PY2105 Introduction to Computational Physics

Autumn 2019

Dr. A. Kiely

Problem Set 3

- 3.1 Write a C/C++ program fulfilling the following task: The user should enter the 3-dimensional velocity vector \vec{v} of a particle, its charge q and the 3-dimensional magnetic field vector \vec{B} . The program then calculates the Lorentz force $\vec{F} = q\vec{v} \times \vec{B}$ and prints the resulting vector on the screen.
- 3.2 Write a C/C++ program fulfilling the following task: The user should enter the 3-dimensional force vector \vec{F} and a 3-dimensional length vector \vec{s} . The force is assumed to be constant. The program then calculates the work $W = \vec{F} \cdot \vec{s}$ and prints the result on the screen.
- 3.3 Write a C/C++ program fulfilling the following task: The user enters a 3-dimensional "double" vector \vec{v} and a 3×3 "double" matrix \hat{M} . The program calculates the matrix/vector product $\hat{M}\vec{v}$ and prints the resulting vector on the screen. Use numerical arrays!
- 3.4 The position x(t) of an object moving horizontally with a constant velocity v is described by the equation

$$\frac{dx(t)}{dt} = v. (1)$$

- (a) Derive the Euler method/approximation in this case.
- (b) Write a C/C++ program which solves this differential equation (1) numerically using the Euler method. The user should be able to enter the velocity v, the initial value x(0) and the final time T at the beginning of the program. At the end the program should plot the numerical solution for times 0 < t < T.
- (c) Calculate the exact accuracy of the Euler method in this special case.

The hand-written parts should be put in the post box of A. Kiely (across the hall from Kane 201). Submit the programs and results to "Canvas" using the following name convention:

Surname_Firstname_3_1.cxx

Surname_Firstname_3_2.cxx

Surname_Firstname_3_3.cxx

Surname_Firstname_3_4.cxx

The deadline is

Tuesday, 15th October, 18:00