Chapter 9 Statistical Inference: Hypothesis Testing for Single Populations

LEARNING OBJECTIVES

The main objective of Chapter 9 is to help you to learn how to test Hypotheses on single populations, thereby enabling you to:

- 1. Develop both one- and two-tailed null and alternative hypotheses that can be tested in a business setting by examining the rejection and non-rejection regions in light of Type I and Type II errors.
- 2. Reach a statistical conclusion in hypothesis testing problems about a population mean with a known population standard deviation using the *z* statistic.
- 3. Reach a statistical conclusion in hypothesis testing problems about a population mean with an unknown population standard deviation using the *t* statistic.
- 4. Reach a statistical conclusion in hypothesis testing problems about a population proportion using the *z* statistic.
- 5. Reach a statistical conclusion in hypothesis testing problems about a population variance using the chi-square statistic.
- 6. Solve for possible Type II errors when failing to reject the null hypothesis.

CHAPTER OUTLINE

9.1 Introduction to Hypothesis Testing

Types of Hypotheses
Research Hypotheses
Statistical Hypotheses
Substantive Hypotheses
Eight-Step Process for Testing Hypotheses
Rejection and Non-rejection Regions
Type I and Type II errors
Comparing Type I and Type II Errors

9.2 Testing Hypotheses About a Population Mean Using the z Statistic (σ known)

An Example Using the Eight-Step Approach

Using the *p*-Value to Test Hypotheses

Testing the Mean with a Finite Population

Using the Critical Value Method to Test Hypotheses

Using the Computer to Test Hypotheses about a Population Mean Using the z Statistic

- 9.3 Testing Hypotheses About a Population Mean Using the t Statistic (σ unknown) Using the Computer to Test Hypotheses about a Population Mean Using the *t* Test
- 9.4 Testing Hypotheses About a Proportion Using the Computer to Test Hypotheses about a Population Proportion
- 9.5 Testing Hypotheses About a Variance
- 9.6 Solving for Type II Errors

Some Observations About Type II Errors

Operating Characteristic and Power Curves

Effect of Increasing Sample Size on the Rejection Limits

KEY TERMS

Alpha(α)

Alternative Hypothesis

 $Beta(\beta)$ Critical Value Critical Value Method

Hypothesis

Hypothesis Testing Level of Significance Nonrejection Region **Null Hypothesis**

Observed Significance Level

Observed Value

One-tailed Test

Operating-Characteristic Curve (OC)

p-Value Power

Power Curve Rejection Region Research Hypothesis Statistical Hypothesis Substantive Result Two-Tailed Test Type I Error Type II Error

STUDY QUESTIONS

1.	The first step in testing a hypothesis is to establish a(n)a(n) hypothesis.	hypothesis and			
2.	In testing hypotheses, the researcher initially assumes that thehypothesis is true.				
3.	The region of the distribution in hypothesis testing in which the null hypothesis is rejected is called the region.				
4.	The rejection and acceptance regions are divided by a point called to value.	he			
5.	The portion of the distribution which is not in the rejection region is called the region.				
6.	The probability of committing a Type I error is called	·			
7.	Another name for alpha is	·			
8.	When a true null hypothesis is rejected, the researcher has committeerror.	ed a			
9.	When a researcher fails to reject a false null hypothesis, a error has beer committed.				
10.	The probability of committing a Type II error is represented by	.			
11.	Power is equal to				
12.	Whenever hypotheses are established such that the alternative hypothen the researcher is conducting atailed test.	thesis is directional,			
13.	Atailed test is nondirectional.				
14.	If in testing hypotheses, the researcher uses a method in which the posserved statistic is compared to alpha to reach a decision, the researcher uses a method in which the posserved statistic is compared to alpha to reach a decision, the researcher uses a method in which the posserved statistic is compared to alpha to reach a decision, the researcher uses a method in which the posserved statistic is compared to alpha to reach a decision, the researcher uses a method in which the posserved statistic is compared to alpha to reach a decision, the researcher uses a method in which the posserved statistic is compared to alpha to reach a decision, the researcher uses a method in which the posserved statistic is compared to alpha to reach a decision, the researcher uses a method in the posserved statistic is compared to alpha to reach a decision of the posserved statistic is compared to alpha to reach a decision of the posserved statistic is compared to alpha to reach a decision of the posserved statistic is compared to alpha to reach a decision of the posserved statistic is compared to alpha to reach a decision of the posserved statistic is compared to alpha to reach a decision of the posserved statistic is a decision of the posserved statistic in the posserved statistic is a decision of the posserved statistic in the posserved statistic is a decision of the posserved statistic in the posserved statistic is a decision of the posserved statistic in the posserved statistic is a decision of the posserved statistic in the posserved statistic is a decision of the posserved statistic in the posserved statistic is a decision of the posserved statistic in the posserved statistic is a decision of the posserved statistic in the posserved statistic is a decision of the posserved statistic in the posserved statistic is a decision of the posserved statistic in the posserved statistic is a decision of the posserved statistic in the posserved statistic is a decision of the posserved statistic in the posserved statistic is a decisio				
15.	Suppose H_0 : $\mu = 95$ and H_a : $\mu \neq 95$. If the sample size is 50, the population standard deviation is known, and $\alpha = .05$, the critical value of z is				
16.	Suppose H_0 : $\mu = 2.36$ and H_a : $\mu < 2.36$. If the sample size is 64, the population standard deviation is known, and $\alpha = .01$, the critical value of z is				
17.	Suppose H _o : $\mu = 24.8$ and H _a : $\mu \neq 24.8$. If the sample size is 49, the deviation is known, and $\alpha = .10$, the critical value of z is				

18.	Suppose a researcher is testing a null hypothesis that $\mu = 61$. A random sample of $n = 38$ is taken resulting in $x = 63$ and $\sigma = 8.76$. The observed z value is			
19.	Suppose a researcher is testing a null hypothesis that $\mu = 413$. A random sample of $n = 70$ is taken resulting in $x = 405$. The population standard deviation is 34. The observed z value is			
20.	A researcher is testing a hypothesis of a single mean. The critical z value for $\alpha = .05$ and a one-tailed test is 1.645. The observed z value from sample data is 1.13. The decision made by the researcher based on this information is to the null hypothesis.			
21.	A researcher is testing a hypothesis of a single mean. The critical z value for α = .05 and a two-tailed test is \pm 1.96. The observed z value from sample data is -1.91. The decision made by the researcher based on this information is to the null hypothesis.			
22.	A researcher is testing a hypothesis of a single mean. The critical z value for α = .01 and a one-tailed test is -2.33. The observed z value from sample data is -2.45. The decision made by the researcher based on this information is to the null hypothesis.			
23.	A researcher has a theory that the average age of managers in a particular industry is over 35-years-old. The null hypothesis to conduct a statistical test on this theory would be			
24.	A company produces, among other things, a metal plate that is supposed to have a six inch hole punched in the center. A quality control inspector is concerned that the machine which punches the hole is "out-of-control". In an effort to test this, the inspector is going to gather a sample of metal plates punched by the machine and measure the diameter of the hole. The alternative hypothesis used to statistical test to determine if the machine is out-of-control is			
25.	The following hypotheses are being tested:			
	H_{o} : $\mu = 4.6$ H_{a} : $\mu \neq 4.6$			
	The value of alpha is .05. To test these hypotheses, a random sample of 22 items is selected resulting in a sample mean of 4.1 with a sample standard deviation of 1.8. It can be assumed that this measurement is normally distributed in the population. The degrees of freedom associated with the t test used in this problem are			
26.	The <i>critical t</i> value for the problem presented in question 25 is			
27.	The problem presented in question 25 contains hypotheses which lead to atailed test.			
28.	The observed value of <i>t</i> for the problem presented in question 25 is			

29.	Based on the results of the observed <i>t</i> value and the critical table <i>t</i> value, the researcher should the null hypothesis in the problem presented in question 25.				
30.	It is believed that the average time to assemble a given product is less than 2 hours. To test this, a sample of 18 assemblies is taken resulting in a sample mean of 1.91 hours with a sample standard deviation of 0.73 hours. Suppose α = .01. If a hypothesis test is done on this problem, the table value is The observed value is The				
31.	A political scientist want to statistically test the null hypothesis that her candidate for governor is currently carrying at least 57% of the vote in the state. She has her assistants randomly sample 550 eligible voters in the state by telephone and only 300 declare that they support her candidate. The observed z value for this problem is				
32.	Problem 31 is atailed test.				
33.	Suppose that the value of alpha for problem 31 is .05. After comparing the observed value to the critical value, the political scientist decided to the null hypothesis.				
34.	A company believes that it controls .27 of the total market share in the South for one of its products. To test this belief, a random sample of 1150 purchases of this product in the South are contracted. 385 of the 1150 purchased this company's brand of the product. If a researcher wants to conduct a statistical test for this problem, the alternative hypothesis would be				
35.	The observed value of <i>z</i> for problem 34 is				
36.	Problem 34 would result in atailed test.				
37.	Suppose that a .01 value of alpha were used in problem 34. The critical value of z for the problem is				
38.	Upon comparing the observed value of <i>z</i> to the critical value of <i>z</i> , it is determined to the null hypothesis in problem 34.				
39.	A production process produces parts with a normal variance of 27.3. Engineers are concerned that the process may now be producing parts with greater variance than that. To test this concern, a sample of 9 newly produced parts is taken. The sample standard deviation is 5.93. Let $\alpha = .01$. The null hypothesis for this problem is				
40.	The critical table value of σ^2 for problem 39 is				
41.	The observed value of chi-square in problem 39 is				
42.	The decision reached for problem 39 is				

43.	The null hypothesis for a test is H_0 : $\mu = 30$. The population standard deviation is known to be 0.63. A one-tailed test is being conducted in the lower tail of the distribution. After taking a sample of 49 items and computing a mean, it is decided to fail to reject the null hypothesis. Let $\alpha = .05$. If the null hypothesis is not true and if the true alternative hypothesis is 29.6, the value of beta is
14.	Suppose the alternative mean in problem 43 is really 29.9, the value of beta is
45.	Plotting the power values against the various values of the alternative hypotheses produces a curve.
46.	Plotting the values of β against various values of the alternative hypothesis produces a curve.
1 7.	The p -value for an observed z of 2.73 is
48.	The p -value for an observed z of 0.85 is
1 9.	In a hypothesis-testing problem, a p -value of .0046 is obtained for the observed statistic. If a one-tailed test is being conducted and α is .01, then the decision is to the null hypothesis.
50.	A researcher is conducting a two-tailed hypothesis test using a 5% level of significance. As a result of the test, a <i>p</i> -value of .032 is obtained for one of the tails. The decision should be to the null hypothesis.

ANSWERS TO STUDY QUESTIONS

1.	Null, Alternative	26. ± 2.08	
2.	Null	27. Two	
3.	Rejection	281.30	
4.	Critical	29. Fail to Reject	
5.	Nonrejection Region	30. – 2.567, - 0.52, Fail to Rejec	t
6.	Alpha	311.16	
7.	Level of Significance	32. One	

- 8. Type I
- 9. Type II
- 10. Beta
- 11. 1 β
- 12. One
- 13. Two
- 14. *p*-value
- 15. <u>+</u>1.96
- 16. 2.33
- 17. <u>+</u> 1.645
- 18. 1.41
- 19. 1.97
- 20. Fail to Reject
- 21. Fail to Reject
- 22. Reject
- 23. $\mu = 35$
- 24. $\mu \neq 6$ "
- 25. 21

- 33. Fail to Reject
- 34. $p \neq .27$
- 35. 4.95
- 36. Two
- 37. ± 2.575
- 38. Reject
- 39. H_0 : $\sigma^2 = 27.3$
- 40. 20.0902
- 41. 10.3047
- 42. Fail to Reject
- 43. .0026
- 44. .7019
- 45. Power
- 46. Operating Characteristic
- 47. .0032
- 48. .1977
- 49. reject
- 50. fail to reject

SOLUTIONS TO THE ODD-NUMBERED PROBLEMS IN CHAPTER 9

- 9.1 a) Two-Tailed
 - b) One-Tailed
 - c) One-Tailed
 - d) Two-Tailed

9.3 a)
$$H_0$$
: $\mu = 25$

$$H_a$$
: $\mu \neq 25$ $x = 28.1$ $n = 57$ $\sigma = 8.46$ $\alpha = .01$

$$\bar{x} = 28.1$$

$$n = 57$$

$$\sigma = 8.46$$

$$0. = x$$

For two-tail,
$$\alpha/2 = .005$$
 $z_c = 2.575$

$$z_{\rm c} = 2.575$$

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{28.1 - 25}{\frac{8.46}{\sqrt{57}}} = 2.77$$

observed
$$z = 2.77 > z_c = 2.575$$

Reject the null hypothesis

b) from Table A.5, inside area between z = 0 and z = 2.77 is .4972

$$p$$
-value = .5000 - .4972 = **.0028**

Since the *p*-value of .0028 is less than $\alpha/2 = .005$, the decision is to: Reject the null hypothesis

c) critical mean values:

$$z_{\rm c} = \frac{\bar{x}_c - \mu}{\frac{\sigma}{\sqrt{n}}}$$

$$\pm 2.575 = \frac{x_c - 25}{\frac{8.46}{\sqrt{57}}}$$

$$\bar{x}_{\rm c} = 25 \pm 2.885$$

$$x_c = 27.885$$
 (upper value)

$$x_c = 22.115$$
 (lower value)

9.5 a)
$$H_o$$
: $\mu = 1,200$
 H_a : $\mu > 1,200$

$$\bar{x} = 1,215$$
 $n = 113$ $\sigma = 100$ $\alpha = .10$

For one-tail,
$$\alpha = .10$$
 $z_c = 1.28$

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{1,215 - 1,200}{\frac{100}{\sqrt{113}}} = 1.59$$

observed
$$z = 1.59 > z_c = 1.28$$

Reject the null hypothesis

b) Probability > observed z = 1.59 is .5000 - .4441 = **.0559** (the *p*-value) which is less than $\alpha = .10$.

Reject the null hypothesis.

c) Critical mean value:

$$z_{\rm c} = \frac{\bar{x}_c - \mu}{\frac{\sigma}{\sqrt{n}}}$$

$$1.28 = \frac{\bar{x}_c - 1,200}{\frac{100}{\sqrt{113}}}$$

$$\bar{x}_{c} = 1,200 + 12.04$$

Since the observed $\bar{x} = 1,215$ is greater than the critical $\bar{x} = 1212.04$, the decision is to reject the null hypothesis.

9.7
$$H_0$$
: $\mu = 657.49
 H_a : $\mu \neq 657.49

$$\bar{x} = \$673.58$$
 $n = 54$ $\sigma = \$63.90$ $\alpha = .05$

2-tailed test,
$$\alpha/2 = .025$$
 $z_{.025} = \pm 1.96$

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{673.58 - 657.49}{\frac{63.90}{\sqrt{54}}} = 1.85$$

Since the observed $z = 1.85 < z_{.025} = 1.96$, the decision is to **fail** to reject the null hypothesis.

9.9
$$H_0$$
: $\mu = 5$ H_a : $\mu \neq 5$

$$\bar{x} = 5.0611$$
 $n = 42$ $N = 650$ $\sigma = 0.2803$ $\alpha = .10$

2-tailed test,
$$\alpha/2 = .05$$
 $z_{.05} = \pm 1.645$

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}} \sqrt{\frac{N - n}{N - 1}}} = \frac{5.0611 - 5}{\frac{0.2803}{\sqrt{42}} \sqrt{\frac{650 - 42}{650 - 1}}} = 1.46$$

Since the observed $z = 1.46 < z_{.05} = 1.645$, the decision is to **fail to reject** the null hypothesis.

9.11 H_o:
$$\mu = $50$$
 H_a: $\mu > 50

$$\bar{x} = \$52.17$$
 $n = 23$ $\sigma = \$3.49$ $\alpha = .10$

For one-tailed test,
$$\alpha = .10$$
, $z_{.10} = 1.28$

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{\$52.17 - \$50}{\$3.49} = 2.98$$

Since the observed $z = 2.98 > z_{.10} = 1.28$, the decision is to **Reject the null Hypothesis.**

The table value for z = 2.98 is .4986. The *p*-value is .5000 - .4986 = **.0014**. Since this is less than $\alpha = .10$, the decision using the *p*-value is to reject the null hypothesis.

In our decision to reject the hypothesized mean of \$50, we are saying that we have concluded that the mean is greater than \$50. However, our sample mean is only \$2.17 more than \$50. While this may be an indication of carpet cleaning inflation, for many customers, an additional \$2.17 may not be substantial nor cause them to forgo the cleaning.

9.13
$$n = 20$$
 $\bar{x} = 16.45$ $s = 3.59$ $df = 20 - 1 = 19$ $\alpha = .05$

H_o:
$$\mu = 16$$

H_a: $\mu \neq 16$

For two-tail test, $\alpha/2 = .025$, critical $t_{.025,19} = \pm 2.093$

$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{16.45 - 16}{\frac{3.59}{\sqrt{20}}} = \mathbf{0.56}$$

Observed $t = 0.56 < t_{.025,19} = 2.093$

The decision is to **Fail to reject the null hypothesis**

9.15
$$n = 11$$
 $\bar{x} = 1,236.36$ $s = 103.81$ $df = 11 - 1 = 10$ $\alpha = .05$

H_o:
$$\mu = 1,160$$

H_a: $\mu > 1,160$

or one-tail test,
$$\alpha = .05$$
 critical $t_{.05,10} = 1.812$

$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{1,236.36 - 1,160}{\frac{103.81}{\sqrt{11}}} = 2.44$$

Observed $t = 2.44 > t_{.05,10} = 1.812$

The decision is to **Reject the null hypothesis**

9.17
$$n = 12$$
 $\bar{x} = 1.85083$ $s = .02353$ $df = 12 - 1 = 11$ $\alpha = .10$

H₀:
$$\mu = 1.84$$

H_a:
$$\mu \neq 1.84$$

For a two-tailed test,
$$\alpha/2 = .05$$
 critical $t_{.05.11} = 1.796$

$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{1.85083 - 1.84}{\frac{.02353}{\sqrt{12}}} = 1.59$$

Since $t = 1.59 < t_{11,.05} = 1.796$,

The decision is to fail to reject the null hypothesis.

9.19
$$n = 49$$
 $\bar{x} = \$31.67$ $s = \$1.29$ $df = 49 - 1 = 48$ $\alpha = .05$

$$H_0$$
: $\mu = 32.28

H_a:
$$\mu \neq $32.28$$

Two-tailed test, $\alpha/2 = .025$ for 40 degrees of freedom, $t_{.025,40} = \pm 2.021$; for 50 degrees of freedom $t_{.025,50} = \pm 2.009$

$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{31.67 - 32.28}{\frac{1.29}{\sqrt{49}}} = -3.31$$

The observed $t = -3.31 < t_{.025,40} = \pm 2.021$ or, $t_{.025,50} = \pm 2.009$

The decision is to **reject the null hypothesis**.

9.21
$$n = 22$$
 $\bar{x} = 1031.32$ $s = 240.37$ $df = 22 - 1 = 21$ $\alpha = .05$

H₀:
$$\mu = 1135$$

H_a: $\mu \neq 1135$

Two-tailed test,
$$\alpha/2 = .025$$
 $t_{.025,21} = \pm 2.080$

$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{1031.32 - 1135}{\frac{240.37}{\sqrt{22}}} = -2.02$$

The observed $t = -2.02 > t_{.025,21} = -2.080$,

The decision is to fail to reject the null hypothesis

9.23
$$n = 26$$
 $\bar{x} = 19.534$ minutes $s = 4.100$ minutes $\alpha = .05$

H₀:
$$\mu = 19$$

H_a: $\mu \neq 19$

Two-tailed test,
$$\alpha/2 = .025$$
, critical t value = $+2.06$

Observed t value = 0.66. Since the observed t = 0.66 < critical t value = 2.06,

The decision is to **fail to reject the null hypothesis**.

Since the Excel p-value = $.256 > \alpha/2 = .025$ and MINITAB p-value = .513 > .05, the decision is to **fail to reject the null hypothesis.**

She would <u>not</u> conclude that her city is any different from the ones in the national survey.

9.25
$$H_0$$
: $p = 0.63$
 H_a : $p < 0.63$

$$n = 100$$
 $x = 55$ $\hat{p} = \frac{x}{n} = \frac{55}{100} = .55$

For one-tail,
$$\alpha = .01$$
 $z_{.01} = -2.33$

$$z = \frac{\hat{p} - p}{\sqrt{\frac{p \cdot q}{n}}} = \frac{.55 - .63}{\sqrt{\frac{(.63)(.37)}{100}}} = -1.66$$

observed
$$z = -1.66 > z_c = -2.33$$

The decision is to Fail to reject the null hypothesis

9.27
$$H_0$$
: $p = .48$
 H_a : $p \neq .48$
 $n = 380$ $x = 164$ $\alpha = .01$ $\alpha/2 = .005$ $z_{.005} = \pm 2.575$
 $\hat{p} = \frac{x}{n} = \frac{164}{380} = .4316$
 $z = \frac{\hat{p} - p}{\sqrt{\frac{p \cdot q}{n}}} = \frac{.4316 - .48}{\sqrt{\frac{(.48)(.52)}{380}}} = -1.89$

Since the observed z = -1.89 is greater than $z_{.005} = -2.575$, The decision is to **fail to reject the null hypothesis**. There is not enough evidence to declare that the proportion is any different than .48.

9.29
$$H_0$$
: $p = .31$
 H_a : $p \neq .31$
 $n = 600$ $x = 200$ $\alpha = .10$ $\alpha/2 = .05$ $z_{.005} = \pm 1.645$
 $\hat{p} = \frac{x}{n} = \frac{200}{600} = .3333$
 $z = \frac{\hat{p} - p}{\sqrt{\frac{p \cdot q}{n}}} = \frac{.3333 - .31}{\sqrt{\frac{(.31)(.69)}{600}}} = 1.23$

Since the observed z = 1.23 is less than $z_{.005} = 1.645$, The decision is to **fail to reject the null hypothesis**. There is not enough evidence to declare that the proportion is any different than .31.

H_o:
$$p = .24$$

H_a: $p > .24$
 $n = 600$ $x = 158$ $\alpha = .05$ $z_{.05} = 1.645$

$$\hat{p} = \frac{x}{n} = \frac{158}{600} = .2633$$

$$z = \frac{\hat{p} - p}{\sqrt{\frac{p \cdot q}{n}}} = \frac{.2633 - .24}{\sqrt{\frac{(.24)(.76)}{600}}} = 1.34$$

Since the observed z = 1.34 is less than $z_{.05} = 1.645$, The decision is to **fail to reject the null hypothesis**. There is not enough evidence to declare that the proportion is less than .24.

9.31
$$H_0$$
: $p = .32$
 H_a : $p < .32$

$$n = 118$$
 $x = 22$ $\hat{p} = \frac{x}{n} = \frac{22}{118} = .1864$ $\alpha = .05$

For one-tailed test, $z_{.05} = -1.645$

$$z = \frac{\hat{p} - p}{\sqrt{\frac{p \cdot q}{n}}} = \frac{.1864 - .32}{\sqrt{\frac{(.32)(.68)}{118}}} = -3.11$$

Observed $z = -3.11 < z_{.05} - 1.645$

Since the observed z = -3.11 is less than $z_{.05} = -1.645$, the decision is to **reject the null hypothesis**.

9.33 a) H₀:
$$\sigma^2 = 20$$
 $\alpha = .05$ $n = 15$ $df = 15 - 1 = 14$ $s^2 = 32$ H_a: $\sigma^2 > 20$

$$\chi^2_{.05,14} = 23.6848$$

$$\chi^2 = \frac{(15-1)(32)}{20} = 22.4$$

Since $\chi^2 = 22.4 < \chi^2_{.05,14} = 23.6848$, the decision is to **fail to reject the null hypothesis**.

b)
$$H_0$$
: $\sigma^2 = 8.5$ $\alpha = .10$ $\alpha/2 = .05$ $n = 22$ $df = n-1 = 21$ $s^2 = 17$ H_a : $\sigma^2 \neq 8.5$

$$\chi^2_{.05,21} = 32.6706$$

$$\chi^2 = \frac{(22-1)(17)}{8.5} = 42$$

Since $\chi^2 = 42 > \chi^2_{.05,21} = 32.6706$, the decision is to **reject the null hypothesis**.

c)
$$H_0$$
: $\sigma^2 = 45$ $\alpha = .01$ $n = 8$ $df = n - 1 = 7$ $s = 4.12$ H_a : $\sigma^2 < 45$

$$\chi^2_{.01,7} = 18.4753$$

$$\chi^2 = \frac{(8-1)(4.12)^2}{45} = 2.64$$

Since $\chi^2 = 2.64 < \chi^2_{.01,7} = 18.4753$, the decision is to **fail to reject the null hypothesis**.

d)
$$H_0$$
: $\sigma^2 = 5$ $\alpha = .05$ $\alpha/2 = .025$ $n = 11$ $df = 11 - 1 = 10$ $s^2 = 1.2$ H_a : $\sigma^2 \neq 5$

$$\chi^2_{.025,10} = 20.4832 \qquad \qquad \chi^2_{.975,10} = 3.24696$$

$$\chi^2 = \frac{(11-1)(1.2)}{5} = 2.4$$

Since $\chi^2 = 2.4 < \chi^2_{.975,10} = 3.24696$, the decision is to **reject the null hypothesis**.

9.35 H₀:
$$\sigma^2 = .001$$
 $\alpha = .01$ $n = 16$ df = $16 - 1 = 15$ $s^2 = .00144667$ H₂: $\sigma^2 > .001$

$$\chi^2_{.01,15} = 30.5780$$

$$\chi^2 = \frac{(16-1)(.00144667)}{.001} = \mathbf{21.7}$$

Since $\chi^2 = 21.7 < \chi^2_{.01,15} = 30.5780$, the decision is to **fail to reject the null hypothesis**.

9.37 H₀:
$$\sigma^2 = .04$$
 $\alpha = .01$ $n = 7$ $df = 7 - 1 = 6$ $s = .34$ $s^2 = .1156$ H_a: $\sigma^2 > .04$

$$\chi^2_{.01,6} = 16.8119$$

$$\chi^2 = \frac{(7-1)(.1156)}{.04} = 17.34$$

Since $\chi^2 = 17.34 > \chi^2_{.01,6} = 16.8119$, the decision is to **reject the null hypothesis**

9.39
$$\alpha = .05$$
 $\mu = 100$ $n = 48$ $\sigma = 14$

a)
$$\mu_a = 98.5$$
 $z_c = -1.645$

$$z_{\rm c} = \frac{\bar{x}_c - \mu}{\frac{\sigma}{\sqrt{n}}}$$

$$-1.645 = \frac{\bar{x}_c - 100}{\frac{14}{\sqrt{48}}}$$

$$\bar{x}_{c} = 96.68$$

$$z = \frac{\bar{x}_c - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{96.68 - 98.5}{\frac{14}{\sqrt{48}}} = -0.90$$

from Table A.5, area for z = -0.90 is .3159

$$\beta = .3159 + .5000 = .8159$$

b)
$$\mu_a = 98$$
 $z_c = -1.645$

$$\overline{x}_c = 96.68$$

$$z_c = \frac{\overline{x}_c - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{96.68 - 98}{\frac{14}{\sqrt{48}}} = -0.65$$

from Table A.5, area for z = -0.65 is .2422

$$\beta = .2422 + .5000 = .7422$$

c)
$$\mu_a = 97$$
 $z_{.05} = -1.645$

$$\bar{x}_{c} = 96.68$$

$$z = \frac{\bar{x}_c - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{96.68 - 97}{\frac{14}{\sqrt{48}}} = -0.16$$

from Table A.5, area for z = -0.16 is .0636

$$\beta = .0636 + .5000 = .5636$$

d)
$$\mu_a = 96$$
 $z_{.05} = -1.645$

$$\bar{x}_{c} = 96.68$$

$$z = \frac{\bar{x}_c - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{96.68 - 96}{\frac{14}{\sqrt{48}}} = 0.34$$

from Table A.5, area for z = 0.34 is .1331

$$\beta = .5000 - .1331 = .3669$$

e) As the alternative value gets farther from the null hypothesized value, the probability of committing a Type II error reduces (all other variables being held constant).

9.41 a)
$$H_0$$
: $p = .65$
 H_a : $p < .65$
 $n = 360$ $\alpha = .05$ $p_a = .60$ $z_{.05} = -1.645$

$$z_{c} = \frac{\hat{p}_{c} - p}{\sqrt{\frac{p \cdot q}{n}}}$$
$$-1.645 = \frac{\hat{p}_{c} - .65}{\sqrt{\frac{(.65)(.35)}{360}}}$$

$$\hat{p}_{c} = .65 - .041 = .609$$

$$z = \frac{\hat{p}_c - p}{\sqrt{\frac{p \cdot q}{n}}} = \frac{.609 - .60}{\sqrt{\frac{(.60)(.40)}{360}}} = 0.35$$

from Table A.5, area for z = -0.35 is .1368

$$\beta = .5000 - .1368 = .3632$$

b)
$$p_a = .55$$
 $z_{.05} = -1.645$ $\hat{p}_c = .609$
$$z = \frac{\hat{p}_c - P}{\sqrt{\frac{p \cdot q}{n}}} = \frac{.609 - .55}{\sqrt{\frac{(.55)(.45)}{360}}} = 2.25$$

from Table A.5, area for z = -2.25 is .4878

$$\beta = .5000 - .4878 = .0122$$

c)
$$p_a = .50$$
 $z_{.05} = -1.645$ $\hat{p}_c = .609$
$$z = \frac{\hat{p}_c - p}{\sqrt{\frac{p \cdot q}{n}}} = \frac{.609 - .50}{\sqrt{\frac{(.50)(.50)}{360}}} = -4.14$$

from Table A.5, the area for z = -4.14 is .5000

$$\beta = .5000 - .5000 = .0000$$

9.43 H₀:
$$p = .71$$
 H_a: $p < .71$

$$n = 463$$
 $x = 324$ $\hat{p} = \frac{324}{463} = .6998$ $\alpha = .10$

$$z_{.10} = -1.28$$

$$z = \frac{\hat{p} - p}{\sqrt{\frac{p \cdot q}{n}}} = \frac{.6998 - .71}{\sqrt{\frac{(.71)(.29)}{463}}} = -0.48$$

Since the observed $z = -0.48 > z_{.10} = -1.28$, the decision is to **fail to reject the null hypothesis**.

Type II error:

Solving for the critical proportion, \hat{p}_{c} :

$$z_{c} = \frac{\hat{p}_{c} - p}{\sqrt{\frac{p \cdot q}{n}}}$$

$$-1.28 = \frac{\hat{p}_c - .71}{\sqrt{\frac{(.71)(.29)}{463}}}$$

$$\hat{p} = .683$$

For $p_a = .69$

$$z = \frac{.683 - .69}{\sqrt{\frac{(.69)(.31)}{463}}} = -0.33$$

From Table A.5, the area for z = -0.33 is .1293

The probability of committing a Type II error = .1293 + .5000 = .6293

For $p_a = .66$

$$z = \frac{.683 - .66}{\sqrt{\frac{(.66)(.34)}{463}}} = 1.04$$

From Table A.5, the area for z = 1.04 is .3508

The probability of committing a Type II error = .5000 - .3508 = .1492

For
$$p_a = .60$$

$$z = \frac{.683 - .60}{\sqrt{\frac{(.60)(.40)}{463}}} = 3.65$$

From Table A.5, the area for z = 3.65 is essentially, .5000

The probability of committing a Type II error = .5000 - .5000 = .0000

9.45 8 steps:

1)
$$H_o$$
: $\mu = 7.82$ H_a : $\mu < 7.82$

2) The test statistic is

$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$$

3)
$$\alpha = .05$$

4) df = n - 1 = 16, $t_{.05,16} = -1.746$. If the observed value of t is less than -1.746, then the decision will be to reject the null hypothesis.

5)
$$n = 17$$
 $\bar{x} = 7.01$ $s = 1.69$

6)
$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{7.01 - 7.82}{\frac{1.69}{\sqrt{17}}} = -1.98$$

- 7) Since the observed t = -1.98 is less than the table value of t = -1.746, the decision is to **reject the null hypothesis**.
- 8) The population mean is significantly less than 7.82.

9.47 8 steps:

1)
$$H_0$$
: $\sigma^2 = 15.4$
 H_a : $\sigma^2 > 15.4$

$$2) \quad \chi^2 = \frac{(n-1)s^2}{\sigma^2}$$

3)
$$\alpha = .01$$

4)
$$n = 18$$
, df = 17, one-tailed test $\chi^2_{.01,17} = 33.4087$

5)
$$s^2 = 29.6$$

6)
$$\chi^2 = \frac{(n-1)s^2}{\sigma^2} = \frac{(17)(29.6)}{15.4} = 32.675$$

- 7) Since the observed $\chi^2 = 32.675$ is less than 33.4087, the decision is to **fail** to reject the null hypothesis.
- 8) The population variance is not significantly more than 15.4.

9.49 H₀:
$$p = .32$$

H_a: $p \neq .32$

$$n = 80 \qquad \alpha = .01 \qquad \hat{p} = .25 \qquad z_{.005} = \pm 2.575$$

$$z = \frac{\hat{p} - p}{\sqrt{\frac{p \cdot q}{n}}} = \frac{.25 - .32}{\sqrt{\frac{(.32)(.68)}{80}}} = -1.34$$

Since the observed $z = -1.34 > z_{.005} = -2.575$, the decision is to **fail to reject the null hypothesis**.

9.51
$$n = 210$$
 $x = 93$ $\alpha = .10$ $\hat{p} = \frac{x}{n} = \frac{93}{210} = .443$

$$H_o$$
: $p = .57$
 H_a : $p < .57$

For one-tail,
$$\alpha = .10$$
 $z_c = -1.28$

$$z = \frac{\hat{p} - p}{\sqrt{\frac{p \cdot q}{n}}} = \frac{.443 - .57}{\sqrt{\frac{(.57)(.43)}{210}}} = -3.72$$

Since the observed $z = -3.72 < z_c = -1.28$, the decision is to **reject the null hypothesis**.

9.53
$$H_0$$
: $\mu = 8.4$ $\alpha = .01$ $\alpha/2 = .005$ $n = 7$ $df = 7 - 1 = 6$ $s = 1.3$ H_a : $\mu \neq 8.4$

$$\bar{x} = 5.6$$
 $t_{.005,6} = \pm 3.707$

$$t = \frac{5.6 - 8.4}{\frac{1.3}{\sqrt{7}}} = -5.70$$

Since the observed $t = -5.70 < t_{.005,6} = -3.707$, the decision is to **reject the null hypothesis**.

9.55 H₀:
$$\sigma^2 = 4$$
 $n = 8$ $s = 7.80$ $\alpha = .10$ $df = 8 - 1 = 7$ H_a: $\sigma^2 > 4$

$$\chi^2_{.10,7} = 12.0170$$

$$\chi^2 = \frac{(8-1)(7.80)^2}{4} = 106.47$$

Since observed $\chi^2 = 106.47 > \chi^2_{.10,7} = 12.017$, the decision is to **reject the null hypothesis**.

9.57
$$n = 16$$
 $\bar{x} = 175$ $s = 14.28286$ $df = 16 - 1 = 15$ $\alpha = .05$

H₀:
$$\mu = 185$$

H_a: $\mu < 185$

$$t_{.05,15} = -1.753$$

$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{175 - 185}{\frac{14.28286}{\sqrt{16}}} = -2.80$$

Since observed $t = -2.80 < t_{.05,15} = -1.753$, the decision is to **reject the null hypothesis**.

9.59
$$H_0$$
: $\mu = 15

H_a:
$$\mu > $15$$

$$\bar{x} = \$19.34$$
 $n = 17$ $\sigma = \$4.52$ $\alpha = .10$

For one-tail and
$$\alpha = .10$$

$$z_{\rm c} = 1.28$$

$$z = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{19.34 - 15}{\frac{4.52}{\sqrt{17}}} = 3.96$$

Since the observed $z = 3.96 > z_c = 1.28$, the decision is to **reject the null hypothesis**.

9.61 H₀:
$$\mu = 2.5$$
 $\bar{x} = 3.4$ $s = 0.6$ $\alpha = .01$ $n = 9$ $df = 9 - 1 = 8$ H_a: $\mu > 2.5$

$$t_{.01.8} = 2.896$$

$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{3.4 - 2.5}{\frac{0.6}{\sqrt{9}}} = 4.50$$

Since the observed $t = 4.50 > t_{.01,8} = 2.896$, the decision is to **reject the null hypothesis**.

9.63
$$n = 12$$
 $\bar{x} = 12.333$ $s^2 = 10.424$

H₀:
$$\sigma^2 = 2.5$$

H_a: $\sigma^2 \neq 2.5$

$$\alpha = .05$$
 df = 11 two-tailed test, $\alpha/2 = .025$

$$\chi^2_{.025,11} = 21.9200$$

$$\chi^2_{..975,11} = 3.81574$$

If the observed χ^2 is greater than 21.9200 or less than 3.81574, the decision is to reject the null hypothesis.

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2} = \frac{11(10.424)}{2.5} = 45.866$$

Since the observed $\chi^2 = 45.866$ is greater than $\chi^2_{.025,11} = 21.92$, the decision is to **reject the null hypothesis**. The population variance is significantly more than 2.5.

9.65 The sample size is 22.
$$\bar{x}$$
 is 3.969 $s = 0.866$ df = 21

The test statistic is:

$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$$

The observed t = -2.33. The *p*-value is .015.

The results are statistical significant at $\alpha = .05$.

The decision is to reject the null hypothesis.

9.67 H_0 : $\mu = 2.51$ H_a : $\mu > 2.51$

This is a one-tailed test. The sample mean is 2.55 which is more than the hypothesized value. The observed t value is 1.51 with an associated p-value of .072 for a one-tailed test. Because the p-value is greater than $\alpha = .05$, the decision is to fail to reject the null hypothesis. There is not enough evidence to conclude that beef prices are higher.