PINBALL MACHINE DEVELOPMENT NOTES

EPIC Robotz, Fall 2022 Project

AC Wiring

Otherwise known as "Mains" Wiring

110 Volt AC Line Items

- Power to the main 20-48 Adjustable Supply for Magnets and Coils
- Power to 12 Volt Supply for high powered LEDs
- Power to 5 Volt Supply for Raspberry, Logic, and NeoPixel LEDs
- Power to 17" Monitor used as the Score Board

Questions to Resolve

Requirements:

- One ON/OFF switch for entire machine.
- One AC power cord to outlet on a wall to power entire machine.

Questions:

- Where should the On/Off switch be mounted?
- Do we need a fuse? If so, where should it be mounted?
- How should the power be routed to various components?
 - Use Power Strip and Multiple AC cords inside of machine?
 - Or use terminal screw strip and route AC power over custom wires?

Controlling Magnets and Coils

List of High Voltage Magnets and Coils

Feature	Number	Coil Resistance	Coil Windings	Amps @ 48v
Flippers	3	3.3 / 350	25-500 / 34-4500	14.5
Bumpers	3	11.2	26-1200	4.2
Kickers	3	4	023-800	12
New Ball Kicker	1	4	023-800	12
Dropped Ball Kicker	1	4	023-800	12
Replacement	0	14.25	26-1500	3.4
Total Circuits	11			

Direct Control vs Computer Control

Direct Control:

- Current runs though "switch" directly to Coil.
- Switch is physically closed by human or pinball
- Switch must be rated for high current
- By itself, computer does not know about switch closure, and therefore cannot score or make sounds
- High current must be limited by circuit design
- In old pinball machines, this design was only choice since there were no computers.

Computer Control:

- The computer has ability to fire the coil anytime it wants
- The computer reads switch inputs and decides when the coil should be fired.
- Using PWM, the computer can change the strength of the coil magnet, and limit current.
- The sensing switches can be driven with very low current and voltage, so they can be much smaller.
- Scoring is easy, just becomes a software issue
- Downsides:
 - The computer must respond fast enough so that any delay in coil activation does not change gameplay. (Flippers, Kickers, Bumpers, etc)
 - A special computer-controlled switch is needed for each coil. (We use MOSFET switches)

Typical Coil Wiring

MOSFET for Coil Switch: FQP30N06L

Important Parameters:

- 60 Volts
- 32 Amps
- .045 ohm On State Resistance
- About \$1.00 each

FQP30N06L

N-Channel QFET® MOSFET 60 V, 32 A, 35 mΩ

Description

This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies. audio amplifier, DC motor control, and variable switching power applications

Features

• 32 A, 60 V, R_{DS(on)} = 35 mΩ (Max.) @ V_{GS} = 10 V, ID = 16 A

November 2013

- Low Gate Charge (Typ. 15 nC)
- · Low Crss (Typ. 50 pF)
- · 100% Avalanche Tested
- 175°C Maximum Junction Temperature Rating

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		FQP30N06L	Unit
V _{DSS}	Drain-Source Voltage		60	V
I _D	Drain Current - Continuous (T _C = 25°C)	32	Α
	- Continuous (T _C = 100°	C)	22.6	Α
I _{DM}	Drain Current - Pulsed	(Note 1)	128	Α
V _{GSS}	Gate-Source Voltage		± 20	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	350	mJ
I _{AR}	Avalanche Current	(Note 1)	32	A
E _{AR}	Repetitive Avalanche Energy	(Note 1)	7.9	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	7.0	V/ns
PD	Power Dissipation (T _C = 25°C)		79	W
	- Derate above 25°C		0.53	W/°C
T _J , T _{STG}	Operating and Storage Temperature Rang	е	-55 to +175	°C
TL	Maximum Lead Temperature for Soldering 1/8" from Case for 5 seconds	l,	300	°C

Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FQP30N06L	FQP30N06L	TO-220	Tube	N/A	N/A	50 units

Electrical Characteristics

	racteristics					
BV_{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA	60			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		0.06		V/°
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 60 V, V _{GS} = 0 V			1	μ/
	Zero Gate Voltage Drain Current	V _{DS} = 48 V, T _C = 150°C			10	μ/
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	n/
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -20 V, V _{DS} = 0 V			-100	n/

On Characteristics

QFET®

MOSFET

V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	1.0		2.5	V
R _{DS(on)}	Static Drain-Source	V _{GS} = 10 V, I _D = 16 A		0.027	0.035	0
	On-Resistance	V _{GS} =5V, I _D =16A		0.035	0.045	122
9 _{FS}	Forward Transconductance	V _{DS} = 25 V, I _D = 16 A		24		S

Dynamic Characteristics

C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V,	 800	1040	pF
Coss	Output Capacitance	f = 1.0 MHz	 270	350	pF
C _{rss}	Reverse Transfer Capacitance		 50	65	pF

Switching Characteristics

t _{d(on)}	Turn-On Delay Time	V _{DD} = 30 V, I _D = 16 A,		 15	40	ns
t _r	Turn-On Rise Time	$R_G = 25 \Omega$		 210	430	ns
t _{d(off)}	Turn-Off Delay Time			 60	130	ns
t _f	Turn-Off Fall Time	(Not	te 4)	 110	230	ns
Q_g	Total Gate Charge	V _{DS} = 48 V, I _D = 32 A,		 15	20	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 5 V		 3.5		nC
Q _{gd}	Gate-Drain Charge	(Not	te 4)	 8.5		nC

Drain-Source Diode Characteristics and Maximum Ratings

Is	Maximum Continuous Drain-Source Diode Forward Current		 	32	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current		 /	128	Α
V _{SD}	Drain-Source Diode Forward Voltage V _{GS} = 0 V, I _S = 32 A		 	1.5	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 \text{ V, } I_{S} = 32 \text{ A,}$	 60		ns
Q _{rr}	Reverse Recovery Charge	dI _F / dt = 100 A/μs	 90		nC

- Notes: 1. Repetitive Rating : Pulse width limited by maximum junction temperature. 2. L = 400 μ H, μ_S = 32 A, V_{DD} = 25 V_{AC} = 25 Ω , starting T_J = 25°C. 3. t_{BD} ≤ 32 A, didt ≤ 300 A/us, V_{DD} ≤ B V_{DSS} , starting T_J = 25°C. 4. Essentially independent of operating temperature.

Experiments for Computer Control

Control Questions

- What Electrical Architecture should be used to respond quickly to sensor inputs?
- It a cheap Arduino Nano (\$2.00 each) fast enough for our needs?

Computerized Control Test

- Testing ability of microprocessor to be in full control of solenoid
- Wrote NanoMagTest
- Had following states:
 - READY fires the solenoid on switch closure
 - FIRING Holds the solenoid down for 100 msec
 - STUCK Comes here after FIRING if switch is still closed. Waits for switch to open.
 - RESTING comes here after FIRING or STUCK to "rest" before allowing another cycle... Rest time was 80ms

Observations:

- Seems to work.
- Sometimes gets untriggered double strikes
- Shaking and vibration of table is causes fires... Solve that with sturdy table?

Response Time Test

- Measure time to respond to interrupt on Pin 3 of NANO
- Looks like about 9 uses.


```
3 #define PIN SQ 3 // Input Square Wave
4 #define PIN OUT 4 // Output flasher
6 // the setup function runs once when you press reset or power the board
7 void setup() {
8 // initialize digital pin LED BUILTIN as an output.
9 pinMode(PIN SQ, INPUT PULLUP);
  pinMode(PIN OUT, OUTPUT);
   attachInterrupt(digitalPinToInterrupt(PIN SQ), sq ISR, FALLING);
.2 Serial.begin(115200);
.4 long volatile counter = 0;
.5 long last counter = 0;
.6 int volatile iled = 0;
.8 void sq ISR() {
     counter++;
     iled++:
     if (iled > 1) iled = 0;
     if (iled == 0) digitalWrite(PIN_OUT, LOW);
     else digitalWrite(PIN OUT, HIGH);
```

Notes on Ardunio NANO @ 16 MHz

- Max out square wave: 113 Khz, 8.8us
 - Two Digital Write Calls in a while(true) loop.
 - A NANO should execute 16 instructions every 1us.
 - The argues that the C loop generated about 8.8*16 = 140 Instructions!
 - (Same code should be about 10 instructions in assembly language, or over 1MHz square wave).

Slot Switches

Senses when ball rolls through a slot

Force Calculation

Assume Best Case: weight of entire ball presses down at right angle to flat, horizontal surface where the switch is located.

Weight of ball is about 0.15 pounds, or about 2.4 oz, or about 68 grams

Therefore, to account for misalignment, slope of table, and angle to where the force will be applied, assume we want an activating force of about half the weight of the ball, or about 34 grams, or 0.034 kg.

1 Newton of Force is 9.8 kg of mass.

Our Max Force = 0.034 * 9.8 = 0.33 Netwons

Note, also, we don't want to slow the ball down or change its direction to activate the switch.

Old Machines, How They Did It

Williams/Bally Sub-Microswitch

About \$5.00 each

Appears to have spot welded paper clip wire

More Info on DB5 Switch

- Made by CHERRY
- Datasheet: https://www.farnell.com/datasheets/1641341.pdf
- Hard to Tell, but Operating Force seems to be about 0.50 N

Dimensions - millimeter

Possible Substitute Switches

I believe that this is the presentday raw switch that the original pinball machines used.

DigiKey Switches

V19S05-HZ015A03

- 0.15 Netwons of force, or 15 grams of force
- Lever Far from Plunger
- 3.1mm Mounting Holes
- \$1.93 each
- Plunger Travel: 9 + 3.8 + 2.0 mm

TS0101F020V3

- Made by E-Switch
- Only rated for 6v @ 0.3 amps
- 20 grams (+/- 10g) operating force
- PCB terminals must be soldered
- About \$1.00 each

Micro Switch: TS0101F020V3

Most Promising

Drawing Showing that TS Micro Switch can Work

This shows that the switch should be activated even when the pinball is traveling against the slot side wall.

Micro-switch Mount for Slot Switches

Score Board

Requirements and Ideas

- Scoreboard Attached to rear of machine on pivots for transport
- Scoreboard houses Monitor and Speakers
- Scoreboard may house AC system, on/off switch, computers?
- Scoreboard has bright lights and Neo Pixels
- Must provide Disconnect of wires between scoreboard and rest of machine

Wires in Scoreboard Disconnect

Purpose	Conductor	Current	Plug Type
48 Volt Supply	12 AWG	20 Amps	Anderson?
12 Volt Supply	12 AWG	15 Amps	Anderson?
5 Volt Supply	5 AWG	15 Amps	Anderson?
Ground	12 AWG x 3	50 Amps	Anderson?
Computer Control	24 AWG Stranded, x4	SPI?	9 Pin D Connector?

