Relationale Algebra

Relationale Abfragesprachen/Relational Query Languages (QL)

- Abfragesprachen: Daten aus einer Datenbank zu manipulieren und abzufragen (retrieve information)
- Das relationalle Modell hat einfache und leistungsfähige Abfragesprachen (man kann viel optimieren)
- Abfragesprache ≠ Programmiersprache
- Abfragesprachen:
 - Nicht für komplexe Operationen
 - Erlaubt einfacher und effizienter Zugriff zu großen Datensätze

Formale Relationale Abfragesprachen (Query Languages)

- Zwei mathematische Abfragesprachen stellen die theoretische Grundlage der "reelen" Abfragesprachen (wie z.B. SQL) in relationalen Datenbanken:
 - Relationale Algebra:
 - kann Ausführungspläne beschreiben (operational)
 - Relationale Kalküle:
 - Der Benutzer kann beschreiben was er haben will und nicht wie es berechnet werden soll (non-operational, deklarativ)
 - Domänenkalkül, Tupelkalkül

Relationale Algebra

- Fünf Basisoperationen:
 - **Projektion** (π): wählt bestimmte Spalten aus der Relation und gibt diese als neue Relation aus ("löscht" die anderen Spalten)
 - **Selektion** (σ): wählt bestimme Zeilen aus der Relation und gibt diese als neue Relation aus ("löscht" die anderen Zeilen)
 - Kartesisches Produkt (\times): erlaubt die Verknüpfung zweier Relationen
 - **Differenz** () : gibt die Tupeln aus der ersten Relation, die sich nicht in der zweiten Reltion befinden, aus
 - **Vereinigung** (∪): gibt die Tupeln aus der ersten und zweiten Relation aus
- Zusätzliche Opratoren: Umbenennen, Durchschnitt, Division, Verbund
- Die Operationen k\u00f6nnen zusammengesetzt sein (jede Operation hat eine Relation als Ergebnis)

Projektion

• **Definition.** Sei L = $(A_1, ..., A_n)$ eine Teilmenge von Attributen(Spalten) aus der Relation R. Die Projektion der Attribute L einer Relation R ist definiert als die Relation R' $(A_1, ..., A_n)$ mit:

$$R' = \pi_L(R) = \{ t' \mid t \in R \land t'.A_1 = t.A_1 \land ... \land t'.A_n = t.A_n \}$$

- Oder, anders gesagt:
 - Die Projektion aus einem Tupel t ∈ R ist definiert als das Tupel

$$\pi_L(t) = (t(A_1), ..., t(A_n))$$

• Die Projektion der Relation R ist definiert als die Relation

$$\pi_{I}(R) = \{\pi_{I}(t) \mid t \in R \}$$

Projektion - Beispiel

Studenten

<u>MatrikelNr</u>	Name	Vorname	Vorname2	Geburt	Ort	SgNr	Bafoeg
1001	Schmidt	Hans	Peter	24.2.1990	Würzburg	2	200
1002	Meisel	Dirk	Helmut	17.8.1989	Schweinfurt	3	500
1003	Schmidt	Amelie		19.9.1992	Rimpar	1	0
1004	Krause	Christian	Johannes	3.5.1990	Würzburg	1	100
1005	Schäfer	Julia		30.3.1993	Kitzingen	5	0
1006	Rasch	Lara		30.3.1992	Würzburg	3	0
1007	Bakowski	Juri		15.7.1988	Schweinfurt	4	400

Name	Ort
Schmidt	Würzburg
Meisel	Schweinfurt
Schmidt	Rimpar
Krause	Würzburg
Schäfer	Kitzingen
Rasch	Würzburg
Bakowski	Schweinfurt

Projektion in SQL

• Ist $\pi_{Name,Ort}$ (Studenten) äquivalent mit

```
SELECT Name, Ort FROM Studenten
```

- NEIN!
 - Relationale Algebra funktioniert mit Mengen ⇒ keine Duplikate(identische Tupeln)
 - Das ist in SQL nicht standardmäßig so!
 - Äquivalent:

```
SELECT DISTINCT Name, Ort FROM Studenten
```

Selektion / Restriktion

• **Definition.** Die Selektion einer Relation R ist definiert als die Menge aller Tupel aus R, die der Selektionsbedingung P genügen:

$$\sigma_{P}(R) = \{ t \mid t \in R \land P(t) \}$$

- Die Bedingung P setzt sich zusammen aus:
 - Operanden: Konstanten oder Name eines Attributs
 - Vergleichsoperatoren: =, \neq , <, \leq , >, \geq
 - Boolsche Operatoren: ∨, ∧, ¬

Selektion - Beispiel

Studenten

<u>MatrikelNr</u>	Name	Vorname	Vorname2	Geburt	Ort	SgNr	Bafoeg
1001	Schmidt	Hans	Peter	24.2.1990	Würzburg	2	200
1002	Meisel	Dirk	Helmut	17.8.1989	Schweinfurt	3	500
1003	Schmidt	Amelie		19.9.1992	Rimpar	1	0
1004	Krause	Christian	Johannes	3.5.1990	Würzburg	1	100
1005	Schäfer	Julia		30.3.1993	Kitzingen	5	0
1006	Rasch	Lara		30.3.1992	Würzburg	3	0
1007	Bakowski	Juri		15.7.1988	Schweinfurt	4	400

<u>MatrikelNr</u>	Name	Vorname	Vorname2	Geburt	Ort	SgNr	Bafoeg
1001	Schmidt	Hans	Peter	24.2.1990	Würzburg	2	200
1003	Schmidt	Amelie		19.9.1992	Rimpar	1	0

Selektion in SQL

```
\sigma_{\text{Name} = `Schmidt`}(Studenten)

SELECT DISTINCT * FROM Studenten

WHERE Name = `Schmidt`
```

Aufpassen

Nicht verwechseln:

Zusammensetzung von Projektion und Selektion

```
\pi_{\text{Name, Vorname, Ort}}(\sigma_{\text{Name = `Schmidt`}}(\text{Studenten}))

SELECT DISTINCT Name, Vorname, Ort

FROM Studenten

WHERE Name = `Schmidt`

\sigma_{\text{Name = `Schmidt`}}(\pi_{\text{Name, Vorname, Ort}}(\text{Studenten}))
```

- Welches ist das äquivalente SQL Query?
- Kann man immer die Reihenfolge der Projektion und Selektion wechseln?
- Nein → die Selektion kann nach der Projektion ausgeführt werden, nur dann wenn die Selektionsbedingung nur Attribute aus der Projektion enthält

Vereinigung, Durchschnitt, Differenz

- Vereinigung: $R_1 \cup R_2 = \{t \mid t \in R_1 \lor t \in R_2\}$
- Durchschnitt: $R_1 \cap R_2 = \{t \mid t \in R_1 \land t \in R_2\}$
- Differenz: $R_1 R_2 = \{ t \mid t \in R_1 \land t \notin R_2 \}$
- R₁ und R₂ müssen für alle diese Operationen gleiches Relationenschema besitzen
- Wertebereiche müssen kompatibel oder vereinigungsverträglich sein
- Bem. Es gilt $R_1 \cap R_2 = R_1 (R_1 R_2)$

Vereinigung, Durchschnitt, Differenz in SQL

R_1	U	R_2
-------	---	-------

SELECT DISTINCT *
FROM R₁

UNION

SELECT DISTINCT *
FROM R₂

$\mathbf{R_1} \cap \mathbf{R_2}$

SELECT DISTINCT *
FROM R₁

INTERSECT

SELECT DISTINCT *
FROM R₂

$$\mathbf{R_1} - \mathbf{R_2}$$

SELECT DISTINCT *
FROM R₁

EXCEPT

SELECT DISTINCT *
FROM R₂

Kartesisches Produkt

• Das kartesische Produkt zweier Relationen $R_1(A_1, ..., A_n)$ und $R_2(B_1, ..., B_m)$ ist definiert als Relation:

$$R_1 \times R_2 = \{ t \mid t_1 \in R_1 \land t_2 \in R_2 \}$$

 $\Lambda t.A_1 = t_1.A_1 \land ... \land t.A_n = t_1.A_n$
 $\Lambda t.B_1 = t_2.B_1 \land ... \land t.B_m = t_2.B_m \}$

SQL:

SELECT DISTINCT
7
FROM R_{1} , R_{2}

Kartesisches Produkt - Beispiel

A ₁	A ₂
1	Α
2	В
3	С

B ₁	B ₂
1	X
2	Υ
4	Z

A_1	A ₂	B_1	B ₂
1	Α	1	X
1	Α	2	Υ
1	Α	4	Z
2	В	1	X
2	В	2	Υ
2	В	4	Z
3	С	1	X
3	С	2	Υ
3	С	4	Z

θ -Join (Theta-Verbund)

- Auswahl bestimmter Tupel aus dem kartesischen Produkt $R_1 \times R_2$
- Basis der Verknüpfung der Relationen: eine Bedingung c

$$R_1 \bowtie_c R_2 = \sigma_c (R_1 \times R_2)$$

Bsp.

