External Bias and opinion clustering in Cooperative Network

Aniruddha Ghosh(Roll-231040132)

March,2024

Objective

- The objective is to study the effect of the external bias on the evolution of opinions in a cooperative network with arbitrary connectivity.
- We want to ensure the stability of final opinion states of the agents in the presence of external bias vector.

Introduction

- We consider the interactions between agents to be cooperative and it defines that the edge weights of a particular graph is positive.
- We have considered both endogenous and exogenous factors.
- Endogenous factors arise from interpersonal relationship between the agents and exogenous factors are external to the group.
- We have classified exogenous factors into two groups.(1)
 Uncontrollable exogenous factors like age,gender etc and (2)
 Controllable exogenous factors like news and advertisement etc.

Opinion Modelling

 We propose the continuous time opinion model for the ith agent like this:

$$\dot{x} = \sum_{j \in N_i} a_{ij}(x_j(t) - x_i(t)) + b_i + u_i$$

• We can also write the above equation as

$$\dot{x} = -Lx + b + u$$

- L is the Laplacian matrix for underlying graph G
- b is constant bias vector, it is represented by

$$b = (b_1, b_2, ..., b_n)^T$$

u is control input vector, it is represented by

$$u = (u_1, u_2, ..., u_n)^T$$

Effect of bias on opinion formation

The solution of equation

$$\dot{x} = -Lx + b + u$$

becomes

$$x(t) = \Phi(t, t_0)x_0 + \int_{t_0}^t \Phi(t, \tau)bd\tau$$

We also write -L using its canonical decomposition as

$$-L = VJW^T$$

 V and W are are the matrices consisting of right and left eigen vectors of -L respectively, J is block diagonal Jordan normal form. The spectrum of -L is

$$\sigma = \{\sigma_1, \sigma_2, \dots, \sigma_n\}$$

• Now the above equation looks like

$$x(t) = Ve^{Jt}W^{T}x_{0} + V\int_{0}^{t}e^{J(t-\tau)}d\tau W^{T}b$$

Theorem 1

The system $\dot{x}=-Lx+b+u$ with $u=0_n$ admits a stable solution regardless of the connectivity of the graph, if and only if the following equation holds: $\mathbf{w_i^Tb}=\mathbf{0} \quad \forall \sigma_i=\mathbf{0}$ where $i\in\{1,2,\ldots,n\}$. Otherwise, it is unstable. Let n_z be the number of zero eigenvalues of -L, then for the stable case, at steady state $\lim_{t\to\infty}x(t)$ can be given as

$$\bar{x} = V \left[w_1^T x_0, \dots, w_{n_z}^T x_0, \left[-(\tilde{J}^{-1}) \tilde{W}^T b \right]_{1 \times (n-n_z)} \right]^T$$

Where \tilde{J} and \tilde{W} are submatrices of J and W respectively, pertaining to the non zero eigenvalues of -L. For the unstable case, the weighted average of the opinion state evolves with time as given below.

$$w_i^T x(t) = w_i^T (x_0 + bt) \quad \forall \sigma_i = 0, t \ge 0$$

Now we decompose J into two parts, one with only zero eigenvalues and the other with non-zero eigenvalues of J. So the equation $x(t) = Ve^{Jt}W^Tx_0 + V\int_0^t e^{J(t-\tau)}d\tau W^Tb$ can be written as

$$x(t) = Ve^{Jt}W^Tx_0 + V\begin{bmatrix} T & 0 \\ 0 & (e^{Jt} - I)J^{-1} \end{bmatrix}W^Tb$$

Here $T=\operatorname{diag}(t,t,\ldots,t)$ is a diagonal matrix with the time-varying terms occurring due to the integration of the part of J corresponding to the zero eigenvalues, matrix T is a square matrix with dimension n_z .

The solution x(t) becomes stable when the time-varying terms do not exist. By applying $w_i^T b = 0$ time-varying terms vanish such that

$$\bar{x} = \sum_{i=1}^{n_z} V_i W_i^T x_0 + V[0, \dots, 0, -J^{-1} \tilde{W}^T b]^T$$

Corollary 1

For a connected undirected graph, the system $\dot{x}=-Lx+b+u$ admits a stable solution if and only if $\sum_{i=0}^n b_i=0$. For $\sum_{i=0}^n b_i \neq 0$ the system is unstable, and the average value of the opinion states evolves with time as given below

$$\bar{x}_i(t) = \frac{1}{n} \sum_{i=1}^n x_i(t) = \frac{1}{n} \sum_{i=0}^n x_{0i} + \frac{t}{n} \sum_{i=0}^n b_i \quad t \ge 0$$

- We know for connected undirected graph the laplacian matrix is symmetric and has zero eigenvalue. The corresponding right and left eigenvectors are 1_n and $1_n/n$ chosen to satisfy $v_1^T w_1 = 1$. We can get $\sum_{i=0}^n b_i = 0$.
- And from $w_i^T x(t) = w_i^T (x_0 + bt) \quad \forall \sigma_i = 0, t \ge 0$ we get $\bar{x}_i(t) = \frac{1}{n} \sum_{i=1}^n x_i(t) = \frac{1}{n} \sum_{i=0}^n x_{0i} + \frac{t}{n} \sum_{i=0}^n b_i \quad t \ge 0.$

Corollary 2

For a digraph contains a globally reachable node(s) system admits a stable solution if and only if

$$\sum_{i\in N_G} w_{1i}b_i=0$$

At steady state $\lim_{t\to\infty} x(t)$ becomes

$$\bar{x} = V \left[w_1^T x_0, \left[-(\tilde{J}^{-1}) \tilde{W}^T b \right]_{1 \times (n-1)} \right]^T$$

where the left eigenvector is $w_1 = [w_{11}, w_{12}, \dots, w_{1n}]^T$ and N_G is the set of globally reachable nodes. For $w_1^T b \neq 0$ system becomes unstable and the weighted average of the opinion states evolves with time as

$$w_1^T x(t) = w_1^T x_0 + w_1^T bt$$

We know that L has simple zero eigenvalue and the corresponding right eigenvector is 1_n and the left eigenvector is chosen such that $v_1^T w_1 = 1$ and we can say $w_{1i} > 0 \forall i \in N_G$ and zero otherwise. Using these results, the proof follows in the same manner as that of Corollary 1. As we know $w_i^T b = 0$ from the theorem 1 we can write

$$\begin{bmatrix} w_{11} & w_{12} & \dots & w_{1n} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = 0$$

Corollary 3

For a constant bias vector b, the system admits a stable solution irrespective of the connectivity of the graph if and only if $w_i^T(b+u)=0 \quad \forall \sigma_i=0$ Furthermore

$$w_i^T x(t) = w_i^T x(0) \quad \forall \sigma_i = 0, t \ge 0$$

This proof follows the theorem 1 where we just replacing b with (b + u).

We also discuss two type of graphs that have zero as simple eigenvalues.

- For a connected undirected graph it follows $\sum_{i=1}^{n} (b_i + u_i) = 0$ for stability. Then $\sum_{i=1}^{n} x_i(t) = \sum_{i=1}^{n} x_i(0), t \ge 0$
- For a digraph containing a globally reachable node, $w_1^T(b+u)=0$ must hold for stability.In this case we can write $w_1^Tx(t)=w_1^Tx(0), t\geq 0$

Remark 1

The reachable set of opinion states is defined as

$$X_R = \{x_d \in R^n | w_i^T x_d = w_i^T x_0\} \forall \sigma_i = 0$$

If the stable desired opinion states x_d belongs to reachable set X_R , then $\dot{x}=0$ at steady state. This gives $-Lx_d+(b+u)=0$. Then control input u to reach an opinion state x_d is given by

$$u = Lx_d - b$$

Theorem 2

For a given initial state x_0 and a constant bias vector b, the system admits any stable desired opinion state x_d , irrespective of the connectivity of the graph by designing the control input u as given below,

- ① If $w_i^T x_d = w_i^T x_0$ then u is given by $u = Lx_d b$.
- ② Else u satisfies the condition, $w_i^T(b+u) = (w_i^T x_d w_i^T x_0)/\bar{t}$, $\forall \sigma_i = 0$

When the desired opinion state x_d lies in the reachable set X_R , then u can be calculated using Remark 1, which leads to condition 1 of the theorem.

When $x_d \notin X_R$ then it is impossible to reach x_d using the control input in the equation mentioned in Remark 1.To solve this problem we reach some $\tilde{x} \neq \{x_0, x_d\}$ from where x_d is reachable and now we can calculate the control input which is required to reach x_d from \tilde{x} .

It is not possible to reach \tilde{x} starting from x_0 through a stable system behaviour as $w_i^T \tilde{x} \neq w_i^T x_0$. In the presence of b and u an unstable behaviour can be modelled by the equation as,

$$w_i^T x(t) = w_i^T (x_0 + (b+u)t)$$

In the second stage, $w_i^T x_d = w_i^T x(\bar{t})$ holds as x_d is reachable from $x(\bar{t})$.

- When $t \leq \overline{t}$, where $\overline{t} \in (0, \infty)$ is the time till which the unstable behaviour exists such that $\tilde{x} = x(\overline{t})$.
- When $t = \bar{t}$ the above equation becomes $w_i^T x_d = w_i^T (x_0 + (b+u)t)$. Rearranging this equation gives condition 2 in theorem 2 which is necessary condition the control input u must satisfy.
- When $t > \overline{t}$ the equation $u = Lx_d b$ results in the desired behaviour.

Conclusion

- We study how the external bias factors effects on the evolution of opinions in a cooperative network in arbitrary connectivity.
- In the presence of constant bias b the conditions has been provided which can ensure the stability of final opinion states of the agents.
- **3** We will design a control input u to extend the reachable set of opinion states to R^n .
- In future we also develop a nonlinear model to better understanding a real world scenario.

Graph and the model

- For the above graph I have simulated the model and getting two graphs which are shown in the next slides.
- For the 1st graph $u = 1_n$, $x(0) = [-6.4, -5.5, 2, 0]^T$, $b = [-20, 20, 20, -20, 20, -20]^T$, L we have calculated by using the formula, $L = D_{\text{out}} A$
- For the 2nd graph $u = [0, 5, -20, -20, 0, 25]^T$ and have x(0), b as same as the previous one.
- In 1st graph we are getting $x_f = [-10, 10, 10, -10, 10, -10]^T$ and from the result we can say polarization of opinion is happening in the group of agents.
- In 2nd graph we are getting $x_f = [-14, 1.6, -14, 6, 11]^T$ and from the result we can say clustering is happening.

Simulation

Simulation

