1 Type (2,0) geometry

1.1 Datasets

Name: 20180608Dimension: 20×20

Range g_2 : [-4:-1.5] 51 values

Samples: 2200

Name: 20180610Dimension: 25×25

Range g_2 : [-4:-1.5] 51 values

Samples: 1152

Name: 20180611Dimension: 30×30

Range g_2 : [-4:-1.5] 51 values

Samples: 1152

1.2 B modes matrix elements

Table: 1, 2

Dataset: 20180608, 20180610, 20180611

Data analysis script: 20_NBexp_monitoring.py

Gnuplot script:

```
f(x) = m*x + q
fit f(x) "20_varN_B2exp.txt" u (log($1)):(log($2)) via m, q
fit f(x) "20_varN_B2exp.txt" u (log($1)):(log($6)) via m, q
fit f(x) "20_varN_B2exp.txt" u (log($1)):(log($10)) via m, q
fit f(x) "20_varN_B2exp.txt" u (log($1)):(log($4)) via m, q
fit f(x) "20_varN_B2exp.txt" u (log($1)):(log($8)) via m, q
fit f(x) "20_varN_B2exp.txt" u (log($1)):(log($10)) via m, q
```

```
Table: 3, 4
Dataset: 20180608, 20180610, 20180611
Data analysis script: 20_NBexp_monitoring.py
Gnuplot script:
f(x) = m*x + q
fit f(x) = 20_{var} = 84 \exp.txt = u (log($1)):(log($2)) via m, q
fit f(x) "20_varN_B4exp.txt" u (log($1)):(log($6)) via m, q
fit f(x) "20_varN_B4exp.txt" u (log($1)):(log($10)) via m, q
fit f(x) "20_varN_B4exp.txt" u (log($1)):(log($4)) via m, q
fit f(x) "20_varN_B4exp.txt" u (log($1)):(log($8)) via m, q
fit f(x) "20_varN_B4exp.txt" u (log($1)):(log($12)) via m, q
Table: 5, 6
Dataset: 20180608, 20180610, 20180611
Data analysis script: 20_NBij_ik_l_monitoring.py
Gnuplot script:
f(x) = m*x + q
fit f(x) "20_varN_Bij_ik_l.txt" u (log($1)):(log($2)) via m, q
fit f(x) "20_varN_Bij_ik_l.txt" u (log($1)):(log($6)) via m, q
fit f(x) "20_varN_Bij_ik_l.txt" u (log($1)):(log($10)) via m, q
fit f(x) "20_varN_Bij_ik_l.txt" u (log($1)):(log($4)) via m, q
fit f(x) "20_varN_Bij_ik_l.txt" u (log($1)):(log($8)) via m, q
fit f(x) "20_varN_Bij_ik_l.txt" u (log($1)):(log($12)) via m, q
Table: 7
Dataset: 20180608, 20180610, 20180611
Data analysis script: 20_NBstatind_monitoring.py
Gnuplot script:
f(x) = m*x + q
```

fit f(x) "20_varN_Bstatind.txt" u (log(\$1)):(log(abs(\$2))) via m, q fit f(x) "20_varN_Bstatind.txt" u (log(\$1)):(log(abs(\$4))) via m, q fit f(x) "20_varN_Bstatind.txt" u (log(\$1)):(log(abs(\$6))) via m, q

Table: 8

Dataset: 20180608, 20180610, 20180611

 ${\bf Data~analysis~script:~20_N4Bexp_monitoring.py}$

Gnuplot script:

```
f(x) = m*x + q
fit f(x) "20_varN_4Bexp.txt" u (log($1)):(log(abs($2))) via m, q
fit f(x) "20_varN_4Bexp.txt" u (log($1)):(log(abs($6))) via m, q
fit f(x) "20_varN_4Bexp.txt" u (log($1)):(log(abs($10))) via m, q
```

g_2	Slope	Error
-1.5	-0.97	0.02
-2.7	-0.97	0.05
-4	-0.96	0.01

Table 1: Linear fit of $\log(N)$ vs $\log(E[|B_{ii}|^2])$.

g_2	Slope	Error
-1.5	-1.001	0.004
-2.7	-0.994	0.002
-4	-0.997	0.004

Table 2: Linear fit of $\log(N)$ vs $\log(E[|B_{ij}|^2])$.

g_2	Slope	Error
-1.5	-1.88	0.06
-2.7	-1.9	0.1
-4	-1.92	0.04

Table 3: Linear fit of $\log(N)$ vs $\log(E[|B_{ii}|^4])$.

g_2	Slope	Error
-1.5	-2.000	0.001
-2.7	-1.976	0.007
-4	-1.98	0.02

Table 4: Linear fit of $\log(N)$ vs $\log(E[|B_{ij}|^4])$.

g_2	Slope	Error
-1.5	-1.994	0.009
-2.7	-1.985	0.008
-4	-1.981	0.009

Table 5: Linear fit of $\log(N)$ vs $\log(E[|B_{ij}|^2|B_{il}|^2])$.

g_2	Slope	Error
-1.5	-2.001	0.008
-2.7	-1.984	0.005
-4	-1.992	0.009

Table 6: Linear fit of $\log(N)$ vs $\log(E[|B_{ij}|^2|B_{kl}|^2])$.

g_2	Slope	Error
-1.5	-3.7	0.8
-2.7	-3.8	2.5
-4	-6.1	1.2

Table 7: Linear fit of $\log(N)$ vs $\log(|E[|B_{ij}|^2|B_{kl}|^2] - E[|B_{ij}|^2]E[|B_{kl}|^2]|)$.

g_2	Slope	Error
-1.5	-2.95	0.02
-2.7	-2.7	1.8
-4	-2.91	0.06

Table 8: Linear fit of $\log(N)$ vs $\log(|E[B_{kl}B_{lm}B_{mn}B_{nk}]|)$.