Wahrscheinlichkeiten und Statistik

Fabio Oesch

28. Oktober 2013

Inhaltsverzeichnis

1 Themen		
	1.1	Ergebnisraum
	1.2	Ereignis $E \subseteq \Omega$
	1.3	Wahrscheinlichkeitsfunktion
	1.4	Subaditivität
	1.5	Wahrscheinlichkeitsraum (Vorläufig)
	1.6	Theoretische Wahrscheinlichkeitsfunktion
	1.7	Laplace-Experimente
	1.8	Mehrstufige Zufallsexperiment
	1.9	Urnenmodel
	1.10	Repetition
	1.11	Erwartungswert:
	1.12	Streuung, Varianz
	1.13	Binomialverteilung
		1.13.1 Binomialverteilung:
		1.13.2 Testen einer Hypothese:
	1.14	Poissonverteilung
	1.15	Statistische Tests
		1.15.1 Prinzip des statistischen Tests
		1.15.2 Beispiel
		1.15.3 Erwartungswert und Varianz
	1.16	t-Verteilung
	1.17	Parametertests
	1.18	Konfidenz/Vertrauensintervall
		1.18.1 2-Stichproben t-Test
		1.18.2 Homoskedastischer Fall
2	Beis	spiele:

1 Themen

- 1. beliebig oft wiederholbar
- 2. Resultat ist zufällig

Bsp: Lotto, Münze werfen, Würfeln

1.1 Ergebnisraum

 Ω = Menge aller möglichen Ausgänge des Experiemnts (im Skript mit S) **Bsp:** Ω von Lotto: $\Omega = \{1, \dots, 45\}$

1.2 Ereignis $E \subseteq \Omega$

Ereignis $E = \{Augenzahl \text{ ist gerade}\}\$ spezielle Ereignisse:

- $E = \Omega$ sicheres Ereignis
- $E = \emptyset$ unmögliches Ereignis

E Ereignis: $E^C=\overline{E}=\Omega\backslash E$

1.3 Wahrscheinlichkeitsfunktion

$$\begin{array}{l} \mathbb{P}: \mathcal{P}(\Omega) \rightarrow [0,1] \\ \text{2 wichtige Eigenschaften: } \mathcal{P}(\Omega) = 1, \, \mathcal{P}(\emptyset) = 0, \, 0 \leq \mathcal{P}(E) \leq 1 \\ \textbf{Bsp: } \Omega = \{\text{Kopf, Zahl, Kante}\} \\ \mathcal{P}(\{\text{Kopf}\} = \frac{2}{3} \\ \mathcal{P}(\{\text{Kante}\} = 0 \\ \mathcal{P}(\{\text{Zahl}\} = \frac{1}{3} \end{array} \right\} \Rightarrow \mathcal{P}(E) = 1, \, E = \{\text{Kopf, Zahl}\} \end{array}$$

1.4 Subaditivität

 $E_1, E_2 \subseteq \Omega, E_1 \cap E_2 = \emptyset \Rightarrow \mathcal{P}(E_1 \cup E_2) = \mathcal{P}(E_1) + P(E_2)$

$$\Rightarrow \mathcal{P}(E) = \mathcal{P}(E_1) + \mathcal{P}(E_2) - \mathcal{P}(E_1 \cap E_2), E = E_1 \cup E_2$$

 $\mathcal{P}(E_1 \cup E_2 \cup \cdots \cup E_n) \leq \mathcal{P}(E_1) + \cdots + \mathcal{P}(E_n)$

Bsp: Lotto mit Matryoshka

$$\mathcal{P}(\{w\}) = \frac{1}{45}, E_1 = \{1\}, E_2 = \{1, 2\}, \dots, E_{45} = \{1, \dots, 45\} = \Omega \Rightarrow \mathcal{P}(E_1 \cup \dots \cup E_{45}) = 1$$

$$\mathcal{P}(E_1 \cup E_2 \cup \dots \cup E_{45} \leq \mathcal{P}(E_1) + \dots + \mathcal{P}(E_{45}) = \frac{1}{45} + \frac{2}{45} + \dots + \frac{45}{45} = \frac{\frac{45 \cdot 46}{45}}{\frac{45}{45}} = \frac{46}{2} = 23$$

