Введение в анализ данных, майнор Семинар №6

За основу взят аналогичный семинар с курса МО-1 ФКН НИУ ВШЭ

1 Линейные модели классификации

Мы начнём с задачи бинарной классификации, а многоклассовый случай обсудим позже. Пусть $\mathbb{X}=\mathbb{R}^d$ — пространство объектов, $Y=\{-1,+1\}$ — множество допустимых ответов, $X=\{(x_i,y_i)\}_{i=1}^\ell$ — обучающая выборка. Иногда мы будем класс «+1» называть положительным, а класс «-1» — отрицательным.

Линейная модель классификации определяется следующим образом:

$$a(x) = \operatorname{sign}(\langle w, x \rangle + w_0) = \operatorname{sign}\left(\sum_{j=1}^d w_j x_j + w_0\right),$$

где $w \in \mathbb{R}^d$ — вектор весов, $w_0 \in \mathbb{R}$ — сдвиг (bias).

Если не сказано иначе, мы будем считать, что среди признаков есть константа, $x_{d+1}=1$. В этом случае нет необходимости вводить сдвиг w_0 , и линейный классификатор можно задавать как

$$a(x) = \operatorname{sign}\langle w, x \rangle.$$

Геометрически линейный классификатор соответствует гиперплоскости с вектором нормали w. Величина скалярного произведения $\langle w, x \rangle$ пропорциональна расстоянию от гиперплоскости до точки x, а его знак показывает, с какой стороны от гиперплоскости находится данная точка. Таким образом, линейный классификатор разделяет пространство на две части с помощью гиперплоскости, и при этом одно полупространство относит к положительному классу, а другое — к отрицательному.

§1.1 Обучение линейных классификаторов

В задаче регрессии имеется континуум возможных ответов, и при таких условиях достаточно странно требовать полного совпадения ответов модели и истинных ответов — гораздо логичнее говорить об их близости. Более того, как мы выяснили, попытка провести функцию через все обучающие точки легко может привести к переобучению. Способов посчитать близость двух чисел (прогноза и истинного ответа) достаточно много, и поэтому при обсуждении регрессии у нас возникло большое количество функционалов ошибки.

В случае с бинарной классификацией всё гораздо проще: у нас всего два возможных ответа алгоритма и, очевидно, мы хотим видеть как можно больше правильных ответов. Соответствующий функционал называется долей правильных ответов (ассuracy):

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i].$$

Нам будет удобнее решать задачу минимизации, поэтому будем вместо этого использовать долю неправильных ответов:

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i] = \frac{1}{\ell} \sum_{i=1}^{\ell} [\operatorname{sign}\langle w, x_i \rangle \neq y_i] \to \min_{w}$$
 (1.1)

Этот функционал является дискретным относительно весов, и поэтому искать его минимум с помощью градиентных методов мы не сможем. Более того, у данного функционала может быть много глобальных минимумов — вполне может оказаться, что существует много способов добиться оптимального количества опибок. Чтобы не пытаться решать все эти проблемы, попытаемся свести задачу к минимизации гладкого функционала.

Отступы. Заметим, что функционал (1.1) можно несколько видоизменить:

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [\underbrace{y_i \langle w, x_i \rangle}_{M_i} < 0] \to \min_{w}$$

Здесь возникла очень важная величина $M_i = y_i \langle w, x_i \rangle$, называемая *отступом* (margin). Знак отступа говорит о корректности ответа классификатора (положительный отступ соответствует правильному ответу, отрицательный — неправильному), а его абсолютная величина характеризует степень уверенности классификатора в своём ответе. Напомним, что скалярное произведение $\langle w, x \rangle$ пропорционально расстоянию от разделяющей гиперплоскости до объекта; соответственно, чем ближе отступ к нулю, тем ближе объект к границе классов, тем ниже уверенность в его принадлежности.

Рис. 1. Верхние оценки на пороговую функцию потерь.

Верхние оценки. Функционал (1.1) оценивает ошибку алгоритма на объекте x с помощью пороговой функции потерь L(M) = [M < 0], где аргументом функции является отступ $M = y\langle w, x \rangle$. Оценим эту функцию сверху (см. рис. 1):

$$L(M) \leqslant \tilde{L}(M).$$

После этого можно получить верхнюю оценку на функционал (1.1):

$$Q(a, X) \leqslant \frac{1}{\ell} \sum_{i=1}^{\ell} \tilde{L}(y_i \langle w, x_i \rangle) \to \min_{w}$$

Если верхняя оценка $\tilde{L}(M)$ является гладкой, то и данная верхняя оценка будет гладкой. В этом случае её можно будет минимизировать с помощью, например, градиентного спуска. Если верхнюю оценку удастся приблизить к нулю, то и доля неправильных ответов тоже будет близка к нулю.

