Hints to problem sheet 2

Ques. 1:

- a) $\delta(2t)$ has half area as $\delta(t)$
- b) Discussed in class
- c) The answer depends upon how we define $u_{\Delta}(t)$. $u_{\Delta}(t)$ in limiting form is known as a generalized function (as per the function is not specific). We can prove the given equality if we assume $u_{\Delta}(t)$ as t/Δ for $0 \le t \le \Delta$.

$$\lim_{\Delta \to 0} [\mathbf{u}_{\Delta}(t)\delta(t)] = \lim_{\Delta \to 0} [\mathbf{u}_{\Delta}(0)\delta(t)] = \lim_{\Delta \to 0} [0] = 0$$

d)
$$\lim_{\Delta \to 0} [\mathbf{u}_{\Delta}(t)\delta_{\Delta}(t)] = \lim_{\Delta \to 0} \left[\frac{t}{\Delta} \times \frac{1}{\Delta}\right] = \lim_{\Delta \to 0} \left[\frac{t}{\Delta^2}\right] = \frac{1}{2}\delta(t)$$

Note that as t is between 0 and Δ and as Δ is very small $t \approx \Delta$, and thus $\frac{\partial t}{\partial \Delta} \approx 1$.

We can also prove the above equation by taking integration. By taking area on of the $\mathbf{u}_{\Delta}(t)\delta_{\Delta}(t)$ where $\Delta \to 0$, we can observe that the area remains constant i.e., ½ and the function will transform into impulse function at t = 0.

Ques. 2:
$$E_{\infty} = \int_{-\infty}^{\infty} |y(t)|^2 dt = \int_{-2}^{2} dt = 4$$

Ques.3:

a) S1:
$$y_1(t) = 2x_1(2t+2)$$

This is invertible function, so we can find inverse

$$x_1(t) = 2y_1(2t+2)$$

Let 2t + 2 = z then

$$x_1((z-2)/2) = 2y_1(z)$$

Now change the variable

$$y_1(t) = \frac{1}{2}x_1((t-2)/2) : S2$$

- b) The system is not invertible as time scaling with factor more than 1 leads to decimation of samples.
- c) The inverse system is non-causal so this system is realizable only for offline processing.

Ques.4

- a) Memory, Time variant, Linear, Non causal, Stable
- b) Memory less, Time variant, Linear, Causal, Stable

- c) Memory, Time variant, Linear, Non causal, Unstable
- d) Memory, Time variant, Linear, Non causal, Unstable
- e) Memory, Time variant, Linear, Causal, Stable
- f) Memory, Time Invariant, Non-Linear, Causal, Stable
- g) Memory, Time variant, Linear, Non causal, Stable
- h) Memory less¹, Time Invariant, Linear, Non causal, Unstable
- i) Memory, Time variant, Linear, Causal, Unstable
- j) Memory, Time Invariant, Nonlinear, Causal, Stable
- k) Memory, Time Invariant, Linear, Non causal, Stable
- 1) Memory, Time Variant, Linear, Non causal, Stable
- m) Memory, Time variant, Linear, Non causal, Stable
- n) Memory, Time Invariant, Linear, Non causal, Stable