MATH 1564: Linear Algebra with Abstract Vector Spaces

Frank Qiang Instructor: Wing Suet Li

Georgia Institute of Technology Fall 2022

Contents

1	Elementary Set Theory	2
	1.1 Introduction to Sets	2
	1.2 Set Membership and Subsets	2
	1.3 The Cartesian Product	3
		3
	1	
	1.5 Set Laws	3
2	Matrices and Linear Systems	4
	2.1 Motivation	4
	2.2 Matrices	4
	2.2.1 Operations on Matrices	4
	2.3 Solving Linear Systems	5
3	Vector Spaces	6
	3.1 Motivation	6
	3.2 Abstract Vector Spaces	6
	3.2 Hissoriae vector spaces	Ü
4	Linear Transformations	8
5	Inner Product Spaces	9
c	Data and a	10
6	Determinants	10
7	Eigenvalues and Eigenvectors	11
0	The Real Spectral Theorem	12
×	The Real Spectral Theorem	12

Elementary Set Theory

1.1 Introduction to Sets

Informally, a set is a collection of things. We can write a set by enumerating its elements as

$$A = \{1, 2, 3\},\$$

or we can simply describe its elements by writing

$$B = \{x \mid x \text{ is a real number}\}.$$

The "|" symbol is read as "such that," and the colon ":" is sometimes used to mean the same thing. Some commonly used sets of numbers are:

- \mathbb{R} , the set of real numbers,
- Q, the set of rational numbers,
- C, the set of complex numbers,
- \mathbb{Z} , the set of integers,
- and N, the set of natural numbers.

1.2 Set Membership and Subsets

We write $x \in A$ to mean that x is an element of A and $x \notin A$ otherwise. For example,

$$1\in\{1,2,3\},\quad 4\notin\{1,2,3\},\quad \text{and}\quad \pi\notin\mathbb{Z}.$$

We write \varnothing to denote the empty set, and when the scope of a problem is understood, we write \mathcal{U} to denote the universal set. In other words, $x \notin \varnothing$ and $x \in \mathcal{U}$ for any x.

For two sets A and B, we say that A is a *subset* of B if every element of A is also an element of B. We write $A \subseteq B$ or $A \subset B$ when this is the case. For example,

$$\{1\} \notin \{1, 2, 3\}$$
 but $\{1\} \subseteq \{1, 2, 3\}$.

Note that $\varnothing \subseteq A$ for any set A (also $\varnothing \subseteq \varnothing$ but $\varnothing \notin \varnothing$).

Equality for sets is defined in terms of subsets. We say that A = B if $A \subseteq B$ and $B \subseteq A$. Note that sets are inherently unordered and contain unique elements, so that

$$\{1,2,3\} = \{3,2,1\}$$
 and $\{1,2,2,3\} = \{1,2,3\}.$

We write $A \subseteq B$ when A is a proper subset of B, i.e., $A \subseteq B$ but $A \neq B$.

1.3 The Cartesian Product

For two sets A and B, their Cartesian product is defined as

$$A \times B = \{(x, y) \mid x \in A, y \in B\}.$$

This is technically not a set operation, but rather shorthand for the description of a new set. We can also define the Cartesian product of n sets A_1, \ldots, A_n as

$$A_1 \times \cdots \times A_n = \{(x_1, \dots, x_n) \mid x_1 \in A_1, \dots, x_n \in A_n\}.$$

Note that by this definition, $A \times B \times C \neq A \times (B \times C)$. We also write A^n to mean $A \times \cdots \times A$ (n times). As an example, the set $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ is the usual 2-D Cartesian plane.

1.4 Set Operations

Let A and B be two sets. We can define the following operations on A and B:

- the union $A \cup B = \{x \mid x \in A \text{ or } x \in B\},\$
- the intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\},\$
- the set difference $A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$, we sometimes read this as "A take away B,"
- and when a universal set \mathcal{U} is understood, the *complement* $A^c = \mathcal{U} \setminus A$.

