Xishun Zhao *

October 17, 2012

Abstract

Key words:

Let *Prop* be the set of all propositional variables.

A model is a triple $S = (S, \mu, \pi)$ such that

- \bullet S is a countable set of symbols representing states.
- $\mu : \mathbb{N} \to S$ is a bijection.
- $\pi: S \to \mathcal{P}(Prop)$ is a mapping which induces a propositional assignment of Prop for each state.
- In many literature, μ is just written as a sequence s_0, s_1, \cdots ,.

In fact same as following definition

A linear-time structure is a mapping $\pi: \mathbb{N} \to 2^{Prop}$, where 2^{Prop} is the power set of Prop which is the set propositional variables.

Given $x \in Prop$, two models π_1 and π_2 . We say π_1 is an x-variant if for any $i \in \mathbb{N}$ we have $\pi_1(i) \setminus \{x\} = \pi_2(i) \setminus \{x\}$.

- \bullet X for next (or \bigcirc).
- F for future, i.e., eventually holds (or ◊)

^{*}Corresponding author. Tel: 0086-20-84114036, Fax:0086-20-84110298.

- U for until
- U^- for flat until, AU^-B implicitly means that A is just a propositional formula without temporal operators.
- $FA \text{ iff } \top \mathbf{U}A$
- G (or \square) for always hold in the future.
- $GA \text{ iff } \neg F \neg A.$

Satisfaction Relation

- $\pi, i \models p$, for $p \in Prop$, iff $p \in \pi(i)$
- $\pi, i \models XA \text{ iff } \pi, i+1 \models A$
- $\pi, i \models \mathsf{F} A$ iff there is $j \geq i$ such that $\pi, j \models A$
- $\pi, i \models A \cup B$ iff there is $j \geq i$ such that $\pi, j \models B$ and $\pi, j' \models A$ for $i \leq j' < j$
- we write $\pi \models A$ if $\pi, 0 \models A$.
- SAT for LTL(···): determining whether a given formula A in LTL(···) is satisfiable, i.e.,there is a linear-time structure π such that $\pi \models A$.
- SAT for LTL(X, F) is PSPACE-complete.
- SAT for LTL(U) is PSPACE-complete
- LTL(F) is nothing but S4.3Dum (also called S4.3.1 or D) SAT for S4.3Dum is NP-complete by H. Ono and A. nakamura in 1980 [Studia Logic 39(4), 325-333, 1980]
- LTL(X) is KDAlt₁. SAT for LTL(X) is studied in P. Y. Schobbens and J.F. Raskin. [The Logic of "initially" and "next": complete axiomatization and complexity. IPL 69(5), 221-225,1999]
- Prop(A) is the set of propositional variables occurring in A.
- th(A), the temporal height of A, is the maximum number of nested temporal operators.

- LTL $_m^k(\cdots)$ denotes the class of formulas $A \in L(\cdots)$ such that $th(A) \le m$ and A has at most m variables.
- Likewise for $LTL^k(\cdots)$ and $LTL_m(\cdots)$.
- Example $(p \to \mathsf{XF}q)\mathsf{U}(\neg \mathsf{X}p) \in \mathsf{LTL}_2^3(\mathsf{X},\mathsf{U},\mathsf{F})$

Model Checking Problem.

- A Kripke structure $T = (S, R, \epsilon)$: S is a non-empty set of states; $R \subseteq S \times S$ is a *total* relation, i.e., for any $s_1 \in S$ there is at leat one $s_2 \in S$ such that s_1Rs_2 ; and $\epsilon: S \to \mathcal{P}(Prop)$
- A path in T is an infinite sequence s_0, s_1, \dots , such that $s_i R s_{i+1}$ for each i.
- A path in T, together with ϵ , is nothing but a linear time structure. And inversely, a linear-time structure is a (simple) Kripke structure.
- path(T) is the set of all pathes in T.
- (Traditionally) $T \models A$ if and only if $\pi \models A$ for all $\pi \in path(T)$.
- (Traditionaly) $T, s \models A$ iff $\pi \models A$ for all $\pi \in path(T)$ starting from s.
- (But this paper) $T, s \models A$ iff $\pi \models A$ for some $\pi \in path(T)$ starting from s.
- MC(LTL(···)) is the problem of determining whether $T, s \models A$ for a given Kripke structure T, a state $s \in T$ and a formula $A \in LTL(···)$.

Tiling Problem:

- A set of colors $C = \{c_1, \dots, c_l\}$.
- A set of tile type $D \subseteq C^4$. each $d \in D$ has the form $(c_{up}, c_{right}, c_{down}, c_{left})$.
- A tile is a unit square with a type d (left side colored by $c_{left}, \dots,$). Please note that we can not rotated
- A region $\mathcal{R} \subseteq \mathbb{Z}^2$. My understanding, (i, j) represents the grid with vertices (i, j), (i, j + 1), (i + 1, j + 1), (i + 1, j).

• Two grid (i_1, j_1) and (i_2, j_2) are neighboring if they share an edge, that is, if

$$((i_1 = i_2) \land (|j_1 - j_2| = 1)) \operatorname{xor}((j_1 = j_2) \land |i_1 - i_2| = 1).$$

- A tiling for a region \mathcal{R} is a map $t: R \to D$ such that any two neighboring tiles have matching colors on the shared edge.
- Informally, t(i, j) = d means that the grid (i, j) is paved by a tile with type d.
- TILING PROBLEM: Instance: D and two colors $c_0, c_1 \in C$. Query: does there exists m and a tiling for the region $n \times m$ such that the bottom line of the region is colored with c_0 , and the top line is colored with c_1 , here n = |D|, i.e., the number of types in D.
- Tiling Problem is PSPACE-complete, where is the citation?

