CS & IT ENGINEERING

Compiler Design

Lexical Analysis & Syntax Analysis

Lecture No. 5

TOPICS TO BE COVERED

First(X): of t | t is derived as Ist symbol from X ? X—Jabe actg $First(X) = \{a,d,\epsilon\}$

FIRST and FOLLOW Sets Computation &

$$\bigcirc S \rightarrow \mathcal{E}$$

FIRST and FOLLOW Sets Computation

$$\begin{array}{c} (3) & S \rightarrow A \end{array}$$

$$FIRST(S) = \{a\}$$

$$FIRST(A) = \{a\}$$

$$\begin{array}{ccc} (4) & S \rightarrow AB \\ & A \rightarrow OB & \varepsilon \\ & B \rightarrow cd & \varepsilon \end{array}$$

FIRST(S) =
$$\{\alpha, c, \varepsilon\}$$

FIRST(A) = $\{\alpha, \varepsilon\}$
FIRST(B) = $\{c, \varepsilon\}$

Sets Computation &

First (S) =
$$\{a,b,E\}$$

First (B) = First(S) = $\{a,b,E\}$
First (B) = First(S) = $\{a,b,E\}$

Sets Computation

FOLLOWB) S-JAABB

First(P) =
$$\{x\}$$

First(Q) = $\{y,z\}$
First(R) = $\{w,\varepsilon\}$
 $\{x\}$

Sets Computation

Follow(Q) =
$$\int w_f U = Fixst(S)$$

 $= \int w_f U = Fixst(S)$
 $= \int w_f U = Fixst(S)$

FIRST and FOLLOW Sets Computation

$$(7) S \rightarrow PBC$$

$$C \rightarrow d$$

Fo
$$(S) = \{5\}$$

Fo $(B) = \{6\}$
Fo $(B) = \{6\}$
Fo $(C) = \{6\}$

$$S \rightarrow ABC$$

$$A \rightarrow ab | \varepsilon$$
 $B \rightarrow cde | \varepsilon$

$$C \rightarrow t/\epsilon$$

$$Fi(S) = \{a, c, f, \epsilon\}$$

$$Fi(A) = \{a, \epsilon\}$$

$$Fi(B) = \{c, \epsilon\}$$

$$Fo(S) = \{\$\}$$

Min (as: and First(A) = It I not Epsilon Note: Fixst(A) = 1 Max Cak: Fi(A) = 1 & 4 First (B) = 2 T; (B) = 1+1, E} or & F;(() = 9+2+3,(ty)? F:184(C) = 3 First(5)= 1t, +2, +3, (ty)] only 3 symbols min Site of First(S) & Find max $1 \leq First(S)$

FIRST and FOLLOW Sets Computation &

$$\begin{array}{cccc}
9 & E \rightarrow a & X & | & \varepsilon \\
& X \rightarrow + T & X & | & \varepsilon \\
& T \rightarrow b & & & & & & & & & & & & \\
\end{array}$$

FIRST and FOLLOW Sets Computation &

$$\bigcirc$$
 S \rightarrow Sa | b

FIRST and FOLLOW Sets Computation

$$(2) S \rightarrow AB$$

$$\beta \rightarrow \alpha$$
 $\beta \rightarrow b$

	S	A	B
First	dab	da z	464
Follow	1\$}	163	4\$}

$$(3) S \rightarrow [S] a$$

$$F_i(s) = \{ \{ \{ \}, \alpha \} \}$$

FIRST and FOLLOW Sets Computation &

$$(4)$$
 S-aSb ϵ

$$S \rightarrow a SbSc d$$

$$Follow(S) = \{\pm, b, c\}$$

FIRST and FOLLOW Sets Computation

$$A \rightarrow d | \epsilon'$$

$$F_i(S) = \{c, \varepsilon, b\}$$

LL(1) CFG:

retail If we construct LL(1) Table and no multiple entoice in the table for given CFG

then we say CFG is LL(1).

Melkid? Shoot cut (I) A -> d/d2 (I) A-> d/ d2 Fi(d) NFi(D)=0 Fi(d) NFi(D)=0

How to write LL(1) (FG 9

Step 1: Take Unambiguous CFG I Eliminate Left recursion Sp2: Convert to non left rec CFG

Apply Left factoring Step3: Convert to Legy factored CFG

[If LL(1) table has no multiple entire It is LL(1) CFG

LL(1) Table construction:

Step 1: compute FIRST set for every non-terminal

Step2: If any FIRST Set contain & then only compute Follow Set for that non-terminal

Step 3: Using Step 1 & step 2, fill the table.

Note: I) If every entry of table has almost 1 production, given CFG is LL(1) (\leq 1) =0 or 1

I) Follow Set helps to fill the table with the productions those derive E

	12.1			
	b	\$	~ P	
S	518		Eouly 5,	
P	APB	A->E	Eonly Aut	
OR				
	6	\$		
5	A	A	14	
A	P	B 9/1	S. X.	

0

-abA bb We can find CER Note: Ambiguous CFG never be LL(1)

Summary

First & Follow

LL(1) Table Constru

LL(1) (FG 9)

LR parkers

LL(1) f) 190?

