Analiza funkcjonalna

Notatki z ćwiczeń

Wykładowcy: dr hab. Marcin Bobieński

Skryba: Szymon Cedrowski

Spis treści

Cwiczenia 1	L																			
Ćwiczenia 2	2																			
Ćwiczenia 3	}																			1
Ćwiczenia 4	1																			1
Ćwiczenia 5	ó																			2
Ćwiczenia 6																				2
Ćwiczenia 7	7																			2
Ćwiczenia 8																				
Ćwiczenia 9)																			3

Ćwiczenia 1

Norma ma symulować odległość między dowolnymi punktami przestrzeni. Odległość ta 08 paź 2021 ma być zgodna ze strukturą przestrzeni liniowej. Ta struktura to dodawanie wektorów i mnożenie przez element ciała. Stąd podobne wymagania na normę. Wystarczy nam jeden argument bo norma ma być niezmiennicza na przesunięcia, więc i tak wystarczy mierzyć odległość od zera. Skalowanie to niezmienniczość ze względu na strukturę mnożenia.

Przykład 1 $B=C\big([0,1]\big),\,\|f\|=\sup_{x\in[0,1]}\big|f(x)\big|.$ Pokazać, że B jest przestrzenią Banacha.

C([0,1]) jest oczywiście przestrzenią liniową zarówno nad \mathbb{R} jak i nad \mathbb{C} . Wypada sprawdzić, że ||f|| jest normą oraz, że B jest zupełna. Zerowanie normy i wyciąganie stałej są oczywiste, natomiast trzeba coś napisać o nierówności trójkąta. Wystarczy wziąć zwykłą nierówność trójkąta i zaaplikować supremum. Nieostre nierówności przechodzą.

$$|f(x) + g(x)| \le |f(x)| + |g(x)|$$

$$\sup |f(x) + g(x)| \le \sup (|f(x)| + |g(x)|) \le \sup |f(x)| + \sup |g(x)|$$

Badamy zupełność. Weźmy ciąg $(f_n)_{n\in\mathbb{N}}$ Cauchy'ego w B. Wówczas $\forall_{x\in[0,1]}$ będziemy mieć $(f(x))_{n\in\mathbb{N}}\subset\mathbb{R}$ oraz $\lim f_n(x)\stackrel{\mathrm{def}}{=} f(x)$ (punktowo). W ten sposób wytypowaliśmy kandydata na granicę ciągu funkcji, punkt po punkcie. Gdyby się udało pokazać, że $f_n\to f$ jednostajnie, to sprawa zakończona (bo zbieżność jednostajna to zbieżność w normie supremum). Mamy ciąg Cauchy'ego, czyli $|f_n(x)-f_m(x)|\leq \varepsilon$ modulo kwantyfikatory. W tym zapisie można przejść z $m\to\infty$, n zostawiamy w spokoju, nierówności nieostre przechodzą do granicy. Zatem,

$$|f_n(x) - f(x)| \le \varepsilon$$

dla każdego x. Stad,

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| \le \varepsilon$$

Oznacza to, że $f_n \to f$ jednostajnie, co kończy dowód.

Przykład 2 ℓ_1 , ℓ_∞ gdzie $\ell_1 = \{(a_n): \sum |a_n| < \infty\}$ oraz $\ell_\infty = \{(a_n): \exists_M |a_n| \leq M\}$ z normami $\|(a_n)\|_1 = \sum |a_n|$ oraz $\|(a_n)\|_\infty = \sup_n |a_n|$.

Dla $\|\cdot\|_{\infty}$ argument na normę jest powtórzeniem poprzedniego. Dla $\|\cdot\|_1$ też wychodzi ze zwykłej nierówności trójkąta. Zajmijmy się zupełnością. Najpierw w ℓ_{∞} .

Bierzemy ciąg Cauchy'ego ciągów o wyrazach $(a_n)^k \in \ell_{\infty}$. Z definicji, \forall_{n_0} ciąg $a_{n_0}^k$ jest Cauchy'ego. Z założenia,

$$\exists_N \, \forall_{K',K''>N} \quad \left\| (a_n)^{K'} - (a_n)^{K''} \right\|_{\infty} \le \varepsilon$$

zatem

$$\sup_{n} \left| a_n^{K'} - a_n^{K''} \right| \le \varepsilon$$

Definiujemy $a_n = \lim_{k \to \infty} a_n^k$, z zupełności \mathbb{R} granica ta istnieje. Teraz z K'' przechodzimy do nieskończoności, jak poprzednio (bo jest kwantyfikator \forall) zatem dostajemy

$$\sup_{n} \left| a_n^{K'} - a_n \right| \le \varepsilon$$

a to daje zupełność ℓ_{∞} , bo oznacza to, że $(a_n)^k \to (a_n)$, gdzie (a_n) jest ciągiem granicznym w ℓ_{∞} . Jakby co, (a_n) jest w przestrzeni, bo jest generowany z granic ciągów ograniczonych w \mathbb{R} , a takie są zbieżne. (a_n) jest więc również ograniczony. Teraz zajmijmy się zupełnością w ℓ_1 .

Zaczynamy podobnie. Mamy ciąg punktów w przestrzeni ℓ_1 (czyli ciąg zwykłych ciągów). Niech $p^k = (a_n)^k \in \ell_1$. Zakładamy, że jest to ciąg Cauchy'ego w ramach danej normy, tj. $||p^k - p^l||_1 \le \varepsilon$. Generujemy kandydata na granicę po k.

$$\left\| p^k - p^l \right\|_1 = \sum_n \left| a_n^k - a_n^l \right| \le \varepsilon$$

Stąd wynika, że \forall_{n_0} $a_{n_0}^k$ jest C.C (skoro suma modułów jest "mała", to każdy element sumy z osobna też taki musi być, spełnia więc definicję C.C). Z zupełności \mathbb{R} możemy przejść granicznie po k definiując $a_{n_0} = \lim_{k \to \infty} a_{n_0}^k$. To nam generuje ciąg graniczny (a_{n_0}) . Trzeba pokazać, że jego szereg jest zbieżny bezwzględnie, czyli że ciąg graniczny wciąż leży w ℓ_1 .

Znowu nieostre nierówności przenoszą się do granicy, po jednym z górnych indeksów można przejść, zatem $\exists_K \, \forall_{l>K}$

$$\sum_{n} \left| a_n^l - a_n \right| \le \varepsilon$$

Zatem granicznie zbiega do a_{n_0} i ta granica jest w ℓ_1 .

Równoważność norm

Definicja 1 (Równoważność norm). Równoważność norm $\|\cdot\|$ i $\|\cdot\|'$ na V oznacza, że $\exists_{c_1,c_2>0}$ takie, że

$$c_1||v|| \le ||v||' \le c_2||v||$$

Jest to relacja równoważności. Równoważność norm implikuje równoważność zbieżności ciągów.

Uwaga 1. Wszystkie $\|\cdot\|_p$ są równoważne na \mathbb{R}^n .

Dowód.

$$||v||_{\infty} \le ||v||_p \le n^{1/p} ||v||_{\infty}$$

Natomiast rozpisując, niech $|v_k| = \max_l(v_l)$.

$$|v_k| \le ||v||_p = (|v_1|^p + \dots + |v_n|^p)^{1/p}$$

Prawą nierówność szacujemy przez wzięcie sumy n tych największych v_k .

$$||v||_p \le (n|v_k|^p)^{1/p} = n^{1/p}|v_k|$$

Twierdzenie 1. Na przestrzeni skończonego wymiaru, czyli (z dokładnością do wyboru bazy i izomorfizmu) \mathbb{R}^n lub \mathbb{C}^n , wszystkie normy są równoważne.

Dowód. Później.

Uwaga 2. Co się stanie jeśli byśmy zmienili ciało na niezupełne. Czy wówczas też normy na np. \mathbb{Q}^2 są równoważne? NIE!

Skonstruujmy kontrprzykład na \mathbb{Q}^2 . Niech $\|(q_1, q_2)\|_1 = |q_1| + |q_2|$ oraz $\|(q_1, q_2)\| = |q_1 + \sqrt{2}q_2|$. Niech $\mathbb{Q} \ni q_n \to \sqrt{2}$. Wówczas,

$$\|(q_n, -1)\| \to 0$$

 $\|(q_n, -1)\|_1 \ge 1$

a równoważność zbieżności wynika z równoważności norm. Skoro ten sam ciąg nie jest zbieżny w dwóch różnych normach na \mathbb{Q}^2 to znaczy, że normy te nie mogły być równoważne.

Ćwiczenia 2

Twierdzenie 2. Na przestrzeni liniowej skończonego wymiaru nad ciałem zupełnym (\mathbb{R} lub \mathbb{C}) wszystkie normy są równoważne.

15 paź 2021

Dowód. Jeśli dim $V < \infty$, dysponujemy rozważanymi wcześniej normami. Nad V ustalamy bazę $\{e_i\}$ i ustalamy normę $\|v\|_1 = \sum |v_j|$. Weźmiemy teraz dowolną normę i pokażemy, że jest ona równoważna z normą pierwszą. Przez przechodniość relacji równoważności wiemy wtedy, że każde dwie są równoważne. Niech $\|\cdot\|$ będzie tą normą.

$$||v|| = \left\| \sum_{j} v_j e_j \right\| \stackrel{\triangle}{\leq} \sum_{j} |v_j| ||e_j||$$

$$\leq \max_{j} ||e_j|| ||v||_1$$

Niech $c_2 = \max_j \|e_j\|$. To wyszło nam za darmo, nie korzystaliśmy z zupełności ciała. Wykazaliśmy, że $\|v\| \le c_2 \|v\|_1$. Teraz należy znaleźć stałą c_1 . Zdefiniujmy sferę w sensie

normy pierwszej. $S \stackrel{\text{def}}{=} \{v \colon \|v\|_1 \le 1\}$. Na S mamy funkcję, która jest tą normą bezindeksową $\|\cdot\| \colon S \to \mathbb{R}^+$.

Pokażemy, że S jest zwarte, $\|\cdot\|$ jest ciągła oraz wykorzystamy fakt, że funkcja ciągła na zbiorze zwartym osiąga kresy, co znaczy, że $\exists_{p \in S} : f(p) = \inf_{x \in S} f(x)$.

Zauważmy, że S jest ograniczony w \mathbb{R}^n , bo moduł każdej ze współrzędnej jest mniejszy do jedynki (jasne). S jest również domknięty, co wynika z definicji. Bierzemy bowiem pewien ciąg punktów na sferze, dla którego suma modułów współrzędnych każdego elementu jest mniejsza równa 1, nierówności nieostre przenoszą się do granicy. S zawiera więc swoje punkty skupienia. Domkniętość i ograniczoność w \mathbb{R}^n daje zwartość. Teraz badamy ciągłość normy. Traktujemy normę jako funkcję na $\|\cdot\|: (V, \|\cdot\|) \to \mathbb{R}$. Chcemy pokazać, że $v_n \to v_0 \implies \|v_n\| \to \|v_0\|$.

$$||v_n|| = ||v_0 + (v_n - v_0)|| \le ||v_0|| + ||v_n - v_0||$$

Stąd,

$$||v_n|| - ||v_0|| \le ||v_n - v_0||$$

W drugą stronę,

$$||v_0|| = ||v_n + (v_0 - v_n)|| \le ||v_n|| + ||v_n - v_0||$$

$$||v_0|| - ||v_n|| \le ||v_n - v_0||$$

Z obu nierówności wynika, że $||v_n|| - ||v_0||| \le ||v_n - v_0||$. Zbieżność $v_n \to v_0$ oznacza, że $||v_n - v_0|| < \varepsilon$ dla n > N. W takim razie $|||v_n|| - ||v_0||| < \varepsilon$, co dowodzi ciągłości normy.

Wiemy więc, że norma na S osiąga kresy, czyli $\inf_{v \in S} ||v|| = ||v_0|| > 0$, gdzie $v_0 \in S$. Niech $||v_0|| = c_1$. Weźmy wektor $v \neq 0$.

$$||v|| = \left| ||v||_1 \frac{v}{||v||_1} \right| = ||v||_1 \left| \frac{v}{||v||_1} \right|$$
$$\geq c_1 ||v||_1$$

Korzystaliśmy wprost z zupełności ciała, jako że użyliśmy argumentu, że zwartość to domkniętość + ograniczoność.

Trzeba by jeszcze tylko naprawić małe oszustwo, mianowicie trzeba by pokazać, że $S \subset (V,\|\cdot\|)$ jest zwarty (w tej topologii). Weźmy odwzorowanie identycznościowe id: $(V,\|\cdot\|_1) \to (V,\|\cdot\|)$. Obraz przy odwzorowaniu ciągłym zbioru zwartego jest zwarty, co załatwia sprawę.

Zadanie domowe 1 $(\mathbb{R}^n, \|\cdot\|_p)$ dla $p \geq 1$ gdzie $\|(x_1, \dots, x_n)\|_p = \left(\sum |x_j|^p\right)^{1/p}$. Wykazać, z nierówności Holdera, że $\|\cdot\|_p$ jest normą na \mathbb{R}^n , wykazać, że ℓ_p jest przestrzenią Banacha oraz, że $\forall_v \|v\|_p \to \|v\|_{\infty}$.

