Прикладной системный анализ IV

Часть 2. Классификация

Д.И.Пирштук

План занятия

Задачи классификации и регрессии

Подходы к моделированию

Теория принятия решений

Оценка результатов классификации

Задачи классификации и регрессии

Классификация: интуиция

Задача

Разработать алгоритм, позволяющий определить класс произвольного объекта из некоторго множества

 Дана обучающая выборка, в которой для каждого объекта известен класс

Регрессия: интуиция

Задача

Разработать алгоритм, позволяющий предсказать числовую характеристику произвольного объекта из некоторого множества

▶ Дана обучающая выборка, в которой для каждого объекта известно значение числовой характеристики

Постановка задачи

Пусть дан набор объектов $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}, \ \mathbf{x}_i \in \mathcal{X}, \ y_i \in \mathcal{Y}, \ i \in 1, \dots, N,$ полученный из неизвестной закономерности $y = f(\mathbf{x})$. Необходимо выбрать из семейства параметрических функций

$$H = \{h(\mathbf{x}, \theta) : \mathcal{X} \times \Theta \to \mathcal{Y}\}\$$

такую $h^*(\mathbf{x}) = h(\mathbf{x}, \theta^*)$, которая наиболее точно апроксимирует $f(\mathbf{x})$.

Задачи

- ightharpoonup Классификация: $|\mathcal{Y}| < C$
- ▶ Регрессия: $\mathcal{Y} = [a,b] \subset \mathbb{R}$

Как решать

М Выдвигаем гипотезу насчет **модели** - семейства параметрических функций вида

$$H = \{h(\mathbf{x}, \theta) : \mathcal{X} \times \Theta \to \mathcal{Y}\},\$$

которая могла бы решить нашу задачу (model selection)

L Выбираем наилучшие параметры модели θ^* , используя алгоритм обучения

$$A(X,Y):(\mathcal{X},\mathcal{Y})^N\to\Theta$$

(learning/inference)

D Используя полученную модель $h^*(\mathbf{x}) = h(\mathbf{x}, \theta^*)$, классифицируем неизвестные объекты (decision making)

Подходы к моделированию

Виды моделей

Генеративные модели. Смоделировать $p(\mathbf{x}|y_k)$ и $p(y_k)$, применить теорему Байеса

$$p(y_k|\mathbf{x}) = \frac{p(\mathbf{x}|y_k)p(y_k)}{p(\mathbf{x})}$$

и использовать $p(y_k|\mathbf{x})$ для принятия решения (NB, Bayes Networks, MRF)

Дискриминативные модели. Смоделировать $p(y_k|\mathbf{x})$ и использовать ее для принятия решения (Logistic Regression, Decision Trees)

Функции решения. Смоделировать напрямую $h^*(\mathbf{x}): \mathcal{X} \to \mathcal{Y}$ (Linear Models, Neural Networks)

Вероятностные модели VS Функции решения

- Отказ от классификации (reject option)
- Дисбаланс в выборке
- Ансамбли моделей
- Сильные предположения о природе данных
- Излишняя (вычислительная) сложность

Байесовский подход к моделированию

Идея. Вместо фиксированного, но неизвестного θ^* ищем апостериорное распределение $p(\theta|\mathcal{D})$ **Дано.** $p(y_i), p(\theta), p(\mathbf{x}|\theta)$

$$p(y_i|\mathbf{x}, \mathcal{D}) = \frac{p(\mathbf{x}|y_i, \mathcal{D})p(y_i|\mathcal{D})}{\sum_j p(\mathbf{x}|y_j, \mathcal{D})p(y_j|\mathcal{D})} = \frac{p(\mathbf{x}|y_i, \mathcal{D})p(y_i)}{\sum_j p(\mathbf{x}|y_j, \mathcal{D})p(y_j)}$$
$$p(\mathbf{x}|y_i, \mathcal{D}) = \int p(\mathbf{x}|\theta)p(\theta|\mathcal{D})d\theta$$

