

1. Features

- Core
 - 32-bit ARM® Cortex® M0+
 - Up to 48 MHz operating frequency
- Memories
 - Up to 64 Kbytes flash memory
 - Up to 8 Kbytes SRAM
- Clock management
 - Internal 4/8/16/ 22.12/24 MHz RC oscillator (HSI)
 - Internal 32.768 KHz RC oscillator (LSI)
 - 4 to 32 MHz crystal oscillator (HSE)
 - 32.768KHz low speed crystal oscillator (LSE)
 - PLL (supports 2 frequency multiplication of HSI or HSE)
- Reset and power management
 - Operating voltage: 1.7 to 5.5 V
 - Low power modes: Sleep and Stop
 - Power-on/Power-down reset (POR/PDR)
 - Brown-out reset (BOR)
 - Programmable voltage detection (PVD)
- General-purpose input and output (I/O)
 - Up to 30 I/Os, all available as external interrupts
 - Drive current 8 mA
 - Four GPIOs support super current sink, configurable to 80 mA/60 mA/40 mA/20 mA
- 3-channel DMA controller
- One 12-bit ADC
 - Up to 10 external input channels
 - Input voltage conversion range: 0 to VCC

Timers

- A 16-bit advanced control timer (TIM1)
- Four general-purpose 16-bit timers (TIM3/TIM14/TIM16/TIM17)
- A low-power timer (LPTIM), supports wakeup from stop mode
- An independent watchdog timer (IWDT)
- A window watchdog timer (WWDT)
- A SysTick timer
- A IRTIM
- RTC
- Communication interfaces
 - Two serial peripheral interfaces (SPI)
 - Two universal synchronous asynchronous recevicer/transmitter (USART) with automatic baud rate detection
 - A I2C interface, supports standard mode (100 kHz), fast mode (400 kHz), supports 7-bit addressing mode
- Support 4-bit 7-segment common cathode LED digital tube
 - Cycle scan 1-digit, 2-digit, 3-digit, 4-digit
 number
- Hardware CRC-32 module
- Two comparators
- Unique UID
- Serial wire debug (SWD)
- Working temperature: -40 to 85 °C
- Package: LQFP32, QFN32, TSSOP20, QFN 20

Content

1.	Fe	atures	5	1
2.	Int	roduc	etion	4
3.	Fu	nctio	nal overview	6
	3.1.	Arm	® Cortex®-M0+ core	6
	3.2.	Mer	nories	6
	3.3.	Воо	t mode	6
	3.4.	Clo	ck system	7
	3.5.	Pow	ver management	9
	3.5	5.1.	Power block diagram	9
	3.5	5.2.	Power monitoring	9
	3.5	5.3.	Voltage regulator	11
	3.5	5.4.	Low power mode	11
	3.6.	Res	et	11
	3.6	6.1.	Power reset	11
	3.6	5.2.	System reset	12
	3.7.	Ger	neral-purpose input and output (GPIOs)	12
	3.8.	Dire	ect memory access (DMA)	12
	3.9.	Inte	rrupts and events	12
	3.9	9.1.	Nested vectored interrupt controller (NVIC)	12
	3.9	9.2.	Extended interrupt/event controller (EXTI)	13
	3.10.	Α	nalog to digital converter (ADC)	13
	3.11.	Т	imer	14
	3.1	1.1.	Advanced-control timer (TIM1)	14
	3.1	1.2.	General-purpose timers (TIM3, TIM14, TIM16, TIM17)	14
	3.1	1.3.	Low power timer (LPTIM)	15
	3.1	1.4.	Independent watchdog (IWDG)	15
	3.1	1.5.	System window watchdog (WWDG)	15
	3.1	1.6.	SysTick timer	16
	3.12.	R	eal-time clock (RTC)	16
	3.13.	12	2C interface	16
	3.14.	U	niversal synchronous/asynchronous recevicer/ transmitter (USART)	17
	3.15.	S	erial peripheral interface (SPI)	18
	3.16.	S	erial wire debug (SWD)	19
4.	Pir	n conf	iguration	20
	4.1.	Port	t A alternate functions mapping	34
	4.2.	Port	t B alternate functions mapping	35
	4.3.	Port	t F alternate functions mapping	35
5.	Ме	emory	mapping	37
6.	Ele	ectrica	al characteristics	41

Vers	sion history	62
Ord	dering information	61
'.4.	TSSOP20 package size	60
' .3.	QFN20 Package Dimensions	59
. 2.	QFN32 package size	58
'.1.	LQFP32 package size	57
Pac	ckage information	57
6.3.	.19. Communication interfaces	53
6.3.	.18. Timer features	52
6.3.	.17. Temperature sensor characteristics	52
6.3.	.16. Comparator Characteristics	51
6.3.	.15. ADC characteristics	50
6.3.	.14. NRST pin characteristics	50
	•	
	·	
	s	
	•	
	· ·	
5.1.	Parameter conditions	
	6.1 6.1 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3	6.1.1. Minimum and maximum values. 6.1.2. Typical value

2. Introduction

PY32F030 series microcontrollers are MCUs with high performance 32-bit ARM® Cortex® -M0 + core, wide voltage operating range. It has embedded up to 64 Kbytes flash and 8 Kbytes SRAM memory, a maximum operating frequency of 48 MHz, and contains various products in different package types. The chip integrates multi-channel I2C, SPI, USART and other communication peripherals, one channel 12-bit ADC, five 16-bit timers, and 2-channel comparators.

PY32F030 series microcontrollers are -40 °C to 85 °C, and the operating voltage range is 1.7 to 5.5 V. The chip provides sleep and stop low-power operating modes from meeting different low-power applications.

The PY32F030 series of microcontrollers are suitable for various application scenarios, such as controllers, portable devices, PC peripherals, gaming and GPS platforms, industrial applications.

Table 2-1 PY32F030 series product features and peripheral counts

Desir				·		- Iouturos	PY32F030K					
Perip	herals			PY32F03	OF	Т				K	T	
	Flash (Kbyte) SRAM (Kbyte)		Fx3 Fx4 Fx6 Fx7 Fx				Kx3	Kx4	Kx6	Kx7	Kx8	
Flash			8 16 32 48 64 8					16	32	48	64	
SRAM			2	4	6	8	2	2	4	6	8	
	Advanced control					1 (′	16-bit)					
T:	General purpose					4 (1	16-bit)					
Timers	Low power						1					
	SysTick						1					
	Watchdog		2									
	SPI		2									
Comm. interfaces	I2C						1					
Interfaces	USART		2									
D	MA	3ch										
R	TC	Yes										
Unive	rsal port			18			30/28					
n	Number of ADC chan- nels (external + internal)			2+2/5+	2		10+2/9+2					
Comp	2											
Max. CPL	J frequency	48 MHz										
Operatir					1.7 t	o 5.5 V						
Pac	kage		TS	SOP20/C	FN20			LQF	P32/QF	N32		

Figure 2-1 Block diagram

3. Functional overview

3.1. Arm® Cortex®-M0+ core

The Arm® Cortex®-M0+ is an entry-level 32-bit Arm Cortex processor designed for a wide range of embedded applications. It provides developers with significant benefits, including:

- Simple structure, easy to learn and program
- Ultra-low power consumption, energy-saving operation
- Reduced code density and more

Cortex-M0+ processor is a 32-bit core optimized for area and power consumption and is a 2-stage pipeline Von Neumann architecture. The processor offers high-end processing hardware, including single-cycle multipliers, through a streamlined but powerful instruction set and an extensively optimized design. Moreover, it delivers the superior performance expected from a 32-bit architecture computer, with a higher coding density than other 8 and 16-bit microcontrollers.

The Cortex-M0+ is tightly coupled with a Nested Vectored Interrupt Controller (NVIC).

3.2. Memories

The on-chip integrated SRAM is accessed by bytes (8 bits), half-word (16bits) or word (32bits).

The on-chip integrated Flash consists of two different physical areas:

- Main flash area, which contains application and user data
- The information area has 4K bytes, and it includes the following parts:
 - Option bytes
 - UID bytes
 - System memory

The protection of Flash main memory includes the following mechanisms:

- Read protection(RDP) prevents access from outside.
- Write protection (WRP) control prevents unwanted writes (confuse by program memory pointer from PC). The minimum protection unit for write protection is 4K bytes.
- Option byte write protection, special unlocking design.

3.3. Boot mode

Through BOOT0 pin and boot configuration bit nBOOT1 (stored in Option bytes), three different boot modes can be selected, as shown in the following table:

Table 3-1Boot configuration

Boot mode	configuration	Mada				
nBOOT1 bit	BOOT0 pin	Mode				
X	0	Select Main flash as the boot area				
1	1	Select System memory as the boot area				
0	1	Select SRAM as the boot area				

The Boot loader program is stored in the System memory and used to download the Flash program through the USART interface.

3.4. Clock system

After the CPU starts, the default system clock frequency is HSI 8 MHz, and the system clock frequency and system clock source can be reconfigured after the program runs. The high frequency clocks that can be selected are:

- A 4/8/16/22.12/24 MHz configurable internal high precision HSI clock.
- A 32.768 KHz configurable internal LSI clock.
- 4 to 32 MHz HSE clock can enable the CSS function to detect HSE. If CSS fails, the hardware will automatically convert the system clock to HSI, and software configures the HSI frequency. Simultaneously, CPU NMI interrupt is generated.
- A 32.768 KHz LSE clock.
- PLL clock has HSI and HSE sources. If the HSE source is selected, when CSS is enabled and CSS fails, the PLL and HSE will be turned off, and the hardware selects the system clock source as HSI.

The AHB clock can be divided based on the system clock, and the APB clock can be divided based on the AHB clock. AHB and APB clock frequencies up to 48 MHz.

Figure 3-1 System clock structure diagram

3.5. Power management

3.5.1. Power block diagram

Figure 3-2 Power block diagram

Serial **Power** Power value **Describe** number supply The chip is supplied with power through the power pins, 1 VCC 1.7 to 5.5V and its power supply module is part of the analogue circuit. Power to most analogue modules from VCC PAD (a sepa-**VCCA** 2 1.7 to 5.5V rate power supply PAD can also be designed). 3 **VCCIO** 1.7 to 5.5V Power supply to IO, from VCC PAD VR supplies power to the main logic circuits and SRAM inside the chip. When the MR is powered, it outputs 1.2 V. 4 **VDD** 1.2/1.0 V ± 10 % According to the software configuration, entering the stop mode can be powered by MR or LPR, and the LPR output is determined to be 1.2 V or 1.0 V.

Table 3-2 Power block diagram

3.5.2. Power monitoring

3.5.2.1. Power on reset (POR/PDR)

The Power on reset (POR)/Power down reset (PDR) module is designed to provide power-on and power-off reset for the chip. The module keeps working in all modes.

3.5.2.2. Brown-out reset (BOR)

In addition to POR/ PDR, BOR (brown-out reset) is also implemented. BOR can only be enabled and disabled through the option byte.

When the BOR is turned on, the BOR threshold can be selected by the Option byte, and both the rising and falling detection points can be configured individually.

Figure 3-3 POR/PDR/BOR threshold

3.5.2.3. Programmable voltage detection (PVD)

Programmable Voltage Detector (PVD) module can be used to detect the VCC power supply (it can also detect the voltage of the PB7 pin), and the detection point can be configured through the register. When VCC is higher or lower than the detection point of PVD, a corresponding reset flag is generated.

This event is internally connected to line 16 of EXTI, depending on the rising/falling edge configuration of EXTI line 16. When VCC rises above the PVD detection point, or VCC falls below the PVD detection point, an interrupt is generated. In the service program, users can perform urgent shutdown tasks.

Figure 3-4 PVD threshold

3.5.3. Voltage regulator

The chip designs two voltage regulators:

- Main regulator (MR) keeps working when the chip is in normal operating state.
- Low power regulator (LPR) provides a lower power consumption option in stop mode.

