Student Name:	
Student Number:	
Signature:	

University of New South Wales School of Computer Science and Engineering Foundations of Computer Science (COMP9020) FINAL EXAM — Session 1, 2017

This paper must be submitted and cannot be retained by the student

Instructions:

- Ensure you enter your correct name and student number above!
- This exam paper contains 10 multiple-choice questions (pages 1-3) plus 5 open questions (pages 4-8).

Each multiple-choice question is worth 4 marks ($10 \times 4 = 40$).

Each open question is worth 12 marks ($5 \times 12 = 60$).

Total exam marks = 100.

- Only use a blue or black pen. All answers must be recorded in this paper.
- For the multiple-choice questions, tick **one** box for your answer directly (each multiple-choice question has only one correct answer).

 To make a correction, tick *all* boxes, then *circle* one box for your answer.
- To make a correction, tick att boxes, then ettele one box for your answer.
- For the open questions, write your answer in the space provided (if you need more space, you can write on the back of the sheet).
- A separate white booklet is provided for scratch work only. **Do not write vour answers in the Examination Answer Book, it will not be marked.**
- Time allowed 120 minutes + 10 minutes reading time.
- The exam is *closed book*. Reference materials are not allowed, apart from one A4-sized sheet (double-sided is ok) of your own notes.
- Number of pages in this exam paper: 8 (in addition to this cover sheet).

1.	How many integers in the interval $[-100, 100]$ are divisible by 5 or 7 (or both)?
	☐ 64 ☐ 65 ☐ 67 ☐ 68
2.	Consider the alphabets $\Sigma = \{s, e, a\}$ and $\Psi = \{a, r, t\}$. How many words are in the set $\{\omega \in (\Sigma \setminus \Psi)^* : \text{length}(\omega) \leq 2\}$?
	 □ 2 □ 4 □ 6 □ 7
3.	Which of the following is not a correct equivalence?
	$\Box A \wedge \neg B \equiv \neg (B \vee \neg A)$ $\Box A \Rightarrow \neg B \equiv B \Rightarrow \neg A$
	$\square A \Rightarrow \neg B \equiv B \Rightarrow \neg A$ $\square \neg (A \Rightarrow B) \equiv \neg B \land A$
4.	Consider the functions $f: \mathbb{N} \longrightarrow \{0,1,2\}$ and $g: \{0,1,2\} \longrightarrow \{0,1,2\}$ defined by $f(x) = x \bmod 3$ $g(x) = x-2 $
	Which of the following statements is true?
	$\bigcap f \circ g$ is not onto
	$\square g \circ f$ is not onto

5.	Consider the partial order \leq on $S = \{1, 2, 3, 4, 6, 12\}$ defined by
	$x \le y$ if and only if $x \mid y$ (i.e., x is a divisor of y)
	Which of the following is not true?
	\square lub({1, 4, 6}) = 12
	\square glb({4, 6, 12}) = 1
	\square (S, \leq) is a lattice
	1 < 3 < 2 < 6 < 4 < 12
5.	All connected graphs with n vertices and k edges satisfy
	\square $n \ge k+1$
	\square $n \ge k$
	\square $n \leq k$
7.	We would like to prove that $P(n)$ for all $n \ge 0$. Which of the following conditions imply this conclusion?
	\square $P(0)$ and $\forall n \ge 1 (P(n) \Rightarrow P(n+1))$
	\square $P(0)$ and $P(1)$ and $\forall n \ge 1 (P(n) \land P(n+1) \Rightarrow P(n+2))$
	\square $P(0)$ and $P(1)$ and $\forall n \ge 0 (P(n) \land P(n+1) \Rightarrow P(n+2))$
	\square $P(0)$ and $P(1)$ and $\forall n \ge 1 (P(n) \Rightarrow P(n+2))$

8. Consider the recurrence given by T(1) = 1 and T(n) = 4 · T(n/2) + n. This has order of magnitude
□ O(n)
□ O(n · log n)
□ O(n²)
□ O(2ⁿ)
9. Let S = {1, 2, 3} and B = {0, 1}. How many different onto functions f : S → B are there?
□ 0
□ 6
□ 8
□ 9
10. Which of the following is true for all A, B?
□ P(A ∩ B|B) = P(A|B)
□ P(A ∩ B) = P(B) · P(B|A)
□ P(A ∪ B) ≥ P(A) + P(B)

11.	Consider	the foll	lowing	two	formul	lae:

$$\begin{array}{lll} \phi &=& \neg (A \Rightarrow (B \land C)) \\ \psi &=& \neg A \lor C \end{array}$$

- (a) Transform ϕ into *disjunctive* normal form (DNF).
- (b) Prove that $\phi, \psi \models \neg B$ (i.e., $\neg B$ is a logical consequence of ϕ and ψ).
- (c) Is $\phi \lor \psi$ a tautology (i.e., always true)? **Explain your answer.**

1		
1		
1		
1		

Prove that holds:	at for all binary relations $\mathcal{R}_1 \subseteq S \times S$ and $\mathcal{R}_2 \subseteq S \times S$ the following
	If \mathcal{R}_1 and \mathcal{R}_2 are symmetric, then $\mathcal{R}_1 \setminus \mathcal{R}_2$ is symmetric.

13.	The	Fibonacci	numbers	are	defined	as	follows	:

$$F_1 = 1$$
; $F_2 = 1$; $F_i = F_{i-1} + F_{i-2}$ for $i \ge 3$

Write a proof by induction for the statement that every *third* Fibonacci number (that is, F_3 , F_6 , F_9 , ...) is even (i.e., divisible by 2).

14. Consider the following graph *G*:

- (a) Give all 3-cliques of G.
- (b) What is the chromatic number $\chi(G)$ of G? Explain your answer.
- (c) What is the maximal number of edges that can be added to G such that G remains planar? **Explain your answer.**

15.	Consider a deck of six cards containing 2 jacks and 4 aces. One card is randomly drawn from the deck at a time. Calculate the expected number of drawing attempts until an ace is drawn: (a) if the cards are put back into the deck after each drawing; (b) if the cards are not put back into the deck after each drawing.
	Briefly explain your answers.