Index

A accuracy, determining, 99, 264, 399, 411 action, in reinforcement learning, 333 activation functions, 32 active inference, 414 Adam (Adaptive Moment Estimation) optimizer, 36 adaptive instance normalization (AdaIN), 279, 282 agent, in reinforcement learning, 333 AI (artificial intelligence), 8, 413 AI ethics, 411-413 approximate density models, 20 artifacts, 103, 281 artificial ineural networks (ANNs), 25 arXiv, xxii "Attention Is All You Need" (Vaswani), 236, 394 attention mechanisms attention equation, 241 attention head, 239 attention scores, 253 attention weights, 241 generating polyphonic music, 313 paper popularizing, 236 self- versus cross-referential, 258 and Welling), 59 autoencoders (see also variational autoencoders) architecture of, 63 decoder architecture, 64 Fashion-MNIST dataset, 62 generating new images, 71-74 joining encoder to decoder, 67 reconstructing images, 69 uses for, 64 visualizing latent space, 70 autoregressive models autoregressive models autoregressive models autoregressive models autoregressive model taxonomy, 19 history of, 394 how LSTMs work, 130 long short-term memory (LSTM) networks 131-149 masked convolutional layers, 154-156 stacked recurrent networks, 149-151	Symbols	"Auto-Encoding Variational Bayes" (Kingma
autoencoders (see also variational autoencoders) accuracy, determining, 99, 264, 399, 411 action, in reinforcement learning, 333 activation functions, 32 active inference, 414 Adam (Adaptive Moment Estimation) optimizer, 36 adaptive instance normalization (AdaIN), 279, 282 agent, in reinforcement learning, 333 AI (artificial intelligence), 8, 413 AI ethics, 411-413 approximate density models, 20 artificat intelligence (AI), 8, 413 artificial intelligence (AI), 8, 413 artificial intelligence (AI), 8, 413 artificial neural networks (ANNs), 25 arXiv, xxii "Attention Is All You Need" (Vaswani), 236, 394 attention equation, 241 attention head, 239 attention equation, 241 attention head, 239 attention scores, 253 attention weights, 241 generating polyphonic music, 313 paper popularizing, 236 self- versus cross-referential, 258		
understanding, 238 attribute binding, 376 attributes, entangled, 277 AudioLM, 407 backpropagation, 26 batch normalization, 46-49, 51, 120 batches, 37 BERT (Bidirectional Encoder Representations	A accuracy, determining, 99, 264, 399, 411 action, in reinforcement learning, 333 activation functions, 32 active inference, 414 Adam (Adaptive Moment Estimation) optimizer, 36 adaptive instance normalization (AdaIN), 279, 282 agent, in reinforcement learning, 333 AI (artificial intelligence), 8, 413 AI ethics, 411-413 approximate density models, 20 artifacts, 103, 281 artificial intelligence (AI), 8, 413 artificial neural networks (ANNs), 25 arXiv, xxii "Attention Is All You Need" (Vaswani), 236, 394 attention mechanisms attention equation, 241 attention head, 239 attention scores, 253 attention weights, 241 generating polyphonic music, 313 paper popularizing, 236 self- versus cross-referential, 258 understanding, 238 attribute binding, 376 attributes, entangled, 277	autoencoders (see also variational autoencoders) architecture of, 63 decoder architecture, 65-67 diagram of process, 61 encoder architecture, 64 Fashion-MNIST dataset, 62 generating new images, 71-74 joining encoder to decoder, 67 reconstructing images, 69 uses for, 64 visualizing latent space, 70 autoregressive models autoregressive prior of DALL.E 2, 367, 374 bidirectional cells, 153 description of, 130 gated recurrent units (GRUs), 151-153 generative model taxonomy, 19 history of, 394 how LSTMs work, 130 long short-term memory (LSTM) networks, 131-149 masked convolutional layers, 154-156 stacked recurrent networks, 149-151 B Bach chorale dataset, 317 backpropagation, 26 batch normalization, 46-49, 51, 120 batches, 37

bidirectional cells, 153	ControlNet, 402
big model era, 395	convolutional neural networks (CNNs)
BigGAN, 288, 395	batch normalization, 46-49
binary cross-entropy loss, 36	benefits of, 40
BLOOM, 395, 399	building, 51-53
Boltzmann distribution, 191	convolutional layers, 41-46
Boltzmann machine, 203	dropout, 49-51
BookCorpus, 236	masked convolutional layers, 154-156
Bricks dataset, 98	training and evaluating, 53
	convolutional transpose layers, 65
C	Copilot, 400
Canny edge maps, 402	cosine diffusion schedule, 212
categorical cross-entropy loss, 36	cosine similarity, 363
causal masking, 242-244	coupling layers, 175-177, 180
CelebFaces Attributes (CelebA) dataset, 85, 275	covariate shift, 47
CGAN (see conditional GAN)	cross-referential attention, 258
challenges, of generative AI, 264, 399, 411-413	CycleGAN, 291, 394
change of variables equation, 173	·
change of variables technique, 170-172	D
character tokens, 135	DALL.E, 289, 361, 376, 396
ChatGPT, 260-264, 395, 407	DALL.E 2
Chinchilla, 395	architecture, 362
CICERO, 406	availability of, 402
CIFAR-10 dataset, 28	decoder, 369-373
CLIP (Contrastive Language-Image Pre-	examples generated by, 373-375, 405
training)	history of, 361, 396
description of, 362	limitations of, 375
history of, 396	text encoder, 362-367
key concepts behind, 363	training the prior model, 367-369
training process, 363-367	DCGAN (see deep convolutional GAN)
CMA-ES (covariance matrix adaptation evolu-	DDIM (see Denoising Diffusion Implicit
tion strategy), 348-353	Model)
CNN (see convolutional neural networks)	DDM (see denoising diffusion models)
code examples, obtaining and using, xxiii, 20	DDPM (see Denoising Diffusion Probabilistic
codebook, 290	Model)
Codex, 400	decoder Transformers, 244, 255
comments and questions, xxv	deep convolutional GAN (DCGAN)
compile method, 36	analysis of, 109
conditional GAN (CGAN)	dataset used, 98
analysis of, 126	discriminator in, 99-101
architecture of, 123	generator in, 101-103
training, 124	history of, 394
"Conditional Generative Adversarial Nets"	published paper on, 97
(Mirza and Osindero), 122	training, 104-109
context vector, 241	training tips and tricks, 110-113
contrastive divergence, 191, 197-201	deep learning
Contrastive Language-Image Pre-training (see	deep neural networks, 25-27, 54
CLIP)	defined, 23
contrastive learning, 362	Keras and TensorFlow for, 27
- C	

model creation, 28-40	Du, Yilun, 191
model improvement, 40-54	
structured versus unstructured data, 24	E
demodulation step, 283	educational applications, 410
Denoising Diffusion Implicit Model (DDIM)	EMA (exponential moving average), 214
description of, 226	embedding space, 63, 70, 85-93, 219
history of, 395	embodied large language models, 406
denoising diffusion models (DDMs)	encoder Transformers, 244, 255
analysis of, 228-230	encoder-decoder Transformers, 255
dataset used, 208-209	encoders, 64
description of, 208	energy function/energy score, 191, 193
diffusion schedules, 211	energy-based models (EBMs)
forward diffusion process, 209	analysis of, 201-202
reparameterization trick, 210	Boltzmann distribution, 191
reverse diffusion process, 214-216	
sampling from, 225-227	Boltzmann machine, 203
training, 224-225	dataset used, 192
U-Net denoising model, 217-224, 370	description of, 189
Denoising Diffusion Probabilistic Model	energy function, 193
(DDPM)	generative model taxonomy, 20
development of, 203	key concepts behind, 189
history of, 395	RBM (restricted Boltzmann machine), 203
denoising models, 64 (see also denoising diffu-	sampling using Langevin dynamics, 194-196
sion models)	score-based generative models, 206
dense layers, 25	training with contrastive divergence,
density function, 16, 18	197-201
determinants, 172	entangled attributes, 277
Dhariwal, Prafulla, 395	environment, in reinforcement learning, 332
diffusion models (see also denoising diffusion	episode, in reinforcement learning, 333
models)	epochs, 38
description of, 205	equalized learning rates, 276
diffusion prior of DALL.E 2, 368	ethical concerns, of generative AI, 411-413
generative model taxonomy, 20	evaluate method, 38
history of, 395	event-based tokenization, 315
key ideas underpinning, 206-207	evolutionary strategies, 349
latent diffusion, 396	explicit density models, 19
"Diffusion Models Beat GANs on Image Syn-	exploding gradient problem, 46
thesis " (Dhariwal and Nichol), 395	exponential moving average (EMA), 214
diffusion schedules, 211	_
Dinh, Laurent, 174	F
Diplomacy board game, 406	facial image generation
discrete latent space, 290	dataset used, 85
discriminative modeling, 5	generating new faces, 90
discriminators, 97, 99-101, 110	latent space arithmetic, 91
Dong, Hae-Wen, 317	morphing between faces, 92
DrawBench, 378	progress in, 7
DreamFusion, 407	VAE analysis, 89
Dreamix, 406	VAE training, 87
dropout layers, 49	Fashion-MNIST dataset, 62, 70
aropoatiajoto, 17	fast-track route, 156

feature engineering, <mark>26</mark>	generative deep learning (see also models)
features	additional resources, xxii
descriptions of, 4	core probability theory, 15-18
learning high-level, 26	creating something that is creative, xvii
FFJORD (Free-Form Continuous Dynamics for	generative modeling framework, 10
Scalable Reversible Generative Models), 187	introduction to, 4-9
filters, 41	learning objectives and approach, xviii
fit method, 37	prerequisites to learning, xix
Flamingo	generative modeling (see models)
architecture, 382-387	generative pre-trained transformer (see GPT)
examples generated by, 388-389	generators
history of, 396	attention-based, 287
Flan-T5, 395	bar generator, 323
Flowers dataset, 208	DCGAN generator, 101-103, 110
forward diffusion process, 209	in GANs, 97, 101-103
forward pass, 26	MuseGAN generator, 320
Free-Form Continuous Dynamics for Scalable	StyleGAN generator, 277
Reversible Generative Models (FFJORD),	GitHub Copilot, 400
187	GLIDE (Guided Language-to-Image Diffusion
fully connected layers, 25	for Generation and Editing), 369-373, 396
functional API (Keras), 30-35	GLOW model, 186
	Goodfellow, Ian, 95
r	Gopher, 395
G	GPT (generative pre-trained transformer)
game state, in reinforcement learning, 333	analysis of, 252-255
GAN (see generative adversarial networks)	applications in everyday life, 407
gated recurrent units (GRUs), 132, 151, 394	attention mechanism, 238
Gaussian distribution (normal distribution), 75	causal masking, 242-244
GenAI (see generative AI)	dataset used, 237
"Generative Adversarial Nets" (Goodfellow), 95	description of, 236
generative adversarial networks (GANs)	evolution of, 259
BigGAN, 288	
challenges of, 110, 113	history of, 236, 394
conditional GAN (CGAN), 122-127	improvements to, 237
deep convolutional GANs (DCGANs),	multihead attention, 241
97-113	positional encoding, 248-250
fundamental training concepts, 96	queries, keys, and values, 239-241
generative model taxonomy, 19	Transformer block, 245-248
history of, 95, 394	GPT-2, 237, 394
ProGAN, 269-276	GPT-3
StyleGAN, 277-281	availability of, 398
StyleGAN2, 281-286	benefits of, 237
Wasserstein GAN with Gradient Penalty	evolution of, 259
(WGAN-GP), 113-122	example generated by, 260, 396, 411
versus WGAN-GPs, 121	history of, 395
generative AI (GenAI)	GPT-3.5, 237, 262
current state of, 396-407	GPT-4, 237, 259
ethics and challenges related to, 264, 411	gradient descent using Langevin dynamics, 195
future of, 407-411, 413	gradient penalty loss, 117
history of, 392-396	Gradient Tape, 83
•	

grid tokenization, 313-315	"Improving Language Understanding by Gen-
GRU (see gated recurrent units)	erative Pre-Training" (Radford), 236
Guided Language-to-Image Diffusion for Gen-	in-dream training, 353-356
eration and Editing (GLIDE), 369-373	InstructGPT model, 262
	isotropic multivariate normal distributions, 76
H	
Ha, David, 331, 337, 394	J
hallucinations, 264	Jacobian determinant, 172
He initialization, 276	joint token/position encoding, 249
hidden layers, 27) , F
hidden state, 140, 142	K
Hinton, Geoffrey, 49	
Hochreiter, Sepp, 132	Kaggle, 86, 237
Huang, Cheng-Zhi Anna, 313	Keras (see also models)
Hui, Jonathan, 116	autoencoder creation in, 65
hyperparameters, 112	benefits of, 27
myperparameters, 112	Conv2DTranspose layer, 66
	creating new layers in, 79
1	data loading, 28
image generation (see also facial image genera-	dataset creation, 98
tion; PixelCNN)	decoder creation in, 67
benefits of diffusion models for, 205	documentation, 36
BigGAN, 288	GAN discriminator creation in, 100
CIFAR-10 dataset for, 28	model building, 30-35
DDM analysis, 228-230	model compilation, 35
generating new images, 71-74	model evaluation, 38-40
generative modeling process, 4	model improvement, 40-54
generative versus discriminative modeling,	model training, 37
5	MuseGAN generator in, 324
history of, 395	resources, 20
ProGAN, 269-276	StyleGAN tutorial, 278
progress in facial image generation, 7	VAE creation in, 78
reconstructing images, 69	Keras layers
representation learning for, 13	Activation, 52
Self-Attention GAN (SAGAN), 286	Batch Normalization, 46
StyleGAN2, 281-286	Bidirectional, 153
visualizing latent space, 70	Conv2D, 42
image-to-image models, 291, 394	Conv2DTranspose, 66, 103
Imagen	Conv3D, 326
architecture, 377	Dense, 32
DrawBench, 378	Dropout, 49
examples generated by, 379	Embedding, 138
history of, 377, 396	Flatten, 32
overview of, 405	GRU, 132
Images of LEGO Bricks dataset, 98	Input, 32
implicit density models, 19	LeakyReLU, 52
"Implicit Generation and Modeling with	LSTM, 140
Energy-Based Models" (Du and Mordatch),	MultiHeadAttention, 241
191	UpSampling2D, 103
	Keras NLP module, 306

kernels, 41	dropout principle, 49
key vectors, 239	generative modeling and, 4-7
Kingma, Diederik, 59	libraries for, 27
Kullback-Leibler (KL) divergence, 80	major branches of, 23, 28, 332
	resources, xxii
L	Make-A-Video, 406
label smoothing, 108	mapping network f, 278
LAION-5B dataset, 402	masked convolutional layers, 154-156
LaMDA, 395	masking, causal, 242-244
Langevin dynamics, 191, 194-196	matrix determinants, 172
language modeling, 236	maximum likelihood estimation, 18
Large Language Model Meta AI (LLaMA), 398	MDN (mixture density network), 337, 346
large language models (LLMs), 396-400	mean squared error loss, 35
Large-scale Scene Understanding (LSUN) data-	Megatron-Turing NLG, 395, 398
set, 276	metrics parameter, 36
latent diffusion, 380, 396	MIDI files, 300
latent space, 63, 70, 85-93	Midjourney, 60, 96, 402, 405
layer normalization, 245	Mildenhall, Ben, 219
layers, 25, 79 (see also Keras layers)	minibatch standard deviation layer, 275
lazy regularization, 284	Mirza, Mehdi, 122
LeakyReLU, 33	mixture distributions, 162-164
learning rate, 36	MLP (see multilayer perceptrons)
likelihood, 17	MNIST dataset, 192
linear diffusion schedule, 211	mode collapse, 111
Lipschitz constraint, 115, 116	model.summary() method, 34, 45
LLaMA (Large Language Model Meta AI), 398	models (see also generative deep learning;
LLMs (large language models), 396-400	Keras)
logarithm of the variance, 77	core probability theory, 15-18
long short-term memory networks (see LSTM	deep neural networks, 25-28
networks)	generative model taxonomy, 18
loss functions, 35, 68, 80, 195	generative modeling, 4
lower triangle matrix, 178	generative versus discriminative modeling,
LSTM (long short-term memory) networks	5
embedding layer, 138	history of, 395
generating datasets, 137	improving, 40-54
generating new text, 146	parametric modeling, 16
history of, 131, 394	probabilistic versus deterministic, 4
LSTM architecture, 138	variational autoencoders (VAEs), 59
LSTM cell, 142-144	World Model architecture, 336-356
LSTM layer, 140-142	modulation step, <mark>283</mark> Mordatch
published paper on, 132	
tokenizing the text, 134	Igor, 191
LSUN (Large-scale Scene Understanding) data-	multihead attention, 241 multilayer perceptrons (MLPs)
set, 276	data preparation, 28
	example of, 25
M	model building, 30-35
machine learning	supervised learning and, 28
benefits of, 13	multilayer RNNs, 149
data for, 24-25	manua (1 10110, 17)

multimodal models	neural networks (see also convolutional neural
challenges of text-to-image generation, 360	networks; deep learning)
DALL.E 2, 361-376	deep neural networks, 54
Flamingo, 381-389	defined, 25-27
history of, 396	loss functions and, 18
Imagen, 377-380	role in deep learning, 20
Stable Diffusion, 380	using Keras to build, 27, 30-35
multivariate normal distribution, 75	Nichol, Alex, 395
MUSE, 396, 405	NLP (natural language processing), 255
MuseGAN, 317-329	Noise Conditional Score Network (NCSN), 395
analysis of, 327	noise, adding to labels, 108
dataset used, 317	nontrainable parameters, 48
MuseGAN critic, 326	normal distribution (Gaussian distribution), 75
MuseGAN generator, 320	normalizing flow models
"MuseGAN: Multi-Track Sequential Generative	change of variables equation, 173
Adversarial Networks for Symbolic Music	change of variables technique, 170-172
Generation and Accompaniment" (Dong),	description of, 167
317	FFJORD (Free-Form Continuous Dynamics
MuseNet, 394	for Scalable Reversible Generative Mod-
MuseScore, 300	els), 187
music generation	generative model taxonomy, 19
analysis of music generation Transformer,	GLOW, 186
309-312	Jacobian determinant, 172
dataset used, 300	key concepts behind, 168
generating polyphonic music, 313	motivation of, 169
importing MIDI files, 300	RealNVP model, 174-185
inputs and outputs, 307	
MuseGAN, 317-329	0
music versus text generation, 298	observations, 4
prerequisites to, 300	OPT, 395, 399
sine position encoding, 305-306	optimizers, 35
tokenization, 303	Osindero, Simon, 122
training set for, 304	overfitting, 49
Transformers applied to, 394	Oxford 102 Flower dataset, 208
Music Transformer, 394	Oxford 102 flower dataset, 200
"Music Transformer: Generating Music with	P
Long-Term Structure" (Huang), 313	•
music21 library, 300	padding, 43
MusicLM, 407	PaLM-E, 406
	Papers with Code, xxii
N	parameters, trainable and nontrainable, 48
Nain, Aakash Kumar, 113	parametric modeling, 16
natural language processing (NLP), 255	Parti, 396, 405
NCSN (Noise Conditional Score Network), 395	PatchGAN, 291
"NeRF: Representing Scenes as Neural Radi-	path length regularization, 283
ance Fields for View Synthesis" (Milden-	perceptual loss term, 292
hall), 219	personal assistants, 407
"Neural Discrete Representation Learning"	piano roll grid, 314
(van den Oord), 289	pix2pix, 291, 394
(ucii Ooru), 207	PixelCNN

analysis of, 159-162	ChatGPT and, 262
history of, 153, 394	defined, 332
masked convolutional layers, 154-156	key terminology, 332
mixture distributions, 162	process of, 333-335
residual blocks, 156-158	Reinforcement Learning from Human Feed-
training, 158	back (RLHF), 262
PixelRNN, 394	ReLU (rectified linear unit), 33
pixelwise normalization, 276	reparameterization trick, 79, 210
poetry, 397	representation learning, 13-14
Point-E, 407	residual blocks, 156-158, 221-222
positional embedding, 248	restricted Boltzmann machine (RBM), 203
positional encoding, 248-250	reverse diffusion process, 214-216
posterior collapse, 289	reward modeling, 262
prediction, using batch normalization, 48	reward, in reinforcement learning, 333
probability density function, 16, 18, 75	RLHF (Reinforcement Learning from Human
probability distributions, 162	Feedback), 262
probability theory, 15-18	RMSE (root mean squared error), 68
ProGAN	RMSProp (Root Mean Squared Propagation)
concept of progressive training, 269-276	optimizer, 36
description of, 269	RNNs (recurrent neural networks)
history of, 394	bidirectional cells, 153
outputs, 276	gated recurrent units (GRUs), 151
progressive training, 269-276	history of, 131
prompt engineering, 405	LSTM (long short-term memory) networks
prompts, 396	131-149
1 1	MDN-RNN World Model architecture, 337
Q	multilayer, 149
•	stacked recurrent networks, 149
query, 239	root mean squared error (RMSE), 68
questions and comments, xxv	Root Mean Squared Propagation (RMSProp)
D	optimizer, 36
R	1
Radford, Alec, 97, 236	S
random (stochastic) elements, 4	_
random noise, 108, 195	SAGAN (self-attention GAN), 286, 395
RBM (restricted Boltzmann machine), 203	sample space, 16
RealNVP	scaling streams, 177 Schmidhuber, Jurgen, 132, 331, 394
analysis of, 184	· ·
coupling layers, 175-177	score matching technique, 203
dataset used, 174	score-based generative models, 206 Self-Attention GAN (SAGAN), 286, 395
description of, 174	
history of, 394	self-referential layers, 258 Sequential models (Keras), 30-35
passing data through coupling layers,	
177-180	sigmoid activation, 33
stacking coupling layers, 180	sine position embedding, 305
training, 181-183	sinusoidal embedding, 219
Recipes dataset, 132	skip connections, 156, 217, 245, 284
recurrent neural networks (see RNNs)	softmax activation, 33
regularization techniques, 49	Sparse Transformers, 299
reinforcement learning (RL)	stabilization phase, 272

Stable Diffusion	token embedding, 248
advantages of, 402-405	tokenization
architecture, 380	event-based, 315
examples generated by, 381	grid, 313-315
history of, 380, 396	of notes for music generation, 303
stacked recurrent networks, 149	process of, 134-137
standard deviation, 75	Toolformer, 411
standard normal curves, 75	tractable models, 19
stemming, 135	trainable parameters, 48
stochastic (random) elements, 4	training data, 4
stochastic gradient Langevin dynamics, 195	training process, 26
