QML con Angle Embedding y DNN para b-Tagging en Jets de bajo momento

Comparación de técnicas cuánticas y clásicas en el régimen de bajo p_T

Juan Montoya

Instituto de Física Universidad de Antioquia

2 de octubre de 2025

Estructura de la presentación

- Introducción
- Quantum Machine Learning
- 3 Arquitectura del circuito
- Metodología
- 6 Resultados
- 6 Conclusiones
- Referencias

¿Qué son los Jets?

Definición

- Chorros colimados de partículas
- Producidos en hadronización

Desafío del b-tagging

- Identificar jets de quarks b
- Problemas con jets de p_T menor a 20GeV

Figure: Estructura típica de un jet

El reto del bajo momento

Régimen de bajo p_T (< 20 GeV)

- Alta densidad de partículas
- Baja resolución de trazas

Figure: Distribución de jets de bajo p_T

Importancia

- Acceso a nueva física
- Nuevas metodologías

Figure: Comparación con alto p_T

Comparativa visual: alto vs bajo p_T

Diferencias

- Estrucutra interna
- Calidad de reconstrucción

Figure: Izquierda: Jet de bajo p_T (< 20 GeV). Derecha: Jet de alto p_T (> 20 GeV)

Motivación para QML

¿Por qué QML?

- Potencial para correlaciones complejas
- Exploración eficiente de espacios de alta dimensión

Figure: Ventaja potencial de QML

Fundamentos de QML

Características Clave

- Computación híbrida cuántico-clásica
- Circuitos variacionales parametrizados
- Optimización clásica de parámetros

Ventajas Potenciales

- Superposición cuántica
- Entrelazamiento de estados
- Procesamiento paralelo intrínseco

Figure: Esquema QML

Angle Embedding: Concepto

Fundamentos

Para un vector de características

$$\mathbf{x} = [x_1, \dots, x_n]$$
:

- Normalización en $[-\pi, \pi]$
- Un qubit por característica
- Rotaciones $RX(x_i)$ o $RY(x_i)$

Figure: Representación en esfera de Bloch

Aplicación al b-tagging

16 Características del Jet

- Variables cinemáticas (p_T, η, ϕ)
- Multiplicidad de partículas

Codificación Cuántica

$$|\psi\rangle = \bigotimes_{i=1}^{16} R_Y(x_i)|0\rangle$$

donde x_i son las características normalizadas

Figure: Circuito cuántico con Angle Embedding

Diseño del Circuito QML

Componentes Principales

- device: lightning.gpu (simulador)
- 16 qubits para características del jet
- 4 capas de entrelazamiento
- Medición del observable $\langle Z_0 \rangle$

Implementación

- Framework: PennyLane + PyTorch
- Optimizador: Adam (Ir = 0.02)

Figure: Estructura del circuito

Capas de entrelazamiento fuerte

Estructura por capa

- Rotaciones locales
 - $RX(\theta)$, $RY(\phi)$, $RZ(\lambda)$
 - Parámetros entrenables
- 2 Entrelazamiento
 - Puertas CNOT y CZ

Figure: Estructura del circuito

¿Dónde está el Aprendizaje?

Angle Embedding (Fijo)

- Codifica las 16 features del jet
- Misma transformación para todos los jets
- Solo depende de los datos de entrada

$$|\psi
angle = igotimes_i R_Y(heta_i^{
m jet})|0
angle$$

Capas Variacionales (Entrenable)

192 parámetros optimizados

- 4 capas de rotaciones $R(\alpha, \beta, \gamma)$
- 16 qubits × 3 ángulos = 48 parámetros/capa

$$U(\vec{w}) = \prod_{l=1}^{4} \left[\prod_{i} R_{i}^{l}(\vec{w}_{i}^{l}) \cdot \mathsf{CNOT} \right]$$

$$\hat{y} = \langle 0 | U^\dagger(ec{w}) \cdot \sigma_z \cdot U(ec{w}) | \psi_{\sf data}
angle$$

 \uparrow Aquí se optimiza \vec{w} para minimizar el error

Correlaciones cuánticas en el circuito

Observables de medición

$$\langle Z_0 \rangle = \langle \psi | Z_0 | \psi \rangle \in [-1, 1]$$

- +1: b-jet
- \bullet -1: anti-b-jet

Figure: Estructura del circuito

Flujo de trabajo

Preprocesamiento

- Carga de histogramas ROOT
- Normalización con arctan
- 3 Selección de 16 características

Modelos

- QML: 16 qubits, 4 capas SEL
- **DNN**: 16-64-32-1, ReLU/tanh

Entrenamiento

- Optimizador: Adam
- Learning rate: 0.02
- Épocas: 10

Evaluación

- AUC-ROC
- Tagging Power
- Análisis por p_T

Comparación de rendimiento

Datasets analizados

- Zbb_LowPT ($p_T < 20 \text{ GeV}$)
- Zbb_HighPT ($p_T \ge 20 \text{ GeV}$)
- Zp_M30_LowPT
- Zp_M100_LowPT

Métricas clave

- AUC: QML vs DNN
- Tagging Power (ϵ_{tag})

Figure: Comparativa AUC

Análisis por régimen de p_T

Observaciones

- DNN superior en alto p_T
- Brecha menor en bajo p_T
- Potencial para mejora en QML
- Consideracion del tamaño muestral

Figure: Rendimiento en función del p_T

Tagging power

$$\epsilon_{\mathsf{tag}} = \epsilon_{\mathsf{eff}} (2a - 1)^2$$

 \bullet $\epsilon_{\rm eff}$: eficiencia de tagging

Resultados

Z': desafío para ambos

Figure: Tagging Power por dataset

Hallazgos principales

Observaciones

- Mayor variabilidad en bajo p_T
- Potencial para mejora

Desafíos

- Muestra limitada (1000 eventos)
- El regimen de baja energia del Z'

Figure: Resumen de rendimiento

Perspectivas futuras

Mejoras técnicas

- Arquitecturas más profundas
- Embeddings alternativos
- Optimización de hiperparámetros

Nuevas direcciones

- Variables específicas para QML
- Análisis de correlaciones cuánticas
- Hardware

Impacto potencial

- Mejor discriminación en bajo p_T
- Acceso a nueva física

Referencias y recursos

Artículos principales

A. Gianelle et al., "First implementation of QML for b-jet tagging at LHCb", 2021.

A. Gianelle et al., "QML for b-jet charge identification". 2022. Artículo

"Quantum Neural Networks explained", 2024. Video Tutorial

Código

Repositorio disponible en GitHub: github.com/JuanJ27/LowPt-Jet-Qml