Adam Starak

May 16, 2019

Definition

A star is a tree that:

Definition

A star is a tree that:

(1) has at least 2 vertices.

Definition

A star is a tree that:

- (1) has at least 2 vertices.
- (2) one vertex is adjacent to the rest.

Definition

A star is a tree that:

- (1) has at least 2 vertices.
- (2) one vertex is adjacent to the rest.

Definition

A star is a tree that:

- (1) has at least 2 vertices.
- (2) one vertex is adjacent to the rest.

Definition

A star is a tree that:

- (1) has at least 2 vertices.
- (2) one vertex is adjacent to the rest.

Definition

A star is a tree that:

- (1) has at least 2 vertices.
- (2) one vertex is adjacent to the rest.

Definition

Given a graph G decide whether it has a Spanning Star Forest.

3/25

Lemma

G contains a Spanning Star Forest if and only if it does not contain any isolated vertices.

Lemma

G contains a Spanning Star Forest if and only if it does not contain any isolated vertices.

Forward implication.

Lemma

G contains a Spanning Star Forest if and only if it does not contain any isolated vertices.

Forward implication.

Let S - Spanning Star Forest of G.

Lemma

G contains a Spanning Star Forest if and only if it does not contain any isolated vertices.

Forward implication.

Let S - Spanning Star Forest of G.

Every vertex belongs to a star.

Lemma

G contains a Spanning Star Forest if and only if it does not contain any isolated vertices.

Forward implication.

Let S - Spanning Star Forest of G.

Every vertex belongs to a star.

Every star has at least 2 vertices.

Lemma

G contains a Spanning Star Forest if and only if it does not contain any isolated vertices.

Forward implication.

Let S - Spanning Star Forest of G.

Every vertex belongs to a star.

Every star has at least 2 vertices.

G has no isolated vertices.

Lemma

G contains a Spanning Star Forest if and only if it does not contain any isolated vertices.

Forward implication.

Backward implication.

Let S - Spanning Star Forest of G.

Every vertex belongs to a star.

Every star has at least 2 vertices.

G has no isolated vertices.

Lemma

G contains a Spanning Star Forest if and only if it does not contain any isolated vertices.

Forward implication.

Let S - Spanning Star Forest of G.

Every vertex belongs to a star.

Every star has at least 2 vertices.

G has no isolated vertices.

Backward implication.

Proof on the board.

Lemma

G contains a Spanning Star Forest if and only if it does not contain any isolated vertices.

Forward implication.

Let S - Spanning Star Forest of G.

Every vertex belongs to a star.

Every star has at least 2 vertices.

G has no isolated vertices.

Backward implication.

Proof on the board.

Corollary

Spanning Star Forest problem can be solved in linear time.

Minimal Spanning Star Forest

Minimal Spanning Star Forest

Given a pair (G, k) decide whether there exists a Spanning Star Forest of at most \mathbf{k} .

Minimal Spanning Star Forest

Minimal Spanning Star Forest

Given a pair (G, k) decide whether there exists a Spanning Star Forest of at most \mathbf{k} .

Dominating Set

Given a pair (G, k) find a set $D \subseteq V(G)$ such that $|D| \le k$ and every node is either in D or adjacent to D.

(G,3) for Dominating Set.

 $\left(\textit{G},3\right)$ for Minimal Spanning Star Forest.

(G,3) for Dominating Set.

 $(\mathcal{G},3)$ for Minimal Spanning Star Forest.

(G,3) for Dominating Set.

 $(\mathcal{G},3)$ for Minimal Spanning Star Forest.

(G,3) for Dominating Set.

(G,3) for Minimal Spanning Star Forest.

Observation

There is a relationship between:

(G,3) for Dominating Set.

(G,3) for Minimal Spanning Star Forest.

Observation

There is a relationship between:

• Centers and dominating vertices.

(G,3) for Dominating Set.

(G,3) for Minimal Spanning Star Forest.

Observation

There is a relationship between:

- Centers and dominating vertices.
- Rays and dominated vertices.

Theorem

Minimal Spanning Star Forest is NP-complete.

Theorem

Minimal Spanning Star Forest is NP-complete.

Construction.

Theorem

Minimal Spanning Star Forest is NP-complete.

Construction.

Replace every isolated vertex \mathbf{v} with an isolated edge $(\mathbf{v}, \mathbf{v}')$.

Theorem

Minimal Spanning Star Forest is NP-complete.

Construction.

Replace every isolated vertex \mathbf{v} with an isolated edge $(\mathbf{v}, \mathbf{v}')$.

Lemma

(G, k) has a solution if and only if (G', k) has one.

Theorem

Minimal Spanning Star Forest is NP-complete.

Construction.

Replace every isolated vertex \mathbf{v} with an isolated edge $(\mathbf{v}, \mathbf{v}')$.

Lemma

(G, k) has a solution if and only if (G', k) has one.

Proof on the board.

Reverse reduction

Construction

$$(G', k') = \begin{cases} (G, 0), & \text{if } G \text{ contains an isolated vertex.} \\ (G, k), & \text{otherwise.} \end{cases}$$

Reverse reduction

Construction

$$(G', k') = \begin{cases} (G, 0), & \text{if } G \text{ contains an isolated vertex.} \\ (G, k), & \text{otherwise.} \end{cases}$$

Lemma

(G, k) has a solution if and only if (G', k) has one.

Reverse reduction

Construction

$$(G', k') = \begin{cases} (G, 0), & \text{if } G \text{ contains an isolated vertex.} \\ (G, k), & \text{otherwise.} \end{cases}$$

Lemma

(G, k) has a solution if and only if (G', k) has one.

Corollary

Dominating Set and Minimal Spanning Star Forest are interreductible.

Theorem

Unless SETH fails, there is no algorithm solving Dominating Set in time $\mathcal{O}^*(n^{k-\epsilon})$ for $\epsilon>0$.

Theorem

Unless SETH fails, there is no algorithm solving Dominating Set in time $\mathcal{O}^*(n^{k-\epsilon})$ for $\epsilon>0$.

The theorem is also true for Minimal Spanning Star Forest.

Theorem

Unless SETH fails, there is no algorithm solving Dominating Set in time $\mathcal{O}^*(n^{k-\epsilon})$ for $\epsilon>0$.

The theorem is also true for Minimal Spanning Star Forest.

Proof.

Theorem

Unless SETH fails, there is no algorithm solving Dominating Set in time $\mathcal{O}^*(n^{k-\epsilon})$ for $\epsilon>0$.

The theorem is also true for Minimal Spanning Star Forest.

Proof.

Suppose contrary, \mathcal{A} is the algorithm.

Theorem

Unless SETH fails, there is no algorithm solving Dominating Set in time $\mathcal{O}^*(n^{k-\epsilon})$ for $\epsilon>0$.

The theorem is also true for Minimal Spanning Star Forest.

Proof.

Suppose contrary, \mathcal{A} is the algorithm.

(G, k) - Dominating Set instance.

Theorem

Unless SETH fails, there is no algorithm solving Dominating Set in time $\mathcal{O}^*(n^{k-\epsilon})$ for $\epsilon>0$.

The theorem is also true for Minimal Spanning Star Forest.

Proof.

Suppose contrary, ${\cal A}$ is the algorithm.

(G, k) - Dominating Set instance.

(G', k) - Minimal Spanning Star Forest instance

Theorem

Unless SETH fails, there is no algorithm solving Dominating Set in time $\mathcal{O}^*(n^{k-\epsilon})$ for $\epsilon>0$.

The theorem is also true for Minimal Spanning Star Forest.

Proof.

Suppose contrary, ${\cal A}$ is the algorithm.

(G, k) - Dominating Set instance.

(G', k) - Minimal Spanning Star Forest instance

Apply algorithm \mathcal{A} .

Theorem

Unless SETH fails, there is no algorithm solving Dominating Set in time $\mathcal{O}^*(n^{k-\epsilon})$ for $\epsilon>0$.

The theorem is also true for Minimal Spanning Star Forest.

Proof.

Suppose contrary, ${\cal A}$ is the algorithm.

(G, k) - Dominating Set instance.

(G', k) - Minimal Spanning Star Forest instance

Apply algorithm \mathcal{A} .

Contradiction.

Spanning Star Forest Extension Problem

Definition

Given a graph G and a set of **forced edges** $M \subseteq E(G)$, find a Spanning Star Forest S such that $M \subseteq E(S)$.

