```
Mit
  a(T, 8T) = C. STdx + C.v. T'STdx
                                              Aiz = Pi Pi dx + X·Si
                                      mil
           + Q. T (O, E). 8T(0)
                                                                 im Ausoliuss
Matrix Construction revised
                                                             voterot ignoriert
weil nor Diagonale (Ann.)
                                                                 beeinfluss?
  C. ST. 8T dx
                           Transient (time-dependent)
  C. v. ST dx
                        Convection (spatial-dependent)
   a. T (0,t) . ST(0)
                            Boundary Condition (x = 0)
Penalty Method
Feller zuvor:
 Guess: Symetrical Matrix A allowed system to form Q-Equilibrium
                                       -> creates sym. Matrix A
 However, directional nature of convection should lead to asymetrical Matrix
Correction Idea:
     Aij # O with "downstream" influence (j > i)
     use foreward / badward differences (depending on discretization)
      (-> to reflect directional convection
=> Aig to be constructed with distinction to account for
      directionality
                     Aij & Aji For i & j
```

```
Updated Function:
         def compute_A_asymmetric(n, l, C, v, alpha):
              A = np.zeros((n, n))
              for i in range(n):
                   for j in range(n):
                        if i == j:
                            A[i, j] = C * v / h + (alpha if i == 0 else 0)
                       elif i == j + 1:
    A[i, j] = -C * v / h # Forward difference (i > j)
                       elif i == j - 1:
    A[i, j] = 0 # No backward difference (asymmetry)
                                                                                                                             Stationary Solution q = 0
 lustationary
results
before
correction
                                                                                     regardless
                                                                   solution
                                          -> Same
                                                                                                                               4
                                                                                                                               # index
 lustationary
results
after
                                                                                                                                           # 0
                                                             Stationary Solution q=0
                                                                                                                                          Missing:
Distinct:
                                                                                                                                                   1
Distinct values
   correction
Penalty
                                                                                                                                                      19.999914021569616
d = 1e10
                                   19.25
                                                              0.4 0.6
Position along the rod (m)
                                                               Stationary Solution q = 1e10
                                                                                                                     7=
                                                                                                                                                       51712.384792897654
                                                                 0.4 0.6
Position along the rod (m)
```


9 = 1

9 = 1010

	Α	В	С	D	E	F	G	н	1	J	K
1	alpha	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9	T_10
2	1.00E+00	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005
3	1.00E+01	0.0047	0.0047	0.0047	0.0047	0.0047	0.0047	0.0047	0.0047	0.0047	0.0047
4	1.00E+02	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464
5	1.00E+03	0.4547	0.4547	0.4547	0.4547	0.4547	0.4547	0.4547	0.4547	0.4547	0.4547
6	1.00E+04	3.7743	3.7743	3.7743	3.7743	3.7743	3.7743	3.7743	3.7743	3.7743	3.7743
7	1.00E+05	13.9871	13.9871	13.9871	13.9871	13.9871	13.9871	13.9871	13.9871	13.9871	13.9871
8	1.00E+06	19.1757	19.1757	19.1757	19.1757	19.1757	19.1757	19.1757	19.1757	19.1757	19.1757
9	1.00E+07	19.9144	19.9144	19.9144	19.9144	19.9144	19.9144	19.9144	19.9144	19.9144	19.9144
10	1.00E+08	19.9914	19.9914	19.9914	19.9914	19.9914	19.9914	19.9914	19.9914	19.9914	19.9914
11	1.00E+09	19.9991	19.9991	19.9991	19.9991	19.9991	19.9991	19.9991	19.9991	19.9991	19.9991
12	1.00E+10	19.9999	19.9999	19.9999	19.9999	19.9999	19.9999	19.9999	19.9999	19.9999	19.9999
13	1.00E+11	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000
11											

	A	В	С	D	E	F	G	н	1	J	K
1	alpha	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9	T_10
2	1.00E+00	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005
3	1.00E+01	0.0047	0.0047	0.0047	0.0047	0.0047	0.0047	0.0047	0.0047	0.0047	0.0047
4	1.00E+02	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464	0.0464
5	1.00E+03	0.4547	0.4547	0.4547	0.4547	0.4547	0.4547	0.4547	0.4547	0.4547	0.4547
6	1.00E+04	3.7743	3.7743	3.7743	3.7743	3.7743	3.7743	3.7743	3.7743	3.7743	3.7743
7	1.00E+05	13.9871	13.9871	13.9871	13.9871	13.9871	13.9871	13.9871	13.9871	13.9871	13.9871
8	1.00E+06	19.1757	19.1757	19.1757	19.1757	19.1757	19.1757	19.1757	19.1757	19.1757	19.1757
9	1.00E+07	19.9144	19.9144	19.9144	19.9144	19.9144	19.9144	19.9144	19.9144	19.9144	19.9144
10	1.00E+08	19.9914	19.9914	19.9914	19.9914	19.9914	19.9914	19.9914	19.9914	19.9914	19.9914
11	1.00E+09	19.9991	19.9991	19.9991	19.9991	19.9991	19.9991	19.9991	19.9991	19.9991	19.9991
12	1.00E+10	19.9999	19.9999	19.9999	19.9999	19.9999	19.9999	19.9999	19.9999	19.9999	19.9999
13	1.00E+11	20.0550	12943.1380	25866.2200	38789.3020	51712.3850	64635.4670	77558.5490	90481.6320	103404.7140	116327.7960
1.4			1 1 1								

Kurz gesagt: hoher Penalty Faktor notwendig um Initial Condition zu erzwingen. Hoher Penalty Faktor führt aber auch dazu, dass System sehr hohes q benötigt um sich aufzuwärmen, weil sonst Einfluss von T(x = 0) "zu stark"

Proof A = asym. Assume: Rod with 3 nodes -> 4,(x), 42(x), P3(x) Linear shape functions at... ... Node 1 (x1): $\varphi_1' = -\frac{1}{h}$ $\varphi_2' = \frac{1}{h}$ $\varphi_3' = 0$... Node 2 (x2): $\varphi_1' = 0$ $\varphi_2' = -\frac{1}{h}$ $\varphi_3' = \frac{1}{h}$... Node 3 (x3): $\varphi_1' = 0$ $\varphi_2' = 0$ $\varphi_3' = -\frac{1}{h}$ Example A12/A21 $A_{12} = C \cdot v \cdot \varphi_{2}' \cdot \varphi_{1} dx = -C \cdot v \cdot \frac{1}{h} \varphi_{1} dx$ $A_{21} = C \cdot v \cdot \int_{\Omega} \varphi_1' \cdot \varphi_2 \, dx = C \cdot v \cdot \frac{1}{h} \int_{\Omega} \varphi_2 \, dx$ A12 # Azy therefore A not symphrical