# INFO 3605 Fundamentals of LAN Technologies Lecture 13.1 – IPv4 Subnetting

Naresh Seegobin (M.Sc. CompSci, M.Sc. ProjMgmt, CCNA)

naresh.seegobin@sta.uwi.edu

Based on Chapter 4 of Odom, Wendell. *CCENT/CCNA ICND1* 100-105 official cert guide. Indianapolis, IN: Cisco Press, 2016.

### Different networks at home

 You may want to have a guest network for your visitors for Internet access only, but don't want them accessing your local computers.



### Objectives

- Understand the reasons for subnetting.
- Describe the subnetting process.
- Ability to divide a network into subnetworks.

- Host A is a PC, connected to switch SW1 and assigned to VLAN 1. Which of the following are typically assigned an IP address in the same subnet as host A? (Choose two answers.)
  - a. The local router's WAN interface
  - b. The local router's LAN interface
  - c. All other hosts attached to the same switch
  - d. Other hosts attached to the same switch and also in VLAN 1

- Host A is a PC, connected to switch SW1 and assigned to VLAN 1. Which of the following are typically assigned an IP address in the same subnet as host A? (Choose two answers.)
  - a. The local router's WAN interface
  - b. The local router's LAN interface
  - c. All other hosts attached to the same switch
  - d. Other hosts attached to the same switch and also in VLAN 1

- Why does the formula for the number of hosts per subnet  $(2^H 2)$  require the subtraction of two hosts?
  - **a.** To reserve two addresses for redundant default gateways (routers)
  - **b.** To reserve the two addresses required for DHCP operation
  - **c.** To reserve addresses for the subnet ID and default gateway (router)
  - d. To reserve addresses for the subnet broadcast address and subnet ID

- Why does the formula for the number of hosts per subnet  $(2^H 2)$  require the subtraction of two hosts?
  - a. To reserve two addresses for redundant default gateways (routers)
  - b. To reserve the two addresses required for DHCP operation
  - c. To reserve addresses for the subnet ID and default gateway (router)
  - d. To reserve addresses for the subnet broadcast address and subnet ID

- Subnetting defines methods of further subdividing the IPv4 address space into groups that are smaller than a single IP network.
- IP subnetting is a flexible way to take a single Class A, B or C IP network and further subdivide it into smaller groups of IP addresses.
  - subnet is just shorthand for subdivided network.
- Subnetting allows you to use fewer IP addresses.

Example That Uses Five Class B Networks



(naresh.seegobin@sta.uwi.edu)

- A lot of IP addresses are wasted especially if they are paid public IP addresses.
- E.g. the WAN links that use 150.4.x.x and 150.5.x.x, supports 65,534 IP addresses, but the WAN link only needs 2. The rest are wasted.
- By design, LANs do not grow more than a hundred devices. So we do not need all 65,534 IP addresses available to one LAN.

- One group of the 254 addresses that begin with 150.9.1
- One group of the 254 addresses that begin with 150.9.2
- One group of the 254 addresses that begin with 150.9.3
- One group of the 254 addresses that begin with 150.9.4
- One group of the 254 addresses that begin with 150.9.5



- A Class A, B, or C TCP/IP network can be further divided, or subnetted, by a system administrator.
  - Why should this be done?
  - Hosts can be in various locations that need routing
- Why we cannot use an address such as 192.168.1.0 or 192.168.1.255 for a host?
  - The .0 address is the network address
  - The .255 address is the broadcast address, every client will be listening to this address for broadcasts

- Using 192.168.123.1 to 192.168.123.254 for 150 hosts
- Can be divided into 4 subnets
- The number of networks increase but the number of hosts decrease
- The subnet mask 255.255.255.192 gives 4 networks with 62 hosts each
  - Why 62 and not 64?
  - 1 address is for the network the other is the broadcast address for that network

- The first two digits of the last octet become network addresses, so you get the additional networks
  - **00**000000 (0),
  - **01**000000 (64),
  - **10**000000 (128) and
  - **11**000000 (192).
- The last 6 binary digits can be used for host addresses
  - $2^6 = 64$  hosts, actually 62 (1 for network address, 1 for broadcast address)

- So using a subnet mask of 255.255.255.192,
- Your 192.168.123.0 network bbecomes 4 networks:
  - 192.168.123.**0**, -> .00000000
  - 192.168.123.**64**, -> .01000000
  - 192.168.123.**128** and -> .100000000 These are your networks
  - 192.168.123.**192** -> .1100000000
- The corresponding host ranges are:
  - 192.168.123.1-62
  - 192.168.123.65-126
  - 192.168.123.129-190
  - 192.168.123.193-254

