3.1: Open and Closed Intervals

Prove that an open interval in \mathbb{R}^1 is an open set and that a closed interval is a closed set.

Solution: Let (a,b) be an open interval in \mathbb{R}^1 . To show it's open, we need to prove that every point $x \in (a,b)$ is an interior point. For any $x \in (a,b)$, let $\varepsilon = \min\{x-a,b-x\}$. Then the open ball $B(x,\varepsilon) = (x-\varepsilon,x+\varepsilon)$ is contained entirely within (a,b). This shows that every point in (a,b) is an interior point, so (a,b) is open.

For a closed interval [a,b], we need to show its complement $\mathbb{R}\setminus [a,b]=(-\infty,a)\cup (b,\infty)$ is open. Any point x in this complement is either less than a or greater than b. If x< a, let $\varepsilon=a-x$, then $B(x,\varepsilon)=(x-\varepsilon,x+\varepsilon)\subset (-\infty,a)$. If x>b, let $\varepsilon=x-b$, then $B(x,\varepsilon)\subset (b,\infty)$. This shows the complement is open, so [a,b] is closed.

3.2: Accumulation Points and Set Properties

Determine all the accumulation points of the following sets in \mathbb{R}^1 and decide whether the sets are open or closed (or neither).

- (a) All integers.
- (b) The interval (a, b).
- (c) All numbers of the form 1/n, (n = 1, 2, 3, ...).
- (d) All rational numbers.
- (e) All numbers of the form $2^{-n} + 5^{-m}$, (m, n = 1, 2, ...).
- (f) All numbers of the form $(-1)^n + (1/m)$, (m, n = 1, 2, ...).
- (g) All numbers of the form (1/n) + (1/m), (m, n = 1, 2, ...).
- (h) All numbers of the form $(-1)^n/[1+(1/n)], (n=1,2,...)$.

Solution: (a) The set of integers has no accumulation points since each integer has a neighborhood containing no other integers. The set is closed (its complement is open) but not open.

- (b) The interval (a, b) has accumulation points [a, b]. The set is open but not closed.
- (c) The set $\{1/n : n \in \mathbb{N}\}$ has 0 as its only accumulation point. The set is neither open nor closed.
- (d) The set of rational numbers has all real numbers as accumulation points. The set is neither open nor closed.
 - (e) The set $\{2^{-n} + 5^{-m} : m, n \in \mathbb{N}\}$ has accumulation points $\{2^{-n} : n \in \mathbb{N}\}$

- \mathbb{N} } \cup {5^{-m} : $m \in \mathbb{N}$ } \cup {0}. The set is neither open nor closed.
- (f) The set $\{(-1)^n+1/m:m,n\in\mathbb{N}\}$ has accumulation points $\{-1,1\}$. The set is neither open nor closed.
- (g) The set $\{1/n + 1/m : m, n \in \mathbb{N}\}$ has accumulation points $\{1/n : n \in \mathbb{N}\} \cup \{0\}$. The set is neither open nor closed.
- (h) The set $\{(-1)^n/(1+1/n): n \in \mathbb{N}\}$ has accumulation points $\{-1,1\}$. The set is neither open nor closed.

3.3: Accumulation Points and Set Properties in \mathbb{R}^2

The same as Exercise 3.2 for the following sets in \mathbb{R}^2 :

- (a) All complex z such that |z| > 1.
- (b) All complex z such that $|z| \ge 1$.
- (c) All complex numbers of the form (1/n) + (i/m), (m, n = 1, 2, ...).
- (d) All points (x, y) such that $x^2 y^2 < 1$.
- (e) All points (x, y) such that x > 0.
- (f) All points (x, y) such that $x \ge 0$.

Solution: (a) The set $\{z \in \mathbb{C} : |z| > 1\}$ has accumulation points $\{z \in \mathbb{C} : |z| \ge 1\}$. The set is open but not closed.

- (b) The set $\{z \in \mathbb{C} : |z| \ge 1\}$ has accumulation points $\{z \in \mathbb{C} : |z| \ge 1\}$. The set is closed but not open.
- (c) The set $\{1/n + i/m : m, n \in \mathbb{N}\}$ has accumulation points $\{1/n : n \in \mathbb{N}\} \cup \{i/m : m \in \mathbb{N}\} \cup \{0\}$. The set is neither open nor closed.
- (d) The set $\{(x,y): x^2-y^2<1\}$ has accumulation points $\{(x,y): x^2-y^2\leq 1\}$. The set is open but not closed.
- (e) The set $\{(x,y): x>0\}$ has accumulation points $\{(x,y): x\geq 0\}$. The set is open but not closed.
- (f) The set $\{(x,y): x \geq 0\}$ has accumulation points $\{(x,y): x \geq 0\}$. The set is closed but not open.

3.4: Rational and Irrational Elements in Open Sets

Prove that every nonempty open set S in \mathbb{R}^1 contains both rational and irrational numbers.

Solution: Let S be a nonempty open set in \mathbb{R}^1 . Since S is open, for any point $x \in S$, there exists $\varepsilon > 0$ such that the open interval $(x - \varepsilon, x + \varepsilon) \subset S$.

Since the rational numbers are dense in \mathbb{R} , there exists a rational number q in $(x - \varepsilon, x + \varepsilon)$, and thus $q \in S$.

Similarly, since the irrational numbers are also dense in \mathbb{R} , there exists an irrational number r in $(x - \varepsilon, x + \varepsilon)$, and thus $r \in S$.

Therefore, every nonempty open set contains both rational and irrational numbers.

3.5: Open and Closed Sets in \mathbb{R}^1 and \mathbb{R}^2

Prove that the only sets in \mathbb{R}^1 which are both open and closed are the empty set and \mathbb{R}^1 itself. Is a similar statement true for \mathbb{R}^2 ?

Solution: Let S be a subset of \mathbb{R}^1 that is both open and closed. If S is empty or $S = \mathbb{R}^1$, we're done. Otherwise, let $a = \inf S$ and $b = \sup S$ (allowing $a = -\infty$ or $b = \infty$).

Since S is closed, $a,b \in S$ if they are finite. Since S is open, there exists $\varepsilon > 0$ such that $(a - \varepsilon, a + \varepsilon) \subset S$ and $(b - \varepsilon, b + \varepsilon) \subset S$. This contradicts the definition of infimum and supremum unless $a = -\infty$ and $b = \infty$, meaning $S = \mathbb{R}^1$.

The same proof works for \mathbb{R}^2 using the fact that \mathbb{R}^2 is connected. The only subsets of \mathbb{R}^2 that are both open and closed are the empty set and \mathbb{R}^2 itself.

3.6: Closed Sets as Intersection of Open Sets

Prove that every closed set in \mathbb{R}^1 is the intersection of a countable collection of open sets.

Solution: Let F be a closed set in \mathbb{R}^1 . For each $n \in \mathbb{N}$, define $G_n = \{x \in \mathbb{R} : d(x, F) < 1/n\}$, where $d(x, F) = \inf\{|x - y| : y \in F\}$. Each G_n is open since it's the union of open intervals.

We claim that $F = \bigcap_{n=1}^{\infty} G_n$. Clearly $F \subset \bigcap_{n=1}^{\infty} G_n$ since every point in F has distance 0 to F.

