Subgraph-Feature Search for Learning Classifiers and Regressors under Fixed Budget Constraint

情報認識学研究室 白川 稜

背景

グラフは広く用いられる重要なデータ構造

- 低分子化合物の構造式
- RNA二次構造
- 自然言語処理における構文木

グラフデータからの教師付き学習

- 創薬の分野
- 生命科学や物質化学の分野

グラフ分類・回帰問題

Input: グラフデータ

G_1	G_2	G_3		G_n
			•••	

予測器

f

Output: グラフの性質

y_1	y_2	y_3		y_n
0.1	0.7	1.2	• • •	0.9

活性の有無、物性値 etc...

グラフ分類・回帰問題

特徴量

部分グラフの有無

y	G	80	80	0	0	0	0	00	~	
0.1		1	1	1	1	1	1	1	1	:
0.7		1	1	1	0	1	1	1	1	
0.9		1	1	1	0	1	1	1	1	
:	:									

問題点

グラフサイズに対して部分グラフの総数は組合せ爆発

既存研究

- 2-step approach [Wale et al., 2007]
 - 制約付き部分グラフ列挙 + 任意モデルの学習
- Simultaneous approach [Saigo et al., 2009][Shirakawa et al., 2018]
 - ー モデルの学習と部分グラフ探索・選択の同時手法

GTB [Shirakawa et al., 2018]

モデルの学習と部分グラフ探索・選択を同時に行う

モデル (Gradient Tree Boosting)

特徴探索(本研究)

從来手法 (exact Depth-first)

分割後の二乗誤差和(TSS)が最小になる 部分グラフ特徴(g)を深さ優先的に探索

$$\min_{g} [\operatorname{TSS}(D_0(g)) + \operatorname{TSS}(D_1(g))]$$

TSS(D) =
$$\sum_{i \in [|D|]} (y_i - \bar{y})^2$$
, $\bar{y} = \frac{1}{|D|} \sum_{i \in [|D|]} y_i$

 $D_0(g): \{(G_i, y_i) \in D | G \not\supseteq g\}$ $D_1(g): \{(G_i, y_i) \in D | G \supseteq g\}$

⊒: 部分グラフ同型

探索木の包含関係を利用し 子孫ノードでのTSSの下限値(Bound)を計算

→ 枝刈りを利用した厳密探索

目的・提案

問題点

問題のスケールによって枝刈りだけでは不十分

→ 特徴探索にかかるコストが大きい

目的

学習モデルの精度の劣化なしに探索コストの削減

提案

- ・厳密探索 → 近似探索
- ・深さ優先 → TSS, Boundを利用した探索方針

提案手法

近似探索

事前に探索コスト(ノード数)を設定し コストを使い果たしたら終了

探索方針

- 最良優先探索
- モンテカルロ木探索(MCTS)

提案手法

モンテカルロ木探索(MCTS)の一つである
UCTアルゴリズム[Levente et al., 2006] をグラフ探索に適用
UCB(Upper Confidence Bound)の値をもとに探索

<u>手法</u>

以下の操作を反復

- 1. Selection
- 2. Expansion
- 3. Simulation
- 4. Backpropagation

Selection

根ノードを始点にUCBの値に基づき 探索済みノードの末端までノードを選択する

$$UCB_i = \bar{X}_i + C \times \sqrt{\frac{\ln n}{2n_i}}$$

i: 子ノード番号

 \bar{X}_i : 報酬平均

C: 探索強度パラメータ

n: 親ノード選択回数

 n_i : 子ノードi選択回数

- Expansion
 - 末端ノードが初訪問
 - → 子ノードを列挙
 - → ランダムに子ノードを1つ拡大
 - 末端ノードが**既訪問**
 - → ランダムに未拡大の子ノードを1つ拡大

- Simulationモンテカルロシミュレーションによりパスを降下
- X 列挙+ランダム選択
- ランダムにグラフを選択
 - **→** グラフ上でランダムに1エッジ拡大
 - → 広大グラフが子ノードになる:OK

 拡大グラフが子ノードにならない:戻る

Backpropagation

Simulationによって選択されたノードの報酬を計算

報酬 =
$$-\frac{TSS(D_0(g)) + TSS(D_1(g))}{TSS(D_0(g) \cup D_1(g))}$$

TSS:二乗誤差和

 $D_0(g): g$ を含むグラフ集合

 $D_1(g): g$ を含まないグラフ集合

報酬をSelectionで選択したパスに逆伝搬

実験準備

実データセット

		· ·			
	Dataset	CPDB	Mutag	AIDS(CAvsCM)	CAS
	# data	684	188	1503	4337
	# (y = +1, -1)	(341, 343)	(125, 63)	(422, 1081)	(2401, 1936)
ave	# nodes	25.2	26.3	59.0	30.3
ave	# edges	25.6	28.1	61.6	31.3

人工データセット

様々な問題設定を考慮するため 以下の操作で100個のデータセットを準備

CAS
$$\longrightarrow$$
 100 個のグラフを \rightarrow ランダムラベル (y) 付与 $y \in [-1,+1]$

目的

厳密探索での各探索方針の比較

<u>手法</u>

人工データセットに対して厳密特徴探索を1回行い 各探索手法での解の更新の様子を比較

- 深さ優先探索
- 最良優先探索
- モンテカルロ木探索
- ※モンテカルロ木探索の探索強度パラメータ(0.1, 1, 10)

- 提案手法がより早くに良い特徴を発見
- 後半の探索の改善度は低い

目的

近似探索での各探索方針の比較

手法

実データセットに対して各探索方針に基づく 近似探索を用いたアンサンブルモデルの学習・比較

学習パラメータ コスト制約(一回の特徴探索にかけるノード数)

木の本数:100 CPDB:(1000, 2000, 3000, 4000, 5000)

木の深さ:1 Mutag: (200, 400, 600, 800, 1000)

ステップ幅:1 AIDS: (1000, 2000, 3000, 4000, 5000)

CAS: (5000, 10000, 15000, 20000, 25000)

実験 2 (CAS)

実験 2 (CAS)

目的

従来厳密探索と提案近似探索の比較

手法

実データセットに対して従来厳密探索と提案近似探索 に基づくアンサンブルモデルの学習・比較

・従来:GTB+深さ優先厳密探索

・提案:GTB+MCTS近似探索

※MCTSの探索強度パラメータ、コスト制約は実験2の最良値

データ	探索ノ	ノード数 実行時間[s] 精度[%]			₹[%]	
	従来	提案	従来	提案	従来	提案
CPDB	7.2×10 ⁶	5.0×10 ⁵	8.2×10^2	6.2×10	77.78	78.35
Mutag	3.8×10 ⁵	6.0×10 ⁴	2.3×10 ²	3.7	85.03	87.73
AIDS	7.9×10 ⁷	2.0×10 ⁵	2.5×10 ⁴	1.1×10 ²	81.37	81.84
CAS	6.9×10 ⁷	2.0×10 ⁶	8.0×10 ⁴	1.7×10 ³	80.82	81.99

• 精度の劣化なしに省コスト化を達成

汎化性能

• 提案手法の方が汎化性能が高い

まとめ

既存のグラフ分類・回帰アルゴリズムの特徴探索に 最良優先, MCTSを利用した近似探索手法を提案

探索方針に関して従来手法である深さ優先方針に比べ より少ない探索数でより良い解を発見

従来の深さ優先厳密探索モデルと 提案のMCTSを利用した近似探索モデル比較すると 約1/10~1/200のコストで 同等、それ以上の精度のモデルを構築

質疑

実験 2 (Training Loss:#node)

実験2(ACC:#node)

実験 2 (ACC: time[s])

下限値の計算

探索木の特徴:子孫(g')は親(g)の拡大グラフ

$$G_i \not\supseteq g \Rightarrow G_i \not\supseteq g'$$
 , $g' \supseteq g$

含むグラフが含まない側に移る方向性しかない

任意のグラフの組み合わせを含まない側へ移したときの 不純度を全て計算すれば下限値が求まる

下限値の計算

$$TSS(D_0(g')) + TSS(D_1(g))$$

$$\geq \min_{(\circ,k)} [TSS(D_0(g) \setminus S_{(\circ,k)}) + TSS(D_1(g) \cup S_{(\circ,k)})]$$

 $(\circ, k) \in \{\leq, >\} \times \{2, \dots, |D_1(g) - 1|\}$

 $S_{(\leq,k)}$ is a set of k pair (G_i, y_i) selected from $D_1(g)$ in descending order of y $S_{(>,k)}$ is a set of k pair (G_i, y_i) selected from $D_1(g)$ in increasing order of y

計算量:グラフ(g)の頻出度に対して線形オーダー

探索速度

探索グラフ頻出度平均

深さ優先は頻出度の低いノードを多く探索 最良優先は頻出度の高いノードを多く探索

実験 2 (CAS)

- 同探索数での実行時間:深さ優先<MCTS<最良優先
- 同実行時間での精度はMCTSが最良