Chapter 8 Corps des nombres complexes

8.1 Définition des nombres complexes

Exercice 8.1

Donner l'écriture algébrique des nombres complexes suivants

1.
$$z_1 = \left(\frac{1}{3} - 2i\right) \left(\frac{1}{2} + \frac{i}{2}\right)$$
.

4.
$$z_4 = \frac{2-i}{1+i}$$
.

2.
$$z_2 = (1 - 2i)^2$$
.

5.
$$z_5 = (2+i)^3$$

3.
$$z_3 = \frac{1}{1+3i}$$
.

4.
$$z_4 = \frac{2-i}{1+i}$$
.
5. $z_5 = (2+i)^3$.
6. $z_6 = (1+i)^2 - (2-i)^2$.

Exercice 8.2

Déterminer l'écriture algébrique de chacun des nombres complexes suivants.

1.
$$z_1 = (3+i)(2-3i)(4+5i)$$
.

2.
$$z_2 = (1+i)^{10}$$
.

3.
$$z_3 = (2 - i)^4$$
.

Exercice 8.3

Que pensez-vous de l'assertion suivante : pour tous $z, w \in \mathbb{C}$,

$$\Re e(zw) = \Re e(z) \Re e(w).$$

Exercice 8.4

Résoudre dans C les équations suivantes, puis déterminer la partie réelle et la partie imaginaire de chacune des solutions.

1.
$$(-1+4i)z + (1-2i) = iz + 3$$

$$2. \ \frac{1+3iz}{1+3z} = i\frac{z+2}{z-5}$$

8.2 Conjugué, module

Exercice 8.5

À tout nombre complexe z différent de 0 et -1, on associe

$$u = \frac{z^2}{z+1}$$
 et $v = \frac{1}{z(z+1)}$.

- 1. Déterminer z pour que u et v soient tous deux réels.
- **2.** Calculer les valeurs correspondantes de u et v.

Exercice 8.6

Établir que $z \in \mathbb{R}_+$ si et seulement si $\Re e(z) = |z|$.

Exercice 8.7 (***)

Résoudre dans \mathbb{C} l'équation $4z^2 + 8|z|^2 - 3 = 0$.

Le plan complexe \mathcal{P} est muni d'un repère orthonormal (O, \vec{u}, \vec{v}) . Déterminer l'ensemble des points Md'affixe z tels que

1.
$$|z-2|=3$$
.

3.
$$\left| \frac{z - i}{z + i} \right| = 1$$
.
4. $\left| \frac{iz - 2}{z + 3} \right| = 1$.

2.
$$|2z - 1 + i| = 4$$
.

4.
$$\left| \frac{iz - 2}{z + 3} \right| = 1$$

Exercice 8.9 Identité du parallélogramme

Prouver que pour tous nombres complexes z et w, on a

$$|z + w|^2 + |z - w|^2 = 2(|z|^2 + |w|^2).$$

Donner une interprétation géométrique.

Exercice 8.10

Soit $z \in \mathbb{C}$, montrer

$$1 + z + z^2 + \dots + z^{n-1} - nz^n = 0 \implies |z| \le 1.$$

Exercice 8.11

Soit z un nombre complexe différent de -1 et M le point du plan d'affixe z. On pose $z' = \frac{z-1}{z+1}$. Déterminer l'ensemble des points M tels que

- 1. z' soit réel;
- 2. z' soit imaginaire pur;
- 3. z' soit de module 2.

Racines d'un polynôme

Exercice 8.12

Calculer les racines carrées des complexes suivants.

1.
$$\sqrt{2} - i\sqrt{2}$$
.

3.
$$3 - 4i$$

1.
$$\sqrt{2} - i\sqrt{2}$$

2.
$$\frac{1+i}{1-i}$$
.

5.
$$5 + 12i$$

Exercice 8.13

Résoudre les équations suivantes d'inconnue $z \in \mathbb{C}$.

1.
$$z^2 + 3z + 3 - i = 0$$
.

3.
$$z^2 - z - iz + 5i = 0$$

2.
$$z^2 - 4z + 5 = 0$$
.

3.
$$z^2 - z - iz + 5i = 0$$
.
4. $z^2 - (7 + i)z + 12 + 3i = 0$.

Exercice 8.14

Résoudre les équations suivantes d'inconnue $z \in \mathbb{C}$.

1.
$$4z^2 - 16z + 11 - 12i = 0$$
. **2.** $z^2 + 5z + 7 - i = 0$. **3.** $z^2 - 5z + 4 + 10i = 0$.

2.
$$z^2 + 5z + 7 - i = 0$$
.

3.
$$z^2 - 5z + 4 + 10i = 0$$

Exercice 8.15

Rechercher la partie réelle et la partie imaginaire de chacune des solutions de l'équation

$$z^2 - (3+2i)z + 5 + i = 0$$

d'inconnue complexe z.

Exercice 8.16

Résoudre l'équation

$$(1+i)z^2 - 2(1+4i)z + 5(1+3i) = 0,$$

d'inconnue complexe z.

Exercice 8.17

Résoudre dans \mathbb{C} l'équation d'inconnue z

$$z^{2} + 2(1+i)z - 5(1+2i) = 0.$$
(1)

Exercice 8.18

Résoudre dans C l'équation

$$iz^{3} - (1+i)z^{2} + (1-2i)z + 6 + 8i = 0.$$
(1)

sachant qu'elle possède une solution réelle.

Exercice 8.19

Trouver les nombres complexes vérifiant $z^4 - 30z^2 + 289 = 0$.

Exercice 8.20

Résoudre les systèmes suivants d'inconnue $(x, y) \in \mathbb{C}^2$.

1.
$$\begin{cases} x + y = 2 \\ xy = 2 \end{cases}$$
 2. $\begin{cases} x + y = 1 + i \\ xy = 13i \end{cases}$

8.4 Représentation trigonométrique

Exercice 8.21

On note $\mathbb U$ l'ensemble des nombres complexes de modules 1. Soit l'application $f:\mathbb R\to\mathbb U$. $\theta\mapsto e^{i\theta}$

- **1.** Montrer que f est bien définie, c'est-à-dire que pour $\theta \in \mathbb{R}$, $f(\theta)$ existe bien et $f(\theta) \in \mathbb{U}$.
- **2.** *f* est-elle injective ?
- **3.** *f* est-elle surjective ?

Exercice 8.22

Calculer le module et un argument des nombres complexes suivants.

1. $1 + i$;	5. $2 + i$;	9. $-12-5i$;
2. $1 - i\sqrt{3}$;	6. 17 ;	10. $-5 + 4i$.
3	7 _3i·	

3.
$$i$$
; 7. $-3i$; 4. $-2\sqrt{3} + 2i$; 8. $-\pi$;

Exercice 8.23

Soient $\alpha, \beta \in \mathbb{R}$. Écrire les complexes suivants sous la forme $\varrho e^{i\theta}$ où ϱ et θ sont des réels.

1.
$$\sin \alpha + i \cos \alpha$$
.
 3. $1 + i \tan \alpha$.

 2. $1 + \cos \alpha + i \sin \alpha$.
 4. $\cos \alpha + i(1 + \sin \alpha)$.

5.
$$\frac{1+i\tan\alpha}{1-i\tan\alpha}$$
.

7. $e^{i\beta} - e^{i\alpha}$. 8. $e^{i\beta} + e^{i\alpha}$.

$$6. \frac{1+\cos\alpha+i\sin\alpha}{1+\cos\beta+i\sin\beta}$$

On pourra également discuter modules et arguments.

Exercice 8.24

Soit $z_1 = 1 + i$ et $z_2 = \sqrt{3} - i$.

- 1. Calculer les modules et arguments de z_1 , z_2 , z_1z_2 .
- 2. En déduire les valeurs exactes de cos $\frac{\pi}{12}$ et sin $\frac{\pi}{12}$.

Exercice 8.25

Déterminer le module et un argument de $z = \left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$.

Exercice 8.26 Soit $\omega = e^{\frac{2i\pi}{5}}$, $\alpha = \omega + \omega^4$ et $\beta = \omega^2 + \omega^3$.

- **1.** Calculer $\alpha + \beta$ et $\alpha\beta$.
- **2.** En déduire α et β .
- 3. En déduire la valeur de $\cos \frac{2\pi}{5}$ en fonctions de radicaux.
- **4.** Déterminer $\sin \frac{\pi}{10}$ en fonction de radicaux.

Exercice 8.27

Calculer le module et un argument de $(1 + i)^n$. En déduire les valeurs de

$$S_1 = \sum_{\substack{p \in \mathbb{N} \\ 0 \le 2p \le n}} (-1)^p \binom{n}{2p} = 1 - \binom{n}{2} + \binom{n}{4} - \binom{n}{6} + \cdots$$

$$S_1 = \sum_{\substack{p \in \mathbb{N} \\ 0 \le 2p \le n}} (-1)^p \binom{n}{2p} = 1 - \binom{n}{2} + \binom{n}{4} - \binom{n}{6} + \cdots$$

$$S_2 = \sum_{\substack{p \in \mathbb{N} \\ 0 \le 2p+1 \le n}} (-1)^p \binom{n}{2p+1} = \binom{n}{1} - \binom{n}{3} + \binom{n}{5} - \cdots$$

Exercice 8.28

Exprimer les termes suivants en fonction de $\cos x$ et $\sin x$.

1. $\sin 3x$.

3. sin 4x.
 4. cos 8x.

2. $\cos 5x$.

Exercice 8.29

Linéariser les expressions suivantes, c'est-à-dire les transformer en une combinaison linéaire de termes du type $\cos(nx)$ et $\sin(nx)$ où $n \in \mathbb{N}$.

1. $\cos^3 x$.

4. $\cos^2 x \sin^3 x$.

2. $\cos^4 x$.

3. $\sin^5 x$.

Exercice 8.30

Linéariser les expressions suivantes où $x \in \mathbb{R}$.

1. $\cos^2 x \sin x$.

2. $\sin^3 x \cos^3 x$.

Exercice 8.31

À l'aide des formules d'Euler, linéariser $\cos^4 x$ et $\sin^4 x$ et en déduire

$$I = \int_0^{\pi/2} \cos^4 x \, dx \text{ et } J = \int_0^{\pi/2} \sin^4 x \, dx.$$

Exercice 8.32

Soient $n \in \mathbb{N}$ et $\theta \in \mathbb{R} \setminus 2\pi\mathbb{Z}$.

1. Montrer que

$$\sum_{k=0}^{n} e^{ik\theta} = e^{in\frac{\theta}{2}} \frac{\sin\frac{(n+1)\theta}{2}}{\sin\frac{\theta}{2}}.$$

2. En déduire

$$\sum_{k=0}^{n} \cos(k\theta) \text{ et } \sum_{k=0}^{n} \sin(k\theta).$$

3. En déduire

$$\sum_{k=0}^{n} k \sin(k\theta).$$

Exercice 8.33 IMT PSI 2022 Soit $x \in \mathbb{R}$. Calculer $\sum_{k=0}^{n} {n \choose k} \cos(kx)$. Exercice 8.34 Banque CCINP 2023 Exercice 89 algèbre

Soit $n \in \mathbb{N}$ tel que $n \ge 2$. On pose $z = e^{i\frac{2\pi}{n}}$.

1. On suppose $k \in [1, n-1]$. Déterminer le module et un argument du complexe $z^k - 1$.

2. On pose
$$S = \sum_{k=0}^{n-1} |z^k - 1|$$
. Montrer que $S = \frac{2}{\tan \frac{\pi}{2n}}$.

Exercice 8.35

Résoudre dans C l'équation

$$e^{2z-1} = \sqrt{3} - 3i$$

Nombres complexes et géométrie plane

Exercice 8.36

- 1. Quels sont les complexes z non nuls tels que $z + \frac{1}{z}$ est réel ?
- 2. Quels sont les complexes z tels que les points d'affixes 1, z, z^3 sont alignés.

Exercice 8.37

Dans le plan complexe, soit I le point d'affixe i. À tout point M d'affixe z = x + iy, avec $x, y \in \mathbb{R}$, on associe le point M' d'affixe iz.

- 1. On suppose que $z \neq 0$. Calculer la partie imaginaire de $\frac{z-i}{z-iz}$ en fonction de x et y.
- 2. On suppose toujours que $z \neq 0$. Rappeler la condition nécessaire et suffisante sur le quotient $\frac{z-i}{z-iz}$ pour que les trois points I, M et M' soient alignés. Exprimer cette condition en fonction de x et y.
- 3. Montrer que l'ensemble des points M tels que I, M et M' soient alignés est un cercle, dont on précisera le centre et le rayon.

8.6 Racine *n*-ième d'un nombre complexe non nul

Exercice 8.38

Trouver les nombres complexes vérifiant :

1.
$$z^6 = \frac{1 + i\sqrt{3}}{1 - i\sqrt{3}}$$
. **2.** $z^8 = \frac{1 + i}{\sqrt{3} - i}$.

Exercice 8.39

Résoudre les équations suivantes d'inconnue $z \in \mathbb{C}$.

1.
$$z^8 - 3z^4 + 2 = 0$$
.

2.
$$(z^2 - 2z)\cos^2 \varphi + 1 = 0$$
 où $\varphi \in \mathbb{R}$.

3.
$$z^6 - 2z^3 \cos \varphi + 1 = 0$$
 où $\varphi \in \mathbb{R}$.

Exercice 8.40

Résoudre dans C les équations suivantes

1.
$$27(z-1)^6 + (z+1)^6 = 0$$
.

$$2. \left(\frac{z^2+1}{z^2-1}\right)^8=1.$$

3.
$$(z+i)^n - (z-i)^n = 0$$
.

Exercice 8.41

On considère le polynôme $P(z) = \frac{1}{2i} \left((z+i)^5 - (z-i)^5 \right)$.

- 1. (Cours) Donner la définition et les expressions des racines cinquièmes de l'unité dans C.
- 2. À l'aide de ces racines cinquièmes de l'unité, déterminer les solutions de l'équation P(z) = 0 d'inconnue $z \in \mathbb{C}$.

Vérifier qu'elles sont toutes réelles.

3. Vérifier que le polynôme P peut s'écrire sous la forme $P(z) = az^4 + bz^2 + c$ avec a, b, c des réels que l'on calculera.

Déterminer alors une autre écriture des racines de P.

4. Comparer les résultats obtenus et en déduire une expression algébrique de tan $\left(\frac{\pi}{5}\right)$ et tan $\left(\frac{2\pi}{5}\right)$.

Exercice 8.42

Le but de ce problème est d'établir des formules permettant d'exprimer cos $\frac{\pi}{5}$ à l'aide de combinaisons finies de radicaux carrés. Soit l'équation

$$z^5 - 1 = 0. (1)$$

- 1. Résoudre (1) dans C en calculant les cinq racines de (1) sous forme trigonométrique.
- **2.** On va maintenant résoudre (1) par radicaux carrés. Déterminer la fonction polynomiale Q telle que pour tout $z \in \mathbb{C}$.

$$z^{5} - 1 = (z - 1)Q(z).$$
(2)

3. Déterminer des réels a, b, c tels que pour tout $z \in \mathbb{C}^*$

$$\frac{Q(z)}{z^2} = a\left(z + \frac{1}{z}\right)^2 + b\left(z + \frac{1}{z}\right) + c. \tag{3}$$

4. Résoudre l'équation d'inconnue $Z \in \mathbb{C}$,

$$aZ^2 + bZ + c = 0. (4)$$

- **5.** Pour finir, résoudre l'équation Q(z) = 0.
- 6. Des questions précédentes, déduire des expressions « avec racines carrés » de

$$\cos\frac{2\pi}{5}$$
, $\sin\frac{2\pi}{5}$, $\cos\frac{4\pi}{5}$, et $\sin\frac{4\pi}{5}$.

7. De la question précédente, déduire une expression « avec racines carrées » de cos $\frac{\pi}{5}$.

Exercice 8.43

Résoudre dans C

$$\left(\frac{z}{z-1}\right)^n = 1.$$

Exercice 8.44

Soient $n \in \mathbb{N}^*$ et $\alpha \in \mathbb{R}$. Résoudre dans \mathbb{C} l'équation

$$\left(\frac{z-1}{z+1}\right)^n + \left(\frac{z+1}{z-1}\right)^n = 2\cos\alpha. \tag{1}$$

Exercice 8.45 Banque CCINP 2023 Exercice 84 algèbre

- 1. Donner la définition d'un argument d'un nombre complexe non nul (on ne demande ni l'interprétation géométrique, ni la démonstration de l'existence d'un tel nombre).
- **2.** Soit $n \in \mathbb{N}^*$. Donner, en justifiant, les solutions dans \mathbb{C} de l'équation $z^n = 1$ et préciser leur nombre.
- **3.** En déduire, pour $n \in \mathbb{N}^*$, les solutions dans \mathbb{C} de l'équation $(z+i)^n = (z-i)^n$ et démontrer que ce sont des nombres réels.

8.7 Suites définies par une relation de récurrence linéaire portant sur deux termes

Exercice 8.46

Déterminer toutes les suites réelles $(u_n)_{n\in\mathbb{N}}$ telles que

1.
$$u_0 = 0, u_1 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+2} = 5u_{n+1} - 3u_n$.

2.
$$u_0 = 1, u_1 = -1$$
 et $\forall n \in \mathbb{N}, 2u_{n+2} = u_{n+1} - u_n$.

3.
$$u_0 = -3$$
, $u_1 = 4$ et $\forall n \in \mathbb{N}$, $4u_{n+2} = 12u_{n+1} - 9u_n$.

4.
$$u_0 = 1, u_1 = 2$$
 et $\forall n \in \mathbb{N}, u_{n+2} = \frac{u_{n+1}^6}{u_n^5}$.