Machine Rearring

Pre-requisik:

Probability

Differentiat no

795:5

C7570

Externel octa

Date Analytics

Numerical Categorical

(entiations) { plat, ham, trees, grey }

Robel

(atyorical
(catinum) { Catyorical
(catinum) { Cat, nog, tone }

have frice
breditions

(Regression) (Classification)

features

Renforcenut

Contrant Tetralis

LINEAR REGRESSION

Eg:	(feature) Time Sport	(tobe) Harks	(i) ~ ∈ R y(i) ∈ R
Training Dater	1 3 10 80	4 7 8 10	-> twoper ?
	_	\	

D: Shrs? Score? 3 Tist Dates

7

Y=mx+c==

=m.8+c

A 7

Toke Error for all points =
$$\sum_{i=1}^{m} |y_{prid}^{(i)} - y_{actual}|$$

Toke Error for all points = $\sum_{i=1}^{m} |y_{i}^{(i)} - y_{i}^{(i)}|$

Average Servor = $\sum_{i=1}^{m} |y_{i}^{(i)} - y_{i}^{(i)}|$

(Average Alexante Error)

$$J(\theta) = \lim_{m \to \infty} \sum_{i=1}^{m} \left[\theta_{i} \chi_{i} + \theta_{0} - y^{(i)} \right]^{2}$$

-make updation to your 0, so that it decomes a better 0

$$\frac{\partial y}{\partial x} = \frac{\partial (n-5)^2}{\partial x} = 2(n-5) = 0$$

Gradient Descent