

Homework 5 Solutions

Weihao Li Fudan University

Problem 1

See qrdecomp.py.

Orthogonal Loss of Gram-Schmidt QR (size = 200 · 50, κ = 10¹⁰)

Problem 2

See qrdecomp.py.

Problem 3

For all minimizer x of the least square problem $\min \lvert \lvert Ax - b \rvert \rvert_2$, x must satisfy

$$A^*Ax = A^*b.$$

Hence for any $b \in \mathbb{C}^m$,

$$A^*AXb = A^*b.$$

Let b run through standard basis in \mathbb{C}^m , we see that every column of A^*AX and A^* is the same, hence

$$A^*AX = A^*, (3.1)$$

then we also have

$$(AX)^*A = A,$$
$$X^*A^*AX = X^*A^*,$$

combine results above, we have

$$AX = (AX)^*AX = X^*A^*AX = X^*A^* = (AX)^*,$$

and

$$AXA = (AX)^*A = A.$$

Problem 4

See lstsq.py.

For a residual r from given solution, the "relative difference" means $\frac{r-r_0}{r_0}$, in which r_0 is the residual from the solution given by np.linalg.lstsq.

Problem 5

Let the approximate straight line be $\hat{\emph{y}}=\emph{a}_{1}\emph{x}+\emph{a}_{2}$, and we use

$$min\sum_{i=1}^6 (y-\hat{y})^2$$

to determine whether the solution is best. This can be easily transformed in to a least square problem $min||Ax-b||_2$, in which

$$A = egin{bmatrix} x_1 & 1 \ x_2 & 1 \ x_3 & 1 \ x_4 & 1 \ x_5 & 1 \ x_6 & 1 \end{bmatrix}, b = egin{bmatrix} y_1 \ y_2 \ y_3 \ y_4 \ y_5 \ y_6 \end{bmatrix}.$$

For the solution and visualization, see lstsq.py.

