Luis M. Torres Junio, 2023

Ejercicios Capítulo 1

- 1. Sean $x_0, x_1, \dots, x_n \in \mathbb{R}^d$. Demostrar que las siguientes afirmaciones son equivalentes:
 - (a) x_0, x_1, \ldots, x_n son afinmente independientes, es decir, ningún punto puede escribirse como combinación afín de los restantes.
 - (b) Los vectores $\binom{1}{x_0}$, $\binom{1}{x_1}$, ..., $\binom{1}{x_n} \in \mathbb{R}^{d+1}$ son linealmente independientes.
 - (c) Los vectores $x_1 x_0, x_2 x_0, \dots, x_n x_0$ son linealmente independientes.
 - (d) Los únicos valores reales que satisfacen $\sum_{i=0}^{n} \alpha_i x_i = 0$, $\sum_{i=0}^{n} \alpha_i = 0$ son $\alpha_0 = \alpha_1 = \cdots = \alpha_n = 0$.
- 2. Demostrar que si G y H son dos espacios afines, y si $G \subset H$ (inclusión estricta), entonces $\dim(G) < \dim(H)$.
- 3. Demostrar que la intersección de dos conos es un cono.
- 4. Demostrar que la intersección de dos conjuntos convexos en un conjunto convexo.
- 5. Sean $K \subset \mathbb{R}^d$ y $y_1, \ldots, y_k \in K$. Considerar $t_1, \ldots, t_k \in \mathbb{R}$ tales que $t_i \geq 0, \forall i \in \{1, \ldots, k\}$. Demostrar que:

$$\sum_{i=1}^{k} t_i x_i \in \text{cone}(K).$$

6. Sean $K \subset \mathbb{R}^d$ y $x_1, \ldots, x_k \in K$. Considerar $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ tales que $\lambda_i \geq 0, \forall i \in \{1, \ldots, k\}, \text{ y } \sum_{i=1}^k \lambda_i = 1$. Demostrar que:

$$\sum_{i=1}^{k} \lambda_i x_i \in \text{conv}(K).$$

7. Sea $K \subset \mathbb{R}^d$. Demostrar que el conjunto

$$\left\{ \sum_{i=1}^{k} t_i y_i : k \in \mathbb{N}, y_1, \dots, y_k \in K, t_1, \dots, t_k \in \mathbb{R}_+ \right\}$$

es un cono convexo que contiene a K.

8. Sea $K \subset \mathbb{R}^d$. Demostrar que el conjunto

$$\left\{ \sum_{i=1}^k \lambda_i x_i : k \in \mathbb{N}, x_1, \dots, x_k \in K, \lambda_1, \dots, \lambda_k \in \mathbb{R}, \lambda_i \ge 0, \sum_{i=1}^k \lambda_i = 1 \right\}$$

es un conjunto convexo que contiene a K.

- 9. Sean $P \subset \mathbb{R}^d$ y $Q \subset \mathbb{R}^e$ dos segmentos, con $d \neq e$. Demostrar que P y Q son afínmente equivalentes entre sí.
- 10. Sean $x_1, \ldots, x_n \in \mathbb{R}^d$ y sea $P \subset \mathbb{R}^d$ el polítopo definido por:

$$P := \operatorname{conv}(\{x_1, \dots, x_n\}).$$

- (a) Sean $a \in \mathbb{R}^d$ y $\gamma \in \mathbb{R}$. Demostrar que si $a^T x_i = \gamma$ se cumple para todo $i \in \{1, \ldots, n\}$, entonces $a^T x = \gamma$ se cumple para todo $x \in P$.
- (b) Considerar la siguiente función lineal:

$$f: \mathbb{R}^d \to \mathbb{R}$$
$$x \mapsto f(x) = c^T x$$

para $c \in \mathbb{R}^d$ fijo. Se definen

$$f_m := \min\{f(x_i) : 1 \le i \le n\}$$
 y $f_M := \max\{f(x_i) : 1 \le i \le n\}.$

Demostrar que

$$f_m \le f(x) \le f_M$$

se cumple para todo $x \in P$.

11. Sean

$$V := \left\{ (0,0)^T, (2,0)^T, (1,1)^T, (0,1)^T, (1,0)^T \right\} \subset \mathbb{R}^2$$

y P := conv(V). Graficar P y escribir un sistema de desigualdades lineales cuyo conjunto solución sea P.

12. Demostrar la fórmula del determinante de Vandermonde:

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ t_0 & t_1 & \cdots & t_d \\ \vdots & \vdots & \ddots & \vdots \\ t_0^{d-1} & t_1^{d-1} & \cdots & t_d^{d-1} \\ t_0^d & t_1^d & \cdots & t_d^d \end{vmatrix} = \prod_{0 \le i < j \le d} (t_j - t_i),$$

donde $t_0, \ldots, t_d \in \mathbb{R}$.

- 13. Demostrar que d+1 puntos distintos sobre la curva de momento en \mathbb{R}^d son siempre afínmente independientes entre sí.
- 14. Considerar el polítopo cíclico

$$c_4(t_1,\ldots,t_6)\subset\mathbb{R}^4$$

obtenido como la envolvente convexa de seis puntos x_1, \ldots, x_6 sobre la curva de momento $x : \mathbb{R} \to \mathbb{R}^4$, donde $x_i := x(t_i)$ para $i \in \{1, \ldots, 6\}$ y $t_1 < \cdots < t_6$. Enumerar los conjuntos de vértices que forman facetas de este polítopo.

15. Sean $c \in \mathbb{R}^d$, $\gamma \in \mathbb{R}$, $V \in \mathbb{R}^{d \times n}$ y $P := \text{conv}(V) \subset \mathbb{R}^d$. Considerar el semiespacio H_+ de \mathbb{R}^d delimitado por el hiperplano $c^T x = \gamma$:

$$H_+ := \left\{ x \in \mathbb{R}^d : c^T x \le \gamma \right\}.$$

Demostrar que P está enteramente contenido en H_+ si y solamente si todos los puntos de V pertenecen a H_+ .

- 16. Sea $P \subset \mathbb{R}^3$ un polítopo de dimensión tres. Suponer que entre cada par de vértices de P existe una arista. Demostrar que P debe ser combinatoriamente equivalente a un tetraedro.
- 17. Demostrar que todo polítopo es afínmente isomorfo a la intersección de un ortante con un espacio afín.
- 18. Demostrar que todo polítopo con n vértices es la proyección de un simplex de dimensión n.
- 19. Demostrar que el polítopo de cruz C_d^{\triangle} tiene dimensión igual a d.
- 20. Demostrar que el permutaedro $\Pi_{d-1} \subset \mathbb{R}^d$ tiene dimensión igual a d-1.
- 21. Demostrar que el permutaedro $\Pi_2 \subset \mathbb{R}^3$ es una proyección del cubo $C_3 \subset \mathbb{R}^3$ de dimensión tres. Construir para ello una aplicación afín $f: \mathbb{R}^3 \to \mathbb{R}^2$ tal que $f(C_3)$ sea afínmente equivalente a Π_2 .
- 22. Utilizando el resultado de la interpretación combinatoria de las caras de un permutaedro, demostrar que todo vértice de $\Pi_3 \subset \mathbb{R}^4$ está contenido exactamente en 3 facetas.
- 23. Dibujar el hipersimplex $\Delta_2(2) \subset \mathbb{R}^3$.

24. Considerar los siguientes poliedros: P_1 es un segmento en \mathbb{R} , P_2 es un triángulo en \mathbb{R}^2 y P_3 es un cuadrado en \mathbb{R}^2 . Definimos a Q_1 y Q_2 de la siguiente manera:

$$Q_1 := P_2 \times P_1$$

$$Q_2 := P_2 \times P_3$$

- (a) Determinar la dimensión de Q_1 y Q_2 .
- (b) Indicar el número de caras (de cada dimensión) de Q_1 y Q_2 .
- (c) Dibujar los diagramas de Schlegel de Q_1 y Q_2 .
- 25. Sean P_1 un triángulo en \mathbb{R}^2 , $P_2 \subset \mathbb{R}^3$ un prisma sobre P_1 , y $P_3 \subset \mathbb{R}^4$ una pirámide sobre P_2 .
 - (a) Indicar la dimensión de P_3 .
 - (b) Indicar el número de aristas, vértices, caras de dimensión 2 y facetas de P_3 .
 - (c) Indicar el número de caras de dimensión 2 de P_3 que son combinatoriamente equivalentes a triángulos, y el número de caras que son combinatoriamente equivalentes a cuadrados.
 - (d) Dibujar el diagrama de Schlegel de P_3 .
- 26. Sean $P \subset \mathbb{R}^3$ un prisma sobre un triángulo y $Q \subset \mathbb{R}^4$ un prisma sobre P. Dibujar los diagramas de Schlegel de P y Q.
- 27. Dibujar el diagrama de Schlegel de un octaedro.
- 28. Dibujar el diagrama de Schlegel del polítopo de cruz C_4^{\triangle} de dimensión 4.
- 29. Dibujar un diagrama de Schlegel de un polítopo cíclico de dimensión 4 con 6 vértices.