LIGHTING STUDY EEAP PROGRAM FOR LETTERKENNY ARMY DEPOT

U.S. ARMY ENGINEER DISTRICT, NORFOLK

CORPS OF ENGINEERS

NORFOLK, VIRGINIA

PERFORMED BY

DIBTRIBUTION STATIMINT A

Approved for public releases
Distribution Valuated

ENTECH ENGINEERING, INC.

READING, PENNSYLVANIA

VOLUME 1 OF 3

SEPT June 1995

DEPARTMENT OF THE ARMY

REPLY TO ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Marie Wakeffeld,

Librarian Engineering

INTRODUCTION

A lighting study, on selective buildings at Letterkenny Army Depot, has been performed by a team of engineers and technicians from Entech Engineering, Inc. with experience in over 500 similar investigations since 1980. Entech has developed powerful, sophisticated computer programs which analyze building energy usage and cost savings. An extensive list of potential Energy Conservation Opportunities and operations has been identified and verified by Entech personnel, who have become thoroughly familiar with the lighting in the surveyed buildings.

The Executive Summary of this report provides a synopsis of all cost-effective measurers investigated. The other sections of the report provide a more indepth analysis of procedures, energy usage patterns, and recommendations.

This report is an important tool for identifying cost-effective projects, and should provide the framework for a long-term *Energy Management Program*.

Entech appreciates this opportunity to serve as Letterkenny's *Energy Management Consultants* on this very interesting investigation.

19971017 201

Entech Engineering, Inc.

TABLE OF CONTENTS

SECTION		<u>TITLE</u> <u>P</u>	<u>AGE</u>
<u>VOLUME</u>	<u>1</u>		
		e of Contents	
1.0	EXE	CUTIVE SUMMARY 1-1 through	1-3
	1.1	Project Authorization and Objectives	1-1
	1.2	Synopsis of Findings	1-1
	1.3	Organization of Report	1-3
2.0	MET	THODOLOGY 2-1 through	2-25
	2.1	Government Requested Data	2-1
	2.2	Site Information Collection Procedures	2-2
	2.3	Lighting Model	2-2
	2.4	Lighting Level Standards	2-9
	2.5	Electric Model	2-11

TABLE OF CONTENTS - cont'd

SECTION		TITLE	PAGE
	2.6	Energy Value	. 2-14
	2.7	Energy Conservation Opportunities (ECOs) 2.7.1 Existing Condition Description 2.7.2 Proposed Condition Description 2.7.3 Implementation Cost Estimate 2.7.4 Energy Savings 2.7.5 Maintenance Savings 2.7.6 Discussion 2.7.7 Life Cycle Cost Analysis Summary 2.7.8 Spreadsheet Detailing 2.7.1 through 2.7.4	. 2-15 . 2-15 . 2-15 . 2-16 . 2-16 . 2-17 . 2-17
	2.8	Draft Report/Client Review/Final Report	. 2-25
3.0	FAC	ILITY DESCRIPTION 3-1 throu	gh 3-5
	3.1	General	3-1
	3.2	Survey Areas	3-1
	3.3	Operation Schedule	3-2
4.0	BILL	ING HISTORY 4-1 through	gh 4-14
	4.1	General	4-1
	4.2	Electricity 4.2.1 Incremental Cost	4-5 4-11
		Entech Engineering, Inc.	

TABLE OF CONTENTS - cont'd

SECTION	•	TITLE	<u>PAGE</u>
5.0	ENE	RGY CALCULATIONS 5-1 throu	gh 5-9
	5.1	General	5-1
	5.2	Lighting Model Summary	. 5-1
	5.3	Electric Model Summary	. 5-7
6.0	ENE	RGY CONSERVATION OPPORTUNITIES 6-1 throu	gh 6-8
	6.1	General	6-1
	6.2	Recommended ECOs	6-3
	6.3	Non-recommended ECOs	6-8
7.0	OPE	RATION AND MAINTENANCE PRACTICES	. 7-1
	7.1	Operation and Maintenance	7-1
8.0	CON	CLUSION 8-1 throu	gh 8-3
	8.1	Synopsis of Findings	8-1
	8.2	Future Energy Costs	8-1

TABLE OF CONTENTS - cont'd

SECTION	<u>\</u>	TITLE	<u>PAGE</u>
VOLUME	<u> 2</u>		
9.0	ATT	CACHMENTS	
	9.1	A/E Contract	
	9.2	Meeting Minutes and Monthly Reports	
	9.3	Electric Bills and Rate Schedule	

VOLUME 3

10.0 LIGHTING SURVEY FIELD DATA

9.4 Lighting Models

9.5 Energy Conservation Opportunities

1.0 EXECUTIVE SUMMARY

1.1 Project Authorization and Objectives

This project was authorized under the general provisions of Executive Order 12902 with specific implementation under the Army's Energy Engineering Analysis Program (EEAP). Entech Engineering, Inc. was commissioned under Contract DACA01-94-D-0037, Delivery Order 0004 issued by USAED, Mobile and Administered by USAED, Norfolk (Mlecik). The objectives of the project are to research, identify, evaluate, and define energy saving projects that meet the Army's criteria and lead to energy savings at the Letterkenny Depot with respect to lighting. Details of the authorization and objectives of this report, which delineates our contractual arrangement with the government, may be found in Section 9.1.

1.2 Synopsis of Findings

Entech Engineering, Inc. surveyed over 2 million square feet of lighting in defined areas of seventy-two buildings along with the roadway and parking lot areas. Overall, we considered over 14,000 luminaires with an annual estimated operating cost of \$330,000. Entech prepared documentation for seventeen (17) Energy Saving Opportunities (ECOs) complete with cost estimates and life cycle cost analysis.

Eight (8) ECO projects are recommended with a total implementation cost of approximately \$1,000,000 and an energy savings of 7,300 mmBtu (2,100,000 kWh). The recommended ECOs are listed in Table 1.2.1.

Table 1.2.1
Recommended ECO's
Letterkenny Army Depot

15478	SAVINGA	3,00,0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 N O	() () () () () () () () () ()	1001	000 t a 000 t	1	2 3 5 5 6	1 17 70
וככוו	SIR	5.74	9.54	6.33	6.06	1 78	1 00	2.45	8 13	CTIO
CCID	Pavback (Vrs)	3.03	1.83	2.75	2 88	9 97	8 83	7 19	2.14	
Energy Savings	mmBtu	61.2	88.3	254.5	5314	4607	1554	56.9	102.4	7300
Implementation Cost	€	\$6,400	\$4,600	\$24,000	\$41,000	\$628,000	\$261,000	\$2.900	\$7,000	\$1,000,000
	ECO Description	Incandescent Exit Signs to LED Exit Signs	Incandescent Area Light over Paper Exit Sign	Incandescent Area Lighting Fixture Replacement	HID Lighting	Efficient Fluorescent Lighting Retrofit	Industrial Fluorescent to High Pressure Sodium	Occupancy Sensors	ECO-15 Building Exterior Lighting	
	ECO No.	EC0-2	ECO-3	ECO-4B	ECO-5	ECO-6	ECO-11	ECO-12	ECO-15	Total

23-May-95

1.3 Organization of Report

The report consist of three (3) volumes:

Volume 1

Section I	Executive Summary
Section 2	Methodology
Section 3	Facility Description
Section 4	Billing History
Section 5	Energy Calculations
Section 6	Energy Conservation Opportunities
Section 7	Operation and Maintenance Practices
Section 8	Conclusion

Volume 2

Section 9 Attachments

Volume 3

Section 10 Lighting Survey Field Data

2.0 METHODOLOGY

2.1 Government Requested Data

Copies of the following documents were requested:

- ETL 11103282, Energy Conservation
- TM 58002, Cost Estimates, Military Construction
- AR41515, 1JAN84, Military Construction, Army (MCA)
- Program Development
- The Latest MCP Index
- NIST Handbook 135
- NISTIR-4942-1
- NIST BLCC

The above documents have not been reproduced as part of this report.

In addition to the above procedural documents, Entech, with considerable assistance from the Letterkenny Army Depot, collected pertinent site specific data, including the following:

- Monthly Electric Bills
- System Load Profiles
- Building Operating Schedules
- Previous Energy Studies
- Building Drawings
- Maintenance Issues

2.2 Site Information Collection Procedures

Entech Engineering, Inc. investigated defined areas in seventy-two buildings on a room-by-room basis along with the roadway and parking lot areas during November and December 1994. A walk-through inspection was performed for each building in the study group. The roadway and parking lot areas were surveyed after dark. Lighting operation was reviewed and pertinent features were inventoried. The Depot personnel furnished the building operation hours and assisted in the roadway and parking lot survey. The following information was recorded during the walk through:

- Room Area or Description
- Ceiling Height (Work Areas Only)
- Luminaire Type in accordance with the U.S. Army Corps of Engineers, Standard No. 40-06-04, February 1991
- Light Levels (Work Areas Only)
- Number of Luminaires
- Lamps per Luminaire
- Watts per Lamp
- Lamp Type

2.3 Lighting Model

Entech used an in-house computer spreadsheet to model the lighting load of each room or area on a per-building basis. A sample of the lighting model used is shown in Table 2.3.1 which can be found at the end of this section. Information from the building walk through was entered into the light model in order to develop a monthly estimate of electric demand,

usage, and cost associated with the building lighting. The lighting model breaks down the costs by room or area. The following is a definition of each column heading in the lighting model:

Room Area or Description

Location of luminaires.

Ceiling Height

The distance from the floor to the ceiling was measured in the field using an Accutape II Ultrasonic Distance Measurement Device.

Luminaire Type, Army

The luminaires surveyed were matched against the U.S. Army Corps of Engineers, Lighting Fixtures, Standard Detail No. 40-06-04, February 1991. The designation 230V, which is not part of the above publication, is used for vapor tight industrial 1' x 4' fluorescent luminaires. The designation N/A was used for luminaires which were not shown in any form in the above publication.

Luminaire Factor

The luminaire factor adjust the wattage of the luminaires to account for the power consumed by a ballast. The number 1.15 is the ballast factor used for luminaires which incorporate ballasts. The ballast factor is multiplied by the sum of the lamp wattages to obtain the total watts of the luminaire. According to ballast manufacturing data, a conventional magnetic ballast consumes about 15% of the rated lamp wattage. For

example, a two lamp luminaire with F40T12 (40 watt) lamps will consume 92 watts {(40 watts/lamp x 2 lamps) x 1.15}.

Ballasted luminaires include fluorescent, high-pressure sodium, metal halide, and mercury vapor. A ballast factor of one (1) is used for incandescent fixtures because they do not require ballast.

Light Levels

The room or area light levels were measured using Photo Meter Model #1, Digital Footlamber Meter held roughly 30" above the finished floor. The levels listed represent an averaging of the levels found directly below the luminaires and positions around the luminaires. Measurements in areas where the lighting fixtures appeared to be less than fully operational (burnt lamps, failing ballasts, damaged lenses) were avoided wherever possible. Light levels were taken in working areas only and not in restrooms or storage areas. Where switching configurations allowed different lighting levels, the configuration found was considered the baseline for the report.

Number of Luminaires

Quantity of luminaires found in the room or area. Luminaires used only for emergency lighting are not included. Only permanent luminaires were counted.

