Filière : AP1

Module : Algèbre linéaire Année Universitaire : 20/21.

Feuille de TD $n^{\circ}2$

Exercice 1. Soit

$$A = \begin{pmatrix} x - y - z & 2x & 2x \\ 2y & y - z - x & 2y \\ 2z & 2z & z - x - y \end{pmatrix}.$$

Montrer que le déterminant de A est $(x+y+z)^3$.

Exercice 2. Soit $\lambda \in \mathbb{R}$ et soit

$$A_{\lambda} = \left(\begin{array}{cccc} \lambda & 1 & 1 & 1 \\ 1 & \lambda & 1 & 1 \\ 1 & 1 & \lambda & 1 \\ 1 & 1 & 1 & \lambda \end{array}\right).$$

- 1. Calculer le déterminant de la matrice A_{λ} , puis montrer que A_{λ} est inversible si et seulement si $(\lambda \neq -3 \text{ et } \lambda \neq 1)$.
- 2. Discuter suivant le paramètre λ la valeur du rang de A_{λ} .

Exercice 3. Soit le déterminant d'ordre n suivant :

$$\Delta_n = \begin{vmatrix} 2 & 1 & 0 & \dots & 0 \\ 1 & 2 & 1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & 1 \\ 0 & \dots & \dots & 0 & 1 & 2 \end{vmatrix}.$$

- 1. Exprimer Δ_n en fonction de Δ_{n-1} et Δ_{n-2} .
- 2. En déduire la différence $\Delta_n \Delta_{n-1}$, puis calculer Δ_n .

Exercice 4. (Déterminant de Vandermonde)

Soient $x_1, x_2, \ldots, x_n \in \mathbb{C}$. Calculer le déterminant suivant :

$$V_n = \begin{vmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{vmatrix}.$$

Application : Calculer le déterminant de la matrice (i^j) , pour $i=1,\ldots,n$ et $j=1,\ldots,n$.

Exercice 5. Inverser les matrices suivantes par la méthode des cofacteurs

$$A = \begin{pmatrix} 0 & 2 \\ 1 & 4 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 2 & 1 & -1 \\ -1 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix}.$$