

Future Computing Architecture and Programming Paradigms

Quantum Complexity

Estimating the run time of an algorithm

Big-O Notation

Let $f_A : N \to N$ be a function that returns the number of elementary calculation steps for an algorithm A, given an input with size n. We write $f_A \in O(g(n))$ if f grows asymptotically as fast or slower than g.

Function	designation	example algorithm
1	constant	calculate mod 2

Function	designation	example algorithm
1	constant	calculate mod 2
log(n)	logarithmic	binary search (in sorted database)

Function	designation	example algorithm
1	constant	calculate mod 2
log(n)	logarithmic	binary search (in sorted database)
n	linear	search in unsorted data

Function	designation	example algorithm
1	constant	calculate mod 2
log(n)	logarithmic	binary search (in sorted database)
n	linear	search in unsorted data
n log(n)	superlinear	merge sort

Function	designation	example algorithm
1	constant	calculate mod 2
log(n)	logarithmic	binary search (in sorted database)
n	linear	search in unsorted data
$n \log(n)$	superlinear	merge sort
n^2	quadratic	multiplication of integers

Function	designation	example algorithm
1	constant	calculate mod 2
log(n)	logarithmic	binary search (in sorted database)
n	linear	search in unsorted data
n log(n) n²	superlinear quadratic	merge sort multiplication of integers
n ³	cubic	matrix multiplication

Function	designation	example algorithm
1	constant	calculate mod 2
log(n)	logarithmic	binary search (in sorted database)
n	linear	search in unsorted data
n log(n) n²	superlinear quadratic	merge sort multiplication of integers
n^3	cubic	matrix multiplication
n ^k	polynomial ($k \in \mathbb{N}$ fixed)	

Function	designation	example algorithm
1	constant	calculate mod 2
log(n)	logarithmic	binary search (in sorted database)
n	linear	search in unsorted data
n log(n)	superlinear	merge sort
n²	quadratic	multiplication of integers
n ³	cubic	matrix multiplication
n ^k	polynomial ($k \in$	
	N fixed)	
2 ⁿ	exponential	naive calculation of the n-th Fibonacci number

Complexity classes for decision problems

• **P** contains all problems **solvable** in polynomial time (on a deterministic Turing machine).

Р

- P contains all problems solvable in polynomial time (on a deterministic Turing machine).
- NP contains all problems verifiable in polynomial time (or solvable on a non-deterministic Turing machine)

- P contains all problems solvable in polynomial time (on a deterministic Turing machine).
- NP contains all problems verifiable in polynomial time (or solvable on a non-deterministic Turing machine)
- NP-complete: The problem is in NP and every problem in NP can be reduced to it in polynomial time.

- P contains all problems solvable in polynomial time (on a deterministic Turing machine).
- NP contains all problems verifiable in polynomial time (or solvable on a non-deterministic Turing machine)
- NP-complete: The problem is in NP and every problem in NP can be reduced to it in polynomial time.
- NP-hard: Every problem in NP can be reduced to the problem in polynomial time.

- P contains all problems solvable in polynomial time (on a deterministic Turing machine).
- **NP** contains all problems **verifiable** in polynomial time (or solvable on a non-deterministic Turing machine)
- NP-complete: The problem is in NP and every problem in NP can be reduced to it in polynomial time.
- NP-hard: Every problem in NP can be reduced to the problem in polynomial time.
- PSPACE: The problem is solvable in polynomial space.

Bounded-error probabilistic polynomial time (BPP)

• Algorithms are allowed to return a wrong result with probability $< \frac{1}{2}$.

Bounded-error probabilistic polynomial time (BPP)

- Algorithms are allowed to return a wrong result with probability $< \frac{1}{2}$.
- Errors have to be made by chance → randomized algorithm.

Bounded-error probabilistic polynomial time (BPP)

- Algorithms are allowed to return a wrong result with probability $< \frac{1}{2}$.
- Errors have to be made by chance → randomized algorithm.
- Error probability can be arbitrarily reduced via majority vote of multiple iterations.

