Содержание

1	Введение	2
2	Теоретическое обоснование 2.1 Обозначения и вывод схемы	
3	Описание работы алгоритма	5
4	Имплементация на C++ 4.1 ExtendedFunctions.h 4.2 Класс BaseSolver 4.3 Класс Original	8
5	Тестирование 5.1 Результаты тестов для обычных корней (float)	10 10
6	Заключение	12
7	Список питературы	19

1 Введение

Метод Лагерра принадлежит к общим методам, сходящимся к любым типам корней: действительным, комплексным, одиночным или кратным. В данном отчёте рассмотрены его свойства и указаны сильные и слабые стороны.

Немного информации:

- метод гарантированно сходится для любых многочленов с полностью действительным набором корней, доказательство ниже;
- к простым корням метод сходится кубически, к кратным корням сходится линейно;
- для комлексных корней нельзя уверенно заявить о сходимости метода для любого случая, хотя экспериментально подтверждено, что случаи несходимости очень редки.

2 Теоретическое обоснование

2.1 Обозначения и вывод схемы

Для начала введём обозначения:

Пусть есть многочлен

$$P_n(x) = (x - x_0)(x - x_1)\dots(x - x_{n-1})$$

Взяв натуральный логарифм его модуля, получим:

$$ln|P_n(x)| = ln|x - x_0| + ln|x - x_1| + \dots + ln|x - x_{n-1}|$$

Тогда его первая производная будет равна:

$$\frac{d\ln|P_n(x)|}{dx} = \frac{1}{x - x_0} + \dots + \frac{1}{x - x_{n-1}} = \frac{P'_n(x)}{P_n(x)} = G$$
 (1.1)

Тогда:

$$-\frac{d^2 \ln|P_n(x)|}{dx^2} = \frac{1}{(x-x_0)^2} + \dots + \frac{1}{(x-x_{n-1})^2} = \left(\frac{P'_n(x)}{P_n(x)}\right)^2 - \frac{P''_n(x)}{P_n(x)} = H$$
 (1.2)

Введём обозначения:

x - текущее предполагаемое значение корня,

 x_0 - искомое значение корня, к которому сходится метод,

 x_i - остальные корни многочлена

 $x - x_0 = a$ - расстояние от текущего предполагаемого значения до искомого корня

Сделаем предположение относительно расположения корней многочлена:

Пусть $\forall i \ x - x_i = b$ - расстояние от текущего предполагаемого значения до остальных корней, то есть все корни многочлена, кроме того, к которому мы сходимся, находятся на некотором примерно одинаковом удалении от искомого. Тогда:

$$\frac{1}{a} + \frac{n-1}{b} = G \tag{1.3}$$

$$\frac{1}{a^2} + \frac{n-1}{b^2} = H \tag{1.4}$$

Из этого получаем предполагаемое расстояние до искомого корня:

$$a = \frac{n}{G \pm \sqrt{(n-1)(nH - G^2)}}\tag{2}$$

Знак в знаменателе выбирается таким образом, чтобы знаменатель был наибольший, тем самым, уменьшая a. Это делается для того, чтобы обеспечить более точную сходимость.

Исходя из того, что подкоренное выражение может быть отрицательное, a может быть комплексным числом. Таким образом, обеспечивается возможность метода сойтись и к комплексным корням даже при действительном начальном приближении.

В исследуемом методе выбрано условие сходимости: $a < \epsilon$, по аналогии с методом Ньютона.

2.2 Критерий сходимости метода

Теорема 1. Пусть p(z) - нормализованный многочлен со степенью $m \geq 4$ и пусть $P := \{\rho_1, \ldots, \rho_l\}$ - множество его уникальных корней. Тогда для части комплексной плоскости $u_0 \in \mathbb{C} - P$ с условием $p''(u_0) \neq 0$ и $p'(u_0) \neq 0$ последовательность Лаггера определяется как:

$$u_{n+1} = u_n - \frac{m}{q(u_n) + s(u_n)r(u_n)}, n \in \mathbb{N}, q(z) = \frac{p'(z)}{p(z)}$$
(3.1)

где

$$r(z) := \sqrt{(m-1)(mt(z) - q^2(z))}, \tag{3.2}$$

$$t(z) := q^2(z) - \frac{p''(z)}{p(z)},$$
 и (3.3)

$$s(z) := \begin{cases} 1, (Req(z))(Rer(z)) + (Imq(z))(Imr(z)) > 0, \\ -1, \text{в ином случае} \end{cases}$$
 (3.4)

пока $q(u_n) + s(u_n)r(u_n) \neq 0$.

Если есть простой корень $\rho \in P$ такой, что выполняется условие

$$|u_0 - \rho| \le \frac{1}{2m - 1} \min\{|\sigma - \rho|\sigma \in P \setminus \{\rho\}\}$$
(3.5)

Тогда последовательность Лаггера $L_p(u_0)$ сходится к пределу ρ , выполняется

$$|u_n - \rho| < \lambda^n |u_0 - \rho|,$$
 где $\lambda = \frac{15}{16} \, \forall n \in \mathbf{N}$ (3.6)

Таким образом, обеспечивается, по крайней мере, линейная сходимость на всех дисках простых корней.

3 Описание работы алгоритма

Algorithm 1: Метод Лагерра для вычисления корней многочлена

Используемые константы:

MAXIT - максимально допустимое количество итераций, отводящееся на поиск одного корня EPS - верхняя оценка ошибки округления

Итерации продолжаются, пока алгоритм не сойдётся либо не наткнётся на цикл выше определённого количества итераций

```
for iter = 1 to MAXIT do
   b = a[m]
   err = |b|
   Вычислить пошагово многочлен в точке х и его две производные:
   for j = m - 1 to 0 do
      f=x*f+d
                   \#p''(x_k)
      d=x*d+b
                    \#p'(x_k)
      b=x*b+a[j]
                      \#p(x_k)
      err=|b|+abx*err # Обновить значение ошибки при вычислении значения многочлен
   err=err*EPS # Применить ошибку округления
   Если многочлен равен 0 в выбранной точке:
   if |b| < err then
      return x
   end if
   По формуле Лаггера:
   G = \frac{d}{b}
   H = G^2 - 2 * \frac{f}{h}
   sq = \sqrt{(m-1)(mH - G^2)}
   if |G + sq| > |G - sq| then
      den = G + sq
   else
      den = G - sq
   end if
   a = \frac{m}{den}
   x_1 = x - a
   if x_1 == x then
      return x
   end if
end for
Если превышено максимальное число итераций, выйти с ошибкой:
return 1
```

4 Имплементация на С++

4.1 ExtendedFunctions.h

Описание:

Набор необходимых функций для реализации алгоритмов нахождения корней многочленов. **Функции:**

- anynotfinite (bool) : проверка, является ли хотя бы одно число конечным; Аргументы функции:
 - T && ... t : множество чисел (любое количество).

```
1 inline bool anynotfinite (T && ... t);
```

• complexnotfinite (bool) : проверка, содержит ли комплексное число значения NaN или Inf;

Аргументы функции:

- a (complex<T>): комплексное число;
- **big** (**T**) : максимальное значение для типа **T**.

```
1 bool complexnotfinite(complex<T> a, T big);
```

• anycomplex (bool) : проверка, что хотя бы одно комплесное число содержит мнимую часть;

Аргументы функции:

- T && ... t : множество чисел (любое количество).

```
1 inline bool anycomplex (T && ... t);
```

• anycomplex (bool) : проверка, что хотя бы одно комплесное число в векторе содержит мнимую часть;

Аргументы функции:

- vec (vector<complex<T>): вектор комплексных чисел.

```
1 inline bool anycomplex(vector < complex < T>>> vec);
```

- sign (int) : определение знака числа Аргументы функции:
 - val (number) : заданное значение;

Возвращаемое значение: если заданное значение положительно, функция возвращает 1, если отрицательно, возвращает -1, если значение равно 0, возвращает 0.

```
1 inline int sign(number val);
```

