MLE for n-gram LM
$\max_{n} 2(0) = \sum_{i=1}^{N} \sum_{j=1}^{n} \log p(x_j x_{j-1})$
Max 200) = 2 2 (00) (00) (1)
D wIW I
S.t. E ONINI = I Y WIEV
S.t. Dwiwi = 1 y wiev
WEN DWIN = D
$L(\theta, \lambda) = L(\theta) - \lambda \left(\sum_{w \in V} \theta_{v w'} - 1 \right)$
$\frac{\partial \Theta^{m}(m)}{\partial \Gamma} = 0$
30 w = 0

Ide	i' test"	
	count(x)	
1	vall train M-1	M CK-fold)
2	ual L	

$$ht = \sigma(\underbrace{Whh}_{h_1-1} + \underbrace{Whi}_{x_t} \times_{t} + b)$$

$$\frac{\partial lt}{\partial W_{hh}} = \underbrace{\frac{\partial lt}{\partial Ot}_{h_1}}_{2Ot} \underbrace{\frac{\partial ht}{\partial W_{hh}}}_{2W_{hh}}$$

$$\frac{\partial ht}{\partial h_1} = \underbrace{\frac{\partial ht}{\partial h_2}}_{2h_1} \underbrace{\frac{\partial ht}{\partial W_{hh}}}_{2h_1}$$

$$\frac{\partial ht}{\partial h_1} = \underbrace{\frac{\partial ht}{\partial h_2}}_{2h_1} \underbrace{\frac{\partial ht}{\partial W_{hh}}}_{2h_1}$$

$$\frac{\partial ht}{\partial h_1} = \underbrace{\frac{\partial ht}{\partial h_2}}_{2h_1} \underbrace{\frac{\partial ht}{\partial W_{hh}}}_{2h_1}$$

$$\frac{\partial ht}{\partial h_1} = \underbrace{\frac{\partial ht}{\partial h_2}}_{2h_1} \underbrace{\frac{\partial ht}{\partial W_{hh}}}_{2h_1}$$

Whh = QNkQ