For the reverse inclusion, let $x \in \bigcap_{n=1}^{\infty} G_n$. Then d(x, F) < 1/n for all n, which means d(x, F) = 0. Since F is closed, this implies $x \in F$.

3.7: Structure of Bounded Closed Sets in \mathbb{R}^1

Prove that a nonempty, bounded closed set S in \mathbb{R}^1 is either a closed interval, or that S can be obtained from a closed interval by removing a countable disjoint collection of open intervals whose endpoints belong to S.

Solution: Let S be a nonempty, bounded closed set in \mathbb{R}^1 . Let $a = \inf S$ and $b = \sup S$. Since S is closed, $a, b \in S$.

If S = [a, b], we're done. Otherwise, the complement $[a, b] \setminus S$ is open and can be written as a countable union of disjoint open intervals (a_i, b_i) . Since S

is closed, the endpoints a_i, b_i must belong to S.

Therefore, $S = [a, b] \setminus \bigcup_{i=1}^{\infty} (a_i, b_i)$, which is the desired representation.

3.8: Open Balls and Intervals in Rn

Prove that open n-balls and n-dimensional open intervals are open sets in \mathbb{R}^n .

Solution: Let $B(a;r) = \{x \in \mathbb{R}^n : ||x-a|| < r\}$ be an open ball centered at a with radius r. For any $x \in B(a;r)$, let $\varepsilon = r - ||x-a|| > 0$. Then $B(x;\varepsilon) \subset B(a;r)$ by the triangle inequality, showing B(a;r) is open.

For an open interval $I = (a_1, b_1) \times \cdots \times (a_n, b_n)$, let $x = (x_1, \dots, x_n) \in I$. For each i, let $\varepsilon_i = \min\{x_i - a_i, b_i - x_i\}$. Then the ball $B(x; \min\{\varepsilon_1, \dots, \varepsilon_n\}) \subset I$, showing I is open.

3.9: Interior of a Set is Open

Prove that the interior of a set in \mathbb{R}^n is open in \mathbb{R}^n .

Solution: Let $S \subset \mathbb{R}^n$ and let $x \in \text{int } S$. By definition, there exists $\varepsilon > 0$ such that $B(x; \varepsilon) \subset S$.

For any $y \in B(x; \varepsilon)$, let $\delta = \varepsilon - ||y - x|| > 0$. Then $B(y; \delta) \subset B(x; \varepsilon) \subset S$, which shows that $y \in \text{int } S$.

Therefore, $B(x;\varepsilon) \subset \text{int } S$, proving that int S is open.

3.10: Interior as Union of Open Subsets

If $S \subseteq \mathbb{R}^n$, prove that int S is the union of all open subsets of \mathbb{R}^n which are contained in S. This is described by saying that int S is the largest open subset of S.

Solution: Let \mathcal{U} be the collection of all open subsets of \mathbb{R}^n contained in S. We need to show that int $S = \bigcup_{U \in \mathcal{U}} U$.

First, if $x \in \text{int } S$, then there exists $\varepsilon > 0$ such that $B(x; \varepsilon) \subset S$. Since $B(x; \varepsilon)$ is open and contained in S, we have $x \in B(x; \varepsilon) \in \mathcal{U}$, so $x \in \bigcup_{u \in \mathcal{U}} U$.

Conversely, if $x \in \bigcup_{U \in \mathcal{U}} U$, then $x \in U$ for some open set $U \subset S$. Since U is open, there exists $\varepsilon > 0$ such that $B(x; \varepsilon) \subset U \subset S$, which shows $x \in \text{int } S$.

Therefore, int $S = \bigcup_{U \in \mathcal{U}} U$, proving that the interior is the largest open subset of S.

3.11: Interior of Intersection and Union

If S and T are subsets of \mathbb{R}^n , prove that $\operatorname{int}(S) \cap \operatorname{int}(T) = \operatorname{int}(S \cap T)$, and $\operatorname{int}(S) \cup \operatorname{int}(T) \subseteq \operatorname{int}(S \cup T)$.

Solution: For the first equality, let $x \in \operatorname{int}(S) \cap \operatorname{int}(T)$. Then there exist $\varepsilon_1, \varepsilon_2 > 0$ such that $B(x; \varepsilon_1) \subset S$ and $B(x; \varepsilon_2) \subset T$. Let $\varepsilon = \min\{\varepsilon_1, \varepsilon_2\}$. Then $B(x; \varepsilon) \subset S \cap T$, so $x \in \operatorname{int}(S \cap T)$.

Conversely, if $x \in \operatorname{int}(S \cap T)$, there exists $\varepsilon > 0$ such that $B(x; \varepsilon) \subset S \cap T$. This implies $B(x; \varepsilon) \subset S$ and $B(x; \varepsilon) \subset T$, so $x \in \operatorname{int}(S) \cap \operatorname{int}(T)$.

For the second inclusion, if $x \in \operatorname{int}(S) \cup \operatorname{int}(T)$, then $x \in \operatorname{int}(S)$ or $x \in \operatorname{int}(T)$. In either case, there exists $\varepsilon > 0$ such that $B(x; \varepsilon) \subset S$ or $B(x; \varepsilon) \subset T$, which implies $B(x; \varepsilon) \subset S \cup T$. Therefore, $x \in \operatorname{int}(S \cup T)$.

3.12: Properties of Derived Set and Closure

Let S' denote the derived set and \overline{S} the closure of a set S in \mathbb{R}^n . Prove that:

- a) S' is closed in \mathbb{R}^n ; that is, $\overline{S'} \subseteq S'$.
- b) If $S \subseteq T$, then $S' \subseteq T'$.
- c) $S' \cup T' = (S \cup T)'$.
- d) $\overline{S} = S \cup S'$.
- e) \overline{S} is closed in \mathbb{R}^n .
- f) \overline{S} is the intersection of all closed subsets of \mathbb{R}^n containing S. That is, \overline{S} is the smallest closed set containing S.

Solution: (a) Let $x \in \overline{S'}$. Then every neighborhood of x contains a point of S'. Let $\varepsilon > 0$ and $y \in B(x; \varepsilon/2) \cap S'$. Since y is an accumulation point of S, $B(y; \varepsilon/2)$ contains infinitely many points of S. But $B(y; \varepsilon/2) \subset B(x; \varepsilon)$, so $B(x; \varepsilon)$ contains infinitely many points of S. This shows $x \in S'$.

- (b) If $x \in S'$, then every neighborhood of x contains infinitely many points of S. Since $S \subseteq T$, these points are also in T, so $x \in T'$.
- (c) Since $S \subseteq S \cup T$ and $T \subseteq S \cup T$, we have $S' \subseteq (S \cup T)'$ and $T' \subseteq (S \cup T)'$ by (b). Therefore, $S' \cup T' \subseteq (S \cup T)'$.

For the reverse inclusion, if $x \in (S \cup T)'$, then every neighborhood of x contains infinitely many points of $S \cup T$. If infinitely many of these points are in S, then $x \in S'$. Otherwise, infinitely many are in T, so $x \in T'$. In either case, $x \in S' \cup T'$.

