# On the Irreducible Representations of Inverse Semigroups

Benjamin Steinberg

Carleton University

University of Leipzig

April 24, 2009

# A passion of Douglas

- Throughout Douglas's career, he turned time and time again to the subject of inverse semigroup algebras.
- In this thesis work he described all irreducible representations of finite inverse semigroups as being induced from maximal subgroups.
- He later generalized this result to inverse semigroups satisfying the descending chain condition on idempotents.
- However, notice the bicyclic monoid B only has trivial maximal subgroups. Since  $\mathbb Z$  is a homomorphic image of B, clearly any irreducible representation of  $\mathbb Z$  can be lifted to B.
- Thus in general maximal subgroups do not suffice.
- To deal with the general case, Douglas pursued an alternate tactic.

# Douglas's approach

- Douglas first classified finite dimensional irreducible representations of 0-simple semigroups.
- He then reduced the general case to the 0-simple case.
- Douglas had already shown that any finite dimensional irreducible representation of an ideal extends to the whole semigroup.
- He then showed that finite dimensional irreps of an inverse semigroup S are parameterized by irreducible representations of 0-simple inverse semigroups I/J where I,J are ideals of S.
- It took Douglas a bit of work to deduce his earlier result for inverse semigroups with dcc on idempotents from this result.

# A different approach

- We give a new approach to the irreducible representations of inverse semigroups in the spirit of Douglas's original approach via maximal subgroups.
- The idea that this could be done first arose in unpublished work of the speaker with Haatja and Margolis in 2002.
- ullet  $C^*$ -algebraist Paterson had introduced the universal groupoid of an inverse semigroup and shown that the groupoid and the semigroup have isomorphic  $C^*$ -algebras.
- We noticed the universal groupoid of S is the underlying groupoid (in the sense of Lawson's book) of a certain inverse subsemigroup of Schein's coset semigroup K(S).
- Our idea was to use this to study irreducible representations, but we never realized this approach.

# A groupoid approach

- Instead, I've generalized groupoid algebras to arbitrary fields.
- I have the described the finite dimensional irreducible representations of any groupoid algebra.
- The algebra of the universal groupoid is still isomorphic to the inverse semigroup algebra in this setting.
- So the desired results for inverse semigroups are obtained by specialization.
- The groupoid approach also gives an easy description of the center of an inverse semigroup algebra.
- There are interesting groupoid algebras that are not inverse semigroups algebras.
- For instance, the quotient of the polycyclic algebra  $KP_2$  by the relation  $xx^* + yy^* = 1$  is a groupoid algebra.

# The spectrum of a semilattice

- If E is a semilattice, a character of E is a non-zero homomorphism  $\varphi\colon E\to\{0,1\}.$
- The character space (or spectrum)  $\widehat{E}$  of E is topologized as a subspace of  $\{0,1\}^E$ .
- $\bullet$  Thus  $\widehat{E}$  has a basis of compact open subsets (and so is totally disconnected).
- For  $e \in E$ , put  $D(e) = \{ \varphi \in \widehat{E} \mid \varphi(e) = 1 \}$ . This is a compact open set and such sets generate the boolean ring of compact open sets.
- If  $e \in E$ , the principal character associated to e is given by:

$$\chi_e(f) = \begin{cases} 1 & f \ge e \\ 0 & \text{else.} \end{cases}$$

ullet The principal characters are dense, so  $\widehat{E}$  is a completion of E.

# The spectrum of a semilattice

- Let S be an inverse semigroup with idempotent set E.
- $\bullet$  The Munn representation dualizes to an action on  $\widehat{E}$  (due to Paterson).
- $s \cdot : D(s^*s) \to D(ss^*)$  is given by  $s\varphi(e) = \varphi(s^*es)$ .
- If  $e \in E$ , then  $e \in D(s^*s)$  iff  $e \le s^*s$ , in which case  $s\chi_e = \chi_{ses^*}$ .
- So the spectral action is also a completion of the Munn representation.
- Notice that the orbit of  $\chi_e$  is  $\{\chi_f \mid e \ \mathcal{D} \ f\}$ , so orbits generalize  $\mathcal{D}$ -classes.
- Although we won't use the topology in this talk, it is essential.

#### Theorem (BS)

The semigroup algebra KS has a unit if and only if  $\widehat{E}$  is compact.

# The spectrum of a semilattice

- Let S be an inverse semigroup with idempotent set E.
- $\bullet$  The Munn representation dualizes to an action on  $\widehat{E}$  (due to Paterson).
- $s : D(s^*s) \to D(ss^*)$  is given by  $s\varphi(e) = \varphi(s^*es)$ .
- If  $e \in E$ , then  $e \in D(s^*s)$  iff  $e \le s^*s$ , in which case  $s\chi_e = \chi_{ses^*}$ .
- So the spectral action is also a completion of the Munn representation.
- Notice that the orbit of  $\chi_e$  is  $\{\chi_f \mid e \ \mathcal{D} \ f\}$ , so orbits generalize  $\mathcal{D}$ -classes.
- Although we won't use the topology in this talk, it is essential.

#### Theorem (BS)

The semigroup algebra KS has a unit if and only if  $\widehat{E}$  is compact.

# Generalizing maximal subgroups and $\mathscr{L}$ -classes

- Let  $\varphi \in \widehat{E}$  and let  $S_{\varphi}$  be the stabilizer of  $\varphi$ .
- $S_{\varphi}$  is an inverse semigroup and so has a maximal group image  $G_{\varphi}$  called the isotropy group of S at  $\varphi$ .
- $G_{\chi_e} = G_e$  for  $e \in E$ .
- Let  $\tilde{L}_{\varphi}$  be the set of  $s \in S$  defined at  $\varphi$ . Note:  $S_{\varphi} \subseteq \tilde{L}_{\varphi}$  and acts on the right of it.
- Define  $L_{\varphi}$  to be the quotient of  $\tilde{L}_{\varphi}$  by the equivalence relation that identifies two elements if they have a common lower bound in  $\tilde{L}_{\varphi}$ . It is the set of germs of S at  $\varphi$ .
- Then  $G_{\varphi} \subseteq L_{\varphi}$  and acts freely on the right of it.
- $L_{\varphi}/G_{\varphi}$  is in bijection with the orbit of  $\varphi$ .
- Note  $L_{\chi_e} = L_e$  for  $e \in E$ .

# The Schützenberger representation

- If  $\varphi \in \widehat{E}$ , then S acts by partial bijections on the left of  $L_{\varphi}$  and the action of  $G_{\varphi}$  on the right is by automorphisms of this action.
- One puts  $s[s',\varphi]=[ss',\varphi]$  if  $ss'\in \tilde{L}_{\varphi}$  and undefined otherwise.
- If  $\varphi$  is a principal character this reduces to the usual Schützenberger representation.
- Standard semigroup results generalize.
- For example if S is finitely generated (presented) and the orbit of  $\varphi$  is finite, then  $G_{\varphi}$  is finitely generated (presented).

# An example: the bicyclic monoid

- Let B be the bicyclic monoid.
- $E = (\mathbb{N}, \geq)$ .
- $\widehat{E} = \mathbb{N} \cup \{\infty\}$  with  $\infty$  as a one-point compactification.
- The character corresponding to  $\infty$  is the trivial one sending all idempotents to 1.
- One has  $\tilde{L}_{\varphi}=B_{\varphi}=B$  and  $L_{\varphi}=G_{\varphi}=\mathbb{Z}$ , the maximal group image of B.
- The Schützenberger representation is the natural action of B on  $\mathbb{Z}.$
- More generally, if S is any inverse semigroup and  $\varphi$  is the trivial character, then  $G_{\varphi}$  is the maximal group image of S.

# An example: the free inverse monoid

- Let FI be the free inverse monoid on X.
- Then E consists of all finite subtrees of the Cayley graph of the free group F on X ordered by  $\supseteq$ .
- $\bullet$  Then  $\widehat{E}$  can be viewed as the space of all subtrees of the Cayley graph of F containing 1 with the usual topology on marked subgraphs.
- ullet The character associated to T sends a finite subtree to 1 iff it is contained in T.
- There are many new isotropy subgroups, all of which are free.
- E.g. if  $H \leq F$  is a subgroup and T is the subtree spanned by the elements of H, then the isotropy group of FI at T is H.

## Inverse semigroups with dcc on idempotents

- ullet Every character of a semilattice E is principal iff it satisfies dcc.
- However, the topology is discrete iff each principal downset of E is finite.
- For example,  $(\mathbb{N}, \leq)$  satisfies dcc.
- However, one can verify that the topology makes 0 the one-point compactification of the positive integers.

#### The setup

- Let S be an inverse semigroup with idempotent set E.
- We fix a field K.
- The semigroup algebra KS is the K-vector space with basis S
  and multiplication linearly extending the product in S.
- We only consider KS-modules V so that  $KS \cdot V = V$ .
- There is a bijection between simple KS-modules V and irreducible representations  $\varphi \colon S \to \operatorname{End}_K(V)$ .
- Our approach is based on my interpretation of Munn's approach for finite semigroups via results of Green for algebras.

#### The restriction functor

- Let  $\varphi \in \widehat{E}$  be a character.
- We define a pair of adjoint functors between  $KS\operatorname{-mod}$  and  $KG_{\varphi}\operatorname{-mod}$  that depend only on the orbit of  $\varphi$ .
- The restriction functor  $\operatorname{Res}_{\varphi} \colon KS\operatorname{-mod} \to KG_{\varphi}\operatorname{-mod}$  takes a  $KS\operatorname{-module} V$  to

$$\operatorname{Res}_{\varphi}(V) = \bigcap_{e \in E(S_{\varphi})} eV.$$

- One can verify that  $\mathrm{Res}_{\varphi}(V)$  is  $S_{\varphi}$ -invariant. Moreover, since  $E(S_{\varphi})$  acts trivially on  $\mathrm{Res}_{\varphi}(V)$ , it is actually a  $KG_{\varphi}$ -module.
- That is, the action of  $S_{\varphi}$  factors through its maximal group image  $G_{\varphi}$ .
- If  $\chi_e$  is a principal character,  $\operatorname{Res}_{\chi_e}(V) = eV$ .

#### The induction functor

- The commuting left/right actions of S and  $G_{\varphi}$  on  $L_{\varphi}$  give  $KL_{\varphi}$  the structure of a KS- $KG_{\varphi}$ -bimodule.
- So there is induction functor  $\operatorname{Ind}_{\varphi} \colon KG_{\varphi}\operatorname{-mod} \to KS\operatorname{-mod}$ :

$$V \longmapsto KL_{\varphi} \otimes_{KG_{\varphi}} V$$

for a  $KG_{\varphi}$ -module V.

• The functor  $\operatorname{Ind}_{\varphi}$  is exact.

#### Theorem (BS)

Let  $\varphi \in \widehat{E}$ . Then

- Ind $_{\varphi}$  is left adjoint to Res $_{\varphi}$ ;
- ②  $\operatorname{Res}_{\varphi}\operatorname{Ind}_{\varphi}$  is naturally isomorphic to the identity functor on  $KG_{\varphi}\operatorname{-mod}$ .

#### The induction functor

- The commuting left/right actions of S and  $G_{\varphi}$  on  $L_{\varphi}$  give  $KL_{\varphi}$  the structure of a KS- $KG_{\varphi}$ -bimodule.
- So there is induction functor  $\operatorname{Ind}_{\varphi} \colon KG_{\varphi}\operatorname{-mod} \to KS\operatorname{-mod}$ :

$$V \longmapsto KL_{\varphi} \otimes_{KG_{\varphi}} V$$

for a  $KG_{\varphi}$ -module V.

• The functor  $\operatorname{Ind}_{\varphi}$  is exact.

#### Theorem (BS)

Let  $\varphi \in \widehat{E}$ . Then:

- **1** Ind $_{\varphi}$  is left adjoint to Res $_{\varphi}$ ;
- ②  $\operatorname{Res}_{\varphi}\operatorname{Ind}_{\varphi}$  is naturally isomorphic to the identity functor on  $KG_{\varphi}\operatorname{-mod}$ .

ullet Induction and restriction link the simple modules of KS with the irreducible representations of the isotropy groups.

#### Theorem (BS)

#### Let $\varphi \in \widehat{E}$

- ① If V is a simple  $KG_{\varphi}$ -module, then  $\mathrm{Ind}_{\varphi}(V)$  is a simple KS-module.
- ② If V is a simple KS-module, then  $\mathrm{Res}_{\varphi}(V)=0$  or  $\mathrm{Res}_{\varphi}(V)$  is a simple  $KG_{\varphi}$ -module.
  - Let us call a KS-module V spectral if  $\mathrm{Res}_{\varphi}(V) \neq 0$  for some  $\varphi \in \widehat{E}$ , i.e., V is detected by the spectrum of E.

ullet Induction and restriction link the simple modules of KS with the irreducible representations of the isotropy groups.

#### Theorem (BS)

Let  $\varphi \in \widehat{E}$ .

- If V is a simple  $KG_{\varphi}$ -module, then  $\mathrm{Ind}_{\varphi}(V)$  is a simple KS-module.
- ② If V is a simple KS-module, then  $\mathrm{Res}_{\varphi}(V)=0$  or  $\mathrm{Res}_{\varphi}(V)$  is a simple  $KG_{\varphi}$ -module.
- Let us call a KS-module V spectral if  $\mathrm{Res}_{\varphi}(V) \neq 0$  for some  $\varphi \in \widehat{E}$ , i.e., V is detected by the spectrum of E.

ullet Induction and restriction link the simple modules of KS with the irreducible representations of the isotropy groups.

#### Theorem (BS)

Let  $\varphi \in \widehat{E}$ .

- If V is a simple  $KG_{\varphi}$ -module, then  $\mathrm{Ind}_{\varphi}(V)$  is a simple KS-module.
- ② If V is a simple KS-module, then  $\mathrm{Res}_{\varphi}(V)=0$  or  $\mathrm{Res}_{\varphi}(V)$  is a simple  $KG_{\varphi}$ -module.
  - Let us call a KS-module V spectral if  $\mathrm{Res}_{\varphi}(V) \neq 0$  for some  $\varphi \in \widehat{E}$ , i.e., V is detected by the spectrum of E.

ullet Induction and restriction link the simple modules of KS with the irreducible representations of the isotropy groups.

#### Theorem (BS)

Let  $\varphi \in \widehat{E}$ .

- If V is a simple  $KG_{\varphi}$ -module, then  $\mathrm{Ind}_{\varphi}(V)$  is a simple KS-module.
- ② If V is a simple KS-module, then  $\mathrm{Res}_{\varphi}(V)=0$  or  $\mathrm{Res}_{\varphi}(V)$  is a simple  $KG_{\varphi}$ -module.
  - Let us call a KS-module V spectral if  $\mathrm{Res}_{\varphi}(V) \neq 0$  for some  $\varphi \in \widehat{E}$ , i.e., V is detected by the spectrum of E.

#### Theorem (BS)

There is a bijection between isomorphism classes of spectral simple KS-modules and pairs  $(\varphi,V)$  where  $\varphi\in\widehat{E}$  and  $V\in\mathrm{Irr}(KG_\varphi)$  (up to the orbit of  $\varphi$  and the isomorphism class of V).

- Suppose V is a spectral simple module and  $W = \operatorname{Res}_{\varphi}(V) \neq 0$ .
- The identity map  $W \to W = \operatorname{Res}_{\varphi}(V)$  yields a non-zero morphism  $\operatorname{Ind}_{\varphi}(W) \to V$  via the adjunction.
- But  $\operatorname{Ind}_{\varphi}(W)$  is simple, so this morphism is an isomorphism by Schur's Lemma.

#### Theorem (BS)

There is a bijection between isomorphism classes of spectral simple KS-modules and pairs  $(\varphi,V)$  where  $\varphi\in \widehat{E}$  and  $V\in {\rm Irr}(KG_\varphi)$  (up to the orbit of  $\varphi$  and the isomorphism class of V).

- Suppose V is a spectral simple module and  $W = \operatorname{Res}_{\varphi}(V) \neq 0$ .
- The identity map  $W \to W = \mathrm{Res}_{\varphi}(V)$  yields a non-zero morphism  $\mathrm{Ind}_{\varphi}(W) \to V$  via the adjunction.
- But  $\operatorname{Ind}_{\varphi}(W)$  is simple, so this morphism is an isomorphism by Schur's Lemma.



#### Theorem (BS)

There is a bijection between isomorphism classes of spectral simple KS-modules and pairs  $(\varphi,V)$  where  $\varphi\in \widehat{E}$  and  $V\in {\rm Irr}(KG_\varphi)$  (up to the orbit of  $\varphi$  and the isomorphism class of V).

- Suppose V is a spectral simple module and  $W = \operatorname{Res}_{\varphi}(V) \neq 0$ .
- The identity map  $W \to W = \mathrm{Res}_{\varphi}(V)$  yields a non-zero morphism  $\mathrm{Ind}_{\varphi}(W) \to V$  via the adjunction.
- But  $\operatorname{Ind}_{\varphi}(W)$  is simple, so this morphism is an isomorphism by Schur's Lemma.



#### Theorem (BS)

There is a bijection between isomorphism classes of spectral simple KS-modules and pairs  $(\varphi,V)$  where  $\varphi\in \widehat{E}$  and  $V\in {\rm Irr}(KG_\varphi)$  (up to the orbit of  $\varphi$  and the isomorphism class of V).

- Suppose V is a spectral simple module and  $W = \operatorname{Res}_{\varphi}(V) \neq 0$ .
- The identity map  $W \to W = \operatorname{Res}_{\varphi}(V)$  yields a non-zero morphism  $\operatorname{Ind}_{\varphi}(W) \to V$  via the adjunction.
- But  $\operatorname{Ind}_{\varphi}(W)$  is simple, so this morphism is an isomorphism by Schur's Lemma.



# Conditions that guarantee spectrality

• But which modules are spectral?

#### Lemma (BS)

Let  $\varphi \colon S \to \operatorname{End}_K(V)$  be an irreducible representation such that  $\varphi(S)$  contains a primitive idempotent. Then V is a spectral simple KS-module.

- So if S satisfies dcc on idempotents, then every simple KS-module is spectral and we recover Munn's results.
- One can also show that every simple module for a semilattice of groups or for an  $\omega$ -inverse semigroup is spectral.
- The regular representation of S is spectral if and only if  $\widehat{E}$  contains an isolated point.

# Conditions that guarantee spectrality

But which modules are spectral?

#### Lemma (BS)

Let  $\varphi \colon S \to \operatorname{End}_K(V)$  be an irreducible representation such that  $\varphi(S)$  contains a primitive idempotent. Then V is a spectral simple KS-module.

- ullet So if S satisfies dcc on idempotents, then every simple KS-module is spectral and we recover Munn's results.
- One can also show that every simple module for a semilattice of groups or for an  $\omega$ -inverse semigroup is spectral.
- The regular representation of S is spectral if and only if  $\widehat{E}$  contains an isolated point.

# Conditions that guarantee spectrality

But which modules are spectral?

#### Lemma (BS)

Let  $\varphi \colon S \to \operatorname{End}_K(V)$  be an irreducible representation such that  $\varphi(S)$  contains a primitive idempotent. Then V is a spectral simple KS-module.

- So if S satisfies dcc on idempotents, then every simple KS-module is spectral and we recover Munn's results.
- One can also show that every simple module for a semilattice of groups or for an  $\omega$ -inverse semigroup is spectral.
- The regular representation of S is spectral if and only if  $\widehat{E}$  contains an isolated point.

## Finite dimensional irreducible representations

- It is well known that any subsemilattice of  $M_n(K)$  has at most  $2^n$  elements and hence contains a primitive idempotent.
- One can easily check that  $\operatorname{Ind}_{\varphi}(V)$  is finite dimensional iff the orbit of  $\varphi$  is finite and V is finite dimensional.
- Thus we get the following generalization of Douglas's original approach to the general case.

#### Theorem (BS)

There is a bijection between

- ullet Isomorphism classes of finite dimensional simple KS-modules;
- Pairs  $(\varphi, V)$  where the orbit of  $\varphi \in E$  is finite and V is a finite dimensional simple  $KG_{\varphi}$ -module (up to the orbit of  $\varphi$  and the isomorphism class of V).

# Finite dimensional irreducible representations

- It is well known that any subsemilattice of  $M_n(K)$  has at most  $2^n$  elements and hence contains a primitive idempotent.
- One can easily check that  $\operatorname{Ind}_{\varphi}(V)$  is finite dimensional iff the orbit of  $\varphi$  is finite and V is finite dimensional.
- Thus we get the following generalization of Douglas's original approach to the general case.

#### Theorem (BS)

There is a bijection between:

- Isomorphism classes of finite dimensional simple KS-modules;
- Pairs  $(\varphi, V)$  where the orbit of  $\varphi \in \widehat{E}$  is finite and V is a finite dimensional simple  $KG_{\varphi}$ -module (up to the orbit of  $\varphi$  and the isomorphism class of V).

#### Some consequences

- Using this theorem, we can give necessary and sufficient conditions for an inverse semigroup to have enough finite dimensional irreducible representations to separate points.
- If S has enough finite dimensional irreps to separate points, then clearly each maximal subgroup also does.
- This is false for isotropy groups.
- The Birget-Rhodes expansion of any finitely generated infinite simple group (say Thompson's group V) is residually finite and hence has enough finite dimensional irreps over  $\mathbb C$  to separate points.
- By a result of Malcev any finitely generated linear group is residually finite. Thus any finite dimensional irrep of a finitely generated infinite simple group is trivial.
- ullet Since V is an isotropy group of its Birget-Rhodes expansion, this shows the isotropy groups may have no non-trivial irreps.

# Separating points over $\mathbb C$

- It is straightforward to generalize Malcev's result to inverse semigroups.
- Consequently, a finitely generated inverse semigroup has enough finite dimensional irreducible representations over  $\mathbb C$  to separate points if and only if it is residually finite.

# THANK YOU FOR YOUR ATTENTION!