Pokażmy, że ∥·∥ jest normą. Zastosujemy nierówność Holdera. W tym wypadku,

$$\sum |x_j y_j| \le \left(\sum |x_j|^p\right)^{1/p} \left(\sum |y_j|^q\right)^{1/q}$$

dla 1/p+1/q=1. Szkic dowodu byłby nastepujący. BSO, można założyć, że $\sum \left|x_j\right|^p=1$ i druga też. W przeciwnym razie mogę przez to podzielić. Niech $\left|x_j\right|=e^{\alpha_j}$ oraz $\left|y_j\right|=e^{\beta_j}$, zatem

$$\sum |x_j||y_j| = \sum \exp\left(\frac{1}{p}p\alpha_j + \frac{1}{q}q\beta_j\right)$$

Z wypukłości exp, można oszacować przez każdy składnik.

$$\leq \sum \left(\frac{1}{p}e^{p\alpha_j} + \frac{1}{q}e^{q\beta_j}\right) = 1$$

Teraz wykażmy, że $\|\cdot\|_n$ jest normą na \mathbb{R}^n .

$$||v + w||_p^p = \sum |v_n + w_n|^p = \sum |v_n + w_n||v_n + w_n|^{p-1}$$

$$\leq \sum |v_n||v_n + w_n|^{p-1} + \sum |w_n||v_n + w_n|^{p-1}$$

Teraz używamy nierówności Holdera dla wag p i p/(p-1),

$$\leq \left(\sum |v_n + w_n|^p\right)^{\frac{p-1}{p}} \left(\|v\|_p + \|w\|_p\right)$$
$$= \|v + w\|_p^{p-1} \left(\|v\|_p + \|w\|_p\right)$$

To dowodzi nierówność trójkąta dla naszej normy.

Dowodzimy tej granicy. Bierzemy ciąg ustalony i zbiegamy z $p \to \infty$.

$$(a_i^p)^{1/p} \le |a_1^p + a_2^p + \dots|^{1/p} \le (na_i^p)^{1/p}$$

Z trzech ciągów mamy zbieżność po p. Tak byłoby dla ciągów skończonych w \mathbb{R}^n . Teraz chcielibyśmy to powtórzyć w ℓ_p . ???????

Zadanie domowe 2 Weźmy C([0,1]) z normą $||f||_{\infty} = \sup |f|$ oraz $||f||_{1} = \int_{[0,1]} |f|$. Pokazać, że $||\cdot||$ i $||\cdot||_{1}$ nie są równoważne.

Ograniczenie w jedną stronę jest proste.

$$||f||_1 = \int_{[0,1]} |f(x)| dx \le \sup_{s \in [0,1]} |f(s)| \int_{[0,1]} dx = ||f||_{\infty}$$

To nam mówi, że norma $\|\cdot\|_{\infty}$ jest mocniejsza od $\|\cdot\|_1$ (jeśli nie są równoważne). Teraz należałoby spytać czy istnieje taka stała c>0, że $\|f\|_{\infty} \leq c\|f\|_1$. Jeśli normy nie są równoważne to istnieć nie może. Równoważność norm implikuje równoważność zbieżności, zatem wystarczy wskazać ciąg funkcyjny, który ma róże granice w obu normach. Weźmy następujący ciąg $(f_n)_{n\in\mathbb{N}}\subset C([0,1])$:

$$f_n = \begin{cases} 0 & x \in [0, 1/2 - 1/n] \\ nx + 1 - n/2 & x \in [1/2 - 1/n, 1/2] \\ -nx + 1 + n/2 & x \in [1/2, 1/2 + 1/n] \\ 0 & x \in [1/2 + 1/n, 1] \end{cases}$$

Wizualnie, chodzi o taki zwężający się szpikulec o piku w x=1/2. Są to naturalnie funkcje ciągłe. Przyjrzymy się normom. $||f_n||_{\infty}=1$, natomiast $||f_n||_1=1/n$. Jeśli $f_n \to f$, to $||f||_{\infty}=1$, ale $||f||_1=0$. W takim razie, obie normy nie mogą być równoważne.

Zadanie domowe 3 Niech $V = \left\{ (a_n) \colon \exists_{N \left((a_n) \right)} \forall_{n \geq N} \ a_n = 0 \right\}$. Odnotujmy, że N jest funkcją danego ciągu, nie musi być uniwersalne. Pokazać, że normy $\| \cdot \|_1$ oraz $\| \cdot \|_{\infty}$ nie są równoważne. Pokazać (!), że nie istnieje taka norma, żeby V była zupełna.

Rozważmy ciągi $(a_n)^k$ gdzie

$$a_n = \begin{cases} 1/k & n \le k \\ 0 & n > k \end{cases}$$

Zauważmy, że

$$\left\| (a_n)^k \right\|_1 = 1$$
$$\left\| (a_n)^k \right\|_{\infty} = \frac{1}{k}$$

W takim razie nie istnieje c > 0, takie że dla każdego k,

$$\left\| (a_n)^k \right\|_1 \le c \left\| (a_n)^k \right\|_{\infty}$$

Argument jest więc taki sam jak w poprzednim zadaniu. Dlaczego nie da się tej przestrzeni uzupełnić?

Niech U_n oznacza ciągi, które od n-tego miejsca mają same zera. Naturalnie,

$$V = \bigcup_{n \in \mathbb{N}} U_n$$

Jeśli U_n są nigdzie gęste, to można użyć twierdzenia Baire'a, z którego wynika, że V nie jest zupełna (bo przestrzeń zupełna nie da się przedstawić w postaci takiej sumy, o tym mówi twierdzenie). Nigdzie gęstość oznacza, że int $\overline{U}_n = \emptyset$.

Udowodnijmy domkniętość U_n : Rozważmy ciąg elementów $U_n \supset (a_n)^k \xrightarrow[k \to \infty]{} (b_n) \subset U_{n+i}$ (względem jakiejś dowolnej normy). Zauważmy, że $U_{n+i} \equiv \mathbb{R}^{n+i}$. W \mathbb{R}^{n+i} zbieżność jest po współrzędnych, a tam normy są równoważne. Stąd wynika, że i=0, bo każdy ciąg o indeksie k ma tam zera, zatem granice z tych miejsc też są zerami, więc i się obcina. Stąd U_n jest domknięty bo zawiera swoje punkty skupienia.

Nigdzie gęstość U_n : Wiemy, że U_n jest domknięty, chcemy więc pokazać, że jego wnętrze w przestrzeni V jest puste. Niech $a=(a_n)\in U_n$ oraz $b=(a_1,\ldots,a_n,\varepsilon,0,\ldots)\in U_{n+1}$. Odległość b od ciągu (a_n) jest dowolnie mała, bowiem

$$||a-b|| \le ||(0,\ldots,0,\varepsilon,0,\ldots)||$$

Co to oznacza? Otóż punkt $a \in U_n$ należy do wnętrza U_n jeśli istnieje otwarte otoczenie tego punktu zawarte wciąż w U_n . Pokazaliśmy, że dla każdego elementu $a \in U_n$ można wybrać dowolnie bliski element z większej przestrzeni U_{n+1} , tj. taki, który będzie znajdował się w dowolnie małym otwartym otoczeniu. Oznacza to, że żaden z elementów $a \in U_n$ nie należy do int U_n , zatem int $U_n = \emptyset$, co dowodzi nigdzie gęstości.

Zauważmy przy okazji, że taki argument stosuje się do dowolnej przestrzeni liniowotopologicznej skończonego wymiaru. Otóż podprzestrzeń liniowa jest nigdzie gęsta w większej przestrzeni.

Zadanie 1 W ℓ_1 znaleźć zbiór domknięty, ograniczony, ale nie zwarty.

$$D = \{ v \in \ell_1 \colon ||v|| \le 1 \}$$

jest domknięty i ograniczony. Weźmy ciąg $(a_n)^k = (0, 0, \dots, 0, 1, 0 \dots)$. Zwartość (ciągwo) ocznacza, że każdy ciąg ma podciąg zbieżny. Weźmy podciąg $(a_n)^{k_l}$ zbieżny, skąd wynika, że jest ciągiem Cauchy'ego.

$$\left\| (a_n)^k - (a_n)^m \right\|_1 \stackrel{k \neq m}{=} 2$$

Oznacza to jawnie, że ten ciąg nie może być ciągiem Cauchy'ego. Sprzeczność. Oznacza to, że w tej podprzestrzeni D nie każdy ciąg ma podciąg zbieżny, a zatem D nie jest zwarty. Jest natomiast domknięty, bo zawiera wszystkie punkty skupienia (a właściwie to ich nie ma).

Ćwiczenia 3

Zadanie domowe 1 Wykazać ośrodkowość: a) C([0,1]), $\|\cdot\|_{\infty} = \sup |f|$; b) ℓ_p , $\|\cdot\|_p$, 22 paź 2021 dla $1 \le p < \infty$.

Po prostu wskazujemy przeliczalne podzbiory gęste.

- a) Z twierdzenia Weierstrassa można przybliżać (jednostajnie) każdą funkcję ciągłą na zwartym odcinku wielomianami, w szczególności o współczynnikach wymiernych. \mathbb{Q} jest oczywiście gęste. Oznacza to, że zbiór takich wielomianów jest gęsty w C([0,1]).
- b) Niech $(a_n) \in \ell_p$. Ustalamy $\varepsilon > 0$ i wybieramy takie N, że

$$\left(\sum_{N+1}^{\infty} |a_n|^p\right)^{1/p} < \varepsilon$$

Definiujemy ciąg

$$b_n = \begin{cases} a_n & n \le N \\ 0 & n > N \end{cases}$$

Wówczas,

$$\left\| (a_n) - (b_n) \right\|_p = \left(\sum_{N+1}^{\infty} |a_n|^p \right)^{1/p} < \varepsilon$$

Potrafimy przybliżać dowolnie dokładnie dowolny punkt w ℓ_p . Każdy tak skonstruowany (b_n) przedstawia się jako skończona kombinacja liniowa "bazy" $(e_n$ to jedynka na n-tym miejscu). Na mocy poniższej uwagi to jest dość, by V była ośrodkowa.

Lemat 1. Jeżeli mamy przestrzeń $(V, \|\cdot\|)$ i przeliczalny zbiór punktów $e_1, e_2, \ldots \in V$ oraz dla każdego $v \in V$ istnieje skończona kombinacja liniowa tego zbioru, przybliżająca v:

$$\left\| v - \sum_{j=1}^{k} a_j e_j \right\| < \varepsilon$$

Wówczas V jest ośrodkowa.

 $Dow \acute{o}d.$ W \mathbb{R}^k istnieją wymierne współczynniki $q_1, \dots, q_k \in \mathbb{Q}$ o tej własności, że

$$\sum_{j=1}^{k} \left| a_j - q_j \right| < \varepsilon$$

W takim razie,

$$\left\| v - \sum_{j=1}^{k} q_j e_j \right\| \stackrel{\triangle}{\leq} \left\| v - \sum_{j=1}^{k} a_j e_j \right\| + \left\| \sum_{j \leq k} (a_j - q_j) e_j \right\|$$

$$\leq \varepsilon + \max_{j \leq k} \left\| e_j \right\| \varepsilon = \varepsilon'$$

W takim razie dowolny wektor $v \in V$ potrafię dowolnie przybliżać przez wymierne skończone kombinacje. Stąd V jest ośrodkowa.

Zadanie domowe 2 Wykazać, że nie są ośrodkowe: a) $C_{\text{ogr}}(\mathbb{R})$, $\|\cdot\|_{\infty} = \sup |f|$; b) ℓ_{∞} , $\|\cdot\| = \sup_{n} |a_{n}|$.

Lemat 2. Załóżmy, że mamy przestrzeń metryczną (X,d) a w niej rodzinę zbiorów $(C_{\lambda})_{\lambda \in \Lambda}$ gdzie $|\Lambda| > \aleph_0$ oraz wiemy, że dla każdego $\lambda_1 \neq \lambda_2$ zachodzi $d(C_{\lambda_1}, C_{\lambda_2}) \geq r > 0$. Wówczas, (X,d) nie jest ośrodkowa.

Dowód. Niech Q będzie ośrodkiem w (X,d). Wówczas $\forall_{p \in C_{\lambda}} \exists_{q \in Q} : d(p,q) < r/3$. Ta nierówność wynika z własności, że zawsze znajdziemy coś dowolnie blisko z ośrodka. W każdej kuli musi być coś z ośrodka, a te kule są rozłączne gdyż $d(C_{\lambda_1}, C_{\lambda_2}) \geq r$, zatem ten ośrodek musiałby liczyć przynajmniej tyle co Λ . Czyli nie byłby przeliczalny.

a) Weźmy rodzinę podzbiorów liczb naturalnych $\Lambda = 2^{\mathbb{N}}$ (zbiór nieprzeliczalny), które posłużą jednocześnie za zbiór "specjalnych" argumentów funkcji jak i numerację powstającej rodziny nieprzeliczalnie wielu funkcji. Rodzinę $(f_{\lambda})_{\lambda \in \Lambda} \subset C_{\operatorname{ogr}}(\mathbb{R})$ konstruujemy następująco:

$$f_{\lambda}(x) = \begin{cases} 1 & x \in \lambda \\ \text{spadek liniowy do 0} \\ \text{w przedziale } (x - 0.5, x + 0.5) & x \in \lambda \\ 0 & \text{w innym przypadku} \end{cases}$$

Rysunek 1: Przykładowo: niebieski szpikulec to f_{λ_1} a czerwony to f_{λ_2} , gdzie $\lambda_1 = \{4, 8\}$ i $\lambda_2 = \{6\}$.

