Diszkrét matematika 2.C szakirány

10. előadás

Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu

Komputeralgebra Tanszék

2016. tavasz

Megjegyzés

Egy szó súlya megegyezik a 0-tól vett távolságával:

$$w(u) = d(u, (0, 0, ..., 0)).$$

Állítás

Ha K lineáris kód, akkor d(K) = w(K).

Bizonyítás

d(u,v) = w(u-v), és mivel K linearitása miatt $u,v \in K$ esetén $u-v \in K$, ezért a minimumok is megegyeznek (Miért?).

Lineáris kód esetén a kódolás elvégezhető mátrixszorzással.

Definíció

Legyen $G: \mathbb{F}_q^k \to \mathbb{F}_q^n$ egy teljes rangú lineáris leképzés, illetve $\mathbf{G} \in \mathbb{F}_q^{n \times k}$ a hozzá tartozó mátrix. $K = \operatorname{Im}(G)$ esetén **G**-t a K kód generátormátrixának nevezzük.

$$\begin{pmatrix} m_1 \\ m_2 \\ \vdots \\ m_k \end{pmatrix}$$

$$\begin{pmatrix} g_{11} & g_{12} & \cdots & g_{1k} \\ g_{21} & g_{22} & \cdots & g_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ g_{n1} & g_{n2} & \cdots & g_{nk} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

Példa

1) A (*) kód egy generátormátrixa:

$$\mathbf{G} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}\right)$$

2) A háromszori ismétlés kódjának egy generátormátrixa:

$$\mathbf{G} = \left(\begin{array}{c} 1\\1\\1\end{array}\right)$$

Példa folyt.

3) A paritásbites kód egy generátormátrixa:

$$\mathbf{G} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

Definíció

Egy $[n,k,d]_q$ kódnak $\mathbf{H} \in \mathbb{F}_q^{(n-k)\times n}$ mátrix az ellenőrző mátrixa, ha $\mathbf{H} v = 0 \Longleftrightarrow v$ kódszó.

Megjegyzés

A **G** mátrixhoz tartozó kódolásnak **H** pontosan akkor ellenőrző mátrixa, ha $\mathrm{Ker}(\mathbf{H}) = \mathrm{Im}(\mathbf{G})$

Példa

1) A (*) kód egy ellenőrző mátrixa:

$$\mathbf{H} = \left(\begin{array}{ccccc} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{array}\right)$$

Példa folyt.

2) A háromszori ismétlés kódjának egy ellenőrző mátrixa:

$$\mathbf{H} = \left(\begin{array}{rrr} -1 & 1 & 0 \\ -1 & 0 & 1 \end{array} \right)$$

3) A paritásbites kód egy ellenőrző mátrixa:

$$\mathbf{H} = \left(\begin{array}{cccc} 1 & 1 & \cdots & 1 \end{array} \right)$$

Definíció

Ha a kódszavak első k betűje megfelel az eredeti kódolandó szónak, akkor szisztematikus kódolásról beszéliink.

Ekkor az első k karakter az üzenetszegmens, az utolsó n-k pedig a paritásszegmens.

Példa

1) A háromszori ismétlés kódja:

$$\left(\underbrace{a}_{\text{üz.sz.}}, \underbrace{a, a}_{\text{par.sz.}}\right)$$

2) A paritásbites kód:

$$(\underbrace{b_1, b_2, \dots, b_{n-1}}_{\text{üz.sz.}}, \underbrace{\sum_{j=1}^{n-1} b_j}_{\text{par.sz.}})$$

Megjegyzés

Szisztematikus kódolás esetén könnyen tudunk dekódolni: a paritásszegmens elhagyásával megkapjuk a kódolandó szót.

Megjegyzés

Egy szisztematikus kód generátormátrixa speciális alakú:

$$\mathbf{G} = \left(\begin{array}{c} \mathbf{I}_k \\ \mathbf{P} \end{array}\right),$$

ahol $\mathbf{I}_k \in \mathbb{F}_a^{k \times k}$ az egységmátrix, továbbá $\mathbf{P} \in \mathbb{F}_a^{(n-k) \times k}$.

Állítás

Legyen $\mathbf{G} \in \mathbb{F}_a^{n \times k}$ egy szisztematikus kód generátormátrixa:

$$\mathbf{G} = \left(\begin{array}{c} \mathbf{I}_k \\ \mathbf{P} \end{array}\right). \text{ Ekkor } \mathbf{H} = \left(\begin{array}{cc} -\mathbf{P} & \mathbf{I}_{n-k} \end{array}\right) \text{ ellenőrző mátrixa a kódnak}.$$

Bizonyítás

$$\begin{split} \mathbf{H} \cdot \mathbf{G} &= \left(\begin{array}{c} -\mathbf{P} & \mathbf{I}_{n-k} \end{array} \right) \cdot \left(\begin{array}{c} \mathbf{I}_k \\ \mathbf{P} \end{array} \right) = -\mathbf{P} + \mathbf{P} = \mathbf{0} \in \mathbb{F}_q^{(n-k) \times k} \\ (\mathbf{H} \cdot \mathbf{G})_{ij} &= \sum_{l=1}^k (-\mathbf{P})_{il} \cdot (\mathbf{I}_k)_{lj} + \sum_{l=1}^{n-k} (\mathbf{I}_{n-k})_{il} \cdot (\mathbf{P})_{lj} = -p_{ij} + p_{ij} = 0. \\ \text{Tehát bármely } u \text{ kódolandó szóra } \mathbf{H}(\mathbf{G}u) = (\mathbf{H}\mathbf{G})u = \mathbf{0}u = \underline{\mathbf{0}}, \\ \text{vagyis } \mathrm{Im}(\mathbf{G}) \subset \mathrm{Ker}(\mathbf{H}), \text{ amiből } \dim(\mathrm{Im}(\mathbf{G})) \leq \dim(\mathrm{Ker}(\mathbf{H})). \\ \dim(\mathrm{Im}(\mathbf{G})) = k \text{ és } \dim(\mathrm{Ker}(\mathbf{H})) \leq k \text{ miatt viszont} \\ \dim(\mathrm{Im}(\mathbf{G})) \geq \dim(\mathrm{Ker}(\mathbf{H})) \text{ is teljesül, fgy } \mathrm{Im}(\mathbf{G}) = \mathrm{Ker}(\mathbf{H}). \end{split}$$

Példa

Ld. korábban.

A kód távolsága leolvasható az ellenőrző mátrixból.

Állítás

Legyen **H** egy [n, k] kód ellenőrző mátrixa. A **H**-nak pontosan akkor van / darab lineárisan összefüggő oszlopa, ha van olyan kódszó, aminek a súlya legfeljebb /.

Bizonvítás

Legyen $\mathbf{H} = (h_1 \quad h_2 \quad \cdots \quad h_n).$

Ekkor $\sum_{i=1}^{l} u_i \cdot h_{l_i} = \underline{0}$. Tekintsük azt a vektort, aminek az l_i -edik koordinátája u_i , a többi pedig 0. Ez egyrészt kódszó lesz (Miért?), másrészt a súlya legfeljebb /.

Legyen $\underline{u} = (u_1, u_2, \dots, u_n)^T$ az a kódszó, aminek a súlya /. Ekkor **H**-nak az u nem-nulla koordinátáinak megfelelő oszlopai lineárisan összefüggőek.

Következmény

A kód távolsága a legkisebb pozitív egész /, amire létezik az ellenőrző mátrixnak / darab lineárisan összefüggő oszlopa.

Példa

A (*) kód esetén:

$$\mathbf{H} = \left(\begin{array}{ccccc} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{array}\right)$$

Egyik oszlopvektor sem a nullvektor, így nincs 1 darab lineárisan összefüggő oszlop.

Egyik oszlopvektor sem többszöröse egy másiknak, így nincs 2 darab lineárisan összefüggő oszlop.

Az 1., 3. és 5. oszlopok lineárisan összefüggőek, így a kód távolsága 3.

A H ellenőrző mátrix segítségével dekódolni is lehet.

Definíció

Adott $\underline{v} \in \mathbb{F}_q^n$ esetén az $\underline{s} = \mathbf{H}\underline{v} \in \mathbb{F}_q^{n-k}$ vektort szindrómának nevezzük.

Megjegyzés

A \underline{v} pontosan akkor kódszó, ha $\underline{s} = \underline{0}$.

Definíció

Legyen \underline{c} a kódszó, \underline{v} a vett szó. Az $\underline{e} = \underline{v} - \underline{c}$ a hibavektor.

Állítás

 $\mathbf{H}v = \mathbf{H}e$.

Bizonyítás

$$\mathbf{H}\underline{v} = \mathbf{H}(\underline{c} + \underline{e}) = \mathbf{H}\underline{c} + \mathbf{H}\underline{e} = \underline{0} + \mathbf{H}\underline{e} = \mathbf{H}\underline{e}$$

14.

A dekódolás elve: v-ből kiszámítjuk a Hv szindrómát, ami alapján megbecsüljük az \underline{e} hibavektort, majd meghatározzuk \underline{c} -t a $\underline{c} = \underline{v} - \underline{e}$ képlet segítségével.

Definíció

Valamely \underline{e} hibavektorhoz tartozó mellékosztály az $\{\underline{e} + \underline{c} : c \text{ kódszó}\}$ halmaz.

Megjegyzés

Az e = 0-hoz tartozó mellékosztály a kód.

Állítás

Az azonos mellékosztályban lévő szavak szindrómája megegyezik.

Definíció

Minden s szindróma esetén legyen e_s az a minimális súlyú szó, melynek sa szindrómája. Ez az s szindrómához tartozó mellékosztály-vezető, a mellékosztály elemei $e_s + c$ alakúak, ahol $c \in K$ kódszó.

Szindrómadekódolás

Adott v esetén tekintsük az s = Hv szindrómát, és az e_s mellékosztály-vezetőt. Dekódoljuk v-t $c = v - e_s$ -nek.

Állítás

Legyen c a kódszó, v = c + e a vett szó, ahol e a hiba, és w(e) < d/2, ahol d a kód távolsága. Ekkor a szindrómadekódolás a minimális távolságú dekódolásnak felel meg.

Bizonyítás

Egyrészt a korábbi állítás alapján $\underline{s} = \mathbf{H}\underline{v} = \mathbf{H}\underline{e}$, másrészt \underline{e}_s definíciója miatt $\underline{s} = \mathbf{H}\underline{e}_s$. Ezért \underline{e} és \underline{e}_s ugyanabban a mellékosztályban van, továbbá $w(\underline{e}_s) \leq w(\underline{e})$.

$$w(\underline{e} - \underline{e_s}) = d(\underline{e}, \underline{e_s}) \le d(\underline{e}, \underline{0}) + d(\underline{0}, \underline{e_s}) = w(\underline{e}) + w(\underline{e_s}) < d.$$

De $\mathbf{H}(\underline{e} - e_s) = \underline{0}$ miatt $\underline{e} - e_s$ kódszó (Miért?), így $\underline{e} = e_s$.

Példa

Tekintsük a (*) kódot.

$$\underline{v} = (1, 1, 0, 1, 1)^T$$
 esetén $\underline{H}\underline{v} = \underline{0}$, így \underline{v} kódszó.

$$\underline{v} = (1, 1, 0, 0, 1)^T$$
 esetén $\mathbf{H}\underline{v} = (0, 1, 0)^T = \underline{s}$.

Mi az <u>s</u>-hez tartozó mellékosztály-vezető?

A $(0,0,0,1,0)^T$ súlya 1, és a szindrómája a keresett $(0,1,0)^T$, így ez lesz a mellékosztály-vezető.

$$\underline{c} = \underline{v} - \underline{e_s} = (1, 1, 0, 0, 1)^T - (0, 0, 0, 1, 0)^T = (1, 1, 0, 1, 1)^T$$