КОДИРОВАНИЕ

В этой схеме источник сообщений хочет передать по каналу связи некоторый набор *слов* — конечных последовательностей символов из заданного конечного алфавита $\mathbf{A} = \{a_1,..., a_r\}$. Для передачи ему нужно (или он хочет) закодировать это сообщение — переписать его словами во вспомогательном алфавите $\mathbf{A} = \{b_1,..., b_q\}$. После получения сообщения (возможно искаженного помехами) его нужно снова записать словами в алфавите \mathbf{A} (возможно исправив возникшие ошибки).

Выбор кодов связан с различными обстоятельствами, а именно:

- с удобством передачи кодов,
- со стремлением увеличить пропускную способность канала,
- с удобством обработки кодов,
- с обеспечением помехоустойчивости,
- с удобством декодирования,
- с другими возможными требованиями к кодам.

Ниже будут рассматриваться два вида кодирования:

- (а) Алфавитное кодирование. Каждой букве a_i из $\mathcal{A} = \{a_1,...,a_r\}$ ставится в соответствие некоторое слово B_i из алфавита $\mathcal{B} = \{b_1,...,b_q\}$. Схема кодирования, сопоставляющая эти слова, будет обозначаться буквой Σ .
- (б) Равномерное кодирование. Некоторое слово B_i из алфавита \mathcal{J} ставится в соответствие не букве, а какому-то слову A_i фиксированной длины в алфавите \mathcal{J} .

Конечно, одно из первых требований к используемому коду — требование однозначности восстановления сообщения по его коду.

Проверка однозначности декодирования

Рассмотрим алфавитные коды.

Каждое из слов $B_i,\ i=1,...,r$, называется элементарным кодом.

Слово в алфавите **з** назовем кодовым, если его можно *расшифровать*, т.е. разбить на элементарные коды.

Одна из трудностей проверки однозначности декодирования состоит в том, что формально надо проверять бесконечное число кодовых слов. Оказывается, этой бесконечности можно избежать.

Пусть дана схема кодирования Σ и l_i — длина слова B_i , $L = l_1 + ... + l_r$.

Назовем нетривиальным разложением слова B_i его представление в виде $B_i = \beta' B_{j_1} ... B_{j_w} \beta''$, где $B_{j_1} \neq B_i$, β'' является началом какого-нибудь элементарного кода, а β' является концом какого-нибудь элементарного кода. Слова β' и β'' могут быть пустыми. Набор кодовых слов $B_{j_1} ... B_{j_w}$ также может быть пустым.

Пример.

$$\Delta l_1 = (1 \ 0 \ 0 \ 1) \qquad l_1 = 4$$
 $\Delta l_2 = (0) \qquad \qquad l_2 = 1$ $\Delta l_3 = (0 \ 1 \ 0) \qquad \qquad l_3 = 3$

Рассмотрим слово $B=0\ 1\ 0\ 0\ 1\ 0=A_2\ A_1\ A_2=A\ _3\ A_3$ Нет однозначности декодирования!

Очевидно, что для каждого i число нетривиальных разложений слова B_i конечно. Обозначим через W максимум чисел w, взятый по всем нетривиальным разложениям всех слов B_i , i=1,...,r.

Теорема 1. Для любой схемы кодирования Σ найдется такое $N = N(\Sigma)$, что для проверки однозначности декодирования в Σ достаточно проверить коды слов из \mathcal{A} длины не более N, и

$$N \leq \lfloor (W+1)(L-r+2)/2 \rfloor$$
.

Доказательство. Выберем самое короткое слово B в алфавите \mathcal{J} , допускающее две различные расшифровки A_1 и A_2 . С ними связаны два разбиения слова B на элементарные коды T_1 и T_2 :

Обозначим через T разбиение, полученное после «разрезания» В там, где его «разрезало» хотя бы одно из разбиений T_1 и T_2 . Части разбиения T разделим на два класса: к первому отнесем части, являющиеся элементарными кодами, ко второму — все остальные (префиксысуффиксы).

Каждая часть β , принадлежащая второму классу, является концом одного из элементарных кодов и началом другого. Причем если β оканчивает некоторое элементарное кодовое слово в T_1 , то оно начинает какое-то элементарное кодовое слово в T_2 и наоборот (см. рис.).

Более точно, если $B=B'\beta\ B''$, то либо $B'\beta$ и B'' являются кодовыми словами в T_1 , а B' и $\beta\ B''$ являются кодовыми словами в T_2 , либо наоборот.

Покажем, что все части из второго класса различны.

Допустим, что $B = B'\beta B''\beta B'''$.

Тогда слово $B'\beta$ B''' имеет две расшифровки в противоречие с выбором B. Чтобы убедиться в этом, заметим, что согласно вышесказанному, слова $B'\beta$, B', β B''' и B''' являются кодовыми.

Число частиц во втором классе не превосходит числа непустых начал элементарных кодов, т.е. $(l_1 - 1) + ... + (l_r - 1) = L - r$.

Они дают не более L-r+1 кусков.

Каждый из кусков, на которые разбивается B после выбрасывания всех частиц, является кодовым словом, входящим в одно из разбиений T_i , и частью некоторого элементарного кода, входящего в T_{3-i} .

Соседние куски являются частями элементарных кодов, входящих в различные T_i .

Два соседних куска

Имеем не более L-r+1 кусков. Рассматриваем их парами.

Всего пар $\lfloor (L-r+1)/2 \rfloor$.

В каждой паре не более W+1 слов.

Следовательно, длина каждого из A_i не превосходит

$$W \cdot \lceil (L-r+1)/2 \rceil + 1 \cdot \lfloor (L-r+1)/2 \rfloor \leq \lfloor (W+1)(L-r+2)/2 \rfloor.$$

Пример.

$$r = 6$$
, $W = 3$, $L = 20$,
 $\lfloor (W+1)(L-r+2)/2 \rfloor = \lfloor 4 \cdot 16/2 \rfloor = 32$,

то есть требуется проверить 6³² слов.

Из доказательства теоремы можно извлечь существенно более эффективный алгоритм.

Пусть дана схема кодирования Σ . Для каждого элементарного кода B_i рассмотрим все его нетривиальные разложения

$$B_{i} = \beta' B_{j_{1}} ... B_{j_{w}} \beta''. \tag{1}$$

Обозначим через $V=V(\Sigma)$ множество, содержащее пустое слово Λ и слова β , встречающиеся в разложениях вида (1) как в виде начал, так и в виде окончаний. Построим далее помеченный ориентированный граф $\Gamma = \Gamma \left(\Sigma \right)$ по следующим правилам. Множеством вершин графа Γ является $V=V(\Sigma)$. Проводим дугу из вершины $\beta'\in V$ в вершину $\beta''\in V$, если и только если в некотором разложении вида (1) β ' является началом, а eta " — концом. При этом дуга (eta ', eta ") помечается словом $B_{j_1}...B_{j_m}$.

$$B_1 = \beta' B_{j_1} ... B_{j_w} \beta'$$

$$B_2 = B_{i_1} ... B_{i_m} \beta$$

$$B_3 = \beta'' B_{k_1} ... B_{k_w}$$

Теорема 2. Схема кодирования Σ не обладает свойством однозначности декодирования тогда и только тогда, когда граф $\Gamma(\Sigma)$ содержит контур, проходящий через вершину Λ .

Доказательство. Допустим, что Σ не обладает свойством однозначности декодирования. Тогда, как следует из доказательства теоремы 1, кратчайшее слово, имеющее две расшифровки в схеме Σ , имеет вид

$$B = B_{i_{1,1}} ... B_{i_{1,k(1)}} \beta_1 B_{i_{2,1}} ... B_{i_{2,k(2)}} \beta_2 ... \beta_{s-1} B_{i_{s,1}} ... B_{i_{s,k(s)}},$$

где все β_i различны и слова $B_{i_{1,1}}...B_{i_{1,k(1)}}, \ \beta_1, \ \beta_1 B_{i_{2,1}}...B_{i_{2,k(2)}}\beta_2,...$ $..., \beta_{s-1}B_{i_{s,1}}...B_{i_{s,k(s)}}$ являются элементарными кодами. Это значит, что в $\Gamma\left(\Sigma\right)$ есть контур, проходящий через вершины Λ , $\beta_1,...$, β_{s-1} . Обратно, пусть в $\Gamma\left(\Sigma\right)$ существует контур, проходящий через вершины

