Clustering

Hierarchical clustering et Kmeans

Anne Badel, Frédéric Guyon & Jacques van Helden

2020-06-02

Contents

Questions abordées dans ce cours	4
Les données dans l'ordinateur (1) Les iris de Fisher	. 4
Les données dans l'ordinateur (2)	4
Les données dans l'ordinateur (2)	4
Représentons ces données : une fleur (1)	5
Représentons ces données : une fleur (2)	5
Représentons ces données : une fleur (3)	5
Représentons ces données : toutes les fleurs (4)	6
Représentons ces données : une variable à la fois (1)	6
Représentons ces données : deux variables à la fois (2)	7
Il faut tenir compte de toutes les dimensions	7
Clustering et classification (termes anglais)	7
Clustering et classification (termes anglais)	7
Clustering	8
Géométrie et distances (1)	8
Géométrie et distances (2)	8
Géométrie et distances (3)	9
Distances	9
Distance euclidienne	9
Représentation des vecteurs-individus	9
Distance euclidienne et distance de corrélation	10

Avec $R(1)$: distance entre deux individus	10
Avec R (2) : distance entre individus d'un nuage de points	10
Avec R (3) : distance entre variables décrivant le nuage de points	10
Distances entre groupes (1)	11
Distances entre groupes (2)	11
Distances entre groupes (4)	12
Les données	12
Visualisation des données	12
Préparation des données (1) : variables de variance nulle	12
Préparation des données (2) : "Normalisation"	13
On peut visuellement regarder l'effet de la standardisation	13
Centrage sur la moyenne ou la médiane	14
Mise à l'échelle écart-type ou intervalle interquartile	14
Standardisation : centrage et mise à l'échelle	15
La matrice de distance euclidienne	15
La matrice de distance de corrélation	16
La classification hiérarchique : principe	16
Notion importante, cf distances	16
L'algorithme : étape 1	16
Au départ	17
Identification des individus les plus proches	17
Construction du dendrogramme	17
Etape j:	17
Calcul des nouveaux représentants 'BE' et 'CD'	18
Calcul des distances de l'individu restant 'A' aux points moyens	18
A est plus proche de	18
dendrogramme	19
pour finir	19
dendrogramme final	19
Je ne fais pas attention à ce que je fais	20

En utilisant une autre métrique	21
En utilisant un autre critère d'aggrégation	21
En conclusion	22
Les heatmap - donnes brutes	22
Les heatmap - mise à l'échelle	22
Les heatmap - échelle de couleur standardisée par colonne	23
Les heatmap - échelle de couleur standardisée par ligne	23
Les k-means	23
L'algorithme étape 1 :	24 24 24 28 28 28 28 28 28 28 28
Comment déterminer le nombre de clusters ? (1)	26
Comment déterminer le nombre de clusters ? (2)	27
Comment déterminer le nombre de clusters ? avec la classification hiérarchique	27
Comment déterminer le nombre de clusters ? avec les kmeans	28
Comparaison des résultats des deux clustering	28
Pros et cons des différents algorithmes	28
Visualisation des données - coloration par espèces	29
Supplementary materials	29
Distances utilisées dans R (1)	29
Distances utilisées dans R (2)	30
Autres distances non géométriques (pour information)	30
Distances plus classiques en génomique	30
Comparaison de clustering: Rand Index	31
Comparaison de clustering: Adjusted Rand Index	31
Comparaison des résultats des deux classifications	31

Questions abordées dans ce cours

- 1. Comment sont représentées les données dans l'ordinateur ?
- 2. Comment représenter les données dans l'espace ?
- 3. Comment découvrir des "clusters" dans les données ?
 - classification hiérarchique
 - kmeans
- 4. Comment déterminer le nombre de groupe optimal?
- 5. Comment comparer deux classifications?

Les données dans l'ordinateur (1)

Les iris de Fisher

Ces données sont un classique des méthodes d'apprentissage Fisher

Les données dans l'ordinateur (2)

	Sepal.Length	Sepal.Width	Petal.Length	${\tt Petal.Width}$
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2
3	4.7	3.2	1.3	0.2
4	4.6	3.1	1.5	0.2
5	5.0	3.6	1.4	0.2
6	5.4	3.9	1.7	0.4

Les données dans l'ordinateur (2)

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2
3	4.7	3.2	1.3	0.2

4	4.6	3.1	3.1 1.5	
5	5.0	3.6	1.4	0.2
6	5.4	3.9	1.7	0.4

- 1 ligne = 1 fleur = 1 individu = 1 vecteur
- 1 colonne = 1 variable = 1 feature = 1 vecteur
- l'ensemble des données = 1 échantillon = 1 data.frame

! : convention différente en RNA-seq

Représentons ces données : une fleur (1)

mes.iris[1,]

Sepal.Length Sepal.Width Petal.Length Petal.Width 1 5.1 3.5 1.4 0.2

Comment représenter cette fleur ?

• par un point!

Dans quel espace de réprésentation ?

Représentons ces données : une fleur (2)

plot(mes.iris[1,1:2])

Dans le plan, un point de coordonnées : $x=5.1,\,y=3.5$ représenté par un vecteur v2=(5.1,3.5) dans \mathbb{R}^2

Représentons ces données : une fleur (3)

Dans l'espace, un point de coordonnées :

- x = 5.1
- y = 3.5
- z = 1.4

représenté par un vecteur $v3=(\ 5.1\ ,\ 3.5\ ,\ 1.4)$ dans \mathbb{R}^3

Représentons ces données : toutes les fleurs (4)

- = un nuage de points dans un espace à 4 dimensions
- chaque point est représenté par un vecteur dans \mathbb{R}^4
 - le nuage de points est représenté par une matrice à n et p (= 4 dimensions)
 - $-\,$ n = nombre de lignes = nombre d'individus = taille de l'échantillon
 - p = nombre de colonnes = nombre de variables décrivant l'échantillon
- = PAS de représentation possible (pour l'instant)

Représentons ces données : une variable à la fois (1)

longueur des pétales

Représentons ces données : deux variables à la fois (2)

Il faut tenir compte de toutes les dimensions

c'est à dire de toutes les variables à notre disposition

Clustering et classification (termes anglais)

On a une information sur nos données

• variables quantitatives = vecteur de réels

Clustering: on cherche à mettre en évidence des groupes dans les données

• le clustering appartient aux méthodes dites non supervisées, ou descriptives

Clustering et classification (termes anglais)

On a une information sur nos données

Clustering : on cherche à mettre en évidence des groupes dans les données

Classification:

- on connaît le partitionnement de notre jeu de données
 - variables quantitatives = vecteur de réels
 - ET
 - variable qualitative = groupe (cluster) d'appartenance = vecteurs de entiers / niveau d'un facteur
 - on cherche à prédire le groupe (la classe) de nouvelles données
- la classification appartient aux méthodes dites supervisées, ou prédictives

Figure 1: données simulées : y a-t-il des groupes ?

Clustering

Géométrie et distances (1)

On considère les données comme des points de \mathbb{R}^n

 \mathbb{R}^n : espace Euclidien à n dimensions, où

- chaque dimension représente une des variables observées;
- \bullet un individu est décrit comme un vecteur à n valeurs, qui correspond à un point dans cet espace.

Géométrie et distances (2)

On considère les données comme des points de \mathbb{R}^n (*)

- géométrie donnée par distances
- distances = dissimilarités imposées par le problème
- dissimilarités permettent visualisation de l'ensemble des points

Géométrie et distances (3)

Sur la base d'une distance (souvent euclidienne)

- Clustering:
 - Méthode agglomérative ou hierarchical clustering
 - $-\,$ Moyennes mobiles ou K-means : séparation optimale des groupes connaissant le nombre de groupes

Distances

Définition d'une distance : fonction positive de deux variables

- 1. $d(x,y) \ge 0$
- 2. d(x,y) = d(y,x)
- 3. $d(x,y) = 0 \iff x = y$
- 4. Inégalité triangulaire : $d(x, z) \le d(x,y) + d(y,z)$

Si 1,2,3 : dissimilarité

Distance euclidienne

• distance euclidienne ou distance L_2 : $d(x,y) = \sqrt{\sum_i (x_i - y_i)^2}$

Représentation des vecteurs-individus

Distance euclidienne et distance de corrélation

	distance euclidienne	coefficient de corrélation	distance de corrélation
A - B	4.85	0.93	0.07
A - C	5.59	-0.53	1.53
В - С	1.03	-0.67	1.67

Avec R (1): distance entre deux individus

• on utilise la fonction dist() avec l'option method = "euclidean", "manhattan", ...

	t1	t2	t3	t4	t5	SUM
X	3.06	2.16	1.19	4.98	3.86	15.25
Y	2.49	2.06	3.63	2.66	3.19	14.03
abs(Y - X)	0.58	0.11	2.44	2.32	0.66	6.11
$(Y - X)^2$	0.33	0.01	5.98	5.37	0.44	12.13
Eucl	0.58	0.11	2.44	2.32	0.66	3.48

distance euclidienne : 3.48 distance de manhattan = 6.11

Avec R (2): distance entre individus d'un nuage de points

• distance euclidienne

4 48 84 52

48 0.14

84 4.13 4.23

52 3.73 3.81 0.88

43 0.30 0.22 4.38 3.99

• distance de corrélation : d = 1 - r

4 48 84 52

48 0.00078

84 0.34002 0.37014

52 0.17912 0.20233 0.03022

43 0.00300 0.00077 0.39825 0.22502

Avec R (3) : distance entre variables décrivant le nuage de points

Sepal.Length Sepal.Width Petal.Length

Sepal.Width

1.4228

Petal.Length 0.0370 1.6419 Petal.Width 0.0240 1.5857

Distances entre groupes (1)

0.0029

Distances entre groupes (2)

• Single linkage : élements les plus proches des 2 groupes

$$D(C_1, C_2) = \min_{i \in C_1, j \in C_2} D(x_i, x_j)$$

• Complete linkage : éléments les plus éloignés des 2 groupes

$$D(C_1, C_2) = \max_{i \in C_1, j \in C_2} D(x_i, x_j)$$

• Average linkage : distance moyenne

$$D(C_1, C_2) = \frac{1}{N_1 N_2} \sum_{i \in C_1, j \in C_2} D(x_i, x_j)$$

• Ward

$$d^{2}(C_{i}, C_{j}) = I_{intra}(C_{i} \cup C_{j}) - I_{intra}(C_{i}) - I_{intra}(C_{j})$$
$$D(C_{1}, C_{2}) = \sqrt{\frac{N_{1}N_{2}}{N_{1} + N_{2}}} ||m_{1} - m_{2}||$$

Distances entre groupes (4)

Les données

Revenons à nos iris de Fisher

Visualisation des données

On peut ensuite essayer de visualiser les données

• par un plot (! ne pas faire si "grosses" données)

Préparation des données (1) : variables de variance nulle

```
iris.var <- apply(mes.iris, 2, var)
kable(iris.var, digits = 3, col.names = "Variance")</pre>
```

	Variance
Sepal.Length	0.686
Sepal.Width	0.190
Petal.Length	3.116
Petal.Width	0.581

```
sum(apply(mes.iris, 2, var) == 0)
```

[1] 0

Préparation des données (2) : "Normalisation"

Afin de pouvoir considérer que toutes les variables sont à la même échelle, il est parfois nécessaire de standardiser les données.

- soit
 - en centrant (ramener la moyenne de chaque variable à 0)

```
mes.iris.centre <- scale(mes.iris, center = TRUE, scale = FALSE)</pre>
```

- soit
 - en centrant (ramener la moyenne de chaque variable 0)
 - et mettant à l'échelle (ramener la variance de chaque variable à 1)

```
mes.iris.scaled <- scale(mes.iris, center = TRUE, scale = TRUE)</pre>
```

• soit en effectuant une transformation des variables, par exemple transformation logarithmique

On peut visuellement regarder l'effet de la standardisation

• par des boîtes à moustaches (boxplot)

Centrage sur la moyenne ou la médiane

Mise à l'échelle écart-type ou intervalle interquartile

Standardisation : centrage et mise à l'échelle

La matrice de distance euclidienne

La matrice de distance de corrélation

La classification hiérarchique: principe

classification hiérarchique : mettre en évidence des liens hiérachiques entre les individus

- classification hiérarchique ascendante : partir des individus pour arriver à des classes / cluster
- classification hiérarchique **descendante** : partir d'un groupe qu'on subdivise en sous-groupes /clusters jusqu'à arriver à des individus.

Notion importante, cf distances

- ressemblance entre individus = distance
 - euclidienne
 - corrélation
- ressemblance entre groupes d'invidus = critère d'aggrégation
 - lien simple
 - lien complet
 - lien moyen
 - critère de Ward

L'algorithme : étape 1

- départ : n individus = n clusters distincts
- calcul des distances entre tous les individus
 - choix de la métrique à utiliser en fonction du type de données
- regroupement des 2 individus les plus proches => (n-1) clusters

Au départ

Identification des individus les plus proches

Construction du dendrogramme

Etape j:

- calcul des dissemblances entre chaque groupe obtenu à l'étape (j-1)
- regroupement des deux groupes les plus proches =>(n-j) clusters

Calcul des nouveaux représentants 'BE' et 'CD'

Calcul des distances de l'individu restant 'A' aux points moyens

A est plus proche de ...

dendrogramme

pour finir

- à l'étape (n-1), tous les individus sont regroupés dans un même cluster

dendrogramme final

Je ne fais pas attention à ce que je fais ...

... c'est à dire aux options des fonctions dist() et hclust()

iris.scale.euc hclust (*, "complete")

```
par(mfrow = c(2, 1))
plot(iris.hclust, hang = -1, cex = 0.5, main = "Données brutes")
plot(iris.scale.hclust, hang = -1, cex = 0.5, main = "Normalisées")
```

Données brutes

iris.euc hclust (*, "complete")

Normalisées

iris.scale.euc hclust (*, "complete")

En utilisant une autre métrique

> iris.scale.max hclust (*, "complete")

En utilisant un autre critère d'aggrégation

En conclusion

- Faire attention au données
 - données manquantes
 - données invariantes
 - données normalisées
- Choisir la distance et le critère d'aggrégation adaptés à nos données

Les heatmap - donnes brutes

Les heatmap - mise à l'échelle

Les heatmap - échelle de couleur standardisée par colonne

Les heatmap - échelle de couleur standardisée par ligne

Les k-means

Les individus dans le plan

=> faire apparaitres des classes / des clusters

L'algorithme

étape 1:

- $\bullet \;\; k$ centres provisoires tirés au hasard
- \bullet k clusters créés à partir des centres en regroupant les individus les plus proches de chaque centre
- obtention de la partition P_0

Choix des centres provisoires

Calcul des distances aux centres provisoires

• calcul des distances de chaque point aux centres G₁ et G₂,

Affectation à un cluster

Calcul des nouveaux centres de classes

Etape j:

- construction des centres de gravité des k clusters construits à l'étape (j-1)
- k nouveaux clusters créés à partir des nouveaux centres suivant la même règle qu'à l'étape 0
- obtention de la partition P_j

Fin:

• l'algorithme converge vers une partition stable

Arrêt:

• lorsque la partition reste la même, ou lorsque la variance intra-cluster ne décroit plus, ou lorsque le nombre maximal d'itérations est atteint.

Un premier k-means en 5 groupes

```
iris.scale.kmeans5 <- kmeans(mes.iris.scaled, center=5)
iris.scale.kmeans5</pre>
```

K-means clustering with 5 clusters of sizes 49, 22, 16, 28, 35

```
Cluster means:
```

```
Sepal.Length Sepal.Width Petal.Length Petal.Width
                0.9032290 -1.29875725 -1.25214931
   -0.9987207
2
                            0.03924137 -0.05279511
   -0.4201099
               -1.4246794
3
    0.3476977 -0.8485018
                            0.82394010 0.88642518
4
    1.3752640
                0.2207973
                            1.18506888 1.27063231
    0.4031194
               -0.1577592
                            0.46888071 0.36446575
```

Clustering vector:

```
Within cluster sum of squares by cluster:

[1] 40.121722 17.046407 5.606072 25.136623 16.487459

(between_SS / total_SS = 82.5 %)
```

Available components:

```
[1] "cluster" "centers" "totss" "withinss" "tot.withinss" "betweenss" "size"
```

Comment déterminer le nombre de clusters ? (1)

Ces méthodes non supervisées, sont sans a priori sur la structure, le nombre de groupe, des données.

rappel: un cluster est composé

- d'individus qui se ressemblent
- d'individus très différents des individus de ceux des autres clusters

Comment déterminer le nombre de clusters ? (2)

- si les individus d'un même cluster sont proches
 - homogénéité maximale à l'intérieur de chaque cluster => variance intra faible
- si les individus de 2 clusters différents sont éloignés => variance inter forte
 - hétérogénéité maximale entre chaque cluster

Comment déterminer le nombre de clusters ? avec la classification hiérarchique

La coupure de l'arbre à un niveau donné construit une partition. la coupure doit se faire :

- après les agrégations correspondant à des valeurs peu élevées de l'indice
- avant les agrégations correspondant à des niveaux élevés de l'indice, qui dissocient les groupes bien distincts dans la population.

iris.scale.euc hclust (*, "ward.D2")

Comment déterminer le nombre de clusters ? avec les kmeans variance intra en fonction du nombre de cluster

Comparaison des résultats des deux clustering

• par une table

k	1 k	2 k	3
c1	16	13	0
c2	0	20	0
c3	0	1	29
c4	0	0	45
c5	0	0	26

Pros et cons des différents algorithmes

Algorithme	Pros	Cons
Hiérarchique	L'arbre reflète la nature imbriquée de tous les sous-clusters	Complexité quadratique (mémoire et temps de calcul) → quadruple chaque fois qu'on double le nombre d'individus
	Permet une visualisation couplée dendrogramme (groupes) + heatmap (profils individuels) Choix a posteriori du nombre de clusters	
K-means	Rapide (linéaire en temps), peut traiter des jeux de données énormes (centaines de milliers de pics ChIP-seq)	Positions initiales des centres est aléatoire → résultats changent d'une exécution à l'autre Distance euclidienne (pas appropriée pour transcriptome par exemple)

Visualisation des données - coloration par espèces

species.colors <- c(setosa = "#BB44DD", virginica = "#AA0044", versicolor = "#4400FF")
plot(mes.iris, col = species.colors[iris\$Species], cex = 0.7)</pre>

Supplementary materials

POUR ALLER PLUS LOIN

Distances utilisées dans R (1)

- distance euclidienne ou distance L_2 : $d(x,y) = \sqrt{\sum_i (x_i y_i)^2}$
- distance de manahattan ou distance L_1 : $d(x,y) = \sum_i |x_i y_i|$
- distance du maximum ou L-infinis, $L_{\infty} \colon d(x,y) = \max_{i} |x_{i} y_{i}|$

Distances utilisées dans R (2)

• distance de Minkowski l_p :

$$d(x,y) = \sqrt[p]{\sum_{i} (|x_i - y_i|^p)}$$

• distance de Canberra (x et y valeurs positives):

$$d(x,y) = \sum_{i} \frac{x_i - y_i}{x_i + y_i}$$

• distance binaire ou distance de Jaccard ou Tanimoto: proportion de propriétés communes

Note : lors du TP, sur les données d'expression RNA-seq, nous utiliserons le coefficient de corrélation de Spearman et la distance dérivée, $d_c = 1 - r$

Autres distances non géométriques (pour information)

Utilisées en bio-informatique:

- Distance de **Hamming**: nombre de remplacements de caractères (substitutions)
- Distance de Levenshtein: nombre de substitutions, insertions, deletions entre deux chaînes de caractères

$$d("BONJOUR", "BONSOIR") = 2$$

- Distance d'alignements: distances de Levenshtein avec poids (par ex. matrices BLOSSUM)
- Distances d'arbre (Neighbor Joining)
- Distances ultra-métriques (phylogénie UPGMA)

Distances plus classiques en génomique

Il existe d'autres mesures de distances, plus ou moins adaptées à chaque problématique :

- Jaccard (comparaison d'ensembles): $J_D = \frac{A \cap B}{A \cup B}$
- Distance du χ^2 (comparaison de tableau d'effectifs)

Ne sont pas des distances, mais indices de dissimilarité :

- Bray-Curtis (en écologie, comparaison d'abondance d'espèces)
- Jensen-Shannon (comparaison de distributions) # Distance avec R : indice de Jaccard
- ou pour des distances particulières, par exemple l'indice de Jaccard :

v.a	0	1	0	0	0	0	0
v.b	0	1	0	0	0	1	0
v.c	0	1	0	0	0	0	0

Comparaison de clustering: Rand Index

Mesure de similarité entre deux clustering

à partir du nombre de fois que les classifications sont d'accord

$$R = \frac{m+s}{t}$$

- m = nombre de paires dans la même classe dans les deux classifications
- s = nombre de paires séparées dans les deux classifications
- t = nombre total de paires

Comparaison de clustering: Adjusted Rand Index

$$ARI = \frac{RI - E(RI)}{Max\ RI - E(RI)}$$

- ARI = adjusted Rand Index = RI normalisé
- E(RI) = expected RI, espérance aléatoire (en assignant les groupes au hasard)
- Prend en compte la taille des classes
- ARI = 1 pour classification identique
- ARI $\simeq 0$ pour classification aléatoire (peut être < 0)
- Adapté même si les nombres de classes diffèrent entre les deux classifications
- Adapé à des tailles de classes différentes

Comparaison des résultats des deux classifications

rand index et adjusted rand index

```
## Compute adjusted Rand index
(ARI <- aricode::ARI(cluster.hclust5, cluster.kmeans3))</pre>
```

[1] 0.3302731

... par une projection sur une ACP

Supplément : analyse de données d'expression 2019

• TP clustering : [html] [pdf] [Rmd]

• Première partie : chargement des données

 $Contact: \ anne. badel@univ-paris-diderot. fr$