

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS INGENIERÍA EN CIENCIAS DE LA COMPUTACIÓN

PERÍODO ACADÉMICO: 2025-A

ASIGNATURA: ICCD412 Métodos Numéricos GRUPO: GR2

TIPO DE INSTRUMENTO: Tarea7

FECHA DE ENTREGA LÍMITE: 11/05/2025

ALUMNO: Sebastián Chicaiza

TEMA

Método de Newton, Secante y Posición Falsa

OBJETIVOS

- Aplicar los métodos de posición falsa, secante y Newton-Rahson para encontrar valores aproximados a la raíz de una función no lineal.
- Comparar la presición y convergencia de los métodos aplicados.

MARCO TEÓRICO

La formula de Newton-Raphson para localizar raíces es la más ampliamente utilizada. Si el valor inicial para la raíz es x_i , entonces se puede trazar una tangente desde el punto $[x_i, f(x)]$ de la curva. Por lo común, el punto donde esta tangente cruza el eje x representa una aproximación mejorada de la raíz [1].

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

DESARROLLO

Conjunto de ejercicios

1. Sea $f(x) = x^2 - 6$ y $p_0 = 1$. Use el método de Newton para encontrar p_2 .

$$f(x) = x^{2} - 6 (y) f'(x) = 2x$$

$$p_{1} = p_{0} - \frac{f(p_{0})}{f'(p_{0})}$$

$$= 1 - \frac{1^{2} - 6}{2(1)}$$

$$= \frac{7}{2} = 3.5$$

$$p_{2} = p_{1} - \frac{f(p_{1})}{f'(p_{1})}$$

$$= 3.5 - \frac{3.5^{2} - 6}{2(3.5)}$$

$$\approx 2.607143$$

2. Sea $f(x) = -x^3 - \cos x$ y $p_0 = -1$. Use el método de Newton para encontrar p_2 . ¿Se podría usar $p_0 = 0$?

$$p_{1} = p_{0} - \frac{f(p_{0})}{f'(p_{0})}$$

$$= -1 - \frac{-(-1)^{3} - \cos(-1)}{-3(-1)^{2} + \sin(-1)}$$

$$\approx -0.88$$

$$p_{2} = p_{1} - \frac{f(p_{1})}{f'(p_{1})}$$

$$= (-0.88) - \frac{-(-0.88)^{3} - \cos(-0.88)}{-3(-0.88)^{2} + \sin(-0.88)}$$

$$\approx -0.8657$$

No es posible usar $p_0 = 0$ porque la función derivada $f(x) = -3x^2 + \sin(x)$ sería igual a 0 y daría una indeterminación.

3. Use el método de Newton para encontrar soluciones precisas dentro de 10^{-4} para los siguientes problemas.

a)
$$x^3 - 2x^2 - 5 = 0$$
, [1,4]

$$f(1) = 1^3 - 2(1)^2 - 5 = -6$$

$$f(4) = 4^3 - 2(4)^2 - 5 = 27$$

Como existe un cambio de signo entre las imágenes del intervalo, sacamos la primera aproximación con el método de la bisección.

$$p_0 = \frac{1+4}{2} = 2.5$$

p_0	p_1	$f(p_0)$	$f(p_1)$	TOL
2.5	2.714286	-1.875000	8.750000	0.214286
2.714286	2.690952	0.262394	11.244902	0.023334
2.690952	2.690648	0.003337	10.959860	0.000304
2.690648	2.690647	0.000006	10.956168	$1 \cdot 10^{-6}$

b)
$$x^3 + 3x^2 - 1 = 0$$
, $[-3, -2]$

$$f(-3) = (-3)^3 + 3(-3)^2 - 1 = -1$$

$$f(-2) = (-2)^3 + 3(-2)^2 - 1 = 3$$

Como existe un cambio de signo entre las imágenes del intervalo, sacamos la primera aproximación con el método de la bisección.

$$p_0 = \frac{-2 + (-3)}{2} = -2.5$$

p_0	p_1	$f(p_0)$	$f(p_1)$	TOL
-2.5	-3.066667	2.125000	3.750000	0.566667
-3.066667	-2.900876	-1.626966	9.813337	0.165791
-2.900876	-2.879720	-0.165863	7.839989	0.021156
-2.879720	-2.879385	-0.002543	7.600042	0.000335
-2.879385	-2.879385	0.000002	7.596264	0

c)
$$x - \cos x = 0$$
, $[0, \pi/2]$

$$f(0) = 0 - \cos(0) = -1$$
$$f(\frac{\pi}{2}) = \frac{\pi}{2} - \cos(\frac{\pi}{2}) \approx 1,57$$

Como existe un cambio de signo entre las imágenes del intervalo, sacamos la primera aproximación con el método de la bisección.

p_0	p_1	$f(p_0)$	$f(p_1)$	TOL
$\pi/4$	0.739536	0.078291	1.707107	0.045862
0.739536	0.739085	0.000755	1.673945	0.000451
0.739085	0.739085	0.0	1.673612	0

$$p_0 = \frac{0 + \frac{\pi}{2}}{2} = \frac{\pi}{4}$$

d)
$$x - 0.8 - 0.2 \sin x = 0$$
, $[0, \pi/2]$
$$f(0) = 0 - 0.8 - 0.2 \sin (0) = -0.8$$

$$f(\frac{\pi}{2}) = \frac{\pi}{2} - 0.8 - 0.2 \sin (\frac{\pi}{2}) = 0.57$$

Como existe un cambio de signo entre las imágenes del intervalo, sacamos la primera aproximación con el método de la bisección.

$$p_0 = \frac{0 + \frac{\pi}{2}}{2} = \frac{\pi}{4}$$

p_0	p_1	$f(p_0)$	$f(p_1)$	TOL
$\pi/4$	0.967120	-0.156023	0.858579	0.181722
0.967120	0.964335	0.002469	0.886465	0.002785
0.964335	0.964334	0.000001	0.886007	1.10^{-6}

4. Use los tres métodos en esta sección para encontrar las soluciones dentro de 10^{-5} para los siguientes problemas.

a)
$$3x - e^x = 0$$
 para $1 \le x \le 2$

$$p_0 = \frac{1+2}{2} = 1.5$$

Usando el método de Newton-Raphson:

p_0	p_1	$f(p_0)$	$f(p_1)$	TOL
1.5	1.512358	0.018311	-1.481689	0.012358
1.512358	1.512135	-0.000343	-1.537417	0.000223
1.512135	1.512134	-0.000000	-1.536406	1.10^{-6}

Usando el método de la secante:

$$p_0 = 1$$
 y $p_1 = 2$

p_0	p_1	p_2	$f(p_0)$	$f(p_1)$	$f(p_2)$	TOL
1.0	2.0	1.168615	0.281718	-1.389056	0.288312	0.831385
2.0	1.168615	1.311516	-1.389056	0.288312	0.222751	0.142901
1.168615	1.311516	1.797039	0.288312	0.222751	-0.640644	0.485523
1.311516	1.797039	1.436778	0.222751	-0.640644	0.103215	0.360261
1.797039	1.436778	1.486766	-0.640644	0.103215	0.037529	0.049988
1.436778	1.486766	1.515326	0.103215	0.037529	-0.004926	0.02856
1.486766	1.515326	1.512012	0.037529	-0.004926	0.000188	0.003314
1.515326	1.512012	1.512134	-0.004926	0.000188	1.10^{-6}	0.000122
1.512012	1.512134	1.512135	0.000188	1.10^{-6}	-1.10^{-6}	1.10^{-6}

Usando el método de la posición falsa:

$$p_0 = 1$$
 y $p_1 = 2$

p_0	p_1	p_2	$f(p_0)$	$f(p_1)$	TOL
1.0	2.0	1.168615	0.281718	-1.389056	0.831385
2.0	1.168615	1.311516	-1.389056	0.288312	0.142901
2.0	1.311516	1.406664	-1.389056	0.222751	0.095148
2.0	1.406664	1.46017	-1.389056	0.137678	0.053506
2.0	1.46017	1.48741	-1.389056	0.073818	0.02724
2.0	1.48741	1.500574	-1.389056	0.036612	0.013164
2.0	1.500574	1.506774	-1.389056	0.01746	0.0062
2.0	1.506774	1.509658	-1.389056	0.008171	0.002884
2.0	1.509658	1.510993	-1.389056	0.003791	0.001335
2.0	1.510993	1.511609	-1.389056	0.001751	0.000616
2.0	1.511609	1.511893	-1.389056	0.000807	0.000284
2.0	1.511893	1.512023	-1.389056	0.000371	0.00013
2.0	1.512023	1.512083	-1.389056	0.000171	6.10^{-5}
2.0	1.512083	1.512111	-1.389056	$7.9 \cdot 10^{-5}$	$2.8 \cdot 10^{-5}$
2.0	1.512111	1.512124	-1.389056	$3.6 \cdot 10^{-5}$	$1.3 \cdot 10^{-5}$
2.0	1.512124	1.51213	-1.389056	$1.6 \cdot 10^{-5}$	6.10^{-6}

b) $2x + 3\cos x - e^x = 0$ para $1 \le x \le 2$

$$p_0 = \frac{1+2}{2} = 1.5$$

Usando el método de Newton-Raphson:

p_0	p_1	$f(p_0)$	$f(p_1)$	TOL
1.5	1.268097	-1.269477	-5.474174	0.231903
1.268097	1.240120	-0.123595	-4.417689	0.027977
1.240120	1.239715	-0.001740	-4.293497	0.000405
1.239715	1.239715	-0.000001	-4.291703	0

Usando el método de la secante:

$$p_0 = 1 \quad \text{y} \quad p_1 = 2$$

p_0	p_1	p_2	$f(p_0)$	$f(p_1)$	$f(p_2)$	TOL
1.0	2.0	1.162925	0.902625	-4.637497	0.316541	0.837075
2.0	1.162925	1.21641	-4.637497	0.316541	0.098815	0.053485
1.162925	1.21641	1.240684	0.316541	0.098815	-0.004162	0.024274
1.21641	1.240684	1.239703	0.098815	-0.004162	5.10^{-5}	0.000981
1.240684	1.239703	1.239715	-0.004162	5.10^{-5}	-1.10^{-6}	$1.2 \cdot 10^{-5}$
1.239703	1.239715	1.239715	5.10^{-5}	-1.10^{-6}	-1.10^{-6}	0.0

