微积分 A (2)

姚家燕

第6讲

第 5 讲回顾: 复合向量值函数的微分 与求导

•矩阵的范数, 微分的链式法则 (矩阵表示):

$$d(\vec{f} \circ \vec{g})(X_0) = d\vec{f}(\vec{g}(X_0)) \circ d\vec{g}(X_0),$$

$$J_{\vec{f} \circ \vec{g}}(X_0) = J_{\vec{f}}(\vec{g}(X_0)) \cdot J_{\vec{g}}(X_0),$$

 $\frac{\partial (f_i(g_1,\ldots,g_m))}{\partial x_i} = \frac{\partial f_i}{\partial y_1}(*)\frac{\partial g_1}{\partial x_i} + \frac{\partial f_i}{\partial y_2}(*)\frac{\partial g_2}{\partial x_i} + \cdots + \frac{\partial f_i}{\partial y_m}(*)\frac{\partial g_m}{\partial x_i}.$ $\partial_j (f_i(g_1, \dots, g_m)) = \partial_1 (f_i(*)) \partial_j g_1 + \partial_2 (f_i(*)) \partial_j g_2 + \dots + \partial_m (f_i(*)) \partial_j g_m.$

回顾: 隐函数定理

• 隐函数定理 (两个变量的方程):

设函数
$$F(x,y)$$
 为 $\mathcal{C}^{(1)}$ 类使得 $F(x_0,y_0) = 0$, $\frac{\partial F}{\partial y}(x_0,y_0) \neq 0$. 则方程 $F(x,y) = 0$ 在局部上有 $\mathcal{C}^{(1)}$ 类的解 $y = f(x)$, 并且

$$f'(x) = -\frac{\frac{\partial F}{\partial x}(x, f(x))}{\frac{\partial F}{\partial y}(x, f(x))}.$$

• 隐函数定理 (多个变量的方程):

假设函数 $F(x_1, x_2, \dots, x_n, y)$ 为 $\mathcal{C}^{(1)}$ 类使得

$$F(X_0,y_0)=0$$
, $\frac{\partial F}{\partial y}(X_0,y_0)\neq 0$. 则方程

$$F(x_1, x_2, \dots, x_n, y) = 0$$

局部上有 $\mathscr{C}^{(1)}$ 类解 $y = f(x_1, x_2, \dots, x_n)$, 且

$$\frac{\partial f}{\partial x_i}(X) = -\frac{\frac{\partial F}{\partial x_i}(X, f(X))}{\frac{\partial F}{\partial y}(X, f(X))}.$$

• 隐函数定理 (多个变量的方程组):

假设 $F_i(x_1, \ldots, x_n, y_1, \ldots, y_m)$ $(1 \le i \le m)$ 为 $\mathscr{C}^{(1)}$ 类使得 $F_i(X_0, Y_0) = 0 \ (1 \leq i \leq m)$, $\frac{D(F_1,...,F_m)}{D(y_1,...,y_m)}(X_0,Y_0)\neq 0$. 则方程组

$$F_i(x_1, ..., x_n, y_1, ..., y_m) = 0 \ (1 \le i \le m)$$

在局部上有 $\mathcal{C}^{(1)}$ 类解

$$y_{i} = f_{i}(x_{1}, x_{2}, \dots, x_{n}) \ (1 \leqslant i \leqslant m),$$

$$J_{\vec{f}}(X) = -\left(\frac{\partial(F_{1}, \dots, F_{m})}{\partial(y_{1}, \dots, y_{m})}(X, \vec{f}(X))\right)^{-1} \cdot \frac{\partial(F_{1}, \dots, F_{m})}{\partial(x_{1}, \dots, x_{n})}(X, \vec{f}(X)).$$