Obrazkowo, chodzi naturalnie o takie rozłączne szpikulce, jak na Rys. 1. Metryka indukowana przez normę supremum to metryka supremum $d_{\infty}(f,g) = \sup |f-g|$. W naszym przypadku $d_{\infty}(f_{\lambda_1},f_{\lambda_2}) \stackrel{\lambda_1 \neq \lambda_2}{=} 1$. W związku z tym $C_{\rm ogr}(\mathbb{R})$ nie jest ośrodkowa.

b) W przypadku przestrzeni ciągowej ℓ_{∞} ciągów ograniczonych, możemy znów rozważyć rodzinę $\Lambda=2^{\mathbb{N}}$ gdzie $\lambda\in\Lambda$ jest pewnym podzbiorem liczb naturalnych. Skonstruujmy rodzinę nieprzeliczalnie wielu ciągów $(a_n)_{\lambda\in\Lambda}\subset\ell_{\infty}$ takich, że

$$a_n = \begin{cases} 1 & n \in \lambda \\ 0 & n \notin \lambda \end{cases}$$

Wówczas, dla wszystkich $\lambda_1 \neq \lambda_2$ mamy $\|(a_n)_{\lambda_1} - (a_n)_{\lambda_2}\| = 1$. To daje brak ośrodkowości.

Zadanie domowe 3 Rozważmy przestrzeń ciągową ℓ_p , dla $1 . Niech <math>L: \ell_p \to \mathbb{K}$ będzie liniowe, ciągłe (!). Wykazać, że istnieje taki ciąg (b_n) , że $L(a_n) = \sum b_n a_n$ oraz $\sum |b_n|^q < \infty$, gdzie 1/p + 1/q = 1.

Zaczynamy od konstrukcji kandydata na (b_i) . Chcemy de facto, żeby ten ciąg był określony przez działanie operatora na "bazie" znanej ze skończonego wymiaru, tj. $b_i = L(e_i)$ gdzie (e_i) to taki ciąg, który na i-tym miejscu ma 1 a wszędzie indziej 0. Niech $a^{(n)} = (a_1, \ldots, a_n, 0, \ldots)$. Wprowadzimy też szybkie oznaczenie $a = (a_n)$.

$$\left\|a - a^{(n)}\right\|_p = \left(\underset{\text{szeregu}}{\text{ogon zbieżnego}}\right) = \left(\sum_{k=n+1}^{\infty} \left|a_k\right|^p\right)^{1/p} \xrightarrow{n \to \infty} 0$$

Bierzemy teraz następującą sumę:

$$\sum_{i=1}^{n} a_i b_i = \sum_{i=1}^{n} a_i L(e_i) = L\left(\sum_{i=1}^{n} a_i e_i\right)$$
$$= La^{(n)} \xrightarrow[\text{ciągłość } L]{n \to \infty} La$$

Czyli,

$$\sum_{i=1}^{\infty} a_i b_i = La$$

Teraz czy to (b_n) jest w ogóle z ℓ_q , tak jak miało być. Równoważnie musimy pokazać, że $||(b_n)||_q < \infty$ (pokażemy nawet coś silniejszego). Weźmy analogicznie jak poprzednio, ciąg $b^{(n)}$ będący obcięciem ciągu b do pierwszych n wyrazów. Naturalnie $b^{(n)} \in \ell_p$ jako ciąg skończony. Zdefiniujmy ciąg $c^{(n)}$ jako potęgę obcięcia ciągu b z pewnym twistem (zachowaniem znaku):

$$c_j^{(n)} = \begin{cases} \left| b_j \right|^{q-1} \operatorname{sgn} b_j & j \le n \\ 0 & j > n \end{cases}$$

Z liniowości wynika, że

$$Lc^{(n)} = \sum_{j=1}^{n} |b_j|^{q-1} b_j \operatorname{sgn} b_j = \sum_{j=1}^{n} |b_j|^{q-1} |b_j| = \|b^{(n)}\|_q^q$$

Na boku policzmy natomiast p-tą normę z $c^{(n)}$.

$$\left\| c^{(n)} \right\|_p = \left(\sum_{j=1}^n \left| b_j \right|^{p(q-1)} \right)^{1/p} \stackrel{\frac{1}{p} + \frac{1}{q} = 1}{=} \left(\sum_{j=1}^n \left| b_j \right|^q \right)^{1/p} = \left\| b^{(n)} \right\|_q^{q/p}$$

Jednym z równoważnych warunków ciągłości operatora liniowego jest $||Lv|| \le ||L|| ||v||$. Możemy napisać, że

$$\left| Lc^{(n)} \right| \le \|L\| \left\| c^{(n)} \right\|_{p}$$

zatem,

$$\left\| b^{(n)} \right\|_{q}^{q} \le \|L\| \left\| b^{(n)} \right\|_{q}^{q/p} = \|L\| \left\| b^{(n)} \right\|_{q}^{q-1}$$

Stąd,

$$||L|| \ge \left\| b^{(n)} \right\|_a$$

Zauważmy jednak, że $\|L\|$ nie zależy od n, zatem przechodząc granicznie dostajemy $b \in \ell_q$ oraz $\|b\|_q \leq \|L\| < \infty$.

Pokażemy jeszcze jednak, że w rzeczywistości zachodzi równość $||L|| = ||b||_q$. Pokazując to wykażemy, że $\ell_p^* \cong \ell_q$. Sprawa jest zasadniczo prosta. Chcemy dostać oszacowanie z drugiej strony. Z nierówności Holdera (tutaj trywialnej, bo p, q są od razu sprzężone),

$$|La| \stackrel{H}{\leq} ||a||_p ||b||_q$$

dzieląc przez normę a otrzymujemy de facto ograniczenie górne na normę operatorową,

$$||L|| \leq ||b||_a$$

Dostaliśmy więc oszacowania z obu stron i wnioskujemy, że $\|L\| = \|b\|_q$. Aby podsumować, ℓ_p^* jest izometryczna do ℓ_q dla sprzężonych (p,q) – dla dowolnego funkcjonału liniowego ciągłego $L\colon \ell_p \to \mathbb{K}$, tj. $L\in \ell_p^*$ znaleźliśmy odpowiadający mu $b\in \ell_q$.

Ćwiczenia 4

Zadanie domowe 5 Niech zbiór A będzie mierzalny, ograniczony. Wykazać, że

29 paź 2021

$$\lim_{n \to \infty} \int_A \cos nx \, dl_1 = \lim_{n \to \infty} \int_A \sin nx \, dl_1 = 0$$

Krok pierwszy to zrobić to na przedziałe [a,b]. Możemy wziąć taką część przedziału (wnętrza). Na przedziałach, jeśli istnieje całka Riemanna, to Lebesgue'a też i są sobie równe, więc można liczyć całkowicie normalnie.

$$\left| \int_{[a,b]} \sin nx \, dx \right| = \left| -\frac{1}{n} \cos nx \right|_a^b \le \frac{2}{n} \xrightarrow{n \to \infty} 0$$

Analogicznie dla całki z $\cos nx$. Dla odcinków teza się zgadza. Teraz trzeba przejść do zbioru mierzalnego ograniczonego. Jedna z opcji polega na użyciu znanego lematu, który sobie szybko udowodnimy.

Lemat 3. Niech A będzie zbiorem mierzalnym, $\mu(A) < \infty$. Wówczas dla każdego $\varepsilon > 0$ istnieje skończona rodzina rozłącznych otwartych odcinków $(I_n)_{n=1}^{k_{\varepsilon}}$ taka, że

$$\mu\left(A\triangle\bigcup_{n=1}^{k_{\varepsilon}}I_{n}\right)<\varepsilon$$

gdzie \triangle oznacza różnicę symetryczną zbiorów. Oznaczymy jeszcze $O = \bigcup I_n$.

Dowód. Wiadomo, że dla każdego zbioru mierzalnego A istnieje takie otwarte pokrycie $(I_n)_{n\in\mathbb{N}}$, w którym się zawiera A, że $\mu(\bigcup_{n\in\mathbb{N}}I_n)\leq \mu(A)+\varepsilon$. W takim razie $\sum_{n\in\mathbb{N}}\mu(I_n)<\infty$, czyli możemy wybrać takie k, że $\sum_{n=k+1}^{\infty}\mu(I_n)<\varepsilon$. Naszą kolekcją będzie więc $(I_n)_{n=1}^k$. Teraz,

$$\mu(A\triangle O) = \mu\big((A \setminus O) \cup (O \setminus A)\big)$$

Te zbiory składające się na sumę symetryczną są rozłączne.

$$= \mu(A \setminus O) + \mu(O \setminus A)$$

Teraz będziemy używać subaddytywności miary.

$$\leq \mu \left(\bigcup_{n \in \mathbb{N}} I_n \setminus O \right) + \mu \left(\bigcup_{n \in \mathbb{N}} I_n \setminus A \right)$$

$$\leq \mu \left(\bigcup_{n=k+1}^{\infty} I_n \right) + \mu \left(\bigcup_{n \in \mathbb{N}} I_n \right) - \mu(A)$$

$$\leq \varepsilon + \varepsilon = 2\varepsilon$$

Wówczas,

$$\left| \int_{A} \sin nx \, dx \right| \le \left| \int_{O} \sin nx \, dx \right| + \left| \int_{A \setminus O} \sin nx \, dx \right|$$

W drugiej całce szacujemy jednostajnie moduł sinusa przez jedynkę. Wówczas $\mu(A \setminus O) < \varepsilon$, jako że $\mu(A \setminus O) + \mu(O \setminus A) < \varepsilon$. Pierwsza całka to suma po odcinkach, pokazaliśmy że zanika.

$$\leq \left| \int_{\Omega} \sin nx \, \mathrm{d}x \right| + \varepsilon \xrightarrow{n \to \infty} 0$$

Jest jeszcze inna linia argumentu, korzystająca bardziej wprost z definicji całki po zbiorze mierzalnym. Może być ona przydatna w innych sytuacjach. Weźmy $A \subset [0, 2\pi]$. Wówczas możemy zapisać:

$$\int_{A} \sin nx \, \mathrm{d}x = \int_{[0,2\pi]} \chi_{A} \sin nx \, \mathrm{d}x$$

Przypomnijmy sobie lemat Urysohna mówiący, że dla każdej pary niepustych, domkniętych i rozłącznych zbiorów D_1, D_2 w przestrzeni metrycznej X, istnieje funkcja ciągła $f \colon X \to [0,1]$ przyjmująca wartości na tych zbiorach zbiorach: $f(D_1) = 0$ i $f(D_2) = 1$. Zasadniczo nawet łatwo napisać wzór tej funkcji,

$$f(x) = \frac{d(x, D_1)}{d(x, D_1) + d(x, D_2)}$$

W naszym przypadku A nie spełnia koniecznie założeń lematu jednak wiemy, że zbiór mierzalny zawsze możemy przybliżyć domkniętym zbiorem $D \subset A$ o mierze różniącej się epsilonowo od miary A, tj. $\mu(A \setminus D) < \varepsilon$. Wówczas na bazie lematu Urysohna możemy skonstruować funkcję ciągłą f, która spełnia f(D) = 1. Wtedy miara zbioru na którym f różni się od χ_A jest epsilonowo mała, tj. $\int |f - \chi_A| < \varepsilon$. W takim razie,

$$\left| \int_{[0,2\pi]} \chi_A \sin nx \, \mathrm{d}x \right| \le \left| \int_{[0,2\pi]} f \sin nx \, \mathrm{d}x \right| + \int_{[0,2\pi]} |f - \chi_A| |\sin nx| \, \mathrm{d}x$$

 $\sin nx$ można jednostajnie przeszacować przez 1, zostając z epsilonem z drugiej całki.

$$\leq \left| \int_{[0,2\pi]} f \sin nx \right| + \varepsilon$$

W ten sposób zostajemy z taką przyjemną całką, która podpada pod lemat Riemanna-Lebesgue'a o transformacie Fouriera, który mówi, że transformata Fouriera funkcji $f \in L^1$ całkowalnej w sensie Lebesgue'a zanika w nieskończoności, tj.

$$\int f(x)e^{-izx} \, \mathrm{d}x \xrightarrow{z \to \infty} 0$$

W szczególności oznacza to, że

$$\int f(x)\sin(nx)\,\mathrm{d}x \xrightarrow{n\to\infty} 0$$

To załatwia sprawe.

Definicja 2 (Iloczyn skalarny). Niech V będzie przestrzenią liniową nad \mathbb{R} lub \mathbb{C} . Iloczyn skalarny na V to odwzorowanie

$$(\cdot,\cdot)\colon V\times V\to\mathbb{K}$$

takie, że dla dowolnych $v, w \in V, \lambda \in \mathbb{K}$,

$$(v, w) = \overline{(w, v)}$$
$$(v, \lambda w) = \lambda(v, w)$$
$$(v_1 + v_2, w) = (v_1, w) + (v_2, w)$$
$$(v, v) = 0 \iff v = 0$$

Zatem jest to odwzorowanie liniowe w drugim argumencie i antyliniowe w pierwszym. Nad ciałem $\mathbb R$ redukuje się do odwzorowania dwuliniowego symetrycznego.

Zadanie domowe 7 Iloczyn skalarny implikuje normę $||v|| = \sqrt{(v,v)}$.

