Deep Learning 101

CSCI 1460: Computational Linguistics

Lecture 8

Ellie Pavlick Fall 2023

Announcements

- Assignment 2 fixes (tf-idf vs. BOW)
- NLP talks in the department!
 - Oct 13th, 12pm Panel/Discussion Strong vs. Weak Compositionality in Humans and Machines!

Topics

- More Followup on Word Embeddings from SVD
- Logistic Regression and Gradient Descent
- Multilayer Perceptrons
- Word Embeddings from NNs

Topics

- More Followup on Word Embeddings from SVD
- Logistic Regression and Gradient Descent
- Multilayer Perceptrons
- Word Embeddings from NNs

The below figure shows the following: (Part of) a term-document matrix M; A V matrix that results when running LSA on M; An embedding (i.e., row of the U matrix) associated with a document d. Which of the below represents the most likely content of document d? (Note that document d is not supposed to be one of the docs doc1, doc2, doc3, doc4, doc5 along the rows of M. You can assume d is a different document that also occurred in M but is not shown in the below figure.)

	red	green	apple	kiwi
doc1	1	1	1	1
doc2	1	0	1	0
doc3	1	1	0	1
doc4	1	0	1	1
doc5	0	0	1	1

10	1	0
8	0	8
1	6	1
-1	7	11

d 1 2 12

M

The below figure shows the following: (Part of) a term-document matrix M; A V matrix that results when running LSA on M; An embedding (i.e., row of the U matrix) associated with a document d. Which of the below represents the most likely content of document d? (Note that document d is not supposed to be one of the docs doc1, doc2, doc3, doc4, doc5 along the rows of M. You can assume d is a different document that also occurred in M but is not shown in the below figure.)

	red	green	apple	kiwi
doc1	1	1	1	1
doc2	1	0	1	0
doc3	1	1	0	1
doc4	1	0	1	1
doc5	0	0	1	1

10	1	0
8	0	8
1	6	1
-1	7	11

M

The below figure shows the following: (Part of) a term-document matrix M; A V matrix that results when running LSA on M; An embedding (i.e., row of the U matrix) associated with a document d. Which of the below represents the most likely content of document d? (Note that document d is not supposed to be one of the docs doc1, doc2, doc3, doc4, doc5 along the rows of M. You can assume d is a different document that also occurred in M but is not shown in the below figure.)

	red	green	apple	kiwi
doc1	1	1	1	1
doc2	1	0	1	0
doc3	1	1	0	1
doc4	1	0	1	1
doc5	0	0	1	1

10	1	0
8	0	8
1	6	1
-1	7	11

d 1 2 12

1

The below figure shows the following: (Part of) a term-document matrix M; A V matrix that results when running LSA on M; An embedding (i.e., row of the U matrix) associated with a document d. Which of the below represents the most likely content of document d? (Note that document d is not supposed to be one of the docs doc1, doc2, doc3, doc4, doc5 along the rows of M. You can assume d is a different document that also occurred in M but is not shown in the below figure.)

	red	green	apple	kiwi
doc1	1	1	1	1
doc2	1	0	1	0
doc3	1	1	0	1
doc4	1	0	1	1
doc5	0	0	1	1

10	1	0
8	0	8
1	6	1
-1	7	11

d 1 2 12

M

The below figure shows the following: (Part of) a term-document matrix M; A V matrix that results when running LSA on M; An embedding (i.e., row of the U matrix) associated with a document d. Which of the below represents the most likely content of document d? (Note that document d is not supposed to be one of the docs doc1, doc2, doc3, doc4, doc5 along the rows of M. You can assume d is a different document that also occurred in M but is not shown in the below figure.)

	red	green	apple	kiwi
doc1	1	1	1	1
doc2	1	0	1	0
doc3	1	1	0	1
doc4	1	0	1	1
doc5	0	0	1	1

10	1	0
8	0	8
1	6	1
-1	7	11

d 1 2 12

M

The below figure shows the following: (Part of) a term-document matrix M; A V matrix that results when running LSA on M; An embedding (i.e., row of the U matrix) associated with a document d. Which of the below represents the most likely content of document d? (Note that document d is not supposed to be one of the docs doc1, doc2, doc3, doc4, doc5 along the rows of M. You can assume d is a different document that also occurred in M but is not shown in the below figure.)

	red	green	apple	kiwi
doc1	1	1	1	1
doc2	1	0	1	0
doc3	1	1	0	1
doc4	1	0	1	1
doc5	0	0	1	1

10	1	0
8	0	8
1	6	1
-1	7	11

d 1 2 12

M

The below figure shows the following: (Part of) a term-document matrix M; A V matrix that results when running LSA on M; An embedding (i.e., row of the U matrix) associated with a document d. Which of the below represents the most likely content of document d? (Note that document d is not supposed to be one of the docs doc1, doc2, doc3, doc4, doc5 along the rows of M. You can assume d is a different document that also occurred in M but is not shown in the below figure.)

	red	green	apple	kiwi
doc1	1	1	1	1
doc2	1	0	1	0
doc3	1	1	0	1
doc4	1	0	1	1
doc5	0	0	1	1

