Optimization

Hassan OMRAN

Lecture 5: Linear Programming

Télécom Physique Strasbourg Université de Strasbourg

Outline of the talk

- 1. Introduction
- 2. Standard Form
- 3. Fundamental Theorems
- 4. The Simplex Method
- 5. The two-phase simplex method

1. Introduction

Introduction

- 4. The Simplex Method
- 5. The two-phase simplex method

Modeling: a simple example

A diet problem

Introduction

•00000

Choose the quantities x_1 x_2 of two types of food for a daily need of a person.

- One unit of food i costs c: euros.
- One unit of food i contains p; units of protein and v; units of vitamins.
- A healthy diet requires at least p_{min} units of protein and v_{min} units of vitamins.

How to choose x_1 and x_2 in order to obtain an economic but healthy diet?

$$\min_{\mathbf{X}} \quad c_1 x_1 + c_2 x_2
s.t. \quad p_1 x_1 + p_2 x_2 \ge p_{min}
v_1 x_1 + v_2 x_2 \ge v_{min}
x_1 \ge 0, x_2 \ge 0$$

Hassan OMRAN Optimization TI Santé, IR, G et M1 ASI 4 / 50

Modeling: a simple example

A diet problem

Introduction

•00000

Choose the quantities x_1 x_2 of two types of food for a daily need of a person.

- One unit of food i costs c: euros.
- One unit of food i contains p; units of protein and v; units of vitamins.
- A healthy diet requires at least p_{min} units of protein and v_{min} units of vitamins.

How to choose x₁ and x₂ in order to obtain an economic but healthy diet?

Consider the following parameters: $c_1 = 1$, $c_2 = 1$, $p_1 = 2$, $p_2 = 4$, $v_1 = 5$, $v_2 = 2$, $p_{min} = 8$, $v_{min} = 10$.

4 D > 4 A > 4 B > 4 B > B

Introduction

000000

Modeling: a simple example

The feasible domain.

Introduction

000000

Modeling: a simple example

The feasible domain.

Introduction

000000

Modeling: a simple example

Cost function level sets.

Hassan OMRAN

Modeling: a simple example

The optimal solution.

Exercise: repeat the same question for $c_1 = 2$, $c_2 = 4$.

Modeling: another diet problem

A diet problem

Choose the quantities $\mathbf{x} = [x_1 \dots x_5]^T$ of 5 types of food for a daily need of a person. The quantities should cover the following needs: 2000cal, 55g of Protein and 800g of Calcium, with the least cost possible.

Food	Unit	Energy(cal)	Protein(g)	Calcium(mg)	Price(Centimes)	Quantity
Cereal	28 <i>g</i>	110	4	2	30	<i>x</i> ₁
Meat	100 <i>g</i>	200	23	12	100	<i>X</i> ₂
Eggs	1	80	6	26	20	<i>X</i> ₃
Milk	250 <i>cl</i>	160	8	285	50	<i>X</i> ₄
Vegetables	250 <i>g</i>	260	14	80	15	<i>X</i> ₅

Can not be solved graphically.

9/50

Hassan OMRAN Optimization

9/50

Modeling: another diet problem

A diet problem

Choose the quantities $\mathbf{x} = [x_1 \dots x_5]^T$ of 5 types of food for a daily need of a person. The quantities should cover the following needs: 2000cal, 55g of Protein and 800g of Calcium, with the least cost possible.

110 200	4	2	30	<i>X</i> ₁
200			00	^1
200	23	12	100	<i>x</i> ₂
80	6	26	20	<i>x</i> ₃
160	8	285	50	<i>x</i> ₄
260	14	80	15	<i>x</i> ₅
	160	160 8	160 8 285	160 8 285 50

$$\min_{\mathbf{x}} \quad 30x_1 + 100x_2 + 20x_3 + 50x_4 + 15x_5$$
s.t.
$$110x_1 + 200x_2 + 80x_3 + 160x_4 + 260x_5 \ge 2000$$

$$4x_1 + 23x_2 + 6x_3 + 8x_4 + 14x_5 \ge 55$$

$$2x_1 + 12x_2 + 26x_3 + 285x_4 + 80x_5 \ge 800$$

$$x_1 \ge 0, \dots, x_5 \ge 0$$

Can not be solved graphically.

2. Standard Form

- 4. The Simplex Method
- 5. The two-phase simplex method

The Standard Form

Standard Form

Consider the linear program of the form

where $\mathbf{b} \geq \mathbf{0}$, $A \in \mathbb{R}^{m \times n}$ with m < n and rank(A) = m. In this case, we say that the linear program is in **standard form**.

Techniques to solve linear programs are often presented for the standard form

No loss of generality: we can always write linear programs in the standard form

The Standard Form

How to transform a linear program to the standard form?

- ♦ If an element of **b** is negative $b_i < 0 \Rightarrow$ we multiply the ith line of A and b_i by -1.
- $\diamond \max_{\mathbf{c}^T \mathbf{x}} \Rightarrow \min_{\mathbf{c}^T \mathbf{x}}$
- $\diamond \quad \alpha_0 x_0 + \cdots + \alpha_n x_n \leq \beta \text{ with } x_0 \geq 0, \cdots x_n \geq 0 \Rightarrow$ $\alpha_0 x_0 + \cdots + \alpha_n x_n + v = \beta$ with $x_0 > 0, \cdots x_n > 0$ and v > 0
- $\phi \quad \alpha_0 x_0 + \cdots + \alpha_n x_n \ge \beta \text{ with } x_0 \ge 0, \cdots x_n \ge 0 \Rightarrow$ $\alpha_0 x_0 + \cdots + \alpha_n x_n - v = \beta$ with $x_0 > 0, \cdots x_n > 0$ and v > 0
- $\forall x \geq x_{min} (no \ sign \ on \ x) \Rightarrow x y = x_{min} \ with \ y \geq 0 \Rightarrow u v y = x_{min} \ with \ u, v, y \geq 0$
- $x \leq x_{max} \Rightarrow (no \ sign \ on \ x) \ x + y = x_{max} \ with \ y \geq 0 \Rightarrow u v + y = x_{max} \ with \ u, v, y \geq 0$

The Standard Form

Example

convert the following problem into a standard form

Example

$$\begin{array}{ll}
max & 2x_2 - x_1 \\
s.t. & 4x_1 = 2x_2 - 5 \\
& x_2 \ge -2 \\
& x_2 \le 2 \\
& x_1 \le 0
\end{array}$$

3. Fundamental Theorems

- 4. The Simplex Method
- 5. The two-phase simplex method

Consider $B \in \mathbb{R}^{n \times n}$ a square matrix whose columns are n linearly independent columns of A. We can suppose that $A = [B \ D]$ where $D \in \mathbb{R}^{n \times (n-m)}$ is a matrix containing the remaining m-n columns of A.

Basic solution

If \mathbf{x}_B is a solution to $B\mathbf{x}_B = \mathbf{b}$ that is $\mathbf{x}_B = B^{-1}\mathbf{b}$, then

$$X = \begin{bmatrix} \mathbf{x}_B \\ \mathbf{0} \end{bmatrix}$$

is a solution to $A\mathbf{x} = \mathbf{b}$ that is $[B\ D]\mathbf{x} = \mathbf{b}$.

- ♦ In this case x is called a basic solution with respect to the basis B.
- ♦ If in addition $x \ge 0$, then it is called a basic feasible solution (BFS)
- ⋄ If some elements of x_B are zero, then it is called a degenerate basic feasible solution
- \diamond Finally, if $\mathbf{x}_B > \mathbf{0}$, then it is called a non-degenerate basic feasible solution

Note that we call an **x** satisfying A**x** = **b**, **x** \ge **0** a **feasible solution**

Theorem 1

Consider a linear programming problem.

- If there exists a feasible solution, then there exists a basic feasible solution
- If there exists an optimal feasible solution, then there exists an optimal basic feasible solution

Theorem 2

Consider $A \in \mathbb{R}^n$, m < n. Let S be the (convex) set of all feasible solutions, that is

$$S = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{b}, \quad \mathbf{x} \ge \mathbf{0} \}$$

Then, **x** is an **extreme point** of S if and only if it is a basic feasible solution

Idea: In order to solve a linear programming under standard form, we can test all the extreme points, that is all the basic feasible solutions! However the number of possible solutions is

$$\binom{n}{m} = \frac{n!}{m!(n-m)}$$

Hassan OMRAN Optimization TI Santé, IR, G et M1 ASI 16 / 50

Testing all basic feasible solutions

Example

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & -1 & 4 \\ 1 & -2 & -1 & 1 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 8 \\ 2 \end{bmatrix}$$

- For $B = [\mathbf{a}_1 \ \mathbf{a}_2]$ we get $\mathbf{x}_B = [6\ 2]^T$ thus $\mathbf{x} = [6\ 2\ 0\ 0]^T$ is a non-degenerate basic feasible solution
- For $B = [\mathbf{a_1} \ \mathbf{a_4}]^T$ or $B = [\mathbf{a_2} \ \mathbf{a_4}]^T$ or $B = [\mathbf{a_3} \ \mathbf{a_4}]^T$ we get $\mathbf{x_B} = [0\ 2]^T$ thus $\mathbf{x} = [0\ 0\ 0\ 2]^T$ is a degenerate basic feasible solution
- For B = [a₂ a₃]^T we get x_B = [2 6]^T thus x = [0 2 6 0]^T is a basic but infeasible solution x ≥ 0
- Note that $\mathbf{x} = [3 \ 1 \ 0 \ 1]^T$ is feasible but not basic