Апостериорное распределение

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{\int p(\mathcal{D}|\theta)p(\theta)d\theta} = \frac{\prod_{n} p(\mathbf{x}_{n}|\theta)p(\theta)}{\int \prod_{n} p(\mathbf{x}_{n}|\theta)p(\theta)d\theta}$$

Обучение модели

LEARNING = representation + evaluation + optimization

Pedro Domingos

Evaluation – критерий, который оптимизируем

- ightharpoonup эмпирический риск ightharpoonup min
- ▶ KL-дивергенция \rightarrow min
- ightharpoonup функция правдоподобия ightarrow max
- ▶ information gain → max

Optimization - как оптимизируем

- unconstrained (GD, Newton+)
- constrained (linear programming, quadratic programming)

Эмпирический риск

Функция потерь $\mathcal{L}(\mathbf{x},y,\theta)$ - ошибка, которую для данного \mathbf{x} дает модель $h(\mathbf{x},\theta)$ по сравнению с реальным значением y

Эмпирический риск – средняя ошибка на обучающей выборке

$$Q(X, Y, \theta) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(\mathbf{x}_n, y_n, \theta)$$

 ${f 3}$ адача — найти значение $heta^*$, минимизирующее эмпирический риск

$$\theta^* = \theta^*(X, Y) = \operatorname{argmin}_{\theta} Q(X, Y, \theta)$$

Некоторые функции потерь

Индикатор ошибки

$$\mathcal{L}(\mathbf{x}, y, \theta) = 0$$
 if $h(\mathbf{x}, \theta) = y$ else 1

Функция Минковского

$$\mathcal{L}(\mathbf{x}, y, \theta) = |y - h(\mathbf{x}, \theta)|^q$$

Частные случаи: квадратичная q=2, абсолютная ошибка q=1

► Hinge

$$\mathcal{L}(\mathbf{x}, y, \theta) = \max(0, 1 - y \times h(\mathbf{x}, \theta))$$

Информационная

$$\mathcal{L}(\mathbf{x}, y, \theta) = -\log_2 p(y|\mathbf{x}, \theta)$$

Проблема 1. Переобучение

3адача Аппроксимировать обучающую выборку полиномом M степени

Проблема 2. Проклятие размерности

Задача

Классифицировать объекты.

Теория принятия решений

Классификация

Пусть

 \mathcal{R}_k – область, такая что все $\mathbf{x} \in \mathcal{R}_k$ относим к y_k

Дано

 R_{kj} — риск, связанный с отнесением объекта класса y_k к классу y_j Найти

 $\forall k: \mathcal{R}_k$, такие, что математическое ожидание риска E[R] минимально.

$$E[R] = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} R_{kj} p(y_{k}|\mathbf{x}) p(\mathbf{x}) dx$$

Медицинская диагностика

Матрица риска $[R_{kj}]$

	sick	normal
sick	0	10
normal	1	0

Условные вероятности $p(y_k|x)$

$$p(\text{normal}|\text{moving}) = 0.9$$
, $p(\text{normal}|\text{not moving}) = 0.3$

Вероятности p(x)

$$p(moving) = 0.7$$

Требуется определить $\mathcal{R}_{ t sick}$, $\mathcal{R}_{ t normal}$

Регрессия

Те же виды моделей: **генеративные**, **дискриминативные**, **функция решения**

Задана функция риска

$$R(y, h(\mathbf{x}))$$

Математическое ожидание E[R]

$$E[R] = \iint R(y, h(\mathbf{x})) p(\mathbf{x}, y) d\mathbf{x} dy$$

Для квадратичной функции риска $R(y,h(\mathbf{x}))=[y-h(\mathbf{x})]^2$

$$h(x) = E_y[h|\mathbf{x}] = \int yp(y|\mathbf{x})dy$$

Оценка результатов классификации

Как оценить различные модели?

Идея

использовать долю неверно классифицированных объектов (error rate)

Важное замечание

error rate на обучающей выборке ${\sf HE}$ является хорошим показателем качества модели

Решение 1: разделение выборки

Делим обучающую выборку на **тренировочную**, **валидационную** и **тестовую**

Решение 2: скользящий контроль

(n-times) (stratified) cross-validation

частный случай: leave-one-out

Решение 3: bootstrap

выбираем в тренировочную выбоку n объектов с возвращением

упражнение: найти математическое ожидание размера тестовой выборки.

Доверительный интервал для success rate

При тестировании на N=100 объектах было получено 25 ошибок. Таким образом измеренная вероятность успеха (success rate) составила f=0.75. Найти доверительный интервал для действительной вероятности успеха с уровнем доверия $\alpha=0.8$.

Решение

Пусть p — действительная вероятность успеха в испытаниях бернулли, тогда

$$f \sim \mathcal{N}(p, p(1-p)/N)$$
.

Воспользовавшись табличным значением $P(-z \leq \mathcal{N}(0,1) \leq z) = \alpha$, имеем

$$P\left(-z \le \frac{f-p}{\sqrt{p(1-p)/N}} \le z\right) = \alpha,$$

откуда

$$p \in \left(f + \frac{z^2}{2N} \pm z\sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}}\right) / \left(1 + \frac{z^2}{N}\right) = [0.69, 0.80]$$

Метрики качества. Вероятностные модели.

Пусть y_i - действительный класс для объекта \mathbf{x}_i

► Information loss

$$-\frac{1}{N}\sum_{i}\log_{2}p(y_{i}|\mathbf{x}_{i})$$

► Quadratic loss

$$\frac{1}{N}\sum_{j}(p(y_{j}|\mathbf{x}_{i})-a_{j}(\mathbf{x}_{i}))^{2},$$

где

$$a_j(\mathbf{x}_i) = egin{cases} 1, \ ext{если} \ C_j = y_i \ 0, \ ext{иначе} \end{cases}$$

Метрики качества. Функции решения.

		Предсказанный		
		true	false	
Действительный	true	TP	FN	
	false	FP	TN	

success rate = accuracy =
$$\frac{TP + TN}{TP + FP + FN + TN}$$

recall = $TPR = \frac{TP}{TP + FN}$; precision = $\frac{TP}{TP + FP}$
 $FPR = \frac{FP}{FP + TN}$
affinity = lift = $\frac{accuracy}{D}$

Receiver Operating Characteristic

Упражнение

Простые классификаторы

В генеральной совокупности существуют объекты 3 классов, вероятность появления которых $p_1 < p_2 < p_3$. Первый классификатор относит все объекты к классу с большей вероятностью (то есть к третьему). Второй классификатор случайно относит объект к одному из классов в соответствии с базовым распределением. Рассчитать precision и recall, которые эти классификаторы дают для каждого из 3 классов.

Метрики качества. Регрессия

$$\begin{split} \textit{MSE} &= \frac{1}{N} \sum (h(\mathbf{x}_i) - y_i)^2, \;\; \textit{RMSE} = \sqrt{\textit{MSE}} \\ \textit{MAE} &= \frac{1}{N} \sum |h(\mathbf{x}_i) - y_i|, \;\; \textit{RMAE} = \sqrt{\textit{MAE}} \\ \textit{RSE} &= \frac{\sum (h(\mathbf{x}_i) - y_i)^2}{\sum (y_i - \bar{y})^2} \\ \textit{correlation} &= \frac{S_{hy}}{\sqrt{S_h S_y}}; \;\; S_{yh} = \frac{\sum (h(i) - \overline{h(i)})(y_i - \bar{y})}{N-1} \\ S_h &= \frac{\sum (h(i) - \overline{h(i)})^2}{N-1}; \;\; S_y = \frac{\sum (y_i - \bar{y})^2}{N-1} \end{split}$$

NFLT, MDL, AIC и все такое

No free lunch theorem

Не существует единственной лучшей модели, решающей все задачи

Minimum description length

Лучшая гипотеза о данных – та, которая ведет к самому краткому их описанию

Akaike information criterion (AIC)

$$model = arg \max \ln p(\mathcal{D}|\theta_{ML}) - \|\theta\|$$