DEPARTMENT OF THE ARMY
EUROPE DIVISION, CORPS OF ENGINEERS
APO 09757

ENERGY ENGINEERING ANALYSIS PROGRAM
KAISERSLAUTERN COMMUNITY, FRG

EXECUTIVE SUMMARY

1 MAY 1984

PREPARED BY

LEO A. DALY

PLANNING/ARCHITECTURE/ENGINEERING

8600 INDIAN HILLS DRIVE

OMAHA, NEBRASKA 68114, USA

IN ASSOCIATION WITH

HANS DONGES

INGENIEUR-BURO

KARLSTRASSE 25

6301 BIEBERTAL, FRG

Distriction related in District in Distric

19971023 172

#### DEFARTMENT OF THE ARMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS P.O. BOX 9005 CHAMPAIGN, ILLINOIS 61826-9005

ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Librarian Engineering

# ENERGY ENGINEERING ANALYSIS PROGRAM (EEAP) GLOSSARY OF TERMS AND ABBREVIATIONS ENERGY REPORT

AAFES ~ ARMY AIR FORCE EXCHANGE SERVICE

ADMIN - ADMINISTRATION

AFCENT - ALLIED FORCES CENTRAL

AHU ~ AIR HANDLING UNIT

ASG - . AREA SUPPORT GROUP

ASHRAE - AMERICAN SOCIETY OF HEATING, REFRIGERATION, AND AIR

CONDITIONING ENGINEERS, INC.

AVG ~ AVERAGE

BAR - BAR: 14.5 PSI

BE - BELGIUM

BEQ - BACHELOR ENLISTED QUARTERS

BF - BELGIUM FRANC

BKS ~ BARRACKS

BLDG ~ BUILDING

BOQ - BACHELOR OFFICER'S QUARTERS

BRITISH THERMAL UNIT: A HEAT UNIT EQUAL TO THE AMOUNT OF

HEAT REQUIRED TO RAISE ONE POUND OF WATER ONE DEGREE

FAHRENHEIT.

BTU/HR OR BTUH - BRITISH THERMAL UNITS PER HOUR

C - CELSIUS

C & D ~ CHIEVRES & DAUMERIE

CFH - CUBIC FEET PER HOUR

CFM - CUBIC FEET PER MINUTE

CMU - CONCRETE MASONRY UNIT (BLOCK)

COMM - COMMISSARY

COMTY COMMUNITY CUFT CUBIC FOOT DA DEPARTMENT OF THE ARMY DD DEGREE DAY: THE DIFFERENCE BETWEEN THE AVERAGE TEMPERATURE FOR A DAY AND 650 F. DEH DIRECTOR OF ENGINEERING AND HOUSING DG DUTCH GUILDER DHW DOMESTIC HOT WATER DM DEUTSCHE MARK DOE DEPARTMENT OF ENERGY ECIP ENERGY CONSERVATION INVESTMENT PROGRAM EC0 **ENERGY CONSERVATION OPPORTUNITY ECOS ENERGY CONSERVATION OPPORTUNITIES EEAP** ENERGY ENGINEERING ANALYSIS PROGRAM EFF **EFFICIENCY EMCS** ENERGY MONITORING AND CONTROL SYSTEM ESIR ENERGY SAVINGS-TO-INVESTMENT RATIO **ESP ENERGY SIMULATION PROGRAM** EUD EUROPE DIVISION, CORPS OF ENGINEERS F FAHRENHEIT FG FIBERGLASS FH FAMILY HOUSING FLUO **FLUORESCENT** F0 FUEL OIL FRG FEDERAL REPUBLIC OF GERMANY (WEST GERMANY) FT FEET FUNC FUNCTION

FISCAL YEAR

FY

GAL ~ GALLON

GPM - GALLONS PER MINUTE

GWB - GYPSUM WALL BOARD

GY AREA ~ GERMANY (GY) AREA

HGT - HEIGHT

HVAC - HEATING, VENTILATING, AIR CONDITIONING

KASER - KASERNE

KW ~ KILOWATT, 1000 WATTS

KWHR - KILOWATT HOUR

LAB ~ LABORATORY

LF - LINEAL FOOT

M - METER

M3 - CUBIC METERS

MAN - MANUAL

MBTU - ONE MILLION BRITISH THERMAL UNITS

MEGA - MILLION

MH/MH - MAN-HOUR

MM - MILLIMETER

MO ~ MONTH

M & R - MAINTENANCE AND REPAIR

MUX - MULTIPLEX

MW ~ MEGAWATT, ONE MILLION WATTS

MWH ~ MEGAWATT-HOUR, ONE MILLION WATT-HOUR

MWHR - MEGAWATT-HOUR, ONE MILLION WATT-HOUR

MWHRS - MEGAWATT-HOUR, ONE MILLION WATT-HOURS

NATO - NORTH ATLANTIC TREATY ORGANIZATION

N/A ~ NOT APPLICABLE; NOT AVAILABLE

NBS ~ NATIONAL BUREAU OF STANDARDS

NE - NETHERLANDS

NL - NETHERLANDS

NOAA - NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

NO. - NUMBER

NSSG ~ NATO SHAPE SUPPORT GROUP

OA - OUTSIDE AIR

OCCUPANCY - OCCUPANCY

OH ~ OVERHEAD

OPER - OPERATIONS

O & M - OPERATION AND MAINTENANCE

PF - POWER FACTOR; RELATIONSHIP BETWEEN KW AND KVA. WHEN THE

POWER FACTOR IS UNITY, KVA EQUALS KW.

PF ~ PFENNING

POMCUS - PREPOSITIONED MATERIAL CONFIGURED TO UNIT SETS.

PSI(A)(G) - POUNDS PER SQUARE INCH (ABSOLUTE)(GAUGE)

PX ~ POST EXCHANGE

R-VALUE - THE RESISTANCE TO HEAT FLOW EXPRESSED IN UNITS OF (SQUARE

FEET) (HOUR) (DEGREE F.)/BTU; R VALUE ~ 1/U VALUE.

SA - SUPPORT ACTIVITY

SF - SQUARE FOOT

SHAPE - SUPREME HEADQUARTERS ALLIED POWERS EUROPE

SIR - SAVINGS-TO-INVESTMENT RATIO: TOTAL LIFE CYCLE BENEFITS

DIVIDED BY 90 PERCENT OF THE DIFFERENTIAL INVESTMENT COST.

SIOH - SUPERVISION, INSPECTION AND OVERHEAD

SOS - STATEMENT OF SERVICES

SP ~ SINGLE PANE

STY - STORY

TRY - TEST REFERENCE YEAR

'U' VALUE - A COEFFICIENT EXPRESSING THE THERMAL CONDUCTANCE OF A COMPOSITE STRUCTURE IN BTU PER (SQUARE FOOT) (HOUR) (DEGREE F. TEMPERATURE DIFFERENCE)

UA ~ OVERALL HEAT TRANSFER COEFFICIENT (BTU/HR DEGREE F.)

UPW - UNIFORM PRESENT WORTH FACTOR: A FACTOR, WHICH WHEN APPLIED TO ANNUAL SAVINGS, WILL ACCOUNT FOR THE TIME VALUE OF MONEY AND INFLATION OVER THE LIFE OF THE PROJECT.

US - UNITED STATES

USAREUR - UNITED STATES ARMY; EUROPE

V ~ VOLT

VET ~ VETERINARY

W ~ WATT

WDW ~ WINDOW

WHSE - WAREHOUSE

WK ~ WEEK

YR/yr ~ YEAR

## TABLE OF CONTENTS

| 1. | INTRODUCT | ION                                         | PAGE |
|----|-----------|---------------------------------------------|------|
|    | 1.1.      | Scope                                       | 1~1  |
|    | 1.1.1.    | Phase I Procedure                           | 1-1  |
|    | 1.1.2.    | Phase II Procedure                          | 1-1  |
|    | 1.1.3.    | Phase III Procedure                         | 1-1  |
|    | 1.2.      | General Description                         | 1-1  |
|    | 1.2.1.    | Facilities                                  | 1~2  |
|    | 1.2.2.    | Location                                    | 1-3  |
|    | 1.2.3.    | Climate                                     | 1-3  |
| 2. | EXISTING  | ENERGY SITUATION                            |      |
|    | 2.1.      | Source Energy Consumption                   | 2-1  |
|    | 2.2.      | Baseline FY 75 Energy Consumption           | 2-2  |
|    | 2.3.      | Present Annual Energy Consumption (FY 82)   | 2-5  |
|    | 2.4.      | Existing Building Source Energy Consumption | 2~5  |
| 3. | ENERGY CO | NSERVATION OPPORTUNITIES DEVELOPED          |      |
|    | 3.1.      | ECOs Investigated                           | 3-1  |
|    | 3.1.1.    | Individual Building ECOs                    | 3-1  |
|    | 3.1.1.1.  | Weatherization Projects                     | 3-1  |
|    | 3.1.1.2.  | Heating System Modifications                | 3~8  |
|    | 3.1.1.3.  | Lighting System Modifications               | 3-18 |
|    | 3.1.2.    | Boiler Plants                               | 3~46 |
|    | 3.1.3.    | Distribution Systems                        | 3~46 |
|    | 3.1.4.    | District Heat                               | 3-47 |
|    | 3.1.5.    | Energy Monitoring and Control System        | 3-47 |
|    | 3.1.6.    | Maintenance and Repair Projects             | 3~64 |

| Tab | le of Conte | nts (continued)                                  | PAGE  |
|-----|-------------|--------------------------------------------------|-------|
| 3.  | ENERGY CON  | SERVATION OPPORTUNITIES DEVELOPED (continued)    |       |
|     | 3.2.        | ECIP Projects Developed                          | 3-64  |
|     | 3.3.        | Other Energy Conservation Projects Developed     | 3-87  |
|     | 3.3.1.      | Maintenance and Repair Projects                  | 3-87  |
|     | 3.3.1.1.    | Boiler Plants                                    | 3-87  |
|     | 3.3.1.2.    | Heating Recovery in HVAC Systems                 | 3-94  |
|     | 3.3.2.      | Non-Specific Maintenance and Repair Projects     | 3~97  |
|     | 3.3.3.      | Previous Energy Studies                          | 3~107 |
|     | 3.3.4.      | Operational Improvements                         | 3~107 |
|     | 3.3.5.      | Previously Implemented Energy Projects           | 3-110 |
|     | 3.3.6.      | Future Development Plans                         | 3-113 |
|     | 3.3.7.      | Increment 'G'                                    | 3-113 |
|     | 3.3.8.      | Other Energy Conservation Opportunities Examined | 3-114 |
|     | 3.4.        | .,                                               |       |
|     | 3.4.1.      | Recommendations, Policy Changes and Actions      | 3-130 |
|     | 3.4.2.      | Recommendations and Policy Changes Actions       | 3~130 |
| 4.  |             | COST SAVINGS                                     | 3-130 |
| 4.  | 4.1.        |                                                  | 4.1   |
|     |             | Energy Consumption Forecast                      | 4-1   |
|     | 4.2.        | Forecast Energy Savings                          | 4-1   |
|     | 4.3.        | ECIP Projects                                    | 4-3   |
|     | 4.4.        | Projected Utility Costs                          | 4-3   |
| -   | 4.5.        | Schedule of Energy Conservation Projects         | 4~3   |
| 5.  |             | D CONCLUSIONS                                    |       |
|     | 5.1.        | Summary                                          | 5~1   |

5-2

Conclusions

5.2.

#### 1. INTRODUCTION

#### 1.1. Scope.

This Summary outlines documents the information compiled during Phase II of Contract DACA 90-83-C-0013, "Energy Engineering Analysis Program." A complete schedule of services is included as Appendix A to this report.

The purpose of the contract is to reduce energy consumption in the community by identifying actions and/or projects that will accomplish this end. The contract is divided into three (3) phases:

## 1.1.1. Phase I - Data Gathering.

During this phase, data was compiled describing the pertinent features of energy consuming facilities and past history of energy consumption. This data is contained in the "Data Report" dated 15 April 1983.

## 1.1.2 Phase II - Data Analysis.

During this phase, the data collected in Phase I was analyzed. Energy conservation opportunities (ECOS) were identified and economically analyzed. The "Energy Report" presents recommendations, justifications, and preliminary DD Form 1391s.

## 1.1.3. Phase III - Project Documents.

During this phase, applicable DA Form 4283s, DD Form 1391s, and Project Development Brochures will be prepared.

## 1.2. <u>General Description</u>

The Kaiserslautern Military Community consists of 13 GYs located in and nearby the City of Kaiserslautern. This community is the home of the Headquarters of the 21st Support Command, Landstuhl Medical Center, and provides a broad range of functions including vehicle maintenance,

ordnance storage, communications, logistics and troop housing. GY 732, LAMC SATCOM and Heliport, GY 365 ~ Hill 365 and AFN Sembach were excluded from this survey because they have little manageable energy consumption.

## 1.2.1. Facilities.

- \* GY 072 Bann Communications Station is located on a hilltop about ten (10) miles southwest of downtown Kaiserslautern. Administrative space, technical facilities space, associated housing with mess, and storage space are provided in single story concrete or metal buildings.
- \* GY 298 Kaiserslautern Army Depot is located just east of the City. This, the largest US Army depot outside the states, includes receiving and shipping facilities, warehouses, vehicle maintenance facilities, computer and administrative spaces in single story metal or masonry buildings. Additional administration, housing, messing, and education facilities are single story modular wood buildings.
- \* GY 380 Kleber Kaserne is located on the east side of the City. It provides administrative space, troop housing and some community facilities, generally in multi-story concrete buildings.
- \* GY 382 Landstuhl Medical Facility is located about 10 miles west of downtown Kaiserslautern. This is a major medical center having a general hospital and the attendant support facilities.
- \* GY 455 Equipment Support Center is located at the east edge of Kaiserslautern. Its principal facilities are for vehicle repair.
- \* GY 490 Eselsfuerth Quarter Master Facility is located just northeast of the City. It includes warehouses, repair facilities, cold storage, a large laundry, and administration building. Generally, they are masonry construction and single story, except for the administration building and two 7-story warehouses.

- \* GY 542 Rhine Ordnance Barracks is located on the west edge of Kaiserslautern. Masonry buildings from one to three stories high provide administrative, education, troop housing and messing facilities. Metal buildings serve as warehouses, motor repair shops, and technical assembly buildings.
- \* GY 565 Panzer Kaserne is located adjacent to the 455th Equipment Support Center and is the site of the Headquarters of the 21st SUP-COM.
- \* GY 680 Daenner Kaserne and GY 741 Daenner Chapel are also located on the east side of Kaiserslautern. Daenner provides troop housing and administrative space in multi-story concrete buildings.
- \* GY 744 Pulaski Barracks is located on the west side of the City. It provides troop housing, messing facilities and administration space.

## 1.2.2. Location.

Kaiserslautern is located in West Central Germany. Approximately  $90~\rm km$  south and  $50~\rm km$  west of Frankfurt A.M. The general terrain in this area is hilly and wooded.

## 1.2.3. <u>Climate</u>.

Kaiserslautern is at the southern edge of the central highlands. Its climate is moderate. Summers are cool and winters are mild. Skies are generally overcast with frequent light precipitation. While the average winter temperature is approximately 40° F., spring and fall temperatures are also cool resulting in a relatively high number of annual degreedays. There is a weather station at nearby Sembach Air Base. Weather data for Sembach Air Base, FRG, is tabulated in TM 5-785 "Engineering Weather Data".

## 2. EXISTING ENERGY SITUATION

## 2. Source Energy Consumption.

The Kaiserslautern Community has consumed the following amount of fuel during the fiscal year of 1982 (FY 82).

|                    | MBTU      | %       | \$/MBTU  | \$        | %       |
|--------------------|-----------|---------|----------|-----------|---------|
| ****************   | ========  | ======= | ======== |           | =====   |
| Thermal Energy:    |           |         |          |           |         |
| - 0il No. 2        | 184,783   | (13.7)  | 10.45    | 1,930,982 | (24.7)  |
| - 0il No. 6        | 204,861   | (15.2)  | 7.63     | 1,563,089 | (19.9)  |
| - Coal             | 467,606   | (34.8)  | 4.11     | 1,921,861 | (24.6)  |
| TOTAL              | 857,250   | (63.7)  | 22.19    | 5,415,932 | (69.2)  |
| Electrical Energy: | 487,997   | (36.2)  | 3.17     | 1,544,739 | (19.7)  |
| TOTAL              | 1,345,247 | (100.0) |          | 6,960,671 | (88.9)  |
| Electrical Demand  |           |         |          |           |         |
| Charges:           | 12,353 k  | W       | \$70./kW | 864,710   | (11.1)  |
| GRAND TOTAL        |           |         |          | 7,825,381 | (100.0) |

The total energy situation as listed above is also shown in Diagram No. 2-1.



FY82 ENERGY CONSUMPTION & COST

Diagram No. 2-1

## 2.2. Baseline FY 75 Energy Consumption.

No records are available for the FY 75 electrical energy consumption. The FY 75 data have been extrapolated from the FY 77 to FY 82 data obtained during site survey on the basis of Diagram No. 2-2.



Diagram No. 2-2.

The thermal energy consumption was obtained during site survey and is shown in Diagram No. 2-3. This indicates also that the extrapolation of electrical energy is rather accurate.



The costs have been calculated assuming an average increase of approximately 6 percent per year since FY 75, which results in an average of 4.25\$/MBTU for thermal and 3.16\$/MBTU for electrical energy. No separate records for different fuels are available.

|                           | MBTU      | \$/MBTU                                 | \$        |
|---------------------------|-----------|-----------------------------------------|-----------|
|                           |           | ======================================= | ========= |
| Thermal Energy            | 925,000   | 4.25                                    | 3,931,250 |
| Electrical Energy         | 315,380   | 3.16                                    | 996,600   |
| TOTAL                     | 1,240,380 |                                         | 4,927,850 |
| Electrical Demand Charges | 8,788 kW  | \$47./kW                                | 413,036   |
| GRAND TOTAL               |           |                                         | 5,340,886 |

## 2.3. Present Annual Energy Consumption (FY 82).

## Electricity.

The total electrical consumption for the Kaiserslautern Community in FY 82 was:

- Energy: 42,067 MWH = 487,997 MBTU
- Demand: 12,353 kW

#### Heating Fuel.

The heating fuel consumption is taken from "AERAS-FU Fact Sheet - Heating Fuel Conservation Program FY 82". The total FY 82 consumption was 33,845 STD TONS/a which is equal to 857,250 MBTU/a.

## 2.4. Existing Building Source Energy Consumption

## 2.4.1. Heating Demand.

A peak heating load was calculated for each building. With the peak heat load and degree-days from TM 5-785, the Modified Degree-Day Method can be used to estimate annual fuel consumption.

At the Kaiserslautern Community, 31 buildings were subjected to a computerized energy analysis using the computer program Energy Simulation Program II (ESP II).

All 31 buildings were simulated with the building envelope described as it presently exists. Table 2.1. on the following page is a tabulation of the modeled buildings, their peak heating loads in 1000's of BTUH (PHEAT1), Annual Energy Consumption in millions of BTU (AHEAT1) and RATIO1 = AHEAT1/PHEAT1/1000. A second simulation of each building was made revising the wall and roof materials in accordance with proposed weatherization projects. The results of these simulations are also shown in Table 2-1. as PHEAT2, AHEAT2, and RATIO2. While, for many buildings there is a dramatic reduction in peak heat and annual heating, there was no substantial change in the ratio of the two.

Table 2-1. Tabulation

| BLDG | USE            | PHEAT1 | AHEAT1 | RATI01 | PHEAT2 | AHEAT2 | RATIO2 | COMM |
|------|----------------|--------|--------|--------|--------|--------|--------|------|
| 2200 | HQ ADM BLDG    | 1,086  | 3,217  | 2.96   | 687    | 2,141  | 3.11   | Α    |
| 2293 | ADM GEN PURP   | 294    | 860    | 2.92   | 138    | 402    | 2.91   | Α    |
| 3004 | ADM GEN PURP   | 548    | 1,339  | 2.44   | 353    | 736    | 2.08   | Α    |
| 3413 | SUP SVC ADM    | 412    | 1,267  | 3.07   | 185    | 559    | 3.02   | Α    |
| 3101 | ADM & SUP / BK | 630    | 1,937  | 3.07   | 358    | 1,012  | 2.82   | Α    |
| 3107 | ADM GEN PURP   | 378    | 1,021  | 2.70   | 171    | 435    | 2.54   | Α    |
| 3403 | FIXED LAUNDRY  | 1,470  | 4,630  | 3.14   | 544    | 1,782  | 3.27   | С    |
| 3243 | ENL PERS MESS  | 295    | 800    | 2.71   | 185    | 487    | 2.63   | F    |
| 163  | ENL PERS MESS  | 389    | 1,094  | 2.81   | 157    | 454    | 2.89   | F    |
| 2421 | EM BK W/O MS   | 233    | 736    | 3.15   | 149    | 478    | 3.20   | Н    |
| 3200 | EM BK W/O MS   | 2,203  | 6,598  | 2.99   | 1,065  | 3,285  | 3.08   | Н    |
| 3209 | EM BK W/O MS   | 738.   | 2,307  | 3.12   | 492    | 1,492  | 3.03   | Н    |
| 3246 | EM BK W/O MS   | 591    | 1,912  | 3.23   | 385    | 1,221  | 3.17   | Н    |
| 162  | EM BK / BN HQ  | 518    | 1,588  | 3.06   | 372    | 1,112  | 2.98   | Н    |
| 282  | EM BK W/O MS   | 104    | 344    | 3.30   | 73     | 240    | 3.28   | Н    |
| 2925 | EM BK W/O MS   | 384    | 1,226  | 3.19   | 224    | 739    | 3.29   | Н    |
| 3821 | SEBQ           | 206    | 473    | 2.29   | 85     | 238    | 2.80   | Н    |
| 3763 | HOSPITAL       | 388    | 967    | 2.49   | 234    | 506    | 2.16   | K    |
| 2288 | CARE & PRES SH | 737    | 2,153  | 2.92   | 360    | 986    | 2.73   | М    |
| 2233 | ENG FLD MNT    | 5,323  | 15,343 | 2.88   | 3,869  | 10,590 | 2.73   | М    |
| 3254 | MOTOR REP SHOP | 708    | 2,241  | 3.16   | 359    | 1,165  | 3.24   | М    |
| 3041 | MOTOR REP SHOP | 986    | 2,398  | 2.43   | 682    | 1,464  | 2.14   | M    |
| 3043 | MOTOR REP SHOP | 433    | 1,255  | 2.89   | 302    | 869    | 2.87   | М    |
| 3050 | MOTOR REP SHOP | 276    | 806    | 2.92   | 172    | 500    | 2.90   | М    |
| 3009 | MOTOR REP SHOP | 234    | 688    | 2.94   | 127    | 366    | 2.88   | М    |
| 3401 | QM REPAIR SHOP | 1,359  | 4,019  | 2.95   | 533    | 1,490  | 2.79   | М    |
| 3114 | MOTOR REP SHOP | 602    | 1,719  | 2.85   | 267    | 783    | 2.93   | М    |
| 2292 | EAM BLDG       | 258    | 740    | 2.86   | 116    | 308    | 2.65   | 0    |
| 3809 | LAB/ADM/EM BK  | 1,425  | 3,734  | 2.62   | 616    | 1,637  | 2.65   | 0    |
| 2281 | GEN PURP WHSE  | 2,579  | 7,244  | 2.80   | 2,088  | 5,810  | 2.78   | S    |
| 3055 | GEN PURP WHSE  | 694    | 2,043  | 2.94   | 398    | 1,164  | 2.92   | S    |

To obtain the ratio of annual heat to peak heat for the non-modeled buildings, the modeled buildings were grouped by use and the average value for the group (omitting the highest and lowest) was used. In this manner, the following "equivalent full load hours" were obtained:

| - Administration       | 2800 | Use Code = A   |
|------------------------|------|----------------|
| - Community Facilities | 2890 | Use Code = C   |
| - Troop Housing        | 3130 | Use Code = H   |
| ~ Medical              | 2490 | Use Code = K   |
| - Operations/Training  | 2590 | Use Code = $0$ |
| ~ Dining               | 2760 | Use Code = F   |
| ~ Maintenance          | 2905 | Use Code = M   |
| - Supply               | 2870 | Use Code = S   |

#### 2.4.2. Electrical Systems.

The Kaiserslautern Community is being supplied with electrical energy from two (2) power companies.

## - Platzworks supply:

- GY 072 Bann, with a separate metering station.
- GY 382 Landstuhl Hospital, with a separate metering station.
- GY 542 Rhine Ordnance, and
- GY 744 Pulaski Barracks, with a common metering station "Kaiserslautern-West"
- <u>Stadtwarke Kaiserslautern</u> supply through two metering stations "Kaiserslautern-East I" and "Kaiserslautern-East II"
  - GY 298 Army Depot
  - GY 380 Weber Kaserne
  - GY 455 Equipment Spl. Center
  - GY 490 Eselsfuerth QM Facility

GY 527 Radio Relay Hill 365

GY 565 Panzer Kaserne

GY 680 Daenner Kaserne

An accurate separation of the two systems by GY for East I and East II is not possible, because GY 298 Army Depot is being supplied through both of these metering stations. For this reason, the GYs could only be grouped together as shown on Tables 2-101 to 2-105.

METERING STATION : GY 072 BANN TABLE Nº 2-101

|                       | LIGHTING | WTR. HTR. | FURNACE | RANGE | DRYER | WASHER | REFRIG.<br>FREEZER | PUMP/FAN<br>AC | OTHERS | TOTAL INST.<br>KW |  |
|-----------------------|----------|-----------|---------|-------|-------|--------|--------------------|----------------|--------|-------------------|--|
| GY 072 (KW)           | 4        | 22        |         |       |       |        |                    |                | 180    | 206               |  |
| OPERATING<br>HOURS    | 4,500    | 1,825     |         |       |       |        |                    |                | 4.294  |                   |  |
| ANNUAL CONS.<br>(MWH) | 18       | 40        |         |       |       | -      |                    |                | 773    | 831               |  |
| DEMAND (KW)           | 2.7      | 15        |         |       |       |        | ·                  |                | 122.3  | 140               |  |

METERING STATION : GY 382 LANDSTUHL HOSPITAL TABLE Nº 2-102

|                       | LIGHTING | WTR. HTR. | FURNACE | RANGE | DRYER | WASHER | REFRIG.<br>FREEZER | PUMP/FAN<br>AC | OTHERS | TOTAL |  |
|-----------------------|----------|-----------|---------|-------|-------|--------|--------------------|----------------|--------|-------|--|
| GY: 382 (KW)          | 1,085    | 102       | 46 .    | 192   | 175   | 43     | 240                | 134            | 1,897  | 3,914 |  |
| OPERATING<br>HRS      | 3,325    | 1,825     | 2,190   | 1,460 | 1,460 | 1,095  | 1,095              | 3,650          | 995.3  | /     |  |
| ANNUAL CONS.<br>(MWH) | 3,607    | 186       | 101     | 280   | 256   | 47     | 263                | 489            | 1,888  | 7,117 |  |
| DEMAND (KW)           | 486      | 46        | 21      | 86    | 78    | 19     | 108                | 60             | 850    | 1,754 |  |

METERING STATION : WEST TABLE Nº 2-103

| ·                     | LIGHTING | WTR. HTR. | FURNACE | RANGE | DRYER | WASHER | REFRIG.<br>FREEZER | PUMP/FAN | OTHERS | TOTAL INSTALLED (KW) | TOTAL TRANSF.<br>CAPACITY (KVA) |
|-----------------------|----------|-----------|---------|-------|-------|--------|--------------------|----------|--------|----------------------|---------------------------------|
| GY 542<br>SURVEYED    | 455      | 71        | 102     | 61    | 77    | 14     | 40                 | 625*     | 268    | 1713                 |                                 |
| NOT SURVEYED          | 51       | 71        |         |       |       |        | 40                 | 225      | 268    | 655                  |                                 |
| FENCE LTG             | 230      |           |         |       | ,     |        |                    |          |        | 230                  | 6,065                           |
| AREA LTG              | 1200     |           |         |       |       |        |                    |          |        | 1200                 |                                 |
| COLD STORAGE          |          |           |         |       |       |        | 1047.              |          |        | 1047                 |                                 |
| GY 744                | 226      | 139       | 19      | 138   | 63    | 13     | 78                 | 100      | 221    | 997                  | 815                             |
| SUB TOTAL             | 2,562    | 281       | 121     | 199   | 140   | 27     | 1205               | 550      | 757    | 5,842                |                                 |
| AIR FORCE             | 90       | 9         | 15      | 18    | 15    | 3      | 90                 | 38       | 48     | 326                  | ·                               |
| FREQU. CONV.          |          |           |         |       |       |        |                    | 180      |        | 180                  |                                 |
| TOTAL (KW)            | 2252     | 290       | 136     | 217   | 155   | 30     | 1795               | 1168     | 805    | 6,348                | 6,880                           |
| OPERATING<br>HOURS    | 2,190    | 1,825     | 2,190   | 1,460 | 1,460 | 1,895  | 1,095              | 2,368    | 1,305  |                      |                                 |
| ANNUAL CONS.<br>(MWH) | 4938     | 529       | 298     | 317   | 226   | 57     | 1,418              | 2694     | 1,051  | 11,522               |                                 |
| DEMAND (KW)           | 2107     | 274       | 128     | 205   | 147   | 28     | 1,224              | 1126     | 761    | 6,000                |                                 |

<sup>\*</sup> Includes elec. dehumidifiers.

METERING STATION : EAST I + II
TABLE Nº 2 104

|                     | LIGHTING | WTR. HTR. | FURNACE | RANGE | DRYER | WASHER | REFRIG.<br>FREEZER | PUMP/FAN<br>AC , | OTHERS | TOTAL  | TOTAL TRANSF.<br>CAPACITY (KVA) |
|---------------------|----------|-----------|---------|-------|-------|--------|--------------------|------------------|--------|--------|---------------------------------|
| GY 298              | 756      | 167       | 115     | 89    | 8     | 2      | 115                | 380              | 1491   | 3,123  | 5,890                           |
| GY 380              | 547      | 26        | 145     | 107   | 274   | 77     | 124                | 105              | 178    | 1,583  | 2,490                           |
| GY 455.             | 198      | 100       | 14      | 24    |       | •      | 11                 | 186              | 464    | 997    | 800                             |
| GY 490              | 146      | 24        | 5       | 7     |       |        | 68                 | 18               | 320    | 588    | 1315                            |
| GY 527              | 28       | 3         | 2 .     | 3     | 6     | 1      | 1                  | 10               | 46     | 100    | 160                             |
| GY 565              | 365.     | 62        | 30      | 16    |       | 4      | 14                 | 40               | 151    | 682    | 15 15                           |
| GY 680              | 202      | 64        | 82      | 133   | 234   | 40     | 11                 | 38               | 35     | 839    | 630                             |
| TOTAL KW            | 2,242    | 446       | 393     | 397   | 522   | 124    | 344                | 777              | 2,685  | 7,912  | 12,800                          |
| OPERATING<br>HOURS  | 3005     | 1825      | 2190    | 1460  | 1460  | 1085   | 1095               | 5840             | 1,477  |        |                                 |
| ANNUAL CONS.<br>MWH | 6,737    | 813       | 861     | 553   | 762   | 136    | 377                | 4,538            | 3,967  | 18,744 |                                 |
| DEMAND<br>KW        | 1,264    | 251       | 221     | 214   | 294   | 70     | 194                | 438              | 1,513  | 4,459  |                                 |

## METERING STATION : TOTAL COMMUNITY TABLE Nº 2-105

|                      | LIGHTING | WTR. HTR. | FURNACE | RANGE | DRYER | WASHER | REFRIG.<br>FREEZER | PUMP/FAN<br>AC | OTHERS | TOTAL  |  |
|----------------------|----------|-----------|---------|-------|-------|--------|--------------------|----------------|--------|--------|--|
| GY 072 *             |          |           |         |       |       |        |                    |                |        |        |  |
| INSTALLED<br>KW      | 4        | 22        |         |       |       |        |                    |                | 180    | 206    |  |
| DEMAND .<br>KW       | 3.0      | 15        |         |       |       |        |                    | ·              | 122    | 140    |  |
| ANNUAL CONS.<br>MWH  | 18       | 40        | ·       | ·     |       |        |                    |                | 773    | 831    |  |
| GY 382               |          |           |         |       |       |        |                    |                |        |        |  |
| INSTALLED<br>KW      | 1,085    | 102       | 46      | 192   | 175   | 43     | 240                | 134            | 1,897  | 3,914  |  |
| DEMAND<br>KW         | 486      | 46        | 21      | 86    | 78    | 19     | 108                | 60             | 850    | 1,754  |  |
| ANNUAL CONS.<br>MWH  | 3,607    | 186       | 101     | 280   | 256   | 47     | 263                | 489            | 1,888  | 7,117  |  |
| WEST-RING            |          |           |         |       |       |        |                    |                |        |        |  |
| INSTALLED<br>KW      | 2,652    | 290       | 136     | 217   | 155   | 30     | 1,295              | 768            | 805    | 6,348  |  |
| DEMAND<br>KW         | 2,507    | 274       | 128     | 205   | 147   | 28     | 1,224              | 726            | 761    | 6,000  |  |
| ANNUAL CONS.<br>MWH  | 5,808    | 529       | 298     | 317   | 226   | 57     | 1,418              | 1,818          | 1,051  | 11,522 |  |
| EAST-RING            |          |           |         | •     |       |        |                    |                |        |        |  |
| INSTALLED<br>KW      | 2,242    | 446       | 393     | 379   | 522   | 124    | 344                | 777            | 2,685  | 7,912  |  |
| DEMAND<br>KW         | 1,264    | 251       | 221     | 214   | 294   | 70     | 194                | 438            | 1,513  | 4,459  |  |
| ANNUAL CONS. MWH     | 6,737    | 813       | 861     | 553   | 762   | 136    | 377                | 4,538          | 3,967  | 18,744 |  |
| TOTAL INST.<br>KW    | 5,983    | 860       | 575     | 788   | 852   | 197    | 1,879              | 1,679          | 5,567  | 18,380 |  |
| TOTAL DEMAND<br>KW   | 4,260    | 586       | 370     | 505   | 519   | 117 ·  | 1,526              | 1,224          | 3,246  | 12,353 |  |
| TOTAL CONS.<br>MWH/a | 16,170   | 1,568     | 1,260   | 1,150 | 1,244 | 240    | 2,058              | 6,845          | 7,679  | 38,214 |  |
| MWH/a %              | 42,3     | 4,10      | 3,3     | 3,0   | 3,3   | 0.6    | 5.4                | 17.9           | 20.1   | 100    |  |
| KW %                 | 34.30    | 4.70      | 3.0     | 4.0   | 4.0   | 1,0    | 12.40              | 9.90           | 26.30  | 100    |  |

The basis used for these tables are the monthly "Electricity-Consumption-Load and Cost" FY 82 prepared by 80th TFW DEEE-U for the actual metered energy consumption and the demands, and also the survey data obtained during site survey in early 1983. This survey data is rather accurate because the individual electrical consumers used were obtained for each building and not only for the "survey/modelled" buildings.

Based on these information, the FY 82 load profiles are calculated as shown on tables 2-101 to 2-105 and indicated on Diagram No. 2-4.



FY82 ELECTRICAL PROFILE Diagram No. 2-4.

#### 3. ENERGY CONSERVATION OPPORTUNITIES DEVELOPED

#### 3.1. ECOs Investigated.

## 3.1.1. Individual Building ECOs.

Evaluation of ECO relating to building envelope, HVAC and lighting resulted in the following projects qualifying under ECIP criteria:

| PROJECT DESCRIPTION            | COST        | ANNUAL SA<br>(MBTU) | AVINGS<br>US\$ | SIR  |
|--------------------------------|-------------|---------------------|----------------|------|
| Weatherization Walls and Roofs | \$6,741,355 | 167,701             | 826,642        | 1.61 |
| Heating System Modification    | 806,790     | 185,243             | 904,937        | 14.9 |
| Lighting System Modification   | 1,163,065   | 30,278              | 206,575        | 1.95 |

## 3.1.1.1. Weatherization Projects.

During the field survey, 21 different types of walls and 30 different types of roofs were identified (see Data Report). Each wall and roof type was analyzed and a modification for each was proposed to (wherever practical) achieve "U" factors required by current criteria. Cost estimates were developed for each modification. Unit prices and revised "U" factors were used to compute costs and savings. Savings were reduced by the percentage savings already attributed to the mechanical control ECOs. All buildings having SIRs less than 1.0 were eliminated. All storm window/double glazing projects had SIRs less than one (1).

The wall and roofs modifications having SIRs equal to or greater than one (1) are shown in Tables 3-1 and 3-2 respectively. While wall and roof insulation has been combined into a single insulation project, walls and roofs in the same building do not necessarily always qualify economically and therefore are listed separately.

## Total Annual Savings:

|                      | HEAT MBTU | FUEL*   |
|----------------------|-----------|---------|
| Savings ~            |           |         |
| Walls                |           |         |
| Heavy Oil            | 3,498     | 4,373   |
| Coal                 | 2,048     | 2,926   |
| Light Oil            | 3,507     | 5,010   |
| Total                | 9,053     | 12,309  |
| Roofs                |           |         |
| Heavy Oil            | 36,906    | 46,133  |
| Coal                 | 51,526    | 73,609  |
| Light Oil            | 24,955    | 35,650  |
| Total                | 113,387   | 155,392 |
| TOTAL WALL AND ROOFS | 122,440   | 167,701 |

<sup>\*</sup> Fuel consumption based on 80 percent for heavy oil; 70 percent efficiency for coal and light oil.

Cost -

 Walls
 212,600

 Roofs
 6,887,300

 Total
 7,099,900

SIR = 1.61

Table 3-1. Savings Weatherization Walls, Kaiserslautern

|                                                                                                                                                  | KASERNE                                                                                                         | FUNCTION                                                                                                                                                                                                               | WALL<br>TYPE                                                                                    | SQFT<br>BLDG                                                                                                       | MBTU                                                                                                                             | S SAVINGS<br>US\$                                                                                                                                                                         | COST<br>US\$                                                                                                                                                                   | SIR                                                                                                                                                         | FUEL<br>TYPE                                                                                                                 | SQFT<br>WALL                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2615<br>2213<br>2227<br>2256<br>2267<br>2289<br>2300<br>3251<br>3717<br>3719<br>3416<br>150<br>310<br>646<br>695<br>3019<br>3029<br>2850<br>2855 | GY 072 GY 298 GY 298 GY 298 GY 298 GY 298 GY 380 GY 382 GY 382 GY 490 GY 542 GY 542 GY 542 GY 565 GY 744 GY 744 | EM BK W/MES INFL MAT ST GEN PURP WH MIL BRIDGE BOX & CRATE GEN PURP WH GEN PURP WH MOTOR REP S STHS / AUTO GEN STOREHO GEN PURP WH MOTOR REP S MOTOR REP S CHEMISTRY L ADM GEN PUR QM REPAIR S GEN PURP WH MOTOR REP S | CMU5 MET1 CAB1 MET1 CMU1 MET1 MET1 CMU2 CMU2 MET1 CMU2 CONC1 MET1 CMU1 CMU1 CMU1 MET1 MET1 MET1 | 3,598 10,147 3,014 10,147 15,183 31,360 5,319 9,835 8,068 8,002 12,163 41,667 4,323 4,595 2,815 30,041 2,135 2,618 | 90<br>682<br>35<br>760<br>319<br>1,700<br>401<br>887<br>227<br>193<br>737<br>483<br>222<br>364<br>577<br>90<br>489<br>223<br>283 | 10,708<br>69,165<br>3,643<br>77,147<br>32,386<br>172,398<br>47,692<br>56,160<br>14,413<br>12,218<br>87,581<br>57,412<br>26,389<br>23,063<br>68,576<br>5,720<br>58,173<br>26,576<br>33,625 | 10,247<br>6,364<br>2,857<br>7,013<br>11,533<br>15,864<br>3,746<br>8,178<br>9,441<br>8,100<br>6,879<br>20,281<br>18,564<br>3,358<br>45,461<br>3,174<br>17,683<br>2,087<br>2,609 | 1.04<br>10.86<br>1.27<br>10.99<br>2.80<br>10.86<br>12.73<br>6.86<br>1.52<br>1.50<br>12.73<br>2.83<br>1.42<br>6.86<br>1.50<br>1.80<br>3.28<br>12.73<br>12.88 | NO 2<br>NO 6<br>NO 6<br>NO 6<br>NO 6<br>NO 2<br>COAL<br>COAL<br>COAL<br>NO 2<br>NO 2<br>COAL<br>NO 2<br>COAL<br>NO 2<br>COAL | 2,672<br>7,217<br>2,866<br>7,953<br>10,555<br>17,990<br>4,248<br>9,275<br>8,640<br>7,413<br>7,801<br>18,561<br>4,842<br>3,809<br>11,857<br>2,905<br>16,183<br>2,367<br>2,959 |
| TOTAL<br>TOTAL<br>TOTAL<br>TOTAL                                                                                                                 |                                                                                                                 | LLS                                                                                                                                                                                                                    | CMU2<br>MBTU                                                                                    | 11,111                                                                                                             | 284                                                                                                                              | 18,000                                                                                                                                                                                    | 11,790                                                                                                                                                                         | 1.52                                                                                                                                                        |                                                                                                                              | 9,053<br>901,056<br>215,238<br>220,473<br>160,909<br>135,158                                                                                                                 |

Table 3-2. Savings Weatherization Roofs, Kaiserslautern

| BLDG                                                                                                                         | KASERNE                                                                                | FUNCTION                                                                                                                                                                                     | ROOF<br>TYPE                                               | SQFT<br>BLDG                                                                                                                                            | SAVING:<br>MBTU                                                                                                  | US\$                                                                                                                                                          | COST<br>US\$                                                                                                                                             | SIR                                                                                                                          | FUEL<br>TYPE                                                                                 | SQFT<br>ROOF                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2615<br>2618<br>2619<br>2200<br>2213<br>2219<br>2225<br>2226<br>2227<br>2238<br>2239<br>2246<br>2256<br>2257<br>2258<br>2260 | GY 072<br>GY 072<br>GY 072<br>GY 298<br>GY 298<br>GY 298<br>GY 298<br>GY 298<br>GY 298 | EM BK W/MES OPS GEN PUR READY BLDG HQ ADM BLDG INFL MAT ST GEN PURP WH CML FLD MT CARE & PRES GEN PURP WH ENG FLD MNT GEN PURP WH OPS GEN PUR MIL BRIDGE GEN PURP WH GEN PURP WH GEN PURP WH | RF19 RF19 RF20 RF5 RF22 RF22 RF22 RF18 RF2 RF7 RF7 RF7 RF7 | 3,598<br>1,622<br>2,289<br>37,486<br>10,147<br>32,262<br>10,770<br>13,540<br>3,014<br>60,818<br>19,569<br>29,322<br>4,165<br>10,147<br>10,137<br>29,322 | 247<br>43<br>61<br>864<br>1,177<br>698<br>664<br>296<br>212<br>2,298<br>421<br>717<br>106<br>1,192<br>249<br>631 | 29,376<br>5,196<br>7,315<br>87,686<br>119,372<br>70,783<br>67,414<br>30,083<br>21,505<br>233,078<br>42,706<br>85,208<br>12,667<br>120,890<br>25,303<br>64,001 | 9,171<br>2,491<br>3,508<br>45,966<br>26,377<br>70,015<br>19,375<br>29,398<br>12,590<br>66,987<br>42,242<br>63,307<br>9,043<br>26,391<br>22,025<br>63,307 | 3.20<br>2.08<br>2.08<br>1.90<br>4.52<br>1.01<br>3.47<br>1.02<br>1.70<br>3.47<br>1.01<br>1.34<br>1.40<br>4.58<br>1.14<br>1.01 | NO 2<br>NO 2<br>NO 6<br>NO 6<br>NO 6<br>NO 6<br>NO 6<br>NO 6<br>NO 2<br>NO 2<br>NO 6<br>NO 6 | 3,597<br>1,624<br>2,287<br>37,466<br>10,345<br>32,904<br>10,985<br>13,815<br>3,012<br>37,982<br>19,852<br>29,751<br>4,250<br>10,351<br>10,351<br>29,751 |
| 2267                                                                                                                         | GY 298                                                                                 | BOX & CRATE                                                                                                                                                                                  | RF22                                                       | 29,322<br>15,183                                                                                                                                        | 717<br>332                                                                                                       | 85,208<br>33,714                                                                                                                                              | 63,307<br>32,947                                                                                                                                         | 1.34<br>1.02                                                                                                                 | NO 2<br>NO 6                                                                                 | 29,751<br>15,483                                                                                                                                        |

Table 3-2. Savings Weatherization Roofs, Kaiserslautern (continued)

|                      | KASERNE                    | FUNCTION                                  | ROOF<br>TYPE         | SQFT<br>BLDG                | MBTU             | SAVINGS<br>US\$             | COST<br>US\$                | SIR                  | FUEL<br>TYPE         | SQFT<br>ROOF               |
|----------------------|----------------------------|-------------------------------------------|----------------------|-----------------------------|------------------|-----------------------------|-----------------------------|----------------------|----------------------|----------------------------|
| 2276<br>2279<br>2281 | GY 298<br>GY 298<br>GY 298 | ADM GEN PUR<br>ADM GEN PUR<br>GEN PURP WH | RF25<br>RF25<br>RF22 | 8,094<br>6,633<br>72,226    | 211<br>172       | 21,407<br>17,535<br>158,487 | 12,409<br>10,164<br>156,768 | 1.72<br>1.72         | NO 6<br>NO 6<br>NO 6 | · 8,091<br>6,628<br>73,673 |
| 2288                 | GY 298                     | CARE &PRES                                | RF9                  | 21,736                      | 540              | 54,845                      | 47,165                      | 1.16                 | NO 6                 | 22,165                     |
| 2289                 | GY 298                     | GEN PURP WH                               | RF5                  | 31,360                      |                  | 369,103                     | 81,560                      | 4.52                 | NO 6                 | 31,989                     |
| 2292                 | GY 298                     | EAM BLDG                                  | RF20                 | 12,105                      | 258              | 26,205                      | 14,851                      | 1.76                 | NO 6                 | 12,105                     |
| 2293                 | GY 298                     | ADM GEN PUR                               | RF20                 | 10,170                      | 234              | 23,797                      | 12,475                      | 1.90                 | NO 6                 | 10,168                     |
| 2300                 | GY 298                     | GEN PURP WH                               | RF5                  | 5,319                       | 696              | 82',764                     | 15,609                      | 5.30                 | NO 2                 | 6,122                      |
| 2303                 | GY 298                     | CARE & PRES                               | RF11                 | 5,525                       | 308              | 36,678                      | 8,465                       | 4.33                 | NO 2                 | 5,519                      |
| 2306                 | GY 298                     | CARE & PRES                               | RF7                  | 10,147                      | 268              | 31,908                      | 22,071                      | 1.44                 | NO 2                 | 10,372                     |
| 2324                 | GY 298                     | GEN PURP WH                               | RF9                  | 29,322                      | 717              | 85,208                      | 63,307                      | 1.34                 | NO 2                 | 29,751                     |
| 2328                 | GY 298<br>GY 298           | GEN PURP WH                               | RF7<br>RF5           | 7,924<br>11,703             |                  | 23,205<br>163,719           | 17,240<br>30,506            | 1.34<br>5.36         | NO 2<br>NO 2         | 8,102<br>11,965            |
| 2346<br>2374<br>2384 | GY 298<br>GY 298<br>GY 298 | SALV & SURV<br>ADM GEN PUR<br>ADM GEN PUR | RF25<br>RF29<br>RF25 | 3,200<br>5,058<br>5,058     | 82<br>321<br>131 | 9,764<br>32,584<br>15,675   | 4,966<br>13,168             | 1.96<br>2.47<br>2.02 | NO 2<br>NO 6         | 3,238<br>5,164             |
| 2385<br>2388         | GY 298<br>GY 298           | GEN PURP WH                               | RF7<br>RF7           | 21,344<br>9,963             | 525<br>245       | 62,465<br>29,183            | 7,755<br>46,409<br>21,682   | 1.34                 | NO 2<br>NO 2<br>NO 2 | 5,057<br>21,810<br>10,189  |
| 2389<br>2394         | GY 298<br>GY 298           | GEN PURP WH<br>MOTOR REP S                | RF9<br>RF2           | 10,557<br>6,017             | 260<br>372       | 26,382<br>37,767            | 22,964<br>10,854            | 1.14                 | NO 6                 | 10,792<br>6,154            |
| 2408                 | GY 298                     | EM BK W/O M                               | RF25                 | 7,227                       | 243              | 24,704                      | 11,079                      | 2.22                 | NO 6                 | 7,224                      |
| 2409                 | GY 298                     | ADM GEN PUR                               | RF25                 | 2,393                       | 62               | 6,319                       | 3,663                       | 1.72                 | NO 6                 | 2,388                      |
| 2410<br>2411         | GY 298<br>GY 298           | GEN INST BL<br>EM BK W/O M                | RF25<br>RF25         | 3,006<br>7,227              | 72<br>243        | 7,346<br>24,704             | 4,603<br>11,079             | 1.59                 | NO 6                 | 3,002<br>7,224             |
| 2412                 | GY 298                     | EM BK W/O M                               | RF25                 | 7,227                       | 243              | 24,704                      | 11,079                      | 2.22                 | NO 6                 | 7,224                      |
| 2414                 | GY 298                     | SUP SVC ADM                               | RF25                 | 2,393                       | 62               | 6,319                       | 3,663                       | 1.72                 | NO 6                 | 2,388                      |
| 2418                 | GY 298                     | ADM GEN PUR                               | RF25                 | 2,393                       | 62               | 6,319                       | 3,663                       | 1.72                 | NO 6                 | 2,388                      |
| 2419                 | GY 298                     | SUP SVC ADM                               | RF25                 | 2,672                       | 69               | 7,059                       | 4,092                       | 1.72                 | NO 6                 | 2,668                      |
| 2420                 | GY 298                     | ADM & EM BK                               | RF25                 | 7,227                       | 188              | 19,113                      | 11,079                      | 1.72                 | NO 6                 | 7,224                      |
| 2421                 | GY 298                     | EM BK W/O M                               | RF25                 | 7,227                       | 243              | 24,704                      | 11,079                      | 2.22                 | NO 6                 | 7,224                      |
| 2422                 | GY 298                     | ENL PERS ME                               | RF25                 | 10,363                      | 291              | 29,546                      | 15,886                      | 1.85                 |                      | 10,358                     |
| 2423<br>2425         | GY 298<br>GY 298           | EM BK W/O M<br>FE MNT SHOP                | RF25<br>RF7          | 7,227<br>10,202             | 243<br>254       | 24,704<br>25,798            | 11,079 22,186               | 2.22                 | NO 6                 | 7,224<br>10,426            |
| 2426<br>2427<br>2433 | GY 298<br>GY 298<br>GY 298 | DISP W/O BE<br>POST RESTAU                | RF25<br>RF25<br>RF9  | 2,281<br>2,395              | 70<br>67<br>713  | 7,127<br>6,844              | 3,498<br>3,679              | 2.03<br>1.85         | NO 6                 | 2,281<br>2,399             |
| 3188<br>3200         | GY 374<br>GY 380           | AR DEL EQP<br>THEAT W/ ST<br>EM BK W/O M  | RF9<br>RF11          | 28,589<br>15,953<br>121,124 | 442              | 72,311<br>52,606<br>179,040 | 62,185<br>36,388<br>61,930  | 1.16<br>1.44<br>2.89 | NO 6<br>NO 2<br>COAL | 29,224<br>17,100<br>40,382 |
| 3203<br>3205         | GY 380<br>GY 380           | ADM GEN PUR<br>ADM & LIBRA                | RF11<br>RF11         | 36,753<br>18,942            | 497<br>342       | 31,483<br>21,665            | 14,075<br>9,686             | 2.23                 | COAL                 | 9,178<br>6,316             |
| 3206<br>3208         | GY 380<br>GY 380           | ENL PERS ME<br>FIN ADM BLD                | RF29<br>RF3          | 22,264<br>45,059            | 1,492<br>248     | 94,482<br>15,743            | 56,733<br>15,549            | 1.66                 | COAL                 | 22,251<br>11,265           |
| 3209                 | GY 380                     | EM BK W/O M                               | RF20                 | 67,099                      | 500              | 31,657                      | 20,567                      | 1.53                 | COAL                 | 16,764                     |
| 3210                 | GY 380                     | EM BK W/O M                               | RF20                 | 73,728                      | 500              | 31,657                      | 20,567                      | 1.53                 | COAL                 | 16,764                     |
| 3211                 | GY 380                     | ADM GEN PUR                               | RF3                  | 44,285                      | 244              | 15,458                      | 15,267                      | 1.01                 | COAL                 | 11,061                     |
| 3212                 | GY 380                     | GEN E DEV F                               | RF11                 | 21,082                      | 264              | 16,729                      | 8,085                       | 2.06                 | COAL                 | 5,272                      |
| 3213                 | GY 380                     | EM BK W/O M                               | RF20                 | 55,971                      | 417              | 26,415                      | 17,161                      | 1.53                 |                      | 13,988                     |
| 3214                 | GY 380                     | ADM GEN PUR                               | RF11                 | 19,403                      | 262              | 16,646                      | 7,442                       | 2.23                 | COAL                 | 4,852                      |
| 3221                 | GY 380                     | EXCH SP SUP                               | RF25                 | 2,099                       | 53               | 3,398                       | 3,283                       | 1.03                 | COAL                 | 2,141                      |
| 3222                 | GY 380                     | MOTOR REP S                               | RF2                  | 7,016                       | 425              | 26,915                      | 12,391                      | 2.17                 | COAL                 | 7,026                      |
| 3224                 | GY 380                     | EM SVC CLUB                               | RF11                 | 35,684                      | 1,173            | 74,253                      | 30,791                      | 2.41                 | COAL                 | 20,078                     |
| 3225                 | GY 380                     | CLO SALES                                 | RF15                 | 12,206                      | 518              | 32,800                      | 18,712                      | 1.75                 | COAL                 | 12,201                     |

Table 3-2. Savings Weatherization Roofs, Kaiserslautern (continued)

| BLDG                         | KASERNE                              | FUNCTION                                               | ROOF<br>TYPE                 | SQFT<br>BLDG                        | MBTU                    | SAVINGS<br>US\$                     | US\$                              | SIR                          | FUEL<br>TYPE                 | SQFT<br>ROOF                     |
|------------------------------|--------------------------------------|--------------------------------------------------------|------------------------------|-------------------------------------|-------------------------|-------------------------------------|-----------------------------------|------------------------------|------------------------------|----------------------------------|
| 3226<br>3227<br>3228<br>3229 | GY 380<br>GY 380<br>GY 380<br>GY 380 | BN HQ BLDG<br>EM BK W/O M<br>CO HQ BLDG<br>ADM GEN PUR | RF20<br>RF20<br>RF11<br>RF11 | 12,678<br>33,985<br>2,765<br>21,452 | 175<br>253<br>74<br>290 | 11,109<br>16,031<br>4,739<br>18,380 | 9,329<br>10,415<br>2,118<br>8,217 | 1.19<br>1.53<br>2.23<br>2.23 | COAL<br>COAL<br>COAL<br>COAL | 7,604<br>8,489<br>1,381<br>5,358 |
| 3230<br>3233<br>3234         | GY 380<br>GY 380<br>GY 380           | COMM CENTER<br>GEN INST BL<br>MOTOR REP S              | RF11<br>RF3<br>RF2           | 8,830<br>36,453<br>5,881            | 221<br>202<br>356       | 26,270<br>12,811                    | 6,765<br>12,653                   | 3.88<br>1.01                 | NO 2<br>COAL                 | 4,411<br>9,167                   |
| 3242<br>3243                 | GY 380<br>GY 380                     | EM BK W/O M<br>ENL PERS ME                             | RF3<br>RF4                   | 36,667<br>20,385                    | 261<br>246              | 22,546<br>16,559<br>15,612          | 10,380<br>12,653<br>14,699        | 2.17<br>1.30<br>1.06         | COAL<br>COAL                 | 5,885<br>9,167<br>6,907          |
| 3244<br>3245<br>3246         | GY 380<br>GY 380<br>GY 380           | EM BK W/O M<br>EM BK W/O M<br>EM BK W/O M              | RF3<br>RF3<br>RF3            | 39,818<br>36,667<br>55,971          | 261<br>261<br>399       | 16,559<br>16,559<br>25,266          | 12,653<br>12,653<br>19,306        | 1.30<br>1.30<br>1.30         | COAL<br>COAL                 | 9,167<br>9,167<br>13,988         |
| 3251<br>3252<br>3254         | GY 380<br>GY 380<br>GY 380           | MOTOR REP S<br>MOTOR REP S<br>MOTOR REP S              | RF5<br>RF2<br>RF2            | 9,835<br>13,874<br>14,419           | 1,133<br>979<br>876     | 71,780<br>62,033<br>55,480          | 25,101<br>28,560<br>25,542        | 2.85<br>2.17<br>2.17         | COAL<br>COAL                 | 9,845<br>16,193<br>14,482        |
| 3265<br>3266<br>3700         | GY 380<br>GY 380<br>GY 382           | OPEN MESS<br>SIG ADM BLD<br>HOSPITAL                   | RF11<br>RF19<br>RF11         | 19,585<br>25,178<br>54,476          | 380<br>610<br>696       | 45,257<br>72,541<br>44,116          | 9,999<br>32,177<br>16,699         | 4.52<br>2.25<br>2.64         | NO 2<br>NO 2<br>COAL         | 6,520<br>20,982<br>10,889        |
| 3701<br>3702<br>3703         | GY 382<br>GY 382<br>GY 382           | GENEDEV/EXC<br>EM MD BK<br>LABORATORY                  | RF11<br>RF11<br>RF11         | 28,156<br>58,085<br>65,371          | 352<br>813<br>836       | 22,328<br>51,474<br>52,965          | 10,792<br>17,805<br>20,049        | 2.06<br>2.89<br>2.64         | COAL<br>COAL                 | 7,037<br>11,610<br>13,073        |
| 3704<br>3705<br>3707         | GY 382<br>GY 382<br>GY 382           | SENTRY STAT<br>EM SERV BLD<br>EM MD BK                 | RF11<br>RF11<br>RF11         | 4,262<br>27,562<br>60,201           | 106<br>345<br>843       | 12,686<br>21,850<br>53,383          | 3,267<br>10,560<br>18,465         | 3.88<br>2.06<br>2.89         | NO 2<br>COAL<br>COAL         | 2,130<br>6,886<br>12,040         |
| 3716<br>3717<br>3722         | GY 382<br>GY 382<br>GY 382           | EW BK W/O M<br>STHS / AUTO<br>BOWLING CTR              | RF11<br>RF11<br>RF11         | 58,085<br>8,068<br>26,568           | 813<br>453<br>897       | 51,474<br>28,684<br>56,838          | 17,805<br>13,184<br>24,620        | 2.89<br>2.17<br>2.30         | COAL<br>COAL<br>COAL         | 11,610<br>8,597                  |
| 3732<br>3736<br>3737         | GY 382<br>GY 382<br>GY 382           | VET FAC<br>FIRE STATIO<br>FE MNT SHOP                  | RF11<br>RF18<br>RF18         | 9,513<br>4,793<br>6,596             | 304<br>362<br>469       | 19,268<br>22,917<br>29,749          | 7,293<br>20,010<br>27,564         | 2.64<br>1.14                 | COAL<br>COAL                 | 16,053<br>4,755<br>4,788         |
| 3738<br>3741<br>3752         | GY 382<br>GY 382<br>GY 382           | MEDICAL LAB<br>P O MAIN<br>BOQ MIL FEM                 | RF11<br>RF25<br>RF3          | 25,961<br>3,556                     | 553<br>95               | 35,048<br>6,052                     | 13,267<br>5,445                   | 1.07<br>2.64<br>1.11         | COAL<br>COAL                 | 6,595<br>8,651<br>3,550          |
| 3754<br>3756<br>3757         | GY 382<br>GY 382<br>GY 382           | BOQ MIL FEM<br>BOQ MIL FEM<br>HOSPITAL                 | RF3<br>RF3                   | 35,063<br>35,063<br>35,063          | 199<br>199<br>199       | 12,652<br>12,652<br>12,652          | 9,668<br>9,668<br>9,668           |                              | COAL<br>COAL                 | 7,004<br>7,004<br>7,004          |
| 3758<br>3759<br>3760         | GY 382<br>GY 382<br>GY 382           | HOSPITAL<br>HOSPITAL                                   | RF11<br>RF11<br>RF11         | 26,518<br>15,198<br>15,233          | 848<br>486<br>486       | 53,706<br>30,776<br>30,776          | 20,329<br>11,650<br>11,650        | 2.64<br>2.64<br>2.64         | COAL<br>COAL                 | 13,256<br>7,596<br>7,596         |
| 3761<br>3762<br>3763         | GY 382<br>GY 382                     | OPS GEN PUR<br>HOSPITAL<br>HOSPITAL                    | RF11<br>RF11<br>RF11         | 15,619<br>26,518<br>26,518          | 546<br>848<br>848       | 34,586<br>53,706<br>53,706          | 11,963<br>20,329<br>20,329        | 2.89<br>2.64<br>2.64         | COAL<br>COAL                 | 7,801<br>13,256<br>13,256        |
| 3764<br>3765                 | GY 382<br>GY 382<br>GY 382           | HOSPITAL HOSP CLINIC OPS GEN PUR                       | RF11<br>RF11<br>RF11         | 16,000<br>18,000<br>36,909          | 511<br>575<br>1,843     | 32,389<br>36,443<br>116,689         | 12,260<br>13,795<br>40,362        | 2.64<br>2.64<br>2.89         | COAL<br>COAL                 | 7,994<br>8,995<br>26,318         |
| 3766<br>3767<br>3769         | GY 382<br>GY 382<br>GY 382           | CLINIC / AD<br>HOSP CLINIC<br>HOSPITAL                 | RF11<br>RF11<br>RF11         | 35,102<br>32,693<br>14,420          | 1,597<br>1,046<br>461   | 101,131<br>66,217<br>29,207         | 45,214<br>25,065<br>11,056        | 2.23<br>2.64<br>2.64         | COAL<br>COAL                 | 29,482<br>16,344<br>7,209        |
| 3770<br>3771<br>3772         | GY 382<br>GY 382<br>GY 382           | HOSPITAL<br>MNT / CLINI<br>HOSPITAL                    | RF11<br>RF11<br>RF11         | 15,199<br>14,420<br>26,518          | 486<br>403<br>848       | 30,776<br>25,524<br>53,706          | 11,650<br>11,056<br>20,329        | 2.64<br>2.30<br>2.64         | COAL<br>COAL                 | 7,596<br>7,209<br>13,256         |
| 3776<br>3780                 | GY 382<br>GY 382                     | LIBRARY<br>OPN MESS OF                                 | RF11<br>RF11                 | 4,719<br>11,423                     | 263<br>666              | 16,685<br>42,220                    | 7,227<br>17,508                   | 2.30<br>2.41                 | COAL<br>COAL                 | 4,712<br>11,416                  |

Table 3-2. Savings Weatherization Roofs, Kaiserslautern (continued)

|                                                                                                              | KASERNE                                                                                                                                  | FUNCTION                                                                                                                                                            | ROOF<br>TYPE                                                                            | SQFT<br>BLDG                                                                                                                      | MBTU                                                                                        | SAVINGS<br>US\$                                                                                                                             | COST<br>US\$                                                                                                                           | SIR                                                                                                          | FUEL<br>TYPE                                                                                 | SOFT<br>ROOF                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 3792<br>3794<br>3800<br>3809<br>3812<br>3813<br>3815<br>3820<br>3821<br>3823<br>3824<br>3007<br>3008<br>3010 | GY 382<br>GY 455<br>GY 455<br>GY 455 | FUNCTION  MED ADM BLD OPN MESS NC MOTOR REP S LAB/ADM/EM CHILD CARE EM BK W/O M EM BK W/O M ADM / CLASS SEBQ SEBQ EM BK W/O M MOTOR REP S MOTOR REP S MOTOR REP S   |                                                                                         | 12,632<br>9,571<br>5,770<br>72,966<br>9,114<br>13,324<br>13,646<br>13,035<br>13,035<br>14,424<br>11,559<br>11,559<br>7,008        | 342<br>360<br>350                                                                           |                                                                                                                                             |                                                                                                                                        |                                                                                                              |                                                                                              |                                                                                                                                   |
| 3011<br>3012<br>3013<br>3014<br>3042<br>3043<br>3050<br>3051<br>3053<br>3057<br>3058<br>3083<br>3091<br>3401 | GY 455<br>GY 455                     | MOTOR REP S ORD ADM BLD ELEC MNT SH PO BRANCH RECR BLDG GEN MNT SHO QM REPAIR S | RF2<br>RF2<br>RF29<br>RF9<br>RF17<br>RF17<br>RF11<br>RF11<br>RF20<br>RF11<br>RF5<br>RF2 | 7,008<br>7,008<br>11,896<br>26,516<br>11,445<br>10,438<br>7,758<br>7,762<br>5,146<br>19,375<br>17,988<br>6,737<br>2,166<br>35,467 | 430<br>430<br>725<br>1,781<br>288<br>205<br>151<br>151<br>278<br>1,020<br>428<br>376<br>250 | 27,245<br>27,245<br>45,917<br>112,758<br>29,286<br>20,821<br>15,337<br>15,337<br>28,261<br>103,514<br>43,433<br>44,757<br>29,740<br>217,561 | 12,543<br>12,543<br>21,140<br>67,706<br>25,185<br>15,282<br>11,257<br>11,257<br>7,887<br>29,702<br>22,059<br>10,329<br>5,541<br>62,528 | 2.17<br>2.17<br>2.17<br>1.66<br>1.16<br>1.36<br>1.36<br>1.36<br>3.58<br>3.48<br>1.96<br>4.33<br>5.36<br>3.47 | COAL<br>COAL<br>COAL<br>NO 6<br>NO 6<br>NO 6<br>NO 6<br>NO 6<br>NO 6<br>NO 6<br>NO 2<br>NO 2 | 7,112<br>7,112<br>11,986<br>26,555<br>11,836<br>11,072<br>8,156<br>8,156<br>5,143<br>19,368<br>17,979<br>6,735<br>2,173<br>35,454 |
| 3403<br>3406<br>3408<br>3413<br>3416<br>3424<br>110<br>162<br>163<br>164<br>179<br>270<br>292                | GY 490<br>GY 490<br>GY 490<br>GY 490<br>GY 490<br>GY 542<br>GY 542<br>GY 542                                                             | FIXED LAUND GEN PURP WH CALIBR & RE SUP SVC ADM GEN PURP WH QM REPAIR S POST RESTAU EM BK / BN ENL PERS ME ADM BLDG (A GP HQ BLDG OPS GEN PUR CO HQ BLDG            | RF29<br>RF4<br>RF29<br>RF5<br>RF18<br>RF25<br>RF3<br>RF11<br>RF3<br>RF1<br>RF29         | 40,631<br>61,637<br>17,819<br>16,320<br>12,163<br>4,425<br>3,850<br>41,949<br>9,296<br>41,949<br>21,256<br>5,380                  | 2,639<br>407<br>1,087<br>508                                                                | 267,652<br>41,282<br>129,188<br>60,444<br>168,001<br>31,952<br>12,873<br>35,564<br>64,525<br>27,515<br>18,569<br>31,444<br>7,755            | 104,797<br>27,223<br>45,814<br>20,849<br>31,686<br>18,481<br>5,907<br>14,480<br>14,257<br>14,480<br>9,772<br>13,716<br>5,020           | 2.55<br>1.51<br>2.89<br>5.30<br>1.72<br>2.17<br>2.45<br>4.52<br>1.90<br>1.90<br>2.29<br>1.54                 | NO 6<br>NO 2<br>NO 2<br>NO 2<br>NO 2<br>NO 2<br>NO 2<br>NO 2<br>NO 2                         | 41,103<br>12,793<br>17,969<br>8,177<br>12,427<br>4,422<br>3,852<br>10,491<br>9,296<br>10,491<br>7,080<br>5,380<br>1,969           |
| 310<br>331<br>332<br>335<br>336<br>337<br>339<br>344<br>346<br>369<br>370                                    | GY 542<br>GY 542<br>GY 542<br>GY 542<br>GY 542<br>GY 542<br>GY 542<br>GY 542<br>GY 542<br>GY 542                                         | MOTOR REP S GEN STOREHO GEN STOREHO GEN STOREHO ADM GEN PUR GEN STOREHO GEN STOREHO GEN STOREHO GEN STOREHO MOTOR REP S MOTOR REP S                                 | RF29<br>RF5<br>RF9<br>RF9<br>RF9<br>RF9<br>RF9<br>RF9<br>RF5                            | 3,943<br>4,323<br>3,875<br>3,875<br>3,875<br>3,875<br>3,875<br>3,875<br>3,875<br>3,875<br>3,400<br>3,400                          | 95<br>95<br>95<br>95<br>95<br>95<br>95<br>95<br>391<br>391                                  | 59,186<br>11,340<br>11,340<br>11,340<br>10,621<br>11,340<br>11,340<br>11,340<br>46,524<br>46,524                                            | 11,028<br>8,425<br>8,425<br>8,425<br>8,425<br>4,752<br>8,425<br>8,425<br>8,425<br>8,669<br>8,669                                       | 5.36<br>1.34<br>1.34<br>1.34<br>2.23<br>1.34<br>1.34<br>5.36<br>5.36                                         | NO 2<br>NO 2<br>NO 2<br>NO 2<br>NO 2<br>NO 2<br>NO 2<br>NO 2                                 | 1,969<br>4,325<br>3,959<br>3,959<br>3,959<br>3,959<br>3,959<br>3,959<br>3,400<br>3,400                                            |

Table 3-2. Savings Weatherization Roofs, Kaiserslautern (continued)

| BLDG KASERNE                                                                                                                                                                                                                                                                                                                                                                  | FUNCTION                                                                                                                                                                                                                                                                                             | ROOF<br>TYPE                                             | SQFT<br>BLDG | MBTU | S SAVINGS<br>US\$ | COST<br>US\$                                                                                                                                                                                                                                                      | SIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FUEL<br>TYPE | SQFT<br>ROOF                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------|------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 371 GY 542 372 GY 542 394 GY 542 395 GY 542 637 GY 542 637 GY 542 6300 GY 565 3000 GY 565 3009 GY 565 3029 GY 565 3100 GY 680 3101 GY 680 3101 GY 680 3102 GY 680 3104 GY 680 3104 GY 680 3104 GY 680 3107 GY 680 3113 GY 680 3114 GY 680 3115 GY 680 3117 GY 680 | FUNCTION  MOTOR REP S MTL & WDWK MOTOR REP S MOTOR REP S WTNG SHELTE MOTOR REPAI MOTOR REP MOTOR REP S SKILL DEV MOTOR REP S SKILL DEV G MOTOR REP S MOTOR REP S GEN PURP WH MOTOR REP S EM BK W/O M | TYPE == RF5 RF17 RF5 RF5 RF5 RF11 RF11 RF11 RF11 RF11 RF | BLDG         | MBTU | US\$              | US\$ ======== 8,669 4,693 27,461 10,967 11,878 32,920 8,748 6,831 41,450 14,917 16,026 16,026 16,026 18,187 10,560 7,054 45,551 5,214 46,315 57,422 5,459 6,781                                                                                                   | SIR<br>5.36<br>1.59<br>5.36<br>5.36<br>1.29<br>2.85<br>2.17<br>2.17<br>1.59<br>5.42<br>5.42<br>4.19<br>4.52<br>4.19<br>1.72<br>1.72<br>1.72<br>5.36<br>1.72<br>1.72<br>1.72<br>1.72<br>1.72<br>1.72<br>1.72<br>1.72<br>1.72<br>1.72<br>1.72<br>1.72<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1.70<br>1 | TYPE         | R00F ======  3,400 3,400 10,770 10,770 5,154 4,659 12,912 4,960 3,873 30,031 9,727 10,450 10,450 10,450 11,859 6,886 6,886 5,111 10,899 3,400 11,082 13,740 2,141 2,659                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                      |                                                          |              |      |                   | 20,805<br>5,080<br>20,805<br>5,080<br>20,805<br>5,080<br>13,881<br>12,729<br>15,131<br>38,572<br>11,324<br>4,075<br>11,324<br>4,075<br>11,324<br>11,324<br>76,893<br>10,313<br>10,577<br>4,776<br>4,776<br>4,776<br>4,776<br>13,759<br>13,759<br>13,759<br>11,326 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | 8,160<br>1,992<br>8,160<br>1,992<br>8,160<br>1,992<br>5,444<br>4,992<br>3,620<br>9,229<br>2,657<br>9,229<br>2,657<br>9,229<br>18,399<br>6,725<br>4,971<br>2,244<br>2,244<br>2,244<br>2,244<br>2,244<br>2,244<br>2,244<br>2,244<br>2,244<br>2,244<br>2,292<br>3,292<br>3,292<br>3,292<br>3,292<br>3,292<br>3,292<br>3,292<br>3,292 |

Table 3-2. Savings Weatherization Roofs, Kaiserslautern (continued)

| BLDG KASERNE                                                                | FUNCTION                                  | ROOF<br>TYPE | SQFT<br>BLDG               | MBTU              | SAVINGS<br>US\$            | US\$   | SIR                  | FUEL<br>TYPE             | SQFT<br>ROOF                                             |
|-----------------------------------------------------------------------------|-------------------------------------------|--------------|----------------------------|-------------------|----------------------------|--------|----------------------|--------------------------|----------------------------------------------------------|
| 2930 GY 744<br>2933 GY 744<br>2935 GY 744                                   | EM BK W/O M<br>ADM GEN PUR<br>XMTR BLDG/A | RF20         | 18,468<br>12,326<br>12,326 | 275<br>142<br>142 | 27,927<br>14,429<br>14,429 | 11,326 | 2.46<br>1.90<br>1.90 | NO 6<br>NO 6<br>NO 6     | 9,232<br>6,165<br>6,165                                  |
| TOTAL ANNUAL TOTAL DOLLAR TOTAL COST TOTAL SQFT TOTAL SQFT RO PEAK LOAD RED | SAVINGS                                   | MBTU         |                            |                   |                            |        |                      | 9,9<br>4,3<br>4,1<br>2,3 | 13,387<br>68,603<br>92,440<br>19,741<br>06,823<br>03,088 |

#### 3.1.1.2. <u>Heating System Modifications</u>

Indoor space temperatures are controlled manually by occupants. Whenever the outdoor temperature is warm enough so that the capacity of the radiators at the manual valve setting is greater than the space heat loss, the space temperature rises above that required. Further, there is no means to set back the temperature when the building is not occupied. A peak heating load was calculated for each building. With the peak heat load and degree-days from TM 5-785, the Modified Degree-Day Method can be used to estimate annual fuel consumption. At Kaiserslautern, 31 buildings were subjected to a computerized hourly energy analysis. Several computer simulations were made on each one of the representative administration, housing, maintenance, operations and warehouse buildings to determine energy consumption at different operating temperatures and operating conditions such as night setback. In all, 67 simulations were performed. The two most common deficiencies in the existing heating systems are the lack of control of the terminal heating devices and lack of means of reducing space temperatures during unoccupied periods. The savings in percent of total consumption resulting from the addition of these features was determined from the computer simulations. Because barracks are occupied on weekends, the amount of savings is less than for

Administrative buildings. Shops and warehouses can be set back at all times. Average space temperatures were estimated based on a judgment of the percent of people occupancy of these facilities based on the field survey. The construction costs are based on the assumption that the existing recirculation pumps are to be replaced by new pumps since experience has shown that these pumps normally have too low of a pressure head to be reused in systems containing thermostatic radiator valves and zone control valves. The construction costs are based on the assumption that the average number of heating units per building is ten (10) each. There were ten (10) heaters average in the buildings surveyed so this average will be used for all motor repair shops and warehouses. The costs for central components are shared by this quantity and added to the unit costs.

Heating losses and annual consumption are based on the assumption that existing wall and roof materials will remain unchanged. It is always more economical to install temperature control and night setback than building insulation.

#### Results.

The buildings where installation of thermostatic valves have SIRs greater than one (1) are listed in Table 3-3. Buildings where installation of night setback controllers results in an SIR of one or more are listed in Table 3-4. Shops and warehouses where installation of night and weekend setback controllers result in a SIR of one (1) or greater are listed in Table 3-5.

| SAVINGS                                                                                                     | HEAT (MBTU)                                          | FUEL (MBTU)                          |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------|
| (1) Coal<br>Thermostats (Table E-2)<br>Night Setback (Table E-3)<br>24-Hour Setback (Table E-4)<br>Subtotal | 14,884<br>22,935<br>20,646<br>58,465                 | 21,263<br>32,764<br>29,494<br>83,521 |
| (2) Heavy Oil<br>Thermostats<br>Night Setback<br>24-Hour Setback<br>Subtotal                                | 1,772<br>3,254<br>48,004<br>53,030                   | 2,215<br>4,068<br>60,005<br>66,288   |
| (3) Light Oil<br>Thermostats<br>Night Setback<br>24-Hour Setback<br>Subtotal                                | 5,171<br>9,212<br>10,421<br>24,804                   | 7,387<br>13,160<br>14,887<br>35,434  |
| TOTAL                                                                                                       | 136,299                                              | 185,243                              |
| Costs ~<br>Thermostats<br>Night Setback<br>24~Hour Setback                                                  | \$ 155,350<br>\$ 431,550<br>\$ 262,800<br>\$ 849,700 |                                      |
| TOTAL                                                                                                       | •                                                    |                                      |
| SIR = 14.9                                                                                                  |                                                      |                                      |

Table 3-3. Thermostat Savings, Kaiserslautern

| BLDG FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PRESENT<br>CONSUMPTION<br>MBTU/YEAR                        | MBTU/YEAR                                                  | MBTU                                        | NGS SAVII                                               | NGS COST                                            | SIR                                                    | 1BER OF<br>VALVES                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|-------------------------------------|
| 2615 EM BK W/MESS 2618 OPS GEN PURP 2619 READY BLDG 2202 ADM GEN PURP 2270 POST RESTAURN 2276 ADM GEN PURP 2279 ADM GEN PURP 2292 EAM BLDG 2293 ADM GEN PURP 2374 ADM GEN PURP 2384 ADM GEN PURP 2408 EM BK W/O MS 2409 ADM GEN PURP 2410 GEN INST BLDG 2411 EM BK W/O MS 2412 EM BK W/O MS 2412 EM BK W/O MS 2412 EM BK W/O MS 2414 SUP SVC ADM 2418 ADM GEN PURP 2419 SUP SVC ADM 2420 ADM & EM BK 2421 EM BK W/O MS 2421 EM BK W/O MS 2422 ENL PERS MESS 2423 EM BK W/O MS 2422 ENL PERS MESS 2423 EM BK W/O MS 2427 POST RESTAURN 3200 EM BK W/O MS 3210 EM BK W/O MS 3210 EM BK W/O MS 3211 ADM GEN PURP 3212 GEN E DEV FAC 3213 EM BK W/O MS 3214 ADM GEN PURP 3225 CLO SALES 3226 BN HQ BLDG 3227 EM BK W/O MS 3214 ADM GEN PURP 3225 CLO SALES 3226 BN HQ BLDG 3227 EM BK W/O MS 3214 ADM GEN PURP 3225 CLO SALES 3226 BN HQ BLDG 3227 EM BK W/O MS 3214 ADM GEN PURP 3225 CLO SALES 3226 BN HQ BLDG 3227 EM BK W/O MS 3214 ADM GEN PURP 3230 COMM CENTER 3231 BOWLING CTR 3235 GYMNASIUM 3265 OPEN MESS | CONSUMPTION MBTU/YEAR ==================================== | CONSUMPTION MBTU/YEAR ==================================== | N SAVIN<br>UTBM                             | NGS SAVII                                               | NGS COST                                            | SIR                                                    | VALVES                              |
| 3266 SIG ADM BLDG<br>3702 EM MD BK<br>3707 EM MD BK<br>3716 EW BK W/O MS<br>3722 BOWLING CTR<br>3732 VET FAC<br>3741 P O MAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,604<br>2,884<br>2,359<br>2,884<br>1,702<br>626<br>463    | 1,363<br>2,451<br>2,005<br>2,451<br>1,447<br>532<br>394    | 240<br>432<br>353<br>432<br>255<br>93<br>69 | 2,516<br>1,779<br>1,455<br>1,779<br>1,050<br>386<br>286 | 647<br>4,386<br>4,386<br>4,386<br>348<br>623<br>274 | 25.71<br>3.70<br>3.02<br>3.70<br>27.90<br>5.69<br>9.63 | 26<br>176<br>176<br>176<br>14<br>25 |

Table 3-3. Thermostat Savings, Kaiserslautern (continued)

| BLDG FUNCTION                                                                               | MBTU/YEAR                                                  | REVISED<br>CONSUMPTION<br>MBTU/YEAR                                                                     | ANNUAL<br>SAVINGS<br>MBTU                                                                                                                               | S SAVIN                         | GS COST<br>\$                   | SIR                                  | MBER. OF<br>VALVES         |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|--------------------------------------|----------------------------|
|                                                                                             | CONSUMPTION MBTU/YEAR ==================================== | CONSUMPTION MBTU/YEAR 540 1,288 1,157 1,653 1,938 1,938 1,106 1,379 3,423 3,712 1,097 1,288 1,441 2,195 | SAVINGS MBTU  95 227 204 291 342 195 243 604 655 193 227 254 387 372 122 260 156 139 788 443 116 114 114 67 75 113 76 76 135 128 185 226 47 357 188 307 | S SAVIN                         | GS COST                         | SIR                                  | VALVES                     |
| 277 CO HQ BLDG<br>278 EM BK W/O MS<br>279 EM BK W/O MS<br>280 E BK W/O MS<br>281 CO HQ BLDG | 353<br>419<br>365<br>419<br>353                            | 300<br>356<br>310<br>356<br>300                                                                         | 53<br>62<br>54<br>62<br>53                                                                                                                              | 218<br>259<br>225<br>259<br>218 | 423<br>623<br>623<br>623<br>423 | 4.72<br>3.80<br>3.30<br>3.80<br>4.72 | 17<br>25<br>25<br>25<br>17 |

Table 3-3. Thermostat Savings, Kaiserslautern (continued)

| BLDG  | FUNCTION                                | PRESENT<br>CONSUMPTION<br>MBTU/YEAR     | REVISED<br>CONSUMPTION<br>MBTU/YEAR | ANNUAL<br>N SAVINO<br>MBTU |         |          | NU<br>SIR | MBER OF |
|-------|-----------------------------------------|-----------------------------------------|-------------------------------------|----------------------------|---------|----------|-----------|---------|
| ===== | ======================================= | ======================================= | ========                            | ======                     | ======= | ======== | ======    | ======  |
| 282   | EM BK W/O MS                            | 419                                     | 356                                 | 62                         | 259     | 623      | 3.80      | 25      |
| 283   | EM BK W/O MS                            | 365                                     | 310                                 | 54                         | 225     | 623      | 3.30      | 25      |
| 284   | EM BK W/O MS                            | 419                                     | 356                                 | 62                         | 259     | 623      | 3.80      | 25      |
| 285   | GEN INST BLDG                           | 308                                     | 262                                 | 46                         | 190     | 274      | 6.38      | 11      |
| 286   | ADM GEN PURP                            | 333                                     | 283                                 | 50                         | 205     | 373      | 5.04      | 15      |
| 289   | EM BK W/O MS                            | 526                                     | 447                                 | 78                         | 324     | 573      | 5.19      | 23      |
| 292   | CO HQ BLDG                              | 450                                     | 382                                 | 67                         | 277     | 448      | 5.69      | 18      |
| 630   | AMMO RENV SHOP                          | 1,118                                   | 950                                 | 167                        | 1,754   | 996      | 11.61     | 40      |
| 637   | WTNG SHELTER                            | 670                                     | 569                                 | 100                        | 1,051   | 448      | 15.49     | 18      |
| 695   | CHEMISTRY LAB                           | 1,520                                   | 1,292                               | 228                        | 2,385   | 199      | 79.35     |         |
| 705   | ADM GEN PURP                            | 158                                     | 135                                 | 23                         | 249     | 174      | 9.42      | 8<br>7  |
| 3100  | EM BK W/O MS                            | 2,313                                   | 1,966                               | 347                        | 3,628   | 1,869    | 12.82     | 75      |
| 3101  | ADM & SUP / Bk                          | 2,448                                   | 2,081                               | 367                        | 3,840   | 1,869    | 13.57     | 75      |
| 3102  | EM BK W/O MS                            | 2,448                                   | 2,081                               | 367                        | 3,840   | 1,869    | 13.57     | 75      |
| 3103  | EM BK W/O MS                            | 2,448                                   | 2,081                               | 367                        | 3,840   | 1,869    | 13.57     | 75      |
| 3104  | ADM GEN PURP                            | 2,090                                   | 1,777                               | 313                        | 3,279   | 1,869    | 11.58     | 75      |
| 3106  | ENL PERS MESS                           | 1,291                                   | 1,097                               | 193                        | 2,025   | 1,869    | 7.13      | 75      |
| 3113  | FE FAC                                  | 373                                     | 317                                 | 56                         | 585     | 299      | 12.94     | 12      |
| 3150  | POST CHAPEL                             | 1,390                                   | 1,181                               | 208                        | 2,180   | 872      | 16.52     | 35      |
| TOTAL | S                                       |                                         | 21                                  | 1,789                      | 128,667 | 148,902  |           | 5,975   |

Table 3-4. Set Back Savings, Kaiserslautern

| BLDG                                                                                                                                 | FUNCTION                                                                                                                                                                                                    | MBTU/YEAR                                                                                             |                                                                                                       | ANNUAL<br>SAVINGS<br>MBTU                                                                        | ANNUAL<br>SAVINGS<br>\$                                                                                                            | COST<br>\$                                                                                                                                   |                                                                                                                                | MBER OF<br>SET CON-<br>OLLERS                                                |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 2615<br>2618<br>2619<br>2202<br>2270<br>2276<br>2279<br>2292<br>2293<br>2374<br>2384<br>2408<br>2409<br>2410<br>2411<br>2412<br>2414 | EM BK W/MESS OPS GEN PURP READY BLDG ADM GEN PURP POST RESTAURN' ADM GEN PURP ADM GEN PURP EAM BLDG ADM GEN PURP ADM GEN PURP ADM GEN PURP EM BK W/O MS ADM GEN PURP GEN INST BLDG EM BK W/O MS SUP SVC ADM | 552<br>399<br>258<br>224<br>158<br>585<br>416<br>845<br>944<br>687<br>388<br>609<br>204<br>229<br>609 | 408<br>255<br>165<br>143<br>110<br>374<br>266<br>540<br>604<br>440<br>248<br>450<br>130<br>146<br>450 | 143<br>93<br>80<br>47<br>210<br>149<br>304<br>340<br>247<br>139<br>158<br>73<br>82<br>158<br>158 | 1,502<br>1,504<br>973<br>616<br>362<br>1,606<br>1,143<br>2,321<br>2,595<br>1,888<br>1,461<br>1,208<br>561<br>629<br>1,208<br>1,208 | 3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019 | 5.65<br>5.65<br>3.66<br>2.71<br>1.59<br>7.07<br>5.03<br>10.21<br>11.42<br>8.31<br>5.49<br>5.31<br>2.47<br>2.77<br>5.31<br>5.31 | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
| 2418                                                                                                                                 | ADM GEN PURP                                                                                                                                                                                                | 188<br>194                                                                                            | 120<br>124                                                                                            | 67<br>69                                                                                         | 516<br>533                                                                                                                         | 3,019<br>3,019                                                                                                                               | 2.27<br>2.34                                                                                                                   | 1                                                                            |

Table 3-4. Set Back Savings, Kaiserslautern (continued)

| BLDG                                                                                                                                                         | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MBTU/YEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REVISED<br>CONSUMPTION<br>MBTU/YEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MBTU                                   | SAVINGS<br>\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$                                                                                                                                                                                                                                     | RE<br>SIR TR         | MBER OF<br>SET CON-<br>OLLERS |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------|
| 2419<br>2420<br>2421<br>2422<br>2423<br>2427<br>3206<br>3210<br>3211<br>3212<br>3213<br>3214<br>32227<br>3223<br>3223<br>3223<br>3233<br>3235<br>3235<br>323 | SUP SVC ADM ADM & EM BK EM BK W/O MS ENL PERS MESS EM BK W/O MS POST RESTAURNT EM BK W/O MS ENL PERS MESS EM BK W/O MS ENL PERS MESS EM BK W/O MS ADM GEN PURP GEN E DEV FAC EM BK W/O MS ADM GEN PURP CLO SALES BN HQ BLDG EM BK W/O MS CO HQ BLDG ADM GEN PURP COMM CENTER BOWLING CTR GYMNASIUM OPEN MESS SIG ADM BLDG EM MD BK EM BK W/O MS BOWLING CTR VET FAC P O MAIN BOQ MIL MALE HOSPITAL | 221<br>575<br>609<br>614<br>609<br>178<br>7,680<br>2,626<br>2,626<br>1,451<br>905<br>1,894<br>820<br>1,317<br>560<br>1,695<br>273<br>821<br>519<br>918<br>1,718<br>1,363<br>2,451<br>2,005<br>2,451<br>1,363<br>2,451<br>2,005<br>2,451<br>1,363<br>2,451<br>2,005<br>2,451<br>1,363<br>2,451<br>2,005<br>2,451<br>1,653<br>1,938<br>1,157<br>1,653<br>1,938<br>1,157<br>1,653<br>1,938<br>1,106<br>1,379<br>3,423<br>3,712<br>1,097<br>1,288<br>1,441<br>2,195<br>2,112 | 141<br>368<br>450<br>430<br>450<br>125<br>5,683<br>1,971<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,944<br>1,814<br>1,814<br>1,814<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,943<br>1,944<br>1,172<br>2,533<br>2,375<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995<br>1,995 | ====================================== | 608<br>1,580<br>1,208<br>1,407<br>1,208<br>409<br>8,213<br>3,475<br>2,808<br>2,149<br>1,340<br>2,026<br>1,214<br>1,950<br>1,813<br>404<br>1,956<br>1,359<br>2,141<br>2,026<br>1,359<br>2,141<br>2,621<br>2,143<br>328<br>583<br>577<br>795<br>714<br>1,768<br>1,196<br>682<br>851<br>3,475<br>2,144<br>2,144<br>2,144<br>2,144<br>2,144<br>2,144<br>2,146<br>1,956<br>1,359<br>2,147<br>1,956<br>1,359<br>2,148<br>1,768<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1,196<br>1 | 3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>6,038<br>9,057<br>6,038<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019 |                      |                               |
| 3776<br>3780<br>3792                                                                                                                                         | LIBRARY<br>OPN MESS OFF<br>MED ADM BLDG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 696<br>1,475<br>886                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 445<br>1,032<br>567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 250<br>442<br>319                      | 1,031<br>1,820<br>1,313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,019<br>3,019<br>3,019                                                                                                                                                                                                                | 5.25<br>9.28<br>6.69 | 1<br>1<br>1                   |

Table 3-4. Set Back Savings, Kaiserslautern (continued)

| BLDG FUNCTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ON MBTU/YE                             | TION CONSUMF<br>AR MBTU/YE                                                                                                                                                                                                                        | PTION SAVING<br>EAR MBTU | S SAVINGS<br>\$                                                                                                                                                                                                                                                                            | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IBER OF<br>SET CON-<br>OLLERS           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 3794 OPN ME 3809 LAB/AD 3810 SCHOOL 3812 CHILD 3813 EM BK 3815 EM BK 3818 BN HQ 3819 BLDGS 3820 ADM / 3821 SEBQ 3824 EM BK 3053 ORD AD 3083 RECR B 3413 SUP SV 110 POST R 162 EM BK 179 GP HQ 273 EM BK 275 EMM BK 275 EMM BK 275 EMM BK 275 EM BK 275 EM BK 275 EM BK 276 CO HQ 277 CO HQ 278 EM BK 275 EM BK 276 CO HQ 277 CO HQ 278 EM BK 275 EM BK 276 CO HQ 277 CO HQ 278 EM BK 275 EM BK 276 CO HQ 277 CO HQ 278 EM BK 275 EM BK 276 CO HQ 277 CO HQ 278 EM BK 275 EM BK 276 CO HQ 277 CO HQ 278 EM BK 279 EM BK 270 CO HQ 282 EM BK 281 CO HQ 282 EM BK 283 EM BK 284 EM BK 285 GEN IN 286 ADM GE 389 EM BK 280 EM BK 281 CO HQ 282 EM BK 283 EM BK 284 EM BK 285 GEN IN 286 ADM GE 389 EM BK 289 EM BK 280 EM BK 281 CO HQ 282 EM BK 283 EM BK 284 EM BK 285 GEN IN 286 ADM GE 380 EM BK 3810 EM BK | ###################################### | 552<br>7 3,306<br>0 1,606<br>1 423<br>1 481<br>1 481<br>1 244<br>7 316<br>3 411<br>1 319<br>5 566<br>0 467<br>6 822<br>187<br>7 1,500<br>746<br>2 1,115<br>4 623<br>264<br>0 230<br>264<br>0 192<br>192<br>192<br>192<br>192<br>192<br>192<br>192 |                          | 2,475<br>4,777<br>3,717<br>980<br>696<br>696<br>566<br>457<br>952<br>461<br>818<br>2,006<br>3,953<br>4,840<br>839<br>5,513<br>3,346<br>6,561<br>3,381<br>445<br>381<br>332<br>381<br>445<br>381<br>332<br>381<br>445<br>381<br>381<br>381<br>381<br>381<br>381<br>381<br>381<br>381<br>381 | 3,019<br>9,057<br>6,038<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019<br>3,019 | 9.31<br>9.31<br>9.47<br>4.99<br>3.54<br>3.54<br>2.35<br>4.83<br>14.82<br>1.37<br>12.34<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94<br>1.94 | 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                      | •                                                                                                                                                                                                                                                 | -                        | -                                                                                                                                                                                                                                                                                          | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                       |

Table 3-4. Set Back Savings, Kaiserslautern (continued)

| BLDG                         | FUNCTION                                               | BASELINE<br>CONSUMPTION<br>MBTU/YEAR | REVISED<br>CONSUMPTION<br>MBTU/YEAR | ANNUAL<br>SAVINGS<br>MBTU | ANNUAL<br>SAVINGS<br>\$          | COST<br>\$                       |                                 | MBER OF<br>SET CON-<br>DLLERS |
|------------------------------|--------------------------------------------------------|--------------------------------------|-------------------------------------|---------------------------|----------------------------------|----------------------------------|---------------------------------|-------------------------------|
| 3104<br>3106<br>3113<br>3150 | ADM GEN PURP<br>ENL PERS MESS<br>FE FAC<br>POST CHAPEL | 1,777<br>1,097<br>317<br>1,181       | 1,137<br>768<br>203<br>756          | 329<br>114                | 6,690<br>3,444<br>1,195<br>4,448 | 6,038<br>3,019<br>3,019<br>3,019 | 12.58<br>12.95<br>4.49<br>16.73 | 2<br>1<br>1<br>1              |
| TOTAL                        | S                                                      |                                      | 35                                  | ,402 21                   | 5,511                            | 413,640                          | 1                               | 137                           |

Table 3-5. Reset Control Savings Shop and Warehouse, Kaiserslautern

| BLDG FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BASELINE<br>CONSUMPTION<br>MBTU/YEAR                                                                                                                 | REVISED<br>CONSUMPT<br>MBTU/YEA                                                                                                                                                                                               | ANNUA<br>ION SAVIN<br>R MBTU                                                                                                           |                                                                                                                                                                 |                                                                                                                                                                             | SIR TR                                                                                                                                                         | MBER OF<br>SET CON-<br>OLLERS                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 2213 INFL MAT STHS 2219 GEN PURP WHSE 2225 CML FLD MT SH 2226 CARE & PRES SI 2227 GEN PURP WHSE 2233A ENG FLD MNT SI 2238 GEN PURP WHSE 2239 GEN PURP WHSE 2256 MIL BRIDGE FAI 2257 GEN PURP WHSE 2256 GEN PURP WHSE 2257 GEN PURP WHSE 2258 GEN PURP WHSE 2264 GEN PURP WHSE 2264 GEN PURP WHSE 2267 BOX & CRATE SI 2277 MNT SH WHSE 2267 BOX & CRATE SI 2277 MNT SH WHSE 2280 GEN PURP WHSE 2281 GEN PURP WHSE 2280 GEN PURP WHSE 2371 GEN PURP WHSE 2372 GEN PURP WHSE 2385 GEN PURP WHSE | MBTU/YEAR  3,153 3,013 2,029 1,963 470 1,971 2,786 3,166 987 2,664 3,994 1,977 945 646 8,782 2,101 9,239 H 2,381 1,900 1,900 2,635 2,635 2,237 1,094 | MBTU/YEA<br>1,892<br>1,807<br>1,217<br>1,178<br>282<br>9,669<br>1,074<br>1,671<br>1,900<br>592<br>1,598<br>2,396<br>1,186<br>567<br>387<br>5,269<br>1,261<br>5,543<br>565<br>1,429<br>1,140<br>1,581<br>1,581<br>1,342<br>656 | R MBTU 1,261 1,205 811 785 188 6,446 716 1,114 1,266 394 1,065 1,597 791 378 258 3,512 840 3,695 377 952 760 760 1,054 1,054 1,054 437 | \$ ======= 9,625 9,195 6,193 5,992 1,434 49,183 5,466 11,656 9,664 3,012 8,132 12,189 6,035 2,886 1,973 26,802 6,414 28,197 1,551 9,963 5,798 8,042 9,358 4,576 | \$ 2,760 2,760 2,415 3,450 690 18,978 2,760 3,105 1,380 2,070 4,830 5,175 3,105 2,070 1,725 17,253 4,140 10,006 2,070 2,760 1,035 1,035 1,725 1,380 2,760 1,380 2,760 1,380 | SIR TR =======  34.01 31.94 21.75 10.75 15.30 22.11 13.99 30.31 80.73 7.01 10.04 18.97 13.50 6.20 2.87 8.32 8.26 25.12 .79 28.67 62.12 49.62 65.11 26.18 25.34 | OLLERS =====  8 8 7 10 255 89 4614 159 650 1229 683 3548 4 |
| 2389 GEN PURP WHSE<br>2393 MOTOR REP SHO<br>2394 MOTOR REP SHO<br>2425 FE MNT SHOP<br>2433 AR DEL EQP MS<br>3222 MOTOR REP SHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P 1,314<br>1,096<br>3,314                                                                                                                            | 737<br>1,485<br>788<br>657<br>1,988<br>886                                                                                                                                                                                    | 491<br>990<br>525<br>438<br>1,325<br>591                                                                                               | 3,749<br>7,553<br>4,010<br>3,346<br>10,116<br>2,431                                                                                                             | 1,380<br>2,760<br>2,760<br>2,070<br>6,211<br>1,725                                                                                                                          | 23.77<br>24.04<br>6.98<br>9.15<br>9.32<br>9.36                                                                                                                 | 4<br>8<br>8<br>6<br>18<br>5                                |

Table 3-5. Reset Control Savings Shop and Warehouse, Kaiserslautern (continued)

| 3234 MOTOR REP SHOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BLDG                                                                                                                                                                                                                                                                 | FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MBTU/YEAR                                                                            | REVISED<br>CONSUMPTION<br>MBTU/YEAR                                                | MBTU                                                                  | S SAVINGS<br>\$                                                                         | \$                                                                                                                                                                                           | SIR T                                                                                 | UMBER OF<br>ESET CON-<br>ROLLERS                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 3058 PO BRANCH 1,441 922 518 3,959 2,070 13.09 6 3401 QM REPAIR SHOP 4,956 2,973 1,982 15,126 5,520 24.08 16 3402 GEN PURP WHSE 1,242 745 497 3,792 1,035 36.36 3 3406 GEN PURP WHSE 2,861 1,716 1,144 8,733 3,450 21.31 10 3408 CALIBR & REP 2,513 1,508 1,005 10,514 3,105 26.13 9 3424 QM REPAIR SHOP 932 559 372 2,845 1,380 15.07 4 150 GEN PURP WHSE 2,825 1,695 1,130 11,821 3,105 30.91 9 175 MOTOR REP SHOP 994 596 397 4,162 1,035 33.34 3 270 OPS GEN PURP 638 408 229 2,403 1,035 14.04 3 | 3234<br>3247<br>3251<br>3252<br>3254<br>3255<br>3257<br>3278<br>3717<br>3719<br>3723<br>3724<br>3736<br>3737<br>3740<br>3800<br>3817<br>3008<br>3011<br>3012<br>3013<br>3016<br>3020<br>3041<br>3042<br>3043<br>3043<br>3055<br>3055<br>3055<br>3055<br>3055<br>3055 | MOTOR REP SHO STHS / AUTO S GEN STOREHOUS MOTOR REP SHO MOTOR REP SHO FIRE STATION FE MNT SHOP GEN PURP WHSE MOTOR REP SHO | CONSUMPTION MBTU/YEAR ====================================                           | CONSUMPTION MBTU/YEAR                                                              | SAVINGS<br>MBTU<br>====================================               | S SAVINGS<br>\$ ====================================                                    | \$ 1,380 2,070 4,140 3,105 3,105 2,070 2,070 2,070 1,380 1,035 1,380 2,760 2,070 2,070 2,415 1,380 2,760 2,070 2,415 1,380 2,760 1,725 1,380 2,760 1,725 1,035 1,725 1,035 1,380 2,760 2,415 | SIR T<br>====================================                                         | ESET CON-<br>ROLLERS 4 6 12 9 9 6 6 0 6 6 4 3 3 4 8 4 1 8 8 6 6 6 7 4 4 6 5 9 8 5 5 3 4 8 7 8 7 |
| 291 GEN STOREHOUSE 497 298 198 2,079 690 21.90 2                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3058<br>3401<br>3402<br>3406<br>3408<br>3424<br>150<br>175<br>270<br>290                                                                                                                                                                                             | PO BRANCH QM REPAIR SHO GEN PURP WHSE GEN PURP WHSE CALIBR & REP QM REPAIR SHO GEN PURP WHSE MOTOR REP SHO OPS GEN PURP MNT SHOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,441<br>P 4,956<br>1,242<br>2,861<br>2,513<br>P 932<br>2,825<br>P 994<br>638<br>169 | 922<br>2,973 1<br>745<br>1,716 1<br>1,508 1<br>559<br>1,695 1<br>596<br>408<br>101 | 518<br>,982<br>497<br>,144<br>,005<br>372<br>,130<br>397<br>229<br>67 | 3,959<br>15,126<br>3,792<br>8,733<br>10,514<br>2,845<br>11,821<br>4,162<br>2,403<br>279 | 2,070<br>5,520<br>1,035<br>3,450<br>3,105<br>1,380<br>3,105<br>1,035<br>1,035<br>690                                                                                                         | 13.09<br>24.08<br>36.36<br>21.31<br>26.13<br>15.07<br>30.91<br>33.34<br>14.04<br>6.09 | 6<br>16<br>3<br>10<br>9<br>4<br>9<br>3<br>3                                                     |

Table 3-5. Reset Control Savings Shop and Warehouse, Kaiserslautern (continued)

| BLDG  | FUNCTION       | BASELINE<br>CONSUMPTION<br>MBTU/YEAR | REVISED<br>CONSUMPTION<br>MBTU/YEAR | ANNUA<br>N SAVIN<br>MBTU |         |         | RE    | MBER OF<br>SET CON~<br>OLLERS |
|-------|----------------|--------------------------------------|-------------------------------------|--------------------------|---------|---------|-------|-------------------------------|
| 310   | MOTOR REP SHOP | 1,364                                | 818                                 | <br>545                  | 5,709   | 1,380   | 34.66 | 4                             |
| 326   | ELEC MNT SHOP  | 278                                  | 167                                 | 111                      | 1,164   | 345     | 26.00 | 1                             |
| 332   | GEN STOREHOUSI |                                      | 223                                 | 148                      | 1,556   | 690     | 13.30 | 2                             |
| 611   | MSL ASY & TEST |                                      | 206                                 | 137                      | 1,441   | 1,380   | .45   | 4                             |
| 622   | MOTOR REP SHOI |                                      | 143                                 | 95                       | 1,002   | 690     | 4.17  | 4<br>2                        |
| 646   | MOTOR REP SHOP | •                                    | 922                                 | 615                      | 2,530   | 1,725   | 10.24 | 5<br>9                        |
| 3000  | WAREHOUSE      | 2,736                                |                                     | 1,094                    | 4,502   | 3,105   | 9.98  |                               |
| 3006  | MOTOR REPAIR   | 902                                  | 541                                 | 361                      | 1,485   | 1,380   | 4.23  | 4                             |
| 3009  | MOTOR REPAIR   | 783                                  | 469                                 | 313                      | 1,288   | 1,380   | 2.04  | 4                             |
| 3029  | QM REPAIR SHOW | , , , ,                              | 1,491                               | 994                      | 10,401  | 2,760   | 30.47 | 8                             |
| 3114  | MOTOR REP SHOP |                                      | 1,360                               | 906                      | 6,919   | 3,450   | 14.32 | 10                            |
| 3115  | SKILL DEV GEN  | 245                                  | 147                                 | 98                       | 749     | 690     | 2.10  | 2                             |
| 3116  | MOTOR REP SHOP |                                      | 1,372                               | 914                      | 6,979   | 2,415   | 26.07 | 7                             |
| 3117  | MOTOR REP SHOP | ,                                    | 1,458                               | 972                      | 7,417   | 2,760   | 23.38 | 8                             |
| 2855  | MOTOR REP SHOP |                                      | 616                                 | 411                      | 4,301   | 1,380   | 23.07 | 4                             |
| 2859  | MOTOR REP SHOP | •                                    | 1,043                               | 695                      | 2,860   | 2,070   | 8.93  | 6                             |
| 2872  | GEN PURP WHSE  | 632                                  | 379                                 | 253                      | 1,930   | 1,035   | 12.45 | 3                             |
| 2877  | GEN STOREHOUS  |                                      | 253                                 | 168                      | 1,289   | 690     | 12.50 | 3<br>2<br>3<br>2              |
| 2902  | MOTOR REP SHOT |                                      | 460                                 | 307                      | 2,344   | 1,035   | 17.77 | 3                             |
| 2909  | GEN STOREHOUSI |                                      | 176                                 | 117                      | 899     | _690    | 5.00  | 2                             |
| 2910  | GEN STOREHOUSI |                                      | 175                                 | 117                      | 894     | 690     | 4.91  | 2<br>2                        |
| 2911  | GEN STOREHOUSE |                                      | 175                                 | 117                      | 894     | 690     | 4.91  | 2                             |
| 2912  | GEN STOREHOUSE |                                      | 181                                 | 121                      | 925     | 690     | 5.49  | 2                             |
| 2942  | MOTOR REP SHOP | 393                                  | 236                                 | 157                      | 1,647   | 690     | 14.79 | 2                             |
| TOTAL | S              |                                      | 7                                   | 9,072                    | 560,168 | 251,893 |       | 730                           |

#### 3.1.1.3. Lighting System Modifications

During a survey of the Kaiserslautern facilities, numerous inefficient lighting types were noted and the following actions were investigated:

- $\overline{\text{E1}}$  Replace existing fluorescent lamps and ballasts with high efficient fluorescent lamps and electronic ballasts.
- $\underline{E2}$  ~ Replace existing incandescent lighting fixtures with high efficient fluorescent lighting fixtures with electronic ballasts.
- $\overline{E3}$  ~ Replace existing mercury vapour 125 W and 250 W lights with high pressure sodium 150 W lights.

 $\underline{E4}$  - Replace existing mercury vapour 125 W and 400 W by high pressure sodium vapour 250 W lights.

Cost estimates were developed for each modification.

### 3.1.1.3.1. Modification, El

The illumination level will remain approximately the same. The proposal has been analyzed by computer, using the following construction costs:

| a) | Fluorescent Lamp   | (2) | \$ 2.81 |
|----|--------------------|-----|---------|
| b) | Electronic Ballast | (1) | \$32.50 |
| c) | Labour             |     | \$15.63 |

Total

\$50.94 say \$ 51.00

Related to the existing lighting demand, this is a total of \$ 510.00 per 1,000 W. The annual recurring savings will occur by reduction of the demand charges at \$ 70./kW. Since these electronic ballast do not require any starters there will be a non-recurring cost saving as following:

a) Starters per 100 W

- (2) \$1.17
- b) Labour per 100 W, 12 minutes

\$3.13

Total

\$4.30

Related to existing lighting demand this is a total of \$43 per 1,000 W. Replacement would be required every 4 years which results in a SPW factor of 0.76. The building affected are shown in Table E-2. The calculations shown in Table E-1 result in a total energy saving of 1,548 MWh/a equal to 17,967 MBTU/a with an overall SIR = 1.5.

### 3.1.1.3.2. Modification, E2

Replacing these incandescent lighting fixtures with high efficient fluorescent fixtures gains not only energy but also improves the illumination quality by approximately 150 percent. Energy savings are 65 percent related to a 100 W incandescent lighting fixture.

The construction costs will be as following:

| a) | New fluorescent | light | fixture | 2 x | 32 W | (1) | \$43.00 |
|----|-----------------|-------|---------|-----|------|-----|---------|
|----|-----------------|-------|---------|-----|------|-----|---------|

Total \$61.44 say \$62.00

Related to existing lighting demand this is a total of \$620 per 1.000 W.

Annual recurring savings will occur by reduction of the demand charges at \$70./kW. There will also be non-recurring savings on maintenance as following:

- a) Replacement of incandescent lamp every 1,000 hours, this means approximately 2,5 replacements per year.
  - 1) Lamp 100 W
- (1) \$0.80
- 2) Labor 15 Minutes
- \$3.90

TOTAL \$4, 70 x 2, 5 x 0, 93 (SPW) = \$10.93

- b) Replacement of fluorescent lamp every 7,500 hours, this means approximately every three (3) years.
  - 1) Lamp 36 W

- (2) \$2.81
- 2) Labor 15 Minutes

\$3.90

TOTAL  $$6.71 \times 0.76 \text{ (SPW)} = $5.10$ 

The total discounted non-recurring savings will be \$5.83 per 100 W related to existing lighting demand and \$58.30 per 1,000 W. The total number of incandescent lighting has been estimated throughout the community with a total of approximately 2675. See Table E-3.

This will result in the following savings:

Total demand 2675 each x 100 W = 267500 W = 267.5 KW.

Demand savings will be 267.5 KW  $\times$  65 percent = 174 KW  $\times$  \$70./a = \$12,180/a.

Based on an average operating hours of 2,500 hrs./a the annual energy savings will be 174 KW  $\times$  2,500 hours = 435 MWh/a, which is equal to 5,046 MBTU/a.

Construction cost will be 267.5 KW x 620 \$/KW = \$165,850.00The total discounted non-recurring savings will be 267.5 KW x \$58.30/KW = \$15.595.00.

Savings ratio will be SIR = 2.21

# 3.1.1.3.3. Modification, E3

Replacement of existing mercury vapour lights 125 W and 250 W by high pressure sodium vapour lights 150 W.

Some spaces are equipped with mercury vapour lights 125 W and 250 W which are inefficient related to high pressure sodium vapour lights (HPS). Replacing these lights with 150 W HPS lights will result in energy savings of:

a) Existing mercury vapour

250 W + ballast 16 W = 266 W

b) New sodium vapour

150 W + ballast 20 W = 170 W

96 W = 36 percent

The illumination level will remain approximately the same (Light current HQL 250 W = 13,500 LM/HPS 150 W = 14,000 LM).

The construction costs will be as following:

| a) | HPS lamp 150 W | (1) | \$29.00 |
|----|----------------|-----|---------|
| b) | Ballast        | (1) | \$18.00 |
| c) | Starter        | (1) | \$12.00 |
| d) | Labour         |     | \$16.00 |

Total per 250 W installed load

\$75.00

This will be \$300.00 per 1,000 W located load. Demand savings will be \$70./a for each saved 1,000 W. There will be no non-recurring costs or savings.

The total existing 125 W and 250 W mercury vapour lights to be replaced by 150 HPS lights have been estimated throughout the community with approximately 1103 each. See Table E-4. This will result in the following savings:

Total demand 1103 x 266 W = 293,398 W = 293 KW

Demand savings will be 293 KW x 36 percent = 105 KW x \$70./a = \$7,350/a

Based on an average operating hours of 2,500 hours/a the annual energy savings will be  $105 \text{ KW} \times 2,500 \text{ hours/a} = 262.5 \text{ MWh/a which is}$  equal to 3045 MBTU/a.

Construction costs will be 293 KW  $\times$  \$300./KW = \$87,900. This will be an actual unit cost per 150 W HPS of 79.69 US \$.

Savings ratio will be SIR = 2.54

## 3.1.1.3.4. <u>Modification</u>, <u>E4</u>

Replacement of existing mercury vapour lights 125 W and 400 W by high pressure sodium vapour lights 250 W.

Many spaces are equipped with mercury vapour lights 125 W and 400 W which are inefficient related to high pressure sodium vapour lights (HPS).

Replacing these lights with 250 W HPS lights will result in energy savings of:

a) Existing mercury vapour

(or 4 each 125 W)

400 W + ballast 25 W = 425 W (approx.)

b) New HPS

250 W + ballast 25 W = 275 W

\_\_\_\_\_\_

Total

150 W = 37.5 percent

The illumination level will increase by 13.6 percent (MV = 22,000 LM/HPS = 25.000 LM)

The construction costs will be as following:

a) HPS lamp 250 W

(1) \$33.00

b) Ballast

(1) \$18.00

c) Starter

(1) \$12.00

d) Labour

\$16.00

Total per 400 W installed load

\$79.00

This will be \$197.5 per 1,000 W installed load. Demand savings will be \$70./a for each saved KW. There will be no non-recurring costs or savings.

The total existing 125 W and 400 W mercury vapour lights to be replaced by 250 W HPS lights have been estimated throughout the community with approximately 970 each. See Table E-4. This will result in the following savings:

Total demand 970 x 400 W = 388,000 W = 388 KW.

Demand savings will be 388 KW x 145.5 percent = 211.5 KW x \$70/a = 10,185/a.

Based on an average operating hours of 2,500 hours/a the annual energy savings will be 145.5 KW  $\times$  2,500 hours/a = 363.75 MWh/a = 4,220 MBTU/a.

Construction costs will be 388 KW x \$197.5 = \$76,630The savings ratio will be SIR = 4.03.