10	1	0
8	0	8
1	6	1
-1	7	11

d 1 2 12

M

Colab Notebook

Topics

- More Followup on Word Embeddings from SVD
- Logistic Regression and Gradient Descent
- Multilayer Perceptrons
- Word Embeddings from NNs

Making Predictions

Making Predictions

Making Predictions

Training with Gradient Descent

minimize loss(data, w)

Training with Gradient Descent

$$-Ylog\hat{Y} + (1-Y)log(1-\hat{Y})$$

Training with Gradient Descent

Goal (Lowest achievable value for loss given data). You don't know what value of parameters will give you this. loss W

Training with Gradient Descent

$$-Ylog\hat{Y} + (1 - Y)log(1 - \hat{Y})$$

Training with Gradient Descent

$$-Ylog\hat{Y} + (1 - Y)log(1 - \hat{Y})$$

loss given data and current model parameters

Training with Gradient Descent

$$-Ylog\hat{Y} + (1 - Y)log(1 - \hat{Y})$$

Training with Gradient Descent

$$-Ylog\hat{Y} + (1-Y)log(1-\hat{Y})$$

Take small step to reduce loss, update parameters accordingly.

Training with Gradient Descent

$$-Ylog\hat{Y} + (1 - Y)log(1 - \hat{Y})$$

Repeat until
you converge,
i.e., loss cant
be decreased,
or you time
out (like in
kmeans).

Training with Gradient Descent

$$-Ylog\hat{Y} + (1-Y)log(1-\hat{Y})$$

Take small step to reduce loss, update parameters accordingly.

Topics

- More Followup on Word Embeddings from SVD
- Logistic Regression and Gradient Descent
- Multilayer Perceptrons
- Word Embeddings from NNs

Language Modeling Task

Running Example

Task: Predict the next word in a sentence.

The cat sat on the ____

Same as Logistic Regression

Task: Predict the next word

Input: the

Same as Logistic Regression

Task: Predict the next word

Input: the

Forward Pass

Task: Predict the next word

Input: the

Forward Pass

Task: Predict the next word

Input: the

Forward Pass

Task: Predict the next word

Input: the

Expected: cat

 $N \times V$

 $V \times D$

 $N \times [$

DxC

 $N \times O$

*warning: numbers made up, matrix multiplications don't necessarily work out

Forward Pass

Task: Predict the next word

Input: the

Forward Pass

Task: Predict the next word

multiplications don't necessarily work out

Input: the

Forward Pass

Task: Predict the next word

Input: the

Forward Pass

Task: Predict the next word

Input: the

Forward Pass

Task: Predict the next word

Input: the

Forward Pass

Task: Predict the next word

Input: the

Forward Pass

Task: Predict the next word

Input: the

Forward Pass

Task: Predict the next word

multiplications don't necessarily work out

Input: the

Input: the

Expected: cat

Task: Predict the next word

 $D \times H$

 $N \times D$

 $N \times V$

Forward Pass

Task: Predict the next word

Input: the

Expected: cat

 $N \times H$

*warning: numbers made up, matrix multiplications don't necessarily work out

Forward Pass

Task: Predict the next word

Input: the

Parameters are randomly initialized.

Training with Backpropagation

Training with Backpropagation

I.e., predictions are random

Training with Backpropagation

Compare predictions to ground truth output...

Training with Backpropagation

Adjust each weight (using gradient descent and chain rule)

Training with Backpropagation

Adjust each weight (using gradient descent and chain rule)

Training with Backpropagation

Adjust each weight (using gradient descent and chain rule)

Topics

- More Followup on Word Embeddings from SVD
- Logistic Regression and Gradient Descent
- Multilayer Perceptrons
- Word Embeddings from NNs

Task: Predict the next word Input: the Letwork (S

Task: Predict the next word Networks

multiplications don't necessarily work out

Expected: cat

 $D \times H$

 $N \times D$

 $V \times D$

 $N \times V$

Task: Predict the next word Networks

Expected: cat

cat	0
mat	0
on	0
sat	0
the	1
is	0

0.3	0.5	0.4	0.5
0.5	0.4	0.1	0.1
0.1	0.3	0.4	0.3
0.2	0.1	8.0	0.7
0.5	0.9	0.1	0.5
0.4	0.4	0.9	0.2

0.5	
0.1	
0.3	
0.2	

0.5	0.5	8.0
0.1	0.3	0.7
0.2	8.0	0.2
0.3	0.2	8.0

trained with backprop!

