CMIP6 Model Documentation

Institute:MIROCModel:MIROC6Topic:ocean

Doc. Generated:2020-04-08Doc. Seeded From:Spreadsheet

Specialization Version: 1.0.4

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key Properties	3
2	Grid	10
3	Timestepping Framework	12
4	Advection	15
5	Lateral Physics	17
6	Vertical Physics	22
7	Uplow Boundaries	27
8	Boundary Forcing	29

1 Key Properties

Ocean key properties

1.1.1 Top level properties

Ocean key properties

1.1.1.1 Name *

Name of ocean model code

COCO4.9

1.1.1.2 Keywords *

Keywords associated with ocean model code

Primitive equation, hydrostatic, Boussinesq, explicit free surface, tripolar grid, sigma-z hybrid, embedded sea-ice component

1.1.1.3 Overview *

Overview of ocean model.

COCO is an ice-ocean coupled model which can be used as a stand-alone model or an ice-ocean component of MIROC. It has been developed in Atmosphere and Ocean Research Institute (AORI), The University of Tokyo, and Japan Agency for Marine-Earth Science and Technology (JAMSTEC). The oceanic part of COCO is based on the primitive equations under the hydrostatic and Boussinesq approximations with the explicit free surface and is formulated on the generalized curvilinear horizontal coordinate and the geopotential height vertical coordinate with optional sigma coordinate near the surface.

1.1.1.4 Model Family * Type of ocean model. OGCM Slab ocean Mixed layer ocean Other - please specify: 1.1.1.5 Basic Approximations * Basic approximations made in the ocean. Primitive equations Non-hydrostatic Boussinesq Other - please specify:

1.1.1.6 Prognostic Variables *			
$List\ of\ prognostic\ variables\ in\ the\ ocean\ component.$			
\boxtimes	Potential temperature		
Conservative temperature			
\boxtimes	Salinity		
\boxtimes	U-velocity		
\boxtimes	V-velocity		
	W-velocity		
	SSH - Sea Surface Height		
	Other - please specify:		
1916	Sonwoton Proportios		
	Seawater Properties		
Physical	properties of seawater in ocean		
1.2.1.1	Eos Type *		
Type of E	OS for sea water		
	Linear		
	Wright, 1997		
\boxtimes	Mc Dougall et al.		
	Jackett et al. 2006		
	TEOS 2010		
	Other - please specify:		
1010	n n ' 1m *		
1.2.1.2 Eos Functional Temp * Temperature used in EOS for sea water			
\(\sigma\)	Potential temperature		
	Conservative temperature		
	Conservative temperature		
1.2.1.3 Eos Functional Salt *			
Salinity used in EOS for sea water			
\boxtimes	Practical salinity Sp		
	Absolute salinity Sa		

1.2.1.4 Eos Functional Depth *	
Depth or pressure used in EOS for sea water?	
Pressure (dbars)	
Depth (meters)	
1.2.1.5 Ocean Freezing Point *	
Equation used to compute the freezing point (in deg C) of seawater, as a function of salinity and pressu	re
TEOS 2010	
Other - please specify:	
1.2.1.6 Ocean Specific Heat *	
Specific heat in ocean (cpocean) in $J/(kg K)$	
3990	
1.2.1.7 Ocean Reference Density *	
Boussinesq reference density (rhozero) in kg / m3	
1000	
1.3.1 Bathymetry	
Properties of bathymetry in ocean	
1.3.1.1 Reference Dates *	
Reference date of bathymetry	
Present day	
21000 years BP	
6000 years BP	
LGM - Last Glacial Maximum	
Pliocene	
Other - please specify:	
1.3.1.2 Type *	
Is the bathymetry fixed in time in the ocean?	
□ True □ False □	

1.3.1.3 Ocean Smoothing *

Describe any smoothing or hand editing of bathymetry in ocean

Averaging when converting the original data (ETOPO1) into the model bathymetry. Editing some important seawater pathways, small islands, and small merginal seas.

1.3.1.4 Source *

Describe source of bathymetry in ocean

ETOPO1

1.4.1 Nonoceanic Waters

Non oceanic waters treatement in ocean

1.4.1.1 Isolated Seas

Describe if/how isolated seas is performed

The Mediterranean Sea is isolated and exchange water/heat/salt with the Atlantic Ocean as a form of diffusive flux. The Red Sea is treated as land in OGCM but 1-d mixed layer model in the land component.

