

控制器设计

大连理工大学 赖晓晨

组合逻辑控制器设计流程

大连理工大学 赖晓晨

75亿枚芯片的制造者——高通

- > 厄文·马克·雅克布和安德鲁·维特比1985年创立 高通;
- > 控制全球移动网络格局,手握大量标准和专利;
- 市值与英特尔相当;
- > 是CDMA网络的创造者,LTE网络的指挥官;
- ▶ 制造了超过75亿枚的芯片;

始终领先一步

一、操作码译码

CU外特性

二、微操作的节拍安排

- > 控制器工作的实质
- > 需要安排都有哪些控制信号,以及安排到哪个机器周期的哪个节拍。

二、微操作的节拍安排

- > 采用同步控制方式。 假设
- > 一个机器周期内有3个节拍(时钟周期)。
- > CPU内部结构采用非总线方式。

安排微操作时序的原则

原则一微操作的先后顺序一般不得随意更改。

一个人先进楼门,再进房间门

安排微操作时序的原则

原则一微操作的先后顺序一般不得随意更改。

原则二被控对象不同的微操作。

尽量安排在一个节拍内完成。

2个人分别进入两个房间

安排微操作时序的原则

原则三 占用时间较短的微操作。

尽量安排在一个节拍内完成。

并允许有先后顺序。

一个人穿过一个房间,进入另一个房间

三、组合逻辑控制器设计流程

- 1. 指令周期的微操作节拍安排
- 2. 绘制操作时间表
- 3. 设计微操作命令的最简逻辑表达式
- 4. 设计微操作命令的逻辑电路图
- 5. 综合优化

组合逻辑控制器又称为硬布线控制器

(1) 取指周期微操作的节拍安排

(2) 间址周期微操作的节拍安排
T₀ Ad (IR) → MAR
1 → R

T₁ M (MAR) → MDR
T₂ MDR → Ad (IR)

(3) 执行周期微操作的节拍安排

(a) CLA
$$T_0$$
 T_1
 T_2 0 \longrightarrow AC

(3) 执行周期微操作的节拍安排

(a) CLA
$$T_0$$
 T_1
 T_2
0 \longrightarrow AC

(b) COM T_0
 T_1
 T_1
 T_2
 AC \longrightarrow AC

(3) 执行周期微操作的节拍安排

(a) CLA
$$T_0$$
 T_1
 T_2 $0 \rightarrow AC$

(b) COM T_0
 T_1
 T_2 $\overline{AC} \rightarrow AC$

(c) SHR T_0
 T_1
 T_2 $L (AC) \rightarrow R (AC)$
 $AC_0 \rightarrow AC_0$

(d) CSL
$$T_0$$

 T_1
 T_2 R (AC) \longrightarrow L (AC) $AC_0 \longrightarrow$ AC_n

(d) CSL
$$T_0$$

 T_1
 T_2 R (AC) \rightarrow L (AC) $AC_0 \rightarrow$ AC_n
(e) STP T_0
 T_1
 T_2 0 \rightarrow G

```
(d) CSL T_0
              T_1
              T_2 R(AC) \rightarrow L(AC) AC<sub>0</sub> \rightarrow AC<sub>n</sub>
(e) STP T_0
              T_1
              T_2 0 \longrightarrow G
(f) ADD X T_0 Ad (IR) \longrightarrow MAR 1 \longrightarrow R
              T_1 M (MAR) \rightarrow MDR
              T_2 (AC) + (MDR) \rightarrow AC
```

```
(d) CSL T_0
              T_1
             T_2 R(AC) \rightarrow L(AC) AC<sub>0</sub> \rightarrow AC<sub>n</sub>
(e) STP T_0
              T_1
              T_2 0 \longrightarrow G
(f) ADD X T_0 Ad (IR) \longrightarrow MAR 1 \longrightarrow R
              T_1 M (MAR) \rightarrow MDR
             T_2 (AC) + (MDR) \rightarrow AC
(g) STA X T_0 Ad (IR) \rightarrow MAR 1 \rightarrow W
              T_1 \quad AC \longrightarrow MDR
              T_2 MDR \rightarrow M (MAR)
```

```
(h) LDA X T_0 Ad (IR) \rightarrow MAR 1 \rightarrow R
T_1 M (MAR) \rightarrow MDR
T_2 MDR \rightarrow AC
```

```
(h) LDA X T_0 Ad (IR) \rightarrow MAR 1 \rightarrow R T_1 M (MAR) \rightarrow MDR T_2 MDR \rightarrow AC (i) JMP X T_0 T_1 T_2 Ad (IR) \rightarrow PC
```

(h) LDA X
$$T_0$$
 Ad (IR) \rightarrow MAR $1 \rightarrow$ R

 T_1 M (MAR) \rightarrow MDR

 T_2 MDR \rightarrow AC

(i) JMP X T_0
 T_1
 T_2 Ad (IR) \rightarrow PC

(j) BAN X T_0
 T_1
 T_2 Ad (IR) \rightarrow PC

(4) 中断周期微操作的节拍安排

 T_0 0 \rightarrow MAR 1 \rightarrow W 硬件关中断

 T_1 PC \rightarrow MDR

T₂ MDR → M (MAR) 向量地址 → PC

中断隐指令完成

(1) 取指周期操作时间表

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN
	_		PC →MAR	1	1	1	1	1	1	1	1	1	1
	0		1 → R	1	1	1	1	1	1	1	1	1	1
	T ₁		M(MAR)→ MDR	1	1	1	1	1	1	1	1	1	1
FE			(PC) +1 →PC	1	1	1	1	1	1	1	1	1	1
取指	-		MDR → IR	1	1	1	1	1	1	1	1	1	1
			$OP(IR) \rightarrow ID$	1	1	1	1	1	1	1	1	1	1
	1 2	I	I →IND						1	1	1	1	1
		Ī	$I \rightarrow EX$	1	1	1	1	1	1	1	1	1	1

(2) 间址周期操作时间表

工作周期标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN
	_		Ad (IR) → MAR						1	1	1	1	1
INID	0		$I \rightarrow R$						1	1	1	1	1
IND 间址	T_1		M(MAR)→MDR						1	1	1	1	1
	T_2		$MDR \rightarrow Ad (IR)$						1	1	1	1	1
	12	IND	$I \rightarrow EX$						1	1	1	1	1

(3) 执行周期操作时间表

工作 周期 标记		状态 条件		CLA	СОМ	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN
			$Ad (IR) \rightarrow MAR$						1	1	1		
	T_0		1 → R						1		1		
			1 → W							1			
EX	T ₁		$M(MAR) \rightarrow MDR$						1		1		
执行			$AC \rightarrow MDR$							1			
			(AC)+(MDR)→ AC						1				
	T_2		$MDR \rightarrow M(MAR)$							1			
	2		MDR→ AC								1		
			0 → AC	1									

(3) 执行周期操作时间表

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN
			$\overline{AC} \to AC$		1								
EV			L(AC) →R(AC),AC ₀ 不变			1							
EX 执行	T ₂		P-1(AC)				1						
			$Ad(IR) \rightarrow PC$									1	
		A_0	$Ad(IR) \rightarrow PC$										1
			0 → G					1					

3. 设计微操作命令的最简逻辑表达式

例如,根据表可写出 M(MAR)→ MDR 微操作命令的逻辑表达式:

M (MAR) → MDR = FE·T₁+IND·T₁(ADD+STA+LDA+JMP+BAN) +EX·T₁(ADD+LDA)

(3) 执行周期操作时间表

工作 周期 标记		状态 条件		CLA	СОМ	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN
			Ad (IR) → MAR						1	1	1		
	T ₀		1 → R						1		1		
			1 → W							1			
EX	T ₁		M(MAR) → MDR						1		1		
执行			$AC \rightarrow MDR$							1			
			(AC)+(MDR)→ AC						1				
	_		MDR → M(MAR)							1			
	T ₂		MDR→ AC								1		
			0 → AC	1									

3. 设计微操作命令的最简逻辑表达式

例如,根据表可写出 M(MAR)→ MDR 微操作命令的逻辑表达式:

 $M (MAR) \rightarrow MDR$ = $FE \cdot T_1 + IND \cdot T_1 (ADD + STA + LDA + JMP + BAN)$

 $+EX\cdot T_1(ADD+LDA)$

(2) 间址周期操作时间表

工作周期标记		状态 条件		CLA	СОМ	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN
	_		Ad (IR) → MAR						1	1	1	1	1
INID	10		$I \rightarrow R$						1	1	1	1	1
IND 间址	T_1		M(MAR)→MDR						1	1	1	1	1
	Τ.		$MDR \rightarrow Ad (IR)$						1	1	1	1	1
	12	IND	$I \rightarrow EX$						1	1	1	1	1

3. 设计微操作命令的最简逻辑表达式

例如,根据表可写出 M(MAR)→ MDR 微操作命令的逻辑表达式:

```
M (MAR) → MDR

= FE·T<sub>1</sub>+IND·T<sub>1</sub>(ADD+STA+LDA+JMP+BAN)
+EX·T<sub>1</sub>(ADD+LDA)
```

(1) 取指周期操作时间表

工作 周期 标记	节拍	状态 条件	微操作命令信号	CLA	СОМ	SHR	CSL	STP	ADD	STA	LDA	JMP	BAN
	_		PC →MAR	1	1	1	1	1	1	1	1	1	1
	0		1 → R	1	1	1	1	1	1	1	1	1	1
	T ₁		M(MAR)→ MDR	1	1	1	1	1	1	1	1	1	1
FE			(PC) +1 →PC	1	1	1	1	1	1	1	1	1	1
取指			MDR → IR	1	1	1	1	1	1	1	1	1	1
	_		$OP(IR) \rightarrow ID$	1	1	1	1	1	1	1	1	1	1
	2	I	I →IND						1	1	1	1	1
		Ì	$I \rightarrow EX$	1	1	1	1	1	1	1	1	1	1

3. 设计微操作命令的最简逻辑表达式

化简逻辑表达式:

```
M (MAR) → MDR

= FE·T<sub>1</sub>+IND·T<sub>1</sub>(ADD+STA+LDA+JMP+BAN)
+EX·T<sub>1</sub>(ADD+LDA)

= T<sub>1</sub>{FE+IND(ADD+STA+LDA+JMP+BAN)
+EX (ADD+LDA)}
```

已知条件

4. 设计微操作命令的逻辑图

对应每一个微操作命令的逻辑表达式都可画出一个逻辑图。例如 M(MAR)→ MDR 的逻辑表达式所对应的逻辑图:

5. 综合优化

将全部微操作命令的逻辑图综合起来,并进行优化工作。

四、组合逻辑电路控制器设计的特点

- 1. 思路清晰,简单明了。
- 2. 电路庞杂,调试难,修改难,升级维护难
- 3. 速度快
- 4. RISC处理器采用

推荐阅读: Verilog HDL简介

- 硬件描述语言,以文本形式来描述数字系统硬件的结构和行为的语言
- 可以表示逻辑电路图、逻辑表达式,还可以表示数字逻辑系统所完成的逻辑功能
- > 为IEEE标准,语法与C相近
- >与VHDL的区别

大连理工大学 赖晓晨

高通反垄断案

高通公司的两项业务范围

- > 专利许可
- > 芯片销售

高通公司的经营特点

> 捆绑搭售:芯片&专利、交叉许可、下游收费

元罚款

> 歧视性定价

2015年,国家发改委针对高通垄断罚款9.75亿美元

一、微程序设计思想的产生

1951年英国剑桥大学教授Wilkes

一条机器指令对应一个微程序 存入 ROM

控制存储器

微程序与硬布线设计方式的联系

微程序 硬布线

微指令 时钟周期 (发出一个或几个微操作)

小段微程序 机器周期

大段微程序 指令周期

二、微程序控制单元工作原理

1. 机器指令对应的微程序

2. 微程序控制单元的基本框图

3. 微程序的存储结构

(1) 取指阶段

(1) 取指阶段

执行取指微程序

(1) 取指阶段

 $M \rightarrow CMAR$

执行取指微程序

(1) 取指阶段 M→CMAR CM (CMAR)→CMDR

(1) 取指阶段

执行取指微程序

 $M \rightarrow CMAR$

CM (CMAR) - CMDR

M 100 ··· 001M+1

(1) 取指阶段

执行取指微程序

 $M \rightarrow CMAR$

CM (CMAR) → CMDR 由 CMDR 发命令

M 100 ··· 001M+1

(1) 取指阶段

执行取指微程序

 $M \rightarrow CMAR$

CM (CMAR) → CMDR 由 CMDR 发命令

(1) 取指阶段

执行取指微程序

 $M \rightarrow CMAR$

CM (CMAR) → CMDR 由 CMDR 发命令

(1) 取指阶段

执行取指微程序

 $M \rightarrow CMAR$

CM (CMAR)→ CMDR 由 CMDR 发命令 形成下条微指令地址

(1) 取指阶段

执行取指微程序

 $M \rightarrow CMAR$

CM (CMAR) → CMDR 由 CMDR 发命令 形成下条微指令地址 M + 1

(1) 取指阶段

执行取指微程序

 $M \longrightarrow CMAR$

CM (CMAR)→ CMDR 由 CMDR 发命令 形成下条微指令地址<u>M + 1</u>

Ad (CMDR) \rightarrow CMAR

(1) 取指阶段

执行取指微程序

M -> CMAR

CM (CMAR)→ CMDR 由 CMDR 发命令 形成下条微指令地址 M + 1

Ad (CMDR) \rightarrow CMAR CM (CMAR) \rightarrow CMDR

(1) 取指阶段

执行取指微程序

M -> CMAR

CM (CMAR) → CMDR 由 CMDR 发命令 形成下条微指令地址 M + 1

Ad (CMDR) \rightarrow CMAR

 $CM (CMAR) \rightarrow CMDR$

M+1 0 1 0 0 ··· 1 0 M+2

(1) 取指阶段

执行取指微程序

 $M \rightarrow CMAR$

Ad (CMDR) \rightarrow CMAR

CM (CMAR)
$$\rightarrow$$
 CMDR 由 CMDR 发命令 $M+1$ 0100

(1) 取指阶段

执行取指微程序

 $M \rightarrow CMAR$

CM (CMAR) → CMDR
 由 CMDR 发命令
 形成下条微指令地址 M + 1

Ad (CMDR) \rightarrow CMAR M (MAR) \rightarrow MDR CM (CMAR) \rightarrow CMDR \uparrow 由 CMDR 发命令 M+1 0 1 0 0 ··· 1 0 M+2

(1) 取指阶段

执行取指微程序

 $M \rightarrow CMAR$ PC → MAR $CM (CMAR) \rightarrow CMDR$... 0 0 1 M+1 由 CMDR 发命令 M 100 形成下条微指令地址 M + 1 $(PC) + 1 \rightarrow PC$ Ad (CMDR) \rightarrow CMAR M (MAR)→MDR↑ $CM(CMAR) \rightarrow CMDR$ 由 CMDR 发命令

(1) 取指阶段

执行取指微程序

M → CMAR

CM (CMAR) → CMDR

由 CMDR 发命令

形成下条微指令地址 M + 1

Ad (CMDR) → CMAR

Ad (CMDR) \rightarrow CMAR \rightarrow M (MAR) \rightarrow MDR \uparrow CM (CMAR) \rightarrow CMDR \uparrow \rightarrow CMDR \uparrow \rightarrow D100 \cdots 10 M+2

形成下条微指令地址

(1) 取指阶段

执行取指微程序

M→CMAR

CM (CMAR) → CMDR

由 CMDR 发命令

形成下条微指令地址 M + 1

Ad (CMDR) → CMAR

CM (CMAR) → CMDR

由 CMDR 发命令

正式下条微指令地址 M + 2

形成下条微指令地址 M + 2

(1) 取指阶段

执行取指微程序

```
M \longrightarrow CMAR
                          PC → MAR
CM (CMAR) \rightarrow CMDR
由 CMDR 发命令
                       M 100
                                  ··· 0 0 1 M+1
形成下条微指令地址 M + 1
                                  (PC) + 1 \rightarrow PC
Ad (CMDR) \rightarrow CMAR
                       M (MAR)→MDR↑
CM (CMAR) → CMDR
                     M+101
由 CMDR 发命令
形成下条微指令地址 M + 2
Ad (CMDR) \rightarrow CMAR
```

(1) 取指阶段

执行取指微程序

```
M \longrightarrow CMAR
                           PC → MAR
CM (CMAR) \rightarrow CMDR
                        M 100 ··· 001M+1
由 CMDR 发命令
形成下条微指令地址 M + 1
                                    (PC) + 1 \rightarrow PC
Ad (CMDR) \rightarrow CMAR
                        M (MAR)→MDR↑
CM(CMAR) \rightarrow CMDR
                      M+101
由 CMDR 发命令
形成下条微指令地址 M + 2
Ad (CMDR) \rightarrow CMAR
CM (CMAR) \rightarrow CMDR
```

(1) 取指阶段 执行取指微程序 $M \rightarrow CMAR$ PC → MAR $CM (CMAR) \rightarrow CMDR$ M 100 ··· 001M+1 由 CMDR 发命令 形成下条微指令地址 M + 1 $(PC) + 1 \rightarrow PC$ Ad (CMDR) \rightarrow CMAR M (MAR)→MDR↑ $CM (CMAR) \rightarrow CMDR$ M+1 0 1 0 0 ··· 由 CMDR 发命令 形成下条微指令地址 M + 2 Ad (CMDR) \rightarrow CMAR $CM (CMAR) \rightarrow CMDR$

由 CMDR 发命令

(1) 取指阶段 执行取指微程序 $M \rightarrow CMAR$ PC → MAR $CM (CMAR) \rightarrow CMDR$ M 100 ··· 001M+1 由 CMDR 发命令 形成下条微指令地址 M + 1 $(PC) + 1 \rightarrow PC$ Ad (CMDR) \rightarrow CMAR M (MAR)→MDR↑ $CM (CMAR) \rightarrow CMDR$ M+1 0 1 0 0 ··· 由 CMDR 发命令 形成下条微指令地址 M + 2 Ad (CMDR) \rightarrow CMAR CM (CMAR) \rightarrow CMDR_{M+2} 0 0 1 0 0

由 CMDR 发命令

(1) 取指阶段 执行取指微程序 $M \rightarrow CMAR$ PC → MAR $CM (CMAR) \rightarrow CMDR$ M 100 ··· 001M+1 由 CMDR 发命令 形成下条微指令地址 M + 1 $(PC) + 1 \rightarrow PC$ Ad (CMDR) \rightarrow CMAR M (MAR)→MDR↑ $CM(CMAR) \rightarrow CMDR$ 由 CMDR 发命令 形成下条微指令地址 M + 2 Ad (CMDR) \rightarrow CMAR $MDR \rightarrow IR$ CM (CMAR) → CMDR

(2) 执行阶段

(2) 执行阶段 执行LDA微程序

(2) 执行阶段 执行LDA微程序

OP (IR) → 微地址形成部件 → CMAR

(2) 执行阶段 执行LDA微程序

OP (IR) → 微地址形成部件 → CMAR (P → CMAR)

(2) 执行阶段 执行LDA微程序

OP (IR) → 微地址形成部件→ CMAR (P→CMAR)
CM (CMAR) → CMDR

(2) 执行阶段 执行LDA微程序

```
OP (IR) → 微地址形成部件→ CMAR (P→CMAR)
CM (CMAR) → CMDR
```

P 0001 ... 001 P+1

```
OP (IR) → 微地址形成部件→CMAR (P→CMAR)
CM (CMAR) →CMDR
由 CMDR 发命令
P 0001 ... 001 P+1
```

```
OP (IR) → 微地址形成部件→ CMAR (P→CMAR)
CM (CMAR) → CMDR Ad (IR) → MAR
由 CMDR 发命令 P 0 0 0 1 ... 0 0 1 P+1
```

```
OP (IR) → 微地址形成部件→CMAR (P→CMAR)
CM (CMAR) →CMDR Ad (IR) → MAR 1→R
由 CMDR 发命令 P 0 0 0 1 ... 0 0 1 P+1
```

```
OP (IR) → 微地址形成部件 → CMAR (P→CMAR)

CM (CMAR) → CMDR Ad (IR) → MAR 1→R
由 CMDR 发命令 P 0 0 0 1 ... 0 0 1 P+1

形成下条微指令地址 P+1
```

```
OP (IR) → 微地址形成部件→ CMAR (P→CMAR)

CM (CMAR) → CMDR Ad (IR) → MAR 1→R
由 CMDR 发命令 P 0001 ... 001 P+1

Ad (CMDR) → CMAR
```

