- **0.1.** Let (T_n) be a sequence in B(X,Y). If T_n coverges then $||T_n||$ is bounded by the uniform boundedness principle.
- **0.2.** We show that there is no projection from ℓ^{∞} onto c_0 .
- (a) Show that a Banach space *X* is isometrically isomorphic to a Hilbert space if there is a bounded linear projection on every closed subspace of *X*.
- **0.3** (Bounded below maps in Banach spaces). Let $T: X \to Y$ be a bounded linear map between Banach spaces. Show that the following statements are equivalent:
- (a) It is bounded below.
- (b) It is injective and has closed range.
- (c) It is a isometric isomorphism onto its image.
- **0.4** (Bounded below maps in Hilbert spaces). Let $T: H \to K$ be a bounded linear operator between Hilbert spaces. Show that the following statements are equivalent:
- (a) It is bounded below.
- (b) It has a left inverse.
- (c) Its adjoint has right inverse.
- (d) The product T^*T is invertible.

In particular, a normal operator in B(H) is bounded below if and only if it is invertible.

- **0.5** (Injectivity and surjectivity of dual map). Let $T: X \to Y$ be a bounded linear operator between Banach spaces and $T^*: Y^* \to X^*$ be its dual.
- (a) Show that T^* is injective if and only if T has dense range.
- (b) Show that T^* is surjective if and only if T is bounded below.
- **0.6.** For $T \in B(H)$, we have an obvious fact $(\operatorname{im} T)^{\perp} = \ker T^*$. If T is normal, then the kernel of T and T^* are equal.
- (a) Show that if *T* is surjective bounded operator, then *T* is invertible.
- **0.7** (Schur's property of ℓ^1). .
- **0.8.** Let $\varphi: L^{\infty}([0,1]) \to \ell^{\infty}(\mathbb{N})$ be an isometric isomorphism. Suppose φ is realised as a sequence of bounded linear functionals on L^{∞} .
- (a) Show that $\varphi^*(\ell^1) \subset L^1$ where ℓ^1 and L^1 are considered as closed linear subspaces of $(\ell^{\infty})^*$ and $(L^{\infty})^*$ respectively.
- (b) Show that φ^* is indeed an isometric isomorphism, and deduce φ cannot be realised as bounded linear functionals on L^{∞} .

- **0.9** (Predual correspondence). Let X be a Banach space and Z be a linear subspace of X^* . Define $\varphi: X \to Z^*$ as the restriction of the dual map of inclusion $Z \subset X^*$.
- (a) Show that if φ is an isometric isomorphism, then closed ball of X is compact Hausdorff in $\sigma(X,Z)$.
- (b) Show that the converse holds by using Goldstine's theorem.
- **0.10** (Operator monotonicity of square and commitativity). Let \mathcal{A} be a C^* -algebra in which the square function is operator monotone, that is, $0 \le a \le b$ implies $a^2 \le b^2$ for any positive elements a and b in \mathcal{A} . We are going to show that \mathcal{A} is necessarily commutative. Let a and b denote arbitrary positive elements of \mathcal{A} .
- (a) Show that $ab + ba \ge 0$.
- (b) Let ab = c + id where c and d are self adjoints. Show that $d^2 \le c^2$.
- (c) Suppose $\lambda > 0$ satisfies $\lambda d^2 \le c^2$. Show that $c^2 d^2 + d^2 c^2 2\lambda d^4 \ge 0$.
- (d) Show that $\lambda(cd+dc)^2 \leq (c^2-d^2)^2$.
- (e) Show that $\sqrt{\lambda^2 + 2\lambda 1} \cdot d^2 \le c^2$ and deduce d = 0.
- (f) Extend the result for general exponent: A is commitative if $f(x) = x^{\beta}$ is operator monotone for $\beta > 1$.
- **0.11** (Compact left multiplications and SOT). Let T_n be a sequence of bounded linear operators on a Hilbert space that converges in SOT. For compact K, T_nK converges in norm, but KT_n generally does not unless T is self-adjoint.
- **0.12.** Let *X* be a closed subspace of a Banach space *Y* and

$$i: X \to Y$$

the inclusion. Suppose X and Y have preduals X_* and Y_* respectively. Let

$$j:=i^*|_{Y_*}:Y_*\to Z\subset X^*,$$

where $Z := i^*(Y_*)^-$. Then we can show

$$j^*: Z^* \subset X^{**} \to Y$$

coincides with i on $X \cap Z^*$. From the existence of X_* we have $X^{**} \to X$, which is restricted to define a map $k: Z^* \to X$.

$$X \xrightarrow{i} Y$$

$$\downarrow k \qquad \qquad \downarrow j \qquad \qquad \downarrow X$$

$$X^{**} \longrightarrow Z^{*}$$

We can show k is an isomorphism so that we have

$$X_* \cong Y_*/Y_* \cap \ker(i^*).$$

0.13 (Injective *-homomorphism is an isometry).

0.1 Topological measures

0.14. Let X be compact. A positive linear functional ρ on $C(X)$ is bounded with norm $\rho(1)$.
<i>Proof.</i> Since $0 \le \rho(\ f\ \pm f) = \ f\ \rho(1) \pm \rho(f)$, we have $ \rho(f) \le \rho(1)\ f\ $.
0.15. Let X be a locally compact Hausdorff space.
(a) The Baire σ -algebra is generated by compact G_{δ} sets. (b) If X is second countable, then every Baire set is Borel.
Solution. (b) (A second countable locally compact space is σ -compact. Since X is σ -compact and Hausdorff, every closed set is a countable union of compact sets, so the Borel σ -algebra on X is generated by compact sets.) Since locally compact Hausdorff space is regular, the Urysohn metrization implies X is metrizable, and every closed sets in metrizable space is G_{δ} set. \Box
0.1.1 The Riesz-Kakutani theorem for positive linear functionals
0.16. Let X be compact. There is a map from the set of finite Baire measures to the set of positive linear functionals on $C(X)$.
<i>Solution.</i> A function in $C(X)$ is Baire measurable and bounded. Thus the integration is well-defined.
0.17. Let X be compact. There is a map from the set of positive linear functionals on $C(X)$ to the set of finite regular Borel measures.
Solution. i. and ii. and iii. of Theorem 7.2.
0.18. Let X be compact. Let ρ be a positive linear functional on $C(X)$. Let ν be the regular Borel measure associated to ρ . Then, $\rho(f) = \int f d\nu$.
Solution. iv. of Theorem 7.2. \Box
0.19. Let X be compact. Let v be a finite regular Borel measure. Let v' be the regular Borel measure associated to the positive linear functional $f \mapsto \int f dv$. Then, $v = v'$ on Borel sets.
Solution. Theorem 7.8.
The two results above establish the correspondence between positive linear functionals and regular Borel measures. The following is an additional topic: Borel extension of Baire measures.

0.20. Let X be compact. Let μ be a finite Baire measure. Let ν be the regular Borel measure associated to the positive linear functional $f \mapsto \int f d\mu$. Then, $\mu = \nu$ on Baire sets.

Solution. Let μ , ν be finite Baire measures. Enough to show if $\int f \ d\mu = \int f \ d\nu$ then $\mu = \nu$ according to the preceding two results.

Enough to show the regularity of Baire measures.

- A second countable locally compact space is σ -compact.
- A σ -compact locally compact space is paracompact.
- A second countable regular space is paracompact.
- A locally compact Hausdorff space is regular.

semiring σ -finiteness implies the uniqueness

0.2 Problems

- **0.21.** Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable. Show that f is identically zero if $f'(x) = f(x)^2$ for all x.
- **0.22.** Let $f(x) = x(1+x)^{-1}$ be a function on $\mathbb{R}_{\geq 0}$. Show that a C*-algebra \mathcal{A} is commutative if and only if f is operator subadditive in \mathcal{A} .
- **0.23.** Let T be an invertible linear operator on a normed space. Show that $T^{-2} + ||T||^{-2}$ is injective if it is surjective.
- **0.24** (Diophantine equations). (a) Show that there is no integral solution of the equation $x^7 + 7 = y^2$.
- (b) Show that if $(x^2 + y^2 + z^2)/(xy + yz + zx)$ is an integer, then it is not divided by 3.
- (c) Show that there is no non-trivial integral solution of $x^4 y^4 = z^2$.