PROJECT REPORT

1.INTRODUCTION

1.1 Project Overview

Title: Comprehensive Analysis and Dietary Strategies with Tableau: A College Food Choices Case Study

Objective:

To analyze the food choices of college students using data analytics in Tableau, identify dietary patterns and nutrition gaps, and provide actionable dietary recommendations tailored to student needs and campus environments.

Scope:

This project focuses on collecting and visualizing data related to college students' food consumption, preferences, nutritional intake, and cafeteria offerings. The analysis aims to highlight key dietary trends and their potential impact on student health and academic performance.

Key Goals:

- Gather survey and cafeteria data on student food consumption.
- Use Tableau to perform visual analysis of dietary patterns.
- Identify common nutritional deficiencies or unhealthy habits.
- Recommend evidence-based dietary strategies for improvement.
- Present findings in interactive dashboards for stakeholders.

Tools and Technologies:

- Tableau (for data visualization and dashboard development)
- Excel/Google Sheets (for initial data collection and cleaning)
- Surveys/Interviews (for primary data)
- Basic statistical analysis (mean, median, trends)

Target Audience:

- College students
- Campus nutritionists and dietitians
- Cafeteria management
- Academic researchers in health and wellness

Expected Outcome:

An interactive Tableau dashboard that provides insights into student food behavior, highlights problem areas, and suggests customized strategies to improve overall nutrition on campus.

1.2 Purpose

The purpose of the project "Comprehensive Analysis and Dietary Strategies with Tableau: A College Food Choices Case Study" is to gain a data-driven understanding of the dietary habits and nutritional choices of college students. By leveraging Tableau for visual analytics, the project aims to identify patterns, deficiencies, and unhealthy trends in student diets, and to develop personalized, evidence-based dietary strategies that promote better health, academic performance, and overall well-being among students.

This project serves to:

- Enhance awareness of student nutrition issues.
- Provide clear, visual insights to inform decision-making.
- Support campus stakeholders in improving food services.
- Encourage healthier food choices through data storytelling.

2.IDEATION PHASE

2.1 Problem Statement

a college student
with limited time, a
tight budget, and a
desire to stay
healthy while
managing a busy
academic schedule.

make informed,
balanced food
choices on campus
that meet my
nutritional needs
and fit within my
budget.

I struggle to access clear, personalized insights about the nutritional content and cost of the food available to me on campus.

the data about food options is scattered, unorganized, and not visualized in a way that supports quick, informed decision-making.

which mokes me feel frustrated, overwhelmed, and uncertain about whether I'm eating in a way that supports my health and energy needs.

Problem Statement (PS)	I am	I'm trying to	But	Because	Which makes me feel
S-1	a college student with limited time, a tight budget, and a desire to stay healthy while managing a busy academic schedule.	make informed, balanced food choices on campus that meet my nutritional needs and fit within my budget.	I struggle to access clear, personalized insights about the nutritional content and cost of the food available to me on campus.	the data about food options is scattered, unorganized, and not visualized in a way that supports quick, informed decision making.	frustrated, overwhelmed, and uncertain about whether I'm eating in a way that supports my health and energy needs.

PS-2	a university nutritionist responsible for supporting student health through meal planning and education.	identify patterns in student food choices to design better dietary strategies and recommend healthier, more appealing	I can't easily track or analyze large volumes of meal data or student preferences in a visual, actionable format.	the data is stored in multiple systems and lacks real time visualization tools that can reveal trends or problem areas.	ineffective, concerned, and unable to confidently support students with data driven dietary guidance.
			format.	-	
		meal options.		3. 333	

2.2 Empathy Map Canvas

2.3 Brainstorming

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Step-2: Brainstorm, Idea Listing and Grouping

