Übungsblatt 4

Hausaufgabe 4

Wir konstruieren den Produktautomaten \mathcal{A} , sodass $L(\mathcal{A}) = L(\mathcal{A}_1 \cap L(\mathcal{A}_1))$.

Für den Produktautomaten \mathcal{A} gilt:

$$\mathcal{A} = (Q_1 \times Q_2, \Sigma, (q_{01}, q_{02}), \Delta, F_1 \times F_2)$$
mit $\Delta = \{((q_1, q_2), a, (q'_1, q'_2)) | (q_1, a, q'_1) \in \Delta_1 \text{ und } (q_2, a, q'_2) \in \Delta_2\}$

$$\Rightarrow \mathcal{A} = (Q, \Sigma, (0, A), \Delta, F)$$
 mit:

$$Q = \{(0, A), (0, B), (0, C), (1, A), (1, B), (1, C)\}$$

$$F = \{(1, C)\}$$

$$\Delta = \{((0, A), a, (0, B)), ((0, B), a, (0, C)), ((0, C), a(0, A)), ((0, A), a, (1, B)), ((0, B), a, (1, C)), ((0, C), a, (1, A)), (), ((1, A), b(0, A)), ((1, B), b, (0, B)), ((1, B), b, (0, C)), ((1, C), b, (0, C))\}$$

Hausaufgabe 5

Zunächst werden die unerreichbaren Zustände aus dem Automaten entfernt:

- \sim_0 hat die Klassen $F = \{2, 3, 5\}$ und $Q \setminus F = \{0, 1, 4, 6, 8\}$
- Zwischenschritte für \sim_1 : $2 \sim_1 3 \Leftrightarrow 2 \sim_0 3 \land \forall a \in (a, b) : \delta(2, a) \sim_0 \delta(3, a)$ $\Rightarrow 4 \sim_0 4 \text{ und } 4 \sim_0 8$

$$3 \sim_1 5 \Leftrightarrow 3 \sim_0 5 \land \forall a \in (a, b) : \delta(3, a) \sim_0 \delta(5, a) \\ \Rightarrow 4 \sim_0 8$$

$$4 \sim_1 8 \Leftrightarrow 4 \sim_0 8 \land \forall a \in (a, b) : \delta(4, a) \sim_0 \delta(8, a)$$

 $\Leftrightarrow 3 \sim_0 5 \text{ und } 6 \sim_0 6$

$$\begin{array}{l} 0 \sim_1 1 \Leftrightarrow 0 \sim_0 1 \wedge \forall a \in (a,b) : \delta(0,a) \sim_0 \delta(1,a) \\ \Rightarrow 3 \sim_0 2 \text{ und } 1 \sim_0 1 \end{array}$$

$$1 \sim_1 4 \Leftrightarrow 1 \sim_0 4 \land \forall a \in (a, b) : \delta(1, a) \sim_0 \delta(4, a)$$

\Rightarrow 2 \cdot 0 3 und 1 \cdot 0 6

$$4 \sim_1 6 \Leftrightarrow 4 \sim_0 6 \land \forall a \in (a, b) : \delta(4, a) \sim_0 \delta(6, a)$$

 $\Rightarrow 3 \sim_0 0$ gilt nicht

$$4 \sim_1 8 \Leftrightarrow 4 \sim_0 8 \land \forall a \in (a, b) : \delta(4, a) \sim_0 \delta(8, a)$$

 $\Rightarrow 3 \sim_0 5 \text{ und } 6 \sim_0 6$

$$\Rightarrow \sim_1$$
 hat die Klassen $\{2, 3, 5\}, \{0, 1, 4, 8\}, \{6\}$

• Zwischenschritte für \sim_2 : $0 \sim_2 1 \Leftrightarrow 0 \sim_1 1 \land \forall a \in (a, b) : \delta(0, a) \sim_1 \delta(1, a)$ $\Rightarrow 3 \sim_1 2 \text{ und } 1 \sim_1 1$

$$\begin{array}{l} 1 \sim_2 4 \Leftrightarrow 1 \sim_1 4 \wedge \forall a \in (a,b) : \delta(1,a) \sim_1 \delta(4,a) \\ \Rightarrow 1 \sim_1 6 \text{ gilt nicht} \end{array}$$

$$\begin{array}{l} 4 \sim_2 8 \Leftrightarrow 4 \sim_1 8 \wedge \forall a \in (a,b) : \delta(4,a) \sim_1 \delta(8,a) \\ \Rightarrow 3 \sim_1 5 \text{ und } 6 \sim_1 6 \end{array}$$

$$\Rightarrow \sim_2$$
 hat die Klassen $\{2,3,5\}, \{0,1\}, \{4,8\}, \{6\}$

 $\bullet \sim_3 = \sim_2 \Rightarrow \sim_A$

Quotientenautomat A:

Hausaufgabe 6

- (a) Die Sprache L_1 hat die folgenden Nerode-Äquivalenzrelationen:
 - $[\epsilon]_{L_1} = \{v \in \Sigma^* \mid vw \in L \text{ für kein } w \in \Sigma^*\} = \epsilon$
 - $[a]_{L_1} = \{v \in \Sigma^* \mid vw \in L \text{ gdw. } w \in \Sigma^*\} = (a+b)^* \cdot (a+b) \cdot (a+b)^*$

Somit hat die Nerode-Rechtskongruenz von L_1 einen Index von zwei. Nach dem Satz von Myhill und Nerode ist L_1 somit erkennbar.

Hausaufgabe 7

Eine Sprache, die ϵ nicht enthält, kann immer durch einen NEA mit einem Endzustand dargestellt werden.

Eine Sprache, die ϵ enthält, kann immer durch einen NEA mit zwei Endzuständen dargestellt werden.

Dies kann man mit Hilfe der ϵ -Elimination beweisen.

Mann kann einen NEA mit mehr als 2 Endzuständen in einen ϵ -NEA mit nur einem Endzustand wie folgt umwandeln:

- Füge einen neuen Zustand hinzu. Dieser wird als einziger zum Endzustand.
- Alle bisherigen Endzustände erhalten ϵ -Übergänge in den neuen Zustand.

Nun wendet man die ϵ -Elimination auf den entstandenen ϵ -NEA an um ihn wieder in einen NEA ohne ϵ -Übergänge zurückzuwandeln.

Ausnamhe: Wenn ϵ in der Sprache enthalten ist, dann wird auch der Startzustand ebenfalls zum Endzustand.

Fazit:

Wenn ϵ nicht in der Sprache enthalten ist, dann hat man nach wie vor nur einen Endzustand. Wenn ϵ in der Sprache enthalten ist, dann kommt ein zweiter hinzu.