3.5.4. Low power mode

In addition to the normal operating mode, the chip has two low-power modes:

- Sleep mode: Peripherals can be configured to keep working when the CPU clock is off (NVIC, SysTick, etc.). It is recommended only to enable the modules that must work, and close the module after the module works.
- **Stop mode**: In this mode, the contents of SRAM and registers are maintained, HSI and HSE are turned off, and most modules of clocks in the VDD domain are stopped. GPIO, PVD, COMP output, RTC and LPTIM can wake up stop mode.

3.6. Reset

Two resets are designed in the chip: power and system reset.

3.6.1. Power reset

A power reset occurs in the following situations:

- Power-on/Power-down reset (POR/PDR)
- Brown-out reset (BOR)

3.6.2. System reset

A system reset occurs when the following events occur:

- Reset of NRST pin
- Windowed Watchdog Reset (WWDG)
- Independent Watchdog Reset (IWDG)
- SYSRESETREQ software reset
- Option byte load reset (OBL)
- Power reset (POR/PDR, BOR)

3.7. General-purpose input and output (GPIOs)

The software configures each GPIO as output (push-pull or open-drain), input (floating, pull-up/down, analogue), peripheral multiplexing function, and locking mechanism freeze I/O port configuration function.

3.8. Direct memory access (DMA)

Direct Memory Access (DMA) provides high-speed data transfer between peripherals and memory or between memory and memory.

DMA controller has three channels, and each channel is responsible for managing memory access requests from one or more peripherals. The DMA controller includes an arbiter for handling DMA requests for each DMA request's priority..

DMA supports circular buffer management, eliminating the need for user code to intervene when the controller reaches the end of the buffer.

Each channel is directly connected to a dedicated hardware DMA request, and each channel also supports software triggering. These functions are configured through software.

DMA is available for peripherals: SPI, I2C, USART, all TIMx timers (except TIM14 and LPTIM) and ADC.

3.9. Interrupts and events

The PY32F030 handles exceptions through the Cortex-M0+ processor's embedded a nested vectored interrupt controller and an extended interrupt/event controller.

3.9.1. Nested vectored interrupt controller (NVIC)

NVIC is a tightly coupled IP inside the Cortex-M0+ processor. The NVIC can handle NMI (Non-Maskable Interrupts) and maskable external interrupts from outside the processor and Cortex-M0+ internal exceptions. NVIC provides flexible priority management.

The tight coupling of the processor core to the NVIC greatly reduces the delay between an interrupt event and the initiation of the corresponding interrupt service routine (ISR). The ISR vectors are listed in a vector table, stored at a base address of the NVIC. The vector table base address determines the vector address of the ISR to execute, and the ISR is used as the offset composed of serial numbers.

If a high-priority interrupt event occurs and a low-priority interrupt event is just waiting to be serviced, the laterarriving high-priority interrupt event will be serviced first. Another optimization is called tail-chaining. When returning from a high-priority ISR and then starting a pending low-priority ISR, unnecessary pushes and pops of processor contexts will be skipped. This reduces latency and improves power efficiency.

NVIC features:

- Low latency interrupt handling
- Level 4 interrupt priority
- Supports one NMI interrupt
- Supports 32 maskable external interrupts
- Supports 10 Cortex-M0+ exceptions
- High-priority interrupts can interrupt low-priority interrupt responses
- Support tail-chaining optimization
- Hardware interrupt vector retrieval

3.9.2. Extended interrupt/event controller (EXTI)

EXTI adds flexibility to handle physical wire events and generates wake-up events when the processor wakes up from stop mode.

The EXTI controller has multiple channels, including a maximum of 16 GPIOs, 1 PVD output, 2 COMP outputs, RTC and LPTIM wake-up signals. GPIO, PVD and COMP can be configured to be triggered by a rising edge, falling edge or double edge. Any GPIO signal can be configured as EXTI0 ~ 15 channel through the select signal.

 $\label{prop:eq:expression} \mbox{Each EXTI line can be independently masked through registers.}$

The EXTI controller can capture pulses shorter than the internal clock period.

Registers in the EXTI controller latch each event. Even in stop mode, after the processor wakes up from stop mode, it can identify the wake-up source or identify the GPIO and event that caused the interrupt.

3.10. Analog to digital converter (ADC)

The chip has a 12-bit SARADC. The module has up to 12 channels to be measured, including 10 external channels and 2 internal channels.

The conversion mode of each channel can be set to single, continuous, sweep, discontinuous mode. Conversion results are stored in left or right-aligned 16-bit data registers.

An analogue watchdog allows the application to detect if the input voltage exceeds a user-defined high or low threshold.

The ADC has been implemented to operate at a low frequency, resulting in lower power consumption.

At the end of sampling, conversion, and continuous conversion, an interrupt request is generated when the conversion voltage exceeds the threshold when simulating the watchdog.

3.11. Timer

The characteristics of different timers of PY32F003 are shown in the following table:

Table 3-3 Timer features

Types	Timer	Couter resolution			DMA	Capture /compare channels	Comple- mentary outputs
Advanced control	TIM1	16-bit	Up, down, center aligned	Any integer between 1 and 65536	Supported	4	3
	TIM3	16-bit	Up, down, center aligned	Any integer between 1 and 65536	Supported	4	-
General purpose	TIM14	16-bit	Up	Any integer between 1 and 65536	-	1	-
	TIM16, TIM17	16-bit	Up	Any integer between 1 and 65536	Supported	1	1

3.11.1. Advanced-control timer (TIM1)

The advanced timer TIM1 is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. It can be used in various scenarios, including pulse length measurement of input signals (input capture) or generating output waveforms (output compare, output PWM, complementary PWM with dead-time insertion).

TIM1 includes 4 independent channels:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes)
- One-pulse mode output

If TIM1 is configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

The counter can can be frozen in debug mode.

Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers by the Timer Link feature for synchronization or event chaining.

TIM1 supports the DMA function.

3.11.2. General-purpose timers (TIM3, TIM14, TIM16, TIM17)

3.11.2.1. TIM3

The general-purpose timer TIM3 is based on a 16-bit auto-reload counter and a 16-bit prescaler. It features four independent channels each for input capture/output compare, PWM or one-pulse mode output.

The TIM3 general-purpose timer can work with the TIM1 advanced-control timer by the Timer Link feature for synchronization or event chaining.

TIM3 has an independent DMA request generation.

This timer is capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

The counter can be frozen in debug mode.

3.11.2.2. TIM14

The general-purpose timer TIM14 is based on a 16-bit auto-reload counter and a 16-bit prescaler.

TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output.

The counter can be frozen in debug mode.

3.11.2.3. TIM16/TIM17

The general-purpose timer TIM16 and TIM17 is based on a 16-bit auto-reload counter and a 16-bit prescaler.

TIM16/TIM17 have one independent channel for input capture/output compare, PWM or one-pulse mode output.

TIM16/TIM17 have complementary outputs with dead time.

TIM16/TIM17 has an independent DMA request generation.

These counters can be frozen in debug mode.

3.11.3. Low power timer (LPTIM)

LPTIM is a 16 -bit upcounter with a 3-bit prescaler and only support a single count.

LPTIM can be configured as a stop mode wake-up source.

The counter can be frozen in debug mode.

3.11.4. Independent watchdog (IWDG)

Independent watchdog (IWDG) is integrated in the chip, and this module has the characteristics of high-security level, accurate timing and flexible use. IWDG finds and resolves functional confusion due to software failure and triggers a system reset when the counter reaches the specified timeout value.

The IWDG is clocked by LSI, so even if the main clock fails, it can keep working.

IWDG is the best suited for applications that require the watchdog as a standalone process outside of the main application and do not have high timing accuracy constraints.

Controlling of option byte can enable IWDG hardware mode.

IWDG is the wake-up source of stop mode, which wakes up stop mode by reset.

The counter can be frozen in debug mode.

3.11.5. System window watchdog (WWDG)

The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability, and the counter can be frozen in debug mode.

3.11.6. SysTick timer

SysTick timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. SysTick Features:

- A 24-bit down counter
- Auto-reload capability
- Maskable system interrupt generation when the counter reaches 0

3.12. Real-time clock (RTC)

The real-time clock is an independent Timer. RTC has a set of continuous counting counters, which can provide a clock calendar function under the corresponding software configuration. Modifying the value of the counter can reset the current time and date of the system.

RTC is a 32-bit programmable counter with a prescale factor of up to 2²⁰ bits.

The RTC counter clock source can be LSI and the stop wake-up source.

RTC can generate alarm interrupt, second interrupt and overflow interrupt (maskable).

RTC supports clock calibration.

RTC can be frozen in debug mode.

3.13. I2C interface

I2C (inter-integrated circuit) bus interface connects the microcontroller and the serial I2C bus. It provides multimaster capability and controls all I2C bus specific sequences, protocols, arbitration and timing. Standard mode (Sm) and fast mode (Fm) are supported.

I2C Features:

- Slave and master mode
- Multi-host function: can be master or slave
- Support different communication speeds
 - Standard Mode (Sm): Up to 100 kHz
 - Fast Mode (Fm): up to 400 kHz
- As master
 - Generate Clock
 - Generation of Start and Stop
- As slave
 - Programmable I2C address detection

- Discovery of the Stop bit
- 7-bit addressing mode
- General call
- Status flag
 - Transmit/receive mode flags
 - > Byte transfer complete flag
 - > I2C busy flag bit
- Error flag
 - Master a rbitration loss
 - ACK failure after address/data transfer
 - Start/Stop error
 - Overrun/Underrun (clock stretching function disable)
- Optional clock stretching
- Single-byte buffer with DMA capability
- Software reset
- Analogue noise filter function

3.14. Universal synchronous/asynchronous recevicer/ transmitter (USART)

PY32F030 contains 2 USARTs with precisely the same functions.

The USARTs provide a flexible method for full-duplex data exchange with external devices using the industrystandard NRZ asynchronous serial data format. The USART utilizes a fractional baudrate generator to provide a wide range of baudrate options.

It supports simultaneous one-way communication and half-duplex single-wire communication, and it also allows multi-processor communication.

Automatic baudrate detection is supported.

High-speed data communication can be achieved by using the DMA method of the multi-buffer configuration.

USARTs features:

- Full-duplex asynchronous communication
- NRZ standard format
- Configurable 16 times or 8 times oversampling for increased flexibility in speed and clock tolerance
- Programmable baudrate shared by transmit and receive, up to 4.5Mbit/s
- Automatic baudrate detection
- Programmable data length of 8 or 9 bits
- Configurable stop bits (1 or 2 bits)
- Synchronous mode and clock output function for synchronous communication
- Single-wire half-duplex communication
- Independent transmit and receive enable bits

- Hardware flow control
- Receive/transmit bytes by DMA buffer
- Detection flag
 - Receive full buffer
 - Send empty buffer
 - > End of transmission
- Parity Control
 - Send check digit
 - Check the received data
- Flagged interrupt sources
 - > CTS change
 - Send empty register
 - Send completed
 - Receive full data register
 - Bus idle detected
 - Overflow error
 - Frame error
 - Noise operation
 - > Error detection
- Multiprocessor communication
 - > If the address does not match, enter silent mode
- Wake-up from silent mode: by idle detection and address flag detection

3.15. Serial peripheral interface (SPI)

PY32F030 contains two SPIs.

SPIs allow the chip to communicate with external devices in half-duplex, full-duplex, and simplex synchronous serial communication. This interface can be configured in master mode and provides the communication clock (SCK) for external slave devices. The interface can also work in a multi-master configuration.

The SPI features are as follows:

- Master or slave mode
- 3 -wire full-duplex simultaneous transmission
- 2-wire half-duplex synchronous transmission (with bidirectional data line)
- 2-wire simplex synchronous transmission (no bidirectional data line)
- 8-bit or 16-bit transmission frame selection
- Support multi-master mode
- 8 master mode baudrate prescaler factors (max fPCLK/ 4)
- Slave mode frequency (max fPCLK/4)
- Both master and slave modes can be managed by software or hardware NSS: dynamic change of master/slave operating mode

- Programmable clock polarity and phase
- Programmable data order, MSB first or LSB first
- Dedicated transmit and receive flags that can trigger interrupts
- SPI bus busy status flag
- Motorola mode
- Interrupt-causing master mode faults, overloads
- Two 32-bit Rx and Tx FIFOs with DMA capability

3.16. Serial wire debug (SWD)

The ARM SWD interface allows serial debugging tools to be connected to the PY32F030.