Usando el método de la posición falsa:

$$p_0 = 1 \quad \text{y} \quad p_1 = 2$$

p_0	p_1	p_2	$f(p_0)$	$f(p_1)$	TOL
1.0	2.0	1.162925	0.902625	-4.637497	0.837075
2.0	1.162925	1.21641	-4.637497	0.316541	0.053485
2.0	1.21641	1.232758	-4.637497	0.098815	0.016348
2.0	1.232758	1.237648	-4.637497	0.029749	0.00489
2.0	1.237648	1.239102	-4.637497	0.00886	0.001454
2.0	1.239102	1.239533	-4.637497	0.002629	0.000431
2.0	1.239533	1.239661	-4.637497	0.00078	0.000128
2.0	1.239661	1.239699	-4.637497	0.00023	$3.8 \cdot 10^{-5}$
2.0	1.239699	1.23971	-4.637497	$6.7 \cdot 10^{-5}$	$1.1 \cdot 10^{-5}$
2.0	1.23971	1.239713	-4.637497	$2 \cdot 10^{-5}$	3.10^{-6}

5. El polinomio de cuarto grado

$$f(x) = 230x^4 + 18x^3 + 9x^2 - 221x - 9$$

tiene dos ceros reales, uno en [-1,0] y el otro en [0,1]. Intente aproximar estos ceros dentro de 10^{-6} con:

a) El método de posición falsa

■ [-1,0]

p_0	p_1	p_2	$f(p_0)$	$f(p_1)$	TOL
-1.0	0.0	-0.020362	433.0	-9.0	0.020362
-1.0	-0.020362	-0.03043	433.0	-4.496379	0.010068
-1.0	-0.03043	-0.03548	433.0	-2.266946	0.00505
-1.0	-0.03548	-0.038031	433.0	-1.14803	0.002551
-1.0	-0.038031	-0.039324	433.0	-0.582641	0.001293
-1.0	-0.039324	-0.03998	433.0	-0.296023	0.000656
-1.0	-0.03998	-0.040314	433.0	-0.150597	0.000334
-1.0	-0.040314	-0.040484	433.0	-0.076551	0.00017
-1.0	-0.040484	-0.04057	433.0	-0.038862	$8.6 \cdot 10^{-5}$
-1.0	-0.04057	-0.040614	433.0	-0.019796	$4.4 \cdot 10^{-5}$
-1.0	-0.040614	-0.040636	433.0	-0.010041	$2.2 \cdot 10^{-5}$
-1.0	-0.040636	-0.040647	433.0	-0.005163	$1.1 \cdot 10^{-5}$
-1.0	-0.040647	-0.040653	433.0	-0.002724	6.10^{-6}

• [0,1]

p_0	p_1	p_2	$f(p_0)$	$f(p_1)$	TOL
0.0	1.0	0.25	-9.0	27.0	0.75
1.0	0.25	0.773763	27.0	-62.507812	0.523763
1.0	0.773763	0.944885	27.0	-83.830461	0.171122
1.0	0.944885	0.961111	27.0	-11.265235	0.016226
1.0	0.961111	0.962306	27.0	-0.855733	0.001195
1.0	0.962306	0.962392	27.0	-0.061577	8.6e-05
1.0	0.962392	0.962398	27.0	-0.004277	6e-06

b) El método de la secante

$$-[-1,0]$$

p_0	p_1	p_2	$f(p_0)$	$f(p_1)$	$f(p_2)$	TOL
-1.0	0.0	-0.020362	433.0	-9.0	-4.496379	0.020362
0.0	-0.020362	-0.040691	-9.0	-4.496379	0.007031	0.020329
-0.020362	-0.040691	-0.040659	-4.496379	0.007031	$-6.4 \cdot 10^{-5}$	$3.2 \cdot 10^{-5}$
-0.040691	-0.040659	-0.040659	0.007031	$-6.4 \cdot 10^{-5}$	$-6.4 \cdot 10^{-5}$	0.0

[0,1]

						1
p_0	p_1	p_2	$f(p_0)$	$f(p_1)$	$f(p_2)$	TOL
0.0	1.0	0.25	-9.0	27.0	-62.507812	0.75
1.0	0.25	0.773763	27.0	-62.507812	-83.830461	0.523763
0.25	0.773763	-1.285423	-62.507812	-83.830461	879.649987	2.059186
0.773763	-1.285423	0.594597	-83.830461	879.649987	-104.691386	1.88002
-1.285423	0.594597	0.394644	879.649987	-104.691386	-88.129372	0.199953
0.594597	0.394644	-0.669341	-104.691386	-88.129372	183.724243	1.063985
0.394644	-0.669341	0.049722	-88.129372	183.724243	-19.962693	0.719063
-0.669341	0.049722	-0.020751	183.724243	-19.962693	-4.410272	0.070473
0.049722	-0.020751	-0.040735	-19.962693	-4.410272	0.016786	0.019984
-0.020751	-0.040735	-0.040659	-4.410272	0.016786	-6.4e-05	7.6e-05
-0.040735	-0.040659	-0.040659	0.016786	-6.4e-05	-6.4e-05	0.0

Observación: si es que se utiliza el método de la secante en el intervalo [0,1] tomando $p_0=0$ y $p_1=1$, convergue hacia una raíz fuera de este intervalo. Pero si es que tomamos un p_0 mas cercano a 1 converge hacia una raíz dentro del intervalo.

Tomando $p_0 = 0.5$:

p_0	p_1	p_2	$f(p_0)$	$f(p_1)$	$f(p_2)$	TOL
0.5	1.0	0.894221	-100.625	27.0	-39.491002	0.105779
1.0	0.894221	0.957046	27.0	-39.491002	-3.528688	0.062825
0.894221	0.957046	0.963211	-39.491002	-3.528688	0.542398	0.006165
0.957046	0.963211	0.96239	-3.528688	0.542398	-0.00561	0.000821
0.963211	0.96239	0.962398	0.542398	-0.00561	-0.000279	8e-06

c) El método de Newton

-[-1,0]

p_0	p_1	$f(p_0)$	$f(p_1)$	TOL
-0.5	-0.150452	115.875000	-331.500000	0.349548
-0.150452	-0.041817	24.510155	-225.618958	0.108635
-0.041817	-0.040659	0.256687	-221.725586	0.001158
-0.040659	-0.040659	-0.000061	-221.704346	0

- [0, 1]

p_0	p_1	$f(p_0)$	$f(p_1)$	TOL
0.5	-0.705090	-100.625000	-83.500000	1.205090
-0.705090	-0.323791	201.836426	-529.339355	0.381299
-0.323791	-0.064603	65.418396	-252.397583	0.259188
-0.064603	-0.040686	5.313965	-222.185547	0.023917
-0.040686	-0.040659	0.005924	-221.705078	2.7e-5
-0.040659	-0.040659	-0.000061	-221.704346	0

Observación: con el punto medio entre 0 y 1 que es 0.5 converge en una raíz fuera del intervalo, pero si tomamos el punto 1 como raiz inicial converge en una raíz dentro del intervalo.

Tomando $p_0 = 1$

p_0	p_1	$f(p_0)$	$f(p_1)$	TOL
1.0	0.964981	27	771	0.035019
0.964981	0.962412	1.729980	673.346436	0.002569
0.962412	0.962398	0.009033	666.447876	$1.4 \cdot 10^{-5}$
0.962398	0.962398	-0.000275	666.410522	0

Use los extremos de cada intervalo como aproximaciones iniciales en las partes a) y b) y los puntos medios como la aproximación inicial en la parte c).

- 6. La función $f(x) = \tan \pi x 6$ tiene cero en $\left(\frac{1}{\pi}\right) \arctan(6) \approx 0,447431543$. Sea $p_0 = 0$ y $p_1 = 0,48$ y use 10 iteraciones en cada uno de los siguientes métodos para aproximar esta raíz. ¿Cuál método es más eficaz y por qué?
 - a) Método de bisección

a	b	p	f(a)	f(b)	f(p)	TOL
0.0	0.48	0.24	-6.0	9.894545	-5.060937	0.24
0.24	0.48	0.36	-5.060937	9.894545	-3.874892	0.12
0.36	0.48	0.42	-3.874892	9.894545	-2.105257	0.06
0.42	0.48	0.45	-2.105257	9.894545	0.313752	0.03
0.42	0.45	0.435	-2.105257	0.313752	-1.171183	0.015
0.435	0.45	0.4425	-1.171183	0.313752	-0.524521	0.0075
0.4425	0.45	0.44625	-0.524521	0.313752	-0.13435	0.00375
0.44625	0.45	0.448125	-0.13435	0.313752	0.081674	0.001875
0.44625	0.448125	0.447187	-0.13435	0.081674	-0.028295	0.000938
0.447187	0.448125	0.447656	-0.028295	0.081674	0.026201	0.000469

b) Método de posición falsa

p_0	p_1	p_2	$f(p_0)$	$f(p_1)$	TOL
0.0	0.48	0.181194	-6.0	9.894545	0.298806
0.48	0.181194	0.286187	9.894545	-5.360106	0.104993
0.48	0.286187	0.348981	9.894545	-4.742212	0.062794
0.48	0.348981	0.387052	9.894545	-4.052825	0.038071
0.48	0.387052	0.410304	9.894545	-3.301085	0.023252
0.48	0.410304	0.424566	9.894545	-2.545667	0.014262
0.48	0.424566	0.433336	9.894545	-1.859578	0.00877
0.48	0.433336	0.438737	9.894545	-1.295176	0.005401
0.48	0.438737	0.442067	9.894545	-0.86852	0.00333
0.48	0.442067	0.444121	9.894545	-0.566353	0.002054

c) Método de la secante

p_0	p_1	p_2	$f(p_0)$	$f(p_1)$	$f(p_2)$	TOL
0.0	0.48	0.181194	-6.0	9.894545	-5.360106	0.298806
0.48	0.181194	0.286187	9.894545	-5.360106	-4.742212	0.104993
0.181194	0.286187	1.091987	-5.360106	-4.742212	-5.702692	0.8058
0.286187	1.091987	-3.692318	-4.742212	-5.702692	-4.55135	4.784305
1.091987	-3.692318	-22.605071	-5.702692	-4.55135	-3.081364	18.912753
-3.692318	-22.605071	-62.249718	-4.55135	-3.081364	-6.99823	39.644647
-22.605071	-62.249718	8.583024	-3.081364	-6.99823	-9.746611	70.832742
-62.249718	8.583024	-242.611837	-6.99823	-9.746611	-3.271896	251.194861
8.583024	-242.611837	-369.549233	-9.746611	-3.271896	0.413738	126.937396
-242.611837	-369.549233	-355.299629	-3.271896	0.413738	-7.373014	14.249604

El método de la bisección es el mejor en este caso porque tiene garantizada una convergencia a diferencia de los otros dos métodos. Además es el método que da la aproximación mas cercana a la raíz.

- 7. La función descrita por $f(x) = \ln(x^2 + 1) e^{0.4x} \cos \pi x$ tiene un número infinito de ceros.
 - $a)\,$ Determine, dentro de $10^{-6},$ el único cero negativo.

$$a = -1$$
 y $b = 0$

a	b	p	f(a)	f(b)	f(p)	TOL
-1.0	0.0	-0.5	1.3634672	-1.0	0.2231436	0.5
-0.5	0.0	-0.25	0.2231436	-1.0	-0.5791921	0.25
-0.5	-0.25	-0.375	0.2231436	-0.5791921	-0.1978023	0.125
-0.5	-0.375	-0.4375	0.2231436	-0.1978023	0.0113644	0.0625
-0.4375	-0.375	-0.40625	0.0113644	-0.1978023	-0.093992	0.03125
-0.4375	-0.40625	-0.421875	0.0113644	-0.093992	-0.0414504	0.015625
-0.4375	-0.421875	-0.4296875	0.0113644	-0.0414504	-0.0150701	0.0078125
-0.4375	-0.4296875	-0.4335938	0.0113644	-0.0150701	-0.0018586	0.0039062
-0.4375	-0.4335938	-0.4355469	0.0113644	-0.0018586	0.0047515	0.0019531
-0.4355469	-0.4335938	-0.4345703	0.0047515	-0.0018586	0.0014459	0.0009766
-0.4345703	-0.4335938	-0.434082	0.0014459	-0.0018586	-0.0002066	0.0004883
-0.4345703	-0.434082	-0.4343262	0.0014459	-0.0002066	0.0006198	0.0002441
-0.4343262	-0.434082	-0.4342041	0.0006198	-0.0002066	0.0002066	0.0001221
-0.4342041	-0.434082	-0.434143	0.0002066	-0.0002066	$-2 \cdot 10^{-7}$	$6.1 \cdot 10^{-5}$
-0.4342041	-0.434143	-0.4341736	0.0002066	-2.10^{-7}	0.0001034	$3.05 \cdot 10^{-5}$
-0.4341736	-0.434143	-0.4341583	0.0001034	-2.10^{-7}	$5.16 \cdot 10^{-5}$	$1.53 \cdot 10^{-5}$
-0.4341583	-0.434143	-0.4341506	$5.16 \cdot 10^{-5}$	-2.10^{-7}	$2.56 \cdot 10^{-5}$	$7.6 \cdot 10^{-6}$
-0.4341506	-0.434143	-0.4341468	$2.56 \cdot 10^{-5}$	-2.10^{-7}	$1.27 \cdot 10^{-5}$	$3.8 \cdot 10^{-6}$
-0.4341468	-0.434143	-0.4341449	$1.27 \cdot 10^{-5}$	-2.10^{-7}	$6.3 \cdot 10^{-6}$	$1.9 \cdot 10^{-6}$
-0.4341449	-0.434143	-0.434144	$6.3 \cdot 10^{-6}$	-2.10^{-7}	$3.2 \cdot 10^{-6}$	9.10^{-7}

- $b)\,$ Determine, dentro de $10^{-6},$ los cuatro ceros positivos más pequeños.
 - \bullet primer cero positivo $[0;0,\!5]$

a	b	p	f(a)	f(b)	f(p)	TOL
0.0	0.5	0.25	-1.0	0.2231436	-0.7208492	0.25
0.25	0.5	0.375	-0.7208492	0.2231436	-0.3130384	0.125
0.375	0.5	0.4375	-0.3130384	0.2231436	-0.0572663	0.0625
0.4375	0.5	0.46875	-0.0572663	0.2231436	0.0803955	0.03125
0.4375	0.46875	0.453125	-0.0572663	0.0803955	0.010859	0.015625
0.4375	0.453125	0.4453125	-0.0572663	0.010859	-0.0233886	0.0078125
0.4453125	0.453125	0.4492188	-0.0233886	0.010859	-0.0063097	0.0039062
0.4492188	0.453125	0.4511719	-0.0063097	0.010859	0.0022635	0.0019531
0.4492188	0.4511719	0.4501953	-0.0063097	0.0022635	-0.0020262	0.0009766
0.4501953	0.4511719	0.4506836	-0.0020262	0.0022635	0.0001179	0.0004883
0.4501953	0.4506836	0.4504395	-0.0020262	0.0001179	-0.0009541	0.0002441
0.4504395	0.4506836	0.4505615	-0.0009541	0.0001179	-0.0004183	0.0001221
0.4505615	0.4506836	0.4506226	-0.0004183	0.0001179	-0.00015	$6.11 \cdot 10^{-5}$
0.4506226	0.4506836	0.4506531	-0.00015	0.0001179	$-1.6 \cdot 10^{-5}$	$3.05 \cdot 10^{-5}$
0.4506531	0.4506836	0.4506683	$-1.6 \cdot 10^{-5}$	0.0001179	$\cdot 10^{-7} \cdot 10^{-5}$	$1.53 \cdot 10^{-5}$
0.4506531	0.4506683	0.4506607	$-1.6 \cdot 10^{-5}$	$\cdot 10^{-7} \cdot 10^{-5}$	$1.74 \cdot 10^{-5}$	7.6e-06
0.4506531	0.4506607	0.4506569	$-1.6 \cdot 10^{-5}$	$1.74 \cdot 10^{-5}$	7.10^{-7}	$3.8 \cdot 10^{-6}$
0.4506531	0.4506569	0.450655	$-1.6 \cdot 10^{-5}$	7.10^{-7}	$-7.7 \cdot 10^{-6}$	$1.9 \cdot 10^{-6}$
0.450655	0.4506569	0.450656	$-7.7 \cdot 10^{-6}$	7.10^{-7}	$-3.3 \cdot 10^{-6}$	1.10^{-6}

ullet segundo cero positivo [1,5;2]

a	b	p	f(a)	f(b)	f(p)	TOL
1.5	2.0	1.75	1.178655	-0.616103	-0.0221396	0.25
1.5	1.75	1.625	1.178655	-0.0221396	0.5591096	0.125
1.625	1.75	1.6875	0.5591096	-0.0221396	0.2563059	0.0625
1.6875	1.75	1.71875	0.2563059	-0.0221396	0.1131117	0.03125
1.71875	1.75	1.734375	0.1131117	-0.0221396	0.0443787	0.015625
1.734375	1.75	1.7421875	0.0443787	-0.0221396	0.0108285	0.0078125
1.7421875	1.75	1.7460938	0.0108285	-0.0221396	-0.0057303	0.0039062
1.7421875	1.7460938	1.7441406	0.0108285	-0.0057303	0.0025309	0.0019531
1.7441406	1.7460938	1.7451172	0.0025309	-0.0057303	-0.0016043	0.0009766
1.7441406	1.7451172	1.7446289	0.0025309	-0.0016043	0.0004621	0.0004883
1.7446289	1.7451172	1.744873	0.0004621	-0.0016043	-0.0005712	0.0002441
1.7446289	1.744873	1.7447509	0.0004621	-0.0005712	$-5.44 \cdot 10^{-5}$	0.000122
1.7446289	1.7447509	1.7446899	0.0004621	$-5.44 \cdot 10^{-5}$	0.0002039	$6.1 \cdot 10^{-5}$
1.7446899	1.7447509	1.7447204	0.0002039	$-5.44 \cdot 10^{-5}$	$7.47 \cdot 10^{-5}$	$3.05 \cdot 10^{-5}$
1.7447204	1.7447509	1.7447356	$7.47 \cdot 10^{-5}$	$-5.44 \cdot 10^{-5}$	$1.04 \cdot 10^{-5}$	$1.53 \cdot 10^{-5}$
1.7447356	1.7447509	1.7447432	$1.04 \cdot 10^{-5}$	$-5.44 \cdot 10^{-5}$	$-2.18 \cdot 10^{-5}$	$7.7 \cdot 10^{-6}$
1.7447356	1.7447432	1.7447394	$1.04 \cdot 10^{-5}$	$-2.18 \cdot 10^{-5}$	$-5.7 \cdot 10^{-6}$	$3.8 \cdot 10^{-6}$
1.7447356	1.7447394	1.7447375	$1.04 \cdot 10^{-5}$	$-5.7 \cdot 10^{-6}$	$2.3 \cdot 10^{-6}$	$1.9 \cdot 10^{-6}$
1.7447375	1.7447394	1.7447385	$2.3 \cdot 10^{-6}$	$-5.7 \cdot 10^{-6}$	$-1.9 \cdot 10^{-6}$	9.10^{-7}

