Solution des exercices de C.M.

Exo1:
$$E = \{1, 2\}$$
; $P_{11} = 0.6$; $P_{42} = 0.5$
(a) $\frac{5}{9}$ (b) $\frac{4}{9}$.

Exo2: (b)
$$P(X_2 = j) = \sum_{i=1}^{2} \alpha_i P_{ij}$$
, $j = 1, 2$.

$$E_{x03}$$
: (a) $\left[\frac{1}{4}, \frac{1}{4}, \frac{1}{2}\right] P^{3} \left[0, 1, 2\right]$

(b) récurrente, irréductible et apériodique, loi invariante $\Pi = \begin{bmatrix} 10 & 5 & 6 \\ 21 & 21 & 21 \end{bmatrix}$.

Exoy: (a)
$$\pi_1 = \frac{\beta}{1+\beta-\alpha}$$
, $\pi_2 = \frac{1-\alpha}{1+\beta-\alpha}$

(b) (i)
$$\pi_2$$

$$(ii) \frac{1}{\pi_2} = E_2(T_2).$$

$$(iii) (1-\alpha) \pi_1$$

EXO5: I. (Mj) unique
$$\forall j$$
, satisfait les égés de balance $\forall j = \sum_i \pi_i P_i j$.

I. Considérer X_n : le reste de la division de S_n par 13.

i.e.
$$S_n \equiv X_n [13]$$

. Montrer que Xn est une C.M. homogène d'espace d'états E= 20,1,2,...,12} et de matrice de transition

$$P = \begin{bmatrix} 0.1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 0 & ... & 0 \\ 0 & 0 & 1/6$$

(Pour obtenir la ligne suivante, faire une transition cyclique à droite)

- . P est double stochastique
- . d'après I. N= 1/13 +j

Réponse: $\lim_{n\to\infty} P(X_n=0) = \frac{1}{13}$. Exo6 (1) irréductible, apériodique $P(x_n=0) = \frac{1}{13}$.

(2)
$$T = \begin{bmatrix} 12 & 6 & 4 & 3 & 12 \\ 37 & 37 & 37 & 37 & 37 \end{bmatrix}$$

Exo7: Devoir