- 1 -

Clean Pending Claims

1. (Currently amended) A compound of formula I

5

10

20

25

30

(or a pharmaceutically acceptable salt thereof) wherein:

 ${\rm A}^3$, ${\rm A}^4$, ${\rm A}^5$ and ${\rm A}^6$, together with the two carbons to which they are attached, complete a substituted benzene in which ${\rm A}^3$ is ${\rm CR}^3$, ${\rm A}^4$ is ${\rm CR}^4$, ${\rm A}^5$ is ${\rm CR}^5$, and ${\rm A}^6$ is ${\rm CR}^6$; wherein

R³ is hydrogen, methyl, methoxy, fluoro, chloro or carboxy;

one of R^4 and R^5 is hydrogen, (1-4C)alkyl, halo, trifluoromethyl, trifluoromethoxy, R^fO_- , $R^fO_2CCH_2O_-$, $HO(CH_2)_aO_-$ (in which a is 2, 3 or 4), $R^fO_2C_-$, $R^fO_2CCH_2_-$, R^gNH_- , $R^hSO_2_-$, hydroxymethyl, formyl, cyano, acetyl, 1-hydroxyethyl, 1-(hydroxyimino)ethyl, 1-(methoxyimino)ethyl, methylthio or $R^fO_2C(CH_2)_2_-$;

the other of R^4 and R^5 is hydrogen; and R^6 is hydrogen, methyl, fluoro, chloro or methoxy; in which R^f is hydrogen, (1-4C)alkyl or benzyl; R^g is hydrogen or R^hSO_2 -; and R^h is (1-4C)alkyl or dimethylamino; or each of R^3 , R^4 and R^6 is hydrogen; and R^5 is vinyl,

or each of R³, R⁴ and R⁰ is hydrogen; and R³ is vinyl, 2-cyanovinyl, 2-({(1-2C)alkoxy}carbonyl)vinyl or R^a in which R^a is phenyl (which is unsubstituted or bears one or more substituents independently selected from halo, methyl, methoxy and hydroxy) or heteroaryl (which heteroaryl is a 5-membered aromatic ring which has one to four heteroatoms selected from sulfur, oxygen and nitrogen or is a 6-membered aromatic ring which has one to three nitrogen atoms, wherein

the heteroaryl is attached at carbon and may bear one or more methyl substituents on carbon or nitrogen);

 L^1 is -CO-NH- such that $-L^1-Q^1$ is -CO-NH- Q^1 ;

 Q^1 is 3-pyridazinyl (which may bear a methyl, fluoro or chloro substituent at the 6-position);

R² is $-L^2-Q^2$ in which $-L^2-$ is -NH-CO-, -NH-CO-X-, -NH-CO-O-X-, -NH-CO-O-X-, -NH-CO-NH-X-, $-NH-CH_2-$, $-NH-C(CH_3)H-$, $-N(CH_3)-CH_2-$ or $-O-CH_2-$; and Q^2 is Q^{2A} , Q^{2B} , Q^{2C} , Q^{2D} , Q^{2E} or Q^{2F} wherein X is a single bond or methylene and the values of L^2 and Q^2 are together selected from $-NH-CO-X-Q^{2A}$, $-NH-CO-O-X-Q^{2A}$, $-NH-CO-NH-X-Q^{2A}$, $-NH-CH_2-Q^{2A}$, $-NH-CO-X-Q^{2B}$, $-NH-C(CH_3)H-Q^{2A}$, $-N(CH_3)-CH_2-Q^{2A}$, $-O-CH_2-Q^{2A}$, $-NH-CO-X-Q^{2B}$, $-NH-CO-Q^{2C}$, $-NH-CO-Q^{2D}$, $-NH-CO-Q^{2E}$ and $-NH-CO-Q^{2F}$ in which: Q^{2A} (showing the L^2 to which it is attached) is

15

25

10

5

in which

each of m and n independently is 0 or 1, or m is 2 and 20 $\,$ n is 1, and

RV is methyl, hydroxymethyl, {(1-2C)alkoxy}carbonyl; cyano, carbamoyl, thiocarbamoyl, or N-hydroxyamidino;

each of R^W and R^X independently is hydrogen or (1-3C)normal alkyl; or -CHRWRX is 2-indanyl or (showing the nitrogen to which it is attached) is

