İTÜ

Bilgisayar ve Bilişim Fakültesi BLG222 – Bilgisayar Organizasyonu

Dönem Sonu Sınavı

26.05.2011 Süre: 120 dk.

Ad Soyad:	Numara:	_imza:

Açıklamalar:

- 1. Bu sınav sonucu dönem notunuzun %50'sini belirleyecektir.
- 2. Kitap ve notlar açıktır, kitap ve notların paylaşımı mümkün değildir.
- 4. Her soruyu bulunduğu sayfa üzerine çözün.
- 5. Sınav 100 puan üzerindedir.

SORU 1: [30 puan]

Kitabın 5. bölümünde gösterilen temel bilgisayar ve komut seti için:

- a) DR saklayıcısının denetim sinyallerine (LD(DR), INC(DR) ve CLR(DR)) ait lojik ifadeleri yazınız.
- b) PC saklayıcısının denetim sinyallerine (LD(PC), INC(PC) ve CLR(PC)) ait lojik ifadeleri yazınız.
- c) Belleğin yaz (write) denetim sinyaline ait lojik ifadeyi yazınız.

İTÜ

Bilgisayar ve Bilişim Fakültesi BLG222 – Bilgisayar Organizasyonu

Dönem Sonu Sınavı

26.05.2011

Süre: 120 dk.

Ad Soyad:	Numara:	_ İmza:

SORU 2: [30 puan]

Kitabın 5. Bölümünde gösterilen temel bilgisayara yığın registerinin (SP) eklendiğini varsayın. Komut setine ise aşağıda verilen 2 komut eklenmiştir:

PUSH: AR ← SP

 $M[AR] \leftarrow DR, SP \leftarrow SP + 1$

SP ← SP-1 POP:

> $AR \leftarrow SP$ $DR \leftarrow M[AR]$

- a) BSA komutunu, alt programa dallanıldığında dönüş adresinin yığında saklanmasını sağlayacak şekilde değiştiriniz. Yeni BSA komutunu RTL ile yazınız.
- b) Alt programın sonunda kullanılmak üzere RET adında yeni bir komut eklenecektir. Bu komut, yığındaki dönüş adresini alıp, programın kaldığı yerden devam etmesini sağlayacaktır. RET komutunu RTL ile yazınız.
- c) Yeni tasarımın kitaptaki tasarıma göre olumlu ve olumsuz yönlerini yazınız.

İTÜ

Bilgisayar ve Bilişim Fakültesi BLG222 – Bilgisayar Organizasyonu

Dönem Sonu Sınavı

26.05.2011 Süre: 120 dk.

Ad Soyad:	Numara:	_ İmza:

SORU 3: [40 puan]

Derste anlatılan mikroprogramlı bilgisayar mimarisine, sadece bellek üzerinde işlem yapan ve 4 bitlik komut kodu (A)₁₆ olan **MOD** komutu eklenecektir. **A** ve **B** 16 bitlik işaretsiz sayı olmak üzere **MOD** komutu **A MOD B** işlemini yapmaktadır.

Α	В	A MOD B
(15) ₁₀	(2) ₁₀	(1) ₁₀
(15) ₁₀	(8) ₁₀	(7) ₁₀
(108) ₁₀	(32) ₁₀	(44) ₁₀

B sayısı, sadece 2ⁿ={1,2,4,8,...,2¹⁵} değerlerinden bir tanesi olabilmektedir. **A** ve **B** sayıları bellekte önce **B** sonra **A** sayısı olacak biçimde arka arkaya bulunmak zorundadır. Komut çalıştıktan sonra hesaplanan mod değeri, **A** sayısının bulunduğu bellek gözüne yazılacaktır.

Komut: MOD 700

 Önce
 Sonra

 B \rightarrow (700)₁₆
 (0008)₁₆ = (8)₁₀
 (700)₁₆
 (0008)₁₆ = (8)₁₀

 A \rightarrow (701)₁₆
 (000E)₁₆ = (15)₁₀
 (701)₁₆
 (0007)₁₆ = (7)₁₀

 ...
 ...

Yukarıda ayrıntıları verilen **MOD** komutu için gerekli mikroprogramı, mikroprogram belleğindeki adres yerleşimlerini de göstererek yazınız..

NOT : F3 için AYRILMIŞ (RESERVED) olarak belirtilen (111)₂ mikrokomutunun INCAR (AR ← AR + 1) işlemini gerçekleyecek şekilde tasarım yapıldığını varsayınız.