FORMULE DE STIRLING "AMÉLIORÉE"

Formule de Stirling "améliorée"

L'objet de ce problème est de prouver la formule $n! = n^n e^{-n} \sqrt{2\pi n} \left(1 + \frac{1}{12n} + o\left(\frac{1}{n}\right) \right)$

- 1. On pose, pour tout entier naturel n, $I_n = \int_0^{\pi/2} \sin^n t \, dt$.
 - (a) Montrer que la suite (I_n) est strictement décroissante et minorée. [S]
 - (b) Montrer que pour tout $n \geq 2$, on a $nI_n = (n-1)I_{n-2}$. [S]
 - (c) En déduire I_{2n} et I_{2n+1} à l'aide de factorielles. [S]
 - (d) Prouver que $I_{n+1} \sim I_n$ quand $n \to \infty$. [S]
 - (e) En déduire la formule de Wallis : $\pi = \lim_{n \to \infty} \frac{2^{4n} (n!)^4}{n \cdot (2n)!^2}$. [S]
- 2. On pose, pour tout n de \mathbb{N}^* , $S_n = (n + \frac{1}{2}) \ln n n \ln(n!)$.
 - (a) Montrer que $S_{n+1} S_n \sim \frac{1}{12n^2}$. [S]
 - (b) En déduire que la suite (S_n) converge vers un réel λ . [S]
 - (c) Montrer que, lorsque n tend vers $+\infty$, $n^n e^{-n} \sqrt{n} \sim e^{\lambda} n!$. [S]
- 3. A l'aide de la question 1d), montrer que $\lambda = -\frac{1}{2}\ln(2\pi)$.

En déduire la formule de Stirling : $n! \sim n^n e^{-n} \sqrt{2\pi n}$. [S]

4. Soient $\sum u_n$ et $\sum v_n$ deux séries à termes réels positifs, convergentes.

Pour tout entier n, on note $R_n = \sum_{k=n+1}^{+\infty} u_k$ et $T_n = \sum_{k=n+1}^{+\infty} v_k$.

- (a) On suppose que $u_n \sim v_n$. Montrer que $R_n \sim T_n$. [S]
- (b) En déduire que si $u_n \sim \frac{1}{n^2}$, alors $R_n \sim \frac{1}{n}$. [S]
- (c) Appliquer ce qui précède à $u_n = 12(S_n S_{n-1})$, et montrer que $\lambda S_n \sim \frac{1}{12n}$. [S]
- (d) En déduire finalement que $n! = n^n e^{-n} \sqrt{2\pi n} \left(1 + \frac{1}{12n} + o\left(\frac{1}{n}\right)\right)$. [S]

Corrigé du problème

- 1. (a) Pour tout t de $]0, \pi/2[$, et tout n de $\mathbb{N}: 0 < \sin t < 1 \Rightarrow 0 < (\sin t)^{n+1} < (\sin t)^n$. On en déduit par intégration de 0 à $\pi/2: \forall n \in \mathbb{N}, 0 < I_{n+1} < I_n$. La suite (I_n) est donc strictement décroissante et minorée par 0. $[\mathbb{Q}]$
 - (b) On procède à une intégration par parties, pour tout $n \geq 2$:

$$I_n = \int_0^{\pi/2} \sin t \, \sin^{n-1} t \, dt = \underbrace{\left[-\cos t \, \sin^{n-1} t\right]_0^{\pi/2}}_{=0} + (n-1) \int_0^{\pi/2} \cos^2 t \, \sin^{n-2} t \, dt.$$

On en déduit $I_n = (n-1) \int_0^{\pi/2} (1-\sin^2 t) \sin^{n-2} t \, dt = (n-1)(I_{n-2}-I_n).$

Il en découle effectivement la relation : $\forall n \geq 2, nI_n = (n-1)I_{n-2}$. [Q]

(c) – Calcul de I_{2n} :

La relation précédente donne $2nI_{2n} = (2n-1)I_{2(n-1)}$.

On en déduit
$$I_{2n} = \frac{2n-1}{2n} \frac{2n-3}{2(n-1)} \cdots \frac{3}{4} \frac{1}{2} I_0$$
. Or $I_0 = \frac{\pi}{2}$.

Donc
$$I_{2n} = \frac{(2n-1)(2n-3)\cdots 3\cdot 1}{2^n n!} \frac{\pi}{2} = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2}$$
 (valable si $n=0$).

- Calcul de I_{2n+1} :

La relation de (1-b) donne $I_{2n+1} = \frac{2n}{2n+1}I_{2(n-1)+1} = \frac{2n}{2n+1}\frac{2(n-1)}{2n-1}\cdots\frac{4}{5}\frac{2}{3}I_1.$

Or
$$I_1 = 1$$
. Donc $I_{2n+1} = \frac{2^n n!}{(2n+1)(2n-1)\cdots 3} = \frac{2^{2n}(n!)^2}{(2n+1)!}$ (valable si $n = 0$).

[Q]

(d) Pour tout n de \mathbb{N} , on a : $0 < I_{n+2} < I_{n+1} < I_n$ et donc $0 < \frac{I_{n+2}}{I_n} < \frac{I_{n+1}}{I_n} < 1$.

Or
$$\frac{I_{n+2}}{I_n} = \frac{n+1}{n+2}$$
 tend vers 1 quand n tend vers $+\infty$.

On en déduit
$$\lim_{n\to\infty}\frac{I_{n+1}}{I_n}=1$$
, c'est-à-dire $I_{n+1}\sim I_n$. [Q]

(e) Pour tout n de \mathbb{N} , $\frac{I_{2n+1}}{I_{2n}} = \frac{2^{4n} (n!)^4}{(2n+1)(2n)!^2} \frac{2}{\pi} \sim \frac{2^{4n} (n!)^4}{n(2n)!^2} \frac{1}{\pi}$.

Puisque
$$\lim_{n\to\infty} \frac{I_{2n+1}}{I_{2n}} = 1$$
, on obtient $\lim_{n\to\infty} \frac{2^{4n} (n!)^4}{n (2n)!^2} = \pi$. [Q]

2. (a) Pour tout n > 1,

$$S_{n+1} - S_n = (n + \frac{3}{2})\ln(n+1) - n - 1 - \ln(n+1)! - (n + \frac{1}{2})\ln n + n + \ln n!$$

$$= (n + \frac{1}{2})\ln(1 + \frac{1}{n}) - 1 = \left(n + \frac{1}{2}\right)\left(\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{n^3} + o\left(\frac{1}{n^3}\right)\right) - 1$$

$$= \frac{1}{12n^2} + o\left(\frac{1}{n^2}\right)$$

On a donc $S_{n+1} - S_n \sim \frac{1}{12n^2}$. [Q]

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

FORMULE DE STIRLING "AMÉLIORÉE"

(b) On sait que la série $\sum (S_{n+1} - S_n)$ a la même nature que la suite (S_n) . Puisque la série $\sum (S_{n+1} - S_n)$ est convergente (par comparaison avec une série de

Riemann), il en est de même de la suite (S_n) . On pose $\lim_{n\to\infty} = \lambda \in \mathbb{R}$. [Q]

(c) Pour tout
$$n$$
 de \mathbb{N}^* , $S_n = \ln \left(n^{n+1/2} e^{-n} \frac{1}{n!} \right) = \ln \left(\frac{n^n e^{-n} \sqrt{n}}{n!} \right)$.

D'après ce qui précède : $\lim_{n\to\infty} \frac{n^n e^{-n} \sqrt{n}}{n!} = e^{\lambda}$ et donc $n^n e^{-n} \sqrt{n} \sim e^{\lambda} n!$. [Q]

3. L'égalité précédente donne $n! \sim e^{-\lambda} n^n e^{-n} \sqrt{n}$ et donc aussi $(2n)! \sim e^{-\lambda} (2n)^{2n} e^{-2n} \sqrt{2n}$.

On en déduit
$$\frac{2^{4n} n!^4}{n (2n)!^2} \sim \frac{2^{4n} e^{-4\lambda} n^{4n} e^{-4n} n^2}{n e^{-2\lambda} (2n)^{4n} e^{-4n} (2n)} \sim \frac{e^{-2\lambda}}{2}$$
.

Puisque
$$\lim_{n\to\infty}\frac{2^{4n}\,n!^4}{n\,(2n)!^2}=\pi$$
, on trouve $\frac{e^{-2\lambda}}{2}=\pi$ et donc $\lambda=-\frac{1}{2}\ln(2\pi)$.

Puisque $e^{-\lambda} = \sqrt{2\pi}$, le résultat $n! \sim e^{-\lambda} n^n e^{-n} \sqrt{n}$ devient $n! \sim n^n e^{-n} \sqrt{2\pi n}$. [Q]

4. (a) Soit $\varepsilon > 0$. Par hypothèse $u_n - v_n = o(v_n)$.

Il existe donc un entier n_0 tel que, pour tout $n \ge n_0$, $|u_n - v_n| \le \varepsilon v_n$.

Ainsi, pour tout $n > n_0$:

$$|R_n - T_n| = \left| \sum_{k=n+1}^{\infty} (u_n - v_n) \right| \le \sum_{k=n+1}^{\infty} |u_n - v_n| \le \varepsilon \sum_{k=n+1}^{\infty} v_n = \varepsilon T_n.$$

Ce résultat signifie que $R_n - T_n = \mathrm{o}(T_n)$, c'est-à-dire $R_n \sim T_n$. [Q]

(b) Supposons $u_n \sim \frac{1}{n^2}$. Alors $u_n \sim \frac{1}{n(n-1)} = \frac{1}{n-1} - \frac{1}{n}$.

Ainsi:
$$R_n \sim \sum_{k=n+1}^{+\infty} \left(\frac{1}{k-1} - \frac{1}{k} \right) = \lim_{m \to \infty} \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k} \right) = \lim_{m \to \infty} \left(\frac{1}{n} - \frac{1}{m} \right) = \frac{1}{n}.$$

(c) On a bien $u_n \sim \frac{1}{n^2}$. On en déduit $R_n \sim \frac{1}{n^2}$

Mais:
$$R_n = \sum_{k=n+1}^{+\infty} 12(S_k - S_{k-1}) = 12 \lim_{m \to \infty} \sum_{k=n+1}^{m} (S_k - S_{k-1})$$

= $12 \lim_{m \to \infty} (S_m - S_n) = 12(\lambda - S_n).$

Ainsi
$$12(\lambda - S_n) \sim \frac{1}{n}$$
 et donc $\lambda - S_n \sim \frac{1}{12n}$. [Q]

(d) On a
$$\lambda - S_n = \ln\left(\frac{n!}{n^n e^{-n} \sqrt{2\pi n}}\right) = \frac{1}{12n} + o\left(\frac{1}{n}\right)$$

On en déduit
$$\frac{n!}{n^n e^{-n} \sqrt{2\pi n}} = \exp\left(\frac{1}{12n} + o\left(\frac{1}{n}\right)\right) = 1 + \frac{1}{12n} + o\left(\frac{1}{n}\right).$$

Autrement dit :
$$n! = n^n e^{-n} \sqrt{2\pi n} \left(1 + \frac{1}{12n} + o\left(\frac{1}{n}\right)\right)$$
 [Q]

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.