V1.0

2021.08.01

广运电子 GY 模块制作

概叙

GYTOF10M 是一款低成本红外激光测距传感器模块。 工作电压 3.7-5v, 功耗小, 体积小, 安装方便。 其工作原理是, 是通过发射光与被测物反射光 的时间相位差, 经过精密算法 最后得到直接的距离数据。 此模块, 有两种方式读取数据, 即 串口 UART(TTL 电平)+IIC(2线)模式, 串口的波特率有 2400bps 至 230400bps 可配置, 有连续, 询问输出两种方式, 可掉电保存设置。 提供 arduino, 51, stm32 单片机通讯程序。 不提供原理图及内部单片机源码。

IIC模式下,如果需要,可以设置内部 IIC地址不同,以便多个传感器直接接在同一个总线。

GYTOF10M 测距采用了动态时间滤波,当输出频率越低时候数据会更稳定。

特点

- (1)、高性价比
- (2)、直接数据距离值
- (3)、IIC、串口通信格式
- (4)、配相应的上位机软件
- (5)、可配置报警值距离开关量输出

应用

- (1) 、智能机器人
- (2)、教学实验室仪器
- (3)、生产线产品检测
- (4)、车辆使用距离传感器
- (5)、智能垃圾桶,四轴飞控,扫地机

技术参数

名称	参数
测量范围	0.15m10m
更新频率	200Hz (最快)
工作电压	3.7~5 V
工作电流	80mA (查询模式 8mA)
工作温度	-10° ~60°
储存温度	-20° ~ 80°
尺寸	26mm*16mm*12.5 mm
分辨率	1cm
LED光源	850nm

引脚说明

Pin1	VIN	电源+ (3.7v-5v)
Pin2	RC	串口 UART_RX / IIC_SCL
Pin3	DT	串口 UART_TX / IIC_SDA
Pin4	I/O	UART 模式下开关量,IIC 模式下数据就绪中断 INT
Pin5	PS	UART 输出模式选择,(PS 接 GND 一定是 UART 输出)
Pin6	GND	电源 GND

注: PS 引脚的作用是在 IIC 接口时候, 如果想切换 UART 模式, 就需要 PS 接 GND,重新上电,变成 UART 模式。 如果 UART 模式切换 IIC 模式, 就需要用 USB 转 TTL 的模块, 在上位机发指令设置。

模块内部寄存器地址及含义

0x00 (读写)	串口帧头 ID	1~254; 0 为广播地址; 默认为 ID:0xA4, 与 8 位 IIC
	IIC 设备地址	地址相同,所以该地址必须为2的倍数。默认0xA4
0x01 (读写)	波特率设置	0~8:2400,4800,9600,19200,38400,57600,115200,
		230400,默认 9600.
0x02 (读写)	更新速率	0: 1hz;1:10hz;2:50hz;3:100hz;4:200hz,默认 50hz
0x03 (读写)	输出模式	0: 连续输出; 1: 中断查询输出;2:轮询查询输出
0x04 (读写)	输出格式	0:十六进制(HEX); 1:字符(ASCII); 默认 0
0x05 (读写)	保存设置	0x55:保存当前配置; 0xAA:恢复出厂设置
0x06 (读写)	distance_off	-128+127,距离补偿,8bit 有符号数 char,单位 cm
0x07 (读写)	接口输出模式	0:IIC 普通 IIC 模式(normal); 1: APM 飞控 IIC 模
		式(special),2: 串口输出模式(serial)(出厂默认)
0x08 (只读)	Distance_H	0~255 距离值高 8 位
0x09 (只读)	Distance_L	0~255 距离值低 8 位
0x0a (只读)	Amplitude_H	0~255 光反射幅度值高 8 位
0x0b (只读)	Amplitude_L	0~255 光反射幅度值低 8 位
0x0c (只读)	TEMP	0~255 内部温度值
0x0d (只读)	上报警值高 H	上报警值高 8bit 默认 0
0x0e (只读)	上报警值低 L	上报警值低8bit默认0xC8(即默认是2米开关量输出)
0x0f (只读)	下报警值高 H	下报警值高 8bit 默认 0
0x10 (只读)	下报警值低 L	下报警值低 8bit 默认 0
0x11 (只读)	模块型号	0 预留
0x12 (只读)	固件信息	0~255 预留

