第五次习题课

伴随(或共轭变换)

- 1. 用 $\widetilde{C}[0,1]$ 表示 [0,1] 上 所有 连续复值函数组成的线性空间, $\forall f(x), g(x) \in \widetilde{C}[0,1], (f(x), g(x)) \stackrel{\text{def}}{=} \int_0^1 f(x) g(x) dx$. 则 $\widetilde{C}[0,1]$ 关于此内积成为一个 酉空间. 设 T: $\widetilde{C}[0,1] \longrightarrow \widetilde{C}[0,1]$ 满足 T(f(x)) = xf(x). 它是一个 线性变换. 问: T 是 否有伴随变换 ?
- 2. 说 $V=M_n(\mathbb{R})$ 取 Frobenius 内积,即 $\forall x, Y \in V$, $(X,Y) = tr(XY^T)$

取定 P, $Q \in V$, 定义 $V \vdash$ 线性变换 T: $V \longrightarrow V$ 满足 T(A) = PAQ

- (1) 求丁的伴随 T*;
- (2) 若P, Q 是正交阵, 证明。 T*= T-1.

UR分解

3. 设 $A = \begin{pmatrix} 0 & \hat{i} & 0 \\ 1 & \hat{i} & 0 \end{pmatrix}$,求酉阵 U和上三角阵 R,使 A = UR.

正交变换和凹变换

- 4. 设 V 是 n维 欧 D 里得空间, T: V → V 是 可遂线性变换. 证明:
 - (1) T是 V上一个全等变换(即保持向量的长度和夹角的变换) 当且仅当下是 V的正交变换.
 - (2) T是 V的一个相似变换(即保持向量夹角的变换)当且仅当3 C > 0, \forall Z, $\overrightarrow{\beta}$ \in V, 有 $(T(\overrightarrow{a}), T(\overrightarrow{\beta})) = C(\overrightarrow{a}, \overrightarrow{\beta})$.
 - (3) 丁是 V的一个相似变换 当且仅当 T= c To, 其中 C> 0, To,是一个正交变换.
- 5. 设 $V=M_n(\mathbb{R})$, $\forall A,B \in V$, 定义: $(A,B)=tr(AB^T)$. 设 P, Q是 V中可逆矩阵, $\diamondsuit T$: $V \longrightarrow V$ 满足 T(M)=PMQ, $\forall M \in V$. 证明: $T \not\in \uparrow L = \uparrow L = \downarrow L =$
- 6. 设A, B是n阶可逆实方阵, 且A TA = B TB. 证明. 存在一个正交阵Q, 使A = QB.

- 7. 设 V 是 $\uparrow n$ 维 欧氏空间, $\overrightarrow{B} \in V$, $I\overrightarrow{B}I = I$, \diamondsuit $T_{\overrightarrow{B}}: V \to V$ 满足 $T_{\overrightarrow{B}}(\overrightarrow{a}) = \overrightarrow{a} 2(\overrightarrow{B}, \overrightarrow{a}) \overrightarrow{B} \quad \forall \overrightarrow{a} \in V$. 则 $T_{\overrightarrow{B}}$ 称为 \uparrow 镜面反射.
 - 证明: (1) Ti 是 V 上一个正交变换.
 - $(21 \forall \vec{u}, \vec{v} \in V, \vec{u} * \vec{v}, |\vec{u}| = |\vec{v}| * 0, 则$ 存在一个镜面放射 $T_{\vec{B}}$,使 $T_{\vec{B}}(\vec{u}) = \vec{v}$.
- 8. 设 V 是 酉空间, \vec{a} $\in V$ 且 $|\vec{a}$, $|\vec{c}$ $|\vec{$
- 9. 设 ē, ē, ē, 是平面上两个互相垂直的单位向量,以ē, 为始边, OT为终边的一个角为学,又不是以OT为车的的负射,试证明。 o在 ē, ē, 下矩阵是.

由此证明,若正交变换了在一个标准正交基下矩阵有

提示:

- 4. (2) "⇒" 設 ē, ..., ēn $\in V$ 是 -组标准正交基, 证明 $(T(\vec{e_i}), T(\vec{e_j})) = 0$ $i \neq j$,考虑 $(T(\vec{e_i}), T(\vec{e_i}), T(\vec{e_i}))$ 得 $|T(\vec{e_i})| = |T(\vec{e_j})| = a$, $$\langle s = \frac{1}{a}T, \text{则 ode Ecosyle}.$
- 5. 应用第2题,
- 6. 证明: $(A^T)^{-1}B^T$ 是一个正交阵, $Q=(A^T)^{-1}B^T$.
- 7. (2) $\overrightarrow{\beta} = \frac{\overrightarrow{u} \overrightarrow{v}}{|\overrightarrow{u} \overrightarrow{v}|} \quad \overrightarrow{\beta}| = 1$ $T_{\overrightarrow{\beta}}(\overrightarrow{u}) = \overrightarrow{v}.$
- 8. 将显,扩充成以的一组标准正交基, 求下在这组基下矩阵.
- 9. 第二问。 6的特征值是土1, 求出相应特征向量。