Task-Definition

<u>Name:</u>	Task-Nr.
<u>MatrNr.:</u>	XX

zu 3.3: System-Definition

Das zu implementierende System ist:

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + ... + b_{l-1} z^{-(l-1)} + b_l z^{-l}}{1 + a_1 z^{-1} + a_2 z^{-2} + ... + a_{k-1} z^{-(k-1)} + a_k z^{-k}}$$
mit

mit 8.8311119834732746e-9 $b_0 =$ 6.1817783884312917e-8 $b_1=$ 1.8545335165293878e-7 $b_2 =$ 3.0908891942156466e-7 $b_3 =$ $b_4 =$ 3.0908891942156466e-7 1.8545335165293878e-7 $b_5 =$ $b_6 =$ 6.1817783884312917e-8 8.8311119834732746e-9 -6.3348803570368721 a₁= 17.227878783027997 a2= -26.070579243599841 a₃= 23.707625256379814 a₄= -12.954355025995969 a₅= 3.9380776964703919 a6= -0.51376597886318642 a₇=

(alle nicht aufgeführten Koeffizienten sind Null).

Das führt zu einem Frequenzgang H_d(t), dessen relevanter Teil im Diagramm dargestellt ist.

zu 4.1: Ton-Definition

Der zu erzeugende Ton soll folgende Eigenschaften haben:

Amplitude: 0.6V (mit dem Oszilloskop gemessen)

Frequenz: 155Hz

zu 4.3: Song-Definition

Der Ihnen zur Verfügung gestellte Song: Angabe von Titel und Autor(en)

Die Song-Geschwindigkeit:

Eine Viertelnote soll 80 BPM aufweisen.