1% SDS in DNA Buffer

Andrew Baker

Abstract

This buffer is used to stabilize samples for archiving and subsequentgenomic DNA extraction.

SDS is dissolved to a concentration of 1% (w/v) in DNAB (DNA buffer: 0.4 M NaCl + 0.05 M EDTA in MilliQ water). The buffer may need to be warmed for SDS to completely dissolve. Tissue samples are added to small aliquots of 1% SDS in DNAB and heated to 65° C for 60-90 minutes. They are then stable at room temperature and ready for extraction of genomic DNA.

Citation: Andrew Baker 1% SDS in DNA Buffer. protocols.io

dx.doi.org/10.17504/protocols.io.dys7wd

Published: 04 Mar 2016

Guidelines

SDS is dissolved to a concentration of 1% (w/v) in DNAB (DNA buffer: 0.4 M NaCl + 0.05 M EDTA in MilliQ water). The buffer may need to be warmed for SDS to completely dissolve. Tissue samples are added to small aliquots of 1% SDS in DNAB and heated to 65° C for 60-90 minutes. They are then stablle at room temperature and ready for extraction of genomic DNA.

Protocol

Step 1.

Prepare stock solution of 4 M Sodium chloride in MilliQ water

Sodium chloride View by P212121

Step 2

Prepare stock solution of 0.5 M EDTA in MilliQ water

Ethylenediaminetetraacetic acid by Contributed by users

Step 3.

Mix 50 mL 4 M NaCl and 50 mL 0.5 M EDTA

Step 4.

Make up to a final volume of 500 mL with MilliQ water

MilliQ water by Contributed by users

Step 5.

Dissolve SDS in DNA Buffer to a final concentration of 1% (w/v). e.g., 5 g SDS in 500 mL of DNA Buffer.

