

Depto de Matemática. Primer Cuatrimestre de 2022 Teoría de la Medida Práctica 6: Espacios L^p

Ejercicio 1. La funcion sen(nx)/x no es integrable Lebesgue en $(0, +\infty)$. Observar que

$$\lim_{n\to\infty} \int_0^n \frac{\mathrm{sen}x}{x} dx$$

existe.

Ejercicio 2. Demostrar que $L^1(\mathbb{R}^n)$ es separable, o sea tiene un conjunto denso numerable.

Ejercicio 3. Demostrar el Teorema de Riemann-Lebesgue: si $L^1(\mathbb{R}^n)$, entonces

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}f(x)\cos nxdx=\lim_{n\to\infty}\int_{-\infty}^{\infty}f(x)\mathrm{sen}nxdx=0.$$

Sugerencia: demostrar el resultado para una función escalera y luego usar la densidad de las mismas.

Ejercicio 4. Demostrar que:

- 1. $\|\cdot\|_{\infty}$ es una norma.
- 2. $L^{\infty}(E)$ es un álgebra.
- 3. $L^{\infty}(E)$ es un espacio de Banach.

Ejercicio 5. El espacio $L^{\infty}(0,1)$ con la norma $\|\cdot\|_{\infty}$ es un espacio de Banach no separable.

Ejercicio 6. Sea g una función medible tal que $fg \in L^1(E)$ $\forall f \in L^1(E)$, entonces $g \in L^\infty(E)$.

Ejercicio 7. Probar que:

- 1. $\|T\|_{L(X,Y)} = \sup_{\|x\|_X \le 1} \{\|Tx\|_Y\}$ es una norma.
- $2. \ \, \|T\|_{L(X,Y)} = \sup_{\|x\|_X = 1} \|Tx\|_Y = \sup_{x \neq 0} \frac{\|Tx\|_Y}{\|x\|_X} = \inf\{M: \|Tx\|_Y \leq M \|x\|_X, x \in X\}.$
- 3. L(X,Y) es un espacio de Banach siempre que Y sea un espacio de Banach.

Ejercicio 8. Sea H un espacio de Hilbert. Si $x, y \in H$ entonces vale la *Identidad del Paralelogramo*:

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Ejercicio 9. Demostrar que si $m(E)<\infty$ y $1\leq p\leq q\leq \infty$, entonces $L^q(E)\subset L^p(E)$. Sugerencia: Si $q<\infty$, verificar

$$\left\| \frac{f}{|E|^{\frac{1}{p}}} \right\|_{p} \le \left\| \frac{f}{|E|^{\frac{1}{q}}} \right\|_{q}$$

usando Jensen. También se puede probar el ejercicio usando la desigualdad de Hölder.

Ejercicio 10. Demostrar que la función $f(x)=1/x(\ln x)^2$ satisface que $f\in L^1([0,1])$ y $f\notin L^p([0,1])$ para todo p>1.