

# Data Essentials - dse-ft-101

# Groupe "Room 4" - Facteurs de réussite scolaire



# Group members

- Asma RHALMI
- Anthony GIACOBI
- Thomas DIMEK
- Albert ROMANO
- Olivier CHARDAC



### Problématique du client :

Les habitudes de vie d'un étudiant ont-elles un impact sur sa note d'examen final ?

### Objectif du projet :

Est-il possible de prédire le score final d'un étudiant à l'examen à partir de ses habitudes de vie ?



#### df.info:

- Lignes/colonnes: 1000/16
- 91 valeurs manguantes dans "parental education level"





# 8

# **EDA - Valeurs aberrantes (3 sigma)**

- Outliers détectés : 8/1000 lignes
- Négligeables en tant que valeurs

```
Colonne: 'study hours per day'
Indexes des outliers : [455, 797]
Valeurs des outliers : [8.3, 8.2]
Colonne : 'social media hours'
Indexes des outliers : [145, 361, 735]
Valeurs des outliers : [6.2, 6.1, 7.2]
Colonne : 'netflix hours'
Indexes des outliers : [556, 822]
Valeurs des outliers : [5.4, 5.3]
Colonne : 'exam score'
Indexes des outliers : [265]
Valeurs des outliers : [18.4]
```



# EDA - Analyse de la distribution

- Méthode Shapiro
  - La méthode de Shapiro sert à tester si une variable suit une distribution normale (loi normale)
  - Distribution non "normale" des numériques

|          |   | age          | study_hours_per_day | attendance_percentage | sleep_hours | exercise_frequency | mental_health_rating | exam_score   | Media_hours |
|----------|---|--------------|---------------------|-----------------------|-------------|--------------------|----------------------|--------------|-------------|
|          | 0 | 9.248605e-01 | 0.997378            | 9.826074e-01          | 0.997267    | 9.139217e-01       | 9.381751e-01         | 9.869195e-01 | 0.997326    |
| <b>→</b> | 1 | 6.177718e-22 | 0.106471            | 1.502940e-09          | 0.088776    | 2.263751e-23       | 5.841297e-20         | 8.675028e-08 | 0.097718    |

### Graphique





# EDA - Analyse de la corrélation

### Test des variables numériques

- Test de Spearman et Kendall
- Retenu : Spearman





# EDA - Analyse de la corrélation

### Test des variables catégorielles

Test de Dython



# EDA - Test de la colinéarité numérique

Test avec Variable Inflation Factor:

```
Variable
                              VIF
                const
                      207.930307
                         1.004321
                  age
  study hours per day
                        1.003660
   social media hours
                        1.003940
        netflix hours
                        1.001235
attendance percentage
                        1.003613
          sleep hours
                        1.003199
   exercise frequency
                        1.002675
 mental health rating
                         1.002534
```



# EDA - Impact des médias sur le score à l'examen

### Superposition de Netflix et réseaux



#### Fusion de Netflix et réseaux





# **EDA - Variables non retenues**

Variables Catégorielles



Variables Numériques



# **EDA** - Data Frame

- Jeu de donnée final en vue de l'entraînement à la prédiction
  - cible : "exam\_score"

Jeu de donnée à prédire

study\_hours\_per\_day attendance\_percentage sleep\_hours exercise\_frequency mental\_health\_rating Media\_hours

exam\_score

# **EDA** - Exemple

Jérôme passe 8h sur les médias et ne révise que 2h mais arrive à un score de 75/100 à l'examen



#### Actual vs Predicted Exam Scores with Regression Line



### ML - Modèle 1

• Régression Linéaire

• Score d'apprentissage : 0.9006

Score de test : 0.8996

Pourcentage d'erreur : 6.811%





# ML - Modèle 2

- Lasso
- Score d'apprentissage : 0.9006

Score de test: 0.8995

• Pourcentage d'erreur : 6.818%

#### Actual vs Predicted Exam Scores with Lasso



# ← ML - Modèle 3

Elastic net

• Score d'apprentissage : 0.9005

Score de test : 0.8993

Pourcentage d'erreur : 6.840%





# ML - Modèle 4

- RandomForestRegressor
- Score d'apprentissage : 0.8901

Score de test : 0.8187

• Pourcentage d'erreur : 9.141%

#### Actual vs Predicted Exam Scores with Random Forest Regressor





# ML - Comparaison des modèles



 Les 3 premiers modèles ont une performance équivalente

 Le dernier est légèrement moins performant



# **ML** - Importance des facteurs





### Exemple de produit final fonctionnel :

Lien 1

Lien 2



# ♦ What's next?

Jeu de données semblant synthétique

À tester sur un jeu de données réel



# Any questions?

