

Addition/Correction

pubs.acs.org/est

Correction to New Look at BTEX: Are Ambient Levels a Problem?

Ashley L. Bolden,* Carol F. Kwiatkowski, and Theo Colborn[†]

Environ. Sci. Technol. 2015 49 (9), 5261-5276; DOI: 10.1021/es505316f

Errors were found in Tables 3–7 of the published paper, "New look at BTEX: Are Ambient Levels a Problem?" In the published tables some effect sizes were unlabeled and a few were reported incorrectly. These values have now been labeled and correctly reported in the following tables.

Table 3. Health Effects of Ambient Exposure to Benzene^a

health outcome	N	exposure concentrations	effect size (OR; 95%CI) ^b	citation
Development				
biparietal diameter	81	$\geq 2.6 \ \mu \text{g/m}^3$	$\beta = (-1.3; -2.6 \text{ to } -0.1)^c$	Slama et al. ⁸⁵
birth weight	1 601 703	$1.975 - 4.929 \ \mu g/m^3$	$(1.82; 1.64 \text{ to } 2.02)^c$	Zahran et al. ⁸⁷
	270	$< 1.4 - \ge 2.6 \ \mu g/m^3$	$\beta = (-68; -135 \text{ to } -1)^d$	Slama et al. ⁸⁵
	2337	$1.6 \ \mu g/m^3$	$\beta = (16.2; -24.6 \text{ to } 56.9)$	Estarlich et al.86
low birth weight	354 688	1.1 ppbV	$(1.03; 1.00 \text{ to } 1.05)^d$	Ghosh et al. ⁸⁸
head circumference	85	$\geq 2.6 \ \mu \text{g/m}^3$	$\beta = (-3.7; -7.3 \text{ to } 0.0)^d$	Slama et al. ⁸⁵
	2337	$1.6 \ \mu g/m^3$	$\beta = (0.04; -0.09 \text{ to } 0.17)$	Estarlich et al.86
preterm birth	785	$> 2.7 \ \mu g/m^3$	$(6.46; 1.58 \text{ to } 26.35)^c$	Llop et al. ⁸⁴
spina bifida	4531	$>2.86-7.44 \ \mu g/m^3$	$(1.77; 1.04 \text{ to } 3.00)^c$	Lupo et al. ⁸³
Immune Function				
atopy	1629	per 1 μ g/m ³ increase	(0.98; 0.88 to 1.09)	Hirsch et al. 92,g
	86	$6.32-12.59 \ \mu g/m^3$	$\beta = 0.32^{c}$	Choi et al. ⁹³
alveolar macrophages	321	6.4 mg/L	$(1.32; 1.1 \text{ to } 2.32)^c$	Dutta et al. ⁹⁵
CD4+/CD25+ t-cells	56	$3.3 \ \mu g/m^3$	$\beta = (-0.92; -1.00 \text{ to } -1.81)^d$	Baiz et al. ³⁴
dysplasia	321	6.4 mg/L	$(1.71; 1.26 \text{ to } 4.22)^c$	Dutta et al. ⁹⁵
eczema		$2.41 \ \mu g/m^3$	$(1.48; 1.24 \text{ to } 1.75)^c$	Zhou et al.90
in last year		1.5- 3.3 $\mu g/m^3$	$(1.11; 1.0 \text{ to } 1.28)^d$	Penard-Morand et al. ⁹¹
eosinophils	321	6.4 mg/L	$(1.75; 1.19 \text{ to } 4.22)^c$	Dutta et al. ⁹⁵
IL-3 eosinophil/basophils	40	dnr	$r = 0.432^{c}$	Junge et al. ⁹⁷
IL-5 eosinophil/basophils	40	dnr	$r = 0.371^{c}$	Junge et al. ⁹⁷
lymphocytes	321	6.4 mg/L	$(1.45; 1.21 \text{ to } 3.44)^c$	Dutta et al. ⁹⁵
metaplasia	321	6.4 mg/L	$(1.67; 1.22 \text{ to } 5.45)^c$	Dutta et al. ⁹⁵
miR-223	316	$1.01 \ \mu g/m^3$	(1.17; 1.07 to 1.29) ^c	Herberth et al.96
MLH1	140	7.96 mg/L	$(1.44; 1.02 \text{ to } 2.10)^c$	Mukherjee et al.94
MSH2	140	7.96 mg/L	$(1.64; 1.04 \text{ to } 2.36)^c$	Mukherjee et al. ⁹⁴
neutrophils	321	6.4 mg/L	$(1.22; 1.05 \text{ to } 3.19)^c$	Dutta et al. ⁹⁵
sensitization to pollen	4907	1.5- 3.3 $\mu g/m^3$	$(1.24; 1.0 \text{ to } 1.52)^d$	Penard-Morand et al. ⁹¹
WBC count	20	369 μg/g Cr	$r = -0.51^c$	Pelallo-Martinez et al. ⁹⁸
Metabolic Function				
HOMA-IR (insulin resistance)	505	0.032 mg/g Cr	$(2.00; 1.16 \text{ to } 3.46)^{c,h}$	Choi et al. ¹¹³
Reproductive Function				
asthenospermic	32	170-430 ng/mL	$(nES)^c$	Ducci et al. ⁸⁹
normospermic	32	170-430 ng/mL	$(nES)^c$	Ducci et al.89
oligospermic	32	170-430 ng/mL	$(nES)^c$	Ducci et al. ⁸⁹
teratospermic	32	170-430 ng/mL	$(nES)^c$	Ducci et al. ⁸⁹
sperm concentration	32	170-430 ng/mL	$r = -0.62^{c}$	Ducci et al. ⁸⁹
% normal sperm	32	170-430 ng/mL	$r = -0.41^{c}$	Ducci et al.89
% viable sperm	32	170-430 ng/mL	$r = -0.89^c$	Ducci et al.89

