ANALYSIS I EXTENSION 8. CONNECTEDNESS AND PASS-CONECTEDNESS

ASILATA BAPAT

Connectedness

Definition. A topological space X is connected if it cannot be expressed as the union of two non-empty, disjoint open sets.

Example. $X = [0, 1] \cup (3, 4)$ is disconnected (subspace topology).

[0,1] is open because $[0,1] = (-\frac{1}{2}, \frac{1}{2} + 1)$ is intersection of X is intersection of X and an open set in \mathbb{R} . Therefore X is union of [0,1] and (3,4), which are both open and mutually disjoint.

Equivalently, X is connected if it cannot be expressed as the union of two nonempty, disjoint closed sets. Equivalently, X is connected iff the only subsets of X that are both open and closed are \emptyset and X.

Example. $\mathbb{Q} \subseteq \mathbb{R}$ is disconnected, because

$$\mathbb{Q} = (\mathbb{Q} \cap (-\infty, \sqrt{2})) \cup (\mathbb{Q} \cap (\sqrt{2}, \infty))$$

Remark. Is [0,1] connected in $\mathbb{R}_{\text{metric}}$? What about (0,1)?

Theorem. Every single interval (open, closed, or half-open) is connected in \mathbb{R}_{metric}

Proof. We will prove it for closed intervals for simplicity.

Let X = [a, b]. If a = b, X is a singleton, so is connected. Suppose $a \neq b$ and a < b. Suppose that $X = A \cup B$, where A and B are both clopen and A is not empty. We need to show B has to be \emptyset .

Let's also suppose, WLOG, $a \in A$. First of all, A is open in X, so

$$A = [a, b] \cap U$$
, where U is open in \mathbb{R}

Also, $a \in A \implies a \in U$. Since U is open, $\exists \varepsilon$ sufficiently small s.t. $(a - \varepsilon, a + \varepsilon) \subseteq U$. Then $(a - \varepsilon, a + \varepsilon) \cap [a, b] \subseteq A \implies [a, a + \varepsilon) \subseteq A$.

Define the set

$$C = \{\ c \in [a,b] \mid [a,c] \subseteq A\ \}$$

Clearly C has an upper bound, namely b. Therefore c has a least upper bound $L \leq b$.

Now we are going to show that $L \in C$.

L is a limit point of A. $L \in X$ because $a < L \le b$. A is clopen in X so A is closed in X, so $L \in A \implies [a, L] \subseteq A$.

Now we show that L=b. Suppose, for contradiction, L < b. As $L \in A$ and A is open in X, $\exists \varepsilon > 0$ s. t. $[L, \varepsilon) \subseteq A$. Therefore, $[L, \varepsilon] \subseteq A$ since A is closed, indicating $L + \varepsilon \in C$.

However, $L = \sup(C)$. Contradiction. $\therefore L = b$. Therefore, the whole proof implies A = X and $B = \emptyset$. Accordingly, any closed interval is connected in R_{metric} .

PATH-CONNECTEDNESS

Now that we know that [0, 1] is connected, we use it to define another notion.

Definition (Path-Connectedness). A space X is path-connected if $\forall a, b \in X$, there is a "path" from a to b. That is, if there is a continuous function $f:[0,1] \mapsto X$ with f(0)=a and f(1)=b.

Remark. [0,1] is a "stand-in" for any other closed interval because [0,1] and [a,b] are homeomorphic for any $p \neq q$. (Exercise)

Proposition. If X is path-connected, then it is connected.

Proof. Suppose for contradiction, that X is path-connected but not connected so $X = A \cup B$, $A \neq \emptyset$, $B \neq \emptyset$, $A \cap B = \emptyset$, and A, B is open. Let $a \in A$ and $b \in B$. There is some $f: [0,1] \implies X$ s. t.

$$f(0) = a \text{ and } f(1) = b$$

So, consider $f^{-1}(A)$ and $f^{-1}(B)$. Not that $f^{-1}(A)$ and $f^{-1}(B)$ are open, because f is continuous. They are also nonempty and disjoint (because if $x \in f^{-1}(A)$ and if $x \in f^{-1}(B)$, then $f(x) \in A \cup B$).

Also,
$$f^{-1}(A) \cup f^{-1}(B) = [0, 1]$$
. This contradicts the fact that $[0, 1]j$ is connected.

This gives an easy chance to see if spaces are connected.

Example.

- Circle in \mathbb{R}^2 is connected.
- $\forall n \in \mathbb{N}^+$, \mathbb{R}^n is connected.
- Any interval is connected because it is path connected. We can consider

$$f(t) := (1 - t)a + tb \qquad (0 \leqslant t \leqslant 1)$$

Proposition. If $X \subseteq \mathbb{R}^n$ is <u>convex</u>, it is connected.

Remark. There exist connected spaces that are not path-connected! A counterexample is sine curve,

$$\left\{ \left(x, \sin\left(\frac{1}{x}\right) \right) \mid x \in (0, 1] \right\} \cup \left\{ (0, 0) \right\}$$

Proposition. Let $f: X \mapsto Y$ be continuous and surjective. Then:

- (1) If X is connected, so is Y.
- (2) If X is path-connected, so is Y.

Now we can compare spaces and distinguish them.

Corollary. If X and Y are homeomorphic, then

- (1) X is connected iff Y is connected.
- (2) X is path-connected iff Y is path-connected.

This can be used to deduce (for example) that \mathbb{R} is not homeomorphic to \mathbb{R}^n for n > 1.

Definition (Connected Component). Let X be a space and $x \in X$. The connected component of $x \in X$ is the union of all connected subspace of X containing x, denoted by C_x . Especially, X is itself connected.

Definition (Path Components). Let X be a space and $x \in X$. The path component of x is the set of all $y \in X$ s. t. there is a path from x to y, called P_x .

Remark. Say $x \sim_c y$ if $C_x = C_y$; $x \sim_p y$ if $P_x = P_y$. Then these are equivalent relations.

Proposition. Every path-connected space is connected. In particular, every interval in \mathbb{R} is connected.

These notions let us distinguish spaces from each others. Recall:

Theorem. Let $f: X \mapsto Y$ be continuous and surjective,

- (1) If X is connected, then Y is connected.
- (2) If X is path-connected, then Y is path connected.

In particular, if $f: X \mapsto Y$ is a homeomorphism, then X is connected (resp. path-connected) iff Y is connected (resp. path-connected)

Proposition. \mathbb{R} is not homeomorphic to \mathbb{R}^n for any n > 1

Proof. Suppose $f : \mathbb{R} \to \mathbb{R}^n$ is a homeomorphism. Then $f : \mathbb{R} - \{0\} \to \mathbb{R}^n - \{f(0)\}$ is a homeomorphism. $\mathbb{R} - \{0\}$ is neither connected nor path-connected. But $\mathbb{R}^n - \{f(0)\}$ is path-connected. Contradiction.