Curso 0 Sesión 3

Departamento de Matemáticas

Escola Politécnica de Enxeñaría de Ferrol

Curso 2025-2026

Índice

- Derivada dunha función
- 2 Métodos de derivación
- 3 Aplicacións ao estudo de funcións

Derivada dunha función real de unha variable

Sexa $U \subset \mathbb{R}$ un conxunto aberto e $f: U \to \mathbb{R}$. Sexa $x_0 \in U$. A derivada de f en x_0 (en caso de existir) é o límite:

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Equivalentemente, unha función é diferenciable se existe un número $f'(x_0)$ tal que

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - f'(x_0)(x - x_0)}{x - x_0} = 0$$

Observación. Segundo o debuxo, a recta tanxente vén dada por

$$y = f(x_0) + f'(x_0)h$$

ou, equivalentemente,

$$y = f(x_0) + f'(x_0)(x - x_0)$$

Táboa de supervivencia de derivadas

Función	Función derivada
$f(x)=x^n$	$f'(x) = n x^{n-1}$
$f(x) = \operatorname{sen} x$	$f'(x) = \cos x$
$f(x)=\cos x$	$f'(x) = -\operatorname{sen} x$
$f(x) = \tan x$	$f'(x) = 1 + \tan^2 x = \frac{1}{\cos^2 x}$
f(x) = arcsen x	$f'(x) = \frac{1}{\sqrt{1-x^2}}$
$f(x) = \arctan x$	$f'(x) = \frac{1}{1+x^2}$
$f(x) = e^x$	$f'(x)=e^x$
$f(x)=a^x,\ a>0$	$f'(x) = \log a \cdot a^x$
$f(x) = \log x$	$f'(x) = \frac{1}{x}$
$f(x) = \log_a x$	$f'(x) = \frac{1}{x \cdot \log a}$

Fórmulas de derivación

Sexan f e g dúas funcións reais de variable real.

Derivada dun produto:

$$\left(f(x)\cdot g(x)\right)'=f'(x)g(x)+f(x)g'(x)$$

Derivada dun cociente:

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

Derivada dunha composición (Regra da cadea):

$$(g \circ f)'(x) = g'(f(x))f'(x)$$

Derivación da función inversa

Derivación da función inversa

Sexa f unha función inxectiva e continua nun intervalo I e sexa J = f(I). Se f é derivable en $a \in I$ e $f'(a) \neq 0$ entón f^{-1} é derivable en b = f(a) e

$$(f^{-1})'(b) = (f^{-1})'(f(a)) = \frac{1}{f'(f^{-1}(b))} = \frac{1}{f'(a)}.$$

Exemplos:

• A función f(x) = sen(x) (definida en $I = (-\pi/2, \pi/2)$) ten inversa $f^{-1}(y) = \text{arcsen}(y) = x$. Posto que $f'(x) = \cos x$, temos:

$$(f^{-1})'(y) = \frac{1}{f'(x)} = \frac{1}{\cos x} = \frac{1}{\sqrt{1 - \sin^2(x)}} = \frac{1}{\sqrt{1 - \sin^2(\operatorname{arcsen}(y))}} = \frac{1}{\sqrt{1 - y^2}},$$

onde hay que ter en conta que $\cos x > 0$, pois $x \in (-\pi/2, \pi/2)$.

• A función $f(x) = e^x = y$ ten inversa $f^{-1}(y) = \log y = x$. Posto que $f'(x) = e^x$, temos:

$$(f^{-1})'(y) = \frac{1}{f'(x)} = \frac{1}{f'(\log y)} = \frac{1}{e^{\log y}} = \frac{1}{y}.$$

Uso de logaritmos en cálculo de derivadas

Hai ocasións nas que é máis sinxelo calcular a derivada do logaritmo dunha función, chamada **derivada logarítmica**, que a da propia función. Isto pode utilizarse para achar a derivada da función. Así, se y = f(x) con f(x) positiva,

$$\log y = \log f(x) \Rightarrow (\log f(x))' = \frac{f'(x)}{f(x)}$$

e, polo tanto,

$$f'(x) = f(x)(\log f(x))'.$$

Por exemplo, se $f(x) = x^x$,

$$\log f(x) = x \log x \Rightarrow \frac{f'(x)}{f(x)} = \log x + 1,$$

de onde obtemos:

$$f'(x) = x^x (1 + \log x)$$

Extremos de funcións

Crecemento / decrecemento / extremos relativos

Sexa $f:U\subset\mathbb{R}\longrightarrow\mathbb{R}$ unha función definida nun entorno U dun punto $a\in\mathbb{R}$. Se a función é n veces derivable en a e ademais:

$$f'(a) = f''(a) = \dots = f^{(n-1)}(a) = 0$$
 y $f^{(n)}(a) \neq 0$,

entón, segundo a paridade de n e o signo de $f^{(n)}(a)$, tense que:

- Se n é par e $f^{(n)}(a) > 0$, entón f ten un mínimo relativo en x = a.
- Se n é par e $f^{(n)}(a) < 0$, entón f ten un máximo relativo en x = a.
- Se n é impar e $f^{(n)}(a) > 0$, entón f crece estritamente no punto x = a.
- Se n é impar e $f^{(n)}(a) < 0$, entón f decrece estritamente no punto x = a.

Concavidade/convexidade

Concavidade / convexidade / puntos de inflexión

Sexa $f:U\subset\mathbb{R}\longrightarrow\mathbb{R}$ unha función definida nun entorno U dun punto $a\in\mathbb{R}$. Se a función f é n veces derivable en a e cúmprese que:

$$f''(a) = ... = f^{(n-1)}(a) = 0$$
 y $f^{(n)}(a) \neq 0$,

entón, dependendo da paridade de n e o signo de $f^{(n)}$, tense que:

- Se n é par e $f^{(n)}(a) > 0$, entón f é convexa en a.
- Se n é par e $f^{(n)}(a) < 0$, entón f é cóncava en a.
- Se n é impar, entón f ten un punto de inflexión en x = a.

Regra de l'Hôpital

Regla de l'Hôpital

Sexan $f,g:I\subset\mathbb{R}\longrightarrow\mathbb{R}$ dúas funcións diferenciables nun entorno do punto $x_0\in I$ con $g'(x_0)\neq 0$, entón cúmprese que:

1 Indeterminacións do tipo $\frac{0}{0}$.

$$\left[\lim_{x\to x_0} f(x) = 0, \lim_{x\to x_0} g(x) = 0, \lim_{x\to x_0} \frac{f'(x)}{g'(x)} = \ell\right] \Rightarrow \lim_{x\to x_0} \frac{f(x)}{g(x)} = \ell.$$

2 Indeterminacións do tipo $\frac{\infty}{\infty}$.

$$\left[\lim_{x\to x_0} f(x) = \infty, \ \lim_{x\to x_0} g(x) = \infty, \ \lim_{x\to x_0} \frac{f'(x)}{g'(x)} = \ell\right] \Rightarrow \lim_{x\to x_0} \frac{f(x)}{g(x)} = \ell.$$

Ademais, a regra segue sendo válida se o punto x_0 no que se estuda o límite é infinito ($x_0 = \pm \infty$), se o límite ℓ é infinito ou se se substitúe a tendencia cara x_0 ($x \to x_0$) por unha tendencia lateral ($x \to x_0^{\pm}$).

Curso 0 Sesión 3

Departamento de Matemáticas

Escola Politécnica de Enxeñaría de Ferrol

Curso 2025-2026