Regression and SVM

October 27, 2015

Abstract

1 Logistic Regression

2 Support Vector Machines

Support Vector Machines are a machine-learning technique that is used to classify binary sets of data. We define θ as the normal to the decision hyperplane, and classify data points by $\operatorname{sgn}(\theta^{\intercal}x + \theta_0)$. In order to train the classifier, we initially set up the minimization problem (known as **Hard-SVM**):

$$\max_{\theta,\theta_0} \frac{1}{||\theta||} \min_{1 \le i \le n} y^{(i)} (\theta^{\mathsf{T}} x^{(i)} + \theta_0) \tag{1}$$

However, we cannot satisfy this minimization if the training set is not linearly separable. Therefore, we add a "slack variable" to each constraint, which is a measure of the "wrongness" of the decision boundary when classifying that point. We call these slack variables ξ_i . We then desire to minimize

$$\min_{\theta,\theta_0,\xi} \frac{\lambda}{2} ||\theta||^2 + \frac{1}{n} \sum_{i=1}^n \xi_i, \tag{2}$$

s.t.
$$y^{(i)}(\theta^{\mathsf{T}}x^{(i)} + \theta_0) \ge 1 - \xi_i,$$
 (3)

$$\xi_i \ge 0, i \in n \tag{4}$$

However, we find it more computationally efficient to solve the dual form of the Soft-SVM:

$$\max_{\alpha \in \mathbb{R}^n} \left[\sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} (x^{(i)})^{\mathsf{T}} x^{(j)} \right]$$
 (5)

$$s.t. \quad 0 \le \alpha_i \le C \tag{6}$$

$$\sum_{i} \alpha_i y^{(i)} = 0 \tag{7}$$

To provide some intuition: α_i is the weight of each training point on the final decision boundary. It is 0 for all $x^{(i)}$ that are farther from the decision boundary than the margin, so that only the "important" $x^{(i)}$ are "support vectors". C is the maximum value of α , and determines the size of the margin. **ADD SOMETHING ABOUT WHICH WAY THAT WORKS HERE**. To return from α to the more familiar θ and θ_0 , we plug in:

$$\theta = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)} \tag{8}$$

$$\theta_0 = \frac{1}{\mathcal{M}} \left[\sum_{j \in \mathcal{M}} \left(y^{(j)} - \sum_{i \in \mathcal{S}} \alpha_i y^{(i)} (x^{(j)})^{\mathsf{T}} x^{(i)} \right) \right]$$
(9)

Where $\mathcal{M} = \{i : 0 < \alpha_i < C\}$ and $\mathcal{S} = \{i : 0 < \alpha_i\}$.

For example, given the data X = [1, 2; 2, 2; 0, 0; -2, 3], Y = [1; 1; -1; -1], we generate the following objective function:

$$\min_{\alpha \in \mathbb{R}^n} \left[\frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} (x^{(i)})^{\mathsf{T}} x^{(j)} - \sum_{i=1}^n \alpha_i \right]$$
 (10)

This can be reformulated to be plugged into a standard quadratic programming solver, with **blah blah blah**

We also note that as C increases, the number of boundary points decreases. Thus, the number of support vectors decrease. For the nonseparable example, for C = (.01, .1, 1, 10, 100), we see that $\mathcal{M} = (400, 324, 133, 68, 59)$.

As per the usual procedure with the approximately equivalent λ , to select the correct C, we first compute α for various values of C using a training set, then determine the validation error using a validation set. We select the C which produces the lowest validation error in order to maximize the generality of our solution.