Theoretische Grundlagen der Informatik 3: Syntax

Aussagenlogik

(i) Sei $\varphi \in AL$ und β eine passende Belegung.

$$\llbracket \varphi \rrbracket^\beta \in \{0,1\}$$

(ii) Sei $\varphi \in AL$ und β eine passende Belegung.

$$\beta \vDash \varphi \Leftrightarrow \llbracket \varphi \rrbracket^{\beta} = 1$$

Man sagt β erfüllt φ bzw. ist Modell von φ .

(iii) Sei $\Phi \subseteq AL$ und $\varphi \in AL$.

 φ folgt aus Φ , wenn jede zu $\Phi \cup \{\varphi\}$ passende Belegung β , die Φ erfüllt, auch φ erfüllt. Man schreibt:

$$\Phi \vDash \varphi$$

Falls $\Phi = {\phi}$, schreibt man:

$$\phi \vDash \varphi$$

(iv) Sei $\varphi \in AL$ in DNF.

$$C(\varphi) = \{C_1, ..., C_n\}$$

Wobei C_1 bis C_n die Klauseln von C sind.

(v) Sei $C = \{C_1, C_2, ..., C_n\}$ eine endliche Menge von Klauseln mit $C_i = \{L_{i,j} \mid 1 \le j \le m_i\}$.

$$\varphi(\mathcal{C}) = \bigvee_{1 \leq i \leq n} \bigwedge_{1 \leq j \leq m_i} L_{i,j}$$

Falls $C = \emptyset$, schreibt man:

$$\varphi(\mathcal{C}) = \top$$

(vi) Sei β eine Belegung und $\mathcal C$ eine Klauselmenge. Man schreibt:

$$\beta \vDash C$$

für

$$\beta \vDash \varphi(\mathcal{C})$$

(vii) Sei \mathcal{C} eine Klauselmenge und C eine Klausel. Man schreibt:

$$C \models C$$

Falls für jede passende Belegung β gilt:

$$\beta \vDash \mathcal{C} \Rightarrow \beta \vDash \mathcal{C}$$

(viii) Seien C_1 , C_2 Klauseln, dann schreibt man:

$$Res(C_1, C_2)$$

für die Resolventenmenge von C_1 und C_2 .

- (ix) Eine Resolutionsableitung einer Klausel C aus einer Klauselmenge C ist eine Sequenz $(C_1, ..., C_n)$ mit $C_n = C$ und für $1 \le k < n$:
 - $C_k \in \mathcal{C}$ oder
 - Es gibt ein i, j < k, sodass $C_k \in Res(C_i, C_j)$

Man schreibt auch:

$$C \vdash_R C$$

(x) Eine Resolutionswiderlegung einer Klauselmenge $\mathcal C$ ist eine Resolutionsableitung der leeren Klausel \square .

Strukturen

(i) Jede Funktion/Relation besitzt eine Stelligkeit:

$$ar(R) \in \mathbb{N}$$
 bzw. $ar(f) \in \mathbb{N}$

(ii) Sei τ eine Signatur, $\sigma \subseteq \tau$ und $\mathcal B$ eine τ -Struktur. Das σ -Redukt $\mathcal B_{|_\sigma}$ von $\mathcal B$ ist eine σ -Struktur $\mathcal B_{|_\sigma}$, die durch das Weglassen der Symbole in $\tau \setminus \sigma$ entsteht. $\mathcal B$ heißt Expansion von $\mathcal B_{|_\sigma}$.

Prädikatenlogik

(i) Sei σ eine Signatur und \mathcal{A} eine σ -Struktur.

Eine Belegung in $\mathcal A$ ist eine Funktion

$$\beta : Dom(\beta) \to A \text{ mit } Dom(\beta) \subseteq VAR$$

 β heißt passend zu $\varphi \in FO[\sigma]$, falls frei $(\varphi) \subseteq Dom(\beta)$.

(ii) Sei σ eine Signatur und \mathcal{A} eine σ -Struktur.

Eine σ -Interpretation \mathcal{I} ist ein Paar (\mathcal{A}, β) .

Eine Interpretation ist passend zu $\varphi \in FO[\sigma]$, falls β passend zu φ ist.

Für

$$\llbracket \varphi \rrbracket^{\mathcal{I}} = 1$$

schreiben wir:

$$\mathcal{I} \vDash \varphi$$

(iii) Sei σ eine Signatur und \mathcal{A} eine σ -Struktur.

Eine Interpretation ist passend zu $\Phi \subseteq FO[\sigma]$, falls β passend zu allen $\varphi \in \Phi$ ist.

Eine Interpretation erfüllt $\Phi \subseteq FO[\sigma]$, falls β alle $\varphi \in \Phi$ erfüllt.

Man sagt \mathcal{I} ist ein Modell von Φ und schreibt:

$$\mathcal{I} \models \Phi$$

Falls Φ eine Menge von σ -Sätzen ist, schreibt man:

$$A \models \Phi$$

(iv) Sei $\Phi \in FO[\sigma]$ eine Formel mit frei $(\Phi) \subseteq \{x_1, ..., x_k\}$.

Sei A eine σ -Struktur und β eine Belegung, so dass $\beta(x_i) := a_i$, für alle $1 \le i \le k$.

Wir schreiben:

$$\mathcal{A} \vDash \varphi[x_1/a_1,...,x_k/a_k]$$
 statt $\mathcal{I} \vDash \varphi$

Ist φ ein Satz schreiben wir:

$$\mathcal{A} \vDash \varphi$$

(v) Sei σ eine Signatur, $\Phi \subseteq FO[\sigma]$ und $\varphi \in FO[\sigma]$.

 φ ist eine Folgerung von Φ , geschrieben $\Phi \models \varphi$, wenn für jede zu Φ und φ passende σ -Interpretation \mathcal{I} gilt:

$$\mathcal{I} \vDash \Phi \Rightarrow \mathcal{I} \vDash \varphi$$

Falls $\Phi = \emptyset$, schreiben wir:

$$\vDash \varphi \text{ statt } \emptyset \vDash \varphi$$

(vi) Sei σ eine Signatur und $\Phi \subseteq FO[\sigma]$ eine Menge von σ -Sätzen.

 $\operatorname{Mod}(\Phi)$, ist die Klasse aller σ -Strukturen $\mathcal A$ mit $\mathcal A \vDash \Phi$.

Falls $\Phi := \varphi$ nur einen Satz enthält, schreiben wir kurz $\operatorname{Mod}(\varphi)$.

Sequenzkalkül

- (i) Sei $\Phi \subseteq AL$ eine Menge von Formeln und sei $\varphi \in AL$.
 - 1. Φ ist konsistent genau dann, wenn Φ erfüllbar ist.
 - 2. Φ ⊢_S φ genau dann, wenn Φ \vDash φ .