### Inverse Mask

Take Subnet Mask and apply XOR to 255.255.255.255

#### **XOR**

- 255. 255. 255 or

#### 128 64 32 16 8 4 2 1

- 0000000.00000000.00000000.00111111 or
- 0. 0. This is your Network Size

- And what is your broadcast address for these networks?
- Network Address + Inverse Mask = Broadcast Address
- Host Range = Network Address + 1 to Broadcast Address -1

| Network                 | Host Range          | <b>Broadcast Address</b> |
|-------------------------|---------------------|--------------------------|
| 192.168.123. <b>0</b>   | 192.168.123.1-62    | 192.168.123. <b>63</b>   |
| 192.168.123. <b>64</b>  | 192.168.123.65-126  | 192.168.123. <b>127</b>  |
| 192.168.123. <b>128</b> | 192.168.123.129-190 | 192.168.123. <b>191</b>  |
| 192.168.123. <b>192</b> | 192.168.123.193-254 | 192.168.123. <b>255</b>  |

### Subnet Example

- Two addresses:
  - 192.168.123.71 and
  - 192.168.123.133.
- If both are using a class C subnet, will they see one another?
- If you use a subnet mask of 255.255.255.192, will they see one another?
- 192.168.123.71 belongs to which network?
- 192.168.123.133 belongs to which network?

### Subnet Formula

- Number of subnets = 2<sup>n</sup> where n is the number of bits borrowed to make the subnet mask
- Number of hosts =  $2^n 2$  where n is the number of bits in your subnet mask

| Binary Mask |          |          |                      | Prefix Length     | Subnet Mask                                                         |
|-------------|----------|----------|----------------------|-------------------|---------------------------------------------------------------------|
| 1111111     | 00000000 | 00000000 | 00000000             | /8                | 255.0.0.0                                                           |
| 11111111    | 10000000 | 00000000 | 0000000              | /9                | 255.128.0.0                                                         |
| 11111111    | 11000000 | 00000000 | 0000000              | /10               | 255.192.0.0                                                         |
| 11111111    | 11100000 | 00000000 | 00000000             | /11               | 255.224.0.0                                                         |
| 11111111    | 11110000 | 00000000 | 00000000             | /12               | 255.240.0.0                                                         |
| 11111111    | 11111000 | 00000000 | 0000000              | /13               | 255.248.0.0                                                         |
| 11111111    | 11111100 | 00000000 | 00000000             | /14               | 255.252.0.0                                                         |
| 11111111    | 11111110 | 00000000 | 00000000             | /15               | 255.254.0.0                                                         |
| 11111111    | 11111111 | 00000000 | 00000000             | /16               | 255.255.0.0                                                         |
| 11111111    | 11111111 | 10000000 | 00000000             | /17               | 255.255.128.0                                                       |
| 11111111    | 11111111 | 11000000 | 00000000             | /18               | 255.255.192.0                                                       |
| 11111111    | 11111111 | 11100000 | 00000000             | /19               | 255.255.224.0                                                       |
| 11111111    | 11111111 | 11110000 | 00000000             | /20               | 255.255.240.0                                                       |
| 11111111    | 11111111 | 11111000 | 00000000             | /21               | 255.255.248.0                                                       |
| 11111111    | 11111111 | 11111100 | 00000000             | /22               | 255.255.252.0                                                       |
| 11111111    | 11111111 | 11111110 | 00000000             | /23               | 255.255.254.0                                                       |
| 11111111    | 11111111 | 11111111 | 00000000             | /24               | 255.255.255.0                                                       |
| 11111111    | 11111111 | 11111111 | 10000000             | /25               | 255.255.255.128                                                     |
| 11111111    | 11111111 | 11111111 | 11000000             | /26               | 255.255.255.192                                                     |
| 11111111    | 11111111 | 11111111 | 11100000             | /27               | 255.255.255.224                                                     |
| 11111111    | 11111111 | 11111111 | 11110000             | /28               | 255.255.255.240                                                     |
| 11111111    | 11111111 | 11111111 | 11111000             | /29               | 255.255.255.248                                                     |
| 11111111    | 11111111 | 11111111 | 11111100             | /30               | 255.255.255.252                                                     |
| 11111111    | 11111111 | 11111111 | 11111110             | /31               | 255.255.255.254                                                     |
| 11111111    | 11111111 | 11111111 | 1111111 <sub>N</sub> | FO 633 Fundamenta | ls o <b>2.515</b> Te <b>2.515</b> og <b>25.5</b> CN <b>25 E</b> ctu |

http://www.cisco.com/web/about/ac123/ac147/archivedoilssutes/lpj\_9-1/ip\_addresses.html

