Centrality & Clustering

Social Computing

Department of Computer Science University of Massachusetts, Lowell

Hadi Amiri hadi@cs.uml.edu

Lecture Topics

- Centrality
 - Degree Centrality
 - Closeness Centrality
 - Betweenness Centrality

Centrality

- What characterizes an important node in a network?
 - Most influential people in social nets,
 - Key infrastructure nodes in the Internet
 - Main spreaders of disease
 - Etc.
- Structural view:
 - Importance of a node is related to its position in the network.

Centrality Measures

- Different centrality measures capture different structural characteristics of nodes!
- There is often a high correlation between these measures!
- Sometimes the most important node might depend on which measure is used!

- C : Centrality
 - □ C (i): Centrality for node i
 - C(A): Centrality for a group of nodes $A \in N$

Centrality Measures- Cnt.

- Centrality
 - Degree Centrality
 - Closeness Centrality
 - Betweenness Centrality

Degree Centrality

- A node is central if it has links to many nodes.
 - Look at the node degree

Degree Centrality- Cnt.

- A node is central if it has links to many nodes.
 - Look at the node degree

	n1	n_2	n_3	n_4	n_5	
n_1	0	1	1	1	0	3
n_2	1	0	0	0	0	1
n_3	1	0	0	0	0	1
n ₄	1	0	0	0	1	2
n_5	0	0	0	1	0	1
	3	1	1	2	1	

Adjacency Matrix (A)

- Standardized Degree Centrality
 - Divide by the maximum possible degree centrality value!

	n1	n_2	n_3	n ₄	n_5	
n_1	0	1	1	1	0	3/4
n_2	1	0	0	0	0	1/4
n_3	1	0	0	0	0	1/4
n_4	1	0	0	0	1	1/2
n_5	0	0	0	1	0	1/4

Centrality Measures- Cnt.

- Centrality
 - Degree Centrality
 - Closeness Centrality
 - Betweenness Centrality

Closeness Centrality

- A node is central if it is close to other nodes.
 - Look at distance btw nodes
 - Closeness: 1 / Sum of distance to other nodes

	n1	n_2	n_3	n_4	n_5	
n_1	0	1	1	1	1	1/4
n_2	1	0	2	2	2	1/7
n_3	1	2	0	2	2	1/7
n_4	1	2	2	0	2	1/7
n_5	1	2	2	2	0	1/7

Distance Matrix (D)

Closeness Centrality- Cnt.

- Standardized Closeness Centrality
 - Divide by the maximum possible closeness centrality value!

$$C(n_1) = (N-1)/(\sum_{j=1}^{n} D_{1j}) = (N-1)/(\sum_{i=1}^{n} D_{i1}) = 4/4$$

	n1	n_2	n_3	n_4	n_5	
n_1	0	1	1	1	1	4/4
n_2	1	0	2	2	2	4/7
n_3	1	2	0	2	2	4/7
n_4	1	2	2	0	2	4/7
n_5	1	2	2	2	0	4/7

Distance Matrix (D)

 How to compute Closeness Centrality in networks with disconnected components?

- Only consider the giant component or do graph sampling?
- Only consider nodes that are reachable in paths of length 1, 2, ... This is called k-Step Reach!

Centrality Measures- Cnt.

- Centrality
 - Degree Centrality
 - Closeness Centrality
 - Betweenness Centrality

UMASS

Betweenness Centrality

- A node is central if other nodes have to go through it to reach each other.
 - Look at shortest paths between nodes

Betweenness Centrality- Cnt.

 s_{ik} Number of shortest paths btw nodes n_j and n_k

 $s_{jk}(n_i)$ Number of shortest paths btw nodes n_j and n_k that include node n_i

 $\frac{\mathbf{s}_{jk}(n_i)}{\mathbf{s}_{jk}}$ Proportion of shortest paths btw nodes n_j and n_k that include node n_i

 $Sum(_{j,k!=i} \frac{s_{jk}(n_i)}{s_{jk}})$ Proportion of shortest paths btw all nodes that include node n_i

Shortest paths n ₁ -n ₄	n ₁ -n ₂ -n ₄ , n ₁ -n ₃ -n ₄
S ₁₄	2
$s_{14}(n_2)$	1
$s_{14}(n_2)/s_{14}$	1/2
$C(n_2)$	1/2

Shortest paths btw n_1 - n_3 and n_3 - n_4 don't include n_2 ! Their corresponding proportions are o.

Pair	Shortest path	Betweenness	
n1 n2 n1 n3 n1 n4 n1 n5 n2 n3 n2 n4 n2 n5	n1-n2 n1-n3 n1-n4 n1-n4-n5 n2-n1-n3 n2-n1-n4 n2-n1-n4-n5	n1 n2 n3 n4 n5	5 0 0 3
n3 n4 n3 n5	n3-n1-n4 n3-n1 <mark>-n4</mark> -n5		

- Standardized Betweenness Centrality
 - Divide by the maximum possible betweenness centrality value!
 - ?

- Standardized Betweenness Centrality
 - Divide by the maximum possible betweenness centrality value!
 - (N-1)(N-2)/2 : the number of other pairs of nodes (exclude the node itself)

- Standardized Betweenness Centrality
 - Divide by the maximum possible betweenness centrality value!
 - (N-1)(N-2)/2: the number of other pairs of nodes (exclude the node itself)

Betwee	enness	Stnd. Betweenness
n1 n2 n3 n4 n5	5 0 0 3 0	5/6 = 0.83 0/6 = 0.00 0/6 = 0.00 3/6 = 0.50 0/6 = 0.00

Reading

• Ch.o3 Strong and Weak Ties [NCM]