

# Содержание

| 2  |
|----|
|    |
|    |
|    |
|    |
| 4  |
| 8  |
| 8  |
|    |
| 9  |
|    |
|    |
| 15 |
| 16 |
| 16 |
| 16 |
| 1  |
| 19 |
|    |

## 1 Введение

#### 1.1 Постановка задачи

В работе будет рассматриваться разностная схема с центральными разностями  $(\ln \rho, u)$  для решения начально-краевых задач для системы уравнений, описывающей нестационарное двумерное движение вязкого баротропного газа:

$$\begin{cases} \frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \mathbf{u}) = \rho f_0; \\ \rho \left[ \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u}, \nabla) \mathbf{u} \right] + \nabla p = L \mathbf{u} + \rho \mathbf{f}; \\ L \mathbf{u} = \operatorname{div}(\mu \nabla \mathbf{u}) + \frac{1}{3} \nabla (\mu \operatorname{div} \mathbf{u}); \\ p = p(\rho). \end{cases}$$
(1)

В данной схеме известными считаются:

- $\mu$  коэффициент вязкости газа, который считаем известной положительной константой.
- p функция давления газа. Будем использовать две возможные зависимости:  $p(\rho) = C\rho$ , где C неотрицательная константа или  $p(\rho) = \rho^{\gamma}$ , где  $\gamma = 1.4$ .
- $\mathbf{f} = \mathbf{f}(\mathbf{x})$  вектор внешних сил, который является функцией переменных Эйлера  $(t, \mathbf{x}) \in \Omega = \Omega_t \times \Omega_\mathbf{x} \subset \mathbb{R} \times \mathbb{R}^d$ .

Неизвестными же считаются функции переменных Эйлера:

- $\rho$  функция плотности;
- $\mathbf{u} = (u_1, ..., u_d)$  функция скорости.

Систему (1) можно переписать в виде

$$\begin{cases} \frac{\partial \rho}{\partial t} + \sum_{i=1}^{d} \frac{\partial \rho u_i}{\partial x_i} = \rho f_0; \\ \frac{\partial \rho u_s}{\partial t} + \sum_{i=1}^{d} \frac{\partial \rho u_i u_s}{\partial x_i} + \frac{\partial p}{\partial x_s} = \mu \left( \sum_{i=1}^{d} \frac{\partial^2 u_s}{\partial x_i^2} + \frac{1}{3} \sum_{i=1}^{d} \frac{\partial^2 u_i}{\partial x_s \partial x_i} \right) + \rho f_s, \quad s = 1, \dots, d. \end{cases}$$

Сделав замену  $g = \ln \rho$  и ряд преобразований, систему (1) можно переписать в виде (см. [1])

$$\begin{cases}
\frac{\partial g}{\partial t} + \frac{1}{2} \sum_{i=1}^{d} \left( u_i \frac{\partial g}{\partial x_i} + \frac{\partial u_i g}{\partial x_i} + (2 - g) \frac{\partial u_i}{\partial x_i} \right) = f_0; \\
\frac{\partial u_s}{\partial t} + \frac{1}{3} \left( u_s \frac{\partial u_s}{\partial x_s} + \frac{\partial u_s^2}{\partial x_s} \right) + \frac{1}{2} \sum_{i=1, i \neq s}^{d} \left( u_i \frac{\partial u_s}{\partial x_i} + \frac{\partial u_i u_s}{\partial x_i} - u_s \frac{\partial u_i}{\partial x_i} \right) + \\
+ p_{\rho}(e^g) \frac{\partial g}{\partial x_s} = \mu e^g \left( \frac{4}{3} \frac{\partial^2 u_s}{\partial x_s^2} + \sum_{i=1, i \neq s}^{d} \left( \frac{\partial^2 u_s}{\partial x_i^2} + \frac{1}{3} \frac{\partial^2 u_i}{\partial x_s \partial x_i} \right) \right) + f_s, \quad s = 1, \dots, d.
\end{cases}$$

Дополним систему (1) начальными и граничными условиями:

$$(\rho, \mathbf{u})|_{t=0} = (\rho_0, \mathbf{u}_0), \quad \mathbf{x} \in \Omega_x;$$
  

$$u(t, \mathbf{x}) = 0, \quad (t, \mathbf{x}) \in \Omega_t \times \partial \Omega_x.$$
(3)

В качестве областей  $\Omega_t$  и  $\Omega_x$  рассмотрим  $[0;T]\subset\mathbb{R}$  и  $\Omega_{x_1}\times\ldots\times\Omega_{x_d}\subset\mathbb{R}^d$ , где  $\Omega_{x_s}=[0;X_s], s=1,\ldots,d$ , соответственно.

### 1.2 Основные обозначения

Введем на областях  $\Omega_t = [0; T]$  и  $\Omega_{x_s} = [0; X_s]$ , равномерные сетки с шагом  $\tau$  и  $h_s$  соответственно:

$$\omega_{\tau} = \{n\tau \mid n = 0, \dots, N\}, \text{ где } N\tau = T$$

$$\omega_{h_s} = \{mh_s \, | \, m = 0, \dots, M_s\},$$
 где  $M_sh_s = X_s$ 

Обозначим

$$\mathbf{h} = (h_1, \dots, h_d), \quad \omega_{\mathbf{h}} = (\omega_{h_1} \times \dots \times \omega_{h_d}), \quad \omega_{\tau, h} = \omega_{\tau} \times \omega_h$$

$$\gamma_{\mathbf{h}, s}^- = \omega_{h_1} \times \dots \times \omega_{h_{s-1}} \times \{0\} \times \omega_{h_{s+1}} \times \dots \times \omega_{h_d}$$

$$\gamma_{\mathbf{h}, s}^+ = \omega_{h_1} \times \dots \times \omega_{h_{s-1}} \times \{X_s\} \times \omega_{h_{s+1}} \times \dots \times \omega_{h_d}$$

$$\gamma_{\mathbf{h}, s} = \gamma_{\mathbf{h}, s}^- \cup \gamma_{\mathbf{h}, s}^+, \quad \gamma_{\mathbf{h}} = \gamma_{\mathbf{h}, 1} \cup \dots \cup \gamma_{\mathbf{h}, d}$$

Для сокращения записи обозначим  $m=(m_1,\ldots,m_d), \ m\pm q_s=(m_1,\ldots,m_{s-1},\ m_s\pm q,\ m_{s+1},\ldots,m_d),$  значение для произвольной функции g в узле (n,m) через  $g_m^n,\ g_m^{n+1}$  через  $\widehat{g}$ . Введем обозначения для среднего значения величин сеточной функции в двух соседних узлах:

$$g_{\text{avg}_s} = \frac{g_m^n + g_{m+1_s}^n}{2}, \quad g_{\overline{\text{avg}}_s} = \frac{g_m^n + g_{m-1_s}^n}{2}$$

и для разностных операторов:

$$\begin{split} g_t &= \frac{g_m^{n+1} - g_m^n}{\tau} \,, \quad g_{x_s} = \frac{g_{m+1_s}^n - g_m^n}{h_s}, \\ g_{\overline{x}_s} &= \frac{g_m^n - g_{m-1_s}^n}{h_s} \,, \quad g_{\mathring{x}_s} = \frac{g_{m+1_s}^n - g_{m-1_s}^n}{2h_s}, \\ g_{x_s\overline{x}_s} &= (g_{x_s})_{\overline{x}_s} = \frac{g_{m+1_s}^n - 2g_m^n + g_{m-1_s}^n}{h_s^2}. \end{split}$$

## 2 Описание схемы

### 2.1 Схема

Обозначим через G и  $V_s$ ,  $s=1,\ldots,d$ , приближенные значения функций  $\ln \rho$  и  $u_s$  соответственно. Для поиска численного решения задачи (2) с начальными условиями (3) можно использовать следующую разностную схему:

$$\begin{cases} F_{0}(G, V_{1}, \dots, V_{d}) = f_{0}, & \mathbf{x} \in \operatorname{int} \omega_{h} \\ F_{0, s}^{-}(G, V_{1}, \dots, V_{d}) = f_{0}, & \mathbf{x} \in \gamma_{h, s}^{-} \\ F_{0, s}^{+}(G, V_{1}, \dots, V_{d}) = f_{0}, & \mathbf{x} \in \gamma_{h, s}^{+} \\ F_{s}(G, V_{1}, \dots, V_{d}) = f_{s}, & \mathbf{x} \in \operatorname{int} \omega_{h} \\ \widehat{V}_{s} = 0, & \mathbf{x} \in \gamma_{h, s}, \end{cases}$$

$$(4)$$

s = 1, ..., d, где

$$F_0(G, V_1, \dots, V_d) = G_t + \frac{1}{2} \sum_{i=1}^d \left( V_i \widehat{G}_{\hat{x}_i} + (V_i \widehat{G})_{\hat{x}_i} + 2(\widehat{V}_i)_{\hat{x}_i} - G(V_i)_{\hat{x}_i} \right) - \tau \eta \sum_{i=1}^d (\Phi_{\text{avg}_i} \widehat{G}_{x_i})_{\overline{x}_i}$$
(5)

