

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: 2018

وزارة التربية الوطنية امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

اختبار في مادة: الرياضيات المدة: 04 سا و 30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

يحتوي الموضوع الأول على (03) صفحات (من الصفحة 1 من 5 إلى الصفحة 3 من 5)

التمرين الأول: (04 نقاط)

(يبييري) بالدالة العددية المعرّفة والمتزايدة تماما على المجال e) $f(x) = \frac{2x}{e.x+1}$ بالدالة العددية المعرّفة والمتزايدة تماما على المجال f

$$u_{n+1}=f\left(u_{n}
ight)$$
 : n عدد طبيعي $u_{0}=rac{5}{4e}$ ومن أجل كل عدد طبيعي المتتالية العددية المعرفة بحدها الأول $u_{0}=rac{5}{4e}$

. $u_n > \frac{1}{e} : n$ برهن بالتراجع أنّه من أجل كل عدد طبيعي (أ (1

,
$$u_{n+1}-u_n=rac{e.u_n(rac{1}{e}-u_n)}{e.u_n+1}:n$$
 عدد طبیعي $e.u_n+1$

ثم استنتج اتجاه تغير المتتالية (u_n) و برّر أنّها متقاربة.

 $v_n = \frac{e.u_n}{e.u_n - 1}$: لتكن المتتالية (v_n) المعرفة من أجل كل عدد طبيعي المعرفة من أجل كل عدد (2

n بدلالة v_n متتالية هندسية أساسها v_n ، يطلب تعيين حدها الأول v_n و عبارة v_n بدلالة v_n

.
$$S_n = v_0 + v_1 + \dots + v_n$$
 :حيث S_n حيث n المجموع (ب

4) أ) ادرس حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد 2^n على 7.

.7 عين قيم العدد الطبيعي n التي من أجلها S_n يقبل القسمة على 7.

اختبار في مادة: الرياضيات / الشعبة: تقنى رياضي / بكالوريا 2018

التمرين الثاني: (04 نقاط)

B(0;3;-1) ، A(0;0;2) نعتبر النقطتين . $\left(o;\vec{i},\vec{j},\vec{k}\right)$ سنجامد المتعامد المتعامد المتجانب

والمستوي
$$(p)$$
 المعرف بالتمثيل الوسيطي: $x=t+m$ حيث $x=t+m$ عددان حقيقيان. $y=4t-2m+1$ المعرف بالتمثيل الوسيطي: $z=t-2m-2$

- له. اكتب معادلة ديكارتية للمستوي (Q) الذي يشمل النقطة n(2;2;-1) شعاع ناظمي له.
 - .(Q) اكتب تمثيلا وسيطيا للمستقيم (Δ) الذي يشمل النقطة A و يعامد المستوي (Δ).
 - (p) تحقق أنّ: 2x y + 2z + 5 = 0 تحقق أنّ: (1) تحقق أنّ
 - (Q) بيّن أنّ المستوي (p) يشمل النقطة B و يعامد المستوي
 - . حيث t عدد حقيقي (2t ; 2t ; -t+2) لتكن t عدد حقيقي (4
- أ) عين قيم t بحيث تكون d(M;(P)) = d(M;(Q)) (ترمز d الى المسافة بين نقطة و مستوي).
- A استنتج احداثیات C مرکز سطح الکرة (S) التي تمس کل من المستویین (Q) و (Q) في النقطتین (S) الترتیب و احسب نصف قطرها.

التمرين الثالث: (05 نقاط)

- - . $(o; \vec{u}, \vec{v})$ المستوي المركب منسوب إلى المعلم المتعامد المتجانس (II

$$\left(z_{A}\right)$$
 رمز الى مرافق $\overline{z_{A}}$ رمز الى مرافق $z_{A}=\sqrt{2}+i\sqrt{2}$ لتكن النقطتين $z_{A}=\sqrt{2}+i\sqrt{2}$ لاحقتاهما

- . اكتب على الشكل الأسّي كل من العددين المركبين z_A و $z_B = z_A$ ، ثم بيّن أنّ العدد (1 تخيلي صرف (1
 - . (-3) لتكن النقطة $z_{\omega}=\frac{\sqrt{2}}{2}$ صورة ω بالتحاكي ω الذي مركزه ω ذات اللاحقة ω ونسبته (2 $z_{C}=-\sqrt{2}+i3\sqrt{2}$ هي ω النقطة ω هي النقطة ω هي النقطة ω
 - $(-\frac{\pi}{2})$ و زاویته O و الذي مرکزه O و النقطة D صورة D احسب D احسب D احسب D
 - . ACD ثم استنتج طبیعة المثلث $\frac{z_C-z_A}{z_D-z_A}=-i$ ثم استنتج طبیعة (أ (4
 - ب) اوجد لاحقة النقطة E بحيث يكون الرباعي ACED مربعا.

التمرين الرابع: (07 نقاط)

.
$$f(x)=\frac{x}{x-1}e^{-x}$$
 بالدالة العددية المعرفة على المجال $f(x)=\frac{x}{x-1}$ بالدالة العددية المعرفة على المجال المجال المعرفة على المعلم المتعامد المتجانس $f(x)=\frac{x}{x-1}$

اختبار في مادة: الرياضيات / الشعبة: تقني رياضي / بكالوريا 2018

- . $\lim_{x \to -\infty} f(x)$ احسب النتيجة بيانيا و احسب النتيجة $\lim_{x \to -\infty} f(x)$ احسب (1
- - . الماحدة الماماس (T) المنحنى النقطة ذات الفاصلة صفر (T) المنحنى (T) المنحنى (أ)
 - . $h(x)=e^{-x}+x-1$ بـ) $-\infty;1$ بـا المجال المجال $h(x)\geq 0$: $]-\infty;1$ من المجال 1 بنه من أجل كل 1 من الدالة 1 شم استنتج أنه من أجل كل 1 من الحالة 1
 - (C_f) بيّن أنّه من أجل كل x من $[-\infty;1]$ من $f(x)+x=\frac{x\ h(x)}{x-1}$: $[-\infty;1]$ من أجل كل $[-\infty;1]$ فسر النتيجة بيانيا.
- الذي يشمل مبدأ المعلم O و النقطة $A\left(-2;\frac{2}{3}e^2\right)$ ثم ارسم المستقيمين (Δ) الذي يشمل مبدأ المعلم $A\left(-2;\frac{2}{3}e^2\right)$ ثم ارسم المستقيمين (Δ) ما الذي يشمل مبدأ المعلم $A\left(-2;\frac{2}{3}e^2\right)$ على المجال $A\left(-2;\frac{2}{3}e^2\right)$ على المجال $A\left(-2;\frac{2}{3}e^2\right)$
 - $\frac{x}{x-1} \le f(x) < e^{-x} : [-1;0]$ من أجل كل x من أجل كل (6
- م وسيط حقيقي ، ناقش بيانيا و حسب قيم الوسيط الحقيقي m عدد حلول المعادلة : m(x) = mx ، حيث m(x) = mx . $x \in [-2;1[$

الموضوع الثانى

اختبار في مادة: الرياضيات / الشعبة: تقنى رياضي / بكالوريا 2018

يحتوي الموضوع الثاني على (02) صفحات (من الصفحة 4 من 5 إلى الصفحة 5 من 5) التمرين الأوّل: (04 نقاط)

 $u_n=2(3)^n$ متتالیة عددیة معرّفة علی $\mathbb N$ بحدها العام کما یلی لتکن (u_n)

 $v_{n+1} = 5v_n + u_n$: $\mathbb N$ منتالية عددية معرّفة بحدها الأول $v_0 = 4$ و من أجل كل $v_n = 5v_n + u_n$