Spanning Star Forest Extension Problem

Definition

Given a graph G and a set of **forced edges** $M \subseteq E(G)$, find a Spanning Star Forest S such that $M \subseteq E(S)$.

$$F = V(M)$$
$$R = V \setminus F$$

(R1) Isolated vertex \rightarrow no instance.

- (R1) Isolated vertex \rightarrow no instance.
- (R2) G[M] not a Star Forest \rightarrow no instance.

- (R1) Isolated vertex \rightarrow no instance.
- (R2) G[M] not a Star Forest \rightarrow no instance.
- (R3) M has a star S of size $\geq 3 \rightarrow$ remove rays' edges and contract rays.

- (R1) Isolated vertex \rightarrow no instance.
- (R2) G[M] not a Star Forest \rightarrow no instance.
- (R3) M has a star S of size $\geq 3 \rightarrow$ remove rays' edges and contract rays.

Corollary

After exhaustive application of the R3, M is a matching.

 $G_{NP} = \{v : v \in F \text{ or } v \text{ is isolated in } G \setminus F\}$

$$G_{NP} = \{ v : v \in F \text{ or } v \text{ is isolated in } G \setminus F \}$$
 $G_{P} = G \setminus G_{NP}$

$$G_{NP} = \{ v : v \in F \text{ or } v \text{ is isolated in } G \setminus F \}$$
 $G_{P} = G \setminus G_{NP}$

$$G_{NP} = \{ v : v \in F \text{ or } v \text{ is isolated in } G \setminus F \}$$
 $G_{P} = G \setminus G_{NP}$

$$G_{NP} = \{ v : v \in F \text{ or } v \text{ is isolated in } G \setminus F \}$$
 $G_{P} = G \setminus G_{NP}$

Corollary

 G_P has always a solution.

$$G_{NP} = \{ v : v \in F \text{ or } v \text{ is isolated in } G \setminus F \}$$
 $G_{P} = G \setminus G_{NP}$

$$G_{NP} = \{ v : v \in F \text{ or } v \text{ is isolated in } G \setminus F \}$$
 $G_{P} = G \setminus G_{NP}$

Lemma

(G, M) has a solution if and only if (G_{NP}, M) has one.

$$G_{NP} = \{ v : v \in F \text{ or } v \text{ is isolated in } G \setminus F \}$$
 $G_{P} = G \setminus G_{NP}$

Lemma

(G, M) has a solution if and only if (G_{NP}, M) has one.

Backward implication.

$$G_{NP} = \{ v : v \in F \text{ or } v \text{ is isolated in } G \setminus F \}$$
 $G_{P} = G \setminus G_{NP}$

Lemma

(G, M) has a solution if and only if (G_{NP}, M) has one.

Backward implication.

Let S be a solution for G_{NP} .

$$G_{NP} = \{ v : v \in F \text{ or } v \text{ is isolated in } G \setminus F \}$$
 $G_{P} = G \setminus G_{NP}$

Lemma

(G, M) has a solution if and only if (G_{NP}, M) has one.

Backward implication.

Let S be a solution for G_{NP} .

Partition G into (G_P, G_{NP}) .

$$G_{NP} = \{ v : v \in F \text{ or } v \text{ is isolated in } G \setminus F \}$$
 $G_{P} = G \setminus G_{NP}$

Lemma

(G, M) has a solution if and only if (G_{NP}, M) has one.

Backward implication.

Let S be a solution for G_{NP} .

Partition G into (G_P, G_{NP}) .

Find a solution S' for G_P .

$$G_{NP} = \{ v : v \in F \text{ or } v \text{ is isolated in } G \setminus F \}$$
 $G_{P} = G \setminus G_{NP}$

Lemma

(G, M) has a solution if and only if (G_{NP}, M) has one.

Backward implication.

Let S be a solution for G_{NP} .

Partition G into (G_P, G_{NP}) .

Find a solution S' for G_P .

 $S \cup S'$ is a solution for G.

$$G_{NP} = \{ v : v \in F \text{ or } v \text{ is isolated in } G \setminus F \}$$
 $G_{P} = G \setminus G_{NP}$

Lemma

(G, M) has a solution if and only if (G_{NP}, M) has one.

Backward implication.

Let S be a solution for G_{NP} .

Partition G into (G_P, G_{NP}) .

Find a solution S' for G_P .

 $S \cup S'$ is a solution for G.

