DATACUP 2021 Melena Bros

Reto 1: Vacunas

Enfocado en el análisis de datos, el proyecto trabajado consiste en filtrar según la preferencia del usuario tweets relacionados al Covid-19 según ciertos parámetros.

Puntos a cubrir

Procesamiento de datos

Áreas de oportunidad del proyecto

Tiempo de procesamiento

Optimización del código

Polarización

ldeas contrastantes de la población respecto al tema

Filtros

Categorías pertinentes de datos

Limpieza

Código estructurado para la fácil comprensión

Análisis de 02 datos

Variables a analizar

Localización de tweets


```
import folium
from folium.plugins import FastMarkerCluster
from openpyxl import load_workbook
import requests
import urllib.parse
m = folium.Map(location=[37.7790262, -122.419906])
wb = load_workbook('vaccination_all_tweets.xlsx')
sheet = wb.worksheets[0]
coordenadas = []
i=2
for row in sheet.iter_rows(min_row=2, max_row=46060, values_only=True):
    address = row[2]
            url = 'https://nominatim.openstreetmap.org/search/' + urllib.parse.quote(address) +'?format=json'
           response = requests.get(url).json()
           xy = [ response[0]["lat"] , response[0]["lon"]]
            print([row[2],xy])
            coordenadas.append(xy)
            break
        except TypeError:
            print([row[2], "Este no"])
        except IndexError:
            print([row[2],"IndexError (checar)"])
```

Variables a analizar

Parámetros de tweets para un posterior análisis

```
tit = []
for row in sheet.iter_rows(min_row=1,max_row=1,values_only=True):
    tit += row
print(tit)
```

Permite ver los elementos del documento para poder clasificar y filtrar datos

Análisis de texto

Análisis de sentimientos mediante palabras clave en el texto

```
reacciones = { "positivo": ["safe", "treatment", "administration", "administered", "dose", "doses", "health", "healthy",
   "family", "admiration", "courage", "brave", "bravery", "serious", "seriously", "merry", "merrier", "Same", "paste", "effective"],
   "negativo": ["bad", "crime", "cheat", "cheated", "greed", "side", "effects", "corruption", "hurt", "hurts", "hate", "hating",
   "diplomacy", "fake", "stall", "stalled", "war", "ineffective"],
   "neutral": ["facts", "fact", "sources", "source", "information", "cases", "case", "deaths", "distribution", "specialist",
   "programme", "inoculation", "inoculating", "needle", "medicine", "symptoms", "available", "update", "schedule", "immunity",
   "authorization", "authorized", "information", "approving", "approved", "manufacture", "manufacturing"]}

vaccines_dict = {"PfizerBioNTech": 0, "AstraZeneca": 0, "SputnikV": 0, "Moderna": 0, "johnsonandjohnson": 0, "Oxford": 0,
   "Novavax": 0, "Sinovac": 0, "Cansino": 0, "Bharat": 0}

vaccines = ["PfizerBioNTech", "AstraZeneca", "SputnikV", "Moderna", "johnsonandjohnson", "Oxford", "Novavax",
   "Sinovac", "Cansino", "Bharat"]
```

Palabras detonantes más frecuentes en tweets correspondientes a cierto sentimiento a analizar organizadas en diccionarios

Análisis de texto

Algoritmo para determinar la frecuencia de palabras detonantes

```
Pos = 0
Neg = 0
Neu = 0
total words = dict()
for row in sheet.iter rows(min row = 2, max row = sheet.max row, values only = True):
    words = row[10].split()
    if row[11] != None : hashtags = row[11].split("'")
    for word in words:
       if word in reacciones["positivo"]:
        elif word in reacciones["negativo"]:
           rate += -1
        elif word not in total words:
           total words[word] = 1
        elif word in total words:
           total words[word] += 1
        elif word[0] == "#":
           hashtags.append(word)
    if rate >= 1 : Pos += 1
    elif rate <= -1 : Neg += 1
    else : Neu += 1
    vaccines index = list()
    for hashtag in hashtags:
       if hashtag not in vaccines index and hashtag in vaccines :
           vaccines index.append(hashtag)
           vaccines dict[hashtag] += 1
end = time.time()
print("Positive: ", Pos, "\nNegative: ", Neg, "\nNeutral: ", Neu, "\nvaccines: ", vaccines dict, "\nTime: ", end - start)
```

Frecuencia de palabras detonantes de algún sentimiento, así como de las vacunas más aplicadas

```
Positive: 6620
Negative: 1139
Neutral: 38300
vaccines: {'PfizerBioNTech': 4405, 'AstraZeneca': 1387, 'SputnikV': 5146, Cansino': 1, 'Bharat': 20}

'Moderna': 9238, 'johnsonandjohnson': 164, 'Oxford': 77, 'Novavax': 31, 'Sinovac': 2040, '
```

Time: 9.396013259887695

Presentación de resultados 03

Mapa de tweets

Sentimientos de los tweets

Mención de Vacunas

Mayores interacciones

```
Most retweets:
Why we need Two Doses of mRNA Vaccine ðŸ'‰ #vaccines #COVID19 #Pfizer #moderna #VaccinesSaveLives #vaccinated https://t.co/RFRmPAyubD Most liked:
Got my jab. For the curious, it was #Covaxin.

Felt secure, will travel safely. https://t.co/8PL7PZMEsf

Greatest impact:
Why we need Two Doses of mRNA Vaccine ðŸ'‰ #vaccines #COVID19 #Pfizer #moderna #VaccinesSaveLives #vaccinated https://t.co/RFRmPAyubD
```

Agradecemos su atención

