In the Claims:

Please amend the claims as follows:

1. (Currently amended) A process for production of higher linear alpha olefins and/or alkyl-branched alpha olefins <u>having a chain length of from 4 to 100 carbon atoms</u> comprising:

co-oligomerising one or more alpha olefins other than ethylene with ethylene in the presence of a metal catalyst system employing one or more bis-aryliminepyridine MX_a complexes and/or one or more [bis-aryliminepyridine $MY_p.L_b^+$][NC]_q complexes, said bisaryliminepyridine complexes comprising a ligand of the formula,

$$R_{4}$$
 R_{2}
 R_{3}
 R_{5}
 R_{4}
 R_{5}
 R_{1}
 R_{2}
 R_{3}
 R_{5}
 R_{5}
 R_{1}
 R_{2}
 R_{3}
 R_{5}

wherein M is a metal atom selected from Fe or Co; a is 2 or 3; X is halide, optionally substituted hydrocarbyl, alkoxide, amide, or hydride; Y is a ligand which may insert an olefin; NC- is a non-coordinating anion; p+q is 2 or 3, matching the formal oxidation of said metal atom; L is a neutral Lewis donor molecule; b = 0, 1, or 2; R_1 - R_5 are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 vicinal to one another taken together may form a ring; each Z, which may be identical or different, is an optionally substituted aromatic hydrocarbon ring; an optionally substituted polyaromatic hydrocarbon moiety; an optionally substituted heterohydrocarbyl moiety; or an optionally substituted aromatic hydrocarbon ring in combination with a metal, said optionally substituted aromatic hydrocarbon ring being π -co-ordinated to the metal; said co-oligomerising being carried out under conditions comprising an ethylene pressure of less than 2.5 MPa from about 0.1 MPa to about 1.6 MPa and a temperature of from about -100°C to about 300°C.

2. (Original) The process of Claim 1 wherein said ligand is of the formula,

$$R_{1}$$
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{7}
 R_{8}
 R_{10}
 R_{10}

wherein R_1 - R_{10} are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 , R_6 - R_{10} vicinal to one another taken together may form a ring; R_6 may be taken together with R_4 to form a ring; R_{10} may be taken together with R_4 to form a ring; Z is an optionally substituted aromatic hydrocarbon ring; an optionally substituted polyaromatic hydrocarbon moiety; an optionally substituted heterohydrocarbyl moiety; or an optionally substituted aromatic hydrocarbon ring in combination with a metal, said optionally substituted aromatic hydrocarbon ring being π -co-ordinated to the metal.

3. (Original) The process of Claim 1 wherein said ligand is of the formula,

(II)

$$R_{2}$$
 R_{3}
 R_{15}
 R_{14}
 R_{10}
 R_{11}
 R_{12}
 R_{13}
 R_{11}

wherein R₁-R₅, R₇-R₉ and R₁₂-R₁₄ are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R₁-R₃, R₇-R₉ and R₁₂-R₁₄ vicinal to one another taken together may form a ring; R₆ is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R₇ or R₄ to form a ring; R₁₀ is hydrogen, optionally

substituted hydrocarbyl, an inert functional group, or taken together with R_9 or R_4 to form a ring; R_{11} is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R_5 or R_{12} to form a ring; and R_{15} is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R_5 or R_{14} to form a ring.

4. (Original) The process of Claim 3 wherein R₁-R₅, R₇-R₉ and R₁₂-R₁₄ are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R₁-R₃, R₇-R₉ and R₁₂-R₁₄ vicinal to one another taken together may form a ring; R₆ is a primary carbon group, a secondary carbon group or a tertiary carbon group; and provided that:

when R_6 is a primary carbon group none, one or two of R_{10} , R_{11} and R_{15} are primary carbon groups, and the remainder of R_{10} , R_{11} and R_{15} are hydrogen;

when R_6 is a secondary carbon group none or one of R_{10} , R_{11} and R_{15} is a primary carbon group or a secondary carbon group and the remainder of R_{10} , R_{11} and R_{15} are hydrogen;

when R₆ is a tertiary carbon group all of R₁₀, R₁₁ and R₁₅ are hydrogen; and any two of R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂, R₁₃, R₁₄ and R₁₅ vicinal to one another, taken together may form a ring.

