Lecture 6: Primitive Roots and The Quadratic Reciprocity Law

Lecture 6

Objectives

By the end of this lecture you should be able to understand

- Primitive Roots
- 2 The Quadratic Reciprocity Law
- 6 How to compute the Legendre and Jacobi symbols

Outline

Primitive Roots

2 The Quadratic Reciprocity Law

Order of a Modulo n

• Recall Euler's theorem:

Theorem

Let
$$n \ge 1$$
 and $\gcd(a, n) = 1$, then $a^{\phi(n)} \equiv 1 \pmod{n}$

• Actually, an exponent $e < \Phi(n)$ might exist that can also give 1!

Definition (Order Modulo *n*)

Let $n \ge 1$ and $\gcd(a, n) = 1$, then the order of a modulo n, denoted by $\operatorname{Ord}_n(a)$, is the smallest integer k such that $a^k \equiv 1 \pmod{n}$

Definition (Primitive Root Modulo *n*)

When $\operatorname{Ord}_n(a) = \Phi(n)$, we call a as a primitive root modulo n

• Primitive roots are important tool in number theory analysis and they exist for any prime modulus.

Example – Order of a Modulo 7

For n = 7, we can create a table for all combinations of a and e for the modular exponentitation $a^e \pmod{7}$

a/e	1	2	3	4	5	6	$Ord_7(a)$
1	1	1	1	1	1	1	1
2	2	4	1	2	4	1	3
3	3	2	6	4	5	1	6
4	4	2	1	4	2	1	3
5	5	4	6	2	3	1	6
6	6	1	6	1	6	1	2

In modulo 7, primitive roots are 3 and 5.

Example – Order of a Modulo 13

a/e	1	2	3	4	5	6	7	8	9	10	11	12	$Ord_{13}(a)$
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	4	8	3	6	12	11	9	5	10	7	1	12
3	3	9	1	3	9	1	3	9	1	3	9	1	3
4	4	3	12	9	10	1	4	3	12	9	10	1	6
5	5	12	8	1	5	12	8	1	5	12	8	1	4
6	6	10	8	9	2	12	7	3	5	4	11	1	12
7	7	10	5	9	11	12	6	3	8	4	2	1	12
8	8	12	5	1	8	12	5	1	8	12	5	1	4
9	9	3	1	9	3	1	9	3	1	9	3	1	3
10	10	9	12	3	4	1	10	9	12	3	4	1	6
11	11	4	5	3	7	12	2	9	8	10	6	1	12
12	12	1	12	1	12	1	12	1	12	1	12	1	2

In modulo 13, primitive roots are 2, 6, 7 and 11.

Example – Order of a Modulo 9

For n = 9, we can create a table for all combinations of a and e for the modular exponentitation $a^e \pmod{9}$. Note that here $\Phi(9) = 6$, so the column that should give 1's like before is at $e = \Phi(9) = 6$

a/e	1	2	3	4	5	6	7	8	$Ord_9(a)$
1	1	1	1	1	1	1	1	1	1
2	2	4	8	7	5	1	2	4	6
3	3	0	0	0	0	0	0	0	undef
4	4	7	1	4	7	1	4	7	3
5	5	7	8	4	2	1	5	7	6
6	6	0	0	0	0	0	0	0	undef
7	7	4	1	7	4	1	7	4	3
8	8	1	8	1	8	1	8	1	2

In modulo 9, primitive roots are 2 and 5. For a=3,6, order is undefined because $\gcd(9,3)\neq 1$ and $\gcd(9,6)\neq 1$

Relation between Order and Exponents

Theorem

Let $\operatorname{Ord}_n(a) = k$, then $a^h \equiv 1 \pmod{n}$ iff $k \mid h$

Proof.

- \Leftarrow Assume $k \mid h$, then h = jk, then $a^h \equiv a^{jk} \equiv (a^k)^j \equiv 1 \pmod{n}$
- \Rightarrow Assume $a^h \equiv 1 \pmod{n}$, with $h = jk + r, r \in \{0, \dots, k-1\}$
 - Then $a^k \equiv a^{kj} a^r \Rightarrow a^r \equiv 1 \pmod{n}$
 - But since r is less than k, we end up with r = 0
 - Therefore, h = jk or $k \mid h$

- Therefore, we compute $\operatorname{Ord}_n(a)$ by searching in all divisors of $\Phi(n)$.

Equivalence of Exponents

Theorem

Let $\operatorname{Ord}_n(a) = k$, then $a^i \equiv a^j \pmod{n}$ iff $i \equiv j \pmod{k}$

Proof.

- \Leftarrow Assume $a^i \equiv a^j \pmod{n}$, $i \ge j$.
 - Since gcd (a, n) = 1, then divide by a^j to get $a^{i-j} \equiv 1 \pmod{n}$
 - Then $k \mid i j$ or $i \equiv j \pmod{k}$
- \Rightarrow Assume $i \equiv j \pmod{k}$
 - Then i = j + qk for $q \in \mathbb{Z}$
 - But $a^k \equiv 1 \pmod{n}$
 - Then, $a^i \equiv a^j a^{qk} \pmod{n} \Rightarrow a^i \equiv a^j \pmod{n}$

Equivalence of Exponents – Corollary

Corollary

Let $Ord_n(a) = k$, then the integers a, a^2, a^3, \dots, a^k are incongruent modulo n (i.e., every two number are not congruent to each other)

Proof.

- If $a^i \equiv a^j \pmod{n}$ for $1 \le i \le j \le k$, then the previous theorem ensures that $i \equiv j \pmod{k}$.
- However, both *i* and *j* are less than *k*!
- Therefore, the congruence $i \equiv j \pmod{k}$ becomes equivalent to the equality i = j
- Then, within this set, $a^i \equiv a^j \pmod{n}$ only when i = j, or

$$a^i \not\equiv a^j \pmod{n} \ \forall \ i \neq j \text{ and } i, j \in \{1, \dots, k\}$$

Reduced Residue Systems Based on Primitive Roots

Theorem

Let gcd(a, n) = 1, and let the reduced residue system

$$\{a_1, a_2, \dots, a_{\Phi(n)}\}\tag{1}$$

be the set of $\Phi(n)$ positive integers less than n and are co-primes with n. If a is a primitive root of n, then the set

$$\{a^1, a^2, \dots, a^{\Phi(n)}\}$$
 (2)

is also a reduced residue system equivalent to (1) in some order.

Example

- a=2 is a primitive root in modulo n=9 with $\Phi(9)=6$
- Therefore, the set $\{2^1, \dots, 2^6\}$ is equivalent to the set $\{1,2,4,5,7,8\}$ of residues that are co-primes with the modulo n = 9.

Motivation for Solving $x^2 \equiv a \pmod{p}$

Square Root Binary Tests

- Test if a large integer a is a perfect square or not in modulo p, i.e, does it have a square root or not? By solving $x^2 \equiv a \pmod{p}$.
- Explicitly calculating the square root using floating-point precision won't work because large integers cannot fit in single (32-bit) or double (64-bit) precision. The square root itself might not be important, what we need is the binary test.

Quadratic Congruence

• Study the solvability of quadratic congruences

$$ax^2 + bx + c \equiv 0 \pmod{p}$$

where p is an odd prime and $a \not\equiv 0 \pmod{p}$ or $\gcd(a, p) = 1$

• For consistency, we study the standard form $x^2 \equiv a \pmod{p}$ and map any quadratic congruence to it.

Quadratic Residues

Definition

Let p be an odd prime and gcd(a, p) = 1. If the quadratic congruence $x^2 \equiv a \pmod{p}$ has a solution, then a is called a quadratic residue of p. Otherwise, it is called a quadratic nonresidue of p.

Example

In modulo 13, we can find all quadratic residues by exhaustive search:

$$1^2 \equiv 12^2 \equiv 1 \pmod{13}$$
, $2^2 \equiv 11^2 \equiv 4 \pmod{13}$
 $3^2 \equiv 10^2 \equiv 9 \pmod{13}$, $4^2 \equiv 9^2 \equiv 3 \pmod{13}$
 $5^2 \equiv 8^2 \equiv 12 \pmod{13}$, $6^2 \equiv 7^2 \equiv 10 \pmod{13}$

- The quadratic residues of 13 are 1, 3, 4, 9, 10, 12.
- The quadratic nonresidues of 13 are 2, 5, 6, 7, 8, 11.

Euler's Criterion

Theorem

Let p be an odd prime and gcd(a, p) = 1. Then a is a quadratic residue of p iff

$$a^{(p-1)/2} \equiv 1 \pmod{p}$$

Lemma

Let p be an odd prime and gcd(a,p) = 1, then

$$\left(a^{(p-1)/2}-1\right)\left(a^{(p-1)/2}+1\right)=a^{p-1}-1\equiv 0$$
 (By Fermat's)

Then, either $a^{(p-1)/2} \equiv 1 \pmod{p}$ *or* $a^{(p-1)/2} \equiv -1 \pmod{p}$

- Therefore, Euler's criterion is binary: It either gives 1 or -1

Legendre Symbol

Quadratic congruence analysis is simplified by the Legendre symbol

Definition

Let p be an odd prime and gcd(a,p)=1. The Legendre symbol (a/p) is defined by

$$(a/p) = \begin{cases} 1, & \text{if } a \text{ is a quadratic residue of } p \\ -1, & \text{if } a \text{ is a quadratic nonresidue of } p \end{cases}$$

Example

In module 13, the results of slide 15 are summarized as:

$$(1/13) = (3/13) = (4/13) = (9/13) = (10/13) = (12/13) = 1$$
 and

$$(2/13) = (5/13) = (6/13) = (7/13) = (8/13) = (11/13) = -1$$

Properties of Legendre Symbol

Let p be an odd prime and let a and b be integers co-primes to p

- If $a \equiv b \pmod{p}$, then (a/p) = (b/p)
- $(a^2/p) = 1$
- $(a/p) \equiv a^{(p-1)/2} \pmod{p}$
- (ab/p) = (a/p)(b/p)
- (1/p) = 1 and $(-1/p) = (-1)^{(p-1)/2}$

For the proof of these properties, please check Theorem 9.2 in Burton's textbook.

Quadratic Reciprocity Law

Theorem

If p and q are distinct odd primes, then

$$(p/q)(q/p) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$$

$$= \begin{cases} 1, & \text{if } p \equiv 1 \pmod{4} \text{ or } q \equiv 1 \pmod{4} \\ -1, & \text{if } p \equiv q \equiv 3 \pmod{4} \end{cases}$$

Multiplying both sides by (q/p) and noting that $(q/p)^2 = 1$, we have

Corollary

$$(p/q) = \begin{cases} (q/p), & \text{if } p \equiv 1 \pmod{4} \text{ or } q \equiv 1 \pmod{4} \\ -(q/p), & \text{if } p \equiv q \equiv 3 \pmod{4} \end{cases}$$

Application of Quadratic Reciprocity Law

Corollary

$$(p/q) = \begin{cases} (q/p), & \text{if } p \equiv 1 \pmod{4} \text{ or } q \equiv 1 \pmod{4} \\ -(q/p), & \text{if } p \equiv q \equiv 3 \pmod{4} \end{cases}$$

Assume the canonical factorization of

$$a = \pm 2^{k_0} p_1^{k_1} p_2^{k_2} \dots p_r^{k^r},$$

then we can use the multiplicative property to get

$$(a/p) = (\pm 1/p)(2^{k_0}/p)(p_1^{k_1}/p)(p_2^{k_2}/p)\dots(p_r^{k_r}/p)$$

- Recursively replace (p_i/p) by a new Legendre symbol having smaller denominator, i.e., invert and divide by the new modulo
- By successive inversion and division, the computation can be reduced to simple binary tests (-1/p), (2/p) and (3/p).

Basic Square Root Binary Tests

To develop an efficient square-root binary test, a divide-and-conquer algorithm can be developed to reduce an arbitrarily large integer into one of the following 3 cases which can be easily calculated.

$$(-1/p) = \begin{cases} 1, & p \equiv 1 \pmod{4} \\ -1, & p \equiv 3 \pmod{4} \end{cases}$$

$$(2/p) = \begin{cases} 1, & p \equiv \pm 1 \pmod{8} \\ -1, & p \equiv \pm 3 \pmod{8} \end{cases} = (-1)^{(p^2 - 1)/8}$$

$$(3/p) = \begin{cases} 1, & p \equiv \pm 1 \pmod{12} \\ -1, & p \equiv \pm 5 \pmod{12} \end{cases}$$

The Jacobi Symbol

Definition

Let n be an odd integer where $n = q_1 \dots q_k$ and $q'_i s$ are odd primes, not necessarily distinct. Let a is an integer co-prime with n, i.e., gcd(a,p) = 1. The Legendre symbol (a|n) is defined by

$$(a|n) = (a/q_1)(a/q_2)\dots(a/q_k)$$

where (a/q_i) is the Legendre symbol.

- By definition, (a|1) = 1 for all $a \in \mathbb{Z}$.
- The Jacobi symbol extends the domain of definition of the Legendre symbol by extending the denominator into composites.
- The Jacobi symbol has better properties from a computational point of view where we can efficiently compute it without knowing the canonical factorization of either *a* or *n*.

Properties of Jacobi Symbol

Let m, n be odd positive integers and let $a, b \in \mathbb{Z}$, then

- If $a \equiv b \pmod{n}$, then (a|n) = (b|n)
- ab|n) = (a|n)(b|n)
- (a|mn) = (a|m)(a|n)
- (1|n) = 1 and $(-1|n) = (-1)^{(n-1)/2}$
- $(2|n) = (-1)^{(n^2-1)/8}$
- \bullet $(m|n) = (-1)^{\frac{m-1}{2}\frac{n-1}{2}} (n|m)$

For the proof of these properties, please check Section 12.2 in 9.2 in Victor Shoup's textbook.

Computing the Jacobi Symbol

```
Given: odd positive integer n and integer a
Required: Compute the Jacobi symbol (a|n)
          \sigma \leftarrow 1
           repeat
                 // loop invariant: n is odd and positive
                  a \leftarrow a \bmod n
                  if a = 0 then
                         if n = 1 then return \sigma else return 0
                  compute a', h such that a = 2^h a' and a' is odd
                  if h \not\equiv 0 \pmod{2} and n \not\equiv \pm 1 \pmod{8} then \sigma \leftarrow -\sigma
                  if a' \not\equiv 1 \pmod{4} and n \not\equiv 1 \pmod{4} then \sigma \leftarrow -\sigma
                  (a,n) \leftarrow (n,a')
           forever
```