Causal Cognitive Architecture 2 (CCA2): A Solution to the Binding Problem

Howard Schneider Sheppard Clinic North, Richmond Hill, Canada **DRAFT 1 – WILL REDUCE IN SIZE TO TIME ALLOCATION**

BICA Workshop at IVA-2021

Before moving to a solution to the binding problem, let's think about thinking....

(expected performance Υ of agent π)

$$\Upsilon(\pi) := \sum_{\mu \in E} 2^{-K(\mu)} V^{\pi}_{\mu}$$
 "universal intelligence"

2

LEGG & HUTTER (2007) "UNIVERSAL INTELLIGENCE":

 $\Upsilon(\pi) := \sum_{\mu \in E} 2^{-K(\mu)} V^{\pi}_{\mu}$

algorithmic probability distribution of the space of environments $2^{-K(\mu)}$ times the value function V of agent π operating in environment μ

More useful to think of problem in terms of mechanisms we can use to make decisions....

Symbolic Logic GOFAI Neural Networks Navigation Maps Navigation Maps with Causality

Navigation Maps

Different way of making decisions

 Most animals – invertebrates and vertebrates use some sort of navigation system

Navigation Maps

 Vertebrates – all have formal navigation systems similar to mammalian hippocampus

Mammalian hippocampus place and grid cells

Navigation Maps

 We can use in an artificial cognitive architecture not just for navigation but all decisions

→Causal Cognitive Architecture

Causal Cognitive Architecture 1 (CCA1) BICA 2018, 2019, 2020

Hiker lost in the woods.....

Robot goes to the forest to save the hiker....

← Robot

← Controlled by a CCA1

As convenience, I will say: "CCA1" "CCA1" = Robot + CCA1

Choose pre-causal functioning of CCA1

```
Command Prompt - cca1_2020
Please choose type of "hippocampus"/"brain" which, of course,
only loosely approximates the biological equivalent:

    Lamprey hippocampal/brain analogue

Fish hippocampal/telencephalon analogue

    Reptile hippocampal/pallium analogue

4. Mammalian hippocampus - note: meaningfulness, precausal
5. Human hippocampus - note: meaningfulness plus full causal features
6. Augmented Human level 1 - simultaneous multiple navigational threads

    Augmented Human level 2 - algorithm center in each navigational module

Please make a selection:_
```

CCA1 must navigate to the lost hiker's square

```
Command Prompt - cca1_2020
hiker position set to: 4 2
Bird's-Eye View of Forest (CCA1 does not have this view)
                                 EDGE
EDGE
                        EDGE
                                                EDGE
                                                             EDGE
                      forest sh_rvr
                                             forest
         CCA1 *
EDGE
                                                             EDGE
                               forest
                     forest
                                               forest
         lake
EDGE
                                                             EDGE
                                            forest
         | forest | wtrfall
                                    forest
                                                             EDGE
         forest
                                              forest
EDGE
                     hiker
                                  forest
                                                             EDGE
EDGE
            EDGE
                        EDGE
                                     EDGE
                                                 EDGE
                                                             EDGE
```

CCA1 – perception....

CCA1 builds up internal map from perceptions (and processing) in N, E, S, W directions

Lake (deep water) – Instinctive Primitive – do not go Forest – Instinctive Primitive – no signal

CCA1 builds up internal map from perceptions (and processing) in N, E, S, W directions

Navigation to the East (to the forest square)

CCA1 moves East into 'forest' square

Comm	and Prompt - cca1_20	20				
CCA1 mov	ed from (1, 1)	1,2				
Bird's-E	ye View of Fores	st (CCA1 does no	t have this vie	w)		
EDGE	EDGE	EDGE	EDGE	EDGE	EDGE	1
EDGE	forest	→ CCA1 *	sh_rvr	forest	EDGE	ı
EDGE	lake	forest	forest	forest	EDGE	1
EDGE	forest	wtrfall	forest	forest	EDGE	1
EDGE	forest	hiker	forest	forest	EDGE	1
EDGE	EDGE	EDGE	EDGE	EDGE	EDGE	18

