Linear Regression for Air Pollution Data

Liang Jing April 2008

1 GOAL

The increasing health problems caused by traffic-related air pollution have caught more and more attention nowadays. As a result, analysis and prediction of the air quality are widely studied. Several methodologies, both deterministic and statistical, have been proposed. In this project we use the linear model to detect the relationship between the concentration of an air pollutant at a specific site and traffic volume as well as other meteorological variables. The procedure of model building and validating is demonstrated along with a variety of coefficient tests.

2 Introduction of Data

The data are a sub-sample of 500 observations from a data set collected by the Norwegian Public Roads Administration. The response variable consist of hourly values of the logarithm of the concentration of NO2 (particles), measured at Alnabru in Oslo, Norway, between October 2001 and August 2003. The predictor variables are the logarithm of the number of cars per hour, temperature 2 meter above ground (degree C), wind speed (meters/second), temperature difference between 25 and 2 meters above ground (degree C), wind direction (degrees between 0 and 360), hour of day and day number from October 1. 2001.

Size : n = 500

Response Variable Y: concentration of NO_2

Predictors : k = 7

- x_1 : number of cars per hour
- x₂: temperature 2 meter above ground (degree C)
- *x*₃: wind speed (meters/second)
- x₄: temperature difference between 25 and 2 meters (degree C)
- *x*₅: wind direction (degrees between 0 and 360)
- x_6 : hour of day
- x_7 : day number

3 Methodology & Results

3.1 NORMALITY TEST FOR RESPONSE VARIABLE

 H_0 : y follows normal distribution

 H_1 : y doesn't follow normal distribution

Shapiro-Wilk test, proposed by Samuel Shapiro and Martin Wilk 1965, was conducted to test the null hypothesis. The test statistic is

$$W = \frac{\left(\sum_{i=1}^{n} a_i x_{(i)}\right)^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
(3.1)

Table 3.1: Normality test for response variable

Tests for Normality

100to 101 I volimenty					
Test	Statistic	p-value			
Shapiro-Wilk	W 0.995731	Pr < W 0.6039			

where $x_{(i)}$ is the order statistic, \bar{x} is the sample mean and the constant a_i is given by

$$(a_1, ..., a_n) = \frac{m^T V^{-1}}{(m^T V^{-1} V^{-1} m)^{1/2}}$$
(3.2)

where $m = (m_1, ..., m_n)^T$ are the expected values of the order statistics of i.i.d random variables sampled from standard normal distribution and V is the covariance matrix of those order statistics. The test result is summarized in table 3.1.

Thus, with p-value is 0.6039 we fail to reject Null hypothesis which means response variable follows normal distribution. More evidences are shown in the histogram plot and normal percentile plot listed below.

3.2 Correlation Analysis for Predictors

The correlation coefficient between two random variables *X* and *Y* is defined as:

$$\rho_{X,Y} = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$
(3.3)

The correlation indicates the degree of linear dependence between these two variables: it is 1 in the case of an increasing linear relationship; -1 in the case of a decreasing linear relationship; and the values in between for all other cases. The closer the coefficient is to either -1 or 1, the stronger the correlation between the variables.

In table 3.2, we can see that all the values are small enough for us to say none of the predictor pair is remarkably correlated. So we will keep all of them in the initial model.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \beta_7 X_7 \tag{3.4}$$

Figure 3.1: Histogram for response variable

Histogram of Y variable

Table 3.2: Correlation test for predictors

	X_1	X_2	X_3	X_4	X_5	X_6	X_7
$\overline{X_1}$	1.00000	0.07848	0.05951	0.00434	-0.04960	-0.04477	0.01040
X_2		1.00000	-0.10547	-0.04630	-0.01578	-0.02564	0.02230
X_3			1.00000	-0.04205	0.00242	0.00492	-0.10630
X_4				1.00000	-0.01460	-0.01250	-0.01640
X_5					1.00000	0.05492	-0.06042
X_6						1.00000	0.02780
X_7							1.00000

3.3 Prescreen of X Variables

Test of significance for all the X variables is performed for the initial model. The result shown in figure 3.3 suggests that X_5 and X_7 are not significant due to large p-values.

Figure 3.3: QQ-plot for response variable

Source	DF	Type III SS	Mean Square	F Value	Pr > F
x 1	1	353.4795783	353.4795783	1049.35	<.0001
x2	1	31.4967990	31.4967990	93.50	<.0001
xЗ	1	81.7733151	81.7733151	242.76	<.0001
x4	1	42.5806095	42.5806095	126.41	<.0001
x 5	1	1.1035829	1.1035829	3.28	0.0709
x 6	1	64.9333130	64.9333130	192.76	<.0001
x7	1	0.0407115	0.0407115	0.12	0.7283
X /	1	0.040/115	0.040/115	0.12	0.7283

After removing the most insignificant predictor X_7 , the test is conducted again and the result is shown in figure 3.4 which suggests removal of X_6 .

Figure 3.4: QQ-plot for response variable

Source	DF	Type III SS	Mean Square	F Value	Pr > F
x 1	1	353.4441610	353.4441610	1051.12	<.0001
x2	1	31.5189400	31.5189400	93.74	<.0001
x 3	1	82.3191957	82.3191957	244.81	<.0001
x4	1	42.6558151	42.6558151	126.86	<.0001
x 5	1	1.1341596	1.1341596	3.37	0.0669
x 6	1	65.1078688	65.1078688	193.63	<.0001

3.4 Test of β_{00}

To test whether any of the predictors has impact on response variable, the following hypotheses are tested.

 $H_0: \beta_{00} = 0$

 $H_1: \beta_{00} \neq 0$

where $\beta_{00} = 0 = (\beta_1, ... \beta_k)$ is the coefficient parameters of predictors.

When H_0 is true the F test statistic will follow a central F-distribution. Thus, H_0 will be rejected if $F > F_{\alpha,n-k-1}$ where $F_{\alpha,n-k-1}$ is the upper α percentage point of the (central) F distribution. Alternatively, p-value, the tail area of the central F distribution beyond the calculated F test statistic, can be calculated. A p-value whose value is less than α is equivalent to $F > F_{\alpha,n-k-1}$.

By using SAS IML procedure, the result is

$$p = 0.0007662 < 0.05 \tag{3.5}$$

which suggests rejection of H_0 : $\beta_{00} = 0$.

3.5 Bonferroni Test

Typical inferences are performed using the 95% confidence level or 5% significance level. In either case, the comparison-wise error rate (CER) is 5%. The statement " H_0 " refers to a "null hypothesis" concerning a parameter or parameters of interest, which we shall always assume to be a strict equality. Suppose that we have defined a family of inferences (tests or intervals) containing k elements. The Family-wise Error Rate (FWE) is the probability of at least one erroneous inference. This is defined for simultaneous confidence intervals as

FWE = P (at least one interval is incorrect) = 1- P(all intervals are correct)

To simplify the presentation of multiple tests, the p-values are often displayed as adjusted p-values. By definition, the adjusted p-values for any hypothesis is equal the smallest FWE at which the hypothesis would be

Table 3.3: Multi-Bonferroni test for predictors

	p_1	p_2	p_3	p_4	p_6
Initial model	1	5.2527×10^{-8}	1.623×10^{-44}	1	1.701×10^{-36}
X_1 removed		0.0001765	2.8×10^{-13}	1	1.672×10^{-16}
X_4 removed		0.0000652	2.055×10^{-13}		8.646×10^{-16}

rejected. Therefore, adjusted p-values are readily interpretable as evidence against the corresponding null hypotheses, when all tests are considered as a family. To make a decision on any hypothesis H_{0j} , we can simply compare its corresponding adjusted p-values with the desired FWE level. The Bonferroni procedure rejects any H_{0j} whose corresponding p-value, p_j , is less than or equal to α/k . This is equivalent to rejecting any H_{0j} for which kp_j is less than or equal to α . Thus kp_j is the Bonferroni adjusted p-value for H_{0j} . We require any p-value to be less than 1, and therefore define Bonferroni adjusted p-value for hypothesis H_0 more specifically as,

$$p_{j} = \begin{cases} k \cdot prob(t_{i}, k) \\ 1, & \text{if } p_{j} \ge 1 \end{cases}$$
 (3.6)

 $H_0: X_i$ is insignificant in the model if $p_i > \alpha$

 $H_1: X_j$ is not insignificant in the model if $p_j \le \alpha$

The rational for this method is the well known Bonferroni inequality.

When it comes to our project, X_1 , X_2 , X_3 , X_4 , X_6 are initially in the model. We use repeated Bonferroni test to remove any insignificant variable. The result of multi-Bonferroni test is shown in table 3.3.

In the table, we can see for the model with k = 5, p_1 and p_4 are the largest ones. Either of them can be removed at first. We remove X_1 for convenience, then we run the Bonferroni test again with the number of variable is reduced to k = 4. ItâAŹs not difficult to find that the p_4 are still the largest value. So we remove X_4 in the second step. After removing X_4 , the Bonferroni test for the rest of the three variables are far less than .05, which means that X_2, X_3, X_6 are all significant in this stage.

To validate this assumption, we can do the t-test of the model consisting of X_2, X_3, X_6 only. The output of *SAS GLM* in figure 3.5 shows that they are truly significant within the model, since their p-values are all less than 0.05

which means the null hypothesis that the corresponding predictors are insignificant in the model should be rejected.

Figure 3.5: Significance test for X_2, X_3, X_6

Source	DF	Type III SS	Mean Square	F Value	Pr > F
x2	1	19.36174588	19.36174588	17.02	<.0001
хЗ	1	65.93453225	65.93453225	57.95	<.0001
x 6	1	79.78175934	79.78175934	70.11	<.0001

Furthermore, the estimated parameters from SAS output in figure 3.6 suggests the following model,

 $Y = 5.132332387 - 0.030364128X_2 - 0.205725423X_3 - 0.058798271X_6 \ \ (3.7)$

Figure 3.6: Estimated parameters for X_2, X_3, X_6

		Standard		
Parameter	Estimate	Error	t Value	Pr > t
Intercept	5.132332387	0.15890613	32.30	<.0001
x2	-0.030364128	0.00736098	-4.13	<.0001
x 3	-0.205725423	0.02702581	-7.61	<.0001
x 6	-0.058798271	0.00702199	-8.37	<.0001

3.6 ANOVA TABLE FOR THE FINAL MODEL

 $SAS\ IML$ procedure is used to calculate the ANOVA table shown in table 3.4. The counterpart of SAS GLM out put is shown in figure 3.7. Compare

Table 3.4: ANOVA table

	Degree of freedom	Sum Square	Mean Square	F statistic
Regression 3	157.1688400	52.3896133	46.04	
Residual Error	496	564.3859382	1.1378749	
Total	499	721.5547783		

these two outputs, we can see that they are exactly the same which means the procedure based on the SAS IML is correct. (The code is included in Appendix.)

Figure 3.7: ANOVA from SAS GLM

The GLM Procedure

Dependent Variable: y y					
		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	3	157.1688400	52.3896133	46.04	<.0001
Error	496	564.3859382	1.1378749		
Corrected Total	499	721 . 5547783			

3.7 Confidence Interval of β_j

For the final model, because $\hat{\beta}_j \sim N(\beta_j, var(\beta)_{jj})$, $\frac{\hat{\beta}_j - \beta_j}{var(\beta)_{jj}}$ has a t-distribution with n-k-1 degree of freedom, where $var(\beta)_{jj}$ is the i^{th} diagonal entry of the covariance matrix of β . So the 95% confidence interval for β_j is

$$[\hat{\beta}_{j} - t_{\alpha/2, n-k-1} var(\beta)_{jj}, \, \hat{\beta}_{j} + t_{\alpha/2, n-k-1} var(\beta)_{jj}].$$
 (3.8)

The result from SAS output for β_2 , β_3 , β_6 is: [-0.044827, -0.015902], [-0.258825, -0.152626], and [-0.072595, -0.045002] respectively.

3.8 CONCLUSION

Response variable approximately follows normal distribution. Though many predictors are significant, under Bonferroni test response variable is most closely related to three predictors only. The final model with estimated parameter is

```
Concentration of NO2 = 5.132332387 - 0.030364128 \times temp above ground -0.205725423 \times wind speed -0.058798271 \times hour of day (3.9)
```

This model suggests that the concentration of NO_2 is negative proportional to the temperature above ground and wind speed which means: when wind speed is increasing, the density is decreasing; and the higher the temperature is, the bigger the volume of NO_2 inflates and the lower the density is as a result.

4 APPENDIX

SAS code

```
/* Normality Test for Y variable */
proc univariate data=no2 normal;
var y; probplot y; run;
/* Correlation of X variables */
proc corr data=no2;
var x1-x7; run;
/* GLM Analysis */
proc glm data=no2;
model y=x1-x6; run;
/* IML Analysis */
proc iml;
use no2;
read all var {x1 x2 x3 x4 x6} into x;
read all var {y} into y;
/*print x y; run;*/
```

```
n=nrow(x);
                     /* Number of observations;*/
                     /* Number of parameters including the intercept; */
k=ncol(x);
j=j(n,1,1);
x10=j|x;
          /* Display the design matrix */
cov_x=inv(x10'*x10);
xpy=x10'*y;
                      /* The vector (X'X)^-1*Y;*/
beta=cov_x*xpy;
PRINT beta;
          /* The estimated regression parameters;*/
/*Table 1 ANOVA for fitting regression*/
/* The fitted values, the residuals, SSE, and MSE;*/
ssr=beta'*x10'*y;
                       /*SSR= sum of square of residual;*/
dfreq=k+1;
                       /*Degree of freedom of SSR;*/
print ssr dfreq;
msr=ssr/dfreq;
                       /*Mean square of residual;*/
sse=y'*y-beta'*x10'*y; /* SSE = Sum of squares of residuals;*/
dferr=n-k-1;
                      /* Degrees of freedom of SSE;*/
mse=sse/dferr;
                     /* MSE = SSE/dferror;*/
print msr sse dferr mse;
                      /* SST= sum square of total;*/
sst=y'*y;
                      /*Degrees of freedom of total;*/
dftot=n;
fstat=msr/mse;
                       /* F-statistics; */
print sst dftot fstat;
/*Table 2 ANOVA*/
J=j(n,n,1);
beta00=beta[2:k+1];
xbar_t=j'*x/n;
x_b=(I(n)-J/n)*x;
SSRm=beta00'*x_b'*y;
MSRm=SSRm/k;
print SSRm MSRm;
fstatRm=MSRm/MSE;
print SSE MSE fstatRm;
SSTm=y'*(I(n)-J/n)*y;
print SSTm;
```

```
/*Table 3 ANOVA showing in the term mean*/
SSM=y'*J*y/n;
MSM=SSM/1;
print SSM MSM;
fstatM=MSM/MSE;
print SSE MSE fstatM fstatRm;
SST=y'*y;
print SST;
/*Bonferroni Test of beta_j*/
var_beta=MSE*cov_x;
print var_beta;
b_1=beta[2,1]/sqrt(var_beta[2,2]);
b_2=beta[3,1]/sqrt(var_beta[3,3]);
b_3=beta[4,1]/sqrt(var_beta[4,4]);
b_4=beta[5,1]/sqrt(var_beta[5,5]);
b_5=beta[6,1]/sqrt(var_beta[6,6]);
print b_1 b_2 b_3 b_3 b_4 b_5;
p1=5*probt(b_1,n-k-1);
p2=5*probt(b_2,n-k-1);
p3=5*probt(b_3,n-k-1);
p4=5*probt(b_4,n-k-1);
p5=5*probt(b_5,n-k-1);
print p1 p2 p3 p4 p5;
```