4. Pin configuration

Figure 4-1LQFP32 Pinout1 PY32F030K1xT

Figure 4-2LQFP32 Pinout2 PY32F030K2xT

Figure 4-3QFN32 Pinout1 PY32F030K1xU

Figure 4-4QFN32 Pinout2 PY32F030K2xU

Figure 4-5QFN20 Pinout1 PY32F030F1xU

Figure 4-6QFN20 Pinout2 PY32F030F2xU

Figure 4-7TSSOP20 Pinout1 PY32F030F1xP

Figure 4-8TSSOP20 Pinout2 PY32F030F2xP

Table 4-1 Pin definition and symbols

Ту	pes	Symbol	Definition
		S	Supply pin
Dowt	A un n	G	Ground pin
Port	type	I/O	Input / output pin
		NC	Undefined
		COM	5V port, support analogue input and output function
Port st	ructure	RST	Reset port, with internal weak pull-up resistor, does not support analogue input and output function
		_L	LED COM port, support analogue input and output function
No	Notes		Unless otherwise specified by a note, all ports are set as floating inputs during and after reset.
Port	Alternate functions		Functions selected through GPIOx_AFR registers
functions	Additional functions		Functions directly selected or enabled through peripheral registers.

Table 4-2LQFP32/QFN32 pin definitions

Variable language Vari	Pá	Package type		эе			ē		Port fun	ctions
The image is a composition of the	LQFP32 K1	LQFP32 K2	QFN32 K1	QFN32 K2	Reset	Port type	Port structu	Notes		
SPI2_SCK USART2_RX TIMI4_CH1 USART1_RX USART2_TX USART2_TX USART2_TX USART1_TX USART	1	ı	-	-	NC	NC				
2	-	1	1	1	VCC	S			Digital pow	er supply
2									SPI2_SCK	
2 2 2 2 2 2 2 (PFO)									USART2_RX	
Compage Comp	2	2	2	2		I/O	COM			OSC IN
12C_SDA	_	_	_	_	(PF0)	.,,	COM			
SPI2_MISO USART2_TX USART1_TX USART2_RX USART2_RX USART2_RX USART1_TX USART2_RX USART1_TX USART2_TX USART1_TX USART2_TX USART1_TX USART2_TX USART1_TX USART1_TX USART1_TX USART1_TX USART1_TX USART1_TX USART1_TX USART1_TX USART1_TX USART1_COUT SPI2_SCK USART1_CTS USART2_CTS USART2_CTS USART2_CTS USART2_TX										
Second S										
3 3 3 3 3 3 4 4 4 4										
3 3 3 3 3 9F1-OSC_OUT-										
Sarizer School					DE1_OSC OUT.					
SP1_NSS TIM14_CH MCO SP12_MOSI USART2_RX USART1_TX USART2_TX SP12_MISO SP11_NSS TIM3_CH3 RTC_OUT SP12_SCK USART1_CTS LED_DATA_B USART2_TX USART2_CTS COMP1_INM SP11_MISO USART2_TX COMP1_INM SP11_MISO USART2_TX COMP1_INM SP11_MISO USART2_TX R_OUT SP12_SCK USART2_TX R_OUT SP11_SCK USART2_TX R_OUT SP11_SCK USART2_RTS COMP1_INM COMP1_INM COMP1_INM COMP1_INM COMP1_INM SP11_MISO USART2_TX R_OUT SP11_SCK USART1_RTS USART2_RTS LED_DATA_C COMP1_INP ADC_IN1 COMP1_INP COMP1_INP	3	3	3	3		I/O	СОМ			OSC_OUT
TIM14_CH MCO SP12_MOSI USART2_RX USART1_TX USART2_TX SP12_MISO SP11_NSS TIM3_CH3										
MCO SPI2_MOSI NRST USART2_RX USART1_TX USART2_TX SPI2_MISO SPI1_NSS TIM3_CH3 RTC_OUT SPI2_SCK USART1_CTS LED_DATA_B USART2_TX LED_DATA_C LED_DATA_C LED_DATA_C LED_DATA_C COMP1_INP COMP1_										
4										
SPI2_RX										
Second S	4	4	4	4	PF2-NRST	I/O	RST	(1)		NRST
USART2_TX SPI2_MISO SPI1_NSS TIM3_CH3 RTC_OUT										
SPI2_MISO SPI1_NSS TIM3_CH3 RTC_OUT SPI2_SCK USART1_CTS LED_DATA_B USART2_CTS COMP1_INM SPI1_MISO USART2_TX IR_OUT RTIM1_CH3 TIM1_CH3 TIM1_CH3 TIM1_CH3 TIM1_CH3 TIM1_CH3 TIM1_CH3 TIM1_CH1 TIM1_CH3 TIM1_CH3 TIM1_CH1 TIM1_CH3 T										
SPI1_NSS TIM3_CH3 RTC_OUT										
TIM3_CH3 RTC_OUT SPI2_SCK USART1_CTS LED_DATA_B USART2_CTS COMP1_OUT TIM1_CH3 TIM1_CH1N SPI1_MISO USART2_TX IR_OUT SPI1_SCK USART1_RTS USART2_TX IR_OUT SPI1_SCK USART1_RTS USART1_RTS USART1_RTS LED_DATA_C COMP1_INP ADC_IN1	5	5	5	5	PF3	I/O	СОМ		_	COMP2_INP
RTC_OUT SPI2_SCK USART1_CTS LED_DATA_B USART2_CTS COMP1_OUT TIM1_CH3 TIM1_CH1N SPI1_MISO USART2_TX IR_OUT SPI1_SCK USART1_RTS USART1_RTS LED_DATA_C COMP1_INP COMP1_										
SPI2_SCK USART1_CTS LED_DATA_B USART2_CTS COMP1_OUT TIM1_CH3 TIM1_CH1N SPI1_MISO USART2_TX IR_OUT IR_OUT SPI1_SCK USART1_RTS USART1_RTS USART2_RTS LED_DATA_C COMP1_INP ADC_IN1 ADC_IN1 COMP1_INP COMP1_INP COMP1_INP ADC_IN1 ADC_IN1 COMP1_INP COMP1_INP ADC_IN1 COMP1_INP ADC_										
Barticts Barticts										
LED_DATA_B										
ADC_INO ADC_INO COM SPI1_SCK USART2_CTS COMP1_INF CO										
COMP1_OUT ADC_IN0 COM TIM1_CH3 TIM1_CH1N SPI1_MISO USART2_TX IR_OUT SPI1_SCK USART1_RTS USART2_RTS LED_DATA_C COMP1_INP ADC_IN1 COMP1_INP ADC_IN1 COMP1_INP ADC_IN1 ADC_										
6 6 6 6 6 6 6 6 6 6										
TIM1_CH1N SPI1_MISO USART2_TX IR_OUT SPI1_SCK USART1_RTS USART1_RTS USART2_RTS LED_DATA_C COMP1_INP ADC_IN1	6	6	6	6	PA0	I/O	СОМ			
SPI1_MISO USART2_TX IR_OUT										
USART2_TX									_	
The second column SPI1_SCK										
7 7 7 7 PA1 I/O COM USART1_RTS USART2_RTS LED_DATA_C COMP1_INP ADC_IN1										
7 7 7 PA1 I/O COM USART2_RTS COMP1_INP ADC_IN1										
LED_DATA_C ADC_IN1	7	7	7	7 004	1/0	COM				
	'	′	′	′	FAI	I/O	СОМ			ADC_IN1
, , , , , , , , , , , , , , , , , , , ,									EVENTOUT	

					1			SPI1_MOSI	l I
								USART2_RX	
								TIM1_CH4	
								TIM1_CH2N	
								MCO	
								SPI1_MOSI	
								USART1_TX	
								USART2_TX	
								LED_DATA_D	
8	8	8	8	PA2	I/O	СОМ		LPUART_TX	COMP2_INM
					., -			COMP2_OUT	ADC_IN2
								SPI1_SCK	
								TIM3_CH1	
								I2C_SDA	
								SPI2_MISO	
								USART1_RX	
								USART2_RX	
								LED_DATA_E	COMP2_INP
9	9	9	9	PA3	I/O	СОМ		EVENTOUT	ADC_IN3
								SPI1_MOSI	
								TIM1_CH1	
								I2C_SCL	
								SPI1_NSS	
								USART1_CK	
								SPI2_MOSI	
								LED_DATA_F	
10	10	10	10	DA 4	1/0	COM		TIM14_CH1	ADC INIA
10	10	10	10	PA4	I/O	COM		USART2_CK	ADC_IN4
								ENENTOUT	
								RTC_OUT	
								TIM3_CH3	
								USART2_TX	
								SPI1_SCK	
								LED_DATA_G	
								LPTIM_ETR	
11	11	11	11	PA5	I/O	COM		EVENTOUT	ADC_IN5
								TIM3_CH2	
								USART2_RX	
								MCO	
								SPI1_MISO	
								TIM3_CH1	
12	12	12	12	PA6	I/O	СОМ		TIM1_BKIN	ADC_IN6
'-			'-	17.0	., 0	30.11		LED_DATA_DP	, 120_1110
								TIM16_CH1	
								EVENTOUT	

							LPUART_CTS	1
							COMP1_OUT	
							USART1_CK	
							RTC_OUT	
							SPI1_MOSI	
							TIM3_CH2	
							TIM1_CH1N	
							TIM1_CH1	
							TIM17_CH1	
13	13	13	13	PA7	I/O	СОМ	EVENTOUT ADC_IN7	7
13	13	13	13	FAI	1/0	COIVI	COMP2_OUT	
							USART1_TX	
							USART2_TX	
							I2C_SDA	
							SPI1_MISO	
							SPI1_NSS	
١.,				DD 0		0014	TIM3_CH3	
14	14	14	14	PB0	I/O	СОМ	TIM1_CH2N ADC_IN8	3
							EVENTOUT	
							COMP1_OUT	
							TIM14_CH1	
							TIM1_CH2N COMP1_IN	JM
15	15	15	15	PB1	I/O	СОМ	ADC_ING	
							LPUART_RTS	
							EVENTOUT	
16	16	16	16	VSS	S		Ground	
							USART1_RX	
-	17	-	17	PB2	I/O	СОМ	USART2_RX COMP1_IN	1P
							SPI2_SCK	
17	-	17	-	VCC	S		Digital power supply	
							SPI2_NSS	
							USART1_CK	
							TIM1_CH1	
							USART2_CK	
18	18	18	18	PA8	I/O	СОМ	MCO -	
							EVENTOUT	
							USART1_RX	
							USART2_RX	
							SPI1_MOSI	ļ
							I2C_SCL	
							SPI2_MISO	
							USART1_TX	ļ
19	19	19	19	PA9	I/O	COM	TIM1_CH2 OSC32OU	JΤ
							MCO	ļ
							I2C_SCL	

						1		EVENTOUT	
								I2C_SDA	
								TIM1_BK	
								SPI1_SCK	
								USART1_RX	
								SPI2_MOSI	
								USART1_RX	
								TIM1_CH3	
								TIM17_BKIN	
								USART2_RX	
20	20	20	20	PA10	I/O	СОМ		I2C_SDA	OS32IN
								EVENTOUT	
								I2C_SCL	
								SPI1_NSS	
								USART1_TX	
								IR_OUT	
								SPI1_MISO	
								USART1_CTS	
								TIM1_CH4	
								TIM1_CH4	
21	21	21	21	PA11	I/O	СОМ		EVENTOUT	-
								USART2_CTS	
								I2C_SCL	
								COMP1_OUT	
								SPI1_MOSI	
								USART1_RTS	
								TIM1_ETR	
22	22	22	22	PA12	I/O	СОМ		USART2_RTS	-
								EVENTOUT	
								I2C_SDA	
								COMP2_OUT	
								SWDIO	
								IR_OUT	
								EVENTOUT	
23	23	23	23	PA13(SWDIO)	I/O	СОМ	(2)	SPI1_MISO	-
								TIM1_CH2	
								USART1_RX	
								MCO	
								SWCLK	
								USART1_TX	
24	24	24	24	PA14(SWCLK)	I/O	СОМ	(2)	USART2_TX	-
								EVENTOUT	
								MCO	
25	25	25	25	PA15	I/O	COM_L		SPI1_NSS	_
				.,	., 0			USART1_RX	

