Title

First AUTHOR⁽¹⁾ and Second AUTHOR⁽²⁾

First Institution (1) first@mail

Second Institution (2) another@mail.fr

When ...

- Introduction
- Related Work
- Optimization process
- Experiments
- Conclusion

- Introduction
- 2 Related Work
- Optimization process
- 4 Experiments
- Conclusion

(Situation or used env)

- Motions, single agent behaviors, collective behaviors
- Competiting 11 vs 11 in simulation (3DSSL RoboCup competition)

(Problem or questions)

- Different positions
- Different roles and skills
- Different optimizations
- Different characteristics ?

- Introduction
- Related Work
- Optimization process
- 4 Experiments
- Conclusion

Introduction
Related Work
Optimization process
Experiments
Conclusion

• References ...

- Introduction
- Related Work
- Optimization process
- 4 Experiments
- Conclusion

According to *n* trials with *p* parameters :

s: success_rate of 1 trial

 ν : averages and standard deviations (i.e. results) of 1 trial

 ν' : best acceptable results

h: quality of the results (ACCEPT, EQUIVALENT or REJECT)

 \mathcal{H} : history set that regroups (p, h) pairs

 $\mathcal{L}: \text{parameters bound}$

Algorithm 1 evolving $(n, \mathcal{L}, pickOut)$

```
1: (\nu', \mathcal{H}) \leftarrow (\emptyset, \emptyset)

2: for i = 0 to n do

3: p \leftarrow \text{newParams}(\mathcal{H}, \mathcal{L})

4: (s, \nu) \leftarrow \text{performTrial}(p)

5: (\nu', h) \leftarrow \text{pickOut}(s, \nu, \nu')

6: insert ((p, h), \mathcal{H})

7: end for

8: return paramsFrom (\nu')
```


- Introduction
- 2 Related Work
- Optimization process
- 4 Experiments
- Conclusion

Table: pickOut decision parameters

SUCCESS_RATE	0.75
XY_RATIO	0.25
α	3.0
β	1.0
γ	0.7

Figure: Three resulting NAO profiles

- Introduction
- 2 Related Work
- Optimization process
- 4 Experiments
- Conclusion

Introduction
Related Work
Optimization process
Experiments
Conclusion

Few points to conclude

...

Title

First AUTHOR⁽¹⁾ and Second AUTHOR⁽²⁾

First Institution (1) first@mail

Second Institution (2) another@mail.fr

When ...

Checking NAO's model proper sizing:

- ThighRelHip2_Z: relative distance between hip and thigh center of mass
- ($ThighRelHip2_Z$ value is -0.04[m])
- From -0.01 to -0.10[m]

Experiment over 500 iterations:

- REJECT represented in black
- EQUIVALENT represented in gray
- ACCEPT represented in white
- Optim.2 value is -0.038[m]

Two parameters important in human morphology:

- ThighRelHip2_Z: semi-length of the femur
- ratio_flexion: hip height over total leg's length

Three general parameters to adjust the walk:

- long_offset_MidAnkles_2_Torso_Init: horizontal distance between ankles' middle and torso center
- height_lift: maximal height of lef lift-off
- xlength_step_max: maximal step length

