MATH 322 Assignment 4

Oliver Tonnesen V00885732

March 21, 2019

1

1.a

Reflexive: By definition, \leq is reflexive.

Antisymmetric: Suppose

1. $x \leq y$

 $2. y \leq x$

Then by 1., x is an odd string, and by 2., y is an odd string. We now now that either x = y or x and y are adjacent in Q_n . Both x and y are odd, and can thus not be adjacent in Q_n , so x = y.

<u>Transitive</u>: Suppose $x \leq y$ and $y \leq z$, and that $x \neq y$. Then x is an odd string, meaning y must be an even string. The only b such that there exists an even string a with $a \leq b$ is b = a, so $y \leq z \implies y = z$. We now have that $x \leq y$ and $y \leq z \iff x \leq y$ and $y \leq y$. Thus transitivity holds when $x \neq y$, and we can see that this is trivially true when x = y.

1.b

Let $A = \{x \in X \mid x \text{ is an even string}\}$. Then A is a maximum antichain, since $A = \frac{|X|}{2}$ and Q_n is bipartite.

1.c

Construct our chain cover as follows:

- \bullet Take the lexicographically smallest unmarked element in X, and place it in a chain with the next element in lexicographic order.
- Mark both elements
- Repeat until no unmarked elements remain.

Each chain constructed in this fashion contains two elements, and so we end up with $\frac{|X|}{2}$ chains in our covering – the as the number of elements in our maximum antichain.

2

$$\mathcal{R} \subseteq \mathcal{R}^* \iff \nexists x, y \in X, x \neq y, \text{ s.t. } x\mathcal{T}y \text{ and } y\mathcal{T}x$$

in \mathcal{T} , \mathcal{R} 's transitive closure.

 (\Longrightarrow)

The proof of the forward direction is trivial.

 (\Longleftrightarrow)

We show the contrapositive is true:

 $\mathcal{R} \nsubseteq \mathcal{R}^* \Longrightarrow \exists x, y \in X, x \neq y$, s.t. $x\mathcal{T}y$ and $y\mathcal{T}x$ in \mathcal{T} , \mathcal{R} 's transitive closure.

 \mathcal{R} is not the subset of a partial order, so it must be the case that there are $x, y \in X, x \neq y$ such that $x\mathcal{R}y$ and $y\mathcal{R}x$. These x, y satisfy the above statement, and so our condition holds.

To obtain \mathbb{R}^* , add all elements of the form $x\mathbb{R}x$ and also ensure that if $x\mathbb{R}y$ and $x\mathbb{R}y$, then $x\mathbb{R}z$ for all $x, y, z \in X$.

3

Enumerate the subsets of size $\lfloor \frac{n}{2} \rfloor$. For each subset, pair it with the subset obtained by adding the least element that does not form a set we've already created. A partial example is given below with n = 5:

For $\{1,2\}$, the least element we can add is 3, so we pair $\{1,2\}$ with $\{1,2,3\}$.

For $\{1,3\}$, the least element we can add is not 2, since we've already created the set $\{1,2,3\}$, so we instead add 4, pairing $\{1,3\}$ with $\{1,3,4\}$. For $\{1,4\}$, the least element we can add is 2, so we pair $\{1,4\}$ with $\{1,2,4\}$.

For $\{1,5\}$, the least element we can add is 2, so we pair $\{1,5\}$ with $\{1,2,5\}$.

For $\{2,3\}$, the least element we can add is not 1, since we've already created the set $\{1,2,3\}$, so we instead add 4, pairing $\{2,3\}$ with $\{2,3,4\}$.

And continuing on following the same pattern.

This method works since if we fix any $x \in [n]$, there are exactly n-1 subsets of size $\lfloor \frac{n}{2} \rfloor$ containing it. Similarly, there are n-1 other elements of [n] to add to some subset, so for each subset we consider we can create a superset by adding a single element.

4

Assume for a contradiction that no such S exists. We know that there exists a subset Y not in \mathcal{F} whose complement is also not in \mathcal{F} . In other words, both $\mathcal{F} \cup Y$ and $\mathcal{F} \cup ([n] \setminus Y)$ are not intersecting families. This means that there are sets $U, V \in \mathcal{F}$ such that $U \cap Y = \emptyset$ and $V \cap ([n] \setminus Y) = \emptyset$, a contradiction since U and V must intersect by definition. So our assumption was false and such an S indeed exists for any $|\mathcal{F}| < 2^{n-1}$.

5

Fix some $x \in [n]$, and choose every k subset of [n] containing x. After fixing x, there remain n-1 elements from which to choose the k-1 elements of each k-subset. Thus our intersecting family \mathcal{F} contains exactly $\binom{n-1}{k-1}$ subsets of [n].