4.1 Implementierung und Test

- a) Schreiben Sie ein MATLAB-Programm das auf dieser Basis die Faltung implementiert; das Hilfsblatt im Anhang kann dazu ggf. ebenfalls nützlich sein.
- b) Verifizieren Sie das Programm, indem Sie es auf folgende Signale anwenden (s. 1.2 Vorbereitung):

Es sollten sich folgende Array-Inhalte ergeben haben

(füllen Sie die leeren Felder mit den Ergebnissen aus Ihrer Vorbereitung; Abschnitt 1.2):

1	3	2	2	2	1				
-2	-1	0	イ	2	3				
-0.4	-0.2	0.0	012	014	016				
1	0	-1	1	-1					
-7	0	1	2	3					
012	0.0	0,2	014	0.6					
	1 -2 -0.4	1 3 -2 -1 -0.4 -0.2 1 0 -1 0	1 3 2 -2 -1 0 -0.4 -0.2 0.0 1 0 -1 -1 0 1 -1 0 1	1 3 2 2 -2 -1 0 A -0.4 -0.2 0.0 0.2 1 0 -1 1 -1 0 1 2 -0.2 0.0 0.2 0.4	1 3 2 2 2 2 2 2 2 2 3 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6				

A:	4	3	7	0	2	-2	-2	-7	-3	-7	1
ny:	* - 3	-2	_1	,0	1	2	3	24	5	6	1
ty:	-016	-014	-012	0.0	012	014	0,6	OIX	1.0	- 10	2
": linker l	Rand von vir	nTI									2

Stellen Sie die Signale x, h und y übereinander in jeweils einzelnen Subplots innerhalb eines Diagramm-Fensters grafisch dar (stem(), subplot()); je ein separates Diagramm über der Zeitachse (t) und der Indexachse (n) ist erforderlich.

(Es ergeben sich also 2 Diagramm-Fenster mit jeweils drei übereinander angeordneten Subplots.)

1.2 Faltung spezieller Signale

- Passen Sie das Programm auf die in Ihrer Task-Definition gegebenen Signale x[nT] und h[nT] an und erzeugen Sie daraus das Ergebnissignal y[nT].
- Stellen Sie die Signale x, h und y übereinander in jeweils einzelnen Subplots innerhalb eines Diagramm-Fensters grafisch dar (stem(), subplot()); je ein separates Diagramm über der Zeitachse (t) und der Indexachse (n) ist erforderlich.

(Es ergeben sich also 2 Diagramm-Fenster mit jeweils drei übereinander angeordneten Subplots.)