 $CM (CMAR) \rightarrow CMDR$

```
OP (IR) → 微地址形成部件→ CMAR (P→CMAR)

CM (CMAR) → CMDR Ad (IR) → MAR 1→R
由 CMDR 发命令 P 0 0 0 1 ... 0 0 1 P+1

Ad (CMDR) → CMAR
```

```
OP (IR) \rightarrow 微地址形成部件 \rightarrow CMAR (P\rightarrow CMAR)

CM (CMAR) \rightarrow CMDR Ad (IR) \rightarrow MAR 1 \rightarrow R
由 CMDR 发命令 P 0 0 0 1 ... 0 0 1 P+1

Ad (CMDR) \rightarrow CMAR

CM (CMAR) \rightarrow CMDR

P+1 0 1 0 0 ... 0 P+2
```

```
OP(IR) \rightarrow 微地址形成部件 \rightarrow CMAR (P \rightarrow CMAR)

CM (CMAR) \rightarrow CMDR Ad (IR) \rightarrow MAR 1 \rightarrow R
由 CMDR 发命令 P 0 0 0 1 ... 0 0 1 P+1

Ad (CMDR) \rightarrow CMAR

CM (CMAR) \rightarrow CMDR
由 CMDR 发命令 P+1 0 1 0 0 ... 0 P+2
```

 $CM(CMAR) \rightarrow CMDR$

```
OP (IR) → 微地址形成部件→ CMAR (P→CMAR)

CM (CMAR) → CMDR Ad (IR) → MAR 1→ R

由 CMDR 发命令 P 0 0 0 1 ... 0 0 1 P+1

Ad (CMDR) → CMAR

CM (CMAR) → CMDR

由 CMDR 发命令 P+1 0 1 0 0 ... 0 P+2

Ad (CMDR) → CMAR
```

```
OP (IR ) → 微地址形成部件 → CMAR (P → CMAR)
CM (CMAR) → CMDR
                       Ad(IR) \rightarrow MAR 1 \rightarrow R
由 CMDR 发命令
                      P 0001
                                 ... 001
                                          P+1
Ad (CMDR )→CMAR
                      M (MAR)→MDR
CM (CMAR) \rightarrow CMDR
                    P+1 0100
由 CMDR 发命令
Ad (CMDR ) → CMAR
CM (CMAR) \rightarrow CMDR
                    P+2 0000001 ···
```

OP (IR)
$$\rightarrow$$
 微地址形成部件 \rightarrow CMAR (P \rightarrow CMAR)

CM (CMAR) \rightarrow CMDR Ad (IR) \rightarrow MAR $1 \rightarrow$ R
由 CMDR 发命令

Ad (CMDR) \rightarrow CMAR

CM (CMAR) \rightarrow CMDR
由 CMDR 发命令

Ad (CMDR) \rightarrow CMAR

CM (CMAR) \rightarrow CMAR

CM (CMAR) \rightarrow CMAR

 \rightarrow CM (CMAR) \rightarrow CMAR

```
OP (IR) → 微地址形成部件 → CMAR (P → CMAR)
CM (CMAR) \rightarrow CMDR
                       Ad (IR) \rightarrow MAR 1 \rightarrow R
由 CMDR 发命令
                       P 0001
                                   ... 001
                                            P+1
Ad (CMDR )→CMAR
                       M (MAR)→MDR
CM (CMAR) \rightarrow CMDR
                     P+1 0100
                                          0|P+2
由 CMDR 发命令
Ad (CMDR ) → CMAR
                               MDR → AC
CM (CMAR) → CMDR
                     P+2 000001 ···
由 CMDR 发命令
Ad (CMDR) \rightarrow CMAR
                        (M \rightarrow CMAR)
```

(3) 微程序分析

》指令执行的每个阶段都是一段微程序 ,共同组成完成指令的微程序。

- ▶全部微指令存在CM中,程序执行过程中只需读出。
- > 关键:
 - 微指令的操作控制字段如何形成微操作命令。
 - 微指令的后续地址如何形成。

推荐阅读:FPGA及主要应用

- >现场可编程门阵列,以并行运算为主,以硬件描述语言(Verilog或VHDL)完成电路设计。
- ▶应用领域:
 - > 医疗领域
 - >汽车电子领域
 - 〉军事领域
 - ➢测试测量
 - ▶消费产品领域
 - 〉数据采集和接口逻辑领域
 - >高性能数字信号处理领域

微程序控制器设计方法

大连理工大学 赖晓晨

苹果公司介绍

- ▶ 史蒂夫·乔布斯、斯蒂夫·沃兹尼亚克和罗·韦恩(Ron Wayne)等三人于1976年4月1日创立;
- 》创立之初,主要开发和销售的个人电脑,截至2014年致力于设计、开发和销售消费电子、计算机软件、 在线服务和个人计算;
- 苹果公司先后超过可口可乐、谷歌成为世界最有价值品牌;
- 2015年调研,苹果公司14年第四季度首次成为中国智能手机市场最大厂商。

一、微指令的编码方式

1. 直接控制方式 在微指令的操作控制字段中,每一位 代表一个微操作命令。

某位为"1"表示该控制信号有效。

一、微指令的编码方式

2. 字段直接编码方式 将互斥的微操作经编码合在一起作为一个"段" , 每段经译码后发出控制信号。

缩短了微指令字长,增加了译码时间,执行较慢。

一、微指令的编码方式

3. 字段间接编码方式

4. 混合编码

直接编码和字段编码(直接和间接)混合使用。

5. 其他

二、微指令序列地址的形成

- 1. 微指令的下地址字段指出
- 2. 根据机器指令的操作码形成
- 3. 增量计数器

 $(CMAR) + 1 \longrightarrow CMAR$

4. 分支转移

操作控制字段 转移方式 转移地址

转移方式 指明判别条件 转移地址 指明转移成功后的去向

二、微指令序列地址的形成

5. 通过测试网络

6. 由硬件产生微程序入口地址

第一条微指令地址 由专门硬件产生

中断周期 由硬件产生中断周期微程序首地址

OP IR

微地址 形成部件

多路选择

CMDR

转移方式 下地址

CMAR

控制存储器

地址译码

三、微指令格式

- 1. 水平型微指令
 - 一次能定义并执行多个并行操作。

如直接编码、字段直接编码、字段间接编码、直接 和字段混合编码。

2. 垂直型微指令

由微操作码字段规定微指令的功能。

3. 微指令格式比较

- (1) 水平型微指令比垂直型微指令并行操作能力强, 灵活性强。
- (2) 水平型微指令执行一条机器指令所要的微指令数目少,速度快。
- (3) 水平型微指令用较长的微指令结构换取较短的微程序结构。
- (4) 水平型微指令与机器指令差别大。

四、静态微程序设计和动态微程序设计

▶ 静态:微程序无须改变,采用ROM。

> 动态:通过改变微指令和微程序改变机器指

令,有利于仿真,采用EPROM。

五、毫微程序设计

- 1. 毫微程序设计的基本概念
- >微程序设计,用微程序解释机器指令。
- >毫微程序设计,用毫微程序解释微程序。
- > 毫微指令与微指令的关系好比微指令与机器

指令的关系。

五、毫微程序设计

2. 毫微程序控制存储器的基本组成

六、串行微程序控制和并行微程序控制

串行微程序控制

取第i条微指令 执行第i条微指令 取第i+1条微指令 执行第i+1条微指令

并行微程序控制

取第i条微指令	执行第 <mark>i</mark> 条微指令		
	取第i+1条微指令	执行第i+1条微指令	
		取第i+2条微指令	执行第i+2条微指令

推荐阅读:CPLD及主要应用

- ▶ 复杂可编程逻辑器件,相对而言规模大,结构 复杂,属于大规模电路范围;
- ▶ 相较于FPGA, CPLD使用更方便, 时间预估性较容易,保密性好,但集成度较差,功耗大;
- 》应用范围遍及航空航 天、医疗、通讯、安 防、广播、汽车电子 、工业、消费类市场 、测量测试等;
- ➤ Altera、Lattice、 Xilinx世界三大权威 公司的产品。

计算机组织与结构

大连理工大学 赖晓晨