1.SVR-Grid

October 13, 2022

```
[1]: #importing the Libraies
     import numpy as np
     import matplotlib.pyplot as plt
     import pandas as pd
[2]: # Reading the Dataset
     dataset = pd.read_csv('insurance_pre.csv')
[3]: dataset
[3]:
                                  children smoker
                                                        charges
           age
                    sex
                            bmi
                        27.900
     0
            19
                female
                                         0
                                                    16884.92400
                                               yes
     1
                   male
                         33.770
                                         1
            18
                                                no
                                                     1725.55230
     2
            28
                   male
                         33.000
                                         3
                                                no
                                                     4449.46200
     3
            33
                   male
                         22.705
                                         0
                                                    21984.47061
                                                no
     4
            32
                         28.880
                                         0
                                                     3866.85520
                   male
                                                no
                                                •••
            50
                         30.970
                                         3
                                                    10600.54830
     1333
                   male
     1334
            18 female
                         31.920
                                         0
                                                     2205.98080
                                                no
     1335
               female
                         36.850
            18
                                                no
                                                     1629.83350
     1336
            21
                female
                         25.800
                                                     2007.94500
                                                no
     1337
            61
                female
                         29.070
                                                    29141.36030
                                               yes
     [1338 rows x 6 columns]
[]:
    dataset
     dataset=pd.get_dummies(dataset,drop_first=True)
[5]:
    dataset
[5]:
                         children
                    bmi
                                        charges
                                                  sex_male
                                                             smoker_yes
           age
            19
                27.900
                                    16884.92400
                                                         0
     0
     1
                33.770
                                 1
                                                         1
                                                                      0
            18
                                     1725.55230
     2
            28
                33.000
                                 3
                                     4449.46200
                                                         1
                                                                      0
     3
            33
                22.705
                                 0
                                    21984.47061
                                                         1
                                                                      0
            32
                28.880
                                     3866.85520
                                                         1
                                                                      0
```

```
50 30.970
                                3 10600.54830
      1333
                                                                    0
                                                        1
      1334
             18 31.920
                                0 2205.98080
                                                        0
                                                                    0
      1335
             18 36.850
                                0 1629.83350
                                                        0
                                                                    0
      1336
             21 25.800
                                0 2007.94500
                                                        0
      1337
             61 29.070
                                0 29141.36030
                                                        0
                                                                    1
      [1338 rows x 6 columns]
 [6]: indep=dataset[['age', 'bmi', 'children', 'sex_male', 'smoker_yes']]
      dep=dataset['charges']
 [7]: #split into training set and test
      from sklearn.model_selection import train_test_split
      X train, X_test, y_train, y_test = train_test_split(indep, dep, test_size = 1/
      \rightarrow3, random_state = 0)
 [8]: from sklearn.preprocessing import StandardScaler
      sc = StandardScaler()
      X_train = sc.fit_transform(X_train)
      X_test = sc.transform(X_test)
 []:
 [9]: from sklearn.model_selection import GridSearchCV
      from sklearn.svm import SVR
      param_grid = {'kernel':['rbf','poly','sigmoid','linear'],
                    'C': [10,100,1000,2000,3000], 'gamma': ['auto', 'scale']}
      grid = GridSearchCV(SVR(), param_grid, refit = True, verbose = 3,n_jobs=-1)
      # fitting the model for grid search
      grid.fit(X_train, y_train)
     Fitting 5 folds for each of 40 candidates, totalling 200 fits
 [9]: GridSearchCV(estimator=SVR(), n_jobs=-1,
                   param_grid={'C': [10, 100, 1000, 2000, 3000],
                                'gamma': ['auto', 'scale'],
                               'kernel': ['rbf', 'poly', 'sigmoid', 'linear']},
                   verbose=3)
[11]: # print best parameter after tuning
```

#print(grid.best_params_)

```
re=grid.cv_results_
print("The R_score value for best parameter {}:".format(grid.best_params_))
```

The R_score value for best parameter {'C': 3000, 'gamma': 'scale', 'kernel': 'poly'}:

[12]: table=pd.DataFrame.from_dict(re)