"Processing Cycles" repeat over and over again

No Special Central Controlling Stored Program

No computer-like clock circuitry centrally controlling CCA1

Vectors propagated from circuit to circuit, and then the cycle is repeated

CCA1 eventually navigates to the hiker square, and rescues the lost hiker

Comm	and Prompt - cca1_20	20				
CCA1 mov	red from (1, 1)	1,2				
Bird's-E	ye View of Fores	st (CCA1 does no	ot have this vi	ew)		
EDGE	EDGE	EDGE	EDGE	EDGE	EDGE	Ī
EDGE	forest	CCA1 *	sh_rvr	forest =	→ X EDGE	1
EDGE	lake	forest	forest	forest	EDGE	1
EDGE	forest	wtrfall	forest	forest	EDGE	1
EDGE	forest	<mark>*</mark> hiker	+ forest	← forest	EDGE 2] [
EDGE	EDGE	EDGE	EDGE	EDOZ	EDGE	Ī

Start new CCA1 simulation....

```
Command Prompt - cca1_2020
hiker position set to: 4 2
Bird's-Eye View of Forest (CCA1 does not have this view)
                           EDGE
                      EDGE
                                           EDGE
                                                         EDGE
        CCA1 *
                   | forest | sh_rvr | forest
EDGE
                                                         EDGE
        lake | forest | forest | forest
EDGE
                                                         EDGE
        | forest | wtrfall | forest | forest
                                                         EDGE
        forest hiker
EDGE
                               forest forest
                                                         EDGE
                                  EDGE
EDGE
           EDGE
                       EDGE
                                              EDGE
                                                         EDGE
```

CCA1 moves to north of the waterfall square....

CCA1 has moved north of the waterfall square...

Comn	nand Prompt - cca1_2	2020			
Bird's-E	ye View of Fores	st (CCA1 does not	t have this vie	ew)	
EDGE	EDGE	EDGE	EDGE	EDGE	EDGE
EDGE	forest	forest	sh_rvr	forest	EDGE
EDGE	lake	CCA1 *	forest	forest	EDGE
EDGE	forest	wtrfall	forest	forest	EDGE
EDGE	forest	hiker	forest	forest	EDGE
EDGE	EDGE	EDGE	EDGE	EDGE	EDGE

CCA1 has never seen a waterfall before.... just sees a river (noisy....fast flowing).... and is generally able to cross rivers

S – sees fast noisy river (does not see cliff part) Able to cross shallow rivers, so moves South

Comm	and Pro	mpt - cca1_2	020							
Bird's-Ey	e Vie	w of Fores	t (CC	A1 does not	hav	e this vie	w)			
EDGE	1	EDGE	1	EDGE	1	EDGE	1	EDGE	1	EDGE
EDGE	1	forest	1	forest	1	sh_rvr	1	forest	1	EDGE
EDGE	1	lake	1	CCA1 *	1	forest	1	forest	1	EDGE
EDGE		forest	1	wtrfall	1	forest	1	forest	1	EDGE
EDGE	1	forest	1	hiker	1	forest	1	forest	1	EDGE
EDGE	1	EDGE		EDGE	1	EDGE	<u> </u>	EDGE	 	EDGE

CCA1 moves S (south) and is swept off cliff of waterfall and is damaged – mission ends

Comma	and Prompt - cca1_20	020								
Bird's-Ey	e View of Fores	t (cc	A1 does not	t hav	e this vie	w)				
EDGE	EDGE	1	EDGE	1	EDGE	1	EDGE	1	EDGE	1
EDGE	forest	1	forest	1	sh_rvr	1	forest	1	EDGE	1
EDGE	lake	1	CCA1 *	1	forest	1	forest	1	EDGE	1
EDGE	forest	1	wtwall	1	forest	- 1	forest	1	EDGE	1
EDGE	forest	1	hiker	1	forest	1	forest	1	EDGE	1
EDGE	EDGE	<u> </u>	EDGE	<u> </u>	EDGE		EDGE	1	EDGE	-2-7

