Preuve par résolution

- Procédure générale pour faire de l'inférence
 - modus ponens et l'instantiation universelle sont des cas particuliers
- Cette procédure est correcte et complète (sous certaine condition, à voir plus tard)
- On aura besoin des outils suivants :
 - la substitution
 - l'unification
 - la transformation sous forme normale conjonctive

Preuve par résolution

- Pour prouver que f_1 implique f_2
 - \diamond transformer f_1 en un ensemble de clauses en forme normale conjonctive
 - \diamond y ajouter les clauses pour $\neg f_2$ (comme dans preuve par contradiction)
 - ◆ appliquer répétitivement la **règle de résolution** jusqu'à aboutir à la clause vide, notée \Box (on a prouvé que f_1 implique f_2)
 - \diamond s'il n'est plus possible d'appliquer la règle de résolution, f_1 n'implique pas f_2
- Règle de résolution pour le cas propositionnel (c.-à-d. prédicats sans arguments) :
 - \diamond étant données les **clauses parents** $(p_1 \vee ... \vee p_n)$ et $(\neg p_1 \vee q_1 \vee ... \vee q_m)$, on génère la **clause résolvante** $p_2 \vee ... p_n \vee q_1 \vee ... \vee q_m$
 - on retrouve la règle Modus Ponens, puisque $f_1 \rightarrow f_2$ est équivalent à $\neg f_1 \lor f_2$

Règle de résolution pour les prédicats

Règle de résolution pour le cas de prédicats généraux

Soit deux clauses parents $L = L_1 \vee ... \vee L_n$ et $M = M_1 \vee ... \vee M_m$:

- 1. trouver un littéral L_k et un littéral M_l tel qu'il existe un UPG θ tel que $L_k\theta = \neg M_l\theta$
- 2. la clause résolvante de $L_1 \vee ... \vee L_n$ et $M_1 \vee ... \vee M_m$ est

$$L\theta \operatorname{sans} L_{k}\theta \vee ... \vee L_{n}\theta \vee M_{1}\theta \vee ... \vee M_{l-1}\theta \vee M_{l+1}\theta \vee ... \vee M_{m}\theta$$

$$M\theta \operatorname{sans} M_{l}\theta$$

- Ex. :
 - ♦ clauses parents: $L = \neg dog(x) \lor animal(x)$, $M = \neg animal(y) \lor die(y)$
 - **♦ clause résolvante:** $\neg dog(x) \lor die(x)$ (UPG = { y = x })
- Deux clauses parents peuvent avoir plusieurs résolvants selon le choix L_k et M_l

Règle de résolution pour les prédicats

- La règle de résolution telle que décrite jusqu'à maintenant est correcte (sound), mais elle n'est pas complète
- La règle de résolution combinée avec la factorisation est complète
 - si deux littéraux d'une même clause ont un UPG, on remplace ces littéraux par le résultat de leur unification
 - un facteur est le résultat de cette transformation
 - » ex. : $q(z) \lor p(f(y))$ est un facteur de la clause $q(z) \lor p(x) \lor p(f(y))$ (obtenu par l'UPG $\{x = f(y)\}$
 - on peut utiliser la factorisation au besoin, avant ou après l'application de la règle de résolution, afin de générer de nouvelles clauses

Exemple 1

- Tous les chiens sont des animaux
 - \diamond \forall $x dog(x) \rightarrow animal(x)$
- Tous les animaux vont mourir
 - \bullet \forall y animal(y) \rightarrow die(y)
- Fido est un chien
 - dog(Fido)
- Prouvez que Fido va mourir
 - die(Fido)

Exemple 1

Formules

- 1. $\forall x dog(x) \rightarrow animal(x)$
- 2. \forall y animal(y) \rightarrow die(y)
- dog(Fido)

Niez la conclusion que Fido va mourir

4. ¬ die(Fido)

Forme normale conjonctive

- 1. $\neg dog(x) \lor animal(x)$
- 2. \neg animal(y) \lor die(y)
- dog(Fido)
- **4**. ¬ *die*(*Fido*)

5.
$$\neg dog(y) \lor die(y)$$

1, 2,
$$\{x=y\}$$

6. die(Fido)

$$3, 5 \{y=Fido\}$$

Exemple 2

- 1. Marcus est une personne.
- 2. Marcus est un pompéien.
- 3. Tous les pompéiens sont des romains.
- 4. César est un dirigeant.
- 5. Tout le monde est loyal à quelqu'un.
- 6. Tous les romains sont loyaux à César ou le haïssent.
- 7. Les seuls dirigeants qu'une personne essaie d'assassiner sont ceux auxquels elle n'est pas loyal
- 8. Marcus a essayer d'assassiner César.

Prouvez que Marcus hait César

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- 3. \forall x pompeien(x) \rightarrow romain(x)
- 4. dirigeant(Cesar)
- 5. $\forall x \exists y loyal(x,y)$
- 6. \forall x romain(x) → loyal(x,Cesar) \lor hait(x,Cesar)
- 7. $\forall x \forall y personne(x) \land dirigeant(y) \land assassiner(x,y) \rightarrow \neg loyal(x,y)$
- 8. assassiner(Marcus,Cesar)

Prouvez : hait(Marcus,Cesar)

Etape 10 : Ajouter les clauses de la négation de l'expression à prouver

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- 3. \neg pompeien(x1) \lor romain(x1)
- 4. dirigeant(Cesar)
- 5. loyal(x2, f1(x2))
- 6. \neg romain(x4) \lor loyal(x4,Cesar) \lor hait(x4,Cesar)
- 7. \neg personne(x5) $\lor \neg$ dirigeant(x6) $\lor \neg$ assassiner(x5,x6) $\lor \neg$ loyal(x5,x6)
- 8. assassiner(Marcus,Cesar)

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- 3. \neg pompeien(x1) \lor romain(x1)
- 4. dirigeant(Cesar)
- 5. loyal(x2, f1(x2))
- 6. \neg romain(x4) \lor loyal(x4,Cesar) \lor hait(x4,Cesar)
- 7. \neg personne(x5) $\lor \neg$ dirigeant(x6) \lor
 - \neg assassiner(x5,x6) $\lor \neg$ loyal(x5,x6)
- 8. assassiner(Marcus, Cesar)
- 9. ¬ hait(Marcus, Cesar)

Etape 11 : Appliquer la résolution itérativement jusqu'à la clause vide

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- 3. \neg pompeien(x1) \lor romain(x1)
- 4. dirigeant(Cesar)
- 5. loyal(x2, f1(x2))
- 6. \neg romain(x4) \lor loyal(x4,Cesar) \lor hait(x4,Cesar)
- 7. \neg personne(x5) $\lor \neg$ dirigeant(x6) \lor
 - \neg assassiner(x5,x6) $\lor \neg$ loyal(x5,x6)
- 8. assassiner(Marcus, Cesar)
- 9. ¬ hait(Marcus, Cesar)

```
10. romain(Marcus)
                                 2, 3, {x1=Marcus}
11. loyal(Marcus,Cesar) ∨ hait(Marcus,Cesar)
                                 6, 10, {x4=Marcus}
12. loyal(Marcus,Cesar)
                                 9, 11
13. \neg personne(Marcus) \lor \neg dirigeant(Cesar) \lor
   ¬ assassiner(Marcus,Cesar)
                      7, 12, \{x5=Marcus, x6=Cesar\}
14. \neg personne(Marcus) \lor \neg dirigeant(Cesar)
                                  8,13
15. ¬ personne(Marcus)
                                  4,14
16. \square (clause vide)
                                  1,15
```

Répondre à des questions

- La résolution permet de savoir si oui ou non, f_2 est une conséquence logique de f_1
- On peut aussi exploiter les traces du processus de preuve pour trouver des valeurs des variables qui permettent de déduire que f_2 est une conséquence logique de f_1 :
 - on ajoute $Rep(x_1, ..., x_n)$ à chaque clause de $\neg f_2$, où les x_i sont les variables apparaissant dans la clause
 - on applique la preuve par résolution
 - on arrête lorsqu'on a une clause composée uniquement du littéral Rep

Exemple 3. Répondre à la question : qui hait César?

- 1. personne(Marcus)
- 2. pompeien(Marcus)
- 3. \neg pompeien(x1) \lor romain(x1)
- 4. dirigeant(Cesar)
- 5. loyal(x2, f1(x2))
- 6. \neg romain(x4) \lor loyal(x4,Cesar) \lor hait(x4,Cesar)
- 7. \neg personne(x5) $\lor \neg$ dirigeant(x6) \lor
 - \neg assassiner(x5,x6) $\lor \neg$ loyal(x5,x6)
- 8. assassiner(Marcus,Cesar)
- 9. \neg hait(x7,Cesar) \lor Rep(x7)

La 9ème clause est obtenue comme suit :

- la clause à prouver est : $\exists x hait(x,Cesar)$
- sa négation est : $\forall x \neg hait(x,Cesar)$
- ce qui donne après standaradisation
 des variables : ¬ hait(x7,Cesar)
- on ajoute : Rep(x7)

Exemple 3 Répondre à la question : qui hait César?

```
10. romain(Marcus)
1. personne(Marcus)
                                                                                              2, 3, {x1=Marcus}
2. pompeien(Marcus)
                                                           11. loyal(Marcus,Cesar) ∨ hait(Marcus,Cesar)
3. \neg pompeien(x1) \lor romain(x1)
                                                                                             6. 10. {x4=Marcus}
                                                           12. loyal(Marcus, Cesar) ∨ Rep(Marcus)
4. dirigeant(Cesar)
5. loyal(x2, f1(x2))
                                                                                             9. 11 {x7=Marcus}
6. \neg romain(x4) \lor loyal(x4,Cesar) \lor hait(x4,Cesar)
                                                           13. \neg personne(Marcus) \lor \neg dirigeant(Cesar) \lor
7. \neg personne(x5) \lor \neg dirigeant(x6) \lor
                                                              ¬ assassiner(Marcus, Cesar) ∨ Rep(Marcus)
   \neg assassiner(x5,x6) \lor \neg loyal(x5,x6)
                                                                                  7, 12, {x5=Marcus, x6=Cesar}
8. assassiner(Marcus, Cesar)
                                                           14. \neg personne(Marcus) \lor \neg dirigeant(Cesar)
9. \neg hait(x7,Cesar) \lor Rep(x7)
                                                               v Rep(Marcus)
                                                                                             8.13
```

Réponse : Marcus

1,15

4,14

15. ¬ personne(Marcus) ∨ Rep(Marcus)

16. *Rep(Marcus)*