1.4.1.2 River Mouth

Describe if/how river mouth mixing or estuaries specific treatment is performed

No specific treatment: put river discharge into the uppermost layer of the river mouth grid.

1.5.1 Software Properties

Software properties of ocean code

1.5.1.1 Repository

Location of code for this component.

Internal repository

1.5.1.2 Code Version

 $Code\ version\ identifier.$

4.9

1.5.1.3 Code Languages

 $Code\ language(s).$

Fortran 90

1.6.1 Resolution

Resolution in the ocean grid

1.6.1.1 Name *

This is a string usually used by the modelling group to describe the resolution of this grid, e.g. ORCA025, N512L180, T512L70 etc.

COCO medium resolution model

1.6.1.2 Canonical Horizontal Resolution *

Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc.

1 degree

1.6.1.3 Range Horizontal Resolution *

Range of horizontal resolution with spatial details, eg. 50(Equator)-100km or 0.1-0.5 degrees etc.

0.5 degree - 1 degree

1.6.1.4 Number Of Horizontal Gridpoints *

Total number of horizontal (XY) points (or degrees of freedom) on computational grid.

92160

1.6.1.5 Number Of Vertical Levels *

Number of vertical levels resolved on computational grid.

63

1.6.1.6 Is Adaptive Grid *

Default is False. Set true if grid resolution changes during execution.

True False

1.6.1.7 Thickness Level 1 *

Thickness of first surface ocean level (in meters)

2

1.7.1 Tuning Applied

Tuning methodology for ocean component

1.7.1.1 Description *

General overview description of tuning: explain and motivate the main targets and metrics retained. Document the relative weight given to climate performance metrics versus process oriented metrics, and on the possible conflicts with parameterization level tuning. In particular describe any struggle with a parameter value that required pushing it to its limits to solve a particular model deficiency.

Our main target is to reproduce reasonable THC (in particular AMOC) strength and volume transport across some key starits/pathways. In addition, we also checked T/S fields in orde to avoid unrealistic long-term trends. We mainly modified ocean bathmetry rather than parameter-level tuning to retain these metrics.

1.7.1.2 Global Mean Metrics Used

List set of metrics of the global mean state used in tuning model/component

Enter COMMA SEPARATED list:

1.7.1.3 Regional Metrics Used

 $List\ of\ regional\ metrics\ of\ mean\ state\ (e.g\ THC,\ AABW,\ regional\ means\ etc)\ used\ in\ tuning\ model/component$

Enter COMMA SEPARATED list:

1.7.1.4 Trend Metrics Used

List observed trend metrics used in tuning model/component

Enter COMMA SEPARATED list:

1.8.1 Conservation

Conservation in the ocean component

1.8.1.1 Description *

Brief description of conservation methodology

We have checked changes of the properties which should be conserved are in the range of numerical error by calculating the difference of these properties by using multiple snapshots of the modeled ocean.

1.8.1.2 Scheme *

Properties	conserved in the ocean by the numerical schemes
	Energy
	Enstrophy
\boxtimes	Salt
\boxtimes	Volume of ocean
	Momentum
	Other - please specify:

1.8.1.3 Consistency Properties

Any additional consistency properties (energy conversion, pressure gradient discretisation, ...)?

Enter COMMA SEPARATED list:

1.8.1.4 Corrected Conserved Prognostic Variables

Set of variables which are conserved by *more* than the numerical scheme alone.

Enter COMMA SEPARATED list:

1.8.1.5 Was F	lux Correct	ion Used	
Does conservation involve flux correction ?			
Select either	TRUE or FA	LSE:	
True	☐ Fa	lse	

2 Grid

 $Ocean\ grid$

2.1.1 Top level properties

 $Ocean\ grid$

2.1.1.1 Name

 $Name\ of\ grid\ in\ ocean\ model.$

 ${\bf COCO}$ medium resolution model

2.1.1.2 Overview

Overview of grid in ocean model.