Studenten ⋈_{Studenten.MatrikelNr} = Enrolled.MatrikelNr</sub> Enrolled

SQL:

SELECT DISTINCT *
FROM Studenten, Enrolled
WHERE Studenten.MatrikelNr
= Enrolled.MatrikelNr

oder

SELECT DISTINCT *
FROM Studenten
INNER JOIN Enrolled ON
Studenten.MatrikelNr =
Enrolled.MatrikelNr

Equi-Join

- Einen θ -Join der Form $R_1 \bowtie_{R_1.A_i = R_2.B_i} R_2$ nennt man Equi-Join
- Notation für Equi-Join um zu unterscheiden: $R_1 \bowtie_{E(R_1.A_i = R_2.B_j)} R_2$
- Die Bedingung muss der Form einer Gleichwertigkeit zwischen Attribute der ersten und der zweiten Relation sein
- Das Ergebnis enthält nur einen der Attribute, da es redundant ist beide zu behalten (die Attribute sind gleich)

Equi-Join Beispiel

Kurse

KursId	Titel
Alg1	Algorithmen1
DB1	Datenbanken1
DB2	Datenbanken2

Enrolled

MatrNr	KursId	Note
1234	Alg1	7
1235	Alg1	8
1234	DB1	9
1234	DB2	7
1236	DB1	10

Kurse $\bowtie_{E(Kurse.KursId=Enrolled.KursId)}$ Enrolled

KursId	Titel	MatrNr	Note
Alg1	Algorithmen1	1234	7
Alg1	Algorithmen1	1235	8
DB1	Datenbanken1	1234	9
DB2	Datenbanken2	1234	7
DB1	Datenbanken1	1236	10

Natürlicher Verbund

- Verknüpft zwei Relationen indem alle gleichbenannten Attribute der beiden Relationen betrachtet werden und nur einen der gleichen Attribute kommt in das Ergebnis vor (ohne Redundanzen)
- Qualifizierende Tupel müssen für diese gleichbenannten Attribute gleiche Werte aufweisen, um in das Ergebnis einzugehen
- Gibt es kein gemeinsames Attribut so ist das Ergebnis das kartesische Produkt

Kurse

KursId	Titel
Alg1	Algorithmen1
DB1	Datenbanken1
DB2	Datenbanken2

Enrolled

MatrNr	KursId	Note
1234	Alg1	7
1235	Alg1	8
1234	DB1	9
1234	DB2	7
1236	DB1	10

Kurse ⋈ Enrolled

KursId	Titel	MatrNr	Note
Alg1	Algorithmen1	1234	7
Alg1	Algorithmen1	1235	8
DB1	Datenbanken1	1234	9
DB2	Datenbanken2	1234	7
DB1	Datenbanken1	1236	10

Division

• Die Relation R₁ enthält Attribute X und Y und R₂ enthält den Attribut Y.

$$R_1 \div R_2 = \{ \langle X \rangle \mid \forall \langle Y \rangle \in R_2 : \exists \langle X, Y \rangle \in R_1 \}$$

- $R_1 \div R_2$ (oder R_1/R_2) enthält alle X Tupeln so dass für jedes Y Tupel in R_2 ein XY Tupel in R_1 existiert
- X und Y können auch Mengen von Attributen sein

Division

- Nicht als primitiver Operator, aber nützlich
- Die Division wird dann eingesetzt, wenn die Frage "für alle" enthält
- Beispielfragestellungen für eine Division:
 - Welche Personen haben eine Kundenkarte von allen Filialen?
 - Welche Mitarbeiter arbeiten an allen Projekten?
 - Welche Studenten hören alle Vorlesungen von Prof. X?

