AD-A255 486

After High School, Then What?

A Look at the Postsecondary Sorting-Out Process for American Youth

Gus W. Haggstrom, Thomas J. Blaschke, Richard J. Shavelson

DISTRIBUTION STATEMENT A

Approved to: public released
Distribution Universed

The research described in this report was sponsored by the Assistant Secretary of Defense (Force Management and Personnel). The research was conducted in the National Defense Research Institute, RAND's federally funded research and development center supported by the Office of the Secretary of Defense and the Joint Staff, Contract No. MDA903-85-C-0030.

ISBN: 0-8330-1161-8

The RAND Publication Series: The Report is the principal publication documenting and transmitting RAND's major research findings and final research results. The RAND Note reports other outputs of sponsored research for general distribution. Publications of RAND do not necessarily reflect the opinions or policies of the sponsors of RAND research.

R-4008-FMP

After High School, Then What?

A Look at the Postsecondary Sorting-Out Process for American Youth

Gus W. Haggstrom, Thomas J. Blaschke, Richard J. Shavelson

Prepared for the Assistant Secretary of Defense (Force Management and Personnel)

DTIC QUALITY INSPECTED I

92 9 03 056

RAND

92-24632

142py

PREFACE

This report documents a RAND study of the postsecondary activities of recent high school graduates and dropouts. The study brings together data from several sources to profile America's high school graduating classes during the 1980s and track their educational and vocational pursuits through the first five years after graduation. Special attention is given to college enrollment and persistence patterns as well as to the flows of young people into military service from other postsecondary activities. Projections of numbers of high school graduates by state, race, and sex to the year 2000 are provided to indicate the implications of these flows for the nation's human resources over the next decade.

This research was sponsored by the Office of the Assistant Secretary of Defense (Force Management and Personnel). The research was conducted in the Defense Manpower Research Center, part of RAND's National Defense Research Institute, a federally funded research and development center sponsored by the Office of the Secretary of Defense and the Joint Staff. The report should be of interest to policymakers, educators, and scholars as a comprehensive source of information on America's high school graduates and their postsecondary vocational and educational activities.

SUMMARY

The nation's human resources depend critically on the extent to which young people complete high school and undertake postsecondary education and training that will prepare them for productive careers. During the 1980s, 10 million school-age youth dropped out of high school before graduation; most of them face bleak employment prospects in the years ahead. Another 28 million completed high school and began to sort themselves into educational programs and career paths. Some took entry-level jobs, entered apprenticeship programs, or joined the military. Others enrolled in college or entered vocational-technical schools. Still others took summertime breaks or worked at temporary jobs, many planning to enter college full-time in the fall.

This study was undertaken to examine patterns of military service, college enrollment, and civilian labor force participation among recent high school graduates and dropouts. The main objectives of the study were to profile the high school graduating classes and determine the key factors that affect the postsecondary sorting-out process in the 1980s, paying special attention to the flows of high school graduates into and out of postsecondary educational activities and military service.

The activities that young people pursue after high school are disparate and depend on a multitude of factors. Section I provides an overview of the postsecondary sorting-out process from a human resources perspective. Despite the huge influx of young people into the educational pipeline and labor force during the 1980s, the supply of entry-level workers has not kept pace with the demand for technicians, skilled craftsmen, and college-trained workers, eroding the labor surpluses that existed in many fields in the 1970s and early 1980s. With projections pointing to a 15-percent decline in the size of the 18-year age group between 1990 and 1992, there are mounting concerns about the adequacy of America's human resources to meet the requirements for trained manpower in the 1990s.

As in the past, America looks to its youth and the educational system to fill the gap. Hence, the flows of high school graduates and dropouts into the educational pipeline and the labor force are matters of national concern. Yet, the educational and vocational activities that young people pursue after leaving high school are poorly tracked. Nationally published statistics at best provide only crude indicators of the flows into postsecondary education, military service, and civilian employment, and there is almost no information on the flows across activities as young people redirect their efforts to reflect changes in educational and career goals.

To permit a detailed examination of the postsecondary pursuits of high school graduates in the 1980s, a comprehensive data base was compiled for this study. The primary data source was High School and Beyond (HS&B), a rich longitudinal study of over 26,000 high school seniors in the Classes of 1980 and 1982 who were the subjects of follow-up surveys in 1982, 1984, and 1986. Numerous extensions to this data base were made to enhance its utility for this research and link it to other sources of information on American youth. In particular, supplemental data on the military service activities of the HS&B participants were obtained through the Defense Manpower Data Center.

Also, steps were taken to provide detailed demographic information on the sizes and compositions of high school graduation classes in the 1980s and to circumscribe the school dropout problem. It is a sorry fact that national data bases cannot provide accurate

estimates of the numbers of high school graduates and dropouts in any year, let alone the disaggregated estimates by state, race, and sex that are needed to support studies of human resources. Building on existing data from several sources and relying heavily on Census Bureau estimates and projections of age-group sizes, we derived estimates and projections of numbers of high school graduates by state, sex, race, and Hispanic origin for the years 1980–2000. See Section II.

According to estimates for 1986—the last year for which state estimates were available for both public and private schools, the high school graduation rate was 73 percent (71 percent for males, 76 for females), implying that 27 percent of the 18-year-olds in 1986 had already dropped out of school or would do so before graduation. Although high school graduation rates have moved up and down by a few percentage points over the last 25 years, the 1986 rate is almost exactly the same as it was in 1976 and 1965.

Section III examines patterns of postsecondary activities among high school graduates and dropouts during the first year after leaving school. Because many high school graduates take a break before entering college or military service, the focus of attention here is the main activity as of October in the year of graduation. For the purposes of this research, four categories of main activities were identified: full-time student, military service, civilian employment, and "other" (not enrolled full-time and not employed). The full-time student category was divided into three subcategories by type of institution: four-year college (or university), two-year college, and vocational-technical school.

Time series of college entrance and employment rates among high school graduates and dropouts indicate that activity patterns during the first year after leaving school have remained remarkably stable since the early 1970s, with some increases in both college enrollment and military enlistment rates in the early 1980s. Among graduates in the Classes of 1980 and 1982, only 40 percent were enrolled full-time in college in October following graduation, and another 7 to 8 percent were enrolled part-time. Approximately 8 percent of the graduates in these classes entered military service before 1986, but only 3 percent entered within six months after graduation. Except for the fact that military entrants were mostly male, they differed only slightly from their classmates in terms of demographic characteristics. A higher proportion of them came from lower socioeconomic status families and from minority groups, but in terms of measures of academic aptitude, they were on a par with their classmates.

More detailed analyses of HS&B data confirmed findings from previous studies indicating that academic aptitude is the primary factor affecting individual college enrollment decisions of high school graduates. However, about a third of the 1980 and 1982 graduates in the top academic aptitude quartile were not enrolled full-time in college in October following graduation, suggesting that other factors also play important roles in college enrollment decisions. Controlling for differences in academic aptitude and socioeconomic status, we find that graduates from private schools and those of Asian or Pacific Islander descent had significantly higher college entrance rates.

Section IV presents analyses of postsecondary activities during the rest of the five-year period following high school, including estimates of six-month transition rates across main activities. This examination reveals considerable turbulence in activity patterns, much of it into and out of short-term civilian jobs. For college entrants, progress toward degree completion was notably sporadic and drawn out. Among the 1980 graduates who enrolled full-time in a four-year college directly after graduation, only 46 percent had earned bachelor's degrees through February 1986.

In general, our findings indicate that a substantial proportion of high school seniors in the 1980s lacked direction when they left school, and that their subsequent activities were marked by false starts and backtracking. In October following graduation, only about half of the 1980 graduates were pursuing the activities they had planned to pursue as seniors. Their later shifts across activities indicated that many of them were having difficulty finding niches in the adult world. Only one-sixth of the graduates who entered four-year colleges after graduation enrolled continuously until they had completed bachelor's degrees. With half of the college entrants dropping out before they earned degrees, the flow of students through the educational pipeline was greatly impeded. The resulting losses of talent, on top of the huge losses represented by persistently high dropout rates in the secondary schools, point to the conclusion that America made poor use of its human resources during the 1980s and will be hard put to meet its manpower requirements in the 1990s.

ACKNOWLEDGMENTS

The authors would like to thank W. S. Sellman, Director for Accession Policy, Office of the Assistant Secretary of Defense (Force Management and Personnel), for his interest in and sponsorship of this research. We are also indebted to Zahava Doering, former Chief of the Survey and Market Analysis Division at the Defense Manpower Data Center (DMDC), for her help in getting this project under way and her active collaboration during the early stages of the work. Others at DMDC who lent their considerable talents to our work were Jerry Lehnus, John Richards, and Elaine Sellman.

At RAND, we are grateful to Glenn Gotz, who headed the Defense Manpower Research Center during the course of this study, and to Bernard Rostker, Glenn's successor in that role. Thanks also go to John Winkler, who collaborated with us in the initial phases of the study, and to Richard Buddin and Joyce Davidson, who provided formal reviews of the report. Finally, we would like to thank Robert Klitgaard and Laurel McFarland for their comments on earlier drafts of the report.

CONTENTS

PRE	FACE	iii
SUN	MARY	v
ACE	NOWLEDGMENTS	ix
FIG	URES	xiii
TAB	LES	χv
Sect I.	INTRODUCTION The Dwindling Supply of High School Graduates Labor Market Uncertainties Tracking High School Graduates and Dropouts Phases in the Sorting-Out Process Conceptual Framework	1 2 3 4 5
II.	Pathways to Military Service SIZING UP AMERICA'S HIGH SCHOOL GRADUATES AND DROPOUTS The School Dropout Problem Numbers of Entrants into the Sorting-Out Process Numbers of High School Graduates Numbers of Graduates from Private Schools The Changing Composition of the Graduating Classes	9 10 11 16 17
III.	MAIN ACTIVITIES AFTER LEAVING SCHOOL Long-Term Trends Changes in the Sorting-Out Process in the 1970s and 1980s Enlistments in the All-Volunteer Force October Activities of Graduates and Dropouts Individual Differences Patterns of Main Activities After Graduation Plans Versus Realizations Multivariate Analyses of Track Entrance Rates	23 25 27 28 32 35 38
IV.	FINDING NICHES IN THE ADULT WORLD Models and Mavericks Distributions Across Main Activities Changing Courses Student Persistence Sources of New Entrants Preservice Activities of Enlistees Timing of Service Entry Characteristics of Military Entrants	52 54 58 58 62 63 67
V.	CONCLUSIONS	76

Appen	lix	
A.	ESTIMATING NUMBERS OF HIGH SCHOOL GRADUATES	9
B.	THE HS&B/DMDC DATA BASE11	8
BIBLI	OGRAPHY	7

FIGURES

1.	Main activities after high school	6
2.	Numbers of 18-year-olds and high school graduates, 1970–2000	13
3.	Student/employment status in October by year of graduation	30
4.	Timing of service entry for HS&B participants in Class of 1980	70
5.	Preservice main activities among military entrants in Class of 1980	71

TABLES

1.	Estimates and projections of the resident population of ages 17 and 18 as of	
	July 1, 50 states and D.C.: 1970–2000	12
	Numbers of 17-year-olds by state, sex, race, and Hispanic origin: 1980	14
3.	Numbers of high school graduates by control of school and sex, 50 states	
	and D.C.: 1960–1989	16
4.	Numbers of high school graduates by control of school and state: 1980–1986	18
	High school graduation rates by state: 1980–1986	21
	Full-time freshman enrollments and freshman enrollment rates by sex:	
-	Fall 1967 to Fall 1987	26
7	Numbers of nonprior service accessions by sex and high school graduate	
٠.	status: 1972–1987	27
g	Enrollment and employment statuses of recent high school graduates in	٠.
Ų.	October, 1967–1987	29
۵	Employment statuses of recent high school dropouts	23
J .		0.1
10	in October, 1967–1987	31
10.	Percentages of Class of 1961 entering college within five years by sex,	0.0
	socioeconomic status quartile, and academic aptitude quartile	33
11.	Percentages of high school graduates enrolled as full-time college students in	
	October by sex, socioeconomic status quartile, and academic aptitude quartile:	
	Classes of 1980 and 1982	34
12.	Percentages of high school graduates in military service in October by sex,	
	socioeconomic status quartile, and academic aptitude quartile: Classes	
	of 1980 and 1982	36
13.	Estimated percentages of high school graduates by main activity in October:	
	Classes of 1980 and 1982	37
14.	Estimated numbers of high school graduates by main activity in October,	
	plans category, and sex: Class of 1980	40
15.	Estimated numbers of high school graduates by main activity in October,	
	plans category, and sex: Class of 1982	41
16	Logistic regression results for college entrance and military enlistment	
	proportions: Class of 1981	45
17	Logistic regression results for proportions of seniors planning to enter	40
17.	college or military service: Spring 1980	47
10		4 1
10.	Logistic regression results for proportions of sophomores planning to enter	
	college or military service: Spring 1980	48
19.	Logistic regression results for proportions of graduates enrolled in college	
	in October: Classes of 1980 and 1982	50
20.	Logistic regression results for proportions of male graduates in military	
	service in October: Classes of 1980 and 1982	51
21.	Distribution of 1980 high school graduates across main activities: October	
	1980–October 1985	55
22.	Distribution of 1982 high school graduates across main activities: October	
	1982–October 1985	56
23.	Distribution of 1980 high school dropouts across main activities: October	
	1980–October 1985	57
24.	Estimated six-month transition rates across main activities for members of	
	the Class of 1980: October 1980–October 1985	59

2 5.	Estimated six-month transition rates across main activities for members of	
	the Class of 1982: October 1982–October 1985	61
26 .	Estimated six-month backward transition rates for members of the Class of	
	1980: October 1980–October 1985	64
27.	Estimated six-month backward transition rates for members of the Class of	
	1982: October 1982–October 1985	66
28.	Distribution of military entrants from Class of 1980 across main activities:	
	October 1980–October 1985	68
2 9.	Distribution of military entrants from Class of 1982 across main activities:	
	October 1982-October 1985	69
30.	Distribution of lag times between high school graduation and service entry:	
	Classes of 1980 and 1982	72
31.	Summary statistics for military entrants by timing of service entry: Classes	.
	of 1980 and 1982	74
	Estimated numbers of high school graduates by state and category: 1980-1989	81
	Projected numbers of high school graduates by state and category: 1990–2000	90
	Estimated numbers of 17-year-olds by state and category: 1980–1989	100
	Projected numbers of 17-year-olds by state and category: 1990–2000	107
А.э.	Percentages of 19-year-olds who reported having completed four years	114
A C	of high school by sex, region, race, and Hispanic origin: April 1980	114
A.O.	Percentages of high school students enrolled in private schools by region,	117
D 1	race, and Hispanic origin: April 1980	111
D.1.	school, and census division: 1980	120
חם	Numbers of high school graduates by race, Hispanic origin, control of	120
D.Z.	school, and census division: 1982	121
ВЗ	Summary statistics for measures of socioeconomic status and academic	121
IJ.IJ.	aptitude by graduation and military service statuses	125
	aphiliade by Braddanon and minitary service statuses	120

I. INTRODUCTION

As America enters the 1990s, there are mounting concerns about the adequacy of the nation's human resources. These concerns are not new. It has long been recognized that the 18-24 age group would shrink from the early 1980s through the mid-1990s, meaning fewer entry-level workers, fewer students in the educational pipeline, and more competition for high school graduates among the nation's colleges, military services, and civilian employers. With the prospect of greatly reduced numbers of high school graduates in the 1990s and with projections pointing to shortages of college-educated workers in many fields in the late 1990s, there is room to question whether enough young people will pursue the kinds of postsecondary training needed to satisfy the nation's future manpower requirements.

Eight consecutive years of economic expansion from 1982 to 1990, marked by steadily increasing employment, depleted the surplus labor supply that existed in the early 1980s. Reflecting the continual shift from labor surplus to shortage, unemployment rates fell steadily from their peak of 10.8 percent in December 1982, dipping below 5 percent in March 1989 for the first time in 15 years. After years of recruiting success in which the Armed Forces substantially upgraded their enlistment standards, the military began experiencing recruiting difficulties in late 1988. Shortages of college-trained workers—especially teachers and nurses—have been widely reported for some time, and the National Science Foundation (NSF) projects a shortfall of about 500,000 scientists and engineers by the end of the century (Holden, 1989).

Less visible is the reported increasing demand for entry-level technicians, administrative support personnel, and skilled craftsmen, who ordinarily complete high school and some postsecondary training but not a four-year college degree. According to recent projections by the Bureau of Labor Statistics, technicians and related support occupations will show the most rapid growth during the 1990s. These occupations, like most military occupational specialties, draw from the shrinking pool of high school graduates who do not enter four-year college programs after graduation but are qualified to undertake postsecondary education and on-the-job training in technical fields (Kutscher, 1989).

THE DWINDLING SUPPLY OF HIGH SCHOOL GRADUATES

As in the past, the nation will be relying on its high school graduates to fill the gaps, but there will be fewer of them in the 1990s, and there are reasons to doubt that they will sort themselves into postsecondary educational and career paths in sufficient numbers to meet future employment demands. School dropout rates remain high, and many high school graduates have deficiencies in basic skills that severely limit their employment prospects. Only a small proportion of them have the aptitude and resources to complete college programs requisite to filling the nation's most pressing needs for professional and technical workers.

In considering how the nation's manpower requirements will be met in the 1990s, it is natural to look first at the numbers of young people who will be completing school and entering the workforce. Of immediate concern to college and military recruiters is the outlook for greatly reduced numbers of 18-year-olds and high school graduates over the next few years. Census Bureau projections indicate that the 18-year-old age group will shrink by 15 percent

between 1989 and 1992. With minorities constituting an increasing proportion of the school age population and with school dropout rates remaining persistently high, especially among Hispanics, the near-term prospect of an upward surge in high school graduation rates appears dim. The clear implication is that the nation's colleges, military services, and civilian employers will be competing for substantially fewer graduates over the next few years.

How many fewer? Which states will be most affected? How will the racial/ethnic mix of the graduating classes change? How will college enrollments and military recruitment be affected? There are serious gaps in the federal data base that make it impossible to answer these questions precisely, but the questions are too important to gloss over. To a certain extent, partial answers can be provided by piecing together existing information on the numbers, characteristics, and activities of recent high school graduates.

In Section II, we take a hard look at the demographics pertaining to high school graduates and dropouts. Drawing on data from several sources and Census Bureau estimates of age group sizes, we provide detailed estimates and projections of numbers of high school graduates by state, sex, and race for the years 1980–2000. These projections point to overall declines of 8, 5, and 2 percent in 1990, 1991, and 1992, followed by gradual increases averaging 2 percent per year from 1993 to 2000. If these projections hold, the total number of graduates from 1990 to 1994 will be 10 percent less than the five-year total for 1985–1989, which would imply a considerable diminution in the educational pipeline for college-trained personnel.

LABOR MARKET UNCERTAINTIES

The main uncertainties underlying assessments of the adequacy of our human resources over the next decade stem from two factors. First, the future growth of the economy cannot be predicted accurately. A deep recession, such as the one in 1981–82, would cut the demand for entry-level workers in most occupations and could send unemployment rates back above 10 percent. Second, even if the future state of the economy were known, scholars could only guess at the timing and extent of shortages in most fields, because the pipeline into and mobility within the labor force are poorly tracked.

Despite the attention given to shortages of college-trained workers in many fields, the national data base for gauging the size and characteristics of the nation's college-trained workforce is in a sorry state. In particular, the extent of the "crisis" in education due to the shortage of qualified teachers cannot be ascertained because of the lack of basic data on the numbers, qualifications, and characteristics of teachers (Haggstrom, Darling-Hammond, and Grissmer, 1988).

The term "crisis" is also being used to describe the outlook for scientists, engineers, and technicians, but reliable statistics on the numbers and employment patterns of workers in these fields do not exist (Panel to Study the NSF Scientific and Technical Personnel Data System, 1989). To underscore the uncertainties that have confounded attempts to use survey data to assess the demand for college-trained workers in technical fields, NSF estimates that the number of employed scientists and engineers grew by over 8 percent per year between 1980 and 1986, reaching 4.6 million in 1986. That figure is half again as large as the Bureau of Labor Statistics estimate of 3.1 million, which is consistent with a much slower 1980–86 growth rate of about 5 percent per year.

On the supply side, the educational pipeline for new entrants into the labor force is also possily tracked. Between decennial censuses, the primary continuing source of information

on the educational and vocational activities of recent high school graduates and dropouts is the Current Population Survey (CPS). This monthly survey fielded by the Census Bureau relies on samples of nearly 56,000 household units each month to gather the raw data supporting the "official" statistics on employment, unemployment, income, educational attainment, enrollment, and living arrangements that appear in Current Population Reports, Employment and Earnings, and Monthly Labor Review.

Although the CPS is conducted and evaluated using state-of-the-art methods, statistics drawn from the CPS are subject to the same errors that beset all population surveys. Because of the sparseness of the CPS sample for gathering information on, say, Hispanic male high school graduates in the Class of 1986, disaggregated estimates of employment, educational attainment, and enrollment derived from the CPS are subject to large sampling errors (U.S. Bureau of the Census, 1988b). Moreover, the CPS is plagued by nonsampling errors due to incomplete population coverage, nonresponse errors, and response errors (Shapiro and Kostanich, 1988). As Sections II and III show, time series on educational attainment and college enrollment derived from the CPS conflict with statistics drawn from other sources.

The National Center for Education Statistics (NCES) gathers data from schools and colleges that provide additional information about the educational pursuits of high school graduates. The earned degrees data compiled annually by NCES provide the counts of college graduates by sex, race, and field of study that appear in the *Digest of Education Statistics*. Comparable counts of high school graduates do not exist, because NCES has no systematic means for gathering data from private schools. At best, existing national statistics provide crude indicators on how many high school graduates enter college, join the military, and enter the labor force each year, but detailed information is missing on who goes where, who persists, and for how long.

TRACKING HIGH SCHOOL GRADUATES AND DROPOUTS

To better understand the implications of demographic trends on the pipeline into the workforce and to guide youth policies bearing on student aid, military recruitment, and national service, we need far more comprehensive information on which students enter the various postsecondary tracks and how, when, and why young people change courses in pursuing their educational and vocational objectives. In short, we need a much better understanding of the *sorting-out process*—the process by which young people with widely differing talents and ambitions choose among competing alternatives such as military service, higher education, civilian employment, or homemaking as they make the transition from youth to adulthood.

One of the difficulties in tracking the activities of young people is that, in essence, there is not a single sorting-out process but myriad processes depending on a variety of factors and individual circumstances that affect student outcomes. Only in the abstract is the sorting-out process for high school graduates the same as it is for dropouts. Although the differences in outcomes may not be as stark for other categories, we clearly need to distinguish the patterns of males vs. females, public school graduates vs. private, rural vs. urban, minority vs. majority, high-achieving students vs. low, rich vs. poor, college-planners vs. others. Many of these categories have several subclasses that merit attention, and there are other categories of students, such as handicapped students, unmarried mothers, and drug addicts, whose postsecondary activities are matters of public concern.

Because there is no such thing as a "typical" high school senior and many young people change paths numerous times before they find their niches, it is not surprising that there is no dominant pattern of postsecondary behavior. The closest approximation is the traditional "lockstep" pattern leading to a college degree: enrollment as a full-time student in a four-year college in the fall after high school graduation, followed by continuous enrollment (except perhaps for summer terms) until graduation four years later. However, as will be seen in Section IV, only about one in six graduates in the Class of 1980 followed that path.

PHASES IN THE SORTING-OUT PROCESS

For the most part, the postsecondary paths are far less direct and marked with flux. This is not to say that they are unpatterned. To characterize the patterns, it is convenient to divide the sorting-out process for a given age cohort into three phases. The first phase is the period before high school graduation, when a substantial proportion of the age cohort make a crucial decision—to drop out of school. As our examination of the "school dropout problem" in Section II will show, the overall proportion of high school dropouts has been around one in four for the last 20 years—a colossal, persistent wastage of talent. That this wastage of talent is not uniform across the nation is evident from the substantial variability in dropout rates across states, sexes, and race/ethnic categories.

The period before graduation is also important to the graduating seniors who make their plans and take steps toward realizing them by applying for admission to college, preparing to enter other training programs, or seeking employment. For some graduates, their plans as seniors constitute blueprints to their future actions at branch points in the sorting-out process; for others, plans are at best vague and dependent on contingencies. Whether the seniors' plans are realized or not, they reflect the seniors' best guesses about their future actions as they approach a critical juncture in their lives.

The second and perhaps most important phase in the sorting-out process occurs right after graduation when the young adults enter their initial postsecondary "tracks" in keeping with their long-term plans. Many graduates take a break of from one to four months after graduation, often for temporary work activity, before they pursue full-time educational or vocational activities consonant with their career goals. The June graduates who plan to complete a four-year degree in the traditional lockstep manner typically defer college entrance until September. Military enlistees also often delay their entry into the service for several months. To allow for these delays, we shall identify each graduate's initial postsecondary track as the main activity pursued in October in the year of graduation. In Section III, we present a detailed examination of the main activities of the Classes of 1980 and 1982 to profile the track memberships and assess the relevance of sex, ability, socioeconomic status, race/ethnicity, and senior plans to college entrance and military enlistment.

The third phase of the sorting-out process is the remainder of the five-year period following high school graduation. Although some high school graduates have definite plans leading to well-defined career objectives and they take direct routes to fulfill them, they may be in the minority. For a substantial portion of graduates, postsecondary activities appear to be less ordered and more dependent on evolving circumstances, such as moving away from home, encountering untoward work or student experiences, or starting a family. For them, sorting out is a process marked by flux, false steps, and changes of plans. Because their day-to-day activities are less tied to specific career goals, they may be more amenable to moving into new endeavors, perhaps to include military service.

CONCEPTUAL FRAMEWORK

To describe the entrants into the postsecondary sorting-out process during the 1980s and to track their subsequent transitions into and out of postsecondary education, military service, and civilian employment, we shall implicitly adopt a "cohort analysis" perspective. The cohorts of primary interest in this study are the successive high school graduating classes and the annual cohorts of school dropouts. For the present discussion, the term "Class of 1985" will refer to the combined cohort consisting of the graduating seniors in 1985 and the dropouts who last attended school in 1985.

Except for the Classes of 1980 and 1982, suitable data do not exist to profile the classes in terms of their sizes, race/ethnic composition, and dispersion across states and school types. To fill this gap, we treat the 17-year age group as of July 1 in the year preceding the graduation year as a synthetic cohort for the purpose of prescribing the sizes and race/ethnic compositions of the senior classes in each state. That is, we treat Census Bureau estimates and projections of sizes of age groups by state, sex, race, and Hispanic origin as proxies for the corresponding numbers of persons of school-leaving age. To estimate high school graduation rates within cohorts of school-leavers, we divide the number of graduates in any year by the number of 17-year-olds in the preceding year.

The Classes of 1980 and 1982 receive special attention in this study, because they are the classes for which there exist detailed longitudinal micro-level data on the activities of large numbers of graduates and dropouts. These data will be used to provide an in-depth examination of the sorting-out process of these two cohorts. We also draw on time series from several sources to examine trends in college entrance rates, military enlistment rates, and rates of employment over the last 20 years. This examination shows that the sorting-out process has been remarkably stable over time, except for the gradual closing of the gap between the sexes in college entrance rates and a trend toward higher enlistment rates in the early 1980s. This stability in the overall rates over time supports the hypothesis that the transition rates for the Classes of 1980 and 1982 have persisted without material change through the 1980s.

The micro-level data on the Classes of 1980 and 1982 come from High School and Beyond (HS&B), a rich longitudinal data base on over 26,000 high school sophomores and seniors in 1980 who were the subjects of follow-up surveys in 1982, 1984, and 1986. On the follow-ups, the HS&B participants were asked to provide information about each episode of employment and educational activity that they had experienced, including the time spans of the activities. Using these data on the students' educational and vocational activities from 1980 through February 1986 and additional data on military service provided by the Defense Manpower Data Center, we have classified each HS&B participant's main activity into one of four categories each month: (1) full-time student, (2) military service, (3) civilian employment, and (4) other (not enrolled full-time and not employed). To characterize these activities more fully, we also encoded subcategories of special interest. For example, the full-time student category has four subcategories corresponding to institutional levels: high school, four-year college, two-year college, and vocational-technical school. See App. B for further details.

Figure 1 provides a schematic representation of the flows of the senior classes into postsecondary tracks and the subsequent transitions across main activities that this classification scheme attempts to capture. Although our data base permits examining month-to-month trans

Fig. 1-Main activities after high school

sitions, we only report six-month transition rates in this study, identifying "TIME 1" with October in the year of graduation, "TIME 2" with the following April, and so forth.

In addition to providing the episodic data on employment and education needed to classify the participants' main activities each month, HS&B also provides key background information on the participants and their schools, including individual measures of cognitive ability, socioeconomic status, and postsecondary plans. These data permit examining the extent to which background factors affect young people's educational and vocational decisions at branch points in the sorting-out process.

PATHWAYS TO MILITARY SERVICE

Of special interest to this study are the high school graduates in the 1980s who enlisted in the Armed Forces. The services maintain comprehensive personnel files on their enlistees after they enter the service, but the military has only limited information on the enlistment decision process, i.e., the sequence of events that have led one of every ten graduates (and one of every six males) to enter the service during the 1980s. One of the principal purposes of this study is to gain a better understanding of the pathways to military service among recent high school graduates.

Since 1983, over 90 percent of nonprior service enlistees have been high school graduates. Only a small percentage of the recruits had completed more than a year of college

before enlisting, but many had enrolled in college or vocational-technical schools for shorter periods of time. Although the proportion of female recruits has been increasing over time, male recruits continued to outnumber females by about seven to one in 1987. As will be seen in Section IV, the military enlistees from the Classes of 1980 and 1982 were on a par with their classmates in terms of academic ability, but the enlistees had lower socioeconomic status on average, and they were more likely to come from minority groups.

From a human resources perspective, the military plays several roles in the sorting-out process. It not only serves as an employer of about 300,000 new recruits per year but as a huge vocational training institution, providing classroom instruction and on-the-job training for a wide array of occupational specialties. Through the G.I. Bill and the Army College Fund, the military also provides young people opportunities to finance college educations that might otherwise be beyond their means. Here, the fact that a disproportionate number of enlistees come from low-income and minority groups is significant, because these groups are underrepresented in the professional and technical occupations that are expected to evidence shortages in the 1990s.

Because the services are currently seeking to reduce overall force sizes, the services' requirements for new recruits may be somewhat lower in the next few years than in the recent past. However, the military faces a greatly reduced supply of potential recruits and increasing competition with the nation's colleges and civilian employers. If the services continue to restrict their recruiting to high school graduates, their target population will continue to shrink through 1992.

In part, the Armed Forces' demand for high school graduates with high aptitude stems from the need for personnel to undertake technical training in a wide spectrum of occupational specialties and to operate and maintain high-technology weapons systems. Competition with the civilian labor force for youth with aptitudes for such technical areas as electronics, computers, and communications may be increasingly severe over the next few years.

The impending decline in the supply of high school graduates also means that the military will face increasing competition with colleges and universities for high school graduates with college aspirations. In the 1970s, this competition was minimal. The Armed Forces and the colleges were recruiting from two dissimilar subpopulations. From the advent of the All-Volunteer Force in 1972 through 1980, over a third of the recruits were high school dropouts, and few young people enlisted who had college training or planned to complete college. Earlier studies of the potential for military recruiting from two-year colleges and postsecondary vocational schools bore this out, indicating that the military was having little success in recruiting college students (Shavelson, Haggstrom, and Blaschke, 1984).

But during the 1980s, the disjunction between military service and college enrollment became less clear-cut. Aided by rising military pay, better educational incentives, an enhanced public image, and a depressed youth labor market during the 1981–1982 recession, the military made considerable inroads in recruiting high school graduates with college aspirations. Thanks to the Army College Fund and other postservice educational benefits, military service came to be viewed as a viable means to finance a college education. With the enactment of the Montgomery G.I. Bill in 1984, the role of military service as a stepping stone to postservice college and vocational training was expanded, solidified, and given national prominence. On the horizon are other proposals, such as the Citizenship and National Service Act introduced last year by Senator Sam Nunn, that would curtail existing federal student aid programs and substitute educational vouchers similar to the G.I. Bill for one- or two-year stints of military or community service.

As experience with earlier G.I. Bills has shown, sweeping changes like these can result in marked changes in the sorting-out process, including some unplanned side effects. The Army College Fund and the new G.I. Bill undoubtedly help attract recruits, but they also provide strong incentives for enlistees to leave the service to reap the benefits. The person-years gained by bringing additional recruits into the service may be more than offset by later losses of experienced personnel (Haggstrom et al., 1981; Fernandez, 1982). Since the inception of the Montgomery G.I. Bill on July 1, 1985, over 60 percent of eligible recruits (and 80 percent of Army recruits) have signed up for the program, affirming their intent to use the benefits through nonrefundable contributions of \$1,200. As a consequence, in the 1990s, the services will be facing a double dilemma. They will be losing unusually large numbers of experienced personnel at the same time that their recruiting missions become more difficult due to shrinking applicant pools.

If there is a bright spot in this scenario, it is that the military's losses will be the civilian sector's gain. Just as earlier G.I. Bills contributed to the nation's supply of college-trained personnel, the new G.I. Bill is having the same effect. The numbers of veterans completing college in the next few years will probably not be large enough to forestall anticipated shortages of college-trained personnel, especially in teaching, nursing, science, and engineering. Nonetheless, the shortages will be less than they would otherwise have been, and these programs provide pathways to professional careers for high school graduates from low-income families.

Military personnel also add to college rolls through their educational pursuits while still in service through voluntary off-duty study or in military-sponsored training programs. In a study of the military impact on college enrollments, Hexter and El-Khawas (1988) report that, in 1987, service personnel enrolled in at least 778,000 courses at the postsecondary level. Thus, with the changes that have taken place in the 1980s, the military has become a significant source of college enrollments and, thanks mainly to the new G.I. Bill, a substantial source of student aid for youth from low- and middle-income families.

II. SIZING UP AMERICA'S HIGH SCHOOL GRADUATES AND DROPOUTS

This section profiles recent entrants into the postsecondary sorting-out process in terms of their numbers, demographic characteristics, and dispersion across states. Trends in cohort sizes and graduation rates are central to examining the flows of high school seniors into postsecondary activities over time, because there is considerable evidence that the transition rates for both high school graduates and dropouts have remained relatively stable over the last 20 years. Therefore, the number of cohort members in a prescribed track at any time following graduation depends mainly on the initial cohort size.

In addition to describing how entire cohorts of high school graduates and dropouts sort themselves into postsecondary tracks, we examine how choices of activities vary across groups of individuals categorized by sex, race, Hispanic origin, ability level, socioeconomic status, and region. To envisage the process, one can think of having a separate flow chart like Fig. 1 for each group. Alternatively, one can partition each of the main activity boxes into smaller boxes corresponding to subpopulations of interest. In either case, tracking student flows over time entails estimating the subpopulation sizes at the outset and then monitoring their subsequent transitions across activities.

Unfortunately, providing detailed profiles of recent entrants into the sorting-out process necessitates a certain amount of guesswork, because the national data base on high school graduates and dropouts is in a sorry state. The National Center for Education Statistics (NCES), for example, cannot provide reasonably accurate estimates of the numbers of high school graduates or dropouts for any year, let alone the kinds of disaggregated data by state, sex, race, and school affiliation that are needed to profile the nation's youth, track their educational progress, and examine their potential for meeting the nation's future manpower needs.

To help fill the information gap, we have pieced together data from several sources, relying heavily on Census Bureau estimates and projections of age group sizes by state, age, and race to provide data on the cohorts of young people of school-leaving age in each state. The products of this effort include estimates of high school graduation rates by state, and estimates and projections of numbers of high school graduates by state, sex, race, and control (public or private) for the years 1980 to 2000.

Several government publications, including the Digest of Education Statistics (NCES, 1989) and the Statistical Abstract of the United States (U.S. Bureau of the Census, 1989), provide tables pertaining to numbers of high school graduates, dropout rates, and educational attainment. However, the published data are inadequate for assessing the magnitude and dimensions of the school dropout problem or for providing basic data on the sizes and compositions of the graduating classes. They are even less adequate for monitoring the post-secondary sorting-out process to examine the extent to which today's graduates are acquiring the skills to become tomorrow's managers, technicians, and teachers. In the absence of detailed, reliable information on the numbers of high school graduates and dropouts each year, the flows of students through the nation's schools and colleges are essentially unknown, making it difficult to measure the extent and severity of the dropout problem, assess the implications of the shrinking college age group, or analyze policies bearing on youth problems, such as student aid, military recruiting, and national service.

THE SCHOOL DROPOUT PROBLEM

High dropout rates have long been a matter of national concern, in part because dropping out has been linked with other high-profile youth problems—illiteracy, lack of basic skills, teenage pregnancy, drug abuse, and crime. The prevalent concern is that dropouts are ill equipped to make their way in American society and thus apt to become part of a self-perpetuating underclass, locked in poverty and prone to lifelong patterns of unemployment, welfare dependency, and criminal activity (Carnegie Council on Policy Studies in Higher Education, 1979).

While these concerns may be exaggerated, there is little doubt that the postsecondary activities of dropouts differ considerably from those of graduates in the same age group. High school graduation is a prerequisite for entrance into most postsecondary educational programs, and many employers, including the military services, use high school completion as a criterion in screening applicants for entry-level jobs and training programs. Hence, the educational and career opportunities open to dropouts may be severely limited.

It is not surprising that, as a group, high school dropouts fare poorly in the labor market. Among persons of age 16 to 24 who were not enrolled in school in October 1989, only two-thirds of the dropouts were in the civilian labor force (i.e., currently employed or seeking work), as compared with 87 percent of the high school graduates in the same category. Among those in the labor force, the unemployment rate was 20.5 percent for the dropouts, more than double the 8.5 percent rate for the high school graduates in the same category (Bureau of Labor Statistics, 1989b).

However, the causes and consequences of dropping out are by no means well understood, partly because of definitional and data problems that confound analyses of the dropout problem (Pallas, 1986). Despite the absence of uniform definitions of dropouts and the lack of hard data that permit comparisons of graduation and dropout rates across states, races, and genders, there is a continual stream of irreconcilable statistics on dropouts that add to what Chester Finn, former Assistant Secretary for Educational Research and Development, characterized as the "high school dropout puzzle" (Finn, 1987).

In part, the puzzle persists because two seemingly well-grounded methods for gauging the magnitude of the dropout problem yield radically different estimates. One method relies on the educational attainments reported by participants in the Current Population Survey. In 1987, 85 percent of all persons of age 20 to 24 reported having completed four years of high school, as did 88 percent of those of age 25 to 29 (U.S. Bureau of the Census, 1988a). These figures suggest that only about one of every eight Americans fails to complete high school.

By contrast, graduation rates derived from state data on numbers of high school graduates indicate that the above figures misrepresent the magnitude of the dropout problem by a factor of two. Our analysis of the state data in Appendix A supports the contention that, roughly speaking, one of every four 17-year-olds in the 1980s dropped out of school before graduating, a figure that has remained essentially unchanged for the last 20 years.

Although part of the disparity between the two sets of dropout rate estimates can be ascribed to definitional problems (e.g., recipients of "high school equivalency" certificates may classify themselves as graduates), the numbers still do not add up. At least part of the difference seems to be due to the nonresponse and response errors that plague population surveys, i.e., nonrespondents to the CPS are more likely to be high school dropouts, and the dropouts who respond are more likely to be misclassified (or to misclassify themselves) on educational

attainment. Overreporting of educational attainment is not new; it was documented on the post-enumeration studies of both the 1950 and 1960 censuses (Folger and Nam, 1967).

Adding to the confusion about dropout statistics, the Department of Education reports high school dropout rates by state that "cover public schools only, and are calculated by dividing the number of high school graduates by the ninth-grade enrollment four years earlier" (Chronicle of Higher Education, September 6, 1989, pp. 6, 96). These estimates have dubious validity, because they exclude private school students, dropouts before grade nine, and returnees who take more than four years to complete grades 9–12. Moreover, the disparities in the reported rates across neighboring states are too wide to be credible, perhaps because the states use different criteria in reporting ninth-grade enrollments. In 1987, when the reported national rate was 29 percent, Michigan's rate was listed at 38 percent, whereas the rates reported by its three neighboring states—Wisconsin, Indiana, and Ohio—were just 15, 26, and 17 percent respectively. South Dakota's 20 percent rate exceeded that of its six neighbors by from 6 to 11 percentage points.

The definitional difficulties will be skirted in this study by treating dropout rates as complements of high school graduation rates, i.e., if the graduation rate in a given state is 75 percent, the dropout rate is defined to be 25 percent. The graduation rates are defined by dividing the number of high school graduates from regular day schools by the size of an age group that serves as a proxy for the number of young people who graduate from or drop out of school each year. At the national level, the number of 18-year-olds as of July 1 serves that purpose. However, at the state level, because there is substantial interstate migration among 18-year-olds, the number of 17-year-olds as of July 1 in the previous year serves the purpose better.

NUMBERS OF ENTRANTS INTO THE SORTING-OUT PROCESS

Table 1 shows Census Bureau estimates and projections of the numbers of 17- and 18-year-olds in the resident population as of July 1 each year from 1970 to 2000. The near term projections for 1990–1992 indicate that the number of 18-year-olds fell by 8 percent in 1990 and will continue to fall by 5 and 2 percent in 1991 and 1992, followed by a pattern of gradual increases from 1993 through the rest of the 1990s. See Fig. 2.

It is well known that the sizes of college age groups have declined over the 1980s. What seems to have been overlooked is that the decline has been far from uniform. In fact, the number of 18-year-olds rose steadily from 1986 to 1989. As Fig. 2 shows, the three-year decline in the numbers of 18-year-olds beginning in 1990 will be much steeper than the decline during the early 1980s. Despite the gradual increases projected for the late 1990s, the average size of the 18-year-old cohorts during the 1990s will be 11 percent smaller than the average for the 1980s.

Since high school graduation rates as well as postsecondary enrollment, employment, and enlistment rates vary considerably across regions and races, disaggregated estimates corresponding to the national estimates in Table 1 are needed to infer the ramifications of these trends on college enrollments and the youth labor market. Hence, we have compiled disaggregated estimates of age group sizes by state, race, and sex for 1980–2000. These estimates depend primarily on revised Census Bureau estimates of the resident population as of the 1980 census and are linked to their estimates and projections for the years 1986–2010 by state, race, and sex (U.S. Bureau of the Census, 1988c). See Appendix A.

Our interest in these disaggregated estimates is driven by the need for analogous estimates of numbers of high school graduates in the same categories to support our analyses of

Table 1

ESTIMATES AND PROJECTIONS OF THE RESIDENT POPULATION OF AGES 17 AND 18 AS OF JULY 1, 50 STATES AND D.C.: 1970-2000 (In thousands)

		17-year-ol	ds		18-year-ol	ds
Year	Total	Male	Female	Total	Male	Female
1970	3845	1955	1890	3756	1888	1868
1971	3952	2007	1944	3859	1942	1917
1972	4035	2052	1984	3952	1986	1965
1973	4092	2079	2012	4029	2029	2000
1974	4251	2163	2089	4085	2061	2024
1975	4272	2173	2100	4237	2141	2096
1976	4274	2171	2103	4250	2150	2101
1977	4266	2169	2097	4238	2140	2098
1978	4344	2211	2133	4230	2141	2089
1979	4276	2176	2099	4303	2183	2119
1980	4222	2161	2062	4228	2142	2087
1981	4163	2133	2030	4160	2108	2052
1982	3993	2041	1952	4103	2083	2020
1983	3778	1934	1844	3938	1996	1942
1984	3677	1881	1796	3726	1890	1835
1985	3603	1846	1757	3628	1840	1788
1986	3675	1883	1792	3554	1805	1749
1987	3760	1930	1831	3624	1841	1783
1988	3837	1971	1866	3709	1885	1824
1989	3532	1812	1720	3783	1925	1858
1990	3345	1717	1628	3483	1770	1713
1991	3267	1679	1589	3299	1676	1622
1992	3343	1719	1624	3222	1639	1583
1993	3291	1690	1601	3296	1678	1618
1994	3440	1769	1671	3245	1650	1595
1995	3468	1781	1687	3391	1727	1665
1996	3576	1836	1740	3418	1738	1680
1997	3703	1900	1802	3524	1792	1733
1998	3758	1930	1828	3649	1855	1794
1999	3803	1953	1850	3704	1884	1819
2000	3819	1963	1856	3747	1906	1842

SOURCES: U.S. Bureau of the Census (1982, 1988b, 1988c, and unpublished estimates).

High School and Beyond. To that end, we have modified the Census Bureau estimates to provide estimated age group sizes for the same five race/ethnicity categories that are reported in HS&B—one for persons of Hispanic origin of all races and four others for non-Hispanics in the main census race categories: white, black, Asian and Pacific Islander, and native American (American Indians, Eskimos, and Aleuts). For the sake of brevity, the term "non-Hispanic" will be suppressed henceforth, and these four categories will be referred to as "White," "Black," "Asian," and "Indian" in the tables below.

While the size of the 18-year age group serves as a satisfactory base for calculating national high school graduation rates, it does not serve nearly as well in defining state graduation rates. The reason is that the states are differentially affected by the migration that occurs among 18-year-olds as they leave high school and move to attend college, seek

Fig. 2-Numbers of 18-year-olds and high school graduates, 1970-2000

employment, or enter the military. In particular, the District of Columbia experiences considerable immigration of 18-year-olds each year, so that the size and racial mix of the District's 18-year age group do not mirror the 17-year age group, which better reflects the size and racial composition of the District's high school population. Hence, in lieu of using the 18-year age group size as a base for calculating state high school graduation and dropout rates, we have substituted the number of 17-year-olds as of July 1 in the previous year, except for 1980, where we use the census data for the 17-year age group as of April 1.

Table A.3 in Appendix A provides estimates of the numbers of 17-year-olds by state for the years 1980–1989. The corresponding projections for 1990–2000 are listed in Table A.4. Breakdowns by sex and race/Hispanic category are provided for all years. Table 2 lists the disaggregated estimates for 1980.

During the 1980s, there was a continual shift toward increased minority representation in the school age population; this trend will continue into the 1990s. In 1980, the percentages of 17-year-olds in the five race/Hispanic categories were: White, 76.2; Black, 14.0; Asian/Pacific Islander, 1.4; Native American, 0.7; Hispanic, 7.7. The corresponding estimated percentages for 1990 are 70.1, 15.8, 2.7, 1.2, and 10.2. By the year 2000, they will become 67.5, 15.7, 3.5, 1.5, and 11.8. Thus, although minority representation has increased and will continue to increase through 2000, the changes in the race/Hispanic mix of the high school age population have been gradual.

