

Definition of the muon flux

Conventional component:

$$\begin{array}{ccc}
& \tau = 2.6 \cdot 10^{-8} \text{s} \\
& p \rightarrow \pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \\
& \propto E^{-2.7} & \propto E^{-3.7}
\end{array}$$

prompt component:
$$p \xrightarrow{\tau=1.04 \cdot 10^{-12} \text{s}} \overline{D}^{+} \xrightarrow{\kappa} \overline{D}^{0} + \mu^{+} + \nu_{\mu}$$

$$\sum_{x \in E^{-2.7}} \overline{D}^{+} \xrightarrow{\kappa} \overline{E}^{0} + \mu^{+} + \nu_{\mu}$$

Muon flux

$$\mathbf{\Phi}_{\text{tot}} = \mathbf{\Phi}_{\text{conv}} + \mathbf{\Phi}_{\text{prompt}}$$

Previous analysis

- Leading muon sample $\rightarrow \frac{E_{\text{max}}}{E_{\text{tot}}} > 0.5$
- Unfolding of muon energy
- Fit of normalization of prompt
- 1 year of IceCube data used
- Component compatible with zero

→ Uncertainties dominated by limited MC

New ideas to measure the prompt component

- Latest software CORSIKA, PROPOSAL
- SIBYLL 2.3d → charm included
- Scale amount of prompt particles to create several datasets
 - Tag muon parent particles in MC (prompt/conv)
 - If shower contains a prompt particle it is defined as prompt
 - Create splines/estimator of particles per bin in dependency of the scaling factor
 - Fit effective scaling forward fit
- Analyze:
 - Muon energy
 - Zenith angle
 - Time (seasonal variations)
 - Conventional flux depends on the season

[Journal of Physics: Conf. Series. 2019. V. 1181, 012054]

Identify prompt particles in air shower

- CORSIKA 7
- 10 Mio. air showers (primary: proton)
- Initial energy: $10^5 10^9$ GeV
- Two different injection angles θ
- SIBYLL 2.3d
- Sampled from E⁻¹, reweighted to Gaisser H3a
- Extended history option to identify and tag the prompt particles manually

Deviations at energies > 10⁷ GeV

- Maximum injected energy lower than the maximum possible energy (GZK cutoff at ~5 * 10¹⁰ GeV)
- MCEq: SIBYLL 2.3c

Specific parent particle identification

- CORSIKA 7 using SIBYLL 2.3d vs. SIBYLL 2.3c¹
- Good agreement with unflavored particles
- Mismatches occur for all the D-mesons
 - Issue not yet solved
 - Only protons simulated with CORSIKA

¹ Phys. Rev. D 100 (2019) 103018

Scaling of the prompt component - tagging

- Amount of prompt particles is re-weighted with 0.5
- Use tagging of prompt in CORSIKA MC
- Conventional component is not much affected
 - If a shower contains prompt, almost no conv. particles in the shower arrive at the surface

Scaling of the prompt component- DYNSTACK

- Use DYNSTACK
 - CORSIKA extension to manipulate stack
- Replace prompt particles with conv. (π, K) while shower simulation
 - adapt kinetic energy
- Issue?
 - More conv. particles in shower, but less in the high energy region
 - D⁰ \rightarrow K^+ (>50%) removing prompt parents removes conv. muons as well

Summary

- Previous analysis compatible with zero prompt
 - No charm particles were simulated

Discussion:

- How to scale prompt > 1?
- How to extract physical parameters?
 - CRC1491 \rightarrow branching ratios (BR), cross-sections, particle physics
- Scale BR and hadronic models compatible with LHC results

Next steps

- Further cross-checks of prompt tagging (D-Mesons?)
- Comparisons between DYNSTACK and CORSIKA scaling
- Simulate new CORSIKA datasets with SIBYLL 2.3d
 - Charm included
 - Tagging of prompt particles
 - Scale prompt
- Unfolding of the muon flux in energy and zenith bins (+seasonal variations)
- Fit of the normalization/ effective scaling factor of prompt forward fit
- Analysis could be done with a neutrino telescopes such as the IceCube Neutrino Observatory

Our team

ludwig.neste@tu-dortmund.de

Jean-Marco Alameddine

jean-marco.alameddine@tu-dortmund.de

Pascal Gutjahr

pascal.gutjahr@tu-dortmund.de

Thank you for your attention!

We are happy about further inspiration