Published: September 22, 2015

Table 3. continued

health outcome	N	exposure concentrations	effect size (OR; 95%CI) ^b	citation
spiratory Function				
asthma	192	per $10 \mu g/m^3$ increase	$(2.922; 2.25 \text{ to } 3.795)^c$	Rumchev et al. ⁹⁹
		n/a	(4.95; 0.91 to 27.4)	Rive et al. 105
	111	$0.3-53.5 \ \mu g/m^3$	(1.3; 0.4 to 3.8)	Hulin et al. 106
	1012	$2.0 \ \mu g/m^3$	(1.43; 0.65 to 4.75)	Billionnet et al. 107
in the last year	4907	1.5- 3.3 $\mu g/m^3$	$(1.36; 1.0 \text{ to } 1.96)^d$	Penard-Morand et al. ⁹¹
lifetime	4907	1.5- 3.3 $\mu g/m^3$	$(1.25; 1.08 \text{ to } 1.43)^c$	Penard-Morand et al. ⁹¹
	2104	$1.50-6.95 \ \mu g/m^3$	(0.72; 0.48 to 1.07)	Bentayeb et al. ¹⁰⁸
exercise-induced	4907	1.5- 3.3 $\mu g/m^3$	$(1.32; 1.03 \text{ to } 1.82)^c$	Penard-Morand et al. ⁹¹
	1228	3-9 ppb	(1.28; 0.76 to 2.13)	Gordian et al. ¹⁰²
	1039	>9 ppb	(1.48; 0.81 to 2.73)	Gordian et al. ¹⁰²
current	3233	$4.74 - > 7.27 \ \mu g/m^3$	$(2.045; 1.227 \text{ to } 3.407)^c$	Nicolai et al.100
current+	1255	$4.74 - > 7.27 \ \mu g/m^3$	$(2.047; 1.235 \text{ to } 4.692)^c$	Nicolai et al.100
physician-diagnosed	550	$1.21 \ \mu g/m^3$	$(1.33; 1.13 \text{ to } 1.56)^c$	Arif and Shah ¹⁰¹
	1228	3-9 ppb	(1.04; 0.67 to 1.63)	Gordian et al. ¹⁰²
	1039	>9 ppb	(1.06; 0.61 to 1.85)	Gordian et al. 102
	4209	$2.41 \ \mu g/m^3$	(0.97; 0.81 to 1.15)	Zhou et al. ⁹⁰
	2203	per 1 μ g/m ³ increase	$(1.21; 1.01 \text{ to } 1.45)^c$	Hirsch et al. ^{92,g}
severe asthma	1228	3-9 ppb	(1.34; 0.70 to 2.54)	Gordian et al. ¹⁰²
	1039	>9 ppb	$(2.49; 1.22 \text{ to } 5.07)^c$	Gordian et al. ¹⁰²
symptoms	80	5.67 ng/L	$(5.93; 1.64 \text{ to } 21.4)^c$	Delfino et al. 103
	74	1.82 ppb	$(1.23; 1.02 \text{ to } 1.48)^{c,e}$	Delfino et al. 104
bronchitis	2114	per 1 μ g/m ³ increase	$(1.16; 1.04 \text{ to } 1.29)^c$	Hirsch et al. ^{92,g}
obstructive bronchitis	192	$> 3.6 \ \mu g/m^3$	$(10; 1.57 \text{ to } 63.34)^c$	Rolle-Kampczyk et al. ¹¹⁶
cough	2211	per 1 μ g/m ³ increase	$(1.21; 1.04 \text{ to } 1.40)^c$	Hirsch et al. ⁹²
	3206	$4.74 - > 7.27 \ \mu g/m^3$	$(1.423; 1.01 \text{ to } 2.005)^c$	Nicolai et al.100
	2104	$1.50-6.95 \ \mu g/m^3$	(0.78; 0.56 to 1.09)	Bentayeb et al. 108
EBC pH	51	$1.0-10.7 \ \mu g/m^3/wk^g$	$\beta = (-0.24; -0.42 \text{ to } -0.06)^c$	Martins et al. ¹¹⁰
FEV in 1 s	51	$1.0-10.7 \ \mu g/m^3/wk^g$	$\beta = (-4.33; -7.13 \text{ to } -1.53)^c$	Martins et al. ¹¹⁰
	72	$2.80 \ \mu g/m^3$	mc = (-4.7; -18.8 to 9.5)	Smargiassi et al. ¹¹¹
FEV in 1 s < 85% predicted	992	per 1 μ g/m ³ increase	(1.17; 0.81 to 1.67)	Hirsch et al. ⁹²
FEF 25-75% of FVC	51	$1.0-10.7 \ \mu g/m^3/wk^g$	$\beta = (-5.89; -10.16 \text{ to } -1.62)^c$	Martins et al. ¹¹⁰
	72	$2.80 \ \mu g/m^3$	mc = (-3.5; -34.2 to 27.1)	Smargiassi et al. ¹¹¹
FEF 25-75% < 70% predicted	981	per 1 μ g/m ³ increase	(1.17; 0.92 to 1.50)	Hirsch et al. ⁹²
FEV in 1 s/FVC	51	$1.0-10.7 \ \mu g/m^3/wk^g$	$\beta = (-1.71; -3.24 \text{ to } -0.18)^c$	Martins et al. ¹¹⁰
oxidative stress (8OHdG)	154	0.08 mg/L	$\beta = 8.23^{c}$	Yoon et al.112
pulmonary infections	256	$> 5.6 \ \mu \text{g/m}^3$	$(2.4; 1.3 \text{ to } 4.5)^c$	Diez et al. 109
wheeze	3192	$4.74 - 7.27 \ \mu g/m^3$	$(1.646; 1.062 \text{ to } 2.552)^c$	Nicolai et al.100
	2218	per 1 μ g/m ³ increase	(1.08; 0.90 to 1.29)	Hirsch et al.92
	6634	$3.57 \ \mu g/m^3$	$(1.08; 1.02 \text{ to } 1.13)^c$	Buchdahl et al. ¹¹⁷
	4209	$2.41 \ \mu g/m^3$	(0.99; 0.84 to 1.15)	Zhou et al. ⁹⁰
ther Physiological Effects				
hematocrit	20	369 μg/g Cr	$r = -0.64^{c}$	Pelallo-Martinez et al. ⁹⁸
hemoglobin	20	369 μg/g Cr	$r = -0.60^{c}$	Pelallo-Martinez et al. ⁹⁸
RBC count	20	369 μg/g Cr	$r = -0.42^{c}$	Pelallo-Martinez et al. ⁹⁸

 $[^]a$ dnr, data not reported; nES, no effect size reported; mc, mean change; 8-OHdG, 8-oxo-2′-deoxyguanosine; IL-3, interleukin-3; IL-4, interleukin-4; IL-5, interleukin-5; MIR-223, microRNA-223; MLH1, mutL homologue 1; MSH2, mutS homologue 2; RBC, red blood cell; WBC, white blood cell; HOMA-IR, homeostasis model assessment scores- insulin resistance; EBC, exhaled breath condensate; FEF 25–75%, forced expiratory flow between 25 and 75% of FVC; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; wk, week. b Except where indicated otherwise. c $_p$ < 0.05. d $_p$ = 0.05. + children exposed to ETS. c Lag 0. f Exposure at home and school. g Mean range across 4 visits. h For second quartile only.

Table 4. Health Effects of Ambient Exposure to Toluene^a

health outcome	N	exposure concentration	effect size (OR; 95%CI) ^b	reference
Development				
low birth weight	354 688	3.0 ppbV	$(1.02; 1.00 \text{ to } 1.05)^d$	Ghosh et al. ⁸⁸
mmune Function				
any symptom	317	$325.5 \ \mu g/m^3$	$(4.17; 1.45 \text{ to } 12.0)^c$	Saijo et al. ¹¹⁴
atopy	86	$33.74-41.75 \ \mu g/m^3$	$\beta = 0.34^{c}$	Choi et al. ⁹³
eczema	39	> 30.14 ug/g Cr	$(9.00; 1.24 \text{ to } 65.1)^c$	Rolle-Kampczyk et al. ¹¹⁰
elevated IgE	200	13.30 $\mu g/m^3$	$(3.3; 1.1 \text{ to } 9.8)^c$	Lehmann et al. ¹¹⁵
miR-223	316	6.95 $\mu g/m^3$	$(1.09; 1.02 \text{ to } 1.17)^c$	Herberth et al. ⁹⁶
senstitzation to egg white	200	$13.30 \ \mu g/m^3$	$(3.3; 1.0 \text{ to } 11.1)^d$	Lehmann et al. ¹¹⁵
sensitization to milk	200	13.30 $\mu g/m^3$	$(11.2; 2.1 \text{ to } 60.2)^c$	Lehmann et al. ¹¹⁵
skin symptoms	317	325.5 $\mu g/m^3$	$(5.57; 1.38 \text{ to } 22.6)^c$	Saijo et al. ¹¹⁴
Lespiratory Function				
asthma	192	per 10 μ g/m ³ increase	$(1.842; 1.405 \text{ to } 2.414)^c$	Rumchev et al.99
	111	21.3 $\mu g/m^3$	$(2.73; 1.28 \text{ to } 5.83)^c$	Hulin et al.106
	1012	$11.9 \ \mu g/m^3$	(1.42; 0.63 to 4.47)	Billionnet et al. 107
physician-diagnosed	550	$14.33 \ \mu g/m^3$	(1.21; 0.93 to 1.58)	Arif and Shah ¹⁰¹
symptoms	80	26.9 ng/L	$(4.96; 1.38 \text{ to } 17.8)^c$	Delfino et al. ¹⁰³
	74	7.17 ppb	(1.35; 0.99 to 1.84)	Delfino et al. ¹⁰⁴
breathlessness	144	$11.62 \ \mu g/m^3$	$(3.36; 1.13 \text{ to } 9.98)^c$	Bentayeb et al. ¹¹⁸
FEF 25-75% of FVC	154	0.53 mg/mL	$\beta = -65.00^{\circ}$	Yoon et al.112
	51	$13.4-32.8 \ \mu g/m^3/wk^e$	$\beta = (-1.14; -2.49 \text{ to } 0.29)$	Martins et al.110
FEV in 1 s	154	0.53 mg/mL	$\beta = -18.23^{c}$	Yoon et al.112
	51	$13.4-32.8 \ \mu g/m^3/wk^e$	$\beta = (-1.10; -1.97 \text{ to } -0.23)^c$	Martins et al. ¹¹⁰
oxidative stress (MDA, 8OHdG)	154	0.53 mg/mL	$\beta = 0.51^c \text{ (MDA)}$	Yoon et al. ¹¹²
, ,		Ü	$\beta = 3.92^{c} \text{ (8OHdG)}$	
wheeze	6634	$9.26 \ \mu g/m^3$	$(1.07; 1.01 \text{ to } 1.13)^c$	Buchdahl et al. ¹¹⁷
Other Physiological Effects				
cardiovascular disease	419	0.751 ng/mL	$(2.30; 1.2 \text{ to } 4.23)^c$	Xu et al. ³³
			$(3.49; 1.81 \text{ to } 6.73)^c$	

 $[^]a$ 8-OHdG, 8-oxo-2′-deoxyguanosine; MIR-223, microRNA-223; FEF 25–75%, forced expiratory flow between 25 and 75% of FVC; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; MDA, malondialdehyde; IgE, immunoglobulin E; wk, week. b Except where indicated otherwise. c p < 0.05. d p = 0.05. e Mean range across four visits.

Table 5. Health Effects of Ambient Ethylbenzene Exposure^a

health outcome	N	exposure concentration	effect size (OR; 95%CI) ^b	reference
Developmental				
low birth weight	354 688	0.4 ppbV	$(1.01; 1.00 \text{ to } 1.03)^d$	Ghosh et al. ⁸⁸
mmune Function				
atopy	86	$2.01-5.61 \ \mu \text{g/m}^3$	$\beta = 0.32^c$	Choi et al. ⁹³
sensitization to milk	200	$1.77 \ \mu \text{g/m}^3$	$(5.0; 1.1 \text{ to } 21.6)^c$	Lehmann et al. ¹¹⁵
rhinitis	1012	$2.2 \ \mu g/m^3$	$(1.48; 1.09 \text{ to } 2.02)^c$	Billionnet et al. 107
Respiratory Function				
asthma	192	per $10 \mu g/m^3$ increase	$(2.541; 1.160 \text{ to } 5.567)^c$	Rumchev et al. ⁹⁹
	1012	$2.2 \ \mu \text{g/m}^3$	(1.63; 0.11 to 5.20)	Billionnet et al. 107
	111	$2.9 \ \mu g/m^3$	(1.9; 0.7 to 4.9)	Hulin et al.106
physician-diagnosed	550	$2.55 \ \mu g/m^3$	$(1.34; 1.01 \text{ to } 1.78)^c$	Arif and Shah ¹⁰¹
symptoms	74	0.59 ppb	$(1.38; 1.09 \text{ to } 1.75)^c$	Delfino et al. ¹⁰⁴
EBC pH	51	$1.7-19.8 \ \mu g/m^3/wk^e$	$\beta = (-0.14; -0.23 \text{ to } -0.04)^{c}$	Martins et al. ¹¹⁰
FVC	433	1.5 $\mu g/m^3$	$pc = (-4.53; -6.26 \text{ to } -2.82)^c$	Wallner et al. ¹¹⁹
FEV in 1 s	433	1.5 $\mu g/m^3$	$pc = (-4.49; -6.55 \text{ to } -2.48)^c$	Wallner et al. 119
	51	$1.7-19.8 \ \mu g/m^3$	$\beta = (-1.79; -3.32 \text{ to } -0.25)^{c}$	Martins et al. 110
	154	0.08 mg/mL	$\beta = -15.10$	Yoon et al.112
FEF 25-75% of FVC	51	$1.7-19.8 \ \mu g/m^{3e}$	$\beta = (-2.48; -4.81 \text{ to } -0.16)^{c}$	Martins et al.110
	154	0.08 mg/mL	$\beta = -67.67$	Yoon et al.112
oxidative stress (MDA, 8-OHdG)	154	0.08 mg/mL	$\beta = 2.20^{c} \text{ (MDA)}$	Yoon et al.112
		-	$\beta = 13.77^c \text{ (8OHdG)}$	
wheeze	6634	$2.06 \ \mu g/m^3$	$(1.08; 1.03 \text{ to } 1.14)^c$	Buchdahl et al. ¹¹⁷
Other Physiological Effects				
cardiovascular disease	262	0.135 ng/mL	$(3.10; 1.40 \text{ to } 6.86)^c$	Xu et al. ³³

^apc, percent change; 8-OHdG, 8-oxo-2'-deoxyguanosine; FEF 25–75%, forced expiratory flow between 25 and 75% of FVC; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; MDA, malondialdehyde; IL-4, interleukin-4; EBC, exhaled breath condensate; wk, week. ^bExcept where indicated otherwise. cp < 0.05. dp = 0.05. ^eMean range across four visits.

