

CMPE323 Signals and Systems

Lecture 21: Decimation in Time FFT

UMBC ENEE422 Digital Signal Processing
Course Notes © E F C LaBerge, 2009 All rights reserved.
Portions Copyright Nelson, a division of Thomson, Canada, LTD. All rights reserved

23-

The DFT and the FT

Let x(t) be an energy signal, $\int_{-\infty}^{\infty} |x(t)|^2 dt < \infty$ (basically not periodic)

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt \approx \sum_{n=-\infty}^{\infty} x(n\Delta t)e^{-j2\pi fn\Delta t}\Delta t, \ \Delta t = \frac{1}{f_S}$$

$$\approx \frac{1}{f_S} \sum_{n=-\infty}^{\infty} x(n\Delta t) e^{-j2\pi n(f/f_S)} = \frac{1}{f_S} \sum_{n=-\infty}^{\infty} x[n] e^{-j2\pi nF} = \frac{1}{f_S} X_{DTFT}(F)$$

We make the *time* resolution $\Delta t = t_s$ better by increasing f_s .

We make the *frequency* resolution Δf better by increasing T.

UMBC ENEE422 Digital Signal Processing Course Notes © E F C LaBerge, 2009 All rights reserved. ortions Copyright Nelson, a division of Thomson, Canada, LTD. All rights reserved

Truncate
$$x(t)$$
 at T , $x_T(t) = \begin{cases} x(t) & 0 \le t < T \\ 0 & \text{otherwise} \end{cases}$

$$X_T(f) \approx \frac{1}{f_S} \sum_{n=0}^{N-1} x[n] e^{-j2\pi nF}, \ N = \frac{T}{t_S} = Tf_S, \ f_S = \frac{N}{T}$$

$$X_T(f) \approx \frac{T}{N} \sum_{n=0}^{N-1} x[n] e^{-j2\pi nF},$$

so
$$X_T(k\Delta f) \approx \frac{T}{N} \sum_{n=0}^{N-1} x[n] e^{-j2\pi nk/N} = \frac{T}{N} X_{DFT}[k]$$

If we make $x_T(t)$ periodic with period T, the coefficients of the DFS

$$c_{k} = \frac{1}{T} \int_{0}^{T} x_{T}(t) e^{-j2\pi kt/T} dt \approx \frac{\Delta t}{T} \sum_{n=0}^{N-1} x_{T}(n\Delta t) e^{-j2\pi k\Delta tn/T}$$

$$= \frac{1}{f_{S}T} \sum_{n=0}^{N-1} x_{T}(n\Delta t) e^{-j2\pi kn/N} = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j2\pi kn/N} = \frac{1}{N} X_{DFT}[k]_{3}$$

Back to the DFT

$$X_{DFT}[k] = X\left(\frac{k}{T}\right) = \sum_{n=0}^{N-1} x(n\Delta t)e^{-j2\pi kn\Delta t/(N\Delta t)} = \sum_{n=0}^{N-1} x[n]e^{-j2\pi nk/N} = \sum_{n=0}^{N-1} x[n]W_N^{nk}$$

- ...and the DFT is sampled in both time and frequency!
- To compute this requires

(N complex multiplications $(x[n]W_N^{nk}) + N$ complex additions)

 $\times N$ values of $k \approx N^2$ complex "multiply and accumulate" operations

• The FFT is an algorithm to drastically reduce this computation load to $N\log_2 N$

$$N = 1024$$
, $N^2 = 1,048,576$, $N \log_2 N = 1024 \times 10 = 10,240$

$$N^2 / (N \log_2 N) = 102.4$$

UMBC ENEE422 Digital Signal Processing
Course Notes © E F C LaBerge, 2009 All rights reserved.
Portions Copyright Nelson, a division of Thomson, Canada, LTD. All rights reserved.

