FINANCIAL DISTRESS PREDICTION

a

machine learning portfolio

Adnan

Today's Agenda

Introduction

Objective

The Dataset

EDA / Feature Engineering

ML Models

Model Exploration

Next Steps

OBJECTIVE

- What constitutes Financial Distress?
 - Credit / Delinquency Risk
- Why?
 - Risk Management
 - Credit Decisions
 - Portfolio Management
 - Compliance
 - Customer Service
- The Metric (AUC, F1)

"Do you have any other collateral... besides this e-mail from a Nigerian prince?"

THE METRIC - AUC-ROC

(AREA UNDER THE RECEIVER OPERATING CHARACTERISTIC CURVE)

- The Model's Ability to Distinguish between TPR and FPR.
 - TPR: Actual Positives correctly identified by model
 - FPR: Actual Negatives correctly identified by model
- The ROC curve is created by varying the decision threshold of the model and plotting TPR against FPR at each threshold.
- The higher the AUC-ROC score, the better the model's predictive performance.
- Default Threshold in Sckitlearn is 0.5
- ypred_train = gs.best_estimator_.predict_proba(X_train)[:, 1]
 ypred = gs.best_estimator_.predict_proba(X_test)[:, 1]

 fpr, tpr, thresholds = roc_curve(y_test, ypred, pos_label=1)
 roc_auc = auc(fpr, tpr)

- No single industry standard threshold for classification problems, including financial distress prediction.
- Threshold is often chosen based on a balance of the true positive rate (TPR) and false positive rate (FPR) of the model, which can be obtained from the ROC curve

THE DATASET

give me some credit

Data Type	Description	Feature
Integer	Age of borrower in years	age
Real	Monthly Income	MonthlyIncome
Integer	Number of dependents in family excluding themselves (spouse, children etc.)	NumberOfDependents
Percentage	Monthly debt payments, alimony, living costs divided by monthy gross income	DebtRatio
Percentage	Total balance on credit cards and personal lines of credit except real estate and no installment debt like car loans divided by the sum of credit limits	RevolvingUtilizationOfUnsecuredLines
Integer	Number of Open loans (installment like car loan or mortgage) and Lines of credit (e.g. credit cards)	NumberOfOpenCreditLinesAndLoans
Integer	Number of times borrower has been 30-59 days past due but no worse in the last 2 years.	NumberOfTime30- 59DaysPastDueNotWorse
Integer	Number of times borrower has been 60-89 days past due but no worse in the last 2 years.	NumberOfTime60- 89DaysPastDueNotWorse
Integer	Number of times borrower has been 90 days or more past due.	NumberOfTimes90DaysLate
Categorical (Y/N)	Person experienced 90 days past due delinquency or worse	SeriousDlqin2yrs

PROJECT PLAN

Data Import

- Load Data
- * Reindex Data
- Describe Data

Pipeline & Conclusion

- Function Transform all Functions
- * Build Pipeline
- Conclusions

Exploratory Data Analysis

- Study Variables
- Outlier/ NullRemoval
- Data Correlations

Model Study & Interpretation

- Plot AUC of all models
- ❖ LIME & SHAP

Feature Engineering

- Data Relations
- Custom Features
- Remove UnwantedFeatures

Basic Model

- Trial All Models
- Find Best Scaler /Sampler for Data

Final Models & Ensemble

- Plot History of Epochs
- Voting Classify best models

Modeling

- GridSearch
- Plot The AUC
- Get PermutationImportance

Data Study for variable - Age

EXPLORATORY DATA ANALYSIS

Distribution of the Target Variable

EXPLORATORY DATA ANALYSIS

Data Study for variable - Debt Ratio

Data Study for variable - Debt Ratio

50000 100000 150000 200000 250000 300000

Debt Ratio

Data Study for variable - Revolving Utilization of Unsecured Lines

FEATURE ENGINEERING

Debt-per-person: This feature feature could be useful for prec

[88]:	df['debt_per_person'] = df['[
	df['debt_per_person'] = df['d
	mean_debt_per_person = df['de
	df['debt_per_person'].fillna

Delinquency_ratio: This featu limit across all open credit lines credit-limit ratios are generally

[89]:	<pre>df['TotalCreditLines'] = df[df['Delinquency_ratio'] = df </pre>
	<pre>df['Delinquency_ratio'] = df mean_Delinquency_ratio = df[df['Delinquency_ratio'].fill</pre>

Available credit ratio: This feet credit limit across all open cred available credit ratios are gene

[90]: df['available_credit_ratio']
 df['available_credit_ratio']
 mean_available_credit_ratio
 df['available_credit_ratio']

TotalRevolvingLimits: This fe typically calculated by summing

[91]: df['TotalRevolvingLimits'] =

Significance of Numerical Features for Default Prediction

We can also see all the p values are on or below 0.05 showing originality in the variables.

feature	VIF
age	4.644384
MonthlyIncome	1.296428
NumberOfDependents	1.478024
DebtRatio	1.410657
RevolvingUtilizationOfUnsecuredLines	1.795841
NumberOfOpenCreditLinesAndLoans	4.593384
NumberRealEstateLoansOrLines	2.319815
NumberOfTime30-59DaysPastDueNotWorse	42.593421
NumberOfTime60-89DaysPastDueNotWorse	95.116295
NumberOfTimes90DaysLate	74.187992
SeriousDlqin2yrs	1.188257


```
def feature_engineering(df):
    """
    This function takes in the dataframe and does all feature
    """

    df_feature = df.copy() # create a copy of the original dat

# debt_per_person feature
    df_feature['debt_per_person'] = df_feature['DebtRatio'] /
    df_feature['debt_per_person'] = df_feature['debt_per_person'
    mean_debt_per_person = df_feature['debt_per_person'].mean(
    df_feature['debt_per_person'].fillna(mean_debt_per_person,)
```

FINAL ML DATASET

Data	a columns (total 14 columns):		
#	Column	Non-Null Count	Dtype
0	age	150000 non-null	float64
1	MonthlyIncome	150000 non-null	float64
2	NumberOfDependents	150000 non-null	float64
3	DebtRatio	150000 non-null	float64
4	RevolvingUtilizationOfUnsecuredLines	150000 non-null	float64
5	SeriousDlqin2yrs	150000 non-null	category
6	debt_per_person	150000 non-null	float64
7	Delinquency_ratio	150000 non-null	float64
8	available_credit_ratio	150000 non-null	float64
9	TotalRevolvingLimits	150000 non-null	float64
10	credit_utilization_ratio	150000 non-null	float64
11	income_to_debt_ratio	150000 non-null	float64
12	Total_Past_Due	150000 non-null	float64
13	All_Credit_Lines	150000 non-null	float64
dtypes: category(1), float64(13)			

memory usage: 15.0 MB

"The machine learning algorithm wants to know if we'd like a dozen wireless mice to feed the Python book we just bought."

HACHINE LEARNING


```
def get_auc_scores(X_train, X_test, y_train, y_test, trial_name):
    classifiers = {
        'Logistic Regression': LogisticRegression(random_state=42, n_jobs=-1),
        'Decision Trees': DecisionTreeClassifier(random_state=42),
        'Random Forest': RandomForestClassifier(random_state=42, n_jobs=-1),
        'Gradient Boosting': GradientBoostingClassifier(),
        'SVM': SVC(probability=True) #This was removed because it is very expensive computationally
        'XGBoost': XGBClassifier(random_state=42, n_jobs=-1),
        'LightGBM': LGBMClassifier(random_state=42, n_jobs=-1),
        'CatBoost': CatBoostClassifier(random_state=42, verbose=False, thread_count=-1),
        'Adaboost': AdaBoostClassifier(random_state=42),
        'MLP': MLPClassifier(random_state=42)
}
```

	Model	Basic Model
0	Logistic Regression	0.604587
1	Decision Trees	0.612859
2	Random Forest	0.839380
3	Gradient Boosting	0.867459
4	XGBoost	0.863670
5	LightGBM	0.866314
6	CatBoost	0.867437
7	Adaboost	0.863255
8	MLP	0.623372

Ya basic.