Reduction from tiling problem to MC(LTL). $D = \{d_1, \dots, d_n\}, C, c_0, c_1$. Define

 $Prop = \{lmost, rmost, end\} \cup \{x = c \mid x \in \{up, right, down, left\}, c \in C\}$

$$\begin{array}{lll} S_D & = & \{s(0), s(n+1), s(e)\} \cup \{s(d,i) \mid d \in D, i = 1, \cdots, n\} \\ R & = & \{(s(0), s(d,1)) \mid d \in D\} \cup \{(s(d,n), s(n+1)) \mid d \in D\} \cup \\ & & \{(s(n+1), s(e)), (s(e), s(e))\} \cup \\ & & \{(s(d',i), s(d,i+1)) \mid d', d \in D, i = 1, \cdots, n-1\} \\ \epsilon(s(0)) & = & \{lmost\}, \\ \epsilon(s(n+1)) & = & \{rmost\}, \\ \epsilon(s(e)) & = & \{end\}, \\ \epsilon(s(d,i)) & = & \{up = c_{up}, right = c_{right}, down = c_{down}, left = c_{letf} \mid \\ & & \text{if } d = (c_{up}, c_{right}, c_{down}, c_{left}). \end{array}$$

Bottom line has color c_0 can be expressed as

$$\bigwedge_{k=1}^{n} \mathsf{X}^{k}(down = c_{0})$$

Top line should have color c_1 .

$$\mathsf{F}\left(lmost \wedge \left(\bigwedge_{k=1}^{k} \mathsf{X}^{k}(up=c_{1})\right) \wedge \mathsf{X}^{n+2}end\right)$$

Neighboring tilts should have matching edges.

$$\mathsf{G}\left(\begin{array}{l} (right = c \to \mathsf{X}(rmost \lor left = c)) \land \\ (up = c \to \mathsf{X}^{n+2}(end \lor down = c)) \end{array}\right)$$

Theorem: MC(LTL) is PSPACE-hard. Natural Deduction System

$$\vdash XA \lor X \neg A, \vdash AU \neg A$$

$$B \vdash A \cup B$$
, $A \land (A \cup B) \vdash F B$

$$(\mathsf{X}^n B) \wedge \left(\bigwedge_{k=0}^{n-1} \mathsf{X}^k A \right) \vdash A \mathsf{U} B, \quad n \geq 1,$$

$$\left(\mathsf{X}^n(\neg A \wedge \neg B)\right) \wedge \left(\bigwedge_{k=0}^{n-1} \mathsf{X}^k A\right) \vdash \neg(A \cup B), \quad n \geq 1,$$

$$A \wedge \mathsf{X}(A\mathsf{U}B) \vdash A\mathsf{U}B$$

$$X(A \circ B) \vdash \dashv XA \circ XB, \circ \in \{\land, \lor\}$$

$$\mathsf{F}(A \vee B) \vdash \dashv \mathsf{F}A \vee \mathsf{F}B$$

$$F(A \wedge B) \vdash \dashv FA \wedge FB$$

$$A \wedge \mathsf{X} A \wedge (A \mathsf{U} B) \vdash \mathsf{X} (A \mathsf{U} B)$$

$$A \vdash \mathsf{F} A, \quad \mathsf{X} A \vdash \mathsf{F} A, \quad \mathsf{F} \mathsf{F} A \vdash \mathsf{F} A$$

$$\frac{A \vdash B}{\mathsf{X}A \vdash \mathsf{X}B}, \quad \frac{A \vdash B}{\mathsf{F}A \vdash \mathsf{F}B}$$

$$\begin{split} \frac{A \vdash C, B \vdash D}{(A \cup B) \vdash (C \cup D)} \\ \frac{\vdash A}{\vdash \vdash A}, & \frac{\vdash A}{\vdash \neg \vdash \neg A}, & \frac{\vdash A}{\vdash \vdash X^n A}, & n \geq 1 \end{split}$$

Non-deterministic finite ω -automata

$$M = (Q, \Sigma, \delta, q_0, Acc)$$

1.

2.

3. $\delta: Q \times \Sigma \to \text{Pow}(Q)$ transition function

4.

- 5. Acc acceptance component given as.
 - $F \subseteq Q$, or
 - $\mathcal{F} \subseteq \text{Pow}(Q)$, or
 - $\Omega = \{(E_i, F_i) \mid E_i, F_i \subseteq Q, i = 1, \dots, n\}$

A run of M on $\alpha = a_1 a_2 \cdots \in \Sigma^{\omega}$ is an infinite sequence of states $\mathbf{r} = r_0 r_1 r_2 \cdots \in Q^{\omega}$ such that

$$r_0 = q_0$$

$$r_{i+1} \in \delta(q_i, a_{i+1})$$

Büchi automata $M = (Q, \Sigma, \delta, q_0, F)$ with $F \subseteq Q$.

We say M accept α iff there is a run \mathbf{r} of M on α such that there is a state $q \in F$ such that it occurs in \mathbf{r} infinitely often.

$$L(M) := \{ \alpha \mid M \text{ accept } \alpha \}$$

is called the language recognized by M.

A ω -language) $A \subseteq \Sigma^{\omega}$ is called regular if there is a Büchi automata M such that A = L(M).

- 1. If $A \subseteq \Sigma^*$ is a regular language then A^{ω} is a regular ω -language.
- 2. (Büchi Characterization Theorem) Every regular ω -language A is of the form

$$A = \bigcup_{i=1}^{n} A_i B_i^{\omega}$$

where $A_i, B_i \subseteq \Sigma^*$ are regular languages.