Experimental page: ratios of curve fit deaths to curve fit confirmed cases (CFR)

Demonstration of SIR model where R_e is linearly reduced to 0.75 at the end

Re_1 beta_1 gamma USA final Re = 0.75 0.153846 13-Dec 6.5 days 88:1000 250,000 rsq = 0.918200,000 150,000 reduced Re: 100,000 68:1000 50,000 7-Aug 26-Sep 15-Nov 4-Jan 23-Feb 14-Apr 3-Jun 23-Jul 11-Sep

of the sequence:

False Positives Demonstration

Use 0.21% from US est. incidence above as estimated daily incidence Prevalence estimated as avg. infected period of 2 weeks X incidence

99% accuracy of test 0.21% X 14 = 2.940% Positive Negative test pos 2.911% 0.971% 3.88% test neg 0.029% 96.089% 96.12% 97.060% 100.00% 2.940%

False pos. is a bit over 1/4 of total positives! TRUE + 2.911%/3.88%

75.0% FALSE + 0.971%/3.88% 25.0% Total 100.00%

Counter-act this tendency by increasing test sensitivity. However this may increase false negatives, the recipients of which may be positive, think they're negative, and go spread it around some more.

Reducing the R_e while keeping gamma constant is the same as reducing contact rate. Contact rate is reduced through isolation, lockdowns, and vaccinations. This case about 20:1000 benefit (25%).

USA Excess Deaths (from CDC data):

Annualized on 48 weeks

	All Cause	All Cause, excl.	CV19
3 yr average before 2020	855:100,000	855:100,000	-
2020	978:100,000	890:100,000	-
Diff.	123:100,000	35:100,000	88:100,000
Diff.	+14.4%	+4.1%	+10.3%

3 yr average weighted 859:100,000

29% of All-Cause excess deaths are non-CV19

