Vectors and Coordinates

1 a. Let \vec{A} be an arbitrary vector and let \hat{n} be a unit vector in some direction. Show that

$$\vec{A} = (\vec{A} \cdot \hat{n})\hat{n} + (\hat{n} \times \vec{A}) \times \hat{n}$$

- b. Let \hat{a} and \hat{b} be unit vectors in the xy plane making angles θ and ϕ with x-axis, respectively. Express vectors \hat{a} and \hat{b} in terms of unit vector \hat{i} and \hat{j} and hence prove $\cos(\theta \phi) = \cos\theta\cos\phi + \sin\theta\sin\phi$.
- 2. Write down the rotation matrix $R_z(\theta)$ for rotation about z -axis by an angle θ . Also write down the matrix $R_z(\phi)$ (rotation about x-axis by an angle ϕ).
- a) Show that $R_z(\theta)R_x(\phi) \neq R_x(\phi)R_z(\theta)$ by multiplication of matrices.
- b) Now take the limit, $\theta \to \delta\theta$, $\phi \to \delta\phi$ where $\delta\theta$ (and $\delta\phi$) \to 0 so that $\sin(\delta\theta) \to \delta\theta$ and $\cos(\delta\phi) \to 1$, show that $R_z(\delta\theta)R_z(\delta\phi) = R_z(\delta\phi)R_z(\delta\theta)$
- c) What is the physical implication of this result?
- 3. The equation of a simple harmonic oscillator in the presence of a frictional force is given as

$$m\frac{d^2u}{dt^2} + c\frac{du}{dt} + ku = F_0 \sin \omega t \text{ where the oscillator is driven by an external periodic force } F_0 \sin \omega t$$

Cast the equation in a dimensionless form.

- 4 a. A particle moves in a plane with a constant radial velocity $\dot{r}=4\,$ m/s. The angular velocity is constant and has magnitude $\dot{\phi}=2\,$ rad/s. When the particle is 3 m away from the origin, find the magnitude of (a) the velocity and (b) the acceleration. (Kleppner 1.17).
- b. If $\vec{r} \times \vec{v}$ is a constant vector, show that the acceleration is along the radius vector. Conversely, if the acceleration is radial show that $\vec{r} \times \vec{v}$ is constant. Interpret the result physically.
- 5. A tire rolls in a straight line without slipping. It center moves with a constant velocity V. A small pebble is lodged in the tread of the tire touches the road at t=0. Find the velocity of the pebble and hence the position and acceleration as a function of time.

Additional Problems:

- 1. The direction cosines of a vector are the cosines of the angles it makes with the coordinate axes. The cosines of the angles between the vector and the x, y, z axes are usually called α , β and γ . Prove that $\alpha^2 + \beta^2 + \gamma^2 = 1$
- 2. Derive Sine law $\frac{\sin \alpha}{A} = \frac{\sin \beta}{B} = \frac{\sin \gamma}{C}$ where α , β and γ are the angles opposite to the vectors A,B and C which form a triangle.
- 3. Considering a rotation about z-axis, show that $\vec{A} \cdot \vec{B}$ is a scalar and the components of transform like a vector.

- 4. A particle of mass m is moving in the xy plane. Express the kinetic energy $\frac{m}{2}(\dot{x}^2+\dot{y}^2)$ in polar coordinates.
- 5. i) Find out the unit vectors \hat{e}_{ρ} , \hat{e}_{ϕ} and \hat{k} in cylindrical co-ordinate system and hence show that the co-ordinate system is orthogonal.
- ii) Show that an elementary volume is given as $d\tau$ = $\rho d\rho dz d\phi.$ Integrate ρ from 0 to a, ϕ from 0 to 2π and z from 0 to h.
- iii) Express the velocity and acceleration of a particle in cylindrical co- ordinates.
- iv) Find the expression for kinetic energy in cylindrical coordinates.
- 6. The expression of a force: $\vec{F} = -\hat{i} \frac{y}{x^2 + y^2} + \hat{j} \frac{x}{x^2 + y^2}$; considering a rotation about z-axis by an angle ϕ and find out F_x' and F_y' .