Fachbereich Mathematik

Prof. Dr. Thomas Streicher

Dr. Sven Herrmann

Dipl.-Math. Susanne Pape

Wintersemester 2009/2010 13./14. Oktober 2009

1. Übungsblatt zur Vorlesung "Mathematik I für Informatik"

Gruppenübung

Wir betrachten die Aussage A (z. B. "Es regnet.") und die Aussage B (z. B. "Die Straße ist nass."). Wenn aus der Gültigkeit der Aussage A die Gültigkeit von Aussage B folgt, so sagen wir "A impliziert B" und schreiben

$$A \Rightarrow B$$
.

Gilt die Implikation $A \Rightarrow B$, so ist die Kontraposition ("Wenn B nicht gilt, gilt auch A nicht.") ebenfalls richtig. Der Umkehrschluss von $A \Rightarrow B$ ist $B \Rightarrow A$. Im Allgemeinen gibt es keinen Zusammenhang zwischen der Gültigkeit der Implikation und der des Umkehrschlusses.

Aufgabe G1 (Die Kontraposition)

Bilden Sie die Kontraposition der folgenden Aussagen:

- (a) Wenn es regnet, ist die Straße nass.
- (b) Wenn das Auto fährt, ist der Tank nicht leer.
- (c) Wenn p eine Primzahl ist, dann gilt p = 2 oder p ist ungerade.

Aufgabe G2 (Der Umkehrschluss)

(a) Sie stehen vor einer geschlossenen, funktionsfähigen Tür, für die Sie keinen Schlüssel besitzen. Betrachten Sie die Implikation:

Die Tür ist abgeschlossen \Rightarrow Die Tür kann nicht geöffnet werden.

Überlegen Sie sich, wie der Umkehrschluss lautet und ob dieser wahr oder falsch ist.

(b) Bilden Sie von der Aussage

Für $x \in \mathbb{R}$ gilt: $x < -1 \Rightarrow x$ ist negativ.

den Umkehrschluss. Was können Sie hier über die Richtigkeit sagen?

Aufgabe G3 (Quantoren)

Überlegen Sie sich, welche der folgenden Aussagen stimmen und was die Unterschiede zwischen (a)(i) und (a)(ii) bzw. zwischen (b)(i) und (b)(ii) sind.

- (a) (i) Für alle Autos gibt es einen Motor.
 - (ii) Es gibt einen Motor für alle Autos.
- (b) (i) Für alle $x \in \mathbb{R}$ existiert ein $n \in \mathbb{N}$, so dass $x \leq n$ gilt.
 - (ii) Es existiert ein $n \in \mathbb{N}$, so dass für alle $x \in \mathbb{R}$ die Ungleichung $x \leq n$ gilt.

Bemerkung: Statt "für alle" wird in Formeln häufig der *Allquantor* \forall und statt "es existiert" der *Existenzquantor* \exists benutzt. So kann die Aussage (b)(i) auch als $\forall x \in \mathbb{R} \ \exists \ n \in \mathbb{N} : x \leq n$ geschrieben werden.

Aufgabe G4 (Symmetrische Differenz)

Es seien A und B beliebige Mengen. Zeigen Sie, dass

$$(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$$

gilt.

Anmerkung: Die durch den obigen Ausdruck definierte Menge wird *symmetrische Differenz* von A und B genannt und manchmal durch das Symbol $A \triangle B$ bezeichnet.

Aufgabe G5 (Ungleichungen)

Bestimmen Sie jeweils die Menge aller $x \in \mathbb{R}$, die der Ungleichung

(a)

$$\frac{1}{2}(x+6) \ge |x+4|,$$

(b)

$$\frac{3 + |x+1|}{|x-1|} < 2$$

genügen. Berechnen Sie das Supremum und das Infimum der entsprechenden Lösungsmengen.

Hausübung

(In der nächsten Übung abzugeben.)

Aufgabe H1 (Regeln von de Morgan)

(3 Punkte)

Es seien A, B und C beliebige Mengen. Zeigen Sie, dass

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

und

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

Aufgabe H2 (Vollständige Induktion)

(4 Punkte)

Beweisen Sie die folgenden Behauptungen mittels vollständiger Induktion:

(a)

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{(n+1)}}{1 - x}, \quad n \in \mathbb{N}, \ x \neq 1,$$

(b)

$$n^2 > 2n + 1, \qquad n \ge 3.$$

Aufgabe H3 ((Un-)Gleichungen)

(3 Punkte)

Gegeben sind die folgenden Gleichungen bzw. Ungleichungen:

$$11x = 7x - 4, \quad |4x + 5| = 3,$$
$$x^2 - 3x - 18 \ge 0, \quad |x + 3| + |x + 1| < 10.$$

- (a) Bestimmen Sie die Lösungsmenge dieser Gleichungen für $x \in \mathbb{R}$ (Menge der reellen Zahlen). Bestimmen Sie danach das Supremum und das Infimum dieser Mengen.
- (b) Wie ändert sich diese Lösungsmenge, wenn man $x \in \mathbb{Q}$ (Menge der rationalen Zahlen), $x \in \mathbb{Z}$ (Menge der ganzen Zahlen) bzw. $x \in \mathbb{N}$ (Menge der natürlichen Zahlen) voraussetzt?