Devoir surveillé n°04

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Exercice 1 ★★

Soit *h* la fonction définie par

$$h(x) = \arctan\left(\frac{1}{2x^2}\right) - \arctan\left(\frac{x}{x+1}\right) + \arctan\left(\frac{x-1}{x}\right)$$

- 1. Déterminer le domaine de définition de h.
- 2. Justifier que h est dérivable sur son ensemble de définition et calculer sa dérivée.
- **3.** En déduire la valeur de h(x) en fonction de la valeur de x.
- **4.** On pose $S_n = \sum_{k=1}^n \arctan\left(\frac{1}{2k^2}\right)$ pour $n \in \mathbb{N}^*$.
 - **a.** Justifier que $S_n = \arctan\left(\frac{n}{n+1}\right)$ pour tout $n \in \mathbb{N}^*$.
 - **b.** En déduire la limite de la suite (S_n) .
 - **c.** Démontrer que $\arctan(x) = \frac{\pi}{2} \arctan\left(\frac{1}{x}\right)$ pour tout $x \in \mathbb{R}_+^*$.
 - **d.** On pose $T_n = \sum_{k=1}^n \arctan(2k^2)$. Déterminer les limites des suites (T_n) et (T_n/n) .

Exercice 2 ★★

On pose pour $n \in \mathbb{N}^*$, $f_n : x \in \left[0, \frac{\pi}{2}\right] \mapsto \cos^n(x) \sin(x)$.

- **1.** On fixe $x \in \left[0, \frac{\pi}{2}\right]$. Déterminer $\lim_{n \to +\infty} f_n(x)$.
- **2.** Déterminer le minimum de f_n sur $\left[0, \frac{\pi}{2}\right]$ sans étudier ses variations.
- 3. Etudier les variations de f_n et en déduire que f_n atteint son maximum M_n sur $\left[0, \frac{\pi}{2}\right]$ en arctan $\left(\frac{1}{\sqrt{n}}\right)$.
- **4.** Montrer que $\lim_{n \to +\infty} M_n = 0$.

On pose maintenant $g_n = \sqrt{n} f_n$ et on note M'_n le maximum de g_n sur $\left[0, \frac{\pi}{2}\right]$.

- **5.** On fixe $x \in \left[0, \frac{\pi}{2}\right]$. Déterminer $\lim_{n \to +\infty} g_n(x)$.
- **6.** Montrer que pour tout $x \in \mathbb{R}$,

$$cos(arctan(x)) = \frac{1}{\sqrt{1+x^2}}$$
 et $sin(arctan(x)) = \frac{x}{\sqrt{1+x^2}}$

- 7. Montrer que $\lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e$.
- **8.** Déduire des deux questions précédentes que $\lim_{n \to +\infty} M'_n = \frac{1}{\sqrt{e}}$.

Exercice 3 ★★

Fonction W de Lambert

On considère la fonction $f: x \in \mathbb{R} \mapsto xe^x$.

- 1. Etudier les variations de f et déterminer les limites de f en $-\infty$ et $+\infty$. On regroupera ces informations dans un tableau de variation.
- 2. Justifier que f induit une bijection de $[-1, +\infty[$ sur un intervalle I à déterminer. On note W sa bijection réciproque.
- 3. Justifier que W est dérivable sur un intervalle J à préciser. Déterminer W'(0) et montrer que

$$\forall x \in J \setminus \{0\}, \ W'(x) = \frac{W(x)}{x(1 + W(x))}$$

Exercice 4 ★★

On définit la fonction f_n : $t \in [0, n] \mapsto \left(1 - \frac{t}{n}\right)^n$ pour $n \in \mathbb{N}^*$.

1. Montrer que

$$\forall u \in]-1, +\infty[, \ln(1+u) \le u$$

2. En déduire que pour tout $t \in [0, n]$,

$$\left(1 + \frac{t}{n}\right)^n \le e^t$$
 et $\left(1 - \frac{t}{n}\right)^n \le e^{-t}$

3. En déduire que pour tout $t \in [0, n]$,

$$0 \le e^{-t} - f_n(t) \le e^{-t} \left[1 - \left(1 - \frac{t^2}{n^2} \right)^n \right]$$

4. Montrer que pour tout $u \in [0, 1]$,

$$(1-u)^n \ge 1 - nu$$

5. En déduire que pour tout $t \in [0, n]$,

$$0 \le e^{-t} - f_n(t) \le \frac{t^2 e^{-t}}{n}$$

On pose g_n : $t \in [0, n] \mapsto e^{-t} - f_n(t)$.

6. Déterminer le minimum m_n de g_n sur [0, n].

7. Montrer que la fonction ψ : $t \mapsto t^2 e^{-t}$ est majorée sur \mathbb{R}_+ .

8. On admet que g_n admet un maximum M_n sur [0, n]. Montrer que $\lim_{n \to +\infty} M_n = 0$.