[13]: table

[13]:	mean_fit_time	std_fit_time	mean_score_time	std_score_time	param_C	\
0	0.225589	0.046237	0.108398	0.019392	10	
1	0.191590	0.008035	0.036402	0.005314	10	
2	0.277604	0.028574	0.053994	0.010414	10	
3	0.194797	0.017412	0.034620	0.004876	10	
4	0.285293	0.064482	0.127277	0.015214	10	
5	0.245986	0.057148	0.038208	0.007833	10	
6	0.347123	0.084148	0.044281	0.007096	10	
7	0.223376	0.051269	0.032241	0.003642	10	
8	0.254402	0.044610	0.140991	0.021690	100	
9	0.271605	0.072528	0.033775	0.005381	100	
10	0.298807	0.029107	0.043606	0.004195	100	
11	0.265804	0.048751	0.034005	0.005580	100	
12	0.278847	0.043272	0.111162	0.012941	100	
13	0.220319	0.020449	0.030294	0.002021	100	
14	0.276371	0.043382	0.045598	0.004599	100	
15	0.246357	0.020494	0.029416	0.003064	100	
16	0.322198	0.026580	0.117421	0.013363	1000	
17	0.318823	0.060011	0.030774	0.002317	1000	
18	0.342817	0.026006	0.041988	0.005437	1000	
19	0.335825	0.062581	0.027385	0.001353	1000	
20	0.347422	0.049640	0.110973	0.011608	1000	
21	0.327104	0.048083	0.036786	0.007283	1000	
22	0.328180	0.027982	0.043382	0.002231	1000	
23	0.323196	0.026447	0.031988	0.006815	1000	
24	0.390991	0.031962	0.116941	0.006559	2000	
25	0.666942	0.293389	0.035566	0.006084	2000	
26	0.378941	0.050494	0.046677	0.010079	2000	
27	0.445278	0.038421	0.036954	0.008009	2000	
28	0.399297	0.056169	0.118997	0.009284	2000	
29	0.768545	0.663585	0.030829	0.004483	2000	
30	0.359056	0.104075	0.041220	0.011444	2000	
31	0.339239	0.034891	0.033002	0.006061	2000	
32	0.372433	0.041572	0.108621	0.009229	3000	
33	1.244789	0.896527	0.031993	0.004470	3000	
34	0.369150	0.120150	0.039554	0.006811	3000	

35	0.525386	0.110224	0.028983	0.003986	3000
36	0.424375	0.048907	0.102556	0.018475	3000
37	0.702857	0.217121	0.030980	0.004711	3000
38	0.402735	0.088892	0.065773	0.032096	3000
39	0.426197	0.090825	0.029754	0.003584	3000

