Multiparameter symplectic, symmetric exponentially-fitted modified Runge-Kutta methods of Gauss type

M. Van Daele, D. Hollevoet, G. Vanden Berghe

Department of Applied Mathematics and Computer Science Ghent University

ICNAAM, Rhodes, September 2010

Outline

Exponential fitting

Multiparameter EF methods

The case s = 2

The case s = 3

Numerical results

Conclusions

Exponential fitting

Aim: build methods which perform very good when the solution has a known exponential of trigonometric behaviour.

Different ways to develop EF methods

starting from interpolation function

$$p_{n-2}^{(\omega)}(x) = a\cos\omega x + b\sin\omega x + \sum_{i=0}^{n-2} c_i x^i$$

with

$$\lim_{\omega \to 0} p_{n-2}^{(\omega)}(x) = p_n(x) = \text{a polynomial of degree} \le n$$

 starting from linear functional and imposing that for the set of functions $\{\cos \omega x, \sin \omega x, 1, t, t^2, \dots, t^{n-2}\}$ the method produces exact results.

 ω which is either real (trigonometric case) or purely imaginary (exponential case), is determined from the expression for the local error.

Example: Numerov method

$$y'' = f(y)$$
 $y(a) = y_a$ $y(b) = y_b$

classical Numerov method:

$$y_{n+1} - 2y_n + y_{n-1} = \frac{1}{12}h^2 (f(y_{n+1}) + 10f(y_n) + f(y_{n-1}))$$

 $n = 1, 2, ..., N$ $h = \frac{b-a}{N+1}$

Construction:

impose $\mathcal{L}[z(t);h]=0$ for $z(t)\in\mathcal{S}=\{1,\,t,\,t^2,\,t^3,\,t^4\}$ where

$$\mathcal{L}[z(t);h] := z(t+h) + a_0 z(t) + a_{-1} z(t-h) -h^2 (b_1 z''(t+h) + b_0 z''(t) + b_{-1} z''(t-h))$$

$$\mathcal{L}[z(t);h] = -\frac{1}{240}h^6z^{(6)}(t) + \mathcal{O}(h^8) \implies \text{order 4}$$

EF Numerov method

Construction: impose $\mathcal{L}[z(t); h] = 0$ for $z(t) \in \mathcal{S}$ with

$$\mathcal{S} = \{1, t, t^2, \sin(\omega t), \cos(\omega t)\}$$
or $\mathcal{S} = \{1, t, t^2, \exp(\mu t), \exp(-\mu t)\}$ $\mu := i\omega$

$$\mathcal{L}[z(t); h] := z(t+h) + a_0 z(t) + a_{-1} z(t-h)$$

$$-h^2 \left(b_1 z''(t+h) + b_0 z''(t) + b_{-1} z''(t-h)\right)$$

$$y_{n+1} - 2y_n + y_{n-1} = h^2 \left(\lambda f(y_{n-1}) + (1-2\lambda) f(y_n) + \lambda f(y_{n+1})\right)$$

$$\lambda = \frac{1}{4 \sin^2 \frac{\theta}{2}} - \frac{1}{\theta^2} = \frac{1}{12} + \frac{1}{240} \theta^2 + \frac{1}{6048} \theta^4 + \dots \qquad \theta := \omega h$$

$$= -\frac{1}{4 \sinh^2 \frac{\nu}{2}} + \frac{1}{\nu^2} = \frac{1}{12} - \frac{1}{240} \nu^2 + \frac{1}{6048} \nu^4 + \dots \qquad \nu := \mu h$$

