MATH 217- LINEAR ALGEBRA AND DIFFERENTIAL EQUATIONS SPRING 2022-2023

Instructor: Emil Novruz, e-mail:

enovruz@gtu.edu.tr

Office: Faculty of Management – Z44,

Office Hours: Thursday 10:30-12:30

Textbooks:

1) D. Kreider, R. Kuller, D. Ostberg, F. Perkins, An Introduction to Linear Analysis;

2) Shepley L. Ross, Differential Equations;

3) B.Kolman, D.R.Hill, Elementary Linear Algebra with Applications.

Exams and grading: There will be one midterm exam and one final exam. The weights are as follows:

Final Grading	Percentage
Midterm Exam	%40
Final exam	%60

Attendance: At least 70%

Week	Topics
1	Vector Spaces, Dimension.
2	Linear Transformations.
3	Matrices.
4	Determinants.
5	Eigenvalues and Eigenvectors.
	Orthogonality.
6	General Theory of Linear System.
7	Exact Differential Equations,
	Separable Equations,
	Homogeneous Equations, Linear
	Equations.
8	Midterm Exam, Bernoulli and
	Ricatti equations.
9	Method of Integrating Factors.
10	Special Integrating Factors
	Transformations.
11	General Theory of Linear
	Differential Equations.
12	Linear Differential Equations with
	Constant Coefficients.
13	The method of undetermined
	coefficients. Variation of
	parameters.
14	The Cauchy-Euler equation.
	Laplace Transform

Vector Spaces

Definition. A real vector space vectors, together with operations of addition and multiplication by real numbers which satisfy the following axioms.

Axioms for addition. Given any pair of vectors x and y in v there exists a (unique) vector x + y in v called the *sum* of x and y. It is required that

(i) addition be associative,

$$x + (y + z) = (x + y) + z,$$

(ii) addition be commutative,

$$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x},$$

(iii) there exist a vector 0 in v (called the zero vector) such that

$$x + 0 = x$$

for all x in V, and

(iv) for each x in v there exist a vector -x in v such that

$$x + (-x) = 0.$$

Axioms for scalar multiplication. Given any vector x in v and any real number α there exists a (unique) vector αx in v called the *product*, or scalar product, of α and x. It is required that

$$\alpha(\mathbf{x} + \mathbf{y}) = \alpha\mathbf{x} + \alpha\mathbf{y},$$

$$(vi) (\alpha + \beta)x = \alpha x + \beta x,$$

$$(vii) (\alpha\beta)\mathbf{x} = \alpha(\beta\mathbf{x}),$$

$$1x = x.$$

EXAMPLE. Let n be a fixed positive integer, and let \mathbb{R}^n denote the totality of ordered n-tuples (x_1, \ldots, x_n) of real numbers. If $\mathbf{x} = (x_1, \ldots, x_n)$ and $\mathbf{y} = (y_1, \ldots, y_n)$ are two such n-tuples, and α is a real number, set

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_n + y_n)$$

and

$$\alpha \mathbf{x} = (\alpha x_1, \ldots, \alpha x_n).$$

Then \mathbb{R}^n becomes a real vector space.

EXAMPLE. The set l_2 of all infinite sequences

$$x = (x_1, x_2, \dots, x_k, \dots) \tag{1}$$

of real or complex numbers $x_1, x_2, \ldots, x_k, \ldots$ satisfying the convergence condition

$$\sum_{k=1}^{\infty} |x_k|^2 < \infty,$$

equipped with operations

$$(x_1, x_2, \dots, x_k, \dots) + (y_1, y_2, \dots, y_k, \dots)$$

$$= (x_1 + y_1, x_2 + y_2, \dots, x_k + y_k, \dots),$$

$$\alpha(x_1, x_2, \dots, x_k, \dots) = (\alpha x_1, \alpha x_2, \dots, \alpha x_k, \dots),$$
(2)

is a linear space. The fact that

$$\sum_{k=1}^{\infty} |x_k|^2 < \infty, \qquad \sum_{k=1}^{\infty} |y_k|^2 < \infty$$

