r SEMINAR 2 Restrictia unei functii: Fie f: A → B functie X ⊆ A fix: X → B fix(X) = f(X), (X) X ∈ X

1.3.38

Fie A,B,C multimi a.i. $C \subseteq A$ si fie f a functio : $A \rightarrow B$. Le se avoite ca restrictio lui f la multimea $C = f \circ i$, unde $i : C \rightarrow A$ este functio de inclusiume $i : C \rightarrow A$, i(x) = x, $(x) \times C$

Imaginea si contraimaginea unei multimi printr-o functie:

Vinaginea lui X prin f(Tie $b \in f(x) \Rightarrow \exists x \in X \text{ a.t. } f(x) = b$)

$$\xi^{-1}(\{a\}) = \{1, 2\}$$

$$\xi^{-1}(\{a\}) = \{1, 2, 3\}$$

$$\xi^{-1}(\{a\}) = \emptyset$$

1.3.39

Fie f: A > B & functie invorvabila xi fie Y ⊆ B. Atunci prin f⁻¹(Y) putem intelege fie contrainaginea lui Y prin f, fie inna ginea lui Y prin f⁻¹. Ja xe arate κα κele dana interpretari me intra m conflict

 $J:A \rightarrow B$ $J^{-1}:B \rightarrow A$ $U = J^{-1}(Y)$ ca π contrainagine = $\int X \in A / J(X) \in Y J$ $V = J^{-1}(Y)$ ca π imagine = $\int J^{-1}(Y) / J(Y) J(Y) J(Y)$ Vrem π oristan eà $U = V <= U \cup V$ π $V \subseteq U$

"USV". Fie XEU. Vrem XEV => XEA in f(x)EY f(x)=YEY => f'(y)=x

"VEU". Fie vEV. Vrem vEU => => => => [v=4-(y) => NEA => f(v)=y=> f(v) eY => veU

Ja re garearea un exemplu de doua functii $f,g:N\to N$ a.î. $g\circ f \neq f\circ g$ (desi compunera este definità bilateral, la m este comutation) $f\circ g:N\to N$ $(f\circ g)(x)=2x+2$

4:1N→1N, &(x)=2x g:1N→1N, g(x)=x+1 gof: IN → IN (gof)(x) = 2x+1 pt. x=4 (fog)(4) = 16 f=> fog ≠ go: (gof)(4)=15 f=> 1.3.45 Fie 4: A-B functie. Fie X, X, X, CA in Y, Y, Y, Y2 CB La re arate ca: i) x = 4-1(4(x)) Fie a EX. Vom a E 4 (4(X)) XCA = aEA = A(a) EB $a \in X \Rightarrow d(a) \in d(X)$ \$(a)=y=> y∈ &(X) &-1({yy)= {ueA/4(v)=y} -, a = 4 (193)

y = 4(x) => {y} = 4(x) => 4-1({y}) = 4-1(4(x)) == a = (4(x)) = 4-1(4(x)) = 2) & (X,UX2) = &(X)U&(X2) * AUB = {x/xeA rou xeB} 4(x,UX2) = 4(X1)U 4(X2)

 $\begin{array}{lll}
\lambda & & & & \\
\lambda & & & \\
\lambda & & & \\
\lambda &$

 $f(x_1) \cup f(x_2) \subseteq f(x_1 \cup x_2)$ The be $f(x_1) \cup f(x_2)$. From be $f(x_1 \cup x_2)$ $=> be f(x_1) \text{ naw be } f(x_2)$ $=> \exists a_i \in X_1 \text{ a.â.} f(a_i) = b \text{ naw } a_i \in X_2 \text{ a.â.} f(a_i) = b$ $\xrightarrow{X_1, X_2 \subset X_1 \cup X_2} \exists a_i \in X_1 \cup X_2 \text{ a.â.} f(a_i) = b \text{ naw}$ $\exists a_i \in X_1 \cup X_2 \text{ a.â.} f(a_i) = b$ $=> \exists a_i \in X_1 \cup X_2 \text{ a.â.} f(a_i) = b => b \in X_1 \cup X_2.$

3) $4(x_1 \cap x_2) \subseteq 4(x_1) \cap 4(x_2)$ Fix $b \in 4(x_1 \cap x_2)$. Vrem $b \in 4(x_1) \cap 4(x_2)$ $=) \exists \underbrace{a \in X_1 \cap X_2}_{A \cap X_2} a. \hat{a}. d(a) = b$ $a \in X_1 \text{ in } a \in X_2$ $=> b \in 4(x_1) \text{ in } b \in 4(x_2)$ $=> b \in 4(x_1) \cap 4(x_2)$

$$\begin{pmatrix} x^1 \\ x^2 \\ x^3 \end{pmatrix}$$