МЕТОДИЧКА ПО ВЫПОЛНЕНИЮ ЛАБОРАТОРНОЙ РАБОТЫ №1

по предмету "Исследование операций"

Черепенников Роман, 3 курс 8 группа

ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

Линейным программированием (ЛП) называют раздел теории экстремальных задач оптимизации (максимизации или минимизации) линейных функций на множествах конечномерного пространства, которое описывается конечной системой линейных уравнений и неравенств. В общем виде задача линейного программирования выглядит следующим образом:

Под канонической формой задачи ЛП понимают:

$$\begin{aligned} c_{1}x_{1} &+ c_{2}x_{2} &+ \dots &+ c_{n}x_{n} \to max \\ a_{11}x_{1} &+ a_{12}x_{2} &+ \dots & a_{1n}x_{n} &= b_{1} \\ & & & & & & & & \\ a_{m1}x_{1} &+ a_{m2}x_{2} &+ \dots & a_{mn}x_{n} &= b_{m} \\ d_{*1} &\leq x_{1} \leq d_{*}^{*}, & \dots, & d_{*n} \leq x_{1} \leq d_{*}^{*} \end{aligned}$$

Или в матричной форме:

$$c'x \rightarrow max$$
, $Ax = b$, $d_* \le x \le d^*$

Функция c'x называется **целевой функцией**, уравнения Ax = b - **основными ограничениями**, а неравенства $d_* \le x \le d^* -$ **прямыми ограничениями** задачи.

Наряду с канонической формой широко используется *нормальная задача ЛП*.

$$c'x \rightarrow max$$
, $Ax \leq b$, $d_* \leq x \leq d^*$

Обе рассмотренные задачи являются общими, то есть к ним сводится любая задача ЛП.

Симплекс-метод

В дальнейшем рассматривается каноническая форма задачи ЛП.

$$c'x \rightarrow max$$
, $Ax = b$, $d_* \le x \le d^*$

Каждый вектор $x \in R^n$ удовлетворяющий всем ограничениям задачи называется *планом*. Тогда $X = \{x | Ax = b, d_* \le x \le d^*\}$ – *множество планов*.

План x^0 , являющийся решением задачи, т.е $c'x^0 = max \ c'x$, $x \in X$ называют *оптимальным планом*.

Пусть выполняются условия $X \neq \emptyset$ rank A = m (m < n). План x называется **базисным**, если выполняются следующие условия:

- 1) n-m координат принимают одно из граничных условий $x_{i}=d_{i}^{*}\vee d_{*_{i}}$
- 2) остальным m координатам x_{j_1} , ... , x_{j_m} соответствуют линейно независимые векторы условий a_{j_1} , ... , a_{j_m}

Множество $J_{\rm E}=\{j_1,...,j_m\}$ называется базисным множеством индексов, $J_{\rm H}=\{1,...,n\}\setminus J_{\rm E}$ – небазисным, векторы $a_{j_1},...,a_{j_m}$ – базисом базисного плана, координаты $x_{j_1},...,x_{j_m}$ – базисными координатами плана, остальные – небазисными, а матрица $A_{\rm E}=(a_j,j\in J_{\rm E})$ называется базисной матрицей.

Алгоритм симплекс-метода:

Пусть задан начальный базисный план x с базисным множеством индексов $J_{_{\rm E}}$ (с базисной матрицей $A_{_{\rm E}}$)

- 1. Вычисляется вектор потенциалов $u' = c'_{B}A_{B}^{-1}$
- 2. Вычисляются небазисные оценки $\Delta_{j} = c_{j} a'_{j}u, j \in J_{H}$
- 3. Проверяются условия оптимальности плана

$$\Delta_{j} \leq 0$$
 при $x_{j} = d_{*j}$; $\Delta_{j} \geq 0$ при $x_{j} = d_{j}^{*}$, $j \in J_{H}$

Если они выполняются, то план оптимален и алгоритм завершен. В противном случае переходят к пункту 4

- 4. Определяется индекс j_0 . Этот индекс можно взять любым из подмножества базисных индексов, для которых не выполняются условия оптимальности.
- 5. Определяется направление l

$$\begin{split} l_{j_0} &= sign\Delta_{j_0} \\ l_j &= 0, j \in J_{\mathrm{H}} \backslash j_0 \\ A_{\mathrm{B}} l_{\mathrm{B}} &= -a_{j_0} sign\Delta_{j_0} \end{split}$$

