Results

Meta-Analysis

Random-Effects Model (k = 71)

	Estimate	se	Z	р	CI Lower Bound	CI Upper Bound
Intercept	0.277	0.038	7.278	<.001	0.203	0.352

Note. Tau² Estimator: Restricted Maximum-Likelihood

[3]

Heterogeneity Statistics

Tau	Tau ²] 2	H ²	R ²	df	Q	р
0.240	0.0578 (SE= 0.0166)	69.34%	3.261		70.000	243.608	<.001

Forest Plot

[3]
Publication Bias Assessment

Test Name	value	р
Fail-Safe N	4357.000	<.001
Kendalls Tau	0.236	0.004
Egger's Regression	1.884	0.060

Note. Fail-safe N Calculation Using the Rosenthal Approach

Funnel Plot

Z-Value Lower Bound	P-Value Lower Bound	Z-Value Upper Bound	P-Value Upper Bound	LL_CI_TOST	UL_CI_TOST	LL_CI_ZTEST	UL_CI_ZTEST
20.393	<.001	-5.837	0.000	0.215	0.340	0.203	0.352

[4]

Two One-Sided Tests Equivalence Testing: Text Summary

The equivalence test was significant, Z = -5.837, p = 0.000000000266, given equivalence bounds of -0.500 and 0.500 and an alpha of 0.05. The null hypothesis test was significant, Z = 7.278, p = 0.0000000000000338, given an alpha of 0.05. Based on the equivalence test and the null-hypothesis test combined, we can conclude that the observed effect is statistically different from zero

Equivalence Test Plot

[4]

Outlier and Influential Case Diagnostics

Externally Standardized Residual

DFFITS Values

Cook's Distances

Covariance Ratios

Leave-one-out Tau Estimates

Leave-one-out (residual) Heterogeneity Test Statistics

Hat Values

Weights

Q-Q Plot

References

[1] The jamovi project (2022). jamovi. (Version 2.3) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2021). R: A Language and environment for statistical computing. (Version 4.1) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2022-01-01).

[3] Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software. link, 36, 1-48.

[4] Lakens, D. (2017). Equivalence tests: A practical primer for t-tests, correlations, and meta-analyses. Social Psychological and Personality Science. link, 1, 1-8.