Probabilidad y Estadística Fundamental

Introducción a la probabilidadDefiniciones iniciales en probabilidad

Profesor: Nicolás López

Universidad Nacional de Colombia

Introducción

Conceptos iniciales
Conjuntos
Experimento aleatorio y eventos

Medida de Probabilidad I

Conclusiones I

Introducción

Conceptos iniciales
Conjuntos
Experimento aleatorio y eventos

Medida de Probabilidad I

Conclusiones

Introducción

Recordemos algunas definiciones:

- ▶ Población y muestra.
- ▶ Variable y constante.
- ▶ Unidad Experimental.
- Dato.
- ► Frecuencia absoluta y relativa.

Introducción

En general, al estudiar un fenómeno de interés obtenemos datos:

- ▶ De una población de N elementos Np son defectuosos. Examinar los N elementos es muy costoso, por lo cual se cuenta con una muestra de n ítems para obtener información de p.
- Se busca estudiar la distribución del IMC de una gran población. Un censo es difícil de obtener, así que se selecciona una muestra de n sujetos de la población.
- Se compara la eficiencia de dos métodos aplicados a cierta población (ej: efecto de una droga). Se seleccionan n₁ + n₂ sujetos de la población. n₁ asignados al método 1 y n₂ al 2.
- **...**

Y el análisis de los datos es el objetivo de la investigación.

Introducción

- ► En estadística, estos datos se toman como el resultado de un experimento que es **aleatorio**.
- Por tanto, son requeridas técnicas para obtener y usar esta información en la presencia de incertidumbre.
- Una vez estas técnicas son elaboradas para el experimento aleatorio de interés, se busca inferir (obtener conclusiones) acerca del experimento aleatorio.
- La probabilidad se toma como una herramienta que permite construír dichas técnicas y evaluar la confiabilidad de las conclusiones obtenidas a partir de una muestra.

Introducción

Conceptos iniciales
Conjuntos
Experimento aleatorio y eventos

Medida de Probabilidad I

Conclusiones I

Conjunto

Conjunto

Un conjunto es una colección de objetos.

- 1. Los objetos de un conjunto son llamados **elementos** del conjunto.
- 2. Si Ω es un conjunto y ω es un elemento de Ω se escribe

$$\omega \in \Omega$$

3. Si ω no es un elemento de Ω se escribe

$$\omega\notin\Omega$$

4. La manera más simple de presentar un conjunto es listando sus elementos entre llaves

$$\Omega = \{a, e, i, o, u\}$$

5. Un conjunto de gran importancia es el conjunto vacío (aquel que no tiene elementos)

$$\emptyset = \{\}$$

Contenencia de conjuntos. Subconjuntos

Una colección de objetos puede estar contenida en otra. Si $A = \{1, 2, 3, 4\}$ y $B = \{1, 3\}$, es claro que todos los elementos de B están en A pero no todos los elementos de A están en B, es decir:

$$B \subseteq A$$
 pero $A \nsubseteq B$

Subconjunto

Sean A y B dos conjuntos arbitrarios. El conjunto A es subconjunto del conjunto B si $x \in A$ implica $x \in B$ y se nota $A \subseteq B$. Nótese que dos conjuntos A y B son iguales si $A \subseteq B$ y $B \subseteq A$.

Operaciones entre conjuntos

Así como a partir de números "viejos" (5 y 2) obtenemos números "nuevos" (7 y 10) a través de operaciones entre ellos $(+, \times)$, podemos operar conjuntos entre si para obtener nuevos conjuntos. Las operaciones básicas entre conjuntos son la unión (\cup) y la intersección (\cap) :

Unión

Sean $A ext{ y } B$ dos conjuntos arbitrarios. La unión entre $A ext{ y } B$ se nota como $A \cup B$, y es el conjunto que contiene todo lo que esta en A, B ó ambos.

Intersección

Sean A y B dos conjuntos arbitrarios. La intersección entre A y B se nota como $A \cap B$, y es el conjunto que contiene todo lo que esta tanto en A como en B.

Operaciones entre conjuntos

Por ejemplo, sean

$$A = \{p, x, y, z\}$$
 y $B = \{x\}$

Entonces $A \cup B = \{p, x, y, z\}$ y $A \cap B = \{x\}$. Nótese que en este caso, como $B \subseteq A$, se tiene $A \cup B = A$ y $A \cap B = B$.

Por otra parte, si

$$A = \{x, y\}$$
 y $B = \{p, z\}$

Se tiene $A \cup B = \{p, x, y, z\}$ pero $A \cap B = \emptyset$. En este caso se dice que A y B son conjuntos disyuntos.

