Study Guide

MATH 163: Discrete Mathematics 1 Fall 2022

Dr. Petrescu

Final: Monday, December 12, 2022

Denny Cao

December 10, 2022

Contents

1	\mathbf{Log}	ic and Proofs 4
	1.1	Propositional Logic
		1.1.2 Propositions
		1.1.3 Conditional Statements
		1.1.5 Precedence of Logical Operators
	1.3	Propositional Equivalences
		1.3.1 Introduction
		1.3.2 Logical Equivalences
		1.3.5 Satisfiability
	1.4	Predicates and Quantifiers
		1.4.2 Predicates
		1.4.3 Quantifiers
		1.4.4 Quantifiers Over Finite Domains
		1.4.6 Precedence of Quantifiers
		1.4.8 Negating Quantified Expressions
	1.5	Nested Quantifiers
	1.6	Rules of Inference
	1.7	Introduction to Proofs
		1.7.5 Direct Proofs
		1.7.6 Proof by Contraposition
		1.7.7 Proof by Contradiction
	1.8	Proof Methods and Strategy
	1.0	1.8.2 Exhaustive Proof and Proof by Cases
2	Bas	ic Structures 11
	2.1	Sets
		2.1.1 Introduction
		2.1.3 Subsets
	2.2	Set operations
	2.3	Functions
	2.4	Sequences and Summations
	2.5	Cardinality of Sets
	2.6	Matrices
3	Nur	mber Theory 12
	3.1	Divisibility and Modular Arithmetic
	3.2	Integer Representations and Algorithms
	3.3	Primes and Greatest Common Divisors
	3.4	Solving Congruences
	3.5	Applications of Congruences
4		
4		uction and Recursion 12
	4.1	Mathematical Induction
	4.2	Strong Induction and Well Ordering Principle

5	Cou	ınting	12
	5.1	Basics of Counting	12
	5.2	Pigeonhole Principle	12
	5.3	Permutations and Combinations	12
	5.4	Binomial Coefficients and Identities	12
	5.5	Generalized Permutations and Combinations	12
	5.6	Generating Permutations and Combinations	12
6	Pro	bability	12
	6.1	Introduction to Discrete Probability	12
	6.2	Probability Theory	12
	6.3	Bayes' Theorem	12
	6.4	Expected Value and Variance	12

1 Logic and Proofs

1.1 Propositional Logic

1.1.2 Propositions

Definition 1.1. Proposition: A statement that is either true or false.

$$\begin{array}{c|c} p & \neg p \\ \hline T & F \\ F & T \end{array}$$

Figure 1: Truth table for **negation**

p	q	$p \wedge q$	$p \lor q$	$p\oplus q$
$\overline{\mathrm{T}}$	Т	Т	Т	F
Τ	F	\mathbf{F}	${ m T}$	${ m T}$
\mathbf{F}	Τ	F	${ m T}$	Τ
\mathbf{F}	F	F	F	\mathbf{F}

Figure 2: Truth table for **bit operations**

1.1.3 Conditional Statements

Definition 1.2. Conditional Statement: A statement of the form $p \to q$. The conditional statement is called the *hypothesis* (or *antecedent* or *premise*) and q is called the *conclusion* (or *consequence*).

Definition 1.3. Converse: The proposition $q \to p$ is the converse of the proposition $p \to q$.

$$\begin{array}{c|cccc} p & q & q \rightarrow p \\ \hline T & T & T \\ T & F & T \\ F & T & F \\ F & F & T \\ \end{array}$$

Figure 3: Truth Table for converse of implication of two propositions p and q

Definition 1.4. Contrapositive: The proposition $\neg q \rightarrow \neg p$ is the contrapositive of the proposition $p \rightarrow q$.

• Same truth value as $p \to q$

p	q	$\neg p$	$\neg q$	$\neg q \rightarrow \neg p$
$\overline{\mathrm{T}}$	Т	F	F	ightharpoons T
Τ	F	F	Τ	F
F	Т	Τ	F	m T
F	F	Τ	${ m T}$	$\overline{\mathrm{T}}$

Figure 4: Truth Table for contrapositive of implication of two propositions p and q

Definition 1.5. Inverse: The proposition $\neg p \rightarrow \neg q$ is the inverse of the proposition $p \rightarrow q$.

p	q	$\neg p$	$\neg q$	$\mid \neg p \rightarrow \neg q \mid$
$\overline{\mathrm{T}}$	Т	F	F	T
Τ	F	F	Τ	${ m T}$
F	Τ	Τ	F	F
F	F	Τ	Τ	${ m T}$

Figure 5: Truth Table for inverse of implication of two propositions p and q

1.1.5 Precedence of Logical Operators

Operator	Precedence
_	1
\wedge	2
V	3
\rightarrow	4
\leftrightarrow	5

Figure 6: Precedence of Logical Operators

1.3 Propositional Equivalences

1.3.1 Introduction

Definition 1.6. Tautology: A compound proposition that is always true.

Definition 1.7. Contradiction: A compound proposition that is always false.

Definition 1.8. Contingency: A compound proposition that is neither a tautology nor a contradiction.

Figure 7: Truth Table of an example of a Tautology and Contradiction

1.3.2 Logical Equivalences

Definition 1.9. Two propositions are **logically equivalent** if $p \leftrightarrow q$ is a tautology.

The following are important logical equivalences:

De Morg	gan's Laws
$\neg (p \land q)$	$\leftrightarrow \neg p \vee \neg q$
$\neg (p \lor q)$	$\leftrightarrow \neg p \land \neg q$

Conditional-Disjunction Equivalence
$$p \to q \leftrightarrow \neg p \lor q$$

Here are some other logical equivalences:

Logical Equivalences		
Equivalence	Name	
$p \wedge \mathbf{T} \equiv \mathbf{T}$	Identity Laws	
$p \wedge \mathbf{F} \equiv \mathbf{F}$		
$p \lor \mathbf{T} \equiv \mathbf{T}$	Domination Laws	
$p \lor \mathbf{F} \equiv \mathbf{F}$		
$p\vee p\equiv p$	Idempotent Laws	
$p \wedge p \equiv p$		
$\neg(\neg p) \equiv p$	Double Negation Law	
$p \vee q \equiv q \vee p$	Commutative Laws	
$p \wedge q \equiv q \wedge p$		
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative Laws	
$(p \land q) \land r \equiv p \land (q \land r)$		
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive Laws	
$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$		
$\neg (p \land q) \equiv \neg p \lor \neg q$	De Morgan's Laws	
$\neg (p \lor q) \equiv \neg p \land \neg q$		
$p \lor (p \land q) \equiv p$	Absorption Laws	
$p \land (p \lor q) \equiv p$		
$p \lor \neg p \equiv \mathbf{T}$	Negation Laws	
$p \wedge \neg p \equiv \mathbf{F}$		

Logical Equivalences Involving Conditional Statements

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

$$p \lor q \equiv \neg p \to q$$

$$p \land q \equiv \neg (\neg p \lor \neg q) \equiv \neg (p \to \neg q)$$

$$\neg (p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

Logical Equivalences Involving Biconditional Statements

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$
$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$
$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$
$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

$$\bigvee_{i=1}^{n} p_i = p_1 \lor p_2 \lor \dots \lor p_n$$

$$\bigwedge_{i=1}^{n} p_i = p_1 \land p_2 \land \dots \land p_n$$

By De Morgan's laws, it follows that:

$$\neg \bigvee_{i=1}^{n} p_i = \bigwedge_{i=1}^{n} \neg p_i$$

1.3.5 Satisfiability

Definition 1.10. A compound proposition is **satisfiable** if there is an assignment of truth values to its variables that makes it true (When it is a tautology or a contigency).

Definition 1.11. A compound proposition is **unsatisfiable** if there is no assignment of truth values to its variables that makes it true (When it is a contradiction). To prove this, we can prove that the negation is a tautology.

1.4 Predicates and Quantifiers

1.4.2 Predicates

Definition 1.12. A statement contains 2 parts: a subject and a predicate.

- In the statement, x is greater than 3, x is the subject and greater than 3 is the predicate.
- The statement P(x) is said to be the value of the **propositional function** P at x.

1.4.3 Quantifiers

Definition 1.13. Universal Quantifier: $\forall x P(x)$. P(x) for all values of x in the domain.

• An element for which P(x) is false is called a **counterexample**.

Definition 1.14. Existential Quantifier: $\exists x P(x)$. There exists an element x in the domain such that P(x) is true.

Definition 1.15. Uniqueness Quantifier: $\exists !xP(x)$. There exists exactly one element x in the domain such that P(x) is true.

A way to think about determining the truth value of quantifiers is to think about looping. To determine if $\forall x P(x)$ is true, we loop through all the elements in the domain and check if P(x) is true for all of them. To determine if $\exists x P(x)$ is true, we loop through all the elements in the domain and check if P(x) is true for at least one of them.

1.4.4 Quantifiers Over Finite Domains

When domain is finite, we can express statements using propositional logic:

$$\forall x P(x) \equiv \bigwedge_{i=1}^{n} P(x)$$

$$\exists x P(x) \equiv \bigvee_{i=1}^{n} P(x)$$

1.4.6 Precedence of Quantifiers

 $\forall x$ and $\exists x$ have higher precedence than all logical operators from propositional calculus. For instance, $\forall P(x) \lor Q(x) \equiv (\forall P(x)) \lor Q(x)$.

1.4.8 Negating Quantified Expressions

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$
$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

Figure 8: De Morgan's Laws for Quantifiers

1.5 Nested Quantifiers

Statement	When True	When False
$\forall x \forall y P(x,y)$	P(x,y) is true for all values	$\exists x \exists y \neg P(x,y)$
	of x and y	
$\forall x \exists y P(x,y)$	For every x there is a y such	$\exists x \forall y \neg P(x,y)$
	that $P(x,y)$ is true	
$\exists x \forall y P(x,y)$	There is an x such that	$\forall x \exists y \neg P(x, y)$
	P(x,y) is true for all values	
	of y	
$\exists x \exists y P(x,y)$	There is an x and a y such	$\forall x \forall y \neg P(x,y)$
	that $P(x,y)$ is true	

Figure 9: Quantifications of Two Variables

1.6 Rules of Inference

Rule of Inference	Tautology	Name
$ \begin{array}{c} p \\ p \rightarrow q \\ \therefore \overline{q} \end{array} $	$(p \land (p \to q)) \to q$	Modus Ponens
$ \begin{array}{c} \neg q \\ p \rightarrow q \\ \therefore \overline{q} \end{array}$	$(\neg q \land (p \to q)) \to \neg p$	Modus Tollens
$ \begin{array}{c} p \to q \\ q \to r \\ \vdots p \to r \end{array} $	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical Syllogism
$ \begin{array}{c} p \vee q \\ \neg p \\ \therefore \overline{q} \end{array} $	$((p \lor q) \land \neg p) \to q$	Disjunctive Syllogism
$\therefore \frac{p}{p \vee q}$	$p \to (p \vee q)$	Addition
$\therefore \frac{p \wedge q}{p}$	$(p \land q) \to p$	Simplification
$\begin{array}{c} p \\ q \\ \therefore \overline{p \wedge q} \end{array}$	$((p) \land (q)) \to (p \land q)$	Conjunction
$ \begin{array}{c} p \vee q \\ \hline \neg p \vee r \\ \therefore \overline{q \vee r} \end{array} $	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution

Figure 10: Rules of Inference for Propositional Logic

Note: Resolution is saying, regardless of what p is, q or r is true.

Rule of 1	Inference	Name
$\begin{array}{c c} & \forall x F \\ \therefore & P(c) \end{array}$		Universal Instantiation
$\therefore \frac{P(c)}{\forall x F}$	for an arbitrary c $P(x)$	Universal Generalization
$\therefore \frac{\exists x P}{P(c)}$	$\frac{P(x)}{c}$ for some element c	Existential Instantiation
$\begin{array}{c} P(c) \\ \therefore \exists x F \end{array}$) for some element c $P(x)$	Existential Generalization

Figure 11: Rules of Inference for Quantified Statements

Universal Modus Ponens: The usage of universal instantiation and modus ponens together.

$$\begin{array}{c} \forall x (P(x) \to Q(x)) \\ P(a), \text{ where } a \text{ is a particular element in the domain} \\ \therefore \overline{Q(a)} \end{array}$$

1.7 Introduction to Proofs

Prove $\forall x(P(x) \to Q(x))$ by showing that $P(c) \to Q(c)$ is true, where c is an arbitrary element of the domain, and then apply universal generalization.

1.7.5 Direct Proofs

Show $p \to q$ by first assuming p is true and then showing that q is true using the rules of inference.

Definition 1.16. The integer n is **even** if $\exists k \in \mathbb{Z} \mid n = 2k$.

Definition 1.17. The integer n is odd if $\exists k \in \mathbb{Z} \mid n = 2k + 1$.

Definition 1.18. Two integers have the same **parity** if they are both even or both odd. They have **opposite parity** if one is even and the other is odd.

1.7.6 Proof by Contraposition

Definition 1.19. An **indirect proof** is a proof that does not start with the premise and ends with the conclusion. One type is **proof by contraposition**. This is a proof that shows $p \to q$ by showing $\neg q \to \neg p$.

1.7.7 Proof by Contradiction

Another type of indirect proof is **proof by contradiction**. We can prove p is true by showing that $\neg p \to (r \land \neg r)$. Assume the negation of p is true, and then show that r and $\neg r$ are both true. This is a contradiction, so p must be true.

Important example of proof by contradiction: Prove that $\sqrt{2}$ is irrational.

Proof. By contradiction. Let p be the proposition that $\sqrt{2}$ is irrational. Assum $\neg p$ is true, that is, assume $\sqrt{2}$ is rational. By definition of rational numbers, there exist integers a and b such that $\sqrt{2} = \frac{a}{b}$, where $\frac{a}{b}$ is in simplest terms. Then, we have:

$$\sqrt{2} = \frac{a}{b}$$
$$2 = \frac{a^2}{b^2}$$
$$2b^2 = a^2$$

Since a^2 is a multiple of 2, a^2 is even. Therefore, a is even, and a = 2k for some integer k.

$$2b^2 = 4k^2$$
$$b^2 = 2k^2$$

Since b^2 is a multiple of 2, b^2 is even. Therefore, b is even, and b = 2l for some integer l.

$$\sqrt{2} = \frac{2k}{2l}$$

Since both a and b are even, we can divide both the numerator and denominator by 2. Because our assumption of $\neg p$ leads to the contradiction that 2 divides both a and b and 2 does not divide both a and b, $\neg p$ is false. Therefore, p is true.

1.8 Proof Methods and Strategy

1.8.2 Exhaustive Proof and Proof by Cases

Exhaustive Proof: Prove that $p \to q$ by showing:

$$\bigvee_{i=1}^{n} p_i \to q$$

Proof by Cases: Prove that $p \to q$ by breaking p into cases and showing that q is true in each case.

2 Basic Structures

2.1 Sets

2.1.1 Introduction

Definition 2.1. A set is an unordered collection of distinct objects called **elements** or **members** of the set. A set is said to **contain** its elements. We write $a \in A$ to denote that a is an element of the set A. The notation $a \notin A$ denotes that a is not an element of the set A.

Sets of types of numbers:

- Natural Numbers: $\mathbb{N} = \{0, 1, 2, 3, \dots\} = \{\mathbb{Z}^+ \cup 0\}$
- Integers: $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- Positive Integers: $\mathbb{Z}^+ = \{1, 2, 3, \dots\}$
- Rational Numbers: $\mathbb{Q} = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z} \text{ and } b \neq 0 \right\}$
- Real Numbers: \mathbb{R}
- Positive Real Numbers: \mathbb{R}^+
- ullet Complex Numbers: $\mathbb C$

Equality of Sets: A = B if and only if $\forall x (x \in A \leftrightarrow x \in B)$

Empty Set: $\emptyset = \{\}$

2.1.3 Subsets

$$A \subseteq B \leftrightarrow \forall x (x \in A \leftrightarrow x \in B) \leftrightarrow B \supseteq A$$

To show that $A \not\subseteq B$, show $\exists x (x \in A \land x \notin B)$. For every set $S, \emptyset \subseteq S$ and $S \subseteq S$.

- 2.2 Set operations
- 2.3 Functions
- 2.4 Sequences and Summations
- 2.5 Cardinality of Sets
- 2.6 Matrices
- 3 Number Theory
- 3.1 Divisibility and Modular Arithmetic
- 3.2 Integer Representations and Algorithms
- 3.3 Primes and Greatest Common Divisors
- 3.4 Solving Congruences
- 3.5 Applications of Congruences
- 4 Induction and Recursion
- 4.1 Mathematical Induction
- 4.2 Strong Induction and Well Ordering Principle
- 5 Counting
- 5.1 Basics of Counting
- 5.2 Pigeonhole Principle
- 5.3 Permutations and Combinations
- 5.4 Binomial Coefficients and Identities
- 5.5 Generalized Permutations and Combinations
- 5.6 Generating Permutations and Combinations
- 6 Probability
- 6.1 Introduction to Discrete Probability
- 6.2 Probability Theory
- 6.3 Bayes' Theorem
- 6.4 Expected Value and Variance