Работа 5.1

Исследования резонансного поглощения γ -квантов

Описание работы: С помощью метода доплеровского сдвига мессбауэровских линий испускания и поглощения исследуется резонансное поглощение квантов, испускаемых ядрами олова ^{199}Sn при комнатной температуре. Определяется положение максимума резонансного поглощения, его величина , а так же экспериментальная ширина линии $\Gamma_{
m экс}$.

Теоретическое введение

Испускание и поглощение в свободных атомах

Нуклоны (нейтроны и протоны) в атомном ядре, как и электроны в атоме, могут находиться в различных дискретных энергетических состояниях, или, как говорят, на различных энергетических уровнях. Самый низкий из уровней называется основным, остальные носят название возбужденных. Ядра, находящиеся в возбужденных состояниях, могут переходить на более низкие энергетические уровни, в том числе и на основной уровень. Такие переходы происходят самопроизвольно (спонтанно). Освобождающаяся энергия уносится фотоном. Так возникает γ -излучение.

Ядра атомов могут не только испускать, но и поглощать фотоны. Если попадающий в атомное ядро фотон имеет энергию, равную разности энергий между основным и каким-либо возбужденным состояниями, то ядро может поглотить фотон и перейти в соответствующее возбужденное состояние. Этот процесс возможен лишь для γ -лучей определенных энергий и носит, таким образом, резонансный характер.

На первый взгляд резонансное поглощение γ -лучей должно представлять собой распространенное и легко наблюдаемое явление. Казалось бы, для его обнаружения достаточно пропустить поток γ -лучей, испущенных радиоактивным источником, через поглотитель, содержащий те же ядра в невозбужденном состоянии. На самом деле это не так. Дело в том, что энергия E_{γ} , уносимая γ -квантом, оказывается меньше энергии E_{0} перехода между уровнями. Небольшая, но вполне заметная доля энергии уносится ядром, которое вследствие отдачи начинает двигаться в сторону, противоположную направлению вылета γ -кванта.

При испускании фотона ядро приобретает энергию отдачи

$$R = \frac{p^2}{2M} = \frac{E_\gamma^2}{2Mc^2}$$

Для ядра $^{119}{
m Sn}$, который используется в работе,

 $E_0 \simeq E_\gamma = 23,8$ кэВ, $R \simeq 2,5 \cdot 10^{-3}$ эВ $\gg \Gamma/2 \simeq 3 \cdot 10^{-8}$ эВ, где Γ --- естественная ширина линии. Из-за такой разницы в порядках величин получается, что при смещении на величину $\pm R$ не перекрываются. Однако, это можно компенсировать эффектом Доплера, который возникает из-за теплового движения ядер. Для этого ядра должны двигаться относительно друг друга со скоростью

$$V = c \frac{2R}{E_{\gamma}}$$

Это примерно 60 м/с для 119 \$sn. Из термодинамических соображений оценим скорость движения ядра v

$$\frac{Mv^2}{2} = \frac{kT}{2} v = \sqrt{\frac{kT}{M}}$$

Тогда величину D доплеровского "<уширения"> линии можно оценить как

$$D = \frac{v}{c}E_{\gamma} = \sqrt{2RkT}$$

При комнатной температуре для 119 Sn эта величина будет примерно равна $1, 5 \cdot 10^{-2}$ эВ, что на порядок больше R. Происходит перекрытие линий испускания и поглощения вследствие доплеровского уширения. Это обеспечивает возможность резонансного поглощения гаммалучей.

Испускание и поглощение в твердых телах

Совсем иначе обстоит дело в твердых телах --- в тех веществах с кристаллической решеткой, у которых энергия связи .между атомами в решетке больше энергии отдачи. В таком случае при испускании/поглощении импульс в том или ином виде передается всем атомам в решетке, что часто вызвает ее колебания. Можно также сказать, что создаются кванты звуковых колебаний --- фононы.