- a) Pokazać, że jest to norma
- b) Weźmy przestrzeń unormowaną nad ciałem \mathbb{R} . Definiujemy odwzorowanie $(v, w) = \frac{1}{4} (\|v + w\|^2 \|v w\|^2)$. Wykazać równoważność: (\cdot, \cdot) jest iloczynem skalarnym \iff $2\|v\|^2 + 2\|w\|^2 = \|v + w\|^2 + \|v w\|^2$ (tożsamość równoległoboku).
 - a) Trzeba sprawdzić 3 warunki.

$$||v|| = 0 \iff (v, v) = 0 \iff v = 0$$

Drugi warunek to wyciaganie stałej,

$$\|\lambda v\|^2 = (\lambda v, \lambda v) = \lambda \overline{\lambda}(v, v) = |\lambda|^2 \|v\|^2$$
$$\|\lambda v\| = |\lambda| \|v\|$$

Jak zawsze, najciekawsza jest nierówność trójkąta. Tutaj potrzebujemy nierówność Schwarza. Najprościej ją udowodnić w następujący sposób:

$$0 \le \left\| v - \frac{\|v\|^2}{(v, w)} w \right\|^2$$

$$= \|v\|^2 + \frac{\|v\|^4 \|w\|^2}{\left| (v, w) \right|^2} - \frac{\|v\|^2}{(v, w)} (v, w) - \frac{\|v\|^2}{\overline{(v, w)}} (w, v)$$

$$= \frac{\|v\|^2}{\left| (v, w) \right|^2} \left(\|v\|^2 \|w\|^2 - (v, w)(w, v) \right)$$

Po skróceniu dodatniego wyrazu,

$$0 \le ||v||^2 ||w||^2 - |(v, w)|^2$$

Finalnie otrzymujemy nierówność Schwarza:

$$\left| (v, w) \right| \le \|v\| \|w\|$$

Teraz dowodzimy nierówność trójkata tej normy,

$$||v + w||^{2} = (v + w, v + w) = ||v||^{2} + ||w||^{2} + 2\operatorname{Re}(v, w)$$

$$\leq ||v||^{2} + ||w||^{2} + 2|(v, w)|$$

$$\leq ||v||^{2} + ||w||^{2} + 2||v|| ||w||$$

$$= (||v|| + ||w||)^{2}$$

Zatem,

$$||v + w|| \le ||v|| + ||w||$$

Stąd $||v|| = \sqrt{(v, v)}$ jest normą.

b) Dowód w prawą stronę jest prosty. Wiemy, że (\cdot,\cdot) jest iloczynem skalarnym, widzimy również, że zgodnie z podanym wzorem, $||v|| = \sqrt{(v,v)}$. Nad $\mathbb R$ iloczyn skalarny jest symetryczny, zatem

$$||v + w||^2 = (v + w, v + w) = ||v||^2 + ||w||^2 + 2(v, w)$$
$$||v - w||^2 = ||v||^2 + ||w||^2 - 2(v, w)$$

Stąd,

$$2||v||^2 + 2||w||^2 = ||v + w||^2 + ||v - w||^2$$

czyli tożsamość równoległoboku jest spełniona.

Dowód w drugą stronę wymaga kilku kroków. Musimy wykazać po kolei własności odwzorowania (\cdot, \cdot) , które ma być iloczynem skalarnym. Ma to być odwzorowanie

symetryczne i dwuliniowe (z symetrii liniowość w jednym argumencie wystarczy). Symetria (v, w) = (w, v) jest oczywista z formuły definiującej (\cdot, \cdot) . Oczywiste jest również $(v, v) = 0 \iff v = 0$. Dalej wykazujemy addytywność $(v_1 + v_2, w) = (v_1, w) + (v_2, w)$. Zauważmy, że po prawej stornie będą się pojawiać wyrażenia typu $||v_i \pm w||^2$. Rozważmy więc tożsamość równoległoboku dla $x = v_1 + w$ i $y = v_2$.

$$2||v_1 + w||^2 + 2||v_2||^2 = ||v_1 + v_2 + w||^2 + ||v_1 - v_2 + w||^2$$

Stąd wyłapujemy wyraz pojawiający się po lewej stronie dowodzonej własności.

$$||v_1 + v_2 + w||^2 = 2||v_1 + w||^2 + 2||v_2||^2 - ||v_1 - v_2 + w||^2$$

Zamieniając miejscami v_1 z v_2 nic się nie zmienia bo po lewej stronie istotna jest tylko ich suma. Stad,

$$= 2||v_2 + w||^2 + 2||v_1||^2 - ||v_2 - v_1 + w||^2$$

Po lewej stronie dowodzonej własności pojawia się również analogiczny człon z -w. Stąd,

$$||v_1 + v_2 - w||^2 = 2||v_1 - w||^2 + 2||v_2||^2 - ||v_2 - v_1 + w||^2$$
$$= 2||v_2 - w||^2 + 2||v_1||^2 - ||v_1 - v_2 + w||^2$$

Dodajemy stronami pary obu otrzymanych tożsamości,

$$2\|v_1 + v_2 + w\|^2 = 2(\|v_1\|^2 + \|v_2\|^2) + 2\|v_1 + w\|^2 + 2\|v_2 + w\|^2 - (*)$$

$$2\|v_1 + v_2 - w\|^2 = 2(\|v_1\|^2 + \|v_2\|^2) + 2\|v_1 - w\|^2 + 2\|v_2 - w\|^2 - (*)$$

Po podstawieniu do definicji (\cdot, \cdot) otrzymamy

$$(v_1 + v_2, w) = (v_1, w) + (v_2, w)$$

Mamy więc addytywność. Do pełnej liniowości brakuje własności $(v, \lambda w) = \lambda(v, w)$ dla $\lambda \in \mathbb{R}$. Z addytywności jest to oczywiste (zasadniczo czysto indukcyjnie) dla $\lambda \in \mathbb{N}$. Zauważmy, że własność ta dla $\lambda = -1$ jest również spełniona w trywialny sposób:

$$4(v, -w) = ||v - w||^2 - ||v + w||^2 =$$

$$= -(||v + w||^2 - ||v - w||^2) = -4(v, w)$$

Stąd, tożsamość jest spełniona dla wszystkich $\lambda \in \mathbb{Z}$. Następnym krokiem jest przedłużyć to na \mathbb{Q} . Niech $\lambda = a/b$ gdzie $a,b \in \mathbb{Z}_{\neq 0}$ oraz $w' = w/b \in V$. Wówczas,

$$b(v, \lambda w) = b(v, aw') = a(v, bw') = a(v, w)$$
$$(v, \lambda w) = \frac{a}{b}(v, w) = \lambda(v, w)$$

Mamy już więc tę własność dla $\lambda \in \mathbb{Q}$. Zauważmy, że $\mathbb{R}_{\neq 0} \ni \lambda \stackrel{f}{\mapsto} \frac{1}{\lambda}(v, \lambda w)$ jest ciągła dla danych $v, w \in V$. Pokazaliśmy, że $f(\lambda) = (v, w)$ dla wszystkich $\lambda \in \mathbb{Q}_{\neq 0}$. Ale \mathbb{Q} jest gęste \mathbb{R} , więc z ciągłości rozciąga się na $\lambda \in \mathbb{R}_{\neq 0}$.

Tak przy okazji zauważmy, że zdefiniowanie tego iloczynu skalarnego przez sumę/różnicę (itp) norm powoduje automatycznie, że iloczyn skalarny jest ciągły na V. Na drugich ćwiczeniach pokazywaliśmy bowiem, że norma $\|\cdot\|$ traktowana jako odwzorowanie $(V,\|\cdot\|) \to \mathbb{R}$ jest ciągła (proste nierówności trójkąta).

Niech V będzie przestrzenią nad \mathbb{R} (nad \mathbb{C} pewnie też) gdzie dim $V < \infty$. Weźmy podprzestrzeń $W \subset V$. Istnieje U domknięta (bo każda podprzestrzeń jest domknięta) taka, że $V = W \oplus U$. Niech na V będzie iloczyn skalarny, gdzie V jest Banacha w normie od iloczynu (takie coś nazywa się przestrzenią Hilberta). Niech $U = W^{\perp} = \bigcap_{w \in W} \{(\cdot, w) = 0\}$.

Przykład patologii w nieskończonym wymiarze; uwaga – bełkot, jeszcze do zrozumienia i zredagowania od nowa – Istnieje $W \subset V$ domknięta, gdzie $(V, \|\cdot\|)$ jest Bancha, taka, że nie istnieje domknięta $U \subset V$ dopełniająca V, czyli taka, że $V = W \oplus U$.

Czyli nie działa coś, co w przestrzeni skończonego wymiaru jest oczywiste. Dlatego przestrzenie Hilberta są jakby bliższe temu przypadkowi skończenie wymiarowemu, niż przestrzenie Banacha których normy nie pochodzą od iloczynu.

$$V = \ell_{\infty}, ||(a_n)|| = \sup |a_n|$$

 $V \supset W = C_0 = \{(a_n) : \lim a_n = 0\}$

Sprawdźmy, że $C_0 \subset \ell_{\infty}$ jest domknięta. Muszę wiedzieć, że jeśli wezmę ciąg punktów w C_0 , jego granica też musi leżeć w C_0 . W normie supremum ta zbieżność jest jasna. Rysujemy dwa pasy o szerokości ε . Podobny argument dlaczego jednostajna granica funkcji ciągłej jest ciągła.

Załóżmy, że $\ell_{\infty} = C_0 \oplus U$ gdzie U jest domknięta. Przestrzenie są domknięte, więc istnieje ciągły rzut z ℓ_{∞} na U. Pomysł. Wyrżnimy nieprzeliczalnie dużą rodzine podzbirów ℓ_{∞} : $\chi_{\lambda} \in \ell_{\infty}$ gdzie $\lambda \in \Lambda$. χ_{λ} jest funkcją charakterystyczną podzbioru \mathbb{N} . Żadna z tych funkcji charakterystycznych nie należy do C_0 dla żadnego λ .

Ponadto, jeśli $\lambda_1 \neq \lambda_2$, to $\left|\chi_{\lambda_1}^{-1}(1) \cap \chi_{\lambda_2}^{-1}(1)\right| < \infty$. Ponadto (zakładamy) $|\Lambda| > \aleph_0$. Konstrukcja tej rodziny jest taka:

$$\chi_{\lambda} \colon \mathbb{N} \to (0,1) \cap \mathbb{Q}$$

identyfikujemy jednoznacznie. Natomiast $\Lambda = (0,1) \setminus \mathbb{Q}$. Wówczas $\chi_{\lambda}^{-1}(1)$ to ciąg wymierny zbiegający do λ . Więc przecięcie takich dwóch zbiorów może być tylko skończone.

Wiemy już więc, że istnieje więc taki ciąg dużej mocy. Weźmy odwzorowanie L liniowe ciągłe na hipotetycznej przestrzeni dopełniającej U, tj. $L \in B(U, \mathbb{R})$. Ustalmy $\varepsilon_0 > 0$. Przyjrzyjmy się zbiorowi $D_{\varepsilon_0} = \{\lambda \in \Lambda \colon |L(\chi_{\lambda})| \geq \varepsilon_0\}$. Twierdzimy, że moc takiego zbioru jest skończona. Dlaczego?

Wybierzmy skończoną rodzinę z Λ : $\lambda_1, \ldots, \lambda_n \in D_{\varepsilon_0}$ (parami różne). Obserwacja: sumujemy następujące wielkości:

$$v = \sum_{j=1}^{n} \operatorname{sgn}(L(\chi_{\lambda_j})) \cdot \chi_{\lambda_j}$$

Poza skończonym zbiorem, wszystkie nośniki są rozłączne (!). W takim razie taki zbiór skończony (ciąg) nalezy na pewno do C_0 , bo potem jest tożsamościowo zerowy.

Od pewnego miejsca będą znaki i jedynki, zatem nie będzie dużych liczb. W ℓ_{∞}/C_0 (modulo C_0) napiszemy ten wektor v o normie 1. Z drugiej strony te znaki są tak dobrane, że

$$L(v) \ge n\varepsilon_0$$

ale to wektor o normie 1, zatem $n \leq ||L||/\varepsilon_0$ (ciągłość). Zatem

$$\left|\lambda\colon \left|L(\chi_{\lambda})\right|>0\right|\leq \aleph_0$$

dla każdego odwzorowania liniowego ciągłego. jeszcze do tego wrócimy.

Zadanie domowe 4 Dany jest ciąg (a_n) o wyrazach nieujemnych $a_n \geq 0$. Pokaż, że jeśli dla każdego ciągu $(b_n) \in \ell_2$ o wyrazach nieujemnych zachodzi $\sum a_n b_n < \infty$, to $\sum (a_n)^2 < \infty$ (tj. $(a_n) \in \ell_2$). Ponadto, uogólnij na przypadek $a_n, b_n \in \mathbb{R}$.

Zadanie domowe 6 Niech (n_k) to ściśle rosnący ciąg gdzie $n_k \in \mathbb{N}$. Definiujemy zbiór $A = \{x : \sin(n_k x) \text{ jest zbieżny}\}$. Pokazać, że $l_1(A) = 0$. Warto skorzystać z zadania 5.

Ćwiczenia 5

Zadanie 1 Mając rozkład przestrzeni $V=V_1\oplus V_2$ zupełnej, z normą $\|\cdot\|$ na podprzestrzenie V_1,V_2 domknięte, wykazać że rzut pr: $V\to V_1$ dany wzorem $(v_1,v_2)\mapsto v_1$ jest ciągły.

 V_1, V_2 oczywiście dziedziczą normę z V (norma obcięta do podprzestrzeni liniowej jest normą). Ciągłość odwzorowania liniowego jest równoważna ciągłości w zerze. Weźmy ciąg punktów $v_n \in V$. Ciąg rozkłada się na składowe (v_{n1}, v_{n2}) . Zakładając $v_n \to 0$, chcemy pokazać, że implikuje to $v_{n1} \to 0$.

Na $V_1 \oplus V_2$ ustalmy nową normę $\|\cdot\|^{\sim}$ taką, że

$$||(v_1, v_2)||^{\sim} = ||v_1|| + ||v_2||$$

Wówczas można określić operator

$$T: (V_1 \oplus V_2, \|\cdot\|^{\sim}) \to (V, \|\cdot\|)$$

 $(v_1, v_2) \mapsto v_1 + v_2$

Wówczas,

$$||T(v_1, v_2)|| = ||v_1 + v_2|| \stackrel{\triangle}{\leq} ||v_1|| + ||v_2|| \stackrel{\text{def}}{=} ||(v_1, v_2)||^{\sim}$$

Stąd wnioskujemy, że odwzorowanie T jest ciągłe. Ponadto, jest również różnowartościowe, gdyż z definicji sumy prostej, $\forall v \in V \exists ! (v_1, v_2) \in V_1 \oplus V_2 \colon v = v_1 + v_2$ (T jest de facto mądrze wyrażoną identycznością między tymi przestrzeniami). W takim razie,

korzystając z twierdzenia o odwzorowaniu otwartym (które wymaga zupełności), T^{-1} jest ciągłe.

$$v = v_1 + v_2$$
$$T^{-1}v = (v_1, v_2)$$

Ciągłość oznacza, że istnieje taka stała c>0, dla której $\|(v_1,v_2)\|^{\sim} \leq c\|v\|$. Weźmy ciąg $V\ni v_n=v_{n1}+v_{n2}$.

$$\|v_{n1}\| \stackrel{\triangle}{\leq} \|v_{n1}\| + \|v_{n2}\| \stackrel{\text{def}}{=} \|(v_{n1},v_{n2})\|^{\sim} \stackrel{\text{ciaglość}}{\leq} c\|v_n\|$$

Oznacza to, że jeśli $v_n \to 0$, to $v_{n_1} \to 0$. Pokazaliśmy więc, że rzut jest ciągły, niezbędna była jednak zupełność przestrzeni.

Ćwiczenia 6

19 lis 2021 **Zadanie domowe 1** Niech $D = \{a_n : \sum |a_n| \le 1\} \subset \ell_2$. Teza: D jest domknięty i ma puste wnętrze.

Zadanie domowe 2 Niech $1 . Mamy oczywiste liniowe odwzorowanie włożenia <math>\mathrm{Id}_{p,q} \colon \ell_p \to \ell_q$. Pokazać, że to włożenie jest ciągłe i obliczyć jego normę.

Niech $(a_n) \in \ell_p$. Rozważmy unormowany ciąg $(b_n) = (a_n)/||(a_n)||_p$. Wynika stąd, że $\forall n \in \mathbb{N} |b_n| \leq 1$. W takim razie,

$$|b_n|^q \le |b_n|^p$$

 $|a_n|^q \le |a_n|^p ||(a_n)||_p^{q-p} < \infty$

Wynika stąd, że $(a_n) \in \ell_p \implies (a_n) \in \ell_q$, tj. $\ell_p \subset \ell_q$ jeśli p < q (i to włożenie w ogóle ma sens). W takim razie, po zsumowaniu

$$\|(a_n)\|_q^q \le \|(a_n)\|_p^p \|(a_n)\|_p^{q-p} = \|(a_n)\|_p^q$$

$$\|(a_n)\|_a \le \|(a_n)\|_p$$

Teraz pokażemy ciągłość, konstruując jednocześnie domysł na normę operatora.

$$\|\mathrm{Id}_{p,q}\| \stackrel{\mathrm{def}}{=} \sup_{(a_n)\in\ell_p} \frac{\|\mathrm{Id}_{p,q}(a_n)\|_q}{\|(a_n)\|_p} = \sup_{(a_n)\in\ell_p} \frac{\|(a_n)\|_q}{\|(a_n)\|_p} \le 1$$

To zapewnia już ciągłość (w zasadzie nawet poprzednia nierówność ją już zapewniała). Aby pokazać, że $\|\mathrm{Id}_{p,q}\|=1$, wystarczy wskazać ciąg (c_n) wysycający tę nierówność. Zauważmy, że w naturalny sposób działa $(c_n)=(1,0,0,\ldots)$.

Uwaga 3. Pokazaliśmy, że $\ell_p \subset \ell_q$ dla p < q. Jak to wygląda w przestrzeniach $L_p\big([0,1]\big)$? Czy włożenie $\mathrm{Id}_{p,1}\colon L_p\big([0,1]\big) \to L_1\big([0,1]\big)$ ma sens? [0,1] ma skończoną miarę, czyli jeśli $f \in L_1$, to oznacza, że osobliwości nie są szczególnie patologiczne. Intuicyjnie, warunek na bycie w L_p jest silniejszy, bo jeśli $f \in L_p$ ma osobliwości, to f^p wybucha nawet szybciej. Spodziewamy się więc sytuacji odwrotnej niż w przestrzeniach ciągowych, mianowicie $L_p \subset L_1$.

Użyjmy nierówności Holdera,

$$\begin{split} \int 1 \cdot |f| &\overset{H}{\leq} \|1\|_q \|f\|_p = \|f\|_p \\ \big\| \mathrm{Id}_{p,1} f \big\|_1 &\leq \|f\|_p \end{split}$$

Pokazuje to, że $L_p \subset L_1$. Ponadto $\|\mathrm{Id}_{p,1}\| = 1$, gdyż nierówność jest wysycona dla f = 1.

Podobnie, używając nierówności Holdera można pokazać, że dla skończonej przestrzeni mierzalnej (X, μ) (przykładem jest oczywiście $([0, 1], dl_1)$), zachodzi $L_q(X) \subset L_p(X)$ dla $1 \le p < q \le \infty$.

Zadanie domowe 3 $T: \ell_1 \to C_0 \subset \ell_\infty$ (czyli topologia zadawana przez obcięcie $\|\cdot\|_\infty$), gdzie $C_0 = \{(a_n): \lim a_n = 0\}$. Niech $(Ta)_n = \sum_{k=n}^\infty a_k$ (bierzemy ogon szeregu). Zapis $(Ta)_n$ oznacza n-ty wyraz ciągu otrzymanego z $Ta \in C_0$. Pokazać, że T ciągłe i policzyć $\|T\|$.

Zapiszmy normę występującą w definicji normy operatora. Dla dowolnego $a \in \ell_1$,

$$||Ta||_{\infty} = \sup_{n \in \mathbb{N}} \left| \sum_{k=n}^{\infty} a_k \right| \le \sup_{n \in \mathbb{N}} \sum_{k=n}^{\infty} |a_k|$$
$$= \sum_{k=1}^{\infty} |a_k| = ||a||_1$$

Stad,

$$||T|| = \sup_{a \in \ell_1} \frac{||Ta||_{\infty}}{||a||_1} \le 1$$

Operator T jest więc ciągły. Po wstawieniu ciągu $c=(1,0,0,\ldots)$ przekonujemy się, że $\|c\|_1=1$ oraz $\|Tc\|_\infty=1$, zatem $\|T\|=1$.

Zadanie $4-\varepsilon$ $T: L_p([0,1]) \to L_p([0,1])$ zdefiniowane przez $(Tf)(x) = (x^2 + x)f(x)$. Pokazać ciągłość i policzyć normę.

Postępujemy standardowo, z zamysłem podobnym do zadania 6.

$$||Tf||_p^p = \int_0^1 (x^2 + x)^p |f|^p \le 2^p \int_0^1 |f|^p = 2^p ||f||_p^p$$

$$||T|| = \sup_{f \in L_p([0,1])} \frac{||Tf||_p}{||f||_p} \le 2$$

Naturalnie domyślamy się, że ||T|| = 2. Trzeba wymyślić taki ciąg $f_n \subset L_p([0,1])$, który wysyci tę nierówność. Posługujemy się tym samym trickiem co w zadaniu 6, tj. zauważamy, że $(x^2 + x)$ jest funkcją ściśle rosnącą na [0,1], najbardziej więc f jest skalowana

na otoczeniu jedynki. Spróbujmy więc wziąć ciąg

$$f_n = \chi_{\left[1 - \frac{1}{n}, 1\right]}$$

$$\|f_n\|_p^p = \frac{1}{n}$$

$$\|Tf_n\|_p^p = \int_{1 - \frac{1}{n}}^1 (x^2 + x)^p dx$$

Szacujemy biorac minimum na przedziale,

$$\geq \frac{1}{n} \left[\left(1 - \frac{1}{n} \right)^2 + \left(1 - \frac{1}{n} \right) \right]^p$$

Stad,

$$\frac{\|Tf_n\|_p^p}{\|f_n\|_p^p} \ge \left[\left(1 - \frac{1}{n} \right)^2 + \left(1 - \frac{1}{n} \right) \right]^p$$

$$\|T\| \ge \sup_{f_n \subset L_p([0,1])} \frac{\|Tf_n\|_p}{\|f_n\|_p}$$

$$\ge \sup_{n \in \mathbb{N}} \left[\left(1 - \frac{1}{n} \right)^2 + \left(1 - \frac{1}{n} \right) \right] = 2$$

Wobec tego, ||T|| = 2.

Zadanie domowe 4 $T: L_p([0,1]) \to L_1([0,1])$ zdefiniowane przez $(Tf)(x) = (x^2 + x)f(x)$. Pokazać ciągłość i policzyć normę.

Standardowo,

$$||Tf||_1 = \int_0^1 |x^2 + x||f| \le \int_0^1 \le 2 \int_0^1 |f| \stackrel{H}{\le} 2||f||_p$$

To już daje ciągłość T. Spodziewamy się również, że ||T|| = 2, jednak nie jest to aż tak proste jak poprzednio, bo tym razem nie jesteśmy na tych samych przestrzeniach. Gdybyśmy spróbowali powtórzyć to samo z ciągiem $f_n = \chi_{[1-\frac{1}{n},1]}$, otrzymalibyśmy

$$||Tf_n||_1 = \frac{2}{n} + o\left(\frac{1}{n}\right)$$

$$||f_n||_p = \frac{1}{n^{1/p}}$$

$$\frac{||Tf_n||_1}{||f_n||_p} = \frac{\frac{2}{n} + o\left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)^{1/p}} \to 0$$

Z resztą supremum tego ciągu też jest mniejsze niż 2. Możemy jednak użyć nierówności Holdera w celu jak najlepszego oszacowania normy,

$$\|Tf\|_1 \overset{H}{\leq} \left\|x^2 + x\right\|_q \|f\|_p$$

dla (p,q) sprzężonych. Znamy warunek na to, kiedy nierówność Holdera przechodzi w równość. Otóż $\|fg\|_1 = \|f\|_p \|g\|_q \iff |f|^p = \alpha |g|^q$. W naszym przypadku są to funkcje postaci

$$f_{\alpha}(x) = \alpha (x^2 + x)^{\frac{q}{p}} = \alpha^{p-1} \sqrt{x^2 + x} \in L_p([0, 1])$$

Weźmy $f = |x^2 + x|^{q-1}$. Jest to funkcja z naszej przestrzeni, wysycająca nierówność Holdera. Wobec tego,

$$||T|| = ||x^2 + x||_q$$

Zadanie domowe 5 $L_a: C([0,1]) \to \mathbb{R}$ gdzie

$$L_a f = + \int_0^a f - \int_a^1 f$$

Pokazać, że L_a jest ciągłe i policzyć normę.

Przyjmujemy oczywiście \mathbb{R} z normą $|\cdot|$. Wówczas,

$$|L_a f| = \left| \int_0^a f - \int_a^1 f \right| \le \int_0^1 |f| + \int_a^1 |f|$$

$$\le \int_0^1 |f| \le \sup_{x \in [0,1]} |f(x)| = ||f||_{\infty}$$

Stad,

$$||L_a|| = \sup_{f \in C([0,1])} \frac{|L_a f|}{||f||_{\infty}} \le 1$$

Widać więc, że L_a jest ciągły, chcielibyśmy natomiast przekonać się, że $||L_a|| = 1$. Nie trudno się domyślić, że funkcja

$$f(x) = \begin{cases} 1 & x \in [0, a) \\ -1 & x \in [a, 1] \end{cases}$$

wysyciłaby nierówność, jednak ma ona taką wadę, że nie jest w C([0,1]). Rozważmy więc ciąg funkcji ciągłych (Rys. 2)

$$f_n(x) = \begin{cases} 1 & x \in [0, a - 1/n) \\ \text{liniowy spadek} & x \in [a - 1/n, a + 1/n) \\ -1 & x \in [a + 1/n, 1] \end{cases}$$

Naturalnie, położenie $a \in (0,1)$ może być tak niefortunne, że przedziały użyte w definicji f_n nie będą miały sensu, natomiast zawsze będzie istnieć $N \in \mathbb{N}$ takie, że dla każdego n > N, f_n będzie dobrze określona. f_n są tak skonstruowane, aby $||f_n||_{\infty} = 1$. Wówczas,

$$||T|| = \sup_{f \in C([0,1])} \frac{|L_a f|}{||f||_{\infty}} \ge \sup_{(f_n) \subset C([0,1])} \frac{|L_a f_n|}{||f_n||_{\infty}}$$
$$= \sup_{n \in \mathbb{N}} \left(1 - \frac{1}{2} \cdot \frac{2}{n}\right) = \sup_{n \in \mathbb{N}} \left(1 - \frac{1}{n}\right) = 1$$

Otrzymaliśmy więc zestaw nierówności $||T|| \le 1$ oraz $||T|| \ge 1$, z których wynika, że ||T|| = 1.

Rysunek 2: $f_n(x)$

Zadanie domowe 6 Niech $T: L_p([0,1]) \to L_p([0,1])$ gdzie $p \ge 1$, zadane przez $(Tf)(x) = f(\sqrt{x})$. Pokazać ciągłość i policzyć normę.

Zaczynamy klasycznie,

$$||Tf||_p^p = \int_0^1 |f(\sqrt{x})|^p dx = \left| \frac{u = \sqrt{x}}{du = (2\sqrt{x})^{-1} dx} \right| = \int_0^1 2|f(u)|^p u du$$

Szacujemy u przez jedynkę

$$\leq 2 \int_0^1 |f(u)|^p du = 2||f||_p^p$$

W takim razie,

$$||T|| = \sup_{f \in L_p([0,1])} \frac{||Tf||_p}{||f||_p} \le 2^{1/p}$$

To gwarantuje ciągłość T i daje podejrzenie, że jego normą jest $2^{1/p}$. Zauważmy, że $u(\sqrt{x})$ jest funkcją rosnącą, maksymalny wkład daje więc w otoczeniu jedynki, gdzie jest równa 1. Chcielibyśmy więc wprowadzić ciąg funkcji wysycających tę nierówność, będących indykatorami otoczenia jedynki, tj.

$$f_n = \chi_{\left[1 - \frac{1}{n}, 1\right]}$$

$$\|f_n\|_p = \frac{1}{n}$$

$$\|Tf_n\|_p^p = 1 - \left(1 - \frac{1}{n}\right)^2 = \frac{2}{n} - \frac{1}{n^2}$$

$$\frac{\|Tf_n\|_p^p}{\|f_n\|_p} = 2 - \frac{1}{n}$$

Stad,

$$||T|| \ge \sup_{(f_n) \subset L_p([0,1])} \frac{||Tf_n||_p}{||f_n||_p} = \sup_{n \in \mathbb{N}} \left(2 - \frac{1}{n}\right)^{1/p} = 2^{1/p}$$

Skoro $||T|| \ge 2^{1/p}$ i $||T|| \le 2^{1/p}$, to $||T|| = 2^{1/p}$.

Ćwiczenia 7

Zadanie 1 Niech $1 . Podać przykład przestrzeni z miarą <math>(X, \mathfrak{M}, \mu)$, dla 26 lis 2021 której:

(a)
$$L^p \subset L^q$$

Pokazywaliśmy już wcześniej, że dla przestrzeni $\ell_p = \{(a_n) : \sum |a_n|^p < \infty\}$ zachodzi taka inkluzja. ℓ_p jest po prostu przestrzenią $L^p(\mathbb{N}, \mu_L)$ gdzie $\mu_L(A) = \#A$ jest miarą liczącą. Weźmy ciąg $(a_n) \in \ell_p$ taki, że $a_n \to 0$. Wówczas, dla dostatecznie dużych n,

$$|a_n|^q \stackrel{p < q}{\leq} |a_n|^p \quad \text{dla } |a_n| < 1$$

$$\sum |a_n|^q < +\infty$$

co oznacza, że $(a_n) \in \ell_q$, tj. $\ell_p \subset \ell_q$.

(b)
$$L^p \supset L^q$$

Tutaj również przykład, który zdarzyło się nam analizować. Pokażemy, że $L^p([0,1]) \supset L^q([0,1])$. Niech $f \in L^q$. Wobec tego,

$$\int_0^1 |f|^p = \int_0^1 1 \cdot |f|^p \stackrel{H}{\leq} \left(\int_0^1 |f|^q \right)^{1/r} \left(\int_0^1 1^s \right)^{1/s}$$

gdzie r = q/p > 1 oraz r jest sprzężone z s.

$$= \|f\|_q^{q/r} < \infty$$

Pokazaliśmy tym samym, że $f \in L^p$, co dowodzi zawierania $L^q \subset L^p$. Zauważmy, że ten rezultat otrzymaliśmy dzięki temu, że [0,1] jest skończenie mierzalna, więc druga całka nie wybucha.

(c) Nie zachodzi żadna z powyższych relacji.

Postulujemy, że żadna z relacji zawierania nie zachodzi dla przestrzeni $L^p([0,\infty))$ i $L^q([0,\infty))$. Musimy podać przykłady dwóch funkcji, gdzie jedna należy do L^p , nie należy do L^q , oraz drugiej dla której zachodzi odwrotna własność. Pamiętamy, że funkcje typu $x^{-\alpha}$ miewają kłopoty z całkowaniem w zależności od wykładnika. Rozważmy więc parę funkcji:

$$f_{p,\infty} = x^{-1/p} \chi_{[1,\infty)}, \quad f_{p,0} = x^{-1/p} \chi_{[0,1]}$$

Wówczas,

$$\int_0^\infty |f_{p,\infty}|^p = \int_1^\infty x^{-1} = +\infty$$
$$\int_0^\infty |f_{p,\infty}|^q = \int_1^\infty x^{-q/p} < +\infty$$

gdyż q/p > 1. Wnioskujemy stąd, że $f_{p,\infty} \in L^q \setminus L^p$. Podobnie dla drugiej funkcji,

$$\int_0^\infty |f_{q,0}|^p = \int_0^1 x^{-p/q} < +\infty$$

gdyż p/q < 1.

$$\int_0^\infty |f_{q,0}|^q = \int_0^1 x^{-1} = +\infty$$

Stąd płynie wniosek, że $f_{q,0} \in L^p \setminus L^q$. To dowodzi, że między tymi przestrzeniami nie ma zawierania, bo $L^p \setminus L^q \neq \emptyset$ oraz $L^q \setminus L^p \neq \emptyset$.

Zadanie 2

(a) Niech $f \in L^1([0,\infty))$ i $f \in L^p([0,\infty))$. Czy $\lim_{x\to\infty} f(x) = 0$?

Nie! Wyobraźmy sobie następująca funkcje:

$$f(x) = \sum_{n=1}^{\infty} \chi_{\left[n, n + \frac{1}{n^2}\right]}(x)$$

Nie zanika ona w nieskończoności oraz

$$\int_{0}^{\infty} |f(x)| dx = \sum_{n=1}^{\infty} \int_{\left[n, n + \frac{1}{n^{2}}\right]} dx = \sum_{n=1}^{\infty} \frac{1}{n^{2}} < +\infty$$
$$\int_{0}^{\infty} |f(x)|^{p} dx = \int_{0}^{\infty} |f(x)| dx < +\infty$$

Zatem $f \in L^p([0,\infty))$ dla dowolnego $p \ge 1$.

(b) Niech $f \in L^1([0,\infty))$ i $f \in C([0,\infty))$. Czy implikuje to, że $\lim_{x\to\infty} f(x) = 0$?

Znów nie! Możemy uciąglić poprzednią konstrukcję poprzez zbiór trojkątnych wypustek o szerokości $1/n^2$ (Rys. 3). Niech

$$f(x) = \sum_{n=1}^{\infty} \left(2n^2x + 1 - 2n^3\right) \chi_{\left[n - \frac{1}{2n^2}, n\right]} + \left(-2n^2x + 1 + 2n^3\right) \chi_{\left[n, n + \frac{1}{2n^2}\right]}$$

Widać wówczas, że $f(x) \in C([0,\infty))$ oraz

$$\int |f| \, \mathrm{d}x = \sum_{n=1}^{\infty} \frac{1}{2} \frac{1}{n^2} < \infty$$

zatem $f \in L^1$. Jednocześnie f nie zanika w nieskończoności.

(c) Niech $f \in L^1([0,\infty))$ i $f \in C([0,\infty))$. Czy f musi być ograniczona w nieskończoności? Tj. czy $\lim_{n\to\infty} \left(\sup_{[n,+\infty)} |f|\right) < +\infty$?

Rysunek 3: f(x)

Już poprzedni kontrprzykład pokazuje pośrednio, że nie musi tak być. Możemy bowiem rozważyć funkcję

$$f(x) = \sum_{n=1}^{\infty} \left(2n^4x + n - 2n^5\right) \chi_{\left[n - \frac{1}{2n^3}, n\right]} + \left(-2n^4x + n + 2n^5\right) \chi_{\left[n, n + \frac{1}{2n^3}\right]}$$

różniącą się od poprzedniej tym, że tym razem podstawy trójkątów mają długości $1/n^3$, a wysokości trójkątów wynoszą n (zatem ciąg rozbieżny). Granicznie, supremum staje się nieograniczone i funkcja wybucha.

Do przemyślenia Wykazać, że $f\in C^1ig([0,\infty)ig)$ oraz |f'| ograniczona implikuje, że $\lim_{x\to\infty}f(x)=0.$

Zadanie 3 Rozważmy przestrzeń z miarą $(X,\mathfrak{M},\mu),\,f\colon X\to\mathbb{R}$ mierzalną oraz $f\neq 0$ p.w. na X. Definiujemy

$$\phi_f(p) = \int_X |f|^p d\mu, \quad A = \{p \colon \phi_f(p) < \infty\}$$

Dla uproszczenia pominiemy indeks f.

- (a) Wykazać, że jeśli p < r < q oraz $p, q \in A$, to $r \in A$ (z czego wyniknie, że A jest zbiorem spójnym).
- (b) Wykazać, że $\log \phi$ jest funkcją wypukłą na A.
- (c) Czy A może być zbiorem otwartym? Czy A może być zbiorem domkniętym?
- (d) Jeżeli p < r < q oraz $p, q \in A$ to $||f||_r \le \max(||f||_p, ||f||_q)$ (z czego wynika, że $L^p \cap L^q \subset L^r$).
- (e) Niech $\mu(X)=1$ oraz $\|f\|_p<\infty$ dla pewnego p>0. Wykazać, że

$$\lim_{p \to 0^+} ||f||_p = \exp\left(\int_X \log|f| \,\mathrm{d}\mu\right)$$

(a) Zgodnie z definicją zbioru A, chcemy pokazać, że całka z $|f|^r$ po przestrzeni jest skończona. Rozbijmy X na dwa podzbiory $X = \{x \colon |f| \le 1\} \sqcup \{x \colon |f| > 1\} \stackrel{\text{def}}{=} X_0 \sqcup X_{\infty}$. Wówczas,

$$\int_{X} |f|^{r} = \int_{X_{0}} |f|^{r} + \int_{X_{\infty}} |f|^{r}$$

$$\int_{X} |f|^{r} \le \int_{X_{0}} |f|^{p} + \int_{X_{\infty}} |f|^{q}$$

$$\le \int_{X} |f|^{p} + \int_{X} |f|^{q}$$

$$= \phi_{f}(p) + \phi_{f}(q) < +\infty$$

Wynika stąd, że $r \in A$. A jest więc spójnym podzbiorem \mathbb{R} (bo wykładniki pochodzą $z \mathbb{R}$).

(b) Definiujemy $\log \phi \colon A \to \mathbb{R}$. Przypomnijmy sobie co oznaczała wypukłość funkcji g.

$$g(tp + (1-t)q) \le tg(p) + (1-t)g(q)$$

W naszym przypadku chcemy pokazać, że

$$\log \phi(r) = \log \phi(tp + (1-t)q) \le t \log \phi(p) + (1-t) \log \phi(q)$$

Zauważmy, że jest to równoważne nierówności

$$\phi(r) \le \phi(p)^t \phi(q)^{1-t}$$

Do udowodnienia tej nierówności użyjemy oczywiście nierówności Holdera.

$$\phi(tp + (1-t)q) = \int_{X} |f|^{tp+(1-t)q} = \int_{X} |f|^{tp} |f|^{(1-t)q}$$

$$\stackrel{H}{\leq} \left(\int_{X} |f|^{p}\right)^{t} \left(\int_{X} |f|^{q}\right)^{1-t}$$

Gdzie wykładnikami sprzężonymi były 1/t i 1/(1-t). Tak przy okazji, ich sprzężoność jest oczywista, gdyż jeśli a+b=1, to 1/a+1/b=1.

$$= \phi(p)^t \phi(q)^{1-t}$$

Wobec tego, $\log \phi$ jest funkcją wypukłą na A.

(c) Jeśli rozważymy przestrzeń z miarą Lebesgue'a $([1, +\infty), l_1)$ a w niej funkcję mierzalną $f = x^{-1}$, to dla niej $A = (1, +\infty)$ – pamiętamy z analizy dla jakich wykładników taka funkcja była całkowalna na $[1, \infty)$. A może być więc zbiorem otwartym. Korzystając z wybranej przestrzeni, chcielibyśmy jeszcze poprawić f tak, żeby dodać punkt $\{1\}$ do A (wówczas będzie domknięty bo $\mathbb{R} \setminus [1, \infty)$ jest otwarty). Rozważmy więc funkcję

$$f = \frac{1}{1+x} \frac{1}{\log^2(1+x)}$$
$$\int_1^\infty |f(x)|^1 dx < +\infty \implies 1 \in A$$

Logarytm nie psuje również zbieżności dla p > 1. Natomiast dla $\varepsilon > 0$,

$$|f|^{1-\varepsilon} = \underbrace{\frac{\log^{\varepsilon}(1+x)}{1+x}}_{\text{niecałkowalne}} \underbrace{\frac{(1+x)^{\varepsilon}}{\log^{2}(1+x)}}_{\text{rozbieżne do}}$$

jako, że dowolna dodatnia potęga x rośnie szybciej niż log. To pokazuje, że p<1 nie mogą należeć do A.

