Matroides

Ivo and Charles

Viernes 23 de Julio, Año 2 Después del Covid

Un vector es una tira de números¹: Pueden ser

- números reales,
- números en \mathbb{Z}_p
- bits (se piensan como números en \mathbb{Z}_2)

Ejemplos de Vector

Ejemplos de Vector

Ejemplos de Vector

No, no

Por ejemplo los puntos en el plano \mathbb{R}^2 son vectores: tiras de dos números.

Las tiras se pueden

- Sumar, coordenada a coordenada. Xor en caso de \mathbb{Z}_2 .
- Multiplicar por un escalar.

Las tiras se pueden

- Sumar, coordenada a coordenada. Xor en caso de \mathbb{Z}_2 .
- Multiplicar por un escalar.

Las tiras se pueden

- Sumar, coordenada a coordenada. Xor en caso de \mathbb{Z}_2 .
- Multiplicar por un escalar.

Independencia Lineal

Un multiset de vectores es *independiente* si ningún vector se puede escribir como *combinación lineal* de los otros.

Independencia Lineal

Un multiset de vectores es *independiente* si ningún vector se puede escribir como *combinación lineal* de los otros.

$$v_i = \sum_{j \neq i} \lambda_j v_j$$

Independencia Lineal

En un multiset de vectores nos podemos preguntar:

"Qué subconjuntos de ese conjunto son independientes?"

Esa es la pregunta motivadora de matroides.

Matroide

Un matroide es entonces un conjunto E tal que cada subconjunto $S \subseteq E$ se clasifica en

- independiente
- dependiente

Matroide

Para poder trabajar, le pedimos unas propiedades heredadas de los matroides lineales.

- Ø es independiente.
- Si un conjunto es independiente, todo subconjunto de él lo es.
- Si tengo dos conjuntos independientes de distinto tamaño, puedo "mover" un elemento del más grande al más chico, preservando independencia.

Ejemplo Matroide

Bases

Podemos intentar definir el conceptos de bases de espacios vectoriales en matroides.

Las bases en espacios vectoriales son conjuntos linealmente independientes maximales.

Entonces le podemos dar esa misma definición a los matroides.

Propiedades de las Bases

Una propiedad importante de las bases es que todas poseen la misma cantidad de elementos.

Circuitos

Los circuitos son lo opuesto a la base.

Son los conjuntos dependientes minimales.

Circuitos

Los circuitos son lo opuesto a la base.

Son los conjuntos dependientes minimales.

Por qué circuito?

Matroide Gráfico

Matroide Gráfico: Independencia

Matroide Gráfico: Dependencia

Es un Matroide

Es un Matroide

Matroide Gráfico

Independencia en este matroide se puede chequear con dfs/bfs.

Circuitos en Matroides Gráficos

Los circuitos son ciclos simples!

Matroides Coloridos

Oráculos

Correctitud

Correctitud

Correctitud

Meh...

Entonces matroides es un Kruskal con esteroides y nada más?

Meh...

Entonces matroides es un Kruskal con esteroides y nada más?

Nope

Intersección de Matroides

Este problema consiste en:

Encontrar el subconjunto independiente en común mas grande de dos matroides.

Ejemplos de Intersección de Matroides

Árbol generador colorido

Máximo matching en grafo bipartito

Camino Hamiltoniano!

Matching Bipartito

Wait...

Rango

Podemos robar un último concepto del álgebra lineal: el rango.

Para cada subconjunto de *E*, su *rango* es el tamaño máximo de un (sub)subconjunto independiente.

Propiedades del Rango

- El rango de un subconjunto es menor o igual al tamaño del mismo.
- Sean $A \subseteq B \subseteq E$, entonces rango $(A) \le \text{rango}(B)$.
- $\operatorname{rango}(A) + \operatorname{rango}(B) \ge \operatorname{rango}(A \cup B) + \operatorname{rango}(A \cap B)$.

Exchange Lemma

Sean |A| = |B| conjuntos independientes distintos, entonces existe $x \in A - B$ y $y \in B - A$ tal que $A - x \cup y$ es independiente.

Exchange Lemma

Sean |A|=|B| conjuntos independientes distintos, entonces existe $x\in A-B$ y $y\in B-A$ tal que $A-x\cup y$ es independiente.

Exchange Graph

Exchange Graph

Caminos de Aumento

Complejidad

- Cantidad de etapas: r.
- Oráculos por etapa: $r \cdot n$.

 $O(r^2 \cdot n)$ oráculos.

Problemitas

- Pick Your Own Nim https://codeforces.com/gym/102156/problem/D
- Seollal https://codeforces.com/contest/1284/problem/G