Nama : Agung Reynaldi Avizena

NIM : 1103204044

UAS Machine Learning: Learn PyTorch for Deep Learning

1. Chapter 00 – PyTorch Fundamentals

a. Creating Tensors

• Skalar, Vektor, Matriks, dan Tensor

Kode	Deskripsi	
scalar = torch.tensor(7)	Membuat tensor skalar dengan nilai	
scarar toren.tensor(/)	7	
vector = torch.tensor([7, 7])	Membuat tensor 1 dimensi (vektor)	
$\sqrt{\text{cetor}} = \text{toren.tensor}([\tau, \tau])$	dengan dua elemen	
MATRIX = torch.tensor([[7, 8], [9, 10]])	Membuat tensor matriks 2x2	
TENSOR = torch.tensor([[[1, 2, 3], [3, 6, 9],	Membuat tensor 3 dimensi	
[2, 4, 5]]])	Wichiodat tensor 3 difficust	
random tensor = torch.rand(size=(3, 4))	Membuat tensor acak dengan	
random_tensor toren.rand(size (3, 4))	ukuran (3, 4)	
Tamas = tamah Tamas(sira=(2, 4))	Membuat tensor nol dengan ukuran	
zeros = torch.zeros(size=(3, 4))	(3, 4)	
ones = torch.ones(size=(3, 4))	Membuat tensor satu dengan	
ones – toren.ones(size–(3, 4))	ukuran (3, 4)	

• Informasi Tensor

Kode	Deskripsi
tensor.ndim	Mendapatkan jumlah dimensi dari suatu tensor
tensor.shape	Mendapatkan bentuk (shape) dari suatu tensor
tensor.item()	Mendapatkan nilai Python dalam suatu tensor (hanya untuk tensor satu
tensor.item()	elemen)
tensor.dtype	Mendapatkan tipe data dari suatu tensor

b. Operasi Tensor

• Operasi Matematika

Kode	Deskripsi
tensor + 10	Menambahkan 10 pada setiap elemen tensor
tensor * 10	Mengalikan setiap elemen tensor dengan 10
torch.matmul(tensor, tensor)	Perkalian matriks dua tensor
tensor * tensor	Perkalian elemen-wise dua tensor

c. Manipulasi Tensor

• Reshaping, Stacking, Squeezing, dan Unsqueezing

Kode	Deskripsi
$x_reshaped = x.reshape(1, 7)$	Mereshape tensor menjadi (1, 7)
x.view(1, 7)	Mengubah tampilan tensor menjadi (1, 7)
torch.stack([x, x, x, x], dim=0)	Mempile tensor satu di atas yang lain sepanjang
	dimensi 0
x_reshaped.squeeze()	Menghapus dimensi tambahan dari suatu tensor
x_squeezed.unsqueeze(dim=0)	Menambah dimensi tambahan pada suatu tensor

d. Pengindeksan Tensor dan Integrasi dengan NumPy

• Pengindeksan

Kode	Deskripsi
x[:,:,1]	Mendapatkan semua nilai dimensi 0 dan 1, namun hanya indeks 1
λ[., ., 1]	dari dimensi 2
x[0, 0, :]	Mendapatkan indeks 0 dari dimensi 0 dan 1, serta semua nilai dari
	dimensi 2
tensor.argmax()	Mengembalikan indeks di mana nilai maksimum terjadi
tensor.argmin()	Mengembalikan indeks di mana nilai minimum terjadi

• Integrasi dengan NumPy

Kode	Deskripsi
torch.from_numpy(array)	Mengubah array NumPy menjadi tensor PyTorch
tensor.numpy()	Mengubah tensor PyTorch menjadi array NumPy

e. Reproduktibilitas

• Seed Acak

Kode	Deskripsi
torch.manual seed(seed=RANDOM SEED)	Menetapkan seed acak untuk
toren.manuar_seeu(seeu-RANDOW_SEED)	PyTorch
torch.random.manual seed(seed=RANDOM SEED)	Mereset seed untuk setiap
toren.random.manuar_secu(secu=tvAtvDoW_SEED)	tensor acak baru

