ක්වොන්ටම් පරිගණක විදහාව හා ගණිතය

ටෙඕ අන්තුෝ

ජූනි 18, 2025

පටුන

1	පූර්දි	වාවශා	තා												1
	1.1	සමුහ	මත	ව	සාධාරණත්ව										1

iv පටුන

රූපාවලිය

vi රූපාවලිය

වගුවාවලිය

පරිච්ඡේදය 1 පූර්වාවශනතා

1.1 සමූහ මත වූ සාධාරණත්ව

නිර්වචනය 1

$$G \times G \to G$$

 $(a,b) \mapsto a \cdot b$

යන ද්විමය කර්මය උපාධාර කොටගත් G කුලකයක් **සමූහයකි**. මෙහි,

- ullet කර්මය සාංගමික වේ. එනම්, $orall a,b,c\in G,\;(a\cdot b)\cdot c=a\cdot (b\cdot c).$
- ullet G හි අනනාතා අවයවයක් පවතියි. එනම්, $\exists e \in G, \ orall a \in G, \ e \cdot a = G$ $a \cdot e = a$.
- ullet සෑම $a\in G$ සඳහාම එහි පුතිලෝම අවයවයක් පවතියි. එනම්, $orall a\in G$ $G, \exists a^{-1} \in G, a \cdot a^{-1} = a^{-1} \cdot a = e.$

ඉහත නිර්වචනය $oldsymbol{1}$ හි දක්වා ඇති (G,\cdot) හි \cdot කර්මය සාංගමික හා Gහි අනනෳතා අවයවයක් පැවත, පුතිලෝම අවයවයක් නොපවතියි නම් එය ඒකාභයක් ලෙස හැඳින්වේ.

උදාහරණය 1 $(\mathbb{Z},+)$ සමූහය. $e=0,\ a^{-1}=-a$.

උදාහරණය 2 (\mathfrak{S}_3,\circ) හි \circ ශිුත සංයුතිය වන සමූහය. මෙහි $\mathfrak{S}_3=\{f:$ $\{1,2,3\} \to \{1,2,3\}$ සමක්ෂේපණය $\}$.

නිර්වචනය ${f 2}$ $orall a,b\in G,\ a\cdot b=b\cdot a$ වූ (G,\cdot) සමූහයක් ඇබේලියානු සමූහයක් ලෙස හැඳින්වේ.

ඉහත උදාහරණය 2 හි සමූහය ඇබේලියානු නොවේ.

නිර්වචනය $\mathbf{3}$ (G,\cdot) සමූහයක් හා $x\in G$ සඳහා, x හි ගණය යනු $\#\{x^n\in G:n\in\mathbb{Z}\}$ වේ. මෙහි $x^n=x\cdot x\cdots x$ (n වතාවක්) ලෙස අර්ථ දක්වයි. වඩා පුතනක්ෂව $\min\{k\geq 1:x^k=e\}$ වන k හි අගය x හි ගණය වේ.

උදාහරණය 3 ($\mathbb{Z}/5\mathbb{Z},+$) සලකන්න. මෙම සමූහය සඳහා \mathbb{Z} කුලකයට " $n \sim m \leftrightarrow n-m$ 5හි ගුණාකාරයක් වේ" යන තුලනතා සම්බන්ධය පනවනු ලැබේ. නිදසුනක් ලෙස $2 \sim 7 \sim 12$ වේ. එය $2 \equiv 7 \equiv 12 \pmod{5}$ ලෙස ද අංකනය කළ හැක. යුක්ලිඩියානු විභාජනයෙන්, ඕනෑම n = 5k + r ($n,k \in \mathbb{Z},\ 0 \le r < 5$) ලෙස දැක්විය හැක. මෙය $\overline{n} \equiv \overline{r}$ ලෙස ද අංකනය කළ හැක. \overline{n} මඟින් n හි තුලනතා පන්තිය දක්වයි. මෙම අංකනය අනුගමනය කරමින්, පහත පරිදි සුළු කිරීම් සිදු කළ හැක: $\overline{2}+\overline{6}=\overline{2+6}=\overline{8}=\overline{3}$. ($\mathbb{Z}/5\mathbb{Z},\times$) සමූහය සඳහා ද එපරිදි ම සුළු කිරීම් සිදු කළ හැක. එහිදී $\overline{2} \times \overline{3} = \overline{6} = \overline{1}$ වේ.

දැන්, $(\mathbb{Z}/5\mathbb{Z},+)$ සලකන්න. එම සමූහයේ $\overline{2}$ හි ගණය සෙවීමට පහත පියවර අනුගමනය කළ හැක:

$\overline{2}^1$		$=\overline{2}$
$\overline{2}^2 = \overline{2+2}$		$=\overline{4}$
$\overline{2}^3 = \overline{2+2+2}$	$=\overline{6}$	$=\overline{1}$
$\overline{2}^4 = \overline{2+2+2+2}$	$= \overline{8}$	$=\overline{3}$
$\overline{2}^5 = \overline{2+2+2+2+2}$	$=\overline{10}$	$= \overline{0}$

එනයින්, $(\mathbb{Z}/5\mathbb{Z},+)$ සමූහයේ 2 හි ගණය 5 වේ. මෙය $\mathrm{ord}(2)=5$ ලෙස ද අංකනය කළ හැක.

දැන් $\mathbb{Z}/5\mathbb{Z}$ පාදක කොටගෙන ගුණනත සමූහය වනුත්පන්න කිරීම සැලකූ විට අවධානය යොමු කළ යුතු කරුණක් වන්නේ එම කුලකයේ ඇත්තේ 5හි මාපාංකානුකූල ව පුතිලෝමී අවයවයන් පමණක් බවයි. එනම්, $(\mathbb{Z}/5\mathbb{Z})^{\times} = \{x \in \mathbb{Z}/5\mathbb{Z}: \exists y \in \mathbb{Z}/5\mathbb{Z}, \ x \cdot y = 1\}$ ලෙස ගුණනත කුලකය අර්ථ දැක්වෙයි. $2 \in (\mathbb{Z}/5\mathbb{Z})^{\times}$ මක්නිසාදයත්, $2 \cdot 3 = 6 \equiv 1 \pmod{5}$.

දැන්, $((\mathbb{Z}/5\mathbb{Z})^{ imes}, imes)$ සමූහයේ $\overline{2}$ හි ගණය සෙවීමට පහත පියවර අනුගමනය කළ හැක:

$\overline{2}^1$		$=\overline{2}$
$\overline{2}^2 = \overline{2 \times 2}$		$=\overline{4}$
$\overline{2}^3 = \overline{2 \times 2 \times 2}$	$= \overline{8}$	$=\overline{3}$
$\overline{2}^4 = \overline{2 \times 2 \times 2 \times 2}$	$=\overline{16}$	$=\overline{1}$

එනයින්, $((\mathbb{Z}/5\mathbb{Z})^{\times}, \times)$ සමූහයේ $\mathrm{ord}(2)=4$. අතිරේක වශයෙන්, $((\mathbb{Z}/5\mathbb{Z})^{\times}, \times)$ සමූහයේ 2 ට එම සමූහය තුළ අත් කර ගත හැකි උපරිම ගණය ඇති

බැවින්, 2 එම සමූහයේ ජනකයක් ලෙස හඳුන්වා දිය හැක. මෙය පසුව අර්ථ දක්වනු ලැබේ.

පුමේයය $\mathbf{1}$ (ලගුේන්ජ්) සමූහ (G,\cdot) හි $\forall x \in G$ සඳහා, $\operatorname{ord}(x) \mid |G|$.

සාධනය. මඟහරින ලදී. \Box පුමේයය $\mathbf{1}$ උපයෝගී කොටගෙන ගණ ගණනය පහසු කර ගත හැක. උදාහරණයක් ලෙස, $G=(\mathbb{Z}/15\mathbb{Z},+)$ සමූහයේ $\mathbf{2}$ හි ගණය සඳහා |G|=15හි සාධක වන $\mathbf{1},\mathbf{3},\mathbf{5},\mathbf{15}$ යන අගයන් පමණක් පරික්ෂා කිරීම පුමාණවත් වේ.

උපසාධානය ${\bf 1}$ පූර්ණ සාධාරණත්වයෙන්, ඕනෑම $n\geq 2$ සඳහා $(\mathbb{Z}/n\mathbb{Z},+)$ සමූහයක් වේ. මෙහි, $\mathbb{Z}/n\mathbb{Z}$ කුලකය යනු $k\sim k'\leftrightarrow k-k'$ nහි ගුණාකාරයක් වේ යන සම්බන්ධයෙන් ජනිත වූ තුලානා පන්ති කුලකය වන අතර $\overline{k}+\overline{k'}=\overline{k+k'}$ ලෙස අර්ථ දක්වෙයි.

සාධනය. මඟහරින ලදී. \Box එපරිදි ම ගුණාතා නීතියක් ද $\overline{k} imes \overline{k'} = \overline{k imes k'}$ ලෙස අර්ථ දැක්විය හැකිය.

උදාහරණය $\mathbf{4}$ $((\mathbb{Z}/n\mathbb{Z})^{\times}, \times)$ සමූහයේ පුතිලෝමී අවයවයන් මොනවා ද? සරල නිදසුනක් ලෙස $(\mathbb{Z}/12\mathbb{Z})^{\times}$ සලකන්න. පැහැදිළිව $0 \notin (\mathbb{Z}/12\mathbb{Z})^{\times}$ මක්නිසාදයත් $\forall n \in \mathbb{Z}/12\mathbb{Z}, \ 0 \times n = 0 \neq 1.$ $(1, ((\mathbb{Z}/12\mathbb{Z})^{\times}, \times))$ සමූහයේ අනනහා අවයවය වේ). $1 \times 1 \equiv 1 \pmod{12}$ බැවින්, $1, (\mathbb{Z}/12\mathbb{Z})^{\times}$ හි පුතිලෝමී අවයවයක් වේ. $2 * k \equiv 1 \pmod{12}$ වන පරිදි $k \in \mathbb{Z}/12\mathbb{Z}$ නොමැති බැවින් $2, (\mathbb{Z}/12\mathbb{Z})^{\times}$ හි පුතිලෝමී අවයවයක් නොවේ. එපරිදිම 3, 4, 6, 8, 9, 10 ද පුතිලෝමී අවයවයන් නොවන බව පෙන්විය හැක. $5 \times 5 \equiv 1 \pmod{12}$ වන බැවින් 5 පුතිලෝමී අවයවයක් වේ. එපරිදි අනෙක් පුතිලෝමී අවයවයන් 7, 11 බව පෙන්විය හැකිය. ඉහත දී 9 පුතිලෝමී අවයවයක් නොවන්නේ 9k = 12m + 1 වන පරිදි m, k නිබිල දෙකක් නොපවතින බැවිනි. එසේ වන්නේ 9k - 12m = 3(3k - 4m) යන්න 3හි ගුණාකාරයක් වන බැවිනි. 8 හා 10 සඳහා ද ඉහත ආකාරයෙන් පුතිලෝමී නොවන බවට සාධනය කළ හැකිය.

පුස්තුතය ${f 1}$ \overline{k} , ${\Bbb Z}/n{\Bbb Z}$ හි ගුණාපතව පුතිලෝමී වන්නේ $\gcd(k,n)=1$ නම් හා නම්ම පමණි.

සාධනය.

$$\overline{k}$$
 පුතිලෝමී වේ $\Leftrightarrow \exists \overline{k'}, \ \overline{kk'} = \overline{1}$ $\Leftrightarrow \exists k', m \in \mathbb{Z}, \ kk' = 1 + mn$ $\Leftrightarrow \exists k', m \in \mathbb{Z}, \ kk' + (-m)n = 1$ $\Leftrightarrow \gcd(k,n) = 1.$

ඉහත අවසාන පියවර **බේසෝ** නීතිය ලෙස ද හැඳින්වේ. RSA කේතනය ට පහත පුස්තූතය වැදගත් වේ.

පුස්තුතය 2

$$|(\mathbb{Z}/n\mathbb{Z})^{\times}| = \#\{k : 1 \le k \le n, \gcd(k, n) = 1\}$$

= $\phi(n)$.

සාධනය. සරල සාධනයකි. \Box ඉහත $\phi(n)$ ශුිතය, ඔයිලර් මුළස ශුිතය ලෙස ද හැඳින්වේ.

පුමේයය ${f 2}$ (චීන ශේෂ පුමේයය-චීශේෂ) $n=p_1^{lpha_1}\cdots p_r^{lpha_r}$ (p_1,\ldots,p_r අගයයන් පුභින්න පුථමක සංඛ ${f x}$ ා වේ) වේ නම්

$$\mathbb{Z}/n\mathbb{Z} \stackrel{f}{\cong} \mathbb{Z}/p_1^{\alpha_1} \times \ldots \times \mathbb{Z}/p_r^{\alpha_r}.$$