

Payload Separation System

Progress Report

Benjamin Dirgo, Mark Majkrzak, Jason McCall, Matthew Mylan, Kate Prentice, Alen Younan

January 30, 2014

Overview

- Review
- Objectives
- Design Manufacturing
- Final Design and Components
- Engineering Analysis Alterations
 - Solenoids
 - Shear on Keys
 - Kick off Springs/Magnets

- PSS Testing
- Costs
- Gantt Chart
 - Spring 2014
- Conclusion
- References

Review

- Problem Statement:
 - Design, analyze, build, and test a less expensive payload separation system that delivers payloads into orbit with minimal shock to the payload.
- Client:
 - Orbital Sciences Corporation
 - Mary Rogers: Electronic Packaging and Actuators Manager
 - Stakeholders: Companies/Agencies whom contract with Orbital

Sciences

Design Manufacturing

Components to be Manufactured	Team Members
Payload Ring (PR)	Jason, Alen, Ben
Rocket Ring (RR)	Kate, Mark, Matt
Keys	Jason, Alen, Ben
Solenoid (+mounting)	Mark, Matt
Springs/Magnets (+mounting)	Kate

The sub-scale model is half the original 24" diameter and all analyses are altered accordingly

Jason McCall 1/30/2014 2

Final Design

Engaged

After Separation

Payload Ring

- Begin with 12" x 12" x 1" Al
- Drill 10 adaptor holes
- Inner diameter with CNC end mill

Outer diameter with CNC end mill

Rocket Ring

- Similar to Payload Ring
- Drill key holes into Al block
- End mill the inner surface with one CNC run
 - Key housing
 - Base plate
- End mill outer diameter keeping lip
- Cut shallow recess for spring or magnets

Solenoid

- Steel keys will be secured to the plunger
- Solenoid will be secured to base plate

Engineersgarage.com

Matthew Mylan 1/30/2014 8

Manufacturing Keys

- Round 0.5" dia. steel stock
- Mill male tab to one end
- Drill hole in to tab for solenoid attachment
- Cut diagonal edge to fit into 0.5" hole

Matthew Mylan 1/30/2014 9

Metallic Mesh Kickoff Springs

- 3 Kick off Springs placed symmetrically along the lip of the rocket ring
- Will be purchased
- The springs will sit in the recessed holes on the lip of the rocket ring

Matthew Mylan 1/30/2014 10

Engineering Analysis Alterations

- Solenoid Analysis
- Shear Force on cylindrical Keys
- Metallic Mesh Kickoff Springs OR Magnets

Matthew Mylan 1/30/2014 1′

Solenoid Analysis

- Solenoid requirements:
 - DC Power
 - 1" minimum stroke
 - Overall dimensions < 1" x 1" x 2"
 - Pull force > 14 N
 - Easily mountable

Engineersgarage.com

Mark Majkrzak 1/30/2014 1/2

Failure Due to Shear Forces on Keys

- Note: Q = 0 once left earths atmosphere
- $Q_{max} = \frac{1}{2}\rho V^2$
 - ρ= local air density [m³/kg]
 - V= vehicles velocity [m/s]

http://www.orbital.com/

 $Q_{max} [N/m^2]$ 70383.6

Q_{max} per Key [N/m²] 17595.9

Top Surface Area of Key [m²] 0.000507

Cross Sectional Area [m²] 0.000127

Force due to Q_{max} [N] 8.91

Force due to M_{payload} [N] 6169.21

Shear Strength [Pa]

 4.88×10^{7}

Shear Strength Failure [Pa]

 215×10^{6}

Factor of Safety

4.41

The stainless steel keys will not fail due to shear force caused by the first stage ignition process.

Metallic Mesh Kickoff Springs

- Material: AISI 304 Stainless Steel
- Temperature range: -90°C to +400°C
- Rocket Ring Lip: ½"
- Max Load of damped spring: 500 N
- Max Payload (300lb): 1334.47 N
 - Need 3 springs
- Static Deflection: 5.5 mm
- Weight: 7 g

http://www.weforma.com/fileadmin/pdf/1213/Weforma-Metal-Cushions-12-13.pdf

http://www.weforma.com/fileadmin/pdf/1213/Weforma-Metal-Cushions-12-13.pdf

Mark Majkrzak 1/30/2014 **1/**4

Metallic Kickoff Springs Continued

- Natural Frequency (f_n) : 15 20 Hz
- Stiffness per damped spring (k): 110.54 N/m
- Mass of payload: 600 lb = 272.15 kg

Separation Velocity vs. Time

[Hz]	[rad/s]	m [kg]	k [N/m]
20	125.7	45.36	716283.2
			4
ζ [ul]	[Ns/m]	c [Ns/m]	x [m]
1.91421356	11400.00198	21822.0384	0.0055
2			
F [N]	V [m/s]	a [m/ s ²]	
3939.56	0.69	0.067	

Mark Majkrzak 1/30/2014 **15**

Neodymium Magnets

- Easy to manufacture into rings
- Allows for no gap between rings
- Up to 7lb force per 0.5" magnet

http://buymagnets.com/product/46/Neod ymium-Magnet-Disc-Grade-N30-Nickel-Plated/

Mark Majkrzak 1/30/2014 1/6

P.S.S. Testing

- Two Situations that need to be Tested:
 - 1. Prove keys can withstand max dynamic pressure (Q)
 - 2. Prove complete separation of a 600lb load with minimal shock
- Possible Testing Environments:
 - Submerge in Water
 - Pros: Reduces gravity
 - Cons: Solenoids aren't waterproof
 - Hang from a spring
 - Use a liquid more dense than water
 - Free fall
- Future Challenges:
 - Load 300lb?
 - Absence of Gravity

Bill of Materials

For one 12" diameter Payload Separation System

Material	Quantity	Unit Cost
Stainless Steel Key 0.5" dia x 2' long	1	\$9.00
7075 Aluminium plate 24" x 48" x 1"	1	Donated
Solenoid	4	\$32.75
Nuts/ Bolts/ Misc.	TBD	\$50.00
Total Cost		\$190.00

Kate Prentice 1/30/2014 18

Man Power Cost

Team Members	Pay (\$/hr)	Rocket Ring Fabrication (hr)	Payload Ring Fabrication (hr)	Key Fabrication (hr)	Spring Assembly (hr)	Solenoid Assembly (hr)	Assembly (hr)	Total Hours
Matthew Mylan	20	10	4	2		3	1	20
Mark Majkrzak	20	10	4		2	3	1	20
Kate Prentice	20	10	4		2	3	1	20
Alen Younan	20		10	2	3		1	16
Ben Dirgo	20		10		3		2	15
Jason McCall	20		10	2	3		2	17
	Total Cost (\$)							\$2,160

Kate Prentice 1/30/2014 1/30/2014

Manufacturing Costs

- All manufacturing will be in building 98C machine shop
- Part cost + man hours

	Pay (\$/hr)	Man Power (hr)	Part Cost (\$)	Manufacturing Cost (\$)
			Ι αι τ σοστ (φ)	The state of the s
RR	20	30	donated	600
PR	20	42	donated	840
Keys	20	6	9	129
Solenoids	20	9	32.75	212.75
			Total (\$)	1781.75

Kate Prentice 1/30/2014 20

Gantt Chart: Spring 2014

Kate Prentice 1/30/2014 21

Conclusion

- Reviewed the problem statement, contact with Orbital, and client objectives
- Used SolidWorks models to effectively communicate the final Design
- Explained how the team will ultimately manufacture each component of the PSS
- Initial separation caused by retracting the four keys using four Solenoids and metallic mesh kickoff springs to completely separate
- Performed additional analysis due to alterations of the keys, solenoids, and springs
- Re-calculated and recorded manufacturing costs, a bill of materials, and man power cost
- Explained current and future plans using a Gantt Chart

References

- [1] "Online Metal Store." *Online Metal Store* | *Small Quantity Metal Orders* | *Metal Cutting, Sales & Shipping* | *Buy Steel, Aluminum, Copper, Brass, Stainless* | *Metal Product Guides at OnlineMetals.com.* ThyssenKrupp Materials, NA Company, n.d. Web. 05 Dec. 2013. https://www.onlinemetals.com/merchant.cfm?pid=10435>.
- [2] "Online Metal Store | Small Quantity Metal Orders | Metal Cutting, Sales & Shipping | Buy Steel, Aluminum, Copper, Brass, Stainless | Metal Product Guides at OnlineMetals.com." *Online Metal Store | Small Quantity Metal Orders | Metal Cutting, Sales & Shipping | Buy Steel, Aluminum, Copper, Brass, Stainless | Metal Product Guides at OnlineMetals.com.* ThyssenKrupp Materials, NA Company, n.d. Web. 05 Dec. 2013. https://www.onlinemetals.com/merchant.cfm?pid=13317>.
- [3] "TRINAMIC QSH4218-51-10-049 STEPPER MOTOR, 1.8DEG, 1A, 0.49NM." *Trinamic Stepper Motor*. Newark Element 14, 1 Jan. 2013. Web. 05 Dec. 2013. http://www.newark.com/trinamic/qsh4218-51-10-049/stepper-motor-1-8deg-1a-0-49nm/dp/24M6628?CMP=AFC-OP.
- [4] "Home Improvement." *Home Improvement Made Easy with New Lower Prices | Improve & Repair.* Home Depot, n.d. Web. 5 Dec. 2013. http://www.homedepot.com/b/webapp/catalog/servlet/HomePageView?storeId=10051>.
- [5] Kyle, Ed. "Space Launch Report 2012 Launch Stats." *Space Launch Report 2012 Launch Stats.* N.p., 29 Dec. 2013. Web. 05 Dec. 2013. http://www.spacelaunchreport.com/log2012.html>.
- [6] Philpot, Timothy A. Mechanics of Materials: An Integrated Learning System. 5th ed. Hoboken, NJ: John Wiley, 2011. Print.
- [7] Rao, Singiresu S. Mechanical Vibrations. 5th ed. Upper Saddle River, NJ: Prentice Hall, 2011. Print.
- [8] Baldwin, Bryan. "Pegasus User's Guide." Orbital Sciences, 1 Apr. 2010. Web. 5 Dec. 2013.

Thank you for listening,

QUESTIONS?