57454-986 OBAYASHI et al. November 5,7003

日本国特許庁 JAPAN PATENT OFFICE

McDermott, Will & Emery

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 1月 9日

出願番号 Application Number:

特願2003-003116

[ST. 10/C]:

Applicant(s):

JA

[JP2003-003116]

出 願 人

NTN株式会社

特許庁長官 Commissioner, Japan Patent Office 2003年 8月12日

【書類名】

特許願

【整理番号】

1022236

【提出日】

平成15年 1月 9日

【あて先】

特許庁長官殿

【国際特許分類】

F16H 9/18

【発明者】

【住所又は居所】

静岡県磐田市東貝塚1578番地 NTN株式会社内

【氏名】

尾林 光介

【特許出願人】

【識別番号】

000102692

【住所又は居所】 大阪市西区京町堀1丁目3番17号

【氏名又は名称】 NTN株式会社

【代理人】

【識別番号】

100064746

【弁理士】

【氏名又は名称】

深見 久郎

【選任した代理人】

【識別番号】

100085132

【弁理士】

【氏名又は名称】 森田 俊雄

【選任した代理人】

【識別番号】

100083703

【弁理士】

【氏名又は名称】 仲村 義平

【選任した代理人】

【識別番号】 100096781

【弁理士】

【氏名又は名称】 堀井 豊

ページ: 2/E

【選任した代理人】

【識別番号】 100098316

【弁理士】 .

【氏名又は名称】 野田 久登

【選任した代理人】

【識別番号】 100109162

【弁理士】

【氏名又は名称】 酒井 將行

【選任した代理人】

【識別番号】 100111936

【弁理士】

【氏名又は名称】 渡辺 征一

【手数料の表示】

【予納台帳番号】 008693

【納付金額】 21,000円

【提出物件の目録】

明細書 1 【物件名】

【物件名】 図面 1

要約書 1 【物件名】

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 無段変速機用の支持構造およびその製造方法

【特許請求の範囲】

【請求項1】 入力軸の回転が無段階に変化して出力軸に伝達される無段変速機用の支持構造であって、

前記入力軸および前記出力軸のいずれかの回転により生じたスラスト荷重を受けるスラスト針状ころ軸受が複列の針状ころを有する、無段変速機用の支持構造。

【請求項2】 前記入力軸に設けられた第1プーリと前記出力軸に設けられた第2プーリとの各溝幅を変えることにより、前記第1プーリと前記第2プーリとに掛け渡されたベルトの前記第1プーリとの接触径と前記第2プーリとの接触径とを変化させて、前記入力軸の回転を無段階に変化して前記出力軸に伝達することを特徴とする、請求項1に記載の無段変速機用の支持構造。

【請求項3】 前記スラスト針状ころ軸受は、複数の針状ころと2枚の環状の保持器とを備え、前記2枚の保持器のそれぞれが径方向において前記針状ころの長さよりも長い複数のポケットを有し、前記複数のポケットの各々に形成されたころ保持部にて前記2枚の保持器が前記針状ころを上下方向に挟んで保持する構成を有し、かつ前記複数のポケットの各々に複列の針状ころが装着されていることを特徴とする、請求項1または2に記載の無段変速機用の支持構造。

【請求項4】 前記複列の針状ころのうち外径側の針状ころの長さは内径側の針状ころの長さ以上であることを特徴とする、請求項1~3のいずれかに記載の無段変速機用の支持構造。

【請求項5】 前記ころ保持部の角部を滑らかにだらしたことを特徴とする 、請求項3または4に記載の無段変速機用の支持構造。

【請求項6】 前記2枚の保持器の径方向の最外端部および最内端部の少なくともいずれかにて前記2枚の保持器の一方を他方に加締て固定していることを特徴とする、請求項3~5のいずれかに記載の無段変速機用の支持構造。

【請求項7】 前記2枚の保持器の径方向の最外端部および最内端部の双方にて前記2枚の保持器は加締められており、前記加締めにより構成された加締部

2/

と前記針状ころの端部との間には前記ころ保持部よりも断面高さの低い平坦部が 設けられていることを特徴とする、請求項1~3のいずれかに記載の無段変速機 用の支持構造。

【請求項8】 前記2枚の保持器の径方向の最外端部および最内端部の少なくともいずれかにて前記2枚の保持器を溶接することを特徴とする、請求項3~7のいずれかに記載の無段変速機用の支持構造。

【請求項9】 請求項3に記載の無段変速機用の支持構造を製造する方法において、前記複数のポケットの各々に形成された前記ころ保持部にて前記2枚の保持器が前記針状ころを上下方向に挟んで保持する状態に組立て、前記2枚の保持器の一方を他方に加締めた後に、前記2枚の保持器および前記針状ころに浸炭焼入れおよび焼戻しが施されることを特徴とする、無段変速機用の支持構造の製造方法。

【請求項10】 請求項3に記載の無段変速機用の支持構造を製造する方法において、前記2枚の保持器および前記針状ころの各々に浸炭焼入れおよび焼戻しを施した後に、前記複数のポケットの各々に形成された前記ころ保持部にて前記2枚の保持器が前記針状ころを上下方向に挟んで保持する状態に組立て、前記2枚の保持器の一方を他方に加締めることを特徴とする、無段変速機用の支持構造の製造方法。

【発明の詳細な説明】

$[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、無段変速機用の支持構造およびその製造方法に関するものである。

[0002]

【従来の技術】

スラスト針状ころ軸受は、針状ころと保持器、および軌道輪とで構成され、針状ころと軌道輪とが線接触する構造であるため、軸受投影面積が小さい割に高負荷容量と高剛性が得られる利点を有している。したがって、スラスト針状ころ軸受は、希薄潤滑下や高速回転下での運転等、苛酷な使用条件で使用する軸受として好適で、自動車のオートマチックにおける無段変速機用の支持構造に使用され

ている。

[0003]

スラスト針状ころ軸受として、従来、潤滑油の流入性および流出性の少なくとも一方を向上させることにより、通過する単位時間当たりの潤滑油量の増大を図ったスラスト針状ころ軸受が以下の特許文献1 (特開2002-70872号公報) に知られている。そのスラスト針状ころ軸受について図13を用いて説明する。

[0004]

図13(a)~(c)に示すように、このスラスト針状ころ軸受50は、複数の針状ころ80と2枚の環状保持器60、70とからなり、この2枚の保持器60、70のそれぞれが径方向において、ころ長さよりも長い複数の窓61、71を有し、これら複数の窓61、71に形成されたころ保持部64、74で複数の針状ころ80を上下方向に挟んで保持している。ここで、2枚の保持器60、70のころ保持部64、74の径方向長さ1aはころ長さ1よりも短くされている。また、2枚の保持器60、70のうちの少なくとも一方を折り曲げ加工することにより、ころ保持部64、74に対して径方向の外側部分および内側部分の、少なくとも一方の上下方向の厚さt0よりも薄くされている。

