In an oriented plane, consider a direct triangle ABC right angled at A, such that AB = 2cm and $(BC; BA) = \frac{\pi}{3}(2\pi)$.

Let S be the direct similifude that transforms A onto B and B onto C.

1) Determine the ratio and the angle of S.

- a- Find the complex form of the similitude S.
- b- Determine the affix of point W, the center of S.
- c- Let S-1 be the inverse transformation of S. Give the complex form of S-1.

Let r be the rotation with center O and angle $\frac{\pi}{2}$ and h be the dilation (homothecy) with center C and ratio 2.

Designate by S the transformation roh.

- 1) Determine the nature of S and specify its ratio and its angle.
- 2) Designate by W the center of S.
 - a-Show that S(C) = D and that S(O) = B.
 - b- Construct the point W, specifying clearly the steps of this construction .
- 3) The plane is referred to an orthonormal system (A; AB, AD).
 - a- Write the complex form of S and deduce the affix of the center W.
 - b-Determine the image of the square ABCD under S.

Consider, in an oriented plane, the two direct squares ABCD and BEFC.

Let S be the direct plane similitude that transforms A onto E and E onto F.

- a- Determine the ratio k and an angle α of S.
 b- Construct geometrically the center W of S.
 - c-Find the point G that is the image of F under S.
- 2) Let h be the transformation that is defined by $h = S \circ S$.
 - a. Determine the nature and the elements of h.
 - b-Specify h(A), and express WA in teams of WF.
- 3) The complex plane is referred to an orthonormal system (A; AB, AD).
 - a- Determine the affixes of the points E, F and W.
 - b- Find the complex form of S.
 - c-Give the complex form of h and find the affix of h(E).
- Given, in an oriented plane, a direct equilateral triangle ABC of side 4 cm.

 Designate by E and I the mid points of [AB] and [AC] respectively.

 Let S be the direct plane similitude that transforms A onto E and E onto C.

- 1) a- Determine the ratio and an angle of S.
 - b-Construct the image under S of each of the straight lines (AC) and (EI), and deduce the image of I under S.
- 2) Suppose that the plane is referred to a direct orthonormal system (A; u, v) where → 1 →

$$\vec{u} = \frac{1}{4} \vec{AB}$$
.

- a- Give the complex form of S.
- b-Find the affix of the point W, the center of S.
- co Prove that W is a point on [AC].
- d- Let J be the image of the point I under SoS; Compare WC and WJ.

四)

Consider in an oriented plane the rectangle OABE such that OA = 2 and $(\overline{OA}, \overline{OB}) = \frac{\pi}{3}$ (2 π). Designate by (C) the circle with diameter [OB] and center W.

Let S be the direct plane similitude with center O, ratio $\sqrt{3}$ and angle $\frac{\pi}{3}$.

A-

1) Let A' be a point on the semi-straight line [OB) such that $OA' = 2\sqrt{3}$.

Prove that A' is the image of A under S.

c- Construct then the circle (C), the image of (C) under S.

B-

The complex plane is referred to a direct orthonormal system (O; \vec{u} , \vec{y}) such that:

$$z_A = 2$$
 and $z_E = 2\sqrt{3}i$.

- 1) Write the complex form of S.
- 2) Find the affix of W and that of W the image of W under S.
- 3) Let f be the plane transformation with complex form $z' = iz + 4 + 2i\sqrt{3}$.
- a- Show that f is a rotation whose angle and center H are to be determined.
- b- Verify that f(W') = W and determine $f \circ S(W)$.
- c- Determine the nature and the characteristic elements of . f . S.

In an oriented plane, consider the rectangle ABCD such that:

$$(\overline{AB}; \overline{AD}) = \frac{\pi}{2} \pmod{2\pi}$$
, AB = 4 and AD = 3.

Let H be the orthogonal projection of A on (BD) and h be the dilation, of center H, that transforms D to B.

- 1) a- Determine the image of the straight line (AD) by h.
 - b-Deduce the image E of point A by h. Plot E.
 - c-Construct the point F in age of B by h and the point G image of C by h, then determine the image of rectangle ABCD by h.
- 2) Let S be the direct similitude that transforms A onto B and D onto A.
 - a- Determine an angle of S ...
 - b- Determine the image of the straight line (AH) by S and the image of the straight line (BD) by S.
 - c- Deduce that H is the center of S.
- 3) Show that S(B) = E and deduce that $S \circ S(A) = h(A)$.
- 4) Show that SoS=h.

In an oriented plane, consider two direct squares ABCD and BEFG of sides 2 and 1 respectively.

Let S be the direct plane similitude, of ratio k and angle a, that transforms E onto A and G onto C.

- A-1) Verify that k=2 and $\alpha=-\frac{\pi}{2}$ (2 π).
 - 2) Prove that the image of point F by S is B then deduce S(B).
 - 3) Construct the center W of S.

ZIL,

B- The complex plane is referred to a direct orthonormal system (B; \overline{BE} ; \overline{BG}).

- 1) Determine the affixes of the points A and E.
- 2) Write the complex form of S.
- 3) Determine the algebraic form of the affix of W.
- 4) Show that the points C, W and E are collinear.

C- Let R be the rotation with center A and angle $\frac{\pi}{2}$.

Prove that RoS is a dilation whose center and ratio are to be determined.

ABCD is a square of side 2 and of center 0 such that $(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{2} (2\pi)$.

E and F are the midpoints of [AB] and [BC] respectively and G is the midpoint of [BF]. Let S be the direct plane similitude that transforms A onto B and D onto E.

- 1) Calculate an angle and the ratio of S.
- 2) Verify that S(B) = F, and determine S(E).
- 3) Let h = SoS.
 - a-Show that h is a dilation and precise its ratio.
 - b- Prove that the center I of S is the point of intersection of (AF) and (DG).
 - c- Determine the image by S of the square ABCD and deduce the nature of triangle OIC.
- 4) Let (A_n) be the sequence of points defined by: $A_0 = A$ and $A_{n+1} = S(A_n)$ for all natural integers n. a- Let $L_n = A_n A_{n+1}$ for all n.

Prove that (L_n) is a geometric sequence whose common ratio and first term are to be determined. Calculate $S_n = L_0 + L_1 + \dots + L_n$ and $\lim S_n$.

b-Calculate (IA, IA,) in terms of n and prove that if n is even then the points I, A and An are collinear.

The plane is referred to a direct orthonormal system $(O; \vec{u}, \vec{v})$. Let Ω be the point with affix 2. Denote by S the transformation with complex form z' = (1+i)z-2i that maps each point M in the plane with affix z onto the point M' with affix z'.

A-

- 1) Show that S is a similitude with center Ω . Specify the ratio and an angle of S.
- 2) a- Show that, for $z \neq 2$, $\frac{z'-z}{z-2} = i$. b- Deduce that triangle $\Omega M M'$ is right isosceles.

B-

Let M_0 be the point with affix 2 + i. Consider, for every natural number n, the points (M_n) in the plane such that $M_{n+1} = S(M_n)$.

- 1) Let (d_n) be the sequence defined, for every n, by $d_n = \Omega M_n$
 - a- Calculate ΩM_{n+1} in terms of ΩM_n and deduce that (d_n) is a geometric sequence whose first term is equal to 1.
 - b- Determine the values of n when M_n is interior to the circle with center Ω and radius 5.
- 2) a- Justify that a measure of the angle $(\overline{\Omega M_0}, \overline{\Omega M_a})$ is equal to $\frac{n\pi}{4}$.
 - b- Determine n when Ω , M_0 and M_n are collinear.

The complex plane is referred to a direct orthononormal system (O; u, v). Let A be the point of affix 2, and B be the point of affix 2i.

Designate by E the image of A under the rotation R with center O and angle $\frac{\pi}{3}$,

and by F the image of B under the transformation T that is defined by the complex

- 1) a- Determine the nature and the characteristic elements of T.
 - b- Prove that the four points A, B, E and F belong to the same circle with center O and whose radius is to be determined.
- ZB ZA is real. 2) a- Prove that -
 - $\frac{z_F z_A}{z_E z_B} = -i.$ b- Verify that
 - c- Deduce that AEBF is an isosceles trapezoid and that $(\overline{BE}, \overline{AF}) = -\frac{\pi}{2}(2\pi)$.
- 3) Consider: the dilation (homothecy) h that transforms A onto F and E onto B, and the rotation r with angle $\frac{\pi}{2}$, that transforms B onto F.
 - a- Determine W, the center of h.
 - b- Prove that hor = roh .
 - c- Let S = hor.

Determine the nature and the characteristic elements of S.

Given a triangle ABC such that AB = 6, AC = 4 and (AB; AC) = $\frac{\pi}{2}$ (2 π)

Let I be the orthogonal projection of A on (BC).

1- Let h be the dilation of center I that transforms C onto B. Construct the image (d) of the line (AC) under h. Deduce the image D of A under h.

- a) Determine the ratio and an angle of S.
- b) Determine the image by S of each of the two straight lines (AI) and (CB). Deduce that I is the center of S.
- c) Determine the image of (AB) by S. Deduce that S(B) = D.

- 3- a) Determine the nature and the characteristic elements of S S .
 - b) Prove that SoS(A) = h(A).
 - c) Prove that $S \circ S = h$.
- 4- Let E be the mid point of [AC].
 - a) Determine the points F and G such that F = S(E) and G = S(F).
 - b) Show that the points E, I and G are collinear.

