## 5 What is claimed:



nulae:  $\begin{array}{c|c}
R_1 & & & & \\
\hline
R_1 & & & & \\
\hline
\end{array}$   $\begin{array}{c|c}
R_1 & & & & \\
\hline
\end{array}$   $\begin{array}{c|c}
R_2 & & & \\
\hline
\end{array}$ 

wherein:

10

15

R, and R<sub>i</sub>, are independently selected from H, halogen, -CF<sub>3</sub>, -OH, -C<sub>1</sub>-C<sub>10</sub> alkyl, -S-C<sub>1</sub>-C<sub>10</sub> alkyl, -C<sub>1</sub>-C<sub>10</sub> alkoxy, -CN, -NO<sub>2</sub>, -NH<sub>2</sub>, -HN(C<sub>1</sub>-C<sub>4</sub>), -N(C<sub>1</sub>-C<sub>4</sub>), phenyl, -O-phenyl, -S-phenyl, benzyl, -O-benzyl, -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen,  $C_1$ - $C_4$  alkoxy, -NO<sub>2</sub>, -NH<sub>3</sub>, -CN, -CF<sub>3</sub>, or -OH; or a moiety of the formulae:





R is selected from H, C,-C, alkyl, C,-C, alkoxy, -C,O)CH, phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, -NO,, -NH,, -CN, -CF,, or -OH;

R, is selected from -(CH<sub>2</sub>)<sub>2</sub>-COOH, -(CH<sub>2</sub>)<sub>2</sub>-N-(C<sub>1</sub>-C<sub>5</sub> alkyl)<sub>2</sub>, -(CH<sub>2</sub>)<sub>2</sub>-NH-(C<sub>1</sub>-C<sub>2</sub> C6 alkyl), -CF4, C1-C6 alkyl, C3-C5 cycloalkyl, C1-C6 alkoxy, -NH-(C1-C6 alkyl), -N-(C,-C, alkyl), pyridinyl, thienyl, furyl, pyrrolyl, quinolyl, (CH,) phenyl, phenyl,-Ophenyl, benzyl, -O-benzyl, adamantyl, or morpholinyl, -(CH,),-phenyl-O-phenyl, -(CH,),-phenyl-CH,-phenyl, -(CH,),-O-phenyl-CH,-phenyl, -(CH,),-phenyl-(O-CH,phenyl),,the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C,-C, alkyl, C,-C, alkoxy, -NH,, -NO,, -CF., CO, H, or -OH;

20

15

R, is selected from H, halogen, -CF,, -OH, -C,-C, alkyl, preferably -C,-C, alkyl, C,-C, alkoxy, preferably C,-C, alkoxy, -CHO, -CN, -NO2, -NH2, -NH-C1-C6 alkyl, -N(C,-C, alkyl), -N-SO,-C,-C, alkyl, or -SO,-C,-C, alkyl;

R, is selected from H, -CF,, C,-C, lower alkyl, C,-C, lower alkoxy, C,-C,, cycloalkyl, 25 -C<sub>1</sub>-C<sub>6</sub> alkyl, -Q<sub>3</sub>-C<sub>10</sub> cycloalkyl, -CHO, halogen, (CH<sub>2</sub>)<sub>0</sub>C(O)NH, or a moiety of the formula -L1-M

10

15

20

 $L^1$  indicates a linking or bridging group of the formulae -(CH<sub>2</sub>)<sub>a</sub>-, S-, -O-, -C(O)-, -(CH<sub>2</sub>)<sub>a</sub>-C(O)-, -(CH<sub>2</sub>)<sub>a</sub>-(CO)-(CH<sub>2</sub>)<sub>a</sub>-, -(CH<sub>2</sub>)<sub>a</sub>-O-(CH<sub>2</sub>)<sub>a</sub>-, or -(CH<sub>2</sub>)<sub>a</sub>-, C(O)C(O)X, -(CH<sub>2</sub>)<sub>a</sub>-N-(CH<sub>2</sub>)<sub>a</sub>-,

M1 is selected from:

- a) H, the group of C<sub>1</sub>-C<sub>6</sub> lower alkyl, C<sub>1</sub>-C<sub>6</sub> lower alkoxy, C<sub>3</sub>-C<sub>10</sub> cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen/C<sub>1</sub>-C<sub>10</sub> alkyl, preferably C<sub>1</sub>-C<sub>6</sub> alkoxy, Preferably C<sub>1</sub>-C<sub>6</sub> alkoxy, Prof. -CH, -CN, or -CF; or
- b) a five-membered heterocyclic ring containing one or two ring heteroatoms selected from N, S or Oincluding, but not limited to, furan, pyrrole, thiophene, imidazole, pyrazole, isothiazole, isoxazole, pyrrolidine, pyrroline, imidazolidine, pyrazolidine, pyrazole, pyrazole, pyrazoline, imidazole, tetrazole, oxathiazole, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen,  $C_1$ - $C_{10}$  alkyl, preferably  $C_1$ - $C_{20}$  alkoxy, preferably  $C_1$ - $C_{30}$  alkoxy,  $C_{30}$ - $C_{3$
- a six-membered heterocyclic ring containing one, two or three ring heteroatoms selected from N, S or O including, but not limited to, pyran, pyridine, pyrazine, pyrimidrie, pyriadzine, piperidine, piperazine, tetrazine, thiazine, thiadizine, oxazine, or morpholine, the six-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C<sub>1</sub>-C<sub>10</sub> alkyl, preferably C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>10</sub> alkoxy, preferably C<sub>1</sub>-C<sub>6</sub> alkoxy, -CHO, -NO<sub>2</sub>, -NH<sub>2</sub>, -30 CN, -CF, or OH; or

a bicyclic ring moiety containing from 8 to 10 ring atoms and optionally containing from 1 to 3 ring heteroatoms selected from N, S or O including, but not limited to benzofuran, chromene, indole, isoindole, indoline, isoindoline, napthalene, purine, indolizine, indazole, quinoline, isoquinoline, quinolizine, quinazoline, cinnoline, phthalazine, or napthyridine, the bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen, C<sub>1</sub>-C<sub>10</sub> alkyl, preferably C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>10</sub> alkoxy, preferably C<sub>1</sub>-C<sub>6</sub>/alkoxy, -CHO, -NO<sub>2</sub>, -NH<sub>2</sub>, -CN, -CF<sub>3</sub> or -OH;

R4 is selected from the group of C1-C6/lower alkyl, C1-C6 lower alkoxy, -(CH<sub>2</sub>)<sub>0</sub>-C<sub>3</sub>-C<sub>5</sub> cycloalkyl, -(CH<sub>2</sub>)<sub>0</sub>-S-(CH<sub>2</sub>)<sub>0</sub>-C<sub>3</sub>-C<sub>5</sub> cycloalkyl, -(CH<sub>2</sub>)<sub>0</sub>-O-(CH<sub>2</sub>)<sub>0</sub>-C<sub>3</sub>-C<sub>5</sub> cycloalkyl, or the groups of:

-(CH<sub>2</sub>)<sub>n</sub>-phenyl-O-phenyl, -(CH<sub>2</sub>)<sub>n</sub>-phenyl-CH<sub>2</sub>-phenyl, -(CH<sub>3</sub>)<sub>n</sub>-Ophenyl-CH,-phenyl, -(CH,)-phenyl-(O-CH,-phenyl),, or a moiety of the formulae:

(CH<sub>2</sub>)<sub>n</sub>

wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C3-C5 cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thienyl or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF,, -

20

25

- 5 OH, -C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, -NH<sub>2</sub>, -NO<sub>2</sub> or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O; or
  - a moiety of the formulae -(CH<sub>2</sub>)<sub>x</sub>-A, (CH<sub>2</sub>)<sub>x</sub>-S-A, or -(CH<sub>2</sub>)<sub>x</sub>-O-A, wherein A is the moiety:

wherein

10

D is H, C1-C, lower alkyl, C1-C, lower alkoxy, or -CF3;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably

15 1 to 2, substituents selected from H, halogen, -CF<sub>3</sub>, -OH, -C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, or -NO<sub>3</sub>; or

c) a moiety of the formulae:

10



wherein Z is O or S and the phenyl and pyrimidinyl rings of each moiety are optionally and independently substituted by from 1 to 3 substituents selected from halogen, -CF, -OH, -C, -C, alkyl, C, -C, alkoxy, -NH, or -NO,; or

d) a moiety of the formula -L2-M2, wherein:

 $L^2$  indicates a finking or bridging group of the formulae -(CH<sub>2</sub>)<sub>n</sub>-, -S-, -O-, -SO<sub>2</sub>-, -C(O)-, -(CH<sub>2</sub>)<sub>n</sub>-C(O)-, -(CH<sub>2</sub>)<sub>n</sub>-C(O)-(CH<sub>2</sub>)<sub>n</sub>-, -(CH<sub>2</sub>)<sub>n</sub>-O-(CH<sub>2</sub>)<sub>n</sub>-, or -(CH<sub>2</sub>)<sub>n</sub>-S-(CH<sub>2</sub>)<sub>n</sub>-, -C(O)C(O)X;where X = O,N