stochastic variation, 280	Transformer block, 245-248
strides parameter (Keras), 43	Transformers (see also GPT; music generation)
structured data, 24	architectures for, 255
style mixing, 279	BERT (Bidirectional Encoder Representa-
StyleGAN, 277-281, 395	tions from Transformers), 255
StyleGAN-XL, 286, 395	ChatGPT, 260-264
StyleGAN2, 281-286, 395	decoder versus encoder, 244
subclassing layers, 79	description of, 236
summary method, 35	GPT-3 and GPT-4, 259
supervised fine-tuning, 262	history of, 394
supervised learning, 28, 332	Sparse Transformers, 299
swish activation, 193	T5, 256-259
synthesis network, 279	transition phase, 272
·	translation streams, 177
T	truncated normal distribution, 288
T5, 256-259, 394	truncation trick, 288
tape.gradient() method, 83	truth, filtering from generated fiction, 99, 264,
taxonomy, 18	399, 410
temperature parameter, 146	two moons dataset, 174
temporal networks, 320	
TensorFlow, 27	U
text data generation (see also GPT)	U-Net denoising model, 217-224, 370
LSTM (long short-term memory) networks,	uninformative loss, 112
131-149	unit normal curves, 75
RNN (recurrent neural network) exten-	units, 25, 140
sions, 149-153	unstructured data, 24
short story generation example, 130	unsupervised learning, 332
text versus image data, 133	"Unsupervised Representation Learning with
text versus music generation, 298	Deep Convolutional Generative Adversarial
text-to-3D models, 407	Network" (Radford), 97
text-to-code models, 400-400	upsampling, 103, 372
text-to-image models, 360, 402-405	upsamping, 103, 372
text-to-music models, 407	V
text-to-video models, 406	V
text-to-X multimodal models, 405	VAE (see variational autoencoders)
thermodynamic diffusion, 206	VAE with a GAN discriminator (VAE-GAN),
timeline of AI, 393	394
timestep, in reinforcement learning, 333	value vectors, 241 van den Oord, Aaron, 153, 289

vanishing gradient problem, 132	gradient penalty loss, 117
variance, 75	Lipschitz constraint, 115
variational autoencoders (VAEs) (see also	versus standard GANs, 121
autoencoders)	training, 119
analysis of, 84	tutorial on, 113
autoencoder architecture, 61-74	Wasserstein loss, 114
decoders, 77	weight clipping, 116
encoder adjustments, 75-78	Wasserstein GANs (WGANs)
facial image generation using, 85-93	benefits of, 113
generative model taxonomy, 20	history of, 394
history of, 394	weight clipping, 116
introduction to, 60, 74	weight modulation and demodulation, 282-283
published paper on, 59	weights, 25
training, 82	Welling, Max, 59
VAE build in Keras, 78	WGAN (see Wasserstein GANs)
VAE loss function, 80	Wine Reviews dataset, 237
VAE model summary, 80	workplace applications, 409
World Model architecture, 336	World Models
World Model training, 340-344	architecture, 336-338
Vaswani, Ashish, 219, 236, 394	collecting MDN-RNN training data, 346
Vector Quantized Generative Adversarial Net-	collecting random rollout data, 339
work (VQ-GAN), 289-292, 395	published paper on, 331, 337, 394
Vector Quantized VAE (VQ-VAE), 394	training in-dream, 353-356
"Vector-quantized Image Modeling with	training process, 338
Improved VQGAN" (Yu), 292	training the controller, 348-353
Vision Transformer (ViT), 292, 364, 395	training the MDN-RNN, 346-348
Visual ChatGPT, 264	training the VAE, 340-344
vocabulary, 135	World Model architecture, 336-356
VQ-GAN (Vector Quantized Generative	
Adversarial Network), 289-292, 395	Υ
VQ-VAE (Vector Quantized VAE), 394	Yu, Jiahui, 292
W	Z
Wasserstein GAN with Gradient Penalty	_
(WGAN-GP)	zero-shot prediction, 364
analysis of, 121	