HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY

Report Project 1: A LIGHT SENSING CIRCUIT

Lecturer: Nguyen Tran Huu Nguyen Course: ELECTRONIC DEVICES AND CIRCUIT(LAB)

GROUP MEMBERS

NAME	ID
Ngo Qui Thu	1652595
Nguyen Huu Gia Huy	1652242
Tran Hoang Viet Long	1652350
Truong Van Quang Dat	1652142
PHAM LE THE ANH	1652026
VUONG LE HUY	1652252

Contents

Light Sensing Circuit

Group 1

May 8^{th} , 2019

1 R_1 , R_2 , R_3 Calculation and Power Evaluation

1.1 R_1 , R_2 and R_3 Calculation

According to Kirchoff's Voltage Laws (KVL), we have the following equation:

$$-12 + V_{R_3} + 3V_F = 0$$

$$\Longrightarrow V_{R_3} = 12 - 3V_F$$

$$\Longrightarrow R_3 = \frac{V_{R_3}}{I_{sccR_3}} = \frac{V_{R_3}}{I_F} = \frac{12 - 3V_F}{I_F}(\Omega)$$

• In case of $V_F = 3V \longrightarrow 3.4V$.

$$I_F = 25mA - 30mA$$

$$\implies R_3 \in \left[\frac{12 - 3x3.4}{30x10^{-3}}; \frac{12 - 3x3}{25x10^{-3}} \right]$$

$$\iff R_3 \in [60; 120](\Omega)$$

• Choose $R_L = 40000\Omega$, we have the following expression:

$$I_{R_2} = I_L = \frac{0.7}{40000} = 1.78 \times 10^6 (A)$$

Results below can be extracted by appling kirchoff's Voltage Laws.

$$-12 + V_{R_2} + V_{R_L} = 0$$

$$\implies V_{R_2} = 12 - V_{R_L} = 12 - 0.7 = 11.3(V)$$

$$\implies R_2 = \frac{V_{R_2}}{I_{R_2}} = 645414(\Omega)$$

Base on the value of R_L measured by VOM, the following results can be infered:

$$R_2 = \frac{11.3}{\frac{0.7}{R_L}} = \frac{11.3XR_L}{0.7} = 12.14R_L(\Omega)$$

Applying Kirchoff's Laws:

$$I_{R_1} = I_{R_2} + I_{R_3}$$

 $\implies I_{R_1} = I_{R_2} + I_F$
 $\implies I_{R_1} = \frac{0.7}{R_2} + I_F$
 $\implies I_{R_1} \in [0.025; 0.03](A)$

Measurement results in laboratory reportedly show that voltage at the two ends of the capacitor peaks at $12\sqrt{2}(V)$.

$$V_{0C} = 12\sqrt{2}(V)$$

• In case of the worst situation when $V_{DC} = 18.8(V)$ so that R_1 is going to be designed in a way such that $V_{DC} = 12(V)$.

$$\implies R_1 = \frac{18.8 - 12}{I_{R_1}}$$

$$\implies R_1 \in [227; 275](\Omega)$$

1.2 Power Evaluation

Given the fact that, the circuit is designed to operate normally at the 12V voltage level. While the value of V_{AC} reportedly stations at 14V ($V_{AC} = 14V$), which resulted in the following value:

$$V_{DCwithoutR_1} = 18.8(V)$$

That result leads to the below calculations:

•
$$V_{R_1} = 18.8 - 12 = 6.8(V)$$

• $P_{R_1} = \frac{(18\sqrt{2} - R_1)^2}{R_1}$
 $\implies P_{R_1} \in [0.168; 0.204](W)$

Given the Safe Factor to be \geq 1.5. If V_{AC} exceeds the common voltage of 12V, the circuit can withstand up to 18.8V before suffering structural damages.

$$P_{R_1} = \frac{(18\sqrt{2} - 12)^2}{R_1}$$

$$\implies P_{R_1} \in [0.7; 0.8](W)$$

• Choose $R_1 = 250\Omega$, 0.5W in order to guarantee that the circuit can withstand the voltage up to 1.5 times higher than the normal designed voltage.

2 Proceeding Steps

2.1 Components List

- 100Ω , 1/4W Resistor
- 150Ω , 0.5W Resistor
- $470K\Omega$, 1/4W Resistor
- Light Sensoring Resistor
- Zener Diode
- C1815 NPN Transistor
- 3 LEDs
- 4 Diodes

2.2 R_1 , R_2 , R_3 Build Method

2.2.1 R_1 Component

Only 150 Ω , 0.5W Resistor is avalable. Thus system of R_1 resistors are built as follow in order to get the exactly calculated value $R_1 = 250(\Omega)$. **R1:**

2.2.2 R_2 Component

System of R_2 resistors are built as follow in order to get the exactly calculated value $R_2 = 645(K\Omega)$.

R2:

2.2.3 *R*₃ **Component**

$$R_3 = R = 100(\Omega).$$

R3:
