

Singularities of frontals

A new approach in the classification of frontal germs

C. Muñoz-Cabello

9th June, 2021

Universitat de València (Spain)

Outline

Introduction

Caustics and wave fronts

(Heiner Otterstedt, 2006)

From wave fronts to frontals

Wave front:

Frontal:

Equidistant hypersurfaces

Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^{n+1}$ be an immersion, Z = f(U) and $\xi: U \to \mathbb{R}^{n+1}$ a unit vector field along f. The **equidistant hypersurfaces** to Z are defined as the hypersurfaces Z_t given by

$$f_t(x) = f(x) + t\xi(x);$$
 $x \in U, t \in \mathbb{R}$

Equidistant hypersurfaces

Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^{n+1}$ be an immersion, Z = f(U) and $\xi: U \to \mathbb{R}^{n+1}$ a unit vector field along f. The **equidistant hypersurfaces** to Z are defined as the hypersurfaces Z_t given by

$$f_t(x) = f(x) + t\xi(x);$$
 $x \in U, t \in \mathbb{R}$

Legendre equivalence

Legendrian fibrations

Let $h\colon PT^*\mathbb{K}^{n+1}\to\mathbb{K}^{n+1}$ be the canonical projection onto the base space. A submersion $\pi\colon PT^*\mathbb{K}^{n+1}\to\mathbb{K}^{n+1}$ is a **Legendrian fibration** if, given $p=(q,[\omega])\in PT^*\mathbb{K}^{n+1}$,

$$\ker d\pi_p \subseteq \ker(\omega \circ dh_p)$$

An **integral mapping** is a smooth map $F\colon U\subset\mathbb{K}^n\to PT^*\mathbb{K}^{n+1}$ such that, for all $x\in U$

$$\operatorname{Im} dF_{x} \subseteq \ker(\omega \circ dh_{F(x)})$$

where
$$F(x) = (q, [\omega])$$
.

Legendre equivalence

Two pairs $(F, \pi), (G, \pi')$ are **Legendrian equivalent** if we can find diffeomorphisms ϕ, ψ and a contactomorphism Ψ such that the squares in the following diagram commute:

Legendre equivalence

Two pairs $(F,\pi),(G,\pi')$ are **Legendrian equivalent** if we can find diffeomorphisms ϕ,ψ and a contactomorphism Ψ such that the squares in the following diagram commute:

Theorem

In the above diagram, Ψ is locally determined by π , π' and ψ .

Stability of integral mappings

An **integral deformation** of $F: (\mathbb{K}^n, 0) \to PT^*\mathbb{K}^{n+1}$ is a family of integral maps (F_u) that depends smoothly on $u \in (\mathbb{K}^d, 0)$ such that $F_0 = F$.

We say a pair (F, π) is **Legendre stable** if, for each integral deformation (F_u) , we can find (ϕ_u) , (ψ_u) and (Ψ_u) such that

$$\Psi_u \circ F \circ \phi^{-1} = F_u; \qquad \qquad \pi \circ \Psi_u = \psi_u \circ \pi$$

Mind the second square

Not Legendrian equivalent,

Mind the second square

Not Legendrian equivalent, but they come from the same immersion.

Open Whitney umbrellas

G. Ishikawa performed an extensive analysis of the notion of Legendrian stability in his 2005 article. Some of his findings include:

• Integral deformations can be constructed using a differential form $\tilde{\alpha}$, called **Nash lift**.

Open Whitney umbrellas

G. Ishikawa performed an extensive analysis of the notion of Legendrian stability in his 2005 article. Some of his findings include:

- Integral deformations can be constructed using a differential form $\tilde{\alpha}$, called **Nash lift**.
- A pair (π, F) is Legendrian stable if and only if F is an **open** Whitney umbrella and the algebra

$$Q(F) = \frac{F^* \mathscr{O}_{PT^* \mathbb{K}^{n+1}}}{(\pi \circ F)^* \mathfrak{m}_{n+1} F^* \mathscr{O}_{PT^* \mathbb{K}^{n+1}}}$$

is generated by a certain family of functions.

