CS 4510: Automata and Complexity Spring 2015

Home work 5 // Due: Friday, April 3, 2015

- 1. (a) (8 points) Show that L(G), where G is a context-free grammar, is infinite iff G generates a string whose length is at least p, where p is the pumping length identified in the proof of the pumping lemma.
 - (b) (7 points) Let $INFINITE_{PDA} = \{M \mid M \text{ is a PDA and } L(M) \text{ is an infinite language}\}$. Show that $INFINITE_{PDA}$ is decidable.

Solution:

- Convert M to a context-free grammar G.
- Compute the pumping length p as in the proof of the pumping lemma.
- Construct a DFA D that accepts all strings of length at least p. (The DFA D, for instance, can have p+1 states.)
- Construct a PDA M' that accepts $L(M) \cap L(D)$.
- Convert M' to a CFG G'.
- Run the decider for $EMPTY_CFG$ on G'.
- Accept iff this decider rejects.
- 2. (15 points) A Turing machine with stay put instead of left is similar to an ordinary Turing machine, but the transition function has the form

$$\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{R, S\}.$$

At each point the machine can move its head right or stay in the same position. Show that this Turing machine variation is *not* equivalent to the usual version. What class of languages do these machines recognize? Justify your answer.

Solution: These restricted machines recognize exactly the class of regular languages.

In one direction, a DFA can be simulated by such a machine that uses only the right move and that writes the same symbol that it reads.

In the other direction, simulate such a machine M by a nondeterministic finite state automaton (NFA) N. Note that an NFA cannot write any symbol on the tape. Let p be the current state and a be the current input symbol.

If M moves right going to state p' then N also moves right. Note that the symbol that is written by M need not be remembered since M will never access that position of the tape again.

If M stays put going to state p'' writing a symbol b on the tape then N moves to state $q_{p'',b}$. If from state p'' reading the symbol b, the machine M makes a move, then N simulates it using an ϵ -move from state $q_{p'',b}$. The result of this move, as described above, depends on whether M moves right or stays put.

3. (15 points) Show that the complement $E_{\rm TM}^-$ of $E_{\rm TM}$ is Turing-recognizable. Explain why from this we can conclude that $E_{\rm TM}$ is not Turing-recognizable.

Solution: Let $\langle M \rangle$ be the input TM. Proceed in stages. At the start of the *i*-th stage, the tape has the first i-1 strings in lexicographic order. Also, it holds that M has not accepted any of the first i-1 strings in i-1 steps. During the *i*-th stage, generate the next (that is the *i*-th) string in order and run M on all the *i* strings for *i* steps. If M accepts any of the strings then accept. Otherwise proceed to the i+1-th stage.

 $E_{\rm TM}$ is not recognizable: otherwise, $E_{\rm TM}$ would be decidable which is not true.

4. (15 points) On input M, w (where M is the code of a Turing machine and w is an input to M), a reduction machine constructs the Turing machine M' described below:

On input x:

- (a) Simulate M on w for |x| steps (that is, it erases one symbol of x for each step of M on w that it simulates).
- (b) Accept if M has not halted within that time, reject otherwise.

What is L(M')? Why?

Solution: If M does not halt on w, M' accepts all strings and so, $L(M') = \Sigma^*$.

If M halts on w, it does so after some m steps. M' accepts all strings x whose length is less than m. Since m is fixed for a given M, w, we conclude that L(M') is finite.

5. Let $FINITE3_{TM} = \{\langle M \rangle \mid M \text{ is a } 1 - \text{tape DTM and } L(M) \text{ has } exactly \text{ three strings} \}.$

(15 points) Show that $A_{\mathrm{TM}} \leq_m FINITE3_{\mathrm{TM}}$.

Solution: On input $\langle M, w \rangle$ construct a TM M' as follows:

On input x,

- If $x \neq 0$ or 00 or 000 then reject.
- If x = 0 or 00 then accept.
- If x = 000 then accept if and only if M accepts w.

Then, the language of M' is $\{0,00,000\}$ if M accepts w and is $\{0,00\}$ if M does not accept w.