Enter TEXT:

2.1.2 Vertical

Properties of vertical discretisation in ocean

2.1.2.1 Coordinates *

Type of vertical coordinates in ocean			
	Z-coordinate		
	Z*-coordinate		
	S-coordinate		
	Isopycnic - sigma 0 - Density referenced to the surface		
	Isopycnic - sigma 2 - Density referenced to 2000 m $$		
	Isopycnic - sigma 4 - Density referenced to 4000 m $$		
	Isopycnic - other - Other density-based coordinate		
\boxtimes	Hybrid / Z+S		
	Hybrid / Z+isopycnic		
	Hybrid / other		
	Pressure referenced (P)		
	P*		
	Z**		
	Other - please specify:		

2.1.2.2	Partial Steps *
Using par	rtial steps with Z or Z^* vertical coordinate in ocean ?
	True
2.1.3]	Horizontal
Type of	horizontal discretisation scheme in ocean
2.1.3.1	Type *
Horizont	al grid type
	Lat-lon
	Rotated north pole
\boxtimes	Two north poles (ORCA-style)
	Other - please specify:
2.1.3.2	Staggering
Horizont	al grid staggering type
\boxtimes	Arakawa B-grid
	Arakawa C-grid
	Arakawa E-grid
	N/a
	Other - please specify:
2.1.3.3	Scheme *
Horizont	al discretisation scheme in ocean
Selec	et SINGLE option:
	Finite difference
	Finite volumes
	Finite elements
	Unstructured grid
	Other - please specify:

3 Timestepping Framework

Ocean Timestepping Framework

3.1.1 Top level properties

 $Ocean\ Timestepping\ Framework$

3.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ timestepping\ framework\ in\ ocean\ model.$

Staggard timestepping

3.1.1.2 Overview

 $Overview\ of\ ocean\ time stepping\ framework\ in\ ocean\ model.$

Enter TEXT:

3.1.1.3 Dit	ırnal	Cycle	ጥ
Diurnal cycle	type		

urnal cycle type				
	None - No diurnal cycle in ocean			
	Via coupling - Diurnal cycle via coupling frequency			
	Specific treatment - Specific treament			
	Other - please specify:			

3.2.1 Tracers

 $Properties \ of \ tracers \ time \ stepping \ in \ ocean$

3.2.1.1 Scheme *

 ${\it Tracers\ time\ stepping\ scheme}$

$\label{lem:leap-frog} \mbox{Leap-frog scheme with Asselin filter} \ - \mbox{Leap-frog scheme with Asselin filter}$
Leap-frog + Periodic Euler - Leap-frog scheme with Periodic Eule
Predictor-corrector - Predictor-corrector scheme
Runge-Kutta 2 - Runge-Kutta 2 scheme
AM3-LF - AM3-LF such as used in ROMS
Forward-backward - Forward-backward scheme
Forward operator - Forward operator scheme
Other - please specify:

1200		
3.3.1 Baroclinic Dynamics		
Baroclin	nic dynamics in ocean	
3.3.1.1	Type *	
Baroclini	c dynamics type	
	Preconditioned conjugate gradient	
	Sub cyling - Sub cycling relative to tracers	
	Other - please specify:	
3.3.1.2	Scheme *	
Baroclini	c dynamics scheme	
	$\label{lem:leap-frog} \mbox{Leap-frog scheme with Asselin filter} \mbox{ - Leap-frog scheme with Asselin filter}$	
	Leap-frog + Periodic Euler - Leap-frog scheme with Periodic Euler	
	Predictor-corrector - Predictor-corrector scheme	
	Runge-Kutta 2 - Runge-Kutta 2 scheme	
	AM3-LF - AM3-LF such as used in ROMS	
	Forward-backward - Forward-backward scheme	
	Forward operator - Forward operator scheme	
	Other - please specify:	
3.3.1.3	Time Step	
Baroclinic time step (in seconds)		
1200		
3.4.1 Barotropic		
Barotropic time stepping in ocean		
3.4.1.1	Splitting *	
Time spli	itting method	
	None	

3.2.1.2 Time Step *
Tracers time step (in seconds)

 \boxtimes

 ${\bf Split\ explicit}$

	Implicit
	Other - please specify:
2119	Time Step
	•
Ватоттори	c time step (in seconds)
20	

3.5.1 Vertical Physics

Vertical physics time stepping in ocean

3.5.1.1 Method *

 $Details\ of\ vertical\ time\ stepping\ in\ ocean$

Enter TEXT:

4 Advection

Ocean advection

4.1.1 Top level properties

 $Ocean\ advection$

4.1.1.1 Name

Commonly used name for the advection in ocean model.

Enter TEXT:

4.1.1.2 Overview

Overview of ocean advection in ocean model.