### Class A Subnet

| Network Bits                                     | Subnet Mask      | Bits Borrowed | Subnets | Hosts/Subnet |
|--------------------------------------------------|------------------|---------------|---------|--------------|
| 8                                                | 255.0.0.0        | 0             | 1       | 16777214     |
| 9                                                | 255.128.0.0      | 1             | 2       | 8388606      |
| 10                                               | 255.192.0.0      | 2             | 4       | 4194302      |
| 11                                               | 255.224.0.0      | 3             | 8       | 2097150      |
| 12                                               | 255.240.0.0      | 4             | 16      | 1048574      |
| 13                                               | 255.248.0.0      | 5             | 32      | 524286       |
| 14                                               | 255.252.0.0      | 6             | 64      | 262142       |
| 15                                               | 255.254.0.0      | 7             | 128     | 131070       |
| 16                                               | 255.255.0.0      | 8             | 256     | 65534        |
| 17                                               | 255.255.128.0    | 9             | 512     | 32766        |
| 18                                               | 255.255.192.0    | 10            | 1024    | 16382        |
| 19                                               | 255.255.224.0    | 11            | 2048    | 8190         |
| 20                                               | 255.255.240.0    | 12            | 4096    | 4094         |
| 21                                               | 255.255.248.0    | 13            | 8192    | 2046         |
| 22                                               | 255.255.252.0    | 14            | 16384   | 1022         |
| 23                                               | 255.255.254.0    | 15            | 32768   | 510          |
| 24                                               | 255.255.255.0    | 16            | 65536   | 254          |
| 25                                               | 255.255.255.128  | 17            | 131072  | 126          |
| 26                                               | 255.255.255.192  | 18            | 262144  | 62           |
| 27                                               | 255.255.255.224  | 19            | 524288  | 30           |
| 28                                               | 255.255.255.240  | 20            | 1048576 | 14           |
| N Technologies - ICI                             | 1255.255.255.248 | 21            | 2097152 | 6            |
| mpSci, iVI.Sc. Projiv<br>n@sta.uv <b>30</b> edu) | 255.255.255.252  | 22            | 4194304 | 21           |

http://www.tutorialspoint.com/ipv4/ipv43\_1subpresting.htmgc.

### Class B Subnet

| Network Bits           | Subnet Mask                 | Bits Borrowed | Subnets | Hosts/Subnet |
|------------------------|-----------------------------|---------------|---------|--------------|
| 16                     | 255.255.0.0                 | 0             | 0       | 65534        |
| 17                     | 255.255.128.0               | 1             | 2       | 32766        |
| 18                     | 255.255.192.0               | 2             | 4       | 16382        |
| 19                     | 255.255.224.0               | 3             | 8       | 8190         |
| 20                     | 255.255.240.0               | 4             | 16      | 4094         |
| 21                     | 255.255.248.0               | 5             | 32      | 2046         |
| 22                     | 255.255.252.0               | 6             | 64      | 1022         |
| 23                     | 255.255.254.0               | 7             | 128     | 510          |
| 24                     | 255.255.255.0               | 8             | 256     | 254          |
| 25                     | 255.255.255.128             | 9             | 512     | 126          |
| 26                     | 255.255.255.192             | 10            | 1024    | 62           |
| 27                     | 255.255.255.224             | 11            | 2048    | 30           |
| 28                     | 255.255.255.240             | 12            | 4096    | 14           |
| 29                     | 255.255.255.248             | 13            | 8192    | 6            |
| )5 Fundamentals of LAN | N Tecknologies 2 DNB 2 Lect | ure <b>14</b> | 16384   | 2            |

### Class C Subnet

| Network Bits | Subnet Mask     | Bits Borrowed | Subnets | Hosts/Subnet |
|--------------|-----------------|---------------|---------|--------------|
| 24           | 255.255.255.0   | 0             | 1       | 254          |
| 25           | 255.255.255.128 | 1             | 2       | 126          |
| 26           | 255.255.255.192 | 2             | 4       | 62           |
| 27           | 255.255.255.224 | 3             | 8       | 30           |
| 28           | 255.255.255.240 | 4             | 16      | 14           |
| 29           | 255.255.255.248 | 5             | 32      | 6            |
| 30           | 255.255.255.252 | 6             | 64      | 2            |

### **IP Address Breakdown**

| /24<br>8+8+8<br>255.255.255.0<br>256 Hosts | /25<br>8+8+8+1<br>255.255.255.128<br>128 Hosts | /26<br>8+8+8+2<br>255.255.255.192<br>64 Hosts | 8+8+8+3<br>255.255.255.224<br>32 Hosts | /28<br>8+8+8+4<br>255.255.255.240<br>16 Hosts | /29<br>8+8+8+5<br>255.255.255.248<br>8 Hosts | /30<br>8+8+8+6<br>255.255.255.252<br>4 Hosts |
|--------------------------------------------|------------------------------------------------|-----------------------------------------------|----------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------|
|                                            |                                                |                                               |                                        | 0.45                                          | 0-7                                          | 0-3<br>4-7                                   |
|                                            |                                                |                                               |                                        | 0-15                                          | 8-15                                         | 8-11<br>12-15                                |
|                                            |                                                |                                               |                                        |                                               | 16-23                                        | 16-19                                        |
|                                            |                                                |                                               |                                        | 16-31                                         | 24-31                                        | 20-23<br>24-27                               |
|                                            |                                                | 0-63                                          |                                        |                                               |                                              | 28-31<br>32-35                               |
|                                            |                                                |                                               |                                        | 32-47                                         | 32-39                                        | 36-39                                        |
|                                            |                                                |                                               |                                        |                                               | 40-47                                        | 40-43<br>44-47                               |
|                                            |                                                |                                               |                                        |                                               | 48-55                                        | 48-51<br>52-55                               |
|                                            |                                                |                                               |                                        | 48-63                                         | 56-63                                        | 56-59                                        |
|                                            | 0-127                                          |                                               |                                        |                                               | 64-71                                        | 60-63<br>64-67                               |
|                                            |                                                |                                               |                                        | 64-79                                         |                                              | 68-71<br>72-75                               |
|                                            |                                                |                                               |                                        |                                               | 72-79                                        | 76-79                                        |
|                                            |                                                |                                               |                                        | 80-95                                         | 80-87                                        | 80-83<br>84-87                               |
|                                            |                                                | INFO                                          | 3605 Fundamentals of I                 | ANI Tankanlagian ICND                         | <b>88-95</b>                                 | 88-91<br>92-95                               |
| 18/09/202                                  | 2                                              | <b>64-127</b> 13.1                            | larezii seegobiii (ivi.sc.             | Louinbaci, ivi.ac. Projivigi                  | nt, CCNA)                                    | 96-99                                        |
|                                            |                                                |                                               | (naresh.seego                          | bin@sta.uwi.edu)                              | 90-103                                       | 100-103                                      |

### **IP Address Breakdown**

| /24<br>8+8+8<br>255.255.255.0<br>256 Hosts | /25<br>8+8+8+1<br>255.255.255.128<br>128 Hosts | /26<br>8+8+8+2<br>255.255.255.192<br>64 Hosts | /27<br>8+8+8+3<br>255.255.255.224<br>32 Hosts | /28<br>8+8+8+4<br>255.255.255.240<br>16 Hosts | /29<br>8+8+8+5<br>255.255.255.248<br>8 Hosts | /30<br>8+8+8+6<br>255.255.255.252<br>4 Hosts |                    |
|--------------------------------------------|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------|
|                                            |                                                |                                               |                                               | 80-95                                         | 80-87                                        | 80-83<br>84-87                               |                    |
|                                            |                                                | 64-127                                        |                                               | 60-95                                         | 88-95                                        | 88-91<br>92-95                               |                    |
|                                            |                                                | 04-127                                        |                                               | 06 444                                        | 96-103                                       | 96-99<br>100-103                             |                    |
|                                            |                                                |                                               |                                               | 96-111                                        | 104-111                                      | 104-107<br>108-111                           |                    |
|                                            |                                                |                                               |                                               |                                               | 112-119                                      | 112-115<br>116-119                           |                    |
|                                            |                                                |                                               |                                               | 112-127                                       | 120-127                                      | 120-123<br>124-127                           |                    |
| 0-255                                      |                                                |                                               |                                               |                                               | 128-135                                      | 128-131<br>132-135                           |                    |
|                                            |                                                |                                               |                                               | 128-143                                       | 136-143                                      | 136-139<br>140-143                           |                    |
|                                            |                                                | 128-191                                       |                                               |                                               | 144-151                                      | 144-147<br>148-151                           |                    |
|                                            |                                                |                                               |                                               |                                               | 144-159                                      | 152-159                                      | 152-155<br>156-159 |
|                                            |                                                |                                               | -191                                          |                                               | 16-167                                       | 160-163<br>164-167                           |                    |
| 40/00/202                                  |                                                | INFO                                          | 3605 Fundamentals of L                        | 160-175 AN Technologies - ICND                | 1 Lectu <b>168-175</b>                       | 168-171<br>172-175                           |                    |
| 18/09/202                                  |                                                | 13.1 ľ                                        |                                               | CompSci_M_Sc_ProjMgr<br>bin@sta.uwi.edu)      | 176 192                                      | 176-179                                      |                    |