Failure of mission

Associative Learning Does Occur

- -If repaired and it goes out into the forest on another mission
- -Sees fast flowing river with much noise
- -Triggers in Goal/Emotion Module and Learned Primitives Module <u>not</u> to go there
- -Makes another choice for direction of move

New Simulation Use full causal features of architecture

```
Command Prompt - cca1_2020
Please choose type of "hippocampus"/"brain" which, of course,
only loosely approximates the biological equivalent:

    Lamprey hippocampal/brain analogue

Fish hippocampal/telencephalon analogue

    Reptile hippocampal/pallium analogue

4. Mammalian hippocampus - note: meaningfulness, precausal
5. Human hippocampus meaningfulness plus full causal features
  Augmented Human level 1 - simultaneous multiple navigational threads
7. Augmented Human level 2 - algorithm center in each navigational module
Please make a selection:_
```

$\{\text{``water''}\}$ + $\{\text{``fast flow''} + \text{``noise''}\} \rightarrow \{\text{``water''} + \text{``push''}\}$

31

Temporary map → {"CCA1 under water"}

Comma	nd Prompt - cca1_20	20				
Internal	Map From Stack					
air	air	air	air	air	air	Ī
water	water	water	water	water	water	1
water	water	water	water	water	water	1
water	water	water	CCA1 *	water	water	1
water	water	water	water	water	water	1
water	water	water	water	water	water	3/2
water	water	water	water	water	water	

{"CCA1 under water"} is fed back to sensory input

module

{"CCA1 under water"}

"do not go"

->retrieve
previous
temporary
map
->do not go

south

Do not go south – goes east even though bias from Goal Module to go south or west.

Continues south and then west.... and.... Rescues the lost hiker

Even though CCA1 had never seen a waterfall before, it causally avoided this danger

Causality emerges from the architecture

No central controlling stored program other than the repeating processing cycles of the CCA1

New simulation – CCA1 is inspecting a broken machine it has never seen before.

If Gear C is turned, what happens to Gear B?

Gear C is recognized and added to create a new temporary map

Comma	nd Prompt - cca1_202	0			
Internal Map From Stack					
air*	air	air	air	air	air
air	*push	air	air	air	air
C	A; moves	B;moves	air	air	air
air	air	air	air	air	air
air	air	air	air	air	air
air	air	air	air	air	air 40
air	air	air	air	air	air

-Cannot fully repair a machine with 100's of parts by associations only (unless very common reasons for the breakdowns)

even if only move a few parts there are millions and millions of combinations that need to be tried and learned by association
->simply not possible/practical

 Causality allows repairing a machine the CCA1 has never seen before.

Causality emerges from the architecture

Plausible evolutionary transition from Associative Behavior to a Causal Behavior

Small enhancements in circuitry allow this as shown in pre-causal to fully causal operation of the CCA1

Analogies

Should rescue CCA1 spend more time with person A or person B?

-Person B smiles a lot but is noisy, compared to Person A

-Who to chose?

Question for a philosopher!! - BUT CCA1, GIVES ANSWER ALMOST AUTOMATICALLY

→ CCA1's architecture and temporary maps, readily form and use analogies

There is a navigation output to navigate to object A (i.e., person A)

Explainability

After being used, 'temporary maps' are actually stored permanently in the Causal Memory portion of the Navigation Module

CCA1 Supports Schneider Psychosis Hypothesis

Schneider –BICA 2019:

-Imperfect functioning in going from precausal to full causal behavior (more complexity, feeding partial results back to sensory modules) can result in psychotic behavior (hallucinations, delusions and reduced cognition)

Causal Cognitive Architecture 1 (CCA1)

BICA 2020

- CCA1 handles toy problems
- Want a more robust version of CCA1

but....problems arising in attempts to enhance the CCA1....

