15. 영공간과 직교여공간

1) Null Space

- 정의: Linear system $Ax = \mathbf{0}$ $(A \in \mathbb{R}^{m \times n})$ 의 모든 해의 집합을 A의 null space라고 한다.
- 표기는 'Null space of A', 'Nul A', 또는 N(A)라고 표기한다.

-
$$A = \begin{bmatrix} \alpha_1^T \\ \alpha_2^T \\ \vdots \\ \alpha_m^T \end{bmatrix}$$
 on them, $x \in Che^2$ exacts.

> 75 Asi SE row vertoral click orthogonal old.

2) Null space는 subspace이다.

Pf. null space子 subspace olered 又,只ENCA)也 又,只可 CHRA
I linear combination axtby 도 actby ENCA) old 这件.
And rowing riting in rate 就想, 又好 安里 olfer attall orthogonal old.

在社科 rit(axtby) = a ritxtb rity = 0 이 되路

null space 는 subspace > 記述.

3) Orthogonal Complement

- Subspace W에 대해 orthogonal인 모든 vector의 집합을 orthogonal complement라고 하고, W^{\perp} 로 표기한다.
- 만약 어떤 vector가 W^{\perp} 에 속하려면 반드시 W를 span하는 모든 vector의 집합에 대해 orthogonal이어야 한다.

4)
$$N(A) = C(A^T)^{\perp}$$

- Nullspace는 row space의 orthogonal complement이다.
- Nullspace의 transpose(left nullspace)는 column space의 orthogonal complement이다 $(N(A^T) = C(A)^{\perp})$.

Chapter 4. 고유값 분해

5) Matrix $A \in R^{m \times n}$ 4개의 subspace 각각의 dimension

- Row space $C(A^T)$: Rank (r)

- Column space C(A): Rank (r)

- Null space N(A): n-r

- Left nullspace $N(A^T)$: m-r

- 서로 orthogonal complement인 subspace가 되기 위해서는 반드시 두 subspace의 dimension을 합쳤을 때 m 또는 n이 나와야 한다.