For example, if $\mathcal{U} = \mathbb{R}^2$ and $A = \{(x,y) \mid x^2 + y^2 < 1\}$, then $A^c = \{(x,y) \mid x^2 + y^2 \ge 1\}$, i.e. the set of all points outside the unit circle and on its edge.

Proposition 1.1. For any two sets A and B, we have $A = (A \cap B) \cup (A \setminus B)$.

Proof. We need to show that LHS \subseteq RHS and RHS \subseteq LHS.

To see that LHS \subseteq RHS, take any element $x \in$ LHS = A. If $x \in A \setminus B$, then $x \in (A \cap B) \cup (A \setminus B)$ and we're done. Otherwise $x \notin A \setminus B$ and so $x \in B$ since we assumed that $x \in A$. Then $x \in A \cap B$ and thus $x \in (A \cap B) \cup (A \setminus B)$. So $x \in$ RHS and thus LHS \subseteq RHS as desired.

For RHS \subseteq LHS, take any element $x \in$ RHS $= (A \cap B) \cup (A \setminus B)$. If $x \in A \setminus B$, then $x \in A$ by definition. Otherwise $x \in A \cap B$ and so $x \in A$ also. Thus $x \in$ LHS and RHS \subseteq LHS as desired.

Remark. This is related to the *law of total probability*, which states that for any two events A and B,

$$\Pr(A) = \Pr(A \cap B) + \Pr(A \cap B^c) = \Pr(A|B)\Pr(B) + \Pr(A|B^c)\Pr(B^c).$$

1.5 Set Laws

The distributive laws say that for any three sets A, B, and C,

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \quad \text{and} \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

The so-called $de\ Morgan's\ laws$ say that for any two sets A and B,

$$(A \cup B)^c = A^c \cap B^c$$
 and $(A \cap B)^c = A^c \cup B^c$.

Notice that de Morgan's laws allow us to switch from unions to intersections and vice versa.

Matrices and Linear Systems

2.1 Motivation

Consider the following system of equations:

$$\begin{cases} 3x + 2y - 3z = 0 \\ x + 5y = 2. \end{cases}$$

We're interested in determining whether such a system has a solution, and if so, how many solutions it has and what they are. In general, we're interested in systems of the form

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases}$$

Here $x = (x_1, x_2, ..., x_n)$ are the unknowns and $b = (b_1, b_2, ..., b_m)$ is the right-hand side of the system. We can also express the coefficients as a block of numbers in the following way:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

2.2 Matrices

The block of numbers A from the previous section is precisely the general form of what we call a *matrix*. We say that a matrix has dimensions $m \times n$ if it has m rows and n columns. We also sometimes write A_{ij} to refer to the entry in the ith row and jth column of A.

2.2.1 Operations on Matrices

For a scalar $\lambda \in \mathbb{R}$, we can define the scalar multiplication of λ and A as

$$\lambda A = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn} \end{pmatrix}.$$

In other words, we simply multiply each entry of A by λ . For two matrices of the same size, we define $matrix\ addition$ as simply addition component-wise. For example,

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} + \begin{pmatrix} 2 & 1 & 2 \\ 6 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 3 & 3 & 5 \\ 10 & 9 & 11 \end{pmatrix}.$$

More generally, we have $(A + B)_{ij} = A_{ij} + B_{ij}$. For matrix multiplication, we have the formula

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}.$$

In other words, we take a row of A and a column of B, multiply them component-wise, and repeat for each row and column. Notice that for this to work, the number of columns of A must equal the number of rows of B. In particular, the product of a $m \times n$ matrix and a $n \times k$ matrix is a $m \times k$ matrix. For example,

$$\begin{pmatrix} 1 & 0 & 2 & 0 & 3 \\ 2 & 1 & 3 & 1 & 4 \\ -1 & 2 & -1 & 3 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 0 & 0 \\ 0 & 0 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 10 & 14 \\ 16 & 21 \\ 0 & -4 \end{pmatrix}.$$

Also note that matrix multiplication is *not* commutative, i.e. $AB \neq BA$ in general. In the specific example above, the product BA is not even defined!

