SCHOOL OF MATHEMATICS AND STATISTICS

MAST30022 Decision Making

Semester 2, 2021

Assignment 3 Solutions

1. (a)(i)

• Transitivity: Assume $a\theta b$ and $b\theta c$. We need to check if we then have $a\theta c$. By the definition of θ ,

$$a\theta b \iff a_1a_2 - b_1b_2 = 2k + 1$$

and

$$b\theta c \iff b_1b_2 - c_1c_2 = 2l + 1$$

for some integers k, l.

Therefore,

$$(a_1a_2 - b_1b_2) + (b_1b_2 - c_1c_2) = a_1a_2 - c_1c_2 = 2(k+l+1),$$

(the sum of two odd numbers is an even number), and we have $\neg a\theta c$. Hence, θ is not transitive.

- Reflexivity: We need to check if $a\theta a$ for any $a \in \mathbb{Z}^2$. By the definition of θ , $a\theta a \iff a_1a_2 a_1a_2 = 0$ is odd, which is not true since 0 is even. So, θ is not reflexive.
- Comparability: We need to check if for any $a, b \in \mathbb{Z} \times \mathbb{Z}$ we have $a\theta b$ or $b\theta a$ or both. It is not the case here since, for example, if a = (2, 1) and b = (1, 2), then $a_1a_2 b_1b_2 = 0$ and $b_1b_2 a_1a_2 = 0$, neither of them being odd. Hence, θ is not comparable.
- Symmetry: We need to check if for any $a, b \in \mathbb{Z} \times \mathbb{Z}$ we have $a\theta b \iff b\theta a$. This is indeed the case since $a_1a_2 b_1b_2$ is odd if and only if $b_1b_2 a_1a_2$ is odd. Hence, θ is symmetric.
- Asymmetry: We need to check if $a\theta b \Longrightarrow \neg b\theta a$. It is not the case since we have shown that θ is symmetric.
- Antisymmetry: Assume $a\theta b$ and $b\theta a$. We need to check if we then have a = b. From the symmetry property, $a\theta b \iff b\theta a$ for any $a, b \in \mathbb{Z} \times \mathbb{Z}$, but it is clear that a is not necessarily equal to b. Hence, θ is not antisymmetric.

(a)(ii) If we replace "odd" by "even" in the definition of θ , we gain transitivity because the sum of two even numbers is an even number.

We gain reflexivity because 0 is an even number.

We still do not gain comparability because, for example, if $\mathbf{a} = (1, 1)$ and $\mathbf{b} = (2, 2)$, then $a_1a_2 - b_1b_2 = -3$ and $b_1b_2 - a_1a_2 = 3$, neither of which is even.

We keep symmetry because $a_1a_2 - b_1b_2$ is even if and only if $b_1b_2 - a_1a_2$ is even.

We still do not gain asymmetry because the new θ is still symmetric.

We still do not gain antisymmetry because from the symmetry property, $a\theta b \iff b\theta a$ for any $a, b \in \mathbb{Z} \times \mathbb{Z}$, but it is clear that a is not necessarily equal to b.

- Transitivity: Assume $a\bar{\theta}b$ and $b\bar{\theta}c$. We need to check if we then have $a\bar{\theta}c$. This does not always hold, take for example a = (0, 2), b = (2, 1), and c = (1, 3). We have $a\bar{\theta}b$ since $a_2 \geq b_2$ and $b\bar{\theta}c$ since $b_1 \geq c_1$. But we don't have $a\bar{\theta}c$ since $a_1 < c_1$ and $a_2 < c_2$. Therefore, $\bar{\theta}$ is not transitive.
- Reflexivity: We need to check if $a\bar{\theta}a$ for any $a \in \mathbb{Z} \times \mathbb{Z}$. By the definition of $\bar{\theta}$, $a\bar{\theta}a \iff a_1 \geq a_1$ or $a_2 \geq a_2$. Since this holds with equality, $\bar{\theta}$ is reflexive.
- Comparability: We need to check if for any $a, b \in \mathbb{Z} \times \mathbb{Z}$ we have $a\theta b$ or $b\theta a$ or both. If $\neg a\bar{\theta}b$ we have $a_1 < b_1$ and $a_2 < b_2$, in which case $b_1 \geq a_1$ and $b_2 \geq a_2$, hence $b\bar{\theta}a$. Therefore, $\bar{\theta}$ is comparable.
- Symmetry: We need to check if for any $a, b \in \mathbb{Z} \times \mathbb{Z}$ we have $a\bar{\theta}b \iff b\bar{\theta}a$. This is not the case, take for instance a = (2,3) and b = (1,2). Then since $a_1 \geq b_1$ (and $a_2 \geq b_2$), we have $a\bar{\theta}b$, but we do not have $b\bar{\theta}a$. So, $\bar{\theta}$ is not symmetric.
- Asymmetry: We need to check if $a\bar{\theta}b \Longrightarrow \neg b\bar{\theta}a$. This is not the case as we can have both $a\bar{\theta}b$ and $b\bar{\theta}a$ for some a and b (but not for all a and b since $\bar{\theta}$ is not symmetric). Take for example a = (3,1) and b = (2,3). So $\bar{\theta}$ is not asymmetric.
- Antisymmetry: Assume $a\bar{\theta}b$ and $b\bar{\theta}a$. We need to check if we then have a = b. This is not the case since for a = (3,1) and b = (2,3), as shown above we have $a\bar{\theta}b$ and $b\bar{\theta}a$ but $a \neq b$. So $\bar{\theta}$ is not antisymmetric.

(b)(ii) By replacing " $a_1 \ge b_1$ or $a_2 \ge b_2$ " by " $a_1 > b_1$ or $a_2 > b_2$ " in $\bar{\theta}$, we still do not have transitivity. Take the above counterexample replacing " \ge " with ">".

We lose reflexivity since now $\neg a\bar{\theta}a$ for all $a \in \mathbb{Z} \times \mathbb{Z}$ since $a_1 > a_1$ and $a_2 > a_2$ do not hold.

We lose comparability because $\bar{\theta}$ is now not reflexive and we cannot compare an element with itself.

We still do not have symmetry. Take the above counterexample replacing " \geq " with ">".

We still do not have asymmetry. Take the above counterexample replacing " \geq " with ">".

We still do not have antisymmetry. Take the above counterexample replacing "\ge "\ge "."

2. (a) Suppose $a\theta^*b$ and $b\theta^*c$. Then there exists a sequence $a_1, a_2, \ldots, a_k \in A$ such that $a = a_1, b = a_k$ and $a_i\theta a_{i+1}$ for all $i = 1, \ldots, k-1$, and a sequence $b_1, b_2, \ldots, b_\ell \in A$ such that $b = b_1, c = b_\ell$ and $b_i\theta b_{i+1}$ for all $i = 1, \ldots, \ell-1$.

Now note that $a_k = b = b_1$. Rename $b_2 = a_{k+1}, b_3 = a_{k+2}, \dots, b_{\ell} = a_{k+\ell-1}$.

Then for the sequence $a_1, a_2, \ldots, a_k, a_{k+1}, \ldots, a_{k+\ell-1} \in A$, we have

- $a_i \theta a_{i+1}$ for all $i = 1, ..., k + \ell 1$
- $a_1 = a$
- $\bullet \ a_{k+\ell-1} = c$

So $a\theta^*c$ by the definition of θ^* , and therefore θ^* is transitive.

- (b) (i) Suppose $a, b, c \in V$ and $a\theta b, b\theta c$, that is, a is a child of b and b is a child of c. Then a cannot be a child of c, since otherwise the underlying graph would contain a cycle which contradicts the fact that (T, r) is a rooted tree. Specific counter-example: $r = c \to b \to a$, then $a\theta b, b\theta c$, but $\neg a\theta c$.
 - (ii) If $a\theta^*b$, then there exists a path from b to a in (T, r). Or, in other words, a is a descendent of b.
- 3. (a) Let

$$a = (1, 2, -1), b = (2, 1, -1), c = (-1, 2, 1), d = (2, -1, 1),$$

 $e = (2, -1, -1), f = (2, -2, 1), g = (-1, 1, 1).$

Boolean matrix:

$$L_{\max}(A) = \{ \boldsymbol{b} \}.$$

$$L_{\min}(A) = \{ \boldsymbol{g} \}.$$

 \boldsymbol{b} is the greatest element and \boldsymbol{g} is the least element.

- (b) (i) Reflexivity: we need to check if $x\theta^P x$ for any $x \in A$. By definition of θ^P , we have $x\theta^P x$ for any $x \in A$ if and only if f(x)Pf(x) for any $x \in A$, which holds by reflexivity of P. Hence, θ^P is reflexive.
 - Transitivity: Assume $x\theta^P y$ and $y\theta^P z$. We need to check if we then have $x\theta^P z$.

By the definition of θ^P ,

$$\boldsymbol{x}\theta^{P}\boldsymbol{y} \Longleftrightarrow f(\boldsymbol{x})Pf(\boldsymbol{y})$$

and

$$\boldsymbol{y}\theta^{P}\boldsymbol{z} \Longleftrightarrow f(\boldsymbol{y})Pf(\boldsymbol{z}).$$

By the transitivity of P, we then have $f(\boldsymbol{x})Pf(\boldsymbol{z})$, which means that $\boldsymbol{x}\theta^P\boldsymbol{z}$. Hence, θ^P is transitive.

• Antisymmetry: Assume $x\theta^P y$ and $y\theta^P x$. We need to check if we then have x = y. By the definition of θ^P

$$\boldsymbol{x}\theta^{P}\boldsymbol{y} \Longleftrightarrow f(\boldsymbol{x})Pf(\boldsymbol{y}) \text{ and } \boldsymbol{y}\theta^{P}\boldsymbol{x} \Longleftrightarrow f(\boldsymbol{y})Pf(\boldsymbol{x}),$$

then by antisymmetry of P, we obtain $f(\boldsymbol{x}) = f(\boldsymbol{y})$. But that does not necessarily mean that $\boldsymbol{x} = \boldsymbol{y}$, take for example $\boldsymbol{x} = (1, 2, -1)$ and $\boldsymbol{y} = (2, 1, -1)$. Hence, θ^P is not antisymmetric.

(ii) We have

$$f(\mathbf{a}) = (3, -1), \ f(\mathbf{b}) = (3, -1), \ f(\mathbf{c}) = (1, 1), \ f(\mathbf{d}) = (1, 1),$$

 $f(\mathbf{e}) = (1, -1), \ f(\mathbf{f}) = (0, 1), \ f(\mathbf{g}) = (0, 1).$

Boolean matrix:

$$\theta_{\text{max}}^P(A) = \{ \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d} \}.$$

$$\theta_{\text{min}}^P(A) = \{ \boldsymbol{e}, \boldsymbol{f}, \boldsymbol{q} \}.$$

There is no greatest element and no least element.

4. (a) The decision table is

	θ_1	θ_2	θ_3	θ_4	$ s_i $	o_i	$(s_i + o_i)/2$	$ar{v}_i$
$\overline{a_1}$	16	1	7	16	1	16	17/2	40/4
a_2	4	1	25	7	1	25	26/2	37/4
a_3	4	4	10	4	4	10	14/2	22/4
a_4	7	10	16	x	$\min(7,x)$	$\max(16, x)$	$(\min(7, x) + \max(16, x))/2$	(33+x)/4

The regret matrix is

- (i) Wald's maximin criterion: the decision maker chooses a_3 if x < 4, a_4 if x > 4, and is indifferent between a_3 and a_4 if x = 4.
- (ii) **Hurwicz's** α -criterion: the decision maker chooses a_2 if x < 19, a_4 if x > 19, and is indifferent between a_2 and a_4 if x = 19.

Indeed, there are two critical values of x: x = 7 and x = 16. If $x \le 7$, then $\min(7, x) + \max(16, x) = x + 16 \le 23 < 26$; if $7 < x \le 16$, then $\min(7, x) + \max(16, x) = 23 < 26$; and if x > 16, then $\min(7, x) + \max(16, x) = 7 + x > 23$ and $7 + x > 26 \iff x > 19$.

- (iii) **Laplace's criterion**: the decision maker chooses a_1 if x < 7, a_4 if x > 7, and is indifferent between a_1 and a_4 if x = 7.
- (iv) Savage's minimax regret criterion: the decision maker chooses a_2 if x < 4, a_4 if x > 4, and is indifferent between a_2 and a_4 if x = 4. Indeed, there are two critical values of x: x = 4 and x = 7. We can check that if $x \ge 7$ then the optimal action is a_4 . If x < 7, then the decision maker chooses a_2 if 16 x > 12, that is, if x < 4, and a_4 if 16 x < 12, that is, if x > 4. He is indifferent between a_2 and a_4 if x = 4.
- (b) All criteria lead to the same choice of action a_4 if x > 19. If x = 19, then Wald's, Laplace's and Savage's criteria all lead to choose a_4 , while Hurwicz's α -criterion leads to indifference between actions a_4 and a_2 .
- (c) Choose x = 19. The decision table is

	θ_1	$ heta_2$	θ_3	$ heta_4$	$s_i + o_i)/2$
a_1	16	1	7	16	17/2
a_2	4	1	25	7	26/2
a_3	4	4	10	4	14/2
a_4	7	10	16	19	26/2

Hurwicz's α -criterion leads to $a_2 \sim a_4 \succ a_1 \succ a_3$.

If we add c = 10 to the third column of the decision matrix we get

	θ_1	θ_2	θ_3	θ_4	$s_i + o_i)/2$
a_1	16	1	17	16	18/2
a_2	4	1	35	7	36/2
a_3	4	4	20	4	24/2
a_4	7	10	26	19	31/2

Hurwicz's α -criterion leads to $a_2 > a_4 > a_3 > a_1$, which is a different preference order. Therefore, Hurwicz's α -criterion does not satisfy the axiom of independence of addition of a constant to a column.