UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

LEONARDO PERDOMO

Algoritmo de Cristofides

1.1 Tarefa

O objetivo deste trabalho foi a implementação prática em laboratório e a avaliação da qualidade do algoritmo de Cristófides, que obtém até 3/2opt no pior caso de aproximação para o problema do caixeiro viajante (TSP) [1], devendo utilizar variantes usando emparelhamento perfeito máximo, por meio da biblioteca Blossom V, e de emparelhamento perfeito por um algoritmo guloso (greedy).

1.2 Solução

Para a solução do problema proposto foi implementado o algoritmo de Prim, para extração da árvore geradora mínima (MST), utilizada a biblioteca Blossom V e implementada uma alternativa gulosa para o emparelhamento perfeito máximo do grafo completo de vértices ímpares da MST, obtendo um grafo euleriano pela união das arestas emparelhadas à MST, implementado o algoritmo de Hierholzer para obtenção do circuito euleriano, e por fim, implementada a extração do circuito hamiltoniano pulando vértices repetidos do circuito euleriano (prática possível para grafos métricos). Para garantir a viabilidade na realização dos experimentos com as instâncias de grafos métricos fornecidas, foi realizada a implementação do trabalho tratando as arestas de forma implícita, com os vértices definidos por coordenadas permitindo o cálculo de distância euclidiana entre os mesmos. Foi identificado em laboratório que a biblioteca Blossom V possui algum bug em sua implementação geométrica que não permite a obtenção de resultados para algumas instâncias ("usa13509", "brd14051"e "d18512") pois sua execução não termina. Para contornar o problema e obter os resultados foi necessário uso com representação explícita das arestas por meio da opção SolveComplete, consequentemente aumentando de forma significativa o tempo de execução e consumo de memória do algoritmo para estas três instâncias.

1.3 Ambiente de teste

O dispositivo utilizado para realização dos testes foi o *notebook* pessoal do autor deste trabalho, um ASUS X451CAP com Intel i3 3217U de 1.8GHz, 4GB de RAM DDR3 de 798MHz com Ubuntu 16.04 64bit LTS.

1.4 Resultados

Os experimentos realizados consistiram no uso dos grafos métricos fornecidos, listados na tabela 1.1, como entrada para o algoritmo implementado nas configurações utilizando a biblioteca Blossom V ou uma abordagem *greedy* desenvolvida, para a etapa de emparelhamento perfeito dos vértices ímpares da MST. O primeiro vértice da entrada de cada grafo foi selecionado para construção da árvore geradora mínima usando Prim. Os resultados do TSP obtidos com o algoritmo foram tomados, sendo calculado seu desvio percentual em relação às melhores soluções conhecidas para cada grafo. O tempo de execução foi medido em 20 repetições para cada configuração desenvolvida.

Os resultados coletados foram analisados e são apresentados na tabela 1.1 para cada grafo e configuração de emparelhamento testados. O resultado do algoritmo consiste na distância física percorrida pelo circuito hamiltoniano nos grafos métricos, e seu desvio relativo percentual aos melhores valores conhecidos.

Tabela 1.1: Resultados do algoritmo de Cristofides

Instância (melhor)	Perfect Matching	Resultado	Desvio Relativo %	Tempo Médio (ms)	Desvio Padrão (ms)
berlin52	Blossom V	8595	0,13961814	4,1	0,71818485
(7542)	Greedy	9514	0,26146911	2,45	1,39453822
vm1748	Blossom V	381341	0,13306849	837	7,78662821
(336556)	Greedy	431757	0,28286823	818,25	8,84292759
pr2392	Blossom V	426845	0,12912399	1218,85	3,36037279
(378032)	Greedy	452964	0,19821602	1183,75	10,73545528
pcb3038	Blossom V	155310	0,12793586	1734	12,05251666
(137694)	Greedy	164143	0,19208535	1721,1	10,76495288
fnl4461	Blossom V	207888	0,13870053	3337,25	14,33389431
(182566)	Greedy	215202	0,17876275	3181,65	16,203557111
rl5934	Blossom V	612923	0,10229028	6460,7	18,15459924
(556045)	Greedy	677418	0,21827910	6433,8	36,72171307
rl5915	Blossom V	621882	0,09964458	5749,4	22,53511879
(565530)	Greedy	680986	0,20415539	5746,05	35,90407542
usa13509	Blossom V*	22562104	0,12907287	36088,1	1159,36220670
(19982859)	Greedy	24005622	0,20131068	27560,4	95,33619184
brd14051	Blossom V*	532967	0,13545810	41465,95	1640,88636109
(469385)	Greedy	553589	0,17939218	25548,15	96,18199580
d18512	Blossom V*	734937	0,13893749	77365,7	1973,88119143
(645283)	Greedy	759937	0,17768018	41350,6	171,07443748

^{*} Devido ao *bug* no *perfect matching* geométrico da Blossom V, este resultado foi obtido com a opção *SolveComplete*, impactando no seu tempo médio de execução.

Foi observado que o algoritmo respeitou a aproximação de até 3/2opt no pior caso, tendo atingido desvio relativo ao valor ótimo mais alto no grafo vm1748 com emparelhamento perfeito guloso (0,28286823), e mais baixo para o grafo rl5915 usando a Blossom V (0,09964458). Foram atingidas soluções mais próximas ao melhor valor conhecido utilizando Blossom V em relação à *greedy*, sem aumento significativo em tempo médio de execução do algoritmo, excetuando nas três maiores instâncias onde um *bug* da biblioteca, comentado em aula, exigiu o uso de solução que carrega todas as arestas em memória e, consequentemente, aumenta significativamente o tempo de execução do algoritmo.

1.5 Conclusão

Através da implementação prática e experimentação conduzidas neste trabalho, foi possível observar que o algoritmo de Cristofides implementado respeita a condição de até 3/2opt no pior caso de aproximação para o problema do caixeiro viajante (TSP). O impacto da abordagem de emparelhamento perfeito dos vértices ímpares da MST foi visível com resultados menos distantes do valor ótimo conhecido obtidos com a Blossom V em relação à alternativa gulosa, em tempos médios de execução semelhantes.

REFERÊNCIAS

[1] N. Christofides, "Worst-case analysis of a new heuristic for the travelling salesman problem" Technical Report 388, Carnegie-Mellon University, 1976.