 β_0 , β_1 ,..., β_{s-1} , где $\beta_0 = \Lambda$ и дуга (β_j, β_{j+1}) , j = 0, 1,..., s-1, ((s-1)+1=0),

помечена словом $B_{i_{j+1,1}}...\ B_{i_{j+1,k(j+1)}}$. Тогда слово

$$B = B_{i_{1,1}} ... B_{i_{1,k(1)}} \beta_1 B_{i_{2,1}} ... B_{i_{2,k(2)}} \beta_2 ... \beta_{s-1} B_{i_{s,1}} ... B_{i_{s,k(s)}},$$

имеет две различные расшифровки. ■

Пример.
$$\Sigma$$
: $a_1-b_1b_2$ $a_2-b_1b_3b_2$ $a_3-b_2b_3$ $a_4-b_1b_2b_1b_3$ $a_5-b_2b_1b_2b_2b_3$

Находим все префиксы, которые одновременно являются суффиксами и не являются кодовыми словами:

 $\{\Lambda, b_2, b_1b_3\}$, то есть три вершины в графе

Пример.

$$\Sigma$$
: $a_1 - b_1$
 $a_2 - b_2 b_1$
 $a_3 - b_1 b_2 b_2$
 $a_4 - b_2 b_1 b_2 b_2$
 $a_5 - b_2 b_2 b_2 b_2$

Находим все β : { Λ , b_2 , b_2 b_2 , b_2 b_2 } Тогда получаем граф:

Нет цикла через вершину Λ . Код однозначно декодируется.

Префиксные коды

Важным классом однозначно декодируемых кодов являются префиксные коды — такие алфавитные коды, где ни один элементарный код не является префиксом (т.е. началом) другого элементарного кода.

Упражнение. Доказать, что любой префиксный код является однозначно декодируемым.

Обозначим через q значность алфавита, например, q=2, и $l_i=l(B_i)$, i=1,...,r.

Теорема 3. (Неравенство Макмиллана) Если схема кодирования Σ обладает свойством однозначности декодирования, то

$$\sum_{i=1}^{r} q^{-l_i} \le 1. \tag{2}$$

Доказательство. Выберем произвольное n. Рассмотрим коды всех r^n слов длины n в алфавите \mathcal{A} , полученные с помощью Σ . Все они могут быть порождены выражением

$$(a_1 + ... + a_r)^n$$

если рассматривать произведение $a_{i_1}a_{i_2}...a_{i_n}$ как запись слова. Имеем

$$(a_1 + \dots + a_r)^n = \sum_{(i_1 i_2 \dots i_n)} a_{i_1} a_{i_2} \dots a_{i_n}.$$

Соответствующие этим словам коды получаются заменой символов $a_1, ..., a_r$ на элементарные коды $B_1, ..., B_r$. Получаем

$$(B_1 + \dots + B_r)^n = \sum_{(i_1 i_2 \dots i_n)} B_{i_1} B_{i_2} \dots B_{i_n}.$$

Этому тождеству соответствует

$$\left(\frac{1}{q^{l_1}} + \dots + \frac{1}{q^{l_r}}\right)^n = \sum_{(i_1 \dots i_n)} \frac{1}{q^{l_{i_1} + \dots + l_{i_n}}}.$$
 (3)

Положим $t=l_{i_1}+...+l_{i_n}$ и v(n,t) — число кодовых слов $B_{i_1}B_{i_2}...B_{i_n}$ длины t. Пусть $l=\max_{1\leq i\leq r}l_i$. Из взаимной однозначности алфавитного кодирования вытекает $v(n,t)\leq q^t$ и длина каждого из наших кодовых слов не превосходит nl.

