FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA

Departamento de Electrónica y Tecnología de Computadores

Ingeniería Informática **Examen Febrero 2010**

Duración: 3 horas

Responde a cada pregunta en hojas separadas. Indica en cada hoja tu nombre, el número de página y el número de páginas totales que entregas.

Lee detenidamente los enunciados antes de contestar

Nombre	D.N.I.	Grupo

1. Razona cuál es la región de funcionamiento en la que opera el diodo D1 y el transistor T2 en el circuito de la derecha: (1 punto)

Datos para el diodo (D1): $V_{\nu} = 0.6 \text{ V}$

Datos para el BJT: Los que se han dado en clase de teoría.

$$\beta = 300$$

2. Calcula la tensión del drenador del MOSFET del circuito siguiente: (1.5 puntos)

$$I_D = \frac{k}{2} \left[2(V_{GS} - V_T)V_{DS} - V_{DS}^2 \right]$$

$$I_D = \frac{k}{2}(V_{GS} - V_T)^2$$

3. El potencial creado por dos esferas conductoras concéntricas de radios R₁=1 cm y R₂=2 cm separadas por el vacío y cargadas con Q y -Q respectivamente es:

$$V = \begin{cases} \frac{Q}{4\pi\varepsilon_0 R_1} - \frac{Q}{4\pi\varepsilon_0 R_2}; & r \leq R_1 \\ \frac{Q}{4\pi\varepsilon_0 r} - \frac{Q}{4\pi\varepsilon_0 R_2}; & R_1 < r < R_2 \\ 0; & r \geq R_2 \end{cases}$$

- Calcula a partir del mismo el campo eléctrico creado por la estructura en cualquier punto del espacio (ten en cuenta el carácter vectorial del campo).
 - Calcula a partir del potencial la capacidad del condensador esférico descrito. (2 puntos)

Datos: $\varepsilon_0 = 8.84 \cdot 10^{-12} \text{ C}^2/\text{Nm}^2$

4. Calcula el equivalente de Thevenin del circuito mostrado entre los puntos A y B.

(1.5 puntos)

Datos: R=1 k Ω ; L=10 kH; C=4 μ F

$$v_i(t) = 20\cos(5t) \text{ V}$$

5. Para el circuito de la figura (R=4 k Ω ; C=1 μ F; L=4 H)

- a) Obtenga la función de transferencia $T(s)=V_0(s)/V_i(s)$. (1 punto)
- b) Represente el diagrama de Bode en amplitud y fase para dicha función de transferencia. (2 puntos)
- **c**) Usando la función de transferencia obtenida, calcule $v_0(t)$ si $v_i(t)=[10\cos(10t)+10\cos(10^4t)]$ V. **(1 punto)**

1-

b=300 $V_{r}=0.6v$ D1 + T2 D1 + T2

La vinica fuente de tensión esta conectada al colector. No hay minguna prente que suministre una carde de tensión entre la base y el emisor.

El diodo liene dos estados posibles.

Ftyr ON -0 la coniente debe salir de la base (activa inversa)
OFF-0 no hay conviente (arte)

Podemos desechar actia directa y Saturación, por tanto.

Activa inverse: $V_{BE} < 0.6 \text{ V}$ \Rightarrow $V_{E} = 0$ \Rightarrow $V_{B} - V_{E} < 0.6 \text{ V}$ \Rightarrow $V_{BC} \approx 0.6 \text{ V}$

Si nos encontramos en activa inversa, le tensión en le base es menor de 0.6V. Insufrirente para que D1 ester conduciendo.

Solución: corte B5T inversa diodo

 $V_{B} < 0.6V$ $V_{C} = 5V$ $V_{BE} < 0.6V$ $V_{E} = 0V$ $V_{BE} < 0.6V$ $V_{E} = 0V$ $V_{E} = 0V$ $V_{E} = 0V$ $V_{E} = 0V$ $V_{BE} < 0.6V$ $V_{E} = 0V$ V_{E}

$$V_{+} = 1V$$
 $V_{5} = 0$ $V_{65} = 6V$ $V_{65} = 6V$ $V_{65} = 6V$

La comente que circula par el MOSFET es de 1 mA, seçún indica la puente de corriente. Por tanto, conocernos ID.

$$I_0 = \frac{K^2}{2} \left(\frac{V_{6s} - V_T}{V_{8s}} \right)^2 = 25 \text{ mA} + No \text{ son } 1 \text{ mA}$$

Superngo lineal:
$$2 \text{ mA/v}^2$$

$$Io = \frac{K}{Z} [2(V_{65}-V_{7}) \cdot V_{05} - V_{05}^2]$$

$$ImA$$

$$V_{05} = V_{0} - V_{5}^* = V_{0}$$

Terço que resolver

$$4 = \frac{2}{2} \left[z.s. v_0 - v_0^2 \right]$$

$$V_0^2 - 10 V_0 + 1 = 0$$
; $V_0 = \frac{10 \pm \sqrt{100 - 4}}{2} = 0.9891 V_0$

