

Eötvös Loránd Tudományegyetem

Informatikai Kar

Térinformatikai és távérzékelési alkalmazások fejlesztése

Pontfelhő vizualizáció

Nagy Richárd Tibor, Budapest, 2020

Tartalomjegyzék

Tartalomjegyzék	1
Bevezetés	2
Felhasználói dokumentáció	3
Rendszerkövetelmények	3
Telepítés	3
Indítás	4
Főmenü	4
Kamera	4
Fejlesztői dokumentáció	4
Elemzés - pontfelhők megjelenítése Unity-ben	4
Fejlesztői környezet	5
Felhasználói esetek diagramja	6
Felhasználói esetek leírása	6
A komponensek diagramja	7
Modell	7
Perzisztencia	7
Nézet	8
Skálázhatóság	9

Bevezetés

A feladat egy olyan grafikus felületű alkalmazás megvalósítása, amely lehetővé teszi LiDAR (Light Detection and Ranging) pontfelhők interaktív 3 dimenziós vizualizációját. A felületnek támogatnia kell a szokásos megjelenítési funkciókat, úgy mint a navigálás, nagyítás, forgatás, metaadatok tematikus megjelenítése.

Felhasználói dokumentáció

Rendszerkövetelmények

Operating system	Windows	macOS	Linux
Operating system version	Windows 7 (SP1+) and Windows 10	Sierra 10.12+	Ubuntu 16.04 and Ubuntu 18.04
CPU	x86, x64 architecture with SSE2 instruction set support.	x64 architecture with SSE2.	x64 architecture with SSE2 instruction set support.
Graphics API	DX10, DX11, DX12 capable.	Metal capable Intel and AMD GPUs	OpenGL 3.2+, Vulkan capable.
Additional requirements	Hardware vendor officially supported drivers.	Apple officially supported drivers.	Gnome desktop environment running on top of X11 windowing system

Telepítés

A program külön telepítést nem igényel.

Indítás

A projekt betöltésével a Unity környezetbe, vagy lefordított verzió esetén a .exe fájl futtatásával.

Főmenü

A főmenüben kiválasztható a betöltésre szánt .laz állomány, valamit színezési módot is válaszhatunk.

Kamera

A kamera támogatja a szokásos megjelenítési funkciókat, a navigálást a WASDQE billentyűk, a forgatást az egér végzi, a kamera gyorsasága pedig a Shift gombbal növelhető.

Fejlesztői dokumentáció

Elemzés - pontfelhők megjelenítése Unity-ben

Minden pont egy Unity GameObject

https://docs.unity3d.com/ScriptReference/GameObject.html

A legkevésbé optimális módszer, jelentős valós idejű optimalizációra lenne szükség. (Pl.: távoli pontok elrejtése, nyolcadoló fával)

Minden pont egy particle a Unity ParticleSystem-ben

https://docs.unity3d.com/ScriptReference/ParticleSystem.html

Az alapoktól kezdve nagy mennyiségű elemek megjelenítésére lett optimalizálva, azonban az egyes ParticleEmitter-ek limitáltak.

Unity DOTs

https://unity.com/dots

OOP helyet Data Oriented Programming. Pl.: egy pont objektumokból álló lista helyett tároljunk 3 tömböt, az x, y, és z koordinátákkal. A memória olvasási overhead így drasztikusan csökkenthető.

Mesh generálás

A beolvasott pontfelhőkből egy mesh-t generálunk. Ha lehetséges, ezzel a módszerrel lenne a leglassabb a betöltés, viszont maga a megjelenítés így lenne a legkisebb költségű.

Választott módszer

A legjobb módszernek a Unity DOTs és a Unity ParticleSystem ötvözete bizonyult.

Fejlesztői környezet

A szoftver fejlesztése során az alábbi programokat használtam fel:

- Unity 2019.3
- Visual Studio 2019
- GitKraken
- GitHub

Felhasználói esetek diagramja

Felhasználói esetek leírása

Felhaszn álói eset	Leírás		
	Giv	A fájlkezelőben van	
	en:		
Indítás	Wh	Dálzottint a futtathatá államányra	
inditas	en:	Rákattint a futtatható állományra	
	Th	Elindul a program	
	en:		
Kilépés	Giv	Fut a program	
	en:		
	Wh	Rákattint a kilépés gombra	
	en:		
	Th	A programleáll	
	en:		
Betöltés	Giv	A főmenüben van	
	en:		
	Wh	Rákattint a betöltés gombra	
	en:		
	Th	Megjelenik a fájl választó menü	
	en:		

	Giv		
Betöltés	en:	A fájl választó menüben van	
	Wh	D/1 - 1/2 - 0.1 1/2 0//1	
	en:	Rákattint egy megfelelő fájlra	
	Th	A pontfelhő betöltődik	
	en:		
	Giv	A nontfollië hotëltëdëtt	
	en:	A pontfelhő betöltődött	
Navigáci	Wh	Haganália a navigáciás inputakat	
ó	en:	Használja a navigációs inputokat	
	Th A bornous almost dual	A kamera elmozdul	
	en:	A kamera emiozuur	
	Giv	A pontfelhő betöltődött	
Metaadat	en:		
ok	Wh	Váltogtet a mataadat anajálran	
megjelení	en:	Változtat a metaadat opciókon	
tése	Th	A megjelenő metaadatok megváltoznak	
	en:	A megjereno metaadatok megvanoznak	

A komponensek diagramja

Modell

A modell a Unity DOTs keretrendszerre épül. A pontok entitásként (Entity) vannak számon tartva, amik a következő komponensekkel rendelkeznek: PointPosition és PointColor.

Perzisztencia

A bináris LAS fájlok beolvasását az integrált laszip.net könyvtár végzi. (https://github.com/shintadono/laszip.net)

Nézet

A megjelenítést a videokártya végzi, a Unity ParticleSystem rendszer felhasználásával. Az egyek pontok shader grafikonja a következő:

Skálázhatóság

Méréseim alapján egy 1 GB memóriával rendelkező videokártyán egyszerre 10 millió pont jeleníthető meg stabilan. Volt lehetőségem egy 2 GB-os videókártyán is tesztelni a programot, ott a 20 millió pont sem okozott akadályt. Emiatt úgy vélem a program lineárisan skálázható.