Non-Interactive Hierarchical Id-based Key Agreement in MANETs

Mayank Tiwari and Sanjit Chatterjee Contact: [mayank.tiwari, sanjit]@csa.iisc.ernet.in Information Security Lab Department of Computer Science and Automation, IISc, Bangalore

PKG runs following three

Setup: takes security

2) Extract: using msk and

identities of nodes, PKG

generates their secret keys

Shared Key: using params,

its own secret key and peer's

identity, a node computes its

shared key with the peer

parameter as input and

outputs public parameters

(params) and master secret

algorithms:

key (msk)

Problem Statement

Design a secure and efficient Non-Interactive, Hierarchical, Identity-based Key Agreement scheme for Mobile Ad-hoc Networks which is fully Resilient at each level against arbitrary number of node compromises

Jargons

- MANET: is an infrastructure-less and wireless network composed of mobile nodes
- Key Agreement Protocol: allows two or more parties to agree on a shared secret key

Ad-hoc Networks

- MANETs find application in
- > establishing Tactical Networks for Military
- > communication in disaster hit areas
- MANET nodes are constrained in:
 - > Computational capabilities
- > Communicational capabilities
- The nodes are usually mobile and have limited battery supply

HH-KAS

- Hybrid Hierarchical scheme (HH-KAS) was introduced for key agreement in MANETs by Gennaro et al. in 2008
- HH-KAS scheme comprises:
 - > a linear hierarchical key agreement scheme at non-leaf levels, and
- > SOK key agreement scheme given by Sakai et al. at leaf level.
- HH-KAS is fully resilient at leaf level and resilient upto a threshold at non-leaf levels

Tools

- Let G_1 , G_2 , G_T be cyclic prime order groups then, pairing is a efficiently computable map e: $G_1 \times G_2 \rightarrow G_T$ which satisfies:
- \triangleright Bilinearity: $\forall a, b \in F_0^*$, $\forall P \in G_1$, $\forall Q \in$ G_2 : e(aP, bQ) = e(P, \mathring{Q})^{ab}
- \triangleright Non-degeneracy: $e(P, Q) \neq 1$
- Basic Id One way function Scheme (BIOS) is a deterministic key pre-distribution (KPD) scheme introduced by Lee and Stinson
- BIOS achieves perfect resiliency and complete connectivity with fewer keys/node when compared to randomized KPD schemes.

References

- Gennaro R., Halevi S., Krawczyk H., Rabin T., Reidt S., Wolthusen S.D.: Strongly-Resilient and Non-interactive Hierarchical Key-Agreement in MANETs, ESORICS, 2008
- Lee J., and Stinson D.R., Deterministic Key Predistribution Schemes for Distributed Sensor Networks, SAC, 2004
- Sakai R., Ohgishi K., Kasahara M.: Cryptosystems based
- on pairing. Cryptography and Information Security, 2000 Chatterjee S., Hankerson D., Knapp E., Menezes A.: Comparing two pairing-based aggregate signature schemes. Designs, Codes and Cryptography, 2010

BIOS-SOK Key Agreement Scheme

PKG

Secret Keys

Shared Key between A and B:

= $e(H(ID_A), s. H(ID_B))$

 $K_{AB} = e(s. H(ID_A), H(ID_B))$

 $A \mid s.H.(Id_{\Delta})$

 $B \mid s.H.(Id_{R})$

 $C \mid s.H.(Id_C)$

Basic Id One-way Function Scheme

 $\left(A_{1}\right)$

At Level 1

 $s_{A1A2} = e(s_{AA}.H(A_1),H(A_2)) = e(H(A_1),s_{AA}.H(A_2)) = s_{A2A1}$

 $s_{A1B1} = e (s_{AB}.H(A_1),H(B_1)) = e(H(A_1),s_{BA}.H(B_1)) = s_{B1A1}$

 $s_{A1C1} = e(s_{AC} \cdot H(A_1), H(C_1)) = e(H(A_1), s_{CA} \cdot H(C_1)) = s_{C1A1}$

 $s_{A1D1} = e(s_{AD} \cdot H(A_1), H(D_1)) = e(H(A_1), s_{DA} \cdot H(D_1)) = s_{D1A1}$

 $s_{A1E1} = e(s_{AE}.H(A_1),H(E_1)) = e(H(A_1),s_{EA}.H(E_1)) = s_{E1A1}$

SOK Key Agreement Scheme

Id	Secret Keys
A_1	s_{AA} . $H(A_1)$, s_{AB} . $H(A_1)$, s_{AC} . $H(A_1)$, s_{AD} . $H(A_1)$, s_{AE} . $H(A_1)$
A_2	s_{AA} . $H(A_2)$, s_{AB} . $H(A_2)$, s_{AC} . $H(A_2)$, s_{AD} . $H(A_2)$, s_{AE} . $H(A_2)$
B_1	s_{BA} . $H(B_1)$, s_{BB} . $H(B_1)$, s_{BC} . $H(B_1)$, s_{BD} . $H(B_1)$, s_{BE} . $H(B_1)$
C_1	s_{CA} . $H(C_1)$, s_{CB} . $H(C_1)$, s_{CC} . $H(C_1)$, s_{CD} . $H(C_1)$, s_{CE} . $H(C_1)$
D_1	s_{DA} . $H(D_1), s_{DB}$. $H(D_1), s_{DC}$. $H(D_1), s_{DD}$. $H(D_1), s_{DE}$. $H(D_1)$
E ₁	s_{EA} . $H(E_1)$, s_{EB} . $H(E_1)$, s_{EC} . $H(E_1)$, s_{ED} . $H(E_1)$, s_{EE} . $H(E_1)$

BIOS - SOK Key Agreement Scheme

Comparison of BIOS-SOK and HH-KAS

Scheme :	Polynomial based HH-KAS		Subset based HH-KAS		BIOS-SOK KAS	
Thresholds:	$t_1 = t_2 = 3$	$t_1 = 7, t_2 = 31$	$t_1 = t_2 = 3$	$t_1 = 7, t_2 = 31$	$n_1 = n_2 = 4$	$n_1 = 8, n_2 = 32$
Key-Size (# of group elements)	Root: 100 Leaves: 16	Root : 19008 Leaves : 256	Root : 28768 Leaves : 1800	Root: 8930800 Leaves: 35000	Root: 4 Level 1: 3 Level 2: 4 Leaves: 4	Root: 8 Level 1 : 6 Level 2: 8 Leaves: 32
Shared Key Computation	1 pairing 16 EC mult's	1 pairing 256 EC mult's	1 pairing 450 EC add's 1800 hashing	1 pairing 11000 EC add's 35000 hashing	3 pairings 6 hashing	3 pairings 6 hashing
Shared Key Computation (in terms of field mult's)	39703 m	407623 m	587125 m	11052275 m	47415 m	47415 m

Properties

- Non-Interactive: Any two nodes can compute a shared secret key without any interaction
- Identity-based: to compute the shared secret key, a node only needs its own secret key and peer's identity
- Hierarchical: intermediate nodes in the hierarchy can derive the secret keys for their children
- Resilient: the scheme is fully resilient against compromise of arbitrary number of nodes at each level
- Efficient: Compared to HH-KAS, BIOS-SOK is better in terms of computation time, space requirement and scalability