竞赛经验分享 个性化推荐,搜索广告,RTB

@严强Justin scmyyan@gmail.com

报告内容

- 介绍
- 方法
 - Recommendation
 - Churn Prediction
 - Search Ads CTR Prediction
 - RTB
- 经验
 - Feature
 - Model
 - Ensemble
- 总结

比赛

时间	比赛	成绩	排名
2013.12	ICDM 2013 Personalize Expedia Hotel Searches Contest	NDCG@38: 0.53102	第五
2013.05	品友RTB算法大赛 Season 1 (DSP – CTR Prediction + Bidding +Pacing)	Score: 1960	第一
2013.04.14	Data Science London Big Data Hackathon (Find Influencers in SNS)	AUC: 0.8782	第二
2013.03 2013.05	百度电影推荐算法大赛 (Movie Rec – Rating Prediction)	RMSE: 0.5920	第二
2012.11 2012.12	WSDM Challenge 2013 (SE User Churn Prediction)	AUC: 0.8433	第三
2012.03 2012.05	KDD CUP 2012 (Search Ads CTR Prediction)	AUC: 0.8030	第三
2011.03 – 2011.06	KDD CUP 2011	RMSE: 19.90	第五

(Music Rec – Rating Prediction)

• Recommendation – 百度电影推荐比赛

• Prediction – Churn Prediction

Prediction – Search Ads CTR Prediction

- DSP算法
 - CTR Prediction
 - Bidding
 - Pacing

• RTB

- CTR Prediction
 - Model
 - LR-I1 (Sparse)
 - AdPredictor (Online Learning)
 - Feature
 - 用户: 区域、城市、User Agent、(User Tags)
 - 广告:广告主ID、创意ID
 - 广告位: type、size、可见性、形式
 - Site: 域名
 - Ad Exchange: Adx/Tanx/Tencent
- 经验
 - CTR预估不是关键
 - 优化Conversion Rate很难

Bidding

基于价值的出价(与M6D的算法类似)

展现的价值 = 点击概率*点击价值

出价模型:

$$bid = Base Price* (\frac{P(c \mid u, i, a)}{BaseCTR})^{\lambda}$$

λ参数调节CTR对出价的影响程度。

BasePrice和BaseCTR, λ三个参数,通过实验决定。调整原则是使得预算刚好在时间结束时用完。

- Pacing
 - 预估流量
 - 预算控制(预算、BaseCTR、BasePrice)
 - 分AdExchange
 - 分Campaign

Framework

Feature

Feature

- 特征分类
 - Low-level vs. High-level
 - 简单特征 vs. 组合特征

以CTR预估为例:

- 1, Query:长度、历史CTR;
- 2, User:年龄、性别、历史CTR;
- 3 , Ad(Ader\BidWord\Title\Desc
- 等):各种长度、各种历史CTR;
- 4, Query与Ad的组合:
- 5, Ad与User的组合;
- 6, Query与User的组合:
- 7, Query、Ad、User的组合。

Feature

- 特征设计
 - -刻画能力
 - 覆盖度

弱

Model

Model

- 模型选择
 - 问题类型
 - 推荐问题(MF, FM)
 - 排序问题(BPR, Pair-wise, Rank LR)
 - 分类/回归
 - 数据规模(样本、特征):
 - KDD CUP(十亿维特征,百万级样本)
 - Online Learning
 - L1 > L2
 - WSDM(百万维特征,百万级样本)
 - Rank SVM
 - L2 > L1
 - 评价指标
 - NDCG,AUC (Ranking, Classification)
 - RMSE (Regression)

FM: Factorization Machine

Model:

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^{p} w_i x_i + \sum_{i=1}^{p} \sum_{j>i}^{p} \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i x_j$$

 $w_0 \in \mathbb{R}, \quad \mathbf{w} \in \mathbb{R}^p, \quad \mathbf{V} \in \mathbb{R}^{p \times k}$

- 场景: 推荐、回归、分类
- 优化:
 - SGD、ALS、MCMC
- 优点
 - Generalized Model Framework
 - Automatic Feature Combination

FMGI: FM with Group-wise Interaction

• FM存在的问题

 $\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^{p} w_i x_i + \sum_{i=1}^{p} \sum_{j>i}^{p} \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i x_j$

- 复杂度
- 精度
- 模型

$$\widehat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^F w_i x_i + \sum_{e=1}^M \sum_{f=e+1}^M \left[I(e, f) \sum_{i \in G_e} \sum_{j \in G_f} x_i x_j \sum_{k=1}^K v_i v_j \right]$$

- 优化
 - SGD
 - MCMC

AdPredictor: Online Bayesian Probit Regression

AdPredictor: Online Bayesian Probit Regression

- 应用场景: CTR/Churn Prediction (Search Ads, RTB)
- 优点
 - Bayesian Model (Easy to add domain knowledge)
 - Easy to parallelize
 - Fast: Online Learning
 - Less Parameters to tune
 - Model Uncertainty Explicitly
 - Natural Exploration
 - Provide a way to add randomness elegantly

缺点

- L2-Norm, Not Sparse (vs. LR-L1)
 - Pruning
- Poor performance when unbalanced/Rare data without sampling

Model vs. Feature

- * Feature决定 UpperBound
- * Model决定接近UpperBound的程度
- * 不同问题下Model的表现是不一样的

- 方法:
 - Validation Based
 - CV Based

Diversity

- 方法
 - Search Based
 - •参数搜索
 - Learning Based
 - 线性融合
 - 感知机、LR
 - 非线性融合
 - NN, GBDT
 - 基于pair-wise
 - Multi-Stage Ensemble

• 示例

总结

• 竞赛 vs. 工业界

	竞赛	工业界
数据	固定,类干净的	流动,非常脏
关注点	特征、模型	数据
模型的重要程度	100%	<<100%
数据集大小	小	大
实时性要求 (特征、模型)	基本无	强
评测指标	通常1个,且可以直接优化	通常多个,且不可直 接优化

总结

- 竞赛的意义
 - 码农的运动会
 - 接触工业界问题,可以拿到实际数据
 - focus在模型、特征
 - 利于算法的创新、推广,技术的交流

Acknowledgement

- MLRush Team@CAS
- RP Team@baidu
- Liang Xiang@hulu
- Danny Bickson@CMU
- Quan Yuan@taobao

第三期个性化推荐技术周末实战班

- 2014年3月30日开课
 - 上午9点—12点
 - 下午1点--5点半
- 内容:
 - 推荐系统基础
 - 基于投票的推荐算法
 - 基于内容的推荐算法
 - 基于近邻模型的推荐算法设计
 - 基于矩阵分解及隐因子族模型的推荐算法
 - 企业级推荐系统设计和实践

CFP: ACM RecSys 2014 workshop on Large Scale Recommendation Systems (LSRS 2014)

- Tao Ye, tye@pandora.com, Pandora Inc.
- Danny Bickson, bickson@graphlab.com, GraphLab Inc.
- Qiang Yan, yanqiang.yq@taobao.com, Taobao Inc.

We are hiring!

一淘及搜索事业部 技术类 - 搜索与算法职位

描述:

在最具挑战的无线客户端中,从事大数据分析和机器学习、个性化推荐系统算法的研发。包括深度理解用户的Query语义、分析挖掘无线用户时空特征和兴趣偏好、融合PC和无线端数据预测用户行为等。

要求

- 1、扎实的编程功底,对C/C++/Java/Python等主流语言至少精通一门,熟悉2门;
- 2、在推荐系统、自然语言处理、搜索相关性、排序模型中的一方面有较深入的动手实践经验
- 3. 有责任心、对技术有热情、团队合作精神佳

简历发送到yanqiang.yq@taobao.com

Thanks