Estudio Socioeconómico de Países Utilizando Lógica Difusa

Diego Fogued, Javier Comyn y Francisco J. González

Universidad Politécnica de Madrid

Curso 2023/2024

Índice de contenidos

- Introducción
- Recopilación de Datos
- Análisis de Datos
- 4 Optimización del modelo
- Conclusión y Resultados

Introducción

Background

- Motivación
- Problema
- Solución
- Selección y Objetivo del Proyecto

Diego Fogued

Herramientas

• Librería RFuzzy de Ciao Prolog

- C
- Uflese

Diego Fogued

Marco teórico

- Lógica Difusa
- Extensión

4 □ ▶ 4 圖 ▶ 4 圖 ▶ 4 圖 ● 9 Q ○

Metodología del Tratamiento de Datos

- Búsqueda: Recopilación de información de fuentes fiables.
- Preprocesamiento: Limpieza y transformación de datos.
- Implementación del Modelo: Diseño de funciones y reglas difusas.
- Resultados y Conclusiones

Diego Fogued 7 /

Recopilación de Datos

Recopilación

- Consultar fuentes: Banco Mundial¹, OMS², Kaggle³...
- Escoger indicadores más relevantes para un análisis socioeconómico.
- Elección de los conjuntos de datos más confiables y actualizados.
- Asegurarse de la consistencia y veracidad.

Javier Comyn 9 / 28

¹https://datos.bancomundial.org/

²https://data.who.int/es/indicators

³www.kaggle.com/datasets/nelgiriyewithana/countries-of-the-world-2023

Variables

- Índice de libertad económica
- Temperatura media (^oC)
- Tasa suicidios por 100.000 habitantes
- Percepción de la corrupción
- Densidad de población
- Porcentaje de terreno agrícola
- Superficie
- Tamaño del ejército
- Tasa de natalidad
- CO2
- Índice de Precios al Consumidor (IPC)
- Tasa de fertilidad
- Porcentaje de área forestal

- PIB per cápita
- Alumnos en educación primaria
- Alumnos en educación post-obligatoria
- Mortalidad infantil
- Esperanza de vida
- Tamaño de la población
- Población activa
- Ingresos fiscales (% del PIB)
- Tasa de paro
- Población urbana
- Energías renovables
- Salario mínimo
- Edad media

4□ > 4□ > 4□ > 4 = > 4 = > = 900

Preprocesamiento y Limpieza

- Integrar todas las variables en una única base de datos.
- Eliminar inconsistencias.
- Tratar valores faltantes.
- Convertir todos los valores en enteros.

Javier Comyn 11 / 28

Análisis de Datos

Funciones Difusas

```
critical_co2(country) :~ function(co2_emissions(country)) [(0,0), (2000,0.1), (50000,0.3), (100000,0.45), (200000,0.6), (300000,0.8), (1300000,1)].
```


Javier Comyn 13 / 28

Funciones Difusas

```
long_life_expectancy(country) :~
function(life_expectancy(country))
[(350,0), (400,0.2), (550,0.4), (600,0.6), (750,0.8), (900,1)].
```


Javier Comyn

Reglas Difusas

Definimos reglas que nos permiten relacionar las distintas funciones.

```
developed_country(country) :~ rule(mean, ((wealthy_gdp_per_capita(country)),
    (long_life_expectancy(country)), fnot((high_infant_mortality_rate(country))),
    (high_economic_freedom(country)))) with_credibility (min, 1).
```


Javier Comyn 15 / 28

Consultas

10 best r	results	Results over 70% Results over 50%		over 50%	Results over	0% All re						
country	country number		economic freedom index	surface temperature	suicides	people percive corruption	population density	agricultural land	land area	armed forces size	birth	co2 emissions
nº.1	27	Japan	779	1245	2403497	638	347	123	377944	261000	740	1135886
nº.2	19	Germany	773	949	1286067	460	240	477	357022	180000	950	727973
nº.3	18	France	740	1158	1863033	571	119	524	643801	307000	1130	303276
nº.4	26	Italy	725	1352	673713	866	206	432	301340	347000	730	320411
n°.5	10	Canada	798	370	1125687	415		69	9984670	72000	1010	544894
nº.6		Australia	805	2205	1065003	442		482	7741220	58000	1260	375908
nº.7	43	Spain	752	1431	753647	745	94	526	505370	196000	790	244002

