

## INTEGRANTES

233840

Elton Cardoso do Nascimento

Implementação e integração do Banco de dados 234720

Gabriel Costa Kinder

Limpeza, tratamento e inserção do dataSUS

218733

João Pedro de Moraes Bonucci

Limpeza, tratamento e inserção dos dados climáticos

240106

Lucas Otávio Nascimento de Araújo

Ferramentas de análise sob o banco de dados



Relacionando o clima com doenças respiratórias



### **TEMA**

O data set consiste em um banco de dados relacional que agrega

- Dados climaticos
- Dados de qualidade do ar
- Dados de doenças respiratórias

Do território Brasileiro entre os anos de 2000 e 2020 (nem todos os datasets contém todo o periodo). Com isso, ambicionamos encontrar ou fortalecer relações entre condições ambientais e doenças respiratórias no nosso país fornecendo dados específicos por cidade e mês ao longo de anos.

## MOTIVAÇÃO E CONTEXTO GERADOR

Nossa motivação para o problema nasceu devido a duradoura estiagem que estamos passando somado ao contexto pandêmico onde doenças respiratórias são um tema de foco. Por isso queríamos trazer algo relacionado a saúde e ao tema debatido, mas contribuindo com bancos ainda não tão explorados.

Em 2017, dois problemas respiratórios estavam entre as dez maiores causas de morte do país. Considerando isso, escolhemos como objetivo predizer a incidência de doenças respiratórias por meio de dados ambientais (clima, poluição).

Nosso objetivo se alinha com os Objetivos de Desenvolvimento Sustentável da ONU, mais especificamente com o objetivo 3, "Garantir o acesso à saúde de qualidade e promover o bem-estar para todos, em todas as idades".



# 02 DATASET

- Fontes
- Modelo conceitual
- Modelo lógico

# FONTES DE DADOS UTILIZADAS

**DADOS CLIMÁTICOS** 

**DADOS GEOGRÁFICOS** 

**DADOS DE SAÚDE** 

01

02

03

04

Climate Weather
Surface of Brazil
- Hourly

Banco de Coordenadas Geográficas das Cidades Brasileiras Municípios do IBGE

SRGA
Banco de dados
síndrome
respiratória aguda
grave 2013 - 2018

# MODELO CONCEITUAL



## MODELO LÓGICO



SRAG(\_id\_, DT\_NOTIFIC, ID\_MUNICIP, SEM\_NOT, SG\_UF\_NOT, DT\_SIN\_PRI, DT\_NASC, NU\_IDADE\_N, CS\_SEXO, CS\_GESTANT, CS\_RACA, CS\_ESCOL\_N, SG\_UF, ID\_MN\_RESI, ID\_OCUPA\_N, VACINA, FEBRE, TOSSE, ...)

CLIMA(\_id\_, date, precipitacao, pressao\_at\_max, pressao\_at\_min, radiacao, temp\_max, temp\_min, umidade, max\_vent, velocidade\_vent, region, state, station, lat, lon, elvt)

Estacoes(\_Id\_, Stacao, Regiao, UF, Codigo, Prim\_data, alt, Ion, Iat)

Cidades (\_Id\_, UF, Nome\_UF, Mesorregião Geográfica, Nome\_Mesorregião, Microrregião Geográfica, Nome\_Microrregião, Município, Código Município Completo, Nome\_Município, lat, lon)

# OPERAÇÕES

- Operações de preparo
- Implementação física
- Integralização



Work Illustrations by Storyset

### **DATASUS**

- Extração
  - o Dados de diagnósticos referentes aos anos de 2013-2018 obtidos do dataSUS
- Agregação
  - Unificar as tabelas de diferentes anos
  - Juntar informações da tabela do IBGE (nome das Cidades)
  - Juntas informações de coordenadas geográficas (latitude e longitude)
- Tratamento
  - Remover cidades inválidas
  - Arrumar índices
- Integração
  - Integrar os dados do dataSUS com os outros dados de nosso BD

### DADOS CLIMÁTICOS

- Extração
  - Extrair dados provenientes de estações climáticas
- Transformação
  - Padronização das colunas entre as tabelas de diferentes regiões do país
- Agregação
  - Junção dos dados climáticos de diferentes estações de coletas com suas respectivas estações e localidades
- Tratamento
  - Remover dados incompletos
  - Normalizar dados
  - Correção de dados com erros de digitação
  - Renomeação e exclusão de colunas do banco de dados
- Integração
  - Integração com os dados de saúde do banco SRAG

# **INTEGRALIZAÇÃO**

• Acesso como serviço para outras aplicações





# O4 EVOLUÇÃO

Como o projeto evoluiu no tempo



# **MO**DIFICAÇÕES NO PROJETO

- Alteração do período analisado: 2008-2018 → 2013-2018
  - Incompatibilidade entre os modelos de dados

