Séries de

Polinômios de Taylor Teorema de Taylor

Teorema de Taylor Teorema de Taylor no R_n

Operadores de Diferenças Finitas

Derivadas

Diferenças de orde superior

Diferenças finitas

Referência

Diferenciação Numérica Introdução aos Métodos Discretos

Prof. Ruy Freitas Reis - ruy.reis@ufjf.br Programa de Pós-Graduação em Modelagem Computacional Universidade Federal de Juiz de Fora

Séries de

Polinômios de Taylor Teorema de Taylor Teorema de Taylor no R_o

Operadores d Diferenças Finitas

Aproximações de Derivadas Diferenças de order superior Diferenças finitas multivariadas

Referência

Conteúdo

- Séries de Taylor
 Polinômios de Taylor
 Teorema de Taylor
 Teorema de Taylor no R_n
- Operadores de Diferenças Finitas Aproximações de Derivadas Diferenças de ordem superior Diferenças finitas multivariadas
- 3 Referências

Séries de Taylor

Polinômios de Taylor

Teorema de Taylor Teorema de Taylor no R_n

Operadores o Diferenças Finitas

Derivadas

Diferenças de orde superior

Diferenças finitas

Referência

Conteúdo

1 Séries de Taylor Polinômios de Taylor Teorema de Taylor

- Operadores de Diferenças Finitas Aproximações de Derivadas Diferenças de ordem superior Diferenças finitas multivariadas
- 3 Referências

Séries de

Polinômios de Taylor

Teorema de Taylor Teorema de Taylor no R_a

Operadores d Diferenças

Aproximações o Derivadas

Diferenças de ord superior

Referência

Polinômio de Taylor

Teorema (Polinômio de Taylor)

Suponha f(t) ser uma função tal que f(a) e suas derivadas f'(a), f''(a), \cdots , $f^{(n)}(a)$ existam e a é um valor real, então o **Polinômio de Taylor de grau** n que aproxima f(t) em torno de t=a é expresso por:

$$P_n(t) = f(a) + f'(a)(t-a) + f''(a)\frac{(t-a)^2}{2!} + \ldots + f^{(n)}(a)\frac{(t-a)^n}{n!}$$

Séries de Taylor

Polinômios de Taylor Teorema de Taylor Teorema de Taylor

Operadores de Diferenças

Derivadas

Diferenças de order superior

Referência

Polinômio de Taylor

O mesmo Teorema anterior pode ser reescrito da seguinte forma. Basta tomar x-a=h. Desta forma o teorema fica da seguinte forma:

Teorema (Polinômio de Taylor)

Suponha f ser uma função tal que f(x) e suas derivadas f'(x), f''(x), \cdots , $f^{(n)}(x)$ existam e x é um valor real, então o **Polinômio de Taylor de grau** n que aproxima f(x + h) em torno de x é expresso por:

$$P_n(x+h) = f(x) + f'(x)h + f''(x)\frac{h^2}{2!} + \dots + f^{(n)}(x)\frac{h^n}{n!}$$

Séries de

Polinômios de Taylor

Teorema de Taylor ${\it Teorema de Taylor} \\ {\it no } R_n$

Operadores d Diferenças

Aproximações

Diferenças de orde

Diferenças finita

Referência

Exemplos

Exercício Resolvido

Encontrar o polinômio de Taylor de grau 1 (linear) que aproxima a função $f(x) = e^x$ em torno do ponto x = 0.

Polinômios de Taylor Teorema de Taylor

Teorema de Taylor no R_a

Operadores d Diferenças Finitas

Derivadas

Diferenças de orde superior

Diferenças finitas

Referência

Exercício Resolvido

Encontrar o polinômio de Taylor de grau 1 (linear) que aproxima a função $f(x) = e^x$ em torno do ponto x = 0.

Solução:

Temos

$$f(x) = e^x \quad \Rightarrow \quad f'(x) = e^x$$

portanto o polinômio de Taylor linear é dado por

$$P_1(x) = f(a) + f'(a)(x - a)$$

$$= f(0) + f'(0)(x - 0)$$

$$= e^0 + e^0(x - 0)$$

$$= 1 + x$$

Séries de

Polinômios de Taylor

Teorema de Taylor Teorema de Taylor

Operadores de Diferenças

Aproximações

Derivadas

Diferenças de ord

Diferenças finit

multivariadas

Referência

Representação gráfica da solução

Séries de Taylor

Polinômios de Taylor

Teorema de Taylor Teorema de Taylor no R_n

Operadores d Diferenças

Aproximações

Diferenças de orde

Diferenças finit multivariadas

Referência

Podemos generalizar?

Generalizando $P_n(x)$ para $f(x) = e^x$

Determinar o polinômio de Taylor de grau n (n-ésimo) para $f(x) = e^x$ em torno do ponto a = 0.

Operadores de Diferenças Finitas

Aproximações de Derivadas Diferenças de order superior Diferenças finitas multivariadas

Referência

Podemos generalizar?