[0005]

そして、2枚の保持器60、70は、外側板部62、72を互いに上下方向に 重合させるとともに、内側板部63、73の最内端部67、77が互いに折り重 なるように上下方向に折り曲げられて、内側板部63の最内端部67が加締めら れることにより固定されている。

[0006]

これにより、ころ保持部64、74に対して厚さを薄くした径方向の外側部分62、72および内側部分63、73の少なくとも一方側の潤滑油の流入性あるいは流出性が向上し、軸受を通過する単位時間当たりの潤滑油量を増加させることができる。さらに、保持器60、70によって潤滑油の通過が遮られにくくなるので潤滑油が滞留せず、油温の上昇を抑制することができ、軸受の耐久性を向

上させることができる。

[0007]

【特許文献1】

特開2002-70872号公報

[0008]

【発明が解決しようとする課題】

自動車メーカ各社において省エネルギ化の観点から、従来オイルに添加剤を入れて使用する場合がある。添加剤入りのオイルは、軸受への潤滑性能が通常のオイルよりも劣るため、図13(a)~(c)に示す従来の単列ころ仕様のスラスト軸受では、以下の問題点が生じる。

[0009]

図13(a)~(c)に示す従来のスラスト針状ころ軸受50では、針状ころ80と軌道輪とが線接触する構造であるため、針状ころ80と転がり線接触する軌道面は、軸受の回転中心から外径側に向かうほど周速度は大きくなる。通常のCVT(Continuously Variable Transmission:無段変速機)に使用されているスラスト針状ころは単列ころ仕様であるため、針状ころ80と軌道面との周速度差は、針状ころ80の両端面で最大となる。ころ外径に対してころ長さが長い針状ころほどその傾向が大きくなり、差動滑り(ころのスキュー)も大きくなる。この針状ころに差動滑りが発生することによって、油膜切れを起こし、金属接触となり、接触部が発熱し、表面損傷(スミアリング)や表面起点型の剥離が発生し易くなる。これは高回転になればなるほど顕著となる。また、その影響にて軸受寿命が短寿命となることが、しばしば認められる。

$[0\ 0\ 1\ 0]$

また、スラスト針状ころ軸受には、保持器と軌道輪とが滑り接触する形式のものがある。その場合、保持器が潤滑流れを阻害し、針状ころと軌道輪との転がり接触部に潤滑油が流れにくくなる。特に針状ころの転走面への油の流入が必要であり、油量が少ない場合には針状ころと軌道輪との金属接触が発生し、早期の表面損傷が発生する場合がある。

$[0\ 0\ 1\ 1]$

従来のスラスト針状ころ軸受50に用いられる箱形保持器60、70は、針状ころ80への潤滑流れを阻害するため、上述した早期の表面損傷が発生しやすい。また、2枚の保持器60、70を合わせて、その外周部を加締めているが、この加締め方法では2枚の保持器60、70が分離してしまうという問題もある。

[0012]

本発明は、このような事情に鑑みてなされたもので、潤滑油の通油性の向上を 図るとともに、針状ころの差動滑りを抑制し、強度耐久性を高めた無段変速機用 の支持構造およびその製造方法を提供することを目的としている。

[0013]

【課題を解決するための手段】

本発明の無段変速機用の支持構造は、入力軸の回転が無段階に変化して出力軸に伝達される無段変速機用の支持構造であって、入力軸および出力軸のいずれかの回転により生じたスラスト荷重を受けるスラスト針状ころ軸受が複列の針状ころを有している。

$[0\ 0\ 1\ 4]$

本発明の無段変速機用の支持構造によれば、スラスト針状ころ軸受が複列の針状ころを有するため、1つの針状ころの径方向長さを単列の場合よりも短くすることができる。これにより、針状ころの差動滑りを抑制することができるため、油膜切れを防止でき、金属接触を防ぐことができる。よって、支持構造部での発熱も抑えることができ、高速回転が可能となり、表面損傷や表面起点型の剥離を防止して、軸受の耐久性を向上させることができる。また、差動滑りを抑制することができることから、支持構造は低トルクとなり、省燃費化を図ることができる。したがって、強度耐久性を高めた無段変速機用の支持構造を得ることができる。

[0015]

上記の無段変速機用の支持構造において好ましくは、入力軸に設けられた第1 プーリと出力軸に設けられた第2プーリとの各溝幅を変えることにより、第1プーリと第2プーリとに掛け渡されたベルトの第1プーリとの接触径と第2プーリ との接触径とを変化させて、入力軸の回転が無段階に変化されて出力軸に伝達さ れる。

[0016]

これにより、プーリにベルトを掛け渡すタイプの無段変速機においても、差動滑りを抑制することができることから、支持構造は低トルクとなり、省燃費化を図ることができ、強度耐久性を高めることができる。

$[0\ 0\ 1\ 7]$

上記の無段変速機用の支持構造において好ましくは、スラスト針状ころ軸受は、複数の針状ころと2枚の環状の保持器とを備え、2枚の保持器のそれぞれが径方向において針状ころの長さよりも長い複数のポケットを有し、複数のポケットの各々に形成されたころ保持部にて2枚の保持器が針状ころを上下方向に挟んで保持する構成を有し、かつ複数のポケットの各々に複列の針状ころが装着されている。

[0018]

これにより、複列のスラスト針状ころ軸受を有する無段変速機の支持構造を簡易な構成で実現することができる。

$[0\ 0\ 1\ 9]$

上記の無段変速機用の支持構造において好ましくは、針状ころの端面形状は、 JISに規定された記号Aの形状、記号Fの形状、または記号Aと記号Fとの組 合わせの形状である。

[0020]

このように針状ころの端面形状は適宜選択することができる。

上記の無段変速機用の支持構造において好ましくは、複列の針状ころのうち外 径側の針状ころの長さは内径側の針状ころの長さ以上である。

[0021]

このように外径側の針状ころを内径側の針状ころよりも長くすれば、外径側の 負荷容量を適宜所望の負荷容量に上げることができる。

[0022]

上記の無段変速機用の支持構造において好ましくは、ころ保持部の角部が滑らかにだらされている。

[0023]

これにより、針状ころの表面に形成された潤滑油膜を切ることなく、針状ころ を安定して案内保持することができる。

[0024]

上記の無段変速機用の支持構造において好ましくは、2枚の保持器の径方向の 最外端部および最内端部の少なくともいずれかにて2枚の保持器の一方が他方に 加締られて固定されている。

[0025]

このように加締めにより2枚の保持器を確実に固定することができるので、2 枚の保持器が分離することにより針状ころが保持器から分離することも防止でき る。また、加締めは施す箇所として、保持器の外径側と内径側とのいずれか一方 または双方を適宜選択することができる。

[0026]

上記の無段変速機用の支持構造において好ましくは、2枚の保持器の径方向の 最外端部および最内端部の双方にて2枚の保持器は加締められており、加締めに より構成された加締部と針状ころの端部との間にはころ保持部よりも断面高さの 低い平坦部が設けられている。

[0027]

このように2枚の保持器の内外径部を加締め、加締部と針状ころの端部との間 にはころ保持部よりも断面高さの低い平坦部を設けたことにより、潤滑油の流出 性だけでなく流入性も向上させることができる。したがって、軸受各部の焼付き を確実に防止することができるとともに、針状ころの端面と保持器のポケットと のドリリング摩耗を抑制することができる。また、保持器によって潤滑油の通過 が遮られ難くなるため潤滑油が滞留し難くなり、油温の上昇を抑制することがで きる。したがって、2枚の保持器の径方向の最外端部および最内端部双方を固定 することによって得られる保持器の強度アップと相俟って軸受の耐久性を一層向 上させることができる。

[0028]

上記の無段変速機用の支持構造において好ましくは、2枚の保持器の径方向の

最外端部および最内端部の少なくともいずれかにて2枚の保持器の一方がC字状に折り曲げられることにより他方に加締められている。

[0029]

このように加締めることにより、2枚の保持器の分離を防ぐことができる。

上記の無段変速機用の支持構造において好ましくは、2枚の保持器の径方向の 最外端部および最内端部の少なくともいずれかにて2枚の保持器が溶接されてい る。

[0030]

このように溶接することにより、2枚の保持器を確実に固定できるとともに、 組立て時におけるこれら保持器の変形を一層防止することができる。

$[0\ 0\ 3\ 1]$

上記の無段変速機用の支持構造において好ましくは、針状ころの端面と接触する部分において2枚の保持器は互いに接するように重ね合せられている。

[0032]

これにより、針状ころの端面による保持器のポケットにおけるドリリング摩耗 を抑えることができる。

[0033]

上記の無段変速機用の支持構造において好ましくは、2枚の保持器はその径方向の最外端部および最内端部の双方で加締めにより固定されており、最外端部では2枚の保持器の一方が加締めのために折り曲げられており、最内端部では2枚の保持器の他方が加締めのために折り曲げられている。

[0034]

上記の無段変速機用の支持構造において好ましくは、2枚の保持器はその径方 向の最外端部および最内端部の双方で加締めにより固定されており、最外端部お よび最内端部の双方にて2枚の保持器の一方が加締めのために折り曲げられてい る。

[0035]

このように加締めのための折り曲げ部は、最外端部および最内端部の双方で同じ方向に折り曲げられても良く、また異なる方向に折り曲げられても良い。

[0036]

上記の無段変速機用の支持構造において好ましくは、2枚の保持器は、周方向 の全周にて加締められている。

[0037]

これにより、2枚の保持器を強固に一体化することができる。

上記の無段変速機用の支持構造において好ましくは、2枚の保持器は、周方向の複数箇所にて一部を加締められている。

[0038]

これにより、2枚の保持器の全周に加締め加工を施す場合よりも加締め加工を 簡略化することができるとともに、加締め加工時に保持器変形への影響を防止す ることができる。好ましくは、2枚の保持器の径方向の最外端部および最内端部 における加締部を互いに周方向等間隔に、かつその位相をずらして形成すれば、 一層保持器変形への影響を防止することができる。

[0039]

上記の無段変速機用の支持構造において好ましくは、2枚の保持器の一方を他 方に位置決めするとともにその一方に対して他方が位置ずれを生じないようにす るための位置決め部を2枚の保持器の各々が有している。

$[0\ 0\ 4\ 0]$

これにより、2枚の保持器の組立て時の位置決めが容易になるとともに、組立て後に2枚の保持器の一方が他方に対して位置ずれを起こすことが防止される。

$[0\ 0\ 4\ 1]$

本発明にしたがう無段変速機用の支持構造の製造方法は、上記本発明の無段変速機用の支持構造を製造する方法において、複数のポケットの各々に形成されたころ保持部にて2枚の保持器が針状ころを上下方向に挟んで保持する状態に組立て、2枚の保持器の一方を他方に加締めた後に、2枚の保持器および針状ころに浸炭焼入れおよび焼戻しを施すことを特徴とするものである。針状ころはあらかじめ焼入れ焼戻しを施されても良い。

[0042]

上記方法によれば、加締部のなましが不要であるため、安価で高強度(高硬度

) で硬化層深さの深い保持器を製作することができる。

[0043]

本発明にしたがう他の無段変速機用の支持構造の製造方法は、上記本発明の無段変速機用の支持構造を製造する方法において、2枚の保持器および針状ころの各々に焼入れおよび焼戻しを施した後に、複数のポケットの各々に形成されたころ保持部にて2枚の保持器が針状ころを上下方向に挟んで保持する状態に組立て、2枚の保持器の一方を他方に加締めることを特徴とするものである。

[0044]

上記方法によれば、2枚の保持器および針状ころの各々に異なる熱処理を施すことが可能であり、たとえば2枚の保持器の各々に浸炭焼入および焼戻し、軟窒化処理などを施すことができる。

[0045]

上記2つの無段変速機用の支持構造の製造方法において好ましくは、2枚の保持器の各々は、削り出し、またはプレス加工により形成される。

[0046]

このように2枚の保持器の各々は、削り出し、またはプレス加工により適宜形成することができる。

[0047]

本発明のスラスト針状ころ軸受は、上記の無段変速機用の支持構造に用いられることを特徴とするものである。

[0048]

【発明の実施の形態】

以下、本発明の実施の形態を図面に基づいて詳細に説明する。

[0049]

(実施の形態1)

図1は、本発明の実施の形態1に係る無段変速機用の支持構造を示す概略断面 図である。図1を参照して、エンジン(図示せず)により発生された駆動力はク ランクシャフト(図示せず)からトルクコンバータ(図示せず)と前後進切換機 構110とを介して無段変速機構100に伝達されるようになっている。

[0050]

前後進切換機構110は、プラネタリギア機構と、多板クラッチ115、116とを有している。プラネタリギア機構は、軸101aに支持部材113を介して固定されたリングギア113aと、プライマリ軸101に固定されたサンギア101bと、支持部材112に回転可能に支持されたプラネタリピニオン112aとを有している。このプラネタリピニオン112aはリングギア113aおよびサンギア101bの各々に噛み合っている。

$[0\ 0\ 5\ 1]$

多板クラッチ115は、支持部材112の外周とハウジング106の内周との間に後退用ブレーキとして組み込まれている。また、多板クラッチ116は、プライマリ軸101の外周と支持部材113の内周との間に前進用クラッチとして組み込まれている。また、多板クラッチ115、116の各々に油圧を供給できる機構(図示せず)が設けられている。

[0052]

油圧を供給して多板クラッチ(前進用クラッチ)116を接続状態にすると、軸101aの回転はプライマリ軸101に正方向に伝達される。また、油圧を供給して多板クラッチ(後退用ブレーキ)115を接続状態にすると、軸101aの回転はプライマリ軸101に逆方向に伝達される。これにより、前進と後進とを制御することができる。

[0053]

無段変速機構100は、前後進切換機構110に連結される入力側のプライマリ軸101と、このプライマリ軸101に設けられるプライマリプーリ102と、プライマリ軸101に平行となった出力側のセカンダリ軸103と、セカンダリ軸103に設けられるセカンダリプーリ104と、プライマリプーリ102およびセカンダリプーリ104の双方に掛け渡されるベルト105とを有している

[0054]

プライマリプーリ102は、プライマリ軸101に固定された固定プーリ102aと、これに対向してプライマリ軸101にボールスプラインなどにより軸方

向に摺動自在に装着される可動プーリ102bとを有している。この可動プーリ102bが軸方向に摺動することにより、プーリのコーン面間隔、つまりプーリ溝幅が可変となっている。

[0055]

セカンダリプーリ104は、セカンダリ軸103に固定された固定プーリ104 a と、これに対向してセカンダリ軸103にボールスプラインなどにより軸方向に摺動自在に装着される可動プーリ104 b とを有している。この可動プーリ104 b が軸方向に摺動することにより、プーリのコーン面間隔、つまりプーリ溝幅が可変となっている。

[0056]

両方のプーリの溝幅を変化させることにより、ベルト105のプーリ102との接触径とプーリ104との接触径とが変化する。これにより、それぞれのプーリ102、104に対するベルト105の巻付け径の比率が変化する。このため、プライマリ軸101の回転が無段階に変速されてセカンダリ軸103に伝達されることなる。

[0057]

本実施の形態では、この入力側の軸101aおよびプライマリ軸101や、出力側のセカンダリ軸103のスラスト荷重を受けるためにスラスト針状ころ軸受が設けられており、そのスラスト針状ころ軸受は複列の針状ころを有している。

[0058]

図2は、複列の針状ころを有するスラスト針状ころ軸受の配置の様子を示す図1のP部を拡大して示す断面図である。図2を参照して、複列の針状ころを有するスラスト針状ころ軸受1は、たとえばプライマリ軸101を回転可能に支持する転がり軸受111の内輪と支持部材112との間、支持部材112とサンギア101bとの間、サンギア101bと支持部材113との間、支持部材113とハウジング106との間などに配置されている。各スラスト針状ころ軸受1は、針状ころ2と、その針状ころ2を保持するための2枚の保持器3、4とを有している。この針状ころ2は複列の針状ころ2a、2bよりなっている。

[0059]

以下、このスラスト針状ころ軸受1の具体的な構成について説明する。

図3 (a) は上記のスラスト針状ころ軸受を示す平面図、(b)は(a)の I I b-I I I b 線に沿った断面図、(c)は(b)の要部拡大図、そして(d)は(a)の要部拡大図、(e)は(c)の I I I e-I I I e 線に沿った拡大断面図である。また、図 4 は上記のスラスト針状ころ軸受の一部を拡大して示す部分断面斜視図である。

[0060]

図3 (a) ~ (e) と図4とを参照して、このスラスト針状ころ軸受1は、複数の針状ころ2とこれら針状ころ2を周方向に所定ピッチで保持する2枚の環状の保持器3、4とを有している。ここで、2枚の保持器3、4のそれぞれは、径方向において針状ころ2の長さLよりも長い矩形状の複数のポケット5、6を有し、たとえば冷間圧延鋼鈑(SPCC)からなる鋼鈑をプレス加工することにより形成されている。各ポケット5、6の両側縁には対向する方向に突出するころ保持部5a、6aが形成されており、これらころ保持部5a、6aにより針状ころ2が上下方向に挟まれて保持されている。なお、保持器3、4は、上記以外にもたとえば、SCM415等の帯鋼をプレスで絞り成形されても良く、また削り出しにより形成されても良い。

$[0\ 0\ 6\ 1\]$

針状ころ2は、外径側の針状ころ2aと内径側の針状ころ2bとで構成され、ポケット5、6内に複列で配置されている。複列で配置したことにより、各針状ころ2a、2bにおいて、外径側部分と内径側部分との公転周速差が小さくなり、軌道面(図示せず)との滑りが抑制されるので、接触部の発熱が少なく、表面損傷(スミアリング)を防止することができる。

[0062]

なお、ここでは複列の針状ころ2a、2bの長さL1、L2を同一としているが、使用条件によって内径≦外径、外径≦内径を選択することもできる。また外径側の針状ころ2aの長さを内径側の針状ころ2bの長さよりも長く、たとえば1.2倍の長さとすることにより、外径側の負荷容量を上げることが好ましい。

[0063]

図3 (d) に示すように、ころ保持部5 a、6 a の径方向の長さL a を針状ころ2の長さL よりも短く形成することにより、ころ保持部5 a、6 a の両端に形成された凹部5 b、6 bを通って潤滑油が針状ころ2と保持器3、4との間を容易に通過することができる。

[0064]

また、図3(e)に示すようにころ保持部5a、6aの角部(F部)は、プレスでポケット5、6を打ち抜きする際にだらして形成するか、打抜き後、内縁部を面押し加工により角部を滑らかにだらしている。これにより、針状ころ2a、2bの表面に形成された潤滑油膜を切ることなく、針状ころ2a、2bを安定して案内保持することができる。なお、「だらす」とは、角部のエッジを滑らかなラウンド形状にすることを言う。

[0065]

2枚の保持器3、4のうち、上側保持器3のころ保持部5 a の径方向外側は、図3 (c)に示すように、ころ保持部5 a の外端から折り曲げられた傾斜延出部3 a と、この傾斜延出部3 a の下端から径方向に向けて折り曲げられた外側板部3 b とで構成されている。また、上側保持器3のころ保持部5 a の径方向内側は、同じくころ保持部5 a の内端から折り曲げられた傾斜延出部3 c と、この傾斜延出部3 c の下端から径方向に向けて折り曲げられた内側板部3 d とで構成されている。