# 3.1.1.3.5. <u>Results</u>.

Estimated Construction Cost, November 1983: 1,140,107 \$

Annual Energy Savings: 30,278 MBTU

Total First Year Dollar Savings: 143,518 MBTU

Discounted Energy Savings:

1,580,129 \$

Discounted Non Energy Savings: 590,030 \$

Total Net Discounted Savings:

2,170,169 \$

Discounted Savings Ratio: SIR = 1.95

L.A.DALY HANS DOENGES GMBH

ENERGY ENGINEERING ANALYSIS PROGRAM (EEAP)

PACKAGE NO. 14

KAISERSLAUTERN COMMUNITY

ENERGY SAVINGS, COST ESTIMATE,
AND LIFE CYCLE COST ANALYSIS BY BUILDING
ITEM: REPLACEMENT OF EXISTING FLUORESCENT LAMPS
AND BALLASTS BY HIGH EFFICIENT FLOURESCENT
LAMPS AND ELECTRONIC BALLASTS.

.TABLE: EI - ALL BUILDINGS

CONSUMPTION BEFORE (MILLION BTU) DISCOUNTED NOW RECURRING COST IN US\$ SAVINGS AFTER (MILLION 9TU) DISCOUNTED RECURRING COST IN US\$ NET DISCOUNTED SAVINGS IN US\$ CONSUMPTION BEFORE CONSTRUCTION COST IN US\$ INVESTMENT COST IN US\$ SAVINGS AFTER LEGEND FOR TABLES ON FOLLOWING PAGES DEMAND BEFORE SAVING DEMAND ANNUAL ANNUAL ANNUAL ANNUAL AC/MBTU AS/MBTU AC/KWh AS/KWh DB/KW DS/KW RCC/\$ NRC/\$ NDS/8 \$/33 \$/21

SAVINGS RATIO

L.A.DALY HANS DCENGES GMOH

EEAP PACKAGE 14, KAISERSLAUTERN, COMMUNITY SUMMARY ELECTRICAL ENERGY SAVINGS AND CONSTRUCTION COST ESTIMATE BY BUILDING

PROPOSAL E 1 / SC: 30%

| 0       | DB/KW  |               | AC/MBT                | DS/KW | AS/KWh  | AS/MBTU             | \$/20  | 1C/\$       | RCC/\$        | NRC / \$                                | \$/SON  | SIR     |
|---------|--------|---------------|-----------------------|-------|---------|---------------------|--------|-------------|---------------|-----------------------------------------|---------|---------|
| GY 072  | 4.8    | 17520         | 203                   | 1.44  | 5257    |                     | 8776   | 8 9 7 6     | 018           | 1 V                                     | / 411   |         |
| GY 298  | 131.6  | 362682        | 4438                  | 39.47 | 430     | 133                 | 67116  | 67652       | 25176         | 63.01                                   | 20000   | 7       |
| GY 380  |        | 1151811       | 13358                 |       | 345543  |                     | 7666   | 7807        | 66268         | ·                                       | 286759  | 7       |
| GY 382  | 652.0  | 2 197418      | 52494                 | •     | 922     |                     | 332520 | 335180      | 124737        | · O                                     | 545055  | 1.6     |
| GY 455  | 9 4.   | 184756        | 2143                  | 19.38 | 55427   |                     | 32946  | 33209       | 12357         | -                                       | 48078   |         |
| C Y 490 | 37.    | 169512        | 1270                  |       | 32854   | 381                 | 18972  | 19123       | 7117          | -                                       | 28216   |         |
| GY542   | 201    | 550425        | 6851                  | 60.42 | 177128  | 2                   | 102715 | 103538      | 38533         |                                         | 152463  | 1.4     |
| >       | 10.8   | 25636         | 297                   | 3.24  | 7691    | 06                  | 5508   | 5552        | 2066          |                                         | 7116    | 1.2     |
| ۲<br>۲  |        | 501100        | 5813                  | 41.66 | 150350  | 1745                | 70329  | 71395       | 26569         | M                                       | . ~     | 1.7     |
| 64744   | 0 0    | 0             | !                     | 00.0  | 0       | 0                   | 0      | 0           |               |                                         | !       |         |
| TOTAL   | 1587.6 | 5 1 6 0 9 1 7 | 59807                 | •     | 1548282 | 17967               | 809718 | 816194      | 303741        | 51880                                   | 1293280 | 1.5     |
|         | )<br>} |               | 6<br>1<br>5<br>1<br>1 | ]<br> |         | 1 1 1 1 1 1 1 1 1 1 |        | : ! ! ! ! ! | 1 1 1 1 1 1 1 | ::::::::::::::::::::::::::::::::::::::: | 1 1 1 1 | 1 1 1 1 |

L.A.DALY HANS DOENGES GMDH

EEAP PACKAGE 14, KAISERSLAUTERN JGY 680 AND 741 DAENNER ELECTRICAL ENERGY SAVINGS AND CONSTRUCTION COST ESTIMATE BY BUILDING

| 81.06 | G DB/KW    | BLDG DB/KW AC/KWh AC/MBTU | AC/MBTU | DS/KW   |                                         |                                          |       | 10/\$ | RCC/\$ | NRC/\$          | NDS/\$      | SIR   |
|-------|------------|---------------------------|---------|---------|-----------------------------------------|------------------------------------------|-------|-------|--------|-----------------|-------------|-------|
| 3100  | 32.9       | 120085                    |         | 9.87    | 36025                                   | 418                                      | 16779 | 16913 | 7629   | 1075            | 20187       | 1 7   |
| 3101  | 32.        | 120085                    |         |         | 36026                                   | 418                                      | 16779 | 16913 | 7629   | 1075            | 70107       |       |
| 3102  | 2 32.9     | 120085                    | 1393    | 9.87    | 36026                                   | 4.13                                     | 16779 | 16913 | 6294   | 1075            | 20184       |       |
| 3103  | 32.        |                           |         |         | 36026                                   | 418                                      | 16779 | 16913 | 9629   | 1075            | 29182       | 7 - 7 |
|       | ۶.         | 8294                      |         |         | 2483                                    | 59                                       | 1479  | 1491  | , r.   | . 0             | 2163        | 7     |
| 3115  | ~          | 57.20                     |         |         | 1715                                    | . 50                                     | 1020  | 1028  | 1 × ×  | \ \( \forall \) | 1402        | • •   |
| 3117  | 2.         | 9089                      |         |         | 2042                                    | 5.4                                      | 1214  | 1224  | 455    | 73              | 1786        | 7.7   |
|       |            | ******                    | 1 1     |         | 3<br>1<br>1,0<br>1                      | \$ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1     | 1     |        | 1               |             |       |
| 101   | TOTAL138.8 | 501166                    |         | 41.66   | 150350                                  | 1745                                     | 70829 | 71395 | 26569  | 4533            | 4538 122177 | 1.7   |
|       |            |                           |         | ! ! ! ! | * * * * * * * * * * * * * * * * * * * * | 1 1 1 1 1                                |       |       |        |                 |             | 1     |

L.A.DALY HANS DCENGES GMDH

EEAP PACKAGE 14, KAISERSLAUTERN ,BANN GY 072 ELECTRICAL ENERGY SAVINGS AND CONSTRUCTION COST ESTIMATE BY BUILDING

| SLDG DB/KW AC/KWh AC/MBTU D | !           | SIKE | AS/KWh | DS/KW AS/KWh AS/MBTU | \$/22       | 1C/\$                                   | RCC         | ž                                       | Z                                       | SI           |
|-----------------------------|-------------|------|--------|----------------------|-------------|-----------------------------------------|-------------|-----------------------------------------|-----------------------------------------|--------------|
| 72 0.51 1862                | 2 0.51 1862 | 1862 |        | 22                   | 867         | 87                                      | !<br>!<br>! | 5.6                                     |                                         | 1            |
|                             | 0.51        | 1862 |        | 22                   | 857         | 874                                     | 325         | 26                                      | 1529                                    | 1.7          |
| 59 0.42 1533                | 0.42        | 1533 |        | 28                   | 714         | 720                                     | 268         | 94                                      | 1253                                    | 1.7          |
|                             |             | 1 1  |        | 1 1 1 1 1 1          | 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1            |
| 203 1.44 5257               | 1 - 44      | 5257 |        | 62                   | 2448        | 2468                                    |             | 158                                     | 4311                                    | <del>.</del> |
|                             |             |      |        |                      |             |                                         |             |                                         |                                         |              |

HANS DCENGES GMbH L.A.DALY

ELECTRICAL ENERGY SAVINGS AND CONSTRUCTION COST ESTIMATE BY BUILDING EEAP PACKAGE 14, KAISERSLAUTERN JGY 298 ARMY DEPOT

1 / SC: 30% PROPOSAL E

|            | DB/KW       | AC/KWh                                  | AC/MBTU   | DS/KW | AS/KWh | AS/MBTU      | \$/33      | 16/8     | RCC/\$       | NRC/\$       | NDS/\$    | SIR |
|------------|-------------|-----------------------------------------|-----------|-------|--------|--------------|------------|----------|--------------|--------------|-----------|-----|
| 2200       | 33.0        | 9438                                    | 109       | 5 6   | 831    | 328          | 16830      | 1 6      | 1 4-         | 1078         | 6.5       |     |
| 2          | •           | 37.1                                    |           | ~     | 111    | -            | 99         | 99       | 24.          | . 4          | 6         | , , |
| 2          |             | 400                                     |           | •     | 20     | 14           |            | l Cu     | . 40         | 97           | . 7       | •   |
| 25         | •           | 2316                                    | 26        | 7.    | 35     | 81           | 7          | 16       | S            | 265          | 0         | •   |
| 2          | •           | 659                                     | ~         | φ,    | ဆ      | 25           | 12         | 7        | 42           | , <b>/</b> ~ | 9         | , , |
| 227        | •           | 686                                     | no)       |       | 05     | 24           | 22         | 23       | 4.5          | ~            | 7         | •   |
| 228        | 29.0        | 82946                                   |           | 3.70  | 24482  | 289          | 14790      | $\Box$   | •            | 948          | ` ~       | 7.1 |
| 2          | •           | 214.5                                   | 54        | 2.    | 7      | ~            | 82         | 85       | 4.3          | 7            | 559       | •   |
| 8          |             | 715                                     | നാ        |       | 7      | 25           | 27         | 28       | 47           | 8            | 8         | •   |
| 30         |             | 007                                     | •         | 4.    | 20     | 14           | 71         | 72       | · <b>v</b> o | 1            | 70        | •   |
| 32         | •           | 915                                     | 10        | ٥.    | 7.     | 32           | 63         | 4        | _            | C            | , M.      | , , |
| 3          |             | 286                                     | <b></b>   | ~     | 35     | 10           | 5 1        | 51       | ᠂ᠬ           | ~            | 7 2       | •   |
| ~          |             | 2087                                    | 54        | -     | 9      | . 73         | 72         | 7 5      | 4            | <b>M</b>     | 77        | •   |
| ∞ ~        |             | 2002                                    | 23        | ۲.    | 20     | 20           | 57         | 59       | M            | 2            | , ,       | •   |
| <b>∞</b> Ω |             | 1716                                    | 19        | φ,    | 4      | 60           | 0.6        | ഹ        |              | 196          | 77        | •   |
| -          |             | 371                                     | <b>\$</b> | M     | Ξ      | 13           | 6          | 99       | 24           | 4            | . 0       | •   |
| Ξ.         |             | 514                                     | 9         | ς.    | 4      | <del>1</del> | _          | $\Delta$ |              | 9            | 72        |     |
|            | •           | 657                                     | ~         | 5     | 7      | 23           | -          | _ ^ I    |              | 65           | ) (C      | •   |
| $\sim$     |             | 584                                     | 9         | 4     | 5      | 20           | -          | A !      |              | 52           | 7         | • • |
| Š          |             | 1521                                    | 17        | ň     | 9      | 53           | 29         | 31       | -            | 7            | 77        | •   |
| ~          | -           | 1144                                    | 13        | ~     | M.)    | 6.0          |            | 10       | •            | 131          | . X       | •   |
| ~          | _           | 371                                     | <b>*</b>  | ~     | _      | 13           | 0          | 66       |              | 4            | 07        | •   |
| N          | _           | 200                                     | 30        | 9     | 0      | 54           | <b>~</b> 1 | 1028     | 383          | 65           | 1700      | 1.6 |
| 1 1        | ;<br>;<br>; | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |           |       |        |              |            |          |              |              |           |     |
| TOTAL      | 131.6       | 382682                                  | 4438      | 39.47 | 114303 | 1334         | 67116      | 67652    | 25176        | 4301         | 9 9 0 9 5 | 1.4 |

25176 4301

L. A. DALY HANS DOENGES GMDH

EEAP PACKAGE 14, KAISERSLAUTERN JGY 380 KLEBER ELECTRICAL ENERGY SAVINGS AND CONSTRUCTION COST ESTIMATE BY BUILDING PROPOSAL E 1 / SC: 30%

| BLDG     | ā           | /KW P  | _             | D 5 / KW | AS/KWh | AS/MSTU | \$/22 | \$/2I | RCC/\$ | NRC/\$   | NDS/\$ | SIR |
|----------|-------------|--------|---------------|----------|--------|---------|-------|-------|--------|----------|--------|-----|
| 2        | i           | 132    | 1533          | 1 ap     | 396    | 697     | 97    | 1 0   | 0 9    | 118      | : 2    | 1 7 |
| 3206     |             | 30     | ~ 1           | 3.30     | 11154  | 123     | 56    | 565   | 2104   | 359      | 9196   |     |
| 20       | •           | 6864   |               | 7        | 059    | m       | ~     | 233   | . 22   | ıœ       | 784    | •   |
| 20       | •           | 000    |               | 2        | 000    | -4      | 397   | 408   | 24     | 0        | 429    | •   |
| 21       | •           | 001    | 43            | 2.       | 000    | 4       | 397   | 30    | 2      | · O      | 429    | •   |
| 2        | •           | 0439   | _             | 6        | 131    | જ       | 861   | 876   | 6      | •        | 712    | •   |
| 321      | •           | 6177   | _             | φ.       | 853    | ~       | 900   | 017   | 73     | 99       | 565    | •   |
| 321      | . •         | 405    | <b>-</b> 3    | ς.       | 120    | v       | 453   | 465   | 45     | m        | 527    |     |
| 325      |             | Ω<br>Ω |               | œ<br>•   | 248    | $\sim$  | 147   | 5 7   | 55     | O.       | 216    |     |
| 325      |             | 312    | $\sim$        | ٣.       | 93     | 4-      | 6     | 5     | 23     | M        | . 84   |     |
| 22       | _           | 374    | $\overline{}$ | ٥.       | 012    | ~~      | 5     | 9     | 25     | (20)     | 7      | •   |
| ~        |             | 716    |               | 8        | 7      | Ý       | 8     | 8     | 14     | ര        | 7      | •   |
| 2        |             | 395    | •             | ٥.       | 518    | 0       | 73    | 82    | 70     | S        | 33     | •   |
| 2        |             | 259    | •             | Μ,       | 677    | ~       | 20    | 9     | 51     | L/n      | 583    |     |
| ~<br>~   |             | 0.1    | _             | •        | 20     | 35      | 73    | 29    | 67     | _        | 5      |     |
| ~        |             | 496    | $\sim$        | 4.       | 8      | 87      | 38    | 7     | 53     | ν0       | 2      |     |
| ران<br>ا |             | 286    | ~             | ٣.       | 35     | 4       | 7     | 7     | 19     | ~        | 7      |     |
| 2        | _           | 745    |               | ٥.       | 23     | 165     | 53    | 8     | 48     | $\sim$ 1 | 2      |     |
| <b>*</b> | -           | 147    | $\overline{}$ | 0        | 034    | 2       | 20    | 4     | 5      | ~        | 854    |     |
| *        | <del></del> | 227    | •             | ٥.       | 168    | S       | 3     | _     | 8      |          | M      |     |
| 4        |             | 521    | •             | M        | 9      | 5       | 6     | 2     | 8      |          | 377    |     |
| 25       |             | 572    | _             | ٥        | 7      | 20      | 2     | 7     | ~      |          | 0      |     |
| Š        |             | M      | 109           | ٥.       | 2      | 33      | 30    | 9     | •      |          | C      |     |
| S        |             | 521    | $\sim$        | ~        | 9      | 53      | 6     | 7     |        |          | 1      |     |
| 9        | <del></del> | 718    | ~             | 6        | 5      | 123     | M     | 8     |        |          | . 4    |     |
|          |             |        |               |          |        |         |       |       |        |          |        |     |

66258 11318 286759

178077

175654

4008

103.91 345543

13358

TOTAL 346.4 1151811

L.A.DALY HANS DOENGES GMbH

EEAP PACKAGE 14, KAISERSLAUTERN JGY 382 LANDSTUHL ELECTRICAL ENERGY SAVINGS AND CONSTRUCTION COST ESTIMATE BY BUILDING

| SIR     | 1.4     |            |     |            |             |               |       |      |             |               |       |          |           |          |      |      |     |            |      |                   |            |                   |             |                                              |            |            |                                        |      |   |
|---------|---------|------------|-----|------------|-------------|---------------|-------|------|-------------|---------------|-------|----------|-----------|----------|------|------|-----|------------|------|-------------------|------------|-------------------|-------------|----------------------------------------------|------------|------------|----------------------------------------|------|---|
| NDS/\$  |         | 191        | S   | 250        | 191         | _             | 7 9 3 |      | ~           | ו אַ <u>י</u> | , ,   | יי<br>יי | 2 0       | 527      | 433  | 508  | ~   | 527        | <br> | ) \<br>) \<br>) \ | ייי<br>טיל | 7                 | 83          | 835                                          | 14         |            | ֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | 70   |   |
| NRC/S   | 356     |            |     |            |             |               |       | - v  |             |               | 7 P   | 0 (      | 0         | 0        | 6    |      | -   | . 2        | , ,  |                   |            | Ö                 | õ           | ò                                            | 2          | 5          | o :                                    |      |   |
| RCC/\$  | 208     | 72         | 23  | 5          | 7           |               | - L   | 9 0  | `           | . c           |       | 9        | <u>ري</u> | 2        | 10   |      |     |            | - 6  | <u> </u>          | ິ ເ        | $\tilde{\lambda}$ | _           | -                                            |            | <u> </u>   | č                                      | 0    |   |
| 10/\$   | 5603    | 269        | , α | ) M        | 7 4         | <b>N</b> 0    | 707   | 7 6  | าน          | <u> </u>      | 3     | 270      | 545       | 545      | 77   | , n  | - 6 | ) \<br>) \ | * (  | יי<br>ער          | 2          | 27(               | 7 7 9       | 774                                          | · ·        | <b>3</b> 1 | 2                                      | 05.  |   |
| \$/33   |         | , 0        | •   | ٠.         | 2 t c       | <b>&gt;</b> < | 200   | 2040 | Ň,          | 3 (           | 1 5 2 | 550      | 632       | 2.59     | 2 2  | יו כ | 000 | ) i        | 2    | Ξ.                | 77         | 55(               | 2           | , , , , , , , , , , , , , , , , , , ,        | יור<br>יור | ດີ         | 55(                                    | 70   |   |
| AS/MBTU | 102     |            |     |            |             |               |       | 77   |             |               |       |          |           |          |      |      |     |            |      |                   |            |                   |             |                                              |            |            |                                        |      |   |
| AS/KWh  | 1 2 0   | 7 0 0      | 4 ( | <u>:</u> د | sus<br>Sus  | 707           | 704   | 3432 | -J          | ŏ             | 223   | 475      | 74.5      |          | , ,  | 5    | פא  | 6          | 66   | 438               | 56         | 686               | ) c         | ֓֞֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֓֓֜֜֜֜֓֓֓֓֓֓֓֡֓֜֜֜֜֓֓֓֡֓֓֡ | Š          | 74         | 7.7                                    | ~    |   |
|         | 1 1 1 1 | <b>u</b> . | 4   | <b>)</b>   | $\infty$    | 3             | 4     | 2    | _           | N             | ~     | 0        |           | -        | •    | ٠,   | _   | ٠.         | ~    | •                 | ٧.         | ٠,                | •           | •                                            | ~          | •          | _                                      | \$   |   |
| AC/MBTU | 1 1     | S          | •   | 0          | <del></del> | *             | ť     | 133  | <del></del> | $\sim$        | ဘ     | -        |           | ) t      | _    | _    | ~ • | 2          |      | .43               | 2,5        | ά                 | - ',        | 3                                            | 3          | ö          | -                                      | 7    |   |
|         |         | 117        | 015 | 833        | 022         | 015           | 015   | 144  | 676         | 7             | 743   | 0 2 6 8  | יו<br>קור | <u> </u> | 7866 | 250  | 202 | 190        | 984  | 99                | 0877       |                   | ָ<br>מַנְיּ | 1681                                         | 1680       | 15.2       | 75.6                                   | 64.0 | , |
| D8/KW   | 1       | 0          | 4.  | _          | 2           | 4.            | 4.    | 4    | _           | _             |       | ; (      | •<br>•    | ,        | ~    | ċ    | •   | 9          |      | 7                 | 0          |                   | Š           | ~                                            | ď          | 2          |                                        | • '  | 5 |
| 81.06   |         | 0          | 0   | 0          | 0           | 0             | _     | 371  | M           | 373           | ) ~   | - 1      | ָר י      | 2        | ~    | ~    | 2   | 2          | ~    | . ~               |            | ,<br>. :          | $\sim$      | 2                                            | 7          |            |                                        | 7777 | - |
|         |         |            |     |            |             |               |       |      | , ,         | <i>.</i>      |       |          |           |          |      |      |     |            |      |                   |            |                   |             |                                              |            |            |                                        |      |   |

L. A. DALY HANS DOENGES GMDH

EEAP PACKAGE 14, KAISERSLAUTERN JGY 382 LANDSTUHL ELECTRICAL ENERGY SAVINGS AND CONSTRUCTION COST ESTIMATE BY BUILDING

PROPOSAL E 1 / SC: 30%

| SIR        | 7-1  |      | 1.7  | 1.7   | 7.         |      |      | 7    | 1.7  | 1.7  | 1.7  |                  | 1.6        | 1 1 |
|------------|------|------|------|-------|------------|------|------|------|------|------|------|------------------|------------|-----|
| \$/SQN     | 7983 | 7130 | 5937 | 5937  | 1492       | 4013 | 2790 | 2667 | 5310 | 5310 | 5937 |                  | 545065     |     |
| NRC/\$     | 131  | 294  | 219  | 219   | 65         | 190  | 163  | 219  | 196  | 196  | 219  |                  | 21309      |     |
| RCC/\$     | 1 0  | 72   | 8    | တ     | (0)<br>(M) | ,    |      | 003  | 7    | •    | 1282 |                  | 124737     |     |
| IC/\$      | 2056 | 4627 | 3444 | 3444  | 1028       | 2982 | 2570 | 3444 | 3084 | 3034 | 3444 |                  | 335180     |     |
| \$/22      | 2040 | 4590 | 3417 | 3417  | 1020       | 2958 | 2550 | 3417 | 3060 | 3060 | 3417 |                  | 332520     |     |
| AS/MBTU    | 4.0  | 93   | 85   | 85    | 20         | 52   | 32   | 29   | 92   | 92   | 85   |                  | 7646       |     |
| AS/KWh     | 3432 | 8454 | 7337 | 7337  | 1716       | 4554 | 2730 | 5749 | 6570 | 6570 | 7337 |                  | 659259     |     |
| DS/KW      | 1.20 |      |      | 2.01  |            | 1.74 | 1.50 | 2.01 | 1.80 | 1.80 | 2.01 |                  | 195.60     |     |
| AC/MBTU    | 33   | 326  | 234  | 234   | 90         | 175  | 106  | 222  | 254  | 254  | 234  | 1                | 25494      |     |
| AC/KWh     | 1440 | 0    | 4 4  | 24455 | ~          | 0    | _    |      | 19   | 4    | *    | <br>             | 1974 18    |     |
| BLDG DB/KW | •    | 0.6  |      | 2.9   |            |      | •    | •    |      | •    | 6.7  | 1<br>1<br>1<br>1 | 01         |     |
| 81.06      | 77   | 62   | 81   | 3815  | 8          | 81   | 81   | 82   | 8 2  | 8 2  | 82   | 1 1 1            | TO TAL652. |     |

L.A.DALY HANS DCENGES GMDH

EEAP PACKAGE 14, KAISERSLAUTERN ,GY 455 EQUIP SUPT CTR ELECTRICAL ENERGY SAVINGS AND CONSTRUCTION COST ESTIMATE BY BUILDING

| ŧ  |         | 3                                       | 47/54           | AC / MBTU         | D 5 / KW     | AS/KWh                                                                                           | DS/KW AS/KWN AS/MBTU    | \$/22     | 10/8          | RCC/\$      | NRC/\$ | NDS/8  | SIR   |
|----|---------|-----------------------------------------|-----------------|-------------------|--------------|--------------------------------------------------------------------------------------------------|-------------------------|-----------|---------------|-------------|--------|--------|-------|
|    | 81.06   | 2 1 2 2                                 | 2               |                   |              | 11111                                                                                            | 1111111                 |           | 1 1 1 1 1 1 1 |             | ,      |        | ,     |
|    |         |                                         |                 |                   | ,            | 4143                                                                                             |                         | 2040      | 2056          | 765         | 151    | 2482   | •     |
|    | 7007    |                                         | 114             | 133               | 1. 20        | 2040                                                                                             |                         |           |               | 027         | 116    | 2611   | 4.    |
|    |         |                                         | - (             | * * *             | 4 05         | \$ U U X                                                                                         |                         | 1/85      | <b>667</b>    |             | - 1    | • • •  | 7     |
|    | 3011    |                                         | 100             | 0 =               |              | 1 1                                                                                              |                         | 1100      | 1131          | 421         | 7.5    | 70     | *     |
|    | 4012    |                                         | 6292            | 73                | 99.0         | 1583                                                                                             |                         | )         |               | 03/         | 7.8    | 1790   | 1.4   |
|    | 7 1 7   |                                         | ָ<br>ו          |                   | . 71         | 2059                                                                                             |                         | 1224      | 1234          | 474         | -      |        | •     |
| •  | 3013    | 2.4                                     | 89              | œ                 | •            |                                                                                                  |                         | 2020      | 2827          | 1052        | 180    | 7017   | * -   |
|    |         |                                         | 457             |                   | 1.05         | 4713                                                                                             |                         | 7000      | 3 1           |             | -      | 2033   | 7 -   |
|    | 3050    |                                         |                 |                   |              | 7 . 7 3                                                                                          |                         | 2040      | 2056          | (0)         | ^      | 200    |       |
| 3  | 2012    |                                         | 114             | 133               |              | 2476                                                                                             | ,                       | 1         | 7107          | 2478        | 453    | 10390  | 7.6   |
| -  | 3 2 0 7 |                                         |                 |                   |              | 12012                                                                                            |                         | 7.40      | 7 ( 1 % (     | 0 - 0 -     |        |        |       |
| 33 | 3043    |                                         | 004             |                   |              |                                                                                                  | •                       | 4000      | 10282         | 3826        | ഹ      | 14805  | *     |
| 3  | ) L     |                                         | 572             | 799               | ۰,<br>00°    | 17160                                                                                            | _                       | 0000      |               | 0 2 4       | 241    | 5067   | 1.4   |
| •  | 5022    |                                         | 3               |                   |              | 7767                                                                                             | ×                       | 0807      | 4113          | 1220        | - 07   |        |       |
|    | 3058    | 8.0                                     | 228 80          | 565               | 7 • 7        | ಾ                                                                                                | ) t                     | 013       | 514           | 191         | 33     | 972    | 1.4   |
|    | 4 6     |                                         | 30              |                   |              | 3<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | <u> </u>                | 2         | -             | •           |        |        |       |
|    | 204     | _                                       | 1               |                   |              |                                                                                                  |                         |           |               |             |        | 1      | 1     |
|    |         |                                         |                 |                   | 1            | . i                                                                                              | 1 1 1 1 1 1 1           | 1 1 1 1 1 |               |             |        |        | ) ,   |
|    | 1       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | *** *********** | i<br>t            | :<br>  ·<br> | l<br>I                                                                                           | , , , ,                 | 77062     | 43209         | 12357       | 2112   | 4 8078 | J • 4 |
|    | TOTA    | TOTAL 64.6                              | 184756          |                   | 7.0°         | 72466                                                                                            | †  <br>   <br>     <br> |           | 1 1 1 1 1 1   | 1 1 1 1 1 1 | 1 1 1  | 1 1    | 1     |
|    |         | 1 1 1                                   | 111111          | 1 1 1 1 1 1 1 1 1 |              | 1                                                                                                |                         |           |               |             |        |        |       |

L.A.DALY HANS DCENGES GmbH

EEAP PACKAGE 14, KAISERSLAUTERN JGY 490 ESELSFUERTH OM FAC ELECTRICAL ENERGY SAVINGS AND CONSTRUCTION COST ESTIMATE BY BUILDING

| 02 13.6 388 96 451 4.08 11669 135 6936 6991 2602 444 10092<br>03 12.0 37440 434 3.6C 11232 130 6120 6169 2296 392 9472<br>08 9.1 260 26 302 2.73 7303 91 4641 4678 1741 297 6787<br>09 2.5 715C 83 0.75 2145 25 1275 1285 478 82 1865<br>TAL 37.2 109512 1270 11.1c 32854 381 18972 19123 7117 1215 28216 | 9r DG | D8/KW  | AC/KW h     | AC/MBTU | DS/KW | AS/KWh      | AS/MBT                                  | \$/22 | \$/2I | RCC/\$ | NRC/\$ | NRC/S NDS/\$ | SIR |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|-------------|---------|-------|-------------|-----------------------------------------|-------|-------|--------|--------|--------------|-----|
| 37440 434 3.6C 11232 130 6120 6169 2296 392 9472<br>26026 302 2.73 7303 91 4641 4678 1741 297 6737<br>715C 83 0.75 2145 25 1275 1285 478 82 1865<br>109512 1270 11.1c 32854 381 18972 19123 7117 1215 28216                                                                                               | 3402  | ł .    | ıω          | 451     | 4.08  | 11669       | i                                       | 6936  | 1     | 1      | !      | 1            | 1.4 |
| 26026     332     2.73     7808     91     4641     4678     1741     297     6787       715C     83     0.75     2145     25     1275     1285     478     82     1865       109512     1270     11.1c     32854     381     18972     19123     7117     1215     28216                                 | 3403  |        |             |         | 3.60  | 11232       | 130                                     | 6120  | 6169  | 2296   | 392    | 2276         |     |
| 715C 83 0.75 2145 25 1275 1285 478<br>109512 1270 11.1c 32854 381 18972 19123 7117                                                                                                                                                                                                                        | 3408  |        | 26026       |         | 2.73  | 7303        | 91                                      | 4641  | 4678  | 1741   | 297    | 6787         | 1.4 |
| 109512 1270 11.1c 32854 381 18972 19123 7117                                                                                                                                                                                                                                                              | 3409  |        | 7150        |         | 0.75  | 2145        | 25                                      | 1275  | 1285  | 478    | 82     | 1865         | 1.4 |
| 109512 1270 11.1c 32854 381 18972 19123 7117                                                                                                                                                                                                                                                              |       | 1 1    | 1 1 1 1 1 1 | 1 1 1   | 1     | ;<br>;<br>; | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1     | 1     |        | 1      | 1            | 1   |
|                                                                                                                                                                                                                                                                                                           | TOTAL | L 37.2 |             | 1270    | 11.10 | 32854       | 381                                     |       |       |        |        | 28216        | 1.4 |

L.A.DALY HANS DOENGES GMOH

EEAP PACKAGE 14, KAISERSLAUTERN "GY 542 RHINE ORD BARRACKS ELECTRICAL ENERGY SAVINGS AND CONSTRUCTION COST ESTIMATE BY BUILDING PROPOSAL E 1 / SC: 30%

| 9       | SIR                                     | ! ! ! | 1.6     | 1.4       | 7 -                                     | •        | * -  | 1.7             | 1.7    | ,          |            | · ·      | 1.4  | 1.7  |     | * ·    | 5.   | 1.4         | 1.4    |     | •        | 1.4   | 1.4        | 1.4   |       | ) ·        | <b>*</b> • | 7.           | 7.1           | ,        |          | 7.4       |
|---------|-----------------------------------------|-------|---------|-----------|-----------------------------------------|----------|------|-----------------|--------|------------|------------|----------|------|------|-----|--------|------|-------------|--------|-----|----------|-------|------------|-------|-------|------------|------------|--------------|---------------|----------|----------|-----------|
| į       | NUS/                                    |       | C       | m         | ~                                       |          |      | ~               | m      | 2379       | •          | ` -      | ٠.   | -    | _   |        |      |             | _ :    | Ξ.  | Ċ        | >     | -          | Š     |       | 7          | _          | ~            | 2             | 0        | <u> </u> | 37189     |
| ٥       | I K C A B                               |       | **      | 807       | 327                                     | 827      | ) (  | X<br>X          | ထ      | 83         | 17         |          |      | 163  | 7   | 1 œ    |      | 502         | 96     | 21  | . r      | 7.    | 6.7        | 69    | 59    | 117        | , (        | 7.8          | <b>~</b><br>8 | 78       |          | 1634      |
|         | 9 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 1733  | 771     | 4725      | 1913                                    | 2564     |      | <i>&gt;</i> 1 C | 517    | 517        | 277        | 302      | 7 1  | 756  | 549 | 725    | ١ ٢  | <b>4771</b> | 574    | 124 | 076      | \ r c | 787        | 405   | 172   | 804        |            | ¥ 0.4        | 459           | 459      | 689      | 9566      |
|         |                                         | ~     | י י     | •         | _                                       | $\infty$ | ~    | <b>7</b> 1      | ~      | 1388       | ~          | $\alpha$ | ) L  | 0762 | Ö   | 1542   | 0    | Ų I         | Š      | m   | 658      | 771   | 2          | 1080  | 4.6   | 5          | 2          | ) (          | 7             | 2        | 85       | 25704     |
| \$/33   |                                         | 4590  | ···     | 3 1       | -                                       | $\infty$ | ~    | ١.              | 2      | 1377       | ~          | 867      | 2550 | ٦,   | ō   | 1530   | ~    |             | n i    | ~   | 663      | 705   |            | 5     | 4     | ~          | $\ddot{}$  | 10           | U (           | V        | 183      | 50        |
| AS/MBTU | 1 1 1                                   | 106   | 545     | 0 0       | 2 .                                     | 155      | 34   | · /             | ۲,     | ナ i<br>つ i |            | 17       | 7.4  | + ~  | 2   | J.     | 79   | , C         | )<br>1 | 0 ! | 15       | 15    | 7          | - c   | י מ   | 24         | <b>5</b> 4 | 2.5          | ,             | <b>,</b> | 36       | <b>27</b> |
| AS/KWh  |                                         | 9126  | 21193   | 0 0 0 0 0 | 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 7441     | 2957 | 2057            | 2007   | 7777       | 101        | 7429     | 5475 | 1115 | 7   | 52 / t | 5491 | 2574        | 0 2 2  | 0 t | <u> </u> | 1287  | 1302       | 200   | 707   | 2004       | 2059       | 2059         | 2050          |          | 200      | 60.62.4   |
| DS/KW   | 4                                       | 2.70  |         | - 1       |                                         | •        |      |                 |        | •          | _          | _        | _    |      |     |        | -    | _           |        | •   | •        | -     | ~          | • • • | • • • | <b>4</b> , | •          | $\sim$       | ~             |          | •        | _         |
| AC/MBTU | . ·                                     | 355   | 619     | 332       | 577                                     | * *      | *    | 114             | 114    | 77         | † 4<br>• W | 0 (      | 717  |      |     | 2 6    |      |             |        | 7   | 9 6      | חל.   | 20         | 27    | 139   | . :2       | 5          | 30           | 80            | τ-       | 1650     | 5         |
| AC/KW   |                                         | 20400 | 0       | S         | M                                       | (4)      | 2    | $\sim$          | $\sim$ |            | ~          | ٠.       |      | _    |     |        | _    |             |        | •   | •        | •     | _          | 4     | ~     | 68.4       | , .        | O.           | 686           | 029      |          | )<br>)    |
| D8/KW   | 0                                       | ,,,   | 1 * 4 5 | 10.0      | 13.4                                    | 7.7      |      | 7.7             | 2.7    | 1.4        | 1.7        | · ·      |      | 1.3  | 3.0 | 7-9    |      | 2.0         | 9.0    | 1.3 | ٠,       |       | 1.7        | 0.9   | 4.2   | 2.4        | ,          | ***          | 7.4           | 3.6      | 50.0     |           |
| BLDG    | 147                                     | 1 6 5 | 7 (C    | 175       | 179                                     | 273      | 27.  | \$ 1 U          | 575    | 281        | 288        | 280      |      | 062  | 262 | 310    | 7.13 | 200         | 535    | 336 | 339      | 777   | # ·<br># · | 246   | 347   | 369        | 370        | ) +<br>( ) ^ |               | 372      | 611      |           |

L.A.DALY HANS DOENGES GMBH

EEAP PACKAGE 14, KAISERSLAUTERN JGY 542 RHINE ORD BARRACKS ELECTRICAL ENERGY SAVINGS AND CONSTRUCTION COST ESTIMATE BY BUILDING

PROPOSAL E 1 / SC: 30%

| 81.06 | D8/KW                                   | BLDG DB/KW AC/KWh AC/MBTU | AC/MBTU                                 | DS/KW                 | AS/KWh       | DS/KW AS/KWN AS/MBTU | \$/33  | IC/\$  | RCC/S   | NRC/\$ | NDS/\$      | SIR   |
|-------|-----------------------------------------|---------------------------|-----------------------------------------|-----------------------|--------------|----------------------|--------|--------|---------|--------|-------------|-------|
| 622   | 6.5                                     |                           | 216                                     | 1.95                  | 5577         | 65                   | 3315   | 6722   | 127.6   | 24.2   | 0.707       | 1 -   |
| 637   |                                         | 13156                     |                                         | 1.38                  | 3947         | 4<br>) 4             | 7346   | 7365   | † C & & | 150    | 4040        | * ~   |
| 959   |                                         |                           |                                         | 1.05                  | 3003         | 3.5                  | 1785   | 1799   | 670     | 116    | 2611        | 7     |
| 9 9 0 | 16.4                                    |                           | 544                                     | 4.91                  | 14071        | 163                  | 8364   | 8431   | 3137    | 536    | 12180       | 7 - [ |
| 695   |                                         |                           |                                         | 1.50                  | 4293         | 5.0                  | 2550   | 2570   | 957     | 163    | 3720        | 7 - 1 |
| 701   |                                         |                           |                                         | 1.61                  | 4633         | 24                   | 2754   | 2776   | 1033    | 176    | 4007        | 7     |
| , 705 |                                         |                           |                                         | 0.45                  | 1287         | 15                   | 765    | 771    | 287     | 6.5    | 1119        | 1.4   |
|       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ;<br>;<br>;<br>;<br>;     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1<br>1<br>1<br>1<br>1 | <br>         | 1                    |        | 1      |         | i      |             |       |
| TOTAL | TOTAL201.4                              | 590422                    | 9                                       | 60.42                 | 60.42 177128 | 2057                 | 102715 | 103538 | 38533   | 6576   | 6576 152463 | 1.4   |
|       | 1   1   1   1                           |                           |                                         | 1 1 1                 | 1 1 1 1 1 1  | 1                    |        |        |         |        |             | ·     |

L. A.DALY HANS DOENGES GMDH

EEAP PACKAGE 14, KAISERSLAUTERN JGY 565 PANZER ELECTRICAL ENERGY SAVINGS AND CONSTRUCTION COST ESTIMATE BY BUILDING

| OB/KW | DG DB/KW AC/KWh AC. | / M8T | į           | DS/KW AS/KWN AS/ | MBTU          | \$/22 | IC/\$                | RCC/S                      | RCC/\$ NRC/\$ NDS/\$ | NDS/\$                              | SIR |
|-------|---------------------|-------|-------------|------------------|---------------|-------|----------------------|----------------------------|----------------------|-------------------------------------|-----|
| 9.4   | 219 96<br>36 40     | 25    |             | 6599             | 7.7           | 4794  | 4794 4832<br>714 720 | 1798                       | 307                  | 1798 307 6124 1.2<br>268 46 992 1.3 | 1.2 |
|       |                     |       |             | ,                |               |       |                      | )<br> <br>                 |                      |                                     | •   |
|       | 25636               | 297   | в .         | 3.24 7591        | 3.24 7591 90  | 5508  | 5552                 | 5508 5552 2066 353 7116 1. | 353                  | 353 7116 1.2                        | 1.2 |
|       | 1 1 1 1 1           |       | 1 1 1 1 1 1 | 1 1 1 1          | 1 1 1 1 1 1 1 |       | 1 1 1 1 1 1          | 1 1 1 1                    | 1 1 1 1              |                                     | 1 1 |

Table E-2. Building Quantity Summary for E-1

| GY 072       | Bldg. No. | 2615<br>2618                                                                                                                                                                         | Fixtures | 17<br>17                                                                                                                                 |       |
|--------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------|-------|
|              |           | 2619                                                                                                                                                                                 |          | _14_                                                                                                                                     |       |
| Total        |           |                                                                                                                                                                                      |          | ····                                                                                                                                     | 48    |
| GY 298 Total | Bldg. No. | 2200<br>2227<br>2246<br>2256<br>2257<br>2277<br>2281<br>2293<br>2300<br>2303<br>2329<br>2362<br>2374<br>2388<br>2389<br>2410<br>2414<br>2418<br>2420<br>2422<br>2425<br>2426<br>2427 | Fixtures | 330<br>13<br>14<br>80<br>22<br>24<br>290<br>75<br>25<br>14<br>32<br>10<br>73<br>70<br>60<br>13<br>18<br>18<br>16<br>45<br>40<br>13<br>20 | 1,315 |
| GY 380       | Bldg. No. | 3200<br>3206<br>3208<br>3209<br>3210<br>3211<br>3212<br>3213<br>3221<br>3222<br>3225<br>3226<br>3227<br>3229<br>3230<br>3231<br>3234                                                 | Fixtures | 362<br>110<br>240<br>274<br>274<br>365<br>198<br>285<br>29<br>12<br>118<br>60<br>230<br>79<br>35<br>80                                   |       |

| GY 380 (continued) | 3242<br>3243<br>3246<br>3247<br>3252<br>3254<br>3255<br>3266                                                                                                                                                                                                                         |          | 130<br>102<br>198<br>45<br>20<br>33<br>45<br>130                                                                       |       |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------|-------|
| Total              | . ** ** ** ** ** ** ** ** ** ** ** ** **                                                                                                                                                                                                                                             |          |                                                                                                                        | 3,464 |
| GY 382 Bldg. No.   | 3701<br>3702<br>3703<br>3704<br>3707<br>3716<br>3719<br>3736<br>3737<br>3741<br>3757<br>3758<br>3760<br>3762<br>3725<br>3263<br>3264<br>3265<br>3266<br>3267<br>3270<br>3271<br>3272<br>3274<br>3776<br>3792<br>3813<br>3815<br>3817<br>3818<br>3819<br>3820<br>3821<br>3823<br>3824 | Fixtures | 109 247 169 28 247 247 40 26 42 26 500 320 500 170 60 320 500 298 500 320 320 500 205 40 90 67 67 20 58 50 67 60 60 67 |       |
| Total              | . ** ** ** ** ** ** ** ** ** ** ** ** **                                                                                                                                                                                                                                             |          |                                                                                                                        | 6,520 |

| GY 542 Bldg. No. 163 Fixtures 90  164 247  175 100  179 134  273 27  274 27  275 277  281 15  288 17  289 50  290 13  292 30  310 64  332 30  3310 64  3332 30  335 7  336 13  339 15  344 21  346 9  347 42  346 9  347 42  369 24  370 24  371 24  372 36  611 500  622 65  637 46  690 164  695 701  705 154  Total  GY 565 Bldg. No. 3000 Fixtures 94     | GY 455<br>Total | Bldg. No. | 3007<br>3011<br>3012<br>3013<br>3030<br>3042<br>3043<br>3055<br>3758<br>3891                                                                                         | Fixtures | 40<br>35<br>22<br>24<br>55<br>40<br>140<br>200<br>80<br>10                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------|
| GY 542 Bldg. No. 163 Fixtures 90  164 247  175 100  179 134  273 27  274 27  275 277  281 15  288 17  289 50  290 13  292 30  310 64  332 30  3310 64  3332 30  335 7  336 13  339 15  344 21  346 9  344 21  346 9  347 42  369 24  370 24  371 24  372 36  611 500  622 65  637 46  669 690 164  695 701  705 154  Total  GY 565 Bldg. No. 3000 Fixtures 94 |                 | Bldg. No. | 3403<br>3408                                                                                                                                                         | Fixtures | 120<br>91                                                                                                      |
| 3019                                                                                                                                                                                                                                                                                                                                                          | GY 542          | Bldg. No. | 164<br>175<br>179<br>273<br>274<br>275<br>281<br>289<br>290<br>290<br>332<br>335<br>336<br>347<br>369<br>370<br>371<br>372<br>611<br>622<br>637<br>646<br>695<br>701 | Fixtures | 90 247 100 134 27 27 27 15 17 50 13 30 64 30 7 13 15 21 9 42 24 24 24 24 24 24 24 26 36 500 65 46 35 164 50 54 |
| 3019                                                                                                                                                                                                                                                                                                                                                          | GY 565          | Bldg. No. | 3000                                                                                                                                                                 | Fixtures |                                                                                                                |
| TOCAT IV                                                                                                                                                                                                                                                                                                                                                      | Total           | -         |                                                                                                                                                                      |          |                                                                                                                |

| GY 68 & 741 Bldg. No. | 3100                                    | Fixtures 329                            |        |
|-----------------------|-----------------------------------------|-----------------------------------------|--------|
| 3                     | 3101                                    | 329                                     |        |
|                       | 3102                                    | 329                                     |        |
|                       | 3103                                    | 329                                     |        |
|                       | 3113                                    | 29                                      |        |
|                       | 3115                                    | 20                                      |        |
|                       | 3117                                    | _24                                     |        |
| Total                 |                                         |                                         | 1,389  |
| GRAND TOTAL           | * * * * * * * * * * * * * * * * * * * * | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 15.877 |

Table E-3. Building Quantity Summary

| ========        | ========= | =======                                                                                                                                      | . = = = = = = = = = = = = = = = = = = = | ========                                                                                      | ======= |
|-----------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------|---------|
| GY 298          | Bldg. No. | 2215<br>2229<br>2230<br>2232<br>2280<br>2306<br>2312<br>2363<br>2408<br>2409<br>2411<br>2412<br>2421<br>2421<br>2423<br>2419<br>2420<br>2426 | each/100 W incandescent                 | 12<br>24<br>24<br>10<br>110<br>52<br>89<br>58<br>61<br>19<br>63<br>63<br>63<br>63<br>14<br>16 |         |
| Total           |           |                                                                                                                                              |                                         | <del></del> _                                                                                 | 755     |
| GY 382          | Bldg. No. | 3814<br>3880<br>3794<br>3800                                                                                                                 | each/100 W incandescent                 | 45<br>74<br>70<br>96                                                                          | 285     |
| GY 455<br>Total |           | 3457                                                                                                                                         | each/100 W incandescent                 | 33                                                                                            | 33      |
| GY 490          | Bldg. No. |                                                                                                                                              | each/100 W incandescent                 | 118<br>55<br>245<br>120<br>130                                                                | 668     |
| GY 542<br>Total |           | 026                                                                                                                                          | each/100 W incandescent                 | 49                                                                                            | 49      |
| GY 565<br>Total |           | 3033                                                                                                                                         | each/100 W incandescent                 | _14_                                                                                          | 14      |
| GY 741<br>Total |           | 3150                                                                                                                                         | each/100 W incandescent                 | <u>19</u>                                                                                     | 19      |
|                 |           |                                                                                                                                              |                                         |                                                                                               |         |

Table E-3. Building Quantity Summary (continued)

| =======         | .======== | =======                      |                         | =========                             | ======= |
|-----------------|-----------|------------------------------|-------------------------|---------------------------------------|---------|
| GY 744          | Bldg. No. | 2885<br>2909<br>2917<br>2918 | each/100 W incandescent | 6<br>7<br>12<br>32<br>40              |         |
| Total           |           | 2919<br>2921<br>2922         |                         | 40<br>40<br>40                        | 217     |
| GY 374<br>Total |           | 3188                         | each/100 W incandescent | <u>635</u>                            | 635     |
| GRAND TOTA      | \L        |                              | *                       | - the the the the the the the the the | 2,675   |

Table E-4. Buildings Quantity Summary for E-3 and E-4

|        |              |             | •           | QUANTI      | TIES                   |
|--------|--------------|-------------|-------------|-------------|------------------------|
|        |              | ERC. EXIST. | HPS REPLACE | E-3         | E-4                    |
| GY 298 | 2213         | 25-125      | 12-150      | 12          |                        |
|        | 2219         | 44~125      | 22~150      | 22          |                        |
|        | 2225         | 35~125      | 18~150      | 18          |                        |
|        | 2226         | 15~250      | 15-150      | 15          |                        |
|        | 2229         | 5~250       | 5~150       | 5           |                        |
|        | 2230         | 5~250       | 5~150       | 5<br>5      |                        |
|        | 2232         | 5-250       | 5~150       | 5           |                        |
|        | 2238         | 32~400      | 32~250      |             | 32                     |
|        | 2239         | 42~400      | 42~250      |             | 42                     |
|        | 2240         | 8~250       | 8-150       | 8           |                        |
|        | 2247         | 12-250      | 12-150      | 12          |                        |
|        | 2248         | 25-250      | 25-150      | 25          |                        |
|        | 2249         | 25-250      | 25-150      | 25          |                        |
|        | 2251         | 25-250      | 25-150      | 25<br>25    |                        |
|        | 2258         | 35~400      | 25-250      | 23          | 35                     |
|        | 2260         | 40-400      | 40~250      |             |                        |
|        | 2264         | 40-400      |             |             | 40                     |
|        | 2267         |             | 40-250      |             | 40                     |
|        | 2268         | 16~400      | 16-250      | 0           | 16                     |
|        |              | 8-250       | 8-150       | 8           |                        |
|        | 2288         | 18-125      | 9-150       | 9           |                        |
|        | 2289         | 8-250       | 8-150       | 9<br>8<br>7 |                        |
|        | 2306         | 14-125      | 7-150       | /           |                        |
|        | 2312         | 4-400       | 4-250       |             | 4                      |
|        | 2317         | 8-250       | 8-150       | 8           |                        |
|        | 2318         | 8-250       | 8-150       | 8           |                        |
|        | 2324         | 87-250      | 87 ~250     | 87          |                        |
|        | 2330         | 8-250       | 8-150       | 8           |                        |
|        | 2331         | 8-250       | 8-150       | 8           |                        |
|        | 2335         | 8~250       | 8-150       | 8           |                        |
|        | 2338         | 8-250       | 8-150       | 8           |                        |
|        | 2339         | 8~250       | 8-150       | 8           |                        |
|        | 2370         | 55-400      | 55~250      |             | 55                     |
|        | 2385         | 120~125     | 30-250      |             | 30                     |
|        | 2386         | 40~250      | 40~150      | 40          |                        |
|        | 2387         | 40~125      | 20-150      | 20          |                        |
|        | 2393         | 44-125      | 21-150      | 22          |                        |
|        | 2394         | 12~125      | 6-150       | 6           |                        |
|        | 2233A/2233E  | 83-400      | 83~250      |             | <ul> <li>83</li> </ul> |
|        | 2369A        | 24-250      | 24~150      | 24          |                        |
|        | 2369B        | 85-400      | 85-250      | _ ·         | 85                     |
|        | 2371A/2371E  |             | 260~250     |             | 260                    |
|        | 2372A/2372B  |             | 98-250      |             | 98                     |
|        | 2433         | 35~400      | 35-250      |             | 35                     |
| Total  | <b>-</b> .00 | 55 150      | 55 250      | 464         | 855                    |
|        |              |             |             | 7 <b></b>   | 000                    |

Table E-4. Buildings Quantity Summary for E-3 and E-4 (continued)

|         |              |                                    |                  | QUANT                                     | ITIES      |
|---------|--------------|------------------------------------|------------------|-------------------------------------------|------------|
| ======  | BLDG. NO.    | MERC. EXIST.                       | HPS REPLACE      | E~3                                       | E-4        |
| GY 455  | 3014<br>3040 | 12~250<br>3~400                    | 12~150<br>3~250  | 12                                        | 3          |
|         | 3041         | 52~400                             | 52 <b>-</b> 250  |                                           | 52         |
|         | 3042         | 7~250                              | 7-250            | 7                                         |            |
|         | 3043         | 35~400                             | 35~250           | 60                                        | 35         |
|         | 3056<br>3058 | 60 <b>-</b> 250<br>16-250          | 60-150<br>16-150 | 60<br>16                                  |            |
| Total   | 3030         | 10 230                             | 10-130           | 95                                        | 90         |
| GY 490  | 3400         | 20-125                             | 6-250            | . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~   | 6          |
| Total   |              |                                    |                  | 0                                         | 6          |
| GY 542  | 150          | 39-125                             | 10-250           | · Cor | 10         |
|         | 225          | 42~250                             | 42~150           | 42                                        |            |
|         | 226<br>231   | 42~250<br>42~250                   | 42-150<br>42-150 | 42<br>42                                  |            |
|         | 227          | 42-250                             | 42-150           | 42<br>42                                  |            |
|         | 228          | 42-250                             | 42~150           | 42                                        |            |
|         | 229          | 42~250                             | 42-150           | 42                                        |            |
|         | 230          | 42-250                             | 42-150           | 42                                        |            |
|         | 235          | 42~250                             | 42-150           | 42                                        |            |
|         | 236<br>237   | 42 <b>-</b> 250<br>42 <b>-</b> 250 | 42~150<br>42~150 | 42                                        |            |
|         | 237<br>270   | 9~400                              | 42~150<br>9~250  | 42                                        | 9          |
|         | 630          | 124-250                            | 124-150          | 124                                       | 9          |
| Total   |              |                                    |                  | 544                                       | 19         |
| TOTAL G |              |                                    |                  | 464                                       | 855        |
|         | SY 455:      |                                    |                  | 95                                        | 90         |
|         | Y 490:       |                                    |                  | 0                                         | 6          |
| G       | SY 542:      |                                    |                  | 544<br>=====                              | 19<br>==== |
| GRAND T | TOTAL        |                                    |                  | 1,103                                     | 970        |

### 3.1.2. Boiler Plants.

The Kaiserslautern Community is mainly heated by central boiler plants. The total fuel consumption of these plants was approximately 690,000 MBTU/a representing approximately 80 percent of the total FY 82 heating fuel consumption. The heating fuel consumption will be approximately constant between FY 82 and FY 87, due to the programmed building projects which will compensate for the decreasing trend as a result of the DEH energy conservation measures performed during FY 75 through FY 82.

DEH has programmed or under construction a number of boiler plant modifications that will improve plant efficiencies and also decrease costs by converting to more economical fuels. However, it is recommended the DEH review their programs of plant modifications and compare plant capacities with the future energy requirements that will result from the implementation of this study. If the ECIP and maintenance and repair projects are implemented, there will be a dramatic reduction in energy use. This would leave a number of the plants with a substantial excess capacity and a subsequent reduction in boiler efficiencies. This review must also be coordinated with the community development plans. The majority of the proposed ECOs analyzed have an SIR ratio of less than 1.0, due to the fact that the calculated energy savings gained by

than 1.0, due to the fact that the calculated energy savings gained by this ECOs are based on the energy consumption of the connected buildings after implementation of the proposed ECIP projects. Those ECOs with SIRs greater than 1.0, total less than \$200,000 and are included in Section 3.3.

## 3.1.3. <u>Distribution Systems</u>.

DEH has also extensive projects under construction or programmed for replacing all substandard heat distribution lines, which means that no further actions are required under this study.

### 3.1.4. District Heat.

The City of Kaiserslautern has a limited network of district heat with a total capacity of approximately 350 million BTUH. This is the same as the FY 82 demand for the U.S. Military Community. No spare capacity is presently available.

### 3.1.5. Energy Monitoring and Control System.

### 3.1.5.1. General.

The evaluation of installing an Energy Monitoring and Control System within the Kaiserslautern Community resulted in the project qualifying for ECIP criteria:

|                     |             | ANNUAL SA | AVINGS  |         |
|---------------------|-------------|-----------|---------|---------|
| PROJECT DESCRIPTION | COST        | MBTU      | \$      | SIR     |
| ***************     |             | ========  |         | ======= |
| FMCC                | 41 020 400  | 41 500    | 210 005 |         |
| EMCS                | \$1,830,428 | 41,520    | 310,925 | 1.9     |

### 3.1.5.2. Application.

The sections of the Kaiserslautern Community which have been studied for EMCS can be combined into three areas:

Area 1: GY 072 Bann

GY 382 Landstuhl Hospital

Area 2: GY 542 Rhine Ordnance Barracks

GY 744 Pulaski Barracks

Area 3: GY 298 Army Depot

GY 380 Kleber Kaserne

GY 455 Equipment Support Center

GY 490 QM FAC Eselsfuerth

GY 565 Panzer Kaserne

GY 680/741 Daenner Kaserne

### Area 1.

The Bann Facility consists only of three major buildings and was not considered for EMCS application. The Landstuhl Hospital has been investigated for a stand-alone EMCS system. The master control room (MCR) is proposed to located in Building 3777. This would be System 1, a small EMCS.

### Area 2.

Since GY 542 and GY 744 are still within the city limits, they have been only studied to be operated from the proposed master control room (MCR) in Building 3104, Daenner Kaserne.

