Homework 8

Math 416, Abstract linear algebra, Fall 2019 Instructor: Daesung Kim

Due date: November 8, 2019

Textbooks: In the assignment, the two texts are abbreviated as follows:

- [FIS]: Freidberg, Insel, and Spence, Linear Algebra, 4th edition, 2002.
- [Bee]: Beezer, A First Course in Linear Algebra, Version 3.5, 2015.

1. Let
$$A = \begin{pmatrix} 0 & -2 & -3 \\ -1 & 1 & -1 \\ 2 & 2 & 5 \end{pmatrix}$$
.

- (a) Find the characteristic polynomial of A.
- (b) Determine all the eigenvalues of A.
- (c) For each eigenvalue λ , find E_{λ} .
- (d) If possible, find an invertible matrix Q and a diagonal matrix D such that $Q^{-1}AQ = D$.
- 2. Let $A, D \in \mathcal{M}_{n \times n}(\mathbb{R})$ and D be a diagonal matrix.
 - (a) Let $D = \operatorname{diag}(d_1, d_2, \dots, d_n)$ for some $d_1, d_2, \dots, d_n \in \mathbb{R}$. Show that $D^k = \operatorname{diag}(d_1^k, d_2^k, \dots, d_n^k)$ for all integers k > 1.
 - (b) Let $D=\operatorname{diag}(d_1,d_2,\cdots,d_n)$ for some $d_1,d_2,\cdots,d_n\in\mathbb{R}\setminus\{0\}$. Show that D is invertible and $D^{-1}=\operatorname{diag}(d_1^{-1},d_2^{-1},\cdots,d_n^{-1})$.
 - (c) Suppose there exists an invertible matrix Q and $A = QDQ^{-1}$. Show that $A^k = QD^kQ^{-1}$ for all integers $k \ge 1$.
 - (d) Suppose A is invertible and there exists an invertible matrix Q and $A = QDQ^{-1}$. Show that $A^{-1} = QD^{-1}Q^{-1}$.
- 3. Let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ and λ_1, λ_2 be two distinct eigenvalues for A. Let $E_{\lambda_1}, E_{\lambda_2}$ be the eigenspaces of A corresponding to λ_1, λ_2 respectively. Prove that $E_{\lambda_1} \cap E_{\lambda_2} = \{0\}$.
- 4. Let V be a finite dimensional vector space over \mathbb{R} and $T: V \to V$ linear. Let β be a basis for V. Prove that λ is an eigenvalue of T if and only if λ is an eigenvalue of $[T]_{\beta}$.
- 5. Let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ and v be an eigenvector of A corresponding to an eigenvalue λ . Show that v is an eigenvector of A^k corresponding to an eigenvalue λ^k for all integers $k \ge 1$.

1

6. Let $A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$. Find an expression for A^k for all integers $k \geq 1$.