- 5. (Original) The process of Claim 3 wherein R_1 - R_5 , R_7 - R_9 and R_{12} - R_{14} are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 , R_7 - R_9 and R_{12} - R_{14} vicinal to one another taken together may form a ring; R_6 is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R_7 or R_4 to form a ring; R_{10} is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R_9 or R_4 to form a ring; R_{11} and R_{15} are, independently, hydrogen or an inert functional group.
- 6. (Original) The process of Claim 3 wherein R_1 - R_5 , R_7 - R_9 and R_{12} - R_{14} are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 , R_7 - R_9 and R_{12} - R_{14} vicinal to one another taken together may form a ring; R_6 , R_{10} , R_{11} and R_{15} are identical and are each selected from fluorine or chlorine.
- 7. (Currently amended) A process for producing higher linear alpha olefins and/or alkyl-branched alpha olefins <u>having a chain length of from 4 to 100 carbon atoms</u> comprising:
- co-oligomerising one or more alpha olefins other than ethylene with ethylene in the presence of a metal catalyst system employing one or more bis-aryliminepyridine MX_a complexes and/or one or more [bis-aryliminepyridine MY_p.L_b+][NC]_q complexes, said bis-aryliminepyridine complexes comprising a ligand of the formula,

$$R_{4}$$
 R_{2}
 R_{3}
 R_{5}
 R_{4}
 R_{5}
 R_{1}
 R_{2}
 R_{3}
 R_{5}
 R_{5}
 R_{1}
 R_{2}
 R_{3}
 R_{5}

wherein M is a metal atom selected from Fe or Co; a is 2 or 3; X is halide, optionally substituted hydrocarbyl, alkoxide, amide, or hydride; Y is a ligand which may insert an olefin; NC is a non-coordinating anion; p+q is 2 or 3, matching the formal oxidation of said metal atom; L is a neutral Lewis donor molecule; b = 0, 1, or 2; R₁-R₅ are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R₁-R₃ vicinal to one another taken together may form a ring; each Z, which may be identical or different, is an optionally substituted aromatic hydrocarbon ring; an optionally substituted polyaromatic hydrocarbon moiety; an optionally substituted heterohydrocarbyl moiety; or an optionally substituted aromatic hydrocarbon ring in combination with a metal, said optionally substituted aromatic hydrocarbon ring being π-co-ordinated to the metal; said co-oligomerizing being carried out under conditions comprising an ethylene pressure of less than 2.5 MPa from about 0.1 MPa to about 1.6 MPa and a temperature of about -100°C to about 300°C, wherein alpha olefin co-monomer is present in a concentration of greater than 1 mol.l⁻¹.

Claims 8-12 (Canceled).

Claims 13-16 (Withdrawn)

Please amend the following new claims which were submitted in the previous

paper:

1317. (Currently Amended) The process of claim 7 wherein said ligand is of the formula,

$$R_{1}$$
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{7}
 R_{8}
 R_{10}
 R_{10}

(II)

wherein R_1 - R_{10} are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 , R_6 - R_{10} vicinal to one another taken together may form a ring; R_6 may be taken together with R_4 to form a ring; R_{10} may be taken together with R_4 to form a ring; Z is an optionally substituted aromatic hydrocarbon ring; an optionally substituted polyaromatic hydrocarbon moiety; an optionally substituted heterohydrocarbyl moiety; or an optionally substituted aromatic hydrocarbon ring in combination with a metal, said optionally substituted aromatic hydrocarbon ring being π -co-ordinated to the metal.

1418. (Currently Amended) The process of claim 7 wherein said ligand is of the formula,

$$R_{1}$$
 R_{2}
 R_{3}
 R_{15}
 R_{14}
 R_{10}
 R_{11}
 R_{12}
 R_{13}
 R_{11}

wherein R₁-R₅, R₇-R₉ and R₁₂-R₁₄ are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R₁-R₃, R₇-R₉ and R₁₂-R₁₄ vicinal to one another taken together may form a ring; R₆ is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R₇ or R₄ to form a ring; R₁₀

is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R_9 or R_4 to form a ring; R_{11} is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R_5 or R_{12} to form a ring; and R_{15} is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R_5 or R_{14} to form a ring.