2. Chapter 01 - PyTorch Workflow Fundamentals

Step	Deskripsi
Import Library	 Mengimpor library yang dibutuhkan seperti torch, matplotlib, nn (PyTorch's building blocks), pathlib, dan pprint. Menyiapkan data awal.
Data (Preparing and Loading)	Menentukan parameter yang diketahui (weight dan bias).Membuat data menggunakan persamaan linear.Memisahkan data menjadi set pelatihan dan pengujian.
Plot Predictions Function	- Fungsi untuk memvisualisasikan data pelatihan, pengujian, dan prediksi.
Build Model	 Membuat kelas model regresi linear (LinearRegressionModel). Mendefinisikan parameter (weights dan bias) sebagai parameter yang dapat diubah. Mendefinisikan metode forward yang menghitung prediksi linear.
Checking Model Contents	 Menggunakan seed manual untuk parameter acak. Membuat instance model dan mengecek parameter menggunakan parameters() dan state_dict().
Making Predictions with torch.inference_mode()	Melakukan prediksi dengan model menggunakan torch.inference_mode().Mengecek hasil prediksi.
Train Model	- Menentukan fungsi loss (L1Loss) dan optimizer (SGD).

	- Melakukan loop pelatihan dengan metode Stochastic
	Gradient Descent.
	- Mencetak dan memonitor loss pelatihan dan pengujian.
Plot Loss Curves	- Memvisualisasikan kurva loss pelatihan dan pengujian.
Find Model's Learned	- Mencetak parameter terpelajari dari model dan
Parameters	membandingkannya dengan nilai awal.
Making Predictions with	- Menggunakan model yang telah dilatih untuk membuat
Trained Model	prediksi pada data pengujian.
Tramed Woder	- Memvisualisasikan prediksi.
Saving and Loading a PyTorch	- Menyimpan model ke file menggunakan torch.save().
Model	- Memuat kembali model dari file.
	- Menyiapkan kode agar dapat dijalankan di perangkat apa
Putting it All Together	pun.
	- Membuat dan memvisualisasikan data.
	- Membangun model regresi linear dengan menggunakan
Building a PyTorch Linear	nn.Linear untuk kejelasan.
Model (Improved)	- Memeriksa perangkat dan mengaturnya ke GPU jika
	tersedia.
T ' ' I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Training Improved Model	- Melatih model baru selama 1000 epoch.
Training Improved Model	- Melatih model baru selama 1000 epoch.- Mencetak dan memonitor loss pelatihan dan pengujian.
Training Improved Model Model Evaluation and	•
	- Mencetak dan memonitor loss pelatihan dan pengujian.
Model Evaluation and	 - Mencetak dan memonitor loss pelatihan dan pengujian. - Mengevaluasi model pada data pengujian. - Membuat prediksi dan memvisualisasikannya.
Model Evaluation and Predictions	- Mencetak dan memonitor loss pelatihan dan pengujian.- Mengevaluasi model pada data pengujian.

3. Chapter 02 – Neural Network Classification

Step	Deskripsi
	Mengimpor pustaka seperti NumPy, pandas, Matplotlib, PyTorch,
Mengimport	scikit-learn, dan permintaan. Ini memastikan ketersediaan fungsi-
Pustaka	fungsi penting untuk komputasi, manipulasi data, visualisasi, dan
	pembelajaran mendalam.
Membuat Data	Menghasilkan data melingkar menggunakan make_circles untuk
untuk Klasifikasi	klasifikasi. Visualisasikan data menggunakan plot sebar.