Enter TEXT:

4.2.1 Momentum

Properties of lateral momentum advection scheme in ocean

4.2.1.1 Type *

Type of lateral momentum advection scheme in ocean

Flux form

☐ Vector form

4.2.1.2 Scheme Name *

Name of ocean momentum advection scheme

Centered-in-space differencing scheme

4.2.1.3 ALE

Using ALE for vertical advection ? (if vertical coordinates are sigma)

True

4.3.1 Lateral Tracers

 $Properties\ of\ lateral\ tracer\ advection\ scheme\ in\ ocean$

4.3.1.1 Order *

Order of lateral tracer advection scheme in ocean

4

4.3.1.2	Flux Limiter *
Monoton	ic flux limiter for lateral tracer advection scheme in ocean?
	True
4.3.1.3	Effective Order *
Effective	order of limited lateral tracer advection scheme in ocean
1	
4.3.1.4	Name *
Descripti	ve text for lateral tracer advection scheme in ocean (e.g. MUSCL, PPM-H5, PRATHER,)
Prat	her 2nd moment (PSOM)
4.3.1.5	Passive Tracers
Passive t	racers advected
\boxtimes	Ideal age
	CFC 11
	CFC 12
	SF6
	Other - please specify:
4.3.1.6	Passive Tracers Advection
	ion of passive tracers different than active ? if so, describe.
Ente	r TEXT:
441	Vertical Tracers
	ies of vertical tracer advection scheme in ocean
1 торсти	ics of verticus traces autocesson seneme in occum
4.4.1.1	Name *
Descripti	$ve\ text\ for\ vertical\ tracer\ advection\ scheme\ in\ ocean\ (e.g.\ MUSCL,\ PPM-H5,\ PRATHER,)$
Prat	her 2nd moment (PSOM)
4.4.1.2	Flux Limiter *
Monoton	ic flux limiter for vertical tracer advection scheme in ocean?
Selec	et either TRUE or FALSE:
	True False

5 Lateral Physics

Ocean lateral physics

5.1.1 Top level properties

Ocean lateral physics

_	-	-	-1	TA. T	-		
h.	. І.	. І	. Т	N	a	m	e

 $Commonly\ used\ name\ for\ the\ lateral\ physics\ in\ ocean\ model.$

Enter TEXT:

5.1.1.2 Overview

Overview of ocean lateral physics in ocean model.

Enter TEXT:

K	1	1	2	Scheme	*

Type of transient eddy representation in ocean

None - No transient eddies in ocean

Eddy active - Full resolution of eddies

Eddy admitting - Some eddy activity permitted by resolution

5.1.2 Operator

Properties of lateral physics operator for momentum in ocean

5.1.2.1 Direction *

Direction of lateral physics momentum scheme in the ocean

\boxtimes	Horizontal
	Isopycnal
	Isoneutral
	Geopotential
	Iso-level
	Other - please specify:

5.1.2.2	Order *
Order of	lateral physics momentum scheme in the ocean
	Harmonic - Second order
	Bi-harmonic - Fourth order
	Other - please specify:
5.1.2.3	Discretisation *
Discretis	ation of lateral physics momentum scheme in the ocean
	Second order - Second order
	Higher order - Higher order
	Flux limiter
	Other - please specify:
5.1.3]	Eddy Viscosity Coeff
Propert	ies of eddy viscosity coeff in lateral physics momentum scheme in the ocean
5.1.3.1	Type *
Lateral p	hysics momentum eddy viscosity coeff type in the ocean
	Constant
\boxtimes	Space varying
	Time + space varying (Smagorinsky)
	Other - please specify:
5.1.3.2	Constant Coefficient
If consta	nt, value of eddy viscosity coeff in lateral physics momentum scheme (in m2/s)
Ente	r INTEGER value:
5.1.3.3	Variable Coefficient
	varying, describe variations of eddy viscosity coeff in lateral physics momentum scheme
Dep	ending on horizontal grid size
5.1.3.4	Coeff Background *
Describe	$background\ eddy\ viscosity\ coeff\ in\ lateral\ physics\ momentum\ scheme\ (give\ values\ in\ m2/s)$
1.7e	3-2.3e4, space varying

5.1.3.5	Coeff Back	\mathbf{scat}	ter *
Is there b	ackscatter in ea	ddy vi	scosity coeff in lateral physics momentum scheme?
	True	\boxtimes	False
5.2.1	Tracers		
Properti	ies of lateral p	physi	cs for tracers in ocean
5.2.1.1	Mesoscale (Clos	ure *
Is there a	mesoscale clos	sure in	n the lateral physics tracers scheme?
\boxtimes	True		False
5.2.1.2	Submesosca	ale I	Mixing *
Is there a	submesoscale i	mixin	g parameterisation (i.e Fox-Kemper) in the lateral physics tracers scheme ?
	True	\boxtimes	False
5.2.2	Operator		
Properti	ies of lateral p	physi	cs operator for tracers in ocean
5.2.2.1	Direction *	:	
Direction	of lateral physic	ics tre	acers scheme in the ocean
	Horizontal		
\boxtimes	Isopycnal		
	Isoneutral		
	Geopotential		
	Iso-level		
	Other - please	e spec	ify:
5.2.2.2	Order *		
$Order\ of$	lateral physics	tracer	s scheme in the ocean
	Harmonic - Se	econd	order
	Bi-harmonic -	Four	th order
	Other - please	e snec	ify

5.2.2.3	Discretisation *
Discretisa	tion of lateral physics tracers scheme in the ocean
	Second order - Second order
	Higher order - Higher order
	Flux limiter
	Other - please specify:
5.2.3 E	Eddy Diffusity Coeff
Propertie	es of eddy diffusity coeff in lateral physics tracers scheme in the ocean
5.2.3.1	Type *
Lateral ph	ysics tracers eddy diffusity coeff type in the ocean
\boxtimes	Constant
	Space varying
	Time + space varying (Smagorinsky)
	Other - please specify:
5.2.3.2	Constant Coefficient
If constan	t, value of eddy diffusity coeff in lateral physics tracers scheme (in m2/s)
1000	
5.2.3.3	Variable Coefficient
If space-ve	arying, describe variations of eddy diffusity coeff in lateral physics tracers scheme
Enter	TEXT:
5.2.3.4	Coeff Background *
Describe b	ackground eddy diffusity coeff in lateral physics tracers scheme (give values in m2/s)
100	
5.2.3.5	Coeff Backscatter *
Is there be	ackscatter in eddy diffusity coeff in lateral physics tracers scheme?
	True A False

5.2.4 Eddy Induced Velocity

 $Properties \ of \ eddy \ induced \ velocity \ (EIV) \ in \ lateral \ physics \ tracers \ scheme \ in \ the \ ocean$

5.2.4.1 Ty	ype *
Type of EIV	in lateral physics tracers in the ocean
	M - Gent and McWilliams
	other - please specify:
	onstant Val
If EIV scher	ne for tracers is constant, specify coefficient value (M2/s)
300	
5.2.4.3 Fl	ux Type *
Type of EIV	flux (advective or skew)
Skew fl	ux
5.2.4.4 A	dded Diffusivity *
Type of EIV	added diffusivity (constant, flow dependent or none)
Enter 7	TEXT:

6 Vertical Physics

Ocean Vertical Physics

6.1.1 Top level propert	ies
-------------------------	-----

 $Ocean\ Vertical\ Physics$

6.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ vertical\ physics\ in\ ocean\ model.$

Enter TEXT:

6.1.1.2 Overview

 $Overview\ of\ ocean\ vertical\ physics\ in\ ocean\ model.$

Enter TEXT:

6.1.2 Details

Properties of vertical physics in ocean

6.1.2.1 Langmuir Cells Mixing *

 ${\it Is\ there\ Langmuir\ cells\ mixing\ in\ upper\ ocean\ ?}$

☐ True ☐ False

6.1.3 Tracers

Properties of boundary layer (BL) mixing on tracers in the ocean

6.1.3.1 Type *

Type of boundary layer mixing for tracers in ocean

Ш	Constant value
	Turbulent closure - TKE
	Turbulent closure - KPP
\boxtimes	Turbulent closure - Mellor-Yamada
	Turbulent closure - Bulk Mixed Layer
	Richardson number dependent - PP
	Richardson number dependent - KT
	Imbeded as isopycnic vertical coordinate

Other - please specify:

6.1.3.2	Closure Order
If turbule	ent BL mixing of tracers, specific order of closure (0, 1, 2.5, 3)
2.5	
6.1.3.3	Constant
If constan	nt BL mixing of tracers, specific coefficient (m2/s)
Ente	r INTEGER value:
6.1.3.4	Background *
Backgrou	nd BL mixing of tracers coefficient, (schema and value in $m2/s$ - may by none)
Tsuji	ino et al. (2000) type III
6.1.4	Momentum
Propert	ies of boundary layer (BL) mixing on momentum in the ocean
6.1.4.1	Type *
Type of b	oundary layer mixing for momentum in ocean
	Constant value
	Turbulent closure - TKE
	Turbulent closure - KPP
\boxtimes	Turbulent closure - Mellor-Yamada
	Turbulent closure - Bulk Mixed Layer
	Richardson number dependent - PP
	Richardson number dependent - KT
	Imbeded as isopycnic vertical coordinate

6.1.4.2 Closure Order

Other - please specify:

If turbulent BL mixing of momentum, specific order of closure $(0,\ 1,\ 2.5,\ 3)$

 $\mathbf{2.5}$

6.1.4.3 Constant

If constant BL mixing of momentum, specific coefficient (m2/s) $\,$

Enter INTEGER value:

6.1.4.4 Background *
Background BL mixing of momentum coefficient, (schema and value in m2/s - may by none
0.0001
6.1.5 Details
Properties of interior mixing in the ocean
6.1.5.1 Convection Type *
Type of vertical convection in ocean
Non-penetrative convective adjustment
Enhanced vertical diffusion
Included in turbulence closure
Other - please specify:
6.1.5.2 Tide Induced Mixing * Describe how tide induced mixing is modelled (barotropic, baroclinic, none) None
6.1.5.3 Double Diffusion *
Is there double diffusion
☐ True ☒ False
6.1.5.4 Shear Mixing *
Is interior shear mixing explicitly parameterised?
☐ True ☒ False
6.1.6 Tracers
Properties of interior mixing on tracers in the ocean
6.1.6.1 Type *
Type of interior mixing for tracers in ocean
Constant value
☐ Turbulent closure / TKE
Turbulent closure - Mellor-Yamada
Richardson number dependent - PP

Richardson number dependent - KT

	Imbeded as isopycnic vertical coordinate
	Other - please specify:
6162	Constant
	that interior mixing of tracers, specific coefficient $(m2/s)$
	r INTEGER value:
Elite	TIVIEGER value.
	Profile *
	kground interior mixing using a vertical profile for tracers (i.e is NOT constant)?
\boxtimes	True False
	Background *
Васкдтои	nd interior mixing of tracers coefficient, (schema and value in $m2/s$ - may by none)
Tsuji	no et al. (2000) type III
6.1.7 I	Momentum
Properti	es of interior mixing on momentum in the ocean
6.1.7.1	Type *
	terior mixing for momentum in ocean
Type of it	
	Constant value
	Turbulent closure / TKE
	Turbulent closure - Mellor-Yamada
	Richardson number dependent - PP
	Richardson number dependent - KT
	Imbeded as isopycnic vertical coordinate
	Other - please specify:
6.1.7.2	Constant
	at interior mixing of momentum, specific coefficient (m2/s)

Enter INTEGER value:

6.1.7.3 Profile *

Is the background interior mixing using a vertical profile for momentum (i.e is NOT constant) ?

False

6.1.7.4 Background *

 $Background\ interior\ mixing\ of\ momentum\ coefficient,\ (schema\ and\ value\ in\ m2/s\ -\ may\ by\ none)$

Enter TEXT:

7 Uplow Boundaries Ocean upper / lower boundaries

7.1.1 Top level properties

Ocean upper / lower boundaries

7.1.1.1 Name

Commonly used name for the uplow boundaries in ocean model.

Enter TEXT:

7.1.1.2 Overview

 $Overview\ of\ ocean\ upper\ /\ lower\ boundaries\ in\ ocean\ model.$

Enter TEXT:

7.2.1 Free Surface

Free surface scheme in ocean

Properties of free surface in ocean

7.2.1.1 Scheme *

Linear implicit

Linear filtered

Linear semi-explicit

Non-linear implicit

Non-linear filtered

Non-linear semi-explicit

Fully explicit

Other - please specify:

7.2.1.2 Embeded Seaice *

Is the sea-ice embeded in the ocean model (instead of levitating)?

☐ True ☐ False

7.3.1 Bottom Boundary Layer

Properties of bottom boundary layer in ocean

7.3.1.1 Overview *

 $Overview\ of\ bottom\ boundary\ layer\ in\ ocean$

Nakano and Suginohara (2002) bottom boundary layer scheme is applied. Following this paper, it is applied at high latitudes, to the north of $49\mathrm{N}$ and to the south of $56\mathrm{S}$.

7.3.1.2	Type Of Bbl *		
Type of bottom boundary layer in ocean			
	Diffusive		
\boxtimes	Acvective		
	Other - please specify:		
7.3.1.3	Lateral Mixing Coef		
If bottom	BL is diffusive, specify value of lateral mixing coefficient (in m2/s)		
Enter INTEGER value:			
7.3.1.4	Sill Overflow *		

1.3.1.4 SIII Overnow

Describe any specific treatment of sill overflows

Enter TEXT:

8 Boundary Forcing

Ocean boundary forcing

8.1.1 Top level properties

Ocean boundary forcing

8.1.1.1 Name

Commonly used name for the boundary forcing in ocean model.

Enter TEXT:

8.1.1.2 Overview

Overview of ocean boundary forcing in ocean model.

Enter TEXT:

8.1.1.3 Surface Pressure *

Describe how surface pressure is transmitted to ocean (via sea-ice, nothing specific,...)

Nothing specific

8.1.1.4 Momentum Flux Correction

Describe any type of ocean surface momentum flux correction and, if applicable, how it is applied and where.

When calculating the bulk coefficient of momentum flux, minimum wind speed is applied.

8.1.1.5 Tracers Flux Correction

Describe any type of ocean surface tracers flux correction and, if applicable, how it is applied and where.

When calculating the bulk coefficient of tracer fluxes, minimum wind speed is applied.

8.1.1.6 Wave Effects *

Describe if/how wave effects are modelled at ocean surface.

Nothing specific.

8.1.1.7 River Runoff Budget *

Describe how river runoff from land surface is routed to ocean and any global adjustment done.

Apply river routing model (CaMa-Flood).

8.1.1.8 Geothermal Heating *

Describe if/how geothermal heating is present at ocean bottom.

Not applied.

8.1.2 Bottom Friction

 $Properties \ of \ momentum \ bottom \ friction \ in \ ocean$

8.1.2.1	Type *
Type of m	nomentum bottom friction in ocean
	Linear
	Non-linear
	Non-linear (drag function of speed of tides)
\boxtimes	Constant drag coefficient
	None
	Other - please specify:
8.1.3 I	Lateral Friction
Properti	es of momentum lateral friction in ocean
8.1.3.1	Type *
	nomentum lateral friction in ocean
1 gpc 0j II	•
Ш	None
	Free-slip
\boxtimes	No-slip
	Other - please specify:
8.1.4 \$	Sunlight Penetration
Properti	es of sunlight penetration scheme in ocean
8.1.4.1	Scheme *
Type of s	unlight penetration scheme in ocean
	1 extinction depth
\boxtimes	2 extinction depth
	3 extinction depth
	Other - please specify:

8.1.4.2 Ocean Colour *		
Is the ocean sunlight penetration scheme ocean colour dependent ?		
☐ True ☐ False		
8.1.4.3 Extinction Depth Description		
$Describe\ extinctions\ depths\ for\ sunlight\ penetration\ scheme\ (if\ applicable).$		
$RADDN = RRR*EXP(-DEPTH / ZETA1) + (1.D0 - RRR)*EXP(-DEPTH / ZETA2) \\ where RRR=0.58, ZETA1=0.35, ZETA2=23. unit:[m]$		
8.1.4.4 Extinction Depths		
List extinctions depths for sunlight penetration scheme (if applicable).		
$0.35 \mathrm{m}, 23 \mathrm{m}$		
8.1.5 Fresh Water Forcing		
Properties of surface fresh water forcing in ocean		
8.1.5.1 From Atmopshere *		
Type of surface fresh water forcing from atmos in ocean		
Freshwater flux		
☐ Virtual salt flux		
Other - please specify:		
8 1 5 2 From Son Ion *		
8.1.5.2 From Sea Ice * Type of surface fresh water forcing from sea-ice in ocean		
Freshwater flux		
☐ Virtual salt flux		
Real salt flux		
Other - please specify:		
8.1.5.3 Forced Mode Restoring *		
Type of surface salinity restoring in forced mode (OMIP)		

31

Enter TEXT: