

Профессиональная автохимия и все для автомойки Профессиональные моющие средства для предприятий пищевой промышленности и АПК Профессиональные моющие средства для клининга

ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ КИСЛОТНОГО МОЮЩЕГО СРЕДСТВА ДЛЯ ВОДЫ ПОВЫШЕННОЙ ЖЕСТКОСТИ «KSILAN» ТМ «VORTEX»

ДЛЯ ПРЕДПРИЯТИЙ ПИЩЕВОЙ И ПЕРЕРАБАТЫВАЮЩЕЙ ПРОМЫШЛЕННОСТИ, В ТОМ ЧИСЛЕ (МОЛОЧНОЙ, МЯСО-, ПТИЦЕ-, РЫБО-, ФРУКТО-, ОВОЩЕПЕРЕРАБАТЫВАЮЩЕЙ, КОНСЕРВНОЙ, МАСЛОЖИРОВОЙ, КОНДИТЕРСКОЙ, ХЛЕБОПЕКАРНОЙ, ПИВОБЕЗАЛКОГОЛЬНОЙ, ВИНОДЕЛЬЧЕСКОЙ И ДР.), СЕЛЬСКОХОЗЯЙСТВЕННОЙ ПРОМЫШЛЕННОСТИ (ЖИВОТНО-, РАСТЕНИЕВОДЧЕСКИЕ И ДР.), А ТАКЖЕ НА ДРУГИХ ПРЕДПРИЯТИЯХ И УЧРЕЖДЕНИЯХ РАЗЛИЧНОГО ПРОФИЛЯ.

СОСТАВИЛ Руководитель инновационной лаборатории:

УТВЕРДИЛ

Генеральный директор:

Рыжков Д.Ф.

М.В. Телеусова

Дата создания инструкции: Дата последней ревизии:

15.09.2015 15.09.2015

г. Ижевск 2019 Всего листов: 7

ИНСТРУКЦИЯ

по применению для предприятий пищевой и перерабатывающей промышленности, общественного питания, административных, общеобразовательных и других общественных учреждений

Кислотного моющего средства для воды повышенной жесткости «Ksilan» TM «Vortex»

1. Наименование продукции и производитель

Наименование: Кислотное моющее средство для воды повышенной жесткости «Ksilan» TM «Vortex»;

ТУ 2381-002-68251848-2011;

№ свидетельства о Гос. Регистрации: № RU.23.KK.08.015.E.000959.07.16

Производитель: ООО ПК «Вортекс», 426039, УР, г. Ижевск, ул.

Новосмирновская, 14.; Тел./факс: (3412) 26-00-27.

2. Назначение

Моющее средство предназначено для внутренней очистки оборудования, включая циркуляционную (CIP)-мойку. Средство предназначено для постоянной кислотной очистки различных видов технологического оборудования и тары на предприятиях пищевой, рыбной, мясоперерабатывающей промышленности и АПК. Возможно использование ручного способа мойки путём замачивания обрабатываемых объектов в рабочих растворах препарата и мойки их с помощью щёток и ершей.

3. Области применения

Предприятия пищевой и перерабатывающей промышленности, в том числе молокоперерабатывающей, мясоперерабатывающей, птицеперерабатывающей, рыбоперерабатывающей и пивобезалкогольной и др, а так же на предприятия общественного питания, административные, общеобразовательные и научные учреждения, торговые и деловые центры, производственные предприятия, медицинские учреждения, предприятия коммунального хозяйства и применение в быту, а также на других предприятиях различного профиля.

г. Ижевск 2019 Всего листов: 7

4. Инструкция по применению

Применимо для любых видов оборудования, изготовленного из кислотостойких материалов.

Идеально подходит для циркуляционных систем (CIP).

Рекомендуемая концентрация растворов 0,3-1% в зависимости от жёсткости воды, типа и состояния оборудования при температуре 20-80°С. Используется в комбинации с моющим средством Biotec. Способ промывки выбирается на основании результатов очистки по месту. Использовать средство в воде повышенной жёсткости.

Таблица 1. Приготовление рабочих растворов средства «Ksilan»

Кислотность	Концентрация	Количества средства и воды в расчёте на 100 л	
раствора, мл	рабочего		
1н. NaOH	раствора, %		
	по препарату		
	(объёмная)	Количество средства, мл	Количество воды, л
2,25	0,3	300	99,7
3,00	0,4	400	99,6
3,75	0,5	500	99,5
4,50	0,6	600	99,4
5,25	0,7	700	99,3
6,00	0,8	800	99,2
6,75	0,9	900	99,1
7,50	1,0	1000	98,0

5. Безопасность

По степени воздействия на организм человека средство относится к 3-му классу опасности (вещества умеренно опасные) по ГОСТ 12.1.007-76. Во время работы использовать средства индивидуальной защиты (очки, перчатки). При попадании на кожу или слизистые оболочки немедленно промыть большим количеством проточной воды. При необходимости обратиться к врачу.

6. Хранение

Хранить при температуре от $+5^{\circ}$ С до $+25^{\circ}$ С в оригинальной упаковке от производителя. Допускается заморозка во время транспортировки. В случае заморозки довести средство до комнатной температуры и тщательно перемешать. Срок годности — три года от даты изготовления, при условии соблюдения правил хранения.

г. Ижевск 2019 Всего листов: 7

7. Физико-химические свойства

- Прозрачная бесцветная жидкость с характерным кислотным запахом.
- pH (1%) 2;
- Плотность при 20⁰С не менее 1,21-1,23 г/см³;
- Общая кислотность 27-28%;
- Эмпирический коэффициент Р = 0,140

8. График удельной электропроводности

Температурный коэффициент (а):

 $a = 0.0170 \, ^{\circ}C^{-1}$

Концентрационный коэффициент (b):

b = 16,57 mCm/cm*%

Удельная электропроводность при 0,5% и 20 °C:

 $УЭП_0 = 7,14 мСм/см$

г. Ижевск 2019 Всего листов: 7

9. Состав

Комплекс неорганичческих кислот (30% и более), НПАВ(не менее 2%), целевые добавки деионизированная вода.

10. Методы испытаний

9.1. Определение внешнего вида и запаха

9.1.1 Внешний вид средства определяют визуально. Для этого в химический стакан из бесцветного прозрачного стекла с внутренним диаметром около 35 мм наливают средство до половины объема стакана и просматривают в проходящем свете.

9.1.2 Запах оценивают органолептически.

9.2. Определение плотности при 20°C

Плотность средства при 20° С измеряют с помощью ареометра в соответствии с ГОСТ 18995.1-73 « Продукты химические жидкие. Методы определения плотности».

9.3. Определение показателя активности водородных ионов (рН) раствора средства с массовой долей 1 %

Показатель активности водородных ионов (pH) раствора средства с массовой долей 1% измеряют потенциометрическим методом в соответствии с ГОСТ Р 50550-93.

Для приготовления 1% водного раствора используют дистиллированную воду по ГОСТ 6709-72.

9.4. Определение массовой доли кислот (в пересчете на соляную кислоту).

- 9.4.1. Определение общей кислотности
- 9.4.2. Оборудование и реактивы:
- Весы лабораторные общего назначения 2 класса по ГОСТ 24104-88 с наибольшим пределом взвешивания 200 г.
- Бюретка вместимостью 25 см 3 .
- Колбы конические вместимостью 250 см³.
- Стандарт-титр гидроксида натрия 0,1 H; 1 H раствор.
- Фенолфталеин, индикатор чда; 1 % спиртовой раствор; готовят по ГОСТ 4919.1-77.
- Спирт этиловый ректификованный технический.
- Вода дистиллированная по ГОСТ 6709-72.
 - 9.4.3 Проведение испытания:

К навеске средства массой 1 г, взятой в конической колбе вместимостью 250 см3 с точностью до четвертого десятичного знака, прибавляют 99 см³ дистиллированной воды и 3-4 капли индикатора фенолфталеина. Содержимое колбы титруют раствором гидроксида натрия до перехода окраски прозрачного раствора в красно-фиолетовый.

г. Ижевск 2019 Всего листов: 7

9.5.3 Обработка результатов

Общую кислотность (X) в процентах вычисляют по формуле:

$$X = \frac{V \times 0,00365 \times 100}{m}$$

где V — объем точно 1 H раствора гидроксида натрия, израсходованный на титрование, cm^3 .

0,0365 - грамм-эквивалент HCl, соответствующий 1 мл 1 н раствора NaOH. m — масса навески, г.

За результат анализа принимают среднее арифметическое 3-х определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0,30%.

9.5. Определение массовой доли (концентрации) рабочих растворов кислотного средства Ksilan

9.5.1. Оборудование и реактивы:

- бюретка 1-3-2-25-0,1 по ГОСТ 29251-91;
- пипетка по ГОСТ 20292 вместимостью 10 см³;
- колба К_н-250-34ТХС по ГОСТ 25336;
- стаканчик CB-14/18 по ГОСТ 25336;
- воронка В-56-110ТХС по ГОСТ 25336;
- едкий натрий по ГОСТ 2263, "х.ч." или "ч.д.а." водный раствор молярной концентрации C(NaOH)=1 моль/дм 3 (1 н.);
- вода дистиллированная по ГОСТ 6709 или вода эквивалентной чистоты, свежепрокипяченная и охлажденная.
- 9.5.2. Взять 100 мл рабочего раствора средства, внести 3-4 капли индикатора фенолфталеина и титровать раствором едкого натрия до получения красно-малиновой окраски раствора (при использовании в качестве индикатора метилоранжа цвет рабочего раствора в конце титрования переходит от красного к оранжевому.
- 9.5.3. Расчет массовой доли (концентрации) рабочих растворов кислотного моющего средства "Ksilan" проводят по следующей формуле:

$$%C = K \cdot A \cdot B$$
 , где

%С – массовая доля (концентрация) кислотного моющего средства, %;

К – поправка 1 н. раствора едкого натра;

А – объем едкого натра, пошедшего на титрование, мл;

Б – эмпирический коэффициент пересчета мл щелочи, пошедшей на

титрование, в % содержания кислотного средства в рабочем растворе (0,140).

г. Ижевск 2019 Всего листов: 7

11. Данные по экологии

Средство полностью биоразлагаемо.

12. Форма поставки

- 5 кг.
- 25 кг.
- 250 кг.