$$F_{0,s}^{-}(G, V_1, \dots, V_d) = G_t + \frac{1}{2} \left( (V_s \widehat{G})_{x_s} + 2(\widehat{V}_s)_{x_s} - G(V_s)_{x_s} \right) - A_s^{-} - \tau \eta \frac{2\Phi_{\text{avg}_s}}{h_s} \widehat{G}_{x_s}$$
 (6)

$$F_{0,s}^{+}(G, V_1, \dots, V_d) = G_t + \frac{1}{2} \left( (V_s \widehat{G})_{\overline{x}_s} + 2(\widehat{V}_s)_{\overline{x}_s} - G(V_s)_{\overline{x}_s} \right) + A_s^{+} + \tau \eta \frac{2\Phi_{\overline{avg}_s}}{h_s} \widehat{G}_{\overline{x}_s}$$
(7)

$$A_s^{\pm}(G, V_1, \dots, V_d) = 0.5h_s \left[ (GV_k)_{x_s \overline{x}_s}^{\pm 1_s} - 0.5(GV_k)_{x_s \overline{x}_s}^{\pm 2_s} (2 - G)((V_s))_{x_s \overline{x}_s}^{\pm 1_s} - 0.5(V_s)_{x_s \overline{x}_s}^{\pm 2_s} \right]$$
(8)

$$F_{s}(G, V_{1}, \dots, V_{d}) =$$

$$= (V_{s})_{t} + \frac{1}{3} (V_{s}(\widehat{V}_{s})_{\mathring{x}_{s}} + (V_{s}\widehat{V}_{s})_{\mathring{x}_{s}}) + \frac{1}{2} \sum_{i=1, i \neq s}^{d} (V_{i}(\widehat{V}_{s})_{\mathring{x}_{i}} + (V_{i}\widehat{V}_{s})_{\mathring{x}_{i}} - V_{s}(V_{i})_{\mathring{x}_{i}}) + p_{\rho}(e^{G})\widehat{G}_{\mathring{x}_{s}} -$$

$$- \widetilde{\mu} \left( \frac{4}{3} (\widehat{V}_{s})_{x_{s}\overline{x}_{s}} + \sum_{i=1, i \neq s}^{d} (\widehat{V}_{s})_{x_{i}\overline{x}_{i}} \right) + (\widetilde{\mu} - \mu e^{-G}) \cdot \left( \frac{4}{3} (V_{s})_{x_{s}\overline{x}_{s}} + \sum_{i=1, i \neq s}^{d} (V_{s})_{x_{i}\overline{x}_{i}} \right) - \frac{1}{3}\mu e^{-G} \sum_{i=1, i \neq s}^{d} (V_{i})_{\mathring{x}_{s}\mathring{x}_{i}},$$

$$(9)$$

где

$$\widetilde{\mu} = \mu \| \exp(-G^n) \| = \mu \max_{m} | \exp(-G_m^n) | = \mu \exp\left(-\min_{m} G_m^n\right)$$

и функция  $\Phi$  берется равной либо  $e^G$ , либо  $V^2$ .

Величина  $\eta$  является положительной константой и подбирается экспериментально. Наличие слагаемых с коэффициентом  $\eta$ , называемых искусственными вязкостями, обусловлено использованием в схеме центральных разностей, которые приводят к появлению осцилляций у численного решения на фоне точного решения дифференциальной задачи.

В качестве значений разностного решения на нулевом слое берутся проекции на сетку  $\omega_h$  функций  $\ln \rho_0$  и  $u_0$  (запись g(hm) стоит понимать как  $g(h_1m_1, \ldots, h_dm_d)$ ):

$$G_m^0 = \ln \rho_0(hm), \quad V_m^0 = \mathbf{u}_0(hm),$$

а граничные значения скорости полагаются равными нулю (последнее уравнение в (4)):

$$V_m^n = 0,$$

 $n=1,\ldots,N.$ 

Так как

$$p_o(e^g) = C\gamma e^{(\gamma-1)g}$$

для 
$$p(\rho) = C\rho^{\gamma}$$
, то

$$p_o(e^{G_m^n}) = C\gamma e^{(\gamma - 1)G_m^n}.$$

## 2.2 Координатная запись уравнений

Пользуясь обозначениями, приведенными в разделе 1.2, перепишем уравнения из (4) в координатном виде.

#### 2.2.1 Первое уравнение

Рассматриваем уравнение (5):

$$F_0(G, V_1, \dots, V_d) = G_t + \frac{1}{2} \sum_{i=1}^d \left( V_i \widehat{G}_{\hat{x}_i} + (V_i \widehat{G})_{\hat{x}_i} + 2(\widehat{V}_i)_{\hat{x}_i} - G(V_i)_{\hat{x}_i} \right) - \tau \eta \sum_{i=1}^d (\Phi_{\text{avg}_i} \widehat{G}_{x_i})_{\overline{x}_i}$$

Распишем в общем случае:

$$\begin{split} F_0(G,\,V_1,\,\dots,\,V_d) &= \left(\frac{1}{\tau} + \tau\eta \sum_{i=1}^d \frac{\Phi^n_{m+1_i} + 2\Phi^n_m + \Phi^n_{m-1_i}}{2h_i^2}\right) G^{n+1}_m + \\ &+ \sum_{i=1}^d \left(-\frac{(V_i)^n_m + (V_i)^n_{m-1_i}}{4h_i} - \tau\eta \frac{(\Phi^n_m + \Phi^n_{m-1_i})}{2h_i^2}\right) G^{n+1}_{m-1_i} + \sum_{i=1}^d \left(\frac{(V_i)^n_m + (V_i)^n_{m+1_i}}{4h_i} - \tau\eta \frac{(\Phi^n_m + \Phi^n_{m+1_i})}{2h_i^2}\right) G^{n+1}_{m+1_i} + \\ &+ \sum_{i=1}^d \left(-\frac{1}{2h_i}\right) (V_i)^{n+1}_{m-1_i} + \sum_{i=1}^d \left(\frac{1}{2h_i}\right) (V_i)^{n+1}_{m+1_i} - \left(\frac{G^n_m}{\tau} + \sum_{i=1}^d G^n_m \frac{(V_i)^n_{m+1_i} - (V_i)^n_{m-1_i}}{4h_i}\right) \end{split}$$

В программной реализации будем полагать  $\eta=0$ :

$$F_0(G, V_1, \dots, V_d) = \left(\frac{1}{\tau}\right) G_m^{n+1} + \sum_{i=1}^d \left(-\frac{(V_i)_m^n + (V_i)_{m-1_i}^n}{4h_i}\right) G_{m-1_i}^{n+1} + \sum_{i=1}^d \left(\frac{(V_i)_m^n + (V_i)_{m+1_i}^n}{4h_i}\right) G_{m+1_i}^{n+1} + \sum_{i=1}^d \left(-\frac{1}{2h_i}\right) (V_i)_{m-1_i}^{n+1} + \sum_{i=1}^d \left(\frac{1}{2h_i}\right) (V_i)_{m+1_i}^{n+1} - \left(\frac{G_m^n}{\tau} + \sum_{i=1}^d G_m^n \frac{(V_i)_{m+1_i}^n - (V_i)_{m-1_i}^n}{4h_i}\right)$$

Домножим на  $4\tau$  и раскроем суммы для d=2:

$$\begin{split} 4\tau\,F_0(G,\,V_1,\,V_2) &= 4\,G_m^{n+1} + \left(-\frac{\tau}{h_1}\right) \left(V_{1m}^n + V_{1m_1-1,m_2}^n\right) G_{m_1-1,m_2}^{n+1} + \left(-\frac{\tau}{h_2}\right) \left(V_{2m}^n + V_{2m_1,m_2-1}^n\right) G_{m_1,m_2-1}^{n+1} + \\ &\quad + \left(\frac{\tau}{h_1}\right) \left(V_{1m}^n + V_{1m_1+1,m_2}^n\right) G_{m_1+1,m_2}^{n+1} + \left(\frac{\tau}{h_2}\right) \left(V_{2m}^n + V_{2m_1,m_2+1}^n\right) G_{m_1,m_2+1}^{n+1} + \\ &\quad + \left(-\frac{2\tau}{h_1}\right) V_{1m_1-1,m_2}^{n+1} + \left(-\frac{2\tau}{h_2}\right) V_{2m_1,m_2-1}^{n+1} + \left(\frac{2\tau}{h_1}\right) V_{1m_1+1,m_2}^{n+1} + \left(\frac{2\tau}{h_2}\right) V_{2m_1,m_2+1}^{n+1} - \\ &\quad - \left[4 + \left(\frac{\tau}{h_1}\right) \left(V_{1m_1+1,m_2}^n - V_{1m_1-1,m_2}^n\right) + \left(\frac{\tau}{h_2}\right) \left(V_{2m_1,m_1+1}^n - V_{2m_1,m_2-1}^n\right)\right] G_m^n \end{split}$$