Diagrama de Venn

Se pueden visualizar los conjuntos y subconjuntos junto a sus operaciones a partir de diagramas de Venn

Figura 1: Tomado de Proofs and Fundamentals

Ejercicio de aplicación

Diagrama de Venn

A partir de diagramas de Venn, observe si las siguientes relaciones se mantienen para tres conjuntos arbitrarios A, B y C.

- ▶ $A \cap B \subseteq A$ y $A \cap B \subseteq B$.
- ▶ $A \subseteq A \cup B$ y $B \subseteq A \cup B$.
- ▶ $A \cap B = B \cap A$ y $A \cup B = B \cup A$ (conmutatividad).
- ▶ $A \cup B \cup C = A \cup (B \cup C) = (A \cup B) \cup C$ (asociatividad).
- ▶ $A \cup \emptyset = A$ y $A \cap \emptyset = \emptyset$ (identidad).
- ▶ $A \cup A = A$ y $A \cap A = A$ (idempotencia).

Operaciones entre conjuntos. Complemento (respecto a un conjunto)

Bajo ciertas consideraciones, el conjunto de todos los elementos que pertenecen a la discusión pueden ser listados. Este conjunto se llama **espacio** y generalmente se denota como Ω . Considerando el conjunto de las vocales:

$$\Omega = \{a, e, i, o, u\}$$

Si se tiene un subconjunto A de Ω , por ejemplo $A=\{a,i,u\}$, el complemento de A (respecto a Ω) se nota como A_{Ω}^c ó A^c y corresponde al conjunto de todos los elementos de Ω que no son elementos de A. Así $A^c=\{e,o\}$.

Cómo representaría Ω y A^c en un diagrama de Venn?

Introducción

Conceptos iniciales

Conjuntos

Experimento aleatorio y eventos

Medida de Probabilidad I

Conclusiones I

Experimento aleatorio, evento simple y compuesto

Experimento aleatorio

Un experimento es aleatorio si su resultado no puede determinarse de antemano.

Evento simple

Evento observado en una realización del experimento aleatorio.

Evento compuesto

Evento conformado por la unión de eventos simples.

Experimento aleatorio, evento simple y compuesto

Ejemplo. Lanzamiento de un dado corriente de 6 caras

Experimento aleatorio Lanzamiento de un dado corriente de 6 caras. Evento simple Los eventos simples para este experimento son:

- 1. $E_1 = \{ \text{Observar el número } 1 \} = \{ 1 \}.$
- 2. E_2 ={Observar el número 2}={2}.
- 3. $E_3 = \{ \text{Observar el número 3} \} = \{ 3 \}.$
- 4. E_4 ={Observar el número 4}={4}.
- 5. $E_5 = \{ \text{Observar el número 5} \} = \{ 5 \}.$
- 6. $E_6 = \{ \text{Observar el número 6} \} = \{ 6 \}.$

Evento compuesto El evento A, observar un número par, está dado por

$$A = E_2 \cup E_4 \cup E_6 = \{2,4,6\}$$

Experimento aleatorio, evento simple y compuesto

Nótese que

- Tanto los eventos simples como los compuestos son conjuntos, por lo cual, podemos hablar de unión, intersección y complemento de eventos.
- Decir que un evento compuesto A ocurre significa que el resultado obtenido, al realizar el experimento aleatorio, es un elemento de A (si se observa el número 4, ocurre el evento A, pues 4 ∈ A).
- Para la conformación de eventos compuestos se usa la operación de unión entre eventos simples.

Espacio muestral y eventos mutuamente excluyentes

El espacio muestral es el espacio de un experimento aleatorio y dos eventos son mutuamente excluyentes si son disyuntos, es decir:

Espacio muestral

Conjunto de todos los posibles resultados de un experimento aleatorio.

Eventos mutuamente excluyentes

Dos eventos A y B son mutuamente excluyentes si cuando ocurre A, no ocurre B y viceversa.

Espacio muestral y eventos mutuamente excluyentes

Ejemplo (cont.). Lanzamiento de un dado corriente de 6 caras

Espacio muestral $\Omega = \{1, 2, 3, 4, 5, 6\}.$

Eventos mutuamente excluyentes Recordando que $A = \{2, 4, 6\}$:

- 1. Los eventos E_1 y A son mutuamente excluyentes, ya que $E_1 \cap A = \emptyset$.
- 2. Los eventos E_2 y A no son mutuamente excluyentes, ya que $E_2 \cap A = \{2\} \neq \emptyset$.
- 3. Los eventos simples son mutuamente excluyentes entre si.
- 4. Nótese que $A^c=\{1,3,5\}$ (respecto a Ω) y que A y A^c son mutuamente excluyentes.

Introducción

Conceptos iniciales
Conjuntos
Experimento aleatorio y eventos

Medida de Probabilidad I

Conclusiones

El objetivo es asignar a cualquier evento un número que indique el *chance* que tiene de ocurrir, es decir, se busca **medir la probabilidad de ocurrencia** del evento.

Ejemplo (cont.). Lanzamiento de un dado corriente de 6 caras

Suponga que se repite el experimento aleatorio N veces, de las cuales n_A veces ocurre el evento A. Sea $f_A = n_A/N$ la frecuencia relativa del evento A para las N repeticiones. Note que:

- 1. $f_A = 0$ si **nunca** ocurre A en las N repeticiones. En general $f_A \ge 0$
- 2. $f_A = 1$ si **siempre** ocurre A en las N repeticiones. En general $f_A \le 1$.
- 3. Como $A=E_2\cup E_4\cup E_6$ con E_2,E_4 y E_6 disyuntos entre si, se tiene

$$n_A = n_{E_2} + n_{E_4} + n_{E_6}$$

Y así

$$f_A = \frac{n_A}{N} = \frac{n_{E_2} + n_{E_4} + n_{E_6}}{N} = \frac{n_{E_2}}{N} + \frac{n_{E_4}}{N} + \frac{n_{E_6}}{N} = f_{E_2} + f_{E_4} + f_{E_6}$$

Si repite el experimento aleatorio un número suficientemente grande de veces, f_A se estabiliza en un número particular entre 0 y 1, esto se llama **regularidad estadística**. El valor al cual se aproxima f_A nos da una medición del *chance* de ocurrencia del evento A, así

$$f_A = \frac{n_A}{N} \xrightarrow[N \to \infty]{} P(A)$$

Aunque el resultado del experimento aleatorio es impredecible, P(A) mide el *chance* de ocurrencia de un número par al lanzar un dado corriente de 6 caras.

Esta noción de probabilidad hereda las características de la frecuencia relativa anteriormente observadas, es decir:

- **1.** $P(A) \ge 0$ para cualquier evento A.
- 2. $P(A) \le 1$ para cualquier evento A.
- **3.** Si $A = E_1 \cup E_2 \cup ... \cup E_m$ con E_1 , E_2 ,..., E_m disyuntos entre si, entonces

$$P(A) = P(E_1) + P(E_2) + ... + P(E_m)$$

Note que $f_A=1$ si siempre ocurre A en las N repeticiones. El único evento que siempre ocurre para cualquier experimento aleatorio es Ω , así

4.
$$P(\Omega) = 1$$
.

Y que $f_A=0$ si nunca ocurre A en las N repeticiones. El único evento que nunca ocurre para cualquier experimento aleatorio es \emptyset , así

5.
$$P(\emptyset) = 0$$
.

Tenga en cuenta que

- ▶ Si f_A es cercano a 1, A sucedió bastantes veces en los N ensayos. Por el contrario, si f_A es cercano a 0, A ocurrió pocas veces. Así, entre más cerca de 1 esté P(A), más probable que A ocurra.
- ▶ La probabilidad de un evento A es igual a la suma de las probabilidades de los eventos simples que lo conforman por la propiedad (3).
- La probabilidad se mide sobre eventos, que son conjuntos, no números.

Ejemplo (cont.). Lanzamiento de un dado corriente de 6 caras

Se lanza el dado 10000 veces y se observa la siguiente tabla de frecuencias

Evento simple	n _i	$ f_i $
E_1	1692	0.1692
E_2	1631	0.1631
E_3	1724	0.1724
E_4	1586	0.1586
E_5	1633	0.1633
E_6	1734	0.1734

La probabilidad de A se puede aproximar como

$$P(A) \approx f_A = f_{E_2} + f_{E_4} + f_{E_6} = 0.1631 + 0.1586 + 0.1734 = 0.4957$$

Que es bastante cercano a 0.5.

Introducción

Conceptos iniciales
Conjuntos
Experimento aleatorio y eventos

Medida de Probabilidad I

Conclusiones I

Conclusiones I

- Las definiciones iniciales en probabilidad son: experimento aleatorio, evento simple y compuesto, espacio muestral y eventos mutuamente excluyentes.
- Una gran cantidad de fenómenos en diferentes áreas (investigación médica, economía, agronomía,...) tienen las características de un experimento que es aleatorio.
- ► Ejemplos como el del lanzamiento de un dado corriente son muy útiles para entender las definiciones iniciales en probabilidad.