implies

$$\sum_{k=1}^{\infty} |x_k + y_k|^2 < \infty$$

is an immediate consequence of the elementary inequality

$$(x_k + y_k)^2 \leqslant 2(x_k^2 + y_k^2).$$

EXAMPLE

Let Map(IR, IR) be the set of all mappings $f : IR \to R$. For two such mappings f, g define $f + g : IR \to IR$ to be the mapping given by the prescription

$$(f+g)(x)=f(x)+g(x),$$

and for every scalar $\lambda \in \mathbb{R}$ define $\lambda f : \mathbb{R} \to \mathbb{R}$ to be the mapping given by the prescription

$$(\lambda f)(x) = \lambda f(x).$$

the vector 0

the mapping ϑ such that $\vartheta(x) = 0$ for every $x \in \mathbb{R}$

-f the mapping given by (-f)(x) = -f(x) for every $x \in \mathbb{R}$.

These operations make Map (IR, IR) into a real vector space.

EXAMPLE

Let $\mathbb{R}_n[X]$ be the set of polynomials of degree at most n with real coefficients. The reader will recognise this as the set of objects of the form

$$a_0 + a_1 X + a_2 X^2 + \cdots + a_n X^n$$

where each $a_i \in \mathbb{R}$ and X is an 'indeterminate', the largest suffix i for which $a_i \neq 0$ being the degree of the polynomial.

We can define an addition on $\mathbb{R}_n[X]$ by setting

$$(a_0 + a_1X + \dots + a_nX^n) + (b_0 + b_1X + \dots + b_nX^n)$$

= $(a_0 + b_0) + (a_1 + b_1)X + \dots + (a_n + b_n)X^n$

and a multiplication by scalars by

$$\lambda(a_0 + a_1X + \cdots + a_nX^n) = \lambda a_0 + \lambda a_1X + \cdots + \lambda a_nX^n.$$

In this way $IR_n[X]$ has the structure of a real vector space.

Now we note a number of immediate consequences of Definition. The first of these concerns the zero vector and asserts that this vector behaves very much as one might expect. Specifically,

$$0\mathbf{x} = \mathbf{0} \quad \text{for every } \mathbf{x}, \tag{1}$$

and

$$\alpha \mathbf{0} = \mathbf{0}$$
 for every α . (2)

To prove the first of these assertions set $\alpha = \beta = 0$ in $\alpha \mathbf{x} + \beta \mathbf{x} = (\alpha + \beta)\mathbf{x}$. This gives

$$0x + 0x = (0 + 0)x = 0x.$$

Now subtract 0x from both sides of this equation, and then use the fact that

0x - 0x = 0 to obtain

$$0\mathbf{x} + (0\mathbf{x} - 0\mathbf{x}) = 0\mathbf{x} - 0\mathbf{x}$$

and

$$0x + 0 = 0.$$

Hence 0x = 0.

The proof of (2) is similar; this time set $\mathbf{x} = \mathbf{y} = \mathbf{0}$ in $\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$. Next, an equally elementary proof establishes the fact that the vector $-\mathbf{x}$ and $(-1)\mathbf{x}$ are one and the same. Indeed, since $1\mathbf{x} = \mathbf{x}$ and $0\mathbf{x} = \mathbf{0}$, we have

$$x + (-1)x = 1x + (-1)x = (1 - 1)x = 0x = 0.$$

Now subtract x from both sides of this equation to obtain (-1)x = -x, as asserted.

Lemma 1. If 0' is a vector in \mathbb{U} such that $\mathbf{x} + \mathbf{0}' = \mathbf{x}$ for every \mathbf{x} in \mathbb{U} , then $\mathbf{0}' = \mathbf{0}$. Similarly, if \mathbf{x}' is any vector in \mathbb{U} such that $\mathbf{x} + \mathbf{x}' = \mathbf{0}$, then $\mathbf{x}' = -\mathbf{x}$.

Proof. If x + 0' = x for every x in v, we have, in particular,

$$0 + 0' = 0.$$

On the other hand, the zero vector has the property that 0 + x = x for every x. Hence

$$0+0'=0',$$

and it follows that

$$0 = 0'$$
.