Следовательно,

$$\sum_{(i_1...i_n)} \frac{1}{q^{l_{i_1}+...+l_{i_n}}} = \sum_{t=1}^{nl} \frac{v(n,t)}{q^t} \le nl.$$

Используя (3), получаем

$$\left(\frac{1}{q^{l_1}} + \dots + \frac{1}{q^{l_r}}\right) \leq \sqrt[n]{nl}$$

Это неравенство справедливо для любого n, а его правая часть стремится к 1 при $n \to \infty$. Поскольку его левая часть не зависит от n, необходимо, чтобы $q^{-l_1} + ... + q^{-l_r} \le 1$

Следующий факт характеризует префиксные коды с положительной стороны.

Теорема 4. Если схема кодирования Σ обладает свойством однозначности декодирования, то существует такая префиксная схема кодирования Σ' , что для каждого i, i=1,..., s длина l_i' элементарного кода B_i' в Σ' равна длине l_i элементарного кода B_i в Σ .

Доказательство. Можно считать, что элементарные коды B_i занумерованы в порядке неубывания их длин. Пусть длинами элементарных кодов в Σ являются числа $\lambda_1,...$, λ_s , $\lambda_1 < \lambda_2 < ... < \lambda_s$ и число элементарных кодов длины λ_i , i=1,..., s равно v_i . Тогда неравенство Макмиллана можно переписать в виде

$$\sum_{t=1}^{S} \frac{v_t}{q^{\lambda_t}} \le 1. \tag{4}$$

В частности, $v_1/q^{\lambda_1} \le 1$, откуда $v_1 \le q^{\lambda_1}$. Выберем среди q^{λ_1} слов длины λ_1 в алфавите \mathcal{B} произвольные v_1 слов в качестве элементарных кодов $B_1',...,B_{v_1}'$. Перейдем к словам длины λ_2 . Из (4) получаем

$$\frac{v_1}{q^{\lambda_1}} + \frac{v_2}{q^{\lambda_2}} \le 1,$$

$$v_2 \le q^{\lambda_2} - v_1 q^{\lambda_2 - \lambda_1}.$$
(5)

Рассмотрим множество слов длины λ_2 в алфавите B, не начинающихся с $B_1',...,B_{v_1}'$. В силу (5) из этого множества можно выбрать v_2 каких-нибудь слов в качестве элементарных кодов $B_{v_1+1}',...,B_{v_1+v_2}'$.

Далее из (4) получаем

$$v_3 \le q^{\lambda_3} - v_1 q^{\lambda_3 - \lambda_1} - v_2 q^{\lambda_3 - \lambda_2}$$

и строим v_3 слов длины λ_3 , не начинающихся с $B_1', ..., B_{v_1 + v_2}'$ и т.д. Через конечное число шагов построим нужное количество слов нужной длины. По построению новый код будет префиксным. \blacksquare

Лекция 12-13

Кодирование

Коды с минимальной избыточностью

Префиксные коды

Важным классом однозначно декодируемых кодов являются префиксные коды — такие алфавитные коды, где ни один элементарный код не является префиксом (т.е. началом) другого элементарного кода.

Упражнение. Доказать, что любой префиксный код является однозначно декодируемым.

Обозначим через q значность кодирующего алфавита, например, q=2, и $l_i=l(B_i),\,i=1,...,r$.

Теорема 3. (Неравенство Макмиллана) Если схема кодирования Σ обладает свойством однозначности декодирования, то

$$\sum_{i=1}^r q^{-l_i} \le 1$$

Следующий факт характеризует префиксные коды с положительной стороны.

Теорема 4. Если схема кодирования Σ обладает свойством однозначности декодирования, то существует такая префиксная схема кодирования Σ' , что для каждого i, i=1,..., s длина l_i' элементарного кода B_i' в Σ' равна длине l_i элементарного кода B_i в Σ .

При выборе схемы кодирования естественно учитывать экономичность, т.е. средние затраты времени на передачу и прием сообщений.

Предположим, что задан алфавит $\mathcal{A} = \{a_1,...,a_r\}, r \geq 2$, и набор вероятностей $(p_1,...,p_r)$, $p_1 + ... + p_r = 1$ появлений букв $a_1,...,a_r$. Тогда избыточностью кодирования схемой Σ называется величина

$$l_{cp} = l_{cp}(\Sigma) = l_1p_1 + \dots + l_rp_r,$$

т.е. математическое ожидание длины элементарного кода, l_i — длина кодового слова для a_i

Чем меньше l_{cp} , тем экономнее в среднем схема ${\mathcal L}$.

Пусть

$$l_* = l_* (a_1,..., a_r, p_1,..., p_r) = \inf l_{cp},$$

где инфимум взят по всем однозначно декодируемым схемам.

Пусть $k = \lceil \log_q r \rceil$. Тогда все a_i можно закодировать разными словами длины k в алфавите $\mathbf{\mathcal{B}} = \{b_1,...,b_q\}$. Очевидно, такое кодирование будет префиксным (а, следовательно, и взаимно однозначным). Отсюда $l_* \leq k$. Таким образом, значение l_* достигается на некоторой схеме, так как для каждого i достаточно смотреть слова длины не более $k/p_i, p_i > 0$.

Коды, определяемые схемами Σ с $l_{cp} = l_*$, называются *кодами с мини-мальной избыточностью* или *кодами Хаффмана*. Согласно теореме 4 существуют префиксные коды с минимальной избыточностью.

Каждому префиксному коду поставим в соответствие *кодовое дерево* — ориентированное корневое дерево $T = T(\Sigma)$ по следующим правилам. Множество вершин V(T) дерева T состоит из элементарных кодов и всех их префиксов, включая пустое слово. Дуга в T ведет из C в D, если C является префиксом D и короче D ровно на одну букву.

Пример 1.

 $a_1 - b_1b_3$

 $a_2 - b_3$

 $a_3 - b_1b_1$

 $a_4 - b_1b_2$

 $a_5 - b_4b_2b_3$

 $a_6 - b_1b_4$

 $a_7 - b_4b_1$

 $a_8 - b_4b_2b_4$

Элементарные коды соответствуют висячим вершинам в T, q=4. Соответствует ли T оптимальному коду при p_i = 1/8?

Итак, пусть T — кодовое дерево префиксного кода с минимальной избыточностью (со схемой Σ). Можно считать, что $p_1 \ge ... \ge p_r$. Тогда можно преобразовать Σ таким образом, чтобы

- (a) $i < j \Rightarrow l_i \le l_j$;
- (б) порядки ветвления всех его вершин, за исключением быть может одной q_0 , лежащей в предпоследнем ярусе, равны или 0, или q;
- (в) порядок ветвления q_0 исключительной вершины (если она есть)

не равен 1.

Если порядки ветвления всех вершин T равны или 0, или q, то положим $q_0=q$. Ввиду (б), по индукции легко видеть, что для некоторого целого t имеем $r=t(q-1)+q_0$. Следовательно, если h — остаток от деления r на q-1, то

$$q_0 = egin{cases} h, & ext{если } h \ge 2, \ q, & ext{если } h = 1, \ q - 1, & ext{если } h = 0. \end{cases}$$
 (*)

Нетрудно видеть, что можно выбрать такой префиксный код с минимальной избыточностью, кодовое дерево которого кроме (a)–(в) обладает свойством

(г) для некоторой вершины v, лежащей в предпоследнем ярусе, порядок ветвления вершины v равен q_0 , а потомками v являются $a_r, a_{r-1}, ..., a_{r-q_0+1}$.

Пример 2.

$$a_1 - b_1b_3 - 0,22$$
 $a_2 - b_2 - 0,20$
 $a_3 - b_1b_1 - 0,14$
 $a_4 - b_1b_2 - 0,11$
 $a_5 - b_3 - 0,10$
 $a_6 - b_1b_4 - 0,09$
 $a_7 - b_4b_1 - 0,08$
 $a_8 - b_4b_2 - 0,06$

$$l_{cp} = 2 \cdot 0,22 + 0,20 + 2 \cdot 0,14 + 2 \cdot 0,11 + 0,1 + 2 \cdot 0,09 + 2 \cdot 0,08 + 2 \cdot 0,06 = 1,7$$

Верно ли, что это минимум по всем однозначно декодируемым кодам?