 $w_n = \frac{v_n}{u} + \frac{1}{2} : \mathbb{N}$ نضع من أجل كل n من (1

الأوّل. متتالية هندسية أساسها $\frac{5}{3}$ ، يطلب تعيين حدّها الأوّل. الثبت أنّ (w_n)

- $v_n = 5^{n+1} 3^n : \mathbb{N}$ من n من أجل كل n من بدلالة n بدلالة n
 - 8. ادرس حسب قيم العدد الطبيعي n ، بواقي القسمة الاقليدية للعددين 3^n و 5^n على 3^n
 - .8 عين حسب قيم العدد الطبيعي n بواقي القسمة الاقليدية للعدد v_n على 4.

التمرين الثاني: (04 نقاط)

كيس به 7 كربات متماثلة، لا نفرّق بينها باللمس ، منها 3 بيضاء و 4 خضراء.

نسحب عشوائيا و في آن واحد كربتين من الكيس.

- الون ". A احسب احتمال الحادثة A : " سحب كربتين مختلفتين في اللون ".
 - 2) احسب احتمال الحادثة B: " سحب كريتين من نفس اللون ".
- . (حيث α عدد طبيعي معطى و DA تعني دينار جزائري) ، $\alpha(DA)$ عدد اللعبة التالية : للمشاركة يدفع اللاعب (II فإذا سحب كريتين بيضاوين يتحصل على 100DA ، و إذا سحب كريتين مختلفتين في اللون يتحصل على 50DA، واذا سحب كربتين خضراوين يخسر ما دفعه. وليكن X المتغيّر العشوائي الذي يمثل ربح أو خسارة اللاعب بدلالة lpha .
 - . برّر أنّ قيم المتغير العشوائي هي $\{100-lpha, 50-lpha, -lpha\}$ ثم عرّف قانون احتماله.
 - $E\left(X\right)=-lpha+rac{300}{7}$: هو lpha هو الرياضياتي للمتغيّر العشوائي X بين أنّ الأمل الرياضياتي للمتغيّر العشوائي ثم اوجد أكبر قيمة ممكنة لـ α حتى تكون اللعبة في صالح اللاعب.

التمرين الثالث: (05 نقاط)

- $4z^2-2z+1=0$: المعادلة ذات المجهول z المعادلة $\mathbb C$ المعادلة (I (E) ... (E) على الشكل الأسي حيث z_1 و z_2 حلا المعادلة z_3 على الشكل الأسي حيث العددان z_1 على الشكل الأسي حيث z_1 على الشكل الأسي حيث z_1 على الشكل الأسي حيث z_2 على الشكل الأسي حيث z_1 على الشكل الأسي حيث z_2 على الشكل الأسي حيث z_2 على الشكل الأسي حيث z_1 على الشكل الأسي حيث z_2 على الشكل الأسي عديث z_2 على الأسي عديث z_2 على الشكل الأسي عديث z_2 على الشكل الأسي عديث z_2 على ا
 - المستوي المركب منسوب إلى المعلم المتعامد المتجانس $(O;\overrightarrow{u},\overrightarrow{v})$. نعتبر النقط B ، B و C لاحقاتها (II $z_{C} = 1 - i\sqrt{3}$ $z_{B} = 1 + i\sqrt{3}$, $z_{A} = 4$

اختبار في مادة: الرياضيات / الشعبة: تقنى رياضي / بكالوريا 2018

- ABC ثم حدد طبیعة المثلث $\frac{z_B-z_A}{z_C-z_A}$ ثم حدد المثلث (1
- . با استنتج أن B هي صورة C بدوران مركزه A يطلب تعيين زاويته
- اوجد لاحقة النقطة D صورة النقطة A بالانسحاب الذي شعاعه \overline{CB} و استنتج بدقة طبيعة الرباعي A ACBD
 - يلي: z مجموعة النقط M من المستوي المركب ذات اللاحقة z التي تُحقق ما يلي: $|iz+\sqrt{3}-i|=|z-1+i\sqrt{3}|$
 - . (γ) بيّن أنّ النقطة G مركز الدائرة المحيطة بالمثلث ABC تنتمي إلى G

