Image Classification

Vishal Reddy Mandadi

Image Classification

Binary vs Multi-class vs Multi-label Classification

Categorical Cross Entropy Loss

$$\sigma(ec{z})_i = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

Evolution of Image Classification

LeNet (1998)

Figure 3: LeNet-5 neural network. Around 60k parameters.

AlexNet (2012)

Figure 4: AlexNet neural network. Around 60 million parameters.

VGG-16 and VGG-19 (2014)

Figure 5: VGG-16. Around 138 million parameters.

Inception Net (GoogLeNet) (2014)

Figure 11: 1×1 convolution. The filter has size $1 \times 1 \times 32$ elements (weights). The number of filters correspond to the number of channels of the output.

Inception Net

Figure 13: Inception module with 1×1 , 3×3 , 5×5 convolutional layers, and max-pooling.

Figure 14: Inception module with 1×1 , 3×3 , 5×5 convolutional layers, and max-pooling with intermediate 1×1 convolutions.

Figure 15: GoogLeNet network with all the bells and whistles [7].

ResNets (2015)

Figure 6: Plain network structure for layers l to l+2.

Figure 7: Residual network structure for layers l to l+2.

Figure 8: Residual network structure for layers l to l + 2.

Overall Architecture (ViT)

ViTs

Multi-head Attention

With multi-headed attention, we maintain separate Q/K/V weight matrices for each head resulting in different Q/K/V matrices. As we did before, we multiply X by the WQ/WK/WV matrices to produce Q/K/V matrices.

Positional Encodings

Resources

- 1. Blog on Attention Attention? Attention! | Lil'Log
- 2. A wonderful blog on Transformers The Illustrated Transformer Jay Alammar
- 3. Blog on Vision Transformers Vision Transformer
- 4. Original Paper on Transformers in NLP (2017) [1706.03762] Attention Is All You Need
- 5. Original Paper on Vision Transformers(2020) [2010.11929] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

The End