Теорема 5. Пусть схема кодирования Σ задает код с минимальной избыточностью для алфавита $\mathcal{A} = \{a_1, ..., a_r\}$ и набора вероятностей $(p_1, ..., p_r)$, а ее кодовое дерево T удовлетворяет свойствам (a)–(г).

Обозначим $p'_{r-q_0+1}=p_r+p_{r-1}+...+p_{r-q_0+1}$, а через T' — кодовое дерево, полученное из T удалением вершин $a_r,a_{r-1},...,a_{r-q_0+1}$ и сопоставлением образовавшейся висячей вершине v буквы a'_{r-q_0+1} . Тогда T' является кодовым деревом кода с минимальной избыточностью для алфавита $\mathbf{A}'=\{a_1,a_2,...,a_{r-q_0},a'_{r-q_0+1}\}$ и набора вероятностей $\{p_1,p_2,...,p_{r-q_0},p'_{r-q_0+1}\}$.

Доказательство. Обозначим схему, которой соответствует T', через Σ' , номер уровня вершины v через m. Тогда

$$l_{cp}(\Sigma') = l_{cp}(\Sigma) - (m+1)(p_r + p_{r+1} + \dots + p_{r-q_0+1}) + mp'_{r-q_0+1} = l_{cp}(\Sigma) - p'_{r-q_0+1}.$$

Если бы для алфавита $\mathcal{A}'=\{a_1,...,a_{r-q_0},a'_{r-q_0+1}\}$ и набора вероятностей $(p_1,...,p_{r-q_0+1})$ нашлась схема Θ' префиксного кодирования с меньшей избыточностью чем $l_{cp}(\Sigma)-p'_{r-q_0+1}$, то подвесив в кодовом дереве для Θ' к вершине v вершины $\{a_r,a_{r-1},...,a_{r-q_0+1}\}$, получили бы схему Θ префиксного кодирования для алфавита $\mathcal{A}=\{a_1,...,a_r\}$ с $l_{cp}(\Theta)=l_{cp}(\Theta)+p'_{r-q_0+1}< l_{cp}(\Sigma)$. Противоречие с выбором Σ завершает доказательство теоремы. \blacksquare

Данная теорема в сочетании с предыдущими леммами дает следующий алгоритм построения кодов с минимальной избыточностью.

Прямой ход

- 1. Если r = 1, то переходим к обратному ходу.
- 2. Упорядочим вероятности так, чтобы $p_1 \ge ... \ge p_r$.
- 3. Выберем q_0 по правилу (*), удалим из списка вероятностей p_r , p_{r-1} ,..., p_{r-q_0+1} и добавим $p'_{r-q_0+1}=p_r+p_{r-1}+...+p_{r-q_0+1}$. Положим $r=r-q_0+1$, уберём штрих с p'_r и перейдем к шагу 1.

Обратный ход

Кодовым деревом для одной буквы является одна вершина. В порядке, обратном к тому, в котором склеивались вероятности, расклеиваем вершины кодового дерева.

Пример 3.

$$p = \{0,36; 0,18; 0,18; 0,12; 0,09; 0,07\}, q = 2, r = 6.$$

Построим код Хаффмана

$$l_{cp} = 2,44$$

Кодирование сообщений

Самокорректирующиеся коды

Рассмотрим одну из простейших ситуаций, когда сообщение может искажаться в канале связи. Предположим, что в канале связи действует источник помех, который в слове длины n искажает не более p символов. Возникает вопрос: для какого m можно все m-буквенные слова в алфавите p закодировать p закодированье слова однозначно восстанавливались? И как это сделать?

Если n>2p, то $m\ge\lfloor n/(2p+1)\rfloor$. Действительно, каждую букву можно писать 2p+1 раз подряд. Но такое кодирование не является самым экономным. Более того, само сообщения составляет малую часть передаваемого слова.

Код Хэмминга

В произвольном алфавите трудно восстановить исходное сообщение, даже если известен номер буквы в слове, в которой произошло искажение. Поэтому в самокорректирующих кодах обычно рассматриваются бинарные алфавиты.

Пусть x, y — бинарные слова длины n. Обозначим

$$\rho(x,y) = \sum_{i=1}^{n} (x_i \oplus y_i) = w(x-y)$$
 — расстояние Хэмминга

Пусть B_n — Множество кодовых слов длины n. Корректировка кода состоит в выборе кодового слова ближайшего к полученному сообщению. Для того чтобы код при любых ошибках восстанавливался правильно достаточно, чтобы расстояние между любыми кодовыми словами было больше p.

Обозначим $E_n^{\ p}$ шар радиуса p в пространстве $\{0;1\}^n$. Тогда шары с центрами в кодовых словах не пересекаются. Найдем максимальную длину m сообщений, которые можно передать *n* буквенными словами.

$$2^m \cdot \left| E_n^p \right| \le 2^n.$$

Откуда

$$m \le n - \log_2 |E_n^p| = n - \log_2 \left(\sum_{i=0}^p C_n^i \right) \le n - p \log_2 n$$

В частности для случая одной ошибки получаем

$$m \le n - \log_2(n+1) .$$

Пример. Пусть при передаче 15 бинарных символов происходит не более 1 ошибки. Можно ли закодировать все 13 буквенные сообщения.

Решение.
$$m \le n - \log_2(n+1) = 15 - \log_2 16 = 11$$
.

Код Хэмминга устраняющий 1 ошибку.

1. Кодирование. Пусть $(a_1, a_2,..., a_m)$ исходное сообщение, где m максимальное значение для которого выполняется условие. Обозначим k=n-m.

Построим кодовое слово (b_1 , b_2 , ..., b_n). Назовём символы с номерами $\{2^0; 2^1; ...; 2^{k-1}\}$ контрольными, а остальные m информационными. Поставим исходное сообщение в информационные символы.

Обозначим V_i множество индексов в двоичной записи которых на i-той по-

зиции стоит 1. Положим
$$b_{2^{i-1}} = \sum_{V_i \setminus \{2^{i-1}\}} b_j \bmod 2$$
 .

Пример. Пусть l=7. Передаваемое сообщение (1, 0, 1).

Кодировка. m=7-3=4, k=3. Контрольные символы {1; 2; 4}. Дополним исходное сообщение 0 и запишем в информационные символы (*;*;1;*;0;1;0). Найдем значения контрольных символов.

$$V_1 = \{1;3;5;7\}, b_1 = 1+0+0=1;$$

$$V_2 = \{2;3;6;7\}, b_2 = 1+1+0=0;$$

$$V_3 = \{4;5;6;7\}, b_4 = 0+1+0=1.$$

Кодовое слово (1;0;1;1;0;1;0).

Замечание.

$$\sum_{V_i} b_j = 0 \bmod 2.$$

Замечание.

Контрольные символы входят в единственную сумму.

Упражнение. Доказать, что для любых кодовых слов расстояние между ними не меньше 3.

2. Обнаружение и исправление ошибок.

Пусть при передаче кодового слова (b_1 , b_2 ,..., b_n) произошла ошибка в символе s. Пусть двоичная запись числа $s=x_k...x_1$.

Найдем $\sum_{V_i} b_j^{\prime} \bmod 2$. Возможны 2 случая.

$$x_i=0$$
. Тогда $\sum_{V_i} b_j' = \sum_{V_i} b_j = 0 \mod 2$.

$$x_i=1.$$
 Тогда $\sum_{V_i} b_j^{'} = \sum_{V_i} b_j - b_s + b_s^{'} = b_s^{'} - b_s = 1 \operatorname{mod} 2$.

Таким образом, контрольные суммы нарушаются только для тех номеров, которые входят в двоичную запись числа s.

Пример. Получено сообщение (1;1;1;1;0;1;0). Восстановить исходное сообщение.

Решение. Посчитаем контрольные суммы.

$$V_1 = \{1;3;5;7\}, x_1 = 1+1+0+0=0;$$

$$V_2 = \{2;3;6;7\}, x_2 = 1+1+0+1=1;$$

$$V_3 = \{4;5;6;7\}, x_3 = 1 + 0 + 1 + 0 = 0.$$

Искажен символ номер $s=010_2=2$.

Отправленное сообщение (1;0;1;1;0;1;0).

Замечание. Если все контрольные суммы равны 0, то полученное сообщение пришло без искажений.