								USART2_RX	
								LED_COM0	
								EVENTOUT	
								SPI1_SCK	
								TIM1_CH2	
								USART1_RTS	
26	26	26	26	PB3	I/O	COM_L		USART2_RTS	COMP2_INM
								LED_COM1	
								EVENTOUT	
								SPI1_MISO	
								TIM3_CH1	
								USART2_CTS	
27	27	27	27	PB4	I/O	COM_L		USART1_CTS	COMP2_INP
								TIM17_BKIN	_
								LED_COM2	
								EVENTOUT	
								SPI1_MOSI	
								TIM3_CH2	
								TIM16_BKIN	
								USART2_CK	
28	28	28	28	PB5	I/O	COM_L		USART1_CK	-
								LPTIM_IN1	
								LED_COM3	
								COMP1_OUT	
								USART1_TX	
								TIM1_CH3	
								TIM16_CH1N	
00	00	00	00	DDC	1/0	0014		USART2_TX	COMPO IND
29	29	29	29	PB6	I/O	СОМ		SPI2_MISO	COMP2_INP
								I2C_SCL	
								LPTIM_ETR	
								EVENTOUT	
								USART1_RX	
								SPI2_MOSI	
20	20	20	20	DD7	1/0	COM		TIM17_CH1N	COMP2_INM
30	30	30	30	PB7	I/O	СОМ		USART2_RX	PVD_IN
								I2C_SDA	
								EVENTOUT	
31	31	31	31	PF4-BOOT0	I/O	COM	(3)		BOOT0
								SPI2_SCK	
								TIM16_CH1	
_	32	_	32	PB8	I/O	COM		I2C1_SCL	COMP1_INP
-	32	_	32	F D0	1/0	COIVI		USART2_TX	CONFT_INF
								EVENTOUT	
								LED_DATA_A	

							USART1_TX	
							SPI2_NSS	
							I2C_SDA	
							TIM17_CH1	
							IR_OUT	
32	-	32	-	VSS	S		Grou	nd

Table 4-3QFN20/TSSOP20 pin definitions

P	ackaç	ge typ	ре			J.		Port fun	ctions
QFN20 F1	QFN20 F2	TSSOP20 F1	TSSOP20 F2	Reset	Port type	Port structure	Notes	Altenate func- tions	Additional functions
-	-	-		NC	NC				
-	1	ı		VCC	S			Digital power	er supply
								SPI2_SCK	
								USART2_RX	
16	13	1	16	PF0-OSC_IN-	I/O	СОМ		TIM14_CH1	OSC_IN
10	13	'	10	(PF0)	1/0	COM		USART1_RX	030_111
								USART2_TX	
								I2C_SDA	
								SPI2_MISO	
						СОМ		USART2_TX	
				DE4 000 OUT				USART1_TX	
17	14	2	17	PF1-OSC_OUT- (PF1)	I/O			USART2_RX	OSC_OUT
				()				I2C_SCL	
								SP1_NSS	
								TIM14_CH	
						RST		MCO	
18	15	3	18	PF2-NRST	I/O		(1)	SPI2_MOSI	NRST
								USART2_RX	
								USART1_TX	
								USART2_TX	
_	_	4	_	PF3	I/O	СОМ		SPI2_MISO	COMP2_INP
				110	., 0	OOW		SPI1_NSS	00W1 2_HV1
								TIM3_CH3	
								RTC_OUT	
								SPI2_SCK	
								USART1_CTS	
								LED_DATA_B	ADC_IN0
19	9 16 - 19		19	PA0	I/O	COM		USART2_CTS	COMP1_INM
								COMP1_OUT	_
								TIM1_CH3	
								TIM1_CH1N	

I						1		SPI1_MISO	
								USART2_TX	
								IR_OUT	
								SPI1_SCK	
								USART1_RTS	
								USART2_RTS	
								LED_DATA_C	
20	17	-	20	PA1	I/O	СОМ		EVENTOUT	COMP1_INP
								SPI1_MOSI	ADC_IN1
								USART2_RX	
								TIM1_CH4	
								TIM1_CH2N	
								MCO	
								SPI1_MOSI	
								USART1_TX	
								USART2_TX	
								LED_DATA_D	COMP2_INM
1	18	5	1	PA2	I/O	СОМ		LPUART_TX	ADC_IN2
								COMP2_OUT	
								SPI1_SCK	
								TIM3_CH1	
								I2C_SDA	
								SPI2_MISO	
								USART1_RX	
								USART2_RX	
2	19	6	2	PA3	I/O	СОМ		LED_DATA_E	COMP2_INP
								EVENTOUT	ADC_IN3
								SPI1_MOSI	
								TIM1_CH1	
								I2C_SCL	
								SPI1_NSS	
								USART1_CK	
								SPI2_MOSI	
								LED_DATA_F	
3	20	-	3	PA4	I/O	СОМ		TIM14_CH1	ADC_IN4
								USART2_CK	
								ENENTOUT	
								RTC_OUT	
								TIM3_CH3	
-								USART2_TX	
								SPI1_SCK	
	1		4	PA5	I/O	СОМ		LED_DATA_G	۸۵۲ اماد
-	1	-	4	CAY	1/0	COIVI		LPTIM_ETR	ADC_IN5
								EVENTOUT	
								TIM3_CH2	

]					I	İ	LICARTO BY
							USART2_RX
							MCO
							SPI1_MISO
							TIM3_CH1
							TIM1_BKIN
							LED_DATA_DP
_	2	_	5	PA6	I/O	СОМ	TIM16_CH1 ADC_IN
_	2	_	3	FAU	"	COIVI	EVENTOUT ADC_IN
							LPUART_CTS
							COMP1_OUT
							USART1_CK
							RTC_OUT
							SPI1_MOSI
							TIM3_CH2
							TIM1_CH1N
							TIM14_CH1
							TIM17_CH1
-	3	-	6	PA7	I/O	СОМ	EVENTOUT ADC_IN
							COMP2_OUT
							USART1_TX
							USART2_TX
							I2C_SDA
							SPI1_MISO
							SPI1_NSS
							TIM3_CH3
_	-	_	_	PB0	I/O	СОМ	TIM1_CH2N ADC_IN
							EVENTOUT
							COMP1_OUT
							TIM14_CH1
							TIM3_CH4
_	_	_	_	PB1	I/O	СОМ	TIM1 CH3N COMP1_II
				151	""		LPUART_RTS ADC_IN
							EVENTOUT
4	4	7	7	VSS	S		Ground
	•	•	•		+ -	+	USART1_RX
5		8	_	PB2	I/O	СОМ	USART2_RX COMP1_II
			_	1 02	","		SPI2_SCK
6	6	9	9	VCC	S		Digital power supply
	0	5	5	V 00	 	-	SPI2_NSS
							USART1_CK
							TIM1_CH1
_	_	10	_	PA8	I/O	СОМ	USART2_CK -
-	-	10	-	r Ao	1/0	COIVI	MCO
							EVENTOUT
							USART1_RX

							•	USART2_RX	
								SPI1_MOSI	
								I2C_SCL	
								SPI2_MISO	
								USART1_TX	
								TIM1_CH2	
								MCO	
								I2C_SCL	
7	-	11	-	PA9	I/O	СОМ		EVENTOUT	OSC32OUT
								I2C_SDA	
								TIM1_BK	
								SPI1_SCK	
								USART1_RX	
								SPI2_MOSI	
								USART1_RX	
								TIM1_CH3	
								TIM17_BKIN	
								USART2_RX	
8	-	12	-	PA10	I/O	СОМ		I2C_SDA	OS32IN
								EVENTOUT	
								I2C_SCL	
								SPI1_NSS	
								USART1_TX	
								IR_OUT	
								SPI1_MISO	
								USART1_CTS	
								TIM1_CH4	
	_	13	_	PA11	I/O	COM		TIM1_CH4	_
		13		TAIT	1/0	CON		EVENTOUT	_
								USART2_CTS	
								I2C_SCL	
								COMP1_OUT	
								SPI1_MOSI	
								USART1_RTS	
								TIM1_ETR	
-	5	-	8	PA12	I/O	COM		USART2_RTS	-
								EVENTOUT	
								I2C_SDA	
								COMP2_OUT	
								SWDIO	
								IR_OUT	
9	7	14	10	PA13(SWDIO)	I/O	СОМ	(2)	EVENTOUT	_
				- /			` '	SPI1_MISO	
								TIM1_CH2	
								USART1_RX	

								MCO		
								SWCLK		
								USART1_TX		
10	8	15	11	PA14(SWCLK)	I/O	СОМ	(2)	USART2_TX	-	
				,			()	EVENTOUT		
								MCO	İ	
								SPI1_NSS		
								USART1_RX		
_	-	-	-	PA15	I/O	COM_L		USART2_RX	-	
								LED_COM0		
								EVENTOUT		
								SPI1_SCK		
								TIM1_CH2		
				BB0		0014		USART1_RTS	001450 1114	
-	-	-	-	PB3	I/O	COM_L		USART2_RTS	COMP2_INM	
								LED_COM1		
								EVENTOUT		
								SPI1_MISO		
								TIM3_CH1		
			- PB4						USART2_CTS]
11	-	16		I/O	COM_L		USART1_CTS	COMP2_INP		
								TIM17_BKIN	_	
								LED_COM2		
								EVENTOUT		
								SPI1_MOSI		
								TIM3_CH2		
								TIM16_BKIN	-	
12	9	17	12	PB5	I/O	COMI		USART2_CK		
12	9	17	12	PB3	1/0	COM_L		USART1_CK		
								LPTIM_IN1		
								LED_COM3		
								COMP1_OUT		
								USART1_TX		
								TIM1_CH3		
								TIM16_CH1N		
_	10	18	13	PB6	I/O	СОМ		USART2_TX	COMP2_INP	
	10	10	10	1 50	1,0	OOW		SPI2_MISO	001/11 2_1141	
								I2C_SCL		
								LPTIM_ETR		
								EVENTOUT		
								USART1_RX		
							SPI2_MOSI	COMP2_INM PVD_IN		
13	3 11 19 14	PB7	I/O	СОМ		TIM17_CH1N				
								USART2_RX	_	
								I2C_SDA		

								EVENTOUT	
14	12	20	15	PF4-BOOT0	I/O	COM	(3)	1	BOOT0
								SPI2_SCK	
								TIM16_CH1	
								I2C1_SCL	
								USART2_TX	
								EVENTOUT	
15	-	-	-	PB8	I/O	COM		LED_DATA_A	COMP1_INP
								USART1_TX	
								SPI2_NSS	
								I2C_SDA	
								TIM17_CH1	
								IR_OUT	
-	-	-	-	VSS	S			Grou	nd

Note:

- (1) Selecting PF2 or NRST is configured through option bytes .
- (2) After reset, the two pins of PA13 and PA14 are configured as SWDIO and SWCLK AF function, the former internal pull-up resistor, the latter internal pull-down resistor is activated.
- (3) PF4-BOOT0 is the default digital input mode, and the pull-down is enabled.

