SECTION 3.4 ARTIFICIAL STARTING SOLUTION

- M TECHNIQUE
- TWO PHASE METHOD

ARTIFICIAL STARTING SOLUTION

- The simplex algorithm requires an initial basic feasible solution (IBFS). Such a solution is found by using the slack variables as our basic variables.
- If an LP has any ≥ or equality constraints, an IBFS may not be readily apparent.
- In this case artificial variables are used that play the role of slacks at the first iteration.
- Two closely related methods, the M-method and the twophase method are used to solve the LPs that include artificial variables.

$$Minimize z = 4x_1 + x_2$$

$$Minimize z = 4x_1 + x_2$$

$$3x_1 + x_2 = 3$$

$$4x_1 + 3x_2 \ge 6$$

$$x_1 + 2x_2 \le 4$$

$$x_1, x_2 \ge 0$$

$$3x_{1} + x_{2} = 3$$

$$4x_{1} + 3x_{2} - x_{3} = 6$$

$$x_{1} + 2x_{2} + x_{4} = 4$$

$$x_{1}, x_{2}, x_{3}, x_{4} \ge 0$$

M Method

$$Minimize z = 4x_1 + x_2$$

$$Minimize z = 4x_1 + x_2$$

$$3x_1 + x_2 = 3$$

$$4x_1 + 3x_2 \ge 6$$

$$x_1 + 2x_2 \le 4$$

$$x_1, x_2 \ge 0$$

$$3x_{1} + x_{2} = 3$$

$$4x_{1} + 3x_{2} - x_{3} = 6$$

$$x_{1} + 2x_{2} + x_{4} = 4$$

$$x_{1}, x_{2}, x_{3}, x_{4} \ge 0$$

Basic	×1	x2	x3	R1	R2	×4	Solution
Z	-4	-1	0	-100	-100	0	0
R1	3	1	0	1	0	0	3
R2	4	3	-1	0	1	0	6
x4	1	2	0	0	0	1	4

Artificial variable objective function coefficient = $\begin{cases} -M, \text{ in maximization problems} \\ M, \text{ in minimization problems} \end{cases}$

Minimize
$$z = 4x_1 + x_2 + MR_1 + MR_2$$

$$3x_1 + x_2 + R_1 = 3$$

 $4x_1 + 3x_2 - x_3 + R_2 = 6$
 $x_1 + 2x_2 + x_4 = 4$
 $x_1, x_2, x_3, x_4, R_1, R_2 \ge 0$

Basic	×1	x2	×3	R1	R2	×4	Solution
Z	-4	-1	0	-100	-100	0	0
R1	3	1	0	1	0	0	3
R2	4	3	-1	0	1	0	6
×4	1	2	0	0	0	1	4

Artificial variable objective function coefficient = $\begin{cases} -M, \text{ in maximization problems} \\ M, \text{ in minimization problems} \end{cases}$

Minimize
$$z = 4x_1 + x_2 + MR_1 + MR_2$$

$$3x_1 + x_2 + R_1 = 3$$

 $4x_1 + 3x_2 - x_3 + R_2 = 6$
 $x_1 + 2x_2 + x_4 = 4$
 $x_1, x_2, x_3, x_4, R_1, R_2 \ge 0$

Check consistency

Basic	×1	x2	x3	R1	R2	×4	Solution
Z	696	399	-100	0	0	0	900
R1	3	1	0	1	0	0	3
R2	4	3	-1	0	1	0	6
×4	1	2	0	0	0	1	4

Basic	k 1	x2	× 3	R1	R2	×4	Solution
Z	696	399	-100	0	0	0	900
€ R1	3	1	0	1	0	0	3
R2	4	3	-1	0	1	0	6
×4	1	2	0	0	0	1	4
Z	0	167	-100	-232	0	0	204
×1	1	$\frac{1}{3}$	0	$\frac{1}{3}$	0	0	1
R2	0	$\frac{5}{3}$	-1	$-\frac{4}{3}$	1	0	2
×4	0	5 3	0	$-\frac{1}{3}$	0	1	3
Z	0		$\frac{1}{5}$	$-\frac{492}{5}$	$-\frac{501}{5}$	0	$\frac{18}{5}$
×1	1	0	$\frac{1}{5}$	$\frac{3}{5}$	$-\frac{1}{5}$	0	$\frac{3}{5}$
×2	0	1	$-\frac{3}{5}$	$-\frac{4}{5}$	$\frac{3}{5}$	0	<u>6</u> 5
×4	0	0	1	1	-1	1	1
z	0	0	0	$-\frac{493}{5}$	-100	$-\frac{1}{5}$	$\left(\frac{17}{5}\right)$
×1	1	0	0	2 5	0	$-\frac{1}{5}$	$\frac{2}{5}$
x2	0	1	0	$\frac{-1}{5}$	0	$\frac{3}{5}$	$\left(\frac{9}{5}\right)$
x 3	0	0	1	1	-1	1	1

Remarks. If the final simplex iteration includes at least one artificial variable with a positive value, this will indicate that the LP does not have a feasible solution (i.e., the constraints cannot be satisfied simultaneously).