Processamento de Imagens Digitais

Modelo de Imagem

$$f(x,y) = i(x,y) * r(x,y)$$

 $i = iluminação$
 $r = reflectância$

i (pé-candela)	situação
9000	dia ensolarado
1000	dia nublado
100	escritório
0,01	lua cheia
1	vela

Em 1948: "candela" é a intensidade luminosa de um corpo negro aquecido à temperatura do ponto de solidificação da platina fundida.

candela = do latin "vela"

Introdução

Uma imagem digital é uma matriz onde cada elemento (pixel) representa um nível de cinza ou cor.

Introdução

- O número de linhas e colunas da imagem determina sua resolução <u>espacial</u>. O número de tons de cinza ou cores determina sua resolução <u>espectral</u> ou <u>quantização</u>.
- Na imagem digital, tanto as coordenadas dos pixels quanto seus valores são números inteiros e não negativos. A intensidade pode as vezes ser normalizada entre 0 e 1, assumindo valores fracionários, embora não contínuos.

Tamanho de uma Imagem sem Compressão

Sendo: L o número de linhas

C o número de colunas

N o número de tons distintos

Tamanho = $L \times C \times Ig N / 8$ bytes

Exemplo 1

Uma imagem de 256 x 512 pixels com 256 tonalidades de cinza ocupa:

$$Tamanho = \frac{2^8 * 2^9 * 8}{8} = 128Kbytes$$

Exemplo 2

- Imagens podem ter mais de 2 dimensões (volume, vídeo) ou 1 dimensão, quando é melhor denominada de sinal.
- Um volume de ressonância magnética contendo 128 planos (cortes) de 256 x 256 pixels, assumindo 64k tons de cinza ocupa:

$$Tamanho = \frac{2^7 * 2^8 * 2^8 * 16}{8} = 16Mbytes$$

O Processo de Visão Computacional

Amostragem e Quantização

Dada a imagem f(x,y), é necessário que seja digitalizada para ser processada.

- espacialmente: também chamado de amostragem;
- em amplitude: ou quantização em NC.

Por questões de praticidade, supor imagem, M x N, e NC como potência de 2.

Exemplo:

Perguntas:

- quantas amostras e NC nos dá uma boa aproximação da imagem contínua para a discreta?
- resolução: o que é uma boa imagem?
- qual o efeito então da redução da amostragem sobre uma mesma imagem?
- qual o efeito da redução do nível de bits para representar cada pixel na imagem?

Efeitos sobre a Amostragem

- manteve-se a quantização original
- reduziu-se a amostragem por 2, 4, 8, 16, 32, 64 e 128.

Efeitos sobre a Quantização original

- manteve-se a amostragem original
- reduziu-se NC para 128, 64, 32, 16, 8, 4 e 2