FEATURES

- Output Switch Current In Excess of 1.5A
- 2% Reference Accuracy
- Low Quiescent Current : 2.5mA(Typ.)
- Operating From 3V to 40V
- Frequency Operation to 100KHz
- Active Current Limiting
- Moisture Sensitivity Level 3D
- MC34063AG is Halogen Free Products

APPLICATION

- Battery Chargers
- NICs / Switches / Hubs
- ADSL Modems
- Negative Voltage Power Supplies

ORDERING INFORMATION

Device	Package	
MC34063AD		
MC34063AGD	SOP-8	
MC34063BD		
MC34063AN	DIP-8	

DESCRIPTION

The MC34063A/B series is a monolithic control circuit delivering the main functions for DC-DC voltage converting. The device contains an internal temperature compensated reference, comparator, duty cycle controlled oscillator with an active current limit circuit driver and high current output switch.

Output voltage is adjustable through two external resistors with a 2% reference accuracy.

Employing a minimum number of external components the MC34063A/B devices series is designed for Step-Down, Step-Up and Voltage-Inverting applications.

Absolute Maximum Ratings (Note 1)

CHARACTERISTIC	SYMBOL	MIN.	MAX.	UNIT
Power Supply Voltage	V _{CC}	-	50	V
Comparator Input Voltage Range	V_{IR}	-0.3	40	V
Switch Collector Voltage	V _{SWC}		40	V
Switch Emitter Voltage(V _{SWC} =40V)	V _{SWE}		40	V
Switch Collector to Emitter Voltage	V _{CE}		40	V
Driver Collector Voltage	V _{dc}	-	40	V
Driver Collector Current (Note 2)	I _{dc}	-	100	mA
Switch Current	I _{SW}	-	1.5	А

Absolute Maximum Ratings (Continued)

CHARACTERISTIC		SYMBOL	MIN.	MAX.	UNIT
Power Discipation (et T. 25°C)	SOP-8	PD _{MAX_SOP-8}		0.625	W
Power Dissipation (at T _A = 25°C)	DIP-8	PD _{MAX_DIP-8}		1.0	W
The arrest Decistors of (*)	SOP-8	$\theta_{JA-SOP-8}$		160	°C/W
Thermal Resistance(*)	DIP-8	$\theta_{JA-DIP-8}$		100	°C/W
Operating Junction Temperature Range		TJ	-40	150	င့
On and in a Anabiant Tananantum Banana	MC34063A	-	0	75	°C
Operating Ambient Temperature Range	MC34063B	T_{AOPR}	-40	85	°C
Storage Temperature Range		T _{STG}	-65	150	°C

Note 1. Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Ordering Information

Operating Ambient Temperature(T _{AOPR}) Range	Package	Order No.	Supplied As	Status
0℃~70℃		MC34063AD	Reel	Active
0℃~70℃	SOP8	MC34063AGD	Reel	Contact us
-40℃~85℃		MC34063BD	Reel	Active
0℃~70℃	DIDO	MC34063AN	Tube	Active
-40 ℃~85 ℃	DIP8	MC34063BN	Tube	Active

^(*) This value depends from thermal design of PCB on which the device is mounted.

PIN CONFIGURATION

PIN DESCRIPTION

Dia Ma		SOP-8 / DIP-8 PKG		
Pin No.	Name	Function		
1	Switch Collector	Internal switch transistor collector		
2	Switch Emitter	Internal switch transistor emitter		
3	Timing Capacitor	Timing Capacitor to control the switching frequency		
4	GND	Ground pin for all internal circuits		
5	Comparator Inverting Input	Inverting input pin for internal comparator		
6	V _{CC}	Voltage supply		
7	I _{PK} Sense	Peak Current Sense Input by monitoring the voltage drop across a external I sense resistor to limit the peak current through the switch		
8	Driver Collector	Voltage driver collector		

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

(Refer to the test circuits, V_{CC} =5V, T_A = T_{LOW} to T_{HIGH} , unless otherwise specified, see note 2)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
OSCILLATO	PR					
Fosc	Frequency	V _{PIN5} =0V, C _T =1nF, T _A =25 ℃	24	33	42	KHz
I _{CHG}	Charge Current	V_{CC} =5 to 40V, T_A =25 $^{\circ}{\rm C}$	24	35	42	μА
I _{DISCHG}	Discharge Current	V_{CC} =5 to 40V, T_A =25 $^{\circ}{\rm C}$	140	220	260	μА
I _{DISCHG} /I _{CHG}	Discharge to Charge Current Ratio	Pin 7= V _{CC} , T _A =25 ℃	5.2	6.5	7.5	
V _{IPK(SENSE)}	Current Limit Sense Voltage	I _{CHG} =I _{DISCHG} , T _A =25 ℃	250	300	350	mV
OUTPUT SV	WITCH				•	
$V_{\text{CE(SAT)}}$	Saturation Voltage, Darlington connection	I _{SW} =1A, Pins 1,8 connected		1.0	1.3	V
V _{CE(SAT)}	Saturation Voltage	I_{SW} =1A, R_{PIN8} =82Ω to V_{CC} , Forced $β \sim 20$		0.45	0.7	V
h_{FE}	DC Current Gain	I_{SW} =1A, V_{CE} =5V, T_A =25 $^{\circ}$ C	50	75		
$I_{C(OFF)}$	Collector Off-State Current	V _{CE} = 40V		0.01	100	μА
COMPARAT	OR					
.,		T _A =25 ℃	1.225	1.25	1.275	V
V_{TH}	Threshold Voltage	T _A =T _{LOW} to T _{HIGH}	1.21		1.29	٧
REG _{LINE}	Threshold Voltage Line Regulation	V _{CC} = 3 to 40V		1	5	mV
I _{IB}	Input Bias Current	V _{IN} = 0V		-5	-400	nA
TOTAL DEV	ICE	·	•	•	•	
l _{cc}	Supply Current	V _{CC} = 5 to 40V, C _T =1nF Pin7= V _{CC} , V _{PIN5} >V _{TH} , Pin2=GND Remaining pins open for MC34063A/B		1.4	4	mA

Note 1. Maximum package power dissipation limit must be observed.

