	DE8	1.1
	$M(x_iy)dx + N(x_iy)dy = 0 \longrightarrow 0$	4.4
	$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$	0
	(M(xy)dx+ (Terms in N(xy) free from n dy=0	0 0
	$\frac{\partial y}{\partial x} = D(x)$ $\frac{\partial x}{\partial x} = D(x)$ $\frac{\partial x}{\partial x} = D(x)$	4
	$N(x,y)$ $P(x) = e^{Spdx}$ $P(y) = e^{Spdx}$ $P(y) = e^{Spdx}$	4 4 4 4
6	Homogeneous differential eq.	* 4 4
	ydx + x(lnx - lny - 1)dy = 0 - 10 $y(1) = e.$ $2M = 1$ $2N = 1 lnx + 1 - lny - 1$	9 9
	$\frac{\partial y}{\partial M} \neq \frac{\partial x}{\partial N}$	
	dy da	*

•	
1	
1	
1	$= N_X - M_Y$
9	Maxy
9	= In - Iny - 1 × (Because n is present.
9	a y
~	
	Rule 2:
	My - Nz = 1 - (In1 - Ing)
*	Na, y) 71 (lax - lay -1)
	$= -\left[\ln n - \ln y - 1\right] = -1$
•	
-	n(Inx - Iny -1) (no yin it)
-	$p(x) = -\frac{1}{x}$
	11 11
	$y(x) = e^{spdx} = e^{-spdx}$
•	$= e^{-\ln x } = e^{\ln x }$
2	H(2) _ 1
2	1
	Multiply et 0 by 1/x
7	
7	y dx + (1nx - lny -1) dy =0
	N
7	$\int_{\pi}^{\pi} dx + \left(-1\mu y - 1\right) dy = 0$
	y In x + - (Iny +1) dy =0
	$y \ln n + - (\ln y + 1) dy = 0$ $y \ln n - \ln y \cdot y - \int_{H}^{1} o y dy + y = 0$

N	
y In 21 - y In 1y 1 + f - y = c	
y (1n/2 - In/y) = 0	
$\frac{y}{y} = c$	
$e \ln 1 = 0$	•
	n1=0
-elne = c $[c=-e]$	
Pernoulli's Famation:	
Ternoulli's Equation: (Ist order non-linear)	
An equation of the form	4
$\frac{dy}{dx} + p(x)y = Q(x)y^n \longrightarrow 0$	S
p(n) and Q(n) are function	
nombee.	
suppose n≠0 or n≠1 so	9
to reduce es 0 to linear form we have following procedure	9
	9

	El 205 15-20	odd
	Dividing by y (21) II	18
	y-n dy + p(x) y l-n = Q(x) -> 3)
•	put y 1-n = V	
7 7	differentiate: $(1-n)y^{-n} dy = \frac{dv}{dx}$	
1	$\frac{y^{-n} dy}{dx} = \frac{1}{1-n} \frac{dv}{dx}$	
7	Exercis 5) is now.	
7	$\frac{1}{1-n} \frac{dv}{dn} + p(n)v = G(x)$	
7	$\frac{dv + (1-n)P(n)V = (1-n)Q(n)}{dn}$	7)
9	Vinear in V	
•	EX 205	
	$\frac{16)}{clx} \frac{dy - y = e^{x}y^{2}}{clx}$	
3	Dividing by y2	
3	$y^{-2} \frac{dy}{dn} - y^{-1} = e^{-x}$	
	Put $y^{-1} = V$	