2.3 Solving Linear Systems

Given an $m \times n$ matrix of coefficients A, a $n \times 1$ matrix of unknowns x, and a $m \times 1$ matrix b of right-hand side values, notice that we have a precise correspondence

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases} \longleftrightarrow Ax = b.$$

The notation Ax = b gives us a convenient way to express the linear system on the left, and it carries the exact same information with the way we defined matrix multiplication. We also like to work with

$$[A|b] = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix},$$

which is called the *augmented matrix* of the linear system.

Vector Spaces

3.1 Motivation

The usual type of vector that we're familiar with is of the form $(x_1, \ldots, x_n) \in \mathbb{R}^n$. In this way, we can add two vectors with an addition operation $1 + : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ and multiply a vector by a scalar (from \mathbb{R}) with a scalar multiplication operation $\cdot : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, both defined component-wise. We would like to generalize this structure to a more abstract setting.

3.2 Abstract Vector Spaces

Definition 3.1 (Vector space). A vector space $(V, +_v, \cdot_v,)_K$ over a field aK is a set V equipped with a binary addition operation $+_v: V \times V \to V$ and a scalar multiplication b operation $\cdot_v: K \times V \to V$ that satisfy the following 10 axioms:

- (i) Closure under addition: For all $x, y \in V$, $x +_v y \in V$.
- (ii) Additive commutativity: For all $x, y \in V$, $x +_v y = y +_v x$.
- (iii) Additivity associativity: For all $x, y, z \in V$, $(x +_v y) +_v z = x +_v (y +_v z)$.
- (iv) Existence of additive identity: There exists $0_v \in V$ such that $0_v +_v x = x$ for all $x \in V$.
- (v) Existence of additive inverse: For all $x \in V$, there exists $(-x) \in V$ such that $x +_v (-x) = 0_v$.
- (vi) Closure under scalar multiplication: For all $\alpha \in K$ and $x \in V$, $\alpha \cdot_v x \in V$.
- (vii) Distributive property with scalars: For all $\alpha \in K$ and $x, y \in V$, $\alpha(x +_v y) = \alpha x +_v \alpha y$.
- (viii) Multiplicative associativity: For all $\alpha, \beta \in K$ and $x \in V$, $\alpha(\beta x) = (\alpha \beta)x$.
- (ix) Distributive property with vectors: For all $\alpha, \beta \in K$ and $x \in V$, $(\alpha + \beta)x = \alpha x +_v \beta x$.
- (x) Existence of multiplicative identity: There exists $1 \in K$ such that $1 \cdot_v x = x$ for all $x \in V$.

Note that we will often omit the subscripts on $+_v$ and \cdot_v when the vector space is clear from context. We often also just write V to refer to $(V, +_v, \cdot_v)_K$ when the base field and operations are clear from context.

^aWe call K the base field of V.

^bWe will sometimes just write αx instead of $\alpha \cdot_v x$ in these axioms for notational clarity.

¹The notation $f: A \to B$ means that f is a function from A to B, i.e. it has domain A and codomain B.

We sometimes say that a vector space is *abstract* if it is not \mathbb{R}^n , which we sometimes refer to as *concrete*. It is not too important in our context to define what a field is, we will almost always take $K = \mathbb{R}$ or \mathbb{C} . Just from these axioms, we can already prove some immediate (perhaps obvious) properties.

Proposition 3.1. Let V be a vector space and $0_v \in V$ be its additive identity. Then $0 \cdot x = 0_v$ for any $x \in V$.

Proof. By the distributive property, we have

$$0x = (0+0)x = 0x + 0x.$$

Adding the additive inverse of 0x to both sides, we obtain $0_v = 0x$ as desired.

Proposition 3.2. The additive identity of a vector space is unique.

Proof. Let V be a vector space and $0_v, \widetilde{0}_v \in V$ both be additive identities. Then

$$0_v = \widetilde{0}_v + 0_v = 0_v + \widetilde{0}_v = \widetilde{0}_v$$

by commutativity and the additive identity property. So the additive identity is unique. \Box

Linear Transformations

Inner Product Spaces

Determinants

Eigenvalues and Eigenvectors

The Real Spectral Theorem