A gentle introduction to MCTDH

Ramón I. Panadés-Barrueta

Computational Chemical Physics Group.
University of Twente.

November 5, 2020

UNIVERSITY OF TWENTE.

- Nuclear Quantum Dynamics
 - The Standard method
 - The Time-Dependent Hartree method
- The Multiconfiguration Time-Dependent Hartree method
 - EOMs
 - Relaxation and block-improved relaxation
- 3 Potential energy surface representations
 - Tensor decomposition algorithms
- 4 Code structure and example applications

- Nuclear Quantum Dynamics
 - The Standard method
 - The Time-Dependent Hartree method
- The Multiconfiguration Time-Dependent Hartree method
 - EOMs
 - Relaxation and block-improved relaxation
- 3 Potential energy surface representations
 - Tensor decomposition algorithms
- 4 Code structure and example applications

Nuclear Quantum Dynamics

What

The subfield of Theoretical Chemistry in which both the **electrons** and the **nuclei** of a molecular system are treated in a **quantum-mechanical** manner.

Nuclear Quantum Dynamics

What

The subfield of Theoretical Chemistry in which both the **electrons** and the **nuclei** of a molecular system are treated in a **quantum-mechanical** manner.

When

- Spectroscopy (e.g. IR transitions)
- Quantum tunneling
- Vibronic coupling
- 7PE determination

Nuclear Quantum Dynamics

Find the numerical solution of the TDSE truncating the Hilbert space to a finite dimension (Galerkin's method):

$$i\hbar\frac{\partial\Psi}{\partial t} = \hat{H}\Psi\tag{1}$$

Given a parametric representation of the WF (Ψ) , the optimal solution can be found using the Dirac-Frenkel Variational Principle (DF-VP):

$$\langle \delta \Psi | \hat{H} - i \frac{\partial}{\partial t} | \Psi \rangle = 0 \tag{2}$$

The Standard method

Most direct representation of the WF:

$$\Psi(q_i, \dots, q_f, t) = \sum_{j_1=1}^{N_1} \dots \sum_{j_f=1}^{N_f} C_{j_1 \dots j_f}(t) \prod_{\kappa=1}^f \varphi_{j_\kappa}^{(\kappa)}(q_\kappa)$$
 (3)

After plugging this WF into the DF-VP, and performing the corresponding algebra we obtain the following EOMs:

$$i\dot{C}_{L} = \sum_{J} \langle \varphi_{L} | \hat{H} | \varphi_{J} \rangle C_{J}$$

$$C(t) = e^{-iHt}C(0)$$
(4)

where we have introduced the composite indexes $J=(j_1,\ldots,j_f)$.

The Time-Dependent Hartree method

If we now consider time-dependent single-particle functions (SPFs):

$$\Psi(q_1,\ldots,q_f,t) = A(t) \prod_{\kappa=1}^f \underbrace{\sum_{\mu=1}^{N_\kappa} c_\mu^{(\kappa,j_\kappa)}(t) \cdot \chi_\mu^{(\kappa)}(q_\kappa)}_{\varphi_\kappa(q_\kappa,t)}$$
(5)

and use the DF-VP with arbitrary real constraints $g_{\kappa}=i\,\langle\varphi_{\kappa}(t)|\dot{\varphi}_{\kappa}(t)\rangle$, we get the EOMs:

$$A(t) = A(0) \cdot e^{-i \int_0^t E(t') dt'}$$

$$i \dot{\varphi}_{\kappa} = (\mathcal{H}^{(\kappa)} - E) \varphi_{\kappa}$$
(6)

with
$$\mathcal{H}^{(\kappa)} = \langle \Phi^{(\kappa)} | H | \Phi^{(\kappa)} \rangle$$
.

Limitations of SM and TDH

Standard method

Its application is largely limited due to the **curse of dimensionality**. Only systems up to four atoms (6D) can be addressed in practice.

Time-Dependent Hartree

A better approach, but physically inaccurate. The **nuclear correlation** is harder to retrieve than the electronic correlation due to the nuclei's larger mass. The character of the nuclear WF is inherently **multiconfigurational**.

