



Prof. Dr. Rogério Rossi 2021

# Roteiro

- Conceitos e Tipos de Processos
- Fluxos de Processos
- Modelos de Processos Descritivos e Prescritivos
- Modelos Prescritivos
  - Cascata
  - Evolucionário
  - Incremental
  - Processo Unificado

**Processo** é uma sequência de passos realizados para um determinado propósito.

(IEEE Standard STD-601.12, 1990)

Processo é um conjunto de recursos e atividades inter-relacionados que transformam insumos em produtos.

(ISO 8.402)

Processo de software é um conjunto de atividades, métodos, práticas e transformações que as pessoas utilizam para desenvolver e manter software e produtos relacionados.

#### Processos de Software

- Processos de Engenharia construção e manutenção do produto de software
- Processos de Gerenciamento estimativas, planejamento e controle dos recursos necessários para o desenvolvimento do software



# Questão

Como devem ser integrados os processos de gerenciamento e de desenvolvimento do software?

# FLUXOS DE PROCESSOS

#### Fluxos de Processos

#### Linear

realiza as atividades de forma sequencial considerando a dependência entre elas

#### **Cíclico**

executa as atividades de uma forma circular

#### **Paralelo**

executa uma ou mais atividades em paralelo com outras atividades

#### **Iterativo**

repete uma ou mais atividades antes de seguir para a seguinte

# MODELOS DESCRITIVOS E PRESCRITIVOS

# Modelos de Processos Descritivos (Descriptive Models)

não determinam o que fazer - buscam representar o que está sendo feito

# Modelos de Processos Prescritivos (Prescriptive Models)

representam o que fazer e em qual ordem - e quais resultados deverão produzir



#### Orientação dos Modelos Descritivos e Prescritivos

Modelos orientados a atividades (Activity-Oriented Models)

Concentre-se em definir as funções, atividades e artefatos do gerenciamento, desenvolvimento e suporte de processos de software.

Modelos orientados a pessoas (People-Oriented Models)

Concentre-se em definir as pessoas envolvidas no processo de software e seus relacionamentos.

# Exemplos de Modelos de Processos Descritivos

- Agile Methodologies
- SCRUM (People-Oriented)
- DSDM Dynamic System Development Method (*People Oriented*)

#### Exemplos de Modelos de Processos Prescritivos:



#### **Manuais**

padrões, metodologias e métodos centrados no gerenciamento e produção de software

#### **Automatizados**

assistivo, suporte, computer-assisted support techniques.

- Denominam-se **prescritivos** porque **prescrevem um conjunto de elementos do processo** atividades, métodos, ações de engenharia, tarefas, produtos de trabalho (artefatos), e mecanismos de controle de mudanças para cada projeto.
- Acomodam as **atividades metodológias** por meio de fluxos de processos (também denominados fluxos de trabalho).

#### **Modelos de Processos Prescritivos (***Activity-Oriented*):

• Cascata (Waterfall) . . . . . estrutura linear

• **Evolucionário.** . . . . . . . . . . . . estrutura combinada (cíclica e iterativa)

#### Modelo Cascata (Waterfall)

- Requisitos razoavelmente estáveis
- Abordagem sequencial e sistemática para o desenvolvimento de software
- Sequencia rígida de atividades
- Usuário/cliente envolvidos somente no início e no fim do processo

Modelo de Processo de Software Genérico (baseado no Cascata)



(Pressman, 2011)

# Modelos de Processos Prescritivos Initiation Definition Design Build **Cascata simples** Verification (Traditional Waterfall Approach) Impl. Pos. Impl.



#### Modelo Cascata (Waterfall) (Cascata "V")

- Ações conjuntas de desenvolvimento e de testes
- Propicia a garantia da qualidade
- O lado esquerdo favorece ações de análises dos requisitos, modelagem, culminando na codificação; enquanto o lado direito favorece o gerenciamento de testes
- A realização do lado esquerdo favorece as posteriores ações do lado direito

### Cascata "V" - Waterfall Approach



### Questão

Os modelos com fluxos de processos exclusivamente linear, como o Cascata, possuem espaço nas organizações de desenvolvimento de software nos dias de hoje ?

