Практическая работа №4

Тема. Нелинейные структуры данных. Бинарное дерево.

Цель. Получение умений и навыков разработки и реализаций операций над структурой данных бинарное дерево.

Задание.

1. Разработать программу в соответствии с требованиями варианта. Выполнить реализацию средствами ООП.

Для вариантов с 1 по 7

Вид дерева: идеально сбалансированное из n узлов (не AVL).

- 1. Реализовать операции общие для вариантов с 1 по 7
 - а. Создать идеально сбалансированное бинарное дерево из n узлов. Структура узла дерева включает: информационная часть узла, указатель на левое и указатель на правое поддерево. Информационная часть узла определена вариантом.
 - b. Отобразить дерево на экране, повернув его против часовой стрелки.
- 2. Реализовать операции варианта.
- 3. Разработать программу, демонстрирующую выполнение всех операций.
- 4. Составить отчет, отобразив в нем описание выполнения всех этапов разработки, тестирования и код всей программы со скриншотами результатов тестирования.

Для вариантов с 8 по 15

Вид дерева: дерево выражения.

- 1. Реализовать операции общие для вариантов с 8 по 15
 - а. Создать дерево выражений в соответствии с вводимым выражением. Структура узла дерева включает: информационная часть узла символьного типа: знак операции +, -, * или цифра; указатель на левое и указатель на правое поддерево. В дереве выражения операнды выражений находятся в листьях дерева.
 - b. Исходное выражение имеет формат:
 <формула>::=цифра|<формула><знак операции><формула>
 Примеры: 5; 1+2; 1+2+3*4-5/6.
 Отобразить дерево на экране, повернув его против часовой стрелки.
- 2. Реализовать операции варианта.
- 3. Разработать программу, демонстрирующую выполнение всех операций.
- 4. Составить отчет, отобразив в нем описание выполнения всех этапов разработки, тестирования и код всей программы со скриншотами результатов тестирования.

Для вариантов с 16 по 20

Вид дерева: бинарное дерево поиска (БДП).

- 1. Реализовать операции общие для вариантов с 16 по 20
 - а. Создать бинарное дерево поиска (информационная часть узла определена вариантом). Для этого реализовать операцию вставки нового значения в БДП и использовать ее при создании дерева.
 - b. Отобразить дерево на экране, повернув его против часовой стрелки.
- 2. Реализовать операции варианта.
- 3. Разработать программу, демонстрирующую выполнение всех операций.
- 4. Составить отчет, отобразив в нем описание выполнения всех этапов разработки, тестирования и код всей программы со скриншотами результатов тестирования.

Таблица 1. Варианты заданий

	т	таолица т. Барианты задани
Вариан	Значение	Операции варианта
T	информационной	
	части	
1	Целое число	Определить высоту дерева
		Определить длину пути дерева (количество ребер),
		используя алгоритм прямого обхода
		Вычисляет среднее арифметическое всех чисел в
		дереве.
2	Целое число	Определить количество листьев с положительными
		значениями
		Определить, сколько узлов дерева содержат заданное
		число.
		Увеличить значения узлов вдвое, обходя дерево
		алгоритмом в ширину.
3	Символьное	Вернуть самый левый узел дерева
	значение	Определить длину пути (количество ребер) от корня
		до ближайшего узла с заданным значением
		Найти максимальное значение среди значений листьев
		дерева.
4	Целое число	Определить, в каком поддереве исходного дерева
		больше четных чисел.
		Создать копию исходного двоичного дерева.

5	Вещественное	Вычислить среднее арифметическое чисел левого
	число	поддерева, а также и правого, по отдельности.
		Удалить двоичное дерево
6	Целое число	Используя рекурсивный алгоритм определить
		количество уровней в дереве.
		Вернуть узел с максимальным значением, обходя
		дерево в ширину.
		Определить максимальное и минимальное значения.
7	Символьное Определить уровень, на котором находится	
	значение	значение.
		Определить количество цифр в левом поддереве
		исходного дерева.
		Вывести дерево располагая элементы вертикально.
8	Символьное	Вывод дерева выражений по ширине.
	значение	Вернуть самый левый лист дерева.
		Вычислить значение выражения
9	Символьное	Проверить, является ли дерево деревом выражений.
	значение	Вывести дерево, отобразить его формулу.
		Определить, содержит ли дерево операцию *
10	Символьное	Определить функцию упрощения дерева –
	значение	выражения, заменяя в нем все поддеревья,
		соответствующие формулам: (f+0), (0+f), (f-0), (f*1),
		(1*f) на поддеревья, соответствующие формуле f. A
		поддеревья вида (f*0) и (0*f) заменить на вершину с
		0.
		Отобразить дерево, используя алгоритм обхода в
		ширину.
11	Символьное	Построить дерево выражения по префиксной форме
	значение	арифметического выражения, в котором операнды
		одно буквенные идентификаторы и знаки
		арифметических операций.
		Вывести построенное дерево прямым обходом в
		глубину.

12	Символьное	Построить дерево по постфиксной форме		
	значение	арифметического выражения (представлено в		
		строковом формате), в котором операнды		
		однозначные числа и операции – арифметические		
		операции.		
		Вывести построенное дерево, обходя его в обратном		
		порядке.		
13	Символьное	Образовать префиксную форму выражения		
	значение	содержащегося в дереве выражения, и записать ее в		
		строку.		
		Вычислить значение выражения по дереву.		
		Вычислить значение выражения по префиксной		
		форме.		
14	Символьное	Подсчитать количество узлов на заданном уровне.		
	значение	Вычислить значение выражения в левом поддереве.		
		Вывести префиксную форму левого поддерева.		
15	Символьное	Вычислить значение выражения в левом поддереве.		
	значение	Вычислить значение выражения в правом поддереве.		
		Вернуть корень дерева и вычислить значение		
		выражения, используя значения левого и правого		
		подвыражений.		
16	Целое число	1) Определить сумму значений, находящихся в		
		листьях дерева, используя алгоритмом обратного		
		обхода		
		2) Удалить максимальный элемент дерева.		
		Считать, что такой элемент один.		
		3) Вставить новый элемент в дерево		
		4) Определить количество узлов в каждом		
		поддереве.		
17	Целое число	1) Определить среднее арифметическое всех узлов		
		дерева, используя алгоритм обхода в «ширину».		
		2) Определить количество узлов в дереве.		
		3) Удалить самый левый лист дерева		
		4) Определить уровень, на котором находится		
		заданное значение.		

18	Символьное	1) Определить уровень, на котором находится узел		
	значение	с заданным значением.		
		2) Вставить новый узел в дерево		
		3) Определить, какое из поддеревьев выше.		
		4) Удалить дерево.		
19	Содержит	1) Вставить новое значение в дерево с учетом того,		
	символьное	что он может вставляться несколько раз (частота		
	значение и	появления в тексте).		
	счетчик	2) Определить, количество цифр в дереве,		
	(подсчитывает	используя алгоритм обратного обхода.		
	сколько раз в	3) Удалить узлы, содержащие не цифры.		
	дерево вставлялся	4) Вывести значения узлов в порядке убывания.		
	символ)			
20	Содержит текст и	Условие. Узлы включаются в дерево в соответствии со		
	количество в нем	и значением количества цифр в тексте.		
	цифр.	1) Определите количество узлов, текст которых		
		содержит более трех цифр.		
		2) Удалить узел, не содержащий в тексте цифр.		
		3) Вывести текст, в котором максимальное		
		количество цифр.		
		4) Создание копии дерева.		

Контрольные вопросы.

- 1. Что определяет степень дерева?
- 2. Какова степень сильноветвящегося дерева?
- 3. Что определяет путь в дереве?
- 4. Как рассчитать длину пути в дереве?
- 5. Какова степень бинарного дерева?
- 6. Может ли дерево быть пустым?
- 7. Дайте определение бинарного дерева?
- 8. Дайте определение алгоритму обхода.
- 9. Приведите рекуррентную зависимость для вычисления высоты дерева.
- 10.Изобразите бинарное дерево, корень которого имеет индекс 6, и которое представлено в памяти таблицей вида

Индекс	key	left	right
1	12	7	3

2	15	8	NULL
3	4	10	NULL
4	10	5	9
5	2	NULL	NULL
6	18	1	4
7	7	NULL	NULL
8	14	6	2
9	21	NULL	NULL
10	5	NULL	NULL

11. Укажите путь обхода дерева по алгоритму: прямой; обратный; симметричный

- 12. Какая структура используется в алгоритме обхода дерева методом в «ширину»?
- 13. Выведите путь при обходе дерева в «ширину». Продемонстрируйте использование структуры при обходе дерева.

- 14. Какая структура используется в не рекурсивном обходе дерева методом в «глубину»?
- 15.Выполните прямой, симметричный, обратный методы обхода дерева выражений.

- 16.Для каждого заданного арифметического выражения постройте бинарное дерево выражений:
 - $a \quad a+b-c*d+e$
 - b /a-b*c d
 - c a b c d / *
 - d * / + a b c d e
- 17.В каком порядке будет проходиться бинарное дерево, если алгоритм обхода в ширину будет запоминать узлы не в очереди, а в стеке?
- 18.Постройте бинарное дерево поиска, которое в результате симметричного обхода дало бы следующую последовательность узлов?
- 19.40 45 46 50 65 70 75
- 20. Приведенная ниже последовательность получена путем прямого обхода бинарного дерева поиска. Постройте это дерево.
- 21.50 45 35 15 40 46 65 75 70
- 22. Дано следующее бинарное дерево поиска

Покажите дерево:

а после включения узлов 1 48 75 100

- b после удаления узлов 5, 35
- с после удаления узла 45
- d после удаления узла 50
- е после удаления узлов 5, 35
- f после удаления узла 65 и вставки его снова
- g после удаления узлов 5, 35