# Recognizing Human Gait Signatures with GOTCHA



### The Project

- 1. Extract consecutive frames from the videos
- 2. Use Open Pose to detect the skeleton of the subject in the frame
- 3. Store the coordinates of consecutive frame feature points in an array (information about the subject movement variations in time).
- 4. Create a NN that use as input the pattern array and give us the user id as output:
- 5. Use a lot of pattern array samples to train the network;
- 6. Try to reach the highest accuracy chosing the best loss function.
- 7. Classify if a user is indoor or outdoor

### Libraries used













#### 1) Extract consecutive frames from the videos



- only used folders 1 to 6 of the dataset
- started extracting after one third of the video
- resized and rotated all frames to reduce dimensions

1920x1080x60 .mp4

#### 2) Use Open Pose to detect the skeleton of the subject in the frame





- OpenPose isn't robust to rotation
- A lot of joints missed, partly because of the way videos are shot (people in the BG, black t-Shirts in front of black BG)
- Extracted the XY coordinates of each joint over time
- Interpolation of missing data

## 3) Store the coordinates of consecutive frame feature points in an array (information about the subject movement variations in time).

|                | percent_missing |
|----------------|-----------------|
| neckX          | 0.176255        |
| neckY          | 0.176255        |
| noseX          | 0.410344        |
| noseY          | 0.410344        |
| left_shoulderX | 0.692628        |
|                | Supp            |
| right_kneeX    | 55.524497       |
| right_ankleY   | 79.546143       |
| right_ankleX   | 79.546143       |
| left_ankleX    | 81.109030       |
| left_ankleY    | 81.109030       |
|                |                 |

- removing columns with too much missing data as well as ears and eyes
- defined additional features like the vertical differences between both shoulders, hips and elbows.
- Scaled everything with Scikit StandardScaler



$$\mathbf{f} = [\mathbf{j}_1, \mathbf{j}_2, \mathbf{j}_3, \mathbf{j}_4, \mathbf{j}_5, \mathbf{j}_6, \mathbf{j}_7, \mathbf{j}_8, \mathbf{j}_9, \mathbf{j}_{10}, \mathbf{j}_{11}]$$
 (1)

$$\mathbf{j_i} = \frac{J_i}{s} + T, \qquad 1 \le i \le 11$$
 (2)

$$s = \frac{\|J_4 - J_2\|}{h}$$
(3)

- Performed PCA to reduce redundant information
- Separated the Dataframe in packages of 20 consecutive frames for each video.
- normalized all coordinates for scale by making the hip the pivot and scaling all samples according to one reference scale which is the distance from hip to neck.

|       | ID   | VideoNr | FrameNr | Folder | noseX | noseY | neckX | neckY | right_shoulderX | right_shoulderY | right_elbowX | right_elbowY | right_wristX | right_wristY |
|-------|------|---------|---------|--------|-------|-------|-------|-------|-----------------|-----------------|--------------|--------------|--------------|--------------|
| 0     | 001  | 1_001   | 0000    | 1      | 32.0  | 53.0  | 25.0  | 72.0  | 0.0             | 72.0            | 12.0         | 134.0        | 8.0          | 170.0        |
| 1     | 001  | 1_001   | 0001    | 1      | 31.0  | 52.0  | 25.0  | 72.0  | 0.0             | 72.0            | 12.0         | 134.0        | 8.0          | 170.0        |
|       | 3979 | ***     | 300     | 2000   | 344   | ***   |       | 34.0  | 366             | 2000            | ***          | ***          | 344          | 200          |
| 72529 | 062  | 6_062   | 0196    | 6      | 52.0  | 80.0  | 48.0  | 103.0 | 26.0            | 104.0           | 18.0         | 141.0        | 24.0         | 171.0        |
| 72530 | 062  | 6_062   | 0197    | 6      | 52.0  | 80.0  | 49.0  | 103.0 | 26.0            | 105.0           | 18.0         | 141.0        | 25.0         | 172.0        |
| 72531 | 062  | 6_062   | 0198    | 6      | 52.0  | 80.0  | 48.0  | 104.0 | 25.0            | 105.0           | 18.0         | 141.0        | 24.0         | 173.0        |
| 72532 | 062  | 6_062   | 0199    | 6      | 52.0  | 80.0  | 48.0  | 104.0 | 24.0            | 106.0           | 18.0         | 143.0        | 25.0         | 175.0        |
| 72535 | 062  | 6_062   | 0200    | 6      | 52.0  | 80.0  | 48.0  | 105.0 | 25.0            | 106.0           | 18.0         | 143.0        | 24.0         | 174.0        |

72622 rows × 28 columns

| e                                                                                                | Videoname | Folder | ID |   |
|--------------------------------------------------------------------------------------------------|-----------|--------|----|---|
| 1 [[6.145159768783847, -3.5423749813550796, -3.3708293723367886, 0.23128835707276635, -1.1592423 | 1_001     | 1      | 01 | 0 |
| 1 [[1.9886155738568825, -4.921972112441757, -2.0944874182306568, 0.8068518798514708, -2.78407355 | 1_001     | 1      | 01 | 1 |
| 1 [[1.1275399489969578, -4.707025450859268, 0.1293137546816684, 0.7045429655107176, -4.028940306 | 1_001     | 1      | 01 | 2 |
| 1 [[0.9547622608992645, -4.496748724485409, 2.5327771286190743, -0.19808121615317503, -3.5492065 | 1_001     | 1      | 01 | 3 |
| 1 [[3.0437848608634366, -3.8025692592891507, -1.193002683227392, 2.04956855385584, -0.8219662429 | 1_001     | 1      | 01 | 4 |
|                                                                                                  |           |        |    |   |

End

Start

#### 4) Create a NN that can predict the users ID from the Gait Pattern Array

LSTM - 512

**CuDNNLSTM** supported by nvidia optimization for parallel computation is 15 times faster than the default keras LSTM.

**Stochastic Gradient Descent Optimizer** with a learning-rate of 1e-4, decay towards 1e-6, momentum of 0.9 and nesterov.

LSTM - 256

Dense Layer 256

Dense Layer 128

Dense Layer 62

#### 5) Use a lot of pattern array samples to train the network;

Balanced class weights labels due to uneven number of samples for all classes

Trained with 600 Epochs and a batch size of 16



#### 6) Try to reach the highest accuracy chosing the best loss function

|                                         |          |     | F1007018-08-08-08-08-08-08-08-08-08-08-08-08-08 |      |      | THE RESERVE |
|-----------------------------------------|----------|-----|-------------------------------------------------|------|------|-------------|
|                                         |          | 1   | 1.00                                            | 0.50 | 0.67 | 8           |
|                                         |          | 2   | 0.60                                            | 1.00 | 0.75 | 3           |
|                                         |          | 3   | 1.00                                            | 1.00 | 1.00 | 2           |
|                                         |          | 4   | 0.57                                            | 0.57 | 0.57 | 7           |
| Categorical Crossentropy was used       |          | 5   | 0.88                                            | 0.58 | 0.70 | 12          |
| for the multi-class classification loss |          | 6   | 0.64                                            | 0.70 | 0.67 | 10          |
| for the multi-class classification loss |          | 7   | 0.62                                            | 0.71 | 0.67 | 7           |
|                                         |          | 8   | 0.57                                            | 0.80 | 0.67 | 5           |
|                                         |          | 9   | 0.62                                            | 0.67 | 0.64 | 12          |
|                                         |          | 10  | 0.64                                            | 0.88 | 0.74 | 8           |
|                                         | micro    | avg | 0.64                                            | 0.64 | 0.64 | 450         |
|                                         | macro    | avg | 0.60                                            | 0.61 | 0.58 | 450         |
|                                         | weighted | ave | 0.66                                            | 0.64 | 0.63 | 450         |

precision

recall f1-score

support



Over all epochs the Network achieved on average 66% weighted accuracy.

The highest peak in accuracy achieved was 72.59%

## 7) Classify if a user is indoor or outdoor









- 1) Extracted one frame from every video
- 2) Calculate a distribution histogram of brightness values (color if necessary)
- 3) Train a small network consisting of 2 Dense Layers with 3 and 4 neurons.

98.64% Accuracy after only 6 epochs, also works when shown a completely new frame from the same dataset.

## Thank you

#### References:

[1] Li, S., Cui, L., Zhu, C., Li, B., Zhao, N., & Zhu, T. (2016). Emotion recognition using Kinect motion capture data of human gaits. Peer J, 4, e2364.

[2] Gaglio, S., Re, G. L., & Morana, M. (2014). Human activity recognition process using 3-D posture data. IEEE Transactions on Human-Machine Systems, 45(5), 586-597.