Univerza v Ljubljani Fakulteta za matematiko in fiziko

Finančni praktikum

Algoritem za reševenje dvostopenjskega problema nahrbtnika z dinamičnim programiranjem

Jakob Zarnik, Tin Markon

Mentorja: prof. dr. Sergia Cabello Justo, asist. dr. Janoš Vidali

Kazalo

1	Uvod	3
2	Formulacija in lastnosti problema	3
${f Li}$	Literatura	

Povzetek

V nalogi bova obravnavala reševanje dvostopenjskega problema nahrbtnika z dinamičnim programiranjem. Za izdelavo algoritma bova uporabila programski jezik Python.

1 Uvod

Dvostopenjski programi omogočajo modeliranje situacij, kjer glavni odločevalec, v nadaljevanju poimenovan investitor, optimizira svoja sredstva s tem, da neposredno upošteva odziv posrednika na njegovo odločitev o višini vložka. V primeru dvostopenjskega problema nahrbtnika (Bilevel Knapsack Problem), v nadaljevanju BKP, investitor določi prostornino nahrbtnika z namenom maksimizacije dobička, med tem ko se posrednik sooča z 0-1 problemom nahrbtnika s prostornino določeno s strani investitorja. BKP je ustrezen za modeliranje problema »ustreznega financiranja«, kjer posameznik (tj. investitor), svoja sredstva razdeli med netvegano naložbo s fiksnim donosom (npr. varčevalni račun, državna obveznica) in bolj tvegano naložbo, preko posrednika kot je banka ali bančni posrednik (broker). Ta kupi delnice ali obveznice z namenom maksimizacije svojega dobička s tem, da upošteva omejitve finančnih sredstev (prostornina nahrbtnika) investitorja in ustvari donos z ustrezno izbiro investicij. Podobno uporabo modeliranja lahko opazimo na področju upravljanja s proizvodi, kjer se podjetje odloča koliko enot izdelkov naj proda samo in koliko preko posrednika.

BKP je mešan celoštevilski dvostopenjski problem predstavljen s strani Dempe in Richer, ki sta za rešitev predstavila breanch-and-bound okvir. V najini nalogi najprej razširiva potrebne in zadostne pogoje za obstoj optimalne rešitve. Nato predlagava enostaven in učinkovit algoritem dinamičnega programiranja za reševanje problema. V nasprotju s pristopom Dempe in Richer, kjer je beležen seznam nedominantnih rešitev, tukaj beležimo samo objektivne funkcijske vrednosti za oba, investitorja in posrednika, tekom dinamičnega procesa.

2 Formulacija in lastnosti problema

V narbtnik s prostornino oz kapaciteto y, ki jo določi investitor, vsakemu predmetu j določimo utež oz. volumen a_j , zaslužek posrednika c_j in zaslužek investitorja d_j . Ceno enote prostornine nahrbtnika označimo s t. Z danim y, posrednik izbere podmnožico predmetov, ki upošteva prostosrsko omejitev. To nam da dvostopenjski program

$$BKP = \begin{cases} \underset{y,x}{\text{Max}} f^1(y,x) = dx + ty \\ \text{s.t. } \underline{b} \le y \le \overline{b} \\ \underset{x}{\text{Max}} f^2(x) = cx \\ \text{s.t. } ax \le y \text{ and } x \in \{0,1\}^n \end{cases}$$

kjer so $a,\,c$ in dceloštevilske vrednosti in $a,\,c,\,d,\,\underline{b}$ in \overline{b} nenegativne. V najini nalogi so z

$$S = \{(x, y) \in \{0, 1\}^n \times [\underline{b}, \overline{b}] : ax \le y\}$$

označene omejitve, s

$$P(y) = \{x \in \arg\max\{cx' : ax' \le y, x' \in \{0, 1\}^n\}\}\$$

označimo posrednikovo racionalno izbiro množice (za fiksen y) in z

$$IR = \{(x, y) | (x, y) \in S, x \in P(y) \}$$

induktiven del, preko katerega investitor optimizira svojo funkcijo.

Dvostopenjski program obstaja v dveh različicah. Optimističen primer, ko je racionalna množica ni singelton (enolična), posrednik izbere tisto rešitev, ki maksimizira zaslužek vodje. Dobljena rešitev se imenuje močna rešitev. V pesimističnem primeru pa vodja predvideva, da kadar ima posrednik več enakovredni možnosti izbire množice, izbere tisto, ki minimizira vodjin zaslužek. Tako dobimo šibko rešitev.

Trditev 1 (Dempe in Richer). Če je cena enote investicije nepozitivna, potem obstaja optimalna rešitev BKP.

Zapomnimo si, da če je t pozitiven, BKP lahko nima optimalne rešitve. To je prikazano v naslednjem primeru.

Primer 1.

$$BKP_{1} = \begin{cases} \underset{y,x}{\text{Max}} f^{1}(y,x) = 5x_{1} + x_{2} + x_{3} + x_{4} + y \\ \text{s.t. } 1 \leq y \leq 4 \\ \underset{x}{\text{Max}} f^{2}(x) = 4x_{1} + 5x_{2} + 10x_{3} + 15x_{4} \\ \text{s.t. } x_{1} + 2x_{2} + 3x_{3} + 4x_{4} \leq y \\ x \in \{0,1\}^{4} \end{cases}$$

kjer je $f^1(y,x)$ linearna odsekoma zvezna diskontna funkcija v spremenljivki y, ki jo določi investitor. Za $y \in [1,2)$ posrednik vedno izbere prvi objekt z volumnom oz utežjo 1 enote in investitorjeva funkcija postane $f^1(y,x)=5+y$. Na enak način, ko je $y \in [2,4], f^1(y,x)=1+y$. Kljub temu, da je investitorjeva funkcija navzgor omejena s 7 ($\lim_{y\uparrow 2} f^1(y,x)=7$), ta vrednost ni dosežena.

Naslednja trditev povezje ceno prostornine z investitorjevim razmerjem med zaslužkom in ceno prostornine.

Trditev 2. Naj bo $\underline{b} = 0$ in t < 0. Če je $|t| > \max_{1 \le j \le n} (\frac{d_j}{a_j})$, potem je $(y^*, x^*) = (0, 0_n)$ optimalna rešitev.

Dokaz. Naj bo (x,y) možna rešitev za dan BKP. Najprej z razširitvijo pogoja $ax \leq y$ s t (t < 0) dobimo $(ta + d)x \geq ty + dx = f^1(y,x)$. Nato, ker je $ta_j + d_j < 0$ za $j = 1, \ldots, n$ in $x \in \{0,1\}^n$, sledi, da je $(ta + d)x \leq 0$, torej $f^1(y,x) \leq 0$. Vidimo, da ker je $(y^*,x^*) = (0,0_n)$ možna rešitev danega BKP, v katerem je $f^1(y,x) = 0$, je ta rešitev tudi optimalna.

Če je $\infty > \bar{b} \ge \sum_{i=1}^n a_i$ in t > 0, potem je optimalna rešitev trivialna: $x^* = (1, \ldots, 1)$ in $y^* = \bar{b}$. Če sta d in c kolinearna $(d = \alpha c, \text{ kjer } \alpha > 0)$ in $t \ge 0$, potem je reševanje BKP enako reševanju problema nahrbtnika s kapaciteto \bar{b} za posrednika.

Definicija 1. Diskreten dvostopenjski problem nahrbtnika (BKPd) je dvostopenjski problem nahrbtnika v katerem je spremenljivka, ki jo določi investitor diskretna.

Trditev 3. Če je $t \le 0$, potem je vsaka optimalna rešitev (y^*, x^*) za BKPd, tudi optimalna rešitev za BKP.

 $\hat{C}e \ je \ t > 0$ in $\check{c}e$ optimalna rešitev za BKP obstaja, potem je optimalna tudi za BKPd.

Dokaz. Prvi način: Iz **Trditve 1** sledi, da optimalna rešitev (y^*, x^*) obstaja. Dodatno, IR (BKPd) \subset IR (BKP) in iz Dempe in Richer sledi, da je y^* celo število.

Drugi način: Direktno iz (i, i) v Dempe in Richer.

Iz **Trditve 3** sledi, da je reševanje BKP ekvivalentno reševanju BKPd, ko je t negativen. Če je t pozitiven in optimalna rešitev obstaja (glej Izrek 4 v Dempe in Richer), je ta dosežena v točki (\bar{b}, x^*) , kjer je $x^* \in P(\bar{b})$. Pomni, da optimalna rešitev BKPd vedno obstaja. Torej, če BKP ima optimalno rešitev, to lako dobimo z reševanjem zaporedja problemov nahrbtnika, ki vsebuje binarne spremenljivke, eno za vsak možno vrednost y. Algoritem, opisan v naslednjem poglavju, uporabi to lastnost.

Literatura

[1] Brotcorne, L.; Hanafi, S.; Mansi, R. (2009). A dynamic programming algorithm for the bilevel knapsack problem CountryXX: Elsevier.