Une méthode d'échantillonnage pour la reconstitution de séquences de variants de gènes d'antibiorésistance depuis des données métagénomiques

Daniel Bonnéry

Séminaire, 3 juin 2024

- 1 Le modèle paramétrique et la question statistique
- 2 Desman
- 3 Stratégies
- 4 Travaux en cours

- 1 Le modèle paramétrique et la question statistique
 - Observations
 - Variants
 - **Proportions**
 - Erreur de mesure
 - Distribution du tableau de comptages
 - Approche bayesienne
- 2 Desman
- 3 Stratégies
- 4 Travaux en cours

1 Le modèle paramétrique et la question statistique

Observations

Observations

We observe a 3 dimensional array of counts.

$$(n_{V,s,a}) \quad v \in \{1, \dots, V\}$$

$$s \in \{1, \dots, S\}$$

$$a \in \{1, \dots, 4\}$$

- (n_{v,s,a}): comptages des nucléotides
 - à la position v
 - dans l'échantillon s
 - de type a :

•
$$a = 1 = A = (1, 0, 0, 0)$$

•
$$a = 2 = C = (0, 1, 0, 0)$$

•
$$a = 3 = G = (0, 0, 1, 0)$$

•
$$a = 4 = T = (0, 0, 0, 1)$$

$$a = A$$
 $a = C$ $a = G$ $a = T$
 $n_{.,s=1,.} = \begin{pmatrix} v_{-1} & 0 & 0 & 0 & 0 \\ v = 2 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$

$$a = A$$
 $a = C$ $a = G$ $a = T$
 $n_{.,s=2,.} = \begin{pmatrix} v=1 \\ v=2 \end{pmatrix} \begin{pmatrix} 200 & 800 & 0 & 1 \\ 800 & 200 & 0 & 0 \end{pmatrix}$

- 1 Le modèle paramétrique et la question statistique
 - Observations

Variants

Proportions

Erreur de mesure

Distribution du tableau de comptages

Approche bayesienne

- 2 Desman
- 3 Stratégies
- 4 Travaux en cours

Il semblerait qu'il y a deux variants dans chacun des deux échantillons

$$\tau = \int_{v=1}^{g=1} \left(\begin{matrix} A & C \\ C & A \end{matrix} \right) = \int_{v=1}^{g=1} \left(\begin{matrix} \mathbf{10^{0}} & \mathbf{01^{00}} \\ \mathbf{01^{00}} & \mathbf{10^{00}} \end{matrix} \right)$$

- $\tau_{v,g,a}$ indique si
 - à la position v
 - le nucléotide du variant g
 - est a.

1 Le modèle paramétrique et la question statistique

Proportions

$$\pi = \int_{g=2}^{g=1} \begin{pmatrix} 0.6 & 0.2 \\ 0.6 & 0.2 \end{pmatrix}$$

 $\pi_{g,s}$ est la proportion de

Le modèle paramétrique et la question statistique

- variant g
- dans l'échantillon s.

- 1 Le modèle paramétrique et la question statistique

 - Erreur de mesure

0000000000000000

Le modèle paramétrique et la question statistique

La variable $\epsilon_{b,a}$ est la probabilité que la mesure d'un nucleotide de type b donne a

$$\epsilon = \begin{bmatrix} b_{-1} \\ b_{-2} \\ b_{-3} \\ b_{-4} \end{bmatrix} \begin{pmatrix} 0.91 & 0.03 & 0.03 & 0.03 \\ 0.03 & \mathbf{0.91} & 0.03 & 0.03 \\ 0.02 & 0.02 & \mathbf{0.94} & 0.02 \\ 0.05 & 0.04 & 0.01 & \mathbf{0.90} \end{pmatrix}$$

- 1 Le modèle paramétrique et la question statistique

 - Distribution du tableau de comptages

Distribution du tableau de comptages

$$\mathcal{L}(n|\pi,\tau,\epsilon) = \prod_{v=1}^{V} \prod_{s=1}^{S} (n_{v,s,+})! \times \frac{\prod_{a=1}^{4} \left(\sum_{g=1}^{G} \sum_{b=1}^{4} \tau_{v,g,b} \epsilon_{b,a} \pi_{g,s}\right)^{n_{v,s,a}}}{\prod_{a=1}^{4} n_{v,s,a}!}$$

- 1 Le modèle paramétrique et la question statistique

 - Approche bayesienne

Quelle est la loi de probabilité du résultat du lancé d'un dé sachant que le résultat est pair ? **A priori**, le dé est non pipé, et la loi η du résultat est uniforme.