 $15\underline{19}$. (Currently Amended) The process of claim $14\underline{18}$ wherein R_1 - R_5 , R_7 - R_9 and R_{12} - R_{14} are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 , R_7 - R_9 and R_{12} - R_{14} vicinal to one another taken together may form a ring; R_6 is a primary carbon group, a secondary carbon group or a tertiary carbon group; and provided that:

when R₆ is a primary carbon group none, one or two of R₁₀, R₁₁ and R₁₅ are primary carbon groups, and the remainder of R₁₀, R₁₁ and R₁₅ are hydrogen;

when R_6 is a secondary carbon group none or one of R_{10} , R_{11} and R_{15} is a primary carbon group or a secondary carbon group and the remainder of R_{10} , R_{11} and R_{15} are hydrogen; when R_6 is a tertiary carbon group all of R_{10} , R_{11} and R_{15} are hydrogen; and

any two of R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{12} , R_{13} , R_{14} and R_{15} vicinal to one another, taken together may form a ring.

1620. (Currently Amended) The process of claim 1418 wherein R_1 - R_5 , R_7 - R_9 and R_{12} - R_{14} are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 , R_7 - R_9 and R_{12} - R_{14} vicinal to one another taken together may form a ring; R_6 is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R_7 or R_4 to form a ring; R_{10} is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R_9 or R_4 to form a ring; R_{11} and R_{15} are, independently, hydrogen or an inert functional group.

4721. (Currently Amended) The process of claim 4418 wherein R_1 - R_5 , R_7 - R_9 and R_{12} - R_{14} are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 , R_7 - R_9 and R_{12} - R_{14} vicinal to one another taken together may form a ring; R_6 , R_{10} , R_{11} and R_{15} are identical and are each selected from fluorine or chlorine.

Cancel claim 22 which was incorrectly numbered 18.

1923. (Currently Amended) The process of claim 1 wherein said conditions comprise a temperature of from about 0°C to about 200°C.

Cancel claim 24 which was incorrectly numbered 20.

2125. (Currently Amended) The process of claim 7 wherein said conditions comprise a temperature of from about 0°C to about 200°C.

2226. (Currently Amended) The process of claim 7 wherein said conditions comprise a temperature of from about 50°C to about 150°C.

Cancel claim 27 which was incorrectly numbered 23.

2428. (Currently Amended) The process of claim 1317 wherein said conditions comprise a temperature of from about 0°C to about 200°C.

Cancel claim 29 which was incorrectly numbered 25.

2630. (Currently Amended) The process of claim 1418 wherein said conditions comprise a temperature of from about 0°C to about 200°C.

Cancel claim 31 which was incorrectly numbered 27.

2832. (Currently Amended) The process of claim 1519 wherein said conditions comprise a temperature of from about 0°C to about 200°C.

Cancel claim 33 which was incorrectly numbered 29.

3034. (Currently Amended) The process of claim 1620 wherein said conditions comprise a temperature of from about 0°C to about 200°C.

Cancel claim 35 which was incorrectly numbered 31.

- 3236. (Currently Amended) The process of claim 1721 wherein said conditions comprise a temperature of from about 0°C to about 200°C.
- 3337. (Currently Amended) The process of claim 1721 wherein said conditions comprise a temperature of from about 50°C to about 150°C.

Cancel claims 38-49 which were incorrectly numbered 34-45.

- 4650. (Currently Amended) The process of claim 1 wherein said alpha olefin comonomer is present at a concentration of greater than 2.5 mol.l⁻¹.
- 47<u>51</u>. (Currently Amended) The process of claim 1 wherein said alpha olefin comonomer is present at a concentration of greater than 5 mol.l⁻¹.
- 48<u>52</u>. (Currently Amended) The process of claim 2 wherein said alpha olefin comonomer is present at a concentration of greater than 2.5 mol.l⁻¹.
- 4953. (Currently Amended) The process of claim 2 wherein said alpha olefin comonomer is present at a concentration of greater than 5 mol.l⁻¹.
- 5054. (Currently Amended) The process of claim 3 wherein said alpha olefin co-monomer is present at a concentration of greater than 2.5 mol.l⁻¹.
- 5155. (Currently Amended) The process of claim 3 wherein said alpha olefin comonomer is present at a concentration of greater than 5 mol.l⁻¹.
- 5256. (Currently Amended) The process of claim 4 wherein said alpha olefin comonomer is present at a concentration of greater than 2.5 mol.l⁻¹.

- 5357. (Currently Amended) The process of claim 4 wherein said alpha olefin comonomer is present at a concentration of greater than 5 mol.l⁻¹.
- 5458. (Currently Amended) The process of claim 5 wherein said alpha olefin comonomer is present at a concentration of greater than 2.5 mol.l⁻¹.
- 5559. (Currently Amended) The process of claim 5 wherein said alpha olefin comonomer is present at a concentration of greater than 5 mol.l⁻¹.
- 5660. (Currently Amended) The process of claim 1 wherein said conditions comprise a temperature and pressure effective to yield a product slate with a K-factor of from about 0.40 to about 0.90.
- 5761. (Currently Amended) The process of claim 7 wherein said conditions comprise a temperature and pressure effective to yield a product slate with a K-factor of from about 0.40 to about 0.90.
- 5862. (Currently Amended) The process of claim 1317 wherein said conditions comprise a temperature and pressure effective to yield a product slate with a K-factor of from about 0.40 to about 0.90.
- 5963. (Currently Amended) The process of claim 1418 wherein said conditions comprise a temperature and pressure effective to yield a product slate with a K-factor of from about 0.40 to about 0.90.
- 6064. (Currently Amended) The process of claim 1519 wherein said conditions comprise a temperature and pressure effective to yield a product slate with a K-factor of from about 0.40 to about 0.90.
- 6165. (Currently Amended) The process of claim 1620 wherein said conditions comprise a temperature and pressure effective to yield a product slate with a K-factor of from about 0.40 to about 0.90.
- 6266. (Currently Amended) The process of claim 1721 wherein said conditions comprise a temperature and pressure effective to yield a product slate with a K-factor of from about 0.40 to about 0.90.
- 6367. (Currently Amended) The process of claim 2024 wherein said conditions comprise a temperature and pressure effective to yield a product slate with a K-factor of from about 0.40 to about 0.90.
- 6468. (Currently Amended) The process of claim 2327 wherein said conditions comprise a temperature and pressure effective to yield a product slate with a K-factor of from about 0.40 to about 0.90.

- 6569. (Currently Amended) The process of claim 4650 wherein said conditions comprise a temperature and pressure effective to yield a product slate with a K-factor of from about 0.40 to about 0.90.
- 6670. (Currently Amended) The process of claim 4751 wherein said conditions comprise a temperature and pressure effective to yield a product slate with a K-factor of from about 0.40 to about 0.90.
- 6771. (Currently Amended) The process of claim 1 wherein said conditions comprise an inert solvent.
- 6872. (Currently Amended) The process of claim 7 wherein said conditions comprise an inert solvent.
- 6973. (Currently Amended) The process of claim 4650 wherein said conditions comprise an inert solvent.
- 7074. (Currently Amended) The process of claim 4751 wherein said conditions comprise an inert solvent.
- 7175. (Currently Amended) The process of claim 6569 wherein said conditions comprise an inert solvent.
- 7276. (Currently Amended) The process of claim 6670 wherein said conditions comprise an inert solvent.
- 7377. (Currently Amended) The process of claim 6771 wherein said inert solvent is selected from the group consisting of alkanes, alkenes, cycloalkanes, and aromatic hydrocarbons.
- 7478. (Currently Amended) The process of claim 6872 wherein said inert solvent is selected from the group consisting of alkanes, alkenes, cycloalkanes, and aromatic hydrocarbons.
- 7579. (Currently Amended) The process of claim 6973 wherein said inert solvent is selected from the group consisting of alkanes, alkenes, cycloalkanes, and aromatic hydrocarbons.
- 7680. (Currently Amended) The process of claim 7074 wherein said inert solvent is selected from the group consisting of alkanes, alkenes, cycloalkanes, and aromatic hydrocarbons.
- 7781. (Currently Amended) The process of claim 7175 wherein said inert solvent is selected from the group consisting of alkanes, alkenes, cycloalkanes, and aromatic hydrocarbons.

7882. (Currently Amended) The process of claim 7276 wherein said inert solvent is selected from the group consisting of alkanes, alkenes, cycloalkanes, and aromatic hydrocarbons.

7983. (Currently Amended) The process of claim 6771 wherein said inert solvent is selected from the group consisting of hexane, isooctane, benzene, toluene, and xylene.

8084. (Currently Amended) The process of claim 6872 wherein said inert solvent is selected from the group consisting of hexane, isooctane, benzene, toluene, and xylene.

8185. (Currently Amended) The process of claim 6973 wherein said inert solvent is selected from the group consisting of hexane, isooctane, benzene, toluene, and xylene.

8286. (Currently Amended) The process of claim 7074 wherein said inert solvent is selected from the group consisting of hexane, isooctane, benzene, toluene, and xylene.

8387. (Currently Amended) The process of claim 7175 wherein said inert solvent is selected from the group consisting of hexane, isooctane, benzene, toluene, and xylene.

8488. (Currently Amended) The process of claim 7276 wherein said inert solvent is selected from the group consisting of hexane, isooctane, benzene, toluene, and xylene.

8589. (Currently Amended) The process of claim 1 wherein said conditions comprise the absence of air and moisture.

8690. (Currently Amended) The process of claim 7 wherein said conditions comprise the absence of air and moisture.

Please add the following new claims:

91. (New) A process for production of higher alkyl-branched alpha olefins having a chain length of from 4 to 100 carbon atoms and having the general structure:

$$C = C[-C-C]_n[-C]_m(R_1)-R_2$$

wherein R_1 is a methyl group; n = 0, 1, 2, etc.; m = 1; and R_2 is an optionally substituted hydrocarbyl, said process comprising:

co-oligomerising one or more alpha olefins other than ethylene with ethylene in the presence of a metal catalyst system employing one or more bis-aryliminepyridine MX_a

complexes and/or one or more [bis-aryliminepyridine MY_p.L_b+][NC]_q complexes, said bis-aryliminepyridine complexes comprising a ligand of the formula,

$$R_{4}$$
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{1}
 R_{2}
 R_{3}
 R_{5}
 R_{5}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}

wherein M is a metal atom selected from Fe or Co; a is 2 or 3; X is halide, optionally substituted hydrocarbyl, alkoxide, amide, or hydride; Y is a ligand which may insert an olefin; NC- is a non-coordinating anion; p+q is 2 or 3, matching the formal oxidation of said metal atom; L is a neutral Lewis donor molecule; b = 0, 1, or 2; R_1 - R_5 are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 vicinal to one another taken together may form a ring; each Z, which may be identical or different, is an optionally substituted aromatic hydrocarbon ring; an optionally substituted polyaromatic hydrocarbon moiety; an optionally substituted heterohydrocarbyl moiety; or an optionally substituted aromatic hydrocarbon ring being π -coordinated to the metal; said co-oligomerising being carried out under conditions comprising an ethylene pressure of from about 0.1 MPa to about 1.6 MPa.

92. (New) A process for production of higher alkyl-branched alpha olefins having a chain length of from 4 to 100 carbon atoms and having the general structure:

$$C = C[-C-C]_n(R_1)-R_2$$

wherein R_1 is an ethyl group; n = 0, 1, 2, etc.; and R_2 is an optionally substituted hydrocarbyl, said process comprising:

co-oligomerising one or more alpha olefins other than ethylene with ethylene in the presence of a metal catalyst system employing one or more bis-aryliminepyridine MX_a complexes and/or one or more [bis-aryliminepyridine MY_p.L_b+][NC]_q complexes, said bis-aryliminepyridine complexes comprising a ligand of the formula,

wherein M is a metal atom selected from Fe or Co; a is 2 or 3; X is halide, optionally substituted hydrocarbyl, alkoxide, amide, or hydride; Y is a ligand which may insert an olefin; NC- is a non-coordinating anion; p+q is 2 or 3, matching the formal oxidation of said metal atom; L is a neutral Lewis donor molecule; b = 0, 1, or 2; R_1 - R_5 are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 vicinal to one another taken together may form a ring; each Z, which may be identical or different, is an optionally substituted aromatic hydrocarbon ring; an optionally substituted polyaromatic hydrocarbon moiety; an optionally substituted heterohydrocarbyl moiety; or an optionally substituted aromatic hydrocarbon ring being π -coordinated to the metal; said co-oligomerising being carried out under conditions comprising an ethylene pressure from about 0.1 MPa to about 1.6 MPa.

