# TS345 -

# Codage pour la 5G

**Romain Tajan** 

14 octobre 2020

#### TS345 en bref...

# Organisation du module

- 6 créneaux (1h20) de cours
- 3 créneaux de TP (2h40)

## Découpage des cours

- 1 créneau de rappels sur les codes correcteurs | sur la capacité de Shnanon
- 3 créneaux sur les Codes LDPC
- 2 créneaux sur les Codes Polaires

#### Plan

- Introduction générale
  - ▶ Histoire de code correcteur
- 2 Rappels sur de codage / définitions
- Sur la modélisation du canal
- Code correcteur d'erreur
- Probabilité d'erreur
- 3 Théorie de l'information / Capacité d'un canal
- ▶ Rappels de théorie de l'information
- ▶ Théorème de Shannon
- 4 Codes Linéaires (binaires) en blocs
- Matrice de parité
- Décodage MAP-bit des codes linéaires (binaires)
- 6 LDPC
- ▶ Présentation générale
- Définition

#### **Plan**

- 1 Introduction générale
- 2 Rappels sur de codage / définitions
- 3 Théorie de l'information / Capacité d'un cana
- 4 Codes Linéaires (binaires) en blocs
- 5 LDPC

# Un peu d'histoire...

| 1948 | Shannon - capacité d'un canal (non constructive)                                                                                                                                    |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1955 | Elias - Code convolutifs (GSM)                                                                                                                                                      |
| 1960 | $ \begin{tabular}{ll} \textbf{Reed et Solomon} - \textbf{Codes RS (CD} \rightarrow \textbf{BluRay, QR, DVB-S, RAID6)} \\ \textbf{Gallager} - \textbf{Codes LDPC} \\ \end{tabular} $ |
| 1966 | Forney - Codes concatennés (Pioneer (1968-1972), Voyager (1977))                                                                                                                    |
| 1967 | Viterbi - Décodage optimal des codes convolutifs                                                                                                                                    |
| 1993 | Berrou, Glavieux et Thitimajshima - Turbocodes (3G/4G, deep-space)                                                                                                                  |
| 1996 | MacKay - Ré-invente les LDPC (DVB-S2, WiFi, 5G)                                                                                                                                     |
| 2008 | Arikan - Codes Polaires (5G)                                                                                                                                                        |
|      |                                                                                                                                                                                     |

TS229 Codage 5G Romain Tajan 14 octobre 2020

#### Plan

- Introduction générale
- 2 Rappels sur de codage / définitions
- Sur la modélisation du canal
- Code correcteur d'erreur
- Probabilité d'erreur
- Retour sur les enjeux
- 3 Théorie de l'information / Capacité d'un canal
- 4 Codes Linéaires (binaires) en blocs
- **5** LDPC

#### Le canal...

Un **canal** est défini par un triplet :  $(\mathcal{X}, \mathcal{Y}, p(y|x))$  où

- X est l'alphabet d'entrée
- y est l'alphabet de sortie
- p(y|x) est la probabilité de transition

Soit  $n \in \mathbb{N}$  et soit le canal  $(\mathcal{X}^n, \mathcal{Y}^n, p(\mathbf{y}|\mathbf{x}))$ , ce canal est dit "sans mémoire" si sa probabilité de transition vérifie

$$p(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p(y_i|x_i)$$

#### Le canal à effacement binaire



- $\mathcal{X} = \{0, 1\}$  (canal à entrées binaires)
- $\mathcal{Y} = \{0, \epsilon, 1\}$
- $p(\epsilon|0) = p(\epsilon|1) = p$  et p(0|0) = p(1|1) = 1 p
- Canal utile pour les couches hautes, pour le stockage

# Le canal binaire symétrique



- $\mathcal{X} = \{0, 1\}$  (canal à entrées binaires)
- $\mathcal{Y} = \{0, 1\}$
- p(1|0) = p(0|1) = p et p(0|0) = p(1|1) = 1 p
- Canal utile après décision

# Le canal additif gaussien



$$\bullet \ \mathcal{X} = \mathbb{R}$$

$$ullet$$
  $\mathcal{Y} = \mathbb{R}$ 

• 
$$p(y|x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2\sigma^2}(y-x)^2}$$

# Le canal additif gaussien à entrées binaires



- $\mathcal{X} = \{0, 1\}$
- ullet  $\mathcal{Y}=\mathbb{R}$
- $p(y|x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2\sigma^2}(y-1+2x)^2}$

Un code (M, n) pour le canal  $(\mathcal{X}^n, \mathcal{Y}^n, p(\mathbf{y}|\mathbf{x}))$ 

est composé de 3 éléments

- Un ensemble de *M* messages. On notera cet ensemble  $\mathcal{M} = \{0, 1, \dots, M-1\}$
- Une fonction d'**encodage** (ou encodeur) notée  $\phi$ :

$$\phi: \mathcal{M} \to \mathcal{X}^n$$

$$W \mapsto \mathbf{X} = \phi(W)$$

$$\phi(\cdot)$$
 doit être **injective**

• Une fonction de **décodage** (ou décodeur) notée  $\psi$  :

$$\psi: \mathcal{Y}^n \rightarrow \mathcal{M}$$

$$\mathbf{Y} \mapsto \hat{W} = \psi(\mathbf{Y})$$







TS229 Codage 5G Romain Tajan 14 octobre 2020



TS229 Codage 5G

#### Probabilité d'erreur

Si le mot de code W = w est envoyé, une erreur se produit ssi  $\hat{W} \neq w$ .

La probabilité associée à cet événement est notée

$$\lambda_{w} = \mathbb{P}\left(\hat{W} \neq w | W = w\right)$$

$$= \mathbb{P}\left(\psi(\mathbf{Y}) \neq w | W = w\right)$$

## **Définitions**

- Probabilité d'erreur maximale :  $P_m^{(n)} = \max_w \lambda_w$
- Probabilité d'erreur moyenne :  $P_e^{(n)} = \mathbb{P}\left(\hat{W} \neq W\right) = \frac{1}{M} \sum_{w=0}^{M-1} \lambda_w$

TS229 Codage 5G **Romain Taian** 14 octobre 2020

# Décodage du Maximum a Posteriori (MAP)

#### Définition

- Soit C un code (M, n) donné.
- Le décodeur du Maximum A Posteriori (MAP) est la fonction de y définie par :

$$\Psi_{\mathit{MAP}}(\mathbf{y}) = \operatorname*{argmax}_{w \in \mathcal{M}} \mathbb{P}(\mathit{W} = \mathit{w} | \mathbf{Y} = \mathbf{y})$$

Le décodeur MAP minimise Pe

Romain Tajan TS229 Codage 5G 14 octobre 2020

# Décodage MAP sur canaux classiques

Soit le **décodeur** MAP défini par : 
$$\Psi_{MAP}(\mathbf{y}) = \underset{w \in \mathcal{M}}{\operatorname{argmax}} \mathbb{P}(W = w | \mathbf{Y} = \mathbf{y})$$

- Sur canal BSC :  $\Psi_{MAP}(\mathbf{y}) = \operatorname{argmin} d_H(\mathbf{x}, \mathbf{y})$
- 2 Sur canal AWGN :  $\Psi_{MAP}(\mathbf{y}) = \operatorname{argmin} d_E(\mathbf{x}, \mathbf{y})$

Sans structure sur C, ces deux décodeurs sont trop complexes!

Romain Tajan TS229 Codage 5G 14 octobre 2020 16 / 51

# Décodage du Maximum a Posteriori (MAP-bit)

#### Définition

- Soit C un code **binaire** (k, n) donné.
- Le décodeur du Maximum A Posteriori bit (MAP-bit) est la fonction de y définie par :

$$\Psi_{\textit{MAP-bit}}^{(j)}(\mathbf{y}) = \underset{u \in \{0,1\}}{\operatorname{argmax}} \mathbb{P}(\textit{U}_j = \textit{u} | \mathbf{Y} = \mathbf{y})$$

• En pratique on calcule les Logarithmes de rapports de vraisemblances (LLR) :

$$L(U_i) = \log \frac{\mathbb{P}(U_i = 0|\mathbf{y})}{\mathbb{P}(U_i = 1|\mathbf{y})}$$

- Le décodeur MAP minimise  $P_b$  (la probabilité d'erreur binaire)
- Le signe des LLRs : décisions MAP-bit
- Le module des LLRs : fiabilité des décisions

TS229 Codage 5G **Romain Taian** 14 octobre 2020

# Enjeux du codage

#### Compromis entre

- La taille du code (n)
- Le rendement de code (le débit)
- La probabilité d'erreur (maximale ou moyenne)
- La complexité de l'encodage
- La complexité du décodage

Efficacité spectrale ← Codage ← Efficacité énergétique

TS229 Codage 5G Romain Tajan 14 octobre 2020

#### Plan

- Théorie de l'information / Capacité d'un canal
- Rappels de théorie de l'information
- ▶ Théorème de Shannon

#### Information mutuelle

$$I(X, Y) = H(X) - H(X|Y)$$
$$= H(Y) - H(Y|X)$$

Elle représente la quantité moyenne d'incertitude soustraite de X une fois Y connue

#### Capacité

La capacité d'un canal discret sans mémoire de sortie  $Y \in \mathcal{Y}$  et d'entrée  $X \in \mathcal{X}$  et de probabilité de transition p(y|x) est définie par

$$C = \sup_{p(x)} \mathbb{I}(X, Y)$$

#### Remarque

- Le canal (p(y|x)) étant **fixé**,  $\mathbb{I}(X,Y)$  ne "dépend" que de p(x).
- Si  $\mathcal{X}$  est compact capacité est atteinte pour au moins une distribution ( $\mathbb{I}(X,Y)$  est une fonction continue concave de p(x)

TS229 Codage 5G **Romain Taian** 14 octobre 2020

# Capacité du canal BEC



- Montrer que la capacité du canal BEC vaut C(p) = 1 p
- 2 Trouver la distribution p(x) d'atteindre cette capacité
- Our quelle(s) valeur(s) de p cette capacité est-elle nulle?

TS229 Codage 5G Romain Tajan 14 octobre 2020 21 / 51

# Capacité du canal BSC

La capacité en bits par symbole d'entrée du canal BSC vaut

$$C(p) = 1 + p \log_2(p) + (1 - p) \log_2(1 - p)$$

est atteinte ssi  $X \sim \mathcal{B}(0.5)$ 



# Remarques

1 Si p = 0.5, C(0.5) = 0i.e. la connaissance de Y ne permet pas de diminuer l'incertitude sur X.

2 Si p = 0 ou p = 1 capacité maximale

22 / 51

**Romain Taian** TS229 Codage 5G 14 octobre 2020

# Théorème du codage canal de Shannon

Soit  $(\mathcal{X}, \mathcal{Y}, p(y|x))$  un canal discret sans mémoire de capacité  $C \ge 0$  et soit R < C

