Dualidad onda-corpúsculo: Obtención de la ecuación de De Broglie

La interpretación de Einstein del efecto fotoeléctrico demostró que la luz se comporta como un chorro de partículas, llamadas fotones, cuya energía es proporcional a la frecuencia:

$$E = h \cdot f$$

En el efecto Compton, el fotón se comporta como una partícula de momento lineal:

$$p = \frac{E}{c} = \frac{h \cdot f}{c} = \frac{h \cdot f}{\lambda \cdot f} = \frac{h}{\lambda}$$

Como ya estaba establecido que la luz se propaga como una onda, se propuso que el comportamiento era dual: en algunos experimentos el comportamiento de la luz parece ser corpuscular y en otros, ondulatorio. De Broglie propuso que este comportamiento dual también afecta a cualquier partícula. En algunos casos el comportamiento de ciertas partículas podría interpretarse como el de ondas cuya longitud de onda asociada λ viene dada por la expresión:

$$\lambda = \frac{h}{p} = \frac{h}{m \cdot v}$$

En esta ecuación h es la constante de Planck, m es la masa de la partícula y v es su velocidad.