		, ,	,
^		param_kernel	\
0	auto	rbf	
1	auto	poly	
2	auto	sigmoid	
3	auto	linear	
4	scale	rbf	
5	scale	poly	
6	scale	sigmoid	
7	scale	linear	
8	auto	rbf	
9	auto	poly	
10	auto	sigmoid	
11	auto	linear	
12	scale	rbf	
13	scale	poly	
14	scale	sigmoid	
15	scale	linear	
16	auto	rbf	
17	auto	poly	
18	auto	sigmoid	
19	auto	linear	
20	scale	rbf	
21	scale	poly	
22	scale	sigmoid	
23	scale	linear	
24	auto	rbf	
25	auto	poly	
26	auto	sigmoid	
27	auto	linear	
28	scale	rbf	
29	scale	poly	
30	scale	sigmoid	
31	scale	linear	
32	auto	rbf	
33	auto	poly	
34	auto	sigmoid	
35	auto	linear	
36	scale	rbf	
37	scale	poly	
38	scale	sigmoid	
39	scale	linear	

```
split0_test_score
                                                params
          {'C': 10, 'gamma': 'auto', 'kernel': 'rbf'}
0
                                                                 -0.004176
         {'C': 10, 'gamma': 'auto', 'kernel': 'poly'}
1
                                                                  0.047420
2
      {'C': 10, 'gamma': 'auto', 'kernel': 'sigmoid'}
                                                                  0.044787
       {'C': 10, 'gamma': 'auto', 'kernel': 'linear'}
3
                                                                  0.387624
         {'C': 10, 'gamma': 'scale', 'kernel': 'rbf'}
4
                                                                 -0.003956
5
        {'C': 10, 'gamma': 'scale', 'kernel': 'poly'}
                                                                  0.043648
     {'C': 10, 'gamma': 'scale', 'kernel': 'sigmoid'}
6
                                                                  0.043946
7
      {'C': 10, 'gamma': 'scale', 'kernel': 'linear'}
                                                                  0.387624
         {'C': 100, 'gamma': 'auto', 'kernel': 'rbf'}
8
                                                                  0.303414
9
        {'C': 100, 'gamma': 'auto', 'kernel': 'poly'}
                                                                  0.542212
10
     {'C': 100, 'gamma': 'auto', 'kernel': 'sigmoid'}
                                                                  0.492088
     {'C': 100, 'gamma': 'auto', 'kernel': 'linear'}
11
                                                                  0.596232
12
        {'C': 100, 'gamma': 'scale', 'kernel': 'rbf'}
                                                                  0.304939
       {'C': 100, 'gamma': 'scale', 'kernel': 'poly'}
13
                                                                  0.532310
    {'C': 100, 'gamma': 'scale', 'kernel': 'sigmoid'}
14
                                                                  0.491855
     {'C': 100, 'gamma': 'scale', 'kernel': 'linear'}
15
                                                                  0.596232
16
        {'C': 1000, 'gamma': 'auto', 'kernel': 'rbf'}
                                                                  0.731430
       {'C': 1000, 'gamma': 'auto', 'kernel': 'poly'}
17
                                                                  0.799185
18
    {'C': 1000, 'gamma': 'auto', 'kernel': 'sigmoid'}
                                                                  0.232428
     {'C': 1000, 'gamma': 'auto', 'kernel': 'linear'}
19
                                                                  0.686126
20
       {'C': 1000, 'gamma': 'scale', 'kernel': 'rbf'}
                                                                  0.732079
      {'C': 1000, 'gamma': 'scale', 'kernel': 'poly'}
21
                                                                  0.798212
    {'C': 1000, 'gamma': 'scale', 'kernel': 'sigmo...
22
                                                               0.248266
23
    {'C': 1000, 'gamma': 'scale', 'kernel': 'linear'}
                                                                  0.686126
        {'C': 2000, 'gamma': 'auto', 'kernel': 'rbf'}
24
                                                                  0.788746
25
       {'C': 2000, 'gamma': 'auto', 'kernel': 'poly'}
                                                                  0.804603
    {'C': 2000, 'gamma': 'auto', 'kernel': 'sigmoid'}
26
                                                                 -0.656854
     {'C': 2000, 'gamma': 'auto', 'kernel': 'linear'}
27
                                                                  0.669958
28
       {'C': 2000, 'gamma': 'scale', 'kernel': 'rbf'}
                                                                  0.789144
      {'C': 2000, 'gamma': 'scale', 'kernel': 'poly'}
29
                                                                  0.804708
    {'C': 2000, 'gamma': 'scale', 'kernel': 'sigmo...
30
                                                               -0.370980
    {'C': 2000, 'gamma': 'scale', 'kernel': 'linear'}
31
                                                                  0.669958
32
        {'C': 3000, 'gamma': 'auto', 'kernel': 'rbf'}
                                                                  0.795104
33
       {'C': 3000, 'gamma': 'auto', 'kernel': 'poly'}
                                                                  0.804915
34
    {'C': 3000, 'gamma': 'auto', 'kernel': 'sigmoid'}
                                                                 -1.795299
35
     {'C': 3000, 'gamma': 'auto', 'kernel': 'linear'}
                                                                  0.669819
       {'C': 3000, 'gamma': 'scale', 'kernel': 'rbf'}
36
                                                                  0.795353
37
      {'C': 3000, 'gamma': 'scale', 'kernel': 'poly'}
                                                                  0.805169
   {'C': 3000, 'gamma': 'scale', 'kernel': 'sigmo...
                                                               -1.651895
38
    {'C': 3000, 'gamma': 'scale', 'kernel': 'linear'}
                                                                  0.669819
    split1_test_score split2_test_score split3_test_score
             0.022594
                                -0.118956
                                                   -0.082926
0
             0.077536
                                -0.060527
                                                   -0.009476
1
2
                               -0.072355
             0.081689
                                                   -0.027541
```