Table 2
NUMBERS OF 17-YEAR-OLDS BY STATE, SEX, RACE, AND HISPANIC ORIGIN: 1980

				Mal	e					Female	ıle		
State	Total	Aii	White	Black	Asian	Indian	Hispanic	Ail	White	Black	Asian	Indian	Hispanic
Alabama	74987	38193	25896	11705	68	20	433	36794	24775	11527	73	56	363
Alaska	7588	4008	2856	107	105	839	101	3580	2502	8	102	807	42
Arizona	49699	25305	17097	8	267	1852	5248	24394	16452	759	566	1847	5070
Arkansas	43594	22262	17319	4585	61	8	211	21332	16511	4444	88	92	214
California	426119	218898	133795	19825	11264	1809	52205	207221	128360	19149	10315	1657	47740
Colorado	52429	26756	21110	1061	277	168	4140	25673	20336	928	259	156	3964
Connecticut	58411	29729	25438	2650	149	36	1456	28682	24548	2530	150	35	1419
Delaware	11675	5854	4591	1111	31	10	111	5821	4529	1156	18	9	112
D. of Couumbia	10508	5233	535	4512	47	7	132	5275	484	4649	31	rΩ	106
Florida	163278	83506	58167	15473	440	149	9277	79772	55375	15156	442	150	8649
Georgia	105809	54980	36973	1685∪	506	Z	881	50829	33772	16261	163	51	582
Hawaii	16951	9098	2306	38	5420	56	774	8345	2141	62	5281	22	836
Idaho	17620	9078	8326	36	6 2	109	545	8542	7985	14	62	110	371
Illinois	215191	110147	83227	18641	1157	118	7004	105044	78524	18940	1039	106	6435
Indiana	104554	53043	47084	4703	195	74	987	51511	45712	4598	150	57	994
Iowa	55121	27908	26998	450	134	æ	263	27213	26265	481	130	61	276
Kansas	42796	21762	19354	1431	126	128	723	21034	18725	1428	132	136	613
Kentucky	71050	37670	33738	3386	\$	\$	418	33380	30216	2805	æ	83	273
Louisiana	83775	42077	26430	14184	234	118	1111	41698	25869	14472	184	3 5	1079
Maine	21895	11191	11018	97	36	49	62	10704	10565	16	33	46	4
Maryland	81622	41408	29030	110.37	551	3 8	721	40214	28137	10825	535	99	651
Massachusetts	106765	54696	50097	2599	425	<u>.</u>	1508	52069	47498	2571	403	62	1535
Michigan	180279	91578	76545	12159	532	ن	1967	88701	73940	12137	492	348	1784
Minnesota	81154	41497	39859	535	327	431	345	39657	38141	521	283	373	339
Mississippi	51871	26570	15171	10947	74	61	317	25301	14045	10842	99	26	292
Missouri	92799	47851	40877	5925	222	.19	708	44948	38236	5845	192	102	573
Montana	15441	8063	7359	6	35	520	140	7378	6785	2	30	449	109
Nebraska	29288	14949	13847	630	8	8	320	14339	13311	554	89	83	317
Nevada	14335	7463	5826	622	167	156	269	6872	5461	588	136	128	559
New Hampshire	16791	8545	8432	83	21	10	54	8246	8121	39	30	14	4 3
New Jersey	138595	71222	54358	10652	718	8 8	5436	67373	51031	10470	570	46	5256
New Mexico	27176	13893	6175	279	83	1271	9809	13283	5932	222	85	1281	5766
New York	322169	163299	117641	25486	2537	323	17312	158870	112401	25944	2332	298	17895

Table 2—continued

				Male	e					Female	ale		
State	Total	T.	White	Black	Asian	Indian	Hispanic	TV	White	Black	Asian	Indian	Hispanic
North Carolina	109453	55808	39105	15222	222	677	582	53645	37532	14717	213	651	532
North Dakota	12607	6361	5984	16	83	3,7	38	6246	5910	15	22	252	*
Ohio	202028	102793	89572	11448	350	8	1333	99235	85919	11532	357	91	1336
Oklahoma	25860	29120	23706	2471	203	1996	7.	26740	21734	2247	197	1928	634
Oregon	46187	23686	21706	408	371	292	606	22501	20795	418	342	268	678
Pennsylvania	213609	109234	95307	11566	549	81	1731	104375	90472	11612	492	72	1727
Rhode Island	16836	8474	7886	318	8	27	193	8362	7766	331	28	32	175
South Carolina	62325	32396	20206	11563	ま	4	487	29929	18280	11184	Z	\$	341
South Dakota	13751	7065	6367	10	2	613	51	9899	6078	2	ଛ	532	46
Tennessee	84545	43371	34392	8399	114	7	425	41174	32527	8162	98	36	354
Texas	268566	137581	82024	18962	997	332	35236	130985	78680	18142	852	284	33027
Utah	27185	13955	12440	224	218	278	79	13230	11999	114	212	271	3
Vermont	9747	4965	4901	12	11	œ	33	4782	4727	*	6	9	36
Virginia	99692	50787	38183	11205	250	*	805	48905	36405	11146	528	92	750
Washington	74296	38037	33746	1109	1066	632	1484	36259	32412	1029	981	283	1255
West Virginia	34355	17499	16639	703	32	œ	124	16856	15995	722	83	6	102
Wisconsin	93134	47414	43976	2168	500	324	746	45720	42458	2092	197	322	651
Wyoming	8337	4328	3932	32	8	72	272	4009	3636	35	8	73	54 6
United States	4223848	2160114	1647577	298407	31214	15240	167676	2063734	1570010	293570	28890	14359	156905

NUMBERS OF HIGH SCHOOL GRADUATES

Table 3 lists estimates of the numbers of high school graduates for 1960-1989 by control of school and sex. The estimates for the years before 1980 are taken from NCES (1989a, 1989b) and earlier publications in the same series; the sources of the more recent estimates are listed in Appendix A. The graduation rates in the last two columns are calculated by expressing the number of graduates as a percentage of the number of 17-year-olds as of July 1 in the previous year.

High school graduation rates have changed by only a few percentage points in the last 20 years, but there was a continual decline for both sexes during the 1970s followed by steady increases in the early 1980s. Graduation rates for females have typically dominated the male rates by 4–6 percentage points.

The most reliable recent data on numbers of high school graduates by state are for 1986, when the overall graduation rate was 73.4 percent (70.8 percent for males, 76.2 percent for

Table 3

NUMBERS OF HIGH SCHOOL GRADUATES BY CONTROL OF SCHOOL
AND SEX, 50 STATES AND D.C.: 1960–1989

(In thousands)

	High School	Cor	ntrol	:	Sex	Gradu	ation Rate
Year	Graduates	Public	Private	Male	Female	Male	Female
1960	1858	1627	231	895	963	63.4	70.9
1961	1964	1725	239	955	1009	66.7	73.1
1962	1918	1678	240	938	980	66.8	72.5
1963	1943	1710	233	956	987	65.2	70.0
1964	2283	2008	275	1120	1163	66.0	71.3
1965	2658	2360	298	1311	1347	71.6	76.8
1966	2665	2367	298	1323	1342	73.9	78.3
1967	2672	2374	298	1328	1344	74.2	78.4
1968	2695	2395	300	1338	1357	73.6	77.1
1969	2822	2522	300	1399	1423	74.8	79.4
1970	2889	2589	300	1430	1459	75.2	78.4
1971	2937	2637	300	1454	1483	74.4	78.5
1972	2999	2699	300	1486	1513	74.0	77.8
1973	3030	2730	300	1497	1533	73.0	77.3
1974	3063	2763	300	1507	1556	72.5	77.3
1975	3123	2823	300	1537	1586	71.1	75.9
1976	3137	2837	300	1547	1590	71.1	75.7
1977	3130	2840	290	1536	1594	70.8	75.8
1978	3115	2825	290	1525	1590	70.3	75.8
1979	3097	2817	280	1513	1584	68.4	74.3
1980	3021	2748	274	1485	1536	68.8	73.2
1981	3001	2725	276	1474	1527	68.2	74.0
1982	2984	2705	279	1470	1514	68.9	74.6
1983	2871	2598	274	1411	1460	69.1	74.8
1984	2764	2495	269	1363	1401	70.5	76.0
1985	2683	2414	269	1322	1361	70.3	75.8
1986	2645	2382	263	1307	1339	70.8	76.2
1987	2694	2426	284	1331	1363	70.7	76.1
1988	2753	2482	271	1362	1391	70.6	76.0
1989	2807	2533	275	1390	1418	70.5	76.0

females). Given that the estimated numbers of graduates have consistently run less than three-fourths the numbers of 17-year-olds since the mid-1970s, we can only conclude that one of every four 17-year-olds dropped out of school before graduation. The fact that the youth population contains such a high proportion of high school dropouts implies a colossal wastage of human resources, but this reality has been blurred by national statistics on educational attainment indicating that the dropout problem is far less serious. As was noted earlier, in 1987, 85 percent of the population of age 20 to 24 reported having completed four years of high school, as did 88 percent of those of age 25 to 29.

Although part of the discrepancy between educational attainment statistics and graduation rates may result from survey respondents overstating their educational attainments, a more likely explanation is that many high school dropouts pursue postsecondary educational programs that are difficult to quantify in years of educational attainment. In particular, an increasing number of high school dropouts obtain General Educational Development (GED) credentials—428,000 were issued in 1986 as compared with 333,000 in 1976 (NCES, 1988). And many high school dropouts pursue postsecondary training programs in community colleges and vocational-technical schools. In responding to surveys, many of them probably classify themselves as having completed 12 years of school and perhaps one or more years of college, thereby confounding national statistics on educational attainment. Although the Armed Forces maintain the distinction between high school diploma graduates and GED recipients in setting enlistment standards, the blurring of high school graduate status in the labor market has undoubtedly become more pervasive over time.

NUMBERS OF GRADUATES FROM PRIVATE SCHOOLS

Reliable counts of high school graduates have not existed for many years. The NCES routinely gathers state data on public high school graduates and publishes them in the Digest of Education Statistics (NCES, 1989). But NCES has undertaken no systematic effort to collect complete data on numbers of graduates from private schools since the mid-1960s. The often cited data for 1980, which were derived from a sample survey using an out-of-date sampling frame, do not accord with state data from other sources.

To provide better information on private high school graduates and more detailed state data on the flows of students through public schools, the Western Interstate Commission for Higher Education compiled a data base on enrollments by grade level and numbers of graduates, both public and private, for the academic years 1978–79 through 1985–86. Although some states were unable to provide time series of private school graduates, WICHE published the time series that were available as well as their best estimates for 1986 (WICHE, 1988).

Our tabulations of WICHE's state estimates by census division for the states with no missing values showed small, relatively uniform increases in the private/public ratio from 1980 to 1986. Led by the consistency of this pattern both within and across regions, we estimated the missing 1980–1985 values in the WICHE time series by using their 1986 estimates and applying the assumption that the private/public ratios for 1980–1986 in the "missing states" were proportional to the overall ratios for the nonmissing states in the same region.

The resulting state estimates for both public and private schools are given in Table 4. They indicate that the numbers of private school graduates changed little from 1980 to 1986, while the public schools were producing fewer and fewer graduates. Private schools

Table 4
NUMBERS OF HIGH SCHOOL GRADUATES BY CONTROL OF SCHOOL AND STATE: 1980-1986

			Public S	Public School Graduates	luates					Private S	Private School Graduate	duates		
State	1980	1981	1982	1983	1984	1985	1986	1980	1981	1982	1983	1984	1986	1986
Alabama	45190	44894	45409	44352	42021	40002	39620	3453	3353	3467	3299	3221	3175	3235
Alaska	5223	5343	5477	5622	5457	5184	5464	88	92	105	114	116	113	110
Arizona	28633	28416	28049	26630	28332	27877	27533	777	780	855	856	952	959	875
Arkansas	29062	29677	29710	28447	27049	26342	26227	200	952	696	2	829	840	802
California	249217	242172	241343	236897	232199	225448	229026	22309	21217	24581	25097	25434	25695	23124
Colorado	36804	35897	35494	34875	32954	32255	32621	2370	2337	2566	2668	2626	2632	2458
Connecticut	37683	38369	37706	36204	33679	32126	33571	7423	7515	7530	7790	7539	7484	7341
Delaware	7582	7349	7144	6924	6410	5893	5791	1472	1654	1654	1636	1662	1609	1608
D. of Columbia	4959	4848	4871	4909	4073	3940	3875	1182	1129	1160	1139	973	975	987
Florida	87324	88755	90736	86871	826	81140	83029	9357	9297	9715	3063	9234	9031	9507
Georgia	61621	62963	64489	63293	60718	58654	59082	4089	4085	4276	4089	4042	4043	4190
Hawaii	11493	11472	11563	10757	10454	10092	9958	2520	2522	2385	2494	2494	2424	2510
Idaho	13187	12679	12560	12126	11732	12148	12059	232	237	228	223	263	243	238
Illinois	135579	136795	136534	128814	122561	117027	114319	19137	19803	20268	20047	19374	19027	18451
Indiana	73143	73381	73984	70549	65710	63308	59817	4203	5226	4218	4559	3638	4297	4029
Iowa	43445	42635	41509	39569	37248	36087	34279	3148	3231	3107	3076	2957	2974	2795
Kansas	30890	29397	28298	28316	26730	25983	25587	1617	1578	1562	1732	1580	1577	1608
Kentucky	41203	41714	42531	40478	39645	37999	37288	4244	4158	4182	4124	3891	3714	3608
Louisiana	46297	46199	39895	39539	39400	39742	39962	8634	8372	8104	7124	7510	7816	8357
Maine	15445	15554	14764	14600	13935	13924	13006	1816	1841	1827	1840	1870	1797	1767
Maryland	54270	54050	54621	52446	50684	48299	46700	6876	6843	6957	6907	6756	9289	6738
Massachusetts	73802	74831	73414	71219	65885	63411	60360	11872	12310	12301	12273	11611	11601	11162
Michigan	124316	124372	121030	112950	108926	105908	101042	11788	11757	11614	10460	10900	11346	10742
Minnesota	64908	64166	62145	59015	55376	53352	51988	4296	4277	4284	4098	4217	4178	4161
Miseiseippi	27586	28083	28023	27271	26324	25315	25134	2351	2339	2386	2262	2250	2241	2289
Missouri	62266	60359	59872	56420	63388	61290	49204	5815	6203	2966	6379	9000	6137	5663
Montana	12135	11634	11162	10689	10224	10016	9761	434	462	4 5	391	322	354	318
Nebraska	22410	21411	21027	19986	18674	18036	17845	2384	2307	2377	2187	2197	2043	1953
Nevada	8473	69 06	9240	8979	8726	8672	8784	300	306	329	370	370	383	391
New Hampshire	11722	11552	11669	11470	11478	11052	10648	1580	1592	1638	1656	1695	1694	1650
New Jersey	94564	93168	93750	90048	85569	81547	78781	16642	16768	17187	16977	16498	16323	15939
New Mexico	18424	17915	17635	16530	15914	15622	15468	709	1182	1001	1235	1390	1308	1417
New York	204064	198465	194605	184022	174762	166752	162165	31873	31772	32251	32060	31139	30843	30428

Table 4—continued

			Public !	Public School Graduates	dustes					Private !	Private School Graduates	aduates		
State	1980	1981	1982	1983	1984	1985	1986	1980	1981	1982	1983	1984	1986	1986
North Carolina	70862	69395	71210	68783	66803	67245	65865	2832	2711	2843	2676	2678	1612	2813
North Dakota	9928	9924	9504	9888	8569	8146	7610	808	711	722	715	701	286	633
Ohio	14169	143503	139899	133524	127837	122281	119561	15000	14540	14698	14600	14540	13692	13244
Oklahoma	39305	38875	38347	36799	35254	34626	34452	636	615	620	88 88	572	583	296
Oregon	29939	28729	28780	28099	27214	26870	26286	1371	1499	1455	1466	1590	1503	1460
Pennsylvania	146458	144645	143356	137494	132412	127226	122871	24188	24557	24185	22835	22332	22440	22134
Rhode Island	10864	10719	10545	10533	9652	9201	8749	1807	1823	1827	1877	1759	1859	1761
South Carolina	38697	38347	38647	37570	36800	34500	34500	2346	2272	2341	2217	2238	2172	2235
South Dakota	10689	10385	9864	9206	8638	8206	7870	755	746	989	8	98 98	743	512
Tennessee	49845	50648	51447	46704	44711	43293	43263	3125	3105	3223	2861	2812	2820	586
Техав	171449	171665	172085	168897	161580	159234	161150	9002	8814	9030	8636	8513	8687	\$
Utah	20035	19886	19400	19350	19606	19890	19774	247	23.4	267	883	268	6 62	%
Vermont	6733	6424	6513	6011	6002	5769	5794	992	896	1000	949	86	296	982
Virginia	66621	67126	67809	65571	62177	60929	63113	3931	3872	3998	3767	3681	3737	3980
Washington	50402	50046	50148	45809	44919	45431	45805	2526	2592	2624	2779	2821	2937	2937
West Virginia	23369	23580	23589	23561	22613	22262	21870	1007	28	763	735	96	651	9/9
Wisconsin	69332	67743	67357	64321	62189	58851	58340	1069	7949	6889	6716	6352	6314	6182
Wyoming	6072	6161	2999	2909	5764	5687	5587	158	162	176	183	186	188	171
United States	2747678 27252	2725285	2704758	2597744	2494885	2414020	2382457	273529	275693	278971	273581	268954	268719	262918

accounted for approximately 9 percent of the nation's high school graduates in 1980 and 10 percent in 1986.

Table 5 shows the high school graduation rates by state that result from expressing each state's total number of high school graduates as a percentage of the number of 17-year-olds in the previous year. Led by the stability in the U.S. graduation rates from 1984 to 1986 and by the flatness of the public school rates through 1987 (see Appendix A), we extended the state estimates for both public and private schools through 1989 by incorporating the assumption that the estimated state graduation rates for 1987 would persist through 1989 and applying the state rates to the Census Bureau estimates of the 17-year age group sizes by state, sex, and race for 1987–1989. Since the scheme could be readily extended into the 1990s using Census Bureau projections of age group sizes, the same procedure was used to generate projections of numbers of graduates for the years 1990–2000. See Table A.2 in Appendix A.

THE CHANGING COMPOSITION OF THE GRADUATING CLASSES

To estimate the composition of graduating classes by state, sex, race, and Hispanic origin, we relied heavily on the percentages of persons of age 19 who reported having completed four years of high school in the 1980 census. Treating the 1980 regional high school completion rates by sex, race, and Hispanic origin as first approximations for high school graduation rates and applying them to each state's numbers of 17-year-olds in those categories, we derived preliminary estimates of the number of graduates in each cell. These preliminary estimates were then rescaled using iterative proportional fitting so that the numbers of graduates in the various categories summed to the state total for that year.

The procedure for estimating the number of private school graduates in each category was similar in that, as a first approximation for each state, we used regional estimates of the percentages of high school students of each race that were enrolled in private schools as of the 1980 census. These preliminary estimates were then rescaled to conform to the state totals.

Table B.1 shows the estimated composition of the 1980 graduating class by census division, control of school, sex, and race/Hispanic category. According to these estimates, the percentages of high school graduates in the five race/Hispanic categories were: White, 81.6; Black, 11.2; Asian/Pacific Islander, 1.5; Native American, 0.5; Hispanic, 5.1. The analogous estimated percentages for the Class of 1990 are 76.7, 12.9, 2.7, 0.9, and 6.8. For the Class of 2000, the projected percentages are 74.0, 13.2, 3.6, 1.1, and 8.0. Thus, the estimated percentage of graduates from minority groups increased from 18.4 percent in 1980 to 23.3 percent in 1990, and it is projected to increase to 26.0 percent in 2000.

In addition to the shift in the race/Hispanic composition of the graduating classes, another noteworthy demographic trend is the shift toward increasing numbers of graduates from southern and western states. As can be seen from Table 5, the percentages of 1980 graduates in the four census regions were: Northeast, 23.2; North Central, 28.7; South, 30.8; West, 17.3. The corresponding estimated percentages for 1990 are 20.6, 26.4, 33.9, and 19.1. In 2000, they are projected to become 19.1, 24.5, 34.2, and 22.2.

Since minority students are less likely to attend private schools and since private schools account for smaller proportions of graduates in the South and West, both of these demographic trends portend smaller proportions of private school graduates in the 1990s.

Table 5
HIGH SCHOOL GRADUATION RATES BY STATE: 1980–1986

				Year			
State	1980	1981	1982	1983	1984	1985	1986
Alabama	64.9	64.3	66.0	66.8	66.8	66.3	67.0
Alaska	70.0	71.6	73.2	77.9	78.3	75.7	79.8
Arizona	59.2	58.7	58.3	56.8	63.1	62.1	60.5
Arkansas	68.7	70.0	71.5	71.2	73.9	74.8	75.2
California	63.7	61.8	63.0	64.4	66.8	6 6.6	67.6
Colorado	74.7	72.9	73.8	76.1	77.6	77.0	77.4
Connecticut	77.2	78.6	78.7	79.9	77.3	77.9	83.1
Delaware	77.6	77.1	76.3	77.3	75.8	72.7	75.8
D. of Columbia	58.4	56.9	57.4	58.8	52.0	53.7	56.2
Florida	59.2	60.1	62.2	61.6	64 .1	61.5	63.9
Georgia	62.1	63.4	65.8	66.6	66.1	64.6	65.8
Hawaii	82.7	82.6	78.3	74.9	78.4	81.0	83.5
Idaho	76.2	73.3	74.4	76.1	77.3	81.1	81.9
Illinois	71.9	72.8	74.2	73.8	75.5	74.9	75.8
Indiana	74.0	75.2	76.0	76.4	75.8	75.3	73.6
Iowa	84.5	83.2	82.8	83.8	85.0	86.7	86.1
Kansas	76.0	72.4	71.2	75.5	76.8	78.7	80.3
Kentucky	64.0	64.6	67.2	67.3	70.8	69.9	70.3
Louisiana	65.6	65.1	58.0	58.4	62.5	64.8	67.5
Maine	78.8	79.4	77.5	80.9	81.3	82.6	80.0
Maryland	74.9	74.6	76.2	76.1	77.2	76.5	75.6
Massachusetts	80.2	81.6	81.6	83.1	80.3	80.4	78.7
Michigan	75.5	75.5	74.7	72.6	74.6	74.6	72.8
Minnesota	85.3	84.3	83.7	84.2	85.0	87.2	87.7
Mississippi	57.7	58.6	59.5	59.8	62.4	61.8	62.3
Missouri	73.4	72.1	72.4	72.6	74.7	74.6	74.3
Montana	81.4	78.3	76.7	77.6	82.0	83.5	85.5
Nebraska	84.7	81.0	81.6	81.8	83.6	85.0	86.9
Nevada	61.2	65.4	67.6	68.3	68.4	68.0	70.3
New Hampshire	79.2	78.3	80.2	81.9	83.4	80.5	77.3
New Jersey	80.2	79.3	81.3	81.9	81.3	81.0	81.1
New Mexico	70.4	70.3	69.2	67.5	71.3	73.1	75.0
New York	73.2	71.5	71.3	70.6	69.9	69.9	70.7
North Carolina	67.3	65.9	68.4	68.5	69.9	70.9	69.3
North Dakota	85.1	84.4	83.1	82.7	87.4	86.2	86.6
Ohio	78.8	78.2	77.9	78.3	79.9	78.3	79.0
Oklahoma	71.5	70.7	70.8	71.4	74.8	76.4	76.3
Oregon	67.8	65.4	66.9	69.2	70.5	71.9	72.2
Pennsylvania	79.9	79.2	79.7	79.7	80.8	80.6	80.3
Rhode Island	75.3	74.5	74.5	77.4	73.5	72 3	69.2
South Carolina	65.9	65.2	66.5	66.9	69.3	67.2	67.8
South Dakota	83.2	80.9	77.8	77.0	80.0	83.5	81.6
Tennessee	62.7	63.6	65.6	61.8	62.6	62.4	63.3
Texas	67.2	67.2	68.4	69.4	70.1	69.5	69.8
Utah	74.6	74.0	73.8	77.3	81.5	80.3	80.1
Vermont	79.3	75.8	78.4	75.9	78.8	78.1	79.6
Virginia	70.8	71.2	73.0	73.3	73.7	74.3	77.8
Washington	71.2	70.8	72.3	70.2	73.1	75.9	76.5
West Virginia	71.0	70.7	72.3	75.6	77.1	77.7	76.7
Wisconsin	81.9	81.3	81.4	82.0	83.8	82.4	85.7
Wyoming	74.7	75.8	75.7	79.0	81.9	83.7	82.5
United States	71.5	71.0	71.7	71.9	73.2	73.0	73.4

According to the projections in Table A.2, there will be a gradual reduction in the percentage of private school graduates over time—from 9.9 percent in 1986 to 9.6 in 2000.

In summary, the compositions of the high school graduating classes changed during the 1980s to reflect greater minority representation in most states and more rapid growth in the South and West. These trends will persist through the 1990s. However, the major changes that we foresee in the near term do not pertain to the compositions of the graduating classes but to their overall sizes. The high school graduating classes are projected to shrink by 15 percent between 1989 and 1992. The consequences of those changes depend critically on how the graduates sort themselves into postsecondary paths.

III. MAIN ACTIVITIES AFTER LEAVING SCHOOL

This section examines patterns of postsecondary activities followed by high school graduates and dropouts during the first year after leaving school. We begin with a summary of trends pertaining to the numbers of graduates and dropouts who enter the three main post-secondary tracks—college, military service, and civilian employment. Time series from several sources are presented to provide an overview of young people's educational and vocational pursuits, and to examine a long-standing contention that, except for disruptions for military service during times of war, postsecondary sorting-out patterns have been relatively stable for many years.

Then, drawing on a large panel study of over 26,000 seniors in the Classes of 1980 and 1982, we present analyses of the seniors' main activities in October following graduation to show how individuals from varying backgrounds sort themselves into postsecondary tracks. Primary attention is given to examining the relevance of sex, race, Hispanic origin, socioeconomic status, academic aptitude, and economic factors on decisions to enter college or enlist in the Armed Forces.

LONG-TERM TRENDS

For the most part, previous studies of the postsecondary sorting-out process were restricted to educational pursuits. Some noteworthy exceptions are Johnston and Bachman (1972), who examined enlistment behavior during the Vietnam Conflict; Ornstein (1976), who used retrospective data to study entrance into the labor force; and Hosek and Peterson (1985) and Hosek, Peterson, and Eden (1986), who studied enlistment behavior during 1979 among males of age 17–22.

Studies of college attendance patterns before 1970 pointed to ever-increasing educational attainment among college-age youth. Although consistent time series on college enrollment by level and sex were not available before World War II, the data on earned degrees indicated continual increases in college enrollment rates and degree attainments from 1900 to 1940, except during World War I.

More detailed analyses of enrollment patterns from 1940 to 1970 revealed wide fluctuations in college enrollment patterns, especially for men. During the early stages of World War II, the Korean War, and the Vietnam Conflict, college entrance rates dropped as millions of Americans postponed or interrupted their educational and career pursuits to enter the military. The most pronounced disruptions were during World War II, when most able-bodied young men either enlisted or were inducted into military service, decimating college enrollments between 1941 and 1945. After the war, more than two million veterans swamped the college campuses, many of them staying on to complete bachelor's and advanced degrees under the G.I. Bill. Whereas colleges had awarded 129,000 degrees to men in 1940 and less than half that many in 1944, the number soared to 376,000 in 1950 (Adkins, 1975).

College enrollment patterns for men were also greatly affected during the Korean War. With almost 500,000 inductions per year from 1951 to 1953, college entrance rates dropped sharply. After the war, nearly 1.2 million veterans entered college under the Korean G.I. Bill, swelling college enrollments and stimulating degree production through the early 1960s.

Despite these disruptions of normal college attendance patterns during World War II and the Korean War, there was a remarkable finding in the mid-1960s that patterns of educational attainment beyond high school and persistence through college had been very stable across age groups since the early 1900s. In a widely quoted paper based on their analysis of educational attainment data in the 1940 and 1960 censuses, Jaffe and Adams (1964) wrote:

Roughly half of all the white men who graduate from high school go on to college. Roughly 4 in 10 white women and nonwhite students who graduate from high school go on to college. . . . One assumption is that a larger proportion of high school graduates now goes on to college. We find, on the contrary, that the proportion continues to be the same. . . . We find that slightly over half the men are receiving their degrees and about 4 in 10 women are completing four years. These proportions continue long-standing trends.

Whether this very simple characterization of college entrance and persistence patterns held for the period before 1960 is debatable, but their contention about the long-term stability of college entrance rates became untenable during the 1960s when the rates increased markedly, especially for women. Folger, Astin and Bayer, (1970), in their report for the Commission on Human Resources and Advanced Education, presented data from several sources indicating that college entrance rates rose substantially in the late 1950s and early 1960s. A subsequent study for the Carnegie Commission on Higher Education reported consistently rising college entrance rates during the 1950s and 1960s for women and parallel increases for men after allowing for the surges of veterans into college following World War II and the Korean War (Haggstom, 1971). That study also showed that college persistence and degree completion recommendately women increased during the 1960s, bringing their rates up to the male levels, which mained relatively stable during the 1950s and 1960s despite the clear-cut effects of the Rorean and Vietnam Wars on college enrollment.

As the U.S neightened its military commitment to the Vietnam Conflict in the mid-1960s, normal college attendance patterns were again disrupted. College entrance rates fell slightly in 1966 as over 500,000 enlistees and 300,000 inductees entered military service. Opposition to the draft and U.S. military policies in Vietnam mounted over the next three years. With draft calls continuing to run between 200,000 and 300,000 from 1967 to 1969, college enrollments were stimulated as many men took advantage of the draft deferments available for full-time college students. Other men sought exemption from the draft through reserve participation, leading to long waiting lists of men trying to enlist in reserve and National Guard units.

The uncertainties that beset college age males subject to the draft were lessened when the first draft lottery was implemented in December 1969. With greatly reduced numbers of draft calls in 1970 and 1971, the phasing out of student deferments, and the advent of the All-Volunteer Force in 1972, the wartime effects on college enrollment dwindled in the 1970s except for the large numbers of veterans attending college.

In addition to the Vietnam Conflict, another important factor affecting college enrollments in the late 1960s was the aftereffect of the postwar baby boom. High school graduating classes underwent very rapid growth in the middle and late 1960s (see Table 3). As the postwar baby boomers graduated from high school and entered college, enrollments soared. The number of college degrees awarded at the bachelor's level and above more than doubled between 1960 and 1970, reaching 1,071,000 in 1970. Because degree production during the late 1960s was so much higher than it had been in previous decades, the stock of persons in the U.S. holding college degrees also increased rapidly, from 1.6 million in 1960 to 2.8 million in 1970 (Adkins, 1975), leading to an oversupply of college-trained personnel in the 1970s, especially in the field of education.

There were other factors on the horizon in the late 1960s that may have affected post-secondary pursuits. The economy slipped into a minor recession in December 1969 that lasted for 11 months. Although this recession was not as severe as the later recession of 1973–1975, the fact that it occurred following a nine-year period of rapid economic expansion and at the same time that the Vietnam Conflict was winding down may have heightened its effects on young people's educational and career pursuits.

CHANGES IN THE SORTING-OUT PROCESS IN THE 1970s AND 1980s

Before the implementation of the draft lottery in December 1969, young men had been subject to the draft through age 26, with older men being called first. Various kinds of deferments were available before 1970, the most common being for college attendance. Before these deferments were phased out beginning in 1970, college age men could forestall the uncertainties of the draft by maintaining full-time student status, which led more men to complete bachelor's and advanced degrees during the late 1960s and early 1970s than there might otherwise have been.

The draft lottery of 1969 and those that followed in 1970 and 1971 for men turning 19 years of age were significant, because they permitted college age men to plan their futures with almost complete certainty that their educational and vocational pursuits would not be interrupted for military service. Only those with low random selection numbers faced imminent induction, and they could avoid being called to active duty by enlisting in one of the active reserve components. Many young men with low random selection numbers exercised that option during the first six months of 1970.

The extent to which these changes influenced postsecondary pursuits is difficult to ascertain, but the evidence points to a turning point in the sorting-out process in 1970 as the pressure exerted by the draft on enrollments at all levels lost its force. Johnston and Bachman (1972) reported that concerns about the draft were central considerations affecting high school seniors' plans in 1969. Although it seems doubtful that the draft could have had an appreciable effect on high school completion rates, high school graduation rates began their decade-long decline in 1970, dropping from a peak of 77 percent in 1969 to a low of 71 percent in 1981. See Table 3.

There was also a marked change in college enrollment patterns in the late 1960s and early 1970s. While freshman enrollment rates for women continued to increase during the 1970s, those for men went down. See Table 6. The freshman enrollment rates were determined by expressing the number of full-time freshman enrollments as a percentage of the number of high school graduates in the same year, as reported in Table 3.¹

These differences between the male and female rates underscore the huge gender gap in college enrollment patterns that existed in 1970. Men outnumbered women in the 1970 freshman class by about four to three, and almost the same ratio held for bachelor's degree

¹The "freshman enrollments" reported here are for first-time students, i.e., entering students who have not previously attended other institutions of higher education. We chose to use full-time freshman enrollments, instead of total enrollments, in calculating the enrollment rates to make them more comparable with college entrance rates reported later in this report. Also, the rates shown should not be interpreted as the percentages of graduates in a specific year who entered college as full-time students that year. Any fall freshman class includes many entering freshmen from previous years' graduating classes, as well as students who were not members of any graduating classe (e.g., foreign students and students who did not earn high school diplomas). Also, some entering freshmen do not enroll for the first time during the fall term. The rates are given mainly to indicate college entrance trends during the 1970s and 1980s. They can, however, also be regarded as rough estimates of the percentages of the graduates in each class who entered college as full-time students at some stage following graduation.

Table 6

FULL-TIME FRESHMAN ENROLLMENTS AND FRESHMAN ENROLLMENT
RATES BY SEX: FALL 1967 TO FALL 1987

		Full-Time shman Enro in Thousan	llment	Freshman Enrollment Rate				
Year	Total	Male	Female	Total	Male	Female		
1967	1335	761	574	50.0	57.3	42.7		
1968	1471	847	624	54.6	63.3	46.0		
1969	1525	876	649	54.0	62.6	45.6		
1970	1567	896	691	54.2	62.7	47.4		
1971	1606	896	710	54.7	61.6	47.9		
1972	1574	858	716	52.5	57.7	47.3		
1973	1607	867	740	53.1	57.9	48.3		
1974	1673	896	777	54.6	59.5	49.9		
1975	1763	942	821	56.5	61.3	51.8		
1976	1663	855	808	53.0	55.3	50.8		
1977	1681	840	841	53.7	54.7	52.8		
1978	1651	817	834	53.0	53.5	52.5		
1979	1706	840	866	55.1	55.5	54.7		
1980	1749	862	887	57.9	58.0	57.7		
1981	1738	852	886	57.9	57.8	58.0		
1982	1688	837	851	56.6	56.9	56.2		
1983	1678	825	853	58.4	58.5	58.4		
1984	1613	786	827	58.4	57.7	59.0		
1985	1602	775	827	59.8	58.6	60.8		
1986	1590	769	821	60.1	58.8	61.3		
1987	1627	779	848	60.3	58.5	62.2		

SOURCE: NCES (1989a, Table 159).

recipients that year (NCES, 1989a). These disparities vanished during the 1970s and early 1980s as the freshman enrollment rates for women followed a relatively steady upward path and the rates for men remained relatively stable except for a dip in the late 1970s. The crossover year for degree completions was 1982, when there were more bachelor's degrees awarded to women than men for the first time since World War II.

The large numbers of Vietnam veterans returning to college in the early 1970s inflated the male freshman enrollment rates somewhat from 1970 to 1975, exaggerating the gender gap. The 10-percent difference in 1975 shrank to nearly zero in 1980, after which time the rates remained nearly the same for both sexes through 1983. A possible explanation for the rate divergence that began in 1984 is that a larger proportion of male high school graduates postponed college entrance for a few years. It is notable that the year of divergence was the year in which the Montgomery G.I. Bill was enacted, indicating that the effects of military service on college attendance patterns did not end with the creation of the All-Volunteer Force.

ENLISTMENTS IN THE ALL-VOLUNTEER FORCE

Table 7 shows the numbers of persons who entered the service as enlisted personnel by sex and high school graduate status for the years 1972–1987. The "military enlistment rates" are calculated by expressing the number of nonprior service accessions each year as a percentage of the number of 18-year-olds as of July 1 in the same year. For the high school graduate accessions, the base for the enlistment rate was taken to be the number of high school graduates in the same year.

Table 7

NUMBERS OF NONPRIOR SERVICE ACCESSIONS BY SEX AND
HIGH SCHOOL GRADUATE STATUS: 1972–1987

		All Accessi	ons	HSG Accessions				
Year	Total	Male	Female	Total	Male	Female		
	NUMBE	RS OF NON	PRIOR SERV	ICE ACCESS	SIONS (IN T	HOUSANDS		
1972	396	382	14	266	253	13		
1973	428	408	20	281	262	19		
1974	391	360	31	237	209	28		
1975	415	378	37	277	244	33		
1976	397	366	31	269	241	28		
1977	381	351	30	270	242	28		
1978	3 08	270	38	232	198	34		
1979	310	269	41	223	186	37		
1980	356	307	49	242	200	42		
1981	321	280	41	260	222	38		
1982	298	265	33	256	224	32		
1983	302	266	36	281	246	35		
1984	305	269	36	284	249	35		
1985	287	250	37	266	230	36		
1986	299	263	36	275	239	36		
1987	296	260	36	276	240	36		
			IILITARY EN	LISTMENT I	RATES			
1972	10.0	19.2	0.7	9.0	17.0	0.9		
1973	10.6	20.1	1.0	9.4	17.5	1.2		
1974	9.6	17.5	1.5	7.8	13.9	1.8		
1975	9.8	17.7	1.8	9.0	15.9	2.1		
1976	9.3	17.0	1.5	8.6	15.6	1.8		
1977	9.0	16.4	1.4	8.6	15.8	1.8		
1978	7.3	12.6	1.8	7.4	13 0	2.1		
1979	7.2	12.3	1.9	7.2	12.3	2.3		
1980	8 4	14.3	2.3	8.0	13.5	2.7		
1981	7.7	13.3	2.0	8.7	15.1	2.5		
1982	7.3	12.7	1.6	8.6	15.2	2.1		
1983	7.7	13.3	1.9	9.8	17.4	2.4		
1984	8.2	14.2	2.0	10.2	18.3	2.5		
1985	7.9	13.6	2.1	9.9	17.4	2.6		
1986	8.4	14.6	2.1	10.4	18.3	2.7		
1987	8.2	14.1	2.0	10.2	18.0	2.6		

Although not all enlistees enter the service at age 18 and not all high school graduates enter the service the same year they graduate, the enlistment rates serve as crude estimates of the percentages of the cohorts who enter military service. The rates in the table indicate that the proportion of 18-year-olds entering the military has remained quite stable over the 1980s, but the proportion of male high school graduates who enter military service has risen substantially—from around 12 percent in 1979 to over 18 percent in 1984.

It is noteworthy that the large increases in the enlistment rates occurred in the early 1980s when the numbers of graduates were either changing little or declining. In particular, the 34 percent increase in the number of male high school graduate accessions between 1979 and 1984 occurred during a period in which the corresponding numbers of high school graduates went down by 10 percent. While the rates do not take into account the time lags between high school graduation and service entrance (a topic that we return to in Section IV), it is clear from this table that, during the 1980s, more and more male high school graduates included military service in their postsecondary career paths. For a thorough treatment of the geographic and demographic attributes of enlistees during the 1980s, see *Population Representation in the Military Services: Fiscal Year 1987*, Office of the Assistant Secretary of Defense (Force Management and Personnel), August 1988.

OCTOBER ACTIVITIES OF GRADUATES AND DROPOUTS

To provide a more definitive examination of trends in postsecondary activities during the first few months after leaving school, we turn to national statistics on the enrollment and employment statuses of high school graduates and dropouts as of October in the year that they left school. See Table 8. These statistics, which are derived from time series published in the *Handbook of Labor Statistics* (Bureau of Labor Statistics, 1989a), refer to activities reported in the October Current Population Survey. Because the CPS is a household survey designed to provide information on the civilian noninstitutional population, the activities of graduates who entered the military before October are not included. Also, because the statistics are based on survey data, the estimates are subject to sampling and response errors.²

The time series of enrollment rates in Table 8 evidence many of the same patterns that were apparent in the freshman enrollment rates in Table 6, even though the numerators in these rates are quite different. Whereas the numerator for the freshman enrollment rate includes all full-time entering students regardless of when they completed high school, the numerator of the enrollment rate reported in Table 8 is restricted to freshmen who graduated from high school the same year but includes both part-time and full-time students.

Both time series indicate that college entrance rates for male graduates dropped in the aftermath of the Vietnam Conflict, rebounded in the early 1980s, and then remained stable from 1984 to 1987. The two time series for women show slightly different patterns, in that the college entrance rates in Table 8 do not show the pronounced upward trend during the 1970s that is evident in Table 6. However, both Tables 6 and 8 support the conclusion that the gender gap in college entrance rates shrank during the 1970s, leading to approximate parity in the male and female rates in the early 1980s.

²The standard errors of the enrollment rates reported in Table 8 are approximately 2.0 percent (U.S. Bureau of the Census, 1988b). The numbers of graduates reported here are estimated totals based on CPS responses. Even though these estimates exclude high school graduates in military service, they tend to run somewhat higher than the estimates in Appendix A derived from state data.

Table 8

ENROLLMENT AND EMPLOYMENT STATUSES OF RECENT HIGH SCHOOL GRADUATES IN OCTOBER, 1967–1987

							Not E	Inrolled	==	
	Т	otal	En	rolled	Em	ployed	Unen	nployed	Ot	hers
Year	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female
			NUME	ERS OF	GRADU	TATES (IN	THOU	JSANDS)		
1967	1142	1384	658	653	379	422	40	115	65	194
1968	1184	1422	748	696	345	437	39	83	52	206
1969	1352	1490	812	704	449	480	37	83	54	223
1970	1343	1414	741	686	458	383	68	118	76	227
1971	1371	1502	789	747	451	420	73	108	58	227
1972	1423	1542	751	708	538	519	75	107	59	208
1973	1463	1602	733	695	596	561	63	100	71	246
1974	1498	1611	740	738	576	551	105	126	77	196
1975	1522	1674	801	819	534	492	126	129	61	234
1976	1461	1540	692	774	584	473	118	115	67	178
1977	1495	1661	781	818	555	566	93	116	66	161
1978	1500	1679	767	827	598	575	75	118	60	159
1979	1491	1689	753	817	584	581	95	136	59	155
1980	1518	1593	712	824	585	500	138	116	83	153
1981	1490	1563	816	830	472	455	114	139	88	139
1982	1508	1592	739	829	499	427	161	170	109	166
1983	1390	1574	721	841	442	440	152	150	75	143
1984	1429	1583	800	862	434	430	130	126	65	165
1985	1286	1380	754	785	346	353	112	116	74	126
1986	1300	1402	732	720	396	422	97	106	74	154
1987	1278	1369	746	757	409	378	65	106	59	127
		· · · · · ·		PERCEN	TAGES	OF GRA	DUATE	ES		
1967	100.	100.	57.6	47.2	33.2	30.5	3.5	8.3	5.7	14.0
1968	100.	100.	63.2	48.9	29.1	30.7	3.3	5.8	4.4	14.5
1969	100.	100.	60.0	47.2	33.2	32.2	2.7	5.6	4.0	15.0
1970	100.	100.	55.2	48.5	34.1	27.1	5.1	8.3	5.6	16.1
1971	100.	100.	57.6	49.7	32.9	28.0	5.3	7.2	4.2	15.1
1972	100.	100.	52.8	45.9	37.8	33.7	5.3	6.9	4.1	13.5
1973	100.	100.	50.1	43.4	40.7	35.0	4.3	6.2	4.9	15.4
1974	100.	100.	49.4	45.8	38.5	34.2	7.0	7.8	5.1	12.2
1975	100.	100.	52.6	48.9	35.1	29.4	8.3	7.7	4.0	14.0
1976	1CO.	100.	47.4	50.3	40.0	30.7	8.1	7.5	4.5	11.5
1977	100.	100.	52.2	49.2	37.2	34.1	6.2	7.0	4.4	9.7
1978	100.	100.	51.1	49.3	39.9	34.2	5.0	7.0	4.0	9.5
1979	100.	100.	50.5	48.4	39.1	34.4	6.4	8.0	4.0	9.2
1980	100.	100.	46.9	51.7	38.5	31.4	9.1	7.3	5.5	9.6
1981	100.	100.	54.8	53.1	31.7	29.1	7.6	8.9	5.9	8.9
1982	100.	100.	49.0	52.1	33.1	26.8	10.7	10.7	7.2	10.4
1983	100.	100.	51.9	53.4	31.8	28.0	10.1	9.5	5.4	9.1
1984	100.	100.	56.0	54.4	30.4	27.2	9.1	9.5 8.0	4.5	10.4
1985	100.	100.			26.9	27.2 25.6	8.7	8.4	5.8	9.1
1986	100.	100. 100.	58.6 56.3	56.9			7.5	7.6	5.7	11.0
1987	100.	100. 100.	56.3 58.4	51.4 55.3	30.5 32.0	30.1 27.6	5.1	7.7	4.6	9.3
1001	100.	100.	JO.4	00.0	32.0	21.0			4.	و.ق

The employment status rates in Table 8 show no clear-cut trends during the 20-year period, with only minor changes in the employment and unemployment percentages during recession years (1970, 1974–1975, 1980, and 1981–1982). As Fig. 3 shows, the overall proportions of graduates in the four student and employment categories changed little from 1970 through 1987, indicating that the graduates' choices of postsecondary activities were not very sensitive to labor market conditions.

The same cannot be said for the school dropouts. Table 9 shows the corresponding employment status breakdowns for "recent high school dropouts," a term that refers to persons who dropped out of school between October of the reference year and October of the previous year. There was a 13-percent decline in the male employment rate in the 1980 recession, with commensurate rises in the unemployment and out-of-labor-force percentages. With the exception of the 1986 blip (which may be a statistical artifact due to sampling errors), employment rates for male dropouts did not recover in the 1980s despite the effects of overall economic expansion in the mid and late 1980s.

Table 9 shows that female dropouts have made some gains in labor force participation over the last 20 years. Whereas 60 percent of these women were out of the labor force in 1970, the percentage dropped to 42 percent in 1987. However, a large part of the gains showed up, not in the employed column, but in the unemployed category. Unlike the male rates, the female employment rates did not undergo marked changes during recession years.

Fig. 3-Student/employment status in October by year of graduation

Table 9

EMPLOYMENT STATUSES OF RECENT HIGH SCHOOL DROPOUTS
IN OCTOBER, 1967–1987

						Employm	ent Stat	us
	T	'otal	Em	ployed	Unen	nployed	Ot	hers
Year	Male	Female	Male	Female	Male	Female	Male	Female
		NUME	ERS O	F DROPO	UTS (II	N THOUS	ANDS)	
1967	320	294	208	101	49	33	63	160
1968	310	300	203	102	46	39	61	159
1969	341	320	238	99	41	27	62	194
1970	370	342	209	109	83	26	78	207
1971	354	303	210	96	76	34	67	174
1972	372	362	235	103	71	50	66	208
1973	444	346	273	134	87	30	84	183
1974	444	369	276	115	90	65	78	190
1975	364	373	197	108	103	54	64	211
1976	420	329	234	92	92	53	94	184
1977	443	389	270	148	89	62	84	178
1978	479	360	292	125	92	66	95	168
1979	400	412	256	140	60	80	84	193
1980	428	331	217	115	95	58	117	157
1981	363	350	191	98	78	86	94	166
1982	355	313	154	92	118	57	83	164
1983	329	268	167	91	81	38	81	139
1984	323	277	167	91	84	45	72	141
1985	321	291	163	103	98	49	60	139
1986	290	254	166	90	50	52	74	112
1987	274	228	125	82	77	49	72	96
			PERCE	ENTAGES	OF DE	ROPOUTS	3	,
1967	100.	100.	65.0	34.4	15.3	11.2	19.7	54.4
1968	100.	100.	65.5	34.0	14.8	13.0	19.7	53.0
1969	100.	100.	69.8	30.9	12.0	8.4	18.2	60.6
1970	100.	100.	56.5	31.9	22.4	7.6	21.1	60.5
1971	100.	100.	59.5	31.6	21.5	11.2	19.0	57.1
1972	100.	100.	63.2	28.4	19.1	13.9	17.7	57.7
1973	100.	100.	61.5	38.6	19.6	8.6	18.9	52.9
1974	100.	100.	62.2	31.2	20.3	17.6	17.5	51.2
1975	100.	100.	54.1	29.0	28.3	14.5	17.5	56.6
1976	100.	100.	55.7	28.0	21.9	16.1	22.3	56.0
1977	100.	100.	60.9	38.1	20.1	15.9	19.0	46.0
1978	100.	100.	61.0	35.0	19.2	18.3	19.8	46.6
1979	100.	100.	64.0	33.9	15.0	19.4	21.0	46.6
1980	100.	100.	50.6	34.8	22.2	17.5	27.2	47.7
1981	100.	100.	52.6	28.0	21.5	24.6	25.9	47.4
1982	100.	100.	43.4	29.4	33.2	18.2	23.4	52.4
1983	100.	100.	50.8	34.0	24.6	14.2	24.6	51.9
1984	100.	100.	51.7	32.9	26.0	16.2	22.3	50.9
1985	100.	100.	50.8	35.4	30.5	16.8	18.7	47.8
1986	100.	100.	57.2	35.5	17.2	20.5	25.5	43.9
1300								

A comparison of the employment statuses of recent graduates in Table 8 with those of dropouts in Table 9 makes it clear that dropouts fare poorly in the labor market relative to graduates who do not enter college. Among the dropouts, 54 percent of the men and 64 percent of the women were unemployed or out of the labor force in 1987 whereas, among recent graduates not enrolled in college, the jobless rates were 23 percent for males and 38 percent for females. These statistics underscore the concern that a large proportion of high school dropouts, who constitute one-fourth of America's college age youth, face bleak employment prospects after they leave school.

INDIVIDUAL DIFFERENCES

Except for the closing of the gender gap in college entrance rates during the 1970s and the trend toward higher enlistment rates among men in the early 1980s, the time series reported in this section indicate that the sorting-out process among high school graduates has been quite stable since the advent of the All-Volunteer Force in 1972. Although time series based on national statistics are useful for examining overall trends, they often raise more questions than they answer. When one considers the myriad opportunities, constraints, preferences, and norms that shape young people's activities after leaving high school, national statistics provide little illumination as to who does what, when, and why. In essence, the sorting-out process is individualistic in nature, with each young person facing a unique set of options depending on his or her abilities, attitudes, and circumstances.

While we cannot hope to characterize how particular individuals with specific traits make the transition from youth to adulthood, there is a middle road between examining national statistics and looking at individual behavior, namely, studying the postsecondary activities of relatively homogeneous subgroups of young people. Led by previous investigations as to what factors are most important in determining postsecondary behavior, we turn to an examination of differences in postsecondary pursuits across subgroups of individuals categorized by sex, race, Hispanic origin, academic aptitude, socioeconomic status, postsecondary plans, school control, degree of urbanization, and location. Our main data base, High School and Beyond, provides individual measures on these factors for over 28,000 seniors and 30,000 sophomores in Spring 1980, as well as comprehensive longitudinal data on the post-secondary activities of nearly 12,000 seniors and 15,000 sophomores in the same classes. See Appendix B.

There have been hundreds of studies devoted to examining the determinants of college entry and progress toward bachelor's and higher degrees. Folger, Astin and Bayer (1970) provide an excellent review of the literature before 1970, including supplemental analyses of Project TALENT, a large-scale longitudinal study of over 100,000 high school students in 1960. Manski and Wise (1983) provide a more recent review plus a thorough analysis of college attendance patterns based on the National Longitudinal Study of the High School Class of 1972 (NLS72). The main finding that runs through this literature is that academic aptitude, as measured by performance on cognitive tests or in terms of classroom performance, is of primary importance in determining who goes to college, but sex and socioeconomic status also play important roles.

