BIL105E - Introduction to Scientific and Engineering Computing Homework-1

Assignment Date: 25.02.2010

Due Date : 11.03.2010 at 22:00

- Submit two files to Ninova. File names must be your İTÜ student number.
 - 1) Your C source file (Example: 040090123.c)
 - 2) Your MS Word report file (Example: 040090123.doc)
- You should use the standard report format (Yazılım Ödevleri Klavuzu) which is available at Ninova.
- Make sure gcc compiles your code successfully on Unix/Linux.
- Cheating is unacceptable and subject to disciplinary actions. All submitted programs will be cross-checked by using an automatic detection system.
- Late submissions through email are not accepted.

IMPORTANT

The following information must be added at the beginning of your C source code, otherwise 10 points will be deducted as penalty from your homework grade.

HOMEWORK DEFINITION

Draw a **Flow Chart** (in your report) and write a **C program** to determine the arrangement status of two lines.

The general equation for a straight line in the cartesian coordinate is Ax+By+C=0. The arrangement status of two lines can be one of the followings:

- The two lines "intersect" with α angle.
- The two lines are "perpendicular" with 90 degrees.
- The two lines "coincide". (They lie on the same straight line.)
- The two lines are "parallel".

CONDITIONS

Condition for intersection	$\frac{A_1}{A_2} \neq \frac{B_1}{B_2}$
Condition for perpendicular	$A_1 A_2 + B_1 B_2 = 0$
Condition for parallel	$\frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{C_1}{C_2}$
Condition for coincide	$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$

EQUATIONS

Equation for angle (4 hotygon	$Slope = \frac{A_1 B_2 - A_2 B_1}{A_1 A_2 + B_1 B_2}$	
Equation for angle α between two lines	The angle α is computed by the Arc Tangent equation: $\alpha = \frac{\text{atan}(Slope)*180}{3.1416}$	
Equations for intersection point (x_0, y_0)	$x_0 = \frac{B_1 C_2 - B_2 C_1}{A_1 B_2 - A_2 B_1}, y_0 = \frac{C_1 A_2 - C_2 A_1}{A_1 B_2 - A_2 B_1}$	
Equation for distance between two parallel lines	$d = \frac{ C_1 - C_2 }{\sqrt{A_1^2 + B_1^2}}$	

INPUTS

The keyboard inputs are the coefficients A_1 , B_1 , C_1 , and A_2 , B_2 , C_2 .

OUTPUTS

- Display a message about the status of the two lines.
- Calculate and display the followings when apply:
 - Angle between the two lines.
 - Intersection point coordinates (x_0, y_0) .
 - Distance between the two lines.

SAMPLE TESTING SETS

INPUTS	OUTPUT MESSAGE	EXPECTED OUTPUT VALUES
A1=2, B1=-6, C1=10	Parallel Lines	Distance: 7.43
A2=4, B2=-12, C2=57	Faranei Lines	Distance . 7.43
A1=1, B1=1, C1=1	Coinside Lines	None
A2=2, B2=2, C2=2	Comside Lines	None
A1=7, B1=-2, C1=14	Intersection Lines	Alpha = 49.63
A2=3, B2=2, C2=-20	intersection Lines	Intersection Point : (0.6, 9.1)
A1=1, B1=-1, C1=20	Perpendicular Lines	Alpha = 90
A2=1, B2=1, C2=-20		Intersection Point: (0.0, 20.0)

NOTICES

- 1) Your program should be independent from the sample inputs given above, so we may test your program with different data sets.
- 2) In this homework, you need to use the following mathematical functions, which are defined in the <math.h> header file.

 $atan(x) \rightarrow Arc tangent of x$

 $fabs(x) \rightarrow Absolute value of x$

 $sqrt(x) \rightarrow Square root of x$