3	0.461268	0.288301	0.34	0540
4	0.022453	-0.119035	-0.08	2925
5	0.079780	-0.059229	-0.00	9498
6	0.082230	-0.072132	-0.02	7546
7	0.461268	0.288301	0.34	0540
8	0.319385	0.155546	0.20	8414
9	0.566743	0.471172		
10	0.545107	0.438714		
11	0.635776	0.566816		
12	0.318480	0.155033		
13	0.571466	0.474948		
14	0.544604	0.439299		
15				
	0.635776	0.566816		
16	0.716349	0.686476		
17	0.786769	0.821307		
18	0.306815	0.236688		
19	0.598398	0.586104		
20	0.715992	0.686057		0177
21	0.787019	0.823118	0.81	0712
22	0.377692	0.315321	0.29	1779
23	0.598398	0.586104	0.57	3860
24	0.764261	0.818616	0.79	4131
25	0.784782	0.847674	0.80	7280
26	-0.432695	-0.346330	-0.48	4052
27	0.592446	0.586953	0.57	2862
28	0.764022	0.818319	0.79	4133
29	0.784713	0.847781	0.80	7295
30	-0.421011	-0.350248	-0.48	3750
31	0.592446	0.586953		
32	0.772917	0.846181		
33	0.783304	0.852190		
34	-1.629662	-1.461919		
35	0.588893	0.587076		
36	0.772801	0.846034		
37	0.783163	0.852345		
38	-2.010670	-1.468842		
39	0.588893	0.587076		
39	0.566695	0.567076	0.57.	2049
			_+4 ++	
0	split4_test_score -0.103473	mean_test_score -0.057387	std_test_score	rank_test_score
0			0.056205	35
1	-0.050823	0.000826	0.054025	32
2	-0.051470	-0.004978	0.058648	34
3	0.297825	0.355112	0.063693	25
4	-0.103510	-0.057395	0.056230	36
5	-0.050317	0.000877	0.053658	31
6	-0.051337	-0.004968	0.058595	33
7	0.297825	0.355112	0.063693	25

```
8
                                                                               29
                    0.161756
                                      0.229703
                                                       0.069348
      9
                                                                               22
                    0.413719
                                      0.506281
                                                       0.056081
      10
                    0.425516
                                      0.474000
                                                       0.042447
                                                                               23
      11
                    0.537415
                                      0.585008
                                                       0.032600
                                                                               19
      12
                    0.161488
                                      0.229672
                                                       0.069604
                                                                               30
      13
                                                                               21
                    0.415264
                                      0.506299
                                                       0.055077
      14
                    0.424226
                                      0.473708
                                                       0.042461
                                                                               24
      15
                    0.537415
                                      0.585008
                                                       0.032600
                                                                               19
      16
                    0.613293
                                      0.691544
                                                       0.041718
                                                                               11
      17
                    0.719528
                                      0.787499
                                                       0.035885
                                                                                8
                                                                               28
      18
                                      0.282901
                    0.346868
                                                       0.043415
      19
                    0.556109
                                      0.600119
                                                       0.045217
                                                                               13
      20
                    0.613122
                                      0.691485
                                                       0.041876
                                                                               12
      21
                    0.719979
                                      0.787808
                                                       0.036003
                                                                                7
      22
                                                       0.044478
                                                                               27
                    0.346175
                                      0.315846
      23
                    0.556109
                                      0.600119
                                                       0.045217
                                                                               13
      24
                                                                                9
                    0.709676
                                      0.775086
                                                       0.036986
      25
                    0.745448
                                      0.797957
                                                       0.033268
                                                                                4
                                                                               38
      26
                   -0.076409
                                     -0.399268
                                                       0.190629
      27
                    0.556109
                                      0.595666
                                                       0.039218
                                                                               15
      28
                    0.709586
                                      0.775041
                                                       0.036992
                                                                               10
      29
                    0.745732
                                      0.798046
                                                       0.033220
                                                                                3
      30
                   -0.087414
                                     -0.342681
                                                       0.135687
                                                                               37
      31
                    0.556109
                                                                               15
                                      0.595666
                                                       0.039218
      32
                    0.725697
                                      0.790300
                                                       0.040188
                                                                                5
                                                                                2
      33
                    0.748175
                                      0.799749
                                                       0.034104
      34
                   -0.929359
                                     -1.505790
                                                       0.308601
                                                                               39
      35
                    0.557014
                                      0.595130
                                                       0.039068
                                                                               17
      36
                    0.725615
                                      0.790281
                                                       0.040189
                                                                                6
      37
                    0.748201
                                      0.799808
                                                       0.034165
                                                                                1
      38
                   -0.961821
                                     -1.561068
                                                       0.346643
                                                                               40
      39
                    0.557014
                                                       0.039068
                                      0.595130
                                                                               17
[14]: age_input=float(input("Age:"))
      bmi_input=float(input("BMI:"))
      children_input=float(input("Children:"))
      sex_male_input=int(input("Sex Male 0 or 1:"))
      smoker_yes_input=int(input("Smoker Yes 0 or 1:"))
     Age:32
     BMI:43
     Children:2
     Sex Male 0 or 1:0
     Smoker Yes 0 or 1:1
[15]:
```

	Future_Prediction=grid. →predict([[age_input,bmi_input,children_input,sex_male_input,smoker_yes_input]])#_ →change the paramter,play with it. print("Future_Prediction={}".format(Future_Prediction))
	Future_Prediction=[3316415.72004342]
[]:	
[]:	
[]:	
[]:	
[]:	
[]:	