回顾: 反函数定理

假设
$$X = \vec{g}(Y)$$
 为 $\mathcal{C}^{(1)}$ 类使得 $X_0 = \vec{g}(Y_0)$
且 $J_{\vec{g}}(Y_0)$ 可逆. 则局部上存在 $\mathcal{C}^{(1)}$ 反函数 $Y = \vec{f}(X)$, 并且 $J_{\vec{f}}(X) = \left(J_{\vec{g}}(\vec{f}(X))\right)^{-1}$, 即
$$\frac{\partial (f_1, f_2, \dots, f_n)}{\partial (x_1, x_2, \dots, x_n)}(X) = \left(\frac{\partial (g_1, g_2, \dots, g_n)}{\partial (y_1, y_2, \dots, y_n)}(\vec{f}(X))\right)^{-1}.$$

回顾: 曲面的切平面与法线

- 平面与直线的各种表示方程.
- 平面与法线, 直线与法平面的关系.
- S: z = f(x, y) 在点 (x_0, y_0, z_0) 的切平面:

$$z - z_0 = \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0).$$

相应的法线方程为

$$\frac{x - x_0}{\frac{\partial f}{\partial x}(x_0, y_0)} = \frac{y - y_0}{\frac{\partial f}{\partial y}(x_0, y_0)} = \frac{z - z_0}{-1}.$$

• S: $\begin{cases} x = f_1(u,v) \\ y = f_2(u,v) \\ z = f_3(u,v) \end{cases}$ 在参数 (u_0,v_0) 所对应的

点处的切平面的参数方程为:

$$\begin{pmatrix} x - x_0 \\ y - y_0 \\ z - z_0 \end{pmatrix} = \frac{\partial (f_1, f_2, f_3)}{\partial (u, v)} (u_0, v_0) \begin{pmatrix} u - u_0 \\ v - v_0 \end{pmatrix},$$

该切平面也可以表示成:

$$\frac{D(f_2, f_3)}{D(u, v)}(u_0, v_0)(x - x_0) + \frac{D(f_3, f_1)}{D(u, v)}(u_0, v_0)(y - y_0)
+ \frac{D(f_1, f_2)}{D(u, v)}(u_0, v_0)(z - z_0) = 0,$$

法线方程为 $\frac{x-x_0}{\frac{D(f_2,f_3)}{D(u,v)}(u_0,v_0)} = \frac{y-y_0}{\frac{D(f_3,f_1)}{D(u,v)}(u_0,v_0)} = \frac{z-z_0}{\frac{D(f_1,f_2)}{D(u,v)}(u_0,v_0)}.$

• S: F(x, y, z) = 0 在点 P_0 处的法向量为

梯度 $\operatorname{grad} F(P_0)$, 相应的切平面方程为

$$\frac{\partial F}{\partial x}(P_0)(x-x_0) + \frac{\partial F}{\partial y}(P_0)(y-y_0) + \frac{\partial F}{\partial z}(P_0)(z-z_0) = 0,$$

上述切平面的法线方程为

$$\frac{x - x_0}{\frac{\partial F}{\partial x}(P_0)} = \frac{y - y_0}{\frac{\partial F}{\partial y}(P_0)} = \frac{z - z_0}{\frac{\partial F}{\partial z}(P_0)}.$$

回顾: 空间曲线及切线和法平面

(1) 空间曲线的参数表示法:

$$\Gamma: \begin{cases} x = x(t), \\ y = y(t), & t \in [\alpha, \beta]. \\ z = z(t), \end{cases}$$

若上述函数在点 $t = t_0$ 处可微, 则称曲线 Γ 在相应点 $P_0(x_0, y_0, z_0)$ 处可微, 相应切线方程为

$$\begin{cases} x - x_0 = x'(t_0)(t - t_0), \\ y - y_0 = y'(t_0)(t - t_0), \\ z - z_0 = z'(t_0)(t - t_0). \end{cases}$$

该切线也可表述成

$$\frac{x - x_0}{x'(t_0)} = \frac{y - y_0}{y'(t_0)} = \frac{z - z_0}{z'(t_0)},$$

这里要假设 $(x'(t_0), y'(t_0), z'(t_0))$ 不为零向量.