- (d) Clearly $S \cup S' \subseteq \overline{S}$. For the reverse inclusion, if $x \in \overline{S}$, then every neighborhood of x contains a point of S. If $x \notin S$, then every neighborhood contains a point of S different from x, so $x \in S'$.
- (e) By (d), $\overline{S} = S \cup S'$. Since S' is closed by (a), and the union of a set with a closed set is closed, \overline{S} is closed.
- (f) Let \mathcal{F} be the collection of all closed sets containing S. Since \overline{S} is closed and contains S, we have $\bigcap_{F \in \mathcal{F}} F \subseteq \overline{S}$. For the reverse inclusion, since each $F \in \mathcal{F}$ is closed and contains S, we have $S' \subseteq F$ for all F. Therefore, $\overline{S} = S \cup S' \subseteq F$

for all F, so $\overline{S} \subseteq \bigcap_{F \in \mathcal{F}} F$.

3.13: Closure under Intersection of Sets

Let S and T be subsets of \mathbb{R}^k . Prove that $\overline{S \cup T} = \overline{S} \cup \overline{T}$ and that $\overline{S \cap T} \subseteq \overline{S} \cap \overline{T}$ if S is open.

NOTE. The statements in Exercises 3.9 through 3.13 are true in any metric space.

Solution: For the first equality, by Exercise 3.12(c), $(S \cup T)' = S' \cup T'$. Therefore, $\overline{S \cup T} = (S \cup T) \cup (S \cup T)' = (S \cup T) \cup (S' \cup T') = (S \cup S') \cup (T \cup T') = \overline{S} \cup \overline{T}$.

For the second inclusion, let $x \in \overline{S \cap T}$. Then $x \in S \cap T$ or $x \in (S \cap T)'$. If $x \in S \cap T$, then $x \in \overline{S} \cap \overline{T}$. If $x \in (S \cap T)'$, then every neighborhood of x contains a point of $S \cap T$ different from x. Since S is open, there exists $\varepsilon > 0$ such that $B(x;\varepsilon) \subset S$. Any point $y \in B(x;\varepsilon) \cap T$ different from x shows that $x \in T'$, so $x \in \overline{T}$. Similarly, $x \in \overline{S}$. Therefore, $x \in \overline{S} \cap \overline{T}$.

3.14: Properties of Convex Sets

A set S in \mathbb{R}^n is called convex if, for every pair of points x and y in S and every real θ satisfying $0 < \theta < 1$, we have $\theta x + (1 - \theta)y \in S$. Interpret this statement geometrically (in \mathbb{R}^2 and \mathbb{R}^3) and prove that:

- a) Every *n*-ball in \mathbb{R}^n is convex.
- b) Every *n*-dimensional open interval is convex.
- c) The interior of a convex set is convex.
- d) The closure of a convex set is convex.

Solution: Geometrically, a set is convex if the line segment joining any two points in the set lies entirely within the set.

- (a) Let B(a;r) be an n-ball and $x,y \in B(a;r)$. For $0 < \theta < 1$, let $z = \theta x + (1-\theta)y$. Then $||z-a|| = ||\theta(x-a) + (1-\theta)(y-a)|| \le \theta ||x-a|| + (1-\theta)||y-a|| < \theta r + (1-\theta)r = r$, so $z \in B(a;r)$.
- (b) Let $I = (a_1, b_1) \times \cdots \times (a_n, b_n)$ be an open interval and $x, y \in I$. For $0 < \theta < 1$, let $z = \theta x + (1 \theta)y$. For each i, we have $a_i < x_i, y_i < b_i$, so $a_i < \theta x_i + (1 \theta)y_i < b_i$. Therefore, $z \in I$.
- (c) Let S be convex and $x, y \in \text{int } S$. There exist $\varepsilon_1, \varepsilon_2 > 0$ such that $B(x; \varepsilon_1) \subset S$ and $B(y; \varepsilon_2) \subset S$. Let $\varepsilon = \min\{\varepsilon_1, \varepsilon_2\}$. For $0 < \theta < 1$, let $z = \theta x + (1 \theta)y$. If $w \in B(z; \varepsilon)$, then $\|w z\| < \varepsilon$. Let u = w z + x and v = w z + y. Then $\|u x\| = \|v y\| = \|w z\| < \varepsilon$, so $u, v \in S$. Since S is convex, $w = \theta u + (1 \theta)v \in S$. Therefore, $B(z; \varepsilon) \subset S$, so $z \in \text{int } S$.
 - (d) Let S be convex and $x, y \in \overline{S}$. There exist sequences $\{x_n\}, \{y_n\} \subset S$

converging to x, y respectively. For $0 < \theta < 1$, let $z = \theta x + (1 - \theta)y$ and $z_n = \theta x_n + (1 - \theta)y_n$. Since S is convex, $z_n \in S$ for all n. Since $z_n \to z$, we have $z \in \overline{S}$.

3.15: Accumulation Points of Intersections and Unions

Let \mathcal{F} be a collection of sets in \mathbb{R}^k , and let $S = \bigcup_{A \in \mathcal{F}} A$ and $T = \bigcap_{A \in \mathcal{F}} A$. For each of the following statements, either give a proof or exhibit a counterexample:

- a) If \mathbf{x} is an accumulation point of T, then \mathbf{x} is an accumulation point of each set A in \mathcal{F} .
- b) If \mathbf{x} is an accumulation point of S, then \mathbf{x} is an accumulation point of at least one set A in \mathcal{F} .

Solution: (a) This statement is false. Let $\mathcal{F} = \{A_1, A_2\}$ where $A_1 = \{1/n : n \in \mathbb{N}\}$ and $A_2 = \{-1/n : n \in \mathbb{N}\}$. Then $T = A_1 \cap A_2 = \emptyset$, so T has no accumulation points. However, if we consider $T = \{0\}$ (a singleton), then 0 is an accumulation point of T but not of A_1 or A_2 .

(b) This statement is true. Let x be an accumulation point of S. Then every neighborhood of x contains infinitely many points of S. Since $S = \bigcup_{A \in \mathcal{F}} A$, at least one set $A \in \mathcal{F}$ must contain infinitely many of these points. Therefore, x is an accumulation point of that set A.

3.16: Rationals Not a Countable Intersection of Open Sets

Prove that the set S of rational numbers in the interval (0,1) cannot be expressed as the intersection of a countable collection of open sets. Hint. Write $S = \{x_1, x_2, \ldots\}$, assume $S = \bigcap_{k=1}^{\infty} S_k$, where each S_k is open, and construct a sequence (Q_n) of closed intervals such that $Q_{n+1} \subseteq Q_n \subseteq S_n$ and such that $x_n \notin Q_n$. Then use the Cantor intersection theorem to obtain a contradiction.

Solution: Suppose for contradiction that $S = \bigcap_{k=1}^{\infty} S_k$ where each S_k is open. Let $S = \{x_1, x_2, \ldots\}$ be an enumeration of the rationals in (0, 1).

For each n, since S_n is open and contains all rationals in (0,1), we can find a closed interval $Q_n \subset S_n$ such that $x_n \notin Q_n$. We can arrange that $Q_{n+1} \subseteq Q_n$ by taking $Q_{n+1} = Q_n \cap I_{n+1}$ where I_{n+1} is a closed interval in S_{n+1} that doesn't contain x_{n+1} .

By the Cantor intersection theorem, $\bigcap_{n=1}^{\infty} Q_n$ is nonempty. Let $x \in \bigcap_{n=1}^{\infty} Q_n$. Then $x \in \bigcap_{k=1}^{\infty} S_k = S$, so x is rational. But $x \neq x_n$ for any n since $x_n \notin Q_n$ for each n. This contradicts the fact that S contains all rationals in (0,1).

3.17: Countability of Isolated Points

If $S \subseteq \mathbb{R}^n$, prove that the collection of isolated points of S is countable.

Solution: Let I be the set of isolated points of S. For each $x \in I$, there exists $\varepsilon_x > 0$ such that $B(x; \varepsilon_x) \cap S = \{x\}$.

For each $x \in I$, let q_x be a rational point in $B(x; \varepsilon_x/2)$ (which exists since rational points are dense). Then $B(q_x; \varepsilon_x/4)$ contains x and no other point of S.

If $x, y \in I$ are distinct, then $B(q_x; \varepsilon_x/4) \cap B(q_y; \varepsilon_y/4) = \emptyset$, since otherwise we would have a point in S other than x or y in one of these balls.

Since the collection of balls $\{B(q_x; \varepsilon_x/4) : x \in I\}$ is pairwise disjoint and each contains a rational point, this collection is countable. Therefore, I is countable.

3.18: Countable Covering of the First Quadrant

Prove that the set of open disks in the xy-plane with center at (x, x) and radius x > 0, where x is rational, is a countable covering of the set $\{(x, y) : x > 0, y > 0\}$.

Solution: Let \mathcal{F} be the collection of open disks with center at (x, x) and radius x where x is rational and positive. We need to show that every point (a, b) with a > 0, b > 0 is contained in some disk in \mathcal{F} .

Let (a,b) be a point in the first quadrant. Let $r = \min\{a,b\}$. Since the rationals are dense in \mathbb{R} , there exists a rational number x such that r/2 < x < r.

Then
$$||(a,b) - (x,x)|| = \sqrt{(a-x)^2 + (b-x)^2} < \sqrt{(r-x)^2 + (r-x)^2} = \sqrt{2}(r-x) < \sqrt{2}(r-r/2) = \sqrt{2}(r/2) < r < x.$$

Therefore, $(a,b) \in B((x,x);x)$ where x is rational, so \mathcal{F} covers the first quadrant.

Since the rational numbers are countable, \mathcal{F} is countable.

3.19: Non-Finite Subcover of 0,1

The collection \mathcal{F} of open intervals of the form (1/n, 2/n), where $n = 2, 3, \ldots$, is an open covering of the open interval (0, 1). Prove (without using Theorem 3.31) that no finite subcollection of \mathcal{F} covers (0, 1).

Solution: Let $\mathcal{G} = \{(1/n_1, 2/n_1), \dots, (1/n_k, 2/n_k)\}$ be a finite subcollection of \mathcal{F} . Let $N = \max\{n_1, \dots, n_k\}$.

Then the largest interval in \mathcal{G} is (1/N, 2/N). For any $x \in (0, 1/N)$, we have x < 1/N < 2/N, so x is not covered by any interval in \mathcal{G} .

Therefore, \mathcal{G} does not cover (0,1), proving that no finite subcollection of \mathcal{F} covers (0,1).

3.20: Closed but Not Bounded Set with Infinite Covering

Give an example of a set S which is closed but not bounded and exhibit a countable open covering \mathcal{F} such that no finite subset of \mathcal{F} covers S.

Solution: Let $S = \mathbb{Z}$ (the set of integers). This set is closed but not bounded.

Let $\mathcal{F} = \{(n-1/2, n+1/2) : n \in \mathbb{Z}\}$. This is a countable open covering of \mathbb{Z} since each integer n is contained in the interval (n-1/2, n+1/2).

However, no finite subcollection of \mathcal{F} covers \mathbb{Z} . If $\mathcal{G} = \{(n_1 - 1/2, n_1 + 1/2), \dots, (n_k - 1/2, n_k + 1/2)\}$ is a finite subcollection, then \mathcal{G} can only cover finitely many integers, but \mathbb{Z} is infinite.

Therefore, \mathcal{F} is a countable open covering of S with no finite subcover.

3.21: Countability via Local Countability

Given a set S in \mathbb{R}^n with the property that for every x in S there is an n-ball B(x) such that $B(x) \cap S$ is countable. Prove that S is countable.

Solution: For each $x \in S$, let B_x be an n-ball centered at x such that $B_x \cap S$ is countable. Let $\mathcal{B} = \{B_x : x \in S\}$.

Since \mathbb{R}^n is separable, there exists a countable dense subset D. For each $B_x \in \mathcal{B}$, there exists a point $d \in D$ such that $d \in B_x$. Let r_x be the radius of B_x , and let q_x be a rational number such that $r_x/2 < q_x < r_x$.

Then B_x is uniquely determined by the pair (d_x, q_x) where d_x is the center of B_x and q_x is the rational radius. Since D is countable and the rationals are countable, the set of such pairs is countable.

Therefore, \mathcal{B} is countable, and since each $B_x \cap S$ is countable, we have $S = \bigcup_{B_x \in \mathcal{B}} (B_x \cap S)$ is a countable union of countable sets, hence countable.

3.22: Countability of Disjoint Open Sets

Prove that a collection of disjoint open sets in \mathbb{R}^n is necessarily countable. Give an example of a collection of disjoint closed sets which is not countable.

Solution: Let \mathcal{F} be a collection of disjoint open sets in \mathbb{R}^n . Since \mathbb{R}^n is separable, there exists a countable dense subset D.

For each open set $U \in \mathcal{F}$, there exists a point $d \in D$ such that $d \in U$. Since the sets in \mathcal{F} are disjoint, each point $d \in D$ can belong to at most one set in \mathcal{F} .

Therefore, the number of sets in \mathcal{F} is at most the number of points in D, which is countable.

For an example of uncountably many disjoint closed sets, let $\mathcal{G} = \{\{x\} : x \in \mathbb{R}\}$. Each singleton $\{x\}$ is closed, the sets are disjoint, and there are uncountably

many real numbers.

3.23: Existence of Condensation Points

Assume that $S \subseteq \mathbb{R}^n$. A point x in \mathbb{R}^n is said to be a condensation point of S if every n-ball B(x) has the property that $B(x) \cap S$ is not countable. Prove that if S is not countable, then there exists a point x in S such that x is a condensation point of S.

Solution: Suppose for contradiction that no point in S is a condensation point of S. Then for every $x \in S$, there exists an n-ball B_x centered at x such that $B_x \cap S$ is countable.

By Exercise 3.21, this implies that S is countable, which contradicts the hypothesis that S is not countable.

Therefore, there must exist at least one point $x \in S$ that is a condensation point of S.

3.24: Properties of Condensation Points

Assume that $S \subseteq \mathbb{R}^n$ and that S is not countable. Let T denote the set of condensation points of S. Prove that:

- a) S T is countable,
- b) $S \cap T$ is not countable,
- c) T is a closed set,
- d) T contains no isolated points.

Note that Exercise 3.23 is a special case of (b).

Solution: (a) For each $x \in S - T$, there exists an *n*-ball B_x centered at x such that $B_x \cap S$ is countable. By Exercise 3.21, S - T is countable.

- (b) Since S is not countable and S-T is countable, $S\cap T$ must be uncountable.
- (c) Let $x \in \overline{T}$. Then every neighborhood of x contains a point of T. Let B be any n-ball centered at x. There exists $y \in T \cap B$. Since y is a condensation point, $B(y;r) \cap S$ is uncountable for any r > 0. Choose r small enough so that $B(y;r) \subset B$. Then $B \cap S$ contains the uncountable set $B(y;r) \cap S$, so x is a condensation point. Therefore, T is closed.
- (d) Let $x \in T$. For any $\varepsilon > 0$, $B(x; \varepsilon) \cap S$ is uncountable. Since S T is countable, $B(x; \varepsilon) \cap T$ must be uncountable. Therefore, x is not isolated in T.

3.25: Cantor-Bendixon Theorem

A set in \mathbb{R}^n is called perfect if S = S', that is, if S is a closed set which contains no isolated points. Prove that every uncountable closed set F in \mathbb{R}^n can be expressed in the form $F = A \cup B$, where A is perfect and B is countable (Cantor-Bendixon theorem).

Hint. Use Exercise 3.24.

Solution: Let F be an uncountable closed set in \mathbb{R}^n . Let T be the set of condensation points of F. By Exercise 3.24, T is closed and F - T is countable.

Let A = T and B = F - T. Then $F = A \cup B$ where B is countable.

We need to show that A is perfect. Since T is closed by Exercise 3.24(c), A is closed. By Exercise 3.24(d), T contains no isolated points, so A contains no isolated points.

Therefore, A is perfect, and we have the desired decomposition $F = A \cup B$.

Metric Spaces

3.26: Open and Closed Sets in Metric Spaces

In any metric space (M,d), prove that the empty set \emptyset and the whole space M are both open and closed.

Solution: The empty set \emptyset is open because the condition "for every point in \emptyset , there exists a neighborhood contained in \emptyset " is vacuously true (there are no points to check).

The empty set \emptyset is closed because its complement M is open.

The whole space M is open because for any point $x \in M$ and any $\varepsilon > 0$, the ball $B(x; \varepsilon) \subset M$.

The whole space M is closed because its complement \emptyset is open.

3.27: Metric Balls in Different Metrics

Consider the following two metrics in \mathbb{R}^n :

$$d_1(x,y) = \max_{1 \le i \le n} |x_i - y_i|, \quad d_2(x,y) = \sum_{i=1}^n |x_i - y_i|.$$

In each of the following metric spaces prove that the ball B(a;r) has the geometric appearance indicated:

- a) In (\mathbb{R}^2, d_1) , a square with sides parallel to the coordinate axes.
- b) In (\mathbb{R}^2, d_2) , a square with diagonals parallel to the axes.
- c) A cube in (\mathbb{R}^3, d_1) .
- d) An octahedron in (\mathbb{R}^3, d_2) .

Solution: (a) In (\mathbb{R}^2, d_1) , the ball $B(a; r) = \{(x, y) : \max\{|x - a_1|, |y - a_2|\} < r\}$. This means $|x - a_1| < r$ and $|y - a_2| < r$, which defines a square with center (a_1, a_2) and sides of length 2r parallel to the coordinate axes.

- (b) In (\mathbb{R}^2, d_2) , the ball $B(a; r) = \{(x, y) : |x a_1| + |y a_2| < r\}$. This defines a diamond-shaped region (square rotated 45 degrees) with diagonals parallel to the axes.
- (c) In (\mathbb{R}^3, d_1) , the ball $B(a; r) = \{(x, y, z) : \max\{|x a_1|, |y a_2|, |z a_3|\} < r\}$. This defines a cube with center (a_1, a_2, a_3) and sides of length 2r parallel to the coordinate axes.
- (d) In (\mathbb{R}^3, d_2) , the ball $B(a; r) = \{(x, y, z) : |x a_1| + |y a_2| + |z a_3| < r\}$. This defines an octahedron with center (a_1, a_2, a_3) .

3.28: Metric Inequalities

Let d_1 and d_2 be the metrics of Exercise 3.27 and let ||x - y|| denote the usual Euclidean metric. Prove the following inequalities for all x and y in \mathbb{R}^n :

$$d_1(x,y) \le ||x-y|| \le d_2(x,y)$$
 and $d_2(x,y) \le \sqrt{n}||x-y|| \le n d_1(x,y)$.

Solution: Let $x, y \in \mathbb{R}^n$. For the first set of inequalities:

Since $d_1(x, y) = \max_{1 \le i \le n} |x_i - y_i|$, we have $d_1(x, y)^2 = \max_{1 \le i \le n} |x_i - y_i|^2 \le \sum_{i=1}^n |x_i - y_i|^2 = ||x - y||^2$. Taking square roots gives $d_1(x, y) \le ||x - y||$.

For the upper bound, by the triangle inequality for the absolute value, $||x - y|| = \sqrt{\sum_{i=1}^{n} |x_i - y_i|^2} \le \sqrt{\sum_{i=1}^{n} |x_i - y_i|^2 + 2\sum_{i < j} |x_i - y_i| |x_j - y_j|} = \sum_{i=1}^{n} |x_i - y_i| = d_2(x, y).$

For the second set of inequalities:

By the Cauchy-Schwarz inequality, $d_2(x,y)^2 = (\sum_{i=1}^n |x_i - y_i|)^2 \le n \sum_{i=1}^n |x_i - y_i|^2 = n\|x - y\|^2$. Taking square roots gives $d_2(x,y) \le \sqrt{n}\|x - y\|$.

For the last inequality, $\sqrt{n}||x-y|| = \sqrt{n}\sqrt{\sum_{i=1}^n |x_i-y_i|^2} \le \sqrt{n}\sqrt{n}\max_{1\le i\le n} |x_i-y_i| = n d_1(x,y).$

3.29: Bounded Metric

If (M, d) is a metric space, define

$$d'(x,y) = \frac{d(x,y)}{1+d(x,y)}.$$

Prove that d' is also a metric for M. Note that $0 \le d'(x, y) < 1$ for all x, y in M.

Solution: We need to verify the three properties of a metric:

- (1) $d'(x,y) \ge 0$ since $d(x,y) \ge 0$ and 1 + d(x,y) > 0.
- (2) d'(x,y) = 0 if and only if d(x,y) = 0, which occurs if and only if x = y.
- (3) d'(x,y) = d'(y,x) since d(x,y) = d(y,x).
- (4) For the triangle inequality, let $f(t) = \frac{t}{1+t}$. Then $f'(t) = \frac{1}{(1+t)^2} > 0$, so f is increasing. Therefore, $d'(x,z) = f(d(x,z)) \le f(d(x,y) + d(y,z)) = \frac{d(x,y) + d(y,z)}{1 + d(x,y) + d(y,z)} \le \frac{d(x,y)}{1 + d(x,y)} + \frac{d(y,z)}{1 + d(y,z)} = d'(x,y) + d'(y,z)$.

The last inequality follows from the fact that $\frac{a+b}{1+a+b} \le \frac{a}{1+a} + \frac{b}{1+b}$ for $a,b \ge 0$.

3.30: Finite Sets in Metric Spaces

Prove that every finite subset of a metric space is closed.

Solution: Let $S = \{x_1, x_2, \dots, x_n\}$ be a finite subset of a metric space (M, d). We need to show that the complement $M \setminus S$ is open.

Let $x \in M \setminus S$. Let $\varepsilon = \min\{d(x, x_i) : i = 1, 2, ..., n\}$. Since $x \notin S$, we have $\varepsilon > 0$.

Then $B(x;\varepsilon) \cap S = \emptyset$, so $B(x;\varepsilon) \subset M \setminus S$. This shows that every point in $M \setminus S$ is an interior point, so $M \setminus S$ is open.

Therefore, S is closed.

3.31: Closed Balls in Metric Spaces

In a metric space (M,d) the closed ball of radius r>0 about a point a in M is the set $\overline{B}(a;r)=\{x:d(x,a)\leq r\}$.

- a) Prove that $\overline{B}(a;r)$ is a closed set.
- b) Give an example of a metric space in which $\overline{B}(a;r)$ is not the closure of the open ball B(a;r).

Solution: (a) Let $x \in M \setminus \overline{B}(a;r)$. Then d(x,a) > r. Let $\varepsilon = d(x,a) - r > 0$. For any $y \in B(x;\varepsilon)$, we have $d(y,a) \geq d(x,a) - d(x,y) > d(x,a) - \varepsilon = r$. Therefore, $B(x;\varepsilon) \subset M \setminus \overline{B}(a;r)$, showing that $M \setminus \overline{B}(a;r)$ is open. Hence, $\overline{B}(a;r)$ is closed.

(b) Consider the discrete metric space (M,d) where d(x,y)=1 if $x \neq y$ and d(x,y)=0 if x=y. Let $a \in M$ and r=1. Then $B(a;1)=\{a\}$ and $\overline{B}(a;1)=M$. The closure of B(a;1) is $\{a\}$, which is not equal to $\overline{B}(a;1)=M$.

3.32: Transitivity of Density

In a metric space M, if subsets satisfy $A \subseteq S \subseteq \overline{A}$, where \overline{A} is the closure of A, then A is said to be dense in S. For example, the set $\mathbb Q$ of rational numbers is dense in $\mathbb R$. If A is dense in S and if S is dense in S, prove that S is dense in S.

Solution: We need to show that $A \subseteq T \subseteq \overline{A}$.

Since $A \subseteq S \subseteq T$, we have $A \subseteq T$.

Since S is dense in T, we have $T \subseteq \overline{S}$. Since A is dense in S, we have $S \subseteq \overline{A}$. Therefore, $\overline{S} \subseteq \overline{\overline{A}} = \overline{A}$.

Combining these, we get $T \subseteq \overline{S} \subseteq \overline{A}$, so $T \subseteq \overline{A}$.

Therefore, $A \subseteq T \subseteq \overline{A}$, showing that A is dense in T.

3.33: Separability of Euclidean Spaces

A metric space M is said to be separable if there is a countable subset A which is dense in M. For example, $\mathbb R$ is separable because the set $\mathbb Q$ of rational numbers is a countable dense subset. Prove that every Euclidean space $\mathbb R^k$ is separable.

Solution: Let A be the set of all points in \mathbb{R}^k with rational coordinates. That is, $A = \{(q_1, q_2, \dots, q_k) : q_i \in \mathbb{Q} \text{ for } i = 1, 2, \dots, k\}.$

Since \mathbb{Q} is countable, the Cartesian product $A = \mathbb{Q}^k$ is countable.

To show that A is dense in \mathbb{R}^k , let $x = (x_1, x_2, \dots, x_k) \in \mathbb{R}^k$ and $\varepsilon > 0$. Since \mathbb{Q} is dense in \mathbb{R} , for each i there exists $q_i \in \mathbb{Q}$ such that $|x_i - q_i| < \varepsilon/\sqrt{k}$.

Then
$$q = (q_1, q_2, ..., q_k) \in A$$
 and $||x - q|| = \sqrt{\sum_{i=1}^k (x_i - q_i)^2} < \sqrt{k(\varepsilon/\sqrt{k})^2} =$

Therefore, A is a countable dense subset of \mathbb{R}^k , so \mathbb{R}^k is separable.

3.34: Lindelöf Theorem in Separable Spaces

Prove that the Lindelöf covering theorem (Theorem 3.28) is valid in any separable metric space.

Solution: Let M be a separable metric space with countable dense subset $D = \{d_1, d_2, \ldots\}$. Let \mathcal{F} be an open covering of M.

For each $d_i \in D$ and each positive rational r, if there exists a set $F \in \mathcal{F}$ such that $B(d_i; r) \subset F$, let $F_{i,r}$ be one such set.

The collection $\{F_{i,r}: i \in \mathbb{N}, r \in \mathbb{Q}^+, B(d_i; r) \subset F_{i,r} \text{ for some } F \in \mathcal{F}\}$ is countable.

We claim this collection covers M. Let $x \in M$. Since \mathcal{F} covers M, there exists $F \in \mathcal{F}$ such that $x \in F$. Since F is open, there exists $\varepsilon > 0$ such that $B(x;\varepsilon) \subset F$.

Since D is dense, there exists $d_i \in D$ such that $d_i \in B(x; \varepsilon/2)$. Let r be a rational number such that $d(x, d_i) < r < \varepsilon/2$. Then $B(d_i; r) \subset B(x; \varepsilon) \subset F$.

Therefore, $F_{i,r}$ exists and contains x, showing that the countable subcollection covers M.

3.35: Density and Open Sets

If A is dense in S and if B is open in S, prove that $B \subseteq \overline{A \cap B}$. Hint. Exercise 3.13.

Solution: Let $x \in B$. Since B is open in S, there exists $\varepsilon > 0$ such that $B(x;\varepsilon) \cap S \subset B$.

Since A is dense in S, every neighborhood of x contains a point of A. In particular, $B(x;\varepsilon) \cap A \neq \emptyset$.

Let $y \in B(x; \varepsilon) \cap A$. Since $y \in S$ and $B(x; \varepsilon) \cap S \subset B$, we have $y \in B$.

Therefore, $y \in A \cap B$, so $B(x; \varepsilon) \cap (A \cap B) \neq \emptyset$.

This shows that every neighborhood of x contains a point of $A \cap B$, so $x \in \overline{A \cap B}$.

Therefore, $B \subseteq \overline{A \cap B}$.

3.36: Intersection of Dense and Open Sets

If each of A and B is dense in S and if B is open in S, prove that $A \cap B$ is dense in S.

Solution: We need to show that $S \subseteq \overline{A \cap B}$.

Let $x \in S$. Since B is open in S, there exists $\varepsilon > 0$ such that $B(x; \varepsilon) \cap S \subset B$. Since A is dense in S, $B(x; \varepsilon) \cap A \neq \emptyset$. Let $y \in B(x; \varepsilon) \cap A$. Since $y \in S$ and $B(x; \varepsilon) \cap S \subset B$, we have $y \in B$.

Therefore, $y \in A \cap B$, so $B(x; \varepsilon) \cap (A \cap B) \neq \emptyset$.

This shows that every neighborhood of x contains a point of $A \cap B$, so $x \in \overline{A \cap B}$.

Therefore, $S \subseteq \overline{A \cap B}$, showing that $A \cap B$ is dense in S.

3.37: Product Metrics

Given two metric spaces (S_1, d_1) and (S_2, d_2) , a metric ρ for the Cartesian product $S_1 \times S_2$ can be constructed from d_1 and d_2 in many ways. For example, if $x = (x_1, x_2)$ and $y = (y_1, y_2)$ are in $S_1 \times S_2$, let $\rho(x, y) = d_1(x_1, y_1) + d_2(x_2, y_2)$. Prove that ρ is a metric for $S_1 \times S_2$ and construct further examples.