Exponential Fitting

L. Ixaru and G. Vanden Berghe

Exponential fitting

Kluwer Academic Publishers, Dordrecht, 2004

$$\xi(Z) = \begin{cases} \cos(|Z|^{1/2}) & \text{if } Z < 0 \\ \cosh(Z^{1/2}) & \text{if } Z \ge 0 \end{cases}$$

$$\eta(Z) = \begin{cases} \sin(|Z|^{1/2})/|Z|^{1/2} & \text{if } Z < 0 \\ 1 & \text{if } Z = 0 \\ \sinh(Z^{1/2})/Z^{1/2} & \text{if } Z > 0 \end{cases}$$

$$Z := (\mu h)^2 = -(\omega h)^2$$

Exponential fitting

EF Numerov method

Construction : impose $\mathcal{L}[z(t); h] = 0$ for $z(t) \in \mathcal{S}$ with

$$S = \{1, t, t^{2}, \sin(\omega t), \cos(\omega t)\}$$
or $S = \{1, t, t^{2}, \exp(\mu t), \exp(-\mu t)\}$ $\mu := i\omega$

$$\mathcal{L}[z(t); h] := z(t+h) + a_{0} z(t) + a_{-1} z(t-h)$$

$$-h^{2} (b_{1} z''(t+h) + b_{0} z''(t) + b_{-1} z''(t-h))$$

$$y_{n+1} - 2y_{n} + y_{n-1} = h^{2} (\lambda f(y_{n-1}) + (1-2\lambda) f(y_{n}) + \lambda f(y_{n+1}))$$

$$\lambda = \frac{1}{4 \sin^{2} \frac{\theta}{2}} - \frac{1}{\theta^{2}} = \frac{1}{12} + \frac{1}{240} \theta^{2} + \frac{1}{6048} \theta^{4} + \dots \qquad \theta := \omega h$$

$$= -\frac{1}{4 \sinh^{2} \frac{\nu}{2}} + \frac{1}{\nu^{2}} = \frac{1}{12} - \frac{1}{240} \nu^{2} + \frac{1}{6048} \nu^{4} + \dots \qquad \nu := \mu h$$

$$= \frac{1}{Z} \left(1 - \frac{1}{\eta^{2}(\frac{Z}{4})}\right) = \frac{1}{12} - \frac{1}{240} Z + \frac{1}{6048} Z^{2} + \dots \quad Z := \nu^{2} = -\theta^{2}$$

EF Numerov method

$$S = \{1, t, t^2, \sin(\omega t), \cos(\omega t)\}$$

$$y_{n+1} - 2y_n + y_{n-1} = h^2 (\lambda f(y_{n-1}) + (1 - 2\lambda) f(y_n) + \lambda f(y_{n+1}))$$

How to choose ω ?

$$\mathcal{L}[z(t); h] = -\frac{1}{240} h^6 \left(z^{(6)}(t) + \omega^2 z^{(4)} \right) + \mathcal{O}(h^8) \implies \text{order 4}$$

A value for the parameter ω can be obtained from the expression for the Ite :

$$y_n^{(6)} + \omega_n^2 y_n^{(4)} = 0$$
.

Generalisations

To determine the coefficients of a method, we impose conditions on a linear functional. These conditions are related to the fitting space S which contains $\{1, t, t^2, \dots, t^K\}$ and

- possibility 1 (Calvo et al.): trigonometric polynomials $\{\exp(\pm \mu t), \exp(\pm 2\mu t), \ldots, \exp(\pm (P+1)\mu t)\}$
- possibility 2 (Ixaru, Vanden Berghe, V.D., ...) : exponential-fitting $\{\exp(\pm \mu t), t \exp(\pm \mu t), \ldots, t^P \exp(\pm \mu t)\}$

A method can be characterized by the couple (K, P)Here, we consider a generalisation of both classes:

• possibility 3 : $\{\exp(\pm\mu_0 t), \exp(\pm\mu_1 t), \ldots, \exp(\pm\mu_P t)\}$

Motivation

work by Hollevoet, V.D. and Vanden Berghe

- "On the leading error term of exponentially fitted Numerov methods", ICNAAM 2008
- "The optimal exponentially-fitted Numerov method for solving two-point boundary value methods", J. CAM 2009

EF-approach of Ixaru and Vanden Berghe:

$$\mathcal{L}[z(t);h] := z(t+h) + a_0 z(t) + a_{-1} z(t-h) -h^2 (b_1 z''(t+h) + b_0 z''(t) + b_{-1} z''(t-h))$$

$$z(t) \in \mathcal{S}_{K,P}(\mu) = \{1, t, t^2, \dots, t^K\} \cup \{\exp(\pm \mu t), t \exp(\pm \mu t), \dots, t^P \exp(\pm \mu t)\}$$

