

Time Series Analysis of the Industrial Production Index for Food and Beverages in Germany

A Data-Driven Approach to Forecasting
Trends and Market Dynamics

Conducted by:

Nazila Fazeli: M.Sc. Artificial Intelligence

Eurostat: The Statistical Office of the European Union

Free & Open Data Access

High Credibility & Standardization

Wide Coverage & Diverse Sectors

Advanced Data Filtering

Detailed Metadata for Transparency

Long-Term & Regularly Updated Time Series

https://ec.europa.eu/eurostat/databrowser/product/view/sts_inpr_m?category=sts.sts_ind.sts_ind_prod

Dataset Overview

Eurostat - Short-Term Business Statistics

Dataset Name

Manufacture of Food Products & Beverages

Sector

Production in Industry - Monthly Data

Jan 1991 - Oct 2024 (406 Months)

Country Germany

Data Type
Unadjusted Monthly Production Index

Dataset Overview

What Does This Data Represent?

- ✓ Industrial Production Index (IPI)
- ✓ Relative to base year 2021 (Index = 100)

Why This Dataset?

- ✓ Key Economic Sector
- Real-World Impact
- ✓ Long-Term Data Availability
- ✓ Indexed Data for Comparisons
- ✓ Public & Free Access

Main Objective

To Analyze and Forecast the Industrial Production Index (IPI) for the food & beverage sector in Germany using time series modeling

Key Objectives:

Data Preparation & Exploration

Model Selection & Training

Forecasting & Evaluation

Data Pre-processing

- Selected Relevant Columns: TIME_PERIOD & OBS_VALUE
- Checked for missing values: None found (406 complete records)
- Fixed Numerical Formatting: Replaced commas with dots
- Converting to Time Series

	TIME_PERIOD	OBS_VALUE
1	1991-01	75,3
2	1991-02	68,6
3	1991-03	71,2
4	1991-04	74,7
5	1991-05	73,2
6	1991-06	72,6
7	1991-07	74,9
8	1991-08	74
9	1991-09	74,9
10	1991-10	86,8
11	1991-11	82,6
12	1991-12	74,2
13	1992-01	73,6
14	1992-02	69
15	1992-03	72,8
16	1992-04	73,8
17	1992-05	70,6
18	1992-06	73,7
19	1992-07	74,6
20	1992-08	70,9

DATAFLOW	LAST_UPDATE (freq	indic_bt	unit	geo	TIME_PERIOD	OBS_VALUE	OBS_FLAG
All	All	All	All	All	All	All	All	All
ESTAT:STS_INPR_M(1.0)	09/01/25 11:00:00	Monthly	Production (volume)	Index, 2021=100	Germany	1991-01	75.30	
ESTAT:STS_INPR_M(1.0)	09/01/25 11:00:00	Monthly	Production (volume)	Index, 2021=100	Germany	1991-02	68.60	
ESTAT:STS_INPR_M(1.0)	09/01/25 11:00:00	Monthly	Production (volume)	Index, 2021=100	Germany	1991-03	71.20	
ESTAT:STS_INPR_M(1.0)	09/01/25 11:00:00	Monthly	Production (volume)	Index, 2021=100	Germany	1991-04	74.70	
ESTAT:STS_INPR_M(1.0)	09/01/25 11:00:00	Monthly	Production (volume)	Index, 2021=100	Germany	1991-05	73.20	
ESTAT:STS_INPR_M(1.0)	09/01/25 11:00:00	Monthly	Production (volume)	Index, 2021=100	Germany	1991-06	72.60	
ESTAT:STS_INPR_M(1.0)	09/01/25 11:00:00	Monthly	Production (volume)	Index, 2021=100	Germany	1991-07	74.90	
ESTAT:STS_INPR_M(1.0)	09/01/25	Monthly	Production	Index,	Germany	1991-08	74.00	

Initial Data Analysis & Stationarity Check Style

Plotted time series

Observed upward trend & frequency variations

Checked stationarity with KPSS Test

Confirmed non-stationarity

Trend in mean detected

Transformation needed before modeling

Data Transformation & Stationarity

First differencing
Removed trend in mean

102 KPSS Test after differencing Confirmed stationarity

103 Log transformation applied Stabilized variance

KPSS Test p-value: 0.935

KPSS Test p-value: 0.908

Identifying Seasonality & Seasonal Parameters

- ACF & PACF Plotted after first differencing
- Detected seasonality every 60 lags (~5 years)
- SARIMA Seasonal parameters determined: (P, D, Q, S)

SARIMA Model Non-Seasonal Parameter Estimation

- ACF & PACF Plotted after removing seasonal lags
- Determined Non-Seasonal SARIMA parameters: (p, d, q)

Model Selection

Suggested Models:

```
1. SARIMA(1,1,1)(1,1,1) _ {60}
2. SARIMA(1,1,1)(1,1,0) _ {60}
3. SARIMA(1,1,1)(0,1,0) _ {60}
4. SARIMA(2,1,1)(1,1,1) _ {60}
5. SARIMA(2,1,1)(1,1,0) _ {60}
6. SARIMA(2,1,1)(0,1,0) _ {60}
7. SARIMA(2,1,2)(0,1,0) _ {60}
```


Evaluation Criteria:

- ✓ p-values for significance
- ✓ AIC, BIC scores
- ✓ Ljung-Box test for residuals

Forecasting Using Selected Model

- 1. Using SARIMA (2,1,1)(0,1,0)_{60}:
 - √ Forecasted for the next 12 months
 - ✓ Evaluated the model performance using MAPE (2.02%)

Fitting a SARIMA(2,1,1)(0,1,0)₆₀ Model to X_t

Model Evaluation & External Factors

Conclusion & Future Work

SARIMA model successfully forecasted next 12 months.

MAPE showed high accuracy (2.02%).

External factors did not improve predictions

Future improvements:

- Investigate the identified 12-month seasonal pattern observed after every 60-month seasonality.
- exploring other exogenous factors.
 - Test advanced machine learning models for improved forecasting.

"You are already naked;

— Steve Jobs