Forward implication.

$$G_{NP} = \{ v : v \in F \text{ or } v \text{ is isolated in } G \setminus F \}$$
 $G_{P} = G \setminus G_{NP}$

Lemma

(G, M) has a solution if and only if (G_{NP}, M) has one.

Backward implication.

Let S be a solution for G_{NP} .

Partition G into (G_P, G_{NP}) .

Find a solution S' for G_P .

 $S \cup S'$ is a solution for G.

Forward implication.

Proof on the board.

Reduction Rules

- (R1) Isolated vertex \rightarrow no instance.
- (R2) G[M] not a Star Forest \rightarrow no instance.
- (R3) M has a star S of size $\geq 3 \rightarrow$ remove rays' edges and contract rays.

Reduction Rules

- (R1) Isolated vertex \rightarrow no instance.
- (R2) G[M] not a Star Forest \rightarrow no instance.
- (R3) M has a star S of size $\geq 3 \rightarrow$ remove rays' edges and contract rays.
- (R4) Apply $G = G_{NP}$.

Theorem

There exists a reduction from CNF-SAT to SSFE.

 ϕ CNF-formula.

$$(x_1 \lor x_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_5) \land (x_4 \lor x_5 \lor \neg x_1)$$

 ϕ CNF-formula.

Variable $x_i \rightarrow \text{vertices } x_i, \neg x_i \text{ and marked edge } (x_i, \neg x_i).$

$$(x_1 \lor x_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_5) \land (x_4 \lor x_5 \lor \neg x_1)$$

 ϕ CNF-formula.

Variable $x_i \rightarrow \text{vertices } x_i, \neg x_i \text{ and } \text{marked edge } (x_i, \neg x_i).$

Clause $C_i \rightarrow \mathbf{vertex} \ c_i$.

$$(x_1 \lor x_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_5) \land (x_4 \lor x_5 \lor \neg x_1)$$

Spanning Star Forest Problem

SSFE is NP-complete

 ϕ CNF-formula.

Variable $x_i \rightarrow \text{vertices } x_i, \neg x_i \text{ and marked edge } (x_i, \neg x_i).$

Clause $C_i \rightarrow \mathbf{vertex} \ c_i$.

literal $\neg x_k$ in clause $c_i \rightarrow \mathbf{edge} (\neg x_k, c_i)$.

$$(x_1 \lor x_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_5) \land (x_4 \lor x_5 \lor \neg x_1)$$

May 16, 2019

SSFE is NP-complete

Lemma

 ϕ is satisfiable if and only there exists a SSFE.

$$(x_1 \lor x_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_5) \land (x_4 \lor x_5 \lor \neg x_1)$$

Observation

There is a relationship between:

- M and variables.
- R and clauses.

Theorem

There is a reduction from SSFE to CNF-SAT

Theorem

There is a reduction from SSFE to CNF-SAT

Construction.

Theorem

There is a reduction from SSFE to CNF-SAT

Construction.

 $(G, M) \rightarrow \mathsf{SSFE}$ instance

Theorem

There is a reduction from SSFE to CNF-SAT

Construction.

 $(G, M) \rightarrow \mathsf{SSFE}$ instance

 $(G', M') \rightarrow$ Exhaustive application of (R1)-(R5).

Theorem

There is a reduction from SSFE to CNF-SAT

Construction.

 $(G, M) \rightarrow \mathsf{SSFE}$ instance

 $(G', M') \rightarrow$ Exhaustive application of (R1)-(R5).

 $\phi
ightarrow$ formula of |M'| variables and |R| clauses.

Theorem

There is a reduction from SSFE to CNF-SAT

Construction.

 $(G, M) \rightarrow \mathsf{SSFE}$ instance

 $(G', M') \rightarrow \text{Exhaustive application of (R1)-(R5)}.$

 $\phi \rightarrow$ formula of $|{\it M}'|$ variables and $|{\it R}|$ clauses.

Lemma

(G, M) has a SSF $\iff \phi$ is satisfiable.

Proof on the board.

Corollary

Spanning Star Forest Extension and CNF-SAT are interreductible.

Corollary

Spanning Star Forest Extension and CNF-SAT are interreductible.

CNF-SAT	SSFE
n variables	n marked edges
m clauses	R =m

Corollary

Spanning Star Forest Extension and CNF-SAT are interreductible.

CNF-SAT	SSFE
n variables	n marked edges
m clauses	R =m

Observation 1

Theorems for CNF-SAT paramterized by the number of **variables** can be transferred to Spanning Star Forest Extension parameterized by the number of **marked edges**.

Corollary

Spanning Star Forest Extension and CNF-SAT are interreductible.

CNF-SAT	SSFE
n variables	n marked edges
m clauses	R =m

Observation 2

Theorems for CNF-Sat parameterized by the number of **clauses** can be transfered to Spanning Star Forest Extension parameterized by $|\mathbf{R}|$.

Summary

So far we proved that the following problems are interreductible:

Summary

So far we proved that the following problems are interreductible:

Dominating Set	Minimal SSF
CNF-Sat <i>n</i> variables	SSFE M
CNF-Sat <i>m</i> clauses	SSFE R

Theorem

CNF-Sat with n variables doesn't admit any kernel.

Theorem

CNF-Sat with n variables doesn't admit any kernel.

Consequently, nor does SSFE parameterized by |M|.

Proving nonexistence of a kernel for a problem ${\mathcal P}$

Design an algorithm \mathcal{A} :

Proving nonexistence of a kernel for a problem ${\mathcal P}$

Design an algorithm \mathcal{A} :

Input: $(x_1, k), (x_2, k), ..., (x_p, k)$

Proving nonexistence of a kernel for a problem ${\mathcal P}$

Design an algorithm A:

Input: $(x_1, k), (x_2, k), ..., (x_p, k)$

Output: (x', k).

such that:

Proving nonexistence of a kernel for a problem ${\mathcal P}$

Design an algorithm A:

Input: $(x_1, k), (x_2, k), ..., (x_p, k)$

Output: (x', k).

such that:

(1) $k' \leq POLY(k + \log(p))$.

Proving nonexistence of a kernel for a problem ${\mathcal P}$

Design an algorithm A:

Input: $(x_1, k), (x_2, k), ..., (x_p, k)$

Output: (x', k).

such that:

- (1) $k' \leq POLY(k + \log(p))$.
- (2) $(x', k') \in \mathcal{P} \iff (x_i, k) \in \mathcal{P} \text{ for some } 1 \leq i \leq p$

Proving nonexistence of a kernel for a problem ${\mathcal P}$

Design an algorithm A:

Input: $(x_1, k), (x_2, k), ..., (x_p, k)$

Output: (x', k).

such that:

- (1) $k' \leq POLY(k + \log(p))$.
- (2) $(x', k') \in \mathcal{P} \iff (x_i, k) \in \mathcal{P} \text{ for some } 1 \leq i \leq p$

Theorem

SSFE parameterized by |M| doesn't admit a kernel.

Proving nonexistence of a kernel for a problem ${\mathcal P}$

Design an algorithm A:

Input: $(x_1, k), (x_2, k), ..., (x_p, k)$

Output: (x', k).

such that:

- (1) $k' \leq POLY(k + \log(p))$.
- (2) $(x', k') \in \mathcal{P} \iff (x_i, k) \in \mathcal{P} \text{ for some } 1 \leq i \leq p$

Theorem

SSFE parameterized by |M| doesn't admit a kernel.

Proof on the board.

Theorem

CNF-Sat parameterized with m clauses has a linear kernel.

Theorem

CNF-Sat parameterized with *m* clauses has a linear kernel.

Consequently, so does SSFE parameterized by |R|.

Quadratic kernel

If there exists a vertex $v \in R$ such that $deg_G(v) > k$, then remove v.

Proof on the board.

Quadratic kernel

If there exists a vertex $v \in R$ such that $deg_G(v) > k$, then remove v.

Proof on the board.

Corollary

After exhaustive application of the rule, an instance contains:

Quadratic kernel

If there exists a vertex $v \in R$ such that $deg_G(v) > k$, then remove v.

Proof on the board.

Corollary

After exhaustive application of the rule, an instance contains:

 $\leq 2k^2$ edges.

Quadratic kernel

If there exists a vertex $v \in R$ such that $deg_G(v) > k$, then remove v.

Proof on the board.

Corollary

After exhaustive application of the rule, an instance contains:

$$\leq 2k^2$$
 edges.

$$< k + 2k^2$$
 vertices.

Dynamic table. dp[t, f] where t is node from a tree decomposition and $f: X_t \to \{true, false\}$ defined as follows:

Dynamic table. dp[t, f] where t is node from a tree decomposition and $f: X_t \to \{true, false\}$ defined as follows:

$$f(v) = \begin{cases} true, & v \in F \text{ and } v \text{ is a center.} \\ true, & v \in R \text{ and } v \text{ is a part of a Star Tree.} \\ false, & \text{otherwise.} \end{cases}$$

Dynamic table. dp[t, f] where t is node from a tree decomposition and $f: X_t \to \{true, false\}$ defined as follows:

$$f(v) = \begin{cases} true, & v \in F \text{ and } v \text{ is a center.} \\ true, & v \in R \text{ and } v \text{ is a part of a Star Tree.} \\ false, & \text{otherwise.} \end{cases}$$

Assume we have everything finished **except for a join node**.

Join nodes t_1 , t_2

Join nodes t_1 , t_2

Join nodes t_1 , t_2

 C_1 = For every vertex $v \in (F \cap X_t)$ it holds $f(v) = f_1(v) = f_2(v)$

Join nodes t_1 , t_2

Join nodes t_1 , t_2

Join nodes t_1 , t_2

 $C_2 = \text{For all } v \in R \text{ it holds } f(v) = f_1(v) \lor f_2(v).$

$$dp[t,f] = \begin{cases} \bigvee_{f_1,f_2} dp[t_1,f_1] \wedge dp[t_2,f_2], & \text{if } C_1 \text{ and } C_2 \text{ holds.} \\ f_1,f_2 & \text{otherwise.} \end{cases}$$

$$dp[t, f] = \begin{cases} \bigvee_{f_1, f_2} dp[t_1, f_1] \wedge dp[t_2, f_2], & \text{if } C_1 \text{ and } C_2 \text{ holds.} \\ false, & \text{otherwise.} \end{cases}$$

There are $2^{|X_t|}$ functions.

$$dp[t,f] = \begin{cases} \bigvee_{f_1,f_2} dp[t_1,f_1] \wedge dp[t_2,f_2], & \text{if } C_1 \text{ and } C_2 \text{ holds.} \\ f_{alse}, & \text{otherwise.} \end{cases}$$

There are $2^{|X_t|}$ functions.

Naive approach: Each f in $\mathcal{O}^*(2^{|X_t|})$.

$$dp[t, f] = \begin{cases} \bigvee_{f_1, f_2} dp[t_1, f_1] \wedge dp[t_2, f_2], & \text{if } C_1 \text{ and } C_2 \text{ holds.} \\ false, & \text{otherwise.} \end{cases}$$

There are $2^{|X_t|}$ functions.

Naive approach: Each f in $\mathcal{O}^*(2^{|X_t|})$.

Total complexity: $\mathcal{O}^*(4^{|X_t|})$.

$$dp[t,f] = \begin{cases} \bigvee_{f_1,f_2} dp[t_1,f_1] \wedge dp[t_2,f_2], & \text{if } C_1 \text{ and } C_2 \text{ holds.} \\ f_{alse}, & \text{otherwise.} \end{cases}$$

There are $2^{|X_t|}$ functions.

Naive approach: Each f in $\mathcal{O}^*(2^{|X_t|})$.

Total complexity: $\mathcal{O}^*(4^{|X_t|})$.

Cover product: all functions f in time $\mathcal{O}^*(2^{|X_t|})$

$$dp[t, f] = \begin{cases} \bigvee_{f_1, f_2} dp[t_1, f_1] \wedge dp[t_2, f_2], & \text{if } C_1 \text{ and } C_2 \text{ holds.} \\ false, & \text{otherwise.} \end{cases}$$

There are $2^{|X_t|}$ functions.

Naive approach: Each f in $\mathcal{O}^*(2^{|X_t|})$.

Total complexity: $\mathcal{O}^*(4^{|X_t|})$.

Cover product: all functions f in time $\mathcal{O}^*(2^{|X_t|})$

Assuming leaf, introduce and forget are easy:

Lower bound

SSFE parameterized by tw(G)

SSFE parameterized by treewidth can be solved in $\mathcal{O}^*(2^{tw(G)})$.

Lower bound

SSFE parameterized by tw(G)

SSFE parameterized by treewidth can be solved in $\mathcal{O}^*(2^{tw(G)})$.

Lower bound

Assuming SETH, $\mathcal{O}^*(2^{tw(G)})$ is optimal.

Proof on the board.