Data Structures Chapter 1

- 1. Recursion
- 2. Performance Analysis
 - Space Complexity
 - Time Complexity
 - Step Count
- 3. Asymptotic Analysis

- The program we write should
 - meet the specification.
 - 2. work correctly.
 - 3. be documented properly.
 - 4. run effectively
 - 5. be readable.
 - use the storage effectively space
 - run timely time

space & time complexity

The **space complexity** of a program is the amount of **memory** that it needs to run to completion.

The **time complexity** of a program is the amount of computer **time** that it needs to run to completion.

Space complexity:

- Fixed space requirements : c
 - that do not depend on input size, simple or fixed-size variables
- Variable space requirements: $S_{p(I)}$
 - that depend on the instance I, stack, variable

The total space requirement for the program P:

$$S(P) = c + S_p(I)$$

where \mathbf{c} is a constant for fixed space and variable space for the instance I.

We are concerned about only $S_p(I)$, but **not c. Why?** Because we usually **compare** the algorithms of the programs.

- Space complexity: $S(P) = c + S_p(I)$
- Example: $S_{sum}(n) = ?$

```
Program sum

float sum(float list[], int n) {
  float total = 0;
  for (int i=0; i<n; i++)
    total += list[i];
  return total;
}</pre>
```

 $S_{sum}(n) = 0$ since the C/C++ passes list[] by its address.

- Space complexity: $S(P) = c + S_p(I)$
- Example: $S_{rsum}(n) = ?$

```
Program rsum
float rsum(float list[], int n) {
  if (n)
    return rsum(list, n-1) + list[n-1];
  return 0;
}
```

Program rsum

```
float rsum(float list[], int n) {
  if (n)
    return rsum(list, n-1) + list[n];
  return 0;
}
```

- Space complexity: $S(P) = c + S_p(I)$
- Example: $S_{rsum}(n) = ?$

```
Program rsum
float rsum(float list[], int n) {
  if (n)
   return rsum(list, n-1) + list[n-1];
  return 0;
}
```

The variable space requirement are for **two** parameters and **one** return address are saved in the system stack **per recursive call**:

```
sizeof(n) + list[] address + return address = 12
assuming 32 bit address
```

- Space complexity: $S(P) = c + S_p(I)$
- Example: S_{rsum}(n=MAX_SIZE) = ?

```
Program rsum
float rsum(float list[], int n) {
  if (n)
    return rsum(list, n-1) + list[n-1];
  return 0;
}
```

The variable space requirement are for **two** parameters and **one** return address are saved in the system stack **per recursive call**:

$$sizeof(n) + list[] address + return address = 12$$

$$S_{rsum}(n) = 12 * n$$

- Time complexity: The time taken by the program P:
 - $T(P) = compile time c + execution time T_p(n)$
- Similarly, we are concerned about only $T_p(n)$, but not c.
- Example: $Tp(n) = c_a ADD(n) + c_s SUB(n) + c_l LDA(n) + c_{st} STA(n)$
 - where n number of execution, c for constant time for operation $\circ \circ \circ$

- Program step: a meaningful program segment whose execution time is independent of the instance characteristics.
- Example:
 - a = 2;
 - a = 2 * b + 3 * c/d e + f/g/a/b/c;

- ⇒ 1 step!!
- ⇒ 1 step!!

Example: How many program steps required?

Program sum	2n+3
<pre>float sum(float list[], int n) {</pre>	
float total = 0;	1
for (int i=0; i <n; i++)<="" td=""><td>n+1</td></n;>	n+1
total += list[i];	n
return total;	1
}	

Example: How many program steps required?

Program rsum	2n+2
<pre>float rsum(float list[], int n) { if (n) return rsum(list, n-1) + list[n-1]; return 0; }</pre>	n+1 n 1

Comparison:

```
Program sum

float sum(float list[], int n) {
  float total = 0;
  for (int i=0; i<n; i++)
    total += list[i];
  return total;
}</pre>
```

```
Program rsum

float rsum(float list[], int n) {
  if (n)
    return rsum(list, n-1) + list[n-1];
  return 0;
}
```

```
2n + 3 > 2n + 2
sum > rsum
T_{iterative} > T_{recursive}
```

Example: How many program steps required?

step count = 2 rows*cols + 2 rows + 1

Step Count Example 1:

What is the exact number of times sum++ executed?

	Step count
int sum = 0;	1
for (int i = 1; i <= n*n; i++)	n * n + 1
for (int j = 1; j <= i; j++)	2 + 3 + + (n * n + 1)
sum++;	?

Useful formulas:

$$1 + 2 + 3 + ... + N = N(N+1)/2$$

 $1 + 2 + 4 + 8 + ... + 2^n = 2^{n+1} - 1$

Step Count Example 1:

What is the exact number of times sum++ executed?

$$1 + 2 + 3 + ... + N = N(N+1)/2$$

 $1 + 2 + 4 + 8 + ... + 2^n = 2^{n+1} - 1$

n * n for j = n * n 1 for checking the end

Step Count Example 2:

What is the exact number of times sum++ executed?

	Step count
int sum = 0;	1
for (int i = 1; i <= n; i++)	n + 1
for (int j = n; j >= i; j)	(n+1) + (n) + (n-1) + + 2
sum++;	?

Useful formulas:

$$1 + 2 + 3 + ... + N = N(N+1)/2$$

 $1 + 2 + 4 + 8 + ... + 2^n = 2^{n+1} - 1$

Step Count Example 2:

What is the exact number of times sum++ executed?

Useful formulas:

$$1 + 2 + 3 + ... + N = N(N+1)/2$$

 $1 + 2 + 4 + 8 + ... + 2^n = 2^{n+1} - 1$

Step Count Example 3:

```
int sum = 0;
while (n >= 1) {
    sum++;
    n /= 2;
}
```

Step Count Example 3:

What is the exact number of times sum++ executed?

```
int sum = 0;
while (n >= 1) {
    sum++;
    n /= 2;
}
```

We have to find the smallest k such that $n / 2^k = 1$

Step Count Example 4:

Compute the following series:

$$a)1 + 2 + 3 + ... + 9 + 10 =$$

$$b)1 + 2 + 3 + ... + (N - 1) + N =$$

c)
$$1 + 2 + 4 + ... + 16 =$$

Useful formulas:

$$1 + 2 + 3 + ... + N = N(N+1)/2$$

 $1 + 2 + 4 + 8 + ... + 2^n = 2^{n+1} - 1$

Step Count Exercise 1:

```
int sum = 0;
for (int i = 10; i < n + 4; i += 2)
    sum++;</pre>
```

```
int sum = 0;
for (int i = 1; i < n; i *= 2)
    sum++;

for (int i = n; i >= 1; i /= 2)
    sum++;
```

Step Count Exercise 2:

```
int sum = 0;
for (int i = 10; i < n; i++)
   for (int j = 0; j < n; i += 2)
     sum++;</pre>
```

```
for (i = 0; i < n; i++)
  for (j = 0; j < 100; j++)
    sum++;</pre>
```

Step Count Exercise 3:

```
int sum = 0;
for (int i = 1; i <= n; i++)
    for (int j = 1; j <= i; j++)
        sum++;</pre>
```

Data Structures Chapter 1

- 1. Recursion
- 2. Performance Analysis
 - Space Complexity
 - Time Complexity
 - Step Count
- 3. Asymptotic Analysis