

## Algorithmen für Graphen

**Effective Branching Factor** 

Patrick Ritschel, Version 1.1

## Mathematik Newtonsches Näherungsverfahren Fachhochschule Vorarlberg



- Dient der Nullstellensuche (findet eine NST)
- Arbeitet iterativ
  - das Ergebnis wird schrittweise verbessert (angenähert)
  - gestartet wird mit einem Wert, möglichst nahe der vermuteten Nullstelle
- Legt eine Tangente durch f(x), schneidet diese mit der x-Achse und bestimmt so das neue x

$$x_{n+1} := N_f(x_n) := x_n - \frac{f(x_n)}{f'(x_n)}$$

## **Mathematik** Newtonsches Näherungsverfahren Fachhochschule Vorarlberg



z.B.:  $f(x) = \cos(x) - x^3$ 

```
function f(x) {
  return cos(x) - x^3
function f'(x) {
  return -\sin(x) - 3x^2
function NewtonIterationFnct(x) {
  return x - f(x) / f'(x)
x := 0.5 // Geratener Startwert
do {
  xold := x
  x := NewtonIterationFnct(x)
} while (abs(xold - x) > SCHRANKE) // z.B. SCHRANKE == 0.001
```

Algorithmen für Graphen – Effective Branching Factor, V1.1, Seite 3

## Mathematik Effective Branching Factor



Fachhochschule Vorarlberg

Anzahl der Knoten im Baum:

$$b^0 + b^1 + ... + b^d = n$$

In geschlossene Form reduzieren:

$$b^{1}+...+b^{d}+b^{(d+1)} = bn$$
  
 $b^{0}+b^{1}+...+b^{d} = n$   
 $-(b^{0}) +b^{(d+1)} = bn - n$ 

Also erhalten wir (und definieren)

$$b^{(d+1)} - 1 - bn + n = 0 =: f(b)$$

Und deshalb [Lsg Newtonsche Näherung,  $b_0 = 2.0$ ]

$$f'(b) = (d+1)b^d - n$$