WEEK 2

• Input-Output Machines - Practice quiz on Types of Functions (6 questions)

C • coursera.org/learn/datasciencemathskills/quiz/P4OyZ/practice-quiz-on-types-of-functions/attempt?redirectToCover=true	☆
Practice quiz on Types of Functions Teste para praticar • 20 min	
✓ Parabéns! Você foi aprovado! PARA SER APROVADO 75% ou superior Continue aprendendo	^{NOTA} 83,33%
Practice quiz on Types of Functions NÚMERO TOTAL DE PONTOS 6	
1. Suppose that $A=\{1,2,10\}$ and $B=\{4,8,40\}$. Which of the following formulae do not define a function $f:A\to B$?	1 / 1 ponto
$\bigcirc \ f(a)=4a,$ for each $a\in A$	
$\bigcirc \ f(1) = 4, f(2) = 40,$ and $f(10) = 8.$	
$\bigcirc \ f(1) = 4, f(2) = 4, ext{ and } f(10) = 4.$	
$lackbox{0}\ f(1)=5, f(2)=8, ext{ and } f(10)=40.$	
\checkmark Correto $ \hbox{A function } f:A\to B \hbox{ is a rule which assigns an element } f(a)\in B \hbox{ to each } a\in A. \hbox{ In this case,} $ unfortunately, $f(1)=5\notin B.$	
2. Suppose that A contains every person in the VBS study (see the second video in the course if you're confused here!). Suppose that $Y=\{+,-\}$ and $Z=\{H,S\}$	0 / 1 ponto
Suppose that $T:A o Y$ is the function which gives $T(a)=+$ if person a tests positive and $T(a)=-$ if they test negative.	F
Suppose that $D:A o Z$ is the function which gives $D(a)=H$ does not actually have VBS and $D(a)=S$ if the person actually has VBS.	
Which of the following must be true of person \boldsymbol{a} if we have a false positive?	
$igotimes T(a) = - ext{ and } D(a) = H$	

- $\bigcirc T(a) = + \text{ and } D(a) = H$
- $\bigcirc \ T(a) = \ {
 m and} \ D(a) = S$
- $\bigcirc T(a) = + \text{ and } D(a) = S$

X Incorreto

This pair of function values corresponds to a false *negative*.

- 3. Consider the function $g:\mathbb{R}\to\mathbb{R}$ defined by $g(x)=x^2-1$. Which of the following points are *not* on the graph of g?
 - $\bigcirc (-1,0)$
 - \bigcirc (1,0)
 - \bigcirc (2,-1)
 - $\bigcirc (0,-1)$

✓ Correto

Recall that the graph of g consists of all points (x,y) such that y=g(x). Here $g(2)=3\neq -1$, so the point (2,-1) is \emph{not} on the graph of g.

4. Let the point A=(2,4). Which of the following graphs does *not* contain the point A?

1 / 1 ponto

1 / 1 ponto

- lacktriangle The graph of h(x) = x 1
- \bigcirc The graph of $s(x)=x^2$
- \bigcirc The graph of g(x) = x + 2
- \bigcirc The graph of f(x) = 2x

✓ Correto

The graph of h consists of all points (x,y) such that y=h(x). Here $h(2)=1\neq 4$, so the point (2,4) is *not* on the graph of h.

5. Supp	pose that $h(x)=-3x+4.$ Which of the following statements is true?	1
\bigcirc h	h is neither a strictly increasing function nor a strictly decreasing function.	
O A	All statements are correct	
h	h is a strictly decreasing function	
() h	h is a strictly increasing function	
~	✓ Correto	
	A function h is called strictly decreasing if whenever $a < b$, then $h(a) > h(b)$	
	Since the graph of h is a line with negative slope, this is in fact true!	
6. Supp	cose that $f:\mathbb{R} o\mathbb{R}$ is a strictly increasing function, with $f(3)=15$	
	pose that $f:\mathbb{R} o\mathbb{R}$ is a strictly increasing function, with $f(3)=15$ h of the following is a possible value for $f(3.7)$?	
	h of the following is a possible value for $f(3.7)$?	
Which	h of the following is a possible value for $f(3.7)$?	
Which	h of the following is a possible value for $f(3.7)$? 4.7	
Which 14	h of the following is a possible value for $f(3.7)$? 4.7	
Which 1' 14 - 3	h of the following is a possible value for $f(3.7)$? 4.7	
Which 1' 14 - 3	h of the following is a possible value for $f(3.7)$? 4.7 -3	
Which 1' 14 - 3	th of the following is a possible value for $f(3.7)$? 4.7 -3 **Correto	