Seq no:

Name: SR No.: Dept.:

Maximum Points: 15 E2-243: Quiz 2 Duration: 40 minutes

1. Let $\{f_n\}_{n\in\mathbb{N}}$ be the sequence of real valued functions defined as $f_n(x) = \frac{x^2}{n}$.

a) Does the sequence converge point-wise to f(x) = 0 on the interval I = [-1, 1]? (2 points).

Explanation Fix any $x_1 \in I$, let us now look at the sequence $f_n(x_1)$. $\forall \epsilon > 0, \exists$ a positive integer N_{ϵ,x_1} such that

$$\forall n \ge N_{\epsilon, x_1}, \mid f_n(x_1) - f(x_1) \mid < \epsilon$$

$$\left| \frac{x_1^2}{n} - 0 \right| < \epsilon$$

As
$$-1 \le x_1 \le 1$$

$$\frac{x_1^2}{n} < \frac{1}{n} < \epsilon$$

$$n > \frac{1}{\epsilon} = N_{\epsilon, x_1}$$

This is true for all $x \in I$

Hence f_n converges pointwise to f on I.

b) Does it converge uniformly to f(x) = 0 on the interval I = [-1, 1]? (2 points)

Explanation As $-1 \le x \le 1$

$$f_n(x) = \frac{x^2}{n} < \frac{1}{n}, \forall n \in \mathbb{N}, \forall x \in I$$
.

Let us choose $M_n = \frac{1}{n}$

$$\lim_{n\to\infty} M_n = 0$$

Hence by M_n test f_n converges uniformly to zero function on the interval I = [-1, 1].

c) Does it converge uniformly to f(x) = 0 on the Interval $I = [0, \infty)$? (2 points)

Explanation We shall show that this sequence does not converge to 0 uniformly. If we choose $x_n = n$ for every n then $f_n(x_n) = n \ge 1$. Since all f_n s cross the $\epsilon = \frac{1}{2}$ barrier, f_n does not converge uniformly to zero function on the interval $I = [0, \infty)$.

d) For what values of p does f_n converge to f in $L^p[0,\infty)$?(1 Point)

Explanation $\lim_{n\to\infty} \left(\int_0^\infty (\frac{x^2}{n})^p dx \right)^{\frac{1}{p}} = 0$

$$\lim_{n\to\infty} \left(\frac{1}{(2p+1) * n^p} \left[x^{2p+1} \right]_0^{\infty} \right)^{\frac{1}{p}} = \infty$$

Thus the sequence does not L^p converge to f for any $p \ge 1$ on the interval $I = [0, \infty)$.

e) For what values of p does f_n converge to f in $L^p[0,1]$? (2 points)

Explanation
$$\lim_{n\to\infty} \left(\int_0^\infty (\frac{x^2}{n})^p \, dx \right)^{\frac{1}{p}} = 0$$

$$\lim_{n \to \infty} \left(\left[\frac{x^{2p+1}}{(2p+1) * n^p} \right]_0^1 \right)^{\frac{1}{p}} = \lim_{n \to \infty} \left(\frac{1}{(2p+1) * n^p} \right)^{\frac{1}{p}} = 0$$

The sequence L^p converges to f(x) for all $p \ge 1$ values on the interval I = [0, 1].

- 2. Let $\{f_n\}_{n\in\mathbb{N}}$ be the sequence of real valued functions defined on the interval $I=(-\infty,\infty)$ as $f_n(x)=\frac{1}{n+|x|}$.
 - a) Sketch the graph of f_n . (2 points)

b) Does the sequence converge point-wise? If so what is the limit function? (2 points)

Explanation The Limit function is f(x) = 0. Fix any $x_1 \in I = (-\infty, \infty)$, let us now look at the sequence $f_n(x_1)$.

 $\forall \epsilon > 0, \exists$ a positive integer N_{ϵ,x_1} such that

$$\forall n \ge N_{\epsilon, x_1}, \mid f_n(x_1) - f(x_1) \mid < \epsilon$$

$$\left| \frac{1}{n+|x_1|} - 0 \right| < \epsilon$$

$$\frac{1}{n+|x_1|} < \frac{1}{n} < \epsilon \text{ (as } x_1 \in (-\infty, \infty), |x| \in [0, \infty))$$

$$N_{\epsilon,x_1} = \frac{1}{\epsilon}$$

The above argument is true for all $x \in I$

Hence f_n converges pointwise to f.

c) Does it converge uniformly to the limit function obtained in 2(b)? (2 points)

Explanation
$$f_n(x) = \frac{1}{n+|x|} < \frac{1}{n}, \forall n \in \mathbb{N}, \forall x \in (-\infty, \infty)$$

Let us choose
$$M_n = \frac{1}{n}$$

$$\lim_{n\to\infty} M_n = 0$$

Hence by M_n test f_n converges uniformly to zero function.