10

15

20

25

30

- 3 -

in which T is a single bond or methylene and U is methylene, ethylene, $\exp(-S(0)_{\mathbf{q}})$ (wherein q is 0, 1 or 2) or imino (which may bear a methyl substituent), or T is ethan-1,1-diyl and U is a single bond or methylene;

RY is hydrogen or methyl; and

R^Z is isopropyl, t-butyl, (3-6C)cycloalkyl, phenyl (which is unsubstituted or bears one or more substituents independently selected from halo, methyl, methoxy and hydroxy), 4-quinolinyl or heteroaryl (which heteroaryl is a 5-membered aromatic ring which has one to four heteroatoms selected from sulfur, oxygen and nitrogen or is a 6-membered aromatic ring which has one to three nitrogen atoms, wherein the heteroaryl is attached at carbon and may bear one or more methyl substituents on carbon or nitrogen);

or R^{2A} is -L^b-CH₂-R^b in which -L^b- is a direct bond,
-CH₂-, -C(CH₃)H- or -CH₂-CH₂-; and R^b is carboxy,
{(1-2C)alkoxy}carbonyl, cyano, carbamoyl or trifluoromethyl;
or R^{2A} is -CO-R^C in which R^C is hydrogen, (1-3C)alkyl,
{(1-2C)alkoxy}carbonyl-(CH₂)_C- (in which c is 1 or 2),
phenyl (which is unsubstituted or bears one or more
substituents independently selected from halo, methyl,
methoxy and hydroxy), heteroaryl (which heteroaryl is a
5-membered aromatic ring which has one to four heteroatoms
selected from sulfur, oxygen and nitrogen or is a 6-membered
aromatic ring which has one to three nitrogen atoms, wherein
the heteroaryl is attached at carbon and may bear one or
more methyl substituents on carbon or nitrogen) or -NR^dR^e in
which each of R^d and R^e is independently hydrogen, methyl or

ethyl, or $-NR^{d}R^{e}$ is pyrrolidino, piperidino, morpholino or thiomorpholino;

 ${\rm Q}^{2B}$ is 1-piperazinyl which bears at the 4-position the group ${\rm R}^{2A}$ (defined as above);

 Q^{2C} is 3,4-didehydropiperidin-4-yl which bears at the 1-position the group R^{2A} (defined as above);

 Q^{2D} is cyclohexyl which bears at the 4-position the group $-NR^{\mathrm{S}R^{\mathrm{t}}}$ in which each of R^{S} and R^{t} independently is hydrogen or methyl or R^{S} and R^{t} together are trimethylene or tetramethylene;

 Q^{2E} is 1-piperidinyl which bears at the 4-position the group $-NR^{S}R^{t}$ (defined as above); and

 Q^{2F} (showing the L^2 to which it is attached) is

$$-(L^2) R^p$$

15

20

5

10

in which R^O is hydrogen, halo, (1-6C)alkyl, hydroxy, (1-4C)alkoxy, benzyloxy or (1-4C)alkylthio; and R^P is acetylamino, 1-hydroxyethyl, 1-hydroxy-1-methylethyl, 1-methoxy-1-methylethyl, 4-piperidinyl, 4-pyridinyl, dimethylaminosulfonyl or -J-R^Q in which J is a single bond, methylene, carbonyl, oxy, -S(O)_Q- (wherein q is 0, 1 or 2), or -NR^T- (wherein R^T is hydrogen or methyl); and R^Q is (1-6C)alkyl, phenyl, 3-pyridyl or 4-pyridyl; or -NR^QR^T is pyrrolidino.

