线性代数 A2 期中考试

2024年11月6日9:45—11:45,5301教室

姓名	学号	得分
	•	•

说明:禁止使用课本习题或其他参考书中的结论.

一、填空题. 每空 5 分, 共 25 分. 结果需化简, 写在空格处.

1. 设
$$A = \begin{pmatrix} 2a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$
 是正定的,则 a 的取值范围是 ______.

2.
$$\[\mathcal{U} A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}, \ x \in \mathbb{R}^{3 \times 1}, \ x^T x = 1, \ \text{\mathbb{M}} \ x^T A x \ \text{\emptyset} \ \text{\mathbb{R}} \ \text$$

- 3. 实二次型 $Q(x_1,\cdots,x_{2024})=\sum\limits_{i=1}^{2023}x_ix_{i+1}$ 的正、负惯性指数分别是 ______.
- 4. 设实线性空间 V 中向量 e_1, e_2, e_3, e_4 线性无关,则向量组 $\{e_i + e_j \mid 1 \le i < j \le 4\}$ 共有______ 个极大线性无关向量组.

5. 从
$$\mathbb{R}^{2\times 2}$$
 的基 $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ 到基 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, 的过渡矩阵为 ______.

二、简答题. 每题 6 分, 共 30 分. 判断下列叙述是否正确, 并简要说明理由.

- 1. 设 A 是 n 阶对称实方阵, $\mathbb{R}^{n\times 1}$ 的子空间 $V\subset\{x\in\mathbb{R}^{n\times 1}\mid x^TAx=0\}$,则 $\dim V\leqslant n-\mathrm{rank}(A)$.
- 2. 设 $A \in \mathbb{R}^{n \times n}$, V_1 是 A 的行向量组生成的 \mathbb{R}^n 的子空间, V_2 是 A 的列向量组生成的 \mathbb{R}^n 的子空间,则 $V_1 = V_2$.
- 3. 设 U 是线性空间 V 的子空间,并且 $U \neq V$,则 U 与 V 不同构.
- 4. 设 V_1, V_2, V_3 是线性空间 V 的子空间,则 $(V_1 + V_3) \cap (V_2 + V_3) = (V_1 \cap V_2) + V_3$.
- 5. 设 V_1, V_2, V_3 是线性空间 V 的子空间,并且 $V_1 + V_2, V_1 + V_3, V_2 + V_3$ 都是直和,则 $V_1 + V_2 + V_3$ 是直和.

三、解答题. 每题 15 分, 共 45 分. 需给出详细解答和证明过程.

- 1. 设 n 阶对称实方阵 $A=(a_{ij})$ 是正定的. 证明: $\det(A)\leqslant \prod_{1\leqslant k\leqslant n}a_{kk}$. 并给出等号成立的充分必要条件.
- 2. 设 $S_1 = \{\sin x, \sin(2x), \dots, \sin(5x)\}$, $S_2 = \{\sin x, \sin^2 x, \dots, \sin^5 x\}$ 是实线性空间 $\mathscr{C}[0, 2\pi]$ 中向量组, $V_1 = \operatorname{Span}(S_1)$, $V_2 = \operatorname{Span}(S_2)$.分别求 $V_1 \setminus V_2 \setminus V_1 \cap V_2$ 的基和维数.
- 3. 设 V_1, V_2 是线性空间 V 的子空间, U 是 $V_1 \cap V_2$ 的子空间. 证明:
 - (1) $(V_1 + V_2)/U = (V_1/U) + (V_2/U)$.
 - (2) $(V_1 + V_2)/U = (V_1/U) \oplus (V_2/U) \stackrel{\text{def}}{=} \mathbb{E}[X] \stackrel{\text{def}}{=} V_1 \cap V_2 = U.$

参考答案与评分标准

- = 每小题判断 1 分,理由 5 分.
 - 1. 错误. 例如, A = diag(1, -1, 0), $V = Span((1, 1, 0)^T, (0, 0, 1)^T)$.
 - 2. 错误. 例如, $A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $V_1 \neq V_2$.
 - 3. 错误. 例如, $V = \mathbb{F}[x]$ 与 $U = \{xf(x) \mid f \in V\}$ 同构.
 - 4. 错误. 例如,设 e_1, e_2, e_3, e_4 线性无关, $V_1 = \operatorname{Span}(e_1, e_2)$, $V_2 = \operatorname{Span}(e_3, e_4)$, $V_3 = \operatorname{Span}(e_1 + e_3, e_2 + e_4)$,则 $V_1 + V_3 = V_2 + V_3 = \operatorname{Span}(e_1, e_2, e_3, e_4)$, $V_1 \cap V_2 = O$.
 - 5. 错误. 例如,设 e_1, e_2 线性无关, $V_1 = \text{Span}(e_1)$, $V_2 = \text{Span}(e_2)$, $V_3 = \text{Span}(e_1 + e_2)$.