### **IP Address Breakdown**

| 8+8+8<br>255.255.255.0<br>256 Hosts | /25<br>8+8+8+1<br>255.255.255.128<br>128 Hosts | /26<br>8+8+8+2<br>255.255.255.192<br>64 Hosts | 127<br>8+8+8+3<br>255.255.255.224<br>32 Hosts | /28<br>8+8+8+4<br>255.255.255.240<br>16 Hosts | /29<br>8+8+8+5<br>255.255.255.248<br>8 Hosts | /30<br>8+8+8+6<br>255.255.255.252<br>4 Hosts |         |                    |
|-------------------------------------|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------|---------|--------------------|
|                                     |                                                |                                               |                                               | 100-170                                       | 168-175                                      | 168-171<br>172-175                           |         |                    |
|                                     |                                                |                                               |                                               | 470.404                                       | 176-183                                      | 176-179<br>180-183                           |         |                    |
|                                     |                                                |                                               |                                               | 176-191                                       | 184-191                                      | 184-187<br>188-191                           |         |                    |
|                                     | 128-255                                        |                                               |                                               |                                               | 192-199                                      | 192-195<br>196-199                           |         |                    |
|                                     |                                                |                                               |                                               | 192-207                                       | 200-207                                      | 200-203                                      |         |                    |
|                                     |                                                |                                               |                                               |                                               | 208-215                                      | 204-207<br>208-211                           |         |                    |
|                                     |                                                |                                               |                                               |                                               |                                              | 208-223                                      | 216-223 | 212-215<br>216-219 |
|                                     |                                                | 192-255                                       |                                               |                                               |                                              | 220-223<br>224-227                           |         |                    |
|                                     |                                                |                                               |                                               | 224-239                                       | 224-231                                      | 228-231<br>232-235                           |         |                    |
|                                     |                                                |                                               |                                               |                                               | 232-239                                      | 236-239                                      |         |                    |
|                                     |                                                |                                               |                                               | 040.055                                       | 240-247                                      | 240-243<br>244-247                           |         |                    |
|                                     |                                                |                                               |                                               | 240-255                                       | 248-255                                      | 248-251<br>252-255                           |         |                    |

### What do you know now?

- A Class B network needs to be subnetted such that it supports 100 subnets and 100 hosts/subnet. Which of the following answers list a workable combination for the number of network, subnet, and host bits? (Choose two answers.)
  - a. Network = 16, subnet = 7, host = 7
  - b. Network = 16, subnet = 8, host = 8
  - c. Network = 16, subnet = 9, host = 7
  - d. Network = 8, subnet = 7, host = 17

### What do you know now?

- A Class B network needs to be subnetted such that it supports 100 subnets and 100 hosts/subnet. Which of the following answers list a workable combination for the number of network, subnet, and host bits? (Choose two answers.)
  - a. Network = 16, subnet = 7, host = 7
  - b. Network = 16, subnet = 8, host = 8
  - c. Network = 16, subnet = 9, host = 7
  - d. Network = 8, subnet = 7, host = 17

### Summary

- Key facts about subnets.
- Rules about what places in a network topology need a subnet.
- Location of the network, subnet and host parts of an IPv4 address.

## End of Lecture 13.1, Further Reading, References

- Odom, Wendell. *CCENT/CCNA ICND1 100-105 official cert guide*. Indianapolis, IN: Cisco Press, 2016.
- http://www.networkworld.com/article/2260776/lan-wan/chapter-1-network-overview.html
- http://support.microsoft.com/kb/164015
- https://www.apnic.net/ data/assets/pdf file/0020/8147/501302.pd
   f
- http://www.cisco.com/web/about/ac123/ac147/archived\_issues/ipj 9-1/ip\_addresses.html
- http://www.tutorialspoint.com/ipv4/ipv4\_subnetting.htm