4.1. Port A alternate functions mapping

Table 4-4 Port A alternate functions mapping

Port	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	SPI2_SCK	USART1_CTS	-	LED_DATA_B	USART2_CTS	-	-	COMP1_OUT
PA0	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	-	USART2_TX	SPI1_MISO	-	-	TIM1_CH3	TIM1_CH1N	IR_OUT
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA1	SPI1_SCK	USART1_RTS	-	LED_DATA_C	USART2_RTS	-	-	EVENTOUT
PAI	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	-	USART2_RX	SPI1_MOSI	-	-	TIM1_CH4	TIM1_CH2N	MCO
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA2	SPI1_MOSI	USART1_TX	-	LED_DATA_D	USART2_TX	-	-	COMP2_OUT
PAZ	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	-	-	SPI1_SCK	-	I2C_SDA	TIM3_CH1	-	-
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA3	SPI2_MISO	USART1_RX	-	LED_DATA_E	USART2_RX	-	-	EVENTOUT
PA3	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	-	-	SPI1_MOSI	-	I2C_SCL	TIM1_CH1	-	-
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA4	SPI1_NSS	USART1_CK	SPI2_MOSI	LED_DATA_F	TIM14_CH1	USART2_CK	-	EVENTOUT
PA4	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	-	USART2_TX	-	-	-	TIM3_CH3	-	RTC_OUT
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA5	SPI1_SCK	-	-	LED_DATA_G	-	LPTIM1_ETR	-	EVENTOUT
PAS	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	-	USART2_RX	-	-	-	TIM3_CH2	-	MCO
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
DAG	SPI1_MISO	TIM3_CH1	TIM1_BKIN	LED_DATA_DP	-	TIM16_CH1	-	COMP1_OUT
PA6	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	USART1_CK	-	-	-	-	-	-	RTC_OUT

	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	SPI1_MOSI	TIM3_CH2	TIM1_CH1N	-	TIM14_CH1	TIM17_CH1	EVENTOUT	COMP2_OUT
PA7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	USART1_TX	USART2_TX	SPI1_MISO	-	I2C_SDA	-	-	-
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
DAG	SPI2_NSS	USART1_CK	TIM1_CH1	-	USART2_CK	MCO	-	EVENTOUT
PA8	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	USART1_RX	USART2_RX	SPI1_MOSI	-	I2C_SCL	-	-	-
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
DAG	SPI2_MISO	USART1_TX	TIM1_CH2	-	USART2_TX	MCO	I2C_SCL	EVENTOUT
PA9	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	USART1_RX	•	SPI1_SCK	-	I2C_SDA	TIM1_BKIN	-	-
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA10	SPI2_MOSI	USART1_RX	TIM1_CH3	-	USART 2_R X	TIM17_BKIN	I2C_SDA	EVENTOUT
	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	USART1_TX	-	SPI1_NSS	-	I2C_SCL	-	-	-
D 4 4 4	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA11	SPI1_MISO	USART1_CTS	TIM1_CH4	-	USART2_CTS	EVENTOUT	I2C_SCL	COMP1_OUT
D 4 4 0	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA12	SPI1_MOSI	USART1_RTS	TIM1_ETR	-	USART2_RTS	EVENTOUT	- AF6 12C_SCL AF14 N - AF6 IN 12C_SDA AF14 - AF6 JT 12C_SCL AF6 JT 12C_SDA AF6 - AF14 2 - AF6 - AF14 2 - AF6 - AF14 - AF6 - AF14 - AF6 - AF14 - AF6 - AF14 - AF6 - AF14 - AF6	COMP2_OUT
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
DA42	SWDIO	IR_OUT	-	-	-	-	-	EVENTOUT
PA13	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	USART1_RX	-	SPI1_MISO	-	-	TIM1_CH2	-	MCO
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA14	SWCLK	USART1_TX	-	-	USART2_TX	-	-	EVENTOUT
PA14	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	-	-	-		-	-	-	MCO
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PA15	SPI1_NSS	USART1_RX	-	-	USART2_RX	-	LED_ COM0	EVENTOUT

4.2. Port B alternate functions mapping

Table 4-5 Port B alternate functions mapping

Port	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PB0	SPI1_NSS	TIM3_CH3	TIM1_CH2N	-	-	EVENTOUT	-	COMP1_OU T
PB1	TIM14_CH1	TIM3_CH4	TIM1_CH3N	-	-	-	-	EVENTOUT
PB2	USART1_RX	SPI2_SCK	-	USART2_RX	•	-	ı	-
DDO	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PB3	SPI1_SCK	TIM1_CH2	-	USART1_RTS	USART2_RTS	-	LED_COM1	EVENTOUT
DD 4	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PB4	SPI1_MISO	TIM3_CH1	-	USART1_CTS	USART2_CTS	TIM17_BKIN	LED_COM2	EVENTOUT
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PB5	SPI1_MOSI	TIM3_CH2	TIM16_BKIN	USART1_CK	USART2_CK	LPTIM_IN1	LED_COM3	COMP1_OU T
220	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PB6	USART1_TX	TIM1_CH3	TIM16_CH1N	SPI2_MISO	USART2_TX	LPTIM_ETR	I2C_SCL	EVENTOUT
DD7	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PB7	USART1_RX	SPI2_MOSI	TIM17_CH1N	•	USART2_RX	-	I2C_SDA	EVENTOUT
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
200	-	SPI2_SCK	TIM16_CH1	LED_DATA_A	USART2_TX	-	I2C_SCL	EVENTOUT
PB8	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	USART1_TX	-	-	SPI2_NSS	I2C_SDA	TIM17_CH1	-	IR_OUT

4.3. Port F alternate functions mapping

Table 4-6 Port F alternate functions mapping

Port	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	-	-	TIM14_CH1	SPI2_SCK	USART2_RX	•	-	-
PF0-OSC_IN	AF8	AF9	AF10	AF11	AF12	AF13	AF1 4	AF15
	USART1_RX	USART2_TX	ı	ı	I2C_SDA	ı	-	1
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	-	-	-	SPI2_MISO	USART2_TX	-	-	-
PF1_OSC_OUT	AF8	AF9	AF10	AF11	AF12	AF13	AF1 4	AF15
	USART1_TX	USART2_RX	SPI1_NSS	•	I2C_SCL	TIM14_CH1	-	-
DEC NOCT	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PF2-NRST	-	-	-	SPI2_MOSI	USART2_RX	-	MCO	-
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	USART1_TX	-	-	SPI2_MISO	USART2_TX	-	-	-
PF3	AF8	AF9	AF10	AF11	AF12	AF13	AF1 4	AF15
	-	-	SPI1_NSS	-	-	TIM3_CH3	-	RTC_OUT
DE4 DOOTS	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PF4-BOOT0	-	-	-	-	-	-	-	-

5. Memory mapping

Figure 5-1 Memory map

Table 5-1 Memory address

Туре	Boundary Address	Size	Memory area	Description
	0x2000 2000 - 0x3FFF FFFF	512 MBytes	Reserved	
SRAM	0x2000 0000 - 0x2000 1FFF	8 KBytes	SRAM	Depending on the hard- ware, the SRAM is up to 8 KBytes
	0x1FFF 1000 - 0x1FFF FFFF	4 KBytes	Reserved	
	0x1FFF 0F80 - 0x1FFF 0FFF	128 Bytes	Reserved	
Code	0x1FFF 0F00 - 0x1FFF 0F7F	128 Bytes	Factory config	Store HSI triming data, flash erasing time config- uration parameters
	0x1FFF 0E80 - 0x1FFF 0EFF	128 Bytes	Option bytes	Option bytes
	0x1FFF 0E00 - 0x1FFF 0E7F	128 Bytes	UID	Unique ID
	0x1FFF 0000 - 0x1FFF 0DFF	3.5 KBytes	System memory	Store the boot loader

	0x0801 0000 - 0x1FFF FFFF	384 MBytes	Reserved	
	0x0800 0000 - 0x0800 FFFF	64 KBytes	Main flash memory	
	0x0001 0000 - 0x07FF FFFF	8 MBytes	Reserved	
	0x0000 0000 - 0x0000 FFFF	64 KBytes	According to the Boot configuration: 1) Main flash memory 2) System memory 3) SRAM	

Note:

Except for 0 x1FFF 0E00 - 0x1FFF 0E7F, the above spaces are marked as reserved spaces, which cannot be written and read as 0 with response error.

Table 5-2 Peripheral register address

Bus	Boundary Address	Size	Peripheral
	0xE000 0000 - 0xE00F FFFF	1 MBytes	M0+
	0x5000 1800 - 0x5FFF FFFF	256 MBytes	Reserved ⁽¹⁾
	0x5000 1400 - 0x5000 17FF	1 KBytes	GPIOF
	0x5000 1000 - 0x5000 13FF	1 KBytes	Reserved
IOPORT	0x5000 0C00 - 0x5000 0FFF	1 KBytes	Reserved
	0x5000 0800 - 0x5000 0BFF	1 KBytes	Reserved
	0x5000 0400 - 0x5000 07FF	1 KBytes	GPIOB
	0x5000 0000 - 0x5000 03FF	1 KBytes	GPIOA
	0x4002 3400 - 0x4FFF FFFF		Reserved
	0x4002 300C - 0x4002 33FF	4 KD: to a	Reserved
	0x4002 3000 - 0x4002 3008	1 KBytes	CRC
	0x4002 2400 - 0x4002 2FFF		Reserved
	0x4002 2124 - 0x4002 23FF	4 I/D: 400	Reserved
	0x4002 2000 - 0x4002 2120	1 KBytes	Flash
	0x4002 1C00 - 0x4002 1FFF	3 KBytes	Reserved
AHB	0x4002 1888 - 0x4002 1BFF	1 I/Dv#00	Reserved
	0x4002 1800 - 0x4002 1884	1 KBytes	EXTI ⁽²⁾
	0x4002 1400 - 0x4002 17FF	1 KBytes	Reserved
	0x4002 1064 - 0x4002 13FF	1 KPvtoo	Reserved
	0x4002 1000 - 0x4002 1060	1 KBytes	RCC ⁽²⁾
	0x4002 0C00 - 0x4002 0FFF	1 KBytes	Reserved
	0x4002 0040 - 0x4002 03FF	1 KBytes	Reserved
	0x4002 0000 - 0x4002 003C	1 Kbyles	DMA
	0x4001 5C00 - 0x4001 FFFF	32 KBytes	Reserved
	0x4001 5880 - 0x4001 5BFF	1 KBytes	Reserved
	0x4001 5800 - 0x4001 587F	1 Kbytes	DBG
	0x4001 4C00 - 0x4001 57FF	3 KBytes	Reserved
APB	0x4001 4850 - 0x4001 4BFF	1 KBytes	Reserved
AFB	0x4001 4800 - 0x4001 484C	1 Kbytes	TIM17
	0x4001 4450 - 0x4001 47FF	1 KBytes	Reserved
	0x4001 4400 - 0x4001 404C	1 NDyles	TIM16
	0x4001 3C00 - 0x4001 43FF	2 KBytes	Reserved
	0x4001 381C - 0x4001 3BFF	1 KBytes	Reserved