- Nuclear Quantum Dynamics
 - The Standard method
 - The Time-Dependent Hartree method
- 2 The Multiconfiguration Time-Dependent Hartree method
 - EOMs
 - Relaxation and block-improved relaxation
- 3 Potential energy surface representations
 - Tensor decomposition algorithms
- 4 Code structure and example applications

Ansätze comparison

Standard Method (CI)

$$\Psi(q_i,\ldots,q_f,t) = \sum_{j_1=1}^{N_1} \cdots \sum_{j_f=1}^{N_f} C_{j_1\ldots j_f}(t) \prod_{\kappa=1}^f \varphi_{j_\kappa}^{(\kappa)}(q_\kappa)$$
 (7)

Ansätze comparison

Standard Method (CI)

$$\Psi(q_i, ..., q_f, t) = \sum_{j_1=1}^{N_1} \cdots \sum_{j_f=1}^{N_f} C_{j_1...j_f}(t) \prod_{\kappa=1}^f \varphi_{j_\kappa}^{(\kappa)}(q_\kappa)$$
 (7)

Time-Dependent Hartree (HM)

$$\Psi(q_1,\ldots,q_f,t) = A(t) \prod_{\kappa=1}^f \varphi_\kappa^{(\kappa)}(q_\kappa,t)$$
 (8)

Ansätze comparison

Standard Method (CI)

$$\Psi(q_i, ..., q_f, t) = \sum_{j_1=1}^{N_1} \cdots \sum_{j_f=1}^{N_f} C_{j_1...j_f}(t) \prod_{\kappa=1}^f \varphi_{j_\kappa}^{(\kappa)}(q_\kappa)$$
 (7)

Time-Dependent Hartree (HM)

$$\Psi(q_1,\ldots,q_f,t) = A(t) \prod_{\kappa=1}^f \varphi_\kappa^{(\kappa)}(q_\kappa,t)$$
 (8)

Multiconfiguration Time-Dependent Hartree (MCSCF)

$$\Psi(q_1, \dots, q_f, t) = \sum_{j_1=1}^{n_1} \dots \sum_{j_f=1}^{n_f} A_{j_1, \dots, j_f}(t) \prod_{\kappa=1}^f \varphi_{j_\kappa}^{(\kappa)}(q_\kappa, t) \quad (9)$$

10 / 32

MCTDH origins and distribution

MCTDH was originally developed by Meyer and coworkers from the University of Heidelberg, in the early nineties:

THE MULTI-CONFIGURATIONAL TIME-DEPENDENT HARTREE APPROACH
H.-D. MEYER, U. MANTHE and L.S. CEDERBAUM
Theoretische Chemic, Physikalisch-Chemisches Institus, Universität Heidelberg, D-6900 Heidelberg, Federal Republic of Germany
Received 11 October 1989

There are currently three major implementations of the algorithm:

The MCTDH EOMs

The MCTDH ansatz has a very flexible Sum-of-Products (SOP) form:

$$\Psi(q_1, \dots, q_f, t) = \sum_{j_1=1}^{n_1} \dots \sum_{j_f=1}^{n_f} A_{j_1, \dots, j_f}(t) \prod_{\kappa=1}^f \varphi_{j_\kappa}^{(\kappa)}(q_\kappa, t)$$
 (10)

with time dependent SPFs

$$\varphi_{j_{\kappa}}^{(\kappa)}(q_{\kappa},t) = \sum_{\mu=1}^{N_{\kappa}} c_{\mu}^{(\kappa,j_{\kappa})}(t) \cdot \chi_{\mu}^{(\kappa)}(q_{\kappa}) \tag{11}$$

The $\chi_{\mu}^{(\kappa)}(q_{\kappa})$ are typically DVR functions.

The MCTDH EOMs

The ansatz WF is determined up to a multiplicative constant. To derive the EOMs arbitrary constraint operators $(\hat{g}^{(\kappa)})$ are introduced:

$$i \langle \varphi_I^{(\kappa)} | \dot{\varphi}_j^{(\kappa)} \rangle = \langle \varphi_I^{(\kappa)} | \hat{g}^{(\kappa)} | \varphi_I^{(\kappa)} \rangle$$
 (12)

Using once again the DF-VP we get (for $\hat{g}^{(\kappa)} \equiv 0$):

$$i\dot{A}_{J} = \sum_{L} \langle \Phi_{J} | \hat{H} | \Phi_{L} \rangle A_{L}$$

$$i\dot{\varphi}_{j}^{(\kappa)} = (1 - \hat{P}^{(\kappa)}) \sum_{k,l=1}^{n_{\kappa}} (\boldsymbol{\rho}^{(\kappa)^{-1}})_{jk} \langle \hat{H} \rangle_{kl}^{(\kappa)} \varphi_{l}^{(\kappa)}$$
(13)

The MCTDH EOMs

$$i\dot{A}_{J} = \sum_{L} \langle \Phi_{J} | \hat{H} | \Phi_{L} \rangle A_{L}$$

$$i\dot{\varphi}_{j}^{(\kappa)} = (1 - \hat{P}^{(\kappa)}) \sum_{k,l=1}^{n_{\kappa}} (\rho^{(\kappa)})^{-1}_{jk} \langle \hat{H} \rangle_{kl}^{(\kappa)} \varphi_{l}^{(\kappa)}$$
(14)

$$\Phi_J = \prod_{\kappa=1}^t \varphi_{j_\kappa}^{(\kappa)} \tag{15}$$

$$\rho_{kl}^{(\kappa)} = \langle \Psi_k^{(\kappa)} | \Psi_l^{(\kappa)} \rangle = \sum_{J^{\kappa}} A_{J_k^{\kappa}}^* A_{J_l^{\kappa}} \quad \langle \hat{H} \rangle_{kl}^{(\kappa)} = \langle \Psi_k^{(\kappa)} | \hat{H} | \Psi_l^{(\kappa)} \rangle \quad (16)$$

$$\hat{P}^{(\kappa)} = \sum_{i=1}^{n_{\kappa}} |\varphi_j^{(\kappa)}\rangle \langle \varphi_j^{(\kappa)}| \tag{17}$$

MCTDH integration scheme

The MCTDH-EOMs solution is expensive due to the large amount of multidimensional integrals to solve. Since the mean fields are not strongly oscillating we can consider (CMF integration):

EOMs

$$i\dot{\varphi}_{j}^{(1)} = (1 - \hat{P}^{(1)})\{\hat{h}^{(1)}\varphi_{j}^{(1)} + \sum_{k,l=1}^{n_{1}} (\rho^{(1)^{-1}})_{jk} \langle \bar{H}_{R} \rangle_{kl}^{(1)} \varphi_{l}^{(1)} \}$$

$$\vdots$$

$$i\dot{\varphi}_{j}^{(f)} = (1 - \hat{P}^{(f)})\{\hat{h}^{(f)}\varphi_{j}^{(f)} + \sum_{k,l=1}^{n_{f}} (\rho^{(f)^{-1}})_{jk} \langle \bar{H}_{R} \rangle_{kl}^{(f)} \varphi_{l}^{(f)} \}$$

$$(18)$$

Mode combination

Nothing prevents us from grouping physical coordinates into logical particles:

$$Q_{\kappa} \equiv (q_{\kappa,1}, q_{\kappa,1}, \dots, q_{\kappa,d})$$

$$\varphi_{j}^{(\kappa)}(Q_{\kappa}, t) = \varphi_{j}^{(\kappa)}(q_{\kappa,1}, q_{\kappa,1}, \dots, q_{\kappa,d}, t)$$
(19)

Under these conditions, the MCTDH *ansatz* will take the form:

$$\Psi(Q_{1},...,Q_{p},t) = \sum_{j_{1}=1}^{n_{1}} \cdots \sum_{j_{p}=1}^{n_{p}} A_{j_{1},...,j_{p}}(t) \prod_{\kappa=1}^{p} \varphi_{j_{\kappa}}^{(\kappa)}(Q_{\kappa},t)
\varphi_{j}^{(\kappa)}(Q_{\kappa},t) = \sum_{i_{1}...i_{d}} C_{i_{1}...i_{d}}^{(\kappa,j)}(t) \prod_{\nu=1}^{d} \chi^{(\kappa,\nu)}(q_{\kappa,\nu})$$
(20)

Multilayer MCTDH (3-layer case)

We can propagate the multidimensional SPFs with MCTDH itself!