三、

1. 设
$$A = \begin{pmatrix} A_1 & \alpha \\ \alpha^T & a_{nn} \end{pmatrix}$$
. 由 A 正定,可得 $\det(A) > 0$, A_1 正定, A_1^{-1} 正定. (5 分)

故
$$\det(A) = \det(A_1)(a_{nn} - \alpha^T A_1^{-1} \alpha) \leqslant \det(A_1)a_{nn}$$
, 等号成立 $\Leftrightarrow \alpha = \mathbf{0}$. (5 分)

对
$$n$$
 归纳,得 $\det(A) \leqslant a_{11} \cdots a_{nn}$,等号成立 $\Leftrightarrow A$ 是对角阵. (5 分)

2. 设
$$\sum_{k=1}^{5} a_k \sin(kx) = 0$$
. 多次求导,得 $\sum_{k=1}^{5} k^t a_k \sin(kx) = 0$, $t = 0, 2, 4, 6, 8$. 解得 $a_k = 0$, $\forall k$. 故 S_1 线性无关,是 V_1 的基, $\dim V_1 = 5$. (3 分)

设 $\sum_{k=1}^{5} b_k \sin^k x = 0$. 取 $x = x_1, \dots, x_5$ 使得 $\sin x_1, \dots, \sin x_5$ 两两不同.

$$\kappa=1$$

解得 $b_k=0$, $\forall k$. 故 S_2 线性无关,是 V_2 的基, $\dim V_2=5$. (3 分)

 $\pm \sin(3x) = 3\sin x - 4\sin^3 x$, $\sin(5x) = 5\sin x - 20\sin^3 x + 16\sin^5 x$,

可得
$$\operatorname{Span}(\sin x, \sin(3x), \sin(5x)) = \operatorname{Span}(\sin x, \sin^3 x, \sin^5 x) \subset V_1 \cap V_2.$$
 (3 分)

由 $\sin x$, $\sin(2x)$, \cdots , $\sin(5x)$ 都是奇函数, $\sin^2 x$, $\sin^4 x$ 都是偶函数,

可得
$$S_1 \cup \{\sin^2 x, \sin^4 x\}$$
 线性无关,是 $V_1 + V_2$ 的基, $\dim(V_1 + V_2) = 7$. (3 分)

根据维数定理,
$$\dim(V_1 \cap V_2) = 3$$
. 故 $\{\sin x, \sin(3x), \sin(5x)\}\$ 是 $V_1 \cap V_2$ 的基. (3 分)

- 3. (1) 由 $V_i/U \subset (V_1+V_2)/U$,得 $(V_1/U)+(V_2/U) \subset (V_1+V_2)/U$. 对于任意 $[\alpha] \in (V_1+V_2)/U$,由 $\alpha = v_1+v_2$,其中 $v_i \in V_i$,得 $[\alpha] = [v_1]+[v_2] \in (V_1/U)+(V_2/U)$. 综上, $(V_1/U)+(V_2/U) = (V_1+V_2)/U$.
 - (2) 对于任意 $[\alpha] \in (V_1/U) \cap (V_2/U)$,由 $[\alpha] \in V_i/U$,得 $\alpha \in V_i$,从而 $\alpha \in V_1 \cap V_2$. 反之,若 $\alpha \in V_1 \cap V_2$,则 $[\alpha] \in (V_1/U) \cap (V_2/U)$.

故
$$(V_1/U) + (V_2/U)$$
 是直和 \Leftrightarrow $(V_1/U) \cap (V_2/U) = (V_1 \cap V_2)/U = O \Leftrightarrow V_1 \cap V_2 = U$. (3 分)