Cuaderno digital de señales vitales (BioMonitor HCI)

Introducción

El presente documento propone el desarrollo de un sistema de monitoreo biométrico portátil, basado en el microcontrolador ESP32. El dispositivo recopilará datos críticos de salud (temperatura corporal, ritmo cardíaco y saturación de oxígeno) a través de módulos de sensores especializados, transmitiéndolos en tiempo real a una aplicación de escritorio. Apoyados de elementos visuales desplegados en una computadora, se permitirá la visualización interactiva de gráficos de tendencia y la emisión de alertas automáticas al detectar valores fuera de los rangos fisiológicos. La solución combina conectividad Wi-Fi/Serial, procesamiento embebido del ESP32 y una arquitectura de software en la PC diseñada con un enfoque centrado en la experiencia del usuario (HCI).

Justificación

El acceso oportuno y continuo a datos de salud básicos es crítico para la detección temprana de afecciones y el seguimiento de tratamientos. Las visitas presenciales a centros médicos pueden representar costos, tiempo de desplazamiento y barreras geográficas. Un sistema portátil y asequible que capture y presente de forma clara señales vitales contribuye a reducir estos obstáculos, mejora la adherencia a protocolos de monitoreo domiciliario y facilita la toma de decisiones clínicas. Además, al proporcionar datos en bruto y en formatos visuales, el proyecto promueve la investigación y el análisis de patrones de salud a largo plazo, beneficiando tanto a profesionales de la salud como a pacientes y cuidadores

Estado del Arte

Actualmente, podemos encontrar los siguientes proyectos para monitoreo biométrico con aplicaciones en salud remota.

- Un proyecto titulado "IoT Based Health Monitoring System Built on ESP32" (ICACITE 2022) describe un sistema capaz de medir frecuencia cardíaca y saturación de oxígeno usando sensores tipo PPG conectados al ESP32, transmitiendo los datos a través de Internet a una plataforma remota para seguimiento médico. El enfoque resalta la accesibilidad, bajo costo y practicidad del sistema (Beri et al., 2022).
- En el proyecto "IoT Based Patient Health Monitoring System Using ESP32 and Blynk App, Manjhi" se presenta una solución portátil y de bajo costo que utiliza el ESP32 junto con sensores de pulso, temperatura y SpO₂ (MAX30100/DS18B20/LM35) para monitoreo remoto vía la plataforma Blynk. El sistema transmite datos en tiempo real a la nube, genera alertas automáticas ante valores anómalos y ofrece

- visualización accesible tanto a usuarios como a profesionales de salud (Manjhi, 2025).
- También tenemos "Wireless Based Wearable Patient Health Monitoring System using ESP32", el cual aborda un prototipo portátil que monitorea temperatura corporal, ritmo cardíaco, SpO₂ e incluso ECG con ESP32. Integra análisis local y transmisión inalámbrica continua para uso médico domiciliario (Ibáñez Castillo, 2024).
- Finalmente, tenemos "IoT-Enabled Hemodynamic Surveillance System: AD8232 Bioelectric Signal Processing with ESP32", el cual presenta un sistema que procesa señales ECG y entrega diagnósticos cardiopulmonares mediante transmisión Wi-Fi, orientado al monitoreo remoto en tiempo real (Hemalatha, Muthukrishnan, & Patel, 2025).

Componentes físicos necesarios

A continuación, se enlistan los componentes necesarios para la realización del proyecto, pudiendo agregar más si se desea expandir las capacidades del proyecto.

- **ESP32**: Actúa como el cerebro del sistema. Se encarga de recolectar los datos de los sensores biométricos, procesarlos y enviarlos a la interfaz gráfica en la PC a través de Wi-Fi o USB. También permite la integración de futuras funcionalidades gracias a su capacidad de expansión.
- Sensor de temperatura sin contacto MLX90614: Permite medir la temperatura corporal del usuario de forma precisa y sin contacto físico, lo cual es ideal para aplicaciones higiénicas y no invasivas. Su función principal en el proyecto es registrar la temperatura como uno de los indicadores clave de salud. También es posible usar la versión con contacto.
- ECG (Electrocardiograma) AD8232: Captura la actividad eléctrica del corazón. En el proyecto, se utiliza para obtener un electrocardiograma básico, útil para monitorear ritmo cardíaco, detectar irregularidades y complementar el análisis de las condiciones del usuario.
- Sensor de pulso y SpO₂ MAX30102: Este módulo mide la frecuencia cardíaca y el nivel de saturación de oxígeno en sangre (SpO₂), dos parámetros vitales en la evaluación del estado físico general. Es esencial para monitorear signos vitales de manera continua.
- Módulo de alimentación: Proporciona energía al sistema, tanto para uso portátil (con batería recargable) como para estaciones fijas (con adaptador USB). Su función es garantizar autonomía y flexibilidad en el uso del dispositivo, permitiendo operarlo en distintos entornos.

Aplicaciones

A continuación, se describen las posibles aplicaciones que tendría este proyecto.

- **Telemedicina y seguimiento domiciliario**: Profesionales pueden acceder a históricos de pacientes crónicos, recibiendo alertas por valores anómalos y reduciendo visitas presenciales.
- Control rápido en puntos de acceso: Implementación en entradas de escuelas, oficinas o eventos para medición simultánea de temperatura y pulso en flujos de personas.
- Cuidado de la tercera edad: Integración en residencias para supervisión pasiva de hábitos de salud, con notificaciones automáticas a cuidadores ante desviaciones.
- Investigación y educación en HCI: Plataforma abierta para estudiar la interacción persona-máquina, visualización de datos biométricos y desarrollo de algoritmos de detección de eventos en salud.

Referencias.

Beri, M., Jha, A., & Sharma, S. (2022). *IoT Based Health Monitoring System Built on ESP32*. Proceedings of the International Conference on Advances in Computing and Information Technology. Recuperado de

https://www.researchgate.net/publication/362109733_IoT_Based_Health_Monitoring_System_Built_on_ESP32_

Manjhi, S. (2025). *IoT based patient health monitoring system using ESP32 and Blynk app*. International Journal for Research in Applied Science and Engineering Technology (IJRASET). Recuperado de https://www.ijraset.com/best-journal/iot-based-patient-health-monitoring-system-using-esp32-and-blynk-app

Ibáñez Castillo, M. (2024). Wireless based wearable patient health monitoring system using ESP32 [Tesis de grado, Universitat Politècnica de Catalunya]. UPCommons. https://upcommons.upc.edu/server/api/core/bitstreams/2784bf43-6f37-482f-afb0-80a96b1ff389/content

Hemalatha, K., Muthukrishnan, K., & Patel, R. (2025, mayo). *IoT-enabled hemodynamic surveillance system: AD8232 bioelectric signal processing with ESP32*. arXiv. https://arxiv.org/abs/2505.18173