and Thm.6.3 of A-III) we have

(1.5) $\sigma(T(1)) \cap \Gamma = \{1\}$ and $1 \notin R\sigma(T(1))$.

From (1.4) it follows that $\lim_{n\to\infty} \|T(n)-T(n+1)\|=0$ and therefore $\lim_{t\to\infty} \|T(t)-T(t+1)\|=0$. Thus given $g\in\operatorname{im}(\operatorname{Id}-T(1))$ then g=f-T(1)f for some $f\in E$ hence $\|T(t)g\|=\|(T(t)-T(t+1))f\|\le\|(T(t)-T(t+1))\|\cdot\|f\|\to0$. The second assertion of (1.5) ensures that $\operatorname{im}(\operatorname{Id}-T(1))$ is dense in E. Since the semigroup is bounded we have $\lim_{t\to\infty} \|T(t)f\|=0$ for every $f\in\operatorname{im}(\operatorname{Id}-T(1))=E$, i.e., (T(t)) is uniformly stable.

(i) \rightarrow (iii) is always true and follows from A-IV, Thm.1.13.

(iii) + (ii): The adjoint semigroup (T(t)') $_{t\geq 0}$ is eventually norm-continuous and bounded and we have $R\sigma(A') = P\sigma(A'') = P\sigma(A)$. Thus the implication "(ii) + (i)" can be applied and we obtain that (T(t)') $_{t\geq 0}$ is stable. Then A-IV,Thm.1.13 yields $0 \notin P\sigma(A') = R\sigma(A)$.

As an application of Thm.1.5 we consider the Laplacian as generator on $L^p(\mathbb{R}^n)$, $1 \le p < \infty$, (see A-I,2.8). For p=1 the constant functions are eigenvectors of the adjoint operator, hence $0 \in \text{Ro}(\Delta)$. Thus the semigroup is not stable on $L^1(\mathbb{R}^n)$. On the other hand, for $1 \le p < \infty$ there does not exist a non-zero function $h \in L^p(\mathbb{R}^n)$ with $\Delta h = 0$. Hence Δ generates a stable semigroup on $L^p(\mathbb{R}^n)$ for $1 . (That <math display="inline">\ker \Delta = \{0\}$ can be deduced from the following two facts:

- since the semigroup consists of contractions and since the norm is strictly monotone on E_+ it follows that $\ker \Delta$ is a sublattice. Thus irreducibility of the semigroup (see A-I,2.8 and C-III,Ex.3.4(a)) implies that $\dim \ker \Delta \leq 1$;
- The semigroup commutes with the translations on $\,\mathbb{R}^{n}$, hence $\,\ker\,\Delta$ is invariant under translations.)

In the next results we give conditions on the range of the generator which ensure stability. We begin with a generalization of Cor.1.4(b).

<u>Propositon</u> 1.6. Let A be the generator of a positive semigroup on a (real or complex) Banach lattice, $D(A)_{-}:=-(D(A)_{-}\cap E_{+})$. Then $\omega_{1}(A)<0$ if and only if $E_{+}\subset \operatorname{im} A(D(A)_{-})$.

<u>Proof.</u> If $\omega_1(A) < 0$ then s(A) < 0 (A-IV,Cor.1.5), hence $A^{-1} = -R(0,A) \le 0$ by C-III,Thm.1.1 .

If $E_+ \subset \text{im A(D(A)}_-)$, then, for every $f \in E_+$, there exists $g \in D(A)_+$ such that Ag = -f. We have $0 \le T(t)g = g + \int_0^t T(s)Ag \, ds$