ABCD AL SQUORE

PMIBM, MGBC

PNIDC, NEDC

APIDD

APIDD P'EMN, AP'LMN "It M'EAD, PM'LAD N'EAB, PNIL AB · We denote OC=BC=AB=AD=l(ABCO sqr.)(3) m(+MNC) = xTodution! 1. We will try to get that: AMNC 2 AAPN' NPL NC => $m(4PNP^1) = \frac{11}{2} - 2\epsilon$ PP'LP'N => ANPP right briangle => => m(KNPP)=第一至+2=36 フ M(*NPP)= 芝-友 ー ー へ ** NP A ound * NPP opposite angles => m(*NPA)= ** (*) m(*MNC)= ** (*) m(*MNC)= ** (*) $= \sum_{m \in NPA = m} (*MNC)$ m(*NCM) = m(*PNA) $= \sum_{m \in NCM} \Delta MNC \sim \Delta APN'$ 2. We have that m(* M'D N) = m(* DM'P)=m(* DNP)= (5) = DMPN is a rectangle Similar for AMPN and NPMB, which some rectangles From 1. => $\frac{MC}{AN'} = \frac{NC}{N'P} = \frac{MN}{AP}$ (4) From 2. we get: AN'=M'P } => AN'=DN (=>)
N'D = MN (1) =) DN = DC - NC = L - NC BM = BC - MC = L - MC (3) $L - NC = \frac{NC}{1 - MC} = \frac{NC}$ $\langle = \rangle \frac{MC}{DN} = \frac{NC}{MD} \bigcirc$ $=) lNC - NC^2 = lMC - MC^2 =)$ $(=)MC^2-LMC+(LNC-NC^2)=0$ $\Delta = \ell^2 - 4 \ell NC + 4 NC^2 = (\ell - 2NC)^2$ $\sqrt{\Delta} = |l-2NC| =)$ there are 4 rusult. $i) l>2NC - MC = \frac{l-l+2NC}{2} = NC$ $MC = \frac{l + l - 2NC}{l} - l - NC$ $ii) l < 2NC - MC = \frac{l + 2NC - l}{2} - NC$

 $MC = \frac{l - 2NC + l}{2} = l - NC$ =) We can conclude that there nor only 2 rol. I MC = NC (2) NC - MC => MN || DB) => APLOB

= $\frac{MN}{AP} = 1 = 1 = 1 = 1 = 1$

And we son done.

II $MC = l - NC = \frac{N(2)(3)(4)}{MB} = \frac{MN}{AP} = \frac{l - NC}{g - NC} = 1 = 1$