About US

THAT RECOMMENDER SYSTEMS LAB

- Research Interests
 - Multistakeholder recommendation
 - Fairness-aware recommendation
 - Contexts:
 - Philanthropic Kiva
 - Job Recommendation
 - Finance
- Our website:
 - http://www.that-recsys-lab.net/

College of Media, Communication and Information

UNIVERSITY OF COLORADO BOULDER

Dr. Robin Burke

Nasim Sonboli PhD Student

Himan Abdollahpouri PhD Student

Recommender Systems

- Personalized access to information or items
- Typically involve the ranking of items by inferred preference
- A big part of online experience

Multistakeholder Recommendation

- Recommendation in a multi-stakeholder environment
- Example:

Fairness in recommendation

- What does it mean for recommendation to be fair?
 - "Equals should be treated equally and unequals unequally."
- Individuals have different preferences
 - should get different results
- But we have a sense that some kinds of recommendation outcomes can be unfair

Facebook accused of job ad gender discrimination

Recommendation can enhance fairness!

Ortega, Josué, and Philipp Hergovich. "The strength of absent ties: Social integration via online dating." *arXiv preprint arXiv:1709.10478* (2017).

Protected Class

- Protected attribute is Gender, religion, race, sexual orientation, etc.
- Goal:
 - Decisions should be independent of the protected attribute
 - Protected and unprotected cases treated the same if that's the only difference

Consumer fairness case C-fairness

- Site may wish to be fair to the consumers of recommendations
 - Job seekers
- Example: male job seekers should not get better / different recommendations than female
 - Might be a legal requirement

Fairness for users

Provider fairness case P-fairness

- Fairness relative to items being recommended
- Kiva cares about being fair to borrowers
- Does each loan have a fair chance of being recommended?

Fairness across items

 Items linked to people who may be in protected groups

Because of creators / owners

CP-fairness (PC-fairness?)

- Might need to combine both concerns
- Fairness for consumers and providers at the same time
- Example
 - Job recommendation
 - Protected groups in the user community
 - Female job seekers
 - Protected groups among the providers
 - Minority-owned businesses

Balanced Neighborhood SLIM

- Old dataset
- User-based kNN
 - Recommendations generated by groups of similar users
- Result: Segregation
 - Protected group (square) is segregated
 - Recommendations come only from users in the same group

Unbalanced (top) and balanced (bottom) neighborhoods

- Better: Balanced neighborhood
 - Generate recommendations from a group that has both protected and unprotected users

User SLIM: Sparse Linear Methods

$$\hat{s}_{ij} = \sum_{k \in I} w_{ik} r_{kj} \qquad w_{ik} >= 0.$$

Minimization problem:

$$\min_{W} \frac{1}{2} \|R - WR\|^2 + \lambda_1 \|W\|^1 + \frac{\lambda_2}{2} \|W\|^2,$$
Squared Error
$$\lim_{W \to \infty} \frac{1}{2} \|R - WR\|^2 + \lambda_1 \|W\|^1 + \frac{\lambda_2}{2} \|W\|^2,$$

$$\lim_{W \to \infty} \frac{1}{2} \|R - WR\|^2 + \lambda_1 \|W\|^1 + \frac{\lambda_2}{2} \|W\|^2,$$

$$\lim_{W \to \infty} \frac{1}{2} \|R - WR\|^2 + \lambda_1 \|W\|^1 + \frac{\lambda_2}{2} \|W\|^2,$$

$$\lim_{W \to \infty} \frac{1}{2} \|R - WR\|^2 + \lambda_1 \|W\|^1 + \frac{\lambda_2}{2} \|W\|^2,$$

$$\lim_{W \to \infty} \frac{1}{2} \|R - WR\|^2 + \lambda_1 \|W\|^1 + \frac{\lambda_2}{2} \|W\|^2,$$

$$\lim_{W \to \infty} \frac{1}{2} \|R - WR\|^2 + \lambda_1 \|W\|^1 + \frac{\lambda_2}{2} \|W\|^2,$$

$$\lim_{W \to \infty} \frac{1}{2} \|R - WR\|^2 + \lambda_1 \|W\|^2 + \frac{\lambda_2}{2} \|W\|^2,$$

$$\lim_{W \to \infty} \frac{1}{2} \|R - WR\|^2 + \frac{\lambda_2}{2} \|W\|^2 + \frac{\lambda_2}{2} \|W\|^2,$$

$$\lim_{W \to \infty} \frac{1}{2} \|R - WR\|^2 + \frac{\lambda_2}{2} \|W\|^2 + \frac{\lambda_2}{2} \|W\|^2,$$

$$\lim_{W \to \infty} \frac{1}{2} \|R - WR\|^2 + \frac{\lambda_2}{2} \|W\|^2 + \frac{\lambda_2}{2} \|W\|^2 + \frac{\lambda_2}{2} \|W\|^2.$$

Neighborhood Balance

neighborhood balance term for user i

$$b_i = (\sum_{w^+ i n W_i^+} w^+ - \sum_{w^- i n W_i^-} w^-)^2$$

Another way to write

$$b_i = \left\| p^T w_i \right\|^2$$

• Where p is a vector of <+1, -1> representing protected and unprotected groups

U ⁺	Users in the protected class
U.	Users in the non-protected class
W ⁺	The set of weights for U ⁺
W-	The set of weights for U

BN-SLIM

- SLIM learning algorithm: coordinate descent
 - LibRec 2.0 implementation
- $w_{ii} = 0$, $w_{ik} > 0$, λ_3 = weight for the balance term, $S()_+$ is the soft threshold operator.

$$L = \frac{1}{2} \|R - WR\|^2 + \lambda_1 \|W\|^1 + \frac{\lambda_2}{2} \|W\|^2 + \frac{\lambda_3}{2} \sum_{i \in U} \left(\sum_{k \in U} p_i w_{ik} \right)^2,$$

$$\frac{\partial L_i}{\partial w_{ik}} = \sum_{j \in I} (r_{ij} - \sum_{l \in U'} w_{il} r_{lj}) + w_{ik} \sum_{j \in I} r_{kj}^2 + \lambda_1 + \lambda_2 w_{ik} + \lambda_3 p_k \sum_{l \in U'} p_l w_{il} \qquad \qquad U' = U - \{u_i, u_k\}$$

$$w_{ik} \leftarrow \frac{S\left(\sum_{j \in I} (r_{ij} - \sum_{l \in U'} w_{il} r_{lj}) + \lambda_3 p_k \sum_{l \in U'} p_l w_{il}, \lambda_1\right)_+}{\sum_{j \in I} r_{kj}^2 + \lambda_2 + \lambda_3}$$

Results

Kiva

Personalized Fairness

• FATREC 2019

Data Analysis

- Sparsity Issue
- Pseudo item creation

Localized Fairness

• A global measure of fairness might hide local conditions with different fairness issues

Wholesale

Agriculture

Defining the protected class in Kiva

- Percentage Funding Rate
 - PFR = 1 / #days
- Kiva
 - Loans that are funded after 3 days need are the protected group.
 - They need promotion.

Localized Fairness

Locality of fairness – differences between countries

Influence of Philippines PFR - Popularity Bias

Sector Distribution in High demand dataset

Sector Distribution Low-demand dataset

Pairwise cosine distance between countries

Each country is a PFR vector over sectors

Cosine distance between PFR of each country and mean FPR

Future Plans

- User Studies
- Applying localized fairness to recommendation algorithms
 - BN Factorization
 - Factorization Machines
- Rich Subgroup Fairness

Questions

- What is
 - Kiva's Current heuristics for organizing loans?
 - Some countries have a lot of loan requests and are funded faster such as Philippines. Why is that?
 - Kiva's view of fairness?
 - Current state of the recommendation project?
 - Your opinion on our method of achieving fairness
 - Balanced neighborhoods
 - Promoting loans that have lower funding rates

Asks (Draft)

- Sparsity issue
 - A dataset containing clicks/views
- Closer relationship
 - Consulting on current rec. Algorithms
 - A/B testing
 - Access to user base for studies
 - Funding opportunities