and old users.
- New users clustering and most popular
- Regular users Hybrid of interactive content based filtering and collaborative filtering with some inspiration from Reinforcement Learning.

Ratings

- Weights assigned to various parameters (action strength):
 - o 'VIEW': 1.0
 - o 'LIKE': 2.0
 - o 'BOOKMARK': 3
 - 'FOLLOW': 3.0
 - 'COMMENT CREATED (if liked)': 3.5

- Weights of parameters = (100 n*8)% of assigned weights
 - Where n = number of months ago a particular action was taken
 - \circ min(n) = 12
 - $\circ \quad \mathbf{Time Strength} = (100 n*8)$

Event Strength = Action Strength * Time Strength

Regular Users

- Actions > 5
- Interactive content based filtering (A) Items which are similar to user's preferences
- Collaborative Filtering (B) Items which are preferred by users similar to our current user.

Content based

- Finding similarity using TF IDF
- TF IDF reflects how important a word is an article of a given corpus.

- TF(t) = (Number of times term t appears in a document) / (Total number of terms in the article)
- IDF(t) = log_e(Total number of articles/ Number of articles with term t in it)
- TF-IDF score = TF*IDF

Content based

	Word 1	Word 2	Word n	Word 5000
Article 1	3	2	1	5
Article 2	5	3	2	1
Article n+1	2	3	2	4

Rating	
3	
4	
5	

User
Profile

Word 1	Word 2	Word n	Word 5000
8	6	3	6

New	User
Pro	file

Word 1	Word 2	Word n	Word 5000
7	6	3	7

Content based

• User profile is compared with the vector of every article and the most similar articles are found using Cosine Similarity.

$$\cos \theta = \frac{a \cdot b}{\|\vec{a}\| \|\vec{b}\|}$$

Collaborative filtering

- Matrix Factorization using SVD
- The unknown ratings are found using the Gradient Descent Algorithm
 - \circ **a** = 0.03
 - \circ n = 10

New Users

- 10 clusters of articles formed using centroid based based K-means clustering
- Most popular article displayed for each new user (with no actions)
- For every action (< 5) n * 2 content based recommendations, and (10 2*n) recommendations on the basis of the above mentioned method.

Suggestions for New User

```
***********NEW USER********
Registered User[Y/N]: N
Your user Id is: 1042
Top 10 Recommendations :

    Analyst: Google's cloud business could cause the stock to soar to over $900

2. Fooling The Machine

    Apple Invites Media to 'Hello Again' October 27th Mac-Centric Event

  Prototipação: erre cedo para acertar cedo - Hipsters #28
5. Stackdriver Trace for App Engine is GA; app latency has nowhere to hide
SOA com microserviços - Sensedia
Probabilistic Programming

    Braincast 207 - A Revolução das Máquinas Inteligentes

9. Making digital strategy á reality in insurance

    Introducing online resizing of Google Cloud Persistent Disks without downtime

Select Article number (0 for Search) : 3
You can select one of the actions below:
1.Like
2. View
Comment
4.Bookmark
5. Follow
```

Enter your entry: 1

Train-Test Split

- Split by a reference date
- The train set is composed by all interactions before that date 31284
- The test set are interactions after that date 7822
- Split ratio- 4:1

Accuracy

Testing the accuracy of our model.

- Recall@n methodology used
- Percentage of the number of items actually viewed from n recommendations
- 52% recall@10
- 40% recall@5

Accuracy

Testing the accuracy of our model.

modelName

Collaborative Filtering

Content-Based

Popularity

Final

0.341984 0.415750

recall@10

0.290335

recall@5

0.219637

0.520583

		title	eventStrength
User #1		6 reasons why I like KeystoneML	3.735522
		Auto-scaling scikit-learn with Spark	3.726831
		5 reasons your employees aren't sharing their	3.475085
		At eBay, Machine Learning is Driving Innovativ	3.475085
Recommendations generated		Algorithms and architecture for job recommenda	3.356144
		10 Stats About Artificial Intelligence That Wi	3.339137
		Al Is Here to Help You Write Emails People Wil	3.269033
		Deep Learning for Chatbots, Part 1 - Introduction	3.195348
title	contentId	Graph Capabilities with the Elastic Stack	3.104337
The barbell effect of machine learning.	3269302169678465882	Being A Developer After 40 - Free Code Camp	3.007196
Power to the People: How One Unknown Group of	5092635400707338872	Building with Watson Technical Web Series	2.887525
How Google is Remaking Itself as a "Machine Le	-7126520323752764957	Worldwide Ops in Minutes with DataStax & Cloud	2.855990
The Al business landscape	7395435905985567130	5 Unique Features Of Google Compute Engine Tha	2.782409
Machine Learning Is Redefining The Enterprise	1415230502586719648	How to choose algorithms for Microsoft Azure M	2.687061
Being A Developer After 40 - Free Code Camp	-5756697018315640725	Bad Writing Is Destroying Your Company's Produ	2.632268
The AI business landscape	7395435905985567130	Creative Applications of Deep Learning with Te	2.608809
Graph Capabilities with the Elastic Stack	-8085935119790093311	How Netflix does A/B Testing - uxdesign.cc - U	2.594549
How Google is Remaking Itself as a "Machine Le	5250363310227021277	Machine Learning Is No Longer Just for Experts	2.536053
Machine Learning for Designers	638282658987724754	How Google is Remaking Itself as a "Machine Le	2.464668
		Text summarization with TensorFlow	2.454176

Conclusion

The highlights of the model

- Model based on user behaviour
- Dynamic recommendations on timestamp
- Tackling the problem of 'groupism' born out of CF by actively preserving individual choice
- Serendipity and Exploration an integral part
- Problem of Cold Start effectively tackled

Thank You!

Questions?