[0066]

また、上側保持器3と同一型でポケット抜きされた下側保持器4のころ保持部6 a の径方向外側は、ころ保持部6 a の外端から折り曲げられた傾斜延出部4 a と、この傾斜延出部4 a の下端から径方向に向けて折り曲げられた外側板部4 b とで構成されている。また、下側保持器4のころ保持部6 a の径方向内側は、同じくころ保持部6 a の内端から折り曲げられた傾斜延出部4 c と、この傾斜延出部4 c の下端から径方向に向けて折り曲げられた内側板部4 d とで構成されている。

[0067]

そして、2枚の保持器3、4の各外側板部3b、4bは互いに上下方向に接す

るように重ね合わされるとともに、外側板部4bの最外端部が上側にC字状に折り曲げられることにより外側板部4bが外側板部3bに加締められて加締部7が構成されている。また、内側板部3d、4dも互いに上下方向に接するように重ね合わされるとともに、内側板部3dの最内端部を下側にC字状に折り曲げられることにより内側板部3dが内側板部4dに加締められて加締部8が構成されている。これらの加締部7、8の各々は、2枚の保持器3、4の最外端部および最内端部のそれぞれの全周に設けられている。

[0068]

これら加締部 7、8により、2枚の保持器 3、4は内外端部を加締固定して強固に一体化されているため、運転中においても2枚の保持器 3、4は分離することはない。また、外側板部 3 b、4 b および内側板部 3 d、4 d では、針状ころ2の端面とポケット 5、6 との接触面積を広くとることができ、ドリリング摩耗を抑制することができる。

[0069]

2枚の保持器 3、 4 を固定した状態では、径方向の外側部分の上下方向の厚さ T_1 および内側部分の上下方向の厚さ T_2 は、傾斜延出部 3 a、 4 a および 3 c、 4 c が存在することから、 2 枚の保持器 3 、 4 がなすころ保持部 5 a、 6 a の上下方向の厚さ T_0 よりも薄くなっている。つまり、加締部 7 、 8 と針状ころ 2 の端部との間にはころ保持部 5 a、 6 a よりも断面高さの低い平坦部(外側板部 3 b、 4 b、 内側板部 3 d、 4 d)が設けられている。

[0070]

以上の構成を有するスラスト針状ころ軸受1のたとえば図1および図2における支持部材113とハウジング106との間に配置されたスラスト針状ころ軸受1を例にとって、潤滑油の経路について説明する。

[0071]

図5は、図1および図2の支持部材113とハウジング106との間に配置されたスラスト針状ころ軸受1付近を拡大して示す図である。図5を参照して、支持部材113とハウジング106との間を針状ころ2が転動するように、上側保持器3の加締部8が案内面としてすきまばめされる。支持部材113が回転する

と、保持器3、4もこの支持部材113とともに回転し、針状ころ2が支持部材113の軌道面10aとハウジング106の軌道面9aとの間を転動する。ここで、図示しない油圧供給源から油路を経由してスラスト針状ころ軸受1内に供給される。

[0072]

潤滑油は、たとえば矢印 b で示すようにスラスト針状ころ軸受 1 の径方向内周側から給油され、その後、針状ころ 2 の周囲および保持器 3 、 4 で形成される空間内を矢印 c のように通って、針状ころ 2 の側面と保持器 3 、 4 のころ保持部 5 a 、 6 b との間、針状ころ 2 の端面との間、および針状ころ 2 の側面と軌道面 9 a 、 1 0 a との間を潤滑し、軌道面 1 0 a と保持器 4 のころ保持部 6 a に対して径方向の外側部分との間、および軌道面 9 a と保持器 3 のころ保持部 5 a に対して径方向の外側部分との間を通って矢印 d のように排出される。

[0073]

この潤滑油による各部の潤滑に際し、2枚の保持器3、4がなすころ保持部5 a、6 aに対して、径方向の外側部分、内側部分の上下方向の厚さ T_1 、 T_2 が保持部5 a、6 aの上下方向の厚さ T_0 よりも薄く形成されているため(図3 (c)参照)、軌道面1 0 a と下側保持器4のころ保持部6 a に対して径方向の内側部分との間の空間の断面積が従来に比べて大きくなり、潤滑油の流出性だけでなく流入性も向上する。したがって、軸受各部の焼付きを確実に防止することができるとともに、針状ころ2の端面と保持器3、4のポケット5、6とのドリリング摩耗を抑制することができる。また、保持器3、4によって潤滑油の通過が遮られ難くなるため潤滑油が滞留し難くなり、油温の上昇を抑制することができる。保持器の強度アップと相俟って軸受の耐久性を一層向上させることができる。

[0074]

次に上記のスラスト針状ころ軸受1の製造手順について詳細に説明する。

図6は、本発明の実施の形態1に係るスラスト針状ころ軸受の製造手順を示す 図である。図6を参照して、2枚の保持器3、4と、焼入れ焼戻し済みまたは未 焼入れの針状ころ2とがセットされる。これは、複数のポケット5、6の各々に 形成されたころ保持部5a、6aにて2枚の保持器3、4が針状ころ2を上下方 向に挟んで保持する状態に組立てることにより行なわれる(ステップS 1 a)。 次に、外側板部 4 b の最外端部が上側にC字状に折り曲げられて加締部 7 が形成されるとともに、内側板部 3 d の最内端部が下側にC字状に折り曲げられて加締部 8 が形成されて、2 枚の保持器 3、4 が一体に固定される(ステップS 2 a)。ここで、針状ころ 2 は、素材として、たとえば高炭素クロム軸受鋼の 1 種あるいは 2 種である S U J 軸受鋼を使用されており、8 4 0 $\mathbb C$ の温度で 3 0 分間の油焼入れを施され、次いで 1 8 0 $\mathbb C$ の温度で 9 0 分間の焼戻しを施されて表面硬さをビッカース硬度(H v)で 7 0 0 ~ 7 5 0 程度に設定されている。

[0075]

その後、針状ころ2と2枚の保持器3、4をセットした状態で熱処理(たとえば浸炭焼入れ焼戻しあるいは浸炭窒化処理後焼入れ焼戻し)が施されて(ステップS3a)、スラスト針状ころ軸受が製造される。この場合、浸炭処理は、たとえば850℃の温度で35分間浸炭し(RXガス雰囲気中)、油中に焼入れ、次いで165℃の温度で60分間焼戻すことにより行なわれる。また、浸炭窒化処理は、たとえば浸炭窒化雰囲気(RXガスに容積比で1~3%のアンモニア添加)で、840~850℃の温度で35分間保持して浸炭窒化した後、直ちに油中またはガス中に急冷することにより行なわれる。

