CS217 (H): Data Structures & Algorithm Analysis (DSAA)

Lecture #2

Runtime and Asymptotic Notation

Prof. Pietro Oliveto

Department of Computer Science and Engineering

Southern University of Science and Technology (SUSTech)

olivetop@sustech.edu.cn
https://faculty.sustech.edu.cn/olivetop

Office: Room 113

Reading: Chapter 3

CSE217 (H): Data Structures & Algorithm Southern Analysis

Aims of this lecture

- To recap and simplify the runtime analysis of InsertionSort.
- To talk about growth of runtime with problem size.
- To introduce asymptotic notation (meet your Greek friends!)
- To show how to apply asymptotic notation

CSE217 (H): Data Structures & Algorithm Southern Analysis

2

Recap: Runtime of InsertionSort (1)

- (a) 1 2 3 4 5 6 5 2 4 6 1 3
- (b) 1 2 3 4 5 6 2 5 4 6 1 3
- (c) 1 2 3 4 5 6 2 4 5 6 1 3

- (d) 2 4 5 6 1 3
- (e) 1 2 3 4 5 6 3
- (f) 1 2 3 4 5 6 1 2 3 4 5 6

3

Recap: Runtime of InsertionSort (2)

$\overline{\text{InsertionSort}(A)}$		Cost	Times
1: for $j = 2$ to A.length do		c_1	n
2:	$\ker = A[j]$	c_2	n-1
3:	// Insert $A[j]$ into	C ₄	n-1
4:	i = j - 1	c ₅	$t_2 + t_3 + \dots = \sum_{j=1}^{n} t_j$
5:	while $i > 0$ and $A[i] > \text{key do}$		J=2
6:	A[i+1] = A[i]	<i>c</i> ₆	$(t_2-1) + (t_3-1) + \dots = \sum_{j=2}^{n} (t_j-1)$
7:	i = i - 1	<i>c</i> ₇	$(t_2-1) + (t_3-1) + \dots = \sum_{i=3}^{n} (t_i-1)$
8:	A[i+1] = key)-2
-		c_8	n-1

Define t_j as the number of times the while loop is executed for that j.

Recap: Runtime of InsertionSort (3)

General formula:

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8(n-1)$$

• Best case simplifies to T(n) = a n + b

for constants a > 0, b composed of c_1 , c_2 , etc.

- A linear function in n.
- Worst case simplifies to $T(n) = a n^2 + b n + c$

for constants a > 0, b, c composed of c_1 , c_2 , etc.

- A quadratic function in n.

CSE217 (H): Data Structures & Algorithm Southern Analysis

5

7

Comparison of two runtimes

- Let's compare two algorithms:
 - Algorithm A has runtime $2n^2$
 - Algorithm B has runtime $50n\log n$

Which one would you prefer?

Using Wolfram Alpha

On best case and worst case

- The running time of every instance is sandwiched between the best case and the worst case running time.
- ? Best case vs. worst case which is more important?
- Average case: performance on "average" input.
 - For sorting: assume each permutation is equally likely
 - For other problems it's not always clear what an average input is
- Why worst case is important:
 - Guarantee that the algorithm will never take longer
 - For some algorithms, the worst case is quite frequent
 - Often (not always) the average case is as bad as the worst case

CSE217 (H): Data Structures & Algorithm Southern Analysis

6

Observations

- The biggest-order term (n^2 vs. $n \log n$) dominates the runtime as n grows.
- How the runtime scales with n is more important than constant factors (for large n).
- Additive smaller order terms (e.g. "+10n" in " $2n^2 + 10n$ ") become **irrelevant** for large n.
- Care about large n, small problems (small n) are easy anyway.
- Recommendations:
 - If your problem is always very small, use the simplest algorithm.
 - Otherwise, use most efficient algorithm (best growth in n)

\triangleright Asymptotic Notation: Θ

- Idea: capture asymptotic growth
- Ignore constant factors
- Ignore small-order terms
- Ignore "blips" for tiny n
- Intuition: " Θ " captures fastest growing term e.g. $2n^2 + 3n = \Theta(n^2)$.
- More details in the book, Section 3.1.

CSE217 (H): Data Structures & Algorithm Southern Analysis

9

11

\triangleright Example for Θ notation

• Example: $\frac{3}{2}n^2 + \frac{7}{2}n - 4 = \Theta(n^2)$.

To show this, we need to find constants c_1 , c_2 , n_0 such that for all

$$n \ge n_0$$
 $0 \le c_1 n^2 \le \frac{3}{2} n^2 + \frac{7}{2} n - 4 \le c_2 n^2$

- Let's divide by n^2 : $0 \leq c_1 \leq \frac{3}{2} + \frac{7}{2n} \frac{4}{n^2} \leq c_2$
- This is true, e.g., for $c_1 = \frac{3}{2}$, $c_2 = 2$, $n_0 = 7$. (Other choices are possible so long as the inequalities hold.)

ightharpoonup Definition of $\Theta ig(g(n)ig)$

For a given (non-negative) function g(n) we denote by $\Theta \big(g(n) \big)$ the set of functions

$$\Theta(g(n)) = \{f(n): \text{ there exist constants } 0 < c_1 \le c_2 \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$$

A function f(n) belongs to the set $\Theta(g(n))$ if it can be "sandwiched" between $c_1g(n)$ and $c_2g(n)$, for sufficiently large n.

We could write: $f(n) \in \Theta(g(n))$.

However, the common notation is: $f(n) = \Theta(g(n))$, the equality being read from left to right!

We say that g(n) is an **asymptotically tight bound** for f(n).

CSE217 (H): Data Structures & Algorithm Southern Analysis

10

Examples (1)

Task: find constants $c_1, c_2, n_0 > 0$ from definition of Θ .

- $2n^2 = \Theta(n^2)$ since for all $n \ge n_0$ $0 \le c_1 n^2 \le 2n^2 \le c_2 n^2$ when choosing, say, $c_1 = 1, c_2 = 2, n_0 = 1$
- $2n^2 10n = \Theta(n^2)$ since for all $n \ge n_0$ $0 \le c_1 n^2 \le 2n^2 - 10n \le c_2 n^2$ when choosing, say, $c_1 = 1, c_2 = 2, n_0 = 10$ (as after division by n^2 we have $1 \le 2 - 10/n \le 2$ for $n \ge 10$)
- $50n \log n = \Theta(n \log n)$ since for all $n \ge n_0$ $0 \le c_1 n \log n \le 50n \log n \le c_2 n \log n$ when choosing, say, $c_1 = 50, c_2 = 50, n_0 = 1$

Examples (2)

- but: $2n^2 \neq \Theta(n)$ since there is no constant c_2 such that $2n^2 \leq c_2 n$ for all $n \geq n_0$.
- and: $2n^2 \neq \Theta(n^3)$ since there is no constant c_1 such that $2n^2 \geq c_1 n^3$ for all $n \geq n_0$.

CSE217 (H): Data Structures & Algorithm Southern Analysis

13

15

ightharpoonup Definition of Oig(g(n)ig), $\Omegaig(g(n)ig)$

For a given (non-negative) function g(n) we denote by O(g(n)) and $\Omega(g(n))$ the following sets of functions:

$$O(g(n)) = \{f(n) : \text{ there exist constants } 0 < c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}$$

$$\Omega(g(n)) = \{f(n) : \text{ there exist constants } 0 < c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$$

O and Ω are weaker than Θ . Together, they give Θ :

For any f(n) and g(n) we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

\triangleright Asymptotic Notation: Θ , O, Ω

- Θ expresses tight upper and lower bounds on f(n).
- Use O ("big-Oh") if we only want to express an upper bound.
- Use Ω if we only want to express a lower bound.

CSE217 (H): Data Structures & Algorithm Southern Analysis

> Faster and slower growth

• Little-Oh "o" and little omega " ω " indicate strictly slower and faster growth, respectively:

$$f(n) = o(g(n))$$
 if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

$$f(n) = \omega(g(n))$$
 if $g(n) = o(f(n))$

> Asymptotic Notation: Overview

Notation	Meaning	Analogy
f(n) = O(g(n))	f grows at most as fast as g	" $f \leq g$ "
$f(n) = \Omega(g(n))$	f grows at least as fast as g	" $f \geq g$ "
$f(n) = \Theta(g(n))$	f grows as fast as g	" $f = g$ "
f(n) = o(g(n))	f grows slower than g	" $f < g$ "
$f(n) = \omega(g(n))$	f grows faster than g	" $f > g$ "

- Equalities are to be read from left to right think of f(n)=O(g(n)) as actually meaning $f(n)\in O(g(n))$
- So $n = O(n^2)$ is true but $O(n^2) = n$ is false!
- We can chain equalities, e. g. $n=O(n)=O(n^2)$

CSE217 (H): Data Structures & Algorithm Southern Analysis

17

Examples

Examples of using the various symbols:

- 2n + 1 = O(n)
- 42 = O(n) (but not $\Theta(n)$!)
- $n-9=\Omega(n)$
- $n^2 + n = \Omega(n)$ (but neither O(n), nor $\Theta(n)$!)
- $n^3 = o(n^4) = o(2^n)$
- $\sqrt{n} = \omega(\log n)$

Common runtimes

$\Theta(1)$	constant time
$\Theta(\log n)$	logarithmic time
$\Theta(n)$	linear time
$\Theta(n^2)$	quadratic time
$\Theta(n^3)$	cubic time
n^k for $k = \Theta(1)$	polynomial time
2^n	exponential time

- Every polynomial of $\log n$ grows strictly slower than every polynomial of n, e. g. $(\log n)^{100}=o(n^{0.01})$
- Every polynomial of n grows strictly slower than every exponential function $2^{n^{\varepsilon}}$, e. g. $n^{100} = o(2^{n^{0.01}})$

CSE217 (H): Data Structures & Algorithm Southern Analysis

18

How to read asymptotic notation

How to read "The runtime of Algorithm XYZ is $O(n^2)$ "?

