- 1. Derive the following asymptotic moments associated with $m_3(x)$: mean, variance, first order autocorrelation. Furthermore, compute $\nabla_b g(b_0)$. Which moments are informative for estimating b?
- 2. Simulate a series of "true" data of length T = 200 using (1). We will use this to compute $M_T(x)$.
- 3. Set H = 10 and simulate H vectors of length T = 200 random variables e_t from N(0,1). We will use this to compute $M_{TH}(y(b))$. Store these vectors. You will use the same vector of random variables throughout the entire exercise. Since this exercise requires you to estimate σ^2 , you want to change the variance of e_t during the estimation. You can simply use σ_e , when the variance is σ^2 .

4.

- 5. Next we estimating the l=2 vector b for the just identified case where m_2 uses the variance and autocorrelation. Given what you found in part (i), do you now think there will be a problem? If not, hopefully the standard error of the estimate of b as well as the J test will tell us something. Let's see. For this case, perform steps (a)-(d) above.
- 6. Next, we will consider the overidentified case where m₃ uses the mean, variance and autocorrelation. Let's see. For this case, perform steps (a)-(d) above. Furthermore, bootstrap the finite sample distribution of the estimators using the following algorithm:
 - i. Draw ϵ_t and e^h_t from N(0,1) for $t=1,2,\ldots,T$ and $h=1,2,\ldots,H$. Compute $(\hat{b}^1_{TH}),\hat{b}^2_{TH}$ as described.
 - ii. Repeat (e) using another seed.