# **1256: Applied Natural Language Processing**

Marti Hearst Nov 13, 2006

# Today

**Automating Lexicon Construction** 

#### PMI (Turney 2001)

- Pointwise Mutual Information
- Posed as an alternative to LSA
  - score(choicei) = log2(p(problem & choicei) / (p(problem)p(choicei)))
- With various assumptions, this simplifies to:
  - score(choicei) = p(problem & choicei) / p(choicei)
- Conducts experiments with 4 ways to compute this
  - score1(choicei) = hits(problem AND choicei) / hits(choicei)

```
score (choice) =
```

hits((problem NEAR choice,) AND context AND NOT ((problem OR choice,) NEAR "not"))

hits(choice, AND context AND NOT (choice, NEAR "not"))

#### Dependency Parser (Lin 98)

 Syntactic parser that emphasizes dependancy relationships between lexical items.



Alice is the author of the book.



The book is written by Alice

## **Automating Lexicon Construction**

#### What is a Lexicon?

- A database of the vocabulary of a particular domain (or a language)
- More than a list of words/phrases
- Usually some linguistic information
  - Morphology (manag- e/es/ing/ed → manage)
  - Syntactic patterns (transitivity etc)
- Often some semantic information
  - Is-a hierarchy
  - Synonymy
  - Numbers convert to normal form: Four → 4
  - Date convert to normal form
  - Alternative names convert to explicit form
    - Mr. Carr, Tyler, Presenter → Tyler Carr

# Lexica in Text Mining

- Many text mining tasks require named entity recognition.
- Named entity recognition requires a lexicon in most cases.
- Example 1: Question answering
  - Where is Mount Everest?
  - A list of geographic locations increases accuracy
- Example 2: Information extraction
  - Consider scraping book data from amazon.com
  - Template contains field "publisher"
  - A list of publishers increases accuracy
- Manual construction is expensive: 1000s of person hours!
- Sometimes an unstructured inventory is sufficient
- Often you need more structure, e.g., hierarchy

#### Semantic Relation Detection

- Goal: automatically augment a lexical database
- Many potential relation types:
  - ISA (hypernymy/hyponymy)
  - Part-Of (meronymy)
- Idea: find unambiguous contexts which (nearly) always indicate the relation of interest

#### Lexico-Syntactic Patterns (Hearst 92)

(S1) Agar is a substance prepared from a mixture of red algae, such as Gelidium, for laboratory or industrial use.

(1a)  $NP_0$  such as  $NP_1$  {,  $NP_2$  ... , (and  $\mid or$ )  $NP_i$ }  $i \ge 1$ 

are such that they imply

(1b) for all  $NP_i$ ,  $i \ge 1$ , hyponym $(NP_i, NP_0)$ 

Thus from sentence (S1) we conclude

hyponym("Gelidium", "red algae").

#### Lexico-Syntactic Patterns (Hearst 92)

```
(2) such NP as {NP ,}* {(or | and)} NP
... works by such authors as Herrick, Goldsmith, and Shakespeare.
⇒ hyponym("author", "Herrick"),
hyponym("author", "Goldsmith"),
hyponym("author", "Shakespeare")

(3) NP {, NP}* {,} or other NP
Bruises, ..., broken bones or other injuries ...
⇒ hyponym("bruise", "injury"),
hyponym("broken bone", "injury")
```

# Adding a New Relation



# Automating Semantic Relation Detection

- Lexico-syntactic Patterns:
  - Should occur frequently in text
  - Should (nearly) always suggest the relation of interest
  - Should be recognizable with little pre-encoded knowledge.
- These patterns have been used extensively by other researchers.