### Area 3.

All facilities within this areas have been studied to be operated from the central MCR in Daenner Kaserne. This would be system 2, a medium EMCS.

### 3.1.5.3. <u>Basis of Analysis</u>.

Each building has been analyzed on the basis of TM 5-815-2/AFM 88-36/NAVFAC DM 4.9 Energy Monitoring and Control Systems, Final Copy, May 1982 and HNDSP 83-049-ED-ME EMCS Cost Estimating Guidelines, February 1983.

Table EMCS-11 includes only those buildings with SIR 1.0 and above.

### 3.1.5.4. <u>System Configuration</u>.

Based on the remaining buildings with SIR 1.0 and above the EMCS has been layed out with the required Field Interface Devices (FID) and central components on the philosophy described in Application.

### 3.1.5.5. Software Functions.

The following software functions have been selected for the EMCS on the basis that local controls as described under Item 3.1.1.2. have first and EMCS has second priority. This means that the savings gained by EMCS are based on the annual heating consumption after the deduction of those savings gained by local controls.

### 3.1.5.5.1. Scheduled Start/Stop.

This function will not result in any further energy savings, other than those already gained by local controls.

### 3.1.5.5.2. Summer/Winter Operation.

This function shall shut down heating systems during periods where the outdoor temperature is above  $15^{\circ}$  C./59° F. Based on the computer simulation, a savings of 3.5 percent annual heating energy savings could be realized.

### 3.1.5.5.3. Optimum Start/Stop.

Experience has shown, that this function will result in additional annual shut-off periods of approximately 0.5 hours/day over the whole year, which results in 183 hours/a, with an annual heating saving constant of:

3.5 percent/2,394 hours x 183 hours = 0.27 percent

The electrical energy saving constant will be:

183 hours x 0.5 kW = 91.5 kWh/a for shut-off the heating recirculation pump.

This function will also be used to shut-off domestic HW-heater recirculating pumps (average 0.25 kW each) at non-consuming hours which represents a saving constant of approximately 0.73 percent of the annual heating consumption.

The electrical savings result in:

8 hours/day x 365 days x 0,25 kW/pump = 730 kWh/a.

### 3.1.5.5.4. <u>Duty Cycle</u>.

No savings can be gained for the type of buildings included in this project.

### 3.1.5.5.5. Day/Night Setback.

This function will not result in any further energy savings, other than those already gained by local controls.

### 3.1.5.5.6. Demand Limiting.

The savings constant for all GYs will be 70\$/kW/a. This EMCS function shall perform the following during high demand periods:

- Shut down of electrical domestic HW heater.
- Shut down of dryers.
- Shut down of ranges and other kitchen equipment.

This constant can be applied for each DHW-heater kW and for each dyer kW if those will be shut down during short high demand periods.

### 3.1.5.5.7. Lighting Controls.

The total lighting consumption of the Kaiserslautern Community in FY 82 was approximately 16,170 MWH. During site survey, it was observed that a total of 44 buildings were lighted during unoccupied operation, which represent approximately 11 percent of the total number of buildings. Experience has shown that local time clock controls are being by-passed by the overriding controls and that only a centralized EMCS control function will drastically reduce lighting consumption. It will be assumed that the electrical energy savings gained by this function will be eight (8) percent because these buildings are unoccupied about 75 percent of the time.

### 3.1.5.5.8. Maintenance Function.

The EMCS will provide continuous information over the status of the entire systems connected to it. It will instantaneously annunciate if local control functions are in overside (Hand) position, if pumps or control valves are in functional operation and will save energy and maintenance effort for this reason.

During a site survey at Hanau, in ten (10) percent of the total buildings, the control switch was found to be in the hand-position.

This would be a heating energy loss of approximately 10,000 MBTU/a. Based on the anticipated savings of 100,000 MBTU for night setback, this represents approximately five (5) percent of the total heating energy consumption after local controls have been installed. Experience shows that the percentage of control panels being in override (hand) position is much higher, especially after drastic energy conservation measures like room temperature in administrative buildings to be reduced to  $18^{\circ}$  C./65° F., or space temperatures in work shops to be  $13^{\circ}$  C./55° F. have been executed. For these reasons, this study uses a savings constant of five (5) percent for overall savings by better and instantaneous maintenance and monitoring possibilities.

### 3.1.5.6. Summary of Savings Constants.

FUNCTION

The following is a summary of savings constants.

HEATING ENERGY

| ======================================= |              |                |         |
|-----------------------------------------|--------------|----------------|---------|
| Summer/Winter Oper.                     | (Heat) 3.5%  | 1,197 kWh/pump |         |
| Optimum Start/Stop                      | (Heat) 0,27% | 91.5 kWh/pump  |         |
| Demand Limiting                         |              |                | 70\$/kW |
| Lighting Control                        |              | 8 percent      |         |
| Maintenance                             | 5.0%         |                | •       |

ELEC. ENERGY

ELEC. DEMAND

Annual Savings, Total Heating Energy Saving Constant: 9.54% of the annual consumption.

Lighting Energy Savings Constant: 8% of the annual lighting consumption.

Electrical Energy Savings Constant for Each Heating Recirculating

Pump: 1,197 + 91.5 = 1,288.5 kWh = 14.95 MBTU

For each DWH recirculating pump: 730 kWh = 8.47 MBTU

Demand limiting savings constant: 70\$/kW

### 3.1.5.7. Construction Cost.

From the construction cost estimate the construction cost of the EMCS system is \$1,807,830.

### 3.1.5.8. Discounted Savings Ratio.

The SIR is 1.9 and thus does qualify for ECIP.

# L.A.DALY HANS DOENGES GMBH

ENERGY ENGINEERING ANALYSIS PROGRAM (EEAP)

PACKAGE NO. 14

KAISERSLAUTERN COMMUNITY

ENERGY SAVINGS, COST ESTIMATE, AND LIFE CYCLE COST ANALYSIS BY BUILDING ITEM: ENERGY MONITORING AND CONTROL SYSTEM (EMCS) TABLE EMCS-II: ONLY BUILDINGS WITH SIR 1 AND ABOVE

LEGEND FOR TABLES ON FOLLOWING PAGES

|          |   | LEGEND FUR LABLES ON FULLOWING PAGES             |
|----------|---|--------------------------------------------------|
| EW/KH    |   | ELECTRIC DOMESTIC HW HEATER CAPACITY IN BUILDING |
| DR/KW    |   | RYER CAPACITY IN BUILDING                        |
| ZONE     | • | ING                                              |
| ΩÞ       |   | :                                                |
| AD       | • | ANALOG POINT                                     |
| HAS/MBTU |   | HEATING ANNUAL SAVINGS                           |
| EAS/MBTU |   | ELECTRICAL ANNUAL SAVINGS                        |
| IDCC/S   |   | INSTRUMENTS - DIGITAL CONSTRUCTION COSTS         |
| IACC/S   |   | INSTRUMENTS - ANALOG CONSTRUCTION COSTS          |
| MCC/\$   |   | MUX CONSTRUCTION COSTS                           |
| TCC/\$ . | • | TOTAL CONSTRUCTION COSTS                         |
| IC/S     | • | INVESTMENT COSTS                                 |
| RCS/S    |   | RECURRING SAVINGS                                |
| NRC/\$   | • | NON RECURRING COSTS                              |
| NDS/8    | • | NET DISCOUNTED SAVINGS                           |
| SIR      | • | SAVINGS RATIO                                    |

HANS DOENGES GMBH L.A.DALY

EEAP PACKAGE 14, KAISERSLAUTERN, GY 293 ARMY DEPOT EMCS POINT COUNT, SAVINGS, COSTS AND LIFE CYCLE COST ANALYSIS 3Y BUILDING

TABLE: EMCS-II

| 230 16.0 0.0 2 9 3<br>213 0.0 0.0 1 9 4<br>225 220 0.0 1 9 4<br>238 3.0 0.0 1 9 4<br>356 0.0 0.0 1 9 4<br>556 0.0 0.0 1 9 4<br>557 0.0 0.0 1 9 4<br>657 0.0 0.0 1 9 4<br>657 0.0 0.0 1 9 4<br>657 0.0 0.0 1 9 4<br>658 0.0 0.0 1 9 4<br>659 0.0 0.0 1 9 4<br>650 0.0 0.0 1 9 4<br>651 0.0 0.0 1 9 4<br>652 0.0 0.0 1 9 4<br>653 0.0 0.0 1 9 4<br>654 0.0 0.0 1 9 4<br>655 0.0 0.0 1 9 4<br>656 0.0 0.0 1 9 4<br>657 0.0 0.0 1 9 4<br>658 0.0 0.0 1 9 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 191 100<br>150 31<br>144 45<br>129 45   | 2325  |       |         |         |        |       |         |        | 1   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------|-------|---------|---------|--------|-------|---------|--------|-----|
| 12.0<br>12.0<br>13.0<br>13.0<br>13.0<br>13.0<br>13.0<br>13.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0 |                                         |       | 3349  | 4212    | 10586   | 10718  | 10203 | 2783    | 12007  | 0 0 |
| 72.0<br>3.0<br>3.0<br>3.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 2325  | 2199  | 3356    | 8080    | 8131   | 0     | 2039    | 14789  |     |
| 72.0<br>3.0<br>3.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 129 45                                  | 2325  | 2199  | 3356    | 6080    | 8131   | 3826  | 2039    | 187.57 | 2   |
| 12.0 0.0 1 9 3.0 0.0 1 9 3.0 2.0 1 9 0.0 0.0 1 9 0.0 0.0 1 9 12.0 0.0 1 9 12.0 0.0 1 9 12.0 0.0 1 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • • • • • • • • • • • • • • • • • • • • | 2325  | 2199  | 3356    | 8080    | 8131   | 1275  | 2039    | 14665  | 1,7 |
| 3.0 0.0 1 9 3.0 2.0 1 9 0.0 0.0 1 9 0.0 0.0 1 9 12.0 0.0 1 9 12.0 0.0 1 9 12.0 0.0 1 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13                                      | 2325  | 2199  | 3356    | 8363    | 3131   | 7552  | 2039    | 19617  | 2 3 |
| 3.0 2.0 1 9 0.0 3.0 1 9 0.0 0.0 1 9 0.0 0.0 2 9 12.0 0.0 1 9 12.0 0.0 1 9 12.0 0.0 1 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36. 47                                  | 2325  | 2199  | 3356    | 8080    |        | 1913  | 2039    | 11047  |     |
| 0.0 0.0 1 9 0.0 0.0 1 9 0.0 0.0 2 9 12.0 0.0 1 9 12.0 0.0 1 9 12.0 0.0 1 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 132· 55                                 | 2325  | 2199  | 3356    | 8080    |        | 3189  | 2039    | 17405  | 2.1 |
| 0.0 0.0 1 9 0.0 0.0 2 9 12.0 0.0 3 9 1 12.0 0.0 1 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 136. 33                                 | 2325  | 2199  | 3356    | 8080    | 3131   | 0     | 2039    | 18305  | 2.2 |
| 0.0 0.0 2 9 0.0 0.0 1 9 12.0 0.0 1 9 12.0 0.0 1 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 126 . 51                                | 2325  | 2199  | 3356    | 8 3 8 3 | 8181   | 0     | 2039    | 13399  | 9 . |
| 0.0 0.0 1 9<br>12.0 0.0 3 9 1<br>12.0 0.0 1 9<br>5.0 0.0 1 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 132. 73                                 | 2325  | 3349  | 4212    | 10586   | 10718  | 0     | 2783    | 19743  | 9   |
| 12.0 0.0 3 9 1<br>12.0 0.0 1 9<br>5.0 0.0 1 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 116 45                                  | 2325  | 2199  | 3356    | 8060    | 8131   | 0     | 2039    | 12072  | 7.1 |
| 12.0 0.0 1 9<br>5.0 0.0 1 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 9                                     | 2325  | 5 499 | 5068    | 13092   | 13256  | 7652  | 3527    | 48350  | 3.6 |
| 5,0 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 133 60                                  | 2325  | 2199  | 3356    | 8080    | 3151   | 7652  | 2039    | 22231  | 2.7 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~                                       | 2325  | 2199  | 3356    | 8080    | 6151   | 3189  | 2039    | 46745  | 5.7 |
| 6.0 0.0 1 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 65 37                                   | 2325  | 2199  | 3356    | 8080    | 8131   | 2551  | 2039    | 9034   | 1,1 |
| 12.0 0.0 1 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | 2325  | 2199  | 3356    | 8080    | 3131   | 7652  | 2639    | 11246  |     |
| 0.0 0.0 3 9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | 2325  | 2499  | 5068    | 13092   | 13256  | C     | 3527    | 15387  | -   |
| 12.0 0.0 1 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | 2325  | 5199  | 3356    | 8080    | 8181   | 7652  | 2039    | 21508  | 2.6 |
| 4.0 0.0 1 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | 2325  | 2199  | 3356    | 8080    | 8181   | 2551  | 2039    | 8220   | 1:0 |
| 0.0 0.0 1 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | 2325  | 2199  | 3356    | 8280    | 3181   | 3826  | 26.39   | 19714  | 7.0 |
| 0.0 0.0 3 9 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | 2325  | 8799  | 6730    | 18104   | 18330  | 0     | 5015    | 115100 | . ~ |
| 0.0 0.0 4 9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                       | 2325  | 7149  | 2924    | 15593   | 15793  | 0     | 6271    | 22934  | 7.  |
| 12.0 0.0 4 9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 258 104                                 | 2325  | 7149  | 5924    | 15598   | 15793  |       | 4271    | 34973  | 2,2 |
| 12.0 0.0 1 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | €)                                      | 2325  | 2199  | 3356    | 8.38.3  | 8131   | 7652  | 2039    | 14126  | 1.7 |
| 12.0 0.0 1 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 203 c3                                  | 2325  | 5166  | 3356    | 5080    | 3131   | 7652  | 5039    | 29480  | 3.6 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |       |       | ,       | •       | - ;    |       |         | 1      |     |
| +01 C72 14 C*2 D*C*1 1410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2001 0684                               | 58125 | 81575 | 97596 2 | 742096  | 245122 | 93739 | 62879 ( | 611337 | 5.4 |

L.A.DALY HANS DOENGES GRBH

ÉEAP PACKAGE 14, KAISERSLAUTERN, GY 380 KLEBER EMCS POINT COUNT, SAVINGS, COSTS AND LIFE CYCLE COST ANALYSIS 3Y BUILDING

| 31.06.  | EN/KE  | ILDG. EW/KW DR/KW ZONES | ZONES         | 90       | AP            | HAS/MBTU | EAS/HBTU   | 1000/1  | IACC/S                                  | HCC/S     | TCC/3 | 1C/1    | RC 5 / \$         | NRC/S     | NDS/3   | 9 7 2    |
|---------|--------|-------------------------|---------------|----------|---------------|----------|------------|---------|-----------------------------------------|-----------|-------|---------|-------------------|-----------|---------|----------|
| 3200    | 0.0    | 144.0                   | •             | ٥        | 16            | 600      | 751        | 2136    |                                         |           |       |         | • • • • • • • • • |           |         | ; ;      |
| 3231    | 0.0    | 10.0                    | •             | 0        |               |          |            | 6262    |                                         | 7765      | 15598 | 15793   | 91329             | 4271      | 166822  | 10.5     |
| 1001    |        |                         | ۰,            | ٠ ،      | • •           | 9 1      | *          | 6363    | 2199                                    | 3350      | 8080  | 8131    | 6377              | 2030      | 11881   | 7        |
| 1       | •      | •                       | •             | >        | 7             | 7        | **         | 2325    | 343                                     | 4212      | 10586 | 10718   |                   | 4070      | - (     | •        |
| 2000    | )<br>) | 0.0                     |               | 0        | .,            | 213      | £ 3        | 2325    | 2100                                    | 7322      |       |         | •                 | 6677      | 61171   | -        |
| 3209    | 0.0    | 10.0                    | 7             | 0        | æ             | 200      |            | 100     | 6                                       | 000       | 200   | 8181    | 0                 | 2039      | 13939   | 1.7      |
| 3210    | 0.0    | 100                     | , <b>~</b>    | ۰        | •             | 3 6      | 2          | 6267    | 2 2 4 4                                 | 4212      | 10586 | 10718   | 6377              | 2783      | 21620   | ^        |
| * 2 4 2 |        |                         | ٠,            | •        | 9             | נים א    | 113        | 2325    | 2499                                    | 5068      | 13092 | 13256   | 4 177             | 15.37     | 2 4 4   | •        |
| 7       | 0      | 20.0                    | ٠,            | <b>-</b> | 27)           | 147      | 106        | 2325    | 0712                                    | 4212      | 10501 | 4 6 6   |                   | 7766      | ACC 1 2 | •        |
| 3224    | 13.0   | 0                       | ~             | 0        | ng            | 171      | ò          |         |                                         | 3 1 3 1   | 0000  | 21.01   | 75427             | 2783      | 35004   | 3.2      |
| 3225    | 6.0    | · c                     |               | . c      | ٠,            |          | <b>9</b> ( | ()()    | 7477                                    | 4212      | 10586 | 13718   | 11479             | 2783      | 2444    |          |
| 7 7 7 7 |        | •                       |               |          | •             | _        |            | 2325    | 2199                                    | 3356      | 8080  | 2121    | 4647              | 20.00     |         | •        |
| 755     | •      |                         | _             | <b>~</b> | . 7           | 128      | 7.8        | 2125    | 2100                                    | 7322      |       |         | 2                 | £ C 7 A   | 24420   |          |
| 3235    | 0.0    | 0.49                    | -             | 9        | •             | 417      |            | 4 6     |                                         | 0 0 0     | 8080  | 3161    | 0                 | 2039      | 17227   | 2.1      |
| 7761    |        | 2                       | . ~           | ٠ ,      | <b>P</b> 6    | ٠ ،      | 721        | 6363    | 2199                                    | 3356      | 6080  | 3131    | 3325              | 2030      | 15551   | •        |
|         | •      | 0.00                    | ••            | >        | <del>17</del> | 115      | 7          | 2325    | 6711                                    | 4212      | 1055  | 10710   |                   | 10        | * 1     |          |
| 3640    | 0.0    | 18.0                    | ~             | 0        | 17)           | 161      | ď          | 1 1 1   |                                         | 4 (       |       | 0 70    | 15677             | 2/83      | 31153   | 5.0      |
| 3251    | 0.0    | 0                       | -             | 0        | ٠.            |          | 3 1        | 5 2 5 3 | 7 7 7                                   | ÷ 212     | 10586 | 10718   | 11479             | 2783      | 23316   | 7        |
| 2363    |        |                         | - ,           | • ‹      | ,             | 613      | -;         | 2325    | 2199                                    | 3356      | 8080  | 3131    |                   | 2020      | 7 7 7   |          |
| 9 1 2 2 | 2      |                         | _             | >        | •             | 165      | 7.7        | 2325    | 2103                                    | 116.      | 100   |         |                   | * C O 3 A | 7040    | •        |
| 2524    | 0.0    | 0.0                     | _             | ¢.       | -,            | 165      | <u> </u>   | 2010    |                                         | 3 .       | 0000  | 20      | <b>¬</b>          | 2039      | 9307    | -:       |
| 3265    | 0.0    | 0.0                     | -             | 0        | ٠.,           |          | 3 (        | 6 3 6 3 | 6617                                    | 3330      | 8080  | 3131    | 0                 | 2039      | 9963    | 1.2      |
| 1204    |        |                         | • •           | ٠,       |               | ָּהַ הַ  | 3          | 2325    | 2199                                    | 3356      | 8080  | 8131    | <b>c</b>          | 2010      | 11060   |          |
|         | •      | 2                       | -             | >        | *             | Š        | ~P         | 2325    | 2103                                    | 7511      | 000   |         | •                 | 1 1       |         | •        |
| 36/8    | ٠<br>• | ٠<br>•                  |               | 0        | •             | 107      | ( 7        | 3676    |                                         | 3 .       |       |         | >                 | 2039      | 11/44   | <b>7</b> |
|         |        |                         |               |          | ,             |          | •          | (26)    | * * * * * * * * * * * * * * * * * * * * | 2336      | 8080  | 8181    | 0                 | 2039      | 12355   | .5       |
|         |        | *****                   | 1 1 7 1 5 1 4 | 1        |               |          | *****      |         |                                         |           |       |         |                   |           |         |          |
| TOTAL   | 24.0   | 270.0                   | 30.1          | 71 1     | 120           | 3109     | 1395       | 44175   | 50311                                   | 7 4 6 0 7 |       |         |                   | •         |         |          |
| •       |        | 1 1 1                   | 1 1111        | •        | ;             |          |            |         | - 7                                     |           | 2016  | 18 254E | 137484            | 46925     | 478561  | ٧.       |

L.A.DALY HANS DOENGES GMBH

EEAP PACKAGE 14, KAISERSLAUTERM, GY 455 EQUIP SUPT CTR EHCS POINT COUNT, SAVINGS, COSTS AND LIFE CYCLE COST ANALYSIS 3Y BUILDING

| 07         | EW/KW DR/KW ZONES | 90 | A P | HAS/HBTU                                | EAS/HBTU    | IDCC/8  | 1 AC C / 3 | NCC/\$  | TCC/8  | IC/\$   | RC 5 / 5 | NRC/S   | NOSVE   | 612           |
|------------|-------------------|----|-----|-----------------------------------------|-------------|---------|------------|---------|--------|---------|----------|---------|---------|---------------|
| 7          | ٥                 | •  | 7   | 111111111111111111111111111111111111111 |             |         |            |         |        |         |          |         |         | < !<br>?<br>! |
|            | ٠ ٥               |    | ٠.  |                                         | <u> </u>    | 6262    | 6617       | 3356    | 8080   | 6131    | 7652     | 2039    | 16555   | •             |
| - ,        | •                 |    | *   | 200                                     | 63          | 2325    | 2199       | 3356    | 8080   | 8121    | 7452     | 0200    |         | •             |
| 6          | c                 |    | *   | 114                                     | 3.6         | 2325    | 2100       | 7721    |        |         |          | 4000    | 0000    | 7.7           |
| -          | •                 |    | 4   | 145                                     |             | 1000    |            | 1       | 0000   | 2 3     | 2326     | 2039    | 10772   | 1.3           |
|            |                   |    | ٠.  |                                         | C 1         | 6767    | ×1.7       | 3356    | 8080   | 8131    | 0.38     | 2019    | 6242    | -             |
| <b>~</b> ( | •                 |    | 7   | 918                                     | 32          | 2325    | 2199       | 3356    | 8080   | A141    | 7652     | 2010    | 37,76   | • ;           |
| ~          | 0                 |    | *   | 158                                     | 57          | 2725    | 2100       | 7322    | 0 0    |         | 3 ( )    | £034    | 0 5 7 7 | 7.7           |
| 0 ~        | 0                 |    | :4  | 157                                     |             | 100     | 4413       | 0000    | 8320   | 9191    | 15305    | 2039    | 31636   | 30<br>M       |
|            | ٠.                |    | , . | 2                                       | S >         | 5252    | 3349       | 4212    | 10586  | 10716   | O        | 2783    | 18252   | . +           |
|            | •                 |    | *   | 2                                       |             | 2325    | 2193       | 3356    | 8080   | 1212    |          | 0.00    | 1 4     | - (           |
| -          | ^                 |    | . 7 | 95                                      | 67          | 2325    | 2100       | 7322    |        |         | •        | 6000    |         | 0:            |
| 0          | 0                 |    | 4   | C                                       |             | 100     |            | 0 7 7 7 | 9090   | 5181    | 0        | 2039    | 10151   | 1.2           |
|            | ٠٠                |    | ٠.  |                                         | •           | 5 5 5 5 | 5188       | 3356    | 8080   | 8 8 8 1 | 7652     | 2039    | 11428   | 4             |
| <b>.</b>   | •                 |    | *   | 100                                     | 6           | 2325    | 2199       | 3356    | 8080   | ×124    | 1011     | 0 1 0 0 |         | •             |
| -          | ņ                 |    | ٠,  | 40.5                                    | 4.7         | 2176    |            | 3 6     |        | 3       | 2 .      | 202     | 14007   | 1.7           |
| -          | 0                 |    | ٠,  |                                         | •           | (202    | 617        | 2220    | 0202   | 8131    | 319      | 2039    | 12206   | 1.4           |
|            | ٠ ،               |    | ,   | <u> </u>                                | כי          | 2325    | 2199       | 3356    | 8080   | 8131    | C        | 20.40   | 1287    |               |
| -          | >                 |    | .7  | 50                                      | £           | 2325    | 2199       | 1350    | חאהא   |         |          | , ,     |         | •             |
| ۰<br>-     | 0                 |    | -1  | 0.0                                     | ~           | 3175    |            |         |        | -       | >        | VC 0.2  | 45/5    | -             |
| •          |                   |    | •   | 3                                       | <u>.</u>    | 6363    | 6617       | 3356    | 8080   | 3131    | . 7052   | 2039    | 16937   | 2.0           |
| ********** |                   |    |     | ************                            |             |         |            |         |        |         |          |         |         | •             |
| 15 135     | 135               |    | . 9 | 1977                                    | 552         | 34375   | 3453'5     | 51196   | 123706 | 125252  | 40.244   | 11200   |         |               |
|            | :                 | •  | •   | 1                                       | 1 1 1 1 1 1 |         |            |         |        |         |          | 775.    | 23 (37) | Σ:<br>- !     |
|            |                   |    |     |                                         |             |         |            |         |        |         |          |         |         |               |

L.A.DALY HANS DOENGES GABH

EEAP PACKAGE 14, KAISERSLAUTERN, GY 499 ESELSFUERTH GN FAC EHCS POINT COUNT, SAVINGS, COSTS AND LIFE CYCLE COST ANALYSIS 3Y BUILDING

| 2 9 3 314 111 2325 3349 4212 10586 10718 0 2783 34950   2 9 3 133 83 2325 3349 4212 10586 10718 3826 2783 34950   1 9 4 161 40 2325 2199 3356 8080 8181 7652 2039 19161   1 9 4 61 23 2325 2199 3356 8080 8181 7652 2039 19161   2 5 5 758 295 11625 14295 18492 45412 45979 15304 11643 100259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T.                                      | 7 1 7 | W X / AC | TOMES | ć   | •  |               |            |        |                                       |         |        |                                         |          |        |        |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------|----------|-------|-----|----|---------------|------------|--------|---------------------------------------|---------|--------|-----------------------------------------|----------|--------|--------|-----|
| 2 9 3 314 111 2325 3349 4212 10586 10718 0 2783 34850 2 3 133 83 2125 349 4212 10586 10718 3826 2783 34850 1 9 4 161 40 2325 2199 3356 8080 8181 7652 2039 19161 1 9 4 61 23 2325 2199 3356 8080 8181 7652 2039 18214 2 2 2325 2199 3356 8080 8181 7652 2039 18214 1 9 4 61 23 2325 2199 3356 8080 8181 7652 2039 9173 7 65 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |       | •        |       | 5   | ;  | 143/4B1U      | EAS/MBIU   | 1000/5 | IACC/S                                | MCC/S   | TCC/\$ | 10/3                                    | RC 5 / 3 | 113C/3 |        | SIR |
| 2 9 3 133 83 2125 349 4212 10380 10718 3826 2783 34850 10 2783 34850 10 2783 34850 10 2783 34850 10 2783 19361 10 9 4 161 40 2325 2199 3356 8080 8181 7652 2039 19161 10 9 4 01 23 2325 2199 3356 8080 8181 7652 2039 18214 10 9 4 01 23 2325 2199 3356 8080 8181 7652 2039 9173 10 9 4 1625 11625 14295 18492 45412 45979 15304 11043 100259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0 0.0                                 |       |          | ~     | ٥   | າ  | 314           | 111        | 2325   | 43.0                                  | , ,     | 1      | * * * * * * * * * * * * * * * * * * * * |          |        |        | 1 1 |
| 1 9 4 161 40 2325 2199 3356 8080 8181 7652 2039 19161 1 9 4 61 23 2325 2199 3356 8080 8181 7652 2039 19161 1 9 4 61 23 2325 2199 3356 8080 8181 7652 2039 19161 1 9 4 61 23 2325 2199 3356 8080 4131 3426 2039 9173 1 45 25 758 295 11625 14295 18492 45412 45979 15304 11643 100259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |       |          | ~     | •   | 'n | 133           | · œ        | 2125   | * * * * * * * * * * * * * * * * * * * | 7 7 7 7 | 0000   | 81701                                   | 0        | 2783   | 34950  | 3.2 |
| 1 9 6 8181 0 2039 19161<br>1 9 6 818 7652 2039 18216<br>1 9 6 61 23 2325 2199 3356 8080 8181 7652 2039 18216<br>2 2 2325 2199 3356 8080 8131 3426 2039 9173<br>7 65 25 758 296 11625 14295 18492 45412 45979 15304 11643 100259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |       |          | -     | •   | 7  | 1 4 4         | 3 -        | 7777   | A 400                                 | 7175    | 10586  | 10718                                   | 3826     | 2783   | 18861  | 1.7 |
| 1 9 4 61 23 2325 2199 3356 8080 8181 7652 2039 18214<br>8080 4131 3826 2039 9173<br>7 45 25 758 296 11625 14295 18492 45412 45979 15304 11683 100259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |       |          |       | • 0 | ٠. | 2 6           | <b>?</b> ; | 2323   | 5183                                  | 3356    | 8080   | 8181                                    | 0        | 2039   | 19161  | ~   |
| 7 45 25 758 296 11625 14295 45412 45979 15304 11043 100259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |       |          | - •   | • ( | •  | 70            | 5.5        | 2325   | 2199                                  | 3356    | 8080   | 8181                                    | 7652     | 2030   | 18217  |     |
| 7 45 25 758 296 11625 14295 18492 45412 45979 15304 11043 100259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |       |          | -     | •   | *  | <b>.</b>      | 23         | 2325   | 2199                                  | 3356    | 8080   | 4131                                    | 3820     | 2030   | 010    | 7.7 |
| 25 758 296 11625 14295 18492 45412 45979 15304 11643 100259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |       | •        |       | 1   | 1  |               | :          |        |                                       |         |        |                                         |          | )<br>} | :      | :   |
| \$52001 \$0011 \$0001 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 \$4200 | TOTAL 24.0 0.0                          | 0.0   |          |       | 45  | 25 | 758           | 295        | 11625  | 14295                                 | 18492   | 45412  | . 5070                                  | 16 20 4  |        |        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 1 2 1 |          | ;     |     |    | 1 1 1 1 1 1 1 |            |        |                                       |         |        | 4746                                    | *000     | 1023   | 100259 | 2.1 |

L.A.DALY HANS DOENGES GMBH

EEAP PACKAGE 14, KAISERSLAUTERN, GY 542 RHINE ORD BARRACKS EHCS POINT COUNT, SAVINGS, COSTS AND LIFE CYCLE COST ANALYSIS BY BUILDING

| 31.06.     | EW/KW                                 | EW/KW DR/KW ZONES | ZOWES       | 00    | AP  | HAS/MBTU        | EAS/MBTU                                | IDCC/S | IACS/S  | HCC/\$            | TCC/S | 10/\$ | RC S / \$ | NAC/S      | NDS/\$        | SIR      |
|------------|---------------------------------------|-------------------|-------------|-------|-----|-----------------|-----------------------------------------|--------|---------|-------------------|-------|-------|-----------|------------|---------------|----------|
| 150        | 3.0                                   |                   | ~           | 0     |     | 122             | ~                                       | 3676   | 10/25   |                   |       |       |           |            |               | :        |
|            |                                       | •                 | , -         | . (   | •   | 3 (             | 7                                       | 7779   | A * C C | 7174              | 10245 | 1078  | 1915      | 2783       | 16640         |          |
| 701        | •                                     | •                 | ·i          | >     | ~   | 150             | 100                                     | 2325   | 3349    | 4212              | 10586 | 10718 | 10111     | 2781       | 1017          | ,        |
| 103        | 0.0                                   |                   |             | 0     | 4   | 4.              | 27                                      | 2725   | 2100    | 7311              |       |       |           |            | *             | •        |
| 141        | <                                     |                   |             | •     | •   | ;               | •                                       |        | 4 4 7 4 | 22.00             | 0000  | 0 0   | 5         | <b>203</b> | 9321          | <u>:</u> |
| • ·        | ֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ |                   | 4           | •     | 77  | 116             | 7                                       | 2325   | 3349    | 4212              | 10586 | 10718 | <b>-</b>  | 2783       | 16906         | -        |
| 2          | 24.0                                  |                   | <del></del> | 0     | - 🏲 | 63              | 7.5                                     | 2325   | 2100    | 1154              | 0808  |       | 16 100    |            |               | • •      |
| 3.10       | 0,0                                   |                   | -           | 0     | ٠   | 7.0             | i (                                     |        |         |                   |       | 0     | 2020      | X C O 2    | 7 4 4 7       | •        |
|            |                                       |                   | - ,         | •     | ,   | 0.              | î                                       | < 35 2 | 2199    | 3356              | 8080  | 8181  | 0         | 2039       | 0000          | -        |
| =          | •                                     |                   | _           | 0     | . • | 23              | 116                                     | 2325   | 2100    | 7511              | Ca Ca |       | 3664      |            |               | ,        |
| 2          | 0                                     |                   | -           | O     | •   |                 |                                         |        |         | 1                 | 3     | 0     | 200       | 2024       | 9626          | -        |
|            | 3                                     |                   | •           | •     | *   | 60              | 50                                      | 5252   | 2199    | 3350              | 3080  | 8131  | ~         | 2030       | 10370         | -        |
| 0,0        | 0.21                                  |                   | _           | ۰     | •   | 56              | 20                                      | 2425   | 2100    | 7311              | 0000  | 40.43 |           |            |               | •        |
| 200        | 7                                     |                   | •           | c     | •   |                 |                                         | 3 6    |         | 7                 | 2000  | 0     | 7007      | 502        | 13183         | -        |
| ;          | •                                     |                   | •           | •     | •   | C n             | 77                                      | 5252   | 2199    | 3356              | 8080  | 8131  | 3507      | 2039       | 13281         | 1.6      |
| 1          |                                       |                   |             |       |     |                 |                                         |        |         |                   |       |       |           |            |               | •        |
|            |                                       |                   |             |       |     | 1 1 1 1 1 1 1 1 | 111111111                               |        |         | 1 1 1 1 1 1 1 1 1 |       |       |           | 1 1 1 1 1  | 1 1 1 1 1 1 1 |          |
| TOTAL 47.0 | 67.0                                  | 31.5              | 7           | 90 52 | 25  | 836             | 955                                     | 23250  | 26740   | 35128             | 98313 | 89421 | 50059     | 22622      | 156315        | 1.7      |
| •          |                                       | ? ! ! !           | 1 1 1       | ,     | 1   |                 | 111111111111111111111111111111111111111 |        |         |                   |       |       |           |            |               | •        |

L.A.DALY HANS DOENGES GABH

ÉEAP PACKAGE 14, KAISERSLAUTERN, GY S65 PANZER EHCS POINT COUNT, SAVINGS, COSTS AND LIFE CYCLE COST ANALYSIS 3Y BUILDING

| 3700        | EW/KW                                   | SLDG. EW/KW DR/KW ZONES | ZONES | DP  | A P         | HAS/HBTU                                | J EAS/HBTU  | 10001 | IACC/\$                                   | MCC/3 | 100/1 | 10/8  | RC 5 / \$   | NRC/S  | NDS/8       | 51.8   |
|-------------|-----------------------------------------|-------------------------|-------|-----|-------------|-----------------------------------------|-------------|-------|-------------------------------------------|-------|-------|-------|-------------|--------|-------------|--------|
| 0002        |                                         |                         | •     | •   | į .         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   | 1 1 1 1 1 1 |       |                                           |       |       |       | 1 1 1 1 1 1 |        | 1 1 1 1 1 1 |        |
| 2000        | 2.3                                     |                         | -     | >   | *           | 135                                     |             | 2325  | 2199                                      | 3356  | 8080  | 1.0   | 1275        | 2010   | 9760        | -      |
| <b>3001</b> | 0.0                                     | 0.0                     | ~     | •   | ٠.          | . 112                                   | 143         | 2325  | 6788                                      | 4212  | 10586 | 10719 | 400         |        | 7           | • ,    |
| -3002       | 0.0                                     |                         | P.    | 0   | *           | 102                                     |             | 2116  | 22.0                                      |       |       |       | 2063        | 5673   | 12424       | -      |
| ¥002        |                                         |                         | , -   | ٠ ، | •           |                                         |             | 6363  | A + C - C - C - C - C - C - C - C - C - C | 7175  | 10586 | 10718 | 3826        | 2783   | 15845       | -      |
| 0000        | 0                                       |                         | ٠,    | •   | n           | 102                                     |             | 2325  | 37.5                                      | 4212  | 10586 | 10718 | 7828        | 2781   | 15875       |        |
| 7005        | 0.0                                     |                         | ~;    | 0   | 20          | 102                                     |             | 2125  | 0712                                      | 1313  | 1050  |       | ) t         | 200    | 7000        | -      |
| 2002        | 13.0                                    |                         | •     | ď   | ~           |                                         |             |       | P 1                                       |       | 0000  | 200   | 3340        | 6783   | 12845       | -      |
|             |                                         |                         | • •   | • ( | •           |                                         |             | 7373  | ~ 61.7°                                   | 3356  | 8080  | 3131  | 7552        | 2039   | 15754       | ,      |
| 3067        | •                                       |                         | -     | •   | .7          | 155                                     |             | 2325  | 2199                                      | 3356  | 8080  | 8181  | 11479       | 2039   | 21593       | 2.6    |
|             | 1 1 1                                   |                         |       | 1   | 1<br>5<br>2 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |             |       |                                           |       |       |       |             |        |             | ,<br>} |
| TOTAL       | 56.0                                    | 0.0                     | =     | 63  | 7.7         | 818                                     | . 764       | 16275 | 21393                                     | 26616 | 46584 | 47.15 | 35710       | 4737.0 |             |        |
| •           | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 1 1 1 1                 | ;     | •   |             |                                         |             | 1     |                                           |       |       |       | 01000       | 4571   | *           | -      |

L.A.DALY HANS DOENGES GMBH

EEAP PACKAGE 14, KAISERSLAUTERN, GY 680 AND 741 DAENNER EMCS POINT COUNT, SAVINGS, COSTS AND LIFE CYCLE COST ANALYSIS BY BUILDING

| 31.06. | EW/KW | DR/KW      | SLOG. EW/KW DR/KW ZONES | 00  | AP H                                    | HAS/HBTU E                              | EAS/HBTU | IDCC/3 | IACC/ \$ | MCC/S | 100/18       | 10/8   | RC S / \$ | NRC/S | NDS/8  | SIR |
|--------|-------|------------|-------------------------|-----|-----------------------------------------|-----------------------------------------|----------|--------|----------|-------|--------------|--------|-----------|-------|--------|-----|
| 3150   | 0.0   | 0.0        | -                       | ٥   | *                                       | 31                                      | 27       | 2325   | 2199     | 3356  | 8080         | 8181   |           | 2010  | 808    |     |
| 3100   | 0.0   |            | ~;                      | ۰   | 70                                      | 151                                     | 115      | 2325   | 1349     | 4212  | 10586        | 10718  | 45314     | 7787  | 67110  |     |
| 1101   | 0.0   | 54.0       | ^1                      | ۰   | ᠤ                                       | 145                                     | 116      | 2325   | 3349     | 4212  | 10585        | 10718  | 34430     | 2783  | 02675  | ,   |
| 3102   | 0.0   |            | 2                       | ٥   | 77)                                     | 162                                     | 116      | 2325   | 3349     | 4212  | 10566        | 10718  | 34435     | 2783  | 56938  | 2.5 |
| 3103   | 0.0   | •          | 7                       | ٥   | ጥ                                       | 162                                     | 116      | 2325   | 3349     | 4212  | 10580        | 10718  | 30610     | 2783  | 53112  | ,   |
| 3104   | 0.0   |            | ^1                      | •   | ~                                       | 119                                     | 102      | 2325   | 3349     | 4212  | 10586        | 10718  | 0         | 2783  | 16667  |     |
| 3106   | 0.0   |            | -                       | 6   | ٠,                                      | 8                                       | 41       | 2325   | 2199     | 3356  | 8080         | 8181   | 0         | 2039  | 9716   |     |
| 5107   | 0.0   |            | -                       | ٥   | ٠,                                      | 75                                      | 44       | 2325   | 2199     | 3356  | 8083         | 8181   | 3820      | 2039  | 13091  | 1,6 |
| 3113   | 25.0  |            |                         | ٥   | •                                       | 22                                      | . 29     | 2325   | 2199     | 3356  | 8080         | 8151   | 15943     | 2039  | 18029  | 2.2 |
| 3114   | 21.0  |            | <b></b>                 | Φ.  | ٠,                                      | 136                                     | 53       | 2325   | 2199     | 3356  | 8080         | 8131   | 13392     | 2039  | 26657  |     |
| 3116   | 0.9   |            | <b>-</b>                | ٥   | . •                                     | 137                                     | 23       | 2325   | 2199     | 3356  | 8080         | 8181   | 3826      | 2039  | 17140  |     |
| 3117   | 12.0  |            | <b></b>                 | ٥   | .†                                      | 1+7                                     | 23       | 2325   | 2199     | 3356  | 8080         | 3181   | 7652      | 2039  | 21980  | 2.6 |
|        |       |            |                         |     | *************************************** | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1        |        |          |       |              | 1      |           |       |        |     |
| TOTAL  |       | 64.0 234.0 | 17 103                  | 103 | 63                                      | 1418                                    | 794      | 27900  | 34633    | 44552 | 44552 109490 | 110857 | 190035    | 29138 | 364340 | 3.2 |

L.A.DALY HANS DOENGES GMBH

EEAP PACKAGE 14, KAISERSLAUTERN, GY 744 PULASKI BARRACKS EMCS POINT COUNT, SAVINGS, COSTS AND LIFE CYCLE COST ANALYSIS BY BUILDING

| al 36.  |            | EW/KW DR/KW ZONES | ZONES        | d O | A P   | HAS/MBTU E | EAS/H3TU | IDCC/5  | IACC/S | HCC/S   | 100/8     | 10/1   | RC S / \$                               | NRC/S         | \$ /5 QN                                | STR       |
|---------|------------|-------------------|--------------|-----|-------|------------|----------|---------|--------|---------|-----------|--------|-----------------------------------------|---------------|-----------------------------------------|-----------|
| 2855    |            |                   | -            | ۰   |       | 79         | 7 6      | 2010    |        | ****    | 1 1 1 1 1 |        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |               |                                         |           |
| D A A O |            |                   | •            | ٠ ، | ٠.    | P (        | 9 1      | 6 2 6 3 | 4417   | 2220    | 2020      | 8181   | 1275                                    | 2039          | 6190                                    | 1.0       |
| 3 1     |            |                   | -            | >   | +     | 2          | 20       | 2325    | 2199   | 3356    | 8080      | R131   | 02Y77                                   | 0100          | 7 10 12                                 |           |
| 7/97    |            |                   | _            | 0   | .,    | 204        | 57       | 2126    | 2100   | 7 2 7 2 |           |        | 3                                       | 4003          |                                         | 0         |
| 2879    |            |                   | -            | 0   | • - • | 6/4        | •        |         | 2117   | 0000    | 9080      | 8181   | 0                                       | 2039          | 20995                                   | 2.5       |
| 75.00   |            |                   | ••           | • • | •     | • !        | C \$     | (262    | 4467   | 3356    | 8080      | 8131   | 0                                       | 2039          | 15215                                   | α,        |
| 9 0     |            |                   | _            | •   | •     | 7,         | <b>4</b> | 2325    | 2199   | 3356    | 8080      | 2121   | 4 (77                                   | 2010          |                                         |           |
| 0687    |            |                   |              | •   | 7     | 147        | 57       | 2010    | 0010   |         |           |        | 1 1 0                                   | ¢03%          | 21373                                   | 9.7       |
| 2895    |            |                   | -            | •   | ٠.    |            | ; ;      | 7 7 7   | 617    | 2220    | 8080      | 6181   | 6377                                    | 2039          | 21593                                   | 2.6       |
| 0000    | •          |                   | - •          | • ( | +     | 761        | -        | 2325    | 2199   | 3356    | 8080      | 8181   | G                                       | 2030          | 1855                                    |           |
| 30436   |            |                   | _            | •   | *     | 94         | 3.1      | 7725    | 2100   | 7321    |           |        | •                                       |               | 0 0                                     | 7.7       |
| × 2915  | •          |                   | -            | 0   | -1    | •          |          | 1 7     |        | 7 1     | 0000      | 0      | 6/911                                   | 6507          | 15722                                   | •         |
| 3000    |            | Ī                 | • •          | ٠,  | • .   | <b>-</b> : | c,       | 5252    | 5165   | 3356    | 8080      | 8131   | 22957                                   | 2030          | 21283                                   |           |
|         |            |                   | _            | >   |       | 147        | 5,       | 2325    | 2199   | 1150    | 0000      |        |                                         |               |                                         | 9         |
| 8767    |            | •                 | <del>-</del> | 0   | ~1    | 11.7       | 3 /      |         |        | 1       |           | 0      | 0 2 5                                   | 503           | 21293                                   | <b>7.</b> |
| 03.60   |            | •                 | •            |     | ٠.    |            | 7        | 6767    | 6617   | 3220    | 8080      | 8131   | 6377                                    | 2039          | 21501                                   | 7 .       |
|         | •          |                   |              | •   | *     |            | <b>*</b> | 2325    | 2199   | 335ò    | 8080      | 3191   | 4 4 7 7                                 | 20.00         | 24507                                   |           |
| 5433    |            |                   | _            | ~   | .,    | 8          | 7        | 2725    | 2100   | 7322    | 1000      |        |                                         |               | 6 1 7 7 3                               | •         |
|         |            |                   |              |     |       |            | •        |         |        | 211     | 0000      | 200    | 7697                                    | 2039          | 12620                                   | 1.5       |
| 1 1 1   | 110000     | ***               |              |     |       |            | •        |         |        |         |           |        |                                         |               |                                         |           |
| TOTAL   | 400        |                   |              |     | (     |            |          | ,       |        |         |           |        |                                         | 1 4 2 3 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1         |
|         | 2007-14-0- | •                 | 2 !          |     | 2     | 1494       | 510      | 30225   | 28587  | 43c28   | 105040    | 106353 | 119367                                  | 26507         | 273605                                  |           |
|         |            |                   | ,            |     | :     |            |          |         |        |         |           |        |                                         | Ī             | 7007                                    | 7         |

L.A.DALY HANS DOENGES GREH

LEAP PACKAGE 14, KAISERSLAUTERN, GY 382 LANDSTUHL EHCS POINT COUNT, SAVINGS, COSTS AND LIFE CYCLE COST ANALYSIS 3Y BUILDING TABLE: EMCS-II

| SIR               | 2.5   |          | 2     | 2,5   |       | 1.0         | 0     | . 8   | 1.7       | 7.        | 2.1   | -    | <u>-</u> | -    | 6     | 6       | 1.2      | ~     | 1.7        | 2.2   | -        | 1.2      | -          | 2.1   | 1.5        |
|-------------------|-------|----------|-------|-------|-------|-------------|-------|-------|-----------|-----------|-------|------|----------|------|-------|---------|----------|-------|------------|-------|----------|----------|------------|-------|------------|
| 8/5QN             | 37634 | 10733    | 35293 | 37634 | 13891 | 8627        | 8331  | 15079 | 18399     | 18399     | 17043 | 9503 | 9516     | 9195 | 16061 | 16061   | 10334    | 14207 | 19225      | 18463 | 9200     | 10335    | 9314       | 17643 | 12487      |
| NRC/S             | 2783  | 2783     | 2783  | 2783  | 2039  | 2039        | 2039  | 2039  | 27.83     | 2783      | 2039  | 2039 | 2039     | 2039 | 2039  | 2039    | 2039     | 2783  | 2733       | 2039  | 2039     | 2039     | 2039       | 2039  | 2039       |
| RC S / S          | 22957 | 0        | 22957 | 22957 | 7652  | 3189        | 1913  | 7552  | 7652      | 7652      | O     | 0    | 0        | O.   | 0     | 0       | 0        | 0     | 0          | 0     | 0        | 0        | 0          | 0     | 0          |
| 10/8              | 10718 | 10718    | 10718 | 10718 | 3181  | 8191        | 8181  | 3191  | 10718     | 10718     | 3131  | 8181 | 8181     | 3131 | 3181  | 8181    | 8131-    | 10718 | 10718      | 8131  | 6131     | 8181     | 8181       | 3131  | 8181       |
| 100/5             | 10586 | 10586    | 10585 | 10586 | 8080  | 8080        | 8080  | 8080  | 10586     | 10586     | 8080  | 8080 | 8080     | 8080 | 8080  | 8080    | 8080     | 10586 | 10585      | 8080  | 8080     | 8083     | 8 080      | 8080  | 8060       |
| MCC/\$            | 4212  | 4212     | 4212  | 4212  | 3356  | 3356        | 3356  | 3356  | 4212      | 4212      | 3356  | 3356 | 3356     | 3356 | 3356  | 3356    | 3356     | 4212  | 4212       | 3356  | 3356     | 3356     | 3356       | 3356  | 3350       |
| IACC/S            | 3349  | 3349     | 3849  | 3349  | 2199  | 2199        | 2199  | 2199  | 3349      | 3349      | 2199  | 2199 | 2199     | 2199 | 2199  | 2199    | 2199     | 3349  | 3349       | 2199  | 2199     | 2199     | 2199       | 2199  | 2199       |
| 1000/8            | 2325  | 2325     | 2325  | 2325  | 2325  | 2325        | 2325  | 2325  | 2325      | 2325      | 2325  | 2325 | 2325     | 2325 | 2325  | 2325    | 2325     | 2325  | 2325       | 2325  | 2325     | 2325     | 2325       | 2325  | 2325       |
| EAS/MBTU          | 76    | 70       | 26    | 26    | 35    | 5 \$        | 35    | 42    | 132       | 132       | 142   | 83   | 66       | 83   | 142   | 142     | 85<br>83 | 4.3   | 109        | . 125 | 66       | 66       | &<br>3     | 142   | 82         |
| HAS/MBTU E        | 196   | 156      | 159   | 196   | 102   | 72          | 104   | 115   | 105       | 105       | 134   | 114  | 101      | 105  | 169   | 109     | 123      | 5 2 9 | 258        | 221   | 96       | 114      | 111        | 194   | 162        |
| APA               | ю     | <b>:</b> | 70    | m     | ٠,    | <b>,</b> \$ | ٠,    | J     | <b>47</b> | 77)       | 4     | و.   | 4        | .,   | •     | •       | .,       | 70    | :0         | ٠,٢   | .,       |          | · <b>P</b> | •     | ~ <b>T</b> |
| 90                | •     | ٥        | ٥     | (A)   | ٥     | 0           | •     | c     | ٥         | ٥         | ᠬ     | 0    | Φ.       | •    | Φ.    | 0       | •        | ٥.    | ٥          | ٥     | O.       | <u>۰</u> | Φ.         | •     | ٥          |
| ZONES             | ~     | ~        | ~     | ~1    | -     | -           |       | -     | ~         | <b>~1</b> | -     |      | -        |      | -     | <b></b> | _        | ~,    | <b>~</b> ; | -     | <b>-</b> | -        | <b>-</b> - |       | <b></b>    |
| DR/KW             | 36.0  | 0.0      | 36.0  | 36.0  | 0.0   | 5.0         | 0.0   | 0     | 12.0      | 12.0      | 0.0   | 0.0  | 0.0      | 0.0  | 0.0   | 0.0     | 0.0      | 0.0   | 0          | 0     | 0.0      | 0.0      | 0.0        | 0.0   | 0.0        |
| EW/KW DR/KW ZONES | 0.0   | 0.0      | 0.0   | 0.0   | 12.0  | 0.0         | 3.0   | 12.0  | 0         | 0.0       | 0.0   | 0.0  | 0.0      | 0.0  | 0.0   | 0.0     | 0.0      | 0.0   | 0.0        | 0.0   | 0.0      | 0.0      | 0.0        | 0.0   | 0.0        |
| 3106.             | 3702  | 3703     | 3707  | 3716  | 3717  | 37.20       | 37.42 | 3740  | 3754      | 3750      | 3757  | 3758 | 3759     | 3760 | 3761  | 3762    | 3704     | 3765  | 3756       | 3707  | 3759     | 37.70    | 57.71      | 3772  | 3775       |

L.A.DALY HANS DOENGES GMBH

EEAP PACKAGE 14, KAISERSLAUTERN, GY 382 LANDSTUML EMCS POINT COUNT, SAVINGS, COSTS AND LIFE CYCLE COST ANALYSIS 3Y BUILDING

| 31.36. |                  | DR/KW                                   | 20NES      | 90         | 4   |         | HAS/HBTU EAS/HBTU | 10CC/\$ | IACC/S | MCC/S        | 166/5  | 10/8   | RC S / 3            | NRC/\$ | NDS/\$ | SIR    |
|--------|------------------|-----------------------------------------|------------|------------|-----|---------|-------------------|---------|--------|--------------|--------|--------|---------------------|--------|--------|--------|
| 3800   | 1                | 0.0                                     | 12.0 0.0 1 | ٥          | 7   |         | 17                | 2426    | 2400   | 1361         |        |        | •                   |        |        |        |
| 3809   | 0.0              | 2.0                                     | -7         | 0          | 12. | 299     | 171               | 2125    | 0075   | 9 4 6 4      | 12002  | 8181   | 7552                | 2039   | 12370  | 1.5    |
| 3310   | 0.0              |                                         | ~          | ٥          | 9   | 166     | 70                | 2325    | 078 2  | 7000         | 1000   | 10620  | 7017                | 5527   | 66722  | 0°2    |
| 3812   | 43.0             |                                         | -          | ø.         | ٠,۶ | 9,      | **                | 2125    | 2100   | 7512         |        |        | <b>5</b>            | 26.62  | 11266  |        |
| 3821   | 0.0              | •                                       | -          | ٥          | .,  | 7       | ~                 | 2125    | 2100   | 9 7 7 7      |        | 2010   | 00000               | 2039   | 37029  | 4.5    |
| 3323   | 10.0             |                                         | -          | ٥          | •   | 30      | 1 KD              | 2325    | 2199   | 3356         | 0000   | 0 4    | 1150                | 2029   | 22.78  | 0.0    |
|        |                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |            |            |     |         |                   | ;<br>!  | •      |              |        |        |                     | 6034   | 6170   | -<br>- |
| TOTAL  | TOTAL 97.0 158.0 | 158.0                                   | 75         | 42 279 163 | 63  | 4318    | 2754              | 72075   | 36319  | 86319 113452 | 278046 | 281510 | 278014 281510 45243 | 74404  |        |        |
|        |                  |                                         | 1          | •          | 1   | 1 1 1 1 |                   |         |        |              |        |        | 710701              | 200    | 208070 | 1.8    |

### 3.1.6. Maintenance and Repair Projects.

Maintenance and repair projects that provide energy savings all fall below the minimum ECIP funding requirements. Modifications that would produce savings are listed in Section 3.3.

### 3.2. ECIP Projects Developed.

Four Life Cycle Analysis Summaries yielded ECIP projects with an SIR greater than one (1).

| PROJECT | T DESCRIPTION        | COST      | ANNUAL<br>MBTU | SAVINGS<br>\$    | SIR  |
|---------|----------------------|-----------|----------------|------------------|------|
| Α       | Weatherization       | 6,741,355 | 167,701        | 826,642          | 1.61 |
| Α       | Heating Systems Mod. | 806,790   | 185,243        | 904,937          | 14.9 |
| A       | Lighting System Mod. | 1,163,065 | 30,278         | 206,575          | 1.95 |
| В       | EMCS                 | 1,830,428 | 41,520         | 310 <b>,</b> 925 | 1.9  |

The Life Cycle Cost Analysis Summaries and Form 1391s are included in this Section.

# LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

| LOC  | ATIO                       | V: <u>K</u>                                | aiserslaut                                                                 | tern                                 | REGI                             | ON NO                                                | <del></del>       | _ PROJECT                              | NUMBE                    | ?                                    |
|------|----------------------------|--------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|----------------------------------|------------------------------------------------------|-------------------|----------------------------------------|--------------------------|--------------------------------------|
| PRO- | JECT                       | TITL                                       | E Weather                                                                  | rization                             |                                  |                                                      | ··-·              | FISCAL                                 | YEAR _                   | 1987                                 |
| DIS  | CRETI                      | E POR                                      | TION NAME                                                                  | Wall a                               | nd Roof                          | Insulation                                           |                   | ······································ |                          |                                      |
| ANA  | LYSI                       | S DAT                                      | E 1983                                                                     | 3                                    | ECONOMIC                         | LIFE 15                                              | YEARS             | PREPARED                               | BY                       | LAD                                  |
| 1.   | INV                        | ESTME                                      | NT                                                                         |                                      |                                  |                                                      |                   |                                        |                          |                                      |
|      | C.<br>D.<br>E.             | SIOH<br>DESI<br>ENER<br>SALV               | TRUCTION (<br>(at 5.5%)<br>GN COST<br>GY CREDIT<br>AGE VALUE<br>L INVESTME | CALC (1                              | •                                | X.9                                                  | \$                | 7,099,900<br>390,494<br>5,741,355      |                          | 6,741,355                            |
| 2.   |                            |                                            | AVINGS (+)<br>DATA ANNU                                                    |                                      |                                  | T COST AND                                           | DISCOUNT          | ED SAVIN                               | GS                       |                                      |
|      | FUE                        | L                                          | COST<br>\$/MBTU                                                            | SA<br>(1) MB                         | VINGS<br>TU/YR(2)                | ANNUAL \$<br>SAVINGS(3                               | DISO<br>FACT      | COUNT<br>FOR (4)                       | DISC(<br>SAVI            | OUNTED<br>NGS (5)                    |
|      | A.<br>B.<br>C.<br>D.<br>E. | ELEC<br>DIST<br>RESI<br>NG<br>COAL<br>TOTA | \$ 7.32<br>D \$ 6.11<br>\$ 2.88                                            | <u>5</u><br>3 7                      | 0,660<br>0,506<br>6,535<br>7,701 | \$ 297,631<br>\$ 308,591<br>\$ 220,420<br>\$ 826,642 | $\frac{13}{15}$   | 3.36<br>3.29<br>5.39                   | \$ 4,10<br>\$<br>\$ 3,39 | 31,088<br>01,174<br>92,263<br>74,525 |
|      | 3.                         | NON                                        | ENERGY SAY                                                                 | /INGS (+                             | )/COST (                         | -)                                                   |                   |                                        |                          |                                      |
|      |                            | Α.                                         | ANNUAL REG<br>(1) DISCG<br>(2) DISCG                                       | DUNT FAC                             | TOR (TAB                         | SLE A)<br>ST (3A X 3A                                | ·                 | 0                                      |                          |                                      |
|      |                            | В.                                         | NON RECUR                                                                  | RING SAV                             | INGS (+)                         | /COST (-)                                            |                   |                                        |                          |                                      |
|      |                            |                                            | ITEM a. b c d. TOTAL                                                       | SAVINGS<br>COST (-<br>\$<br>\$<br>\$ |                                  | YEAR OF<br>OCCURRENCE (                              | DISCO<br>2) FACTO |                                        | SCOUNTE<br>) COST        | ED SAVINGS<br>(-)(4)                 |
|      |                            | C.                                         | TOTAL NON                                                                  | ENERGY                               | DISCOUNT                         | FD SAVINGS                                           | (+)/005           | [ (~) (3N                              | 2+3B44                   | ) <b>¢</b> 0                         |

| 4. | FIR | ST YEAR DOLLAR SAVINGS 2F2+3A+(3B1d/YEARS ECONOMIC LIF                              | E) \$_      | 826,642   |
|----|-----|-------------------------------------------------------------------------------------|-------------|-----------|
| 5. | TOT | AL NET DISCOUNTED SAVINGS (2F3+3C)                                                  | \$ <u>1</u> | 0,874,525 |
| 6. |     | COUNTED SAVINGS RATIO (IF LESS THAN 1 PROJECT DOES NOT $R)=(5/1F)=\underline{1.61}$ | QUAL        | ITY)      |
| 7. | ECI | P QUALIFICATIONS TEST                                                               |             |           |
|    | Α.  | PROJECT NON ENERGY QUALIFICATION TEST (1) 25% MAX NON ENERGY CALC (2F3 X .33)       | \$_         | 0         |
|    |     | (2) NON ENERGY DISCOUNTED SAVINGS (3C)                                              | \$          | 0         |
|    |     | (3) ENTER SMALLER OF 7.A.1 OR 7.A.2                                                 | \$_         |           |
|    |     | ESIR = $(2F3 + 7A3)/1F = 1.61$                                                      |             |           |
|    |     | IF LESS THAN 1 PROJECT DOES NOT QUALIFY FOR ECIP                                    |             |           |
|    |     | IF GREATER THAN 1 THEN PROJECT OHALTETES FOR ECID                                   |             |           |

AND THE "SIR" GENERATED IN 6. IS REPORTED AS THE PROJECT "SIR".

1. COMPONENT FY 1987 MILITARY CONSTRUCTION PROJECT DATA ARMY 3. INSTALLATION AND LOCATION 4. PROJECT TITLE

2 DATE

1 MAY 1984

KAISERSLAUTERN COMMUNITY, FRG

ECIP-WEATHERIZATION

S. PROGRAM ELEMENT 6. CATEGORY CODE

MCA/ECIP

80000

7. PROJECT NUMBER

8. PROJECT COST (\$000) \$ 9,430.

| 9. COST ESTIMATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S                                        |                                                                                                                                                           |                                                                                                                                                      |                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ITEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U/M                                      | QUANTITY                                                                                                                                                  | UNIT<br>COST                                                                                                                                         | COST<br>(\$000)                                                                                                                                                                                                                                                                   |
| Wall Type CAB1 Wall Type MET1 Wall Type CMU1 Wall Type CMU2 Wall Type CONC1 Roof Type 1 Roof Type 2 Roof Type 3 Roof Type 4 Roof Type 5 Roof Type 7 Roof Type 9 Roof Type 11 Roof Type 14 Roof Type 15 Roof Type 15 Roof Type 17 Roof Type 18 Roof Type 19 Roof Type 20 Roof Type 20 Roof Type 25 Roof Type 25 Roof Type 25 Roof Type 25 Roof Type 29 SUBTOTAL Contingency (5.0 Percent) SUBTOTAL Cost Growth (19.9 Percent) Total Contract Cost Supervision Insp. + OHead (5.5 Percent) TOTAL REQUEST Installed Equipment - Other Approp. | から か | 2,866 63,619 19,088 45,404 2,672 16,699 33,458 205,365 139,643 66,066 816,810 80,657 396,455 612,902 5,111 102,255 24,894 212,920 204,321 116,564 139,606 | 1.04<br>0.92<br>1.14<br>1.14<br>4.00<br>4.00<br>2.66<br>1.84<br>1.44<br>2.22<br>2.66<br>2.22<br>1.60<br>1.44<br>1.60<br>1.28<br>2.22<br>1.60<br>2.66 | 3.0<br>58.5<br>21.8<br>51.8<br>10.7<br>66.8<br>89.0<br>377.9<br>201.1<br>146.7<br>2,127.7<br>179.1<br>880.1<br>980.6<br>7.4<br>19.5<br>108.6<br>445.8<br>39.8<br>272.5<br>453.6<br>186.5<br>371.4<br>7,099.9<br>355.0<br>7,454.9<br>1,483.5<br>8,938.4<br>491.6<br>9,430.0<br>(0) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                        | -                                                                                                                                                         |                                                                                                                                                      | ` ''                                                                                                                                                                                                                                                                              |

### DESCRIPTION OF PROPOSED CONSTRUCTION

This project is to insulate 160,909 sq. ft. of uninsulated walls and 2,306,823 sq. ft. of poorly insulated roofs in 233 permanent buildings. Design is special to accommodate the differing existing wall conditions. Project will reduce load on the existing heating system. There is no air conditioning involved. All required utilities presently exist. The buildings are not located in a flood plain and no demolition is required. The handicapped will not be provided for since this project does not lend itself to design for the handicapped.

DD FORM 1391 -

PREVIOUS EDITIONS MAY BE USED INTERNALLY UNTIL EXHAUSTED .

PAGE NO. 1 of 2

## FOR OFFICIAL USE ONLY

(WHEN DATA IS ENTERED)

| 1. COMPONENT  ARMY                 | FY 19 87 MILITARY CONSTRUCTION PROJE      | CT DATA       | 2. DATE<br>1 MAY 1984 |
|------------------------------------|-------------------------------------------|---------------|-----------------------|
| 3. INSTALLATION AND KAISERSLAUTERN | COMMUNITY, FRG                            |               |                       |
| 4. PROJECT TITLE<br>ECIP- WEATHERI |                                           | 5. PROJECT NU | JMBER                 |
| 11 Requireme                       | nt 2 467 732 SF: Adequate: O Substandard: | 2.467.732     | SF                    |

ECIP Project, EEAP Package 14 SIR = 1.61

# LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

| LOC. | ATIO                       | N: <u> </u>                                | Kaiserslau                                                                    | tern, F                                  | RG REG                                | ON NO                                            | ······                                | _ PROJECT                        | NUMBER                |                         |
|------|----------------------------|--------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------|---------------------------------------|--------------------------------------------------|---------------------------------------|----------------------------------|-----------------------|-------------------------|
| PRO- | JECT                       | TIT                                        | LE <u>Heatin</u>                                                              | g Syste                                  | ems                                   |                                                  |                                       | FISCAL                           | YEAR                  | 1987                    |
| DIS  | CRET                       | E POF                                      | RTION NAME                                                                    | Modif                                    | fications                             |                                                  | · · · · · · · · · · · · · · · · · · · |                                  |                       |                         |
| ANA  | LYSI                       | S DAT                                      | TE <u>198</u>                                                                 | 3                                        | ECONOMIC                              | LIFE <u>15</u>                                   | _YEARS                                | PREPARE                          | ) BY                  | LAD                     |
| 1.   | INV                        | ESTME                                      | ENT                                                                           |                                          |                                       |                                                  |                                       |                                  |                       |                         |
|      | C.<br>D.<br>E.             | SION<br>DESI<br>ENER<br>SAL                | STRUCTION<br>H (at 5.5%<br>IGN COST<br>RGY CREDIT<br>VAGE VALUE<br>AL INVESTM | )<br>CALC (                              |                                       | X.9                                              | \$_<br>\$_<br>\$_<br>\$_              | 849,700<br>46,733<br><br>806,790 | 3                     | 806,790                 |
| 2.   | ENE<br>ANA                 | RGY S<br>LYSIS                             | SAVINGS (+<br>S DATA ANN                                                      | )/COST<br>UAL SAV                        | (~)<br>/INGS, UNI                     | T COST AND                                       | DISCOUN                               | TED SAVIN                        | IGS                   |                         |
|      | FUE                        | L                                          | COST<br>\$/MBTU                                                               |                                          | SAVINGS<br>MBTU/YR(2)                 | ANNUAL \$<br>SAVINGS(                            |                                       | COUNT<br>TOR (4)                 | DISCOU<br>SAVING      |                         |
|      | A.<br>B.<br>C.<br>D.<br>E. | ELEC<br>DIST<br>REST<br>NG<br>COAL<br>TOTA | T \$ 7.3<br>ID \$ 6.1<br>\$ 2.8                                               |                                          | 35,434<br>66,288<br>83,521<br>185,243 | \$ 259,37<br>\$ 405,02<br>\$ 240,54<br>\$ 904,93 | 0 1                                   | 1.36<br>3.29<br>5.39             |                       |                         |
|      | 3.                         | NON                                        | ENERGY SA                                                                     | VINGS (                                  | (+)/COST                              | (~)                                              |                                       |                                  |                       |                         |
|      |                            | Α.                                         | ANNUAL RE<br>(1) DISC<br>(2) DISC                                             | OUNT FA                                  | ACTOR (TAE                            | BLE A)<br>OST (3A X 3                            | \$<br>A1) \$                          | 0                                |                       |                         |
|      |                            | В.                                         | NON RECUR                                                                     | RING SA                                  | VINGS (+)                             | /COST (~)                                        |                                       |                                  |                       |                         |
|      |                            |                                            | ITEM a. b. c. d. TOTAL                                                        | SAVING<br>COST (<br>\$<br>\$<br>\$<br>\$ |                                       | YEAR OF<br>OCCURRENCE                            |                                       |                                  | SCOUNTED<br>-) COST ( | 0 SAVINGS<br>(~)(4)<br> |
|      |                            | С.                                         | TOTAL NON                                                                     | FNERGY                                   | DISCOUNT                              | ED SAVINGS                                       | (+)/(05                               | T (=) (3/                        | 2+3B447               | ¢ ∩                     |

| 4. | FIRST YEAR DOLLAR SAVINGS 2F2+3A+(3B1d/YEARS ECONOMIC LIFE) \$ 904,937                 |
|----|----------------------------------------------------------------------------------------|
| 5. | TOTAL NET DISCOUNTED SAVINGS (2F3+3C) \$ 12,031,149                                    |
| 6. | DISCOUNTED SAVINGS RATIO (IF LESS THAN 1 PROJECT DOES NOT QUALITY) $(SIR)=(5/1F)=14.9$ |
| 7. | ECIP QUALIFICATIONS TEST                                                               |
|    | A. PROJECT NON ENERGY QUALIFICATION TEST (1) 25% MAX NON ENERGY CALC (2F3 X .33) \$ 0  |
|    | (2) NON ENERGY DISCOUNTED SAVINGS (3C) \$ 0                                            |
|    | (3) ENTER SMALLER OF 7.A.1 OR 7.A.2 \$                                                 |
|    | ESIR = $(2F3 + 7A3)/1F = 14.9$                                                         |
|    | IF LESS THAN 1 PROJECT DOES NOT QUALIFY FOR ECIP                                       |
|    | IF GREATER THAN 1 THEN PROJECT QUALIFIES FOR ECIP                                      |

AND THE "SIR" GENERATED IN 6. IS REPORTED AS THE PROJECT "SIR".

| 1. COMPONENT  ARMY | FY 19_87 | MILITARY    | CONSTRI | UCTION PROJE                  | CT DATA      | 2 DATE<br>1 MAY 1984 | , |
|--------------------|----------|-------------|---------|-------------------------------|--------------|----------------------|---|
| 3. INSTALLATION AN |          | Y. FRG      |         | 4. PROJECT TITLE ECIP-HEATING |              | IFICATIONS           |   |
| 5. PROGRAM ELEMEN  |          | TEGORY CODE | 7. PROJ | ECT NUMBER                    | 8. PROJECT C | OST (\$000)          |   |

\$ 1,128.5

00008

| 9. COST ESTIMATES                                                                                                                                                                                                                    |                |                     |                       |                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|-----------------------|------------------------------------------------------------------------------------------------------|
| ITEM                                                                                                                                                                                                                                 | U/M            | QUANTITY            | UNIT<br>COST          | COST<br>(\$000)                                                                                      |
| Thermostatic Radiator Valves Reset Controllers Shop and Warehouse Reset Controllers SUBTOTAL Contingency (5.0 Percent) SUBTOTAL Cost Growth (19.9 Percent) Total Contract Cost Supervision Insp. + OHead (5.5 Percent) TOTAL REQUEST | EA<br>EA<br>EA | 5,975<br>137<br>730 | 26.<br>3,150.<br>360. | 155.35<br>431.55<br>262.80<br>849.70<br>42.5<br>892.2<br>177.5<br>1,069.7<br>58.8<br>1,128.5<br>( 0) |

10. DESCRIPTION OF PROPOSED CONSTRUCTION

This project includes measures to achieve better efficiency of the building heating system through the use of night and weekend setback of space temperatures and the addition of thermostatic radiator valves on radiators which are now manually controlled.

The project will reduce the load on the existing heating systems. There is no air conditioning involved. The buildings are not located in a flood plain and no demolition is required. The handicapped will not be provided for since this project does not lend itself to design for the handicapped.

DD FORM 1391 .

MCA/ECIP

PREVIOUS EDITIONS MAY BE USED INTERNALLY UNTIL EXHAUSTED.

PAGE NO.1 Of 2

| 1. COMPONENT        | 87                        |                    | 2. DATE    |
|---------------------|---------------------------|--------------------|------------|
| ARMY                | FY 19 87 MILITARY CONSTRU | CTION PROJECT DATA | 1 MAY 1984 |
| 3. INSTALLATION AND | LOCATION                  |                    | ·          |
| KAISERSLAUTERN      | COMMUNITY, FRG            |                    |            |
| 4. PROJECT TITLE    |                           | 5. PROJECT NU      | JMBER      |
| ECIP-HEATING SY     | STEM MODIFICATIONS        |                    |            |
|                     |                           |                    |            |

11. Requirement. ECIP Project, EEAP Package 14

DD FORM 1391c .

PREVIOUS EDITIONS MAY BE USED INTERNALLY
UNTIL EXHAUSTED

PAGE NO. 2 of 2

# FOR OFFICIAL USE ONLY

THIS PAGE INTENTIONALLY LEFT BLANK

# LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) E~1

| LOCA | ATION                      | l: <u>K</u>                                 | aise                                   | erslau                         | tern                     |                | _ REGI        | ои ио                      |                |       |                      | _ PROJEC                           | T NUME                           | BER _ |                      |
|------|----------------------------|---------------------------------------------|----------------------------------------|--------------------------------|--------------------------|----------------|---------------|----------------------------|----------------|-------|----------------------|------------------------------------|----------------------------------|-------|----------------------|
| PRO. | JECT                       | TITL                                        | E _I                                   | Replac                         | e Exi                    | sting          | Fluor         | escen                      | t Lig          | hts   |                      | FISCAL                             | YEAR                             | -     | 1987                 |
| DISC | RETE                       | POR                                         | TIOI                                   | NAME                           |                          |                |               |                            |                |       |                      |                                    |                                  |       |                      |
| ANAL | YSIS                       | DATE                                        | E                                      | 198                            | 3                        | EC             | ONOMIC        | LIFE                       | 15             | _YEA  | RS                   | PREPARE                            | D BY _                           |       | LAD                  |
| 1.   | INVE                       | STME                                        | NT                                     |                                |                          |                |               |                            |                |       |                      |                                    |                                  |       |                      |
|      | B.<br>C.<br>D.<br>E.       | SIOH<br>DESION<br>ENERO<br>SALVA            | (a <sup>.</sup><br>GN (<br>GY (<br>AGE | CREDIT<br>VALUE                | at 6%<br>CALC            |                | 1B+1C)        | X.9                        |                |       | \$<br>\$<br>\$<br>\$ | 809,72<br>52,63<br>48,58<br>819,84 | <del>2</del> 4                   | \$    | 819,849              |
| 2.   |                            |                                             |                                        |                                |                          | T (~)<br>AVING | S, UNI        | T COS                      | T ANE          | ) DIS | COUN.                | TED SAVI                           | NGS                              |       |                      |
|      | FUEL                       | -                                           |                                        |                                | T<br>J (1 <sub>.</sub> ) |                | NGS<br>/YR(2) |                            | IUAL S         |       |                      | COUNT<br>TOR(4) -                  |                                  |       |                      |
|      | A.<br>B.<br>C.<br>D.<br>E. | ELEC<br>DIST<br>RESII<br>NG<br>COAL<br>TOTA | D :                                    | \$ 4.7<br>\$<br>\$<br>\$<br>\$ | 74                       | 17,            |               | \$<br>\$<br>\$<br>\$<br>\$ | 85,16<br>85,16 |       |                      | 1.01                               | \$<br>\$<br>\$<br>\$<br>\$<br>\$ | 937,  | ,651                 |
|      | 3.                         | NON                                         | ENE                                    | RGY S                          | VINGS                    | (+)/           | COST (        | (~)                        |                |       |                      |                                    |                                  |       |                      |
|      |                            |                                             | ANN<br>(1)<br>(2)                      | DIS                            | COUNT                    |                | R (TAE        |                            |                | .11   |                      | 3,342<br>3,743                     | -                                |       |                      |
|      |                            | В.                                          | NON                                    | RECU                           | RRING                    | SAVIN          | GS (+)        | /C0S7                      | r (~)          |       |                      |                                    |                                  |       |                      |
|      | •                          |                                             | ITE                                    | M<br>TOTAL                     |                          | NGS (<br>(~)(  | +) 1)         |                            |                |       |                      |                                    | OISCOU<br>(+) CO                 |       | SAVINGS<br>-)(4)<br> |
|      |                            | С.                                          | TOT                                    | AL NO                          | N ENER                   | GY DI          | SCOUNT        | ED SA                      | VING           | S (+) | /cos                 | T (-) (3                           | 8A2+3B                           | d4)   | \$303,743            |

- 4. FIRST YEAR DOLLAR SAVINGS 2F2+3A+(3B1d/YEARS ECONOMIC LIFE) \$ 118,506
- 5. TOTAL NET DISCOUNTED SAVINGS (2F3+3C)

\$ 1,241,394

- 6. DISCOUNTED SAVINGS RATIO (IF LESS THAN 1 PROJECT DOES NOT QUALITY) (SIR)=(5/1F) = \_\_\_1.5
- 7. ECIP QUALIFICATIONS TEST
  - A. PROJECT NON ENERGY QUALIFICATION TEST
    - (1) 25% MAX NON ENERGY CALC (2F3 X .33)

\$ 309,424

(2) NON ENERGY DISCOUNTED SAVINGS (3C)

\$ 303,743

(3) ENTER SMALLER OF 7.A.1 OR 7.A.2

\$\_3<u>03,743</u>

ESIR = (2F3 + 7A3)/1F = 1.5

IF LESS THAN 1 PROJECT DOES NOT QUALIFY FOR ECIP

IF GREATER THAN 1 THEN PROJECT QUALIFIES FOR ECIP

AND THE "SIR" GENERATED IN 6. IS REPORTED AS THE PROJECT "SIR".

# LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) E-2

| LOCA | NOIT                 | : <u>Ka</u>                                  | iserslaut                                                              | ern                                   | REGIO             | N NO                                            |                                       | PROJECT                               | NUMBER                          |              |              |
|------|----------------------|----------------------------------------------|------------------------------------------------------------------------|---------------------------------------|-------------------|-------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------|--------------|--------------|
| PROJ | ECT                  | TITLE                                        | Replace                                                                | Existin                               | ng Incand         | lescent Li                                      | ghting                                | Fixtures                              | FISCAL '                        | YEAR 198     | 87_          |
| DISC | RETE                 | PORT:                                        | ION NAME                                                               |                                       |                   | <del></del>                                     | · · · · · · · · · · · · · · · · · · · |                                       |                                 |              |              |
| ANAL | .YSIS                | DATE                                         | 1983                                                                   | <u> </u>                              | CONOMIC           | LIFE 15                                         | _YEARS                                | PREPARED                              | вү                              | LAD          |              |
| 1.   | INVE                 | STMEN                                        | Г                                                                      |                                       |                   |                                                 |                                       |                                       |                                 |              |              |
|      | B.<br>C.<br>D.<br>E. | SIOH<br>DESIGI<br>ENERG<br>SALVA             | RUCTION (<br>(at 6.5%;<br>N COST (<br>Y CREDIT<br>GE VALUE<br>INVESTME | at 6%)<br>CALC (1A                    | •                 | (.9                                             | \$<br>\$<br>\$<br>\$                  | 165,850<br>10,780<br>9,951<br>176,630 | _                               | 176,6        | 30_          |
| 2.   |                      |                                              | VINGS (+)<br>DATA ANNO                                                 |                                       |                   | COST AND                                        | DISCOU                                | NTED SAVIN                            | GS                              |              |              |
|      | FUEL                 |                                              | COST<br>\$/MBTU                                                        | SAV<br>(1) MBT                        | /INGS<br>TU/YR(2) |                                                 |                                       | SCOUNT<br>CTOR(4)_                    | DISCOU<br>SAVINO                |              |              |
|      | C.<br>D.<br>E.       | ELEC<br>DIST<br>RESID<br>NG<br>COAL<br>TOTAL | •                                                                      |                                       | 5,046             | \$ 23,91<br>\$<br>\$<br>\$<br>\$<br>\$<br>23,91 |                                       | 11.01                                 | \$\$<br>\$\$                    | 3,337        |              |
|      | 3.                   | NON E                                        | NERGY SA                                                               | /INGS (+)                             | /COST (-          | -)                                              |                                       |                                       |                                 |              |              |
|      |                      | (                                            |                                                                        | OUNT FACT                             | OR (TABL          | E A) <u>9.</u><br>ST (3A X 3                    | 11                                    | 12,180                                |                                 |              |              |
|      |                      | B. N                                         | ON RECURI                                                              | RING SAVI                             | INGS (+)          | /COST (~)                                       |                                       |                                       |                                 |              |              |
|      |                      | a<br>b<br>c                                  |                                                                        | SAVINGS<br>COST (-)<br>\$<br>\$<br>\$ |                   | YEAR OF<br>DCCURRENCE                           |                                       | \$\$<br>\$\$_                         | SCOUNTE<br>+ 15,599<br>+ 15,599 | (~) (4)<br>5 | GS<br>-<br>- |
|      |                      | C. T                                         | OTAL NON                                                               | ENERGY [                              | DISCOUNTE         | D SAVINGS                                       | (+)/C0                                | ST (~) (3A                            | 2+3Bd4)                         | \$126,5      | 54           |

- 4. FIRST YEAR DOLLAR SAVINGS 2F2+3A+(3B1d/YEARS ECONOMIC LIFE) \$ 36,098
- 5. TOTAL NET DISCOUNTED SAVINGS (2F3+3C)

\$ 389,891

- 6. DISCOUNTED SAVINGS RATIO (IF LESS THAN 1 PROJECT DOES NOT QUALITY) (SIR)=(5/1F) = 1.2
- 7. ECIP QUALIFICATIONS TEST
  - A. PROJECT NON ENERGY QUALIFICATION TEST
    - (1) 25% MAX NON ENERGY CALC (2F3 X .33)

\$ 86,901

(2) NON ENERGY DISCOUNTED SAVINGS (3C)

\$ 126,554

(3) ENTER SMALLER OF 7.A.1 OR 7.A.2

\$ 86,901

ESIR = (2F3 + 7A3)/1F = 1.2

IF LESS THAN 1 PROJECT DOES NOT QUALIFY FOR ECIP

IF GREATER THAN 1 THEN PROJECT QUALIFIES FOR ECIP

AND THE "SIR" GENERATED IN 6. IS REPORTED AS THE PROJECT "SIR".

# LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) E-3

| LOC/ | ATION                | : <u>Kai</u>                                 | serslau                                                        | tern                | REGI                               | ION NO.        | •                            |                          | PROJEC                         | T NUMBI      | ER                      |
|------|----------------------|----------------------------------------------|----------------------------------------------------------------|---------------------|------------------------------------|----------------|------------------------------|--------------------------|--------------------------------|--------------|-------------------------|
| PRO. | JECT                 | TITLE                                        | Replace                                                        | Exis                | ting Mercu<br>150 k                | ry Va          | pour L <sup>.</sup><br>250 W | ights                    | FISCAL                         | YEAR _       | 1987                    |
| DISC | CRETE                | PORTI                                        | ON NAME                                                        |                     |                                    |                |                              |                          |                                |              |                         |
| ANAL | _YSIS                | DATE                                         | 1983                                                           | 3                   | _ ECONOMIC                         | LIFE           | 15                           | YEARS                    | PREPARE                        | D BY         | LAD                     |
| 1.   | INVE                 | STMENT                                       | -                                                              |                     |                                    |                |                              |                          |                                |              |                         |
|      | B.<br>C.<br>D.<br>E. | SIOH (<br>DESIGN<br>ENERGY<br>SALVAG         | RUCTION (<br>at 6.5%<br>COST (<br>CREDIT<br>E VALUE<br>INVESTM | )<br>at 6%)<br>CALC | (1A+1B+1C)<br>D~1E)                | )X.9           |                              | \$_<br>\$_<br>\$_<br>\$_ | 87,90<br>5,71<br>5,27<br>88,99 | . <u>3</u>   | \$88,998                |
| 2.   |                      |                                              | /INGS (+<br>DATA ANNI                                          |                     | (~)<br>VINGS, UNI                  | T COS          | T AND I                      | DISCOUN                  | TED SAVI                       | NGS          |                         |
|      | FUEL                 |                                              | COST<br>\$/MBTU                                                | (1)                 | SAVINGS<br>MBTU/YR(2)              | ANN<br>SAV     | UAL \$<br>INGS(3)            |                          | COUNT<br>TOR (4)               |              | COUNTED<br>INGS (5)     |
|      | B.<br>C.<br>D.<br>E. | ELEC<br>DIST<br>RESID<br>NG<br>COAL<br>TOTAL | \$ 4.74<br>\$<br>\$<br>\$<br>\$                                | 1                   | 3,045                              | \$<br>\$<br>\$ | 14,433                       |                          | 1.01                           | \$\$<br>\$\$ | 158,910                 |
|      | 3.                   | NON EN                                       | NERGY SA                                                       | /INGS               | (+)/COST                           | (~)            |                              |                          |                                |              |                         |
|      |                      | (1                                           |                                                                | OUNT F              | G (+/~)<br>ACTOR (TAI<br>SAVING/CO |                |                              |                          | 7,350<br>66,958                | <del>-</del> |                         |
|      |                      | B. NO                                        | N RECUR                                                        | RINGS               | AVINGS (+)                         | /COST          | (-)                          |                          |                                |              |                         |
| ·    |                      | a.<br>b.<br>c.                               |                                                                |                     | GS (+)<br>(-)(1)                   | YEAR<br>OCCUR  | OF<br>RENCE (2<br>——         | DISC<br>2) FACT          | OUNT [<br>OR (3)               |              | TED SAVINGS<br>T (-)(4) |
|      |                      | С. ТО                                        | TAL NON                                                        | ENERG               | Y DISCOUN                          | TED SA         | VINGS                        | (+)/COS                  | ST (~) (3                      | BA2+3Bd      | 4) \$ 66,958            |

- 4. FIRST YEAR DOLLAR SAVINGS 2F2+3A+(3B1d/YEARS ECONOMIC LIFE) \$ 21,783
- 5. TOTAL NET DISCOUNTED SAVINGS (2F3+3C)

389,891

- 6. DISCOUNTED SAVINGS RATIO (IF LESS THAN 1 PROJECT DOES NOT QUALITY) (SIR)=(5/1F)=2.37
- 7. ECIP QUALIFICATIONS TEST
  - A. PROJECT NON ENERGY QUALIFICATION TEST
    - (1) 25% MAX NON ENERGY CALC (2F3 X .33)

\$ 52,437

(2) NON ENERGY DISCOUNTED SAVINGS (3C)

\$ 66,958

(3) ENTER SMALLER OF 7.A.1 OR 7.A.2

\$ 52,437

ESIR = (2F3 + 7A3)/1F = 2.37

IF LESS THAN 1 PROJECT DOES NOT QUALIFY FOR ECIP

IF GREATER THAN 1 THEN PROJECT QUALIFIES FOR ECIP

AND THE "SIR" GENERATED IN 6. IS REPORTED AS THE PROJECT "SIR".

# LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP) E~4

| LOCA | HOITA                      | : <u>K</u>                                 | aiserslaut                                                                    | ern                                        | REGI              | ON NO.          |                 |                    | PROJE                 | CI NUME              | SEK                |              |
|------|----------------------------|--------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------|-------------------|-----------------|-----------------|--------------------|-----------------------|----------------------|--------------------|--------------|
| PRO. | JECT                       | TITL                                       | E <u>Replace</u>                                                              | Existi                                     | ng Mercu<br>125 W | ry Vap<br>and 4 | our l           | ights              | FISCA                 | L YEAR               | 1987               |              |
| DISC | CRETE                      | POR                                        | TION NAME                                                                     |                                            |                   |                 |                 |                    | ····                  |                      |                    |              |
| ANAL | _YSIS                      | DAT                                        | E <u>1983</u>                                                                 |                                            | ECONOMIC          | LIFE            | 15              | _YEARS             | PREPAR                | ED BY _              | LAD                |              |
| 1.   | INVE                       | STME                                       | NT                                                                            |                                            |                   |                 |                 |                    |                       |                      |                    |              |
|      | B.<br>C.<br>D.<br>E.       | SIOH<br>DESI<br>ENER<br>SALV               | TRUCTION C<br>(at 6.5%)<br>GN COST (a<br>GY CREDIT<br>AGE VALUE<br>L INVESTME | t 6%)<br>CALC (1                           |                   | X.9             |                 | \$                 |                       | 981<br>98            | \$                 | <b>,</b> 588 |
| 2.   | ENER                       | GY S<br>YSIS                               | AVINGS (+)<br>DATA ANNU                                                       | /COST (<br>AL SAVI                         | -)<br>NGS, UNI    | T COST          | AND             | DISCO              | DUNTED SAV            | /INGS                |                    |              |
|      | FUEL                       | -                                          |                                                                               |                                            | VINGS<br>TU/YR(2) |                 | IAL \$<br>NGS ( |                    | DISCOUNT<br>FACTOR(4) |                      |                    |              |
|      | A.<br>B.<br>C.<br>D.<br>E. | ELEC<br>DIST<br>RESI<br>NG<br>COAL<br>TOTA | \$<br>D \$<br>\$                                                              |                                            | 4,220             | \$<br>\$<br>\$  | 20,00           |                    | 11.01                 | \$<br>\$<br>\$<br>\$ | 220,231            |              |
|      | 3.                         | NON                                        | ENERGY SAV                                                                    | /INGS (+                                   | -)/COST (         | (~)             |                 |                    |                       |                      |                    |              |
|      |                            | Α.                                         | ANNUAL REC<br>(1) DISCO<br>(2) DISCO                                          | OUNT FAC                                   | TOR (TAE          | BLE A)          | 9.              | \$<br>11<br>A1) \$ |                       |                      |                    |              |
|      |                            | В.                                         | NON RECUR                                                                     | RING SAV                                   | /INGS (+)         | /COST           | (~)             |                    |                       |                      |                    |              |
|      |                            |                                            | ITEM a b c d. TOTAL                                                           | SAVINGS<br>COST (-<br>\$<br>\$<br>\$<br>\$ | S (+) -)(1)       | YEAR (OCCURI    | OF<br>RENCE<br> |                    | ISCOUNT<br>ACTOR(3)   |                      | NTED SA<br>ST (-)( |              |
|      |                            | С.                                         | TOTAL NON                                                                     | ENERGY                                     | DISCOUNT          | TED SA'         | VINGS           | (+)/               | COST (~)              | (3A2+3B              | d4) \$ 9           | 2,785        |

- 4. FIRST YEAR DOLLAR SAVINGS 2F2+3A+(3B1d/YEARS ECONOMIC LIFE) \$ 30,188
- 5. TOTAL NET DISCOUNTED SAVINGS (2F3+3C)

\$ 313,016

- 6. DISCOUNTED SAVINGS RATIO (IF LESS THAN 1 PROJECT DOES NOT QUALITY)
  (SIR)=(5/1F) = 3.78
- 7. ECIP QUALIFICATIONS TEST
  - A. PROJECT NON ENERGY QUALIFICATION TEST
    - (1) 25% MAX NON ENERGY CALC (2F3 X .33)

\$ 72,676

(2) NON ENERGY DISCOUNTED SAVINGS (3C)

\$\_\_92,785

(3) ENTER SMALLER OF 7.A.1 OR 7.A.2

72,676

ESIR = (2F3 + 7A3)/1F = 3.78

IF LESS THAN 1 PROJECT DOES NOT QUALIFY FOR ECIP

IF GREATER THAN 1 THEN PROJECT QUALIFIES FOR ECIP

AND THE "SIR" GENERATED IN 6. IS REPORTED AS THE PROJECT "SIR".

FY 19.87 MILITARY CONSTRUCTION PROJECT DATA

2 DATE

1 MAY 1984

3. INSTALLATION AND LOCATION

4. PROJECT TITLE

KAISERSLAUTERN COMMUNITY, FRG

ECIP-LIGHTING SYSTEMS MODIFICATIONS

5. PROGRAM ELEMENT

MCA/ECIP

6. CATEGORY CODE 7. PROJECT NUMBER

8. PROJECT COST (\$000)

80000

\$1,590.77

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    | 1                                                             |                        |          |              |                 |                                                        |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|------------------------|----------|--------------|-----------------|--------------------------------------------------------|--|--|--|--|
| 9, COST ESTIMATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                                                               |                        |          |              |                 |                                                        |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    | ITEM                                                          | U/M                    | QUANTITY | UNIT<br>COST | COST<br>(\$000) |                                                        |  |  |  |  |
| high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | efficient                                          | icient fluorescent<br>t fluorescent lamps<br>llasts, Code Els |                        | EA       | 15,877       | 51              | 809.73                                                 |  |  |  |  |
| 2) Replained by h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ace incand                                         | descent lighting fi<br>ient fluorescent li                    | ixtures<br>ighting     | EA       | 2,675        | 62              | 165.85                                                 |  |  |  |  |
| 3) Replanting the state of the | ace exist<br>pressure                              | ing mercury vapor l<br>sodium vapor light                     | lights by<br>ts 150 w, |          |              |                 |                                                        |  |  |  |  |
| high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ace exist<br>pressure                              | ing mercury vapor l<br>sodium vapor light                     |                        | EA       | 1,103        | 79.69           | 87.90                                                  |  |  |  |  |
| SUBTOTAL<br>Cost Grow<br>Total Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ncy (5.0  <br>wth (19.9<br>ntract Cos<br>ion Insp. | Percent)                                                      | ent)                   | EA       | 970          | 79              | 76.63 1,140.11 114.01 1,254.12 1,493.68 97.09 1,590.77 |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                               |                        | ·        |              |                 |                                                        |  |  |  |  |

10. DESCRIPTION OF PROPOSED CONSTRUCTION

Modification to the existing lighting systems would be made as follows:

<u>Item 1.</u> Low efficient fluorescent lamps and ballasts with a total of 50 w per unit would be replaced by low wattage high efficient lamps and electronic ballasts with a total of 35 w per unit.

Item 2. Low efficient incandescent lighting fixtures would be replaced by Tighting fixtures with low wattage high efficient fluorescent lamps and electronic ballasts.

DD FORM 1391 .

PREVIOUS EDITIONS MAY BE USED INTERNALLY UNTIL EXHAUSTED.

PAGE NO.

1. COMPONENT

FY 19 87 MILITARY CONSTRUCTION PROJECT DATA

2. DATE

ARMY

1 MAY 1984

3. INSTALLATION AND LOCATION

KAISERSLAUTERN COMMUNITY, FRG

4. PROJECT TITLE

S. PROJECT NUMBER

ECIP-LIGHTING SYSTEMS MODIFICATIONS

 $\frac{1 \text{tem } 4}{\text{replaced}}$ . Low efficient mercury vapor (MV) lights 125 w and 400 w would be replaced by high efficient high pressure sodium (HPS) lights 250 w. One HPS light would replace four (4) 125 w MV or one 400 w MV light.

- 11. Requirement. This project is one of several projects, developed as a result of the EEAP study Package No. 14, which will be required in order for the Kaiserslautern Community to achieve the energy conservation goals established by Executive Order 12003 the Army Energy Plan and the Army Facilities Energy Plan.
  - a. These modifications will result in the following energy savings and SIR ratios:

Item 1: Energy Savings = 17,967 MBTU/a - SIR 1.5

Item 2: Energy Savings = 5,046 MBTU/a - SIR 2.21

Item 3: Energy Savings = 3,045 MBTU/a - SIR 2.54

Item 4: Energy Savings = 4,220 MBTU/a - SIR 4.03

TOTAL ENERGY SAVINGS 30,278 MBTU/a

b. These modifications will result in the following demand charges:

Item 1:  $476.3 \text{ KW} \times \$70/\text{KW} = 33,341 \$/a$ 

<u>Item 2</u>: 174 KW x \$70/KW = 12,180 \$/a

Item 3: 105 KW x \$70/KW = 7,350 \$/a

<u>Item 4</u>:  $145.5 \text{ KW x } $70/\text{KW} = \underline{10,185} $/a$ 

TOTAL DEMAND SAVINGS

63,056 \$/a

c. These modifications will also result in an improvement of the illumination quality throughout the community, especially in those spaces having now incandescent lights.

# LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

| LOC  | ATION                | : <u>Ka</u>                                  | iserslaut                                                            | tern                  | REGI                                          | ON NO.               |                                                |       | PROJE                                   | T NUMB              | ER                                                  |
|------|----------------------|----------------------------------------------|----------------------------------------------------------------------|-----------------------|-----------------------------------------------|----------------------|------------------------------------------------|-------|-----------------------------------------|---------------------|-----------------------------------------------------|
| PRO- | JECT                 | TITLE                                        | <u>Instal</u>                                                        | EMCS                  |                                               |                      |                                                |       | FISCAL                                  | YEAR                | 1987                                                |
| DIS  | CRETE                | PORT                                         | ION NAME                                                             |                       |                                               |                      |                                                |       |                                         |                     |                                                     |
| ANA  | LYSIS                | DATE                                         | Nov 19                                                               | 983                   | ECONOMIC                                      | LIFE                 | 15                                             | YEARS | PREPARI                                 | D BY _              | LAD                                                 |
| 1.   | INVE                 | STMENT                                       | r                                                                    |                       |                                               |                      |                                                |       |                                         |                     |                                                     |
|      | B.<br>C.<br>D.<br>E. | SIOH (<br>DESIGN<br>ENERG)<br>SALVA          | RUCTION (<br>(at 6.5%;<br>N COST (<br>CREDIT<br>GE VALUE<br>INVESTME | )<br>at 6%)<br>CALC ( | 1A+1B+1C)<br>~1E)                             | X <b>.</b> 9         |                                                | :     | 1,807,83<br>117,50<br>108,4<br>1,830,43 | <del>)9</del><br>70 | \$ <u>1,830,428</u>                                 |
| 2.   |                      |                                              | /INGS (+)<br>DATA ANNU                                               |                       | (~)<br>INGS, UNI                              | T COST               | AND                                            | DISCO | UNTED SAV                               | INGS                |                                                     |
|      | FUEL                 |                                              | COST<br>\$/MBTU                                                      |                       | AVINGS<br>BTU/YR(2)                           |                      | IAL \$<br>NGS (3                               |       | ISCOUNT<br>ACTOR(4)_                    |                     | COUNTED<br>INGS (5)                                 |
|      | B.<br>C.<br>D.<br>E. | ELEC<br>DIST<br>RESID<br>NG<br>COAL<br>TOTAL | \$ 4.74<br>\$ 7.32<br>\$ 6.11<br>\$ 2.88                             | <u>1</u>              | 14,696<br>4,478<br>10,066<br>12,286<br>41,520 | \$ 3<br>\$ 6<br>\$ 3 | 69,659<br>62,779<br>61,503<br>85,384<br>99,325 |       | 11.01<br>11.36<br>13.29                 | \$\$<br>\$\$        | 766,945<br>372,369<br>817,375<br>544,560<br>501,249 |
|      | 3.                   | NON EI                                       | NERGY SA                                                             | VINGS (               | +)/COST (                                     | ~)                   |                                                |       |                                         |                     |                                                     |
|      |                      | (1                                           |                                                                      | DUNT FA               | (+/~)<br>CTOR (TAB<br>SAVING/CO               |                      |                                                | 11 -  | 111,600<br>1,016,676                    | -                   |                                                     |
|      |                      | B. NO                                        | ON RECUR                                                             | RING SA               | VINGS (+)                                     | /COST                | (~)                                            |       |                                         |                     |                                                     |
|      |                      | a<br>b<br>c                                  | •                                                                    | COST (<br>\$<br>\$    |                                               | YEAR COCCURR         |                                                |       |                                         |                     | TED SAVINGS<br>ST (~)(4)                            |
|      |                      | C. TO                                        | OTAL NON                                                             | ENERGY                | DISCOUNT                                      | ED SAV               | INGS                                           | (+)/C | DST(~)(3A                               | 2+3Bd4)             | \$ 1,016,676                                        |

- 4. FIRST YEAR DOLLAR SAVINGS 2F2+3A+(3B1d/YEARS ECONOMIC LIFE) \$ 310,925
- 5. TOTAL NET DISCOUNTED SAVINGS (2F3+3C)

\$ 3,517,925

- 6. DISCOUNTED SAVINGS RATIO (IF LESS THAN 1 PROJECT DOES NOT QUALITY) (SIR)=(5/1F) = 1.9
- 7. ECIP QUALIFICATIONS TEST
  - A. PROJECT NON ENERGY QUALIFICATION TEST
    - (1) 25% MAX NON ENERGY CALC (2F3 X .33)

\$ 825,412

(2) NON ENERGY DISCOUNTED SAVINGS (3C)

\$ 1,016,676

(3) ENTER SMALLER OF 7.A.1 OR 7.A.2

\$ 825,412

ESIR = (2F3 + 7A3)/1F = 1.8

IF LESS THAN 1 PROJECT DOES NOT QUALIFY FOR ECIP

IF GREATER THAN 1 THEN PROJECT QUALIFIES FOR ECIP

AND THE "SIR" GENERATED IN 6. IS REPORTED AS THE PROJECT "SIR".

1. COMPONENT

ARMY

# FY 19 87 MILITARY CONSTRUCTION PROJECT DATA

2 DATE

1 MAY 1984 `

3. INSTALLATION AND LOCATION

KAISERSLAUTERN COMMUNITY, FRG

4. PROJECT TITLE INSTALL EMCS GYS 382/298/380/455/490/542/565/680/744

5, PROGRAM ELEMENT

MCA/ECIP

6. CATEGORY CODE 80000 7. PROJECT NUMBER

8. PROJECT COST (\$000)

\$ 2,496.60

| 9. | COST | EST | IMA | TES |
|----|------|-----|-----|-----|
|----|------|-----|-----|-----|

| ITEM                                                                                                                                                                                                                                                                                                                                                                                                           | U/M | QUANTITY | UNIT<br>COST | COST<br>(\$000)                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|--------------|------------------------------------------------------------------------------------------------------------------------------|
| GY 382 Install energy monitoring and control system consisting of: Local Instrumentation Central System  GY 298, 380, 455, 490, 542, 565, 680, and 744 Install energy monitoring and control system consisting of: Local Instrumentation Field Interface Devices Central System  SUBTOTAL  Contingency (10 Percent) Total Lost FY 84 Escalation (19 Percent) Total Cost FY 87 SIOH (5.5 Percent) TOTAL REQUEST |     |          |              | 278.05<br>158.06<br>961.73<br>100.54<br>309.45<br>1,807.83<br>180.78<br>1,988.61<br>377.84<br>2,366.45<br>130.15<br>2,496.60 |

10. DESCRIPTION OF FROPOSED CONSTRUCTION

New installation of an EMCS for the above listed GYs.

11. Requirement.

This is one of several projects, developed as a result of the EEAP study Package No. 14, which will be required in order for the Kaiserslautern Community to achieve the energy conservation goals established by Executive Order 12003 the Army Energy Plan and the Army Facilities Energy Plan. This installation will result in an estimated heating energy savings of 26,830 MBTU/a, equal to 2.01% and an electrical energy savings of 14,696 MBTU/a, equal to 1.09% of the annual community energy consumption. There will be also approximately \$111,600 annual demand charges savings. If this project will not be approved, the savings will not be achieved, and the needless waste of energy will continue.

DD FORM 1391 .

PREVIOUS EDITIONS MAY BE USED INTERNALLY
UNTIL EXHAUSTED

PAGE NO. 1

#### 3.3. Other Energy Conservation Projects Developed

#### 3.3.1. Maintenance and Repair Projects.

Maintenance and repair projects that would provide energy savings and fall below the minimum ECIP funding requirements are included in this Section. These projects are listed from highest to lowest SIR.

| PROJECT                            | SEE<br>PARA | \$C0ST  | ANNUAL SAV<br>MBTU | INGS<br>US\$ | SIR  |
|------------------------------------|-------------|---------|--------------------|--------------|------|
| Boiler Plant No. 3403              | 3.3.1.1.4.  | 3,224   | 137                | 1,046        | 3.87 |
| Boiler Plant No. 3054              | 3.3.1.1.3.  | 3,224   | 90.35              | 689          | 2.40 |
| Heat Recovery Building<br>No. 3266 | 3.3.1.2.    | 6,474   | 113                | 1,180        | 1.5  |
| Boiler Plant No. 2211              | 3.3.1.1.1.  | 34,500  | 1,108              | 5,252        | 1.28 |
| Boiler Plant No. 3777              | 3.3.1.1.2.  | 129,000 | 2,377              | 9,771        | 1.06 |
| TOTAL                              |             | 176,422 | 3,825.35           | 17,866       |      |

## 3.3.1.1. Boiler Plants.

Most of the central boiler plant projects are already programmed by DEH. See Section 3.1.2. There are, however, same further improvements that are some additional improvements that are within Community funding authority.

# 3.3.1.1.1. Boiler Plant No. 2211, GY 298 Army Depot.

#### 3.3.1.1.1.1. Existing Conditions.

Boilers:

Type: HPHW 1900 C./12 bar, fire tube.

Quantity/Capacity: 2 Each 27.78 MBTU/h: 55.56 MBTU/h

Year of Construction: 1975

Type of Burners: Rotary

Type: HPHW 190° C./12 bar, fire tube

Quantity/Capacity: 3 each 13.09 MBTU/h: 39.27 MBTU/h

Year of Construction:

1952

Type of Burners:

Jet.

Total Boiler Plant Capacity:

94.83 MBTU/h

Fuel - Type:

0il No. 6

FY 82 Consumption:

106,111 MBTU/a

Controls.

The distribution system supply water temperature is manually controlled by ten (10) operators.

DHW Generation:

No central DHW heater existing.

Heat Distribution:

Type:

DHW piping in channels.

Condition:

Good

3.3.1.1.1.2. DEH Programmed Modifications.

The 3 each boilers 13.09 MBTU/h shall be replaced by one boiler 27.8 MBTU/h during FY 84.

3.3.1.1.3. Proposed Boiler Plant ECOs.

Insulate fittings above boilers are included in 7.4.

Install outdoor sensored supply water temperature controls. Energy savings (annual) by experience 1.5 percent of annual heating consumption. The annual heating consumption of the connected buildings after installation.

Install semi-conductor controls for regulating speed of supply water re-circulating pump. Based on experience, the savings are approximately 2,122 kWh/a per KW installed.

Pump capacity =

24.62 MBTU/a/KW.

Existing pump:

45 KW

Energy savings 45 KW x 24.62 MBTU/a/KW:

1,108 MBTU/a

Fuel Rate:

4.74 \$/MBTU

| Dollar Savings (Annual):                  | 5,252 \$  |
|-------------------------------------------|-----------|
| 15 Year Discount Factor:                  | 11.01     |
| Discounted Savings:                       | 57,825 \$ |
| Construction Costs:                       |           |
| Solid State Converter 45 KW =             | \$23,500  |
| Control System =                          | \$ 4,000  |
| Installation =                            | \$ 3,000  |
| Data Transmission System for Control Loop | \$ 4,000  |
|                                           |           |

34,500 \$

### Non-recurring Costs:

| Maintenance 2.5 percent/a    | \$ 863   |
|------------------------------|----------|
| Times 15 years               | \$12,938 |
| Times SPW(0.36)              | \$ 4,658 |
| Replacement after 12 years   |          |
| Limit Price \$34,500 minimum |          |
| Permanent Installation (40%) | \$20,700 |
| Times SPW(0.44)              | \$ 9,108 |
| Total Non-recurring Costs    | \$13,766 |
| Total Net Discounted Savings | \$44,059 |
| SIR                          | 1.28     |

# 3.3.1.1.2. Boiler Plant 3777, GY 382 Landshuhl Hospital.

# 3.3.1.1.2.1. Existing Conditions.

### Boilers:

Type:

HPS 1750 C./8 bar, water tube

Quantity/Capacity:

3 each 21.18 MBTU/h: 63.54 MBTU/h

Year of Construction:

1952

Type of Burners:

Travelling Grate

Total Boiler Plant Capacity:

63.54 MBTU/h

Fuel - Type:

Coal

FY 82 Consumption:

159,475 MBTU/a

#### Controls.

The entire boiler plant is manually operated.

#### DHW Generation:

No central DHW heater existing.

#### Heat Distribution:

Type:

HPS and condensate lines in channels

Condition:

Bad, to be renovated

#### 3.3.1.1.2.2. DEH Programmed Modifications.

Boiler supervising system including condensate fee control is under construction. The replacement of the distribution system.

#### 3.3.1.1.2.3. Proposed Boiler Plant ECOs.

Install automatic boiler controls for load and combustion control, combustion chamber pressure control, drum water level control. This system has to be compatible with the boiler supervising system being under construction. Savings of this system are 6% of the annual fuel consumption after implementation of building savings.

#### Savings:

Six (6) percent of remaining heating consumption.

of 39,623 MBTU/a: 2,377 MBTU/a

Fuel rate: 4.11 \$/MBTU

Dollar Savings (Annual) 9,771 \$

Discount Factor (15 year) 15.39

Discounted Savings 150,376 \$

#### Construction Cost:

Load and combustion controls \$23,000 Combustion chamber pressure control \$ 9,000 Boiler drum water level control

\$11,000

Total for One (1) Boiler \$43,000

For Three (3) Boilers \$129,000

Non-Recurring Costs

Maintenance 2 percent/a \$ 2,580

Over 15 years \$28,700

SPW (0.36) \$13,932

Total Non-Recurring Costs \$ 13,932

Net Discounted Savings \$136,444

SIR 1.06

# 3.3.1.1.3. Boiler Plant No. 3054, GY 455 Equipment Support Counter.

# 3.3.1.1.3.1. Existing Conditions:

#### Boilers:

Type: HPHW 1500 C./8 bar

Quantity/Capacity: 1 each 9.9 MBTU/a: 19.18 MBTU/h

Year of Construction: 1953

Type of Burners: Jet

Total Boiler Plant Capacity: 19.18 MBTU/h

Fuel - Type: 0il No. 6

FY 82 Consumption: 20,290 MBTU/a

Controls.

No automatic control existing.

DHW Generation:

No central DHW heater existing.

#### Heat Distribution:

Type:

HPHW piping in channels

Condition:

Good

#### 3.3.1.1.3.2. DEH Programmed Modifications.

One of the two (2) boilers shall be replaced during FY 84. At the same time both boilers shall be equipped with rotary type burners.

#### 3.3.1.1.3.3. Proposed Boiler Plant ECOs.

Install outdoor sensored supply water temperature controls. Energy savings (annual) by experience 1.5 percent of annual heating consumption. The annual heating consumption of the connected buildings after implementation of the proposed building ECIP project is 6,023 MBTU/a.

#### Savings:

1.5% if 6,023 MBTU/a:

90.35 MBTU/a

Fuel Rate:

7.63 \$/MBTU

Dollar Savings (Annual):

689 \$

Discount factor (15 years)

13.29

Discounted Savings

9,161 \$

### <u>Construction Cost</u> (See Construction Cost Estimate)

\$3,150 minus \$826 for valves =

\$2,324 plus large valve \$900:

3,224 \$

#### Non-Recurring Cost.

Maintenance 2.5 percent/a =

80

Times 15 years =

\$1,209

Times SPW (0.36) =

\$ 435

Replacement after 12 years.

Limit Price \$3,224 minus piping & insulation (30%): \$2,257

Times SPW (0.44)

\$ 993

Total Non-Recurring Costs:

1,428 \$

Total Net Discounted Savings:

7,733 \$

SIR

2.40

# 3.3.1.1.4. Boiler Plant No. 3403 GY 490 Eselsfuerth QM Fac.

# 3.3.1.1.4.1. Existing Conditions

Boilers:

Type:

HPS 13 bar, fire tube

Quantity/Capacity:

2 each 24.6 MBTU/h: 49.2 MBTU/h

Year of Construction:

1979/1980

Type of Burners:

Rotary

Total Boiler Plant Capacity:

49.2 MBTU/h

Fuel - Type:

0il No. 6

FY 82 Consumption:

26,111 MBTU/a

#### Controls.

Load control is being performed through the rotary type burners.

### DHW Generation:

Five (5) each 500 pounds DHW heaters are installed; setpoint  $60^{\circ}$  C./140° F.

#### Heat Distribution:

Type:

HPS/LPHW piping in channel

Condition:

Good

# 3.3.1.1.4.2. DEH Programmed Modifications.

No programs planned.

#### 3.3.1.1.4.3. Proposed Boiler Plant ECOs.

Install outdoor sensored supply water temperature controls. Energy savings (annual) by experience 1.5 percent of annual heating consumption. The annual heating consumption of the connected building after implementation of the proposed building ECIP project is 9,136 MBTU/a.

#### Savings:

| 1.5% if 9,136 MBTU/a:              |                    | 137 MBTU/a   |
|------------------------------------|--------------------|--------------|
| Fuel Rate:                         |                    | 7.63 \$/MBTU |
| Dollar Savings (Annual):           |                    | 1,046 \$     |
| Discount factor (15 years)         |                    | 13.29        |
| Discounted Savings                 |                    | 13,896 \$    |
| Construction Cost (See Construct   | ion Cost Estimate) |              |
| \$3,150 minus \$826 for valves =   | -                  |              |
| \$2,324 plus large valve \$900:    |                    | 3,224 \$     |
| Non-Recurring Cost.                |                    |              |
| Maintenance 2.5 percent/a =        | \$80.60            |              |
| Times 15 years =                   | \$1,209            |              |
| Times SPW (0.36) =                 | \$ 435             |              |
| Replacement after 12 years.        |                    |              |
| Limit Price \$3,224 minus piping a | and                |              |
| insulation (30%)                   | \$2,257            |              |
| Times SPW (0.44)                   | \$ 993             |              |

3.8

1,428 \$

12,468 \$

#### 3.3.1.2. Heat Recovery in HVAC Systems.

SIR

Total Non-Recurring Costs:

Total Net Discounted Savings:

#### 3.3.1.2.1. General.

All of the proposed heat recovery systems are run around systems because all other possible types would require extensive modifications to the existing HVAC systems. No reductions in boiler plant capacity have been calculated, since the savings are minor compared to the total capacity. Heat recovery during cooling periods have not been calculated because they are negligible. The specific savings have been calculated as following:

Cooling range: from  $+18^{\circ}$  C. to  $+3^{\circ}$  C. Heat Recovered (Q3):

DH = 18 kj/kg when supply air and exhaust air volumes are equal.

EFF = 
$$\frac{DT2}{DT \text{ total}} = \frac{18}{20 - (-12)} = \frac{18}{32} = 0.56 = 56\%$$

 $Q3 = 18 \text{ kj/kg} = 4.29 \text{ kcal/kg} = 17 \text{ BTU/kg} = 17 \text{ x } 1.2 = 20 \text{ BTU/m}^3$ .

The annually recovered heat is 10 HR/day x 5 days/weeks x 52 weeks/a = 2,600 h/a.