The second statement of the lemma follows from the sequence of equalities

$$x' = 0 + x' = (-x + x) + x' = -x + (x + x') = -x + 0 = -x$$

Definition. A subset W of a vector space U is said to be a *subspace* of U if W itself is a vector space under the operations of addition and scalar multiplication defined in U.

Example.

In the real vector space \mathbb{R}^2 the set $X = \{(x,0) ; x \in \mathbb{R}\}$ is a subspace; for we have

$$(x_1,0) + (x_2,0) = (x_1 + x_2,0);$$

 $\lambda(x,0) = (\lambda x,0),$

and so X is closed under addition and multiplication by scalars. This subspace is simply the 'x-axis' in the cartesian plane \mathbb{R}^2 . Similarly, the 'y-axis'

$$Y = \{(0, y) ; y \in \mathbb{R}\}$$

is a subspace of IR².

Subspace Criterion. If every vector of the form

$$\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2$$

belongs to \mathbb{W} whenever \mathbf{x}_1 and \mathbf{x}_2 belong to \mathbb{W} , and α_1 and α_2 are arbitrary scalars, then \mathbb{W} is a subspace of \mathbb{U} .

To prove this assertion, we must show that W satisfies first Definition. But by first setting $\alpha_1 = \alpha_2 = 1$, and then setting $\alpha_2 = 0$, we deduce in turn that (a) the sum of any two vectors in W again belongs to W, and

(b) αx belongs to w for every real number α and every x in w.

From (b) it follows in particular that -x belongs to w whenever x does, and that w also contains the zero vector. Thus w satisfies Axioms (iii) and (iv) of Definition. Finally, we observe that the remaining axioms certainly hold in w, since they are valid everywhere in v. Hence w is a subspace of v.

EXAMPLE 1. Every vector space has two subspaces: (a) the whole space, and (b) the subspace consisting of the zero vector by itself, called the *trivial subspace*. A subspace of V which is distinct from V is called a *proper subspace*.

EXAMPLE 2. If W is the subset of \mathbb{R}^3 consisting of all those vectors whose third component is zero, then the above criterion implies at once that W is a subspace of \mathbb{R}^3 . When the components of each vector in \mathbb{R}^3 are viewed as its ordinary x, y, z-components, then W is just the (x, y)-plane in 3-space.

EXAMPLE 3. Let $\mathcal{C}^1[a,b]$ denote the set of all functions which possess a continuous derivative at every point of the interval [a,b]; i.e., the so-called *continuously differentiable functions* on [a,b]. Since a differentiable function is continuous, each function in $\mathcal{C}^1[a,b]$ also belongs to $\mathcal{C}[a,b]$. But both the scalar multiple of a continuously differentiable function and the sum of two such functions are continuously differentiable. Hence $\mathcal{C}^1[a,b]$ is closed under addition and scalar multiplication and thus is a subspace of $\mathcal{C}[a,b]$. More generally, if $\mathcal{C}^n[a,b]$ denotes the set of all n times continuously differentiable functions on [a,b], then $\mathcal{C}^m[a,b]$ is a subspace of $\mathcal{C}^n[a,b]$ whenever $m \geq n$.

Lemma. If W_1 and W_2 are subspaces of V, then the set consisting of all vectors belonging to both W_1 and W_2 is a subspace of V.

Proof. Let \mathbb{W} be the set in question, and note that \mathbb{W} contains the zero vector since this vector belongs to both \mathbb{W}_1 and \mathbb{W}_2 . Now let \mathbf{x}_1 and \mathbf{x}_2 be any two vectors in \mathbb{W} . Then \mathbf{x}_1 and \mathbf{x}_2 belong to \mathbb{W}_1 and to \mathbb{W}_2 , and hence so does $\alpha_1\mathbf{x}_1 + \alpha_2\mathbf{x}_2$ for any pair of real numbers α_1 and α_2 . This implies that $\alpha_1\mathbf{x}_1 + \alpha_2\mathbf{x}_2$ belongs to \mathbb{W} , and the assertion that \mathbb{W} is a subspace of \mathbb{U} now follows from the subspace criterion.