[0076]

ここで、2枚の保持器3、4については、予め570~580℃の温度で35分間の軟窒化処理を施されることにより強度が向上されても良い。また、針状ころ2には予め熱処理を施さなくても良いが、組み込みの前に予め熱処理、すなわちずぶ焼入れを施しておけば、製造工程がそれだけ増加することになるが、その一方で、その後実施される浸炭あるいは浸炭窒化処理によってさらなる強度向上を達成できるという利点がある。少なくとも2枚の保持器3、4および針状ころ2を別々に熱処理し、加締部を焼きなまししていた従来の方法に比べ製造工程は簡略化されたものとなる。

[0077]

なお、保持器3、4を軟窒化処理をすれば、図7に示すように保持器3、4と 針状ころ2を別々に熱処理(たとえば浸炭焼入れ焼戻しあるいは浸炭窒化処理後 焼入れ焼戻し) し (ステップS1b)、保持器3、4と針状ころ2とをセットし (ステップS2b)、その後に保持器3、4を加締めることもできる (ステップS3b)。

[0078]

前述した手順でスラスト針状ころ軸受1を製造することによって、下記に示すような具体的な特性を付与することができる。次に、これらの特性について詳細に説明する。

[0079]

まず針状ころ2には、その表層部に浸炭層あるいは浸炭窒化層が形成されているので、表層の硬度は従来品と比べて高くなっており、高硬度の異物を噛み込んでも圧痕が生じ難く、長寿命化に寄与することができる。また、浸炭窒化処理においては、窒素富化層が形成され、かつその残留オーステナイト量が20容積%以上と多く形成することができる。これは、軌道面9a、10aに高硬度の異物を噛み込むと、従来では圧痕周辺で応力集中源となるが、多量に存在する残留オーステナイトの塑性変形によってこうした応力集中が緩和され、高硬度の効果とともに長寿命化に寄与することができる。なお、窒素富化層は、具体的には厚みを0.1mm以上、表面硬さ750Hv以上とすることができる。さらに、内部硬さも表面硬さと同程度に高めることができ、針状ころ2全体の強度を向上させることができる。したがって、苛酷な条件、たとえば高荷重の条件で使用される場合であっても充分に負荷に耐えることができ、所望の寿命を満足することができる。

[0080]

保持器3、4の場合は、針状ころ2と同様、その表層部に浸炭層あるいは浸炭窒化層が形成され、少表面硬さを少なくとも400Hv、熱処理の条件によっては600Hv以上とすることができる。したがって、従来のものに比べ耐摩耗性を向上させることができる。

[0081]

(実施の形態2)

図8(a)は本発明の実施の形態2に係る無段変速機用の支持構造に採用され

るスラスト針状ころ軸受を示す平面図、(b)は(a)のVIII-O-VII I線に沿った断面図、(c)は(a)の底面図、(d)は(b)のA部拡大図、 (e)は(b)のB部拡大図である。本実施の形態の構成は前述した実施の形態 1の構成と比較して保持器形状と加締方法において異なるのみである。なお実施 の形態1と同一部品同一部位には同じ符号を付してその詳細な説明を省略する。 【0082】

図8 (a) ~ (e) を参照して、この無段変速機用の支持構造に採用されるスラスト針状ころ軸受11は、複数の針状ころ2とこれら針状ころ2を周方向に所定ピッチで保持する2枚の環状の保持器13、14とを有している。2枚の保持器13、14のうち、上側保持器13のころ保持部15aの径方向外側は、図8(d)に示すように、ころ保持部15aの外端から折り曲げられた傾斜延出部13aと、この傾斜延出部13aの下端から径方向に向けて折り曲げられた外側板部13bとで構成されている。

[0083]

また、上側保持器 13のころ保持部 15 a の径方向内側は、同じくころ保持部 15 a の内端から折り曲げられた傾斜延出部 13 c と、この傾斜延出部 13 c の 下端から径方向に向けて折り曲げられた内側板部 13 d とで構成されている。

[0084]

また、上側保持器 1 3 と同一型でポケット抜きされた下側保持器 1 4 のころ保持部 1 6 a の径方向外側は、ころ保持部 1 6 a の外端から折り曲げられた傾斜延出部 1 4 a と、この傾斜延出部 1 4 a の下端から径方向に向けて折り曲げられた外側板部 1 4 b とで構成されている。また、上側保持器 1 4 のころ保持部 1 6 a の径方向内側は、同じくころ保持部 1 6 a の内端から折り曲げられた傾斜延出部 1 4 c と、この傾斜延出部 1 4 c の下端から径方向に向けて折り曲げられた内側板部 1 4 d とで構成されている。

(0085)

そして、2枚の保持器13、14は、図8(d)に示すように、外側板部13 b、14bが互いに上下方向に接するように重ね合わされるとともに、外側板部 14bの最外端部の一部が上側にC字状に折り曲げられることにより外側板部1 4 b が外側板部 1 3 b に部分的に加締められて部分加締部 1 7 が構成されている。一方、内側板部 1 3 d、 1 4 d は互いに上下方向に接するように重ね合わされるとともに、内側板部 1 3 d の最内端部が下方向に折り曲げられている。

[0086]

また、図8(e)に示すように、外側板部13b、14bが互いに上下方向に接するように重ね合わされるとともに、外側板部14bの最外端部が上方向に折り曲げられている。さらに、内側板部13d、14dは互いに上下方向に接するように重ね合わされるとともに、内側板部13dの最内端部の一部が下側にC字状に折り曲げられることにより内側板部13dが内側板部14dに部分的に加締められて部分加締部18が構成されている。これら部分加締部17、18により、2枚の保持器13、14は内外端部を強固に一体化されるとともに、前述した第1の形態(図3)における全周加締に比べ、加締工程を格段に簡略化することができる。

[0087]

2枚の保持器13、14の位相合わせ用の位置決め部19は、たとえば、上側保持器13の外縁に形成された切欠き部(図示せず)と、下側保持器14の外縁に形成された突起部(図示せず)とにより構成され、この突起部と切欠き部とを係合させることにより加締加工等により両保持器13、14のポケット15、16のピッチがずれないようにしている。また、これらの部分加締部17、18は周縁の4箇所に、その位相を45°ずらして形成され、加締加工時、保持器変形への影響を防止している。なお、加締箇所は4箇所に限らず、強度上から2箇所以上(たとえば5~8箇所)に等配されれば、加締加工時に保持器変形への影響が防止可能である。

[0088]

(実施の形態3)

図9(a)は本発明の実施の形態3に係る無段変速機用の支持構造に採用されるスラスト針状ころ軸受を示す平面図、(b)は(a)のIX-O-IX線に沿った断面図、(c)は(b)のC部拡大図、(d)は(b)のD部拡大図である。本実施の形態の構成は前述した実施の形態2の構成と比較して加締方向におい

て異なるのみである。なお、実施の形態 2 と同一部品同一部位には同じ符号を付してその詳細な説明を省略する。

[0089]

図9(a)~(d)を参照して、この無段変速機用の支持構造に採用されるスラスト針状ころ軸受11'は、複数の針状ころ2とこれら針状ころ2を周方向に所定ピッチで保持する2枚の環状の保持器13'、14'とを有している。2枚の保持器13'、14'のうち、上側保持器13'のころ保持部15aの径方向外側は、図9(c)に示すように、ころ保持部15aの外端から折り曲げられた傾斜延出部13aと、この傾斜延出部13aの下端から径方向に向けて折り曲げられた外側板部13bとで構成されている。また、上側保持器13のころ保持部15aの径方向内側は、同じくころ保持部15aの内端から折り曲げられた傾斜延出部13cと、この傾斜延出部13cの下端から径方向に向けて折り曲げられた例板部13d'とで構成されている。

[0090]

また、下側保持器 1 4 のころ保持部 1 6 a の径方向外側は、ころ保持部 1 6 a の外端から折り曲げられた傾斜延出部 1 4 a と、この傾斜延出部 1 4 a の下端から径方向に向けて折り曲げられた外側板部 1 4 b とで構成されている。また、上側保持器 1 4 のころ保持部 1 6 a の径方向内側は、同じくころ保持部 1 6 a の内端から折り曲げられた傾斜延出部 1 4 c と、この傾斜延出部 1 4 c の下端から径方向に向けて折り曲げられた内側板部 1 4 d'とで構成されている。

[0091]

そして、2枚の保持器13'、14'は、図9(c)に示すように、外側板部 13b、14bは互いに上下方向に接するように重ね合わされるとともに、外側 板部14bの最外端部の一部が上側にC字状に折り曲げられることにより外側板 部14bが外側板部13bに部分的に加締められて部分加締部17が構成されて いる。一方、内側板部13d'、14d'は互いに上下方向に接するように重ね 合わされるとともに、内側板部14d'の最内端部が上方向に折り曲げられている。

[0092]

また、図9(d)に示すように、内側板部13d'、14d'は互いに上下方向に接するように重ね合わされるとともに、内側板部14d'の最内端部の一部が上側にC字状に折り曲げられることにより内側板部14d'が内側板部13d'に部分的に加締められて部分加締部18'が構成されている。一方、外側板部13b、14bは互いに上下方向に接するように重ね合わされるとともに、外側板部14bの最外端部が上方向に折り曲げられている。

[0093]

これら部分加締部17、18'により、2枚の保持器13'、14'は内外端部を強固に一体化されるとともに、前述した実施の形態2における部分加締と異なり、同一面に部分加締部17、18'が存在するため、加締加工のさらなる簡略化ができる。

[0094]

(実施の形態4)

図10(a)は本発明の実施の形態 4 に係る無段変速機用の支持構造に採用されるスラスト針状ころ軸受を示す平面図、(b)は(a)のX-O-X線に沿った断面図、(c)は(b)のE部拡大図である。本実施の形態の構成は前述した実施の形態 $1 \sim 3$ の構成と比較して 2 枚の保持器の固定手段において異なるのみである。なお、実施の形態 $1 \sim 3$ と同一部品同一部位には同じ符号を付してその詳細な説明を省略する。

[0095]

図10(a)~(c)を参照して、この無段変速機用の支持構造に採用されるスラスト針状ころ軸受21は、複数の針状ころ2とこれら針状ころ2を周方向に所定ピッチで保持する2枚の環状の保持器23、24とを有している。2枚の保持器23、24のうち、上側保持器23のころ保持部25aの径方向外側は、図10(c)に示すように、ころ保持部25aの外端から折り曲げられた傾斜延出部23aと、この傾斜延出部23aの下端から径方向に向けて折り曲げられた外側板部23bとで構成されている。また、上側保持器23のころ保持部25aの径方向内側は、同じくころ保持部25aの内端から折り曲げられた傾斜延出部23cと、この傾斜延出部23cの下端から径方向に向けて折り曲げられた内側板

部23dとで構成されている。

[0096]

また、下側保持器 2 4 のころ保持部 2 6 a の径方向外側は、ころ保持部 2 6 a の外端から折り曲げられた傾斜延出部 2 4 a と、この傾斜延出部 2 4 a の下端から径方向に向けて折り曲げられた外側板部 2 4 b とで構成されている。また、下側保持器 2 4 のころ保持部 2 6 a の径方向内側は、同じくころ保持部 2 6 a の内端から折り曲げられた傾斜延出部 2 4 c と、この傾斜延出部 2 4 c の下端から径方向に向けて折り曲げられた内側板部 2 4 d とで構成されている。

[0097]

そして、2枚の保持器23、24は、図10(c)に示すように、外側板部23b、24bは互いに上下方向に接して重ね合わされるとともに、外側板部24bの最外端部が上方向に折り曲げられている。一方、内側板部23d、24dは互いに上下方向に接して重ね合わされるとともに、内側板部24dの最内端部が上方向に折り曲げられている。なお、内側板部23dの最内端部は下方向に折り曲げられても良い。本実施の形態では、2枚の保持器23、24を図10(a)に示すように、それぞれの外周部と内周部とがスポット溶接部27、28で一体に固定されている。これらの溶接部27、28は周方向等配に4箇所、互いに位相を45°ずらして設けられている。これにより、溶接による保持器変形への影響が防止されている。なお、スポット溶接箇所は4箇所に限らず、強度上から2箇所以上(たとえば5~8箇所)に等配されれば、溶接による保持器変形への影響が防止可能である。

[0098]

2枚の保持器23、24の位相合わせ用の位置決め部29は、上側保持器23の外縁に形成された突起部29aと、下側保持器24の外縁に形成された切欠き部29bとにより構成され、この突起部29aと切欠き部29bとを係合させることにより2枚の保持器23、24のポケット25、26の位相がずれないようにしている。なお、この位置決め部29はこうした構成に限らず、たとえば、下側保持器24の外縁部の一部を加締、上側保持器23に係合させて固定する所謂ステーキング方式や、ピンと孔による係合方式であっても良い。

[0099]

[0100]

また、上記においては無段変速機に実施の形態1のスラスト針状ころ軸受を用いた場合について説明したが、実施の形態2~4のスラスト針状ころ軸受が無段変速機に用いられてもよい。