В данной работе изучается γ -квантов без создания фононов (звуковых колебаний). Его вероятность выражается формулой

$$f = \exp{-\frac{4\pi\langle u^2 \rangle}{\lambda^2}}$$

где $\langle u^2 \rangle$ --- среднеквадратичное смещение ядер в процессе тепловых колебаний решетки (в направлении вылета γ -кванта), λ --- длина волны γ -излучения. Таким образом, вероятность упругого испускания (и поглощения) γ -квантов уменьшается с температурой (с ростом $\langle u^2 \rangle$) и с ростом энергии перехода (с уменьшением длины волны λ).

Расчеты показывают, что для наблюдения эффекта энергия фотонов должна быть порядка 200 кэВ. Температурный порог может быть разным; в изучаемых нами ядрах олова ¹¹⁹ Sn в соединении BaSnO₃ это возможно и при комнатной температуре. Для наблюдения эффекта гамма-излучение сначала пропускается через резонансный поглотитель со стабильными ядрами ¹¹⁹ Sn. Пройдя через него, излучение регистрируется сцинтилляционным спектрометром.

Мессбауэровская линия очень узка, и для наблюдения резонанса хватает скорости порядка миллиметра в секунду.

Рис. 3. Спектр упругого резонансного поглощения γ-квантов. Источник и поглотитель находятся в идентичных кристаллических решетках. Неупругое поглощение обусловлено главным образом взаимодействием γ-лучей с атомными электронами

Вообще говоря, при идентичных кристаллических решетках, линия испускания полностью перекрывается с линией поглощения, и максимальное поглощение наблюдается при нулевой скорости. Однако в химических сплавах (как наш BaSnO₃) из-за влияния электростатических сил происходит смещение максимума поглощения, и его можно "<поймать"> при отличной от нуля скорости. Такое смещение называется \textbf{химическим сдвигом}. Его можно рассчитать по формуле

$$v_p = \frac{\Delta E}{E_0} c$$

Для подсчета "<амплитуды"> эффекта Мессбауэра обычно определяется безразмерная величина

$$\epsilon(v) = \frac{N(\infty) - N(v)}{N(\infty) - N_{\phi}}$$

где N(v) --- скорость счета квантов, прошедших через поглотитель при некоторой скорости v, $N(\infty)$ --- скорость счета квантов при достаточно большой скорости, когда резонансное поглощение отсутствует, N_{Φ} --- скорость счета радиоактивного фона.

Измеряемая на опыте ширина резонансной линии $\Gamma_{
m экc}$ --- результат наложения линий источника и поглотителя. При тонких поглотителях и источниках и при отсутствии вибраций ширина линии равна удвоенной естественной ширине 2Γ .

Кривая на рис.3 задается формулой Брейта-Вигнера (лоренцева кривая):

$$\sigma(E) \propto \frac{(\Gamma/2)^2}{(E - E_0)^2 + (\Gamma/2)^2}$$

Экспериментальная установка

Р и с. 4. Блок-схема установки для наблюдения эффекта Мессбауэра: 9 — эксцентрик, C — сцинтилляционный кристалл NaI(Tl), Y — усилитель, AA — одноканальный амилитудный анализатор, ЭВМ — нерсональный компьютер, 3Γ — звуковой генератор, РД-09 — двигатель с редуктором, BCB — высоковольтный стабилизированный выпрямитель

Основным источником результатов является компьютер (ЭВМ), на который приходят сигналы и данные от других частей установки.

Формулы:

$$\varepsilon(v_p) = \frac{N(\infty) - N(v_p)}{N(\infty) - N_{\phi}}$$
$$v_p = \frac{\Delta E}{E_0} c$$

In [1]:

```
import numpy as np
import scipy
import matplotlib.pyplot as plt
import pandas as pd
from scipy.optimize import minimize
import seaborn as sns
from scipy.optimize import curve_fit
from IPython.display import display
```

In [2]:

```
plt.rcParams['figure.figsize'] = 20, 10
plt.rcParams['axes.grid'] = True
sns.set(style="darkgrid", palette="bright")
plt.rc('legend', fontsize= 'large')
data_s = pd.read_excel('5.6.1.xlsx', 'Sample')
data_s
```

Out[2]:

	Low level	Intensity
0	0.0	0.0
1	0.5	47.0
2	1.0	6.6
3	1.5	9.4
4	2.0	27.0
5	2.5	30.0
6	3.0	31.0
7	3.5	36.0
8	4.0	53.6
9	4.5	52.8
10	5.0	6.6
11	5.5	91.2
12	6.0	92.8
13	6.5	57.4
14	7.0	39.0
15	7.5	17.0
16	8.0	5.0
17	8.5	6.2
18	9.0	2.6
19	9.5	3.0

In [3]:

```
x = []
y = []
for d in data_s.values.tolist()[3:]:
    x.append(d[0])
    y.append(d[1])
plt.ylabel(r'$I$', fontsize=12)
plt.xlabel(r'$U$', fontsize=12)
plt.plot(x, y, 'bx')
plt.show()
```


Энергии 23.8eV сотвествует U = 5.8B.

Установим окно сцинтилляционного спектрометра, соответствующее ширине линии спектра излучения $4 \div 7B$ и проведем измерения резонансного поглощения:

In [4]:

```
for i in range(1, 5):
    data = pd.read_excel('5.6.1.xlsx', f'data{i}', dtype=float)
    display(data.transpose())
```

	0		1	2	2	3	4	5	6	7	,	8	9	10	
V-	0.0	5.9	6	5.52)	5.14	4.53	3.92	3.45	2.67	7 1.9	91	1.84	2.81	
I-	407.3	345.1	0	345.40	34	6.50	350.00	355.40	347.70	353.00	346.1	10 3	39.50	377.70	(
V+	0.0	4.8	37	4.53	}	4.19	3.66	3.17	2.81	2.19) 1.5	58	1.52	2.36	
l+	407.6	362.2	20	372.90	37	0.70	362.10	348.60	351.20	339.70	363.6	30 4	06.70	353.60	;
bg	6.2	6.2	20	6.20)	6.20	6.20	6.20	6.20	6.20	6.2	20	6.20	6.20	
	0		1	2	•	3	4	5	6	7	,	8	9	10	
															-
V-	0.0	6.0		5.58		4.97	4.41	4.02	3.49	3.24			1.90	1.84	
I-	260.6			230.10				235.10	217.20				21.80	227.30	
V+	0.0	4.9		4.60		4.10	3.59	3.36	2.92	2.68			1.58	1.54	
l+	260.6	223.3	80	228.40	23	2.80	225.30	228.20	202.80	193.70	198.9	90 2	17.50	221.20	
bg	9.9	9.9	0	9.90)	9.90	9.90	9.90	9.90	9.90	9.9	90	9.90	9.90	
	0	1		2	3		4 5	5 6	7	8	9	1	0		
		5.97	5		5.13	4.7			3.41	2.76	1.85				
	0.0											2.2			
I-	68.2	72.20		.20 7				64.80	66.60	66.80	65.80	67.1			
V+	0.0	4.96			4.27				2.84	2.26	1.52	1.8			
I+	68.2	70.10				64.9			53.50	49.60		56.7			
bg	6.0	6.00	6	.00	6.00	6.0	0 6.00	6.00	6.00	6.00	6.00	6.0	0		
	(0	1		2	3	4	5	6	5	7	8	9	10)
V-	0.0	0 6	.12	5.0)7	5.41	4.97	4.44	3.84	4 3.2	27 2	.45	1.86	1.86	— 3
I-	465.40	0 688	.80	700.9	0 7	01.20	673.00	695.90	821.20	727.3	80 684	.80	664.00	655.30)
V+	0.0	0 5	.08	4.8	31	4.44	4.09	3.67	3.17	7 2.7	'5 2	.01	1.53	1.50	3
I+	465.40	0 709	.90	706.7	0 7	21.90	708.00	713.00	719.80	806.7	70 706	.90	690.80	691.30)
bg	5.7	5 5	.75	5.7	'5	5.75	5.75	5.75	5.75	5 5.7	'5 5	.75	5.75	5.75	5

Построим графики I от v и найдем по ним ε , Γ и ΔE_{x} .

In [11]:

```
x = []
y = []
data = pd.read_excel('5.6.1.xlsx', f'data{1}', dtype=float)
x = np.hstack((-data['V-'][1:], data['V+'][1:]))
y = np.hstack((data['I-'][1:], data['I+'][1:]))
plt.figure(figsize= (14,10))
plt.xlim(-5, 5)
plt.xlabel('$v, MM/C$', fontsize=16)
plt.ylabel('$I, C^{-1}$', fontsize=16)
plt.title(f'Oбpaseu {1}', fontsize=18)
plt.plot(x, y, 'o')
```

Out[11]:

[<matplotlib.lines.Line2D at 0x120162dd8>]

Получили что-то не практически обрабатываемое, эксперимент не получился. Можно предположить, что $\Delta E \approx 2$.

In [6]:

```
def f(x, y0, xc, w, A):
    return y0 + (2*A/np.pi)*(w/(4*(x-xc)**2+w**2))
```

In [12]:

```
Gamma = [6.02, 7.63, 15.07]
eng = [19.8, 19.619, -1.82]
popts = [[227, 2.5, 0.76, -50.9], [66.8, 2.473, 0.962, -35.7], [729.64, -0.23,
1.9, -580.9]]
for i in range(2, 5):
   x = []
   y = []
    data = pd.read_excel('5.6.1.xlsx', f'data{i}', dtype=float)
    x = np.hstack((-data['V-'][1:], data['V+'][1:]))
    y = np.hstack((data['I-'][1:], data['I+'][1:]))
    bg = data['bg'][0]
   Vp = np.min(y)
    ivp_{,} = np.where(y == Vp)[0]
   Vinf = np.max(y)
    iinf, = np.where(y == Vinf)[0]
    ch = eng[i-2]
    eps = abs((y[ivp] - y[iinf]) / (bg - y[iinf]))
    #print(eps, ch)
    \#popt, pcov = curve\ fit(f, x, y, maxfev = 10**5)
    popt = popts[i-2]
    plt.figure(figsize= (14,10))
   plt.xlim(-5, 5)
    plt.xlabel('$v, MM/C$', fontsize=16)
    plt.ylabel('\$I, C^{-1}\$', fontsize=16)
    plt.title(f'0fpa3eu{i}', fontsize=18)
    plt.plot(np.linspace(-5,5,1000), f(np.linspace(-5,5,1000), *popt), 'r-')
    plt.plot(x, y, 'o',
        label='\\varepsilon(v p)=\{:.3f\} %, \\Delta E x =\{:.3f\} $eV \cdot
1/10^8, $2\\Gamma 3=${} $eV \cdot 1/10^8$ '.format(eps, ch, Gamma[i-2]))
    plt.legend()
```


Результаты:

substance	2	3	4		
2Γ , eV	6.02 · 10-8	7.63 · 10-8	16.07 · 10-8		
$\Delta E, eV$	19.8 · 10-8	19.619 · 10-8	$-1.82 \cdot 10 - 8$		
$\varepsilon(V_p)$	0.184%	0.395%	0.313%		

Вывод: Эффект резонансного поглощения γ -квантов может применяться для исследования структур, содержащих определенные изотопы.

Уширение линии может быть связано с неравномерностью скорости движение поглотителя относительно источника, с толщиной поглотителя (вблизи максимума линии поглощаются даже в тонком слое.

In []: