Development Of Quadcopter for Search Operations with Human Detection Abilities

1. FIELD OF INVENTION

[0001] The field of innovation is development of quadcopter for search operation with human detection abilities.

2. BACKGROUND

[0002] The proposed model can be developed and implemented for increasing efficiency in search operation and disaster management activities. The quadcopter system can perform human detection with geo-tagging by making use of sensors and camera. The controlling technology of the entire system is based on Arduino based flight controller for flight management. A Raspberry Pi and a camera module is provided in order to acquire aerial visuals. The proposed quadcopter is composed of four BLDC motors coupled with 10inch propellers for thrust and manoeuvrability. A 11.1V Li-Po battery supply is used as power source for system. The flight of quadcopter is controlled by using a 6 channel trans-receiver. Using the camera module fixed on board the raspberry pi acquires visuals and transmits the information to ground control.

3. OBJECTIVES

[0003] To assist rescuers in search operations.

[0004] To detect humans using camera and image processing.

[0005] To develop a positively stabilized quadcopter to fly in harsh environments.

4. DETAILED DESCRIPTION OF INVENTION

[0006] Block Diagram

Fig 4.1: Block Diagram

5. METHODOLOGY

[0007] Arduino micro-controller-based flight controller is heart of system, which is responsible for flight, stability and manoeuvrability of quadcopter. The flight controller is remotely controlled using a 6 channel, 2.4 GHz Trans-Receiver. A camera is interfaced to Raspberry Pi. And housed on board of quadcopter. The Raspberry Pi acquires visuals through camera and is processed further and extracted as bytes stream. The byte stream is then transmitted over a Wi-Fi channel with the help of raspberry pi's onboard Wi-Fi modem. Which is received at ground computing device, where the byte stream is packed together to form an image frame. The frames are passed as arguments to the pre-trained machine learning models to detect humans in the frame. If an human is detected in the frame, the geo location of when the frame was captured can be retrieved from frame detail as captured frames are geo-tagged.

6. HUMAN DETECTION USING IMAGE PROCESSING

6.1 IMAGE ACQUISATION

[0008] The first stage of any computer vision system is the image acquisition stage. The image can be acquired in digital form from a digital camera, which is a two-dimensional array

of image sensors. Camera Description Name: PI Camera Pixel: 5 Megapixels(interpolated), Max. resolution: 640x480.

6.2 IMAGE CLASSIFICATION

[0009] It is a method to perform operations to detect and identify object of interest on an image, in order to detect and identify particular object of interest. It can be done by using CNN (Central Neural Network), Machine learning models and Python. It is a type of image processing in which input is a byte array of an image and output may be image or features of that image. Image classification basically includes the following three steps:

- Image acquisition
- Analysing and manipulating the image
- Output

7. QUADCOPTER SYSTEM

[0010] The quadcopter is built over F450 frame which is based on 4X configuration. The material is used is for frame is glass fibre and plastic. The system uses an Arduino based flight controller, and 1000KV BLDC motor on each arm coupled with 10 inch propeller. The system is powered by 11.1V Li-Po battery.

8. DATA TRANSMISSION

[0011] The Image acquired using pi camera is processed and stored as a stream of bytes. Which is then transmitted over Wi-Fi Channel using on board Wi-Fi modem in raspberry pi. The data is then received in ground computer, for image classification to detect humans.

9. BRIEF DESCRIPTION OF HARDWARE

9.1. ARDUPILOT

9.1.1 INTRODUCTION

[0012] Ardupilot is an Atmega 2560 processor based, flight controller. Atmega 2560 is an AVR RISC based microcontroller, which is capable of executing powerful instruction in a single clock cycle. This improves efficiency in terms of power consumption and processing

speed. The microcontroller has 256KB flash memory, with 8KB of SRAM. The microcontroller is clocked at 16MHz.

Fig 9.1.1.1: Ardupilot

9.1.2 ON-BOARD MOTION SENSOR

[0013] The Ardupilot has onboard MPU6050 absolute 6-axis motion sensor. Which is interfaced to microcontroller by I2C protocol. The MPU6050 has 3-axis accelerometer and 3-axis gyroscope. Which is capable of sensing the motion is tri-axial dimension, Roll, Pitch, and Yaw. The motion sensor is used to sense the motion which will be taken as input parameter for PID controller for stabilizing the flight.

9.1.3 INTERFACES

[0014] The Ardupilot has 8 input and output terminals which reads and commands using Pulse width modulation technique. The Flight controller also has facilities to interface external devices to improve its flight performance.

- GPS Port: This port is used to connect external GPS module, for locationbased functionalities. This port supports UART protocol.
- Telemetry port: This port is used to connect telemetry dongle, to transmit flight parameters to ground station and receive flight commands, during flight or on ground. This port supports UART protocol.