$$\Psi(q_1, q_2, q_3, t) = \sum_{j_1=1}^{n_{12}} \sum_{j_3=1}^{n_3} A_{j_{12}j_3}(t) \varphi_{j_{12}}^{(12)}(q_1, q_2, t) \varphi_{j_3}^{(3)}(q_3, t)$$
(21)

where we have introduced:

$$\varphi_{j_{12}}^{(12)}(q_1, q_2, t) = \sum_{k_1=1}^{n_1} \sum_{k_2=1}^{n_2} B_{k_1, k_2}^{(12, j_{12})} \prod_{\mu=1}^{2} \xi_{k_{\mu}}^{(\mu)}(q_{\mu}, t)$$
 (22)

and:

$$\xi_{k_{\mu}}^{(\mu)}(q_{\mu},t) = \sum_{i=1}^{N_{\mu}} c_{i_{\mu}}^{(\mu,k_{\mu})} \chi_{i_{\mu}}^{(\mu)}(q_{\mu}) \tag{23}$$

Multilayer MCTDH (3-layer case)

$$\Psi(q_1,q_2,q_3,t) = \sum_{j_{12}=1}^{n_{12}} \sum_{j_3=1}^{n_3} A_{j_{12}j_3}(t) \varphi_{j_{12}}^{(12)}(q_1,q_2,t) \varphi_{j_3}^{(3)}(q_3,t)$$

$$\varphi_{j_{12}}^{(12)}(q_1,q_2,t) = \sum_{k_1=1}^{n_1} \sum_{k_2=1}^{n_2} B_{k_1,k_2}^{(12,j_{12})} \prod_{\mu=1}^2 \xi_{k_\mu}^{(\mu)}(q_\mu,t)$$

$$\xi_{k\mu}^{(\mu)}(q_{\mu},t) = \sum_{i_{\mu}=1}^{N_{\mu}} c_{i_{\mu}}^{(\mu,k_{\mu})} \chi_{i_{\mu}}^{(\mu)}(q_{\mu})$$

Obtaining vibrational orbitals

MCTDH can be also used to solve the TISE. The GS distribution of the system can be obtained by propagation in negative imaginary time $\tau = -it$:

$$\dot{\Psi} = -\hat{H}\Psi \tag{24}$$

The new algorithm can be derived by applying the time-independent variational principle with Lagrange multipliers:

$$\delta\{\langle \Psi|\hat{H}|\Psi\rangle - E(\sum_{J} A_{J}^{*}A_{J} - 1) - \sum_{\kappa=1}^{f} \sum_{j,l=1}^{n_{\kappa}} \epsilon_{jl}^{(\kappa)} [\langle \varphi_{j}^{(\kappa)} | \varphi_{l}^{(\kappa)} \rangle - \delta_{jl}]\} = 0$$
(25)

Obtaining vibrational orbitals

Taking the variations with respect to the complex conjugate of both the A-vector and the SPFs independently we get:

$$\sum_{K} H_{JK} A_{K} = EA_{J}$$

$$\frac{\partial \varphi_{j}^{(\kappa)}}{\partial \tau} = -(1 - \hat{P}^{(\kappa)}) \sum_{k,l} (\rho^{(\kappa)^{-1}})_{jk} \langle \hat{H} \rangle_{kl}^{(\kappa)} \varphi_{l}^{(\kappa)} = 0$$
(26)

The second of these equations implies that we can obtain the updated SPFs simply by relaxation. The A-vector in the first equation can be obtained by Davidson diagonalization algorithm.

- Nuclear Quantum Dynamics
 - The Standard method
 - The Time-Dependent Hartree method
- The Multiconfiguration Time-Dependent Hartree method
 - EOMs
 - Relaxation and block-improved relaxation
- 3 Potential energy surface representations
 - Tensor decomposition algorithms
- 4 Code structure and example applications

The importance of the SOP form

The multidimensional integrals arising from the MCTDH-EOMs are the bottleneck of the propagation. To address this issue, we impose SOP form to **all quantities**:

$$\hat{O} = \sum_{\alpha=1}^{S} c_{\alpha} \prod_{\kappa=1}^{f} \hat{o}_{\alpha}^{(\kappa)}$$

$$\langle \Phi_{J} | \hat{O} | \Phi_{L} \rangle = \sum_{\alpha=1}^{S} c_{\alpha} \prod_{\kappa=1}^{f} \langle \varphi_{j_{\kappa}}^{(\kappa)} | \hat{o}_{\alpha}^{(\kappa)} | \varphi_{J_{\kappa}}^{(\kappa)} \rangle$$
(27)

- KEO already in the desired form (TANA and TNUM software)
- PES might be challenging to transform

Transforming the PES

Usually the PES needs to be refitted (**tensor decomposed**) before using it. The POTFIT algorithm is an elegant way of achieving this in **Tucker form**:

$$V_{i_{1},...,i_{f}} = V(q_{i_{1}}^{(1)},...,q_{i_{f}}^{(f)})$$

$$V_{i_{1},...,i_{f}} = \sum_{j_{1}=1}^{m_{1}} \cdots \sum_{j_{f}=1}^{m_{f}} C_{j_{1}\cdots j_{f}} \prod_{\kappa=1}^{f} u_{i_{\kappa}j_{\kappa}}^{(\kappa)}$$
(28)

with the core tensor coefficients given by the overlap with the potential:

$$C_{j_1...j_f} = \sum_{i_1...i_f} V_{i_1...i_f} u_{i_1 \ j_1}^{(1)} \cdots u_{i_f \ j_f}^{(f)}$$
 (29)

The Tucker form

The tucker decomposition of a 3D tensor can be represented graphically as¹

which can be contrasted with the algebraic and tensor forms:

$$V_{i_1,\dots,i_f} = \sum_{j_1=1}^{m_1} \dots \sum_{j_f=1}^{m_f} C_{j_1\dots j_f} \prod_{\kappa=1}^f u_{i_\kappa j_\kappa}^{(\kappa)}$$

$$\mathcal{V} = \mathcal{C} \times_1 \bigcup_1 \dots \times_n \bigcup_n \bigcup_n U_n$$
(30)

Tensor decomposition algorithms

There is a number of tensor decomposition algorithms currently in use (e.g. POTFIT, MGPF, MCPF, MLPF), however, they are all limited by the size of the grids. The **SOP-FBR** method was developed as an alternative to the former:

$$V(q_1, \dots, q_f) = \sum_{j_1=1}^{m_1} \dots \sum_{j_f=1}^{m_f} C_{j_1 \dots j_f} \prod_{\kappa=1}^f \Phi_{j_\kappa}^{(\kappa)}(q_\kappa)$$

$$\Phi_{j_\kappa}(q_\kappa) = \sum_{\nu_\kappa=1}^{t_k} B_{\nu_\kappa j_\kappa}^{(\kappa)} T_{\nu_\kappa}(q_\kappa)$$
(31)

This is a fully analytical SOP form, differentiable *ad infinitum*, and that can be directly interfaced with MCTDH.

The POTFIT and HOOI algorithms

Algorithm 1: POTFIT

Result: C, U_1, \dots, U_n

Input: V;

for $k \leftarrow 1$ to n do

$$\bigcup_k \leftarrow EVD(V_{(k)}^{\dagger} \cdot V_{(k)})$$

end

$$\mathcal{C} \leftarrow \mathcal{V} \times_1 \mathsf{U_1}^{-1} \cdots \times_n \mathsf{U_n}^{-1}$$

Algorithm 2: HOSVD HOOI

Result: C, U_1, \dots, U_n

Input: V;

repeat

until $\|\mathcal{V}_{ann} - \mathcal{V}\| < \epsilon$:

```
 \begin{aligned} & \text{for } k \leftarrow 1 \text{ to } n \text{ do} \\ & & \mathcal{Y} \leftarrow \mathcal{V} \times_1 \, \mathsf{U}_1^{-1} \cdots \times_{k-1} \, \mathsf{U}_{k-1}^{-1} \times_{k+1} \\ & & \mathsf{U}_{k+1}^{-1} \cdots \times_n \, \mathsf{U}_n^{-1}; \\ & & \mathsf{U}_k \leftarrow \mathit{SVD}(\mathsf{V}_{(k)}) \, \mathit{SVD}(\mathsf{Y}_{(k)}) \\ & \text{end} \\ & \mathcal{C} \leftarrow \mathcal{V} \times_1 \, \mathsf{U}_1^{-1} \cdots \times_n \, \mathsf{U}_n^{-1} \end{aligned}
```

- $EVD(V_{(k)}^{\dagger} \cdot V_{(k)}) \equiv SVD(V_{(k)})$!
- POTFIT optimizes the factor matrices in a slightly different manner:

$$\tilde{\mathbf{v}}_{j}^{(\kappa)} = \mathbf{v}_{j}^{(\kappa)} + \sum_{l=n_{\kappa}+1}^{N_{\kappa}} \mu_{jl}^{(\kappa)} \mathbf{v}_{l}^{(\kappa)}$$

The SOP-FBR algorithm

```
Function sopfbr (B, C):
     / ← 0:
     for k \leftarrow 0 to D do
          for i \leftarrow 0 to M[k] do
               for i \leftarrow 0 to G_{ab}[:, k] do
                    U_{ii}^{(k)} \leftarrow \text{chebyshev}(G_{ab}[i, k], B(l: l + T[k]));
               end
               I \leftarrow I + T[k];
     end
     E_{\text{sop}} \leftarrow C \times_1 U^{(1)} \cdots \times_D U^{(D)}:
return Eson
```

```
Algorithm 3: SOP-FBR
```

Result: Xont

Input: x_{guess} guess parameters, D dimensionality, M number of basis functions, T degree of Chebyshev series, Ng number of geometries, ϵ threshold;

$$\begin{split} k &\leftarrow 0; \\ x_0 \leftarrow x_{guess}; \\ G_{ab}, E_{ab} \leftarrow \text{geogen}(N_g); \\ &\text{Function target } (B, C); \\ & \left| \begin{array}{c} E_{\text{sop}} \leftarrow \text{sopfbr}(B, C); \\ \rho \leftarrow \|E_{ab} - E_{\text{sop}}\|_{L_2}; \\ \text{return } \rho \end{array} \right. \end{split}$$

repeat

 $x_{opt} \leftarrow x_k$

repeat
$$\begin{vmatrix} B, C \leftarrow \mathrm{split}(x_k, T \times M); \\ B \leftarrow \mathrm{BFGS}(\mathrm{target}(B, \bar{C})); \\ \rho, C \leftarrow \mathrm{Powell}(\mathrm{target}(\bar{B}, C)); \\ x_{k+1} \leftarrow \mathrm{concatenate}(B, C); \\ k \leftarrow k+1; \\ \mathbf{until} \ \rho < \epsilon \lor k < N; \end{vmatrix}$$

- Nuclear Quantum Dynamics
 - The Standard method
 - The Time-Dependent Hartree method
- The Multiconfiguration Time-Dependent Hartree method
 - EOMs
 - Relaxation and block-improved relaxation
- 3 Potential energy surface representations
 - Tensor decomposition algorithms
- 4 Code structure and example applications

The Heidelberg implementation of MCTDH

The actual implementation is written mainly in $f(or)\text{tr}[\mathbf{an}]$, with some small Θ and \mathbb{C} contributions. The program has a modular structure with a very intuitive and consistent input syntax. Some sections of a POTFIT input file:

```
RUN-SECTION
                                           # System declaration
   name = h2o.pfit
                                           # The file extension only
                                           # suggests a POTFIT calculation
end-run-section
OPERATOR-SECTION
   pes = pjt2{binding}
   vcut < 0.5
                                           # Define Hamiltonian
end-operator-section
PRIMITIVE-BASIS-SECTION
                   1.0
                          3.475
         sin
                34 1 0
                          3 475
                                           # Define coordinates
   theta Leg/R 50
                          all
                               0532
                                           # and basis functions
end-primitive-basis-section
```

Applications

Some interesting applications that showcase the power of MCTDH are 2 :

Figure: Power spectrum obtained with ML-MCTDH for (a) pyrazine (b) the Henon-Heiles Hamiltonian

Bibliography

Gatti, F., et al. Applications of quantum dynamics in chemistry. Vol. 98. Springer, 2017.

Meyer, H.D. (LATEX version by Peláez, D.) "Introduction to MCTDH." Lecture Notes (2011)

Beck, M.H., et al. The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Physics reports 324.1 (2000): 1 - 105.

Thanks for your attention!

Questions?