It's a human insult. It's devastating. You're devastated right now

THE BASIC MODELS

```
scalers = [MinMaxScaler(), RobustScaler(), StandardScaler()]
samplers = [RandomOverSampler(), RandomUnderSampler(), SMOTE()]

results_list = []

# Loop through each scaler and sampler combination
for scaler in scalers:
    scaler_name = type(scaler).__name__
    for sampler in samplers:
        sampler_name = type(sampler).__name__

# Scale and resample the data
        scaler.fit(X_train)
        X_train_scaled = scaler.transform(X_train)
        X_test_scaled = scaler.transform(X_test)
        X_train_resampled, y_train_resampled = sampler.fit_resample(X_train)
```



```
def compute model(model, params):
   This function does a grid search with a 3 fold Stratified K fo
    the best model, the fpr, tpr and roc auc values.
    skf = StratifiedKFold(n splits=3)
    gs = GridSearchCV(model, params, cv=skf, n jobs=-1, verbose=1,
    gs.fit(X train, y train)
    model stats = pd.DataFrame(gs.cv results )
   model_stats = model_stats.sort_values(by='rank_test_score', as
   vpred train = gs.best estimator .predict proba(X train)[:, 1]
   ypred = gs.best estimator .predict proba(X test)[:, 1]
   fpr, tpr, thresholds = roc curve(y test, ypred, pos label=1)
    roc auc = auc(fpr, tpr)
    result = {'fpr': fpr, 'tpr': tpr, 'roc auc': roc auc}
   y pred = gs.best estimator .predict(X test)
   print(classification report(y test, y pred))
   return result, gs.best_estimator_,model_stats
```


%%time # LightGBM $TUNED\ MODELS$

lgb_param_grid = { 'learning_rate': [0.1, 0.05], 'n_estimators': [150, 250], 'max_depth': [3, 4], 'num_leaves': [31, 63] } model_name = 'LightGBM' result, best_estimator, lgb_model_stats = compute_model(lgb_model, lgb_param_grid) model_results[model_name] = [result, best_estimator] plot_roc_curve(result, best_estimator) # Compute permutation importance using ELi5 perm = PermutationImportance(best_estimator, random_state=42) perm.fit(X_train_d, y_train) eli5.show weights(perm, feature names=X train d.columns.tolist())

PERMUTATION IMPORTANCE

Weight	Feature
0.0650 ± 0.0007	RevolvingUtilizationOfUnsecuredLines
0.0446 ± 0.0006	Delinquency_ratio
0.0203 ± 0.0009	age
0.0069 ± 0.0002	TotalRevolvingLimits
0.0033 ± 0.0002	Total_Past_Due
0.0015 ± 0.0002	MonthlyIncome
0.0002 ± 0.0002	NumberOfDependents
0.0000 ± 0.0001	credit_utilization_ratio
-0.0000 ± 0.0000	income_to_debt_ratio
-0.0002 ± 0.0002	debt_per_person
-0.0003 ± 0.0004	DebtRatio
-0.0009 ± 0.0002	available_credit_ratio
-0.0098 ± 0.0008	All_Credit_Lines

Weight	Feature
0.0317 ± 0.0016	Delinquency_ratio
0.0287 ± 0.0014	Total_Past_Due
0.0157 ± 0.0008	RevolvingUtilizationOfUnsecuredLines
0.0102 ± 0.0001	TotalRevolvingLimits
0.0054 ± 0.0006	age
0.0034 ± 0.0002	All_Credit_Lines
0.0027 ± 0.0003	MonthlyIncome
0.0026 ± 0.0001	credit_utilization_ratio
0.0016 ± 0.0003	DebtRatio
0.0012 ± 0.0003	available_credit_ratio
0.0011 ± 0.0003	income_to_debt_ratio
0.0004 ± 0.0002	NumberOfDependents
0.0002 ± 0.0001	debt_per_person

Weight	Feature
0.0751 ± 0.0009	RevolvingUtilizationOfUnsecuredLines
0.0681 ± 0.0007	Delinquency_ratio
0.0279 ± 0.0007	Total_Past_Due
0.0191 ± 0.0003	TotalRevolvingLimits
0.0185 ± 0.0006	age
0.0177 ± 0.0009	income_to_debt_ratio
0.0172 ± 0.0003	All_Credit_Lines
0.0150 ± 0.0007	available_credit_ratio
0.0143 ± 0.0009	DebtRatio
0.0128 ± 0.0004	MonthlyIncome
0.0091 ± 0.0003	credit_utilization_ratio
0.0062 ± 0.0005	debt_per_person
0.0013 ± 0.0001	NumberOfDependents
	•