1 il existe une suite de codes  $(C_n)_{n\geq 1}$  où  $C_n$  est de longueur n, de rendement  $R_n$  et de probabilité d'erreur maximale  $\lambda^{(n)}$  telle que

$$\lambda^{(n)} \rightarrow 0$$
, et  $R_n \rightarrow R$ 

**2** Réciproquent, s'il existe une suite de codes  $(\mathcal{C}_n)_{n>1}$  telle que  $\lambda^{(n)} \to 0$  alors

$$\limsup_{n} R_n \leq C$$

TS229 Codage 5G Romain Tajan | 14 octobre 2020 | 23 / 51

#### Plan

- Introduction générale
- Rappels sur de codage / définitions
- 3 Théorie de l'information / Capacité d'un canal
- 4 Codes Linéaires (binaires) en blocs
  - Matrice de parité
  - Encodeur Systématique
- Décodage MAP-bit des codes linéaires (binaires)
- 6 LDPC



#### Avant de commencer...

#### Remarques

- ① Dans cette section  $\mathcal{X} = \mathcal{Y} = \{0,1\}$  et le canal considéré est le canal binaire symétrique
- 2 Dans cette section on notera  $\mathbb{F}_2$  le **corps**  $(\{0,1\},\oplus,\cdot)$  où :
  - Pour  $x, y \in \mathbb{F}_2$ ,  $x \oplus y = (x + y) \mod 2 (\equiv OU \text{ exclusif})$
  - Pour  $x, y \in \mathbb{F}_2$ ,  $x \cdot y$  est le produit "classique" entre x et  $y \ (\equiv \mathsf{ET})$
- 3  $\mathbb{F}_2$  est un corps fini à deux éléments ( $\mathbb{Z}/2\mathbb{Z}$ )
- Par la suite on notera ⊕ → +
- **5**  $(\mathbb{F}_2^n, +, \cdot)$  est un **espace vectoriel** où
  - Pour  $\mathbf{x}, \mathbf{y} \in \mathbb{F}_2^n$ ,  $\mathbf{x} + \mathbf{y} = [x_0 + y_0, x_1 + y_1, \dots, x_{n-1} + y_{n-1}]$
  - Pour  $x \in \mathbb{F}_2$  et  $\mathbf{y} \in \mathbb{F}_2^n$ ,  $x \cdot \mathbf{y} = [x \cdot y_0, x \cdot y_1, \dots, x \cdot y_{n-1}]$

#### Code linéaire en bloc

#### Code linéaire

Soit  $\mathcal{C}$  un code  $(M=2^k,n)$ ,  $\mathcal{C}$  est un **code bianire linéaire** si et seulement si les mots de codes  $\mathbf{c} \in \mathbb{F}_2^n$  sont obtenus à partir des messages  $\mathbf{u} \in \mathbb{F}_2^k$  par la relation

$$\mathbf{c} = \mathbf{u}G$$

où G est une matrice de taille  $k \times n$  appelée matrice génératrice de C

$$G = \begin{pmatrix} \mathbf{g_0} \\ \mathbf{g_1} \\ \vdots \\ \mathbf{g_{k-1}} \end{pmatrix} = \begin{pmatrix} g_{0,0} & g_{0,1} & \dots & g_{0,n-1} \\ g_{1,0} & g_{1,1} & \dots & g_{1,n-1} \\ \vdots & \vdots & & \vdots \\ g_{k-1,0} & g_{k-1,1} & \dots & g_{k-1,n-1} \end{pmatrix}$$

#### Remarques

- 1  $\mathcal{C}$  est un sous-espace vectoriel de  $\mathbb{F}_2^n$  de dimension rang(G) = k
- 2 Il existe plusieurs matrices génératrices pour un même code.
- 3 le rendement du code est  $R = \frac{rang(G)}{n} = \frac{k}{n}$

# Matrice de parité

Le code  $\mathcal{C}$  peut aussi être défini par sa **matrice de parité** H de taille  $n - k \times n$ :

$$H = \begin{pmatrix} \mathbf{h_0} \\ \mathbf{h_1} \\ \vdots \\ \mathbf{h_{n-k-1}} \end{pmatrix} = \begin{pmatrix} h_{0,0} & h_{0,1} & \dots & h_{0,n-1} \\ h_{1,0} & h_{1,1} & \dots & h_{1,n-1} \\ \vdots & \vdots & & \vdots \\ h_{n-k-1,0} & h_{n-k-1,1} & \dots & h_{n-k-1,n-1} \end{pmatrix}$$

Soit  $\mathbf{v} \in \mathbb{F}_2^n$ ,  $\mathbf{v} \in \mathcal{C}$  ( $\mathbf{v}$  est un mot de code) si et seulement si

$$\mathbf{v}H^T=0$$

- 1 H est appelée matrice de parité du code C et vérifie  $GH^T = 0_{k \times n k}$
- 2 H n'est pas unique

TS229 Codage 5G **Romain Taian** 14 octobre 2020 27 / 51

#### Codes linéaires en blocs

#### **Définitions**

- À partir de sa matrice génératrice G de taille  $k \times n$  :  $C = \{ \mathbf{u}G \mid \mathbf{u} \in \mathbb{F}_2^k \}$
- À partir de sa **matrice de parité** H de taille  $n k \times n$  :  $C = \left\{ \mathbf{c} \in \mathbb{F}_2^n \mid \mathbf{c}H^T = \mathbf{0} \right\}$
- 1 G et H ne sont pas uniques
- **2** G et H vérifient  $GH^T = 0_{k \times n k}$ . Vrai pour tout couple de matrices (G, H) définissant un même code
- 3 Pour un code binaire :  $k < n \Rightarrow$  le codage "ajoute de la redondance"
- Rendement de code :

$$R = \frac{rang(G)}{n} = \frac{n - rang(H)}{n}$$

TS229 Codage 5G **Romain Taian** 14 octobre 2020

#### **Encodeur systématique**

Soit  $\mathcal{C}$  un code ( $M=2^k, n$ ) pour un canal à entrées binaires. Un encodeur  $\varphi(\cdot)$  est dit systématique ssi

$$orall \mathbf{u} \in \mathbb{F}_2^k, arphi(\mathbf{u}) = [\mathbf{p} \ \mathbf{u}] ext{ avec } \mathbf{p} \in \mathbb{F}_2^{n-k}$$

