TNM112 – Deep Learning for Media Technology

Nithesh Chandher Karthikeyan

Dataset

- Select dataset based on the task
- Choose smaller datasets (as it's easy to train)
- Image datasets:
 - o MNIST
 - o FashionMNIST
 - o CIFAR-10
 - Kaggle's CatvsDog
 - o STL-10
 - CelebA Faces dataset

Proposal 1 – The Autoencoder

- Autoencoder as two components:
 - Encoder: Image to Latent representation
 - Decoder: Latent representation to Image

Proposal 1 – The Autoencoder

- Encoder:
 - ➤ Down-sampling
 - > Convolution()
 - ➤ Maxpooling()
 - > Flatten()
 - > Dense()

- Decoder:
 - ➤ Up-sampling
 - > Reshape()
 - ➤ Transpose Conv()
 - ➤ Upsampling()

Proposal 1 – The Autoencoder

Tasks:

- Study design choices
- Classification using AE (Latents)
- Pre-training using AE (Encoder+FC+Softmax)
- Visualize Latents

Proposal 2 – Image to Image CNNs

Fully Convolutional AEs

Proposal 2 – Image to Image CNNs

Fully Convolutional AEs

Proposal 2 – Image to Image CNNs

Tasks:

- Image Denoising
- Colorization
- Segmentation (Image -> Segmentation Mask)
- Inpainting

Generative Adversarial Networks:

- GANs learn training data distribution and generates new data
- Two Components:
 - Generator: Takes a random noise vector and generates fake images
 - Discriminator: Classifier that distinguishes real from fake images
- Loss Function: Binary Cross Entropy

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right]$$

Training a Discriminator

Training a Generator

Different GAN architectures:

- DC-GAN
- CycleGAN
- Conditional GAN
- WGAN
- StyleGAN

Keras Implementation

Feedback

Kindly send us your feedback