The subspace \mathbb{W} of this lemma is known as the *intersection* of \mathbb{W}_1 and \mathbb{W}_2 , and is denoted $\mathbb{W}_1 \cap \mathbb{W}_2$ (read " \mathbb{W}_1 intersect \mathbb{W}_2 ").

We now return to the problem of finding all subspaces of an arbitrary vector space \mathcal{V} . Rather than attempt a frontal assault on this problem, it turns out to be much more profitable to proceed as follows: Let \mathfrak{X} be any (nonempty) subset of \mathcal{V} . Then, as was noted above, there is at least one subspace of \mathcal{V} containing \mathfrak{X} , namely \mathcal{V} itself. This being so, we attempt to find the "smallest" subspace of \mathcal{V} containing \mathfrak{X} , where by this we mean that subspace of \mathcal{V} which contains \mathfrak{X} , and which in turn is contained in every subspace of \mathcal{V} containing \mathfrak{X} . To show that such a subspace actually exists, consider the totality of all subspaces of \mathcal{V} which contain \mathfrak{X} , and let $S(\mathfrak{X})$ denote the set of vectors belonging to every one of these subspaces; i.e., $S(\mathfrak{X})$ is the intersection of these subspaces. Reasoning as in the proof

of Lemma, we see that $S(\mathfrak{X})$ is a subspace of \mathfrak{V} , and from its very definition it is clear that there is no subspace of \mathfrak{V} which contains \mathfrak{X} and is *properly* contained in $S(\mathfrak{X})$. Thus $S(\mathfrak{X})$ is the desired subspace. It is called the subspace of \mathfrak{V} spanned by \mathfrak{X} and, as we shall see, is uniquely determined by the set \mathfrak{X} .

All this is well and good, but unless we can discover an easy method for finding $S(\mathfrak{X})$ in terms of the vectors belonging to \mathfrak{X} , we will have made little progress on the problem of surveying the subspaces of \mathfrak{V} . Fortunately (and this is the reason for introducing $S(\mathfrak{X})$ in the first place) such a method is easy to derive. To do so, we introduce the following definition.

Definition. An expression of the form

$$\alpha_1\mathbf{x}_1+\cdots+\alpha_n\mathbf{x}_n, \qquad (*)$$

where $\alpha_1, \ldots, \alpha_n$ are real numbers, is called a *linear combination* of the vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n$.

And now we can describe $S(\mathfrak{X})$: it is the set of all linear combinations of the vectors in \mathfrak{X} .

Theorem. Let \mathfrak{X} be a (nonempty) subset of a vector space \mathfrak{V} . Then the subspace of \mathfrak{V} spanned by \mathfrak{X} consists of all linear combinations of the vectors in \mathfrak{X} .

Proof. In the first place, the set of all linear combinations of vectors in \mathfrak{X} is closed under addition and scalar multiplication, and hence is a subspace \mathfrak{W} of \mathfrak{V} . Moreover, the equation $\mathbf{x} = l\mathbf{x}$ shows that each \mathbf{x} in \mathfrak{X} is a linear combination of vectors in \mathfrak{X} , thus proving that \mathfrak{X} is contained in \mathfrak{W} . Finally, every subspace of \mathfrak{V} which contains \mathfrak{X} must contain all vectors of the form (*) by virtue of the fact that a subspace is closed under addition and scalar multiplication. In other words, \mathfrak{W} is contained in every subspace of \mathfrak{V} containing \mathfrak{X} , and it follows that $\mathfrak{W} = S(\mathfrak{X})$.

LINEAR DEPENDENCE AND INDEPENDENCE; BASES

Definition. A vector \mathbf{x} is said to be *linearly dependent* on $\mathbf{x}_1, \ldots, \mathbf{x}_n$ if \mathbf{x} can be written in the form

$$\mathbf{x} = \alpha_1 \mathbf{x}_1 + \cdots + \alpha_n \mathbf{x}_n,$$

where the α_i are scalars. If, on the other hand, no such relation exists, **x** is said to be *linearly independent* of $\mathbf{x}_1, \ldots, \mathbf{x}_n$.

Test for linear independence. The vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n$ are linearly independent if and only if the equation

$$\alpha_1 \mathbf{x}_1 + \cdots + \alpha_n \mathbf{x}_n = \mathbf{0}$$

implies that $\alpha_1 = \cdots = \alpha_n = 0$.

For instance, $\mathbf{x}_1 = (1, 3, -1, 2)$, $\mathbf{x}_2 = (2, 0, 1, 3)$, $\mathbf{x}_3 = (-1, 1, 0, 0)$ are linearly independent in \mathbb{R}^4 since the equation

 $2\alpha_1 + 3\alpha_2 = 0,$

implies that
$$\alpha_1\mathbf{x}_1+\alpha_2\mathbf{x}_2+\alpha_3\mathbf{x}_3=\mathbf{0}$$

$$\alpha_1+2\alpha_2-\alpha_3=0,$$

$$3\alpha_1+\alpha_3=0,$$

$$-\alpha_1+\alpha_2=0,$$

from which it easily follows that $\alpha_1 = \alpha_2 = \alpha_3 = 0$.

And now we are ready to show how one can weed the extraneous vectors from any finite set x_1, \ldots, x_n without disturbing $S(x_1, \ldots, x_n)$. The basic idea is obvious; just get rid of as many linearly dependent vectors as possible.

To accomplish this we begin with the vector \mathbf{x}_n . If \mathbf{x}_n is linearly dependent on $\mathbf{x}_1, \ldots, \mathbf{x}_{n-1}$, then

$$\mathbf{x}_n = \alpha_1 \mathbf{x}_1 + \cdots + \alpha_{n-1} \mathbf{x}_{n-1},$$

and we can rewrite the expression

$$\mathbf{x} = \beta_1 \mathbf{x}_1 + \cdots + \beta_n \mathbf{x}_n$$

for an arbitrary vector in $S(\mathbf{x}_1, \ldots, \mathbf{x}_n)$ in the form

$$\mathbf{x} = (\beta_1 + \alpha_1 \beta_n) \mathbf{x}_1 + \cdots + (\beta_{n-1} + \alpha_{n-1} \beta_n) \mathbf{x}_{n-1}.$$

This proves that x is already a linear combination of x_1, \ldots, x_{n-1} , and hence that $S(x_1, \ldots, x_{n-1}) = S(x_1, \ldots, x_n)$. In this case we drop the vector x_n from the set x_1, \ldots, x_n . If, on the other hand, x_n is *not* linearly dependent on x_1, \ldots, x_{n-1} , we keep it.

If we repeat this procedure with each of the x_i in turn, dropping x_i if it is linearly dependent on the remaining vectors in the (possibly modified) set, keeping it otherwise, it is clear that we obtain a linearly independent subset of x_1, \ldots, x_n which spans the subspace $S(x_1, \ldots, x_n)$. This, of course, is what we started out to show, and we have proved

Theorem. Every finite set of vectors $\mathfrak X$ contains a linearly independent subset which spans the subspace $S(\mathfrak X)$.

Definition. A finite linearly independent subset \mathfrak{B} of a vector space \mathfrak{V} is said to be a *basis* for \mathfrak{V} if $\mathfrak{S}(\mathfrak{B}) = \mathfrak{V}$.

As an example, we cite the vectors $\mathbf{i} = (1, 0, 0)$, $\mathbf{j} = (0, 1, 0)$, $\mathbf{k} = (0, 0, 1)$, which form a basis for \mathbb{R}^3 . We shall prove this assertion in Example 1 below, and now merely wish to observe that every vector $\mathbf{x} = (x_1, x_2, x_3)$ in \mathbb{R}^3 can be written in one and only one way as a linear combination of these basis vectors, namely, $\mathbf{x} = x_1 \mathbf{i} + x_2 \mathbf{j} + x_3 \mathbf{k}$. This last property actually serves to characterize a basis in a vector space, as we now show.

Theorem. A set of vectors e_1, \ldots, e_n is a basis for a vector space v if and only if every vector in v can be written uniquely as a linear combination of e_1, \ldots, e_n .