Motivation

 μ is determined from the Ite :

$$h^6 \phi_P(Z) D^{K+1} (D^2 - \mu^2)^{P+1} y(t_j) + \mathcal{O}(h^8) \qquad \phi_P(Z) = -\frac{1}{240} + \mathcal{O}(Z)$$

At $t = t_j$, $\mu^2 := \mu_j^2$ such that

$$E_{P,j} := D^{K+1} (D^2 - \mu_j^2)^{P+1} y(t_j) = 0$$

- $P = 0 : y^{(6)}(t_j) \mu_j^2 y^{(4)}(t_j) = 0 \Longrightarrow \mu_j^2 \in \mathbb{R}$
- $P = 1 : y^{(6)}(t_j) 2 \mu^2 y^{(4)}(t_j) + \mu^4 y^{(2)}(t_j) = 0$ may only have complex roots μ_j^2 , such that $y_j \in \mathbb{C}$.

To solve this problem, we propose the new type of EF methods: EF multiparameter methods

Aim

The construction of symmetric, symplectic EF multiparameter Runge-Kutta methods Gauss-type methods

Previous work on

- EF symplectic RK-like methods by Van de Vyver (2006)
- EF symmetric, symplectic RK methods by Calvo et al. (2008-2010)
- EF symmetric, symplectic RK-like methods by Vanden Berghe - V.D. (2010)

General approach

Associate linear functionals to the internal stages

$$\mathcal{L}_{i}[y(x); h; \mathbf{a}] = y(x + c_{i}h) - y(x) - h \sum_{j=1}^{s} a_{ij} y'(x + c_{j}h)$$

where $i = 1, \ldots, s$ and the final stage

$$\mathcal{L}[y(x); h; \mathbf{b}] = y(x+h) - y(x) - h \sum_{j=1}^{s} b_{i} y'(x+c_{i} h)$$

and impose $\begin{cases} \mathcal{L}_i[y(x);h;\mathbf{a}] = \mathbf{0} & \text{for } y(x) \in S_{int} \\ \mathcal{L}[y(x);h;\mathbf{b}] = \mathbf{0} & \text{for } y(x) \in S_{fin} \end{cases}$ also taking into account the symplecticity and symmetry conditions.

In order to construct a symplectic EF version of the Gauss s=2 method with fixed knots $c_1=\frac{3-\sqrt{3}}{6}$ and $c_2=\frac{3+\sqrt{3}}{6}$ and

$$S_{int} = \{ \exp(\mu x), \exp(-\mu x) \}$$
 $S_{fin} = \{ 1, x, \exp(\mu x), \exp(-\mu x) \}$

Van de Vyver considers modified RK-methods

$$\mathcal{L}_{i}[y(x); h; a] = y(x + c_{i} h) - \frac{\gamma_{i}}{\gamma_{i}} y(x) - h \sum_{j=1}^{s} a_{ij} y'(x + c_{j} h)$$

where $i = 1, \ldots, s$ and the final stage

$$\mathcal{L}[y(x); h; b] = y(x+h) - y(x) - h \sum_{i=1}^{s} b_i y'(x+c_i h)$$

The concept of modified RK methods is also used by Vanden Berghe and V.D.

Extra conditions

A modified Runge-Kutta method is called symplectic iff

$$\frac{b_j}{\gamma_i} a_{ji} + \frac{b_i}{\gamma_i} a_{ij} - b_i b_j = 0 \qquad 1 \le i, j \le s.$$

A modified Runge-Kutta method is called symmetric iff

$$c_i=1-c_{s+1-i}$$
 $b_i=b_{s+1-i}$ $a_{i,j}=\gamma_i\,b_j-a_{s+1-i,s+1-j}$
$$\gamma_i=\gamma_{s+1-i}$$

for all $1 \le i, j \le s$.

We consider a 2-stage modified Runge-Kutta method

$$egin{array}{cccc} c_1 & \gamma_1 & a_{11} & a_{12} \ c_2 & \gamma_2 & a_{21} & a_{22} \ & & b_1 & b_2 \ \end{array}$$

Symmetry :
$$c_1=\frac{1}{2}-\theta$$
 $c_2=\frac{1}{2}+\theta$ $b_1=b_2$ $a_{11}+a_{22}=\gamma_1\ b_1$ $a_{21}+a_{12}=\gamma_2\ b_1$ Symplecticity : $a_{11}=\frac{\gamma_1\ b_1}{2}$ $\frac{a_{12}}{\gamma_1}+\frac{a_{21}}{\gamma_2}=b1$ $a_{22}=\frac{\gamma_2\ b_2}{2}$

A symmetric, symplectic modified EF Runge-Kutta method has the form

Four parameters: b_1 , γ_1 , λ and θ

We consider the construction of a method for which

$$S_{int} = \{ \exp(\mu x), \exp(-\mu x) \}$$

and

$$S_{fin} = \{ \exp(\mu x), \exp(-\mu x), \exp(\mu_2 x), \exp(-\mu_2 x) \}$$

Special cases:

- $\mu_2 = 2 \mu \text{ (Calvo)}$
- $\mu_2 \rightarrow \mu$ (Vanden Berghe)

First we impose

$$S_{int} = \{ \exp(\mu x), \exp(-\mu x) \}$$
 $S_{fin} = \{ \exp(\mu x), \exp(-\mu x) \}$

... the case s=2...

Imposing

$$S_{\mathit{int}} = \{ \exp(\mu \, \mathit{x}), \exp(-\mu \, \mathit{x}) \} \qquad S_{\mathit{fin}} = \{ \exp(\mu \, \mathit{x}), \exp(-\mu \, \mathit{x}) \}$$

leads to formula's also obtained by Vanden Berghe et al.

$$b_1 = \frac{1}{2} \frac{\sinh(z/2)}{\cosh(z\theta)(z/2)} = b_2$$

$$\gamma_1 = 2 \frac{\cosh(z\theta)}{\cosh(z/2)} - \frac{1}{\cosh(z/2)\cosh(z\theta)} = \gamma_2$$

$$\lambda = -\frac{\sinh(z\theta)}{\cosh(z\theta)z}$$

$$z := \mu h$$

Following Ixaru:

$$b_1 = \frac{1}{2} \frac{\eta(Z/4)}{\xi(Z\theta^2)} = b_2$$
 $Z := z^2$

Next we impose

$$S_{fin} = \{ \exp(\mu x), \exp(-\mu x) \} \cup \{ \exp(\mu_2 x), \exp(-\mu_2 x) \}$$

$$b_1 = \frac{1}{2} \frac{\sinh(z_2/2)}{\cosh(z_2\theta)(z_2/2)} = \frac{1}{2} \frac{\sinh(z/2)}{\cosh(z\theta)(z/2)}$$

This leads to a formula for θ : $F(z) = F(z_2)$ where

$$F(u) = \frac{\sinh(u/2)}{\cosh(u\theta)(u/2)}$$

In general, an iterative procedure is needed to determine θ .

$$F(z) = F(z_2)$$
 where $F(u) = \frac{\sinh(u/2)}{\cosh(u\theta)(u/2)}$

Special cases:

•
$$z_2 = 2z$$
: $\theta = \frac{1}{z} \operatorname{acosh} \left(\frac{\cosh(z/2) + \sqrt{8 + \cosh^2(z/2)}}{4} \right)$
For this value of θ : $\gamma_1 = \gamma_2 = 1$

This is the EFRK method of Calvo et al.

$$\dots$$
 the case $s = 2 \dots$

$$F(z) = F(z_2)$$
 where $F(u) = \frac{\sinh(u/2)}{\cosh(u\theta)(u/2)}$

Special cases:

•
$$z_2 = z : F'(z) = 0$$

$$\Longrightarrow \theta = \frac{1}{z} \frac{\cosh{(z\theta)}}{\sinh{(z\theta)}} \left(\frac{\cosh{(z/2)}}{\sinh{(z/2)}/(z/2)} - 1 \right)$$

This is the method of Vanden Berghe et al. with

$$S_{\mathit{fin}} = \{ \exp(\mu \, \mathbf{x}), \exp(-\mu \, \mathbf{x}) \} \cup \{ \mathbf{x} \, \exp(\mu \, \mathbf{x}), \mathbf{x} \, \exp(-\mu \, \mathbf{x}) \}$$

•
$$z_2 = 0$$
: $F(z) = 1 \Longrightarrow \theta = \frac{1}{z} \operatorname{acosh}\left(\frac{\sinh(z/2)}{(z/2)}\right)$

This is the method of Vanden Berghe et al. with

$$S_{fin} = \{ \exp(\mu \, \mathbf{x}), \exp(-\mu \, \mathbf{x}) \} \cup \{ \mathbf{1}, \, \mathbf{x} \}$$

What if

- $z\approx 0$
- $z_2 \approx 0$
- $z \approx 0$ and $z_2 \approx 0$

Multiparameter EF methods

• $z_2 \approx z$

If $z \rightarrow 0$ and $z_2 \rightarrow 0$:

$$\theta = \frac{\sqrt{3}}{6} + \frac{\sqrt{3}}{2160} \left(z^2 + z_2^2 \right)$$

$$- \frac{\sqrt{3}}{10886400} \left(27 z^4 - 106 z^2 z_2^2 + 27 z_2^4 \right)$$

$$+ \frac{\sqrt{3}}{435456000} \left(3 z_2^4 - 34 z^2 z_2^2 + 3 z^4 \right) \left(z^2 + z_2^2 \right)$$

$$+ \dots$$

$$F(z_2) = F(z)$$

If $z_2 - z$ is very small:

$$F(z_2) = F(z) + (z_2 - z) F'(z) + \frac{1}{2} (z_2 - z)^2 F''(z) + \dots$$

$$F'(z) + (z_2 - z) F''(z) = 0$$

A symmetric, symplectic modified EF Runge-Kutta method has the form

Parameters: b_1 , b_2 , γ_1 , γ_2 , α_2 , α_3 , θ

We consider the construction of a method for which

$$S_{int} = \{1, \exp(\mu x), \exp(-\mu x)\}$$

and

$$S_{fin} = \{1, \exp(\mu x), \exp(-\mu x), \exp(\mu_2 x), \exp(-\mu_2 x)\}$$

Special cases:

- $\mu_2 = 2 \mu \text{ (Calvo)}$
- $\mu_2 \rightarrow \mu$ (Vanden Berghe)

First we impose

$$S_{int} = \{1, \exp(\mu x), \exp(-\mu x)\}$$
 $S_{fin} = \{1, \exp(\mu x), \exp(-\mu x)\}$

... the case s=3...

Imposing

$$S_{\textit{int}} = \{1, \, \exp(\mu \, \textit{x}), \exp(-\mu \, \textit{x})\} \qquad S_{\textit{fin}} = \{1, \, \exp(\mu \, \textit{x}), \exp(-\mu \, \textit{x})\}$$

leads to formula's also obtained by Calvo et al. since

$$\gamma_1 = 1 = \gamma_2$$

$$b_1 = \frac{1}{2} \frac{\frac{\sinh(z)}{z} - \frac{\sinh(z/2)}{z/2}}{\cosh(2z\theta) - \cosh(z\theta)}$$

$$b_2 = \dots \quad \alpha_2 = \dots \quad \alpha_3 = \dots$$

Following Ixaru:

$$b_1 = \frac{1}{2} \frac{\eta(Z) - \eta(Z/4)}{\xi(4Z\theta^2) - \xi(Z\theta^2)}$$

... the case $s = 3 \dots$

Next we impose

$$S_{fin} = \{1, \exp(\mu x), \exp(-\mu x)\} \cup \{\exp(\mu_2 x), \exp(-\mu_2 x)\}$$