التمرين الرابع: (07 نقاط)

- . $g(x) = 2 x + \ln x$: بعتبر الدالة العددية g المعرّفة على المجال [0;1] بعتبر (I
 - .]0;1 ادرس اتجاه تغیّر الدالة g على المجال (1
- $0.0,15 < \alpha < 0.16$: حيث α حيث g(x) = 0 تقبل حلا وحيدا α حيث $\phi(x) = 0$
 - .]0;1[على المجال $g\left(x\right)$ على المجال (2
- . $f(x) = \frac{1 2x + \ln x}{x 1}$: ب $f(x) = \frac{1 2x + \ln x}{x 1}$ بتكن $f(x) = \frac{1 2x + \ln x}{x 1}$ بتكن الدالة العددية المعرّفة على المجال
- . $(O; \overrightarrow{i}, \overrightarrow{j})$ مثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس (C_f)
- ، ($f(x) = \frac{1-2x}{x-1} + \frac{\ln x}{x-1}$ على الشكل f(x) على الشكل $\lim_{x \to +\infty} f(x)$ ويمكن كتابة f(x) على الشكل $\lim_{x \to +\infty} f(x)$ على النتيجتين بيانيا.
 - . $f'(x) = \frac{g\left(\frac{1}{x}\right)}{(x-1)^2}$:]1;+∞[من المجال x من المجال عدد حقیقي عدد حقیقي (1 (2
 - . بیّن أن f متزایدة تماما علی $\left[\frac{1}{\alpha};+\infty\right[$ و متناقصة تماما علی $\left[1;\frac{1}{\alpha}\right]$ ثم شكّل جدول تغیّراتها f
 - y=-2 ادرس الوضع النسبي لـ C_f) و المستقيم (Δ) دي معادلة (3
 - . ($f\left(\frac{1}{\alpha}\right)\simeq -1,8$ يعطى) (C_f) ارسم المستقيمين المقاربين و المنحنى (4
 - عيّن بيانيا قيم الوسيط الحقيقي m حتى تقبل المعادلة m حتى الوسيط الحقيقي m عيّن بيانيا قيم الوسيط الحقيقي عتى المعادلة m

العلامة		عناصر الإجابة (الموضوع الأول)
مجموع	مجزأة	(032, 63-3-1) (4+4, 3
1	0.25 0.25x 2 0.25	$u_n > \frac{1}{e}$ نتحقق من بالتراجع أن: $u_n > \frac{1}{e}$ (1 $u_n > \frac{1}{e}$ نتحقق من صحة الخاصية من أجل من أجل عدد طبيعي $u_n > \frac{1}{e}$ متزايدة تماما على $u_n > \frac{1}{e}$ (0;+ ∞ [$u_n > \frac{1}{e}$ متزايدة تماما على $u_n > \frac{1}{e}$ و منه $u_n > \frac{1}{e}$ من أجل عدد طبيعي $u_n > \frac{1}{e}$ و منه $u_{n+1} = u_n = \frac{eu_n(\frac{1}{e} - u_n)}{eu_n + 1}$: $u_n = \frac{eu_n(\frac{1}{e} - u_n)}{eu_n + 1}$ إذن $u_n > \frac{1}{e}$ متاقصة تماما ومحدودة من الأسفل بالعدد $u_n > \frac{1}{e}$ ومتارية $u_n > \frac{1}{e}$ ومحدودة من الأسفل بالعدد $u_n > \frac{1}{e}$
01	0.5 0.25×2	$v_{n+1}=rac{2\ eu_n}{eu_n-1}:n$ عدد طبیعی $v_n=1$ (2) اثبات أن $v_n=1$ هندسیة أساسها $v_n=1$ و $v_n=1$ و $v_n=1$
01.25	0.25×2 0.25 0.5	$u_n = \frac{5 \times 2^n}{e \left(5 \times 2^n - 1\right)}$: u_n : $u_n = 1 + \frac{1}{e u_n - 1}$ ناتحقق أن $u_n = 1 + \frac{1}{e u_n - 1}$ ا $\lim_{x \to +\infty} u_n = \frac{1}{e}$ $S_n = 5 \times \frac{2^{n+1} - 1}{2 - 1} = 5 \left[2^{n+1} - 1\right]$: مجموع متتالية هندسية $S_n = 5 \times \frac{2^{n+1} - 1}{2 - 1}$: بــــ
0.75	0.5	$2^{3k}\equiv 1$ [7] $2^{3k+1}\equiv 2$ [7] $2^{3k+1}\equiv 2$ [7] $2^{3k+2}\equiv 4$ [7] $2^{3k+2}\equiv 4$ [7] $2^{3k+2}\equiv 4$ [7] و منه $2^{n}\equiv 4$

		/ t 1". O A) _ *12*1 _ #1
01	0.5×2	التمرين الثاني : (40 نقاط) التمرين الثاني : (40 نقاط) معادلة المستوي (Q) الذي يشمل A و $\vec{n}(2;2;-1)$ شعاع ناظمي له هي : (Q) : $2x+2y-z+2=0$
01	0.5×2	(Δ) تمثیل وسیطی للمستقیم (Δ): $x=2t$ $y=2t$ $z=-t+2$ (Δ) :
01.25	0.25×2 0.5 0.25	(p) التحقق أن $2x-y+2z+5=0$ معادلة ديكارتية للمستوي (p) (ب p (ب p) يشمل p (ب n ناظمي ل n p ناظمي ل n p ناظمي ل n p ناظمي ل n p ناظمي ل
0.75	0.25 0.25 0.25	ig t =1:t تعيين قيم c (t
01.5	0.5×3	التمرين الثالث : (06) نقاط) التمرين الثالث : $z_1 = \sqrt{2} + i\sqrt{2}$ ، $\Delta = -8$: $\Delta = -8$) حل المعادلة : $\Delta = -8$
1.25	0.5×2 0.25	$\frac{1}{z_B} = \frac{1}{2}e^{i\frac{\pi}{4}}$ ، $z_A = 2e^{i\frac{\pi}{4}}$ الكتابة على الشكل الأسي: $\left(\frac{2}{z_B}\right)^{2018} = \left(e^{i\frac{\pi}{4}}\right)^{2018} = e^{i\frac{\pi}{2}} = i$: لدينا ـ
1.25	0.25 0.5×2	$z_C = -\sqrt{2} + 3i\sqrt{2}$ نجد $z_C - z_\Omega = -3(z_B - z_\Omega)$ (2
1.5	0.5×3	$z_D = -\sqrt{2} - i\sqrt{2}$ نجد $z_D - z_O = -i(z_B - z_O)$ (3
0.5	0.25	$rac{z_C-z_A}{z_D-z_A}=-i$ تبيان أن $z_D-z_A=-i$ أي تبيان أن $z_D-z_A=-i$ المثلث $z_D-z_A=-i$ المثلث $z_D-z_A=-i$ المثلث $z_D-z_A=-i$ المثلث $z_D-z_A=-i$ نجد $z_D-z_A=-i$ المثلث $z_D-z_A=-i$ نجد $z_D-z_A=-i$ المثلث بالمثلث $z_D-z_A=-i$ المثلث $z_D-z_A=-i$ المثلث أن المثلث

