Автомат Глушкова

Лучшая команда разработчиков по ТФЯ

2022 г.

Chipollino 1/7

Линеаризация

Определение

Если регулярное выражение $r \in \mathcal{R}\mathcal{E}$ содержит п вхождений букв алфавита Σ , тогда линеаризованное регулярное выражение Linearize(r) получается из r приписыванием i-ой по счёту букве, входящей в r, индекса i.

Пример

Рассмотрим регулярное выражение:

Его линеаризованная версия:

$$(b_1a_2 \mid b_3)a_4a_5(a_6 \mid a_7b_8)^*$$

Chipollino

2/7

Множества First, Last, Follow

Определение

Пусть $r \in \mathcal{RE}$, тогда:

- множество First это множество букв, с которых может начинаться слово из $\mathcal{L}(r)$ (если $\varepsilon \in \mathcal{L}(r)$, то оно формально добавляется в First);
- множество Last это множество букв, которыми может заканчиваться слово из $\mathscr{L}(\mathbf{r})$;
- множество Follow(c) это множество букв, которым может предшествовать c. Т.е. $\{d \in \Sigma \mid \exists w_1, w_2(w_1cdw_2 \in \mathcal{L}(r))\}$.

Achtung!

Множество Follow в теории компиляции обычно определяется иначе — это множество символов, которые могут идти за выводом из определённого нетерминального символа. Два этих определения можно унифицировать, если рассматривать каждую букву в r как «обёрнутую» (в смысле, например, н.ф. Хомского).

First, Last, Follow — пример

Построим указанные множества для регулярного выражения $r = (ba \mid b)aa(a \mid ab)^*.$

Начнём с исходного регулярного выражения.

Исходное регулярное выражение

- First(r) = $\{b\}$.
- Last $(r) = \{a, b\}.$
- $\bullet \ \, \mathsf{Follow}_r(\mathtt{a}) = \big\{\mathtt{a},\mathtt{b}\big\}; \mathsf{Follow}_r(\mathtt{b}) = \big\{\mathtt{a}\big\}.$

Хотя данные множества описывают, как устроены слова из $\mathcal{L}(r)$ локально, однако они не исчерпывают всей информации о языке, поскольку разные вхождения букв в регулярное выражения никак не различаются.

Например, по множествам First и Last можно предположить, что $b \in \mathcal{L}(r)$, хотя это не так.

Chipollino 4/7

First, Last, Follow — пример

Построим указанные множества для регулярного выражения $r = (ba \mid b)aa(a \mid ab)^*$.

Вспомним, что $r_{Lin} = (b_1 a_2 \mid b_3) a_4 a_5 (a_6 \mid a_7 b_8)^*$.

Линеаризованное выражение

- $\bullet \ \mathsf{First}(\mathsf{r}_{\mathsf{Lin}}) = \big\{ \mathsf{b}_1, \mathsf{b}_3 \big\}.$
- $\quad \bullet \ \, \mathsf{Last}(r_{\mathsf{Lin}}) = \big\{\mathtt{a}_{\mathsf{5}}, \mathtt{a}_{\mathsf{6}}, \mathtt{b}_{\mathsf{8}}\big\}.$
- $$\begin{split} \bullet \ \, & \text{Follow}_{r_{\text{Lin}}}(b_1) = \big\{a_2\big\}; \, \text{Follow}_{r_{\text{Lin}}}(a_2) = \big\{a_4\big\}; \, \text{Follow}_{r_{\text{Lin}}}(b_3) = \big\{a_4\big\}; \\ & \text{Follow}_{r_{\text{Lin}}}(a_4) = \big\{a_5\big\}; \, \text{Follow}_{r_{\text{Lin}}}(a_5) = \big\{a_6, \, a_7\big\}; \\ & \text{Follow}_{r_{\text{Lin}}}(a_6) = \big\{a_6, \, a_7\big\}; \, \text{Follow}_{r_{\text{Lin}}}(a_7) = \big\{b_8\big\}; \\ & \text{Follow}_{r_{\text{Lin}}}(b_8) = \big\{a_6, \, a_7\big\}. \end{split}$$

В описании данных множеств содержится исчерпывающая информация о языке $\mathcal{L}(\mathbf{r}_{\mathsf{lin}})$.

Chipollino 4/7

Конструкция автомата Глушкова

Алгоритм построения Glushkov(r)

- Строим линеаризованную версию $r: r_{Lin} = Linearize(r)$.
- Находим First($r_{\sf Lin}$), Last($r_{\sf Lin}$), а также Follow $_{r_{\sf Lin}}(c)$ для всех $c \in \Sigma_{r_{\sf Lin}}$.
- Все состояния автомата, кроме начального (назовём его S), соответствуют буквам $c \in \Sigma_{r_{\rm tin}}$.
- Из начального состояния строим переходы в те состояния, для которых $c \in \mathsf{First}(r_\mathsf{Lin})$. Переходы имеют вид $S \stackrel{c}{\to} c$.
- Переходы из состояния c соответствуют элементам d множества Follow_{$r_{l,i}$} (c) и имеют вид $c \stackrel{d}{\to} d$.
- ullet Конечные состояния такие, что $c\in \mathsf{Last}(r_\mathsf{Lin})$, а также S, если $\varepsilon\in \mathscr{L}(\mathsf{R}).$
- Теперь стираем разметку, построенную линеаризацией, на переходах автомата. Конструкция завершена.

Пример автомата Глушкова

Исходное регулярное выражение:

$$(ba | b)aa(a | ab)^*$$

Линеаризованное регулярное выражение:

$$(b_1a_2 \mid b_3)a_4a_5(a_6 \mid a_7b_8)^*$$

Автомат Глушкова:

Подграфы, распознающие регулярные выражения, являющиеся подструктурами исходного, не имеют общих вершин. Это свойство автомата Глушкова используется в реализациях match-функций некоторых библиотек регулярных выражений.

Chipollino

Свойства автомата Глушкова

- Не содержит ε-переходов.
- Число состояний равно длине регулярного выражения (без учёта регулярных операций), плюс один (стартовое состояние).
- В общем случае недетерминированный.

Примечание

Для 1-однозначных регулярных выражений r автомат ${\tt Glushkov}(r)$ является детерминированным. Эту его особенность активно используют в современных библиотеках регулярных выражений, например, в RE2. Выигрыш может получиться колоссальным: например, ${\tt Thompson}((\mathfrak{a}^*)^*)$ является экспоненциально неоднозначным, а ${\tt Glushkov}((\mathfrak{a}^*)^*)$ однозначен и детерминирован!

Chipollino 7/7