Bounded-error probabilistic polynomial time (BPP)

- Algorithms are allowed to return a wrong result with probability $< \frac{1}{2}$.
- Errors have to be made by chance → randomized algorithm.
- Error probability can be arbitrarily reduced via majority vote of multiple iterations.
- BPP = frontier of feasibility for classical computers.

Quantum complexity classes

Bounded-error quantum polynomial time (BQP)

BQP

A decision problem E is in the class BQP if there is an algorithm A:

- If the correct solution E(x) = 1 for an input x, the algorithm generates the result A(x) = 1 with probability greater than $\frac{1}{2}$.
- If the correct solution E(x) = 0 for an input x, the algorithm generates the result A(x) = 0 with probability greater than $\frac{1}{2}$.
- The solution can be calculated with uniform quantum circuits of polynomial size.

Back to BQP

⇒ NOT, AND, OR are a classical universal gate set.

Back to BQP

- ⇒ NOT, AND, OR are a classical universal gate set.
- ⇒ Toffoli gate is reversible and can be implemented on quantum computer.

Back to BQP

- ⇒ NOT, AND, OR are a classical universal gate set.
- ⇒ Toffoli gate is reversible and can be implemented on quantum computer.
- ⇒ Every classical circuit can be converted to a quantum circuit with only linear overhead.

Back to BQP

- ⇒ NOT, AND, OR are a classical universal gate set.
- ⇒ Toffoli gate is reversible and can be implemented on quantum computer.
- ⇒ Every classical circuit can be converted to a quantum circuit with only linear overhead.
- $\Rightarrow P \subseteq BQP$

Back to BQP

14/

Oracle function

 Complexity-theoretic oracle solves problem in a single step O(1).

Oracle function

- Complexity-theoretic oracle solves problem in a single step O(1).
- Functionality is hidden from outside (Black box model)

Oracle function

- Complexity-theoretic oracle solves problem in a single step O(1).
- Functionality is hidden from outside (Black box model)
- Quantum oracle U_f : $|\psi\rangle$ — U_f — $|\psi'\rangle$

Oracle function

- Complexity-theoretic oracle solves problem in a single step O(1).
- Functionality is hidden from outside (Black box model)
- Quantum oracle $U_f: |\psi\rangle \longrightarrow |U_f| \longrightarrow |\psi'\rangle$
- Quantum computing allows to reduce calls to an oracle!

Interference changes the behavior of oracles

Hadamard "Sandwich": $|\psi\rangle$ H U_f H $|\psi\rangle$

Interference changes the behavior of oracles

Hadamard "Sandwich": $|\psi\rangle$ H X H $|\psi\rangle$

Interference changes the behavior of oracles

Hadamard "Sandwich": $|\psi\rangle$ H X H $|\psi\rangle$

$$|\psi\rangle = |0\rangle$$
:

•
$$|\psi_1\rangle = H|0\rangle = \frac{1}{2}(|0\rangle + |1\rangle)$$

Interference changes the behavior of oracles

Hadamard "Sandwich": $|\psi\rangle$ H X H $|\psi\rangle$

$$|\psi\rangle = |0\rangle$$
:

- $|\psi_1\rangle = H|0\rangle = \frac{1}{2}(|0\rangle + |1\rangle)$
- $|\psi_2\rangle = X |\psi_1\rangle = \frac{1}{2} (|0\rangle + |1\rangle)$

Interference changes the behavior of oracles

Hadamard "Sandwich":
$$|\psi\rangle$$
 H X H $|\psi\rangle$

$$|\psi\rangle = |0\rangle$$
:

•
$$|\psi_1\rangle = H|0\rangle = \frac{1}{2}(|0\rangle + |1\rangle)$$

•
$$|\psi_2\rangle = X |\psi_1\rangle = \frac{1}{2} (|0\rangle + |1\rangle)$$

•
$$|\psi'\rangle = H |\psi_2\rangle$$

= $\frac{1}{2}$ $\frac{1}{2}$ $(|0\rangle + |1\rangle) + \frac{1}{2}$ $(|0\rangle - |1\rangle)$
= $\frac{1}{2}$ $(|0\rangle + |1\rangle + |0\rangle - |1\rangle) = |0\rangle$

