1 Parsing-as-deduction rules for noisy channel

1.1 Item format

Each item has the following entries. In general, numerical indices are denoted by lowercase letters and other entries are denoted by uppercase letters.

- 1. frame index (i, j, ...)
- 2. Phone-internal HMM state $(s \in \{start, mid, end\})$
- 3. PLU bottom type (A, B, ...)
- 4. PLU bottom index (a, b, ...)
- 5. edit operation type $(E \in \{IB, IT, SUB\})$
- 6. PLU top type (M, N, ...)
- 7. PLU top index (m, n, ...)
- 8. the probability of the item (P or P')

We also assume the existence of the following functions:

- TOP(m) returns the type of the PLU at position M in the top-level PLU sequence.
- $p_{hmm}(s_1 \to s_2)$ returns the probability of transitioning from phone position s_1 to s_2 . This is always 0.5 under the current implementation.
- $p_{op}(E)$ returns the probability of the given operation type ($\{IB, IT, SUB\}$).
- $p_{ib}(A)$ returns the probability of the insert bottom operation for PLU A, given that E = IB.
- $p_{it}(M)$ returns the probability of the insert top operation for PLU M, given that E = IT.
- $p_{sub}(M, A)$ returns the probability of the substitute operation that substitutes PLU A for PLU M, given that E = SUB.
- lh(A, s, i) returns the likelihood of state s of PLU A at frame i (based on the audio input).

1.2 Moves in Levenshtein matrix (PLU transitions)

1.2.1 Insert Bottom

$$[i, end, A, a, E, TOP(m), m, P]$$

$$[i + 1, start, B, a + 1, IB, TOP(m), m,$$

$$P' = P \cdot p_{hmm}(end \rightarrow start) \cdot p_{op}(IB) \cdot p_{ib}(B) \cdot lh(B, start, i + 1)]$$

1.2.2 Insert Top

$$[i, end, A, a, E, TOP(m), m, P]$$
$$[i, end, A, a, IT, TOP(m+1), m+1,$$
$$P' = P \cdot p_{op}(IT) \cdot p_{it}(N)]$$

1.2.3 Substitute

$$[i, end, A, a, E, TOP(m), m, P]$$

$$[i+1, start, B, a+1, E, TOP(m+1), m+1,$$

$$P' = P \cdot p_{hmm}(end \rightarrow start) \cdot p_{op}(SUB) \cdot p_{sub}(N, B) \cdot lh(B, start, i+1)]$$

1.3 PLU-internal transitions

1.3.1 HMM-state-internal transition

$$\frac{[i, s, A, a, E, TOP(m), m, P]}{[i+1, s, A, a, E, TOP(m), m, P' = P \cdot p_{hmm}(s \rightarrow s) \cdot lh(|A, s, i+1)]}$$

1.3.2 PLU-internal HMM state transition

$$[i, s \in \{start, mid\}, A, a, E, TOP(m), m, P]$$
$$[i + 1, s + 1, A, a, E, TOP(m), m,$$
$$P' = P \cdot p_{hmm}(s \to s + 1) \cdot lh(|A, s + 1, i + 1)]$$

1.4 Start items

The start items look like this, for all $A \in PLUs$:

$$[i = 0, start, A, a = 0, E, TOP(0), m = 0, P = lh(A, start, 0)]$$

1.5 Completion rules

The parse is complete when an item of the following format is reached, where x is the number of frames in the audio input and y is the number of PLUs in the top-level sequence.

$$[\mathbf{i} = \mathbf{n}, end, A, a, E, TOP(y), \mathbf{m} = \mathbf{y}, P]$$