Si  $\mathcal{C}$  est linéaire alors il existe une matrice génératrice sous la forme

$$G = \begin{pmatrix} p_{0,0} & \dots & p_{0,n-k-1} & 1 & 0 & \dots & 0 \\ p_{1,0} & \dots & p_{1,n-k-1} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{k,0} & \dots & p_{k,n-k-1} & 0 & 0 & \dots & 1 \end{pmatrix} = [P \ I_k]$$

La matrice de parité associée à la matrice G précédente

$$H = \begin{pmatrix} 1 & 0 & \dots & 0 & p_{0,0} & \dots & p_{k,0} \\ 0 & 1 & \dots & 0 & p_{0,1} & \dots & p_{k,1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & p_{0,n-k-1} & \dots & p_{k,n-k-1} \end{pmatrix} = [I_{n-k} \quad P^T]$$

TS229 Codage 5G **Romain Taian** 14 octobre 2020

## Remarques sur les encodeurs systématiques

$$G = \begin{pmatrix} p_{0,0} & \dots & p_{0,n-k-1} & 1 & 0 & \dots & 0 \\ p_{1,0} & \dots & p_{1,n-k-1} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{k,0} & \dots & p_{k,n-k-1} & 0 & 0 & \dots & 1 \end{pmatrix} = [P \ I_k]$$

1 Un encodeur systématique comporte le message en clair

30 / 51 TS229 Codage 5G **Romain Taian** 14 octobre 2020

## Remarques sur les encodeurs systématiques

$$G = \begin{pmatrix} p_{0,0} & \dots & p_{0,n-k-1} & 1 & 0 & \dots & 0 \\ p_{1,0} & \dots & p_{1,n-k-1} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{k,0} & \dots & p_{k,n-k-1} & 0 & 0 & \dots & 1 \end{pmatrix} = [P \ I_k]$$

- Un encodeur systématique comporte le message en clair
- 2 Les encodeurs systématiques sont souvent moins complexes que leurs équivalents non-systématiques

TS229 Codage 5G **Romain Taian** 14 octobre 2020 30 / 51

### Remarques sur les encodeurs systématiques

$$G = \begin{pmatrix} p_{0,0} & \dots & p_{0,n-k-1} & 1 & 0 & \dots & 0 \\ p_{1,0} & \dots & p_{1,n-k-1} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{k,0} & \dots & p_{k,n-k-1} & 0 & 0 & \dots & 1 \end{pmatrix} = [P \ I_k]$$

- Un encodeur systématique comporte le message en clair
- 2 Les encodeurs systématiques sont souvent moins complexes que leurs équivalents non-systématiques
- 3 Une matrice d'encodage systématique peut être trouvée pour tout code linéaire en bloc de matrice génératrice **pleine** (à des permutations de colonnes près)

→ Pivot de Gauss

TS229 Codage 5G **Romain Taian** 14 octobre 2020 30 / 51

#### Exemple de Pivot de Gauss

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

- But : permuter | sommer des lignes pour faire apparaître la matrice / à droite
- Cette procédure ne donne pas tout le temps une matrice de la forme G = [P, I]
- Si G est de rang plein on peut toujours se ramener à [P, I] à une permutation de colonne près
- 4 Soit  $G' = [P, I_k] = G\Pi$  où  $\Pi$  est une matrice de permutation des colonnes, soit  $H' = [I_{n-k}P^T]$  alors

$$G'(H')^T = 0_{k \times n - k} = GH^T$$
 avec  $H = H'\Pi$ 

TS229 Codage 5G **Romain Taian** 14 octobre 2020

#### Exemple de Pivot de Gauss

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \leftarrow \mathbf{Pivot}$$

- 1 But : permuter | sommer des lignes pour faire apparaître la matrice / à droite
- Cette procédure ne donne pas tout le temps une matrice de la forme G = [P, I]
- Si G est de rang plein on peut toujours se ramener à [P, I] à une permutation de colonne près
- 4 Soit  $G' = [P, I_k] = G\Pi$  où  $\Pi$  est une matrice de permutation des colonnes, soit  $H' = [I_{n-k}P^T]$  alors

$$G'(H')^T = 0_{k \times n - k} = GH^T$$
 avec  $H = H'\Pi$ 

TS229 Codage 5G **Romain Taian** 14 octobre 2020 31 / 51

$$G = \begin{pmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} \end{pmatrix} \overset{\longleftarrow}{L_2} \overset{\longleftarrow}{\leftarrow} \overset{\mathbf{Pivot}}{L_2 \leftarrow L_2 + L_1}$$

- 1 But : permuter | sommer des lignes pour faire apparaître la matrice / à droite
- Cette procédure ne donne pas tout le temps une matrice de la forme G = [P, I]
- Si G est de rang plein on peut toujours se ramener à [P, I] à une permutation de colonne près
- 4 Soit  $G' = [P, I_k] = G\Pi$  où  $\Pi$  est une matrice de permutation des colonnes, soit  $H' = [I_{n-k}P^T]$  alors

$$G'(H')^T = 0_{k \times n - k} = GH^T$$
 avec  $H = H'\Pi$ 

TS229 Codage 5G **Romain Taian** 14 octobre 2020 31 / 51

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \leftarrow \textbf{Pivot}$$

- 1 But : permuter | sommer des lignes pour faire apparaître la matrice / à droite
- Cette procédure ne donne pas tout le temps une matrice de la forme G = [P, I]
- Si G est de rang plein on peut toujours se ramener à [P, I] à une permutation de colonne près
- 4 Soit  $G' = [P, I_k] = G\Pi$  où  $\Pi$  est une matrice de permutation des colonnes, soit  $H' = [I_{n-k}P^T]$  alors

$$G'(H')^T = 0_{k \times n - k} = GH^T$$
 avec  $H = H'\Pi$ 

TS229 Codage 5G **Romain Taian** 14 octobre 2020 31 / 51

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \leftarrow \begin{array}{l} \textbf{Pivot} \\ L_3 \leftarrow L_3 + L_2 \end{array}$$