Correction factor for operating time:

Numbers of heating days:  $250 \times 24 = 6,000$ 

$$\frac{2,600}{6,000} = 0.43$$

Full load hours from VDI 2067 bVHZ = 2,030. Correction factor for other city than Düsselduof is 0.96.

$$bv = 2030 \times 0.96 \times 0.43 = 838 \text{ H/a}$$

$$fa = 20 BTU/m^3 \times 838$$

$$fa = 16,760 \frac{BTUH}{m^3 a}$$

# 3.3.1.2.2. Building No. 3266 GY 380 Kleber Kaserne.

#### 3.3.1.2.2.1. Existing Condition.

#### System type:

- Single zone AH-unit for secondary rooms.
- In photolabs.

#### System Data:

- Air Capacity:

 $6,700 \text{ m}^3/\text{h}$ , fresh air rate 100%

- Heating Capacity:

452 KBTU/h

- Cooling Capacity:

%

Type of Fuel:

0il No. 2

# 3.3.1.2.2.2. <u>Programmed Modifications</u>:

None

## 3.3.1.2.2.3. Proposed ECO.

Install heat recovery system for above AH unit. The A/C system for TV-studio is only in operation for approximately 5 hours/week; HR-system will not be feasible.

#### Savings.

D.01685 MBTu/h/m $^3$ /a x 6,700 m $^3$ /h: 113 MBTU/a

Fuel Rate:

10.45 \$/MBTU

Dollar Savings (Annual):

1,180 \$

Discount Factor (15 years):

11.36

Discounted Savings:

13,405 \$

#### Construction Costs.

Heating Coil:

703 \$

Cooling Coil:

781 \$

Piping, Fittings:

3,125 \$

Pump:

195 \$

70 \$ Expansion Tank: Modification of Existing System: 1,000 \$

500 \$

6,474 \$ Total 6,474 \$

Recurring Costs/Savings:

Installation, Wiring

Increase of electricity consumption

Pump: 0.3 kw x 2,600 hours/a 9 MBTU/a

1.2 kw x 2,600 hours/a 36 MBTU/a

Total 45 MBTU/a (~) 45 MBTU/a

Fuel Rate: 4.74 \$/MBTU

Dollar Savings(+)/Costs(-): 213 \$

Discount Factor (15 years): 9.11

Discounted Savings(+)/Costs(~): (-)1,940\$

Non-Recurring Costs:

Maintenance 5% of 6,474 \$: 324 \$

Times 15 years: 4,856 \$

Times SPW (0.36): 1,748 \$ (-)1,748\$

Total Net Discounted Savings: 9,717 \$

SIR 1.5

#### 3.3.2. Non-Specific Maintenance and Repair Projects.

There are other maintenance and repair projects that provide energy savings that could not be identified by location because a complete inventory of the site is beyond the scope of this project. However, these are projects that can be identified by the community and implemented using this report to save substantial energy. The projects are as follows.

| PROJECT                       | PARA REFERENCE |
|-------------------------------|----------------|
| DHW Heater Insulation         | 3.3.2.1.       |
|                               |                |
| Showerhead Flow Restrictors   | 3.3.2.2.       |
| Piping and Fitting Insulation | 3.3.2.3.       |
| LPS Line Insulation           | 3.3.2.4.       |
| Heater Set Point Reduction    | 3.3.2.5.       |

# 3.3.2.1. Repair Domestic Hot Water (DHW) - Heater Insulation.

It was found during the site survey that some DHW heaters are not insulated, which results in unnecessary energy losses. Average heat loss of an uninsulated DHW-heater is approximately 1,600 BTU/h/m<sup>2</sup> equal to 14 MBTU/a/m<sup>2</sup>. Construction cost is approximately  $31\$/m^2$ .

| SIR                          | ELEC   | COAL   | 0IL #2   | 0IL #6   |
|------------------------------|--------|--------|----------|----------|
| Annual Energy Savings MBTU/a | 14     | 14     | 14       | 14       |
| Fuel Rate \$/MBTU            | 4.74   | 4.11   | 10.45    | 7.63     |
| Annual \$ Savings            | 66.36  | 57.54  | 146.30   | 106.82   |
| Discount Factor              | 11.01  | 15.39  | 11.36    | 13.29    |
| Total Disc. Savings \$       | 730.00 | 885.00 | 1,662.00 | 1,429.00 |
| Construction Cost \$         | 31.00  | 32.00  | 31.00    | 31.00    |
| SIR                          | 23.5   | 28.5   | 53.6     | 45.8     |

### 3.3.2.2. Showerhead Flow Restrictors.

Flow restriction can be added to shower heads to limit the water flow and decrease water heating requirement. The saving per showerhead can be assumed with approximately 150 m $^3$ /a. Based on a reduced DWH~Heater temperature of 45° C. and a cold water temperature of 10° C. Heating energy is = 0.00396 MBTU/m $^3$ /° C. This will result in annual energy savings of 150 m $^3$ /a x (45° C.~10° C.) x 0.000396 MBTU/M $^3$ /° C. = 20.75 MBTU/a.

| SIR                          | ELEC   | COAL   | 0IL #2 | 0IL #6 |
|------------------------------|--------|--------|--------|--------|
| Annual Energy Savings MBTU/a | 20.75  | 20.75  | 20.75  | 20.75  |
| Fuel Rate \$/MBTU            | 4.74   | 4.11   | 10.45  | 7.63   |
| Annual \$ Savings            | 98.36  | 85.28  | 216.84 | 158.32 |
| Discount Factor (5 years)    | 4.72   | 5.90   | 4.41   | 5.22   |
| Total Disc. Savings \$       | 464.26 | 503.15 | 956.26 | 826.43 |
| Construction Cost \$         | 27.00  | 27.00  | 27.00  | 27.00  |
| SIR                          | 17.2   | 18.6   | 35.4   | 30.6   |

# 3.3.2.3. Improve Piping & Fitting Insulation in Mech-Rooms.

It was found during the site survey that a large number of fittings and also piping in mechanical rooms are not insulated. This results in unnecessary energy losses. Heat loss per fittings (DN80) is approximately 0.0016 MBTU/H. Full load hours/a = 9 month x 24 hours x 30 days = 6,480 hours/a. Total losses per valve = 6,480 x 0.0016 MBTU/hour = 10.37 MBTU/a. If each valve has approximately two (2) meters of non-insulated pipe, and the heat losses for an average DN80 pipe is approximately 0.00072 MBTU/H/m x 2m \* 6480 = 9.33 MBTU/a. The total energy savings will be 19.7 MBTU/a per unit.

#### Construction Cost:

| Insulation of 1.0 valve:                 | 70\$/each |
|------------------------------------------|-----------|
| <pre>Insulation 1.0 M pipe (DN80):</pre> | 47\$/M    |
| Total construction cost per unit:        | 117\$     |

|                                         | COAL     | OIL #2   | 0IL #6    |
|-----------------------------------------|----------|----------|-----------|
| ======================================= | ======== |          | ========= |
| Energy Savings (Annual) MBTU/a          | 19.7     | 19.7     | 19.7      |
| Fuel Rate \$/MBTU                       | 4.11     | 10.45    | 7.63      |
| Dollar Savings (Annual)                 | 80.97    | 205.87   | 150.31    |
| Average Discount Factor (45 years)      | 15.39    | 11.36    | 13.29     |
| Total Discounted Savings                | 1,246.00 | 2,339.00 | 1,998.00  |
| Construction Cost                       | 117.00   | 117.00   | 117.00    |
| SIR                                     | 10.6     | 20.      | 17.       |

#### 3.3.2.4. <u>Insulation of Low Pressure Steam - Lines in Buildings.</u>

It was found during site survey that many main LPS-feeder lines in the buildings basements have not been insulated, which results in unnecessary heat losses. The specific heat losses of an uninsulated LPS line (DN50) are approximately 794 BTU/h/m. The specific heat losses of an insulated LPS line (DN50) are approximately 72 BTU/h/m which results in a difference of 722 BTU/h/m equal to 9 month x 24 hours x 30 days x 722 BTU/h/m =  $4.68 \, \text{MBTU/a/m}$ . Construction cost for our meter insulation is approximately 23\$/m.

|                                  | COAL   | 0IL #6 |
|----------------------------------|--------|--------|
| Energy Savings (Annual) MBTU/m/a | 4.68   | 4.68   |
| Fuel Rate \$/MBTU                | 4.11   | 7.63   |
| Dollar Savings (Annual)          | 19.23  | 35.71  |
| Discount Factor                  | 15.39  | 13.29  |
| Total Discounted Savings         | 296.00 | 475.00 |
| Construction Cost \$/m           | 23.00  | 23.00  |
| SIR                              | 12.9   | 20.7   |

#### 3.3.2.5. Heater Set Point Reduction.

The operation of Domestic Hot Water (DHW) heaters at temperatures higher than necessary result in excess energy consumption and costs.

DHW heater setpoint should be  $45^{\circ}$  C. This will minimize energy losses from tanks on standby and will reduce the energy required to heat water to the setpoint temperature, and finally will reduce line losses. The average DHW heater setpoint was found during the site survey to be approximately  $60^{\circ}$  C. Based on the detailed calculation following the annual savings would be approximately \$20,962. and the discounted savings would be \$279,970. for this proposal. No construction cost shall be considered because this job can be easily performed through FE-Labor.

#### 3.3.2.5.1. Typical DHW Heaters.

Specific losses at  $60^{\circ}$  C = 0.9\* Kcal/h/ $^{\circ}$ C/m<sup>2</sup> x  $40^{\circ}$ C = 36 kcal/h/m<sup>2</sup>

| at 45o C = | -1-        | x 25o C |        |                       |
|------------|------------|---------|--------|-----------------------|
|            | Difference |         | = 13.5 | kcal/h/m <sup>2</sup> |
|            |            |         | = 54   | BTU /h/m <sup>2</sup> |

<sup>\* 5</sup>cm insulation with  $K = .04 \text{ Kcal/H/}^{\circ}\text{C./M}$  on 300mm dim. vessel.  $.04 \times 20 \times .35 * 3.44159 = .9$ 

| SURFACE<br>M <sup>2</sup> | SPECIFIC<br>REDUCTION<br>BTU/H/M <sup>2</sup> | TOTAL<br>REDUCTION<br>BTU/H                                                | SPECIFIC<br>REDUCTION<br>BTU/H/LTR.                                                                                                                                                                                    |
|---------------------------|-----------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.72                      | 54                                            | 309                                                                        | 0.38                                                                                                                                                                                                                   |
| 7.65                      | 54                                            | 413                                                                        | 0.41                                                                                                                                                                                                                   |
| 8.55                      | 54                                            | 462                                                                        | 0.31                                                                                                                                                                                                                   |
| 10.37                     | 54                                            | 560                                                                        | 0.28                                                                                                                                                                                                                   |
| 11.54                     | 54                                            | 623                                                                        | 0.23                                                                                                                                                                                                                   |
|                           | M <sup>2</sup> 5.72 7.65 8.55 10.37           | SURFACE REDUCTION BTU/H/M <sup>2</sup> 5.72 54  7.65 54  8.55 54  10.37 54 | SURFACE M2         REDUCTION BTU/H/M2         REDUCTION BTU/H           5.72         54         309           7.65         54         413           8.55         54         462           10.37         54         560 |

Average specific reduction = 0.32 BTU/H/Ltr.

Annual reduction:  $0.32 \times 24 \times 365 = 2,803 \text{ BTU/LTR./a}$ 

= 0.0028 MBTU/LTR./a

#### 3.3.2.5.2. Typical Piping System.

Sample Building: GY 380 Building No. 3246 Barr. Building.

Area: 55971 SF, four (4) floors.

Pipe Length 350m (taken from floor plan)

Specific losses at  $60^{\circ}$  C = 0.3 kcal/h/°C/m<sup>2</sup> x  $40^{\circ}$  C = 12 kcal/h/m

at 450 C = 
$$\sim 1-$$
 x 250 C = 7.5  $\sim 1-$  Difference = 4.5 kcal/h/m<sup>2</sup> = 18 BTU /h/m<sup>2</sup>

Total:  $350m \times 18 BTU/h/m = 6,300 BTU/h = 0.11 BTU/h/SF 0.11 BTU/h/SF <math>\times 24 \times 365 = 964 BTU/SF/a = 0.0009 MBTU/a/Sf$ 

#### 3.3.2.5.3. Results.

Table 3-6 lists the heating savings by DHW heater capacity and building for #2 oil, #6 oil and coal fuel. Table 3-7 lists the savings for electric DHW heaters. Table 3-8 summarizes these savings.

Table 3-6. DHW Heater Setpoint Reduction Savings for #2 Oil, #6 Oil and Coal

| GY  | BLDG #                                                                                                                       | SF                                                                                                                                                         | DHW HEATER<br>CAP. LTR.                                                                                            | LINE SAVINGS<br>MBTU/A                                                                                                                  | DHW HEATER<br>MBTU/A                                                                                                | TOTAL<br>MBTU/A                                                                                                                           |
|-----|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 072 | 2615<br>2618<br>2619                                                                                                         | 3,598<br>1,622<br>2,289                                                                                                                                    | 300<br>120<br>100                                                                                                  | 3.24<br>1.46<br>2.06                                                                                                                    | 0.84<br>0.34<br>0.28<br>TOTAL GY                                                                                    | 4.08<br>5.88<br>2.34<br>12.30                                                                                                             |
| 298 | 2256<br>2267<br>2276<br>2292<br>2293<br>2200<br>2225<br>2227<br>2233<br>2363<br>2371<br>2372<br>2384<br>2385<br>2408<br>2411 | 10,147<br>15,183<br>8,094<br>12,105<br>10,170<br>37,486<br>10,770<br>3,014<br>160,603<br>12,366<br>118,665<br>113,891<br>5,058<br>21,344<br>7,227<br>7,227 | 144<br>300<br>300<br>500<br>500<br>500<br>170<br>100<br>1,560<br>750<br>2,300<br>2,450<br>370<br>100<br>980<br>980 | 9.13<br>13.66<br>7.28<br>10.90<br>9.15<br>33.74<br>9.70<br>2.71<br>144.54<br>11.13<br>106.80<br>102.50<br>4.55<br>19.21<br>6.50<br>6.50 | 0.40<br>0.84<br>0.84<br>1.40<br>1.40<br>0.48<br>0.28<br>4.37<br>2.1<br>6.44<br>6.86<br>1.03<br>0.28<br>2.74<br>2.74 | 9.53<br>14.50<br>8.12<br>12.30<br>10.45<br>35.14<br>10.18<br>2.99<br>148.91<br>13.23<br>113.24<br>109.36<br>5.58<br>19.49<br>9.24<br>9.24 |

Table 3-6. DHW Heater Setpoint Reduction Savings for #2 0il, #6 0il and Coal (continued)

| GY  | BLDG #                                                                                                                                                                                                       | SF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DHW HEATER<br>CAP. LTR.                                                                                                                                                            | LINE SAVINGS<br>MBTU/A                                                                                                                                                                                                                              | DHW HEATER<br>MBTU/A                                                                                                               | TOTAL<br>MBTU/A                                                                                                                                                                                                           |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 298 | 2412<br>2418<br>2420<br>2421<br>2422<br>2423                                                                                                                                                                 | 7,227<br>2,393<br>7,227<br>7,227<br>10,363<br>7,227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 980<br>90<br>575<br>980<br>200<br>980                                                                                                                                              | 6.50<br>2.15<br>6.50<br>6.50<br>9.33<br>6.50                                                                                                                                                                                                        | 2.74<br>0.25<br>1.61<br>2.74<br>0.56<br>2.74<br>TOTAL GY                                                                           | 9.24<br>2.40<br>8.11<br>9.24<br>9.89<br>9.24<br>-13.23<br>566.39                                                                                                                                                          |
| 380 | 3200<br>3201<br>3206<br>3209<br>3210<br>3211<br>3213<br>3214<br>3221<br>3224<br>3229<br>3235<br>3243<br>3246<br>3257                                                                                         | 121,124<br>19,317<br>22,264<br>67,099<br>73,728<br>44,285<br>55,971<br>19,403<br>2,099<br>35,684<br>21,452<br>22,029<br>20,385<br>55,971<br>16,964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8,000<br>750<br>8,000<br>10,000<br>10,000<br>4,000<br>6,000<br>1,000<br>3,500<br>1,000<br>2,000<br>1,500<br>4,000<br>2,000<br>500                                                  | 109.01<br>17.38<br>20.04<br>60.39<br>66.36<br>39.86<br>50.38<br>17.46<br>1.89<br>32.12<br>19.31<br>19.83<br>18.35<br>50.37<br>15.27                                                                                                                 | 22.40<br>2.10<br>22.40<br>28.00<br>28.00<br>11.20<br>16.80<br>2.80<br>9.80<br>2.80<br>5.60<br>4.20<br>11.20<br>5.60<br>1.40        | 131.41<br>19.48<br>42.44<br>88.39<br>94.36<br>51.06<br>67.18<br>20.26<br>11.69<br>34.92<br>59.83<br>24.03<br>29.55<br>55.97<br>16.67                                                                                      |
| 382 | 3701<br>3702<br>3703<br>3704<br>3705<br>3707<br>3716<br>3720<br>3736<br>3737<br>3728<br>3751<br>3752<br>3753<br>3754<br>3755<br>3756<br>3758<br>3756<br>3758<br>3759<br>3760<br>3761<br>3762<br>3763<br>3764 | 28,156<br>58,085<br>65,371<br>4,262<br>27,562<br>60,201<br>58,085<br>10,087<br>4,793<br>6,596<br>25,961<br>3,556<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>12,277<br>35,063<br>15,198<br>15,233<br>15,619<br>26,518<br>26,518<br>26,518<br>26,518<br>26,518 | 90 2,160 720 144 290 2,160 1,000 1,000 1,000 250 500 1,000 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 | 25.24<br>52.28<br>58.83<br>3.84<br>24.81<br>54.18<br>52.28<br>9.08<br>4.31<br>5.94<br>23.36<br>3.20<br>11.05<br>31.56<br>11.00<br>31.56<br>11.05<br>31.56<br>11.05<br>31.56<br>11.05<br>31.56<br>11.05<br>31.56<br>11.05<br>31.56<br>11.05<br>31.56 | TOTAL GY  0.25 6.05 2.02 0.40 0.81 6.05 6.05 2.8 2.8 0.56 11.20 0.70 1.40 2.80 1.40 7.00 1.4 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7. | 25.59<br>58.33<br>60.85<br>4.24<br>25.62<br>60.23<br>58.33<br>11.88<br>7.11<br>6.50<br>34.56<br>3.90<br>12.45<br>34.36<br>12.40<br>38.56<br>12.45<br>38.56<br>20.68<br>20.71<br>21.06<br>30.87<br>30.87<br>24.11<br>23.20 |

Table 3-6. DHW Heater Setpoint Reduction Savings for #2 0il, #6 0il and Coal (continued)

| GY<br>==== | BLDG #                                                                                                                                                               | SF                                                                                                                                                                                                          | DHW HEATER<br>CAP. LTR.                                                                                                                                    | LINE SAVINGS<br>MBTU/A                                                                                                                                                        | DHW HEATER<br>MBTU/A                                                                                                                                          | TOTAL<br>MBTU/A                                                                                                                                                                              |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 382        | 3766<br>3767<br>3768<br>3769<br>3770<br>3771<br>3774<br>3775<br>3780<br>3794<br>3809<br>3810<br>3813<br>3815<br>3818<br>3819<br>3820<br>3821<br>3821<br>3823<br>3824 | 35,102<br>32,693<br>26,518<br>14,420<br>15,199<br>14,420<br>15,523<br>31,676<br>11,423<br>9,571<br>72,966<br>51,821<br>13,324<br>13,324<br>13,324<br>9,095<br>9,095<br>13,646<br>13,035<br>13,035<br>14,424 | 2,500<br>2,500<br>2,500<br>2,500<br>2,500<br>1,500<br>1,000<br>1,000<br>3,500<br>11,500<br>1,300<br>940<br>630<br>780<br>115<br>2,160<br>290<br>290<br>630 | 31.60<br>29.42<br>23.87<br>12.98<br>13.68<br>12.98<br>13.98<br>28.50<br>10.28<br>8.61<br>65.67<br>46.64<br>11.99<br>11.99<br>8.19<br>8.19<br>12.28<br>11.73<br>11.73<br>11.73 | 7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>7.00<br>4.20<br>2.80<br>2.80<br>9.80<br>32.20<br>3.64<br>2.63<br>1.76<br>2.18<br>0.32<br>6.05<br>0.81<br>0.81<br>1.76 | 38.60<br>36.42<br>30.87<br>19.98<br>20.68<br>19.98<br>18.18<br>31.30<br>13.08<br>18.41<br>97.87<br>50.28<br>14.62<br>13.75<br>10.37<br>8.51<br>18.33<br>12.54<br>14.74<br>-18.41<br>1,178.47 |
| 542        | 278<br>279<br>280<br>281<br>282<br>283<br>284<br>289<br>162<br>270<br>273<br>274<br>275<br>695                                                                       | 6,193<br>6,193<br>6,193<br>4,659<br>6,193<br>6,193<br>6,505<br>41,949<br>5,380<br>6,193<br>6,193<br>6,193<br>4,595                                                                                          | 450<br>150<br>450<br>280<br>450<br>450<br>390<br>3,000<br>230<br>320<br>450<br>450<br>500                                                                  | 5.57<br>5.57<br>5.57<br>4.19<br>5.57<br>5.57<br>5.57<br>5.85<br>37.75<br>4.84<br>5.57<br>5.57<br>5.57                                                                         | 1.26<br>0.42<br>1.26<br>0.78<br>1.26<br>1.26<br>1.26<br>1.09<br>8.40<br>0.64<br>0.90<br>1.26<br>1.26<br>1.40                                                  | 6.83<br>12.82<br>6.83<br>4.97<br>6.83<br>6.83<br>6.59<br>46.15<br>5.48<br>6.47<br>6.83<br>6.83<br>5.43<br>-78.66<br>56.98                                                                    |
| 565        | 3001<br>3029                                                                                                                                                         | 48,080<br>30,041                                                                                                                                                                                            | 1,000<br>1,000                                                                                                                                             | 43.27<br>27.04                                                                                                                                                                | 2.80<br>2.80<br>TOTAL GY                                                                                                                                      | 46.07<br>29.84<br>75.91                                                                                                                                                                      |
| 680        |                                                                                                                                                                      | 55,014<br>27,550                                                                                                                                                                                            | 3,000<br>2,000                                                                                                                                             | 49.57<br>24.80                                                                                                                                                                | 8.40<br>5.60<br>TOTAL GY                                                                                                                                      | 57.91<br>30.40<br>88.31                                                                                                                                                                      |
| 744        | 2917<br>2918<br>2919<br>2921                                                                                                                                         | 6,588<br>6,588<br>6,588<br>6,588                                                                                                                                                                            | 200<br>400<br>400<br>400                                                                                                                                   | 5.93<br>5.93<br>5.93<br>5.93                                                                                                                                                  | 0.56<br>1.12<br>1.12<br>1.12                                                                                                                                  | 6.49<br>7.05<br>7.05<br>7.05                                                                                                                                                                 |

Table 3-6. DHW Heater Setpoint Reduction Savings for #2 0il, #6 0il and Coal (continued)

| 2925       18,468       700       16.62       1.96       18.58         2928       18,468       2,160       16.62       6.05       22.67         2930       18,468       2,160       16.62       6.05       22.65         2935       12,326       430       11.09       1.20       12.29         3859       11,111       860       10.00       2.41       12.41         2861       15,870       1,730       14.28       4.84       18.68         2863       15,870       1,730       14.28       4.84       18.68         2865       15,870       1,730       14.28       4.84       18.68         2868       10,751       170       9.68       0.48       10.16         2874       18,489       2,160       16.64       6.05       22.69         2877       3,403       2,160       3.06       6.05       9.11         2879       18,468       2,160       16.62       6.05       22.67         2882       3,403       720       3.06       2.02       5.08         2886       18,468       2,160       16.62       6.05       22.67         2890 | GY  | BLDG #                                                                                                               | SF                                                                                                                                     | DHW HEATER<br>CAP. LTR.                                                         | LINE SAVINGS<br>MBTU/A                                                                                         | DHW HEATER<br>MBTU/A                                                                                         | TOTAL<br>MBTU/A                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 744 | 2925<br>2928<br>2930<br>2935<br>3859<br>2861<br>2863<br>2865<br>2868<br>2874<br>2877<br>2879<br>2882<br>2886<br>2890 | 18,468<br>18,468<br>18,468<br>12,326<br>11,111<br>15,870<br>15,870<br>10,751<br>18,489<br>3,403<br>18,468<br>3,403<br>18,468<br>18,468 | 700 2,160 2,160 430 860 1,730 1,730 1,730 1,730 2,160 2,160 2,160 720 2,160 720 | 16.62<br>16.62<br>11.09<br>10.00<br>14.28<br>14.28<br>14.28<br>9.68<br>16.64<br>3.06<br>16.62<br>3.06<br>16.62 | 1.96<br>6.05<br>6.05<br>1.20<br>2.41<br>4.84<br>4.84<br>0.48<br>6.05<br>6.05<br>6.05<br>2.02<br>6.05<br>2.02 | 7.05 18.58 22.67 22.65 12.29 12.41 18.68 18.68 10.16 22.69 9.11 22.67 5.08 22.67 18.64 19.36 -231.10 78.61 |

Table 3-7. DWH Heater Setpoint Reduction Savings for Electricity

| GY   | BLDG #                                                                                                                                       | SF                                                                                                                | DHW HEATER<br>CAP. LTR.                                                                     | LINE SAVINGS<br>MBTU/A                                                | DHW HEATER<br>MBTU/A                                                             | TOTAL<br>MBTU/A                                                                                  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 072  | 2281<br>2288<br>2289<br>2202<br>2219<br>2226<br>2238<br>2239<br>2324<br>2346<br>2363<br>2369<br>2372<br>2384<br>2385<br>2389<br>2425<br>2433 | 72,226<br>9,963<br><br>13,540<br><br>29,322<br>12,366<br>118,665<br>113,891<br><br>21,344<br><br>10,202<br>28,589 | 80<br>80<br>15<br>5<br>20<br>90<br>5<br>80<br>15<br>80<br>240<br>90<br>30<br>80<br>15<br>80 | 65.00<br>8.97<br>12.19<br>26.39<br>11.13<br>106.80<br>102.50<br>19.21 | 0.22<br>0.25<br><br>0.25<br><br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>TOTAL GY | 65.22<br>9.19<br>12.44<br>26.61<br>11.35<br>107.47<br>102.75<br>19.43<br>9.40<br>25.95<br>389.81 |
| ~~~~ |                                                                                                                                              | . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                                       |                                                                                             |                                                                       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                          |                                                                                                  |

Table 3-7. DWH Heater Setpoint Reduction Savings for Electricity (continued)

| GY  | BLDG #                                                                                       | SF                                                              | DHW HEATER<br>CAP. LTR.                                        | LINE SAVINGS<br>MBTU/A                                           | DHW HEATER<br>MBTU/A                                     | TOTAL<br>MBTU/A                                                   |
|-----|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------|
| 382 | 3717<br>3719<br>3722<br>3740<br>3800<br>3812<br>3817<br>3817                                 | 8,068<br>29,328<br>5,770<br>9,114<br>4,868<br>4,868             | 80<br>5<br>5<br>80<br>80<br>320<br>200<br>200                  | 7.26<br>26.40<br>5.13<br>8.20<br>4.38<br>4.38                    | 0.22<br>0.22<br>0.22<br>0.90<br>0.56<br>0.56<br>TOTAL GY | 7.48<br>26.62<br>5.35<br>9.10<br>4.94<br>4.94<br>53.49            |
| 455 | 3007<br>3008<br>3010<br>3014<br>3040<br>3041<br>3043<br>3050<br>3053<br>3055<br>3083<br>3091 | 11,559<br>11,559<br>26,516<br>30,311<br>7,758<br>6,737<br>2,166 | 80<br>80<br>10<br>80<br>160<br>10<br>10<br>80<br>10<br>5<br>80 | 10.40<br>10.40<br>23.86<br>27.28<br><br>6.99<br><br>6.06<br>1.95 | 0.22<br>0.22<br>0.44<br><br>0.22<br><br>0.22<br>TOTAL GY | 10.62<br>10.62<br>24.08<br>27.72<br>7.21<br>6.28<br>2.17<br>88.70 |
| 490 | 3413<br>3423<br>3424                                                                         | 16,320<br>6,703                                                 | 80<br>80<br>15                                                 | 14.69<br>6.03                                                    | 0.22<br>0.22<br>TOTAL GY                                 | 14.91<br>6.25<br>21.16                                            |
| 542 | 326<br>150<br>175<br>176<br>347<br>611<br>622<br>646<br>705                                  | 10,280<br>2,384<br><br>4,332                                    | 30<br>5<br>80<br>120<br>10<br>10<br>10<br>30                   | 9.25<br>2.15<br>3.90                                             | 0.22<br>0.34<br><br>0.22<br>TOTAL GY                     | 9.47<br>2.49<br><br>4.12<br><br>16.08                             |
| 565 | 3005<br>3019<br>3029                                                                         | 34,666<br>30,041                                                | 80<br>30<br>100                                                | 31.20<br>27.04                                                   | 0.22<br>0.28<br>TOTAL GY                                 | 31.42<br>27.32<br>58.74                                           |
| 680 | 3114<br>3116<br>3117<br>3150                                                                 | 13,695<br>12,665                                                | 90<br>80<br>30<br>80<br>80                                     | 4.55<br>9.60<br>12.33<br>11.40                                   | 0.25<br>0.22<br>0.22<br>0.22<br>0.22<br>TOTAL GY         | 4.80<br>9.82<br>12.55<br>11.62<br>38.79                           |

Table 3-7. DWH Heater Setpoint Reduction Savings for Electricity (continued)

| GY  | BLDG #                       | SF                       | DHW HEATER<br>CAP. LTR. | LINE SAVINGS<br>MBTU/A | DHW HEATER<br>MBTU/A | TOTAL<br>MBTU/A       |
|-----|------------------------------|--------------------------|-------------------------|------------------------|----------------------|-----------------------|
| 744 | 2902<br>2915<br>2933<br>2942 | 4,929<br>2,127<br>12,326 | 120<br>150<br>80<br>5   | 4.44<br>1.91<br>11.09  | 0.34<br>0.42<br>0.22 | 4.78<br>2.33<br>11.31 |
|     | 2864<br>2869<br>2897<br>2898 | 6,926                    | 15<br>400<br>10<br>5    | 6.23                   | 1.12<br><br>TOTAL GY | 7.35                  |

Table 3-8. Summary of Heater DHW Setpoint Reduction Savings

| GY                 | COAL MBTU/A       | OIL #2<br>MBTU/A  | OIL #6<br>MBTU/A  | ELEC.<br>MBTU/A    | TOTAL              |
|--------------------|-------------------|-------------------|-------------------|--------------------|--------------------|
| 072                | 12.02             | 12.30             | 566.39            |                    | 12.30              |
| 298<br>380         | 13.23<br>556.00   | 191.24            | ***               | 389.81             | 969.43<br>747.24   |
| 382<br>455         | 1,160.06<br>78.66 | 18.41<br>56.98    |                   | 53.45<br>88.70     | 1,231.91<br>224.34 |
| 490                | 70.00             | 50.30             | ~~~               | 21.16              | 21.16              |
| 542<br>565         | ~~~               | 88.31             | ~~~               | 16.08<br>58.74     | 16.08<br>147.05    |
| 680<br>744         | 78.61             |                   | 231.10            | 38.75              | 38.75              |
| -                  |                   |                   |                   | 25.77              | 335.48             |
| TOTAL<br>\$/MBTU/A | 1,886.56<br>4.11  | 367.24<br>10.46   | 797.49<br>7.63    | 692.46<br>4.74     | 3,743.75           |
| \$/A<br>DISC. F.   | 7,753.76<br>15.39 | 3,841.33<br>11.36 | 6,084.85<br>13.29 | 3,282.26           | 20,962.20          |
| TOTAL \$           | 119,330.00        | 43,634.00         | 80,868.00         | 11.01<br>36,138.00 | 279,970.00         |

### 3.3.3. Previous Energy Studies.

No previous energy studies have been performed on this facility.

# 3.3.4. Operational Improvements.

The maintenance and repair program seems to be inadequate and many deficiencies waste energy go unattended. The following are items that were discussed with the community:

- 3.3.4.1. Windows are broken for weeks and months.
- 3.3.4.2. Doors are bent or closing devices are broken so that the doors do not close properly.

- 3.3.4.3. Leaking roofs, damaging insulation where insulation does exist.
- 3.3.4.4. Rotting or broken wood door and window frames.
- 3.3.4.5. Many radiators are covered with multi-layers of paint. Result: Paint acts as insulation, higher energy usage.
- 3.3.4.6. Various unions are leaking. Result: Loss of condensate, continuous water and energy waste, building damages.
- 3.3.4.7. Many unit heaters are out of operating because the fan motors are removed or damaged. Result: Electrical space heaters or direct fired oil heaters are used to compensate lack of regular heat. Dangerous operation with direct fired oil heaters in motor repair shops.
- 3.3.4.8. Many showers and water taps at sinks are leaking. Result: Loss of heated water, waste of energy.
- 3.3.4.9. Based on the inspection labels at the boilers in buildings which are not supplied from a central heat distribution system, the last inspections took place 1977 and even earlier. Many boilers are sooted, burners are dusty. Result: Low efficiency, waste of energy.
- 3.3.4.10. Various radiators are completely covered with furnitures or other features, and not controllable. Some radiators have been covered by the user to reduce heat radiation, to avoid overheating of the rooms due to lack of controls. Result: Open windows, waste of energy.
- 3.3.4.11. Building 3114 and 3116 at Daenner Kaserne contain hand made radiators from sheet metal. We were told that one (1) of those has been blown-up already. The existing ones look like they are ready to blow-up in the near future.
- 3.3.4.12. Many radiators are hanging on their supply and return pipes only.

  Holders are not existing anymore.

- 3.3.4.13. Inoperative Controls.
- 3.3.4.13.1. Many radiator valves are stalled and cannot be adjusted. <u>Result:</u>
  Overheated rooms, open windows to compensate lack of controls, waste of energy.
- 3.3.4.13.2. Hand wheels are missing at many header valves. Stuffing boxes at many valves are leaking. Result: Steam leakages, energy waste.
- 3.3.4.13.3. Building No. 3777 Landstuhl Hospital: Combustion air controls are out of operation.
- 3.3.4.13.4. Building No. 3809 Landstuhl Hospital: System is very old. Firing controls partially out of operation. System operates with high water losses. Recharging two times a day for ten (10) minutes each with 1/2-inch hose.
- 3.3.4.13.5. Building 164 ROB: The radiators in the rooms should be equipped with thermostatic valves or should be shut-off, to avoid simultaneous heating and cooling. The filters of the A/C units in the corridor should be cleaned.
- 3.3.4.13.6. Building No. 2894, Pularski Barracks: The system operates with an open firing system with four (4) each operation expansion tanks on top of building. System should be changed for closed operation to avoid corrosion. Only one of two steam/LPHW heat exchangers is equipped with primary (steam-side) safety valve. Another safety valve should be added on second heat exchanger. The system operated with heavy fuel oil. The oil is being injected with steam into the boilers. All wiring, safety switches etc. are covered with oil. A short circuit could occur soon. Burner system has to be cleaned.

- 3.3.4.13.7. Building No. 287 ROB: The blow-out of the safety valves enters into an outside walkway which means danger to passengers. Blow-out has to be extended to a higher point. The system has a water leakage probably in the heat exchanger. (Condensate tank flows over).
- 3.3.4.13.8. Building 2364 Esels-firth: The induced-draught blower is out of operation.
- 3.3.4.13.9. Building 3126 Daenne Kaserne: The outdoor sensor is located at south wall of building. Should be relocated to north side.

### 3.3.5. Previously Implemented Energy Projects.

#### 3.3.5.1. Completed Projects.

The Kaiserslautern community has completed relatively few energy conservation measures. These have been limited to spot replacement of windows and doors, sometimes accomplished incidental to other remodeling.

#### 3.3.5.2. Current Projects.

The community has over 200 projects in some phase of design, planning or under construction. The projects programmed for each building in the Kaserne are tabulated in the data report for the individual GY. A summary of the projects types at each Kaserne are tabulated as follows:

#### Current Energy Projects

|                                                       |     |     |     | C   | IUMMC | ITY |     |     |     |     |
|-------------------------------------------------------|-----|-----|-----|-----|-------|-----|-----|-----|-----|-----|
| PROJECT DESCRIPTION                                   | 072 | 298 | 380 | 382 | 455   | 490 | 542 | 565 | 680 | 744 |
| Insulate Roof                                         |     | X   |     |     | X     |     |     | X   | X   | X   |
| Insulate Walls                                        |     | X   |     | X   |       |     | X   |     |     | X   |
| Insulate Ceiling                                      |     | X   |     |     | X     |     |     | X   |     | X   |
| Replace Windows                                       |     | X   | X   | X   | X     | X   | X   | X   |     |     |
| Replace Windows W/Plastic Windows W/Thermopen Glazing |     | χ   |     |     | Х     |     |     | Х   | Х   | Х   |

# Current Energy Projects (continued)

| DDO JECT DESCRIPTION                         | 070          | 1000 | . 200                                 |     | OMMUI    |          |     |     |          |           |
|----------------------------------------------|--------------|------|---------------------------------------|-----|----------|----------|-----|-----|----------|-----------|
| PROJECT DESCRIPTION                          | 10/2         | 298  | 380                                   | 382 | 455      | 490      | 542 | 565 | 680      | /44       |
| Replace Shop Doors<br>Replace Exterior Doors | <del> </del> | X    | <b>├</b>                              | X   | X        | <u> </u> |     |     |          |           |
| Repair Windows                               |              | X    | X                                     | X   | X        | X        | X   | X   | X        | X         |
| Replace Roof                                 |              | X    |                                       |     | ļ        |          |     |     |          |           |
| Replace Walls                                |              | Х    | <u> </u>                              |     |          | <u> </u> |     |     |          |           |
|                                              |              |      | <u> </u>                              | ļ   |          |          |     |     |          |           |
| Replace Low Pressure Hot Water               | ļ            | 1    | , , , , , , , , , , , , , , , , , , , | l   |          |          |     | ١   |          |           |
| Boiler, Oil-Fired                            |              |      | X                                     |     | ļ        | L        | X   | X   | <u> </u> |           |
| Replace High Pressure Hot Water              | 1            |      |                                       |     | ]        |          |     |     |          |           |
| Boiler, Heavy Oil-Fired                      |              |      |                                       |     |          |          |     |     |          |           |
| Replace Low Pressure Steam                   | ı            |      |                                       | ٠   |          | Į į      |     |     |          |           |
| Boiler, Coal-Fired                           |              | Ĺ    | Х                                     | X   |          |          |     |     |          |           |
| Replace Manual Coal-Fired Boiler             | 1            |      |                                       |     |          |          |     |     |          |           |
| W/Automatic Coal-Fired Boiler                |              |      |                                       |     |          |          |     | Х   | X        |           |
| Replace Safety Stand Pipes W/                | j            |      |                                       |     |          |          |     |     |          |           |
| Safety Valves                                |              |      |                                       |     |          |          |     |     |          |           |
| Install Filter System for Burn-              |              |      |                                       |     |          |          |     |     |          |           |
| ing of Used POL Products                     |              | Х    |                                       |     |          |          |     |     |          |           |
| Replace Hot Water Generator                  |              |      | X                                     | Х   |          | Х        | Χ   | Χ   | Χ        |           |
| Replace Long Distance Hot Water              |              |      |                                       |     |          |          |     |     |          |           |
| Pipe in Channel                              |              | Х    |                                       | X   |          |          | X   | X   | Χ        | <u> X</u> |
| Replace High Pressure Hot Water              |              |      |                                       |     |          |          |     |     |          |           |
| Pipe in Channel                              |              | Χ    |                                       |     | Χ        |          | Х   |     |          |           |
| Replace Condensate Pipe W/                   | l i          |      |                                       |     |          |          |     |     |          |           |
| Insulation                                   |              |      | Х                                     | Х   | X        | X        | X   | X   |          | X         |
| Replace Interior Heating System              |              | X    | X                                     | Χ   | X        | Х        | Χ   | Χ   | Χ        | Χ         |
| Repair Air Conditioning System               |              |      |                                       | Χ   |          |          |     |     |          |           |
| Replace Ventilation System                   |              |      | X                                     |     | X        |          |     |     |          | X         |
| Replace Thermostatic Valves                  |              |      | X                                     | Х   | <u> </u> | X        | X   | Х   | Χ        | X         |
| Replace Thermostatic Valves and              |              |      |                                       | ,,  |          |          |     |     |          |           |
| Radiators                                    |              |      |                                       | Х   |          |          |     |     |          |           |
| Replace Air Blowers w/Control                |              |      |                                       |     |          |          |     |     |          |           |
| Valves                                       |              |      |                                       |     | Χ        | <u> </u> |     |     | Х        |           |
| Convert Low Pressure Steam to                |              |      |                                       | ١   |          |          |     |     |          |           |
| Low Pressure Hot Water System                |              |      |                                       | X   |          |          |     |     |          |           |
| Replace Insulation on Pipes and              |              |      |                                       |     | ١ ا      |          |     |     |          |           |
| Equipment                                    |              |      |                                       |     | X        |          |     |     | Χ        |           |
| Replace Low Pressure Steam Boiler            |              |      |                                       |     |          | ١ ا      |     |     |          |           |
| 0il-Fired                                    |              | Х    | Х                                     |     |          | Х        |     |     |          |           |
| Replace Cond. Tanks                          |              |      |                                       | Χ   |          |          |     |     | Χ        |           |
| Replace Boilers W/Cent. Dist.                |              |      |                                       |     |          |          |     |     |          |           |
| System                                       |              |      |                                       |     |          |          | Х   |     |          |           |
| Replace Oil Burner                           |              |      |                                       |     |          |          |     | X   |          |           |
| Install Ventilation                          |              |      |                                       |     |          |          |     | Χ   |          |           |
| Replace H.P. HW Coal Boiler                  |              |      |                                       |     |          |          |     |     |          | X         |
| Replace Interior Electrical In-              |              |      |                                       |     |          |          |     |     |          |           |
| stallation i.a.w. VDE Standards              |              | X    | X                                     | X   | X        | Х        | Х   | Х   | Χ        | Χ_        |
| Provide New Grounding System                 |              | Χ    |                                       |     |          |          |     |     |          |           |
| Replace Main Distribution Panels             |              |      | X                                     |     |          |          |     |     |          |           |
| Install Emergency and Exit Lights            |              |      | X                                     |     |          |          |     |     |          |           |
| Provide Variable Lighting Control            |              |      |                                       | X   |          |          |     |     |          |           |

# Current Energy Projects (continued)

|                                  | COMMUNITY. |     |     |     |     |     |     |     |     |      |
|----------------------------------|------------|-----|-----|-----|-----|-----|-----|-----|-----|------|
| PROJECT DESCRIPTION              | 072        | 298 | 380 | 382 | 455 | 490 | 542 | 565 | 680 | 1744 |
| Replace Lights in Shop Area      |            | Χ   |     |     | X   |     |     |     |     |      |
| Relocate & Rearrange of Lighting |            | X   |     | X   |     |     |     |     |     |      |
| Replace Low Tension Cables       |            |     |     |     |     |     |     |     |     |      |
| Exterior                         | İ          |     | X   |     | ĺ   | ĺ   | 1   |     | 1   | 1    |
| Replace 'Street Lighting System  |            | X   |     | Х   |     | X   | X   | X   | X   | X    |
| Replace Fence Lighting System    | X          | X   |     |     |     |     |     |     |     |      |
| Replace Area Lighting            |            |     |     |     |     |     | X   |     |     |      |

# Boiler Plant Modifications in Progress

| GY  | BOILER<br>PLANT # | TYPE<br>OF FU |                                                                                                                                                                                                                                  |       | FUTURE EFFICIENCY MATED FROM FIG 6-INCLUDING DISTR. | 1 & 6-2 |
|-----|-------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------|---------|
| 298 | 2211              |               | Three old boilers are replaced w/1975~.987 to two new boilers with a capacity (each) of 27.8 MBTU/HR. A project is under design to replace the existing three old boilers (each 77.09 MBTU/H) to one new boiler of 27.8 MBTU/HR. | 1984  | Capacity MBTU/H<br>34.83                            | 80      |
| 380 | 3244              |               | In future, this boiler plant will only be used for stand-by since the connected buildings shall be reconnected to 3.P. 3210.                                                                                                     | 1984  | 76.43                                               | 70      |
| 380 | 3210              | +             | One boiler shall be added to increase capacity for the supply of buildings being reconnected from B.P. 3244                                                                                                                      | 1984  | 74.28                                               | 70      |
| 382 | 3777              |               | Boiler supervising system is under construction, distribution system to be replaced.                                                                                                                                             | 1983/ | <sup>7</sup> 87 63.54                               | 70      |
| 382 | 3809              | !             | Two each LPS boilers shall be replaced by LPHW boilers. Distribution system to be replaced and connected from LPS to LPHW.                                                                                                       | 1987  | 7.84                                                | 70      |
| 455 | 3054              |               | One of the two 9.9 MBTU/H boilers (1953) shall be replaced.                                                                                                                                                                      | 1984  | 79.84                                               | 80      |
| 490 | 3403              |               | No programs existing ex. boilers are of 1979/RO                                                                                                                                                                                  |       | 49.2                                                | 80      |

# Boiler Plant Modifications in Progress (continued)

| GY   | BOILER<br>PLANT # | TYPE<br>OF F | JEL MODIFICATION IN PROGRESS                                                                                                                               | 1              | FUTURE EFFIC<br>MATED FROM F<br>INCLUDING DI | IG 6-1 & 6-2            |
|------|-------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------|-------------------------|
| 542  | 287               | Coal         | The existing six each boilers (1965/82) shall be replaced by three each automatic controlled boilers. The distribution system shall be partially replaced. | 1987           | 6.80                                         | 70                      |
| 542  | 391               | Coal         | No program, existing two boilers are<br>1976/1982                                                                                                          |                | 73.96                                        | 70                      |
| 542  | 646               | Coal         | One of the three boilers (3.49 MBTU/H) shall be replaced with same capacity boiler.                                                                        | 1987           | 79.00                                        | 70                      |
| 565  | 3001              | Coal         | Existing 14 boilers shall be replaced by six automatic controlled boilers. Entire distribution system shall be replaced.                                   | 1984/8         | 5 24.59                                      | 70                      |
| 680  | 3100              | #2           | Complete B.P. will be converted to coal.<br>Distribution system will be replaced.                                                                          | 1984/8<br>1987 | 7 9.23                                       | Future Coal<br>70       |
| 744  | 2868              | Coal         | No B.P. modifications programmed boilers are of 1974/1979. Critical distribution lines shall be replaced.                                                  | 1987           | 78.77                                        | 70                      |
| 744  | 2894              | #6           | One of the two boilers (1952) shall be replaced, both boilers shall be equipped with rotary burners. Critical distribution lines shall be replaced.        | 1987           | 26.08                                        | 80                      |
| TOTA | AL                |              |                                                                                                                                                            |                | 380.89                                       | Average<br>74.99 Say 75 |

### 3.3.6. Future Development Plan.

The proposed ECIP projects of this study will be realized at earliest during FY 87 which means that the proposed energy savings will not start to reduce the energy consumption before FY 88. Based on this reality, the electricity consumption will increase, and the heating fuel consumption will decrease as indicated previously. In addition the following programmed increase of square footage will have to be added to the existing facilities before the ECIP projects will be completed. (Source: "Future Development Plans", prepared by John J. Harte Assoc., Inc.)

| GY 298 | Army Depot:         | 400,000   | SF |
|--------|---------------------|-----------|----|
| GY 380 | Kleber Kaserne:     | 41,000    | SF |
| GY 382 | Landstuhl Hospital: | 200,000   | SF |
| GY 542 | Rhine Ordnance      | 500,000   | SF |
| GY 565 | Panzer Kaserne      | 3,000     | SF |
| GY 744 | Pulaski Barracks    | 3,000     | SF |
| TOTAL  |                     | 1,147,000 | SF |

All these buildings are of the type which will conserve electricity and heating energy and will increase the energy consumption. The total square footage of existing heated and illuminated buildings included in this study is approximately 6,500,000 SF. The programmed buildings will increase the energy using square footage by approximately 18 percent. Assuming that these buildings will be designed and built on the latest energy conservating standards, it can be also assumed that the energy consumption will increase not by 18 percent but by approximately 10 percent in addition to that indicated.

#### 3.3.7. Increment 'G'.

No Increment 'G' projects were identified at this community.

### 3.3.8. Other Energy Conservation Opportunities Examined.

# 3.3.8.1. <u>Metering</u>.

No buildings were identified where the addition of metering might be expected to reduce energy consumption.

# 3.3.8.2. Solar Energy.

This region of Europe is normally overcast during much of the year. Investigation of the use of solar energy is not warranted.

#### 3.3.8.3. District Heat.

There is no District Heating System available to the facility. The local system has no excess capacity.

### 3.3.8.4. Insulating Glass.

Replacement of single pane with double pane glass had an SIR less than one (1). Evaluation of each single pane window is shown in Table 3-9.

# 3.3.8.5. <u>Insulation of Walls and Roofs</u>.

Insulation of uninsulated walls and roofs is included in Increment 'A'. Walls and roofs that did not meet SIR criteria are shown in Tables 3-10 and 3-11.

