Reducing Complexity in Non-linear Data

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Manifold learning for dimensionality reduction

Implementations of manifold learning

Multidimensional scaling, Isomap, Locally Linear Embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE)

Kernel PCA

Manifold Learning

Manifold Hypothesis: Very complicated data is often not that complicated after all

Choosing Manifold Learning

Use Case

Y not linearly related to X

Very high dimensionality of X (e.g. pixel counts in image data)

Many constraints on allowable values of X-variables (sparse features)

Three-dimensional plots of Y against pairs of X indicate manifold shape

Possible Solution

Manifold learning

Linear Data

Non-linear Data

Manifold Data

Manifold Hypothesis

Many high-dimensional datasets can be easily unrolled so that they lie along a much lower dimensional manifold

Manifold Hypothesis

Manifold Learning

Low-dimensional embedding

Manifold Learning Techniques

MDS Kernel PCA Isomap LLE **Spectral Embedding** t-SNE

Multidimensional Scaling (MDS)

Aims to preserve pair-wise Euclidean distances between all points while reducing dimensionality. Some intuitive similarities to MSE regression in underlying math.

Isomap

Aims to preserve pair-wise Euclidean distances between neighboring points only (not all points) while reducing dimensionality; works out equivalent to preserving geodesic distance between all points.

Locally Linear Embedding

Expresses each point as centroid (weighted average) of nearest neighbors; then tries to maintain same weights upon conversion to new dimensions.

Spectral Embeddings

Builds a graph where each point serves as a node; then fits a smooth function in lower dimensional space to pass through all nodes. Often implemented using technique called Laplacian Eigenmaps.

t-distributed Stochastic Neighbor Embedding (t-SNE)

Aims to keep similar points together and dissimilar points apart. First fits a Student-t probability distribution to the data, hence the name. Widely used in visualizing clusters.

Kernel PCA

First apply technique called the kernel trick to go to even higher (infinite) number of dimensions, then perform PCA to come down to very low-dimensional space.

Demo

Implement Manifold Learning using a Swiss Roll dataset

Demo

Implement Kernel PCA

Summary

Manifold learning for dimensionality reduction

Implementations of manifold learning

Multidimensional scaling, Isomap, Locally Linear Embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE)

Kernel PCA