Interference changes the behavior of oracles

Hadamard "Sandwich":

$$|\psi\rangle = |0\rangle$$
:

$$|\psi\rangle = |1\rangle$$
:

•
$$|\psi_1\rangle = H|0\rangle = \frac{1}{2}(|0\rangle + |1\rangle)$$

•
$$|\psi_1\rangle = H|1\rangle = \frac{1}{2}(|0\rangle - |1\rangle)$$

•
$$|\psi_2\rangle = X |\psi_1\rangle = \frac{1}{2} (|0\rangle + |1\rangle)$$

$$|\psi'\rangle = H |\psi_2\rangle$$

•
$$|\psi'\rangle = H |\psi_2\rangle$$

= $\frac{1}{2} \stackrel{1}{\cancel{4}}_2 (|0\rangle + |1\rangle) + \stackrel{1}{\cancel{4}}_2 (|0\rangle - |1\rangle)$

$$= \frac{1}{1}(|0\rangle + |1\rangle + |0\rangle - |1\rangle) = |0\rangle$$

Interference changes the behavior of oracles

Hadamard "Sandwich": $|\psi\rangle$ H X H Y

$$|\psi\rangle = |0\rangle$$
:

•
$$|\psi_1\rangle = H|0\rangle = \frac{1}{2}(|0\rangle + |1\rangle)$$

•
$$|\psi_2\rangle = X |\psi_1\rangle = \frac{\sqrt{1}}{2} (|0\rangle + |1\rangle)$$

$$|\psi'\rangle = H|\psi_2\rangle$$

$$= \frac{1}{2} \frac{1}{2} (|0\rangle + |1\rangle) + \frac{1}{2} (|0\rangle - |1\rangle)^2$$

$$= \frac{1}{2} (|0\rangle + |1\rangle + |0\rangle - |1\rangle) = |0\rangle$$

$$|\psi\rangle = |1\rangle$$
:

•
$$|\psi_1\rangle = H|1\rangle = \frac{1}{2}(|0\rangle - |1\rangle)$$

•
$$|\psi_2\rangle = X |\psi_1\rangle = -\frac{1}{2} (|0\rangle - |1\rangle)$$

Interference changes the behavior of oracles

Hadamard "Sandwich": $|\psi\rangle$ H X H $|\psi\rangle$

$$|\psi\rangle = |0\rangle$$
:

•
$$|\psi_1\rangle = H|0\rangle = \frac{1}{2}(|0\rangle + |1\rangle)$$

•
$$|\psi_2\rangle = X |\psi_1\rangle = \frac{\sqrt{1}}{2} (|0\rangle + |1\rangle)$$

$$|\psi'\rangle = H|\psi_2\rangle$$

$$= \frac{1}{2} \frac{1}{2} (|0\rangle + |1\rangle) + \frac{1}{2} (|0\rangle - |1\rangle)^2$$

$$= \frac{1}{1} (|0\rangle + |1\rangle + |0\rangle - |1\rangle) = |0\rangle$$

$$|\psi\rangle = |1\rangle$$
:

•
$$|\psi_1\rangle = H|1\rangle = \frac{1}{2}(|0\rangle - |1\rangle)$$

•
$$|\psi_2\rangle = X |\psi_1\rangle = -\sqrt{\frac{1}{2}} (|0\rangle - |1\rangle)$$

•
$$|\psi'\rangle = H |\psi_2\rangle$$

= $-\frac{1}{2}\sqrt{\frac{1}{2}(|0\rangle + |1\rangle)} - \frac{1}{2}(|0\rangle - |1\rangle)$

$$= -\frac{1}{2}(|0\rangle + |1\rangle - |0\rangle + |1\rangle) = -|1\rangle$$

$$|\psi\rangle - H - X - H - |\psi'\rangle = |\psi\rangle - Z - |\psi'\rangle$$

$$|\psi\rangle - H - X - H - |\psi'\rangle = |\psi\rangle - Z - |\psi'\rangle$$

$$|\psi\rangle - H - Z - H - |\psi'\rangle = |\psi\rangle - X - |\psi'\rangle$$

Summary

⇒ With interference we can find out information of an oracle which we would not get in the classical case.

- ▶ Balanced vs. constant functions
 - ► Given an oracle $f: B \to B$ which maps a binary input to a binary output. Find out whether the function is

- Balanced vs. constant functions
 - ▶ Given an oracle $f: B \to B$ which maps a binary input to a binary output. Find out whether the function is
 - → balanced, i.e. *f* returns 0 for one input and 1 for the other one.

- ▶ Balanced vs. constant functions
 - ▶ Given an oracle $f: B \to B$ which maps a binary input to a binary output. Find out whether the function is
 - → balanced, i.e. f returns 0 for one input and 1 for the other one.
 - → constant, i.e. *f* returns the same number for both inputs.

- Balanced vs. constant functions
 - ▶ Given an oracle $f: B \to B$ which maps a binary input to a binary output. Find out whether the function is
 - → balanced, i.e. *f* returns 0 for one input and 1 for the other one.
 - → constant, i.e. *f* returns the same number for both inputs.
 - → Classically we need two calls to the oracle for solving the problem.

- Balanced vs. constant functions
 - ▶ Given an oracle $f: B \to B$ which maps a binary input to a binary output. Find out whether the function is
 - → balanced, i.e. f returns 0 for one input and 1 for the other one.
 - → constant, i.e. f returns the same number for both inputs.
 - → Classically we need two calls to the oracle for solving the problem.
 - ➤ ⇒ On a quantum computer we need only one!

$$U_f:|x,y\rangle \to |x,y\oplus f(x)\rangle$$

$$|\psi_1\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) \cdot \frac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle \right) = \frac{1}{2} \left(|0\rangle |0\rangle - |0\rangle |1\rangle + |1\rangle |0\rangle - |1\rangle |1\rangle$$

$$U_f:|x,y\rangle \to |x,y\oplus f(x)\rangle$$

$$|\psi_1\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) \cdot \frac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle \right) = \frac{1}{2} \left(|0\rangle |0\rangle - |0\rangle |1\rangle + |1\rangle |0\rangle - |1\rangle |1\rangle)$$

•
$$|\psi_2\rangle = \frac{1}{2} (|0\rangle |0 \oplus f(0)\rangle - |0\rangle |1 \oplus f(0)\rangle + |1\rangle |0 \oplus f(1)\rangle - |1\rangle |1 \oplus f(1)\rangle$$

$$U_f:|x,y\rangle \to |x,y\oplus f(x)\rangle$$

$$|\psi_1\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \cdot \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) = \frac{1}{2} (|0\rangle |0\rangle - |0\rangle |1\rangle + |1\rangle |0\rangle - |1\rangle |1\rangle)$$

•
$$|\psi_2\rangle = \frac{1}{2} (|0\rangle|f(0)\rangle - |0\rangle|1 \oplus f(0)\rangle + |1\rangle|f(1)\rangle - |1\rangle|1 \oplus f(1)\rangle)$$

$$U_f:|x,y\rangle \to |x,y\oplus f(x)\rangle$$

$$|\psi_1\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \cdot \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) = \frac{1}{2} (|0\rangle |0\rangle - |0\rangle |1\rangle + |1\rangle |0\rangle - |1\rangle |1\rangle)$$

•
$$|\psi_2\rangle = \frac{1}{2} (|0\rangle (|f(0)\rangle - |1 \oplus f(0)\rangle) + |1\rangle (|f(1)\rangle - |1 \oplus f(1)\rangle))$$

$$U_f:|x,y\rangle \to |x,y\oplus f(x)\rangle$$

$$|\psi_1\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) \cdot \frac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle \right) = \frac{1}{2} \left(|0\rangle |0\rangle - |0\rangle |1\rangle + |1\rangle |0\rangle - |1\rangle |1\rangle$$

•
$$|\psi_2\rangle = \frac{1}{2} |0\rangle (-1)^{f(0)} (|0\rangle - |1\rangle) + |1\rangle (-1)^{f(1)} (|0\rangle - |1\rangle)^2$$

$$U_f:|x,y\rangle \to |x,y\oplus f(x)\rangle$$

$$|\psi_1\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) \cdot \frac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle \right) = \frac{1}{2} \left(|0\rangle |0\rangle - |0\rangle |1\rangle + |1\rangle |0\rangle - |1\rangle |1\rangle$$

•
$$|\psi_2\rangle = \frac{1}{2} |0\rangle (-1)^{f(0)} (|0\rangle - |1\rangle) + |1\rangle (-1)^{f(1)} (|0\rangle - |1\rangle)^2$$

= $\frac{1}{2} (-1)^{f(0)} |0\rangle + (-1)^{f(1)} |1\rangle^2 \cdot (|0\rangle - |1\rangle)$

Case Uf constant

 $|\psi_1\rangle$

 $|\psi_2\rangle$

 $|\psi_3\rangle$

• It applies: $(-1)^{f(0)} = (-1)^{f(1)}$, i.e. the state is $\pm \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

Case Uf constant

 $|\psi_1\rangle$

 $|\psi_2\rangle$

 $|\psi_3\rangle$

- It applies: $(-1)^{f(0)} = (-1)^{f(1)}$, i.e. the state is $\pm \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
- \Rightarrow Hadamard Gate transforms state to $\pm |0\rangle$

Case \bigcup_f constant

- It applies: $(-1)^{f(0)} = (-1)^{f(1)}$, i.e. the state is $\pm \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
- \Rightarrow Hadamard Gate transforms state to $\pm |0\rangle$
- \Rightarrow We always measure $|0\rangle$ on the upper qubit.

Case \bigcup_f balanced

State of upper qubit:
$$\frac{1}{\sqrt{2}} \frac{1}{(-1)^{f(0)}} \frac{2}{|0\rangle + (-1)^{f(1)}} \frac{2}{|1\rangle}$$

• It applies: $(-1)^{f(0)}/=(-1)^{f(1)}$, i.e. the state is $\pm \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$

Case \bigcup_f balanced

State of upper qubit:
$$\frac{1}{\sqrt{2}} (-1)^{f(0)} |0\rangle + (-1)^{f(1)} |1\rangle$$

$$|1\rangle \qquad H \qquad H$$

 $|\psi_1\rangle$

 $|\psi_2\rangle$

 $|\psi_3\rangle$

- It applies: $(-1)^{f(0)}/=(-1)^{f(1)}$, i.e. the state is $\pm \frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$
- \Rightarrow Hadamard Gate transforms state to $\pm |1\rangle$

Case \bigcup_f balanced

State of upper qubit:
$$\frac{1}{\sqrt{2}} (-1)^{f(0)} |0\rangle + (-1)^{f(1)} |1\rangle$$

$$|1\rangle \qquad H \qquad H$$

 $|\psi_1\rangle$

- It applies: $(-1)^{f(0)}/=(-1)^{f(1)}$, i.e. the state is $\pm \frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$
- \Rightarrow Hadamard Gate transforms state to $\pm |1\rangle$
- \Rightarrow We always measure |1) on the upper qubit.

 $|\psi_3\rangle$

 $|\psi_2\rangle$

Summary

• Quantum oracle U_f is only applied **once** to determine whether f is constant or balanced.

Summary

- Quantum oracle U_f is only applied **once** to determine whether f is constant or balanced.
- Can be extended to boolean functions with arbitrary input size.

Summary

- Quantum oracle U_f is only applied **once** to determine whether f is constant or balanced.
- Can be extended to boolean functions with arbitrary input size.
- Theoretical speedup over classical counterpart, but small practical value.

Summary

- Quantum oracle U_f is only applied **once** to determine whether f is constant or balanced.
- Can be extended to boolean functions with arbitrary input size.
- Theoretical speedup over classical counterpart, but small practical value.
- However, most quantum algorithms with provable speedup rely on quantum oracles in combination with interference.