MATEMÁTICAS BÁSICAS Segunda entrega

- 1. Demuestra que dados dos números racionales $\frac{a}{b} < \frac{c}{d}$ existe otro número racional $\frac{n}{m}$ tal que $\frac{a}{b} < \frac{n}{m} < \frac{c}{d}$. Deduce que en el intervalo $[\frac{a}{b}, \frac{c}{d}]$ hay infinitos números racionales.
- 2. Demuestra que si n es un número natural y $n \ge 3$ se tiene que

$$n! > 3^{n-2}$$
.

MATEMÁTICAS BÁSICAS Segunda entrega

- 1. Demuestra que si $y \in \mathbb{R}$, entonces $y^2 2y + 2 > 0$. Justifica que ningún número real x cumple $x^4 2x^2 + 2 = 0$.
- 2. Demuestra $a, b \in \mathbb{N}$ no son múltiplos de 3, entonces su producto ab tampoco lo es. Prueba que si el cubo n^3 de un numero natural n es divisible entre 3, entonces n también divisible entre 3.

MATEMÁTICAS BÁSICAS Segunda entrega

- 1. Estudia la veracidad o falsedad de la siguiente afirmación: Existen números reales positivos $x,y\in\mathbb{R}^2$ tales que $x^2+y^2=2$ e $y=x^2$. ¿Existen x<0 e y>0 tales que $x^2+y^2=2$ e $y=x^2$?
- 2. Determina cuál de los dos números siguientes es más grande $\sum_{k=1}^{n} 2^k$ o $\sum_{k=1}^{n} k^2$.

MATEMÁTICAS BÁSICAS Segunda entrega

1. Demuestra que si $a,b,c,d\in\mathbb{Z},\ b,d\neq 0$, los números racionales $\frac{a}{b}$ y $\frac{c}{d}$ son iguales y $b+d\neq 0$, entonces

$$\frac{a}{b} = \frac{a+c}{b+d} = \frac{c}{d} \,.$$

2. Demuestra que si n=2k+1 es un número natural impar, entonces n^2-1 es divisible por 8. [Ayuda: Puede ser útil proceder por inducción sobre k]. ¿Es cierto para todo $n \in \mathbb{Z}$ impar que n^2-1 es múltiplo de 8?