## 绝密 \* 启用前

## 2019 年全国硕士研究生入学统一考试

## 森哥五套卷之数学(一)试卷(模拟一)

考生注意: 本试卷共二十三题, 满分 150 分, 考试时间为 3 小时.

得分 评卷人

一、选择题: 1~8 小题, 每小题 4 分, 共 32 分. 在每小题给出的四个选项中, 只有一个 符合要求, 把所选项前的字母填在题后的括号里.

- (1) 当  $x \to 0$  时, $(1 + \sin x x)^{\frac{1}{x}} 1$  与  $x^n$  是同阶无穷小,则  $n = (1 + \sin x x)^{\frac{1}{x}} 1$
- (A) 1
- (B) 2 (C) 3 (D) 4
- (2)  $\lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{i} \frac{1}{(n+i+j)^2} = ($ 
  - (A)  $\int_0^1 dx \int_0^x \frac{dy}{(1+x+y)^2}$  (B)  $\int_0^1 dx \int_0^1 \frac{dy}{(1+x+y)^2}$

  - (C)  $\int_0^1 dy \int_{1-y}^1 \frac{dx}{(1+x+y)^2}$  (D)  $\int_0^1 dy \int_0^{1-y} \frac{dx}{(1+x+y)^2}$
- - (A)  $I_1 < I_2 \perp I_3 < I_4$
- (B)  $I_1 < I_2 但 I_3 > I_4$
- (C)  $I_1 > I_2 \coprod I_3 > I_4$  (D)  $I_1 > I_2 \coprod I_3 < I_4$
- (4) 设a为正数. 若级数  $\sum_{n=1}^{\infty} \frac{a^n n!}{n^n}$  与  $\sum_{n=1}^{\infty} \frac{\sqrt{n+1} \sqrt{n-1}}{1+n^a}$  均为收敛的,则( ).
- (A)  $0 < a \le \frac{1}{2}$  (B)  $\frac{1}{2} < a < e$  (C) a = e (D) a > e
- (5) 已知 4 维列向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,若 $\alpha_i^T\beta_j$ =0, $\beta_j \neq 0, (i=1,2,3,j=1,2,3,4)$ ,则向量组

 $\beta_1, \beta_2, \beta_3, \beta_4$  的秩  $r(\beta_1, \beta_2, \beta_3, \beta_4) = ( )$ .

- (B) 2 (C) 3
- (D) 4
- (6) 已知 A, B 均为 3 阶矩阵,|A|=0,且满足 AB+3B=O,若 r(B)=2,则行列式|A+2E|=( ).
  - (A) 1
- (B) 2
- (C)4

(D) 8

(7) 设0 < P(A) < 1, 0 < P(B) < 1, 且P(B|A) > P(B),则以下正确的是(

(A) 
$$P(B|\overline{A}) > P(B)$$
 (B)  $P(A|B) > P(A)$ 

(B) 
$$P(A|B) > P(A)$$

(C) 
$$P(A|\bar{B}) > P(A)$$

(C) 
$$P(A|\overline{B}) > P(A)$$
 (D)  $P(\overline{B}|A) > P(\overline{B})$ 

(8) 设总体  $X \sim N(0,\sigma^2)$ ,  $X_1, X_2, X_3, X_4$  是来自总体 X 的简单随机样本,则统计量  $Y = \frac{X_1 + X_2}{|X_2 - X_4|}$  服从

的分布为().

- (A) F(1,1) (B) F(2,1) (C) t(1)

| 得分 | 评卷人 |
|----|-----|
|    |     |

二、填空题:9~14 小题,每小题 4分,共 24分. 把答案填在题中的横线上.

(9) 设 
$$y = f(x)$$
 在  $x = 0$  处连续,且  $\lim_{x \to 0} \frac{f(\sin x) - 1}{\sqrt{1 + x} - 1} = 1$ ,则曲线  $y = f(x)$  在  $x = 0$  处

的切线方程为

(10) 
$$I = \int_{-1}^{1} x(1+x^{2019})(e^x - e^{-x})dx = \underline{\qquad}$$

(11) 函数 
$$z = (x-1)\arcsin\frac{x}{y} + \ln(1+x^2+y)$$
, 则  $\mathbf{grad}z|_{(1,\sqrt{2})} = \underline{\hspace{1cm}}$ 

(12) 
$$I = \int_{\frac{1}{4}}^{\frac{1}{2}} dy \int_{\frac{1}{2}}^{\sqrt{y}} \sin \frac{y}{x} dx + \int_{\frac{1}{2}}^{1} dy \int_{y}^{\sqrt{y}} \sin \frac{y}{x} dx = \underline{\qquad}.$$

(14) 设
$$(X_1, Y_1) \sim N(1, 2; 1, 1; \frac{1}{3})$$
,  $(X_2, Y_2) \sim N(3, 4; 1, 1; -\frac{1}{3})$ , 分别记 $(X_1, Y_1), (X_2, Y_2)$ 的概率密度函

数为 $\varphi_1(x_1,y_1),\varphi_2(x_2,y_2)$ ,设(X,Y)的概率密度函数为 $f(x,y)=\frac{1}{2}[\varphi_1(x,y)+\varphi_2(x,y)]$ ,则  $E(X) = \underline{\hspace{1cm}}$ 

三、解答题:15~23 小题,共94分. 解答应写出文字说明、证明过程或演算步骤.

| 得分 | 评卷人 | The state of the s | $\int ax + x^b \cos \frac{1}{x},  x > 0,$           |     |
|----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----|
|    |     | (15)(本题满分 10 分)设 $f(x) = \langle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     | ) 内 |
|    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\lim \left(\frac{n+x}{x}\right)^n + c, \ x \le 0,$ |     |
|    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $n \to \infty$ $n = \chi$                           |     |

可导, 试确定常数a,b,c 的取值情况.

评卷人 得分

(16)(本题满分 10 分)设函数 f(u) 具有二阶连续导数,f(0)=1,f'(0)=-1,且当

 $x \neq 0$ 时  $z = f(x^2 - y^2)$ 满足等式

$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} - \frac{2}{x} \frac{\partial z}{\partial x} = (y^2 - x^2)(z + \cos \frac{x^2 - y^2}{2}),$$

求函数 f(u) 的表达式.



| 得分 | 评卷人 |
|----|-----|
|    |     |

(17) (本题满分 10 分) 求  $I = \oint_L (y^2 + z^2) dx + (z^2 + x^2) dy + (x^2 + y^2) dz$ ,其中 L 是

球面  $x^2 + y^2 + z^2 = 2bx$   $(z \ge 0)$  与柱面  $x^2 + y^2 = 2ax(b > a > 0)$  的交线, 从 z 轴正向

看, L为逆时针方向.

| 得分 | 评卷人 |
|----|-----|
|    |     |

(18)(**本题满分10分**)设幂级数 $1+\sum_{n=1}^{\infty}(-1)^n\frac{3n^2+2n+6}{n(n+2)}x^n$ 的和函数为s(x),求s(x)的表达式.

6

| 得分 | 评卷人 |
|----|-----|
|    |     |

(19)(本题满分 10 分)设函数 f(x) 在[0,1]上二阶可导,f(0) = f(1) = 0,且 f(x)

在[0,1]上的最大值及最小值均在(0,1)内取到.证明:(I)在(0,1)内存在两个不同

的点  $\xi_1, \xi_2$  使得  $f'(\xi_k) = f(\xi_k), k = 1, 2$ ; ( II ) 存在  $\eta \in (0,1)$  使得  $f''(\eta) + f'(\eta) = 2f(\eta)$ .

得分 评卷人 (20)(本题满分 11 分)

(I) 设有向量组 (I) 
$$\boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \boldsymbol{\alpha}_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \boldsymbol{\alpha}_3 = \begin{pmatrix} 1 \\ 2 \\ a \end{pmatrix},$$
 (II)  $\boldsymbol{\beta}_1 = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}, \boldsymbol{\beta}_2 = \begin{pmatrix} 1 \\ 0 \\ b \end{pmatrix}.$ 

(I) 问a,b 为何值时,向量组(II) 不能由向量组(I) 线性表示?

(II) 设
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & a \end{pmatrix}, \mathbf{B} = \begin{pmatrix} -1 & 1 \\ 2 & 0 \\ 1 & b \end{pmatrix}, 问 $a,b$ 为何值时矩阵方程 $\mathbf{A}\mathbf{X} = \mathbf{B}$ 有解,有解时求出其全部解.$$



| 得分 | 评卷人 |
|----|-----|
|    |     |

(21)(本题满分 11 分)设三元二次型  $f(x_1,x_2,x_3)=x^TAx$  (A 为实对称矩阵)经正交 变 换 x=Qy 化 为 标 准 形  $6y_3^2$  , 且 AB=O ,  $B=(\alpha_1,\alpha_2)$  , 其 中

 $\alpha_1 = (1,-1,-1)^T$ ,  $\alpha_2 = (-2,1,0)^T$ ,(I) 求所用的正交变换 x = Qy 及二次型  $f(x_1,x_2,x_3) = x^TAx$  的表达式; (II) 求  $(A-3E)^8$ .

| 得分 | 评卷人 |
|----|-----|
|    |     |

(22) (**本题满分 11 分**) 设随机变量  $X \sim \begin{pmatrix} -1 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ ,  $Y \sim \begin{pmatrix} -1 & 1 \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}$ , 且 X,Y 不相关.

(I) 求(X,Y)的联合分布律; (II) 判断 X,Y 是否相互独立; (III) 求  $Z=\frac{X}{Y}$  的分布律.



| 得分 | 评卷人 |
|----|-----|
|    |     |

(23) 设总体 X 的分布函数为

$$F(x) = \begin{cases} 0, & x < \theta, \\ 1 - e^{-\lambda(x - \theta)}, & x \ge \theta. \end{cases}$$

其中未知参数  $\lambda > 0$ ,  $X_1, X_2, \cdots, X_n$  为来自总体 X 的简单随机样本,

(I)  $\theta$ =1时,求 $\lambda$ 的矩估计量; (II)  $\theta$ =1时,求 $\lambda$ 的最大似然估计量; (III)  $\lambda$ =2时,求 $\theta$ 的最大似然估计量.