Virtual LANs

Raj Jain

Professor of Computer and Information Sciences
The Ohio State University

Please download and print the handouts from:

http://www.cis.ohio-state.edu/~jain/cis788-97/

or

http://www.netlab.ohio-state.edu/~jain/cis788-97/

MBone Instructions

☐ Handouts for the class are available on-line:

http://www.cis.ohio-state.edu/~jain/cis788-

97/index.html or

http://www.netlab.ohio-state.edu/~jain/cis788-

97/index.html or

ftp://netlab.ohio-state.edu/pub/jain/cis788-97/

□ The schedule keeps changing. Please always check current schedule at:

http://www.cis.ohio-state.edu/~jain/cis788-97/schedule.html

Instructions (Cont)

- □ Please email your positive and negative feedback about the quality of the reception as well as the content with a subject field of "Feedback" to mbone@netlab.ohio-state.edu
- ☐ If you are not able to receive the program due to some technical difficulties, please email "Feedback" to mbone@netlab.ohio-state.edu
- □ Please email technical questions with the subject field "Question" to mbone@netlab.ohio-state.edu. We will try to answer selected questions live.

- □ What is a LAN and what is a Virtual LAN?
- ☐ Types of Virtual LANs
- □ IEEE 802.1Q standard

The Ohio State University

Raj Jain

8-4

What is a LAN?

- □ LAN = Single broadcast domain = Subnet
- No routing between members of a LAN
- Routing required between LANs

8-6

Virtual LAN

- □ Virtual LAN = Broadcasts and multicast goes only to the nodes in the virtual LAN
- □ LAN membership defined by the network manager⇒ Virtual

VLAN: Why?

- Virtual is Better than Real
 - Location-independent
 - ⇒ Marketing LAN can be all over the building
 - Users can move but not change LAN
 - Traffic between LANs is routed
 - ⇒ Better to keep all traffic on one LAN
 - Switch when you can, route when you must
 - ⇒ Do not VLAN over expensive WAN links
 - Better security

Types of Virtual LANs

- □ Layer-1 VLAN = Group of Physical ports
- □ Layer-2 VLAN = Group of MAC addresses
- □ Layer-3 VLAN = IP subnet

Switch	VLAN		
Port	1	2	
A 1			
A2			
A3			
B 1			
B1 The Ohio State Unive			

VLAN1 VLAN2 A1B234565600 21B234565600 D34578923434 634578923434 1345678903333 | 8345678903333 3438473450555| 9438473450555| 4387434304343 | 5387434304343 4780357056135**|** 6780357056135| 4153953470641 9153953470641 3473436374133 | 0473436374133 3403847333412 8403847333412 3483434343143 8483434343143

VLAN1

Layer-1 VLANs

- Also known as port switching
- Can be used to provide security and isolation
- Does not allow user mobility.
- \square Moved user has a new subnet \Rightarrow new IP address
 - ⇒ May go through a router to access the old server

Layer-2 VLANs

- □ LANs defined by a list of MAC addresses
- Provides full user movement
- □ Clients and server always on the same LAN regardless of location
- □ Problem: Too many addresses need to be entered and managed

0234786890
Is that a marketing node?

The Ohio State University

Raj Jain

Layer-2 VLANs (Cont)

- Notebook PCs change docking stations
 - ⇒ MAC address changes
- Alternative: Membership implied by MAC protocol type field. VLAN1 = IP, VLAN2 = LAT, ... **Ethernet**

Dest. Address | Src. Address | Protocol Type

802.3

Dest. Address | Src. Address | Length |
AA | AA | O3 | Protocol Type | Rai Jain

Layer-3 VLANs

Dest. Addr | Src. Addr | Protocol Type

- IP Dest. Addr IP Source Addr
- □ Also known as virtual subnet
- VLAN membership implied by MAC-layer protocol type field and subnet field 123.34.*.*
- VLAN configuration is learned by the switches
- □ Stations do not belong to VLANs, packets do.
- Multiprotocol stations are put into multiple VLANs

Higher Layer VLANs

- □ Different VLANs for different applications:
 - o FTP
 - Multimedia
- Service based VLANs: All workstations using Email server are on the EMAIL-VLAN, all workstations using employee database sever are on the HR-VLAN,...
- □ IP Multicast address based VLANs
- □ General policy based: VLAN membership can be based on a combination of incoming port, MAC address, subnet, or higher layer info, time of day.

VLAN Tagging

Dest. Addr Src. Addr VLAN Tag Prot. Type

- First switch adds tag containing VLAN id to all incoming packets
- Intermediate switches do not recompute the VLAN id
- Last switch removes tags from all outgoing packets
- □ Tag is not swapped at every hop like VC Id or labels

Synonyms

- □ Tag
- Label
- Mark
- Sticker
- Brand

IEEE 802.1Q: Features

- □ Allows up to 4095 VLANs
- Allows port based, MAC address based, and higher-layer VLANs
- Upward compatible with existing VLAN-unware hubs and bridges
- Supports both shared-media and switched LANs
- Allows mixing legacy bridges and VLAN-aware bridges
- Retains plug and play mode of current LAN bridges

Features (Cont)

- Extends 802.1p priority mechanism to priority based on VLAN membership
- Allows priority associated with each VLAN
- VLAN-based priority takes precedence over other priority considerations
- □ Allows signaling priority information on non-priority (CSMA/CD) LANs
- □ Allows both local/universal MAC addresses
- Operation with/without explicit VLAN header in the frame

Features (Cont)

- Supports static and dynamic configurations for each VLAN
- □ Allows intermixing different IEEE 802 MACs and FDDI
- □ Allows signaling source routing information on CSMA/CD LANs
- Each VLAN is a subset of a "single" physical spanning tree
 Does not preclude future extensions to multiple spanning trees

Features (Cont)

- Overlapping VLANs:
 - Multiple stations with same individual address
 - One station with multiple interfaces using the same address
 - Restriction: One station or interface per VLAN

Tagging Rules (Cont)

- □ On a given LAN segment for a given VLAN, all frames should be either implicitly or explicitly tagged.
- □ Different VLANs on the same segment may use different options.
- Access Link: Contain VLAN unaware devices
 All frames on access links are untagged
- □ Hybrid Link: Contains both VLAN-aware and VLAN-unaware devices
 - All frames for some VLANs are tagged
 - All frames for other VLANs are untagged

Raj Jain

Tagged Frame Format

□ Tag Header:

16b	3b	1b	12b
TPID	User Priority	CFI	VLAN Id

■ Ethernet Frame:

<u>6B</u>	6B	4B	2B	0-30B		<u>4B</u>
DA	SA	Tag	PT	[RIF]	Data	FCS

■ 802.3 Frame:

<u>6B</u>	6B	4B	2B	0-30B	3 4	12-1470B	4B
DA	SA	Tag	Length	[RIF]	LLC	Data	FCS

The Ohio State University

Raj Jain

Frame Format (Cont)

- □ TPID = Tag Protocol ID
- □ CFI = Canonical Format Indicator
 - = Bit order of address info in TR/FDDI frames
 - = Presence/absence of RIF in 802.3/Ethernet frames
- □ RIF = Routing Information Field
 - New routing type: 01 = Transparent frame
 ⇒ No routing info.
- □ DA = Destination Address, SA = Source Address
 PT = Protocol Type, LLC = Logical Link Control
 FCS = Frame Check Sequence
- \Box Largest data size = 1470 on 802.3

Frame Format (Cont)

□ Token Ring:

```
        1B
        6B
        6B
        0-30B
        10B
        4B

        AC
        DA
        SA
        [RIF]
        Tag
        [LLC]
        Data
        FCS
```

□ FDDI:

GVRP

- GARP VLAN registration protocol
- □ GARP = Generic attribute registration protocol
- □ Register VLAN Ids and port filtering modes
- Both end-stations and bridges can be GARP participants
- □ GARP Participants issue/revoke membership declaration ⇒ Creates entries in the databases
- □ VLAN-aware bridges propagate VLAN membership changes on all active ports

GVRP (Cont)

- □ VLAN-aware end stations can "source prune" traffic for VLANs that have no other members
- ☐ Initially, all ports on all bridges are set to a default "Port VLAN ID"

The Ohio State University

Raj Jain

8-27

GMRP in VLANs

- Original GMRP is designed for one LAN
 - ⇒ One one context or base spanning tree context
- With VLANs, multicast addresses are registered a particular VLAN context
 - ⇒ Filtering behavior in a VLAN does not affect other VLANs

VLAN Filtering Database

- □ Two Types of Entries:
 - VLAN Registration entries
 - Group Registration entries
- □ Both types can static or dynamic
 - Static VLAN Entries: via Management
 - Opnional Dynamic Filtering Entry:
 - □ via learning or registration
 - Learnt entries are aged out
- Port Map for each VLAN: Whether frames should be tagged or untagged

Communication Between VLANs

- Need routers
- □ Can use 1-armed VLAN-aware router
- □ VLAN-aware switches can route between VLANs
- Such switches can be placed in the core, in the edges, or everywhere

Summary

- □ Virtual LANs ⇒ Location independent LAN Groups
- □ Layer-1, Layer-2, Layer-3, higher layer VLANs
- □ IEEE 802.1Q allows both explicit and implicit tagging
- Need routing between VLANs

References

- □ For a detailed list of references, see http://www.cis.ohio-state.edu/~jain/refs/lsw-refs.htm
- □ Email list: p8021-request@hepnrc.hep.net

 Mail archive: http://www.hep.net/mail/p8021.html
- □ Draft Standard for Virtual Local Area Networks, IEEE P802.1Q/D6, May 16, 1997.

The Ohio State University Raj Jain

8-32

Other Related Standards

- Traffic Class Expediting and Dynamic Multicast Filtering, IEEE P802.1p/D6, April 28, 1997.
- 802.1D MAC bridges
- 802.1G Remote MAC Bridging
- 802.1H Ethernet V2.0 and 802 bridging

The Ohio State University

Raj Jain

8-33

Current Schedule

7/17/97 Priority and Multicasting on LANs

7/22/97 No Class

7/24/97 Virtual LANs

7/29/97 Gigabit Ethernet

7/31/97 Quiz 2 (No MBone transmission)

8/5/97 Residential broadband: Cable Modems, xDSL

8/7/97 Multimedia: Compression Standards

8/12/97 Multimedia over IP: RSVP, RTP

8/14/97 Wireless LANs and WANs

8/19/97 Quiz 3 (No MBone transmission)

Credits

This MBone transmission was made possible by:

- Mark Fullmer, OSU/UTS
- □ Mike Iverson, OSU/UTS
- Mike Douglas, OSU/UTS
- Jayaraman Iyer, OSU/CIS
- Sohail Munir, OSU/CIS

The Ohio State University

Raj Jain

8-35