STAT 8003 Homework 6

Group L

October 9, 2014

1 Question 1

1.a

Let Y be the total number of heads. According to the question, $Y \sim Bin(n, \tau)$, where n = 10.

$$H_o: \tau = \frac{1}{2}, \qquad H_1: \tau \neq \frac{1}{2}$$

The rejection rule is $R = \{Y : Y = 0, Y = 10\}.$

$$\alpha = P(R|H_0)$$

$$= P(Y = 0, Y = 10|\tau = \frac{1}{2})$$

$$= P(Y = 0|\tau = \frac{1}{2}) + P(Y = 10|\tau = \frac{1}{2})$$

$$= (1 - \frac{1}{2})^{10} + (\frac{1}{2})^{10}$$

$$\approx 0.002$$

Thus, the significant level of the test is about 0.002.

1.b

$$power = 1 - \beta$$

$$= 1 - P(R^c|H_1)$$

$$= 1 - P(Y = 1, 2, ..., 9|\tau = 0.1)$$

$$= P(Y = 0, Y = 10|\tau = 0.1)$$

$$= P(Y = 0|\tau = 0.1) + P(Y = 10|\tau = 0.1)$$

$$= (1 - 0.1)^{10} + 0.1^{10}$$

$$\approx 0.3487$$

The power of the test is about 0.3487.

2 Question 2

2.a

According to the question, $X_1, X_2, ..., X_n \sim Exp(\theta)$, thus, the likelihood function is $L(\theta) = \prod_{i=1}^n f(x_i|\theta) = \theta^n exp(-\sum_{i=1}^n \theta x_i)$ According to MLE, the maximum $\hat{\theta} = \frac{1}{X}$

$$\wedge = \frac{\max_{\theta \in \Theta_0 \cup \Theta_1} L(\theta)}{\max_{\theta \in \Theta_0} L(\theta)}$$

$$= \frac{L(\frac{1}{X})}{L(1)}$$

$$= \frac{(\frac{1}{X})^n exp(-\frac{1}{X}\sum_{i=1}^n x_i)}{exp(-\sum_{i=1}^n x_i)}$$

$$= (\frac{1}{\overline{X}})^n exp(\sum_{i=1}^n X_i(1-\frac{1}{\overline{X}}))$$

$$= (\frac{1}{\overline{X}})^n exp(n\overline{X}(1-\frac{1}{\overline{X}}))$$

$$= (\frac{1}{\overline{X}})^n exp(n\overline{X}) exp(-n) \ge k^*$$

$$\Rightarrow (\frac{1}{\overline{X}})^n exp(n\overline{X}) \ge k^* exp(n)$$

$$\Rightarrow (\overline{X})^n exp^n(-\overline{X}) \le \frac{1}{k^*} exp(-n)$$

$$\Rightarrow \overline{X} exp(-\overline{X}) \le (k^*)^{\frac{-1}{n}} exp(-1) = c$$

Thus, the rejection region is of the form $R = \{\bar{X}exp(-\bar{X}) \leq c\}$, where $c = (k^*)^{\frac{-1}{n}}exp(-1)$.

2.b

The plot of $\bar{X}exp(-\bar{X})$ shows above.

Let $g(x) = \bar{X}exp(-\bar{X})$. According to the plot, we know that when \bar{X} at a certain value, g(x) reaches maximum.

Take a derivative of g(x)

$$g(x)' = -\bar{X}exp(-\bar{X}) + exp(\bar{X}) = \begin{cases} \geq 0, & \bar{X} \leq 1 \\ < 0, & \bar{X} > 1 \end{cases}$$
$$maxg(x) = exp(-1)$$

g(x) is monotonic increasing when $\bar{X} < 1$, and monotonic decreasing when $\bar{X} > 1$.

Also,

$$n \ge 0, k^* \ge 1$$
$$(k^*)^{\frac{-1}{n}} \le 1$$
$$c = (k^*)^{\frac{-1}{n}} exp(-1) \le exp(-1) = maxg(x)$$

Thus, there exsit and only exist two x values, x_0 and x_1 . Reject regoin is $R = \{\bar{X} \le x_0\} \cup \{\bar{X} \ge x_1\}$, where $x_0 exp(-x_0) = x_1 exp(-x_1) = c$.

2.c

Since $\theta = 1, \sum_{i=1}^{n} x_i \sim \text{Gamma}(n, 1)$, we know that $\bar{X} \sim \text{Gamma}(n, \frac{1}{n})$.

Let F be the cdf of Gamma $(n, \frac{1}{n})$, we can get x_0 and x_1 values by solving the following equations:

$$F(x_0) + 1 - F(x_1) = \alpha = 0.05 \tag{1}$$

$$x_0 exp(-x_0) = x_1 exp(-x_1)$$
(2)

Take a logarithm of equation (2), we have

$$log x_0 - x_0 = log x_1 - x_1 \tag{3}$$

Solving the equation (1) and (3), we can get x_0 and x_1 value.

Once we have x_0 and x_1 , we can get c value with $c = x_0 exp(-x_0) = x_1 exp(-x_1)$.

3 Question 3

3.a

According to the sample data, we can calculate sample mean:

$$\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n} \approx 1.595$$

Because $\bar{X} \leq 1$, let $\bar{X} = x_1$,

$$x_1 = \bar{X} = 1.595$$

 $c = 1.595exp(-1.595) = 0.324$
 $c = x_0exp(-x_0) = 0.324$
 $\Rightarrow x_0 = 0.577$

$$p-value = P(\bar{X} \le 0.577) + P(\bar{X} \ge 1.595)$$
$$= F(0.577) + 1 - F(1.599)$$
$$= 0.113$$

Because $p - value = 0.113 > \alpha = 0.05$, we fail to reject H_0 .

3.b

$$2log \wedge = 2log[(\frac{1}{\bar{X}})^n exp(n\bar{X})exp(-n)]$$

$$= 2[(-n)log(\bar{X}) + n\bar{X} - n]$$

$$= 2[(-10) \times log(1.595) + 10 \times 1.595 - 10]$$

$$\approx 2.5625$$

Under H_o , $2log \land = \chi_1^2$

$$p-value = P(\chi_1^2 > 2.5625)$$

$$\approx 0.109$$

Because $p - value = 0.109 > \alpha = 0.05$, we fail to reject H_0 .