一、實驗名稱:牛頓第二運動定律(Newton's Second Law)

#### 二、 實驗目的:

(一)主要目的:驗證牛頓第二運動定律。

#### (二)次要目的:

- 1. 熟悉光電計時器和光電閘測量儀器等高精度測量儀器。
- 學習使用數位影像位置擷取與數據分析軟體以取得更準確的數據。
- 3. 必較不同測量工具的優缺

### 三、 原理及分析方法

牛頓第二運動定律公式: $\sum_{i} \overline{F}_{i} = M a$ 

 $\sum_{i}^{-}F_{i}$ 為物體所受總淨力,M為體純量,a為物體加速度。

牛頓第二運動定律簡述:物體運動時的加速度和它所受外力總和大小成正 比,但和物體的質量成反比。

此實驗藉由兩種方法來驗證牛頓第二運動定律

- (一)固定受測物體的質量 M,施以不同大小的作用力 F,並依次觀察物體所 產生之加速度 a 和 F 間的關係。
- (二)固定作用力 F 的大小,改變受力物體的質量 M,依次觀察物體所產生的加速度 a 與物體質量 M 間的關係。

### 四、 使用儀器

光電計時器,滑車,滑軌,砝碼,ARDUINO。

### 五、 實驗步驟

- 甲、 實驗 partl(固定總質量,改變外力,測加速度)
  - 1. 水平校正滑軌
  - 2. 秤滑車和各砝碼重量

- 3. 先將所有砝碼放在滑車上,並測量加速度
- 4. 將一個砝碼從滑車移到懸掛上,並測量加速度
- 5. 重複 4. 五次
- 6. 利用F與a的關西計算出實際 M+m,並計算誤差
- 乙、實驗 part2(固定外力、改變總質量、測量加速度)
  - 1. 將四個砝碼放上滑車,測加速度
  - 2. 將一個法碼移出滑車,測加速度
  - 3. 重複 2. 三次
  - 4. 利用總質量與加速度的關西計算實際 F,並計算誤差
- 丙、 利用 arduino
  - 1. 將電腦連上 Arduino
  - 2. 讓滑車滑起來
  - 3. 將數據移置 Excel 處理,並計算出加速度與誤差
- 丁、 利用影像處理軟體(tracker)
  - 1. 架好攝影機
  - 2. 讓滑車滑起來
  - 3. 用 tracker 處理影片
  - 4. 擬合得加速度,並計算誤差
- 戊、 斜面運動
  - 1. 讓斜面傾斜(軌道下面墊木塊)
  - 2. 改變懸掛物質量紀錄加速度
  - 3. 紀錄上滑與下滑瞬間的懸掛物質量
  - 4. 計算實際值的摩擦力、角度、質量,並計算誤差

## 六 數據處理與分析

## (一)、固定總質量,改變外力,測加速度

| 總質量g   | f(N*1000) | $a(m/s^2)$ |
|--------|-----------|------------|
| 512.08 | 491.372   | 0. 9814    |
| 512.08 | 687. 960  | 1.4074     |
| 512.08 | 884. 352  | 1.8133     |
| 512.08 | 1080.744  | 2. 1650    |

下圖為F對a作圖



理論上質量為 512.08g。依據牛頓第二運動定律得 M=F/a,推得質量的實際值為上圖斜率 486.44g。誤差為-5.007%

## (二)、固定外力、改變總質量、測量加速度

### 數據

| F(N)    | 1/M+m(kg^-<br>1) | a(m/s^2)  |
|---------|------------------|-----------|
| 0. 5528 | 2. 095645        | 0. 914111 |
| 同上      | 2. 187609        | 0. 925000 |
| 同上      | 2. 288015        | 0. 953122 |

## 作圖



理論上外力為 0.5528 牛頓,依據牛頓第二運動定律 F=(M+m)a=mg ,因此上圖 斜率得實驗值的外力為 0.204 牛頓 ,誤差為 63.097%

## 三、arduino

| 總質量<br>(g) | F(gw)   |  |
|------------|---------|--|
| 537. 28    | 135. 46 |  |

理論加速度為 2. 470794m/(s^2)

## 數據

| t      | x(cm)  | V(cm/s)  | A(cm/s^2) |
|--------|--------|----------|-----------|
| 0      | 4. 27  |          |           |
| 0.035  | 4.80   | 15. 143  |           |
| 0.071  | 6. 97  | 60. 278  | 110. 572  |
| 0.106  | 8. 61  | 46.857   | 22. 210   |
| 0.143  | 12.06  | 93. 243  | 53. 782   |
| 0.18   | 12. 91 | 22. 973  | 6.659     |
| 0. 218 | 15. 12 | 58. 158  | 66. 620   |
| 0. 255 | 18. 16 | 82. 162  | 38. 182   |
| 0. 293 | 21.07  | 76. 579  | 24. 528   |
| 0.331  | 25. 12 | 106. 579 | 36. 625   |
| 0.369  | 29. 17 | 106. 579 | 26. 316   |
| 0.407  | 33.83  | 122. 632 | 30. 279   |
| 0.446  | 38. 96 | 131.538  | 27. 503   |
| 0.485  | 43.67  | 120. 769 | 23. 542   |

