Generative AI

Python **Fundamentals** Deep Learning NLP & RNNs

Generative & Agentic AI

LLMOps

by L&L AI Solutions

Python

- 1. What is Python
- 2. Installation of Python VS Code, PyCharm, Anaconda, Google Colab
- 3. 100 Python main function names
- 4. Integer, float, Boolean operations (like math calculations), arithmetic (+-*/==='=='), logical operators (and, or, xor)
- 5. What is variable, types, about print and format combinational operations, basics of strings
- 6. Strings and methods (user input)
- 7. List and tuple
- 8. Sets, Dictionaries (enumerate, zip)
- 9. Conditionals
 - 1. if, elif, else
- 10. Match, case
- 11. For loops, for–else, nested loops
- 12. Break, continue, pass, list comprehension, dictionary comprehension
- 13. While loops, while-else
- 14. Comments, docstrings, about functions and modules
- 15. Types of functions, scope of function working and creating functions
 - 1. Parameters, arguments, *args, **kwargs
 - 2. Global variable, local variable
- 16. Creating module, import module help(), dir() aliasing, renaming

Python Topics

- 1. Lambda function, map, reduce, filter
- 2. Iterator, generator, decorator
- 3. Modules & packages
 - Math
 - Random
 - Date time
 - os
 - Sys
 - Re module
 - if __name__ == "__main__" in Python
- 4. File handling
- 5. Logging
- 6. Error and exceptions handling
- 7. What is object, class, __init__ method, instance variables
- 8. Types of methods in Python
 - Instance method
 - Class method
 - Static method
- 9. Public, private, protected members and methods
- 10. Inheritance and Types of Inheritance
- 11. Polymorphism, encapsulation, abstract method

Python Troubleshooting

- 1. Errors in Python
- 2. How to search on Google to find error corrections using Google, Stack Overflow, and documentation

UI Frameworks

1. Flask / Fast API / Streamlit

Projects

- 1. Calculator
- 2. Snake game

Deep learning

1. Introduction to Neural Networks

- 1. History of Neural Networks
- 2. Comparison with Biological Neurons
- 3. How Human Brain Trains by Neurons
- 4. How Perceptron Mimics Human Brain
- 5. Neuron
- 6. Perceptron

2. Types of Neural Networks

- 1. Introduction to various types of neural networks:
 - 1. Single-layer Neural Networks
 - 2. Multilayer Neural Networks

Activation Functions

Types of Activation Functions

- Binary
- linear
- Non linear
 - Sigmoid
 - ReLU (Rectified Linear Unit)
 - Softmax
 - Leaky ReLU
 - Tanh
 - Swish

3) Learning Rate and Tuning

- Explanation of learning rate and its significance in training neural networks.
- Techniques for tuning the learning rate for optimal performance.

4) Gradient Descent and Problems

- Parameters and Gradient Descent: How parameters (weights) are updated using gradient descent.
- Vanishing Gradient Problem: Explanation of the issue where gradients become extremely small during backpropagation.
- Exploding Gradient Problem: Explanation of the issue where gradients become excessively large during backpropagation.
- 5) Forward propagation, Backward propagation. propagation.

6) Weight initialization techniques

- uniform distribution
- xavier/glorot initialization techniqu
- kaimming he initialization

7) Epochs, Batch

8) Optimizers

- **Definition and Functioning:** Explanation of optimizers and their role in minimizing loss during training.
- Types of Optimizers
 - Gradient Descent
 - Stochastic Gradient
 - Descent
 - Adagrad
 - Adadelta
 - RMSprop
 - Adam

iii) Loss functions

- a)For regression(MSE, MAE, Huber loss)
- b)Classification (Binary cross entropy ,categorical cross entropy ,sparse categorical cross entropy,hinge loss , KL divergence

6) Weight Initialization, Regularization, Drop-out Drop-out Layers

 i)Explanation of techniques to initialize weights, prevent overfitting through regularization, and improve generalization using dropout layers.

8) i)Training Steps and Flow:

Basic steps involved in training single-layer and multilayer Neural Networks

9) Architecture Required for Deep Deep Learning (GPU, CPU):

 Explanation of the hardware requirements for training deep learning models, including GPUs and CPUs.

10) Types of Artificial Neural Networks:

• i)ANN: Artificial Neural Networks

• ii)RNN: Recurrent Neural Networks

Libraries in Deep Learning:

- Overview of popular deep learning libraries:
 - TensorFlow
 - Keras
 - PyTorch
 - Jax
 - maxnet

ANN Projects

Real vs. Fake News Classifier

Goal: Build an ANN to classify whether a news article is real or fake using NLP.

Key Concepts: Text classification, word embeddings, binary classification, overfitting handling

House Price Prediction Using Deep ANN

Goal: Predict house prices based on features like size, location, and number of rooms.

Key Concepts: Feature scaling, normalization, regression metrics, model tuning

Handwritten Signature Verification (Genuine (Genuine or Forged)

Goal: Classify whether a handwritten signature is genuine or fake using an ANN.

Key Concepts: Image flattening, ANN over image vectors, binary classification

Student Performance Predictor

Goal: Predict final exam scores based on hours studied, attendance, past grades, etc.

NLP

Module 1: Foundations of NLP

- Introduction to NLP
 - Understanding the scope and applications of NLP. Key terminologies: words, sentences, documents, corpus.
- Text Preprocessing Techniques
 - Segmentation and Tokenization.
 - Text normalization: case conversion, spell correction, one gram, bi grams, n-grams.
 - Cleaning text: removing stop words, punctuations, and white spaces.
 - Stemming and Lemmatization.
 - Part-of-Speech (POS) Tagging.
 - Rephrasing text for clarity.

Word Embeddings

- One-hot encoding.
- Bag of Words (BoW).
- TF-IDF.
- Word2Vec.
- GloVe.

NLP Libraries Overview

- NLTK.
- SpaCy.
- · Gensim.
- fastText.
- Stanford NLP Toolkit.

Module 2: Sequential Models in NLP

Introduction to Sequential Models

Understanding the need for sequential models in NLP.

Recurrent Neural Networks (RNNs)

- Architecture and working.
- Challenges: vanishing and exploding gradients.

Long Short-Term Memory (LSTM) Networks

- LSTM architecture and gates.
- Advantages over traditional RNNs.

Gated Recurrent Units (GRUs)

- GRU architecture.
- Comparison with LSTMs.

Hands-on Implementations

- Building RNN, LSTM, and GRU models using TensorFlow/Keras.
- Projects:
 - Sentiment analysis on the IMDB dataset.
 - Text generation tasks.
 - Named Entity Recognition (NER).

Module 3: Advanced NLP Applications Applications

Web Scraping and Data Collection

Techniques for extracting textual data from websites.

Text Visualization

- Creating Word Clouds.
- Exploratory Data Analysis (EDA) for text data.

Text Similarity Measures

- Cosine Similarity.
- · Jaccard Similarity.

Building NLP Applications

- Developing a spam classifier.
- Creating a basic chatbot using rule-based approaches.

Projects

1. Text Summarization for News Articles

- Objective: Generate concise summaries of lengthy news articles.
- Techniques: Extractive summarization using TextRank.
- **Tools**: Gensim, spaCy.
- Dataset: CNN/Daily Mail
 Dataset.Guvi+5Fynd
 Academy+5The Knowledge
 Academy+5

2. Chatbot for Customer Service

- **Objective**: Develop a chatbot to handle customer inquiries.
- Techniques: Rule-based responses, intent classification.
- Tools: Rasa, Dialogflow.
- Dataset: Custom intents and responses.ProjectPro+2Fynd Academy+2Guvi+2

3. Language Translation System

- Objective: Translate text from one language to another.
- **Techniques**: Sequence-tosequence models with attention mechanisms.
- Tools: TensorFlow, Keras.
- Dataset: Multi30k Dataset.

Generative Al

Module 1: Foundations of AI & Generative Models

- 1. Introduction to Al
- 2. Al vs ML vs DL
- 3. Types of Learning
 - 1. Supervised
 - 2. Unsupervised
 - 3. Reinforcement
- 4. Core Difference between ML and DL

Module 2: Introduction to Natural Language Processing (NLP)

- 1. History of NLP
- 2. Intro to RNN, LSTM, GRU, BERT
- 3. Problems with RNN, LSTM, GRU
- 4. Shift from RNNs to Transformers

Module 3: Understanding Generative Al

- 1. What is Generative AI?
- 2. Why are Generative Models Required?
- 3. Understanding Generative Models and Their Significance
- 4. Generative AI vs Discriminative Models
- 5. Recent Advancements and Research in Generative Al

Module 4: Transformers – The Foundation of Modern Generative Al

- 1. In-Depth Intuition of the Transformer Architecture (Attention is All You Need Paper)
- 2. Transformer Variants:

Encoder-only (e.g., BERT)

BERT Models- Google

- 1. BERT(Bidirectional Encoder Representations from Transformers)
- 2. RoBERTa (Robustly Optimized BERT Approach)
- 3. DistilBERT
- 4. ALBERT
- 5. XLNet
- ii)Decoder-only (e.g., GPT)
- iii)Encoder-Decoder (e.g., T5, BART)

- 1. When to Use Which Transformer Architecture
- 2. Generative Al End-to-End Project Lifecycle
- 3. Key Applications of Generative Models
- 4. Real-world Use Cases of Large Language Models (LLMs)

Module 5: Introduction to Large Language Models (LLMs)

- 1. What is Ilm
- 2. Types of Ilm
- 3. LLM providers
 - 1. hugging face
 - 2. open ai
 - 3. groq

Module 6:

- 1. Hugging Face Overview:
 - 1. What is Hugging Face?
 - 2. How to Use Hugging Face Models
 - 3. API Key Generation
- 2. Selecting Models & Tokenizers
- 3. Pre-trained Models in HF:
 - 1. Text-to-Text
 - 2. Text-to-Image
 - 3. Text-to-Speech
 - 4. Text to video
 - 5. Speech-to-Text
 - 6. Speech to speech
 - 7. Image to text

Projects:

- 1. Project on using hugging face (making the conversation with hugging face model)
- 2. Project (image to text)

7. Open ai

- exploring the open ai play ground
- · accesing the models, and api key
- How ChatGPT is Trained Behind the Scenes

Project

- text completion (blog creation)
- restaurant chat bot (taking orders from customer)

8) Groq

- Explaring the playground in groq
- · get the api key and access the models for projects

Project

Text Summarization

Module 8: Types of LLMs & Project Applications

1. Text Completion Models(level – projects)

- 🦴 Projects:
- · Redaction Improver
- Blog Post Generator
- Text Summarization

RAG Architecture with Langchain

- What is langchain?
- · Exploring the langchain documentation
- Flow of RAG:
 - Data Loaders(different types)
 - Analyzing CSV, PDF, and JSON Files using LangChain
 - Splitters
 - · Prompt and prompt engineering
 - 1. What & Why of Prompt Engineering
 - 2. Prompt Engineering with ChatGPT Custom Instructions
 - 3. Deciding What Context to Add
 - 4. Zero-, One-, and Few-Shot Prompting, chain of thought, Tree of thought, React prompting
 - 5. Providing Effective Prompts to LLMs
 - Embedding Techniques (types)

This section explores vector databases, their types, and applications in similarity search, with a focus on popular implementations like ChromaDB, FAISS, and Pinecone, concluding with an overview of retrievers in chains.

- Vector Databases (types)
 - 1. Introduction to Vector Databases
 - 2. Vector DB Use Cases
 - 3. Text Embedding & Similarity Search
 - 4. Types of Vector Databases:
 - 1. ChromaDB
 - 2. FAISS
 - 3. Pinecone
 - 4. Milvus (with Attu UI)
 - 5. Weaviate
 - 6. Neo4j for Graph + Vector Search
- Retrievers with Chains (types)

LangChain Expression Language (LCEL)