Lamps per Luminaire

Quantity of lamps per luminaire.

Watts per Lamp

The rated power consumption per lamp or bulb. (Ballast consumption not included.) The lamp types were not individually inventoried. Lamps in use were assumed to be consistent within a space or group of similar spaces. The actual lamp was determined either by the information extracted from the installation drawings, actual field inspection, inventory of replacement stock, review of maintenance records, or a combination of the above.

Lamp Type

Type of lamp for each luminaire is abbreviated as follows:

F	*****	Fluorescent
HPS	_	High-Pressure Sodium
Ι	-	Incandescent
MV		Mercury Vapor

Total Watts

Total watts for the lighting system.

The total watts were calculated by multiplying the (Luminaire Factor) x (# of Luminaires) x (Lamps per Luminaire) x (Watts per Lamp).

Hours Per Week

The overall weekly building operation hours were estimated by the Depot energy engineer. This data was used in conjunction with our field observations to develop Table 2.3.2, which can be found at the end of this section. Table 2.3.2 is a summary of estimated hours of operation by area.

Percent of kW On-Peak

The percent of kW on-peak is an assumption of the probability of the lighting load attributing to the peak demand. The assumption was based on Entech's review of the furnished building operation data and system load profiles.

Demand kW On-Peak

Calculated by multiplying (Total Watts) x (Percent of kW On-Peak)/(1,000 Watts/kW).

Usage kWh per Month

Calculated by multiplying (Total Watts) x (Hours per Week) x (4.34 Weeks per Month)/(1,000 Watts/kW).

Monthly Demand Cost (kW)

Calculated by multiplying demand kW on-peak by the incremental rate for demand shown at the bottom of the lighting model. The incremental rate calculation is discussed in Section 4 of this report.

Monthly Usage Cost (kWh)

Calculated by multiplying usage kWh per month by the incremental rate for usage shown at the bottom of the lighting model. The incremental rate calculation is discussed in Section 4 of this report.

Monthly Cost

Calculated by summing of the monthly demand and monthly usage cost.

Sample Lighting Model Letterkenny Army Depot Building # Table 2.3.1

Percent Demand Usage Monthly Monthly Of Kw Kw Kwh Per Demand Usage Cost On-Peak Month (Kw) (Kwh) \$	
Kw Kwh Per Demand Usage -Peak Month (Kw) (Kwh)	
Kw Kwh Per Demand -Peak Month (Kw) -Peak Month	
Kw Kwh Per Peak Month	
Kw -Peak	
<u>a</u> -	
Percent Of Kw On-Peak	
Hours Per Week	
Total Waits	
Lamp	
Watts Per Lamp	
Lamps V Per Luminaire I.	
# Of Luminaires	
Light Levels Meas (FC)	
Factor Factor	
Luminaire Luminaire I Type Factor L Army# Me	
Ceiling Height Fr	
Room Area or Description	

INCREMENTAL DEMAND COST \$/KW = INCREMENTAL USAGE COST \$/KWH =

NOTE #1: LUMINAIRE FACTOR:

FOR BALLASTED FIXTURES, A BALLAST FACTOR OF 1.15 IS USED AND FOR INCANDESCENT FIXTURES A FACTOR OF 1 IS USED.

F = FLUORESCENT HPS = HIGH PRESSURE SODIUM I = INCANDESCENT MV = MERCURY VAPOR

U.S. ARMY CORPS OF ENGINEERS, LIGHTING FIXTURES, STANDARD DETAIL NO. 40-06-04, FEBRUARY 1991. NOTE #3: LUMINAIRE TYPE ARMY #:

NOTE #2: LAMP TYPE:

TABLE 2.3.2

AREA OPERATION HOURS

=	Roadway and Parking Lot Lighting	80 Hours/Week
•	General Office Areas	100% Building Operation
•	Corridors and Lobbies	100% Building Operation
•	Conference Rooms	70% Building Operation
•	Restrooms	60% Building Operation
	Janitors Closet	5 Hours/Week
•	Fan and Mechanical Rooms	5 Hours/Week
	Supply and Storage Rooms	10 Hours/Week
•	Exit Signs	168 Hours/Week
•	Exterior Building Lighting Attached (determined to be inactive)	0 Hours/Week
•	Exterior Building Lighting Attached (determined to be active)	80 Hours/Week
	Building 412	50 Hours/Week
•	Building 637	40 Hours/Week
•	Building 640	50 Hours/Week/20 Weeks Average 20 Hours/Week/Year

2.4 Lighting Level Standards

The recommended light levels, indicated in Table 2.4.1 on the following page, were extracted from the Illuminating Engineering Society (IES) Lighting handbook except as modified by Chapter 12 of CEMP-E, 9 December 1991. This table shows recommended light levels in footcandles for various generic areas. These values were compared with the levels recorded during the energy audit and were reviewed by representatives of the Depot to determine if areas with excessive lighting levels could contribute to energy savings by a reduction in those lighting levels.

Where lighting levels were below the recommended standard and/or the Depot's needs, this report did not assume additional lighting would be added as we considered energy saving opportunities.

TABLE 2.4.1

<u>IES LIGHT LEVEL RECOMMENDATIONS</u>

Area/Activity	Recommended Light Level
Classrooms	50 - 100 fc
Locker Rooms	10 - 20 fc
Machine Shop	50 - 100 fc
Print Shops	50 - 100 fc
Auditorium (Assembly)	20 - 50 fc
Conference Room	20 - 50 fc
Drafting Room	50 - 100 fc
Kitchens	50 - 100 fc
Dining Areas	10 - 20 fc
Offices	50 - 100 fc
Library Reading Area	50 - 100 fc
Library Stack Area	20 - 50 fc
Computer Rooms	20 - 50 fc
Recreation Rooms	10 - 50 fc
Storage Rooms	10 - 20 fc
Bathrooms	10 - 20 fc
Stairways and Corridors	10 - 20 fc
Lobbies	10 - 20 fc
Building Entrances	5 fc
Gymnasium	30 fc

2.5 Electric Model

Entech's electric model is a computer spreadsheet used to identify the individual building electric loads contribution to demand, usage, and cost. This study analyzed only lighting loads. The electric model summarizes the data compiled in the lighting models.

A sample electric model is shown in Figure 2.5.1 which can be found at the end of this section. The following is a definition of each column heading in the electric model:

Description

Building number or area for which data was collected.

Study Area

Approximate survey square footage of the building.

Connected Load

The total connected electric load, expressed in kW, is shown for both the heating season and the cooling season. Since this study dealt with lighting only, the connected load is constant.

Winter Demand, Intermediate Demand, and Summer Demand
The average kW contributing to the billing demand for each period.
Winter months include December, January, February, and March.
Intermediate months include April, May, October, and November.

Summer months include June, July, August, and September. Since this study dealt with lighting only, the demand kW was the same for each period.

Winter Usage, Intermediate Usage, and Summer Usage

The usage data is directly from the building lighting models. Again, since the study dealt only with lighting the usage was constant.

Annual Demand

Calculated by multiplying (Winter Demand) x (4 Months) + (Intermediate Demand) x (4 Months) + (Summer Demand) x (4 Months).

Annual Usage

Calculated by multiplying (Winter Usage) x (4 Months) + (Intermediate Demand) x (4 Months) + (Summer Usage) x (4 Months).

Annual Cost

Calculated by summing the annual demand and annual usage costs.

Study Area \$/sf

Calculated by dividing the annual cost by the study area.

Letterkenny Army Depot Sample Depot Electric Model Summary Table 2.5.1

Š																				
Study Area \$/sf																				
Annual Cost \$/yr														,						
Annual Usage Kwh/yr																				
Annual Demand kW/yr																				
Summer Usage kWh/Mo																				
Inter Usage kWh/Mo																				
Winter Usage kWh/Mo																				
Summer Demand kW/Mo												T T T T T T T T T T T T T T T T T T T								
Inter Demand kW/Mo																				
Winter Demand kW/Mo																				
Connected Load (kW) ting Cooling																				
Conn Load Heating																				
Study Area																				
Description																				
Ž.																				

2.6 Energy Value

The following energy value has been used in the energy calculations in this report. The value has been established by the Pennsylvania Energy Office.

TABLE 2.6.1 mmBtu/Unit

Fuel Type	mmBtu/Unit
Electricity (kWh)	3,413

2.7 Energy Conservation Opportunities (ECOs)

After the lighting models were finalized, Entech began to analyze the ECO ideas which were developed during the site inspection. An ECO describes an idea for decreasing energy costs. Each ECO evaluates a current luminaire or group of luminaires throughout the entire building survey group. The write up consists of the following sections:

- 1. Existing Condition Description
- 2. Proposed Condition Description
- 3. Implementation Cost Estimate
- 4. Energy Savings
- 5. Maintenance Savings
- 6. Discussion
- 7. Life Cycle Cost Analysis Summary
- 8. Spreadsheet Detailing Items 1 through 4

2.7.1 Existing Condition Description

The item under evaluation is discussed. Its current specifications and operating hours are reviewed along with a summary of the item's electric demand, usage, and cost from the ECO spreadsheet discussed in Section 2.7.8.

2.7.2 Proposed Condition Description

This section presents the proposed concept to save energy. Since it is a concept, no actual design has been performed. The quantity of luminaires for the proposed system is determined by matching the existing and proposed total area lamp lumen output. First, the existing and proposed lamp lumen output is obtained from published lamp manufacturer data. The proposed system luminaire/lamp quantity is then determined by dividing the existing lumens by the proposed lamp lumens. The proposed lamp wattage and corresponding lumen output is selected based on a conceptual review of the area's physical and functional characteristics.

The proposed lighting system incorporates existing system functions such as emergency lighting only if they currently exist. Once the ECO progresses to the design phase, the design engineer will need to take into detailed account the activity in the space, characteristics of the visual task performed in the space, the age of the occupants, along with current codes and standards.

2.7.3 Implementation Cost Estimate

The estimated cost for implementing the project. The cost estimates are broken down into material, labor, and engineering components. The cost figures are based on manufacturer furnished quotes and/or Means Electrical Cost Data 1995, 18th annual edition.

The cost estimates prepared for this study are considered to be "conceptual" in nature. They are conceptual because they are based upon engineering design that is less than 1% of a complete detailed design effort required for such a project.

The final results of a project can vary significantly from the "conceptual" cost estimate. The American Association of Cost Engineers (AACE) generally states an accuracy range of plus or minus 20% for "conceptual" cost estimates. Variations beyond this range are possible for the stated scope, but not likely.

Since it is not possible for the consultants to know the most likely variations that can occur in the future, nor can it control certain technologies, contractors, or general economic conditions, the costs estimated herein should not be construed as fixed or precise.

2.7.4 Energy Savings

This section of the ECO write up compares the existing and proposed energy demand, usage, and cost. The resulting energy usage savings in mmBtu/yr is calculated. The savings shown is an expected level of annual savings which does not include price increases of various energy sources or takes into account any interactive savings. The ECOs are calculated on a stand-alone basis.

2.7.5 Maintenance Savings

This section presents the proposed maintenance resulting from implementing the ECO. Typically, the existing and proposed lamp and/or luminaire life are quantitatively discussed.

2.7.6 Discussion

The discussion section includes the payback and savings to investment ratio from the Life Cycle Cost Analysis Summary.

2.7.7 Life Cycle Cost Analysis Summary

The life cycle cost were forecasted with the Blast: LCCID version 1.0, Level 80 Program. LCCID is an economic analysis computer program tailored to the needs of the Department of Defense (DoD). It is intended to be used as a tool in evaluation and ranking design alternatives for new and existing buildings. LCCID has built-in calculation procedures recognized as a standard for the DoD. The following is the specific criteria and other guidance embodied in LCCID according to the LCCID users manual.

The specific criteria and other guidance embodied in LCCID are:

- 1. Office of Management and Budget (OMBP Circular A-94, March 27, 1972. OMB Circular A-94 has a new version (October 29, 1992) but a final decision on incorporating the new circular into tri-service criteria has not been determined.
- Code of Federal Regulations, 10 CFR 436A, January 25, 1990. Annual fuel escalation rates are published by NIST (National Institute of Standards and Technology) under sanction by DoE.
- 3. Memorandum of Agreement on Criteria/Standards for Economic Analysis/Life Cycle Costing for MILCON Design, 18 March 1991. This memorandum obviated the need for separate criteria in the three services (Army, Air Force, and Navy) of the Department of Defense.
- 4. DoD Energy Conservation Investment Program (ECIP)
 Guidance. This guidance uses the memorandum from
 Item 3, as its basis, but also has some qualifying
 factors for energy conservation projects and specifies
 its own format.

The LCCID Program is structured as shown on Table 2.7.7.1, ECIP Study LCCID Ready Reference, which can be found at the end of this section. This table was obtained from the LCCID program users manual.

The following criteria was selected/entered into the LCCID program to obtain the Life Cycle Cost Analysis Summaries prepared as part of each ECO:

- A. Common criteria selected for all life cycle cost analysis summaries:
 - Military Construction Army
 - User Entry of Consumption Values
 - ECIP Project
 - Energy Escalation Rates for FY94 (only option available)
 - English Units
- B. Common criteria entered into all life cycle cost analysis summaries:
 - ECIP Economic Life: Twenty-five years per direction of Letterkenny Army Depot
 - Location: Pennsylvania

Electric Usage Cost: \$7.27 per mmBtu

$$\left(\frac{.0248}{kWh} \times \frac{kWh}{3,413 Btu} \times \frac{1 \times 10^6 Btu}{mmBtu}\right)$$

- Project Number: #4130.01
- Fiscal Year: 1995
- Project Title: EEAP
- Installation Name: Letterkenny Army Depot
- Study Preparer:
 - DJB
- Salvage Value: \$0, per direction of Letterkenny
 Army Depot.
- C. Criteria entered into life cycle cost analysis summaries from the ECO:
 - Discrete Portion Title: ECO #
 - Construction Cost: Dollars
 - Design Cost: Dollars
 - Supervision, Inspection, and Overhead (SIOH):
 Program default of 5.5% of construction cost
 - Energy Savings: mmBtu
 - Demand Savings: Annual Dollars
 - Annual Recurring Savings: Maintenance Savings
 ECO Section
 - Non-Recurring Savings: Maintenance Savings
 ECO Section

A sample Life Cycle Cost Analysis Summary Report is shown in Table 2.7.7.2 located at the end of this section. In this example, all the common criteria noted in 2.7.7 Items A and B, was selected or entered into this summary report.

In Part 1 of the summary report, a construction cost of \$10,000 and a design cost of \$1,200 was assumed. The SIOH was calculated by the program.

In Part 2 of the summary report, an electric energy saving of 500 mmBtu/yr was assumed. A \$500/yr demand savings shown in "2 M" was also assumed.

In Part 3 of the summary report, a maintenance savings of \$100/yr was also assumed. In the actual summary report, the above-assumed numbers would originate from an ECO. In the example, the program calculated a simple payback of 2.77 years and a savings to investment ratio of 6.50.

Table 2.7.7.2

I dulc 20,7.7.2	
LIFE CYCLE COST ANALYSIS SUMMARY STUDY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) LCCIR INSTALLATION & LOCATION: LETTERKENNY REGION NOS. 3 CENSUS PROJECT NO. & TITLE: 4130.01 EEAP FISCAL YEAR 1995 DISCRETE PORTION NAME: ECO # ANALYSIS DATE: 04-18-95 ECONOMIC LIFE 25 YEARS PREPARED BY	D 1.080 : 1
1. INVESTMENT A. CONSTRUCTION COST \$ 10000. B. SIOH \$ 550. C. DESIGN COST \$ 1200. D. TOTAL COST (1A+1B+1C) \$ 11750. E. SALVAGE VALUE OF EXISTING EQUIPMENT \$ 0. F. PUBLIC UTILITY COMPANY REBATE \$ 0. G. TOTAL INVESTMENT (1D - 1E - 1F) \$ 1175	50.
2. ENERGY SAVINGS (+) / COST (-) DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACTORS OCT 1993 UNIT COST SAVINGS ANNUAL \$ DISCOUNT FUEL \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACTOR(4)	DISCOUNTED SAVINGS (5)
A. ELECT \$ 7.27	\$ 66048. \$ 0. \$ 0. \$ 0. \$ 0. \$ 0. \$ 74658.
3. NON ENERGY SAVINGS(+) / COST(-)	
A. ANNUAL RECURRING (+/-) (1) DISCOUNT FACTOR (TABLE A) (2) DISCOUNTED SAVING/COST (3A X 3A1)	\$ 100. \$ 1722.
B. NON RECURRING SAVINGS(+) / COSTS(-) SAVINGS(+) YR DISCNT DISC ITEM COST(-) OC FACTR SAVI (1) (2) (3) COST	INGS (+)/
d. TOTAL \$ 0.	0.
C. TOTAL NON ENERGY DISCOUNTED SAVINGS(+)/COST(-)(3A2+3Bd4	1)\$ 1722.
4. FIRST YEAR DOLLAR SAVINGS 2N3+3A+(3Bd1/(YRS ECONOMIC LIFE))\$ 4235.
5. SIMPLE PAYBACK PERIOD (1G/4)	2.77 YEARS
6. TOTAL NET DISCOUNTED SAVINGS (2N5+3C)	\$ 76380.
7. SAVINGS TO INVESTMENT RATIO (SIR) = (6 / 1G) = (IF < 1 PROJECT DOES NOT QUALIFY)	6.50
8. ADJUSTED INTERNAL RATE OF RETURN (AIRR):	11.12 %

2.7.8 Spreadsheet Detailing Items 2.7.1 through 2.7.4

Table 2.7.8.1 is a sample spreadsheet, located on the following page, which was developed for each ECO to quantitavely discuss the existing condition, proposed condition, implementation cost, and resulting energy savings. The data for the existing condition portion of the ECO spreadsheet was copied from the lighting models. The proposed condition and implementation cost are as discussed in Sections 2.7.2 and 2.7.3 respectively. The energy savings is the energy cost difference between the existing and proposed condition.

Table 2.7.8.1	ECO-#	Letterkenny Army Depot	Samule ECO Sureadsheet
Ta		Letterker	Samule E

	ı			E	xisting						r		Proposed					nolemento	ation	Γ	
	ON.	Lamps	Watts	7	Hours	Percent	Demand	Usage	Ammal	Annual	Ammat		Watts	Proposed	Proposed	Annual	Ma	dat Labor En	Eag	Total	Energy
Room	ŝ			Watts	Week			-			<u> </u>	New Luminaire Description	Lunumaire		Month	\rightarrow	ğ "	9 -	g ^	. COM	Savilligs *
			\parallel		$ \cdot $																
		+							+												
										$\dagger \dagger$								1			:
			+		\dagger				\dagger				_					1			
					l														-		
									+	+											
			-		+		+	Ì		\dagger						1		_			
		+	+		+		-														
		+					\dagger														
							1		\dagger	\dagger							_				
									-												
			+		1				1												
			T		1	+													1		
			\dagger																_		
					1																
			1		†	1															
			\dagger															-			
			İ	Ī	1	-												-	-		
												The state of the s									
					t		-	:		i			:								
			Ī			T															
												THE RESERVE TO SERVE THE PROPERTY OF THE PROPE									
				j																	
			1		-	;															
						ĺ				1											
										I											
		1			1	1			1	1									+		
		1	İ		T						Ī				1		\downarrow				
																		-			
			1	T	1	1					İ								_		
			T			1		İ					-			1		1			
											Ì										
					1																
		+	+		+		\dagger						1				1	_			
							+		\dagger	\dagger						\downarrow					
					1				+									_			
		+	1		T		1			1			1								
					T	T		T	İ	T	T		1					1			
G:PROJECTS4130.01\SSIECO\SAMPLE.WK4	PLEWK4								1		1										74.4.05

2.8 Draft Report/Client Review/Final Report

After the previous sections have been substantially completed, Entech compiles the information into the report format. Entech then schedules a meeting with the client to present its findings. A copy of the report is supplied to the client for a more detailed review.

Entech will then incorporate the clients review comments and produce a final report.

3.0 FACILITY DESCRIPTION

3.1 General

The Letterkenny Army Depot is located in central Pennsylvania about five miles north of Chambersburg. The Depot was constructed in 1942 during World War II for ammunition storage and tank maintenance. The facility covers over 20,000 acres of land and includes 1,400 permanent buildings. A partial Depot map is shown in Figure 3.1.1 located at the end of this section.

3.2 Survey Areas

The Energy Engineering Analysis Program (EEAP) Lighting Study for Letterkenny Army Depot was authorized by U.S. Army Engineering District, Mobile. The lighting study evaluated seventy-two buildings totalling over 2 million square feet along with the Depot roadway and parking lot lighting. Over 14,000 luminaires were surveyed.

The surveyed building areas were typically either administration, maintenance/testing, warehouse, recreational, or personnel housing. The administration areas include office areas and computer rooms. Fluorescent lighting was predominate in the administration areas. The maintenance/testing areas consisted of electronic repair, vehicle repair, trade shops, and laboratory areas. These areas contained fluorescent, incandescent, and HID lighting. The warehouse areas included bulk storage as well as secondary item storage and distribution. HID lighting was typically found in these areas.

The recreation areas included the gym, day care, and youth center.

These areas typically contain both fluorescent and incandescent lighting.

Only two (2) personnel housing areas were surveyed, Buildings 417 and

418. These buildings were found to contain fluorescent lighting.

The roadway and parking lot areas were surveyed in the evening with the assistance of the Depot energy engineer. Typically, pole-mounted, high-pressure sodium, or mercury vapor lamps were found.

3.3 Operation Schedule

The building operation hours were furnished by the Depot energy engineer and are shown in Table 3.3.1 located at the end of this section.

