Optimization-Based Data Analysis

Recitation 2

- 1. For a fixed matrix $A \in \mathbb{R}^{m \times n}$ arrange the following values in order: $||A||_F$, ||A||, $||A||_*$.
- 2. Let $A \in \mathbb{R}^{m \times m}$ with SVD $A = USV^T$.
 - (a) Assuming A is invertible, give the SVD for A^{-1} .
 - (b) Give the SVD for A^T .
 - (c) What is the relationship between the SVD of a symmetric matrix and the diagonal factorization given by the spectral theorem?
 - (d) Give the SVD for $A = \mathcal{P}_{\mathcal{S}}$, the orthogonal projection onto the subspace $\mathcal{S} \subseteq \mathbb{R}^m$.
- 3. Suppose you are given a dataset $\vec{x}_1, \dots, \vec{x}_n \in \mathbb{R}^m$ as columns of a matrix $X \in \mathbb{R}^n$. Your goal is to reduce the dimensionality of the data using PCA.
 - (a) Suppose you want the resulting reduced vectors to be in \mathbb{R}^k . Explain how to obtain this using PCA.
 - (b) How do you determine an appropriate k?
 - (c) How do you determine the amount of sample variance in the first principal direction?
- 4. Let $A \in \mathbb{R}^{m \times n}$. Find maximizers $\vec{x} \in \mathbb{R}^m$, $\vec{y} \in \mathbb{R}^n$ solving

Also give the maximum value obtained.

- 5. In the following, assume every day is equally likely to be a birthday, and that there are no leap years.
 - (a) What is the probability, in terms of n, that at least 2 people in a room of n people have the same birthday?
 - (b) Give an upper bound, in terms of n and k, that at least k people in a room of n people have the same birthday.
- 6. If $X \sim \mathcal{N}(0,1)$ then we say that $X^2 \sim \chi_1^2$ (called a chi-squared distribution with 1 degree of freedom). Give the pdf, mean, and variance of the χ_1^2 distribution.
- 7. What is the joint pdf of a random vector $X \sim \mathcal{N}(0, I)$ taking values in \mathbb{R}^n ?

- 8. Let $A = \begin{bmatrix} 4 & -1 \\ 4 & 1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Suppose $X \sim \mathcal{N}(0, I)$ takes values in \mathbb{R}^2 , and let $Y = AX + \vec{b}$.
 - (a) What is the distribution of Y?
 - (b) What are the marginal distributions of the components of Y?
 - (c) Are the components of Y independent?
 - (d) What do the contour lines of the joint pdf Y look like?
- 9. Let X_1, \ldots, X_n be i.i.d. random variables taking the values -1, 0, +1 with probabilities 1/3 each. Let X denote the random vector in \mathbb{R}^n having X_i as its *i*th coordinate.
 - (a) Compute $E[||X||_2^2]$.
 - (b) Compute $E[||X||_{\infty}]$.
 - (c) Compute the covariance matrix of X.
- 10. Let X be a random vector taking values in \mathbb{R}^n with mean $\vec{\mu} \in \mathbb{R}^n$ and covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$. If $A \in \mathbb{R}^{m \times n}$ and $\vec{b} \in \mathbb{R}^n$ what are the mean and covariance matrix of $AX + \vec{b}$?