Lampiran

Data yang digunakan pada eksperimen

1. Test Case A

a)
$$0.31x_1 + 0.14x_2 + 0.30x_3 + 0.27x_4 = 1.02$$

 $0.26x_1 + 0.32x_2 + 0.18x_3 + 0.24x_4 = 1.00$
 $0.61x_1 + 0.22x_2 + 0.20x_3 + 0.31x_4 = 1.34$
 $0.40x_1 + 0.34x_2 + 0.36x_3 + 0.17x_4 = 1.27$

2. Test Case B

b)
$$x_1 + 7x_2 - 2x_3 + 8x_5 = -3$$

 $x_1 + 7x_2 - x_3 + x_4 = 2$
 $2x_1 + 14x_2 - 4x_3 + x_4 - 13x_5 = 3$
 $2x_1 + 14x_2 - 4x_3 + 16x_5 = -6$

3. Test Case C

c) HX = B, yang dalam hal ini H adalah matriks Hilbert yang memiliki bentuk sebagai berikut:

$$H = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \dots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \dots & \frac{1}{n+1} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \dots & \frac{1}{n+2} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ \frac{1}{n} & \frac{1}{n+1} & \frac{1}{n+2} & \dots & \frac{1}{2n+1} \end{bmatrix}$$

dan B =
$$(1, 1, 1, ..., 1)^T$$
. Uji untuk n = 10 dan n = 20.

4. Test Case D

d) Sebuah perusahaan di AS memperoleh keuntungan (sebelum dipotong pajak) sebesar \$100,000. Perusahaan setuju untuk mengkontribusikan 10% dari keuntungannya (setelah dipotong pajak) untuk Corporate Social Responsibility (CSR). Perusahaan membayar pajak daerah sebesar 5% dari keuntungannya (setelah dipotong CSR) dan pajak federal sebesar 40% dari keuntungangannya (setelah dipotong CSR dan pajak daerah). Berapa banyak uang yang dibayarkan perusahaan untuk pajak daerah, pajak federal, dan CSR? Modelkan ke dalam SPL dan selesaikan dengan Gauss/Gauss-Jordan.

5. Test Case E

e) Diberikan sebuah rangkaian listrik sbb:

Anda diminta menghitung arus pada masing-masing rangkaian. Arah arus dimisalkan seperti diatas. Dengan hukum Kirchoff diperoleh persamaan- persamaan berikut :

$$I_{12} + I_{52} + I_{32} = 0$$

 $I_{65} - I_{52} - I_{54} = 0$

$$I_{43} - I_{32} = 0$$

 $I_{54} - I_{43} = 0$

Dari hukum Ohm didapat :

$$I_{32}R_{32} - V_3 + V_2 = 0$$

$$I_{43}R_{43} - V_4 + V_3 = 0$$

$$I_{65}R_{65} + V_5 = 0$$

$$I_{12}R_{12} + V_2 = 0$$

$$I_{54}R_{54} - V_5 + V_4 = 0$$

$$I_{52}R_{52} - V_5 + V_2 = 0$$

Tentukan I_{12} , I_{52} , I_{32} , I_{65} , I_{54} , I_{13} , V_2 , V_3 , V_4 , V_5 bila :

$$R_{12} = 5$$
 ohm, $R_{52} = 10$ ohm, $R_{32} = 10$ ohm,

$$R_{65} = 20$$
 ohm, $R_{54} = 15$ ohm, $R_{14} = 5$ ohm,

$$V_1 = 200 \text{ volt}, V_6 = 0 \text{ volt}$$

6. Test Case F

(f) (Interpolasi) Hampiri fungsi berikut

$$f(x) = \frac{e^{-x}}{1 + \sqrt{x} + x^2}$$

dengan polinom interpolasi derajat n: $p(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$

di dalam selang [a, b]. Gunakan titik-titik selebar h, yang dalam hal ini h = (b - a)/n. Sebagai tes, gunakan selang [0, 5] dan selang [-2, 2], n = 5, 10, dan 12. Tentukan persamaan polinom interpolasi yang dihasilkan.

7. Test Case G

(g.) (Interpolasi) Gunakan tabel di bawah ini untuk mencari polinom interpolasi dari pasangan titiktitik yang terdapat dalam tabel.

х	0.1	0.3	0.5	0.7	0.9	1.1	1.3
f(x)	0.003	0.067	0.148	0.248	0.370	0.518	0.697

Selanjutnya, estimasi nilai fungsi f(x) pada nilai-nilai x berikut:

x = 0.2 f(x) = ?

x = 1.28

x = 0.55 f(x) = ?

x = 0.85 f(x) = ?

f(x) = ?

8. Test Case H

(h) (Interpolasi) Harga rumah baru dari tahun 1950 hingga 1969 mengalami perubahan yang tercatat sebagai berikut:

Tahun	Harga (\$ juta)		
1950	33,525		
1955	46,519		
1960	53,941		
1965	72,319		
1966	75,160		
1967	76,160		
1968	84,690		
1969	90,866		

Carilah polinom yang menginterpolasi data tersebut, lalu prediksilah harga rumah baru pada tahun 1957, 1964, 1970, 1975 (atau nilai lain sesuai masukan user) dengan menggunakan polinom interpolasi derajat 7.

9. Test Case I

(i) (Interpolasi) Viskositas kinematika air, v, diukur pada suhu-suhu tertentu dan diperoleh hasil sebagai berikut:

T (°F)	40	50	60	70	80	90
$v (10^{-5} \text{ ft}^2/\text{detik})$	1.66	1.41	1.22	1.06	0.93	0.84

Carilah polinom yang menginterpolasi data tersebut, dan taksirlah viskositas pada suhu T tertentu (misalnya T = $62^{\circ}F$, T = $75^{\circ}F$, dll)

Pada test case I, viskositas yang ditaksir adalah pada saat T=82°