 $\mathbf{x} \in \operatorname{int} \omega_h : (m_1; m_2) \in (1, \dots, M_1 - 1; 1, \dots, M_2 - 1)$ 

## 2.2.2 Второе уравнение

Рассматриваем уравнение (6):

$$F_{0,s}^{-}(G, V_1, \dots, V_d) = G_t + \frac{1}{2} \left( (V_s \widehat{G})_{x_s} + 2(\widehat{V}_s)_{x_s} - G(V_s)_{x_s} \right) - A_s^{-} - \tau \eta \frac{2\Phi_{\text{avg}_s}}{h_c} \widehat{G}_{x_s}$$

Распишем в общем случае:

$$F_{0,s}^{-}(G, V_1, \dots, V_d) = \left(\frac{1}{\tau} - \frac{(V_s)_m^n}{2h_s} + \tau \eta \frac{\Phi_m^n + \Phi_{m+1_s}^n}{h_s^2}\right) G_m^{n+1} + \left(\frac{(V_s)_{m+1_s}^n}{2h_s} - \tau \eta \frac{\Phi_m^n + \Phi_{m+1_s}^n}{h_s^2}\right) G_{m+1_s}^{n+1} + \left(-\frac{1}{h_s}\right) (V_s)_m^{n+1} + \left(\frac{1}{h_s}\right) (V_s)_{m+1_s}^{n+1} - \left(\frac{G_m^n}{\tau} + G_m^n \frac{(V_s)_{m+1_s}^n - (V_s)_m^n}{2h_s}\right) - A_s^{-1}$$

В программной реализации будем полагать  $\eta = 0$ :

$$F_{0,s}^{-}(G, V_1, \dots, V_d) = \left(\frac{1}{\tau} - \frac{(V_s)_m^n}{2h_s}\right) G_m^{n+1} + \left(\frac{(V_s)_{m+1_s}^n}{2h_s}\right) G_{m+1_s}^{n+1} + \left(-\frac{1}{h_s}\right) (V_s)_m^{n+1} + \left(\frac{1}{h_s}\right) (V_s)_{m+1_s}^{n+1} - \left(\frac{G_m^n}{\tau} + G_m^n \frac{(V_s)_{m+1_s}^n - (V_s)_m^n}{2h_s}\right) - A_s^{-1}$$

Домножим на  $2\tau$  и запишем для d=2, s=1:

$$\begin{split} 2\tau F_{0,\,1}^{-}(G,\,V_1,\,V_2) &= \left(2 - \frac{\tau}{h_1}\,\,V_{1\,m}^{\,n}\right)G_m^{n+1} + \left(\frac{\tau}{h_1}\,\,V_{1\,m_1+1,m_2}^{\,n}\right)G_{m_1+1,m_2}^{n+1} + \\ &\quad + \left(-\frac{2\tau}{h_1}\right)V_{1\,m}^{\,n+1} + \left(\frac{2\tau}{h_1}\right)V_{1\,m_1+1,m_2}^{\,n+1} - \left[2 + \left(\frac{\tau}{h_1}\right)\left(V_{1\,m_1+1,m_2}^{\,n} - V_{1\,m}^{\,n}\right)\right]G_m^{n} - 2\tau A_1^{-n} \end{split}$$

$$2\tau A_1^-(G, V_1, V_2) = \frac{2\tau}{h_1} \left[ -2.5G_{m_1+1, m_2}^n V_{1m_1+1, m_2}^n + 2G_{m_1+2, m_2}^n V_{1m_1+2, m_2}^n - 0.5G_{m_1+3, m_2}^n V_{1m_1+3, m_2}^n + (2 - G_m^n)(-2.5V_{1m_1+1, m_2}^n + 2V_{1m_1+2, m_2}^n - 0.5V_{1m_1+3, m_2}^n) \right]$$

$$\mathbf{x} \in \gamma_{\mathbf{h}, 1}^{-}: (m_1; m_2) \in (0; 0, \dots, M_2)$$
  
 $\mathbf{x} \in \gamma_{\mathbf{h}, 2}^{-}: (m_1; m_2) \in (0, \dots, M_1; 0)$ 

#### 2.2.3 Третье уравнение

Рассматриваем уравнение (7):

$$F_{0,s}^{+}(G, V_1, \dots, V_d) = G_t + \frac{1}{2} \left( (V_s \widehat{G})_{\overline{x}_s} + 2(\widehat{V}_s)_{\overline{x}_s} - G(V_s)_{\overline{x}_s} \right) + A_s^{+} + \tau \eta \frac{2\Phi_{\overline{avg}_s}}{h_s} \widehat{G}_{\overline{x}_s}$$

Распишем в общем случае:

$$F_{0,s}^{+}(G, V_1, \dots, V_d) = \left(\frac{1}{\tau} + \frac{(V_s)_m^n}{2h_s} + \tau \eta \frac{\Phi_m^n + \Phi_{m-1_s}^n}{h_s^2}\right) G_m^{n+1} + \left(-\frac{(V_s)_{m-1_s}^n}{2h_s} - \tau \eta \frac{\Phi_m^n + \Phi_{m+1_s}^n}{h_s^2}\right) G_{m-1_s}^{n+1} + \left(\frac{1}{h_s}\right) (V_s)_m^{n+1} + \left(-\frac{1}{h_s}\right) (V_s)_{m-1_s}^{n+1} - \left(\frac{G_m^n}{\tau} + G_m^n \frac{(V_s)_m^n - (V_s)_{m-1_s}^n}{2h_s}\right) + A_s^+$$

В программной реализации будем полагать  $\eta = 0$ :

$$F_{0,s}^{+}(G, V_1, \dots, V_d) = \left(\frac{1}{\tau} + \frac{(V_s)_m^n}{2h_s}\right) G_m^{n+1} + \left(-\frac{(V_s)_{m-1_s}^n}{2h_s}\right) G_{m-1_s}^{n+1} + \left(-\frac{1}{h_s}\right) (V_s)_m^{n+1} + \left(-\frac{1}{h_s}\right) (V_s)_{m-1_s}^{n+1} - \left(\frac{G_m^n}{\tau} + G_m^n \frac{(V_s)_m^n - (V_s)_{m-1_s}^n}{2h_s}\right) + A_s^+$$

Домножим на  $2\tau$  и запишем для d=2, s=1:

$$\begin{split} 2\tau F_{0,\,1}^+(G,\,V_1,\,V_2) &= \left(2 + \frac{\tau}{h_1}\,V_{1\,m}^{\,n}\right)G_m^{n+1} + \left(-\frac{\tau}{h_1}\,V_{1\,m_1+1,m_2}^{\,n}\right)G_{m_1+1,m_2}^{n+1} + \\ &\quad + \left(\frac{2\tau}{h_1}\right)V_{1\,m}^{\,n+1} + \left(-\frac{2\tau}{h_1}\right)V_{1\,m_1+1,m_2}^{\,n+1} - \left[2 + \left(\frac{\tau}{h_1}\right)\left(V_{1\,m}^{\,n} - V_{1\,m_1-1,m_2}^{\,n}\right)\right]G_m^{n} - 2\tau A_1^+ \end{split}$$

$$2\tau A_1^+(G, V_1, V_2) = \frac{2\tau}{h_1} \left[ -2.5G_{m_1-1, m_2}^n V_{1m_1-1, m_2}^n + 2G_{m_1-2, m_2}^n V_{1m_1-2, m_2}^n - 0.5G_{m_1-3, m_2}^n V_{1m_1-3, m_2}^n + (2 - G_m^n)(-2.5V_{1m_1-1, m_2}^n + 2V_{1m_1-2, m_2}^n - 0.5V_{1m_1-3, m_2}^n) \right]$$

$$\mathbf{x} \in \gamma_{\mathbf{h}, 1}^{+} : (m_1; m_2) \in (M_1; 0, \dots, M_2)$$
  
 $\mathbf{x} \in \gamma_{\mathbf{h}, 2}^{+} : (m_1; m_2) \in (0, \dots, M_1; M_2)$ 

#### 2.2.4 Четвертое уравнение

Рассматриваем уравнение (9):

$$F_{s}(G, V_{1}, \dots, V_{d}) =$$

$$= (V_{s})_{t} + \frac{1}{3} (V_{s}(\widehat{V}_{s})_{\mathring{x}_{s}} + (V_{s}\widehat{V}_{s})_{\mathring{x}_{s}}) + \frac{1}{2} \sum_{i=1, i \neq s}^{d} (V_{i}(\widehat{V}_{s})_{\mathring{x}_{i}} + (V_{i}\widehat{V}_{s})_{\mathring{x}_{i}} - V_{s}(V_{i})_{\mathring{x}_{i}}) + p_{\rho}(e^{G})\widehat{G}_{\mathring{x}_{s}} -$$

$$- \widetilde{\mu} \left( \frac{4}{3} (\widehat{V}_{s})_{x_{s}\overline{x}_{s}} + \sum_{i=1, i \neq s}^{d} (\widehat{V}_{s})_{x_{i}\overline{x}_{i}} \right) + (\widetilde{\mu} - \mu e^{-G}) \cdot \left( \frac{4}{3} (V_{s})_{x_{s}\overline{x}_{s}} + \sum_{i=1, i \neq s}^{d} (V_{s})_{x_{i}\overline{x}_{i}} \right) - \frac{1}{3} \mu e^{-G} \sum_{i=1, i \neq s}^{d} (V_{i})_{\mathring{x}_{s}\mathring{x}_{i}}$$

Распишем в общем случае:

$$\begin{split} F_s(G,\,V_1,\,\dots,\,V_d) &= \frac{(V_s)_m^{n+1} - (V_s)_m^n}{\tau} + \\ &\quad + \frac{1}{3} \bigg[ (V_s)_m^n \frac{(V_s)_{m+1_s}^{n+1} - (V_s)_{m-1_s}^{n+1}}{2h_s} + \frac{(V_s)_{m+1_s}^n (V_s)_{m+1_s}^{n+1} - (V_s)_{m-1_s}^n (V_s)_{m-1_s}^{n+1}}{2h_s} \bigg] + \\ &\quad + \frac{1}{2} \sum_{i=1,\,i \neq s}^d \bigg[ (V_i)_m^n \frac{(V_s)_{m+1_i}^{n+1} - (V_s)_{m-1_i}^{n+1}}{2h_i} + \frac{(V_i)_{m+1_i}^n (V_s)_{m+1_i}^{n+1} - (V_i)_{m-1_i}^n (V_s)_{m-1_i}^{n+1}}{2h_i} - \\ &\quad - (V_s)_m^n \frac{(V_i)_{m+1_i}^n - (V_i)_{m-1_i}^n}{2h_i} \bigg] + p_{\rho}(\exp(G_m^n)) \cdot \frac{G_{m+1_s}^{n+1} - G_{m-1_s}^{n+1}}{2h_s} - \\ &\quad - \widetilde{\mu} \left[ \frac{4}{3} \frac{(V_s)_{m+1_s}^{n+1} - 2(V_s)_{m}^{n+1} + (V_s)_{m-1_s}^{n+1}}{h_s^2} + \sum_{i=1,\,i \neq s}^d \frac{(V_s)_{m+1_i}^{n+1} - 2(V_s)_m^{n+1} + (V_s)_{m-1_i}^{n+1}}{h_i^2} \right] + \\ &\quad + (\widetilde{\mu} - \mu \exp(-G_m^n)) \cdot \left[ \frac{4}{3} \frac{(V_s)_{m+1_s}^n - 2(V_s)_m^n + (V_s)_{m-1_s}^n}{h_s^2} + \sum_{i=1,\,i \neq s}^d \frac{(V_s)_{m+1_i}^{n+1} - 2(V_s)_m^n + (V_s)_{m-1_i}^n}{h_i^2} \right] - \\ &\quad - \frac{1}{3} \mu \exp(-G_m^n) \sum_{i=1,\,i \neq s}^d \frac{(V_i)_{m+1_s+1_i}^n - (V_i)_{m+1_s-1_i}^n - (V_i)_{m-1_s+1_i}^n + (V_i)_{m-1_s-1_i}^n}{4h_s h_i} \end{split}$$

Сгруппируем:

$$\begin{split} F_s(G,\,V_1,\,\ldots,\,V_d) &= \\ &= \left(-\frac{p_\rho(\exp(G_m^n))}{2h_s}\right) G_{m-1_s}^{n+1} + \left(\frac{p_\rho(\exp(G_m^n))}{2h_s}\right) G_{m+1_s}^{n+1} + \left(\frac{1}{\tau} + \frac{8\widetilde{\mu}}{3h_s^2} + \sum_{i=1,\,i\neq s}^d \frac{2\widetilde{\mu}}{h_i^2}\right) (V_s)_m^{n+1} + \\ &+ \left(-\frac{(V_s)_m^n + (V_s)_{m-1_s}^n}{6h_s} - \frac{4\widetilde{\mu}}{3h_s^2}\right) (V_s)_{m-1_s}^{n+1} + \sum_{i=1,\,i\neq s}^d \left(-\frac{(V_i)_m^n + (V_i)_{m-1_i}^n}{4h_i} - \frac{\widetilde{\mu}}{h_i^2}\right) (V_s)_{m-1_i}^{n+1} + \\ &+ \left(\frac{(V_s)_m^n + (V_s)_{m+1_s}^n}{6h_s} - \frac{4\widetilde{\mu}}{3h_s^2}\right) (V_s)_{m+1_s}^{n+1} + \sum_{i=1,\,i\neq s}^d \left(\frac{(V_i)_m^n + (V_i)_{m+1_i}^n}{4h_i} - \frac{\widetilde{\mu}}{h_i^2}\right) (V_s)_{m+1_i}^{n+1} - B_s \end{split}$$

$$B_{s}(G, V_{1}, \dots, V_{d}) = \frac{(V_{s})_{m}^{n}}{\tau} + \sum_{i=1, i \neq s}^{d} (V_{s})_{m}^{n} \frac{(V_{i})_{m+1_{i}}^{n} - (V_{i})_{m-1_{i}}^{n}}{4h_{i}} - (\widetilde{\mu} - \mu \exp(-G_{m}^{n})) \cdot \left[ \frac{4}{3} \frac{(V_{s})_{m+1_{s}}^{n} - 2(V_{s})_{m}^{n} + (V_{s})_{m-1_{s}}^{n}}{h_{s}^{2}} + \sum_{i=1, i \neq s}^{d} \frac{(V_{s})_{m+1_{i}}^{n} - 2(V_{s})_{m}^{n} + (V_{s})_{m-1_{i}}^{n}}{h_{i}^{2}} \right] + \frac{1}{3} \mu \exp(-G_{m}^{n}) \sum_{i=1, i \neq s}^{d} \frac{(V_{i})_{m+1_{s}+1_{i}}^{n} - (V_{i})_{m+1_{s}-1_{i}}^{n} - (V_{i})_{m-1_{s}+1_{i}}^{n} + (V_{i})_{m-1_{s}-1_{i}}^{n}}{4h_{s}h_{i}}$$

Домножим на  $6\tau$  и запишем для d=2, s=1:

$$\begin{split} &6\tau F_s(G,\,V_1,\,V_2) = \\ &= \left(\frac{3\tau p_\rho}{h_1}\,\exp(G_m^n)\right)G_{m_1-1,m_2}^{n+1} + \left(\frac{3\tau p_\rho}{h_1}\,\exp(G_m^n)\right)G_{m_1+1,m_2}^{n+1} + \left[6+4\tau\widetilde{\mu}\left(\frac{4}{h_1^2}+\frac{3}{h_2^3}\right)\right]V_{1m}^{n+1} - \\ &- \left[\frac{\tau}{h_1}\left(V_{1m_1-1,m_2}^n + V_{1m}^n\right) + \frac{8\tau\widetilde{\mu}}{h_1^2}\right]V_{1m_1-1,m_2}^{n+1} - \left[\frac{3\tau}{2h_2}\left(V_{2m_1,m_2-1}^n + V_{1m}^n\right) + \frac{6\tau\widetilde{\mu}}{h_2^2}\right]V_{1m_1,m_2-1}^{n+1} + \\ &+ \left[\frac{\tau}{h_1}\left(V_{1m_1+1,m_2}^n + V_{1m}^n\right) - \frac{8\tau\widetilde{\mu}}{h_1^2}\right]V_{1m_1+1,m_2}^{n+1} + \left[\frac{3\tau}{2h_2}\left(V_{2m_1,m_2+1}^n + V_{1m}^n\right) - \frac{6\tau\widetilde{\mu}}{h_2^2}\right]V_{1m_1,m_2+1}^{n+1} - B_s \end{split}$$

$$6\tau B_{1}(G, V_{1}, V_{2}) = \left[6 + \frac{3\tau}{2h_{2}} \left(V_{2m_{1}, m_{2}+1}^{n} - V_{2m_{1}, m_{2}-1}^{n}\right)\right] V_{1m}^{n} -$$

$$-6\tau (\widetilde{\mu} - \mu \exp(-G_{m}^{n})) \cdot \left[\frac{4}{3h_{1}^{2}} \left(V_{1m_{1}+1, m_{2}}^{n} - 2V_{1m}^{n} + V_{1m_{1}-1, m_{2}}^{n}\right) + \frac{1}{h_{2}^{2}} \left(V_{1m_{1}, m_{2}+1}^{n} - 2V_{1m}^{n} + V_{1m_{1}, m_{2}-1}^{n}\right)\right] +$$

$$+ \frac{\tau \mu}{2h_{1}h_{2}} \exp(-G_{m}^{n}) \left(V_{2m_{1}+1, m_{2}+1}^{n} - V_{2m_{1}-1, m_{2}+1}^{n} - V_{2m_{1}+1, m_{2}-1}^{n} + V_{2m_{1}-1, m_{2}-1}^{n}\right)$$

## 3 Программная реализация

#### 3.1 Описание области

Задана область

$$\Omega = \Omega_{01} \cup \Omega_{02} \cup \Omega_{11} \cup \Omega_{12} \cup \Omega_{10} \cup \Omega_{10} \cup \Omega_{20}$$

Неизвестные функции: плотность  $\rho$  и вектор скорости  ${\bf u}$  являются функциями переменных Эйлера  $(t,x)\in Q=[0,T]\times \Omega.$ 



Рис. 1: Заданная область

## 3.2 Особенности реализации программы

Система (4) является линейной относительно переменных  $G^{n+1}$ ,  $(V_s)^{n+1}$ ,  $s=1,\ldots,d$  с разреженной матрицей коэффициентов и, следовательно, может быть эффективно решена с помощью какого-либо итерационного алгоритма. В качестве же начального приближения можно взять значения на n-ом слое.

