Corrige de TD2

Exercice 1:

Voir le cours (chapitre 3)

Exercice 2:

Sur la première ligne de tableau est représentée une imagette (I) de taille 4x4 pixels synthétisée à partir d'une image réelle. Le voisinage de l'imagette est représenté (d'où la taille 6x6 pixels)

Dans cet exercice, vous allez effectuer le calcul d'un descripteur SIFT simplifié (un tableau H de taille N). Pour cela on prend les paramètres suivants : la grille spatiale est de taille 4x4 pixels (ou chaque bloc est de 2x2 pixels) et le nombre d'orientations possibles est fixé à 4.

Question	détail (si nécessaire)	résultat
1. Quelle est la dimension d'un SIFT qui ré- sulte du paramétrage proposé?	– la grille spatiale est de taille 2x2	2x2x4=16
, J.,	- le nombre d'orientations pos- sibles est fixe a 4	
2. Dans SIFT, quelles sont les paramètres usuellement utilisés pour la taille de grille	la grille spatiale est de taille 4x4	4x4x8=12 8
et le nombre d'orientations?	- le nombre d'orientations pos- sibles est fixe a 8	
3. Quelle est la dimension usuelle d'un SIFT?	V V	128

4. Calculez les composantes du descripteur SIFT associées au quatrième carré de la grille pour ce patch (H)

I=	62	73	83	101	110	98
	78	88	82	120	126	110
	81	89	94	130	127	124
	92	78	87	141	135	119
	88	86	103	136	133	129
	79	97	109	123	136	142
Calculez la dérivée partielle Ix Ix=		42 25 18 55	133 177 217 189		148 158 159 135	-29 -44 -57 -17

Calculez la dérivée partielle Iy Iy=	62 67 86 89 -1 21 56 48 10 21 27 23 47 45 -13 7
Calculez le module Ig du gradient en chaque pixel Ig=	74,88658091 148,9227988 171,1724277 93,60555539 25,01999201 178,2414093 167,6305461 65,11528238 20,59126028 218,013761 161,2761607 61,46543744 72,34638899 194,2832983 135,6244816 18,38477631
Calculez l'orientation du gradient Ior en chaque pixel Ior=	0,595409875 1,104145724 1,044403963 -0,3149939 1,610775014 1,452704298 1,230180086 -0,74194727 1,063697822 1,474322552 1,402589555 -1,18726881 0,863669304 1,337053146 1,666796617 -1,18018928
Hij = []: histogramme d'orientation du gradient de bloc ij.	H11 H21 H12 H22 0:pi/2 3 4 2 1 pi/2:pi 1 0 0 1 (-)pi/2:(-)pi 0 0 0 0 (-)pi/2:0 0 0 2 2
Le descripteur SIFT associé au centre de patch (point d'intérêt), est la com- binaison des histogrammes d'orienta- tion de gradient H H=	H=[3,1,0,0,4,0,0,0,2,0,0,2,1,1,0,2]

Les noyaux de Sobel sont :
$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}, M_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$
.

Exercice 3:

1. Donner la matrice de similarite entre points d'inter^et (correspondance entre l1 et l2).