

ShanghaiTech University Believe It or Not, We Know What You Are Looking at!

Dongze Lian *, Zehao Yu*, and Shenghua Gao^ ShanghaiTech University

Introduction:

➤ Gaze Following: Follow other people's gaze in a scene and infer where they are looking [figure (a) (b)].

> Potential Applications:

- Understand the behavior of human;
- New retailing scenario.

> Challenges:

- Occluded head [figure (c)];
- Ambiguity of gaze point [figure (d)].

> Contributions:

- A psychological plausible two-stage solution;
- Multi-scale gaze direction fields for different sizes of objects and various head positions;

(c)

- A new video-based gaze following dataset;
- State-of-the-art performance.

Our approach:

► Motivation:

Mimic the behavior of a third-view person for gaze following.

> Method:

- Stage-I: predict the gaze direction based on the head image and head position;
- Stage-II: estimate heatmap based on the content information along the gaze direction.

Network architecture:

> Differentiable gaze direction field:

- Head position: $H=(h_x,h_y)$, any point $P=(p_x,p_y)$ in image.
- Direction from H to $P: G = (p_x h_x, p_y h_y);$
- The probability of point P being the gaze point: $Sim(P) = \max(\frac{\langle G, \hat{d} \rangle}{|G||\hat{d}|}, 0)$;
- Multi-scale gaze direction field: $Sim(P, \gamma) = [Sim(P)]^{\gamma}$

Gaze direction field

ightharpoonup Gaze direction loss: $L_d = 1 - \frac{\langle d, \widehat{d} \rangle}{|d||\widehat{d}|}$.

d: ground truth gaze direction, \widehat{d} : prediction.

The original image

ightharpoonup Heatmap loss: $L_h = -\frac{1}{N} \sum_{i=1}^N H_i \log(\widehat{H}_i) + (1 - H_i) \log(1 - \widehat{H}_i)$,

 H_i : ground truth heatmap, $\widehat{H_i}$: prediction.

 \triangleright Loss function: $L = L_d + \lambda L_h$.

Dataset:

> Our Daily Life Gaze dataset (DL Gaze):

- 16 volunteers in 4 scenes (working office, laboratory, library and corridor in the building);
- Gaze point is annotated by participants themselves;
- 86 videos, 95K frames in total for evaluation.

Experiments:

Dist: L2 distance, MDist: Minimum L2 distance, Ang: Angular error, MAng: Minimum Angular error. Table 1. Performance comparison with existing methods on the GazeFollow dataset. One-scale and multi-scale correspond to the number of gaze direction fields in our model. For one-scale model, $\gamma = 1$.

Methods	AUC	Dist	MDist	Ang	MAng
Center [22]	0.633	0.313	0.230	49.0°	-
Random [22]	0.504	0.484	0.391	69.0°	-
Fixed bias [22]	0.674	0.306	0.219	48.0°	-
SVM + one grid [22]	0.758	0.276	0.193	43.0°	-
SVM + shift grid [22]	0.788	0.268	0.186	40.0°	-
Judd $et \ al. \ [9]$	0.711	0.337	0.250	54.0°	-
SalGAN [19]	0.848	0.238	0.192	36.7°	22.4°
SalGAN for heatmap	0.890	0.181	0.107	19.6°	9.9°
Recasens et al. $[22]$	0.878	0.190	0.113	24.0°	-
Recasens $et \ al.* [22]$	0.881	0.175	0.101	22.5°	11.6°
One human [22]	0.924	0.096	0.040	11.0°	-
Ours (one-scale)	0.903	0.156	0.088	18.2°	9.2°
Ours (multi-scale)	0.906	0.145	0.081	17.6°	8.8°

Table 2. Performance comparison with existing methods on our dataset. Each frame only contains one gaze point, so only Dist and Ang are used for performance evaluation.

$ ext{t}$ Ang	Dist	Methods
3 26.9°	0.203	Recasens et al. [22]
9 21.4°	0.169	Recasens $et \ al.* [22]$
7 18.7°	0.157	Ours (multi-scale)
)	0.13	Ours (multi-scale)

Fig. 4. Accumulative error curves of different methods on both datasets.

Visualization of predicted results:

> Predicted results:

> Predicted heatmaps:

> Some failures:

- Ambiguity and multimodal;
- Small head or head occlusion, which is hard even for human;

Reference:

[1] Recasens*, A., Khosla*, A., Vondrick, C., Torralba, A.: Where are they looking? In: Advances in Neural Information Processing Systems (NIPS) (2015).

[2] Pfister, T., Charles, J., Zisserman, A.: Flowing convnets for human pose estimation in videos. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1913-1921 (2015)

Code & dataset: https://github.com/svip-lab/GazeFollowing