"The runtime of Algorithm XYZ is some (anonymous) function that grows at most as fast as n^2 ."

Or, more briefly,

"The runtime of Algorithm XYZ grows at most as fast as n^2 ."

Think of asymptotic notation as a **placeholder** for some anonymous function from the specified class.

- "runtime is $\Theta(n^2)$ " \rightarrow "runtime grows as fast as n^2 "
- "runtime is $\Omega(n^2)$ " \rightarrow "runtime grows at least as fast as n^2 "
- "runtime is $o(n^2)$ " \rightarrow "runtime grows slower than n^2 "
- "runtime is $\omega(n^2)$ " \rightarrow "runtime grows faster than n^2 "

19

Asymptotic runtime of InsertionSort

• The runtime of InsertionSort is ...

$$\Omega(n)$$
 and $O(n^2)$

(grows at least as fast as n and at most as fast as n^2)

- This is because:
 - The best-case runtime is $\Theta(n)$
 - The worst-case runtime is $\,\Theta(n^2)\,$
 - So for every input, the runtime is at least $\,\Omega(n)$ and at most $\,O(n^2)$

CSE217 (H): Data Structures & Algorithm Southern Analysis

21

Rules to make runtime analysis simple

- For two non-negative functions f(n), g(n):
 - 1. Slower functions can be ignored:

$$f(n) + g(n) = \Theta(\max(f(n), g(n)))$$

2. Asymptotic times can be multiplied:

$$\Theta(f(n)) \cdot \Theta(g(n)) = \Theta(f(n) \cdot g(n))$$

Foo					
1:	foo				
2:	foo				
3:	for $i = 1$ to n do				
4:	foo				
5:	foo				

foo

Example of how to use this:

- First two lines take time $\Theta(1)$
- One iteration of the for loop takes time $\Theta(1)$
- The for loop is executed $\Theta(n)$ times
- · Total time is:

$$\Theta(1) + \Theta(n) \cdot \Theta(1) = \Theta(n).$$

\triangleright How to find c_1 , c_2 , n_0

• It is often helpful (though not compulsory) to divide by g(n), e.g.

$$c_1 n \le 10n + 5 \le c_2 n \quad \Leftrightarrow \quad c_1 \le 10 + \frac{5}{n} \le c_2$$

Then try c_1 , c_2 sandwiching the constant term, e.g. $c_1 = 10$, $c_2 = 15$.

- Remember that $c_1>0$: to show that $1-\frac{3}{n}=\Omega(1)$ we cannot use $n_0=3$ as then there is no suitable $c_1>0$! However, say, $n_0=6$ and $c_1=\frac{1}{2}$ works as $1/2\leq 1-\frac{3}{n}$ for all $n\geq 6$.
- Also remember that inequalities need to hold for all $n \geq n_0$. For instance, to show $1-\frac{3}{n}=O(1)$ we cannot use $c_2=\frac{1}{2}$ as $1-\frac{3}{n}\leq \frac{1}{2}$ is false for n>6! Need to choose $c_2\geq 1$ (e.g. $c_2=1$).
- No need to invest time to find the best possible constants.

CSE217 (H): Data Structures & Algorithm Southern Analysis

22

Runtime of InsertionSort

${\tt InsertionSort}(A)$

- 1: for j = 2 to A.length do
- 2: $\ker = A[j]$
- 3: $// \text{ Insert } A[j] \text{ into } \dots$
- 4: i = j 1
- 5: **while** i > 0 and A[i] > key do
- 6: A[i+1] = A[i]
- 7: i = i 1
- 8: $A[i+1] = \ker$

Define t_j as the number of times the while loop is executed for that j.

Asymptotic Notation: Comparing Sets

- Is $2n^2+\Theta(n)=\Theta(n^2)$ true or false? (Think of $\Theta(n)$ as a placeholder for an anonymous function from the set $\Theta(n)$ of all functions that grow linearly in n.)
- Such a statement is true if no matter how the anonymous functions are chosen on the left of the equal sign, there is a way to choose the anonymous functions on the right of the equal sign to make the equation valid.

25

- $\bullet \quad \text{Example: is} \ \ O(n) = O(n^2) \ \text{?}$
- True, because $\ O(n)\subseteq O(n^2)$ Example: is $\ O(n^2)=O(n)$?
 - False, for example n^2 is in $O(n^2)$ but not in O(n)!

Summary

- We may consider best-case, average-case, and worst-case runtime.
 Often the focus is on worst-case runtime.
- The most important aspect of efficiency is **scalability**: how the runtime grows with the input size, n.
 - Asymptotic perspective: $n \ge n_0$ (smaller problems are easy)
 - Scalability is more important than constant factors
 - Small-order terms become more insignificant as n grows.
- Asymptotic notation $(O, \Omega, \Theta, o, \omega)$ hides constant factors and small-order terms, revealing asymptotic runtimes.

• Asymptotic notation refers to sets of functions, but for convenience is

written with equalities read from left to right.