Chapitre 2 - Symétrie centrale

1 LE SYMÉTRIQUE D'UN POINT

Définition 1. Symétrique d'un point

 $M^{'}$ est le symétrique du point M par rapport au centre O est équivalent à O est le milieu de de $[M\ M^{'}]$.

1.1 Construction

1.1.1 À L'AIDE D'UN QUADRILLAGE

Pour construire le symétrique d'un point à l'aide d'un quadrillage, on se déplace d'autant de carreaux horizontalement (violet) et verticalement (bleu) par rapport au centre.

1.1.2 Sans l'aide d'un quadriallge

Pour construire le symétrique d'un point sans l'aide d'un quadrillage, on s'arme d'une règle et d'un compas.

- 1. On trace la droite (OM) (bleue) car les points O, M et M' sont alignés.
- 2. On marque au compas la longueur OM avec un arc de cercle.

Le point M' est à l'intersection de la droite et de l'arc de cercle.

2 LE SYMÉTRIQUE D'OBJETS SIMPLES

2.1 LE SYMÉTRIQUE D'UNE DROITE

Le symétrique d'une droite par rapport à un point est une autre droite. Elles sont parallèles.

FIGURE 1 – Symétrique de la droite (AB) par rapport à O

2.2 LE SYMÉTRIQUE D'UN SEGMENT

Le symétrique d'un segment par rapport à un point est un autre segment. Ils sont parallèles et de même longueurs.

FIGURE 2 – Symétrique du segment [AB] par rapport à O

2.3 LE SYMÉTRIQUE D'UN CERCLE

Le symétrique d'un cercle par rapport à un point est un autre cercle. Le centre du cercle dont les centres sont symétriques. Ils ont même rayon.

FIGURE 3 – Symétrique du cercle de centre ${\bf C}$ et de rayon [CA] par rapport à ${\bf O}$

3 Propriétés

- 1. Deux figures symétriques sont superposables. Il s'agit d'une rotation à 180 ° suivant le centre de symétrie.
- 2. La symétrie centrale conserve les longueurs et les mesures d'angles.
- 3. La symétrie centrale conserve les périmètres, les aires et les alignements.