- 1 But : permuter | sommer des lignes pour faire apparaître la matrice / à droite
  - Cette procédure ne donne pas tout le temps une matrice de la forme G = [P, I]
- Si G est de rang plein on peut toujours se ramener à [P, I] à une permutation de colonne près
- 4 Soit  $G' = [P, I_k] = G\Pi$  où  $\Pi$  est une matrice de permutation des colonnes, soit  $H' = [I_{n-k}P^T]$  alors

$$G'(H')^T = 0_{k \times n - k} = GH^T$$
 avec  $H = H'\Pi$ 

**Romain Taian** 14 octobre 2020 31 / 51

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \leftarrow \textbf{Pivot}$$

- 1 But : permuter | sommer des lignes pour faire apparaître la matrice / à droite
- Cette procédure ne donne pas tout le temps une matrice de la forme G = [P, I]
- Si G est de rang plein on peut toujours se ramener à [P, I] à une permutation de colonne près
- 4 Soit  $G' = [P, I_k] = G\Pi$  où  $\Pi$  est une matrice de permutation des colonnes, soit  $H' = [I_{n-k}P^T]$  alors

$$G'(H')^T = 0_{k \times n - k} = GH^T$$
 avec  $H = H'\Pi$ 

TS229 Codage 5G **Romain Taian** 14 octobre 2020

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{matrix} \leftarrow & \textbf{Pivot} \\ L_4 \leftarrow L_4 + L_3 \end{matrix}$$

- 1 But : permuter | sommer des lignes pour faire apparaître la matrice / à droite
- Cette procédure ne donne pas tout le temps une matrice de la forme G = [P, I]
- Si G est de rang plein on peut toujours se ramener à [P, I] à une permutation de colonne près
- 4 Soit  $G' = [P, I_k] = G\Pi$  où  $\Pi$  est une matrice de permutation des colonnes, soit  $H' = [I_{n-k}P^T]$  alors

$$G'(H')^T = 0_{k \times n - k} = GH^T$$
 avec  $H = H'\Pi$ 

TS229 Codage 5G **Romain Taian** 14 octobre 2020 31 / 51

# **Décodage MAP-bit**

### Décodage MAP-bit

• Le décodeur MAP-bit encodage systématique :

$$\Psi_{\textit{MAP-bit}}^{(j)}(\mathbf{y}) = \operatorname*{argmax}_{x_j \in \{0,1\}} \mathbb{P}(X_j = x_j | \mathbf{Y} = \mathbf{y})$$

TS229 Codage 5G Romain Tajan 14 octobre 2020

# **Décodage MAP-bit**

### Décodage MAP-bit

• Le décodeur MAP-bit encodage systématique :

$$\Psi_{\textit{MAP-bit}}^{(j)}(\mathbf{y}) = \operatorname*{argmax}_{x_j \in \{0,1\}} \mathbb{P}(X_j = x_j | \mathbf{Y} = \mathbf{y})$$

• Le décodeur MAP-bit encodage systématique (2) :

$$\Psi_{\textit{MAP}-\textit{bit}}^{(j)}(\mathbf{y}) \quad = \quad \underset{x_j \in \{0,1\}}{\operatorname{argmax}} \sum_{\mathbf{x}_{\sim j} \in \mathbb{F}_2^{n-1}} \mathbb{P}(\mathbf{Y} = \mathbf{y} | \mathbf{X} = \mathbf{x}) \mathbf{1}(\mathbf{x} H^T = \mathbf{0})$$

32 / 51

# Décodage MAP-bit

### Décodage MAP-bit

• Le décodeur MAP-bit encodage systématique :

$$\Psi_{\textit{MAP-bit}}^{(j)}(\mathbf{y}) = \operatorname*{argmax}_{x_j \in \{0,1\}} \mathbb{P}(X_j = x_j | \mathbf{Y} = \mathbf{y})$$

• Le décodeur MAP-bit encodage systématique (2) :

$$\begin{split} \Psi_{MAP-bit}^{(j)}(\mathbf{y}) &= \underset{x_{j} \in \{0,1\}}{\operatorname{argmax}} \sum_{\mathbf{x}_{\sim j} \in \mathbb{F}_{2}^{n-1}} \mathbb{P}(\mathbf{Y} = \mathbf{y} | \mathbf{X} = \mathbf{x}) \mathbb{1}(\mathbf{x}H^{T} = \mathbf{0}) \\ &= \underset{x_{j} \in \{0,1\}}{\operatorname{argmax}} \sum_{\mathbf{x}_{\sim i} \in \mathbb{F}_{2}^{n-1}} \prod_{i=0}^{n-1} \mathbb{P}(Y_{i} = y_{i} | X_{i} = x_{i}) \mathbb{1}(\mathbf{x}H^{T} = \mathbf{0}) \end{split}$$

TS229 Codage 5G Romain Tajan | 14 octobre 2020

# **Décodage MAP-bit**

#### Décodage MAP-bit

• Le décodeur MAP-bit encodage systématique :

$$\Psi_{\textit{MAP-bit}}^{(j)}(\mathbf{y}) = \operatorname*{argmax}_{x_j \in \{0,1\}} \mathbb{P}(X_j = x_j | \mathbf{Y} = \mathbf{y})$$

• Le décodeur MAP-bit encodage systématique (2) :

$$\begin{split} \Psi_{MAP-bit}^{(j)}(\mathbf{y}) &= \underset{x_j \in \{0,1\}}{\operatorname{argmax}} \sum_{\mathbf{x}_{\sim j} \in \mathbb{F}_2^{n-1}} \mathbb{P}(\mathbf{Y} = \mathbf{y} | \mathbf{X} = \mathbf{x}) \mathbb{1}(\mathbf{x}H^T = \mathbf{0}) \\ &= \underset{x_j \in \{0,1\}}{\operatorname{argmax}} \sum_{\mathbf{x}_{\sim i} \in \mathbb{F}_2^{n-1}} \prod_{i=0}^{n-1} \mathbb{P}(Y_i = y_i | X_i = x_i) \mathbb{1}(\mathbf{x}H^T = \mathbf{0}) \end{split}$$

### Sans structure sur C, ce décodeur est aussi trop complexe!

### Plan

- Introduction générale
- Rappels sur de codage / définitions
- 3 Théorie de l'information / Capacité d'un canal
- 4 Codes Linéaires (binaires) en blocs
- **5** LDPC
  - Présentation générale
  - Définition
- ▶ Graphe de Tanner associé à un code LDPC
- ▶ Décodage Somme-Produit

Introduits par Gallager pendant sa thèse de doctorat en 1963

TS229 Codage 5G Romain Tajan 14 octobre 2020

- Introduits par Gallager pendant sa thèse de doctorat en 1963
  - Codes possédant une matrice de parité peu dense

TS229 Codage 5G Romain Tajan 14 octobre 2020

- Introduits par Gallager pendant sa thèse de doctorat en 1963
  - Codes possédant une matrice de parité peu dense
  - Codes pouvant être analysés (exposant d'erreur)

- Introduits par Gallager pendant sa thèse de doctorat en 1963
  - → Codes possédant une matrice de parité peu dense
  - → Codes pouvant être analysés (exposant d'erreur)
  - → Décodage simplifié

- Introduits par Gallager pendant sa thèse de doctorat en 1963
  - → Codes possédant une matrice de parité peu dense
  - → Codes pouvant être analysés (exposant d'erreur)
  - → Décodage simplifié
- Peu de travaux pendant ~ 30 ans (Tanner en 1981)

- Introduits par Gallager pendant sa thèse de doctorat en 1963
  - → Codes possédant une matrice de parité peu dense
  - → Codes pouvant être analysés (exposant d'erreur)
  - → Décodage simplifié
- Peu de travaux pendant ~ 30 ans (Tanner en 1981)
  - → Codes représentable à l'aide d'un graphe bipartite (graphe de Tanner)

- Introduits par Gallager pendant sa thèse de doctorat en 1963
  - → Codes possédant une matrice de parité peu dense
  - → Codes pouvant être analysés (exposant d'erreur)
  - → Décodage simplifié
- Peu de travaux pendant ~ 30 ans (Tanner en 1981)
  - → Codes représentable à l'aide d'un graphe bipartite (graphe de Tanner)
  - → Décodage possible à l'aide du graphe

- Introduits par Gallager pendant sa thèse de doctorat en 1963
  - → Codes possédant une matrice de parité peu dense
  - → Codes pouvant être analysés (exposant d'erreur)
  - → Décodage simplifié
- Peu de travaux pendant ~ 30 ans (Tanner en 1981)
  - → Codes représentable à l'aide d'un graphe bipartite (graphe de Tanner)
  - → Décodage possible à l'aide du graphe
  - → Performances dépendant des propriétés du graphe

- Introduits par Gallager pendant sa thèse de doctorat en 1963
  - → Codes possédant une matrice de parité peu dense
  - → Codes pouvant être analysés (exposant d'erreur)
  - → Décodage simplifié
- Peu de travaux pendant ~ 30 ans (Tanner en 1981)
  - → Codes représentable à l'aide d'un graphe bipartite (graphe de Tanner)
  - → Décodage possible à l'aide du graphe
  - → Performances dépendant des propriétés du graphe
- Algorithme de propagation de croyance (IA) (Pearl en 1988)

- Introduits par Gallager pendant sa thèse de doctorat en 1963
  - → Codes possédant une matrice de parité peu dense
  - → Codes pouvant être analysés (exposant d'erreur)
  - → Décodage simplifié
- Peu de travaux pendant ~ 30 ans (Tanner en 1981)
  - → Codes représentable à l'aide d'un graphe bipartite (graphe de Tanner)
  - → Décodage possible à l'aide du graphe
  - → Performances dépendant des propriétés du graphe
- Algorithme de propagation de croyance (IA) (Pearl en 1988)
  - → Alogrithme de propagation de croyance (BP Belief Propagation)

- Introduits par Gallager pendant sa thèse de doctorat en 1963
  - → Codes possédant une matrice de parité peu dense
  - → Codes pouvant être analysés (exposant d'erreur)
  - → Décodage simplifié
- Peu de travaux pendant ~ 30 ans (Tanner en 1981)
  - → Codes représentable à l'aide d'un graphe bipartite (graphe de Tanner)
  - → Décodage possible à l'aide du graphe
  - → Performances dépendant des propriétés du graphe
- Algorithme de propagation de croyance (IA) (Pearl en 1988)
  - → Alogrithme de propagation de croyance (BP Belief Propagation)
- Redécouverte des codes LDPC (MacKay, Luby fin 1990)

- Introduits par Gallager pendant sa thèse de doctorat en 1963
  - → Codes possédant une matrice de parité peu dense
  - → Codes pouvant être analysés (exposant d'erreur)
  - → Décodage simplifié
- Peu de travaux pendant ~ 30 ans (Tanner en 1981)
  - → Codes représentable à l'aide d'un graphe bipartite (graphe de Tanner)
  - → Décodage possible à l'aide du graphe
  - → Performances dépendant des propriétés du graphe
- Algorithme de propagation de croyance (IA) (Pearl en 1988)
  - → Alogrithme de propagation de croyance (BP Belief Propagation)
- Redécouverte des codes LDPC (MacKay, Luby fin 1990)
  - → (Re)Montrent que les codes LDPC sont de bons codes

- Introduits par Gallager pendant sa thèse de doctorat en 1963
  - → Codes possédant une matrice de parité peu dense
  - → Codes pouvant être analysés (exposant d'erreur)
  - → Décodage simplifié
- Peu de travaux pendant ~ 30 ans (Tanner en 1981)
  - → Codes représentable à l'aide d'un graphe bipartite (graphe de Tanner)
  - → Décodage possible à l'aide du graphe
  - → Performances dépendant des propriétés du graphe
- Algorithme de propagation de croyance (IA) (Pearl en 1988)
  - → Alogrithme de propagation de croyance (BP Belief Propagation)
- Redécouverte des codes LDPC (MacKay, Luby fin 1990)
  - → (Re)Montrent que les codes LDPC sont de bons codes

### Définition des codes LDPC

#### **Définitions**

Soit une matrice H

$$H = \begin{pmatrix} h_{0,0} & h_{0,1} & \dots & h_{0,n-1} \\ h_{1,0} & h_{1,1} & \dots & h_{1,n-1} \\ \vdots & \vdots & & \vdots \\ h_{m-1,0} & h_{m-1,1} & \dots & h_{m-1,n-1} \end{pmatrix}$$

Densité de 
$$H: \frac{\left|\left\{i,j:h_{i,j}=1\right\}\right|}{m\,n}$$

- Codes LDPC: Codes possédant une matrice de parité H peu dense (creuse). Ordre de grandeur pour n grand  $\leq 0.01$ .
- **Codes réguliers**: poids des lignes constant r, poids des colonnes constant g
- Rendement d'un code LDPC régulier :  $R \ge 1 \frac{m}{n} = 1 \frac{g}{r}$
- $R_d = 1 \frac{g}{r}$  est appelé **rendement de construction** d'un code LDPC

TS229 Codage 5G **Romain Taian** 14 octobre 2020

### Définition des codes LDPC

#### Petit TD dans le cours...

Soit une matrice H

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

- Donner la densité de H
- H définie-t-elle un code LDPC régulier?
- Si oui, que valent g et r?
- Combien vaut le rendement de construction de ce code?
- Combien vaut le rendement de ce code?

TS229 Codage 5G **Romain Taian** 14 octobre 2020

- 1 n nœuds de variables représentant les variables  $v_j$   $j \in \{0, \dots n-1\}$
- 2 m nœuds de parité  $p_i$   $i \in \{0, \dots m-1\}$
- 3 Une arrête est dessinée entre nœud de variable  $x_i$  et le nœud de parité  $c_i$  ssi  $h_{i,j} = 1$

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

- 1 n nœuds de variables représentant les variables  $v_i$   $j \in \{0, ..., n-1\}$
- 2 m nœuds de parité  $p_i$   $i \in \{0, \dots m-1\}$
- 3 Une arrête est dessinée entre nœud de variable  $x_i$  et le nœud de parité  $c_i$  ssi  $h_{i,j} = 1$

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$







- 1 n nœuds de variables représentant les variables  $v_i$   $j \in \{0, ..., n-1\}$
- 2 m nœuds de parité  $p_i$   $i \in \{0, \dots m-1\}$
- 3 Une arrête est dessinée entre nœud de variable  $x_i$  et le nœud de parité  $c_i$  ssi  $h_{i,j} = 1$

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$



- 1 n nœuds de variables représentant les variables  $v_j$   $j \in \{0, \dots n-1\}$
- 2 m nœuds de parité  $p_i$   $i \in \{0, \dots m-1\}$
- 3 Une arrête est dessinée entre nœud de variable  $x_i$  et le nœud de parité  $c_i$  ssi  $h_{i,j} = 1$

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$



### Le graphe de Tanner est un graphe bipartite avec :

- 1 n nœuds de variables représentant les variables  $v_i$   $j \in \{0, ..., n-1\}$
- 2 m nœuds de parité  $p_i$   $i \in \{0, \dots m-1\}$
- 3 Une arrête est dessinée entre nœud de variable  $x_i$  et le nœud de parité  $c_i$  ssi  $h_{i,j} = 1$

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$



# Degrés des nœuds de variable









38 / 51

Romain Tajan 14 octobre 2020 TS229 Codage 5G

# Degrés des nœuds de parité









39 / 51

Romain Tajan TS229 Codage 5G 14 octobre 2020

# **Codes LDPC irréguliers**

$$H = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$



40 / 51

Polynôme de distribution des degrés des nœuds de variables :  $\lambda(X) = \sum_{d=1}^{\text{dv}} \lambda_d X^{d-1}$ Polynôme de distribution des degrés des nœuds de parités :  $\rho(X) = \sum_{d=1}^{\text{dv}} \rho_d X^{d-1}$ 

Borne sur le rendement du code :  $R \ge 1 - \frac{\int_0^1 \rho(x) dx}{\int_0^1 \lambda(x) dx}$ 

