Consider $V = \mathcal{P}_2(\mathbb{F})$ with the inner product $\langle f(x), g(x) \rangle = \int_{-1}^1 f(t) \overline{g(t)} dt$.

Let $\beta = \{1 + x, x^2\}$ and let W be the subspace of V spanned by β .

Problem. Find W^{\perp} .

Solution

Let $v_1 = 1 + x$ and $v_2 = x^2$. Therefore, $\langle 1 + x, 1 + x \rangle = \int_{-1}^{1} (1 + x)^2 = [x + x^2 + \frac{1}{3}x^3]_{-1}^1$, and thus $||1 + x||^2 = 2 + \frac{2}{3} = \frac{8}{3}$.

i	v_i	$\sum_{j=1}^{i-1} \frac{\langle v_i, u_j \rangle}{\langle u_j, u_j \rangle} u_j$	u_i	$\ u_i\ ^2$	e_i
1	1+x	_	1+x	$\int_{-1}^{1} (1+x)^2 = [x+x^2+1/3x^3]_{-1}^{1}$	$\sqrt{6}/4(1+x)$
				$ 1+x ^2 = 2 + \frac{2}{3} = \frac{8}{3}.$	
2	x^2	$\frac{\langle v_2, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 =$	$x^2 - \frac{1}{4}(1+x)$		
		$\frac{\int_{-1}^{1} x^2 + x^3 dx}{8/3} (1+x) =$	$x^2 - \frac{1}{4}x - \frac{1}{4}$	$\int_{-1}^{1} (x^2 - \frac{1}{4}x - \frac{1}{4})^2$	$\sqrt{\frac{30}{7}}(x^2 - \frac{1}{4}x - \frac{1}{4})$
		$\frac{\left[\frac{1}{3}x^3 + \frac{1}{4}x^4 dx\right]_{-1}^{1}}{\frac{8}{3}}(1+x) =$	_	$=\frac{7}{30}$	v .
		$\frac{1}{4}(1+x)$		30	

Note that 1 is not in the span of β . Let $v_3 = 1$.

Therefore,

$$\sum_{j=1}^{2} \frac{\langle v_3, u_j \rangle}{\langle u_j, u_j \rangle} u_j = \frac{\langle 1, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 + \frac{\langle 1, u_2 \rangle}{\langle u_2, u_2 \rangle} u_2 \tag{1}$$

$$= \frac{\int_{-1}^{1} (1+x)dx}{8/3} (1+x) + \frac{\int_{-1}^{1} (x^2 - 1/4 \ x - 1/4) dx}{7/30} (x^2 - 1/4 \ x - 1/4) \quad (2)$$

$$= \frac{3}{4} + \frac{3}{4} x + \frac{5}{7} x^2 - \frac{5}{28} x - \frac{5}{28}$$
 (3)

$$= \frac{5}{7} x^2 + \frac{4}{7} x + \frac{4}{7} \tag{4}$$

Thus,

$$u_3 = 1 - (5/7 x^2 + 4/7 x + 4/7) = -5/7 x^2 - 4/7 x + 3/7$$
 (5)

Since $\beta' = \{u_1, u_2\}$ is a basis for W, while $\beta' \cup \{u_3\}$ is a basis for V by construction, since $V = W \oplus W^{\perp}$, then W^{\perp} is spanned by u_3 .

Note that $||u_3||^2 = \int_{-1}^{1} (-5/7 \ x^2 - 4/7 \ x + 3/7)^2 dx = 8/21$, and thus

$$e_3 = \frac{\sqrt{42}}{4} (-5/7 \ x^2 - 4/7 \ x + 3/7)$$

Problem. Fix $u \in \mathbb{F}$ and suppose that $\theta_u : V \to F$ is the linear function given by $\theta_u(f(x)) = f(u)$. Find $g_u(x) \in V$ such that $\theta_u(f(x)) = \langle f(x), g_u(x) \rangle$ for all $f(x) \in V$.

Solution

Let $y = \sum_{i=1}^{n} \overline{\theta_u(e_i)} e_i$, where e_i are orthonormal vectors given in the tables above. Then by Theorem 6.8 in Friedberg *et al*, we obtain that $g_u(x) = y$.

The coefficients before each e_i in the expression for y are given below:

•
$$\overline{\theta_u(e_1)} = \frac{\sqrt{6}}{4}(1+u)$$

•
$$\overline{\theta_u(e_2)} = \sqrt{\frac{30}{7}}(u^2 - \frac{1}{4}u - \frac{1}{4}u)$$

•
$$\overline{\theta_u(e_3)} = \frac{\sqrt{42}}{4} (-5/7 u^2 - 4/7 u + 3/7)$$

Problem. Suppose that $T: V \to V$ is defined by T(f(x)) = f'(x). Find $T^*(1+x)$.

Solution

Note that $\beta = \{1, x, x^2\}$ is an orthonormal basis of $\mathcal{P}_2(\mathbb{F})$.

Note the following:

- T(1) = 0
- T(x) = 1
- $T(x^2) = 2x$

Therefore,

$$[T]_{\beta} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

Since $[T^*]_{\beta} = [T_{\beta}]^*$, it follows that $T^*(1+x)$ can be represented in the matrix form as

$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$$

Therefore, $T^* = x + 2x^2$.