Homework 2

Alberc Ej Salcedo

February 10, 2019

1 Knowledge Representations

- 1. Let p = It is cloudy, Let q = It is raining: $q \to p$.
- 2. Let p = I like to eat apples, Let q = I like to eat bananas: p \wedge q.
- 3. Let p = Behind the clouds, Let $q = The sun is shining: <math>q \to p$.
- 4. Let p = The function is differentiable, Let q = The function is continuous: $p \to q$.
- 5. Let p = I will study for the final, Let q = I will fail the final: then $\neg p \rightarrow q$.

2 Equivilance in Propositional Logic

	p	q	$\neg q$	$p \wedge q$	$p \lor \neg q$	$(p \land q) \leftrightarrow (p \lor \neg q)$
	0	0	1	0	1	0
1.	0	1	0	0	0	1
	1	0	1	0	1	0
	1	1	0	1	1	1

The statements $p \land q$ and $p \lor \neg q$ are not equivilant because all cases are not true in the final column.

	p	q	$\neg p$	$\neg q$	$p \lor q$	$\neg p \lor \neg q$	$(p \lor q) \leftrightarrow (\neg p \lor \neg q)$
	0	0	1	1	0	1	0
2.	0	1	1	0	1	1	1
	1	0	0	1	1	1	1
	1	1	0	0	1	0	0

The statements $p \lor q$ and $\neg p \lor \neg q$ are not equivilant because all cases are not true in the final column.

	p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$\neg q \to \neg p$	$(p \to q) \leftrightarrow (\neg q \to \neg p)$
	0	0	1	1	1	1	1
3.	0	1	1	0	1	1	1
	1	0	0	1	0	0	1
	1	1	0	0	1	1	1

The statements $p \to q$ and $\neg q \to \neg p$ are equivilant because all cases are true in the final column.

	p	q	$\neg p$	$p \to q$	$\neg p \lor q$	$(p \to q) \leftrightarrow (\neg p \lor q)$
	0	0	1	1	1	1
4.	0	1	1	1	1	1
	1	0	0	0	0	1
	1	1	0	1	1	1

The statements $p \to q$ and $\neg p \lor q$ are equivilant because all cases are true in the final column.

	p	q	$\neg p$	$\neg q$	$ \neg (p \land q)$	$\neg p \lor \neg q$	$ \neg (p \land q) \leftrightarrow (\neg p \lor \neg q) $
	0	0	1	1	1	1	1
5.	0	1	1	0	1	1	1
	1	0	0	1	1	1	1
	1	1	0	0	0	0	1

The statements $\neg(p \land q)$ and $\neg p \lor \neg q$ are equivilant because all cases are true in the final column