Приведём несколько примеров верхних оценок:

- 1. $\tilde{L}(M) = \log \left(1 + e^{-M} \right)$ логистическая функция потерь
- 2. $\tilde{L}(M) = (1-M)_+ = \max(0,1-M)$ кусочно-линейная функция потерь (используется в методе опорных векторов)
- 3. $\tilde{L}(M) = (-M)_+ = \max(0, -M)$ кусочно-линейная функция потерь (соответствует персептрону Розенблатта)
- 4. $\tilde{L}(M) = e^{-M}$ экспоненциальная функция потерь
- 5. $\tilde{L}(M) = 2/(1 + e^M)$ сигмоидная функция потерь

Любая из них подойдёт для обучения линейного классификатора. Позже мы подробно изучим некоторые из них и выясним, какими свойствами они обладают.

2 Логистическая регрессия

§2.1 Правдоподобие и логистические потери

Хотя квадратичная функция потерь и приводит к корректному оцениванию вероятностей, она не очень хорошо подходит для решения задачи классификации. Причиной этому в том числе являются и слишком низкие штрафы за ошибку — так, если объект положительный, а модель выдаёт для него вероятность первого класса b(x) = 0, то штраф за это равен всего лишь единице: $(1-0)^2 = 1$.

Попробуем сконструировать функцию потерь из других соображений. Если алгоритм $b(x) \in [0,1]$ действительно выдает вероятности, то они должны согласовываться с выборкой. С точки зрения алгоритма вероятность того, что в выборке встретится объект x_i с классом y_i , равна $b(x_i)^{[y_i=+1]}(1-b(x_i))^{[y_i=-1]}$. Исходя из этого, можно записать правдоподобие выборки (т.е. вероятность получить такую выборку с точки зрения алгоритма):

$$Q(a, X) = \prod_{i=1}^{\ell} b(x_i)^{[y_i = +1]} (1 - b(x_i))^{[y_i = -1]}.$$

Данное правдоподобие можно использовать как функционал для обучения алгоритма — c той лишь оговоркой, что удобнее оптимизировать его логарифм:

$$-\sum_{i=1}^{\ell} ([y_i = +1] \log b(x_i) + [y_i = -1] \log(1 - b(x_i))) \to \min$$

Данная функция потерь называется логарифмической (log-loss).

3 Регуляризация

В ряде случаев (признаков больше чем объектов, коррелирующие признаки) оптимизационная задача $Q(w) \to \min$ может иметь бесконечное число решений, большинство которых являются переобученными и плохо работают на тестовых данных. Покажем это.

Пусть в выборке есть линейно зависимые признаки. Это по определению означает, что существует такой вектор v, что для любого объекта x выполнено $\langle v, x \rangle = 0$. Допустим, мы нашли оптимальный вектор весов w для линейного классификатора. Но тогда классификаторы с векторами $w + \alpha v$ будут давать $movino\ makine\ mec$ ответы на всех объектах, поскольку

$$\langle w + \alpha v, x \rangle = \langle w, x \rangle + \alpha \underbrace{\langle v, x \rangle}_{=0} = \langle w, x \rangle.$$

Это значит, что метод оптимизации может найти решение со сколько угодно большими весами. Такие решения не очень хороши, поскольку классификатор будет чувствителен к крайне маленьким изменениям в признаках объекта, а значит, переобучен.

Мы уже знаем, что переобучение нередко приводит к большим значениям коэффициентов. Чтобы решить проблему, добавим к функционалу *регуляризатор*, который штрафует за слишком большую норму вектора весов:

$$Q_{\alpha}(w) = Q(w) + \alpha R(w).$$

Наиболее распространенными являются L_2 и L_1 -регуляризаторы:

$$R(w) = ||w||_2 = \sum_{i=1}^d w_i^2,$$

$$R(w) = ||w||_1 = \sum_{i=1}^{d} |w_i|.$$

Коэффициент α называется параметром регуляризации и контролирует баланс между подгонкой под обучающую выборку и штрафом за излишнюю сложность. Разумеется, значение данного параметра следует подбирать под каждую задачу.

Отметим, что свободный коэффициент w_0 нет смысла регуляризовывать — если мы будем штрафовать за его величину, то получится, что мы учитываем некие априорные представления о близости целевой переменной к нулю и отсутствии необходимости в учёте её смещения. Такое предположение является достаточно странным. Особенно об этом следует помнить, если в выборке есть константный признак и коэффициент w_0 обучается наряду с остальными весами; в этом случае следует исключить слагаемое, соответствующее константному признаку, из регуляризатора.