 $M^2$  is selected from the group of  $C_1$ - $C_6$  lower alkyl,  $C_1$ - $C_6$  lower alkoxy,  $C_3$ - $C_{10}$  cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being

5 optionally substituted by from 1 to 3 substituents selected from halogen, C<sub>1</sub>-C<sub>10</sub> alkyl, preferably C,-C, alkyl, C,-C, alkoxy, preferably C,-C, alkoxy, -NO, -NH, -CN, or -CF<sub>3</sub>; or

- i) a five-membered heterocyclic ring containing one or two ring heteroatoms selected from N, S or O including, but not limited to, furan, pyrrole, thiophene, imidazole, pyrazole, pyrrolidine, or tetrazole, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C<sub>1</sub>-C<sub>10</sub> alkyl, preferably C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>10</sub> alkoxy, preferably C<sub>1</sub>-C<sub>6</sub> alkoxy, -NO,, -NH,, -CN, or -CF,; or
- a six-membered heterocyclic ring containing one, two or three ring ii) heteroatoms selected from N, S or Q including, but not limited to pyridine, pyrimidine, piperidine, piperazine, or morpholine, the six-membered heterocyclic ring being optionally substituted by from f to 3 substituents selected from halogen, C<sub>1</sub>-C<sub>10</sub> alkyl, preferably C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub>/alkoxy, preferably C<sub>1</sub>-C<sub>6</sub> alkoxy, -CHO, -NO<sub>2</sub>, -NH,, -CN, -CF, or -OH; or
- a bicyclic ring moiety containing from 8 to 10 ring atoms and optionally containing from 1/to 3 ring heteroatoms selected from N, S or O including, 25 but not limited to benzofyran, indole, indoline, napthalene, purine, or quinoline, the bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen, C,-C, alkyl, preferably C,-C, alkyl, C,-C, alkoxy, preferably C,-C, alkoxy, -CHO, -NO, /NH,, -CN, -CF, or -OH;

n is an integer from 0 to 3;

30

5 R<sub>3</sub> is selected from -COOH, -C(O)-COOH, -(CH<sub>2</sub>)<sub>a</sub>-C(O)-COOH, -(CH<sub>2</sub>)<sub>a</sub>-COOH, (CH<sub>2</sub>)<sub>a</sub>-CH=CH-COOH, -(CH<sub>2</sub>)<sub>a</sub>-tetrazole, -CH<sub>2</sub>-phenyl-C(O)-benzothiazole, or

$$(C_1 - C_6 \text{ lower alkyl})$$
,  $(C_1 - C_6 \text{ lower haloalkyl})$ ,

or a moiety selected from the formulae -L3-M3;

wherein L' is a bridging or linking moiety selected from a chemical bond,  $-(CH_2)_a$ , -S, -O,  $-SO_2$ ,  $-(CO)_7$ ,  $-(CH_2)_a$ ,  $-(CO)_7$ ,  $-(CH_2)_a$ ,  $-(CO)_7$ ,  $-(CH_2)_a$ ,  $-(CH_2)_a$ ,  $-(CH_2)_a$ ,  $-(CH_2)_a$ ,  $-(CH_2)_a$ ,  $-(CO)_7$ 

M<sup>3</sup> is selected from the group of -COOH, -(CH<sub>2</sub>)<sub>n</sub>-COOH, -(CH<sub>2</sub>)<sub>s</sub>-C(O)-

20 COOH, tetrazole,

where R<sub>8</sub>, R<sub>9</sub> or R<sub>1</sub> can be attached anywhere in the cyclic or bicyclic system, n is an integer from 0 to 3;

R<sub>s</sub>, in/each appearance, is independently selected from H, -COOH, -(CH<sub>2</sub>)<sub>s</sub>-15 COOH, -(CH<sub>2</sub>)<sub>s</sub>-C(O)-COOH, tetrazole, -C(O)-NH<sub>2</sub>, -(CH<sub>2</sub>)<sub>s</sub>-C(O)-NH<sub>4</sub>,



OH, or OH;

n is an integer from 0 to 3;

 $R_s \text{ is selected from H, halogen, -CF}_s, -OH, -COOH, -(CH_s)_s -COOH, -(CH_s)_s -COOH, -C_s -C_s \text{ alkyl}, -O-C_s -C_s \text{ alkyl}, -NH(C_s -C_s \text{ alkyl}), \text{ or -N(C}_s -C_s \text{ alkyl}), or -N(C_s -C_s \text{ alkyl})_s$ 

n is an integer from 0 to 3;



15

ODESPO.TEOZZSED

10

$$(CH_2)_n$$
or
$$(CH_2)_n$$

$$(CH_2)$$

 $R_{11}$  is selected from H, C,-C  $_{8}$  lower alkyl, C1-C  $_{6}$  cycloalkyl, -CF  $_{3}$  -COOH, -(CH  $_{2})_{a}$ -COOH, -(CH  $_{2})_{a}$ -COO+C, -(CH  $_{2})_{a}$ -COO+COOH,

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of  $R_3$ ,  $R_4$ ,  $R_9$ ,  $R_{10}$ , and/or  $R_{11}$  shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae:  $-C(O)-NH_3$ ,  $-(CH_3)/C(O)-NH_3$ ,

n is an integer from 0 to 3; or a pharmaceutically acceptable salt thereof.

15

10

compound of Claim 1 of the formula:

$$R_1$$
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_4$ 
 $R_5$ 
 $R_6$ 
 $R_7$ 
 $R_8$ 
 $R_8$ 

15

 $R_1$  and  $R_2$  are independently selected from H, halogen,  $-CF_3$ , -OH,  $-C_1-C_{10}$  alkyl,  $-S-C_1-C_{10}$  alkyl,  $-C_1-C_{10}$  alkyl,  $-C_1-C_{10}$  alkyl,  $-C_1-C_{10}$  alkoxy,  $-CN_1$ ,  $-NO_2$ ,  $-NO_2$ , -NH,  $-HN(C_1-C_2)$ ,  $-N(C_1-C_2)$ , phenyl, -O-phenyl, -S-phenyl, benzyl, -O-benzyl, or -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen,  $-C_1-C_2$  alkyl,  $-C_1-C_2$  alkoxy,  $-NO_3$ ,  $-NH_3$ ,  $-CN_1$ ,  $-CF_3$ , or -OH;

R<sub>2</sub> is selected from H, halogen, -CF<sub>3</sub>,/-OH, -C<sub>1</sub>-C<sub>10</sub> alkyl, preferably -C<sub>1</sub>-C<sub>2</sub> alkyl, C<sub>1</sub>-C<sub>10</sub> alkoxy, preferably C<sub>1</sub>-C<sub>2</sub> alkoxy, -CHO, -CN, -NO<sub>2</sub>, -NH<sub>2</sub>, -NH-C<sub>1</sub>-C<sub>2</sub> alkyl, -N(C<sub>1</sub>-C<sub>2</sub> alkyl), -N-SO<sub>2</sub>-C<sub>1</sub>-C<sub>2</sub> alkyl, or -SO<sub>2</sub>-C<sub>1</sub>-C<sub>3</sub> alkyl;

 $R_3$  is selected from H,  $-CF_3$ ,  $C_1$ - $C_6$  lower alkyl,  $C_1$ - $C_6$  lower alkoxy,  $C_3$ - $C_{10}$  cycloalkyl,  $-C_1$ - $C_6$  alkyl,  $-C_3$ - $C_{10}$  cycloalkyl, -CHO, halogen, or  $(CH_2)_aC(O)NH_3$  or a moiety of the formula  $-L^1$ - $M^1$ :

L¹ indicates a linking or bridging group of the formulae -(CH<sub>2</sub>)<sub>n</sub>-, -S-, -O-,

20 -C(O)-, -(CH<sub>2</sub>)<sub>n</sub>-C(O)-, -(CH<sub>2</sub>)<sub>n</sub>-C(O)-(CH<sub>2</sub>)<sub>n</sub>-, -(CH<sub>2</sub>)<sub>n</sub>-O-(CH<sub>2</sub>)<sub>n</sub>-, or -(CH<sub>2</sub>)<sub>n</sub>-S-(CH<sub>2</sub>)<sub>n</sub>-,

C(O)C(O)X, -(CH<sub>2</sub>)<sub>n</sub>-N-(CH<sub>2</sub>)<sub>n</sub>-,

M¹ is selected from: H, C<sub>1</sub>-C<sub>6</sub> lower alkyl, C<sub>1</sub>-C<sub>6</sub> lower alkoxy, C<sub>3</sub>-C<sub>10</sub> cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, C<sub>1</sub>-C<sub>10</sub> alkyl, preferably C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>10</sub> alkoxy, preferably C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>10</sub> alkoxy, preferably C<sub>1</sub>-C<sub>4</sub> alkoxy, -NO<sub>2</sub>, -NH<sub>2</sub>, -CN, or -CF<sub>3</sub>;

 $R_4$  js a moiety of the formulae  $-(CH_2)_n$ -A,  $-(CH_2)_n$ -S-A, or  $-(CH_2)_n$ -O-A, wherein A is the moiety:

Sul

09677021.092900

wherein

D is H, C1-C6 lower alkyl, C1-C6 lower alkoxy or -CF3;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF,, -OH, -C, -C, alkyl, C,-C, alkoxy, or -NO;; or a pharmaceutically acceptable salt thereof.