Moving from an extreme point to a better one

It is possible to move from one extreme point to an adjacent extreme point

Example

Consider the problem

$$\max_{\mathbf{x}} \quad 3x_1 + 5x_2$$
s.t.
$$x_1 + 5x_2 \le 40$$

$$2x_1 + x_2 \le 20$$

$$x_1 + x_2 \le 12$$

$$x_1 \ge 0, x_2 \ge 0$$

Moving from an extreme point to a better one

This linear programming problem can be written using the standard form

$$\begin{array}{lll}
\min_{\mathbf{x}} & -3x_1 - 5x_2 \\
s.t. & x_1 + 5x_2 + x_3 & = 40 \\
& 2x_1 + x_2 + x_4 & = 20 \\
& x_1 + x_2 + x_5 = 12 \\
& x_1 \ge 0, \dots, x_5 \ge 0
\end{array}$$

That is, we get a standard form problem

with

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 5 & 1 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 40 \\ 20 \\ 12 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} -3 \\ -5 \\ 0 \\ 0 \end{bmatrix}$$

 4 □ ▶

Moving from an extreme point to a better one

Note that $\mathbf{x} = [0\ 0\ 40\ 20\ 12]^T$ is a basic feasible solution in the basis $B = [\mathbf{a_3}\ \mathbf{a_4}\ \mathbf{a_5}]$. it is easy to see that this solution corresponds to

$$0a_1 + 0a_2 + 40a_3 + 20a_4 + 12a_5 = b$$
 (1)

The corresponding cost in this case is

$$z_0 = \mathbf{c}^\mathsf{T} \mathbf{x} = \begin{bmatrix} c_1 \ c_2 \ c_3 \ c_4 \ c_5 \end{bmatrix} \begin{bmatrix} 0 \ 0 \ 40 \ 20 \ 12 \end{bmatrix} = 40c_3 + 20c_4 + 12c_5 \ (=0)$$
 (2)

If we want to move to another BFS, we need to choose between \mathbf{a}_1 and \mathbf{a}_2 to include into the basis. We also have to remove one of the vectors \mathbf{a}_3 , \mathbf{a}_4 , \mathbf{a}_5 from the basis.

TI Santé, IR, G et M1 ASI

21 / 50

Moving from an extreme point to another

If we choose to include \mathbf{a}_1 into the basis, we will need to remove one of the vectors \mathbf{a}_3 , \mathbf{a}_4 , \mathbf{a}_5 from the basis. First, note that

$$\mathbf{a}_1 = \mathbf{a}_3 + 2\mathbf{a}_4 + \mathbf{a}_5 \quad \Rightarrow \epsilon \mathbf{a}_1 - \epsilon \mathbf{a}_3 - 2\epsilon \mathbf{a}_4 - \epsilon \mathbf{a}_5 = 0 \tag{3}$$

for $\epsilon > 0$. Adding (3) to (1) we get

$$\epsilon \mathbf{a}_1 + (40 - \epsilon)\mathbf{a}_3 + (20 - 2\epsilon)\mathbf{a}_4 + (12 - \epsilon)\mathbf{a}_5 = \mathbf{b}$$

that is we obtain a solution

Hassan OMRAN

$$\mathbf{x}_1 = \begin{bmatrix} \epsilon \\ 0 \\ 40 - \epsilon \\ 20 - 2\epsilon \\ 12 - \epsilon \end{bmatrix}$$

with new cost

$$\mathbf{c}^{\mathsf{T}} \mathbf{x}_{1} = \underbrace{\epsilon c_{1} + (40 - \epsilon)c_{3} + (20 - 2\epsilon)c_{4} + (12 - \epsilon)c_{5}}_{z_{0}}$$

$$= \underbrace{(40c_{3} + 20c_{4} + 12c_{5})}_{z_{0}} + \epsilon \left(c_{1} - \underbrace{(c_{3} + 2c_{4} + c_{5})}_{z_{1}}\right) = z_{0} + \epsilon r_{1}$$

Optimization

Moving from an extreme point to another

We want the coefficient corresponding to one of the vectors \mathbf{a}_3 , \mathbf{a}_4 , \mathbf{a}_5 to be zero. Also, we want all the coefficients to be non negative (to obtain a BFS). Clearly, $\epsilon = 10$ will lead to Thus, we get another basic feasible solution with respect to the basis $B = [\mathbf{a}_1 \ \mathbf{a}_3 \ \mathbf{a}_5]$:

$$\mathbf{x}_1 = \begin{bmatrix} 10\\0\\30\\0\\2 \end{bmatrix}$$

Moving from an extreme point to another

If we choose to include a_2 into the basis, we will need to remove one of the vectors a_3 , a_4 , a_5 from the basis. First, note that

$$\mathbf{a}_2 = 5\mathbf{a}_3 + \mathbf{a}_4 + \mathbf{a}_5 \quad \Rightarrow \epsilon \mathbf{a}_2 - 5\epsilon \mathbf{a}_3 - \epsilon \mathbf{a}_4 - \epsilon \mathbf{a}_5 = 0 \tag{4}$$

