

Übung 13: SAT & Physical Design

Einführung in die Rechnerarchitektur

Michael Morandell

School of Computation, Information and Technology Technische Universität München

27. - 31. Januar 2025

Mitschriften & Infos

Montags:

https://zulip.in.tum.de/#narrow/stream/2668-ERA-Tutorium---Mo-1000-4

Donnerstags:

https://zulip.in.tum.de/#narrow/stream/2657-ERA-Tutorium—Do-1200-2

Website: https://home.in.tum.de/ momi/era/

Keine Garantie für die Richtigkeit der Tutorfolien. Bei Unklarheiten/Unstimmigkeiten haben VL/ZÜ-Folien recht!

Inhaltsübersicht

- Wiederholung
- Tutorblatt
 - Verifikation (SAT)
 - ☐ Ministerium für Alberne Gangarten
 - Single-Net Routing

SAT

- Satisfiability → Erfüllbarkeit einer boolschen Funktion feststellen
- moderne Solver können sichere Aussage über SAT/UNSAT treffen, ohne alle Variablenbelegungen durchzuprobieren → einigermaßen effizient lösbar¹
- DPLL und Konfliktgraphen nicht mehr relevant für ERA
- Formulierung als KNF (Konjunktive Normalform, CNF): OR in den Klammern, AND dazwischen, z.B.:

$$(x_1+x_2+x_3)\cdot(\overline{x}_2+x_4+x_5)\cdot(\overline{x}_1+x_3+\overline{x}_5)$$

¹SAT ist und bleibt aber trotzdem NP-vollständig:)

SAT: Schaltkreisäquivalenz

c	d	$e = c \oplus d$
0	0	0
0	1	1
1	0	1
1	1	0

- existiert eine Belegung von a,b, sodass e=1, dann sind die beiden Schaltkreise für diese Belegung nicht äquivalent
- eine solche Schaltung heißt Miter
- KNF kann durch Tseitin-Transformation aufgestellt werden

Einschub: Tseitin-Transformation

- $\overbrace{1}) \overline{(a \wedge b)} \leftrightarrow c \wedge \\$
- $(\overline{a} \lor \overline{b}) \leftrightarrow d \land$
- $(c \oplus d) \leftrightarrow e \land$
- $\overbrace{4}$ ϵ

nach Umformung zu KNF und Berechnung mittels eines SAT-Solvers erhalten wir UNSAT, die Schaltkreise sind also äquivalent

SI:	tΙ	=	1			
s2:	t2	=	5			
s3:	t3	=	7			
s4:	t5	=	t1	+	t2	
s5:	t4	=	t3	+	t5	
s6:	t1	=	t4	+	t5	
c7•	+2	_	+ 1	_	+ 3	


```
s1: t1 = 1

s2: t2 = 5

s3: t3 = 7

s4: t5 = t1 + t2

s5: t4 = t3 + t5

s6: t1 = t4 + t5
```

s7: t2 = t1 + t3

- Ziel: Verbindung von Terminalen mit kürzesten Pfaden
- rektilinear (geradlinig): nur horizontale/vertikale Verbindungen

- Hanan-Punkte: mögliche Steinerknoten (Abzweigungen im Steinerbaum)
- Schnittpunkte von Geraden durch Terminalknoten
- Reduziert Menge an Abzweigungspunkten, die betrachtet werden müssen

Konstruktion des Steinerbaums:

 Finde Terminale mit minimaler Manhatten-Distanz

- Finde Terminale mit minimaler Manhatten-Distanz
- Konstruiere die kürzesten Verbindungen (bounding box)

- Finde Terminale mit minimaler Manhatten-Distanz
- Konstruiere die kürzesten Verbindungen (bounding box)
- Wähle die Verbindung, welche den geringsten Abstand zu einem der anderen Terminalknoten hat

- Finde Terminale mit minimaler Manhatten-Distanz
- Konstruiere die kürzesten Verbindungen (bounding box)
- Wähle die Verbindung, welche den geringsten Abstand zu einem der anderen Terminalknoten hat
- Finde Terminale mit minimaler
 Manhatten-Distanz zur konstruierten
 Verbindung und fahre mit Schritt 2 fort

- Finde Terminale mit minimaler Manhatten-Distanz
- Konstruiere die kürzesten Verbindungen (bounding box)
- Wähle die Verbindung, welche den geringsten Abstand zu einem der anderen Terminalknoten hat
- Finde Terminale mit minimaler
 Manhatten-Distanz zur konstruierten
 Verbindung und fahre mit Schritt 2 fort

- Finde Terminale mit minimaler Manhatten-Distanz
- Konstruiere die kürzesten Verbindungen (bounding box)
- Wähle die Verbindung, welche den geringsten Abstand zu einem der anderen Terminalknoten hat
- Finde Terminale mit minimaler
 Manhatten-Distanz zur konstruierten
 Verbindung und fahre mit Schritt 2 fort

- Finde Terminale mit minimaler Manhatten-Distanz
- Konstruiere die kürzesten Verbindungen (bounding box)
- Wähle die Verbindung, welche den geringsten Abstand zu einem der anderen Terminalknoten hat
- Finde Terminale mit minimaler
 Manhatten-Distanz zur konstruierten
 Verbindung und fahre mit Schritt 2 fort

- Finde Terminale mit minimaler Manhatten-Distanz
- Konstruiere die kürzesten Verbindungen (bounding box)
- Wähle die Verbindung, welche den geringsten Abstand zu einem der anderen Terminalknoten hat
- Finde Terminale mit minimaler
 Manhatten-Distanz zur konstruierten
 Verbindung und fahre mit Schritt 2 fort

- Finde Terminale mit minimaler Manhatten-Distanz
- Konstruiere die kürzesten Verbindungen (bounding box)
- Wähle die Verbindung, welche den geringsten Abstand zu einem der anderen Terminalknoten hat
- Finde Terminale mit minimaler
 Manhatten-Distanz zur konstruierten
 Verbindung und fahre mit Schritt 2 fort

- Finde Terminale mit minimaler Manhatten-Distanz
- Konstruiere die kürzesten Verbindungen (bounding box)
- Wähle die Verbindung, welche den geringsten Abstand zu einem der anderen Terminalknoten hat
- Finde Terminale mit minimaler
 Manhatten-Distanz zur konstruierten
 Verbindung und fahre mit Schritt 2 fort

- Finde Terminale mit minimaler Manhatten-Distanz
- Konstruiere die kürzesten Verbindungen (bounding box)
- Wähle die Verbindung, welche den geringsten Abstand zu einem der anderen Terminalknoten hat
- Finde Terminale mit minimaler
 Manhatten-Distanz zur konstruierten
 Verbindung und fahre mit Schritt 2 fort

- Finde Terminale mit minimaler Manhatten-Distanz
- Konstruiere die kürzesten Verbindungen (bounding box)
- Wähle die Verbindung, welche den geringsten Abstand zu einem der anderen Terminalknoten hat
- Finde Terminale mit minimaler
 Manhatten-Distanz zur konstruierten
 Verbindung und fahre mit Schritt 2 fort

- Finde Terminale mit minimaler Manhatten-Distanz
- Konstruiere die kürzesten Verbindungen (bounding box)
- Wähle die Verbindung, welche den geringsten Abstand zu einem der anderen Terminalknoten hat
- Finde Terminale mit minimaler
 Manhatten-Distanz zur konstruierten
 Verbindung und fahre mit Schritt 2 fort

Fragestunde

Nächste Woche: Kein Übungsblatt -> Zeit für Wiederholung + Fragen. Bitte gib in der Umfrage unten an, welche konkreten Themengebiete wir behandeln sollen

https://tinyurl.com/era-fragestunde

Ein Teil der Folien stammt aus dem Foliensatz von Niklas Ladurner. Die Slides zur Registerallokation wurden von Bjarne Hansen übernommen. Vielen Dank dafür!