- Foco apenas no modelo relacional
  - o Dificuldades de integrar com o modelo de grafo
  - Falta de vantagens no modelo de grafo
  - Dependência no Neo4j proprietário e necessita de instalação



### Dificuldade de processamento

Volume de dados muito grande

Falta de memória e lentidão

SGBD não permite acessos paralelos

Muitos dados disponíveis, com alguns bilhões a mais no caminho



### PLANEJAMENTO COMPLEXO



- Juntar domínios em um único projeto foi mais complexo que o esperado
  - o Ideia inicial: juntar trabalhos → aplicação final com esforços somados
  - Resultado: juntar trabalhos → esforço multiplicado

- Dificuldade de integrar o BD com as outras partes do sistema
  - Volume de dados
  - Interfaces e operações

# O5 ANÁLISE

- Conjunto de perguntas
- Consultas iniciais
- Machine Learning



Profile Illustrations by Storyset

# EXISTE ALGUMA SAZONALIDADE NOS CASOS DE SRAG?

Para cada estação, selecionamos os casos registrados entre suas datas de início e fim Sim, existe sazonalidade, e os casos se concentram nos períodos de outono e inverno





# QUAIS SÃO OS SINTOMAS MAIS COMUNS? (NÚMERO E INCIDÊNCIA)

#### Consulta

SELECT COUNT(FEBRE) FROM SRAG WHERE FEBRE = "1.0";
SELECT COUNT(TOSSE) FROM SRAG WHERE TOSSE = "1.0";
SELECT COUNT(GARGANTA) FROM SRAG WHERE GARGANTA = "1.0";
SELECT COUNT(DISPNEIA) FROM SRAG WHERE DISPNEIA = "1.0";
SELECT COUNT(MIALGIA) FROM SRAG WHERE MIALGIA = "1.0";
SELECT COUNT(SATURACAO) FROM SRAG WHERE SATURACAO = "1.0";
SELECT COUNT(DESC\_RESP) FROM SRAG WHERE DESC\_RESP = "1.0";

### **Análise**

Tosse é o sintoma mais comum, seguido de febre, dispneia e desconforto respiratório. Baixa saturação também afeta a maioria dos pacientes

| Sintoma                       | Casos   | Incidência |
|-------------------------------|---------|------------|
| Tosse                         | 183.489 | 0,91       |
| Febre                         | 169.461 | 0,84       |
| Dispneia                      | 164.511 | 0,82       |
| Desconforto Respiratório      | 159.059 | 0,81       |
| Saturação de O₂ abaixo de 95% | 110.485 | 0,58       |
| Mialgia (Dor Muscular)        | 052.384 | 0,30       |
| Dor de Garganta               | 038.131 | 0,22       |

# EXISTE ALGUMA SAZONALIDADE NOS SINTOMAS RELACIONADOS A PROBLEMAS RESPIRATÓRIOS?

#### Consulta

SELECT
DT\_NOTIFIC FROM
SRAG WHERE
TOSSE = "1.0"
OR FEBRE =
"1.0" OR
GARGANTA =
"1.0";

Após: histograma

### **Análise**

Sim, existe sazonalidade, e os sintomas se concentram nos períodos de outono e inverno





# OS CASOS SE CONCENTRAM EM ALGUMA REGIÃO GEOGRÁFICA?

#### **Procedimento**

Clusterizamos por latitude e longitude todos os dados na tabela SRAG, utilizando Modelos de ML

#### **Análise**

Infelizmente, o resultado não parece ser significativo, já que parece apenas refletir a distribuição demográfica do Brasil

### Resultado



### A IDADE INFLUENCIA NA TAXA DE MORTALIDADE?

#### **Procedimento**

Calculamos a porcentagem de casos em que a evolução foi registrada como óbito em relação ao total de casos em que a evolução foi registrada.

### **Análise**

Sim, faixas etárias mais idosas apresentam maior taxa de mortalidade.



### **QUAIS SÃO AS PRINCIPAIS CAUSAS DE SRAG?**

#### **Procedimento**

Inspecionar a coluna de classificação do BD, relevando os casos não especificados.

### **Análise**

Influenza corresponde à maioria, seguida de outros vírus respiratórios.



# A VACINAÇÃO CONTRA INFLUENZA INFLUENCIA NA MORTALIDADE?

#### **Procedimento**

Dentre os casos causados por influenza, calculamos a taxa de mortalidade, separando o grupo vacinado e não vacinado

### **Análise**

Sim, os casos de pessoas não vacinadas — embora sejam menos idosas — representaram uma taxa de mortalidade maior

### Resultado

| Grupo         | Taxa de Mortalidade |  |
|---------------|---------------------|--|
| Vacinados     | 0,11                |  |
| Não vacinados | 0,16                |  |