6. Шаг θ^0 определяется из условия:

$$\theta^0 = min\{\theta_{j_0}, \theta_{j_*}\}$$

где

$$\theta_{j_0} = d^*_{j_0} - d_{*j_0}$$

$$\boldsymbol{\theta}_{j_*} = \min\{\boldsymbol{\theta}_j\}, \ j \ \in \boldsymbol{J}_{\mathrm{B}}$$

$$\theta_{j}^{}=rac{d_{j}^{^{\ast}}-x_{j}^{}}{l_{j}}$$
 , при $l_{j}^{}>0$

$$\theta_{j} \; = rac{d_{*j} - x_{j}}{l_{j}}$$
 , при $l_{j} \; < \; 0$

$$\theta_{_{j}} = \infty$$
 , при $l_{_{j}} = 0$

7. Новый план вычисляется по формуле:

$$\overline{x} = x + \theta^0 l$$

В случае если $\theta^0 = \theta_{j_*}$, то базисное множество индексов заменяется следующим образом $\bar{J}_{\rm E} = (J_{\rm E} \setminus j_*) \ \cup \ j_0$, соответствующим образом изменяется и базисная матрица $A_{\rm E}$.

Переходим к шагу 1.

ИСПОЛЬЗОВАНИЕ OR-TOOLS ДЛЯ РЕШЕНИЯ ЗАДАЧ ЛП Установка OR-Tools

Установка API Google OR-Tools для языка Python выполняется с помощью пакетного менеджера pip.

Необходимо в терминале выполнить команду: pip install ortools

Пример №1

В качестве первого примера рассмотрим задачу линейного программирования:

$$c'x \to max$$
$$x \ge 0$$
$$Ax \le b$$

где

$$A = \begin{bmatrix} 2 & 1 & -1 & -3 & 4 & 7 \\ 0 & 1 & 1 & 1 & 2 & 4 \\ 6 & -3 & -2 & 1 & 1 & 1 \end{bmatrix}$$
$$b = \begin{bmatrix} 7 & 16 & 6 \end{bmatrix}'$$
$$c = \begin{bmatrix} 1 & 2 & 1 & -1 & 2 & 3 \end{bmatrix}'$$

Для начала необходимо импортировать модуль pywraplp из библиотеки OR-Tools, это делается с помощью:

from ortools.linear_solver import pywraplp Затем необходимо создать объект solver, используемый для решения задач ЛП:

solver = pywraplp.Solver.CreateSolver('GLOP')

Следующим шагом является добавление переменных в задачу:

x1 = solver.NumVar(0, solver.infinity(), 'x1')

x2 = solver.NumVar(0, solver.infinity(), 'x2')

x3 = solver.NumVar(0, solver.infinity(), 'x3')

x4 = solver.NumVar(0, solver.infinity(), 'x4')

x5 = solver.NumVar(0, solver.infinity(), 'x5')

x6 = solver.NumVar(0, solver.infinity(), 'x6')

После этого в задачу добавляются ограничения:

solver.Add(
$$2*x1 + 1*x2 - 1*x3 - 3*x4 + 4*x5 + 7*x6 \le 7$$
)
solver.Add($0*x1 + 1*x2 + 1*x3 + 1*x4 + 2*x5 + 4*x6 \le 16$)

```
solver.Add(6*x1 - 3*x2 - 3*x3 + 1*x4 + 1*x5 + 1*x6 \le 6)
и целевая функция:
                   solver.Maximize(1*x1 + 2*x2 + 1*x3 - 1*x4 + 2*x5 + 3*x6)
Решить задачу можно с помощью метода Solve объекта solver
                   status = solver.Solve()
Для вывода результатов решения используется следующий код:
                   if status == pywraplp.Solver.OPTIMAL:
                     print('Решение:')
                     print(f'Значение целевой функции =
                   {solver.Objective().Value()}')
                     print(f'x1 = {x1.solution_value()}')
                     print(f'x2 = {x2.solution_value()}')
                     print(f'x3 = {x3.solution_value()}')
                     print(f'x4 = {x4.solution_value()}')
                     print(f'x5 = {x5.solution_value()}')
                     print(f'x6 = \{x6.solution\_value()\}')
                   else:
                     print('Задача не имеет решений')
```

Для того чтобы решить задачу целочисленного ЛП необходимо внести следующие изменения.

Solver создается с помощью:

```
solver = pywraplp.Solver.CreateSolver('SCIP')
```

А при добавлении переменных в задачу необходимо использовать IntVar вместо NumVar.