	1	_
0x4001 3800 - 0x4001 3018		USART1
0x4001 3400 - 0x4001 37FF	1 KBytes	Reserved
0x4001 3010 - 0x4001 33FF	1 KBytes	Reserved
0x4001 3000 - 0x4001 300C	1 Noyles	SPI1
0x4001 2C50 - 0x4001 2FFF	1 KPvtoo	Reserved
0x4001 2C00 - 0x4001 2C4C	1 KBytes	TIM1
0x4001 2800 - 0x4001 2BFF	1 KBytes	Reserved
0x4001 270C - 0x4001 27FF	4 I/D: 400	Reserved
0x4001 2400 - 0x4001 2708	1 KBytes	ADC
0x4001 0400 - 0x4001 23FF	8 KBytes	Reserved
0x4001 0220 - 0x4001 03FF		Reserved
0x4001 0200 - 0x4001 021F	1 KBytes	COMP1 and COMP2
0x4001 0000 - 0x4001 01FF		SYSCFG
0x4000 B400 - 0x4000 FFFF	19 KBytes	Reserved
0x4000 B000 - 0x4000 B3FF	1 KBytes	Reserved
0x4000 8400 - 0x4000 AFFF	11 KBytes	Reserved
0x4000 8000 - 0x4000 83FF	1 KBytes	Reserved
0x4000 7C28 - 0x4000 7FFF	4 I/D: 400	Reserved
0x4000 7C00 - 0x4000 7C24	1 KBytes	LPTIM
0x4000 7400 - 0x4000 7BFF	2 KBytes	Reserved
0x4000 7018 - 0x4000 73FF	4 I/D: 400	Reserved
0x4000 7000 - 0x4000 7014	1 KBytes	PWR ⁽³⁾
0x4000 5800 - 0x4000 6FFF	6 KBytes	Reserved
0x4000 5434 - 0x4000 57FF	4 I/D: 400	Reserved
0x4000 5400 - 0x4000 5430	1 KBytes	I2C
0x4000 4800 - 0x4000 53FF	3 KBytes	Reserved
0x4000 441C - 0x4000 47FF	1 KDvtoo	Reserved
0x4000 4400 - 0x4000 4418	1 KBytes	USART2
0x4000 3C00 - 0x4000 43FF	1 KBytes	Reserved
0x4000 3810 - 0x4000 3BFF	4 KD: 400	Reserved
0x4000 3800 - 0x4000 380C	1 KBytes	SPI2
0x4000 3400 - 0x4000 37FF	1 KBytes	Reserved
0x4000 3014 - 0x4000 33FF	1 KPvtoo	Reserved
0x4000 3000 - 0x4000 0010	1 KBytes	IWDG
0x4000 2C0C - 0x4000 2FFF	1 KPvtoo	Reserved
0x4000 2C00 - 0x4000 2C08	1 KBytes	WWDG
0x4000 2830 - 0x4000 2BFF	1 KPvtoo	Reserved
0x4000 2800 - 0x4000 282C	1 KBytes	RTC ⁽³⁾
0x4000 2420 - 0x4000 27FF	1 KPvtcc	Reserved
0x4000 2400 - 0x4000 241C	1 KBytes	LED
0x4000 2054 - 0x4000 23FF	1 KDvtoo	Reserved
0x4000 2000 - 0x4000 0050	1 KBytes	TIM14
0x4000 1800 - 0x4000 1FFF	2 KBytes	Reserved
0x4000 1400 - 0x4000 17FF	1 KBytes	Reserved
0x4000 1030 - 0x4000 13FF		Reserved
0x4000 1000 - 0x4000 102C	1 KBytes	Reserved
0x4000 0800 - 0x4000 0FFF	2 KBytes	Reserved
0x4000 0450 - 0x4000 07FF		Reserved
0x4000 0400 - 0x4000 044C	1 KBytes	TIM3

_				
	0 400		4.175	
	0x4000	0 0000 - 0x4000 03FF	1 KBytes	Reserved

Note:

- (1) The address space marked as Reserved by AHB in the above table cannot be written, read is 0, and a hardfault is generated. The address space marked as Reserved by APB cannot be written, read back as 0, but no hardfault will be generated.
- (2) Not only supports 32 bit word access, but also supports halfword and byte access.
- (3) Not only supports 32 bit word access, but also supports half word access.

6. Electrical characteristics

6.1. Parameter conditions

Unless otherwise specified, all voltages are referenced to VSS.

6.1.1. Minimum and maximum values

Unless otherwise specified, the mimimum and maximum values are guaranteed in the worest condotions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_{A(max)}$ (given by the selected temperature range).

Data based on electrical characterization results, design simulations and/or technology charateristics are indicated in the table footnotes and are not tested in production. Based on charaterization, the minimum and maximum values refer to sample tests and represent the mean vaule plus or minus three times the standard deviation.

6.1.2. Typical value

Unless otherwise specified, typical data is based on $T_A = 25$ °C and VCC = 3.3V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by cgaracterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than equal to the value indicated.

6.2. Absolute maximum ratings

Stresses above the absolute maximum ratings listed in following tables may cause permanent damage to the device. These are stress ratings only and functional opeartion of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 6-1 Voltage characteristics⁽¹⁾

Symbol	Ratings	Minimum value	Maximum value	Unit
VCC	External mains power supply	-0.3	6.25	V
V_{IN}	Input voltage of other pins	-0.3	VCC+0.3	V

(1) Power supply VCC and ground VSS pins must always be connected to the external power supply within the allowable range.

Table 6-2 Current characteristics

Symbol	Describe	Maximum value	Unit
Ivcc	Flowing into VCC pin (supply current) ⁽¹⁾	100	
Ivss	Total current flowing out of VSS pin (outflow current)(1)	100	
	Output sink current of COM IO(2)	20	mA
I _{IO(PIN)}	Output sink current of COM_L IO(2)	80	
	Source current for all IOs	-20	

- (1) Power supply VCC and ground VSS pins must always be connected to the external power supply within the allowable range.
- (2) These I/O types refer to the terms and symbols defined by pins.

Table 6-3 Thermal characteristics

Symbol	Describe	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
То	Range of working temperature	-40 to +85	°C

6.3. Operating conditions

6.3.1. General working conditions

Table 6-4 General working conditions

Symbol	Parameter	Condition	Minimum vaule	Maximum value	Unit
f _{HCLK}	Internal AHB clock frequency	-	0	48	MHz
f _{PCLK}	Internal APB Clock frequency	-	0	48	MHz
VCC	Standard operating voltage	-	1.7	5.5	V
VIN	I/O input voltage	-	-0.3	VCC+0.3	V
T _A	Ambient temperature	-	-40	85	\circ
TJ	Junction temperature	•	-40	90	°C

6.3.2. Operating conditions at power-up / power-down

Table 6-5 Operating conditions at power-up / power-down

Symbol	Parameter	Condition	Minimum vaule	Maximum value	Unit
_	VCC rise time rate	-	0	∞	
t _{VCC}	VCC fall time rate	-	20	8	us/V

6.3.3. Embedded reset and LVD module features

Table 6-6 Embedded reset module features

Symbol	Parameter	Condition	Minimum vaule	Typical value	Maximum value	Unit
$t_{\text{RSTTEMPO}}^{(1)}$	Reset time	-	-	4.0	7.5	ms
M	POR/PDR reset	Rising edge	1.50(2)	1.60	1.70	V
V _{POR/PDR}	or/PDR threshold	Falling edge	1.45 ⁽¹⁾	1.55	1.65 ⁽²⁾	V
\	DOD (1 1 1 1 1 4	Rising edge	1.70(2)	1.80	1.90	V
V _{BOR1}	BOR threshold 1	Falling edge	1.60	1.70	1.80(2)	V
.,	BOR threshold 2	Rising edge	1.90(2)	2.00	2.10	V
V_{BOR2}		Falling edge	1.80	1.90	2.00(2)	V
V _{BOR3}	BOR threshold 3	Rising edge	2.10(2)	2.20	2.30	V

		Falling edge	2.00	2.10	2.20(2)	V
		Rising edge	2.30(2)	2.40	2.50	V
V_{BOR4}	BOR threshold 4	Falling edge	2.20	2.30	2.40 ⁽²⁾	V
		Rising edge	2.20 2.50 ⁽²⁾	2.60	2.40(=)	V
V_{BOR5}	BOR threshold 5	Falling edge	2.40	2.50	2.70 2.60 ⁽²⁾	V
		Rising edge	2.70(2)	2.80	2.90	V
V_{BOR6}	BOR threshold 6	Falling edge	2.60	2.70	2.80(2)	V
		Rising edge	2.90 ⁽²⁾	3.00	3.10	V
V_{BOR7}	BOR threshold 7	Falling edge	2.80	2.90	3.00(2)	V
		Rising edge	3.10 ⁽²⁾	3.20	3.30	V
V_{BOR8}	BOR threshold 8	Falling edge	3.10(-)	3.10	3.20 ⁽²⁾	V
		Rising edge	1.70 ⁽²⁾	1.80	1.90	V
V_{PVD0}	PVD threshold 0	Falling edge	1.60	1.70	1.80 ⁽²⁾	V
		Rising edge	1.90 ⁽²⁾	2.00	2.10	V
V_{PVD1}	PVD Threshold 1	Falling edge	1.80	1.90	2.00(2)	V
	PVD Threshold 2	Rising edge	2.10 ⁽²⁾	2.20	2.30	V
V_{PVD2}		Falling edge	2.00	2.10	2.20(2)	V
		Rising edge	2.30(2)	2.40	2.50	V
V_{PVD3}	PVD Threshold 3	Falling edge	2.20	2.30	2.40(2)	V
	PVD Threshold 4	Rising edge	2.50(2)	2.60	2.70	V
V_{PVD4}		Falling edge	2.40	2.50	2.60(2)	V
		Rising edge	2.70(2)	2.80	2.90	V
V_{PVD5}	PVD threshold 5	Falling edge	2.60	2.70	2.80(2)	V
		Rising edge	2.90(2)	3.00	3.10	V
V_{PVD6}	PVD threshold 6	Falling edge	2.80	2.90	3.00(2)	V
		- 3	3.10 ⁽²⁾	3.20	3.30	V
V_{PVD7}	PVD threshold 7	Rising edge Falling edge	3.10(2)	3.10	3.20 ⁽²⁾	V
141	POR / PDR hysteresis	i aiiiiig euge	3.00		3.20	
VPOR_PDR_hyst ⁽¹⁾	voltage	-		50		mV
$V_{PVD_BOR_hyst}{}^{(1)}$	PVD hysteresis voltage			100		mV
Idd _(PVD)	PVD power consumption			0.6		uA
Idd _(BOR)	BOR power consump- tion			0.6		uA

- (1) Guaranteed by design, not tested in production.
- (2) Data is based on assessment results and is not tested in production.

6.3.4. Operating current characteristics

Table 6-7 Operating mode current

			Condi	tion					
Symbol	Sys- tem clock	Frequency	Code	Run	Peripheral clock	FLASH sleep	Typical value ⁽¹⁾	Maximum value	Unit
I _{DD} (run) HS		48 MHz	While(1)	Flash	ON	DISABLE	2.6	-	
	ЦСІ	40 WITZ			OFF	DISABLE	1.7	-	mA
	поі	24 MHz			ON	DISABLE	1.5	-	IIIA
					OFF	DISABLE	0.9	-	

		16 MHz		ON	DISABLE	1.1	-	
		16 MITZ		OFF	DISABLE	0.7	-	
		O MI I-		ON	DISABLE	0.7	-	
		8 MHz		OFF	DISABLE	0.5	-	
		4 MU-	4 MHz	ON	DISABLE	0.5	-	
		4 MHZ		OFF	DISABLE	0.35	-	
	LSI	22.760 KH-		ON	DISABLE	170	-	
	LOI	32.768 KHz		OFF	DISABLE	170	-	uA
	LSI 32.768 KHz		ON	ENABLE	95	-	uA	
		32./08 NHZ	OFF	ENABLE	95	-	uA	

(1) Data is based on assessment results and is not tested in production.

Table 6-8Sleep mode current

		Condit	ion		Typical	Maximum	
Symbol	System clock	Frequency	Peripheral clock	FLASH sleep	Typical value ⁽¹⁾	value	Unit
		48 MHz	ON	DISABLE	1.8	-	mA
	HSI	40 IVITZ	OFF	DISABLE	1.1	-	mA
		24 MHz	ON	DISABLE	1	-	mA
			OFF	DISABLE	0.6	-	mA
		16 MHz	ON	DISABLE	0.75	-	mA
			OFF	DISABLE	0.5	-	mA
l(aloop)		8 MHz	ON	DISABLE	0.5	-	mA
I _{DD} (sleep)			OFF	DISABLE	0.35	-	mA
		4 MU-	ON	DISABLE	0.4	-	mA
		4 MHz	OFF	DISABLE	0.35	-	mA
	LSI	22.760 KH-	ON	DISABLE	170	-	uA
	LOI	32.768 KHz	OFF	DISABLE	170	-	uA
	1.01	32.768 KHz	ON	ENABLE	95	-	uA
	LSI		OFF	ENABLE	96	-	uA

(1) Data is based on assessment results and is not tested in production.