Division

- Darstellung des Quotienten durch die Basisoperatoren:
 - Idee: Berechne alle X Werte, die von irgendeinem Y Wert aus R₂ disqualifiziert wird
 - X wird disqualifiziert wenn für einen Y der Tupel XY nicht in R_1 enthalten ist: $\pi_x((\pi_x(R_1) \times R_2) R_1)$
 - Der Quotient R₁÷ R₂ enthält dann alle X Werte aus R₁, die nicht disqualifiziert sind:

$$R_1 \div R_2 = \pi_X(R_1) - \pi_X((\pi_X(R_1) \times R_2) - R_1)$$

Division - Beispiel

 R_1

В
3
1
7
3
1
7

 R_2

A
4
8

 $R_1 \div R_2$

В	
3	
1	
7	

Umbenennen von Relationen und Attributen

- Umbenennung unterscheidet sich von den anderen Operatoren dadurch, dass keine Berechnung vorgenommen wird
- Operator ist aber notwendig, wenn eine Relation mehrfach in einer Anfrage vorkommt (z.B. Join)
- $\rho_S(R)$: Relation R wird in Relation S umbenannt
- $\rho_{R-A}(R)$: Attribut A der Relation R wird umbenannt in B
- Das Relationenschema wird nicht geändert (nur eventuell Namen von Attributen)

Zuweisungsoperation

- Die Zuweisungsoperation ← ist eine Methode komplexe Abfragen zu representieren
- Eine Abfrage kann in einer temporären Variable gespeichert werden Temp $\leftarrow \pi_x(R_1 \times R_2)$
- Dann kann man diese Variable in weiteren Abfragen benutzen

$$Erg \leftarrow Temp - R_3$$

Komplexe Abfragen

$$R_1 \cup (R_2 \cap \pi_b (R_3 \times \rho_{R_5} (\rho_{b \leftarrow a}(R_4))))$$

Studenten

Vorname MatrNr Name Schmidt Hans 1234 Meisel Amelie 1235 Julia 1236 Krause 1237 Rasch Lara Schmidt Christian 1238

Kurse

KursId	Titel	ECTS
Alg1	Algorithmen1	6
DB1	Datenbanken1	6
DB2	Datenbanken2	5

Enrolled

MatrNr	KursId	Note
1234	Alg1	7
1235	Alg1	8
1234	DB1	9
1234	DB2	7
1236	DB1	10

Geben Sie die Namen der Studenten aus, die für den Kurs `BD1` angemeldet sind

• Lsg1.

```
\pi_{Name}((\sigma_{KursId=`BD1`}(Enrolled)) \bowtie Studenten)
```

• Lsg2.

```
\rho_{\text{Temp1}}(\sigma_{\text{KursId=`BD1`}}(\text{Enrolled}))

\rho_{\text{Temp2}}(\text{Temp1} \bowtie \text{Studenten})

\pi_{\text{Name}}(\text{Temp2})
```

• Lsg3.

```
\pi_{\text{Name}}(\sigma_{\text{KursId}=`BD1`}(\text{Enrolled} \bowtie \text{Studenten}))
```

Geben Sie die Namen der Studenten aus, die für einen Kurs mit 5 ECTS angemeldet sind

• Lsg1.

$$\pi_{Name}((\sigma_{ECTS=5}(Kurse)) \bowtie Enrolled \bowtie Studenten)$$

• Lsg2.

$$\pi_{\text{Name}}(\pi_{\text{MatrNr}}(\pi_{\text{KursId}}(\sigma_{\text{ECTS=5}}(\text{Kurse})) \bowtie \text{Enrolled}) \bowtie \text{Studenten})$$

• Lsg2 ist effizienter. Ein Abfrageoptimierer würde, gegeben die erste Abfrage, die zweite Abfrage finden.

Geben Sie die Namen der Studenten aus, die für einen Kurs mit 5 **oder** 6 ECTS angemeldet sind

 Wir können erstmal die Kurse mit 5 oder 6 ECTS ausgeben und dann die Studenten die in einem dieser Kurse angemeldet sind

 $\rho_{\text{TempKurse}}(\sigma_{\text{ECTS=5}}, \sigma_{\text{ECTS=6}}(\text{Kurse}))$

 π_{Name} (TempKurse \bowtie Enrolled \bowtie Studenten)

• Was passiert wenn wir "oder" mit "und" ersetzen

Geben Sie die Namen der Studenten aus, die für einen Kurs mit 5 ECTS **und** einen Kurs mit 6 ECTS angemeldet sind