25

2. (Currently amended) The compound of formula I as claimed in Claim 1

15

(or a pharmaceutically acceptable salt thereof) wherein:

 ${\rm A}^3$, ${\rm A}^4$, ${\rm A}^5$ and ${\rm A}^6$, together with the two carbons to which they are attached, complete a substituted benzene in which ${\rm A}^3$ is ${\rm CR}^3$, ${\rm A}^4$ is ${\rm CR}^4$, ${\rm A}^5$ is ${\rm CR}^5$, and ${\rm A}^6$ is ${\rm CR}^6$; wherein

 ${
m R}^3$ is hydrogen, methyl, fluoro, chloro or carboxy; one of ${
m R}^4$ and ${
m R}^5$ is hydrogen, (1-4C)alkyl, halo, trifluoromethyl, trifluoromethoxy, ${
m R}^{\rm f}{
m O}$ -, ${
m R}^{\rm f}{
m O}_2{
m CCH}_2{
m O}$ -, HO(CH₂)_aO- (in which a is 2, 3 or 4), ${
m R}^{\rm f}{
m O}_2{
m C}$ -, ${
m R}^{\rm f}{
m O}_2{
m C}$ CCH₂-, ${
m R}^{\rm f}{
m N}$ H- or ${
m R}^{\rm h}{
m S}{
m O}_2$ -;

the other of R^4 and R^5 is hydrogen; and R^6 is hydrogen, methyl, fluoro, chloro or methoxy; in which R^f is hydrogen, (1-4C)alkyl or benzyl; R^g is hydrogen or R^hSO_2 -; and R^h is (1-4C)alkyl or dimethylamino; L^1 is -CO-NH- such that $-L^1-Q^1$ is -CO-NH- Q^1 ; Q^1 is 3-pyridazinyl (which may bear a methyl, fluoro or

 $R^2 \text{ is } -L^2-Q^2 \text{ in which } -L^2-\text{ is } -NH-CO-, -NH-CO-X-, \\ -NH-CO-O-X-, -NH-CO-NH-X-, -NH-CH_2-\text{ or } -O-CH_2-; \text{ and } Q^2 \text{ is } \\ Q^{2A}, Q^{2B}, Q^{2C}, Q^{2D}, Q^{2E} \text{ or } Q^{2F} \text{ wherein } X \text{ is a single bond or } \\ \text{methylene and the values of } L^2 \text{ and } Q^2 \text{ are together selected } \\ \text{from } -NH-CO-X-Q^{2A}, -NH-CO-O-X-Q^{2A}, -NH-CO-NH-X-Q^{2A}, \\ -NH-CH_2-Q^{2A}, -O-CH_2-Q^{2A}, -NH-CO-X-Q^{2B}, -NH-CO-Q^{2C}, \\ -NH-CO-Q^{2D}, -NH-CO-Q^{2E} \text{ and } -NH-CO-Q^{2F} \text{ in which:} \\ \end{cases}$

chloro substituent at the 6-position);

 $\mathbf{Q}^{2\mathbf{A}}$ (showing the \mathbf{L}^2 to which it is attached) is

30 in which

each of m and n independently is 0 or 1, and

 $\rm R^{2A}$ is hydrogen, t-butyl, methylsulfonyl, -CHRYRZ, -CHRWRX, or 4-pyridinyl (which is unsubstituted or bears a substituent RV at the 2- or 3-position) wherein

 R^V is methyl, hydroxymethyl, {(1-2C)alkoxy}carbonyl; cyano, carbamoyl, thiocarbamoyl, or N-hydroxyamidino;

each of R^W and R^X independently is hydrogen or (1-3C)normal alkyl; or -CHRWRX is 2-indanyl or (showing the nitrogen to which it is attached) is

10

15

20

25

30

5

in which T is a single bond or methylene and U is methylene, ethylene, $\exp(-S(0)_{\mathbf{q}})$ (wherein q is 0, 1 or 2) or imino (which may bear a methyl substituent), or T is ethan-1,1-diyl and U is a single bond or methylene;

RY is hydrogen or methyl; and

R^Z is isopropyl, t-butyl, (3-6C)cycloalkyl, phenyl (which is unsubstituted or bears one or more substituents independently selected from halo, methyl, methoxy and hydroxy), 4-quinolinyl or heteroaryl (which heteroaryl is a 5-membered aromatic ring which has one to four heteroatoms selected from sulfur, oxygen and nitrogen or is a 6-membered aromatic ring which has one to three nitrogen atoms, wherein the heteroaryl is attached at carbon and may bear one or more methyl substituents on carbon or nitrogen);

 ${\rm Q}^{2B}$ is 1-piperazinyl which bears at the 4-position the group ${\rm R}^{2A}$ (defined as above);

 Q^{2C} is 3,4-didehydropiperidin-4-yl which bears at the 1-position the group R^{2A} (defined as above);

 Q^{2D} is cyclohexyl which bears at the 4-position the group $-NR^{\mathrm{S}}R^{\mathrm{t}}$ in which each of R^{S} and R^{t} independently is

hydrogen or methyl or R^S and R^t together are trimethylene or tetramethylene;

 $\rm Q^{\rm 2E}$ is 1-piperidinyl which bears at the 4-position the group $\rm -NR^{\rm S}R^{\rm t}$ (defined as above); and

 Q^{2F} (showing the L^2 to which it is attached) is

$$-(L^2)$$
 R^p

- 3. (Currently amended) A compound of formula I (or a pharmaceutically acceptable salt thereof) as claimed in Claim 2 wherein:
- A^3 , A^4 , A^5 and A^6 , together with the two carbons to which they are attached, complete a substituted benzene in which A^3 is CR^3 , A^4 is CR^4 , A^5 is CR^5 , and A^6 is CR^6 ; wherein

R³ is hydrogen;

one of R^4 and R^5 is hydrogen, methyl, fluoro, chloro, trifluoromethyl, trifluoromethoxy, R^fO_2C - or R^gNH -;

the other of R^4 and R^5 is hydrogen; and R^6 is hydrogen;

in which R^f is hydrogen, (1-4C)alkyl or benzyl; R^g is 30 hydrogen or R^hSO_2 -; and R^h is (1-4C)alkyl or dimethylamino; L^1 is -CO-NH- such that $-L^1-Q^1$ is -CO-NH- Q^1 ;

- 8 -

 Q^1 is 3-pyridazinyl (which may bear a methyl, fluoro or chloro substituent at the 6-position);

 $\rm R^2$ is $\rm -L^2-Q^2$ in which $\rm -L^2-$ is -NH-CO-, -NH-CO-X-, -NH-CO-O-X-, -NH-CO-NH-X-, -NH-CH2- or -O-CH2-; and $\rm Q^2$ is $\rm Q^{2A}$, $\rm Q^{2B}$, $\rm Q^{2C}$, $\rm Q^{2D}$, $\rm Q^{2E}$ or $\rm Q^{2F}$ wherein X is a single bond or methylene and the values of $\rm L^2$ and $\rm Q^2$ are together selected from -NH-CO-X-Q^{2A}, -NH-CO-O-X-Q^{2A}, -NH-CO-NH-X-Q^{2A}, -NH-CH_2-Q^{2A}, -O-CH_2-Q^{2A}, -NH-CO-X-Q^{2B}, -NH-CO-Q^{2C}, -NH-CO-Q^{2D}, -NH-CO-Q^{2E} and -NH-CO-Q^2F in which:

 $\mathbf{Q}^{2\mathbf{A}}$ (showing the \mathbf{L}^2 to which it is attached) is

$$-(L^2)$$
 $N-R^{2\ell}$
 $(CH_2)_n$

in which

each of m and n independently is 0 or 1, and R^{2A} is hydrogen, $-CHR^{Y}R^{Z}$, $-CHR^{W}R^{X}$, or 4-pyridinyl (which is unsubstituted or bears a substituent R^{V} at the 2-or 3-position) wherein

 R^V is methyl, hydroxymethyl, {(1-2C)alkoxy}carbonyl; cyano, carbamoyl, thiocarbamoyl, or N-hydroxyamidino;

each of R^W and R^X independently is hydrogen or (1-3C)normal alkyl; or -CHRWRX is 2-indanyl or (showing the nitrogen to which it is attached) is

25

20

in which T is a single bond or methylene and U is methylene, oxy, thioxy or imino (which may bear a methyl substituent), or T is ethan-1,1-diyl and U is a single bond or methylene;

RY is hydrogen or methyl; and

R^z is isopropyl, t-butyl, (3-6C)cyclopropyl, phenyl (which is unsubstituted or bears one or more substituents independently selected from halo, methyl, methoxy and hydroxy), 4-quinolinyl or heteroaryl (which heteroaryl is a 5-membered aromatic ring which has one to four heteroatoms selected from sulfur, oxygen and nitrogen or is a 6-membered aromatic ring which has one to three nitrogen atoms, wherein the heteroaryl is attached at carbon and may bear one or more methyl substituents on carbon or nitrogen);

