جبر خطی

دانشكده مهندسي كامپيوتر

حمیدرضا ربیعی، مریم رمضانی پاییز ۱۴۰۲

رنک، وارون و دترمینان تمرین سوم تاریخ انتشار: ۲۷ آبان ۱۴۰۲

۱. پرسشهای خود درمورد این تمرین را در سامانه کوئرا مطرح کنید.

۲. سیاست ارسال با تاخیر: شما در مجموع در طول نیمسال میتوانید از ۱۶ روز تاخیر استفاده کنید. همچنین هر تمرین تئوری و عملی را میتوانید تا حداکثر
۳ روز با تاخیر تحویل دهید. این مقدار برای تمارین تئوری و عملی به صورت جداگانه حساب می شود. تاخیرها با مقیاس ساعت محاسبه شده و به بالا گرد می شوند.

۳. سیاست مشارکت دانشجویان در حل کردن تمارین: دانشجویان میتوانند در حل تمارین برای رفع ابهام و یا بهدست آوردن ایده ی کلی با یک دیگر مشورت و همفکری کنند. این کار مورد تایید و تشویق تیم ارائه ی درس می باشد؛ چرا که همفکری و کار گروهی می تواند موجب تقویت یادگیری شود. اما بهدست آوردن جزئیات راه حل و نگارش پاسخ باید تماما توسط خود دانشجو انجام شود. حتما در انتهای پاسخهای ارسالی خود نام افرادی که با آنها همفکری کردید را ذکر کنند.

سوالات تئوری (۱۰۰ نمره) تاریخ تحویل: ۱۷ آذر ۱۴۰۲

یرسش ۱ (۱۰ نمره)

(آ) فرض کنید ماتریس A یک ماتریس nilpotent باشد. نشان دهید که A+I وارون پذیر است.

(v) شرایط معکوسپذیری و معکوس ماتریس $I + uv^T$ را بدست آورید که در آن $I \in R^{n imes n}$ ماتریس همانی بوده و $u,v \in R^n$ باشند.

(ج) به ازای هر ماتریس معکوسپذیر $A \in R^{n \times n}$ و هر دو بردار $u,v \in R^n$ نشان دهید:

$$(A + uv^T)^{-1} = A^{-1} - \frac{A^{-1}uv^TA^{-1}}{1 + v^TA^{-1}u}$$

پرسش ۲ (۱۰ نمره) اثبات کنید که دترمینان ماتریس های زیر برابر ۱۰ است:

 $n \geq \mathfrak{r}$ برای $n \geq n$:

 $A_{n\times n}: a_{i,j} = i+j$

 $n \geq 4$ (ب) برای

 $B_{n\times n}:b_{i,j}=(i+j)^{\mathsf{Y}}$

پرسش $\mathbf v_1, v_2, \dots, v_n$ داشته v_1, v_2, \dots, v_n مستقل خطی باشند. ثابت کنید اگر n بردار مستقل خطی دیگر مانند v_1, v_2, \dots, v_n داشته باشیم و یک زیرمجموعه v_1, v_2, \dots, v_n باشیم و یک زیرمجموعه v_2, \dots, v_n باشیم و یک زیرمجموعه v_3, \dots, v_n بردار مانند v_1, \dots, v_n بردار مانند v_2, \dots, v_n باشیم و یک زیرمجموعه v_3, \dots, v_n بردار مانند v_1, \dots, v_n بردار مانند v_2, \dots, v_n باشیم و یک زیرمجموعه v_3, \dots, v_n بردار مانند v_1, \dots, v_n بردار مانند v_2, \dots, v_n

 $dim(span\{v_1+w_1,v_1+w_1,...,v_m+w_m\})\geq m-n.$

r پرسش ۴ (۱۰ نمره) ثابت کنید برای هر ماتریس مربعی A، رنک ماتریس برابر r است اگر و تنها اگر r بزرگترین عددی باشد به طوری که یک sub matrix با ابعاد $r \times r$ با دترمینان مخالف صفر وجود داشته باشد.

پرسش ۵ (۱۰ نمره) فرض کنید به ازای دو ماتریس $A_{m imes n}$ و $B_{n imes n}$ ، ماتریس $A_{m imes m}$ وارون پذیر است.نشان دهید ماتریس $B_{n imes n}$ وارون پذیر است. پذیر است.