Generalizando $P_n(x)$ para $f(x) = e^x$

Determinar o polinômio de Taylor de grau n (n-ésimo) para $f(x)=e^x$ em torno do ponto a=0.

Solução

Temos

$$f(x) = e^x \Rightarrow f'(x) = e^x \Rightarrow f''(x) = e^x \Rightarrow \cdots \Rightarrow f^{(n)}(x) = e^x$$

então

$$P_{n}(x) = f(a) + f'(a)(x - a) + f''(a)\frac{(x - a)^{2}}{2!} + \dots + f^{(n)}(a)\frac{(x - a)^{n}}{n!}$$

$$= f(0) + f'(0)(x - 0) + f''(0)\frac{(x - 0)^{2}}{2!} + \dots + f^{(n)}(0)\frac{(x - 0)^{n}}{n!}$$

$$= e^{0} + e^{0}(x - 0) + e^{0}\frac{(x - 0)^{2}}{2!} + \dots + e^{0}\frac{(x - 0)^{n}}{n!}$$

$$= 1 + x + \frac{x^{2}}{2} + \dots + \frac{x^{n}}{n!}$$

$$= \sum_{i=0}^{n} \frac{x^{i}}{i!}$$

Séries de Taylor

Polinômios de Taylor

Teorema de Taylor Teorema de Taylor

Operadores de Diferenças

Aproximações

Diferenças de orde

Diferenças finita

Referência

Exemplos

Aproximações para $f(x) = e^x$ em torno de x = 0

Aproximações de Derivadas Diferenças de orde superior Diferenças finitas multivariadas

Referência

Para todos os exercícios enviar o arquivo Notebook (Colab) para a tarefa que será disponibilizada no Classroom

- 1) Descubra os seguintes polinômios de Taylor, plote e aproxime os seguintes valores:
 - a) $f(x) = \sqrt[7]{x}$ obter $P_1(x)$ (linear). Qual o gráfico e o valor de $\sqrt[7]{1.1}$ usando $P_1(x)$? Use a = 1.
 - b) $f(x) = e^x$ obter $P_2(x)$ (quadrático). Qual o gráfico e o valor de $e^{0.2}$ usando $P_2(x)$? Use a = 0.
- 2) Produza uma fórmula geral para o polinômio de Taylor expandido em torno de a = 0 de grau n, além disso tomando n = 20 gere os gráficos dos polinômio obtidos.
 - a) 1/(1-x)
 - b) $\sqrt{1+x}$

Séries de Tavlor

Teorema de Taylor

Operadores o Diferenças Einitas

Derivadas Diferenças de order superior Diferenças finitas

Referência

Conteúdo

1 Séries de Taylor
Polinômios de Taylor
Teorema de Taylor
Teorema de Taylor no R

- Operadores de Diferenças Finitas Aproximações de Derivadas Diferenças de ordem superior Diferenças finitas multivariadas
- 3 Referências

Teorema de Taylor

Teorema de Taylor

Teorema (Teorema de Taylor)

Seja uma função f(x) assumindo que as (n+1) primeiras derivadas $f^{(n+1)}(x)$ são contínuas para $x_F < x < x_D$. Neste caso se $x \in x + h$ são pontos no intervalo (x_E, x_D) então:

$$f(x+h) = f(x) + hf'(x) + \frac{1}{2}h^2f''(x) + \cdots + \frac{1}{n!}h^nf^{(n)}(x) + R_n,$$

em torno do ponto x onde o resíduo na forma de Lagrange é dado por:

$$R_n = \frac{1}{(n+1)!} h^{n+1} f^{(n+1)}(\eta)$$

e η é um ponto entre x e x + h

Séries de

Polinômios de Taylor Teorema de Taylor

Operadores de Diferenças

Aproximações de Derivadas Diferenças de order superior

Referência

Exemplo

Exercício Resolvido

Obtenha o limitante superior do erro para $e^{0.5}$ quando esta expressão é aproximada por um polinômio de Taylor de grau 4 para e^x em torno do ponto 0.

Exemplo

Exercício Resolvido

Obtenha o limitante superior do erro para $e^{0.5}$ quando esta expressão é aproximada por um polinômio de Taylor de grau 4 para e^{x} em torno do ponto 0.

Solução:

Utilizando o resíduo temos o seguinte erro:

$$R_4(x) = f^{(5)}(\eta) \frac{(x-0)^5}{5!} = e^{\eta} \frac{x^5}{120},$$
 para algum $\eta \in [0, 0.5]$

assim quando aproximamos $e^{0.5}$ o erro está limitado por

$$|R_4(x)| \le \max \left| \frac{e^{\eta} x^5}{120} \right| \le \left| \frac{e^{0.5} 0.5^5}{120} \right| \le 2 \frac{0.5^5}{120} = 0.00052$$

Aproximações de Derivadas Diferenças de ord superior Diferenças finitas multivariadas

Referência

Exercícios

- 3) Encontre e plote os seguintes polinômios de Taylor, além disso calcule os limitantes superiores de erro como se pede:
 - a) Encontre um limitante superior para o erro ao aproximar $f(x)=e^x$, para $x\in[-1,1]$, pelo polinômio de Taylor de grau 3 expandido em torno de a=0. Calcule o erro absoluto de $P_3(x=1)$ com f(x=1) e compare com o limitante obtido
 - b) Encontre o polinômio de Taylor de grau 2 para a função $f(x) = e^x sin(x)$ em torno do ponto a=0. Determine um limitante superior do erro para essa aproximação para $x \in [-\pi/4, \pi/4]$. Calcule o erro absoluto de $P_2(x=0)$ com f(x=0) e compare com o limitante obtido

Séries de Taylor

no R

Polinômios de Taylor Teorema de Taylor Teorema de Taylor

Operadores of Diferenças Finitas

Derivadas
Diferenças de order
superior
Diferenças finitas

Referência

Conteúdo

1 Séries de Taylor
Polinômios de Taylor
Teorema de Taylor
Teorema de Taylor no R_n

- Operadores de Diferenças Finitas Aproximações de Derivadas Diferenças de ordem superior Diferenças finitas multivariadas
- 3 Referências

Séries de

Taylor Polinômios de Taylo

Teorema de Taylor no R_n

Operadores d Diferenças Finitas

Derivadas
Diferenças de order superior
Diferenças finitas

Referências

Polinômio de Taylor no R_n

Teorema (Teorema de Taylor no R_n)

Suponha $f: \mathbb{R}^n \to \mathbb{R}$ na classe C^{k+1} em um conjunto convexo aberto \mathbb{S} . Se $\mathbf{a} \in \mathbb{S}$ e $\mathbf{a} + \mathbf{h} \in \mathbb{S}$, ent $\tilde{\mathbf{a}}$ o:

$$f(\mathbf{x} + \mathbf{h}) = \sum_{|\alpha| \le k} \frac{\partial^{\alpha} f(\mathbf{x})}{\alpha!} \mathbf{h}^{\alpha} + R_{\mathbf{x},k}(\mathbf{h})$$

onde o resíduo na forma de Lagrange é dado por

$$R_{\mathbf{x},k}(\mathbf{h}) = \sum_{|\alpha|=k+1} \partial^{\alpha} f(\mathbf{x} + \mathbf{c}) \frac{\mathbf{h}^{\alpha}}{\alpha!}$$

para $c \in (0,1)$.

Teorema de Taylor no R_n

Operadores Diferenças Finitas

Derivadas
Diferenças de orde superior
Diferenças finitas multivariadas

Referência

Polinômio de Taylor no R_n

A fim de simplificar o entendimento, vamos tomar a versão de duas variáveis do Polinômio de Taylor, ou seja, $P_n: \mathbb{R}^2 \to \mathbb{R}$

$$f(x+h,t+k) = f(x,t) + h\frac{\partial f}{\partial x}(x,t) + k\frac{\partial f}{\partial t}(x,t) + \frac{1}{2}h^2\frac{\partial^2 f}{\partial x^2}(x,t) + hk\frac{\partial^2 f}{\partial x^2\partial t}(x,t) + \frac{1}{2}k^2f\frac{\partial^2 f}{\partial x^2\partial t}(x,t) + \cdots$$

Séries de

Polinômios de Taylor Teorema de Taylor Teorema de Taylor no R_n

Operadores de Diferenças

Aproximações

Diferenças de order superior

Diferenças finit multivariadas

Referência

Exemplo

Exercício Resolvido

Encontre o polinômio de Taylor de 2^a ordem, P_2 de $f(x,y)=e^{x^2+y}$ próximo a (0,0).

Exemplo

Séries de

no R.

Polinômios de Taylor Teorema de Taylor Teorema de Taylor

Operadores d Diferenças

Aproximações de Derivadas Diferenças de orde

Diferenças de order superior Diferenças finitas multivariadas

Referência

Exercício Resolvido

Encontre o polinômio de Taylor de 2^a ordem, P_2 de $f(x,y)=e^{x^2+y}$ próximo a (0,0).

Solução:

Temos

$$f(x,y) = e^{x^{2}+y} \Rightarrow f(0,0) = 1$$

$$f_{x}(x,y) = 2xe^{x^{2}+y} \Rightarrow f_{x}(0,0) = 0$$

$$f_{y}(x,y) = e^{x^{2}+y} \Rightarrow f_{x}(0,0) = 1$$

$$f_{xx}(x,y) = 2(1+2x^{2})e^{x^{2}+y} \Rightarrow f_{xx}(0,0) = 2$$

$$f_{xy}(x,y) = 2xe^{x^{2}+y} \Rightarrow f_{xy}(0,0) = 0$$

$$f_{yy}(x,y) = e^{x^{2}+y} \Rightarrow f_{yy}(0,0) = 1$$

Séries de

laylor

Teorema de Taylor no R_n

Operadores o Diferenças Finitas

Derivadas
Diferenças de order
superior
Diferenças finitas
multivariadas

Referências

Exercício Resolvido

Encontre o polinômio de Taylor de 2^a ordem, P_2 de $f(x,y)=e^{x^2+y}$ próximo a (0,0).

Solução:

Substituindo os termos

$$P_2(x,y) = f(0,0) + (x-0)f_x(0,0) + (y-0)f_y(0,0)$$

$$+ \frac{(x-0)^2}{2}f_{xx}(0,0) + (x-0)(y-0)f_{xy}(0,0)$$

$$+ \frac{(y-0)^2}{2}f_{yy}(0,0)$$

$$P_2(x,y) = 1 + y + x^2 + \frac{y^2}{2}$$

Séries de

Taylor Polinômios de Tay

Teorema de Taylor no R_n

Operadores d Diferenças Finitas

Aproximações

Diferenças de ord

Diferenças finit

Referências

Séries de

l aylor Polinômios de Taylo

Teorema de Taylor

Operadores de Diferenças Einitas

Derivadas

Diferenças de orde

superior

Diferenças finitas

Referência

Exercícios

4) Encontre o polinômio de Taylor de 2^a ordem, P_2 de $f(x,y)=e^{2x+3y}$ próximo a (0,0). Além disso, plote o polinômio obtido junto da função f(x,y). Aproxime o valor de (x,y)=(0.5, 0.1) e calcule o erro absoluto.

Séries de

Polinômios de Taylor Teorema de Taylor Teorema de Taylor

Operadores o Diferenças Finitas

Aproximações de Derivadas

superior

Diferenças finitas

Referência

Conteúdo

Séries de Taylor Polinômios de Taylor Teorema de Taylor Teorema de Taylor no R_n

Operadores de Diferenças Finitas Aproximações de Derivadas Diferenças de ordem superior

Defenêncie

Séries de

Teorema de Taylor

Operadores de Diferenças Finitas

Aproximações de Derivadas

Diferenças de orde superior Diferenças finitas

Referência

Aproximação de Derivada

- Considere que uma função f(x), cuja **expressão é desconhecida**, seja fornecida por meio de um conjunto de pontos $(x_0, f(x_0)), (x_1, f(x_1)), ..., (x_n, f(x_n))$.
- Como calcular $f'(x_i)$ e $f''(x_i)$?
- Qual a precisão?

Séries de

Polinômios de Taylor Teorema de Taylor Teorema de Taylor no R.

Operadores de Diferenças Finitas

Aproximações de Derivadas

Diferenças de ordem superior Diferenças finitas

Referências

Aproximação de Derivada

- Podemos usar polinômio de Taylor para aproximar as derivadas da função.
- Suponha pontos igualmente espaçados:

$$x_{i-1}, x_i, x_{i+1}, x_{i+2}, \cdots$$

• Ou seja $x_i - x_{i-1} = x_{i+1} - x_i = x_{i+2} - x_{i+1} = h$

Séries de

Teorema de Taylor
Teorema de Taylor
no R_n

Operadores d Diferenças Einitas

Aproximações de Derivadas

Diferenças de order superior Diferenças finitas

Referência

Derivadas de Primeira Ordem Diferença Progressiva

Para calcular a derivada $f'(x_i)$ em cada ponto x_i , vamos usar um polinômio de Taylor linear em torno do ponto x_i . Tomando $x = x_{i+1}$

$$f(x_{i+1}) = f(x_i) + f'(x_i) \underbrace{(x_{i+1} - x_i)}_{h} + O(h^2)$$

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + O(h^2)$$

$$f'(x_i) = \underbrace{f(x_{i+1}) - f(x_i)}_{h} + O(h)$$

Séries de

Teorema de Taylor Teorema de Taylor no R_n

Operadores d Diferenças Einitas

Aproximações de Derivadas

Diferenças de orden superior Diferenças finitas

Referências

Derivadas de Primeira Ordem Diferença Regressiva

Para calcular a derivada $f'(x_i)$ em cada ponto x_i , vamos usar um polinômio de Taylor linear em torno do ponto x_i . Tomando $x = x_{i-1}$

$$f(x_{i-1}) = f(x_i) + f'(x_i) \underbrace{(x_{i-1} - x_i)}_{-h} + O(h^2)$$

$$f(x_{i-1}) = f(x_i) - f'(x_i)h + O(h^2)$$

$$f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h} + O(h)$$

Séries de

Taylor

Teorema de Taylor

Teorema de Taylor

no R.

Operadores d Diferenças Finitas

Aproximações de Derivadas

Diferenças de orden superior Diferenças finitas multivariadas

Referências

Derivadas de Primeira Ordem

Diferença Centrada

Para calcular a derivada $f'(x_i)$ em cada ponto x_i , vamos usar um polinômio de Taylor quadrático em torno do ponto x_i .

