

Contents

- Introduction
- Data Preprocessing
- Exploratory Data Analysis
- Machine Learning Modeling & Interpretation
- Result & Future Improvement

Introduction

- Background: Zillow's "Zestimate" -- home valuation in the U.S. real estate industry
- Project Objectives: increasing the home valuation accuracy primarily by improving the residual error
- Approaches: leveraging statistical and machine learning models with data preprocessing, model selection, parameter tuning and cross validation
- Metrics: Mean Absolute Error (MAE) between the predicted log error & the actual log error, log error = log (Zestimate) - log (Sale Price)

Data Preprocessing

R

	Drop Invalid Columns	Correct Data types	Impute Missing Values	Drop Outliers
	Calculate the percentage of the	Convert the data types for several columns to	Impute the missing values upon below logic:	Drop the outliers:
	missing values in	match the feature of the		log error values > 0.418;
	each column.	variables:	Numeric data -> impute by median	log error values < -0.417
_	Remove the columns with too	Character -> Logical E.g. 'Hashottuborspa',	Categorical -> impute by mode	
	many NAs (with over	'fireplaceflag'	Logical -> impute by	
	80% missing values).	Numeric -> Character	opposite	
	varacoj.	E.g. 'regionidcity', 'yearbuilt'		

Exploratory Data Analysis

Numeric Variables

Density plot of log error

correlation plot of numeric variables

Exploratory Data Analysis

Categorical Variables

Python

Step 1: Benchmark Setting

RandomForestRegressor Accuracy: -0.08261

Step 2: Feature Engineering

```
#proportion of living area
train['New_LivingAreaProp'] = train['calculatedfinishedsquarefeet']/train['lotsizesquarefeet']
#Number of properties in the zip
zip_count = train['regionidzip'].value_counts().to_dict()
train['New_zip_count'] = train['regionidzip'].map(zip_count)

#Number of properties in the city
city_count = train['regionidcity'].value_counts().to_dict()
train['New_city_count'] = train['regionidcity'].map(city_count)
```

Python

Step 3: Model Selection - 5 out of 1 - XGBoost

Model & Score Obtained

1. XGB: -0.05303611

2. Gradient Boosted:-0.05309042

3. Lasso: -0.05335322

4. Ridge: -0.05338599

5. Random Forest: -0.05949888

```
print("Running XGB Regression")
model = XGBRegressor()
predicted = cross val score(model, train, test, scoring='neg mean absolute error', cv=10)
allModels[model] = predicted.mean()
print("Running Ridge Regression")
model = linear model.Ridge()
predicted = cross val score(model, train, test, scoring='neg mean absolute error', cv=10)
allModels[model] = predicted.mean()
print("Running Lasso Regression")
model = linear model.Lasso()
predicted = cross val score(model, train, test, scoring='neg mean absolute error', cv=10)
allModels[model] = predicted.mean()
print("Running Random Forest")
model = RandomForestRegressor()
predicted = cross val score(model, train, test, scoring='neg mean absolute error', cv=10)
allModels[model] = predicted.mean()
print("Running Gradient Boosted Regressor")
model = GradientBoostingRegressor()
predicted = cross val score(model, train, test, scoring='neg mean absolute error', cv=10)
allModels[model] = predicted.mean()
```

Python

Step 4: Model Tuning - GridSearchCV

```
params = {
          "n_estimators": [10,100,200,1000],
          "max_depth": [3,5,7],
          "min_child_weight": [1,3,5]
}

xgb_model = XGBRegressor()
xgb_cv = GridSearchCV(xgb_model,params,verbose = 10,scoring='neg_mean_absolute_error')
xgb_cv.fit(train, test)
```

```
Best Score- -0.053170955805
Best Parameters- {'n_estimators': 100, 'max_depth': 3, 'min_child_weight': 5}
Best Estimator- XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=3, min_child_weight=5, missing=None, n_estimators=100, n_jobs=1, nthread=None, objective='reg:linear', random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None, silent=True, subsample=1)
```

Python

Step 5: Best Score & Feature Importance

```
0.00292826 0.02342606 0.00732064 0.07906296 0.07467057 0.04831625 0.02342606 0.02342606 0. 0.0204978 0.04245974 0.00292826 0.0204978 0.07906296 0.09809663 0. 0.13762811 0.0658858 0.04392387 0.03221083 0.03367496]
```

```
#Importing xgboost
from xgboost import XGBRegressor
from xgboost import plot importance
print("Cross validation again using best estimated parameters")
clf = XGBRegressor(learning rate =0.1, max depth= 3, min child weight=1, n estimators=100)
scores = cross validation.cross val score(clf, train, test, cy=10, scoring='neg mean absolute err
or')
print("Printing Final Score")
print("MAE: %0.2f (+/- %0.2f)" % (abs(scores.mean()), scores.std()*2))
clf.fit(train, test)
print("Printing Feature Importances")
print clf.feature importances
plt.bar(range(len(clf.feature importances )),clf.feature importances )
plt.show()
plot importance(clf)
plt.show()
```


Feature Importance

Conclusion

Result

- Benchmark MAE: 0.082
- XGBoost MAE: 0.053
- XGBoost tuned MAE: 0.050

Future Improvement

- Impute missing value: KNN
- Models: LightGBM & CatBoost
- Feature engineering: more new features generated from domain knowledge

THANKS!

Any questions?