 $N \times V$

 $V \times D$

 $N \times D$

DxH

*warning: numbers made up, matrix multiplications don't necessarily work out

Task: Predict the next word Expected: cat

No different than
other hidden states.
But often gets
special affention as
the word

representation"

cat	0
mat	0
on	0
sat	0
the	1
is	0

0.3	0.5	0.4	0.5
0.5	0.4	0.1	0.1
0.1	0.3	0.4	0.3
0.2	0.1	8.0	0.7
0.5	0.9	0.1	0.5
0.4	0.4	0.9	0.2

0.5	
0.1	
0.3	
0.2	

).5	0.5	0.5	8.0
).1	0.1	0.3	0.7
0.3	0.2	0.8	0.2
).2	0.3	0.2	8.0

NxV

 $N \times D$

 $D \times H$

*warning: numbers made up, matrix multiplications don't necessarily work out

Task: Predict the next word Expected: cat

N		dif	fer	ent	Cha	M
					stat	
	130		ofte		jets	
SPE		ial	att	ENE	ion	as
•						

representation"

cat	: 0
ma	t O
on	0
sat	. 0
the	1
is	0

0.3	0.5	0.4	0.5
0.5	0.4	0.1	0.1
0.1	0.3	0.4	0.3
0.2	0.1	8.0	0.7
0.5	0.9	0.1	0.5
0.4	0.4	0.9	0.2

0.5	
0.1	
0.3	
0.2	

0.5	0.5	0.5	8.0
0.1	0.1	0.3	0.7
0.3	0.2	0.8	0.2
0.2	0.3	0.2	8.0

 $N \times V$ $V \times D$ $N \times D$

 $D \times H$

*warning: numbers made up, matrix multiplications don't necessarily work out

Efficient Estimation of Word Representations in Vector Space

Tomas Mikolov

Google Inc., Mountain View, CA tmikolov@google.com

Greg Corrado

Google Inc., Mountain View, CA gcorrado@google.com

Kai Chen

Google Inc., Mountain View, CA kaichen@google.com

Jeffrey Dean

Google Inc., Mountain View, CA jeff@google.com

Distributed Representations of Words and Phrases and their Compositionality

Tomas Mikolov Google Inc. Mountain View

mikolov@google.com

Ilya Sutskever Google Inc. Mountain View

ilyasu@google.com

Kai Chen Google Inc. Mountain View kai@google.com

Greg Corrado Google Inc. Mountain View gcorrado@google.com

Jeffrey Dean Google Inc. Mountain View jeff@google.com

Distribution of words in w's context

70		cat	kitten	cute	adorable	gradients
	cat	0	0	1	1	0
	kitten	0	0	1	1	0
	cute	1	1	0	0	0
	adorable	1	1	1	0	0
	gradients	0	0	1	1	1

Continuous Bag of Words (CBOW)

Given context, predict the word

Word Embeddings from Neural Networks SkipGram

Pro Eva

Evaluations of word2vec embeddings

Evaluations of word2vec embeddings

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skipgram model trained on 783M words with 300 dimensionality).

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

NNs vs. SVD

Pretrained Word Embeddings NNs vs. SVD

 Same basic idea! Dimensionality reduction leads to good abstractions

NNs vs. SVD

- Same basic idea! Dimensionality reduction leads to good abstractions
 - In fact, the two methods are provably equivalent in the simplest case

Neural Word Embedding as Implicit Matrix Factorization

Omer Levy
Department of Computer Science
Bar-Ilan University
omerlevy@gmail.com

NNs vs. SVD

- Same basic idea! Dimensionality reduction leads to good abstractions
 - In fact, the two methods are provably equivalent in the simplest case
- But embeddings from NNs can become more powerful (and harder to interpret) as:

Neural Word Embedding as Implicit Matrix Factorization

Omer Levy
Department of Computer Science
Bar-Ilan University
omerlevy@gmail.com

NNs vs. SVD

- Same basic idea! Dimensionality reduction leads to good abstractions
 - In fact, the two methods are provably equivalent in the simplest case
- But embeddings from NNs can become more powerful (and harder to interpret) as:
 - We add more layers

Neural Word Embedding as Implicit Matrix Factorization

Omer Levy
Department of Computer Science
Bar-Ilan University
omerlevy@gmail.com

NNs vs. SVD

- Same basic idea! Dimensionality reduction leads to good abstractions
 - In fact, the two methods are provably equivalent in the simplest case
- But embeddings from NNs can become more powerful (and harder to interpret) as:
 - We add more layers
 - We add more non-linearity

Neural Word Embedding as Implicit Matrix Factorization

Omer Levy
Department of Computer Science
Bar-Ilan University
omerlevy@gmail.com

NNs vs. SVD

- Same basic idea! Dimensionality reduction leads to good abstractions
 - In fact, the two methods are provably equivalent in the simplest case
- But embeddings from NNs can become more powerful (and harder to interpret) as:
 - We add more layers
 - We add more non-linearity
 - We invent more complex training objectives

Neural Word Embedding as Implicit Matrix Factorization

Omer Levy
Department of Computer Science
Bar-Ilan University
omerlevy@gmail.com

NNs vs. SVD

- Same basic idea! Dimensionality reduction leads to good abstractions
 - In fact, the two methods are provably equivalent in the simplest case
- But embeddings from NNs can become more powerful (and harder to interpret) as:
 - We add more layers
 - We add more non-linearity
 - We invent more complex training objectives
 - More next lecture(s)!

Neural Word Embedding as Implicit Matrix Factorization

Omer Levy
Department of Computer Science
Bar-Ilan University
omerlevy@gmail.com