The FFT algorithm

- First published and documented by Cooley & Tukey in 1965 (others had similar ideas)
- The algorithm has multiple forms...
- ...but all the forms make use of the same ideas
- ...including the symmetry and periodicity of W_{N}
- ...and DFTs of simple sequences

$$\begin{split} W_{N/2} &= e^{-j2\pi/(N/2)} = e^{-j2(2\pi/N)} = W_N^2 \\ W_N^{k+(N/2)} &= e^{-j2\pi(k+N/2)/N} = e^{-j2\pi k/N} e^{-j2\pi N/(2N)} = e^{-j2\pi k/N} e^{-j\pi} \\ &= -e^{-j2\pi k/N} = -W_N^k \\ \text{If } N &= 1, \ X(0) = x[0]W_1^0 = x[0] \end{split}$$

If
$$N = 2$$
, $X[0] = x[0]W_2^{0 \times 0} + x[1]W_2^{1 \times 0} = x[0] + x[1]$

$$X[1] = x[0]W_2^{0 \times 1} + x[1]W_2^{1 \times 1} = x[0] + x[1]W_N^{0 + (N/2)} = x[0] - x[1]$$

UMBC ENEE422 Digital Signal Processing
Course Notes © F F C LaBerge, 2009 All rights reserved.
Portions Copyright Nelson, a division of Thomson, Canada, LTD. All rights reserved

23-5

The simple FFT "butterfly"

- The SFG of an FFT operation has a simple shape known as a butterfly...
- ...with the simplest butterfly being an N=2 DFT/FFT

UMBC ENEE422 Digital Signal Processing
Course Notes © E F C LaBerge, 2009 All rights reserved.
Portions Copyright Nelson, a division of Thomson, Canada, LTD. All rights reserved

The Radix-2 Decimation in Time FFT

- "Radix-2" means we group the time-domain points in groups of two...and that we restrict $N = 2^m$
- "Decimation in time" means that we "reorder" the time sequence in preparation for performing the FFT algorithm
- We'll get to that in a few minutes
- · First, we start with our defining relationship

$$X_{DFT}[k] = \sum_{n=0}^{N-1} x[n]W_N^{nk}$$

 Second, break the sum into sums on the even and odd indexed terms (not the even and odd parts!)

$$X_{DFT}[k] = \underbrace{\sum_{n=0}^{(N/2)-1} x[2n]W_N^{2nk}}_{\text{even indexed terms}} + \underbrace{\sum_{n=0}^{(N/2)-1} x[2n+1]W_N^{(2n+1)k}}_{\text{odd indexed terms}}$$

Course Notes © E F C LaBerge, 2009 All rights reserved.

rtions Copyright Nelson, a division of Thomson, Canada, LTD. All rights reserved

23-7

Radix-2 DIT FFT, cont

Third, apply our relationship on the kernel

$$X_{DFT}[k] = \sum_{n=0}^{(N/2)-1} x[2n] \underbrace{W_{N/2}^{nk}}_{W_{N/2} = W_N^2} + W_N^k \sum_{n=0}^{(N/2)-1} x[2n+1] \underbrace{W_{N/2}^{nk}}_{W_{N/2} = W_N^2} \underbrace{W_{N/2}^{nk}}_{W_{N/2} = W_N^2}$$

• Let G[k] = DFT(x[2n]), H[k] = DFT(x[2n+1]). These DFTs are N/2 point DFTs, but there are two of them

$$X_{DFT}[k] = G[k] + W_N^k H[k], \ k = 0, 1, \dots \frac{N}{2} - 1$$

• Now, G[k], H[k] are periodic with period N/2

$$X_{DFT} \left[k + \frac{N}{2} \right] = G[k + N/2] + W_N^{(k+N/2)} H[k + N/2]$$

$$= G[k] \underbrace{-W_N^k}_{W_N^{k+N/2} = -W_N^k} H[k]$$
(MRC ENSEAD North Sized Procedure)

UMBC ENEE422 Digital Signal Processing
Course Notes © E F C LaBerge, 2009 All rights reserved.
Portions Copyright Nelson, a division of Thomson, Canada, LTD. All rights reserved.

Radix-2 DIT FFT, cont

- So, I can do 2 N/2 point DFTs and combine them to get an N-point DFT
- If I've already done the N/2 point DFT computation (we'll get to that in a minute), then this computation takes

N complex additions (one for each value of k)

 $\frac{N}{2}$ complex multiplications to compute $W_N^k H[k]$, one for each

$$k = 0, 1, 2, \dots, \frac{N}{2} - 1$$

...and this includes special simple cases $(W_N^k = 1, -1, j, -j)$ as full complex multiplications

UMBC ENEE422 Digital Signal Processing
Course Notes © E F C LaBerge, 2009 All rights reserved.
Portions Copyright Nelson, a division of Thomson, Canada, LTD. All rights reserved

23-9

Radix-2 DIT FFT, cont

- So now I need two N/2 point DFTs
- ...each of which can be divided into 2 N/4 point DFTs
- ...using the same algorithm requires a total of

$$\underbrace{\frac{2}{\text{one for each}}}_{N/2 \text{ point DFT}} \times \underbrace{\frac{N}{2}}_{\substack{\text{total \# points} \\ \text{in } N/2 \text{ pt. DFT}}} = \underbrace{N}_{\substack{\text{total we} \\ \text{started} \\ \text{with}}} \text{ complex adds}$$

and
$$\underbrace{\frac{2}{2}}_{\text{one for each}} \times \underbrace{\frac{N}{4}}_{\text{one multiply}} = \underbrace{\frac{N}{2}}_{\text{one multiply}} \text{ complex mults.}$$

 ...and then 4 N/4 point DFTs become 8 N/8 point DFTs, all the way down to N/2 2-point DFTs.

UMBC ENEE-422 Digital Signal Processing
Course Notes © E F C LaBerge, 2009 All rights reserved.
Portions Copyright Nelson, a division of Thomson, Canada, LTD. All rights reserved

Radix-2 DIT FFT, cont

- It works the same way at each step of the process
- Assume I'm on the r-th step, where $1 \le r \le \log_2 N$
- I decompose the $N/2^{r-1}$ point DFT that I'm trying to compute into two $N/2^r$ point DFTs...
- ...each of which requires

 $N/2^r$ complex adds and $N/2^{r+1}$ complex multiplies

...so there are a total of

$$2 \times \frac{N}{2^r} = \frac{N}{2^{r-1}}$$
 complex adds and $2 \times \frac{N}{2^{r+1}} = \frac{N}{2^r}$ complex mults

• ...per $N/2^{r-1}$ -point DFT, and there are a total of 2^r such DFTs to compute, so the r-th step total is

$$2^{r-1} \times \frac{N}{2^{r-1}} = N$$
 adds and $2^{r-1} \times \frac{N}{2^r} = \frac{N}{2}$ multiplies

UMBC ENEE422 Digital Signal Processing
Course Notes © E F C LaBerge, 2009 All rights reserved.
Portions Copyright Nelson, a division of Thomson, Canada, LTD. All rights

Radix-2 DIT FFT, cont • But $1 \le r \le \log_2 N$, so the total over all of the steps is

 $\log_2 N \times N$ adds and $\log_2 N \times \frac{N}{2}$ multiplies

• ...or approximately $N \log_2 N$ operations!

lo	log2(N)	DFT	Nlog2(N)	FFT	FFT/DFT	
	1	4	2	3	0.75	
	2	16	8	12	0.75	C
	3	64	24	36	0.5625	1
	4	256	64	96	0.375	
	5	1,024	160	240	0.234375	
	6	4,096	384	576	0.140625	"ŀ
	7	16,384	896	1,344	0.08203125	
	8	65,536	2,048	3,072	0.046875	
	9	262,144	4,608	6,912	0.02636719	
	10	1,048,576	10,240	15,360	0.01464844	
	12	16,777,216	49,152	73,728	0.00439453	
	16	4,294,967,296	1,048,576	1,572,864	0.00036621	

Extra omplication may not be worth the effort, minimal bang for the buck"

1,099,511,627,776

1048576

2.861E-05

20,971,520 31,457,280

- The simple FFT "butterfly"

