Universidade Federal da Bahia

Segmentação de Imagens

Rubisley de Paula Lemes Maurício Pamplona Segundo

Conceituação

 Segmentação é uma tarefa básica no processo de análise de imagens.

Conceituação

- A segmentação divide uma imagem em suas unidades significativas
 - Os objetos de interesse que a compõem

Conceituação

- Segmentação é uma das tarefas mais difíceis em processamento de imagens.
- A segmentação determina o eventual sucesso ou fracasso da análise.

Conceituação

- Deve-se fazer uso de todo e qualquer conhecimento prévio sobre o problema.
- Busca pelas descontinuidades ou pelas similaridades dos níveis de cinza.

Super segmentação over-segmentation

Crescimento de Regiões

 A segmentação é o processo de particionar a imagem em n regiões R₁, R₂, ..., R_n tal que:

$$a)\bigcup_{i=1}^n R_i=R$$

- b) R_i é uma regiao conexa, i = 1,2,...,n
- c) $R_i \cap R_j = \phi, \forall i \ e \ j, i \neq j$
- d) $P(R_i) = verdadeiro para i = 1,2,...,n$
- e) $P(R_i \bigcup R_j) = falso para i \neq j$

Crescimento de Regiões

- Agrupamento de Pixels ou grupo de pixel em regiões maiores.
 - Os pixels a serem agrupados devem ter propriedades similares.
- Inicia-se com um conjunto de "sementes" em torno do qual as regiões crescem.

Crescimento de Regiões Imagem de entrada

0	0	0	0	0	0	0
0	3	2	0	0	0	0
0	2	3	0	6	5	0
0	3	0	0	7	6	5
0	4	3	0	0	6	0
0	3	2	0	0	0	0
0	0	3	4	4	0	0

Crescimento de Regiões Escolha dos pontos semente

0	0	0	0	0	0	0
0	3	2	0	0	0	0
0	2	3	0	6	5	0
0	3	0	0	7	6	5
0	4	3	0	0	6	0
0	3	2	0	0	0	0
0	0	3	4	4	0	0

Crescimento de Regiões

Regra de Similaridade: dois pontos são similares se a diferença entre seus valores for menor ou igual a T. Neste exemplo, T = 1.

0	0	0	0	0	0	0
0	3	2	0	0	0	0
0	2	3	0	6	5	0
0	3	0	0	7	6	5
0	4	3	0	0	6	0
0	3	2	0	0	0	0
0	0	3	4	4	0	0

Crescimento de Regiões Segunda iteração

0	0	0	0	0	0	0
0	3	2	0	0	0	0
0	2	3	0	6	5	0
0	3	0	0	7	6	5
0	4	3	0	0	6	0
0	3	2	0	0	0	0
0	0	3	4	4	0	0

Crescimento de Regiões Terceira iteração

0	0	0	0	0	0	0
0	3	2	0	0	0	0
0	2	3	0	6	5	0
0	3	0	0	7	6	5
0	4	3	0	0	6	0
0	3	2	0	0	0	0
0	0	3	4	4	0	0

Crescimento de Regiões Quarta iteração

0	0	0	0	0	0	0
0	3	2	0	0	0	0
0	2	3	0	6	5	0
0	3	0	0	7	6	5
0	4	3	0	0	6	0
0	3	2	0	0	0	0
0	0	3	4	4	0	0

Crescimento de Regiões Quinta iteração

0	0	0	0	0	0	0
0	3	2	0	0	0	0
0	2	3	0	6	5	0
0	3	0	0	7	6	5
0	4	3	0	0	6	0
0	3	2	0	0	0	0
0	0	3	4	4	0	0

Crescimento de Regiões Sexta iteração

0	0	0	0	0	0	0
0	3	2	0	0	0	0
0	2	3	0	6	5	0
0	3	0	0	7	6	5
0	4	3	0	0	6	0
0	3	2	0	0	0	0
0	0	3	4	4	0	0

Crescimento de Regiões Sétima iteração

0	0	0	0	0	0	0
0	3	2	0	0	0	0
0	2	3	0	6	5	0
0	3	0	0	7	6	5
0	4	3	0	0	6	0
0	3	2	0	0	0	0
0	0	3	4	4	0	0

Crescimento de Regiões Oitava iteração

0	0	0	0	0	0	0
0	3	2	0	0	0	0
0	2	3	0	6	5	0
0	3	0	0	7	6	5
0	4	3	0	0	6	0
0	3	2	0	0	0	0
0	0	3	4	4	0	0

Crescimento de Regiões Nona iteração

0	0	0	0	0	0	0
0	3	2	0	0	0	0
0	2	3	0	6	5	0
0	3	0	0	7	6	5
0	4	3	0	0	6	0
0	3	2	0	0	0	0
0	0	3	4	4	0	0

Crescimento de Regiões Décima iteração

0	0	0	0	0	0	0
0	3	2	0	0	0	0
0	2	3	0	6	5	0
0	3	0	0	7	6	5
0	4	3	0	0	6	0
0	3	2	0	0	0	0
0	0	3	4	4	0	0

Crescimento de Regiões Décima primeira iteração

0	0	0	0	0	0	0
0	3	2	0	0	0	0
0	2	3	0	6	5	0
0	3	0	0	7	6	5
0	4	3	0	0	6	0
0	3	2	0	0	0	0
0	0	3	4	4	0	0

Crescimento de Regiões Resultado Final

0	0	0	0	0	0	0
0	3	2	0	0	0	0
0	2	3	0	6	5	0
0	3	0	0	7	6	5
0	4	3	0	0	6	0
0	3	2	0	0	0	0
0	0	3	4	4	0	0

Crescimento de Regiões Problemas com a técnica

1) Seleção das sementes: depende da natureza do problema.

Ex: em aplicações militares com imagens com infravermelho, os pontos mais quentes, logo, mais brilhantes, são de interesse.

2) Seleção das Propriedades que estabeleçam os critérios de similaridade: depende do tipo de dados disponíveis.

Ex: as imagens de satélite usam a informação de cor.

Crescimento de Regiões Problemas com a técnica

3) Utilização de conectividade e adjacência:

Ex: uma imagem formada por um arranjo aleatório de 3 intensidades diferentes. Se a conexão entre pixels não for levada em conta, o resultado da segmentação não terá nenhum significado.

4) Formulação de uma regra de parada: utilização de critérios de tamanho, semelhança entre um pixel candidato e os pixels da Região e Formato de uma dada Região.

Segmentação de imagens Crescimento de Regiões Regra de vizinhança

Predicado: Soma das diferenças absolutas dos valores de R, G e B de P1 e P2 devem ser menores ou igual a T=10, crescendo a região por conectividade-8.

Crescimento de Regiões Regra de vizinhança

Obteve-se a imagem abaixo, com média de tempo de processamento de 28,679s.

Crescimento de Regiões Regra de vizinhança

Conectividade-4, obteve-se a imagem abaixo, com média de tempo de processamento de 23,478s.

Apenas 87 pixels diferentes, do total de 600x400 = 240000 pixels.

A conectividade-4 encontra 99,96% dos pixels da região em aproximadamente 82% do tempo.

Crescimento de Regiões Predicado

Analisar o algoritmo de crescimento de região com diferentes valores de T.

Crescimento de Regiões
Predicado
Não há aumento significativo da área detectada para valores de T maiores que 40.

Crescimento de Regiões

Dúvidas?

Exercício

Aplique o método de crescimento de regiões na imagem abaixo utilizando como semente os pixels coloridos e T=2.

1	0	4	5	3	0	2
2	3	2	3	0	1	1
5	4	6	4	6	5	2
2	3	1	5	7	6	5
2	4	3	1	4	8	8
2	3	2	3	6	7	9
7	6	4	5	4	8	6

Referências:

Computer Vision: A Modern Approach. David, A.F. and Jean, P., Prentice Hall, 2003

Computer Vision: Algorithms and Applications. Richard Szeliski. Springer, 2001 (versão online disponível em http://szeliski.org/Book/)

Processamento Digital de Imagens. R. Gonzalez and R. Woods. Edgar Blücher Ltda, 2000.

E. R. Davies, 3a, Machine Vision: Theory, Algorithms, Practicalities (Signal Processing and its Applications), Morgan Kaufmann, 2005