Deep RNN Problem Set

Group 6

1

Below is a diagram for a Long Short-Term Memory unit:

The formulas for the composite function \mathcal{H} in a LSTM are defined as:

$$\begin{array}{lll} \text{Input Gate} & i_t = \sigma(W_{xi}x_t + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i) \\ \text{Forget Gate} & f_t = \sigma(W_{xf}x_t + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f) \\ \text{Cell activation} & c_t = f_tc_{t-1} + i_t \mathrm{tanh}(W_{xc}x_t + W_{hc}h_{t-1} + b_c) \\ \text{Output Gate} & o_t = \sigma(W_{xo}x_t + W_{ho}h_{t-1} + W_{co}c_t + b_o) \\ \text{Hidden vector} & h_t = o_t \mathrm{tanh}(c_t) \\ \end{array}$$

A RNN that just uses an activation function could have the following equation for \mathcal{H} :

$$h_t = \sigma(W_{xh}x_t + W_{hh}h_{t-1} + b_h)$$

What are some benefits of using an LSTM over just an activation function? Any downsides?

What is the benefit of using Deep layers for the RNN unit, or rather what is the difference between using a Deep RNN with n layers and running an RNN n x T times?