^{*}中断查询输出:模块内部以250hz 持续工作,接一次指令,立刻返回一次数据。输出速度快,功耗高。

^{*}轮询查询输出:模块内部平时不工作,接一次指令,才去执行一次测距工作,再输出。输出速度慢,功耗低。

^{*}当配置串口 字符(ASCII) 输出时候,可以使用串口助手,字符显示距离值。

串口通信功能

外部设备发送至模块帧描述(单个地址写数据):

帧头 ID	写功能码	内部寄存器地址	数据	校验和
1字节	1字节	1 字节	N 字节	前字节相加的值取低 8 位

帧头(ID地址):内部寄存器地址0的数据,默认0xA4,当需要接多个模块到同一总线时

候,可自行修改。

功能码:数据 0x06 表示这一帧是写寄存器。

内部寄存器地址: 参考前段寄存器地址表格及内部数据功能。

数据: 需要写入的数据 HEX。

校验和:一帧数据前面数据相加之和,保留低8位。

模块响应时间:波特率 9600 时约为 10ms,波特率 115200 时约为 1ms。

模块收到指令后,将响应返回写入帧一样的数据,表示写入成功,返回格式如下:

帧头 ID 写功能码 0x06 内部寄存器地址 数据 校验和低 8 位	帧头 ID	世码 0x06 内部寄存器地	上 数据 校验和低 8 位
---	-------	----------------	---------------

如果写内部寄存器超过可写地址范围,则返回错误提示: A4 86 02 2C 如果写内部寄存器配置错误的数据,则返回错误提示: A4 86 03 2D

写寄存器例子1,模块修改波特率:

配置修改波特率为 115200, 主站发送帧为: A4 06 01 06 B1

A4	06	01	06	B1
地址	写功能码	寄存器	数据	校验和低8位

模块响应帧为: A4 06 01 06 B1 与主站发送帧相同,表示配置修改成功。

写寄存器例子2,模块修改输出频率:

配置修输出频率为 50HZ, 主站发送帧为: A4 06 02 02 AE

A4	06	02	02	AE
地址	写功能码	寄存器	数据	校验和低8位

模块响应帧为: A4 06 02 02 AE 与主站发送帧相同,表示保存成功。

写寄存器例子3, 掉电保存当前配置:

掉电保存当前所有配置,主站发送帧为: A4 06 05 55 04

A4	06	05	55	04
地址	写功能码	寄存器	数据	校验和低8位

模块响应帧为: A4 06 05 55 04 与主站发送帧相同,表示保存成功。

外部设备发送至模块帧描述(单个或多个地址读数据):

帧头 ID	功能码	内部寄存器起始地址	读寄存器数量	校验和
1字节	1字节	1 字节	N 字节	前字节相加的值取低 8 位

帧头 ID: 内部寄存器地址 0 的数据, (如不知道是多少,可以用通用数据 0 读取)。

功能码: 0x03表示这一帧是读寄存器指令。

内部寄存器起始地址:参考前段寄存器地址表格及内部数据功能,从该地址开始读取。

读寄存器数量: 从起始地址开始计算, 需要读取多少个地址数据。

校验和: 一帧数据前面数据相加之和,保留低8位。

模块响应时间:波特率 9600 时约为 10ms,波特率 115200 时约为 1ms。

模块收到指令后,将响应返回单个或多个地址读取到的数据,返回帧长度跟读取数据量有关,返回数据格式如下:

帧头 ID | 读功能码 0x03 | 起始寄存器 | 寄存器数量 | 1.....N 个数据 | 校验和低 8 位

如果读"寄存器数量"超过总寄存器数量,则返回错误提示: A4 83 03 2A 如果读"寄存器数量"+"起始寄存器"大于总寄存器数量,则返回错误提示: A4 83 02 29