A visual overview of key LCEL concepts and applications

Chains and Runnables

Built-in Runnables and Functions in LCEL

Combining LCEL Chains for Complex Workflows

Practical RAG Demo

Implement RAG with LCEL components

Memory integration for context retention

LLM Integration

Get access to any one LLM

♣ Project: Q&A on Your Own Documents

Types of RAG implementations

RAG Architecture with Llamaindex

- What is Llamaindex
- · Key Differences: LlamaIndex vs. LangChain vs. Llama (the model)
- · i)exoring the Llamaindex documentation
- ii) Flow of RAG:
- Data Loaders
- Splitters
- Embedding Techniques
- Build Index

i)Vector Databases

- Retrievers with Chains
- Setup Memory Context
- · LLM Integration
- Project: Q&A on Your Own Documents(csv file)
- 2. Types of RAG s

· LangChain Ecosystem Overview: LangServe, LangGraph, LangSmith

- · Hands-on Demo: LangServe for Deployment
- · Hands-on Demo: LangGraph for Building Agentic Workflows
- · Hands-on Demo: LangSmith for Debugging, Testing, and Monitoring

Level 1 Application Development

- 1. Advanced Chatbot with Memory
- 2. Key Data Extraction
- 3. Sentiment Analysis Tool
- 4. SQL-based Question Answering Application
- 5. PDF-based Question Answering
- 6. Basic Retriever Applications
- 7. RAG Application

Level 2 Application Development

- 1. Application for Converting Slang to Formal English
- 2. Blog Post Generation Application
- 3. Text Summarization with Split
- 4. Text Summarization Tools
- 5. Key Data Extraction from Product Reviews
- 6. Interview Questions Creator Application
- 7. Medical Chatbot Project

Level 2 Application Deployment

- 1. Multimodal Gen Al Applications
 - 1. Steps to implement Multimodal LLM Applications
 - Building Multimodal LLM Applications with LangChain & GPT 40 Vision

Level 3 (Professional) Application Development

Introduction to Level 3 Application

- Project 1: Advanced RAG-Based Knowledge Management System
- Project 2: Medical Diagnostics Support Application
- Project 3: Image generation (DALL-E, Midjourney)
- Project 4: Youtube video summarizer and youtube script writing

Agentic Al

Section 1: Introduction to Agentic Al

- What is Agentic Al?
- Overview and importance of Agentic Al systems
- Al as Software Engineers
- · How Al systems like Devin function as autonomous developers
- The Rise of Al Agents
- Examples: SIMA by Google and its capabilities
- · The Role of Al Agents in Autonomous Decision-Making
- · Agentic Al vs. Generative Al

Section 2: Building Al Agents

Introduction to Building Al Agents

Overview of agent development

Key Considerations Before Building Agents

Ethical and design principles

Hands-On: Building Our First Al Agent

Step-by-step guide to creating an agent from scratch

Connecting Open Source Models to Al Agents

Integrating models like LLama-3 with frameworks like CrewAl

Developing a Research Agent

Use case: Building an agent for academic research

Section 3: Advanced Tools and Frameworks for Agentic Al

- OpenInterpreter Light Deep Dive
- · Understanding OpenInterpreter and its role in tasking AI
- · Tasking Al Tutorial
- · Creating task-driven agents with specific outputs

Perplexity AI: A Versatile Agent Platform

- · Overview of features and functionalities
- · Co-pilot Feature

Section 4: Agent Features and Customization

- · Collections and Agents in Perplexity Al
- Organizing and managing multiple agents
- Exploring Agent Libraries
- · Building reusable components for AI agents
- Agent Playgrounds
- · Experimentation and testing environments for agents
- · User Profiles and Personalization
- · Creating personalized user experiences with AI agents

Section 5: Domain-Specific Agents

- Top 5 Agent Use Cases
- · Academic Research Agent
- Business Analyst Agent
- · Content Creation Agent
- Financial Research Agent
- New Product Research Agent

Section 6: Real-World Applications of Agentic Al

- · Pre-Sales Research Agent
- Automating and optimizing sales strategies
- Student Research Agent
- Enhancing learning experiences for students
- Voice of the User Agent
- · Understanding and leveraging user feedback
- · Wolfram Alpha Research Agent
- Integrating external computational engines

Section 7: Future Trends and Advanced Topics

Future Trends

- GPT-4o: The Next Generation of Intelligent Agents
- Capabilities and integration of advanced GPT models
- · Announcements from Mistral Al Agents
- Exploring emerging technologies and future innovations

