Problem DESCRIPTION

One of the leading retail stores in the US, Walmart, would like to predict the sales and demand accurately. There are certain events and holidays which impact sales on each day. There are sales data available for 45 stores of Walmart. The business is facing a challenge due to unforeseen demands and runs out of stock some times, due to the inappropriate machine learning algorithm. An ideal ML algorithm will predict demand accurately and ingest factors like economic conditions including CPI, Unemployment Index, etc.

Walmart runs several promotional markdown events throughout the year. These markdowns precede prominent holidays, the four largest of all, which are the Super Bowl, Labour Day, Thanksgiving, and Christmas. The weeks including these holidays are weighted five times higher in the evaluation than non-holiday weeks. Part of the challenge presented by this competition is modeling the effects of markdowns on these holiday weeks in the absence of complete/ideal historical data. Historical sales data for 45 Walmart stores located in different regions are available.

Dataset Description

This is the historical data that covers sales from 2010-02-05 to 2012-11-01, in the file Walmart_Store_sales. Within this file you will find the following fields:

Store - the store number

Date - the week of sales

Weekly_Sales - sales for the given store

Holiday_Flag - whether the week is a special holiday week 1 – Holiday week 0 – Non-holiday week

Temperature - Temperature on the day of sale

Fuel_Price - Cost of fuel in the region

CPI – Prevailing consumer price index

Unemployment - Prevailing unemployment rate

Holiday Events

Super Bowl: 12-Feb-10, 11-Feb-11, 10-Feb-12, 8-Feb-13 Labour Day: 10-Sep-10, 9-Sep-11, 7-Sep-12, 6-Sep-13 Thanksgiving: 26-Nov-10, 25-Nov-11, 23-Nov-12, 29-Nov-13

Christmas: 31-Dec-10, 30-Dec-11, 28-Dec-12, 27-Dec-13

Analysis Tasks

Basic Statistics tasks

Which store has maximum sales

Which store has maximum standard deviation i.e., the sales vary a lot. Also, find out the coefficient of mean to standard deviation

Which store/s has good quarterly growth rate in Q3'2012

Some holidays have a negative impact on sales. Find out holidays which have higher sales than the mean sales in non-holiday season for all stores together

Provide a monthly and semester view of sales in units and give insights

Statistical Model

For Store 1 – Build prediction models to forecast demand

Linear Regression – Utilize variables like date and restructure dates as 1 for 5 Feb 2010 (starting from the earliest date in order). Hypothesize if CPI, unemployment, and fuel price have any impact on sales.

Change dates into days by creating new variable.

Select the model which gives best accuracy.

```
In [2]: # Import necessary libraries
  import pandas as pd
  import seaborn as sns
  import numpy as np
  import matplotlib.pyplot as plt
  from matplotlib import dates
  from datetime import datetime
```

read csv data

```
In [3]: df = pd.read_csv('Walmart_Store_sales.csv')
In [4]: df
```

•		Store	Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price	СРІ	Unen
	0	1	05- 02- 2010	1643690.90	0	42.31	2.572	211.096358	
	1	1	12- 02- 2010	1641957.44	1	38.51	2.548	211.242170	
	2	1	19- 02- 2010	1611968.17	0	39.93	2.514	211.289143	
	3	1	26- 02- 2010	1409727.59	0	46.63	2.561	211.319643	
	4	1	05- 03- 2010	1554806.68	0	46.50	2.625	211.350143	
	•••								
	6430	45	28- 09- 2012	713173.95	0	64.88	3.997	192.013558	
	6431	45	05- 10- 2012	733455.07	0	64.89	3.985	192.170412	
	6432	45	12- 10- 2012	734464.36	0	54.47	4.000	192.327265	
	6433	45	19- 10- 2012	718125.53	0	56.47	3.969	192.330854	
	6434	45	26- 10- 2012	760281.43	0	58.85	3.882	192.308899	

