

Lecture 3: Bayes Theorem and Inference

Lecturer: Jie Fu, Ph.D.

Outline

- Bayes Theorem
- Statistical Independence

Related applications

- Disease Diagnosis: Detecting cancer based on medical imaging results. Estimating the probability of infection based on symptoms and diagnostic test outcomes.
- **Spam Filtering**: Bayesian spam filters calculate the probability of an email being spam based on keywords and patterns.
- Bayesian Neural Networks: Incorporating uncertainty in predictions by treating weights as distributions instead of fixed values.
- **Sensor Fusion**: Combining data from multiple sensors (e.g., GPS and IMU) to improve state estimation.

A motivating problem

• A magician has two coins, one fair and one 2-headed coin. Consider the experiment where she picks one coin at random and flips it once, the output is a head, what is the probability that the coin is a fair coin?

- Initial belief $P(A_i)$ for possible cause of an observed event B. e.g. Both coins are equally likely —- a prior knowledge:
- probability of the observation under each A_i : e.g. Probability of a head under each coin. $A_i \xrightarrow{\text{model}} B$
- Draw conclusion about the cause given the observed event.

 e.g. infer if the coin is fair or biased. $B \xrightarrow{\text{Inference}} A_i$

Venn diagram visualization

$$A_i \xrightarrow{\mathsf{model}} B$$
 $\mathbf{P}(B \mid A_i)$

Bayes Theorem

Consider two events A and B, by the chain rule:

$$P(A \cap B) = P(A|B)P(B)$$

and

$$P(B \cap A) = P(B|A)P(A)$$

Note that

$$P(A \cap B) = P(B \cap A)$$

Bayes Theorem

If the set of events $\{A_i\}_{i=1}^n$ partitions the sample space Ω , and assuming $P(A_i) > 0$, for all i. Then, for any event B such that P(B) > 0, we have

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B)}$$

where P(B) can be computed using the Law of Total Probability,

$$P(B) = P(B|A_1)P(A_1) + \dots + P(B|A_n)P(A_n)$$

• A magician has two coins, one fair and one 2-headed coin. Consider the experiment where she picks one coin at random and flips it once, the output is a head, what is the probability that the coin is a fair coin?

• A magician has two coins, one fair and one 2-headed coin. Consider the experiment where she picks one coin at random and flips it once, the output is a head, what is the probability that the next second flip is a head?

Some terminologies

- $P(A_i|B)$ as the **posterior probability** of event A_i given the information
- $P(A_i)$ as the **prior probability**
- $P(B|A_i)$ as the **likelihood**
- *P*(*B*) as the evidence/effect probability

Three types of players.

□ Type 1: 50%

□ Type 2: 25%

□ Type 3: 25%

You winning probability with these players:

Against type 1: 0.3.

□ Against type 2: 0.4.

□ Against type 3: 0.5.

Now you play a game with a randomly chosen player.

Question: What's your winning probability?

 Suppose that you win. What is the probability that you had an opponent of type 1?

Example: Diagnosis

- A random person drawn from a certain population has probability 0.001 of having a certain disease.
- The test satisfies
 - □ Pr[test positive | disease] = 0.95
 - □ Pr[test negative | no disease] = 0.95
- Question: Given that the person just tested positive, what is the probability of having the disease?

Monty Hall Problem

- Suppose you're on a game show, and you're given the choice of three doors:
- behind one door is a car
- behind the other doors are goats

You pick a door, and the host, who knows what's behind the doors, opens another door, which he knows has a goat. The host then offers you the option to switch doors. Does it matter if you switch?

Monty hall problem

- Let W_i be the event of winning a car on the i-th choice.
- Consider three strategies:
 - Never switch.
 - · Always switch.
 - Flip a coin, if heads, switch, if tail, no switch.

Independence

In general, for two events A and B, when P(A|B) = P(A), we say that A is statistically independent (s.i.) of B, since the probabilities are not affected by knowledge of B having occurred.

* By the chain rule, if A is independent of B:

$$P(A \cap B) = P(A|B)P(B) =$$

Events A and B are **statistically independent (s.i.)** if and only if (iff)

$$P(A \cap B) = P(A)P(B)$$

Independence

In general, for two events A and B, when P(A|B) = P(A), we say that A is statistically independent (s.i.) of B, since the probabilities are not affected by knowledge of B having occurred.

* By the chain rule, if A is independent of B:

$$P(A \cap B) = P(A|B)P(B) =$$

Events A and B are **statistically independent (s.i.)** if and only if (iff)

$$P(A \cap B) = P(A)P(B)$$

Independence

- If A is independent of B, then B is also independent of A.
- Why?

If A and B are s.i. events, then the following pairs of events are also s.i.:

- * A and \overline{B}
- * \overline{A} and B
- * \overline{A} and \overline{B}

Conditional independence

given an event C, the events A and B are called *conditionally independent* if

$$P(A \cap B|C) = P(A|C)P(B|C)$$

Consider two independent coin tosses. Let

$$H_1 := \{ \text{ 1st toss is a head} \}$$

$$H_2 := \{ \text{ 2nd toss is a head} \}$$

 $D := \{ \text{ two tosses have different results} \}$

Compare $P(H_1 \cap H_2|D)$ and $P(H_1 \cap H_2)$

