六、 實驗數據與分析

實驗一、平面滑車運動

Part 1: 固定總質量 M+m=0.48154(kg), 改變 F=mg

滑車總質量 M (kg)	M=0.38154	M=0.40154	M=0.42154	M=0.44154	M=0.46154
懸掛砝碼質量 m (kg)	m=0.1	m=0.08	m=0.06	m=0.04	m=0.02
外力 mg (N)	0.98	0.784	0.588	0.392	0.196
平均加速度(m/s²)	1.935	1.542	1.169	0.771	0.366

圖 一

分析:

$$mg = (M + m) * a \implies a = \frac{1}{M+m} * mg$$

其中 $\frac{1}{M+m}$ 為 a(mg) 函數圖形(如圖一)的斜率,M+m 即為此斜率之倒數。

理論值 M+m:以電子秤量得 0.48154 kg

實驗值 M+m:斜率倒數 $\left(\frac{1}{1.9933}\right) \approx 0.50168 \text{ kg}$

誤差(%):
$$\frac{g \& (6-22) + (6-2) + (6-2)}{22 + (6-2) + (6-2)} *100\% = \frac{0.50168 - 0.48154}{0.48154} *100\% ≈ 4.18\%$$

Part 2: 固定外力 F=mg=0.1*9.8=0.98 (N), 改變 M

滑車總質量 M (kg)	0.38154	0.40154	0.42154
懸掛砝碼質量 m (kg)	0.1	0.1	0.1
$1 / M + m(kg^{-1})$	2.07667	1.99386	1.91740
平均加速度(m/s²)	1.95856	1.916123	1.84044

圖二

分析:

$$mg = (M + m) * a => a = mg * \frac{1}{M+m}$$

其中 mg 為 $a(\frac{1}{M+m})$ 函數圖形(如圖二)的斜率

理論值
$$F = mg = 0.1 * 9.8 = 0.98$$

誤差(%):
$$\frac{g \& (d-2\pi) d}{2\pi d} * 100\% = \frac{0.7385-0.98}{0.98} * 100\% \approx -24.64\%$$

實驗二、斜面滑車運動 (滑車質量 M = 0.48154 kg)

軌道長: 100 cm

墊高: 2.3 cm

$$==> \tan \theta = 2.3/100$$

$$==> \theta \approx 1.31^{\circ}$$

Casel: 上滑

$$(M + m) * a + = mg - Mg \sin \theta - f$$

$$=> a + = \frac{mg - Mg\sin\theta - f}{(M+m)} \tag{1}$$

Case2: 下滑

$$(M + m) * a - = Mg \sin \theta - mg - f$$

$$=> a - = \frac{\text{mg} - \text{Mg} \sin \theta + f}{(M+m)}$$
 (2)

合併 (1) 、 (2) 兩式,表示成 a 為 m 的函數

$$=> a \pm (m) = \frac{mg - Mg \sin \theta \mp f}{(M+m)}$$
 (3)

微分 (3) 可得 $\frac{g}{M+m} + \frac{0}{M+m} \mp \frac{0}{M+m}$

由於 m 為超小砝碼質量、固可省略得
$$a'(m) = Slope = \frac{g}{M}$$
 (4)

	ı	
a ± (m)	砝碼質量	加速度
	(m=kg)	(m/s^2)
數據#1	0.0009	-0.14065
數據#2	0.0019	-0.11571
數據#3	0.0029	-0.08816
數據#4	0.0039	-0.06409
數據#5	0.0049	-0.04031
數據#6	0.0059	-0.01537
數據#7	0.0069	静止
數據#8	0.0079	静止
數據#9	0.0089	0.0116
數據#10	0.0099	0.03596
數據#11	0.0109	0.05945
數據#12	0.0119	0.0841
數據#13	0.0129	0.10614
數據#14	0.0139	0.13137

分析:

1. 斜率誤差

將 圖四 以X軸劃分上下加速度正值、負值分別做的兩張圖如下:

由 (4) 式知斜率 =
$$\frac{g}{M}$$

理論值: $\frac{g}{M} = \frac{9.8}{0.38154} \approx 25.68$

實驗值(Slope+): 23.83 (如圖五)

實驗值(M): $\frac{g}{Slope} = \frac{9.8}{25.68} \approx 0.41125$

斜率誤差(%):
$$\frac{g \% \hat{a} - 2 \% \hat{a}}{25.68} * 100\% \approx -7.2\%$$
 (5)

M 質量誤差(%):
$$\frac{g \& \ell - 2 \approx \ell}{2 + 2 \approx \ell} * 100\% = \frac{0.41125 .38154}{2 \times 100\%} * 100\% \approx 7.8\%$$
 (6)

理論值:
$$\frac{g}{M} = \frac{9.8}{0.38154} \approx 25.68$$

實驗值(Slope-): 25.048 (如圖六)

實驗值(M):
$$\frac{g}{Slope} = \frac{9.8}{25.048} \approx 0.39125$$

斜率誤差(%):
$$\frac{g \otimes d - 2 \otimes d}{2 \otimes d} * 100\% = \frac{25.05 - 25.68}{25.68} * 100\% \approx -2.5\%$$
 (7)

M 質量誤差(%):
$$\frac{g \otimes (e^{-2\pi i / 2})}{g \otimes (e^{-2\pi i / 2})} * 100\% = \frac{0.39125 - 0.38154}{0.38154} * 100\% \approx 2.5\%$$
 (8)

由 (5) 、(7) 取平均得斜率平均誤差約為 -4.85%

由 (6) 、(8) 取平均得質量平均誤差約為 5.15%

2. 角度誤差

$$m_{+} + m_{-} = 2M \sin \theta$$

=> 0.0079 + 0.0069 = 2 * 0.38154 * $\sin \theta$
=> $\theta \approx 1.11^{\circ}$

角度誤差(%):
$$\frac{g \% d - 2 \% d}{2 \pi \% d} * 100\% = \frac{1.11 - 1.31}{1.31} * 100\% \approx -15.3\%$$

3. 計算摩擦係數

$$m_{+} - m_{-} = \frac{2|f|}{g}$$

$$=> 0.0089 - 0.0059 = \frac{2|f|}{9.8}$$

$$=> |f| = 0.0147$$
摩擦係數 $\mu = \frac{|f|}{Mg\cos\theta} \approx 3.9 * 10^{-3}$

Tracker: (採用 Part 1 方法中 M = 0.40154kg, m = 0.08kg, M+m = 0.48154kg)

時間 (s)	Х	時間 (s)	v_{x}	時間 (s)	a_{x}
0	-0.5082				
0.033244	-0.4969	0.033244	0.358001		
0.066611	-0.48435	0.066611	0.388691	0.066611	0.862217
0.099978	-0.47096	0.099978	0.414596	0.099978	1.293541
0.133211	-0.45674	0.133211	0.472077	0.133211	1.454749
0.166444	-0.43959	0.166444	0.521212	0.166444	1.454264
0.199833	-0.42201	0.199833	0.557588	0.199833	1.023541
0.233222	-0.40235	0.233222	0.596668	0.233222	1.023712
0.266444	-0.38227	0.266444	0.62335	0.266444	0.915953
0.299667	-0.36093	0.299667	0.659475	0.299667	1.23923
0.333056	-0.33834	0.333056	0.701684	0.333056	1.077592
0.366444	-0.31408	0.366444	0.734843	0.366444	1.562508
0.399667	-0.28939	0.399667	0.799651	0.399667	1.454749
0.432889	-0.26094	0.432889	0.847896	0.432889	1.23923
0.466278	-0.23291	0.466278	0.864575	0.466278	0.754314
0.499667	-0.20321	0.499667	0.904423	0.499667	1.616387
0.532889	-0.17267	0.532889	0.969656	0.532889	1.292894
0.566111	-0.13878	0.566111	1.004746	0.566111	1.078851
0.599511	-0.10573	0.599511	1.022392	0.599511	0.915953
0.632811	-0.07059	0.632811	1.074181	0.632811	1.237785
0.666111	-0.03419	0.666111	1.10559	平均	1.194304

分析:

1. V-t 圖趨勢線

如圖八,其趨勢線斜率為 1.2056,意即其加速度為 $1.2056(m/s^2)$,再帶入 Part 1中推導的公式

$$mg = (M + m) * a \implies a = \frac{1}{M+m} * mg$$

可得
$$M + m = \frac{mg}{a} = > M + m = \frac{0.08*9.8}{1.2056} \approx 0.65029$$

2. A-t 圖平均值

如圖九,其平均值即為平均加速度以此值來計算 M+m 的誤差

$$M + m = \frac{mg}{a} = > M + m = \frac{0.08 * 9.8}{1.191304} \approx 0.65645$$

M+m 質量誤差(%) : $\frac{g驗值-理論值}{理論值}*100\% = \frac{0.65645-.48154}{0.48154}*100\% ≈ 36.32\%$

Arduino: (採用 Part 1 方法中 M = 0.40154kg, m = 0.08kg, M+m = 0.48154kg)

	<u> </u>		6)	٠,		
第1組						
時間	x-t 圖(arduino)		時間	delta x	v-t 圖(arduino)	
0.248	0.0497		0.266	0.002	0.055556	
0.284	0.0517		0.302	0.0026	0.072222	
0.32	0.0543		0.338	0.0096	0.266667	
0.356	0.0639		0.374	0.0082	0.227778	
0.392	0.0721		0.41	0.0051	0.141667	
0.428	0.0772		0.446	0.016	0.444444	
0.463	0.0932		0.481	0.0224	0.622222	
0.499	0.1156		0.517	0.0036	0.1	
0.536	0.1192		0.554	0.0148	0.411111	
0.573	0.134		0.591	0.0235	0.652778	
0.611	0.1575		0.629	0.0224	0.622222	
0.648	0.1799		0.666	0.0247	0.686111	
0.686	0.2046		0.704	0.0272	0.75556	
0.723	0.2318		0.741	0.0321	0.891667	
0.761	0.2639		0.779	0.0317	0.880556	
0.799	0.2956		0.817	0.0296	0.822222	
0.838	0.3252		0.856	0.0251	0.697222	
0.876	0.3503					

由 v-t 圖的趨勢線知平均加速度為 1.4052,以此式計算 M+m

$$mg = (M + m) * a => a = \frac{1}{M+m} * mg$$

得
$$M + m = \frac{mg}{a} = \frac{0.08*9.8}{1.4052} \approx 0.55792$$

誤差:
$$\frac{g \% (6 - 22) / 6}{22 } * 100\% = \frac{0.55792 - 0.48154}{0.48154} * 100\% \approx 15.86\%$$

		第2組		
時間	x-t 圖(arduino)	時間	delta x	v-t 圖(arduino)
0.569	0.0471	0.587	0.001	0.027778
0.605	0.0481	0.623	0.0077	0.213889
0.641	0.0558	0.659	0.0066	0.183333
0.676	0.0624	0.694	0.0072	0.2
0.711	0.0696	0.729	0.0098	0.272222
0.747	0.0794	0.765	0.0112	0.311111
0.783	0.0906	0.801	0.0164	0.455556
0.82	0.107	0.838	0.0081	0.225
0.857	0.1151	0.875	0.0133	0.369444
0.893	0.1284	0.911	0.0245	0.680556
0.93	0.1529	0.948	0.0219	0.608333
0.968	0.1748	0.986	0.0242	0.672222
1.006	0.199	1.024	0.0275	0.763889
1.043	0.2265	1.061	0.0332	0.922222
1.082	0.2597	1.1	0.0343	0.952778
1.12	0.294			

由 v-t 圖的趨勢線知平均加速度為 1.4052,以此式計算 M+m

$$mg = (M + m) * a \implies a = \frac{1}{M+m} * mg$$

得
$$M + m = \frac{mg}{a} = \frac{0.08*9.8}{1.6813} \approx 0.46631$$

誤差:
$$\frac{g \% (d - 2 \%) (d)}{2 2 \% (d)} * 100\% = \frac{0.46631}{0.48154} * 100\% \approx -3.16\%$$

第 3 組						
時間	x-t 圖(arduino)	時間	delta x	v-t 圖(arduino)		
0.714	0.0665	0.732	0.0087	0.241667		
0.75	0.0752	0.768	0.0007	0.019444		
0.785	0.0759	0.803	0.0071	0.197222		
0.822	0.083	0.84	0.0076	0.211111		
0.858	0.0906	0.876	0.0189	0.525		
0.893	0.1095	0.911	0.0056	0.155556		
0.93	0.1151	0.948	0.0067	0.186111		
0.967	0.1218	0.985	0.0183	0.508333		
1.004	0.1401	1.022	0.0225	0.625		
1.042	0.1626	1.06	0.0212	0.588889		
1.08	0.1838	1.098	0.0249	0.691667		
1.117	0.2087	1.135	0.0265	0.736111		
1.155	0.2352	1.173	0.0323	0.897222		
1.192	0.2675	1.21	0.0378	1.05		
1.231	0.3053					

由 v-t 圖的趨勢線知平均加速度為 1.4052,以此式計算 M+m

$$mg = (M + m) * a => a = \frac{1}{M+m} * mg$$

得
$$M + m = \frac{mg}{a} = \frac{0.08*9.8}{1.8213} \approx 0.43046$$

誤差:
$$\frac{g \& (d-2) + 2}{2} \times 100\% = \frac{0.43046 - .48154}{0.48154} \times 100\% \approx -10.86\%$$

七、 結果與討論

- 1. 比較「平面滑車運動」的 Part 1 、 Part 2 兩種實驗的誤差 Part 1 (M+m)誤差: 4.18%; Part 2 (mg)誤差:-24.64% 雖然測量的對象不同,一個為 M+m,另一個為 mg,但明顯看出 Part 2 的誤差高了許多。推測是因為數據僅有 3 個,其中任何一次有明顯誤差,如圖二第 2 個數據,其數據偏離趨勢線相較較多,對數據影響較大。藉由這個比較站且可以看出多次實驗可以降低誤差。
- 2. 比較「平面滑車運動」分別以光電計時器(Part 1)、Tracker、Arduino 誤差 Part 1 (M+m)誤差: 4.18%

Tracker:

v-t 圖:(M+m)誤差:35.04% a-t 圖:(M+m)誤差:36.32%

平均:35.68% 誤差差距:1.28

Arduino:

第 1 組:15.86% 第 2 組:-3.16% 第 3 組:-10.86%

平均:0.61%

誤差全距:(-10.86~15.86):25

以平均值來看,看起來 Arduino 誤差 < Part 1 < Tracker,但我認為較適合用來做實驗的確應為光電計時器、Tracker。理由是因為光電計時器、Tracker 的準確度高,由圖一、圖八知光電計時器、Tracker 的 R^2 判定係數分別高達 0.998×0.98 (判定係數越接近 1 相關性越高);反之 Arduino 的第 $1 \sim 3$ 三組的 R^2 分別為 $0.7785 \times 0.8989 \times 0.8138$ 皆與上述兩者有所差距,也表示實驗數據彼此的關係性與上述兩者有落差,導致三次數據的誤差差距相當大(高達 25),不像 Tracker 誤差差距僅為 1.28,證明 Tracker 準確度較高。

已知 Tracker 準確度大於 Arduino,接下來討論為何 Tracker 數據誤差平均高達 35.68%,以及 Arduino 實驗中的誤差來源。

Tracker 實驗中 v-t 圖、a-t 圖將兩者的 1.28 誤差差距來看,準確性是有的。 我推測是當初當作標準尺物體比軌道靠近攝像頭,因為物體靠近攝像頭會大, 然而電腦會將軌道、標準尺視為在同一平面上,因此產生移動距離上的誤差。

做 Arduino 實驗時,物體距離太近它不夠精細分辨些微誤差,太遠會偵測到旁邊物體而被干擾,導致數據初期、後期的數值會有一段時間處於相同的情況。因此上面的數據是由我們主觀所擷取的中間數據,雖然排除大部分不可用的數據,但也因此除了超音波感測器不夠精確導致的設備系統誤差,又多了人為辨別數據可用性的人為誤差。

八、 問題與討論

1. 滑車軌面與滑車間的所產生的摩擦之大小,是否與滑車的速度有關?試述其理由

此問題可以被解讀成

- (1)滑車速度大小是否影響滑車軌面與滑車間的所產生的摩擦之大小? 因為動摩擦力是正向力、動摩擦係數的乘積,由於速度改變不 會連帶改變兩者的大小,所以滑車速度不會影響滑車軌面與滑 間的摩擦力大小。
- (2) 滑車軌面與滑車間的所產生的摩擦之大小是否影響花車速度? $F_{net} = mg(砝碼) f_k = (M+m)*a$ 根據上述算式,若摩擦力越大,則加速度變小,連帶會使經加速相同時間的滑車的速度變小。
- 2. 試述如何以實驗方法估計軌道與每台滑車間的摩擦力?

(1)
$$F_{net} = mg(a + m) - f_k = (M + m) * a$$

$$=> f_k = mg - (M+m) * a$$

利用滑車實驗,先確定滑車質量 M 與吊掛砝碼 m 的個別質量,配合使用光電計時器 acceleration 模式測出滑車的加速度 a ,有了這些數據便可帶入上述算式求得 f_k 。

- (2)利用本次斜面運動實驗也可求得摩擦力f。
- 如果牛頓第二運動定律的驗證實驗中,若質量改變量太小和太大,對實驗結果分別有甚麼缺點?
 - (1)質量改變太小,可能上一個數據的誤差就包含這次數據的真實值 了,若每個數據情況都如此,最後趨勢線可能呈趨於水平,而非斜直 線,進而造成沒有斜率,使最後誤差變很大。
 - (2)質量改變太大,會使得數據不夠連續,即使有誤差在散布圖上做 出的趨勢線仍會接近斜直線,會讓誤差得以忽略。另外還會讓接近光滑

的軌面產生較大摩擦力,使得摩擦力難以忽略,要使滑車移動變先需要有足夠的力克服摩擦力,意即需要更多砝碼,造成實驗需求增加, 且運算要多考慮摩擦力,造成處理數據上更麻煩。

所得趨勢線是否經過原點?原因何在?
 凡實驗必有誤差,使得每個趨勢線皆沒通過原點。

九、 心得

這次實驗其實我們算熟悉,就是從國中講到高中的運動學應用,所以理解上不難,實驗儀器也算容易操作。我們在 4 點前便完成實驗,但由於數據比之前的實驗多很多,造成整理數據方面的困難,尤其是 Arduino 利用超音波感測數據的實驗,由於設備系統誤差太大,造成數據上的浮動也偏大,在我們取值的時候造成大麻煩,此外超音波感測只幫我們計算距離,每個時間點的速度 $\left(\frac{\Delta x}{\Delta t}\right)$ 得自己計算,光處理這組數據就花超過 1 小時,最後搞到 7 點才離開教室。這次實驗策略錯誤,應一邊做實驗一邊整理數據,畢竟此實驗整體不難,一個人做便足夠,同時做實驗和整理數據,不僅更有效率,還能保有整理數據的一致性(同一個人的風格)。

十、 參考資料

清大普物實驗網站:

http://www.phys.nthu.edu.tw/~gplab/file/02%20Newton's%20Second%20Law/Exp% 2002%20Newton's%20Second%20Law(new).pdf