Correlation

Frank Edwards 10/26/2021

Correlation (math time): Z-scores

First, we need the variables to be comparable, so we transform them to be on a standard deviation scale.

A z-score scales a variable measures the number of standard deviations an observation is away from it's mean.

$$z$$
 score of $x_i = \frac{x_i - \bar{x}}{S_x}$

Where \bar{x} is the mean, and S_x is the standard deviation of variable x. Z scores have a mean zero, and a range defined by the range of the data on a standard deviation scale.

For a normally (Gaussian) distributed variable, this will typically range between [-3,3]

In R, we can transform a numeric into a z-score using scale()

Z-scores in R

```
iris %>%
  mutate(Sepal.Length.sc = scale(Sepal.Length)) %>%
  select(Sepal.Length, Sepal.Length.sc)
```

##		Sepal.Length	Sepal.Length.sc	
##	1	5.1	-0.89767388	
##	2	4.9	-1.13920048	
##	3	4.7	-1.38072709	
##	4	4.6	-1.50149039	
##	5	5.0	-1.01843718	
##	6	5.4	-0.53538397	
##	7	4.6	-1.50149039	
##	8	5.0	-1.01843718	
##	9	4.4	-1.74301699	
##	10	4.9	-1.13920048	
##	11	5.4	-0.53538397	
##	12	4.8	-1.25996379	

3

Z-score transformed distributions have the same shape as the original data

Correlation

Correlation measures the degree to which two variables are associated with each other. We often use the letter *r* to denote a correlation.

$$r(x,y) = \frac{1}{n} \sum_{i=1}^{n} \frac{x_i - \bar{x}}{S_x} \times \frac{y_i - \bar{y}}{S_y}$$
$$= E[z(x) \times z(y)]$$

In R, you can use cor()

Evaluate correlations using cor()

- Compute the correlation between Sepal.Length and Sepal.Width.
 What does it mean?
- Compute the correlation between Petal.Length and Petal.Width.
 What does it mean?
- Compute the correlation between Petal.Length and Sepal.Width.
 What does it mean?

Bivariate visuals for continuous data: Scatterplots

Make a scatterplot

```
ggplot(iris,
    aes(x = Sepal.Length, y = Sepal.Width)) +
    geom_point()
```


Scatterplot ingredients

- · a data.frame with two continuous variables
- \cdot aes() with an x and y parameter
- · geom_point()

Practice

- · Scatterplot petal length on the x and petal width on the y
- Flip the axes (move length to y, width to x)

Scatterploting with clusters

We often have bivariate measures that are *clustered*, or have some structure caused by a third (often categorical) variable.

Scatterploting with clusters

We often have bivariate measures that are *clustered*, or have some structure caused by a third (often categorical) variable.

Do we see structure here? What could be causing it?

Two solutions to plotting clustered data: aesthetics

Use the clustering variable to add another aesthetic element to our plot, like color

```
ggplot(iris,
    aes(x = Sepal.Length, y = Sepal.Width,
    color = Species)) +
geom_point()
```


Two solutions to plotting clustered data: facets

```
ggplot(iris,
    aes(x = Sepal.Length, y = Sepal.Width)) +
geom_point() +
facet_wrap(~Species)
```


Correlation and scatterplots

Correlation and scatterplots

Correlation and scatterplots

Correlation and Scatterplots

Return to iris

- · Scatterplot Sepal.Width and Petal.Width
- · How would you describe the relationship between the variables?
- · Estimate the correlation
- Describe what you find using both the estimated correlation and your interpretation of the scatterplot