Open Whitney umbrellas

G. Ishikawa performed an extensive analysis of the notion of Legendrian stability in his 2005 article. Some of his findings include:

- Integral deformations can be constructed using a differential form $\tilde{\alpha}$, called **Nash lift**.
- A pair (π, F) is Legendrian stable if and only if F is an **open** Whitney umbrella and the algebra

$$Q(F) = \frac{F^* \mathscr{O}_{PT^* \mathbb{K}^{n+1}}}{(\pi \circ F)^* \mathfrak{m}_{n+1} F^* \mathscr{O}_{PT^* \mathbb{K}^{n+1}}}$$

is generated by a certain family of functions.

Open Whitney umbrellas are classified by their type.

Frontal equivalence

Frontal germs

A germ $f: (\mathbb{K}^n, S) \to (\mathbb{K}^{n+1}, 0)$ is **frontal** if there exist a representative $f: U \to V$ such that f(U) has a well-defined tangent space $T_{f(u)}f(U)$ for all $u \in U$.

Taking coordinates (x_1, \ldots, x_n, y) on \mathbb{K}^{n+1} , f is a frontal germ if and only if

$$d(y \circ f) = \sum_{j=1}^{n} p_{j} d(x_{j} \circ f)$$

for some $p_1, \ldots, p_n \colon (\mathbb{K}^n, 0) \to \mathbb{K}$.

Frontal germs

A germ $f: (\mathbb{K}^n, S) \to (\mathbb{K}^{n+1}, 0)$ is **frontal** if there exist a representative $f: U \to V$ such that f(U) has a well-defined tangent space $T_{f(u)}f(U)$ for all $u \in U$.

Taking coordinates (x_1, \ldots, x_n, y) on \mathbb{K}^{n+1} , f is a frontal germ if and only if

$$d(y \circ f) = \sum_{j=1}^{n} p_j d(x_j \circ f)$$

for some $p_1, \ldots, p_n \colon (\mathbb{K}^n, 0) \to \mathbb{K}$. A **Nash lifting** of f is an integral $\overline{f} \colon (\mathbb{K}^n, 0) \to PT^*\mathbb{K}^{n+1} \equiv \mathbb{K}^{n+1} \times \mathbb{K}^n$ given by

$$\overline{f}(u) = (f(u); p_1(u), \ldots, p_n(u))$$

Examples

- Every analytic plane curve is frontal.
- Let $f: (\mathbb{K}^2, 0) \to (\mathbb{K}^3, 0)$ be the germ

$$f(x,y) = (x, y^2, xy)$$

If f is frontal, there must exist a unit vector field ξ such that

$$\langle f_x(x,y), \xi \rangle = \langle f_y(x,y), \xi \rangle = 0$$

Examples

- Every analytic plane curve is frontal.
- Let $f: (\mathbb{K}^2, 0) \to (\mathbb{K}^3, 0)$ be the germ

$$f(x,y) = (x, y^2, xy)$$

If f is frontal, there must exist a unit vector field ξ such that

$$\langle f_x(x,y), \xi \rangle = \langle f_y(x,y), \xi \rangle = 0$$

These equations are equivalent to

$$\xi_1 + y\xi_3 = 0;$$
 $2y\xi_2 + x\xi_3 = 0$

but no unit vector field verifies these equations.

Frontal maps are preserved under A-equivalence

Proposition

Let $f,g:(\mathbb{K}^n,S)\to(\mathbb{K}^{n+1},0)$. If f is frontal and g is \mathscr{A} -equivalent to f, then g is a frontal.

$$\begin{array}{ccc} (\mathbb{K}^n,S) & \stackrel{f}{\longrightarrow} (\mathbb{K}^{n+1},0) \\ \downarrow^{\phi} & & \downarrow^{\psi} \\ (\mathbb{K}^n,S) & \stackrel{g}{\longrightarrow} (\mathbb{K}^{n+1},0) \end{array}$$

Frontal stability

A **frontal unfolding** of f is a germ

$$F_d: (\mathbb{K}^n \times \mathbb{K}^d, S \times \{0\}) \to (\mathbb{K}^{n+1} \times \mathbb{K}^d, 0)$$

such that

- 1. for all $x \in (\mathbb{K}^n, S)$, $F_d(x, 0) = (f(x), 0)$;
- 2. F_d is frontal as a germ.

