Lebesgue Theory

Ikhan Choi

September 12, 2021

Contents

I	Measure theory	3
1	Measures and σ -algebras	4
	1.1 Definition of measures	4
	1.2 The Carathéodory extension theorem	4
2	Measures on Euclidean spaces	6
3	Measurable functions	7
4		8
II	Integration	9
5	Lebesgue integration	10
	5.1 Definition of Lebesgue integration	10
	5.2 Convergence theorems	10
	5.3 Modes of convergence	10
6	Product measures	12
	6.1 The Fubini theorem	12
	6.2 The Lebesgue measure on Euclidean spaces	12
7	Lebesgue spaces	13
	7.1 L^p spaces	13
	7.2 L^2 spaces	13
	7.3 The Riesz representation theorem	13
8	Integral operators	14
	8.1 Bounded linear operators	14

	8.2	Regular integral operators	14		
	8.3	Convolution type operators	14		
	8.4	Weak L^p spaces	14		
	8.5	Interpolation theorems	14		
III	III Fundamental theorem of calculus				
		di d	15		
9	Abso	olute continuous functions	16		
10			1.		
10	Func	ctions of bounded variation	17		
11			18		
12	The	Lebesgue differentiation theorem	19		

Part I Measure theory

Measures and σ -algebras

1.1 Definition of measures

1.2 The Carathéodory extension theorem

1.1 (Outer measures). Let X be a set. An *outer measure* on X is a function μ^* : $\mathcal{P}(X) \to [0, \infty]$ with $\mu^*(\emptyset) = 0$ such that

(i) if
$$E \subset E'$$
, then $\mu^*(E) \le \mu^*(E')$, (monotonicity)

(ii)
$$\mu^*(\bigcup_{i=1}^{\infty} E_i) \le \sum_{i=1}^{\infty} \mu^*(E_i)$$
.

(countable subadditivity)

- (a) A function $\mu^* : \mathcal{P}(X) \to [0, \infty]$ with $\mu^*(\emptyset) = 0$ is an outer measure if and only if $E \subset \bigcup_{i=1}^{\infty} E_i$ implies $\mu^*(E) \leq \sum_{i=1}^{\infty} \mu^*(E_i)$.
- (b) Let $A \subset \mathcal{P}(X)$ such that $\emptyset \in A$. If a function $\rho : A \to [0, \infty]$ satisfies $\rho(\emptyset) = 0$, then we can associate an outer measure $\mu^* : \mathcal{P}(X) \to [0, \infty]$ by defining as

$$\mu^*(E) := \inf \left\{ \sum_{i=1}^{\infty} \rho(A_i) : E \subset \bigcup_{i=1}^{\infty} A_i, A_i \in \mathcal{A} \right\},$$

where we use the convention $\inf \emptyset = \infty$.

1.2 (Carathéodory measurability). Let μ^* be an outer measure on a set X. A subset $A \subset X$ is called *Carathéodory measurable* relative to μ^* if

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$$

e for every subset $E \subset X$. Let \mathcal{M} be the collection of all Carathéodory measurable subsets relative to μ^* .

- (a) \mathcal{M} is an algebra and μ^* is finitely additive on \mathcal{M} .
- (b) \mathcal{M} is a σ -algebra and μ^* is countably additive on \mathcal{M} , that is, the restriction $\mu := \mu^*|_{\mathcal{M}} : \mathcal{M} \to [0, \infty]$ is a measure.
- (c) The measure μ is complete.
- **1.3** (The Carathéodory extension theorem). Let $A \subset \mathcal{P}(X)$ be a semi-ring of sets on a set X and $\rho : A \to [0, \infty]$ a function with $\rho(\emptyset) = 0$. If the function ρ satisfies
- (i) $\rho(A) = \sum_{i=1}^{n} \rho(A_i)$ for $A \in \mathcal{A}$ a disjoint union of $\{A_i\}_{i=1}^n \subset \mathcal{A}$, (finite additivity)
- (ii) $\rho(A) \leq \sum_{i=1}^{\infty} \rho(A_i)$ for $A \in \mathcal{A}$ a disjoint union of $\{A_i\}_{i=1}^{\infty} \subset \mathcal{A}$, ((disjoint) countable subadditivity)

then it is called a premeasure.

Let $\mu^* : \mathcal{P}(X) \to [0, \infty]$ be the associated outer measure of ρ , and $\mu : \mathcal{M} \to [0, \infty]$ the measure defined from μ^* on Carathéodory measurable subsets. We call μ the *Carathéodory measure* constructed from ρ .

- (a) If ρ is finitely additive, then $A \subset M$.
- (b) If ρ is countably subadditive, then $\mu^*(A) = \rho(A)$ for every $A \in \mathcal{A}$.
- (c) If ρ is a premeasure, then μ is an extension of ρ and called *Carathéodory extension* of ρ .
- (d) In particular, a premeasure is a priori countably additive in the sense that $\rho(A) = \sum_{i=1}^{\infty} \rho(A_i)$ for $A \in \mathcal{A}$ a disjoint countable union of $\{A_i\}_{i=1}^{\infty} \subset \mathcal{A}$.

Measures on Euclidean spaces

Measurable functions

Part II Integration

Lebesgue integration

5.1 Definition of Lebesgue integration

5.2 Convergence theorems

5.3 Modes of convergence

Since $\{f_n(x)\}_n$ diverges if and only if

$$\exists k > 0$$
, $\forall n_0 > 0$, $\exists n > n_0$: $|f_n(x) - f(x)| > \frac{1}{k}$,

we have

$$\begin{split} \{x: \{f_n(x)\}_n \text{ diverges}\} &= \bigcup_{k>0} \bigcap_{n_0>0} \bigcup_{n>n_0} \{x: |f_n-f| > \frac{1}{k}\} \\ &= \bigcup_{k>0} \limsup_n \{x: |f_n-f| > \frac{1}{k}\}. \end{split}$$

Since for every *k* we have

$$\begin{split} \limsup_{n} \{x: |f_{n} - f| > \frac{1}{k}\} &\subset \limsup_{n > k} \{x: |f_{n} - f| > \frac{1}{n}\} \\ &= \limsup_{n} \{x: |f_{n} - f| > \frac{1}{n}\}, \end{split}$$

we have

$$\{x:\{f_n(x)\}_n \text{ diverges}\} \subset \limsup_n \{x:|f_n-f|>\frac{1}{n}\}.$$

Theorem 5.3.1. Let (X, μ) be a measure space. Let f_n be a sequence of measurable functions. If f_n converges to f in measure, then f_n has a subsequence that converges to f μ -a.e.

Proof. We can extract a subsequence f_{n_k} such that

$$\mu(\{x:|f_{n_k}-f|>\frac{1}{k}\})>\frac{1}{2^k}.$$

Since

$$\sum_{k=1}^{\infty} \mu(\{x: |f_{n_k} - f| > \frac{1}{k}\}) < \infty,$$

by the Borel-Canteli lemma, we get

$$\mu(\limsup_{k} \{x : |f_{n_k} - f| > \frac{1}{k}\}) = 0.$$

Therefore, f_{n_k} converges μ -a.e.

Product measures

- 6.1 The Fubini theorem
- 6.2 The Lebesgue measure on Euclidean spaces

Lebesgue spaces

- 7.1 L^p spaces
- 7.2 L^2 spaces
- 7.3 The Riesz representation theorem

Integral operators

- 8.1 Bounded linear operators
- 8.2 Regular integral operators
- **8.3** Convolution type operators
- 8.4 Weak L^p spaces
- 8.5 Interpolation theorems

Part III Fundamental theorem of calculus

Absolute continuous functions

Functions of bounded variation

The Lebesgue differentiation theorem