Do przemyślenia Czy istnieje $f: A = \{a_0\}$ jest zbiorem jednopunktowym?

Ćwiczenia 8

Kontynuujemy ostatnie zadanie z poprzednich ćwiczeń.

03 gru 2021

(d) Naturalnie pamiętamy, że $\|f\|_p = \phi(p)^{1/p}$. Wiemy już, że logarytm jest wypukły na A. Warunek wypukłości oznacza, że dla

$$r = tp + (1 - t)q, \quad t \in (0, 1)$$
$$\log \phi(r) \le t \log \phi(p) + (1 - t) \log \phi(q)$$

Logarytm z normą wiąże się następująco,

$$\log ||f||_p = \frac{1}{p} \log \phi(p)$$
$$\log ||f||_q = \frac{1}{q} \log \phi(q)$$

Teraz można podstawić do naszej formuły na wypukłość,

$$\log \phi(r) \le tp \log ||f||_p + (1-t)q \log ||f||_q$$

Szacujemy przez większy z czynników logarytmicznych,

$$\leq \underbrace{\left(tp + (1-t)q\right)}_{r} \max\left(\log||f||_{p}, \log||f||_{q}\right)$$

Po podzieleniu przez r dostajemy niemal tezę.

$$\log ||f||_r \le \max \left(\log ||f||_p, \log ||f||_q\right)$$

Logarytm jest ściśle rosnącą funkcją, więc bez logarytmów również zachodzi szacowanie

$$||f||_r \le \max\Bigl(||f||_p, ||f||_q\Bigr)$$

Przy okazji dostaliśmy przyjemny fakt, że $L^p\cap L^q\subset L^r.$

(e) **Do zastanowienia**. Wskazówka: zobaczmy jak by to było w sytuacji gdyby f byłoby funkcją prostą. Bez straty ogólności można też założyć, że $f \geq 0$ (gdyż w argumencie jest i tak $\log |f|$). Zatem,

$$f = \sum_{k=1}^{N} a_k \chi_{A_k}, \quad X = \bigsqcup_{k=1}^{N} A_k$$

Jeśli akurat by się nie sumowało do całej przestrzeni to zawsze gdzieś można dołożyć zero. Zapiszmy p-tą normę takiej funkcji prostej,

$$||f||_p = \left(\sum_{k} a_k^p \mu(A_k)\right)^{1/p}$$

 $a_k^p = e^{p \log a_k} = 1 + p \log a_k + o(p)$

Stąd,

$$||f||_p = \left(\sum \mu(A_k) + p \sum \log a_k \cdot \mu(A_k) + o(p)\right)^{1/p}$$

Korzystając z założenia $\mu(X) = 1$ widzimy, że

$$= \left(1 + p \sum_{k} \log a_k \cdot \mu(A_k) + o(p)\right)^{1/p}$$

Jesteśmy w sytuacji Analizy I, gdzie $(1 + a_n)^n \to e^g$ gdzie $g = \lim na_n$ (podobny fakt był oczywiście prawdziwy dla funkcji).

$$\xrightarrow{p \to 0^+} \exp\left(\sum \mu(A_k) \log a_k\right)$$

Widać, że w wykładniku jest dokładnie całka z logarytmu tej funkcji prostej.

Mając tę wskazówkę, trzeba jeszcze wywnioskować fakt dla dowolnych f. Przypomnijmy sobie, że dla każdej funkcji mierzalnej $f \geq 0$ istnieje ciąg funkcji prostych $f_n \geq 0$ takich, że ciąg $(f_n(t))$ jest niemalejący i $f_n(t) \rightarrow f(t)$ punktowo. Niech (f_n) będzie takim ciągiem przybliżającym naszą $f \geq 0$. Wykazaliśmy już, że $\forall n \in \mathbb{N}$ zachodzi

$$||f_n||_p^p = 1 + p \int_X \log f_n \, \mathrm{d}\mu + o(p)$$

Korzystając z tego, że $\|\cdot\|_p$ i log są ciągłe oraz używając definicji całki funkcji f,

$$||f||_p^p = \lim_{n \to \infty} ||f_n||_p^p = 1 + p \int_X \log f \, d\mu + o(p)$$

Wobec tego,

$$\begin{split} \lim_{p \to 0^+} & \|f\|_p = \lim_{p \to 0^+} \left(1 + p \int_X \log f \, \mathrm{d}\mu + o(p)\right)^{1/p} \\ & = \exp\biggl(\int_X \log f \, \mathrm{d}\mu\biggr) \end{split}$$

Zadanie 3 Niech $f \in L^p((0, +\infty))$ oraz

$$(Tf)(x) = \frac{1}{x} \int_0^x f(t) dt, \quad x \in (0, +\infty)$$

(a) Niech p>1. Wykazać, że T określa ciągłe odwzorowanie $L^p\to L^p$ oraz $\|T\|=p/(p-1)$.

Skorzystajmy ze wskazówki. Jeśli $f \in C(0, +\infty)$ jest o zwartym nośniku, to f = 0 na jakimś otoczeniu zera $[0, \varepsilon_0]$ i f(x) = 0 dostatecznie daleko na $x \ge R$. Dlaczego to dobrze? Wówczas,

$$\int_0^x f = F(x) \in C^1 \text{ oraz } F' = f$$

Zapiszmy coś podobnego do p-tej normy,

$$||Tf||_p^p = \int_0^\infty \left(\frac{1}{x}F(x)\right)^p = \int_0^\infty \frac{1}{x^p}F^p(x)$$

Wykonujemy całkowanie przez części,

$$= \frac{x^{1-p}}{1-p}F^p \bigg|_0^{\infty} - \frac{1}{1-p} \int_0^{\infty} x^{1-p} p F^{p-1} F'$$

F=0 na otoczeniu zera, natomiast f jest ciągłe o zwartym nośniku, zatem $F \xrightarrow{x\to\infty} c$ oraz $x^{1-p} \to 0$, zatem całość daży do zera. Cały człon się więc wyzeruje.

$$= \frac{p}{p-1} \int_0^\infty x^{1-p} F^{p-1} f = \frac{p}{p-1} \int \left(\frac{1}{x} F\right)^{p-1} f$$

Teraz (w końcu) pora na nierówność Holdera,

$$\stackrel{H}{\leq} \frac{p}{p-1} \left(\int \left(\frac{1}{x} F \right)^{(p-1)q} \right)^{1/q} ||f||_{p}$$

Odszyfrowujemy wykładnik sprzężony, (p-1)q = p,

$$= \frac{p}{p-1} \|Tf\|_p^{p-1} \|f\|_p$$

Stąd,

$$||Tf||_p \le \frac{p}{p-1}||f||_p$$

Wykazaliśmy więc, że na takiej klasie funkcji operator szacuje się w taki sposób. Czy szacuje się tak samo na całym L^p ? Wiemy, że w L^p funkcje ciągłe o zwartym nośniku tworzą podzbiór gęsty. Wykażmy teraz, że wystarczy wykazać to wszystko dla $f \in L^p$ nieujemnej. Dla dowolnej f,

$$\left| (Tf)(x) \right| = \left| \frac{1}{x} \int_0^x f \right| \le \frac{1}{x} \int_0^x |f| = T(|f|)(x)$$

Widać więc, że jeśli w tę stronę oszacujemy dla funkcji nieujemnej, to wszystkie inne będą załatwione.

Obserwacja (sprawdzić): Jeśli $f \in L^p$, to $Tf \in L^p$ (niezwykle istotne, że p > 1). Weźmy ciąg $f_n \in C_c(0, \infty)$ o zwartym nośniku, taki, że $f_n \xrightarrow{\|\cdot\|_p} f$, gdzie $f \in L^p$ jest dowolna (każdą da się przybliżyć takim ciągiem ze zbioru gęstego). Zatem f_n jest na pewno ciągiem Cauchy'ego w p-tej normie. W takim razie ciąg Tf_n jest ciągiem Cauchy'ego w L^p bo szacuje się (w normie) przez f_n z czynnikiem niezależnym od n (co właśnie pokazywaliśmy). Skoro jest ciągiem Cauchy'ego, to znaczy, że

 $Tf_n \to \hat{g} \in L^p$. Ale widać również, że $Tf_n \to Tf$ niemal jednostajnie na $(0, +\infty)$.

Dlaczego? Ustalamy przedział zwarty $[\varepsilon, R] \ni x$.

$$\left| \frac{1}{x} \int_0^x (f - f_n) \right| \le \frac{1}{x} \int_0^x 1 \cdot |f - f_n| \stackrel{H}{\le} \frac{1}{x} \left(\int_0^x 1 \right)^{1/q} ||f - f_n||_p$$

$$\le \frac{1}{\varepsilon} R^{1/q} \underbrace{||f - f_n||_p}_{\to 0}$$

Co daje zbieżność niemal jednostajną. Zatem prawie wszędzie $\hat{g} = Tf$, co z punktu widzenia L^p jest tym samym elementem przestrzeni.

Wiemy już więc w tej sytuacji, że $T\colon L^p\to L^p$ dla p>1 jest liniowym operatorem ciągłym oraz zachodzi oszacowanie

$$||Tf||_p \le \frac{p}{p-1}||f||_p$$

Trzeba jeszcze pokazać, że tej stałej nie da się poprawić. Wskazówka: rozważyć $f_R=x^{-1/p}\chi_{[1,R]}$ gdzie potem $R\to\infty$.

(b) Jeżeli p=1 oraz f>0 to $Tf\not\in L^1$.

Zadanie 4 Niech $V=C^1\big([0,1]\big), \, \|f\|=\sup|f|+\sup|f'|.$ Wykazać, że $(V,\|\cdot\|)$ jest zupełna.

Niech f_n będzie Cauchy'ego w V. Ciąg f_n jest c.c w sensie normy sup $|\cdot|$ oraz f'_n jest c.c w sensie normy sup $|\cdot|$. Można skorzystać z twierdzenia z Analizy I mówiącego, że jeśli $f'_n \to g$ jednostajnie i $f_n(x_0)$ zbieżny (dla dowolnego punktu x_0), to $f_n \to f$ jednostajnie i f' = g.

Można też próbować elementarnie (de facto odtwarzając dowód tego twierdzenia z analizy). Wiemy, że $(V, \sup |\cdot|)$ jest przestrzenią zupełną. Zatem dowolny ciąg Cauchy'ego $f'_n \xrightarrow{\sup} g$. Ponadto, $f_n(0)$ jest zbieżny (znów zupełność, tym razem w \mathbb{R}). Teraz wystarczy zapisać formułę

$$f_n(x) = f_n(0) + \int_0^x f_n'$$

 $f_n \to f$ jednostajnie, zatem możemy przejść granicznie pod całką,

$$f(x) = \int_0^x g + \lim f_n(0)$$

Stąd wynika, że $f \in C^1$, oraz f' = g co załatwia sprawę.

Dlaczego to właściwie załatwia sprawę? Otóż zbieżność w naszej normie $\|\cdot\|$ oznacza, że dla dowolnego ciągu Cauchy'ego $(f_n) \subset V$ będzie zachodzić (modulo kwantyfikatory)

$$||f_n - f|| \le \varepsilon$$

$$\sup |f_n(x) - f(x)| + \sup |f'_n(x) - f'(x)| \le \varepsilon$$

dla pewnej funkcji $f \in V$. Naturalnie kandydatem na tą granicę jest granica punktowa ciągu Cauchy'ego na \mathbb{R} : $f(x) = \lim f_n(x) \, \forall \, x \in [0,1]$. Mogłoby się zdarzyć (gdyby nie zaprezentowane twierdzenie), że $\lim f'_n(x) \neq (\lim f_n(x))'$. To by oznaczało, że nie byliśmy w stanie wytypować spójnej granicy na taki ciąg Cauchy'ego.

Ćwiczenia 9

Zadanie 1 Niech $(V, \|\cdot\|)$ będzie przestrzenią unormowaną.

10 gru 2021

(a) Jeśli $W \subset V$ jest podprzestrzenią oraz dim $W < \infty$ to W jest domknięta.

Niech $g \in \overline{W}$. Wówczas z definicji domknięcia istnieje taki ciąg $(w_n) \subset W$, że $w_n \to g$. W związku z tym (w_n) jest ciągiem Cauchy'ego w W. Natomiast dim $W < \infty$, zatem $W \cong \mathbb{R}^m$. Na \mathbb{R}^m każdy ciąg Cauchy'ego jest zbieżny (w dowolnej normie, bo normy są równoważne na przestrzeniach skończonego wymiaru). Oznacza to, że $(W, \|\cdot\|_W)$ jest przestrzenią zupełną, zatem $\lim w_n \in W$, tj. $g \in W$ wobec jednoznaczności granic. Pokazaliśmy więc, że $g \in \overline{W} \implies g \in W$ dla dowolnego g, zatem $W = \overline{W}$.

(b) Jeżeli $W \subset V$ jest podprzestrzenią domkniętą oraz $\dim(V/W) < \infty$ to istnieje podprzestrzeń domknięta $U \colon V = W \oplus U$.

Jest to ważny warunek dający istnienie podprzestrzeni dopełniającej. Pokazywaliśmy sobie bowiem, że w ogólności istnieją przestrzenie Banacha, dla których nie bądą istnieć takie domknięte podprzestrzenie dopełniające.

W tym dowodzie będziemy iteracyjnie używać twierdzenia Hahna-Banacha. Możliwość użycia tej iteracji siedzi właśnie w założeniu, że $\dim(V/W) < \infty$. Rozważmy ograniczony funkcjonał liniowy określony na podprzestrzeni

$$L_1: \operatorname{span}\{W, u_1\} \to \mathbb{R}$$

$$W \mapsto 0$$

$$u_1 \mapsto 1$$

gdzie $u_1 \notin W$. Na mocy twierdzenia Hahna-Banacha rozszerzamy ten funkcjonał do ciągłego (!) $\tilde{L}_1 \colon V \to \mathbb{R}$. Niech $W_1 = \ker \tilde{L}_1 \supset W$. Niech $u_2 \in W_1$ i $u_2 \notin W$. Wówczas, rozważamy następny funkcjonał

$$L_2 \colon \operatorname{span}\{W, u_2\} \to \mathbb{R}$$

$$W \mapsto 0$$

$$u_2 \mapsto 1$$

Ponownie rozszerzamy funkcjonał na $\tilde{L}_2 \colon V \to \mathbb{R}$ ciągły i oznaczamy $W_2 = \ker \tilde{L}_1 \cap \ker \tilde{L}_2 \supset W$. Niech $u_3 \in W_2$ i $u_3 \notin W$. Teraz powtarzamy procedurę. Po skończonej liczbie kroków okaże się, że $W_n = \bigcap_{i=1}^n \ker \tilde{L}_i = W$ i nie da się już wybrać wektora $u_{n+1} \in W_n$ i $u_{n+1} \notin W$. Niech $U = \operatorname{span}\{u_1, u_2, \dots, u_n\}$. Finalnie, zdefiniujmy operator liniowy

$$\mathcal{L} \colon V \to \mathbb{R}^n$$
$$v \mapsto (\tilde{L}_1 v, \tilde{L}_2 v, \dots, \tilde{L}_n v)$$

Zauważmy, że \mathcal{L} jest ciągły, gdyż każdy z \tilde{L}_i jest ciągły. Ponadto ker $\mathcal{L} = W_n = W$, natomiast im $\mathcal{L} = U$. $\mathcal{L}|_U$ zadaje więc ciągły (!) izomorfizm liniowy $U \cong \mathbb{R}^n$. Oznacza to, że $V = \ker \mathcal{L} \oplus \operatorname{im} \mathcal{L} = W \oplus U$ nie tylko w kontekście czystych przestrzeni liniowych, ale jako przestrzeni unormowanych, bo \mathcal{L} był ciągły.

Zadanie 2 Niech $f \in L^1(0,\infty)$ i |f'(x)| < M. Wykazać, że wówczas $\lim_{x \to \infty} f(x) = 0$.

Rysunek 4: Konstrukcja sprytnego oszacowania funkcji f o ograniczonej pochodnej.

Załóżmy nie wprost, że granica się nie zeruje. Oznacza to, że $\exists \varepsilon > 0 \colon \forall x_0 \in \mathbb{R} \colon \exists x > x_0 \colon |f(x)| > \varepsilon$. Weźmy więc pewien $\varepsilon > 0$. Po zrozumieniu kwantyfikatorów widzimy, że mamy zagwarantowane istnienie nieskończenie wielu punktów $x_i \in \mathbb{R}$ dla których $|f(x_i)| > \varepsilon$. Dlaczego? Weźmy $x_0 \in \mathbb{R}$. Wówczas istnieje $x_1 > x_0 \colon |f(x_1)| > \varepsilon$. Teraz widzimy, że to samo stosuje się do $x_1 \in \mathbb{R}$. Istnieje dla niego $x_2 > x_1 \colon |f(x_2)| > \varepsilon$ i tak w nieskończoność. Wybierzmy więc z takich punktów ciąg $(r_n) \subset \mathbb{R}$ spełniający tę przyjemną własność, że punkty r_n są "sensownie" odseparowane.

Wówczas możemy zauważyć, że twierdzenie Lagrange'a gwarantuje, że jeśli pochodna funkcji f jest ograniczona, to

$$|\tan \alpha| = \left| \frac{|f(x)| - |f(r_n)|}{x - r_n} \right| \le M$$

gdzie α jest kątem nachylenia wszystkich możliwych siecznych wychodzących z punktu $(r_n, f(r_n))$. W związku z tym widać, że funkcję f lokalnie możemy przybliżyć (od dołu) przez trójkąty o kącie nachylenia $\tan \beta = M$, gdyż $\beta > |\alpha|$. Istotne jest jedynie, żeby ciąg (r_n) był taki, by trójkąty były parami rozłączne. Niech $h_n = |f(r_n)|/M$. Wówczas,

$$\int_0^\infty |f(x)| \, \mathrm{d}x \ge \sum_{n=1}^\infty \int_{r_n - h_n}^{r_n + h_n} |f(x)| \, \mathrm{d}x \ge \sum_{n=1}^\infty h_n |f(r_n)|$$
$$= \sum_{n=1}^\infty \frac{1}{M} |f(r_n)|^2 \ge \sum_{n=1}^\infty \frac{\varepsilon^2}{M} = +\infty$$

Uzyskaliśmy więc sprzeczność z definicją przynależności f do L^1 . Jak widać, kluczową linią argumentacji w tym dowodzie był fakt, że takich trójkątów możemy narysować nieskończenie wiele.

Zadanie 3 (kontynuacja długiego zadania o zbiorze A_f) Czy istnieje taka funkcja $f: X \to \mathbb{R}$ mierzalna, że $A_f = \{a_0\}$ jest jednopunktowy?

Przypomnijmy sobie, że A_f oznaczało zbiór wszystkich takich wykładników, dla których

$$A_f = \{ p \colon \phi_f(p) < \infty \}$$
$$\phi_f(p) = \int_X |f|^p d\mu$$

Skonstruujemy sobie ten przykład w taki sposób, żeby $A=\{1\}$. Oznaczałoby to, że dla $f\geq 0$

$$\int f \, \mathrm{d}\mu < \infty$$

ale biorąc jakąkolwiek potęgę różną od 1, całka już będzie rozbieżna. Niech $X=([0,\infty),l_1)$. Taka funkcja f nie może zbyt szybko dążyć do zera w nieskończoności. Jeśli weźmiemy $f=\chi_{[1,\infty)}x^{-1}$ to widać pewien mechanizm graniczny (gdzie obcięliśmy kłopotliwy wybuchający region). Jeśli byśmy podnieśli f do potęgi p>1, to już wystarczająco szybko dąży do zera, więc całka jest zbieżna. Dla p<1 jest rozbieżna. Chcemy tę funkcję subtelnie poprawić. Zbieżność można uzyskać przez coś co dąży do zera wolniej niż dowolny wykładnik x. Niech

$$f = \frac{x^{-1}}{\log^2 x} \chi_{[3,\infty)}$$

Całka ta jest już zbieżna dla p=1, gdyż

$$\int_{3}^{\infty} \frac{x^{-1}}{\log^2 x} \, \mathrm{d}x = \int_{\log 3}^{\infty} \frac{\mathrm{d}t}{t^2} < \infty$$

Jeśli podniosę f do potęgi mniejszej niż 1, wówczas $p=1-\varepsilon$ gdzie $\varepsilon>0$, zatem

$$f^{p} = x^{-1} \underbrace{\frac{x^{\varepsilon}}{(\log x)^{2(1-\varepsilon)}}}_{\xrightarrow{x \to \infty} + \infty}$$

bo $\log x$ rozbiega wolniej niż dowolna potęga x (fakt już oczywisty, ale wynika z tego, że można odpowiednią liczbę razy przyłożyć de l'Hospitala). Widać, więc że wówczas otrzymujemy funkcję niecałkowalną przemnożoną przez funkcję rozbieżną w nieskończoności, zatem f^p zdecydowanie całkowalna nie będzie.

Trzeba jeszcze popsuć zbieżność dla p > 1. Weźmy

$$g = \chi_{\left[0, \frac{1}{2}\right]} \frac{x^{-1}}{\log^2 x}$$

Wówczas,

$$\int_{0}^{1/2} g(x) \, \mathrm{d}x = \int_{-\infty}^{-\log 2} \frac{\mathrm{d}t}{t^2} < \infty$$

Tym razem jeśli $p = 1 + \varepsilon$, to

$$g^{p} = x^{-1} \underbrace{\frac{1}{x^{\varepsilon} (\log x)^{2(1+\varepsilon)}}}_{\xrightarrow{x \to 0^{+}} + \infty}$$

Rysunek 5: Wykres funkcji h z opcjonalnym uciągleniem zaznaczonym czerwoną linią przerywaną.

Wobec tego, całka na tym przedziale w potędze p>1 jest rozbieżna. Finalnie więc weźmy funkcję

$$h = \chi_{[0,\frac{1}{2}]}g + \chi_{[3,\infty]}f$$

Na mocy poprzednich rozważań h^p tylko dla p=1jest całkowalna na X, zatem $A_h=\{1\}.$

Zadanie 4 (kontynuacja zadania o C^k z sumą norm) Niech $V=C^k[0,1], k\geq 1$ oraz $\|f\|=\sum_{j=0}^k\sup|f^{(j)}|$. Wykazaliśmy już, że $(V,\|\cdot\|)$ jest przestrzenią Banacha. Zbadać ciągłość (i wyznaczyć normy dla k=1) następujących funkcjonałów na V:

(a)
$$Lf = f(1) - f(0)$$

Oczywiście, jak na ogół, wykazanie ciągłości jest dużo prostsze niż policzenie normy. Ciągłość widać momentalnie. Niech normą na \mathbb{R} będzie zwykły moduł. Wówczas,

$$\begin{split} |Lf| &= \left| f(1) - f(0) \right| \stackrel{\triangle}{\leq} \left| f(1) \right| + \left| f(0) \right| \\ &\leq 2 \sup_{x \in [0,1]} \left| f(x) \right| \leq 2 \sum_{j=0}^{k} \sup_{x \in [0,1]} |f^{(j)}(x)| = 2 \|f\| \end{split}$$

Ograniczoność operatora liniowego (że jest liniowy nawet nie wymaga komentarza, podobnie jak w następnych podpunktach) jest równoważna ciągłości, zatem L jest ciągły. Jednakże to oczywiste oszacowanie nie było szczególnie oszczędne, 2 okazuje się złą propozycją na normę operatora w przypadku k=1.

Z definicji normy operatorowej wynika, że możemy de facto szukać infimum następującego zbioru:

$$X = \{ \sup |f| + \sup |f'| : f \in C^1[0,1] : f(1) - f(0) = 1 \}$$

czyli infimum zbioru wartości norm na wszystkich funkcjach, dla których |Lf|=1. Z twierdzenia Lagrange'a wiemy, że $\exists t \in [0,1] \colon f'(t)=1$, zatem sup $|f'| \geq 1$. Ponadto sup $|f| \geq 1/2$ gdyż $|f(0)| + |f(1)| \geq 1$, zatem

$$\inf X \ge \frac{1}{2} + 1 = \frac{3}{2}$$

Rysunek 6: Funkcja do przykładu (a).

Funkcja realizująca to infimum będzie więc miała normę $||f_0|| = 3/2$. Wobec tego, ||L|| = 2/3. Jaka f_0 realizuje to ograniczenie? Pochodna równa 1 implikuje maksymalnie liniowy wzrost. Ograniczoność modułu przez 1/2 narzuca więc prosty przykład funkcji wzrastającej liniowo od -1/2 do 1/2 (Rys. 6).

(b)
$$Lf = f'(1/3)$$

Liniowość jest znów oczywista.

$$|Lf| = \left| f'\left(\frac{1}{3}\right) \right| \le \sup_{x \in [0,1]} \left| f'(x) \right|$$

$$\le \sum_{j=0}^{k} \sup_{x \in [0,1]} |f^{(j)}(x)| = ||f||$$

W celu znalezienia normy operatorowej dla k=2 znów powtarzamy to samo rozumowanie co poprzednio. Szukamy infimum zbioru

$$X = \{\sup |f| + \sup |f'| : f \in C^1[0,1] : f'(1/3) = 1\}$$

Warunek |Lf| = 1 narzuca, że sup $|f'| \ge 1$. Oznacza to, że na pewno inf $X \ge 1$. Pytanie czy da się zaleźć takie f_0 , żeby wówczas sup |f| = 0? Albo raczej ciąg f_n , który w granicy realizuje takie infimum?

Rysunek 7: Funkcja do przykładu (b).

Zauważmy, że $\forall \varepsilon > 0$: $\exists f \in C^1[0,1]$: $f'(1/3) = 1 \land |f'| \le 1 \land |f| < \varepsilon$ (przykład na Rys. 7). Trzeba po prostu wygładzić funkcję kawałkami stałą, wzrastającą liniowo na otoczeniu $x_0 = 1/3$. Wówczas ε możemy dobierać coraz mniejszy, w granicy otrzymując funkcję o zerowym supremum. Oznacza to, że

$$1 \le \inf X \le \inf \{1 + \varepsilon \colon \varepsilon > 0\} = 1$$

Stad, inf X = 1 oraz ||L|| = 1.

(c)
$$Lf = \int_0^{2/3} f$$

Szacowanie znów jest proste,

$$|Lf| \le \int_0^{2/3} |f| \le \sup |f| \int_0^{2/3} dx \le \frac{2}{3} ||f||$$

Tym razem to ograniczenie jest w sposób trywialny wysycane przez funkcję $f_0 = 1$, dla której $||f_0|| = 1$ i $Lf_0 = 2/3$. Stąd, ||L|| = 2/3.