读寄存器例子1,读取距离,幅度值,温度,主站发送帧为: A4 03 08 05 B4

A4	03	08	05	B4
帧头 ID	读功能码	起始寄存器	寄存器数量	校验和低8位

模块响应帧为: A4 03 08 05 077B 21CF 35 5B

A4	03	08	05	077B	21CF	35	5B
帧头 ID	读功能码	起始寄存器	寄存器数量	距离、	幅度值、	温度	校验和低8位

帧解析: A4 03 08 05 07 7B 21 CF 35 5B

起始寄存器 0x08 即从 Distance H 存器开始,寄存器数量 5,

这 5 个寄存器的数据依次读出: 07 7B 21 CF 35

距离数据: 0x077B(HEX) = 1915(DEC) => 191.5cm ;

幅度值: 0x21CF(HEX)=8655(DEC);

温度数据: 0x35(HEX)=>53°C;

设置串口数据连续输出步骤:

- ①. 发送读数据帧:设置好起始寄存器、寄存器数量。
- ②. 设置输出模式为连续输出模式,即向03寄存器写0。

申口数据查询输出步骤:

- ①. 设置输出模式为查询模式,即向03寄存器写1或者2。
- ②. 发送读数据帧: 设置好起始寄存器、寄存器数量。
- 注: 数据的输出格式,由读数据发送帧决定。

连续/查询模式由03寄存器决定。

如需掉电保存模式,请发送掉电保存配置指令 05 寄存器写 0x55。

设置串口模式下开关量输出步骤:

模块可以通过串口设置开关量报警阈值输出,通过向 0x0D--0x10 写数据,确定距离的大小,设置好以后,模块可以当成高低电平输出开关使用,该模式只能在串口下使用, I/0 引脚为开关信号输出。

IIC 通信功能

设置模块 IIC 模式,需使用 USB 转 TTL 的工具来设置,先用 USB 转 TTL 直接连接模块到电脑,打开上位机软件,软件设置好需要的 IIC 模式,保存模式(设置成功后串口不在有数据输出)。

设置成为 IIC 模式后,

RC 引脚=SCL, TD 引脚=SDA, INT/OUT 引脚变=IIC 数据更新完成中断标志功能。 INT 引脚平时低电平, 内部数据准备就绪 INT 引脚出现上升沿, 用户可根据该引脚出现上升沿后读取内部数据。

IIC 设备地址为 00 寄存器值,默认 0xA4。主机 IIC 时钟速率需小于 400K, IIC 内部寄存器地址及含义请参考前面的列表。

请注意你的主机是使用7bit地址还是8bit地址,数值会差一倍。

如果是使用(APM_PX4)飞控,请先用串口设置好 APM 飞控 IIC 模式 (07 寄存器写 1,然后掉电保存指令),修改 IIC 地址变成 0xE0(8bit)。APM 飞控 IIC 模式工作时候,当成 GY-US42 超声波使用,协议请参考 US42 的协议。

IIC 设备地址是可以修改的,可以支持多个不同地址的设备接入同一总线。

模块单次写寄存器数量为1个。写时序如下:

start	address	ACK	reg	ACK	data	ACK	stop
起始	0xA4	模块	0x07	模块	0x57	模块	结束

模块支持多寄存器连读,读时序如下:

start	address	ACK	reg	ACK	Address+1	ACK	datas	NACK	stop	
-------	---------	-----	-----	-----	-----------	-----	-------	------	------	--

	起始	0xA4	模块	0x07	模块	0xA5	模块	N datas	模块	结東
--	----	------	----	------	----	------	----	---------	----	----

IIC 接线图片:

PS 引脚在 IIC 接口状态时候,保持悬空,不需要连接。

模块与 USB-TTL 接线图:

1	USB-TTL	GYTOF	LOM
	VCC	VIN	(红)
	TX	RC	(绿)
	RX	TD	(白)
	GND	GND	(黑)

串口上位机测试软件

接好线,选择对应 COM 端口,选择波特率默认 9600,点击连接,即可工作,模块默认自动发送数据。

左边的配置,选好后,立即生效。

模块 ID 修改后,软件 ADDR 也需要对应修改才能工作。

修改波特率步骤:

- 1. 选配置寄存器 BAUDRATE 新的波特率
- 2. 点击 save 保存
- 3. 重新断电上电模块,即新的波特率工作

模块寸图:

