a_1, a_2, \ldots, a_m . If y is a closed rectifiable curve in G which does not pass through any of the points a_k and if $v \approx 0$ in G then $\frac{1}{2\pi i} \int_{\mathbf{y}} f = \sum_{k=1}^{m} n(\mathbf{y}; a_k) \operatorname{Res}(f; a_k).$

Theorem 1 (Residue Theorem). Let f be analytic in the region G except for the isolated singularities

Theorem 2 (Maximum Modulus). Let G be a bounded open set in \mathbb{C} and suppose that f is a continuous function on G^- which is analytic in G. Then

 $a\alpha b\beta c\partial d\delta e\epsilon ef\zeta \xi q\gamma h\hbar\hbar iiijkκχllλmnηθθοσς φφρρρας st πυμννυνωωχχυψz <math>\infty \propto \emptyset \varnothing d\eth$ 3

continuous function on
$$G^-$$
 which is analytic in G . Then
$$\max\{|f(z)|:z\in G^-\}=\max\{|f(z)|:z\in\partial G\}.$$
 ΑΛΔ ∇ BCD Σ EFΓGHIJKLMNΟΘΩ \mho PΦΠΞORSTUVWXYYΨZ 1234567890