Семинар 22 (28.02.2023)

Краткое содержание

Начали с обсуждения понятия матрицы Грама системы векторов евклидова пространства и её свойств.

Следующий сюжет — определение квадратных матриц произвольного порядка, являющихся матрицами Грама каких-то систем векторов евклидова пространства.

Пусть v_1, \ldots, v_k — некоторая система векторов евклидова пространства \mathbb{E} , и пусть G — её матрица Грама. Предположим, что векторы $v'_1, \ldots, v'_m \in \mathbb{E}$ выражаются через v_1, \ldots, v_k ; тогда можно записать $(v'_1, \ldots, v'_m) = (v_1, \ldots, v_k)C$ для некоторой матрицы $C \in \operatorname{Mat}_{k \times m}(\mathbb{R})$. Показали, что матрица Грама системы v'_1, \ldots, v'_m равна C^TGC . Применили полученный результат для доказательства следующей теоремы.

Теорема. Квадратная матрица A является матрицей Γ рама некоторой системы векторов евклидова пространства тогда и только тогда, когда A симметрична и неотрицательно определённа (то есть таковой является квадратичная форма с этой матрицей).

Доказательство (содержит алгоритм построения требуемой системы векторов). Если $A \in M_k(\mathbb{R})$ — матрица Грама некоторой системы векторов в \mathbb{R}^n , то A симметрична. Мы уже знаем, что квадратичная форма с матрицей A путём замены координат приводится к диагональному виду. Это означает, что существует невырожденная матрица $C \in M_k(\mathbb{R})$, для которой $C^TAC = D$, где $D = \operatorname{diag}(d_1, \ldots, d_k)$. Как уже отмечалось выше, в данной ситуации D тоже должна являться матрицей Грама некоторой системы векторов в \mathbb{R}^n , поэтому все её диагональные элементы должны быть неотрицательны, откуда и следует неотрицательная определённость соответствующей квадратичной формы.

Обратно, пусть теперь $d_i \geqslant 0$ для всех $i=1,\ldots,k$. Тогда легко предъявить систему векторов (f_1,\ldots,f_k) с матрицей Грама D. Например, если e_1,\ldots,e_n — стандартный базис в \mathbb{R}^n , то можно взять $f_i=\sqrt{d_i}e_i,\ i=1,\ldots,k$. В соответствии с разобранным выше у системы векторов $(f_1,\ldots,f_k)C^{-1}$ матрицей Грама будет $(C^{-1})^TDC^{-1}=A$, что и требовалось.

Применили данный алгоритм к матрице $\begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}$.

Дальше поговорили про ортогональное дополнение подмножества евклидова пространства, обсудили его основные свойства. Ортогональное дополнение к системе векторов $v_1, \ldots, v_k \in \mathbb{R}^n$ (а также к их линейной оболочке) совпадает с множеством решений ОСЛУ $\{(v_i, x) = 0 \mid i = 1, \ldots, k\}$, поэтому базис ортогонального дополнения есть просто ФСР для указанной ОСЛУ.

Следующий сюжет — ортогональные и ортонормированные системы векторов, ортогональные и ортонормированные базисы. Обсудили формулу для координат вектора в ортогональном (ортонормированном) базисе. Разобрали метод ортогонализации Грама—Шмидта, который позволяет построить ортогональный базис подпространства, стартуя с какого-то базиса. А именно, для ис-

ходной линейно независимой системы векторов e_1, \ldots, e_k формулы $f_i = e_i - \sum_{j=1}^{i-1} \frac{(e_i, f_j)}{(f_j, f_j)} f_j$ определяют ортогональный базис f_1, \ldots, f_k в подпространстве $\langle e_1, \ldots, e_k \rangle$.

Обсудили, как с помощью ортогонализации Грама–Шмидта дополнять ортогональную систему векторов до ортогонального базиса. Есть два способа:

- 1) сначала найти базис в ортогональном дополнении, а затем ортогонализовать его;
- 2) дополнить исходный базис до какого-нибудь базиса и затем ортогонализовать его. Применили оба этих способа для решения номера П1359.

 \Diamond

Домашнее задание к семинару 23. Дедлайн 7.03.2023

Номера с пометкой П даны по задачнику Проскурякова, с пометкой К – Кострикина.

В обоих задачниках координаты векторов из \mathbb{R}^n всегда записываются в строчку через запятую, однако нужно помнить, что мы всегда записываем эти координаты в столбец.

- 1. Существует ли система векторов в \mathbb{R}^3 с матрицей Грама $\begin{pmatrix} 2 & 1 & -3 \\ 1 & 6 & 4 \\ -3 & 4 & 11 \end{pmatrix}$? Если существует, то укажите её.
- 2. Тот же вопрос для матрицы $\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$.
- 3. Тот же вопрос для матрицы $\begin{pmatrix} 4 & 3 & 0 \\ 3 & 3 & 2 \\ 0 & 2 & 2 \end{pmatrix}$.
- 4. $\Pi 1366$
- 5. Π1367
- 6. Найдите базис ортогонального дополнения в \mathbb{R}^3 к множеству решений уравнения $x_1+2x_2+3x_3=0$.
- 7. $\Pi 1357$, $\Pi 1360$
- 8. $\Pi 1361$
- 9. Рассмотрим евклидово пространство $\mathbb{R}[x]_{\leqslant 4}$ со скалярным произведением $(f,g) = \int\limits_{-1}^{1} f(t)g(t) \, dt$. При помощи метода ортогонализации постройте ортогональный базис в подпространстве $\langle 1, x, x^2, x^3 \rangle$.