 Q^{2B} is 1-piperazinyl which bears at the 4-position the group R^{2A} (defined as above);

 Q^{2C} is 3,4-didehydropiperidin-4-yl which bears at the 1-position the group R^{2A} (defined as above);

 Q^{2D} is cyclohexyl which bears at the 4-position the group $-NR^{\mathrm{S}R^{\mathrm{t}}}$ in which each of R^{S} and R^{t} independently is hydrogen or methyl or R^{S} and R^{t} together are trimethylene or tetramethylene;

 $\rm Q^{\rm 2E}$ is 1-piperidinyl which bears at the 4-position the group $\rm -NR^{\rm S}R^{\rm t}$ (defined as above); and

 Q^{2F} (showing the L^2 to which it is attached) is

$$-(L^2)$$
- \mathbb{R}^p

25

5

10

15

20

in which R^O is hydrogen and R^P is acetylamino, 1-hydroxyethyl, 1-hydroxy-1-methylethyl, 1-methoxy-1-methylethyl, 4-piperidinyl, 4-pyridinyl,

dimethylaminosulfonyl or $-J-R^q$ in which J is a single bond, methylene, carbonyl, oxy, $-S(0)_q$ - (wherein q is 0, 1 or 2),

or $-NR^r$ - (wherein R^r is hydrogen or methyl); and R^q is (1-6C)alkyl, phenyl, 3-pyridyl or 4-pyridyl.

- 4. (Original) The compound of Claim 1, 2 or 3 wherein halo is fluoro, chloro, bromo or iodo; (1-2C)alkyl is methyl or ethyl; (1-3C)normal alkyl is methyl, ethyl or propyl; (1-4C)alkyl is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, or t-butyl; (1-6C)alkyl is methyl, ethyl, propyl, butyl, pentyl or hexyl; (3-6C)cycloalkyl is cyclopropyl, cyclobutyl, cyclopenytyl or cyclohexyl.
 - 5. (Currently amended) The compound of Claim 4 wherein Q^1 is 6-chloropyridazin-3-yl.
- of Currently amended) The compound of Claim 4
 wherein R² is (1-isopropylpiperidin-4-ylcarbonyl)amino,
 (1-cyclohexylpiperidin-4-ylcarbonyl)amino,
 (4-isopropylpiperazin-1-ylcarbonyl)amino, [1-(tetrahydro-pyran-4-yl)piperidin-4-ylcarbonyl]amino, [4-(1-pyrroli-dinyl)piperidin-1-ylcarbonyl]amino, [1-(4-pyridinyl)piperidin-4-ylmethyl]amino, [1-(2-carboxypyridin-4-yl)piperidin-4-ylmethyl]amino, or [1-(2-methoxycarbonylpyridin-4-yl)-piperidin-4-ylmethyl]amino.
- 7. (Currently amended) The compound as claimed in Claim 4 wherein each of R^3-R^6 is hydrogen.
- 8. (Currently amended) The compound as claimed in Claim 4 wherein each of ${\bf R}^3$, ${\bf R}^4$ and ${\bf R}^6$ is hydrogen and ${\bf R}^5$ is 30 chloro or fluoro.
 - 9. (Currently amended) The compound as claimed in Claim 1 wherein each of \mathbb{R}^3 , \mathbb{R}^4 and \mathbb{R}^6 is hydrogen and \mathbb{R}^5 is \mathbb{R}^4 wherein \mathbb{R}^4 is phenyl, furanyl, thienyl, 2-isothiazolyl or

- 11 -

pyridyl; and wherein halo is fluoro, chloro, bromo or iodo; (1-2C)alkyl is methyl or ethyl; (1-3C)normal alkyl is methyl, ethyl or propyl; (1-4C)alkyl is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, or t-butyl; (1-6C)alkyl is methyl, ethyl, propyl, butyl, pentyl or hexyl; (3-6C)cycloalkyl is cyclopropyl, cyclobutyl, cyclopenytyl or cyclohexyl.

- 10. (Currently amended) The pharmaceutically

 10 acceptable salt of a compound of formula I as claimed in any
 of Claims 1-3 which is an acid-addition salt made from a
 basic compound of formula I and an acid which provides a
 pharmaceutically acceptable anion or a salt which is made
 from an acidic compound of formula I and a base which

 15 provides a pharmaceutically acceptable cation.
 - 11. (Currently amended) A pharmaceutical formulation comprising in association with a pharmaceutically acceptable carrier, diluent or excipient, a novel compound of formula I (or a pharmaceutically acceptable salt thereof) as provided in any of Claims 1-3.
 - 12. (Original) A process for preparing a compound of formula I (or a pharmaceutically acceptable salt thereof) as provided in Claim 1 or 2 which is selected from
 - (A) for a compound of formula I in which $-L^2-Q^2$, is $-NH-CO-Q^2$, $-NH-CO-X-Q^2$, $-NH-CO-NH-X-Q^2$, acylating an amine of formula II,

$$A_{A_{3}}^{5} \xrightarrow{A_{6}} L^{1}-Q^{1}$$

$$NH_{2}$$

$$II$$

20

using a corresponding acid of formula $HO-CO-Q^2$, $HO-CO-X-Q^2$, $HO-CO-X-Q^2$, or $HO-CO-NH-X-Q^2$, or an activated derivative thereof;

(B) for a compound of formula I in which $-L^2-Q^2$ is $-O-CH_2-Q^{2A}$, akylating a phenol of formula III

$$A^{5} \xrightarrow{A^{6}} L^{1}-Q^{1}$$

$$A \xrightarrow{A^{3}} OH$$
III

using a reagent of formula $Y-CH_2-Q^{2A}$ in which Y is a conventional leaving group;

(C) acylating an amine of formula H_2N-Q^1 , or a deprotonated derivative thereof, using an acid of formula IV, or an activated derivative thereof;

$$A_{1}^{5}$$
 A_{1}^{6}
 A_{1}^{6}
 A_{1}^{6}
 A_{1}^{6}
 A_{1}^{6}
 A_{2}^{6}
 A_{1}^{6}
 A_{2}^{6}
 A_{3}^{6}
 A_{1}^{6}
 A_{2}^{6}
 A_{3}^{6}
 A_{4}^{6}
 A_{3}^{6}
 A_{4}^{6}
 A_{4}^{6}
 A_{5}^{6}
 A_{5

15

20

5

10

- (D) for a compound of formula I in which R^2 is $-NH-CH_2-Q^{2A}$, alkylating an amine of formula II directly, using a compound of formula Y-CH₂-Q^{2A}, or indirectly by reductive alkylation using an aldehyde of formula Q^{2A}-CHO;
- (E) for a compound of formula I in which R^2 is $-NH-CO-O-X-Q^{2A}$, or $-NH-CO-NH-X-Q^{2A}$, acylating an alcohol of formula $HO-X-Q^{2A}$ or an amine of formula NH_2-X-Q^{2A} , using an activated derivative of an acid of formula VI;

$$A_{\parallel}^{5}$$
 A_{\parallel}^{6}
 A_{\parallel}^{1}
 A_{\parallel}^{4}
 A_{\parallel}^{3}
 A_{\parallel}^{4}
 A_{\parallel}^{3}
 A_{\parallel}^{4}
 A_{\parallel}^{4}
 A_{\parallel}^{3}
 A_{\parallel}^{4}
 A_{\parallel}^{4}
 A_{\parallel}^{4}
 A_{\parallel}^{4}
 A_{\parallel}^{4}
 A_{\parallel}^{4}
 A_{\parallel}^{4}

- (F) for a compound of formula I in which R^2 is $-NH-CO-X-Q^{2B}$ in which X is a single bond, acylating at the 1-position a piperazine of formula $H-Q^{2B}$, using an activated derivative of an acid of formula VI;
- (G) for a compound of formula I in which R^2 is $-NH-CO-X-Q^{2B}$ in which X is methylene, alkylating at the 1-position a piperazine of formula $H-Q^{2B}$, using an alkylating agent of formula VII

15

20

25

5

$$A_{l}^{5}$$
 A_{l}^{6}
 A_{l}^{1}
 A_{l}^{3}
 A_{l}^{4}
 A_{l}^{3}
 A_{l}^{4}
 A_{l}^{3}
 A_{l}^{4}
 A_{l}^{3}
 A_{l}^{4}
 A_{l}^{3}
 A_{l}^{4}
 A_{l}^{3}
 A_{l}^{4}
 A_{l}^{4}
 A_{l}^{3}
 A_{l}^{4}
 A_{l

in which Y is a leaving group;

- (H) for a compound of formula I in which R^{2A} is methylsulfonyl, substituting the amino nitrogen of a corresponding compound of formula I in which R^{2A} is hydrogen using an activated derivative of methanesulfonic acid;
- (I) for a compound of formula I in which R^{2A} is $-CHR^YR^Z$ or $-CHR^WR^X$, alkylating the amino nitrogen of a corresponding compound of formula I in which R^{2A} is hydrogen using an alkylating agent of formula Y-CHRYRZ or Y-CHRWRX or reductively alkylating the amine using a compound of formula $RY-CO-R^Z$ or R^W-CO-R^X ;
- (J) for a compound of formula I in which R^{2A} is 4-pyridinyl (which is unsubstituted or bears a substituent R^V at the 2- or 3-position), substituting the amino nitrogen of a corresponding compound of formula I in which R^{2A} is hydrogen using a corresponding pyridine reagent bearing a leaving group Y at the 4-position;
- (K) for a compound of formula I in which R^{2A} is 30 4-pyridinyl in which R^V is alkoxycarbonyl, esterifying a corresponding compound of formula I in which R^V is carboxy;

15

- (L) for a compound of formula I in which R^{2A} is 4-pyridinyl in which R^{V} is hydroxymethyl, reducing the ester of a corresponding compound of formula I in which R^{V} is alkoxycarbonyl;
- (M) for a compound of formula I in which R^{2A} is 4-pyridinyl in which R^{V} is carbamoyl, amidating the ester of a corresponding compound of formula I in which R^{V} is alkoxycarbonyl;
- (N) for a compound of formula I in which R^{2A} is 10 4-pyridinyl in which R^V is thiocarbamoyl, adding H_2S to the nitrile of a corresponding compound of formula I in which R^V is cyano;
 - (0) for a compound of formula I in which R^{2A} is 4-pyridinyl in which R^{V} is N-hydroxyamidino, adding $H_{2}NOH$ to the nitrile of a corresponding compound of formula I in which R^{V} is cyano;
 - (P) for a compound of formula I in which R^{2A} is 4-pyridinyl in which R^{V} is carboxy, decomposing the ester of a corresponding compound of formula I in which R^{V} is alkoxycarbonyl;
 - (Q) for a compound of formula I in which $-NR^SR^t$ is other than amino, alkylating a corresponding compound of formula I in which $-NR^SR^t$ is amino using a conventional method;
- (R) for a compound of formula I which bears -NRSR^t, reductively alkylating H-NRSR^t using a corresponding compound but in which the carbon to bear the -NRSR^t group bears an oxo group;
- (S) for a compound of formula I in which R^p is 1-hydroxy-1-methylethyl, adding a methyl group to the carbonyl group of a corresponding compound of formula I in which R^p is acetyl using an organometallic reagent;
 - (T) for a compound of formula I in which R^p is 1-methoxy-1-methylethyl, treating a corresponding compound

10

30

of formula I in which RP is 1-hydroxy-1-methylethyl with methanol and an acid catalyst;

- (U) for a compound of formula I in which \mathbb{R}^4 or \mathbb{R}^5 is amino, reducing the nitro group of a compound corresponding to a compound of formula I but in which \mathbb{R}^4 or \mathbb{R}^5 is nitro;
- (V) for a compound of formula I in which R^4 or R^5 is $R^9 NH-$ and R^9 is $R^h SO_2-$, substituting the amino group of a corresponding compound of formula I in which R^4 or R^5 is amino using an activated derivative of the sulfonic acid $R^h SO_2-OH$;

whereafter, for any of the above procedures, when a functional group is protected using a protecting group, removing the protecting group;

whereafter, for any of the above procedures, when a

15 pharmaceutically acceptable salt of a compound of formula I

is required, it is obtained by reacting the basic form of a

basic compound of formula I with an acid affording a

physiologically acceptable counterion or the acidic form of

an acidic compound of formula I with a base affording a

20 physiologically acceptable counterion or by any other

conventional procedure;

and wherein, unless otherwise specified, A^3-A^6 , L^1 , Q^1 and R^2 have any of the values defined in Claim 1 or 2.

25 13. (Currently amended) A method of inhibiting factor Xa in a mammal comprising administering to the mammal in need thereof, an effective amount of a compound of formula I as provided in any of Claims 1-3 1-10.

14-16. (Cancelled)

17. (New) The compound of Claim 5 wherein R² is (1-isopropylpiperidin-4-ylcarbonyl)amino, (1-cyclohexylpiperidin-4-ylcarbonyl)amino,

20

(4-isopropylpiperazin-1-ylcarbonyl)amino, [1-(tetrahydro-pyran-4-yl)piperidin-4-ylcarbonyl]amino, [4-(1-pyrroli-dinyl)piperidin-1-ylcarbonyl]amino, [1-(4-pyridinyl)piperidin-4-ylmethyl]amino, [1-(2-carboxypyridin-4-yl)piperidin-4-ylmethyl]amino, or [1-(2-methoxycarbonylpyridin-4-yl)-piperidin-4-ylmethyl]amino.

- 18. (New) The compound as claimed in Claim 5 wherein each of ${\rm R}^3{\rm -R}^6$ is hydrogen.
- 19. (New) The compound as claimed in Claim 6 wherein each of R^3-R^6 is hydrogen.
- 20. (New) The compound as claimed in Claim 17 wherein each of ${\rm R}^3{\rm -R}^6$ is hydrogen.
 - 21. (New) The compound as claimed in Claim 5 wherein each of \mathbb{R}^3 , \mathbb{R}^4 and \mathbb{R}^6 is hydrogen and \mathbb{R}^5 is chloro or fluoro.
 - 22. (New) The compound as claimed in Claim 6 wherein each of \mathbb{R}^3 , \mathbb{R}^4 and \mathbb{R}^6 is hydrogen and \mathbb{R}^5 is chloro or fluoro.
- 23. (New) The compound as claimed in Claim 17 wherein each of \mathbb{R}^3 , \mathbb{R}^4 and \mathbb{R}^6 is hydrogen and \mathbb{R}^5 is chloro or fluoro.
- 24. (New) The compound of Claim 9 wherein Q^1 is 30 6-chloropyridazin-3-yl.
 - 25. (New) The compound of Claim 9 wherein R^2 is (1-isopropylpiperidin-4-ylcarbonyl)amino, (1-cyclohexylpiperidin-4-ylcarbonyl)amino,

(4-isopropylpiperazin-1-ylcarbonyl)amino, [1-(tetrahydro-pyran-4-yl)piperidin-4-ylcarbonyl]amino, [4-(1-pyrroli-dinyl)piperidin-1-ylcarbonyl]amino, [1-(4-pyridinyl)piperidin-4-ylmethyl]amino, [1-(2-carboxypyridin-4-yl)piperidin-4-ylmethyl]amino, or [1-(2-methoxycarbonylpyridin-4-yl)-piperidin-4-ylmethyl]amino.

- 26. (New) The compound of Claim 24 wherein R² is

 (1-isopropylpiperidin-4-ylcarbonyl)amino,

 (1-cyclohexylpiperidin-4-ylcarbonyl)amino,

 (4-isopropylpiperazin-1-ylcarbonyl)amino, [1-(tetrahydro-pyran-4-yl)piperidin-4-ylcarbonyl]amino, [4-(1-pyrroli-dinyl)piperidin-1-ylcarbonyl]amino, [1-(4-pyridinyl)piperidin-4-ylmethyl]amino, [1-(2-carboxypyridin-4-yl)piperidin-4-ylmethyl]amino, or [1-(2-methoxycarbonylpyridin-4-yl)-piperidin-4-ylmethyl]amino.
- 27. (New) The compound selected from

 N-(6-chloropyridazin-3-yl)-2-[[1-(4-pyridinyl)
 20 piperidin-4-ylcarbonyl]amino]benzamide and

 5-chloro-N-(6-chloropyridazin-3-yl)-2-[(1-isopropylpiperidin-4-ylcarbonyl)amino]benzamide, or

 a pharmaceutically acceptable salt thereof.