

Computer Security Lecture 6

Advanced Encryption Standard

Dr. Mohamed Loey

Lecturer, Faculty of Computers and Information

Benha University

Egypt

AES Key Expansion

AES Encryption

AES Decryption

DES vs AES

Advantages of AES

AES Key Expansion

AES Encryption

AES Decryption

DES vs AES

Advantages of AES

The Adva	nced	Encryption	Standard	(AES) was	published	by the	National	Institute	of	Standards
and Tech	nolog	y (NIST) in	2001.							

- AES is a symmetric block cipher that is intended to replace DES as the approved standard for a wide range of applications.
- ☐ Input(128 bit key and message)

AES Key Expansion

AES Encryption

AES Decryption

DES vs AES

Advantages of AES

☐ Key = Thats my Kung Fu (16 ASCII characters, 1byte each)

Wey in Hex(128bits):54 68 61 74 73 20 6D 79 20 4B 75 6E 67 20 46 75 (32 Hex characters)

Τ	h	a	t	S		m	У		K	u	n	g		F	u
54	68	61	74	73	20	6D	79	20	4B	75	6E	67	20	46	75

- \square w[0]= (54,68,61,74)
- \square w[1]= (73,20,6D,79)
- \square w[2]= (20,4B,75,6E)
- \square w[3]= (67,20,46,75)
- $\bigcup g(w[3])$

☐ Function g

- \square w[3]= (67,20,46,75)
- \square g(w[3])
- 1) Circular byte left shift of w[3]:(20,46,75,67)
- 2) Byte Substitution (S-Box):(B7,5A,9D,85)
- 3) Adding round constant (01,00,00,00)
- ✓ The round constant is a word in which the three rightmost bytes are always 0.
- gives: g(w[3]) = (B6,5A,9D,85)

									J	y							
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A 0	52	3B	D6	В3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
	7	51	A3	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	D2
x	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	В8	14	DE	5E	0B	DB
	A	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	С	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	В5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	E	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A 1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

(a) S-box

Round Constant RC[j]

 \Box **j**= Round iteration

j	1	2	3	4	5	6	7	8	9	10
RC[j]	01	02	04	08	10	20	40	80	1B	36

- \square w[0]= (54,68,61,74)
- \square g(w[3])= (B6,5A,9D,85)
- $w[4] = w[0] \oplus g(w[3]) = (E2,32,FC,F1)$

0101 0100	0110 1000	0110 0001	0111 0100		
1011 0110	0101 1010	1001 1101	1000 0101		
1110 0010	0011 0010	1111 1100	1111 0001		
E2	32	FC	F1		

- \square w[5]=w[4] \bigoplus w[1]= (91,12,91,88)
- \square w[6]=w[5] \bigoplus w[2]= (B1,59,E4,E6)
- \square w[7]=w[6] \bigoplus w[3]= (D6,79,A2,93)

☐ First round key : E232FCF1 91129188 B159E4E6 D679A293

Ч	Round0:5468617473206D79204B756E67204675
	Round1:E232FCF191129188B159E4E6D679A293
	Round2:56082007C71AB18F76435569A03AF7FA
	Round3:D2600DE7157ABC686339E901C3031EFB
	Round4:A11202C9B468BEA1D75157A01452495B
	Round5:B1293B3305418592D210D232C6429B69
	Round6:BD3DC2B7B87C47156A6C9527AC2E0E4E
	Round7:CC96ED1674EAAA031E863F24B2A8316A
	Round8:8E51EF21FABB4522E43D7A0656954B6C
	Round9:BFE2BF904559FAB2A16480B4F7F1CBD8
	Round10:28FDDEF86DA4244ACCC0A4FE3B316F26

Dr Mohamed Loey

AES Key Expansion

AES Encryption

AES Decryption

DES vs AES

Advantages of AES

Plain text in English : Two One Nine Two (16 ASCII characters)

Т	W	О		0	n	е		N	i	n	е		Τ	W	О
54	77	6F	20	4F	6E	65	20	4E	69	6E	65	20	54	77	6F

Plain text in Hex (128bits) : 54 77 6F 20 4F 6E 65 20 4E 69 6E 65 20 54 77 6F

- Add Round key, Round 0
- M = 54 77 6F 20 4F 6E 65 20 4E 69 6E 65 20 54 77 6F
- \square R_0 = 54 68 61 74 73 20 6D 79 20 4B 75 6E 67 20 46 75
- \square XOR the corresponding entries, e.g., 69 \bigoplus 4B = 22

 $0110 \ 1001 \\ 0100 \ 1011 \\ \hline 0010 \ 0010$

$$\begin{pmatrix} 54 & 4F & 4E & 20 \\ 77 & 6E & 69 & 54 \\ 6F & 65 & 6E & 77 \\ 20 & 20 & 65 & 6F \end{pmatrix} \oplus \begin{pmatrix} 54 & 73 & 20 & 67 \\ 68 & 20 & 4B & 20 \\ 61 & 6D & 75 & 46 \\ 74 & 79 & 6E & 75 \end{pmatrix} = \begin{pmatrix} 00 & 3C & 6E & 47 \\ 1F & 4E & 22 & 74 \\ 0E & 08 & 1B & 31 \\ 54 & 59 & 0B & 1A \end{pmatrix}$$

Round1:

AES Encryption Round

☐ S-Box

Byte 6E is

substituted by

entry of S-Box in

row 6 and column

E ,i.e. by 9F

									J	y							
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A 0	52	3B	D6	В3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	СВ	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A 8
	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
x	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
	A	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	C	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	E	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A 1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

(a) S-box

☐ Substitution transformation

- 1) Round1, Substitution Bytes:
- ☐ Current State Matrix

$$\begin{pmatrix}
00 & 3C & 6E & 47 \\
1F & 4E & 22 & 74 \\
0E & 08 & 1B & 31 \\
54 & 59 & 0B & 1A
\end{pmatrix}$$

New State Matrix

$$\begin{pmatrix}
63 & EB & 9F & A0 \\
C0 & 2F & 93 & 92 \\
AB & 30 & AF & C7 \\
20 & CB & 2B & A2
\end{pmatrix}$$

This non linear layer is for resistance to differential and linear cryptanalysis attacks

AES Encryption Round

☐ Shift row transformation

- 2) Round1,Shift Row:
- ☐ Current State Matrix

$$\begin{pmatrix}
63 & EB & 9F & A0 \\
C0 & 2F & 93 & 92 \\
AB & 30 & AF & C7 \\
20 & CB & 2B & A2
\end{pmatrix}$$

New State Matrix

$$\begin{pmatrix}
63 & EB & 9F & A0 \\
2F & 93 & 92 & C0 \\
AF & C7 & AB & 30 \\
A2 & 20 & CB & 2B
\end{pmatrix}$$

This linear mixing step causes diffusion of the bits over multiple rounds

AES Encryption Round

☐ Mix column transformation

3) Round1, Mix Column

☐ Current State Matrix

New State Matrix

$$\begin{pmatrix} 63 & EB & 9F & A0 \\ 2F & 93 & 92 & C0 \\ AF & C7 & AB & 30 \\ A2 & 20 & CB & 2B \end{pmatrix} \begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} = \begin{pmatrix} BA & 84 & E8 & 1B \\ 75 & A4 & 8D & 40 \\ F4 & 8D & 06 & 7D \\ 7A & 32 & 0E & 5D \end{pmatrix}$$

$$\begin{pmatrix}
02030101 \\
01020301 \\
01010203 \\
03010102
\end{pmatrix}
\begin{pmatrix}
63 & EB & 9F & A0 \\
2F & 93 & 92 & C0 \\
AF & C7 & AB & 30 \\
A2 & 20 & CB & 2B
\end{pmatrix} = \begin{pmatrix}
BA & 84 & E8 & 1B \\
75 & A4 & 8D & 40 \\
F4 & 8D & 06 & 7D \\
7A & 32 & 0E & 5D
\end{pmatrix}$$

Entry BA is result of
$$(02 \cdot 63) \bigoplus (03 \cdot 2F) \bigoplus (01 \cdot AF) \bigoplus (01 \cdot A2)$$

$$\square$$
 02•63=00000010•01100011=11000110 (shift left)

$$(00000010 \bullet 00101111) \bigoplus 00101111 = \mathbf{01110001}$$

$$\Box$$
 01•A2 = A2 =**10100010**

Round1, Mix Column

 \square 02•63=00000010•01100011=**11000110** (shift left) =

 \square 02•F2 = 00000010•11110010 = 01110010 \bigoplus 1B=

 \square 02 • 87 = 0000 0010•1000 1110 = 00001110 \bigoplus 0001 1011 = 0001 0101

AES Encryption Round

4) Round 1, Add Round key

Round1:E2 32 FC F1 91 12 91 88 B1 59 E4 E6 D6 79 A2 93

☐ Current State Matrix

Round1

New State Matrix

$$\begin{pmatrix} BA\ 84\ E8\ 1B \\ 75\ A4\ 8D\ 40 \\ F4\ 8D\ 06\ 7D \\ 7A\ 32\ 0E\ 5D \end{pmatrix} \oplus \begin{pmatrix} E2\ 91\ B1\ D6 \\ 32\ 12\ 59\ 79 \\ FC\ 91\ E4\ A2 \\ F1\ 88\ E6\ 93 \end{pmatrix} = \begin{pmatrix} 58\ 15\ 59\ CD \\ 47\ B6\ D4\ 39 \\ 08\ 1C\ E2\ DF \\ 8B\ BA\ E8\ CE \end{pmatrix}$$

Round 2

after Substitute Byte and after Shift Rows:

$$\begin{pmatrix}
6A & 59 & CB & BD \\
A0 & 4E & 48 & 12 \\
30 & 9C & 98 & 9E \\
3D & F4 & 9B & 8B
\end{pmatrix}$$

$$\begin{pmatrix}
6A 59 CB BD \\
A0 4E 48 12 \\
30 9C 98 9E \\
3D F4 9B 8B
\end{pmatrix}
\begin{pmatrix}
6A 59 CB BD \\
4E 48 12 A0 \\
98 9E 30 9B \\
8B 3D F4 9B
\end{pmatrix}$$

after Mixcolumns and after Roundkey:

$$\begin{pmatrix}
15 & C9 & 7F & 9D \\
CE & 4D & 4B & C2 \\
89 & 71 & BE & 88 \\
65 & 47 & 97 & CD
\end{pmatrix}$$

$$\begin{pmatrix}
43 & 0E & 09 & 3D \\
C6 & 57 & 08 & F8 \\
A9 & C0 & EB & 7F \\
62 & C8 & FE & 37
\end{pmatrix}$$

$$egin{pmatrix} 43\ 0E\ 09\ 3D \\ C6\ 57\ 08\ F8 \\ A9\ C0\ EB\ 7F \\ 62\ C8\ FE\ 37 \end{pmatrix}$$

Round 9

after Substitute Byte and after Shift Rows:

$$\begin{pmatrix}
33 & 51 & 79 & 0A \\
3F & 8B & 66 & 8F \\
EBBE 76 7D \\
92 & C2 & 67 & 20
\end{pmatrix}$$

$$\begin{pmatrix}
33 & 51 & 79 & 0A \\
8B & 66 & 8F & 3F \\
76 & 7D & EBBE \\
20 & 92 & C2 & 67
\end{pmatrix}$$

$$\begin{pmatrix} 33 & 51 & 79 & 0A \\ 8B & 66 & 8F & 3F \\ 76 & 7D & EB & BE \\ 20 & 92 & C2 & 67 \end{pmatrix}$$

after Mixcolumns and after Roundkey:

$$\begin{pmatrix}
B6 E7 51 8C \\
84 88 98 CA \\
34 60 66 FB \\
E8 D7 70 51
\end{pmatrix}$$

$$\begin{pmatrix}
B6 E7 51 8C \\
84 88 98 CA \\
34 60 66 FB \\
E8 D7 70 51
\end{pmatrix}$$

$$\begin{pmatrix}
09 A2 F0 7B \\
66 D1 FC 3B \\
8B 9A E6 30 \\
78 65 C4 89
\end{pmatrix}$$

Round 10

after Substitute Byte and after Shift Rows:

$$\begin{pmatrix} 01 & 3A & 8C & 21 \\ 33 & 3E & B0 & E2 \\ 3D & B8 & 8E & 04 \\ BC & 4D & 1C & A7 \end{pmatrix} \begin{pmatrix} 01 & 3A & 8C & 21 \\ 3E & B0 & E2 & 33 \\ 8E & 04 & 3D & B8 \\ A7 & BC & 4D & 1C \end{pmatrix}$$

$$\begin{pmatrix} 01 & 3A & 8C & 21 \\ 3E & B0 & E2 & 33 \\ 8E & 04 & 3D & B8 \\ A7 & BC & 4D & 1C \end{pmatrix}$$

after Roundkey (Attention: no Mix columns in last round):

$$\begin{pmatrix}
29 & 57 & 40 & 1A \\
C3 & 14 & 22 & 02 \\
50 & 20 & 99 & D7 \\
5F & F6 & B3 & 3A
\end{pmatrix}$$

ciphertext:29 C3 50 5F 57 14 20 F6 40 22 99 B3 1A 02 D7 3A

Advanced Encryption Standard

AES Key Expansion

AES Encryption

AES Decryption

DES vs AES

AES Decryption

Advanced Encryption Standard

AES Key Expansion

AES Encryption

AES Decryption

DES vs AES

DES vs AES

	DES	AES
Date	1977	2001
Block Size	64	128
Key Size	56	128, 192, 256
Number of Rounds	16	9, 11, 13
Design	open	Open
Encryption primitives	Substitution, Permutation	Substitution, Shift, Mixing
Cryptographic primitives	Confusion, diffusion	Confusion, diffusion

Advanced Encryption Standard

AES Key Expansion

AES Encryption

AES Decryption

DES vs AES

- ☐ The key is much stronger due to the key length
- AES runs faster than 3DES on comparable hardware
- AES is more efficient than DES and 3DES on comparable hardware