Javier Comyn

Consultas

Search

10 best results		Results over 70% Results over 50%			Results over 0% All results							
country	country number	country name	economic freedom index	surface temperature	suicides	people percive corruption	population density	agricultural land	land area	armed forces size	birth	emi
nº.1	22	Iceland	793	243	1244790	673		187	103000		1200	2
nº.2	34	Norway	767	211	1278203	270	15	27	323802	23000	1040	4
nº.3	14	Denmark	810	896	1474940	179	137	620	43094	15000	1060	3
nº.4	33	New Zealand	843	1118	1317157	242	18	405	268838	9000	1198	34
nº.5	13	Croatia	725	1219	1846353	939	73	276	56594	18000	900	17
							∢ □	▶ ◀ 🗇 ▶	< <u>₹</u> > <	(≣ →	1	200

Javier Comyn 17 / 28

Consultas

Javier Comyn

Resultados Notables

- Clean Country: Resultados lógicos :Islandia, Noruega, Dinamarca...
 Fue inesperado ver a Japón en los puestos más bajos, descubrimos que era por el CO2.
- **Developed Country**: España por encima de economías mejores, demostrando que no sólo eso define el desarrollo de un país.
- Environmentally Friendly Country: Se destacaron países con grandes áreas forestales y agrícolas, como Brasil, Canadá y Colombia.
- Economically Stable Country: Tailandia en primera posición, por su bajísmo desempleo. Comprendemos la importancia de la interpretación humana de los resultados.

Comparado con modelos tradicionales, la lógica difusa permite hacer interpretaciones más matizadas y completas de la realidad.

| 4 □ ▶ 4 ₫ № 4 €

Optimización del modelo

Cálculo de Credibilidad

Introducción

En esta sección se explica cómo se determinaron y automatizaron los cálculos de credibilidad para funciones difusas.

- Algoritmos en Python para normalizar datos.
- Comparación de conjuntos de datos normalizados utilizando MAE (Error Absoluto Medio).
- Automatización de consultas en Ciao Prolog

Francisco J. González 21 / 28

Transformación de Datos

Problemas

- Necesidad de tener datos reales en el formato correcto para el algoritmo de normalización.
- Obtener y procesar resultados de las consultas.

Soluciones

- Aplicación de transformaciones a archivos CSV usando Pandas.
- Implementación de un programa en C que ejecuta el intérprete Ciao.

Francisco I. González 22 / 28

Implementación en C

Objetivo

Crear un programa en C que ejecute el intérprete de Ciao Prolog, automatizando las consultas para las funciones difusas.

- Ejecución del intérprete Ciao Prolog desde un programa en C.
- Envío de consultas a través de la entrada estándar.
- Recopilación y procesamiento de resultados a través de la salida estándar.

Resultado

Automatización completa de las consultas y recolección de datos para el análisis de credibilidad.

Francisco J. González 23 / 28

Automatización y Recolección de Datos

Objetivo

Automatizar todo el proceso de consultas y cálculo de credibilidades.

- Recolección de datos normalizados y valores de verdad para funciones difusas.
- Script en Python para consolidar resultados en un archivo de texto.

Resultado

Comparación de valores de verdad con valores reales para obtener valores de credibilidad de forma automática.

Francisco J. González 24 / 28

Conclusión y Resultados

Desafíos y Soluciones

Desafíos

- Recopilación y precisión de datos de múltiples fuentes.
- Definición de funciones y reglas apropiadas.
- Integración del sistema de lógica difusa con la base de datos.

Soluciones

- Referencia cruzada de fuentes.
- Refinamiento iterativo.
- Uso de herramientas robustas y discusiones en equipo.

Francisco J. González 26 / 28

Conclusiones

Éxitos

- Desarrollo y validación de un modelo socioeconómico basado en lógica difusa.
- Precisión considerable en las predicciones dadas por los indicadores.

Limitaciones

- Dependencia de datos de alta calidad.
- Definición de reglas difusas universalmente aplicables.

Francisco J. González 27 / 28

Trabajo Futuro

Mejoras Propuestas

- Expandir el modelo para incluir más indicadores diversos.
- Aplicar el modelo en diferentes regiones y culturas.
- Integrar técnicas de aprendizaje automático con lógica difusa.

Potencial

 Extrapolar la automatización de cálculos de credibilidad para diseñar métodos más precisos en el modelado de funciones difusas.

Francisco J. González 28 / 28