Lecture 2.1: Linear transformations

Optimization and Computational Linear Algebra for Data Science

Léo Miolane

Contents

1. Definition of a linear transformation

2. Properties of linear transformations

Definition

Definition

Examples

You already know some linear transformations from high-school!

Rotation

Definition 2/8

Definition

Symmetries (about a line passing through the origin) and rotations (about the origin) are mappings

$$L: \mathbb{R}^2 \to \mathbb{R}^2$$

$$v \mapsto L(v),$$

that are "linear":

Definition

A function $L: \mathbb{R}^m \to \mathbb{R}^n$ is linear if

- 1. for all $v, w \in \mathbb{R}^m$ we have L(v+w) = L(v) + L(w) and
- 2. for all $v\in\mathbb{R}^m$ and all $\alpha\in\mathbb{R}$ we have $L(\alpha v)=\alpha L(v)$.

Definition 3

An example

L:
$$\mathbb{R}^{2}$$
 \rightarrow \mathbb{R}^{3} is linear

Let $\omega = (\omega_{\Lambda}, \omega_{R})$ and $\omega = (\omega_{\Lambda}, \omega_{R})$ in \mathbb{R}^{2}

$$\mathbb{L}(\omega_{L}+\omega) = \mathbb{L}((\omega_{L}+\omega_{R}), \omega_{L}+\omega_{R})) = (\mathbb{L}(\omega_{L}+\omega_{R}), \mathbb{L}(\omega_{L})) = (\mathbb{L}(\omega_{L}+\omega_{R}), \mathbb{L}(\omega_{L})) = (\mathbb{L}(\omega_{L}), \mathbb{L}(\omega_{L})) + (\mathbb{L}(\omega_{L}), \mathbb{L}(\omega_{L}))$$

$$= \mathbb{L}(\omega_{L}) + \mathbb{L}(\omega_{L})$$
Similarly $\mathbb{L}(\omega_{L}) = \omega_{L}(\omega_{L})$

$$= \mathbb{L}(\omega_{L}) + \mathbb{L}(\omega_{L})$$

$$= \mathbb{L}(\omega_{L}) + \mathbb{L}(\omega_{L})$$

Definition 4/

An example of a non-linear map

The function $F: \mathbb{R} \to \mathbb{R}$ is **not** linear.

.
$$F(\Delta+\Delta) = F(\Delta) = 4$$
 hence $F(\Delta) + F(\Delta) = \Delta+\Delta=2$ hence $F(\Delta) + F(\Delta) = \Delta+\Delta=2$ linear

Definition 5/

Properties

Composition of linear maps

If $L: \mathbb{R}^m \to \mathbb{R}^n$ and $M: \mathbb{R}^n \to \mathbb{R}^k$ are both linear, then the composite function

$$M \circ L : \mathbb{R}^m \to \mathbb{R}^k$$

$$v \mapsto M(L(v))$$

is also linear.

Proof.

Proof.

. det
$$\sigma, \omega \in \mathbb{R}^{m}$$
,

 $MoL(\sigma+\omega) = M(L(\sigma+\omega)) = M(L(\sigma+\omega))$
 $= M(L(\sigma)) + M(L(\sigma))$
 $= Mol(\sigma) + Mol(\sigma)$

. Analgoraly: $Mol(\sigma) = Mol(\sigma)$

Basic properties

Proposition

$$\begin{array}{l} \text{If } L:\mathbb{R}^m\to\mathbb{R}^n \text{ is linear, then} \\ & L(0)=0. \end{array}$$

$$\begin{array}{l} \text{L}\left(\sum_{i=1}^k\alpha_iv_i\right)=\sum_{i=1}^k\alpha_iL(v_i), \text{ for all }\alpha_i\in\mathbb{R}, v_i\in\mathbb{R}^m. \end{array}$$

Proof.

•
$$L(0) = L(0+0) = \underline{L(0)} + \underline{L(0)}$$
. $L(0) = 0$

$$\frac{L(0) = L(0) = L(0)}{L(\alpha_1 \sigma_1) + L(\alpha_2 \sigma_2 + \dots + \alpha_k v_k)} = L(\alpha_1 \sigma_4) + L(\alpha_2 \sigma_2 + \dots + \alpha_k v_k)$$

$$= \alpha_1 L(v_1) + L(\alpha_2 \sigma_2 + \dots + \alpha_k \sigma_k)$$
repeat