Frontal stability

A **frontal unfolding** of f is a germ

$$F_d: (\mathbb{K}^n \times \mathbb{K}^d, S \times \{0\}) \to (\mathbb{K}^{n+1} \times \mathbb{K}^d, 0)$$

such that

- 1. for all $x \in (\mathbb{K}^n, S)$, $F_d(x, 0) = (f(x), 0)$;
- 2. F_d is frontal as a germ.

A frontal unfolding is **trivial** if it is \mathscr{A} -equivalent to $f \times \mathrm{id}_{(\mathbb{K}^d,0)}$ for some d.

Frontal stability

A frontal unfolding of f is a germ

$$F_d: (\mathbb{K}^n \times \mathbb{K}^d, S \times \{0\}) \to (\mathbb{K}^{n+1} \times \mathbb{K}^d, 0)$$

such that

- 1. for all $x \in (\mathbb{K}^n, S)$, $F_d(x, 0) = (f(x), 0)$;
- 2. F_d is frontal as a germ.

A frontal unfolding is **trivial** if it is \mathscr{A} -equivalent to $f \times \mathrm{id}_{(\mathbb{K}^d,0)}$ for some d. If every frontal unfolding of f is trivial, we say f is **stable as a frontal**.

The stable frontal surfaces

Singularities of frontals 14

Characterizing frontal stability (i)

Definition

Given a frontal f with Nash lifting \overline{f} , we set

$$\mathscr{F}(f) = \left\{ \left. \frac{df_s}{ds} \right|_{s=0} : (f_s, s) \text{ frontal } \right\};$$

$$T\mathscr{A}_e f = \left\{ \left. \frac{df_s}{ds} \right|_{s=0} : f_s = \psi_s \circ f \circ \phi_s^{-1} \right\}$$

Characterizing frontal stability (i)

Definition

Given a frontal f with Nash lifting \overline{f} , we set

$$\mathscr{F}(f) = \left\{ \left. \frac{df_s}{ds} \right|_{s=0} : (f_s, s) \text{ frontal } \right\};$$

$$T\mathscr{A}_e f = \left\{ \left. \frac{df_s}{ds} \right|_{s=0} : f_s = \psi_s \circ f \circ \phi_s^{-1} \right\}$$

We define the **frontal codimension** of f as

$$\operatorname{\mathsf{codim}}_{\mathscr{F}_e} f = \dim_{\mathbb{K}} \frac{\mathscr{F}(f)}{T\mathscr{A}_e f}$$

Characterizing frontal stability (i)

Definition

Given a frontal f with Nash lifting \overline{f} , we set

$$\mathscr{F}(f) = \left\{ \left. \frac{df_s}{ds} \right|_{s=0} : (f_s, s) \text{ frontal } \right\};$$

$$T\mathscr{A}_e f = \left\{ \left. \frac{df_s}{ds} \right|_{s=0} : f_s = \psi_s \circ f \circ \phi_s^{-1} \right\}$$

We define the **frontal codimension** of f as

$$\operatorname{\mathsf{codim}}_{\mathscr{F}_e} f = \dim_{\mathbb{K}} \frac{\mathscr{F}(f)}{T\mathscr{A}_e f}$$

Proposition

Let f be a corank 1 frontal germ. If f is generically immersive, f is stable as a frontal if and only if it has frontal codimension 0.

Classifying stable frontals by their local algebras

We denote \mathcal{O}_n the ring of smooth germs $(\mathbb{K}^n,0) \to \mathbb{K}$. Given a mapping $f:(\mathbb{K}^n,0) \to (\mathbb{K}^p,0)$, $f^*\mathfrak{m} \subseteq \mathcal{O}_n$ denotes the ring generated by the component functions of f. We set

$$Q(\overline{f}) = \frac{\mathcal{O}_n}{\overline{f}^* \mathfrak{m}}; \qquad Q_I(f) = \frac{\overline{f}^* \mathcal{O}_{2n+1}}{(f^* \mathfrak{m}) \overline{f}^* \mathcal{O}_{2n+1}}$$
(Ishikawa, 2005)

Classifying stable frontals by their local algebras

We denote \mathcal{O}_n the ring of smooth germs $(\mathbb{K}^n,0) \to \mathbb{K}$. Given a mapping $f:(\mathbb{K}^n,0) \to (\mathbb{K}^p,0)$, $f^*\mathfrak{m} \subseteq \mathcal{O}_n$ denotes the ring generated by the component functions of f. We set

$$Q(\overline{f}) = \frac{\mathscr{O}_n}{\overline{f}^* \mathfrak{m}}; \qquad Q_I(f) = \frac{\overline{f}^* \mathscr{O}_{2n+1}}{(f^* \mathfrak{m}) \overline{f}^* \mathscr{O}_{2n+1}}$$
(Ishikawa, 2005)

Conjecture

Two stable frontal germs $f,g:(\mathbb{K}^n,0)\to(\mathbb{K}^{n+1},0)$ are \mathscr{A} -equivalent if and only if $Q(\overline{f})\cong Q(\overline{g})$ and $Q_I(f)\cong Q_I(g)$.

Characterizing frontal stability (ii)

We define

$$\hat{\tau}(f_i) = \omega f_i^{-1} [tf_i(\theta_n) + (f_i^*\mathfrak{m})\mathscr{F}(f_i)]|_0$$

where $|_0$ denotes evaluation at 0.

Characterizing frontal stability (ii)

We define

$$\hat{\tau}(f_i) = \omega f_i^{-1} [tf_i(\theta_n) + (f_i^* \mathfrak{m}) \mathscr{F}(f_i)]|_0$$

where $|_{0}$ denotes evaluation at 0.

Proposition

Let f be a frontal multi-germ with branches f_1, \ldots, f_r . Then f is stable as a frontal if and only if f_1, \ldots, f_r are stable and $\hat{\tau}(f_1), \ldots, \hat{\tau}(f_r)$ meet in general position.

Characterizing frontal stability (ii)

We define

$$\hat{\tau}(f_i) = \omega f_i^{-1} [tf_i(\theta_n) + (f_i^* \mathfrak{m}) \mathscr{F}(f_i)]|_0$$

where $|_{0}$ denotes evaluation at 0.

Proposition

Let f be a frontal multi-germ with branches f_1, \ldots, f_r . Then f is stable as a frontal if and only if f_1, \ldots, f_r are stable and $\hat{\tau}(f_1), \ldots, \hat{\tau}(f_r)$ meet in general position.

Conjecture

The space $tf(\theta_n) + (f^*\mathfrak{m})\mathscr{F}(f)$ is the equivalent in frontal equivalence to the \mathscr{K} -tangent space in Mather's theory of \mathscr{A} -equivalence.

Singularities of frontals 17

Frontal Mather-Gaffney criterion

Proposition

Let $f: (\mathbb{C}^n, S) \to (\mathbb{C}^{n+1}, 0)$ be a corank 1 frontal mapping. If f is finite and codim $V(p_y, \lambda_y) > 1$, it has finite frontal codimension if and only if there is a small enough representative $f: X \to Y$ such that:

- 1. $f^{-1}(0) = S$;
- 2. the restriction $f: X \setminus f^{-1}(0) \to Y \setminus \{0\}$ is locally stable as a frontal.

surface

Double point curve of a frontal

The double point curve

Let $f:(\mathbb{C}^2,0)\to(\mathbb{C}^3,0)$ be a parametrized surface of corank 1. If

$$f(x,y) = (x,p(x,y),q(x,y))$$

the **double point space** of f is given by

$$D^{2}(f) = \left\{ (x, y, y') \in \mathbb{C}^{3} : \frac{p(x, y) - p(x, y')}{y - y'} = \frac{q(x, y) - q(x, y')}{y - y'} = 0 \right\}$$

The double point curve

Let $f:(\mathbb{C}^2,0) o (\mathbb{C}^3,0)$ be a parametrized surface of corank 1. If

$$f(x,y) = (x, p(x,y), q(x,y))$$

the **double point space** of *f* is given by

$$D^{2}(f) = \left\{ (x, y, y') \in \mathbb{C}^{3} : \frac{p(x, y) - p(x, y')}{y - y'} = \frac{q(x, y) - q(x, y')}{y - y'} = 0 \right\}$$

If $\pi : \mathbb{C}^3 \to \mathbb{C}^2$ is the proyection given by $(x,y,y') \mapsto (x,y)$, we shall write $D(f) = \pi(D^2(f))$. The curve $D^2(f)$ induces an algebraic structure on D(f) by taking the Fitting ideals of π .

Let $f: (\mathbb{C}^2,0) \to (\mathbb{C}^3,0)$ be a frontal germ of corank 1 and λ be the generating function of D(f). If f(x,y)=(x,p(x,y),q(x,y)), either $p_y|q_y$ or $q_y|p_y$ (Nuño-Ballesteros, 2015).

Let $f:(\mathbb{C}^2,0)\to (\mathbb{C}^3,0)$ be a frontal germ of corank 1 and λ be the generating function of D(f). If f(x,y)=(x,p(x,y),q(x,y)), either $p_y|q_y$ or $q_y|p_y$ (Nuño-Ballesteros, 2015).

Proposition

1. If
$$p_y|q_y$$
, $p_y^2|\lambda$.

Let $f:(\mathbb{C}^2,0)\to (\mathbb{C}^3,0)$ be a frontal germ of corank 1 and λ be the generating function of D(f). If f(x,y)=(x,p(x,y),q(x,y)), either $p_y|q_y$ or $q_y|p_y$ (Nuño-Ballesteros, 2015).

Proposition

- 1. If $p_y|q_y$, $p_y^2|\lambda$.
- 2. If λ/p_y is regular, f is either a cuspidal edge or a curve of transversal double points.

Singularities of frontals

Let $f: (\mathbb{C}^2,0) \to (\mathbb{C}^3,0)$ be a frontal germ of corank 1 and λ be the generating function of D(f). If f(x,y)=(x,p(x,y),q(x,y)), either $p_y|q_y$ or $q_y|p_y$ (Nuño-Ballesteros, 2015).

Proposition

- 1. If $p_y|q_y$, $p_y^2|\lambda$.
- 2. If λ/p_y is regular, f is either a cuspidal edge or a curve of transversal double points.
- 3. The germ f is stable as a frontal if and only if λ/p_y has an isolated singularity at 0.

Singularities of frontals

20

Double point curve and frontal stability

$$f(x,y) = (x, y^3 + 3xy, y^4 + 2xy^2)$$

• Space of double points:

$$\lambda(x,y) = (x + y^2)^2(3x + y^2)$$

• Cuspidal edge set:

$$p_y(x,y) = x + y^2$$

Double point set:

$$\tau(x,y) = 3x + y^2$$

Open questions

Open questions

- Can we compute the module $\mathscr{F}(f)$ on SINGULAR?
- The corank 1 condition is a limitation imposed by Ishikawa (2005).
 Does any of these results hold in corank 2?
- In Mather's theory, a germ is finitely \mathscr{A} -determined if and only if it has finite \mathscr{A} -codimension. Does this hold for frontals?
- Marar-Mond number for frontal surfaces.

References i