De las dos soluciones, una es absurda. En líneal V65 > 4 -0 6>1

Vos K V65-V7 0.101 < S

$$V_0 = 0.101 V$$

(a)
$$\tilde{E} = -\nabla V$$

Hay give applican = ∇ all potencial.
En esternions $\nabla: \frac{\partial}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial}{\partial \theta} \hat{\theta} + \frac{1}{rsao} \frac{\partial}{\partial \rho} \hat{q}$

 $r \in Rs$; $\tilde{E} := \nabla V \neq \text{ backs que el potencial es constante (no tiene <math>r, \theta, ni \theta)$, la clevirade vale cero

r > Rz ; Por las vuismas razones, la devinda es cevo.

hy < r < k2; En esta región É depende de r. No de O y gó. $\frac{\vec{E}}{\partial r} = \frac{\partial}{\partial r} \left[\frac{Q}{4\pi \epsilon_0 r} - \frac{Q}{4\pi \epsilon_0 R_2} \right] \vec{F} = -\frac{Q}{4\pi \epsilon_0} \left[-\frac{1}{r^2} \right] \vec{F}$ Constante

$$\begin{array}{c|c}
\vec{E} : & Q & \hat{r} \\
\vec{A} & \vec{A} &$$

b) La capacidad es $C = \frac{Q}{\Delta V}$. ΔV es la diferención de potencial entre las placas del condensador: UV = VCR1) - VCR2)

$$C = \frac{Q}{\frac{Q}{4\pi\epsilon_0 R_1} - \frac{Q}{4\pi\epsilon_0 R_2}} = \frac{Simplifrands}{\frac{1}{4\pi\epsilon_0 R_1} - \frac{1}{4\pi\epsilon_0 R_2}} = \frac{1}{4\pi\epsilon_0 R_2}$$

4,- Equivalente de Theremin

Impedancia de Theremin:

. Directes las prentes

· Veo la impedamoia entre AyB

$$\frac{2^{-1}}{2\pi h} = \frac{1}{R+sL} + \frac{1}{1/sC} = \frac{1+sRC+s^2Lc}{R+sL}$$

Sustituimos valores, dejandos

$$Z_{Th} = \frac{10^3 + 10^4 \text{s}}{1 + 0.004 \text{s} + 0.04 \text{ s}^2}$$

Tensión Theremin: le caide de tensión ente AyB.

$$20e^{j5t} = Ri + Lsi + \frac{1}{Cs}i$$

$$V_{DB} = \frac{1}{Cs} \cdot i = \frac{1}{Cs} \cdot \frac{20e}{R+Ls+ \frac{1}{Cs}} = \frac{1}{cs}$$

$$\# = \frac{20e^{j5t}}{RCs + LCs^2 + 1} = \frac{20e^{j5t}}{4.10^{-3}} + 4.10^{-2} G \omega^2 + 1$$

Pasando a forma polar el clenominador, y Venrendo en cuenta que w= 5 vads

$$\frac{20e^{j5t}}{2\cdot 10^{-2}j+j^{2}+1} = \frac{20}{2\cdot 10^{-2}} \frac{e^{j5t}}{e^{j\pi/2}} = 10^{3} e^{j(5t+\pi/2)}$$

$$\frac{10006(5t-\pi/2)}{2\cdot 10^{-2}j+j^{2}+1} = \frac{20}{2\cdot 10^{-2}} \frac{e^{j\pi/2}}{e^{j\pi/2}} = 10^{3} e^{j(5t+\pi/2)}$$

$$5.- T_{(5)} = \frac{V_{8}(s)}{V_{1}(s)}$$

$$V_0(s)$$
: $V_0 - V_B = \frac{1}{cs} \cdot i$

$$\frac{1}{z_{eq}} = \frac{1}{R} + \frac{1}{Ls} = \frac{Ls + R}{RLs}$$

$$z_{eq} = \frac{RLs}{Ls + R}$$

$$i = \frac{V_{i}(s)}{\frac{A}{cs} + \frac{RLs}{Ls + R}}$$

$$\frac{|T_{cS}|}{|R_{cS}|^2 + L_{s+R}|} = \frac{|A_{s+4.90^3}|}{|R_{cS}|^2 + L_{s+R}|}$$

6) Factorize

$$\frac{4s + 4 \cdot 10^3 = 0}{\left[5 = -10^3\right]}$$

$$0.0165^{2} + 4s + 4.10^{3} = 0$$

$$S = -\frac{4 \pm \sqrt{16 - 4.0.016 \cdot 4.10^{3}}}{2 \cdot 0.06} \xrightarrow{\text{No se factorize}} \text{No se factorize}$$

$$Complejas$$

Por tanto

$$T_{(s)} = \frac{4(5+10^3)}{0.016s^2 + 4s + 4.10^3}$$

Ahorn bacerno que el término independrente sea como

$$T(s) = \frac{5 + 10^{2} \left(\frac{5}{10^{3}} + 1\right)}{5 + 10^{3} \left[4 \cdot 10^{-6} s^{2} + 10^{-3} s + 1\right]}$$

Ahorn 5=jw y calculamo usólulo y pase

$$T(\omega) = \frac{.1 + j\omega}{1 - 4.10^{-6} \omega^2 + 10^{-3} j\omega}$$

$$|T(\omega)| = \frac{\sqrt{4 + (\omega_1)^2}}{\sqrt{4 - 4.10^{-6} \omega^2} + (\frac{\omega}{10^3})^2}$$

$$arg T = arclig \left(\frac{w}{10^3}\right) - arclig \left(\frac{10^{-3}w}{1 - 4.10^{-6}w^2}\right)$$

insomer() us

Diagrame de Bode de amplifud

20 lg |T| = 20 lg
$$\sqrt{1+(\frac{\omega}{10^3})^2}$$
 - 20 lg $\sqrt{4-4.10^4\omega^2}$ ($\frac{\omega}{10^3}$)²

2) Pan
$$w \to 0$$
 - $20 \log \sqrt{(1 - 4.10^{-6}w^2)^2 + (\frac{\omega}{10^3})^2} \approx -20 \log 1 = 0$
Pan $w \to \infty$ - $20 \log \sqrt{(1 - 4.10^{-6}w^2)^2 + (\frac{\omega}{10^3})^2} \approx -20 \log \sqrt{(4.10^{-6}w^2)^2} =$

$$= -20 \log 4.10^{-6} - 40 \log w$$

Si -20 log
$$(4.10^{-6})$$
 - 40 log $w = 0$ -0 $w = 500$ rad/s

ponto de corte de la rectra con el eje X

Dibojo en oha prígine

Diagrame de Bode de Jase

ang
$$T = and g(w) - and g(10^{-3}w)$$

$$0$$
(2)

Pan
$$w \rightarrow 0$$
 with $\left(\frac{w}{10^3}\right) \approx 0$

Pan $w \rightarrow \infty$ arety $\left(\frac{w}{10^3}\right) \approx \pi/2$

Pan $w = 10^3$ arety $\left(\frac{w}{10^3}\right) = \pi/4$

Para
$$w \Rightarrow 0$$
 arety $\frac{(10^{-3}w)}{1-4\cdot10^{-6}w^2} \approx 0$
Para $w \Rightarrow \infty$ arety $\frac{(10^{-3}w)}{1-4\cdot10^{-6}w^2} \approx 17$
(El denominadar, que es la parte real, es negativo)
Para $w \Rightarrow 500$ arety $\frac{(10^{-3}w)}{1-4\cdot10^{-6}w^2} \approx 4$ arety $\omega = \pi/4$
Dibujo en otro prígina

c) Si
$$v_i(t) = 10 \cos(10t) + 10 \cos(10^4t)$$

- Plane le entrode $10 \cos(10t)$ tenemes $w = 10 \text{ rad/s}$, $|v_{i}| = 10$; ans $v_i = 10t$

$$|T| = \frac{|v_{i}|}{|v_{i}|} - 0 \quad |v_{0}| = |T_{i}w_{0}| = 10$$

$$\frac{\sqrt{1 + (\frac{10}{10^3})^2}}{\sqrt{1 - 4 \cdot 10^{-6} 40^2}} = 10$$

arg IT = arg vs-arg v; jarg vo = arg |T| to arg $|v_i| \approx 10t$ $archs(\frac{10}{10^3}) - archs(\frac{10^{-3} \cdot 10}{1 - 4 \cdot 10^{-6} \cdot 10^2}) \approx 0$

- p Pan le entrade 10 cos (104t) tenema w=104 ml/s; [v:1=10; ang v:=104t

$$|V_0| = |T(\omega = 10^4)| \cdot |V_1| = 0.25$$

$$\frac{\sqrt{1 + (\frac{10^4}{10^3})^2}}{\sqrt{(1 - 4 \cdot 10^{-6} \cdot (10^4)^2)^2} + (\frac{10^4}{10^3})^2} \approx 0.025$$

$$arg v_0 = arg T + arg v_1$$

$$arcts \left(\frac{10^4}{10^3}\right) - arcts \left(\frac{10^{-3} \cdot 10^4}{1 - 4 \cdot 10^{-6} \cdot (10^4)^2}\right) \approx \pi/2$$

Recopilande la datos:

