T320 - Introdução ao Aprendizado de Máquina II: *Classificação (Parte III)*

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

- Anteriormente, aprendemos que a *classificação* pode ser feita usando-se uma *função discriminante*, que nada mais é do que um *polinômio*, que tem sua saída passada através de outra função chamada de *função de limiar*.
- Como na regressão linear, o problema da classificação está em encontrar os pesos da função discriminante de tal forma que as classes sejam separadas da melhor forma possível.
- Vimos que a função de limiar mais simples é a de *limiar rígido*, porém, ela apresenta alguns problemas como não poder ser utilizada para encontrar uma *solução em forma fechada* ou com *gradiente descendente* e não nos dar a *confiança de um resultado* de classificação.
- Aprendemos também, uma forma intuitiva e iterativa de encontrar os pesos da função discriminante quando usamos o limiar rígido.
- Na sequência, introduziremos outra função de limiar, chamada de *função logística*, com a qual é possível se encontrar uma solução eficiente com o *gradiente descendente* e termos o *grau de confiança* de uma classificação.

Classificação com função de limiar logístico

- Como discutimos anteriormente, a *função hipótese*, $h_a(x) = f(g(x))$, com *limiar de decisão rígido* é descontínua em g(x) = 0 e tem derivada igual a zero para todos os outros valores de g(x).
- Além disso, o *classificador* sempre faz *previsões* completamente confiantes das classes (i.e., 0 ou 1), mesmo para exemplos muito próximos da *fronteira de decisão*.
- Em muitas situações, nós precisamos de previsões mais graduadas, que indiquem incertezas quanto à classificação.
- Todos esses problemas podem ser resolvidos com a *suavização* da *função de limiar rígido* através de sua aproximação por uma função que seja contínua, diferenciável e assuma valores reais dentro do intervalo de 0 a 1.

Classificação com função de limiar logístico

• A *função logística* (ou *sigmóide*), mostrada na figura ao lado e definida como

$$Logistic(z) = \frac{1}{1 + e^{-z}} \in [0, 1],$$

apresenta tais propriedades matemáticas.

• Utilizando a *função logística* como *função de limiar*, temos

$$h_a(x) = Logistic(g(x)) = \frac{1}{1 + e^{-g(x)}} \in [0, 1].$$

- g(x) pode ser um *hiperplano*, um *polinômio*, etc.
- A saída será um número real entre 0 e 1, o qual pode ser interpretado como uma **probabilidade** de um dado exemplo pertencer à classe C_2 (ou seja, à **classe positiva**).
- A nova *função hipótese*, $h_a(x)$, forma uma *fronteira de decisão suave*, a qual confere a probabilidade de 0.5 para exemplos em cima da *fronteira de decisão* e se aproxima de 0 ou 1 conforme a posição do exemplo se distancia da fronteira.

A função logística realiza um mapeamento $\mathbb{R} \to [0,1]$.

Quanto mais longe da *fronteira de decisão*, mais próximo o valor de saída da *função hipótese* será de 0 ou de 1 e, portanto, mais certeza teremos sobre uma classificação.

Em resumo, quanto mais longe, maior o valor de g(x).

Regressão logística

- Esse classificador com função de *limiar logístico* é conhecido como *regressor logístico*.
- O *regressor logístico* estima a *probabilidade* de um exemplo pertencer a uma classe específica.
 - Por exemplo, qual é a probabilidade de uma dado email ser um spam?
- O regressor logístico é um algoritmo usado para classificação binária, mas precisamos quantizar sua saída.
- Ele é ótimo para situações em que precisamos classificar entre duas classes, negativa (C_1) e positiva (C_2) .
- Normalmente, se quantiza a saída da *função hipótese*, $h_{a}(x)$, em dois valores, 0 ou 1.
- Se a probabilidade estimada para um exemplo for igual ou maior que 50%, o classificador prediz que o exemplo pertence à classe positiva, rotulada como 1, ou então prediz que não pertence, ou seja, pertence à classe negativa, rotulada como 0.
- Ou seja, a saída *quantizada* do *regressor logístico* é dada por

Classe =
$$\hat{y} = \begin{cases} 0 \text{ (classe } C_1 - \text{Negativa), se } h_a(x) < 0.5 \\ 1 \text{ (classe } C_2 - \text{Positiva), se } h_a(x) \ge 0.5 \end{cases}$$

Regressão logística

- Note que Logistic(z) < 0.5 quando z < 0 e $Logistic(z) \ge 0.5$ quando $z \ge 0$, portanto, o modelo de **regressão logística** prediz a classe positiva, C_2 , (i.e., $\hat{y} = 1$) se $g(x) \ge 0$ e C_1 (i.e., $\hat{y} = 0$) se g(x) < 0.
- A *regressão logística* funciona usando uma *combinação* (linear ou não linear) dos *atributos*, para que várias fontes de informação (i.e., atributos) possam ditar a saída do modelo.
- Os parâmetros do modelo são os pesos associados aos vários atributos e representam a importância relativa de cada atributo para o resultado.
- Mesmo sendo uma técnica bastante simples, a regressão logística é muito utilizada em várias aplicações do mundo real em áreas como medicina, marketing, análise de crédito, saúde pública entre outras.
- Além disto, toda a teoria por trás da *regressão logística* foi a base para a criação das primeiras *redes neurais*.

Exemplos: classificar críticas de filmes como positivas ou negativas, probabilidade de um paciente desenvolver um doença, detecção de spam, classificar transações como fraudulentas ou não, etc.

Propriedades da regressão logística

- Os valores de saída da *função hipótese*, $h_a(x)$, ficam restritos ao intervalo $0 \le h_a(x) \le 1$.
- A saída de $h_a(x)$ representa a **probabilidade** do vetor de atributos x pertencer à classe positiva, C_2 , para qual a saída quantizada desejada é y=1.
- Ou seja, $h_a(x)$ dá a probabilidade condicional da *classe positiva*, C_2 , i.e., $h_a(x) = P(C_2 \mid x; a)$.
- Assim, consequentemente, $(1 h_a(x)) = P(C_1 \mid x; a)$ é a probabilidade condicional da classe negativa, C_1 .
- A *fronteira de decisão* é determinada quando há uma *indecisão* entre as classes, ou seja, quando $P(C_1 \mid x; a) = P(C_2 \mid x; a)$, que ocorre quando $P(C_2 \mid x; a) = h_a(x) = 0.5$.
- Observando a figura da *função logística*, nós percebemos que Logistic(z) = 0.5 quando z = 0.
- Desta forma, a *fronteira de decisão* é caracterizada por

$$g(\mathbf{x})=0,$$

onde g(x) pode ser uma reta, um plano, um círculo, uma hipérbole, etc.

Função de erro

- Para treinarmos um *regressor logístico* e encontrar os *pesos* da *função hipótese*, nós precisamos, assim como fizemos com a *regressão linear*, definir uma *função de erro*.
- Porém, adotar o *erro quadrático médio* como *função de erro* não é uma boa escolha para a *adaptação dos pesos* no caso da *regressão logística* como veremos a seguir.
- A *função de erro* utilizando o *erro quadrático médio* é dada por

$$J_e(a) = \frac{1}{N} \sum_{i=1}^{N} (y(i) - h_a(x))^2 = \frac{1}{N} \sum_{i=1}^{N} (y(i) - Logistic(g(x)))^2.$$

- Como Logistic(.) é uma função $n{\tilde{a}o-linear}, J_e(a)$ não será, consequentemente, uma função convexa, de forma que a superfície de erro poderá apresentar vários mínimos locais que vão dificultar o aprendizado (e.g., o algoritmo pode ficar preso em um mínimo local).
- Ideia: encontrar uma função de erro que tenha superfície de erro resultante convexa.
- Uma proposta *intuitiva* para a *função de erro* para cada exemplo de entrada é dada por

$$Erro(h_a(x(i)); y(i)) = \begin{cases} -\log(h_a(x(i))), & \text{se } y(i) = 1\\ -\log(1 - h_a(x(i))), & \text{se } y(i) = 0 \end{cases}$$

Veremos a seguir o motivo desta escolha.

Função de erro

- As figuras ao lado mostram as duas situações possíveis para a função de erro.
- Como podemos observar, a penalização aplicada a cada saída reflete o erro de classificação.

- O uso dessa *função de erro* faz sentido pois:
 - O valor de $-\log(z)$ se torna muito grande quando z se aproxima de 0, então o erro será grande se o classificador estimar uma probabilidade próxima a 0 para um exemplo positivo (i.e., pertencente à classe C_2)
 - O valor de $-\log(1-z)$ será muito grande se o classificador estimar uma probabilidade próxima de 1 para um exemplo negativo (i.e., pertencente à classe C_1).
 - Por outro lado, $-\log(z)$ se torna próximo de 0 quando z se aproxima de 1, portanto, o erro será próximo de 0 se a probabilidade estimada for próxima de 1 para um exemplo positivo.
 - O valor $-\log(1-z)$ se torna próximo de 0 quando z se aproxima de 0, portanto, o erro será próximo de 0 para um exemplo negativo.

