§4. Смешанное произведение векторов

Пусть дана тройка векторов $\vec{a}, \vec{b}, \vec{c}$. Так как $\vec{a} \times \vec{b}$ есть вектор, то можно рассматривать скалярное произведение этого вектора на вектор \vec{c} .

Определение 4.1. Скалярное произведение $(\vec{a} \times \vec{b}) \cdot \vec{c}$ вектора $\vec{a} \times \vec{b}$ на вектор \vec{c} называется *смешанным* произведением векторов $\vec{a}, \vec{b}, \vec{c}$.

Очевидно, смешанное произведение $(\vec{a} \times \vec{b}) \cdot \vec{c}$ есть число.

Свойства смешанного произведения

- **1.** Смешанное произведение $(\vec{a} \times \vec{b}) \cdot \vec{c}$ трёх некомпланарных векторов $\vec{a}, \vec{b}, \vec{c}$ по модулю равно объёму V параллелепипеда, построенного на данных векторах, как на рёбрах.
- **2.** Тройка векторов $\vec{a}, \vec{b}, \vec{c}$ является компланарной тогда и только тогда, когда их смешанное произведение $(\vec{a} \times \vec{b}) \cdot \vec{c}$ равно нулю.
- **3.** Тройка некомпланарных векторов \vec{a} , \vec{b} , \vec{c} является правой (левой) тогда и только тогда, когда их смешанное произведение $(\vec{a} \times \vec{b}) \cdot \vec{c}$ положительно (отрицательно).
- **4.** Смешанное произведение векторов $\vec{a}, \vec{b}, \vec{c}$ не изменяется при *циклической перестановке* сомножителей, т.е. справедливы равенства:

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = (\vec{b} \times \vec{c}) \cdot \vec{a} = (\vec{c} \times \vec{a}) \cdot \vec{b}, \qquad (4.1)$$

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{c} \cdot (\vec{a} \times \vec{b}) = \vec{a} \cdot (\vec{b} \times \vec{c}) = b \cdot (\vec{c} \times \vec{a}). \tag{4.2}$$

Замечание 4.1. Равенство $(\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \times \vec{c})$ из (4.2) позволяет обозначать смешанное произведение векторов $\vec{a}, \vec{b}, \vec{c}$ в виде $\vec{a}\vec{b}\vec{c}$, не указывая при этом, какая пара из них перемножается векторно.

▶1. Воспользуемся свойством 2 скалярного произведения (см. §2). Имеем

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = |\vec{a} \times \vec{b}| \operatorname{np}_{\vec{a} \times \vec{b}} \vec{c}. \tag{4.3}$$

Рис. 4.1. Иллюстрация к доказательству свойства 1 смешанного произведения

Из свойства 1 проекций вектора на ось (§1) следует, что $|\operatorname{пp}_{\vec{a}\times\vec{b}}\vec{c}\>|$ есть длина компоненты \vec{c} вдоль вектора $\vec{a}\times\vec{b}\>.$ А эта длина равна, очевидно, высоте h параллелепипеда, построенного на данных векторах $\vec{a},\vec{b},\vec{c}\>$ (рис. 4.1). Так как $|\vec{a}\times\vec{b}\>|$ геометрически трактуется как площадь S параллелограмма, являющегося основанием данного параллелепипеда, то из (4.3) получаем:

$$|(\vec{a} \times \vec{b}) \cdot \vec{c}| = |\vec{a} \times \vec{b}| \cdot |\operatorname{np}_{\vec{a} \times \vec{b}} \vec{c}| = Sh = V,$$

что и требовалось доказать.

2. Покажем, что из равенства $(\vec{a} \times \vec{b}) \cdot \vec{c} = 0$ следует компланарность $\vec{a}, \vec{b}, \vec{c}$. В самом деле, если предположить противное, то в силу свойства 1 получим, что $|(\vec{a} \times \vec{b}) \cdot \vec{c}|$ равен отличному от нуля объёму параллелепипеда, построенного на этих векторах и поэтому $(\vec{a} \times \vec{b}) \cdot \vec{c} \neq 0$, что противоречит принятому равенству. Следовательно, остаётся принять, что векторы $\vec{a}, \vec{b}, \vec{c}$ компланарны.

Предположим теперь, что векторы $\vec{a}, \vec{b}, \vec{c}$ компланарны, и покажем, что $(\vec{a} \times \vec{b}) \cdot \vec{c} = 0$. Это равенство очевидно, если хотя бы один из этих векторов нулевой. В противном случае вектор $\vec{a} \times \vec{b}$ перпендикулярен вектору \vec{c} , и, следовательно, $(\vec{a} \times \vec{b}) \cdot \vec{c} = 0$ по свойству 6 скалярного произведения (см. §2).

- 3. В силу равенства (4.3) знак смешанного произведения векторов $\vec{a}, \vec{b}, \vec{c}$ совпадает со знаком пр $_{\vec{a}\times\vec{b}}\vec{c}$. Из свойства 5 проекций вектора на ось следует, что пр $_{\vec{a}\times\vec{b}}\vec{c}$ положительна тогда и только тогда, когда угол между векторами \vec{c} и $\vec{a}\times\vec{b}$ острый, т.е. когда векторы \vec{c} и $\vec{a}\times\vec{b}$ направлены в одно и то же полупространство относительно плоскости, определяемой векторами \vec{a} и \vec{b} , или, что то же самое, когда тройки $\vec{a}, \vec{b}, \vec{c}$ и \vec{a} , \vec{b} , $\vec{a}\times\vec{b}$ одинаково ориентированы. Поскольку вторая из них по определению правая, то заключаем, что $(\vec{a}\times\vec{b})\cdot\vec{c}$ положительно тогда и только тогда, когда тройка векторов $\vec{a}, \vec{b}, \vec{c}$ правая. Аналогично обосновывается вторая часть свойства 2 для левой тройки векторов.
- **4.** Для компланарных векторов \vec{a} , \vec{b} , \vec{c} доказываемые равенства очевидны, так как тогда все смешанные произведения в равенствах (4.1) и (4.2) равны нулю. В случае, когда эти векторы некомпланарны, заметим, что, во-первых, все смешанные произведения в (4.1) по модулю равны объёму одного и того же параллелепипеда, построенного на данных векторах. Во-вторых, в силу свойства 3, их знаки одинаковы, поскольку тройки (\vec{a} , \vec{b} , \vec{c}), (\vec{b} , \vec{c} , \vec{a}) и (\vec{c} , \vec{a} , \vec{b}) ориентированы одинаково (см. рис. 4.1). Таким образом, все смешанные произведения в (4.1) равны. Равенства (4.2) получаются из (4.1) после применения коммутативного свойства скалярного произведения. ◀

И в заключение данного параграфа докажем дистрибутивное свойство векторного произведения:

$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} . \tag{4.4}$$

▶ Если хотя бы один из векторов $\vec{a}, \vec{b}, \vec{c}$ нулевой, то это равенство очевидно. Далее предполагаем, что $\vec{a} \neq \vec{0}, \ \vec{b} \neq \vec{0}, \ \vec{c} \neq \vec{0}$. Возьмем произвольный вектор \vec{q} и рассмотрим смешанное произведение $(\vec{a} \times (\vec{b} + \vec{c})) \cdot \vec{q}$, которое преобразуем,

поочередно применяя свойство 4 смешанного произведения и дистрибутивное свойство скалярного произведения (свойство 3, §2):

$$(\vec{a} \times (\vec{b} + \vec{c})) \cdot \vec{q} = (\vec{q} \times \vec{a}) \cdot (\vec{b} + \vec{c}) = (\vec{q} \times \vec{a}) \cdot \vec{b} + (\vec{q} \times \vec{a}) \cdot \vec{c} =$$
$$= (\vec{a} \times \vec{b}) \cdot \vec{q} + (\vec{a} \times \vec{c}) \cdot \vec{q} = (\vec{a} \times \vec{b} + \vec{a} \times \vec{c}) \cdot \vec{q}.$$

Таким образом, приходим к равенству $(\vec{a} \times (\vec{b} + \vec{c})) \cdot \vec{q} = (\vec{a} \times \vec{b} + \vec{a} \times \vec{c}) \cdot \vec{q}$ или $(\vec{a} \times (\vec{b} + \vec{c}) - (\vec{a} \times \vec{b} + \vec{a} \times \vec{c})) \cdot \vec{q} = \vec{0}$, (4.5)

справедливому для произвольного вектора \vec{q} . Из (4.5) получаем:

$$\vec{a} \times (\vec{b} + \vec{c}) - (\vec{a} \times \vec{b} + \vec{a} \times \vec{c}) = \vec{0}. \tag{4.6}$$

Действительно, предположение $\vec{a} \times (\vec{b} + \vec{c}) - \vec{a} \times \vec{b} + \vec{a} \times \vec{c} \neq \vec{0}$ приводит, в силу свойства 6 скалярного произведения (§2) и равенства (4.5), к выводу, что этот вектор перпендикулярен произвольному вектору \vec{q} , что невозможно. Итак, из (4.6) следует доказываемое равенство (4.4).

Пример 4.1. Найти объём параллелепипеда, построенного на векторах \vec{a} , \vec{b} , \vec{c} , как на ребрах, если $|\vec{a}| = 2$, $|\vec{b}| = 3$, $|\vec{c}| = 3$, $(\vec{a}, \vec{b}) = \pi/4$, $\vec{c} \perp \vec{a}$, $\vec{c} \perp \vec{b}$.

▶Обозначим объём данного параллелепипеда через $V_{\rm nap}$, $V_{\rm nap} = |\vec{a}\vec{b}\vec{c}|$ (свойство 1). Векторы $\vec{a} \times \vec{b}$ и \vec{c} коллинеарны, так как каждый из них перпендикулярен векторам \vec{a} и \vec{b} ; кроме того, $|\vec{a} \times \vec{b}| = 2 \cdot 3\sin(\pi/4) = 3\sqrt{2}$.

Поэтому
$$\vec{a} \times \vec{b} = \pm \frac{|\vec{a} \times \vec{b}|}{|\vec{c}|} \vec{c} = \pm \frac{3\sqrt{2}}{3} \vec{c} = \pm \sqrt{2} \vec{c}$$
. Тогда $\vec{a} \vec{b} \vec{c} = (\vec{a} \times \vec{b}) \cdot \vec{c} = \pm \sqrt{2} \vec{c} = \pm \sqrt{2} \vec{c} \cdot \vec{c} = \pm$