#### Modelo Evolucionário

- Modelos também iterativos possibilitam versões cada vez mais completas do produto de software
- Permite versões parciais
- Contam com requisitos que mudam constantemente
- Exemplos de Modelos Evolucionários correspondem ao Prototipação e Espiral

#### Modelo Evolucionário - Prototipação

- Pode ser considerado como um modelo de processo isolado (*stand-alone process*)
- Em geral é um modelo utilizado com outros modelos prescritivos

• Favorece ao "projeto rápido" mesmo quando não há segurança quanto a eficiência de um algoritmo, adaptabilidade do sistema ou quanto à forma que deve ocorrer a interação homem-máquina



Evolucionário Paradigma da Prototipação

#### Modelo Evolucionário - Espiral

- Acopla as características iterativas próprias do Prototipação juntamente com aspectos sistemáticos e controlados do Cascata
- Permite desenvolvimento de versões cada vez mais completas do software
- As primeiras versões podem corresponder a um protótipo
- Riscos são revisados a cada iteração
- É um ciclo que pode ser considerado ao longo de toda a vida do software



#### **Modelo Incremental**

- Requisitos iniciais razoavelmente bem definidos, porém não favorece o uso de um modelo puramente linear
- Desenvolvimento de forma incremental fornecimento de um conjunto funcional aos usuários para posterior refinamento
- O Processo Unificado (UP) (*Unified Process*) é um exemplo de aplicação do Modelo Incremental sendo dirigido a casos de uso e centrado na arquitetura.

#### Processo Unificado (Unified Process)

Unified Process . . . . . . . . . . . . . . . . . estrutura combinada (Linear e iterativo) (Jacobson *et al.*, 1999)

O UP (*Unified Process*) é um processo proprietário de Engenharia de Software criado pela *Rational Software Corporation*, posteriormente adquirida pela IBM, a partir da evolução e integração do trabalho de três autores: Ivar Jacobson, Grady Booch e James Rumbaugh.

Segue a abordagem da orientação a objetos em sua concepção e é projetado utilizando a notação UML (*Unified Modeling Language*) para ilustrar os processos em ação.

O UP é um modelo híbrido de processo que reúne as perspectivas dinâmicas (as fases) e estáticas (os fluxos de trabalho (*workflows*)) em um único processo.

#### Principais Características do Processo Unificado

- Desenvolvimento utiliza o Modelo de Processos Incremental, portanto com fluxo misto, Iterativo e Linear
- Conduzido por Casos de Uso
  - A identificação de casos de uso e cenários típicos de utilização é a atividade que conduz todo o processo de desenvolvimento, desde a análise de requisitos até ao teste final do sistema
- Centrado numa Arquitetura
  - Promove a definição inicial de uma arquitetura de software robusta, que facilita a paralelização do desenvolvimento, a reutilização e a manutenção

#### Estrutura do Processo Unificado

- Fases
  - o cada ciclo resulta numa nova geração do produto e divide-se em fases
  - o cada fase divide-se em iterações a definir em cada projeto concreto
- Workflows (fluxos de trabalho)
  - o agrupam atividades relacionadas
  - genéricos ou especializados por fases
- Papéis (workers)
  - o são perfis a que correspondem competências para a realização das atividades
- Atividades
  - o são realizações que podem ser entregues a trabalhadores individuais
- Artefatos
  - o são as entradas e saídas de cada atividade
- Modelos
  - o agrupam artefatos desenvolvidos num workflow



**IBM Rational Unified Process** 

#### Processo Unificado – desenvolvimento incremental

#### TITERAÇÃO

- Construção incremental durante o processo
  - Mudanças no final são caras
- Resulta numa versão do produto, que pode ser validada pelo usuário
- Auxilia no gerenciamento, organização, acompanhamento e no controle do projeto

#### • INCREMENTO

Diferença entre versões de consecutivas iterações

#### Desenvolvimento por iterações que consideram

- Planejamento
- Especificação, projeto (arquitetura) e implementação
- Integração e teste
- o Ajustes entre as iterações (feedback)

**Processo Unificado** – elementos genéricos de uma iteração - (*workflows*) fluxos de trabalho



**IBM Rational Unified Process** 

#### Processo Unificado – vantagens de desenvolvimento incremental

- Obtenção de uma arquitetura robusta
  - Propor uma arquitetura que satisfaça os requisitos (concepção)
  - Estabelece-se a linha-base (*baseline*) da arquitetura que guia o desenvolvimento (elaboração)
  - Pequeno investimento inicial
  - Validação da arquitetura
- A cada versão do produto, os usuários podem validar ou propor mudanças nos requisitos
  - Mudanças no final do projeto são caras
- Melhor entendimento dos workflows
  - O que deve ser feito após os requisitos e após a análise (otimização)
  - Menor gravidade dos erros
  - Facilidade de treinar novas pessoas
- Reduzir riscos críticos

**Processo Unificado** – desenvolvimento incremental



#### **Fases do Processo Unificado**

### Fase 1 – INICIAÇÃO ou CONCEPÇÃO (Inception)

Delimitação do escopo do projeto e do Business Case Identificação dos atores e casos de uso, com a descrição dos mais significativos

### Fase 2 - ELABORAÇÃO (Elaboration)

Análise do domínio do problema

Definição de uma arquitetura estável e robusta para todo o sistema, a partir de seus requisitos compreendidos e especificados

### Fase 3 - CONSTRUÇÃO (Construction)

Desenvolvimento incremental do produto em iterações com entregas parciais aos usuários e como uma primeira versão do produto completo

### **Fase 4 - TRANSIÇÃO** (*Transition*)

Desenvolvimento e testes adicionais para ajuste do sistema às novas demandas de requisitos para sua concreta utilização

### Fase 1 – Iniciação ou Concepção

- Identificar e reduzir riscos críticos (viabilidade do projeto)
- A partir de um subconjunto chave de requisitos propor uma arquitetura para implementação do software
- Elaborar um cronograma inicial (custo, recursos, tempo e qualidade do produto)
- Iniciar o business case (viabilidade econômica do projeto)

### Fase 2 – Elaboração

- Reduzir riscos (construção do sistema)
- Especificar os componentes para a maioria dos *use cases* que ofereçam funcionalidade aos usuários
- Validar a arquitetura proposta
- Preparar um plano de projeto (guiar a fase de construção)
- Finalizar o business case

## Fase 3 – Construção

- O sistema deve ser capaz de operar no ambiente do usuário
- Iterações e incrementos que ao longo da fase torna evidente a viabilidade do sistema
- Desenvolver todos os componentes do sistema

## Fase 4 – Transição

- Atingir a capacidade final de operação
- Finalizar os testes de pré-implantação
- Modificar o produto para diminuir problemas não detectados nas fases anteriores
- Corrigir defeitos
- o Garantir que o produto está pronto para ser entregue ao cliente

### Processo Unificado – Fases e Iterações

- Fase ≠ Iteração
  - Iteração ∈ Fase
- Cada fase pode ser decomposta em iterações
- Iterações são definidas e planejadas em cada projeto concreto
- Cada iteração resulta num incremento do produto
  - Tipicamente é analisado e implementado um grupo de casos de uso ou de requisitos expressos em variantes de casos de uso
- Cada iteração passa, em cascata, pelos workflows técnicos
  - Importância relativa dos workflows varia com as fases
- Uma iteração é um miniprojeto
  - Requisitos, análise, projeto (design), implementação e teste

### Sobreposição das Iterações





### Evolução dos Modelos nas Fases



- U Modelo de Casos de Uso
- A Modelo de Análise
- D Modelo de Projeto (Design)
- D Modelo de Implantação
- I Modelo de Implementação
- T Modelo de Testes

### Requisitos – objetivo

- O objetivo desta etapa do workflow é favorecer o acordo entre os usuários finais e o desenvolvedor sobre a descrição do que o sistema deve fazer
- Principal resultado é o Modelo de Casos de Uso
  - Um caso de uso é um elemento narrativo que descreve a sequência de eventos de um ator sobre um sistema com o objetivo de obter, a partir dele, um resultado observável e de interesse sobre o domínio do problema
  - O Modelo de Casos de Uso é a base de todo o processo de desenvolvimento o que facilita a avaliação da concordância do usuário final para o sistema entregue conforme os requisitos iniciais previamente definidos

### Requisitos – atividades



### Requisitos – artefatos



### Análise e Design – objetivo

#### ANÁLISE

- Modelos de Classes e Objetos ideais para uma melhor compreensão dos requisitos
- principal resultado é o Modelo de Análise

#### • DESIGN

- o objetivo desta etapa do *workflow* é apresentar como o software será construído, de forma a satisfazer a todos os requisitos, tarefas e funções descritas no Modelo de Casos de Uso
- o software deve ser projetado de modo que possua uma arquitetura robusta e facilmente adaptável a mudanças de requisitos
- o principal resultado é o Modelo de Projeto (*Design*)
- o também pode ser produzido o Modelo de *Deployment*

## Análise e *Design* – atividades



### Análise e Design – artefatos



### Implementação e Testes – objetivo

#### IMPLEMENTAÇÃO

- o objetivo é construir os componentes do produto, produzindo o código necessário para a geração do módulo executável
- o Modelo de Projeto (*Design*) é a base da implementação
- a implementação inclui o teste de classes e módulos separados, mas não a verificação do seu funcionamento integrado
- sub-produto: Modelo da Implementação (componentes, dependências e interações)

#### TESTE

- o objetivo é verificar o produto completo
- o inicialmente verifica-se cada caso de uso separadamente e posteriormente o software na sua totalidade
- o no final deste componente, o produto estará pronto para ser utilizado
- sub-produto: Modelo de Teste, com especificação de casos de teste e procedimentos de teste

# Implementação e Testes — artefatos



### Gerenciamento de Projetos - atividades



### Gerenciamento de Configuração e Mudança - atividades



# Modelos de Processos

| Criteria                           | Waterfall                                                                     | Incremental                                                                      | Evolutionary/Iterative                                                                                                                |
|------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Understanding of user requirements | User requirements are well defined and are measurable and testable            | User requirements are difficult to define                                        | <ul> <li>User requirements are difficult to define</li> <li>Developers are making assumptions about the needs of the users</li> </ul> |
| Requirements stability             | Requirements are well defined and stable                                      | Requirements are subject to minimal change                                       | Requirements are highly volatile                                                                                                      |
| Domain Knowledge                   | Strong understanding of problem domain                                        | Some or average familiarity                                                      | Little or no familiarity                                                                                                              |
| Complexity of project              | Factors of complexity such as technology, subsystems, interfaces etc. are low | Factors of complexity such as technology, subsystems, interfaces etc. are medium | Factors of complexity such as technology, subsystems, interfaces etc. are high                                                        |
| Technology                         | Existing and well understood technical environments                           | Moderate expertise in the technologies                                           | Technology has not been applied by the project team                                                                                   |
| Risk management perspective        | Risks are manageable without extra efforts                                    | Risks are moderately manageable without extra efforts                            | Significant effort required to manage risks                                                                                           |
| Schedule constraint                | Moderate level of schedule constraints                                        | Moderate level of schedule constraints                                           | Drop-dead date with high priority schedules                                                                                           |
| Availability of resources          | Resources can be identified and are available                                 | Resources cannot be estimated     Resources are not available.                   | Resources cannot be estimated     Resources are not available.                                                                        |
| Product availability to end user   | Complete product as part of single deployment                                 | Intermediate usable product required before all functions are available          | Intermediate usable product required before all functions are available                                                               |

### Modelos de Processos Prescritivos (People-Oriented)

"À medida que os profissionais de desenvolvimento de software aprendem a medir os seus trabalhos, a analisar essas medidas e a definir e atingir metas de melhoria, eles passam a enxergar os benefícios de usar o processo definido e são motivados constantemente a utilizá-lo".

### Modelos de Processos Prescritivos (People-Oriented)

- **PSP** (*People Software Process*) é um processo de software que enfatiza a medição pessoal e responsabiliza o profissional pelo planejamento por meio das estimativas permitindo controlar os resultados alcançados.
- O PSP define cinco atividades estruturais:
  - 1. Planejamento
  - 2. Projeto de alto nível
  - 3. Revisão de projeto de alto nível
  - 4. Desenvolvimento
  - 5. Autópsia (exame, inspeção de si mesmo)

PSP (Personal Software Process) atividades de acompanhamento pessoal



### Modelos de Processos Prescritivos (People-Oriented)

- TSP (*Team Software Process*) é um processo de software que busca criar uma equipe de projeto "autodirigida", que se organize por si mesma, que use processos e medições em engenharia por meio de ações criativas.
- O TSP considera as seguintes atividades metodológicas:
  - 1. Lançamento do Projeto
  - 2. Projeto de alto nível
  - 3. Implementação
  - 4. Integração e Testes
  - 5. Autópsia (exame, inspeção de si mesmo)

### TSP is implemented project-by-project.

- Select two or three teams.
- Train top-down, starting with senior managers, then project managers, then team members.
- When the managers and team are trained, conduct a TSP Launch to kickoff each project.
- Evaluate and fine tune the approach.
- Repeat this cycle increasing scope at a sustainable pace.



# Referências

ACUNÃ, S.T. & JURISTO, N. Software Process Modeling, New York: Springer, 2005.

ACUNÃ, S. T., DE ANTONIO, A., FERRE, X., MATÉ, L., & LÓPEZ, M. (2001). **The Software process: modeling, evaluation and improvement**. In *Handbook of Software Engineering and Knowledge Engineering: Volume I:Fundamentals* (pp. 193-237).

IBM Rational Unified Process. Disponível em:

 $\underline{https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251\_bestp}{ractices\_TP026B.pdf}$ 

KRUCHTEN, P. The Rational Unified Process: an introduction. Addison Wesley, 1999.

PRESSMAN, R.S. Engenharia de Software: uma abordagem profissional. SP:McGrawHill, 2011.

SCOTT, Kendall. O processo unificado explicado. Porto Alegre: Bookman, 2003.