

Plan de la présentation

O1.

Introduction

Contexte du projet, équipe et objectif 02.

Modèle retenu

Aperçu rapide des résultats obtenus par notre meilleur modèle

03.

Preprocessing

Etapes suivies pour obtenir le dataframe utilisé pour nos différentes itérations 04.

<u>Itérations</u>

Utilisation de modèles différents pour améliorer les résultats des précédentes itérations 05.

Suite du projet

Pistes à suivre, axes d'améliorations

I / Introduction

Intro

Contexte

Choix de notre

de notre société pour une mission de prédiction. Volonté d'assister la prise de décision pour l'investissement de notre client.

- Equipe de 2 personnes sur le projet (Mélody et Jonathan)
- Utilisation d'un jeu de données fourni par le client
- Indicateurs définis par les réglementations de la Bourse

Objectif

<u>Détection des faillites</u>

Trouver un modèle prédictif permettant de détecter les entreprises susceptibles de faire faillite. Le but étant d'investir sur les entreprises qui ne courent pas ce risque.

- Trouver un modèle de classification binaire.
- Utiliser un modèle ensembliste pour réaliser ce projet.
- Créer un protocole d'utilisation à destination du client.

II / Modèle retenu

Performances du modèle retenu

BaggingClassifier

BaggingClassifier

Utilisation de ce modèle fourni par la librairie Scikit Learn, avec optimisation de ces hyperpramètres.

Score d'évaluation

Score obtenu avec ce modèle. Choix du recall pour évaluer nos prédictions, suite à la discussion avec notre client. Oscillation du résultat suivant les options de model tuning retenues

III / Preprocessing

Les étapes

Etape 1

Séparation des données en 2 dataframe (Colonnes avec valeur max de 1, puis colonnes avec valeur max supérieure à 1

Etape 2

Scaling des différentes colonnes (MinMax pour une partie, et Standard pour l'autre partie)

Etape 3

Réduction des dimensions de notre jeu de données et concaténation des deux différents dataframe

Vue d'ensemble

	Bankrupt?	ROA(C) before interest and depreciation before interest	ROA(A) before interest and % after tax	ROA(B) before interest and depreciation after tax	Operating Gross Margin	Realized Sales Gross Margin	Operating Profit Rate	Pre-tax net Interest Rate	After-tax net Interest Rate	Non-industry income and expenditure/revenue	Continuous interest rate (after tax)	Operating Expense Rate	Research and development expense rate	Cash flow rate	Interest- bearing debt interest rate	Tax rate (A)	Net Value Per Share (B)	Net Value Per Share (A)	Net Value Per Share (C)
count	6819.000000	6819.000000	6819.000000	6819.000000	6819.000000	6819.000000	6819.000000	6819.000000	6819.000000	6819.000000	6819.000000	6.819000e+03	6.819000e+03	6819.000000	6.819000e+03	6819.000000	6819.000000	6819.000000	6819.000000
mean	0.032263	0.505180	0.558625	0.553589	0.607948	0.607929	0.998755	0.797190	0.809084	0.303623	0.781381	1.995347e+09	1.950427e+09	0.467431	1.644801e+07	0.115001	0.190661	0.190633	0.190672
std	0.176710	0.060686	0.065620	0.061595	0.016934	0.016916	0.013010	0.012869	0.013601	0.011163	0.012679	3.237684e+09	2.598292e+09	0.017036	1.082750e+08	0.138667	0.033390	0.033474	0.033480
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000e+00	0.000000e+00	0.000000	0.000000e+00	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.476527	0.535543	0.527277	0.600445	0.600434	0.998969	0.797386	0.809312	0.303466	0.781567	1.566874e-04	1.281880e-04	0.461558	2.030203e-04	0.000000	0.173613	0.173613	0.173676
50%	0.000000	0.502706	0.559802	0.552278	0.605997	0.605976	0.999022	0.797464	0.809375	0.303525	0.781635	2.777589e-04	5.090000e+08	0.465080	3.210321e-04	0.073489	0.184400	0.184400	0.184400
75%	0.000000	0.535563	0.589157	0.584105	0.613914	0.613842	0.999095	0.797579	0.809469	0.303585	0.781735	4.145000e+09	3.450000e+09	0.471004	5.325533e-04	0.205841	0.199570	0.199570	0.199612
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	9.990000e+09	9.980000e+09	1.000000	9.900000e+08	1.000000	1.000000	1.000000	1.000000

Outliers

Distribution

IV / Itérations

01

02

03

Première itération

Utilisation des données sans preprocessing

DummyRegressor() pour obenir notre baseline

Résultat médiocre pour détection des entreprises avec un risque de faillite

	precision	recall	f1-score	support
0 1	0.97 0.00	1.00 0.00	0.99 0.00	1987 59
accuracy macro avg weighted avg	0.49 0.94	0.50 0.97	0.97 0.49 0.96	2046 2046 2046

Deuxième itération

01

Balancing (SMOTE) et scaling (RobustScaler()

02

BaggingClassifier() sans paramètrage

Résultat amélioré, mais toujours très décevant

	precision	recall	f1-score	support
0 1	0.98 0.25	0.97 0.29	0.98 0.27	1987 59
accuracy macro avg weighted avg	0.62 0.96	0.63 0.96	0.96 0.62 0.96	2046 2046 2046

02

03

Troisième itération

Balancing (SMOTE) et scaling (RobustScaler()

> RandomForest() avec paramètrage GridSearchCV()

Résultat en net progrès sur le recall, mais une perte de précision sur les entreprises qui ne font pas faillites.

0.9	2 0.95	1987
		1507
0.5	8 0.28	59
	0.91	2046
0.7	5 0.62	2046
0.9	1 0.93	2046
		0.75 0.62

02

03

Quatrième itération

Balancing (SMOTE) et scaling (RobustScaler()

BaggingClassifier() avec paramètrage GridSearchCV()

Résultat en nette amélioration sur le recall

	precision	recall	f1-score	support
0	0.99	0.88	0.93	1987
1	0.14	0.68	0.24	59
accuracy			0.87	2046
macro avg	0.57	0.78	0.58	2046
weighted avg	0.96	0.87	0.91	2046

V / Avenir du projet

Pistes à suivre

RandomForest

Meilleur paramètrage avec Grid-SearchCV

Boosting

Tester le Boosting-Classifier pour voir si nos résultats s'améliorent

Preprocessing

Affinage avec gestion de la distribution de nos différentes valeurs

Stacking

Approfondir le stacking avec plus d'itérations sur cette méthode.