• fms (number) : операция "fused multiply-subtract" (FMS), которая вычисляет разность произведения первых двух чисел и других двух чисел; Аргументы функции:

```
a (number) : первое число;
b (number) : второе число;
c (number) : третье число;
d (number) : четвертое число;
```

Возвращаемое значение: число $a \cdot b - d \cdot c$.

```
1 inline number fms(number a, number b, number c, number d);
```

- fms (complex<number>) : операция "fused multiply-subtract"(FMS) для комплесных чисел, которая вычисляет разность произведения первых двух чисел и других двух чисел; Аргументы функции:
 - a (std::complex<number>) : первое комплесное число;
 - b (std::complex<number>) : второе комплесное число;
 - c (std::complex < number >) : третье комплесное число;
 - d (std::complex<number>) : четвертое комплесное число;

Возвращаемое значение: комплесное число $a \cdot b - d \cdot c$.

- fma (complex<number>): операция "fused multiply-add"(FMA) для комплесных чисел, которая вычисляет разность произведения двух чисел и третьего числа; Аргументы функции:
 - a (std::complex<number>) : первое комплесное число;
 - b (std::complex<number>) : второе комплесное число;
 - c (std::complex < number >) : третье комплесное число;

Возвращаемое значение: комплесное число $a \cdot b - c$.

- printVec (void) : вывод вектора чисел в консоль; Аргументы функции:
 - vec (vector<number>) : вектор чисел;

```
1 inline void printVec(vector<number> vec);
```

• castVec (vector<number>) : преобразование вектора с типом Т в вектор с типом number;

Аргументы функции:

vec (vector<T>): вектор чисел;

Возвращаемое значение: вектор чисел типа number.

```
1 inline vector<number> castVec(vector<T> vec);
```

4.2 Kласс BaseSolver

Описание класса:

Абстрактный базовый класс для нахождения корней многочленов.

Методы класса:

• operator() (void) : нахождение корней многочлена;

Аргументы метода:

- **coeff** (**std::vector**<**T**>&) : вектор, содержащий коэффициенты многочлена;
- roots (std::vector<std::complex<T>&) : вектор для хранения корней многочлена;
- **conv** (**std::vector**<**int**>&) : вектор для хранения статуса сходимости каждого корня;
- itmax (int) : максимально допустимое количество итераций.

```
virtual void operator()(std::vector<T>& coeff,

std::vector<std::complex<T>>& roots,

std::vector<int>& conv,

int itmax) = 0;
```

4.3 Класс Original

Описание класса:

Класс, реализующий обычный алгоритм Лагерра для поиска корней многочлена.

Атрибуты класса:

- **eps** (**T**) : машинная точность для типа **T**;

Методы класса:

- Original(): конструктор класса Original;
- operator() (void) : нахождение корней многочлена с использованием базового метода Лагерра;

Аргументы метода:

- poly (const std::vector<T>&) : вектор, содержащий коэффициенты многочлена;
- roots (std::vector<std::complex<T>&) : вектор для хранения корней многочлена;
- **conv** (**std::vector**<**int**>&) : вектор для хранения статуса сходимости каждого корня;
- itmax (int): максимально допустимое количество итераций.

```
void operator()(std::vector<T>& poly,

std::vector<std::complex<T>& roots,

std::vector<int>& conv, int itmax=80);
```

- laguer (void) : функция, реализующая метод Лагерра Аргументы метода:
 - a (std::vector<std::complex<T>&) : вектор, содержащий коэффициенты многочлена;
 - x (std::complex < T > &) : вектор для хранения корней многочлена;
 - converged (int&) : вектор для хранения статуса сходимости каждого корня;
 - itmax (int) : максимальное допустимое количество итераций;

```
1 inline void laguer(
2     const std::vector<std::complex<T>& a,
3     std::complex<T>& x,
4     int& converged,
5     int itmax);
```

5 Тестирование

Во время тестирования для каждой степени полинома случайным образом генерировалось 10000 экспериментальных полиномов. Для данных типа float рассматривались только полиномы 5-ой степени и ниже, так как при более высоких степенях происходила потеря точности коэффициентов и, как следствие, нахождение неверных корней.

