

Lesson Overview

Last Time: Finished off (for now) point estimation by discussing the Method of Moments.

This Time: We'll finally start our material on goodness-of-fit tests.

Idea: Does the choice of a particular simulation input distribution actually reflect reality?

At this point, we've guessed a reasonable distribution and then estimated the relevant parameters. Now let's conduct a formal test to see just how successful our toils have been.

In particular, test

$$H_0: X_1, X_2, \dots, X_n \stackrel{\text{iid}}{\sim} \text{ p.m.f. / p.d.f. } f(x)$$

at level of significance

$$\alpha \equiv P(\text{Reject } H_0 | H_0 \text{ true}) = P(\text{Type I error})$$

(usually,
$$\alpha = 0.05 \text{ or } 0.01$$
).

High-level view of a goodness-of-fit test procedure:

- 1. Divide the domain of f(x) into k sets, say, A_1, A_2, \ldots, A_k (distinct points if X is discrete or intervals if X is continuous).
- 2. Tally the actual number of observations that fall in each set, say, O_i , i = 1, 2, ..., k. If $p_i \equiv P(X \in A_i)$, then $O_i \sim \text{Bin}(n, p_i)$.
- 3. Determine the expected number of observations that would fall in each set if H_0 were true, say, $E_i = E[O_i] = np_i$, i = 1, 2, ..., k.
- 4. Calculate a test statistic based on the differences between the E_i 's and O_i 's. The chi-squared g-o-f test statistic is

$$\chi_0^2 \equiv \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}.$$

5. A large value of χ_0^2 indicates a bad fit.

We reject H_0 if $\chi_0^2 > \chi_{\alpha,k-1-s}^2$, where

- s is the number of unknown parameters from f(x) that have to be estimated. E.g., if $X \sim \text{Nor}(\mu, \sigma^2)$, then s = 2.
- $\chi^2_{\alpha,\nu}$ is the $(1-\alpha)$ quantile of the χ^2_{ν} distribution, i.e., $P(\chi^2_{\nu} < \chi^2_{\alpha,\nu}) = 1 \alpha$.

If $\chi_0^2 \leq \chi_{\alpha,k-1-s}^2$, we fail to reject H_0 .

Remarks:

- Usual recommendation from baby stats class: For the χ^2 g-o-f test to work, pick k, n such that $E_i \geq 5$ and n at least 30.
- If the d.f. $\nu = k 1 s$ happens to be very big, then

$$\chi^2_{\alpha,\nu} \approx \nu \left[1 - \frac{2}{9\nu} + z_\alpha \sqrt{\frac{2}{9\nu}} \right]^3,$$

where z_{α} is the appropriate standard normal quantile.

Other g-o-f tests: Kolmogorov–Smirnov, Anderson–Darling, Shapiro–Wilk, etc.

Baby Example: Test H_0 : X_i 's are Unif(0,1). Suppose we have n = 1000 observations divided into k = 5 intervals.

interva	[0,0.2]	(0.2,0.4]	(0.4,0.6]	(0.6,0.8]	(0.8,1.0]
E_{i}	200	200	200	200	200
O_i	179	208	222	199	192

Turns out that $\chi_0^2 \equiv \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} = 5.27$.

Let's take $\alpha=0.05$. There are no unknown parameters, so s=0. Then $\chi^2_{\alpha,k-1-s}=\chi^2_{0.05,4}=9.49$.

Since
$$\chi_0^2 \leq \chi_{\alpha,k-1-s}^2$$
, we fail to reject H_0 .

Discrete Example: The number of defects in printed circuit boards is hypothesized to follow a Geometric(p) distribution. A random sample of n=70 printed boards has been collected, and the number of defects observed.

# defects	frequency	
1	34	
2	18	We'll test H_0 : The observations are Geom (p) .
3	2	
4	9	
5	7	

70

Start by estimating p via the MLE. The likelihood function is

$$L(p) = \prod_{i=1}^{n} f(x_i) = \prod_{i=1}^{n} (1-p)^{x_i-1} p = (1-p)^{\sum_{i=1}^{n} x_i - n} p^n$$

$$\ell n(L(p)) = \left(\sum_{i=1}^{n} x_i - n\right) \ell n(1-p) + n \ell n(p)$$

$$\frac{d \ln(L(p))}{dp} = \frac{-\sum_{i=1}^{n} x_i + n}{1 - p} + \frac{n}{p} = 0.$$

Solving for p gives the MLE

$$\hat{p} = \frac{1}{\bar{X}} = \frac{70}{1(34) + 2(18) + 3(2) + 4(9) + 5(7)} = 0.476.$$

Let's get the g-o-f test statistic, χ_0^2 . We'll make a little table, assuming $\hat{p}=0.476$ is correct. By the Invariance Property of MLEs (this is why we learned it!), the expected number of boards having a certain value x is $E_x = nP(X=x) = n(1-\hat{p})^{x-1}\hat{p}$. Note that I'll combine the entries in the last row (≥ 5) so the probabilities add up to one.

x	P(X=x)	$E_{\boldsymbol{x}}$	O_x
1	0.4762	33.33	34
2	0.2494	17.46	18
3	0.1307	9.15	2
4	0.0684	4.79	9
≥ 5	0.0752	5.27	7
	1.0000	70	70

Well, we really ought to combine the last two cells too, since $E_4 = 4.79 < 5$. Let's do so to get the following improved table.

Thus, the test statistic is

$$\chi_0^2 = \sum_{x=1}^4 \frac{(E_x - O_x)^2}{E_x} = \frac{(33.33 - 34)^2}{33.33} + \dots = 9.12.$$

GTx

Let k=4 denote the number of cells (that we ultimately ended up with), and let s=1 denote the number of parameters we had to estimate.

Suppose the level $\alpha=0.05$. Then we compare χ_0^2 against $\chi_{\alpha,k-1-s}^2=\chi_{0.05,2}^2=5.99$.

Since $\chi_0^2 > \chi_{\alpha,k-1-s}^2$, we reject H_0 . This means that the number of defects probably isn't geometric. \square

Summary

This Time: We had the fits – goodness-of-fits, that is! We did a high-level overview and then a couple of easy examples.

Next Time: We'll apply a g-o-f test to the exponential distribution.

Lesson Overview

Last Time: Had a high-level discussion of chi-square g-o-f tests and did some easy examples.

This Time: We'll do a g-o-f test for the exponential distribution.

The same general recipe can be applied to other distributions.

Continuous Distributions: For the continuous case, let's denote the intervals $A_i \equiv (a_{i-1}, a_i], i = 1, 2, ..., k$. For convenience, we choose the a_i 's to ensure that we have equal-probability intervals, i.e.,

$$p_i = P(X \in A_i) = P(a_{i-1} < X \le a_i) = 1/k$$
 for all i.

In this case, we immediately have $E_i = n/k$ for all i; and then

$$\chi_0^2 = \sum_{i=1}^k \frac{(O_i - (n/k))^2}{n/k}.$$

The issue is that the a_i 's might depend on unknown parameters.

Example: Suppose that we're interested in fitting a distribution to a series of interarrival times. Could they be *Exponential*?

$$H_0: X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Exp}(\lambda).$$

Let's do a χ^2 g-o-f test with equal-probability intervals. This amounts to choosing a_i 's such that

$$F(a_i) = P(X \le a_i) = 1 - e^{-\lambda a_i} = \frac{i}{k}, \quad i = 1, 2, \dots, k.$$

$$a_{i} = -\frac{1}{\lambda} \ln \left(1 - \frac{i}{k} \right), \quad i = 1, 2, \dots, k.$$

Great, but λ is unknown (so we'll estimate s=1 parameter).

Good News: We know that the MLE is $\hat{\lambda} = 1/\bar{X}$. Thus, by the Invariance Property, the MLEs of the a_i 's are

$$\widehat{a}_{i} = -\frac{1}{\widehat{\lambda}} \ln \left(1 - \frac{i}{k} \right) = -\overline{X} \ln \left(1 - \frac{i}{k} \right), \quad i = 1, 2, \dots, k.$$

Continue Example: Suppose that we take n=100 observations and divide them into k=5 equal-prob intervals. Further suppose that sample mean based on the 100 observations is $\bar{X}=9.0$.

$$\widehat{a}_i = -9.0 \ln(1 - 0.2i), \quad i = 1, \dots, 5.$$

Suppose we determine which interval each of the 100 observations belongs to and tally them up to get the O_i 's.

interval $(a_{i-1}, a_i]$	O_i	$E_i = \frac{n}{k}$	$\chi_0^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} = 9.80$
(0, 2.01]	25	20	$\chi_0^2 = \sum_{i=1}^{\infty} \frac{(O_i - E_i)^2}{E_i} = 9.80$
(2.01, 4.60]	27	20	i=1
(4.60, 8.25]	23	20	
(8.25, 14.48]	13	20	$\chi_{\alpha,k-1-s}^2 = \chi_{0.05,3}^2 = 7.81$
$(14.48, \infty)$	12	20	
	100	100	

So we reject H_0 . These observations ain't Expo.

Summary

This Time: We implemented a chisquare goodness-of-fit test for the exponential distribution... easy as pie!

Next Time: We'll do the same for a Weibull distribution. This takes a little more work than the Expo, but it's a more-robust g-o-f test.