1.5 Wahrscheinlichkeitsraum (Vorläufig)

 $W=(\Omega, \mathcal{P}(\Omega), \mathbb{P}), \Omega=$ Ergebnisraum, $\mathcal{P}(\Omega)=$ alle Ausgänge des Experiments. alle E's, $\mathbb{P}=$ Wahrscheinlichkeitsfunktion

3

1.6 Theoretische Wahrscheinlichkeitsfunktion

 $\mathcal{P}(\{\text{Zahl}\}) = \mathcal{P}(\{\text{Kopf}\} = \frac{1}{2} \text{ (Definiere die Wahrscheinlichkeit synthetisch)}$ $\mathcal{A}(E) = \frac{\text{wie häufig tritt } E \text{ ein bei N-facher Wiederholung}}{N} \text{ (Empirische Wahrscheinlichkeit)}$

1.7Laplace-Experimente

<u>∧</u> Fairen Spielen, Die Wahrscheinlichkeiten sind gleichverteilt

 $|\Omega| = n$ endlicher Wahrscheinlichkeitraum.

Jedes Elementarergebnis ist gleich wahrscheinlich (|E|=1). **Bsp:** Würfel: $\{1\}=\{1,2,3,4,5,6\}$. kein Elementarergebnis: $\{3,4\}$ $\omega \in \Omega : \mathcal{P}(\{\omega\}) = \frac{1}{n} = \frac{1}{|\Omega|}, |A| = \text{Anzahl Elemente in } A$

1.8 Mehrstufige Zufallsexperiment

Zufallsexperiment Z, das mehrfache hintereinander angeführt wird.

Bsp: mehrmals Würfeln: Wie gross ist die W'keit $2 \times$ hintereinander 6 zu würfeln: $\mathcal{P}(2 \times 6 \text{ Würfeln}) = \frac{1}{36}$ Produktregel: $\mathcal{P}(E_1 \text{ und } E_2) = \mathcal{P}(E_1) \cdot \mathcal{P}(E_2)$

Möglichkeiten: Ω_1 hat n_1 viele Ausgänge ($|\Omega_1| = n_1$), Ω_2 hat n_2 viele Ausgänge ($|\Omega_2| = n_2$) also $n_1 \cdot n_2$

1.9 Urnenmodel

Unterscheidung nach "Zurücklegen" oder "nicht zurücklegen" und "geordnet" oder "keine Reihenfolge"

zurucklegen	nicht zurucklegen
n^k	$n! \text{ oder } \frac{n!}{(n-k)!}$
	$\binom{n}{k} = \frac{n!}{k!(n-k)!}$
	n^k

 $p=rac{ ext{Anzahl der gnstigen Flle}}{ ext{Anzahl der mglichen Flle}}=rac{g}{m}$ **Bsp:** Klasse aus 10 Mädchen und 14 Knaben. Wähle 5 Personen aus.

a) W'keit, dass alle Mädchen sind?

Antwort:
$$P(\{5 \text{ M\"adchen}\}) = \frac{|\{5 \text{ M\"adchen}\}|}{|\Omega|}, |\Omega| = {24 \choose 5}, |\{5 \text{ M\"adchen}\}| = {10 \choose 5}$$

$$\Rightarrow P(\{5 \text{ Mädchen}\}) = \frac{\binom{10}{5}}{\binom{24}{5}}$$

b) W'keit alles Knaben: $P(\{5 \text{ Knaben}\}) = \frac{\binom{14}{5}}{\binom{24}{2}}$

c) W'keit, dass in der 5-er Gruppe, sowohl Mädchen, als auch Knaben vorkommen.

Gegenw'keit von a) + b), also $\overline{E} = \{\text{nur M\"{a}dchen oder nur Knaben}\} \Rightarrow P(\overline{E}) = P(\{\text{nur M\"{a}dchen}\}) + P(\{\text{nur M\"{a}dchen}\}) + P(\{\text{nur M\"{a}dchen}\}) + P(\{\text{nur M\'{a}dchen}\}) + P(\{\text{nur M\"{a}dchen}\}) + P(\{\text{nur M\'{a}dchen}\}) +$ $P(\{\text{nur Knaben}\}) = \frac{\binom{10}{5} + \binom{14}{5}}{\binom{24}{5}} \Rightarrow P(E) = 1 - P(\overline{E})$

Gegenw'keit benutzen: $P(E), \frac{\Omega}{E} = \overline{E}, 1 - P(\overline{E}) = P(E)$

Bsp: 8x Münze werfen

Wie gross ist die W'keit, das Zahl & Kopf gleichhäufig vorkommen.

 $|E| = \binom{8}{4} \cdot \binom{4}{4}$

1.10 Repetition

X Zufallsvariable: Anzahl bei 1x würfeln Y Zufallsvariable: Anzahl bei 1x würfeln Y Zufallsvariable: Anzahl bei 1x würfeln

Z := X + Y Zufallsvariable: $F(z) = \sum_{X_i \leq Z} p_i$, $p_i = P(Z = x_i)$

Erwartungswert: 1.11

Theoretischer Pendant zum Mittelwert.

Bsp: $x_1, x_2, x_3, x_4, h = |\{x_1, x_2, x_3, x_4\}| \rightarrow \overline{x} = \frac{\sum x_i}{h}$ $\mathbb{E}X = \mu = \sum_{\text{alle } X_i} x_i \cdot \mathbb{P}(X = x_i)$ keine Zufallsvariable

Bsp: X sein die Augenzahl von 1x würfeln. $\mathbb{E}X = \sum_{i=1}^{6} i \cdot \frac{1}{6} = 3.5$ $Y = X - \mathbb{E}(X)$ ist eine Zufallsvariable, $\mathbb{E}Y = \mathbb{E}(X - \mathbb{E}X) = \sum_{i=1}^{n} (x_i p_i - p_i \mathbb{E}(X)) = \sum_{i=1}^{n} x_i p_i - p_i \mathbb{E}(X)$

$$\begin{split} & \sum_{i=1}^{n} p_{i} \mathbb{E}(X) = \mathbb{E}(X) - \mathbb{E}(X) \sum_{i=1}^{n} p_{i} = \mathbb{E}(X) - \mathbb{E}(X) = 0 \\ & \textbf{Bsp: Würfel} \ \mathbb{E}(X) = 3.5, \ E(X - \mathbb{E}(X)) = 0 \\ & \frac{X - 3.5 \ | \ 1 - 3.5 \ | \ 2 - 3.5 \ | \ 3 - 3.5 \ | \ 4 - 3.5 \ | \ 5 - 3.5 \ | \ 6 - 3.5}{p_{i} \ | \ \frac{1}{6} \end{split}$$

Streuung, Varianz 1.12

$$\operatorname{Var}(X) := \mathbb{E}((X - \mathbb{E}(X))^2) \Rightarrow \mathbb{E}(X - \mu)^2 = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

1.13 Binomialverteilung

Zufallsexperiment mit 2 Ausgängen: Erfolg, Misserfolg

$$P(X = \text{Erfolg}) = p \in [0, 1], P(X = \text{Misserfolg}) = 1 - p = q$$

Zufallsvariable X = Anzahl Erfolge bei n-facher Wiederholung des Experiments

Wahrscheinlichkeitsfunktion von
$$X$$
 aus. $P(X = x) = \begin{array}{c|c} x_i & 0 & 1 & k & n \\ \hline p_i & (1-p)^n & \binom{n}{1}p(1-p)^{n-1} & \binom{n}{k}p^k(1-p)^{n-k} & \binom{n}{n}p^n \end{array}$

Spieler A: M.D. 40% Erfolgsw'keit, Spieler B: K.G. 60% Erfolgsw'keit.

