Reto 1 - Estructura de Datos

Javier Sáez Maldonado Luis Ortega Andrés

 Usando la notación O, determinar la eficiencia de los siguientes segmentos de código Analizaremos ambos códigos escribiendo en comentarios la eficiencia de cada parte

Código 1

Analicemos porque la eficiencia del bucle interior es $l_2(n)$:

Llamemos f(n) al número de veces que se ejecuta el bucle dependiendo del valor n, entonces tenemos (por j multiplicarse por 2) que:

$$f(x) = f\left(\frac{x}{2}\right) + 1 = f\left(\frac{x}{4}\right) + 1 + 1 = \dots = \underbrace{1 + 1 + \dots + 1}_{\log_2(n)}$$

Así, la eficiencia de nuestro código es:

$$O(2) + O(4) + O(n-1) * (O(l_2n) * (O(1) + O(2) + O(1)) + O(1)) =$$

$$O(6) + O(n-1) * (O(4l_2n+1)) =$$

$$O(6) + O(4nl_2n + n - 4l_2n - 1) =$$

$$O((4n-4)l_2n + n + 5)$$

Que, como sabemos por la notación O, podemos reducir todo eso en el que tenga mayor relevancia, quedando así como resultado final:

$$O(nl_2n)$$

Código 2

```
int n,j; int i = 2; int x = 0; //0(6) do{

j = 1; // 0(1)

while(j<=i){ // 0(1)

j = j*2; //0(2)

x++; // 0(1)
} // El bucle tiene una eficiencia de 0(log_2(i)) * 0(1)
i++; // 0(1)
}while(i<=n) //0(n-2)
```

Analicemos un poco cuantas iteraciones realizan nuestros bucles anidados con respecto de n: El bucle exterior se ejecuta n-2 veces, donde, en cada una de ellas, el bucle interior realiza $l_2(i)$ donde i va creciendo en cada iteración del bucle exterior desde 2 hasta n. Es decir, tenemos:

$$\sum_{i=2}^{n} log_2(i) = log_2(\prod_{i=2}^{n} i) = log_2(n!)$$

Omitiendo ya, aquellas iteraciones que sabemos que pasarian a ser nulas por la notación O grande.

Ejercicio 2

Para cada función f(n) y cada tiempo t de la tabla siguiente, determinar el mayor tamaño de un problema que puede ser resuelto en un tiempo t (suponiendo que el algoritmo para resolver el problema tarda f(n) microsegundos, es decir $f(n)*10^{-6}$ sg.)

Para resolver este problema, lo hacemos de la siguiente forma:

$$10^{-6}f(n) = t \Rightarrow n = f^{-1}(t * 10^6)$$

El resultado es el siguiente.

f(n)	t				
	1sg	1h	1semana	1 año	1000 años
l_2n	10^{300000}	2^{10^6*3600}	$2^{10^6*3600*24*7}$	$2^{10^6*3600*24*7*52}$	2 ¹⁰⁶ *3600*24*7*52*1000
n	100160256	360576923076,9	$6,057692308*10^{13}$	$3,15*10^{15}$	$3,15*10^{18}$
nl_2n	62746,1	$1,33*10^8$	$1,77*10^{10}$	$7,9*10^{11}$	$6,39*10^{14}$
n^3	100	1532,6	8456,8	31565	315649
2^n	19,93	31,7	39,13	44,8	54,8
n!	9,44	12,78	14,6	16	18,2