

EE/CSCI 451: Parallel and Distributed Computation

Lecture #10

9/17/2020

Viktor Prasanna

prasanna@usc.edu

ceng.usc.edu/~prasanna

University of Southern California

Announcement

- Midterm 1 date: 9/25
 - 3:30 5:30 PM
- HW3 due 9/17 (Today)
- PHW3 due 9/24
- HW4 released (due 9/24)
- HW2 grades are out

HW2 Statistics	
Average	79.4
Median	96.0
Standard Deviation	35.5

Announcement: Midterm1 Logistics

Online Proctored Exam:

- Time: Week 6 discussion session 2 hours: 3:30-5:30PM (Los Angeles time)
- Format: Open-book, open-notes [Attendence is required, no make-up given]
- Proctoring: 2 proctors watching different subgroups of students in separate Zoom meetings, links will be sent to students in advance
 - Require camera-enabled device
- Receiving and returning your exam:
 - Exam will be released on Piazza under resource page at/around 3:26 PM
 - You will submit the completed exam on Blackboard (a submission portal will be created in advance)
- Completing your exam:
 - Option 1 Download the assignment pages (exam pages) as pdf files on to your tablet and annotate it with your answers. Only hand-annotated pdf files are acceptable.
 - Require a writable tablet device
 - Option 2 Download and print the exam pages, print it out and write on paper. Scan the paper and save into PDF format
- Coverage: Week 1-Week 5 contents (Week 6 contents analytical modeling & communication primitives not covered)
- Special note 1: Important discussion attendance is required on Week 5 (Sept 18)!
 - 10-min midterm trial run to make sure all students are prepared for and comfortable with the exam process
- Special note 2:
 - We have created a Piazza poll to collect info regarding your available resources/capabilities to complete the exam with writable tablet. Everyone is **required to participate in the poll**

Outline

- From last class
 - Communication Cost in Parallel Machines
 - Message Passing Machines
 - Routing mechanisms
 - Cut through routing
 - LogP Model
 - Routing in Interconnection Networks
- Today
 - Program and Data Mapping
 - Graph embedding problem
 - Metrics
 - Network model
 - Simulations

Program and Data Mapping (1)

• Parallel Program = Collection of Processes

+

Interaction among Processes

Each process = Computation + Data access

- Classic problem:
 - Given a parallel program, embed (map) processes and data onto a given parallel architecture such that
 - communication cost is minimized
 - overall execution time is minimized

Program and Data Mapping (2) A simple abstraction

Graph embedding problem

Program and Data Mapping (3)

Graph embedding problem

Given parallel program and parallel architecture

$$G(V,E)$$
 $G'(V',E')$ undirected

Function $f: V \to V'$

Each edge in E specifies a path in G'

Function $g: E \rightarrow \text{paths in } G'$

For every edge (a, b) in E, g specifies a path in G', such that the end points in G' are f(a) and f(b)

Note: 1. |V'| can be larger than |V|

2. A vertex in V' may correspond to more than one vertex in V

Program and Data Mapping (4)

• Example:

Mapping functions:

•
$$f: i \to i$$

• $g: (1,2) \to (1,2)$
• $(2,3) \to (2,3)$
• $(1,3) \to (1,2), (2,3)$

Program and Data Mapping (5)

Metrics

Congestion: Max number of edges in E mapped to an edge in E'

(on edges)

Dilation: Edge in $E \rightarrow$ Path in E'

Max path length in E' // Max over all edges in E

Expansion: |V'|/|V|

It is also possible |V'| < |V|

for example: virtualization

Program and Data Mapping (6)

Congestion: Max number of edges in E (path length in E') mapped to an edge in E'

Congestion = Max
$$\{\# \text{ of edges } \in G \text{ mapped to } e'\}$$

 $e' \in G'$

Program and Data Mapping (7)

Dilation: maximum number of edges in E' that any edge in E is mapped onto

Dilation = Max {length of path g(a, b) in G'} $(a, b) \in E$

Program and Data Mapping (8)

Example: Collapsed Hypercube

- f: vertex i, i + 4 in $G \rightarrow$ vertex i in G', $0 \le i \le 3$
- $g: (0,1) \to (0,1)$ $(1,2) \to (1,2)$ $(2,3) \to (2,3)$ $(3,0) \to (3,0)$ $(4,5) \to (0,1)$ $(5,6) \to (1,2)$ $(6,7) \to (2,3)$ $(7,4) \to (3,0)$

Program and Data Mapping (9)

Embedding a Linear Array in Hypercube

A linear array (with wrap around) of size $n=2^k$ can be embedded in hypercube of size n such that

- Expansion = 1
- Dilation = 1
- Congestion = 1

Program and Data Mapping (10)

Note: Hypercube with $n = 2^k$ nodes

Each node represented using k-bit number

Distance 2^l links — all edges(i,j) $0 \le i,j < n$, s.t. node j is obtained from node i by complementing bit l, $0 \le l < k$

Total number of distance 2^l links = $\frac{n}{2}$, $0 \le l < k$ {also called dimension l link}

Program and Data Mapping (11)

A three bit reflected Gray code ring

Program and Data Mapping (12)

Embedding a 2^k -node ring into a n-dimensional hypercube Mapping function

 $f\colon i o {
m Gray\ code\ of}\ i$ Let $b_{k-1},b_{k-2},\ldots,b_1,b_0$ be the binary representation of i, the Gray code of i is $b_{k-1},(b_{k-1}\oplus b_{k-2}),\ldots,(b_2\oplus b_1),(b_1\oplus b_0)$

g: edge connecting the two end points in hypercube

Note: In the Gray code sequence, any two adjacent elements in the sequence are connected by an edge in the hypercube

only one bit changes

Program and Data Mapping (13)