#### Lexicon Construction (Riloff 93)

- Attempt 1: Iterative expansion of phrase list
- Start with:
  - Large text corpus
  - List of seed words
- Identify "good" seed word contexts
- Collect close nouns in contexts
- Compute confidence scores for nouns
- Iteratively add high-confidence nouns to seed word list. Go to 2.
- Output: Ranked list of candidates

## Lexicon Construction: Example

- Category: weapon
- Seed words: bomb, dynamite, explosives
- Context: <new-phrase> and <seed-phrase>
- Iterate:
  - Context: They use TNT and other explosives.
  - Add word: TNT
- Other words added by algorithm: rockets, bombs, missile, arms, bullets

#### Lexicon Construction: Attempt 2

- Multilevel bootstrapping (Riloff and Jones 1999)
- Generate two data structures in parallel
  - The lexicon
  - A list of extraction patterns
- Input as before
  - Corpus (not annotated)
  - List of seed words

## Multilevel Bootstrapping

- Initial lexicon: seed words
- Level 1: Mutual bootstrapping
  - Extraction patterns are learned from lexicon entries.
  - New lexicon entries are learned from extraction patterns
  - Iterate
- Level 2: Filter lexicon
  - Retain only most reliable lexicon entries
  - Go back to level 1
- 2-level performs better than just level 1.

# Scoring of Patterns

- Example
  - Concept: company
  - Pattern: owned by <x>
- Patterns are scored as follows:
  - score(pattern) = F/N log(F)
  - F = number of unique lexicon entries produced by the pattern
  - N = total number of unique phrases produced by the pattern
  - Selects for patterns that are
    - Selective (F/N part)
    - Have a high yield (log(F) part)

#### Scoring of Noun Phrases

- Noun phrases are scored as follows
  - score(NP) = sum\_k (1 + 0.01 \* score(pattern\_k))
  - where we sum over all patterns that fire for NP
  - Main criterion is number of independent patterns that fire for this NP.
  - Give higher score for NPs found by high-confidence patterns.
- Example:
  - New candidate phrase: boeing
  - Occurs in: owned by <x>, sold to <x>, offices of <x>

## **Shallow Parsing**

- Shallow parsing needed
  - For identifying noun phrases and their heads
  - For generating extraction patterns
- For scoring, when are two noun phrases the same?
  - Head phrase matching
  - X matches Y if X is the rightmost substring of Y
  - "New Zealand" matches "Eastern New Zealand"
  - "New Zealand cheese" does not match "New Zealand"

#### Seed Words

Web Company: co. company corp. corporation

inc. incorporated limited ltd. plc

Web Location: australia canada china england

france germany japan mexico

 $switzerland\ united\_states$ 

Web Title: ceo cfo president vice-president vp

Terr. Location: bolivia city colombia district

 $guatemala\ honduras\ neighborhood$ 

nicaragua region town

Terr. Weapon: bomb bombs dynamite explosive

explosives gun guns rifle rifles tnt

#### Mutual Bootstrapping

Generate all candidate extraction patterns from the training corpus using AutoSlog.

Apply the candidate extraction patterns to the training corpus and save the patterns with their extractions to *EPdata* 

```
SemLex = \{seed\_words\}

Cat\_EPlist = \{\}
```

#### MUTUAL BOOTSTRAPPING LOOP

- 1. Score all extraction patterns in *EPdata*.
- 2. best\_EP = the highest scoring extraction pattern not already in Cat\_EPlist
- 3. Add best\_EP to Cat\_EPlist
- 4. Add best\_EP's extractions to SemLex.
- 5. Go to step 1

#### **Extraction Patterns**

#### Web Company Patternsowned by $\langle x \rangle$ both as $\langle x \rangle$ $\langle x \rangle$ employed $\langle x \rangle$ is distributor <x> positioning marks of $\langle x \rangle$ motivated < x ><x> trust company sold to $\langle x \rangle$ devoted to $\langle x \rangle$

```
<x> consolidated stmts.
<x> thrive
message to <x>
<x> is obligations
<x> request information
<x> is foundation
<x> has positions
incorporated as <x>
offices of <x>
<x> required to meet
```