我们将过点 P_0 且与上述切线垂直的平面称为 Γ

在点 P_0 处的法平面, 其方程为

$$x'(t_0)(x - x_0) + y'(t_0)(y - y_0) + z'(t_0)(z - z_0) = 0.$$

(2) 空间曲线的隐函数表示法:

$$\Gamma: \begin{cases} F_1(x, y, z) = 0, \\ F_2(x, y, z) = 0. \end{cases}$$

设 F_1, F_2 在点 $P_0(x_0, y_0, z_0)$ 可微且 $\operatorname{grad} F_1(P_0)$, $\operatorname{grad} F_2(P_0)$ 不为零, 则曲线 Γ 在该点的切线为

$$\begin{cases} \frac{\partial F_1}{\partial x}(P_0)(x - x_0) + \frac{\partial F_1}{\partial y}(P_0)(y - y_0) + \frac{\partial F_1}{\partial z}(P_0)(z - z_0) = 0, \\ \frac{\partial F_2}{\partial x}(P_0)(x - x_0) + \frac{\partial F_2}{\partial y}(P_0)(y - y_0) + \frac{\partial F_2}{\partial z}(P_0)(z - z_0) = 0. \end{cases}$$

该切线的方向为

$$\vec{T} = \operatorname{grad} F_1(P_0) \times \operatorname{grad} F_2(P_0) = \begin{pmatrix} \frac{D(F_1, F_2)}{D(y, z)} (P_0) \\ \frac{D(F_1, F_2)}{D(z, x)} (P_0) \\ \frac{D(F_1, F_2)}{D(x, y)} (P_0) \end{pmatrix}.$$

只有当 $\vec{T} \neq \vec{0}$ 时,上述方程组才的确给出一条直线. 此时 Jacobi 矩阵 $\frac{\partial (F_1,F_2)}{\partial (x,y,z)}(P_0)$ 的秩等于 2. 借助 \vec{T} , 我们也可得到切线的另外一个表述:

$$\frac{x - x_0}{\frac{D(F_1, F_2)}{D(y, z)}(P_0)} = \frac{y - y_0}{\frac{D(F_1, F_2)}{D(z, x)}(P_0)} = \frac{z - z_0}{\frac{D(F_1, F_2)}{D(x, y)}(P_0)}.$$

第6讲

§8. Taylor 公式

回顾: 我们称函数 $F: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ 为双线性型,

如果 $\forall X_0, Y_0 \in \mathbb{R}^n$, 函数 $Y \to F(X_0, Y)$ 和函数

$$X \to F(X, Y_0)$$
 均为 \mathbb{R}^n 上的线性函数.

记
$$X = (x_1, \dots, x_n)^T$$
, $Y = (y_1, \dots, y_n)^T$. 则

$$F(X,Y) = F\left(\sum_{i=1}^{n} x_i \mathbf{e}_i, Y\right) = \sum_{i=1}^{n} x_i F(\mathbf{e}_i, Y)$$

$$= \sum_{i=1}^{n} x_i F\left(\mathbf{e}_i, \sum_{i=1}^{n} y_j \mathbf{e}_j\right) = \sum_{i=1}^{n} \sum_{i=1}^{n} x_i y_j F(\mathbf{e}_i, \mathbf{e}_j).$$

 $\diamondsuit a_{ij} = F(\mathbf{e}_i, \mathbf{e}_j), A = (a_{ij})_{1 \leqslant i,j \leqslant n}, 则$

$$F(X,Y) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j F(\mathbf{e}_i, \mathbf{e}_j)$$

$$= \sum_{i=1}^{n} x_i \sum_{j=1}^{n} a_{ij} y_j$$

$$= \sum_{i=1}^{n} x_i (AY)_i$$

$$= X^T AY$$

定理 1. 设 $X_0 \in \mathbb{R}^n$, r > 0, $f \in \mathscr{C}^{(2)}(B(X_0, r))$. 则 $\forall X \in B(X_0, r)$, $\exists \theta \in (0, 1)$ 使得

$$f(X) = f(X_0) + \sum_{j=1}^{n} \frac{\partial f}{\partial x_j}(X_0)(x_j - x_j^{(0)})$$

$$+ \frac{1}{2!} \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j}(X_\theta)(x_i - x_i^{(0)})(x_j - x_j^{(0)})$$

$$= f(X_0) + J_f(X_0) \Delta X + \frac{1}{2!} (\Delta X)^T H_f(X_\theta) \Delta X,$$

其中 $H_f(X_\theta) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(X_\theta)\right)_{1 \leq i,j \leq n}$ 为 f 在点 X_θ 的海赛矩阵, $\Delta X = X - X_0$, $X_\theta = X_0 + \theta(X - X_0)$.

证明: 固定 $X \in \mathring{B}(X_0, r)$. $\forall t \in [0, 1]$, 定义

$$F(t) = f(X_0 + t(X - X_0)).$$

由于 f 为二阶连续可导,则由复合法则可知 F 亦如此,进而由单变量函数带 Lagrange 余项的 Taylor 展式可知, $\exists \theta \in (0,1)$ 使得

$$F(1) = F(0) + F'(0) + \frac{1}{2!}F''(\theta).$$

$$\forall t \in [0,1], \ \diamondsuit \ X_t = X_0 + t(X - X_0).$$

由题设可知 $F(0) = f(X_0)$, F(1) = f(X), 并且

$$F'(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(X_t)(x_j - x_j^{(0)}) = J_f(X_t)(X - X_0).$$

$$F''(t) = \sum_{j=1}^{n} (x_j - x_j^{(0)}) \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial f}{\partial x_j} (X_t) \right)$$
$$= \sum_{j=1}^{n} (x_j - x_j^{(0)}) \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) (X_t) \cdot (x_i - x_i^{(0)})$$

$$= \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j} (X_t) \cdot (x_i - x_i^{(0)}) (x_j - x_j^{(0)}).$$

令 $\Delta X = X - X_0$. 则我们有

$$F(1) = F(0) + F'(0) + \frac{1}{2!}F''(\theta)$$

$$= f(X_0) + \sum_{j=1}^{n} \frac{\partial f}{\partial x_j}(X_0)(x_j - x_j^{(0)})$$

$$+ \frac{1}{2!} \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j}(X_\theta) \cdot (x_i - x_i^{(0)})(x_j - x_j^{(0)})$$

$$= f(X_0) + J_f(X_0) \Delta X + \frac{1}{2!}(\Delta X)^T H_f(X_\theta) \Delta X.$$

故所证结论成立.

评注

- 该式为带 Lagrange 余项的一阶 Taylor 展式.
- 由于 f 为 $\mathcal{C}^{(2)}$ 类, 则 H_f 连续. 由夹逼原理与复合极限法则知, 当 $X \to X_0$ 时, 我们有 $H_f(X_0 + \theta(X X_0)) = H_f(X_0) + \vec{o}(1)$.

进而可得带 Peano 余项的二阶 Taylor 展式:

$$f(X) = f(X_0) + J_f(X_0) \Delta X + \frac{1}{2!} (\Delta X)^T H_f(X_0) \Delta X + o(\|\Delta X\|^2).$$

- $H_f(X) = J_{\operatorname{grad} f}(X)$.
- 更一般地, 若 f 为 $\mathcal{C}^{(m+1)}$ 类, 则有

$$f(X) = \sum_{k=0}^{m} \frac{1}{k!} \left(\sum_{j=1}^{n} (x_j - x_j^{(0)}) \frac{\partial}{\partial x_j} \right)^k f(X_0) + \frac{1}{(m+1)!} \left(\sum_{j=1}^{n} (x_j - x_j^{(0)}) \frac{\partial}{\partial x_j} \right)^{m+1} f(X_\theta),$$

其中 $\theta \in (0,1)$, 并且 $X_{\theta} = X_0 + \theta(X - X_0)$. 人们通常将 $\sum_{k=0}^{m} \frac{1}{k!} \left(\sum_{j=1}^{n} (x_j - x_j^{(0)}) \frac{\partial}{\partial x_j} \right)^k f(X_0)$

称为 f 在点 X_0 处的 m 阶 Taylor 多项式.

例 1. $\forall (x,y) \in \mathbb{R}^2$, 令 $f(x,y) = \sin(x+y)$. 求 f 在原点处一阶的带 Lagrange 余项的 Taylor 公式 以及二阶的带 Peano 余项的 Taylor 公式.

解:由于f为初等函数,故二阶连续可导且

$$J_f(x,y) = (\cos(x+y), \cos(x+y)),$$

 $H_f(x,y) = \begin{pmatrix} -\sin(x+y) & -\sin(x+y) \\ -\sin(x+y) & -\sin(x+y) \end{pmatrix},$

于是
$$J_f(0,0) = (1,1), H_f(0,0) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

则所求一阶带 Lagrange 余项的 Taylor 公式为

$$f(x,y) = x + y + \frac{1}{2}(x,y)H_f(\theta x, \theta y) \begin{pmatrix} x \\ y \end{pmatrix}$$
$$= x + y - \frac{1}{2}(x+y)^2 \sin(\theta(x+y)), \ \theta \in (0,1).$$

而所求二阶带 Peano 余项的 Taylor 公式为 $f(x,y) = x + y + o(x^2 + y^2), \quad (x,y) \to (0,0).$

作业题: 第1.8 节第81 页第 1 第 (2) 小题, 题目 改为求"一阶带 Lagrange 余项和二阶带 Peano

余项的 Taylor 公式".

§9. 极值与条件极值

定义 1. 设 $\Omega \subseteq \mathbb{R}^n$, $X_0 \in \Omega$, 而 $f: \Omega \to \mathbb{R}$.

- 如果 $\exists r > 0$ 使得 $\forall X \in B(X_0, r) \subseteq \Omega$, 均有 $f(X) \ge f(X_0)$, 那么称点 X_0 为 f 的 (局部) 极小值点, 而称 $f(X_0)$ 为 (局部) 极小值.
- 如果 $\exists r > 0$ 使得 $\forall X \in B(X_0, r) \subseteq \Omega$, 均有 $f(X) \leq f(X_0)$, 那么称点 X_0 为 f 的 (局部) 极大值点, 而称 $f(X_0)$ 为 (局部) 极大值.
- 极小值点和极大值点合称极值点.

- 若 $\forall X \in \Omega$, 均有 $f(X) \ge f(X_0)$, 则称点 X_0 为 f 的最小值点, 而称 $f(X_0)$ 为最小值.
- 若 $\forall X \in \Omega$, 均有 $f(X) \leq f(X_0)$, 则称点 X_0 为 f 的最大值点, 而称 $f(X_0)$ 为最大值.
- 最小值点和最大值点合称最值点.

注: 极值点不一定是最值点, 而最值点也不一定是极值点. 若最值点为内点, 则它为极值点.

定理 1. 假设 $\Omega \subseteq \mathbb{R}^n$, X_0 为 Ω 的内点, 而函数 $f:\Omega \to \mathbb{R}$ 在该点可导. 若 X_0 为 f 的极值点, 则 $J_f(X_0) = \vec{0}$, 即 $\frac{\partial f}{\partial x_i}(X_0) = 0$ $(1 \le j \le n)$.

证明: 由于 X_0 为 Ω 的内点, 于是 $\exists r > 0$ 使得 $B(X_0,r)\subset\Omega$. 对任意整数 $1\leqslant j\leqslant n$, 设 \vec{e}_i 为 沿第 j 个坐标轴正向的单位向量. $\forall t \in (-r, r)$, 定义 $F(t) = f(X_0 + t\vec{e_j})$. 则由题设可知函数 F在点 t=0 处可导, 并且 F 还在该点处取极值, 从而由 Fermat 定理可知 $0 = F'(0) = \frac{\partial f}{\partial x_i}(X_0)$.

评注

- 若 $J_f(X_0) = \vec{0}$, 则称点 X_0 为函数 f 的驻点. 由上述定理可知, 若 f 在点 X_0 处可导且取 极值, 则该点为 f 的驻点, 但反过来不成立.
- 利用类似的方法可以证明,多变量函数也有与单变量函数一样的微分中值定理.下面来介绍高维的 Rolle 定理.

定理 2. 设 $\Omega \subseteq \mathbb{R}^n$ 为有界开区域, 而 $f \in \mathscr{C}(\bar{\Omega})$ 在 Ω 内可微并且在 $\partial\Omega$ 上取常值, 则 f 在 Ω 内必有驻点, 也即 $\exists \xi \in \Omega$ 使得 $J_f(\xi) = \vec{0}$.

证明: 如果 f 在 $\bar{\Omega}$ 上为常值函数, 则 f 在 Ω 内 也会为常值函数, 从而 $\forall \xi \in \Omega$, 均有 $J_f(\xi) = \vec{0}$. 现在假设 f 不为常值函数. 由于 Ω 为有界闭集 且 $f \in \mathcal{C}(\bar{\Omega})$, 则 f 在 $\bar{\Omega}$ 上有最大值和最小值, 但 f 在 $\partial\Omega$ 上取常值, 故必有最值点 (记作 ξ) 属于 Ω, 该点也为 f 的极值点, 则 $J_f(\xi) = \vec{0}$.

回顾: 设 $A = (a_{ij})_{1 \leq i,j \leq n}$ 为实对称矩阵, 特征根为 $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$, 则存在正交矩阵 B 使得

$$A = B^T \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} B.$$

$$\forall X \in \mathbb{R}^n$$
, 记 $BX = (y_1, \dots, y_n)^T$. 则

$$X^T A X = \sum_{j=1}^n \lambda_j y_j^2 \geqslant \lambda_1 ||Y||^2 = \lambda_1 Y^T Y$$
$$= \lambda_1 X^T B^T B X = \lambda_1 X^T X = \lambda_1 ||X||^2.$$

同理可以证明 $X^TAX \leq \lambda_n ||X||^2$.

- 称矩阵 A 为正定, 如果 $\forall X \in \mathbb{R}^n \setminus \{\vec{0}\}$, 我们 均有 $X^T A X > 0$, 这等价于说 $\lambda_1 > 0$, 进而 也等价于说 A 的所有主子式均 > 0.
- 称矩阵 A 为负定, 如果 $\forall X \in \mathbb{R}^n \setminus \{\vec{0}\}$, 我们 均有 $X^T A X < 0$, 这等价于说 $\lambda_n < 0$, 进而 等价于说 A 的所有偶数阶顺序主子式 > 0, 而所有奇数阶顺序主子式 < 0.

- 称矩阵 A 半正定, 如果 $\forall X \in \mathbb{R}^n \setminus \{\vec{0}\}$, 均有 $X^T A X \ge 0$, 而这又等价于说 $\lambda_1 \ge 0$.
- 称矩阵 A 半负定, 如果 $\forall X \in \mathbb{R}^n \setminus \{\vec{0}\}$, 均有 $X^T A X \leq 0$, 而这又等价于说 $\lambda_n \leq 0$.
- 称矩阵 A 不定, 若它不属于上述的四种情形, 即 $\exists Y_1, Y_2 \in \mathbb{R}^n$ 使 $Y_1^T A Y_1 < 0$, $Y_2^T A Y_2 > 0$, 而这又等价于说 $\lambda_1 < 0$, $\lambda_n > 0$.