Table 3-9. Savings Weatherization Glass, Kaiserslautern

| 2615 GY 072 EM BK W/MESS SP 3598 19 2,279 3,609 .63 NO 2 2618 GY 072 OPS GEN PURP SP 1622 3 391 866 .45 NO 2 2200 GY 298 HQ ADM BLDG SP 37486 205 20,836 49,958 .41 NO 6 2202 GY 298 ADM GEN PURP SP 3538 24 2,529 6,064 .41 NO 6 2213 GY 298 INFL MAT STHS SP 10147 34 3,529 8,807 .40 NO 6 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2618 GY 072 OPS GEN PURP SP 1622 3 391 866 .45 NO 2 2200 GY 298 HQ ADM BLDG SP 37486 205 20,836 49,958 .41 NO 6 2202 GY 298 ADM GEN PURP SP 3538 24 2,529 6,064 .41 NO 6 2213 GY 298 INFL MAT STHS SP 10147 34 3,529 8,807 .40 NO 6                                                          |
| 2200 GY 298 HQ ADM BLDG SP 37486 205 20,836 49,958 .41 NO 6 2202 GY 298 ADM GEN PURP SP 3538 24 2,529 6,064 .41 NO 6 2213 GY 298 INFL MAT STHS SP 10147 34 3,529 8,807 .40 NO 6                                                                                                              |
| 2202 GY 298 ADM GEN PURP SP 3538 24 2,529 6,064 .41 NO 6 2213 GY 298 INFL MAT STHS SP 10147 34 3,529 8,807 .40 NO 6                                                                                                                                                                          |
| 2213 GY 298 INFL MAT STHS SP 10147 34 3,529 8,807 .40 NO 6                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                              |
| 2219 GY 298 GEN PURP WHSE SP 32262 123 12.499 31.187 40 NO 6                                                                                                                                                                                                                                 |
| 2225 GY 298 CML FLD MT SH SP 10770 75 7,672 18,914 .40 NO 6                                                                                                                                                                                                                                  |
| 2226 GY 298 CARE & PRES SH SP 13540 108 10,953 27,000 .40 NO 6                                                                                                                                                                                                                               |
| 2227 GY 298 GEN PURP WHSE SP 3014 4 462 1.155 .40 NO 6                                                                                                                                                                                                                                       |
| 2233A GY 298 ENG FLD MNT SH SP 99785 3,402 344,995 850,447 .40 NO 6                                                                                                                                                                                                                          |
| 2233B GY 298 ENG FLD MNT SH SP 60818 1,687 171,150 421,903 .40 NO 6                                                                                                                                                                                                                          |
| 2238 GY 298 GEN PURP WHSE SP 19569 74 7,580 18,914 .40 NO 6                                                                                                                                                                                                                                  |
| 2239 GY 298 GEN PURP WHSE SP 29322 116 13,830 29,455 .46 NO 2                                                                                                                                                                                                                                |
| 2246 GY 298 OPS GEN PURP SP 4165 63 7,549 15,449 .48 NO 2                                                                                                                                                                                                                                    |
| 2257 GY 298 GEN PURP WHSE SP 10137 11 1,157 2,887 .40 NO 6                                                                                                                                                                                                                                   |
| 2258 GY 298 GEN PURP WHSE SP 29322 116 11,804 29,455 .40 NO 6                                                                                                                                                                                                                                |
| 2260 GY 298 GEN PURP WHSE SP 29322 136 16,203 34,508 .46 NO 2                                                                                                                                                                                                                                |
| 2264 GY 298 GEN PURP WHSE SP 39259 235 23,841 59,488 .40 NO 6                                                                                                                                                                                                                                |
| 2267 GY 298 BOX & CRATE SH SP 15183 107 10,894 26,856 .40 NO 6                                                                                                                                                                                                                               |
| 2270 GY 298 POST RESTAURNT SP 3442 10 1,103 2,454 .44 NO 6                                                                                                                                                                                                                                   |
| 2276 GY 298 ADM GEN PURP SP 8094 59 6,022 14,438 .41 NO 6                                                                                                                                                                                                                                    |
| 2277 GY 298 MNT SH WHSE SP 10070 36 3,703 9,240 .40 NO 6                                                                                                                                                                                                                                     |
| 2279 GY 298 ADM GEN PURP SP 6633 22 2,288 5,486 .41 NO 6                                                                                                                                                                                                                                     |
| 2280 GY 298 GEN PURP WHSE SP 11538 43 4,397 10,973 .40 NO 6                                                                                                                                                                                                                                  |
| 2281 GY 298 GEN PURP WHSE SP 72226 1,466 148,661 370,933 .40 NO 6                                                                                                                                                                                                                            |
| 2288 GY 298 CARE &PRES SH SP 21736 135 13,706 33,786 .40 NO 6                                                                                                                                                                                                                                |
| 2289 GY 298 GEN PURP WHSE SP 31360 167 16,955 42,305 .40 NO 6                                                                                                                                                                                                                                |
| 2293 GY 298 ADM GEN PURP SP 10170 30 3,131 7,508 .41 NO 6                                                                                                                                                                                                                                    |
| 2300 GY 298 GEN PURP WHSE SP 5319 4 542 1,155 .46 NO 2                                                                                                                                                                                                                                       |
| 2303 GY 298 CARE & PRES SH SP 5525 33 4,005 7,941 .50 NO 2                                                                                                                                                                                                                                   |
| 2306 GY 298 CARE & PRES SH SP 10147 57 6,845 13,572 .50 NO 2                                                                                                                                                                                                                                 |
| 2324 GY 298 GEN PURP WHSE SP 29322 136 16,203 34,508 .46 NO 2                                                                                                                                                                                                                                |
| 2328 GY 298 GEN PURP WHSE SP 7924 3 406 866 .46 NO 2                                                                                                                                                                                                                                         |
| 2329 GY 298 CARE & PRES SH SP 11703 6 754 1,588 .47 NO 2                                                                                                                                                                                                                                     |
| 2346 GY 298 SALV & SURV PR SP 3200 20 2,470 5,197 .47 NO 2                                                                                                                                                                                                                                   |
| 2363 GY 298 CARE & PRES SH SP 12366 48 3,071 12,128 .25 COAL                                                                                                                                                                                                                                 |

Table 3-9. Savings Weatherization Glass, Kaiserslautern (continued)

| BLDG KASERNE               | FUNCTION                      | GLASS<br>TYPE | GLASS<br>SQFT | SAVINGS<br>MBTU/YEAR | SAVINGS<br>\$/YEAR | COST<br>\$      | SIR        |              |
|----------------------------|-------------------------------|---------------|---------------|----------------------|--------------------|-----------------|------------|--------------|
| 2370 GY 298                | GEN PURP WHSE                 | SP            | 76064         |                      | 949                | 2,021           | .46        | NO 2         |
| 2371A GY 298               | GEN PURP WHSE                 | SP            | 59333         | 9                    | 983                | 2,454           | .40        | NO 6         |
| 2371B GY 298               | GEN PURP WHSE                 | SP            | 59333         | 9                    | 983                | 2,454           | .40        | NO 6         |
| 2372A GY 298               | GEN PURP WHSE                 | SP            | 56946         |                      | 578                | 1,443           | .40        | NO 6         |
| 2372B GY 298               | GEN PURP WHSE                 | SP            | 56946         |                      | 578                | 1,443           | .40        | NO 6         |
| 2374 GY 298                | ADM GEN PURP                  | SP            | 5058          |                      | 1,445              | 3,465           | . 41       | NO 6         |
| 2384 GY 298                | ADM GEN PURP                  | SP            | 5058          |                      | 3,245              | 6,641           | .48        | NO 2         |
| 2385 GY 298                | GEN PURP WHSE                 | SP            | 21344         | 128                  | 15,322             | 32,631          | .46        | NO 2         |
| 2388 GY 298                | GEN PURP WHSE                 | SP            | 9963          | 51                   | 6,101              | 12,994          | .46        | NO 2         |
| 2389 GY 298                | GEN PURP WHSE                 | SP            | 10557         | 82                   | 8,332              | 20,791          | .40        | NO 6         |
| 2393 GY 298<br>2394 GY 298 | MOTOR REP SHOP                | SP            | 32224         |                      | 14,116             | 34,797          | .40        | NO 6         |
| 2408 GY 298                | MOTOR REP SHOP                | SP            | 6017          | 68<br>51             | 6,970              | 17,182          | .40        | NO 6         |
| 2409 GY 298                | EM BK W/O MS<br>ADM GEN PURP  | SP<br>SP      | 7227<br>2393  | 51                   | 5,214              | 9,674           | .53        | NO 6         |
| 2410 GY 298                | GEN INST BLDG                 | SP            | 3006          | 19<br>18             | 1,927<br>1,893     | 4,620           | .41<br>.38 | NO 6<br>NO 6 |
| 2411 GY 298                | EM BK W/O MS                  | SP            | 7227          | 51                   | 5,214              | 4,909<br>9,674  | .53        | NO 6         |
| 2412 GY 298                | EM BK W/O MS                  | SP            | 7227          | 51                   | 5,214              | 9,674           | .53        | NO 6         |
| 2414 GY 298                | SUP SVC ADM                   | SP            | 2393          | 13                   | 1,324              | 3,176           | .41        | NO 6         |
| 2418 GY 298                | ADM GEN PURP                  | SP            | 2393          |                      | 1,505              | 3,609           | . 41       | NO 6         |
| 2419 GY 298                | SUP SVC ADM                   | SP            | 2672          | 20                   | 2,047              | 4,909           | . 41       | NO 6         |
| 2420 GY 298                | ADM & EM BK                   | SP            | 7227          |                      | 5,299              | 12,706          | . 41       | NO 6         |
| 2421 GY 298                | EM BK W/O MS                  | SP            | 7227          |                      | 5,214              | 9,674           | .53        | NO 6         |
| 2422 GY 298                | ENL PERS MESS                 | SP            | 10363         | 35                   | 3,635              | 8,085           | . 44       | NO 6         |
| 2423 GY 298                | EM BK W/O MS                  | SP            | 7227          | 51                   | 5,214              | 9,674           | . 53       | NO 6         |
| 2425 GY 298                | FE MNT SHOP                   | SP            | 10202         | 83                   | 8,434              | 20,791          | .40        | NO 6         |
| 2426 GY 298                | DISP W/O BEDS                 | SP            | 2281          | 18                   | 1,920              | 3,898           | .49        | NO 6         |
| 2427 GY 298<br>2433 GY 298 | POST RESTAURNT                | SP            | 2395          |                      | 1,363              | 3,032           | .44        | NO 6         |
| 3183 GY 374                | AR DEL EQP MS<br>BAND TNG FAC | SP<br>SP      | 28589<br>6989 |                      | 10,601<br>1,696    | 26,134<br>3,754 | .40<br>.45 | NO 6<br>NO 2 |
| 3188 GY 374                | THEAT W/ STAGE                | SP            | 15953         | 62                   | 7,427              | 14,727          | .50        | NO 2         |
| 3200 GY 380                | EM BK W/O MS                  | SP            | 121124        |                      | 53,642             | 159,404         | .33        | COAL         |
| 3201 GY 380                | DISP W/O BEDS                 | SP            | 19317         | 100                  | 6,349              | 20,647          | .30        | COAL         |
| 3205 GY 380                | ADM & LIBRARY                 | SP            | 18942         | 160                  | 10,187             | 39,129          | .26        | COAL         |
| 3206 GY 380                | ENL PERS MESS                 | SP            | 22264         | 99                   | 6,282              | 22,380          | .28        | COAL         |
| 3208 GY 380                | FIN ADM BLDG                  | SP            | 45059         | 285                  | 18,082             | 69,450          | .26        | COAL         |
| 3209 GY 380                | EM BK W/O MS                  | SP            | 67099         | 419                  | 26,578             | 78,980          | .33        | COAL         |
| 3210 GY 380                | EM BK W/O MS                  | SP            | 73728         |                      | 26,578             | 78,980          | .33        | COAL         |
| 3213 GY 380                | EM BK W/O MS                  | SP            | 55971         | 234                  | • 14,868           | 44,182          | .33        | COAL         |
| 3214 GY 380                | ADM GEN PURP                  | SP            | 19403         | 67                   | 4,247              | 16,315          | .26        | COAL         |
| 3221 GY 380<br>3222 GY 380 | EXCH SP SUPT                  | SP            | 2099          | 18                   | 1,155              | 4,620           | .25        | COAL         |
| 3222 GY 380<br>3224 GY 380 | MOTOR REP SHOP EM SVC CLUB    | SP<br>SP      | 7016<br>35684 | 26<br>69             | 1,682              | 6,641           | .25        | COAL         |
| 3225 GY 380                | CLO SALES                     | SP            | 12206         | 68<br>72             | 4,336              | 15,449          | .28        | COAL         |
| 3226 GY 380                | BN HQ BLDG                    | SP            | 12678         | 32                   | 4,617<br>2,030     | 17,182<br>7,796 | .26<br>.26 | COAL<br>COAL |
| 3227 GY 380                | EM BK W/O MS                  | SP            | 33985         | 297                  | 18,852             | 56,022          | .33        | COAL         |
| 3228 GY 380                | CO HQ BLDG                    | SP            | 2765          |                      | 1,503              | 5,775           | .26        | COAL         |
| 3230 GY 380                | COMM CENTER                   | SP            | 8830          | 25                   | 3,067              | 6,786           | .45        | NO 2         |
| 3231 GY 380                | BOWLING CTR                   | SP            | 30596         |                      | 3,065              | 11,406          | .26        | COAL         |
| 3233 GY 380                | GEN INST BLDG                 | SP            | 36453         | 144                  | 9,135              | 35,086          | .26        | COAL         |
| 3234 GY 380                | MOTOR REP SHOP                | SP            | 5881          | 42                   | 2,705              | 10,684          | .25        | COAL         |
| 3242 GY 380                | EM BK W/O MS                  | SP            | 36667         | 186                  | 11,807             | 35,086          | .33        | COAL         |
| 3243 GY 380                | ENL PERS MESS                 | SP            | 20385         | 135                  | 8,592              | 30,610          | .28        | COAL         |

Table 3-9. Savings Weatherization Glass, Kaiserslautern (continued)

| BLDG         | KASERNE          | FUNCTION                      | GLASS<br>TYPE | GLASS<br>SQFT  | SAVINGS<br>MBTU/YEAR | SAVINGS<br>\$/YEAR | COST<br>\$       | SIR         | FUEL         |
|--------------|------------------|-------------------------------|---------------|----------------|----------------------|--------------------|------------------|-------------|--------------|
| 3244         | GY 380           | EM BK W/O MS                  | SP            | 39818          | 186                  | 11,807             | 35,086           | .33         | COAL         |
| 3245         | GY 380           | EM BK W/O MS                  | SP            | 36667          |                      | 11,807             | 35,086           | .33         | COAL         |
| 3246         | GY 380           | EM BK W/O MS                  | SP            | 55971          | 260                  | 16,520             | 49,092           | .33         | COAL         |
| 3247         | GY 380           | MOTOR REP SHOP                | SP            | 8966           |                      | 2,230              | 8,807            | .25         | COAL         |
| 3251         | GY 380           | MOTOR REP SHOP                | SP            | 9835           |                      | 1,937              | 7,652            | .25         | COAL         |
| 3252<br>3254 | GY 380           | MOTOR REP SHOP                | SP            | 13874          |                      | 1,645              | 6,497            | .25         | COAL         |
| 3255         | GY 380<br>GY 380 | MOTOR REP SHOP MOTOR REP SHOP | SP<br>SP      | 14419          | 75<br>25             | 4,789              | 18,914           | .25         | COAL         |
| 3257         | GY 380           | MOTOR REP SHOP                | SP            | 9509<br>16964  | 35<br>196            | 2,230<br>12,432    | 8,807            | .25         | COAL         |
| 3265         | GY 380           | OPEN MESS                     | SP            | 19585          | 118                  | 14,072             | 49,092<br>26,711 | .25<br>.52  | COAL<br>NO 2 |
| 3266         | GY 380           | SIG ADM BLDG                  | SP            | 25178          |                      | 5,785              | 11,839           | .48         | NO 2         |
| 3278         | GY 380           | MOTOR REP SHOP                | SP            | 15888          |                      | 7,411              | 15,593           | .47         | NO 2         |
| 3700         | GY 382           | HOSPITAL                      | SP            | 54476          | 145                  | 9,190              | 29,888           | .30         | COAL         |
| 3701         | GY 382           | GENEDEV/EXCH B                | SP            | 28156          |                      | 4,172              | 17,326           | .24         | COAL         |
| 3702         | GY 382           | EM MD BK                      | SP            | 58085          | 165                  | 10,446             | 31,043           | .33         | COAL         |
| 3703         | GY 382           | LABORATORY                    | SP            | 65371          | 146                  | 9,279              | 30,177           | .30         | COAL         |
| 3704         | GY 382           | SENTRY STATION                | SP            | 4262           | 11                   | 1,370              | 3,032            | .45         | NO 2         |
| 3705<br>3707 | GY 382<br>GY 382 | EM SERV BLDG<br>EM MD BK      | SP            | 27562          | 63                   | 3,998              | 16,604           | .24         | COAL         |
| 3716         | GY 382           | EW BK W/O MS                  | SP<br>SP      | 60201<br>58085 | 158                  | 10,009             | 29,744           | .33         | COAL         |
| 3717         | GY 382           | STHS / AUTO SH                | SP            | 8068           | 165.                 | 10,446             | 31,043           | .33<br>0.00 | COAL<br>COAL |
| 3718         | GY 382           | THEAT W/ STAGE                | SP            | 11758          | 3                    | 194                | 721              | .26         | COAL         |
| 3719         | GY 382           | GEN STOREHOUSE                | SP            | 8002           | 2                    | 144                | 577              | .25         | COAL         |
| 3720         | GY 382           | GYMNASIUM                     | SP            | 10087          | 42                   | 2,677              | 9,962            | .26         | COAL         |
| 3722         | GY 382           | BOWLING CTR                   | SP            | 26568          |                      | 1,435              | 5,342            | .26         | COAL         |
| 3723         | GY 382           | MOTOR REP SHOP                | SP            | 9230           | 31                   | 1,974              | 7,796            | .25         | COAL         |
| 3724         | GY 382           | MOTOR REP SHOP                | SP            | 7708           |                      | 1,791              | 7,075            | . 25        | COAL         |
| 3732<br>3736 | GY 382<br>GY 382 | VET FAC                       | SP            | 9513           | 32                   | 2,086              | 6,786            | .30         | COAL         |
| 3737         | GY 382           | FIRE STATION<br>FE MNT SHOP   | SP<br>SP      | 4793<br>6596   | 28                   | 1,823              | 6,786            | .26         | COAL         |
| 3738         | GY 382           | MEDICAL LAB                   | SP            | 25961          | 50<br>61             | 3,217<br>3,862     | 12,706           | .25         | COAL         |
| 3740         | GY 382           | GEN PURP WHSE                 | SP            | 29328          |                      | 6,972              | 12,561<br>27,866 | .30<br>.25  | COAL<br>COAL |
| 3741         | GY 382           | P O MAIN                      | SP            | 3556           | 26                   | 1,668              | 6,208            | .26         | COAL         |
| 3753         | GY 382           | BOQ MIL MALE                  | SP            | 12277          | 80                   | 5,101              | 15,160           | .33         | COAL         |
| 3754         | GY 382           | BOQ MIL FEMALE                | SP            | 35063          | 221                  | 14,042             | 41,728           | .33         | COAL         |
| 3755         | GY 382           | BOQ MIL MALE                  | SP            | 12277          | 80                   | 5,101              | 15,160           | .33         | COAL         |
| 3756         | GY 382           | BOQ MIL FEMALE                | SP            | 35063          | 221                  | 14,042             | 41,728           | .33         | COAL         |
| 3757<br>3758 | GY 382<br>GY 382 | HOSPITAL<br>HOSPITAL          | SP            | 26518          |                      | 17,005             | 55,300           | .30         | COAL         |
| 3760         | GY 382           | OPS GEN PURP                  | SP<br>SP      | 15198<br>15619 | 153<br>168           | 9,723              | 31,621           | .30         | COAL         |
| 3764         | GY 382           | HOSP CLINIC                   | SP            | 18000          |                      | 10,641<br>9,723    | 31,621<br>31,621 | .33<br>.30  | COAL<br>COAL |
| 3766         | GY 382           | CLINIC / ADM                  | SP            | 35102          | 130                  | 8,270              | 31,765           | .26         | COAL         |
| 3767         | GY 382           | HOSP CLINIC                   | SP            | 32693          | 268                  | 17,005             | 55,300           | .30         | COAL         |
| 3770         | GY 382           | HOSPITAL                      | SP            | 15199          | 153                  | 9,723              | 31,621           | .30         | COAL         |
| 3771         | GY 382           | MNT / CLINIC                  | SP            | 14420          | 134                  | 8,497              | 31,621           | .26         | COAL         |
| 3772         | GY 382           | HOSPITAL                      | SP            | 26518          | 267                  | 16,960             | 55,156           | .30         | COAL         |
| 3774<br>3776 | GY 382           | EXCH CAFE/OPS                 | SP            | 15523          | 89                   | 5,674              | 20,214           | .28         | COAL         |
| 3776<br>3780 | GY 382<br>GY 382 | LIBRARY                       | SP            | 4719           | 49<br>105            | 3,104              | 11,551           | .26         | COAL         |
| 3792         | GY 382           | OPN MESS OFF<br>MED ADM BLDG  | SP<br>SP      | 11423<br>12632 | 105<br>52            | 6,646<br>3,345     | 23,679           | .28         | COAL         |
| 3794         | GY 382           | OPN MESS NCO                  | SP            | 9571           | 52<br>50             | 3,345<br>6,009     | 12,850<br>11,406 | .26<br>.52  | COAL<br>NO 2 |
| 3800         | GY 382           | MOTOR REP SHOP                | SP            | 5770           | 67                   | 4,241              | 16,749           | .25         | COAL         |
|              |                  |                               | _             | 3              |                      | .,                 | ,,,,             |             | OUNL         |

Table 3-9. Savings Weatherization Glass, Kaiserslautern (continued)

| BLDG         | KASERNE          | FUNCTION                       | GLASS<br>TYPE | GLASS<br>SQFT  | SAVINGS<br>MBTU/YEAR | SAVINGS<br>\$/YEAR | COST<br>\$       | SIR        | FUEL         |
|--------------|------------------|--------------------------------|---------------|----------------|----------------------|--------------------|------------------|------------|--------------|
| 3809         | GY 382           | LAB/ADM/EM BK                  | SP            | 72966          | 193                  | 12,244             | 36,385           | .33        | COAL         |
| 3810         | GY 382           | SCHOOL/ADM/LAB                 | SP            | 51821          | 232                  | 14,743             | 61,220           | .24        | COAL         |
| 3812         | GY 382           | CHILD CARE CTR                 | SP            | 9114           | 38                   | 2,444              | 9,096            | .26        | COAL         |
| 3813         | GY 382           | EM BK W/O MS                   | SP            | 13324          |                      | 6,365              | 18,914           | .33        | COAL         |
| 3815         | GY 382           | EM BK W/O MS                   | SP            | 13324          |                      | 6,365              | 18,914           | .33        | COAL         |
| 3817         | GY 382           | EXCH WHSE                      | SP            | 4868           |                      | 361                | 1,443            | .25        | COAL         |
| 3818         | GY 382           | BN HQ BLDG                     | SP            | 9095           | 42                   | 2,706              | 10,395           | .26        | COAL         |
| 3819         | GY 382           | BLDGS MNT STHS                 | SP            | 9095           | 55                   | 3,498              | 10,395           | .33        | COAL         |
| 3007         | GY 455           | MOTOR REP SHOP                 | SP            | 11559          | 45                   | 2,852              | 11,262           | .25        | COAL         |
| 3008         | GY 455           | MOTOR REP SHOP                 | SP            | 11559          | 52                   | 3,327              | 13,139           | .25        | COAL         |
| 3010         | GY 455           | MOTOR REP SHOP                 | SP            | 7008           | 43                   | 2,778              | 10,973           | .25        | COAL         |
| 3011         | GY 455           | MOTOR REP SHOP                 | SP            | 7008           | 52                   | 3,327              | 13,139           | .25        | COAL         |
| 3012         | GY 455           | MOTOR REP SHOP                 | SP            | 7008           | 64                   | 4,058              | 16,027           | .25        | COAL         |
| 3013         | GY 455           | MOTOR REP SHOP                 | SP            | 11896          | 75                   | 4,789              | 18,914           | .25        | COAL         |
| 3014         | GY 455           | MRS & RESTRNT                  | SP            | 26516          | 183                  | 11,591             | 41,295           | .28        | COAL         |
| 3016         | GY 455           | VEH PAINT SHOP                 | SP            | 13543          | 18                   | 1,170              | 4,620            | .25        | COAL         |
| 3020<br>3021 | GY 455<br>GY 455 | MOTOR REP SHOP                 | SP<br>SP      | 7936<br>15650  |                      | 1,682              | 6,641            | .25        | COAL<br>NO 2 |
| 3030         | GY 455           | MOTOR REP SHOP MOTOR REP SHOP  | SP            | 10199          |                      | 3,637              | 7,652            | .47<br>.25 | COAL         |
| 3040         | GY 455           | MTL & WDWK SH                  | SP            | 30311          | 149                  | 3,656<br>15,111    | 14,438<br>37,252 | .40        | NO 6         |
| 3041         | GY 455           | MOTOR REP SHOP                 | SP            | 36102          | 148                  | 15,053             | 37,107           | .40        | NO 6         |
| 3042         | GY 455           | MOTOR REP SHOP                 | SP            | 11445          |                      | 4,100              | 10,107           | .40        | NO 6         |
| 3043         | GY 455           | MOTOR REP SHOP                 | SP            | 10438          |                      | 11,070             | 27,289           | .40        | NO 6         |
| 3050         | GY 455           | MOTOR REP SHOP                 | ŠP            | 7758           |                      | 6,735              | 16,604           | .40        | NO 6         |
| 3051         | GY 455           | MOTOR REP SHOP                 | SP            | 7762           | 66                   | 6,735              | 16,604           | .40        | NO 6         |
| 3053         | GY 455           | ORD ADM BLDG                   | SP            | 5146           |                      | 3,011              | 7,219            | . 41       | NO 6         |
| 3055         | GY 455           | GEN PURP WHSE                  | SP            | 29996          | 120                  | 12,267             | 30,610           | .40        | NO 6         |
| 3056         | GY 455           | GEN PURP WHSE                  | SP            | 29996          | 120                  | 12,267             | 30,610           | .40        | NO 6         |
| 3057         | GY 455           | ELEC MNT SHOP                  | SP            | 19375          |                      | 4,510              | 11,117           | .40        | NO 6         |
| 3058         | GY 455           | PO BRANCH                      | SP            | 17988          |                      | 3,480              | 8,085            | . 43       | NO 6         |
| 3083         | GY 455           | RECR BLDG                      | SP            | 6737           |                      | 6,044              | 11,984           | .50        | NO 2         |
| 3091         | GY 455           | GEN MNT SHOP                   | SP            | 2166           |                      | 892                | 1,877            | .47        | NO 2         |
| 3401         | GY 490           | QM REPAIR SHOP                 | SP            | 35467          |                      | 25,245             | 62,231           | .40        | NO 6         |
| 3402         | GY 490           | GEN PURP WHSE                  | SP            | 18502          | 11                   | 1,157              | 2,887            | .40        | NO 6         |
| 3403<br>3406 | GY 490<br>GY 490 | FIXED LAUNDRY<br>GEN PURP WHSE | SP<br>SP      | 40631<br>61637 | 343<br>170           | 34,869<br>17,302   | 81,001<br>43,172 | .43        | NO 6         |
| 3413         | GY 490           | SUP SVC ADM                    | SP            | 16320          |                      | 8,819              | 18,048           | .40<br>.48 | NO 6<br>NO 2 |
| 3416         | GY 490           | GEN PURP WHSE                  | SP            | 12163          |                      | 6,237              | 13,283           | .46        | NO 2         |
| 3424         | GY 490           | QM REPAIR SHOP                 | SP            | 4425           |                      | 585                | 1,443            | .40        | NO 6         |
| 110          | GY 542           | POST RESTAURNT                 | SP            | 3850           |                      | 1,901              | 3,609            | .52        | NO 2         |
| 150          | GY 542           | GEN PURP WHSE                  | SP            | 41667          |                      | 17,220             | 36,674           | .46        | NO 2         |
| 162          | GY 542           | EM BK / BN HQ                  | SP            | 41949          |                      | 48,149             | 76,237           | .63        | NO 2         |
| 163          | GY 542           | ENL PERS MESS                  | SP            | 9296           |                      | 4,868              | 9,240            | .52        | NO 2         |
| 164          | GY 542           | ADM BLDG (A F)                 | SP            | 41949          |                      | 34,077             | 69,739           | .48        | NO 2         |
| 175          | GY 542           | MOTOR REP SHOP                 | SP            | 10280          |                      | 4,392              | 9,240            | .47        | NO 2         |
| 176          | GY 542           | EXCH CAFE                      | SP            | 2384           |                      | 2,137              | 6,353            | .33        | COAL         |
| 179          | GY 542           | GP HQ BLDG                     | SP            | 21256          |                      | 13,264             | 27,145           | .48        | NO 2         |
| 270          | GY 542           | OPS GEN PURP                   | SP            | 5380           |                      | 2,088              | 4,620            | . 45       | NO 2         |
| 273          | GY 542           | EM BK W/O MS                   | SP            | 6193           |                      | 2,963              | 8,807            | .33        | COAL         |
| 274          | GY 542           | EM BK W/O MS                   | SP            | 6193           |                      | 2,963              | 8,807            | .33        | COAL         |
| 275          | GY 542           | EMM BK W/O MS                  | SP            | 6193           |                      | 2,963              | 8,807            | .33        | COAL         |
| 276          | GY 542           | CO HQ BLDG                     | SP            | 4659           | 27                   | 1,766              | 6,786            | .26        | COAL         |

Table 3-9. Savings Weatherization Glass, Kaiserslautern (continued)

| • | BLDG         | KASERNE          | FUNCTION                         | GLASS<br>TYPE | GLASS<br>SQFT  | SAVINGS<br>MBTU/YEAR | SAVINGS<br>\$/YEAR | COST<br>\$       | SIR        | FUEL         |
|---|--------------|------------------|----------------------------------|---------------|----------------|----------------------|--------------------|------------------|------------|--------------|
|   | 277          | GY 542           | CO HQ BLDG                       | SP            | 4659           | 27                   | 1,766              | 6,786            | .26        | COAL         |
|   | 278          | GY 542           | EM BK W/O MS                     | SP            | 6193           | 46                   | 2,963              | 8,807            | .33        | COAL         |
|   | 279          | GY 542           | EM BK W/O MS                     | SP            | 6193           | 46                   | 2,963              | 8,807            | .33        | COAL         |
|   | 280          | GY 542           | E BK W/O MS                      | SP            | 6193           | 46                   | 2,963              | 8,807            | .33        | COAL         |
|   | 281          | GY 542           | CO HQ BLDG                       | SP            | 4659           | 27                   | 1,766              | 6,786            | .26        | COAL         |
|   | 282          | GY 542           | EM BK W/O MS                     | SP            | 6193           | 46                   | 2,963              | 8,807            | .33        | COAL         |
|   | 283<br>284   | GY 542<br>GY 542 | EM BK W/O MS                     | SP            | 6193           | 46                   | 2,963              | 8,807            | .33        | COAL         |
|   | 285          | GY 542           | EM BK W/O MS<br>GEN INST BLDG    | SP<br>SP      | 6193<br>3400   | 46<br>39             | 2,963              | 8,807            | .33        | COAL         |
|   | 286          | GY 542           | ADM GEN PURP                     | SP            | 3400           | 39<br>42             | 2,468<br>2,669     | 10,251<br>10,251 | .24<br>.26 | COAL         |
|   | 288          | GY 542           | ADM GEN PURP                     | SP            | 3035           | 19                   | 1,202              | 4,620            | .26        | COAL<br>COAL |
|   | 289          | GY 542           | EM BK W/O MS                     | SP            | 6505           | 59                   | 3,741              | 11,117           | .33        | COAL         |
|   | 290          | GY 542           | MNT SHOP                         | SP            | 2110           | 13                   | 840                | 3,320            | .25        | COAL         |
|   | 291          | GY 542           | GEN STOREHOUSE                   | SP            | 5800           | 53                   | 6,372              | 13,572           | .46        | NO 2         |
|   | 292          | GY 542           | CO HQ BLDG                       | SP            | 3943           | 20                   | 1,278              | 4,909            | .26        | COAL         |
|   | 310          | GY 542           | MOTOR REP SHOP                   | SP            | 4323           | 13                   | 1,647              | 3,465            | .47        | NO 2         |
|   | 337          | GY 542           | ADM GEN PURP                     | SP            | 3875           | 4                    | 564                | 1,155            | .48        | NO 2         |
|   | 344          | GY 542<br>GY 542 | GEN STOREHOUSE                   | SP            | 3875           | 1                    | 67                 | 144              | .46        | NO 2         |
|   | 347<br>369   | GY 542           | SM ARMS REP SH<br>MOTOR REP SHOP | SP<br>SP      | 4197<br>3400   | 1                    | 137                | 288              | .47        | NO 2         |
|   | 370          | GY 542           | MOTOR REP SHOP                   | SP            | 3400           | 11<br>11             | 1,372<br>1,372     | 2,887            | .47        | NO 2<br>NO 2 |
|   | 371          | GY 542           | MOTOR REP SHOP                   | SP            | 3400           | 11                   | 1,372              | 2,887<br>2,887   | .47<br>.47 | NO 2<br>NO 2 |
|   | 372          | GY 542           | MTL & WDWK SH                    | SP            | 3400           | . 11                 | 1,372              | 2,887            | .47        | NO 2         |
|   | 394          | GY 542           | MOTOR REP SHOP                   | SP            | 10543          | 9                    | 1,097              | 2,310            | .47        | NO 2         |
|   | 395          | GY 542           | MOTOR REP SHOP                   | SP            | 10543          | 9                    | 1,097              | 2,310            | . 47       | NO 2         |
|   | 611          | GY 542           | MSL ASY & TEST                   | SP            | 21736          | 2                    | 274                | 577              | .47        | NO 2         |
|   | 622          | GY 542           | MOTOR REP SHOP                   | SP            | 3228           | 15                   | 1,784              | 3,754            | . 47       | NO 2         |
|   | 630          | GY 542           | AMMO RENV SHOP                   | SP            | 13803          | 56                   | 6,721              | 14,872           | .45        | NO 2         |
|   | 637<br>646   | GY 542<br>GY 542 | WTNG SHELTER                     | SP            | 5046           | 20                   | 2,479              | 5,486            | .45        | NO 2         |
|   | 695          | GY 542           | MOTOR REP SHOP CHEMISTRY LAB     | SP<br>SP      | 4332<br>4595   | 19<br>57             | 1,243              | 4,909            | .25        | COAL         |
|   | 701          | GY 542           | AMMO RENV SHOP                   | SP            | 3388           | 7                    | 6,845<br>892       | 13,572<br>1,877  | .50<br>.47 | NO 2<br>NO 2 |
|   | 3000         | GY 565           | WAREHOUSE                        | SP            | 11340          | 73                   | 4,623              | 18,481           | .25        | COAL         |
|   | 3006         | GY 565           | MOTOR REPAIR                     | SP            | 4965           | 32                   | 2,084              | 8,230            | .25        | COAL         |
|   | 3009         | GY 565           | MOTOR REPAIR                     | SP            | 3872           | 32                   | 2,084              | 8,230            | .25        | COAL         |
|   | 3019         | GY 565           | ADM GEN PURP                     | SP            | 2815           | 29                   | 1,879              | 7,219            | .26        | COAL         |
|   | 3029         | GY 565           | QM REPAIR SHOP                   | SP            | 30041          | 106                  | 12,627             | 26,567           | .47        | NO 2         |
|   | 3100         | GY 680           | EM BK W/O MS                     | SP            | 57645          | 267                  | 31,826             | 50,391           | .63        | NO 2         |
|   | 3101<br>3102 | GY 680<br>GY 680 | ADM & SUP / BK                   | SP            | 55014          | 244                  | 29,090             | 46,059           | .63        | NO 2         |
|   | 3102         | GY 680           | EM BK W/O MS<br>EM BK W/O MS     | SP<br>SP      | 55014<br>55014 | 244<br>244           | 29,090<br>29,090   | 46,059           | .63        | NO 2         |
|   | 3106         | GY 680           | ENL PERS MESS                    | SP            | 27550          | 99                   | 11,866             | 46,059<br>22,524 | .63<br>.52 | NO 2<br>NO 2 |
|   | 3107         | GY 680           | ADM GEN PURP                     | SP            | 27550          | 92                   | 11,006             | 22,524           | .48        | NO 2         |
|   | 3113         | GY 680           | FE FAC                           | SP            | 5061           | 15                   | 1,834              | 3,754            | .48        | NO 2         |
|   | 3114         | GY 680           | MOTOR REP SHOP                   | SP            | 10659          | 136                  | 13,881             | 34,220           | .40        | NO 6         |
|   | 3115         | GY 680           | SKILL DEV GEN                    | SP            | 3170           | 12                   | 1,288              | 3,176            | .40        | NO 6         |
|   | 3116         | GY 680           | MOTOR REP SHOP                   | SP            | 10842          | 136                  | 13,881             | 34,220           | .40        | NO 6         |
|   | 3117         | GY 680           | MOTOR REP SHOP                   | SP            | 13695          | 91<br>53             | 9,313              | 22,957           | .40        | NO 6         |
|   | 3150<br>2850 | GY 741<br>GY 744 | POST CHAPEL<br>GEN PURP WHSE     | SP<br>SP      | 12665<br>2135  | 53<br>2              | 6,408              | 12,706           | .50        | NO 2         |
|   | 2855         | GY 744           | MOTOR REP SHOP                   | SP            | 2618           | 10                   | 271<br>1,235       | 577<br>2,598     | .46<br>.47 | NO 2<br>NO 2 |
| • | 2859         | GY 744           | MOTOR REP SHOP                   | SP            | 11111          | 60                   | 3,839              | 15,160           | .25        | COAL         |
|   |              | J                | TOTOR THE OHOT                   | ٥.            |                | 00                   | 3,037              | 10,100           |            | COVE         |

Table 3-9. Savings Weatherization Glass, Kaiserslautern (continued)

| BLDG         | KASERNE          | FUNCTION                   | GLASS<br>TYPE | GLASS<br>SQFT | SAVINGS<br>MBTU/YEAR | SAVINGS<br>\$/YEAR | COST<br>\$     | SIR        | FUEL         |
|--------------|------------------|----------------------------|---------------|---------------|----------------------|--------------------|----------------|------------|--------------|
| 2862         | GY 744           | CO HQ BLDG                 | ======<br>SP  | 3943          | <br>16               | 1,052              | 4,042          | .26        | COAL         |
| 2864         | GY 744           | POST RESTAURNT             | SP            | 3943          | 17                   | 1,134              | 4,042          | .28        | COAL         |
| 2866         | GY 744           | CO HQ BLDG                 | SP            | 3943          | 16                   | 1,052              | 4,042          | .26        | COAL         |
| 2867         | GY 744           | EM BK W/O MS               | SP            | 10585         | 21                   | 1,360              | 4,042          | .33        | COAL         |
| 2869         | GY 744           | MORGUE                     | SP            | 6926          | 55                   | 6,582              | 11,406         | .57        | NO 2         |
| 2872         | GY 744           | GEN PURP WHSE              | SP            | 3622          | 30                   | 3,066              | 7,652          | .40        | NO 6         |
| 2874         | GY 744           | EM BK W/O MS               | SP            | 18489         |                      | 14,321             | 26,567         | .53        | NO 6         |
| 2876         | GY 744           | CO HQ BLDG                 | SP            | 4659          | 24                   | 2,529              | 6,064          | .41        | NO 6         |
| 2877         | GY 744           | GEN STOREHOUSE             | SP            | 3403          | 37                   | 3,819              | 9,529          | .40        | NO 6         |
| 2879         | GY 744           | EM BK W/O MS               | SP            | 18468         | 141                  | 14,321             | 26,567         | .53        | NO 6         |
| 2880         | GY 744           | CO HQ BLDG                 | SP            | 4659          | 24                   | 2,529              | 6,064          | . 41       | NO 6         |
| 2882         | GY 744           | RECR BLDG                  | SP            | 3403          | 41                   | 4,226              | 9,818          | . 43       | NO 6         |
| 2885         | GY 744           | UNIT CHAPEL                | SP            | 2580          | 11                   | 737                | 2,743          | .26        | COAL         |
| 2886         | GY 744           | EM BK W/O MS               | SP            | 18468         | 141                  | 14,321             | 26,567         | .53        | NO 6         |
| 2887         | GY 744           | CO HQ BLDG                 | SP            | 4781          | 20                   | 2,107              | 5,053          | .41        | NO 6         |
| 2890         | GY 744           | EM BK W/O MS               | SP            | 18468         | 141                  | 14,321             | 26,567         | .53        | NO 6         |
| 2891         | GY 744           | CO HQ BLDG                 | SP            | 4659          |                      | 1,866              | 4,476          | .41        | NO 6         |
| 2895         | GY 744           | ENL PER MESS               | SP            | 18400         | 90                   | 9,154              | 20,358         | .44        | NO 6         |
| 2897         | GY 744           | ADM GEN PURP               | SP            | 6723          |                      | 5,997              | 12,273         | .48        | NO 2         |
| 2898         | GY 744           | VET FAC                    | SP            | 2127          |                      | 1,707              | 3,465          | . 49       | NO 6         |
| 2899         | GY 744           | SP SVC OFF                 | SP            | 2867          | 27                   | 2,796              | 6,497          | . 43       | NO 6         |
| 2901         | GY 744           | THRIFT SHOP                | SP            | 2127          | 14                   | 1,491              | 3,465          | . 43       | NO 6         |
| 2902         | GY 744           | MOTOR REP SHOP             | SP            | 4929          |                      | 2,811              | 6,930          | .40        | NO 6         |
| 2909         | GY 744           | GEN STOREHOUSE             | SP            | 2180          | 9                    | 925                | 2,310          | .40        | NO 6         |
| 2910         | GY 744           | GEN STOREHOUSE             | SP            | 2180          | 8                    | 867                | 2,165          | .40        | NO 6         |
| 2911<br>2912 | GY 744           | GEN STOREHOUSE             | SP            | 2180          | 8                    | 867                | 2,165          | .40        | NO 6         |
| 2912         | GY 744<br>GY 744 | GEN STOREHOUSE             | SP<br>SP      | 2180          | 8                    | 867<br>1 445       | 2,165          | .40        | NO 6         |
| 2915         | GY 744           | CO HQ BLDG                 | SP            | 2127<br>2127  | 14                   | 1,445              | 3,465          | .41        | NO 6         |
| 2917         | GY 744           | CO HQ BLDG<br>DISP W/ BEDS | SP            | 6588          | 14<br>38             | 1,445              | 3,465          | .41        | NO 6         |
| 2918         | GY 744           | BOQ MIL MALE               | SP            | 6588          |                      | 3,911<br>4,281     | 7,941<br>7,941 | .49<br>.53 | NO 6<br>NO 6 |
| 2919         | GY 744           | BOQ MIL MALE               | SP            | 6588          |                      | 4,281              | 7,941          | .53        | NO 6         |
| 2921         | GY 744           | BOQ MIL MALE               | SP            | 6588          |                      | 4,436              | 8,230          | .53        | NO 6         |
| 2922         | GY 744           | BOQ MIL MALE               | SP            | 6588          |                      | 3,502              | 6,497          | .53        | NO 6         |
| 2923         | GY 744           | CO HQ BLDG                 | SP            | 4659          |                      | 1,987              | 4,764          | .41        | NO 6         |
| 2925         | GY 744           | EM BK W/O MS               | SP            | 18468         | 141                  | 14,321             | 26,567         | .53        | NO 6         |
| 2926         | GY 744           | CO HQ BLDG                 | SP            | 4659          |                      | 1,466              | 5,631          | .26        | COAL         |
| 2928         | GY 744           | EM BK W/O MS               | SP            | 18468         |                      | 14,321             | 26,567         | .53        | NO 6         |
| 2929         | GY 744           | CO HQ BLDG                 | SP            | 4659          |                      | 2,529              | 6,064          | . 41       | NO 6         |
| 2930         | GY 744           | EM BK W/O MS               | SP            | 18468         |                      | 14,321             | 26,567         | .53        | NO 6         |
| 2932         | GY 744           | GEN INST BLDG              | SP            | 4659          |                      | 2,529              | 6,064          | .41        | NO 6         |
| 2933         | GY 744           | ADM GEN PURP               | SP            | 12326         | 67                   | 6,864              | 16,460         | .41        | NO 6         |
| 2934         | GY 744           | ADM (BANK)                 | SP            | 4659          | 24                   | 2,529              | 6,064          | .41        | NO 6         |
| 2935         | GY 744           | XMTR BLDG/ADM              | SP            | 12326         | 67                   | 6,864              | 16,460         | . 41       | NO 6         |
| 2942         | GY 744           | MOTOR REP SHOP             | SP            | 4231          | 15                   | 1,852              | 3,898          | .47        | NO 2         |
| TOTAL        | ANNUAL HEA       | T SAVINGS                  | ,             |               |                      |                    |                |            | 28,719       |
|              | DOLLAR SAV       |                            |               |               |                      |                    |                | 2.5        | 55,908       |
| TOTAL        |                  |                            |               |               |                      |                    |                |            | 46,571       |
| TOTAL        |                  |                            |               |               |                      |                    |                |            | 00,545       |
| TOTAL        | SQFT GLASS       | i                          |               |               |                      |                    |                | 4          | 87,858       |

Table 3-10. Savings Weatherization Walls, Kaiserslautern

| BLDG                         | KASERNE                          | FUNCTION                                                 | WALL<br>TYPE                | SQFT<br>BLDG                       | SAVINGS<br>MBTU     | SAVINGS<br>US\$             | COST<br>US\$                 | SIR                          | FUEL<br>TYPE                 | SQFT<br>WALL                         |
|------------------------------|----------------------------------|----------------------------------------------------------|-----------------------------|------------------------------------|---------------------|-----------------------------|------------------------------|------------------------------|------------------------------|--------------------------------------|
| 2618<br>2619<br>2200         | GY072<br>GY072<br>GY298          | OPS GEN PUR<br>READY BLDG<br>HQ ADM BLDG                 | CMU4<br>CMU5<br>WD1         | 1,622<br>2,289<br>37,486           | 138<br>65           | 16,451<br>7,774             | 24,867<br>10,395             | .66<br>.74<br>0.00           | NO 2<br>NO 2<br>NO 6         | 6,486<br>2,711<br>40,091             |
| 2202<br>2219<br>2225         | GY298<br>GY298<br>GY298          | ADM GEN PUR<br>GEN PURP WH<br>CML FLD MT                 | WD1<br>CMU4<br>CMU4         | 3,538<br>32,262<br>10,770          | 461<br>248          | 46,825<br>25,214            | 79,826<br>42,467             | 0.00<br>.58<br>.59           | NO 6<br>NO 6<br>NO 6         | 4,745<br>20,820                      |
| 2226<br>2233A                | GY298<br>GY298<br>GY298          | CARE & PRES<br>ENG FLD MNT<br>ENG FLD MNT                | CMU4<br>CMU4<br>CMU4        | 13,540<br>99,785<br>60,818         | 295<br>1,734<br>861 | 29,936<br>175,917<br>87,370 | 50,420<br>296,285<br>147,152 | .59<br>.59                   | NO 6<br>NO 6<br>NO 6         | 11,076<br>13,150<br>77,278           |
| 2238<br>2239<br>2246         | GY298<br>GY298<br>GY298          | GEN PURP WH<br>GEN PURP WH<br>OPS GEN PUR                | CMU4<br>CMU4<br>MET2        | 19,569<br>29,322<br>4,165          | 280<br>373<br>67    | 28,438<br>44,375<br>7,996   | 48,481<br>64,570<br>9,804    | .58<br>.68                   | NO 6<br>NO 2<br>NO 2         | 38,380<br>12,645<br>16,841<br>4,192  |
| 2257<br>2258<br>2260         | GY298<br>GY298<br>GY298          | GEN PURP WH<br>GEN PURP WH<br>GEN PURP WH                | MET2<br>CMU4<br>CMU4        | 10,137<br>29,322<br>29,322         | 122<br>373<br>373   | 12,443<br>37,876<br>44,375  | 18,601<br>64,570<br>64,570   | .66<br>.58                   | NO 6<br>NO 6<br>NO 2         | 7,953<br>16,841<br>16,841            |
| 2264<br>2270<br>2276         | GY298<br>GY298<br>GY298          | GEN PURP WH<br>POST RESTAU<br>ADM GEN PUR                | CMU3<br>WD1<br>WD1          | 39,259<br>3,442<br>8,094           | 619                 | 62,780                      | 94,677                       | .66<br>0.00<br>0.00          | NO 6<br>NO 6<br>NO 6         | 24,694<br>3,402<br>4,680             |
| 2277<br>2279<br>2280         | GY298<br>GY298<br>GY298          | MNT SH WHSE<br>ADM GEN PUR<br>GEN PURP WH                | MET2<br>WD1<br>CMU6         | 10,070<br>6,633<br>11,538          | 115                 | 11,666                      | 17,439                       | .66<br>0.00<br>0.00          | NO 6<br>NO 6<br>NO 6         | 7,456<br>4,047<br>8,769              |
| 2281<br>2288<br>2292         | GY298<br>GY298<br>GY298          | GEN PURP WH<br>CARE &PRES<br>EAM BLDG                    | MAS2<br>MAS2<br>MAS1        | 72,226<br>21,736<br>12,105         | 416<br>207<br>169   | 42,280<br>20,994<br>17,227  | 60,096<br>29,480<br>28,458   | .70<br>.71<br>.60            | NO 6<br>NO 6<br>NO 6         | 30,885<br>15,151<br>6,778            |
| 2293<br>2303<br>2306<br>2324 | GY298<br>GY298<br>GY298<br>GY298 | ADM GEN PUR CARE & PRES CARE & PRES                      | CONC2<br>MET2<br>MET2       | 10,170<br>5,525<br>10,147          | 254<br>87<br>111    | 25,825<br>10,380<br>13,219  | 29,597<br>12,330<br>15,702   | .87<br>.84<br>.84            | NO 6<br>NO 2<br>NO 2         | 7,049<br>5,272<br>6,714              |
| 2328<br>2329<br>2346         | GY298<br>GY298<br>GY298          | GEN PURP WH<br>GEN PURP WH<br>CARE & PRES<br>SALV & SURV | CMU4<br>MET2<br>MET2<br>WD1 | 29,322<br>7,924<br>11,703<br>3,200 | 373<br>106<br>88    | 44,375<br>12,622<br>10,474  | 64,570<br>16,105<br>13,203   | .68<br>.78<br>.79            | NO 2<br>NO 2<br>NO 2         | 16,841<br>6,886<br>5,645             |
| 2363<br>2370                 | GY298<br>GY298<br>GY298          | CARE & PRES<br>GEN PURP WH<br>GEN PURP WH                | MET4<br>MET5<br>MET5        | 12,366<br>76,064<br>59,333         |                     |                             |                              | 0.00<br>0.00<br>0.00<br>0.00 | NO 2<br>COAL<br>NO 2<br>NO 6 | 5,070<br>9,735<br>19,583             |
| 2371B<br>2372A               | GY298<br>GY298<br>GY298          | GEN PURP WH<br>GEN PURP WH<br>GEN PURP WH                | MET5<br>MET2<br>MET2        | 59,333<br>56,946<br>56,946         | 370<br>370          | 37,573<br>37,573            | 56,167<br>56,167             | 0.00<br>0.66                 | NO 6<br>NO 6<br>NO 6         | 15,789<br>15,789<br>24,016<br>24,016 |
| 2374<br>2384<br>2385         | GY298<br>GY298<br>GY298          | ADM GEN PUR<br>ADM GEN PUR<br>GEN PURP WH                | CONC3<br>WD1<br>MET2        | 5,058<br>5,058<br>21,344           | 62<br>204           | 6,324<br>24,353             | 12,541<br>31,073             | .50<br>0.00<br>.78           | NO 6<br>NO 2<br>NO 2         | 3,271<br>5,448<br>13,286             |
| 2388<br>2389<br>2393         | GY298<br>GY298<br>GY298          | GEN PURP WH<br>GEN PURP WH<br>MOTOR REP S                | MET2<br>MAS3<br>CMU3        | 9,963<br>10,557<br>32,224          | 106<br>168<br>444   | 12,707<br>17,044<br>45,077  | 16,213<br>37,128<br>67,161   | .78<br>.45<br>.67            | NO 2<br>NO 6<br>NO 6         | 6,932<br>9,684<br>17,517             |
| 2394<br>2408<br>2409         | GY298<br>GY298<br>GY298          | MOTOR REP S<br>EM BK W/O M<br>ADM GEN PUR                | MAS3<br>WD1<br>WD1          | 6,017<br>7,227<br>2,393            | 104                 | 10,598                      | 22,809                       | .46<br>0.00<br>0.00          | NO 6<br>NO 6<br>NO 6         | 5,949<br>6,567<br>2,591              |
| 2410<br>2411<br>2412<br>2414 | GY298<br>GY298<br>GY298<br>GY298 | GEN INST BL<br>EM BK W/O M<br>EM BK W/O M<br>SUP SVC ADM | WD1<br>WD1<br>WD1<br>WD1    | 3,006<br>7,227<br>7,227<br>2,393   |                     |                             |                              | 0.00                         | NO 6<br>NO 6                 | 3,163<br>6,567<br>6,567              |
| 2418<br>2419                 | GY298<br>GY298                   | ADM GEN PUR<br>SUP SVC ADM                               | WD1<br>WD1                  | 2,393<br>2,672                     |                     |                             |                              | 0.00<br>0.00<br>0.00         | NO 6<br>NO 6<br>NO 6         | 2,591<br>2,591<br>2,832              |

Table 3-10. Savings Weatherization Walls, Kaiserslautern (continued)

|       |         |                                         |        |         | •       |         | •       |       | •    |        |
|-------|---------|-----------------------------------------|--------|---------|---------|---------|---------|-------|------|--------|
|       |         |                                         | WALL   | SQFT    | SAVINGS | SAVINGS | COST    |       | FUEL | SQFT   |
| BLDG  | KASERNE | FUNCTION                                | TYPE   | BLDG    | MBTU    | US\$    | US\$    | SIR   | TYPE | WALL   |
| ===== | ======= | ======================================= | ====== |         |         |         | ======= | ===== |      |        |
| 2420  | GY298   | ADM & EM BK                             | WD1    | 7,227   |         |         |         | 0.00  | NO 6 | 6,567  |
| 2421  | GY298   | EM BK W/O M                             | WD1    | 7,227   |         |         |         | 0.00  | NO 6 | 6,567  |
| 2422  | GY298   | ENL PERS ME                             | WD1    | 10,363  |         |         |         | 0.00  | NO 6 | 4,850  |
| 2423  | GY298   | EM BK W/O M                             | WD1    | 7,227   |         |         |         | 0.00  | NO 6 | 6,567  |
| 2425  | GY298   | FE MNT SHOP                             | MET2   | 10,202  | 110     | 11,164  | 16,488  | .67   | NO 6 | 7,049  |
| 2426  | GY298   | DISP W/O BE                             | WD1    | 2,281   |         |         |         | 0.00  | NO 6 | 2,500  |
| 2427  | GY298   | POST RESTAU                             | WD1    | 2,395   |         |         |         | 0.00  | NO 6 | 2,410  |
| 2433  | GY298   | AR DEL EQP                              | CMU3   | 28,589  | 470     | 47,680  | 71,039  | .67   | NO 6 | 18,528 |
| 3183  | GY374   | BAND TNG FA                             | MAS1   | 6,989   | 122     | 14,602  | 20,589  | .70   | NO 2 | 4,904  |
| 3188  | GY374   | THEAT W/ ST                             | MAS2   | 15,953  | 216     | 25,741  | 29,074  | . 88  | NO 2 | 14,942 |
| 3200  | GY380   | EM BK W/O M                             | MAS4   | 121,124 | 754     | 47,767  | 113,202 | . 42  | COAL | 58,179 |
| 3201  | GY380   | DISP W/O BE                             | MAS4   | 19,317  | 90      | 5,755   | 14,927  | .38   | COAL | 7,671  |
| 3203  | GY380   | ADM GEN PUR                             | MAS4   | 36,753  | 114     | 7,217   | 22,108  | .32   | COAL | 11,362 |
| 3205  | GY380   | ADM & LIBRA                             | MAS4   | 18,942  | 75      | 4,750   | 14,550  | .32   | COAL | 7,478  |
| 3206  | GY380   | ENL PERS ME                             | MAS1   | 22,264  | 235     | 14,922  | 33,879  | .44   | COAL | 8,070  |
| 3208  | GY380   | FIN ADM BLD                             | MAS4   | 45,059  | 247     | 15,638  | 47,902  | .32   | COAL | 24,618 |
| 3209  | GY380   | EM BK W/O M                             | MAS4   | 67,099  | 333     | 21,087  | 49,975  | . 42  | COAL | 25,684 |
| 3210  | GY380   | EM BK W/O M                             | MAS4   | 73,728  | 333     | 21,087  | 49,975  | . 42  | COAL | 25,684 |
| 3211  | GY380   | ADM GEN PUR                             | MAS4   | 44,285  | 210     | 13,335  | 40,846  | .32   | COAL | 20,992 |
| 3212  | GY380   | GEN E DEV F                             | MAS4   | 21,082  | 111     | 7,087   | 23,469  | .30   | COAL | 12,061 |
| 3213  | GY380   | EM BK W/O M                             | MAS4   | 55,971  | 267     | 16,926  | 40,113  | . 42  | COAL | 20,616 |
| 3214  | GY380   | ADM GEN PUR                             | MAS4   | 19,403  | 77      | 4,880   | 14,948  | .32   | COAL | 7,682  |
| 3221  | GY380   | EXCH SP SUP                             | MAS4   | 2,099   | 24      | 1,563   | 4,982   | .31   | COAL | 2,560  |
| 3222  | GY380   | MOTOR REP S                             | CMU4   | 7,016   | 164     | 10,443  | 28,176  | .37   | COAL | 7,349  |
| 3224  | GY380   | EM SVC CLUB                             | MAS4   | 35,684  | 155     | 9,874   | 28,054  | .35   | COAL | 14,418 |
| 3225  | GY380   | CLO SALES                               | MAS4   | 12,206  | 102     | 6,504   | 19,303  | .33   | COAL | 9,920  |
| 3226  | GY380   | BN HQ BLDG                              | MAS3   | 12,678  | 75      | 4,761   | 15,965  | .29   | COAL | 4,164  |
| 3227  | GY380   | EM BK W/O M                             | MAS4   | 33,985  | 226     | 14,311  | 33,916  | . 42  | COAL | 17,431 |
| 3228  | GY380   | CO HQ BLDG                              | MAS4   | 2,765   | • 27    | 1,756   | 5,380   | .32   | COAL | 2,765  |
| 3229  | GY380   | ADM GEN PUR                             | MAS4   | 21,452  | 92      | 5,864   | 17,963  | .32   | COAL | 9,232  |
| 3230  | GY380   | COMM CENTER                             | MAS4   | 8,830   | 37      | 4,497   | 7,934   | .56   | NO 2 | 4,078  |
| 3231  | GY380   | BOWLING CTR                             | MAS4   | 30,596  | 149     | 9,481   | 28,138  | .33   | COAL | 14,461 |
| 3233  | GY380   | GEN INST BL                             | MAS4   | 36,453  | 180     | 11,394  | 34,900  | .32   | COAL | 17,936 |
| 3234  | GY380   | MOTOR REP S                             | CMU4   | 5,881   | 141     | 8,960   | 24,174  | .37   | COAL | 6,305  |
| 3235  | GY380   | GYMNASIUM                               | MAS3   | 22,029  | 234     | 14,857  | 48,266  | .30   | COAL | 12,589 |
| 3242  | GY380   | EM BK W/O M                             | MAS4   | 36,667  | 232     | 14,727  | 34,900  | . 42  | COAL | 17,936 |
| 3243  | GY380   | ENL PERS ME                             | MAS4   | 20,385  | 113     | 7,162   | 20,350  | .35   | COAL | 10,458 |
| 3244  | GY380   | EM BK W/O M                             | MAS4   | 39,818  | 232     | 14,727  | 34,900  | . 42  | COAL | 17,936 |
| 3245  | GY380   | EM BK W/O M                             | MAS4   | 36,667  | 232     | 14,727  | 34,900  | . 42  | COAL | 17,936 |
| 3246  | GY380   | EM BK W/O M                             | MAS4   | 55,971  | 314     | 19,904  | 47,169  | . 42  | COAL | 24,242 |
| 3247  | GY380   | MOTOR REP S                             | CMU6   | 8,966   |         |         |         | 0.00  | COAL | 8,554  |
| 3252  | GY380   | MOTOR REP S                             | CMU4   | 13,874  | 217     | 13,792  | 37,210  | .37   | COAL | 9,705  |
| 3254  | GY380   | MOTOR REP S                             | CMU4   | 14,419  | 236     | 15,000  | 40,470  | .37   | COAL | 10,555 |
| 3255  | GY380   | MOTOR REP S                             | CMU6   | 9,509   |         |         |         | 0.00  | COAL | 8,995  |
| 3257  | GY380   | MOTOR REP S                             | CMU4   | 16,964  | 210     | 13,302  | 35,890  | .37   | COAL | 9,361  |
| 3265  | GY380   | OPEN MESS                               | MAS4   | 19,585  | 93      | 11,133  | 16,853  | .66   | NO 2 | 8,661  |
| 3266  | GY380   | SIG ADM BLD                             | MAS4   | 25,178  | 81      | 9,633   | 15,723  | .61   | NO 2 | 8,080  |
| 3278  | GY380   | MOTOR REP S                             | CMU4   | 15,888  | 304     | 36,216  | 52,062  | .69   | NO 2 | 13,579 |
| 3700  | GY382   | HOSPITAL                                | MAS4   | 54,476  | 176     | 11,172  | 28,975  | .38   | COAL | 14,891 |
| 3701  | GY382   | GENEDEV/EXC                             | MAS4   | 28,156  | 99      | 6,284   | 20,810  | .30   | COAL | 10,695 |
| 3702  | GY382   | EM MD BK                                | MAS4   | 58,085  | 363     | 23,031  | 54,580  | . 42  | COAL | 28,051 |
| 3703  | GY382   | LABORATORY                              | MAS4   | 65,371  | 196     | 12,415  | 32,200  | .38   | COAL | 16,548 |
|       |         |                                         |        |         |         |         |         |       |      |        |

