```
D2Cache[n_, k_, s_] :=
 Sum[Binomial[k,j] D2Cache[n/(m^(k-j)),j,m+1], \{m,s,n^(1/k)\}, \{j,0,k-1\}]
D2Cache[n_{,} 1, s_{,}] := Floor[n] - s + 1; D2Cache[n_{,} 0, s_{,}] := 1
d2cache[n_{k_{1}}] := D2Cache[n, k, 2] - D2Cache[n - 1, k, 2]
D2Fast[n_{k}] := Sum[D2Cache[n/j, k-1, 2], {j, Floor[n^(1/3)] + 1, n^(1/2)}] +
  Sum[(Floor[n/j] - (Floor[n/(j+1)])) D2Cache[j, k-1, 2], {j, 1, n/Floor[n^(1/2)] - 1}] +
  Sum[d2cache[j, k-1] (Floor[n/j]-1), {j, 2, n^(1/3)}] +
  Sum[d2cache[j, m] D2Cache[n/(js), k-m-1, 2], {j, 2, n^(1/3)},
    \{s, Floor[floor[n^{(1/3)}] / j] + 1, Floor[n/j]^{(1/2)}, \{m, 1, k-2\}\} + 1
  Sum[(Sum[1, {m, Floor[n/(j(s+1))]+1, n/(js)}])
     (Sum[d2cache[j, m] D2Cache[s, k-m-1, 2], \{m, 1, k-2\}]),
    {j, 2, n^{(1/3)}}, {s, 1, Floor[n/j]/Floor[Floor[n/j]^{(1/2)] - 1}}
D2Fast[n_, 1] := Floor[n] - 1
LinnikSumFast[n_] := Sum[(-1)^(k+1)/kD2Fast[n,k], \{k, 1, Log[2, n]\}]
\label{eq:rimeCnt} \mbox{RiePrimeCnt}[n_{\_}] := \mbox{Sum}[\mbox{PrimePi}[n^{(1/j)}]/j, \{j, 1, \mbox{Log}[2, n]\}]
Table[{n, LinnikSumFast[n], RiePrimeCnt[n]}, {n, 1, 100}] // TableForm
1
       0
                0
2
       1
                1
3
        2
                2
4
5
                \frac{7}{2} \frac{9}{2}
6
7
        2
        29
8
        16
                16
3
9
        16
3
                16
10
                3
        19
                19
11
        3
                3
        19
12
        22
                22
13
        3
                3
        \frac{22}{3}
                22
3
14
        22
                22
15
        3
                3
        91
                91
16
        12
                12
17
        12
                12
        103
                103
18
        12
                12
        115
                115
19
        12
                12
        115
                115
20
        12
        115
                115
21
        12
                12
        115
                115
22
        12
                12
        127
                127
23
        12
                12
        127
                127
24
        12
                12
                133
25
```

26	133	133
27	137	137
28	$\frac{137}{12}$	137
29	$\frac{149}{12}$	149
30	$\frac{149}{12}$	$\frac{149}{12}$
31	161	161
32	12 817	12 817
33	817 60	817 60
34	60 817	60 817
35	60 817	60 817
36	60 817	60 817
37	60 877	60 877
38	60 877	60 877
39	60 877	60 877
40	60 877	60 877
41	937	937 937
42	937	60 937
43	60 997	60 997
44	60 997	60 997
45	997	60 997
46	60 997	60 997
47	60 1057	60 1057
48	60 1057	60 1057
49	1087	60 1087
50	60 1087	60 1087
51	60 1087	60 1087
52	60 1087	60 1087
53	1147 1147	60 1147
54	1147 1147	60 1147
55	60 1147	60 1147
56	1147 1147	60 1147
57	1147 1147	60 1147
58	60 1147	60 1147
59	60 1207	60 1207
60	60 1207	60 1207
61	60 1267	60 1267
62	60 1267	60 1267
63	60 1267	60 1267
64	60 1277	60 1277
	60	60

65	1277 60	1277 60
66	1277	1277
67	1337	1337
68	1337	1337
69	1337	60 1337
70	60 1337	60 1337
71	60 1397	60 1397
72	60 1397	60 1397
73	60 1457	60 1457
74	60 1457	60 <u>1457</u>
75	60 1457	60 1457
76	60 1457	60 1457
77	60 1457	60 1457
78	60 1457	60 1457
79	60 1517	60 1517
80	60 1517	60 1517
81	60 383	60 383
82	15 383	15 383
83	15 398	15 398
84	15 398	15 398
85	15 398	15 398
86	15 398	15 398
87	15 398	15 398
88	15 398	15 398
89	15 413	15 413
90	15 413	15 413
91	15 413 15	15 413 15
92	$\frac{413}{15}$	413 15
93	413 15	413 15
94	$\frac{413}{15}$	413 15
95	$\frac{413}{15}$	413 15
96	$\frac{413}{15}$	413 15
97	428 15	428 15
98	428 15	428 15
99	428 15	428 15
100	428 15	428 15

```
Clear[D1Altc]
Dhyp[n_, k_, a_] :=
 Sum[Binomial[k, j] Dhyp[n/(m^(k-j)), j, m+1], \{m, a, n^(1/k)\}, \{j, 0, k-1\}]
\label{eq:def:Dhyp} $$ [n_{-}, 1, a_{-}] := If [n < a, 0, Floor[n] - a + 1]; $$ Dhyp[n_{-}, 0, a_{-}] := 1$ 
dhyp[n_{-}, k_{-}, a_{-}] := dhyp[n, k, a] = Dhyp[n, k, a] - Dhyp[n-1, k, a]
D1Altc[n_, k_, t_] :=
 D1Altc[n, k, t] = Dhyp[t, k, 1] + Sum[Dhyp[Floor[n/j], k-1, 1], {j, t+1, n}] +
    Sum[dhyp[j, m, 1] Dhyp[Floor[n/(js)], k-m-1, 1],
     {j, 1, t}, {s, Floor[t/j] + 1, Floor[n/j]}, {m, 1, k-1}
D2[n_{k_{-}}, k_{-}, t_{-}] := Sum[(-1)^{(k-j)} Binomial[k, j] D1Altc[n, j, t], {j, 0, k}]
L2[n_{t}] := Sum[(-1)^{(k+1)}/kD2[n,k,t], \{k, 1, Log2@n\}]
D1Altc[100, 1, 10]
100
Dhyp[100, 7, 1]
25 5 3 7
L2[100, 10]
428
 15
Clear[Db, Dc]
bin[z_{,k_{]}} := Product[z - j, {j, 0, k - 1}] / k!
Db[n_{, y_{, k_{, j}}} := If[n < y, 0, Sum[Binomial[k, j]] Db[n/y^j, y+1, k-j], {j, 0, k}]]
Db[n_{,y_{,0}] := UnitStep[n-1]
\texttt{Dc}[n_-, y_-, z_-] := \texttt{If}[n < y, 1, \texttt{Sum}[bin[z, k] \ \texttt{Dc}[n / y^k, y + 1, z - k], \{k, 0, \texttt{Log}[y, n]\}]]
Dd[n_{-}, y_{-}, z_{-}] := Sum[(-1)^k bin[z, k] Dc[n/(y-1)^k, y-1, z-k], \{k, 0, Log[y-1, n]\}]
Ddo[n_, y_, z_] :=
 Sum[(-1)^k bin[z, k] Dco[Floor[n/(y-1)^k], y-1, z-k], \{k, 0, Log[y-1, n]\}]
Expand@Dc[200, 3, z]
1 + \frac{181 \; z}{4} + \frac{855 \; z^2}{8} + \frac{177 \; z^3}{4} + \frac{13 \; z^4}{8}
Expand@Ddo[20000, 128, z]
-\frac{1}{2} z Dco[1, 127, -2+z] + \frac{1}{2} z^2 Dco[1, 127, -2+z] - z Dco[157, 127, -1+z] + Dco[20000, 127, z]
```