Homework 2

ESE 402/542

Due October 1st, 2024 at 11:59pm

• Type or scan your answers as a single PDF file and submit on Gradescope.

Problem 1

Suppose that X_1, X_2, \ldots, X_n are i.i.d. random variables in a sample with the density function

$$f(x|\sigma) = \frac{1}{2\sigma} \exp\left\{-\frac{|x|}{\sigma}\right\}$$

- (a) Use method of moments to estimate σ ?
- (b) Find the MLE estimate of σ ?
- (c) What is the asymptotic variance of the MLE?

Problem 2

Consider the following sample data:

$$x_1, x_2, \dots, x_{30} = 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1$$

We know that the data is distributed i.i.d., and it can take three values 0, 1, and 2. It takes the value 1 with probability p_1 , and it takes the value 2 with probability p_2 .

- (a) Write down the likelihood function obtained from the sample data.
- (b) For the setting of part (a), compute the maximum likelihood estimate for p_1 and p_2 . (Your final answers should be real numbers.)
- (c) Using the estimate that you obtained in part (b), provide a 95% confidence interval for p_1 .

Problem 3

Suppose X_1, X_2, \ldots, X_n are i.i.d. distributed in a sample with pdf

$$f(x|\theta) = \begin{cases} e^{-(x-\theta)}, & \text{if } x \ge \theta \\ 0, & \text{otherwise} \end{cases}$$

- (a) Find the method of moments estimate of θ .
- (b) Find the MLE of θ . (Hint: Be careful, and don't differentiate before thinking. For what values of θ is the likelihood positive?)

Problem 4

Suppose $X_1, X_2, ..., X_n \sim \text{Poisson}(\lambda)$. Given that the random variables are i.i.d., for $\theta = \exp(-\lambda)$:

- 1. Find an unbiased estimator of θ . (Note that it may not be the best estimator. Any unbiased estimator is fine.)
- 2. Find the variance of the unbiased estimator you found and compare with the Cramer Rao lower bound.

Problem 5

We have access to a file consisting of $n=10^4$ numbers. The numbers are either 1, 2, or 3. Moreover, the value 1 appears $n_1=2600$ times in the file, the value 2 appears $n_2=5200$ times, and the value 3 appears $n_3=2200$ times. We know that these numbers are generated i.i.d. according to an unknown distribution.

- (a) Let μ denote the mean of the distribution. Estimate the value of μ from sample data provided in the file and provide a 95% confidence interval.
- (b) Assume now that the generating distribution of the data has the following form:

$$X = \begin{cases} 1, & \text{with probability } p_1, \\ 2, & \text{with probability } p_2, \\ 3, & \text{with probability } 1 - (p_1 + p_2). \end{cases}$$

We would like to estimate the value of the parameters p_1 and p_2 . Consider the following estimator for the value of

$$p_1(X_1, \dots, X_n) = \frac{1}{n} \sum_{i=1}^n 1\{X_i = 1\}$$

(where $1\{A\}$ takes value 1 if A is true, and 0 otherwise.)

Compute the estimate p_1 from the sample data provided in the file. Is this estimator an unbiased estimator for p_1 ? Justify your answer.

- (c) Use the method of moments to estimate the value of p_1 and p_2 (you should compute the estimate from the sample data).
- (d) Now, assume that the precise value of p_1 is given as $p_1 = \frac{1}{4}$. As a result, we now know that the distribution of the data has the form:

$$X = \begin{cases} 1, & \text{with probability } \frac{1}{4}, \\ 2, & \text{with probability } p_2, \\ 3, & \text{with probability } \frac{3}{4} - p_2 \end{cases}$$

We would like to estimate the value of the parameter p_2 from data. Find the maximum likelihood estimator for p_2 and provide a 95% confidence interval.

Problem 6

Include your code in your homework write up.

 $Download \ \mathtt{data}_H W2. csv and load it into Python. The numbers are observations drawn i.i.d. from an exponential properties of the pr$

- (a) Compute estimates for the sample mean and sample variance without using inbuilt functions. Compare your answers with inbuilt numpy functions.
- (b) Suppose now that the standard deviation is known to be 4. Compute a 90% confidence interval for the population mean. (Python libraries can be used to calculate the confidence interval.)

Problem 7

In this problem, we will use Python for simulation of random experiments.

- (a) Let X_1,X_2,\dots,X_n be independent N(0,1) random variables and \overline{X}_n be their sample mean. For n=10,100, and 1000, simulate this problem 2000 times and plot the histogram of the values of \overline{X}_n (you need to plot three histograms; one for each choice of n). How does $\mathrm{Var}(\overline{X}_n)$ relate to the histogram of the values of \overline{X}_n ?
- (b) In a symmetric random walk on a line, at step n=0, we start from point $X_0=0$. At each step n, we flip an unbiased coin and set

$$X_{n+1} = egin{cases} X_n + 1, & ext{Heads} \ X_n - 1, & ext{Tails} \end{cases}$$

By running the random walk 1000 times, for $n = \{1, 2, ..., 50\}$, estimate $\text{Var}(X_n)$ and plot it as a function of n. Do the same for $\mathbb{E}(X_n)$.

(c) For the previous part, compute $\mathbb{E}(X_n)$ and $\mathrm{Var}(X_n)$ theoretically and compare them with your plots.