Bentuk Input dan	Mengidentifikasi fitur (X) dan label (y) beserta dimensinya, penting
Output	untuk desain model.
Membangun Model	Membangun model klasifikasi menggunakan multi-layer perceptron (MLP) dengan dua lapisan linier. Model juga direplikasi dengan pendekatan nn.Sequential.
Fungsi Kerugian dan Pengoptimal	Memilih nn.BCEWithLogitsLoss sebagai fungsi kerugian dan menggunakan Stochastic Gradient Descent (SGD) sebagai pengoptimal.
Loop Pelatihan dan	Melakukan pelatihan dan pengujian melalui iterasi epoch dengan
Pengujian	langkah maju, perhitungan kerugian, langkah mundur, dan optimalisasi.
Evaluasi Model	Mengukur akurasi model untuk mengevaluasi kemampuannya dalam mengklasifikasikan sampel. Visualisasi batas keputusan model.
Meningkatkan	Eksperimen dengan menambahkan lapisan dan melatih model lebih
Model	lama untuk meningkatkan kompleksitas dan kinerja model.
Mengatasi	Mengimpor fungsi yang mungkin hilang, seperti
Kesalahan Kode	plot_decision_boundary.
Mempersiapkan Data untuk Regresi	Membuat data linier untuk menjelajahi kemampuan model dalam mempelajari hubungan linier. Membagi data menjadi set pelatihan dan pengujian.

4. Chapter 03 – Computer Vision

Step	Deskripsi
	- Penerapan alur kerja PyTorch pada masalah computer
Computer Vision Libraries in	vision.
PyTorch	- Fokus pada penggunaan library PyTorch khusus untuk
	computer vision.
	- Penggunaan torchvision.datasets.FashionMNIST() untuk
Load Data	mendownload dataset.
	- Eksplorasi bentuk input dan output gambar serta jumlah
	sampel.
	- Visualisasi kelas pakaian dalam dataset menggunakan
	matplotlib.

	- Penggunaan DataLoader untuk mempermudah proses
Prepare Data	loading data ke dalam model.
	- Pembagian dataset menjadi batch atau mini-batch untuk
	efisiensi komputasi.
	- Pembangunan model dasar untuk klasifikasi multi-kelas.
Model 0: Building a Baseline	- Penggunaan nn.Flatten() sebagai lapisan pertama untuk
	meratakan dimensi tensor.
Model	- Persiapan model sebagai dasar untuk model-model
	berikutnya.
	- Pembuatan fungsi untuk melakukan prediksi dan evaluasi
Making Predictions and	model.
Evaluating Model 0	- Kode yang dapat berjalan pada CPU atau GPU untuk
	fleksibilitas perangkat.
	- Implementasi best practices untuk penulisan kode yang
Setup Device Agnostic Code	agnostik perangkat.
for Future Models	- Persiapan kode untuk fleksibilitas penggunaan perangkat
	(CPU/GPU).
	- Eksperimen dengan menambahkan lapisan non-linear
Model 1: Adding Non-	(nn.ReLU()) pada model.
linearity	- Modifikasi arsitektur untuk menangkap pola kompleks
	dalam data.
Model 2: Convolutional	- Pengenalan arsitektur Convolutional Neural Network
Neural Network (CNN)	(CNN).
1,002021,001,011	- Penerapan CNN untuk tugas computer vision.
	- Penilaian dan perbandingan tiga model yang telah
Comparing Our Models	dibangun.
	- Evaluasi berdasarkan metrik kinerja.
Evaluating Our Best Model	- Penerapan model terbaik pada gambar acak dan evaluasi
	hasilnya.
	- Pembuatan matriks kebingungan untuk analisis lebih lanjut.
Making a Confusion Matrix	- Penjelasan matriks kebingungan sebagai alat evaluasi.
	- Demonstrasi pembuatan dan interpretasi matriks
	kebingungan.

Saving and Loading the Best Performing Model	- Penyimpanan model terlatih untuk penggunaan masa depan.
	- Demonstrasi memuat kembali model yang disimpan untuk
	memastikan kebenaran.

5. Chapter 04 – Custom Dataset

Step	Deskripsi
Mengimpor PyTorch dan Menyiapkan Kode yang Agnostik	- Mengimpor PyTorch untuk pembuatan model.
	- Menyiapkan kode agar dapat dijalankan pada
	perangkat manapun, mendeteksi ketersediaan GPU
terhadap Perangkat	(cuda) atau menggunakan CPU.
	- Mengunduh dataset kustom, sebuah subset dari
	Food101.
Mendapatkan Data	- Dataset mencakup gambar pizza, steak, dan sushi.
	- Langkah awal untuk membangun dan melatih
	model sebelum memperluas dataset atau model.
	- Penting untuk memahami dan menjelajahi struktur
Menjadi Satu dengan Data	dataset.
(Persiapan Data)	- Mendapatkan wawasan untuk pelatihan model dan
	perluasan potensial.
	- Melakukan transformasi yang diperlukan pada
Transformasi Data	gambar agar siap digunakan oleh model.
Transformasi Data	- Menyesuaikan dengan format atau struktur data
	awal.
	- Menggunakan fungsi ImageFolder dari PyTorch
Memuat Data dengan	untuk memuat data.
ImageFolder (Opsi 1)	- Cocok untuk gambar dalam format klasifikasi
	standar.
	- Membuat kelas Dataset kustom jika PyTorch tidak
Memuat Data Gambar dengan	memiliki fungsi bawaan.
Dataset Kustom	- Menawarkan fleksibilitas untuk menyesuaikan
	dataset sesuai kebutuhan.
Bentuk Lain dari Transformasi	- Mengeksplorasi augmentasi data menggunakan
(Augmentasi Data)	fungsi transformasi bawaan PyTorch.

	- Augmentasi membantu meningkatkan keragaman
	data pelatihan.
	- Membangun model dasar (TinyVGG) tanpa
Model 0: TinyVGG tanpa	menggunakan augmentasi data.
Augmentasi Data	- Mengembangkan fungsi pelatihan dan evaluasi
	untuk model.
	- Memeriksa kurva loss untuk memahami kemajuan
Manjalajahi Kurwa Laga	pembelajaran model.
Menjelajahi Kurva Loss	- Berguna untuk mengidentifikasi kecenderungan
	underfitting atau overfitting.
	- Membangun model serupa dengan Model 0,
Model 1: TinyVGG dengan	namun kali ini dengan augmentasi data.
Augmentasi Data	- Meningkatkan performa model dengan data yang
	telah di-augmentasi.
	- Membandingkan hasil dan kurva loss dari kedua
Membandingkan Hasil Model	model untuk evaluasi.
Wembandingkan Hash Wodel	- Memberikan opsi dan diskusi untuk meningkatkan
	performa model.
	- Menggunakan model yang telah dilatih untuk
Melakukan Prediksi pada Gambar Kustom	membuat prediksi pada gambar di luar dataset
	pelatihan.
	- Mendemonstrasikan cara menggunakan model
	untuk keperluan prediksi.

6. Chapter 05 – Going Modular

Step	Dekripsi
Persiapan Awal	- Import semua pustaka yang diperlukan seperti
	PyTorch, os, dan lainnya.
	- Pilih mode sel sebagai notebook atau script.
Pengambilan Data	- Unduh dataset gambar kustom dari GitHub yang
	berisi kategori pizza, steak, dan sushi.
Persiapan Data	- Eksplorasi struktur dataset untuk memastikan data
	telah diunduh dan terorganisir dengan baik.