TS229 Codage 5G **Romain Taian** 14 octobre 2020

# Retour sur le décodage du MAP-bit

$$H = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$



$$\begin{split} \rho(x_0|\mathbf{y}) & \propto & \sum_{\mathbf{x}_{\sim 0}} \prod_{i=0}^6 \rho(y_i|x_i) \mathbb{1}(\mathbf{x}H^T = \mathbf{0}) \\ & = & \rho(y_0|x_0) \sum_{x_1, x_3} \rho(y_1|x_1) \rho(y_3|x_3) \mathbb{1}(x_0 + x_1 + x_3 = 0) \\ & \times \sum_{x_5, x_2} \rho(y_2|x_2) \rho(y_5|x_5) \mathbb{1}(x_2 + x_3 + x_5 = 0) \\ & \times \sum_{x_5, x_2} \rho(y_4|x_4) \rho(y_6|x_6) \mathbb{1}(x_3 + x_4 + x_6 = 0) \end{split}$$

TS229 Codage 5G

# Algorithme somme-produit



TS229 Codage 5G Romain Tajan 14 octobre 2020

# Algorithme somme-produit



TS229 Codage 5G Romain Tajan 14 octobre 2020















TS229 Codage 5G Romain Tajan



TS229 Codage 5G Romain Tajan



TS229 Codage 5G

Romain Tajan

14 octobre 2020







$$H = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$



44 / 51

TS229 Codage 5G Romain Tajan 14 octobre 2020

$$H = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$



44 / 51

TS229 Codage 5G Romain Tajan 14 octobre 2020

$$H = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$



44 / 51

TS229 Codage 5G Romain Tajan 14 octobre 2020

$$H = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$



44 / 51

TS229 Codage 5G Romain Tajan 14 octobre 2020

## Conclusion sur l'algorithme somme-produit

#### L'algorithme SP:

- permet de calculer les probabilités a posteriori  $p(x_i|\mathbf{y})$
- ce calcul est exact si le graphe de Tanner est un arbre

TS229 Codage 5G Romain Tajan | 14 octobre 2020 | 45 / 51

# Conclusion sur l'algorithme somme-produit

#### L'algorithme SP:

- permet de calculer les probabilités a posteriori  $p(x_i|\mathbf{y})$
- ce calcul est exact si le graphe de Tanner est un arbre
- si le graphe possède des cycles ⇒ itérer

Romain Tajan 14 octobre 2020 45 / 51

#### Calculer avec des LLR - Nœuds de variables





46 / 51

TS229 Codage 5G Romain Tajan 14 octobre 2020

#### Calculer avec des LLR - Nœuds de variables

$$\sum_{x} \mathbb{1}(x + x_0 + \dots + x_{d-2} = 0) \prod_{0}^{d-2} \mu_k(x)$$



Romain Tajan TS229 Codage 5G 14 octobre 2020 47 / 51

48 / 51

#### **Propriétés**

- Théorème de concentration : Les performances des codes longs d'un même ensemble (avec les mêmes  $\lambda(X)$  et  $\rho(X)$ ) se comportent globalement de la même manière  $\Rightarrow$  on peut réaliser une étude en moyenne.
- Pour des codes longs, étude moyenne ⇔ étude des codes acycliques ayant les mêmes  $\lambda(X)$  et  $\rho(X)$
- Pour des codes longs, effet de seuil sur le paramètre du canal (probabilité d'erreur, probabilité d'effacement ou SNR)

# Évolution de densité - Nœuds de parités

$$L_{c \to x} = 2 \operatorname{atanh} \left( \prod_{k=0}^{d-2} \operatorname{tanh} \frac{L_{x_k \to c}}{2} \right)$$

- Canal BEC avec probabilité d'effacement  $p : \mathbb{P}(y_i = \epsilon | x_i) = p$ .
- **Remarque** Sur canal BEC les messages sont dans l'ensemble  $\{\pm\infty,0\}$ .
- On note  $\bar{p}_{x \to c}$  la probabilité d'effacement moyenne sur les messages allant des nœuds de variables aux nœuds de parités
- On suppose que  $\mathbb{P}(L_{x_i \to c_i} = 0) = \bar{p}_{x \to c}, \forall i \text{ et } j \text{ dans } \{0, n-1\} \text{ et } \{0, m-1\}$
- Que vaut  $\bar{p}_{c \to x}$ ?

TS229 Codage 5G **Romain Taian** 14 octobre 2020 49 / 51

### Évolution de densité - Nœuds de variables



- Canal BEC avec probabilité d'effacement  $p : \mathbb{P}(y_i = \epsilon | x_i) = p$ .
- **Remarque** Sur canal BEC les messages sont dans l'ensemble  $\{\pm\infty,0\}$ .
- On note  $\bar{p}_{c \to x}$  la probabilité d'effacement moyenne sur les messages allant des nœuds de parités aux nœuds de variables
- On suppose que  $\mathbb{P}(L_{c_i \to x_i} = 0) = \bar{p}_{c \to x}, \forall i \text{ et } j \text{ dans } \{0, n-1\} \text{ et } \{0, m-1\}$
- Que vaut  $\bar{p}_{x\to c}$ ?

TS229 Codage 5G **Romain Taian** 14 octobre 2020 50 / 51

## Évolution de densité - Points fixes



- Canal BEC avec probabilité d'effacement  $p : \mathbb{P}(y_i = \epsilon | x_i) = p$ .
- La probabilité d'effacement après décodage pour  $\ell \to \infty$  dépend des points fixes de

$$\bar{p}_{x \to c}^{(\ell)} = p\lambda \left( 1 - \rho \left( 1 - \bar{p}_{x \to c}^{(\ell-1)} \right) \right)$$

TS229 Codage 5G Romain Tajan | 14 octobre 2020 | 51 / 51