Квадратичный (или L_2) регуляризатор достаточно прост в использовании в отличие от L_1 -регуляризатора, у которого нет производной в нуле. При этом L_1 -регуляризатор имеет интересную особенность: его использование приводит к занулению части весов. Позже мы подробно обсудим это явление.

Обратим внимание на вид решения при использовании L_2 -регуляризации вместе со среднеквадратичной ошибкой. В этом случае формулу для оптимального вектора весов можно записать в явном виде:

$$w = (X^T X + \alpha I)^{-1} X^T y.$$

Напомним, что аналитическое решение без L_2 -регуляризации выглядит следующим образом:

$$w = (X^T X)^{-1} X^T y.$$

Благодаря добавлению диагональной матрицы к X^TX данная матрица оказывается положительно определённой, и поэтому её можно обратить. Таким образом, при использовании L_2 регуляризации решение всегда будет единственным.

4 Разреженные модели

В процессе обсуждения регуляризации мы упомянули, что использование L_1 -регуляризатора приводит к обнулению части весов в модели. Обсудим подробнее, зачем это может понадобиться и почему так происходит.

Модели, в которых некоторые веса равны нулю, называют *разрежеенными*, поскольку прогноз в них зависит лишь от части признаков. Потребность в таких моделях можно возникнуть по многим причинам. Несколько примеров:

- 1. Может быть заведомо известно, что релевантными являются не все признаки. Очевидно, что признаки, которые не имеют отношения к задаче, надо исключать из данных, то есть производить *отбор признаков*. Есть много способов решения этой задачи, и L_1 -регуляризация один из них.
- 2. К модели могут выдвигаться ограничения по скорости построения предсказаний. В этом случае модель должна зависеть от небольшого количества наиболее важных признаков, и тут тоже оказывается полезной L_1 -регуляризация.
- 3. В обучающей выборке объектов может быть существенно меньше, чем признаков (так называемая «проблема $N \ll p$ »). Поскольку параметров линейной модели при этом тоже больше, чем объектов, задача обучения оказывается некорректной решений много, и сложно выбрать из них то, которое обладает хорошей обобщающей способностью. Решить эту проблему можно путём внедрения в процесс обучения априорного знания о том, что целевая переменная зависит от небольшого количества признаков. Такая модификация как раз может быть сделана с помощью L_1 -регуляризатора.

Рис. 2. Линии уровня функционала качества, а также ограничения, задаваемые L_2 и L_1 -регуляризаторами.

Теперь, когда мы представляем некоторые области применения разреженных моделей, попробуем понять, почему L_1 регуляризатор позволяет их обучать. Этому есть несколько объяснений.

Угловые точки. Можно показать, что если функционал Q(w) является выпуклым, то задача безусловной минимизации функции $Q(w) + \alpha \|w\|_1$ эквивалентна задаче условной оптимизации

$$\begin{cases} Q(w) \to \min_{w} \\ \|w\|_{1} \leqslant C \end{cases}$$

для некоторого C. На рис. 2 изображены линии уровня функционала Q(w), а также множество, определяемое ограничением $||w||_1 \leqslant C$. Решение определяется точкой пересечения допустимого множества с линией уровня, ближайшей к безусловному минимуму. Из изображения можно предположить, что в большинстве случаев эта точка будет лежать на одной из вершин ромба, что соответствует решению с одной зануленной компонентой.

Штрафы при малых весах. Предположим, что текущий вектор весов состоит из двух элементов $w=(1,\varepsilon)$, где ε близко к нулю, и мы хотим немного изменить данный вектор по одной из координат. Найдём изменение L_2 - и L_1 - норм вектора при уменьшении первой компоненты на некоторое положительное число $\delta<\varepsilon$:

$$||w - (\delta, 0)||_2^2 = 1 - 2\delta + \delta^2 + \varepsilon^2$$

 $||w - (\delta, 0)||_1 = 1 - \delta + \varepsilon$

Вычислим то же самое для изменения второй компоненты:

$$||w - (0, \delta)||_2^2 = 1 - 2\varepsilon\delta + \delta^2 + \varepsilon^2$$

 $||w - (0, \delta)||_1 = 1 - \delta + \varepsilon$

Видно, что с точки зрения L_2 -нормы выгоднее уменьшать первую компоненту, а для L_1 -нормы оба изменения равноценны. Таким образом, при выборе L_2 -регуляризации гораздо меньше шансов, что маленькие веса будут окончательно обнулены.