DISTRIBUCIONES

PROBABILIDAD Y ESTADISTICA

Donald MacAlister

Francis Galton

LOGNORMAL

ORIGEN DISTRIBUCIÓN

Dos matemáticos británicos, Francis Galton y Donald MacAlister, introdujeron la distribución lognormal en 1879, aunque a veces se denomina distribución de Galton.

··"Lognormal | ResearchGate."

CARACTERÍSTICAS

$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left\{\frac{-(\log x - \mu)^2}{2\sigma^2}\right\} \qquad F(x) = \Phi\left(\frac{-\ln x - c}{\sigma}\right)$$

FUNCIÓN DE DENSIDAD FUNCIÓN DE DISTRIBUCION

$$F(X) = \Phi \left(\frac{\ln_X - c}{\sigma} \right)$$

VARIANZA DE X

$$E(X) = (e^{\sigma^{2}-1}) e^{2\mu+\sigma}$$

MEDIA DE X

 $E(x) = e^{\mu + \frac{\sigma}{2}}$

APLICACIONES

Esta distribución tiene aplicaciones como:

- Falla debido a reacciones químicas o degradación, como corrosión, migración o difusión, que es común en el caso de los semiconductores.
- Tiempo para fractura en metales sujetos al crecimiento de roturas por fatiga.
- Componentes electrónicos que presentan menor riesgo de falla después de cierto tiempo.

EJEMPLO

La ganancia X, de corriente, en ciertos transistores se mide en unidades iguales al logaritmo de la relación de la corriente de salida con la de entrada (10 / 1i = X). Si este logaritmo, Y, es normalmente distribuido con parámetros μ = 2 y σ 2 = 0.01.

Determinar:

- a) P(X > 6.1).
- b) P(6.1 <. X <. 8.2).

"R: Distribución Logarítmica Normal - Aqueronte." 18 jun. 2009,

R: Distribución Logarítmica Normal.	
dlnorm(x, meanlog, sdlog, log = F)	Devuelve resultados de la función de densidad.
plnorm(q, meanlog, sdlog, lower.tail = T, log.p = F)	Devuelve resultados de la función de distribución acumulada.
qlnorm(p, meanlog, sdlog, lower.tail = T, log.p = F)	Devuelve resultados de los cuantiles de la distribución Lognormal.
rlnorm(n, meanlog, sdlog)	Devuelve un vector de valores de la distribución Lognormal aleatorios.

Solución:

- a) P(X > 6.1).
- > plnorm(6.1, meanlog = 2, sdlog = sqrt(0.01), lower.tail = F) [1] 0.9723882.
- b) P(6.1 <. X <. 8.2).
- > plnorm(8.2, meanlog = 2, sdlog = sqrt(0.01), lower.tail = T) plnorm(6.1, meanlog = 2, sdlog = sqrt(0.01), lower.tail = T) [1] 0.8235296

RELACIONES ENTRE DISTRIBUCIONES UNIVARIADA

Distribución normal **T**

Distribución lognormal

https://www.researchgate.net/publication/320313796_Lognormal . Se consultó el 29 mar. 2022.'