BSE322 Practical Assignment 2

Name: Pradeep Kumar Roll Number: 220777

- 1. Using your protein sequence as the query, explore two protein family/domain databases listed below. Summarize what you get in each case, and compare the results from the two databases.
- (a) PROSITE: http://prosite.expasy.org/
- (b) InterPro: http://www.ebi.ac.uk/interpro/

Interpret the result: what does the presence or absence of matches in these

databases represent?

Answer 1. (a)PROSITE

PROSITE serves as a valuable tool for researchers investigating proteins, offering an extensive repository of information regarding protein families, functional domains, and active sites. Through its compilation of characteristic amino acid patterns, it aids scholars in comprehending protein functionality and classification.

Upon querying my sequence on the PROSITE database, the outcome indicated no hit, as given in the provided image. This implies that the PROSITE protein database may have limitations, leading to the absence of a corresponding protein match for my sequence.

Source:

https://prosite.expasy.org/cgi-bin/prosite/scanprosite/ScanView.cgi?scanfile=701289525 067.scan.gz

(b) InterPro: InterPro serves as a universal platform for protein investigations, providing a standardized terminology for protein domains and functional regions. This enables researchers to gather data from multiple resources, facilitating the comparison of protein attributes across various sources. Essentially, InterPro plays a crucial role in

bioinformatics research by facilitating seamless comparisons of protein properties across different species.

List of Hits on InterPro:-

ACCESSION	NAME	SOURCE DATABASE MATCHES		
IPR011333	SKP1/BTB/POZ domain superfamily	InterPro	50	
IPR039948	Elongin-C	InterPro	50	
			50	
IPR001232	S-phase kinase-associated protein 1-like	InterPro		
IPR016073	SKP1 component, POZ domain	InterPro	50	

Interpretation of the result:

Sphingomyelin synthase, also referred to as phosphatidylcholine:ceramide cholinephosphotransferase, is an enzyme with bidirectional lipid cholinephosphotransferase activity. It can convert phosphatidylcholine (PC) and ceramide into sphingomyelin (SM) and diacylglycerol (DAG), and vice versa. This category also encompasses proteins related to sphingomyelin synthase, such as SAMD8 in humans, SMSr in Drosophila melanogaster, and Protein PHLOEM UNLOADING MODULATOR in Arabidopsis.

This domain is present in sphingomyelin synthase, also known as phosphatidylcholine:ceramide cholinephosphotransferase, and other associated proteins. Sphingomyelin synthase functions bidirectionally as a lipid cholinephosphotransferase, facilitating the conversion of phosphatidylcholine (PC) and ceramide into sphingomyelin (SM) and diacylglycerol (DAG), and vice versa. It shares similarity with the C-terminal region of phosphatidic acid phosphatase type 2 (PAP2).

Source:

https://www.ebi.ac.uk/interpro/result/InterProScan/iprscan5-R20240401-111735-0744-38 460661-p1m/

2. Use your protein sequence as query in a BLAST search against the RefSeq database. All other parameters can be taken as default parameters. Find two sets of 5 homologs from different organisms using the following criteria:

Set #1: Get the hits which have E-value between 10-10 and 0.01 and select 4 homologs from these hits. Add your sequence in this set (so the set has 5 sequences in total). List the sequence, % similarity and E-value for each homolog.

Set #2: Get the hits which have E-value more than 0.01 and select 4 homologs from these hits. Add your sequence in this set. Show the sequence, % similarity and E-value for each homolog.

If you don't find the required hits with the above criteria, you can relax the criteria or vary parameters (such as BLOSUM/PAM matrices, or the organisms in which search is being conducted) to vary the number of hits. If you still don't get desired e-values, use hits with other e-values as close as possible to the desired e-values; just explain what you are doing in your report.

