PLS Mean Centering

Copyright 2022 Battelle Memorial Institute

Partial Least Squares (PLS) with Mean Centering

Partial least squares usually uses mean-centered data to compute $C_{\rm pls}$ using the weights from the SIMPLS algorithm with r latent variables.

```
X = A_train;
Y = C_train;
X0 = X - mean(X,1);
Y0 = Y - mean(Y,1);
[X_loadings, Y_loadings, X_scores, Y_scores, Weights] = pnnl_simpls(X0, Y0, r);
B_pls = Weights * Y_loadings';
C_pls = (A_unknown - mean(A_train,1)) * B_pls + mean(C_train,1);
```

Partial Least Squares (PLS) without Mean Centering

The following is PLS without mean centering.

```
X = A_train;
Y = C_train;
[X_loadings,Y_loadings,X_scores,Y_scores,Weights] = pnnl_simpls(X,Y,r);
B_pls = Weights * Y_loadings';
C_pls = A_unknown * B_pls;
```

Combined algorithm

To make it easier to run with the rest of the tools in the PNNL toolbox, we combined mean-centered and non-mean-centered into one function with meanCentered as an optional argument. When meanCentered is not used as an input, then the default is to compute without mean-centered data.

```
function [C_pls, B_pls] = pnnl_pls(A_train, C_train, A_unknown, r, meanCentered)
    if nargin < 5
        meanCentered = false;
end

X = A_train;
Y = C_train;
if meanCentered
        X0 = X - mean(X,1);
        Y0 = Y - mean(Y,1);
else
        X0 = X;
        Y0 = Y;
end

[X_loadings,Y_loadings,X_scores,Y_scores,Weights] = pnnl_simpls(X0,Y0,r); %#ok<ASGLU>
```

```
B_pls = Weights * Y_loadings';

if meanCentered
    C_pls = (A_unknown - mean(A_train,1)) * B_pls + mean(C_train,1);
else
    C_pls = A_unknown * B_pls;
end
end
```

Napalm Data

Load the included napalm data to run the PLS algorithms.

```
clearvars
load pnnl_napalm_data
whos
```

Name	Size	Bytes	Class	Attributes
A train	20×1713	274080	double	
A unknown	12x1713	164448	double	
_ C_train	20x3	480	double	
C_validation	12x3	288	double	
ConcentrationUnits	1x4	8	char	
ConstituentNames	1x3	364	cell	
WavenumberLabel	1x20	40	char	
Wavenumbers	1x1713	13704	double	

Optimal number of latent variables for PLS with mean centering

Compute PLS with mean centering for 1 through 18 latent variables and plot RMSEP for them.

```
nLatentVariables = 1:18;
meanCentered = true;
[C_pls, RMSEP_pls] = pnnl_napalm_pls(nLatentVariables, meanCentered);
plot(nLatentVariables, RMSEP_pls,'.-','LineWidth',2,'MarkerSize',20)
xlabel('Number of latent variables')
ylabel('RMSEP')
title('PLS')
legend(ConstituentNames{:})
```


For mean-centered data, it looks like the knee in the curve for polystyrene and gasolene is 2 latent variables, and 3 for benzene. Plot them to see what they look like.

```
nLatentVariables = [2,3];
pnnl_napalm_pls(nLatentVariables, meanCentered);
```


Legend: Dot is predicted. Circle is train. Cross is cross-validation.

PLS,	2 latent variables	Benzene	Polystyrene	Gasoline
	RMSEC	4.5616	2.2064	5.8133
	RMSECV	5.8788	2.7588	7.2286
	RMSEP	7.5077	3.04	5.0846

Legend: Dot is predicted. Circle is train. Cross is cross-validation.

PLS.	3	latent	variables	Bε	enzene	Po	lystyrene	G	asoline
,			RMSEC		2.2847		1.7662		2.4538
			RMSECV	3	3.9022		2.4136		4.2785
			RMSEP	1	l.8185		5.6092		7.2521

Optimal number of latent variables for PLS without mean omentering

Compute PLS witout mean centering for 1 through 18 latent variables and plot RMSEP for them.

```
nLatentVariables = 1:18;
meanCentered = false;
[C_pls, RMSEP_pls] = pnnl_napalm_pls(nLatentVariables, meanCentered);
plot(nLatentVariables, RMSEP_pls,'.-','LineWidth',2,'MarkerSize',20)
xlabel('Number of latent variables')
ylabel('RMSEP')
title('PLS')
legend(ConstituentNames{:})
```


Without mean centering, it looks like the knee in the curve for polystyrene is 3 latent variables and 6 for benzene and gasolene. Plot them to see what they look like.

```
nLatentVariables = [3 6];
pnnl_napalm_pls(nLatentVariables, meanCentered);
```


Legend: Dot is predicted. Circle is train. Cross is cross-validation.

PLS, 3 latent va	RMSEC	Benzene 4.6039	Polystyrene 2.2753	Gasoline 5.923
	RMSECV	5.8822	2.8386	7.4067
	RMSEP	5.0162	2.7261	6.133

Legend: Dot is predicted. Circle is train. Cross is cross-validation.

PLS,	6 latent variables	Benzene	Polystyrene	Gasoline
	RMSEC	1.7183	1.2299	1.2676
	RMSECV	5.377	2.1378	4.3161
	RMSEP	2.8856	5.5043	4.1457

%#ok<*ASGLU>

Disclaimer

This material was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the United States Department of Energy, nor Battelle, nor any of their employees, nor any jurisdiction or organization that has cooperated in the development of these materials, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness or any information, apparatus, product, software, or process disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY

operated by

BATTELLE

for the

UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830