Figure 3.1.1

Depot Map

Table 3.3.1

Building Operation Schedule

BUILDING										
	5	7	other	10	18	24	other			
1										
2-S										
3		COMPUTER (2	2)			COMPUTER (2)			
4										
5										
6										
10		COMPUTER (2	2)			COMPUTER (2)			
14		•								
19										
20-1										
31										
32										
33-N										
34				1						
37			 	1						
41										
42-S										
43										
44										
47					3					
51										
52										
53										
54										
55										
57					1					
102										
198										
199										
200				1			 			
211										
247										
349										
350										
370										
412							- 1			
416						 				
417							BARRACKS (2)			
418							BARRACKS (2)			
421										
424						· - · · · - · · · · · · · · · · · · · ·				
428										
431										
438										
441										
500						SECURITY (2)				
521										
	:									
523										

Table 3.3.1

Building Operation Schedule

BUILDING		DAVE DED WE		HOURS PER DAY				
BUILDING		DAYS PER WE	=N		HOURS PER L	JAY		
	5	7	other	10	18	24	other	
524								
529			CLUB				CLUB (2)	
530								
536		3			3			
581								
616								
618								
619								
628								
629					1			
637			4				4	
639							,	
640								
645								
646								
663								
664								
2260								
2268								
2329								
2755								
3311								
3315								
3321		· · · · · · · · · · · · · · · · · · ·						
5425								

NOTES:

- 1.) Schedules illustrated above were furnished by the LEAD, Energy Program Coordinator. The facility was defined as operating if 75% of the fixtures were energized.
- 2.) Portions of the Building are on different schedules.
- 3.) Seasonal use only (Bath House)
- 4.) Chapel with intermittant schedule.

4.0 BILLING HISTORY

4.1 General

The electric energy analysis for this report is based upon electric billing data from October 1992 through June 1994.

Currently, the Letterkenny Army Depot is installing a new electrical distribution system and substation. As the electric distribution system is being upgraded, the load from the existing substation is being transferred to the new substation. The Depot therefore currently has two services from the West Penn Power Company. In the near future the entire Depot load will be transferred to the new substation. The existing substation will then be abandoned.

4.2 Electricity

West Penn Power Company provides power to Letterkenny Army Depot under Schedule 40 primary power service. Copies of the rate schedule and electric bills are located in Section 9.3.

The Depot electric billing history for the period between October 1992 and June 1994 is summarized in Table 4.2.1. The billing history for the two electric services is shown in Tables 4.2.2 and 4.2.3. The monthly demand (kW), usage (kWh), and cost for the tables have been extracted from the actual electric bills.

LETTERKENNY ARMY DEPOT BASE ELECTRIC BILLING HISTORY 1993 - 1994, SUMMARY TABLE 4.2.1

1993 - 1994

	# of	Billed		Total	Cost		Energy	kWh
Month	Days	kW	kvar	kWh	S	\$/kWh	mmBtu	Per Day
July	30	11,795	758	4,910,342	\$227,684	\$0.046	16,759	163,678
August	30	11,557	739	5,151,836	\$232,732	\$0.045	17,583	171,728
September	30	11,484	732	4,823,757	\$222,636	\$0.046	16,463	160,792
October	30	10,695	642	4,274,674	\$202,072	\$0.047	14,589	142,489
November	30	9,908	603	4,255,701	\$185,456	\$0.044	14,525	141,857
December	30	10,264	583	4,217,114	\$186,802	\$0.044	14,393	140,570
January	30	10,370	572	4,275,201	\$189,033	\$0.044	14,591	142,507
February	32	10,371	516	4,584,279	\$196,660	\$0.043	15,646	143,259
March	28	10,295	524	4,053,069	\$182,991	\$0.045	13,833	144,752
April	31	10,466	826	4,602,371	\$198,749	\$0.043	15,708	148,464
May	31	10,588	1,099	4,486,063	\$199,043	\$0.044	15,311	144,712
June	30	11,736	1,173	4,649,194	\$211,744	\$0.046	15,868	154,973
TOTALS	362	129,529	8,767	54,283,601	\$2,435,603	\$0.045	185,270	149,955

1992 - 1993

Month	# of Days	Billed kW	kvar	Total kWh	Cost S	S/kWh	Energy mmBtu	kWh Per Day
July								
August			Ì				ĺ	
September								
October	30	10,907	0	3,752,364	\$163,719	\$0.044	12,807	125,079
November	30	10,102	0	4,477,161	\$175,672	\$0.039	15,281	149,239
December	30	10,231	0	4,245,054	\$171,090	\$0.040	14,488	141,502
January	30	10,417	0	4,158,081	\$170,319	\$0.041	14,192	138,603
February	30	10,347	0	4,728,461	\$183,294	\$0.039	16,138	157,615
March	30	10,406	0	4,022,569	\$166,955	\$0.042	13,729	134,086
April	31	12,115	418	4,522,632	\$188,026	\$0.042	15,436	145,891
May	30	10,399	689	4,294,804	\$189,124	\$0.044	14,658	143,160
June	32	10,999	776	4,660,576	\$214,441	\$0.046	15,907	145,643
TOTALS	273	95,923	1,883	38,861,702	\$1,622,638	\$0.042	132,635	142,351

LETTERKENNY ARMY DEPOT BASE ELECTRIC BILLING HISTORY 1993 - 1994, RATE 401, ACCOUNT #41/22/000/11205/1 NEW SUBSTATION TABLE 4.2.2

1993 - 1994

	# of	Billed		Total	Cost		Energy	kWh
Month	Days	kW	kvar	kWh	\$	S/kWh	mmBtu	Per Day
July	30	3,391	758	1,833,600	\$88,465	\$0.048	6,258	61,120
August	30	3,363	739	1,891,200	\$90,492	\$0.048	6,455	63,040
September	30	3,383	732	1,785,600	\$86,628	\$0.049	6,094	59,520
October	30	3,210	642	1,660,800	\$81,205	\$0.049	5,668	55,360
November	30	3,180	603	1,680,000	\$70,796	\$0.042	5,734	56,000
December	30	3,093	583	1,593,600	\$68,026	\$0.043	5,439	53,120
January	30	2,955	572	1,536,000	\$65,564	\$0.043	5,242	51,200
February	32	2,886	516	1,574,400	\$65,940	\$0.042	5,373	49,200
March	28	3,007	524	1,459,200	\$64,085	\$0.044	4,980	52,114
April	31	3,283	826	1,766,400	\$74,085	\$0.042	6,029	56,981
May	31	4,044	1,099	1,920,000	\$84,696	\$0.044	6,553	61,935
June	30	4,147	1,173	2,006,400	\$87,665	\$0.044	6,848	66,880
TOTALS	362	39,942	8,767	20,707,200	\$927,647	\$0.045	70,674	57,202

1992 - 1993

Month	# of	Billed kW		Total	Cost	© 0-3371-	Energy	kWh
	Days	KW	kvar	kWh	\$	\$/kWh	mmBtu	Per Day
July			1					
August		i				j		
September								
October				İ				
November								
December								
January				ľ	1	ŀ		
February				I	1			
March				I			ĺ	
April	11	1,884	418	422,400	\$19,736	\$0.047	1,442	38,400
May	30	2,333	689	1,392,000	\$64,117	\$0.046	4,751	46,400
June	32	3,142	776	1,766,400	\$84,506	\$0.048	6,029	55,200
TOTALS	73	7,359	1,883	3,580,800	\$168,358	\$0.047	12,221	49,052

Note: Electric rate changes from 301 to 401 during October 1993

LETTERKENNY ARMY DEPOT BASE ELECTRIC BILLING HISTORY 1993 - 1994, RATE 401, ACCOUNT # 41/22/000/11200/1 OLD SUBSTATION

TABLE 4.2.3

1993 - 1994

Month	# of Days	Billed kW	kvar	Total kWh	Cost	\$/kWh	Energy mmBtu	kWh Per Dav
July	30		0		\$120,219			
•		8,404	V	3,076,742	\$139,218	\$0.045	10,501	102,558
August	30	8,194	0	3,260,636	\$142,240	\$0.044	11,129	108,688
September	30	8,101	0	3,038,157	\$136,008	\$0.045	10,369	101,272
October	30	7,485	0	2,613,874	\$120,867	\$0.046	8,921	87,129
November	30	6,728	0	2,575,701	\$114,660	\$0.045	8,791	85,857
December	30	7,171	0	2,623,514	\$118,776	\$0.045	8,954	87,450
January	30	7,415	0	2,7 39,201	\$123,469	\$0.045	9,349	91,307
February	32	7,485	0	3,009,879	\$130,720	\$0.043	10,273	94,059
March	28	7,288	0	2,593,869	\$118,906	\$0.046	8,853	92,638
April	31	7,183	0	2,835,971	\$124,664	\$0.044	9,679	91,483
May	31	6,544	0	2,566,063	\$114,347	\$0.045	8,758	82,776
June	30	7,589	0	2,642,794	\$124,079	\$0.047	9,020	88,093
TOTALS	362	89,587	0	33,576,401	\$1,507,956	\$0.045	114,596	92,752

1992 - 1993

Month	# of	Billed kW	1	Total	Cost	C (L.XX/L	Energy	kWh
	Days	KVV	kvar	kWh	3	\$/kWh	mmBtu	Per Day
July								
August			1					
September								
October	30	10,907	0	3,752,364	\$163,719	\$0.044	12,807	125,079
November	30	10,102	0	4,47 7,161	\$175,672	\$0.039	15,281	149,239
December	30	10,231	0	4,245,054	\$171,090	\$0.040	14,488	141,502
January	30	10,417	0	4,158,081	\$170,319	\$0.041	14,192	138,603
February	30	10,347	0	4,728,461	\$183,294	\$0.039	16,138	157,615
March	30	10,406	0	4,022,569	\$166,955	\$0.042	13,729	134,086
April	31	10,231	0	4,100,232	\$168,290	\$0.041	13,994	132,266
May	30	8,066	0	2,902,804	\$125,007	\$0.043	9,907	96,760
June	32	7,857	0	2,894,176	\$129,935	\$0.045	9,878	90,443
TOTALS	273	88,564	0	35,280,902	\$1,454,280	\$0.041	120,414	129,234

4.2.1 Incremental Cost

Entech Engineering, Inc. has developed a Lotus 123 spreadsheet to duplicate a client's electric bill and determine the incremental cost for electricity.

First, the most recent electric bill is obtained from the client. At Letterkenny Army Depot the August 15 – September 15, 1994 billing period was used. This billing data is shown in Table 4.2.1.1 located at the end of this section. The usage (kWh), demand (kW), and reactive demand (kVar) values were extracted from the bill and used as input into the spreadsheet. The taxes and other special adjustments are also entered into the spreadsheet.

The duplicate electric bill for the above-stated period is then calculated and compared to the actual bill. Table 4.2.1.2 indicates the current period charges to be \$88,880.91, which matches the actual electric bill which is shown in Table 4.2.1.4. Both tables are located at the end of this section.

Table 4.2.1.3 indicates how the incremental costs were calculated. The incremental usage cost is calculated by taking the actual billing, on-peak usage (2,092,800 kWh), subtracting one kWh, and recalculating the electric bill. The difference in the actual billing cost and the cost for one less kWh is the incremental usage cost.

The same procedure is performed to determine the incremental demand cost. For this facility, the incremental costs for electricity are as follows:

- Incremental Usage Cost \$/kWh = \$0.0248
- Incremental Demand Cost $\frac{kW}{V} = 7.706$

The incremental costs are used in the lighting models to determine the electric cost associated with each area. The incremental costs are also used in the ECOs to determine the electric cost of the proposed energy savings projects.

The use of incremental rates is reasonably accurate for calculating cost savings for small changes in demand and usage ($\pm 25\%$ from existing levels). The use of incremental rates is less accurate in calculating cost savings with larger changes in demand and usage (>25%) and tends to underestimate savings slighting (usually less than 2%). However, for the convenience of calculating the feasibility of various options, the use of incremental rates for demand and usage is either accurate to slightly conservative (savings not overestimated) and therefore prudent.

Table 4.2.1.1

West Penn Power Company, Rate 401 (Primary Power), Electric Rate Analysis Prepared by Entech Engineering, Inc.

Billing and Client Information

Client	Letterkenny	Army Depot,	Account #11205
Billing Year		_	1994
Billing Period	i		August
# of Billing D	ays		31

Demand and Usage Information

Supply Voltage	13,200
Demand Measurements	
On-Peak Demand (kW)	4,044
Off-Peak Demand (kW)	4,044
Billing Demand (kW)	4,044
Usage Measurements	
On-Peak Period (kWh)	2,092,800
Off-Peak Period (kWh)	0
Power Factor Measurements	
Reactive Demand (kvar)	1,089

Taxes and Special Adjustments

Fuel Adjustments Rate	\$0.0023740
Pa State Tax Surcharge	-0.12%
Facilities Charge	\$5,199.00

Table 4.2.1.2

West Penn Power Company, Rate 401 (Primary Power) Electric Rate Analysis

Prepared by Entech Engineering, Inc.

Dur	olic	ated	Elect	tric	Bill

Demand Charges				
First 2,000 kW	2,000 kW @	\$7.537	Per kW =	\$15,074.00
All Other kW	2,044 kW @	\$7.439	Per kW =	\$15,205.32
Usage Charges				
First 400 Hours of Demand	1,617,600 kWh @	\$0.02314	Per kWh =	\$37,431.26
All Remaining kWh	475,200 kWh @	\$0.02245	Per kWh =	\$10,668.24
Power Factor Penalties				
Reactive Demand, kvar	1,089 kvar @	\$0.400	Per kvar =	\$435.60
Facilities Charge				\$5,199.00
Pa Tax Surcharge	(0.12)% x	\$84,013.42	Subtotal =	(\$100.82)
Energy Cost Rate	\$0.0023740 \$/kWh x	2,092,800	kWh =	\$4,968.31
	CUF	RENT PERIOI	CHARGES.	\$88,880.91

Calculated Incremental

Incremental Cost Per On-Peak kW	\$7.706
Incremental Cost Per Maximum kW	\$0.0248

Calculated Billing Statistics Based on Incremental Costs

Demand Cost	\$31,162.02	Energy Cost	\$51,895.29
% Demand	35.1%	% Energy	58.4%
Load Factor	69.6%	Power Factor Penalty	\$442.78

Current Electric Tariff (Rate HT)

Current Bicerite Lary (Rate 111)	
First 2,000 kW of Billing Demand, \$/kW	\$7.537
All Billing Demand Above 2,000 kW, \$/kW	\$7.439
First 400 Hours Use of Billing Demand, \$/kWh	\$0.02314
All kWh Over 400 Hours of Use, \$/kWh	\$0.02245
Reactive Demand (kvar), \$/kvar	\$0.40

Incremental Cost Check

Bill Calculated Using Incrementals From Above	\$83,057.31
Actual Current Period Charges (Less Facilities Charge)	\$83,681.91
Cost Variance (Actual Minus Incremental)	\$624.60
Percent Variance (Var/Actual)	0.7%

Table 4.2.1.3

West Penn Power Company, Rate 401 (Primary Power Service), Electric Rate Analysis Prepared by Entech Engineering, Inc.

Electric Bill Calculation

	Actual	Billing Demand	Usage	0
Calculation Description	Billing	Minus 1 kW	Minus 1 kWh	kvar
Billing Demand (kW)	4,044	4,043	4,044	4,043
On-Peak Usage (kWh)	2,092,800	2,092,800	2,092,799	2,092,800
Off-Peak Usage (kWh)	0	o	0	0
Total Usage (kWh)	2,092,800	2,092,800	2,092,799	2,092,800
Reactive Demand (kvar)	1,089	1,089	1,089	0
Fuel Adjustment Rate (\$/kWh)	\$0.0023740	\$0.0023740	\$0.0023740	\$0.0023740
Pa Tax Adjustment (%)	-0.12%	-0.12%	-0.12%	-0.12%
Breakdown Calculations				
Reactive Demand (kvar)	1,089	1,089	1,089	0
Block One Demand (kW), First 2,000	2,000	2,000	2,000	2,000
Block Two Demand (kW), All Other	2,044	2,043	2,044	2,043
Block One Usage (kWh), 400 hrs of Billing Demand	1,617,600	1,617,200	1,617,600	1,617,200
Block Two Usage (kWh), All Other	475,200	475,600	475,199	475,600
Cost Calculation				
Reactive Demand (kvar)	\$ 435.60	\$435.60	\$ 435.60	\$0.00
Block One Demand (kW), First 2,000	\$15,074.00	\$15,074.00	\$15,074.00	\$15,074.00
Block Two Demand (kW), All Other	\$15,205.32	\$15,197.88	\$15,205.32	\$ 15,197.88
Block One Usage (kWh), 400 hrs of Billing Demand	\$37,431.26	\$37,422.01	\$37,431.26	\$ 37,422.01
Block Two Usage (kWh), All Other	\$10,668.24	\$10,677.22	\$10,668.22	\$10,677.22
Subtotal	\$78,814.42	\$78,806.71	\$ 78,814.40	\$78,371.11
Facilities Charge	\$ 5,199.00	\$5,199.00	\$5,199.00	\$5, 199.00
Subtotal	\$84,013.42	\$84,005.71	\$84,013.40	\$83,570.11
Pa State Tax Surcharge	(\$100.82)	(\$100.81)	(\$100.82)	(\$100.28)
Energy Cost Rate	\$4,968.31	\$4,968.31	\$4,968.30	\$4,968.31
Net Current Bill	\$88,880.91	\$88,873.21	\$88,880.89	\$88,438.13
Incremental/Penalties	n/a	\$7.706	\$0.0248	\$442.78

7177 257 9713 P.207/609 CENTER OF PUBLIC WORKS 007-25-1994 08:39 SOUTH 7TH STREET 10/17/94 CONNELLSVILLE, PA 15425 Table 4.2.1.4 W USE WIFY REFERRING TO BILL **Actual Electric Bill** ACCCUNT NO. TELEPHONE: (412) 626-5290 | 1/41/22/000/112051| DAAGSGTOCSUIGTMUST TRUTTA MAIL TO: 1/41/22/000/112051 WEST PENN POWER COMPANY LETTERKENNY ARNY DEPOT SDSLE-ERW CHAMBERSBURG PO BOX 640575 PA PITTSBURGH PA 15264-0575 17201 00000000 9 0214162000115051 IPDSSSSO P SPIPPPSO WHEN PAYING AT OFFICE OR AGENCY, PLEASE SFING ENTERS STL WHEN PAYING BY MAIL PLEASE RETURN THIS PORTION OF BILL WITH PAYMENT IN ENCLOSED ENGLOPE ACCOUNT HUNSER BERVICE LOCATION RATE BILLING DATE 1/41/22/000/11205/1 3 401 09/16/94 ACCOUNT BALANCE 08/24/94 94,848.41 PAYMENT RECEIVED 74,848.41-ACCOUNT BALANCE BROUGHT FORWARD CURRENT BILLING FOR 031 DAYS USE 08/15/94 TO \$9/15/94 XETER CURRENT READING 3210 PRIVIOUS READING 2992 DIFFERENCE 218 MULTIPLIER 9600 KWH 2072806 KW DEHAND 4044.5 BILLING DEMAND CHARGE FOR 4,844.0 XX 2,404.0 8 7.3370 15.874.96 2,044.0 8 7.4390 13,205.32 ENERGY CHARGE FOR 2.092.800 KWN 1,617,600 . 82314 37,431.26 475,220 . 82245 10,448.24 RKVA DENANO CHARGE 1,047.0 @ 0.400 633.44 FILLED CHARGES ON RATE 401 73.214.42 FACILITY CHARGE 5.174.63 PA TAX SURCHARGE B -.120000cz 100.00-ENERGY COST RATE B . B033744 /XWM 4,746.31 CHARGE FOR CURRENT BILL PERIOD 44,880.71 ANDUNT DUE 24.585.71 LATE PAYMENT CHARGE 1,111.01 TOTAL AMOUNT DUI AFTER 14/17/94 27,771.72

ESTIMATED PA STATE TAXES OF 6,434.98 INCLUDED IN THIS BILLING

4.2.2 Electric Usage

Electric usage is measured in kilowatt hours (kWh). One kWh is equivalent to the usage of 1,000 watts of electricity for one hour. Figure 4.2.2.1 graphically shows electrical usage profile of the Depot for the period of October 1992 through June 1994.

The electric usage appears to peak during the summer months.

The annual usage for 1992-93 and 1993-94 is fairly consistent with the exception of the month of October.

4.2.3 Monthly Demand

Electrical demand is the highest rate of electrical energy used during a specified time interval (15 minutes). The measurement of electric demand is expressed as kilowatts (1,000 watts). Electrical demand is not necessarily related to the amount of time the electrical components are in operation. The monthly demand profile for the entire Depot during the previously noted time period is graphically shown in Figure 4.2.3.1.

From Figure 4.2.3.1, on the following page, it can be seen that the billed demand peaks during the summer months.

Figure 4.2.3.1

5.0 ENERGY CALCULATIONS

5.1 General

The buildings at Letterkenny Army Depot are not individually metered for electric consumption. The electric usage for the lighting in the surveyed areas was calculated using the lighting models.

A summary of all the buildings' area electric usage was calculated in the energy model. As described in the Methodology Section, both the lighting model and electric model have been used to estimate how energy is used in the surveyed areas. The estimated energy cost became the basis for subsequent Energy Conservation Opportunities (ECOs).

5.2 Lighting Model Summary

Entech created a lighting model for each surveyed building, plus one for the roadway and parking lot areas. The complete set of lighting models for this study is located in Section 9.4. The lighting models reflect the observations made during the walk through. The lighting models create the basis for evaluating energy saving projects.

Figure 5.2.1, Luminaire Type Distribution Summary, depicts the overall luminaire quantity as a function of type. As shown in Figure 5.2.1, over 14,000 total luminaires were surveyed, 78.1% fluorescent, 7.2% incandescent, and 14.7% high-intensity discharge type.

Letterkenny Army Depot Luminaire Type Distribution Summary

Figure 5.2.1

The annual electric cost associated with each luminaire type is illustrated in Figure 5.2.2, Electric Cost Distribution. The fluorescent lighting surveyed had an annual cost of approximately \$244,000. The incandescent and HID lighting surveyed had an annual cost of \$20,000 and \$66,000 respectively.

Table 5.2.1, Luminaire Summary, summarizes the luminaire quantity, number of lamps, demand, usage, and annual cost for each luminaire type, on a per-building basis.

Letterkenny Army Depot Electric Cost Distribution

Figure 5.2.2

Letterkenny Army Depot Luminaire Summary Table 5.2.1

				Incandscent					Fluorescent					HID		
Ž.	_	No. Luminaires	No. Lamps	Demand (kw)	Usage (kwh)	Annual Cost	No. Luminaires	No. Lamps	Demand (kw)	Usage (kwh)	Annual	No. Juminaires	No.	Demand (kw)	Usage (kwh)	Annual
	Building 1	36	36	0.02	726	\$218	562	L	65.77	15059	\$10.564	4	L	L	240	123
7	_	1	2	0.03	22	6\$	234	903	39.17	8168	\$6.276	0	0		0	OS
<u> </u>	_	40	57	1.31	613	\$304	1,372	4,549	185.94	72720	\$38,836	2	7		1557	\$463
4	=	10	10	0.00	1042	\$310	1,720		149.67	34210	\$24,021		2		120	\$36
2	-	5	8	0.15	18	\$38	144	316	13.73	3138	\$2,203		0.00		0	20
9	_	8	16		175	\$73	447	1,340	57.18	13052	\$9,172		0	00.00	0	20
		48	48		606	\$415	1,082	2,481	106.09	32159	\$19,381	4	4	00.00	240	1125
00	-	27	30		191	16\$	216	969	29.50	1119	\$4,744	0		00.00	0	\$0
6		36	38		235	\$147	7	17	0.74	170	\$119	70	70	18.85	4305	\$3,024
10		0	0	00:00	0	\$0	S	14	0.61	140	86\$	80	80	1.53	349	\$245
=		9	9	1.14	260	\$183	3	8	0.35	80	\$56	152	152		6638	\$4,663
12	_	80	80	1.52	347	\$244	\$	13	0.57	130	16\$				6201	\$4,356
13		2	2	0.19	43	\$30	88	183	8.15	1862	\$1,308				187	\$131
7		80	80	1.52	347	\$244	11	37	1.62	369	\$259	171	172	51.81	11835	\$8,313
15		0	0	00.00	0	\$0	38	142	6.21	2551	\$1,333	0	0		0	0\$
16	_	80	8	1.52	347	\$244	4	7	0.31	70	\$49	165	2		7206	\$5.062
1		3	3	0.19	392	\$134	175	639	27.59	6315	\$4,431	15			655	094\$
18	_	4	4	97.0	174	\$122	263		23.29	5320	\$3,737	0			0	20
19	Building 44	8	00	1.52	347	\$244	13		1.70	389	\$273	149	17		6507	\$4.571
20		25	25	6.37	2492	\$1,330	88	108	4.63	1905	\$66\$	158			10736	\$5,609
71	Building 51	10	10	1.03	256	1718	367	1,056	45.46	10408	\$7,301	137	137		5128	\$3,602
22		4	4	0.76	174	\$122	5	8.	0.44	001	870	84			3144	\$2,209
23	3 Building 53	4	4	0.76	174	\$122	11	35	1.53	349	\$245				3069	\$2.156
7.7		4	4	97.0	174	\$122	10		0.87	200	\$140				3144	\$2,209
2		4	4	0.76	174	\$122	-	4	0.17	40	\$28	116		19.01	4342	\$3,050
56		0	0		0	80	425	1,346	58.85	24055	\$12,598				0	90
7			90		35	\$15	31	65	2.19	806	\$472	4	4	00.0	240	172
5			0		0	0\$	7	36	1.14	260	\$182	0	0	00:00	0	\$0
17			0		0	\$	=	44	1.92	439	\$300	0	0	00:00	0	\$0
٣ آ			0		0	S	12		1.75	403	\$282	1	1	00:00	0	0\$
5					16	\$11	31		2.45	617	\$410	0	0	00.00	0	\$0
32					156	\$102	108		7.13	4280	\$1,933	43	43	17.04	5542	\$3,225
33					5515	\$2,630	34	68	3.71	2591	\$1,114	0	0	00.00	0	0\$
ě		70	62		1896	\$1,106	179	514	21.85	1968	\$4,392	0	0	00.00	0	80
35		80	8	0.67	161	\$120	594	2,275	90.04	36933	\$19,317	0	0	0.00	0	80
36		9	6	0.28	191	\$73	73	284	10.52	2240	\$1,639	4	4	00.00	240	172
37		2	4		17	27	40	141	5.96	1374	\$960	3	3	00.00	0	0\$
38		1.0	2.0		10	Z	58.0	119.0	4.30	1783	\$929	0.0	0	00.00	0	0\$
39		-	2		10	3	58	119	4.30	1783	\$929	0	0	0.00	0	0.5
40		16	16	0.00	0	0\$	164	604	25.41	5807	\$4,078	3	3	00.00	0	80
7	-	53	53		1687	688\$	205	•	26.13	10749	\$5,615	12	12	4.15	1707	\$892
42			2		26	\$17	24		2.27	519	\$365	0		0.00	0	0\$
7	3 Building 431	4	4	0.00	0	80	159	622	26.58	6055	\$4,260	2	2	0.00	0	05

Letterkenny Army Depot Luminaire Summary Table 5.2.1

				Incandscent					Fluorescent					HID		
		ON	Z	Demand	Tlead	7	2	ž	-			;				
	Description	Luminaires	Lamps	(kw)	(kwh)	Cost	Luminaires	Lamps	Demand (kw)	USage (kwh)	Annual	No. Luminaires	No. Lambs	Demand (kw)	Usage (kwh)	Annual
	Building 438	37	37	9.15	2109	\$1,474	3	9	0.26	09	\$42	o		900	c	9
	Building 441	57	57	9.41	2148	\$1,509	4	12	0.52	120	\$84	0	0	0.00	0	0.5
-	Building 500	41	51	2.46	1224	165\$	427	1,321	53.17	13541	\$8,947	0	0	00.0	0	05
_:	Building 521	14	14	0.12	839	\$261	106	302	8.26	2783	\$1,592	•	1	0.00	09	818
	Building 522	13	18	0.56	142	\$95	92	303	11.89	2676	\$1,896	0	0	00.0	0	0\$
	Building 523	7	7	0.13	38	\$23	92	205	8.66	1950	\$1,382	0	0	0.00	0	0.5
20	Building 524	-	-	00:00	0	\$0	49	86	3.19	683	\$498	0	0	0.00	0	0\$
	Building 529	140	150	11.29	3318	\$2,032	86	308	12.30	3428	\$2,158	2	2	0.00	120	\$36
	Building 530	0	0	0.00	0	80	16	32	1.40	319	\$224	0	0	0.00	0)S
	Building 536	0	0	0.00	0	0\$	22	44	1.92	1476	\$617	4	4	00:00	240	178
	Building 581	41	18	0.46	121	879	126	489	19.63	4474	\$3,147	0	0	00:00	0	0\$
	Building 616	0	0	0.00	0	\$0	80	24	1.05	805	\$337	0	0	00:00	0	20
	Building 618	01	13	0.14	79	\$37	99	176	7.16	1625	\$1,146	0	0	00:00	0	20
	Building 619	9	00	0.06	101	\$35	51	145	59.6	1320	\$916	2	2	00:00	120	\$36
	Building 628	9	9	0.00	0	\$0	99	163	6.52	1498	\$1,049	0	0	00:00	0	0\$
	Building 637	21	21	1.31	364	\$229	42	44	1.52	351	\$245	0	0	0.00	0	0\$
	Building 639	36	36	6.85	5458	\$2,258	08	247	9.75	6240	\$2,759	2	2	00.00	120	\$36
	Building 640	0	0	0.00	0	S 0	6	36	0.83	144	6118	0	0	00:00	0	0\$
62	Building 645	6	4	0.11	225	LLS	30	90	2.62	1006	\$542	1	-	00:00	09	\$18
	Building 646	3	9	0.09	99	\$27	41	94	3.93	2192	\$1,016	0	0	00:00	0	os
	Building 663	23	23	5.80	1992	\$1,129	323	1,030	45.39	18130	\$9,593	0	0	00:0	0	OS .
	Building 664	∞	80	0.28	11	\$49	103	262	10.32	2396	\$1,668	0	0	00'0	0	0\$
	Building 2260	\$	00	0.18	45	\$30	77	306	12.82	2951	\$2,064	0	0	0.00	0	80
	Building 2329	0	0	0.00	0	0\$	17	34	0.75	204	\$130	2	2	00:00	120	\$36
	Sulding 2/25	16	28	0.48	264	\$123	37	105	4.36	1002	\$701	93	93	13.90	5308	\$2,865
	Suilding 331		7	0.10	14	\$21	179	602	25.50	5810	\$4,087	0	0	00.00	0	0\$
- 1	Suiding 3315		5	0.36	82	\$58	30	68	2.89	663	\$464	15	15	2.29	524	\$368
7	Building 3321	\$	5	0.00	0	\$0	13	35	1.53	349	\$245	0	0	00.0	0	0\$
	Building 5426	0	0	0.00	0	\$0	6	32	1.32	303	\$212	2	2	00.0	120	\$36
5	Koad Ligs	0	0	0.00	0	80	13	52	0.00	1661	\$494	254	254	00:00	27293	\$8,122
Ì	Total	200 .	3,	00.20	00.00	000	,	,								
	lotals	1,037	1,148	95.28	38128	\$20,000	11,263	31,862	1332.87	405355	\$244,000	2,124	2,124	338.05	117415	\$66,000

5.3 Electric Model Summary

The electric model as described in the Methodology Section is shown in Table 5.3.1. The model represents the current operation of the buildings as indicated by Letterkenny Army Depot and observed by Entech Engineering, Inc. The model is typically employed to approximate the annual electric cost contribution from all building electric users. Since this study dealt only with lighting, the model summarizes the building lighting electric usage for the surveyed areas. As noted in Table 5.3.1 on the following page, the study area is over 2 million square feet, has an annual electric usage of 6,723,900 kWh, and an annual demand of 21,228 kW. The annual cost associated with the surveyed lighting was approximately \$330,000.