We then obtain

$$b_1 = \frac{1}{2} \frac{\frac{\sinh(z_2/2)}{z_2/2} - \frac{\sinh(z/2)}{z/2}}{\cosh(z_2 \theta) - \cosh(z \theta)} \qquad b_2 = \dots$$

which has exactly the same form as the expression we already had:

$$b_1 = \frac{1}{2} \frac{\frac{\sinh(z)}{z} - \frac{\sinh(z/2)}{z/2}}{\cosh(2z\theta) - \cosh(z\theta)}$$

The first expression makes clear that the final stage by accident also integrates $\{\exp(2 \mu x), \exp(-2 \mu x)\}\$ exactly :

$$S_{fin} = \{1, \exp(\pm \mu x), \exp(\pm 2 \mu x), \exp(\pm \mu_2 x)\}$$

Combining both results, we obtain the relation from which θ can be determined:

$$\frac{1}{2} \frac{\frac{\sinh(z_2/2)}{z_2/2} - \frac{\sinh(z/2)}{z/2}}{\cosh(z_2\,\theta) - \cosh(z\,\theta)} = \frac{1}{2} \frac{\frac{\sinh(z)}{z} - \frac{\sinh(z/2)}{z/2}}{\cosh(2\,z\,\theta) - \cosh(z\,\theta)}$$

$$G(z, z_2) = G(z, 2z)$$

with
$$G(a,b) := \frac{\frac{\sinh(a/2)}{a/2} - \frac{\sinh(b/2)}{b/2}}{\cosh(a\theta) - \cosh(b\theta)}$$

In general, an iterative procedure is needed to determine θ .

Special case : $z_2 = 3z$: the method of Calvo et al.

$$\theta = \frac{2}{z}acosh(\beta_1)$$

$$\beta_1 = \frac{1}{6} \sqrt{15 + 6 \cosh(z/2) + 3\sqrt{15 + 8 \cosh(z/2) + 2 \cosh(z)}}$$

$$\theta = \frac{\sqrt{15}}{10} \left(1 + \frac{z^2}{150} - \frac{31 z^4}{240000} + \frac{89 z^6}{144000000} + \ldots \right)$$

Special case : $z_2 = z/2$:

$$\theta = \frac{4}{z} a \cosh(\beta_3)$$

$$\beta_3 = \frac{1}{4} \sqrt{6 + 2\sqrt{9 + 8 \left(\cosh\left(z/4\right)\right)^2 + 8 \cosh\left(z/4\right)}}$$

$$\theta = \frac{\sqrt{15}}{10} \left(1 + \frac{z^2}{400} - \frac{253z^4}{11520000} + \frac{1241z^6}{9216000000} - \dots \right)$$

\dots the case $s=3\dots$

Special case : $z_2 = z$:

$$G(z,z) = G(z,2z)$$

$$G(a,b) := \frac{\frac{\sinh(a/2)}{a/2} - \frac{\sinh(b/2)}{b/2}}{\cosh(a\,\theta) - \cosh(b\,\theta)} = \frac{G_N(a,b)}{G_D(a,b)}$$

$$G(z,z) = \lim_{z_2 \to z} G(z,z_2) = \left(\frac{0}{0}\right) = \frac{\frac{\partial}{\partial z_2} G_N(z,z_2) \big|_{z_2 = z}}{\frac{\partial}{\partial z_2} G_D(z,z_2) \big|_{z_2 = z}}$$
$$= \frac{\cosh(z/2) - \frac{\sinh(z/2)}{z/2}}{z \theta \sinh(z\theta)}$$

