Chapter 9

Functions of Several Variables

9.1 Notes

2/14:

- Plan:
 - 1. Warm-up with matrices.
 - 2. The total derivatives of $f: \mathbb{R}^n \to \mathbb{R}^m$ $(n = m = 2, \text{ i.e., } f: \mathbb{C} \to \mathbb{C}).$
 - 3. Basic properties: Chain rule, relation with partial derivatives, implicit function theorem.
- Let V, W be finite-dimensional vector spaces over \mathbb{R} . We let $\mathcal{L}(V, W)$ be the vector space of all linear transformations $\phi: V \to W$.
- If we pick bases N_1, \ldots, N_n of V and w_1, \ldots, w_m of W, then $V \cong \mathbb{R}^n$ and $W \cong \mathbb{R}^m$. It follows that $\mathcal{L}(V, W) \cong \mathbb{R}^{mn}$.
- $\mathcal{L}(V, W) \times \mathcal{L}(W, U) \xrightarrow{\text{compose}} \mathcal{L}(V, U)$, i.e., $\mathbb{R}^{mn} \times \mathbb{R}^{nl} \xrightarrow{\text{matrix}} \mathbb{R}^{ml}$.
- Sup norm: If A is an $m \times n$ real matrix, then $||A|| = \sup_{\substack{\mathbf{x} \in \mathbb{R}^n \\ |\mathbf{x}| = 1}} |A\mathbf{x}|$.
 - Basic properties:
 - 1. $|A\mathbf{x}| \le ||A|||x|$.
 - 2. $||A|| < \infty$ and all $A : \mathbb{R}^n \to \mathbb{R}^m$ are uniformly continuous.
 - 3. $||A|| = 0 \iff A = 0$.
 - 4. ||cA|| = |c|||A||.
 - 5. $||A + B|| \le ||A|| + ||B||$.
 - 6. $||AB|| \le ||A|| ||B||$.
 - Note that we get a metric space structure on $\mathcal{L}(V,W)$ by defining d(A,B) = ||A-B||.
- Proves that 1 and 2 imply the uniform continuity of all A (via Lipschitz continuity).
- **Differentiable** (multivariate function f at \mathbf{x}_0): A function $f: U \to \mathbb{R}^m$ ($U \subset \mathbb{R}^n$) such that to $\mathbf{x}_0 \in U$ there corresponds some linear transformation $A: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\lim_{\mathbf{h}\to\mathbf{0}} \frac{|f(\mathbf{x}_0 - \mathbf{h}) - f(\mathbf{x}_0) - A\mathbf{h}}{|\mathbf{h}|} = 0$$

- Total derivative (of f multivariate at \mathbf{x}_0): The linear transformation A in the above definition. Denoted by $f'(\mathbf{x}_0)$.
- "An proof and progress in mathematics" Thurston.

- Relating to the old one dimensional derivative.
- A paper we'd find rather impressionistic right now.
- Propositions ahead of us.
 - Proposition: Suppose that f is differentiable at $\mathbf{x}_0 \in U$ and A, B are both derivatives of f at \mathbf{x}_0 . Then A = B.
 - Proposition: Differentiable implies continuous.
 - Proposition: Sum rule, product rule, quotient rule.