Management frequency and extinction risk

GMSE: an R package for generalised management strategy evaluation (Supporting Information 5)

- A. Bradley Duthie¹³, Jeremy J. Cusack¹, Isabel L. Jones¹, Jeroen Minderman¹, Erlend B. Nilsen², Rocío A. Pozo¹, O. Sarobidy Rakotonarivo¹, Bram Van Moorter², and Nils Bunnefeld¹
- [1] Biological and Environmental Sciences, University of Stirling, Stirling, UK [2] Norwegian Institute for Nature Research, Trondheim, Norway [3] alexander.duthie@stir.ac.uk

The individual-based approach of default GMSE submodels

The default submodels of GMSE (resource, observation, manager, user) are individual-based (also called 'agent-based'), meaning that they model discrete individuals (resources or agents), which in GMSE are represented by individual table rows (RESOURCES, AGENTS, OBSERVATION) or layers of three-dimensional arrays (COST, ACTION). Individual-based models (IBMs) have been a useful approach in ecology for decades (Uchmański and Grimm, 1996; Grimm, 1999), providing both a pragmatic tool for the mechanistic modelling of complex populations and a powerful technique for theoretical investigation. A key advantage of the individual-based modelling approach is the discrete nature of individuals, which allows for detailed trait variation and complex interactions among individuals. In GMSE, some of the most important traits for resources include types, ages, demographic parameter values, locations, etc., and for agents (manager and users), traits include different types, utilities, budgets, etc. The traits that resources and managers have can potentially affect their interactions, and default GMSE submodels take advantage of this by simulating interactions explicitly on a landscape (see SI7 for an introduction to GMSE default data structures).

Replicate simulations as a tool for model inference

Modelling complex interactions among discrete individuals mechanistically typically causes some degree of stochasticity in IBMs (in the code, this is caused by the sampling of random values, which determine probabilistically whether or not events such as birth or death occur for individuals), reflecting the uncertainty that is inherent to complex systems. We can see a simple example of this by calling <code>gmse_apply</code> under the same default conditions twice.

```
rand_eg_1 <- gmse_apply();</pre>
print(rand eg 1);
## $resource results
## [1] 1124
##
## $observation_results
## [1] 1111.111
##
##
   $manager_results
##
            resource_type scaring culling castration feeding help_offspring
## policy_1
                                                             NA
##
## $user_results
##
           resource_type scaring culling castration feeding help_offspring
                               NA
## Manager
                                                            NA
```

```
## user 1
                                  NA
                                            20
                                                         NA
                                                                  NA
                                                                                    NA
                          1
                          1
                                  NA
                                            20
                                                        NA
                                                                  NA
                                                                                   NA
## user 2
## user 3
                          1
                                  NA
                                            20
                                                        NA
                                                                  NA
                                                                                   NA
   user 4
                          1
                                                                                   NA
##
                                  NA
                                            20
                                                        NA
                                                                  NA
##
            tend_crops kill_crops
## Manager
                      NA
## user 1
                      NA
                                  NA
## user 2
                      NA
                                  NA
## user 3
                      NA
                                  NA
                      NA
## user_4
                                  NA
```

Although the second call to gmse_apply has identical initial conditions, because resource demographics (e.g., birth and death) and agent decision making (e.g., policy generation and user actions) is not deterministic, a slightly different result is obtained.

```
rand_eg_2 <- gmse_apply();</pre>
print(rand_eg_2);
## $resource_results
##
   [1] 1123
##
## $observation_results
   [1] 1156.463
##
##
##
   $manager results
##
             resource_type scaring culling castration feeding help_offspring
                          1
                                  NA
                                           54
                                                       NA
                                                                NA
## policy_1
##
##
  $user results
            resource_type scaring culling castration feeding help_offspring
##
## Manager
                         1
                                 NA
                                           0
                                                      NA
                                                               NA
                                                                                ΝA
## user_1
                         1
                                 NA
                                          18
                                                               NA
                                                                                NA
                                                      NA
## user_2
                         1
                                 NA
                                          18
                                                      NA
                                                               NA
                                                                                NA
                         1
                                                                                NA
## user_3
                                 NA
                                          18
                                                      NA
                                                               NA
## user_4
                         1
                                 NA
                                          18
                                                      NA
                                                                                NA
                                                               NA
##
            tend_crops
                        kill_crops
## Manager
                     NA
                                 NA
## user_1
                     NA
                                 NA
## user_2
                     NA
                                 NA
## user 3
                     NA
                                 NA
## user 4
                     NA
                                 NA
```

To make meaningful model inferences, it is often necessary to replicate simulations under the same initial conditions to understand the range of predicted outcomes for a particular set of parameter values. This can be computationally intense, but it can also lead to a more robust understanding of the range of dynamics that might be expected in a system.

References

Grimm, V. (1999). Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? *Ecological Modelling*, 115(2-3):129–148.

Uchmański, J. and Grimm, V. (1996). Individual-based modelling in ecology: what makes the difference? Trends in Ecology & Evolution, 11(10):437–441.