T3 201709282

March 4, 2025

1 Tarea 3

1.1 Carlos Javier Martinez Polanco

$1.1.1 \quad 201709282$

1.2 Importar las librerias necesarias

```
[3]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

2 1. Cargar los datos

```
[10]: df = pd.read_csv('winequality-red.csv', sep=";") # Cambia la ruta al CSV
```

3 2. Mostrar las primeras filas para inspección

```
[11]: print(df.head())
      print(df.dtypes)
        fixed acidity volatile acidity
                                          citric acid residual sugar
                                                                         chlorides
                                                  0.00
     0
                   7.4
                                    0.70
                                                                    1.9
                                                                             0.076
     1
                   7.8
                                    0.88
                                                  0.00
                                                                    2.6
                                                                             0.098
     2
                   7.8
                                    0.76
                                                  0.04
                                                                    2.3
                                                                             0.092
     3
                  11.2
                                    0.28
                                                  0.56
                                                                    1.9
                                                                             0.075
     4
                   7.4
                                    0.70
                                                  0.00
                                                                    1.9
                                                                             0.076
        free sulfur dioxide total sulfur dioxide
                                                     density
                                                                    sulphates \
                                                                 рΗ
     0
                        11.0
                                               34.0
                                                      0.9978 3.51
                                                                          0.56
                        25.0
                                               67.0
                                                      0.9968 3.20
                                                                          0.68
     1
     2
                        15.0
                                               54.0
                                                      0.9970
                                                              3.26
                                                                          0.65
                                               60.0
     3
                        17.0
                                                      0.9980 3.16
                                                                          0.58
     4
                        11.0
                                               34.0
                                                      0.9978 3.51
                                                                          0.56
        alcohol quality
     0
            9.4
                        5
             9.8
                        5
     1
```

2 9.8 5 3 9.8 6 9.4 5 fixed acidity float64 volatile acidity float64 citric acid float64 residual sugar float64 chlorides float64 free sulfur dioxide float64 total sulfur dioxide float64 density float64 float64 рΗ sulphates float64 alcohol float64 quality int64 dtype: object

4 3. Revisar información general

[12]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

5 4. Resumen estadístico

```
[13]: describe_df = df.describe()
print(describe_df)
```

fixed acidity volatile acidity citric acid residual sugar \

count	1599.00000	0 1599.	000000 1	1599.0	00000	1599.0	00000	
mean	8.31963	7 0.527821		0.270976 2.5		38806		
std	1.74109	6 0.	179060	0.194801		1.409928		
min	4.60000	0 0.	120000	0.0	00000	0.9	00000	
25%	7.10000	0 0.	390000	0.0	90000	1.9	00000	
50%	7.90000	0 0.	520000	0.260000		2.200000		
75%	9.20000	0 0.	640000	0.420000		2.600000		
max	15.90000	0 1.	580000	1.000000		15.500000		
	chlorides	free sulfur	dioxide	total	sulfur	dioxide	density	\
count	1599.000000	1599	.000000		1599	0.00000	1599.000000	
mean	0.087467	15	.874922		46	3.467792	0.996747	
std	0.047065	10	.460157		32	2.895324	0.001887	
min	0.012000	1	.000000		6	3.000000	0.990070	
25%	0.070000	7	.000000		22	2.000000	0.995600	
50%	0.079000	14	.000000		38	3.000000	0.996750	
75%	0.090000	21	.000000		62	2.000000	0.997835	
max	0.611000	72	.000000		289	0.00000	1.003690	
	рН	sulphates	alco	ohol	qual	ity		
count	1599.000000	1599.000000	1599.000	0000	1599.000	0000		
mean	3.311113	0.658149	10.422	2983	5.636	8023		
std	0.154386	0.169507	1.065	5668	0.807	7569		
min	2.740000	0.330000	8.400	0000	3.000	0000		
25%	3.210000	0.550000	9.500	0000	5.000	0000		
50%	3.310000	0.620000	10.200	0000	6.000	0000		
75%	3.400000	0.730000	11.100	0000	6.000	000		
max	4.010000	2.000000	14.900	0000	8.000	0000		

6 5. Matriz de correlación

```
[14]: plt.figure(figsize=(10, 6))
    sns.heatmap(df.corr(), annot=True, cmap='coolwarm', fmt='.2f')
    plt.title('Matriz de Correlación')
    plt.show()
```


7 6. Gráficos

7.1 Histograma de la calidad del vino

```
[15]: sns.histplot(df['quality'], bins=6, kde=True)
  plt.title('Distribución de la calidad del vino')
  plt.show()
```


7.2 Boxplot de alcohol vs calidad

```
[16]: sns.boxplot(x=df['quality'], y=df['alcohol'])
  plt.title('Distribución de alcohol según calidad')
  plt.show()
```


7.3 Relación entre ácido cítrico y calidad

```
[17]: sns.scatterplot(x=df['citric acid'], y=df['quality'])
  plt.title('Ácido cítrico vs Calidad')
  plt.show()
```


8 7. Conclusiones

[18]: conclusiones = """

- 1. La mayoría de los vinos tienen una calidad entre 5 y 6.
- 2. Existe una relación positiva entre el contenido de alcohol y la calidad del $_{\sqcup}$ $_{\ominus}$ vino.
- 3. El ácido cítrico parece no tener una fuerte correlación con la calidad del $_{\!\sqcup}$ $_{\!\to}vino\,.$

0.00

print(conclusiones)

- 1. La mayoría de los vinos tienen una calidad entre 5 y 6.
- 2. Existe una relación positiva entre el contenido de alcohol y la calidad del vino.
- 3. El ácido cítrico parece no tener una fuerte correlación con la calidad del vino.