Для использования итерационных методов решения разреженных линейных систем матрицы стоит делать ближе к диагональной. Для этого необходимо упорядочить уравнения системы (4). Зададим сперва на сетке  $\omega_h$  порядок: нулевым узлом будем считать узел, имеющий наименьшие значения всех пространственных координат; далее последовательно выбираются узлы, у которых в первую очередь увеличивается первая координата, потом вторая и т.д., причем при изменении s-ой координаты,  $s=2,\ldots,d$ , координаты  $1,\ldots,s-1$  принимают наименьшее возможное значение. Пронумеровав все узлы, обозначим  $z=(\hat{G}_0,(\hat{V}_1)_0,(\hat{V}_2)_0,\ldots,(\hat{V}_d)_0,\hat{G}_1,(\hat{V}_1)_1,(\hat{V}_2)_1,\ldots,(\hat{V}_d)_1,\ldots)^T$ . В результате получится система Az=b с почти 3(d+1) диагональной матрицей A.

В случае 
$$d=2:z=(\widehat{G}_0,\,(\widehat{V}_1)_0,\,(\widehat{V}_2)_0,\,\widehat{G}_1,\,(\widehat{V}_1)_1,\,(\widehat{V}_2)_1,\,\ldots)^T.$$
 Матрица почти 9-диагональная.

Для решения системы будем использовать стабилизированный метод бисопряжённых градиентов (англ. bi-conjugate gradient stabilized method, BiCGStab) с использованием ILUT (Incomplete LU with Threshold) предобусловливателя. Реализация метода была взята из библиотеки Eigen (см. [2]), все параметры, кроме предобусловливателя, по умолчанию.

## 4 Отладочный тест

#### 4.1 Постановка задачи

Зададим функции

$$\widetilde{\rho}(t, x_1, x_2) = (\cos(2\pi x_1) + 1.5)(\sin(2\pi x_2) + 1.5) \exp(t);$$

$$\widetilde{u}_2(t, x_1, x_2) = \sin(2\pi x_1) \sin(2\pi x_2) \exp(t);$$

$$\widetilde{u}_2(t, x_1, x_2) = \sin(2\pi x_1) \sin(2\pi x_2) \exp(-t);$$
(10)

Определим функции  $\widetilde{f}_0$ ,  $\widetilde{f}_1$ ,  $\widetilde{f}_2$  так, чтобы они удовлетворяли системе (2) с правой частью, составленной из этих функций, а именно:

$$\begin{cases}
\frac{\partial \widetilde{\rho}}{\partial t} + \sum_{i=1}^{d} \frac{\partial \widetilde{\rho} \widetilde{u}_{i}}{\partial x_{i}} = \widetilde{\rho} \widetilde{f}_{0}; \\
\frac{\partial \widetilde{\rho} \widetilde{u}_{s}}{\partial t} + \sum_{i=1}^{d} \frac{\partial \widetilde{\rho} \widetilde{u}_{i} \widetilde{u}_{s}}{\partial x_{i}} + \frac{\partial p}{\partial x_{s}} = \mu \left( \sum_{i=1}^{d} \frac{\partial^{2} \widetilde{u}_{s}}{\partial x_{i}^{2}} + \frac{1}{3} \sum_{i=1}^{d} \frac{\partial^{2} \widetilde{u}_{i}}{\partial x_{s} \partial x_{i}} \right) + \widetilde{\rho} \widetilde{f}_{s}, \quad s = 1, 2.
\end{cases}$$
(11)

Выпишем отдельно все частные производные, необходимые для подсчета функций  $\widetilde{f}_s$ :

$$\begin{split} \frac{\partial \tilde{\rho}}{\partial t} &= \tilde{\rho} \\ \frac{\partial \tilde{\rho}}{\partial x_1} &= -2\pi \sin(2\pi x_1)(1.5 + \sin(2\pi x_2)) \exp(t) \\ \frac{\partial \tilde{\rho}}{\partial x_2} &= 2\pi (\cos(2\pi x_1) + 1.5) \cos(2\pi x_2)) \exp(t) \\ \frac{\partial \tilde{\rho}}{\partial x_2} &= \frac{1}{\tilde{\rho}} \frac{\partial \tilde{\rho}}{\partial x_2} \\ \frac{\partial \tilde{\rho}}{\partial x_2} &= \frac{1}{\tilde{\rho}} \frac{\partial \tilde{\rho}}{\partial x_2} \end{split}$$

$$\begin{split} \frac{\partial \tilde{u_1}}{\partial t} &= u_1 & \frac{\partial \tilde{u_2}}{\partial t} &= -u_2 \\ \frac{\partial \tilde{u_1}}{\partial x_1} &= 2\pi \cos(2\pi x_1) \sin(2\pi x_2) \exp(t) & \frac{\partial \tilde{u_2}}{\partial x_1} &= 2\pi \cos(2\pi x_1) \sin(2\pi x_2) \exp(-t) \\ \frac{\partial \tilde{u_1}}{\partial x_2} &= 2\pi \sin(2\pi x_1) \cos(2\pi x_2) \exp(t) & \frac{\partial \tilde{u_2}}{\partial x_2} &= 2\pi \sin(2\pi x_1) \cos(2\pi x_2) \exp(-t) \end{split}$$

Выписывать явный вид для функций  $\widetilde{f}_s$  не имеет смысла, так они являются комбинациями описанных выше функций и производных и намного проще реализовать отдельные части этих комбинаций. Таким образом, функции (10) являются гладким точным решением дифференциальной задачи (2) с начальными и граничными условиями:

$$\tilde{\rho}(0, \mathbf{x}) = (\cos(2\pi x_1) + 1.5)(\sin(2\pi x_2) + 1.5)$$

$$\tilde{u}_1(0, \mathbf{x}) = \tilde{u}_2(0, \mathbf{x}) = \sin(2\pi x_1)\sin(2\pi x_2)$$

#### 4.2 Численные эксперименты

Будем рассматривать зависимости  $p(\rho) = C\rho$ ,  $C \in \{1, 10\}$ .

Ниже приведены результаты численных экспериментов, а именно таблицы с ошибками (нормами разности между разностным решением и точным решением дифференциальной задачи на последнем временном слое; нормы  $C, L_2, W_2^1$ ) для различных пар параметра  $\mu \in \{0.1, 0.01, 0.001\}$  и зависимости  $p(\rho)$ .

Для решения системы Ax = b использовался метод BiCGSTab + ILUT предобусловливатель из библиотеки Eigen (см. [2]) с параметрами  $eps = 10^{-8}$ , iter = 2000.

## **4.2.1** Ошибки для G

| $\tau$   | 0.10000      | 0.050000     | 0.025000     | 0.012500     |
|----------|--------------|--------------|--------------|--------------|
|          | 1.181652e+01 | 1.443212e+00 | 1.443281e+00 | 1.443604e+00 |
| 0.012500 | 4.893319e+00 | 8.042684e-01 | 8.003429e-01 | 8.002513e-01 |
|          | 3.968220e+01 | 7.933857e+00 | 7.912020e+00 | 7.926450e+00 |
|          | 6.248864e+01 | 7.175910e-02 | 7.231800e-02 | 6.908043e-02 |
| 0.006250 | 1.900438e+01 | 9.393308e-03 | 8.899933e-03 | 8.774750e-03 |
|          | 1.708589e+02 | 1.042025e-02 | 1.012728e-02 | 9.885382e-03 |
|          | 7.120057e+00 | 4.123032e-02 | 3.766751e-02 | 3.592457e-03 |
| 0.003125 | 1.926111e+00 | 5.053052e-03 | 4.634440e-03 | 4.625282e-03 |
|          | 2.143837e+01 | 5.520194e-03 | 5.153051e-03 | 4.965253e-03 |
|          | 2.155197e+00 | 2.625566e-02 | 1.891171e-02 | 1.903686e-02 |
| 0.001563 | 1.278056e+00 | 2.909929e-03 | 2.367424e-03 | 2.355307e-03 |
|          | 1.193935e+01 | 3.239691e-03 | 2.587931e-03 | 2.673878e-03 |

Таблица 1: Таблица для G при C=1 и  $\mu=0.1.$ 

| $\tau$   | 0.10000      | 0.050000     | 0.025000     | 0.012500     |
|----------|--------------|--------------|--------------|--------------|
|          | 4.564166e+00 | 3.245672e-01 | 3.056571e-01 | nan          |
| 0.012500 | 1.573963e+00 | 2.206281e-02 | 2.188531e-02 | -nan         |
|          | 1.560271e+01 | 2.446337e-02 | 2.315404e-02 | -nan         |
|          | 4.794683e+01 | 1.792192e-01 | 1.776189e-01 | 1.776132e-01 |
| 0.006250 | 1.094421e+01 | 8.201671e-02 | 8.096468e-02 | 8.095492e-02 |
|          | 1.408516e+02 | 1.382530e+00 | 1.425657e+00 | 1.431199e+00 |
|          | 1.167069e+04 | 9.662915e-02 | 8.650345e-02 | 8.298890e-02 |
| 0.003125 | 5.143610e+03 | 6.153489e-03 | 5.475710e-03 | 5.249146e-03 |
|          | 1.591441e+04 | 6.669465e-03 | 6.091467e-03 | 6.160562e-03 |
|          | 3.367458e+04 | 4.769869e-02 | 4.218015e-02 | 4.292776e-02 |
| 0.001563 | 1.547585e+04 | 4.247154e-03 | 2.805642e-03 | 2.724375e-03 |
|          | 5.749273e+04 | 4.365953e-03 | 3.184885e-03 | 3.010823e-04 |

Таблица 2: Таблица для G при C=1 и  $\mu=0.01.$ 

| $\tau$ h | 0.10000      | 0.050000     | 0.025000     | 0.012500     |
|----------|--------------|--------------|--------------|--------------|
|          | 4.644843e+00 | nan          | nan          | nan          |
| 0.012500 | 1.375789e+00 | -nan         | -nan         | -nan         |
|          | 1.273598e+01 | -nan         | -nan         | -nan         |
|          | 3.119576e+03 | 7.508658e-01 | nan          | nan          |
| 0.006250 | 1.568071e+03 | 2.383993e-02 | -nan         | -nan         |
|          | 1.374665e+04 | 2.637653e-02 | -nan         | -nan         |
|          | 2.079895e+04 | 3.062194e-01 | 2.608487e-01 | 4.845622e-01 |
| 0.003125 | 9.170933e+03 | 1.324792e-02 | 7.942716e-03 | 9.802728e-03 |
|          | 2.839086e+04 | 1.367280e-02 | 9.034159e-03 | 1.047662e-02 |
|          | 5.783370e+04 | 1.494132e-01 | 1.462905e-01 | 1.033737e-01 |
| 0.001563 | 2.657601e+04 | 8.024104e-03 | 4.124584e-03 | 3.949808e-04 |
|          | 9.607411e+04 | 9.302050e-03 | 4.781897e-03 | 4.261782e-03 |

Таблица 3: Таблица для G при C=1 и  $\mu=0.001.$ 

| $\tau$   | 0.10000      | 0.050000     | 0.025000     | 0.012500     |
|----------|--------------|--------------|--------------|--------------|
|          | 3.222515e+00 | nan          | nan          | nan          |
| 0.012500 | 1.120161e+00 | -nan         | -nan         | -nan         |
|          | 1.339440e+01 | -nan         | -nan         | -nan         |
|          | 5.048784e+01 | 2.294542e-02 | 2.236461e-02 | nan          |
| 0.006250 | 1.562821e+01 | 1.154502e-02 | 1.111025e-02 | -nan         |
|          | 9.405579e+01 | 1.030876e-01 | 9.997687e-02 | -nan         |
|          | 9.549526e+02 | 1.318460e-02 | 1.285138e-02 | 2.610631e-03 |
| 0.003125 | 4.195816e+02 | 6.533726e-03 | 6.383568e-02 | 1.292612e-03 |
|          | 1.360581e+03 | 7.547581e-03 | 5.744328e-02 | 1.037825e-02 |
|          | 8.625099e+02 | 8.395926e-03 | 8.182901e-03 | 1.652392e-03 |
| 0.001563 | 4.645395e+02 | 4.172065e-03 | 4.065086e-03 | 8.231357e-04 |
|          | 1.326580e+03 | 4.806334e-03 | 3.637995e-02 | 6.042953e-03 |

Таблица 4: Таблица для G при C=10 и  $\mu=0.1.$ 

| $\tau$   | 0.10000      | 0.050000     | 0.025000     | 0.012500 |
|----------|--------------|--------------|--------------|----------|
|          | nan          | nan          | nan          | nan      |
| 0.012500 | -nan         | -nan         | -nan         | -nan     |
|          | -nan         | -nan         | -nan         | -nan     |
|          | nan          | 8.568521e-02 | 2.443923e-02 | nan      |
| 0.006250 | -nan         | 1.611803e-02 | 4.034803e-03 | -nan     |
|          | -nan         | 1.838759e-02 | .456690e-03  | -nan     |
|          | 9.670434e+02 | 8.536886e-02 | 2.312920e-02 | nan      |
| 0.003125 | 6.789979e+02 | 1.599702e-02 | 4.187899e-03 | -nan     |
|          | 1.396412e+03 | 1.786157e-02 | 4.378687e-03 | -nan     |
|          | nan          | 8.549353e-02 | 2.244814e-02 | nan      |
| 0.001563 | -nan         | 1.663654e-02 | 4.086817e-03 | -nan     |
|          | -nan         | 1.767401e-02 | 4.314045e-03 | -nan     |

Таблица 5: Таблица для G при C=10 и  $\mu=0.01.$ 

| $\tau$ h | 0.10000 | 0.050000     | 0.025000     | 0.012500 |
|----------|---------|--------------|--------------|----------|
|          | nan     | nan          | nan          | nan      |
| 0.012500 | -nan    | -nan         | -nan         | -nan     |
|          | -nan    | -nan         | -nan         | -nan     |
|          | nan     | nan          | nan          | nan      |
| 0.006250 | -nan    | -nan         | -nan         | -nan     |
|          | -nan    | -nan         | -nan         | -nan     |
|          | nan     | nan          | nan          | nan      |
| 0.003125 | -nan    | -nan         | -nan         | -nan     |
|          | -nan    | -nan         | -nan         | -nan     |
| 0.001563 | nan     | 1.188810e+00 | 1.504082e+00 | nan      |
|          | -nan    | 2.229982e-01 | 2.498056e-01 | -nan     |
|          | -nan    | 6.577662e+00 | 1.274563e+01 | -nan     |

Таблица 6: Таблица для G при C=10 и  $\mu=0.001.$ 

## **4.2.2** Ошибки для $V_1$

| $\tau$ h | 0.10000      | 0.050000     | 0.025000     | 0.012500     |
|----------|--------------|--------------|--------------|--------------|
|          | 1.273794e+00 | 1.551070e-01 | 1.025871e-01 | 9.633164e-02 |
| 0.012500 | 8.811622e-01 | 1.041228e-01 | 7.591445e-02 | 7.586060e-02 |
|          | 9.179300e+00 | 1.393490e+00 | 8.867576e-01 | 8.485213e-01 |
|          | 1.293501e+00 | 1.312914e-02 | 1.207071e-02 | 1.274534e-02 |
| 0.006250 | 8.823137e-01 | 1.872861e-03 | 1.821878e-03 | 1.925126e-03 |
|          | 9.265235e+00 | 2.118845e-03 | 2.065799e-03 | 2.039209e-03 |
|          | 1.303324e+00 | 7.230558e-03 | 6.670095e-03 | 6.167628e-03 |
| 0.003125 | 8.832444e-01 | 9.901299e-04 | 9.469786e-04 | 9.603860e-04 |
|          | 9.313359e+00 | 1.068712e-03 | 1.013110e-03 | 1.009190e-03 |
|          | 1.308248e+00 | 4.062450e-03 | 3.346889e-03 | 3.286874e-03 |
| 0.001563 | 8.838033e-01 | 6.132697e-04 | 4.605327e-04 | 4.502363e-04 |
|          | 9.338764e+00 | 6.866265e-04 | 5.172722e-04 | 5.148565e-04 |

Таблица 7: Таблица для  $V_1$  при C=1 и  $\mu=0.1.$ 

| $\tau$   | 0.10000      | 0.050000     | 0.025000     | 0.012500     |
|----------|--------------|--------------|--------------|--------------|
|          | 1.866822e+00 | 7.427562e-02 | 7.177158e-02 | nan          |
| 0.012500 | 9.253075e-01 | 7.664623e-03 | 7.815092e-03 | -nan         |
|          | 1.105338e+01 | 8.030954e-03 | 8.001478e-03 | -nan         |
|          | 4.516776e+00 | 4.011474e-02 | 3.963280e-02 | 3.491151e-02 |
| 0.006250 | 2.027162e+00 | 3.723153e-04 | 3.851547e-03 | 3.766783e-03 |
|          | 1.681788e+01 | 4.286078e-03 | 4.067230e-03 | 4.042329e-03 |
|          | 1.198286e+02 | 2.131346e-02 | 1.989980e-02 | 1.981068e-02 |
| 0.003125 | 8.521162e+01 | 2.119743e-03 | 1.906876e-03 | 2.140683e-03 |
|          | 4.602923e+02 | 2.290072e-03 | 2.112616e-03 | 2.015946e-03 |
|          | 3.264518e+02 | 1.092496e-02 | 9.794785e-03 | 1.032803e-02 |
| 0.001563 | 1.533002e+02 | 1.271825e-03 | 9.667033e-04 | 9.108287e-04 |
|          | 1.169740e+03 | 1.467415e-03 | 1.040100e-03 | 1.000033e-03 |

Таблица 8: Таблица для  $V_1$  при C=1 и  $\mu=0.01.$ 

| $\tau$   | 0.10000      | 0.050000     | 0.025000     | 0.012500     |
|----------|--------------|--------------|--------------|--------------|
|          | 2.460338e+00 | nan          | nan          | nan          |
| 0.012500 | 8.548715e-01 | -nan         | -nan         | -nan         |
|          | 3.736768e+01 | -nan         | -nan         | -nan         |
|          | 3.004367e+01 | 2.002819e-01 | nan          | nan          |
| 0.006250 | 2.515557e+00 | 6.097723e-03 | -nan         | -nan         |
|          | 2.874351e+02 | 6.782334e-03 | -nan         | -nan         |
|          | 1.026350e+02 | 7.188423e-02 | 5.615562e-02 | 5.842451e-02 |
| 0.003125 | 1.174078e+02 | 3.381587e-03 | 2.579925e-03 | 2.542173e-03 |
|          | 6.337207e+02 | 3.810086e-03 | 2.676709e-03 | 2.709279e-03 |
| 0.001563 | 4.051511e+02 | 3.686363e-02 | 3.392110e-02 | 2.953018e-02 |
|          | 1.976979e+02 | 2.246079e-03 | 1.308220e-03 | 1.267860e-03 |
|          | 1.466415e+03 | 2.364163e-03 | 1.443221e-03 | 1.377610e-03 |

Таблица 9: Таблица для  $V_1$  при C=1 и  $\mu=0.001.$ 

| $\tau$   | 0.10000      | 0.050000     | 0.025000     | 0.012500     |
|----------|--------------|--------------|--------------|--------------|
|          | 1.036814e+00 | nan          | nan          | nan          |
| 0.012500 | 4.747769e-01 | -nan         | -nan         | -nan         |
|          | 7.415459e+00 | -nan         | -nan         | -nan         |
|          | 6.693492e-01 | 7.120181e-02 | 4.105627e-02 | nan          |
| 0.006250 | 3.841093e-01 | 6.125506e-02 | 3.037243e-02 | -nan         |
|          | 5.275533e+00 | 7.653887e-01 | 4.990148e-01 | -nan         |
|          | 6.898148e-01 | 4.091018e-02 | 2.035193e-02 | 1.286745e-02 |
| 0.003125 | 3.887243e-01 | 3.519377e-02 | 1.497539e-02 | 1.212288e-02 |
|          | 5.293374e+00 | 4.977300e-01 | 2.828827e-01 | 1.234002e-01 |
|          | 6.974933e-01 | 2.602997e-02 | 1.988486e-02 | 7.397704e-03 |
| 0.001563 | 3.918021e-01 | 2.248209e-02 | 1.526551e-02 | 5.680946e-03 |
|          | 5.316663e+00 | 1.657248e-02 | 1.826980e-01 | 6.283041e-02 |

Таблица 10: Таблица для  $V_1$  при C=10 и  $\mu=0.1.$ 

| $\tau$   | 0.10000      | 0.050000     | 0.025000     | 0.012500 |
|----------|--------------|--------------|--------------|----------|
|          | nan          | nan          | nan          | nan      |
| 0.012500 | -nan         | -nan         | -nan         | -nan     |
|          | -nan         | -nan         | -nan         | -nan     |
|          | nan          | 3.587676e-01 | 3.583525e-01 | nan      |
| 0.006250 | -nan         | 1.372684e-01 | 1.376053e-01 | -nan     |
|          | -nan         | 1.042954e+00 | 1.038226e+00 | -nan     |
|          | 8.119136e+00 | 4.936708e+00 | 4.065698e-02 | nan      |
| 0.003125 | 2.784903e+00 | 1.133611e+00 | 1.624499e-02 | -nan     |
|          | 4.732915e+01 | 3.634725e+01 | 1.135627e-01 | -nan     |
|          | nan          | 5.278974e-01 | 2.611910e+00 | nan      |
| 0.001563 | -nan         | 2.203448e-01 | 3.915495e-01 | -nan     |
|          | -nan         | 3.996600e+00 | 2.400678e+01 | -nan     |

Таблица 11: Таблица для  $V_1$  при C=10 и  $\mu=0.01.$ 

| $\tau$   | 0.10000 | 0.050000     | 0.025000     | 0.012500 |
|----------|---------|--------------|--------------|----------|
|          | nan     | nan          | nan          | nan      |
| 0.012500 | -nan    | -nan         | -nan         | -nan     |
|          | -nan    | -nan         | -nan         | -nan     |
|          | nan     | nan          | nan          | nan      |
| 0.006250 | -nan    | -nan         | -nan         | -nan     |
|          | -nan    | -nan         | -nan         | -nan     |
|          | nan     | nan          | nan          | nan      |
| 0.003125 | -nan    | -nan         | -nan         | -nan     |
|          | -nan    | -nan         | -nan         | -nan     |
|          | nan     | 2.280346e+00 | 3.756206e+00 | nan      |
| 0.001563 | -nan    | 4.910456e-01 | 7.027945e-01 | -nan     |
|          | -nan    | 1.649031e+01 | 3.591326e+01 | -nan     |

Таблица 12: Таблица для  $V_1$  при C=10 и  $\mu=0.001.$ 

## **4.2.3** Ошибки для $V_2$

| $\tau$ h | 0.10000      | 0.050000     | 0.025000     | 0.012500     |
|----------|--------------|--------------|--------------|--------------|
|          | 5.163690e-01 | 7.834257e-02 | 3.625120e-02 | 3.748265e-02 |
| 0.012500 | 3.710638e-01 | 4.704192e-02 | 2.846157e-02 | 2.731132e-02 |
|          | 4.912846e+00 | 6.923876e-01 | 3.657932e-01 | 3.230456e-01 |
|          | 5.087459e-01 | 4.781025e-03 | 4.600605e-03 | 4.633240e-03 |
| 0.006250 | 3.736701e-01 | 8.932582e-04 | 8.590230e-04 | 9.060256e-04 |
|          | 4.961063e+00 | 9.188853e-04 | 9.525336e-04 | 9.885460e-04 |
|          | 5.045737e-01 | 2.626844e-03 | 2.364410e-03 | 2.400256e-03 |
| 0.003125 | 3.751897e-01 | 4.381523e-04 | 4.578924e-04 | 4.488578e-04 |
|          | 4.987012e+00 | 4.665895e-04 | 5.105645e-04 | 5.046092e-04 |
|          | 5.023952e-01 | 1.582459e-03 | 1.287314e-03 | 1.174618e-03 |
| 0.001563 | 3.760130e-01 | 2.480354e-04 | 2.171915e-04 | 2.277401e-04 |
|          | 5.000552e+00 | 2.550212e-04 | 2.466425e-04 | 2.481845e-04 |

Таблица 13: Таблица для  $V_2$  при C=1 и  $\mu=0.1.$ 

| h        | 0.10000      | 0.050000     | 0.025000     | 0.012500     |
|----------|--------------|--------------|--------------|--------------|
| $\tau$   | 0.10000      | 0.00000      | 0.023000     | 0.012000     |
|          | 7.722225e-01 | 2.928174e-02 | 2.850887e-02 | nan          |
| 0.012500 | 3.827521e-01 | 3.653824e-03 | 3.645285e-03 | -nan         |
|          | 4.572299e+00 | 3.758897e-03 | 3.789490e-04 | -nan         |
| 0.006250 | 1.868392e+00 | 1.467524e-02 | 1.485738e-02 | 1.474188e-02 |
|          | 8.385481e-01 | 1.785325e-03 | 1.959472e-03 | 1.873547e-03 |
|          | 6.956820e+00 | 1.981065e-03 | 2.087443e-03 | 2.058897e-03 |
|          | 4.956784e+01 | 8.136315e-03 | 7.592297e-03 | 8.089271e-03 |
| 0.003125 | 3.524831e+01 | 9.405169e-04 | 9.099835e-04 | 9.191887e-04 |
|          | 1.904027e+02 | 1.015001e-03 | 9.989750e-04 | 1.086301e-03 |
| 0.001563 | 1.350388e+02 | 4.344691e-03 | 3.996205e-04 | 3.882547e-02 |
|          | 6.341356e+01 | 5.224014e-04 | 4.631010e-04 | 4.786033e-04 |
|          | 4.848702e+02 | 5.856468e-04 | 4.896936e-04 | 5.372300e-04 |

