RSA Conference 2015 San Francisco | April 20-24 | Moscone Center

SESSION ID: MBS-F01

Side-Channels in the 21st Century: Information Leakage From Smartphones

Gabi Nakibly, Ph.D.

National Research & Simulation Center Rafael – Advanced Defense Systems Inc. gabin@rafael.co.il

Yan Michalevsky

Stanford University ymcrcat@gmail.com

CHANGE

Challenge today's security thinking

Side-Channel Attacks on Mobile Devices

Session's Main Points

- Smartphones are susceptible to information leakage in weird and unexpected ways.
- Rogue applications might do harm even if they have few permissions.
- The bottom line: treat every app you install as having 'root' on the phone.
 - After this presentation you will think twice before installing a "harmless" game from an unofficial market having "zero" permissions.

RSA Conference 2015 San Francisco | April 20-24 | Moscone Center

Sensor ID: Mobile Device Identification via Sensor Fingerprinting

H. Bojinov, Y. Michalevsky, G. Nakibly and D. Boneh

Physical Identification of a smartphone

- The research question: Can an app (or a website) identify the phone on which it runs?
- Answer: Yes!
 - Android: Device ID ,Serial number ,MAC Address, ANDROID ID.
 - iOS:UDID, identifierForVendor, advertisingIdentifier, MAC Address.
- But, all of them either require the user's permission or can be changed by the user or do not survive factory reset.

The Basic Idea

- Each sensor has a tiny inaccuracy that is very specific to it.
- Such inaccuracies can be used to fingerprint the phone.
- In our research we have focused on the following sensors:
 - Accelerometer
 - Microphone/speakers

Accelerometer

Measures the acceleration of the phone in all three directions.

Accelerometer Skew

But how can we measure S and O?

We need some reference acceleration...

Measuring S and O

As a first step we tried to identify S and O for the Z axis

Measuring S and O

 Measure the acceleration face up and then face down and then do some calculations

$$S_z = (z_{m^+} - z_{m^-})/2g$$

 $O_z = (z_{m^+} + z_{m^-})/2$

Initial Experiment for 17 iPhones

Results for 10,000(!) phones

- An estimated 7.5 bits of identification.
- If we can measure S
 and O for all three
 axes we can get 3*7.5
 = 22.5 bits of
 identification.

Sensor ID Result Chart

your device ID is (0.341178,1.007) and it is unique among 17749 records

the green square marks your device's ID

more IDs in a cell make that cell more red

Measuring S and O for all axes

- A phone does not usually stand up...
- Alternatively, we can measure the phone is 6 resting positions.

Measuring S and O for all axes

And then do some math....

$$\left(\frac{x_m - O_x}{S_x}\right)^2 + \left(\frac{y_m - O_y}{S_y}\right)^2 + \left(\frac{z_m - O_z}{S_z}\right)^2 = g^2$$

Accelerometer is not alone...

- Other sensors can also be fingerprinted
- For example, the microphone

Microphone

Each microphone has a characteristic frequency response curve

How can we fingerprint a microphone?

- We need some audio reference....
- We can usethe phone's speaker

Experiment for 16 Motorola Droids

RSA Conference 2015 San Francisco | April 20-24 | Moscone Center

Gyrophone: Recognizing Speech from Gyroscope Signals

Y. Michalevsky, G. Nakibly and D. Boneh

Scenario

People are talking in the vicinity of a mobile device

Microphone vs. Gyroscope Access

Requires permission

Does NOT require permission

MEMS Gyroscopes

- Major Vendors:
 - STM Microelectronics (Samsung Galaxy)
 - InvenSense (Google Nexus)

Gyroscopes are susceptible to sound

70 Hz tone PSD

50 Hz tone PSD

Gyroscopes are (lousy, but still) microphones

- Hardware sampling frequency:
 - InvenSense: up to 8000 Hz
 - STM Microelectronics: 800 Hz
- Software sampling frequency:
 - Android: 200 Hz
 - ◆ iOS: 100 Hz

- Very low Signal-to-Noise ratio (SNR)
- Acoustic sensitivity threshold:
 ~70 dB
 Comparable to a loud
 conversation
- Sensitive to sound angle of arrival
- Directional microphone (due to 3 axes)

Browsers allow gyroscope access too

Webkip iblassed browsers

		Sampling Freq. [Hz]
Android 4.4	application	200
	Chrome	25
	Firefox	200
	Opera	20
iOS 7	application	100
	Safari	20
	Chrome	20

Problem: How do we look into higher frequencies?

Speech Range

Adult Male

85 - 180 Hz

Adult Female

165 – 255 HZ

We can sense higher frequencies signals

Due to aliasing

Recording tones between 120 to 160 Hz on a Nexus 7 device

Experimental setup

- Room. Simple Speakers. Smartphone.
- Subset of TIDIGITS corpus
- 10 speakers × 11 samples × 2 pronunciations = 220 total samples

Speech analysis using a single Gyroscope

- Gender identification
- Speaker identification
- Isolated word recognition
 - Speaker independent
 - Speaker dependent

Nexus 4	84%
Galaxy S3	82%

Random guess probability is 50%

A good chance to identify the speaker

Nexus 4	Mixed Female/Male	50%
	Female speakers	45%
	Male speakers	65%

Random guess probability is 20% for one gender, and 10% for a mixed set

Isolated word recognition (speaker independent)

4	Mixed Female/Male	17%
Nexus	Female speakers	26%
ž	Male speakers	23%

Random guess probability is 9%

Isolated word recognition (speaker dependent)

#RSAC

Nexus 4 Male speaker 65%

Random guess probability is 9%

Can we use multiple devices to improve the method?

Answer: Yes. Raising speaker dependent recognition rate to 77%.

RSA*Conference2015

San Francisco | April 20-24 | Moscone Center

Defenses

Software Defenses

- Low-pass filter the raw samples
- 0-20 Hz range might be enough for browser based applications (learning from Web-Kit's example)
- Access to high sampling rate should require a special permission

Hardware Defenses

- Hardware filtering of sensor signals (not subject to configuration)
- Acoustic masking

More details can be found here

crypto.stanford.edu/gyrophone

Apply

- Next week you should:
 - Relax. We know it was shocking.
- In the three months following this presentation you should:
 - Notice which sensors applications on your phone have permissions to
 - For each application ask yourself the following question:
 - If this app were to have 'root' privileges do I trust it enough to run on my phone?
 - If the answer is no, you should probably uninstall it.
 - At least for devices that handles sensitive information

To conclude

- We believe this is only the beginning
- Many more unexpected information leakages will be found in coming years.
- Treat every app you install as having 'root' on the phone!
- Now we know you will think twice before installing that "harmless" game

Questions?

◆ Yan Michalevsky – <u>yanm2@cs.stanford.edu</u>

◆ Gabi Nakibly – gabin@rafael.co.il