Problem is that Sensory Vectors Binding
 Module must output some vector which
 represents object/environment it has
 detected by fusing sensory features together

 Then use neural network-like pattern recognition to identify the objects and/ sensory scene

Problem is that Sensory Vectors Binding
 Module must output some vector which
 represents object/environment it has
 detected by fusing sensory features together

- How to label different combinations?
- Need a binding language of sorts

Solution -> Problems Arising in Attempts to Enhance the CCA1

- 1. Eliminate the Sensory Vectors Binding Module
- 2. Bind sensory inputs directly in the Navigation Module

Solution -> Problems Arising in Attempts to Enhance the CCA1

Binding Sensory Inputs in the Navigation Module

- Each Input Sensory Vectors Association
 Module (visual, auditory, etc) creates a local
 sensory (ie, visual, auditory, etc) navigation
 map in the Navigation Module
- 2. Objects are segmented in these maps into multiple maps and composite maps 55

- 3. Each Input Sensory Vectors Association Module (visual, auditory, etc) creates a local sensory (ie, visual, auditory, etc) navigation map in the Navigation Module
- 4. Match all the local navigation maps against previous navigation maps stored in the Causal Memory Module

5. Retrieve the best matching navigation map(s)

6. Actually retrieve best maps and then settle on one best multi-sensory navigation map – this is CCA2's perception of the moment

- 7. Updated best navigation map with current sensory inputs
- 8. OR if too many updates to make, then make a copy of it and make a new navigation map
- 9. Updated (or new) multisensory navigation //map will be stored in Causal Memory Module
- 10. Do current operations on this updated multisensory navigation map

→ This binding of sensory inputs to a navigation navigation map solves many of the problems of allowing the CCA1 (which is now the CCA2) to handle larger non-toy problems

Solution to the Binding Problem (Feldman, 2013):

- 1. General coordination of objects and activities
- 2. The subjective unity of perception
- 3. Visual Feature-Binding
- 4. Variable Binding such as the binding of words in a sentence that allow reasoning

1. Sub-problem: General coordination of objects and activities

- Use of navigation maps as a basic data element
- Instinctive Primitives and Learned Primitives are applied against objects on the current navigation map
- As such, a coordination of objects and activities occurs

2. Sub-problem: The subjective unity of perception

- Best match navigation map represents the CCA2's perception of reality of the sensory scene in front of it
- Current best match navigation map will be updated with current input sensory information, and represents CCA2's perception of the world
- · There is a subjective unity perception

3. Sub-problem: Visual Feature-Binding

- Spatially mapping visual features onto a spatial navigation map solves this binding sub-problem
- No longer require a binding language; rather, binding occurs in the Vectors Association module and the Navigation Module

- 4. Sub-problem: Variable Binding such as the binding of words in a sentence that allow reasoning
- Not considered in detail in this paper, but such binding and actually language seems to emerge from the architecture.
- Verbs and nouns provide explanations to the user
- Explanations generated via saved navigation maps

Explainability yields language

```
patient ask glass
cca3 hold right hand glass
cca3 move +45 degrees right hand glass
patient move -45 degrees right hand
patient move -45 degrees body
patient move body to ground
cca3 no move body to ground
cca3 move +45 degrees left hand
```

Need to bind both Space and Time....

- Most definition of the 'Binding Problem' do not take time into account, ie, binding changes
- However, CCA2 shows changes in sensory inputs with time, that *must* bind time also
- CCA3 bind space and time

CCA3

CCA3

 Motion prediction vectors Most definition of the 'Binding Problem' do not take time into account, ie, binding changes

 However, CCA2 shows changes in sensory inputs with time, that *must* bind time also

CCA3 – binds space and time

- Generate motion prediction vectors
- Incorporate much like the other objects onto a navigation map

There is now a moving object (a leaf) on the river. Its motion is represented by a motion prediction vector.

- → Desirable Properties of CCA3:
- Seems more able to go beyond toy problems
- Pre-Causal Behavior
- Fully Causal Behavior closes neurosymbolic gap
- Supports Schneider's psychosis hypothesis
- Solution to the Schizophrenia Paradox
- Analogies emerge automatically
- Explainability emerges automatically
- Lifelong ('continual') learning
- Abilities readily generalize to new and novel environments

Thank you

hschneidermd@alum.mit.edu