for $\epsilon > 0$. Adding (4) to (1) we get

$$\epsilon \mathbf{a}_2 + (40 - 5\epsilon)\mathbf{a}_3 + (20 - \epsilon)\mathbf{a}_4 + (12 - \epsilon)\mathbf{a}_5 = \mathbf{b}$$

that is we obtain a solution

$$\mathbf{x}_2 = \begin{bmatrix} 0\\ \epsilon\\ 40 - 5\epsilon\\ 20 - \epsilon\\ 12 - \epsilon \end{bmatrix}$$

with new cost

$$\mathbf{c}^{\mathsf{T}} \mathbf{x}_{2} = \epsilon c_{2} + (40 - 5\epsilon)c_{3} + (20 - \epsilon)c_{4} + (12 - \epsilon)c_{5}$$

$$= \underbrace{(40c_{3} + 20c_{4} + 12c_{5})}_{z_{0}} + \epsilon \left(c_{2} - \underbrace{(5c_{3} + c_{4} + c_{5})}_{z_{2}}\right) = z_{0} + \epsilon r_{2}$$

Moving from an extreme point to another

We want the coefficient of one of the vectors \mathbf{a}_3 , \mathbf{a}_4 , \mathbf{a}_5 to be zero. Also, we want all the coefficients to be non negative (to obtain a BFS). Clearly, $\epsilon = 8$ will lead to

$$8a_2 + 30a_3 + 2a_5 = b$$

Thus, we get another basic feasible solution with respect to the basis $B = [\mathbf{a}_2 \ \mathbf{a}_4 \ \mathbf{a}_5]$:

$$\begin{bmatrix} 10 & 0 & 30 & 0 & 2 \end{bmatrix}^T$$

$$\mathbf{x}_2 = \begin{bmatrix} 0 \\ 8 \\ 0 \\ 12 \\ 4 \end{bmatrix}$$

- 4. The Simplex Method
- 5. The two-phase simplex method

Elementary row operations

Elementary row operations can be used to solve linear algebraic equations Cx = d and calculate the inverse of a matrix C:

Interchanging any two rows

Multiplying a row by a real nonzero number

Adding a scalar multiple of a row to another

To find the solution to
$$C\mathbf{x} = \mathbf{d}$$
 we form $[C\ \mathbf{d}]$ and perform elementary row operations to get $E_p \cdots E_1 [C\ \mathbf{d}] = [I\ \mathbf{x}^*]$. Clearly, $E = E_p \cdots E_1 = C^{-1}$ and $E\mathbf{d} = \mathbf{x}^*$, thus $C^{-1}\mathbf{d} = \mathbf{x}^*$

To find the inverse of C we form [C I] and perform elementary row operations to get $E_0 \cdots E_1[C \mid I] = [I \mid D]$. Clearly, $E = E_0 \cdots E_1 = C^{-1}$ and E = D, thus $C^{-1} = D$

Example

Multiplying a matrix by

Permutation of the first and the third lines

Elementary row operations

Example

Multiplying a matrix by

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Multiplying second line by α

Example

Multiplying a matrix by

Add 2× first line to forth line

Finding a basic solution

Consider the standard form

$$\begin{array}{ll}
\min_{\mathbf{x}} & \mathbf{c}^{\mathsf{T}} \mathbf{x} \\
\text{s.t.} & A\mathbf{x} = \mathbf{b} \\
\mathbf{x} \ge \mathbf{0}
\end{array}$$

with $A \in \mathbb{R}^{m \times n}$ with m < n and rank(A) = m.

Without loss of generality, we consider the invertible $B = [\mathbf{a}_1 \dots \mathbf{a}_m] \in \mathbb{R}^{m \times m}$

- ⋄ Form an augmented matrix [A b]
- Apply elementary row operations

$$E[A \mathbf{b}] = E[B D \mathbf{b}] = [I \tilde{D} \tilde{\mathbf{b}}]$$

$$\diamond \quad \textit{Consider } \mathbf{x} = \begin{bmatrix} \mathbf{x}_{\mathsf{B}} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \tilde{\mathbf{b}} \\ \mathbf{0} \end{bmatrix} \textit{ clearly}$$

$$EAx = EA \begin{bmatrix} \tilde{b} \\ 0 \end{bmatrix} = [I \ \tilde{D}] \begin{bmatrix} \tilde{b} \\ 0 \end{bmatrix} = \tilde{b} = Eb$$

thus

$$FAx = Fb \Rightarrow Ax = b$$

Thus **x** is a basic solution with respect to the basis $B = [a_1 \dots a_m]$ and $E = B^{-1}$

TI Santé, IR, G et M1 ASI Hassan OMRAN Optimization 28 / 50

Finding a basic solution

In fact, for any
$$\mathbf{x}_D$$
 it is easy to see that $\mathbf{x} = \begin{bmatrix} \mathbf{x}_B \\ \mathbf{x}_D \end{bmatrix} = \begin{bmatrix} \tilde{\mathbf{b}} - \tilde{D}\mathbf{x}_D \\ \mathbf{x}_D \end{bmatrix}$ is a solution to $\mathsf{EA}\mathbf{x} = \mathsf{E}\mathbf{b}$ thus to $\mathsf{A}\mathbf{x} = \mathsf{b}$

Also, any solution to
$$A\mathbf{x} = \mathbf{b}$$
 has the form $\mathbf{x} = \begin{bmatrix} \mathbf{x}_B \\ \mathbf{x}_D \end{bmatrix} = \begin{bmatrix} \tilde{\mathbf{b}} - \tilde{D}\mathbf{x}_D \\ \mathbf{x}_D \end{bmatrix}$ for some \mathbf{x}_D

Changing the basic solution

Note that we denote the columns of A by \mathbf{a}_j $(1 \le j \le n)$ By elementary row operations we find the **Canonical Augmented Matrix**:

$$[A \ \boldsymbol{b}] \ \stackrel{\boldsymbol{E}}{\rightarrow} \ [I \ \tilde{\boldsymbol{D}} \ \boldsymbol{\tilde{b}}] = \begin{bmatrix} 1 & 0 & \cdots & 0 & y_{1\,m+1} & \cdots & y_{1\,n} & y_{1\,0} \\ 0 & 1 & & 0 & y_{2\,m+1} & \cdots & y_{2\,n} & y_{2\,0} \\ \vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & y_{m\,m+1} & \cdots & y_{m\,n} & y_{m\,0} \end{bmatrix}$$

we get the basic solution
$$\mathbf{x} = \begin{bmatrix} \tilde{\mathbf{b}} \\ \mathbf{o} \end{bmatrix} = \begin{bmatrix} \mathbf{y}_{10} \\ \vdots \\ \mathbf{y}_{m0} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 with respect to the basis $B = [\mathbf{a}_1 \dots \mathbf{a}_m]$

$$Ax = b \Leftrightarrow y_{10} a_1 + y_{20} a_2 + \cdots + y_{m0} a_m = b$$

and $[I \tilde{D}] = EA$ thus

$$E^{-1}[I \ \tilde{D}] = B[I \ \tilde{D}] = A \Leftrightarrow a_j = y_{1j} \ a_1 + y_{2j} \ a_2 + \dots + y_{mj} \ a_j \quad \forall m < j \le n$$

Hassan OMRAN Optimization TI Santé, IR, G et M1 ASI 30 / 50

Changing the basic solution

Changing the basic solution ⇔ changing the basis

We want to replace \mathbf{a}_p $1 \le p \le m$ by \mathbf{a}_q $m < q \le n$ in the basis B

In the old basis

$$a_q = \sum_{i=1}^m y_{i\,q} \, a_i = \sum_{i=1, \, i \neq p}^m y_{i\,q} \, a_i + y_{p\,q} \, a_p$$

In the new basis If $y_{pq} \neq 0$ which is equivalent to linear interdependency of $\{a_i\}_{1 \leq i \leq m} \ _{i \neq p} \cup a_q$

$$\mathbf{a}_p = \frac{1}{y_{pq}} \mathbf{a}_q - \sum_{i=1, i \neq p}^m \frac{y_{iq}}{y_{pq}} \mathbf{a}_i$$

In the old basis

$$a_{j} = \sum_{i=1}^{m} y_{ij} a_{i} = \sum_{i=1, i \neq p}^{m} y_{ij} a_{i} + y_{pj} a_{p}$$

In the new basis

$$\boldsymbol{a}_{j} = \sum_{i=1, i \neq p}^{m} (y_{ij} - \frac{y_{iq}}{y_{pq}}) \boldsymbol{a}_{i} + \frac{y_{pj}}{y_{pq}} \boldsymbol{a}_{q}$$

Changing the basic solution

In the old basis

$$y_{ij} \rightarrow y_{ij} - \frac{y_{iq}}{y_{pq}} y_{pj} \qquad i \neq p, \ \forall j$$

$$y_{pj} \rightarrow \frac{y_{pj}}{y_{pq}}$$

This operation is called **pivoting about the** p qth element.

This will result in a matrix whose gth column has zeros every where except the (p, q) entry which is 1.

We will see that the pivoting can be expressed easily using elementary row operations.

The simplex algorithm

The idea behind the simplex algorithm is to go from a BFS to another till finding the optimal solution

Two questions are still open:

- What vector a_p to take out of the the basis ?
- What new vector a_q to bring in to the the basis?

Consider a BFS $\mathbf{x} = \begin{bmatrix} \mathbf{x}_B \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \tilde{\mathbf{b}} \\ \mathbf{0} \end{bmatrix}$ remember this solution is feasible if $\mathbf{x} \ge \mathbf{0}$. Not all basic solutions are feasible.

We consider first the case of non-degenerate FBS.

The Simplex Algorithm

What vector \mathbf{a}_p to take out of the the basis?

Suppose that $\mathbf{a}_q \ q > m$ enters the basis, in the old basis we have :

$$y_{1q} \mathbf{a}_1 + \cdots + y_{mq} \mathbf{a}_m = \mathbf{a}_q$$

and

$$y_{1\,0}\,a_1+\cdots+y_{m\,0}\,a_m=b$$

thus

$$(y_{10} - \alpha y_{1q}) a_1 + \cdots + (y_{m0} - \alpha y_{mq}) a_m + \alpha a_q = b$$

we want to make one coefficient equals 0 while keeping the others positive (to guarantee the feasibility), this can be guaranteed by choosing

$$p = arg \min_{i} \left\{ \frac{y_{i0}}{y_{iq}}, \quad y_{iq} > 0 \right\} \qquad \alpha = \frac{y_{p0}}{y_{pq}}$$

If the minimum is achieved for more that one index we get a degenerate new solution. In this case, we choose the smallest p possible. Finally, if all y_{iq} are negative, the set of feasible solutions is unbounded.

The Simplex Algorithm

What new vector \mathbf{a}_q to bring in to the the basis?

Consider the current BFS
$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_B \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \tilde{\mathbf{b}} \\ \mathbf{0} \end{bmatrix}$$
. The cost function is

$$z = \boldsymbol{c}^T \boldsymbol{x} = c_1 x_1 + \cdots + c_n x_n$$

The initial cost function

$$z = [\boldsymbol{c}_B^T \ \boldsymbol{c}_D^T] \boldsymbol{x} = \boldsymbol{c}_B^T \tilde{\boldsymbol{b}} = c_1 y_{10} + \dots + c_m y_{m0} = z_0$$

 \mathbf{a}_{q} q > m enters the basis and \mathbf{a}_{p} leave the basis

$$p = arg \min_{i} \left\{ \frac{y_{i0}}{y_{iq}}, \quad y_{iq} > 0 \right\} \qquad \alpha = \frac{y_{p0}}{y_{pq}}$$

$$(y_{10} - \alpha y_{10}) a_1 + \cdots + (y_{m0} - \alpha y_{m0}) a_m + \alpha a_0 = b$$

thus

$$z = (y_{10} - \alpha y_{1q}) c_1 + \cdots + (y_{m0} - \alpha y_{mq}) c_m + \alpha c_q$$

$$z = z_0 + \alpha(c_q - (c_1y_{1q} + \cdots + c_my_{mq}))$$

Consider

$$z_q = c_1 y_{1q} + \cdots + c_m y_{mq}$$

then

$$z = z_0 + \alpha(c_q - z_q) \tag{5}$$

If a **reduced cost coefficient** is negative $r_q = c_q - z_q < 0$ then by entering a_q it is possible to decrease the cost function.

When obtaining several $r_q < 0$, then a common practice is to take the smallest one. If all $r_q = c_q - z_q \ge 0$ then the current BFS can be shown to be optimal. This defines the **stopping criterion**.

This can be shown by noting that any solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ has the form $\mathbf{x} = \begin{bmatrix} \mathbf{x}_B \\ \mathbf{x}_D \end{bmatrix} = \begin{bmatrix} \tilde{\mathbf{b}} - \tilde{D}\mathbf{x}_D \\ \mathbf{x}_D \end{bmatrix}$ for some

 $\mathbf{x}_D = [\mathbf{x}_{m+1}, \dots, \mathbf{x}_n]$ and showing that $\mathbf{z} = \mathbf{c}^T \mathbf{x} = \mathbf{z}_0 + \sum_{i=m+1}^n r_i \mathbf{x}_i$.

Clearly, for a feasible solution $(x_i \ge 0)$ $z = \mathbf{c}^T \mathbf{x}$ will be larger or equal to z_0 .

4 D > 4 A > 4 B > 4 B > B 900

Hassan OMRAN Optimization TI Santé, IR, G et M1 ASI 36 / 50

The Simplex Algorithm

Simplex Algorithm:

- Form a canonical augmented matrix corresponding to an initial basic feasible solution.
- Calculate r_i the reduced cost coefficients corresponding to the nonbasic variables
- If they are all non negative stop the current basic feasible solution is optimal
- Select the smallest r_a < 0
- If no $y_{i,a} > 0$, stop—the problem is unbounded; else, calculate $p = \arg\min_{i} \{\frac{y_{i0}}{v_{ia}}, y_{iq} > 0\}$ (If more than one index i minimizes $\frac{y_{i0}}{v_{ia}}$, we let p be the smallest such index.)
- Update the canonical augmented matrix by pivoting about the (p, q)th element.
- Go to step 2.

37 / 50

An example

Example

Solve the following linear programming problem

$$\max_{x} \quad 3x_{1} + 5x_{2}$$
s.t.
$$x_{1} + 5x_{2} \le 40$$

$$2x_{1} + x_{2} \le 20$$

$$x_{1} + x_{2} \le 12$$

$$x_{1} \ge 0, x_{2} \ge 0$$

The matrix form

Consider the standard form

$$\begin{array}{ll}
\min_{\mathbf{x}} & \mathbf{c}^{\mathsf{T}} \mathbf{x} \\
\text{s.t.} & A \mathbf{x} = \mathbf{b} \\
\mathbf{x} \ge \mathbf{0}
\end{array}$$

where
$$A = [B \ D]$$
 with $B = [\mathbf{a}_1, \cdots, \mathbf{a}_m]$, $D = [\mathbf{a}_{m+1}, \cdots, \mathbf{a}_n]$, $\mathbf{x} = \begin{bmatrix} \mathbf{x}_B \\ \mathbf{x}_D \end{bmatrix} \mathbf{c}^T = [\mathbf{c}_B^T \ \mathbf{c}_D^T]$.

The problem is equivalent to

$$\min_{\mathbf{x}} \quad \mathbf{c}_{B}^{\mathsf{T}} \mathbf{x}_{B} + \mathbf{c}_{D}^{\mathsf{T}} \mathbf{x}_{D}$$
s.t.
$$B \mathbf{x}_{B} + D \mathbf{x}_{D} = \mathbf{b}$$

$$\mathbf{x}_{B} \ge \mathbf{0}, \mathbf{x}_{D} \ge \mathbf{0}$$

If $\mathbf{x}_D = \mathbf{0}$ then $\mathbf{x} = \begin{bmatrix} \mathbf{b}^{-1} \mathbf{b} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_B \\ \mathbf{0} \end{bmatrix}$ is a BFS corresponding to B. In this case, the cost function value is

$$z_0 = \boldsymbol{c}_B^T B^{-1} \boldsymbol{b}$$

If $\mathbf{x}_D \neq \mathbf{0}$, in this case the solution is not basic. In this case, $\mathbf{x}_B = B^{-1}\mathbf{b} - B^{-1}D\mathbf{x}_D$. In this case, the cost function value is

$$z = \mathbf{c}_{B}^{T}\mathbf{x}_{B} + \mathbf{c}_{D}^{T}\mathbf{x}_{D}$$

$$= \mathbf{c}_{B}^{T}B^{-1}\mathbf{b} - \mathbf{c}_{B}^{T}B^{-1}D\mathbf{x}_{D} + \mathbf{c}_{D}^{T}\mathbf{x}_{D}$$

$$= \mathbf{c}_{B}^{T}B^{-1}\mathbf{b} + (\mathbf{c}_{D}^{T} - \mathbf{c}_{B}^{T}B^{-1}D)\mathbf{x}_{D}$$

and we obtain

$$z = z_0 + \mathbf{r}_D^T \mathbf{x}_D$$

If $\mathbf{r}_D \geq \mathbf{0}$ and since $\mathbf{x}_D \geq \mathbf{0}$, then the corresponding FBS $B^{-1}\mathbf{b}$ is optimal. If \mathbf{r}_D has a negative component, then it is possible to reduce the cost function by increasing the corresponding components of \mathbf{x}_{D} . That is, by changing the basis! 4 D > 4 A > 4 B > 4 B > B

Hassan OMRAN Optimization TI Santé, IR, G et M1 ASI 40 / 50

The matrix form

Let us now form the following matrix called the tableau of the LP problem

$$\begin{bmatrix} A & \mathbf{b} \\ \mathbf{c}^T & \mathbf{0} \end{bmatrix} = \begin{bmatrix} B & D & \mathbf{b} \\ \mathbf{c}_B^T & \mathbf{c}_D^T & 0 \end{bmatrix}$$

By performing some elementary row operations, or equivalently by the following matrix multiplying we aet

$$\begin{bmatrix} B^{-1} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} A & \mathbf{b} \\ \mathbf{c}^T & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{I}_m & B^{-1}D & B^{-1}\mathbf{b} \\ \mathbf{c}_B^T & \mathbf{c}_D^T & 0 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{I}_{m} & \mathbf{0} \\ -\mathbf{c}_{B}^{\mathsf{T}} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{m} & B^{-1}D & B^{-1}\mathbf{b} \\ \mathbf{c}_{B}^{\mathsf{T}} & \mathbf{c}_{D}^{\mathsf{T}} & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{m} & B^{-1}D & \overbrace{B^{-1}\mathbf{b}} \\ \mathbf{0} & \underbrace{\mathbf{c}_{D}^{\mathsf{T}} - \mathbf{c}_{B}^{\mathsf{T}}B^{-1}D} & -\mathbf{c}_{B}^{\mathsf{T}}B^{-1}\mathbf{b} \end{bmatrix}$$

The last matrix is called the **canonical tableau** corresponding to B. Once the tableau is calculated, it is possible to calculate the the tableau corresponding to a different basis using elementary row operations, such as the case for the basic simplex method.

An example

Example

Solve the following linear programming problem, using the matrix form

$$\max_{x} \quad 3x_{1} + 5x_{2}$$
s.t.
$$x_{1} + 5x_{2} \le 40$$

$$2x_{1} + x_{2} \le 20$$

$$x_{1} + x_{2} \le 12$$

$$x_{1} \ge 0, x_{2} \ge 0$$

Till now we supposed that we start with a BFS. This is not always possible. Starting with the standard form

$$\begin{array}{ll}
\min_{\mathbf{x}} & \mathbf{c}^{\mathsf{T}} \mathbf{x} \\
\text{s.t.} & A\mathbf{x} = \mathbf{b} \\
\mathbf{x} \ge \mathbf{0}
\end{array}$$

we need a method to find a BFS permitting to start the algorithm. This can be done by solving the

following artificial problem

$$\min_{\left[\mathbf{x}^{T} \ \mathbf{y}^{T}\right]^{T}} \quad y_{1} + y_{2} + \dots + y_{m}$$
s.t.
$$\left[A \ \mathbf{I}_{m}\right] \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \mathbf{b}$$

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} \ge \mathbf{0}$$

The two-phase simplex method

Note that the artificial problem has a trivial BFS $\begin{bmatrix} 0 \\ b \end{bmatrix}$, thus we can solve it using using the simplex method.

Theorem 3

The original problem has a BFS iff the artificial problem has an optimal feasible solution with zero cost function, that is with $\mathbf{v} = \mathbf{0}$.

Te above theorem can be used to initiate the simplex algorithm using the resulting solution. The resulting first n components form a FBS to the original problem.

This is done by deleting the columns corresponding to the artificial variables, and revert back to the original objective function.

This is called the two-phase simplex method.

Example

Solve the following linear programming problem, using the matrix form

The above linear programming problem can be written using the standard form

That is, we get a standard form problem

$$\begin{array}{ll}
\min_{\mathbf{x}} & \mathbf{c}^{\mathsf{T}} \mathbf{x} \\
s.t. & A\mathbf{x} = \mathbf{b} \\
\mathbf{x} \ge \mathbf{0}
\end{array}$$

with

$$A = \begin{bmatrix} 4 & 2 & -1 & 0 \\ 1 & 4 & 0 & -1 \end{bmatrix} \qquad \boldsymbol{b} = \begin{bmatrix} 12 \\ 6 \end{bmatrix} \quad \boldsymbol{c} = \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix}$$

It is not direct to find a BFS for this problem. To do so, we can solve

$$\min_{[\mathbf{x}^T \ \mathbf{y}^T]^T} \quad y_1 + y_2$$
s.t.
$$[A \ l_2] \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \mathbf{b}$$

$$\mathbf{x} \ge \mathbf{0}, \mathbf{y} \ge \mathbf{0},$$

with

Phase 1:

a_1	a 2	a 3	a_4	a 5	a 6	b
4	2	-1	0	1	0	12
1	4	0	-1	0	1	6
0	0	0	0	1	1	0

We should update the last row to transform it into a canonical tableau

\boldsymbol{a}_1	a 2	a 3	a 4	a 5	a 6	b
	2		-		-	
1	4	0	-1	0	1	6
-5	-6	1	1	0	0	-18

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 12 \\ c \end{bmatrix}, \qquad B = [\mathbf{a}_5 \ \mathbf{a}_6]$$

q = 2, \mathbf{a}_2 enters the basis (because of the -6).

 $y_{i,a} > 0$ = 2 thus \mathbf{a}_6 exits the basis.

	a 1	a 2	a 3	a ₄	a 5	a 6	b	[0]	
-	3.5	0	-1	0.5	1	-0.5	9	$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} 1.5 \\ 0 \\ 0 \\ 9 \end{bmatrix},$	
	0.25	1	0	-0.25	0	0.25	1.5	$\begin{vmatrix} 1 \\ 1 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix},$	$B=[\pmb{a}_5\;\pmb{a}_2]$
	-3.5	0	1	-0.5	0	1.5	-9	9	
-								- 101	

q = 1, \mathbf{a}_1 enters the basis (because of the -3.5). p = 1 thus \mathbf{a}_5 exits the basis.

Hassan OMRAN Optimization TI Santé, IR, G et M1 ASI 48 / 50

Phase 2:

We start by deleting the columns corresponding to the artificial variables, and reverting back to the original objective function:

$$\mathbf{x} = \begin{bmatrix} 18/7 \\ 6/7 \\ 0 \\ 0 \end{bmatrix}, \qquad B = [\mathbf{a}_1 \ \mathbf{a}_2]$$

We update the last row to transform the tableau into a canonical one

$$\mathbf{x} = \begin{bmatrix} 18/7 \\ 6/7 \\ 0 \\ 0 \end{bmatrix}, \qquad B = [\mathbf{a}_1 \ \mathbf{a}_2]$$

49 / 50

4 T L 4 T L 4 T L 2 0 0 0

Hassan OMRAN Optimization TI Santé, IR, G et M1 ASI

Thus, the optimizer is $x_1^* = 18/7$, $x_2^* = 6/7$ and the optimal cost is 54/7 which can be found in the tableau or can be calculated from $2x_1^* + 3x_2^*$.