 $S_{fin} = \{1, \exp(\pm \mu x), \exp(\pm 2 \mu x), x \exp(\pm \mu x)\}$

 \dots the case $s=3\dots$

If $z \rightarrow 0$ and $z_2 \rightarrow 0$:

$$\begin{split} \theta &= \frac{\sqrt{15}}{10} + \frac{\sqrt{15}}{21000} \left(5 \, z^2 + z_2{}^2\right) \\ &- \frac{\sqrt{15}}{1058400000} \left(2295 \, z^4 + 85 \, z^2 z_2{}^2 + 131 \, z_2{}^4\right) \\ &+ \frac{\sqrt{15}}{977961600000000} \times \\ &- \left(1730250 \, z^6 - 1653665 \, z^4 z_2{}^2 - 5765 \, z^2 z_2{}^4 + 26974 \, z_2{}^6\right) \\ &+ \dots \end{split}$$

Some tests for the s = 3 case

We have considered three problems

- Kepler's problem
- a perturbed Kepler problem
- Euler's problem

and four methods

- Classical Gauss method of order 6
- Calvo method with variable c_i-values
- Calvo method with fixed c_i-values
- my 2 parameter method

Problem 1 : Kepler's problem

$$H(
ho,q) = rac{1}{2} \left(
ho_1^2 +
ho_2^2
ight) - rac{1}{\sqrt{q_1^2 + q_2^2}}$$

at
$$t = 0$$
: $(q_1, q_2, p_1, p_2) = (1 - e, 0, 0, \sqrt{\frac{1+e}{1-e}})$

whereby e = 0.001

Integrated in [0, 1000] with $h = 2^{-m}$, m = 1, ..., 4.

$$(q_1(t), q_2(t), p_1(t), p_2(t)) = (\cos(E) - e, \sqrt{1 - e^2} \sin(E), q_1'(t), q_2'(t))$$

whereby $t = E - e \sin(E)$

Problem 1: Kepler's problem

$$z = \frac{i}{(q_1^2 + q_2^2)^{3/2}} h$$
 $z_2 = z/2$

Problem 2: a Perturbed Kepler problem

$$H(p,q) = \frac{1}{2} \left(p_1^2 + p_2^2 \right) - \frac{1}{\sqrt{q_1^2 + q_2^2}} - \frac{2 \, \epsilon + \epsilon^2}{3 \, \sqrt{(q_1^2 + q_2^2)^3}}$$

at
$$t = 0$$
: $(q_1, q_2, p_1, p_2) = (1, 0, 0, 1 + \epsilon)$

whereby $\epsilon = 0.001$

Integrated in [0, 1000] with $h = 2^{-m}$, m = 1, ..., 4.

$$(q_1(t), q_2(t), p_1(t), p_2(t)) = (\cos((1+\epsilon)t), \sin(1+\epsilon)t), q_1'(t), q_2'(t))$$

Problem 2: a Perturbed Kepler problem

$$z = i h$$
 $z_2 = z/2$

Problem 2: a Perturbed Kepler problem

$$z = i h$$
 $z_2 = fac z$

Problem 3: Euler's problem

$$\dot{q} = ((\alpha - \beta) \ q_2 \ q_3, \ (1 - \alpha) \ q_1 \ q_3, \ (\beta - 1) \ q_1 \ q_2)^T$$
 at $t = 0$: $(q_1, \ q_2, \ q_3) = (0, 1, 1)$ whereby $\alpha = 1 + \frac{1}{\sqrt{1.51}}$ and $\beta = 1 - \frac{0.51}{\sqrt{1.51}}$ Integrated in $[0, \ 1000]$ with $h = 2^{-m}, \ m = 1, \dots, 4$.

$$(q_1(t), q_2(t), q_3(t)) = (\sqrt{1.51} \operatorname{sn}(t, 0.51), \operatorname{cn}(t, 0.51), \operatorname{cn}(d, 0.51))$$

Problem is periodic with T = 7.45056320933095.

Problem 3: Euler's problem

$$z=i\frac{2\pi}{T}h$$
 $z_2=z/2$

Conclusions

- we constructed a new family of exponentially-fitted variants of the Runge-Kutta methods of Gauss type
- these methods contain parameters μ_0, μ_1, \dots
- special case $\mu_0 = \mu_1 = \mu_2 \dots$ and $\mu_0 = \mu_1/2 = \mu_2/3 \dots$ gives known families of EF methods
- open problem (needs more testing): how to choose the parameters