Stratégie et Sélectivité en synthèse organique

Agrégation 2020

Présentation du cahier des charges

Molécule cible

Principe actif: paracétamol

Synthèse du paracétamol: Voie réactionnelle n°1

Synthèse du paracétamol: Voie réactionnelle n°2

$$HO$$
 NH_2 + HO
 HO
 HO
 HO
 HO
 HO
 HO
 HO

4-aminophénol	Chlorure d'acétyle	Paracétamol	Chlorure d'hydrogène
8,84 €/mol	7,61 € / mol		

Protocole de la synthèse du paracétamol

Réaction de synthèse du paracétamol

Essorage sous pression réduite

Techniques de caractérisations

Sélectivité de la réaction étudiée : Chimiosélectivité

Spectre IR du produit synthétisé:

Recristallisation

Impuretés	Produit d'intérêt	
Soluble à Chaud	Soluble à chaud	
Soluble à Froid	Non soluble à froid (recristallisation)	
Dissolution du brut réactionnel (Produit d'intérêt + impuretés) en chauffant	On refroidit : Cristallisation du produit d'intérêt.	

Rendement de la synthèse

	4-aminophénol <i>H₂NC₅H₄OH</i>	Anhydride éthanoïque $C_4H_6O_3$	Paracétamol = C ₈ H ₉ NO ₂	Acide éthanoïque CH₃COOH
Etat inital (en mol)	5,04.10 ⁻²	7,4.10 ⁻² mol	0	0
Etat intermédiaire (en mol)	5,04.10 ⁻² -x	7,4.10 ⁻² -x	X	х
Etat final maximal (en mol)	0	2,36.10 ⁻² mol	5,04.10 ⁻² mol	5,04.10 ⁻² mol

$$n_{\text{max}} = 5,04.10^{-2} \text{ mol} \rightarrow m_{\text{max}} = 7,61 \text{ g}$$

Processus de synthèse d'un produit chimique

Calcul du rendement de la synthèse (à confronter au Cahier des charges)

Si le critère de pureté n'est pas vérifié

Application à la synthèse peptidique

 \odot protéger le groupe amino du premier acide α -aminé et le groupe carboxyle du deuxième acide α -aminé ;

2 effectuer la réaction entre le groupe carboxyle du premier acide α -aminé et le groupe amino du deuxième acide α -aminé ;

🚱 déprotéger le groupe amino et le groupe carboxyle protégés lors de la première étape.