SATISH KUMAR

(a)
$$x-3y=-2$$
 $2x-3y=5$
 $A = \begin{pmatrix} 1 & -3 \\ 2 & -3 \end{pmatrix}$, $b = \begin{pmatrix} -2 \\ 5 \end{pmatrix}$

we can multiply equation 1 by

 $(-2) = \frac{2}{2} = -\frac{a_{21}}{a_{11}}$ and add to equation

2 And this is $E_{21} \left(\frac{-a_{21}}{a_{11}} \right)$
 $\begin{pmatrix} 1 & -3 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \end{pmatrix} \begin{pmatrix} 1 + -3 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$

then $x-3y=-2$
 $0-x+3y=9$

If is upper trangular and use backward substitution.

 $0-x+3y=9=3$ $3y=9=3$ $y=\frac{9}{3}=3$ $y=3$
 $x-3y=-2=3$ $x-3(3)=-2$

=) x=-2+9=>x=7

x=7 Proved