Applications of Constrained BayesOpt in Robotics and Rethinking Priors & Hyperparameters

Marc Toussaint

Machine Learning & Robotics Lab – University of Stuttgart marc.toussaint@informatik.uni-stuttgart.de

NIPS BayesOpt, Dec 2016

(1) Learning Manipulation Skills

Englert & Toussaint: Combined Optimization and Reinforcement Learning for Manipulation Skills. R:SS'16

Combined Black-Box and Analytical Optimization

Englert & Toussaint: Combined Optimization and Reinforcement Learning for Manipulation Skills. R:SS'16

- CORL (Combined Optimization and RL):
 - Policy parameters w
 - analytically known cost function $J(w) = \mathsf{E}\{\sum_{t=0}^T c_t(x_t, u_t) \,|\, w\}$
 - **projection**, implicitly given by a constraint $h(w, \theta) = 0$
 - unknown black-box return function $R(\theta) \in \mathbb{R}$
 - unknown black-box success constraint $S(\theta) \in \{0, 1\}$
 - Problem:

$$\min_{w,\theta} J(w) - R(\theta) \quad \text{s.t.} \quad h(w,\theta) = 0, \ S(\theta) = 1$$

• Alternate path optimization $\min_w J(w)$ s.t. $h(w,\theta) = 0$ with Bayesian Optimization $\max_{\theta} R(\theta)$ s.t. $S(\theta) = 1$

Heuristic to handle constraints

- Prior mean $\mu = 2$ for g
- Sample only points s.t. $g(x) \le 0$
- · Acquisition function combines PI with Boundary Uncertainty

$$\alpha_{\text{PIBU}}(x) = [g(x) \ge 0] \mathbf{PI}_f(x) + [g(x) = 0] \beta \sigma_g^2(x)$$

(2) Optimizing Controller Parameters

Drieß, Englert & Toussaint: Constrained Bayesian Optimization of Combined Interaction Force/Task Space Controllers for Manipulations. IROS Workshop'16

Controller Details

- Non-switching controller for smoothly establishing contacts
 - In (each) task space

$$\ddot{y}^* = \ddot{y}^{\text{ref}} + K_p(y^{\text{ref}} - y) + K_d(\dot{y}^{\text{ref}} - \dot{y})$$

Operational space controller (linearized)

$$\begin{split} \ddot{q}^* &= \bar{K}_p q + \bar{K}_d \dot{q} + \bar{k} \\ \bar{K}_p &= (H + J^{\top} C J)^{-1} [H K_p^q + J^{\top} C K_p J] \\ \bar{K}_d &= (H + J^{\top} C J)^{-1} [H K_d^q + J^{\top} C K_d J] \\ \bar{k} &= (H + J^{\top} C J)^{-1} [H k^q + J^{\top} C k] \end{split}$$

Contact force limit control

$$e \leftarrow \gamma e + [|f| > |f^{\text{ref}}|] (f^{\text{ref}} - f)$$
 $u = J^{\top} \alpha e$

• Many parameters! Esp. $\alpha, \dot{y}^{\text{ref}}, K_d$

Optimizing Controller Parameters

- Optimization objectives:
 - Low compliance: ${
 m tr}(\bar{K}_p)$ and ${
 m tr}(\bar{K}_d)$
 - Contact force error: $\int (f^{\text{ref}} f)^2 dt$
 - Peak force on onset: $|f^{os}|$
 - Smooth force profile: $\int \left(|\frac{d}{dt}f(t)| + |\frac{d^2}{dt^2}f(t)| + |\frac{d^3}{dt^3}f(t)| \right) \, dt$
 - Boolean success: contact and staying in contact

Optimizing Controller Parameters

- Optimization objectives:
 - Low compliance: $\operatorname{tr}(\bar{K}_p)$ and $\operatorname{tr}(\bar{K}_d)$
 - Contact force error: $\int (f^{\text{ref}} f)^2 dt$
 - Peak force on onset: $|f^{os}|$
 - Smooth force profile: $\int \left(|\frac{d}{dt}f(t)| + |\frac{d^2}{dt^2}f(t)| + |\frac{d^3}{dt^3}f(t)| \right) \, dt$
 - Boolean success: contact and staying in contact
- Establishing contact

(3) Safe Active Learning & BayesOpt

• SAFEOPT: Safety threshold on the objective $f(x) \ge h$

Sui, Gotovos, Burdick, Krause: Safe Exploration for Optimization with Gaussian Processes. ICML'15

(3) Safe Active Learning & BayesOpt

• SAFEOPT: Safety threshold on the objective $f(x) \ge h$

Sui, Gotovos, Burdick, Krause: Safe Exploration for Optimization with Gaussian Processes. ICML'15

- Guarantee to never step outside an unknown $g(x) \leq 0...$
 - Impossible when no failure data g(x) > 0 exists...

(3) Safe Active Learning & BayesOpt

• SAFEOPT: Safety threshold on the objective $f(x) \ge h$

Sui, Gotovos, Burdick, Krause: Safe Exploration for Optimization with Gaussian Processes. ICML'15

- Guarantee to never step outside an unknown $g(x) \leq 0...$
 - Impossible when no failure data g(x) > 0 exists...
 - Unless you assume observation of near boundary discriminative values

Probabilistic guarantees on non-failure

Acquisition function

$$\alpha(x) = \sigma_f^2(x) \quad \text{s.t.} \quad \mu_g(x) + \nu \sigma_g(x) \geq 0$$

- Specify probability of failure δ after n points with m_0 initializations $\mapsto \nu$
- Application on cart-pole

δ	ν	m_0	Н	# failures	# expected failures
0.01	4.26	8	393.3	0	9.9
0.05	3.89	7	397.7	6	48.4
0.10	3.72	6	412.8	29	94.6
0.20	3.54	6	402.7	57	180.2
0.30	3.43	5	395.6	80	257.9
0.40	3.35	5	389.3	101	328.1
0.50	3.29	5	380.7	127	391.6

- Choice of hyper parameters!

- Choice of hyper parameters!
- Stationary covariance functions!

- Choice of hyper parameters!
- Stationary covariance functions!
- Isotropic stationary covariance functions!

• Actually, I'm a fan of Newton Methods

- Actually, I'm a fan of Newton Methods
- Two messages of classical (convex) optimization:
 - Step size (line search, trust region, Wolfe)
 - Step direction (Newton, quasi-Newton, BFGS, conjugate, covariant)
- Newton methods are prefect for local optimum down-hill

Model-based Optimization

• If the model is not given: classical *model-based optimization* (Nodecal et al. "Derivative-free optimization")

```
1: Initialize D with at least \frac{1}{2}(n+1)(n+2) data points
2: repeat
         Compute a regression \hat{f}(x) = \phi_2(x)^{\mathsf{T}}\beta on D
         Compute x^+ = \operatorname{argmin}_x \hat{f}(x) s.t. |x - \hat{x}| < \alpha
4:
         Compute the improvement ratio \varrho = \frac{f(\hat{x}) - f(x^+)}{\hat{f}(\hat{x}) - \hat{f}(x^+)}
5:
         if \rho > \epsilon then
6:
7:
              Increase the stepsize \alpha
             Accept \hat{x} \leftarrow x^+
8:
             Add to data, D \leftarrow D \cup \{(x^+, f(x^+))\}
9:
         else
10:
              if det(D) is too small then
                                                                          // Data improvement
11:
                  Compute x^+ = \operatorname{argmax}_x \det(D \cup \{x\}) s.t. |x - \hat{x}| < \alpha
12:
                  Add to data, D \leftarrow D \cup \{(x^+, f(x^+))\}
13:
             else
14.
                  Decrease the stepsize \alpha
15:
             end if
16:
17:
         end if
         Prune the data, e.g., remove \operatorname{argmax}_{x \in \Lambda} \det(D \setminus \{x\})
18:
19: until x converges
```

12/20

This is similar to BayesOpt with polynomial kernel!

A prior about local polynomial optima

- Assume that the objective has multiple local optima
 - Local optimum: locally convex
 - Each local optimum might be differently conditioned
 - ightarrow we need a highly non-stationary, non-isotropic converance function
- \bullet "Between" the local optima, the function is smooth \to standard squared exponential kernel

A prior about local polynomial optima

- Assume that the objective has multiple local optima
 - Local optimum: locally convex
 - Each local optimum might be differently conditioned
 - → we need a highly non-stationary, non-isotropic converance function
- \bullet "Between" the local optima, the function is smooth \to standard squared exponential kernel
- The Mixed-global-local kernel

$$k_{\mathrm{MGL}}(x,x') = \begin{cases} k_q(x,x'), \ x,x' \in \mathfrak{U}_i, \\ k_s(x,x'), x \notin \mathfrak{U}_i, x' \notin \mathfrak{U}_j \\ 0, \ \mathrm{else} \end{cases}$$

for any i, j

$$k_q(x, x') = (x^T x' + 1)^2$$

Finding convex neighborhoods

- Data set $D = \{(x_i, y_i)\}$
- $\mathcal{U} \subset \mathcal{D}$ is a convex neighborhood if

$$\{\beta_0^*, \beta^*, B^*\} = \underset{\beta_0, \beta, B}{\operatorname{argmin}} \sum_{k: x_k \in \mathcal{H}} \left[(\beta_0 + \beta^T x_k + \frac{1}{2} x_k^T B x_k) - y_k \right]^2$$

has a positive definite Hessian B^*

A heuristic to decrease length-scale

- The SE-part still has a length-scale hyperparameter l
- ullet In each iteration we *consider* to decrease to $ilde{l}_t < l_{t-1}$

$$\alpha_{r,t} := \frac{\alpha^*(\tilde{l}_t)}{\alpha^*(l_{t-1})} , \quad \alpha^*(l) = \min_x \alpha(x; l)$$

for any acquisition function $\alpha(x; l)$

- Accept smaller lengthscale only if $\alpha_{r,t} \geq h$ (e.g., $h \approx 2$)
- Robust to non-stationary objectives

Mixed-global-local kernel + alpha ratio

- PES: Bayesian integration over hyper parameters
- IMGPO: Bayesian update for hyperparameters in each iteration

...work with Kim Wabersich

Conclusions

- Solid optimization methods are the savior of robotics!
- Rethink the priors we use for BayesOpt
 - Local optima with varying conditioning
- Rethink the objective for choosing hyper parameters
 - Maximize optimization progress (\sim expected acquisition) rather than data likelihood

Thanks

- for your attention!
- · to the students:
 - Peter Englert (BayesOpt for Manipulation)
 - Jens Schreiter (Safe Active Learning)
 - Danny Drieß(BayesOpt for Controller Optimization)
 - Kim Wabersich (Mixed-global-local kernel & alpha ratio)
- and my lab:

