DOCUMENTO DE ANALISIS/ FIGHT-RADAR.

-Informacion:...

-Formula de crecimiento del algoritmo: T(n,d)=cte*f(n)*g(d).

f(n)=(4.633144E-17)n^4 + O(n^3) g(d)= 0.683990909778416d + O(1)

Formula de crecimiento;

 $T(n,d)= f(n)*g(d)= (3.16903E-17)(d)(n^4) + O(n^3)$

-Tablas de resultados:

1- Datos para un valor de [densidad] fijado. **D==0.2**

n(variable)	tiempo		
n=10	4.19E-6s		
n=50	1.915E-4s		
n=100	5.741E-4s		
n=500	0.011882s		
n=1000	0.047696s		
n=5000	1.591084s		
n=10000	7.731655s		
n=50000	237.18645s		
n=100000	1315.0392s		

. .

2- Datos para un valor de [densidad] fijado. **D==2.0**

n(variable)	tiempo		
10	8.281E-6s		
50	5.398E-5s		
100	4.456E-4s		
500	0.022476s		
1000	0.110101s		
5000	3.110624s		
10000	12.72367s		
50000	586.8933s		
100000	***		

3- Datos para un valor de [densidad] fijado. **D==5.0**

n(variable)	tiempo	
10	2.351E-6s	
50	2.087E-4s	
100	8.413E-4s	
500	0.0222457s	
1000	0.173843s	
5000	4.617708s	
10000	20.01607s	
50000	979.8216s	
100000	?	

-Según los datos de f(n) para (d) fijada.

 $f1(x) = (5,906751E-18)x^4 - (1,807068E-13)x^3 + (9,1877239E-08)x^2 - (0,0001373178)x + (0,0299987694) \\ f2(x) = (5,53964E-17)x^4 - (6,768154E-13)x^3 + (1,3051884E-07)x^2 - (2,0600024E-05)x + (0,000637341) \\ f(x) = (5,53964E-17)x^4 - (6,768154E-13)x^3 + (1,3051884E-07)x^2 - (2,0600024E-05)x + (0,000637341) \\ f(x) = (5,53964E-17)x^4 - (6,768154E-13)x^3 + (1,3051884E-07)x^2 - (2,0600024E-05)x + (0,000637341) \\ f(x) = (5,53964E-17)x^4 - (6,768154E-13)x^3 + (1,3051884E-07)x^2 - (2,0600024E-05)x + (0,000637341) \\ f(x) = (5,53964E-17)x^4 - (6,768154E-13)x^3 + (1,3051884E-07)x^2 - (2,0600024E-05)x + (0,000637341) \\ f(x) = (5,53964E-17)x^4 - (6,768154E-13)x^3 + (1,3051884E-07)x^2 - (2,0600024E-05)x + (0,000637341) \\ f(x) = (5,53964E-17)x^4 - (6,768154E-13)x^3 + (1,3051884E-07)x^2 - (2,0600024E-05)x + (0,000637341) \\ f(x) = (5,53964E-17)x^4 - (6,768154E-13)x^4 + (1,3051884E-07)x^2 - (2,0600024E-05)x + (0,000637341) \\ f(x) = (5,53964E-17)x^4 - (6,768154E-13)x^4 + (1,3051884E-07)x^4 - (2,0600024E-05)x + (0,000637341) \\ f(x) = (5,53964E-17)x^4 - (6,768154E-17)x^4 - (6,768154E-17)$

 $f(n)= (f1 + f2 + f3)/3 = (4.633144E-17)n^4 + O(n^3)$ 4- Datos para un valor de [usuarios] fijado. N==5000

d(densidad)	t(tiempo)		
0.2	1.59108s		
2	3.23636s		
2.5	3.535s		
3	3.61577s		
3.5	3.74876s		
4	4.48131s		
4.5	4.29889s		
5	5.28353s		

f1(x) = 0.683990909778416x + 1.612015566059

Por lo que g(d) estará acotada por:

g(d) = 0.683990909778416d + O(1)