Table 10 shows the extent to which college entrance rates depended on these factors in the early 1960s. Derived from the Project TALENT five-year follow-up survey, the entries in the table are the estimated percentages of seniors in the Class of 1961 who attended college within five years after leaving high school (Flanagan et al., 1971). Using the same data,

Table 10

PERCENTAGES OF CLASS OF 1961 ENTERING COLLEGE
WITHIN FIVE YEARS BY SEX, SOCIOECONOMIC STATUS
QUARTILE, AND ACADEMIC APTITUDE QUARTILE

Academic	Socio	Socioeconomic Status Quartile						
Aptitude Quartile	Lowest	Second	Third	Highest	Total			
Lowest								
Males	14	29	35	42	25			
Females	14	24	27	33	22			
Second								
Males	34	45	47	76	48			
Females	12	23	35	58	28			
Third								
Males	59	65	78	90	74			
Females	22	38	74	78	49			
Highest								
Males	81	81	95	96	91			
Females	47	65	72	95	77			
Total								
Males	32	53	69	86	58			
Females	18	36	51	78	43			

Folger, Astin and Bayer (1970) estimated that 49 percent of the males and 35 percent of the females in the Class of 1961 entered college within a year after leaving school.

The two major successors to Project TALENT—NLS72 and HS&B—provided better data for analyzing student flows after high school and achieved much higher follow-up response rates. Like Project TALENT, NLS72 and HS&B began with large-scale base year studies of students selected at random from over 1000 high schools. In both cases, the selected students were administered a battery of cognitive tests, and considerable background information was obtained from the students themselves, their parents, and their schools. Follow-up surveys for NLS72 were conducted in 1973, 1974, 1976, 1979, and 1986; those for HS&B were fielded in 1982, 1984, and 1986. Of the two panel studies, HS&B obtained more detailed information on the participants' postsecondary activities by eliciting separate items on each episode of employment and schooling that the student had experienced since the previous follow-up. To provide reliable information on the military service and reserve participation of HS&B participants, the Defense Manpower Data Center supplemented our data files with extracts of service-related information on the enlistees, including dates of service entry and separation.

Using data from both sources, we classified each HS&B participant's main activity into one of four categories each month from January 1980 through February 1986: (1) full-time student, (2) military service, (3) civilian employment, and (4) not employed. Each of these categories was subdivided further to permit finer breakdowns of the participants' main activities. In particular, the full-time student category was divided into four subcategories corresponding to levels of schooling—high school, four-year college, two-year college, and vocational-technical school.

To prescribe "college entrance rates" for the Classes of 1980 and 1982, we combined the estimated percentages of graduates who were enrolled full-time in two- or four-year colleges

as of October in the year of graduation. Table 11 shows how these rates depend on sex, academic aptitude, and socioeconomic status.

Although the measures of academic aptitude and socioeconomic status derived from HS&B are quite different from those used in Project TALENT (see Appendix B), the dependence of the college entrance rates on those factors in Table 11 is as clear-cut as it was in Table 10 for the Class of 1961.³ However, the levels of the rates in Tables 10 and 11 are not

Table 11

PERCENTAGES OF HIGH SCHOOL GRADUATES ENROLLED AS FULL-TIME COLLEGE STUDENTS IN OCTOBER BY SEX, SOCIOECONOMIC STATUS QUARTILE, AND ACADEMIC APTITUDE QUARTILE: CLASSES OF 1980 AND 1982

Academic	Soc	ioeconomic :	Status Qua	artile	
Aptitude Quartile	Lowest	Second	Third	Highest	Total
		CLASS OF	1980		
Lowest				· · · · · · · · · · · · · · · · · · ·	
Males	14	14	16	35	17
Females Second	16	18	24	33	20
Males	22	25	36	45	31
Females	28	25 27	37	6 0	35
Third	26	21	O1	00	30
Males	32	44	47	50	46
Females	35	42	44	65	48
Highest	50	42	**	00	40
Males	42	56	69	66	61
Females	49	66	67	75	66
Total	10	00	•		•
Males	25	32	43	55	39
Females	28	34	43	65	41
		CLASS OF	1982		
Lowest					
Males	7	10	14	29	12
Females	11	16	26	39	18
Second					
Males	17	24	25	35	25
Females	19	26	28	51	30
Third					
Males	29	36	44	63	45
Females	28	40	54	69	49
Highest					
Males	46	59	67	83	69
Females	55	58	72	80	71
Total					_
Males	20	29	40	63	39
Females	21	32	45	67	41

³Although the overall rates were about the same for the Classes of 1980 and 1982, there are notable differences in the rates for individual cells that merit comment, especially those corresponding to the highest and lowest quartiles. These differences may be statistical artifacts stemming from the fact that the classification of HS&B participants into SES and test score quartiles was less reliable for the senior cohort (Class of 1980) than for the sophomores; SES scores or test scores (or both) were missing for 17 percent of the seniors but only 6 percent of the sophomores.

comparable, because those in Table 11 refer to full-time enrollment in a particular month following graduation, whereas those in Table 10 refer to both full-time and part-time enrollment at any time within five years after graduation.

Table 12 shows the analogous percentages of graduates in military service as of October in the year of graduation. Only 2.6 percent of the Class of 1980 and 2.3 percent of the Class of 1982 were on active duty as of that month. Because the majority of military entrants in the Classes of 1980 and 1982 delayed their entries into service for several months, these percentages do not reflect the prevalence of military duty among the Classes of 1980 and 1982. According to our estimates from the HS&B/DMDC files, 7.9 percent of the Class of 1980 and 7.6 percent of the Class of 1982 had served on active duty through February 1986. These estimates are in line with the enlistment rates reported in Table 7 (namely, 8.0 percent in 1980, 8.6 percent in 1982), which were derived by expressing the number of nonprior service accessions in any year as a percentage of the number of high school graduates in the same year.

Whereas Table 11 indicates that college entrance is more closely related to academic aptitude than to SES, Table 12 suggests that the opposite is true for military service. With military entrance rates for males in the lowest SES quartile running three or four times higher than those for males in the highest SES quartiles, it is clear from Table 12 that a disproportionate number of the enlistees who entered the military right after high school came from lower SES backgrounds.

PATTERNS OF MAIN ACTIVITIES AFTER GRADUATION

To show that postsecondary activity patterns also vary considerably across subgroups of youth categorized by sex, race, control of school, and location, we turn to an examination of October activities for other categories of students based on the weighted HS&B data. Table 13 shows the estimated percentages of high school graduates in each of the main activity categories. To facilitate interpretation, the small number of graduates who were either still in high school in October or whose HS&B records did not permit us to classify their main activities that month were allocated proportionately across activities. The numbers of cases in these two categories were small—1.6 and 5.9 percent respectively for the Class of 1980, 0.2 and 3.9 percent for the Class of 1982.

For the most part, the estimated track entrance rates for the two classes follow similar patterns. The most pronounced change between 1980 and 1982 was in the "Other" category consisting of graduates who were not full-time students and not employed. The overall increase from 14.6 percent in 1980 to 19.3 percent in 1982 is close to the increase from 15.8 to 19.5 percent in the jobless rates reported in Table 8 for recent high school graduates not enrolled in college. These increases reflect the tightening of the job market for entry-level workers during the 1981–1982 recession.

Combining the four-year and two-year college rates in Table 13, we see that the full-time college enrollment rates in October for the Classes of 1980 and 1982 were 40.5 and 39.9 percent respectively. Since the analogous part-time college enrollment rates for the two classes were 7.8 and 7.2 percent, the overall college enrollment rates in October following graduation were 48.3 and 47.1 percent.⁴ These estimates accord very well with the estimates

⁴The difference between these estimates is not statistically significant. The standard errors of the estimates (and the analogous estimates for full-time enrollments) are approximately 0.7 each, and the standard error of their difference is about 1.0. In calculating these college enrollment rates, we excluded enrollments in vocational and technical schools to maintain comparability with enrollment statistics cited in government publications. If one

Table 12

PERCENTAGES OF HIGH SCHOOL GRADUATES IN MILITARY SERVICE
IN OCTOBER BY SEX, SOCIOECONOMIC STATUS QUARTILE, AND
ACADEMIC APTITUDE QUARTILE: CLASSES OF 1980 AND 1982

Academic	S	ocioeconomic	Status Quar	tile		
Aptitude Quartile	Lowest	Second	Third	Highest	Total	
		CLASS O	F 1980			
Lowest						
Males	8.5	6.7	4.3	4.2	6.5	
Females	1.0	1.6	0.1	0.4	0.9	
Second						
Males	4.9	6.7	6.5	2.6	5.6	
Females	0.9	0.9	0.5	0.8	0.8	
Third						
Males	4.7	3.9	2.4	1.8	2.9	
Females	0.8	1.7	0.1	0.2	0.6	
Highest						
Males	9.3	0.9	2.0	2.2	3.3	
Females	0.5	0.1	0.8	0.3	0.4	
Total	-1.		7,0			
Males	7.3	5.1	3.8	2.4	4.5	
Females	0.8	1.2	0.4	0.4	0.7	
<u></u>		CLASS O	F 1982			
Lowest						
Males	5.3	4.4	3.9	2.5	4.4	
Females	0.6	0.2	0.0	0.0	0.3	
Second						
Males	11.4	4.9	3.8	2.8	5.7	
Females	0.8	0.9	0.5	0.4	0.7	
Third						
Males	6.5	7.0	3.9	1.2	4.3	
Females	0.1	0.8	0.6	0.0	0.4	
Highest	* · -		•			
Males	4.3	4.7	2.7	1.0	2.6	
Females	0.0	0.0	1.1	0.9	0.7	
Total	0.0	2.2				
Males	6.9	5.2	3.5	1.5	4.2	
Females	0.5	0.5	0.6	0.5	0.5	

in Table 8 derived from the Current Population Survey—49.4 percent in 1980, 50.6 in 1982 (with standard errors of about 1.4). While the latter rates show a slight increase between 1980 and 1982, the decrease of 1.2 percent in the estimates derived from HS&B data is consistent with the decrease in the freshman enrollment rates reported in Table 6.

It is noteworthy that the distribution of graduates across main activities in 1980 accords very closely with the analogous distribution for the Class of 1972 reported by Kanouse et al. (1980, p. 17). Their estimated percentages in the three full-time student categories were 30.0, 13.3, and 6.7 percent, and their estimates for military service, civilian employment, and

includes the graduates who were enrolled in vocational-technical schools in October (6.5 percent in 1980, 5.7 in 1982), the overall October enrollment rates for the Classes of 1980 and 1982 were 54.8 and 52.8 percent.

Table 13
ESTIMATED PERCENTAGES OF HIGH SCHOOL GRADUATES BY MAIN ACTIVITY
IN OCTOBER: CLASSES OF 1980 AND 1982

		N	Iain Acti	vity in Oct	ober Follov	wing Graduatio	n
	Number		Studen	t	Military	Civilian	
Category	in 1000s	4-year	2-year	Voc-tech	Service	Employment	Othe
		CLAS	S OF 19	80			
All	3021	29.4	11.1	5.3	2.6	37.1	14.6
Male	1485	28.3	11.0	5.0	4.5	39.4	11.8
Female	1536	30.4	11.1	5.6	0.7	34.9	17.3
Control of school							
Public	2748	28.4	11.3	5.5	2.8	37.6	14.5
Private	274	44.7	8.3	3.9	0.6	27.3	15.3
Race/Hispanic origin							
White	2466	31.3	11.1	-5.6	2.2	37.3	12.4
Black	341	24.0	8.1	3.8	4.6	30.7	28.8
Asian/Pacific Islander	45	37.3	19.2	2.3	3.1	22.9	15.2
Native American	15	13.2	13.9	5.8	3.8	42.2	21.1
Hispanic	154	17.8	12.2	4.9	3.0	43.2	18.7
Census division							
New England	182	35.1	7.5	5.8	2.0	40.6	8.9
Middle Atlantic	518	36.0	8.9	4.2	2.1	33.3	15.0
East North Central	604	33.2	8.4	7.4	2.6	35.0	13.3
West North Central	263	33.6	9.6	9.9	2.7	31.8	12.4
South Atlantic	448	28.7	10.6	4.4	3.4	36.2	16.8
East South Central	177	26.2	13.7	7.4	3.3	30.2	19.3
West South Central	305	25.5	10.0	3.2	2.3	44.7	14.5
Mountain	149	22.5	9.8	4.5	2.2	46.8	14.5
Pacific	375	20.0	21.7	2.2	2.3	38.7	15.0
		CLAS	SS OF 19	82			
All	2984	28.5	11.4	4.7	2.3	33.9	19.3
Male	1470	28.3	10.5	3.8	4.2	35.6	17.6
Female	1514	28.7	12.2	5.5	0.5	32.2	20.9
Control of school	1014	20.1	12.2	0.0	0.5	32.2	20.8
Public	2705	26.6	11.6	4.7	2.4	247	10.0
		48.4		4.7		34.7	19.9
Private	279	48.4	9.8	4.0	1.1	25.4	11.3
Race/Hispanic origin	0.400	00.0		4.0		05.0	
White	2423	29.9	11.6	4.9	2.2	35.0	16.4
Black	344	23.7	9.0	3.2	3.4	23.3	37.4
Asian/Pacific Islander	49	43.8	14.9	2.2	0.3	22.3	16.4
Native American	16	12.4	8.4	4.8	1.9	39.4	33.1
Hispanic	152	18.1	12.4	4.6	2.3	36.6	25.9
Census division							
New England	181	36.1	9.0	5.5	3.3	34.8	11.2
Middle Atlantic	505	36.0	10.3	4.4	2.6	27.9	18.8
East North Central	596	30.2	8.1	5.4	2.9	35.0	18.4
West North Central	251	31.9	9.8	8.8	1.6	34.4	13.6
South Atlantic	457	24.2	11.4	4.8	2.4	33.9	23.
East South Central	181	22.9	12.7	2.7	2.2	34.8	24.
West South Central	299	25.6	9.2	4.1	1.2	37.4	22.4
Mountain	146	26.0	8.5	4.3	1.7	40.5	19.0
Pacific	368	21.8	22.9	2.0	2.0	33.3	18.0

the "Other" category were 2.5, 37.6, and 9.8 percent. The concordance of the 1972 and 1980 rates underscores the stability of the overall college entrance rates during the 1970s and early 1980s. A comparison of the 1972 and 1980 rates for males and females separately confirms the closing of the gender gap during the 1970s. The 1972 female percentages reported by Kanouse et al. for the full-time student categories were 29.1, 12.6, and 8.5 percent, and those for males were 31.0, 14.0, and 4.9. Noting the reduction in the full-time vocational-technical percentage for females from 8.5 percent in 1972 to 5.6 in 1980, we see that part of the narrowing of the gender gap in college entrance rates between 1972 and 1980 reflected a shift of female enrollments from vocational-technical schools (e.g., for health services and secretarial training) into community colleges.

Although the differences in the 1980 and 1982 track entrance rates across categories of graduates are not as marked as those between the first and fourth quartiles in academic aptitude or SES, the differences are still sizable. Private school graduates were much more likely to enroll full-time in four-year colleges in October than public school graduates. Among minority groups, the full-time college enrollment rates in October ranged from a low of 30 percent for Hispanics to a high of 58 percent for Asian/Pacific Islander graduates, whereas the white non-Hispanic rates were around 42 percent in both years.

The differences in track entrance rates across census divisions show that postsecondary sorting-out patterns vary considerably across the country. In terms of full-time college enrollment rates, the Middle Atlantic states (New Jersey, New York, and Pennsylvania) had the highest rate in 1982 at 46 percent, more than ten points above the rates for the southern divisions and the Mountain states. Although the Pacific states (Alaska, California, Hawaii, Oregon, and Washington) had a relatively high rate of 45 percent in 1982, they ranked lowest in terms of four-year college enrollment rates, with only 22 percent of the Class of 1982 attending four-year colleges full-time in October. These variations in enrollment patterns across regions and race/Hispanic origin categories are important in analyzing subsequent educational attainments because of the very different persistence patterns across institutional categories.

Table 13 shows that the proportion of graduates in military service in October also varied widely across subgroups of high school graduates. In addition to the pronounced gender gap in the military service rates, there were substantial differences between public and private school graduates and between blacks and whites. As will be seen from multiple regression analyses later in this section, part of these differences are attributable to differences in socioeconomic status across categories.

PLANS VERSUS REALIZATIONS

The HS&B base year surveys for both the seniors and sophomores included the question "What is the one thing that most likely will take the largest share of your time in the year after you leave high school?" The responses to this item, when contrasted with the same students' activities following graduation, shed light on the timing and stability of plans formulated prior to graduation. Given the multitude of personal factors that affect choices of post-secondary activities and the infeasibility of assessing them accurately via population surveys, one can regard the plans reported by the seniors themselves as the most informed guesses as to how those factors will play out in the months following graduation. Hence, they provide important information about the decisionmaking processes of young people as they approach a key juncture in their lives.

However, senior plans do not provide very reliable predictors. Only about half of the senior HS&B participants' main activities in October matched the plans that they reported in the spring. While this discordance of plans and realizations can be dismissed as indicating that some seniors do not treat survey questions seriously, scholars who have studied this phenomenon explain it differently, saying that plans made in high school tend to be unreasonable and unstable (Flanagan et al., 1971). Studies of educational attainment objectives and career aspirations have consistently shown that many high school seniors have unrealistic expectations, and that others skew their responses to conform to socially acceptable norms (Kanouse et al., 1980).

One explanation for the instability of high school students' plans is that they are affected by changes in the students' circumstances and attitudes. For seniors who have found more ups than downs in their high school experiences, who have doubts about the personal benefits of further education, or who have only vague notions as to where they are going and how they will get there, it is understandable that their plans might fluctuate over time, perhaps depending on day-to-day developments in their personal relationships with friends, parents, and teachers. On the other hand, these uncertainties may not exist for some seniors who have long-standing plans supported by their families and tailored to their desires, talents, and resources.

Johnston and Bachman (1972) found that plans made in grades 10 and 11 to get a job or enter the military were poor predictors of later behavior, but that college plans made in those grades were more reliable. They concluded that the decision to go to college is made fairly early for most students who attend college, but that "the decision to get a job or enter the service is typically made very late in high school or even subsequent to graduation. . . . Military service and work often become first choices only after it is realized that continued education is an unsuitable or impossible goal to achieve" (Johnston and Bachman, 1972, p. 30).

We concur with the view that decisions regarding postsecondary activities are sequential in nature and that educational goals play an important role in determining those activities. However, we contend that decisions to enter the military or to take jobs in the civilian sector, especially those entailing lengthy periods of classroom or on-the-job training, may represent first steps in well-formulated plans to achieve concrete educational goals rather than digressions from those objectives. In particular, individuals who enter the military right after high school may not be opting away from educational pursuits but entering technical training programs consistent with their career goals or accepting temporary diversions to pave the way for subsequent college attendance funded through postservice educational benefits. If most students have well-orchestrated plans of this nature, the concordance of their plans and outcomes should demonstrate the coherence of their plans. However, as we shall now see, there is plenty of evidence to show that high school students' plans are erratic.

Tables 14 and 15 show how well seniors' plans accord with their October activities based on the weighted HS&B data for the Classes of 1980 and 1982. The top halves of these tables show the estimated numbers of graduates in each of the cells that result from crossing the plans and activity categories. The bottom halves of these tables are similar to Table 13 in that they show the track entrance rates for each plans category. The entries along the diagonal are the percentages of graduates who were pursuing the same main activity in October that they had checked in responding to the plans item. Hence, they are measures of the reliability of senior plans as predictors of October activities.

Only about two-thirds of the seniors in both classes who planned to devote most of their time to four-year college attendance were actually pursuing that activity full-time in October.

Table 14

ESTIMATED NUMBERS OF HIGH SCHOOL GRADUATES BY MAIN ACTIVITY IN OCTOBER, PLANS CATEGORY, AND SEX: CLASS OF 1980

		Main	Activity ir	October F	'ollowing Gradu	ation	
Plans Category		Studen	nt	Military	Civilian		
and Sex	4-year	2-year	Voc-tech	Service	Employment	Other	Total
N	UMBER	S OF GR	ADUATES	(IN THOU	JSANDS)		
Student, 4-year							
Male	344.7	44.5	14.1	6.7	87.5	49.2	546.8
Female	412.2	30.6	15.2	0.8	86.2	64.8	609.9
Student, 2-year							
Male	13.5	75.3	13.0	3.1	59.0	17.1	180.9
Female	18.9	97.1	21.2	0.7	84.1	33.9	256.0
Student, voc-tech							
Male	2.6	6.8	23.6	2.2	34.7	12.6	82.6
Female	3.4	11.2	29.4	0.6	38.8	23.7	107.
Military service							
Male	2.8	2.1	1.0	32.5	13.3	5.2	56.9
Female	0.1	1.4	0.5	6.0	8.0	4.0	19.9
Civilian employment							
Male	14.4	18.2	12.9	11.4	277.2	56.5	390.4
Female	10.5	15.5	10.0	1.4	223.7	87.1	348.5
Not employed							
Male	8.5	5.5	3.5	2.9	49.8	15.0	85.3
Female	3.5	4.0	4.2	0.0	43.6	25.1	80.4
Unknown							
Male	33.4	11.4	6.2	8.3	63.3	19.5	142.0
Female	18.6	10.5	5.7	1.2	52.2	26.7	115.0
Total				• -			
Male	419.8	163.8	74.2	67.1	584.8	175.1	1484.8
Female	467.3	170.5	86.1	10.7	536.5	265.3	1536.4
	PEI	RCENTA	GES OF G	RADUATI	ES		
Student, 4-year							
Male	63.0	8.1	2.6	1.2	16.0	9.0	100.0
Female	67.6	5.0	2.5	0.1	14.1	10.6	100.0
Student, 2-year							
Male	7.4	41.6	7.2	1.7	32.6	9.5	100.0
Female	7.4	37.9	8.3	0.3	32.9	13.3	100.0
Student, voc-tech			0.0	0.0	02.0	20.0	200.
Male	3.1	8.2	28.6	2.8	42.0	15.3	100.0
Female	3.2	10.5	27.4	0.6	36.2	22.1	100.0
Military service				0.0	55.2		
Male	4.8	3.7	1.8	57.2	23.3	9.1	100.0
Female	0.4	7.0	2.4	29.9	40.3	20.0	100.0
Civilian employment	• • •			20.0	10.0	-0.0	200.
Male	3.7	4.7	3.3	2.9	71.0	14.5	100.0
Female	3.0	4.5	2.9	0.4	64.2	25.0	100.0
Not employed	0.0	4.0	2.3	0.4	04.2	20.0	100.0
Male	10.0	6.5	4.1	3.4	58.4	17.6	100.0
Female	4.3	5.0	5.2	0.0	54.3	31.2	100.0
Unknown	4.0	5.0	J.4	U.U	⊍4. J	31.2	1.004
Male	23.5	ο Λ		F 0	44.6	107	100
Male Female		8.0	4.4	5.8	44.6	13.7	100.0
	16.2	9.2	5.0	1.1	45.4	23.2	100.0
Total Male	00.0	110	F 0		20.4	11.0	100
	28.3	11.0	5.0	4.5	39.4	11.8	100.0
Female	30.4	11.1	5.6	0.7	34.9	17.3	100.0

Table 15

ESTIMATED NUMBERS OF HIGH SCHOOL GRADUATES BY MAIN ACTIVITY
IN OCTOBER, PLANS CATEGORY, AND SEX: CLASS OF 1982

		Main	Activity in	October F	ollowing Gradu	ation	
Plans Category		Studer	nt	Military	Civilian		
and Sex	4-year	2-year	Voc-tech	Service	Employment	Other	Total
	NUMBER:	S OF GR	ADUATES	(IN THOU	JSANDS)		
Student, 4-year					···································		
Male	341.3	32.9	6.3	2.2	63.5	42.4	488.6
Female	372.9	40.2	7.3	1.3	65.6	60.7	547.9
Student, 2-year							
Male	21.4	70.1	7.6	2.3	41.8	27.2	170.4
Female	23.1	102.0	18.8	0.0	76.2	34.4	254.4
Student, voc-tech							
Male	1.5	6.5	17.9	1.1	27.0	16.6	70.5
Female	2.1	9.0	31.9	0.0	36.2	25.9	105.0
Military service							
Male	2.2	1.4	2.7	34.8	22.0	18.2	81.4
Female	1.2	0.4	0.2	4.0	7.5	3.7	17.0
Civilian employment	:						
Male	30.4	24.5	13.6	12.8	269.5	98.8	449.5
Female	20.8	19.4	16.6	1.0	229.6	108.2	395.6
Not employed							
Male	4.5	7.0	3.8	2.9	45.2	18?	81.6
Female	4.1	6.5	5.2	0.7	38.3	36.7	91.5
Unknown							
Male	14.2	12.1	3.7	6.1	54.5	37.7	128.3
Female	10.8	6.9	3.9	0.7	33.6	46.4	102.2
Total							
Male	415.4	154.3	55.4	62.2	523.6	259.2	1470.1
Female	434.9	184.4	83.8	7.6	486.9	316.0	1513.6
	PE	RCENTA	GES OF G	RADUATI	ES		
Student, 4-year							
Male	69.9	6.7	1.3	0.4	13.0	8.7	100.0
Female	68.1	7.3	1.3	0.2	12.0	11.1	100.0
Student, 2-year							
Male	12.6	41.1	4.5	1.3	24.5	15.9	100.0
Female	9.1	40.1	7.4	0.0	30.0	13.5	100.0
Student, voc-tech							
Male	2.1	9.2	25.4	1.5	38.3	23.5	100.0
Female	2.0	8.6	30.4	0.0	34.4	24.7	100.0
Military service							
Male	2.7	1.7	3.3	42.8	27.1	22.4	100.0
Female	7.0	2.4	1.1	23.7	43.9	21.9	100.0
Civilian employment			•				
Male	6.8	5.5	3.0	2.8	60.0	22.0	100.0
Female	5.2	4.9	4.2	0.3	58.0	27.4	100.0
Not employed			•••	2.5			
Male	5.5	8.5	4.6	3.6	55.4	22.3	100.0
Female	4.5	7.1	5.6	0.7	41.9	40.1	100.0
Unknown			3.0	3.1	-2.0		
Male	11.1	9.4	2.9	4.8	42.5	29.4	100.0
		6.8	3.8	0.6	32.9	45.4	100.0
	10.6						
Female	10.6	0.0	0.0	0.0			
	28.3	10.5	3.8	4.2	35.6	17.6	100.0

For the Class of 1980, the same two-thirds figure applied to those with "Civilian employment" plans, but the figure dropped to around three-fifths for the Class of 1982. This drop was partially offset by a rise in the "Other" category (not employed and not enrolled full-time), presumably as a result of reduced employment opportunities during the 1981–1982 recession.

The seniors in the "Military service" plans category were those who checked "Going into regular military service (or service academy)" in responding to the plans item. Only 50 percent of the 1980 graduates and 40 percent of 1982 graduates who checked this response were on active duty in October following graduation, but the percentages were higher for the males (57 and 43 percent). Allowing for the fact that some enlistees delay their service entry several months after enlistment, we have also estimated the percentages of the graduates with military plans who served on active duty at any time following graduation through February 1986, the last month for which we have follow-up data. Those estimates were 66 percent for the Class of 1980 (73 percent for males, 44 percent for females) and 64 percent for the Class of 1982 (69 for males, 39 for females).

Shifting attention to the top halves of Tables 14 and 15, we note that, of the estimated 77,800 graduates in the Class of 1980 on active duty in October, only 38,500 (49 percent) reported plans to enter the service. The analogous percentage for the Class of 1982 was somewhat higher at 56 percent, perhaps due to the decrease in civilian employment opportunities during the 1981–1982 recession. The remainder of the enlistees on active duty in October following graduation were drawn disproportionately from the other plans categories, with the largest representation coming from the seniors who planned to take jobs in the civilian sector. These figures and those for the other plans categories suggest that, for a substantial portion of the seniors, plans regarding postsecondary activities fluctuate over time as the seniors' personal circumstances change and they gain additional information, perhaps through employment and educational experiences during the summer following graduation.

The fact that about half of the seniors were not pursuing main activities in October consistent with their plans reported in the spring indicates that the time around high school graduation is a period of considerable uncertainty and flux for many seniors. In the absence of firm plans regarding postsecondary activities, they may simply treat a survey item about "plans" as one about "hopes" or "desires." As Table 14 shows, the number of 1980 seniors who reported plans to enroll full-time in four-year colleges exceeded the actual number of graduates in that category by about 30 percent.

Whether senior plans represent vague guesses, unfounded hopes, or well-conceived blueprints for future actions, they merit examination either as the students' best informed guesses about postsecondary activities or as indicators of desired activities. While some of these assessments may be unrealistic, senior plans still provide indications of future behavior that can be treated as proxies for preferences or aggregated across subgroups of seniors to examine group behavior. The marginal entries in Tables 14 and 15 indicate that the distribution of seniors across plans categories conforms quite well with the distribution of main activities in October, and the concordance of the two distributions can be improved further by allowing for exaggerated college attendance plans. Given that the HS&B base year data on senior plans are more numerous, more representative, and more complete than the follow-up data on postsecondary outcomes, we have augmented our multivariate analyses of main activities by performing similar analyses using the plans data.

MULTIVARIATE ANALYSES OF TRACK ENTRANCE RATES

To examine the factors that influence young people's choices of postsecondary activities, we turn to multiple regression analyses of track entrance rates based on the HS&B/DMDC data. There are three types of information available for this purpose: (1) school-level estimates by HS&B school administrators of the proportions of the 1981 graduates from their schools who entered college, vocational-technical schools, and military service; (2) plans data for the students who participated in the HS&B base year surveys in Spring 1980; and (3) individual data on the postsecondary activities of members of the Classes of 1980 and 1982 derived from the HS&B follow-up surveys.

The school-level data on track entrance rates were provided by school administrators in responding to HS&B school survey questionnaires fielded in February 1982. The questions regarding the postsecondary activities of their graduates were Items 2-4 on the questionnaire:

The responses to Items 2 and 4 provide school-level estimates of college entrance and military enlistment rates for the Class of 1981. Although Item 2 asks for estimates of current college enrollment rates (as of February 1982), most school survey respondents would not have had up-to-date information to provide these estimates. Assuming that the school administrators attempted to provide estimates of college entrance rates for the fall term following graduation and that many of them had to rely on senior plans data to provide these estimates, we shall treat these data as rough estimates of the college entrance rates for the Class of 1981. The overall weighted college entrance rate based on the estimates is 50.3 percent, which is about 10 percent above the full-time college enrollment rate in October for the Classes of 1980 and 1982 (see Table 13) and 2–3 percent above the analogous rate that includes part-time enrollments.

If the school estimates are reasonably good proxies for the actual college entrance and military enlistment rates, they provide extensive data for examinir, how the rates vary across school types and locations. The 987 HS&B schools for which these data are available were chosen to provide representative samples of the nation's public and private high schools, and these schools accounted for over 350,000 graduates in the Class of 1981. However, the school-level data are *estimates* of the college entrance and enlistment rates for these schools, not the actual proportions. To the extent that the school estimates reflect senior plans rather than their actual activities, they are subject to the same biases that affect the plans data.

To analyze the reported college entrance rates for the Class of 1981 and the corresponding planned entrance rates derived from the base year survey of seniors and sophomores in the HS&B schools, we fitted logistic regression equations of the form

$$p = 1/[1 + exp(-\sum_{j=1}^{k} \beta_{j} x_{j})]$$

to the grouped data points (p_i, X_i) , $i = 1, 2, \ldots, n$, where p_i is the reported entrance rate (or plans rate) for the i-th school and X_i is a vector of independent variable values \mathbf{x}_{ij} for the i-th school. Under this formulation, the logit of the dependent variable p defined by logit(p) = log[p/(1-p)] is assumed to be a linear function of the k independent variables \mathbf{x}_i , $j = 1, \ldots, k$, where $\mathbf{x}_1 = 1.5$

Some of the independent variables used in the school-level analyses are listed in Table 16. In selecting schools to participate in HS&B, Frankel et al. (1981) stratified by school type, identifying four types of public schools (regular, alternative, Cuban, and other Hispanic) and five types of private schools (regular Catholic, black Catholic, Hispanic Catholic, elite private, and other non-Catholic). Preliminary analyses incorporating separate indicators for the strata revealed no significant differences within the three main categories—public, Catholic, and other private. Using the public school category as the benchmark (omitted) category from which increments for the other categories would be estimated, we kept two indicator variables in the equations, one for Catholic and one for other private schools. The regional and urban/rural indicators are those reported on the HS&B school file. The North Central and urban categories serve as benchmark categories in the equations.

The student attributes included as independent variables in the school-level fitted equations are the student minority percentages and the mean values of SES (socioeconomic status), TEST (a measure of academic aptitude), and family income for the base year participants in the school. To allow for the effects of local economic conditions in the vicinity of the schools, three state-level economic characteristics were included: (1) the estimated average unemployment rate in the state in 1981; (2) estimated per capita income in thousands of dollars; and (3) average hourly earnings of production workers on manufacturing payrolls. See Appendix B for further details.

Table 16 lists the regression coefficients and t-statistics for the logistic regression equations fitted to three dependent variables. First is the estimated college entrance rate. Next is the analogous military enlistment rate, which is designated in the table by "U" for "unconditional." Like the college entrance rate, this is the school-reported proportion of 1981 graduates that entered military service (Item 4). The third rate is the military enlistment rate among the graduates who did not enter college. This (conditional) rate, denoted by "NC" for "noncollege," is relevant in treating military enlistment as a two-stage procedure in which a high school graduate first decides whether to enter college or not; if he does not enter college,

 $^{^5}$ The standard method for fitting a logistic regression equation to grouped data is to estimate the parameters using the minimum logit chi square estimates b_j of β_j (Cox, 1970; Haggstrom, 1983), which entails replacing the school rates p_i by their (modified) logits and applying weighted least squares with weights $w_i = N_i p_i (1 - p_i)$ where N_i is the class size for the i-th school. This case is nonstandard in the sense that decisions to enter college by graduates in the same school cannot be assumed to be independent, because the decisions are arrived at jointly and depend on unobserved factors. The minimum logit chi square procedure, unlike other commonly applied methods (i.e., maximum likelihood and discriminant function techniques), affords protection against intragroup correlation and reporting errors.

Table 16

LOGISTIC REGRESSION RESULTS FOR COLLEGE ENTRANCE AND MILITARY ENLISTMENT PROPORTIONS: CLASS OF 1981

	College Entrance		Military Enlistment(U)		Military Enlistment(NC)	
	b	t	b	t	b	t
Constant	-5.326	-9.1	997	-1.5	-2.907	-4.1
Control of school						
Catholic	.494	5.4	548	-3.7	146	-0.9
Other private	.372	1.7	145	-0.5	.019	0.1
Region						
Northeast	.063	0.9	.207	2.5	.242	2.6
South	152	-2.1	.250	3.0	.200	2.1
West	300	-4.5	.311	3.9	.188	2.1
Degree of urbanization						
Suburban	.050	1.0	.137	2.3	.135	2.0
Rural	056	-0.9	. 235	3.3	.190	2.4
Minority percentages						
Black	.005	4.8	.004	3.5	.007	5.3
Asian/Pacific Islander	.012	3.0	011	-2.4	004	-0.8
Native American	003	-0.5	003	-0.4	009	-1.1
Hispanic	.008	6.8	003	-1.9	.002	1.1
Student attributes						
SES/100	.866	6.6	124	-0.8	.246	1.5
TEST/100	.176	2.5	167	-2.0	038	-0.4
Family income/1000	001	-0.1	013	-1.4	009	-0.9
State economic factors						
Unemployment rate (%)	.014	0.8	082	-3.7	061	-2.5
Per capita income/1000	.071	2.5		-1.4	001	-0.0
Wage rate in mfg.	098	-2.7	.071	1.7	.001	0.0
Number of schools		987		987		986
Number of graduates	353,4	174	353	,474	175,	,587
Number of entrants	177,8	387	14	,308	14,	308
Entrance rate (%)	5	0.3		4.0		8.1
R squared	0	.38		0.16	(0.07
F statistic	2	7.9		13.5		5.4

he then decides whether to enlist or enter one of the other noncollegiate tracks.⁶ Analysis of the noncollege enlistment rate serves to identify school and student attributes that tend to increase the likelihood of enlistment in lieu of civilian employment, vocational-technical school enrollment, apprenticeship programs, and other noncollegiate activities.

The logistic regression results in Table 16 identify control of school, location, minority percentages, and socioeconomic status as important factors affecting college entrance and enlistment rates for the Class of 1981. Both categories of private schools show higher college entrance rates and lower enlistment rates than the public schools after controlling for differences due to other factors. Since the overall college entrance rate for public schools was

 $^{^6}$ Under the assumption that military enlistment (M) and college entrance (C) are mutually exclusive events following graduation, the probability P(M) of enlisting is the probability of not entering college, 1 - P(C), times the conditional probability $P(M \mid NC)$.

about 40 percent in 1981 (see Table 13), the regression coefficient of .494 for Catholic schools implies that the estimated "effect" of Catholic school enrollment on college entrance is a shift of .494 on the logit scale, which represents an increment of 12 percent above the public school rate. This illustrates the fact that shifts on the logit scale for probabilities between .4 and .6 are about four times as large as the corresponding increments on the probability scale.

Table 16 shows that graduates' choices of main activities after graduation are also affected by community and regional factors. The coefficients for the regional indicators imply lower college entrance rates for the South and West and lower enlistment rates in the North Central (omitted) region than in the other regions. Other things equal, students from rural schools tend to have lower college entrance rates and higher enlistment rates than those from urban and suburban schools.

The minority percentages and the mean values of SES, TEST, and family income are interrelated in ways that make it difficult to assess their separate effects using school-level data. Mean SES is the dominant predictor among these factors in accounting for differences across schools in reported college entrance rates. However, as will be seen below, academic aptitude is the dominant factor for explaining individual behavior.

When one considers the huge sample sizes represented by the school-level data, perhaps the most surprising finding to emerge from this analysis is that mean family income and the state economic factors are at best only marginally significant predictors. Collectively, they explain only a small proportion of the variability in the school rates that remains unaccounted for by the other factors listed in Table $16.^7$ Although the state unemployment rate is a statistically significant predictor of school enlistment rates (t = -3.7), the coefficient has the "wrong" sign, indicating that, other things equal, enlistment rates are lower in states having high unemployment rates. This anomalous finding casts doubt on the validity of the school-reported estimates of the 1981 graduates' track entrance rates.

Table 17 shows the corresponding regression results when the school estimates of college entrance and enlistment rates for the Class of 1981 are replaced by the corresponding planned entrance rates derived from the individual plans reported by the HS&B seniors in Spring 1980. These results are similar to those in Table 16 in that they identify control of school, minority percentages, and SES as significant predictors of college entrance and enlistment plans, but there are notable differences.

First, the measure of academic aptitude, TEST, emerges as the dominant predictor of both college entrance plans and plans to enlist, especially among the graduates who did not plan to attend college. Second, wage rates in manufacturing show up as statistically significant predictors of both college entrance and enlistment plans, indicating that graduates in states having high wage rates are more likely to plan to work after leaving high school than to enter college or enlist in military service. Third, the regional indicators in Table 17, unlike those in Table 16, evidence little explanatory power, showing that the other factors account for most of the regional variations in senior plans.

The highly significant coefficients for the minority percentages (except for Native Americans) indicate that, other things equal, more minority students plan to enter college. Among minority students who do not plan to enter college, more report plans to enlist. However, as we observed earlier, matches between college plans and realizations are less frequent for minority students, so that the increases implicit in the regression coefficients may not translate into increased fall enrollment rates for minority students.

⁷The proportions of residual variance explained by the four income and economic factors are 1.1, 0.4, and 0.6 percent respectively for the three regression equations reported in Table 16.

Table 17

LOGISTIC REGRESSION RESULTS FOR PROPORTIONS OF SENIORS PLANNING
TO ENTER COLLEGE OR MILITARY SERVICE: SPRING 1980

	College Entrance		Milit Enlistm		Military Enlistment(NC)	
	b	t	b	t	b	t
Constant	-6.993	-15.4	-1.297	-2.0	-4.314	-6.4
Control of school						
Catholic	.422	7.3	433	-4.6	166	-1.6
Other private	.309	2.8	353	-2.4	122	-0.7
Region						
Northeast	.002	0.0	.156	2.0	.179	2.3
South	.049	0.9	008	-0.1	.049	0.6
West	012	0.2	.109	1.4	.113	1.4
Degree of urbanization						
Suburban	028	-0.6	.020	0.3	.010	0.1
Rural	.000	0.0	.217	3.2	.214	3.1
Minority percentages		0.0	.== .	0.2		
Black	.011	12.5	.005	4.6	.012	9.6
Asian/Pacific Islander	.012	2.9	.010	2.5	.015	3.7
Native American	.001	0.4	001	-0.3	.002	0.5
Hispanic	.011	11.3	001	-1.1	.005	3.4
Student attributes	.022	-1.0	.001	2.2	.000	0.1
SES/100	.762	7.3	323	-2.3	010	-0.1
TEST/100	.582	9.6	.115	1.4	.495	5.6
Family income/1000	.000	0.0	009	-1.0	005	-0.6
State economic factors	.000	0.0	000	-1.0	000	-0.0
Unemployment rate (%)	.018	1.3	.008	0.4	.022	1.1
Per capita income/1000	.045	2.1	.060	2.0	.083	2.6
Wage rate in mfg.	060	-2.2	140	-3.7	175	-4.4
Number of schools		987		987		981
Number of seniors	26	,941	26.	941	12,	909
Number planning activity	14	,032		915	•	915
Percent planning activity		52.1		3.4		7.1
R squared		0.60	(0.17	(0.19
F statistic		62.9		15.0	1	3.5

Table 18 sheds more light on the planning process by providing the same type of analyses for the sophomores who participated in the HS&B base year survey in Spring 1980. Since the sophomore plans item was the same as the one for the seniors, the sophomore data can be contrasted with the senior data to provide information about the evolution of postsecondary plans. The percentage of sophomores planning to devote most of their time to college attendance the year after high school was 46.8 percent, which is in line with the senior figure (52.1 percent), considering that some of the sophomores will drop out of school before graduating. The proportion of sophomores planning to enlist during the year after graduation was 3.6 percent, which accords very well with the 3.4 percent figure for the seniors.

A comparison of the regression coefficients in Tables 17 and 18 shows a remarkable amount of agreement, the main exception being the rural schools coefficient for plans to enter

Table 18

LOGISTIC REGRESSION RESULTS FOR PROPORTIONS OF SOPHOMORES
PLANNING TO ENTER COLLEGE OR MILITARY SERVICE: SPRING 1980

	Coll Entre			itary nent(U)	Military Enlistment(NC)		
	Ъ	t	Ъ	t	Ъ	t	
Constant	-7.937	-18.9	912	-1.4	431	-6.2	
Control of school							
Catholic	.308	5.9	119	-1.3	.048	0.5	
Other private	.097	1.0	067	-0.4	.105	0.6	
Region							
Northeast	006	-0.1	.078	1.0	.097	1.2	
South	.094	1.9	025	-0.3	.036	0.4	
West	107	-2.2	117	-1.5	195	-2.4	
Degree of urbanization							
Suburban	014	-0.4	.018	0.3	.025	0.4	
Rural	067	12.3	.116	1.7	.099	1.4	
Minority percentages							
Black	.010	12.3	.004	3.2	.010	7.5	
Asian/Pacific Islander	.020	4.8	.005	1.0	.014	2.4	
Native American	.002	0.7	008	-1.5	006	-1.2	
Hispanic	.010	11.4	.003	2.2	.009	6.6	
Student attributes	.010		.000		.000	0.0	
SES/100	.873	9.2	064	-0.4	.283	1.8	
TEST/100	.679	9.9	263	-2.6	.173	1.6	
Family income/1000	182	-0.3	006	-0.7	117	-0.2	
State economic factors	102	-0.0	000	-0.1	111	-0.2	
Unemployment rate (%)	.020	2.1	.013	0.9	.024	1.5	
Per capita income/1000	.017	2.0	.030	1.2	.035	1.3	
Wage rate in mfg.	061	-2.8	069	-2.0	100	-2.8	
Number of schools		999		999		995	
Number of sophomores	27,	859	27	7,859	14	1,826	
Number planning activity	13	033	1.011		1.011		
Percent planning activity		16.8	3.6			6.8	
R squared	(0.59		0.15		0.14	
F statistic		32.3		10.0		12.0	

college. This concordance of the sophomore and senior plans data suggests that, whereas individual plans may be unstable and erratic, there is considerable stability in the distribution of planned activities over time, at least back to the sophomore year in high school.

Shifting from school-level data to individual data on the main activities of the HS&B participants in October following graduation, we fitted logistic regression equations separately by sex to the HS&B activities data to examine the effects of student and school attributes on individual decisions to enter college or military service. Tables 19 and 20 present these results for the same set of independent variables as before except that individual student attributes are used in lieu of school averages. Family income was omitted because of its

lack of explanatory power and because values of family income were unavailable for a substantial number of graduates.⁸

With a few exceptions, the patterns of the regression coefficients in Table 19 for college enrollment in October are similar for males and females, and they are consistent with the patterns for the college plans data. These results pinpoint academic aptitude as the predominant factor affecting college entrance. The TEST scores that served as measures of academic aptitude measures for this study had overall means of 510 and 521 for the Classes of 1980 and 1982, and a standard deviation of 88 in both years. See Appendix B for further details.

The dependence of the college entrance rates on sex, SES quartiles, and TEST score quartiles was displayed in Table 12. Except for certain categories of student, that table provides a convenient summary of the extent to which the likelihood of college entrance depends on student characteristics. Two exceptional categories are Asian/Pacific Islander graduates, who have substantially higher college entrance rates after controlling for other factors, and Native Americans, who have much lower college entrance rates. Other things equal, graduates from private schools had higher college entrance rates, and graduates from rural schools had lower college entrance rates than those from suburban schools.

The corresponding logistic regression results for military entrance are presented in Table 20. Only the equations for male graduates are listed, because the corresponding equations for females were based on too few enlistments and were nonrevelatory. For males, the coefficient on SES is negative and statistically significant in all four equations, indicating that low SES graduates were more likely to be on active duty in October after graduation. Table 12 provides estimates of enlistment rates by sex, SES quartile, and TEST quartile that support this finding.

Other things equal, black male graduates in the Classes of 1980 and 1982 were more likely to enlist than white non-Hispanic males. The other regression coefficients for minority groups were too erratic to support a similar conclusion for nonblack minorities.

There is some evidence in Table 20 of changes in enlistment patterns between 1980 and 1982. The South and Asian/Pacific Islander coefficients showed marked changes, and the urban/rural differences became less pronounced. Another noteworthy change was the coefficient on TEST, indicating that military enlistment became more attractive to graduates with above average academic aptitude in 1982.

⁸Because of the nature of the sample allocation scheme for the HS&B follow-up surveys (see Appendix B), the graduates who participated in the follow-ups were not representative samples of students from their schools. This ruled out the use of school-level averages to permit fitting logistic regression equations by minimum logit chi square. Instead, the equations reported here were fitted by maximum likelihood.

Table 19

LOGISTIC REGRESSION RESULTS FOR PROPORTIONS OF GRADUATES ENROLLED IN COLLEGE IN OCTOBER: CLASSES OF 1980 AND 1982

		Class	of 1980		Class of 1982				
	Males		Females		Males		Females		
	р	t	b	t	b	t	b	t	
Constant	390	-7.3	433	-8.3	322	-7.0	252	-5.5	
Control of school									
Catholic	.297	2.6	.428	4.3	.555	7.0	.308	4.4	
Other private	.238	1.3	.285	1.9	1.027	5.9	.468	2.7	
Region									
Northeast	202	-1.8	039	-0.4	.000	0.0	.151	1.6	
South	064	-0.6	.054	0.5	.168	1.6	033	-0.3	
West	190	-1.8	086	-0.9	.157	1.6	.095	1.0	
Degree of urbanization									
Suburban	.009	0.1	030	-0.4	.151	1.9	.215	3.0	
Rural	209	-2.3	181	-2.2	018	-0.2	.066	0.8	
Minority status									
Black	.110	1.2	.039	0.5	261	-2.9	.174	2.1	
Asian/Pacific Islander	.585	3.5	.514	3.2	.470	2.9	.609	4.0	
Native American	438	-1.8	025	-0.1	610	-2.9	797	-3.4	
Hispanic	088	-0.9	145	-1.6	391	-4.4	235	-2.8	
Student attributes									
SES/100	.046	0.7	.162	2.5	184	-2.7	.105	1.6	
TEST/100	.579	9.3	.566	8.8	.554	9.0	.296	4.8	
State economic factors		-							
Unemployment rate (%)	.016	0.6	015	-0.6	.011	0.6	018	-0.9	
Per capita income/1000	.150	3.4	.068	1.7	.059	1.7	.021	0.7	
Wage rate in mfg.	141	-2.5	013	-0.3	.026	0.6	.011	0.2	
Number of graduates	49	06	57	07	5504		5994		
Number enrolled	4906 1884		22	39	2284		26	03	
Percent enrolled	38	3.4	39	9.2	4	1.5	43	3.4	
R squared	0.	17	0.	20	0.	26	0.	19	
Chi square statistic	344	0.4	400	0.5	562	2.6	404	1.4	

Table 20

LOGISTIC REGRESSION RESULTS FOR PROPORTIONS OF MALE GRADUATES
IN MILITARY SERVICE IN OCTOBER: CLASSES OF 1980 AND 1982

	Or	Activ	e Duty (I	J)	On Active Duty (NC)				
	1980		1982		1980		1982		
	b	t	Ъ	t	b	t	b	t	
Constant	361	-0.3	-1.250	-1.2	835	-0.7	-1.596	-1.5	
Control of school									
Catholic	765	-2.0	287	-1.4	585	-1.5	.021	0.1	
Other private	618	-1.0	806	-0.7	454	-0.7	125	-0.1	
Region									
Northeast	026	-0.1	~.169	-0.7	045	-0.2	183	-0.7	
South	.282	1.2	570	-2.3	.277	1.2	570	-2.2	
West	158	-0.6	204	-0.9	174	-0.7	129	-0.€	
Degree of urbanization									
Suburban	.027	0.2	.167	0.9	.023	0.1	.246	1.3	
Rural	.338	2.0	.161	0.8	.248	1.4	.170	0.8	
Minority status									
Black-	.547	3.1	.699	3.9	.586	3.2	.634	3.4	
Asian/Pacific Islande	.431	1.1	819	-1.4	.713	1.8	598	-1.0	
Native American	.390	0.9	.221	0.5	.244	0.6	015	-0.0	
Hispanic	.385	1.9	.322	1.6	.341	1.7	.200	1.0	
Student attributes									
SES/100	285	-2.1	443	-2.9	308	-2.1	542	-3.5	
TEST/100	152	-1.2	.282	2.1	.060	0.5	.505	3.6	
State economic factors									
Unemployment rate (%)	.000	0.0	.052	1.1	.006	0.1	.060	1.3	
Per capita income/100	011	-0.1	.061	0.1	.024	0.3	.030	0.4	
Wage rate in mfg.	105	-0.9	203	-1.8	141	-1.2	213	1.9	
Number of male graduates	49	06	550	04	3022		322	20	
Number on active duty	2	86	24	14	286		24	14	
Percent on active duty	5	5.8	4	.4	9.5		7	.6	
R squared	0.	07	0.0)3	0.	06	0.0)3	
Chi square statistic	118	3.0	62	.3	75	5.8	43	.4	

IV. FINDING NICHES IN THE ADULT WORLD

This section examines the main activities of high school graduates and dropouts during the turbulent five years after leaving school. During this period of transition from adolescent dependency to adult self-sufficiency, young people are likely to make several critical decisions that will affect the rest of their lives. Some will marry and have children. Most will leave their parents' homes, complete their initial phases of postsecondary education, enter the labor market, and gain some measure of financial independence.

