P3 de Álgebra Linear I -2011.2

12 de Novembro de 2011.

Nome:	Matrícula:
Assinatura:	Turma:

Preencha CORRETA e COMPLETAMENTE todos os campos (nome, matrícula, assinatura e turma).

Provas sem nome não serão corrigidas e terão nota <u>ZERO</u>. Provas com os campos matrícula, assinatura e turma não preenchidos ou preenchidos de forma errada serão penalizadas com a perda de 1 ponto por campo.

Duração: 1 hora 50 minutos

\mathbf{Q}	1.a	1.b	1.c	2.a	2.b	2.c	2. d	3.a	3. b	3.c	soma
\mathbf{V}	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	10.0
N											

<u>Instruções – leia atentamente</u>

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- O desenvolvimento de cada questão deve estar a seguir **Resposta**. Desenvolvimentos fora do lugar (p. ex. no meio dos enunciados, nas margens, etc) não serão corrigidos!!.
- Escreva de forma clara e legível. Justifique de forma <u>ordenada</u> e <u>cuidadosa</u> suas respostas. Respostas sem justificativa não serão consideradas.

Observação

justificar: Legitimar. Dar razão a. Provar a boa razão do seu procedimento. cuidado: Atenção, cautela, desvelo, zelo. cuidadoso: Quem tem ou denota cuidado. fonte: mini-Aurélio

1) Considere a matriz

$$N = \begin{pmatrix} 1 & 4 & 1 \\ 4 & 1 & 1 \\ 1 & 1 & 4 \end{pmatrix}.$$

Observe que os vetores (1,1,1) e (-1,1,0) são dois autovetores de N.

- a) Determine uma forma diagonal D de N.
- b) Determine uma matriz P tal que $D = P N P^t$.
- c) Considere a matriz N^{-1} . Determine uma forma diagonal E de N^{-1} .

Observação: para resolver esta questão não é necessário calcular o polinômio característico de N.

Resposta:

2) Considere a matriz

$$M = \begin{pmatrix} -2 & 2 & 3 \\ -2 & 3 & 2 \\ -4 & 2 & 5 \end{pmatrix}.$$

- a) Determine os autovalores de M e suas multiplicidades. Dica, 3 é um autovalor.
- b) Encontre, se possível, uma base de \mathbb{R}^3 formada por autovetores de M.
- c) Considere a matriz

$$A = \begin{pmatrix} 3 & 0 & 0 \\ a_{2,1} & a_{2,2} & 0 \\ 0 & a_{3,2} & a_{3,3} \end{pmatrix}, \text{ onde } a_{2,1}, a_{2,2}, a_{3,2}, a_{3,3} \in \mathbb{R}.$$

Determine $a_{2,1}, a_{2,2}, a_{3,2}$ e $a_{3,3}$ para que

- a matriz A tenha um único autovalor λ e
- qualquer conjunto de autovetores linearmente independentes de A associados a λ tenha no máximo um elemento

(as duas condições devem ser satisfeitas simultaneamente).

d) Considere a matriz

$$B = \begin{pmatrix} 1 & 0 & 1 \\ -2 & b_{2,2} & b_{2,3} \\ -6 & b_{3,2} & 0 \end{pmatrix}, \text{ onde } b_{2,2}, b_{2,3}, b_{3,2} \in \mathbb{R}.$$

Sabendo que

- a matriz B não possui inversa,
- $\bullet\,$ 3 é um autovalor de B e
- (1,1,0) é um autovetor de B,

determine $b_{2,2}, b_{2,3} \in b_{3,2}$.

Resposta:

3) Considere as bases β e γ de \mathbb{R}^3

$$\beta = \{(1, 1, 1), (1, 0, 1), (1, 2, 0)\},\$$

e

$$\gamma = \{(103, 104, 105), (104, 105, 106), (105, 106, 108)\}$$

e a transformação linear $T\colon\mathbb{R}^3\to\mathbb{R}^3$ que verifica

$$T(1,1,1) = (3,2,3), T(1,0,1) = (2,0,2), T(1,2,0) = (1,1,1).$$

- a) Determine a matriz $[T]_{\beta}$ de T na base β .
- b) Considere a matriz $[T]_{\gamma}$ de T na base γ . Determine o traço de $[T]_{\gamma}$.
- c) Determine, se possível, uma forma diagonal D de T. Caso não exista, justifique sua resposta.

Nota: as coordenadas dos vetores estão escritas na base canônica.

Resposta: