Useful Results

December 6, 2022

Below are some results I proved in my Introduction to Real Analysis Course. I found some of them useful and even though some may seem obvious I wanted to do the formal proof for myself. Also, I wanted a place to put these results so I could come back and find them pretty easily when needed.

Lemma 1. If $a \in \mathbb{R}$, $\varepsilon \in \mathbb{R}$, and $\varepsilon > 0$, then $a < a + \varepsilon$.

Proof. Let $a, \varepsilon \in \mathbb{R}$ and suppose $\varepsilon > 0$. For the sake of contradiction assume $a \ge a + \varepsilon$. Then $a - (a + \varepsilon) \ge 0$, which implies that $-\varepsilon \ge 0$ and so $\varepsilon \le 0$. However, $\varepsilon > 0$ by assumption and so we have that $\varepsilon > 0$ and $\varepsilon \le 0$. This is a contradiction because for every real number x we have x < 0, x = 0, or x > 0. Therefore our assumption that $a \ge a + \varepsilon$ must be false and so we can conclude $a < a + \varepsilon$.

Lemma 2. If $a, b \in \mathbb{R}$ and a < b, then $a < a + \frac{|b-a|}{2} < b$.

Proof. Let $a, b \in \mathbb{R}$ and suppose a < b. Since $\frac{|b-a|}{2} > 0$ then by Lemma 1 $a < a + \frac{|b-a|}{2}$.