Answer:

SET#1

Given Sequence:

>8IJ1_C Chain C, Elongin-C [Homo sapiens]
MAMYVKLISSDGHEFIVKREHALTSGTIKAMLSGPGQFAENETNEVNFREIPSHVLSKV
CMYFTYKVRYTNSSTEIPEFPIAPEIALELLMAANFLDC

Homolog 1: Opisthorchis viverrini

hypothetical protein T265_04891 [Opisthorchis viverrini]

Sequence ID: XP_009168015.1 Length: 357 Number of Matches: 2

Range	1:	79	to	124	GenPept	Graphics

▼ Next Match //	Previous Match
-----------------	----------------

Score			Expect	Method	Identities	Positives	Gaps
62.4 b	its(15	0)	6e-09	Composition-based stats.	29/46(63%)	34/46(73%)	0/46(0%)
	_						
Query	2			SDGHEFIVKREHALTSGTIKAML			
	70			SD HEF V+RE+AL SGTIKAML		-N	
Sbict	79	AM	YVKLVS	SDDHEFYVRREYALISGTIKAML	SGPASARPSSVIIL	.N 124	

E-value: 6e-09

Percentage Identity: 63.04%

Sequence:

>XP_009168015.1 hypothetical protein T265_04891 [Opisthorchis viverrini]
MTEVQAQPSSASEQKYGGAEGADAMYVKLVSSDDHEFYVRREYALISGTIKAMLSGPEVQAQPSSASEQK
YGGAEGADAMYVKLVSSDDHEFYVRREYALISGTIKAMLSGPASARPSSVTTLNTSKSVFKPRKPVYLAT
FNVRTLKQAGQQVAFARTLDSLCIDVCCLSETRTQYASVVIKQTAPSLSYRFRLRTSGDAKAAVAGYAGI
PVDSRLCAGRLATLVRESRGSEVHRTLFIVSAYAPTACSSESGRDSFYDALDALQQQAKSSDIVVVAGDM
NAQVKVNVRADQGAWWIRKAQEMEDAKNTGDVRKLFHLIRSTDPRKPLVSEIIRDQNGSLKCSKAERLAC
WAQYFEQ

Homolog 2: Penicillium samsonianum

SKP1 component POZ [Penicillium samsonianum]

Sequence ID: XP_057129221.1 Length: 101 Number of Matches: 1

Range 1: 9 to 100 GenPept Graphics

▼ Next Match Previous Match

Score		Expect	Method		Identities	Positives	Gaps
63.5 b	its(1	53) 1e-10	Compositional m	atrix adjust.	34/94(36%)	52/94(55%)	2/94(2%)
Query	4		GHEFIVKREHALTSG G EFI+ R A S				
Sbjct	9		FEFIIPRSAAYVSE				
Query	64		SSTEIPEFPIAPEIA +P+ I PE+		97		
Sbjct	68	CYNEKHKDO	Q-VNVPDMDIPPELC	LELLMAADFLN	100		

E-Value: 1e-10

Percent Similarity: 36%

Sequence:

>XP_057129221.1 SKP1 component POZ [Penicillium samsonianum]

MAPSTDSEFVTIVSSDGFEFIIPRSAAYVSETFRVALSSTNFPEGVSGEYVLGDYSGVIV

EKICEYLCYN

EKHKDQVNVPDMDIPPELCLELLMAADFLNT

Homolog 3: Kazachstania africana CBS 2517

hypothetical protein KAFR_0H01430 [Kazachstania africana CBS 2517]

Sequence ID: XP_003958688.1 Length: 101 Number of Matches: 1

Range 1: 8 to 101 GenPept Graphics

▼ Next Match ▲ Previous Match

Score		Expect	Method	Identities	Positives	Gaps
62.0 b	its(149	9) 5e-10	Compositional matrix adjus	t. 34/97(35%)	55/97(56%)	6/97(6%)
Query	5		HEFIVKREHALTSGTIKAMLSGP E + E AL S T+K ML GP			
Sbjct	8		SEHTISIEAALLSPTLKTMLEGP			
Query	65		SSTEIPEFPIAPEIALELLMA ++PEF + E++LELL+			
Sbjct	65		DVKKEDVPEFVVPTEMSLELLLI			

E-Value: 5e-10

Percent Similarity:35%

Sequence:

>XP_003958688.1 hypothetical protein KAFR_0H01430 [Kazachstania africana CBS 2517]

MSDTDGLVNLVASDGSEHTISIEAALLSPTLKTMLEGPFKKDGSKIELTNFEPHVVQKAAEYLQHKLKYQ DVDVKKEDVPEFVVPTEMSLELLLIADYLNI

Homolog 4: Suillus paluster

BTB/POZ protein, partial [Suillus paluster]

Sequence ID: XP_041172880.1 Length: 101 Number of Matches: 1

Sbjct 61 SFRAYYEGPGSKEGVDVNEFTERIPPEVALELCV 94

Range 1: 2 to 94 GenPept Graphics Score Expect Method Identities Positives Gaps 62.8 bits(151) 2e-10 Compositional matrix adjust. 38/94(40%) 54/94(57%) 7/94(7%) Query 4 YVKLISSDGHEFIVKREHALTSGTIKAMLSGPGQFAENETNEVNFREIPSHVLSKVCMYF 63 +VK+ SSDG+ F+VKR A+TSGT+K MLS F E N E + V+ KVC Y Sbjct 2 WKKITSSDGYSFLVKRSVAVTSGTLKNMLSEDSSFKEAIANTCPISE-RAAVVEKVCEYM 60 Query 64 TYKVRY----TNSSTEIPEFP--IAPEIALELLM 91 +++ Y + ++ EF I PE+ALEL +

E-Value: 2e-10

Percent Similarity: 40%

Sequence:

>XP_041172880.1 BTB/POZ protein, partial [Suillus paluster]
DWVKITSSDGYSFLVKRSVAVTSGTLKNMLSEDSSFKEAIANTCPISERAAVVEKVCEYMSFRAYYEGPG
SKEGVDVNEFTERIPPEVALELCVTLLSVPL

SET#2

Given Sequence:

MAMYVKLISSDGHEFIVKREHALTSGTIKAMLSGPGQFAENETNEVNFREIPSHVLSKV CMYFTYKVRYTNSSTEIPEFPIAPEIALELLMAANFLDC

Homolog 1: Kazachstania africana CBS 2517

uncharacterized protein C9374_006263 [Naegleria lovaniensis]

Sequence ID: XP_044546954.1 Length: 129 Number of Matches: 1

Range	1: 31 t	o 129 <u>G</u>	enPept Graph	nics			Next Match
Score		Expect	Method		Identities	Positives	Gaps
43.5 bi	ts(101)	0.011	Composition	al matrix adjust.	27/102(26%)	50/102(49%)	10/102(9%)
uery				HALTSGTIKAMLSGF A S + +++			
bjct				AAQSKYLHQLITDI			_
)uery	64	TYKVRY K		PEFPIAPEIALE P+ P +I +E		98	
bjct	88	VDKSIK	SNFMSTFNPLQD	LDPQNPDHRQIVI	ELLLASNYLDC	129	

E-Value: 0.011

Percent Similarity: 26%

Sequence:

>XP_003958688.1 hypothetical protein KAFR_0H01430 [Kazachstania africana CBS
2517]

MSDTDGLVNLVASDGSEHTISIEAALLSPTLKTMLEGPFKKDGSKIELTNFEPHVVQKAAEYLQHKLKYQ DVDVKKEDVPEFVVPTEMSLELLLIADYLNI

Homolog 2: Puccinia graminis f. sp. tritici CRL 75-36-700-3

E3 ubiquitin ligase complex SCF subunit sconC [Puccinia graminis f. sp. tritici CRL 75-36-700-3]

Sequence ID: XP_003335788.2 Length: 158 Number of Matches: 1

Range 1: 2 to 106 GenPept Graphics

▼ Next Match ▲ Previous Match

Score		Expect Method	Identities	Positives	Gaps
		0) 0.025 Compositional matrix adjust.			
Query	5	VKLISSDGHEFIVKREHALTSGTIKAMLSGP V +++SDG EFIV++E A S IK M+			
Sbjct	2	VLMVTSDGEEFIVEKEVATRSALIKNMIEDL			
Query	65	YKVRYTNSSTEIPEF + + S E P+	PIAPEIALELLM + E+ E+++		
Sbjct	58	HHKKDPEPSAEDPDDARKRATEISDWDTKFI	NVDQEMLFEIIL	AANYLD 106	

E-Value: 0.025

Percent Similarity: 28%

Sequence:

>XP_003335788.2 E3 ubiquitin ligase complex SCF subunit sconC [Puccinia graminis f. sp. tritici CRL 75-36-700-3]

 ${\tt MVLMVTSDGEEFIVEKEVATRSALIKNMIEDLGESDNPIPLPNVSASVLKKVLEWCEHHKKDPEPSAEDP} \\ {\tt DDARKRATEISDWDTKFINVDQEMLFEIILAANYLDIKPLLDVGCKSVANMIKGKQPEEIRKLFNIANDF} \\ {\tt TPEEEAQIKKENEWAEDR} \\$

Homolog 3:

uncharacterized protein TraAM80_06691 [Trypanosoma rangeli]

Sequence ID: XP_029236641.1 Length: 172 Number of Matches: 1

Range 1: 48 to 172 GenPept Graphics

▼ Next Match ▲ Previous Match

Score		Expect M	lethod		Identities	Positives	Gaps	
43.1 b	its(10	0) 0.027 (Compositional n	natrix adjust.	39/127(31%)	53/127(41%)	34/12	7(26%)
Query	4					SGPGQFAE S PG A		44
Sbjct	48					SLQKKSTPGVLAV		107
Query	45					PIAPEIAL P++ E I		91
Sbjct	108			•		LDPMSDEDQDIVS		165
Query	92	AANFLDC AA+F+DC	98					
Sbjct	166	AADFIDC	172					

E-Value: 0.027

Percent Similarity: 31%

Sequence:

>XP_029236641.1 uncharacterized protein TraAM80_06691 [Trypanosoma rangeli]
MAEERGVDIPVNSEANLQTDTDMCAARLGGQPSTEVREPAWPVEPLPYVCMLSGDGMEFIIPE
AAARQSKMISSLLDAIYSLPNRGGFGESLQKKSTPGVLAVNNVNMMPMIPLEPLSSRTLELVCR
YLLQRSTGDPNSTEEFSLLGELDPMSDEDQDIVSELLLAADFIDC

Homolog 4: Tetrapisispora phaffii CBS 4417

hypothetical protein TPHA_0C01720 [Tetrapisispora phaffii CBS 4417]

Sequence ID: XP_003684762.1 Length: 97 Number of Matches: 1

Range 1: 4 to 97 GenPept Graphics Score Expect Method Identities Positives Gaps 42.7 bits(99) 0.013 Compositional matrix adjust. 35/97(36%) 56/97(57%) 6/97(6%) Query 5 VKLISSDGHEFIVKREHALTSGTIKAMLSGPGQFAENETNEVNFREIPSHVLSKVCMYFT 64 + L+S D EF V +E + S T+KAM+ P F EN + + + S VL+ + Y Sbjct 4 ITLVSKDNVEFEVPKEVIIISQTLKAMVDSP--FIEN-SGKITLTNFDSPVLAVIVDYLN 60 Query 65 YKVRYTN---SSTEIPEFPIAPEIALELLMAANFLDC 98 Y +Y + + + IPEF I E++LELL+AA++L+ Sbjct 61 YNFKYKDEDPTKVDIPEFEIPTELSLELLLAADYLNI 97

E-Value: 0.013

Percent Similarity: 36%

Sequence:

>XP_003684762.1 hypothetical protein TPHA_0C01720 [Tetrapisispora phaffii CBS 4417] MDIITLVSKDNVEFEVPKEVIIISQTLKAMVDSPFIENSGKITLTNFDSPVLAVIVDYLNYNFKYKDE DPTKVDIPEFEIPTELSLELLLAADYLNI

Note: I have increased the Max target sequences by 5000 and the expected threshold to 10 to get the result.

3. Use the Clustal Omega Server (default options) available from EBI to do multiple sequence alignment of Set #1 along with your query.

https://www.ebi.ac.uk/jdispatcher/msa/clustalo How many positions are absolutely conserved? Save the alignment as it will be needed later.

Answer:

CLUSTAL O(1.2.4) multiple sequence alignment

```
XP_041172880.1
-----(
8IJ1_C
```

XP_009168015.1	
MTEVQAQPSSASEQKYGGAEGADAMYVKLVSSDDHEFYVRREYALISGTIKAMLSGPEVQ	60
XP_057129221.1	0
XP_003958688.1	
	0
XP_041172880.1	
DWVKITSSDGYSFLVKRSVAVTSGTLKNMLSEDSSFKEAIA	41
8IJ1_CMAMYVKLISSDGHEFIVKREHALTSGTIKAMLSGPGQFAENET	43
XP_009168015.1	
AQPSSASEQKYGGAEGADAMYVKLVSSDDHEFYVRREYALISGTIKAMLSGPASARPSSV	120
XP_057129221.1MAPSTDSEFVTIVSSDGFEFIIPRSAAYVSETFRVALSSTN-FPEGVS	47
XP_003958688.1	
MSDTDGLVNLVASDGSEHTISIEAALLSPTLKTMLEGPF-KKDGS-	44
*.::**: . * * *:: *.	
XP_041172880.1	100
NTCPISERA-AVVEKVCEYMSFRAYYEGPGSKEGVDVNEFTERIPPEVALELCVTLLSVP	100
8IJ1_C	0.6
NEVNFREIPSHVLSKVCMYFTYKVRYTNSSTEIPEFPIAPEIALELLMAANFL-	96
XP_009168015.1	
TTLNTSKSVFKP-RKPVYLATFNVRTLKQAGQQVAFARTLDSLCID	165
XP_057129221.1	
GEYVLGDYSGVIVEKICEYLCYNEKH-KDQVNVPDMDIPPELCLELLMAADFLN	100
XP_003958688.1	
-KIELTNFEPHVVQKAAEYLQHKLKYQDVD-VKKEDVPEFVVPTEMSLELLLIADYLN	100
. * : :	
XP_041172880.1	
L	101
8IJ1_C	
-DC	98
XP_009168015.1	
VCCLSETRTQYASVVIKQTAPSLSYRFRLRTSGDAKAAVAGYAGIPVDSRLCAGRLATLV	225
XP_057129221.1	
T	101
XP_003958688.1	
I	101

XP_041172880.1			
			101
8IJ1_C			
			98
XP_009168015.1			
RESRGSEVHRTLFIVSAY	APTACSSESGRDSFY	D <mark>AL</mark> DALQQQAKSSDIVVVAGDMNAQVK	285
XP 057129221.1			
			101
XP 003958688.1			
			101
			101
XP_041172880.1			1.01
			101
8IJ1_C			
			98
XP_009168015.1			
VNVRADQGAWWIRKAQEMI	EDAKNTGDVRKLFHL	IRSTDPRKPLVSEIIRDQNGSLKCSKA	345
XP_057129221.1			
			101
XP 003958688.1			
			101
XP 041172880.1		101	
8IJ1 C		98	
- XP 009168015.1	ERLACWAQYFEQ	357	
XP 057129221.1		101	
XP 003958688.1		101	
VL_003330000.1		TOT	

There are a total of 8 positions that are absolutely conserved.

Source:

 $\underline{\text{https://www.ebi.ac.uk/jdispatcher/msa/clustalo/summary?jobId=clustalo-I20240401-155820-095}}\\ \underline{\text{1-43818169-p1m}}$

4. Repeat the above analysis for Set #2, show the results, and explain any differences in the number of absolutely conserved positions seen for Set #1 and Set #2. Save the alignment.