Table 6. Health Effects of Ambient Xylene Exposure^a

health outcome	N	exposure concentration	effect size (OR; 95%CI) ^b	reference
Developmental			(, /,	
low birth weight	354 688	1.5 ppbV (<i>m</i> + <i>p</i> -X)	$(1.03; 1.01 \text{ to } 1.06)^c$	Ghosh et al. ⁸⁸
low blitti weight	33 1 000	0.5 ppbV (o-X)	$(1.03; 1.01 \text{ to } 1.05)^c$	Gilosii et ui.
		0.0 }}0.0 (0.12)	(1105) 1101 to 1105)	
Immune Function				
rhinitis	1012	5.4 $\mu g/m^3 (m+p-X)$	$(1.46; 1.07 \text{ to } 2.00)^c$	Billionnet et al. 107
		$2.2 \ \mu g/m^3 \ (o-X)$	$(1.43; 1.03 \text{ to } 1.99)^c$	
sensitization to milk	200	7.23 $\mu g/m^3 (m+p-X)$	$(8.0; 1.9 \text{ to } 34.2)^c$	Lehmann et al. ¹¹⁵
		$1.56 \ \mu g/m^3 \ (o-X)$	$(6.0; 1.5 \text{ to } 24.2)^c$	
eye symptoms	317	$26.0 \ \mu \text{g/m}^3$	(2.18; 1.03 to 4.59) ^c	Saijo et al. ¹¹⁴
throat and respiratory symptoms	317	$26.0 \ \mu g/m^3$	$(2.22; 1.1 \text{ to } 4.46)^c$	Saijo et al. ¹¹⁴
Respiratory Function				
asthma	1012	5.4 μ g/m ³ (m + p -X)	(1.50; 0.41 to 4.71)	Billionnet et al. 107
		$2.2 \ \mu g/m^3 \ (o-X)$	(1.65; 0.09 to 5.37)	Billionnet et al. ¹⁰⁷
	192	per 10 μ g/m ³ increase (p -X)	(1.485; 0.988 to 2.231)	Rumchev et al. ⁹⁹
		per 10 μ g/m ³ increase (m -X)	$(1.608; 1.102 \text{ to } 2.347)^c$	Rumchev et al. ⁹⁹
	112	$10.3 \ \mu g/m^3$	(1.7; 0.7-4.1)	Hulin et al.106
physician-diagnosed	550	$5.97 \ \mu g/m^3 \ (m+p-X)$	$(1.33; 1.08 \text{ to } 1.64)^c$	Arif and Shah ¹⁰¹
		$2.16 \ \mu g/m^3 \ (o-X)$	$(1.32; 1.04 \text{ to } 1.67)^c$	Arif and Shah ¹⁰¹
symptoms	80	13.3 ng/L $(m+p-X)$	$(3.61; 1.13 \text{ to } 11.6)^c$	Delfino et al. 103
	80	4.16 ng/L (o-X)	(2.29; 0.89 to 5.89)	
	74	3.07 ppb $(m+p-X)$	$(1.35; 1.01 \text{ to } 1.80)^c$	Delfino et al. ¹⁰⁴
	74	0.94 ppb (o-X)	$(1.28; 1.00 \text{ to } 1.66)^d$	
breathlessness	144	$5.18 \ \mu g/m^3 \ (m+p-X)$	(1.61; 0.60 to 4.31)	Bentayeb et al. ¹¹⁸
	144	$2.07 \ \mu g/m^3 \ (o-X)$	$(2.85; 1.06 \text{ to } 7.68)^c$	
obstructive bronchitis	192	$> 11.1 \ \mu g/m^3$	$(10; 1.045 \text{ to } 161.7)^c$	Rolle-Kampczyk et al. 116
FVC	433	4.1 μ g/m ³ (m + p -X)	$pc = (-4.88; -6.68 \text{ to } -3.12)^c$	Wallner et al. ¹¹⁹
		1.5 $\mu g/m^3$ (o-X)	$pc = (-4.74; -6.50 \text{ to } -3.01)^c$	
FEV in 1 s	154	0.10 mg/mL	$\beta = -65.70$	Yoon et al. ¹¹²
	433	4.1 $\mu g/m^3 (m+p-X)$	$pc = (-4.78; -6.91 \text{ to } -2.48)^c$	Wallner et al. ¹¹⁹
		1.5 $\mu g/m^3$ (o-X)	$pc = (-4.64; -6.72 \text{ to } -2.59)^c$	
	51	$6.7-12.9 \ \mu g/m^3/wk^e$	$\beta = (-0.25; -1.07 \text{ to } 0.56)$	Martins et al. ¹¹⁰
FEV in 1 s/FVC	154	0.08 mg/mL	$\beta = -2.44^{\circ}$	Yoon et al. ¹¹²
eye symptoms	317	$26.0 \ \mu g/m^3$	$(2.18; 1.03 \text{ to } 4.59)^c$	Saijo et al. ¹¹⁴
oxidative stress (MDA, 8OHdG)	154	0.08 mg/mL	$\beta = 0.84^c \text{ (MDA)}$	Yoon et al. 112
			$\beta = 8.20^{c} \text{ (8OHdG)}$	
wheeze	6634	$5.14 \ \mu g/m^3 \ (m+p-X)$	$(1.08; 1.03 \text{ to } 1.14)^c$	Buchdahl et al. ¹¹⁷
		$2.06 \ \mu g/m^3 \ (o-X)$	$(1.08; 1.03 \text{ to } 1.14)^c$	
Other Physiological Effects				
cardiovascular disease	426	0.478 ng/mL (m+p-X)	$(2.36; 1.19 \text{ to } 4.67)^c$	Xu et al. ³³
cardiovascular disease	199	0.143 ng/mL (o-X)	$(2.68; 1.14 \text{ to } 6.25)^c$	Xu et al. ³³

 $[^]am$ -,p-,and o-X, m-, p-, and o-xylene; pc, percent change; 8-OHdG, 8-oxo-2'-deoxyguanosine; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; MDA, malondialdehyde; wk, week. b Except where indicated otherwise. cp < 0.05. dp = 0.05. e Mean range across four visits.

Table 7. Health Effects of Ambient BTEX Combined Exposure^a

health outcome	N	exposure concentration	effect size (OR; 95%CI) ^b	reference
Developmental				
biparietal diameter	562	$2.27-30.31 \ \mu g/m^3$	pmc = $(-4.82; -9.12 \text{ to } -0.45)^c$	Aguilera et al. ¹²¹
birth weight	570	14.49 $\mu g/m^3$	$mc = (-76.6; -146.3 \text{ to } -7.0)^c$	Aguilera et al. ¹²⁰
Respiratory Function				
asthma	550	B, 1.21 μ g/m ³ ;	$(1.63; 1.17 \text{ to } 2.27)^c$	Arif and Shah ¹⁰¹
		T, 14.33 μ g/m ³ ;		
		E, 2.55 $\mu g/m^3$;		
		o-X) 2.16 $\mu g/m^3$;		
		$m+p-X$) 5.97 $\mu g/m^3$		
wheezing attacks	550	B, 1.21 $\mu g/m^3$;	$(1.68; 1.08 \text{ to } 2.61)^c$	Arif and Shah ¹⁰¹
·		T, 14.33 $\mu g/m^3$;		
		E, 2.55 $\mu g/m^3$;		
		o-X) 2.16 $\mu g/m^3$;		
		$m - + p - X$) 5.97 $\mu g / m^3$		

^aB: benzene; T: toluene; E: ethylbenzene; m- + p-X, m- + p- xylene; o-X, o- xylene; pmc, percent mean change; mc, mean change. ^bExcept where indicated otherwise. ^cp < 0.05.

■ AUTHOR INFORMATION

[†]Died December 14, 2014.