6435 rows × 8 columns

Out[4]:

```
df['Date'] = pd.to_datetime(df['Date'])
In [5]:
        df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 6435 entries, 0 to 6434 Data columns (total 8 columns):

Data	COLUMNIS (COCA)	t o corumns).	
#	Column	Non-Null Count	Dtype
0	Store	6435 non-null	int64
1	Date	6435 non-null	<pre>datetime64[ns]</pre>
2	Weekly_Sales	6435 non-null	float64
3	Holiday_Flag	6435 non-null	int64
4	Temperature	6435 non-null	float64
5	Fuel_Price	6435 non-null	float64
6	CPI	6435 non-null	float64
7	Unemployment	6435 non-null	float64
dtype	es: datetime64	ns](1), float64	(5), int64(2)

memory usage: 402.3 KB

```
In [31]: weekly_sale = df.groupby('Store')['Weekly_Sales'].sum().sort_values()
    plt.figure(figsize=(15,6))
    plt.xlabel('Store')
    plt.ylabel('Total Sales');
    ax = weekly_sale.plot(kind='bar');
    print('store has max sale is = ' ,weekly_sale.idxmax())
```

```
store has max sale is = 20
```



```
In [ ]: #CALUCALATE STANDERD DIVIATION

DF_std = pd.DataFrame(df.groupby('Store')['Weekly_Sales'].std().sort_value
print("store having max Std diviation ",DF_std[0:1])
#DF_std[:1]
```

```
In [7]: # Coefficient of mean to standard deviation
    coef_mean_std = pd.DataFrame(df.groupby('Store')['Weekly_Sales'].std() / d:
    coef_mean_std = coef_mean_std.rename(columns={'Weekly_Sales':'Coefficient of coef_mean_std
```

Out[7]: Coefficient of mean to standard deviation

Store 1 0.100292 2 0.123424 3 0.115021 4 0.127083 5 0.118668 6 0.135823 7 0.197305 0.116953 8 9 0.126895 10 0.159133 0.122262 11 12 0.137925 13 0.132514

14	0.157137
15	0.193384
16	0.165181
17	0.125521
18	0.162845
19	0.132680
20	0.130903
21	0.170292
22	0.156783
23	0.179721
24	0.123637
25	0.159860
26	0.110111
27	0.135155
28	0.137330
29	0.183742
30	0.052008
31	0.090161
32	0.118310
33	0.092868
34	0.108225
35	0.229681
36	0.162579
37	0.042084
38	0.110875
39	0.149908
40	0.123430
41	0.148177
42	0.090335
43	0.064104
44	0.081793
45	0.165613

```
In [8]: #Which store/s has good quarterly growth rate in Q3'2012
Q3 = df[ ((df['Date'] > '2012-7-1') & (df['Date'] < '2012-9-30')) ].groupl

plt.figure(figsize=(20,7))
# Sales for 2nd quarterly in 2012
Q2 = df[(df['Date'] > '2012-04-01') & (df['Date'] < '2012-06-30')].groupby
#plt.plot(Q2,label = "Q2",C='b')
#plt.plot(Q3,label = "Q3",C='r')
#plt.legend()

Q2.plot(kind ='bar',color='r',alpha=0.2,legend=True)
Q3.plot(kind ='bar',color='b',alpha=0.2,legend=True)
plt.legend(["Q2' 2012", "Q3' 2012"]);

diffrence = Q2 - Q3
diffrence.plot(kind ='bar',color='k',legend=True)
print("Store which has max profit ",Q3.idxmax(),'th store with ',Q3.max())</pre>
```

Store which has max profit 4 th store with 25652119.35 \$


```
In [9]:
        #Some holidays have a negative impact on sales.
         #Find out holidays which have higher sales than the mean sales in non-holid
         plt.figure(figsize=(15,5))
         sale by date = df.groupby('Date')['Weekly Sales'].sum()
         sale mean by date = sale by date.mean()
         print('mean is',sale_mean_by_date)
         plt.plot(sale by date)
         plt.axhline(sale mean by date,color = 'r', linestyle = '-')
         plt.xlabel("date")
         plt.ylabel("sum of all store Weekly_Sales")
         Super_Bowl =['12-2-2010', '11-2-2011', '10-2-2012']
         Labour Day = ['10-9-2010', '9-9-2011', '7-9-2012']
         Thanksgiving = ['26-11-2010', '25-11-2011', '23-11-2012']
         Christmas = ['31-12-2010', '30-12-2011', '28-12-2012']
         #plt.axvline('31-12-2010')
         fig, ax = plt.subplots(figsize = (15,5))
         ax.plot(sale by date, label='Weekly Sales')
         for day in Super Bowl:
             day = datetime.strptime(day, '%d-%m-%Y')
             plt.axvline(x=day, label='Super Bowl holiday %s'%day, linestyle='--', c=
         ax.legend()
         plt.show()
         fig, ax = plt.subplots(figsize = (15,5))
         ax.plot(sale_by_date,label='Weekly_Sales')
         for day in Labour Day:
             day = datetime.strptime(day, '%d-%m-%Y')
             plt.axvline(x=day,label='Labour Day holiday %s'%day, linestyle='--', c=
         ax.legend()
         plt.show()
         fig, ax = plt.subplots(figsize = (15,5))
         ax.plot(sale by date, label='Weekly Sales')
         for day in Thanksgiving:
             day = datetime.strptime(day, '%d-%m-%Y')
             plt.axvline(x=day, label='Thanksgiving holiday %s'%day, linestyle='--',
         ax.legend()
         plt.show()
         fig, ax = plt.subplots(figsize = (15,5))
         ax.plot(sale_by_date,label='Weekly_Sales')
         for day in Christmas:
             day = datetime.strptime(day, '%d-%m-%Y')
             plt.axvline(x=day,label='Christmas holiday %s'%day, linestyle='--', c=
         ax.legend()
         plt.show()
         print("as per above chart we can see Thanksgiving day have more sale then of
```


as per above chart we can see Thanksgiving day have more sale then other ho liday

```
import calendar
df['year']= df['Date'].dt.year
df['month']= df['Date'].dt.month
df['day']= df['Date'].dt.day
df['MonthName']= df['month'].apply(lambda x: calendar.month_name[x])
df.head(5)
```

Out[10]:	O]: Store		Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price	СРІ	Unemplo
	0	1	2010- 05- 02	1643690.90	0	42.31	2.572	211.096358	
	1	1	2010- 12-02	1641957.44	1	38.51	2.548	211.242170	
	2	1	2010- 02- 19	1611968.17	0	39.93	2.514	211.289143	
	3	1	2010- 02- 26	1409727.59	0	46.63	2.561	211.319643	
	4	1	2010- 05- 03	1554806.68	0	46.50	2.625	211.350143	

```
In [15]: #New DataSet for 2012 Data.
    SaleData2012 = df[df['year']==2012]
    SaleData2010 = df[df['year']==2010]
    SaleData2011 = df[df['year']==2011]
```

```
In [16]: ##Task5: Provide a monthly and semester view of sales in units and give ins
#Monthly Sale of all store

MonthlySale = df.groupby("MonthName")["Weekly_Sales"].sum().reset_index(name)
MonthlySale['Total_Sale']=MonthlySale['Total_Sale'].round(2)
    yearly_sale = df.groupby('year')['Weekly_Sales'].sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().reset_index(name='Total_sale').sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().sum().
```

```
Out[16]: Text(0.5, 1.0, 'yearly sale report ')
```



```
In [17]: plt.bar(MonthlySale['MonthName'],MonthlySale['Total_Sale'])
   plt.ylabel("Toral_sale")
   plt.xlabel("Month Name")
   plt.title("yearly sale report ")
```

Out[17]: Text(0.5, 1.0, 'yearly sale report ')


```
In [18]: SaleData2012[SaleData2012['month'] == 5]
```

•		Store	Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price	СРІ	Une
	119	1	2012- 05- 18	1595901.87	0	70.33	3.630	221.742674	
	120	1	2012- 05- 25	1555444.55	0	77.22	3.561	221.744944	
	139	1	2012- 05- 10	1670785.97	0	68.55	3.617	223.181477	
	262	2	2012- 05- 18	2000940.67	0	71.27	3.630	221.380331	
	263	2	2012- 05- 25	1912791.09	0	78.19	3.561	221.382803	
	•••								
	6269	44	2012- 05- 25	343268.29	0	62.39	3.801	131.028774	
	6288	44	2012- 05- 10	337390.44	0	61.79	3.815	131.075667	
	6411	45	2012- 05- 18	800842.28	0	66.30	3.848	190.996448	
	6412	45	2012- 05- 25	817741.17	0	67.21	3.798	191.002810	
	6431	45	2012-	733455.07	0	64.89	3.985	192.170412	

135 rows × 12 columns

10

Out[18]:

```
In [19]:
    sem_data =[0,0,0,0,0,0,0]
    sem_data_info =["lst_sem_2010","2nd_sem2010","1st_sem_2011","2nd_sem_2011"]
    def semister_sale_cal(datafram):
        sem_1st = datafram[(datafram['month'] == 1)|(datafram['month'] == 2)|(datafram['month'] == 7)|(datafram['month'] == 8)|(datafram['month'] == 1)|(datafram['month'] == 8)|(datafram['month'] == 1)|(datafram['month'] == 1)|(datafra
```


Statistical Model

For Store 1 – Build prediction models to forecast demand Linear Regression – Utilize variables like date and restructure dates as 1 for 5 Feb 2010 (starting from the earliest date in order). Hypothesize if CPI, unemployment, and fuel price have any impact on sales.

```
import seaborn as sns
corr = df.corr()

plt.figure(figsize=(12, 10))
sns.heatmap(corr, annot=True, vmin=-1.0, cmap='mako')
plt.show()
df
```


month -	3.1e-19	0.068	0.33	0.066	-0.053	0.0015	-0.0021	-0.14	1	0.006	0.75
day -	-3.9e-19	-0.015	-0.036	0.089	0.033	0.004	-0.0082	-0.013	0.006	1	
	Store -	Weekly_Sales -	Holiday_Flag -	Emperature -	Fuel_Price -	- CPI	Unemployment -	year -	month -	day -	

Out[20]:		Store	Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price	СЫ	Une
	0	1	2010- 05- 02	1643690.90	0	42.31	2.572	211.096358	
	1	1	2010- 12-02	1641957.44	1	38.51	2.548	211.242170	
	2	1	2010- 02- 19	1611968.17	0	39.93	2.514	211.289143	
	3	1	2010- 02- 26	1409727.59	0	46.63	2.561	211.319643	
	4	1	2010- 05- 03	1554806.68	0	46.50	2.625	211.350143	
	•••	•••	•••						
	6430	45	2012- 09- 28	713173.95	0	64.88	3.997	192.013558	
	6431	45	2012- 05- 10	733455.07	0	64.89	3.985	192.170412	
	6432	45	2012- 12-10	734464.36	0	54.47	4.000	192.327265	
	6433	45	2012- 10-19	718125.53	0	56.47	3.969	192.330854	
	6434	45	2012- 10- 26	760281.43	0	58.85	3.882	192.308899	

6435 rows × 12 columns

```
In [21]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import LabelEncoder
    from sklearn.linear_model import LinearRegression

#df['Store'] = df.Store.astype(str)
#df['Store'] = 'Store '+ df.Store.astype(str)
LabEncoder = LabelEncoder()
Str_1 = df[df['Store']==1]
#Str_1 = Str_1.copy()
Str_1['Days'] = LabEncoder.fit_transform(Str_1['Date'])
Str_1.drop(['Store','Date','Holiday_Flag','year','month','day','MonthName'
Str_1
```

<ipython-input-21-0cccb16da133>:10: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
Str_1['Days'] = LabEncoder.fit_transform(Str_1['Date'])
/opt/anaconda3/lib/python3.8/site-packages/pandas/core/frame.py:4163: Setti

ngWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copyreturn super().drop(

O	_	г	\sim	1	- 7	
UU	Т		/	- 1	- 1	
\sim			-	_	- 1	

	Weekly_Sales	Temperature	Fuel_Price	СРІ	Unemployment	Days
0	1643690.90	42.31	2.572	211.096358	8.106	13
1	1641957.44	38.51	2.548	211.242170	8.106	42
2	1611968.17	39.93	2.514	211.289143	8.106	3
3	1409727.59	46.63	2.561	211.319643	8.106	4
4	1554806.68	46.50	2.625	211.350143	8.106	14
•••		•••			•••	•••
138	1437059.26	76.08	3.666	222.981658	6.908	136
139	1670785.97	68.55	3.617	223.181477	6.573	116
140	1573072.81	62.99	3.601	223.381296	6.573	142
141	1508068.77	67.97	3.594	223.425723	6.573	139
142	1493659.74	69.16	3.506	223.444251	6.573	140

143 rows × 6 columns

```
In [22]: corr = Str_1.corr()
    corrmat = sns.heatmap(Str_1.corr(), annot=True)
    corrmat
```



```
In [23]: X = Str_1[['Days','Fuel_Price','CPI','Unemployment']]
y = Str_1['Weekly_Sales']

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.20)
Linreg = LinearRegression()
Linreg.fit(X_train,y_train)
y_pred = Linreg.predict(X_test)
from sklearn import metrics
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test))
Mean Absolute Error: 138501.65320946564
```

Mean Squared Error: 138501.65320946564

Mean Squared Error: 46102528603.08875

Root Mean Squared Error: 214714.9938944385

	Actual Sales	Predicted Sales
15	1399662.07	1.465963e+06
106	1819870.00	1.606587e+06
23	1448938.92	1.500930e+06
49	1391013.96	1.475313e+06
78	1624383.75	1.554007e+06
103	1319325.59	1.621314e+06
111	1511068.07	1.600549e+06
9	1545418.53	1.479364e+06
85	1380020.27	1.610634e+06
55	1456800.28	1.524052e+06
107	1539387.83	1.607588e+06
88	1493525.93	1.641718e+06
26	1605491.78	1.509025e+06
69	1635078.41	1.487168e+06
81	1464693.46	1.585201e+06
32	1430378.67	1.521496e+06
134	1582083.40	1.572402e+06
87	1630989.95	1.624861e+06
27	1508237.76	1.509457e+06
113	1899676.88	1.559045e+06
126	1769854.16	1.602035e+06
99	1497462.72	1.721556e+06
128	1497954.76	1.596987e+06
33	1351791.03	1.519238e+06
6	1472515.79	1.545103e+06
18	1542561.09	1.517699e+06
142	1493659.74	1.558011e+06

```
ax = Actual_vs_Pred.plot(kind='bar');
```

71

46

1532114.86

2387950.20

1.494354e+06

1.501051e+06

Out[24]:


```
In [25]: from sklearn.ensemble import RandomForestRegressor
    rfr = RandomForestRegressor(n_estimators = 400,max_depth=15)
    rfr.fit(X_train,y_train)
    y_pred=rfr.predict(X_test)

print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
    print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
    print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test)
    Actual_vs_Pred = pd.DataFrame({"Actual Sales": y_test, "Predicted Sales":
    Actual_vs_Pred
```

Mean Absolute Error: 139018.05526817447 Mean Squared Error: 45827239805.88807

Root Mean Squared Error: 214072.97775732478

71

46

1532114.86

2387950.20

1.550022e+06

1.620138e+06

Out[25]:

```
In [47]: plt.figure(figsize=(200,5))
ax = Actual_vs_Pred.plot(kind='bar');
```

<Figure size 14400x360 with 0 Axes>

In []: