ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА **Рабочая тетрадь**

Преподователь Васильева
Факультет ЦиТХИН
Студент Мохов М.Г.
Группа КС-34 Вариант 11
Зачёт ______
«__» _____ 2024г.

Лабораторно-практическое занятие №1

линейная электрическая цепь постоянного тока

Цель работы:

Исследовать цепи постоянного тока.

- 1. Рассчитать цепь при заданных параметрах.
- 2. Исследовать цепь при заданных параметрах.
- 3. сравнить результаты расчёта и исследования цепи.
- 4. Записать выводы по результатам.

Ход работы:

1. Расчитать цепь. рис. 1

рис. 1: Рассчётная цепь.

2. Заполнить таблицу.

Параметры цепи	0	100	310	610	710	910
Ток, $I, [A]$	2	1	0.49	0.33	0.25	0.2
Мощность источника, $P_{\text{ист}} = E \cdot I[\text{Bt}]$	400	200	98	66	50	40
Мощность нагрузки, $P_{\scriptscriptstyle{\mathrm{Har}}} = I^2 \cdot R[\mathrm{Bt}]$	0	100	74.431	55.539	44.375	36.4
К.П.Д. цепи, $\eta = \left(rac{P_{ ext{ iny Har}}}{P_{ ext{ iny MCT}}} ight) \cdot 100\%$	0	0.5	0.7595	0.8415	0.8875	0.91

табл. 1: Расчётная таблица

3. Графики.

рис. 2: График силы тока от напряжения резистора.

рис. 3: График мощности источника от напряжения резистора.

рис. 4: График мощности нагручки от напряжения резистора.

рис. 5: График К.П.Д. от напряжения.

Вывод

В ходе лабораторной работы я расчитал цепь рис. 1 при различных значениях напряжения в соответствии с заданными параметрами. При увеличении сопративления резистора мощность источника уменьшается. Так же при увеличении сопративления наблюдается уменьшение мощности нагрузки и сила тока. В свою очередь К.П.Д. возрастает по мере увеличения сопративления.

Лабораторно-практическое занятие №2

РЕАКТИВНЫЕ ЭЛЕМЕНТЫ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

Цели.

- 1. Расчитать и построить зависимость сопротивления катушки и конденсатора от частоты питания.
- 2. Снять эксперементально и построить зависимость реактивного сопротивления катушки от частоты источника питания.
- 3. Сравнить рассчитанные и полученные результаты.
- 4. Записать вывод по результатам.

Ход решения.

1. Цепь.

рис. 6: Схема с катушкой.

рис. 7: Схема с конденсатором.

2. Рассчётные и экперементальные значения.

Элементы и параметры цепи			Частота, Гц									
Катушка	Расч	$X_L, [{ m Om}]$	30	40	50	60	70	80	90	100	110	120
		$U_L,[\mathrm{B}]$	9.07	12.1	15.12	18.14	21.17	24.19	27.21	30.24	33.26	36.29
	Эксп	$I_L, [A]$	70.53	81.88	89.34	94.4	97.89	100.4	102.2	103.5	104.6	105.4
		$X_L = \frac{U_L}{I_I}, [OM]$	7.67	6.68	5.83	5.13	4.56	4.09	3.7	3.38	3.1	2.87
Котденсатор	Расч	$X_C, [{ m Om}]$	9.2	12.26	15.32	18.39	21.45	24.52	27.59	30.63	33.73	36.79
		$U_C, [\mathrm{B}]$	25.28	18.96	15.17	12.64	10.83	9.48	8.43	7.58	6.89	6.32
	Эксп	$I_C, [A]$	100.7	94.82	88.64	82.48	76.64	71.23	66.31	61.87	57.84	54
		$X_C = rac{U_C}{I_I}, [ext{OM}]$	4.04	5.07	5.92	6.61	7.17	7.62	7.98	8.27	8.5	8.7

табл. 2: Результаты вычисления расчётных и эксперементальных значений.

3. Графики

рис. 8: Графики расчётных данных.

рис. 9: Графики эксперементальных данных.

рис. 10: Сравнение графиков расчётных и эксперементальных данных.

Из графиков видно, что данные расчётные данные совподают с эксперементальными в пределе допустимой погрешности.

Вывод

В ходе лабораторной работы я расчитал цепи рис. 6 и рис. 7 при заданных частотах источника. В результате сопротивление конденсатора обратно пропорционально частоте, а

сопротивление катушки прямо пропорционально частоте. В результате графики эксперементальных данных достаточно точно совпали с графиками рассчётных данных.

Графики сопративления катушки и конденсатора пересекаются в точке ~ 50 , Гц. В этой точке происходит резонанс сопративлений ($X_L = X_C$). Таким образом точка резонанса находится около 50 Гц.