Proof. First suppose that e_1, \ldots, e_n is a basis for V. Then the e_i span V, and hence every vector in V can be written in at least one way as

$$\mathbf{x} = \alpha_1 \mathbf{e}_1 + \cdots + \alpha_n \mathbf{e}_n. \tag{1}$$

To show that this is the only such expression possible, let

$$\mathbf{x} = \beta_1 \mathbf{e}_1 + \dots + \beta_n \mathbf{e}_n \tag{2}$$

be another. Then, subtracting (2) from (1), we obtain

$$\mathbf{0} = (\alpha_1 - \beta_1)\mathbf{e}_1 + \cdots + (\alpha_n - \beta_n)\mathbf{e}_n. \tag{3}$$

But since e_1, \ldots, e_n is a basis for \mathbb{U} , these vectors are linearly independent. Hence, by our test for linear independence, each of the coefficients in (3) is zero, and it follows that $\alpha_1 = \beta_1, \ldots, \alpha_n = \beta_n$, as desired.

Conversely, suppose every vector in $\mathbb V$ can be written *uniquely* as a linear combination of $\mathbf e_1, \ldots, \mathbf e_n$. Then these vectors certainly span $\mathbb V$, and we need only prove their linear independence in order to show that they are a basis for $\mathbb V$. To accomplish this, we observe that $\mathbf 0 = 0\mathbf e_1 + \cdots + 0\mathbf e_n$ and that our assumption concerning the uniqueness of such expressions implies that this is the *only* representation of $\mathbf 0$ as a linear combination of $\mathbf e_1, \ldots, \mathbf e_n$. Thus if $\alpha_1 \mathbf e_1 + \cdots + \alpha_n \mathbf e_n = \mathbf 0$, we must have $\alpha_1 = \cdots = \alpha_n = 0$, and the test for linear independence now applies.

Example 1. The vectors

$$\mathbf{e}_1 = (1, 0, \dots, 0),$$

 $\mathbf{e}_2 = (0, 1, \dots, 0),$
 \vdots
 $\mathbf{e}_n = (0, 0, \dots, 1)$

are a basis for \mathbb{R}^n , since $\mathbf{x} = x_1 \mathbf{e}_1 + \cdots + x_n \mathbf{e}_n$ is the only way of expressing the vector $\mathbf{x} = (x_1, \dots, x_n)$ as a linear combination of $\mathbf{e}_1, \dots, \mathbf{e}_n$. This particular basis is called the *standard basis* for \mathbb{R}^n .

Example 2. Again in \mathbb{R}^n , let

$$\mathbf{e}'_1 = (1, 0, \dots, 0),$$

 $\mathbf{e}'_2 = (1, 1, \dots, 0),$
 \vdots
 $\mathbf{e}'_n = (1, 1, \dots, 1),$

where, in general, e'_i is the *n*-tuple having 1's in the first *i* places and 0's thereafter. Then e'_1, \ldots, e'_n is a basis for \mathbb{R}^n . To prove this let $\mathbf{x} = (x_1, \ldots, x_n)$ be given, and let us attempt to find real numbers $\alpha_1, \ldots, \alpha_n$ such that $\mathbf{x} = \alpha_1 \mathbf{e}'_1 + \cdots + \alpha_n \mathbf{e}'_n$. In order that such an equality hold we must have

$$(x_1, \ldots, x_n) = \alpha_1(1, 0, \ldots, 0) + \alpha_2(1, 1, \ldots, 0) + \cdots + \alpha_n(1, 1, \ldots, 1)$$

$$= (\alpha_1, 0, \ldots, 0) + (\alpha_2, \alpha_2, \ldots, 0) + \cdots + (\alpha_n, \alpha_n, \ldots, \alpha_n)$$

$$= (\alpha_1 + \alpha_2 + \cdots + \alpha_n, \alpha_2 + \cdots + \alpha_n, \ldots, \alpha_n),$$

which leads to the system of equations

$$\alpha_1 + \alpha_2 + \cdots + \alpha_n = x_1,$$

$$\alpha_2 + \cdots + \alpha_n = x_2,$$

$$\vdots$$

$$\alpha_n = x_n.$$

Hence

$$\alpha_1 = x_1 - x_2,$$

$$\alpha_2 = x_2 - x_3,$$

$$\vdots$$

$$\alpha_{n-1} = x_{n-1} - x_n,$$

$$\alpha_n = x_n,$$

which simultaneously shows that x can be written as a linear combination of e'_1, \ldots, e'_n , and that the coefficients of this relation are uniquely determined. Thus the e'_i are a basis for \mathbb{R}^n , as asserted.

Definition. A vector space is said to be of dimension n if it has a basis consisting of n vectors, and is said to be infinite dimensional otherwise. We denote the fact that v is n-dimensional by writing dim v = n.

DIMENSION

Theorem* If V has a basis containing n vectors, then any n + 1 or more vectors in V are linearly dependent.

Proof. Let e_1, \ldots, e_n be a basis for \mathbb{U} , and suppose, contrary to the assertion of the theorem, that \mathbb{U} contains a linearly independent set e'_1, \ldots, e'_m in which m > n. Express each of the e'_j as a linear combination of the e_i , thereby obtaining the system of equations

$$\mathbf{e}'_{1} = \alpha_{11}\mathbf{e}_{1} + \alpha_{21}\mathbf{e}_{2} + \cdots + \alpha_{n1}\mathbf{e}_{n},$$

$$\mathbf{e}'_{2} = \alpha_{12}\mathbf{e}_{1} + \alpha_{22}\mathbf{e}_{2} + \cdots + \alpha_{n2}\mathbf{e}_{n},$$

$$\vdots$$

$$\mathbf{e}'_{m} = \alpha_{1m}\mathbf{e}_{1} + \alpha_{2m}\mathbf{e}_{2} + \cdots + \alpha_{nm}\mathbf{e}_{n},$$

$$(1)$$

in which the α_{ij} are scalars. Since none of the \mathbf{e}'_j is the zero vector, at least one of the α_{ij} is different from zero in each of these equations. (Recall that the zero vector is linearly dependent on every vector in \mathbb{U} .) Thus, by relabeling the \mathbf{e}_i if necessary, we may assume that $\alpha_{11} \neq 0$. This done, solve the first equation for \mathbf{e}_1 , and substitute the value obtained in the remaining m-1 equations. This eliminates \mathbf{e}_1 from (1), and yields a system of equations of the form

$$\mathbf{e}_{2}' = \beta_{22}\mathbf{e}_{2} + \beta_{32}\mathbf{e}_{3} + \cdots + \beta_{n2}\mathbf{e}_{n} + \beta_{12}\mathbf{e}_{1}',$$

$$\mathbf{e}_{3}' = \beta_{23}\mathbf{e}_{2} + \beta_{33}\mathbf{e}_{3} + \cdots + \beta_{n3}\mathbf{e}_{n} + \beta_{13}\mathbf{e}_{1}',$$

$$\vdots$$

$$\mathbf{e}_{m}' = \beta_{2m}\mathbf{e}_{2} + \beta_{3m}\mathbf{e}_{3} + \cdots + \beta_{nm}\mathbf{e}_{n} + \beta_{1m}\mathbf{e}_{1}'.$$
(2)

Focusing our attention on the first of these equations we note that the linear independence of \mathbf{e}'_1 and \mathbf{e}'_2 implies that at least one of the coefficients β_{22} , $\beta_{32}, \ldots, \beta_{n2}$ is different from zero. Assume that the \mathbf{e}_i are labeled so that $\beta_{22} \neq 0$. Then a repetition of the above argument, now applied to \mathbf{e}_2 , reduces (2) to the system

$$\mathbf{e}_{3}' = \gamma_{33}\mathbf{e}_{3} + \cdots + \gamma_{n3}\mathbf{e}_{n} + \gamma_{13}\mathbf{e}_{1}' + \gamma_{23}\mathbf{e}_{2}',$$
 \vdots

$$\mathbf{e}_{m}' = \gamma_{3m}\mathbf{e}_{3} + \cdots + \gamma_{nm}\mathbf{e}_{n} + \gamma_{1m}\mathbf{e}_{1}' + \gamma_{2m}\mathbf{e}_{2}'.$$

Let us now speculate on the effect of our assumption that m is greater than n. A moment's thought will reveal that by continuing the above process of elimination we will eventually find ourselves confronted with a system of m-n equations expressing each of the vectors $\mathbf{e}'_{n+1}, \ldots, \mathbf{e}'_m$ as a linear combination of $\mathbf{e}'_1, \ldots, \mathbf{e}'_n$. But this cannot be. Hence $m \le n$ after all.

Corollary. If V has a basis containing n vectors, then every basis for V contains n vectors.

Proof. If e_1, \ldots, e_n and e'_1, \ldots, e'_m are bases for \mathbb{U} , then the above theorem implies that $m \leq n$, and $n \leq m$. Hence m = n.

Theorem. If w is a subspace of an n-dimensional vector space v, then $dim w \leq n$.

Proof. The theorem is obviously true if n = 0, or if W is the trivial subspace of U. Thus we can assume n > 0, and W nontrivial.

By virtue of this last assumption, \mathbb{W} contains linearly independent sets of vectors, since any nonzero vector in \mathbb{W} is, by itself, such a set. Moreover, every linearly independent set in \mathbb{W} is also linearly independent as a set in \mathbb{U} . Thus, by the previous theorem, the number of vectors in such a set cannot exceed n. Finally, if e_1, \ldots, e_m is a linearly independent set in \mathbb{W} containing a maximum number of vectors, then $\mathbb{S}(e_1, \ldots, e_m) = \mathbb{W}$. Hence dim $\mathbb{W} = m \leq n$, as advertised.

This theorem may be read as asserting that every nontrivial subspace $\mathbb W$ of an n-dimensional space $\mathbb U$ has a basis e_1, \ldots, e_m with $m \le n$. If m = n, then e_1, \ldots, e_m is also a basis for $\mathbb U$, and $\mathbb W = \mathbb U$. On the other hand, if m < n, then $\mathbb W$ is a *proper* subspace of $\mathbb U$ (i.e., $\mathbb W \ne \mathbb U$), and there exist vectors in $\mathbb U$ which do not belong to $\mathbb W$. Choose any such vector, and label it e_{m+1} . Then it is all but obvious that e_1, \ldots, e_{m+1} are linearly independent in $\mathbb U$.

To prove the truth of this observation, we apply the test for linear independence as follows. Suppose that

$$\alpha_1\mathbf{e}_1 + \cdots + \alpha_m\mathbf{e}_m + \alpha_{m+1}\mathbf{e}_{m+1} = \mathbf{0}. \tag{1}$$

Then $\alpha_{m+1} = 0$, for otherwise

$$\mathbf{e}_{m+1} = -\frac{\alpha_1}{\alpha_{m+1}} \, \mathbf{e}_1 - \cdots - \frac{\alpha_m}{\alpha_{m+1}} \, \mathbf{e}_m,$$

and e_{m+1} is in W. Thus

$$\alpha_1\mathbf{e}_1+\cdots+\alpha_m\mathbf{e}_m=\mathbf{0},$$

and it follows from the linear independence of e_1, \ldots, e_m that $\alpha_1 = \cdots = \alpha_m = 0$.

Hence all of the coefficients in (1) are zero, and e_1, \ldots, e_{m+1} are linearly independent.

We now repeat the above argument, this time starting with the subspace $S(e_1, \ldots, e_{m+1})$. If $S(e_1, \ldots, e_{m+1})$ is a proper subspace of V we can enlarge e_1, \ldots, e_{m+1} to a linearly independent set in V containing m+2 vectors. But

Theorem* implies that this process must come to a halt after n - m steps, at which point we will have a *basis* for v. With this we have proved the following important and useful result.

Theorem. Let V be an n-dimensional vector space, and let $\mathbf{e}_1, \ldots, \mathbf{e}_m$ be a basis for an m-dimensional subspace of V. Then there exist n-m vectors $\mathbf{e}_{m+1}, \ldots, \mathbf{e}_n$ in V such that $\mathbf{e}_1, \ldots, \mathbf{e}_m, \mathbf{e}_{m+1}, \ldots, \mathbf{e}_n$ is a basis for V.