Weight	Feature
0.0783 ± 0.0016	Total_Past_Due
0.0630 ± 0.0009	RevolvingUtilizationOfUnsecuredLines
0.0394 ± 0.0011	Delinquency_ratio
0.0260 ± 0.0004	income_to_debt_ratio
0.0181 ± 0.0006	credit_utilization_ratio
0.0100 ± 0.0006	All_Credit_Lines
0.0090 ± 0.0008	available_credit_ratio
0.0090 ± 0.0008	TotalRevolvingLimits
0.0087 ± 0.0006	age
0.0072 ± 0.0003	DebtRatio
0.0048 ± 0.0007	MonthlyIncome
0.0026 ± 0.0004	debt_per_person
0.0025 ± 0.0007	NumberOfDependents

Logistic Regression

Random Forest

Gradient Boosting

MLP

Weight	Feature
0.0579 ± 0.0011	RevolvingUtilizationOfUnsecuredLines
0.0336 ± 0.0013	Delinquency_ratio
0.0289 ± 0.0009	Total_Past_Due
0.0203 ± 0.0006	age
0.0182 ± 0.0006	All_Credit_Lines
0.0157 ± 0.0006	available_credit_ratio
0.0156 ± 0.0010	income_to_debt_ratio
0.0135 ± 0.0004	MonthlyIncome
0.0113 ± 0.0008	DebtRatio
0.0092 ± 0.0003	credit_utilization_ratio
0.0086 ± 0.0008	TotalRevolvingLimits
0.0059 ± 0.0006	debt_per_person
0.0022 ± 0.0002	NumberOfDependents

Weight	Feature
0.0570 ± 0.0016	RevolvingUtilizationOfUnsecuredLines
0.0464 ± 0.0009	Delinquency_ratio
0.0243 ± 0.0010	Total_Past_Due
0.0096 ± 0.0007	All_Credit_Lines
0.0090 ± 0.0003	age
0.0041 ± 0.0003	MonthlyIncome
0.0025 ± 0.0004	DebtRatio
0.0013 ± 0.0002	income_to_debt_ratio
0.0010 ± 0.0002	credit_utilization_ratio
0.0009 ± 0.0003	TotalRevolvingLimits
0.0008 ± 0.0003	available_credit_ratio
0.0007 ± 0.0001	debt_per_person
0.0003 ± 0.0001	NumberOfDependents

Weight	Feature
0.0555 ± 0.0014	RevolvingUtilizationOfUnsecuredLines
0.0450 ± 0.0011	Delinquency_ratio
0.0241 ± 0.0007	Total_Past_Due
0.0179 ± 0.0009	age
0.0152 ± 0.0007	All_Credit_Lines
0.0122 ± 0.0006	income_to_debt_ratio
0.0105 ± 0.0006	available_credit_ratio
0.0097 ± 0.0003	MonthlyIncome
0.0095 ± 0.0006	DebtRatio
0.0068 ± 0.0003	TotalRevolvingLimits
0.0061 ± 0.0005	credit_utilization_ratio
0.0061 ± 0.0004	debt_per_person
0.0018 ± 0.0002	NumberOfDependents

Weight	Feature
0.0612 ± 0.0013	Total_Past_Due
0.0551 ± 0.0011	RevolvingUtilizationOfUnsecuredLines
0.0243 ± 0.0011	Delinquency_ratio
0.0210 ± 0.0007	age
0.0196 ± 0.0008	All_Credit_Lines
0.0145 ± 0.0003	available_credit_ratio
0.0134 ± 0.0004	MonthlyIncome
0.0125 ± 0.0006	TotalRevolvingLimits
0.0100 ± 0.0007	income_to_debt_ratio
0.0097 ± 0.0004	DebtRatio
0.0088 ± 0.0006	credit_utilization_ratio
0.0039 ± 0.0002	debt_per_person
0.0022 ± 0.0003	NumberOfDependents