• tercer cero positivo [2; 2,5]

a	b	p	f(a)	f(b)	f(p)	TOL
2.0	2.5	2.25	-0.616103	1.9810015	0.0629202	0.25
2.0	2.25	2.125	-0.616103	0.0629202	-0.4539669	0.125
2.125	2.25	2.1875	-0.4539669	0.0629202	-0.2392965	0.0625
2.1875	2.25	2.21875	-0.2392965	0.0629202	-0.0988626	0.03125
2.21875	2.25	2.234375	-0.0988626	0.0629202	-0.0205936	0.015625
2.234375	2.25	2.2421875	-0.0205936	0.0629202	0.0205142	0.0078125
2.234375	2.2421875	2.2382812	-0.0205936	0.0205142	-0.0002031	0.0039062
2.2382812	2.2421875	2.2402343	-0.0002031	0.0205142	0.0101146	0.0019532
2.2382812	2.2402343	2.2392578	-0.0002031	0.0101146	0.0049458	0.0009766
2.2382812	2.2392578	2.2387695	-0.0002031	0.0049458	0.0023688	0.0004883
2.2382812	2.2387695	2.2385253	-0.0002031	0.0023688	0.001082	0.0002442
2.2382812	2.2385253	2.2384033	-0.0002031	0.001082	0.0004395	0.0001221
2.2382812	2.2384033	2.2383422	-0.0002031	0.0004395	0.0001179	$6.11 \cdot 10^{-5}$
2.2382812	2.2383422	2.2383117	-0.0002031	0.0001179	$-4.26 \cdot 10^{-5}$	$3.05 \cdot 10^{-5}$
2.2383117	2.2383422	2.238327	$-4.26 \cdot 10^{-5}$	0.0001179	$3.79 \cdot 10^{-5}$	$1.52 \cdot 10^{-5}$
2.2383117	2.238327	2.2383194	$-4.26 \cdot 10^{-5}$	$3.79 \cdot 10^{-5}$	$-2.1 \cdot 10^{-6}$	$7.6 \cdot 10^{-6}$
2.2383194	2.238327	2.2383232	$-2.1 \cdot 10^{-6}$	$3.79 \cdot 10^{-5}$	$1.79 \cdot 10^{-5}$	$3.8 \cdot 10^{-6}$
2.2383194	2.2383232	2.2383213	$-2.1 \cdot 10^{-6}$	$1.79 \cdot 10^{-5}$	$7.9 \cdot 10^{-6}$	$1.9 \cdot 10^{-6}$
2.2383194	2.2383213	2.2383203	$-2.1 \cdot 10^{-6}$	$7.9 \cdot 10^{-6}$	$2.7 \cdot 10^{-6}$	9.10^{-7}

 \bullet cuarto cero positivo $[3,\!5;4]$

a	b	p	f(a)	f(b)	f(p)	TOL
3.5	4.0	3.75	2.5839976	-2.1198191	-0.4568245	0.25
3.5	3.75	3.625	2.5839976	-0.4568245	1.0176286	0.125
3.625	3.75	3.6875	1.0176286	-0.4568245	0.2524436	0.0625
3.6875	3.75	3.71875	0.2524436	-0.4568245	-0.1112437	0.03125
3.6875	3.71875	3.703125	0.2524436	-0.1112437	0.0685928	0.015625
3.703125	3.71875	3.7109375	0.0685928	-0.1112437	-0.0218594	0.0078125
3.703125	3.7109375	3.7070312	0.0685928	-0.0218594	0.0232378	0.0039062
3.7070312	3.7109375	3.7089843	0.0232378	-0.0218594	0.0006569	0.0019532
3.7089843	3.7109375	3.7099609	0.0006569	-0.0218594	-0.0106095	0.0009766
3.7089843	3.7099609	3.7094726	0.0006569	-0.0106095	-0.0049784	0.0004883
3.7089843	3.7094726	3.7092284	0.0006569	-0.0049784	-0.0021607	0.0002441
3.7089843	3.7092284	3.7091063	0.0006569	-0.0021607	-0.0007515	0.0001221
3.7089843	3.7091063	3.7090453	0.0006569	-0.0007515	$-4.73 \cdot 10^{-5}$	$6.1 \cdot 10^{-5}$
3.7089843	3.7090453	3.7090148	0.0006569	$-4.73 \cdot 10^{-5}$	0.0003048	$3.05 \cdot 10^{-5}$
3.7090148	3.7090453	3.70903	0.0003048	$-4.73 \cdot 10^{-5}$	0.0001293	$1.53 \cdot 10^{-5}$
3.70903	3.7090453	3.7090376	0.0001293	$-4.73 \cdot 10^{-5}$	$4.16 \cdot 10^{-5}$	$7.7 \cdot 10^{-6}$
3.7090376	3.7090453	3.7090414	$4.16 \cdot 10^{-5}$	$-4.73 \cdot 10^{-5}$	$-2.3 \cdot 10^{-6}$	$3.9 \cdot 10^{-6}$
3.7090376	3.7090414	3.7090395	$4.16 \cdot 10^{-5}$	$-2.3 \cdot 10^{-6}$	$1.96 \cdot 10^{-5}$	$1.9 \cdot 10^{-6}$
3.7090395	3.7090414	3.7090404	$1.96 \cdot 10^{-5}$	$-2.3 \cdot 10^{-6}$	$9.3 \cdot 10^{-6}$	9.10^{-7}

c) Determine una aproximación inicial razonable para encontrar el enésimo cero positivo más pequeño de f.

La función es continua para todo x.

evaluando en 0:

$$f(0) = \ln(0^2 + 1) - e^{0.4(0)} \cos \pi(0) = -1$$

evaluando en 1:

$$f(1) = \ln(1^2 + 1) - e^{0.4(1)} \cos \pi(1) = 1,7928$$

Al ser la función contrua para todo x y existiendo un cambio de signo entre f(0) y f(1) entonces asumimos que debe haber al menos una raíz en el intervalo [0;1].

aproximamos una raíz:

$$p_0 = \frac{0+1}{2} = 0.5$$

evaluamos p_0 :

$$f(p_0) = f(0.5) = \ln((0.5)^2 + 1) - e^{0.4(0.5)} \cos \pi(0.5) = 0.0969$$

[Sugerencia: Dibuje una gráfica aproximada de f.]

 $d)\,$ Use la parte c
) para determinar, dentro de $10^{-6},$ el vigesimoquinto cero positivo más pequeño de
 f.

$$[a, b] = [14, 15]$$

a	b	p	f(a)	f(b)	f(p)	ТО
14.0	15.0	14.5	-265.1432037	408.8493285	5.3530423	0.5
14.0	14.5	14.25	-265.1432037	5.3530423	-206.0127396	0.2
14.25	14.5	14.375	-206.0127396	5.3530423	-114.8997515	0.12
14.375	14.5	14.4375	-114.8997515	5.3530423	-57.5028175	0.06
14.4375	14.5	14.46875	-57.5028175	5.3530423	-26.6241016	0.031
14.46875	14.5	14.484375	-26.6241016	5.3530423	-10.755157	0.015
14.484375	14.5	14.4921875	-10.755157	5.3530423	-2.7286959	0.0078
14.4921875	14.5	14.4960938	-2.7286959	5.3530423	1.3056023	0.0039
14.4921875	14.4960938	14.4941407	-2.7286959	1.3056023	-0.7131869	0.0019
14.4941407	14.4960938	14.4951172	-0.7131869	1.3056023	0.2957376	0.0009
14.4941407	14.4951172	14.4946289	-0.7131869	0.2957376	-0.2088815	0.0004
14.4946289	14.4951172	14.494873	-0.2088815	0.2957376	0.0433502	0.0002
14.4946289	14.494873	14.494751	-0.2088815	0.0433502	-0.0827205	0.000
14.494751	14.494873	14.494812	-0.0827205	0.0433502	-0.0196868	6.1.1
14.494812	14.494873	14.4948425	-0.0196868	0.0433502	0.0118313	$3.05 \cdot 1$
14.494812	14.4948425	14.4948273	-0.0196868	0.0118313	-0.0038762	$1.53 \cdot 1$
14.4948273	14.4948425	14.4948349	-0.0038762	0.0118313	0.0039775	7.6.10
14.4948273	14.4948349	14.4948311	-0.0038762	0.0039775	$\cdot 10^{-6} \cdot 10^{-5}$	3.8.10
14.4948273	14.4948311	14.4948292	-0.0038762	$\cdot 10^{-6} \cdot 10^{-5}$	-0.0019128	1.9.10
14.4948292	14.4948311	14.4948302	-0.0019128	$\cdot 10^{-6} \cdot 10^{-5}$	-0.0008794	1.10

Preguntas de análisis

- 1. La función $f(x) = x^{1/3}$ tiene raíz en x = 0. Usando el punto de inicio de x = 1 y $p_0 = 5$, $p_1 = 0.5$ para el método de secante, compare los resultados de los métodos de secante y Newton.
 - \blacksquare Método de Newton-Raphson $p_0=1$

p_0	p_1	$f(p_0)$	$f(p_1)$	TOL
1.0	-2.000003	1	0.333333	3.000003

Diverge ya que nos dan como dato que tiene su raíz en x=0 y las aproximaciones cada vez se alejan más de la raíz.

■ Método de la secante

```
pr mer arux (pg):19-5.
| Pe = 8.5, pri: 9
| Numero de iteraciones: 28
| Numero de iter
```

La ejecución fracasa ya que diverge y no se cumplirá la condición de parada nunca.

CONCLUSIONES

- La elección del método a utilizarse depende de la función que deseemos analizar.
- El método de la secante al no requerir la derivada es una alternativa muy útil aunque no garantiza una converguencia.

RECOMENDACIONES

• Usar herramientas de graficación como geogebra.

REFERENCIAS

[1] S. C. Chapra, R. P. Canale, R. S. G. Ruiz, V. H. I. Mercado, E. M. Díaz, and G. E. Benites, *Métodos numéricos para ingenieros*. McGraw-Hill New York, NY, USA, 2011, vol. 5.