Table 6-9Stop mode current

			Condit	ion		Typical	Maximum	
Symbol	vcc	VDD	MR/LPR	LSI	Peripheral clock	value ⁽¹⁾	value	Unit
		1.2V	MR	-	-	70	-	
					RTC+IWDG+LPTIM	6	ı	
		1.2V		ON	IWDG	6	ı	
			- LPR	ON	LPTIM	6	ı	
					RTC	6	-	
I _{DD} (stop)	1.7 to 5.5V			OFF	No	6	ı	uA
					RTC+IWDG+LPTIM	4.5	ı	-
				ON	IWDG	4.5	1	
		1.0V		ON	LPTIM	4.5	ı	
					RTC	4.5	-	
				OFF	No	4.5	-	

(1) Data is based on assessment results and is not tested in production.

6.3.5. Wake-up time for low power mode

Table 6-10 Low power mo	de wake-up time
-------------------------	-----------------

Symbol	Parameters ⁽¹⁾		Condition		Typical value ⁽²⁾	Maximum value	Unit
Twusleep	Wake-up from mode	n sleep	-		1.65		us
	Wake-up	Powered by MR	Execute program HSI (24 MHz) as clock		3.5		us
TWUSTOP	from stop mode	Powered by LPR	Execute pro-	VDD=1.2V	6		
	inode		gram in Flash, HSI as system clock	VDD=1.0V	6		us

- (1) The wake-up time is measured from the wake-up time until the first instruction is read by the user program.
- (2) Data is based on assessment results and is not tested in production.

6.3.6. External Clock Source Characteristics

6.3.6.1. External high-speed clock

In bypass mode of HSE (the HSEBYP of RCC_CR is set), when the high-speed start-up circuit in the chip stops working, the corresponding I/O is used as a standard GPIO.

Figure 6-1 External high-speed clock timing diagram

Table 6-11 External high-speed clock features

Symbol	Parameters ⁽¹⁾	Minimum value	Typical value	Maximum value	Unit
f _{HSE_ext}	User external clock source frequency	0	8	32	MHz
V_{HSEH}	Input pin high level voltage	0.7VCC		VCC	V
V _{HSEL}	Input pin low level voltage	Vss		0.3VCC	V
tw(HSEH) tw(HSEL)	Enter high or low time	15			ns
$t_{\text{r(HSE)}} \\ t_{\text{f(HSE)}}$	Enter the rise/fall time	-		20	ns

(1) Guaranteed by design, not tested in production.

6.3.6.2. External low-speed clock

In the bypass mode of LSE (the LSE BYP of RCC_BDCR is set), the low-speed start-up circuit in the chip stops working, and the corresponding I/O is used as a standard GPIO .

Figure 6-2 External low-speed clock timing diagram

Table 6-12 External low-speed clock characteristics

Symbol	Parameters ⁽¹⁾	Minimum value	Typical value	Maximum value	Unit
f _{LSE_ext}	User external clock frequency		32.768	1000	KHz
V _{LSEH}	Input pin high level voltage	0.7VCC			V
V _{LSEL}	Input pin low level voltage			0.3VCC	V
tw(LSEH)	Enter high or low time	450			ns
tw(LSEL)					
$t_{r(LSE)}$ $t_{f(LSE)}$	Enter the rise/fall time	-		50	ns

⁽¹⁾ Guaranteed by design, not tested in production .

6.3.6.3. External high-speed crystal

The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time.

Table 6-13 External high-speed crystal characteristics

Symbol	Parameter	Condition ⁽¹⁾	Minimum value ⁽²⁾	Typical value	Maximum value ⁽²⁾	Unit
fosc_in	Oscillation frequency	-	4		32	MHz
		During startup			5.5	
	HSE current consumption	VCC = 3 V, Rm = 30 Ω , CL = 10 pF@8 MHz		0.58		
		VCC = 3 V, Rm = 45 Ω, CL = 10 pF@8 MHz		0.59		
IDD ⁽⁴⁾		VCC = 3 V, Rm = 30 Ω , CL = 5 pF@48 MHz		0.89		mA
		VCC = 3 V, Rm = 30 Ω, CL = 10 pF@48 MHz		1.14		
		VCC = 3 V, Rm = 30 Ω, $CL = 20 pF@48 MHz$		1.94		

t _{SU(HSE)} (3)(4)	Otantum Time	fosc_in = 32 MHz	3	ms
	Startup Time	fosc_in = 4 MHz	15	ms

- (1) Crystal/ceramic resonator characteristics are based on the manufacturer's datasheet.
- (2) Guaranteed by design, not tested in production.
- tsu(HSE) is the startup time from enable (by software) to when the clock oscillation reaches a stable state, measured for a standard crystal/resonator, which can vary considerably from one crystal/resonator to another.
- (4) Data is based on assessment results and is not tested in production.

6.3.6.4. External low-speed crystal

The low-speed external (LSE) clock can be supplied with a 32.768 KHz crystal resonator oscillator. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time.

Table 6 11 External for opera orystal sharacteristics									
Symbol	Parameter	Condition ⁽¹⁾	Minimum value ⁽²⁾	Typical value	Maximum value ⁽²⁾	Unit			
	LSE current consumption	LSE_DRIVER [1:0] = 00		-					
		LSE_DRIVER [1:0] = 01		560		A			
IDD ⁽⁴⁾		LSE_DRIVER [1:0] = 10		920		nA			
		LSE_DRIVER[1:0] = 11		1260					
t _{SU(LSE)} (3)(4)	Startup Time			3		s			

Table 6-14 External low-speed crystal characteristics

- (1) Crystal/ceramic resonator characteristics are based on the manufacturer's datasheet.
- (2) Guaranteed by design, not tested in production.
- tsu(LSE) is the startup time from enable (by software) to when the clock oscillation reaches a stable, measured for a standard crystal/resonator, which may vary greatly from crystal to resonator.
- (4) Data is based on assessment results and is not tested in production.

6.3.7. Internal high frequency clock source HSI characteristics

Table 6-15 Internal high frequency clock source characteristics

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit
			23.83(2)	24	24.17 ⁽²⁾	MHz
f _{HSI}	HSI frequency		21.97 ⁽²⁾	22.12	22.27 ⁽²⁾	MHz
		T _A = 25 °C, VCC = 3.3 V	15.89 ⁽²⁾	16	16.11 ⁽²⁾	MHz
			7.94(2)	8	8.06(2)	MHz
			3.97(2)	4	4.03(2)	MHz
A.T.	HSI frequency tem- perature drift	VCC = 1.7 to 5.5 V, T _J = 0 to 85 °C	-2 ⁽²⁾		2(2)	%
$\Delta T_{emp(HSI)}$		VCC = 1.7 to 5.5 V,	-4 ⁽²⁾		2(2)	%
		T _J = -40 to 85 °C	T ` '		2. /	70

f _{TRIM} ⁽¹⁾	HSI fine-tuning accuracy			0.1		%
D _{HSI} ⁽¹⁾	Duty cycle		45 ⁽¹⁾		55 ⁽¹⁾	%
t _{Stab(HSI)}	HSI stabilization time			2	4 ⁽¹⁾	us
	HSI current consumption	4 MHz		100		uA
(2)		8 MHz		105		uA
I _{DD(HSI)} ⁽²⁾		16 MHz		150		uA
		22.12 MHz, 24 MHz		180	_	uA

- (1) Guaranteed by design, not tested in production.
- (2) Data is based on assessment results and is not tested in production.

6.3.8. Internal low frequency clock source LSI characteristics

Table 6-16 Internal low frequency clock characteristics

Symbol	Parameter	Condition	Minimum vaule	Typical value	Maximum value	Unit
f _{LSI}	LSI frequency	T _A = 25 °C, VCC = 3.3 V	-3		+3	%
$\Delta T_{emp(LSI)}$	LSI frequency tempera- ture drift	VCC = 1.6 to 5.5 V, T _J = 0 to 85 °C VCC = 1.6 to 5.5 V, T _J = -40 to 85 °C	-10 ⁽²⁾		10 ⁽²⁾	%
f _{TRIM} (1)	LSI fine-tuning accuracy			0.2		%
t _{Stab(LSI)} (1)	LSI stabilization time			150		us
I _{DD(LSI)} ⁽¹⁾	LSI current consumption			210		nA

- (1) Guaranteed by design, not tested in production.
- (2) Data is based on assessment results and is not tested in production.

6.3.9. Phase locked loop (PLL) characteristics

Table 6-17 Phase locked loop characteristics

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit
f _{PLL_IN}	input frequency	T _A = 25 °C, VCC = 3.3 V	16 ⁽¹⁾		24(1)	MHz
f _{PLL_OUT}	Output frequency	T _A = 25 °C, VCC = 3.3 V	32(1)		48	MHz
Jitter	Period jitter				0.3(1)	ns
tLOCK	Latch time	f _{PLL_IN} = 24 MHz		15	40(1)	us

⁽¹⁾ Guaranteed by design, not tested in production.

6.3.10. Memory characteristics

Table 6-18 Memory characteristics

Symbol	Parameter	Condition	Typical value	Maximum value ⁽¹⁾	Unit
t _{prog}	Page program	-	1.0	1.5	ms
t _{ERASE}	Page/sector/mass erase	-	3.0	4.5	ms
	Page programe		2.1	2.9	mA
I _{DD}	Page/sector/mass erase		2.1	2.9	mA

(1) Guaranteed by design, not tested in production.

Table 6-19 Memory erase times and data retention

Symbol	Parameter	Condition	Minimum ⁽¹⁾	Unit
N _{END}	Erase and write times	T _A = -40 to 85 °C	100	Kcycle
t _{RET}	Data retention period	10 Kcycle T _A = 55 °C	20	Year

⁽¹⁾ Data is based on assessment results and is not tested in production.

6.3.11. EFT characteristics

Symbol	Parameter	Condition	Grade	Typical value	Unit
EFT to IO		IEC61000-4-4	В	2	KV
EFT to Power		IEC61000-4-4	В	4	KV

6.3.12. ESD & LU Characteristics

Table 6-20ESD & LU characteristics

Symbol	Parameter	Condition	Typical value	Unit
V _{ESD(HBM)}	Static discharge voltage (human body model)	ESDA/JEDEC JS-001-2017	6	KV
V _{ESD(CDM)}	Static discharge voltage (charging equipment model)	ESDA/JEDEC JS-002-2018	1	KV
V _{ESD(MM)}	Static discharge voltage (machine model)	JESD22-A115C	200	V
LU	Static latch-up	JESD78E	200	mA

6.3.13. Port Characteristics

Table 6-21IO static characteristics

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit
V _{IH}	Input high level voltage	VCC = 1.7 to 5.5 V	0.7VCC			V
V_{IL}	Input low level voltage	VCC = 1.7 to 5.5 V			0.3VCC	V
$V_{hys}^{(1)}$	Schmitt hysteresis voltage			200		mV
I_{lkg}	Input leakage current				1	uA
R_{PU}	Pull-up resistor		30	50	70	kΩ
R _{PD}	Pull-down resistor		30	50	70	kΩ
C _{IO} ⁽¹⁾	Pin capacitance			5		pF

(1) Guaranteed by design, not tested in production.

