ESO204A, Fluid Mechanics and Rate Processes

Incompressible flows through pipes and ducts (Internal Flow)

Engineering applications of Fluid Mechanics

Chapter 6 of F M White Chapter 8 of Fox McDonald

Incompressible flows in pipes/ducts

head loss in pipe flow $h_f = f \frac{L}{d} \frac{u_{av}^2}{2g}$

$$f = \frac{8\tau_w}{\rho u_{\rm av}^2} = 4C_f$$

Laminar: $Re_d < 1800$ $f = \frac{64}{Re_d}$

Turbulent: $\operatorname{Re}_{d} > 2000 \ f = f\left(\operatorname{Re}_{d}, \frac{\varepsilon}{d}\right)$

Example

Pumping of water to a large reservoir

$$\frac{\mathcal{E}}{d} = .0001$$

dia = 75mm

Applying energy Equation between 1-2:

between 1-2:

$$\dot{m}\left(\frac{p_1}{\rho} + \frac{u_1^2}{2} + gz_1\right) + \dot{W} = \dot{m}\left(\frac{p_2}{\rho} + \frac{u_2^2}{2} + gz_2\right) + \text{friction in pump}$$

$$\frac{\dot{W}}{\dot{m}g} = \frac{p_2}{\rho g} - \frac{p_1}{\rho g}$$

$$\frac{\dot{W}}{\dot{m}g} = \frac{p_2}{\rho g} - \frac{p_1}{\rho g}$$

Similarly, applying energy Equation between 2-3:

$$\frac{p_2}{\rho g} + \frac{y_2^2}{2g} + z_2 = \frac{p_3}{\rho g} + \frac{y_3^2}{2g} + z_3 + h_f$$

$$\frac{p_2}{\rho g} - \frac{p_3}{\rho g} = h_f = f \frac{L}{d} \frac{u_1^2}{2g}$$

combining
$$\frac{\dot{W}}{\dot{m}g} - \frac{p_3}{\rho g} = -\frac{p_1}{\rho g} + h_f$$

Please note, mass conservation gives

$$\dot{m} = \dot{m}_1 = \dot{m}_2 = \dot{m}_3$$

$$u_1 = u_2 = u_3$$

$$\frac{\dot{W}}{\dot{m}g} - \frac{p_3}{\rho g} = -\frac{p_1}{\rho g} + h_f$$

Similarly, applying energy Equation between 3-4:

$$\frac{p_3}{\rho g} + \frac{u_3^2}{2g} + z_3 = \frac{p_4}{\rho g} + \frac{u_4^2}{2g} + z_4 + \text{losses}$$

combining
$$\frac{\dot{W}}{\dot{m}g} + \frac{u_3^2}{2g} + z_3 = \frac{p_4}{\rho g} - \frac{p_1}{\rho g} + \frac{u_4^2}{2g} + z_4 + h_f$$

Overall energy Eqn.

$$\frac{\dot{W}}{\dot{m}g} + \frac{u_3^2}{2g} + z_3$$

$$= \frac{p_4}{\rho g} - \frac{p_1}{\rho g} + \frac{u_4^2}{2g} + z_4 + h_f$$

$$\frac{\dot{W}}{\dot{m}g} + \frac{u_1^2}{2g} + z_1 = \frac{p_4}{\rho g} - \frac{p_1}{\rho g} + \frac{u_4^2}{2g} + z_4 + h_f$$
 We should start from here

$$\frac{p_1}{\rho g} + \frac{u_1^2}{2g} + z_1 + \frac{\dot{W}}{\dot{m}g} = \frac{p_4}{\rho g} + \frac{u_4^2}{2g} + z_4 + h_f$$

$$\frac{\dot{W}}{\dot{m}g} = z + h_f - \frac{u_1^2}{2g}$$

$$\frac{\dot{W}}{\dot{m}g} = z + h_f - \frac{u_1^2}{2g}$$
 $\dot{W} = \dot{m}g \left(z + f\frac{L}{d}\frac{u_1^2}{2g} - \frac{u_1^2}{2g}\right)$

$$\dot{W} = \dot{m}g\left(z + f\frac{L}{d}\frac{u_1^2}{2g} - \frac{u_1^2}{2g}\right)$$

 $f \approx .017$

$$\dot{W} = \dot{m}g (10\text{m} + 58.9\text{m} - 2.6\text{m})$$

= $\rho Qg \times 66.3\text{m} = 663\text{W}$

$$Q = .01 \,\mathrm{m}^3/\mathrm{s}$$

 $z = 10 \,\mathrm{m}, L = 100 \,\mathrm{m}$
dia = 75 \text{mm}

There will be additional losses due to sudden expansion; such losses are called 'minor loss'

Minor losses

Minor losses usually occur due to sudden change in flow area or direction

Minor losses may be significant at pipe bends, valves, sudden expansion/contraction, inlet/exit