93. (New) A process for producing higher linear alpha olefins and/or alkylbranched alpha olefins having a chain length of from 4 to 100 carbon atoms comprising: co-oligomerising one or more alpha olefins other than ethylene with ethylene in the presence of a metal catalyst system employing one or more bis-aryliminepyridine MX_a complexes and/or one or more [bis-aryliminepyridine MY_p.L_b+][NC-]_q complexes, said bis-aryliminepyridine complexes comprising a ligand of the formula,

$$R_{4}$$
 R_{2}
 R_{3}
 R_{5}
 R_{4}
 R_{5}
 R_{1}
 R_{2}
 R_{3}
 R_{5}
 R_{5}
 R_{1}
 R_{2}
 R_{3}
 R_{5}

wherein M is a metal atom selected from Fe or Co; a is 2 or 3; X is halide, optionally substituted hydrocarbyl, alkoxide, amide, or hydride; Y is a ligand which may insert an olefin; NC is a non-coordinating anion; p+q is 2 or 3, matching the formal oxidation of said metal atom; L is a neutral Lewis donor molecule; b = 0, 1, or 2; R_1 - R_5 are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 vicinal to one another taken together may form a ring; each Z, which may be identical or different, is an optionally substituted aromatic hydrocarbon ring; an optionally substituted polyaromatic hydrocarbon moiety; an optionally substituted heterohydrocarbyl moiety; or an optionally substituted aromatic hydrocarbon ring in combination with a metal, said optionally substituted aromatic hydrocarbon ring being π -co-ordinated to the metal; said co-oligomerizing being carried out under conditions comprising an ethylene pressure of from about 0.1 MPa to about 1.6 MPa, wherein alpha olefin co-monomer is present in a concentration of greater than 1 mol.l⁻¹.

94. (New) A process for production of higher alkyl-branched alpha olefins having a chain length of from 1 to 100 carbon atoms and having the general structure:

$$C = C[-C-C]_0(R_1)-R_2$$

wherein R_1 is an ethyl group; n = 0, 1, 2, etc.; and R_2 is an optionally substituted hydrocarbyl, said process comprising:

co-oligomerising one or more alpha olefins other than ethylene with ethylene in the presence of a metal catalyst system employing one or more bis-aryliminepyridine MX_a complexes and/or one or more [bis-aryliminepyridine MY_p.L_b⁺][NC⁻]_q complexes, said bis-aryliminepyridine complexes comprising a ligand of the formula,

$$R_{4}$$
 R_{2}
 R_{3}
 R_{5}
 R_{4}
 R_{5}
 R_{1}
 R_{2}
 R_{3}
 R_{5}
 R_{5}
 R_{1}
 R_{2}
 R_{3}
 R_{5}

wherein M is a metal atom selected from Fe or Co; a is 2 or 3; X is halide, optionally substituted hydrocarbyl, alkoxide, amide, or hydride; Y is a ligand which may insert an olefin; NC- is a non-coordinating anion; p+q is 2 or 3, matching the formal oxidation of said metal atom; L is a neutral Lewis donor molecule; b = 0, 1, or 2; R_1 - R_5 are each, independently, hydrogen, optionally

substituted hydrocarbyl, an inert functional group, or any two of R_1 - R_3 vicinal to one another taken together may form a ring; each Z, which may be identical or different, is an optionally substituted aromatic hydrocarbon ring; an optionally substituted polyaromatic hydrocarbon moiety; an optionally substituted heterohydrocarbyl moiety; or an optionally substituted aromatic hydrocarbon ring in combination with a metal, said optionally substituted aromatic hydrocarbon ring being π -coordinated to the metal; said co-oligomerising being carried out under conditions comprising an ethylene pressure of from about 0.1 MPa to about 1.6 MPa.