Table 6-22 Output voltage characteristics

Vol	COM IO output low	I _{OL} = 8 mA, VCC ≥ 2.7 V	-	0.4	V
V _{OL}	level	$I_{OL} = 4$ mA, $VCC = 1.8$ V	-	0.5	V
V _{OL} (3)		I _{OL} = 20 mA, VCC ≥ 2.7 V	-	0.4	V
V _{OL} ⁽³⁾		I _{OL} = 10 mA, VCC = 1.8 V	-	0.5	V
V _{OL} (3)		I _{OL} = 40 mA, VCC ≥ 2.7 V	-	0.4	V
V _{OL} ⁽³⁾	COM_L IO(2) output	I _{OL} = 20 mA, VCC = 1.8 V	-	0.5	V
V _{OL} (3)	low level	I _{OL} = 60 mA, VCC ≥ 2.7 V	-	0.4	V
V _{OL} (3)		$I_{OL} = 30 \text{ mA}, VCC = 1.8 \text{ V}$	-	0.5	V
V _{OL} ⁽³⁾		I _{OL} = 80 mA, VCC ≥ 2.7 V	-	0.4	V
V _{OL} (3)		I _{OL} = 40 mA, VCC = 1.8 V	-	0.5	V
V _{OH}	COM IO output high	$I_{OH} = 8 \text{ mA}, VCC \ge 2.7 \text{ V}$	VCC-0.4	ı	V
Vон	level	$I_{OH} = 4 \text{ mA}, VCC = 1.8 \text{ V}$	VCC-0.5	-	٧
V _{OL} (3)		I _{OH} = 20 mA, VCC ≥ 2.7 V	VCC-0.4	ı	V
V _{OL} (3)		$I_{OH} = 10 \text{ mA}, VCC = 1.8 \text{ V}$	VCC-0.5	ı	V
V _{OL} (3)		I _{OH} = 40 mA, VCC ≥ 2.7 V	VCC-0.4	-	V
V _{OL} (3)	COM_L IO(2) output	$I_{OH} = 20 \text{ mA}, VCC = 1.8 \text{ V}$	VCC-0.5	-	V
V _{OL} (3)	high level	I _{OH} = 60 mA, VCC ≥ 2.7 V	VCC-0.4	-	V
V _{OL} ⁽³⁾		I он = 30 mA, VCC = 1.8 V	VCC-0.5	-	V
V _{OL} ⁽³⁾		I _{OH} = 80 mA, VCC ≥ 2.7 V	VCC-0.4	=	V
V _{OL} ⁽³⁾		I _{OH} = 40 mA, VCC = 1.8 V	VCC-0.5	-	V

- (1) IO types can refer to the terms and symbols defined by the pins.
- (2) COM_L IO current 80mA/60mA/40mA/20mA can be set by software .
- (3) Data is based on assessment results and is not tested in production.

6.3.14. NRST pin characteristics

Table 6-23NRST pin characteristics

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit
V _{IH}	Input high level voltage	VCC = 1.7 to 5.5 V	0.7VCC			V
VIL	Input low level voltage	VCC = 1.7 to 5.5 V			0.2VCC	V
$V_{hys}^{(1)}$	Schmitt hysteresis voltage			300		mV
I_{lkg}	Input leakage current				1	uA
RPU ⁽¹⁾	Pull-up resistor		30	50	70	kΩ
RPD ⁽¹⁾	Pull-down resistor		30	50	70	kΩ
C _{IO} _	Pin capacitance			5		pF

(1) Guaranteed by design, not tested in production.

6.3.15. ADC characteristics

surface 6-24ADC characteristics

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit
I _{DD} _	Current consumption	@0.75MSPS		1.0		mΑ
C _{IN} ⁽¹⁾	Internal sample and hold capacitors			5		pF

_		VCC = 1.7 to 2.3	1	4	6(2)	MHz
Fadc	Convert clock frequency	VCC = 2.3 to 5.5 V	1	8	12 ⁽²⁾	MHz
T (1)		VCC = 1.7 to 2.3	0.2			us
T _{samp} ⁽¹⁾		VCC = 2.3 to 5.5 V	0.1			us
T _{conv} ⁽¹⁾				12*Tclk		
T _{eoc} ⁽¹⁾				0.5*Tclk		
DNL ⁽²⁾				±2		LSB
INL ⁽²⁾				±3		LSB
Offset ⁽²⁾				±2		LSB

- (1) Guaranteed by design, not tested in production.
- (2) Data is based on assessment results and is not tested in production.

6.3.16. Comparator Characteristics

Table 6-25 Comparator features(1)

Symbol	Parameter	Con	dition	Minimum value	Typical value	Maximum value	Unit	
VIN	Input voltage range			0		VCC	V	
VBG	Scale input voltage				VREFINT		V	
VSC	Scaler offset voltage				±5	± 10	mV	
IDD(SCALER)	Scaler static consumption	BRG_EN=0 ble)	(bridge disa-		200	300	nA	
IDD(SCALER)		BRG_EN=1(ble)	bridge ena-		0.8	1	uA	
tSTART_SCALER	Scaler startup time		,		100	200	us	
	Startup time to	High-speed	mode			5		
tSTART	reach propa- gation delay specification	Medium-spe	ed mode			15	us	
		200 mV step,	High-speed mode		30	50	ns	
tD	Propagation	100 mV overdrive	Medium- speed mode		0.3	0.6	us	
τυ	delay	>200 mV	High-speed mode			10	us	
		step, 100 mV overdrive				1.2	ns	
Voffset	Offset error				±5		mV	
		No hysteresi			0			
Vhys	Hysteresis	Low hysteresis			10		mV	
,5		Medium hys			20		'''	
		High hystere	SIS		30			

		Medium-	Static	5	uA
		mode, no de- glitcher	With 50 KHz and ±100 mv overdrive square sig- nal	6	uA
		with de- glitcher	Static	7	uA
IDD	Consumption		With 50 KHz and ±100 mv overdrive square sig- nal	8	u A
			Static	250	u A
	n n	High-speed mode, no de- glitcher	With 50 KHz and ±100 mv overdrive square sig- nal	250	u A

⁽¹⁾ Guaranteed by design, not tested in production.

6.3.17. Temperature sensor characteristics

Table 6-26 Temperature sensor characteristics

Symbol			Typi- cal value	Maximum value	Unit
T _L ⁽¹⁾			±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	2.3	2.5	2.7	mV/°C
V ₃₀	Voltage at 30 °C (±5 °C)	0.742	0.76	0.785	V
t _{START} (1)	Start up time entering in continuous mode		70	1 20	us
t _{s_temp} (1)	ADC sampling time when reading the temperature	9			us

- (1) Guaranteed by design, not tested in production.
- (2) Data is based on assessment results and is not tested in production.

6.3.18. Timer features

Table 6-27 Timer features

Symbol Parameter		Condition	Minimum	Maximum	Unit
	T	-	1		t timxclk
t _{res} (TIM)	Timer resolution time	f _{TIMxCLK} = 48 MHz	20.833		ns
f _{EXT}		-		f _{TIMxCLK} /2	MHz

	Timer external clock frequency on CH1 to CH4	f _{TIMxCLK} = 48 MHz		24	
R _{esTIM}	Timer resolution	TIM1/3/14/16/17		16	Bit
	16-bit counter clock		1	65536	t _{TIMxCLK}
tcounter	period	f _{TIMxCLK} = 48 MHz	0.020833	1365	us

Table 6-28LPTIM characteristics (clock selection LSI)

Prescaler PRESC [2:0]		Minimum overflow value	Maximum overflow value	Unit
/1	0	0.0305	1998.848	
/2	1	0.0610	3997.696	
/4	2	0.1221	8001.9456	
/8	3	0.2441	15997.3376	
/16	4	0.4883	32001.2288	ms
/32	5	0.9766	64002.4576	
/64	6	1.9531	127998.3616	
/128	7	3.9063	256003.2768	

Table 6-29IWDG characteristics (clock selection LSI)

Prescaler PR[2:0]		Minimum overflow value	Maximum overflow value	Unit		
/4 0		0.122	499.712			
/8	1	0.244	999.424			
/16	2	0.488	1998.848			
/32	3	0.976	3997.696	ms		
/64	4	1.952	7995.392			
/128	5	3.904	15990.784			
/256	6 or 7	7 7.808 319				

Table 6-30 WWDG characteristics (clock select 48 MHz PCLK)

Prescaler	WDGTB[1:0]	Minimum overflow value	Maximum overflow value	Unit
1*4096	0	0.085	5.461	
2*4096	1	0.171	10.923	
4*4096	2	0.341	21.845	ms
8*4096	3	0.683	43.691	

6.3.19. Communication interfaces

6.3.19.1. I2C interface features

The I2C interface meets the timing requirements of the I2C-bus specification and user manual:

■ Standard-mode (Sm): 100 Kbit/s

■ Fast-mode (Fm): 400 Kbit/s

The I2C timings requirements is guaranteed by design, provided the I2C peripheral is properly configured and the I2C CLK frequency is greater than the minimum required in the table below.

Table 6-31 Minimum I2C CLK frequency

Symbol	Parameter	Condition	Minimum	Unit
fl2CCLK(min)	Minimum I2CCLK fre-	Standard-mode	2	MHz
	quency	Fast-mode	9	2

I2C SDA and SCL pins have analogue filtering, see table below.

Table 6-32I2C filter characteristics

Symbol	Parameter	Minimum	Maxi- mum	Unit
t _{AF}	Lmiting duration of spikes suppressed by the filter (spikers shorter than the limiting duration are suppressed)	50	260	ns

6.3.19.2. Serial Peripheral Interface (SPI) Characteristics

Table 6-33SPI characteristics

Symbol	Parameter	Condition	Minimum	Maximum	Unit
fsck	SPI clock fre-	Master mode	-	12	N 41 1-
$1/t_{c(SCK)}$	quency	Slave mode	-	12	MHz
t _{r(SCK)}	SPI clock rise	Capacitive load:	-	6	ns
$\mathbf{t}_{f(SCK)}$	and fall time	C = 15 pF			
$t_{\text{su}(\text{NSS})}$	NSS setup time	Slave mode	4Tpclk	-	ns
t _{h(NSS)}	NSS hold time	Slave mode	2Tpclk + 10	-	ns
$t_{w(SCKH)}$ $t_{w(SCKL)}$	SCK high and low time	Master mode, fPCLK = 36 MHz, presc = 4	Tpclk*2 - 2	Tpclk*2 + 1	ns
t _{su(MI)}		Master mode, fPCLK = 48 MHz, presc = 4	Tpclk + 5 ⁽¹⁾	-	
t _{su(SI)}		Slave mode, fPCLK = 48 MHz, presc = 4	5	-	ns
$t_{h(MI)}$	Data input hold	Master mode	5	-	
$t_{h(SI)}$		Slave mode	Tpclk + 5	-	ns
t _{a(SO)}	Data output access time	Slave mode, presc = 4	0	3Tpclk	ns
t _{dis(SO)}	Data output disable time	Slave mode	2Tpclk + 5	4Tpclk + 5	ns
$t_{v(SO)}$	Data output valid ime	Slave mode (after ena- ble edge), presc = 4	0	1.5Tpclk ⁽²⁾	ns
t _{v(MO)} Data output valid ime		Master mode (after enable edge)	-	6	ns
$t_{h(SO)}$	Data output	Slave mode, presc = 4	0(3)	-	
$t_{h(MO)}$	hold time	Master mode	2	-	ns
DuCy(SCK) SPI slave input clock duty cycle		Slave mode	45	55	%

- (1) The Master generates a 1pclk receive control signal before the receive edge.
- (2) Slave has a maximum of 1pclk based on the sending edge of SCK delay, considering IO delay, etc., define 1.5pclk.
- (3) In the case that the SCK duty cycle sent by the Master is wide between the receiving edge and the sending edge, the Slave updates the data before the sending edge.

Figure 6-3SPI timing diagram – slave mode and CPHA=0

Figure 6-4SPI timing diagram – slave mode and CPHA=1

Figure 6-5SPI timing diagram – master mode

7. Package information

7.1. LQFP32 package size

7.2. QFN32 package size

7.3. QFN20 Package Dimensions

7.4. TSSOP20 package size

8. Ordering information

9. Version history

Version	Date	Description	Note
V1.0	2021.10.20	Initial version	-
V1.1	2021.12.09	 Delete SSOP24 package information Add "TU= Tube Packing" to ordering information Section 6.3.9, modifying parameters 	-
V1.2	2021.12.28	 Modify the format Section 6.3.4, modifying parameters Section 6.3.16, modifying parameters Chapter 4, LQFP32 Pinout1 pin configuration modification 	-
V1.3	2022.1.13	Added chapter 6.3.11 Modify chapter 3.15, modify parameters Add TSSOP20/QFN20 Pinout2 package	-
V1.4	2022.1.24	 Table 6-18, modify parameters Table 6-33, modify parameters Chapter 8, modifying parameters 	-