Level 1: Mutual Bootstrapping

| Best pattern    | "headquartered in $\langle x \rangle$ " (F=3,N=4) |
|-----------------|---------------------------------------------------|
| Known locations | nicaragua                                         |
| New locations   | san miguel, chapare region,                       |
|                 | san miguel city                                   |
| Best pattern    | "gripped $\langle x \rangle$ " (F=2,N=2)          |
| Known locations | $colombia,\ guatemala$                            |
| New locations   | none                                              |
| Best pattern    | "downed in $\langle x \rangle$ " (F=3,N=6)        |
| Known locations | $nicaragua$ , $san\ miguel^*$ , $city$            |
| New locations   | area, usulutan region, soyapango                  |
| Best pattern    | "to occupy $\langle x \rangle$ " (F=4,N=6)        |
| Known locations | nicaragua, town                                   |
| New locations   | small country, this northern area,                |
|                 | $san\ sebastian\ neighborhood,$                   |
|                 | private property                                  |
| Best pattern    | "shot in $\langle x \rangle$ " (F=5,N=12)         |
| Known locations | city, soyapango*                                  |
| New locations   | jauja, central square, head, clash,               |
|                 | back, central mountain region,                    |
|                 | air, villa el_salvador district,                  |
|                 | northwestern guatemala, left side                 |

- Drift can occur.
- It only takes one bad apple to spoil the barrel.
- Example: head
- Introduce level 2 bootstrapping to prevent drift.

#### Level 2: Meta-Bootstrapping



#### **Evaluation**

| Recall/Precision (%) | Baseline | Lexicon | Union |
|----------------------|----------|---------|-------|
| Web Company          | 10/32    | 18/47   | 18/45 |
| Web Location         | 11/98    | 51/77   | 54/74 |
| Web Title            | 6/100    | 46/66   | 47/62 |

#### CoTraining (Collins&Singer 99)

- Similar back and forth between
  - an extraction algorithm and
  - a lexicon
- New: They use word-internal features
  - Is the word all caps? (IBM)
  - Is the word all caps with at least one period? (N.Y.)
  - Non-alphabetic character? (AT&T)
  - The constituent words of the phrase ("Bill" is a feature of the phrase "Bill Clinton")
- Classification formalism: Decision Lists

#### Collins&Singer: Seed Words

```
Location
full-string=New_York
full-string=California
                                   Location
full-string=U.S.
                                   Location
contains (Mr.)
                             \rightarrow
                                   Person
contains (Incorporated)
                             \rightarrow
                                   Organization
full-string=Microsoft
                             \rightarrow
                                   Organization
full-string=I.B.M.
                                   Organization
```

Note that categories are more generic than in the case of Riloff/Jones.

# Collins&Singer: Algorithm

- Train decision rules on current lexicon (initially: seed words).
  - Result: new set of decision rules.
- Apply decision rules to training set
  - Result: new lexicon
- Repeat

# Collins&Singer: Results

| Learning Algorithm | Accuracy | Accuracy |
|--------------------|----------|----------|
|                    | (Clean)  | (Noise)  |
| Baseline           | 45.8%    | 41.8%    |
| EM                 | 83.1%    | 75.8%    |
| (Yarowsky 95)      | 81.3%    | 74.1%    |
| Yarowsky-cautious  | 91.2%    | 83.2%    |
| DL-CoTrain         | 91.3%    | 83.3%    |
| CoBoost            | 91.1%    | 83.1%    |

Per-token evaluation?

#### More Recent Work

- Knowitall system at U Washington
- WebFountain project at IBM

#### Lexica: Limitations

- Named entity recognition is more than lookup in a list.
- Linguistic variation
  - Manage, manages, managed, managing
- Non-linguistic variation
  - Human gene MYH6 in lexicon, MYH7 in text
- Ambiguity
  - What if a phrase has two different semantic classes?
  - Bioinformatics example: gene/protein metonymy

#### Discussion

Partial resources often available.

- E.g., you have a gazetteer, you want to extend it to a new geographic area.
- Some manual post-editing necessary for high-quality.
- Semi-automated approaches offer good coverage with much reduced human effort.
- Drift not a problem in practice if there is a human in the loop anyway.
- Approach that can deal with diverse evidence preferable.
- Hand-crafted features (period for "N.Y.") help a lot.