# 作圖



據上圖加速度約為 28.655 (cm/s^2)=0.28655 (m/s^2),與理論值 2.470794 (m/s^2)相比誤差為-88.40%

### 數據

| t      | X       |
|--------|---------|
| 0.000  | 0.001   |
| 0.033  | -0.006  |
| 0.067  | -0.001  |
| 0.100  | -0.010  |
| 0.133  | -0.018  |
| 0.167  | -0.013  |
| 0. 200 | -0.018  |
| 0. 233 | -0.028  |
| 0. 266 | -0.041  |
| 0.300  | -0.056  |
| 0. 333 | -0.073  |
| 0.366  | -0.092  |
| 0.400  | -0.112  |
| 0.433  | -0.135  |
| 0.466  | -0.159  |
| 0.500  | -0.185  |
| 0. 533 | -0. 211 |
| 0. 566 | -0. 240 |
| 0. 599 | -0. 270 |
| 0.633  | -0.301  |
| 0.666  | -0.338  |
| 0. 699 | -0.368  |
| 0. 733 |         |
| 0. 766 | -0.454  |
| 0. 799 | -0.497  |
| 0.833  | -0.543  |
| 0.866  | -0.593  |

## 分析



擬合線求得的加速度為 1.754(m/s<sup>2</sup>),與理論值

2.470794(m/s<sup>2</sup>) 相比誤差為-29.01%

五、斜面

|    | $\mathbf{m}(\mathbf{g})$ | a(cm/s^2) |
|----|--------------------------|-----------|
|    | 13. 86                   | 1. 455675 |
|    | 12. 88                   | 2. 09868  |
| m+ | 11.88                    | 0         |
| m- | 9. 9                     | 0         |
|    | 8. 92                    | 1.74745   |
|    | 7. 92                    | 1. 31178  |

|       | 實際      | 理論     | 誤差        |
|-------|---------|--------|-----------|
| 摩擦力   | 1.0672  |        |           |
| (N)   | 1.0012  |        |           |
| 質量(g) | 302. 32 | 381.78 | -0. 20813 |
| 角度    | 2, 4275 | 1.6    | 0. 5172   |
| (度)   | 2.4213  | 1.0    | 0.5172    |





#### 六、結果與討論

利用同一組滑車與懸掛物,測得的誤差

| 工具 | tracker | arduino  | 光電計時器   |
|----|---------|----------|---------|
| 誤差 | -29.01% | -88. 40% | 63. 10% |

光電計時器我覺得和其他兩樣工具相較麻煩許多,手動重置,還要等 他跑到加速度的值,然後將數據放進 excel 處理,在蒐集數據和統計資料 要花費比較多的時間。

Arduino 是蠻方便的,不過連間電腦,按開始時,會一段延遲,為了 因應就會造成前面的數據沒有意義,並且不知道到底甚麼時候才是物體運 動開始的瞬間,畢竟手會抖。處理辦法,下次不要用手拿,用東西先固定 住物體,然後放掉,解決初始值的問題。

TRACKER 誤差最小,我個人也最喜歡用 tracker,只要把影像放進軟體,設定座標,運動物體,就會自動得出個時間點的位置、速度、加速度,加上內建擬合工具真的好用。

#### 七、問題:

- 1. 滑車軌面與滑車間的所產生的摩擦之大小,是否與滑車的速度有關?試述其理由。
- A: 無關,摩擦力只與正向力和摩擦系數有關。
- 2. 試述如何以實驗方法估計軌道與每台滑車間的摩擦力?
- A: 水平校正滑軌,將滑車至於軌道上,慢慢加重懸掛物的重量,直到開始動的 瞬間懸掛物的重量即為靜摩擦力。減少一點點重量,直到滑車做等速度運動, 此重量為滑車與軌道得動摩擦力。
- 3. 如果牛頓第二運動定律的驗證實驗中,若質量改變量太小和太大,對實驗結果分別有何缺點?
- A: 質量改變太小,誤差造成的影響變大,誤差容易很大。質量改變太大則,數據點不夠連續,在取趨勢線的時候容易出現問題,而且質量越大正向力就越大

進而增加摩擦力對實驗結果的影響。

4. 所得擬合曲線是否經過原點?原因何在?

A: 以 tracker 那張 x-t 圖為例,他沒有經過原點。原因,我們取的原點沒有 完美的在運動開始的瞬間。若 v-t 圖,沒經過原點,意思是我們的初始速度不 為零,可能的原因是當實驗 t=0 時實際上不是運動開始的時候,或是單純的初始速度不為 0。

#### 八、心得

聽說這次的實驗很多人都做很久,好緊張,不過實驗操作起來其實不難, 有點像高中的滑車實驗,不過多了一些特別的器材,像是光電計時器和 arduino,不用再用一張紙慢慢量間距求加速度,實驗起來方便許多。還有那個 斜面實驗,真心覺得設計出來這個實驗的人真是個天才。

可能是經過實驗一的洗禮後, excel 的運用和等等數據處理, 這次實驗花在處理數據的時間有明顯的進步, 為自己掌聲鼓勵。