	- Periksa ketersediaan folder penyimpanan dataset.
	- Unduh dan ekstraksi data jika belum ada.
	- Resize gambar untuk keseragaman.
Transformasi Data	- Normalisasi nilai pixel dan konversi gambar menjadi
	tensor.
Memuat Data dengan	- Gunakan ImageFolder jika dataset mengikuti struktur
ImageFolder (Opsi 1)	standar.
	- Buat kelas dataset kustom jika struktur dataset tidak
Memuat Data Gambar dengan	standar.
Dataset Kustom	- Berikan fleksibilitas dalam mengelola dataset
	kompleks.
	- Terapkan augmentasi data untuk variasi dataset
Transformasi Lainnya	pelatihan.
(Augmentasi Data)	- Eksplorasi transformasi tambahan seperti rotasi,
	pemutaran, dll.
	- Implementasikan TinyVGG, model konvolusional
Model 0: TinyVGG tanpa Augmentasi Data	sederhana.
	- Tentukan fungsi pelatihan dan evaluasi model.
	- Monitor kurva loss selama pelatihan.
Eksplorasi Kurva Loss	- Analisis apakah model cenderung underfitting atau
	overfitting.
Model 1: TinyVGG dengan	D. I.
Augmentasi Data	- Buat versi TinyVGG dengan augmentasi data.
M 1 1 1 77 137 11	- Bandingkan hasil dan performa kedua model.
Membandingkan Hasil Model	- Diskusikan opsi untuk meningkatkan performa model.
Membuat Prediksi pada	- Terapkan model pada gambar kustom untuk membuat
Gambar Kustom	prediksi.
D : 34.11	- Buat modul utilitas untuk menyimpan model selama
Penyimpanan Model	pelatihan.
	- Gabungkan semua komponen ke dalam satu skrip
Train.py - Penggabungan	(train.py).
Semua Komponen	- Tetapkan hyperparameter dan inisiasi serta pelatihan
	model.

7. Chapter 06 – Transfer Learning

Step	Deskripsi
Persiapan	- Menyiapkan dan mengunduh modul yang diperlukan.
	- Mengambil direktori going_modular dari repositori pytorch-
	deep-learning.
	- Memasang paket torchinfo jika belum terpasang.
Mengambil Data	- Men-download dataset pizza_steak_sushi.zip dari GitHub
	kursus.
	- Memastikan dataset tidak diunduh ulang jika sudah ada.
	- Menerapkan skrip data_setup.py dari direktori going_modular
Membuat Dataset	untuk menyiapkan DataLoaders.
dan DataLoaders	- Menyiapkan transformasi khusus untuk model
	torchvision.models.
Transformasi	- Menegaskan pentingnya konsistensi persiapan data dengan data
Manual untuk	pelatihan asli.
torchvision.models	- Sebelum torchvision v0.13+, transformasi untuk model
torenvision.models	pretrained dilakukan secara manual.
Transformasi	- Mulai dari torchvision v0.13+, fitur pembuatan transformasi
Otomatis untuk	otomatis diperkenalkan.
torchvision.models	- Memilih berat pretrained dan arsitektur model menggunakan
toron vision. models	torchvision.models.EfficientNet_B0_Weights.DEFAULT.
	- Menerapkan transfer learning untuk meningkatkan performa
Mendapatkan Model	model dengan mengadopsi model yang sudah ada dan
Pretrained	menyesuaikannya dengan kasus penggunaan spesifik.
	- Mencari model klasifikasi pretrained di torchvision.models.
	- Membuat fungsi kerugian dan pengoptimal.
	- Menggunakan nn.CrossEntropyLoss() sebagai fungsi kerugian.
Melatih Model	- Menggunakan torch.optim.Adam() sebagai pengoptimal dengan
	lr=0.001.
	- Melatih model selama 5 epoch menggunakan fungsi train() dari
	skrip engine.py.

Evaluasi Model dengan Plot Kurva Kerugian	 Membuat plot kurva kerugian menggunakan fungsi plot_loss_curves. Fungsi diambil dari helper_functions.py dan diunduh jika belum
	tersedia.
	- Melakukan prediksi pada gambar dari set uji dan menampilkan
Prediksi pada	hasilnya.
Gambar dari Set Uji	- Membuat fungsi pred_and_plot_image() untuk melakukan
	prediksi dan plotting.
Prediksi pada	- Menguji model pada gambar kustom (pizza-dad.jpeg) dan
Gambar Kustom	membuat prediksi menggunakan fungsi pred_and_plot_image.