Introductory Astronomy

Week 1: Positional Astronomy

Clip 5: Tilt and Seasons

It Tilts

- Earth's axis is tilted 23.5°
- Celestial equator tilted 23.5° from plane of orbit ecliptic
- Sun's orbit along Celestial sphere ecliptic tilted
 23.5° from Celestial equator
- Sun's Declination changes between 23.5 and -23.5
- Ecliptic meets equator at Vernal/Autumnal equinox at 0h/12h RA

Seasons

- When Sun North/South of equator
 - Days longer in North/South
 - Sun higher in the sky in North/South
 - Climate warming in North/South cooling in South/North
 Inside Arctic circle Sun becomes circumpolar/never rises (reverse for Antarctic circle)
- At equinox day/night equal everywhere
- Between tropics Sun is at Zenith once a year

How High is Sun at Noon?

- Athens is at Latitude 37.7N
- At equinox

At summer solstice

At winter solstice

Why Mean?

- 24h is an average Solar day
- Sun's RA increases over the year but not uniformly
- Sun moves around ecliptic almost uniformly but ecliptic is tilted near equinoxes and parallel to equator near solstices. So Eastward motion fastest near solstices.
- Almost... Earth very slightly nearer Sun in January

It Also Wobbles

- The Earth's axis wobbles like a spinning top – precession
- Celestial axis wobbles.
- North pole moves to the West in a circle of radius 23.5° every 26,000 years relative to stars

- So does celestial equator hence precession of the equinoxes
- Coordinates of stars change too – epoch J2000
- Age of Pisces gives way to age of Aquarius ca. 2600

Credits

- Sky Simulation: Starry Night http://www.starrynight.com/
- Astronomy Animations: University of Nebraska-Lincoln Astronomy Education Group http://astro.unl.edu/