Table 3-10. Savings Weatherization Walls, Kaiserslautern (continued)

| ì | BLDG         | KASERNE        | FUNCTION                   | WALL<br>TYPE  | SQFT<br>BLDG     | SAVINGS<br>MBTU | SAVINGS<br>US\$  | COST<br>US\$     | SIR          | FUEL<br>TYPE | SQFT<br>WALL     |
|---|--------------|----------------|----------------------------|---------------|------------------|-----------------|------------------|------------------|--------------|--------------|------------------|
|   | 3704         | GY382          | SENTRY STAT                | MAS4          | 4,262            | 22              | 2,729            | 4,815            | .56          | NO 2         | 2,474            |
|   | 3705         | GY382          | EM SERV BLD                | MAS4          | 27,562           | 100             | 6,373            | 21,103           | .30          | COAL         | 10,846           |
|   | 3707         | GY382          | EM MD BK                   | MAS4          | 60,201           | 201             | 12,748           | 30,211           | . 42         | COAL         | 15,526           |
|   | 3716<br>3718 | GY382<br>GY382 | EW BK W/O M<br>THEAT W/ ST | MAS4          | 58,085           | 363             | 23,031           | 54,580           | .42          | COAL         | 28,051           |
|   | 3720         | GY382          | GYMNASIUM                  | CONC4<br>MAS1 | 11,758<br>10,087 | 211             | 12 271           | 21 711           | 0.00         | COAL         | 10,060           |
|   | 3722         | GY382          | BOWLING CTR                | CONC4         | 26,568           | 211             | 13,371           | 31,711           | .42<br>0.00  | COAL<br>COAL | 7,553<br>10,329  |
|   | 3723         | GY382          | MOTOR REP S                | CMU4          | 9,230            | 175             | 11,101           | 29,950           | .37          | COAL         | 7,811            |
|   | 3724         | GY382          | MOTOR REP S                | MAS3          | 7,708            | 95              | 6,031            | 20,791           | .29          | COAL         | 5,423            |
|   | 3732         | GY382          | VET FAC                    | MAS4          | 9,513            | 52              | 3,293            | 8,542            | .38          | COAL         | 4,390            |
|   | 3736         | GY382          | FIRE STATIO                | MAS4          | 4,793            | 47              | 3,005            | 8,918            | .33          | COAL         | 4,583            |
|   | 3737         | GY382          | FE MNT SHOP                | MAS4          | 6,596            | 48              | 3,044            | 9,588            | .31          | COAL         | 4,928            |
|   | 3738         | GY382          | MEDICAL LAB                | MAS4          | 25,961           | 92              | 5,868            | 15,220           | .38          | COAL         | 7,822            |
|   | 3740         | GY382          | GEN PURP WH                | MAS4          | 29,328           | 151             | 9,582            | 30,546           | .31          | COAL         | 15,698           |
|   | 3741         | GY382          | P O MAIN                   | CMU4          | 3,556            | 77              | 4,932            | 12,541           | .39          | COAL         | 3,271            |
|   | 3751<br>3752 | GY382<br>GY382 | BOO MIL MAL                | MAS4          | 12,277           | 115             | 7,297            | 17,293           | .42          | COAL         | 8,887            |
|   | 3753         | GY382          | BOQ MIL FEM<br>BOQ MIL MAL | MAS4<br>MAS4  | 35,063<br>12,277 | 202<br>115      | 12,836<br>7,297  | 30,420           | .42          | COAL         | 15,634           |
|   | 3754         | GY382          | BOQ MIL FEM                | MAS4          | 35,063           | 202             | 12,836           | 17,293<br>30,420 | . 42<br>. 42 | COAL<br>COAL | 8,887<br>15,634  |
|   | 3755         | GY382          | BOQ MIL MAL                | MAS4          | 12,277           | 115             | 7,297            | 17,293           | .42          | COAL         | 8,887            |
|   | 3756         | GY382          | BOQ MIL FEM                | MAS4          | 35,063           | 202             | 12,836           | 30,420           | .42          | COAL         | 15,634           |
|   | 3757         | GY382          | HOSPITAL                   | MAS3          | 26,518           | 396             | 25,109           | 71,286           | .35          | COAL         | 18,593           |
|   | 3758         | GY382          | HOSPITAL                   | MAS3          | 15,198           | 243             | 15,417           | 43,770           | .35          | COAL         | 11,416           |
|   | 3759         | GY382          | HOSPITAL                   | MAS3          | 15,233           | 243             | 15,417           | 43,770           | .35          | COAL         | 11,416           |
| ) | 3760         | GY382          | OPS GEN PUR                | MAS3          | 15,619           | 272             | 17,253           | 44,760           | .38          | COAL         | 11,674           |
|   | 3761<br>3762 | GY382<br>GY382 | HOSPITAL<br>HOSPITAL       | MAS3<br>MAS3  | 26,518           | 396             | 25,109           | 71,286           | .35          | COAL         | 18,593           |
|   | 3763         | GY382          | HOSPITAL                   | MASS          | 26,518<br>16,000 | 396<br>215      | 25,109<br>13,659 | 71,286<br>38,778 | .35<br>.35   | COAL         | 18,593           |
|   |              | GY382          | RECOVERY                   | CONC 4        | 3,009            | 213             | 13,039           | 30,770           | 0.00         | COAL<br>COAL | 10,114<br>516    |
|   | 3764         | GY382          | HOSP CLINIC                | MAS3          | 18,000           | 239             | 15,184           | 43,110           | .35          | COAL         | 11,244           |
|   | 3765         | GY382          | OPS GEN PUR                | MAS3          | 36,909           | 455             | 28,830           | 74,793           | .38          | COAL         | 19,507           |
|   | 3766         | GY382          | CLINIC / AD                | MAS3          | 35,102           | 423             | 26,808           | 89,892           | .29          | COAL         | 23,446           |
|   | 3767         | GY382          | HOSP CLINIC                | MAS3          | 32,693           | 432             | 27,361           | 77,680           | .35          | COAL         | 20,261           |
|   | 3769         | GY382          | HOSPITAL                   | MAS3          | 14,420           | 233             | 14,748           | 41,872           | .35          | COAL         | 10,921           |
|   | 3770         | GY382<br>GY382 | HOSPITAL                   | MAS3          | 15,199           | 243             | 15,417           | 43,770           | .35          | COAL         | 11,416           |
|   | 3771<br>3772 | GY382          | MNT / CLINI<br>HOSPITAL    | MAS3<br>MAS3  | 14,420           | 203<br>396      | 12,889           | 41,872           | .30          | COAL         | 10,921           |
|   | 3774         | GY382          | EXCH CAFE/0                | MAS3          | 26,518<br>15,523 | 195             | 25,109<br>12,362 | 71,286<br>38,448 | .35<br>.32   | COAL<br>COAL | 18,593           |
|   | 3775         | GY382          | ENL PERS ME                | MAS4          | 31,676           | 217             | 13,780           | 39,150           | .35          | COAL         | 10,028<br>20,121 |
|   | 3776         | GY382          | LIBRARY                    | MAS4          | 4,719            | 55              | 3,506            | 10,405           | .33          | COAL         | 5,347            |
|   | 3780         | GY382          | OPN MESS OF                | MAS3          | 11,423           | 142             | 9,019            | 28,052           | .32          | COAL         | 7,316            |
|   | 3792         | GY382          | MED ADM BLD                | MAS4          | 12,632           | 73              | 4,682            | 14,341           | .32          | COAL         | 7,370            |
|   | 3794         | GY382          | OPN MESS NC                | MAS4          | 9,571            | 59              | 7,080            | 10,719           | .66          | NO 2         | 5,509            |
|   | 3800         | GY382          | MOTOR REP S                | CMU4          | 5,770            | 116             | 7,354            | 19,843           | .37          | COAL         | 5,175            |
|   | 3809<br>3810 | GY382<br>GY382 | LAB/ADM/EM<br>SCHOOL/ADM/  | MAS4<br>MAS3  | 72,966           | 386             | 24,471           | 57,993           | . 42         | COAL         | 29,805           |
|   | 3812         | GY382          | CHILD CARE                 | MAS4          | 51,821<br>9,114  | 388<br>54       | 24,604<br>3,470  | 89,190           | .27          | COAL         | 23,263           |
|   | 3813         | GY382          | EM BK W/O M                | MAS4          | 13,324           | 82              | 5,238            | 10,300<br>12,415 | .33<br>.42   | COAL<br>COAL | 5,293<br>6,380   |
|   | 3815         | GY382          | EM BK W/O M                | MAS4          | 13,324           | 82              | 5,238            | 12,415           | .42          | COAL         | 6,380            |
|   | 3817         | GY382          | EXCH WHSE                  | MAS4          | 4,868            | 16              | 1,044            | 3,328            | .31          | COAL         | 1,710            |
| 1 | 3818         | GY382          | BN HQ BLDG                 | MAS3          | 9,095            | 77              | 4,884            | 16,377           | .29          | COAL         | 4,271            |
| f | 3819         | GY382          | BLDGS MNT S                | MAS3          | 9,095            | 99              | 6,313            | 16,377           | .38          | COAL         | 4,271            |
|   |              |                |                            |               |                  |                 |                  |                  |              |              |                  |

Table 3-10. Savings Weatherization Walls, Kaiserslautern (continued)

| BLDG         | KASERNE        | FUNCTION                   | WALL<br>TYPE | SQFT<br>BLDG     | SAVINGS<br>MBTU | SAVINGS<br>US\$  | COST<br>US\$      | SIR        | FUEL<br>TYPE | SQFT             |
|--------------|----------------|----------------------------|--------------|------------------|-----------------|------------------|-------------------|------------|--------------|------------------|
| 3820<br>3821 | GY382<br>GY382 | ADM / CLASS<br>SEBQ        | MAS4<br>MAS4 | 13,646<br>13,035 | 68<br>73        | 4,326<br>4,638   | 13,252<br>10,991  | .32        | COAL<br>COAL | 6,811<br>5,649   |
| 3823         | GY382          | SEBQ                       | MAS4         | 13,035           | 73              | 4,638            | 10,991            | . 42       | COAL         | 5,649            |
| 3824         | GY382          | EM BK W/O M                | MAS4         | 14,424           | 94              | 6,007            | 14,236            | .42        | COAL         | 7,316            |
| 3007<br>3008 | GY455<br>GY455 | MOTOR REP S                | CMU4         | 11,559           | 239             | 15,168           | 40,923            | .37        | COAL         | 10,673           |
| 3010         | GY455          | MOTOR REP S<br>MOTOR REP S | CMU4<br>CMU4 | 11,559<br>7,008  | 239<br>208      | 15,168<br>13,226 | 40,923<br>35,684  | .37<br>.37 | COAL<br>COAL | 10,673<br>9,307  |
| 3011         | GY455          | MOTOR REP S                | CMU4         | 7,008            | 208             | 13,226           | 35,684            | .37        | COAL         | 9,307            |
| 3012         | GY455          | MOTOR REP S                | CMU4         | 7,008            | 208             | 13,226           | 35,684            | .37        | COAL         | 9,307            |
| 3013         | GÝ455          | MOTOR REP S                | CMU4         | 11,896           | 213             | 13,501           | 36,427            | .37        | COAL         | 9,501            |
| 3014         | GY455          | MRS & RESTR                | CMU4         | 26,516           | 468             | 29,660           | 72,194            | .41        | COAL         | 18,830           |
| 3016<br>3020 | GY455<br>GY455 | VEH PAINT S<br>MOTOR REP S | CMU4<br>CMU4 | 13,543<br>7,936  | 173<br>188      | 11,009<br>11,942 | 29,702<br>32,219  | .37<br>.37 | COAL<br>COAL | 7,747            |
| 3021         | GY455          | MOTOR REP S                | CMU4         | 15,650           | 226             | 26,860           | 38,613            | .69        | NO 2         | 8,403<br>10,071  |
| 3030         | GY455          | MOTOR REP S                | CONC1        | 10,199           | 346             | 21,934           | 28,960            | .75        | COAL         | 7,553            |
| 3040         | GY455          | MTL & WDWK                 | MAS4         | 30,311           | 148             | 15,101           | 29,687            | .50        | NO 6         | 15,257           |
| 3041         | GY455          | MOTOR REP S                | MAS4         | 36,102           | 151             | 15,356           | 30,190            | .50        | NO 6         | 15,515           |
| 3042<br>3043 | GY455<br>GY455 | MOTOR REP S<br>MOTOR REP S | MAS1<br>CMU3 | 11,445<br>10,438 | 186<br>280      | 18,891<br>28,492 | 29,678<br>42,450  | .63<br>.67 | NO 6<br>NO 6 | 7,069<br>11,072  |
| 3050         | GY455          | MOTOR REP S                | CMU3         | 7,758            | 168             | 17,084           | 25,453            | .67        | NO 6         | 6,638            |
| 3051         | GY455          | MOTOR REP S                | CMU3         | 7,762            | 168             | 17,084           | 25,453            | .67        | NO 6         | 6,638            |
| 3053         | GY455          | ORD ADM BLD                | CMU3         | 5,146            | 112             | 11,415           | 16,542            | .69        | NO 6         | 4,314            |
| 3055         | GY455          | GEN PURP WH                | CMU4         | 29,996           | 295             | 29,958           | 51,072            | .58        | NO 6         | 13,320           |
| 3056<br>3057 | GY455          | GEN PURP WH<br>ELEC MNT SH | CMU4         | 29,996           | 295             | 29,958           | 51,072            | .58        | NO 6         | 13,320           |
| 3058         | GY455<br>GY455 | PO BRANCH                  | CMU3<br>CMU3 | 19,375<br>17,988 | 235<br>269      | 23,895<br>27,325 | 35,602<br>38,366  | .67<br>.71 | NO 6<br>NO 6 | 9,28             |
| 3083         | GY455          | RECR BLDG                  | CMU4         | 6,737            | 142             | 16,870           | 22,854            | .73        | NO 2         | 5,961            |
| 3091         | GY455          | GEN MNT SHO                | MET2         | 2,166            | 36              | 4,292            | 5,410             | .79        | NO 2         | 2,313            |
| 3401         | GY490          | QM REPAIR S                | CMU4         | 35,467           | 270             | 27,433           | 46,204            | .59        | NO 6         | 12,051           |
| 3402<br>3403 | GY490<br>GY490 | GEN PURP WH<br>FIXED LAUND | MAS3         | 18,502           | 287<br>619      | 29,165           | 63,530            | .45        | NO 6         | 16,570           |
| 3405         | GY490          | GEN PURP WH                | MAS1<br>CMU3 | 40,631<br>61,637 | 699             | 62,856<br>70,960 | 93,056<br>107,012 | .67<br>.66 | NO 6<br>NO 6 | 22,165<br>27,911 |
| 3408         | GY490          | CALIBR & RE                | MAS4         | 17,819           | 121             | 14,473           | 24,286            | .59        | NO 2         | 12,481           |
| 3413         | GY490          | SUP SVC ADM                | MAS4         | 16,320           | 88              | 10,570           | 17,251            | .61        | NO 2         | 8,866            |
| 3424         | GY490          | QM REPAIR S                | CMU4         | 4,425            | 162             | 16,460           | 27,722            | .59        | NO 6         | 7,230            |
| 110<br>162   | GY542<br>GY542 | POST RESTAU<br>EM BK / BN  | WD1<br>MAS4  | 3,850            | ສວດ             | 27,397           | 24 505            | 0.00       | NO 2         | 3,421            |
| 163          | GY 542         | ENL PERS ME                | MAS2         | 41,949<br>9,296  | 230<br>91       | 10,862           | 34,595<br>11,745  | .79<br>.92 | NO 2<br>NO 2 | 17,779<br>6,036  |
| 164          | GY542          | ADM BLDG (A                | MAS4         | 41,949           | 178             | 21,196           | 34,595            | .61        | NO 2         | 17,779           |
| 175          | GY542          | MOTOR REP S                | MAS2         | 10,280           | 116             | 13,799           | 16,539            | .83        | NO 2         | 8,500            |
| 176          | GY542          | EXCH CAFE                  | MAS4         | 2,384            | 31              | 1,982            | 4,698             | . 42       | COAL         | 2,414            |
| 179          | GY 542         | GP HQ BLDG                 | MAS2         | 21,256           | 152             | 18,102           | 21,103            | .85        | NO 2         | 10,846           |
| 270<br>273   | GY542<br>GY542 | OPS GEN PUR<br>EM BK W/O M | MAS2<br>MAS2 | 5,380<br>6,193   | 47<br>79        | 5,681<br>5,061   | 7,160<br>8,567    | .79<br>.59 | NO 2<br>COAL | 3,679<br>4,402   |
| 274          | GY 542         | EM BK W/O M                | MAS2         | 6,193            | 60              | 3,834            | 6,490             | .59        | COAL         | 3,335            |
| 275          | GY542          | EMM BK W/O                 | MAS2         | 6,193            | 79              | 5,061            | 8,567             | .59        | COAL         | 4,402            |
| 276          | GY 542         | CO HQ BLDG                 | MAS2         | 4,659            | 63              | 4,038            | 8,835             | .45        | COAL         | 4,540            |
| 277          | GY542          | CO HQ BLDG                 | MAS2         | 4,659            | 63              | 4,038            | 8,835             | .45        | COAL         | 4,540            |
| 278<br>279   | GY542<br>GY542 | EM BK W/O M<br>EM BK W/O M | MAS2<br>MAS2 | 6,193<br>6,193   | 79<br>60        | 5,061<br>3,834   | 8,567<br>6,490    | .59        | COAL         | 4,402            |
| 280          | GY 542         | E BK W/O MS                | MAS2         | 6,193            | 79              | 5,054<br>5,061   | 8,567             | .59<br>.59 | COAL<br>COAL | 3,335<br>4,402   |
| 281          | GY542          | CO HQ BLDG                 | MAS2         | 4,659            | 63              | 4,038            | 8,835             | .45        | COAL         | 4,540            |

Table 3-10. Savings Weatherization Walls, Kaiserslautern (continued)

| ) | BLDG         | KASERNE        | FUNCTION                   | WALL<br>TYPE | SQFT<br>BLDG     | SAVINGS<br>MBTU | SAVINGS<br>US\$  | COST<br>US\$     | SIR         | FUEL<br>TYPE | SQFT<br>WALL     |
|---|--------------|----------------|----------------------------|--------------|------------------|-----------------|------------------|------------------|-------------|--------------|------------------|
|   | 282<br>283   | GY542<br>GY542 | EM BK W/O M<br>EM BK W/O M | MAS2<br>MAS2 | 6,193<br>6,193   | 79<br>60        | 5,061<br>3,834   | 8,567<br>6,490   | .59<br>.59  | COAL<br>COAL | 4,402<br>3,335   |
|   | 284          | GY542          | EM BK W/O M                | MAS2         | 6,193            | 79              | 5,061            | 8,567            | .59         | COAL         | 4,402            |
|   | 285<br>286   | GY542<br>GY542 | GEN INST BL<br>ADM GEN PUR | MAS2<br>MAS2 | 3,400<br>3,400   | 35<br>38        | 2,265            | 5,359            | .42         | COAL         | 2,754            |
|   | 288          | GY 542         | ADM GEN PUR                | MAS2         | 3,035            | 32              | 2,449<br>2,038   | 5,359<br>4,459   | .45<br>.45  | COAL<br>COAL | 2,754<br>2,291   |
|   | 289          | GY542          | EM BK W/O M                | MAS2         | 6,505            | 104             | 6,592            | 11,159           | .59         | COAL         | 5,735            |
|   | 290          | GY 542         | MNT SHOP                   | MAS2         | 2,110            | 31              | 1,982            | 4,459            | .44         | COAL         | 2,291            |
|   | 291          | GY542          | GEN STOREHO                | CONC2        | 5,800            | 121             | 14,377           | 14,636           | .98         | NO 2         | 3,486            |
|   | 292<br>326   | GY542<br>GY542 | CO HQ BLDG                 | MAS2         | 3,943            | 48              | 3,100            | 6,783            | .45         | COAL         | 3,486            |
|   | 331          | GY542          | ELEC MNT SH<br>GEN STOREHO | MAS1<br>CMU3 | 3,875<br>3,875   | 71<br>67        | 8,489<br>8,076   | 11,383           | .74         | NO 2         | 2,711            |
|   | 332          | GY542          | GEN STOREHO                | CMU3         | 3,875            | 67              | 8,076            | 10,395<br>10,395 | .77<br>.77  | NO 2<br>NO 2 | 2,711<br>2,711   |
|   | 335          | GY542          | GEN STOREHO                | CMU3         | 3,875            | 67              | 8,076            | 10,395           | .77         | NO 2         | 2,711            |
|   | 336          | GY542          | GEN STOREHO                | CMU3         | 3,875            | 67              | 8,076            | 10,395           | .77         | NO 2         | 2,711            |
|   | 337          | GY 542         | ADM GEN PUR                | MAS1         | 3,875            | 73              | 8,728            | 11,383           | .76         | NO 2         | 2,711            |
|   | 339<br>344   | GY542<br>GY542 | GEN STOREHO                | CMU3         | 3,875            | 67<br>67        | 8,076            | 10,395           | .77         | NO 2         | 2,711            |
|   | 346          | GY542          | GEN STOREHO<br>GEN STOREHO | CMU3<br>CMU3 | 3,875<br>3,875   | 67<br>67        | 8,076<br>8,076   | 10,395           | .77         | NO 2         | 2,711            |
|   | 347          | GY 542         | SM ARMS REP                | CONC4        | 4,197            | 07              | 0,070            | 10,395           | .77<br>0.00 | NO 2<br>NO 2 | 2,711<br>2,823   |
|   | 369          | GY542          | MOTOR REP S                | MET4         | 3,400            |                 |                  |                  | 0.00        | NO 2         | 3,137            |
|   | 370          | GY 542         | MOTOR REP S                | MET4         | 3,400            |                 |                  |                  | 0.00        | NO 2         | 3,137            |
|   | 371<br>372   | GY542<br>GY542 | MOTOR REP S                | MET4         | 3,400            |                 |                  |                  | 0.00        | NO 2         | 3,137            |
|   | 394          | GY542          | MTL & WDWK<br>MOTOR REP S  | MET3<br>MAS1 | 3,400<br>10,543  | 272             | 32,340           | 43,366           | 0.00<br>.74 | NO 2<br>NO 2 | 3,137            |
| ) | 395          | GY 542         | MOTOR REP S                | MAS1         | 10,543           | 272             | 32,340           | 43,366           | .74         | NO 2         | 10,329<br>10,329 |
|   | 611          | GY542          | MSL ASY & T                | CONC4        | 21,736           |                 | ,-··             | ,                | 0.00        | NO 2         | 12,330           |
|   | 622          | GY 542         | MOTOR REP S                | MET5         | 3,228            |                 | ÷                |                  | 0.00        | NO 2         | 3,534            |
|   | 630          | GY542          | AMMO RENV S                | CONC3        | 13,803           | 203             | 24,123           | 44,141           | . 54        | NO 2         | 11,513           |
|   | 637<br>701   | GY542<br>GY542 | WTNG SHELTE<br>AMMO RENV S | MET2<br>MAS2 | 5,046<br>3,388   | 94<br>42        | 11,239           | 14,897           | .75         | NO 2         | 6,369            |
|   | 705          | GY 542         | ADM GEN PUR                | MAS2         | 2,010            | 30              | 5,074<br>3,645   | 6,082<br>4,250   | .83<br>.85  | NO 2<br>NO 2 | 3,125<br>2,184   |
|   | 3000         | GY565          | WAREHOUSE                  | MAS4         | 11,340           | 71              | 4,551            | 14,508           | .31         | COAL         | 7,456            |
|   | 3006         | GY565          | MOTOR REPAI                | CMU3         | 4,965            | 105             | 6,672            | 15,923           | .41         | COAL         | 4,153            |
|   | 3009         | GY565          | MOTOR REPAI                | CMU3         | 3,872            | 100             | 6,343            | 15,140           | . 41        | COAL         | 3,948            |
|   | 3100<br>3101 | GY680<br>GY680 | EM BK W/O M<br>ADM & SUP / | MAS4<br>MAS4 | 57,645<br>55,014 | 168<br>204      | 20,029           | 25,291           | .79         | NO 2         | 12,998           |
|   | 3102         | GY680          | EM BK W/O M                | MAS4         | 55,014           | 204             | 24,240<br>24,240 | 30,608<br>30,608 | .79<br>.79  | NO 2<br>NO 2 | 15,731<br>15,731 |
|   | 3103         | GY680          | EM BK W/O M                | MAS4         | 55,014           | 204             | 24,240           | 30,608           | .79         | NO 2         | 15,731           |
|   | 3104         | GY680          | ADM GEN PUR                | MAS4         | 60,278           | 173             | 20,627           | 33,665           | .61         | NO 2         | 17,302           |
|   | 3106         | GY680          | ENL PERS ME                | MAS4         | 27,550           | 100             | 11,990           | 18,151           | .66         | NO 2         | 9,328            |
|   | 3107<br>3113 | GY680<br>GY680 | ADM GEN PUR<br>FE FAC      | MAS4         | 27,550           | 93              | 11,121           | 18,151           | .61         | NO 2         | 9,328            |
|   | 3114         | GY680          | MOTOR REP S                | WD1<br>CMU3  | 5,061<br>10,659  | 184             | 18,745           | 27,928           | 0.00<br>.67 | NO 2<br>NO 6 | 5,100            |
|   | 3115         | GY680          | SKILL DEV G                | WD1          | 3,170            | 104             | 10,745           | 21,320           | 0.00        | NO 6         | 7,284<br>3,217   |
|   | 3116         | GY680          | MOTOR REP S                | CMU3         | 10,842           | 184             | 18,745           | 27,928           | .67         | NO 6         | 7,284            |
|   | 3117         | GY680          | MOTOR REP S                | CMU3         | 13,695           | 122             | 12,432           | 18,522           | .67         | NO 6         | 4,831            |
|   | 3150<br>2861 | GY741          | POST CHAPEL                | MAS3         | 12,665           | 190             | 22,640           | 39,191           | .57         | NO 2         | 10,222           |
|   | 2862         | GY744<br>GY744 | EM BK W/O M<br>CO HQ BLDG  | CMU3<br>MAS4 | 15,870<br>3,943  | 311<br>37       | 19,719<br>2,362  | 35,416           | .55         | COAL         | 9,237            |
|   | 2863         | GY744          | EM BK W/O M                | CMU3         | 15,870           | 311             | 19,719           | 7,235<br>35,416  | .32<br>.55  | COAL<br>COAL | 3,718<br>9,237   |
| ) | 2864         | GY744          | POST RESTAU                | MAS4         | 3,943            | 36              | 2,280            | 6,478            | .35         | COAL         | 3,329            |
|   |              |                |                            |              |                  |                 | -                | -                |             |              | •                |

Table 3-10. Savings Weatherization Walls, Kaiserslautern (continued)

| BLDG                                                                                                                 | KASERNE                                                                                                                    | FUNCTION                                                                                                                                                                 | WALL<br>TYPE                                                                 | SQFT<br>BLDG                                                                                                                              | SAVINGS<br>. MBTU                                                          | SAVINGS<br>US\$                                                                                                           | COST<br>US\$                                                                                                      | SIR                                                                                             | FUEL<br>TYPE                                                                                 | SQFT                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 2865<br>2866<br>2867<br>2868<br>2869<br>2872<br>2874<br>2876<br>2877<br>2879<br>2880<br>2882<br>2885<br>2886<br>2887 | GY744<br>GY744<br>GY744<br>GY744<br>GY744<br>GY744<br>GY744<br>GY744<br>GY744<br>GY744<br>GY744<br>GY744<br>GY744<br>GY744 | EM BK W/O M CO HQ BLDG EM BK W/O M ENL PERS ME MORGUE GEN PURP WH EM BK W/O M CO HQ BLDG GEN STOREHO EM BK W/O M CO HQ BLDG RECR BLDG UNIT CHAPEL EM BK W/O M CO HQ BLDG | CMU3 MAS4 CMU4 MAS4 MAS3 MAS3 MAS3 CONC2 MAS3 MAS3 CONC2 WD1 MAS3 MAS3       | 15,870<br>3,943<br>10,585<br>10,751<br>6,926<br>3,622<br>18,489<br>4,659<br>3,403<br>18,468<br>4,659<br>3,403<br>2,580<br>18,468<br>4,781 | 311<br>33<br>250<br>61<br>37<br>58<br>545<br>93<br>124<br>545<br>93<br>133 | 19,719 2,116 15,885 3,898 4,402 5,920 55,335 9,452 12,609 55,335 9,452 13,543                                             | 35,416<br>6,483<br>28,531<br>9,488<br>6,084<br>12,895<br>89,615<br>19,785<br>15,038<br>89,615<br>19,785<br>15,038 | .55<br>.32<br>.55<br>.41<br>.72<br>.45<br>.61<br>.47<br>.83<br>.61<br>.47<br>.90<br>0.00<br>.61 | COAL<br>COAL<br>COAL<br>COAL<br>NO 2<br>NO 6<br>NO 6<br>NO 6<br>NO 6<br>NO 6<br>NO 6<br>NO 6 | 9,237<br>3,332<br>7,441<br>2,474<br>3,126<br>3,363<br>23,373<br>5,160<br>3,582<br>23,373<br>5,160<br>3,582<br>2,012<br>23,373<br>5,233 |
| 2890<br>2891<br>2895<br>2897<br>2898<br>2899<br>2901<br>2902                                                         | GY744<br>GY744<br>GY744<br>GY744<br>GY744<br>GY744<br>GY744                                                                | EM BK W/O M<br>CO HQ BLDG<br>ENL PER MES<br>ADM GEN PUR<br>VET FAC<br>SP SVC OFF<br>THRIFT SHOP<br>MOTOR REP S                                                           | MAS3<br>MAS3<br>CMU4<br>WD1<br>MAS3<br>WD1<br>MAS3<br>CMU4                   | 18,468<br>4,659<br>18,400<br>6,723<br>2,127<br>2,867<br>2,127<br>4,929                                                                    | 545<br>96<br>140<br>36<br>32<br>86                                         | 55,335<br>9,735<br>14,199<br>3,747<br>3,275<br>8,781                                                                      | 89,615<br>20,379<br>21,575<br>6,641<br>6,641<br>14,789                                                            | .61<br>.47<br>.65<br>0.00<br>.56<br>0.00<br>.49<br>.59                                          | NO 6<br>NO 6<br>NO 2<br>NO 6<br>NO 6<br>NO 6<br>NO 6                                         | 23,373<br>5,315<br>5,627<br>5,286<br>1,732<br>2,012<br>1,732<br>3,857                                                                  |
| 2909<br>2910<br>2911<br>2912<br>2913<br>2915<br>2917<br>2918<br>2919<br>2921                                         | GY744<br>GY744<br>GY744<br>GY744<br>GY744<br>GY744<br>GY744<br>GY744<br>GY744                                              | GEN STOREHO GEN STOREHO GEN STOREHO GEN STOREHO CO HQ BLDG CO HQ BLDG DISP W/ BED BOQ MIL MAL BOQ MIL MAL BOQ MIL MAL                                                    | CMU3<br>CMU3<br>CMU3<br>CMU3<br>MAS3<br>MAS3<br>MAS2<br>MAS2<br>MAS2<br>MAS2 | 2,180<br>2,180<br>2,180<br>2,180<br>2,127<br>2,127<br>6,588<br>6,588<br>6,588                                                             | 58<br>58<br>58<br>58<br>31<br>31<br>91<br>100<br>100                       | 5,897<br>5,897<br>5,897<br>5,897<br>3,173<br>3,173<br>9,269<br>10,144<br>10,144                                           | 8,894<br>8,894<br>8,894<br>6,641<br>10,719<br>10,719                                                              | .66<br>.66<br>.66<br>.47<br>.47<br>.86<br>.94                                                   | NO 6<br>NO 6<br>NO 6<br>NO 6<br>NO 6<br>NO 6<br>NO 6                                         | 2,319<br>2,319<br>2,319<br>1,732<br>1,732<br>5,509<br>5,509<br>5,509                                                                   |
| 2922<br>2923<br>2925<br>2926<br>2928<br>2929<br>2930<br>2932<br>2933<br>2934<br>2935<br>2942                         | GY744<br>GY744<br>GY744<br>GY744<br>GY744<br>GY744<br>GY744<br>GY744<br>GY744<br>GY744<br>GY744                            | BOQ MIL MAL BOQ MIL MAL CO HQ BLDG EM BK W/O M CO HQ BLDG EM BK W/O M CO HQ BLDG EM BK W/O M GEN INST BL ADM GEN PUR ADM (BANK) XMTR BLDG/A MOTOR REP S                  | MAS2<br>MAS3<br>MAS3<br>MAS3<br>MAS3<br>MAS3<br>MAS3<br>MAS3<br>MAS3         | 6,588<br>6,588<br>4,659<br>18,468<br>4,659<br>18,468<br>4,659<br>12,326<br>4,659<br>12,326<br>4,231                                       | 100<br>100<br>93<br>545<br>93<br>545<br>93<br>130<br>119<br>195<br>62      | 10,144<br>10,144<br>9,459<br>55,328<br>5,905<br>55,335<br>9,459<br>55,335<br>9,459<br>13,184<br>12,087<br>19,777<br>7,386 | 10,719 10,719 19,801 89,603 19,801 89,615 19,801 27,598 19,801 30,220 9,310                                       | .94<br>.94<br>.47<br>.61<br>.29<br>.61<br>.47<br>.61<br>.65                                     | NO 6<br>NO 6<br>NO 6<br>COAL<br>NO 6<br>NO 6<br>NO 6<br>NO 6<br>NO 6<br>NO 6                 | 5,509<br>5,509<br>5,164<br>23,370<br>5,164<br>23,373<br>5,164<br>23,373<br>5,164<br>7,198<br>5,164<br>7,198<br>3,981                   |
| TOTAL<br>TOTAL<br>TOTAL<br>TOTAL<br>TOTAL                                                                            |                                                                                                                            | HEAT SAVINGS N<br>SAVINGS<br>LLS                                                                                                                                         |                                                                              | ,,                                                                                                                                        |                                                                            |                                                                                                                           | ,                                                                                                                 |                                                                                                 | 4,<br>8,<br>5,<br>3,                                                                         | 49,108<br>268,630<br>056,817<br>287,570<br>010,25<br>014,547                                                                           |

Table 3-11. Savings Weatherization Roofs, Kaiserslautern

| ) | BLDG         | KASERNE        | FUNCTION                   | ROOF<br>TYPE | SQFT<br>BLDG     | SAVINGS<br>MBTU | SAVINGS<br>US\$  | COST<br>US\$     | SIR         | FUEL<br>TYPE | SQFT<br>ROOF     |
|---|--------------|----------------|----------------------------|--------------|------------------|-----------------|------------------|------------------|-------------|--------------|------------------|
|   | 2202         | GY298          | ADM GEN PUR                | RF21         | 3,538            | 28              | 2,879            | 14,780           | .19         | NO 6         | 3,536            |
|   |              | GY298          | ENG FLD MNT                | RF23         | 99,785           | 519             | 52,705           | 110,832          | .47         | NO 6         | 76,073           |
|   | 2264         | GY298          | GEN PURP WH                | RF 24        | 39,259           | 695             | 70,488           | 85,218           | .82         | NO 6         | 40,048           |
|   | 2270         | GY298          | POST RESTAU                | RF 21        | 3,442            | 29              | 3,021            | 14,389           | .21         | NO 6         | 3,443            |
|   | 2277         | GY298          | MNT SH WHSE                | RF24         | 10,070           | 178             | 18,078           | 21,856           | .82         | NO 6         | 10,271           |
|   | 2280<br>2363 | GY298<br>GY298 | GEN PURP WH<br>CARE & PRES | RF23<br>RF24 | 11,538<br>12,366 | 79<br>222       | 8,057            | 17,150           | .46         | NO 6         | 11,771           |
|   | 2370         | GY298          | GEN PURP WH                | RF6          | 76,064           | 374             | 14,058<br>44,536 | 26,898<br>84,958 | .52<br>.52  | COAL<br>NO 2 | 12,640<br>77,751 |
|   |              | GY298          | GEN PURP WH                | RF6          | 59,333           | 292             | 29,654           | 66,276           | .44         | NO 6         | 60,654           |
|   |              | GY298          | GEN PURP WH                | RF6          | 59,333           | 292             | 29,654           | 66,276           | .44         | NO 6         | 60,654           |
|   |              | GY298          | GEN PURP WH                | RF6          | 56,946           | 279             | 28,318           | 63,289           | .44         | NO 6         | 57,921           |
|   |              | GY298          | GEN PURP WH                | RF6          | 56,946           | 279             | 28,318           | 63,289           | . 44        | NO 6         | 57,921           |
|   | 2393         | GY298          | MOTOR REP S                | RF23         | 32,224           | 225             | 22,819           | 47,985           | .47         | NO 6         | 32,936           |
|   | 3183<br>3201 | GY374<br>GY380 | BAND TNG FA<br>DISP W/O BE | RF13<br>RF10 | 6,989<br>19,317  | 45              | 5,393            | 7,500            | .71         | NO 2         | 6,986            |
|   | 3231         | GY380          | BOWLING CTR                | RF13         | 30,596           | 125             | 7,930            | 18,551           | 0.00<br>.42 | COAL<br>COAL | 6,832<br>17,280  |
|   | 3235         | GY380          | GYMNASIUM                  | RF30         | 22,029           | 506             | 32,049           | 111,597          | .28         | COAL         | 22,219           |
|   | 3247         | GY380          | MOTOR REP S                | RF23         | 8,966            | 61              | 3,895            | 13,121           | .29         | COAL         | 9,006            |
|   | 3255         | GY380          | MOTOR REP S                | RF23         | 9,509            | 64              | 4,113            | 13,857           | .29         | COAL         | 9,511            |
|   | 3257         | GY380          | MOTOR REP S                | RF4          | 16,964           | 314             | 19,920           | 20,789           | .95         | COAL         | 9,770            |
|   | 3278<br>3718 | GY380<br>GY382 | MOTOR REP S<br>THEAT W/ ST | RF23<br>RF21 | 15,888           | 113             | 13,485           | 24,204           | .55         | NO 2         | 16,613           |
|   | 3719         | GY382          | GEN STOREHO                | RF24         | 11,758<br>8,002  | 97<br>148       | 6,163<br>9,375   | 49,103<br>18,156 | .12<br>.51  | COAL<br>COAL | 11,749<br>8,532  |
|   | 3720         | GY382          | GYMNASIUM                  | RF9          | 10,087           | 268             | 16,984           | 22,048           | .77         | COAL         | 10,361           |
| , | 3723         | GY382          | MOTOR REP S                | RF17         | 9,230            | 171             | 10,831           | 12,735           | .85         | COAL         | 9,226            |
|   | 3724         | GY382          | MOTOR REP S                | RF9          | 7,708            | 189             | 11,966           | 16,485           | .72         | COAL         | 7,747            |
|   | 3740         | GY382          | GEN PURP WH                | RF9          | 29,328           | 708             | 44,876           | 62,574           | .71         | COAL         | 29,407           |
|   | 3751<br>3753 | GY382<br>GY382 | BOQ MIL MAL<br>BOQ MIL MAL | RF13<br>RF13 | 12,277           | 55<br>55        | 3,524            | 6,584            | .53         | COAL         | 6,133            |
|   | 3755         | GY382          | BOQ MIL MAL                | RF13         | 12,277<br>12,277 | 55<br>55        | 3,524<br>3,524   | 6,584<br>6,584   | .53<br>.53  | COAL<br>COAL | 6,133<br>6,133   |
|   |              | GY382          | RECOVERY                   | RF27         | 3,009            | 33              | 3,324            |                  | 0.00        | COAL         | 3,012            |
|   | 3774         | GY382          | EXCH CAFE/0                | RF30         | 15,523           | 369             | 23,377           | 77,929           | .29         | COAL         | 15,515           |
|   | 3775         | GY382          | ENL PERS ME                | RF30         | 31,676           | 755             | 47,825           | 159,425          | .29         | COAL         | 31,742           |
|   | 3810         | GY382          | SCHOOL/ADM/                | RF4          | 51,821           | 534             | 33,862           | 37,160           | .91         | COAL         | 17,463           |
|   | 3817<br>3818 | GY382<br>GY382 | EXCH WHSE<br>BN HQ BLDG    | RF22<br>RF13 | 4,868            | 103             | 6,531            | 10,348           | .63         | COAL         | 4,863            |
|   | 3819         | GY382          | BLDGS MNT S                | RF13         | 9,095<br>9,095   | 31<br>41        | 2,019<br>2,609   | 4,874<br>4,874   | .41<br>.53  | COAL<br>COAL | 4,540<br>4,540   |
|   | 3016         | GY455          | VEH PAINT S                | RF22         | 13,543           | 300             | 18,999           | 29,741           | .63         | COAL         | 13,977           |
|   | 3020         | GY455          | MOTOR REP S                | RF24         | 7,936            | 148             | 9,381            | 17,950           | .52         | COAL         | 8,435            |
|   | 3021         | GY455          | MOTOR REP S                | RF24         | 15,650           | 285             | 33,957           | 34,618           | .98         | NO 2         | 16,269           |
|   | 3030         | GY455          | MOTOR REP S                | RF23         | 10,199           | 73              | 4,663            | 15,707           | .29         | COAL         | 10,781           |
|   | 3040<br>3041 | GY455<br>GY455 | MTL & WDWK<br>MOTOR REP S  | RF8<br>RF8   | 30,311           | 532             | 54,041           | 68,344           | .79         | NO 6         | 32,118           |
|   | 3055         | GY455          | GEN PURP WH                | RF8          | 36,102<br>29,996 | 622<br>514      | 63,093<br>52,120 | 79,792<br>66,718 | .79<br>.78  | NO 6         | 37,498<br>31,354 |
|   | 3056         | GY455          | GEN PURP WH                | RF8          | 29,996           | 514             | 52,120           | 66,718           | .78         | NO 6         | 31,354           |
|   | 3402         | GY490          | GEN PURP WH                | RF21         | 18,502           | 160             | 16,320           | 87,190           | .18         | NO 6         | 20,863           |
|   | 150          | GY542          | GEN PURP WH                | RF23         | 41,667           | 282             | 33,617           | 61,075           | .55         | NO 2         | 41,920           |
|   | 175          | GY542          | MOTOR REP S                | RF24         | 10,280           | 184             | 21,919           | 22,346           | .98         | NO 2         | 10,501           |
|   | 176<br>273   | GY542<br>GY542 | EXCH CAFE                  | RF13.        | 2,384<br>6,193   | 21              | 1,366            | 2,552            | .53         | COAL         | 2,377            |
| ) | 273<br>274   | GY542          | EM BK W/O M<br>EM BK W/O M | RF13<br>RF13 | 6,193            | 28<br>28        | 1,781<br>1,781   | 3,326<br>3,326   | .53<br>.53  | COAL<br>COAL | 3,098<br>3,098   |
|   | 275          | GY 542         | EMM BK W/O                 | RF13         | 6,193            | 28              | 1,781            | 3,326            | .53         | COAL         | 3,098            |
|   |              |                |                            |              | •                |                 | •                |                  |             |              | ,                |

Table 3-11. Savings Weatherization Roofs, Kaiserslautern (continued)

|              |                     |                            | ROOF           | SQFT             | SAVINGS    | SAVINGS          | COST   |            | FUEL         | SQFT               |
|--------------|---------------------|----------------------------|----------------|------------------|------------|------------------|--------|------------|--------------|--------------------|
| BLDG         | KASERNE             | FUNCTION                   | TYPE           | BLDG             | MBTU       | US\$             | US\$   | SIR        | TYPE         | ROOF               |
| 276          | GY542               | CO HQ BLDG                 | RF13           | 4,659            | 19         | 1,205            |        | . 41       | COAL         | 2,711              |
| 277<br>278   | GY542<br>GY542      | CO HQ BLDG<br>EM BK W/O M  | RF13<br>RF13   | 4,659<br>6,193   | 19<br>28   | 1,205<br>1,781   |        | .41<br>.53 | COAL<br>COAL | 2,711<br>3,098     |
| 279          | GY542               | EM BK W/O M                | RF13           | 6,193            | 28         | 1,781            | 3,326  | .53        | COAL         | 3,098              |
| 280<br>281   | GY542<br>GY542      | E BK W/O MS<br>CO HQ BLDG  | RF13<br>RF13   | 6,193<br>4,659   | 28<br>19   | 1,781<br>1,205   |        | .53<br>.41 | COAL<br>COAL | 3,098<br>2,711     |
| 282          | GY542               | EM BK W/O M                | RF13           | 6,193            | 28         | 1,781            | 3,326  | .53        | COAL         | 3,098              |
| 283<br>284   | GY542<br>GY542      | EM BK W/O M<br>EM BK W/O M | RF13<br>RF13   | 6,193<br>6,193   | 28<br>28   | 1,781<br>1,781   |        | .53<br>.53 | COAL         | 3,098              |
| 285          | GY542               | GEN INST BL                | RF13           | 3,400            | 22         | 1,781            |        | .38        | COAL<br>COAL | 3,098<br>3,400     |
| 286          | GY542               | ADM GEN PUR                | RF13           | 3,400            | 23         | 1,511            | 3,650  | .41        | COAL         | 3,400              |
| 288<br>289   | GY542<br>GY542      | ADM GEN PUR<br>EM BK W/O M | RF13<br>RF13   | 3,035<br>6,505   | 21<br>29   | 1,349<br>1,867   |        | .41<br>.53 | COAL<br>COAL | 3,034<br>3,249     |
| 290          | GY542               | MNT SHOP                   | RF13           | 2,110            | 14         | 912              | 2,264  | .40        | COAL         | 2,108              |
| 291<br>326   | GY542<br>GY542      | GEN STOREHO<br>ELEC MNT SH | RF13<br>RF21   | 5,800<br>3,875   | 39<br>30   | 4,650<br>3,593   |        | .74<br>.22 | NO 2<br>NO 2 | 5,799              |
| 347          | GY542               | SM ARMS REP                | RF27           | 4,197            | 30         | 3,333            |        | .00        | NO 2         | 3,873<br>4,196     |
| 611<br>622   | GY 542<br>GY 542    | MSL ASY & T<br>MOTOR REP S | RF28<br>RF28   | 21,736           |            |                  |        | .00        | NO 2         | 21,724             |
| 630          | GY542               | AMMO RENV S                | RF26           | 3,228<br>13,803  |            |                  |        | .00        | NO 2<br>NO 2 | 3,303<br>14,106    |
| 695          | GY542               | CHEMISTRY L                | RF28           | 4,595            | 0.6        | 2 1 4 4          | 0      | .00        | NO 2         | 4,648              |
| 701<br>705   | GY542<br>GY542      | AMMO RENV S<br>ADM GEN PUR | RF21<br>RF21   | 3,388<br>2,010   | 26<br>16   | 3,144<br>1,919   |        | .22        | NO 2<br>NO 2 | 3,389<br>2,012     |
| 3019         | GY565               | ADM GEN PUR                | RF4            | 2,815            | 97         | 6,157            | 6,250  | .98        | COAL         | 2,937              |
| 3150<br>2859 | GY741<br>GY744      | POST CHAPEL MOTOR REP S    | RF30<br>RF8    | 12,665<br>11,111 | 288<br>193 | 34,284<br>12,251 |        | .53<br>.49 | NO 2<br>COAL | 12,664             |
| 2868         | GY744               | ENL PERS ME                | RF17           | 10,751           | 110        | 6,986            |        | .94        | COAL         | 11,663<br>5,369    |
| 2876         | GY744               | CO HQ BLDG                 | RF21           | 4,659            | 21         | 2,207            | 11,331 | .19        | NO 6         | 2,711              |
| 2877<br>2880 | GY744<br>GY744      | GEN STOREHO<br>CO HQ BLDG  | RF13<br>RF21   | 3,403<br>4,659   | 22<br>21   | 2,327<br>2,207   |        | .63<br>.19 | NO 6<br>NO 6 | 3,400<br>2,711     |
| 2882         | GY744               | RECR BLDG                  | RF21           | 3,403            | 28         | 2,856            | 14,209 | .20        | NO 6         | 3,400              |
| 2887<br>2891 | GY744<br>GY744      | CO HQ BLDG<br>CO HQ BLDG   | RF 21<br>RF 21 | 4,781<br>4,659   | 21<br>21   | 2,207<br>2,207   |        | .19<br>.19 | NO 6<br>NO 6 | 2,711              |
| 2898         | GY744               | VET FAC                    | RF13           | 2,127            | 17         | 1,792            |        | .78        | NO 6         | 2,711<br>2,130     |
| 2899<br>2901 | GY744<br>GY744      | SP SVC OFF<br>THRIFT SHOP  | RF28           | 2,867            | 1.5        | 1 562            |        | .00        | NO 6         | 2,862              |
| 2913         | GY744               | CO HQ BLDG                 | RF13<br>RF21   | 2,127<br>2,127   | 15<br>17   | 1,563<br>1,734   |        | .68<br>.19 | NO 6<br>NO 6 | 2,126<br>2,130     |
| 2915         | GY744               | CO HO BLDG                 | RF 21          | 2,127            | 17         | 1,734            | 8,903  | .19        | NO 6         | 2,130              |
| 2923<br>2926 | GY744<br>GY744      | CO HQ BLDG<br>CO HQ BLDG   | RF21<br>RF21   | 4,659<br>4,659   | 21<br>21   | 2,207<br>1,377   |        | .19<br>.12 | NO 6<br>COAL | 2,711<br>2,711     |
| 2929         | GY744               | CO HQ BLDG                 | RF 21          | 4,659            | 21         | 2,207            | 11,331 | .19        | NO 6         | 2,711              |
| 2932<br>2934 | GY744<br>GY744      | GEN INST BL<br>ADM (BANK)  | RF21<br>RF21   | 4,659            | 21         | 2,207            |        | .19        | NO 6         | 2,711              |
| 2942         | GY744               | MOTOR REP S                | RF6            | 4,659<br>4,231   | 21<br>20   | 2,207<br>2,482   |        | .19<br>.53 | NO 6<br>NO 2 | 2,711<br>4,282     |
|              |                     | HEAT SAVINGS               | MBTU           |                  |            |                  |        |            |              | 13,513             |
| TOTAL        | DOLLAR .<br>COST    | SWATINGS                   |                |                  |            |                  |        |            |              | .61,180<br>.90,008 |
| TOTAL        | SQFT                | nec.                       |                |                  |            |                  |        |            | 1,3          | 88,302             |
|              | SQFT RO<br>LOAD RED |                            |                |                  |            |                  |        |            |              | 132,176            |

3.3.8.6. Zone existing multiple use facilities to reduce energy consumption in minimal use areas.

This has been accomplished where feasible.

3.3.8.7. <u>Reschedule utilization of existing facilities.</u>
This is not feasible.

3.3.8.8. Consolidate services into permanent buildings through alteration or new construction.

This is included in future development plan.

- 3.3.8.9. Connect to district heating in order to purchase or sell energy.

  See 7.11.
- 3.3.8.10. <u>Interconnect existing power plants</u>.

  Not feasible.
- 3.3.8.11. Consolidate existing power plants where forecastable non~recurring maintenance costs can be demonstrated.

  Boilers are refurbished by community.
- 3.3.8.12. Convert to more energy efficient fuels.

  This is being done where feasible.
- 3.3.8.13. Return condensate.

  All condensate is returned.
- 3.3.8.14. Convert existing energy distribution systems to utilize more efficient medium.

This is being done where feasible.

3.3.8.15. Supplement the generation of domestic hot water through installation of a heat pump.

Not feasible.

3.3.8.16. Decentralize domestic hot water heaters.

They are decentralized.

- 3.3.8.17. <u>Control light levels automatically.</u>

  Variation in external luminance is insufficient to warrant automatic adjustment.
- 3.3.8.18. Employ spot heating in lieu of existing unit heaters.

  Spot heating is not applicable to function.
- 3.3.8.19. <u>Individual versus stairwell or area metering of military family housing.</u>

  There is no family housing.
- 3.3.8.20. Recommended preventive maintenance program procedures for high efficiency motor replacement.

  There are no low efficiency motors.
- 3.3.8.21. Install storm or energy efficient windows, double glaze existing windows, reduce window area, install translucent panels, upgrade by replacement, install thermal barriers, modify skylights.

  Not economically feasible.
- 3.3.8.22. Replace existing doors, install vestibules, air curtains and load dock seals.

New doors have been programmed where economically feasible.

- 3.4. Recommendations, Policy Changes and Actions.
- 3.4.1. Recommendations and Policy Changes.

Future consumption of energy can be reduced dramatically even with the addition of the future facilities planned in the future development plan. Careful attention should be given to operational improvements and inoperative controls. While the savings are not quantified, substantial energy savings can be realized by attention to these items.

3.4.2. <u>Actions</u>.

The ECIP and maintenance and repair projects should be implemented. The non-specific maintenance and repair projects should be implemented. The operational maintenance and repair program should be improved. The inoperative controls should be repaired.

#### 4. ENERGY AND COST SAVINGS

## 4.1. Energy Consumption Forecast.

Assuming that energy conservation projects are implemented by Spring 1987, the first fiscal year to show the results of the projects would be FY 88 when heating fuel consumption would be reduced from the level of 857,250 MBTU/YR to 458,961. This would be a reduction of 46.5 percent. Electricity consumption would be reduced by only 2,610 MWHR per year from the FY 87 level of 46,970 MWH to 44,360, a decrease of 0.56 percent. Total energy consumption would be 973,537 MBTU.

Total Consumption/SQFT = 973,537/6.5 = 149,775 BTU/SF.See Figure 4-1.

# 4.2. Forecast Energy Savings.

If the projects proposed in this report are implemented, energy consumption at Kaiserslautern will be reduced as follows:

| HEATING/FUEL                            | MBTU/YR                                 | \$/YR     |
|-----------------------------------------|-----------------------------------------|-----------|
| ======================================= | ======================================= |           |
| Weatherization                          | 167,701                                 | 826,642   |
| Heating System Modifications            | 185,343                                 | 904,243   |
| EMCS                                    | 41,520                                  | 301,925   |
| Maintenance & Repair Projects           | 3,825                                   | 17,866    |
| TOTAL                                   | 398,289                                 | 2,050,676 |
| ELECTRICITY                             | MWHRS/YR                                | \$/YR     |
| ======================================= |                                         |           |
| Lighting System Modifications           | 2,610                                   | 143,518   |



. DIAGRAM 4-1

## 4.3. ECIP Projects.

| ANNUAL SAV | 1 | ľ | V | 62 |
|------------|---|---|---|----|
|------------|---|---|---|----|

| INCREME | NT TITLE                                | COST       | MBTU    | \$US    | SIR   |
|---------|-----------------------------------------|------------|---------|---------|-------|
| ======  | ======================================= | :========= | ======= | ======= | ===== |
| Α       | Heating Systems Mod.                    | 806,790    | 185,243 | 904,937 | 14.9  |
| Α       | Lighting System Mod.                    | 1,163,065  | 30,278  | 206,575 | 1.95  |
| В       | EMCS                                    | 1,830,428  | 41,520  | 310,925 | 1.9   |
| Α       | Weatherization                          | 6,741,355  | 167,701 | 826,642 | 1.61  |

# 4.4. Projected Utility Costs.

The costs have escalated an average of approximately six percent per year since FY 75, which results in a current average of 4.25\$/MBTU for thermal and 3.16\$/MBTU for electrical energy. No separate records for different fuels are available. It is reasonable to assume that this average increase will be sustained in the short term.

#### 4.5. Schedule of Energy Conservation Projects.

# 4.5.1. ECIP Projects.

|           |                      |           | ANNUAL S | AVINGS  |       |
|-----------|----------------------|-----------|----------|---------|-------|
| INCREMENT | TITLE                | COST      | мвти     | \$US    | SIR   |
| ========  |                      |           | =======  | ======= | ===== |
| Α         | Weatherization       | 6,741,355 | 167,701  | 826,642 | 1.61  |
| Α         | Heating Systems Mod. | 806,790   | 185,243  | 904,937 | 14.9  |
| Α         | Lighting System Mod. | 1,163,065 | 30,278   | 206,575 | 1.95  |
| В         | EMCS                 | 1,830,428 | 41,520   | 310,925 | 1.9   |

## 4.5.2. Increment 'F' - Maintenance and Repair Projects.

| PROJECT               | SEE<br>PARA | \$COST | ANNUAL SA<br>MBTU | AVINGS<br>. US\$ | SIR  |
|-----------------------|-------------|--------|-------------------|------------------|------|
| Boiler Plant No. 3403 | 7.1.1.4.    | 3,224  | 137               | 1,046            | 3.87 |
| Boiler Plant No. 3054 | 7.1.1.3.    | 3,224  | 90.35             | 689              | 2.40 |

# (continued)

| PROJECT                            | SEE<br>Para | \$COST  | ANNUAL S<br>MBTU | SAVINGS<br>US\$ | SIR  |
|------------------------------------|-------------|---------|------------------|-----------------|------|
| Heat Recovery Building<br>No. 3266 |             | 6,474   | 113              | 1,180           | 1,5  |
| Boiler Plant No. 2211              | 7.1.1.1.    | 34,500  | 1,108            | 5,252           | 1.28 |
| Boiler Plant No. 3777              | 7.1.1.2.    | 129,000 | 2,377            | 9,771           | 1.06 |
| TOTAL                              |             | 176,422 | 3,825.35         | 17,866          |      |

#### 5. SUMMARY AND CONCLUSIONS

### 5.1. Summary.

The purpose of this study is to identify and financially evaluate all possible means to reduce energy consumption in compliance with the objectives set forth in the Army Facilities Energy Plan. During the first phase of the study, working with the "Building Information Schedule" (BIS), the Project Manager, Community Representative and Contractor identified a group of buildings to be physically surveyed in detail. This "sample" was to provide a basis for calculation of costs/savings proposed for similar facilities at the community.

Beginning 1 February 1983, a team consisting of an architect, mechanical engineer and electrical engineer, inspected the designated buildings. They also "walked thru" the remaining energy consuming buildings in the Community. Buildings which have no utilities such as storage shelters, or were considered small consumers (less than 2,000 square feet) were neither "surveyed" nor "walked thru". The difference between the two types of inspections is the amount of information collected. This report addresses possible energy conservation measures that should be implemented.

The Kaiserslautern Military Community consists of 13 GYs located in and nearby the City of Kaiserslautern. This community is the home of the Headquarters of the 21st Support Command, Landstuhl Medical Center, and provides a broad range of functions including vehicle maintenance, ordnance storage, communications, logistics and troop housing. GY 732, LAMC SATCOM and Heliport, GY 365 - Hill 365 and AFN Sembach were excluded from this survey because they have little manageable energy consumption.

The Kaiserslautern Community has consumed the following amount of fuel during the fiscal year of 1982 (FY 82).

8,381,799 (100.0)

| Thermal Energy:    |           |          |          | ,         |        |  |
|--------------------|-----------|----------|----------|-----------|--------|--|
| - 011 No. 2        | 184,783   | (14.2)   | 10.45    | 1,930,982 | (23.0) |  |
| - 011 No. 6        | 204,861   | (15.6)   | 7.63     | 1,563,089 | (18.6) |  |
| - Coal             | 467,606   | (36.2)   | 4.11     | 1,921,861 | (22.9) |  |
| TOTAL              | 857,250   | (66.0)   | 22.19    | 5,415,932 | (64.5) |  |
| Electrical Energy: | 443,282   | (34.0)   | 4.74     | 2,101,157 | (25.2) |  |
| TOTAL              | 1,300,532 | (100.0)  | ~~       | 7,517,089 | (89.7) |  |
| Electrical Demand  | •         |          |          | 41        | 11 4   |  |
| Charges:           | 12,353 k  | <u>W</u> | \$70./kW | 64,710    | (10.3) |  |

#### 5.2. Conclusions.

GRAND TOTAL

The Army Energy Plan's goal for 1985 is a reduction in total energy consumption of 20 percent of FY 75 consumption and a further reduction of 20 percent by FY 2000.

Kaiserslautern FY 75 consumption was 1,240,380/6.5 = 190,828 BTU/SF/YR The goals would then be:

FY 1985 -

152,662

FY 2000 ~

114,496

Kaiserslautern will not meet the FY 85 goal.

After implementation of ECIP projects, consumption will be 67 percent of FY 75 and will require a further reduction of 7 percent to achieve the FY 2000 goal.