The resulting switch-off time may be adversely affected.

In a Darlington configuration the following output driver condition is suggested:

Forced
$$\beta$$
 of output switch :
$$\frac{I_{C(OUTPUT)}}{I_{C(DRIVER)} \text{--} 7.0 \text{m}4^*} \geq \!\! 10$$

Note 2. T_{LOW} = '-30 °C , T_{HIGH} = '+125 °C

Note 3. If Darlington configuration is not used, care must be taken to avoid deep saturation of output switch.

^{*} Currentless due to a built in $1\mbox{K}\Omega$ anti-leakage resistor

TYPICAL ELECTRICAL CHARACTERISTICS

Emitter Follower Configuration Output

Saturation Voltage vs. Emitter Current

Common Emitter Configuration Output Switch

Saturation Voltage vs. Collector Current

Power Collector Emitter Saturation

Voltage (V_{CE(SAT)}) vs, Temperature

Output Switch ON-OFF Time

vs. Oscillator Timing Capacitor

Darlington Configuration Collector Emitter

Saturation Voltage ($V_{CE(SAT)}$) vs. Temperature

Current Limit Sense Voltage (V_{IPK})

vs. Temperature

TYPICAL ELECTRICAL CHARACTERISTICS (Continued)

Reference Voltage vs. Temperature

Bias Current vs. Temperature

Supply Current vs. Temperature

Supply Current vs. Input Voltage

TYPICAL APPLICATION CIRCUIT

Step-Up Converter

Step-Down Converter

Step-Up with External NPN Switch

Voltage Inverting Converter

Step-Down with External NPN Switch

Step-Down with External PNP Switch

Voltage Inverting with External NPN Switch

Voltage Inverting with External PNP Saturated Switch

Dual Output Voltage

Higher Output Power, Higher Input Voltage

Design Formula Table

Calculation	Step-UP	Step-Down	Voltage Inverting
t _{on} /t _{off}	$\frac{V_{\text{OUT}} + V_{\text{F}} - V_{\text{IN(MIN)}}}{V_{\text{IN(MIN)}} - V_{\text{SAT}}}$	$\frac{V_{\rm OUT} + V_{\rm F}}{V_{\rm IN(MIN)} - V_{\rm SAT}}$	$\frac{\left V_{\rm OUT}\right + V_{\rm F}}{V_{\rm IN} - V_{\rm SAT}}$
(t _{on} /t _{off})max	$rac{1}{ m f_{MIN}}$	$rac{1}{ ext{f}_{ ext{MIN}}}$	$\frac{1}{\mathrm{f}_{\mathrm{MIN}}}$
Ст	$4.0 \times 10^{-5} t_{on}$	$4.0 \times 10^{-5} t_{on}$	$4.0 \times 10^{-5} t_{on}$
I _{PK(SWITCH)}	$2I_{\rm OUT(MAX)}(\frac{t_{\rm off}}{t_{\rm on}}+1)$	2 I _{OUT(MAX)}	$2I_{\text{OUT(MAX)}} \left(\frac{t_{\text{off}}}{t_{\text{on}}} + 1\right)$
R _{SC}	$0.3 / I_{PK(SWITCH)}$	0.3 / I _{PK(SWITCH)}	0.3 / I _{PK(SWITCH)}
L _(MIN)	$(\frac{V_{\text{IN(MIN)}} - V_{\text{SAT}}}{I_{\text{PK(SWITCH)}}}) \times t_{\text{on(max)}}$	$(\frac{V_{\text{IN(MIN)}} - V_{\text{SAT}} - V_{\text{OUT}}}{I_{\text{PK(SWITCH)}}}) \times t_{\text{on(max)}}$	$(\frac{V_{\text{IN(MIN)}} - V_{\text{SAT}}}{I_{\text{PK(SWITCH)}}}) \times t_{\text{on(max)}}$
Co	$9\frac{I_{\rm OUT}t_{\rm on}}{V_{\rm RIPPLE(PP)}}$	$\frac{I_{PK(SWITCH)}(t_{on} + t_{off})}{8V_{RIPPLE(PP)}}$	$9\frac{I_{\text{OUT}}t_{\text{on}}}{V_{\text{RIPPLE(PP)}}}$

TERMS AND DEFINITIONS

V_{SAT} - Saturation voltage of the output switch.

VF - Forward voltage drop of the output rectifier.

The following power supply characteristics must be chosen:

V_{IN} - Nominal input voltage.

V_{OUT} - Desired output voltage.

 I_{OUT} - Desired output current.

 $f_{\text{MIN}}\text{-}$ Minimum desired output switching frequency at the selected values of V_{IN} and I_{O} .

V_{RIPPLE(p-p)} – Desired peak-to-peak output ripple voltage. In practice the calculated capacitor value will need to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation.