Cheatsheet on mathematical analysis.

Author/s: Róbert Jurčo

Date: 19.3.2020

Last modified at: 24.3.2020

I. Notes

1. **Def.** = definition, **Lemma.** = Lemma, **Th.** = theorem, **St.** = statement, **Note.** = note

II. Introduction

1.

II. Cardinality

- 1. **Def.** (Cardinality of sets). Let A, B be two sets.
 - (1) A and B have the same cardinality, m(A) = m(B), if there exists a bijection from A to B,
 - (2) A has cardinality less than or equal to the cardinality of B, $m(A) \leq m(b)$, if there exists an injective function from A into B,
 - (3) A has cardinality strictly less than the cardinality of B, m(A) < m(B), if m(A) = m(B) and $m(A) \le m(B)$ do not hold.
- 2. **Th.** (Cantor-Bernsstein theorem). Let A, B be two sets. If $m(A) \leq m(B)$ and $m(B) \leq m(A)$ then m(A) = m(B).
- 3. **St.** Every infinite subset of \mathbb{N} has same cardinality as $\mathbb{N}, \aleph_0 := m(\mathbb{N}).$
- 4. **St.** There can't be an infinite set that has smaller cardinality then \aleph_0 .
- 5. **Def.** (Finite, countable and uncountable sets).
 - (1) Set with cardinality less than \aleph_0 is a *finite set*,
 - (2) set that has cardinality \aleph_0 , is a countably infinite,
 - (3) set with cardinality greater than \aleph_0 , is uncountable.r
- 6. **Note.** (Cantor diagonalization). Consists of ordering a set A in a way $(\forall a_{ij...} \in A \mid i+j+...=n)_n^{\infty}$. From there we can see that rational numbers, $\mathbb{Q} \in \mathbb{N}^2$, are countable.
- 7. St. Set \mathbb{R} is uncountable, $m(\mathbb{R}) = 2^{\aleph_0}$ and is called the cardinality of continuum.
- 8. St. Irrational numbers are uncountable.

III. Limits I, continuity, derivatives

1.

IV. Limits II

1.

V. Primitive functions

VI. Continuous and differentiable functions

1.

1.

VII. Taylor's polynomial

- 1. **Def.** Let $f: \mathbb{R} \to \mathbb{R}, x_0 \in \mathbb{R}, n \in \mathbb{N}_0$ and $f^{(n)}(x_0) \in \mathbb{R}$. Then a polynomial $P_n(x) = \sum_{k=0}^n \frac{f^{(k)}}{k!} (x x_0)^k$ is called a *Taylor's polynomial* of degree n associated with the function f at x_0 .
- 2. **Th.** (Peano theorem). Let $f: \mathbb{R} \to \mathbb{R}, x_0 \in \mathbb{R}, n \in \mathbb{N}$ and $f^{(n)}(x_0) \in \mathbb{R}$. Then there exists just one polynomial Q_n of the maximum n-th degree, such that $f(x) Q_n(x) = o((x x_0)^n)$. Moreover, Q_n is a Taylor's polynomial.
- 3. **Th.** Let $f: \mathbb{R} \to \mathbb{R}, x > x_0, n \in \mathbb{N}_0$ and f has a finite n—th derivative at $[x_0, x]$ and n + 1-th derivative at (x_0, x) . Let $\Phi: \mathbb{R} \to \mathbb{R}$ to has a finite non-zero derivative at (x_0, x) and to be continuous at $[x_0, x]$. Then there exists $\xi \in (x_0, x)$ such, that $R_{n+1} = \frac{(x-\xi)^n}{n!} \frac{\Phi(x) \Phi(x_0)}{\Phi'(\xi)} f^{(n+1)}(\xi)$ is called a remainder of Taylor's polynomial.
- 4. **St.** (Lagrange's remainder). Let $\Phi(t) = (x-t)^{n+1}$ from remainder theorem. Then $R_{n+1} = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$.
- 5. **St.** (Cauchy's remainder). Let $\Phi(t) = t$ from remainder theorem. Then $R_{n+1} = \frac{f^{(n+1)}(x_0 + \Theta(x-x_0))}{n!} (1-\Theta)^n (x-x_0)^{n+1}$ where $\Theta := \frac{\xi x_0}{x-x_0} \in (0,1)$.
- 6. **St.** Maclaurin series for basics functions: $e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n}) \qquad \forall x \in \mathbb{R}$ $\cos x = \sum_{k=0}^{n} (-1)^{k} \frac{x^{2k}}{(2k)!} + o(x^{2n+1}) \qquad \forall x \in \mathbb{R}$ $\sin x = \sum_{k=0}^{n} (-1)^{k} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}) \qquad \forall x \in \mathbb{R}$ $\ln(1+x) = \sum_{k=0}^{n} (-1)^{k-1} \frac{x^{k}}{k} + o(x^{n}) \qquad \forall x \in (-1,1]$ $(1+x)^{\alpha} = \sum_{k=0}^{n} {\alpha \choose k} x^{k} + o(x^{n}) \qquad \forall x \in (-1,1]$ where $n \in \mathbb{N}, \alpha \in \mathbb{R}$ and ${\alpha \choose k} = \frac{\alpha(\alpha-1)...(\alpha-k+1)}{k!}$.

