Série 10

David Wiedemann

11 mai 2021

1

Montrons d'abord que la fonction f(x,y) est intégrable au sens de Riemann sur $[0,1]^2$.

Nous allons montrer que pour tout $\epsilon > 0$, il existe une partition P_{ϵ} de $[0,1]^2$ satisfaisant

$$\overline{S}(f, P_{\epsilon}) - \underline{S}(f, P_{\epsilon}) < \epsilon.$$

Faisons d'abord l'observation que S(f, P) = 0 pour toute partition P de $[0,1]^2$, en effet on peut supposer que tous les éléments $Q \in P$ sont des pavés non dégénérés (si ils l'étaient, ils ne contribueraient pas à la somme), et alors

$$\underline{S}(f,P) = \sum_{Q \in P} \inf_{z \in Q} f(z) \operatorname{Vol}(Q)$$

et $\inf_{z\in Q} f(z) = 0$ pour tout $Q\in P$ car par densité des irrationnels, il existe $(a,b) \in Q$ tel que $a,b \notin \mathbb{Q}$; on en déduit que $\underline{S}(f,P) = 0$

Soit donc $\epsilon > 0$, et soit $n \in \mathbb{N}^*$ le plus petit nombre naturel satisfaisant $\frac{1}{n} < \frac{\epsilon}{2}$. Soit $k = \frac{\epsilon}{4n}$.

On definit $A_i = \left[\frac{1}{i} - k, \frac{1}{i} + k\right] \times [0, 1]$ si i > 1 et par $A_1 = [1 - k, 1] \times [0, 1]$. Definissons de plus $B_i = \left[\frac{1}{i} + k, \frac{1}{i-1} - k\right] \times [0, 1].$

Considérons la partition

$$P_{\epsilon} = \left\{ [0, \frac{1}{n} - k] \times [0, 1], A_n, B_n, A_{n-1}, B_{n-1}, \dots, B_1, A_1 \right\}$$

Il est clair que P_{ϵ} est une partition de $[0,1]^2$ car $\frac{1}{2}(\frac{1}{i-1}-\frac{1}{i})>(\frac{1}{n-1}-\frac{1}{n})=$ $\frac{1}{2n^2} > \frac{\epsilon}{4n} = k.$

On peut maintenat calculer la différence des sommes de Darboux.

$$\overline{S}(f, P_{\epsilon}) - \underline{S}(f, P_{\epsilon}) = \overline{S}(f, P_{\epsilon})$$

$$= \sum_{Q \in P_{\epsilon}} \sup_{z \in Q} f(z) \operatorname{Vol}(Q)$$

$$= \frac{1}{n} + k + \sum_{i=1}^{n} \sup_{z \in A_{i}} f(z) + \sum_{i=1}^{n} \sup_{z \in B_{i}} f(z)$$

On utilise maintenant que dans l'intervalle B_i , il n'y a pas de nombres de la forme $\frac{1}{k}, k \in \mathbb{N}^*$

$$= \frac{1}{n} + \sum_{i=1}^{n} \sup_{z \in A_i} f(z)$$

$$< \frac{\epsilon}{2} + 2nk$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Ce qui montre le fait que l'intégrale existe.

 $\mathbf{2}$

Etant donné que l'intégrale existe, et que pour toute partition P de $[0,1]^2$, la somme de Darboux inférieure est nulle, on en déduit que

$$\int_{[0,1]^2} f = 0.$$