3.1: Stability and the Derivative

1 Idea

- Imagine a cobwebbing diagram with an equilibrium m^* .
- If you cobweb very close to m^* , the updating function looks like a line. (Zoom in on graph)
- Use the slope at m^* to decide if it is stable or not!

2 Stability Theorem

- Consider the DDS $m_{t+1} = f(m_t)$.
- Look at f(x).
- Compute $|f'(m^*)|$.
- If it's bigger than 1, m^* is definitely unstable.
- If it's smaller than 1, m^* is definitely stable.
- if it equals 1, anything can happen.

3 Examples

• $m_{t+1} = \cos(m_t)$. $f(x) = \cos(x)$, $f'(x) = -\sin(x)$. The equilibrium is at $m^* \approx 0.739$, and

$$|f'(0.739)| = |-\sin(0.739)| = 0.674 < 1$$

so m^* is stable.

• $m_{t+1} = \frac{0.6m_t}{0.6m_t + 2(1-m_t)}, f(x) = \frac{0.6x}{0.6x + 2(1-x)}.$

Equilibria:

$$\frac{0.6x}{0.6x + 2(1-x)} = x$$

after algebra becomes

$$0 = 1.4x(1-x)$$

so the equilibria are $m^* = 0$ and $m^* = 1$. Stability theorem next:

$$f'(x) = \frac{0.6(0.6x + 2(1-x)) - 0.6x(0.6-2)}{(0.6x + 2(1-x))^2}$$

$$f'(0) = \frac{0.6 * 2}{4} = \frac{0.6}{2} = 0.3.$$

$$f'(1) = \frac{0.6^2 - 0.6^2 + 2 * 0.6}{(0.6)^2} = \frac{2}{0.6} = 3.33$$

so, $m^* = 0$ is stable, while $m^* = 1$ is unstable.

• Ex: $m_{t+1} = 2m_t e^{-m_t}$.

Equilibria: $2xe^{-x} = x$ gives $e^{-x} = \frac{1}{2}$, so

$$m^* = -\ln(\frac{1}{2}) = \ln(2) = 0.693.$$

Stability:

$$f'(x) = 2e^{-x} - 2xe^{-x}$$

So:

$$f'(\ln(2)) = 2e^{-\ln(2)} - 2\ln(2)e^{-\ln(2)}$$
$$= 2\frac{1}{2} - 2\ln(2) \cdot \frac{1}{2} = 1 - \ln(2) \approx 0.307.$$

Since this is smaller than 1, we see that $m^* = \ln(2)$ is stable.