CS5319 Advanced Discrete Structure

Exam 1 – November 01, 2022 (13:20–15:10)

Answer all six questions. Total marks = 105. Maximum score = 105/100.

- 1. How many sequence of length k that you can construct, such that the sequence satisfies all the following properties:
 - Numbers in the sequence are distinct, and they are integers chosen from [1, 100].
 - All odd numbers appear at the beginning of the sequence, in increasing order.
 - All even numbers appear at the end of the sequence, in decreasing order.

Example: When k = 5, $\langle 1, 3, 17, 8, 2 \rangle$ is a possible sequence.

- (a) (5%) Express your answer in terms of k, and explain why it is correct.
- (b) Suppose now we have an extra property to be satisfied:
 - There are more odd numbers than even numbers in the sequence.

How many sequence of length k can we construct?

(15%) Express your answer in terms of k, and explain why it is correct.

Hint: Separate the discussion for the cases when k is odd and when k is even.

2. (20%) Simplify the following in terms of k, ℓ, m, n , and show why your answer is correct:

$$\sum_{i=1}^{k-1} \sum_{j=1}^{k-i} \binom{n}{i} \binom{m}{j} \binom{\ell}{k-i-j}$$

Here, we assume that $\binom{x}{y} = 0$ whenever y < 0.

Hints: Combinatorial argument, inclusion-exclusion principle

3. (20%) Find the coefficient of x^n in the following generating function:

$$\frac{1}{(x^2-2)(1-3x^2)}.$$

Hint: Think a bit more before working on this problem

4. Consider the sequence

$$(a_0, a_1, a_2, a_3, \dots) = (1, 2, 2 \times 7, 2 \times 7 \times 12, \dots),$$

where in general $a_r = 2 \times 7 \times \cdots \times (5r - 3)$ for $r \ge 1$.

(15%) Give the EGF for the sequence (in the simplest form) and show why it is correct.

1

5. Let n be a positive integer. Let a_n denote the number of ways to partition n into exactly p integers, for some prime p. Let b_n denote the number of ways to partition n, whose largest part is a prime number.

(15%) Show that $a_n = b_n$.

Example: Consider n = 5. The following are the ways to partition n into a prime number of integers:

$$\{1,4\}, \{2,3\}, \{1,1,3\}, \{1,2,2\}, \{1,1,1,1,1\}$$

so that $a_5 = 5$. In contrast, we can partition n so that the largest part is a prime number:

$$\{5\}, \{2,3\}, \{1,1,3\}, \{1,2,2\}, \{1,1,1,2\}$$

so that $b_5 = 5$.

6. Given a permutation of $1, 2, \ldots, n$, we can associate it with a *change vector*, which describes the changes between adjacent terms in the permutation by + or -, when the value is increased or decreased, respectively.

Example: When n = 5 and the permutation is $\langle 3, 4, 1, 5, 2 \rangle$, the change vector would be: $\langle +, -, +, - \rangle$. Here, the leftmost + is due to the increase of value from 3 to 4 in the permutation, and the following - is due to the decrease of value from 4 to 1 in the permutation.

Example: Note that a different permutation may also share the same change vector. For instance, (3, 5, 2, 4, 1) would have the same change vector as (+, -, +, -).

(15%) For all permutations of 1, 2, ..., n, how many different possible change vectors are there? Express your answer in terms of n, and explain why it is correct.