Machine Learning for Data Science (CS4786) Lecture 10

Single-link clustering Contd., Spectral Clustering

Course Webpage:

http://www.cs.cornell.edu/Courses/cs4786/2016sp/

SINGLE LINK CLUSTERING

- Initialize n clusters with each point x_t to its own cluster
- Until there are only *K* clusters, do
 - Find closest two clusters and merge them into one cluster
 - Update between cluster distances (called proximity matrix)

SINGLE LINK CLUSTERING DEMO

Redo?

SINGLE LINK OBJECTIVE

Objective for single-link:

$$M_4 = \min_{\mathbf{x}_s, \mathbf{x}_t : c(\mathbf{x}_s) \neq c(\mathbf{x}_t)} \|\mathbf{x}_s - \mathbf{x}_t\|_2^2$$

Single link clustering is optimal for above objective!

SPECTRAL CLUSTERING

Input: Similarity matrix *A*

 $A_{i,j} = A_{j,i} > 0$ indicates similarity between elements x_i and x_j

Example: $A_{i,j} = \exp(-\sigma d(x_i, x_j))$

A is adjacency matrix of a graph

SPECTRAL CLUSTERING ALGORITHM (UNNORMALIZED)

- ① Given matrix A calculate diagonal matrix D s.t. $D_{i,i} = \sum_{j=1}^{n} A_{i,j}$
- ② Calculate the Laplacian matrix L = D A
- 3 Find eigen vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ of L (ascending order of eigenvalues)
- Pick the K eigenvectors with smallest eigenvalues to get $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$
- Use K-means clustering algorithm on y_1, \ldots, y_n

EXAMPLE

GRAPH CLUSTERING

• Fact: For a connected graph, exactly one, the smallest of eigenvalues is 0, corresponding eigenvector is $\mathbf{1} = (1, ..., 1)^{\mathsf{T}}$ Proof: Sum of each row of L is 0 because $D_{i,i} = \sum_{j=1}^{n} A_{i,j}$ and L = D - A

GRAPH CLUSTERING

• Fact: For general graph, number of 0 eigenvalues correspond to number of connected components. The corresponding eigenvectors are all 1's on the nodes of connected components Proof: *L* is block diagonal. Use connected graph result on each component.

GRAPH CLUSTERING

• Fact: For general graph, number of 0 eigenvalues correspond to number of connected components. The corresponding eigenvectors are all 1's on the nodes of connected components Proof: *L* is block diagonal. Use connected graph result on each component.

GRAPH CLUSTERING: CUTS

- Partition nodes so that as few edges are cut (Mincut)
- What has this got to do with the Laplacian matrix?

• Why cut is perhaps not a good measure?

• Why cut is perhaps not a good measure?

- Why cut is perhaps not a good measure?
- Normalized cut: Minimize sum of ratio of number of edges cut per cluster and number of edges within cluster

$$NCUT = \sum_{j} \frac{CUT(C_{j})}{Edges(C_{j})}$$

• Example K = 2

$$CUT(C_1, C_2) \left(\frac{1}{Edges(C_1)} + \frac{1}{Edges(C_2)} \right)$$

• Minimize $CUT(C_1, C_2)$ s.t. $Edges(C_1) = Edges(C_2)$

- Minimize $c^{\mathsf{T}}Lc$ s.t. $c^{\mathsf{T}}Dc = 1$, $c \perp 1$
- Minimizing over cluster assignments is computationally hard instead relax to real valued *c*'s
- Solution: Find smallest eigen vectors of $\tilde{L} = I D^{-1/2}WD^{-1/2}$
- y's given by these eigenvectors of the normalized Laplacian can then be clustered using K-means algorithm

Spectral Clustering Algorithm (Normalized)

- ① Given matrix A calculate diagonal matrix D s.t. $D_{i,i} = \sum_{j=1}^{n} A_{i,j}$
- 2 Calculate the normalized Laplacian matrix $\tilde{L} = I D^{-1/2}AD^{-1/2}$
- 3 Find eigen vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ of \tilde{L} (ascending order of eigenvalues)
- Pick the K eigenvectors with smallest eigenvalues to get $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$
- **5** Use K-means clustering algorithm on y_1, \ldots, y_n

NORMALIZED CUT: ALTERNATE VIEW

- If we perform random walk on graph, its the partition of graph into group of vertices such that the probability of transiting from one group to another is minimized
- Transition matrix: $D^{-1}A$
- Largest eigenvalues and eigenvectors of above matrix correspond to smallest eigenvalues and eigen vectors of $D^{-1}L$
- For *K*-nearest neighbor graph (K-regular), same as normalized Laplacian