Sie spielen 3x gegeneinander. E: W'keit dass A häufiger als B gewinnt. Also muss A 2- oder 3-Mal gewinnen. $P(X=2) + P(X=3) \Rightarrow \binom{3}{2} \cdot 0.4^2 \cdot 0.6 + \binom{3}{3} \cdot 0.4^3 + 0.6^0 = 0.352 \Rightarrow 35.2\%$ W'keit gewinnt A

Erfolgsw'keit von
$$p$$
: $\mathbb{E}X$ bei n spielen. Mit Trick: $\mathbb{E}X = n \cdot p$ $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$ $f(t) = (q+pt)^n = \sum_{k=0}^n \binom{n}{k} q^{n-k} (pt)^k$

$$f(t) = (q + pt)^n = \sum_{k=0}^n \binom{n}{k} q^{n-k} (pt)^k$$

1.13.1 Binomialverteilung:

Abkürzung: $X \sim \text{Bin}(n, p)$, n: Anzahl Experimente, p: Erfolgsw'keit $P=(X=k)=\binom{n}{k}p^k(1-p)^{n-k}, \mathbb{E}(X)=np, \mathrm{Var}(X)=\sigma^2=np(1-p).$ σ : Std'abweichung

Testen einer Hypothese: 1.13.2

Vermutung: Hühner können zw. ∘ und △ Futter entscheiden.

 $20 \times \circ$, $20 \times \triangle \Rightarrow \circ = \text{Erfolg}$, $\triangle = \text{Misserfolg}$

Zufallsvariable X zählt die Anzahl Erfolge \Rightarrow Binomiales Experiment d.h. $X \sim \text{Bin}(20, p)$.

Führen das Experiment durch: $15 \times \circ$ und $5 \times \triangle$, experimentelle W'keit für Erfolg: $p = \frac{15}{20} = \frac{3}{4}$

Hypothese formulieren:

 H_0 : Nullhypothese: es gibt keinen Unterschied \to Huhn kann nicht unterscheiden zw. $\circ \& \Delta$, $p=q=\frac{1}{2}$ H_1 : Alternativhypothese: $p \geq q \ (p \leq q)$. d.h. es gibt einen Unterschied beim Fressverhalten.

Ziel: Entscheiden ob H_0 anzunehmen ist, oder sie zugunsten von H_1 verwerfen.

Berechnung: Berechne W'keit unter $H_0(p=q=\frac{1}{2})$, dass wir einen Ausgang mit 15× Erfolg und 5×

 $P(15 \le X \le 20) = \sum_{k=15}^{20} {20 \choose k} p^k (1-p)^{20-k} \stackrel{\text{unter } H_0!}{=} \sum_{k=15}^{20} {20 \choose k} \frac{1}{2}^k \cdot \frac{1}{2}^{20-k} \approx 0.021 = 2.1\%, \text{ Signifikanz-Niveau } \alpha, \ \alpha = 0.1 \ (10\%) \Rightarrow \text{Falls } P(15 \le X \le 20 | H_0) \le \alpha \Rightarrow \text{dann verwerfen } H_0, \text{ ansonsten nehmen } H_0 = 0.021 = 0.02$

- 2 Möglichkeiten: falls unter der Nullhypothese
 - 1. $P(15 \le X \le 20) > \alpha$, dann nehmen wir die Nullhypothese an es spricht nichts gegen H_0 auf Signifikanzniveau α
 - 2. $P(15 \le X \le 20) \le \alpha$, dann verwerfen wir H_0 zugunsten von H_1
- (2) Fehler 1. Art; verwerfen von H_0 , obwohl H_0 , obwohl H_0 korrekt wäre \rightarrow Irrtumsw'keit $P(15 \le$
- (1) Fehler 2. Art; verwerfen H_1 , obwohl H_1 korrekt ist \rightarrow Irrtumsw'keit β (Power)

Poissonverteilung

- 1. Gleichverteilung (fairer Wrfel)
- 2. Binomialverteilung
- 3. Poissonverteilung

Idee: p soll sehr klein sein. n soll sehr gross sein.

Bsp: X sei binomialverteilt und Parametern $n, p. \Rightarrow \mathbb{E}(X) = n \cdot p$.

$$\lim_{n\to\inf} n \cdot p_n = \lambda \in \mathbb{R}, \Rightarrow p = \frac{\lambda}{n}$$

X binomial verteilt: $P(X=k) = \binom{n}{k} \cdot p^k (1-p)^{n-k}, \stackrel{?}{\Rightarrow} \lim_{n \to \inf} P(X=k) = \frac{\lambda^k}{k!} \cdot e^{-\lambda}$

Verteilung mit W'keitsfunktion $\frac{\lambda^k}{k!} \cdot e^{-\lambda}$ heisst Poissonverteilung.

Erwartungswert von $XPoi(\lambda)$ (X ist Poisson-verteilung mit Parameter λ)

$$\mathbb{E}(X) = \sum_{x=0}^{\infty} x \cdot P(X = x) = \lambda$$

- \bullet Fr sehr kleine W'keiten. Mit bekanntem "Mittelwert" (Erwartungswert) $\lambda.$ Mit quasi unendlich (unbekannter) Anzahl gleicher Experimente.
- $P(X = x) = \frac{\lambda^x e^{-lambda}}{x!}$
- $\mathbb{E}(X) = \lambda$
- $Var(X) = \lambda$
- $X\tilde{P}oi(\lambda), Y\tilde{P}oi(\mu), Z = X + Y : Z\tilde{P}oi(\lambda + \mu)$

Bsp: Smartphonehersteller, Fehlerquote von 1, 5.000 Smartphones

Wie gross ist die W'keit, dass mind. 2 defekt sind.

Poissonapproximation: $\lambda = 0.001 \cdot 5000 = 5$

$$P(X \ge 2) = 1 - (P(X = 1) + P(X = 0)) = 1 - (\frac{\lambda^1 e^{-\lambda}}{1!} + \frac{\lambda^0 e^{-\lambda}}{0!}) = 1 - (\frac{5^1 e^{-5}}{1!} + \frac{5^0 e^{-5}}{0!}) = 1 - 6e^{-5} \approx 0.96$$

Statistische Tests 1.15

1.15.1Prinzip des statistischen Tests

1. Nullhypothese H_0 formulieren.

Bsp:
$$H_0: p = \frac{1}{6}$$
 bei einem Wrfel $H_1: p > \frac{1}{6}$ Alternativhypoth. $H_1: p > \frac{1}{6}$ Hubble 1 Hubble 2 Hubbl

- 2. Signifikanzniveau $\alpha \in (0,1)$
- 3. Stichprobe sammeln
- 4. Entscheid fllen: Berechne W'keit unter H_0 , das wir einen Ausgang haben, wie die Stichprobe Ist sie grsser als $\alpha \Rightarrow H_0$ annehmen

Ist sie kleiner als $\alpha \Rightarrow H_0$ zugunsten von H_1 verwerfen

1.15.2 Beispiel

12'000 mal Wrfeln, 2'107 mal Sechs, $\alpha = 10\%$

- $H_0: p = \frac{1}{6}$ Nullhypothese
- $H_1: p > \frac{1}{6}$ Alternativhypothese

$$\mathbb{E}(X) = np = 12000 \cdot \frac{1}{6} = 2000$$

Wir berechnen die Wahrscheinlichkeit von $P(2107 \le X)$. Wir bentigen Grenzwertsatz von de Moivre und Laplace. $\mu = np = 12000 \cdot \frac{1}{6} = 2000$ und $\sigma^2 = np(1-p) = 12000 \cdot \frac{1}{6} \cdot \frac{5}{6} = 1666\frac{2}{3}$. Die Approximation ist erlaubt, da die Faustregel $np(1-p) = 1666\frac{2}{3} > 9$ erflit ist.

Nun erhalten wir mit der Tafel:

Nun erhalten wir mit der Tafel:
$$P(2107 \le X) \approx 1 - \Phi(\frac{2107 - 2000}{\sqrt{1666\frac{2}{3}}}, 0, 1) = 1 - \Phi(2.621, 0, 1) = 1 - 0.9956 = 0.0044$$

Da $\alpha < 0.0044$ ist verwerfen wir H_0

1.15.3 Erwartungswert und Varianz

Auf dem Intervall
$$I=]-\infty,\infty[$$

Erwartungswert $\mu=\mathbb{E}(X)=\int_{x_1}^{x_2}xf(x)dx$, Varianz $\sigma^2=\int_{x_1}^{x_2}x^2f(x)dx-\mu^2$

1.16 t-Verteilung

$$\begin{split} X_1, \dots, X_n &\sim N(\mu, \sigma^2) \\ T_{n-1} &:= \frac{\frac{1}{n} \sum_{i=1}^n X_{i-\mu}}{\sqrt{\frac{1}{n-1} \sum_{i=1}^n (X_{i-\mu})^2}} \sqrt{n} \in \mathbb{R}^{\Omega^n} \text{ heisst t-verteilt mit } n-1 \text{ Freiheitsgraden} \\ t_{n-1} &:= \frac{\frac{1}{n} \sum_{i=1}^n x_{i-\mu}}{\sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_{i}-\bar{x})^2}} \sqrt{n} \in \mathbb{R} \\ f_{n-1}(t) &= c_{n-1} (1 + \frac{t^2}{n})^{-\frac{n+1}{2}} \text{ fr } \lim_{n \to \infty} \to \varphi(t,0,1) \\ c_{n-1} &= \frac{\Gamma(\frac{n}{2})}{\sqrt{\pi(n-1)}\Gamma(\frac{n-1}{2})}, \ \Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt. \ \text{Gammafunktion.} \\ \Gamma(x+1) &= x\Gamma(x); \ \Gamma(1) = 1; \ \Gamma(5) = \Gamma(4+1) = 4\Gamma(4) = 4\Gamma(3+1) = 4 \cdot 3 \cdot \Gamma(3) = \dots = 5! \end{split}$$

1.17 Parametertests

- 1-Stichprobentest $H_0: \mu = \bar{x} \ X \sim W(\mu_1, \sigma_1^2) \ H_1: \mu \neq \bar{x} \ Y \sim W(\mu_2, \sigma_2^2)$
- 2-Stichprobentest $H_0: \mu_1 \neq \mu_2$

Grundvoraussage:

- Verteilungsfamilie bekannt (d.h. $W(\cdot, \cdot)$, t-verteilt, Weibull etz)
- Testen ob 1-Stichpr.fall $H_0: \vartheta = \hat{\vartheta}_n$ (ϑ : fester Wert, vartheta: empirisch) 2-sTichpr.fall $H_0: \hat{\vartheta}_n = \hat{\vartheta}_m$
- 1. Verteilung von T_n (Teststatistik) unter H_0 bekannt \Leftrightarrow : exakter Test.
- 2. Verteilung von T_n unter H_0 unbekannt.

Nicht parametrische Tests (Verteilungsfreie Tests):

- 1./2. Stichprobentests existieren
- keine Verteilungsparameter

1. Stich
probentest
$$H_0: \hat{F_n}(x) = F_0(x)$$

2. Stich
probentest $H_0: \hat{F_n}(x) = \hat{G_m}(x)$
 $\bar{F_n}(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{x_i \leq x\}$

1.18 Konfidenz/Vertrauensintervall

Experiment
$$n$$
-mail durchfhren. $\Rightarrow X = \{x_1, \dots, x_n\}$
Theoretisch $\mathbb{E}(X) = \mu$
Empirisch: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ als Schtzung von μ
Wie gut ist die Schtzung? Vorgabe: $\gamma \in [0,1]$
 $[\mu - \Delta x, \mu + \Delta x] \ni \bar{x}$ Finde Δx , so dass $\mathbb{P}(\bar{x} \in [\mu - \Delta x, \mu + \Delta x] = \gamma$.
 $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$. $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - x)^2$. $t_{n-1} = \frac{\bar{x} - \mu}{s}$ (t-verteilt (exakt) fr ZV.).
 $\mathbb{P}(\bar{x} \in [\mu - \Delta x, \mu + \Delta x]) = \gamma = 1 - \alpha$
Beispiel: $n = 10$ Stichproben $X = \{x_1, \dots, x_n\}$
 $\bar{x} = 5$. $s = 0.2$ Vertrauensintervall =? bei Vertraunsw'keit von $\gamma = 0.95 \Rightarrow \alpha = 0.05$; $1 - \frac{\alpha}{2} = 1 - 0.025 = 0.05$

 $\Rightarrow \Delta \ x = \frac{t_{10-1}, 0.975}{\sqrt{10}} \cdot 0.2 \text{ Tabelle betrachten Seite 140 ergibt mit Freiheitsgrad} = n-1 = 9. \ t_{9,0.975} = 2.262.$ $\Rightarrow \Delta \ x = \frac{2.262}{\sqrt{10}} \cdot 0.2 \approx 0.14$

Vertrauensintervall [4.86, 5.14]. mit W'keit von 95% liegt μ in [4.86, 5.14] = $[5-\Delta x, 5+\Delta x]$

Allgemein

Feste Vertrauensw'keit $\gamma = 0.95$

s konstant

Stichproben n: $\triangle x = \frac{t_{N-1,0.975}}{\sqrt{N}} s(n \to \infty) = 0$ $t_{n,0.975} \le t_{n-1,0.975} \le 2.262 \text{ fr } n \ge 10$

$$t = \overbrace{\frac{\bar{x} - \mu}{s}}^{\Delta \mu} \sqrt{s}$$

$$\frac{t \cdot s}{\bar{x} - \mu} = \sqrt{n} \stackrel{2}{\Rightarrow} \frac{t^2 \cdot s^2}{(\Delta x)^2} \le n$$

Beispiel: $t = \frac{\delta \mu}{s} \sqrt{s}$ Festes γ , und $\Delta \mu$. Wie gross n whlen? $\frac{t \cdot s}{\bar{x} - \mu} = \sqrt{n} \stackrel{?}{\Rightarrow} \frac{t^2 \cdot s^2}{(\Delta x)^2} \le n$ • Vorgehen: - Vertrauensintervallgrsse $\Delta \mu$, - Vertrauensw'keit γ (\rightarrow fliesst in t ein) $t=t_{n-1,1-\frac{1-\gamma}{2}}$ Quantifunktion der t-Verteilung.

• Abschtzung: $t \approx 2$ (oder t = 3). Daumenregel: $\frac{4 \cdot s^2}{(\Delta \mu)^2} \ge N$ (s^2 ist geschtzt)

1.18.1 2-Stichproben t-Test

Annahme: • Normalverteilung, • 2 Gruppen

 $H_0: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2$

2 Flle: a) unbekannte, aber gleiche Varianz d.h. $\sigma_1^2 = \sigma_2^2 = \sigma_2$ (Homoskedastisch) exakter Test b) unbekannte, evtl. ungleiche Varianzen, $\sigma_1^2 \neq \sigma_2^2$ (Heteroskedastisch) approximation

1.18.2 Homoskedastischer Fall

Zwei Stichproben: $X = \{x_1, \dots, x_n\}$ $W(\mu, \sigma^2)$; $Y = \{y_1, \dots, y_n\}$ $W(\mu_2, \sigma^2)$

 μ_1, μ_2, σ^2 sind unbekannt.

Testen, ob $\mu_1 = \mu_2$ auf Signifikanzniveau α (2-seitiger Test, d.h. $H_0: \mu_1 = \mu_2$ gegen $H_1: \mu_1 \neq \mu_2$)

Testgrsse: $t = \frac{\bar{x} - \bar{y}}{s} \sqrt{\frac{n \cdot m}{n+m}}$. t-verteilt mit n+m-2 Freiheitsgraden

$$\begin{split} \bar{s_1} &= \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2, \ m - 1 = \frac{1}{m} \sum_{i=1}^m (y_i - \bar{y})^2 \\ s &= \frac{(n-1)s_1^2 + (m-1)s_2^2}{n+m-2} = \frac{\sum_{i=1}^n (x_i - \bar{x})^2 + \sum_{i=1}^m (y_i - \bar{y})^2}{n+m-2} \\ \text{Signifikanzniveau } \alpha \text{: Ist } |t| < t_{n+m-2,1-\frac{\alpha}{2}} \Rightarrow H_0 \text{ annehmen. Ist } |t| \geq t_{n+m-2,1-\frac{\alpha}{2}} \Rightarrow H_0 \text{ ablehnen.} \end{split}$$

2 Beispiele:

Aufgabe 3.5.8. Auf wie viele Arten können die Buchstaben des Wortes Pfeffer permutiert werden? $\frac{7!}{3! \cdot 2!} = 420$

Aufgabe 3.5.10. Eine Klasse hat 15 Fussballspieler, einer davon heisst Klaus. Auf wie viele Arten kann eine Mannschaft von 11 Spielern a. Mit Klaus, b. ohne Klaus zusammengestellt werden. a. $\binom{14}{10}$, b. $\binom{14}{11}$ **Aufgabe 3.5.14.** Wie viele Möglichkeiten gibt es, die 36 Jasskarten auf vier Spieler A, B, C, D zu verteilen? $\binom{36}{9} \cdot \binom{27}{9} \cdot \binom{18}{9} \cdot \binom{9}{9}$ **Aufgabe 4.1.3** von 10 Nssen sind 3 verdorben. Wahrscheinlichkeit, dass 2 gute Nsse genommen werden,

 $m = \binom{10}{2}, g = \binom{7}{2} \Rightarrow p = \frac{\binom{7}{2}}{\binom{10}{2}} \frac{7}{15}$ **Aufgabe 4.1.12** 10 Lose 2 Gewinnlose mit 5x herausziehen genau 1 Gewinnlos $\Rightarrow m = 8, n = 2, k = \binom{8}{2}$

 $5, s = 1 \Rightarrow \frac{\binom{8}{4}\binom{2}{1}}{\binom{10}{5}}$

Aufgabe 4.1.13 Es liegen m+n Lose vor, unter denen n Gewinnlose sind. Es werden k Lose auf einmal gezogen. Bestimmen Sie die W'keit dafür, dass sich unter den k Losen genau s Gewinnlose befinden. Es gibt $m = \binom{m+n}{k}$ mögliche Ausfälle und genau $g = \binom{m}{k-s} \binom{n}{s}$ Möglichkeiten für s Gewinnlose. Dabei zählt der Faktor $\binom{m}{k-s}$ die Möglickeiten, k-s Nieten zu haben und der Faktor $\binom{n}{s}$ zählt die Möglichkeiten,

s Treffer zu haben. Damit folgt $p(s) = \frac{\binom{m}{k-s}\binom{n}{s}}{\binom{m+n}{k}}$. **Bsp:** Wrfel fr sechs $p = \frac{1}{6}, p > \frac{1}{6}$ a) 2x 6 in 3 Wrfen b) 3x 6 in 5 Wrfen $H_0: p = \frac{1}{6}$ mit $\alpha = 5\%$ also gilt: a) $P(2 \le X \le 3) = \binom{3}{2}(\frac{1}{6})^2(\frac{5}{6})^1 + \binom{3}{3}(\frac{1}{6})^3(\frac{5}{6})^0 = 0.074 > \alpha \Rightarrow H_0$ angenommen; b) $P(3 \le X \le 5) = \binom{5}{3}(\frac{1}{6})^3(\frac{5}{6})^2 + \binom{5}{4}(\frac{1}{6})^4(\frac{5}{6})^1 + \binom{5}{5}(\frac{1}{6})^5(\frac{5}{6})^0 = 0.035 < \alpha \Rightarrow H_0$ nicht angenommen: angenommen;