	Gu		ngineering College, Ludhiaı	na		
		Departmen	t of Civil Engineering			
Program		B.Tech. (CE)	Semester	8th	n	
Subject Code		PECE-136	Subject Title	Design	Design of Steel Structures	
Mid Semester Test (MST) No.		2	Course Coordinator(s)	Sukhw	Sukhwinder Singh	
Max. Marks		24	Time Duration	1 hour	1 hour 30 minutes	
Date of MST		26 April' 2024	Roll Number			
Note	Attempt all questions			•		
Q. No.	Question			COs, RBT level	Marks	
Q1	Why unequal angles with long legs connected are more efficient for tension members?				CO1, L2	2
Q2	An I section beam is fabricated with plates of following dimensions: Flanges: 600 x 20 mm Web: 1600 x 12 mm Classify flanges, web and the section. Also determine the plastic moment capacity of the beam about its both the axis, if the grade of steel is Fe 410.				CO1, L4	2

CO3, L6

CO4, L6

CO5, L4

4

4

Overall length of the building = 42 m

Design a tension member 3.4 m between c/c of intersections using double angle

section and carrying a factored pull of 200 kN. The member is subjected to reversal

A steel floor beam in a building has a span of 6.0 m. It is supported over supports

and carries a uniformly distributed load of 40 kN/m, inclusive of self weight. Design and draw the beam section when the compression flange is restrained

Determine the node forces caused by the wind and gravity loads for the Fink type

Span of Truss = 16 m c/c spacing of truss = 7 m

Rise of Truss = L/5

Q3

Q4

Q5

Self-weigth of purlins = 300 N/m

Eave height = 10 m

Roofing covering, Asbestos sheets = 170 N/m^2

of stresses. Draw a neat section of the member.

throughout the span against lateral bending.

The building is located in outskirts of Ludhiana city.

Q6 A column ISHB 350 @ 661.2 N/m carries an axial compressive factored load of 1900 kN. Design a suitable gusset base. The base rests on M-15 grade of concrete. Also draw neat section of the column and its base.

Course Outcomes (CO)

Students will be able to

purlins etc.

1	Apply knowledge about various properties of steel sections to decide their appropriate use for a given design
	problem
2	Design bolted and welded connections for different type of given loads
3	Design tension and compression members including column bases for given loading
4	Design flexural members including build up sections for given loading
5	Assess design loads for a given roof truss and design its various components viz. rafter, web members,

6 Interpret steel structural drawings							
RBT Classification	Lower Order Thinking Levels (LOTS)			Higher Order Thinking Levels (HOTS)			
RBT Level Number	L1	L2	L3	L4	L5	L6	
RBT Level Name	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	

Guru Nanak Dev Engineering College, Ludhiana Department of Civil Engineering						
Subject Code	PECE-136	Subject Title	Design of Steel Structures			
Mid Semester Test (MST) No.	2	Course Coordinator(s)	Sukhwinder Singh			
Max. Marks	24	Time Duration	1 hour 30 minutes			
Date of MST	26 April' 2024	Roll Number				

Note: Attempt all questions

Note: Attempt an questions						
Q. No.	Question	COs, RBT level	Marks			
Q1	Why unequal angles with long legs connected are more efficient for tension members?	CO1, L2	2			
Q2	An I section beam is fabricated with plates of following dimensions:	CO1, L4	2			
	Flanges: 600 x 20 mm					
	Web: 1600 x 12 mm					
	Classify flanges, web and the section. Also determine the plastic moment					
	capacity of the beam about its both the axis, if the grade of steel is Fe 410.					
Q3	Design a tension member 3.4 m between c/c of intersections using double angle	CO3, L6	4			
	section and carrying a factored pull of 200 kN. The member is subjected to					
	reversal of stresses. Draw a neat section of the member.					
Q4	A steel floor beam in a building has a span of 6.0 m. It is supported over	CO4, L6	4			
	supports and carries a uniformly distributed load of 40 kN/m, inclusive of self					
	weight. Design and draw the beam section when the compression flange is					
	restrained throughout the span against lateral bending.					
Q5	Determine the node forces caused by the wind and gravity loads for the Fink	CO5, L4	4			
	type roof truss for an industrial building for the following data:					
	Overall length of the building = 42 m					
	Span of Truss = 16 m					
	c/c spacing of truss = 7 m					
	Rise of Truss = $L/5$					
	Self-weigth of purlins = 300 N/m					
	Eave height = 10 m					
	Roofing covering, Asbestos sheets = 170 N/m^2					
	The building is located in outskirts of Ludhiana city.					
Q6	A column ISHB 350 @ 661.2 N/m carries an axial compressive factored load	CO3, L6	8			
	of 1900 kN. Design a suitable gusset base. The base rests on M-15 grade of					
	concrete. Also draw neat section of the column and its base.					