 The SFG of an FFT operation has a simple shape known as a butterfly...
- ...with the simplest butterfly being an N=2 DFT/FFT

The first stage of our DIT FFT looks like this

You try:

- Draw SFG to implement the "upper" 4-point DFT
- Include any branches necessary for re-ordering...
- ...and the combination branches to generate the 4 point DFT

UMBC ENEE422 Digital Signal Processing
Course Notes © E F C LaBerge, 2009 All rights reserved.
Portions Copyright Nelson, a division of Thomson, Canada, LTD. All rights reserved

23-15

Click to remove

UMBC ENEE422 Digital Signal Processing
Course Notes © E F C LaBerge, 2009 All rights reserved.
Portions Copyright Nelson, a division of Thomson, Canada, LTD. All rights reserved

Bit reversed order

- From this we have that the DIT FFT algorithm must reorder the inputs...
- ...so that the outputs show up in the correct order.
- The decimation in frequency (DIF) FFT algorithm keeps the inputs in their natural (index) order...
- ...and reorders the outputs in exactly the same way!
- We call this reindexing bit reversed order

Binary	LSB on rt	LSB on LF
000	0	0
001	1	4
010	2	2
011	3	6
100	4	1
101	5	5
110	6	3
Di 111	7	7

10

The other radix 2 algorithm

The other "famous" radix 2 algorithm is "decimation in frequency"

$$X_{DFT}[k] = \sum_{n=0}^{N/2-1} x[n]W_N^{nk} + \sum_{n=0}^{N/2-1} x[n+N/2]W_N^{(n+N/2)k}$$
first half of input data
second half of input data

$$= \sum_{n=-}^{N/2-1} \left(x[n] + W_N^{(N/2)k} x[n+N/2] \right) W_N^{nk}$$

$$= \sum_{n=0}^{N/2-1} \left(x[n] + (-1)^k x[n+N/2] \right) W_N^{nk}$$

Now the dependence is on

 $=\sum_{n=0}^{N/2-1} \left(x[n]+(-1)^k x[n+N/2]\right) W_N^{nk}$ dependence is on the output index being even or odd ...and we still have a nice $k \text{ odd: } X[k] = \sum_{n=0}^{N/2-1} \left(x[n]+x[n+N/2]\right) W_N^{nk} W_{N/2}^{nk}$ form

$$k \text{ odd: } X[k] = \sum_{n=0}^{N/2-1} (x[n] - x[n+N/2]) W_N^n W_{N/2}^{nk}$$

$$X[2k] = \sum_{n=0}^{N/2-1} (x[n] + x[n+N/2]) W_{N/2}^{nk}$$

$$= DFT(x[n] + x[n+N/2]), k = 0,1,2,...N/2-1$$

$$X[2k+1] = \sum_{n=0}^{N/2-1} (x[n] - x[n+N/2]W_N^k)W_{N/2}^{nk}$$

$$= DFT \left(\left(x[n] - x[n+N/2] \right) W_{N}^{k} \right), k = 0, 1, 2, ... N/2 - 1$$

Let
$$g[n] = x[n] + x[n + N/2]$$

Let
$$h[n] = (x[n] - x[n+N/2])W_N^k$$

$$X[2k] = G[k]$$

$$X[2k+1] = H[k]$$

...and this, too has a butterfly structure

UMBC ENEE422 Digital Signal Processing
Course Notes © E F C Laberge, 2009 All rights reserved.
Portions Copyright Nelson, a division of Thomson, Canada, LTD. All rights reserved.

Wednesday 11/23

- 11 AM Discussion (questions & answers, nothing prepared)
- 2:30 Lecture is your "test" period. We had the 2nd exam as take home, but I continued to lecture, so this is the time when I would have given the exam!
- There is homework, but it is short.

UMBC ENEE422 Digital Signal Processing
Course Notes © E F C LaBerge, 2009 All rights reserved.
Portions Copyright Nelson, a division of Thomson, Canada, LTD. All rights reserved