Step-3: Idea Prioritization

3.REQUIREMENT ANALYSIS

3.1 Customer Journey map

	Scenario: [Edisting experience through a product or service]	Entice How does someon aware of this serve			Enter What do people a frey begin the per	openence as cess?	Engage In the coe more process, what has					Exit What do people to experience as the	pically process finishes?	Extend What happens all exertence is over		
TO DE	Experience steps What also the person (orpecable) at the center of this scenario typically operance in each step?	Sees poster on food habita	Hears about it in class	Finds it on social media	Clicks link to doshboard	Opens 2 on phone/laptop	Filters food categories	Checks calorie data	Views gender patiens	Clicks on charts	Analyzes results	Closes deshboard	Downloads or streenshots	Uses data while cating	Tracks habits unelty	Revisiti dashboa later
ij.	Interactions were reasons to they have a each step doing the way? Peoplet Who do they see or lists to? Process where are they? Things: What digital buckpoints or physical diplots do they use?	Talks to classmates	Sees club promo	Views email/ poster	Uses phone/ laptop	Asks for help	Uses filters	Reads tootips	Views labels	Interacts with visuals	May consult a mentor	Chats with friends	Shares screenshot	Talks to hostel mates	Shares tool online	Uses ap
K.	Goals & motivations At each step, what a a person's princy goal or motivation? (Helpine_' or "Helpine svoid_")	Want healthy food info	Curious about diet	Wants to improve meals	See data cleary	Find personal food info	Cut junk food	Track nutrients	Improve health	Compare habits	Planbetter meals	Remember insights	Try better food picks	rack progress	Build good habits	Motiva
•	Positive moments What stops core adjusted person find oppyable, productive, far, motivating, dailight4, or crossing?	Finds idea interesting	Excited to try	Excited to try	Easy to access	Looks attractive	Enjoys visuals	Finds useful info	Learns something new	likes simp e layout	Feels motivated	Feels proud	Shares results	Feels healthier	Gets support	Staye
3	Negative moments Negative moments thus training, confluence, according, costly, or time-consuming*	Unsure a bout Tatle au	Dorsn't understand goal	Doesn't understand goal	Slow	Confused by layout	Too much data	Hard to read charts	No suggestions	Boring visuals	Can't find food	No next steps	Forgets info	Cld hebits return	No reminders	Can't acc again
	Areas of opportunity How night we make each step better? What is are co we have? What have others supposed o?	Use videos/ posters	Add student quotes	Add student quotes	Start guide pop-up	Smplify homepage	Additips/ suggestions	Track personal goals	Show food examples	Add hover help	Use fewer charts	Give weekly summary	Suggest meal plans	Send reminders	Share updates weekly	Connect Stress

3.2 Solution Requirement

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Data Collection	Collect food consumption data from students via online surveys or forms
FR-2	Data Integration	Import data into Tableau from Excel, Google Sheets, or SQL databases
FR-3	Data Visualization	Create charts and dashboards (e.g., calorie intake trends, food type frequency)
FR-4	Nutritional Analysis	Analyze data to assess nutrient balance, deficiencies, and dietary patterns
FR-5	Personalized Dietary Suggestions	Provide food recommendations based on user input or analysis output
FR-6	Filtering and Interactivity	Allow users to filter results by age, gender, meal type, or location
FR-7	Report Generation	Generate downloadable PDF/Excel reports on individual and group food habits

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Dashboards should be user-friendly and easy to navigate for non-technical users
NFR-2	Security	SecurityEnsure data privacy for individual food records and personal
NFR-3	Reliability	System should consistently produce accurate analysis and insights
NFR-4	Performance	Dashboards should load within 3 seconds even with large datasets
NFR-5	Availability	System should be accessible 24/7 during the research period
NFR-6	Scalability	Should support increasing users/data volume as more colleges join the study

3.3 Data Flow Diagram

Example implifie

User Stories:

Use the below template to list all the user stories for the product.

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Student (Mobile/Web)	Data Entry	USN-1	As a student, I can input my daily meals including food items and quantities.	I can view and submit a completed meal entry form.	High	Sprint-1
Student (Mobile/Web)	Visualization Access	USN-2	As a student, I can view a visual analysis of my	I can access charts showing my calorie and nutrient intake	High	Sprint-1

			weekly nutrition intake via Tableau dashboard			
Student (Mobile/Web)	Comparison & Suggestions	USN-3	As a student, I can compare my dietary intake to recommended guidelines and receive suggestions.	I receive personalized dietary tips based on my current intake.	Medium	Sprint-2
Nutrition Expert	Data Analysis & Oversight	USN-4	As a nutrition expert, I can review aggregated data from multiple students for analysis.	I can filter and download collective data for analysis.	High	Sprint-2
College Admin	Reporting	USN-5	As an admin, I can generate reports on dietary trends among student groups.	I can export reports showing trends, deficiencies, and participation rates.	Medium	Sprint-3
Student	Goal Tracking	USN-6	As a student, I can set personal dietary goals and track my progress over time.	I can view goal progress with visual indicators on my dashboard.	Low	Sprint-3
Student	Feedback & Recommendations	USN-7	As a student, I can receive automatic feedback based on unhealthy food choices I log.	I see alert messages or tips when I log unhealthy meals.	Medium	Sprint-2
Student	History Tracking	USN-8	As a student, I can view a history of all my past meal entries and dietary feedback.	I can browse my past entries by date or week.	Medium	Sprint-2
Nutrition Expert	Custom Rule Definition	USN-9	As a nutrition expert, I can define custom dietary rules for students with different needs (e.g.,athletes)	I can add and assign dietary rule sets to specific student categories	Low	Sprint-3
College Admin	Participation Analytics	USN-10	As an admin, I can view participation metrics by department, year, or gender.	I can filter participation reports by different demographics.	Low	Sprint-3

3.4 Technology stack

Table-1 : Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with application Dashboard, Survey Input UI	Dashboard, Survey Input UI Tableau Dashboards, React.js, HTML/CSS
2.	Application Logic-1	Data collection logic (surveys, cafeteria logs, manual entries)	Python scripts, Tableau Web Data Connectors
3.	Application Logic-2	Data cleaning & preprocessing	Tableau Prep, Python (Pandas)
4.	Application Logic-3	Personalized diet recommendation algorithm	Python (scikit-learn), ML Models
5.	Database	Storage of raw & processed dietary data	MySQL, NoSQL (MongoDB)
6.	Cloud Database	Cloud-based access to dietary datasets	. Google Firebase, AWS RDS, Snowflake
7.	File Storage	Storing reports, charts, and user uploads	AWS S3, Google Drive API, Tableau Public
8.	External API-1	Nutrition data from external sources	USDA Food Data Central API
9.	External API-2	Student info or campus data access	College ERP API, Google Forms API
10.	Machine Learning Model	Dietary suggestion engine based on user history	Python ML Model (KNN, Decision Tree)
11.	Infrastructure (Server / Cloud)	Hosting Tableau server or cloud dashboards	Tableau Server, AWS EC2, Google Cloud.

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	List the open-source frameworks used	Python (Pandas, NumPy, scikit- learn), MySQL
2.	Security Implementations	.Access control for student health data, APIs, and dashboards	OAuth 2.0, Encryption (SHA-256), IAM Roles
3.	Scalable Architecture	Modular layers: UI – Processing – Storage – ML – Visualization	Microservices, Docker, Tableau Extensions
4.	Availability	Hosted on cloud with dashboard backup, loadbalanced APIs	Tableau Online, Load Balancer (AWS/GCP)
5.	Performance	Fast dashboard loading, efficient ML model execution, data caching	Tableau Extracts, CDN, Redis (optional)

4.PROJECT DESIGN

4.1 Problem Solution Fit

4.2 Proposed Solution

Project team shall fill the following information in the proposed solution template.

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	College students often make poor dietary choices due to lack of awareness and accessibility of nutritional information. This leads to long-term health issues.
2.	Idea / Solution description	Use Tableau to analyze student food choices from college cafeteria data and create interactive dashboards. These will help design personalized dietary strategies based on health, preference, and nutrition insights.

3.	Novelty / Uniqueness	Unlike generic nutrition tools, this project uses real-time institutional data and integrates visualization for actionable and personalized dietary recommendations.
4.	Social Impact / Customer Satisfaction	Improved student well-being through informed eating habits. Students will be more engaged when dietary recommendations are visual and tailored to their preferences.
5.	Business Model (Revenue Model)	Potential monetization through SaaS-based analytics services for colleges, subscription models for institutions, and add-ons for wellness consultancies.
6.	Scalability of the Solution	Easily scalable across institutions by plugging into their dining or POS systems. Dashboards can be customized and deployed via cloud platforms like Tableau Online.

4.3 Solution Architecture

Comprehensive Analysis and Dietary Strategies wit Tableau: A College Food Choices Case Study

5.PROJECT PLANNING & SCHEDULING

5.1 Project planning

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint- 1	Data Collection	USN-1	As a user, I want to collect dietary data of college students through surveys.	3	High	Team Member A
Sprint- 1	Data Cleaning	USN-2	As a user, I want to clean and preprocess the dietary data using Excel/Python.	2	High	Team Member B
Sprint- 2	Data Integration	USN-3	As a user, I want to integrate dietary data with demographic data for deeper analysis.	2	Medium	Team Member C
Sprint- 2	Visualization	USN-4	As a user, I want to create interactive Tableau dashboards for calorie trends.	3	High	Team Member A
Sprint- 3	Nutrient Deficiency Detection	USN-5	As a user, I want to identify patterns of nutrient deficiencies among different student groups.	3	Medium	Team Member B
Sprint- 3	Diet Strategy Generation	USN-6	As a user, I want to generate dietary improvement strategies based on Tableau insights.	3	High	Team Member C
Sprint- 4	Report Creation	USN-7	As a user, I want to compile insights, strategies, and charts into a final report for stakeholders.	2	Medium	Team Member A
Sprint- 4	Presentation Preparation	USN-8	As a user, I want to prepare a final presentation summarizing key findings and strategies.	2	Low	Team Member B

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	7	2 Days	15 June 2025	16 June 2025	7	16 June 202
Sprint-2	6	2 Days	17 June 2025	18 June 2025	6	18 June 202
Sprint-3	5	2 Days	19 June 2025	20 June 2025	5	20 June 202
Sprint-4	4	2 Days	21 June 2025	22 June 2025	4	22 June 202
Sprint-4	3	2 Days	23 June 2025	24 June 2025	3	24 June 202
Sprint-4	5	2 Days	25 June 2025	26 June 2025	5	26 June 202
Sprint-4	2	2 Days	27 June 2025	28 June 2025v	2	28 June 202
Sprint-4	1	2 Days	29 June 2025	30 June 2025	1	30 June 202

6.FUNCTIONAL AND PERFORMANCE TESTING

6.1 Performance Testing

Project Development Phase

Model Performance Test

Date	28 june 2025
Team ID	LTVIP2025TMID48343
Project Name	Comprehensive Analysis and Dietary Strategies with Tableau: A College Food Choices Case Study
Maximum Marks	

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No	Parameter	Screenshot / Values
•		
1.	Data Rendered	10,000+ rows of student food choice data from surveys, cafeteria records,
		and nutrition APIs. Rendering time: ~2-3 seconds per sheet
2.	Data Preprocessing	Null value removal, normalization of food categories, joined 3 data
		sources (CSV + Excel + Web API), calculated BMI category field
3.	Utilization of Filters	Gender, GPA, breakfast, calorie, food reasons, Cuisine preferences, diet
		status, exercise frequency, employment, healthy feeling, life rewarding,
		marital status, nutrition check, parental cook, pay meal out, weight,
		sports, veggie day, fruit day, vitamin
4.	Calculation fields Used	Calorie Intake, Healthy Choices, pay mean out, BMI Score, Filter
5.	Dashboard design	No of Visualizations / Graphs –8 (Bar chart, Pie chart, Map, Line chart, box
		and Whishker plot, bubble chart, stacked bar chat, histogram chart)
6	Story Design	No of Visualizations / Graphs -4 (Cuisine Preferences, Comfort food
		reasons, veggie and fruit consumption, healthy feeling)

Selected "Male" as a Filter

Selected "Female" as a Filter

7.Results

7.1Output Screenshots

Dashboard-1

Dashboard-2

Dashboard-3

Dashboard-4

The Impact of Childhood Food Preferences on Adult Choices

8. ADVANTAGES & DISADVANTAGES

Advantages:

1. Effective Visualization:

Tableau allowed for the creation of clean, interactive, and visually appealing charts and dashboards. These visualizations made it easier to interpret students' food preferences, purchase behaviour, and patterns.

2. Trend Identification:

The project successfully highlighted patterns in student dietary habits, such as preferred meal types, spending ranges, and frequency of food purchases. These insights can support decision-making for campus food planning.

3. Support for Strategic Planning:

By identifying common preferences and dislikes, the project can help institutions or cafeterias develop more effective dietary strategies tailored to students' actual needs and behaviours

4. Ease of Use:

Tableau Public's drag-and-drop interface made it accessible for beginners, requiring no coding knowledge to build effective dashboards and charts.

5. Interactivity:

Filters and interactive features enabled focused analysis across categories like gender, taste preferences, and affordability, offering personalized insights from the same dataset.

Disadvantages:

1. Limited Dataset:

The dataset used was relatively small and specific to one college group. This may not accurately reflect broader student populations or generalize across different institutions.

2. Incomplete Data Entries:

Some responses in the CSV file were blank or ambiguous, which reduced the accuracy of some visualizations and required assumptions or data cleaning.

3. Restricted Features in Tableau Public:

Tableau Public does not support private saving of workbooks, and it lacks advanced analytics features like scripting, which could have provided deeper insights.

4. Static Dataset:

The data was static (not live or updating in real-time), meaning any change in student preferences after data collection would not be reflected unless a new dataset is imported.

5. Lack of Nutritional Information:

While the project focused on food choices, the dataset did not include any nutritional or health-based metrics, making it difficult to assess the dietary quality or health impact of the choices.

9.CONCLUSION

As part of this internship project, "Comprehensive Analysis and Dietary Strategies with Tableau: A College Food Choices Case Study," I had the opportunity to apply data visualization techniques using Tableau to analyse students' food preferences, choices, and influencing factors. This project allowed me to understand how data can be transformed into actionable insights when presented through interactive and meaningful visualizations.

Through this analysis, I was able to identify key trends, such as the types of food most preferred by students, their budgeting patterns, and factors that influence their dietary decisions (like taste, health, and convenience). The use of various charts—such as bar charts, pie charts, and dashboards—helped me explore the dataset from multiple angles and interpret complex data in a simplified manner.

This internship not only enhanced my technical skills in Tableau but also improved my understanding of real-world data analysis, interpretation, and presentation. I gained experience in working with raw datasets, identifying patterns, handling limitations, and drawing conclusions based on visual insights.

Overall, this project gave me practical exposure to the data analytics process, especially in a domain that directly relates to everyday life—food and nutrition. It strengthened my confidence in using Tableau for future academic or professional tasks, and also deepened my appreciation for how data can support informed decision-making.

10.FUTURE SCOPE

This project, "Comprehensive Analysis and Dietary Strategies with Tableau: A College Food Choices Case Study," laid a strong foundation for understanding food preferences among college students through data visualization. While it offered meaningful insights, there are several ways to enhance and expand the work in future studies.

The dataset can be broadened to include a more diverse and larger group of students across various colleges or regions. This would make the findings more representative and statistically reliable. Additionally, including nutritional data—such as calories, macronutrients, or food quality ratings—can support health-oriented dietary strategies.

A valuable extension of this project would be the use of real-time data collection tools, such as Google Forms connected to Tableau dashboards. This would enable dynamic tracking of student preferences and provide updated insights over time.

Future work could also explore advanced analytics like predictive modelling or clustering to uncover hidden patterns or forecast food trends. These approaches can help in building smarter, personalized recommendations.

Practically, the project could evolve into a decision-making tool for college food service providers, allowing them to tailor menus based on actual student needs and trends. Involving nutritionists or health professionals can further enrich the quality and impact of the recommendations.

In conclusion, this project has the potential to grow into a real-world solution that promotes healthier eating, informed decision-making, and better dietary planning on campuses.

10.APPENDIX

Data set link:

https://www.kaggle.com/datasets/borapajo/food-choices?select=food coded.csv

Tableau public link:

https://public.tableau.com/app/profile/bindusagar.sangeetam/viz/PROJECTFINAL 17511046146600/Story1 ?publish=yes

Git-Hub link:

https://github.com/Bindusagar3/Comprehensive-Analysis-and-Dietary-Strategies-with-Tableau-A-College-Food-Choices-Case-Study

video demo link:

https://drive.google.com/file/d/1AFgJ5w7-fzW0qf36HwFeB-uQW4nWahK3/view?usp=sharing