Règle de Bayes:

Le modèle paramétrique et la question statistique

$$\eta(\{x\}|\{2,4,6\}) = \frac{\eta(\{x\} \cap \{2,4,6\})}{\eta(\{2\}) + \eta(\{4\}) + \eta(\{6\})}$$

Le modèle paramétrique et la question statistique

Notre problème est similaire. Une loi sur le vecteur de variables aléatoires (n, π, τ, ϵ) est construit à partir de lois a priori sur τ, π et ϵ , et à partir de la loi de n sachant ces paramêtres.

$$\eta(\mathbf{n}, \pi, \tau, \epsilon) = \eta(\mathbf{n} \mid \tau, \pi, \epsilon) \times \eta(\tau) \times \eta(\pi) \times \eta(\epsilon)$$

La solution de notre problème est:

$$\eta(\pi, \tau, \epsilon \mid n) = \frac{\eta(n, \pi, \tau, \epsilon)}{\int \eta(n, \pi, \tau, \epsilon) d\tau d\pi d\epsilon}$$

- 2 Desman

- 2 Desman

Présentation

metagenomes.

Genome biology, 18:1–22.

- Desman est un algorithme d'échantillonage qui permet d'obtenir un échantillon dont les propriétés sont proches d'un échantillon iid de la loi a posteriori de (τ, π, ϵ) .
- Il est basé sur des méthodes de Monte Carlo par chaînes de Markov
- obtenues par échantillonnage de Gibbs
- après introduction de variables latentes pour obtenir un maximum de lois conjuguées et éviter de devoir tirer avec Metropolis Hastings

- Desman

Algorithme de Gibbs

Algorithme de Gibbs

Algorithm 1 Algorithme de Gibbs

```
1: Initialiser \Theta^{(0)} = (\Theta_1^{(0)}, \Theta_2^{(0)}, \dots, \Theta_I^{(0)})
   for t = 1 to T do
3:
           for i = 1 to I do
                  Échantillonner
4:
                     \Theta_i^{(t)} \sim \eta\left(\Theta_i \mid \Theta_1^{(t)}, \dots, \Theta_{i-1}^{(t)}, \Theta_{i+1}^{(t-1)}, \dots, \Theta_n^{(t-1)}\right)
5:
           end for
6.
7: end for
```

On appelle noyau de transition la distribution $P^{\Theta^{(t+1)}|\Theta^{(t)}}$

- L'algorithme commence par une initialisation de $\Theta^{(0)}$.
- À chaque étape t, chaque variable Θ_i est mise à jour en échantillonnant de sa distribution conditionnelle.
- Le processus est répété pour un nombre d'itérations T.
- En fin de compte, les échantillons $\Theta^{(T)}$ sont utilisés pour estimer la distribution cible.

$$\Theta_i^{(t)} \sim \eta \left(\Theta_i \mid \Theta_1^{(t)}, \dots, \Theta_{i-1}^{(t)}, \Theta_{i+1}^{(t-1)}, \dots, \Theta_n^{(t-1)}\right)$$

Comment faire?

- Lois conjuguées
- Metropolis Hasting

- 2 Desman

Les étapes de Gibbs dans Desman

Algorithm 2 Noyau MCMC

procedure
$$M(n, \Theta = (\tau, \pi, \epsilon); \alpha_{\pi}, \alpha_{\epsilon}, e)$$

 $(\nu, \mu) \leftarrow \operatorname{sample}_{(\nu, \mu)}(n, \Theta)$
 $\pi \leftarrow \operatorname{sample}_{\pi}(\mu; \alpha_{\pi})$
 $\tau \leftarrow \operatorname{sample}_{\tau}(n, \tau, \pi, \epsilon)$
 $\epsilon \leftarrow \operatorname{sample}_{\epsilon}(\nu; \alpha_{\epsilon})$
Return (τ, π, ϵ)
end procedure

- 2 Desman

 - Identification d'un problème

L'étape de Gibbs correspondante à τ semble problématique: τ ne varie pas avec t.

- 2 Desman

Diagnostics

$$a = A$$
 $a = C$ $a = G$ $a = T$
 $n_{.,s=1,.} = \begin{pmatrix} v_{-1} & 600 & 400 & 0 & 0 \\ v = 2 & 400 & 600 & 1 & 0 \end{pmatrix}$

$$a = A$$
 $a = C$ $a = G$ $a = T$
 $n_{.,s=2,.} = \begin{pmatrix} v=1 \\ v=2 \end{pmatrix} \begin{pmatrix} 200 & 800 & 0 & 1 \\ 800 & 200 & 0 & 0 \end{pmatrix}$

$$t=1$$

$$t=2$$

$$t=3$$

- Le modèle paramétrique et la question statistique
- 3 Stratégies

Block sampling

- Le modèle paramétrique et la question statistique
- 3 Stratégies

Block sampling

$$t=1$$
 $t=2$

Problème:

4^1	4	
4 ²	16	
4 ³	64	
4 ⁴	256	
4 ⁵	1 024	
4^{10}	1 048 576	
4^{15}	1 073 741 824	
4 ²⁰	1 099 511 627 776	

- 2 Desman
- 3 Stratégies

Block sampling

Fixed variants

Cibler ρ SMC and Tempering

4 Travaux en cours

Il s'agit de remplacer la distribution a priori de τ par Uniform(T)

- Metropolis Hasting est évité.
- Satisfaisant lorsque les variants sont connus
- Ne répond pas à l'objectif initial de détection.

- Le modèle paramétrique et la question statistique
- 3 Stratégies

Block sampling

Cibler ρ

avec

$$\rho_{v,g,a} = \sum_{b=1}^{4} \tau_{vgb} \epsilon_{ba}$$

v = 1 s = 1

- On utilise un hyperparamêtre de forme très petit pour la loi de Dirichlet, ce qui assure la concentration des $\rho_{v,g,..}$ autour des sommets A,C,G, ou T.
- On garde des lois conjuguées pour ρ .
- La mise à jour se fait naturellement par block.
- Rajout d'un a priori non conjugué sur l'hyperparamêtre de forme.

Figure 1: Échantillon d'une loi de Dirichlet, $\alpha_{\tau}=0.11_4$

(a) $\alpha = 0.1 \, \mathbb{1}_3$

(b) $\alpha = 0.01 \, \mathbb{1}_3$

Figure 2: Échantillon de distribution de Dirichlet sur un 3-simplexe

- Le modèle paramétrique et la question statistique
- 3 Stratégies

Block sampling

SMC and Tempering

weight 0.1

0.3

Х

- Puissance de la vraisemblance
- Data tempering
- Paramêtre de tempering naturel.

Stratégie retenue

- Cibler τ , ϵ et π
- Relaxer τ
- Le paramêtre de forme sur τ devient le paramêtre de tempering naturel.

Variable	Models				
	Desman	Model 1 Block	Model	Model 4 Tem-	Model 3 I
		Sampling	2 Fixed	pering	laxation
			variants		
G	unobserved, fixed				
V	observed,fixed				
S	observed,fixed				
$\kappa_{ au}$	-			Dirac(0.1, 0.1)	-
$\alpha_{\tau} \mid \kappa_{\tau}$	-			$Beta(\kappa_{\tau})$	-
$\tau \mid \alpha_{\tau}$	$\tau_{v,g,.} \sim \text{Uniform}(\{A,C,G,T\})$ Dirac τ $\forall v,g, \tau_v$ Dirichlet			$\forall v, g, \ \tau_{v,g,.} \stackrel{\text{iid}}{\sim} $ Dirichlet $(\alpha_{\tau} \mathbb{1}_4)$	-
κ_{ϵ}	$Dirac(0.11_4)$	Dirac(0.01,1)			-
$\tilde{\epsilon} \mid \kappa_{\epsilon}$	-	$\operatorname{Beta}(\kappa_{\epsilon})$			-
$\epsilon \mid \kappa_{\epsilon}, \alpha_{\epsilon}$	$\forall b, \epsilon_{b,.} \sim \text{Dirichlet}(\kappa_{\epsilon})$	$\operatorname{Dirac}\left(\tilde{\epsilon}/3(J_4-I_4)+(1-\tilde{\epsilon})I_4\right)$			-
κ_{ρ}	-				Dirac(1, 10)
α_{ρ}	-				$Gamma(\kappa_{\rho})$
$\rho \mid \alpha_{\rho}$	-				$\forall v, g, \ \rho_{v,g,.}$ Dirichlet $(\alpha_{\rho}$
κ_{π}	- Dirac(0.1, 1)				
α_{π}	Dirac(0.1)	$\operatorname{Beta}(\kappa_{\pi})$			
π	$\forall g, \ \pi_{.,s} \sim \text{Dirichlet}(\alpha_{\pi} \mathbb{1}_G)$				
n.,.,+	observed, fixed				
$n \mid n_{.,.,+}, \rho$	observed, $\forall v, s, n_{v,s,.} \sim \text{Multinomial}\left(n_{v,s,+}, \sum_{g=1}^{G} \rho_{v,g,.} \pi_{g,s}\right)$				

- 1 Le modèle paramétrique et la question statistique
- 2 Desman
- Stratégies
- 4 Travaux en cours

- Développement d'algorithmes en R basés sur jags.
- SMC
- tempering.
- Choix de modèle (G)
- ESS
- Exploitation des trajectoires de particules obtenues.

Malsiner-Walli, G., Frühwirth-Schnatter, S., and Grün, B. (2017). Identifying mixtures of mixtures using bayesian estimation. Journal of Computational and Graphical Statistics, 26(2):285-295.

Quince, C., Delmont, T. O., Raguideau, S., Alneberg, J., Darling, A. E., Collins, G., and Eren, A. M. (2017). Desman: a new tool for de novo extraction of strains from metagenomes. Genome biology, 18:1-22.