判断实对称矩阵定性的基本方法

计算其特征值, 根据其特征值的符号来判断:

- (1) 正定当且仅当所有特征值均 > 0;
- (2) 负定当且仅当所有特征值均 < 0;
- (3) 半正定当且仅当所有特征值均 ≥ 0 ;
- (4) 半负定当且仅当所有特征值均 ≤ 0 ;
- (5) 不定当且仅当既有正特征值也有负特征值.

定理 3. 设 $X_0 \in \mathbb{R}^n$, r > 0, 而 $f : B(X_0, r) \to \mathbb{R}$ 为二阶连续可微且 $J_f(X_0) = \vec{0}$.

(1) 若 $H_f(X_0)$ 正定, 则 X_0 为 f 的极小值点.

(2) 若 $H_f(X_0)$ 负定,则 X_0 为 f 的极大值点.

证明: (1) 由 Taylor 公式可知, 当 $\Delta X \rightarrow \vec{0}$ 时,

$$f(X_0 + \Delta X) = f(X_0) + J_f(X_0) \Delta X + \frac{1}{2!} (\Delta X)^T H_f(X_0) \Delta X + o(\|\Delta X\|^2).$$

设 λ 为 $H_f(X_0)$ 的最小特征值. 则由 $H_f(X_0)$ 的正定性可知 $\lambda > 0$. 于是我们有

$$f(X_0 + \Delta X) - f(X_0)$$
=\frac{1}{2!} (\Delta X)^T H_f(X_0) \Delta X + o(\|\Delta X\|^2)
\geq \frac{\lambda}{2} \|\Delta X \|^2 + o(\|\Delta X \|^2)
= \left(\frac{\lambda}{2} + o(1)\right) \|\Delta X \|^2.

因 $\lim_{\Delta X \to \vec{0}} o(1) = 0$,则 $\exists \delta \in (0, r)$ 使 $\forall X \in \mathring{B}(X_0, \delta)$,

$$f(X) - f(X_0) \ge \left(\frac{\lambda}{2} + o(1)\right) \|X - X_0\|^2$$

 $\ge \frac{\lambda}{4} \|X - X_0\|^2 \ge 0,$

故 X_0 为函数 f 的 (严格) 极小值点.

(2) 如果 $H_f(X_0)$ 为负定, 那么 $H_{-f}(X_0)$ 为正定,

故 X_0 为 -f 的极小值点, 即为 f 的极大值点.

评注

• 如果海赛矩阵 $H_f(X_0)$ 为半正定或者半负定,我们一般无法判断点 X_0 是否为 f 的极值点. 为此考虑单变量函数 $f(x) = x^3$,我们有

$$f'(0) = f''(0) = 0,$$

但 0 不是 f 的极值点. 而 $g(x) = x^4$ 也满足 g'(0) = g''(0) = 0 且 0 为 g 的极小值点.

• 如果 $H_f(X_0)$ 为不定, 则 $\exists Y_1, Y_2 \in \mathbb{R}^n$ 使得

$$Y_1^T H_f(X_0) Y_1 < 0, \quad Y_2^T H_f(X_0) Y_2 > 0.$$

于是当 $t \to 0$ 时, 我们有

$$f(X_0 + tY_1) - f(X_0)$$

$$= \frac{1}{2} Y_1^T H_f(X_0) Y_1 t^2 + o(t^2)$$

$$= \left(\frac{1}{2} Y_1^T H_f(X_0) Y_1 + o(1)\right) t^2 < 0.$$

当 $t \to 0$ 时, 我们同样也有

$$f(X_0 + tY_2) - f(X_0)$$

$$= \frac{1}{2} Y_2^T H_f(X_0) Y_2 t^2 + o(t^2)$$

$$= \left(\frac{1}{2} Y_2^T H_f(X_0) Y_2 + o(1)\right) t^2$$
> 0,

由此可知 X_0 不是 f 的极值点.

判断二阶连续可导函数极值点的方法

- 求一阶偏导数, 确定驻点.
- 求二阶偏导数以便得到海赛矩阵.
- 判断海赛矩阵在驻点处的性态:
 正定则为极小值点; 负定则为极大值点; 不定则不为极值点; 半正定或半负定则需要采用另外的方法来处理.

例 1. $\forall (x, y, z) \in \mathbb{R}^3$, 定义

$$f(x, y, z) = x^3 + y^2 + z^2 + 6xy + 2z.$$

求 f 的极值点.

解:由于f为初等函数,故f为 $\mathscr{C}^{(2)}$ 类且

$$J_f(x, y, z) = (3x^2 + 6y, 2y + 6x, 2z + 2).$$

于是函数 f 的驻点满足:

$$3x^2 + 6y = 0$$
, $2y + 6x = 0$, $2z + 2 = 0$,

由此求得驻点为

$$P_1 = (6, -18, -1), P_2 = (0, 0, -1).$$

又函数 f 的海赛矩阵为

$$H_f(x,y,z) = \begin{pmatrix} 6x & 6 & 0 \\ 6 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

于是我们有

$$H_f(P_1) = \begin{pmatrix} 36 & 6 & 0 \\ 6 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \ H_f(P_2) = \begin{pmatrix} 0 & 6 & 0 \\ 6 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

 $H_f(P_1)$ 的顺序主子式均 > 0, 故 $H_f(P_1)$ 正定, 从而 P_1 为函数 f 的极小值点. 由于 $H_f(P_2)$ 的特征多项式为

$$0 = \begin{vmatrix} \lambda & -6 & 0 \\ -6 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)(\lambda^2 - 2\lambda - 36),$$

于是 $H_f(P_2)$ 的特征根为 $2, 1 + \sqrt{37}, 1 - \sqrt{37}$, 故 $H_f(P_2)$ 为不定, 从而 P_2 不是 f 的极值点.

作业题: 第 1.9 节第 93 页第 1 题第 (2), (4) 题

例 2. 设隐函数 z = z(x, y) 由方程

$$F(x, y, z) = 2x^2 + 2y^2 + z^2 + 8xz - z + 8 = 0$$

确定, 求其极值点.

解:由隐函数定理可知, z(x,y) 的驻点满足

$$0 = \frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} = -\frac{4x + 8z}{2z + 8x - 1},$$

$$0 = \frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}} = -\frac{4y}{2z + 8x - 1}.$$

于是 y = 0, x = -2z. 带入隐函数方程可得

$$\begin{cases} x_1 = \frac{16}{7} \\ y_1 = 0 \\ z_1 = -\frac{8}{7} \end{cases}, \quad \begin{cases} x_2 = -2 \\ y_2 = 0 \\ z_2 = 1 \end{cases}.$$

在驻点处, 我们有

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(-\frac{4x + 8z}{2z + 8x - 1} \right)$$

$$= -\frac{4(2z + 8x - 1) - 8(4x + 8z)}{(2z + 8x - 1)^2} = \frac{4}{14z + 1}.$$

$$\frac{\partial^2 z}{\partial u \partial x} = \frac{\partial}{\partial u} \left(-\frac{4x + 8z}{2z + 8x - 1} \right) = 0.$$

同样我们也有

$$\frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(-\frac{4y}{2z + 8x - 1} \right) = -\frac{4}{2z + 8x - 1} = \frac{4}{14z + 1}.$$

由此立刻可得

$$H_z\left(\frac{16}{7},0\right) = \begin{pmatrix} -\frac{4}{15} & 0\\ 0 & -\frac{4}{15} \end{pmatrix}, \ H_z\left(-2,0\right) = \begin{pmatrix} \frac{4}{15} & 0\\ 0 & \frac{4}{15} \end{pmatrix}.$$

则 $(\frac{16}{7},0)$ 为极大值点, 而 (-2,0) 为极小值点.

作业题: 求由方程 $x^2 + \frac{y^2}{4} + \frac{z^2}{9} - \frac{2}{3}z = 0$ 所确定

的隐函数 z = z(x, y) 的极值.

谢谢大家!