Single Parameter Domain

Lecture 11.9

The allocation rules implementable in DSE in the single parameter domain are monotone allocation rule.

Recall: The allocation rules implementable in DSE in quari-linear environment (Grove's Theorem and Robert's Theorem) are the affine maximizers.

Example of affine meximizer: $k(\theta_{1},...,\theta_{n}) = \underset{k \in \mathbb{R}}{\operatorname{argmex}} \sum_{i=1}^{n} \underset{i=1}{\operatorname{ar}} v_{i}(k,\theta) + c$ $k \in \mathbb{R}$ $ai \geqslant 0, c \in \mathbb{R}$ Monotone Examples of manutine allocation rules which are not $K(\theta_1,...,\theta_n) = \underset{K \in \mathcal{R}}{\operatorname{arg max}} \sum_{i=1}^{n} \underset{i=1}{\operatorname{arg max}} \left(K, \theta_i \right) + C$ affine maximiter: ai, 7: ER>,0, cER.

Recell, we have worked with a restricted version of single parameter domain.

Mayerson's Lemma: We have the following in any singleparameter domain.

- (i) An allocation rule $k: \Theta \to \mathcal{R}$ is DSIC if and only if $k(\cdot)$ is monotone in each θ_i .
- (ii) If $k(\cdot)$ is ministrae, there there exist unique payment rules $t_1(\cdot),...,t_n(\cdot)$ where players reporting 0

as their type do not pay anything such that the mechanism $f(\cdot) = (k(\cdot), t_1(\cdot), ..., t_n(\cdot))$ is DSIC.

(ii) The payment rule of part (ii) is given by the following explicit formula. $t:(\theta;\theta;) = -\int_{0}^{2} \frac{d}{dt} k:(\theta;\theta;) d\theta.$

where $k(\cdot) = (k_1(\cdot), ..., k_n(\cdot))$, $k_1(\cdot)$ is differentiable in

its domain.

k; (1,9;) If $k_i(\cdot)$ is a step function having jumps et 20,2,, 22,... $t_{i}(\theta_{i},\theta_{i}) = k_{i}(z_{0},\theta_{i}).(z_{1}-z_{0}) + k_{i}(z_{1},\theta_{i}).(z_{2}-z_{i})$ Uniquenen of VCG Payment Rule: Assume Dis some Fuclidean spice for every if[n]. Let f() = (k(·), t₁(·),..., t_n(·)) be DSIC. If f'()=(k(·), t₁(·),... th(·)) is who DSIC, then

