

Progressive Augmentation of GANs (PA-GANs)

Dan Zhang, Anna Khoreva Bosch Center for Artificial Intelligence

1 Motivation

Generative adversarial network (GAN) [1]:

$$\min_{G} \max_{D} \mathbb{E}_{\mathbf{x} \sim \mathbb{P}_{d}} \left\{ \log \left[D(\mathbf{x}) \right] \right\} + \mathbb{E}_{\mathbf{x} \sim \mathbb{P}_{g}} \left\{ \log \left[1 - D(\mathbf{x}) \right] \right\}$$

The discriminator (D) tells the samples from the data distribution \mathbb{P}_d and generative model distribution \mathbb{P}_g . The generator (G) challenges D by making synthetic samples into data samples, i.e., $\mathbb{P}_g \to \mathbb{P}_d$.

- Sensitive to learning parameters and training schedule;
- Suffers from mode collapse; ...

Commonly occurring problem:

Discriminator becomes overconfident, providing a non-informative signal to train the generator.

Our solution:

Progressive augmentation (PA) of discriminator to gradually increase its task difficulty in order to enable continuous learning of generator.

PA prevents mode collapsing to a subset of classes (e.g., digit 1)

- ✓ Novel mechanism to balance the two-player game;
- ✓ Theoretically justified (preserves the original GAN objective);
- ✓ Alleviates (partially) the need for fine hyper-parameter tuning;
- ✓ Improves generated sample diversity.

3 Method

- Augment D's input (or its features) x with random bit s and cast binary classification of D into XOR computation between x and s.
- **Progressively** add more bits $s = \{s_1, ..., s_L\}$ to x in order to gradually complicate D's task during training.

Network Layout

- Minimum changes
- Easy integration

Augmentation principle

- $x_d \sim P_d \Leftrightarrow 0$, $x_g \sim P_g \Leftrightarrow 1$, and $s \in \{0,1\}$;
- XOR(x, s): 0 (1) ⇔ True(FAKE);
- D preserves the task of estimating the JSD between $P_{\rm d}$ and $P_{\rm g}$ under PA.

Progression mechanism

- Automatic scheduling;
- D's task difficulty gradually increases via augmentation progression.

Theorem of PA-GANs: The min-max optimization problem of GANs [1] is equivalent to

$$\mathbb{P} \triangleq \begin{cases} \prod_{l} \mathbb{P}_{\mathbf{s}}(s_{l}) \mathbb{P}_{\mathbf{d}}(\mathbf{x}) & \text{if } XOR(\mathbf{s}_{l}) = 0 \\ \prod_{l} \mathbb{P}_{\mathbf{s}}(s_{l}) \mathbb{P}_{\mathbf{g}}(\mathbf{x}) & \text{if } XOR(\mathbf{s}_{l}) = 1 \end{cases} \quad \mathbb{Q} \triangleq \begin{cases} \prod_{l} \mathbb{P}_{\mathbf{s}}(s_{l}) \mathbb{P}_{\mathbf{d}}(\mathbf{x}) & \text{if } XOR(\mathbf{s}_{l}) = 1 \\ \prod_{l} \mathbb{P}_{\mathbf{s}}(s_{l}) \mathbb{P}_{\mathbf{g}}(\mathbf{x}) & \text{if } XOR(\mathbf{s}_{l}) = 0 \end{cases} \quad \mathbb{P}_{\mathbf{s}}(s_{l}) = 0.5 \ s_{l} \in \{0, 1\}$$

 $\min_{G} \max_{D} \mathbb{E}_{(\mathbf{x}, \mathbf{s}_l) \sim \mathbb{P}} \left\{ \log \left[D(\mathbf{x}, \mathbf{s}_l) \right] \right\} + \mathbb{E}_{(\mathbf{x}, \mathbf{s}_l) \sim \mathbb{Q}} \left\{ \log \left[1 - D(\mathbf{x}, \mathbf{s}_l) \right] \right\} \quad \forall l \in \{1, 2, \dots, L\}$

4 Experiments

Performance across different architectures and datasets

Method	PA	F-MNIST	CIFAR10	CELEBA-HQ	T-ImageNet	$\overline{\Delta}$ PA
SN DCGAN [2]	Х	10.6	26.0	24.3	-	
	input	6.2	22.2	20.8	-	4.2
	feat	6.2	22.6	18.8	-	
	Х	-	18.8	17.8	47.6	
SA GAN (sBN) [3]	input	-	16.1	15.4	44.8	2.6
	feat	-	16.3	15.8	44.7	

PA achieves	~3 FID	point im	provement.
I A GCITIC VC3	5110	Ponitin	provenicine.

Insensitive to hyper-parameter settings.

Comparison with other regularization techniques

Method	PA	GAN	-Label smooth.	-GP [5]	-GP _{zero-cent}	-Dropout [7]	-ss [8]	$\overline{\Delta}$ PA
SN DCGAN [2]	×	26.0	25.8	26.7	26.5	22.1	_	
	input	22.2	23.1	21.8	22.3	21.9	_	3.0
	feat	22.6	22.3	22.7	23.0	20.6	_	3.1
	Х	18.8	_	17.8	17.8	16.2	15.7	
SA GAN (sBN) [3]	input	16.1	_	15.8	16.1	15.5	14.7	1.3
	feat	16.3	_	16.1	15.9	15.6	14.9	1.3
	$\overline{\Delta}$ PA	3.1	3.1	3.2	2.8	0.8	0.9	2.3

Consistent and complementary performance gain.

Qualitative results

Images generated via latent space interpolation

Randomly sampled images

High-fidelity human face synthesis.

No close-by images look alike.
PA improves sample variation.

5 References

[1] Goodfellow, et al.: Generative adversarial nets, NIPS 2014
[2] Miyato, et al.: Spectral normalization for generative adversarial networks, ICLR 2018
[3] Zhang, et al.: Self-attention generative adversarial networks, ICML 2019
[4] Salimens, et al.: Improved techniques for training GANs, NIPS 2016

[5] Gulrajani, et al.: Improved training of Wasserstein GANs, NIPS 2017
[6] Roth, et al.: Stabilizing training of GANs through regularization, NIPS 2017
[7] Srivastava, et al.: Dropout: a simple way to prevent neural networks from overfitting, JMLR 2014
[8] Chen, et al.: Self-supervised GANs via auxiliary rotation loss, CVPR 2019