Example for n = 8

Mapping function

fg
$$0 \rightarrow 0$$
 $(0,1) \rightarrow (0,1)$ $1 \rightarrow 1$ $(1,2) \rightarrow (1,3)$ $2 \rightarrow 3$ $(2,3) \rightarrow (3,2)$ $3 \rightarrow 2$ $(3,4) \rightarrow (2,6)$ $4 \rightarrow 6$ $(4,5) \rightarrow (6,7)$ $5 \rightarrow 7$ $(5,6) \rightarrow (7,5)$ $6 \rightarrow 5$ $(6,7) \rightarrow (5,4)$ $7 \rightarrow 4$ $(7,0) \rightarrow (4,0)$

Program and Data Mapping (14)

Example: Embedding butterfly network (FFT computation graph) in a linear array

Program and Data Mapping (15)

Congestion $\propto n$

Program and Data Mapping (16)

Dilation =
$$\frac{n}{2}$$

Program and Data Mapping (17)

- n input butterfly network can be embedded in n node 1-D array
 - Congestion $\propto n$
 - Dilation = $\frac{n}{2}$
 - Expansion = $\frac{1}{1 + \log_2 n}$

Program and Data Mapping (18)

• Embedding Hypercube in Linear Array

Congestion
$$\propto \frac{n}{2}$$
 (edge (3,4))

Dilation =
$$\frac{n}{2}$$

Embedding Hypercube on 2-D Mesh (1)

• Embedding Hypercube of size n on a 2-D mesh of size n

Hypercube of size $n \rightarrow 2$ -D mesh of size n

Congestion
$$\propto \frac{\sqrt{n}}{2}$$

Dilation =
$$\frac{\sqrt{n}}{2}$$

Network Model (1)

Shared nothing model
Synchronous execution

p processors + interconnections (static network)

Each step:

In each processor

Compute using data available in the processor

Communicate 1 unit of message along an incident edge

{Compute – Communicate} Repeat

Note: Some models allow communication along all incident edge

Network Model (2)

Computation and communication time

Step: communicate only (no computation)

compute time can be < communication time

Network Model (3)

Communication Cost in Network Model

Ex. 1-D Mesh

$$i \rightarrow i + 1$$
, $i - 1$

Synchronous model

Unit of time:

- Local operation
- Unit data communication using a link

Note: In p processor network model, in each step we can perform p operations in parallel and p communications in parallel.

Network Model (4)

Adding n numbers using n processors on hypercube network model

Input:
$$A(0)$$
, ... $A(n-1)$
 $A(i)$ is stored in P_i , $0 \le i < n$

Output: $\sum_{i=0}^{n-1} A(i)$ in P_0

A(0)	
(n-1)	

Network Model (5)

Adding n numbers using n processors on hypercube network model

Parallel algorithm

```
Program in P_i, 0 \le i \le n-1
\operatorname{Do} j = 0 \text{ to } \log_2 n - 1
\operatorname{If} i = k \cdot 2^{j+1}, \text{ for some } k \in N
\operatorname{Receive} A(i+2^j) \text{ from } P_{i+2^j}
A(i) \leftarrow A(i) + A(i+2^j)
\operatorname{End if}
\operatorname{End}
T_{comunication} = O(\log n)
T_{computation} = O(\log n)
```

Network Model (6)

 $n \times n$ Matrix Multiplication using $n \times n$ 2-D mesh (with wrap around)

Systolic Array

O(n) time solution

Accelerators

Type of network	# of network layers	# of weights	% of deployed
MLP0	5	20M	61%
MLP1	4	5M	
LSTM0	58	52M	29%
LSTM1	56	34M	
CNN0	16	8M	5%
CNN1	89	100M	

Google TPU

Simulation of Hypercube on 1-D Mesh (1) Embedding hypercube in 1-D mesh

Simulation of Hypercube on 1-D Mesh (2)

Does embedding lead to simulating one network on another? Eg.

ightarrow 1-D mesh

Runs in time T(n) * dilation ?

Effect of congestion?

Hypercube size
$$n = 2^k$$

1-D mesh size n

 $\frac{n}{2}$ links along dimension l, $0 \le l < k$

Mapping function
$$f: i \rightarrow i, 0 \le i < n$$
 $g: (i,j) \rightarrow \text{unique path between } f(i)$ and $f(j)$ in 1-D mesh

Simulation of Hypercube on 1-D Mesh (4)

Theorem

In a $n = 2^k$ node hypercube mapped to 1-D mesh, **all** communications in dimension l can be performed in time $O(2^l)$ on the 1-D mesh, $0 \le l < k$.

Example: k = 3, suppose l = k - 1 = 2

Pipeline the communication

Note: Total volume of data communicated = $\frac{n}{2}$

Simulation of Hypercube on 1-D Mesh (5)

On n-node hypercube (network model), let,

Computation time = $T^H(n)$

of communication steps along dimension $l = T_l^H(n)$

Theorem

In the network model, any algorithm on n-node hypercube, n= 2^k can be mapped to n-node 1-D mesh such that

Time on hypercube = $T^H(n) + \sum_{l=0}^{k-1} T_l^H(n)$

Time on 1-D mesh = $T^{H}(n) + \sum_{l=0}^{k-1} T_{l}^{H}(n) \cdot 2^{l}$

Summary

- Program and Data Mapping
 - Graph embedding problem
 - Metrics
 - Congestion
 - Dilation
 - Expansion
 - Network model
 - Simulation
 - Hypercube on 1-D mesh