Distinguished Engineering

Transformer 3/5 - Transformer, a new hope

•••

BW

Plan

- Prologue, seq2seq
- Attention, please
- Transformer, a new hope
- Transformer, revenge of the fallen
- Transformer, vision

Attention

• Dot product attention

 $score(s_t,\ h_i) = s_t^T h_i$

$$egin{aligned} e^t = [s_t^T h_1, \dots, s_t^T h_N] \end{aligned}$$

$$lpha^t = softmax(e^t)$$

$$| ilde{s}_t = anh(\mathbf{W_c}[a_t;s_t] + b_c)$$

Hyper parameters

0 입출력 크기

 $d_{model}=512$

o Layer 宁

 $num_layers = 6$

o Head수

 $num_heads = 8$

• FFNet hidden dimension

 $d_{ff}=2048$

- Attention is all you need
 - o https://arxiv.org/abs/1706.03762

- Attention is all you need
 - o https://arxiv.org/abs/1706.03762

- Attention is all you need
 - o https://arxiv.org/abs/1706.03762

Positional encoding

Positional encoding

Positional Encoding Value 문장의 길이 50, 임베딩 벡터의 차원 128

• Attentions,

Encoder Self-Attention : Query = Key = Value Decoder Masked Self-Attention : Query = Key = Value

Decoder ○ | Eccoder - Decoder Attention : Query : Decoder Vector /

Key = Value : Encoder Vector

Encoder Self-Attention

Q: 입력 문장의 모든 단어 벡터들 K: 입력 문장의 모든 단어 벡터들 V: 입력 문장의 모든 단어 벡터들

VS

transformer

Q = Query : *(모든)* t 시점의 Decoder 셀에서의 은닉 상태

K = Keys: 모든 시점의 Encoder 셀의 은닉 상태들 V = Values: 모든 시점의 Encoder 셀의 은닉 상태들

- Encoder Self-Attention
 - Scaled dot-product Attention

$$W = d_{model} \times \left(\frac{d_{model}}{\text{num_head}}\right) = 512 \times 64$$
 $d_{model} = 64$ $d_{model} = 512, \text{num_head} = 8$

$$d_k = \frac{d_{model}}{\text{num head}} =$$

- Encoder Self-Attention
 - Scaled dot-product Attention

$$d_k = \frac{d_{model}}{\text{num_head}} = 64 \quad score(q, k) = q \cdot k / \sqrt{d_k}$$

- Encoder Self-Attention
 - Scaled dot-product Attention ightarrow MATRIX!!!!

$$Attention(Q,K,V) = softmax(rac{QK^T}{\sqrt{d_k}})V$$

• Multi-head Attention

Multi-head Attention

- Padding Mask
 - Key의 경우에 <PAD> 토큰이 존재한다면이에 대해서는 유사도를 구하지 않도록

- Look-ahead Mask
 - 현재 시점의 예측에서 현재 시점보다미래에 있는 단어들을 참고하지 못하도록

Position-wise FFNN

$$\left|FFNN(x)=MAX(0,xW_1+b_1)W_2+b_2
ight|$$

Position-wise FFNN

$$\left|FFNN(x)=MAX(0,xW_1+b_1)W_2+b_2
ight|$$

Position-wise FFNN

outputs = tf.keras.layers.Dense(units=dff, activation='relu')(attention) outputs = tf.keras.layers.Dense(units=d_model)(outputs)

• Residual connection, Layer Normalization

H(x) = x + MultiHeadAttention(x)

Residual connection, Layer Normalization

$$ln_i = LayerNorm(x_i)$$

$$\hat{x}_{i,k} = rac{x_{i,k} - \mu_i}{\sqrt{\sigma_i^2 + \epsilon}}$$

$$ln_i = \gamma \hat{x}_i + eta = LayerNorm(x_i)$$

Everything can be found in https://wikidocs.net/book/2155 https://github.com/ukairia777/tensorflow-nlp-tutorial