

. . .

Introducción a la programación

Clase 2
Profesor – Martín Gómez Vega

2 Variables

3 Constantes

Componentes de un algoritmo

5 Diagrama de flujo Nassi - Shneiderman

¿Que hace una computadora?

Una computadora toma datos, los procesa y devuelve información.

Datos Proceso Información

Variable

Te ayudan a mantener tus datos organizados y a usarlos cuando sea necesario.

Las variables permiten que el programa almacene y manipule información de manera eficiente.

Memoria

10	b	100
edad	caracter	precio
d	е	f

Ejemplo

Supongamos que estamos escribiendo un programa para aplicar un 10% de descuento a un precio:

En este ejemplo, "nombre" es una variable que almacena el valor "Lionel". Luego usamos esa variable en la instrucción de impresión para mostrar el mensaje "iHola, Lionel!".

Constantes

Las constantes son valores que se mantienen invariables durante la ejecución del programa. Se utilizan para representar valores que no cambian y que se usan en diferentes partes del código.

Ejemplo

Calcular el 10% de descuento a un precio.

```
100
precio
```

```
// Definición de la constante
final double DESCUENTO = 0.1 // 10% de descuento

// Calcular el descuento utilizando la constante DESCUENTO
double montoDescuento = precio * DESCUENTO;

// Calcular el precio con el descuento
double precioConDescuento = precio - montoDescuento;
System.out.println("El valor del precio final es: " + precioConDescuento);
```

En este ejemplo, hemos definido una constante DESCUENTO para representar el valor del descuento (10% en este caso). El programa calcula el monto del descuento y luego calcula el precio con el descuento aplicado.

Componentes de un algoritmo

Para diseñar un algoritmo se debe comenzar por identificar las tareas más importantes para resolver el problema y disponerlas en le orden en el que han de ser ejecutadas.

En un algoritmo se debe considerar tres partes:

- > Entrada: Información dada al algoritmo
- **Proceso**: Operaciones o cálculos necesarios para encontrar la solución del problema
- Salida: Respuestas dadas por el algoritmo o resultados finales de los cálculos.

Especificaciones de entrada

¿Qué datos son de entrada? ¿Cuántos datos se introducirán? Los datos que ingresan ¿necesitan alguna validación?

Especificaciones de salida

¿Cuáles son los datos de salida? ¿Cuántos datos deben salir?

Diagrama de flujo Nassi - Shneiderman

El diagrama N-S de Nassi-Schneiderman (conocido también como Chapin) es como un diagrama de flujo en el que se omiten las flechas de unión y las cajas son contiguas.

Ver más información en el siguiente archivo.