In going their separate ways after leaving high school, young people undergo a sequence of social, educational, and work experiences that lead many of them to change their objectives and redirect their pursuits. The discordance between seniors' plans and their postgraduation activities demonstrates that many, if not most, high school seniors have only vague notions as to where they are headed and how they will get there. Their activities during the first few months after leaving school are tentative first steps along educational and career paths that may be mapped out ahead of time but, more likely, will be determined sequentially, depending on contingencies and unforeseen events. Lacking clear-cut objectives and being subject to myriad factors that can deflect them from their pursuits, many of them will experience numerous diversions and setbacks before they find their niches in the adult world.

MODELS AND MAVERICKS

There is no such thing as a typical high school senior or a dominant pattern of postsecondary behavior. Although some high school graduates have well-formulated courses of action leading to concrete career objectives and they follow direct routes in pursuit of those goals, the patterns followed by most high school graduates are less direct. Given that 40 percent of the high school seniors in Spring 1980 expected to enter professional careers and that 46 percent expected to complete a bachelor's degree (Peng, Fetters, and Kolstad, 1981), one would think that the dominant pattern of postsecondary behavior would be the traditional "lockstep" pattern through college—enrollment in a four-year college in the summer or fall term after graduation followed by a continuous pattern of enrollments until graduation, except perhaps for summertime breaks. However, Carroll (1989) reports that only 16 percent of the 1980 graduates followed that pattern.

For most high school graduates, postsecondary activities appear to be less ordered and more dependent on evolving circumstances. Perhaps the closest thing to a "model" for post-secondary behavior is based on the premise that, as young people mature, they develop self-concepts (or self-images) based on their previous experiences, their relationships with others, and personal assessments of their interests, capabilities, and aspirations. Their notions of themselves include perceptions of what they will become. Those perceptions, in turn, imply educational, career, and lifestyle objectives that guide their decisions and lead them to

¹Some economists hypothesize that young people's choices of postsecondary activities can be explained in terms of utility-maximizing behavior. For example, in deciding whether to take a job after high school or enter college, a high school graduate weighs the "utilities" of the two actions and chooses the action that has the higher utility. The argument is made that, although the utilities cannot be observed, the choices that individuals make reveal preferences that can be analyzed to determine how the individuals' utility functions depend on personal attributes and other factors that affect their preferences. See Manski and Wise (1983) for formulations along those lines.

undertake activities in preparation for their perceived adult roles. As their personal circumstances change and they gain additional information about themselves and the options and constraints that affect their behavior, they modify their plans and activities accordingly.

The first full-time job after high school or the first episode of postsecondary education represents an incursion into the adult world and a major step toward independence. As such, it can be a very telling experience for gauging one's talents, limitations, and ambitions, and for illuminating the promises and pitfalls associated with a particular course of action. Since few entry-level jobs and freshman experiences live up to their expectations, the first few months after high school are a time of uncertainty and reappraisal, especially for young people who have qualms about their objectives or capabilities.

As we saw in Section III, senior plans are unreliable predictors of the activities pursued in October following graduation. The matches between plans and realizations are somewhat better for the seniors who plan to enter four-year colleges, perhaps because college attendance is consonant with a wide range of career and lifestyle objectives, and because "getting a college education" is widely viewed as an integral part of the maturation and acculturation process in American society. The bachelor's degree represents the culmination of that process, which relegates the two-year colleges and vocational-technical schools to, at best, a transitory role for students who aspire to complete four or more years of college. Since many students enter two-year colleges to pursue vocational courses of study and only a small proportion of the students in academic programs complete college degrees, the distinction between two-year college attendance and enrollment in noncollegiate educational programs may be immaterial in this regard.

Except for summertime breaks, most young people remain in school or college until they have completed their initial educational objectives. Once they leave student status, most of them enter the labor force and remain there indefinitely, perhaps with intermittent episodes of unemployment. There are two main exceptions to this pattern: (1) military personnel, some of whom enter the service before they enter college to avail themselves of the G.I. Bill or other educational benefits; and (2) women with children, who may remain out of the labor force and educational activities for long periods of time to devote most of their time to homemaking.

Within this overall pattern, there are three groups of young people whose postsecondary patterns are quite distinct—high school dropouts, graduates who do not enter college in the fall following graduation, and college entrants. As we showed in Section II, about one in four young people drop out of school before graduating, a figure that has remained virtually unchanged for 25 years. College entrance rates also remained quite stable during the 1970s and early 1980s (see Table 8), and data on earned degrees indicate that college completion rates changed little during this period. About 40 percent of the graduates in the Classes of 1980 and 1982 were enrolled in college full-time in October following graduation (see Table 13). We estimate that another 20 percent entered or will enter college at other times, and half of the college entrants will eventually complete a bachelor's degree, so that about 30 percent of each class (and 22 percent of each age group) will earn college degrees.

These are rough estimates, but they are consistent with college entrance rates based on first-time freshmen enrollments (see Table 7) and college completion rates determined by dividing the number of bachelor's degrees awarded each year by the number of high school graduates five years earlier. The latter ratios remained stable at 30–32 percent from 1975 through 1985 but rose slightly during the late 1980s—from 31 percent in 1984 to 34 percent

in 1988.² These ratios may exaggerate college completion rates among high school graduates, because the numerators include degrees awarded to foreign students and Americans who did not earn high school diplomas, and some college graduates earn more than one bachelor's degree.

Nevertheless, the 30 and 22 percent figures are lower than college completion rates based on self-reported educational attainment data. According to estimates derived from the Current Population Survey, 25.8 percent of the persons of age 30 to 34 in March 1987 reported having completed four or more years of college, and 87.1 percent said they had completed high school (U.S. Bureau of the Census, 1988a). If we take these estimates at face value, it follows that 30 percent of the high school graduates of age 30–34 had already completed four or more years of college, and some persons in that age group will earn bachelor's degrees after reaching 35 years of age.

DISTRIBUTIONS ACROSS MAIN ACTIVITIES

The estimated 30-percent college completion rate for the Classes of 1980 and 1982 exceeds the 29-percent estimate of the proportion of the graduates from those classes who were enrolled full-time in four-year colleges in October, and it is almost twice as high as the 16-percent estimate for the proportion of graduates who followed a lockstep pattern in completing bachelor's degrees in four years or less (Carroll, 1989). The implication of these statistics is that almost half of the graduates who entered four-year colleges right after graduation either dropped out or "stopped out" (i.e., temporarily quit), and those who dropped out were replaced by others who pursued less direct routes to college completion. This indicates that there is a lot of turbulence in educational activities, even among the high school graduates who complete college degrees.

Table 21 shows the estimated proportion of graduates in the Class of 1980 in each of the main activity categories at six-month intervals after graduation, beginning with October 1980. Table 22 shows the corresponding table for the Class of 1982. Not surprisingly, the two tables show very similar patterns. As we observed in Section III, the most pronounced changes between 1980 and 1982 were the increases in the "Other" category consisting of graduates who were not enrolled full-time and not employed. The increases in this category are in line with the increases in jobless rates among recent high school graduates during the 1981–1982 recession. See Table 8.

With that exception, the patterns for the two classes are very similar. During the first three years after graduation, the proportion of graduates enrolled full-time in four-year colleges remained quite stable, as the students who dropped out were replaced by entrants from

²Table 3 lists estimated numbers of high school graduates for the years 1960–1989. For the analogous time series on bachelor's degrees, see NCES (1989a, p. 221). Using NLS72 data, NCES estimates that 28 percent of the graduates in the Class of 1972 had completed a bachelor's degree as of June 1986 (*Ibid.*, p. 279).

 $^{^3}$ The entries in these tables and those displayed in later tables were obtained by first using the weighted HS&B data to estimate the total number of graduates, N(i,j;t), who moved from the i-th main activity category at the beginning of the t-th time period to the j-th category at the end of the period. In estimating these totals, a separate activity category was included for those participants whose main activities were unclassified. Once those estimates were obtained for each of the time periods $(t=1,2,\ldots,11)$, they were combined with the analogous estimates of transitions between senior plans categories and main activities as of October 1980 (see Table 14), which served as initial estimates for t=0. To allocate the estimated totals for the unclassified categories into the six main activity cells, a sequential scheme was adopted in which the estimated number of graduates whose activities were unclassified at any time t were first divided into six categories according to their classifications at time t-1. Then, in each of the six categories, the cases in the unclassified category at time t were allocated across the other categories proportional to the numbers of transitions into classified activities during time t.

Table 21

DISTRIBUTION OF 1980 HIGH SCHOOL GRADUATES ACROSS MAIN ACTIVITIES: OCTOBER 1980-OCTOBER 1985

			Percentage	in Main A	ctivity		
		Studen	t				
Month	4-year	2-year	Voc-tech	Military Service	Civilian Employment	Other	
	- 7042		MALE				
Oct 1980	28.3	11.0	5.0	4.5	39.4	11.8	
Apr 1981	26.9	10.7	5.0	6.2	40.0	11.2	
Oct 1981	26.9	10.2	4.9	6.8	41.7	9.5	
Apr 1982	26.0	8.7	3.6	7.9	40.4	13.4	
Oct 1982	27.8	5.8	2.8	8.2	44.3	11.2	
Apr 1983	27.6	5.4	2.8	8.5	45.9	9.8	
Oct 1983	28.2	3.2	2.4	8.1	48.9	9.1	
Apr 1984	21.9	2.0	1.6	7.3	49.7	17.4	
Oct 1984	14.9	1.4	1.8	7.0	62.0	12.9	
Apr 1985	12.1	1.3	2.1	6.8	67.4	10.2	
Oct 1985	8.0	0.9	2.4	6.0	72.3	10.3	
		-	FEMAL	ES			
Oct 1980	30.4	11.1	5.6	0.7	34.9	17.3	
Apr 1981	29.2	10.3	5.3	0.9	37.8	16.5	
Oct 1981	27.9	9.4	3.8	1.0	42.1	15.7	
Apr 1982	26.7	8.0	2.7	1.2	41.0	20.4	
Oct 1982	27.3	5.0	2.5	1.2	45.4	18.5	
Apr 1983	26.8	4.5	2.4	1.2	46.9	18.2	
Oct 1983	26.3	2.8	1.8	1.1	50.8	17.2	
Apr 1984	19.0	2.0	1.5	1.2	49.3	26.9	
Oct 1984	11.2	1.6	2.3	1.2	62.7	21.1	
Apr 1985	8.9	1.6	2.6	1.1	67.6	18.3	
Oct 1985	5.3	1.1	2.3	1.1	71.2	19.1	
			BOTH SE	EXES			
Oct 1980	29.4	11.1	5.3	2.6	37.1	14.6	
Apr 1981	28.1	10.5	5.2	3.5	38.9	13.9	
Oct 1981	27.4	9.8	4.3	3.9	41.9	12.7	
Apr 1982	26.3	8.3	3.2	4.4	40.8	17.0	
Oct 1982	27.6	5.4	2.6	4.6	44.9	14.9	
Apr 1983	27.2	5.0	2.6	4.8	46.4	14.1	
Oct 1983	27.2	3.0	2.1	4.6	49.9	13.2	
Apr 1984	20.4	2.0	1.6	4.2	49.5	22.2	
Oct 1984	13.0	1.5	2.1	4.0	62.3	17.1	
Apr 1985	10.5	1.4	2.3	3.9	67.5	14.4	
Oct 1985	6.7	1.0	2.3	3.5	71.7	14.8	

other tracks. As of April 1983 (almost three years after graduation), 27 percent of the Class of 1980 were enrolled full-time in four-year colleges. Over the same period, the proportion of graduates in military service almost doubled—from 2.6 percent in October 1980 to 4.8 percent in April 1983. As we shall see, there was an almost continuous flow of enlistees into military service over the course of the five-year period.

Table 22

DISTRIBUTION OF 1982 HIGH SCHOOL GRADUATES ACROSS MAIN ACTIVITIES: OCTOBER 1982-OCTOBER 1985

	Percentage in Main Activity										
		Studen	t	Military	Civilian						
Month	4-year	2-year	Voc-tech	Service	Employment	Other					
			MALE	S							
Oct 1982	28.3	10.5	3.8	4.2	35.6	17.6					
Apr 1983	27.6	10.3	4.0	6.5	36.0	15.5					
Oct 1983	26.6	10.7	4.2	7.3	39.3	12.0					
Apr 1984	22.7	6.9	2.9	8.0	41.7	17.9					
Oct 1984	25.0	4.3	2.2	8.4	46.7	13.4					
Apr 1985	24.6	3.7	2.1	8.8	49.8	10.9					
Oct 1985	23.5	2.3	2.2	7.3	53.7	10.9					
			FEMAL	ES							
Oct 1982	28.7	12.2	5.5	0.5	32.2	20.9					
Apr 1983	27.5	11.8	5.5	0.7	35.5	18.9					
Oct 1983	26.5	10.2	4.7	0.8	39.7	18.1					
Apr 1984	24.2	7.0	3.1	0.8	40.4	24.5					
Oct 1984	25.0	4.4	2.7	0.9	47.8	19.2					
Apr 1985	24.4	3.8	2.6	1.0	49.6	18.6					
Oct 1985	22.2	2.4	2.0	0.8	54.7	17.9					
			BOTH SE	XES							
Oct 1982	28.5	11.4	4.7	2.3	33.9	19.3					
Apr 1983	27.6	11.1	4.8	3.6	35.8	17.2					
Oct 1983	26.5	10.4	4.5	4.0	39.5	15.1					
Apr 1984	23.5	6.9	3.0	4.4	41.0	21.2					
Oct 1984	25.0	4.4	2.5	4.6	47.2	16.3					
Apr 1985	24.5	3.8	2.4	4.8	49.7	14.8					
Oct 1985	22.8	2.4	2.1	4.0	54.2	14.4					

As the young adults completed their initial phases of education and military service, most of them entered the civilian labor force. In October 1985—five years after graduation, 72 percent of the Class of 1980 were employed full-time in civilian jobs, 4 percent were in the military, and 7 percent were still enrolled full-time in four-year colleges. Anticipating that most of the latter would undertake full-time employment after graduation, we see that the full-time employment rate was approaching 80 percent as the Class of 1980 entered the second five-year period after graduation.

As Table 23 shows, the pattern of activities for the dropouts from the Class of 1980 was markedly different from that of the graduates. These estimates pertain to a special subgroup of dropouts, namely, those who remained in school through part of their senior year, and who chose to participate in the HS&B follow-up surveys. Hence, this table may not present an

Table 23

DISTRIBUTION OF 1980 HIGH SCHOOL DROPOUTS ACROSS MAIN ACTIVITIES: OCTOBER 1980-OCTOBER 1985

		Percentage in Main Activity									
		Studen	ıt	3.6131							
Month	4-year	2-year	Voc-tech	Military Service	Civilian Employment	Other					
			MALES	3							
Oct 1980	0.7	7.3	3.7	3.8	49.0	35.5					
Apr 1981	0.7	13.2	4.5	4.7	48.8	28.0					
Oct 1981	1.2	1.2	4.0	4.8	71.2	17.7					
Apr 1982	0.8	0.7	2.4	4.5	67.5	24.0					
Oct 1982	0.5	11.0	0.7	5.3	59.5	23.0					
Apr 1983	0.5	11.0	0.7	6.0	57.4	24.4					
Oct 1983	1.0	10.5	4.3	4.9	56.1	23.3					
Apr 1984	0.8	9.7	0.1	4.5	64.1	20.7					
Oct 1984	0.0	0.0	2.9	4.5	69.8	22.8					
Apr 1985	0.0	11.2	2.8	4.3	62.3	19.4					
Oct 1985	0.5	0.0	1.7	4.2	76.2	17.3					
			FEMALE	s							
Oct 1980	0.0	3.2	0.4	0.0	44.0	52.4					
Apr 1981	0.0	0.0	6.1	0.0	42.5	51.4					
Oct 1981	0.0	0.0	7.8	0.0	44.5	47.7					
Apr 1982	0.0	0.0	8.4	0.0	50.0	41.6					
Oct 1982	0.0	0.0	2.1	0.0	50.4	47.5					
Apr 1983	0.0	0.0	0.0	0.0	60.4	39.6					
Oct 1983	0.0	0.2	3.7	0.0	46.6	49.4					
Apr 1984	0.0	0.0	3.2	0.0	39.9	56.9					
Oct 1984	0.0	3.0	3.2	0.0	43.1	50.8					
Apr 1985	0.0	0.2	3.6	0.0	50.9	45.4					
Oct 1985	2.2	0.0	3.5	0.0	49.9	44.4					
			вотн sex	ŒS		_					
Oct 1980	0.4	5.7	2.4	2.3	47.0	42.3					
Apr 1981	0.4	7.9	5.2	2.8	46.3	37.4					
Oct 1981	0.7	0.7	5.5	2.9	60.5	29.7					
Apr 1982	0.5	0.4	4.8	2.7	60.5	31.1					
Oct 1982	0.3	6.6	1.3	3.2	55.8	32.8					
Apr 1983	0.3	6.6	0.4	3.6	58.6	30.5					
Oct 1983	0.6	6.4	4.0	2.9	52.3	33.8					
Apr 1984	0.5	5.8	1.4	2.7	54.4	35.2					
Oct 1984	0.0	1.2	3.0	2.7	59.1	34.0					
Apr 1985	0.0	6.8	3.1	2.6	57.7	29.8					
Oct 1985	1.2	0.0	2.4	2.5	65.6	28.2					

accurate picture of the employment patterns for the general population of school dropouts.⁴ However, it is clear from a comparison of Tables 21 and 23 that the overall activity patterns

⁴As partial evidence on this score, the proportions of dropouts enrolled full-time in two-year colleges (7.9 percent in April 1981) are much higher than the corresponding proportions for dropouts from the Class of 1982, which ran less than 2 percent in all periods. With that exception, however, the overall patterns of main activities were quite similar for the two cohorts.

for dropouts are starkly different from those for graduates, not only in terms of educational activities but in terms of employment status. Among young adults not enrolled in college, there was a much higher percentage of dropouts in the "Other" category, demonstrating the prevalence of joblessness among school dropouts. Nevertheless, 80 percent of the male dropouts and 50 percent of the females had full-time jobs in October 1985.

CHANGING COURSES

The preceding tables mask the turbulence in activities that young people experience as they wend their ways along career and educational paths. To capture that turbulence, we shift to an examination of the six-month transition rates between main activities during the five-year period following graduation. Table 24 lists the transition rates separately by sex for the Class of 1980. Table 25 presents analogous rates for the Class of 1982.

The entries in these tables are the percentages of graduates who made the transition from one activity (the "Start" state) to a second activity (the "End" state) during each of the six-month intervals from October following graduation through October 1985. Here, the main activities are designated by "S4," "S2," etc., with the same ordering as before, so that "CE" refers to "Civilian Employment." For the Class of 1980, the first time period (t=1) is from October 1980 to April 1981; the last period (t=10) is from April to October 1985. For example, the first two entries 92.8 and 0.7 in Table 24 for t=1 indicate that 92.8 percent of the males enrolled full-time in a four-year college in October 1980 were also enrolled in a four-year college in April 1981, and 0.7 percent were enrolled in two-year colleges as of that date.

Restricting attention to the block of entries for transitions from four-year college attendance (S4), we see that most transitions occurred 3-1/2 years or more after leaving school, which would ordinarily signify the completion of requirements for a bachelor's degree. The exits were mainly into civilian employment and the "Other" category, marking the completion of the initial phase of college attendance and entry into the civilian labor force.

Looking at the other blocks of transition rates in Tables 24, we note that military service (M) consistently had the highest six-month persistence (or continuation) rates for males at about 95 percent, with lower rates beyond the three-year point as early entrants completed their initial tours of duty and left the service. In both classes, the female transition rates differed little from those for males, except for lower continuation rates for women in the military during the first three years and higher rates thereafter.

STUDENT PERSISTENCE

The high transition rates out of full-time student status indicate that college entrants experience considerable flux in pursuing their educational goals. As Tables 24 and 25 show, students in two-year colleges and vocational-technical schools have low persistence rates, reflecting the fact that vocational-technical courses of study are usually of limited duration, and two-year colleges have high attrition among students pursuing academic programs. The higher transition rates into four-year colleges at the end of the second and third year after high school show that some two-year college students make the transition to continue working toward their bachelor's degrees. But, for both sexes, the transition rates into four-year colleges are lower than the rates into the civilian employment and "Other" categories.

Table 24

ESTIMATED SIX-MONTH TRANSITION RATES ACROSS MAIN ACTIVITIES FOR MEMBERS OF THE CLASS OF 1980: OCTOBER 1980–OCTOBER 1985

Acti	vity			Percer	nt Maki	ng Tran	sition	During	Period	-	
Start	End	1	2	3	4	5	6	7	8	9	10
					MA	LES					
S4	S4	92.8	88.2	82.1	89.0	95.5	94.1	70.3	56.8	77.3	59.4
S4	S2	0.7	2.5	0.6	0.9	0.4	0.4	0.1	0.1	0.0	0.0
S4	sv	0.2	0.4	1.0	0.6	0.1	0.4	0.4	2.9	0.5	1.1
S4	M	0.3	0.3	0.5	0.2	0.1	0.6	0.2	1.3	0.4	0.€
S4	CE	4.4	6.4	7.9	6.1	3.3	3.9	11.9	31.3	18.8	33.4
S4	0	1.6	2.1	7.9	3.2	0.7	0.5	17.2	7.6	3.0	5.8
S2	S4	0.9	6.0	4.1	18.9	5.2	18.9	3.0	13.3	4.8	4.9
S2	S2	88.3	76.4	63.6	47.8	82.8	50.1	45.6	42.3	80.5	57.
S2	SV	0.0	1.2	0.2	1.1	0.1	2.4	1.5	0.0	0.0	0.
S2 S2	M CE	0.7 7.0	$0.5 \\ 12.2$	0.9 19.0	0.3 26.2	0.2	0.8	0.3	1.8 35.8	0.0 10.9	0.1
S2	O	3.1	3.7	12.1	5.6	7.4 4.3	20.6 7.2	31.8 17.7	6.9	3.7	28.0 8.0
SV SV	S4 S2	0.0	2.3	7.7	4.5	1.1	1.5	6.5	1.7	1.6	1.
SV SV	SV	0.3 85.4	0.1 67.6	$\frac{3.7}{52.8}$	0.8 46.6	0.1	0.0	$\frac{1.2}{41.5}$	0.0	$0.0 \\ 82.7$	0.
SV	M	0.8	0.1	0.1	0.0	84.4 1.1	59.6 0.3	0.0	45.9 2.2	0.0	59. 0.
SV	CE	11.9	25.5	21.4	36.3	11.5	34.3	27.6	42.7	11.7	30.
sv	o	1.6	4.4	14.4	11.7	1.8	4.2	23.2	7.5	4.1	9.
M	S4	0.1	0.6	0.0	0.0	0.4	0.0	0.4	0.4	0.0	2.
M	S2	0.2	0.1	0.0	0.0	0.0	0.2	0.0	1.5	0.0	0.
M	sv	0.0	0.0	0.0	0.0	0.6	0.0	0.2	0.2	0.0	0.
M	M	95.0	96.2	97.6	94.4	94.0	88.3	84.7	83.7	91.2	82.
M	CE	3.9	2.5	2.0	4.1	3.4	7.2	11.6	10.7	6.2	13.
M	0	0.9	0.7	0.4	1.5	1.6	4.3	3.1	3.5	2.5	2.:
CE	S4	1.1	3.7	4.8	4.3	1.3	1.9	2.7	2.2	0.6	0.
CE	S2	1.5	2.4	2.9	2.0	0.7	0.7	0.8	0.6	0.1	0.
CE	sv	1.3	2.2	1.4	1.2	0.6	0.7	0.8	0.5	0.7	1.
CE	M	3.4	1.4	1.8	1.0	1.0	0.4	0.5	0.5	0.5	0.
CE	CE	85.9	83.7	76.4	82.6	91.5	90.7	82.0	89.1	94.4	92.
CE	0	6.8	6.6	12.7	8.9	4.9	5.6	13.2	7.1	3.6	5.
0	S4	1.0	7.5	12.3	8.4	0.5	3.2	5.6	5.9	1.2	0.
0	S2	1.4	3.1	6.5	4.3	1.7	0.7	1.0	0.6	0.8	0.
0	SV	1.5	3.2	2.1	2.7	1.0	1.4	0.9	1.1	0.6	1.
0	M	2.9	1.9	2.1	2.0	2.8	2.4	1.1	1.3	0.9	0.
0 0	CE	28.2	33.8	34.9	39.9	31.6	36.1	39.3	49.7	40.6	40.
	0	65.0	50.5	42.1	42.7	62.5	56.2	52.1	41.4	55.9	56.
					FEM.	ALES					
S4	S4	93.4	87.5	80.4	89.9	95.7	92.1	64.0	49.5	76.2	48.
S4	S2	0.9	1.8	0.4	0.5	0.2	0.3	1.2	0.2	0.3	0.
S4	SV	0.5	1.1	0.6	0.9	0.1	0.7	0.7	2.9	0.1	0.
S4	M	0.1	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.
S4 S4	CE O	3.9 1.2	6.8	9.6 g q	6.1 2.6	3.0	5.6 1.4	15.0	38.2	18.2	41.
			2.6	8.9		0.9	1.4	19.1	9.2	5.2	9.
S2	S4	0.4	5.0	3.1	12.2	2.1	12.9	3.6	11.7	0.2	6.
S2	S2	83.5	73.7	59.5	49.8	82.9	51.3	38.5	43.0	72.3	51.
S2	SV	0.8	2.3	1.5	2.1	1.2	3.5	1.3	7.5	0.0	0.
S2	M	0.0	0.0	0.0	0.1	0.0	0.0	0.8	0.0	0.0	0.
S2 S2	CE O	11.6 3.7	13.8 5.3	21.3 14.6	27.4 8.4	7.5 6.2	24.8 7.5	38.7 17.2	26.2 11.6	16.9 10.6	27. 14.
		.1./	().()	14.0	0.4	n z	(.5	11.2	11.0	10 h	14

Table 24—continued

Acti	vity			Percer	ıt Maki	ng Trai	nsition l	During	Period		
Start	End	1	2	3	4	5	6	7	8	9	10
sv	S4	2.0	1.7	7.0	2.9	0.0	3.0	10.1	4.6	0.0	0.4
sv	S2	1.0	1.9	3.9	0.2	0.1	0.1	0.1	0.0	0.1	1.2
SV	sv	79.3	45.0	38.2	38.4	77.6	38.5	40.0	53.2	77.4	53.4
SV	M	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0
SV	CE	14.1	39.3	30.0	39.3	13.5	44.6	27.5	25.1	18.6	36.1
SV	0	3.5	12.1	20.8	19.2	7.9	13.9	22.3	17.1	4.0	8.9
M	S4	0.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
M	S2	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
M	sv	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.2	0.0	0.0
M	M	83.3	93.6	86.4	91.0	89.8	91.2	93.5	94.5	85.3	92.7
M	CE	7.1	1.8	5.7	0.0	4.7	4.7	3.2	4.4	10.4	6.6
M	0	9.6	0.0	7.9	9.0	5.4	3.6	3.3	0.9	4.3	0.6
CE	S4	1.3	3.7	4.6	3.4	0.8	1.5	2.3	2.0	0.3	1.1
CE	S2	1.5	2.4	4.0	1.6	0.4	0.6	0.7	0.9	0.4	0.3
CE	sv	0.9	1.6	1.2	1.5	0.7	0.8	0.7	0.7	0.7	0.9
CE	M	0.5	0.1	0.4	0.3	0.2	0.1	0.1	0.0	0.0	0.1
CE	CE	86.7	82.9	73.6	82.9	89.3	88.4	76.9	88.6	93.2	90.0
CE	0	9.1	9.3	16.1	10.3	8.6	8.6	19.3	7.9	5.3	7.6
0	S4	1.0	2.3	10.7	4.3	0.8	1.6	4.1	1.8	0.8	0.9
0	S2	1.3	1.5	2.8	1.4	0.4	0.7	1.5	0.9	0.6	0.3
O	sv	1.8	1.5	2.9	2.0	0.4	0.9	1.3	1.6	1.7	1.3
0	M	0.5	0.7	0.1	0.1	0.1	0.1	0.6	0.1	0.0	0.0
0	CE	24.4	31.9	26.6	31.8	25.5	30.6	27.7	40.0	30.0	28.5
O	O	71.0	62.1	56.9	60.3	72.8	66.1	64.7	55.6	66.9	69.0

The fact that student persistence rates are very low in two-year colleges and vocational-technical schools is not new. Relying on follow-up data for the Class of 1972, Kanouse et al. (1980) reported that, among the freshmen enrolled full-time in four-year colleges in October 1972, 80 percent were still enrolled full-time in October 1973, whereas the corresponding percentages for the two-year colleges and vocational-technical schools were only 60 and 36 percent respectively. Carroll (1989) reported that less than a tenth of the 1980 graduates who entered two-year colleges and vocational-technical schools subsequently attained bachelor's degrees.

Four-year college entrants have substantially higher persistence rates, but their progress toward degree completion is often sporadic and drawn out, and almost half of the four-year college entrants drop out of college before they complete their degrees. Analyzing the progress of 1980 graduates who enrolled full-time in a four-year college directly after graduation, Porter (1989) found that only 55 percent had enrolled continuously for four years, and only 46 percent had earned bachelor's degrees by February 1986. Degree completion rates were somewhat higher in private four-year colleges at 54 percent, as compared with 43 percent in public colleges. And they were higher still for graduates in the highest academic aptitude quartile—55 percent in the public colleges, 63 percent in the independent colleges. But even these higher rates indicate that the pipeline for college graduates suffers from excessive leakage.

The overall 46 percent degree completion rate for four-year college entrants as of six years after graduation is well below the five-year rates of 60-65 percent reported for four-

Table 25
ESTIMATED SIX-MONTH TRANSITION RATES ACROSS MAIN ACTIVITIES FOR MEMBERS OF THE CLASS OF 1982: OCTOBER 1982–OCTOBER 1985

Act	ivity		Percent M	aking Trai	sition Dur	ing Period	
Start	End	1	2	3	4	5	6
			М	ALES			
S4	S4	95.0	89.1	78.8	87.1	94.7	86.5
S4	S2	0.3	2.2	0.7	0.3	0.4	0.4
S4	SV	0.0	0.7	0.6	0.6	0.1	0.3
S4	M	0.2	0.2	0.6	0.3	0.1	0.0
S4	CE	3.6	6.5	10.5	8.1	3.6	8.5
S4	О	1.0	1.2	8.8	3.7	1.0	4.4
S2	S4	1.3	4.9	3.1	21.7	6.8	18.8
S2	S2	86.8	79.6	53.8	39.3	76.5	46.7
S2	sv	0.5	0.4	0.9	0.8	0.0	0.6
S2	M	0.5	0.7	0.5	0.1	0.4	0.0
S2	CE	8.6	10.3	22.3	30.7	14.2	25.0
S2	0	2.2	4.1	19.4	7.4	2.1	8.9
sv	S4	1.2	2.1	2.4	3.6	0.0	0.0
SV	S2	0.6	1.0	2.1	0.3	1.4	0.1
SV	sv	83.3	69.5	45.4	37.1	69.7	61.5
SV	M	0.3	0.0	0.6	0.0	0.1	0.0
SV	CE	8.1	20.4	30.8	46.6	24.4	31.5
SV	0	6.5	7.0	18.7	12.3	4.3	6.9
M	S4	0.7	0.3	0.4	0.3	0.0	0.9
M	S2	0.0	0.6	0.0	0.4	0.0	0.5
M	SV	0.0	0.0	0.0	0.0	0.0	0.5
M	M	93.8	93.6	90.0	94.6	96.6	80.9
M	CE	2.3	2.3	7.4	3.7	2.2	13.8
M	O D	3.3	3.2	2.2	0.9	1.2	3.4
CE	S4	1.2	2.2	1.9	4.2	0.8	1.9
CE	S2	2.4	3.0	1.5	2.3	0.4	0.8
CE	SV	1.5	2.3	1.2	1.5	0.5	1.2
CE	M	3.5	1.9	1.9	1.2	0.9	0.2
CE	CE	83.2	82.7	76.9	82.3	92.5	90.1
CE	O	8.3	8.0	16.7	8.5	4.8	5.8
0	S4	1.0	3.5	4.6	10.5	1.9	4.7
0	S2	1.7	4.5	2.6	3.0	0.7	0.5
0	sv	1.4	2.2	2.5	1.8	2.5	1.7
0	M	6.8	2.4	3.6	1.5	1.5	0.5
0 0	CE O	23.1	36.8 50.6	37.0	38.2	32.5	36.2 56.4
<u> </u>		66.1	50.6	49.8	45.0	61.0	56.4
			FE!	MALES			
S4	S4	93.4	88.5	79.5	86.8	94.7	84.1
S4	S2	0.8	1.3	0.8	0.4	0.0	0.4
S4	sv	0.3	0.9	0.7	0.4	0.1	0.6
S4	M	0.0	0.0	0.0	0:	0.0	0.0
S4	CE	3.7	7.0	9.0	8.5	3.3	11.1
S4	0	1.8	2.3	9.9	3.9	1.8	3.7
S2	S4	0.9	5.7	2.7	17.1	4.0	15.0
S2	S2	86.1	74.2	52.9	42.9	77.3	48.7
S2	sv	1.1	2.5	1.8	2.9	1.7	0.0
S2	M	0.4	0.2	0.0	0.0	0.0	0.0
S2	CE	7.4	11.8	24.0	28.4	13.4	29.6

Table 25-continued

Act	ivity		Percent M	laking Trai	nsition Dur	ing Period	
Start	End	1	2	3	4	5	6
SV	S4	0.2	0.6	2.6	5.0	0.0	3.5
SV	S2	1.1	1.2	1.4	2.4	0.0	1.2
SV	sv	78.7	52.2	39.6	39.2	64.6	41.9
SV	M	0.0	0.2	0.0	0.0	0.0	0.0
SV	CE	14.0	32.9	35.3	43.5	25.5	41.6
sv	0	5.9	12.8	21.1	10.0	9.8	11.8
M	S4	0.0	0.0	0.0	3.4	0.0	0.0
M	S2	0.0	0.0	0.0	0.0	0.0	0.0
M	SV	0.0	0.0	0.0	2.6	0.0	0.0
M	M	80.5	96.5	87.6	82.6	94.9	79.1
M	CE	9.1	2.8	3.5	11.3	0.6	19.5
M	О	10.4	0.7	8.9	0.0	4.5	1.4
CE	S4	1.1	3.0	4.2	2.9	0.7	1.6
CE	S2	2.2	1.7	2.2	1.9	0.7	0.4
CE	SV	1.5	2.0	1.5	1.7	1.2	1.1
CE	M	0.6	0.2	0.2	0.1	0.2	0.0
CE	CE	83.5	81.9	72.5	82.4	88.9	89.0
CE	0	11.2	11.2	19.3	10.9	8.2	7.9
0	S4	1.1	1.8	5.8	6.0	0.9	1.2
O	S2	1.6	2.1	2.2	1.8	0.5	1.2
0	SV	2.3	3.2	1.4	2.0	0.8	1.3
0	M	0.4	0.2	0.1	0.5	0.0	0.0
0	CE	28.1	28.7	28.1	36.8	26.2	29.1
0	0	66.6	63.9	62.4	52.7	71.6	67.1

year college entrants in the early 1960s (Folger, Astin, and Bayer, 1970), but it is in line with estimates derived by taking the ratio of the number of bachelor's degrees earned in any year to the number of entering freshmen four years earlier. No matter which estimates are used, it is clear from the overall pattern of student persistence and degree completion rates in the early 1980s that student flows through higher education are impeded by lengthy delays and high dropout rates.

SOURCES OF NEW ENTRANTS

While transition rates provide a convenient means for quantifying the flows out of main activities, for some purposes it is of greater interest to examine the flows into activities to see where the track entrants are coming from. This is especially true for military service. Although the postservice activities of veterans merit special attention because of the importance of their educational and vocational pursuits to the nation's human resources, the preservice activities of enlistees are of more direct interest for examining the enlistment process among college-age youth. Information about enlistees' main activities between high school graduation and service entry illuminates the pathways into military service and helps guide youth policies bearing on postsecondary education, student aid, military recruitment, and national service.

The precollege activities of late entrants into four-year colleges are also of considerable interest, because this group and the college entrants who "stop out" of college for a year or

more before completing their degrees constitute a sizable proportion, if not the majority, of college graduates, and there is some evidence that time lags between high school graduation and college completion are getting longer. Among the members of the Class of 1972 who received bachelor's degrees before 1986, almost half took more than four years to complete their degrees, and 15 percent took more than six years (NCES, 1989a). Among college seniors of age 16–34 in October 1986, 70 percent graduated from high school more than four years earlier, and 45 percent graduated more than five years earlier (U.S. Bureau of the Census, 1988b). As more and more veterans return to college under the Montgomery G.I. Bill, they will add to the growing numbers of students who either delay college entrance or stop out for long periods of time.

To provide a closer look at transition rates *into* military service and other main activities, Tables 26 and 27 present "backward transition rates" analogous to the (forward) transition rates in Tables 24 and 25. Considering the first block of entries for transitions into four-year colleges, we see that, throughout the five-year period covered by Table 26, most of the late four-year college entrants of both sexes came from civilian employment. Since civilian employment is the most common main activity among recent high school graduates, this finding might be dismissed as a natural consequence of the large numbers of graduates pursuing this activity.

However, that is only part of the story. As Tables 24 and 25 show, the transition rates out of civilian employment ran about 20 percent per period over the first two years after graduation. Considering that the transitions included in these rates are changes from civilian employment to some other main activity (as distinguished from job-switching from one employer to another), one sees that these transitions represent only a small part of the turbulence in the youth labor market in the five years following high school graduation. The fact that transition rates out of civilian employment run much higher than the rates for military service and four-year college attendance indicates that episodes of employment are of shorter duration than periods of schooling or tours of military duty. Moreover, most transitions out of civilian employment are into the "Other" category and vice versa, signifying movements of nonstudents into and out of employment. Hence, much of the turbulence in postsecondary activities among recent high school graduates is linked to stints of employment and unemployment rather than to movements in and out of full-time student status or military service.

PRESERVICE ACTIVITIES OF ENLISTEES

It is clear from the backward transition rates in Tables 26 and 27 that most of the late entrants into military service from the Classes of 1980 and 1982 did not come out of full-time student status but from civilian employment and the "Other" (not employed) category. There was a minor departure from this pattern for 1980 male graduates at the four-year point (t = 8) due to the increased flow from the four-year colleges as newly graduated ROTC officers entered the service after completing their bachelor's degrees.

With that exception, the transition rates into military service indicate that few enlistees enter the military directly from full-time student status. Most enlistees who attended colleges or vocational-technical schools after graduation had a break between student status and service entrance in which they either remained unemployed or held one or more jobs in the civilian sector. The overall pattern of the rates, in conjunction with our earlier finding that only two percent of the seniors in 1980 planned to enter the military following

Table 26
ESTIMATED SIX-MONTH BACKWARD TRANSITION RATES FOR MEMBERS
OF THE CLASS OF 1980: OCTOBER 1980-OCTOBER 1985

Acti	vity		-	Percen	t Maki	ng Trai	nsition	During	Period	1	
Start	End	1	2	3	4	5	6	7	8	9	10
				<u>-</u>	MA	LES					
S4	S4	97.6	88.3	84.8	83.2	96.4	92.1	90.4	83.6	94.8	89.6
S4	S2	0.4	2.4	1.6	5.9	1.1	3.6	0.4	1.8	0.6	0.8
S4	SV	0.0	0.4	1.4	0.6	0.1	0.2	0.7	0.2	0.2	0.3
S4 S4	M CE	0.0 1.6	0.1 5.6	0.0 7.6	0.0 6.3	0.1 2.1	0.0 3.0	0. 2 6.0	0.2 7.2	0.0 3.1	1.7 6.5
S4	o	0.4	3.2	4.5	4.0	0.2	1.1	2.3	6.9	1.3	1.2
S2	S4	1.9	6.6	1.9	4.2	2.1	3.3	1.6	0.8	0.0	0.0
S2	S2	90.7	80.4	74.9	71.2	89.0	83.8	72.4	61.9	85.4	80.3
S2	SV	0.1	0.0	2.1	0.5	0.0	0.0	1.5	0.0	0.0	0.0
S2 S2	M CE	0.1 5.5	0.0 9.5	0.0 14.0	0.0 14.2	0.0 5.4	0.5 10.2	0.0 19.9	8.1 21.8	0.0 6.9	0.0 19.7
S2	OE	1.6	3.4	7.2	9.9	3.5	2.1	4.6	7.3	7.6	0.0
SV	S4	0.9	2.2	7.1	5.7	0.6	5.1	6.3	35.3	3.6	5.6
sv	S2	0.1	2.6	0.7	3.5	0.1	5.5	3.1	0.0	0.0	0.4
SV	SV	85.1	70.0	70.6	60.9	84.0	69.8	61.0	40.8	71.6	51.9
SV	M	0.0	0.0	0.0	0.0	1.8	0.0	1.1	0.7	0.0	0.0
SV SV	CE O	10.5	17.8	16.1	16.9	9.7	13.9	23.6	12.9	21.4	35.0
		3.4	7.4	5.6	13.0	3.9	5.6	5.0	10.3	3.5	7.0
M	S4	1.2	1.4	1.7	0.7	0.3	2.1	0.6	4.2	1.0	1.1
M M	S2 SV	1.2 0.7	0.8 0.1	1.2 0.0	0.4 0.0	0.1 0.3	0.5 0.1	0.2 0.0	0.5 0.5	0.0 0.0	0.0
M	M	69.8	86.6	84.8	90.8	90.1	92.4	94.5	87.7	93.1	93.9
M	CE	21.6	8.0	9.7	4.9	5.4	2.1	3.4	3.7	4.2	3.5
M	0	5.6	3.1	2.5	3.3	3.7	2.9	1.4	3.4	1.7	1.4
CE	S4	3.1	4.1	5.2	3.6	2.0	2.2	6.8	11.1	4.2	5.6
CE	S2	1.9	3.1	4.8	5.1	0.9	2.3	2.1	1.2	0.2	0.5
CE CE	SV M	1.5 0.4	3.1 0.4	2.6 0.3	3.0 0.7	0.7 0.6	2.0 1.2	1.3 1.9	1.1 1.3	0.3 0.6	0.9 1.3
CE	CE	84.7	80.2	78.8	75.5	88.1	85.1	80.8	71.4	86.9	86.0
CE	0	8.3	9.1	8.2	12.1	7.7	7.2	7.2	14.0	7.8	5.7
0	S4	4.0	5.9	15.9	7.5	2.0	1.6	27.8	12.9	4.3	6.5
0	S2	3.0	4.2	9.2	4.3	2.6	4.3	3.3	1.1	0.5	1.1
0	SV	0.7	2.3	5.2	3.8	0.5	1.3	3.2	0.9	0.7	1.9
0	M CE	0.4	0.5	0.2	1.0	1.4	4.1	1.4	1.9	1.7	1.5
0 0	O	23.8 68.2	27.6 59.5	39.4 30.0	32.1 51.2	$\frac{22.1}{71.4}$	28.5 60.3	37.1 27.2	27.4 55.7	21.9 70.8	33.5 55.5
					FEMA						
S4	S4	97.4	91.4	84.3	87.7	97.7	93.8	88.5	84.3	95.9	80.7
S4	S2	0.1	1.8	1.1	3.6	0.4	2.2	0.5	2.1	0.0	1.9
S4	sv	0.4	0.3	1.0	0.3	0.0	0.3	1.0	0.6	0.0	0.2
S4	M	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
S4	CE	1.5	5.0	7.3	5.2	1.3	2.7	6.3	8.7	2.2	14.2
S4	0	0.6	1.3	6.3	3.3	0.5	1.1	3.7	4.3	1.9	3.0
S2	S4	2.6	5.6	1.5	2.5	1.1	2.7	15.7	2.5	2.0	0.0
S2 S2	S2 SV	89.7 0.5	81.1 1.1	69.8 1.9	78.8 0.1	92.7 0.1	82.6 0.0	53.7 0.1	54.8 0.0	73.2 0.1	75.9 2.9
S2	M	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
S2	CE	4.9	9.5	21.3	12.8	4.5	9.9	17.7	27.3	17.1	16.2
S2	0	2.3	2.7	5.5	5.8	1.7	4.7	12.7	15.3	7.7	5 .0

Table 26—continued

Acti	vity _			Percen	t Makir	ng Tran	sition	During	Period		
Start	End	1	2	3	4	5	6	7	8	9	10
SV	S4	2.7	8.5	5.7	10.1	1.4	10.3	11.5	23.7	0.5	2.9
sv	S2	1.6	6.2	5.3	6.9	2.6	8.6	2.4	6.6	0.0	0.0
SV	sv	83.6	62.6	53.9	42.0	79.9	50.3	48.0	35.7	69.2	59.5
SV	M	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.1	0.0	0.0
SV	\mathbf{CE}	6.1	16.3	18.5	24.9	12.9	21.2	23.3	14.9	16.3	27.0
sv	0	5.9	6.4	16.5	16.2	3.2	9.4	14.9	19.0	14.0	10.7
M	S4	4.1	6.0	3.7	0.0	0.0	0.0	0.5	0.6	0.0	0.0
M	S2	0.1	0.0	0.1	0.6	0.0	0.0	1.8	0.0	0.0	0.2
M	SV	0.0	0.0	0.1	0.0	1.8	0.0	0.0	0.0	0.0	0.1
M	M	64.9	80.1	78.0	88.5	89.3	96.3	85.0	96.6	98.1	92.6
M	CE	20.6	2.0	16.1	9.2	6.8	2.9	4.1	0.2	1.8	6.5
M	0	10.3	11.8	2.0	1.7	2.1	0.8	8.5	2.6	0.1	0.6
CE	S4	3.1	4.7	6.5	3.6	1.8	2.9	8.0	11.6	3.0	5.1
CE	S2	3.4	3.4	4.9	4.8	0.8	2.2	2.2	0.8	0.4	0.6
CE	sv	2.1	5.0	2.8	2.3	0.7	2.1	1.0	0.6	0.6	1.3
CE	M	0.1	0.0	0.1	0.0	0.1	0.1	0.1	0.1	0.2	0.1
CE	CE	80.1	74.4	75.5	74.9	86.5	81.6	79.1	69.8	86.4	85.5
CE	0	11.1	12.5	10.2	14.3	10.1	11.0	9.6	17.1	9.4	7.3
O	S4	2.3	4.8	12.1	3.7	1.4	2.2	18.7	8.3	3.2	4.5
0	S2	2.5	3.5	6.7	3.6	1.7	2.0	1.8	1.1	0.9	1.1
0	sv	1.2	4.1	3.9	2.8	1.1	1.9	1.5	1.2	0.5	1.2
O	M	0.4	0.0	0.4	0.6	0.4	0.3	0.1	0.1	0.3	0.0
0	CE	19.3	22.4	33.2	22.7	21.5	23.5	36.4	18.4	18.3	26.9
0	0	74.3	65.2	43.7	66.6	73.9	70.2	41.4	70.9	76.9	66.2

graduation, is consistent with the view that military service was a second or third choice for many enlistees until they had pursued other educational and vocational activities first.