Minor losses are quantified by minor loss coefficient K $h_m = K \frac{u^2}{2g}$

Experimentally obtained values of K are available in Table/Plots

Minor losses: Example, sudden expansion

Mass: $\rho A_1 V_1 = \rho A_3 V_3$

Momentum:
$$p_1 A_3 - p_3 A_3 =$$

assume
$$p_a = p_b = p_c = p_1$$

$$\rho A_3 V_3 . V_3 - \rho A_1 V_1 . V_1$$

Energy:
$$\frac{p_1}{\rho g} + \frac{V_1^2}{2g} = \frac{p_3}{\rho g} + \frac{V_3^2}{2g} + h_m$$

Find, minor loss coefficient $K = \frac{h_m}{V_1^2/2g}$

Minor loss coefficient in a sudden expansion

$$\frac{p_1}{\rho g} + \frac{V_1^2}{2g} = \frac{p_3}{\rho g} + \frac{V_3^2}{2g} + h_m$$

$$\frac{2p_1}{\rho V_1^2} + 1 = \frac{2p_3}{\rho V_1^2} + \frac{V_3^2}{V_1^2} + K$$

$$K = \frac{2(p_1 - p_3)}{\rho V_1^2} + 1 - \frac{V_3^2}{V_1^2} \qquad \frac{(p_1 - p_3)}{\rho V_1^2} = \frac{V_3^2}{V_1^2} - \frac{A_1}{A_3}$$

$$K = \frac{V_1^2}{\rho V_1^2} + 1 - \frac{V_1^2}{V_1^2}$$

$$\rho V_1^2 \qquad V_1^2 \qquad A_3$$

$$\rho A_1 V_1 = \rho A_3 V_3 \Rightarrow \frac{V_3}{V_1} = \frac{A_1}{A_3}$$
Such approach

$$K = 1 - 2\frac{A_1}{A_3} + \frac{V_3^2}{V_1^2}$$

$$p_1 A_3 - p_3 A_3 = \rho A_3 V_3 V_3 - \rho A_1 V_1 V_1$$

$$\frac{(p_1 - p_3)}{\rho V_1^2} = \frac{V_3^2}{V_1^2} - \frac{A_1}{A_3}$$

$$\rho A_1 V_1 = \rho A_3 V_3 \implies \frac{V_3}{V_1} = \frac{A_1}{A_3}$$

 $K = 1 - 2\frac{A_1}{A_3} + \frac{V_3^2}{V_1^2}$ $K = \left(1 - \frac{A_1}{A_3}\right)^2$ Such approach fails for sudden contraction

Minor losses: sudden expansion/contraction $K_{\rm SE} = \left(1 - \frac{d^2}{D^2}\right)^2$ $K_{\rm SC} \approx 0.42 \left(1 - \frac{d^2}{D^2}\right)$ For sudden contraction, the minor loss coefficient is obtained from experiments

Find the power **Example problem** consumption summary: energy of the pump Large budget reservoir $Q = .01 \,\mathrm{m}^3/\mathrm{s}$ Elevation head = 10m $f \approx .017$ z = 10 m, L = 100 m $\dot{W} = \dot{m}g \left(z + f \frac{L}{d} \frac{u_1^2}{2g} + K \frac{u_1^2}{2g} - \frac{u_1^2}{2g} \right)$ dia = 75mmMinor loss = 2.6mMajor loss = 58.9m For long pipe, L/d is the primary source of loss f is always < 0.1 For short pipe, loss is often neglected

Kinetic energy correction factor

Kinetic energy at a cross-section

$$\frac{1}{2} \int_{A} \rho u^{3} dA \neq \frac{1}{2} \dot{m} u_{\text{av}}^{2} \qquad \frac{1}{2} \int_{A} \rho u^{3} dA = \alpha \frac{1}{2} \dot{m} u_{\text{av}}^{2}$$

Value of the correction factor depends on the nature of velocity profile

Laminar flow:
$$u = u_{\text{max}} \left(1 - \frac{r^2}{R^2} \right) \Rightarrow \alpha = 2$$

Turbulent flow: $u = u_{\text{max}} \left(1 - \frac{r}{R} \right)^{\frac{1}{n}}$
 $n = 5 \Rightarrow \alpha = 1.106$
 $n = 7 \Rightarrow \alpha = 1.058$
 $n = 9 \Rightarrow \alpha = 1.037$

Coming back to the example problem

Pump power
$$\dot{W} = \dot{m}g\left(z + f\frac{L}{d}\frac{u_1^2}{2g} + K\frac{u_1^2}{2g}\right)$$

For turbulent flow contribution of the correction factor is usually very small

Unless otherwise specified, you may assume 1/7-th profile for the turbulent pipe flow

$$\alpha = 1.058$$

Momentum correction factor (not necessary in present case)

You may use similar correction factors (β) in integral momentum Equation as well

$$\int_{A} \rho u^2 dA = \beta \dot{m} u_{\rm av}$$

Laminar flow: $\beta = 4/3$

Turbulent flow: $n = 5, 7, 9 \Rightarrow \alpha = 1.037, 1.020, 1.013$

Once again, for turbulent flow, contribution of the correction factor is usually very small