

APUNTES DE ÁLGEBRA LINEAL: MÓDULO II PARA INGENIERÍA EJECUCIÓN INFORMÁTICA

Carlos Picarte F.

Concepción, 2 de agosto de 2017.

RPI: Inscripción N° 278.983

Texto bajo Proyecto ModuDMat
Compilado en PTEXcon MiKTEX2.8

Índice general

2.	Tra	nsformaciones Lineales	5
	2.1.	Transformaciones Lineales	5
		2.1.1. Kernel e Imagen de una Aplicación Lineal	7
		2.1.2. Composición de Aplicaciones Lineales	11
	2.2.	Matriz Asociada a una Aplicación Lineal	11
		2.2.1. Representación Matricial de una Transformación lineal	12
	2.3.	Matriz Asociada de Algunas Transformaciones	18
	2.4.	Cambio de Bases	22
3.	Valo	ores y Vectores Propios	25
	3.1.	Valores y Vectores Propios	25
	3.2.	Diagonalización	30
4.	Rec	tas y Planos	33
	4.1.	Plano Cartesiano	33
		4.1.1. Espacio Cartesiano	34
		4.1.2. Puntos y Vectores	
	4.2.	Operaciones con Vectores	35
	4.3.	Producto Interior de Vectores	38
		4.3.1. Norma y Distancia	39
		4.3.2. Ángulos entre vectores	41
		4.3.3. Proyección	42
	4.4.	Producto Vectorial	44
	4.5.	Ecuación de la Recta	48
		4.5.1. Posición Relativa entre Rectas	50
		4.5.2. Distancia de un punto a una recta	52
	4.6.	Ecuación del Plano	52
		4.6.1. Posición Relativa entre Planos	54
		4.6.2. Distancia de un punto a un plano	56

2 Transformaciones Lineales

2.1 Transformaciones Lineales

Definición 2.1.

Sean V y W dos espacios vectoriales sobre el mismo cuerpo \mathbb{K} . Diremos que $T:V\to W$ es una **Aplicación Lineal** (Transformación lineal) si:

1.
$$T(v+w) = T(v) + T(w), \forall v, w \in V.$$

2.
$$T(\alpha v) = \alpha T(v)$$
, $\alpha \in \mathbb{K}, \forall v \in V$.

Ejemplo 2.1.

Sea $T: \mathbb{R}^2 \to \mathbb{R}$, T(x,y) = 2x + y, mostrar que es una aplicación lineal.

Demostración: En efecto:

1.
$$\forall (x,y), (u,v) \in \mathbb{R}^2 \Rightarrow \begin{cases} T(x,y) = 2x + y \\ T(u,v) = 2u + v \end{cases} (*)$$

$$T((x,y) + (u,v)) = T(x+u,y+v)$$

$$= 2(x+u) + (y+v)$$

$$= 2x + 2u + y + v$$

$$= (2x+y) + (2u+v)$$

$$\stackrel{*}{=} T(x,y) + T(u,v)$$

2.
$$\forall \alpha \in \mathbb{R}, (x,y) \in \mathbb{R}^2 \Rightarrow T(x,y) = 2x + y \ (*)$$

$$T(\alpha(x,y)) = T(\alpha x, \alpha y)$$

$$= 2(\alpha x) + (\alpha y)$$

$$= \alpha(2x + y)$$

$$\stackrel{*}{=} \alpha \cdot T(x,y)$$

Luego, por (1) y (2), T es una aplicación lineal.

Ejemplo 2.2.

Muestre que la función, $I:V\to V,\ I(v)=v$ es una aplicación lineal, llamada Aplicación Identidad.

Demostración: En efecto:

1.
$$\forall v_1, v_2 \in V \Rightarrow \begin{cases} I(v_1) = v_1 \\ I(v_2) = v_2 \end{cases} (*)$$

$$I(v_1 + v_2) = v_1 + v_2 \stackrel{*}{=} I(v_1) + I(v_2)$$

2. $\forall \alpha \in \mathbb{R}, v \in V \Rightarrow I(v) = v (*)$

$$I(\alpha v) = \alpha \cdot v \stackrel{*}{=} \alpha \cdot I(v)$$

Luego, por (1) y (2), es una Transformación Lineal.

Ejemplo 2.3.

Muestre que la función, $\theta:V\to V,\;\theta(v)=0_V$ es una aplicación lineal, llamada Aplicación Nula.

Demostración: En efecto:

1.
$$\forall v_1, v_2 \in V \Rightarrow \begin{cases} \theta(v_1) = 0_V \\ \theta(v_2) = 0_V \end{cases} (*)$$

$$\theta(v_1 + v_2) = 0_V = 0_V + 0_V \stackrel{*}{=} \theta(v_1) + \theta(v_2)$$

2. $\forall \alpha \in \mathbb{R}, v \in V \Rightarrow \theta(v) = 0_V (*)$

$$\theta(\alpha v) = 0_V = \alpha \cdot 0_V \stackrel{*}{=} \alpha \theta(v)$$

Luego, por (1) y (2), es una Transformación Lineal.

EJERCICIO: Muestre que cada una de las siguientes funciones son Aplicaciones Lineales.

- 1. $T: \mathbb{R} \to \mathbb{R}$, T(x) = 2x.
- 2. $F: \mathbb{R}^2 \to \mathbb{R}^2$, F(x,y) = (x+y, x-y).
- 3. $H: \mathbb{R}^3 \to \mathbb{R}^3$, H(x, y, z) = (x, x + y, y + z).

2.1.1. Kernel e Imagen de una Aplicación Lineal

Sean V y W dos espacios vectoriales sobre \mathbb{K} y $T:V\to W$ una aplicación lineal.

Definición 2.2.

Se llama **Kernel** o **Nucleo** de la aplicación T al conjunto de todos los vectores $v \in V$ tales que: $T(v) = \theta_W$, es decir:

$$Ker(T) = \{ v \in V : T(v) = \theta_W \}$$

$$(2.1)$$

Definición 2.3.

Se llama **Imagen** de la aplicación lineal T al conjunto de los vectores $w \in W$ tales que existe $v \in V$ de modo que: T(v) = w, es decir:

$$Im(T) = \{ w \in W / \exists v \in V : T(v) = w \}$$
 (2.2)

Ejemplo 2.4.

Sea $T: \mathbb{R}^3 \to \mathbb{R}^2$, T(x, y, z) = (x + y, z). Hallar Ker(T), Im(T).

Solución:

$$Ker(T) = \{(x, y, z) \in \mathbb{R}^3 : T(x, y, z) = (0, 0)\}$$

$$= \{(x, y, z) \in \mathbb{R}^3 : (x + y, z) = (0, 0)\}$$

$$= \{(x, y, z) \in \mathbb{R}^3 : x + y = 0, z = 0\}$$

$$= \{(x, y, z) \in \mathbb{R}^3 : x = -y, z = 0\}$$

$$= \{(-y, y, o) \in \mathbb{R}^3\}$$

$$= \langle \{(-1, 1, 0)\} \rangle$$

En particular, (-1, 1, 0), (2, -2, 0), $(0, 0, 0) \in Ker(T)$.

$$Im(T) = \{(u,v) \in \mathbb{R}^2 / \exists (a,b,c) \in \mathbb{R}^3 : T(a,b,c) = (u,v)\}$$

$$= \{(u,v) \in \mathbb{R}^2 / \exists (a,b,c) \in \mathbb{R}^3 : (a+b,c) = (u,v)\}$$

$$= \{(u,v) \in \mathbb{R}^2 / \exists (a,b,c) \in \mathbb{R}^3 : a+b=u,c=v\}$$

$$= \{(a+b,c) \in \mathbb{R}^2\}$$

$$= \{(a,0) + (b,0) + (0,c) : a,b,c \in \mathbb{R}\}$$

$$= \langle \{(1,0),(0,1)\} \rangle = \mathbb{R}^2 \qquad \text{(base canónica de } \mathbb{R}^2\text{)}$$

Teorema 2.1.

Sea $T:V\to W$ una aplicación lineal. Entonces Ker(T) es un subespacio de V e Im(T) es un subespacio de W

Demostración: Es claro que Ker(T) es subconjunto de V.

i) $Ker(T) \neq \emptyset$, pues $\theta_V \in Ker(T)$; dado que $T(\theta_v) = \theta_W$

ii)
$$\forall v_1, v_2 \in Ker(T) \Rightarrow \begin{cases} T(v_1) = \theta_w \\ T(v_2) = \theta_w \end{cases}$$

$$T(v_1 + v_2) = T(v_1) + T(v_2) = \theta_w + \theta_w = \theta_w \Rightarrow (v_1 + v_2) \in Ker(T)$$

iii) $\forall \alpha \in \mathbb{R}, v \in Ker(T) \Rightarrow T(v) = \theta_w$

$$T(\alpha v) = \alpha T(v) = \alpha \theta_w = \theta_w \Rightarrow (\alpha v) \in Ker(T)$$

Luego, por (i), (ii), (iii) Ker(T) es subespacio.

Ejercicio : Hallar Kernel e Imagen de las siguientes aplicaciones:

1.
$$T: \mathbb{R}^2 \to \mathbb{R}^3, (x, y) \to T(x, y) = (x, y, 2x).$$

2.
$$T: \mathbb{R} \to \mathbb{R}^4, x \to T(x) = (x, 2x, x, 2x)$$
.

3.
$$T: \mathbb{R}^3 \to \mathbb{R}^3, (x, y, z) \to T(x, y, z) = (x - y, x, x + y).$$

Definición 2.4.

Sea $T:V \to W$ una aplicación lineal.

- 1. Se llama **Nulidad** de T a la dimensión de Ker(T).
- 2. Se llama **Rango** de T a la dimensión de la Img(T). Se denota por:

$$\mathcal{N}(T) = dim \ Ker(T())$$

$$\mathcal{R}(T) = dim \ Img(T()$$

Teorema 2.2.

Sea $T:V\to W$ aplicación lineal y V espacio de dimensión finita, entonces:

$$dim V = dim Ker(T) + dim Img(T)$$

Proposición 2.1.

Sea $T: V \to W$ aplicación lineal.

$$T$$
 es inyectiva $\iff Ker(T) = \{\theta_v\}$

Demostración: Por demostrar que: T es inyectiva $\iff Ker(T) = \{\theta_v\}$

- i) **Hip:** T es inyectiva (*) $\forall v \in Ker(T) : T(v) = \theta_w \Rightarrow T(v) = T(\theta_v) \stackrel{*}{\Rightarrow} v = \theta_v \Rightarrow Ker(T) = \{\theta_v\}$
- ii) **Hip:** $Ker(T) = \{\theta_v\}$ (*) $\forall v_1, v_2 \in V : T(v_1) = T(v_2) \Rightarrow T(v_1) - T(v_2) = \theta_w \Rightarrow T(v_1 - v_2) = \theta_w \stackrel{*}{\Rightarrow} v_1 - v_2 = \theta_v \Rightarrow v_1 = v_2 \Rightarrow T \text{ es inyectiva}$

Definición 2.5.

Sea $T:V\to W$ aplicación lineal.

T es sobreyectiva o epiyectiva $\iff Im(T) = W$

Definición 2.6.

Sea $T:V \to W$ aplicación lineal.

T es **Isomorfismo** si T es biyectiva.

Se dice entonces que los espacios V y W son **Isomorfos**.

Observación 2.1.

Sea T es aplicación lineal.

Si T es isomorfismo, entonces existe T^{-1} .

Teorema 2.3.

Sean V y W dos espacios vect. sobre \mathbb{K} y $\{v_1, \ldots, v_n\}$ una base de V y $\{w_1, \ldots, w_n\}$ un conjunto arbitrario de W, constituido por n vectores.

Entonces existe una única aplicación lineal $T: V \to W$ tal que:

$$T(v_1) = w_1 ; T(v_2) = w_2 ; \dots ; T(v_n) = w_n$$

Ejemplo 2.5.

Defina la aplicación lineal $T: \mathbb{R}^3 \to \mathbb{R}^2$, tal que:

$$T(1,0,0) = (2,3)$$
 ; $T(0,1,0) = (1,-1)$; $T(0,0,1) = (0,1)$

Solución: Queremos encontrar T(x, y, z).

Tenemos que: $\forall (x, y, z) \in \mathbb{R}^3$:

$$(x,y,z) = x(1,0,0) + y(0,1,0) + z(0,0,1) /T$$

$$T(x,y,z) = T(x(1,0,0) + y(0,1,0) + z(0,0,1))$$

$$= xT(1,0,0) + yT(0,1,0) + zT(0,0,1)$$

$$= x(2,3) + y(1,-1) + z(0,1)$$

$$= (2x + y, 3x - y + z)$$

luego, T(x, y, z) = (2x + y, 3x - y + z)

EJERCICIO : Definir si es posible, una aplicación lineal $T: \mathbb{R}^2 \to \mathbb{R}$ tal que:

$$T(1,0) = 4$$
 ; $T(0,1) = -2$; $T(1,1) = 5$

Obs: No es posible definir tal aplicación.

EJERCICIO: Definir si es posible una aplicación lineal $F: \mathbb{R}^2 \to \mathbb{R}^3$ cuyo Kernel esté generado por $\{(1,3)\}$.

Proposición 2.2.

Sea $T:V\to W$ aplicación lineal $B=\{v_1,\ldots,v_n\}$ base de V, entonces $\{T(v_1),\ldots,T(v_n)\}$ genera a Im(T).

Proposición 2.3.

Sea $T: V \to W$ aplicación lineal. Si $B = \{T(v_1), T(v_2), \dots, T(v_n)\}$ es **l.i.**, entonces $\{v_1, v_2, \dots, v_n\}$ también es **l.i.**.

Observación 2.2.

De la proposición anterior, tenemos: Sea $T:V\to W$ aplicación lineal. Si $\{v_1,v_2,\ldots,v_n\}$ es **l. d.**, entonces $\{T(v_1),T(v_2),\ldots,T(v_n)\}$ también es **l.d**

Proposición 2.4.

Sea $T:V\to W$ aplicación lineal. Si $\{v_1,v_2,\ldots,v_n\}$ es **l.i.** y T es 1 – 1, entonces $\{T(v_1),T(v_2),\ldots,T(v_n)\}$ es **l.i.**

2.1.2. Composición de Aplicaciones Lineales

Sean U, V, W espacios vectoriales sobre \mathbb{K} .

Si $F: U \to V$ y $G: V \to W$ son aplicaciones lineales, entonces:

 $G \circ F : U \to W$ es también Aplicación Lineal

EJERCICIO: Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$. T(x,y) = (x-y, x+y)Calcular $2T^2 + 4T - 3$.

2.2 Matriz Asociada a una Aplicación Lineal

2.2.1. Representación Matricial de una Transformación lineal

Sean V, W espacios vectoriales de dimensión finita sobre un mismo cuerpo $\mathbb{K}, T: V \to W$ una transformación lineal, $B_1 = \{v_1, v_2, \dots, v_n\}$ una base de V y $B_2 = \{w_1, w_2, \dots, w_m\}$ una base de W.

Los vectores $T(v_1), T(v_2), \ldots, T(v_n)$ están en W y por lo tanto, cada uno de ellos se puede expresar como una combinación lineal de los vectores de la base B_2 :

$$T(v_1) = a_{11}w_1 + a_{21}w_2 + \dots + a_{m1}w_m$$

$$T(v_2) = a_{12}w_1 + a_{22}w_2 + \dots + a_{m2}w_m$$

$$\vdots = \vdots$$

$$T(v_n) = a_{1n}w_1 + a_{2n}w_2 + \dots + a_{mn}w_m$$

En otras palabras

$$[T(v_1)]_{B_2} = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}; \qquad \cdots \qquad ; [T(v_n)]_{B_2} = \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}$$

De donde tenemos que:

Definición 2.7.

Se llama representación matricial de T en las bases B_1 y B_2 o matriz asociada a T en las bases B_1 y B_2 , a la matriz que representaremos por $[T]_{B_1}^{B_2}$ y cuya i-ésima columna son las coordenadas del vector $T(v_i)$ en la base B_2 . Esto es,

$$[T]_{B_{1}}^{B_{2}} = ([T(v_{1})]_{B_{2}}, [T(v_{2})]_{B_{2}}, \cdots, [T(v_{n})]_{B_{2}})$$

$$= \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

Ejemplo 2.6.

Consideremos la transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que

$$T(x,y) = (4x - 2y, 2x + y, x + y) \quad \forall (x,y) \in \mathbb{R}^2$$

y las bases $B_1 = \{(1,0),(0,1)\}$ de \mathbb{R}^2 y $B_2 = \{(1,0,0),(0,1,0),(0,0,1)\}$ de \mathbb{R}^3 . Hallar la matriz asociada a T en dichas bases:

Solución:

$$T(1,0) = (4,2,1) = 4(1,0,0) + 2(0,1,0) + 1(0,0,1)$$

 $T(0,1) = (-2,1,1) = -2(1,0,0) + 1(0,1,0) + 1(0,0,1)$

Luego, la matriz asociada a T es:

$$[T]_{B_1}^{B_2} = \begin{pmatrix} 4 & -2 \\ 2 & 1 \\ 1 & 1 \end{pmatrix}$$

Ejemplo 2.7.

Consideremos la transformación lineal $T: P_2[t] \to \mathbb{R}^2$ tal que $p(t) = at^2 + bt + c$, $\forall t \in \mathbb{R}$, se cumple T(p) = (2a + b, a + b + 4c), y las bases $B_1 = \{p_1, p_2, p_3\}$ de $P_2[t]$ donde $p_1(t) = t^2$, $p_2(t) = t$, $p_3(t) = 1$, $\forall t \in \mathbb{R}$; y $B_2 = \{(1, 1), (1, 0)\}$ de R^2 . Hallar la matriz asociada a T en dichas bases:

Solución: Se tiene que:

$$T(t^{2}) = (2,1) = 1(1,1,) + 1(1,0)$$

$$T(t) = (1,1) = 1(1,1) + 0(1,0) \Rightarrow [T]_{B_{1}}^{B_{2}} = \begin{pmatrix} 1 & 1 & 4 \\ 1 & 0 & -4 \end{pmatrix}$$

$$T(1) = (0,4) = 4(1,1) - 4(1,0)$$

Observación 2.3.

Si dim(V) = n y dim(W) = m la matriz asociada tiene dimensión $m \times n$.

Observación 2.4.

La matriz $[T]_{B_1}^{B_2}$ como recién vimos, queda completamente determinada conocidas la transformación lineal T y las bases B_1 y B_2 del dominio y codominio respectivamente.

Teorema 2.4.

Sean V,W dos espacios vectoriales sobre un mismo cuerpo $\mathbb{K},\ B_1=\{v_1,v_2,\cdots,v_n\}$ y $B_2 = \{w_1, w_2, \cdots, w_m\}$ bases ordenadas de V y W respectivamente; y $T: V \to W$ una transformación lineal. Entonces se cumple que

$$[T(v)]_{B_2} = [T]_{B_1}^{B_2} \cdot [v]_{B_1}.$$

Ejemplo 2.8.

Dadas $T: \mathbb{R}^3 \to \mathbb{R}^3$ y las bases $B_1 = B_2 = \{(1,0,0), (1,1,0), (1,1,1)\}$ tal que

$$[T]_{B_1}^{B_2} = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 0 & 0 \\ 3 & 4 & 1 \end{pmatrix},$$

Hallar T(2, 0, -1).

Solución: Usando el teorema-2.4: $[T(v)]_{B_2} = [T]_{B_1}^{B_2} \cdot [v]_{B_1}$, primero calculamos $[(2,0,-1)]_{B_1}$

Solution: Usando el teorema-2.4.
$$[T(v)]_{B_2} = [T]_{B_1} \cdot [v]_{B_1}$$
, primero calcula $(2,0,-1) = \alpha(1,0,0) + \beta(1,1,0) + \gamma(1,1,1) \Rightarrow \begin{vmatrix} \alpha+\beta+\gamma & = 2 \\ \beta+\gamma & = 0 \\ \gamma & = -1 \end{vmatrix} \Rightarrow \begin{vmatrix} \alpha=2 \\ \beta=1 \\ \gamma=-1 \end{vmatrix}$
Así: $[(2,0,-1)]_{B_1} = (2,1,-1)$ y $[T(2,0,-1)]_{B_2} = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 0 & 1 \\ 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 9 \end{pmatrix}$

Así:
$$[(2,0,-1)]_{B_1} = (2,1,-1) \text{ y } [T(2,0,-1)]_{B_2} = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 0 & 1 \\ 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 9 \end{pmatrix}$$

De esto se tiene que:

$$T(2,0,-1) = (1)(1,0,0) + (3)(1,1,0) + (9)(1,1,1) = (13,12,9)$$

Observación 2.5.

Dada una matriz $A \in \mathcal{M}_{n \times m}(\mathbb{R})$, podemos considerar la transformación lineal $T_A : \mathbb{R}^m \to \mathbb{R}^n$, definida por

 $T_a(x) = A \cdot x$, donde $x \in \mathbb{R}^m$ considerado como vector columna

Si C_m y C_n son bases canónicas de \mathbb{R}^m y \mathbb{R}^n respectivamente, entonces:

$$[T]_{C_m}^{C_n} = A$$

Esto es, la matriz asociada es la misma matriz A de definición.

Ejemplo 2.9.

Sea $T: \mathbb{R}^2 \to \mathbb{R}^3$, $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$ y sean $C_2 = \{(1,0), (0,1)\}$ $C_3 = \{(1,0,0), (0,1,0), (0,0,1)\}$ bases de \mathbb{R}^2 y \mathbb{R}^3 , respectivamente. Entonces.

$$T\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 1 & -1\\0 & 1\\2 & 1 \end{pmatrix} \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 1\\0\\2 \end{pmatrix} = 1\begin{pmatrix} 1\\0\\0 \end{pmatrix} + 0\begin{pmatrix} 0\\1\\0 \end{pmatrix} + 2\begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

$$T\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}1 & -1\\0 & 1\\2 & 1\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}-1\\1\\1\end{pmatrix} = -1\begin{pmatrix}1\\0\\0\end{pmatrix} + 1\begin{pmatrix}0\\1\\0\end{pmatrix} + 1\begin{pmatrix}0\\0\\1\end{pmatrix}$$

Luego,

$$[T]_{C_2}^{C_3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} = A$$

Observación 2.6.

Sean $T: V \to W$ transformación lineal, con dim(V) = n y dim(W) = m. Entonces si B_1 es base de V y B_2 es base de W, se tiene que:

$$[T]_{B_1}^{B_2} \in \mathcal{M}_{m \times n}$$

es decir, la matriz asociada es de dimensión $m \times n$.

Observación 2.7.

Matriz asiciada a las bases Canónicas Sea $T: V \to W$ aplicación lineal, y sean B_1 y B_2 bases canónicas de V y W respectivamente, entonces la matriz asociada $[T]_{B_1}^{B_2}$ se escribe simplemente como: [T]

Observación 2.8.

- 1.- La matriz $[T]_{B_1}^{B_2}$ queda completamente determinada conocidas la transformación lineal T y las bases B_1 y B_2 del dominio y codominio respectivamente.
- 2.- **Recíprocamente**, dada la matriz $M \in \mathcal{M}_{m \times n}$ y dos bases B_1 y B_2 de los espacios V y W respectivamente, queda completamente determinada una transformación lineal $T: V \to W$ tal que:

$$[T]_{B_1}^{B_2} = M$$

Ejemplo 2.10.

Hallar la transformación lineal $T:\mathbb{R}^3\to\mathbb{R}^2$ sabiendo que

$$[T]_{B_1}^{B_2} = \begin{pmatrix} 1 & 2 & -1 \\ -1 & 0 & 2 \end{pmatrix} y \ B_1 = \{(1,0,1), (1,1,0), (0,1,0)\} \ y \ B_1 = \{(1,2), (0,2)\}$$

Solución: Queremos encontrar T(x, y, z), para ello solo necesitamos $[T(x, y, z)]_{B_2}$.

$$(x,y,z) = \alpha(1,0,1) + \beta(1,1,0) + \gamma(0,1,0) \Rightarrow \begin{bmatrix} \alpha+\beta & = & x \\ \beta+\gamma & = & y \\ \alpha & = & z \end{bmatrix} \Rightarrow \begin{matrix} \beta & = & x-z \\ \Rightarrow \gamma & = & y-x+z \\ \alpha & = & z \end{matrix}$$

Luego,

$$[T(x,y,z)]_{B_2} = \begin{pmatrix} 1 & 2 & -1 \\ -1 & 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} z \\ x-z \\ y-x+z \end{pmatrix} = \begin{pmatrix} 3x-y-2z \\ -2x+2y+z \end{pmatrix}$$

Así, $T(x,y,z) = (3x-y-2z)(1,2) + (-2x+2y+z)(0,2) = (3x-y-2z,2x+2y-2z)$

EJERCICIO: Sea $B_1 = \{p_0, p_1, p_2\}$ con $p_i(t) = (t+1)^i, \forall t \in \mathbb{R}, i = 0, 1, 2 \text{ y } B_2 = \{(1,1,0), (1,2,3), (3,2,1)\}$ bases de $P_2[t]$ y \mathbb{R}^3 respectivamente.

Considere la aplición lineal $T: P_2[t] \to \mathbb{R}^3$ tal que :

$$[T]_{B_1}^{B_2} = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$$

Dado que $q_0 = q_0(t) = t^2 + t - 1, \forall t \in \mathbb{R}$, Hallar $T(q_0)$.

Teorema 2.5.

Sean dos transformaciones lineales $T:V\to W$ y $S:V\to W.$ Sea B_1 base de V y B_2 base de W entonces:

$$[T+S]_{B_1}^{B_2} = [T]_{B_1}^{B_2} + [S]_{B_1}^{B_2}$$

Teorema 2.6.

Sea $T:V\to W$ una transformación lineal y α un escalar de \mathbb{K} . Sea B_1 base de V y B_2 base de W. Entonces:

$$[\alpha T]_{B_1}^{B_2} = \alpha [T]_{B_1}^{B_2}$$

Teorema 2.7.

Consideremos los espacios vectoriales U, V y W con U, V y W de dimensión finita, y las transformadas lineales $S: U \to V$ y $T: V \to W$, sean B_1, B_2 y B_3 bases de U, V y W respectivamente. Entonces la matriz asociada a la composición $T \circ S$ es el producto de las matrices asociadas, es decir,

$$[T \circ S]_{B_{1}}^{B_{3}} = [T]_{B_{2}}^{B_{3}} \cdot [S]_{B_{1}}^{B_{2}}$$

$$U \qquad V \qquad W$$

$$[S]_{B_{1}}^{B_{2}} \qquad \vdots \qquad \vdots \qquad \vdots$$

$$S(u) = v \qquad [T]_{B_{2}}^{B_{3}} \qquad \vdots \qquad \vdots$$

$$T(v) = w$$

$$[T \circ S]_{B_{1}}^{B_{3}}$$

Teorema 2.8.

Sea $T:V\to W$ un **isomorfismo**, $T^{-1}:W\to V$ su inversa, B_1,B_2 bases de V y W respectivamente. Como $T\circ T^{-1}=Id_W$ se cumple que

$$[T]_{B_1}^{B_2} \cdot [T^{-1}]_{B_2}^{B_1} = [Id]_{B_2}^{B_2} = I$$

También $T^{-1} \circ T = Id_V$ por lo que

$$[T^{-1}]_{B_2}^{B_1} \cdot [T]_{B_1}^{B_2} = [Id]_{B_1}^{B_1} = I$$

Deducimos que la matriz asociada a la transformación inversa es la inversa de la matriz asociada a la transformación, es decir,

$$[T^{-1}]_{B_2}^{B_1} = ([T]_{B_1}^{B_2})^{-1}$$

EJERCICIO: Se consideran las transformaciones

 $T: \mathbb{R}^2 \to \mathbb{R}^2$, donde T(3,5) = (8,1) y T(-2,1) = (-1,-5),

 $S: \mathbb{R}^2 \to \mathbb{R}^2$, donde S(1,0) = (1,1) y S(0,1) = (0,1)

y las bases $B_1 = \{(1,2),(1,1)\}$ y $B_2 = \{(1,-1),(1,1)\}$ de \mathbb{R}^2

- 1. Halla $[T+S]_{B_1}^{B_2}$ y $[3T]_{B_1}^{B_2}$.
- 2. Hallar $[(S+T)^2]_{B_1}^{B_2}$
- 3. Hallar $[T^{-1}]_{B_1}^{B_2}$

2.3 Matriz Asociada de Algunas Transformaciones

Reflexiones sobre el eje x

Se requiere obtener la reflexión del punto P(x,y) sobre el eje x, es decir, obtener el punto P'(x,-y). Definamos la aplicación:

$$R_x: \mathbb{R}^2 \to \mathbb{R}^2, R_x(x,y) = (x,-y)$$

Usando la base canónica de \mathbb{R}^2 , $C = \{(1,0), (0,1)\}$, tenemos que:

$$\begin{cases} R_x(1,0) = (1,0) = 1(1,0) + 0(0,1) \\ R_x(0,1) = (0,-1) = 0(1,0) - 1(0,1) \end{cases} \Rightarrow \begin{bmatrix} R_x \end{bmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

 $R_x(x,y) = (x,-y)$

Reflexiones sobre el eje y

Se requiere obtener la reflexión del punto P(x,y) sobre el eje y, es decir, obtener el punto P'(-x,y). Definamos la aplicación:

$$R_y: \mathbb{R}^2 \to \mathbb{R}^2, R_y(x,y) = (-x,y)$$

Usando la base canónica de \mathbb{R}^2 , $C = \{(1,0), (0,1)\}$, tenemos que:

$$\begin{cases} R_y(1,0) = (-1,0) = -1(1,0) + 0(0,1) \\ R_y(0,1) = (0,1) = 0(1,0) + 1(0,1) \end{cases} \Rightarrow [R_y] = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Reflexiones sobre el origen

Se requiere obtener la reflexión del punto P(x, y) sobre el origen O, es decir, obtener el punto P'(-x, -y). Definamos la aplicación:

$$R_O: \mathbb{R}^2 \to \mathbb{R}^2, R_O(x, y) = (-x, -y)$$

Usando la base canónica de \mathbb{R}^2 , $C = \{(1,0), (0,1)\}$, tenemos que

$$\begin{cases} R_O(1,0) = (-1,0) = -1(1,0) + 0(0,1) \\ R_O(0,1) = (0,-1) = 0(1,0) - 1(0,1) \end{cases} \Rightarrow [R_O] = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

 $R_{xy}(x,y) = (-x, -y)$

Reflexiones sobre la recta y = x

Se requiere obtener la reflexión del punto P(x,y) sobre la recta y = x, es decir, obtener el punto P'(y,x). Definamos la aplicación:

$$R_{yx}: \mathbb{R}^2 \to \mathbb{R}^2, R_{yx}(x,y) = (y,x)$$

Usando la base canónica de \mathbb{R}^2 , $C = \{(1,0),(0,1)\}$, tenemos que

$$\begin{cases} R_{yx}(1,0) = (0,1) = 0(1,0) + 1(0,1) \\ R_{yx}(0,1) = (1,0) = 1(1,0) + 0(0,1) \end{cases} \Rightarrow \begin{bmatrix} R_{yx} \end{bmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Proyección Ortogonal sobre el eje \boldsymbol{x}

Se requiere obtener la proyección ortogonal del vector $\vec{v} = (x, y)$ sobre el eje x, es decir, obtener el vector $\vec{v'} = (x, 0)$. Definamos la aplicación:

$$P_x: \mathbb{R}^2 \to \mathbb{R}^2, P_x(x,y) = (x,0)$$

Usando la base canónica de \mathbb{R}^2 , $C = \{(1,0),(0,1)\}$, tenemos que

$$\begin{cases} P_x(1,0) = (1,0) = 1(1,0) + 0(0,1) \\ P_x(0,1) = (0,0) = 0(1,0) + 0(0,1) \end{cases} \Rightarrow [P_x] = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

Proyección Ortogonal sobre el eje \boldsymbol{y}

Se requiere obtener la proyección ortogonal del vector $\vec{v} = (x, y)$ sobre el eje y, es decir, obtener el vector $\vec{v'} = (0, y)$. Definamos la aplicación:

$$P_y: \mathbb{R}^2 \to \mathbb{R}^2, P_y(x, y) = (0, y)$$

Usando la base canónica de \mathbb{R}^2 , $C = \{(1,0),(0,1)\}$, tenemos que

$$\begin{cases} P_y(1,0) = (0,0) = 0(1,0) + 0(0,1) \\ P_y(0,1) = (0,1) = 0(1,0) + 1(0,1) \end{cases} \Rightarrow [P_y] = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Homotecia respecto al Origen

Se requiere efectuar una Homotecia respecto del origen, en un factor k de una figura plana, que contiene al punto P(x,y). Definamos la aplicación:

$$H_k: \mathbb{R}^2 \to \mathbb{R}^2, H_k(x,y) = k(x,y)$$

Usando la base canónica de \mathbb{R}^2 , $C = \{(1,0),(0,1)\}$, tenemos que

$$\begin{cases} H_k(1,0) = (k,0) = k(1,0) + 0(0,1) \\ H_k(0,1) = (0,k) = 0(1,0) + k(0,1) \end{cases} \Rightarrow [H_k] = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$$

Observación 2.9.

Estudie la linealidad de las siguientes transformaciones.