According to our estimates reported in Tables 14 and 15, only 77,800 (2.6 percent) of the 1980 graduates and 69,800 (2.3 percent) of the 1982 graduates had entered military service by October following graduation. These "early entrants" constituted about a third of the graduates from these classes who entered military service before February 1986. Based on the weighted HS&B data for the military entrants, we estimate that 239,000 members of the Class of 1980 and 226,000 of the Class of 1982 served some time on active duty before February 1986.⁵

Tables 28 and 29 show the distribution of main activities for the military entrants in the Classes of 1980 and 1982 at six-month intervals beginning with October in the year of graduation. A comparison of these tables with Tables 21 and 22 for the Classes of 1980 and 1982 shows that the pattern of preservice activities for the enlistees was similar to the pattern of the entire class, except for the fact that the military entrants were less likely to be enrolled as full-time students. In particular, the percentages of military entrants in the "Other" category ran about the same or lower than the percentages for the entire class, contradicting the view that military entrants experience high rates of joblessness before they enlist.

A surprising finding for the Class of 1980 is that over 25 percent of the military entrants were enrolled as full-time students in October 1980, and over 20 percent were

⁵These estimates are in line with the reported annual numbers of accessions with high school diplomas during 1980-1985, which ranged from 242,000 in 1980 to 284,000 in 1984. See Table 7.

Table 27

ESTIMATED SIX-MONTH BACKWARD TRANSITION RATES FOR MEMBERS
OF THE CLASS OF 1982: OCTOBER 1982–OCTOBER 1985

Act	ivity		Percent M	laking Trai	nsition Dur	ing Period	
Start	End	1	2	3	4	5	6
			M	ALES			
S4	S4	97.1	92.7	92.2	79.1	96.3	90.5
S4	S2	0.5	1.9	1.5	6.0	1.2	3.0
S4	sv	0.2	0.3	0.4	0.4	0.0	0.0
S4	M	0.1	0.1	0.1	0.1	0.0	0.3
S4	CE	1.6	3.0	3.3	6.9	1.5	4.0
S4	0	0.6	2.0	2.4	7.5	1.0	2.2
S2	S4	0.7	5.8	2.7	1.7	2.9	3.8
S2	S2	88.1	77.0	83.3	62.7	88.7	74.1
S2	sv	0.2	0.4	1.3	0.2	0.8	0.1
S2	M	0.0	0.4	0.0	0.8	0.0	1.9
S2	CE	8.1	10.0	8.3	22.1	5.2	17.8
S2	0	2.8	6.5	4.5	12.5	2.3	2.2
sv	S4	0.2	4.4	5.8	5.7	1.2	3.1
sv	S2	1.4	0.9	3.2	2.5	0.0	1.0
SV	SV	79.0	66.5	65.0	49.0	72.0	58.5
SV	M	0.0	0.0	0.0	0.0	0.0	1.8
SV	CE	13.0	20.0	15.7	28.4	11.3	27.1
sv	0	6.3	8.2	10.3	14.4	15.5	8.4
M	S4	0.8	0.9	1.9	0.8	0.4	0.0
M	S2	0.8	1.0	0.7	0.1	0.2	0.0
M	SV	0.2	0.0	0.3	0.0	0.0	0.0
M	M	60.6	83.7	82.3	89.8	92.1	97.9
M	CE	19.2	9.3	9.4	6.1	4.9	1.3
M	o_	18.4	5.1	5.4	3.2	2.3	0.7
CE	S4	2.8	4.6	6.7	3.9	1.8	3.9
CE	S2	2.5	2.7	5.7	4.5	1.2	1.7
CE	SV	0.8	2.1	3.1	2.9	1.1	1.2
CE	M	0.3	0.4	1.3	0.6	0.4	2.3
CE	CE	82.3	75.8	72.6	73.4	86.8	83.5
CE	O	11.3	14.5	10.6	14.6	8.7	7.4
0	S4	1.7	2.9		6.2	2.3	9.8
0	S2	1.7	2.9 3.6	13.1 11.6	3.8	0.8	3.0
0	SV	1.6	2.3	4.4	2.7	0.9	1.3
0	M	0.9	1.8	0.9	0.6	0.9	2.8
ŏ	CE	19.0	24.1	36.7	26.6	20.7	26.3
ő	OL	75.3	65.4	33.4	60.2	74.4	56.7
				MALES			
S4	S4	97.4	91.9	87.2	83.9	97.2	92.4
S4	S2	0.4	2.5	1.1	4.8	0.7	2.6
S4	SV	0.0	0.1	0.5	0.6	0.0	0.4
S4	M	0.0	0.0	0.0	0.0	0.0	0.0
S4	CE	1.3	4.1	6.9	4.7	1.4	3.6
S4	o D	0.8	1.3	4.3	5.9	0.7	1.0
S2	S4	1.8	3.4	3.2	2.4	0.1	4.4
S2	S2	88.8	86.1	77.4	68.0	88.3	76.8
S2	SV	0.5	0.7	1.0	1.7	0.0	1.2
S2	M	0.0	0.0	0.0	0.0 17.6	0.0	0.0
S2	CE	6.0	5.8	12.7	17.6	9.2	8.0
S2	О	2 .8	4.0	5.7	10.3	2.4	9.5

Table 27—continued

Act	ivity		Percent M	laking Trai	sition Dur	ing Period	
Start	End	1	2	3	4	5	6
sv	S4	1.5	5.5	6.3	3.2	1.3	7.7
sv	S2	2.3	6.2	5.9	7.4	2.9	0.0
SV	sv	79.0	60.8	60.1	44.9	67.8	54.1
SV	M	0.0	0.0	0.0	0.8	0.0	0.0
SV	CE	8.6	14.9	19.3	25.4	21.8	26.3
SV	0	8.6	12.6	8.4	18.3	6.2	11.9
M	S4	1.5	0.0	0.0	1.4	1.3	0.0
M	S2	6.3	3.4	0.0	0.0	0.0	0.0
M	sv	0.0	1.5	0.0	0.0	0.1	0.0
M	M	55.6	82.8	87.7	77.9	87.1	96.9
M	CE	26.6	8.0	10.8	6.3	10.8	3.0
M	0	10.0	4.3	1.5	14.3	0.9	0.1
CE	S4	3.0	4.9	5.9	4.3	1.7	5.0
CE	S2	2.5	3.5	6.1	4.1	1.2	2.1
CE	SV	2.2	4.6	4.1	2.8	1.4	2.0
CE	M	0.1	0.1	0.1	0.2	0.0	0.4
CE	CE	75.6	73.3	71.3	69.6	85.6	80.7
CE	0	16.5	13.7	12.6	18.9	10.1	9.9
0	S4	2.7	3.4	10.7	4.9	2.4	5.1
0	S2	2.7	3.6	7.7	3.1	0.9	1.5
0	sv	1.7	3.9	4.1	1.6	1.4	1.7
O	M	0.3	0.0	0.3	0.0	0.2	٥.1
O	CE	19.0	22.1	31.2	23.0	21.2	22.0
O	0	73.5	66.9	46.0	67.3	73.9	69.7

enrolled full-time in October 1981. These percentages are substantially higher than the October 1982 and October 1983 rates for the Class of 1982—17 and 14 percent. A partial explanation for the difference between classes is that both sets of figures pertain to military service prior to February 1986, which is more than five years beyond the normal graduation date for the Class of 1980 but less than four years for the Class of 1982. Hence, officers from the Class of 1982 who completed four years of college before entering the service were excluded by virtue of the February 1986 cutoff date, whereas those from the Class of 1980 were included.

TIMING OF SERVICE ENTRY

Our data on the preservice activities of enlistees from the Classes of 1980 and 1982 come from the HS&B/DMDC records for 1,025 members of the senior cohort and 1,042 members of the sophomore cohort who were identified as having served some time on active duty through February 1986. Both samples included a small number of enlistees who did not graduate from high school—24 seniors and 163 sophomores. There were 42 officers in the senior sample, none in the sophomore sample.

In addition to having the data on military service that the HS&B participants reported on the follow-up surveys, we had access to more detailed and more reliable information for a subset of 752 seniors and 761 sophomores whose military service was verified by matches of social security numbers and dates of birth on DMDC military personnel files. See Appendix

Table 28

DISTRIBUTION OF MILITARY ENTRANTS FROM CLASS OF 1980 ACROSS
MAIN ACTIVITIES: OCTOBER 1980–OCTOBER 1985

			Percentage	in Main Ac	tivity	
		Studen	t			
Month	4-year	2-year	Voc-tech	Military Service	Civilian Employment	Other
			MALES			
Oct 1980	16.5	6.2	2.9	33.2	32.1	9.1
Apr 1981	15.2	4.9	2.5	45.3	24.5	7.8
Oct 1981	13.0	4.6	2.7	50.2	23.9	5.5
Apr 1982	10.5	2.5	2.3	57.8	17.5	9.4
Oct 1982	12.5	1.5	1.4	60.1	17.1	7.4
Apr 1983	11.5	1.7	1.5	62.7	15.3	7.4
Oct 1983	10.5	0.9	2.1	59. 9	20.1	6.6
Apr 1984	8.2	0.7	1.4	53.7	23.5	12.6
Oct 1984	4.5	1.1	0.8	51.3	31.4	10.9
Apr 1985	3.7	1.2	1.1	50.3	34.0	9.7
Oct 1985	2.7	0.7	1.4	44.1	41.8	9.3
			FEMALE	CS .		
Oct 1980	14.6	7.4	3.3	28.3	27.3	19.0
Apr 1981	13.7	6.2	2.5	36.4	26.7	14.6
Oct 1981	11.6	5.5	4.5	42.5	27.1	8.7
Apr 1982	8.6	1.0	0.4	47.1	29.3	13.6
Oct 1982	9.4	2.8	1.2	48.5	23.1	15.0
Apr 1983	9.3	2.0	0.0	48.8	21.3	18.7
Oct 1983	11.5	1.8	1.5	46.2	23.2	15.8
Apr 1984	4.9	3.0	1.7	50.8	19.9	19.6
Oct 1984	4.8	3.0	1.4	49.7	29.1	11.9
Apr 1985	3.5	5.0	1.4	43.2	34.2	12.6
Oct 1985	2.3	3.7	0.1	43.3	39.2	11.5
			BOTH SEX	KES		-
Oct 1980	16.2	6.4	2.9	32.5	31.4	10.6
Apr 1981	14.9	5.1	2.5	43.9	24.9	8.8
Oct 1981	12.8	4.8	3.0	49.0	24.4	6.0
Apr 1982	10.2	2.3	2.0	56.1	19.3	10.1
Oct 1982	12.0	1.7	1.4	58.3	18.1	8.6
Apr 1983	11.1	1.7	1.3	60.5	16.2	9.1
Oct 1983	10.6	1.0	2.0	57.8	20.6	8.0
Apr 1984	7.6	1.0	1.5	53.3	22.9	13.7
Oct 1984	4.5	1.4	0.9	51.1	31.1	11.1
Apr 1985	3.7	1.8	1.2	49.2	34.0	10.1
Oct 1985	2.6	1.2	1.2	44.0	41.4	9.7

B. Although we found good agreement between the service-related items on the HS&B files and those on DMDC records, we relied on the "official" DMDC data for key service information, including the date of entry into active duty.

Figure 4 shows how many of the 752 seniors with DMDC-validated service dates entered the service as of the end of each month through September 1985. Less than half

Table 29

DISTRIBUTION OF MILITARY ENTRANTS FROM CLASS OF 1982 ACROSS
MAIN ACTIVITIES: OCTOBER 1982–OCTOBER 1985

			Percentage	in Main Ac	tivity	
		Studen	t	N. 611.	C: '11'	
Month	4-year	2-year	Voc-tech	Military Service	Civilian Employment	Other
			MALES	3		
Oct 1982	8.7	4.3	2.4	31.9	30.6	22.1
Apr 1983	7.6	3.0	2.3	49.3	24.2	13.6
Oct 1983	7.2	4.6	1.6	55.1	21.7	9.8
Apr 1984	5.1	1.3	1.1	60.3	22.1	10.1
Oct 1984	4.8	1.0	0.6	63.5	23.8	6.3
Apr 1985	3.9	0.9	0.5	66.6	22.6	5.6
Oct 1985	4.6	0.7	0.5	55.0	32.6	6.6
			FEMALE	2S		
Oct 1982	10.0	9.9	5.9	24.5	33.5	16.2
Apr 1983	8.9	7.2	5.8	35.4	24.7	18.0
Oct 1983	8.2	6.7	3.3	41.3	32.1	8.4
Apr 1984	7.7	5.0	0.8	41.3	25.1	20.2
Oct 1984	5.1	0.0	1.9	43.7	31.8	17.4
Apr 1985	5.0	0.0	2.2	47.7	21.7	23.4
Oct 1985	10.2	0.0	2.2	38.9	30.1	18.6
			BOTH SEX	KES		
Oct 1982	8.9	5.1	2.9	30.9	31.0	21.3
Apr 1983	7.8	3.6	2.8	47.4	24.3	14.2
Oct 1983	7.3	4.9	1.8	53.2	23.2	9.6
Apr 1984	5.5	1.8	1.0	57.7	22.5	11.5
Oct 1984	4.8	0.9	0.8	60.8	24.9	7.8
Apr 1985	4.1	0.7	0.7	64.0	22.4	8.1
Oct 1985	5.4	0.6	0.7	52.8	32.3	8.3

(355) went on active duty before April 1981—nine months after the normal graduation date for most members of the Class of 1980. And one of every four of these seniors entered the service after January 1983, more than 2-1/2 years after graduation. As the figure shows, the pattern of service entrances was relatively steady over the five-year period after graduation, with a continual flow into the military even after the three-year point following graduation, when most entrants would be 20–22 years of age.

Figure 5 shows the breakdowns into student and employment activities of the same 752 seniors as a function of months before enlistment. With the inverted time scale used here, the last bar on the right depicts the activity breakdown during the month before service entry. It confirms that few enlistees entered the service directly from full-time student status, but the pattern for earlier months indicates that many of the later entrants had attended college and vocational-technical schools previously. Although almost half of the enlistees were in the "Not employed" category during the month preceding service entry, the pattern for earlier months suggests that many of the enlistees took a one- or two-month break from full-time student and employment activities before they entered the service.

Fig. 4—Timing of service entry for HS&B participants in Class of 1980

Fig. 5—Preservice main activities among military entrants in Class of 1980

The pattern of service entry dates for the military entrants from the sophomore cohort was similar but somewhat more variable, partly because the sophomore cohort included large numbers of school dropouts, early graduates, and students who graduated a year or more behind schedule, leading to a wider range of graduation and school-leaving dates. To provide comparable distributions of service entry times for both cohorts and to permit comparisons with analogous data for the Class of 1972, we rescaled the individual service entry dates of the graduates relative to their graduation dates, so that all dates would be expressed in terms of months since graduation.

Table 30 shows the distribution of these "lag times" between high school graduation and service entry based on the weighted HS&B data for the high school graduates who entered active duty between June 1980 and December 1985. For most enlistees in the two samples (who graduated in June 1980 or June 1982), the first time interval spanning 0–6 months after graduation corresponds to the period June–December in the year of graduation, so that the later 12-month periods correspond to subsequent calendar years. The bases for the percentages in Table 30 are the total numbers of high school graduates in 1980 and 1982, namely, 3,021,000 and 2,984,000.

Except for the fact that the estimated rates of service entry ran about 10 percent higher for the Class of 1982, the distributions of lag times for the two classes were remarkably similar through 3-1/2 years after graduation, by which time 6.8 percent of the Class of 1980 and 7.6 percent of the Class of 1982 had entered active duty. Among those who entered within 3-1/2 years after graduation, the estimated percentages in each of the first four time intervals were 44, 25, 18, and 13 percent respectively for the Class of 1980, and 43, 29, 19, and 8 percent for the Class of 1982.

Although the recruitment climate in the early 1980s differed greatly from that in the early 1970s during the transition to an All-Volunteer Force, it is interesting to compare the percentages in these time intervals with estimates for the Class of 1972 reported by Black and Fraker (1984). Of the members of that class who entered active duty before 1976, the

Table 30

DISTRIBUTION OF LAG TIMES BETWEEN HIGH SCHOOL GRADUATION
AND SERVICE ENTRY: CLASSES OF 1980 AND 1982

Months from Graduation to Service Entry	Number of Enlistees (in 1000s)	Percentage of Class	Cumulative No. of Enlistees (in 1000s)	Cumulative Percentage of Class
		CLASS OF 19	980	
0-6	90.3	3.0	90.3	3.0
7-18	51.8	1.7	142.0	4.7
19-30	38.2	1.3	180.2	6.0
31-42	26.7	0.9	207.0	6.8
43-54	20.9	0.7	227.8	7.5
55–66	11.6	0.4	239.4	7.9
		CLASS OF 19	982	
0-6	98.0	3.3	98.0	3.3
7-18	65.5	2.2	163.5	5.5
19-30	43.7	1.5	207.3	6.9
31-42	18.6	0.6	225.8	7.6

percentages who enlisted in 1972, 1973, 1974, and 1975 were 53, 24, 12, and 11 percent respectively. Hence, except for a tighter clustering of entrances during the first six months after graduation (perhaps linked to inductions and draft-induced enlistments in the latter half of 1972), the pattern of service entry rates for the Class of 1972 was similar to the patterns for the Classes of 1982 and 1984.

CHARACTERISTICS OF MILITARY ENTRANTS

Our regression analyses of enlistment status as of October in the year of graduation identified socioeconomic status (SES) and minority group membership as factors that tended to distinguish military entrants from their classmates. The SES scores of the HS&B participants who entered the military before February 1986 averaged about one-fourth of a standard deviation below the class averages. See Table B.3.

In terms of their academic aptitude (TEST) scores, the military entrants differed little from their classmates, except that the dropouts from the sophomore cohort who entered the military had TEST scores that averaged 37 points above the mean for all sophomore dropouts and 33 points above the mean for senior dropouts who entered the military. The apparent reason for this change is that, effective October 1, 1981, the services curtailed enlistments among high school dropouts whose Armed Forces Qualification Test (AFQT) scores fell below the 31st percentile.⁶

Just as there is no such thing as a typical high school graduate, there is no such thing as a typical enlistee or a characteristic pattern of preservice activities. As the preceding discussion has shown, there was a remarkable lack of uniformity in the service entry times of the military entrants. Except for the graduates who went on active duty within a month or two after leaving school, the preservice activities of military enlistees appear to be more variable than their classmates, but they were similar in other respects. Although late military entrants were less likely to enter college, about a fourth of the enlistees from the Class of 1980 were full-time students in colleges and vocational-technical schools in October 1980. Like many of their classmates, the late military entrants evidenced considerable mobility into and out of the civilian work force before they enlisted.

Table 31 presents summary statistics that permit contrasting the characteristics of early and late military entrants. There are notable differences between the two cohorts. The enlistees from the Class of 1980 who entered within six months of graduation averaged about 25 points lower on TEST and 10 points lower on SES than those who entered later, and a higher proportion of the early entrants came from minority groups. While the latter was also true for the early entrants from the Class of 1982, the mean TEST and SES scores were almost exactly the same across service entry time categories.

There were two factors affecting enlistment behavior in the early 1980s that would explain the differences between the cohorts. One was the 1981–1982 recession. It seems plausible that many of the 1980 graduates with above average TEST and SES scores, especially those who entered college or vocational-technical training after graduation, experienced greater difficulties when they tried to shift into civilian employment from other main activities in 1981 and 1982. Because their mobility into civilian jobs was restricted, military service became a more attractive option.

⁶AFQT scores are reported as percentiles. Enlistees with AFQT scores between 10 and 30 are classified as belonging to AFQT Category IV. In addition to proscribing enlistments of high school dropouts in Category IV, the services also limited the total number of Category IV enlistments among high school graduates to not more than 20 percent of the total number of accessions in any one fiscal year (Office of the Assistant Secretary of Defense, 1988).

Table 31
SUMMARY STATISTICS FOR MILITARY ENTRANTS BY TIMING OF SERVICE ENTRY: CLASSES OF 1980 AND 1982

Months from	Number of			Percent	Minority	
Graduation to Service Entry	Enlistees (in 1000s)	Mean TEST	Mean SES	Black	Other	Percent Female
		CLASS	OF 1980)		
0–6	90.3	489	470	20.8	10.0	15.2
7–18	51.8	510	471	13.7	7.9	16.7
19-30	38.2	514	485	10.6	6.0	16.4
31-42	26.7	499	484	17.7	5.0	19.3
4366	32.4	553	508	14.2	6.5	17.3
Total	239.4	507	479	16.4	7.8	15.7
		CLASS	OF 1982	2		
0–6	98.0	517	475	14.6	9.5	13.5
7–18	65.5	518	479	10.5	11.0	11.8
19-30	43.7	518	480	10.4	7.3	14.9
31-42	18.6	507	476	12.5	9.9	19.7
Total	225.8	517	478	12.4	9.5	13.8

Another explanation is that the military services tightened their enlistment standards considerably between 1980 and 1982. Whereas only 65 percent of the nonprior service enlistees in Fiscal Year 1980 had AFQT scores above the 30th percentile (AFQT Categories I–III), the analogous percentages for 1981 and 1982 were 79 and 85 percent, and the percentage continued to rise, reaching 96 percent in FY 1986 (Office of the Assistant Secretary of Defense, 1988, p. II-21). While restricting enlistments among applicants with low AFQT scores would only seem to affect the mean TEST scores, not the SES scores, the two scores are positively correlated. The sample correlation coefficients were .32 for the senior cohort, .38 for the sophmores.

The sharp drop in the percentage of minorities between 1980 and 1982 is consistent with national recruitment data. Whereas 36 percent of the nonprior service accessions in FY 1980 were from minority groups, the percentage dropped to 25 in FY 1982 (*Ibid.*, p. II-33). These percentages are much higher than the figures listed in Table 31, because the latter pertain to high school graduates. But both sets of figures indicate that minority groups—especially blacks—were overrepresented among military entrants. According to our estimates (see Tables B.1 and B.2), blacks accounted for 11.3 percent of the graduates in the Class of 1980 and 11.5 percent in 1982, and other minorities accounted for 7.1 and 7.3 percent of the graduates in those classes. Hence, the extent to which minorities were overrepresented among recruits with high school diplomas dropped considerably between 1980 and 1982.

The marked changes in the characteristics of recruits between 1980 and 1982 indicate that recruitment policies play an important role in the sorting-out process. Because so many young people move into and out of educational activities and short-term employment during the first few years after leaving school, they constitute a highly moule population that would

seem to be especially amenable to changes in economic policies and youth policies, such as the implementation of the Montgomery G.I. Bill in 1985. Nevertheless, summary statistics on the characteristics of nonprior service accessions have remained surprisingly stable since 1982. It is noteworthy that the median age of military entrants in FY 1987 was 19.9 years (*Ibid.*, p. II-37), which is about two years above the median age of high school graduates. This suggests that, like the enlistees from the Classes of 1980 and 1982, a substantial proportion of the military entrants from the Classes of 1983 to 1987 spent a year or more in other activities before they entered the service.

V. CONCLUSIONS

During the 1980s, 28 million American youth completed high school and embarked on career paths, some taking entry-level civilian jobs or entering military service, others continuing in the educational pipeline to become tomorrow's professional and technical workers. Despite this huge influx of high school graduates into the educational pipeline and the labor market during the 1980s, the demand for college-trained workers, technicians, skilled craftsmen, and administrative personnel outpaced the supply of entry-level workers in these areas, eroding the labor surpluses that existed in the late 1970s and early 1980s. As a consequence, there are mounting concerns about the adequacy of America's human resources to satisfy manpower requirements in the 1990s.

It has become a cliche to say that America's future depends on its youth. The educational and vocational activities that young people enter in the first few years after leaving high school are critical in assessing the extent to which they will contribute to the nation's human resources. Yet, the postsecondary pursuits of young people have been poorly tracked. Nationally published statistics provide at best only crude indicators of the flows of young people into postsecondary education, military service, and civilian employment activities. To augment the existing data and thus provide the needed information, we examined patterns of college enrollment, military service, and civilian labor force participation among recent high school graduates and dropouts.

In carrying out this work, we relied extensively on data from HS&B, a panel study of 26,000 high school sophomores and seniors in 1980 who participated in follow-up surveys in 1982, 1984, and 1986, and on supplemental data for a subset of HS&B participants who entered military service before 1986. These data are well-suited for examining the postsecondary sorting-out process among members of the Classes of 1980 and 1982. However, being restricted to two classes in the early 1980s, these data could not provide a complete picture of activity patterns in the 1980s that would take into account demographic trends, changes in economic conditions, and other developments that have affected young people's activities since 1982, such as the Montgomery G.I. Bill. For those purposes, it was necessary to link HS&B to other national data sources.

In particular, we needed more detailed information about the demographics of high school graduation classes in the 1980s. Building on existing data from several sources and relying heavily on Census Bureau estimates and projections of age group sizes, we derived the estimates and projections of numbers of high school graduates by state, sex, race, and Hispanic origin for the years 1980–2000 that are reported in Appendix A. The near-term projections point to a 15 percent decline in the number of graduates between 1989 and 1992. Although the decline will be followed by steady increases over the remainder of the 1990s, the projected total number of graduates during the 1990s will be 10 percent below the total for the 1980s.

While reductions in the numbers of high school graduates do not imply commensurate reductions in the educational pipeline or in the numbers of new entrants into the labor force, our study of the postsecondary activities of recent high school graduates and dropouts led us to conclude that the postsecondary sorting-out process has remained remarkably stable during the last 20 years. High school graduation rates, college entrance rates, and student persistence rates have changed little during that period, except for the closing of the gender gap in student flows through higher education.

According to our estimates, in 1986, the last year for which state estimates were available for both public and private schools, the high school graduation rate was 73 percent (71 percent for males, 76 for females), implying that 27 percent of the 18-year-olds in 1986 had either already dropped out of school or would do so before graduation. The dropout rates were substantially higher for blacks and Hispanics at 40 and 48 percent respectively. Although dropout rates have moved up and down by a few percentage points over the last 25 years, the dropout rate in 1986 was almost exactly the same as it was in 1976 and 1965. During the 1980s, 10 million young people dropped out of school before graduation, a fact that points to a large waste of human resources in the secondary schools.

The statistics measuring educational progress beyond high school indicate that postsecondary educational institutions have not performed much better. Only 40 percent of the graduates in the Classes of 1980 and 1982 were enrolled full-time in college as of October in the year of graduation. Adding part-time college enrollments (8 percent in 1980, 7 percent in 1982) brings the rates nearer to 50 percent. Assuming that other members of those classes will enter college later, we estimate that the (cumulative) college entrance rate among high school graduates in the early 1980s was about 60 percent. Based on earned degrees data and student persistence patterns for the Classes of 1980 and 1982, we estimate that about half of the college entrants from these classes will eventually complete a college degree, a figure that has apparently prevailed since the early 1900s except during wartime periods.

Our analyses indicate that academic aptitude is the main factor affecting individual college enrollment decisions after high school. However, only 63 percent of the 1980 graduates in the top academic aptitude quartile were enrolled full-time in college in October following graduation. Although the analogous figure for the Class of 1982 was somewhat higher at 70 percent, both figures are surprisingly low for a nation that, in the past, has prided itself on the way that it develops its human resources.

Among the 30 percent of high school graduates who eventually complete college, progress toward degree completion is often sporadic and drawn out. Only about one of every ten two-year college students eventually earns a bachelor's degree. Among the 1980 graduates who enrolled full-time in a four-year college directly after graduation, only 46 percent had earned bachelor's degrees through February 1986. The obvious conclusion is that student flows through higher education are impeded by lengthy delays and high dropout rates, signaling more talent loss.

College students are not the only ones whose postsecondary activities are prone to false steps and backtracking. Our examination of six-month transition rates across main activities indicates a substantial amount of activity switching, both among students and nonstudents. Most of these transitions are either into or out of civilian employment, indicating that a large part of the turbulence in postsecondary activities is linked to brief episodes of employment and unemployment.

For the most part, the graduates in the Classes of 1980 and 1982 who joined the military also spent considerable time in other activities before they entered the service. According to our estimates, only 3.0 percent of the Class of 1980 and 3.3 percent of the Class of 1982 entered the service within six months after graduation, whereas the cumulative percentages of military entrants through 1985 were 7.9 and 7.6 percent for the two classes.

Patterns of preservice activities among late military entrants were similar to those of their classmates, although the enlistees were less likely to enter college after graduation. Except for the fact that the military entrants were mostly male, they differed only slightly from their classmates in terms of demographic characteristics. A somewhat higher

proportion of them came from lower socioeconomic status families and from minority groups. In terms of academic aptitude, the military entrants were on a par with their classmates.

Our finding that about half of the high school graduates were not pursuing the same activities in October following graduation that they planned to follow in the spring indicates that many, if not most, high school seniors do not know where they are headed or how they will get there. Our examination of postsecondary activities indicates that this lack of direction persists beyond high school. A substantial proportion of the military enlistees enter the service only after having tried other alternatives, and only one-sixth of the graduates who enter four-year colleges after graduation enroll continuously until they complete bachelor's degrees. The prevalence of lengthy delays in completing degree programs and high college dropout rates, even among four-year college students, show that most high school graduates follow indirect courses in pursuing their educational objectives, and a surprisingly large proportion of them fail to achieve their objectives. As a result, the nation's supply of college-trained personnel will be severely tested over the next decade.

Appendix A

ESTIMATING NUMBERS OF HIGH SCHOOL GRADUATES

This study relies heavily on the High School and Beyond surveys of the Classes of 1980 and 1982 for the purposes of examining how high school graduates and dropouts sort themselves into postsecondary paths. The longitudinal data base derived from HS&B raises numerous analytic problems for reasons that are outlined in Appendix B. To profile the Classes of 1980 and 1982 accurately and to derive the case weights needed to compensate for the nonrepresentativeness of the HS&B school and student samples, counts of the numbers of high school graduates by state, sex, race, and school affiliation are required. Given the nonexistence of these counts, we sought ways to provide estimates that would accord with the more reliable published estimates.

Because counts of *public* high school graduates by state are regularly published in the *Digest of Education Statistics* (NCES, 1988), the main problem in deriving the estimates for 1980 and 1982 was to devise a means for estimating numbers of *private* (nonpublic) school graduates. For that purpose, we made use of state-level data for the years 1980–1986 compiled by the Western Interstate Commission on Higher Education (WICHE, 1988). Although the WICHE state data are incomplete except for 1986, they provide complete time series on most states that have large numbers of private school graduates. Exploiting patterns in the private/public ratios in the states having no missing values, we extended WICHE's estimates to provide a complete set of state estimates for 1980–1986. To provide further breakdowns of the state totals by sex, race, and Hispanic origin, we derived a second set of state estimates by applying high school completion rates by sex and race to Census Bureau estimates of age group sizes; the resulting detailed estimates were then adjusted to agree with the state totals.

The state high school graduation rates derived from the 1980–1986 estimates were listed in Table 5. The rates are defined by dividing the estimated number of high school graduates in any year by the number of 17-year-olds as of July 1 in the previous year. The analogous census division and regional rates for 1980–1986 evidence the same overall pattern as the U.S. rates in Table 5, including the stable pattern over the years 1984–1986. This apparent leveling off of the graduation rates was confirmed by the 1987 state data for public high school graduates, which showed a very slight decrease of 0.1 percent in the public high school graduation rate.

Adopting the assumption that the state graduation rates remained stable through the 1980s and applying the estimated 1987 graduation rates to Census Bureau age group sizes by state, sex, and race, we extended our state estimates through 1989. Since the scheme could be readily extended to future years by applying the estimated graduation rates to the Census Bureau projections of age group sizes, we have also provided "projections" of high school graduates by state, sex, race, and control (public or private) for the years 1990–2000. The remainder of this appendix is devoted to presenting the estimates and projections, and documenting the estimation process that led to them.

THE ESTIMATES AND PROJECTIONS

Table A.1 summarizes the state estimates by sex, control of school, and race/Hispanic category for the years 1980–1989. Table A.2 provides the corresponding projections for 1990–2000. Although all estimates and projections are listed to the nearest unit for the convenience of potential users, this belies the precision of the estimates, not only for the years after 1987 but for most of the entries before 1987. The only estimates in the tables that accord with published state-level counts are the 1980–1987 entries for public high school graduates and a subset of the 1980–1986 entries for private high school graduates.

The 1980-1987 state data on public high school graduates are taken from the *Digest of Education Statistics* (NCES, 1988, p. 100). These data, which pertain to graduates from regular public day schools and exclude persons receiving high school equivalency certificates, come from NCES's Common Core of Data. In theory, the NCES counts result from annual censuses of the public school systems in all states, but the published counts may not be totally reliable, and we have filled in a few missing values.

There is no analogous source of counts of private high school graduates, because NCES has no systematic means for gathering complete data from the private schools. In the past, NCES has published tables displaying state-by-state estimates for the private schools, but those estimates were derived from school surveys that relied on incomplete, out-of-date sampling frames and were not designed to provide accurate state estimates.

THE WICHE DATA

In a notable effort to fill the information gap on private high school graduates, WICHE elicited the cooperation of state educational agencies in compiling a data base on school enrollments by grade level and numbers of graduates, both public and private, for the academic years 1978–79 through 1985–86. Although some states were unable to provide time series of counts of private school graduates, WICHE published the time series that were available as well as their best estimates for 1986. Using their more complete data on enrollments by grade level in both public and private schools, they applied a cohort survival method to generate projections of numbers of high school graduates for the years 1987–2004. The accordance of the WICHE projections with those generated in this study will be examined at the end of this appendix.

WICHE provides no 1980-1985 estimates of private high school graduates for 20 states and the District of Columbia, and a few other states have isolated missing values. However, the WICHE data are complete for most states with large numbers of private high school graduates, including California where their estimates agree with those reported by the California State Department of Education. In fact, the states with complete time series accounted for 70 percent of the nation's private high school graduates in 1986.

Restricting attention to the WICHE state estimates for the states with no missing values, we found that there were small, relatively uniform increases in the private/public ratios in all census divisions from 1980 to 1986. For the states having no missing values, the overall private/public ratio rose steadily from .109 in 1980 to .124 in 1985 and then dipped slightly to .122 in 1986. Led by the consistency of this pattern both within and across regions, we estimated the missing values in the WICHE time series for 1980–1985 by using their 1986 private school estimates and imposing the assumption that the private/public ratios for 1980–1986 in the "missing states" were proportional to the overall ratios for the

Table A.1
ESTIMATED NUMBERS OF HIGH SCHOOL GRADUATES
BY STATE AND CATEGORY: 1980–1989

Category: All

State	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
Alabama	48643	48547	48876	47651	45242	43177	42855	45930	45976	47739
Aiaska	5312	5435	5582	5736	5573	5297	5574	5807	6110	6226
Arizona	29410	29196	28904	27386	29284	28836	28408	30495	31280	32726
Arkansas	29959	30529	30679	29291	27908	27182	27032	28060	28211	29242
California	271526	263389	265924	261994	257633	251143	252150	262921	274707	278802
Colorado	39174	38234	38060	37543	35580	34887	35079	37049	37758	38533
Connecticut	45106	45884	45236	43994	41218	39610	40912	39485	40720	39746
Delaware	9054	9003	8798	8559	8072	7502	7399	7532	7626	7774
D. of Columbia	6141	5977	6031	8409	5046	4915	4862	4821	4864	5111
Florida	966B1	98052	100451	05034	95142	90171	92536	91114	06515	100561
a - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	65710	67018	78765	67.182	41760	70404	63070	71017	67073	20,00
8.6.000	200	2000	0000	13366	0000	1050	10161	1010		1000
- PASH	51041	17.00 ·	0775	13231	2742	01621	20421	25.50		12981
Idaho	13419	12916	12/88	12349	11995	12391	12297	12485		12991
lllinois	154716	156598	156802	148861	141935	136054	132770	134809		137724
Indiana	77346	78607	78202	75108	69348	61605	63846	65868		69545
lowa	46593	45866	44616	42645	40205	39061	37074	37496		37741
Kansas	32507	30975	29860	30048	28310	27560	27195	28165		28799
Kentucky	45447	45872	46713	44602	43536	41713	40896	40787		43640
200101101	54011	54571	00027	46663	46910	47558	1932	1177118		1101113
Marion Contraction	17261	17105	16591	16440	15805	15721	16773	15550		15,600
7. a	61116	60803	61578	50353	57440	55175	53438	50770		53620
Management of the	95675	1417	85.7.50	000758	701106	75010	71500	71005		70150
Massaciuserts Michigan	126101	126120	130611	193496	110026	117252	111702	111720		11717
Alcaigan Alagasto	10000	20169	64025	63410	119020	57530	107175	000/11		107/11
a unesota	09204	2000	62400	21.00	27073	00010	70.00	0,000		98890
MISSISSIDOI	7862	30475	30409	69733	20204	2(7)	27473	28387		30043
MISSOURI	1060	00000	11616	66170	10550	17476	74607	1,0000		78843
Montana	12007	0,021	0 - 0	11080	10546	10370	6001	10497		1003
Nebraska	16/15	23/18	23404	221/3	20871	6/002	27.70	20113		20476
Nevada	8//8	7377	4000	V40V	9606	2000	6716	2816		10230
New Hampshire	13302	13144	13307	13120	13173	01010	12298	12601		13//9
New Jersey	907111	986601	70001	070701	102001	0/8/6	02/56	92284		14350
New Mexico	19133	19097	18/26	17765	17304	16930	16885	17139		1/881
New York	235937	230237	226856	216082	205901	197595	192593	193941		193538
North Carolina	73694	72106	74053	71459	69481	70036	68678	68866		75331
North Dakota	10/31	10635	10226	1096	92/0	8/32	8149	83/5		1629
0110	159169	158043	154597	148124	142377	135973	132805	134538		141149
Okiahoma	39941	39490	38967	3/3/9	35826	35208	35048	36128		38088
Oregon	31310	30228	30237	29262	10897	28373	21/40	7,087		22832
`	1/0646	169202	16/541	160329	154/44	149666	145005	144862		146945
- '	12671	12542	12372	12410	11411	11060	10510	10542		10938
South Carolina	41043	40619	40988	39787	39038	366/2	36/35	36644		40011
South Dakota	11444	11131	10550	ħ066	9304	6468	8382	8599		8559
Tennessee	52970	53753	24670	49555	47523	46113	46162	46779		51040
Texas	180454	180479	181115	177533	170093	167921	170194	177883		196314
Utah	20282	20120	19667	19583	19874	20189	20073	21246	22068	23/21
Vermont	7725	7392	7513	0969	6971	6736	9119	6950		1266
Virginia	70552	70998	71807	69338	65858	96949	61093	69819		70722
Washington	52928	52638	25/12	48588	04//4	48368	24/84	51344	51486	2168/
West Virginia	24376	24300	24352	24296	23309	22913	22546	23093	23419	24068
Wisconsin Wyoming	76233 6230	75692 6323	74246	71037 6092	68541 5950	65165 5875	64522 5758	62898 6115	63939 6189	6365
		00000	0000			0,500	27.5	1000	1000	1000
United states	3021201	3000378	6383863	7811353	2/03839	6617007	6086402	9614697	7126401	1041092

Table A.1—continued

o i o
regory
S

Table A.1—continued

Category: Private

Trocumbia 22300 21217 24/58 25/66 26/82 26	4 274853
1472 1751 7510 7510 7510 7510 7510 7510 7510	270954
907 2917 24581 25697 25434 25695 2310 21217 24581 25697 25697 25414 25695 2310 21217 24581 25697 25693 2511 2511 2550 2550 25695 2511 2511 2511 2511 2511 2511 2511 25	267667
777 780 855 856 952 952 953 952 953 953 953 953 953 953 953 953 953 953	262918
-ia 1182 22309 21217 24581 25097 23309 21217 24581 250097 2337 24581 250097 24581 250097 2337 2566 2668 2428 22309 2550 2552 2335 2428 2550 2552 2385 2404 2550 2552 2385 2404 2550 2552 2385 2404 2550 2552 2385 2404 2550 2552 2385 2404 2550 2552 2385 2404 2550 2552 2385 2404 2550 2552 2385 2404 2550 2552 2552 2552 2552 2552 255	268719
ia 1182 21217 24581 25309 21217 24581 25309 21217 24581 2550 2537 2556 252 2385 2520 2522 2385 2520 2522 2385 2520 2522 2385 2520 2522 2385 2520 2522 2385 2520 2522 2385 2520 2522 2386 2520 2522 2386 2520 2522 2386 2520 2522 2386 2520 2522 2520 2520 2520 2520 2520 252	268954
is 177 780 780 777 780 780 781 781 781 781 781 781 781 781 781 781	273581
ia 1182 22309 23309 23309 23309 2423 11423 11423 1148 11872 11788	278971
a na e s	275693
fornia fo	273529
TYPE SOLUTION OF THE SOLUTION	United States

1989	23072	3178	16292	14477	139454	19594	19703	3744	2279	48564	34382	6259	6520	68286	34537	19290	14579	21554	23641	7833	26213	34968	58256	28952	14382	29309	5530	10329	5257	6844	46942	8894	94782	304/8	70262	19149	14690	73291	5283	19301	4238	24520	96143	11//8	2000	34396	12117	11121	3313	1389870
1988	22322	3177	15571		137844						32747	6502	6248	67144	33253	19104	13953	20653	23295	7510	26242	34803	57266	28872	13995	28469	5374	10052	4993	6538	47144	8776	94853	3499	4444	18407	14681	72124	5221	18390	4143	23849	93097	10988	3536	34016	11621	1004	3087	1362084
1987	22232	2944	15091	13755	132464	18600	19528	3652	2207	43549	31235	6492	6340	67032	32465	18733	13924	20606	22524	7733	25641	35361	54984	29313	13696	28286	5435	10083	4074	6212	47546	8597	94385	33131	4167	18065	14467	71902	5092	17885	4317	22583	87176	10797	3443	34.01	11363	31503	3138	1331102
1986	20714	2884	14137	13326	126720	17547	20489	3510	2151	44574	30417	6234	6243	11969	31711	18551	13506	20163	23033	7394	26033	35014	55197	28589	13130	26847	5192	10037	4595	6126	46932	8402	93527	33102	66493	17437	13945	71981	5165	17833	4132	22441	83998	9952	3370	37778	11051	32441	2855	1306546
1985	20899	2765	14317	13305	125567	1/405	15635	3573	2181	43226	30282	6247	6529	67328	33297	19579	13522	20793	22577	7886	26965	30818	57701	28941	13078	28349	5305	10220	4508	6398	48450	8489	95888	33043	87873	17478	14379	74062	5332	17657	4432	22268	82601	10127	3298	31263	11253	32663	2920	1322108
1984	21874	2974	14578	13663	129376	17826	20297	3957	2274	45881	31329	6412	6108	70316	34042	20069	13956	21818	22170	1961	27860	38089	59090	29707	13663	29340	5431	10546	9121	6572	50600	8612	99423	330/2	70075	18027	14324	76729	5567	18853	4658	23017	83832	10002	3428	32021	11520	1230	2975	1363085
1983	22834	2974	13499	14231	130918	18844	21655	4117	2693	00094	32765	6699	6205	73380	36938	21245	14819	22239	21757	8144	28887	41419	90454	31647	13975	31111	5681	11055	4739	6477	53238	1488	1045/6	34304	73213	18610	14839	79199	6015	19309	4918	23759	86814	9809	3410	33677	11057	15270	3104	1411492
1982	23446	2903	14324	14929	133167	19102	22263	4241	5699	48358	33578	7032	6457	17577	38483	22180	14642	23455	22358	8191	30026	42578	65261	33358	14427	32717	5968	11685	4868	6573	55337	9372	110209	50/05	76538	19442	15165	82919	5983	19997	5276	26489	88634	9888	3693	24494	11012	36078	3137	1470140
1981	22995	2816	14432	14795	131361	19129	22517	4336	2668	46931	32602	7036	6508	77159	38521	22714	15165	22983	25653	8570	59496	43290	69199	34288	14390	33165	6211	11799	4745	6435	54648	9548	00/111	34740	77000	19684	15087	83494	6036	19792	5582	25893	87936	10117	3606	5455 5455 5455 5455 5455 5455 5455 545	11817	11011	3227	1473759
1980	23348	2650	14443	15247	136718	19454	21153	4345	2737	66594	31447	6925	6800	15698	38115	22913	16252	22310	25355	8487	29138	42495	61249	34566	14129	33913	6388	12436	9044	6279	55073	9274	116249	3253U	78683	20135	15430	84224	6042	19952	5784	25448	89393	10178	3824	33160	12112	12116	3184	1484836
State	Alabama	Alaska		Arkansas	California	Colorado	Connecticut	Delaware	D. of Columbia	Florida	Georgia	Hawaii	Idaho	Illinois	Indiana	10×3	Kansas	Kentucky	Louisiana	Maine	Maryland	Massachusetts	Michigan	Minnesota	Mississippi	Missouri	Montana	Nebraska	Nevada	New Hampshire	New Jersey	New Mexico	New York	North Carolina	Object Carolia	Oktahoma	Oregon	Pennsylvania	Rhode Island	South Carolina	South Dakota	Tennessee	Texas	Utah	Vermont	Virginia	HOTALINSPA	West Virginia	Myon ing	United States

Table A.1—continued

Category: Female

State	1980	1981	1982	128	198	1985	1986	1987	1988	1989
Alabama	25295	25252	25430	24817	23368	22278	22141	23698	23654	24667
Alaska	2662	2619	2679	276	259	2532	5690	2863	2933	3048
Arizona	14967	14764	14580	388	ď 20	14519	14271	15404	15709	16434
Arkansas	14712	15734	15750	15060	14245	13877	13706	14305	14373	14765
Catifornia	134808	132028	132757	107	825	125576	125430	130457	136863	139348
Colorado	19720	19105	18958	869	775	17482	17532	18449	18676	18939
Connecticut	23953	23367	22973	233	092	19975	20423	19957	20498	20043
Delaware	4709	1991	4557	2444	4115	3929	3889	3880	3944	4030
D. of Columbia	3404	3309	3332	335	277	2734	2711	2614	2668	2832
Florida	50082	51121	52093	46634	49261	46945	47962	47565	50152	51997
Georgia	34263	34446	35187	19	343	32415	32855	32779	35176	36802
Hawaii	7088	6958	6916	9629	6486	6569	6234	6643	6352	6402
Idaho	6619	8049	6331	614	588	6132	4509	6145	6230	6471
111 inois	79018	79439	79225	75481	161	68726	67093	11111	67952	69438
Indiana	39231	40086	39719	817	530	34308	32135	33403	33743	35008
lowa	23680	23152	22436	140	313	19482	18523	18763	18609	18451
Kansas	16255	15810	15218	522	135	14038	13689	14241	14114	14220
Kentucky	23137	22889	23258	236	171	20920	20733	20181	21220	22086
Louisiana	29576	28918	25641	490	174	24981	25289	25224	25392	25502
Maine	3774	8825	8400	829	783	7835	7379	7819	1654	7866
Maryland	32008	31397	31552	940	958	28210	27405	27129	27114	27207
Massachusetts	43179	43851	43137	207	940	38194	36508	35734	36103	35484
Michigan	68855	69360	67383	295	73	59552	56587	56754	58133	59205
Minnesota	34638	34155	33071	31466	29886	28589	27560	28577	27868	28044
Mississippi	15808	16032	15982	555	6	14478	14293	14891	15341	15661
Missouri	34167	33703	33121	168	900	29078	28020	28405	28819	29334
Montana	1819	2882	2048	7399	2112	5065	1887	5062	5050	5123
Nebraska	12358	91911	61/11	= ;	10325	9859	19/6	10030	7086	10147
Nevada	4367	4630	4/31	0 0 0	4550	/ 555	4580	44/8	4998	5033
New Hampshire	7023	60/9	40.00	900	099	6348	2/19	6389	6629	6935
New Jersey	56133	2228	22600	23787	79416	02565	1/88	47738	48253	h
New Mexico	9859	9549	9354	96.0	869	8441	8483	8542	8/36	8987
New YORK	20000	116531	1 1004 1	111200	200476	101101	355.13	94776	97170	78770
North Carolina	38004	3/200	20240	2	780	18508	577.5	37/37	10115	36673
North Dakota	0.000	0250	247	900	707	20000	3982	96229	4070	7715
0.10	10806	1000	10505	7 C a	100	17730	17611	18062	18/17	18020
	15880	15141	15070	14726	14480	13004	13801	14207	14320	14148
Pennsylvania	86422	85708	84622	-	100	75604	73024	72960	72939	73654
Rhode is and	6299	6506	6389	639	584	5728	5345	5450	5512	5655
South Carolina	21091	20827	20991	20478	20185	19015	18902	18759	19841	20710
South Dakota	2660	5549	5274	498	9494	4517	4250	4282	4164	4321
Tennessee	27522	27860	28181	25796	24506	23845	23721	24196	25422	26520
Texas	91061	92543	92481	071	626	85320	86196	90707	96116	100171
Utah	10104	10003	9779	9774	9872	10062	10121	10449	11080	11943
Vermont	3901	3786	3820	355	354	3438	3406	3507	3553	3600
Virginia	37392	36601	36813	35661	33837	33173	34095	35718	34943	36130
Washington	26551	26288	26232	423	373	24019	24226	25494	25363	25458
West Virginia	12264	12483	12438	233	177	11660	11495	11731	11795	11951
Wisconsin Wyoming	38892 3046	38128 3096	37268 3038	35667 2988	423	32502 2955	32081 2903	31395 2977	31688 3102	31744
Inited States	1536371	1527219	1513589	1450833	1400754	1360631	1338835	1363054	1390897	1417537
	,	76161		200				•		`

Table A.1—continued

Category: White Non-Hispanic

			000		1000	.00.	1,000		1	1000
State	1980	1881	1282	1283	1284	1782	1980	1887	1	1989
Alabama	35325	35067	35251	34028	32309	31088	31025	33210		34632
Alaska	4121	4202	9614	4175	3668	3888	4125	4488		4713
Arizona	22735	22597	22160	20837	21640	21310	21099	23122		25047
Arkansas	24362	21:780	24175	23500	22191	21731	21587	22797		23646
California	186977	182201	182391	177267	167674	160897	158234	161878	171963	172877
Colorado	32806	32120	31720	30943	28893	28399	28397	30261		31346
Connecticut	40504	41160	40384	38960	36308	34626	35273	34087		34056
Delawere	7321	7283	7084	4089	6329	5941	5720	5800		5926
D. of Columbia	727	713	725	745	†99	835	919	972		1066
Florida	73497	74416	75981	72281	70766	67515	69701	70356		77329
Georgia	47506	48378	49192	47544	45185	24444	45188	46142		51352
Hawaii	3744	3742	3457	3172	2917	2834	2705	2989		2874
Idaho	12710	12256	12115	11664	11295	11618	11469	11750	11698	12149
IIIinois	125687	126983	126396	119002	111436	106153	102145	102749	103094	103213
todiana	71120	72186	71650	68504	63200	61541	57997	59723	60868	62787
e×o/	45350	44666	43383	41388	38868	37677	35716	35967	36158	36122
Kansas	29910	28600	27489	27431	25710	24883	24421	25195	25170	25628
Kentucky	41943	42324	43026	41004	39947	38429	37555	37531	38592	40051
Louisiana	37197	37000	32810	31434	30723	31239	31318	31707	32960	32587
Maine	17092	17223	16407	16248	15625	15521	14591	15352	15278	15491
Maryland	44987	44830	44887	42691	40866	39230	37333	36732	37151	36491
Massachusetts	80426	81693	80128	77642	71949	60769	65988	65394	65000	64440
Michigan	119161	119173	115753	107315	102789	100057	94591	93645	4699	97195
Minnesota	67054	77899	64286	60881	57321	55087	53555	55008	53753	53788
Mississippi	18828	19091	18934	18110	17379	16857	16881	17563	18495	18586
	46707	50753	58732	55763	50301	5077	200	20,00	0000	51430
00000 W	11790	11378	10868	10313	0735	0571	0010	0620	06.00	0.700
Nobresta	22368	22410	22080	80806	101101	18632	18310	18615	18385	78037
No. of the same	7118	7806	7050	7697	7017	73/1/1	75.27	71001	0000	4000
Meyada Morrison	12170	0,000	12155	1001	10000	1256	10101	747	0.001	104.5
Now nampaning	2000	90625	00200	16317	00000	76200	12020	72117	72210	15005
Not not not	10066	10061	0865	01/0	8205	7505	0.000	2446	7 2 6	407
	186285	182778	78861	168815	150088	1517113	11,5510	11151178	11,6601	17,3321
	2000	5,100	81815	52307	50000	51680	く し く し な し し し し し し し し し し し し し し し	51150	56175	55776
2 6	10265	10179	9776	9130	8780	6001	7664	7944	7013	7786
Opio	143077	142161	138718	132331	126664	121334	118143	118836	121688	124177
Oktahoma	33836	33482	32776	31069	29502	28993	28744	29701	30380	31048
Oregon	29444	28454	28380	27653	26838	26368	25660	26490	26741	26536
Pennsylvania	154102	152948	150972	143893	138426	133988	129480	129305	129728	130590
Rhode Island	12082	11966	11768	11742	10813	10445	9933	9863	10056	10210
South Carolina	27490	27247	27269	26125	25266	24319	54469	24778	26138	26692
South Dakota	10625	10360	9770	9130	8463	8103	1560	1129	7461	7640
Tennessee	44086	44693	45254	40967	39086	38328	38301	38899	41214	42242
Texas	120044	120032	119330	113538	105264	103157	104226	112110	121989	126349
Utah	18745	18602	18107	17952	18225	18429	18341	19383	20145	21669
Vermont	699/	1338	745	6903	6896	0999	1999	04840	1969	1000
Virginia	55369	55708	55885	53385	50308	49793	51245	53371	53471	54132
	48228	48003	47880	43889	43005	43318	43449	45569	45617	142647
West Virginia	23403	23330	23318	23236	22281	21941	21621	22132	22539	23099
Wisconsin Wyoming	/2023 5823	5906	5756	66799 5634	63976 5440	5332	51419	5540	5608 5608	5770 5770
Setato Pation	2465683	2451757	7176616	2310074	2105080	2126891	2070713	2117524	2172002	2194112
	5407003	1011014	1117747	70000	0007613	700313	517713	4361113	7007/13	311673

Table A.1—continued

Category: Black Non-Hispanic Tab

04043	0001	1001	1002	1002	1001	4005	1004	1007	1000	000
21010	76200	1070	13000	1202	1000	120	0000	1000	200	707
Alabama	97.7	C 5071	13085	2000	0957	02611	777	7907	71011	77444
Alaska	138	251	140	156	146	131	155	153	161	181
Ari zona	962	456	096	927	1002	933	918	166	666	1049
Arkansas	5203	5342	5481	5365	5259	6964	4930	4710	9494	5043
Catifornia	546672	24202	24663	24939	25690	24562	24371	25675	26113	27429
Colorado	1475	1437	1475	1516	1436	1349	1386	1464	1456	1636
Connecticut	2973	3054	3116	3208	3095	3018	3281	3179	3180	3388
Delaware	1549	1537	1526	1548	1518	1368	1458	1501	1459	1593
D. of Columbia	5239	5095	5135	5136	4227	3922	3792	3688	3630	3882
Florida	15129	15409	16105	15753	16237	15122	15268	14302	14678	16213
Ceorgia	17283	17720	18680	18862	18612	17311	17081	16831	17190	18628
Hawaii	112	112	115	106	123	146	1117	158	151	174
Idaho	35	34	27	21	32	30	31	36	017	20
lllinois	20798	21209	21850	21363	21484	20852	20811	21339	21032	23225
Indiana	1867	5141	5274	5267	4879	4733	4483	4700	4557	5151
Lowa	625	603	296	609	631	658	409	691	733	762
Kansas	1610	1477	1433	1579	1515	1462	1470	1501	1417	1586
Kentucky	1093	3132	3289	3198	3166	2906	2926	2866	2887	3206
Louisiana	16279	16131	13937	13937	14735	14725	15359	14441	14083	14900
0 0 0 0 E				0	0	21		27	72	200
ST POOR	14454	14370	14889	14,800	14638	13002	14021	13001	12021	14607
March State	0906	2172	2163	1000	3060	7,700	2010	2000	0000	3138
M: OF: OO	12000	12022	2000	2000	3006	13030	11763	1010	11.61.7	46.20
HICHIGAN Minima	13761	2000		2000		13020	21.5	1440	707	00001
MINNESOLA	10701	10036	060	110001	107	707	2400	20101	1016	0,000
HISSISSID	10163	08801	2001	2001	74701	(1021)	700	0000	10201	0000
Missouri	6345	6148	7 11 9	6113	6086	5/51	5441	5533	5520	5921
Montana	= :	= ;	- :	ر <u>:</u>	7.7	22	23	72	5	35
Nebraska	807	/36	64/	141	739	740	703	126	121	789
Nevada	693	747	773	770	191	777	744	750	798	837
New Hampshire	39	36	37	- 7	29	55	94	50	96	69
New Jersey	13767	13467	14217	14338	14197	13480	13538	13573	13519	14401
New Mexico	389	389	389	381	387	347	398	361	384	428
New York	29258	28077	28095	27729	26195	25441	25634	26507	26040	27805
North Carolina	17160	16676	17552	17383	17328	16591	16211	15891	16390	17554
North Dakota	12	21	10	13	25	18	15	25	25	34
Ohio	13999	13815	13724	13662	13382	12388	12319	13129	13105	14331
Oklahoma	2856	2811	2802	2794	2756	2600	2521	2578	2558	2870
Oregon	512	064	497	909	537	664	472	481	200	525
Pennsylvania	13939	13696	13899	13721	13319	12669	12254	12138	11903	12689
Rhode Island	334	327	334	364	316	312	279	319	310	344
South Carolina	12986	12813	13164	13105	13209	11805	11681	11304	11536	12421
South Dakota	13	-	10	12	16	15	17	17	24	56
Tennessee	8391	8558	8925	8119	7963	7305	7379	7366	7524	8257
Texas	22587	22589	23127	23407	23105	22374	22305	22285	22785	25065
Utah	235	233	226	218	172	187	173	161	171	9/1
Vermont	&	_	6	&	17	16	19	25	23	31
Virginia	13541	13640	14166	14150	136/7	12889	13494	13893	12906	13892
Washington	1409	1400	1421	1352	12/2	1280	1310	1405	1437	1532
West Virginia	0	815	830	Ω,	800	1	99	(03	140	128
Wisconsin Wyoming	2717	26 <i>1</i> 5 48	2692 46	2693 50	2872	2746 54	3220 43	3011 60	3145	3478
United States	341045	338753	344378	342031	338985	322576	322155	325245	324701	350743

Table A.1—continued

Category: Other Non-Hispanic

te	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
	971	168	188	195	218	205	235	268	284	588
	707	766	143	1975	7366	1186	1182	0/01	1139	1206
	97/-	921	9690	0/0	81.7	2112	2002	2046	2043	2192
	11110	691	11701	422	147	262	7366	503	3.7.	125
	0/1/1	01/01	6001	7727	20202	21602	26003	10/47	50.07	19917
	960	286	0/0	700	200	200	101	873	889	296
200	007	607	230	51.5	606	202	400	104	040	700
6 . AB.	5 4	0 4	23	† ₁	200	- 0	- 9	20 4	77	5 9
	663	77.7	1 a c	200	, a	090	2	,001	12.0	200
	200	000	7 7 7	37.5	25.0	365	007	1,73	2 2 3	700
	0163	273	2000	2500	00.5	00000000000000000000000000000000000000	2770	7 0 0	0.000	000
	20.7	4017	0440	76.50	200	0000	0.00	1000	7 600	6000
	202	0.5	022	20101	700	1000	203	102	0220	687
	200	000	900	0161	986	2002	2350	(2/2	6007	3048
	862	306	344	302	363	- 0	124	483	202	2/3
	997	6/2	2967	2.5	7 17	240	0/5	9 to 1	カンカ	100
	31.	562	321	979	8/8	493	244	624	149	669
>-	122	123	146	144	041	124	164	140	129	140
na	390	387	384	408	094	558	583	626	662	700
	100	102	108	118	106	118	112	114	112	120
Ð	901	895	1009	1022	1126	1011	1281	1345	1505	1523
usetts	669	711	784	818	832	106	972	1021	1062	1130
_	1106	1106	1194	1172	1268	1323	1422	1486	1637	1719
ta	866	716	1051	1101	1127	1242	1333	1562	1609	1749
iggi	137	138	157	167	176	157	188	231	219	238
· · 	390	381	418	428	425	427	11917	505	531	554
	620	571	597	627	249	621	159	675	459	705
ebraska	218	202	227	243	267	300	328	293	294	304
	599	324	373	390	348	361	380	744	457	764
pshire	51	64	26	24	70	73	69	19	75	80
sey	1086	1073	1211	1274	1448	1571	1838	2213	2290	2536
ico	1625	1618	1747	1735	1782	1775	1864	1886	1917	1997
*	3894	3784	4179	4207	4355	4531	4965	2462	5587	0009
arotina	1006	978	1131	1142	1144	1193	1209	1274	1368	1444
akota	392	384	404	407	604	372	418	365	394	386
	627	622	688	100	179	161	862	956	1005	1044
e	2524	2485	2740	2844	2851	2866	3027	3159	3158	3385
	723	692	782	826	826	8/3	920	1009	1058	1073
vania	876	867	955	982	1065	1087	1262	1443	1514	1657
sland	105	102	116	130	132	138	348	194	206	221
arolina	165	163	182	194	180	100	222	208	228	255
akota	747	702	402	714	(1)	(1)	743	803	759	830
66	163	165	195	186	//!	702	214	239	254	2/2
	1656	1656	1847	1909	2119	2290	2526	2907	3076	3314
	799 7	283	543	900	689	740	- Ç	242	222	707
	120	020	120	820	5501	7	7,000	400	200	000
	823	629	936	7000	2002	1111	- 64	1585	2501	1.40
100	2048	4502	2622	1 1 2 2	6600	0642	6167	2892	. 2462	3032
rg in a	3 t t	, , , ,	20,5	0,	- 6	000	100	500	2 2	0.7
<u>c</u>	1.3	104	115	124	155	149	164	896 161	157	180
States	60001	59163	65003	66539	66069	70850	16044	82196	85343	90210
,)))	,	,	``	· ·	, , ,		; ; ;) } }	1

Table A.1—continued

108 | 1986 1986 1986 1986 1986 1987 147712 132864 15772 1328 1984 1986 1986 1986 1986 1986 1986 1986 1987 1987 1987 1987 1988 3753 3746 1631 143 1631 1631 1631 1631 1631 1731 1 1346 1 1405 1405 1405 1405 1405 1405 1505 1601 1601 1701 1801 1380 Hispanic State
Alabama
Alaska
Arizona
Arkansas
California
Coloracticut
Delaware
D. of Columbia
Florida
Georgia
Hawaii Nebraska Nevada New Hempshire New Jersey New York North Darota Obio Obio Obio Pennsylvania Rhode Island South Carolina South Carolina Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Washington West Virginia Wisconsin United States Kansas Kentucky Louisiana Category:

1750 1750

Table A.2

PROJECTED NUMBERS OF HIGH SCHOOL GRADUATES BY STATE AND CATEGORY: 1990–2000

Category: All

State	1990	1991	1992	1993	1	1995	1996	1997	1998	1999	2000
Alabama	45010	43028	41866	42031		42748	42960	43979	45304	45321	45133
Alaska	5825		5591	5818		6188	6383	6782	7118	7500	7836
Arizona	30868		30127	31628		33721			38744		41768
Arkansas	27538		26122	26726		27180			28823		28469
California	257646		247643	257940		271572			303502		328120
Colorado	35379		33259	34553		36417			40580		43190
Connecticut	35058	32146	30981	31554		31827			33991		35481
Delaware O of Columbia	7166		0300	0000		0024	2000	1242	7404	1384	/65/
- C - R	94033		88611	91022		95194			106839		11494
Georgia	67379	65018	63460	64244		66275			73576		75628
Hawaii	12285		11973	12383		13227			15096		15947
Idabo	12076		11887	12448		13345			14059		13717
Signification	126101	•	113642	116295		118514			126839		126086
Indiana	64176		58395	59253		59565			61614		29965
- CAC	34105		31022	32311		33470			34804		32902
Kan Sas	26410		25246	26373		27393			29345		29784
Kentucky	40922		37310	37886		38577			39284		37920
60000000	46239		43246	43938		45784			48770		02770
Ma ine	14587		13194	13131		13446			14174		14449
Maryland	48629		42761	43909		45762			50635		54405
Massachusetts	63132		55719	55979		55891			59532		6270A
chigan	106209		95753	96093		96678			101846		99307
Minnesota	50913		47218	49220		51253			56452		57818
Mississippi	28569		26748	27255		28000			30004		29924
Missouri	54227	51210	49835	51437		53342			57801		58345
Montana	0496		9123	9512		9858			10541		10582
Nebraska	18912		17653	18356		18640			19827		19956
Nevada	9618		9084	9446		10277			11841		12474
New Hampshire	12688		11588	11855		12283			13487		14244
New Jersey	84278		16764	11937		19404			84622		87685
New Mexico	16855		16317	17040		18273			21376		22675
ž.	171764	_	157212	160913		164287			169431		172250
မ္မ	70311		16219	65355		66138			70214		71718
North Dakota	8///	•	1394	80//		8141			8755		8889
0110	612821		114247	110411		10344			19/121		121118
OKIADOMA	37179		33510	34052		35344			37905		39689
Oregon	120021	•	02/15	20102		51212			121.50		78767
rentsylvania	25953	_	10003	6000		10/61			606671		67072
South Carolina	44.44		25,03	35517		1126			7676		3005
South Calors	7800		2047	0.700		20.00 RFA.5			20,40		05551
Topograph	01751		8000	111230		0000			1741		16731
Tokas	185297	178425	175286	179308		185624			204035		216017
10×03	22034	23090	23767	25544		28022			31155		30496
Vergoot	16641	6210	5887	7609		6251			6573		6876
Viciois V	65292	61094	59217	60422		65149			67679		71108
Washington	46568	43898	43746	45513		48318			52924		54307
West Virginia	22704	21457	20314	20708		20453			20137		18679
Wisconsin	57546	54139	53376	55387		56506			60063		59595
Wyoming	5981	5762	5742	6030	5992	6246		6229	6752		6786
SOTETO POTION	2581343	ncocanc	028885	2001 446	2405047	2516041	2536791	1617175	270073	2750231	278228tt
	2421073	26 24.4 7	200350	1440447				6310103	5136013	21,30631	1033013

Table A.2—continued

Category: Public

State	1990	1661	1992	1993	1994	1995	1996	1997	1998	1999	2000
Alabama	41612	39180	38706	38858	37819	39521	39717	40659	41884	41900	41726
Alaska	5710	5535	5480	5703	5760	6065	6257	8499	1169	7351	7681
Ari 200a	29918	29269	29199	30654	30686	32683	33393	35185	37551	39403	40482
Arkansas	26718	25655	25344	25930	25319	26370	26362	27033	27964	27725	27621
California	234021	226270	224936	234288	234110	246670	249391	260944	275673	291278	298033
Colorado	32900	31279	30929	32132	31944	33865	34386	35928	37737	39092	40164
Connecticut	28767	26378	25455	25892	25281	26116	26361	27051	27892	28289	29114
Deta∀are	5574	5186	4993	5170	5087	5341	5415	5668	5195	5779	5868
D, of Columbia	3740	3424	3250	3262	3171	3332	3352	3442	3617	3904	3982
Florida	85164	81170	79507	81670	80650	85414	87039	90807	95862	100191	103136
Georgia	62917	60713	59258	59990	58639	61886	63168	65770	68704	96669	70620
Hawaii	9812	9488	9563	9890	10054	10564	10918	11402	12057	12428	12737
idaho	11842	11567	11657	12207	12234	13086	13090	13617	13786	13578	13451
111inois	108577	101478	97850	100134	98475	102044	101753	104591	109213	109515	108564
Indiana	60126	56453	54710	55513	53928	55806	55612	56628	57725	56535	55897
lowa .	31534	29115	28683	29875	29515	30947	31069	31559	32180	31248	30421
Kansas	54846	24005	23754	24814	24624	25774	25886	56649	27610	27995	28023
Kentucky	37312	35098	34019	34544	33857	35174	34872	35458	35819	35137	34575
Louisiana	38242	36408	35767	36339	36078	37866	37809	38804	40335	40510	40723
Maine	12842	11988	11616	11561	11337	11838	11949	12178	12479	12551	12721
Maryland	45497	38975	37369	38372	37977	39992	40604	42324	44250	45818	47545
Massachusetts	53280	49313	47024	47243	45731	47169	47805	48988	50242	51284	52922
Michigan	96002	89567	86551	86858	84503	87387	88439	90548	92059	90480	89764
Minnesota	47140	44104	43719	45573	45176	47455	48904	51134	52269	52932	53533
Mississippi	26185	25167	24515	24980	24515	25663	25811	26571	27500	27638	27426
Missouri	48630	45925	76944	46128	45455	47837	48515	50044	51835	52229	52323
Montana	9336	8826	8837	2126	9139	75067	9612	10022	10209	10205	10248
Neoraska	0000	86091	71601	10040	0100	0000	10037	90271	1/0/-	1361	100
Nevada	8026	38870	8697	4006	1,000	70039	10001	11367	11337	13007	1000
New Hampshire	20007	10293	10033	10204	19901	66000	10900	68101	70307	71038	72020
New Jersey	15441	15065	14948	15610	15767	16740	17080	18256	19583	20176	20223
New York	144627	136007	132374	135490	133330	138331	138019	139445	142662	142592	145036
North Carolina	67431	63974	62140	62678	47409	63429	64273	65652	67338	67653	68780
North Dakota	7263	7033	6905	7198	7238	7602	1794	7997	8176	8214	8301
ohio	115429	106934	103124	104807	101511	104741	105050	107891	109624	109131	109039
Oklahoma	35171	33495	32940	34063	33532	34743	34612	35913	37261	37915	39014
Oregon	24/15	23701	23427	60442	24509	25838	25920	2692	21182	916/2	27/41
Pennsylvania	112633	104461	100067	100936	7303	084101	101859	103668	444401	106160	10/681
Knode Island	26/23	260/	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11160	12360	0.01	20107	1990	00.00	2020	0040
South Carolina	7410	7160	7235	1551	7655	8042	8180	8610	90206	8984	8968
Tennessee	91717	42380	41272	11461	40073	41996	42276	43498	1000	07077	7075
Toyac	175450	168943	165971	169779	168393	175760	176292	183274	103102	200679	204537
Stab	22593	22751	23414	25164	26170	28512	29188	30128	30692	30219	30042
Vermont	5679	5310	5034	5211	5110	5345	5314	5485	5621	5786	5880
Virginia	61419	57470	55704	56837	55529	58462	59696	61613	63899	65267	66890
Washington	43762	41253	41110	42770	42948	45406	45963	41914	49735	50584	51034
West Virginia	22024	20814	19705	20087	19268	19840	19558	19512	19534	18661	18119
Wisconsin	52033	48952	48262	50081	48962	51092	51562	52955	54309	53873	53885
Wyoming	5803	5591	5571	1686	5814	0909	2609	6364	1559	1199	6584

Table A.2—continued

Private

State	1990	1991	1992	1993	1994	1995	1996	1991	1498	1999	2000
Alabama	3398	3248	3160	3173	3088	3227	3243	3320	3420	3421	3407
Alaska	115	112		115	116	123	126	134	141	149	15.5
Arizona	950	930	928	41.6	975	1038	1061	1118	1193	1252	1286
Arkansas	820	788	778	961	717	810	810	830	859	851	848
California	23625	22842	22707	23652	23634	20642	25176	26342	27829	29405	30087
Colorado	5419	2357	2330	2421	2407	2552	2591	2707	2843	5946	3026
Connecticut	6291	5768	5559	5662	5528	5711	5764	5915	6609	6186	6367
Delaware	1548	1440	1387	1436	1412	1483	1520	1574	1609	1605	1629
D. of Columbia	953	872	828	831	808	648	954	877	922	995	1015
Florida	9752	9294	9104	9352	9235	9780	9966	10398	10977	11472	11809
Georgia	4462	4305	4202	4224	4158	4389	4480	4994	4872	4964	5008
Накат	2473	2391	2410	2493	2534	2663	2751	2874	3039	3132	3210
Idaho	234	229	230	241	242	559	529	569	273	268	566
HILINOIS	17524	16378	15792	16161	15894	16470	16452	16881	17626	11675	17522
Indiana	4050	3803	3585	3740	3633	3759	3746	3815	3889	3808	3765
lowa –	2571	2374	2339	5436	2407	2523	2533	2573	5624	2548	2481
Kansas	1561	1508	1492	1559	1547	1619	1626	1674	1735	1759	1761
Kentucky	3610	3396	3291	3342	3276	3403	3374	3431	3465	3400	3345
Louistana	1661	1614	7479	6657	7544	1918	7907	8115	8435	8471	8516
Maine	1745	1628	1578	1570	1540	1608	1623	1654	1695	1705	1728
Maryland	6132	5624	5392	5537	5480	5770	5908	6107	6385	6611	6860
Massachusetts	9852	9119	8695	8736	8457	8722	8840	9059	0626	9483	9786
Michigan	10207	9522	9202	9235	8984	9291	2046	9627	9787	9619	9543
Minnesota	1773	3530	3499	3647	3616	3798	3914	4093	4183	4237	4285
MISSISSIM	2380	2000	2233	2275	2233	2337	2351	2420	2000	2517	2498
110000	5597	5285	5143	5100	5233	5505	55.83	5759	5966	6011	6000
Montana	304	287	288	300	298	311	313	326	332	332	334
Nethorska	1866	1762	1741	181	1766	1839	1843	1888	1956	1968	1969
Nevada	410	363	3.8.7	407	604	438	944	927	504	555	531
New Hampshire	1703	1595	1555	1591	1560	1648	1690	1745	1810	1861	1911
No. 10 months	11.183	11071	12018	12115	12860	13362	13447	13707	14240	1627	14755
20 X 20 X	1010	1380	1369	1630	1444	1533	1564	1672	1793	1848	1902
200 X CON	27137	25520	24838	25423	25017	25956	25897	26165	26769	26756	27214
North Carolina	2880	2733	2654	2617	2583	2709	2745	2804	2876	2890	2938
North Dakota	7	498	489		513	539	552	566	570	582	1,88
Ohio	12786	11845	11423	11610	11245	11603	11637	11951	12143	12089	12079
OKTAhoma	608	579	570	589	580	601	598	621	779	656	675
Oregon	1376	1317	1301	1356	1361	1435	1440	1495	1543	1551	1541
Pennsylvania	20290	18818	18026	18183	17690	18281	18349	18675	19014	19124	19398
Rhode Island	1661	1548	1502	1506	1469	1544	1572	1610	1641	1671	1702
South Carolina	2312	2219	2154	2160	2097	2224	2230	2278	2345	2367	2376
South Dakota	482	994	0.4	161	498	523	532	260	587	584	583
Tennessee	2992	2840	2766	2778	2686	2814	2833	2915	2978	2951	2935
Texas	2486	9482	9315	9529	9451	₹986	9894	10286	10843	11263	11480
Utah	341	343	353	380	395	430	t tt 1	455	463	456	454
Vermont	896	006	853	883	998	906	901	929	952	980	966
Virginia	3873	3624	3513	3585	3502	3687	3765	3886	4030	4116	4218
Washington	2806	5492	2636	2743	2754	2912	2947	3072	3189	3244	3273
West Virginia	680	643	609	621	595	613	ħ09	603	603	576	260
Wisconsin Wyoming	5513 178	5187	5114 171	5306 179	5188 178	5414 186	5463	5611 195	5754 201	5708 203	5710 202
Setato States	251221	2167117	230569	235704	137176	241881	243720	250811	259449	263161	546549
מון רבת מרפים	177177		10000	10000	-	2					

Table A.2—continued

Category: Male

	1222	1221	1222	1273	1224		1270	1221	7.7	1222	2000
е	21863	20899	20272	20482	19825		20911	21375	21979	22029	21886
	3032	2912	2855	3006	3013		3284	3479	3633	3866	9404
zona	15351	14935	15016	15724	15670		17123	18117	19137	20192	20685
	13670	13119	13040	13331	13018		13496	13843	14401	14232	14234
California	128768	124365	124939	129289	128797	_	137537	144167	151875	160306	164012
	17819	16933	16775	17476	17368		18724	19498	20469	21253	21901
ticut	17427	16084	15496	15748	15301		16051	16397	17127	17431	17840
	3476	31/2	3020	3213	5109		3363	3429	3521	3477	3500
D. of Columbia	2130	1915	1807	1833	8471		1862	1926	2040	2612	2242
	45/63	43554	42/49	438/5	43340		46/59	48705	51590	53971	55438
æ	32423	7.515	VV 400	30818	30350		32022	24042	12005	36280	30/00
	6113	7000	100	6190	03.13		6849	9/0/	7.568	40//	1111
	6126	9666	9000	0929	67.79		0690	1601	/ 40/	6963	1769
S	62625	58520	56471	5/836	56944		58765	60395	62982	63243	62725
ına	31730	29892	29227	29658	286/8		29/06	30101	30826	29898	29745
lo⊮a	17345	16012	15/25	16453	16288		17025	17354	17550	17194	16637
Kansas	13278	12705	12672	13215	13113		13942	14295	14799	15095	15095
kentucky	20277	19142	18462	18/42	184/2		18960	19196	19360	18967	18595
Louisiana	22267	21110	20606	21267	20/19		21863	22472	23294	23473	23477
Maine	/3/8	6848	11199	6//2	6521		6633	1117	/306	7386	147
Maryland	23660	21861	2082	21448	19717		228/9	23658	24661	25543	26651
Massachusetts	31118	28800	1/4/2	119/2	77007		24/12	28371	29318	29/02	30858
Michigan	526/5	49005	4/518	4/669	40344		76484	49672	20242	49643	49095
Minnesota	25583	24050	24022	22040	1,003		26/03	6/8/2	78484	28843	2777
MISSISSIPPI	13/40	13170	7.7.3.7	13.00	16933		13606	13961	20713	14768	20000
Mooteur	0807	1680	1691	4820	4815		5110	5312	5501	50007	5459
Notice to	9607	0120	7004	0337	9018		9435	9738	9266	10133	10099
Nevada	4866	77/7	4652	4824	4938		5343	5695	6086	6270	6340
New Hampshire	6339	1,009	5837	5926	5824		6218	6403	6729	6857	7049
New Jersey	41795	39244	38289	38848	38062		39788	40763	42260	42671	43883
New Mexico	8351	8243	8134	8565	8608		9284	9831	10663	10865	11244
New York	83712	79128	77165	79032	77615		80167	80954	82643	83077	84362
North Carolina	34081	32045	31319	31535	30338		32267	33058	33782	33979	34381
North Dakota	3956	3843	3743	3933	3949		4227	4374	4244	4428	4541
Onio	63946	59302	5/230	58088	56116		58221	59612	60635	60491	60109
OKlahoma	18060	1,024	0.00	17437	13000		13006	18397	19156	19608	40202
Oregon	13131	12/83	0100	13017	13098		15000	1474 10000	14070	14903	04040
	0.0200	01270	V - V 0 C	04-70	10010		77734	44000	00010	6091	00000
Knode Island	18185	175/15	17216	17207	16773		17027	18313	18057	1,409,5	19066
) :	7006	2707	2 2 2	147017	15.6		1357	1507	1771	8087	7000
Jonnessee	3960	21852	21371	21256	7 17 00		21865	7500	23046	22736	22705
Total	2000	3767	86562	88184	87121		0000	001468	10700	103577	105800
16783 11955	11424	1152.0	11846	12707	13304		14861	15287	15632	15000	15390
Vergont	3342	3110	2984	3005	3047		3157	3251	3345	3492	3532
Virginia	31825	29169	28887	29556	28837		31122	31932	33132	33953	34831
Washington	23582	22292	22226	23314	23369		24987	25810	27059	27492	27676
West Virginia	11456	10773	10194	10460	10100		10075	10067	10123	9641	9434
Wisconsin Wyoming	29032 3052	27358 2924	26914 2910	28002 3013	27321 3026	28516 3183	28770 3187	29512 3315	30237 3459	30358	30185 3496
40	7403761	1208222	1182304	1011715	1101212	19477431	1255801	12001	7501711 00000411	7361926	1377604
United States	1679171	1208222		C111171	2121611	124/243	h600021		1340590	1301920	1311004

ਰ
ĕ
nued
conti
ö
ပ္
_L
ci.
く
a)
回
Table
₽

Category: Female

	0000	•	2004	.000	1001	1	2001	1000	1000		0000
21916	220	22.22	225	1223	222.4		02270	722/	222	222	2321.3
Pilleding	14167	62122	1000	64612	70017		64022	50077	63363	25252	7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Alaska	2/93	2/35	2736	2812	2863		3099	3303	3485	3634	3790
Arizona	15517	15264	15111	15904	15991		17331	18186	19607	20463	21083
Arkansas	13868	13324	13082	13395	13078		13676	14020	14422	14344	14235
California	128878	124747	122704	128651	128947	_	137030	143119	151627	160377	164108
Colorado	17560	16703	16484	17071	16983		18253	19137	20111	20785	21289
Connecticut	17631	16062	15485	15806	15508		16074	16569	16864	17044	17641
9	3646	3454	3360	3393	3390		3632	3813	3883	3907	3997
D. of Columbia	2563	2381	2271	2260	2221		2344	2393	5499	2707	2755
florida	49153	46910	45862	47147	46545		50246	52500	55249	57692	59507
Georgia	34956	33641	32961	33426	32447		35023	36341		38680	38928
Hawaii	6172	5918	5959	6193	6275		6850	7200		7856	8170
Idaho	5950	5840	5841	6188	6197		6699	6858		6883	9419
111 chois	63476	59336	57171	58459	57425		59410	61077		63947	63361
Indiana	32446	30364	29168	29595	28883		2962	30342		30445	29917
670	16760	15477	15297	15853	15634		16577	16778	17254	16602	16265
X B C C X	13132	12808	12574	13158	13053		13570	14028	14546	14659	14689
2007	20.61.5	10152	8 7 8 8 1	101/101	18661		10286	19693	10001	105 70	10126
Louis is an	23072	22012	07966	22671	22002		21851	7777	25/176	25508	05760
Louis and	21667	31433	04033	7777	6356		6693	677	0/1/7	2000	20102
30 C	602/	00100	20010	67.00	00100		2003	21.77	0000	76676	0007
mary land	2000	00777	10617	10477	06177		20000	2000	11000	2,000	10101
Massarhusetts	35014	75077	94797	70307	2/200		20202	07070	1000	31000	31830
MICOLGAN	75734	20084	48737	1001	47.40		49369	20203	27079	20426	21200
Finnesota	22330	23204	52173	00142	1 1 1 1 1 1		61102	04077	00617	20350	01002
MISSISSIM	14829	14289	13809	14067	13817		14560	15030	12286	19261	15493
Missouri	27350	25812	25285	25/43	2542)		27372	28124	29069	29371	29343
Montana	4660	4433	4429	7197	4622		4815	5036	2040	5084	5:23
Nebraska	9305	8740	8706	9019	8886		1426	9046	9851	9822	1586
Nevada	4752	4475	4432	4622	4662		5120	5415	5755	5999	6134
New Hampshire	6346	5884	5751	5929	5803		63,2	6659	6728	7011	7195
New Jersey	42483	39632	38475	39089	38362		40122	41225	42362	42740	43802
New Mexico	8504	8202	8183	8475	8663		9360	10097	10713	11159	11431
New York	88052	82399	80047	81881	80732		63749	84656	86788	86271	87888
North Carolina	36230	34662	33475	33820	32719		34751	35398	36432	16564	37337
North Dakota	3822	3688	3651	3775	3802		4119	4189	4331	4368	4348
Ohio	64269	59477	57317	58329	26640		58466	60230	61132	60129	61009
Oktahoma	17719	17050	16694	17215	16869		17528	18137	18749	18963	19430
Oregon	13020	12235	12214	12748	12772		13464	14122	14497	14504	14436
Pennsylvania	66719	61983	59174	59973	58240		60274	44419	62886	63010	01049
Rhode Island	5095	4791	4572	4682	4593		1064	5034	5127	5280	5411
	19823	18939	18187	18270	17693		18728	19131	19589	19917	19992
South Dakota	3966	3839	3861	3998	3997		4355	4573	4872	4760	4748
Tennessee	24575	23363	22664	22883	22018		23244	23947	24365	24244	24026
Texas	94300	90761	88724	91124	90721		95201	98892	104331	108365	110125
Utah	11510	11546	11921	12747	13261	14573	14768	15296	15523	15383	15106
Vermont	3299	3100	2903	3069	2929		3058	3163	3228	3274	3344
Virginia	33467	31325	30330	30866	30194		32339	33567	34797	35430	36277
Washington	22986	21606	21520	22199	22333		23923	25176	25865	26336	26631
West Virginia	11248	10684	10120	10248	9763		10087	10048	10014	9536	9245
Wisconsin Wyoming	28514 2929	26781 2838	26462 2832	27385 3017	26829 2966		28255 3092	29054 3244	29826 3293	29223	29410 3290
						00000					0000000
United States	1305096	1234/02	1203016	1232282	1214/35	1268/98	1580821	1321/63	1368983	1388305	1404680

ned

=	
\supset	
-	
-	
$\overline{}$	
\approx	
Υ	
1	
S	
•	
⋖1.	
**	
a)	
	
0	
ď	

Category: White Non-Hispanic

40.40	0001	1001	1002	1002	1001	1005	1006	1007	8001	1000	0000
27076	2220	277	2777	2027	72500	2000	22.50	177	7.720	2222	2000
Alabama	36619	30636	22063	0.067	20110	15005	3063	51100			
Alaska	4332	4190	4061	4311	4334	4627	4/54	7767			
Ari Zona	22958	22087	21882	23247	23249	25073	25429	26807			
Arkansas	22234	21040	20114	21208	20610	21391	21365	21743			
California	151526	141068	137602	144638	141854	151041	151111	158330			
Colorado	28212	26483	26036	27388	27037	28903	29336	30555			
Connecticut	29707	27048	25956	26443	25598	26333	56596	27068			
Delaware	5454	5033	4796	4951	4826	4995	5088	5179	5307	5277	5330
D. of Columbia	ή96		899	896	859	892	890	806			
Florida	71370		65,55	68074	67289	71376	72621	76012			
Georgia	47739		44552	45010	43827	46251	46983	48594			
	2479		2302	2384	2321	2517	2529	2567			
	11213	4500	11007	11540	11575	12414	12350	12793	12888	12618	12412
Oliver	7		172901	2000	71700	027:01	00750	00000			
\$ 100111	10016	00767	0000	40000	4000	0.000	NO 10 0	60760			
Indiana	57598	53690	21971	52/33	20936	52784	52541	53304			
10wa	32472	29889	29374	30694	30306	31758	31864	32312			
Kansas	23337	22353	22190	23103	22876	23925	23896	24532			
Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	37411		14081	14607	13857	15067	34820	15092			
60000000		27076	271.02	0.787.0	01270	0.70	2006	00700			
Cours area			1000	10010	2000	1001	13363	07/07			
aa i De	4304	13463	12707	04621	10071	1327	10000	13016			
Maryland	32702	29992	28654	59445	28/32	29956	30608	31281			
Massachusetts	57200	52572	50031	50077	48245	49788	50346	51574			
Michigan	86654	79015	77373	78199	75662	78402	79371	81053			
Minnesota	47675	44328	43941	45758	45324	47577	48924	51104			
00.00	17452	16403	16063	16354	15860	16599	16677	17006			
N N N N N	07409	44550	43528	44931	44322	46665	47348	48592			
000000000000000000000000000000000000000	8752	0000	8030	8614	8536	8862	8970	0770			
	27.72	16250	16121	16001	16271	1000	12070	171.20			
Nebraska	71077	0000	1017	10003	17501	7000	2076	V C C C C C			
Nevada	104	0000	3000	0000		0000	0404	2000			
	9/62/	27077	1001	791	06811	22021	12319	12/09			
New Jersey	60229	5/205	224/1	76737	סוטכע	5/093	57314	28229			
New Mexico	7452	6953	6/11	7455	1546	8211	8375	8839			
New York	125273	115863	111588	113/32	110332	113983	112567	113353			
North Carolina	51369	48301	46841	4/214	45411	47687	48257	48865			
North Dakota	7243	8669	6875	71/4	7178	7548	1751	7930			
Ohio	112010	103327	99881	101346	97886	100863	101017	103011			
Oklahoma	28795	27292	26801	27841	27248	28185	28014	28709			
Oregon	23811	22690	22313	23304	23288	24613	24488	25411			
Pennsylvania	117748	108823	104280	105248	101990	105133	105664	107434			
Rhode Island	9197	8552	8279	8300	8079	8458	8596	8 789			
South Carolina	25202	23977	23201	23289	22465	23634	23820	2412.			
South Dakota	0269	6688	9919	7081	7095	1476	7617	1998			
lennessen	39291	37049	36099	36286	34969	36572	36809	37535			
Texas	114090	106882	103749	108550	106406	113097	113522	117954			
Utah	2082€	20946	21542	23229	24118	26369	26869	27664		27447	27167
Vermont	6502	6909	2766	5950	5853	6114	6072	6264		1099	6702
Virginia	49461	46160	44877	45609	44249	46521	47220	48588		51795	52908
Washington	40612	38003	37784	39378	39392	41790	42024	43782		45832	46014
West Virginia	21788	20566	19520	19870	19063	19609	19358	19236	19309	18454	17903
Wisconsin	52204	48810	48159	50089	48846	50943	51359	52501	53801	53432	53318
Wyoming	2344	7706	7604	2340	2561	7766	1760	10/6	5893	2936	2886
United States	1979948	1847819	1798302	1846928	1804567	1889113	1899757	1950075	2018404	2046024	2057772

Table A.2—continued

Category: Black Non-Hispanic

6	8	0	, ic	· ~	٠٠٠	_	6	· C	. ~		٠	T is	Ω,	.	.	0	'n	σ.	7	6 0	_	80	~		0	3	•	3	C/	60	t	∼	0	0	- .	- c	u a	o 0		. ~	σ.	7	7	S	214	NI (<u> </u>	n :	<u>_</u>	E.
199	1215	22	137	527	3322	174	319	176	374	0001	9666	7,00	<u>.</u>	3 (2319	505	178	170	316	1639		1589	317	1401	66	1163	598	2	78	104	7	1393	58	2711	1682	3361	000	2,40	1116	35	1253	~	797	2673	217	m	1423	134	7.	200
1998	12819	231	1309	5620	31078	1738	3168	1768	3426	18856	21120		† Q	07	23236	5343	865	1719	3369	16924	25	15121	2975	14933	954	11877	5960	54	812	1059	74	13543	579	27585	17309	33	0000	577	11000	339	12829	32	8473	27370	219	30	14353	1367	969	
1997	12442	217	1243	5406	29721	1678	3189	1745	3230	17072	20302	4.50	77.	0	21/13	5019	836	1666	3382	16260	28	14437	2848	14600	446	11495	5867	20	809	696	73	13220	539	26670	17098	32,00	0000	195	10825	340	12641	32	8252	25946	211	34	13810	1394	919	
1996	11994	199	1138	5158	27928	1569	2969	1619	3129	17200	19219	176.1	70.	7 10 0	20565	0064	196	1587	3048	15655	54	13665	2846	14195	867	10983	5459	22	733	879	70	12406	515	26383	16397	35	4696	575	10531	330	12192	33	7697	24332	201	29	13300	250	565	
1995	12002	183	1136	5159	27508	1604	2918	1540	3127	16703	18657	1000	701	24	21214	4922	194	1537	3115	15510	25	13294	2741	14186	866	10912	5434	23	745	830	7.1	12461	787	26349	16290	34	0000	405	107701	327	12294	34	7650	24442	207	30	12823	1354	605	
1994	11436	171	1070	4864	25855	1493	2789	1419	2964	15735	17677	- (35.	O 1 0 0 0	20208	4781	731	1472	2896	14571	56	12249	2633	13782	807	10372	5199	22	703	199	61	11634	456	24799	15486	33	4107	483	10089	301	11375	32	7227	23133	185	27	12012	131	211	
1993	11654	170	1035	4926	25366	1476	2741	1420	3038	15892	17920	010	001	Ch . 00	20178	4734	700	1448	2911	14401	25	12123	2626	13904	793	10416	5299	20	677	783	63	11779	004	24678	15995	34	(177)	0102	10112	287	11620	35	7379	23000	178	29	12055	1286	613	, , ,
1992	11569	165	1022	4754	24369	1445	2668	1329	3017	15439	17618	2 -	, c	44	20239	4659	760	1380	2850	14083	27	11770	2536	14330	747	10176	5172	23	720	827	59	11659	385	23479	15814	34	0440	797	10034	289	11610	26	7396	23048	156	29	11627	747	ולל	
1991	12108	173	1054	4841	24525	1482	2805	1346	3214	15013	18148	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00.1	7	21586	4835	724	1460	3005	14354	27	12274	2725	15359	816	10540	5516	25	7117	821	63	12289	383	23912	16234	36	02/21	168	10783	308	11873	22	1594	23745	163	29	12226	2421	638	
1990	12142	177	1019	4758	25490	1525	3011	1424	3558	16318	18447	6.50	20	C+ / C	22616	1064	738	1473	3107	14377	54	13534	2886	15525	854	10615	5688	27	771	845	09	12941	378	24692	16837	33	2400	1212	11466	324	12243	56	7805	24323	169	27	13065	1353	199	
State	Alabama	Alaska	AFIZONA	Arkansas	California	Colorado	Connecticut	Delayare	D. of Columbia	Florida	0.01049	B 1000	Tawal -	OUEDI	810011	Indiana	lowa	Kansas	Kentucky	Louisiana	Maine	Maryland	Massachusetts	Michigan	Minnesota	Mississippi	Missouri	Montana	Nebraska	Nevada	New Hampshire	New Jersey	New Mexico	New York	North Carolina	North Dakota	0.10	Oregon	Pennsylvania	Rhode Island	South Carolina	South Dakota	Tennessee	Texas	Utah	Vermont	Virginia	Washington	West Virginia	1

Table A.2—continued

Other Non-Hispanic

Category:

20000 100000 100000 100000 100000 10000 10000 10000 10000 10000 26670 12997 12 2000 250000 250000 250000 250000 25000 25000 25000 25000 25000 13574 13 Arizona
Arkansas
California
Colorado
Connecticut
Delaware
Delaware
Hawaii
Idaho
Ilimois
Indiana
Ransas
Kentucky
Louisiana
Maine
Maxyland
Massachusetts
Michigan New Hampshire New Jersey New Mexico New York North Carolina North Dakota Oregon Pennsylvania Routh Carolina South Carolina South Dakota United States

Table A.2—continued

Category: Hispanic

State	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Alabama	328	365	331	346	338	339	346	358	359	370	384
Alaska	150	130	156	157	135	176	165	187	197	203	210
Arizona	4638	4726	4845	6864	4919	4979	5240	5391	5541	5710	5934
Arkansas	211	225	243	241	255	256	257	596	274	282	291
California	52041	54436	56176	58185	59812	61637	62813	64261	66500	68543	71108
Colorado	4643	4672	4743	4665	4778	9484	9464	5184	5394	5560	5759
Connecticut	1739	1703	1757	1751	1793	1930	1903	2009	1984	2047	1212
Delaware	E 7	142	145	139	145	173	159	189	179	185	191
D. of Columbia	108	103	103	104	103		132	124	152	157	163
Florida	5700	5625	5588	5376	5150	5264	5336	5237	5250	5415	5610
Georgia	248	605	582	575	260	594	636	630	670	691	716
Hawaii	1137	1096	1177	1216	1345	1348	1417	1482	1523	1570	1626
Idaho	561	537	573	615	009	631	681	758	810	838	872
Lilinois	8985	9364	9503	3965	10306	10564	10706	10946	11697	12075	12543
Indiana	1061	1104	1131	1159	1221	1226	1262	1286	1312	1352	1403
lowa	7777	414	454	461	944	486	520	551	514	531	550
Kansas	839	916	878	978	975	1047	1117	1163	1173	1211	1256
Kentucky	566	250	251	238	259	275	252	287	289	298	308
Louisiana	955	973	958	951	951	1018	196	1089	1157	1193	1235
Maine	61	52	50	47	55	57	70	67	72	75	77
Maryland	770	729	716	989	154	778	784	790	845	869	006
Massachusetts	1813	1861	1875	1954	1989	1978	2023	2080	5069	2137	2213
Michigan	2225	2185	2220	2110	2180	2190	2296	2434	2428	2501	2595
Minnesota	557	585	603	583	049	670	733	740	729	751	778
Mississippi	268	265	254	243	263	546	246	234	277	286	296
Missouri	548	555	525	574	539	602	627	949	639	659	683
Montana	192	159	183	174	185	222	199	232	221	228	236
Nebraska	478	486	516	523	544	558	576	584	649	019	769
Nevada	524	556	547	557	909	616	587	449	682	703	730
New Hampshire	58	52	9	63	58	9	99	62	09	62	65
New Jersey	0849	6584	6751	6663	8699	6639	6854	6981	7004	7243	7508
New Mexico	7007	7047	7023	7018	4869	7229	7337	7924	8087	8334	1498
New York	15688	15535	15863	16209	16927	17484	18281	18641	18505	19128	19866
North Carolina	573	549	584	583	552	555	650	705	735	757	784
North Dakota	29	68	78	85	90	83	98	119	90	93	16
ohio	1691	1659	1581	1719	1719	1755	1807	1881	1924	1983	2055
Oklahoma	843	199	841	871	888	971	1023	1069	1109	1142	1184
Oregon	721	716	763	773	816	861	956	993	1036	1071	1112
Pennsylvania	2016	1929	2004	1974	2046	2035	2156	2156	2152	2221	2301
Rhode Island	155	158	169	171	164	179	187	200	211	217	526
South Carolina	313	357	331	339	352	356	343	370	367	378	391
South Dakota	63	62	63	02	0,7	8 1	7.7	102	104	107	112
Tennessee	267	293	261	576	268	5/4	284	293	300	310	322
Texas	43471	44246	44963	44188	44702	44386	44532	45641	4/11/4	48559	50369
Utan	- 6	437	700	- 6	9/01	- 6	2621	212	1337	1377	429
Vermont	200	920	020	520	770	62.6	300	2007	7 60	22	23
VI TG I DI B	400	000	704	126	776	200	100	2020	1084	7111	7510
Washington	1220	750	200	040	107	070	1202	2020	7	2202	24.5
West Virginia	1010	1001	1107	7111	1200	- 4-	1230	7	1260	7	11.63
Wyoming	004	426	384	439	454	436	476	245	520	537	557
Hoited States	17625R	179886	183530	185852	180764	101486	197883	203548	200036	215587	223647
מון נפס סנס נוס	2	2000)	2,0,0	10110	20100	3	2000	22222		7

nonmissing states in the same region, with the constant of proportionality determined from the observed 1986 ratios.

For 1987, we used the state counts of public school graduates to estimate the numbers of private school graduates by applying the assumption that each state's private/public ratio remained the same as it was in 1986 (except for California, where the actual 1987 counts were used). This reflects the finding from the WICHE data that there was almost no change in the private/public ratio between 1985 and 1986.

The resulting state estimates in Table A.1 indicate that the number of private school graduates changed little from 1980 to 1987, at a time when the 17–18 year age group was shrinking and the public schools were producing fewer and fewer graduates. Private schools accounted for approximately 9 percent of the nation's high school graduates in 1980 and 10 percent in 1986.

ESTIMATES OF AGE GROUP SIZES

To augment the data on high school graduates, detailed estimates and projections of age group sizes by state, sex, race, and Hispanic origin were compiled for each of the years 1980–2000. Table A.3 lists the estimates of the numbers of 17-year-olds for the years 1980–1989. All estimates are for July 1 in the reference years, except for 1980, where the census estimates as of April 1980 are listed. Table A.4 provides the analogous projections for 1990–2000.

For the most part, the entries in these tables are taken directly from Census Bureau estimates and projections listed on public use tapes. The age group estimates for 1980 come from a tape that provides revised county population estimates by age, sex, race, and Hispanic origin derived from the 1980 census (U.S. Bureau of the Census, 1983). The estimates for later years are taken from a tape listing estimates and projections for the years 1986–2010 by state, race, and sex (U.S. Bureau of the Census, 1988c).

Minor adjustments have been made to the Bureau's estimates to fill in disaggregated estimates by race/Hispanic category for 1981–1985 and to reconcile the estimates with more recent estimates for the U.S. and Hispanic populations. In brief, the state estimates by age, sex, and race for 1981–1985 were obtained by first interpolating between the relevant cell sizes in 1980 and 1986 (e.g., the number of 17-year-olds in 1982 is estimated by interpolating between the number of 15-year-olds in 1980 and the number of 21-year-olds in 1986). To provide age group breakdowns by Hispanic origin, the estimated Hispanic age group total for the U.S. was first allocated across states proportional to the 1980 state estimates for the corresponding age groups, and then the state's Hispanic total was allocated across race categories assuming that the proportions of Hispanics in the white, black, and other categories were the same as they were for that age group in 1980.

The Census Bureau estimates for 1980 reported in Table A.3 are the "OMB-consistent modified race" estimates, which means that the "Other Non-Hispanics" category corresponds to the union of two race categories—Native American (American Indians, Eskimos, and Aleuts) and Asian/Pacific Islander. State estimates for those categories were derived by dividing the "Other Non-Hispanics" estimate into two categories proportional to their relative population sizes in 1980.

Thus, although some changes were made to provide more detailed estimates of age group sizes for the purpose of generating detailed estimates of numbers of high school graduates by state, sex, race, and Hispanic origin, all estimates are tied to Census Bureau age

Table A.3 ESTIMATED NUMBERS OF 17-YEAR-OLDS BY STATE AND CATEGORY: 1980–1989

Category: All

State	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
АТараша	74987	74008	71385	67730	65088	60019	65172	61689	70289	66274
Alaska	7588	1621	7361	7115	9669	6981	8036	8044	8199	1671
Arizona	66964	49568	48216	46380	46461	46930	49420	50916	53230	50210
Arkansas	43594	42930	41151	37742	36319	35941	37680	37695	39073	36196
California	426119	422111	906904	385527	376818	373043	379960	399195	405029	374310
Colorado	52429	51573	49365	45826	45354	45297	48382	04064	50034	45939
Connecticut	58411	57493	55074	53316	50834	49220	49589	50759	49548	43703
	11675	11528	11071	10645	10318	9761	9438	10019	10215	9357
D, of Columbia	10508	10514	10293	9700	9156	9498	7316	8300	8725	8008
Florida	163278	161371	155819	148388	146506	144827	157871	158082	164717	155469
Georgia	105809	104576	101193	91616	86696	96183	99419	104599	109623	103772
Hawaii	16951	17819	17698	16517	15459	14932	15007	15304	15452	14624
idaho	17620	17197	16227	15511	15289	15014	16377	15651	16295	15146
111inois	215191	211254	201780	188114	181663	175193	175223	178060	181526	166205
Indiana	104554	102891	98305	91525	89727	86715	86761	89369	92171	85609
IOWa	55121	53890	50891	47322	45045	43040	43248	43591	43621	39420
Kansas	42796	41962	39806	36858	34999	33876	35423	35300	36220	33217
Kentucky	71050	69553	66230	61525	59688	58170	59329	60123	62660	58760
Serie i si i ci	81775	82751	79947	75087	73410	71632	72518	71718	74427	70030
2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	21805	21415	20313	19436	19027	18475	18566	18833	19117	17765
DOC 222	81622	80808	78020	711357	72108	20472	60863	70310	70307	64081
Marca abuse a sec	106765	10501	100165	96591	03251	0000	79788	0.000	8 8 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	70173
Hassachuse Lts	00000	177500	160010	160660	16727	16.2010	15021	156082	158881	1112662
ALCII yari	61200	06677	0.645	100000	\$101C	N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	01207	20000	70007	2000
Minnesota	61124	63567	20001	10140	00040	04000	V 0 - C 0	04240	04030	71717
Idd ISS ISS IM	1/9/0	2110	49304	70104	170hh	44010	2000	4070	4/001	40004
MISSOURI	66126	70964	460743	0,440	06607	02027	02101	10220	10707	11007
Montana	17441	15151	b/2h1	19871	6747	06/11	2142	12334	00021	1000
Nebraska	29288	286/4	2/103	54976	23615	22/83	23621	23179	23896	22073
Nevada	14335	14207	13683	13295	13169	13046	12376	14105	14529	135/6
New Hampshire	16791	16597	16018	15787	15829	15915	15759	16615	17379	16006
New Jersey	138595	136425	130710	125487	120112	116820	120191	118560	117265	104/42
New Mexico	27176	27075	26338	24265	23163	52504	24210	239	54444	23040
New York	322169	318036	306097	294511	282586	272241	271810	275386	273860	243051
North Carolina	109453	108232	104388	39465	98836	99117	100265	040	108221	101006
North Dakota	12607	12301	11607	10611	10133	9407	10135	86	9695	9132
Ohio	202028	198337	189060	178119	173561	168120	168369	173723	178497	162131
Oklahoma	55860	55043	52380	47895	46071	45941	50148	49228	50840	47759
Oregon	46187	45174	42712	40829	39463	38423	39/42	40231	40007	36276
Pennsylvania	213609	210188	201051	191508	185686	180563	180351	180415	182746	165314
Rhode Island	16836	16614	16035	15528	15297	15197	14373	14992	15276	13844
South Carolina	62325	61624	29447	56367	54584	54209	54534	56743	59383	56411
South Dakota	13751	13569	12856	11623	10722	10272	10800	10185	10495	1196
Tennessee	84545	83401	80214	75961	73892	72879	74284	783	81141	75733
Texas	268566	264846	255836	242493	241590	243785	259088	272936	282930	267056
Utah	27185	26668	25338	24385	25147	25047	26004	27342	29386	28412
Vermont	2747	9587	9169	8851	8625	8510	8546	8894	9118	8334
Virginia	26966	98361	94946	89356	87115	86234	88 799	89670	69616	84910
Washington	74296	72979	69245	65350	63763	63727	67130	67504	61165	61052
West Virginia	34355	33691	32149	30250	59489	29411	30638	30583	31429	29650
Wisconsin	93134	91239	86639	81754	79127	15275	74324	75911	76235	68321
Wyoming	8337	8159	7714	7269	7023	6981	1486	7490	1106	7238
United States	4223848	4163000	3993000	3778000	3677000	3603000	3674816	3760140	3836698	3531633

Table A.3—continued

Category: Male

34863 36032 4265 4274 19322 7274 19322 207087 25187 25840 25187 25840 26052 4134 4150 4314 80917 84178 80917 84178 9143 56462 1955 8294 1956 4178
######################################
W 7-200
33271 4178 193010 195318 195318 2467 2467 2470 1470 1470 1470 1470 1470 1470 1470 1
32852 3871 3871 18486 18486 191704 18334 48334 48334 4868 1717 89686 1763 1717 89686 1763 1765 1765 1766 1766 1766 1766 1766 1766
33502 33502 193684 192667 22974 22974 1930 1930 1930 1930 1930 1930 1930 1930
34826 3860 3860 19353 19353 19353 23315 24364 8347 8347 8347 8347 8347 8347 8347 834
36395 3874 2010356 2010356 2010356 201035 201035 20103 20103 20103 10103 20103 10103 20103 10103
37813 2037 2037 219693 217023 26374 2644 5735 9085 9085 108337 108337 36701
38193 25008 25265 25265 26756 26756 26756 5854 5850 8606 8606 8606 11014 11014 57908 27908
Ilabama Ilaska Krizona Krizona Salifornia Solorado Solorado Solorado Ilorida Ilorida Ilorida Ilorida Ilorida Ilorida Ilorida Ilorida Ilorida Ilorida Ilorida Ilorida Ilorida Ilorida Ilorida Ilorida Anno is

Category

1988 34257 34257 18860 19860 1987 19880 19 1865821 3.000 1830549 1791505 7.6985 3115.7 3115.7 3115.7 3115.7 3115.7 3115.7 3115.7 3115.7 3115.7 3115.7 3115.7 31 1757000 Table A.3—continued 198# 31586 227776 227776 227776 227776 227776 227776 22776 22776 22776 22776 22776 22776 22776 22776 22776 22776 227776 22776 22776 22776 22776 22776 22776 22776 22776 22776 227776 22776 22776 22776 22776 22776 22776 22776 22776 22776 22776 227776 22776 22776 22776 22776 22776 22776 22776 22776 22776 227776 22776 22776 22776 22776 22776 22776 22776 22776 22776 22776 227776 22776 22776 22776 22776 227776 227776 227776 227776 227776 227776 227776 227776 227776 227776 227776 227776 227776 227776 1796000 1844000 1985 1988 1952000 1981 36195 24275 24275 24275 26195 26195 26195 26196 2 2030000 1980 24332 21332 21332 21332 21332 21332 21332 21332 21332 21333 2 2063734 Female North Carolina
North Carolina
North Dakota
Ohio
Oregon
Pennsylvania
Rhode Island
South Carolina
South Carolina
Iennessee Arizona Arkansas California Colorado Connecticut Delaware O. of Columbia Kentucky
Louisiana
Maina
Maryland
Massachusetts
Michigan
Minnesota
Mississippi
Missouri
Montana
Nevada
New Hampshire
New Jersey
New Mexico Virginia Washington West Virginia Wisconsin Wyoming United States Georgia Hawaii Idaho Illinois Indiana

1989 32129 24534 24534 11714 11714 125331 25395 25395 12595 12605 13605

Table A.3—continued	
White Non-Hispanic	
Category:	

1 !	1980	1981	1982	1983	1284	1285	1986	1987	1988	1282
50671		19164	47511	45073	43684	16251	44,367	46/59	61139	44338
3556		3228	1949	4698	00/4	4009	32780	34120	35128	32441
33349		32,190	31562	28771	27035	27598	29465	29632	30394	28574
33030		25,8661	20016	300000	215603	200087	719602	224365	225543	196235
011446		40007	38406	35142	34788	34588	37292	37839	38457	34457
98664		48904	46493	44408	41987	40501	40502	41694	40162	34940
9120	_	8943	8481	8058	7804	1229	7010	7449	7450	0989
101	_	1031	1041	1013	1249	1337	1263	4561	1061	777701
13545	۸.,	112385	107888	101773	100/42	100893	180211	113330	11727	101040
10/	٠.	10969	00400	5418	62150	1,500	1355	3350	3343	2880
		4354	4173	1,000	07450	13706	15016	14351	14900	13713
1031		20661	1/647	130721	131146	124716	123856	125614	125368	110336
7 - 0		170372	02641	0/C	78750	75691	75841	78226	80521	73731
76176	0 0	51063	72000	00410	05027	41089	41099	41393	41341	37120
3000	2 (30616	35030	1000	30520	29419	30569	305505	31059	28241
5007		0717C9	5000	55256	53820	52298	53383	54238	56247	52493
50000	* 0	51276	18730	101711	44147	42737	44300	46057	45410	41989
215.0	× ~	01050	10078	19125	18691	18149	18240	18516	18763	17397
5776	ر د	56163	53414	50420	118779	46839	46119	01494	45544	40782
0 7 5 0	- س	95633	91048	86924	83621	80999	78966	79076	78000	42069
15008	ی د	147422	139826	130437	126836	121971	118406	123307	123128	109411
7800	, o	76068	71581	96199	62550	90409	61348	96409	96409	53557
2921	9	28601	27167	25148	24608	24487	24863	26747	26821	25143
7911	m	77409	73248	66857	64919	62230	64314	65065	66155	60638
1414	.	13749	12878	11555	11182	10571	11104	11062	24211	1007
2715	œ	26542	24924	22807	21495	20757	6/#12	21058	11308	19821
1128	~:	11161	10692	10398	10239	10.180	7545	16268	17020	15,622
1655	~	16320	15/26	124/4	97500	0.777	25.544	90701	814.70	71274
10538	יי עכ	103014	72.77	741.42	0 0 0 0 0	20.43	9815	6696	10053	8655
7008	- د	225016	213449	201895	192176	182058	180769	183713	178902	155847
766	2 _	75326	71818	67922	68824	68834	70057	73390	75475	94669
1189	<u>-</u>	11567	10841	8066	0846	8702	9435	9135	8985	8329
17549	=	171662	162849	153002	149268	144183	143393	148248	151046	136012
7424	9	44363	41653	37882	36522	36235	39389	38934	39/35	35/64
4250	Ξ	41484	39108	37226	35884	34711	35864	36228	35937	32.131
18577	9	182243	173432	164806	159922	154898	12000	135100	12725	104040
1565	Ņ,	15379	14//	14280	13972	13848	12,909	35002	37104	34545
3848	۰	37828	32992	22/01	5000	0040	0316	8811	8000	8195
1244	<u>ت</u>	12139	51413	26101	2010	0723	58777	62405	63839	59347
1699	۔ ح	46769	11,755	136138	171761	134065	146584	158858	164482	147599
1001	= 0	23866	22618	21968	22287	2230	23171	24362	26204	25156
040	y a	44000	0023	8711	8479	8351	8358	8682	1068	8095
707	οq	71115	60548	65134	64116	63343	65375	91899	61629	61731
6615	ې د	64702	60975	57435	55766	55455	58131	58330	58352	51773
3263	-	31913	30448	28636	27989	27950	29085	29193	59909	28208
8643	- ⊅ α	84410	79939 6938	74887	72235 6208	6798 8 6105	67168 6585	68398 6597	68214 6792	6267
			6	000		0.000	2602600	7167637	2793542	2515313
3217587	~	3154179	2993077	2796201	2713463	2639219	8662692	1861917	24/26/13	5157173

Table A.3—continued

Citegory: Black Non-Hispanic Table A.

1989	20112	231	1608	/351	35946	1661	4727	2118	6358	31940	33345	198	59	35907	8 796	1045	2358	12504	24975	- t	17861	4819	27074	1152	61461	10168	32	0601	1246	211	19088	463	44169	50082	017	06017	2007	18650	0/30	20835	04	15286	37919	220	48	19202	1871	1029	8474	00	549148
1988	21349	235	1674	1136	39045	2154	5357	2371	6069	31918	33826	214	99	37386	9273	1079	2544	7695	25966	77	21511	5269	28636	1185	20094	10635	39	1120	1237	117	21386	529	50084	66262	7	23142	45.9	20673	727	21206	17	16202	39456	526	15.	20443	2125	1134	5061	C	581797
1987	19799	205	1593	1191	37184	1916	5056	2179	6482	28931	31290	185	53	34052	8219	1039	2288	5138	24627	9	20574	4854	25921	1098	19083	9934	7 5	1028	1180	104	20218	475	47224	27399	55.0	14212	4265	443	24/0	19738	37	14818	35834	222	040	19051	1995	1014	4594	ķζ	540100
1986	19700	211	1576	7316	36215	1939	5105	2094	1,3787	30189	30846	186	50	33790	8281	916	2415	5198	25233	43	50629	4998	25187	1024	18704	6966	29	1044	1047	90	20856	456	142/4	26966	35	20830	1/14	10963	7006	10379	70	14451	15273	202	388	19821	1944	1125	4364	0	538359
1985	19632	191	1466	1524	35261	1808	4861	2183	107	28142	30403	145	O#	33828	8360	872	2323	5105	25921	37	20789	9060	25035	1017	18610	9817	27	971	1107	06	19940	6/4	46379	27175	22	20068	3/60	103	077	10747	7.0	14335	34416	200) (1 (1	19509	1812	1062	4550	5.5	532615
1984	20320	170	1452	7637	36164	1172	5093	2184	7580	29130	31447	187	38	34724	9148	930	2395	5153	26201	35	20481	4898	24294	975	19159	10314	28	1069	1207	95	19951	427	47268	27011	25	20491	38/8	200	21202	20100	40	144.88	36723	21.5	500	19894	1621	1131	4230	9	541382
1983	21511	182	1535	8216	37885	1872	5325	2279	8370	26983	32751	191	rt 3	35438	1998	932	2607	2486	27391	33	21158	5121	24349	1035	19745	10857	30	1107	1182	96	20922	488	49985	28616	34	21322	4235	828	0.77	21508	2,000	15673	35500	22,250	31	21205	1866	1241	4268	115	565479
1982	22840	196	1593	8848	38514	2026	5216	5569	84168	30337	32963	153	59	36844	9219	929	2819	5951	28309	314	21853	5115	24313	1045	21348	11527	50	1172	1186	69	21035	505	51356	29556	19	22586	4602	161	91822	000	000	16205	16607	2000	16	22251	2086	1380	4203	99	585365
1981	23222	195	1615	9005	39004	2042	5253	2283	9160	30619	33275	155	39	37447	9348	928	2850	6153	28625	147	21989	5142	24442	1051	21695	11667	5r	1185	1207	19	21233	507	51447	29936	15	22955	4683	816	25193	200	66123	16670	37150	37.70	323	2011.06	2116	1403	4271	₩9	592312
1980	23232	161	1600	9029	38974	2019	5180	2267	9161	30629	33117	142	20	37581	9301	931	2859	6191	28656	745	21862	5170	54296	1056	21789	11770	14	1184	1210	19	21122	501	51430	29939	31	22980	4718	826	231/8	640	14122	02	1000	37.104	330	22351	2138	11.05	4260	19	591977
State	Alabama	Alaska	Агі 20па	Arkansas	Catifornia	Colorado	Connecticut	Detaware	D. of Columbia	Florida	Georgia	Hawaii	1 dano	Signification	Indiana	30	Sesones	Kentucky	Louisiana	Малпе	Maryland	Massachusetts	Michigan	Minnesota	1001881881	Missouri	Montana	Nebraska	Nevada	New Hampshire	New Jersey	New Mexico	New York	North Carolina	North Dakota	Ohio	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina	South Dakota	lennessee	exas	Utan	Vermont	VIII GILLIA	Masimily Coll	Wisconsin	Wyoming	United States

Table A.3—continued

Category: Other Non-Hispanic Tal

2000	1080	1001	1082	1083	1001	1085	1086	1087	1088	1080
200	2000	120	317	125	120%	282	170	11.511	007	507
P (200	30.00	2061	2000	020	300	1066	1000	2025	
9	1073	0707	1965	0000	0163	1000	000	1950	505	1744
Jild	4636	4000	2007	4,000	7104	2014	7 7 7	1001	1307	2012
202	0.00	77.04	0000	00700	0/0	625.6	2000	100	400	100
ornia	25045	18172	28043	28409	78162	31108	33238	35410	3,13	38386
rado	900	9 2	206	- 66.5	787	2001	1 90	1231	1336	5/5/
set icut	370	404	467	C 20	- 0	113	112	136	130	76.
rare Columbia	36	1001	o o	126	100	6-0	72	200	100	000
B 10 10 10 10 10 10 10 10 10 10 10 10 10	1811	1322	1364	1414	1635	1872	2196	2275	25,12	0176
5 e	787	528	539	558	288	671	770	875	696	1040
	10752	11704	11885	11140	10240	10032	9903	10020	10145	9788
	343	379	394	378	300	384	429	392	6443	392
8 00	2420	2666	2719	2744	2918	3209	3650	3903	4129	4228
	476	529	555	498	909	672	740	875	887	246
1	388	418	428	465	7447	485	582	551	596	583
2.6	525	584	626	608	759	8	989	978	1053	1141
uckv	214	242	238	218	196	258	225	204	220	218
Siana	630	708	147	778	906	ħ06	1003	1058	1114	1139
	164	182	184	164	179	181	169	172	184	205
'land	1221	1344	1361	1474	1455	1712	1800	2003	2023	2153
achusetts	156	1054	1070	1142	1238	1364	1398	1462	1553	1685
igan	1747	1910	1950	2018	2099	2323	2345	5606	2721	2841
esota	1414	1542	1594	1603	1675	1775	2023	5126	2309	2404
issippi	257	285	301	305	274	325	384	375	401	398
ouri	635	692	902	673	673	739	803	845	880	920
ana	1034	1125	1146	1047	971	11/6	1023	ħ66	1070	1009
ebraska	309	343	364	384	417	437	401	402	11. 2.00	436
da	787	650	0/9	296	621	929	089	(52	708	018
ev Hampshire	7,7	202	8/2	96	601	0110	001	200	021	7 7 7 7
Jersey	7861	4261	2000	- 6	2000	1622	2033	7887	31.7	3302
Mexico	0 7 7 2	7862	3000	2023	27.38	2113	5012	9662	3120	3 100
YOFK	1763	1029	105	1001	2000	2011	2175	2207	0000	00/00
Dato: 128	600	640	1971	- 20.5	אלא. מאני	2030	591	505	7 4 - 7 1 8 - 7	2007
	80	986	995	1077	1131	1210	1317	1408	1459	1489
ьоша	4324	4750	4857	4532	4414	4678	5315	5015	5357	5391
uo	1273	1399	1417	1385	1427	1489	1635	1716	1736	1825
sylvania	1194	1305	1338	1424	1458	1699	1943	2039	2226	2271
e Island	167	189	199	220	234	267	320	353	375	403
outh Carolina	564	287	304	272	283	343	326	358	397	389
outh Dakota	1189	1299	1331	1322	1206	1208	1369	1233	1342	1338
essee	286	323	328	308	363	368	415	445	17/th	187
exas	2465	7697	27.32	2984	3248	3564	4190	4410	20/4	1007
	9/6	9901	7601 741	888	1082	9111	2021	103	1389	125
200	1 1 0 4	1322	1359	1425	1581	1827	2061	2177	2325	6242
naton	3261	3586	3638	3497	3616	3751	4210	4305	4425	4481
Virginia	70	6/	8	100	122	118	164	153	164	164
onsin ing	1043 184	1132 204	1163	1202 237	1218	1235 246	1270	1344	1372	1504
Series Perior	80708	98509	100558	100320	102155	108166	116859	121503	128366	131173
eal pre na	69169	60706		0.7500	102130			2001		

Table A.3—continued

Table

Category: Hispanic

State	1980	1981	1982	1983	1984	1985	1986	1981	1988	1989
аша	196	719	717	124	748	869	ħ69	119	121	653
aska	180	178	163	174	156	173	182	201	211	255
rizona	10318	10290	10269	10353	10503	10572	10424	10522	10801	11086
Insas	425	391	382	388	401	394	432	904	403	370
alifornia	99945	6965	93686	94308	95864	97581	100863	102236	102996	103743
olorado	8104	8093	7951	1821	6///	7859	7967	8054	8091	8112
ecticut	28/2	2932	2940	3148	3213	3276	3352	3280	3282	3239
Mare Columbia	228	223	\$000 0000	101	700	208	101	197	200	600
rida	17926	17045	16230	15569	14999	13920	13399	13546	13063	11264
6.07	1463	1166	1285	1243	1234	1208	1216	1194	1284	1160
	1610	1633	1507	1569	1612	1584	1563	1749	1750	1758
daho	916	877	833	818	810	884	852	855	886	982
linois	13439	12789	12697	12881	12875	13440	13927	14491	14643	15734
ndiana	1981	1857	1904	1885	1895	1989	1899	2049	2090	2140
•	539	582	561	916	578	594	591	809	605	672
ansas	1336	1400	1323	1362	1316	1323	1450	1478	1564	1477
entucky	2000	2000	2152	200	2156	900 0700	1083	1006	499	040
9 0 0 0 0	106	127	117	21.	122	108	114	103	126	1221
aryland	1372	1312	1392	1305	1393	1332	1315	1263	1319	1269
ssachusetts	3043	3182	3232	3334	3494	3472	3405	3530	3530	3645
ichigan	3751	3811	3829	3856	4045	4120	4272	6424	4399	4337
innesota	189	668	710	711	745	762	774	826	948	806
ssissippi	609	548	568	784	583	594	592	548	956	4/5
Ssouri	1281	1156	1062	1109	1084	1040	1046	1092	1091	1001
tana	647	203	643	623	77.7	017	620	169	002	762
eoraska evada	1251	1189	1135	1119	1102	1133	1106	1128	1177	1124
ev Hampshire	96	128	115	121	125	142	128	130	118	130
Jersey	10692	10654	10718	11012	11254	11137	10921	11062	11223	11075
Mexico	11852	11589	11381	11073	11168	10926	10864	10829	10742	10816
York	35207	35494	35144	36234	36510	36672	36021	36373	36280	34367
th Carolina	1114	1032	1063	1023	1052	1070	1064	1007	1068	1095
מוטאסרון.	2669	2734	2630	27.18	2671	2659	2829	2820	2850	2632
homa	1378	1247	1268	1246	1257	1268	1273	1355	1357	1446
not	1587	1475	1390	1390	1404	1520	1523	1538	1551	1571
sylvania	3458	3447	3465	3730	3734	3935	3865	3752	3911	3912
hode Island	368	381	393	386	1 7 7 1 7 7 1	442	420	432	439	414
outh Carolina	828	750	81/	917	12 <i>d</i>	h0/	00/	655	9/9	621
South Dakota	700	21.5	26	900	88.7	104	88	104	\$0.5	104
Jessee	K - C - C - C - C - C - C - C - C - C -	5115	0/0	660	44000	010	73047	000	070	610
exas	00700	7470	7000	0000	10440	1,40	1000	1000	04247	10004
Jtan	1429	429	1360	- 5 - 5 - 5 - 5 - 5	435	1382	69	0941	704	940
inia	1555	1478	1488	1502	1524	1555	1542	1566	1572	1548
lashington	2739	2575	2546	2552	2590	2712	2845	2874	2863	2927
. Virginia	226	568	240	273	247	281	564	223	222	249
tons in วเกย	1397 518	1426	1334 506	1397	1444 530	1502	1522 578	1575 598	1588 568	1587
United States	324581	318000	314000	316000	320000	323000	327000	331000	332993	335999
))		; 			! ! :			

Table A.4
PROJECTED NUMBERS OF 17-YEAR-OLDS BY STATE AND CATEGORY: 1990–2000

Category: All

	0661	1661	1992	1993	1994		1996	1997	1998	1999	2000
	7111	12010	60/10	21100	0000		04040	01699	C#500	10000	10505
	49120	40064	51251	51289	54343		58455	62212	64981	66758	67856
	35334			34867	36312		37222	38502	38103	37960	37881
	361912	359768	374521	374241	393412	397754	415287	437809	461657	472364	477514
	43074			38397	39664		4900-	42244	12848	44098	45022
	8701			8536	1968		6056	9716	0696	9838	9966
e i	7307			6748	7095		7325	1700	8309	8477	8551
	148184			146854	155410		164970	173916	181773	187118	191753
	100132			99996	102013		108422	113215	115095	116119	117271
	14158			14985	12/54		11300	726/1	184/7	18933	1,000
	165.220			00000	01/01		160000	166007	74011	70171	11601
	8038			76786	701.08		80600	82162	80403	79500	78786
	36398			36876	38662		39427	40186	39022	37988	36983
	32088			32882	34419		35587	36862	37376	37415	37155
	55274			53281	55354		55769	56317	55210	54325	53526
	66673			62099	69307		71026	73823	73985	74374	73998
	16573			15670	16365		16836	17250	17350	17582	17774
	58170			57247	60285		63800	66999	69069	71668	73646
t s	73277			67956	70063		72747	74601	76155	78587	8008
	134033			126024	130245		134950	137161	134649	133594	132744
	54189			50555	58303		42824 17387	64219	65014	50,00	548/8
	70164			7007	44500		40.07	41191	41949	78062	40900
	10785			11156	11654		12219	12446	12403	12458	12295
	20845			20874	21731		22320	23114	23264	23265	22998
	13016			13524	14453		15688	16627	17227	17517	17530
re	14996			14664	15495		16392	17006	17480	17953	18358
	98025			94873	98519		101729	104884	105862	108686	111666
	22482			23342	24709		26938	28759	29512	30384	31111
	528569			224067	232463		234334	239354	239239	243339	245897
ıПа	95830			90586	95014		98342	100751	101108	102794	103721
_	11188			7606	656		20042	10259	10201	10384	10203
	150207			147455	146984		204161	153831	153128	153001	20001
	45483			20004	751/5		48/33	10000	1001	02620	75697
,	34/02			3,000,0	37007		152055	15/1768	15564	157880	157606
reinisy i van i a	13350			10010	100001		132037	12672	13010	0007	11.323
South Carolina	541148			51140	5425		55517	57114	57499	57711	57619
	0770	01113	9855	0080	104 79		11213	11758	11612	11589	11535
	71884	70006	70282	67943	71190		73740	75324	74443	74050	73694
	257148	252625	257473	255371	265569		276787	291285	301990	307818	309569
	28609	29443	31625	32891	35789		37820	38529	37936	37714	36929
	7794	7385	7643	7495	7838		8043	8234	8475	8615	8697
	64461	16992	78558	76750	80804		85159	88319	90139	92380	93873
	57556	57354	59661	59909	63297		64199	68269	70471	71098	70923
e	28021	26519	27029	25929	76694	26302	26242	26263	25085	24357	23691
	64276	63361	65717	46249	91044		69493	71266	70695	70711	70190
	1769	6936	7286	/238	(533	9/4/	7913	8135	8028	8-7-8	1961
States	3344905	3267207	3343015	3291201	3439994	3467952	3576035	3702621	3758125	3802881	3819105

Table A.4—continued

Male

Category:

State	1990	1961	1992	1993	1994	1995	1996	1997	1998	1999	2000
АТабаща	32672	31576	31918	30896	32541	32548	33283	34191	34145	33924	33863
Alaska	3921	3835	405,1	4034	4282	4383	4651	4839	5150	5387	5518
Arizona	25037	25009	26232	26180	27751	58416	30045	31684	33259	34077	35014
Arkansas	18310	18199	18586	18165	18980	18839	19321	20087	19813	19811	19746
California	184678	184580	191663	191112	201135	203782	212957	224132	236076	241409	. 44423
Colorado	22319	22086	52964	22861	24129	24531	25595	26837	27851	28689	28827
Connecticut	20663	19908	20251	19677	20622	20628	51069	21937	22314	22841	23258
Delaware	43:47	4141	1040	4260	4552	4094	4701	4825	9924	4800	6984
D. of Columbia	3614	3395	3444	3301	3504	3505	3615	3835	4124	4217	4198
Florida	16074	14565	16506	75517	79828	81442	84714	00968	93737	66296	98602
Georgia	51525	50019	50593	49859	52766	53555	55965	58441	59366	60043	60533
Hawaii	7162	1222	7450	7587	1661	8202	8507	8849	9248	9339	1696
1de ho	7579	7682	7963	1988	8591	8511	8965	1968	8857	8862	8663
lllinois	79817	76933	78842	77636	80413	80058	82233	85828	86160	85423	84694
Indiana	41240	40309	40915	39576	41147	40968	41556	112511	41214	40991	40661
lowa	18840	18502	19351	19137	19890	20020	20402	20634	20208	19555	19020
Kansas	16429	16340	17071	16927	17761	18003	18464	19102	19485	19486	19402
Kentucky	28870	27824	28247	27840	28790	28548	28923	29161	28549	27995	27720
Sec. Sino	34110	11281	301102	33464	15125	35314	36281	37641	37825	37846	37785
Maioe	8602	8.44.8	8018	8187	8684	8711	8924	9167	4926	9297	9552
Maryland	3008	28727	29519	19262	30743	31501	32585	33975	35189	36705	37523
Massachusetts	17317	35610	15804	34515	15698	35983	36778	37987	38499	39975	40742
Michigan	68791	66586	66631	64807	16699	67690	69421	70211	64269	68497	68294
Minne with	27779	27738	28922	28461	10068	26831	32195	32894	33298	33765	33458
X . SS .	22569	22158	22565	22143	23109	23299	23919	24723	24931	24665	54406
Missouri	35359	34097	35660	35042	36897	37078	38303	39795	39996	40177	40307
Montana	5604	5622	5828	5761	6012	6110	6341	1969	861/9	9059	6431
Nebraska	10837	10625	11091	10706	11262	11206	11554	11852	12032	11992	11830
Nevada	6823	9699	6941	7087	7502	7659	8164	8709	8972	9077	9159
New Hampshire	7844	7627	7749	209	8014	8126	8374	8831	8959	9208	9501
New Jersey	50294	49021	49738	40746	50691	50937	52201	54023	54538	56071	57505
No. Mex. CO	11456	11303	11811	11859	12572	12764	13539	14588	14817	15319	15827
New York	117010	113796	116763	114775	119155	118632	119786	122012	122538	124401	125770
North Carolina	06984	47553	47920	46072	48338	49035	50223	51232	51490	52111	52668
_	4593	7277	11691	4712	1464	5034	5208	5263	5254	5385	5241
	11279	74427	75580	73041	75411	75770	77583	78895	78708	78230	77548
Oklahoma	23597	23318	24150	23879	24755	24487	25480	26511	27115	28012	27979
Oregon	18062	17698	18418	18522	19622	19660	20230	20973	21160	20992	20963
`	78806	15690	76016	24066	16866	16969	78218	19209	79945	80962	80924
Rhode Island	6511	6414	6293	6109	6413	6542	6682	6822	6858	9469	7041
South Carolina	27719	27194	27230	26481	28251	28294	28879	29875	29841	29948	30015
South Dakota	4735	4805	5058	5184	5349	5421	5/22	5912	5946	0466	5172
Tennessee	37037	36228	36168	35127	36801	37025	38080	39038	38407	38344	38113
Texas	132016	129872	132237	130703	135803	136145	141665	148867	154275	15/605	158868
Utah	14510	14869	16063	16709	18031	18627	19163	19601	19181	19293	18888
Vermont	4039	3872	3930	3952	4122	7 100 100	4219	4334	4522	9/5/5	4589
Virginia	40290	39090	39995	39045	41302	42123	43239	44876	45937	47123	47851
Washington	29736	29634	31082	31185	32815	33287	34390	36021	36594	36840	36846
West Virginia	14579	13794	14146	13658	13902	13628	13614	13688	13033	12748	12258
Wisconsin	33173	3260 <i>7</i> 3555	33914 3684	33081 3699	34533 3888	34829 3892	35751	36642 4215	36769 4236	36565 4259	36217
1			;			1	4		9	0.00	
United States	1716553	1678539	1718797	1690175	1/68514	1781252	1835/24	1900409	1930198	1952524	1962889

Ę

Category: Female	<u>ə</u>			Table	A.4—con	-continued				
State	1990	-1661		1993	<u> 4661</u>	1995	966:	7661	1998	+
	30678	29945	29851		1	30541	31307	32319	32200	1
٠,	3516	3527	3602	3670	3808	3958	4216	4451	4639	
5	24083	23995	25019	25109	26295	27111	28410	30528	31722	
S 9 S	17024	16/04	17120	16702	1/552	102020	1/901	18415	18290	
Cal . Ormia	91355	21006	21162	21607	00866	01010	24.286	1 1 0 C 1 2 0 C 5 C C	26.20	-
Connections	19408	18711	19074	18720	19042	19379	19989	20307	20534	
i e i	4354	0464	6924	4276	4412	4578	4808	4891	4654	
_	3693	3526	3503	3447	3591	3631	3710	3865	4185	
ıda	72110	70546	72310	71337	75582	76926	80256	84316	88036	
Georgia	48607	47603	48296	46837	19247	50575	52457	54774	55729	
наматт	9169	7029	7288	7398	0///	8045	8459	9073	9221	
	16677	72857	7647	73053	75.72	75531	77710	81169	01487	
100.00	30141	17591	38125	37210	38281	38184	39044	39651	39189	
	17558	17354	17971	17739	18772	18794	19025	19552	18814	
Kansas	15659	15381	16097	15955	16658	16564	17123	17760	17891	
Kentucky	26404	25714	26112	25441	19592	26297	26846	27156	26661	
•	32563	32181	32210	32565	33982	35888	34745	36182	36160	
	7971	7716	7485	7483	7681	7808	7912	8083	8086	
p.	28681	27620	28322	27980	29542	30217	31215	32724	338/6	
_	35940	69255	34401	3344	34303	35065	33769	2002	37030	
E +	00046	25075	27073	21016	03540	20253	2000	31325	31716	
Mississippi	21193	50469	20859	20475	21497	21563	22266	23074	23018	
2000	33417	32704	33292	32865	34568	35366	36425	37541	37926	
Montana	5181	5173	5418	5395	5642	5611	5878	5819	5065	
	10008	1166	10308	10168	10469	10574	10766	11262	11232	
la	6193	6130	6368	6437	6951	7032	7524	7918	8255	
due.	7152	6991	7206	7607	1847	05//	8018	2718	155"	
	11006	46380	47009	11202	17137	13479	13300	50861	17.605	
New Revice	111550	108662	110929	1002001	113308	113313	114548	117342	116701	
Carol	47140	45529	45964	44514	146676	47242	48119	49519	49618	
Dakota	4251	4207	4351	4385	4602	4752	4834	966h	5023	
0110	72928	70283	71496	69414	71573	71647	73819	74936	74420	
_	21886	21412	22070	21623	22387	22476	23253	24046	24316	
regon	16642	16607	1/302	1/343	18183	18269	19158	19678	19687	
ennsylvani	4214	5/11/	0002	70006	2027	65433	13831	70007	11101	
ດ ເ - ເ	0390	25349	#C20	24659	26000	26052	26638	27239	27658	
COURT CATOLINE	4614	0400	4797	4805	5130	5233	5491	5846	5666	
	34847	33778	34114	32816	34389	34637	35660	36286	36036	
) ;	125132	122753	125236	124668	129766	130201	135122	142418	147715	•
Ę	14099	14574	15562	16182	17758	18017	18657	18928	18755	
гтоп	3755	3513	3713	3543	3716	3697	3824	3900	3953	
rginia	39159	37902	38563	37705	39502	40387	41920	43443	44202	
shington	27820	27720	285/9	12371	30482	30785	12629	33600	130811	
21 6000	11103	10754	11803	31173	32511	32834	33742	16918	33926	
	3394	3381	3602	3539	3645	3684	3866	3920	3972	

2000 31904 31904 31904 21764 21764 41353 21764 41353 21764 41353 21764 41353 21764 41353 21764 41353 21764 41353 21764 21765 21764 217

23.141 32.141 32.141 32.141 22.133.4 22.333.4 23.334.4 23.334.4 23.334.4 33

Table A.4—continued

Category: White Non-Hispanic

State	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Alabama	41471	40641	40688	39445	41156	41424	42135	43401	44266	5#0##	43989
Alaska	2066	4892	5194	5217	5571	5680	5929	6253	6583	6 780	0989
Arizona	31059	30715	32620	32616	35173	35589	37520	40284	42788	43591	43162
Arkansas	26993	26639	27201	26405	27392	27351	27809	28745	78847	28/14	28/0/
California	181615	176763	185735	181702	193509	193431	202692	215704	696422	226358	21/8/6
Colorado	32269	31687	33332	32855	35124	35644	3/10/	39050	40498	10076	12604
Connecticut	31763	30439	31007	66662	30783	31081	31582	32820	33724	24073	54579
Delaware	6324	6020	6208	6004	1 120	6363	6465	6262	1305	1100	007.0
O, of Columbia	1295	1268	1261	1209	1253	1250	1275	1269	1306	1304	1300
Florida	101334	99288	154.701	101276	107430	109255	70.57	262121	217071	129567	131871
Georgia	65042	63546	64202	65#29	65930	66917	69156	12401	14681	16261	(6145)
Hawaii	2758	2670	2764	2687	2913	2925	2969	3073	3216	3205	5141
Idaho	13395	13450	14098	14140	15167	15075	15583	15674	15322	15088	14683
l I I i no i s	100750	97082	99792	96850	100176	100249	102340	105581	105412	103430	100880
Indiana	68583	66354	67318	64902	67268	66936	67958	69022	61675	66999	65858
o×a	34147	33539	35048	34604	36250	36362	36860	37619	36444	35387	34341
Kansas	26985	26196	27872	27580	28835	28754	29502	30566	30933	30825	30364
Kentucky	49240	47785	48521	47438	49103	48764	94064	665611	48815	41929	47192
Louisiana	38745	38067	38558	37783	39320	39040	39627	41069	42006	41956	41488
Maine	16249	15711	15665	15341	16033	16146	16461	16863	16963	17179	17349
Maryland	37405	35716	36709	35773	37266	38065	38863	40584	41502	42952	90044
Massachusetts	63303	60200	60184	57896	59750	60386	61856	63462	64443	66408	67434
Michigan	100293	97392	98429	95036	98540	99755	101796	103472	102213	100887	99718
Minnesota	49745	49310	51344	50848	53369	54860	57296	58522	59417	59974	58967
Mississippi	23565	23083	23507	22760	23817	23917	24372	25182	25/21	25474	21262
Missouri	56895	55581	57367	56597	59578	60431	61931	64333	10800	12/69	92859
Montana	8448	2946	9902	9809	10169	10295	10590	10774	10899	10890	0/00/
Nebraska	18690	18410	19280	18677	19450	19469	19884	1007	20102	13063	12014
Nevada	1086	6006	20170	10222	15031	16.300	15082	1671	16917	17255	17720
New Hampshire	14613	14619	14030	017509	65105	65167	66100	68707	68816	10201	71528
New Jersey	20000	7765	10470	0278	0500	9690	10216	11405	12124	12299	11710
New Mexico	11,3656	138058	140560	135890	140284	138209	139101	142650	142181	143511	142417
North Carolina	65137	63144	63621	61198	64253	66649	65736	67750	68736	69757	70409
North Dakota	8045	7902	8247	8243	8667	8900	9100	9309	9461	9545	9331
Ohio	125333	121162	122868	118592	122175	122310	124537	126523	126051	125616	123583
Oklahoma	34823	34174	35506	34718	35902	35660	36481	37784	38626	39456	39344
Oregon	30613	30052	31385	31325	33110	32879	34096	35100	34992	305015	33856
Pennsylvania	129753	124333	125465	121450	125136	125/60	12/821	1301/1	130681	136365	13.1900
Rhode Island	11467	11089	11106	10802	11289	11469	11/14	11930	26021	16.295	175217
	32848	31759	31881	30/26	32281	32232	52939	34170	10000	32.00	00100
South Dakota	7853	0467	4317	1100	0010	0260	50173	7032	7550	57161	56000
Tennessee	111100	12550	24070	26020	1000	17,5820	15,15,08	160005	160650	171206	165593
lexas	13//89	133021	20000	20100	21821	197033	31100	11830	70062	32625	31591
Utan	7553	01007	74.15	7285	7604	7548	7786	7986	8207	8326	8390
Visaini	27601	2,000	56890	55141	09673	5,8799	91,09	62703	64471	65834	16199
Washington	48372	48059	50090	50046	53089	53296	55515	57410	58021	58200	51415
West Virginia	26619	25264	25710	24668	25364	25033	24858	54954	23847	23131	55489
Wisconsin	56469	55716	57951	56483	58900	59366	60626 6628	62117	61701 6899	61540 6834	559 554
Service Servic		3)) ·)					•
United States	2343291	2279307	2339821	2283497	2390698	2402829	2465344	2552317	2588084	2601352	2577181

Table A.4—continued

Category: Black Non-Hispanic Table

State	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Alabama	20646	19687	19834	19443	20403	20371	21115	21731	20623	20506	20247
Aiaska	225	212	219	221	236	256	278	596	293	305	301
Arizona	1691	1597	1618	1673	1766	1775	1939	2041	2143	2205	2206
Arkansas	1447	7319	7563	7472	7922	7919	8280	8607	8084	8033	7873
California	34339	34003	35385	35960	38268	38819	41306	43198	46175	47485	47557
Colorado	1934	1883	1924	1943	2089	2041	2181	2259	2263	2341	2323
Connecticut	4383	4154	4576	4326	4516	116511	4917	4885	4925	5126	5211
Delaware	1996	1968	2108	2099	2272	2384	2557	2593	2580	2647	2663
D. of Columbia	5705	5350	5385	5246	5530	5526	5706	6034	6283	9429	6798
Florida	31035	30131	31009	30698	32758	33597	35090	36827	38878	40410	41479
Georgia	32731	31775	32288	31853	33596	34579	36552	37944	37372	37698	37762
Hawaii	191	182	183	162	204	185	173	200	201	206	201
Idaho	66	69	9	19	56	57	9	09	55	55	54
Signification	34057	31924	31839	31764	33331	32300	34(167	36331	36215	35913	35326
todiana.	8625	8317	8445	8400	8750	8 702	9023	2976	8887	8848	8714
5.00	1001	1068	7,40	1010	1110	1120	1176	1000	1188	1175	11/16
- O W G	1064	000	1000	3500	7 - 1 - 1	0 6 3 0	2636	222	22.00	2222	70.50
Karisas	2323	06.07	2002	2220	40.17	5757	0000	2000	27.70	0.7	2025
Kentucky	9150	2039	7 14 7	7124	7497	736/	5958	2266	2766	5546	5431
Louisiana	24825	24333	248/0	25097	26686	26921	2/896	29037	28156	28469	28325
Maine	45	917	745	77	145	04	47	42	0,7	[†	t †1
Maryland	18039	17305	17809	17961	19451	19994	21109	22101	23209	24250	24876
Massachusetts	4525	4210	4345	4337	4521	4685	4686	4064	5219	2400	5412
Michigan	26600	24822	24082	23812	24514	24527	25211	25760	24191	24207	24006
Minnesota	1099	1005	1067	1083	1164	1164	1268	1279	1330	1357	1336
Missission	19204	18570	18987	18868	19850	19988	20880	21575	21140	20969	20537
	0830	1000	01110	0000 0000	0672	0770	10411	10578	10627	10660	10607
Mootage	6507	800		25,00	200	27.0	170	200	2001	000	000
Montalia Mark and the	000	0 7 0 7	1 0	900	0 0 0	1030	1126	1107	2001	1113	1002
Neoraska	2001		906	066.	1049	1032	000		100	7 L	200
Nevada	9021	1171	7 .	60.	1214	1285	7	740	6261	000	010
New Hampshire	911	801	/11	\$113	132	130	134	18.	137	141	/ 57
New Jersey	1/995	1/046	17229	16980	18194	18093	19223	11/61	20225	20888	21322
New Mexico	694	0/4	488	555	588	625	654	703	702	718	217
New York	45409	41442	43446	43303	45972	45785	46226	47802	46889	4 7900	4/845
North Carolina	26930	26235	26543	25655	27028	27185	28299	28597	27840	28309	28304
North Dakota	52	48	64	747	48	617	50	74	† †	77	45
Ohio	50449	19174	19588	19245	20095	20237	21827	22117	21699	21828	21404
OKlahoma	3970	3891	3980	3997	4125	3998	4345	4510	71777	4583	4569
Oregon	969	069	711	7117	149	856	836	857	861	862	848
Pennsylvania	17491	16285	16403	16309	17399	17008	17473	17768	18006	18305	18078
Rhode Island	049	599	593	619	674	680	702	869	724	737	740
South Carolina	20168	19731	19732	19298	20837	20676	21387	21732	21215	21270	21031
South Dakota	34	39	55	20	52	51	617	50	43	39	39
Tennessee	14870	14492	14436	14112	14947	15026	16082	16490	15521	15466	15289
Texas	36813	35655	35590	35694	37725	37531	40020	42217	41247	42288	42287
Utah	211	202	231	241	268	261	273	283	275	275	277
Vermont	52	52	51	811	53	52	61	52	57	61	ħ9
Virginia	17959	17098	17708	17633	18824	19492	20230	21029	20861	21532	21770
Washington	1713	1718	1776	1808	1868	1857	1919	1881	1844	1841	1800
West Virginia	995	860	156	901	943	881	996	893	808	782	734
Wisconsin Wyoming	4681	4514 66	4542 50	4473	4738 76	4662 76	5003 87	5254 94	5110 93	5151 82	5098 75
	0	0	0	6			***************************************	0.00			370003
United States	106826	20803	20/16	514433	912556	240069	216361	062866	416690	181660	503065

Category: Other Non-Hispanic

ਨੂ
me
Ħ
con
Ĭ
4.
e
9
<u>8</u>

2000	795	2987	7488	758	62926	2088	1081	245	93	4373	1740	13547	556	5401	1214	009	1753	228	1531	217	3179	2537	3628	3363	527	1353	1212	477	141	338	5231	4465	10649	3394	2014	7213	2840	2887	587	296	1650	169	0669	2467))))	3254	585	183	411	
1999	765	2794	7092	711	60611	2015	1042	229	1 6	4167	1663	13036	543	5249	1178	598	1691	225	1495	208	3000	2422	3514	3300	511	1318	1189	463	1364	315	4945	4217	10334	3236	1950	6878	2765	2806	557	574	1585	919	1919	2416	- 20	3116	6619	182	1/41	
1998	/32	2575	2499	989	57632	1895	166	220	95	3942	1591	12655	525	5146	1160	290	1639	219	1451	197	2837	2281	3428	3184	481	1266	1138	448	1288	290	11681	3974	9972	3089	1892	6420	2697	2711	533	541	1530	651	6472	2350	164	29/3	6317	9/1	1682 387	
1997	919	2413	6882	678	149595	1763	941	203	₩8	3634	1456	12318	478	5005	1077	571	1541	210	1416	201	2640	2149	3254	3367	452	1154	1315	454	1130	260	1191	4319	1066	3004	1809	6380	2465	2692	491	498	1909	618	5973	2163	121	2807	5837	0/1	1758 383	
1996	049	2346	0469	621	46373	1658	918	176	89	3413	1390	11555	439	4691	1060	559	1431	201	1337	192	2540	2094	3257	3194	435	1098	1260	455	1064	237	4365	3984	9693	2967	1732	6087	2317	2575	691	472	1639	915	1996	2005	75.7	2676	6946	191	1677	
1995	ħ19	2127	5872	583	43376	1534	863	174	98	3163	1298	10967	404	4548	1002	545	1357	199	1315	192	2374	1936	3089	3006	434	1047	1100	411	961	203	4131	36/9	9337	7824	1683	5556	2197	2479	453	494	1564	555	5358	1883	131	2554	5075	145	1546 323	
1994	595	1986	5654	557	41648	1452	648	157	80	3031	1238	10542	393	4416	970	557	1318	190	1271	174	2295	1877	5966	2806	÷ ;	1012	1124	391	915	197	3980	3575	9906	2012	1621	5460	2079	2435	456	433	1541	537	5214	1812	119	2456	4845	139	1493 333	
1993	565	2037	5392	548	40137	1424	829	147	81	5945	1176	10017	389	4275	956	568	1265	191	1245	174	2278	1790	2908	2651	430	972	1042	387	851	176	3812	3389	8822	2682	1579	5265	2060	2361	385	455	1515	525	5078	1713	110	2430	4680	137	1423 310	
1992	566	1947	9426	524	39581	1398	818	130	85	2882	1185	9917	378	11301	963	589	1260	204	1179	181	2195	1798	2945	2741	411	866	1057	371	828	162	3671	3300	8878	2606	1570	5238	1946	2391	394	418	1368	516	5041	1629	125	2435	4645	136	1476 311	
1661	246	1995	5293	525	39245	1111	793	151	95	2804	1136	9588	394	4309	915	561	1194	202	1143	201	2150	1739	2866	2530	434	963	1029	405	845	158	3579	3343	8870	2592	1580	2000	1912	2378	385	405	1356	488	4980	1613	110	2407	4511	147	1397	
1990	512	1925	5215	503	38807	1367	780	143	92	2182	1085	646	396	4270	896	009	1173	203	1153	175	2128	1736	2910	2500	456	931	1068	407	827	151	3477	3153	8812	2/12	7871	5321	1844	2338	377	431	1362	491	5028	1518	131	5409	4519	164	1478 291	
State	Alabama	Alaska	Arizona	Arkansas	Catifornia	Colorado	Connecticut	De Lawa re	D, of Columbia	Florida	Georgia	Hawaii	Idaho	IIIinois	Indiana	Iowa	Kansas	Kentucky	Louisiana	Maine	Maryland	Massachusetts	Michigan	Minnesota	Mississippi	Missouri	Montana	Nebraska	Nevada	New Hampshire	New Jersey	New Mexico	New York	North Carolina	Obje	Oklabosa	Oregon	Pennsylvania	Rhode Island	South Carolina	South Dakota	Tennessee	Texas	Utah	Vermont	Virginia	Washington	West Virginia	Wisconsin Wyoming	

ontinued	
Con	
ole A.4	
La	

Category: Hispanic

State	1990	1991	1992	1993	1994	1995	1996	1661	1998	1999	2000
Alabama	721	149	681	662	665	680	007	702	124	749	810
Alaska	221	263	566	229	297	278	314	328	338	348	377
Arizona	11195	11399	11767	11608	11750	12291	12656	13005	13403	13870	15000
Arkansas	391	423	418	442	441	445	512	472	486	505	543
California	107151	109757	113820	116442	119987	122128	124916	129312	133281	137910	149155
Colorado	8 104	8198	8072	8246	8354	8522	8935	9293	9578	9910	10/19
Connecticut	3145	3233	3224	3283	3516	3469	3641	3598	3708	3837	4151
Delaware	238	242	230	74-	233	261	3.1.5	7,43	305	3.5	340
C. Of Columbia	2021	91061	12/15	11025	19101	12261	10100	12163	19627	10070	000
Co. C. C. C.	12023	1225	1010	1178	1249	1116	1321	8071	16731	1501	1624
B 17 0 27	1604	1811	17.81	20.50	3906	2170	136	2331	25.0	7876	2688
- Taylor	7070	000	7.01	1018	1000	1186	13.14	1100	12:55	17.06	1618
10400	046	966	1004	7 2000	102	000	31.001	2000	70900	91716	0101
3001	2020	04/0	3211	000/1	1020	0440	00000	2601	16002	2776	2000
ing land	6007	bC22	4167	6252	7,7	2162	6000	1002	1007	(113	3000
e Ao	120	000	0,00	2/0	7 50	100	2000	0//	2006	020	0000
Kansas	1007	1000	- 104 - 201	- 1033 5.28	170;	- 745 - 715	0 0 0 0	2602	407	9013	47.9
rentucky ferrings	7 6	400	700	1001	0000	7001	7976	2301	22.60	7.31.0	2651
Louis and	2001	8-6-	200	7.	116	1920	321	130	2167	173	167
Marine Marine	100	101	9011	1226	1272	1001	2 0 0	7 7 7	2,20	2011	- 4 0 4 - 4
Mary land	0 6 6 6 6	17.0	0211	3023	2015	1007	1,111	7807	1417	1400	(0)
Massachusetts	2 - 2	2000	0/05	ο ο ο ο ο ο	0 - V - V - V - V - V - V - V - V - V -	1001	7 4 7 7	1,600	1217	1086	5 20 2
Michigan	0524	2625	000	4500	6224	1250	4000	4070	1001	1121	1312
MINIESOCA	040	000	- C	76.	704 704	5034	0007	- 8	603	1211	2121
10010010		250	7117		1000	2000	200	2007	000.	1 20 1	11.65
Mossouri	- 6	376	141	378	1203	900	215	172	2007	250	407
MOLICANA Moracollo	467	0/2	2002	000	000	667	0,40	200	1010	3000	130
Neoraska	1180	1161	1186	1282	1307	1246	2,40	11.30	1.80	1000	1659
Nov tomochine	116	70.	-	127	200	247	128	02.	136	021	15.7
New nampourie	11173	22.7	11280	11210	11200	11550	11751	11776	12137	12550	12582
New Jersey		0-4-0	0000	10.666	11000	11000		12770	12700	12150	11,000
New Mexico	10003	10/2/	10/01	36052	37111	38614	16004	30001	10101	13130	42241
MONTH CARD IN	1005	34000	1111	1052	9401	2001	1350	0000	- 6-1-1-1 - 6-1-1-1	10071	1614
North Calouria	101		130	- 0	1070	151	240	138	0.2	108	150
Object Canota	2001	2701	3041	3039	1002	2187	3306	2382	34186	1607	3005
OL 1 a boma	1360	1003	1496	1500	1655	1740	1820	1881	1001	2008	2171
Orieno	15.50	1651	1678	1763	1867	1997	2139	2220	2297	23.78	2571
Pennsylvania	3738	3867	3823	3952	3917	4155	4156	4137	4264	4413	4771
Rhode Island	423	448	454	436	473	492	522	554	570	591	639
South Carolina	701	648	199	691	ħ69	671	719	714	736	161	824
South Dakota	100	103	115	113	131	119	164	167	173	179	194
Tennessee	419	605	638	624	635	629	619	669	721	747	808
Texas	77518	78369	77149	77862	77307	77618	79575	82100	84621	87560	66946
Utah	1589	1618	707	1828	1888	2117	2220	6422	2317	2398	2594
Vermont	5 5 7 7 8 7	777	20.31	70	20.	900	- 01	1,000	7 0 7	200	2052
VIFGINIA		1400	2150	73.75	1004	000	7176	1,160	0000	1090	2007
Mashington (Control	27.6	9000	300	200	0440 020	2044	2040	710	4004	0,40	285
West Virginia	1649	1771	1748	1875	1013	2080	2187	2137	2000	2010	2465
Wyoming	699	603	687	708	681	742	839	805	829	857	927
United States	339997	345005	349999	356000	362999	371004	381001	391000	402999	417000	450998

group estimates for the resident population. None of the age group estimates were adjusted for "census undercount," because those adjustments are small except for blacks of ages 1–9 and 21 and up (U.S. Bureau of the Census, 1988d).

SELF-REPORTED EDUCATIONAL ATTAINMENT BY REGION AND RACE

The U.S. high school graduation rate in 1980 was 71.5 percent—69.3 for males, 73.6 for females. The 71.5 percent figure is close to the percentage of 19-year-olds who reported having completed four years of high school on the 1980 census, which was 75.9 percent (72.3 for males, 79.5 percent for females).

Table A.5 shows how the reported school completion rates varied across regions and race/Hispanic categories in 1980. The race-specific percentages are remarkably uniform across regions. The main exceptions are the black and Asian/Pacific Islander percentages in the West, which are much higher than in other regions. As one might expect, the pattern of school completion rates across regions is similar to the pattern of high school graduation rates: Northeast, 77.3; North Central, 77.2; South, 65.9; West, 66.9. This suggests that the educational attainment rates can be used as proxies for the analogous high school graduation rates, provided that the former are scaled down to agree with the observed graduation rates in each region.

Table A.5

PERCENTAGES OF 19-YEAR-OLDS WHO REPORTED HAVING COMPLETED FOUR YEARS OF HIGH SCHOOL BY SEX, REGION, RACE, AND HISPANIC ORIGIN: APRIL 1980

	Total	White	Black	Asian	Native American	Hispanic Origin
Both sexes	·					
Northeast	80.0	83.4	62.5	77.0	62.6	52.5
North Central	78.7	81.3	61.2	74.5	55.7	55.0
South	71.8	75.1	63.0	72.2	59.3	55.0
West	74.8	77.6	74.0	81.4	53.2	54.4
U.S.	75.9	79.1	63.6	78.8	55.8	54.3
Males						
Northeast	76.3	80.1	55.5	75.1	58.1	47.9
North Central	75.7	78.6	54.5	72.1	52.4	51.2
South	67.6	71.5	55.9	72.0	55.4	51.3
West	71.8	74.9	70.5	79.2	48.2	50.4
U.S.	72.3	76.0	57.0	76.9	51.4	50.3
Females						
Northeast	83.5	86.6	69.1	79.0	67.0	56.9
North Central	81.7	84.0	67.4	77.1	58.9	58.9
South	76.1	78.7	69.9	72.5	63.6	59.1
West	77.9	80.5	78.1	83.6	58.1	58.7
U.S.	79.5	82.3	69.9	80.8	60.1	58.5

SOURCES: U.S. Bureau of the Census, 1980 Census of Population, Detailed Population Characteristics, United States Summary, Section B: Regions, PC80-1-D1-B, March 1984. The U.S. figures are from Section A: United States, PC80-1-D1-A, April 1983, Table 262.

To spell out the rescaling procedure for a given region, consider filling the entries of a 2x10 contingency table with two rows (for "Graduates" and "Nongraduates") and ten columns (corresponding to the cells that result from crossing sex with five race/Hispanic categories) by multiplying the number of 17-year-olds in each category by the appropriate regional rate in Table A.5. Then the column entries of the contingency table will add up to the numbers of 17-year-olds in the ten categories, but the row sums will differ from the numbers of graduates and nongraduates in the region. Since the latter can be determined from state totals, the problem reduces to adjusting the entries in the contingency table to accord with prescribed marginal totals.

There is a standard method for carrying out this adjustment called "iterative proportional fitting" or "raking" (U.S. Bureau of the Census, 1971, p. 707). The method entails finding row and column multipliers such that, when the table entries are rescaled using those multipliers, the resulting entries will sum correctly along both rows and columns. The iterative procedure to accomplish the rescaling is equivalent to shifting the logits of the graduation rates (i.e., the logarithms of the odds ratios) for the race/Hispanic categories by the same constant so that the weighted average of the category graduation rates will conform to the overall graduation rate. Hence, from a logistic regression perspective, iterative proportional fitting amounts to shifting the constant term in the regression equation so that the fitted proportions are consistent with the population proportion.

DISAGGREGATED ESTIMATES OF NUMBERS OF GRADUATES

To provide state high school graduation rates by sex, race, and Hispanic origin that are consistent with the overall state rates for each of the years 1980–1987, we applied iterative proportional fitting using the regional rates in Table A.5 as first approximations for the state rates in the ten sex/race/Hispanic categories. That is, in each state, the numbers of 17-year-olds in the ten categories were multiplied by the appropriate regional rates to generate preliminary estimates of the numbers of graduates and nongraduates in each category. These estimates were then "raked" to make them conform with the actual (or estimated) number of high school graduates in that state and year.

To a certain extent, this method relies on an implicit assumption that the pattern of graduation rates across sex/race cells has remained relatively stable over time. As partial evidence on that score, we can compare the reported school completion rates in Table A.5 derived from the 1980 census with analogous rates for 1987 derived from the Current Population Survey (U.S. Bureau of the Census, 1988a). Whereas 75.9 percent of the persons of age 19 reported having completed four years of high school in 1980, the 1987 figure was 77.6 percent, an increase that is commensurate with the change in graduation rates reported in this study. The 1980 and 1987 rates for males were 72.3 and 73.4; for females, 79.5 and 81.7; whites, 79.1 and 80.4; blacks, 63.6 and 62.8; and Hispanics, 54.3 and 57.6. Taking into account the sampling errors associated with the 1987 estimates, we see little evidence of changes in the overall pattern of school completion rates in terms of differences across sex and race/Hispanic categories.

EXTENDING THE ESTIMATES BEYOND 1987

The estimated numbers of high school graduates for 1988–1989 and the projections for 1990–2000 result from applying the assumption that the observed stability in the overall graduation rates from 1983 to 1987 will persist through 2000. Partly because of uncertainties about the numbers of private high school graduates in 1985 and 1987 but also because of questions about some of the 1987 public school estimates, the projected graduation rate for each state was taken to be the average of the observed rates for 1985 through 1987. Applying the projected rate to the 17-year age group estimates for the years after 1987 yields projections of total numbers of graduates for each state, which are then disaggregated by sex and race using the same raking procedure that was used for the 1980–1987 estimates.

The assumption that the states' graduation rates will remain stable as the composition of the school age population changes to include higher percentages of minority students (with lower graduation rates) implies that the race-specific rates will rise. To assure that the state projections would reflect this condition of nondecreasing race-specific rates, a slight modification of the above scheme was used. For each state, the scheme was implemented sequentially, storing each year's rates by sex and race as they were generated. In those cases where the race-specific rates would drop under the uniform rate assumption, the state projections were modified to keep the sex/race rates at the same level that they were the previous year, thereby leading to a slight increase in the state's overall rate.

Given that the U.S. population is projected to shift to the South and West during the 1990s and that the states in those regions tend to have lower than average graduation rates, a scheme that keeps the state rates completely fixed at the 1987 rates would imply steadily decreasing U.S. rates. With the modification indicated above, the U.S. graduation rates remain almost flat at around 73 percent between 1987 and 2000 (73.3 in 1987, 73.2 in 2000). The overall Hispanic rates rise from 51.7 percent in 1987 to 53.6 in 2000, the black rates go from 60.4 to 61.4, and the white (non-Hispanic) rates increase from 78.6 to 79.1.

PROJECTIONS OF GRADUATES FROM PRIVATE SCHOOLS

Motivated by the apparent stability in the regional private/public ratios between 1985 and 1986, we projected overall numbers of private school graduates in each state by applying the most recently observed private proportion to the state's projected total numbers of high school graduates. To provide breakdowns of the state estimates by sex, race, and Hispanic origin, we used the percentages of high school students enrolled in private schools in Table A.6. Applying these estimates to the estimated state totals in each of the ten sex race/Hispanic cells in any year leads to preliminary estimates of the numbers of private school graduates in those cells. Those estimates and the corresponding estimated numbers of public school graduates were then raked to match the prescribed private and public totals in those years.

The assumption that the state private proportions will remain stable over time implies a gradual reduction in the U.S. proportion of private school graduates—from 9.9 percent in 1986 to 9.6 in 2000. The main reason for this decline is the population shift into southern and western states where the private schools account for smaller proportions of high school graduates.

Table A.6

PERCENTAGES OF HIGH SCHOOL STUDENTS ENROLLED IN PRIVATE SCHOOLS BY REGION, RACE, AND HISPANIC ORIGIN: APRIL 1980

	Total	White	Black	Asian	Native American	Hispanic Origin
Northeast	12.68	13.53	7.73	9.92	14.25	11.70
North Central	9.17	9.50	6.26	7.67	12.72	12.75
South	7.18	8.63	2.96	6.00	8.81	7.65
West	6.91	6.92	6.40	6.89	9.15	7.00
U.S.	8.90	9.73	5.07	6.99	10.18	8.57

SOURCES: U.S. Bureau of the Census, 1980 Census of Population, Vol. I: Characteristics of the Population, Chapter C: General Social and Economic Characteristics, PC80-1-C1, December 1983, pp. 71, 97-99, and 223-224.

ACCORDANCE WITH WICHE PROJECTIONS

The WICHE cohort survival method for projecting numbers of high school graduates by state depends mainly on the state estimates of enrollment by grade levels, whereas the projections reported here are tied to Census Bureau estimates of age group sizes. The two sets of projections for the years 1990–2000 agree closely in terms of projected U.S. totals, but the two sets of projections imply quite different growth rates for certain states and for the private schools.

WICHE's projected U.S. total for 2000 is 2,823,928, which is only 1.5 percent above our projection of 2,782,284, but their projection for California (355,087) is 8.2 percent above ours (328,120). WICHE's projection of 218,176 private school graduates in 2000 portends a steep deline in the proportion of private school graduates—from 9.9 percent in 1986 to 7.7 percent in 2000.

As an indication that WICHE's long-term public/private projections lack coherence, they project that the number of private school graduates in California will fall from 24,548 in 1987 to 12,916 in 2000, while the number of public school graduates will increase from 224,896 to 342,171. If there are forces at play in California that would lead to such a rapid decline in the private schools, we are not aware of them. Our projections indicate that the number of private high school graduates in California will increase from 25,507 in 1987 to 30,087 in 2000, and the number of public school graduates will increase from 237,414 to 298,033.

Appendix B

THE HS&B/DMDC DATA BASE

In addition to compiling a micro-level data base that provides detailed information on the postsecondary activities of over 26,000 young adults from the Classes of 1980 and 1982, we have brought together several supplemental data sources that permitted us to extend the scope of the study and link our research findings to national and state statistics bearing on the postsecondary activities of recent high school graduates and dropouts. This appendix describes the main features of the data base and provides summary statistics profiling the student populations of special interest in this study.

HIGH SCHOOL AND BEYOND

The main source of micro-level data on postsecondary activities is HS&B, a large-scale longitudinal study of the Classes of 1980 and 1982 that was conducted by NCES. The base year survey for HS&B was fielded in Spring 1980 to gather comprehensive information on 28,240 seniors and 30,030 sophomores from 1015 high schools. The survey was conducted using a two-stage cluster sample in which the first-stage sampling units were secondary schools stratified by school type, census division, and degree of urbanization (with three levels—urban, suburban, and rural). Within strata, schools were chosen with probabilities proportional to total sophomore and senior enrollment (Frankel et al., 1981).

In each selected school, completely random samples of up to 36 sophomores and 36 seniors were chosen to participate in the study. The participants were administered a battery of cognitive tests and asked to fill in questionnaires eliciting personal information. Additional data were gathered from the students' teachers, school administrators, and a subsample of the students' parents. The resulting student files provide a rich array of demographic and background measures on the students, including cognitive test scores, measures of socioeconomic status, rank in class, high school curriculum, and attitudinal information. They also contain data on the students' postsecondary plans, educational and career aspirations, and plans regarding family formation.

The First Follow-Up Survey of 11,995 seniors and 29,737 sophomores was conducted in February 1982. The sophomores who were still enrolled in their base year schools were administered a second battery of tests and resurveyed using questionnaires similar to those administered to the seniors in 1980. The other sophomores—dropouts, early graduates, and transfers to other schools—were mailed questionnaires to ascertain their current student and employment statuses.

The Second and Third Follow-Ups were fielded in February 1984 and February 1986 using the same 11,995 senior participants and a subsample of 14,825 sophomores. The mailed questionnaires for these follow-ups asked the participants to fill in several items about each episode of employment and educational activity that they had experienced between surveys, including the dates that the activity began and ended, thereby providing key information for tracking the participants' activities through February 1986. For full documentation of the longitudinal files, including further information on the survey design

and a complete listing of data elements, see the HS&B user's manuals (National Opinion Research Center, 1987a, b).

The base year survey was well designed to profile the Classes of 1980 and 1982, providing extensive baseline data derived from large samples of schools and students stratified by census division, school type, and degree of urbanization. The sampling allocation scheme for the follow-up surveys was tailored to provide longitudinal data on sufficiently large samples of participants to support detailed analyses for special categories of students. The follow-up participants were chosen using a highly nonrepresentative sample allocation scheme in which most minority base year participants were selected to participate, as were most students whose parents participated in the base year parents' survey.

In theory, this lack of representativeness can be handled in analyses by incorporating case weights that are inversely proportional to the sampling inclusion probabilities, with appropriate adjustments for nonresponse so that the case weight totals in each cell match the cell population sizes. However, the specification of case weights for HS&B was confounded by the incompleteness of the school sampling frame, the lack of reliable population counts to specify stratum sizes, and other complications associated with selecting and enlisting schools to participate in the study. The case weights on the follow-up files (but not the base year file) appear to have been calculated incorrectly, with widely varying weights for students in the same school having similar demographic characteristics. Hence, the use of HS&B follow-up data to estimate population means (such as the proportions of the Class of 1980 attending college at various times after graduation) entails special handling to allow for the nonrepresentativeness of the student samples.

With four public school types, five private school types, and a total school sample size of about 1000, the survey designers could not choose representative samples of schools in all cells defined by census division, school type, and degree of urbanization. Given the way the base year cluster samples were chosen and the nonrepresentativeness of the follow-up samples, we found it necessary to reconstruct the high school graduate populations for 1980 and 1982 to provide a basis (and stratum weights) for analyzing the follow-ups as a stratified two-stage probability sample within cells defined by school control (public or private), census division, sex, and race/Hispanic category.

The estimated numbers of high school graduates in these cells for the Classes of 1980 and 1982 are listed in Tables B.1 and B.2. These estimates are derived from the corresponding state estimates reported in Appendix A. So that the total case weights in each cell for majority (white non-Hispanic) and minority students would agree with the stratum sizes and would reflect the unequal school selection probabilities, the base year weights for all students in each cell were first summed and then rescaled to agree with the corresponding stratum ceil sizes. In essence, adopting this reweighting procedure in analyses amounts to adjusting the base year weights to make them agree with known population sizes and treating the unsampled students at follow-up in each cell as missing observations.

¹As an indication of the operational and statistical problems inherent in fielding and analyzing a large-scale panel study of this type, of the 1122 schools selected in the initial HS&B school sample, 104 were ineligible to participate for various reasons, and 298 others refused to participate (Frankel et al., 1981).

Table B.1

NUMBERS OF HIGH SCHOOL GRADUATES BY RACE, HISPANIC ORIGIN, CONTROL OF SCHOOL, AND CENSUS DIVISION: 1980

	Total	A I A	White	Black	le Asian	Indian	H Sp.	All	White	B)ack	le As i an	Indian	Hisp
New England Public Private Total	156249 25490 181739	75918 12362 88280	71564 11874 83438	2588 244 2832	96n 6n 6n	92 11 103		80331 13128 93459	74982 12519 87501	. a~v	463 52 515	2-2	į , ,
Middle Atla Public Private Total	lantic 445086 72703 517789	219662 35884 255546	183102 31871 214973	23856 2208 26064	2513 304 2817	221 40 261	9970 1461 11431	225424 36819 262243	183693 32244 215937	28263 2637 30900	2252 273 2525	215 38 253	11001 1627 12628
East North Public Private Total	Central 546539 57029 603568	269033 28053 297086	238464 25319 263783	23696 1701 25397	1549 140 1689	443 60 503	4881 833 5714	277506 28976 306482	241500 25785 267285	28918 2107 31025	1505 138 1643	461 63 524	5122 883 6005
West North Public Private Total	1 Central 244535 18818 263353	121835 9377 131212	114668 8894 123562	4410 239 4649	656 35 691	939 90 1029	1162 119 1281	122700 9441 132141	114826 8920 123746	5209 284 5493	626 33 659	884 85 969	1155 119 1274
South Atlantic Public 4 Private Total 4	intic 415305 33092 448397	199286 15834 215120	150284 13697 163981	42192 1510 43702	1356 97 1453	518 34 552	4936 496 5432	216019 17258 233277	156641 14658 171299	52502 1955 54457	1304 92 1396	556 38 594	5016 515 5531
East South Public Private Total	163824 163824 13173 176997	78884 6351 85235	62850 5828 68678	15131 459 15590	219 12 231	86 6 92	598 46 644	84940 6822 91762	65327 6177 71504	18806 587 19393	174 8 182	81 6 87	555 44 596
West South Public Private Total	Central 286103 19182 305285	140901 9229 150130	99608 7456 107064	20807 698 21505	1014 49 1063	1345 40 1385	18127 986 19113	145202 9953 155155	100410 7965 108375	24516 904 25420	847 41 888	1379 39 1418	18050 1004 19054
Mountain Public Private Total	143763 5227 148990	71529 2598 74127	58862 2108 60970	1909 69 1978	815 24 839	1850 77 1927	8093 320 8413	72234 2629 74863	58934 2109 61043	1801 68 1869	802 23 825	2119 87 2206	8578 342 8920
Pacific Public Private Total	346274 28815 375089	173643 14457 188100	126657 9920 136577	12402 989 13391	12254 1528 13782	1328 106 1434	21002 1914 22916	172631 14358 186989	126120 9847 135967	12758 1017 13775	11796 1497 13293	1447 112 1559	20510 1885 22395
United Sta Public Private Total	tes 2747678 273529 3021207	1350691 134145 1484836	1106059 116967 1223026	146991 8117 155108	20823 2238 23061	6822 464 7286	69996 6359 76355	1396987 139384 1536371	1122433 120224 1242657	176061 9876 185937	19769 2157 21926	7246 482 7728	71478 6645 78123

Table B.2

	Total	- IA	White	Black	Asian	Indian	Hisp.	-IA	White	Fema	Asian	Indian	HISD.
New England Public Private Total		76378 12903 89281	71581 12323 83904	2824 285 3109	508 63 571	101 18 119	1364 214 1578	78233 13220 91453	72822 12567 85389	3247 326 3573	498 63 561	111 19 130	1555 245 1800
Middle Atlantic Public 43171 Private 7362 Total 50533	ntic 431711 73623 505334	212254 36211 248465	176445 32033 208478	23261 2286 25547	2681 345 3026	231 45 276	9636 1502 11138	219457 37412 256869	178109 32638 210747	27923 2741 30664	2452 315 2767	232 44 276	10741 1674 12415
East North Public Private Total	Central 538804 57687 596491	266312 28525 294837	235063 25607 260670	24171 1817 25998	1728 169 1897	486 70 556	4864 862 5726	272492 29162 301654	236035 25816 261851	29135 2197 31332	1662 162 1824	492 72 564	5168 915 6083
West North Public Private Total	Central 232219 18704 250923	115626 9316 124942	108871 8824 117695	4137 244 4381	692 42 734	926 95 1021	1000	116593 9388 125981	108974 8843 117817	4964 290 5254	653 41 694	889 90 979	1113 124 1237
South Atlantic Public 4 Private Total 4	tic 423116 33707 456823	205205 16307 221512	153549 13995 167544	44677 1659 46336	1577 118 1695	598 45 643	4804 490 5294	217911 17400 235311	156950 14695 171645	53696 2015 55711	1437 107 1544	619 46 665	5209 537 5746
East South Public Private Total	Central 167410 13258 180668	81360 6457 87817	64591 5897 70488	15898 492 16390	248 17 265	99	524 42 566	86050 6801 92851	65817 6136 71953	19392 600 19992	200 12 212	93 8 101	548 45 593
West South Public Private Total	Central 280037 18723 298760	136388 8975 145363	96239 7195 103434	19852 706 20558	1105 58 1163	1453 46 1499	17739 970 18709	143649 9748 153397	98524 7733 106257	23895 894 24789	928 97 974	1507 45 1552	18 795 1030 19825
Mountain Public Private Total	139539 5996 145535	70105 3011 73116	57442 2365 59807	1929 87 2016	905 36 941	1996 113 2109	7833 410 8243	69434 2985 72419	56417 2317 58734	1814 83 1897	870 35 905	2181 125 2306	8152 425 8577
Pacific Public Private Total	337311 31150 368461	169191 15616 184807	123460 10749 134209	12060 1092 13152	13131 1685 14816	1501 131 1632	19039 1959 20998	168120 15534 183654	121517 10578 132095	12553 1136 13689	12551 1623 14174	1566 138 1704	19933 2059 21992
United State Public Private Total	es 2704758 278971 2983729	1332819 137321 1470140	1087241 118988 1206229	148809 8668 157477	22575 2533 25108	7391 572 7963	66803 6560 73363	1371939 141650 1513589	1095165 121323 1216488	176619 10282 186901	21251 2404 23655	7690 587 8277	71214 7054 78268

INFORMATION ON MILITARY SERVICE

To provide more detailed and reliable data on the military service of the HS&B participants, the social security numbers (SSNs) of the 10,925 senior and 13,682 sophomore respondents to the Second Follow-Up Survey were passed through DMDC's accession, master, and loss files for Fiscal Years 1979–1985 to extract records of military personnel having the same SSNs as those reported by the HS&B participants.

This search turned up matches on SSNs for 857 seniors and 950 sophomores, of which 833 seniors and 913 sophomores also matched on dates of birth. A closer examination of the matched records indicated that some of the matches on SSN but not on date on birth did not match on demographic characteristics (e.g. sex, race, and age), so that only matches on both criteria were deemed valid. Of the 833 senior matches, 752 had served on active duty, the others only in the reserves. Of the 913 sophomore matches, 761 served on active duty.

A comparison of the military service items reported on HS&B with analogous items on the DMDC file for matched cases revealed that the HS&B data on military service are quite reliable, including the reported dates of service attry and separation. However, a few participants (46 seniors and 73 sophomores) whose HS&B records showed some active duty served only in the reserves, according to DMDC records. Moreover, 19 seniors and 39 sophomores whose HS&B records indicated no active duty showed up on the DMDC file as having entered the military.

In addition to the 752 seniors and 761 sophomores whose service statuses were verified on the DMDC file through matches on SSN and date of birth, there were 273 other seniors and 281 sophomores who reported having some active duty but whose SSNs did not turn up on the DMDC file, perhaps because their SSNs were erroneously recorded or missing on their HS&B records. Altogether, 1025 (8.5 percent) of the senior participants and 1042 (7.0 percent) of the sophomores were identified as having spent some time on active duty.

INFORMATION ON OTHER ACTIVITIES

Using the individual HS&B episodic data on employment, student activities, and military service (and substituting DMDC data when available), we constructed vectors of educational, employment, and military service measures indicating each HS&B participant's status on these dimensions for each month between January 1980 and February 1986. In particular, the components of the education vector included separate codes to reflect four levels of schooling (high school, four-year college, two-year college, and vocational-technical school) and student status (full-time or part-time).

Creating these vectors of activity measures from longitudinal data is a major undertaking due to myriad problems presented by missing and sometimes conflicting data elements, which necessitate leaving some individuals' activities unclassified. In brief, we began by using the reported school-leaving date to fill in the components for the months when the participant was still in high school. Then, proceeding sequentially across episodes of educational activities reported on the follow-ups, we first used the data on each episode to encode the participant's student status. Then we determined the months (components) in that status

²The reliability of military service data reported on mailed questionnaires was documented earlier by Kolstad (1986), who used SSN matches on NLS72 participants to create a linked NLS72/DMDC file analogous to our HS&B/DMDC file. In examining the concordance of data elements derived from NLS72 data by Kanouse et al. (1980) with items drawn from DMDC records, Kolstad found very close agreement. In particular, he reported a correlation of .97 between the service entry dates reported on the two files.

using the reported beginning and ending dates for the episode, except in cases where the students reported being "still enrolled" as of the follow-up date, in which case the least date was used as the episode ending date. In cases of overlapping sojourns of student activity, we opted for full-time student data over part-time data. And we opted for the data on earlier surveys over later surveys, but we substituted the latter when the former were not available. Insofar as possible, we tried to use the same coding scheme for classifying employment and educational activities that was used in an earlier study based on NLS72 (Kanouse et al., 1980, Appendix B).

By combining these activity vectors with information available in other items, we then constructed a "track" vector for each participant with monthly components indicating his or her main activity each month from January 1980 to February 1986. To reconcile cases in which two full-time activities were reported (e.g., military service and full-time stude it status), we adopted a priority scheme, beginning with a determination of military status. For those on active duty during a given month, the main activity was classified as "military service." Otherwise, student status was checked to determine whether a "full-time student" assignment was appropriate. If not, employment status was checked next, leading to a "not employed" assignment if the participant was jobless, or to "civilian employment" if the participant was employed full-time or if he or she worked part-time and was not enrolled part-time. The remaining cases were assigned to the "unclassified" category, including the part-time students who held part-time jobs and the participants whose student statuses were unclassified.

One of the implications of this scheme is that the main activities of nonrespondents to a particular follow-up were typically not classified during the months spanned by the follow-up unless, for example, they entered military service and their dates of service included some of the months in question. Fortunately, HS&B maintained very high response rates throughout (94 percent on the First Follow-Up Survey), and a substantial portion of the nonrespondents were high school dropouts. Since this study focuses almost entirely on the post-secondary behavior of the graduates in the Classes of 1980 and 1982, nonresponse is not a major concern in this study.

SOCIOECONOMIC STATUS AND ACADEMIC APTITUDE

Earlier studies have pinpointed socioeconomic status and academic aptitude as important determinants of college entrance among high school graduates. The HS&B student files provide measures of these attributes that we shall refer to as SES and TEST. Except for changes of scale, these measures coincide with the base year composite measures BYSES and BYTEST for members of the senior cohort, and the First Follow-Up composites FUSES and FUTEST for the sophomores. In cases where FUSES or FUTEST were missing and the quartile codes SESQ and TESTQ derived from the sophomores' base year scores were available, we used the latter to estimate missing values of SES and TEST.

The SES composite score is based on student-reported information on five components: (1) father's occupation, (2) father's education, (3) mother's education, (4) family income, and (5) material possessions in the household. To calculate SES, the students' responses were first scored on each component using standardized scales having mean 0 and variance 1. Then each student's composite score was calculated using the unweighted average of the student's nonmissing standardized scores on the five components. To provide a more convenient scale for SES, we multiplied the resulting composite score by 100 and added 500.

The academic aptitude TEST score was derived using an unweighted average of the nonmissing standardized scores on three cognitive tests of vocabulary, reading, and mathematics. A similar rescaling like that used for SES was adopted to provide TEST scores that have an overall mean close to 500.

Table B.3 provides summary statistics on the SES and TEST scores with breakdowns by graduate status for all participants and for the military entrants in the two classes. As the table shows, TEST scores were available for 10,259 of the 11,995 members of the senior cohort and for 14,392 of the 14,825 members of the sophomore cohort. For the enlistees whose records were available from DMDC files, we also had AFQT scores. Our examination of the complete pairs of TEST and AFQT scores showed that the correlation coefficients between TEST and the normalized score corresponding to the AFQT percentile were .54 for the senior cohort and .56 for the sophomores.

LINKAGES TO OTHER DATA BASES

Other extensions of the HS&B/DMDC data base have enhanced its utility for studying the sorting-out process in the 1980s. To permit examining how seniors' postsecondary plans and activities are affected by regional variations in labor market conditions and educational opportunities, an effort was undertaken to pinpoint the locations of the high schools and colleges attended by the HS&B participants. HS&B provides institutional codes for the colleges that the participants planned to attend as seniors and those that they actually attended after graduation. By linking these items to a Department of Education file on institutional characteristics (including state and county codes) and making use of other information on the HS&B file, we have identified the locations of all HS&B schools by state and urban/rural category.

To incorporate information on local economic conditions into our analyses, we used the derived state codes for the HS&B schools to link the student files to state-level data on four factors: (1) unemployment rate among high school graduates of age 16–19 not enrolled in school, April 1980; (2) unemployment rates, 1980–1984; (3) per capita personal income, 1980–1984; and (4) average hourly earnings of production workers on manufacturing payrolls, 1980–1983. While the availability of the state codes permits appending other state-level economic and population characteristics to the file, our findings in Section III indicate that neither the seniors' postsecondary plans nor their activities after graduation appear to be sensitive to these characteristics once one controls for individual and school attributes.

HS&B's principal shortcoming for the purposes of this study is that its coverage is limited to two high school classes in the early 1980s. To offset that disadvantage and to permit linking the findings of this study to national time series that provide continual updates on youth employment, college enrollment, and educational attainment, we have linked our estimation procedures throughout to population estimates of high school graduates by state, race, and sex for the Classes of 1980 and 1982. The comparable estimates and projections for the years 1980–2000 in Appendix A provide a basis for estimating changes in the demographics of high school graduating classes since 1982. Insofar as changes over time in the postsecondary flows of graduates and dropouts are concerned, we have presented numerous time

³The sources of these data are: (1) U.S. Bureau of the Census, 1980 Census of Population, Vol. 1—Characteristics of the Population, Chapter 3: General Social and Economic Characteristics, U.S. Summary, PC80-1-C1, December 1983, Table 239; (2) State and Metropolitan Area Data Book, 1986, pp. 551-552; (3) County and City Data Book, 1983, p. 9; and (4) Handbook of Labor Statistics, Bulletin 2217, June 1985, p. 219.

Table B.3
SUMMARY STATISTICS FOR MEASURES OF SOCIOECONOMIC STATUS AND ACADEMIC APTITUDE BY GRADUATION AND MILITARY SERVICE STATUSES

			Senior	Cohort				So	Sophomore	Cohort		
	HSGS	Participants Dropouts A	ts All	Milit HSGs	Dropouts	Entrants pouts All	AII Pa	Participant Dropouts	AII	Milita HSGs D	ary Entrants Dropouts Al	ants
SOCIOECONOMIC STATUS	(0)											
No. of cases Sum of weights/1000	10773	357	11130 2828	930 214	9. 8.	949 219	11880 2944	2341 630	14221 3575	857 220	145 42	1002 262
Mean Standard deviation	496 75	472 80	496 75	479 72	443 50	478 72	500 73	464 464	494 73	478	49 924	477 66
First quartile Median Third quartile	442 491 550	418 461 527	441 490 550	430 474 527	422 447 468	429 474 526	448 496 553	400 465 515	440 489 545	430 473 521	401 465 515	429 468 516
TEST SCORE												
No. of cases Sum of weights/1000	9946 2525	313	10259 2592	877 2010	15 36	892 205	11807 2922	2585 687	14392	851 218	153 45	1004 262
Mean Standard deviation	510	462	509 88	507 88	438 55	506 88	521 88	446	507 91	517 97	483	512 79
First quartile Median Third quartile	441 512 580	391 450 522	439 510 579	438 506 576	423 432 473	436 505 574	455 528 592	381 435 497	435 510 579	462 519 571	431 473 532	457 513 563
STATISTICS FOR COMPL	LETE PAIRS	IIRS										
No. of pairs Sum of weights/1000	9664 2469	291 63	9955 2532	846 195	2 4	861 198	11703	2255 605	13958 3504	846 217	138	984 257
Means SES Score Test score	495 512	471	495 511	480 510	438 438	479 508	500 522	465 451	494 510	478 518	476 485	477
Standard deviations SES Score Test score	74	76 82	75	72 87	52 55	72 87	73 88	66.	7.3	19	65	99
Correlation coeff,	, 32	04.	.33	,27	.39	.27	, 38	.26	.39	.27	.27	.27

series indicating that, except for the increases in military entrance rates in the early 1980s and the closing of the gender gap in college entrance rates, patterns of postsecondary activities have been quite stable for the last 20 years.

BIBLIOGRAPHY

- Adkins, Douglas L., The Great American Degree Machine, Carnegie Commission on Higher Education, Berkeley, CA, 1975.
- Black, Matthew, and Thomas Fraker, "An Analysis of the Success of High School Graduates in the Military," Mathematica Policy Research, Inc., Washington, DC, January 1984.
- Bureau of Labor Statistics, Handbook of Labor Statistics, Bulletin 2340, August 1989a.
- Bureau of Labor Statistics, Employment and Earnings, U.S. Government Printing Office, Washington, DC, November 1989b.
- Carnegie Council on Policy Studies in Higher Education, Giving Youth a Better Chance, Jossey-Bass Publishers, San Francisco, 1979.
- Carroll, C. Dennis, College Persistence and Degree Attainment for 1980 High School Graduates: Hazards for Transfers, Stopouts, and Part-Timers, National Center for Education Statistics, CS 89-302, U.S. Government Printing Office, Washington, DC, January 1989.
- Cox, D. R., The Analysis of Binary Data, Chapman and Hall, London, 1970.
- Department of Defense, Selected Manpower Statistics, Fiscal Year 1985, Directorate for Information Operations and Reports, U.S. Government Printing Office, Washington, DC, 1985.
- Fernandez, R. L., Enlistment Effects and Policy Implications of the Educational Assistance Test Program, RAND, R-2935-MRAL, September 1982.
- Finn, Chester E., Jr., "The High School Dropout Puzzle," The Public Interest, No. 87, Spring 1987, pp. 3–22.
- Flanagan, John C., et al., *Project TALENT: Five Years After High School*, American Institutes for Research and University of Pittsburgh, 1971.
- Folger, John K., Helen S. Astin, and Alan E. Bayer, Human Resources and Higher Education, Russell Sage Foundation, New York, 1970.
- Folger, John K., and Charles B. Nam, *Education of the American Population*, U.S. Bureau of the Census, U.S. Government Printing Office, Washington, DC, 1967.
- Frankel, M. R., et al., Sample Design Report, National Opinion Research Center, Chicago, December 1981.
- Haggstrom, Gus W., "The Growth of Higher Education in the United States," Carnegie Commission on Higher Education, Berkeley, CA, 1971.
- Haggstrom, Gus W., et al., The Multiple Option Recruiting Experiment, RAND, R-2671-MRAL, November 1981.
- Haggstrom, Gus W., "Logistic Regression and Discriminant Analysis by Ordinary Least Squares," Journal of Business and Economic Statistics, Vol. 1, 1983, pp. 229-238.
- Haggstrom, Gus W., Linda Darling-Hammond, and David W. Grissmer, Assessing Teacher Supply and Demand, RAND, R-3633-ED/CSTP, May 1988.
- Hexter, Holly, and Elaine El-Khawas, Joining Forces: The Military's Impact on College Enrollments, American Council of Education, October 1988.
- Holden, Constance, "Wanted: 675,000 Future Scientists and Engineers," Science, Vol. 244, 30 June 1989, pp. 1536–1537.
- Hosek, J. R., and C. E. Peterson, Enlistment Decisions of Young Men, RAND, R-3238-MIL, July 1985.

- Hosek, J. R., C. E. Peterson, and R. A. Eden, Educational Expectations and Enlistment Decisions, RAND, R-3350-FMP, March 1986.
- Jaffe, A. J., and Walter Adams, "Trends in College Enrollment," College Board Review, Winter, 1964-65, pp. 27-32.
- Johnston, Jerome, and Jerald G. Bachman, Youth in Transition, Vol. V (Young Men and Military Service), Institute for Social Research, University of Michigan, Ann Arbor, 1972.
- Kanouse, D. E., et al., Effects of Postsecondary Experiences on Aspirations, Attitudes, and Self-Conceptions, RAND, R-2616-HEW, April 1980.
- Kolstad, Andrew, "The Educational Enrollments of Military Veterans: Evidence from a Longitudinal Study," National Center for Education Statistics, Washington, DC, February 1986.
- Kutscher, Ronald E., "Projections Summary and Emerging Issues," *Monthly Labor Review*, November 1989, pp. 66-74.
- Manski, Charles F., and David A. Wise, College Choice in America, Harvard University Press, Cambridge, MA, 1983.
- National Center for Education Statistics, Digest of Education Statistics, 1988, U.S. Government Printing Office, Washington, DC, 1988.
- National Center for Education Statistics, Digest of Education Statistics, 1989, U.S. Government Printing Office, Washington, DC, 1989.
- National Center for Education Statistics, Projections of Education Statistics to 2000, U.S. Government Printing Office, Washington, DC, 1989.
- National Opinion Research Center, High School and Beyond 1980 Sophomore Cohort Third Follow-Up (1986) Data File User's Manual, Vols. I and II, National Center for Education Statistics, October 1987.
- National Opinion Research Center, High School and Beyond 1980 Senior Cohort Third Follow-Up (1986) Data File User's Manual, Vols. I and II, National Center for Education Statistics, October 1987.
- Office of the Assistant Secretary of Defense (Force Management and Personnel), *Population Representation in the Military Services: Fiscal Year 1987*, Washington, DC, August 1988.
- Ornstein, Michael D., Entry into the American Labor Force, Academic Press, New York, 1976. Pallas, Aaron M., "School Dropouts in the United States," in The Condition of Education, 1986 Edition, Center for Education Statistics, Washington, DC, 1986.
- Panel to Study the NSF Scientific and Technical Personnel Data System, Surveying the Nation's Scientists and Engineers, National Academy Press, Washington, DC, 1989.
- Peng, Samuel S., William B. Fetters, and Andrew J. Kolstad, *High School and Beyond: A Capsule Description of High School Students*, National Center for Education Statistics, Washington, DC, April 1981.
- Porter, Oscar F., Undergraduate Completion and Persistence at Four-Year Colleges and Universities, National Institute of Independent Colleges and Universities, Washington, DC, 1989.
- Robert, Marc., et al., What to Do about the Nursing Shortage, Commonwealth Fund, New York, 1989.
- Shapiro, Gary M., and Donna Kostanich, "High Response Error and Poor Coverage are Severely Hurting the Value of Household Survey Data," paper presented at American Statistical Association Meetings, U.S. Bureau of the Census, August, 1988.

- Shavelson, R. J., et al., "Enlistment Decisionmaking: Choice Among Competing Alternatives," in Bray, R. M., et al. (eds.), Youth Attitude Study II, Fall 1985, Research Triangle Institute, Research Triangle Park, NC, 1986.
- Shavelson, R. J., G. W. Haggstrom, and J. D. Winkler, Potential for Military Recruiting from Two-year Colleges and Postsecondary Vocational Schools, RAND, N-1946-MRAL, January 1983.
- Shavelson, R. J., G. W. Haggstrom, and T. J. Blaschke, Two-year Colleges and Vocational Schools as Sources of Military Manpower, RAND, N-2193-MIL, October 1984.
- U.S. Bureau of the Census, *The Methods and Materials of Demography*, Vol. 2, U.S. Government Printing Office, Washington, DC, 1971.
- U.S. Bureau of the Census, *Current Population Reports*, Series P-25, No. 917, "Preliminary Estimates of the Population of the United States, by Age, Sex, and Race: 1970 to 1981," July 1982.
- U.S. Bureau of the Census, "Census of Population and Housing, 1980: County Population by Age, Sex, Race, and Spanish Origin (Preliminary OMB-Consistent Modified Race)," Tape Technical Documentation, Washington, DC, 1983.
- U.S. Bureau of the Census, *Current Population Reports*, Series P-25, No. 995, "Projections of the Hispanic Population: 1983 to 2080," November 1986.
- U.S. Bureau of the Census, *Current Population Reports*, Series P-20, No. 428, "Educational Attainment in the United States: March 1987 and 1986," August 1988a.
- U.S. Bureau of the Census, Current Population Reports, Series P-20, No. 429, "School Enrollment—Social and Economic Characteristics of Students: October 1986," August 1988b.
- U.S. Bureau of the Census, *Current Population Reports*, Series P-25, No. 1017, "Projections of the Population of States, by Age, Sex, and Race: 1988 to 2010," October 1988c.
- U.S. Bureau of the Census, Current Population Reports, Series P-25, No. 1022, "United States Population Estimates, by Age, Sex, and Race: 1980 to 1987," March 1988d.
- U.S. Bureau of the Census, Current Population Reports, Series P-25, No. 1024, "State Population and Household Estimates, With Age, Sex, and Components of Change: 1981-87," May 1988e.
- U.S. Bureau of the Census, Statistical Abstract of the United States: 1989 (109th edition), U.S. Government Printing Office, Washington, DC, 1989.
- Western Interstate Commission for Higher Education, High School Graduates: Projections by State, 1986 to 2004, Boulder, CO, 1988.