Financial market simulation on a scale-free TPI network

Scale-free <u>Trade</u> <u>Position</u> <u>Influence</u> (**TPI**) Network Model

- **Information**: propagated over large distances throughout a network of market participants who make trading decisions under **mutual influence**.
- Barabási-Albert Scale-free network: network created with preferential attachment. Few high degree nodes (Hedge Funds) and many low degree ones (smaller traders).
- **TPI interaction**: large nodes with many connections represent influential and institutionalized traders. Smaller traders will determine and update their market positions (buy/sell) influenced by positions of the neighbours.
- System dynamics: relationship in financial markets are non-linear and small local changes can lead to large, global effects.
- Feedback loop: avalanches emerge as changes in market price affect trading behavior, which in turn affects the market price again.

Network definition

Biondo et al. (2015) proposed a **Small World** network. However, it presents some major shortcomings:

- Spatial nature of the relationships
- No meaningful leader in the network
- High concentration of informed traders

FIG. 1. (Color online) An example of the 2D small world lattice adopted in our model (with n=40). Traders are distributed on a square network where short- and long-distance links are visible. Agents are coloured differently in order to represent their levels of information: the brighter a trader is, the more informed she is. Initial levels of information are distributed randomly. See text for further details.

Biondo et al. (2015)

Network composition

In our simulations we use a total of N_{nodes} = 1000. They are comprised of:

Hedge funds

10% of total population. They follow a precise strategy dictated by a target profit for each trade.

Influenced traders

65% of the total population.

Random traders

25% of the total population.

Market price & Trading volumes

At each timestep the market price is determined by the following formula:

$$P = \eta * (V_B - V_S) * \chi$$

where V_B and V_S are the buy and sell volumes, respectively, η is a scaling factor, and χ is an exponentially distributed random variable with expected value

$$\lambda = \Delta = |V_B - V_S|$$

The size of each node's position (i.e. the trade size) is a uniformly distributed random variable

$$S \sim U(a,b)$$

Where a,b represent respectively the minimum and the maximum trade size of the node's class.

Market price behavior

Sample size:

192 different initial conditions1.920.000 simulated time steps

Research questions:

- How can we identify avalanches in the price?
- Which aspects of the market dynamics exhibit self-organized criticality?
- Is a simple TPI network sufficient to re-create a stylized-factual market?

Stylized facts

Stylized facts are well-known facts found in any real world market.

To assess these facts on our simulated market we measure:

- Returns distribution
- Squared returns (volatility clustering)
- Autocorrelation of returns and squared returns

a) Returns distribution

(c) Returns ACF

(b) Squared returns time series

(d) Squared returns ACF

Detect avalanches in the market

We used wavelet analysis as inspired by Bartolozzi et al. (2005)

Why Wavelets?

Financial markets show irregular, bursty activity

Wavelet Basics

- Allow time-scale decomposition of data using a localized function called the "mother wavelet"
- Wavelet transform generates coefficients indicating how well the data matches the wavelet at different time steps and scales
- Large coefficients represent high-activity, small coefficients correspond to stable market behavior

Filtering and reconstruct signal

- Coefficients below a threshold are set to zero, removing noise from the time series
- Inverse wavelet transform reconstructs a smoothed version of the original signal

Detect avalanches in the data

- Residual signal: difference between the original and filtered data
- Avalanches: detected as regions in which the residuals are larger than a small cut-off
- Avalanches are characterized by size, duration and laminar times
- ~6000 avalanches identified

Avalanches sizes

Power-law distribution

Avalanches inter-times

Power-law distribution

(a) Bartolozzi et al. (2005)

Avalanches durations

The fitted curve indicates an **exponential decay**.

Central Limit Theorem: avalanches durations result from the sum of many small independent / weakly correlated contributions

Discussion & Conclusion

- Our simulated market shows quasi-SOC behaviour, as in Bartolozzi et al. (2015). "Memoryless"?
- Correlations over time do not allow the system to fully self-organize into a memoryless state.

Future directions:

- fitting this model to real market data;
- change influence logic between nodes, and/or modify heterogeneity and composition within network;
- evaluate the impact of **regulations** on market dynamics, such as limits on hedge fund trading volumes.

Thank you!

References

M. Bartolozzi, A. W. Thomas, 2004, Stochastic Cellular Automata Model for Stock Market Dynamics, Physical Review E 69(4 Pt 2):046112, Special Research Centre for the Subatomic Structure of Matter (CSSM), University of Adelaide,

https://www.researchgate.net/publication/8537791 Stochastic Cellular Automata Model for Stock Mark et Dynamics

Jean-Philippe Bouchaud, 2024, The Self-Organized Criticality Paradigm in Economics & Finance, Capital Fund Management & Academie des Sciences, https://arxiv.org/abs/2407.10284

Aleksei Pastushkov, 2024, Market efficiency, informational asymmetry and pseudo-collusion of adaptively learning agents, Department of Economics, Higher School of Economics, Moscow, Russia, https://arxiv.org/abs/2411.05032