A compound of Claim/2 wherein R<sub>4</sub> is the moiety:

D B

15

10

B and C are phenyl optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF<sub>5</sub>/-OH, -C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, or -NO<sub>5</sub>; and R<sub>1</sub>, R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub>, L<sup>1</sup>, M<sup>1</sup> and D are as defined in Claim 2; or a pharmaceutically acceptable salt thereof.

20

4. A compound of Claim 1 having the formulae:

$$R_1$$
 $H_1$ 
 $H_3$ 
 $H_4$ 
 $H_4$ 
 $H_5$ 
 $H_5$ 

$$\begin{array}{c|c} R_1 & & & R_4 \\ \hline & 1 & & & \\ \hline & 1 & & \\ \hline & 1 & & \\ \hline & 1 & & \\ \hline & 1 & & \\ \hline & 1 & & & \\ \hline & 1 & & \\ \hline & 1 & & \\ \hline & 1 & & \\ \hline & 1$$

wherein:

 $R_1$  and  $R_1$ , are independently selected from H, halogen, -CF<sub>3</sub>, -OH, -C<sub>1</sub>-C<sub>10</sub> alkyl, preferably -C<sub>1</sub>-C<sub>6</sub> alkyl, -S-C<sub>1</sub>-C<sub>10</sub> alkyl, preferably -S-C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>10</sub> alkoxy, preferably C<sub>1</sub>-C<sub>6</sub> alkoxy, -CN, -NO<sub>2</sub>, -NH<sub>2</sub>, -HN(C<sub>1</sub>-C<sub>6</sub>), -N(C<sub>1</sub>-C<sub>6</sub>), phenyl, -O-phenyl, -S-phenyl, benzyl, -O-benzyl, -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, -NO<sub>2</sub>, -NH<sub>2</sub>, -CN, -CF<sub>3</sub>, or -OH; or R<sub>1</sub> and R<sub>1</sub>, are independently a moiety of the formulae:

15



R<sub>6</sub> is selected from H, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, -C(O)CH<sub>3</sub> phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C,-C, alkyl, C,-C, alkoxy, -NO,, -NH,, -CN, -CF,, or -OH;

R, is selected from -(CH,),-COOH, -(CH,),-N-(C,-C, alkyl),, -(CH,),-NH-(C,-C, alkyl), -CF<sub>3</sub>, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>3</sub>-C<sub>5</sub> cycloalkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, -NH-(C<sub>1</sub>-C<sub>6</sub> alkyl), -N-(C,-C, alkyl), pyridinyl, thienyl, furyl, pyrrolyl, quinolyl, (CH,), phenyl, phenyl,-Ophenyl, benzyl, -O-benzyl, adamantyl, or morpholinyl, -(CH<sub>2</sub>)-phenyl-O-phenyl, -(CH,),-phenyl-CH,-phenyl, -(CH,),-O-phenyl-CH,-phenyl, -(CH,),-phenyl-(O-CH,phenyl), the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C,-C, alkyl, C,-C, alkoxy, -NH,, -NO,, -CF.,CO.H. or -OH:

20

15

R, is selected from H, halogen, -CF, -OH, -C1-C10 alkyl, preferably -C1-C6 alkyl, C<sub>1</sub>-C<sub>10</sub> alkoxy, preferably C<sub>1</sub>-C<sub>6</sub> alkoxy, -CHO, -CN, -NO<sub>2</sub>, -NH<sub>2</sub>, -NH-C<sub>1</sub>-C<sub>6</sub> alkyl, -N(C,-C, alkyl),, -N-SO,-C,-C, alkyl, or -SO,-C,-C, alkyl;

R, is selected from H, -CF,, C<sub>1</sub>-C<sub>5</sub> lower alkyl, C<sub>1</sub>-C<sub>6</sub> lower alkoxy, C<sub>3</sub>-C<sub>10</sub> cycloalkyl, 25 -C<sub>1</sub>-C<sub>6</sub> alkyl,  $\frac{1}{2}$ C<sub>3</sub>-C<sub>10</sub> cycloalkyl, -CHO, halogen, (CH<sub>2</sub>)<sub>0</sub>C(O)NH<sub>2</sub> or a moiety of the formula -L17M1:

5

L' indicates a linking or bridging group of the formulae -(CH,),-, -S-, -O-, -C(O)-, -(CH<sub>2</sub>)<sub>2</sub>-C(O)-, -(CH<sub>2</sub>)<sub>2</sub>-C(O)-(CH<sub>2</sub>)<sub>2</sub>-, -(CH<sub>2</sub>)<sub>2</sub>-O-(CH<sub>2</sub>)<sub>3</sub>-, or -(CH<sub>2</sub>)<sub>2</sub>-S-(CH<sub>2</sub>)<sub>3</sub>-, C(O)C(O)X, -(CH,),-N-(CH,)

M1 is selected from:

- H, the group of C,-C, lower alkyl, C,-C, lower alkoxy, C,-C, cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, C<sub>1</sub>-C<sub>10</sub> alkyl, preferably C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>10</sub> alkoxy, preferably C<sub>1</sub>-C<sub>6</sub> alkoxy, -NO<sub>2</sub>, -NH<sub>2</sub>, -CN, or -CF<sub>3</sub>; or
- b) a five-membered heterocyclic ring containing one or two ring heteroatoms selected from N, S or O'including, but not limited to, furan, pyrrole, thiophene, imidazole, pyrazole, isothiazole, isoxazole, pyrrolidine, pyrroline, imidazolidine, pyrazolidine, pyrazole, pyrazoline, imidazole, tetrazole, oxathiazole, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C<sub>1</sub>-C<sub>10</sub> alkyl, preferably C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>10</sub> alkoxy, preferably C<sub>1</sub>-C<sub>6</sub> alkoxy, -NØ<sub>2</sub>, -NH<sub>2</sub>, -CN, or -CF<sub>3</sub>; or
- a six-membered heterocyclic ring containing one, two or three ring 25 heteroatoms selected from N, S or O including, but not limited to, pyran, pyridine, pyrazine, pyrimidine, pyridazine, piperidine, piperazine, tetrazine, thiazine, thiadizine, oxazine, or morpholine, the six-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C<sub>1</sub>-C<sub>10</sub> alkyl, preferably C<sub>1</sub>-\$\varphi\_6\$ alkyl, C<sub>1</sub>-C<sub>10</sub> alkoxy, preferably C<sub>1</sub>-C<sub>5</sub> alkoxy, -CHO, -NO<sub>2</sub>, -NH<sub>2</sub>, -30 CN, -CF, or 7OH; or

d) a bicyclic ring moiety containing from 8 to 10 ring atoms and optionally containing from 1 to 3 ring heteroatoms selected from N, S or O including, but not limited to benzofuran, chromene, indole, isoindole, indoline, isoindoline, napthalene, purine, indolizine, indazole, quinoline, isoquinoline, quinolizine, quinazoline, cinnoline, phthalazine, or napthyridine, the bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen, C<sub>1</sub>-C<sub>10</sub> alkyl, preferably C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>10</sub> alkoxy, preferably C<sub>1</sub>-C<sub>6</sub> alkoxy, -CHO, -NO<sub>2</sub>, -NH<sub>2</sub>, -CN, -CF, or -OH;

 $R_a$  is selected from the group of  $C_1$ - $C_6$  lower alkyl,  $C_1$ - $C_6$  lower alkoxy, -  $(CH_2)_a$ - $C_3$ - $C_6$  cycloalkyl, - $(CH_2)_a$ - $C_3$ - $C_5$  cycloalkyl, - $(CH_2)_a$ - $C_3$ - $C_5$  cycloalkyl, or the groups of:

a) a moiety of the formulae -(CH<sub>2</sub>) $_a$ -A, -(CH<sub>2</sub>) $_a$ -S-A, or -(CH<sub>2</sub>) $_a$ -O-A, wherein A is the moiety:

D B

wherein

20

D is H, C,-C, lower alkyl, C,-C, lower alkoxy, or -CF,;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably 1 to 2, substituents selected from H, halogen, -CF<sub>3</sub>, -OH, -C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, or -NO<sub>3</sub>; or

b) a/moiety of the formula -L²-M², wherein:

10

20

25

30

 $L^2$  indicates a linking or bridging group of the formulae -( $CH_3$ )<sub>n</sub>-, -S-, -O-, -SO<sub>2</sub>-, -C(O)-, -( $CH_3$ )<sub>n</sub>-C(O)-, -( $CH_3$ )<sub>n</sub>-C(O)-( $CH_3$ )<sub>n</sub>-, -( $CH_3$ )<sub>n</sub>-, or -( $CH_3$ )<sub>n</sub>-S-( $CH_3$ )<sub>n</sub>-, -C(O)C(O)X; where X = O,N

 $M^2$  is selected from the group of  $C_1$ - $C_6$  lower alkyl,  $C_1$ - $C_6$  lower alkoxy,  $C_3$ - $C_{10}$  cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen,  $C_1$ - $C_{10}$  alkyl, preferably  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_{10}$  alkoxy, preferably  $C_1$ - $C_6$  alkoxy, -NO<sub>2</sub>, -NH<sub>2</sub>, -CN, or -CF<sub>3</sub>, or

- i) a five-membered heterocyclic ring containing one or two ring heteroatoms selected from N, S or O including, but not limited to, furan, pyrrole, thiophene, imidazole, pyrazole, pyrrolidine, or tetrazole, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen,  $C_r$ - $C_{10}$  alkyl, preferably  $C_r$ - $C_6$  alkyl,  $C_r$ - $C_{10}$  alkoxy, preferably  $C_r$ - $C_6$  alkoxy, -NO<sub>2</sub>, -NH<sub>2</sub>, -CN, or -CF<sub>5</sub>; or
- ii) a six-membered heterocyclic ring containing one, two or three ring heteroatoms selected from N, S or O including, but not limited to pyridine, pyrimidine, piperidine, piperazine, or morpholine, the six-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen,  $C_1\text{-}C_{10}$  alkyl, preferably  $C_1\text{-}C_6$  alkyl,  $C_1\text{-}C_{10}$  alkoxy, preferably  $C_1\text{-}C_6$  alkoxy, -CHO, -NO<sub>2</sub>, -NH<sub>2</sub>, -CN, -CF<sub>3</sub> of -OH; or
- iii) /a bicyclic ring moiety containing from 8 to 10 ring atoms and optionally containing from 1 to 3 ring heteroatoms selected from N, S or O including,

15

but not limited to benzofuran, indole, indoline, napthalene, purine, or quinoline, the bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen, C<sub>1</sub>-C<sub>10</sub> alkyl, preferably C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>10</sub> alkoxy, preferably C<sub>1</sub>-C<sub>6</sub> alkoxy, -CHO, -NO<sub>2</sub>, -NH<sub>2</sub>, -CN, -CF<sub>3</sub> or -OH;

n is an integer from 0 to 3;

R<sub>3</sub> is selected from -COOH, -C(O)-COOH, -(CH<sub>2</sub>)<sub>a</sub>-C(O)-COOH, -(CH<sub>2</sub>)<sub>a</sub>-COOH, (CH<sub>2</sub>)<sub>a</sub>-CH=CH-COOH, -(CH<sub>2</sub>)<sub>a</sub>-tetrazole, -CH<sub>2</sub>-phenyl-C(O)-benzothiazole,

or a moiety selected from the formulae -L3-M3;

wherein L' is a bridging or linking moiety selected from a chemical bond, -(CH<sub>2</sub>)<sub>n</sub>, 
20 S-, -O-, -SO<sub>2</sub>-, -C(O)-, -(CH<sub>2</sub>)<sub>n</sub>-C(O)-, -(CH<sub>2</sub>)<sub>n</sub>-C(O)-(CH<sub>2</sub>)<sub>n</sub>-, -(CH<sub>2</sub>)<sub>n</sub>-O-(CH<sub>2</sub>)<sub>n</sub>-,

(CH<sub>2</sub>)<sub>n</sub>-S-(CH<sub>2</sub>)<sub>n</sub>-, -C(Z)-N(R<sub>0</sub>)-, -C(Z)-N(R<sub>0</sub>)-(CH<sub>2</sub>)<sub>n</sub>-, -C(O)-C(Z)-N(R<sub>0</sub>)-, -C(O)-C(Z)-N(R<sub>0</sub>)-, -C(Z)-NH-SO<sub>2</sub>-(CH<sub>2</sub>)<sub>n</sub>-, -(CH<sub>2</sub>)<sub>n</sub>-S-(CH<sub>2</sub>)<sub>n</sub>-,

(CH<sub>2</sub>)<sub>n</sub>-SO<sub>2</sub>-(CH<sub>2</sub>)<sub>n</sub>-, -(CH<sub>2</sub>)<sub>n</sub>-SO<sub>2</sub>-(CH<sub>2</sub>)<sub>n</sub>-, or -(CH<sub>2</sub>)<sub>n</sub>-CH=CH-(CH<sub>2</sub>)<sub>n</sub>-O-;

5 M³ is selected from the group of -COOH, -(CH<sub>2</sub>),-COOH, -(CH<sub>2</sub>),-C(O)-

where  $R_s$ ,  $R_s$  or  $R_{10}$  can be attached anywhere in the cyclic or bicyclic system, n is an integer from 0 to 3;

15

 $R_n$ , in each appearance, is independently selected from H, -COOH, -(CH<sub>2</sub>), -COOH, -(CH<sub>2</sub>), -C(O)-COOH, tetrazole, -C(O)-NH<sub>2</sub>, -(CH<sub>2</sub>), -C(O)-NH<sub>2</sub>,

OOGSOO.TSOZZAGO

O OH OH

n is an integer from 0 to 3;

R<sub>s</sub> is selected from H, halogen, -CF<sub>3</sub>, -OH, -COOH, -(CH<sub>2</sub>)<sub>s</sub>-COOH, -(CH<sub>2</sub>)<sub>s</sub>-COOH, -C,-C<sub>6</sub> alkyl, -O-C,-C<sub>6</sub> alkyl, -NH(C,-C<sub>6</sub> alkyl), or -N(C,-C<sub>6</sub>)

alkyl)<sub>2</sub>; n is an integer from 0 to 3;

 $R_{_{10}} \text{ is selected from the group of } H, \text{ halogen, -CF}_{_{20}}, \text{-OH, -(CH_{_{20}}}_{_{20}}\text{-COOH, -C_{_{10}}\text{-C}}, \text{ alkyl, -O-C_{_{10}}\text{-C}}, \text{ alkyl, -NH(C}_{_{10}}\text{-C}_{_{10}} \text{ alkyl), -N(C}_{_{10}}\text{-C}_{_{10}} \text{ alkyl), -NH(C}_{_{10}}\text{-C}_{_{10}} \text{ alkyl)}, \text{-NH(C}_{_{10}}\text{-C}_{_{10}} \text{-C}_{_{10}} \text{ alkyl)}, \text{-NH(C}_{_{10}}\text{-C}_{_{10}} \text{ alkyl)}, \text{-NH(C}_{_{10}}\text{-C}_{_{10}} \text{ alkyl)}, \text{-NH(C}_{_{10}}\text{-C}_{_{10}} \text{-C}_{_{10}} \text{-C}_{_{10}} \text{-C}_{_{10}} \text{-C}_{_{10}} \text{-C}_{_{10}} \text{-C}_{_{10}} \text{-C}_{_{10}} \text{-C}_{_{10}} \text{-C}_$ 

N Re Re

Z R<sub>8</sub>

$$(CH_2)_n$$
or
$$(CH_2)_n$$

$$(CH_2)$$

10

R<sub>11</sub> is selected from H, C<sub>1</sub>-C<sub>4</sub> lower alkyl, C<sub>1</sub>-C<sub>4</sub> cycloalkyl, -CF<sub>3</sub>, -COOH, -(CH<sub>3</sub>),-COOH, -(CH<sub>3</sub>),-C(O)-COOH,

$$R_{g}$$
  $-(CH_{2})_{n}$ 

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of  $R_3$ ,  $R_4$ ,  $R_5$ ,  $R_7$ ,  $R_{10}$ , and/or  $R_{11}$ , shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: -C(O)-NH<sub>3</sub>, -(C(H<sub>2</sub>),-C(O)-NH<sub>3</sub>,

n is an integer from 0 to 3;

15 or a pharmaceutically acceptable/salt thereof.

15

20

 $R_1$  is selected from H, halogen,  ${}^{\circ}CF_3$ ,  ${}^{\circ}OH$ ,  ${}^{\circ}C_1{}^{\circ}C_{10}$  alkyl, p/eferably  ${}^{\circ}C_1{}^{\circ}C_0$  alkyl,  ${}^{\circ}SC_1{}^{\circ}C_{10}$  alkyl, preferably  ${}^{\circ}C_1{}^{\circ}C_0$  alkyl,  ${}^{\circ}C_1{}^{\circ}C_{10}$  alkoxy, preferably  ${}^{\circ}C_1{}^{\circ}C_0$  alkoxy,  ${}^{\circ}CN$ ,  ${}^{\circ}NO_2$ ,  ${}^{\circ}NH_2$ ,  ${}^{\circ}HN(C_1{}^{\circ}C_0)$ ,  ${}^{\circ}N(C_1{}^{\circ}C_0)$ , phenyl,  ${}^{\circ}O$ -phenyl,  ${}^{\circ}S$ -phenyl, benzyl,  ${}^{\circ}O$ -benzyl,  ${}^{\circ}S$ -benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen,  ${}^{\circ}C_1{}^{\circ}C_0$  alkyl,  ${}^{\circ}C_1{}^{\circ}C_0$  alkoxy,  ${}^{\circ}NO_2$ ,  ${}^{\circ}NH_2$ ,  ${}^{\circ}CN$ ,  ${}^{\circ}CF_3$ , or  ${}^{\circ}OH$ ;

or R, and R,, are independently a moiety of the formulae:

R<sub>6</sub> is selected from H, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, -C(O)CH<sub>3</sub>, phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, -NO<sub>3</sub>, -NH<sub>3</sub>, -CN, -CF<sub>3</sub>, or -OH;

10

R, is selected from -(CH<sub>2</sub>)<sub>a</sub>-COOH, -(CH<sub>2</sub>)<sub>a</sub>-N-(C<sub>1</sub>-C<sub>6</sub> alkyl), -(CH<sub>2</sub>)<sub>a</sub>-NH-(C<sub>1</sub>-C<sub>6</sub> alkyl), -CF<sub>3</sub>, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>3</sub>-C<sub>5</sub> cycloalkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, -YH-(C<sub>1</sub>-C<sub>6</sub> alkyl), -N-(C<sub>1</sub>-C<sub>6</sub> alkyl), pyridinyl, thienyl, furyl, pyrrolyl, quinolyl, (CH<sub>2</sub>)<sub>a</sub>phenyl, phenyl, -phenyl, o-chay, phenyl, -(CH<sub>2</sub>)<sub>a</sub>-phenyl-O-phenyl, -(CH<sub>2</sub>)<sub>a</sub>-phenyl-O-phenyl, -(CH<sub>2</sub>)<sub>a</sub>-phenyl-CH<sub>2</sub>-phenyl, -(CH<sub>2</sub>)<sub>a</sub>-phenyl-(O-CH<sub>2</sub>-phenyl), the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, -NH<sub>2</sub>, -NO<sub>2</sub>, -CF<sub>3</sub>,CO<sub>2</sub>H, or -OH;

R<sub>2</sub> is selected from H, halogen, -CF<sub>3</sub>/-OH, -C<sub>1</sub>-C<sub>40</sub> alkyl, preferably -C<sub>1</sub>-C<sub>6</sub>

alkyl, C<sub>1</sub>-C<sub>10</sub> alkoxy, preferably C<sub>1</sub>-C<sub>6</sub> alkoxy, -CHO, -CN, -NO<sub>2</sub>, -NH<sub>2</sub>, -NH-C<sub>1</sub>-C<sub>6</sub>

alkyl, -N(C<sub>1</sub>-C<sub>6</sub> alkyl),, -N-SO<sub>2</sub>-C<sub>1</sub>-C<sub>6</sub> alkyl/or -SO<sub>2</sub>-C<sub>1</sub>-C<sub>6</sub> alkyl;

R<sub>3</sub> is selected from H<sub>3</sub> -CF<sub>3</sub>, C<sub>1</sub>-C<sub>6</sub> lower alkyl, C<sub>1</sub>-C<sub>6</sub> lower alkoxy, C<sub>3</sub>-C<sub>10</sub> cycloalkyl, -C<sub>1</sub>-C<sub>6</sub> alkyl, -C<sub>1</sub>-C<sub>10</sub> cycloalkyl, -CHO, halogen, -(CH<sub>2</sub>)<sub>6</sub>C(O)NH<sub>2</sub> or a moiety of the formula -L<sup>1</sup>-M<sup>2</sup>:

L' indicates a linking or pridging group of the formulae -(CH<sub>2</sub>)<sub>a</sub>-, -S-, -O-, -C(O)-, -(CH<sub>2</sub>)<sub>a</sub>-C(O)-, -(CH<sub>2</sub>)<sub>a</sub>-(CO)-(CH<sub>2</sub>)<sub>a</sub>-, -(CH<sub>2</sub>)<sub>a</sub>-O-(CH<sub>2</sub>)<sub>a</sub>-, or -(CH<sub>2</sub>)<sub>a</sub>-S-(CH<sub>2</sub>)<sub>a</sub>-, C(O)C(O)X, or -(CH<sub>2</sub>)<sub>a</sub>-N-(CH<sub>2</sub>)<sub>a</sub>-,

25 where X is O or N

M1 is selected from:

a) H, the group of C<sub>1</sub>-C<sub>6</sub> lower alkyl, C<sub>1</sub>-C<sub>6</sub> lower alkoxy, C<sub>3</sub>-C<sub>10</sub> cycloalkyl,
 30 phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted

- by from 1 to 3 substituents selected from halogen, C<sub>1</sub>-C<sub>10</sub> alkyl/preferably C<sub>1</sub>-C<sub>6</sub> alkyl, C1-C10 alkoxy, preferably C1-C6 alkoxy, -NO, -NH, -CN, or CF3; or
  - b) a five-membered heterocyclic ring containing one or two ring heteroatoms selected from N, S or O including, but not limited to, furan, pyrrole, thiophene, imidazole, pyrazole, isothiazole, isoxazole, pyrrolidine, pyrroline, imidazolidine, pyrazolidine, pyrazole, pyrazoline, imidazole, tetrazole, oxathiazole, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C,-C, alkyl, preferably C,-C, alkyl, C,-C, alkoxy, preferably C,-C, alkoxy, -NO,, -NH,, -CN, or -CF,; or
  - a six-membered heterocyclic ring containing one, two or three ring c) heteroatoms selected from N, S or O/including, but not limited to, pyran, pyridine, pyrazine, pyrimidine, pyridazine/ piperidine, piperazine, tetrazine, thiazine, thiadizine, oxazine, or morpholine, the six-membered heterocyclic ring being optionally substituted by from 1/to 3 substituents selected from halogen, C<sub>1</sub>-C<sub>10</sub> alkyl, preferably C1-C6 alkyl, C1-C10 alkoxy, preferably C1-C6 alkoxy, -CHO, -NO2, -NH2, -CN, -CF, or -OH; or
- a bicyclic ring moiety containing from 8 to 10 ring atoms and optionally containing from 1 to 3 ring heteroatoms selected from N, S or O including, but not limited to benzofuran, chromene, indole, isoindole, indoline, isoindoline, napthalene, purine indolizine, indazole, quinoline, isoquinoline, quinolizine, quinazoline, cinnoline, phthalazine, or napthyridine, the bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen, C,-C,0 alkyl, preferably C1-4 alkyl, C1-C10 alkoxy, preferably C1-C6 alkoxy, -CHO, -NO2, -NH2, -30 CN, -CF, or -OH;

15

20

OGETTOSE DGE 900

 $R_4$  is selected from the group of  $C_1$ - $C_4$  lower alkyl,  $C_1$ -C lower alkoxy, -(CH<sub>2</sub>)<sub>a</sub>- $C_3$ - $C_4$  cycloalkyl, -(CH<sub>2</sub>)<sub>a</sub>- $C_3$ - $C_5$  cycloalkyl, -(CH<sub>2</sub>)<sub>a</sub>- $C_3$ - $C_5$ -cycloalkyl, or the groups of:

a) a moiety of the formulae -(CH<sub>2</sub>)<sub>n</sub>-A, -(CH<sub>2</sub>)<sub>n</sub>-S-A, or -(CH<sub>2</sub>)<sub>n</sub>-O-A, wherein A is the moiety:



wherein

D is H, C<sub>1</sub>-C<sub>6</sub> lower alkyl, C<sub>1</sub>-C<sub>6</sub>/lower alkoxy, or -CF<sub>3</sub>;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably 1 to 2, substituents selected from 1, halogen, -CF<sub>3</sub>, -OH, -C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, or -NO<sub>2</sub>;

 $R_s \ is \ selected \ from \ COOH, \ -C(O)-COOH, \ -(CH_z)_s-C(O)-COOH, \ -(CH_z)_s-COOH, \ -(CH_z)_$ 

or a moiety selected from the formulae -L3-M3;

15

5 wherein L³ is a bridging or linking moiety selected from a chemical bond, -(CH<sub>2</sub>)<sub>x</sub>-, -SO<sub>2</sub>-, -C(O)-, -(CH<sub>2</sub>)<sub>x</sub>-C(O)-, -(CH<sub>3</sub>)<sub>x</sub>-C(O)-(CH<sub>3</sub>)<sub>x</sub>-, -(CH<sub>3</sub>)<sub>x</sub>-C(CH<sub>2</sub>)<sub>x</sub>-, -(CH<sub>3</sub>)<sub>x</sub>-SO<sub>x</sub>-(CH<sub>2</sub>)<sub>x</sub>-, -(CH<sub>3</sub>)<sub>x</sub>-SO<sub>x</sub>-(CH<sub>2</sub>)<sub>x</sub>-, -(CH<sub>3</sub>)<sub>x</sub>-C(CH<sub>2</sub>)<sub>x</sub>-, -(CH<sub>3</sub>)<sub>x</sub>-SO<sub>x</sub>-(CH<sub>2</sub>)<sub>x</sub>-, -(CH<sub>3</sub>)<sub>x</sub>-C(CH<sub>2</sub>)<sub>x</sub>-, -(CH<sub>3</sub>)<sub>x</sub>-SO<sub>x</sub>-(CH<sub>2</sub>)<sub>x</sub>-, -(CH<sub>3</sub>)<sub>x</sub>-SO<sub>x</sub>-(CH<sub>3</sub>)<sub>x</sub>-SO<sub>x</sub>-(CH<sub>3</sub>)<sub>x</sub>-, -(CH<sub>3</sub>)<sub>x</sub>-SO<sub>x</sub>-(CH<sub>3</sub>)<sub>x</sub>-SO<sub>x</sub>-(CH<sub>3</sub>)<sub>x</sub>-, -(CH<sub>3</sub>)<sub>x</sub>-SO<sub>x</sub>-(CH<sub>3</sub>)<sub>x</sub>-, -(CH<sub>3</sub>)<sub>x</sub>-SO<sub>x</sub>-(CH<sub>3</sub>)<sub>x</sub>-, -(CH<sub>3</sub>)<sub>x</sub>-SO<sub>x</sub>-(CH<sub>3</sub>)<sub>x</sub>-, -(CH<sub>3</sub>)<sub>x</sub>-SO<sub>x</sub>-(CH<sub>3</sub>)<sub>x</sub>-, -(CH<sub>3</sub>)<sub>x</sub>-SO<sub>x</sub>-(CH<sub>3</sub>)<sub>x</sub>-, -(CH<sub>3</sub>)<sub>x</sub>-, -(CH<sub>3</sub>)<sub>x</sub>-SO<sub>x</sub>-(CH<sub>3</sub>)<sub>x</sub>-, -(CH<sub>3</sub>)<sub>x</sub>-SO<sub>x</sub>-(CH<sub>3</sub>)<sub>x</sub>-, -(CH<sub>3</sub>)<sub>x</sub>-SO<sub>x</sub>-(CH<sub>3</sub>)<sub>x</sub>-, -(CH<sub>3</sub>)<sub>x</sub>-SO<sub>x</sub>-(CH<sub>3</sub>)<sub>x</sub>-, -(CH<sub>3</sub>)<sub>x</sub>-SO<sub>x</sub>-(CH<sub>3</sub>)<sub>x</sub>-, -(CH<sub>3</sub>)<sub>x</sub>-, -(CH

M' is selected from the group of -COOH, -(CH<sub>2</sub>)<sub>n</sub>-COOH, -(CH<sub>2</sub>)<sub>n</sub>-C(O)-COOH, tetrazole,

where R<sub>s</sub>, R<sub>s</sub> can be attached anywhere in the cyclic or bicyclic system, n is an integer from 0 to 3;

R<sub>s</sub>, in each appearance, is independently selected from H, -COOH, -(CH<sub>2</sub>)<sub>a</sub>-COOH, -(CH<sub>2</sub>)<sub>-</sub>-C(O)-COOH, tetrazole, -C(O)-NH,, -(CH<sub>2</sub>)<sub>-</sub>-C(O)-NH,

15

20

O OH, OT SOH;

n is an integer from 0 to 3;

 $R_{s} \text{ is selected from H, halogen, -CF}_{s}, \text{-OH, -COOH, -(CH_{2})}_{s}\text{-COOH, -(CH_{2})}_{s}\text{-COOH, -C}_{s} \text{-alkyl, -O-C}_{t}\text{-C}_{s} \text{ alkyl, -NH(C}_{t}\text{-C}_{s} \text{ alkyl), or -N(C}_{t}\text{-C}_{s} \text{ alkyl),}$ 

n is an integer from 0 to 3;

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub>, shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: -C(O)-NH<sub>3</sub>, -C(CO)-NH<sub>3</sub>,



n is an integer from 0 to 3;

- or a pharmaceutically acceptable salt thereof.
  - A compound of Claim 1 having the formulae:

R, is selected from H, halogen, -CF<sub>3</sub>, -OH, -C<sub>1</sub>-C<sub>10</sub> alkyl, preferably -C<sub>1</sub>-C<sub>6</sub> alkyl, -S-C,-C, alkyl, preferably -S-C,-C, alkyl, C,-C, alkoxy, preferably C,-C, alkoxy, -CN, -NO, -NH, -HN(C,-C,), -N(C,-C,), phenyl, -O-phenyl, -S-phenyl, -S-phen benzyl, -O-benzyl, -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C1-C6 alkyl, C,-C, alkoxy, -NO,, -NH,, -CN, -CF,, or -OH;

or R, and R, are independently a molety of the formulae:

or a moiety of the formulae: 15

30

Syl "

DOGSTORL DGESTO

 $R_6$  is selected from H,  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy,  $C(O)CH_3$  phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen,  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy, -NO<sub>2</sub>, -NH<sub>3</sub>, -CN, -CF<sub>3</sub>, or -OH;

R, is selected from -(CH<sub>2</sub>)<sub>a</sub>-COOH, -(CH<sub>2</sub>)<sub>a</sub>-N-(C<sub>1</sub>-C<sub>6</sub> alkyl)<sub>2</sub>, -(CH<sub>2</sub>)<sub>a</sub>-NH-(C<sub>1</sub>-C<sub>6</sub> alkyl), -CF<sub>3</sub>, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>3</sub>-C<sub>5</sub> cycloalkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, -NH-(C<sub>1</sub>-C<sub>6</sub> alkyl), -N-(C<sub>1</sub>-C<sub>6</sub> alkyl)<sub>2</sub>, pyridinyl, thienyl, furyl, pyrrolyl, quinolyl, (CH<sub>2</sub>)<sub>a</sub>phenyl, phenyl, phenyl, O-phenyl, benzyl, -O-benzyl, adamantyl, or morpholinyl, -(CH<sub>2</sub>)<sub>a</sub>-phenyl-O-phenyl, -(CH<sub>2</sub>)<sub>a</sub>-phenyl-CH<sub>2</sub>-phenyl, -(CH<sub>2</sub>)<sub>a</sub>-phenyl-CH<sub>2</sub>-phenyl, -(CH<sub>2</sub>)<sub>a</sub>-phenyl-(O-CH<sub>2</sub>-phenyl)<sub>3</sub>, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, -NH<sub>2</sub>, -NO<sub>2</sub>, -CF<sub>3</sub>-CO<sub>4</sub>H, or -OH;

 $R_2$  is selected from H, halogen, -CF<sub>3</sub>, -OH, -C<sub>1</sub>-C<sub>10</sub> alkyl, preferably -C<sub>1</sub>-C<sub>8</sub> alkyl, C<sub>1</sub>-C<sub>10</sub> alkoxy, preferably C<sub>1</sub>-C<sub>6</sub> alkoxy, -CHO, -CN, -NO<sub>2</sub>, -NH<sub>2</sub>, -NH-C<sub>1</sub>-C<sub>8</sub> alkyl, -N(C<sub>1</sub>-C<sub>6</sub> alkyl), -N/SO<sub>2</sub>-C<sub>1</sub>-C<sub>6</sub> alkyl, or -SO<sub>2</sub>-C<sub>1</sub>-C<sub>6</sub> alkyl;

R<sub>3</sub> is selected from H<sub>3</sub>  $\xrightarrow{C}$ F<sub>3</sub>, C<sub>1</sub>-C<sub>6</sub> lower alkyl, C<sub>1</sub>-C<sub>6</sub> lower alkoxy, C<sub>3</sub>-C<sub>10</sub> cycloalkyl,

25 -C<sub>1</sub>-C<sub>6</sub> alkyl, -C<sub>3</sub>-C<sub>10</sub> cycloalkyl, -CHO, halogen, (CH<sub>2</sub>)<sub>6</sub>C(O)NH<sub>2</sub> or a moiety of the formula -L<sup>1</sup>-M<sup>2</sup>:

L¹ indicates a linking or bridging group of the formulae -(CH<sub>2</sub>)<sub>o</sub>-,
-C(O)-, -(CH<sub>2</sub>)<sub>o</sub>-C(O)-, -(CH<sub>2</sub>)<sub>o</sub>-C(O)-(CH<sub>2</sub>)<sub>o</sub>-, -(CH<sub>2</sub>)<sub>o</sub>-O-(CH<sub>2</sub>)<sub>o</sub>-, or -(CH<sub>2</sub>)<sub>o</sub>-S-(CH<sub>2</sub>)<sub>o</sub>-,
C(O)C(O)X, -(CH<sub>2</sub>)<sub>o</sub>-N-(CH<sub>2</sub>)<sub>o</sub>-,

5 M1 is selected from:

> H, the group of C<sub>1</sub>-C<sub>6</sub> lower alkyl, C<sub>2</sub>-C<sub>6</sub> lower alkoxy, C<sub>3</sub>-C<sub>10</sub> a) cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, C,-C, alkyl, preferably C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>10</sub> alkoxy, preferably C<sub>1</sub>-C<sub>6</sub> alkoxy, NO<sub>2</sub>, -NH<sub>2</sub>, -CN, or -CF<sub>3</sub>; or

> R<sub>4</sub> is selected from the group of C<sub>1</sub>-C<sub>6</sub>/lower alkyl, C<sub>1</sub>-C<sub>6</sub> lower alkoxy, - $(CH_2)_n$ - $C_3$ - $C_6$  cycloalkyl,  $-(CH_2)_n$ -S- $(CH_2)_n$ - $C_3$ - $C_5$  cycloalkyl,  $-(CH_2)_n$ -O- $(CH_2)_n$ - $C_3$ - $C_5$ cycloalkyl, or the groups of:

> a) a moiety of the formulae -(CH,),-A, -(CH,),-S-A, or -(CH,),-O-A, wherein A is the moiety:

wherein

D is H, C,-C, lower alkyl, C,-C, lower alkoxy, or -CF,;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably 1 to 2, substituents selected from H, halogen, -CF3, -OH, -C1-C6 alkyl, C1-C6 alkoxy, or -NO,;

25

20

R<sub>e</sub> is selected from -COOH, -C(O)-COOH, -(CH<sub>2</sub>)-C(O)-COOH, -(CH<sub>2</sub>)<sub>e</sub>-COOH, (CH,),-CH=CH-COOH, -(CH,),-tetrazole, or a moiety selected from the formulae -L3-M3;

15

 $M^3$  is selected from the group of -COOM, -(CH<sub>2</sub>)<sub>a</sub>-COOH, -(CH<sub>2</sub>)<sub>a</sub>-C(O)-COOH, tetrazole,

where  $R_i$ ,  $R_i$  can be attached anywhere in the cyclic or bicyclic system, n is an integer from 0 to  $\beta$ ;

R<sub>s</sub>, in each appearance, is independently selected from H, -COOH, -(CH<sub>2</sub>)<sub>s</sub>-COOH, -(CH<sub>2</sub>)<sub>s</sub>-COOH, -(CH<sub>2</sub>)<sub>s</sub>-COOH, -(CH<sub>2</sub>)<sub>s</sub>-COO+, tetrazole, -C(O)-NH<sub>3</sub>, -(CH<sub>2</sub>)<sub>s</sub>-C(O)-NH<sub>3</sub>,

15

D9677021.092900

n is an integer from 0 to 3;

 $R_s \text{ is selected from H, halogen, -CF}_s, -OH, -COOH, -(CH_2)_a-COOH, -(CH_2)_a-COOH, -C_1-C_6 \text{ alkyl}, -O-C_1-C_6 \text{ alkyl}, -NH(C_1-C_6 \text{ alkyl}), \text{ or -N(C}_1-C_6 \text{ alkyl});}$ 

n is an integer from 0 to 3;

with a proviso that the complete moiety at the indole or indoline 1-position created by any combination of R<sub>s</sub>, R<sub>s</sub>, R<sub>s</sub>, shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: -C(O)-NH<sub>s</sub>, -C(CH),-C(O)-NH<sub>s</sub>,



or a pharmaceutically acceptable salt thereof.

7. compound of Claim having

the formulae:

DOBSZOEL.DOBOOO

R<sub>4</sub> or

wherein:

R<sub>1</sub> and R<sub>1</sub>, are independently selected from H, halogen, -CF<sub>3</sub>, -OH, -C<sub>1</sub>-C<sub>10</sub> alkyl, preferably -C1-C6 alkyl, -S-C1-C10/alkyl, preferably -S-C1-C6 alkyl, C1-C10 alkoxy, preferably C<sub>1</sub>-C<sub>6</sub> alkoxy, -CN, -NO<sub>2</sub>, -NH<sub>2</sub>, -HN(C<sub>1</sub>-C<sub>6</sub>), -N(C<sub>1</sub>-C<sub>6</sub>)<sub>2</sub>, phenyl, -O-phenyl, -S-phenyl, benzyl, -O-benzyl, -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, NO2, -NH2, -CN, -CF3, or -OH; or R, and R, are independently a moiety of the formulae:

15

15

20

25

R<sub>6</sub> is selected from H, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoy, phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, -NO<sub>2</sub>, -NH<sub>2</sub>, -CN, -CF<sub>3</sub>, or -OH;

 $R_7$  is selected from -OH, -CF<sub>3</sub>,  $C_1$ - $\oint_C$  alkyl,  $C_1$ - $C_6$  alkoxy, -NH-( $C_1$ - $C_6$  alkyl), -N-( $C_1$ - $C_6$  alkyl), pyridinyl, thienyl, furyl, pyrrolyl, phenyl, -O-phenyl, benzyl, -O-benzyl, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, -CN,  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy, -NO<sub>2</sub>. -NH<sub>2</sub>, -CF<sub>3</sub>, or -OH;

R<sub>2</sub> is selected from H<sub>2</sub>/halogen, -CF<sub>3</sub>, -OH, -C<sub>1</sub>-C<sub>10</sub> alkyl, preferably -C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>10</sub> alkoxy, preferably C<sub>1</sub>-C<sub>6</sub> alkoxy, -CHO, -CN, -NO<sub>2</sub>, -NH<sub>2</sub>, -NH-C<sub>1</sub>-C<sub>6</sub> alkyl, -N(C<sub>1</sub>-C<sub>6</sub> alkyl)<sub>2</sub>, -N<sub>2</sub>SO<sub>2</sub>-C<sub>1</sub>-C<sub>6</sub> alkyl, or -SO<sub>2</sub>-C<sub>1</sub>-C<sub>6</sub> alkyl;

 $R_3 \ is \ selected from \ H, \ -C_1-C_{10} \ alkyl, \ preferably \ -C_1-C_6 \ alkyl, \ -(CH_2)-OH, \\ (CH_2)_0C(O)NH_2, \ -CH_2-O-(C_1-C_6 \ alkyl, \ -CH_2-O-CH_2-phenyl, \ -CH_2-N-(C_1-C_6 \ alkyl), \ -CH_2-N-CH_2-phenyl, \ the \ phenyl \ rings \ of \ which \ are \ optionally \ substituted \ by \ 1 \ or \ 2 \\ groups \ selected \ from \ H, \ halogen, \ -CF_3 \ or \ -C_1-C_6 \ alkyl;$ 

X is O or n = 0 or f;

D\_C

wherein

D is H, C1-C6 lower alkyl, C1-C6 lower alkoxy, or -CF3;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably 1 to 2, substituents selected from H, halogen, -Cr<sub>3</sub>, -OH, -C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, or -NO<sub>2</sub>;

15

10

09677021.092900

R<sub>5</sub> is a moiety selected from the groups of:

5 wherein L³ is a bridging or linking moiety selected from a chemical bond, -(CH<sub>2</sub>)<sub>a\*</sub>, - (CH<sub>2</sub>)<sub>a\*</sub>, -(CH<sub>2</sub>)<sub>a\*</sub>, -(CH<sub>2</sub>)<sub>a\*</sub>, -(CH<sub>2</sub>)<sub>a\*</sub>, -(CH<sub>2</sub>)<sub>a\*</sub>, -(CH<sub>2</sub>)<sub>a\*</sub>, -(CH<sub>2</sub>)<sub>a\*</sub>, -(CH<sub>2</sub>)<sub>a\*</sub>, -(CH<sub>2</sub>)<sub>a\*</sub>. SO-(CH<sub>2</sub>)<sub>a\*</sub>, - (CH<sub>2</sub>)<sub>a\*</sub> -SO-(CH<sub>2</sub>)<sub>a\*</sub>, -CH=CH-(CH<sub>2</sub>)<sub>a\*</sub>. O-; where n³ is an integer from 0 to 5;

 $R_9$  is selected from –CF<sub>3</sub>, -C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, -NH(C<sub>1</sub>-C<sub>6</sub> alkyl), or -N(C<sub>1</sub>-C<sub>6</sub> alkyl)<sub>2</sub>,

n in each instance is independently selected as an integer from 0 to 3; or a pharmaceutically acceptable salt thereof.

A compound of Claim 1 having the formulae:

$$R_1$$
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_4$ 
 $R_5$ 
 $R_5$ 
 $R_5$ 
 $R_5$ 
 $R_5$ 
 $R_5$ 
 $R_6$ 
 $R_7$ 
 $R_8$ 
 $R_8$ 
 $R_9$ 
 $R_9$ 

wherein:

15

 $R_1$  is selected from H, halogen, -CF<sub>3</sub>, -OH, -C<sub>1</sub>-C<sub>10</sub> alkyl, preferably -C<sub>1</sub>-C<sub>6</sub> alkyl, -S-C<sub>1</sub>-C<sub>10</sub> alkyl, preferably -S-C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>10</sub> alkoxy, preferably C<sub>1</sub>-C<sub>6</sub> alkoxy, -QN, -NO<sub>2</sub>, -NH<sub>2</sub>, -HN(C<sub>1</sub>-C<sub>6</sub>), -N(C<sub>1</sub>-C<sub>6</sub>)<sub>2</sub>, phenyl, -O-phenyl, -S-phenyl,

15

20

25

benzyl, -O-benzyl, -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>2</sub>-C<sub>7</sub> alkoxy, -NO<sub>2</sub>, -NH<sub>2</sub>, -CN<sub>2</sub>, -CF<sub>2</sub>, or -OH;

R<sub>2</sub> is selected from H, halogen, -CF<sub>3</sub>, -OH, -C<sub>1</sub>-C<sub>10</sub> alkyl, preferably -C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>10</sub> alkyl, C<sub>1</sub>-C<sub>10</sub> alkoxy, preferably C<sub>1</sub>-C<sub>6</sub> alkoxy, -CH<sub>0</sub>, -CN, -NO<sub>2</sub>, -NH<sub>2</sub>, -NH-C<sub>1</sub>-C<sub>6</sub> alkyl, -N(C<sub>1</sub>-C<sub>6</sub> alkyl)<sub>2</sub>, -N-SO<sub>2</sub>-C<sub>1</sub>-C<sub>6</sub> alkyl, or -SØ<sub>2</sub>-C<sub>1</sub>-C<sub>6</sub> alkyl;

R<sub>3</sub> is selected from H, -C<sub>1</sub>-C<sub>10</sub> alkyl, preferably -C<sub>1</sub>-C<sub>6</sub> alkyl, -(CH<sub>2</sub>)-OH, (CH<sub>2</sub>)<sub>0</sub>C(O)NH<sub>2</sub>, -CH<sub>2</sub>-O-(C<sub>1</sub>-C<sub>6</sub> alkyl), -CH<sub>2</sub>-O-CH<sub>2</sub>-phenyl, -CH<sub>2</sub>-N-(C<sub>1</sub>-C<sub>6</sub> alkyl), -CH<sub>2</sub>-N-CH<sub>2</sub>-phenyl, the phenyl rings of which are optionally substituted by 1 or 2 groups selected from H, halogen, -CF<sub>3</sub> or -C<sub>1</sub>-C<sub>6</sub> alkyl;

n = 0 or 1.

 $R_4$  is a moiety of the formulae -(CH<sub>2</sub>)<sub>n</sub>-A, -(CH<sub>2</sub>)<sub>n</sub>-S-A, or -(CH<sub>2</sub>)<sub>n</sub>-O-A, wherein A is the moiety:

D C

wherein

D is H, C<sub>1</sub>-C<sub>6</sub> lower alkyl, C<sub>1</sub>-C<sub>6</sub> lower alkoxy, or -CF<sub>3</sub>;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably 1 to 2, substituents selected from H, halogen, -CF<sub>3</sub>, -OH, -C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, or -NO<sub>2</sub>;

wherein  $L^i$  is a bydging or linking moiety selected from a chemical bond,  $-(CH_2)_n$ ,  $-(CH_2)_n$ , or  $-(CH_2)_n$ , or  $-(CH_2)_n$ , or  $-(CH_2)_n$ , or  $-(CH_2)_n$ .

where n = 0.5

15

 $R_0/is \ selected \ from \ -CF_3, \ -C_1-C_6 \ alkyl, \ C_1-C_6 \ alkoxy, \ -NH(C_1-C_6 \ alkyl), \ or \ -N(C_1-C_6/alkyl)_2,$ 

n in each instance is independently selected as an integer from 0 to 3

20 or a pharmaceutically acceptable salt thereof

10

15



 $R_1 \text{ is selected from H, halogen, -CF}_3, -OH, -CN, -NO}_2, -NH}_2, -HN(C_1-C_6), -N(C_1-C_6)_2, \text{ phenyl, -N-SO}_2-C_1-Q}_6 \text{ alkyl, or -SO}_2-C_1-C_6 \text{ alkyl;}$ 

 $R_2 \ is \ selected \ from/H, \ halogen, \ -CF_3, \ -OH, \ , \ -CN, \ -NO_2, \ -NH_2, \ -NH-C_1-C_6 \ alkyl, \ -N(C_1-C_6 \ alkyl)_2, \ -N-SO_2-C_1-C_6 \ alkyl, \ or \ -SO_2-C_1-C_6 \ alkyl;$ 

 $R_3 \ \, is \ \, selected from \ \, H, \ \, -C_1-C_{10} \ \, alkyl, \ \, preferably \ \, -C_1-C_6 \ \, alkyl, \ \, -(CH_2)-OH, \\ (CH_2)_nC(O)NH_2, -CH_2-O-(C_1-C_6 \ \, alkyl), \ \, -CH_2-O-CH_2-phenyl, \ \, -CH_2-N-CH_2-phenyl, \ \, the \ \, phenyl \ \, rings \ \, of \ \, which \ \, are \ \, optionally \ \, substituted \ \, by \ \, 1 \ \, or \ \, 2 \\ groups \ \, selected from \ \, H, \ \, halogen, \ \, -CF_3 \ \, or \ \, -C_1-C_6 \ \, alkyl; \\ \label{eq:charge_eq}$ 

n = 0 or 1.

Rs is a moiety selected from the groups of:

Sult CHain

ÓН

5

10

15



wherein L¹ is a bridging or link/ing moiety selected from a chemical bond,  $-(CH_2)_{x'}$ ,  $-(CH_2)_{x'}$ - $-(CH_2)_{x'}$ --(C

n' in each instance is independently selected as an integer from 0 to 5; or a pharmaceutically acceptable salt thereof.

or

- A compound of Claim 1 which is 4-{[(E)-4-(3-benzhydryl-5-chloro-2-methyl-1H-indol-1-yl)-2-butenyl]oxy}benzoic acid or a pharmaceutically acceptable salt thereof.
- A compound of Claim 1 which is 4-{2-(3-benzhydryl-5-chloro-2-methyl-1H-indol-1-yl)ethoxy]benzoic acid or a pharmaceutically acceptable salt thereof.

- 5 12. A compound of Claim 1 which is 3-{4-{2-(3-benzhydryl-5-chloro-2-methyl-1H-indol-1-yl)ethoxylphenyl}propanoic acid or a pharmaceutically acceptable salt thereof.
- A compound of Claim 1 which is 3-(4-{[2-(3-benzhydryl-6-chloro-10 1H-indol-1-yl)ethyl]sulfonyl}phenyl)propanoic acid or a pharmaceutically acceptable salt thereof.
  - A compound of Claim 1 which is 4-{[2-(3-benzhydryl-6-chloro-1Hindol-1-yl)ethyl]sulfonyl}benzoic acid or a pharmaceutically acceptable salt thereof.
  - A compound of Claim 1 which is 4-[2-(3-benzhydryl-2-methyl-1Hindol-1-yl)ethoxy]benzoic acid or a pharmaceutically acceptable salt thereof.
- 16. A method of inhibiting the phospholipase activity of an enzyme in a 20 mammal in need thereof comprising administering to said mammal a therapeutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt thereof.
- 17. A method of treating or preventing an inflammatory response in a 25 mammal in need thereof, the method comprising administering to said mammal a therapeutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt thereof.
- 18. The method of Claim 17 wherein the inflammatory response is 30 associated with inflammatory bowel disease.



- 180 -

- 5 19. The method of Claim 17 wherein the inflammatory response is associated with osteoarthritis, psoriatic arthritis or rheumatoid arthritis.
  - 20. A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.