Data Structures

Projects 5: Sorting Exercise Worksheet

Due Date: 2009.01.06 (anytime before midnight 2009.01.06)

1. Record the number of comparisons made using different sorting algorithms.

Data	Data	Insertion Sort	Heap Sort	Quick Sort	Merge Sort
Set	Size				
1	10	36	37	34	26
2	50	634	411	291	236
3	100	2892	1036	715	559
4	500	9721	7816	4449	2699
5	1,000	317005	17173	11573	6684
6	5,000	7150220	107909	75360	55130
7	10,000	26218201	235614	161668	122426
8	50,000	633290015	1410405	986859	731814
9	100,000	2500864941	3019785	2058509	1565991
10	500,000	62532948700	17397368	11475186	8849113

2. Record the number of swaps made using different sorting algorithms.

Data	Data	Insertion Sort	Heap Sort	Quick Sort	Merge Sort
Set	Size				
1	10	27	25	10	36
2	50	585	243	65	294
3	100	2793	583	166	688
4	500	9222	4385	1908	4492
5	1,000	316006	9095	3379	9984
6	5,000	7145221	57202	15302	63160
7	10,000	26208202	124330	32119	136320
8	50,000	633240016	737793	189169	796496
9	100,000	2500764942	1575122	410708	1692992
10	500,000	62532448701	9024634	2488637	9490272

3. What is the theoretical time complexity of each of the above sorting algorithms? Do the above experiments confirm with those theoretical bounds? Please explain.

Theoretical time complexity

Sorting algorithm	Insertion Sort	Heap Sort	Quick Sort	Merge Sort
Time complexity	$O(n^2)$	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$

Insertion Sort: 是, 但是在 1000 筆資料的時候高於理論值

Heap Sort: 是, 但是比較次數明顯高於理論值

Quick Sort: 是, 但是在 1000 筆資料的時候開始超越理論值,

交換次數明顯小於理論值

Merge Sort: 大致合於理論值

4. From the above two experiments, explain the efficiency of the different sorting algorithms.

共通點:當資料量越大,時間複雜度越趨於理論值

Insertion Sort:最好情況就是,序列已經是升序排列,O(n)。最壞情況就是,序列是降序排列, $O(n^2)$ 。插入排序適合用於數據量很小(<1000)的排序。

Heap Sort:需要一直去調整 heap 使其常爲已排序狀態,比較次數太多

Quick Sort: 此種排序方法是不穩定的,且其時間複雜度在平均狀況時爲 $O(n\log n)$,最壞情況其時間複雜度爲 $O(n^2)$ 。但是他是最有效率的 sorting algorithms.

Merge Sort: 若是不需要交換太多次的序列,用 Merge Sort 是個不錯的選擇,而且它是穩定的排序方法 O(n)