[0101]

また、上記の実施の形態 $1\sim5$ において、針状ころ 2 a、 2 b は、図 1 2 (a)に示すように J I S (Japanese Industrial Standards)に規定された記号 A の端面形状(丸面形)、または図 1 2 (b)に示すように J I S に規定された記号 F F の端面形状(平面形)、または記号 A E と記号 F E E の組合わせの端面形状を有していることが好ましい。

[0102]

また、上記実施の形態では、入力軸(軸101a、プライマリ軸101)のスラスト荷重を受ける構造について説明したが、出力軸(セカンダリ軸103)のスラスト荷重を受ける支持構造に複列の針状ころを有するスラスト針状ころ軸受が用いられても良い。

[0103]

今回開示された実施の形態はすべての点で例示であって制限的なものではない と考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更 が含まれることが意図される。

[0104]

【発明の効果】

以上詳述したように、本発明の無段変速機用の支持構造によれば、スラスト針 状ころ軸受が複列の針状ころを有するため、1つの針状ころの径方向長さを単列 の場合よりも短くすることができる。これにより、針状ころの差動滑りを抑制することができるため、油膜切れを防止でき、金属接触を防ぐことができる。よって、支持構造部での発熱も抑えることができ、高速回転が可能となり、表面損傷や表面起点型の剥離を防止して、軸受の耐久性を向上させることができる。また、差動滑りを抑制することができることから、支持構造は低トルクとなり、省燃費化を図ることができる。したがって、強度耐久性を高めた無段変速機用の支持構造を得ることができる。

[0105]

また、2枚の保持器の内外径部を加締め、加締部と針状ころの端部との間にはころ保持部よりも断面高さの低い平坦部を設けたことにより、潤滑油の流出性だけでなく流入性も向上させることができる。したがって、軸受各部の焼付きを確実に防止することができるとともに、針状ころの端面と保持器のポケットとのドリリング摩耗を抑制することができる。また、保持器によって潤滑油の通過が遮られ難くなるため潤滑油が滞留し難くなり、油温の上昇を抑制することができる。したがって、2枚の保持器の径方向の最外端部および最内端部双方を固定することがって、2枚の保持器の強度アップと相俟って無段変速機の耐久性を一層向上させることができる。

【図面の簡単な説明】

- 【図1】 本発明の実施の形態1における無段変速機用の支持構造を示す概略断面図である。
 - 【図2】 図1のP部を拡大して示す断面図である。
- 【図3】 本発明の実施の形態 1 における無段変速機用の支持構造であるスラスト針状ころ軸受を示す平面図(a)、(a)の I I I b d e d
- 【図4】 図3に示すスラスト針状ころ軸受の一部を拡大して示す部分断面 斜視図である。
- 【図5】 図1および図2のスラスト針状ころ軸受付近を拡大して示す図である。

- 【図6】 図3~図5に示すスラスト針状ころ軸受の製造手順を示す図である。
- 【図7】 図3~図5に示すスラスト針状ころ軸受の別の製造手順を示す図である。
- 【図8】 本発明の実施の形態 2 に係る無段変速機用の支持構造を示す平面図(a)、(a)のVIII-O-VIII線に沿った断面図(b)、(a)の底面図(c)、(b)のA部拡大図(d)、(b)のB部拡大図(e)である。
- 【図9】 本発明の実施の形態3に係る無段変速機用の支持構造を示す平面図(a)、(a)のIX-O-IX線に沿った断面図(b)、(b)のC部拡大図(c)、(b)のD部拡大図(d)である。
- 【図10】 本発明の実施の形態4に係る無段変速機用の支持構造を示す平面図(a)、(a)のX-O-X線に沿った断面図(b)、(b)のE部拡大図(c)である。
- 【図11】 保持器の最外端部もしくは最内端部における加締めのための折り曲げ形状を示す断面図である。
 - 【図12】 針状ころの端面の形状を説明するための図である。
- 【図13】 従来のスラスト針状ころ軸受を部分的に示す平面図(a)、(a)のXIIIb-XIIIb線に沿った断面図(b)、(b)のXIIIc-XIIIc線に沿った断面図(c)である。

【符号の説明】

1, 11, 11', 21 スラスト針状ころ軸受、2 針状ころ、2a 外径側針状ころ、2b 内径側針状ころ、3, 13, 13', 23 上側保持器、3a, 13a, 23a 傾斜延出部、3b, 13b, 23b 外側板部、3c, 13c, 23c 傾斜延出部、3d, 13d, 13d', 23d 内側板部、4a, 14a, 24a 傾斜延出部、4b, 14b, 24b 外側板部、4c, 14c, 24c 傾斜延出部、4d, 14d', 24d 内側板部、4, 14, 14', 24 下側保持器、5, 15, 25 ポケット、5a, 15a, 25a ころ保持部、5b, 6b 凹部、6, 16, 26 ポケット、6a, 16a, 26a ころ保持部、7, 8 加締部、17, 18, 18' 部分加締部、

9,10 軌道輪、9a,10a 軌道面、19,29 位置決め部、29a 突起部、29b 切欠き部、100 無段変速機構、101 プライマリ軸、101a 軸、101b サンギア、102 プライマリプーリ、102a 固定プーリ、102b 可動プーリ、103 セカンダリ軸、104 セカンダリプーリ、104a 固定プーリ、104b 可動プーリ、105 ベルト、106ハウジング、110 前後進切換機構、111 転がり軸受、112 支持部材、112a プラネタリピニオン、113 支持部材、113a リングギア、115,116 多板クラッチ。

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【書類名】

要約書

【要約】

【課題】 潤滑油の通油性の向上を図るとともに、針状ころの差動滑りを抑制し、強度耐久性を高めた無段変速機用の支持構造およびその製造方法を提供する。

【解決手段】 本発明の無段変速機用の支持構造は、入力軸(プライマリ軸101、軸101a)の回転が無段階に変化して出力軸(セカンダリ軸103)に伝達される無段変速機用の支持構造であって、入力軸および出力軸のいずれかの回転により生じたスラスト荷重を受けるスラスト針状ころ軸受1が複列の針状ころ2a、2bを有している。

【選択図】 図1

特願2003-003116

出願人履歴情報

識別番号

[000102692]

1. 変更年月日

1990年 8月23日

[変更理由]

新規登録

住 所

大阪府大阪市西区京町堀1丁目3番17号

氏 名 エヌティエヌ株式会社

2. 変更年月日

2002年11月 5日

[変更理由]

名称変更

住所

大阪府大阪市西区京町堀1丁目3番17号

氏 名 NTN株式会社