QCM

1.A; 2.A et C; 3.C; 4.C; 5.A,B et C; 6.B et C; 7.B et C; 8. A,B et C; 9.B; 10.C; 11. B et C; 12.C

Exercice 01

- **13 1.** Cela signifie que, pour 1 000 g de solution aqueuse, il y a 950 g d'acide sulfurique.
- **2.** La teneur en acide de la solution du laboratoire est plus importante.

3.
$$d = \frac{M \cdot c}{\rho_{\text{eau}} \cdot w} = \frac{98 \times 17.8}{1,00 \times 10^3 \times 0.95} = 1.8$$

Exercice 02

15 1. Les données de l'exercice sont la densité d, le titre massique w, la masse molaire M du soluté, et on sait que $\rho_{eau} = 1,00 \times 10^3 \ g \cdot L^{-1}$. Donc on utilise la formule suivante (vue en cours, page 69) de la concentration en quantité de matière c:

$$c = \frac{\rho_{\mathsf{eau}} \cdot d \cdot w}{M}$$

AN:
$$c = \frac{1,00 \times 10^3 \times 1,6 \times 0,75}{98}$$
 soit $c = 12 \text{ mol} \cdot L^{-1}$.

- **2.** Pour réaliser une dilution, voici le matériel nécessaire : une fiole jaugée, une pipette jaugée et un pipeteur, un bécher.
- **3.** Pour préparer par dilution un volume $V_{\rm dilu\acute{e}}=1,0$ L d'une solution de concentration $c_{\rm dilu\acute{e}}=0,1$ mol·L⁻¹, on doit en prélever un volume V (en L) de la solution commerciale, égal à :

$$V = \frac{c_{\text{dilu\'e}} \cdot V_{\text{dilu\'e}}}{c}$$

AN:
$$V = \frac{0.1 \times 1.0}{12}$$
 soit $V = 8.3 \times 10^{-3}$ L = 8.3 mL.

Comme il n'existe pas de pipette jaugée de ce volume, on le prélève à l'aide d'une burette graduée. Il est ensuite transvasé dans une fiole jaugée de 1 L, puis il faut compléter avec de l'eau distillée jusqu'à 1,0 L.

Exercice 03

19 1. AH (aq) + HO⁻ (aq)
$$\rightarrow$$
 A⁻ (aq) + H₂O (ℓ).

- **2.** La méthode des tangentes permet de trouver $V_{\rm F} \approx 14,4$ mL.
- **3.** Soient $n(AH)_i$ la quantité de matière d'acide ascorbique à doser et $n(HO^-)_E$ la quantité de matière d'ions HO^- versée à l'équivalence.

$$n(AH)_i = n(HO^-)_E$$

= $c_B \cdot V_E$
= $2,00 \times 10^{-2} \times 14,4 \times 10^3 = 2,88 \times 10^{-4} \text{ mol}$

4. Dans la fiole jaugée de 100,0 mL, il y avait une quantité de matière d'acide ascorbique AH égale à $10 n(AH)_i$.

D'où
$$m = 10 n(AH)_i \cdot M(C_6H_8O_6)$$
.
 $m = 2,88 \times 10^3 \times 176 = 507 \text{ mg} \approx 500 \text{ mg}$.

L'indication du fabricant « Vitamine C 500 » indique qu'un comprimé de vitamine C contient 500 mg d'acide ascorbique.

Exercice 04

22 **1.** AH (aq) + HO⁻ (aq)
$$\rightarrow$$
 A⁻ (aq) + H₂O (ℓ)

- **2.** Avant l'équivalence, HO⁻ est le réactif limitant, il est totalement consommé au fur et à mesure de son ajout. Il apparaît des ions A⁻ qui font augmenter la conductance. Au-delà de l'équivalence, les ions HO⁻ ajoutés ne sont plus consommés. Ils sont responsables de l'augmentation de la conductance.
- **3.** On trace deux segments de droite passant par le maximum de points. L'abscisse du point d'intersection de ces deux droites permet d'obtenir le volume équivalent : $V_F = 6.8$ mL.

4. a. À l'équivalence et d'après l'équation, on a $n(AH)_{initial} = n(HO^-)_{versée}$.

Donc
$$c_A \cdot V_A = c_B \cdot V_E$$
.

D'où
$$c_A = \frac{c_B \cdot V_E}{V_A} = \frac{1,0 \times 10^{-1} \times 6,8}{100}$$

$$= 6.8 \times 10^{-3} \text{ mol} \cdot L^{-1}$$
.

b. La masse d'acide acétylsalicylique est :

$$m_A = c_A \cdot V \cdot M(AH)$$

$$m_A = 6.8 \times 10^{-3} \times 0.250 \times 180$$

$$m_A = 0.31 \text{ g}$$

Ce résultat est compatible avec la masse m = 0.32 g dissoute pour préparer la solution.