Solution: We need to verify the three properties of a metric for $\rho(x,y) = d_1(x_1,y_1) + d_2(x_2,y_2)$:

- (1) $\rho(x,y) \ge 0$ since $d_1(x_1,y_1) \ge 0$ and $d_2(x_2,y_2) \ge 0$.
- (2) $\rho(x,y) = 0$ if and only if $d_1(x_1,y_1) = 0$ and $d_2(x_2,y_2) = 0$, which occurs if and only if $x_1 = y_1$ and $x_2 = y_2$, i.e., x = y.
 - (3) $\rho(x,y) = \rho(y,x)$ since $d_1(x_1,y_1) = d_1(y_1,x_1)$ and $d_2(x_2,y_2) = d_2(y_2,x_2)$.
- (4) For the triangle inequality, let $z = (z_1, z_2)$. Then $\rho(x, z) = d_1(x_1, z_1) + d_2(x_2, z_2) \le d_1(x_1, y_1) + d_1(y_1, z_1) + d_2(x_2, y_2) + d_2(y_2, z_2) = \rho(x, y) + \rho(y, z)$.

Other examples of product metrics include: - $\rho(x,y) = \max\{d_1(x_1,y_1), d_2(x_2,y_2)\}$ - $\rho(x,y) = \sqrt{d_1(x_1,y_1)^2 + d_2(x_2,y_2)^2}$ - $\rho(x,y) = (d_1(x_1,y_1)^p + d_2(x_2,y_2)^p)^{1/p}$ for p > 1

3.38: Relative Compactness

Assume $S \subseteq T \subseteq M$. Then S is compact in (M, d) if, and only if, S is compact in the metric subspace (T, d).

Solution: Suppose S is compact in (M,d). Let \mathcal{F} be an open covering of S in the subspace (T,d). Then each $F \in \mathcal{F}$ is of the form $F = U \cap T$ where U is open in (M,d).

The collection $\{U: U \text{ is open in } (M,d) \text{ and } U \cap T \in \mathcal{F}\}$ is an open covering of S in (M,d). Since S is compact in (M,d), there exists a finite subcollection $\{U_1,\ldots,U_n\}$ that covers S.

Then $\{U_1 \cap T, \dots, U_n \cap T\}$ is a finite subcollection of \mathcal{F} that covers S, showing that S is compact in (T, d).

Conversely, suppose S is compact in (T,d). Let \mathcal{G} be an open covering of S in (M,d). Then $\{G \cap T : G \in \mathcal{G}\}$ is an open covering of S in (T,d). Since S is compact in (T,d), there exists a finite subcollection $\{G_1 \cap T, \ldots, G_n \cap T\}$ that covers S.

Then $\{G_1, \ldots, G_n\}$ is a finite subcollection of \mathcal{G} that covers S, showing that S is compact in (M, d).

3.39: Intersection with Compact Sets

If S is closed and T is compact, then $S \cap T$ is compact.

Solution: Since T is compact, it is closed. Therefore, $S \cap T$ is the intersection of two closed sets, so it is closed.

Since $S \cap T \subseteq T$ and T is compact, by Exercise 3.38, $S \cap T$ is compact in (T,d). Since compactness is independent of the ambient space, $S \cap T$ is compact in (M,d).

3.40: Intersection of Compact Sets

The intersection of an arbitrary collection of compact subsets of M is compact.

Solution: Let $\{K_{\alpha}\}$ be a collection of compact subsets of M. Since each K_{α} is closed, the intersection $\bigcap K_{\alpha}$ is closed.

Let K_1 be any member of the collection. Then $\bigcap K_{\alpha} \subseteq K_1$ and K_1 is compact. Since $\bigcap K_{\alpha}$ is closed and contained in a compact set, by Exercise 3.39, $\bigcap K_{\alpha}$ is compact.

3.41: Finite Union of Compact Sets

The union of a finite number of compact subsets of M is compact.

Solution: Let K_1, K_2, \ldots, K_n be compact subsets of M. Since each K_i is closed, their union $\bigcup_{i=1}^n K_i$ is closed.

Let \mathcal{F} be an open covering of $\bigcup_{i=1}^{n} K_i$. Then \mathcal{F} is also an open covering of each K_i . Since each K_i is compact, there exists a finite subcollection \mathcal{F}_i of \mathcal{F} that covers K_i .

Then $\bigcup_{i=1}^n \mathcal{F}_i$ is a finite subcollection of \mathcal{F} that covers $\bigcup_{i=1}^n K_i$.

Since $\bigcup_{i=1}^{n} K_i$ is closed and every open covering has a finite subcover, it is compact.

3.42: Non-Compact Closed and Bounded Set

Consider the metric space \mathbb{Q} of rational numbers with the Euclidean metric of \mathbb{R} . Let S consist of all rational numbers in the open interval (a,b), where a and b are irrational. Then S is a closed and bounded subset of \mathbb{Q} which is not compact.

Solution: Let $S = \mathbb{Q} \cap (a, b)$ where a, b are irrational numbers.

S is bounded since it is contained in the bounded interval (a, b).

S is closed in $\mathbb Q$ because its complement $\mathbb Q\setminus S=\mathbb Q\cap ((-\infty,a]\cup [b,\infty))$ is open in $\mathbb Q.$

However, S is not compact. Let $\{q_n\}$ be a sequence of rational numbers in (a,b) that converges to a (which exists since \mathbb{Q} is dense in \mathbb{R}). Then $\{q_n\}$ is a sequence in S that has no convergent subsequence in S (since $a \notin S$).

Therefore, S is closed and bounded but not compact.

Miscellaneous Properties of Interior and Boundary

The following problems involve arbitrary subsets A and B of a metric space M.

3.43: Interior via Closure

Prove that int $A = M - \overline{M - A}$.

Solution: Let $x \in \text{int } A$. Then there exists $\varepsilon > 0$ such that $B(x; \varepsilon) \subset A$. This means $B(x; \varepsilon) \cap (M - A) = \emptyset$, so $x \notin \overline{M - A}$. Therefore, $x \in M - \overline{M - A}$. Conversely, let $x \in M - \overline{M - A}$. Then $x \notin \overline{M - A}$, so there exists $\varepsilon > 0$

Conversely, let $x \in M - M - A$. Then $x \notin M - A$, so there exists ε such that $B(x; \varepsilon) \cap (M - A) = \emptyset$. This means $B(x; \varepsilon) \subset A$, so $x \in \text{int } A$.

3.44: Interior of Complement

Prove that int $(M - A) = M - \overline{A}$.

Solution: Let $x \in \text{int } (M-A)$. Then there exists $\varepsilon > 0$ such that $B(x;\varepsilon) \subset M-A$. This means $B(x;\varepsilon) \cap A = \emptyset$, so $x \notin \overline{A}$. Therefore, $x \in M-\overline{A}$.

Conversely, let $x \in M - \overline{A}$. Then $x \notin \overline{A}$, so there exists $\varepsilon > 0$ such that $B(x;\varepsilon) \cap A = \emptyset$. This means $B(x;\varepsilon) \subset M - A$, so $x \in \text{int } (M-A)$.

3.45: Idempotence of Interior

Prove that int (int A) = int A.

Solution: Since int $A \subseteq A$, we have int (int A) \subseteq int A.

For the reverse inclusion, let $x \in \text{int } A$. Then there exists $\varepsilon > 0$ such that $B(x;\varepsilon) \subset A$. Since $B(x;\varepsilon)$ is open and contained in A, we have $B(x;\varepsilon) \subset \text{int } A$. Therefore, $x \in \text{int (int } A)$.

3.46: Interior of Intersections

- a) Prove that int $(\bigcap_{i=1}^n A_i) = \bigcap_{i=1}^n (\text{int } A_i)$, where each $A_i \subseteq M$.
- b) Show that int $\left(\bigcap_{A\in F}A\right)\subseteq\bigcap_{A\in F}(\operatorname{int}A)$ if F is an infinite collection of subsets of M.
- c) Give an example where equality does not hold in (b).

Solution: (a) Let $x \in \text{int } (\bigcap_{i=1}^n A_i)$. Then there exists $\varepsilon > 0$ such that $B(x;\varepsilon) \subset \bigcap_{i=1}^n A_i$. This means $B(x;\varepsilon) \subset A_i$ for each i, so $x \in \text{int } A_i$ for each i. Therefore, $x \in \bigcap_{i=1}^n (\text{int } A_i)$.

Conversely, let $x \in \bigcap_{i=1}^n (\text{int } A_i)$. Then for each i, there exists $\varepsilon_i > 0$ such that $B(x; \varepsilon_i) \subset A_i$. Let $\varepsilon = \min\{\varepsilon_1, \dots, \varepsilon_n\}$. Then $B(x; \varepsilon) \subset \bigcap_{i=1}^n A_i$, so $x \in \text{int } (\bigcap_{i=1}^n A_i)$.

- (b) Let $x \in \text{int } (\bigcap_{A \in F} A)$. Then there exists $\varepsilon > 0$ such that $B(x; \varepsilon) \subset \bigcap_{A \in F} A$. This means $B(x; \varepsilon) \subset A$ for each $A \in F$, so $x \in \text{int } A$ for each $A \in F$. Therefore, $x \in \bigcap_{A \in F} (\text{int } A)$.
- (c) Let $F = \{A_n : n \in \mathbb{N}\}$ where $A_n = (-1/n, 1/n)$. Then $\bigcap_{A \in F} A = \{0\}$, so int $(\bigcap_{A \in F} A) = \emptyset$. However, int $A_n = A_n$ for each n, so $\bigcap_{A \in F} (\text{int } A) = \bigcap_{n=1}^{\infty} A_n = \{0\}$.

3.47: Interior of Unions

- a) Prove that $\bigcup_{A \in F} (\text{int } A) \subseteq \text{int } (\bigcup_{A \in F} A)$.
- b) Give an example of a finite collection F in which equality does not hold in (a).

Solution: (a) Let $x \in \bigcup_{A \in F} (\text{int } A)$. Then $x \in \text{int } A$ for some $A \in F$. There exists $\varepsilon > 0$ such that $B(x; \varepsilon) \subset A \subset \bigcup_{A \in F} A$. Therefore, $x \in \text{int } (\bigcup_{A \in F} A)$.

(b) Let $F = \{A, B\}$ where A = [0, 1] and B = [1, 2]. Then int A = (0, 1) and int B = (1, 2), so $\bigcup_{A \in F} (\text{int } A) = (0, 1) \cup (1, 2)$. However, $\bigcup_{A \in F} A = [0, 2]$, so int $(\bigcup_{A \in F} A) = (0, 2)$, which properly contains $(0, 1) \cup (1, 2)$.

3.48: Interior of Boundary

- a) Prove that int $(\partial A) = \emptyset$ if A is open or if A is closed in M.
- b) Give an example in which int $(\partial A) = M$.

Solution: (a) If A is open, then $\partial A = \overline{A} \setminus \text{int } A = \overline{A} \setminus A$. If A is closed, then $\partial A = A \setminus \text{int } A$.

In both cases, ∂A contains no open balls, so int $(\partial A) = \emptyset$.

(b) Let $A = \mathbb{Q}$ in the metric space \mathbb{R} . Then $\partial A = \mathbb{R}$, so int $(\partial A) = \mathbb{R} = M$.

3.49: Interior of Union of Sets with Empty Interior

If int $A = \text{int } B = \emptyset$ and if A is closed in M, then int $(A \cup B) = \emptyset$.

Solution: Since A is closed, int $A = \emptyset$ implies that A has no isolated points. Therefore, every point in A is a limit point of A.

Let $x \in A \cup B$. If $x \in A$, then every neighborhood of x contains points of A different from x. Since $A \subset A \cup B$, every neighborhood of x contains points of $A \cup B$ different from x, so x is not an interior point of $A \cup B$.

If $x \in B \setminus A$, then since int $B = \emptyset$, every neighborhood of x contains points not in B. Since A is closed and $x \notin A$, there exists a neighborhood of x that doesn't intersect A. This neighborhood contains points not in $A \cup B$, so x is not an interior point of $A \cup B$.

Therefore, int $(A \cup B) = \emptyset$.

3.50: Counterexample for Union of Sets with Empty Interior

Give an example in which int $A = \text{int } B = \emptyset$ but int $(A \cup B) = M$.

Solution: Let $A = \mathbb{Q}$ and $B = \mathbb{R} \setminus \mathbb{Q}$ in the metric space \mathbb{R} . Then int $A = \emptyset$ and int $B = \emptyset$, but $A \cup B = \mathbb{R}$, so int $(A \cup B) = \mathbb{R} = M$.

3.51: Properties of Boundary

Prove that:

$$\partial A = \overline{A} \cap \overline{M - A}$$
 and $\partial A = \partial (M - A)$.

Solution: For the first equality, $x \in \partial A$ if and only if every neighborhood of x contains both points of A and points of M-A. This means $x \in \overline{A}$ and $x \in \overline{M-A}$, so $x \in \overline{A} \cap \overline{M-A}$.

For the second equality, $\partial A = \overline{A} \cap \overline{M - A} = \overline{M - A} \cap \overline{A} = \partial (M - A)$.

3.52: Boundary of Union under Disjoint Closures

If $\overline{A} \cap \overline{B} = \emptyset$, then $\partial(A \cup B) = \partial A \cup \partial B$.

Solution: Since $\overline{A} \cap \overline{B} = \emptyset$, we have $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

 $\frac{\text{Let }x\in \partial(A\cup B). \text{ Then }x\in \overline{A\cup B}=\overline{A}\cup \overline{B} \text{ and }x\in \overline{M-(A\cup B)}=\overline{(M-A)\cap (M-B)}\subseteq \overline{M-A}\cap \overline{M-B}.$

If $x \in \overline{A}$, then $x \in \overline{A} \cap \overline{M-A} = \partial A$. If $x \in \overline{B}$, then $x \in \overline{B} \cap \overline{M-B} = \partial B$. Therefore, $x \in \partial A \cup \partial B$.

Conversely, let $x \in \partial A \cup \partial B$. Without loss of generality, assume $x \in \partial A$. Then $x \in \overline{A} \subseteq \overline{A \cup B}$ and $x \in \overline{M - A} \subseteq \overline{M - (A \cup B)}$. Therefore, $x \in \partial (A \cup B)$.