Função de erro

 Nós podemos reduzir a definição da função de erro para cada exemplo a uma expressão única, dada por

$$Erro\left(h_{a}\big(x(i)\big);y(i)\right) = \underbrace{-y\log(h_{a}\big(x(i)\big))}_{\text{S\'o exerce influência no erro se }y(i)=1} \underbrace{-(1-y(i))\log(1-h_{a}\big(x(i)\big))}_{\text{S\'o exerce influência no erro se }y(i)=1}.$$

• Com isto, podemos definir a seguinte função de erro médio:

$$J_{e}(\mathbf{a}) = -\frac{1}{N} \sum_{i=0}^{N-1} y(i) \log \left(h_{\mathbf{a}}(\mathbf{x}(i)) \right) + \left(1 - y(i) \right) \log \left(1 - h_{\mathbf{a}}(\mathbf{x}(i)) \right)$$

$$= -\frac{1}{N} \sum_{i=0}^{N-1} y(i) \log(P(C_{2} \mid \mathbf{x}(i); \mathbf{a})) + \left(1 - y(i) \right) \log(P(C_{1} \mid \mathbf{x}(i); \mathbf{a})).$$

- A má notícia é que não existe uma equação de forma fechada para encontrar os pesos que minimizem essa função de erro (ou seja, não há um equivalente da equação normal).
- A boa notícia é que essa *função de erro* é *convexa* e portanto, é garantido que o algoritmo do *gradiente descendente* encontre o mínimo global (dado que a *taxa de aprendizagem* não seja muito grande e você espere tempo suficiente).

Processo de treinamento

Exemplo: logistic regression with gradient descent.ipynb

- Semelhante ao que fizemos com a *regressão linear*, usamos o algoritmo do gradiente descendente para encontrar os pesos que minimizam a função de erro médio.
- A atualização iterativa dos pesos é dada por

$$a = a - \alpha \frac{\partial J_e(a)}{\partial a}.$$

• O vetor gradiente da função de erro médio é dado por N-1

$$\frac{\partial J_e(\boldsymbol{a})}{\partial \boldsymbol{a}} = -\frac{1}{N} \sum_{i=0}^{N-1} \left[y(i) - h_a(\boldsymbol{x}(i)) \right] \boldsymbol{x}(i)^T = -\frac{1}{N} \boldsymbol{X}^T (\boldsymbol{y} - \widehat{\boldsymbol{y}}). \quad \text{Forma matricial:} \\ \frac{\partial J_e(\boldsymbol{a})}{\partial \boldsymbol{a}} = -\frac{1}{N} \sum_{i=0}^{N-1} \left[y(i) - h_a(\boldsymbol{x}(i)) \right] \boldsymbol{x}(i)^T = -\frac{1}{N} \boldsymbol{X}^T (\boldsymbol{y} - \widehat{\boldsymbol{y}}). \quad \text{Forma matricial:} \\ \frac{\partial J_e(\boldsymbol{a})}{\partial \boldsymbol{a}} = -\frac{1}{N} \sum_{i=0}^{N-1} \left[y(i) - h_a(\boldsymbol{x}(i)) \right] \boldsymbol{x}(i)^T = -\frac{1}{N} \boldsymbol{X}^T (\boldsymbol{y} - \widehat{\boldsymbol{y}}). \quad \text{Forma matricial:} \\ \boldsymbol{a} \in \widehat{\boldsymbol{y}} \in \mathbb{R}^{N \times K + 1}, \boldsymbol{y} \in \mathbb{R}^{N \times K + 1}, \boldsymbol{$$

- Percebam que o *vetor gradiente* da *função de erro médio* para a *regressão logística* é similar àquele obtido para a *regressão linear* com a função de *erro* quadrático médio.
- Agora, de posse do vetor gradiente, podemos usá-lo no algoritmo do gradiente descendente (nas versões em batelada, estocástico ou mini-batch).

Aqui consideramos g(x)como sendo a equação de um *hiperplano*: g(x) = $\sum_{k=0}^{K} a_k x_k$, mas o resultado é facilmente estendido para polinômios.

