Vidyavardhini's College of Engineering & Technology

Department of Computer Engineering

Experiment No. 6

Apply Boosting Algorithm on Adult Census Income Dataset and analyze the performance of the model

Date of Performance:4/09/23

Date of Submission:6/10/23

Vidyavardhini's College of Engineering & Technology

Department of Computer Engineering

Aim: Apply Boosting algorithm on Adult Census Income Dataset and analyze the performance of the model.

Objective: Apply Boosting algorithm on the given dataset and maximize the accuracy, Precision, Recall, F1 score.

Theory:

Suppose that as a patient, you have certain symptoms. Instead of consulting one doctor, you choose to consult several. Suppose you assign weights to the value or worth of each doctor's diagnosis, based on the accuracies of previous diagnosis they have made. The final diagnosis is then a combination of the weighted diagnosis. This is the essence behind boosting.

Algorithm: Adaboost- A boosting algorithm—create an ensemble of classifiers. Each one gives a weighted vote.

Input:

- D, a set of d class labelled training tuples
- k, the number of rounds (one classifier is generated per round)
- a classification learning scheme

Output: A composite model

Method

- 1. Initialize the weight of each tuple in D is 1/d
- 2. For i=1 to k do // for each round
- 3. Sample D with replacement according to the tuple weights to obtain D
- 4. Use training set D to derive a model M
- 5. Computer $error(M_{\cdot})$, the error rate of M_{\cdot}
- 6. Error(M_i)= $\sum w_i * err(X_i)$
- 7. If $Error(M_1) > 0.5$ then
- 8. Go back to step 3 and try again
- 9. endif
- 10. for each tuple in D_i that was correctly classified do
- 11. Multiply the weight of the tuple by $error(Mi)/(1-error(M_{\downarrow}))$
- 12. Normalize the weight of each tuple
- 13. end for

Vidyavardhini's College of Engineering & Technology

Department of Computer Engineering

To use the ensemble to classify tuple X

- 1. Initialize the weight of each class to 0
- 2. for i=1 to k do // for each classifier
- 3. $w = \log((1-\text{error}(M_i))/\text{error}(M_i))$ //weight of the classifiers vote
- 4. C=M(X) // get class prediction for X from M
- 5. Add w to weight for class C
- 6. end for
- 7. Return the class with the largest weight.

Dataset:

Predict whether income exceeds \$50K/yr based on census data. Also known as "Adult" dataset.

Attribute Information:

Listing of attributes:

>50K, <=50K.

age: continuous.

workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.

fnlwgt: continuous.

education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.

education-num: continuous.

marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.

occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.

relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.

race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.

sex: Female, Male.

Vidyavardhini's College of Engineering & Technology Department of Computer Engineering

capital-gain: continuous.

capital-loss: continuous.

hours-per-week: continuous.

native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad & Tobago, Peru, Hong, Holand-Netherlands.

Code:

Conclusion:

- 1. We dropped the null and not known values and converted the categorical data into numerical data using onehotencoding and the accuracy came out to be 86.21%
- XG boost had a better accuracy than that of the accuracy of random forest where random forest had accuracy of 84.508740 XGBOOST had accuracy of 86.21% thus concluding that XGBOOST was better fot this dataset.