Sujet

Questions de Cours

- 4. A l'aide d'un bilan des forces sur un élément de volume d'atmosphère. Montrer que pour un modèle d'atmosphère isotherme $p(z) = p(0) \exp(-z/H)$
 - Montrer dans l'expression précédente qu'il intervient un facteur de Boltzmann, que l'on définira.

Exercice

Déterminer la capacité thermique molaire d'un gaz parfait triatomique dans les modèles suivants :

Exercice

L'état d'un atome de chlore est décrit par le niveau d'énergie η de son unique électron célibataire. Celui-ci peut occuper deux niveaux d'énergie très proches - ϵ ou + ϵ séparés d'un gap d'énergie $\Delta=(+\epsilon)$ -(- ϵ) = $2\epsilon=0,109$ eV. On considère un système formé de N atomes au contact d'un thermostat à la température T.

- 1. On suppose dans un premier temps que les niveaux d'énergie sont non dégénérés. Exprimer les probabilités $p_+ = pr(\eta = +\epsilon)etp_- = pr(\eta = -\epsilon)$, N_+ le nombre d'atomes à $+\epsilon$ et N_- le nombre d'atomes à $-\epsilon$, le rapport $\tau = N_+/N_-$ et calculer celui-ci à la température T = 300 K.
- 2. En déduire l'énergie interne U du système, l'énergie interne molaire Um et la capacité thermique molaire électronique $C_{m,el}=\frac{dUm}{dT}$.
- 3. On prend maintenant en compte la dégénérescence qui est de 2 pour $+\epsilon$ et 4 pour $-\epsilon$, c'est-à-dire que $p_+=2A\mathcal{B}(+\epsilon,T)$ et $p_-=4A\mathcal{B}(-\epsilon,T)$ où \mathcal{B} désigne le facteur de Boltzmann. On pose $\theta=\frac{\Delta}{k_B}$ et $x=\frac{T}{\theta}$.
- 4. Donner l'expression de $\langle \eta \rangle$ et en déduire celle de l'énergie molaire électronique sous la forme $U_{m,el} = -N_A \epsilon. f(x)$ En utilisant un outil informatique, tracer l'allure de -f(x) pour $x \in [0,5]$.

5. Vérifier graphiquement que la capacité thermique est maximale au voisinage de $T^*=0,45\theta,$ nulle à basse et à haute température. À la température T^* , calculer sa valeur maximale $C^*_{m,el} = \frac{dUm}{dT} = \frac{dUm}{dx} \frac{dx}{dT}$

$$C_{m,el}^* = \frac{dUm}{dT} = \frac{dUm}{dx}\frac{dx}{dT}$$