پرسش ۶ (۲۰ نمره)

- (آ) تبدیل خطی T بر فضای برداری V را در نظر بگیرید به طوری که $\operatorname{range}(T)$ و $\operatorname{range}(T)$ هر دو دارای بعد متناهی هستند. نشان دهید V نیز دارای بعد متناهی است.
- dim(V) = g است و Tange(T) دارای متناهی V و تبدیل خطی T از فضای V به W را در نظر بگیرید. نشان دهید V دارای بعد متناهی است و V دارای بعد متناهی است و V و تبدیل خطی V را در نظر بگیرید. نشان دهید V را به V را در نظر بگیرید. نشان دهید V و تبدیل خطی V و تبدیل خطی از V به نظر است.
- (+, -1) دو فضای برداری V و V را با بعد متناهی در نظر گرفته و U را زیرفضای V فرض کنید. ثابت کنید تبدیل خطی V از فضای برداری V به V وجود دارد که U که U است اگر و تنها اگر U و تنها اگر U به U و U است اگر و تنها اگر U و تنها اگر U به U و التنا U و
- $\operatorname{null}(\mathrm{T})$ و U از U به W را در نظر بگیرید. ثابت کنید زیرفضای U در U و جود دارد به طوری که اشتراک U را در نظر بگیرید. ثابت کنید زیرفضای U در U و U و تبدیل خطی U اشتراک U و U در U و تبدیل خطی U اشتراک U در U در U و تبدیل خطی U در U در U و تبدیل خطی U در \mathrm

یرسش ۷ (۲۰ نمره)

(آ) (۱۰ نمره) ماتریسهای A,B ماتریسهای دلخواه n imes n میباشند. ثابت کنید اگر داشته باشیم AB=BA آنگاه نامساوی زیر برقرار است:

$$Rank(A + B) + Rank(AB) \le Rank(A) + Rank(B)$$

(ب) (۱۰ نمره) فرض کنید A ماتریسی $n \times n$ باشد به طوری که $A^{\mathsf{Y}} = \cdot$ ثابت کنید:

$$Rank(A + A^T) = \mathbf{Y}Rank(A)$$

:نابت کنید. $A,B,C\in M_n(R)$ جاتب کنید. ماتریسهایی ناصفر هستند طوری که

$$rank(A) + rank(B) + rank(C) \le \forall n$$

- $\operatorname{rank}(A) = \operatorname{rank}(B)$ دو ماتریس مربعی هستند که $AB = \mathsf{Y}A + \mathsf{W}B$. ثابت کنید
- . $rank(A) + rank(B) \le rank(AB) + k$: وماتریس $A_{m \times k}$ و $A_{m \times k}$ را در نظر بگیرید.نشان دهید

 $rank(I-uu^*)=n-1$ نشان دهید ۱ |u|=1 نشان دهید از اعداد مختلط داریم طوری که ا

سوالات عملی (۱۰۰ نمره) تاریخ تحویل: ۱۷ آذر ۱۴۰۲

یرسش ۱ (۱۰۰ نمره)

یک جدول $m \times m$ داریم. در هر خانه از این جدول • یا ۱ نوشته شده. در هر مرحله میتوانیم یک سطر را با یک سطر دیگر یا یک ستون را با یک ستون دیگر XOR بگیریم.

بعد از XOR گرفتن سطر a با سطر b داریم:

$$a_{j_{new}} = a_{j_{old}} \oplus b_{j} \quad (1 \le j \le m)$$

بعد از XOR گرفتن ستون a با ستون b داریم:

$$a_{i_{new}} = a_{i_{old}} \oplus b_i \quad (1 \le i \le n)$$

و همچنین

$$\bullet \oplus \bullet = \bullet, \quad \bullet \oplus \bullet = \bullet, \quad \bullet \oplus \bullet = \bullet, \quad \bullet \oplus \bullet = \bullet$$

با انجام دادن تعداد دلخواه از عملیاتهای بالا، حداکثر تعداد ۱ هایی که میتوان در این جدول آورد را محاسبه کنید.

ورودی: در سطر اول، دو عدد صحیح و مثبت n و m که با یک فاصله از هم جدا شده اند و بهترتیب تعداد سطرها و ستونهای جدول را نشان میدهد.

$$1 \leq n, m \leq \Upsilon \cdots$$

در n سطر بعدی هر سناریو، در هر کدام یک رشته از m کاراکتر \cdot یا \cdot میآید که وضعیت اولیه جدول را نشان می دهد.

خروجي: در خروجي بايد حداكثر تعداد ١ هايي كه مي توان با عمليات هاي بالا ساخت را چاپ كنيد.

ورودی نمونه ۱

1 3 4 1010 3 1010 4 0000

خروجی نمونه ۱

Ydianican

1 12

ورودی نمونه ۲

خروجی نمونه ۲

1 3

ورودی نمونه ۳

 در مثال اول اگر ابتدا مقدار سطر ۳ را با سطر ۱ XOR بگیریم به جدولی میرسیم که ستونهای آن یکی در میان تماما ۱ و تماما ۰ است. سپس میتوانیم ستون ۲ و ۴ را با ستون ۲ XOR بگیریم تا به جدولی تماما ۱ برسیم.

در مثال دوم اگر سطر ۲ را با سطر ۱ XOR بگیریم به جدولی میرسیم که تنها خانه ۰ آن گوشه بالا چپ است و ۳ تا ۱ خواهیم داشت. میتوان نشان داد به جدول تمام ۱ هیچگاه نخواهیم رسید.

در مثال سوم اگر ستونهای ۲ و ۴ را با ستون ۵ XOR بگیریم به جدولی تماما ۱ میرسیم.