Traslación en dirección de un vector

Se requiere efectuar una Traslaciónn respecto al origen de una figura plana, que contiene al punto P(x, y) en la dirección, magnitud y sentido del vector $\overrightarrow{v} = (v_1, v_2)$. Definamos la aplicación:

$$T_v : \mathbb{R}^2 \to \mathbb{R}^2, T_v(x, y) = (x, y) + (v_1, v_2)$$

Usando la base canónica de \mathbb{R}^2 , $C = \{(1,0),(0,1)\}$, tenemos que

$$\begin{cases}
T_v(1,0) = (1+v_1,v_2) = (1+v_1)(1,0) + v_2(0,1) \\
T_v(0,1) = (v_1,1+v_2) = v_1(1,0) + (1+v_2)(0,1)
\end{cases} =$$

$$[T_V] = \begin{pmatrix} 1+v_1 & v_2 \\ v_1 & 1+v_2 \end{pmatrix}$$

Homotecia respecto a un Origen O'

Se requiere efectuar una Homotecia respecto del origen $O'(h_1, h_2)$, en un factor k de una figura plana, que contiene al punto P(x, y). Definamos la aplicación:

$$H_{O',k} : \mathbb{R}^2 \to \mathbb{R}^2, H_{O',k}(x,y) = O' - k(P - O') = (h_1, h_2) + k(x - h_1, y - h_2)$$

$$- \mathcal{UBB} -$$
21

$$H_{O',k}(x,y) = (h_1, h_2) + k(x - h_1, y - h_2)$$

Usando la base canónica de \mathbb{R}^2 , $C = \{(1,0),(0,1)\}$, tenemos que

$$\begin{cases}
H_{O',k}(1,0) = (h_1 + k, h_2) = (h_1 + k)(1,0) + h_2(0,1) \\
H_{O',k}(0,1) = (h_1, h_2 + k) = h_1(1,0) + (h_2 + k)(0,1)
\end{cases}$$

$$[H_{O',k}] = \begin{pmatrix} h_1 + k & h_2 \\ h_1 & h_2 + k \end{pmatrix}$$

2.4 Cambio de Bases

Sean $B = \{v_1, v_2, \cdots, v_n\}$ y $B' = \{v'_1, v'_2, \cdots, v'_n\}$ bases del espacio vectorial V y $Id: V \to V$ la transformación identidad.

Definición 2.8.

Llamaremos matriz cambio de base B a la base B', a la matriz:

$$[Id]_B^{B'}$$

Teorema 2.9.

Sean B y B' bases del espacio vectorial V. Entonces:

$$[v]_{B'} = [Id]_B^{B'} \cdot [v]_B$$

Teorema 2.10.

Sean V y W espacios vectoriales sobre el mismo cuerpo \mathbb{K} , B_1, B_1' bases de V, B_2, B_2' bases de W y $T: V \to W$ una aplicación lineal. Entonces:

$$[T]_{B_1'}^{B_2'} = [Id]_{B_2}^{B_2'} \cdot [T]_{B_1}^{B_2} \cdot [Id]_{B_1'}^{B_1}$$

Teorema 2.11.

Sea V un espacio vectorial, y B y B' bases V y $Id:V \to V$ la transformación lineal identidad. Entonces:

1.
$$[Id]_B^B = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

2. $[Id]_B^{B'}$ es invertible y $([Id]_B^{B'})^{-1} = [Id]_{B'}^{B}$

3 Valores y Vectores Propios

3.1 Valores y Vectores Propios

Definición 3.1.

Sea $T:V\to V$ un operador lineal y V espacio vectorial de dimensión n, entonces el escalar λ se llama un valor propio de T si existe un vector no nulo $v\in V$ tal que:

$$T(v) = \lambda v$$

Los vectores que satisfacen esta ecuación se llaman $\ \ vectores \ propios$ asociados al valor propio $\lambda.$

Ejemplo 3.1.

Sea $T: P_2[t] \to P_2[t], T[p(t)] = tp'(t)$, muestre que $\lambda_1 = 1$ y $\lambda_2 = 2$ son valores propios de T asociados a los vectores t y t^2 respectivamente.

Solución: : En efecto pues,

$$T(t) = t[t]' = t(1) = t = (1) \cdot t$$

$$T(t^2) = t[t^2]' = t(2t) = 2t^2 = (2) \cdot t^2$$

Observación 3.1.

Recordemos que toda aplicación lineal tiene una representación matricial, es decir, Sea V un espacio vectorial de dimensión n y T una aplicació lineal tal que $T:V \to V; T(v) = Av$, donde A es matriz cuadrada de orden n, luego la definición anterior se puede expresr de la siguiente manera:

Sea A una matriz de $n \times n$ con componentes reales. El número λ (real o complejo) se llama **valor propio** de A si existe un vector v diferente del nulo en \mathbb{R}^n , tal que:

$$Av = \lambda v \tag{3.1}$$

El vector $v \neq \mathbf{0}$ se llama **vector propio** de A correspondiente al valor propio λ .

Ejemplo 3.2.

Sea $A = \begin{pmatrix} 10 & -18 \\ 6 & -11 \end{pmatrix}$. Muestre que $\lambda_1 = 1$ y $\lambda_2 = -2$ son valores propios de A, con

vectores propios asociados $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ y $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$ respectivamente.

DEMOSTRACIÓN: En efecto, notemos que:

$$\begin{pmatrix} 10 & -18 \\ 6 & -11 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 20 - 18 \\ 12 - 11 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 1 \cdot \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 10 & -18 \\ 6 & -11 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 30 - 36 \\ 18 - 22 \end{pmatrix} = \begin{pmatrix} -6 \\ -4 \end{pmatrix} = -2 \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

Teorema 3.1.

Sea A una matriz de $n \times n$. Entonces λ es un valor propio de A si y sólo si:

$$p(\lambda) = \det(A - \lambda I) = 0 \tag{3.2}$$

Definición 3.2.

Ecuación y Polinomio Característico

La ecuación (3.2) se llama la ecuación característica de A; $p(\lambda)$ se llama el polinomio característico de A.

Observación 3.2.

Sea A una matriz cuadrada de orden n, entonces el polinomio característico $p(\lambda)$ es de grado n.

Ejemplo 3.3.

Escribir el polinomio característico $(p(\lambda))$, y presentar los valores propios (\mathbf{vp}) y vectores propios (\overrightarrow{vp}) de la matriz $A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$

Solución: : Encontremos su polinomio característico,

$$|A - \lambda I| = \begin{vmatrix} 1 & 2 \\ 0 & 2 \end{vmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$$
$$= \begin{vmatrix} 1 - \lambda & 2 \\ 0 & 2 - \lambda \end{vmatrix}$$
$$= (1 - \lambda)(2 - \lambda) = p(\lambda)$$

Luego, $p(\lambda) = (1 - \lambda)(2 - \lambda) = 0 \Rightarrow \lambda_1 = 1; \lambda_2 = 2$ son sus vp., de esto,

$$E_{1} = \left\{ (x,y) \in \mathbb{R}^{2} / \begin{pmatrix} 1-1 & 2 \\ 0 & 2-1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

$$= \left\{ (x,y) \in \mathbb{R}^{2} / \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

$$= \left\{ (x,y) \in \mathbb{R}^{2} / \begin{pmatrix} 2y \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

$$= \left\{ (x,0), x \in \mathbb{R} \right\}$$

$$= \left\{ \{ (1,0) \} \right\}$$

$$E_{2} = \left\{ (x,y) \in \mathbb{R}^{2} / \begin{pmatrix} 1-2 & 2 \\ 0 & 2-2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

$$= \left\{ (x,y) \in \mathbb{R}^{2} / \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

$$= \left\{ (x,y) \in \mathbb{R}^{2} / \begin{pmatrix} -x+2y \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$$

$$= \left\{ (2y,y), y \in \mathbb{R} \right\}$$

$$= \left\{ (2(2,1)) \right\}$$

Observación 3.3.

Según Teorema fundamental del álgebra, cualquier polinomio de grado n con coeficientes reales o complejos tiene exactamente n raíces en \mathbb{C} (contando multiplicidades).

Observación 3.4.

Contando multiplicidades, toda matriz de $n \times n$ tiene exactamente n valores propios.

Teorema 3.2.

Sea λ un valor propio de la matriz A de $n \times n$ y sea $E_{\lambda} = \{v : Av = \lambda v\}$. Entonces E_{λ} es un subespacio de \mathbb{C}^n

Definición 3.3.

Sea λ un valor propio de A. El subespacio E_{λ} se llama **espacio propio** de A correspondiente al valor propio λ .

Observación 3.5.

Sea λ un valor propio de A, entonces λ^n es valor propio de A^n para $n \in \mathbb{N}$.

Demostración: Si v es un \overrightarrow{vp} asociado al vp. λ de A entonces:

$$Av = \lambda v / A$$

 $A^2v = A(\lambda v) = \lambda(Av) = \lambda(\lambda v) = \lambda^2 v / A$
 $A^3v = A(\lambda^2 v) = \lambda^3 v / A$
 $\vdots = \vdots$ (por inducción de muestra que)
 $A^nv = \lambda^n v$

Teorema 3.3.

Sea A una matriz de $n \times n$ y sea $\lambda_1, \lambda_2, \ldots, \lambda_m$ (m < n), valores propios distintos de A (es decir $\lambda_i \neq \lambda_j$, si $i \neq j$) con vectores propios correspondientes v_1, v_2, \ldots, v_m . Entonces $\{v_1, v_2, \ldots, v_m\}$ son l.i. Esto es: "los vectores propios correspondientes a valores propios distintos son l.i.".

Teorema 3.4 (Teorema de Cayley-Hamilton).

Sea A una matriz de $n \times m$ y $p(\lambda)$ su polinomio característico, entonces su ecuación característica se puede escribir como:

$$p(\lambda) = (-1)^n \lambda^n + c_{n-1} \lambda^{n-1} + c_{n-2} \lambda^{n-2} + \dots + c_1 \lambda + c_0 = 0$$

y la matriz A satisface la ecuación característica, es decir, se cumple que

$$p(A) = (-1)^n A^n + c_{n-1} A^{n-1} + c_{n-2} A^{n-2} + \dots + c_1 A + c_0 I = \Theta$$

Observación 3.6.

La propiedad anterior nos permite efectuar algunos cálculo en forma más simple, tales como potencias de un a matriz o expresiones simples de la inversa de una matriz cuendo esta existe.

Ejemplo 3.4.

Encuentre A^4 y A^{-1} para $A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$

Solución: De los cálculo del ejemplo(3.3), tenemos que $p(\lambda) = (1-\lambda)(2-\lambda) = 2-3\lambda + \lambda^2$ y la matriz A satisface la ecuación característica, así,

$$A^{2} - 3A + 2I = 0 \implies A^{2} = 3A - 2I / A$$

 $\Rightarrow A^{3} = 3A^{2} - 2A = 3(3A - 2I) - 2A = 7A - 6I / A$
 $\Rightarrow A^{4} = 7A^{2} - 6A = 7(3A - 2I) - 6A = 15A - 14I$

de donde $A^4 = \begin{pmatrix} 15 & 30 \\ 0 & 30 \end{pmatrix} - \begin{pmatrix} -14 & 0 \\ 0 & -14 \end{pmatrix} = \begin{pmatrix} 1 & 30 \\ 0 & 16 \end{pmatrix}$ Por otra parte,

$$A^{2} - 3A + 2I = 0 \implies I = -\frac{1}{2}A^{2} + \frac{3}{2}A / \cdot A^{-1}$$

$$\Rightarrow A^{-1} = -\frac{1}{2}A + \frac{3}{2}I$$

de donde
$$A^{-1} = \begin{pmatrix} -1/2 & -1 \\ 0 & -1 \end{pmatrix} + \begin{pmatrix} 3/2 & 0 \\ 0 & 3/2 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 0 & 1/2 \end{pmatrix}$$

$$- \mathcal{UBB} -$$

Teorema 3.5.

Si A es una matriz simétrica con elementos reales, entonces sus valores propios son reales. Además sus vectores propios correpondientes a valores propios diferentes son ortogonales.

3.2 Diagonalización

Definición 3.4 (Matrices semejantes).

Se dice que dos matrices A y B de $n \times n$ son semejantes si existe una matriz invertible C de $n \times n$ tal que:

$$B = C^{-1}AC$$

Observación 3.7.

Alternativamente, se tiene que: A y B son semejantes si y sólo si existe una matriz invertible C tal que

$$CB = AC$$

Teorema 3.6.

Si A y B son matrices semejantes de $n \times n$, entonces A y B tienen el mismo polinomio característico y, por consiguiente, tienen los mismos valores propios.

Definición 3.5 (Matriz diagonalizable).

Una matriz A de $n \times n$ es diagonalizable si existe una matriz diagonal D tal que A es semejante a D.

Teorema 3.7.

Una matriz A de $n \times n$ es diagonalizable si y sólo si tiene n vectores propios linealmente independientes. En tal caso, la matriz diagonal D semejante a A está dada por:

$$D = \begin{pmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

donde $\lambda_1, \lambda_2, \dots, \lambda_n$ son los valores propios de A.

Si ${\cal C}$ es una matriz cuyas columnas son vectores propios linealmente independientes de ${\cal A},$ entonces

$$D = C^{-1}AC$$

Observación 3.8.

Si la matriz A de $n \times n$ tiene n valores propios diferentes, entonces A es diagonalizable.

4 Rectas y Planos

Primero estudiaremos el Plano (\mathbb{R}^2) y el Espacio (\mathbb{R}^3) Cartesianos , junto a sus propiedades y operaciones más importantes para el curso.

4.1 Plano Cartesiano

Definición 4.1 (Plano).

El plano cartesiano está formado por dos líneas rectas (ejes) perpendiculares entre sí, subdividiendo el plano en cuatro partes llamadas *cuadrantes*. La representación en coordenadas de los cuadrantes es la siguiente:

Figura 4.1: Cuadrantes en el Plano Cartesiano

Donde el eje horizontal se llama eje de abscisas o también eje x; el eje vertical se llama eje de las ordenadas o eje y, y el punto O se llama origen de coordenadas.

4.1.1. Espacio Cartesiano

El espacio cartesiano está formado por tres líneas rectas (ejes) perpendiculares entre sí, subdividiendo el espacio en ocho partes llamadas *octantes*. La representación en coordenadas de los cuadrantes es la siguiente:

Figura 4.2: Octantes en el Espacio Cartesiano

4.1.2. Puntos y Vectores

Definición 4.2.

Un punto representa una posición en el plano (espacio), mediante sus coordenadas (x_0, y_0) $((x_0, y_0, z_0)$ en el espacio), y un vector se representa por un segmento orientado con origen en A y extremo en B, con el símbolo \overrightarrow{AB} .

Figura 4.3: Representación de un punto y un Vector

Observación 4.1.

Dos puntos $A(x_1, y_1)$ y $B(x_2, y_2)$ son iguales si sus componentes correpondiente son iguales, es decir,

$$A(x_1, y_1) = B(x_2, y_2) \Leftrightarrow [x_1 = x_2 \land y_1 = y_2]$$

Observación 4.2 (Vector).

Un vector se caracteriza por su:

módulo: es el valor numérico de la magnitud vectorial. Se representa gráficamente por la longitud de la flecha.

dirección: está dada por la orientación en el plano o en el espacio de la recta que lo contiene.

sentido: se muestra mediante una punta de flecha situada en el extremo del vector, indicando hacia qué lado de la línea de acción se dirige el vector.

Observación 4.3.

- 1. Un vector queda completamente caracterizado mediante una magnitud, una dirección y un sentido.
- 2. Dos vectores son iguales solo si tienen la misma dirección, sentido y magnitud.
- 3. El vector $\overrightarrow{0}$ (vector nulo), corresponde a un vector de magnitud 0, pero sin dirección ni sentido.

4.2 Operaciones con Vectores

En \mathbb{R}^n , se define dos operaciones, suma y producto por escalar.

Definición 4.3.

Sean $\overrightarrow{u} = (u_1, u_2, \dots, uv_n)$, $\overrightarrow{v} = (v_1, v_2, \dots, v_n) \in \mathbb{R}^n$ dos vectores y $\alpha \in \mathbb{R}$ un escalar, se define:

Suma de Vectores

$$\begin{array}{cccc} +: & \mathbb{R}^n \times \mathbb{R}^n & \longrightarrow & \mathbb{R}^n \\ & (\overrightarrow{u}, \overrightarrow{v}) & \longrightarrow & \overrightarrow{u} + \overrightarrow{v} \end{array}$$

$$\overrightarrow{u} + \overrightarrow{v} = (u_1 + v_1, u_2 + v_2, \cdots, u_n + v_n) \tag{4.1}$$

Producto por escalar de Vectores

$$\begin{array}{ccc} :: & \mathbb{R} \times \mathbb{R}^n & \longrightarrow & \mathbb{R}^n \\ & (\alpha, \overrightarrow{u}) & \longrightarrow & \alpha \cdot \overrightarrow{u} \end{array}$$

$$\alpha \cdot \overrightarrow{u} = \alpha(u_1, u_2, \dots, u_n) = (\alpha u_1, \alpha u_2, \dots, \alpha u_n)$$
 (4.2)

Teorema 4.1.

Consideremos los vectores \overrightarrow{u} , \overrightarrow{v} , $\overrightarrow{w} \in \mathbb{R}^n$ y los escalares $\alpha, \beta \in \mathbb{R}$, entonces:

1.
$$\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$$

2.
$$(\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w} = \overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w})$$

3.
$$\overrightarrow{u} + \overrightarrow{0} = \overrightarrow{u}$$

4.
$$\overrightarrow{u} + \overrightarrow{-u} = \overrightarrow{0}$$

5.
$$\alpha (\overrightarrow{u} + \overrightarrow{v}) = \alpha \overrightarrow{u} + \alpha \overrightarrow{v}$$

6.
$$(\alpha + \beta)\overrightarrow{u} = \alpha \overrightarrow{u} + \beta \overrightarrow{u}$$

7.
$$(\alpha\beta)\overrightarrow{u} = \alpha(\beta\overrightarrow{u})$$

8.
$$1 \cdot \overrightarrow{u} = \overrightarrow{u}$$

9.
$$0 \cdot \overrightarrow{u} = \overrightarrow{0}$$

Observación 4.4.

$$(-1)\overrightarrow{u} = -\overrightarrow{u}$$

Figura 4.4: Representación de las operaciones

Ejemplo 4.1.

Determina si los siguientes vectores son iguales, opuestos, misma magnitud, distintos, etc.

Solución: (a) Los tres vectores son iguales

- (b) Los dos primeros tienen igual magnitud, sentido contrario, y el tercero es diferente a los otros.
 - (c) los tres tienen misma dirección y sentido, pero diferentes magnitudes.

Ejemplo 4.2.

A partir de la siguiente figura, determinar en cada caso si la expresión es correcta o incorrecta.

a)
$$\overrightarrow{w} + \overrightarrow{v} = \overrightarrow{d}$$

b)
$$\overrightarrow{f} + \overrightarrow{e} = \overrightarrow{b} + \overrightarrow{w}$$

c)
$$\overrightarrow{b} - \overrightarrow{c} = -\overrightarrow{a}$$

Solución: En cada caso, usando la representación geométrica (paralelógramo), se tiene que (a) es falsa pues resulta $-\overrightarrow{d}$, (b) y (c) son verdaderas

4.3 Producto Interior de Vectores

Se define el Producto Interior o Producto Punto.

Definición 4.4.

Sean $\overrightarrow{u} = (u_1, u_2, \dots, u_n), \overrightarrow{v} = (v_1, v_2, \dots, v_n) \in \mathbb{R}^n$ dos vectores, se define el **producto interior**

$$\begin{array}{ccc} \cdot \colon & \mathbb{R}^n \times \mathbb{R}^n & \longrightarrow & \mathbb{R} \\ & (\overrightarrow{u}, \overrightarrow{v}) & \longrightarrow & \overrightarrow{u} \cdot \overrightarrow{v} \end{array}$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i$$

$$\tag{4.3}$$

Teorema 4.2.

1.
$$\overrightarrow{u} \cdot \overrightarrow{0} = 0$$
, $\forall \overrightarrow{u}$

2.
$$\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$$

3.
$$\overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$$

4.
$$\overrightarrow{u} \cdot \overrightarrow{u} \ge 0$$
, $\forall \overrightarrow{u}$

5.
$$\overrightarrow{u} \cdot \overrightarrow{u} = 0 \Leftrightarrow \overrightarrow{u} = \overrightarrow{0}$$

Ejemplo 4.3.

Dados los vectores $\overrightarrow{u}=(1,2); \overrightarrow{v}=(-2,1)$ y $\overrightarrow{w}=(3,1)$ y los escalares $\lambda=-2,\beta=2.$

- 1. Calcule:
 - $a) \overrightarrow{u} \cdot \overrightarrow{v}$

 $c) \overrightarrow{u} \cdot \overrightarrow{u}$

b) $(\overrightarrow{u} + \overrightarrow{w}) \cdot \overrightarrow{v}$

- $d) \overrightarrow{v} \lambda \overrightarrow{u} + \beta \overrightarrow{w}$
- 2. Verifique geométricamente que $(\overrightarrow{u} + \overrightarrow{v}) \perp \overrightarrow{w}$
- 3. Verifique que se cumple que: $\overrightarrow{u} \cdot (\alpha \overrightarrow{v} \beta \overrightarrow{w}) = \alpha (\overrightarrow{v} \cdot \overrightarrow{u}) \beta (\overrightarrow{u} \cdot \overrightarrow{w})$

Solución:

1.
$$a) \ \overrightarrow{u} \cdot \overrightarrow{v} = (1,2) \cdot (-2,1) = (1)(-2) + (2)(1) = 0$$

b)
$$(\overrightarrow{u} + \overrightarrow{w}) \cdot \overrightarrow{v} = ((1,2) + (3,1)) \cdot (-2,1) = (4,3) \cdot (3,1) = 12 + 3 = 15$$

c)
$$\overrightarrow{u} \cdot \overrightarrow{u} = (1,2) \cdot (1,2) = (1)^2 + (2)^2 = 5$$

d)
$$\overrightarrow{v} - \lambda \overrightarrow{u} + \beta \overrightarrow{w} = (-2, 1) - (-2)(1, 2) + (2)(3, 1) = (-2, 1) + (2, 4) + (6, 2) = (6, 7)$$

2. En efecto:

Numéricamente se tiene

$$(\overrightarrow{u} + \overrightarrow{v}) \cdot \overrightarrow{w} = ((1,2) + (-2,1)) \cdot (3,1)$$

= $(-1,3) \cdot (3,1) = -3 + 3 = 0$

3.

$$\overrightarrow{u} \cdot (\alpha \overrightarrow{v} - \beta \overrightarrow{w}) \stackrel{?}{=} \alpha(\overrightarrow{v} \cdot \overrightarrow{u}) - \beta(\overrightarrow{u} \cdot \overrightarrow{w})$$

$$(1,2) \cdot ((-2)(-2,1) - (2)(3,1)) \stackrel{?}{=} (-2)((-2,1) \cdot (1,2)) - (2)((1,2) \cdot (3,1))$$

$$(1,2) \cdot ((4,-2) + (-6,-2)) \stackrel{?}{=} (-2)((-2)(1) + (1)(2)) - (2)((1)(3) + (2)(1))$$

$$(1,2) \cdot (-2,-4) \stackrel{?}{=} (2)(0) - (2)(5)$$

$$(1)(-2) + (2)(-4) \stackrel{?}{=} 0 - 10$$

$$-10 \equiv -10$$

4.3.1. Norma y Distancia

Definición 4.5 (Norma).

Sea $\overrightarrow{u} = (u_1, u_2, \dots, u_n) \in \mathbb{R}^n$, se define como la norma de \overrightarrow{u} , y denota:

$$||\overrightarrow{u}|| = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$$

Observación 4.5.

Sea $\overrightarrow{u} \in \mathbb{R}^n$

$$\|\overrightarrow{u}\|^2 = \overrightarrow{u} \cdot \overrightarrow{u}$$
 o $\|\overrightarrow{u}\| = \sqrt{\overrightarrow{u} \cdot \overrightarrow{u}}$

Teorema 4.3.

- 1. $\|\overrightarrow{u}\| \ge 0$, $\|\overrightarrow{u}\| = 0 \Leftrightarrow \overrightarrow{u} = \overrightarrow{0}$
- 2. $\|\alpha \overrightarrow{u}\| = |\alpha| \|\overrightarrow{u}\|$
- 3. $\|\overrightarrow{u} + \overrightarrow{v}\| \le \|\overrightarrow{u}\| + \|\overrightarrow{v}\|$ (designal dad triangular)
- 4. $|\overrightarrow{u} \cdot \overrightarrow{v}| = ||\overrightarrow{u}|| \cdot ||\overrightarrow{v}||$ (designaldad de CauchySchwarz)
- 5. $\| \overrightarrow{u} \| = \| \overrightarrow{u} \|$

Definición 4.6 (Vector Unitario).

Un vector se dice **unitario**, si su norma es uno, es decir, Si $||\overrightarrow{u}|| = 1 \Rightarrow$ es **vector unitario**

Notación: \hat{u}

Observación 4.6.

Sea $\overrightarrow{u} \neq \overrightarrow{0}$, entonces el vector $\overrightarrow{v} = \frac{\overrightarrow{u}}{\|\overrightarrow{u}\|}$ es unitario.

Definición 4.7 (Distancia entre puntos).

Sea $A, B \in \mathbb{R}^n$, dos puntos, se define distancia entre a y B como:

$$d(A,B) = ||B - A||$$

Ejemplo 4.4.

Considere los puntos en \mathbb{R}^3 , A(2,3,1), B(-1,1,-1), C(1,-2,-2).

- 1. Calcule la distancia de A a B.
- 2. Calcula la norma de \overrightarrow{AC}
- 3. Calcula la norma de \overrightarrow{BA}

Solución:

1.
$$d(A,B) = ||A-B|| = \sqrt{(2+1)^2 + (3-1)^2 + (1+1)^2} = \sqrt{17}$$

2.
$$\overrightarrow{AC} = (-1, -5, -3) \Rightarrow \|\overrightarrow{AC}\| = \sqrt{(-1)^2 + (-5)^2 + (-3)^2} = \sqrt{35}$$

3.
$$\|\vec{BA}\| = d(A, B) = \sqrt{17}$$

4.3.2. Ángulos entre vectores

Usando el **Teorema de los cosenos** en algebra y trigonometría, podemos encontrar una expresión que involucra el angulo formado por dos vectores.

Recordemos el teorema del coseno. Dado un triángulo de lados de longitud a,b y c y ángulo α entre losm lados a y b, se tiene que:

$$c^2 = a^2 + b^2 - 2ab\cos(\alpha)$$

Aplivando esto en términos de vectores, como muestra el dibujo, sea el triángulo formado por los vectores \overrightarrow{u} y \overrightarrow{v} , se tiene:

Figura 4.5: Angulo entre vectores

Ecuación 4.6.

Aplinado el Teo. de los Cosenos y propiedades del producto interior, tenemos:

$$\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\|\vec{u}\|\|\vec{v}\|\cos(\alpha)$$
 (4.5)

$$\|\overrightarrow{u} - \overrightarrow{v}\|^2 = (\overrightarrow{u} - \overrightarrow{v})(\overrightarrow{u} - \overrightarrow{v})$$

$$= \overrightarrow{u} \overrightarrow{u} + \overrightarrow{v} \overrightarrow{v} - 2\overrightarrow{u} \overrightarrow{v}$$

$$= \|\overrightarrow{u}\|^2 + \|\overrightarrow{v}\|^2 - 2 \cdot \overrightarrow{u} \cdot \overrightarrow{v}$$

$$(4.6)$$

Luego de (4.5) y (4.6) se tiene que

$$\|\overrightarrow{u}\| \cdot \|\overrightarrow{v}\| \cos(\alpha) = \overrightarrow{u} \cdot \overrightarrow{v}$$

Teorema 4.4 (Perpendicularidad).

Los vectores \overrightarrow{u} , $\overrightarrow{v} \in \mathbb{R}^n$ son ortogonales (perpendiculares) si y sólo si $\overrightarrow{u} \cdot \overrightarrow{v} = 0$

Observación 4.7 (Paralelismo).

Los vectores \overrightarrow{u} , $\overrightarrow{v} \in \mathbb{R}^n$ son paralelos si y sólo si $\overrightarrow{u} = k \cdot \overrightarrow{v}$, para algún $k \in \mathbb{R}$

4.3.3. Proyección

Figura 4.6: Proyección del vector \vec{v} sobre \vec{u}

$$Proy_{\overrightarrow{u}}\overrightarrow{v} = t \cdot \overrightarrow{u} \tag{4.7}$$

$$\overrightarrow{u} \cdot (\overrightarrow{v} - t\overrightarrow{u}) = \overrightarrow{u}\overrightarrow{v} - t\overrightarrow{u}\overrightarrow{u} = 0 \Rightarrow t = \frac{\overrightarrow{u}\overrightarrow{v}}{\overrightarrow{u}\overrightarrow{u}}$$

$$\tag{4.8}$$

Luego, se tiene que:

$$Proy_{\overrightarrow{u}}\overrightarrow{v} = \frac{\overrightarrow{u}\overrightarrow{v}}{\overrightarrow{u}\overrightarrow{u}}\overrightarrow{u}$$
 (4.9)

Observación 4.8 (Proyección el \mathbb{R}^2).

Dado un vector $\overrightarrow{u} = (u_x, u_y) \in \mathbb{R}^2$, sus componentes o proyecciones están dadas por:

$$\cos(\alpha) = \frac{u_x}{\|\overrightarrow{u}\|} \Rightarrow u_x = \|\overrightarrow{u}\| \cos(\alpha)$$

$$\operatorname{sen}(\alpha) = \frac{\|\overrightarrow{u_y}\|}{\|\overrightarrow{u}\|} \Rightarrow u_y = \|\overrightarrow{u}\| \operatorname{sen}(\alpha)$$

Observación 4.9 (Proyección en \mathbb{R}^3).

Proyección de un vector respecto a los planos xy, xz e yz respectivamente.

Observación 4.10 (Cosenos Directores).

Los cosenos directores del vector $\overrightarrow{u} = (u_1, u_2, u_3)$ son:

$$\cos(\alpha) = \frac{u_1}{\|\overrightarrow{u}\|}$$
 ; $\cos(\beta) = \frac{u_2}{\|\overrightarrow{u}\|}$; $\cos(\gamma) = \frac{u_3}{\|\overrightarrow{u}\|}$

donde α, β y γ son los **ángulos directores** de \overrightarrow{u} y

 $\alpha\colon$ es el ángulo formado por el vector \overrightarrow{u} y el eje positivo x.

 $\beta\colon$ es el ángulo formado por el vector \overrightarrow{u} y el eje positivo y.

 $\gamma\colon$ es el ángulo formado por el vector \overrightarrow{u} y el eje positivo z.

4.4 Producto Vectorial

Se define el Producto Vectorial o Producto Cruz solo para \mathbb{R}^3 ,

Definición 4.8.

Sean $\overrightarrow{u} = (u_1, u_2, u_3), \overrightarrow{v} = (v_1, v_2, v_3) \in \mathbb{R}^3$ dos vectores, se define el **producto** vectorial, donde $\hat{\imath} = (1, 0, 0), \hat{\jmath} = (0, 1, 0)$ y $\hat{k} = (0, 0, 1)$

$$\begin{array}{cccc} \times : & \mathbb{R}^3 \times \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ & (\overrightarrow{u}, \overrightarrow{v}) & \longrightarrow & \overrightarrow{u} \times \overrightarrow{v} \end{array}$$

$$\overrightarrow{u} \times \overrightarrow{v} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = (u_2v_3 - u_3v_2, -(u_1v_3 - u_3v_1), u_1v_2 - u_2v_1) \quad (4.10)$$

Teorema 4.5.

Sean los vectores \overrightarrow{u} , \overrightarrow{v} , $\overrightarrow{w} \in \mathbb{R}^3$, $\alpha \in \mathbb{R}$, entoces.

1.
$$\overrightarrow{u} \cdot (\overrightarrow{u} \times \overrightarrow{v}) = 0$$

2.
$$\overrightarrow{v} \cdot (\overrightarrow{u} \times \overrightarrow{v}) = 0$$

3.
$$\overrightarrow{u} \times \overrightarrow{v} = -\overrightarrow{v} \times \overrightarrow{u}$$

4.
$$\overrightarrow{u} \times (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \times \overrightarrow{v} + \overrightarrow{u} \times \overrightarrow{w}$$

5.
$$(\overrightarrow{v} + \overrightarrow{w}) \times \overrightarrow{u} = \overrightarrow{v} \times \overrightarrow{u} + \overrightarrow{w} \times \overrightarrow{u}$$

6.
$$\overrightarrow{u} \times \overrightarrow{0} = \overrightarrow{0} \times \overrightarrow{u} = \overrightarrow{0}$$

7.
$$\alpha(\overrightarrow{u} \times \overrightarrow{v}) = (\alpha \overrightarrow{u}) \times (\alpha \overrightarrow{v})$$

8.
$$\|\overrightarrow{u} \times \overrightarrow{v}\|^2 = \|\overrightarrow{u}\|^2 \|\overrightarrow{v}\|^2 - (\overrightarrow{u} \cdot \overrightarrow{v})^2$$
 (igualdad de Lagrange)

Observaciones 4.11.

1.
$$\overrightarrow{u} \parallel \overrightarrow{v} \Rightarrow \overrightarrow{u} = t \overrightarrow{v} \Rightarrow \overrightarrow{u} \times \overrightarrow{v} = \overrightarrow{0}$$

2.
$$\|\overrightarrow{u} \times \overrightarrow{v}\| = \|\overrightarrow{u}\| \cdot \|\overrightarrow{v}\| \operatorname{sen}(\alpha)$$

Observación 4.12.

El producto vectorial entre dos vectores produce un nuevo vector, que resulta perpendicular a ambos.

 $\overrightarrow{w} = \overrightarrow{v} \times \overrightarrow{u}$

Ejemplo 4.5.

- 1. Dados los vectores $\overrightarrow{u} = (-2, 1, -1)$, $\overrightarrow{v} = (0, 2, 1) \in \mathbb{R}^3$, calcular $\overrightarrow{u} \times \overrightarrow{v}$ y mostrar que $\overrightarrow{u} \cdot (\overrightarrow{u} \times \overrightarrow{v}) = 0$
- 2. Muestre que si $\hat{i} = (1,0,0), \hat{j} = (0,1,0), \hat{k} = (0,0,1),$ entonces $\hat{i} \times \hat{j} = \hat{k}$ y $\hat{k} \times \hat{j} = -\hat{i}$

Solución:

1.
$$\overrightarrow{u} \times \overrightarrow{v} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ -2 & 1 & -1 \\ 0 & 2 & 1 \end{vmatrix} = \begin{pmatrix} \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix}, \begin{vmatrix} -2 & -1 \\ 0 & 1 \end{vmatrix}, \begin{vmatrix} -2 & 1 \\ 0 & 2 \end{vmatrix} \end{pmatrix} = (3, 2, -4)$$

Además,
$$(-2,1,-1)\cdot(3,2,-4)=(-2)(3)+(1)(2)+(-1)(-4)=0$$

2.
$$\hat{\imath} \times \hat{\jmath} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} = \left(\begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix}, \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix}, \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \right) = (0, 0, 1) = \hat{k}$$

$$\hat{k} \times \hat{j} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix} = \left(\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}, \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix}, \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} \right) = (-1, 0, 0) = -(1, 0, 0) = -\hat{i}$$

Observaciones 4.13 (Area y Volumen).

1. Consideremos un paralelógramo determinado por dos vectores \overrightarrow{u} y \overrightarrow{v} , como se muestra en la figura anexa, entonces su área esta dada por:

$$A = \|\overrightarrow{u} \times \overrightarrow{v}\|$$

2. Consideremos un paralelepípedo determinado por tres vectores no coplanares \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} $\in \mathbb{R}^3$, como se muestra en la figura anexa, entonces el volumen del paralelelípedo es dado por:

$$V = |\overrightarrow{u} \cdot (\overrightarrow{v} \times \overrightarrow{w})|$$
 (el valor absoluto del producto mixto)

Figura 4.7: Fórmulas de área y volumen

Ejemplo 4.6.

Calcule el área del triángulo de vértices A(1,2,2), B(-2,2,0), C(0,3,1), y luego muestra que no es rectangular.

Solución:

Dado que el triángulo de vertices ABC se puede construir con los vectores \overrightarrow{AB} y \overrightarrow{AC} , su área será:

$$A_{\Delta} = \frac{1}{2} \| \overrightarrow{AB} \times \overrightarrow{AC} \| = \frac{1}{2} \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 3 & 0 & 2 \\ 1 & -1 & 1 \end{vmatrix} = \frac{1}{2} \| (2, -1, -3) \| = \frac{1}{2} \sqrt{14}$$

Por otro lado, si el triángulo es rectángulo dos de sus lados deben ser perpendiculatres. $\overrightarrow{AB} \cdot \overrightarrow{AC} = (3,0,2) \cdot (1,-1,1) = 5 \neq 0$

$$\overrightarrow{AB} \cdot \overrightarrow{BC} = (3,0,2) \cdot (2,1,1) = 8 \neq 0$$

$$\overrightarrow{AC} \cdot \overrightarrow{BC} = (1,-1,1) \cdot (2,1,1) = 2 \neq 0$$

Luego no es rectángulo.

4.5 Ecuación de la Recta

Sea $P_0(x_0, y_0, z_0)$ un punto perteneciente a la recta \mathcal{L} , $\overrightarrow{l} = (a, b, c)$ un vector paralelo a la recta (**vector director**), y P(x, y, z) un punto cualquiera del espacio, entonces se tiene que:

Figura 4.8: Ecuación de la Recta

$$P \in \mathcal{L} \iff \overrightarrow{P_0P} / | \overrightarrow{l}$$

$$\Leftrightarrow \overrightarrow{P_0P} = k \cdot \overrightarrow{l}$$

$$\Leftrightarrow (P - P_0) = k \cdot \overrightarrow{l}$$

$$\Leftrightarrow P = P_0 + k \cdot \overrightarrow{l}$$

$$\Leftrightarrow (x, y, z) = (x_0, y_0, z_0) + k \cdot (a, b, c)$$

$$(4.11)$$

Observación 4.14 (Forma Vectorial).

Esta forma de escribir la ecuación de una recta (4.12), se llama forma vectorial

$$L: (x, y, z) = (x_0, y_0, z_0) + k \cdot (a, b, c)$$
(4.13)

Observación 4.15 (Ecuación Paramétrica).

De la ecuación (4.12) se obtiene que:

$$(x,y,z) = (x_0, y_0, z_0) + k \cdot (a,b,c) \implies (x,y,z) = (x_0 + ka, y_0 + kb, z_0 + kc)$$

$$\Rightarrow L : \begin{cases} x = x_0 + ka \\ y = y_0 + kb, & k \in \mathbb{R} \\ z = z_0 + kc \end{cases}$$
(4.14)

Observación 4.16 (Ecuaciones Simétricas).

Y de la ecuación (4.14) se obtiene que:

$$\begin{cases} x = x_0 + ka \\ y = y_0 + kb, \ k \in \mathbb{R} \end{cases} \Rightarrow \begin{cases} \frac{x - x_0}{a} = k \\ \frac{y - y_0}{b} = k \end{cases} \Rightarrow L : \frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c} \quad (4.15)$$
$$\frac{z - z_0}{c} = k$$

Ejemplo 4.7.

- 1. Encuentre la ecuación de la recta (sus tres formas de escritura), que pasa por el punto A(1,-1,2) y tiene dirección $\overrightarrow{l}=(2,-2,1)$
- 2. Escriba en sus tres formas la ecuación de la recta que pasa por los puntos A(1,1,1) y B(2,1,-1)

Solución:

1. Forma vectorial: $L:(x,y,z)=(1,-1,2)+\lambda(2,-2,1),\lambda\in\mathbb{R}$

Forma parámetrica: $L: \begin{cases} 1+2t \\ -1-2t \end{cases} \quad t \in \mathbb{R}$ 2+t

Forma simétrica: $L : \frac{x-1}{2} = \frac{y+1}{-2} = z - 2$

2. En este caso, sonsideremos a $P_0 = A = (1, 1, 1)$ y $\overrightarrow{l}_L = \overrightarrow{AB} = (1, 0, -2)$, luego la ecuación queda escrita:

Forma vectorial: $L:(x,y,z)=(1,1,1)+\lambda(1,0,-2),\lambda\in\mathbb{R}$

Forma parámetrica:
$$L: \begin{cases} 1+t \\ 1 \\ 1-2t \end{cases}$$

Forma simétrica: $L: x-1=\frac{z-1}{-2}; y=1$

Propiedades 1.

- 1. $L_1 \| L_2 \Leftrightarrow \overrightarrow{l}_1 \| \overrightarrow{l}_2$
- 2. $L_1 \perp l_2 \Leftrightarrow \overrightarrow{l}_1 \perp \overrightarrow{l}_2$
- 3. $\angle (L_1, L_2) \Leftrightarrow \angle (\overrightarrow{l}_1, \overrightarrow{l}_2)$

Ejemplo 4.8.

Verifique que las rectas $L_1:(x,y,z)=(1,-2,3)+\lambda(2,-3,1),\lambda\in\mathbb{R}$ y $L_2:x+1=\frac{2-z}{2};y=2$ son perpendiculares.

Solución: Notemos que los vectores directores son $\overrightarrow{l}_1 = (2, -3, 1)$ y $\overrightarrow{l}_2 = (1, 0, -2)$ respectivamente, y además $\overrightarrow{l}_1 \cdot \overrightarrow{l}_2 = 0$, luego las rectas son perpendiculares.

4.5.1. Posición Relativa entre Rectas

Figura 4.9: Ecuaciones paralelas, secantes, alabeadas y coincidentes respectivamente

Ejemplo 4.9.

Dadas las rectas:

$$L_1: (x, y, z) = (1, -1, 2) + \lambda(3, 2, 2), \lambda \in \mathbb{R},$$

$$L_2: \frac{2(x-1)}{3} = \frac{2-y}{-1} = z+1$$

$$y \quad L_3 = \begin{cases} x = 1-2t \\ y = 3t \\ z = 2+2t \end{cases}$$

- 1. Describa la posición relativa entre las recta L_1 y L_2 .
- 2. Encuentre el ángulo formado por las recta L_2 y L_3 .
- 3. Encuentre la intersección, si existe entre las recta L_1 y L_3 .
- 4. Encuentre la ecuación de una recta que intersecta a L_1 y es ortogonal a L_2 .

Solución: Escribiendo en forma adecuada la recta $L_2: \frac{x-1}{3/2} = \frac{y-2}{1} = \frac{z-1}{1}$; se tiene que su vector director es $\overrightarrow{l}_2 = (3/2, 1, 1)$

- 1. Dado que existe $k=2\in\mathbb{R},$ tal que $\left[\overrightarrow{l}_1=k\overrightarrow{l}_2\wedge(1,-1,2)\in L_1\text{ pero }(1,-1,2)\notin L_2\right]\Rightarrow$ $\begin{bmatrix} \overrightarrow{l}_1 & \overrightarrow{l}_2 \end{bmatrix}$
- 2. Como el ángulo formado por las rectas es el mismo que forman sus vectores directores, y los vectores directores son $\vec{l}_2 = (3/2, 1, 1)$ y $\vec{l}_3 = (-2, 3, 2)$ respectivamente, tenemos que:

$$\angle \left(l_2, l_3 \right) = \arccos \left(\frac{l_2 \cdot l_3}{\|l_2\| \cdot \|l_3\|} \right) = \arccos \left(\frac{2}{17/2} \right) = 76, 4^\circ$$

- 3. Si L_1 se intersecta con L_3 , entonces existe un punto $P_0(x_0, y_0, z_0)$ que pertenece a ambas rectas, es decir, existen $\lambda, t \in \mathbb{R}$ que producen el mismo punto P_0 .
- 4. Existen infinitas rectas que cumplen esta característica, solo necesitamos un punto de la recta L_1 y un vector director que sea perpendicular a L_2 . Con esto: $P(1,-1,2) \in L_1$ y $\overrightarrow{l} = (0, 1, -1)$ es perpendicular a L_2 , luego la recta pedida es,

$$L:(x,y,z) = (1,-1,2) + \lambda(0,1,-1)$$

4.5.2. Distancia de un punto a una recta

Sea $L:(x,y,z)=(x_0,y_0,z_0)+\lambda(a,b,c), \quad \lambda \in \mathbb{R}$ una recta y $P(x_1,y_1,z_1)$ un punto cualquiera, entonces la distancia mínima entre el punto y la recta esta dada por:

Considerando la imagen de la recta y el punto que se presenta se tiene: Como el ángulo entre en vector $\overrightarrow{P_0P}$ y la recta L es el mismo que se forma el vector $\overrightarrow{P_0P}$ con la dirección (\overrightarrow{l}) de la recta

$$\operatorname{sen}(\alpha) = \frac{d}{\|\overrightarrow{P_0P}\|}$$

$$d = \|\overrightarrow{P_0P}\| \operatorname{sen}(\alpha), \text{ amplificando}$$

$$d = \frac{\|\overrightarrow{P_0P}\| \|\overrightarrow{l}\| \operatorname{sen}(\alpha)}{\|\overrightarrow{l}\|}$$

$$d(L, P) = \frac{\|\overrightarrow{P_0P} \times \overrightarrow{l}\|}{\|\overrightarrow{l}\|}$$

Figura 4.10: Distancia de un punto a una recta

Ejemplo 4.10.

Calcule a que distancia del origen se encuentra la recta $L:(x,y,z)=(-2,1,-1)+\lambda(-4,3,5),\lambda\in\mathbb{R}$

Solución: En este caso el punto P es (0,0,0) (origen), y $P_0 = (-2,1,-1)$, luego usando la formula:

$$d(L,P) = \frac{\|\overrightarrow{P_0P} \times \overrightarrow{l}\|}{\|\overrightarrow{l}\|} = \frac{\|(2,1,-1) \times (-4,3,5)\|}{\|(-4,3,5)\|} = \frac{\|(8,-6,10)\|}{\|(-4,3,5)\|} = \frac{\sqrt{200}}{\sqrt{50}} = 2$$

4.6 Ecuación del Plano

Sea $P_0(x_0, y_0, z_0)$ un punto perteneciente al plano \mathcal{P} , $\overrightarrow{N} = (A, B, C)$ un vector perpendicular (**vector normal**) al plano, y P(x, y, z) un punto cualquiera del espacio, entonces se tiene que:

Figura 4.11: Ecuación del Plano

$$P \in \mathcal{P} \iff \overrightarrow{P_0P} \perp \overrightarrow{N}$$

$$\Leftrightarrow \overrightarrow{P_0P} \cdot \overrightarrow{N} = 0$$

$$\Leftrightarrow (P - P_0) \cdot \overrightarrow{N} = 0$$

$$\Leftrightarrow (x - x_0.y - y_0, z - z_0) \cdot (A, B, C) = 0$$

$$\Leftrightarrow A(x - x_0) + B(y - y_0) + c(z - z_0) = 0$$

$$\Leftrightarrow Ax + By + Cz = Ax_0 + By_0 + Cz_0$$

$$\Leftrightarrow Ax + By + Cz = D \qquad (4.16)$$

Observación 4.17 (Ecuación Vectorial).

Como se muestra en la figura (4.12), dados dos vectores \overrightarrow{u} , $\overrightarrow{v} \in \mathcal{P}$, no paralelos, donde $\overrightarrow{u} = (d_1, d_2, d_3)$ y $\overrightarrow{v} = (m_1, m_2, m_3)$. Entonces cualquier punto P del plano se puede construir a través de una suma adecuada de estos vectores, es decir:

$$P = P_0 + \alpha \cdot \overrightarrow{u} + \beta \cdot \overrightarrow{v}$$

$$P(x, y, z) = P_0(x_0, y_0, z_0) + \alpha \cdot (d_1, d_2, d_3) + \beta \cdot (m_1, m_2, m_3)$$
(4.17)

Figura 4.12: Ecuación del Plano usando dos vectores

Ejemplo 4.11.

- 1. Encuentre la ecuación cartesiana del plano que pasa por el punto A(1,-1,-2) y tiene vector normal $\overrightarrow{N} = (2,-1,3)$.
- 2. Encuentre la ecuación cartesiana y vectorial del plano que pasa por los puntos A(1,0,2), B(2,-1,-1) y C(3,-2,1).

Solución:

1. Sea P(x, y, z) un punto del plano, entonces:

$$\overrightarrow{AP} \cdot \overrightarrow{N} = 0 \implies (x - 1, y + 1, z + 2) \cdot (2, -1, 3) = 0$$

 $\Rightarrow (2x - 2) + (-y - 1) + (3z + 6) = 0$
 $\Rightarrow 2x - y + 3z = -3$

2. Para la ecuación vectorial, consideremos los vectores \overrightarrow{AB} y \overrightarrow{AC} , y el punto A, luego la ecuación es:

$$\pi: (x, y, z) = (1, 0, 2) + \lambda(1, -1, -3) + \beta(2, -2, -1), \quad \lambda, \beta \in \mathbb{R}$$

Para la ecuación cartesiana, consideremos como vector normal $\overrightarrow{N} = \overrightarrow{AB} \times \overrightarrow{AC}$, el punto A, luego calculando,

$$\overrightarrow{N} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & -3 \\ 2 & -2 & -1 \end{vmatrix} = (-5, -5, 0) \Rightarrow (x - 1, y + 1, z + 2)(-5, -5, 0) = 0 \Rightarrow x + y = 0$$

Propiedades 2.

Sean $\pi_1: A_1x + B_1y + C_1z = D_1$ y $\pi_2: A_2x + B_2y + C_2z = D_2$ dos planos cuyos vectores normales son \overrightarrow{N}_1 y \overrightarrow{N}_2 respectivamente, entonces se tiene que:

1.
$$\pi_1 \parallel \pi_2 \Leftrightarrow \left[\overrightarrow{N}_1 \parallel \overrightarrow{N}_2 \wedge D_1 \neq D_2 \right]$$

2.
$$\pi_1 \perp \pi_2 \Leftrightarrow \overrightarrow{N}_1 \perp \overrightarrow{N}_2$$

3.
$$\angle(\pi_1, \pi_2) = \angle(\overrightarrow{N}_1; \overrightarrow{N}_2)$$

4.6.1. Posición Relativa entre Planos

Figura 4.13: Ecuaciones paralelas, secantes y coincidentes respectivamente

Ejemplo 4.12.

Dados loa planos: $\pi_1 : 2x - 3y + z - 1 = 0$, $\pi_2 : 2y - 2x - 3z = 1$ y $\pi_3 : (x, y, x) = (-3, 1, 2) + \lambda(1, -1, 0) + \beta(2, 1, -3)$, $\lambda, \beta \in \mathbb{R}$.

- 1. Escriba la ecuación cartesiana del plano π_3 .
- 2. Estudie la posición relativa entre π_1 y π_3 .
- 3. ¿Qué ángulo forman los planos π_1 y π_2 .
- 4. Encuentre la intersección (si existe) entre los planos π_2 y π_3 .
- 5. Encuentre la intersección entre el plano π_1 y la recta $L: \frac{x-1}{2} = 2 + y = 2z 1$
- 6. Encuentre la intersección del plano π_1 con el plano xz

Solución:

1. Considerando los vectores directores para construir el vector normal y el punto (-3, 1, 2), se tiene que:

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 0 \\ 2 & 1 & -3 \end{vmatrix} = (3, 3, 3) \Rightarrow \overrightarrow{N} = (1, 1, 1) \Rightarrow (x + 3, y - 1, z - 2)(1, 1, 1) = 0 \Rightarrow \pi_3 : x + y + z = 0$$

2. Considerando los vectores normales orrespondientes,

$$\overrightarrow{N}_1 = (2, -3, 1)$$

$$\overrightarrow{N}_3 = (1, 1, 1)$$

$$\Rightarrow \overrightarrow{N}_1 \cdot \overrightarrow{N}_3 = 0 \Rightarrow \overrightarrow{N}_1 \perp \overrightarrow{N}_3 \Rightarrow \pi_1 \perp \pi_3$$

3. Como el ángulo formado por los vectores normales es el formado por los planos, se tiene que:

$$\angle (\pi_1, \pi_2) = \arccos \left(\frac{(2, -3, 1) \cdot (-2, 2, -3)}{\|(2, -3, 1)\| \cdot \|(-2, 2, -3)\|} \right) = \arccos \left(\frac{-13}{\sqrt{14}\sqrt{17}} \right) = 147, 4^{\circ}$$

luego, la intersección es la recta de ecuación $L: \begin{cases} x=t \\ y=(1/5)-(1/5)t \end{cases}, t \in \mathbb{R}$ z=(1/5)-(4/5)t

5. Escribiendo en forma paramétrica la ecuación de la recta, se tiene que: $\begin{cases} x = 1 + 2t \\ y = -2 + t \\ z = (1/2) + t/2 \end{cases}$

luego, un punto cualquiera de la recta es de la forma (1 + 2t, -2 + t, 1/2 + t/2) y si esta recta intersecta al plano, este tambien satisface su ecuación, es decir,

$$2(1+2t) - 3(-2+t) + (1/2+t/2) - 1 = 0 \Rightarrow 3t/2 + 7/2 = 0 \Rightarrow t = -7/2$$

con lo que el punto de intersección es: (-6, -11/2, -5/4)

6. Notemos que, el plano xz tiene ecuación y = 0, luego la intersección con π_1 nos da $2x + z - 1 = 0 \Rightarrow z = 1 - 2x$, luego la ecuación es:

$$L: (x, y, z) = (0, 0, 1) + \lambda(1, 0, -2), \lambda \in \mathbb{R}$$

4.6.2. Distancia de un punto a un plano

Sea $\pi: Ax + By + Cz + \mathbf{D} = \mathbf{0}$ un plano y $P(x_1, y_1, z_1)$ un punto cualquiera, entonces la distancia mínima entre el punto y el plano esta dada por:

Considerando la imagen del plano y el punto que se presenta se tiene: Como el ángulo entre en vector $\overrightarrow{P_0P}$ y la recta que describe la distancia d es el mismo que forma el vector $\overrightarrow{P_0P}$ con la normal del plano

$$\cos(\alpha) = \frac{d}{\|\overrightarrow{P_0P}\|}$$

$$d = \|\overrightarrow{P_0P}\| \cos(\alpha), \text{ amplificando}$$

$$d = \frac{\|\overrightarrow{P_0P}\| \|\overrightarrow{N}\| \cos(\alpha)}{\|\overrightarrow{N}\|}$$

$$d(\pi, P) = \frac{|\overrightarrow{P_0P} \cdot \overrightarrow{N}|}{\|\overrightarrow{N}\|}$$

Figura 4.14: Distancia de un punto a un Plano

Observación 4.18.

Dado que:

$$d(\pi, P) = \frac{|\overrightarrow{P_0P} \cdot \overrightarrow{N}|}{\|\overrightarrow{N}\|}$$

$$= \frac{|(P - P_0) \cdot \overrightarrow{N}|}{\|\overrightarrow{N}\|}$$

$$= \frac{|(P\overrightarrow{N} - P_0\overrightarrow{N})|}{\|\overrightarrow{N}\|}$$

$$= \frac{|(P_0\overrightarrow{N} - P_0\overrightarrow{N})|}{\|\overrightarrow{N}\|}$$

$$= \frac{|(P_0\overrightarrow{N} - P_0\overrightarrow{N})|}{\|\overrightarrow{N}\|}$$

$$= \frac{|(Ax_0 + By_0 + Cz_0) - (Ax + By + Cz_0)|}{\sqrt{A^2 + B^2 + C^2}}$$

$$= \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

Ejemplo 4.13.

Encuentre la distancia del punto P(1,2,3) y el plano $\pi: 2x - 3y + z = 2$

Solución: Escrito en forma adecuadas el plano 2x - 3y + z - 2 = 0, se tiene que la distancia es:

$$d(\pi, P) = \frac{|2(1) - 3(2) + 1(3) - 2|}{\sqrt{(2)^1 + (-3)^2 + (1)^2}} = \frac{3}{\sqrt{14}} = \frac{3}{14}\sqrt{14}$$