Answer:

CLUSTAL O(1.2.4) multiple sequence alignment

XP 029236641.1		
MAEERGVDIPVNSEANLQTDTDMCAARLGGQPS	TEVREPAWPVEPLPYVCMLSGDGMEFI	60
XP_003335788.2		
	<mark>MVLMV</mark> TSDGEE <mark>FI</mark>	13
8IJ1_C		
	MAMYVKLISSDGHEFI	16
XP_003958688.1		
	MSDTDGLVNLVASDGSEHT	19
XP_003684762.1		
	MDIITLVSKDNVEFE	15
	: ::: *. *.	
XP_029236641.1		
IPEAAARQSKMISSLLDAIYSLPNRGGFGESLÇ	KKSTPGVLAVNNVNMMPMIPLEPLSSR	120
XP_003335788.2		
VEKEVATRSALIKNMIEDLGESD	NPIPLPNVSAS	47
8IJ1_C		
VKREHALTSGTIKAMLSGPGQFA	ENETNEVNFREIPSH	54
XP_003958688.1		
ISIEAALLSPTLKTMLEGPFKKD	GSKIELTNFEPH	54
XP_003684762.1		
VPKEVIIISQTLKAMVDSPFIEN	SGKITLTNFDSP	50
* :.::.	: : .	
XP_029236641.1		
TLELVCRYLLQRSTGDPNSTEEFSI	LGELDPMSDEDQDIVSELLLAADFIDC	172
XP_003335788.2		
VLKKVLEWCEHHKKDPEPSAEDPDDARKRATEI	SDWDTKFINVDQEMLFEIILAANYLDI	107
8IJ1_C		
VLSKVCMYFTYKVRYTNS	-STEIPEFPIAPEIALELLMAANFLDC	98
XP_003958688.1		
VVQKAAEYLQHKLKYQDVDV	KKEDVPEFVVPTEMSLELLLIADYLNI	101
XP_003684762.1		
VLAVIVDYLNYNFKYKDEDP	TKVDIPEFEIPTELSLELLLAADYLNI	97
.: : .	** *** ****	
XP_029236641.1		
	172	
XP_003335788.2		
KPLLDVGCKSVANMIKGKQPEEIRKLFNIANDE	TPEEEAQIKKENEWAEDR 158	
8IJ1_C		
	98	
XP_003958688.1		
	101	
XP_003684762.1		
	97	

There are a total of 5 positions that are absolutely conserved.

The presence of positions that are absolutely conserved in a multiple sequence alignment indicates their critical role in maintaining protein function or structure. The higher number of absolutely conserved positions in Set #1 compared to Set #2 implies that the sequences in Set #1 are more functionally or structurally significant. This could be attributed to the closer relationship between the sequences in Set #1, as closely related sequences are more likely to share common functional or structural features, resulting in more conserved positions. This is supported by all sequences in Set #1 having BLAST E values <0.01, indicating high similarity. Conversely, sequences in Set #2 may be more divergent and less related, resulting in fewer absolutely conserved positions. The higher BLAST E values (>0.01) for Set #2 suggest lower similarity among its sequences compared to those in Set #1.

Source:

https://www.ebi.ac.uk/jdispatcher/msa/clustalo/summary?jobId=clustalo-I20240401-161635-032 9-78815151-p1m

5. Compute and show the sequence logos for the each of the above two multiple alignments, using the WebLogo3 program. http://weblogo.threeplusone.com/create.cgi. Adjust the display parameters to obtain a clear and usable image. Comment on the difference between the sequence logos obtained for Set #1 and Set #2. If the webLogo link http://weblogo.threeplusone.com/create.cgi is not working, you can use the older version of the server which is available at http://weblogo.berkeley.edu/logo.cgi (in this tool, make sure to uncheck the option of "Small sample correction").

Answer:

MSA Logo for Set #1

MSA Logo for Set #2:

Looking at the two Multiple Sequence Alignments (MSAs), it's evident that Set 1 has slightly more similar amino acids compared to Set 2. This difference is because Set 2 has undergone more mutations, indicating that the homologs in Set 2 are further apart compared to those in Set 1.

6. Using the above sequence logos, can you discover any conserved motif in your protein? How does it relate to the information you found in Question 1? Answer:

By the analysing set1, we see bigger letter at place (82 to 170) which implies that that a trend of higher conservation towards this position, indicating potential motifs located in this position. By the analysing set 2, we see bigger letter at place (55 to 175) which implies that that a trend of higher conservation towards this position, indicating potential motifs located in this position.

This observation does not align completely with the findings from Question 1, however some initial portion are only aligiend. where the some of domains were detected closer to the sequence's starting point.

7. Use the MEME program (http://meme-suite.org/tools/meme) to find motifs in Set #1. Show the 3 best motifs identified. How do these motifs relate to the sequence logo for Set #1 identified in the Question 5.

Answer:

MOTIF LOCATIONS

Motif 1: MYVKJVSSDGHEFIVKREAALTSGTJKAMLSG

Motif 2: DVPEFYIPPEIALELLMAADFLN

Motif 3: HVVEKVCEYLSYKVKY

The **motif 1** can be seen in the set #1 at (80 to 111), here only with a exception of 2 amino acid in sequence in motif it is both J but in MSA it is L and I else other are same in both.

The **motif 2** can be seen similar sequence in MSA Set#1 at place (156 180), having some no match at place 161, 162, 163.

The **motif 3** also can be seen similar sequence in the set #1of MSA at place (131 to 146) having some differene at position in MSA at 141, 142, 145.

Source:

https://meme-suite.org/meme//opal-jobs/appMEME_5.5.51711988933759-1677616242/meme.html

8. Can you find out whether a structure has been determined for your protein? If so, what is the PDB ID? Which experimental method is used to solve this structure? If it is X-ray, what is the resolution of the protein?

Answer:

Yes, a match for my protein is found in the PDB database, indicating that the protein's structure has been identified.

Chain C, Elongin-C [Homo sapiens]

Sequence ID: <u>8IJ1_C</u> Length: 98 Number of Matches: 1

See 4 more title(s) ➤ See all Identical Proteins(IPG)

Range	1:	1	to 98	<u>GenPept</u>	<u>Graphics</u>
-------	----	---	-------	----------------	-----------------

▼ Next Match ▲ Previous Match

Score 205 bit	ts(52	Expect Method 1) 4e-70 Compositional matrix adju	Identities st. 98/98(100%)	Positives 98/98(100%)	Gaps 0/98(0%)
Query	1	MAMYVKLISSDGHEFIVKREHALTSGTIKA MAMYVKLISSDGHEFIVKREHALTSGTIKA			
Sbjct	1	MAMYVKLISSDGHEFIVKREHALTSGTIKA			
Query	61	MYFTYKVRYTNSSTEIPEFPIAPEIALELL MYFTYKVRYTNSSTEIPEFPIAPEIALELL			
Sbjct	61	MYFTYKVRYTNSSTEIPEFPIAPEIALELL			

PDB ID: 81J1

Method: electron microscopy

Structure:

Source:

https://www.ncbi.nlm.nih.gov/Structure/mmdb/mmdbsrv.cgi?Dopt=s&uid=243259 https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_8IJ1_C

9. Create a phylogenetic tree for the multiple sequence alignment of Set #1 using the EBI tool (https://www.ebi.ac.uk/jdispatcher/phylogeny/simple_phylogeny). Compare the results from UPGMA and Neighbor-joining method.

Answer:

Neighbor-joining method on Set #1:

UPGMA on Set #1:

Result obtained from Neighbour joining method describes that my protein 81J1_C is more related to XP_009168015.1 and have same ancestor. Whereas, result obtained from UPGMA

method define that my protein is more related to XP_041172880.1 and descendant of all 3 other homolog.

Source:

https://www.ebi.ac.uk/jdispatcher/phylogeny/simple_phylogeny/summary?jobId=simple_phylogeny-l20240403-075341-0751-58162204-p1m

10. Create a phylogenetic tree using the multiple sequence alignment of Set #2 with UPGMA method. Compare the resulting tree with that obtained with UPGMA in Q9.

Answer:

UPGMA SET #2:-

Result obtained from UPGMA set#1 say that my protein 8IJ1_C is more related with only one homolog XP_009168015 and descendant of 3 other homolog. but result obtained from UPGMA set#2 say that my protein is more closely related with parent of two homolog and it is ancestor of two homolog and descendant of other two homolog.

Source:

https://www.ebi.ac.uk/jdispatcher/phylogeny/simple_phylogeny/summary?jobId=simple_phylogeny-l20240403-075725-0823-62176631-p1m