Building Robust Text Processing Pipelines

Maryam Jahanshahi Ph.D.

Text Analysis: The Final Frontier

Extracting structured insights from unstructured inputs is not easy

The amount of digital data is doubling every year

Less than

0.5%

of all data in a company is analyzed

More than

5%

of all data is in text form

Source: IDC iView "Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East," December 2014.

About me

Past

Present

Future

Journalist > Editor on pipeline building

Cancer Biologist on scaling sizes

Research Scientist

TapRecruit

How do we make decisions about our careers?

What role do documents play in this process?

Achtung!

The focus of this talk will **not** be about text analysis in R

Corpus Processing

Language Modeling

Stack Considerations

- Actively developed libraries
- Industrial-strength NLP:
 - Parallel processing of large datasets
 - Prototype to Production
 - Effective memory management

Design Considerations

- Maintainability
- Reproducibility
- Environments

A Day in the Life of an NLP Project

Data Ingestion

Data Organization

Data Preprocessing

Data Exploration

Model Building

A Day in the Life of an NLP Project

Data Ingestion

Data Organization

Data Preprocessing

Data Exploration

Model Building

Corpus:

A collection of documents

Document:

Unprocessed string, typically associated with structured data

'Amanda didn't start the fire'

Segment:

Processed string (i.e. sentence, paragraph etc.)

('fire', NN)

Token:

Processed single data point

Designing Data Preprocessors

Clean up

Goal: Remove inconsistency between otherwise similar data points

Segmentation

Goal: Split text chunks into data points (i.e. the unit of analysis or evaluation)

Normalization

Goal: Put data points on an equal footing

Designing Data Preprocessors

Clean up

Segmentation

Normalization

General Considerations

- What is the unit or data structure of analysis? (Tokens vs sentences vs paragraphs vs docs)
- Can the cleanup aid segmentation?

Specific Considerations

- What is the role of punctuation?
- What role do hyphenated words play?
- Will parsing emojis or emoticons be helpful?

Functions in a typical clean up script

The order of operations is important

HTML/XML

Amanda didn't start the fire!

Python: **Beautiful Soup**

R: **xm12?**

Unicode

Amanda didn't start the fire!

Python: regex

R: utf8

Contractions

Amanda did not start the fire!

Python: **spaCy**

R: textclean

Punctuation

Amanda did not start the fire

Python: **spaCy**

R: textclean

Word incidence is rarely distributed normally

- Stop words: Removing most frequent words.
 - Standard list with most NLP libraries
 - Make your own artisanal list
- Changing cases:
 - Standard is to convert to lower case
 - Casing may matter for you (e.g. IT vs it)
- Process numbers:
 - Standard is to remove all numbers
 - Convert into words via **inflect** library in Python and **textclean** package in R
- Stem or lemmatize words:
 - Standard is to lemmatize

Best Practices in Data Organization

```
corpus
 README.md
 raw
   01.txt
   02.txt
   03.txt
   metadata.json
 processed
   processed.json
   metadata.json
 scripts
```

Processed documents:

Save down processed documents either as JSON objects or in a document database (NoSQL)

Metadata:

Define what has been processed and when in metadata:

- Files
- Words
- Unique Tokens
- Date of latest preprocessing

Advanced Best Practices in Data Organization

Create a corpus reading module:

- Define which files should be loaded and how those files should be loaded.
 - Store these as parameters in README.
 - Regex for file names / formats [\w\.txt+]
 - Can include a filter list for restricting files

```
corpus
  README . md
  raw
   01.txt
    02.txt
    03.txt
   metadata.json
  processed
   processed.json
    metadata.json
  scripts
```

Advanced Best Practices in Data Organization

Create a corpus reading module:

- Define which files should be loaded and how those files should be loaded.
 - Store these as parameters in README.
 - Regex for file names / formats [\w\.txt+]
 - Can include a filter list for restricting files

```
import json

def project_reader(self):
    return json.load(self.open("README"))
```

Bag of Words representation vectorizes through word counts

amanda baby did fire not shark start the

Amanda didn't start the fire 1 0 1 0 1 1 0 1

Baby shark, doo doo doo doo doo doo doo 0 1 0 1 0 6 0 1 0 0

Bag of Words representation vectorizes through word counts

Amanda didn't start the fire

	amanda	baby	Pip	oop	fire	not	shark	start	the
Bag of Words	1	0	1	0	1	1	0	1	1
- stop words	1	0	0	0	1	0	0	1	0
+ normalization	0.3	0	0	0	0.3	0	0	0.3	0

One Hot Encoding and TFIDF normalize token frequencies

Baby shark, doo doo doo doo doo doo

	amanda	baby	did	000	fire	not	shark	start	the
Bag of Words	0	1	0	6	0	0	1	0	0
One Hot Encoding	0	1	0	1	0	0	1	0	0
TFIDF	0	0.05	0	0.4	0	0	0.2	0	0

Transforming text data into numeric features

	Distributed		
One Hot Encoding	Bag of Words	TF-IDF	Embeddings
Stop word removal?	Stop word removal	No need for stop word removal	Stop word removal?
None	Document-level normalization	Corpus and document- level normalization	Context and corpus-level normalization

Word embeddings capture semantic similarities

Statistical modeling through software (e.g. SPSS) or programming language (e.g. Python)

Context

Word

Experience in Python, Java or other object-oriented programming languages

Context Word Context

Proficiency programming in Python, Java or C++.

Context

Word

Context

A simplified representation of word vectors

A simplified representation of word vectors

Transforming text data into numeric features

	Distributed		
One Hot Encoding	Bag of Words	TF-IDF	Embeddings
Stop word removal?	Stop word removal	No need for stop word removal	Stop word removal?
None	Document-level normalization	Corpus and document- level normalization	Context and corpus-level normalization
A	Distance ∝ token similarity		
High dir	Lower dimensionality		

Document categorization

Extracting semantic structure from numeric features

Topic Modeling

What are the topics that occur in a collection of documents?

Unsupervised Dimension Reduction (LDA / LSA)

Every document is a mixture of topics

Every topic is a mixture of words

Document Classification

Which class does document X belong to?

Supervised ML Algorithms Regex (Standard or Artisanal)

Every document belongs to a single class

The presence or absence of a subset of words impacts the classification

Further Reading

Data Ingestion

Data Organization

Applied Text Analysis with Python by Benjamin Bengfort, Rebecca Bilbro & Tony Ojeda

Data Preprocessing

Data Exploration

Model Building

Natural Language Processing with Python by Steven Bird, Ewan Klein & Edward Loper

Speech and Language Processing by Dan Jurafsky & James Martin Foundations of Statistical Natural Language Processing by Chris Manning & Hinrich Schutze

Text Mining with R by Julia Silge & David Robinson

Thank you R Ladies!

Maryam Jahanshahi Ph.D.

maryam-j