- Die vorige Idee funktionniert nicht mehr.
- Wir müssen die Studenten finden, die in einem 5 ECTS Kurs angemeldet sind und die die in einem 6 ECTS Kurs angemeldet sind und den Durchschnitt berechnen

```
\rho_{\text{Temp5}}(\pi_{\text{MatrNr}}(\sigma_{\text{ECTS=5}} \text{ (Kurse)} \bowtie \text{Enrolled}))

\rho_{\text{Temp6}}(\pi_{\text{MatrNr}}(\sigma_{\text{ECTS=6}} \text{ (Kurse)} \bowtie \text{Enrolled}))

\pi_{\text{Name}}(\text{(Temp5} \cap \text{Temp6}) \bowtie \text{Studenten})
```

Geben Sie die Namen der Studenten aus, die **für alle** Kurse angemeldet sind

• "Für alle" \rightarrow wir benutzen Division $\rho_{\mathsf{TempMatrNr}}(\pi_{\mathsf{MatrNr},\mathsf{KursId}}(\mathsf{Enrolled}) \, / \, \pi_{\mathsf{KursId}}(\mathsf{Kurse}))$ $\pi_{\mathsf{Name}}(\mathsf{TempMatrNr} \bowtie \mathsf{Studenten})$

Erweiterte Relationale Algebra Operatoren

- Erweiterte Projektion
- Aggregat Funktionen
- Outer Join
- Datenbank Änderungen

Erweiterte Projektion

• Erweitert die Projektion, indem arithmetische Funktionen als Projektionbedingung benutzt werden können

$$\pi_{F1,...,Fn}(R)$$

• F1, ..., Fn sind arithmetische Funktionen, die Konstante oder Attribute der Relation R enthalten

Aggregat Funktionen

- Haben mehrere Werte als Input und ein Wert als Output:
 - avg: Mittelwert
 - min: Minimum der Werte
 - max: Maximum der Werte
 - sum: Summe der Werte
 - count: Anzahl der Werte

Aggregat Funktionen in Relationale Algebra

$$G_{1,G_{2},...,G_{n}} \vartheta_{F_{1}(A_{1}), F_{2}(A_{2}),..., F_{n}(A_{n})} (R)$$

- $G_{1,}G_{2},...,G_{n}$ eine Liste von Attributen worauf wir gruppieren wollen
- F_i Aggregatfunktion
- A_i Name eines Attributes

Aggregat Funktionen - Beispiel

Relation R:

Α	В	С
а	2	5
b	3	3
а	4	4

$$\vartheta_{\text{sum(C)}}(R) \Rightarrow 12$$

Outer Join

- Erweiterung von Join-Operationen:
 - **Left Outer Join** → alle Tupel aus der linken Relation, die keinen Join-Partner in der rechten Relation haben, werden trotzdem ausgegeben
 - **Right Outer Join ⋈** alle Tupel aus der rechten Relation, die keinen Join-Partner in der linken Relation haben, werden trotzdem ausgegeben
 - Full Outer Join ➤ alle Tupel sowohl der linken als auch der rechten Reltion, die keinen Join-Partner haben, werden trotzdem ausgegeben
- Null-Werte werden benutzt:
 - Tupeln aus der Relation R, die keinen Join-Partner in der Relation S hatten enthalten Null-Werte für die entsprechenden Spalten der Relation S
 - Ein Null-Wert heißt unbekannt oder inexistent
 - Alle Vergleiche mit einem Null-Wert werden in der Regel als FALSE bewertet

Outer Join - SQL

RIGHT JOIN (alternativ RIGHT OUTER JOIN)

```
SELECT *
FROM Studenten RIGHT JOIN Studiengang
ON Studenten.SgNr = Studiengaenge.SgNr
```

• LEFT JOIN (alternativ LEFT OUTER JOIN)

```
SELECT *
FROM Studiengaenge LEFT JOIN Studenten
ON Studenten.SgNr = Studiengaenge.SgNr
```

- FULL OUTER JOIN
 - Nicht in allen DB-Systemen verfügbar (z.B. MySQL nicht)

Datenbank Änderungen

- Der Inhalt der Datenbank kann durch folgenden Operationen geändert werden:
 - Löschen: $R \leftarrow R E$
 - Einfügen: R ← R ∪ E
 - Aktualisierung/Updating: $R \leftarrow \pi_{F1, ..., Fn}(R)$