Tomando $x = x_{i+1}$

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)h^2}{2} + O(h^3)$$
 (1)

Tomando $x = x_{i-1}$

$$f(x_{i-1}) = f(x_i) - f'(x_i)h + \frac{f''(x_i)h^2}{2} + O(h^3)$$
 (2)

Subtraindo Eq. (1) de Eq. (2)

$$f(x_{i+1}) - f(x_{i-1}) = 2f'(x_i)h + O(h^3)$$
$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h} + O(h^2)$$

Séries de

Taylor

Teorema de Taylor
Teorema de Taylor
no Ro

Operadores de Diferenças Finitas

Aproximações de Derivadas

Diferenças de order superior Diferenças finitas multivariadas

Referência

Derivadas de Primeira Ordem

Diferença Unilateral à Direita

Para calcular a derivada $f'(x_i)$ em cada ponto x_i , vamos usar um polinômio de Taylor quadrático em torno do ponto x_i .

Tomando $x = x_{i+2}$

$$f(x_{i+2}) = f(x_i) + 2hf'(x_i) + 2h^2f''(x_i) + O(h^3)$$
 (3)

Tomando $x = x_{i+1}$

$$f(x_{i+1}) = f(x_i) + hf'(x_i) + \frac{h^2 f''(x_i)}{2} + O(h^3)$$
 (4)

Multiplicando Eq. (4) por -4 e somando com Eq. (3):

$$f(x_{i+2}) - 4f(x_{i+1}) = -3f(x_i) - 2hf'(x_i) + O(h^3)$$
$$f'(x_i) = \frac{-f(x_{i+2}) + 4f(x_{i+1}) - 3f(x_i)}{2h} + O(h^2)$$

Séries de Taylor

Teorema de Taylor Teorema de Taylor no R_o

Operadores de Diferenças Einitas

Aproximações de Derivadas

Diferenças de orde superior

Referência

Derivadas de Primeira Ordem

Diferença Unilateral à Esquerda

Analogamente a diferença unilateral à direita pode-se obter a seguinte relação:

$$f'(x_i) = \frac{3f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{2h} + O(h^2)$$

Séries de

Taylor

Teorema de Taylor
Teorema de Taylor
no R_n

Operadores d Diferenças Finitas

Aproximações de Derivadas

Diferenças de orden superior Diferenças finitas multivariadas

Referências

Derivadas de Segunda Ordem

Diferença Centrada

Para calcular a derivada $f''(x_i)$ em cada ponto x_i , vamos usar um polinômio de Taylor quadrático em torno do ponto x_i .

Tomando $x = x_{i+1}$

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)h^2}{2} + O(h^3)$$
 (5)

Tomando $x = x_{i-1}$

$$f(x_{i-1}) = f(x_i) - f'(x_i)h + \frac{f''(x_i)h^2}{2} + O(h^3)$$
 (6)

Somando Eq. (5) com Eq. (6):

$$f(x_{i+1}) + f(x_{i-1}) = 2f(x_i) + f''(x_i)h^2 + O(h^3)$$
$$f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2} + O(h^2)$$

Séries de

Teorema de Taylor Teorema de Taylor no R_n

Operadores de Diferenças Finitas

Aproximações de Derivadas

Diferenças de order superior Diferenças finitas multivariadas

Referência

Aproximações de Derivadas Resumo

Tipo	Fórmula de Diferença	Ordem
Progressiva	$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h}$	O(h)
Regressiva	$f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h}$	O(h)
Centrada	$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h}$	$O(h^2)$
Unilateral	$f'(x_i) = \frac{-f(x_{i+2}) + 4f(x_{i+1}) - 3f(x_i)}{2h}$	$O(h^2)$
Unilateral	$f'(x_i) = \frac{3f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{2h}$	$O(h^2)$
Centrada	$f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2}$	$O(h^2)$

Séries de

Polinômios de Ta

Teorema de Taylor Teorema de Taylor no R_n

Operadores o Diferenças Finitas

Aproximações de Derivadas

Diferenças de orden superior

Referência

Exemplo

Exemplo Resolvido

Calcule f'(1.3) para f(x) = ln(x) usando diferença progressiva e central para h = 0.01 e h = 0.001.

Taylor

Teorema de Taylor Teorema de Taylor no R_n

Operadores de Diferenças Finitas

Aproximações de Derivadas

Diferenças de order superior Diferenças finitas multivariadas

Referências

Exemplo Resolvido

Calcule f'(1.3) para f(x) = ln(x) usando diferença progressiva e central para h = 0.01 e h = 0.001.

Solução:

Usando h = 0.01, com diferença progressiva temos

$$f'(1.3) \approx \frac{ln(1.31) - ln(1.30)}{0.01} = 0.76628$$

Com diferença central temos

$$f'(1.3) \approx \frac{ln(1.31) - ln(1.29)}{2 \cdot 0.01} = 0.76924$$

Taylor

Teorema de Taylor Teorema de Taylor no R_n

Operadores o Diferenças Finitas

Aproximações de Derivadas

Diferenças de orde superior Diferenças finitas

Referência

Cont. Exemplo Resolvido

Usando h = 0.001, com diferença progressiva temos

$$f'(1.3) \approx \frac{ln(1.301) - ln(1.300)}{0.001} = 0.76893$$

com diferença central temos

$$f'(1.3) \approx \frac{ln(1.301) - ln(1.299)}{2 \cdot 0.001} = 0.76923$$

Podemos calcular o valor real usando a derivada de f(x), pois neste caso conhecemos a expressão da função. O resultado é

$$f'(x) = \frac{1}{x} \quad \Rightarrow \quad f'(1.3) = 0.76923$$

Séries de

Polinômios de Taylor Teorema de Taylor Teorema de Taylor no R_n

Operadores de Diferenças Finitas

Aproximações de Derivadas

Diferenças de orden superior Diferenças finitas

Referência

Exemplo

Exercício Resolvido

Seja a função f(x) = cos(x) aproxime sua derivada para $x \in [0,1]$ utilizando h=0.1 utilizando método O(h). Calcule o erro absoluto em cada ponto.

Polinômios de Taylor Teorema de Taylor Teorema de Taylor

Operadores de Diferenças Finitas

Aproximações de Derivadas

Diferenças de order superior Diferenças finitas

Referência

Exemplo

Exercício Resolvido

Seja a função f(x)=cos(x) aproxime sua derivada para $x\in [0,1]$ utilizando h=0.1 utilizando método O(h). Calcule o erro absoluto em cada ponto.

х	Numérica	Analítica	Erro	Tipo
0.0	-0.049958	-0.000000	0.049958	Progressiva
0.1	-0.149376	-0.099833	0.049542	Progressiva
0.2	-0.247301	-0.198669	0.048632	Progressiva
0.3	-0.342755	-0.295520	0.047235	Progressiva
0.4	-0.434784	-0.389418	0.045366	Progressiva
0.5	-0.522469	-0.479426	0.043044	Progressiva
0.6	-0.604934	-0.564642	0.040292	Progressiva
0.7	-0.681355	-0.644218	0.037137	Progressiva
8.0	-0.750967	-0.717356	0.033611	Progressiva
0.9	-0.813077	-0.783327	0.029750	Progressiva
1.0	-0.813077	-0.841471	0.028394	Regressiva

Polinômios de Taylor Teorema de Taylor Teorema de Taylor no R.

Operadores d Diferenças Finitas

Aproximações de

Diferenças de order superior Diferenças finitas multivariadas

Referência

Exercícios

- 1) Demostre a fórmula da diferença unilateral à esquerda.
- 2) Aproxime a derivada de primeira ordem da função f(x) = sen(x) utilizando a diferenças finitas $O(h^2)$ utilizando h = 0.1 e h = 0.01 para $x \in [0,1]$. Plote a derivada analítica e as aproximadas para comparar os resultados.
- 3) Utilizando a função f(x) = sen(x), mostre que o erro diferença progressiva e diferença centrada decrescem em O(h) e $O(h^2)$, respectivamente. Para isso faça o que se pede:
 - a) Tomando $h \in [10^{-5}, 10^{0}]$, plote, em escala log-log, o gráfico de h versus erro absoluto e calcule a inclinação destas retas.
 - b) Tomando $h \in [10^{-20}, 10^0]$, plote, em escala log-log, o gráfico de h versus erro absoluto. O que aconteceu e por que?

Séries de

Polinômios de Taylor Teorema de Taylor Teorema de Taylor no R_n

Operadores de Diferenças Finitas

Aproximações o Derivadas

Diferenças de ordem superior

Diferenças finita

Referência

Conteúdo

Séries de Taylor Polinômios de Taylor Teorema de Taylor Teorema de Taylor no R_n

Operadores de Diferenças Finitas Aproximações de Derivadas Diferenças de ordem superior Diferenças finitas multivariadas

3 Referências

Séries de

Taylor
Polinômios de Tayl

Teorema de Taylor Teorema de Taylor no R_n

Operadores de Diferenças Finitas

Aproximações

Diferenças de ordem

Diferenças finita

IIIuitivariauas

Referências

Operadores Δ , ∇ e δ

Diferença progressiva:

$$\Delta[f](x) = f(x+h) - f(x)$$

• Diferença regressiva:

$$\nabla[f](x) = f(x) - f(x - h)$$

• Diferença centrada:

$$\delta[f](x) = f\left(x + \frac{1}{2}h\right) - f\left(x - \frac{1}{2}h\right)$$

Séries de Taylor

Teorema de Taylor Teorema de Taylor no R_o

Operadores d Diferenças Finitas

Aproximações

Diferenças de ordem superior

Diferenças finita

Referência

Assim as diferenças que vimos anteriormente podem ser reescritas da seguinte forma:

- Diferença progressiva: $f'(x_i) = \frac{\Delta[f](x)}{h} + O(h)$
- Diferença regressiva $f'(x_i) = \frac{\nabla [f](x)}{h} + O(h)$
- Diferença centrada: $f'(x_i) = \frac{\delta[f](x)}{h} + O(h^2)$

Séries de

Polinômios de Taylor Teorema de Taylor Teorema de Taylor

Operadores d

Aproximações de

Diferenças de ordem

Superior Diferencas finitas

Referência

Operadores de Diferença

Então, os três tipos básicos são: diferenças progressivas, regressivas e centradas. Elas podem ser visualizados pela seguinte imagem

Séries de

Teorema de Taylor
Teorema de Taylor
no R.

Operadores d Diferenças Finitas

Aproximações d

Diferenças de ordem superior

Diferenças finita: multivariadas

Derivadas de Segunda Ordem

Diferença Centrada

Assim a diferença centrada pode ser obtida da seguinte maneira:

$$f''(x) \approx \frac{\delta^2[f](x)}{h^2}$$

Ou seja

$$\frac{\delta^{2}[f](x)}{h^{2}} = \frac{\frac{f(x+h)-f(x)}{h} - \frac{f(x)-f(x-h)}{h}}{h}$$
$$= \frac{f(x+h)-2f(x)+f(x-h)}{h^{2}}.$$

Séries de

Teorema de Taylor Teorema de Taylor no R_n

Operadores de Diferenças Finitas

Aproximações d

Diferenças de ordem

Diferenças finit multivariadas

Referências

Derivadas de Segunda Ordem

Diferença progressiva

Analogamente a diferença progressiva pode ser obtida da seguinte maneira:

$$f''(x) \approx \frac{\Delta^2[f](x)}{h^2}$$

Ou seja

$$\frac{\Delta^{2}[f](x)}{h^{2}} = \frac{\frac{f(x+2h)-f(x+h)}{h} - \frac{f(x+h)-f(x)}{h}}{h}$$
$$= \frac{f(x+2h)-2f(x+h)+f(x)}{h^{2}}.$$

Séries de

Teorema de Taylor
Teorema de Taylor
no R.

Operadores de Diferenças Einitas

Aproximações o

Diferenças de ordem

Diferenças finit

Referências

Derivadas de Segunda Ordem

Diferença regressiva

Analogamente a diferença regressiva pode ser obtida da seguinte maneira:

$$f''(x) \approx \frac{\nabla^2[f](x)}{h^2}$$

Ou seja

$$\frac{\nabla^{2}[f](x)}{h^{2}} = \frac{\frac{f(x) - f(x-h)}{h} - \frac{f(x-h) - f(x-2h)}{h}}{h}$$
$$= \frac{f(x) - 2f(x-h) + f(x-2h)}{h^{2}}$$

Polinômios de Taylor Teorema de Taylor Teorema de Taylor

Operadores o Diferenças Finitas

Aproximações de

Diferenças de ordem superior

Diferenças finita multivariadas

Referências

Derivadas de ordens superiores

Generalizando, esta mesma ideia pode ser recursivamente aplicada para obter a n-ésima diferença.

• Diferença progressiva:

$$\Delta^{n}[f](x) = \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} f(x+ih)$$

Diferença regressiva:

$$\nabla^n[f](x) = \sum_{i=0}^n (-1)^i \binom{n}{i} f(x - ih)$$

• Diferença centrada:

$$\delta^{n}[f](x) = \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} f\left(x + \left(\frac{n}{2} - i\right)h\right)$$

Onde $\binom{n}{i}$ é o coeficiente binomial, ou cada linha do triangulo de pascal fornece o coeficiente de cada i-ésimo termo do somatório.

Séries de

Polinômios de Tayl

Teorema de Taylor Teorema de Taylor no R_a

Operadores de Diferenças

Aproximações d

Diferenças de ordem superior

Diferenças finita

Referências

Triangulo de Pascal

Polinômios de Taylor Teorema de Taylor

Operadores Diferenças

Aproximações

Diferenças de ordem

Diferenças finit

D . . .

Derivadas de ordens superiores

A relação destas diferenças de ordem superior com suas respectivas derivadas é direta:

- Diferença progressiva: $\frac{d^n f}{dx^n}(x) = \frac{\Delta_h^n[f](x)}{h^n} + O(h)$
- Diferença regressiva $\frac{d^n f}{dx^n}(x) = \frac{\nabla_h^n [f](x)}{h^n} + O(h)$
- Diferença centrada: $\frac{d^n f}{dx^n}(x) = \frac{\delta_h^n [f](x)}{h^n} + O(h^2)$

Operadores o

Aproximações o

Diferenças de ordem

Diferenças finita

Referência

Exemplo

Exercício Resolvido

Obtenha uma aproximação de derivada de terceira ordem usando diferença progressiva.

Exemplo

Séries de

Polinômios de Taylo Teorema de Taylor

Operadores de Diferenças

Aproximações d

Diferenças de ordem superior

Diferenças finitas

Referências

Exercício Resolvido

Obtenha uma aproximação de derivada de terceira ordem usando diferença progressiva.

Seja a generalização apresentada anteriormente:

$$\Delta^{n}[f](x) = \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} f(x+ih)$$

Tomando n = 3 temos:

$$\Delta^{3}[f](x) = \sum_{i=0}^{3} (-1)^{3-i} {3 \choose i} f(x+ih)$$

Exemplo

Diferenças de ordem superior

Calculando os coeficientes binomiais necessários:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Diferenças de ordem

Assim

$$\Delta^{3}[f](x) = (-1)^{3}1f(x) + (-1)^{2}3f(x+h) + (-1)^{1}3f(x+2h) + (-1)^{0}1f(x+3h)$$

$$\Delta^{3}[f](x) = -f(x) + 3f(x+h) - 3f(x+2h) + f(x+3h)$$

Então a aproximação da 3ª derivada fica:

$$\frac{d'''f}{dx'''} \approx \frac{\Delta^3[f](x)}{h^3} = \frac{-f(x) + 3f(x+h) - 3f(x+2h) + f(x+3h)}{h^3} + O(h)$$

Séries de

Polinômios de Taylor Teorema de Taylor Teorema de Taylor no R_n

Operadores d Diferenças Finitas

Derivadas

Diferenças de or

superior

Diferencas finitas

multivariadas

Referência

Conteúdo

Séries de Taylor
 Polinômios de Taylor
 Teorema de Taylor
 Teorema de Taylor no R_n

2 Operadores de Diferenças Finitas

Aproximações de Derivadas Diferenças de ordem superior

Diferenças finitas multivariadas

3 Referências

Polinômios de Taylor Teorema de Taylor Teorema de Taylor

Operadores de Diferenças Finitas

Aproximações de Derivadas Diferenças de orde

Diferenças finitas multivariadas

Referência

Diferenças finitas Multivariadas

- Assim como no calculo, as diferenças finitas podem ser aplicadas à funções com mais de uma variável.
- Alguns exemplos de aplicação de diferença centrada em derivadas parciais são:

$$f_{x}(x,y) \approx \frac{f(x+h,y) - f(x-h,y)}{2h}$$

$$f_{y}(x,y) \approx \frac{f(x,y+k) - f(x,y-k)}{2k}$$

$$f_{xx}(x,y) \approx \frac{f(x+h,y) - 2f(x,y) + f(x-h,y)}{h^{2}}$$

$$f_{yy}(x,y) \approx \frac{f(x,y+k) - 2f(x,y) + f(x,y-k)}{k^{2}}$$

$$f_{xy}(x,y) \approx \frac{f(x+h,y+k) - f(x+h,y-k) - f(x-h,y+k) + f(x-h,y-k)}{4hk}$$

Séries de

Polinômios de Taylor Teorema de Taylor Teorema de Taylor no R.

Operadores d Diferenças Einitas

Derivadas

Diferenças de orde

Diferenças finitas

Referência

Exemplo

Exercício Resolvido

Seja a função f(x,y)=cos(x+y) aproxime $f_x(x,y)$ para $(x,y)\in [0,1]\times [0,1]$ utilizando $h_x=0.1$ utilizando uma aproximação O(h). Plote o resultado da aproximação junto da solução analítica.

Polinômios de Taylor Teorema de Taylor Teorema de Taylor

Operadores de Diferenças

Derivadas
Diferenças de ord
superior
Diferenças finitas
multivariadas

Referência

Exercício Resolvido

Seja a função f(x,y)=cos(x+y) aproxime $f_x(x,y)$ para $(x,y)\in [0,1]\times [0,1]$ utilizando $h_x=0.1$ utilizando uma aproximação O(h). Plote o resultado da aproximação junto da solução analítica.

Sol.:

- Uma opção para resolver este exercício é utilizar uma diferença progressiva nos pontos onde x < 1 e uma diferença regressiva caso contrário.
- Deste modo obtemos a seguinte aproximação:

$$f_{\scriptscriptstyle X}(x,y) pprox egin{cases} rac{f(x+h_{\scriptscriptstyle X},y)-f(x,y)}{h_{\scriptscriptstyle X}} & {\sf para} \ x < 1 \ rac{f(x,y)-f(x-h_{\scriptscriptstyle X},y)}{h_{\scriptscriptstyle X}} & {\sf para} \ x = 1 \end{cases}$$

Exemplo

Séries de

Polinômios do Taul

Teorema de Taylor Teorema de Taylor

Operadores de Diferenças

Aproximações

Diferenças de ord

Diferenças finitas multivariadas

Referência

Polinômios de Taylor Teorema de Taylor Teorema de Taylor

Operadores de Diferenças

Aproximações de Derivadas Diferenças de orde

Diferenças finitas multivariadas

Referência

Exercícios

- 1) Obtenha a diferença regressiva da derivada de 3ª ordem.
- 2) Seja a função f(x,y) = exp(x+2y) aproxime $f_y(x,y)$ para $(x,y) \in [0,1] \times [0,1]$ utilizando $h_y = 0.1$ utilizando uma aproximação $O(h^2)$. Plote o resultado da aproximação junto da solução analítica.

Séries de

Taylor Polinômios de Taylor Teorema de Taylor

Operadores d Diferenças

Aproximações o

Diferenças de ordsuperior

superior Diferenças finitas

Referências

Referencias

Randall J LeVeque.

Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems.

SIAM, 2007.

H Mark.

Introduction to numerical methods in differential equations.

Springer: Berlin, Germany, 2011.