Bacharelado em Sistemas de Informação

BANCOS DE DADOS

Aula 15

SQL Funções Númericas, Funções de Data, Funções de conversão

Aceitam números como entrada e retornam valores numéricos

Mais usadas:

ROUND TRUNC

CEIL FLOOR

POWER SQRT

SIGN ABS

MOD

✓ Para os exemplos dados, usaremos a tabela EMP, fornecida com a instalação do Oracle:

SQL> descr emp;		
Name	Null?	Туре
EMPNO	NOT NULL	NUMBER (4)
ENAME		VARCHAR2 (10)
JOB		VARCHAR2 (9)
MGR		NUMBER (4)
HIREDATE		DATE
SAL		NUMBER (7,2)
COMM		NUMBER (7,2)
DEPTNO		NUMBER (2)

SQL> select * from emp;

EMPNO	ENAME	JOB	MGR	HIREDATE	SAL	COMM	DEPTNO
7369	SMITH	CLERK	7902	17/12/80	800		20
7499	ALLEN	SALESMAN	7698	20/02/81	1600	300	30
7521	WARD	SALESMAN	7698	22/02/81	1250	500	30
7566	JONES	MANAGER	7839	02/04/81	2975		20
7654	MARTIN	SALESMAN	7698	28/09/81	1250	1400	30
7698	BLAKE	MANAGER	7839	01/05/81	2850		30
7782	CLARK	MANAGER	7839	09/06/81	2450		10
7788	SCOTT	ANALYST	7566	19/04/87	3000		20
7839	KING	PRESIDENT		17/11/81	5000		10
7844	TURNER	SALESMAN	7698	08/09/81	1500	0	30
7876	ADAMS	CLERK	7788	23/05/87	1100		20
7900	JAMES	CLERK	7698	03/12/81	950		30
7902	FORD	ANALYST	7566	03/12/81	3000		20
7934	MILLER	CLERK	7782	23/01/82	1300		10

14 linhas selecionadas.

- >> Função ROUND
 - Formato :

ROUND (col | valor, n)

- Arredonda a coluna expressão ou valor para n casas decimais.
- >> Se *n* é omitido, o arredondamento elimina as casas decimais.
- → Se n é negativo, os números à esquerda do ponto decimal são arredondados para zero.

→ Função ROUND

Exemplo:

```
SQL> SELECT ROUND (45.923,1),
  2
            ROUND (45.923),
            ROUND (45.323,-1),
            ROUND (42.323, -2),
            SAL,
            ROUND (SAL/32,2)
     FROM EMP
     WHERE DEPTNO = 10
  9
ROUND (45.923,1) ROUND (45.923) ROUND (45.323,-1) ROUND (42.323,-2)
                                                                            SAL ROUND (SAL/32, 2)
           45,9
                                                                                           76,56
                                               50
                                                                           2450
                             46
           45,9
                            46
                                               50
                                                                           5000
                                                                                          156,25
           45,9
                            46
                                               50
                                                                           1300
                                                                                           40,63
```


- >> Função TRUNC
 - Formato:
 TRUNC (col | valor, n)
 - >> Trunca a coluna expressão ou valor para *n* casas decimais.
 - → Se n é omitido, o truncamento elimina as casas decimais.
 - → Se n é negativo, os números à esquerda do ponto decimal são truncados para zero.

>> Função TRUNC

Exemplo:

```
SELECT TRUNC (45.923,1),
  2
             TRUNC (45.923),
             TRUNC (45.323,-1),
             TRUNC (42.323, -2),
             SAL,
             TRUNC (SAL/32,2)
     FROM EMP
  8* WHERE DEPTNO = 10
SQL> /
TRUNC (45.923, 1) TRUNC (45.923) TRUNC (45.323, -1) TRUNC (42.323, -2)
                                                                             SAL TRUNC (SAL/32,2)
           45,9
                                                                            2450
                                                                                            76,56
                             45
                                                40
            45,9
                                                                                           156,25
                             45
                                                                            5000
                                                40
                                                                                            40,62
            45,9
                             45
                                                                            1300
                                                40
```


- >> Função CEIL
 - Formato :CEIL (col | valor)
 - >> Encontra o menor inteiro maior ou igual à coluna, expressão ou valor.

>> Função CEIL

Exemplo:

```
SQL> SELECT CEIL (SAL), CEIL(99.9), CEIL(101.76), CEIL(-11.1)
 2 FROM EMP
   WHERE SAL BETWEEN 3000 AND 5000;
CEIL(SAL) CEIL(99.9) CEIL(101.76) CEIL(-11.1)
    3000
                          102
             100
                                    -11
                                    -11
    5000
               100
                          102
                          102
                                     -11
    3000
               100
3 linhas selecionadas.
```


- >> Função FLOOR
 - Formato : FLOOR (col | valor)
 - >> Encontra o maior inteiro menor ou igual à coluna, expressão ou valor.

>> Função FLOOR

Formato:

FLOOR (col | valor)

Exemplo:

```
SQL> SELECT FLOOR(SAL), FLOOR(99.9), FLOOR(101.76), FLOOR(-11.1)

2 FROM EMP

3 WHERE SAL BETWEEN 3000 AND 5000;
```

FLOOR (SAL)	FLOOR (99.9)	FLOOR (101.76)	FLOOR (-11.1)
3000	99	101	-12
5000	99	101	-12
3000	99	101	-12

3 linhas selecionadas.

DML - Comandos para a Manipulação de Dados

- >> Função POWER
 - Formato : POWER (col | valor, n)
 - Encontra a coluna, expressão ou valor à enésima potência.
 - >> n pode ser negativo, mas deve ser inteiro.

DML - Comandos para a Manipulação de Dados

- ▶ Função POWER
 - Formato:POWER (col | valor, n)
 - Exemplo:

- >> Função SQRT
 - Formato : SQRT (col | valor)
 - >> Calcula a raiz quadrada da coluna, expressão ou valor, que não podem ser negativos.

- >> Função SQRT
 - Formato : SQRT (col | valor)
 - Exemplo:

- → Função SIGN
 - Formato : SIGN (col | valor)
 - >> Retorna -1, 0, 1 se a coluna, expressão ou valor é um número negativo, zero ou positivo.

▶ Função SIGN

Formato:

SIGN (col | valor)

Exemplo:

3 linhas selecionadas.

- >> Função ABS
 - Formato :ABS (col | valor)
 - Retorna o valor absoluto da coluna, expressão ou valor.

▶ Função ABS

Formato:

ABS (col | valor)

Exemplo:

```
SQL> SELECT SAL, COMM, COMM-SAL, ABS (COMM-SAL), ABS (-35)
```

- 2 FROM EMP
- 3 WHERE DEPTNO = 30;

SAL	COMM	COMM-SAL	ABS (COMM-SAL)	ABS (-35)
1600	300	-1300	1300	35
1250	500	-750	750	35
1250	1400	150	150	35
2850				35
1500	0	-1500	1500	35
950				35

- → Função MOD
 - Formato : MOD (valor1 | valor2)
 - ➤ Encontra o resto da divisão de valor1 por valor2.

→ Função MOD

• Exemplo:

```
SQL> SELECT SAL, COMM, MOD(SAL, COMM), MOD(100, 40)
```

- 2 FROM EMP
- 3 ORDER BY COMM;

SAL	COMM	MOD (SAL, COMM)	MOD (100, 40)
1500	0	1500	20
1600	300	100	20
1250	500	250	20
1250	1400	1250	20
800			20
2975			20
950			20
1300			20
3000			20
1100			20
2850			20
2450			20
3000			20
5000			20

- O Oracle armazena as datas em um formato numérico interno, que pode variar de 1-jan-4712 AC até 31-dez-4712 DC.
- O formato interno representa:
 - Século
 - Ano
 - Mês
 - Dia
 - Horas
 - Minutos
 - Segundos

SYSDATE

- SYSDATE é uma pseudo-coluna que retorna o valor corrente da data e hora.
- É comum selecionar SYSDATE a partir da tabela interna e vazia chamada DUAL.
- >> Para mostrar a data corrente:

SELECT SYSDATE FROM DUAL;

```
SQL> SELECT SYSDATE FROM DUAL;

SYSDATE
-----
29/09/02
```


>> OPERAÇÕES ARITMÉTICAS

- É possível realizar cálculos com datas, utilizando operadores aritméticos.
- >> Operações possíveis:
 - date + number adiciona um número de dias à data, retornando uma data
 - date number subtrai um número de dias da data, retornando uma data
 - date date subtrai uma data de outra, retornando um número de dias.
 - date + number/24 adiciona um número de horas à data, retornando uma data.

>> OPERAÇÕES ARITMÉTICAS

Exemplos:

- **▶ Função MONTHS_BETWEEN**
 - Formato:

MONTHS_BETWEEN (data1 | data2)

→ Retorna o número de meses dentre data1 e data2, positivo ou negativo.


```
SQL> SELECT MONTHS_BETWEEN(SYSDATE, HIREDATE),
            MONTHS BETWEEN ('01-JAN-98', '05-NOV-99')
  2
     FROM EMP
     WHERE MONTHS BETWEEN (SYSDATE, HIREDATE) > 59;
MONTHS BETWEEN (SYSDATE, HIREDATE) MONTHS BETWEEN ('01-JAN-98', '05-NOV-99')
                        261,40235
                                                                   -22,12903
                                                                   -22,12903
                        259,30557
                        259,24106
                                                                   -22,12903
                        257,88622
                                                                   -22,12903
                                                                   -22,12903
                        252,04751
                        256,91848
                                                                   -22,12903
                                                                   -22,12903
                        255,66041
                        185,33783
                                                                   -22,12903
                        250,40235
                                                                   -22,12903
                        252,69267
                                                                   -22,12903
                         184,2088
                                                                   -22,12903
                        249,85396
                                                                   -22,12903
                        249,85396
                                                                   -22,12903
                         248,2088
                                                                   -22,12903
```


- **→ Função ADD_MONTHS**
 - Formato :

ADD_MONTHS (data, n)

→ Adiciona n meses à data, sendo que n deve ser inteiro e não negativo.

- **→ Função ADD_MONTHS**
 - Formato:ADD MONTHS (data, n)
 - Exemplo:

- **→ Função NEXT_DAY**
 - Formato:
 NEXT DAY (data1, char)
 - >> Retorna a data do próximo dia da semana especificado, seguinte à data1.
 - >> Char pode ser um número representando um dia, ou uma string.

- **→ Função NEXT_DAY**
 - Formato:
 NEXT DAY (data1, char)
 - Exemplo:

- **→ Função LAST_DAY**
 - Formato :

```
LAST_DAY (data1)
```

- >> Retorna o último dia do mês da data1.
- >> Char pode ser um número representando um dia, ou uma string.
- Exemplo:

29/09/02 30/09/02 23/01/82 31/01/82 28/02/98

>> Função ROUND

Formatos:

ROUND (data1)

Retorna data1 com a hora definida como 12:00AM (meianoite).

ROUND (data1,'MONTH')

 Retorna o primeiro dia do mês contido em data1 se ela estiver na primeira metade do mês, caso contrário, o primeiro dia do próximo mês.

ROUND (data1,'YEAR')

 Retorna o primeiro dia do ano contido em data1 se ela estiver na primeira metade do ano, caso contrário, o primeiro dia do próximo ano.

→ Função ROUND

Exemplo:

>> Função TRUNC

Formatos:

TRUNC (data1,'MONTH')

· Retorna o primeiro dia do mês contido em data1.

TRUNC (data1,'YEAR')

Retorna o primeiro dia do ano contido em data1.

- → Função TO_CHAR
 - Formato :

```
TO_CHAR ( num | data, [ 'fmt' ])
```

- >> Converte o número ou data para o formato fmt.
- >> Se *fmt* for omitido será usado o formato *default* DD-MON-YY para data ou um *char* para números.
- → Os formatos somente afetam a forma como o dado é mostrado, não alterando seu valor interno.

- >> Função TO_CHAR
 - Exemplos:

```
SQL> SELECT TO_CHAR(SYSDATE, 'DAY, DDTH MONTH YYYY')
2 FROM DUAL;

TO_CHAR(SYSDATE, 'DAY, DDTHMONTHYYY
------
DOMINGO ,29TH SETEMBRO 2002
```

```
SQL> SELECT TO_CHAR(SYSDATE, 'HH:MI:SS')
2 FROM DUAL;

TO_CHAR(
-----
11:42:46
```


- ▶ Função TO_CHAR
 - Exemplos:

```
SQL> SELECT TO_CHAR(SAL, '$9,999')
     FROM EMP;
TO CHAR
   $800
 $1,600
 $1,250
 $2,975
 $1,250
 $2,850
 $2,450
 $3,000
 $5,000
 $1,500
 $1,100
   $950
 $3,000
 $1,300
```


Formatos de datas :

SCC ou CC – Século; 'S' coloca o prefixo '-' para BC

YYYY ou SYYYY - Ano; 'S'coloca o prefixo '-' para BC

YYY ou YY ou Y – Últimos 3,2,1 dígitos do ano

Y, YYY – Ano com vírgula na posição indicada

SYEAR ou YEAR — Ano; 'S'coloca o prefixo '-' para BC

BC ou AD - Indicador BC /AD

B.C. ou A.D. – Indicador BC /AD

Q – Trimestre

MM – Mês

MONTH – Nome do mês, com 9 caracteres

MON – Nome do mês, com 3 caracteres

WW ou W - Semana do ano ou mês

DDD ou DD ou D - Dia do ano, mês ou semana

DAYNome do dia, com 9 caracteres

Formatos de datas :

– Nome do dia, abreviado com 3 caracteres

– Data juliana; número de dias desde 31-dez-4713 AC

AM ou PM — Indicador AM/PM

A.M. ou P.M. - Indicador AM/PM

HH ou HH12 – **Hora do dia (1-12)**

HH24 – Hora do dia (1-24)

MI – Minutos

SS – Segundo

SSSS – Segundos depois da meia-noite (0-86399)

– Pontuação reproduzida no resultado

"..." – String reproduzida no resultado

fm – Prefixo de MONTH ou DAY para eliminar espaços

TH – Sufixo para número ordinal

SP – Sufixo para *spelled-out* (soletrar) o número (ex:DDSP)

SPTH – Sufixo para *spelled-out* (soletrar) o número (ex:DDSPTH)

Formatos de números:

Formato	Significado	Exemplo	
9	Posição numérica	999999	1234
0	Mostra zeros à esquerda	099999	001234
\$	Cifrão flutuante	\$99999	\$1234
-	Ponto decimal na posição indicada	999999.99	1234.00
,	Vírgula na posição indicada	999,999	1,234
MI	Sinal MI à direita de negativos	999999MI	1234-
PR	Parênteses em negativos	999999PR	(1234)
EEEE	Notação científica	99.999EEEE	1.234E+03
V	Multiplica por 10 ⁿ (n=9s ap"os V)	9999V99	123400
В	Mostra zeros como brancos	B9999.99	1234.00

- **→ Função TO_NUMBER**
 - Formato : TO_NUMBER (char)
 - >> Converte char que contém um número para number.

- **→ Função TO_NUMBER**
 - Formato:

TO_NUMBER (char)

Exemplo:

```
SQL> SELECT EMPNO, ENAME, JOB, SAL
```

- 2 FROM EMP
- 3 WHERE SAL > TO_NUMBER('1500');

EMPNO	ENAME	JOB	SAL
7499	ALLEN	SALESMAN	1600
7566	JONES	MANAGER	2975
7698	BLAKE	MANAGER	2850
7782	CLARK	MANAGER	2450
7788	SCOTT	ANALYST	3000
7839	KING	PRESIDENT	5000
7902	FORD	ANALYST	3000

- → Função TO_DATE
 - Formato:TO DATE (char, 'fmt')
 - ➤ Converte o valor de char representando uma data, em uma data de acordo com o formato fmt especificado.
 - ➤ Se fmt for omitido, será usado DD-MON-YY.

→ Função TO_DATE

Exemplo:

- **→ Função DECODE**
 - Formato:

DECODE (col | expressão, busca1, resultado1, [busca2, resultado2, ...] default)

- Realiza busca condicionais, funcionando como um case ou if.
- >> Col / expressão são comparados com cada argumento busca e retorna o correspondente resultado quando a combinação for verdadeira.
- Se o valor default for omitido, será retornado um NULL.

✓ FUNÇÕES QUE ACEITAM QUALQUER TIPO DE DADO Função DECODE

```
SELECT ENAME, JOB,
SOL>
DECODE (JOB, 'CLERK', 'WORKER', 'MANAGER', 'BOSS', 'INDEFINIDO') CARGO
      FROM EMP;
ENAME
           JOB
                      CARGO
           CLERK
SMITH
                      WORKER
ALLEN
           SALESMAN
                      INDEFINIDO
WARD
           SALESMAN
                      INDEFINIDO
                      BOSS
JONES
           MANAGER
MARTIN
           SALESMAN
                      INDEFINIDO
BLAKE
           MANAGER
                      BOSS
CLARK
           MANAGER
                      BOSS
SCOTT
                      INDEFINIDO
           ANALYST
                      INDEFINIDO
KING
           PRESIDENT
TURNER
           SALESMAN
                      INDEFINIDO
ADAMS
           CLERK
                      WORKER
JAMES
           CLERK
                      WORKER
FORD
                      INDEFINIDO
           ANALYST
```


✓ FUNÇÕES QUE ACEITAM QUALQUER TIPO DE DADO Função DECODE

SQL> SELECT JOB, SAL,
DECODE (JOB, 'ANALYST', SAL*1.1, 'CLERK', SAL*1.15, 'MANAGER', SAL*0.95, SAL) CORRIGIDO

2 FROM EMP;

JOB	SAL	CORRIGID
CLERK	800	920
SALESMAN	1600	1600
SALESMAN	1250	1250
MANAGER	2975	2826,25
SALESMAN	1250	1250
MANAGER	2850	2707,5
MANAGER	2450	2327,5
ANALYST	3000	3300
PRESIDENT	5000	5000
SALESMAN	1500	1500
CLERK	1100	1265
CLERK	950	1092,5
ANALYST	3000	3300
CLERK	1300	1495

- ▶ Função NVL
 - Formato:

NVL (col | valor, val)

- >> Converte um valor NULL para val.
- Exemplo:

```
SQL> SELECT SAL, COMM, SAL*12+NVL(COMM, 0), NVL(COMM, 1000), SAL*12+NVL(COMM, 1000)
```

- 2 FROM EMP
- 3 WHERE DEPTNO =10;

SAL	COMM SAL*12+NVL(COMM, 0)	NVL (COMM, 1000)	SAL*12+NVL (COMM, 1000)
2450	29400	1000	30400
5000	60000	1000	61000
1300	15600	1000	16600

- >> Função GREATEST
 - Formato:

GREATEST (col | valor1, col | valor2, ...)

- >>> Retorna o maior valor da lista de valores
- Exemplo:

- **→ Função LEAST**
 - Formato:

LEAST (col | valor1, col | valor2, ...)

- >> Retorna o menor valor da lista de valores
- Exemplo:

1000

- **→ Função VSIZE**
 - Formato :

VSIZE (col | valor)

- >>> Retorna o número de bytes na representação interna do Oracle.
- Exemplo:

```
SQL> SELECT DEPTNO, VSIZE (DEPTNO), VSIZE (HIREDATE), SAL, VSIZE (SAL), ENAME, VSIZE (ENAME)
```

- 2 FROM EMP
- 3 WHERE DEPTNO =10;

DEPTNO	VSIZE (DEPTNO)	VSIZE (HIREDATE)	SAL	VSIZE (SAL)	ENAME	VSIZE (ENAME)	
10	2	7	2450	3	CLARK	5	
10	2	7	5000	2	KING	4	
10	2	7	1300	2	MILLER	6	

Exercícios

Considerando a tabela de músicas criada anteriormente, faça as consultas solicitadas.

- Mostre a raiz quadrada dos tempos de cada música, em segundos.
- 2. Mostre o tempo de cada música arredondado, em minutos.
- Mostre o tempo exato de cada música em minutos e segundos no formato mm:ss.
- 4. Gere uma lista de músicas, da seguinte forma: 'nome tempo situação'. Em situação deve ser mostrado "Maior 2 minutos" ou "Menor ou igual" se o tempo de duração for maior, igual ou menor que dois minutos que 2 minutos.

Exercícios

Usando a base de dados de empresas, já criada:

- 5. Mostre o nome dos funcionários e salários acrescidos de 15% e expressos em valores inteiros.
- Mostre a raiz quadrada dos salários e o resto da comissão dividido por 13 de todos os funcionários.
- 7. Mostre o nome, a data de admissão e há quantos dias o funcionário trabalha na empresa para os empregados do departamento 20.
- Mostre o nome de cada empregado com data de admissão e data de revisão do salário (que é de um ano após a admissão), em ordem ascendente de data de revisão salarial.
- Mostre os salários dos funcionários se estes forem maior que a comissão ou a comissão, caso seja maior que o salário.

Bacharelado em Sistemas de Informação

BANCOS DE DADOS

Aula 15

SQL Funções Númericas, Funções de Data, Funções de conversão

