YRM71, YS591 – Mathematical Neuroscience Project 2: Associative memory

A short oral presentation is required in addition to turn in a short writeup that describes the problem you investigated, why it is interesting, and results.

Assignment

1. Perform computer simulation of associative memory in a neural network of n=1000 neurons, m=80 and 200 memory items. Reproduce the Figure 1 and Figure 2 shown in Amari & Maginu (1988).

If you want to perform computer simulation of a huge number of neurons (e.g. n = 10000), you don't need to use two dimensional array w[i][j] since

$$x_{i}(t+1) = \operatorname{sgn}\left(\sum_{j=1}^{n} w_{ij} x_{j}(t)\right)$$

$$= \operatorname{sgn}\left(\sum_{j=1}^{n} \frac{1}{n} \sum_{\alpha=1}^{m} x_{i}^{\alpha} x_{j}^{\alpha} x_{j}(t)\right)$$

$$= \operatorname{sgn}\left(\sum_{j=1}^{n} \sum_{\alpha=1}^{m} x_{i}^{\alpha} x_{j}^{\alpha} x_{j}(t)\right).$$

Computer Experiment Procedure

- 1. Generate a set of random memories, $\boldsymbol{x}^{\alpha}, \alpha = 1, 2, \cdots, m$ (e.g. m = 80, 200).
- 2. Set weight connections w_{ij} , $i, j = 1, 2, \dots, n$ (e.g. n = 1000).
- 3. Set an initial state $\boldsymbol{x}(0)$ which resembles somewhat state \boldsymbol{x}^1 by taking first a elements flipped $(x_1^1,\cdots,x_a^1,x_{a+1}^1,\cdots,x_n^1)$. (e.g. $a=0,25,50,75,\cdots)$ Remark: When $a=\frac{n}{2}$, direction cosine $s(\boldsymbol{x}(0),\boldsymbol{x}^1)$ is 0.
- 4. Updates the network state, $x(t+1) = T_W x(t)$, 20 times, for example.
- 5. Draw a graph with t in horizontal axis and the direction cosine $s(\boldsymbol{x}(t), \boldsymbol{x}^1)$ in vertical axis.
- 6. Repeat these from 3. with different a.

FIGURE 1. Dynamic behaviors of recalling processes; simulation with n = 5000, m = 400, r = 0.08.

FIGURE 2. Dynamic behaviors of recalling processes; simulation with n=3000, m=600, r=0.2.

Amari, S. & Maginu, K. Statistical neurodynamics of associative memory. *Neural Networks* 1, 63–73 (1988).

Associative Memory

Key words: parallel search, distributed/superimposed storage, content-addressable memory

1. **Set up.** Network state: $\mathbf{x} = (x_1, x_2, \dots, x_n)$. $x_i \in \{-1, 1\}, i = 1, \dots, n$

A set of memories: $\{x^1, x^2, \cdots, x^m\}$, x_i^{α} takes -1,1 with probability $\frac{1}{2}$ independently.

Connection weights: $W = \{w_{ij}\}, w_{ij} = \frac{1}{n} \sum_{\alpha=1}^{m} x_i^{\alpha} x_j^{\alpha}, w_{ii} = 0.$ $(w_{ij} = w_{ji})$

Activity Dynamics: $x(t+1) = T_W x(t)$

$$x_i(t+1) = \operatorname{sgn}\left(\sum_{j=1}^n w_{ij}x_j(t)\right), \ \operatorname{sgn}(u) = \begin{cases} 1, & u > 0\\ -1, & u \le 0 \end{cases}$$

- 2. **Hebb learning.** $\Delta w_{ij} = cx_ix_j$ (c > 0 is constant). Learning is local.
- 3. Equilibrium states: $x = T_W x$ and Stable states. Starting from any arbitrary initial state, the system reaches a stable state and ceases to evolve (or converge to cyclic states with period 2).
- 4. **Associative memory.** If started from an initial state which resembles somewhat state x^{β} and which resembles other $x^{\alpha}(\alpha \neq \beta)$ very little, the state will evolve to the state x^{β} . The system correctly reconstructs an entire memory from any initial partial information, as long as the partial information was sufficient to identify a single memory.
- 5. Direction Cosine (Similarity between two states): $-1 \le s \le 1$

$$s(\boldsymbol{x}^{\alpha}, \boldsymbol{x}^{\beta}) = \cos \theta = \frac{\boldsymbol{x}^{\alpha} \cdot \boldsymbol{x}^{\beta}}{||\boldsymbol{x}^{\alpha}||||\boldsymbol{x}^{\beta}||} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{\alpha} x_{i}^{\beta}$$

- 6. **Spurious memory.** The storage of a set of assigned memories in $\{w_{ij}\}$ also produces a set of spurious stable states which were not inserted as memory states.
- 7. Memory capacity: $m \approx 0.14n$