Karnaugh Maps (K-map)

- Alternate representation of a truth table
 - ➤ Red decimal = minterm value
 - Note that A is the MSB for this minterm numbering
 - \triangleright Adjacent squares have distance = 1
- Valuable tool for logic minimization
 - Applies most Boolean theorems & postulates automatically (when procedure is followed)

Karnaugh Maps (K-map)

- Alternate forms of 3-variable K-maps
 - ➤ Note end-around adjacency
 - Distance = 1
 - Note: A is MSB, C is LSB for minterm 00 numbering

form 1

form 2

Combinational Logic Minimization (9/12)

K-mapping & Minimization Steps

Step 1: generate K-map

- > Put a 1 in all specified minterms
- > Put a 0 in all other boxes (optional)

Step 2: group all adjacent 1s without including any 0s

- All groups (aka *prime implicants*) must be rectangular and contain a "power-of-2" number of 1s
 - 1, 2, 4, 8, 16, 32, ...
- An essential group (aka *essential prime implicant*) contains at least 1 minterm not included in any other groups
 - A given minterm may be included in multiple groups
- Step 3: define product terms using variables common to all minterms in group
- Step 4: sum all essential groups plus a minimal set of remaining groups to obtain a minimum SOP

K-map Minimization Example

- $Z=\Sigma_{A,B,C}(1,3,6,7)$
 - > Recall SOP minterm implementation
 - 8 gates
 - > K-map results
 - 4 gates
 - 11 gate I/O

essential prime implicants

Note: this group not needed
since 1s are already covered

			_	Row
A	В	C	Z	value
0	0	0	0	0
0	0	1	1	1
0	1	0	0	2
0	1	1	1	3
1	0	0	0	4
1	0	1	0	5
1	1	0	1	6
1	1	1	1	7

K-map Minimization Goals

- Larger groups:
 - ➤ Smaller product terms
 - Fewer variables in common
 - ➤ Smaller AND gates
 - In terms of number of inputs
- Fewer groups:
 - > Fewer product terms
 - Fewer AND gates
 - Smaller OR gate
 - ✓ In terms of number of inputs

- Alternate method:
 - ➤ Group 0s
 - Could produce fewer and/or smaller product terms
 - ➤Invert output
 - Use NOR instead of OR gate

4-variable K-maps

- Note adjacency of 4 corners as well as sides
- Variable ordering for this minterm numbering: ABCD

5-variable K-map

- Note adjacency between maps when overlayed
 distance=1
- Variable order for this minterm numbering:
 - > A,B,C,D,E (A is MSB, E is LSB)

BC	E ₀₀	01	11	10	ı
00	0	1	3	2	
01	4	5	7	6	
11	12	13	15	14	
10		9	11		
•		A	=0		1

BC	E ₀₀	01	11	10
00	16	17	19	18
01	20		23	
11	28	29	31	30
10	24		27	26
		A=	=1	

5-variable K-map

- Changing the variable used to separate maps changes minterm numbering
- Same variable order for this minterm numbering:
 - > A,B,C,D,E (A is MSB, E is LSB)

AB	D ₀₀	01	11	10	AB^{C}	D
00	0	2	6	4	00	
01	8	10	14	12	01	
11	24	26	30	28	11	
10	16		22	20	10	
		E=	=0		•	

ABC	D ₀₀	01	11	10
00	1	3	7	5
01	9	11	15	13
11	25	27	31	29
10	17		23	21
		F-	 -1	

6-variable K-map Variable order for minterm numbers: ABCDEF

Don't Care Conditions

- Sometimes input combinations are of no concern
 - ➤ Because they may not exist
 - Example: BCD uses only 10 of possible 16 input combinations
 - ➤ Since we "don't care" what the output, we can use these "don't care" conditions for logic minimization
 - The output for a don't care condition can be either 0 or 1 ✓ WE DON'T CARE!!!
- Don't Care conditions denoted by:
 - > X, -, d, 2
 - X is probably the most often used
- Can also be used to denote inputs
 - \triangleright Example: ABC = 1X1 = AC
 - B can be a 0 or a 1

Don't Care Conditions

- Truth Table
- K-map
- Minterm

$$\geq Z = \Sigma_{A,B,C}(1,3,6,7) + d(2)$$

Z=B+A'C

A	В	C	Z
0	0	0	0
0	0	1	1
0	1	0	X
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Maxterm

$$> Z = \Pi_{A,B,C}(0,4,5) + d(2)$$

$$\frac{A}{C}$$

$$\frac{A'}{C}$$

$$\frac{A'}{C}$$

$$\frac{Z}{A} = \overline{A}C + B$$

$$\frac{C}{C}$$

Circuit analysis:

$$G=3$$
 $G_{IO}=8$ (compared to $G=4$ & $G_{IO}=11$ w/o don't care)

Design Example

- Hexadecimal to 7-segment display decoder
 - > A common circuit in calculators
 - > 7-segments (A-G) to represent digits (0-9 & A-F)
 - A logic 1 turns on given segment

Create truth table from specification

• Generate K-maps & obtain logic equations

In3	In2	In1	In0	A	В	С	D	Е	F	G
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	0	0	1	1
1	0	1	0	1	1	1	0	1	1	1
1	0	1	1	0	0	1	1	1	1	1
1	1	0	0	1	0	0	1	1	1	0
1	1	0	1	0	1	1	1	1	0	1
1	1	1	0	1	0	0	1	1	1	1
1	1	1	1	1	0	0	0	1	1	1

K-maps & logic equations for outputs C-G


```
\begin{split} C &= In3 \ In2' + In1'In0 + In2'In1' + In3'In0 + In3'In2 \\ D &= In3'In2'In0' + In2'In1 \ In0 + In2 \ In1'In0 \\ &+ In3 \ In1' + In2 \ In1 \ In0' \\ E &= In2'In0' + In3 \ In2 + In1 \ In0' + In3 \ In1 \\ F &= In1'In0' + In3 \ In2' + In2 \ In0' + In3 \ In1 + In3'In2 \\ G &= In3 \ In2' + In1 \ In0' + In3 \ In0 + In3'In2 \ In1' + In2'In1 \end{split}
```


- Remaining steps to complete design:
 - ➤ Draw logic diagram (sharing common gates)
 - Analyze for optimization metirc: G, G_{IO} , G_{del} , P_{del} • See next page for logic diagram & circuit analysis
 - Simulate circuit for design verification
 - Debug & fix problems when output is incorrect
 - ✓ Check truth table against K-map population
 - ✓ Check K-map groups against logic equation product terms
 - ✓ Check logic equations against schematic
 - ➤ Optimize circuit for area and/or performance
 - Use Boolean postulates & theorems
 - > Re-simulate & verify optimized design

