Chapters 3.1, 3.2

Derivatives of polynomials and exponentials; product/quotient rules

Topics: Basic differentiation rules, derivatives of polynomials and exponential functions, product/quotient rules

1 Power rule

Example 1. Calculate

and

$$\frac{d}{dx}x$$

$$\frac{d}{dx}x^2$$

Power rule. For any real number r:

Example 2. Compute the following derivatives:

1.
$$\frac{d}{dx}x^{2.4} =$$

$$2. \ \frac{\mathrm{d}}{\mathrm{dx}}\sqrt{x} =$$

$$3. \ \frac{\mathrm{d}}{\mathrm{dx}} \frac{1}{x^2} =$$

2 Derivative rules

Theorem. If f and g are differentiable at x and c is a real number then:

$$\frac{\mathrm{d}}{\mathrm{dx}}cf(x) = c\frac{\mathrm{d}}{\mathrm{dx}}f(x)$$
$$\frac{\mathrm{d}}{\mathrm{dx}}(f(x) + g(x)) = \frac{\mathrm{d}}{\mathrm{dx}}f(x) + \frac{\mathrm{d}}{\mathrm{dx}}g(x),$$
$$\frac{\mathrm{d}}{\mathrm{dx}}(f(x) - g(x)) = \frac{\mathrm{d}}{\mathrm{dx}}f(x) - \frac{\mathrm{d}}{\mathrm{dx}}g(x).$$

Example 3. Compute the derivative of $f(a) = (1 + 3a^2)^2$.

Example 4. Compute the derivative of $f(x) = \frac{\sqrt{x} + 2x^2 - x^2\sqrt{x}}{x}$.

3 Derivative of the exponential function.

Example 5. Let $f(x) = e^x$. Then

x	$\int f(x)$	f'(x)
0		
.5		
1		
5		

$$\frac{\mathrm{d}}{\mathrm{dx}}e^x =$$

Example 6. For what value of x does $f(x) = e^x - 2x$ have a horizontal tangent?

4 Product rule.

Theorem. (Product Rule) If f and g are differentiable at x then

$$\frac{\mathrm{d}}{\mathrm{dx}}(f(x)g(x)) =$$

or in prime notation,

$$(fg)' =$$

Example 7. Compute the derivative of x^2e^x .

Example 8. Compute the derivative of $(1 + x^2)xe^x$.

5 Quotient Rule.

Theorem. (Quotient Rule) If f and g are differentiable at x and $g(x) \neq 0$ then

$$\frac{\mathrm{d}}{\mathrm{dx}} \frac{f(x)}{g(x)} =$$

or, in prime notation,

$$\left(\frac{f(x)}{g(x)}\right)' =$$

Example 9. Find the slope of the tangent line to $y = e^x/(1+x^2)$ at x = 1.

6 Gallery Walk

Example 10. Differentiate $f(r) = \frac{r^2 e^r}{r + ke^r}$, where k is constant.

Example 11. Differentiate $f(x) = \frac{x}{1 + \frac{3}{x}}$.

Example 12. Differentiate $f(x) = \frac{qx^2 - e^x}{xe^x}$, where q is constant.

Example 13. Differentiate $f(t) = \frac{3 - t^{1/3}}{1 + te^t}$

Example 14. Differentiate $f(s) = \frac{s^2 e^s}{s + e^s}$.

Example 15. Differentiate $f(x) = \frac{xe^x}{2x^2 + 1}$.