9.2 ELECTRONIC SPEED CONTROLLER.

9.2.1 INTRODUCTION

[0015] Electronic speed controller is an essential module used in quadcopters, which is a Brushless DC motor driver. The motor driver used powered with Atmega micro controller, powered by SimonK firmware with maximum power load of 30 amps operating at 11.1V DC power supply.

Fig 9.2.1: ESC

[0016] An electronic speed control (ESC) is an electronic circuit that controls the speed of an electric Brush less DC motor. It provides variable speed of the motor and dynamic braking.

9.2.2 ESC INTERFACES

[0017] The ESC has one power supply port which has input voltage range of 11V to 14V and max 30 amps. It has a data input line which supports Pulse Width Modulation (PWM) signals, which is of time period 2000 micro-seconds. And minimum duty cycle of 50 percent.

[0018] The ESC has three output wires, which is connected to BLDC motors. The three wires send the voltage level in term of pulses which is time invariant with respect to speed of motor.

9.3 RASPBERRY PI 4

9.3.1 INTRODUCTION:

[0018] **Raspberry Pi** is a series of system-on-chip (SOC) developed in the UK, Europe by the RPi Foundation in association with Broadcom chip makers. The Raspberry pi is popular hobby device and used for rapid prototyping in industries due to its diverse characteristics and also technical supports to various programming language and well-built quality.

9.3.2 MODEL:

[0019] **RPi 4 Model B** was introduced in July 2019 with a powerful features such as, on-board 802.11ac Wi-Fi, Bluetooth 5, Ethernet, 2 USB 2.0 ports, 2 USB 3.0 ports, and dual-monitor support through a pair of micro HDMI ports for up to 4K resolution. Driven by powerful 1.5 GHz 64-bit quad core ARM Cortex-A72 processor, The Pi 4 is powered via a USB-C power supply port providing a maximum power of 12.5 watts at 5V.

9.3.3 Hardware:

[0020] The Raspberry Pi 4 Model B is a latest version of RPi computers with significantly improved CPU, GPU and GPIO performance, supporting up to 8GB RAM, in an exceptional form factor. The Pi 4B+ is released with different versions of 1, 2, 4 and 8 GB of LPDDR4 SDRAM.

[0021] RPi 4B Processor is clocked at 1.5 GHz for an optimum performance. For storing of operating system and program memory a microSD card is used. The boards have two USB2.0 ports and two USB3.0 ports. HDMI is used for video output, with a dedicated 3.5mm Audio jack for Audio. Digital Input/output for external interfaces is provided by General Purpose I/O (GPIO) pins with a voltage range 0 to 3.3V, which support common protocols like I²C, SPI, PWM. The Pi 4 on-board Bluetooth and Wi-Fi 802.11n which enables various connectivity.

Fig 9.3.3: Raspberry pi 4 B

9.3.5 Features of Hardware:

- o Quadcore 64-bit ARM-Cortex A72 clocked at 1.5GHz
- o 4 GB LPDDR4 RAM options
- o H.265 (HEVC) hardware decode (up to 4Kp60)
- o H.264 hardware decodes (up to 1080p60)
- Video Core VI 3D Graphics
- o Supports dual HDMI display output up to 4Kp60

9.3.6 Features of Interface:

- o Wi-Fi: 802.11 b/g/n/ac IEEE standards
- o Bluetooth: with 5.0 protocol
- o SD Card
- o Dual displays up to 4K resolution through microHDMI
- o USB2.0 ports
- o USB3.0 ports
- o Gigabit Ethernet port
- o Raspberry Pi camera port (2-lane MIPI CSI)
- o Raspberry Pi display port (2-lane MIPI DSI)
- 28x user GPIO supporting various interface options: Up to 6x UART Up to 6x I2C Up to 5x SPI 1x SDIO interface 1x DPI (Parallel RGB Display) 1x PCM Up to 2x PWM channels Up to 3x GPCLK outputs.

9.3.7 POWER REQUIREMENTS

[0022] The Pi 4B requires a constant power supply capable of delivering 5V at 2A through USB-C. if USB is loaded downstream consuming more than 500mA.

9.3.8 SOFTWARE

- o Instruction Set: ARMv8 Instruction Set
- Mature Linux software stack
- Linux based Raspbian OS

9.3.9 PERIPHERALS

9.3.9.1 GPIO PINS

[0023] The Pi4B supports 28 BCM2711 GPIOs via a 40-pin header. The GPIO supports digital outputs of voltage level 0 to 3.3V, and various other communication protocols such as I2C, PWM, SPI and UART.

Fig 9.3.9.1 : GPIO Layout of Raspberry PI 4B+ model.

GPIO	Default Pull	ALTO	ALTI	ALT2	ALT3	ALT4	ALT5
o	High	SDA0	SA5	PCLK	SPI3_CE0_N	TXD2	SDA6
1	High	SCL0	SA4	DE	SPI3_MISO	RXD2	SCL6
2	High	SDA1	SA3	LCD_VSYNC	SPI3_MOSI	CTS2	SDA3
3	High	SCLI	SA2	LCD_HSYNC	SPI3_SCLK	RTS2	SCL3
4	High	GPCLK0	SAI	DPL_D0	SPI4_CE0_N	TXD3	SDA3
5	High	GPCLK1	SA0	DPLD1	SPI4_MISO	RXD3	SCL3
6	High	GPCLK2	SOE_N	DPI_D2	SPI4_MOSI	CTS3	SDA4
7	High	SPIO_CE1_N	SWE_N	DPLD3	SPI4_SCLK	RTS3	SCL4
8	High	SPIO_CEO_N	SD0	DPI_D4	-	TXD4	SDA4
9	Low	SPIO_MISO	SD1	DPLD5	(#0)	RXD4	SCL4
10	Low	SPI0_MOSI	SD2	DPLD6		CTS4	SDA5
11	Low	SPI0_SCLK	SD3	DPI_D7		RTS4	SCL5
12	Low	PWM0	SD4	DPLD8	SPI5_CE0_N	TXD5	SDA5
13	Low	PWM1	SD5	DPI_D9	SPI5_MISO	RXD5	SCL5
14	Low	TXD0	SD6	DPLD10	SPI5_MOSI	CTS5	TXD1
15	Low	RXD0	SD7	DPI_D11	SPI5_SCLK	RTS5	RXD1
16	Low	FLO	SD8	DPLD12	CTS0	SPI1_CE2_N	CTS1
17	Low	FLI	SD9	DPLD13	RTS0	SPII_CEI_N	RTS1
18	Low	PCM_CLK	SD10	DPI_D14	SPI6_CE0_N	SPI1_CE0_N	PWM0
19	Low	PCM_FS	SDII	DPLD15	SPI6_MISO	SPI1_MISO	PWM1
20	Low	PCM_DIN	SD12	DPI_D16	SPI6_MOSI	SPI1_MOSI	GPCLK0
21	Low	PCM_DOUT	SD13	DPI_D17	SPI6_SCLK	SPI1_SCLK	GPCLK1
22	Low	SD0_CLK	SD14	DPLD18	SDI_CLK	ARM_TRST	SDA6
23	Low	SD0_CMD	SD15	DPLD19	SD1_CMD	ARM_RTCK	SCL6
24	Low	SD0_DAT0	SD16	DPLD20	SD1_DAT0	ARM_TDO	SPI3_CE1_N
25	Low	SD0_DAT1	SD17	DPI_D21	SD1_DAT1	ARM_TCK	SPI4_CE1_N
26	Low	SD0_DAT2	TEO	DPI_D22	SD1_DAT2	ARM_TDI	SPI5_CEI_N
27	Low	SD0_DAT3	TEI	DPI_D23	SD1_DAT3	ARM_TMS	SPI6_CE1_N

Fig. 9.3.9.1.2 Raspberry pi 4 GPIO Alternate Functions

9.3.9.2 USB

[0024] The Pi 4B has two USB 2.0 and two USB 3.0 type-A ports. USB output current is normalized to approximately 1.1A when all the four sockets is loaded.

9.3.9.3 CAMERA AND DISPLAY INTERFACE

[0025] A 2-lane MIPI CSI connector for interfacing Camera and one 2-lane MIPI DSI connector for interfacing Display connector.

9.3.9.4 HDMI

[0026] The Pi 4B has two micro-HDMI ports, both of which support CEC and HDMI 2.0 with resolutions up to 4K.

9.3.9.5 UART BRIDGE

[0027] PI-4 has six UART

Name	Туре		
UART0	PL011		
UART1	mini UART		
UART2	PL011		
UART3	PL011		
UART4	PL011		
UART5	PL011		

Fig. 9.3.9.5 UART Bridge

10. ABSTRACT

[0028] The system proposed is implemented to assist rescuers and disaster management personnel, as it can acquire aerial visuals and transmit as individual frames to ground control. Whereas on ground a computing device processes the visuals and detects the humans in frames, the frames are geo- tagged. Therefore, the human detected in frame can be located on map, which will help the rescuers to find and rescue the person in an efficient way.

Fig 10.1: Development of Quadcopter for Search Operations with Human Detection Abilities

11.CLAIMS

- UAV system to assist rescuers in search operation, which transmits live visuals over a channel to ground computer to process the visuals to detect humans.
- Using Faster-RCNN we can process the frames in less time.
- Using Wi-Fi, we are further reducing latency in transmitting the frames from quadcopter to ground station.