Capstone Projects

- Build a Custom Academic Research Agent
- Using Hugging Face models for data retrieval and analysis
- · Develop a Financial Analysis Agent
- Automate stock trend analysis using Wolfram Alpha integration
- Create a Business Analyst Agent
- Collect and summarize market insights for decisionmaking

Introduction to LLMOps

LLM0ps

- 1. What is LLMOps?
- Why LLMOps is Different from Traditional MLOps
- 3. The Evolution from MLOps to LLMOps
- 4. Key Challenges in LLMOps
- 5. Overview of the LLM Lifecycle
- 6. Core Components of an LLMOps
 Pipeline
- 7. Tools and Frameworks Shaping LLMOps
- 8. Real-World Use Cases of LLMOps
- Skills Required to Become an LLMOps Engineer
- 10. Course Overview and How to Navigate This Series

LLM ps Pipeline

LOIFRELITY Peatutinew Machinyine Lealwet Destucons Willieine Losyine

Ilus /

- 1. Foundation of LLMs
- 2. Understanding Transformer Architectures
- 3. Anatomy of a Large Language Model
- 4. Tokenization and embeddings
- 5. How Self-Attention Mechanism Works
- 6. Understanding Context Window in LLMs
- 7. Prompt Engineering: Basic Concepts
- 8. Prompt Engineering: User & System Prompts in LLMs
- 9. Open Source vs Proprietary LLMs
- 10. Comparison: LLaMA, GPT, Claude, Mistral, Gemini
- 11. Pretraining vs Fine-tuning vs Instruction-tuning

LLMOps Tooling Landscape

Introduction to LangChain

Introduction to LlamaIndex

Introduction to Haystack

LangChain vs LlamaIndex vs Haystack

Introduction to Vector
Databases

Introduction to Pinecone

Introduction to Weaviate

Introduction to FAISS

Introduction to ChromaDB

Introduction to LangSmith

Introduction to LangServe

LLM Development Topics

- Introduction to HuggingFace Inference Endpoints
- Introduction to FastAPI for LLM Inference
- Setup MLflow on AWS for LLMOps
- Training Models with MLflow: A Hands-On Guide
- MLflow for Model Inference: Techniques and Practices
- Building CI/CD Pipelines with GitHub Actions
- Data Management for LLMs
- Data Collection Strategies for LLMs
- Scrapping Web for LLM Datasets
- Cleaning & Preprocessing Raw text data
- Chunking Strategies
- · Embedding Data for Retrieval

Building a Private Knowledge Base

- Using LLMs to Generate Synthetic Data
- Training and Fine-tuning LLMs
 - Introduction to Fine-tuning
 - RAG vs Fine-tuning
 - Introduction to PEFT
 - Introduction to LoRA & QLoRA
 - Fine-tuning LLMs using PEFT
- · Retrieval-Augmented Generation (RAG)
 - What is Retrieval-Augmented Generation (RAG)?

Working with Custom
Data (Data Loaders) &
RAG Basic Concepts

Different RAG
Components like (
Splitters, Embeddings,
Vector Stores,
Retrievers, Top k)

RAG Implementation with LCEL

Model Serving and Inference

Introduction to Model Inference

Serving LLMs with FastAPI

Dockerizing LLM Inference Services

Serving LLMs with LangServe

Evaluation & Monitoring

Course Outline

- · LLM Evaluation With MLFlow And Dagshub
- · LLM Monitor and Tracing with LangSmith
- LLMOps Platforms
- · Why we need LLMOps Platform
- · Generative AI with Google Cloud (Vertex AI) a LLMOps Platform
- Vertex Al Hands-On on Google Cloud

Vertex Al Local Setup - Run Gemini Pro on Local Machine

- RAG on Vertex Al with Vector Search and Gemini Pro
- · LLM powered application on Vertex Al
- · Fine tuning Foundation Model VertexAl
- Introduction to AWS Bedrock
- Hands-on AWS Bedrock
- Capstone Projects
- Project Walkthrough
- Project Setup & Template
- · Data Ingestion: Chunking, Embedding and Vector store
- RAG Pipeline and User App
- Project Deploy: AWS CICD

