(三) 数学归纳法

魏恒峰

hfwei@nju.edu.cn

2021年03月25日

2/29

Theorem (第一数学归纳法 (The First Mathematical Induction))

令 P(n) 表示关于自然数 n 的某个性质。如果

- (i) P(0) 成立;
- (ii) 对任意自然数 n, 如果 P(n) 成立,则 P(n+1) 成立。那么, P(n) 对所有自然数 n 都成立。

Theorem (第一数学归纳法 (The First Mathematical Induction))

令 P(n) 表示关于自然数 n 的某个性质。如果

- (i) P(0) 成立;
- (ii) 对任意自然数 n, 如果 P(n) 成立,则 P(n+1) 成立。那么, P(n) 对所有自然数 n 都成立。

$$\frac{P(0) \qquad \forall n \in \mathbb{N}. \left(P(n) \to P(n+1) \right)}{\forall n \in \mathbb{N}. P(n)} \quad (第一数学归纳法)$$

Theorem (第一数学归纳法 (The First Mathematical Induction))

令 P(n) 表示关于自然数 n 的某个性质。如果

- (i) P(0) 成立;
- (ii) 对任意自然数 n, 如果 P(n) 成立,则 P(n+1) 成立。那么, P(n) 对所有自然数 n 都成立。

$$\frac{P(0) \qquad \forall n \in \mathbb{N}. \left(P(n) \to P(n+1)\right)}{\forall n \in \mathbb{N}. \ P(n)} \quad (第一数学归纳法)$$

$$(P(0) \land \forall n \in \mathbb{N}. (P(n) \to P(n+1))) \to \forall n \in \mathbb{N}. P(n).$$

Theorem (第二数学归纳法 (The Second Mathematical Induction))

- 令 Q(n) 表示关于自然数 n 的某个性质。如果
 - (i) Q(0) 成立;
- (ii) 对任意自然数 n, 如果 Q(1), Q(2), ..., Q(n) 都成立,则 Q(n+1) 成立。
- 那么, Q(n) 对所有自然数 n 都成立。

Theorem (第二数学归纳法 (The Second Mathematical Induction))

令 Q(n) 表示关于自然数 n 的某个性质。如果

- (i) Q(0) 成立;
- (ii) 对任意自然数 n, 如果 Q(1), Q(2), ..., Q(n) 都成立,则 Q(n+1) 成立。

那么, Q(n) 对所有自然数 n 都成立。

$$\frac{Q(0) \ \forall n \in \mathbb{N}. \left(\left(Q(1) \land \dots \land Q(n) \right) \to Q(n+1) \right)}{\forall n \in \mathbb{N}. \ Q(n)}$$
 (第二数学归纳法)

◆□▶ ◆圖▶ ◆夏▶ ■ からで

Theorem (第二数学归纳法 (The Second Mathematical Induction))

令 Q(n) 表示关于自然数 n 的某个性质。如果

- (i) Q(0) 成立;
- (ii) 对任意自然数 n, 如果 Q(1), Q(2), ..., Q(n) 都成立,则 Q(n+1) 成立。

那么, Q(n) 对所有自然数 n 都成立。

$$\frac{Q(0) \ \forall n \in \mathbb{N}. \left(\left(Q(1) \land \dots \land Q(n) \right) \to Q(n+1) \right)}{\forall n \in \mathbb{N}. \ Q(n)}$$
 (第二数学归纳法)

$$\left(Q(0) \land \forall n \in \mathbb{N}. \left(\left(Q(1) \land \dots \land Q(n)\right) \to Q(n+1)\right)\right) \to \forall n \in \mathbb{N}. \ Q(n).$$

1 ト ← 個 ト ← 重 ト ← 重 ・ の Q (や)

Theorem (数学归纳法)

第一数学归纳法与第二数学归纳法等价。

Theorem (数学归纳法)

第一数学归纳法与第二数学归纳法等价。

Q: 第二数学归纳法也被称为" $\mathbf{\ddot{q}}$ " (Strong) 数学归纳法, 它强在何处?

Lemma

第二数学归纳法蕴含第一数学归纳法。

Lemma

第一数学归纳法蕴含第二数学归纳法。

数学归纳法为何成立?

Peano 公理体系刻画了自然数的递归结构

Definition Peano Axioms

(1)

Definition (良序原理 (The Well-Ordering Principle))

自然数集的任意非空子集都有一个最小元。

Theorem

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

knuth draw lines

The Tower of Hanoi

所有马的颜色都相同。

F(n) 是偶数, 当且仅当 F(n+3) 是偶数。

算术基本定理

Prove that every integer greater than 2 can be written as product of primes.

算术基本定理

Prove that every integer greater than 2 can be written as product of primes.

Prove that every integer greater than 12 can be made as sum of 4 and 5s.

请证明, 只用 4 分与 5 分邮票, 就可以组成 12 分及以上的每种邮资。

堆盒子游戏

现有 n 个盒子堆在一起。你可以移动这些盒子,每次移动只能将一堆盒子分成不为空的两堆盒子,最后得到 n 堆盒子,即每堆只有一个盒子时,游戏结束。

每次移动盒子时, 如果将高度为 a+b 的盒子堆拆分成高度为 a 和 b 的 两堆, 玩家可以得 ab 分。

玩家的总得分是每次移动盒子得分的总和。请问,如何才能得到最高分?

+fig

Lemma

任何一种平铺 n 个盒子的方法, 得分都是 $\frac{n(n-1)}{2}$ 。

只用以下三种图示拼出 $2 \times n$ 的形状, 有几种不同的拼法?

$$T(n) = ?T(n-1) + ??T(n-2) + ...$$

There is an island upon which a tribe resides.

There is an island upon which a tribe resides. The tribe consists of 1000 people, with various eye colours.

There is an island upon which a tribe resides. The tribe consists of 1000 people, with various eye colours. Yet, their religion forbids them to know their own eye color, or even to discuss the topic;

There is an island upon which a tribe resides. The tribe consists of 1000 people, with various eye colours. Yet, their religion forbids them to know their own eye color, or even to discuss the topic; thus, each resident can (and does) see the eye colors of all other residents, but has no way of discovering his or her own (there are no reflective surfaces).

There is an island upon which a tribe resides. The tribe consists of 1000 people, with various eye colours. Yet, their religion forbids them to know their own eye color, or even to discuss the topic; thus, each resident can (and does) see the eye colors of all other residents, but has no way of discovering his or her own (there are no reflective surfaces). If a tribesperson does discover his or her own eye color, then their religion compels them to commit ritual suicide at noon the following day in the village square for all to witness.

There is an island upon which a tribe resides. The tribe consists of 1000 people, with various eye colours. Yet, their religion forbids them to know their own eye color, or even to discuss the topic; thus, each resident can (and does) see the eye colors of all other residents, but has no way of discovering his or her own (there are no reflective surfaces). If a tribesperson does discover his or her own eye color, then their religion compels them to commit ritual suicide at noon the following day in the village square for all to witness. All the tribespeople are highly logical and devout, and they all know that each other is also highly logical and devout (and they all know that they all know that each other is highly logical and devout, and so forth).

Of the 1000 islanders, it turns out that **100 of them have blue eyes** and **900 of them have brown eyes**, although the islanders are not initially aware of these statistics (each of them can of course only see 999 of the 1000 tribespeople).

Of the 1000 islanders, it turns out that 100 of them have blue eyes and 900 of them have brown eyes, although the islanders are not initially aware of these statistics (each of them can of course only see 999 of the 1000 tribespeople).

One day, a **blue-eyed foreigner** visits to the island and wins the complete trust of the tribe.

Of the 1000 islanders, it turns out that **100 of them have blue eyes** and **900 of them have brown eyes**, although the islanders are not initially aware of these statistics (each of them can of course only see 999 of the 1000 tribespeople).

One day, a **blue-eyed foreigner** visits to the island and wins the complete trust of the tribe.

One evening, he addresses the entire tribe to thank them for their hospitality.

Of the 1000 islanders, it turns out that 100 of them have blue eyes and 900 of them have brown eyes, although the islanders are not initially aware of these statistics (each of them can of course only see 999 of the 1000 tribespeople).

One day, a **blue-eyed foreigner** visits to the island and wins the complete trust of the tribe.

One evening, he addresses the entire tribe to thank them for their hospitality.

However, not knowing the customs, the foreigner makes the mistake of mentioning eye color in his address, remarking "how unusual it is to see another blue-eyed person like myself in this region of the world".

Of the 1000 islanders, it turns out that 100 of them have blue eyes and 900 of them have brown eyes, although the islanders are not initially aware of these statistics (each of them can of course only see 999 of the 1000 tribespeople).

One day, a blue-eyed foreigner visits to the island and wins the complete trust of the tribe.

One evening, he addresses the entire tribe to thank them for their hospitality.

However, not knowing the customs, the foreigner makes the mistake of mentioning eye color in his address, remarking "how unusual it is to see another blue-eyed person like myself in this region of the world".

What effect, if anything, does this faux pas have on the tribe?

The foreigner has no effect,

The foreigner has no effect, because his comments do not tell the tribe anything that they do not already know

The foreigner has no effect, because his comments do not tell the tribe anything that they do not already know

(everyone in the tribe can already see that there are several blue-eyed people in their tribe). 100 days after the address, all the blue eyed people commit suicide.

100 days after the address, all the blue eyed people commit suicide.

Theorem (The Blue-eyed Islanders Puzzle)

Suppose that the tribe had n > 0 blue-eyed people.

Then n days after the traveller's address, all n blue-eyed people commit suicide.

基础步骤: n = 1.

归纳假设: 假设命题对 n 个蓝眼人的情况也成立。

基础步骤: n = 1.

这个唯一的蓝眼人的内心独白: 你直接念我身份证吧

归纳假设: 假设命题对 n 个蓝眼人的情况也成立。

基础步骤: n = 1.

这个唯一的蓝眼人的内心独白: 你直接念我身份证吧

归纳假设: 假设命题对 n 个蓝眼人的情况也成立。

基础步骤: n = 1.

这个唯一的蓝眼人的内心独白: 你直接念我身份证吧

归纳假设: 假设命题对 n 个蓝眼人的情况也成立。

Thank You!

Office 926 hfwei@nju.edu.cn