7.1 Definición y ejemplos

El presente capítulo aborda una clase especial de funciones denominadas *transformaciones lineales* que ocurren con mucha frecuencia en el álgebra lineal y otras ramas de las matemáticas. Éstas tienen una gran variedad de aplicaciones importantes. Antes de definirlas, se estudiarán dos ejemplos sencillos para ver lo que es posible realizar.

EJEMPLO 7.1.1 Reflexión respecto al eje x

En \mathbb{R}^2 se define una función T mediante la fórmula $T = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ -y \end{pmatrix}$. Geométricamente, T toma

un vector en \mathbb{R}^2 y lo refleja respecto al eje x. Esto se ilustra en la figura 7.1. Una vez que se ha dado la definición básica, se verá que T es una transformación lineal de \mathbb{R}^2 en \mathbb{R}^2 .

Transformación de un vector de producción en un vector de materia prima

Un fabricante elabora cuatro tipos de productos distintos, de los cuales cada uno requiere tres tipos de materiales. Se identifican los cuatro productos como P_1 , P_2 , P_3 y P_4 , y a los materiales por R_1 , R_2 y R_3 . La tabla siguiente muestra el número de unidades de cada materia prima que se requieren para fabricar una unidad de cada producto.

Figura 7.1 El vector (x, -y) es la reflexión respecto al eje x del vector (x, y).

	Productos necesarios para producir una unidad de cada producto				
Número de unidades de materia prima		P_1	P_2	P_3	P_4
	R_1	2	1	3	4
	R_2	4	2	2	1
	R_3	3	3	1	2

Surge una pregunta natural: si se produce cierto número de los cuatro productos, ¿cuántas unidades de cada material se necesitan? Sean p_1 , p_2 , p_3 y p_4 el número de artículos fabricados de los cuatro productos, y sean r_1 , r_2 y r_3 el número de unidades necesario de los tres materiales. Entonces se define

$$\mathbf{p} = \begin{pmatrix} P_1 \\ P_2 \\ P_3 \\ P_4 \end{pmatrix} \qquad \mathbf{r} = \begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix} \qquad A = \begin{pmatrix} 2 & 1 & 3 & 4 \\ 4 & 2 & 2 & 1 \\ 3 & 3 & 1 & 2 \end{pmatrix}$$

Por ejemplo, suponga que $\mathbf{p} = \begin{pmatrix} 10\\30\\20\\50 \end{pmatrix}$. ¿Cuántas unidades de R_1 se necesitan para producir estos

números de unidades de los cuatro productos? De la tabla se tiene que

$$r_1 = p_1 \cdot 2 + p_2 \cdot 1 + p_3 \cdot 3 + p_4 \cdot 4$$

= $10 \cdot 2 + 30 \cdot 1 + 20 \cdot 3 + 50 \cdot 4 = 310$ unidades