Capstone Project: Heatmap Anomaly Detection

Week 4 Progress Report

Agenda for Today

- Some EDA of two datasets
- Discuss baseline approaches and metrics
- Questions (technical and administrative)

Heatmap Dataset: Total # of clicks

Notable features:

 Some extreme outliers → Zoom into domain-id's with less than 5000 total # of clicks.

Heatmap Dataset: Total # of clicks

Notable features:

- Heatmaps constrained to have more than 200 total clicks.
- Bulk below 1000 total clicks
- Distributions of data for both types of grid-id's very comparable.

Heatmap Dataset: Grid_ids

Notable features:

- There are 13.1M total clicks
- Three long stripes in center of image
- Bottom left corner concentration of clicks and (possibly) some missing region (non-empty bins though)
- Bottom right corner large area missing click data.

Questions:

- Why are clicks missing in bottom corners?
- Do you have an example image for this type of heatmap (for more intuition)?

Heatmap Dataset: Grid_ids

Notable features:

- There are 12.7M total clicks on this type of grid.
- Triangle type structure.
- Smaller peak below larger one on the right hand side.
- As before bottom corners missing.

Questions:

- Are these clicks generated 1/user or can a single user generate many clicks? Is there a way to distinguish?
- Do you have an example image for this type of heatmap (for more intuition)?

Heatmap Dataset: Example of Broken banners?

Heatmap Dataset: Example of Broken banners?

Performance Metric Dataset: Major Metric Distribution

Metric Dataset: Interpretation

- domain: identifier for domain
- **grid id**: identifier for grid, related to specific layout
- webview height, webview width: dimensions of the banner
- **displays**: # times the ad was displayed
- <u>clicks</u>: # times users clicked (why are these numbers different from the heatmap data? Because they have different time frame)
- <u>landed clicks</u>: # clicks that successfully led to a landing page
- <u>non bounced clicks</u>: # clicks where the user did not immediately leave the site
- **closing events**: # times users closed the ad?
- <u>avg last second framerate</u>: average framerate in the last second?
- sov short ttc:
- sov short ttc global:
- sov short ttc score:

Metric Dataset: Data Cleaning

- Counts of missing values in each column:
 - Same rows missing for 'clicks', 'landed_clicks', 'non_bounced_clicks' and for 'sov_short_ttc', 'sov_short_ttc_global', sov_short_ttc_score
- Missing data:
 - webview_height, webview_width: autofill in 250 and 300
 - clicks, closing_event, landed_clicks, non_bounced_clicks: : input with 0 for absence of these actions

grid_id	domain	Х
0	0	0
displays	webview_width	webview_height
0	1076	1076
non_bounced_clicks	landed_clicks	clicks
1047	1047	1047
sov_short_ttc	<pre>avg_last_second_framerate</pre>	closing_events
2953	1076	3092
	sov_short_ttc_score	sov_short_ttc_global

2953

2953

Metric Dataset: Click Analysis

- Relationship between the number of clicks and displays.
- Filtered data of clicks < 5,000
- Related to displays, there is only relatively low number of clicks.

Metric Dataset: Click Analysis

- Relationship between the number of clicks and the number of non bounced clicks.
- Filtered data of clicks < 5,000, displays < 10,000,000
- Around ⅓ of clicks are non-bounced clicks

Metric Dataset: Clicks Analysis

- ID_1501 consistently appears the most across all three categories
- ID_3180 is notable for its presence in the top 2 for clicks, yet it barely makes it into the top 10 for the other two categories.

Metric Dataset: Clicks analysis

Calculate the click-through rate: clicks/display*100 From the distribution of clicks by domain (box plot), we can see the domain ID_3180 has a notable distribution that the clicks range from 3500 to 500 compare to other domain

Next steps:

- Create baselines:
 - Bootstrap approach (WIP):
 - Create empirical distribution, p(x,y), function over x-y-grid for grid_id
 - Compare domain sample with p(x,y) using chi-squared (same distribution?) → reduction of ½
 - Compare probability of creating domain sample → anomalies have small probability → reduction to ⅓
 - Data enhancement using bootstrapping + noise → to do.
 - o K-NN
 - K-Means
 - Isolation forest

- Understand Performance metric dataset and engineer features → Combine with Heatmap dataset for comprehensive analysis.
- Understand broken banners better → create comprehensive set of broken banners "by hand" (872, 861 different domains per grids).
- Research into SOTA methods/fancier methods: hyperdimensional computing, diffusion(?), other self-supervised approaches?

Technical questions

- Description of datasets, explanation of attributes:
 - displays, clicks, landed_clicks, non_bounced_clicks, closing_events,
 avg_last_second_framerate, sov_short_ttc, sov_short_ttc_global, sov_short_ttc_score?
 -> already discussed
 - How would these data affect on the anomaly detection, specifically on sov_short_ttc related data?
- Exact problem statement:
 - How should we generate the ground truth labels?
 - What is the argument against rules-based for classification?
 - What is the baseline upon which we should improve?
- Hardware constraints?
 - How will this model be applied in practice?

Administrative questions:

- Would it be useful to create joint Slack channel?
- Zoom account for weekly meetings?