XGBoost

AdaBoost

LightGBM

CatBoost

best_model	roc_auc	model_name	
<catboost.core.catboostclassifier 0x<="" at="" object="" th=""><th>0.867221</th><th>CatBoost</th><th>5</th></catboost.core.catboostclassifier>	0.867221	CatBoost	5
$(Decision Tree Classifier (max_depth=2, random_st$	0.867055	AdaBoost	6
$LGBMClassifier (max_depth{=}4,n_estimators{=}250,$	0.866887	LightGBM	4
$XGBClassifier(base_score=None,\ booster=None,\ c$	0.866121	XGBoost	3
MLPClassifier(hidden_layer_sizes=(30,), random	0.863816	MLP	7
$([Decision Tree Regressor (criterion = 'friedman_ms$	0.863280	GradientBoosting	2
(Decision Tree Classifier (criterion = 'entropy', m	0.862225	RandomForest	1
LogisticRegression(C=1, class_weight={0: 1, 1:	0.849474	Logistic Regression	0

```
estimators = []
for index, row in results.head(4).iterrows():
    variable_name = row['model_name'] + '_model'
    variable_value = row['best_model']
    globals()[variable_name] = variable_value
    estimators.append((row['model_name'], variable_value))
```

```
%%time
#VotingClassifier
vc = VotingClassifier(estimators=estimators, voting = 'soft')
# Fit Training Data
vc_scores = cross_val_score(vc, X_train, y_train, cv=5, scoring=
```

MODEL ENSEMBLES

CatBoost

Model AUC Score: 0.86722

KerasClassifier

Model AUC Score: 0.86182

Weight	Feature
0.1062 ± 0.0011	RevolvingUtilizationOfUnsecuredLines
0.0801 ± 0.0007	TotalRevolvingLimits
0.0789 ± 0.0009	income_to_debt_ratio
0.0765 ± 0.0008	available_credit_ratio
0.0751 ± 0.0011	Total_Past_Due
0.0725 ± 0.0003	Delinquency_ratio
0.0662 ± 0.0002	DebtRatio
0.0569 ± 0.0009	credit_utilization_ratio
0.0458 ± 0.0008	All_Credit_Lines
0.0453 ± 0.0012	age
0.0435 ± 0.0005	MonthlyIncome
0.0285 ± 0.0006	debt_per_person
0.0047 ± 0.0005	NumberOfDependents

Stacking Classifier

Model AUC Score: 0.80936

Weight Feature 0.0525 ± 0.0010 RevolvingUtilizationOfUnsecuredLines 0.0319 ± 0.0014 Delinquency ratio Total Past Due 0.0160 ± 0.0008 All Credit Lines 0.0107 ± 0.0004 MonthlyIncome 0.0106 ± 0.0005 available_credit_ratio income_to_debt_ratio 0.0097 ± 0.0008 0.0072 ± 0.0005 DebtRatio 0.0061 ± 0.0006 TotalRevolvingLimits 0.0047 ± 0.0004 credit_utilization_ratio 0.0040 ± 0.0002 debt_per_person 0.0017 ± 0.0002 NumberOfDependents

Voting Classifier

Model AUC Score: 0.86823

FINAL SCORES

SHAP Summary Plots

MODEL TESTING & PIPELINE


```
model = results['best_model'][9]

df_test = pd.read_csv('cs-test.csv')

df_test.drop('Unnamed: 0', axis=1, inplace=True)

X_test = df_test.drop(columns=['SeriousDlqin2yrs'])
pred = model.predict_proba(X_test)[:,1]
pred
```

voting='soft'))])

```
# Use the loaded pipeline to make predictions

df_test = pd.read_csv('cs-test.csv') # Loading test dataset

df_test.drop('Unnamed: 0', axis=1, inplace=True)

X_test = df_test.drop(columns=['SeriousDlqin2yrs'])

y_pred = loaded_pipeline.predict(X_test)

y_pred
```

```
grow policy=None,
importance type=None,
interaction constraints=None,
learning_rate=0.1,
max bin=None,
max cat threshold=None,
max cat to onehot=None,
max delta step=None,
max depth=5,
max leaves=None,
min child weight=None,
missing=nan,
monotone constraints=None,
n estimators=250,
n jobs=None,
num parallel tree=None,
predictor=None,
random state=42, ...))],
```

CONCLUSIONS / NEXT STEPS

INSIGHTS

- Objective & Purpose
- Kaggle Leadership Board
 43rd Position
- Boosting Algorithms
- CatBoost
- Voting Classifier vs.
 Stacking Classifier
- Functions for Pipeline

NOW WHAT?

- Find score on test dataset
- Check Score change with feature/parameter tweak.
- Deploy the model
- Check with a large Deep Learning Model
- Check if F1 score model is possible.

