发育生物学

Developmental Biology

Prof. Lei Xue

School of Life Science

Lei.xue@tongji.edu.cn

65985407 (O), 13262557721 (M)

Lei Xue

- Beijing University B.S.

- University of Zurich Ph. D

- Yale University Postdoc

Research field: Developmental genetics and disease

Model organism: Drosophila

Principles of Developmental Biology
Model Organism - Drosophila
Signal transduction
Aging, stem cell and cloning
Sex determination

Contents

Professor

Principles of Developmental Biology

薛雷

Gametogenesis

杨晓梅

Fertilization

杨晓梅

Embryogenesis

杨晓梅

Development of model organisms

worm - C. elegan 线虫

李伟

insect - Drosophila 果蝇

薛雷

fish - Zebrafish 斑马鱼

曹莹

frog - Xenopus 非洲爪蟾

曹莹

Signal transduction in development

薛雷

Aging, stem cell and cloning

薛雷

The Universal Questions

Where did I come from?

Where am I going?

How?

The Universal Questions

Philosophy

Religion

Developmental Biology

Model Organism

Worm

Fruit fly Zebrafish

Mouse

Similarity

65%

75%

85%

95%

Developmental biology studies the process and mechanism by which organisms grow and develop

The frog life cycle

Developmental biology came from three main fields:

1. Embryology: developmental stage from fertilization to birth

Developmental biology: central position in biology

Developmental biology unites the disciplines of

molecular biology, cell biology and genetics.

When thinking about developmental problems

it is necessary to be able to use concepts

from these areas simultaneously

because they are all necessary to achieve a complete picture.

Developmental Biology - Center of Biology

Developmental Biology - Center of Biology

1. Epigenesis 后成论 vs Preformation 先成论

Epigenesis

each embryo is gradually produced

from an undifferentiated mass

by a series of steps and stages

during which new parts are added.

在胚胎的发育过程中,

各种结构是逐渐形成的。

Epigenesis

Aristotle 384- 322 BC

Generation of Animals

Marcello Malpighi, 1673

Development of blood system
in chick embryo
after 2 days of incubation

Russian dull

Preformation

all organisms were created at the same time

succeeding generations grow from fully

formed but miniature versions of themselves.

that have existed since the beginning of creation

they just get larger over time

所有生物及其结构早在创世一刻便已形成 各个部分随着时间长大而已

Leonardo da Vinci 1452 –1519

"Views of a Fetus in the Womb"

Ovism 卵原学说

Antonie van Leeuwenhoek 1632 – 1723

1677 - discovery of sperm

Spermism 精原学说

a little human embryo was hidden in the head of every sperm

Nicolas Hartsoeker, 1694

2. Cell theory (细胞学说)

1665 Robert Hooke

discovered cell

Monk cells

2. Cell theory

1665 Robert Hooke

discovered cell

1674 Antonie van Leeuwenhoek

observed live cell

2. Cell theory

1665 Robert Hooke discovered cell

1674 Antonie van Leeuwenhoek observed live cell

1839 Schleiden and Schwann the cell theory

- Cells are the basic building units of life
- All living organisms are made of cells
- All cells arise from pre-existing cells

3. germ plasm theory 种质学说

germ cells (生殖细胞): contain and transmit heritable information somatic cells (体细胞): : carry out ordinary bodily functions

August Weismann 1834 – 1914

A single fertilized egg

More cells

Division

Division

4. Mosaic or Regulative Development (嵌合型或调整型发育)

Wilhelm Roux 1850 – 1924

August Weismann 1834 – 1914

Hans Driesch 1867 – 1941

Mosaic Development(嵌合型发育)

1883 August Weismann

The fertilized eggs carry the full complement of determinants (决定子)

Somatic cells retain the specific determinants.

The "Mosaic" theory:

Cleavage

Fertilized

frog egg

After cell divisions the embryo would be like a mosaic, the fate of each cell has been determined.

Regulative Development (调整型发育)

1892 Hans Driesch

Plutei developed from

single cells of 4-cell embryo

Sea urchin

Normal pluteus

A single fertilized egg

More cells

Different cell types

Division

Differentiation

Conrad Waddington

Epigenetics (表观遗传学), 1942

Stable and long-term changes in gene activity
that are not caused by changes in the DNA sequence

Transcriptional control

- DNA methylation
- Histone modification
- Chromatin remodeling

Post-transcriptional control

- MicroRNA
- double-stranded RNA (dsRNA)

Transcriptional control

- DNA methylation

Transcriptional control

- DNA methylation
- Histone modification

В

Gene "switched on"

- · Active (open) chromatin
- Unmethylated cytosines (white circles)
- · Acetylated histones

Gene "switched off"

- · Silent (condensed) chromatin
- Methylated cytosines (red circles)
- · Deacetylated histones

Transcriptional control

- DNA methylation
- Histone modification
- Chromatin remodeling

Transcriptional control

- DNA methylation
- Histone modification
- Chromatin remodeling

Post-transcriptional control:

- MicroRNA: non-coding RNAs, 17 to 25 nucleotides.
- double-stranded RNA (dsRNA): produce small interfering RNAs (siRNAs), 20–25 base pairs.
- RNA binding protein: binds to 3'UTR of mRNA, regulates its stability.

6. Induction (诱导)

1924 Transplantation Experiment

Hans Spemann 1869 – 1941

6. Induction (诱导)

1924 Transplantation Experiment

Hans Spemann 1869 – 1941

Nobel Prize 1935

The Organizer region can induce the formation of a new body axis

7. Integration of genetics and molecular biology

1865	Gregor Mendel	Law of Genetics
1910	Thomas Morgan	genes are on chromosomes
1944	Oswald Avery	DNA is the genetic material
1953	Watson & Crick	the structure of DNA
1960'	Crick & others	DNA → mRNA → Protein 中心法则
		Genetic code 遗传密码
1970'		DNA sequencing, genetic engineering
1980'		Transgenic animal, knock out
1990'		Animal cloning
2000		Human Genome Project, Stem cell

Thank You