VIII. Newton's and Riemann's integral

1.

IX. Ordinary differential equations

1. **Def.** (ODR). Let $n \in \mathbb{N}$ and $f : \mathbb{R}^{n+2} \to \mathbb{R}$. Then $f(x, y, y', \dots, y^{(n)}) = 0$ is called scalar ordinary differential equation of n-th order. Function $y : (a, b) \to \mathbb{R}$ is called a solution of ODR $f(x, y, y', \dots, y^{(n)}) = 0$, if y has own derivatives of n-th order at (a, b) and

- $\forall x \in (a,b) : f(x, y, y', \dots, y^{(n)}) = 0.$
- 2. **Def.** (System of ODR of 1st order). Let $\mathbf{F}: \mathbb{R}^{m+1} \to \mathbb{R}^m$. Then $\mathbf{y}' = \mathbf{F}(x, \mathbf{y})$ is called a *system of ODR of* 1st order with solution $\mathbf{y}: (a, b) \to \mathbb{R}^m$ that has own derivatives of n-th order at (a, b) and $\forall x \in (a, b): \mathbf{y}' = \mathbf{F}(x, \mathbf{y})$.
- 3. **Def.** (Cauchy problem). Let $\mathbf{F}: \mathbb{R}^{m+1} \to \mathbb{R}^m$. A Cauchy problem for an equation $\mathbf{y}' = \mathbf{F}(x, \mathbf{y})$ at (a, b) asks for its solution $\mathbf{y}: \mathbb{R}^m \to \mathbb{R}$ that obeys $\forall x \in (a, b): \mathbf{y}' = \mathbf{F}(x, \mathbf{y})$ and $\mathbf{y}(x_0) = \mathbf{y}_0$, where $x_0 \in (a, b)$ and $\mathbf{y}_0 \in \mathcal{D}_{\mathbf{F}} \subset \mathbb{R}^m$ are given values.

X. Series

- 1. **Def.** Let $\{a_k\} \subset \mathbb{R}$ be a sequence. Then $\sum_{k=1}^{\infty} a_k$ is denoting a (number) *series*. Number $s_n = \sum_{k=1}^{n} a_k$ is called the *n*-th *partial sums*.
- 2. **Def.** The series is convergent if $\lim_{n\to\infty} s_n \in \mathbb{R}$ or \mathbb{C} , is divergent if $\lim_{n\to\infty} |s_n| \to \infty \in \mathbb{R}^*$ or \mathbb{C}^* , or otherwise is oscillating.
- 3. **Note.** If series has only non-negative terms, it is convergent or divergent.
- 4. **Note.** A change in finite number of finite terms does not change a convergence of series, so we can cut off the beggining of series to have a series which can be tested by convergence tests.
- 5. **Th.** (The necessary condition of convergence). Let $\sum_{k=1}^{\infty} a_k$ be convergent. Then $\lim_{k\to\infty} a_k = 0$.
- 6. **Th.** (B-C condition for series). Series $\sum_{k=1}^{\infty} a_k$ is convergent if it obeys B-C condition: $\forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N} \cap [n_o, \infty), \forall p \in \mathbb{N} : |\sum_{k=n+1}^{n+p} a_k| < \epsilon$.
- 7. **Th.** (Arithemtic of series). Let $\sum_{k=1}^{\infty} a_k = A \in \mathbb{R}^*, \sum_{k=1}^{\infty} b_k = B \in \mathbb{R}^*, \alpha, \beta \in \mathbb{R}$. Then $\sum_{k=1}^{\infty} (\alpha a_k + \beta b_k) = \alpha A + \beta B$, when right side is meaningfull.
- 8. **Def.** A series $\sum_{k=1}^{\infty} a_k$ is convergent absolutely if $\sum_{k=1}^{\infty} |a_k|$ is convergent, and is convergent not-absolutely if if $\sum_{k=1}^{\infty} a_k$ is convergent $\sum_{k=1}^{\infty} |a_k|$ is not.
- 9. **Th.** If $\sum_{k=1}^{\infty} a_k$ is convergent absolutely, then is also clasically.
- 10. **Def.** Let $\{a_n\} \subset [0,\infty)$ be a sequence. Then $\sum_{k=1}^{\infty} (-1)^k a_k$ is called and *alternating* series.
- 11. **Th.** (Leibniz criterion). Let $\{a_n\}$ be non-negative non-increasing sequence. Then $\sum_{k=1}^{\infty} (-1)^k a_k$ is convergent $\iff \lim_{k\to\infty} a_k = 0$.
- 12. **Th.** (Comparison criterion). Let $a_k, b_k \subset \mathbb{R}$ such, that

 $\exists k_0 \in \mathbb{N}, \exists C \in \mathbb{R}, \forall k \ge k_0 : |a_k| \le C|b_k|.$

Then, if $\sum_{k=1}^{\infty} b_k$ is absolutely convergent $\Rightarrow \sum_{k=1}^{\infty} a_k$ is convergent (also absolutely).

And, if $\sum_{k=1}^{\infty} a_k$ is divergent $\Rightarrow \sum_{k=1}^{\infty} b_k$ is divergent.

- 13. **Th.** (Ratio comparison criterion). Let $a_k, b_k \subset (0, \infty)$ such, that $\exists k_0 \in \mathbb{N} \forall k \geq k_0 : a_{k+1}/a_k \leq b_{k+1}/b_k$. Then, if $\sum_{k=1}^{\infty} b_k$ is convergent $\Rightarrow \sum_{k=1}^{\infty} a_k$ is convergent. And, if $\sum_{k=1}^{\infty} a_k$ is divergent $\Rightarrow \sum_{k=1}^{\infty} b_k$ is divergent.
- 14. **Th.** (Limiting comparison criterion). Let $a_k, b_k \subset (0,\infty), k_0 \in \mathbb{N}$ and $\lim_{k\to\infty} a_k/b_k \in (0,\infty)$. Then $\sum_{k=1}^{\infty} b_k$ is convergent $\iff \sum_{k=1}^{\infty} a_k$ is convergent. Moreover, if $a_k, b_k \subset (0,\infty), k_0 \in \mathbb{N}$ and $\lim_{k\to\infty} a_k/b_k \in [0,\infty)$. Then $\sum_{k=1}^{\infty} b_k$ is convergent $\implies \sum_{k=1}^{\infty} a_k$ is convergent.
- 15. **Th.** (Integral criterion). Let $a \in \mathbb{N}$ and $f : \mathbb{R} \to \mathbb{R}$ is continuous, possitive and non-increasing on $[a, \infty]$, Then $\sum_{k=a}^{\infty} f(k)$ is convergent $\iff (\mathcal{N}) \int_{a}^{\infty} f \, \mathrm{d}x \in \mathbb{R}$.
- 16. **Th.** (Chauchy's root crit.) Let $\{a_k\} \subset [0, \infty), k_0 \in \mathbb{N}$. (1) $\exists q \in [0, 1), \forall k > k_0 : \sqrt[k]{a_k} \leq q \Rightarrow \sum_{k=1}^{\infty} a_k$ converges, (2) $\forall k > k_0 : \sqrt[k]{a_k} \geq 1 \Longrightarrow \sum_{k=1}^{\infty} a_k$ diverges.
- 17. **Th.** (Limiting Cauchy's root crit.) Let $\{a_k\} \subset [0, \infty)$. If $\lim_{k \to \infty} \sqrt[k]{a_k} < 1$, the series converges. If $\lim_{k \to \infty} \sqrt[k]{a_k} > 1$, the series diverges.
- 18. **Th.**(d'Alembert's ratio crt.) Let $\{a_k\} \subset (0, \infty), k_0 \in \mathbb{N}$. (1) $\exists q \in [0, 1), \forall k > k_0 : \frac{a_{k+1}}{a_k} \leq q \Rightarrow \sum_{k=1}^{\infty} a_k \text{ converges}$. (2) $\forall k > k_0 : \frac{a_{k+1}}{a_k} \geq 1 \Rightarrow \sum_{k=1}^{\infty} a_k \text{ diverges}$.
- 19. **Th.** (Limiting ratio criterion). Let $\{a_k\} \subset (0, \infty)$. If $\lim_{k\to\infty} \frac{a_{k+1}}{a_k} < 1$, the series converges, If $\lim_{k\to\infty} \frac{a_{k+1}}{a_k} > 1$, the series diverges.
- 20. **Th.** (Raabe's criterion) Let $\{a_k\} \subset (0,\infty)$ and $k, k_0 \in \mathbb{N}$. (1) $\exists q > 1, \forall k > k_0 : k(\frac{a_{k+1}}{a_k} - 1) \geq q \Rightarrow \sum_{k=1}^{\infty} a_k$ converges. If $\lim_{k \to \infty} k(\frac{a_{k+1}}{a_k} - 1) > 1$, the series converges. (2) $\forall k > k_0 : k(\frac{a_{k+1}}{a_k} - 1) \leq 1 \Rightarrow \sum_{k=1}^{\infty} a_k$ diverges. Moreover, $\lim_{k \to \infty} k(\frac{a_{k+1}}{a_k} - 1) < 1$, the series diverges.
- 21. **Th.** (Gauss's criterion) Let $\{a_k\} \subset (0,\infty)$. $\exists p,q \in \mathbb{R}$ and $\epsilon,C>0$ such, that $\frac{a_k}{a_{k+1}}=p+\frac{q}{k}+\frac{t_k}{k^{1+\epsilon}}$, where $|t_k| \leq C$.
 - (1) If p > 1, $\sum_{k=1}^{\infty} a_k$ converges and if p < 1, diverges.
 - (2) If p = 1 and q > 1, the series converges.
 - (3) If p = 1 and $q \le 1$, the series diverges.
- 22. **Th.** (Abel and Dirichlet criteria). Let $\{a_k\}, \{b_k\} \subset \mathbb{R}$,

- $\{a_k\}$ be monotonic. Dirichlet: If $\{a_k\} \to 0$ and $\{b_k\}$ has bounded partial sums, then $\sum_{k=1}^{\infty} a_k b_k$ converges. Abel: If $\{a_k\}$ is bounded and $\sum_{k=1}^{\infty} b_k$ converges, then $\sum_{k=1}^{\infty} a_k b_k$ converges.
- 23. **St.** Complex variant of Abel and Dirichlet criteria have $\{a_k\} \subset \mathbb{R}, \{b_k\} \subset \mathbb{C}$ because of monotony of $\{a_k\}$.
- 24. **St.** Let $a \in \mathbb{R}$. Then $\{\sin(ak)\}$ has bounded partial sums, and if a is not a multiple of 2π then $\{\cos(ak)\}$ has bounded partial sums.
- 25. **Def.** (Rearrangement of series). Let $\{a_k\} \subset \mathbb{R}$ and $\varphi : \mathbb{N} \to \mathbb{N}$ be a bijetion. Then a series $\sum_{k=1}^{\infty} a_{\varphi(k)}$ is called the *rearrangement* of $\sum_{k=1}^{\infty} a_k$ with respect to bijection φ .
- 26. **Def.** Let $x \in \mathbb{R}$. We define a possitive part of x as $x^+ := \max\{x, 0\}$ and negative part as $x^- := \max\{-x, 0\}$.
- 27. **Th.** (Characterization of absolute/not-absolute convergence). Let $\{a_k\} \subset \mathbb{R}$. Then

 (1) $\sum_{k=1}^{\infty} a_k$ converges absolutely $\Leftrightarrow \sum_{k=1}^{\infty} a_k^+$ and $\sum_{k=1}^{\infty} a_k^-$ converges.
 - (2) $\sum_{k=1}^{\infty} a_k$ converges not-absolutely $\Rightarrow \sum_{k=1}^{\infty} a_k^+ = \infty$ and $\sum_{k=1}^{\infty} a_k^- = -\infty$.
- 28. **Th.** (Rearrangement of abs. convergent series). Let $\{a_k\} \subset \mathbb{R}$ and series $\sum_{k=1}^{\infty} a_k$ converges absolutely. Then every rearrangement of it converges absolutely and has same sum.
- 29. **Th.** (Riemann rearrangement theorem). Let $\{a_k\} \subset \mathbb{R}$ and series $\sum_{k=1}^{\infty} a_k$ converges not-absolutely. Then for every $S \in \mathbb{R}^*$ there exists rearrangement of $\sum_{k=1}^{\infty} a_k$ with sum S.
- 30. **Def.** Let M be a countable set. A generalized series $\sum_{m \in M} a_m$ converges, if there exists a bijection $\varphi : M \to \mathbb{N}$ a bijection, such that $\sum_{k=1}^{\infty} a_{\varphi(k)}$ is absolutely convergent. Then we define $\sum_{m \in M} a_m := \sum_{k=1}^{\infty} a_{\varphi(k)}$.
- 31. **Th.** (Cauchy's series product theorem). Let $\{a_k\}, \{b_k\} \subset \mathbb{R}$ and let $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ be convergent absolutely. Then $\sum_{i,j=1}^{\infty} a_i b_j$ converges absolutely and $\sum_{i,j=1}^{\infty} a_i b_j = (\sum_{k=1}^{\infty} a_k)(\sum_{k=1}^{\infty} b_k)$.
- 32. **St.** (Cauchy's equation). Let $\{a_k\}, \{b_k\} \subset \mathbb{R}$, then $\sum_{i,j=1}^{\infty} a_i b_j = \sum_{n=1}^{\infty} (\sum_{i+j=n+1} a_i b_j)$.
- 33. **Lemma.** (Convergence of arhitmetic means). Let $\{a_k\} \subset \mathbb{R}$ such that $\lim_{k\to\infty} a_k = A \in \mathbb{R}^*$. We define $\{b_k\}$ so that $b_j = \frac{1}{i} \sum_{k=1}^{j} a_k$. Then $\lim_{k\to\infty} b_k = A$.

- 34. **Def.** (Cesàro summation). Let $\{a_k\} \subset \mathbb{R}$. $\forall n \in \mathbb{N} : s_n = \sum_{k=1}^n a_k, \sigma_n = \frac{1}{n} \sum_{k=1}^n s_k$. We say that $\sum_{k=1}^\infty a_k$ is Cesàro summable, if $\lim_{n\to\infty} \sigma_n = A \in \mathbb{R}$. Number A is then called Cesàro sum of $\sum_{k=1}^\infty a_k$, denoted as $(C,1) \sum_{k=1}^\infty a_k = A$.
- 35. **Th.** (Cauchy condensation test). Let $\{a_k\} \in [0, \infty)$ be non-increasing sequence. Then $\sum_{k=1}^{\infty} a_k$ converges $\Leftrightarrow \sum_{k=1}^{\infty} 2^k a_{2^k}$ converges.
- 36. **Th.** (The necessary condition of convergence). Let $\{p_k\} \subset (0,\infty)$ and let $\Pi_{k=1}^{\infty} p_k$ be convergent. Then $\lim_{k\to\infty} p_k = 1$.
- 37. **Th.** Let $\{p_k\} \subset (0,\infty)$ or $\{p_k\} \subset (-1,0)$. Then $\prod_{k=1}^{\infty} (1+p_k)$ is convergent $\iff \sum_{k=1}^{\infty} p_k$ is convergent.

XI. Power series

- 1. **Def.** (Power series). Let $\{a_n\} \subset \mathbb{C}$ and $z_0 \subset \mathbb{C}$. Then a series $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ is called a *power series* centered around z_0 .
- 2. **Def.** (Radius of convergence). Let $\{a_n\} \subset \mathbb{C}$ and $z_0 \in \mathbb{C}$. Then R is the radius of convergence, if $R \in \mathbb{R}^*$, R > 0 and the series converges if |z a| < R and diverges if |z a| > R.
- 3. **Th.** (Convergence of power series). Let $\{a_n\} \in \mathbb{C}$, and let $R := (\limsup_{k \to \infty} \sqrt[k]{|a_k|})^{-1}$, usign $\frac{1}{0} = \infty$ and $\frac{1}{\infty} = 0$. Then (1) the series $\sum_{k=0}^{\infty} a_k z^k$ has a radius of absolute convergence R,
 - (2) if $\lim_{k\to\infty} |\frac{a_{k+1}}{a_k}|$ exists, then it is equal to R,
 - (3) if $\lim_{k\to\infty} \sqrt[k]{|a_k|}$ exists, then it is equal to $\frac{1}{R}$.
- 4. **Lemma.** Let $\{a_n\} \subset \mathbb{C}$. Then power series $\sum_{k=0}^{\infty} a_k z^k$ and $\sum_{k=1}^{\infty} k a_k z^{k-1}$ have a same radius of convergence.
- 5. **Th.** (Derivative of power series). Let $\{a_n\} \subset \mathbb{C}$. Then for $x \in (-R, R)$, where $R \geq 0$ is a radius of convergence of associated power series, holds $(\sum_{k=0}^{\infty} a_k z^k)' = \sum_{k=1}^{\infty} k a_k z^{k-1}$.
- 6. **St.** Every power series at its circle of convergence defines infinitely continuously differentiable function.
- 7. **Th.** (Integral of power series). Let $\{a_n\} \subset \mathbb{C}$. (1) For $x \in \mathbb{R}$ inside circle of convergence we have $\int (\sum_{k=0}^{\infty} a_k z^k) dz = \sum_{k=0}^{\infty} \frac{a_k}{k+1} z^{k+1} + C.$
 - (2) If $a, b \in (-R, R)$, where R is radius of convergence of $\sum_{k=0}^{\infty} a_k z^k$, then
 - $(\mathcal{R}) \int_a^b (\sum_{k=0}^\infty a_k z^k) dz = (\mathcal{N}) \int_a^b (\sum_{k=0}^\infty a_k z^k) dz = \sum_{k=0}^\infty (\mathcal{R}) \int_a^b a_k z^k dz = \sum_{k=0}^\infty (\mathcal{N}) \int_a^b a_k z^k dz.$
- 8. **Def.** (Taylor series). Let $f: \mathbb{R} \to \mathbb{R}$ be an infinitely

differentiable at $x_0 \in \mathbb{R}$. Then $\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$ we call a Taylor series of f at x_0 .

- 9. **Th.** (Borel's lemma). Let $\{a_k\} \subset \mathbb{R}, x_0 \in \mathbb{R}$ and $\exists \delta > 0 : \sum_{k=0}^{\infty} a_k (x x_0)^k$ converges at $(x_0 \delta, x_0 + \delta)$. Then $\sum_{k=0}^{\infty} a_k (x x_0)^k$ is a Taylor series of its sum at x_0 .
- 10. **Def.**
- 11. **Th.**
- 12. **Th.**
- 13. **Th.**
- 14. **Def.**
- 15. **Th.**

XII. Metric spaces

1.

XII. Functions of several variables

1.

XIII. Classical calculus of variations

1.

XIV. Series of functions

1

XV. Lebesgue integral

1

XVI. Lebesgue spaces

1

XVII. Line and surface integrals

1.

XVIII. Differentail forms

1.

XIX. Fourier series

1.

XX. Fourier transform

1.

XXI. Complex analysis

1.

XXII. Partial differential equations

1

XXIII. Functional analysis

1.

XXIV. Green's functions

1.