Observações

- Como vimos, a *função discriminante*, g(x), pode também assumir a forma de um *polinômio* e, muitas vezes, nós não sabemos qual a melhor ordem para este polinômio.
- Assim, como nós discutimos no caso da regressão linear, modelos de regressão logística também estão sujeitos à ocorrência de sobreajuste e subajuste.
 - Na primeira figura, a falta de flexibilidade da reta usada faz com que o erro de classificação seja alto.
 - Na última figura, a flexibilidade excessiva do modelo (explorando um polinômio de ordem elevada) dá origem a contorções na fronteira de decisão na tentativa de minimizar o erro de classificação junto aos dados de treinamento. Porém, o modelo ficou mais susceptível a erros de classificação para novos dados, ou seja, não irá generalizar bem.
 - Já a figura do meio mostra o que seria uma boa *hipótese de classificação*.
- Por isso, *técnicas de regularização* (e.g., LASSO, Ridge, Elastic-Net, Early-stop) também podem ser empregadas em seu treinamento, assim como *validação cruzada*.

Tarefas

- Quiz: "T320 Quiz Classificação (Parte III)" que se encontra no MS Teams.
- Exercício Prático: Laboratório #3.
 - Pode ser baixado do MS Teams ou do GitHub.
 - Pode ser respondido através do link acima (na nuvem) ou localmente.
 - Instruções para resolução e entrega dos laboratórios.
 - Atividades podem ser feitas em grupo, mas as entregas devem ser individuais.

Obrigado!

- Aprendemos outra função de limiar, chamada de função logística, com a qual é possível
 - encontrar uma solução eficiente para o problema da classificação binária com o gradiente descendente.
 - termos o grau de confiança de uma classificação, ou seja, a probabilidade de um exemplo de entrada pertencer a uma das duas classes (Positiva ou Negativa).
- Vimos também que a *função discriminate*, g(x), pode ser a equação de um *polinômio*, incluindo a equação do *hiperplano*.
- O vetor gradiente da função de erro médio vai variar dependendo da função discriminate adotada.

• O *vetor gradiente* da *função de erro médio* quando $g(x)=a_0+a_1x_1+a_2x_2$ (equação de uma reta) é dado por

$$\frac{\partial J_e(\boldsymbol{a})}{\partial \boldsymbol{a}} = -\frac{1}{N} \sum_{i=0}^{N-1} [y(i) - h_a(\boldsymbol{x}(i))] \boldsymbol{x}(i)^T = -\frac{1}{N} \boldsymbol{X}^T (\boldsymbol{y} - \widehat{\boldsymbol{y}}),$$

onde $X = [x_0, x_1, x_2] \in \mathbb{R}^{N \times K + 1}$, $x_k \in \mathbb{R}^{N \times 1} \ \forall k \in y \in \widehat{y} \in \mathbb{R}^{N \times 1}$.

• O vetor gradiente da função de erro médio quando $g(x) = a_0 + x_1^2 + x_2^2$ (equação de um círculo) é dado por

$$\frac{\partial J_e(\boldsymbol{a})}{\partial \boldsymbol{a}} = -\frac{1}{N} \sum_{i=0}^{N-1} [y(i) - h_a(\boldsymbol{x}(i))] \boldsymbol{x}(i)^T = -\frac{1}{N} \boldsymbol{X}^T (\boldsymbol{y} - \widehat{\boldsymbol{y}}),$$

onde $\boldsymbol{X} = [\boldsymbol{x}_0, \boldsymbol{x}_1^2, \boldsymbol{x}_2^2] \in \mathbb{R}^{\mathbb{N} \times \mathbb{K} + 1}$, $\boldsymbol{x}_0, \boldsymbol{x}_1^2$, e $\boldsymbol{x}_2^2 \in \mathbb{R}^{\mathbb{N} \times 1}$ e \boldsymbol{y} e $\widehat{\boldsymbol{y}}$ $\in \mathbb{R}^{\mathbb{N} \times 1}$.

• O vetor gradiente da função de erro médio quando $g(x) = a_0 + a_1x_1 * x_2$ (equação de uma hipérbole retangular) é dado por

$$\frac{\partial J_e(\boldsymbol{a})}{\partial \boldsymbol{a}} = -\frac{1}{N} \sum_{i=0}^{N-1} [y(i) - h_a(\boldsymbol{x}(i))] \boldsymbol{x}(i)^T = -\frac{1}{N} \boldsymbol{X}^T (\boldsymbol{y} - \widehat{\boldsymbol{y}}),$$

onde $X = [x_0, x_1 \odot x_2] \in \mathbb{R}^{N \times K + 1}$, $x_0, x_1, x_2, e \ x_1 \odot x_2 \in \mathbb{R}^{N \times 1}$, $y e \ \hat{y} \in \mathbb{R}^{N \times 1}$ e \odot é a multiplicação elemento-a-elemento.