Pro-Forma Questionnaire for Building Thermal Fabric Update Tests, July 2015

[Note revisions are based on participant comments during the Round 1 simulation trial. This also integrates selected items from Crawley, Hand, Kummert, and Griffith (1995), "Contrasting the Capabilities of Building Energy Performance Simulation Programs".]

Instructions: Replace empty boxes with symbols just below, as appropriate. Provide additional information and comments as appropriate. Some responses may require marking more than one box for a given query. If specific responses require disclosure of proprietary data not normally available to users in the program's engineering manual, leave the response blank.

if specific responses require disclosure of proprietary data not normally available to users in the pengineering manual, leave the response blank.	rogran
➤ Possible to use	
■ Used to develop simulation trial results	
Program name, including version number	
California Simulation Engine (CSE 0.831)	
Your name and organization	
Neal Kruis, Big Ladder Software .	
Date	
<u>4/26/17</u> .	

Questions from June 30, 2014 Seattle SSPC 140 Meeting (updated May 2015)

[tkjn: Integrate with other queries topically after sim trials]

1. Are user input constant surface coefficients (not automated)	atically calculated for each time step)
applied by the program?	
☑ Yes	
□ No	
2. If yes for #1, are constant coefficients applied for?	
☑ Interior surfaces	
☑ Exterior surfaces	
3. If yes for $\#1$, were the provided default coefficients of Se	ections 5.2.1.9, 5.2.1.10, and/or Annex B4
Section B4.1.3 applied?	
☑ For all surfaces	
☐ For some surfaces (indicate which surfaces)	<u>.</u>
□ No	
4. If yes for #1 (whether actually used for simulation result	ts or not), are user input constant
coefficients applied as?	
For Interior surfaces:	
☐ Total Combined Convective and Radiative Heat Transfer	
☑ Convection Only	
☐ Radiation Only	
☐ Other (please specify)	
For Exterior surfaces:	
☐ Total Combined Convective and Radiative Heat Transfer	
☑ Convection Only	
☐ Radiation Only	
☐ Other (please specify)	
5. For user input constant coefficients indicated in #4, are	values allowed to vary with individual
surfaces and their orientations?	
For Interior surfaces:	
☑ Yes	
□ No	
☐ Other (please specify)	
For Exterior surfaces:	
☑ Yes	
□ No	
\square Other (please specify)	

6. If you provided detailed convective surface coefficient (h_{conv}) results in Sec5-2Aout.xls (rows 910 –
976 [tk]), was this output?
 ☑ h_{conv} directly provided by the program ☐ h_{conv} calculated per instructions of Section 6.2.1.2.3.4 ☐ Other (please specify)
7. If you did not provide h_{conv} results (see #6), was this because?
□ Insufficient detailed output is provided by the program for calculating h_{conv} □ Other (please specify)
8. What is the maximum opaque (non-window) layer insulation R-value (m^2K/W) allowed by your program? If this varies for opaque surface types, provide a listing – for now this query is more pertinent to surface types that could be used for modeling the raised floor. $\underline{\text{inifinite } m^2K/W}.$

Pro-Forma Queries from IEA BESTEST (1995), updated May 2015

Note to simulation trial participants: These are included from IEA BESTEST 1995 with a few revisions. Please continue to comment if you feel something should be revised, added, or deleted here as we move forward with the simulation trials.

Program status
□ Public domain
☑ Open source license available
☐ Commercial
☐ Other (please specify)
General simulation solution approach ☐ Sequential loads, system, plant calculation without feedback ☐ Simultaneous loads, system, and plant solution ☐ Space temperature calculation based on loads-systems feedback ☐ Other (please describe)
Time step approach ☐ User selected ☐ Automatically variable, constant intervals ☐ Automatically variable, dynamically varying based on solution transients ☐ Other (please describe)
Minimum time steps for simulation ☐ One hour ☑ Subhourly (please specify minimum interval) ☐ > one hour (please specify interval, e.g., daily, monthly)
Timing convention for meteorological data: sampling interval ☐ Fixed within code (please specify interval) 1 Hour. ☐ User-specified
Timing convention for meteorological data: period covered by first record ☑ Fixed within code (please specify period or time which meteorological record covers) ☐ User-specified
Meteorological data reconstruction scheme ☐ Climate assumed stepwise constant over sampling interval ☐ Linear interpolation used over climate sampling interval ☐ Other (please specify)
Output timing conventions ☑ Produces spot output as calculated values at the end of each timestep ☑ Produces spot output as calculated values at end of each hour ☑ Produces average outputs for each hour (please specify period to which value relates, e.g., "Hour 1 = 0:00 to 1:00" or "Hour 1 = 0:30 to 1:30", etc.)
☐ Other (please specify)

Full geometric description
□ Walls, roof, floors
□ Windows
☐ External shading devices
☑ Other (please describe) Tilt, area, and azimuth are input. Overhang and fin geometry defined on per-window bases.
Element conduction solution method [Note: This query moved to here for better topical flow]
☑ Explicit finite difference
☐ Implicit finite difference
☐ Weighting factors
Response factor
☐ Frequency domain
☐ Other (please specify)
Surface conduction
☑ 1-dimensional
□ 2- or 3-dimensional
☐ Variable thermal-physical properties
= + unusie uleimui physical properties
Treatment of zone air
☑ Single temperature (i.e., good mixing assumed)
☐ Stratified model
☐ Simplified distribution model
□ Full CFD model
☐ Other (please specify)
Heat transfer within zones
☐ Radiation and convection combined
☑ Radiation and convection treated separately
Convective heat transfer within zones
☐ Coefficients fixed within code
☐ Coefficients specified by user
☑ Coefficients calculated by code as a function of surface orientation
☑ Coefficients calculated by code as a function of temperature difference
☐ Coefficients calculated by code as a function of surface finishes
☑ Coefficients calculated by code as a function of ventilation airflow
☐ Other (please specify)
Longwave radiative heat transfer within zones
☐ Constant linearized coefficients
☑ Linearized coefficients based on viewfactors
☑ Linearized coefficients based on surface emissivities
Non-linear treatment of radiation heat exchange
☑ Other (please specify) Linearized coefficients based on temperature difference

Number of nodes placed within each layer of walls and slabs
□ Not applicable for this solution method
☐ Fixed number of nodes per layer (please specify)
User-specified number of nodes per layer
☑ Other (please specify) Calculated to enforce stability
Airgaps within walls and slabs
☐ Resistance fixed within code
☐ User-specified constant resistance
☐ Resistance calculated within code as a function of orientation
☐ Radiation and convection treated separately across airgaps
☐ Treated as additional zones
✓ Other (please specify) User specified constant or variable resistance.
Windows (heat loss)
☐ Fixed resistance used for window element
Dynamic treatment of window heat loss using same scheme as for opaque elements
☑ Other (please specify) Dynamic treatment using steady-state scheme
Airgaps within windows
☐ Resistance fixed within code
☐ User-specified constant resistance
☐ Resistance calculated within code as a function of orientation
☑ Radiation and convection treated separately across airgaps
☐ Airgaps treated as additional zones
☐ Other (please specify)
Windows (transmission of direct shortwave radiation)
☐ Fixed transmission used
☑ Solar heat gain coefficients used
☑ Calculated by code as a function of incidence angle
☐ Calculated by code from user-specified function of incidence angle
☐ Other (please specify)
Sky model for diffuse solar radiation
□ Isotropic
✓ Other (please specify model used) Hay anisotropic model.
d 1 3 /
Windows (transmission of diffuse radiation)
☑ Diffuse radiation treated as direct from fixed altitude or incidence angle (please specify) At normal incidence
☐ Other (please specify)
Advanced fenestration [Note: Information useful for consideration of extension cases]
□ Data sets of glazing types
□ Data sets of frame types
☐ Gas fill specifiable as single gas (e.g., Argon) or mixture (e.g., air, Argon/Krypton)
☐ Window frame interaction with edge of glass explicitly modeled
☐ WINDOW data import or calculations (http://windows.lbl.gov/software/window/window.html)
☐ THERM data import or calculations (http://windows.lbl.gov/software/therm/therm.html)
✓ Other (please describe) ASHWAT model with "ratings matching" scheme

Ground reflectance ☐ User defined constant ☐ User defined variation (please specify, e.g., daily, monthly, seasonal) ☐ Automatically varies hourly or each time step, according to weather data (please describe algorithm, and weather data parameters that drive variation)
Shading of windows and walls by a shading object ☐ Only direct beam radiation is shaded ☐ Both direct beam and diffuse radiation are shaded ☐ Reflected solar radiation from ground, other buildings, etc., is shaded ☐ Only one side of a defined shading object actively performs shading ☐ Both sides of a defined shading object actively perform shading ☐ Solar radiation is allowed to be reflected by a shading object ☐ Shading surface transmittance is adjustable ☐ Other (please specify) Shading overhangs and fins applied only to windows
Distribution of transmitted direct beam solar radiation within zones, and cavity albedo ☐ Fixed within the code ☐ Constant user-specified distribution ☐ Calculated once by code and used throughout (please describe algorithm)
Distribution of transmitted diffuse solar radiation within zones, and cavity albedo ☐ Fixed within the code ☐ Constant user-specified distribution ☐ Calculated once by code and used throughout (please describe algorithm)
Heat transfer between external surfaces and surrounding environment ☐ Radiation and convection combined ☑ Radiation and convection treated separately
External convection ☐ Coefficients fixed within code ☐ User-specified constant coefficients ☐ Calculated within code as a function of surface orientation ☐ Calculated within code as a function of surface finish ☐ Calculated within code as a function of wind speed ☐ Calculated within code as a function of wind speed ☐ Calculated within code as a function of wind speed and wind direction relative to surface orientation ☐ Other (please specify)
External infrared radiative heat transfer ☐ Non-linear treatment of radiation heat exchange ☐ Constant linearized coefficients (or as constant combined convective + radiative coefficients) ☐ Assumed to be to ambient air temperature ☐ Assumed to be to sky temperature read from met file ☐ Based on calculated sky temperature (please specify algorithm and requirements)

Surrounding ground surface temperature ✓ Same as weather data air temperature, and varies by time step with weather data — Other (please describe algorithm)
Detailed zone surface output capabilites ☑ Interior-face surface temperatures ☑ Exterior-face surface temperatures ☑ Interior-face surface heat flow ☑ Exterior-face surface heat flow □ Surface heat flows disaggregated by convective and radiative portions □ Other (please describe)
Infiltration — [Note: Information useful for consideration of extension cases] ☑ User input, constant air exchange rate ☑ User input, scheduled air exchange rate ☑ Calculated from input air leakage data (e.g., effective leakage area, crack dimensions, "ACH50", etc.) ☐ Calculated constant value (describe algorithm) ☑ Calculated each time step, wind and buoyancy (stack) driven (describe algorithm) Sherman-Grimsrud ☑ Nodal network, user input wind pressure coefficients ☐ Nodal network, wind pressure coefficients calculated each time step (describe algorithm) Pressure network ☐ Link to external calculation program (describe program) ☐ Other (please describe)
Heaters (dynamics) ☑ No dynamics assumed (output is instantaneous) ☐ Simple first order dynamics ☐ Detailed modeling of heat source dynamics
Heaters (output characteristics) ☑ Purely convective □ Radiative/Convective split fixed within code □ Radiative/Convective split specified by user □ Detailed modeling of heat source output
Control temperature ☑ Air temperature ☐ Combination of air and radiant temperatures fixed within the code ☐ User-specified combination of air and radiant temperatures ☐ User-specified construction surface temperatures ☐ User-specified temperatures within construction ☐ Other (please specify)
Control laws ☐ Perfect control ☐ On/Off thermostatic control with deadband ☐ Proportional control ☐ Other (please specify)

Previously applied validation tests related to building thermal fabric load modeling ^a
☐ IEA BESTEST (Judkoff and Neymark 1995a; ASHRAE Standard 140-2014, Sections 5.2.1, 5.2.2, 5.2.3)
☐ IEA 34/43 Multi-zone non-airflow (Neymark et al 2008), cases MZ340, MZ350
☑ HERS BESTEST (Judkoff and Neymark 1995b; ASHRAE Standard 140-2014, Section 7)
☐ ASHRAE 1052-RP (Spitler, Rees, and Xiao 2001) analytical verification tests
☐ Other software-to-software comparative tests (please describe)
☐ Other analytical verification tests (please describe)
☐ Other empirical validation tests (please describe)
· · · · · · · · · · · · · · · · · · ·

Validation Test References

- ASHRAE. 2014. ANSI/ASHRAE Standard 140-2014. Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. Atlanta GA: ASHRAE
- Judkoff, R., and J. Neymark. 1995a. *International Energy Agency Building Energy Simulation Test (BESTEST) and Diagnostic Method*. NREL/TP-472-6231. Golden, CO: National Renewable Energy Laboratory. www.nrel.gov/docs/legosti/old/6231.pdf.
- Judkoff, R., and J. Neymark. 1995b. *Home Energy Rating System Building Energy Simulation Test (HERS BESTEST), Volume 1: Tier 1 and Tier 2 Tests User's Manual.* NREL/TP-472-7332a. Golden, CO: National Renewable Energy Laboratory.
 www.nrel.gov/docs/legosti/fy96/7332a.pdf.
- Neymark, J., R. Judkoff, D. Alexander, D., C. Felsmann, P. Strachan, A. Wijsman. 2008. *International Energy Agency Building Energy Simulation Test and Diagnostic Method (IEA BESTEST) Multi-Zone Non-Airflow In-Depth Diagnostic Cases: MZ320–MZ360*. NREL Report No. TP-550-43827. Golden, CO: National Renewable Energy Laboratory. www.nrel.gov/docs/fy08osti/43827.pdf
- Spitler, J.D., S.J. Rees, and D. Xiao. 2001. *Development of an Analytical Verification Test Suite for Whole Building Energy Simulation Programs—Building Fabric*. Final Report for ASHRAE 1052-RP. Atlanta: ASHRAE.

^a Application of other test cases is recommended. We explicitly requested the simulation trial participants to separately run multi-zone cases MZ340 and MZ350 as part of the simulation trial process.