Letterkenny Army Depot Depot Electric Model Summary Table 5.3.1

	7	ġ	- -	3	-	5	9	7	000	6	10	=	12	13	7	15	16	17	81	16	20	21	22	23	24	25	56	27	28	67	30	3	33	34	35	36	37	38	39
Study	Area	\$/SI	\$0.13	\$0.42	\$0.25	\$0.16	\$0.23	\$0.41	\$0.50	\$0.08	\$0.02	\$0.0\$	\$0.05	\$0.03	\$0.10	\$0.26	\$0.06	\$0.10	\$0.04	\$0.06	\$0.09	\$0.13	\$0.03	\$0.03	\$0.03	\$0.04	\$0.23	\$0.31	\$0.18	\$0.30	\$0.30	\$0.00	\$0.21	\$0.71	\$0.97	\$0.23	\$0.31	\$0.23	\$0.23
Annual	Cost	\$/VF	\$6.267	\$39,580	\$24,398	\$2,253	\$9,207	\$19,899	\$4,839	\$3,251	\$330	\$4,943	\$4,669	\$1,455	\$8,821	\$1,314	\$5,320	\$5,058	\$3,854	\$5,115	\$7,925	\$11,081	\$2,404	\$2,549	\$2,434	\$3,205	\$12,615	\$537	\$170	\$316	3303	65 281	\$3.707	\$5,525	\$19,465	\$1,803	\$969	\$903	\$903
Annual	Usage Kub/ur	102 200	107.280	898,680	424,464	38,640	158,724	399,696	83,256	56,508	5,868	83,736	80,136	25,104	150,612	30,612	91,476	88,344	65,928	86,928	181,584	189,516	41,016	43,104	42,216	54,672	288,660	14,196	3,120	5,268	4,830	119 736	97.272	118,368	445,572	31,692	16,692	21,516	21.516
Annual	Demand LW/wr	707	468	2,244	1,800	168	684	1,296	360	240	24	372	348	108	099	72	396	372	288	384	444	828	180	192	180	240	708	24	12	24	36	300	168	336	1,092	132	72	48	48
Summer	Usage	16.025	8.940	74,890	35,372	3,220	13,227	33,308	6,938	4,709	489	8/6'9	6,678	2,092	12,551	2,551	7,623	7,362	5,494	7,244	15,132	15,793	3,418	3,592	3,518	4,556	24,055	1,183	260	439	405	9 978	8,106	9,864	37,131	2,641	1,391	1,793	1,793
Inter	Usage kWh/Mo	V	8,940	74,890	35,372	3,220	13,227	33,308	6,938	4,709	489	8/6'9	8,678	2,092	12,551	2,551	7,623	7,362	5,494	7,244	15,132	15,793	3,418	3,592	3,518	4,556	24,055	1,183	260	439	403	979.6	8,106	9,864	37,131	2,641	1,391	1,793	1,793
Winter	Usage kWh/Mo	1	8,940	74,890	35,372	3,220	13,227	33,308	6,938	4,709	489	8/6'9	6,678	2,092	12,551	2,551	7,623	7,362	5,494	7,244	15,132	15,793	3,418	3,592	3,518	4,556	24,055	1,183	260	439	633	979.6	8,106	9,864	37,131	2,641	1,391	1,793	1,793
Summer	Demand kW/Mo	1/2	39	187	150	14	57	108	30	20	2	31	29	6	55	9	33	31	24	32	37	69	15	16	15	20	59	2		7	7 6	25	14	28	91	11	9	4	4
Inter	Demand kW/Mo	99	39	187	150	14	57	108	30	20	2	31	29	6	55	9	33	31	24	32	37	69	15	91	CI	20	39	7		7	7 6	25	14	28	91	11	9	4	4
Winter	kW/Mo	99	39	187	150	14	57	108	30	20	2	31	29	6	55	9	33	31	24	3.5	37	69	CI:	0 :	CI	20	99	7	- 0	7	3 6	25	14	28	91	11	9	4	4
3 (A)	Cooling	75.438	41.568	216.612	161.585	14.746	61.880	120.341	34.706	28.630	2.254	32.158	30.776	9.842	57.841	6.532	35.128	33.688	25.318	33.380	39.234	74.231	10.118	10.000	10.210	20.994	01.910	3.728	1.190	2.024	4.619	28.112	18.269	30.014	95.576	14.194	7.166	5.465	5.465
Load (kW)	Heating	75.438	41.568	216.612	161.585	14.746	01.880	120.341	34.706	28.630	2.254	32.158	30.776	9.842	57.841	6.332	35.128	33.688	22.318	20.00	39.234	14.231	10.118	10.535	10.210	20.994	2 770	3.720	2.024	2 105	4.619	28.112	18.269	30.014	95.576	14.194	7.166	5.465	5.465
Study	Area	82,115	18,591	93,290	96,791	13,831	40,360	49,093	099'6	41,705	16,800	90,180	90,180	45,000	90,180	000,0	90,180	176,000	777	90,100	91,244	655,58	90,180	90,180	90,100	90,180	17,00	050	1 063	858	2.946	65,761	17,887	7,817	20,000	7,890	3,106	3,960	3,960
	Description	Building 1	Building 2-S	Building 3	Suilding 4	Suilding 5	No Sunding	Sunding 10	Suilding 14	Suilding 19	Suliding 20-1	Sunding 51	Sunding 32	Building 35N	Sunding 34	Dunding 37	Building 41	Building 425	Building 43	Duilding 44	Duilding 47	Suilding 51	Building 63	Duilding 54	Duilding 55	Building 57c	Building 100	Iding 100	Ruilding 200	Building 211	Building 247	Building 320	Building 349	Building 350	Building 370	Building 412	Building 416	Building 417	Building 418
	No. D	1 Bu					n c			-	2	12 2	_		14 Du	_	17 0		_	-		20 Di.	_			_						32 Bu	-	_	_		_		39 Bu

Letterkenny Army Depot Depot Electric Model Summary Table 5.3.1

	,	,			-			TOTAL	Tammer	Annual	Rnuny	Annual	Study	
	Study	Load (kW)	(kW)	Demand	Demand	Demand	Usage	Usage	Usage	Demand	Usage	Cost	Area	
Description	Area	Heating	Cooling	kW/Mo	kW/Mo	kW/Mo	kWh/Mo	kWh/Mo	kWh/Mo	kW/yr	Kwh/yr	\$/yr	\$/st	So.
Duilding 421	14,830	29.902	29.902	25	25	25	5,087	5,087	5,087	300	61,044	\$3,826	\$0.26	40
Duilding 424	0,030	38.263	38.263	35	35	35	14,222	14,222	14,222	420	170,664	\$7,469	\$1.13	41
Building 426	1,520	2.592	2.592	2	2	2	545	545	545	24	6,540	\$347	\$0.23	42
Building 431	12,8/0	30.727	30.727	27	27	27	6,055	6,055	6,055	324	72,660	\$4,299	\$0.33	43
Building 458	3,667	11.376	11.376	6	6	6	2,169	2,169	2,169	108	26,028		\$0.40	7
Building 441	13,601	17.652	17.652	10	10	10	2,268	2,268	2,268	120	27,216		\$0.12	45
Building 500	34,552	63.520	63.520	56	92	99	14,765	14,765	14,765	672	177.180		\$0.28	46
Building 521	1,955	16.367	16.367	8	8	8	3,752	3,752	3,752	96	45.024	\$1.856	\$0.95	47
Building 522	6,663	15.569	15.569	12	12	12	2,818	2,818	2.818	144	33.816	\$1.948	\$0.20	2
Building 523	5,964	10.160	10.160	6	6	6	1,989	1,989	1,989	108	23,868		\$0.24	6
Building 524	1,305	4.568	4.568	3	3	3	683	683	683	36	8,196		\$0.37	50
Building 529	8,424	26.712	26.712	24	24	24	998'9	998'9	998'9	288	82,392	\$4.263	\$0.51	51
Building 530	1,039	1.472	1.472	-	1	1	319	319	319	12	3,828	\$187	\$0.18	52
Building 536	1,200	2.714	2.714	2	2	2	1,715	1,715	1,715	24	20.580	\$695	\$0.58	53
Building 581	9,702	23.894	23.894	20	20	20	4,595	4,595	4,595	240	55,140	57	\$0.33	54
Building 616	280	1.104	1.104	-	-	-	805	805	805	12	099'6		\$1.19	55
Building 618	5,167	9.446	9.446	7	7	7	1,704	1,704	1,704	84	20,448	\$1,154	\$0.22	56
Building 619	3,171	7.802	7.802	9	9	9	1,540	1,540	1,540	72	18,480		\$0.32	57
Building 628	5,278	8.698	8.698	7	7	7	1,498	1,498	1,498	84	17,976		\$0.21	58
Building 637	1,400	4.194	4.194	3	3	3	715	715	715	36	8,580	\$490	\$0.35	59
Sunding 639	9,466	19.253	19.253	17	17	17	11,818	11,818	11,818	204	141,816	\$5,089	\$0.54	9
Building 640	1,256	1.656	1.656	-	-	-	144	14	144	12	1,728	\$135	\$0.11	61
Isunding 645	1,920	3.451	3.451	3	3	3	1,291	1,291	1,291	36	15,492	\$662	\$0.34	62
Building 646	2,778	4.414	4.414	4	4	4	2,258	2,258	2,258	48	27,096	\$1,042	\$0.38	63
Building 663	12,139	53.883	53.883	51	51	51	20,122	20,122	20,122	612	241,464	\$10,704	\$0.88	64
isuilding 664		12.450	12.450	11	11	11	2,474	2,474	2,474	132	29,688	\$1,753	\$0.43	65
Suiding 2260	i	14.500	14.500	13	13	13	2,995	2,995	2,995	156	35,940	\$2,093	\$0.52	99
Building 2329		1.909	1.909	1	-	-	323	323	323	12	3,876	\$189	\$0.16	67
Building 2/55		22.146	22.146	19	19	19	6,574	6,574	6,574	228	78,888	\$3,713	\$0.31	89
Building 3311		28.992	28.992	26	26	26	5,851	5,851	5,851	312	70,212	\$4,146	\$0.64	69
/U Building 3315		960.9	960.9	9	9	9	1,269	1,269	1,269	72	15,228	\$932	\$0.10	70
Building 3321	4	2.160	2.160	2	2	2	349	349	349	24	4,188	\$289	\$0.07	7.1
Building 5426	624	1.817	1.817	-	-	1	423	423	423	12	5,076	\$218	\$0.35	72
Koad Ligs		83.392	83.392	0	0	0	28,954	28,954	28,954	0	347,448	\$8,617		73
Totale	000 270 0													

6.0 ENERGY CONSERVATION OPPORTUNITIES

6.1 General

The items discussed in this section of the report are the result of the investigation of several energy cost reduction strategies. A summary table of all the Energy Conservation Opportunities (ECOs) investigated is shown in Table 6.1.1. The ECOs are arranged from the highest to lowest savings to investment ratio. The ECO write up addresses the following:

Existing, discusses the current operational levels and approximate costs.

Proposed, presents a new concept designed to save energy; however, it should be understood that the actual design has not yet been performed. Arrangements and quantities may change somewhat during design.

Implementation Cost, covers materials, labor, and indirect costs needed for a complete project, including associated engineering design. Escalation is not included. Costs are in 1995 dollars.

Energy Savings, shows an expected level of annual cost savings; however, does not include price increases of various energy sources or interactive savings. The ECOs are calculated on a stand-alone basis.

Maintenance Savings, details the proposed maintenance savings resulting from implementing the ECO.

Discussion, notes the results of the life cycle cost summary.

Table 6.1.1
ECO Summary
Letterkenny Army Depot

		Implementation	Energy	CCCID	
ECO No.	FCO Description	1802 4	Savings	Simple Dowbook (Vice)	CCID
ECO-3	Incandescent Area Light over Paper Exit Sign	\$4,600	88.3	1 ay Dach (113)	0.50
ECO-15	Building Exterior Lighting	\$7.000	102.4	2.14	8.13
EC0-4A	Incandescent Area Lighting Retrofit	\$9,700	135.4	2.39	672
ECO-4B	Incandescent Area Lighting Fixture Replacement	\$24,000	254.5	2.75	6.33
ECO-5	HID Lighting	\$41,000	531.4	2.88	6.06
ECO-2	Incandescent Exit Signs to LED Exit Signs	\$6,400	61.2	3.03	5.74
ECO-1	Incandescent Exit Signs to Fluorescent Exit Signs	\$4,900	50.1	3.76	4.64
ECO-7	Fluorescent Lamp Retrofit	\$145,000	1859	5.77	3.07
ECO-12	Occupancy Sensors	\$2,900	56.9	7.19	2.45
ECO-11	Industrial Fluorescent to High Pressure Sodium	\$261,000	1554	8.83	1.99
ECO-9	Fluorescent Reflectors	\$180,000	1427	9.45	1.87
ECO-6	Efficient Fluorescent Lighting Retrofit	\$628,000	4607	9.92	1.78
ECO-8	Efficient Fluorescent Fixture Replacement	\$879,000	4426	14.6	1.21
ECO-10	Industrial Fluorescent to Metal Halide	\$357,000	840	21.64	0.81
ECO-13	Mercury Vapor to Metal Halide	\$508,000	733.8	42.44	0.42
ECO-14	Mercury Vapor to High Pressure Sodium	\$518,000	733.8	42.93	0.41
ECO-16	Roadway and Parking Area Lighting	\$51,000	260	45.22	0.41

23-May-95

6.2 Recommended ECOs

6.2.1 General

The criteria to meet the ECIP Program is a simple payback period of less than ten (10) years plus a savings to investment ratio (SIR) greater than 1.25. Twelve (12) of the seventeen (17) ECOs investigated meet the above criteria. In several cases, multiple options for a single-existing condition were investigated. In these cases, the option which was determined to best suit the Depot was recommended. Table 6.2.1 list the recommended ECOs. The ECOs listed in the table are arranged in numerical order.

6.2.2 Recommendation Evaluation

ECO-1 and ECO-2 both discuss options to replace the existing incandescent exit signs. ECO-1 proposes fluorescent retrofit kits. ECO-2 proposes LED retrofit kits. Both ECOs met the ECIP simple payback and SIR requirements. ECO-2 was recommended over ECO-1 because it saved the most energy and had a better simple payback period and SIR.

ECO-3 proposed replacing the incandescent lamps, which are illuminating paper exit signs, with new LED exit signs. This ECO is recommended because of the quick payback period and large energy savings.

ECO-4A and ECO-4B discuss options to replace the existing incandescent area lighting. ECO-4A proposes a lamp retrofit and ECO-4B proposes a luminaire retrofit.

Even though both ECOs have good payback periods, ECO-4B is recommended because of the larger energy savings. ECO-4A could be implemented as part of the current regular maintenance, while funding for ECO-4B is being processed.

ECO-5 addresses the replacement of incandescent lighting with high-intensity discharge type luminaires. ECO-5 is recommended because of a good annual maintenance savings and corresponding payback period.

ECOs-6, 7, 8, and 9 all address the existing fluorescent lighting.
ECO-6 proposes a T-8 retrofit while ECO-7 proposes a reduced wattage lamp retrofit. ECO-8 proposes a luminaire replacement and ECO-9 proposes delamping and adding a reflector. ECOs-6, 7, and 9 meet the ECIP simple payback and SIR requirements.
ECO-6 is recommended because it address the most areas resulting in the largest energy savings. Since most of the existing fluorescent ballast are reaching the end of their useful life, this ECO will reduce future maintenance cost.

ECO-11 proposes to remove the industrial fluorescent lighting and replace it with high-pressure sodium lighting. This ECO is recommended; however, the Depot should verify that the listed buildings' operation can function efficiently with the use of high-pressure sodium luminaires.

During the evening site investigation, several unoccupied areas were found lit. ECO-12 proposes to provide occupancy sensors to automatically turn lights off when the area is unoccupied. ECO-12 is recommended.

ECO-15 addresses the incandescent building-mounted exterior lighting for eleven (11) buildings. ECO-15 proposes to replace the existing incandescent lighting with high-pressure sodium wall pack units. ECO-15 is recommended.

Figure 6.2.2.1, Annual Usage Savings, contains three (3) graphs depicting the annual ECO usage and the annual usage saved as a result of implementing the ECO. For example, in the first chart for ECO-12, the sum of the two blocks (ECO Usage and ECO Savings) is equal to approximately 37,000 kWh, which is the current usage of the existing luminaires noted in the ECO-12 spreadsheet. The *red* block (ECO Usage) is the proposed usage if ECO-12 is implemented. The *green* block represents the usage saved by implementing ECO-12. Should ECO-12 be implemented, the savings would be approximately 16,000 kWh, as shown on the graph.

Table 6.2.1
Recommended ECO's
Letterkenny Army Depot

		Implementation	Energy	CCCID	
; ; ;		Cost	Savings	Simple	CCID
ECO No.	ECO Description	€9	mmBtu	Payback (Vrs)	SIR
ECO-2	Incandescent Exit Signs to LED Exit Signs	\$6.400	61.2	3.03	5 74
ECO-3	Incandescent Area Light over Paper Exit Sign	\$4.600	88.3	1.83	9 54
ECO-4B	Incandescent Area Lighting Fixture Replacement	\$24,000	254.5	2.75	633
ECO-5	HID Lighting	\$41,000	531.4	2.88	90.9
ECO-6	Efficient Fluorescent Lighting Retrofit	\$628,000	4607	9.92	1 78
ECO-11	Industrial Fluorescent to High Pressure Sodium	\$261,000	1554	8.83	1 99
ECO-12	Occupancy Sensors	\$2,900	56.9	7.19	2.45
ECO-15	Building Exterior Lighting	\$7,000	102.4	2.14	8.13
Total		\$1,000,000	7300		

Letterkenny Army Depot

Annual Usage Savings

Figure 6.2.2.1

1. COMPONENT 2. DATE

FY 1996 MILITARY CONSTRUCTION PROJECT DATA

Army 15 Sept 95

INSTALLATION & LOCATION

4. PROJECT TITLE

Letterkenny Army Depot Chambersburg, PA Energy Conservation - Lighting Retrofit

. PROGRAM ELEMENT

6. CATEGORY CODE 7. PROJECT NUMBER

8. PROJECT COST(\$000)

1109

9. COST 1	ESTIMATES			
ITEM	<u>U/M</u>	OTY	UNIT COST	COST (\$000)
Efficient fluorescent lighting retrofit	LS	1	578	(578)
Industrial fluorescent to high pressure sodium retrofit	LS	1	233	(233)
UBTOTAL Contingency (20%)				811 162
OTAL CONTRACT COST SIA (5.5%)				973 54
OTAL REQUEST Design (8% Unfunded)				1027 82
OTAL PROJECT COST				1109

10. DESCRIPTION OF PROPOSED CONSTRUCTION

Work to be performed consists of replacing approximately 7382 fluorescent luminaires of various types, Depot wide, with an energy efficient T-8 fluorescent lighting system. In addition, approximately 3,120 fluorescent luminaires will be replaced with more efficient high pressure sodium light sources.

11. REQUIREMENT: 7,200 SF; ADEQUATE: 0 SF; SUBSTANDARD: 7,200 SF

PROJECT: In conjunction with the Army's Energy Engineering Analysis Program (EEAP), a detailed report of the Depots lighting systems was performed. The report researched, identified, evaluated, and defined several energy saving projects that meet the Army's criteria and lead to electric energy savings at the Letterkenny Depot. Two of the projects from the report which were found to save the most energy are the Efficient Fluorescent Lighting Retrofit, Energy Conservation Opportunity Number 6 and the Industrial Fluorescent to High Pressure Sodium, Energy Conservation Opportunity Number 11. The implementation of this project based on the above mentioned report would save an estimated 6161 mmBTU's of energy. In addition, more efficient lighting systems are less expensive to operate.

CURRENT SITUATION: The Depot's current lighting system consists of approximately 78% fluorescent, 15% high intensity discharge, and 7% incandescent light sources. The current fluorescent lighting system consists mostly of conventional magnetic ballast and 40 watt T-12 lamps.

1. COMPONENT

FY 1996 MILITARY CONSTRUCTION PROJECT DATA

2. DATE

Army

15 Sept 95

INSTALLATION & LOCATION

Letterkenny Army Depot Chambersburg, PA

4. PROJECT TITLE

5. PROJECT NUMBER

Energy Conservation - Lighting Retrofit

11. REQUIREMENT: (cont'd)

IMPACT IF NOT PROVIDED: If this project is not completed, the Depot will be utilizing more electric energy for lighting then is necessary, resulting in higher than necessary operating costs to the Government. The reduction in electric energy will not only save the Depot money on its electric bill, but according to the U.S. Environmental Protection Agency, it will contribute to the reduction of carbon dioxide, sulfur dioxide, and nitrogen oxide in the atmosphere.

JAMES P. FAIRALL, JR. Colonel, OD Commanding

6.3 Non-recommended ECOs

In addition to the ECOs listed in Section 6.2.2, the following ECOs were investigated:

- ECO-10 Industrial Fluorescent to Metal Halide
- ECO-13 Mercury Vapor to Metal Halide
- ECO-14 Mercury Vapor to High-Pressure Sodium
- ECO-16 Roadway and Parking Area Lighting

The above ECOs did not meet the ECIP requirements. These ECOs are not recommended due to their long payback periods. These projects may still be attractive to Letterkenny Army Depot due to non-economical factors such as increased worker comfort/performance or a reduction in maintenance. These projects, which are currently not economically feasible, should be considered when replacement of the existing equipment is required.

7.0 OPERATION AND MAINTENANCE PRACTICES

7.1 Operation and Maintenance

Operation and Maintenance (O&M) items are those energy conservation ideas with small costs and payback periods of one year or less. O&M items are usually performed in the normal course of the operation of the building. No O&M items were found during this study.

8.0 CONCLUSION

8.1 Synopsis of Findings

The lighting survey performed included over 14,000 luminaires, encompassing over 2 million square feet.

Eight (8) ECO projects are recommended with a total implementation cost of approximately 1 million dollars and an energy savings of 2.1 million kWh. Table 8.1.1, Recommended ECOs, located at the end of this section, list the implementation cost and energy savings.

8.2 Future Energy Costs

Energy conservation is becoming an increasingly important factor. As energy prices increase, the incentive to conserve energy also increases.

One method of predicting future energy costs is to use an average fuel escalation rate. If an annual increase in energy costs is assumed to be 2%, the following cost would occur assuming there would be no added loads:

	TABLE 8.2.1 Energy Rate Increas	ie
Year	Existing Energy Costs	Energy Cost after ECOs
1995	\$330,000	\$225,000
1996	\$337,000	\$230,000
1997	\$344,000	\$235,000
1998	\$351,000	\$240,000
1999	\$358,000	\$245,000
TOTALS	\$1,720,000	\$1,175,000

The energy cost savings for the above five-year period, assuming a 2% annual escalation rate, would be \$545,000 (\$1,720,000 — \$1,175,000).

Table 8.1.1 Recommended ECO's Letterkenny Army Depot

		Implementation	Energy
		Cost	Savings
ECO No.	ECO Description	∽	mmBtu
ECO-2	Incandescent Exit Signs to LED Exit Signs	\$6.400	61.2
ECO-3	Incandescent Area Light over Paper Exit Sign	\$4.600	88.3
ECO-4B	Incandescent Area Lighting Fixture Replacement	\$24,000	254.5
ECO-5	HID Lighting	\$41,000	5314
ECO-6	Efficient Fluorescent Lighting Retrofit	\$628,000	4607
ECO-11	Industrial Fluorescent to High Pressure Sodium	\$261,000	1554
ECO-12	Occupancy Sensors	\$2.900	6 95
ECO-15	Building Exterior Lighting	\$7,000	102.4
Total		\$1,000,000	7300