Вывод программы:

```
Задача ЛП:
Количество переменных: 6
Количество ограничений: 3
Решение:
Значение целевой функции = 27.5
x1 = 0.0
x2 = 11.5
x3 = 4.5
x4 = 0.0
```

x5 = 0.0

x6 = 0.0

Задача целочисленного ЛП:

Количество переменных: 6

Количество ограничений: 3

Решение:

Значение целевой функции = 27

x1 = 0

x2 = 11

x3 = 5

x4 = 0

x5 = -0

x6 = 0

Пример №2

Задача:

С трех складов необходимо поставить в пять магазинов сахарный песок в соответствии с заявкой каждого магазина. Объемы запасов песка, имеющегося на складах, объемы заявок магазинов и тарифы на поставку одной тонны груза со складов в магазины даны в транспортных таблицах по вариантам. Найдите оптимальный план поставок.

Объемы запасов песка, объемы заявок магазинов и тарифы на поставку:

Склад / Магазин	M1	M2	M3	M4	M5	Объем запасов
S1	7	9	15	4	18	200
S2	13	25	8	15	5	250
S3	5	11	6	20	12	250
Заявки	80	260	100	140	120	

Построение математической модели:

Введем следующие переменные

 x_{ij} – количество сахара, поставленное со склада Si в магазин Mj

 p_{ij} – тариф на поставку одной тонны сахара со склада Si в магазин Mj

 Z_{i} – объем запасов на складе Si

 R_j — заявка магазина M_j

Тогда задача математически может быть сформулирована следующим образом:

$$\sum_{i,j} x_{ij} p_{ij} \rightarrow min$$

$$x_{ij} \geq 0$$

$$\sum_{j} x_{ij} \leq Z_{i}$$

$$\sum_{i} x_{ij} = R_{j}$$

Все шаги программной реализации выполняются аналогично пункту 1. <u>Исходный код:</u>

from ortools.linear_solver import pywraplp

```
# тарифы на поставку

р = [
     [7, 9, 15, 4, 18],
     [13, 25, 8, 15, 5],
     [5, 11, 6, 20, 12],
]

# объем запасов на складах

Z = [200, 250, 250]

# заявки магазинов

R = [80, 260, 100, 140, 120]
```

```
# количество магазинов
Nm = len(R)
Ns = len(Z)
solver = pywraplp.Solver.CreateSolver('GLOP')
# добавление переменных задачи
X = \prod
for i in range(Ns):
 x.append([])
 for j in range(Nm):
   x[i].append(solver.NumVar(0, solver.Infinity(), f'x_{i+1}_{j+1}'))
# проверка того, что добавилось необходимое количество переменных
print(f'Количество переменных: {solver.NumVariables()}')
# добавление ограничений по объемам на складах
for i in range(Ns):
 constrain\_expr = [x[i][j] for j in range(Nm)]
 solver.Add(sum(constrain_expr) <= Z[i])</pre>
# добавление ограничений по заявкам магазинов
for j in range(Nm):
 constrain_{expr} = [x[i][j] for i in range(Ns)]
 solver.Add(sum(constrain_expr) == R[i])
# проверка того, что добавилось необходимое количество ограничений
print(f'Количество ограничений: {solver.NumConstraints()}')
# добавление целевой функции
objective_expr = []
for i in range(Ns):
 for j in range(Nm):
   objective_expr.append(x[i][j] * p[i][j])
solver.Minimize(sum(objective_expr))
# решение задачи
status = solver.Solve()
if status == pywraplp.Solver.OPTIMAL:
 print(f'Значение целевой функции = {solver.Objective().Value()}')
 solution = [[x[i]]].solution_value() for j in range(Nm)] for i in range (Ns)]
```

```
print('План поставок в виде матрицы:[') for i in range(Ns):
    print(solution[i])
    print(']')
else:
    print('Задача не имеет решения')
```

Вывод программы:

Количество переменных: 15 Количество ограничений: 8 Значение целевой функции = 5340.0 План поставок в виде матрицы:[[0.0, 60.0, 0.0, 140.0, 0.0] [30.0, 0.0, 100.0, 0.0, 120.0] [50.0, 200.0, 0.0, 0.0, 0.0]

Исходный код примеров доступен по ссылке:

https://github.com/charapennikaurm/or-tools-linear-programming

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

- 1. Альсевич В.В., Крахотко В.В. Методы оптимизации (конспект лекций) [Электронный ресурс]. Режим доступа: https://elib.bsu.by/bitstream/123456789/99983/2/%d0%a2%d0%b5%d0%bc%d0%b01%28%d0%9b%d0%9f%29.pdf
- 2. OR-Tools Python Reference [Electronic resource]. Mode of access: https://developers.google.com/optimization/reference/python/index_pyth on
- 3. OR-Tools Python Reference: Linear Solver [Electronic resource]. Mode of access:
 - https://developers.google.com/optimization/reference/python/linear_solve r/pywraplp