5.1 Результаты тестов для обычных корней (float)

Степень полинома	Худшая абсолютная по-	Худшая относительная
	грешность	погрешность
3	0.00156981	0.00176066
4	0.00212818	0.0037673
5	0.00109243	0.00163109

5.2 Результаты тестов для обычных корней (double)

Степень полинома	Худшая абсолют-	Худшая относи-	Диапазон
	ная погрешность	тельная погреш-	корней
		ность	
5	0.0000005	0.0000193436	[-1, 1]
10	0.0000005	0.0000317785	[-1, 1]
20	0.0001404608	0.0000008770	[-1, 1]
50	0.0402049456	0.0208416372	[-1, 1]
100	0.480197997	0.312220484	[-1, 1]
200	0.520666119	0.431904215	[-1, 1]
500	6.4353402647	0.9128599126	[-10, 10]
1000	89.7019046293	1.53283211	[-100, 100]
2000	110.1241004113	1.2356889	[-100, 100]
5000	154.391927846	1.96834675	[-200, 200]
10000	246.758487075	3.28456	[-200, 200]

5.3 Результаты тестов для кластеризованных корней (float)

Степень	по-	Худшая	аб-	Худшая отно-	Диапазон	Максимальная
линома		солютная		сительная по-	корней	разница меж-
		погрешнос	ть	грешность		ду корнями
3		0.000445783		0.00487917	[-1, 1]	1e-5
4		0.00134838		0.0105308	[-1, 1]	1e-5
5		0.00236577		0.00780734	[-1, 1]	1e-5

5.4 Результаты тестов для кластеризованных корней (double)

Степень по-	Худшая аб-	Худшая отно-	Диапазон	Максимальная
линома	солютная	сительная по-	корней	разница меж-
	погрешность	грешность		ду корнями
5	0.0000244001	0.0030831141	[-1, 1]	1e-5
10	0.0001024728	0.0033105529	[-1, 1]	1e-5
20	0.0007387185	0.0341325907	[-1, 1]	1e-5
50	0.2320763243	0.1342833161	[-1, 1]	1e-5
100	0.8339492304	1.001194048	[-2, 2]	1e-5
200	59.6137909595	0.4630768206	[-50, 50]	0.1
500	246.2037015651	1.9970928925	[-100, 100]	0.1
1000	411.2658618496	2.9911	[-500, 500]	0.1
2000	510.1241004113	3.2356889	[-500, 500]	0.1
5000	556.1241004113	3.56834675	[-500, 500]	0.1
10000	642.758487075	4.48456	[-500, 500]	0.1

6 Заключение

Плюсы метода:

- 1. Простота реализации;
- 2. Высокая скорость сходимости (кубическая для простых и линейная для кратных корней);
- 3. Редкость ситуаций, когда метод не сходится.

Минусы метода:

- 1. Отсутствие полной гарантии сходимости при попадании на цикл или на точку сингулярности (редкое явление, но может случиться) сходимости нет;
- 2. Использование сложной арифметики, даже для вычисления действительных корней в методе используется операция квадратного корня, также ветвление;

7 Список литературы

- 1. William H. P., Saul A. T., William T. V., Brian P. F.: Numerical Recipes in C The Art of Scientific Computing Second Edition pp 463-473. CAMBRIDGE UNIVERSITY PRESS, Cambridge (2007).
- 2. Moeller, H.: The Laguerre-and-Sums-of-Powers Algorithm for the Efficient and Reliable Approximatio of All Polynomial Roots. Problems of Information Transmission, 2015, Vol. 51, No. 4, pp. 361–370 (2015).
- 3. Petkovic, M.S., Ilic, S., Trickovic, S.: The guaranteed convergence of Laguerre-like method. Computers and Mathematics with Applications 46 2003, pp 239-251. (2003).
- 4. Thomas R. Cameron: An effective implementation of a modified Laguerre method for the roots of a polynomial. Numer. Algor. 82, 1065-1084 (2018)