		التمرين الرابع: (06 نقاط)
		$f(x) = \frac{x}{x-1}e^{-x}$:ب] $-\infty$; 1[با معرفة على المجال f
01.25	0.5×2	$\lim_{x \to -\infty} f(x) = -\infty$ و $\lim_{x \to -\infty} f(x) = +\infty$: نهایات (1
01.25	0.25	معادلة مقارب عمودي $(d): x=1$
1	0.25	$f'(x) = \frac{\left(-x^2 + x - 1\right)}{\left(x - 1\right)^2} e^{-x} : x \in]-\infty; 1[$ بیان أن من أجل (2
1	0.25	$]-\infty;1[$ من أجل $]-\infty;1[$ من أجل $[-\infty;1]$ دالة متناقصة تماما على كل المجال $f\cdot f\cdot (x)<0$: $x\in]-\infty;1[$
	0.5	جدول التغيرات.
	0.5	(T): y = -x : 0 عند (T) عند (3)
		$h'(x) = -e^{-x} + 1$: $x \in]-\infty; 1[$ بيان أن من أجل $h'(x) = -e^{-x} + 1$: $x \in]-\infty; 1[$
01	0.25	$]-\infty;0]$ من أجل $[-\infty;0]$ ، h ، $h'(x)\leq 0$: $x\in]-\infty;0$
		$[0;1[$ من أجل $x \in [0;1]$ ، متزايدة تماما على مجال h ، $h'(x) \ge 0$
	0.25	$h(x) \geq 0$: منه $-\infty;1$ منه المجال $h(x) \geq 0$ قيمة حدية صغرى للدالة h على المجال $h(0) = 0$
	0.25	$f(x) + x = \frac{x h(x)}{x - 1}$: $x \in]-\infty; 1[$ بیان أن من أجل (4
		:(T) بالنسبة للمماس بالنسبة المماس النسبي للمنحنى المنحنى بالنسبة المماس
		$(T$) من أجل $x\in]-\infty;0[$ المنحنى (\mathcal{C}_{f}) يقع فوق المماس $x\in]-\infty;0[$
	0.25	(T) من أجل $x\in]0;1[$: المنحنى (\mathcal{C}_{f}) يقع تحت المماس
0.75		$\left(\mathcal{C}_{\!f} ight)$ من أجل $x=0$ المماس $x=0$ يخترق المنحنى
	0.25	$(\mathcal{C}_{\!{}_f})$ تفسير الهندسي : مبدأ المعلم O نقطة انعطاف للمنحنى
0.75	0.25 0.5	. (C_f) معادلة المستقيم $(\Delta): y = -\frac{e^2}{3}$ و إنشاء المماس (Δ) و المنحنى (5
		$\frac{x}{x-1} \le f(x) < e^{-x}$: $x \in [-1;0]$ أ- إثبات أنه من أجل (6)
		$f(x) - \frac{x}{x-1} = \frac{x(e^{-x}-1)}{x-1} : x \in [-1;0]$ لاينا من أجل
0.5	0.5	$f(x) \ge \frac{x}{x-1}$ من أجل $x \in [-1;0]$ لدينا $x \in [-1;0]$ و $e^{-x} - 1 \ge 0$
		$f(x) - e^{-x} = \frac{e^{-x}}{x - 1} : x \in [-1; 0]$ لاينا من أجل
		$f\left(x\right)\!<\!e^{-x}$ و $x-1\!<\!0$ و $e^{-x}>0$ لدينا $x\in\!\left[-1;0\right]$ من أجل

الإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعبة: تقني رياضي/ بكالوريا: 2018

	0.25	$\frac{x}{x-1} = 1 + \frac{1}{x-1}$: ب تحقق أن $\frac{x}{x-1} = 1 + \frac{1}{x-1}$. $\frac{x}{x-1} \le f(x) < e^{-x}$: $x \in [-1;0]$ لاينا من أجل $\int_{1}^{0} \left(1 + \frac{1}{x-1}\right) dx \le \int_{1}^{0} f(x) dx < \int_{1}^{0} e^{-x} dx$: فإن
0.5	0.25	$\begin{bmatrix} x + \ln(1-x) \end{bmatrix}_{-1}^{0} \le \int_{-1}^{0} f(x) dx < \begin{bmatrix} -e^{-x} \end{bmatrix}_{-1}^{0}$ $1 - \ln 2 \le \int_{-1}^{0} f(x) dx < e - 1$
0.25	0.25	$f(x)=mx$: المعادلة m فواصل نقط تقاطع $f(x)=mx$ مع المستقيم ذو المعادلة $m\in]-\infty; -rac{e^2}{3}$ الذا كان $m\in]-\infty; -rac{e^2}{3}$ فإن للمعادلة ثلاث حلول متمايزين $m\in [-rac{e^2}{3};-1]$ الذا كان $m\in [-1;+\infty[$ فإن للمعادلة حلا وحيدا

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
0.75	0.25×3	$w_{n+1} = \frac{5}{3} w_n$ أي $w_{n+1} = \frac{v_{n+1}}{u_{n+1}} + \frac{1}{2} = \frac{5}{3} \left(\frac{v_n}{u_n} + \frac{1}{2} \right)$ ، من أجل كل n من أجل كل أم من أجل كل أم من أجل أم من أبيا أبيا أبيا أبيا أبيا أبيا أبيا أبيا
0.75	0.25	$w_n=rac{5}{2}igg(rac{5}{3}igg)^n$ ، \square من أجل كل n من n من أجل كل المنتتاج أنّه من أجل كل
	0.3	
01	01	$.3^2 \equiv 1[8]$ ، $3^1 \equiv 3[8]$ ، $3^0 \equiv 1[8]$ (3 $.3^{2k+1} \equiv 3[8]$ و $3^{2k} \equiv 1[8]$ ، $k \in \square$ الإذن: من أجل كل $5^2 \equiv 1[8]$ ، $5^1 \equiv 5[8]$ ، $5^0 \equiv 1[8]$ $.5^{2k+1} \equiv 5[8]$ ، $5^{2k+1} \equiv 5[8]$ و $5^{2k+1} \equiv 5[8]$ ، $5^{2k+1} \equiv 5[8]$ و $5^{2k+1} \equiv 5[8]$
0.5	0.5	$v_{2k+1}\equiv 6igl[8igr]$ من أجل كل $k\in \square$ ، $k\in \square$ و $v_{2k+1}\equiv 4$
01.5	0.5×3	$rac{ ext{lina} \cdot 05 }{ ext{lina} \cdot 05 }$ نقاط) $ ext{lina} \cdot 05 $ نقاط $ ext{lina} \cdot a $ $ ext{li$
01.5	0.5×3	$p(B) = 1 - p(A) = \frac{3}{7}$." سحب كرتين من نفس اللون " B (2
	1	X تبرير قيم المتغير العشوائي X تبرير قيم المتغير العشوائي $\{B,B\}$ $\{B,N\}$ $\{N,N\}$ المتغير العشوائي $\{B,B\}$
01.5	0.5	$ \begin{array}{c ccccc} x_i & 100 - \alpha & 50 - \alpha & -\alpha \\ \hline p(X = x_i) & \frac{C_3^2}{21} = \frac{3}{21} & \frac{12}{21} & \frac{C_4^2}{21} = \frac{6}{21} \\ \hline \end{array} $
	0.25	$E(X) = -\alpha + \frac{300}{7}$: تبیان أنّ (2
0.5	0.25	$E(X)>0$ يكون اللعبة في صالح اللاعب يجب أن يكون $E(X)>0$ أي: $0<\alpha<42,85$ و منه $\alpha<42,85$ ، إذن أكبر قيمة لـ $\alpha<42$

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
1.5	1	(التمرين الثالث: (40 نقاط) $z_2 = \frac{1}{4} + \frac{\sqrt{3}}{4}i$ و $z_1 = \frac{1}{4} - \frac{\sqrt{3}}{4}i$ ؛ $\Delta = -12 = \left(2\sqrt{3}i\right)^2$ (أ (I
	0.5	$ \frac{1}{z_2} = 1 - \sqrt{3} i = 2e^{i(\frac{-\pi}{3})} : \frac{1}{z_1} = 1 + \sqrt{3} i = 2e^{i(\frac{\pi}{3})} $ (ب
	0.5	$\frac{z_B - z_A}{z_C - z_A} = e^{i(-\frac{\pi}{3})} : \frac{z_B - z_A}{z_C - z_A}$ الساب (II)
1.25	0.25	z_C-z_A z_C-z_A . (ا z_C-z_A متقایس الأضلاع.
	0.5	$(-rac{\pi}{3})$ بالدوران الذي مركزه A و زاويته B (ب
0.5	0.25	$z_D - z_A = z_B - z_C$: أي $\overrightarrow{AD} = \overrightarrow{CB}$ معناه $T_{\overline{CB}}(A) = D$ (2
	0.25	و منه : $z_D = 4 + 2\sqrt{3}i$ الرباعي CBD معيّن.
		نتكن M نقطة لاحقتها z ،
0.5	0.5	$\left z-(1+i\sqrt{3}) ight =\left z-(1-i\sqrt{3}) ight $ معناه $M\in\left(\gamma ight)$
		أي $BM = CM$ و بالتالي (γ) هي محور القطعة $[BC]$ (محور الفواصل).
0.25	0.25	$G \in (\gamma)$ مركز الدائرة المحيطة بالمثلث ABC أي $ABG = BG = CG$ و منه $G \in (\gamma)$
		التمرين الرابع: (08 نقاط)
	1	$g'(x) = -1 + \frac{1}{x} = \frac{1-x}{x} > 0$ ، $]0;1[$ من أجل كل x من أجل كل (1 (I
		و منه الدالة g منزايدة تماما على g g و منه الدالة و مناطق
2.75	1	g مستمرة و متزايدة تماما على g [0,15;0,16] و بالتالي على g
	I	إذن حسب مبرهنة القيم المتوسطة يوجد $lpha$ وحيد حيث $g(0,15) imes g(0,16) < 0$
8	0.75	$g(\alpha) = 0$ و $0.15 < \alpha < 0.16$ و $0.15 < \alpha < 0.16$ واستنتاج إشارة $g(x)$ واستنتاج إشارة $g(x)$

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
01	0.5 0.5	$\lim_{\substack{x \to -1 \ x \to +\infty}} f\left(x\right) = -\infty$ ، $\lim_{\substack{x \to +\infty \ x \to +\infty}} f\left(x\right) = -2$ (1 (II $y = -2$ و $y = -2$ (1)
02.5	1	$f'(x) = \frac{g(\frac{1}{x})}{(x-1)^2} :]1; +\infty[$ من أجل كل عدد حقيقي x من $[x-1]$ نبيان أنّه من أجل كل عدد حقيقي $[x-1]$ بيان أنّه من أجل كل عدد حقيقي $[x-1]$
	1	ب إسارة (x) . بريان اتجاه تغير الدالة f :
	0.5	. f الدالة f
0.75	0.25	دراسة الوضع النسبي لـ (C_f) و (C_f) و (C_f) دراسة الوضع النسبي لـ $f(x) + 2 = \frac{-1 + \ln x}{x - 1}$
	0.5	(C_f) يكون تحت $e;+\infty[$ المنحنى $e;+\infty[$ المنحنى (C_f) يكون تحت (C_f) المنحنى $A(e;-2)$ في النقطة $A(e;-2)$
0.5	0.5	. (C_f) رسم المستقيمات المقاربة و المنحنى (4
0.5	0.5	. حتى تقبل المعادلة $m \in \left[f\left(x\right) \right] = m$ حتى تقبل المعادلة $m \in \left[-f\left(\frac{1}{\alpha}\right); 2\right[$ (5