Таблица 14: Таблица для  $V_2$  при C=1 и  $\mu=0.01.$ 

| $\tau$   | 0.10000      | 0.050000     | 0.025000     | 0.012500     |
|----------|--------------|--------------|--------------|--------------|
| 0.012500 | 5.288268e+00 | nan          | nan          | nan          |
|          | 7.239103e-01 | -nan         | -nan         | -nan         |
|          | 2.857697e+01 | -nan         | -nan         | -nan         |
| 0.006250 | 8.851676e+02 | 4.168968e-02 | nan          | nan          |
|          | 7.623203e+01 | 2.916886e-03 | -nan         | -nan         |
|          | 3.151807e+03 | 3.149599e-03 | -nan         | -nan         |
| 0.003125 | 2.206399e+02 | 2.252184e-02 | 1.465716e-02 | 6.104416e-02 |
|          | 2.536968e+02 | 1.626586e-03 | 1.291201e-03 | 1.503596e-03 |
|          | 1.362785e+03 | 1.846045e-03 | 1.400078e-03 | 1.696563e-03 |
| 0.001563 | 8.783452e+02 | 1.619970e-02 | 6.390871e-03 | 7.007016e-03 |
|          | 4.249335e+02 | 1.126007e-03 | 6.351960e-04 | 6.884207e-04 |
|          | 9.823657e+02 | 1.218537e-03 | 7.101450e-04 | 7.390172e-04 |

Таблица 15: Таблица для  $V_2$  при C=1 и  $\mu=0.001.$ 

| $\tau$   | 0.10000      | 0.050000     | 0.025000     | 0.012500     |
|----------|--------------|--------------|--------------|--------------|
|          | 2.165418e+00 | nan          | nan          | nan          |
| 0.012500 | 6.351958e-01 | -nan         | -nan         | -nan         |
|          | 7.905731e+00 | -nan         | -nan         | -nan         |
| 0.006250 | 8.312315e-01 | 2.034365e-02 | 1.019122e-02 | nan          |
|          | 3.822130e-01 | 3.729191e-02 | 2.107756e-01 | -nan         |
|          | 4.891632e+00 | 2.112174e-01 | 1.614125e+01 | -nan         |
| 0.003125 | 8.269354e-01 | 1.126190e-02 | 8.227372e-03 | 6.628496e-03 |
|          | 3.851720e-01 | 1.681320e-02 | 1.540167e-02 | 9.199642e-03 |
|          | 4.902898e+00 | 1.962839e-01 | 1.683013e-01 | 8.086515e-02 |
| 0.001563 | 8.244676e-01 | 8.172919e-03 | 7.634258e-03 | 4.366243e-03 |
|          | 3.876225e-01 | 7.620079e-03 | 6.734669e-03 | 3.723740e-03 |
|          | 4.915134e+00 | 9.625839e-02 | 9.210913e-02 | 4.933159e-02 |

Таблица 16: Таблица для  $V_2$  при C=10 и  $\mu=0.1.$ 

| $\tau$   | 0.10000      | 0.050000     | 0.025000     | 0.012500 |
|----------|--------------|--------------|--------------|----------|
|          | nan          | nan          | nan          | nan      |
| 0.012500 | -nan         | -nan         | -nan         | -nan     |
|          | -nan         | -nan         | -nan         | -nan     |
|          | nan          | 3.453573e-01 | 3.449571e-01 | nan      |
| 0.006250 | -nan         | 1.321374e-01 | 1.324617e-01 | -nan     |
|          | -nan         | 1.003969e+00 | 9.994184e-01 | -nan     |
|          | 8.917835e+00 | 4.537756e+00 | 3.913727e-02 | nan      |
| 0.003125 | 2.486541e+00 | 1.132115e+00 | 1.563777e-02 | -nan     |
|          | 4.611964e+01 | 3.617020e+01 | 1.093178e-01 | -nan     |
|          | nan          | 5.483957e-01 | 3.739123e+00 | nan      |
| 0.001563 | -nan         | 2.722312e-01 | 6.060822e-01 | -nan     |
|          | -nan         | 4.002362e+00 | 2.986859e+01 | -nan     |

Таблица 17: Таблица для  $V_2$  при C=10 и  $\mu=0.01.$ 

| $\tau$   | 0.10000 | 0.050000     | 0.025000     | 0.012500 |
|----------|---------|--------------|--------------|----------|
|          | nan     | nan          | nan          | nan      |
| 0.012500 | -nan    | -nan         | -nan         | -nan     |
|          | -nan    | -nan         | -nan         | -nan     |
|          | nan     | nan          | nan          | nan      |
| 0.006250 | -nan    | -nan         | -nan         | -nan     |
|          | -nan    | -nan         | -nan         | -nan     |
|          | nan     | nan          | nan          | nan      |
| 0.003125 | -nan    | -nan         | -nan         | -nan     |
|          | -nan    | -nan         | -nan         | -nan     |
| 0.001563 | nan     | 2.239013e+00 | 3.284141e+00 | nan      |
|          | -nan    | 5.312365e-01 | 4.945560e-01 | -nan     |
|          | -nan    | 1.526734e+01 | 3.052237e+01 | -nan     |

Таблица 18: Таблица для  $V_2$  при C=10 и  $\mu=0.001.$ 

## 4.3 Вывод

Исходя из полученных результатов, можно сделать вывод, что разностная схема сходится в зависимости от внешних параметров  $\mu$  и C. Условия на сходимость можно выразить как:  $h_i>0.1,~\tau>0.0125,~A<\frac{h}{\tau}< B,$  для некоторых A,~B. Сходимость имеет порядок  $\tau+h_1^2+h_2^2.$ 

## 5 Задача протекания

#### 5.1 Постановка задачи

Задана область

$$\Omega = \Omega_{01} \cup \Omega_{02} \cup \Omega_{11} \cup \Omega_{12} \cup \Omega_{10} \cup \Omega_{10} \cup \Omega_{20}$$

Неизвестные функции: плотность  $\rho$  и вектор скорости  ${\bf u}$  являются функциями переменных Эйлера  $(t,x)\in Q=[0,T]\times \Omega.$ 

Граничные условия для неизвестного решения:

$$\rho\big|_{\Gamma_{-}} = \rho_{\gamma} \,, \quad u_1\big|_{\Gamma_{-}} = w \,, \quad \frac{\partial u_1}{\partial x}\big|_{\Gamma_{+}} = 0$$

На оставшейся границе компоненты скорости равны нулю, а функция плотности считается неизвестной.



Рис. 2: Заданная область

### 5.2 Численные эксперименты

Будем рассматривать зависимости  $p(\rho) = C\rho$ ,  $C \in \{1, 10\}$ , а также параметры  $\mu \in \{0.1, 0.01, 0.001\}$ ,  $\rho_{\gamma} \in \{1, 10\}$ . Если предыдущее состояние газа не отличается от текущего на  $\epsilon = 10^{-3}$ , то останавливаем расчёт. При фиксированных  $\tau$ ,  $h_1 = h_2 = h$  будем исследовать момент завершения программы.

Будут приведены графики на рассматриваемой области, иллюстрирующие изменение плотности и векторов скорости от момента времени.

Для решения системы Ax = b использовался метод BiCGSTab + ILUT предобусловливатель из библиотеки Eigen (см. [2]) с параметрами  $eps = 10^{-8}$ , iter = 2000.

# **5.3** $C=1,~\mu=0.10,~w=0.5,~\rho_{\gamma}=1,~\tau=0.010,~h=0.050$



Рис. 3. t=0

Рис. 4. t = 0.5



Рис. 5. t = 1

Рис. 6. t = 2



Рис. 7. 
$$t=3$$

Рис. 8. t = 4



Рис. 9. t=5

Рис. 10. t = 5.40



# **5.4** $C=1,~\mu=0.01,~w=0.5,~\rho_{\gamma}=1,~\tau=0.005,~h=0.025$



Рис. 20. t = 0

Рис. 21. t = 0.5



Рис. 22. t = 1

Рис. 23. t = 2



Рис. 24. t = 3

Рис. 25. t = 4



Рис. 26. t = 5

Рис. 27. t = 6



Рис. 28. 
$$t = 7$$

Рис. 29. 
$$t = 8$$



Рис. 30. t = 9

Рис. 31. t = 9.085



Рис. 32. t = 0

Рис. 33. t = 0.5



Рис. 34. t = 1

Рис. 35. <br/>t $=2\,$ 



## Список литературы

- [1] Попов А. В. Численное моделирование нестационарного одномерного течения газа с использованием неявных разностных схем.
- [2] Eigen. C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms. https://eigen.tuxfamily.org/.