发动机空气 — 可调放气活门(VBV)系统 — 一般说明

一般说明

可调放气活门(VBV)系统让一部分低压压气机(LPC)出口空气流入风扇风流。在快速加速过程中,VBV 系统防止低压压气机失速。在发动机低转速时和在反推力装置操作过程中,VBV 系统把不需要的物质(例如水分或砂石)排斥到高压压气机(HPC)之外。这样防止损坏发动机和提高发动机的稳定性。

VBV 门控制流入风扇气流的低压压气机出口空气。

VBV 系统有这些零件:

- VBV 作动筒 (2)
- 作动筒
- 放气门(10)和主放气门(2)

发动机空气 — 可调放气活门(VBV)系统 — 一般说明

有效性 YE201 发动机空气 - VBV 系统 - 部件位置

部件位置

右可调放气活门(VBV)作动筒是在风扇框架后面在 4:00 位置。

左可调放气活门(VBV)作动筒是在风扇框架后面 10:00 位置。 这些部件是在风扇框架内:

- VBV 门 (12)
- 作动筒(未示出)
- 摇臂(12)

为接近 VBV 系统部件,打开两个风扇整流罩和反推装置整流罩。

发动机空气 - VBV 系统 - 部件位置

发动机空气 - VBV 系统 - 作动筒

具体说明

VBV 作动筒是一个活塞式作动筒。HMU 输送伺服燃油压力至活塞的筒侧和杆侧移动活塞至指令的位置。每个作动筒有一个燃油总管安装座与液压机械装置(HMU)连接。每个作动筒有一个 LVDT接头。左作动筒的 LVDT连接至 EEC 的通道 B。右作动筒的 LVDT连接至 EEC 的通道 A。

VBV 作动筒有一个放泄从轴密封泄漏的燃油的放泄口。

培训知识要点

为脱开一个作动筒,必须拆下一块风扇函道板。VBV 作动筒是互换的。

发动机空气 - VBV 系统 - 动作筒

有效性 YE201

75—32—00

发动机空气 - VBV - 门

一般说明

VBV 门控制与风扇外口气流混合的低压压气机 (LPC) 空气量。

<u>具体说明</u>

VBV 门有 12 个。每个门通过一个摇臂连接至作动筒。这些门中的 2 个称为主门。VBV 作动筒连接至主门的摇臂。当两个作动筒推动主门的摇臂时,这些主门转动。主门摇臂然后转动作动筒和其它的 VBV 门。

培训知识要点

可以更换一个或更多的 VBV 门。拆下一个风扇函道板,就可接近 VBV 门。

两个带较长摇臂的 VBV 主门是可以互换的。

其它的 10 个 VBV 门是互换的。

发动机空气 - VBV 系统 - 功能说明

概述

EEC 使用这些数据安排可调放气活门(VBV)的位置

- 环境压力 (PO)
- 空气总压 (PT)
- 空气总温(TAT)
- 高压压气机进口温度 (T25)
- 可调静子叶片 (VBV) 位置
- N1 转速
- N2 转速

控制

可调放气活门(VBV)系统自动地工作。EEC 通常通过显示电子装置(DEU)从 ADIRU 获得 PO, PT 和 TAT。EEC 从发动机传感器获得 N1, N2, T25 和 VSV 位置和从推力杆解算器获得推力杆解算角度(TRA)。EEC 使用这些数据安排 VBV 门的一个角位置。EEC 发送一个指令信号至 HMNU。HMU 输送伺服燃油压力移动在2个 VBV 作动筒内的位塞。作动筒通过一个作动筒与12个 VBV 门连接。VBV 控制流至风扇函道气流的低压压气气机出口的空气量。

每个作动筒有一个 LDVT。EEC 使用这两个 LVDT 监控作动筒的位置。一个 LDVT 发送电信号至 EEC 的通道 A。另一个 LVDT 发送电信号至通道 B。

工作情况

通常,在稳定状态工作期间,随着 N1 转速增加 VBV 更多地关闭。在大于约 80%N1 转速时 VBV 关闭。

在这些状态期间, EEC 指令 VBV 门开大一些:

- 发动机迅速减速
- 反推力工作
- 潜在的结冰条件

培训知识要点

在控制显示装置(CDU)的发动机维修页上你能够看到 VBV 位置。

关于在控制显示装置(CDU)的发动机维修页更多的资料参见 发动机指示部分。(飞机维修手册第 I 部 73-21)

伺服燃油供油 **● ● ●** 伺服燃油回油 **○ ○ ○**

发动机空气 - VBV 系统 - 功能说明

有效性 YE201