$\sqrt{\int_{0}^{\infty}}$

- 1. (+) Na płaszczyźnie danych jest n okręgów. Jaka jest maksymalna liczba obszarów, na które dzielą one płaszczyznę. Opisz rozwiązanie za pomocą odpowiedniej zależności rekurencyjnej oraz rozwiąż ją. Wymagane jest uzasadnienie, że tę maksymalną liczbę obszarów można osiągnąć.
- 2. Czy można narysować na płaszczyźnie diagram Venna dla 4 zbiórów A_1,A_2,A_3,A_4 za pomocą 4 okręgów, jeśli zbiory A_1,A_2,A_3,A_4 są w najb. ogólnej konfiguracji tzn. każdy przekrój podzbioru różnych tych zbiorów lub ich dopełnień jest niepusty i inny od innego przekroju?
- 3. (-) Podwójna wieża Hanoi składa się z 2n krążków n różnych rozmiarów, po 2 krążki każdego rozmiaru. W jednym kroku przenosimy dokadnie jeden krążek i nie możemy kłaść większego krążka na mniejszym. Ile kroków jest potrzebnych, aby przenieść wieżę z pręta A na pręt C, posługując się przy tym prętem B?
- 4. Wieża Hanoi składa się z n krążków n różnych rozmiarów, po 1 krążku każdego rozmiaru. W jednym kroku przenosimy dokadnie jeden krążek i nie możemy kłaść większego krążka na mniejszym. Ile kroków jest potrzebnych, aby przenieść wieżę z pręta A na pręt C, posługując się przy tym prętem B, jeśli bezpośrednie ruchy z pręta A na C są zakazane, ale ruchy w drugą stronę z pręta C na A są dozwolone?
- 5. (2p) Na ile maksymalnie obszarów można podzielić trójwymiarową przestrzeń za pomocą n płaszczyzn? Wyprowadź odpowiednią zależność rekurencyjną oraz ją rozwiąż. Wymagane jest uzasadnienie, że tę maksymalną liczbę obszarów można osiągnąć.

- 7. Na ile sposobów można wybrać zbiór k liczb naturalnych ze zbioru $\{1,2,\ldots,n\}$, jeśli różnica bezwzgledna dwóch dowolnych liczb z tego zbioru powinna wynosić co najmniej r?
- 8. (+) Wyprowadź zależność rekurencyjną dla liczby nieporządków: $d_{n+1} = n(d_n + d_{n-1})$. Jakie należy przyjąć warunki początkowe dla tej zależności? W zadaniu tym nie można korzystać ze wzoru wyprowadzonego na jednej z poprzednich list.

(-) Stosując metodę podstawiania rozwiąż następujące zależności rekurencyjne

(a)
$$t_n = t_{n-1} + 3^n$$
 dla $n > 1$ i $t_1 = 3$.

(b)
$$h_n = h_{n-1} + (-1)^{n+1}n$$
 dla $n > 1$ i $h_1 = 1$.

- 11. Ile jest różnych sposobów wejścia po schodach zbudowanych znstopni, jeśli w każdym kroku można pokonać jeden lub dwa stopnie?
- 12. Z szachownicy 8×8 wyjmujemy jedno pole białe i jedno czarne. Czy w każdym wypadku pozostałą część szachownicy można pokryć kostkami domina (o wymiarach 1×2) ?
- 13. Na ile sposobów można rozdać nróżnych nagród w
śród czterech osóbA,B,C,Dtak, aby:
 - (a) A dostała przynajmniej jedną nagrodę?
 - (b) A lub B nie dostała nic?
 - (c) Zarówno A jak i B dostała przynajmniej jedną nagrodę?
 - (d) Przynajmniej jedna spośród A, B, C nic nie dostała?
 - (e) Każda z 4 osób coś dostała?

Wozne. To n'e jest Venn. To n'e jest redonie o Vennie

0=1

2 (2) (9)

Sprobaging tez anihi otorom? $T_{n} = T_{n-1} + 2(n-1)$ $(E-1)T_{n} = 2(n+1)-2$ $(E-1)T_{n} = 2(n+1)-2$

Operator	Functions annihilated	
E-1	а	
E - a	aa^n	
(E-a)(E-b)	$aa^{u} + \beta b^{u}$	[if $a \neq b$]
$(E-a_0)(E-a_1)\cdots(E-a_k)$	$\sum_{i=0}^{k} \alpha_i a_i^n$	[if a _i distinct]
$(E-1)^2$	$an + \beta$	
$(E-a)^2$	$(\alpha n + \beta)a^n$	
$(E-a)^2(E-b)$	$(an + \beta)a^b + \gamma b^a$	[if $a \neq b$]
$(E-a)^d$	$\left(\sum_{i=0}^{d-1} a_i n^i\right) a^n$	
If X annihilates f, ti If X annihilates both f and If X annihilates f, then X also	g_+ then X also annil	nilates $f \pm g$.

2. Czy można narysować na płaszczyźnie diagram Venna dla 4 zbiórów A₁, A₂, A₃, A₄ za pomocą 4 okręgów, jeśli zbiory A₁, A₂, A₃, A₄ są w najb. ogólnej konfiguracji tzn. każdy przekrój podzbioru różnych tych zbiorów lub ich dopełnień jest niepusty i inny od innego przekroju?

Wyżej wyliczy liśny ze sę nie do. Molizymolizujemy
liczbę obszorów przy 2(0-1) przejęciach > dlo 4 momy
14 obszorów, a potrzebujemy lo
(no pzyktodzie nie ma AD; bD).

Mozno norysowor Venny allo dowohych ilości, ale

 Wykaż, że iloczyn dowolnych kolejnych k liczb naturalnych jest podzielny przez k!

$$\frac{n(n-1)(n-2)^{\circ}...\cdot(n-k+1)}{k!} = \frac{n(n-1)(n-2)^{\circ}...\cdot(n-k+1)}{k!} \cdot \frac{(n-k)!}{(n-k)!} = \frac{n!}{k!(n-k)!} = \binom{n}{k} \in \mathbb{N}_{D}$$

9. Wykaż, że dwie kolejne liczby Fibonacciego są względnie pierwsze. Słożystamy z osporytmu Eullideso. Wiemy dzięki niemu, że NWD(0+6,6)=NWI)(96)

Zodonie rozwiożemy zosodą indukcji

I NWD(1,1)=1 F=1 F=1 V

I Zołożmy, że NWD(FN, Fnn)=1 dla jokiepoś N. Udowodnijmy, że NWI)(Fn+e, Fn+z)=1

NWD(FN+2, Fn+e)=NWD(FN+1+Fn, Fn+e) **NWD(FN+1, FN)
$$\stackrel{\#}{=}$$
 1

- 10. (-) Stosując metodę podstawiania rozwiąż następujące zależności rekuren-
 - (a) $t_n = t_{n-1} + 3^n$ dla n > 1 i $t_1 = 3$
 - (b) $h_n = h_{n-1} + (-1)^{n+1}n$ dla n > 1 i $h_1 = 1$.

$$t_{4} = 3$$
 $t_{2} = 12$ $t_{3} = 39$ $t_{4} = 120$
(a) $t_{n} = t_{n-1} + 3^{n}$ dla $n > 1$ i $t_{1} = 3$.

$$t_{n}-t_{n-1}=3^{n}$$

 $(E-1)t_{n}=3^{n+1}$
 $(E-1)(E-3)t_{n}=0$
 $(E-1)(E-3)t_{n}=0$

$$(E-3)3^{n+1}=3^{n+2}-3\cdot3^{n+1}=0$$

Operator Functions		nnihilated	
E-1	а		
E-a	αa^n		
(E-a)(E-b)	$aa^n + \beta b^n$	[if $a \neq b$]	
$(E-a_0)(E-a_1)\cdots(E-a_k)$	$\sum_{i=0}^{k} \alpha_i a_i^n$	[if a _i distinct]	
$(E-1)^2$	$an + \beta$		
$(E-a)^2$	$(\alpha n + \beta)a^n$		
$(E-a)^2(E-b)$	$(an + \beta)a^b + \gamma b^e$	[if $a \neq b$]	
$(E-a)^d$	$\left(\sum_{i=0}^{i-1} \alpha_i n^i\right) a^n$		

$$3 x + \beta = 3$$

$$9 x + \beta = 12$$

$$6 x = 9 \quad x = \frac{3}{2}$$

$$\frac{3}{2} \cdot 3^{2} - \frac{3}{2}$$

11. Ile jest różnych sposobów wejścia po schodach zbudowanych z n stopni jeśli w każdym kroku można pokonać jeden lub dwa stopnie?

 $\frac{1-\sqrt{5}}{2} \propto -\frac{1+\sqrt{5}}{2} \propto = 1$

 $\left(\frac{1-\sqrt{5}}{2}-\frac{1+\sqrt{5}}{2}\right) \ll = 1$

Operator	Functions annihilated	
E — 1 E — a	a aa*	S22 16295
(E-a)(E-b) $(E-a_0)(E-a_1)\cdots(E-a_k)$ $(E-1)^2$	$aa^u + \beta b^u$ $\sum_{i=0}^{k} \alpha_i a_i^u$ $an + \beta$	[if $a \neq b$] [if a_i distinct]
$(E-a)^{2}$ $(E-a)^{2}(E-b)$ $(E-a)^{d}$	$(an + \beta)a^n$ $(an + \beta)a^b + \gamma b^a$ $(\sum_{i=0}^{d-1} a_i n^i)a^n$	[if $a \neq b$]
If X annihilates f, t If X annihilates both f and If X annihilates f, then X also	g_+ then X also annil	nilates $f \pm g$.

$$\left(\frac{1-\sqrt{5}}{2} - \frac{1+\sqrt{5}}{2}\right) = 1$$

$$C = \frac{1}{2} - \frac{1+\sqrt{5}}{2}$$