Discrete Mathematics for Computer Science

Lecture 18: Graph

Dr. Ming Tang

Department of Computer Science and Engineering Southern University of Science and Technology (SUSTech) Email: tangm3@sustech.edu.cn

This Lecture

Graph and terminologies, representing graphs and graph isomorphism, connectivity, Euler and Hamiliton path, ...

Ming Tang @ SUSTech CS201 Spring 2025 2 / 51

Definition: A simple graph G is bipartite if V can be partitioned into two disjoint subsets V_1 and V_2 such that every edge connects a vertex in V_1 and a vertex in V_2 .

Definition: A simple graph G is bipartite if V can be partitioned into two disjoint subsets V_1 and V_2 such that every edge connects a vertex in V_1 and a vertex in V_2 .

An equivalent definition of a bipartite graph is a graph where it is possible to color the vertices red or blue so that no two adjacent vertices are of the same color.

Definition: A simple graph G is bipartite if V can be partitioned into two disjoint subsets V_1 and V_2 such that every edge connects a vertex in V_1 and a vertex in V_2 .

An equivalent definition of a bipartite graph is a graph where it is possible to color the vertices red or blue so that no two adjacent vertices are of the same color.

Are these graphs bipartite?

Spring 2025

Are these graphs bipartite?

(a) Bipartite: Its vertex set is the union of two disjoint sets, $\{a, b, d\}$ and $\{c, e, f, g\}$, and each edge connects a vertex in one of these subsets to a vertex in the other subset.

Are these graphs bipartite?

- (a) Bipartite: Its vertex set is the union of two disjoint sets, $\{a, b, d\}$ and $\{c, e, f, g\}$, and each edge connects a vertex in one of these subsets to a vertex in the other subset.
- (b) Not bipartite: Its vertex set cannot be partitioned into two subsets so that edges do not connect two vertices from the same subset.

Ming Tang @ SUSTech CS201 Spring 2025 4 / 51

Bipartite Graphs: Examples

Show that C_6 is bipartite.

5/51

Ming Tang @ SUSTech CS201 Spring 2025

Bipartite Graphs: Examples

Show that C_6 is bipartite.

Show that C_3 is not bipartite.

Complete Bipartite Graphs

Definition: A complete bipartite graph $K_{m,n}$ is a graph that has its vertex set partitioned into two subsets V_1 of size m and V_2 of size n such that there is an edge from every vertex in V_1 to every vertex in V_2 .

Complete Bipartite Graphs

Definition: A complete bipartite graph $K_{m,n}$ is a graph that has its vertex set partitioned into two subsets V_1 of size m and V_2 of size n such that there is an edge from every vertex in V_1 to every vertex in V_2 .

Spring 2025

Given a bipartite graph, a matching is a subset of edges *E* such that no two edges are incident with the same vertex.

7/51

Ming Tang @ SUSTech CS201 Spring 2025

Given a bipartite graph, a matching is a subset of edges *E* such that no two edges are incident with the same vertex.

In other words, a matching is a subset of edges such that if $\{s,t\}$ and $\{u,v\}$ are distinct edges of the matching, then s,t,u, and v are distinct.

Given a bipartite graph, a matching is a subset of edges *E* such that no two edges are incident with the same vertex.

In other words, a matching is a subset of edges such that if $\{s,t\}$ and $\{u,v\}$ are distinct edges of the matching, then s,t,u, and v are distinct.

Given a bipartite graph, a matching is a subset of edges *E* such that no two edges are incident with the same vertex.

Job assignments: vertices represent the jobs and the employees, edges link employees with those jobs they have been trained to do. A common goal is to match jobs to employees so that the most jobs are done.

Spring 2025

Given a bipartite graph, a matching is a subset of edges *E* such that no two edges are incident with the same vertex.

Job assignments: vertices represent the jobs and the employees, edges link employees with those jobs they have been trained to do. A common goal is to match jobs to employees so that the most jobs are done.

A maximum matching is a matching with the largest number of edges.

A maximum matching is a matching with the largest number of edges.

A matching M in a bipartite graph G = (V, E) with bipartition (V_1, V_2) is a complete matching from V_1 to V_2 if every vertex in V_1 is the endpoint of an edge in the matching, or equivalently, if $|M| = |V_1|$.

Hall's Theorem: Example

Theorem (Hall's Marriage Theorem): The bipartite graph G = (V, E) with bipartition (V_1, V_2) has a complete matching from V_1 to V_2 if and only if $|N(A)| \ge |A|$ for all subsets A of V_1 .

Theorem (Hall's Marriage Theorem): The bipartite graph G = (V, E) with bipartition (V_1, V_2) has a complete matching from V_1 to V_2 if and only if $|N(A)| \ge |A|$ for all subsets A of V_1 .

Proof: "only if"

Theorem (Hall's Marriage Theorem): The bipartite graph G = (V, E) with bipartition (V_1, V_2) has a complete matching from V_1 to V_2 if and only if $|N(A)| \ge |A|$ for all subsets A of V_1 .

Proof: "only if"

Suppose that there is a complete matching M from V_1 to V_2 . Consider an arbitrary subset $A \subseteq V_1$.

Theorem (Hall's Marriage Theorem): The bipartite graph G = (V, E)with bipartition (V_1, V_2) has a complete matching from V_1 to V_2 if and only if $|N(A)| \ge |A|$ for all subsets A of V_1 .

Proof: "only if"

Suppose that there is a complete matching M from V_1 to V_2 . Consider an arbitrary subset $A \subseteq V_1$.

Then, for every vertex $v \in A$, there is an edge in M connecting v to a vertex in V_2 .

Theorem (Hall's Marriage Theorem): The bipartite graph G = (V, E) with bipartition (V_1, V_2) has a complete matching from V_1 to V_2 if and only if $|N(A)| \ge |A|$ for all subsets A of V_1 .

Proof: "only if"

Suppose that there is a complete matching M from V_1 to V_2 . Consider an arbitrary subset $A \subseteq V_1$.

Then, for every vertex $v \in A$, there is an edge in M connecting v to a vertex in V_2 .

Thus, there are at least as many vertices in V_2 that are neighbors of vertices in V_1 as there are vertices in V_1 .

Theorem (Hall's Marriage Theorem): The bipartite graph G = (V, E) with bipartition (V_1, V_2) has a complete matching from V_1 to V_2 if and only if $|N(A)| \ge |A|$ for all subsets A of V_1 .

Proof: "only if"

Suppose that there is a complete matching M from V_1 to V_2 . Consider an arbitrary subset $A \subseteq V_1$.

Then, for every vertex $v \in A$, there is an edge in M connecting v to a vertex in V_2 .

Thus, there are at least as many vertices in V_2 that are neighbors of vertices in V_1 as there are vertices in V_1 .

Hence, $|N(A)| \ge |A|$.

Theorem (Hall's Marriage Theorem): The bipartite graph G = (V, E) with bipartition (V_1, V_2) has a complete matching from V_1 to V_2 if and only if $|N(A)| \ge |A|$ for all subsets A of V_1 .

Proof: "if",

Theorem (Hall's Marriage Theorem): The bipartite graph G = (V, E) with bipartition (V_1, V_2) has a complete matching from V_1 to V_2 if and only if $|N(A)| \ge |A|$ for all subsets A of V_1 .

Proof: "if", use strong induction to prove it.

12 / 51

Ming Tang @ SUSTech CS201 Spring 2025

Theorem (Hall's Marriage Theorem): The bipartite graph G = (V, E) with bipartition (V_1, V_2) has a complete matching from V_1 to V_2 if and only if $|N(A)| \ge |A|$ for all subsets A of V_1 .

Proof: "if", use strong induction to prove it.

Basic Step: $|V_1| = 1$

Theorem (Hall's Marriage Theorem): The bipartite graph G = (V, E) with bipartition (V_1, V_2) has a complete matching from V_1 to V_2 if and only if $|N(A)| \ge |A|$ for all subsets A of V_1 .

Proof: "if", use strong induction to prove it.

Basic Step: $|V_1| = 1$

Inductive hypothesis: Let k be a positive integer. If G=(V,E) is a bipartite graph with bipartition (V_1,V_2) , and $|V_1|=j\leq k$, then there is a complete mathching M from V_1 to V_2 whenever the condition that $|N(A)|\geq |A|$ for all $A\subseteq V_1$ is met.

Theorem (Hall's Marriage Theorem): The bipartite graph G = (V, E) with bipartition (V_1, V_2) has a complete matching from V_1 to V_2 if and only if $|N(A)| \ge |A|$ for all subsets A of V_1 .

Proof: "if", use strong induction to prove it.

Basic Step: $|V_1| = 1$

Inductive hypothesis: Let k be a positive integer. If G=(V,E) is a bipartite graph with bipartition (V_1,V_2) , and $|V_1|=j\leq k$, then there is a complete mathching M from V_1 to V_2 whenever the condition that $|N(A)|\geq |A|$ for all $A\subseteq V_1$ is met.

Inductive step: Suppose that H = (W, F) is a bipartite graph with bipartition (W_1, W_2) and $|W_1| = k + 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めぬぐ

Inductive hypothesis: Let $|V_1| = j \le k$. There is a complete mathching M from V_1 to V_2 whenever $|N(A)| \ge |A|$ for all $A \subseteq V_1$.

Inductive step: Suppose that H = (W, F) is a bipartite graph with bipartition (W_1, W_2) and $|W_1| = k + 1$.

Suppose $|N(A)| \ge |A|$ for all $A \subseteq W_1$. Prove there exists a complete matching. There are two cases:

Spring 2025

Inductive hypothesis: Let $|V_1| = j \le k$. There is a complete mathching M from V_1 to V_2 whenever $|N(A)| \ge |A|$ for all $A \subseteq V_1$.

Inductive step: Suppose that H = (W, F) is a bipartite graph with bipartition (W_1, W_2) and $|W_1| = k + 1$.

Suppose $|N(A)| \ge |A|$ for all $A \subseteq W_1$. Prove there exists a complete matching. There are two cases:

(i) For all integers j with $1 \le j \le k$, the vertices in every set of j elements from W_1 are adjacent to at least j+1 elements of W_2 .

Inductive hypothesis: Let $|V_1| = i \le k$. There is a complete mathching M from V_1 to V_2 whenever $|N(A)| \ge |A|$ for all $A \subseteq V_1$.

Inductive step: Suppose that H = (W, F) is a bipartite graph with bipartition (W_1, W_2) and $|W_1| = k + 1$.

Suppose $|N(A)| \ge |A|$ for all $A \subseteq W_1$. Prove there exists a complete matching. There are two cases:

- (i) For all integers j with 1 < j < k, the vertices in every set of j elements from W_1 are adjacent to at least i+1 elements of W_2 .
- (ii) For some integer j with $1 \le j \le k$, there is a subset W'_1 of j vertices such that there are exactly j neighbors of these vertices in W_2 .

Inductive hypothesis: Let $|V_1| = j \le k$. There is a complete mathching M from V_1 to V_2 whenever $|N(A)| \ge |A|$ for all $A \subseteq V_1$.

Inductive step: (i) For all integers j with $1 \le j \le k$, the vertices in every set of j elements from W_1 are adjacent to at least j+1 elements of W_2 .

Spring 2025

Inductive hypothesis: Let $|V_1| = i \le k$. There is a complete mathching M from V_1 to V_2 whenever $|N(A)| \ge |A|$ for all $A \subseteq V_1$.

Inductive step: (i) For all integers j with $1 \le j \le k$, the vertices in every set of j elements from W_1 are adjacent to at least j+1 elements of W_2 .

- Let A be such a subset of W_1 with j elements, where $1 \le j \le k$;
- $|N(A)| \ge |A| + 1$ for all A.

Inductive hypothesis: Let $|V_1| = i \le k$. There is a complete mathching M from V_1 to V_2 whenever $|N(A)| \ge |A|$ for all $A \subseteq V_1$.

Inductive step: (i) For all integers j with $1 \le j \le k$, the vertices in every set of j elements from W_1 are adjacent to at least j+1 elements of W_2 .

- Let A be such a subset of W_1 with j elements, where $1 \le j \le k$;
- |N(A)| > |A| + 1 for all A.

We select a vertex $v \in W_1$ and an element $w \in N(\{v\})$. The inductive hypothesis tells us there is a complete matching from W_1 – $\{v\}$ to $W_2 - \{w\}$.

Inductive hypothesis: Let $|V_1| = j \le k$. There is a complete mathching M from V_1 to V_2 whenever $|N(A)| \ge |A|$ for all $A \subseteq V_1$.

Inductive step: (i) For all integers j with $1 \le j \le k$, the vertices in every set of j elements from W_1 are adjacent to at least j+1 elements of W_2 .

- Let A be such a subset of W_1 with j elements, where $1 \le j \le k$;
- $|N(A)| \ge |A| + 1$ for all A.

We select a vertex $v \in W_1$ and an element $w \in N(\{v\})$. The inductive hypothesis tells us there is a complete matching from $W_1 - \{v\}$ to $W_2 - \{w\}$.

<□ > <□ > < 0 > < 0 |

Inductive step: (ii) For some integer j with $1 \le j \le k$, there is a subset W'_1 of j vertices such that they have exactly j neighbors in W_2 .

15 / 51

Inductive step: (ii) For some integer j with $1 \le j \le k$, there is a subset W'_1 of j vertices such that they have exactly j neighbors in W_2 .

- Let A be such a subset of W_1 with j elements, where $1 \le j \le k$;
- |N(A)| = |A| for some A, i.e., W'_1 .

Let W_2' be the set of these neighbors. Then by i.h., there is a complete matching from W_1' to W_2' .

Inductive step: (ii) For some integer j with $1 \le j \le k$, there is a subset W'_1 of j vertices such that they have exactly j neighbors in W_2 .

- Let A be such a subset of W_1 with j elements, where $1 \le j \le k$;
- |N(A)| = |A| for some A, i.e., W'_1 .

Let W_2' be the set of these neighbors. Then by i.h., there is a complete matching from W_1' to W_2' .

Now consider $K = (W_1 - W_1', W_2 - W_2')$.

Inductive step: (ii) For some integer j with $1 \le j \le k$, there is a subset W'_1 of j vertices such that they have exactly j neighbors in W_2 .

- Let A be such a subset of W_1 with j elements, where $1 \le j \le k$;
- |N(A)| = |A| for some A, i.e., W'_1 .

Let W_2' be the set of these neighbors. Then by i.h., there is a complete matching from W_1' to W_2' .

Now consider $K = (W_1 - W_1', W_2 - W_2')$. We will show that the condition $|N(A)| \ge |A|$ is met for all subsets A of $W_1 - W_1'$.

15 / 51

Inductive step: (ii) For some integer j with $1 \le j \le k$, there is a subset W'_1 of j vertices such that they have exactly j neighbors in W_2 .

- Let A be such a subset of W_1 with j elements, where $1 \le j \le k$;
- |N(A)| = |A| for some A, i.e., W'_1 .

Let W_2' be the set of these neighbors. Then by i.h., there is a complete matching from W_1' to W_2' .

Now consider $K=(W_1-W_1',W_2-W_2')$. We will show that the condition $|N(A)|\geq |A|$ is met for all subsets A of W_1-W_1' . If not,

ullet There is a subset B of t vertices with $1 \leq t \leq k+1-j$ such that $|\mathcal{N}(B)| < t$

15 / 51

Inductive step: (ii) For some integer j with $1 \le j \le k$, there is a subset W'_1 of j vertices such that they have exactly j neighbors in W_2 .

- Let A be such a subset of W_1 with j elements, where $1 \le j \le k$;
- |N(A)| = |A| for some A, i.e., W'_1 .

Let W_2' be the set of these neighbors. Then by i.h., there is a complete matching from W_1' to W_2' .

Now consider $K=(W_1-W_1',W_2-W_2')$. We will show that the condition $|N(A)|\geq |A|$ is met for all subsets A of W_1-W_1' . If not,

- There is a subset B of t vertices with $1 \le t \le k+1-j$ such that $|\mathcal{N}(B)| < t$
- Adding those deleted j vertices, |N(B)| + j < t + j. Contradiction.

15 / 51

4 D > 4 B > 4 E > 4 E > 9 Q P

Inductive step: (ii) For some integer j with $1 \le j \le k$, there is a subset W_1' of j vertices such that they have exactly j neighbors in W_2 .

- Let A be such a subset of W_1 with j elements, where $1 \le j \le k$;
- |N(A)| = |A| for some A, i.e., W'_1 .

Let W_2' be the set of these neighbors. Then by i.h., there is a complete matching from W_1' to W_2' .

Now consider $K=(W_1-W_1',W_2-W_2')$. We will show that the condition $|N(A)|\geq |A|$ is met for all subsets A of W_1-W_1' . If not,

- There is a subset B of t vertices with $1 \le t \le k+1-j$ such that $|\mathcal{N}(B)| < t$
- Adding those deleted j vertices, |N(B)| + j < t + j. Contradiction.

Thus, there is a complete matching from from W_1-W_2' to W_2-W_2' . SUSTech define and variety of Surveyork and the surveyork of the surve

Ming Tang @ SUSTech CS201 Spring 2025 15 / 51

Hall's Theorem: Example

Theorem (Hall's Marriage Theorem): The bipartite graph G = (V, E) with bipartition (V_1, V_2) has a complete matching from V_1 to V_2 if and only if $|N(A)| \ge |A|$ for all subsets A of V_1 .

16/51

Subgraphs

Definition: A subgraph of a graph G = (V, E) is a graph (W, F), where $W \subseteq V$ and $F \subseteq E$.

Subgraphs

Definition: A subgraph of a graph G = (V, E) is a graph (W, F), where $W \subseteq V$ and $F \subseteq E$.

A subgraph H of G is a proper subgraph of G if $H \neq G$.

Subgraphs

Definition: A subgraph of a graph G = (V, E) is a graph (W, F), where $W \subseteq V$ and $F \subseteq E$.

A subgraph H of G is a proper subgraph of G if $H \neq G$.

Union of Graphs

Definition: The union of two simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the simple graph with vertex set $V_1 \cup V_2$ and edge set $E_1 \cup E_2$, denoted by $G_1 \cup G_2$.

Union of Graphs

Definition: The union of two simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the simple graph with vertex set $V_1 \cup V_2$ and edge set $E_1 \cup E_2$, denoted by $G_1 \cup G_2$.

18 / 51

Union of Graphs

Definition: The union of two simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the simple graph with vertex set $V_1 \cup V_2$ and edge set $E_1 \cup E_2$, denoted by $G_1 \cup G_2$.

18 / 51

This Lecture

Graph and terminologies, representing graphs and graph isomorphism, connectivity, Euler and Hamiliton path, ...

Ming Tang @ SUSTech CS201 Spring 2025 19 / 51

To represent a graph, we may use adjacency lists, adjacency matrices, and incidence matrices.

20 / 51

To represent a graph, we may use adjacency lists, adjacency matrices, and incidence matrices.

Definition: An adjacency list can be used to represent a graph with no multiple edges by specifying the vertices that are adjacent to each vertex of the graph.

20 / 51

To represent a graph, we may use adjacency lists, adjacency matrices, and incidence matrices.

Definition: An adjacency list can be used to represent a graph with no multiple edges by specifying the vertices that are adjacent to each vertex of the graph.

TABLE 1 An Adjacency List for a Simple Graph.						
Vertex	Vertex Adjacent Vertices					
а	b, c, e					
b	а					
c	a, d, e					
d	c, e					
e	a, c, d					

Definition: An adjacency list can be used to represent a graph with no multiple edges by specifying the vertices that are adjacent to each vertex of the graph.

TABLE 2 An Adjacency List for a Directed Graph.				
Initial Vertex	Terminal Vertices			
а	b, c, d, e			
b	b, d			
c	a, c, e			
d				
e	b, c, d			

21 / 51

Definition: Suppose that G = (V, E) is a simple graph with |V| = n. Arbitrarily list the vertices of G as v_1, v_2, \ldots, v_n . The adjacency matrix \mathbf{A}_G of G, is the $n \times n$ zero-one matrix with 1 as its (i, j)-th entry when v_i and v_i are adjacent, and 0 as its (i, j)-th entry when they are not adjacent.

22 / 51

Definition: Suppose that G = (V, E) is a simple graph with |V| = n. Arbitrarily list the vertices of G as v_1, v_2, \ldots, v_n . The adjacency matrix \mathbf{A}_G of G, is the $n \times n$ zero-one matrix with 1 as its (i, j)-th entry when v_i and v_j are adjacent, and 0 as its (i, j)-th entry when they are not adjacent.

$$\mathbf{A}_G = [a_{ij}]_{n \times n}, ext{ where}$$
 $a_{ij} = \left\{egin{array}{ll} 1 & ext{if } \{v_i,v_j\} ext{ is an edge of } G, \ 0 & ext{otherwise.} \end{array}
ight.$

1 / 1 D# / 1 E / 1 E /

Definition: Suppose that G = (V, E) is a simple graph with |V| = n. Arbitrarily list the vertices of G as v_1, v_2, \ldots, v_n . The adjacency matrix \mathbf{A}_G of G, is the $n \times n$ zero-one matrix with $\mathbf{1}$ as its (i, j)-th entry when v_i and v_j are adjacent, and 0 as its (i, j)-th entry when they are not adjacent.

$$\mathbf{A}_G = [a_{ij}]_{n \times n}, \text{ where}$$

$$a_{ij} = \begin{cases} 1 & \text{if } \{v_i, v_j\} \text{ is an edge of } G, \\ 0 & \text{otherwise.} \end{cases}$$

22 / 51

Definition: Suppose that G = (V, E) is a simple graph with |V| = n. Arbitrarily list the vertices of G as v_1, v_2, \ldots, v_n . The adjacency matrix \mathbf{A}_G of G, is the $n \times n$ zero-one matrix with 1 as its (i, j)-th entry when v_i and v_j are adjacent, and 0 as its (i, j)-th entry when they are not adjacent.

$$\mathbf{A}_G = [a_{ij}]_{n \times n}, \text{ where}$$

$$a_{ij} = \begin{cases} 1 & \text{if } \{v_i, v_j\} \text{ is an edge of } G, \\ 0 & \text{otherwise.} \end{cases}$$

$$\left[\begin{array}{ccccc}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]$$

Definition: Suppose that G = (V, E) is a simple graph with |V| = n. Arbitrarily list the vertices of G as v_1, v_2, \ldots, v_n . The adjacency matrix \mathbf{A}_G of G, is the $n \times n$ zero-one matrix with 1 as its (i, j)-th entry when v_i and v_j are adjacent, and 0 as its (i, j)-th entry when they are not adjacent.

$$\mathbf{A}_G = [a_{ij}]_{n \times n}, \text{ where}$$

$$a_{ij} = \begin{cases} 1 & \text{if } \{v_i, v_j\} \text{ is an edge of } G, \\ 0 & \text{otherwise.} \end{cases}$$

$$\left[\begin{array}{ccccc}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]$$

Directed graph?

Adjacency matrices can also be used to represent graphs with loops and multiple edges. The matrix is no longer a zero-one matrix.

23 / 51

Adjacency matrices can also be used to represent graphs with loops and multiple edges. The matrix is no longer a zero-one matrix.

23 / 51

Adjacency matrices can also be used to represent graphs with loops and multiple edges. The matrix is no longer a zero-one matrix.

$$\left[\begin{array}{ccccc}
0 & 3 & 0 & 2 \\
3 & 0 & 1 & 1 \\
0 & 1 & 1 & 2 \\
2 & 1 & 2 & 0
\end{array}\right]$$

Definition: Let G = (V, E) be an undirected graph with vertices v_1, v_2, \ldots, v_n and edges e_1, e_2, \ldots, e_m . The incidence matrix with respect to the ordering of V and E is the $n \times m$ matrix $\mathbf{M} = [m_{ij}]_{n \times m}$, where

Definition: Let G = (V, E) be an undirected graph with vertices $v_1, v_2, ..., v_n$ and edges $e_1, e_2, ..., e_m$. The incidence matrix with respect to the ordering of V and E is the $n \times m$ matrix $\mathbf{M} = [m_{ij}]_{n \times m}$, where

$$m_{ij} = \left\{ egin{array}{ll} 1 & ext{if edge } e_j ext{ is incident with } v_i, \\ 0 & ext{otherwise}. \end{array}
ight.$$

24 / 51

40.49.43.43.3

Definition: Let G = (V, E) be an undirected graph with vertices $v_1, v_2, ..., v_n$ and edges $e_1, e_2, ..., e_m$. The incidence matrix with respect to the ordering of V and E is the $n \times m$ matrix $\mathbf{M} = [m_{ij}]_{n \times m}$, where

$$m_{ij} = \left\{ egin{array}{ll} 1 & ext{if edge } e_j ext{ is incident with } v_i, \\ 0 & ext{otherwise}. \end{array}
ight.$$

Definition: Let G = (V, E) be an undirected graph with vertices $v_1, v_2, ..., v_n$ and edges $e_1, e_2, ..., e_m$. The incidence matrix with respect to the ordering of V and E is the $n \times m$ matrix $\mathbf{M} = [m_{ij}]_{n \times m}$, where

$$m_{ij} = \left\{ egin{array}{ll} 1 & ext{if edge } e_j ext{ is incident with } v_i, \ 0 & ext{otherwise}. \end{array}
ight.$$

$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	1	0	0	0	0
0	0	1	1	0	1
0	0	0	0	1	1
1	0	1	0	0	0
$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1	0	1	1	0

Definition: Let G = (V, E) be an undirected graph with vertices $v_1, v_2, ..., v_n$ and edges $e_1, e_2, ..., e_m$. The incidence matrix with respect to the ordering of V and E is the $n \times m$ matrix $\mathbf{M} = [m_{ij}]_{n \times m}$, where

$$m_{ij} = \begin{cases} 1 & \text{if edge } e_j \text{ is incident with } v_i, \\ 0 & \text{otherwise.} \end{cases}$$

Definition: Let G = (V, E) be an undirected graph with vertices $v_1, v_2, ..., v_n$ and edges $e_1, e_2, ..., e_m$. The incidence matrix with respect to the ordering of V and E is the $n \times m$ matrix $\mathbf{M} = [m_{ij}]_{n \times m}$, where

$$m_{ij} = \left\{ egin{array}{ll} 1 & ext{if edge } e_j ext{ is incident with } v_i, \\ 0 & ext{otherwise}. \end{array}
ight.$$

$ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} $	1	1	0	0	0	0	0
0	1	1	1	0	1	1	0
0	0	0	1	1	0	0	0
0	0	0	0	0	0	1	1
0	0	0	0	1	1	0	0

Isomorphism of Graphs

Definition: The simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there is a one-to-one and onto function from V_1 to V_2 with the property that a and b are adjacent in G_1 if and only if f(a) and f(b) are adjacent in G_2 , for all a and b in V_1 . Such a function is called an isomorphism.

26 / 51

Isomorphism of Graphs

Definition: The simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there is a one-to-one and onto function from V_1 to V_2 with the property that a and b are adjacent in G_1 if and only if f(a) and f(b) are adjacent in G_2 , for all a and b in V_1 . Such a function is called an isomorphism.

Are the two graphs isomorphic?

Definition: The simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there is a one-to-one and onto function from V_1 to V_2 with the property that a and b are adjacent in G_1 if and only if f(a) and f(b) are adjacent in G_2 , for all a and b in V_1 . Such a function is called an isomorphism.

Are the two graphs isomorphic?

- Define a one-to-one correspondence: $f(u_1) = v_1$, $f(u_2) = v_4$, $f(u_3) = v_3$, and $f(u_4) = v_2$.
- Check their adjacent matrics.

It is usually difficult to determine whether two simple graphs are isomorphic using brute force since there are n! possible one-to-one correspondences.

27 / 51

Ming Tang @ SUSTech CS201 Spring 2025

It is usually difficult to determine whether two simple graphs are isomorphic using brute force since there are n! possible one-to-one correspondences.

Sometimes it is not difficult to show that two graphs are not isomorphic. We can achieve this by checking some graph invariants.

It is usually difficult to determine whether two simple graphs are isomorphic using brute force since there are n! possible one-to-one correspondences.

Sometimes it is not difficult to show that two graphs are not isomorphic. We can achieve this by checking some graph invariants.

Useful graph invariants include the number of vertices, number of edges, degree sequence, etc.

Determine whether these two graphs are isomorphic.

Spring 2025

Determine whether these two graphs are isomorphic.

H has a vertex of degree one, namely, e, whereas G has no vertices of degree one. It follows that G and H are not isomorphic.

Determine whether these two graphs are isomorphic.

Spring 2025

Determine whether these two graphs are isomorphic.

G and H are not isomorphic. This is because deg(a) = 2 in G, and a must correspond to either t, u, x, or y in H.

29 / 51

CS201 Spring 2025

Determine whether these two graphs are isomorphic.

G and H are not isomorphic. This is because deg(a)=2 in G, and a must correspond to either t, u, x, or y in H. However, each of these four vertices in H is adjacent to another vertex of degree two in H, which is not true for a in G.

29 / 51

Ming Tang @ SUSTech CS201 Spring 2025

Determine whether these two graphs are isomorphic.

Determine whether these two graphs are isomorphic.

Because many isomorphic invariants (e.g., number of vertices/edges, degree) agree, G and H may be isomorphic. We now will define a function f:

Determine whether these two graphs are isomorphic.

Because many isomorphic invariants (e.g., number of vertices/edges, degree) agree, G and H may be isomorphic. We now will define a function f:

• $f(u_1)$ can be either v_4 or v_6 , because u_1 is not adjacent to any other vertex of degree two. We arbitrarily set $f(u_1) = v_6$.

30 / 51

Ming Tang @ SUSTech CS201 Spring 2025

Determine whether these two graphs are isomorphic.

Because many isomorphic invariants (e.g., number of vertices/edges, degree) agree, G and H may be isomorphic. We now will define a function f:

- $f(u_1)$ can be either v_4 or v_6 , because u_1 is not adjacent to any other vertex of degree two. We arbitrarily set $f(u_1) = v_6$.
- u_2 is adjacent to u_1 , so $f(u_2)$ can be either v_3 or v_5 . We arbitrarily set $f(u_2) = v_3$.

Determine whether these two graphs are isomorphic.

Because many isomorphic invariants (e.g., number of vertices/edges, degree) agree, G and H may be isomorphic. We now will define a function f:

- $f(u_1)$ can be either v_4 or v_6 , because u_1 is not adjacent to any other vertex of degree two. We arbitrarily set $f(u_1) = v_6$.
- u_2 is adjacent to u_1 , so $f(u_2)$ can be either v_3 or v_5 . We arbitrarily set $f(u_2) = v_3$.
- ...

Determine whether these two graphs are isomorphic.

Because many isomorphic invariants (e.g., number of vertices/edges, degree) agree, G and H may be isomorphic. We now will define a function f:

- $f(u_1)$ can be either v_4 or v_6 , because u_1 is not adjacent to any other vertex of degree two. We arbitrarily set $f(u_1) = v_6$.
- u_2 is adjacent to u_1 , so $f(u_2)$ can be either v_3 or v_5 . We arbitrarily set $f(u_2) = v_3$.
- ...

30 / 51

• $f(u_3) = v_4$, $f(u_4) = v_5$, $f(u_5) = v_1$, and $f(u_6) = v_2$.

Ming Tang @ SUSTech CS201 Spring 2025

Determine whether these two graphs are isomorphic.

$$f(u_1) = v_6$$
, $f(u_2) = v_3$, $f(u_3) = v_4$, $f(u_4) = v_5$, $f(u_5) = v_1$, $f(u_6) = v_2$.

$$\mathbf{A}_{H} = \begin{bmatrix} v_{6} & v_{3} & v_{4} & v_{5} & v_{1} & v_{2} \\ v_{6} & 0 & 1 & 0 & 1 & 0 & 0 \\ v_{3} & 1 & 0 & 1 & 0 & 0 & 1 \\ v_{4} & 0 & 1 & 0 & 1 & 0 & 0 \\ v_{5} & v_{1} & 0 & 1 & 0 & 1 & 0 \\ v_{2} & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A}_{H} = \begin{bmatrix} v_{6} & v_{3} & v_{4} & v_{5} & v_{1} & v_{2} \\ v_{6} & 0 & 1 & 0 & 1 & 0 & 0 \\ v_{3} & 1 & 0 & 1 & 0 & 0 & 1 \\ v_{4} & 0 & 1 & 0 & 1 & 0 & 0 \\ v_{5} & 1 & 0 & 1 & 0 & 1 & 0 \\ v_{1} & 0 & 0 & 0 & 1 & 0 & 1 \\ v_{2} & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}, \quad \mathbf{A}_{G} = \begin{bmatrix} u_{1} & u_{2} & u_{3} & u_{4} & u_{5} & u_{6} \\ u_{1} & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix},$$

SUS Iech of Science and

We conclude that f is an isomorphism, so G and H are isomorphic.

Ming Tang @ SUSTech Spring 2025 31 / 51

This Lecture

Graph and terminologies, representing graphs and graph isomorphism, connectivity, Euler and Hamiliton path, ...

Ming Tang @ SUSTech CS201 Spring 2025 32 / 51

Definition: Let n be a nonnegative integer and G an undirected graph. A path of length n from u to v in G is a sequence of n edges e_1, e_2, \ldots, e_n of G for which there exists a sequence $x_0 = u, x_1, \ldots, x_{n-1}, x_n = v$ of vertices such that e_i has the endpoints x_{i-1} and x_i for i = 1, ..., n.

Definition: Let n be a nonnegative integer and G an undirected graph. A path of length n from u to v in G is a sequence of n edges e_1, e_2, \ldots, e_n of G for which there exists a sequence $x_0 = u, x_1, \ldots, x_{n-1}, x_n = v$ of vertices such that e_i has the endpoints x_{i-1} and x_i for i = 1, ..., n.

The path is a circuit if it begins and ends at the same vertex, i.e., if u = v, and has length greater than zero.

Ming Tang @ SUSTech CS201 Spring 2025 33 / 51

Definition: Let n be a nonnegative integer and G an undirected graph. A path of length n from u to v in G is a sequence of n edges e_1, e_2, \ldots, e_n of G for which there exists a sequence $x_0 = u, x_1, \ldots, x_{n-1}, x_n = v$ of vertices such that e_i has the endpoints x_{i-1} and x_i for i = 1, ..., n.

The path is a circuit if it begins and ends at the same vertex, i.e., if u = v, and has length greater than zero.

A path or circuit is simple if it does not contain the same edge more than once.

Definition: Let n be a nonnegative integer and G an undirected graph. A path of length n from u to v in G is a sequence of n edges e_1, e_2, \ldots, e_n of G for which there exists a sequence $x_0 = u, x_1, \ldots, x_{n-1}, x_n = v$ of vertices such that e_i has the endpoints x_{i-1} and x_i for i = 1, ..., n.

The path is a circuit if it begins and ends at the same vertex, i.e., if u = v, and has length greater than zero.

A path or circuit is simple if it does not contain the same edge more than once.

Length of a path = the number of edges on path

Ming Tang @ SUSTech CS201 Spring 2025 33 / 51

Spring 2025

• a, d, c, f, e is a simple path of length 4.

34 / 51

Ming Tang @ SUSTech CS201 Spring 2025

- a, d, c, f, e is a simple path of length 4.
- d, e, c, a is not a path, because $\{e, c\}$ is not an edge.

- a, d, c, f, e is a simple path of length 4.
- d, e, c, a is not a path, because $\{e, c\}$ is not an edge.
- b, c, f, e, b is a circuit of length 4.

- a, d, c, f, e is a simple path of length 4.
- d, e, c, a is not a path, because $\{e, c\}$ is not an edge.
- b, c, f, e, b is a circuit of length 4.
- The path a, b, e, d, a, b, which is of length 5, is not simple because it contains the edge $\{a, b\}$ twice.

Definition: Let n be a nonnegative integer and G an directed graph. A path of length n from u to v in G is a sequence of n edges e_1, e_2, \ldots, e_n of G for which there exists a sequence $x_0 = u, x_1, \ldots, x_{n-1}, x_n = v$ of vertices such that e_i is associated with initial vertex x_{i-1} and terminal vertex x_i for i = 1, ..., n.

A path of length greater than zero that begins and ends at the same vertex is called a circuit or cycle.

A path or circuit is called simple if it does not contain the spreadge more than once.

An undirected graph is called connected if there is a path between every pair of distinct vertices of the graph.

An undirected graph is called connected if there is a path between every pair of distinct vertices of the graph.

An undirected graph that is not connected is called disconnected.

36 / 51

Ming Tang @ SUSTech CS201 Spring 2025

An undirected graph is called connected if there is a path between every pair of distinct vertices of the graph.

An undirected graph that is not connected is called disconnected.

Lemma: If there is a path between two distinct vertices x and y of a graph G, then there is a simple path between x and y in G.

Lemma: If there is a path between two distinct vertices x and y of a graph G, then there is a simple path between x and y in G.

Proof: Just delete cycles (loops).

Path from x to y: x, z, u, r, z, u, r, z, w, v, w, y.

Path from x to y: x, z, w, y.

Lemma: If there is a path between two distinct vertices x and y of a graph G, then there is a simple path between x and y in G.

Proof: Just delete cycles (loops).

Path from x to y: x, z, u, r, z, u, r, z, w, v, w, y.

Path from x to y: x, z, w, y.

Theorem: There is a simple path between every pair of distinct vertices of a connected undirected graph.

A connected component of a graph G is a connected subgraph of G that is not a proper subgraph of another connected subgraph of G.

A graph G that is not connected has two or more connected components that are disjoint and have G as their union.

Connectedness in Directed Graphs

Definition: A directed graph is strongly connected if there is a path from a to b and a path from b to a whenever a and b are vertices in the graph.

Connectedness in Directed Graphs

Definition: A directed graph is strongly connected if there is a path from a to b and a path from b to a whenever a and b are vertices in the graph.

Definition: A directed graph is weakly connected if there is a path between every two vertices in the underlying undirected graph.

Connectedness in Directed Graphs

Definition: A directed graph is strongly connected if there is a path from a to b and a path from b to a whenever a and b are vertices in the graph.

Definition: A directed graph is weakly connected if there is a path between every two vertices in the underlying undirected graph.

Connectedness in Directed Graphs

Definition: A directed graph is strongly connected if there is a path from a to b and a path from b to a whenever a and b are vertices in the graph.

Definition: A directed graph is weakly connected if there is a path between every two vertices in the underlying undirected graph.

G is strongly connected; *H* is weakly connected.

Sometimes the removal from a graph of a vertex and all incident edges disconnect the graph.

Sometimes the removal from a graph of a vertex and all incident edges disconnect the graph.

Such vertices are called cut vertices. Similarly we may define cut edges.

40 / 51

Sometimes the removal from a graph of a vertex and all incident edges disconnect the graph.

Such vertices are called cut vertices. Similarly we may define cut edges.

Sometimes the removal from a graph of a vertex and all incident edges disconnect the graph.

Such vertices are called cut vertices. Similarly we may define cut edges.

The cut vertices are b, c, and e.

40 / 51

Sometimes the removal from a graph of a vertex and all incident edges disconnect the graph.

Such vertices are called cut vertices. Similarly we may define cut edges.

The cut vertices are b, c, and e.

The cut edges are $\{a, b\}$ and $\{c, e\}$.

40 / 51

A set of edges E' is called an edge cut of G if the subgraph G - E' is disconnected. The edge connectivity $\lambda(G)$ is the minimum number of edges in an edge cut of G.

41 / 51

A set of edges E' is called an edge cut of G if the subgraph G - E' is disconnected. The edge connectivity $\lambda(G)$ is the minimum number of edges in an edge cut of G.

A set of edges E' is called an edge cut of G if the subgraph G - E' is disconnected. The edge connectivity $\lambda(G)$ is the minimum number of edges in an edge cut of G.

$$\lambda(G_1) = 1; \ \lambda(G_2) = 2; \ \lambda(G_3) = 2; \ \lambda(G_4) = 3$$

The existence of a simple circuit of length k is isomorphic invariant. This can be used to construct mappings that may be isomorphisms.

The existence of a simple circuit of length k is isomorphic invariant. This can be used to construct mappings that may be isomorphisms.

Spring 2025

The existence of a simple circuit of length k is isomorphic invariant. This can be used to construct mappings that may be isomorphisms.

Not isomorphic. H has a simple circuit of length three, namely, v_1 , v_2 , v_6 , v_1 , whereas G has no simple circuit of length three.

42 / 51

The existence of a simple circuit of length k is isomorphic invariant. This can be used to construct mappings that may be isomorphisms.

C ----- 2025

The existence of a simple circuit of length k is isomorphic invariant. This can be used to construct mappings that may be isomorphisms.

Because many isomorphic invariants (e.g., number of vertices/edges, degree, circuit) agree, G and H may be isomorphic.

42 / 51

The existence of a simple circuit of length k is isomorphic invariant. This can be used to construct mappings that may be isomorphisms.

Because many isomorphic invariants (e.g., number of vertices/edges, degree, circuit) agree, G and H may be isomorphic. Let $f(u_1) = v_3$, $f(u_4) = v_2$, $f(u_3) = v_1$, $f(u_2) = v_5$, and $f(u_5) = v_4$. We can show that f is an isomorphism, so G and H are isomorphic.

Theorem: Let G be a graph with adjacency matrix A with respect to the ordering v_1, v_2, \ldots, v_n of vertices. The number of different paths of length r from v_i to v_j , where r is a positive integer, equals the (i,j)-th entry of A^r .

Note: with directed or undirected edges, multiple edges and loops allowed

43 / 51

Recap: Path Length

Theorem: Let R be relation on a set A. There is a path of length n from a to b if and only if $(a, b) \in R^n$. (Boolean product.)

Proof (by induction):

Recall that $R^{n+1} = R^n \circ R$

How many paths of length 4 are there from a to d in the graph G?

How many paths of length 4 are there from a to d in the graph G?

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Spring 2025

How many paths of length 4 are there from a to d in the graph G?

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \qquad \mathbf{A}^4 = \begin{bmatrix} 8 & 0 & 0 & 8 \\ 0 & 8 & 8 & 0 \\ 0 & 8 & 8 & 0 \\ 8 & 0 & 0 & 8 \end{bmatrix}$$

$$\mathbf{A}^4 = \begin{bmatrix} 8 & 0 & 0 & 8 \\ 0 & 8 & 8 & 0 \\ 0 & 8 & 8 & 0 \\ 8 & 0 & 0 & 8 \end{bmatrix}.$$

How many paths of length 4 are there from a to d in the graph G?

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \qquad \mathbf{A}^4 = \begin{bmatrix} 8 & 0 & 0 & 8 \\ 0 & 8 & 8 & 0 \\ 0 & 8 & 8 & 0 \\ 8 & 0 & 0 & 8 \end{bmatrix}$$

$$\mathbf{A}^4 = \begin{bmatrix} 8 & 0 & 0 & 8 \\ 0 & 8 & 8 & 0 \\ 0 & 8 & 8 & 0 \\ 8 & 0 & 0 & 8 \end{bmatrix}$$

Theorem: The number of different paths of length r from v_i to v_j , where r is a positive integer, equals the (i,j)-th entry of \mathbf{A}^r .

Proof (by induction):

Theorem: The number of different paths of length r from v_i to v_j , where r is a positive integer, equals the (i,j)-th entry of \mathbf{A}^r .

Proof (by induction):

• Basic Step: The number of paths from v_i to v_j of length 1 is the (i,j)-th entry of **A**.

Theorem: The number of different paths of length r from v_i to v_j , where r is a positive integer, equals the (i,j)-th entry of \mathbf{A}^r .

Proof (by induction):

- Basic Step: The number of paths from v_i to v_j of length 1 is the (i,j)-th entry of **A**.
- Inductive hypothesis: Assume that the (i,j)-th entry of \mathbf{A}^r is the number of different paths of length r from v_i to v_j .

Theorem: The number of different paths of length r from v_i to v_j , where r is a positive integer, equals the (i,j)-th entry of \mathbf{A}^r .

Proof (by induction):

- Basic Step: The number of paths from v_i to v_j of length 1 is the (i,j)-th entry of **A**.
- Inductive hypothesis: Assume that the (i,j)-th entry of \mathbf{A}^r is the number of different paths of length r from v_i to v_j .
- Inductive Step: $\mathbf{A}^{r+1} = \mathbf{A}^r \mathbf{A}$. The (i,j)-th entry of \mathbf{A}^{r+1} equals

$$b_{i1}a_{1j}+b_{i2}a_{2j}+\cdots+b_{in}a_{nj},$$

where b_{ik} is the (i, k)-th entry of \mathbf{A}^r . By the inductive hypothesis, b_{ik} is the number of paths of length r from v_i to v_k .

• Inductive Conclusion: (i,j)-th entry of \mathbf{A}^{r+1} counts all paths with length r+1 for all possible intermediate vertices $\mathbf{v}_{\mathbf{A}^r}$ SUSTech Substitutions of \mathbf{A}^{r+1} counts all paths with length r+1 for all possible intermediate vertices $\mathbf{v}_{\mathbf{A}^r}$

Next Lecture

Graph and terminologies, representing graphs and graph isomorphism, connectivity, Euler and Hamiliton path, ...

Ming Tang @ SUSTech CS201 Spring 2025 47 / 51

Euler Paths

Königsberg seven-bridge problem: People wondered whether it was possible to start at some location in the town, travel across all the bridges once without crossing any bridge twice, and return to the starting point.

Euler Paths

Königsberg seven-bridge problem: People wondered whether it was possible to start at some location in the town, travel across all the bridges once without crossing any bridge twice, and return to the starting point.

Definition: An Euler circuit in a graph G is a simple circuit containing every edge of G. An Euler path in G is a simple path containing every edge of G.

Recall that a path or circuit is simple if it does not contain the same edge more than once.

Definition: An Euler circuit in a graph G is a simple circuit containing every edge of G. An Euler path in G is a simple path containing every edge of G.

Recall that a path or circuit is simple if it does not contain the same edge more than once.

Example: Which of the undirected graphs have an Euler circuit? Of those that do not, which have an Euler path?

Spring 2025

Definition: An Euler circuit in a graph G is a simple circuit containing every edge of G. An Euler path in G is a simple path containing every edge of G.

Recall that a path or circuit is simple if it does not contain the same edge more than once.

Example: Which of the undirected graphs have an Euler circuit? Of those that do not, which have an Euler path?

 G_1 : an Euler circuit, e.g., a, e, c, d, e, b, a;

 G_2 : neither; G_3 : an Euler path, e.g., a, c, d, e, b, d, a, b, A_2 by A_3 A_4 A_5 A_5

Definition: An Euler circuit in a graph G is a simple circuit containing every edge of G. An Euler path in G is a simple path containing every edge of G.

Example: Which of the directed graphs have an Euler circuit? Of those that do not, which have an Euler path?

Definition: An Euler circuit in a graph G is a simple circuit containing every edge of G. An Euler path in G is a simple path containing every edge of G.

Example: Which of the directed graphs have an Euler circuit? Of those that do not, which have an Euler path?

 H_1 : neither; H_2 : an Euler circuit, e.g., a, g, c, b, g, e, d, f, a; H_3 : an Euler path, e.g., c, a, b, c, d, b

Necessary Conditions for Euler Circuits and Paths

Euler Circuit ⇒ The degree of every vertex must be even

- Each time the circuit passes through a vertex, it contributes two to the vertex's degree.
- The circuit starts with a vertex a and ends at a, then contributes two to deg(a).

Euler Path ⇒ The graph has exactly two vertices of odd degree

 The initial vertex and the final vertex of an Euler path have odd degree.

