UMass Boston

Capacitor Series and Parallel Quick Sheet

Print L	ast Name giftakis Print First Name Benjamin
	nTA
Lab Partner	
(1)	<u>Measured values</u> of R_1 , C_1 and C_2 . C_1 is already connected to R_1 . Use the $1\mu F$ range on the multimeter when measuring capacitance.
	$R_1 = \underbrace{ \ \ 34.96 \ \text{kilohms} \ \ R_g = \underbrace{ \ \ .05 \ \text{kilohms} \ \ }_{\ \ R} = R_1 + R_g = \underbrace{ \ \ 35.01 \ \text{kilohms} }_{\ \ R}$
	$C_1 = \underline{.104 \text{ uF}}$ $C_2 = \underline{.099 \text{ uF}}$ (Three numbers after the decimal point.)
(2)	Using the slope from Excel and equation 9, calculate the capacitance of the first capacitor C_1 . Calculate the % error, where the accepted value of C_1 is $0.10\mu F$.
	Slope = 3.8361 Enter your result to $\underline{4}$ numbers after the decimal point.
	$C_1 = 0.1097$ µF (4 numbers after the decimal point.)
	% error = 5.49 (2 numbers after the decimal point.)
(3)	Enter your value of the half time (2 numbers after the decimal point) for the parallel and the series capacitor connects, and use these values to calculate $C_{parallel}$ and C_{series} . Enter your results for capacitors to 3 numbers after the decimal point, and show your calculations on the back of this page.
	$t_{parallel} = \underline{4.900}$ msec $t_{series} = \underline{1.224}$ msec
	$C_{parallel} = \underline{.202} \qquad \mu F \qquad C_{series} = \underline{.051} \qquad \mu F$
(4)	Can the resistance of the function generator be ignored in this experiment? Use 5% as a limit for this problem.
	Here , % error = $(R - R_1 / R_1)*100\%$ or, % error = $(R_g / R_1)*100\%$
	% error = $.14\%$ (2 numbers after the decimal point.)

Use your experimental values of C_1 and C_{series} to calculate C_2 . Enter your result to 3 numbers after the decimal point, and <u>show your calculations</u>.

 $C_2 = .098$ µF (3 numbers after the decimal point.)