Bachelor afhandling Spannere

Allan Nielsen

Datalogisk Institut Københavns Universitet

DIKU, 2016

- Spannere
 - Overordnet
 - Greedy
 - Thorup-Zwick
- 2 Eksperimenter
 - Densite
 - Stretch
 - Vægt
 - Køretid
 - Grad
- Bias
- 4 Outlook

- Hvad?
- Hvorfor?
- Hvordan?
- Grænser

- Hvad? lettere/sparse sub-graf, t-spanner
- Hvorfor?
- Hvordan?
- Grænser

- Hvad? lettere/sparse sub-graf, *t-spanner*
- Hvorfor? F.eks. optimering af infrastruktur eller approksimering af afstande til søgning i metriske rum
- Hvordan?
- Grænser

- Hvad? lettere/sparse sub-graf, *t-spanner*
- Hvorfor? F.eks. optimering af infrastruktur eller approksimering af afstande til søgning i metriske rum
- Hvordan? Greedy og Thorup-Zwick
- Grænser

Spannere

- Hvad? lettere/sparse sub-graf, *t-spanner*
- Hvorfor? F.eks. optimering af infrastruktur eller approksimering af afstande til søgning i metriske rum
- Hvordan? Greedy og Thorup-Zwick
- Grænser

Grænser	Stretch	Størrelse	Køretid	vægt
Greedy	2k - 1	$O(n^{1+1/k})$	$O(mn^{1+1/k})$	$O(MST(G)\frac{n}{2(2k-1)}$
ThorupZwick	2k - 1	$O(kn^{1+1/k})$	$O(kmn^{1/k})$	-

Figure: Greedy og ThorupZwicks teoretiske grænser.

- Spannere
 - Overordnet
 - Greedy

Thorup-Zwick

- 2 Eksperimenter
 - Densitet
 - Stretch
 - Vægt
 - Køretid
 - Grad
- 3 Bias
- 4 Outlook

Greedy

Koncepter (r-værdi, kant sortering, tjek før tilføjelse, ny graf)

$$r \cdot \omega(v, u) < \delta(v, u)$$

• Lightness property (MST, $r \to \infty$)

Figure: Iteration af Greedy-Spanner

- Spannere
 - Overordnet
 - Thorup-Zwick
- 2 Eksperimenter
 - Densitet
 - Stretch
 - Vægt
 - Køretid
 - Grad
- 3 Bias
- 4 Outlook

Thorup-Zwick

- Koncepter (Partioner, sub-træer) $A_0 \supseteq ...A_i \supseteq A_{i+1}... \supseteq A_k$
- Optimeringer (Kildeknude, Dijkstra)

Figur 2: Tilføielse af kildekunde for at bestemme vidner.

Figure: Iteration af subtræer med kildeknude

Thorup-Zwick

- Koncepter (Partioner, sub-træer) $A_0 \supseteq ...A_i \supseteq A_{i+1}... \supseteq A_k$
- Optimeringer (Kildeknude, Dijkstra)

Figure: Optimeret Dijkstra relaxering

- Spannere
 - Overordnet
 - Greedy
 - Thorup-Zwick
- 2 Eksperimenter
 - Densitet
 - Stretch
 - Vægt
 - Køretid
 - Grad
- Bias
- 4 Outlook

Densitet

Forholdet mellem antallet af kanter spanneren har, og det maksimale antal kanter den kan antage

Greedy Plateau ved 3 og frem (MST)

- TZ Aftager mindre som k bliver større.
 - TZ tilnærmer sig plateau, Greedy opnår MST størrelse hurtigt.

Figure: Densitet som funktion af k. d = 0.7, |V| = 40.

Spannere

Overordnet

Greedy

Thorup-Zwick

2 Eksperimenter

Densitet

Stretch

Vægt

Køretid

Grad

- 3 Bias
- 4 Outlook

Stretch

bredden/længde af en spanner, i forhold til den oprindelige graf

Greedy Opnår plateau fra k lig 4.

- TZ Vokser stødt. Flere subtræe spanneren.
 - Greedy presser grænsen, hvor TZ holder en lav gns. stretch

Figure: Stretch som funktion af k. d = 0.8, |V| = 40.

- Spannere
 - Overordnet Greedv
 - Thorup-Zwick
- 2 Eksperimenter
 - Densitet
 - Stretc
 - Vægt
 - Køretid
 - Grad
- 3 Bias
- 4 Outlook

Vægt

Sum af kantvægte i spanneren

Greedy Plateau ved 3 og frem (MST)

- TZ Aftager mindre som k bliver større.
 - TZ tilnærmer sig plateau, Greedy opnår MST størrelse hurtigt.

Figure: Vægt som funktion af k. d = 0.7, |V| = 40.

- Spannere
 - Overordnet
 - Greedy
 - Thorup-Zwick
- 2 Eksperimenter
 - Densitet
 - Stretc
 - Vægt
 - Køretid
 - Grad
- Bias
- 4 Outlook

Køretid

Målte tid for generation af spanner

Greedy Stiger eksponentielt
TZ Stiger marginalt

• TZ er hurtigere, knuder taget i betragtning

Figure: Køretid som funktion af -V—. d = 0.7, k = 7.

Køretid

Køretid som fkt. af densiteten

Greedy Vokser lineært.

- TZ Vokser så lidt, at det er ulæseligt.
 - Densiteten har en større indvirkning på Greedy end TZ.

Figure: Køretid som funktion af densiteten. k = 7, |V| = 40.

Køretid

Køretid som fkt. af k

Greedy Ingen tendenser

TZ Ingen tendenser.

 Greeder kører langsommere end TZ med en fast faktor

Figure: Køretid som funktion af k. d = 0.7, |V| = 40.

- Spannere
 - Overordnet
 - Greedy
 - Thorup-Zwick
- 2 Eksperimenter
 - Densitet
 - Stretch
 - Vægt
 - Køretid
 - Grad
- 3 Bias
- 4 Outlook

Grad

Antal kanter, knuder med flest kanter har

Greedy Svagt voksende, aftagende tilvækst.

- TZ Stærkere voksende, aftagende tilvækst.
 - TZ har større grad, grundet sub-træer

Figure: Grad som funktion af k. d = 0.7, k = 7.

Bias

- Grad af input graf
- Spænd af vægt

Bias

- Grad af input graf
 Afgøre hvorvidt spanner afhænger af grad
- Spænd af vægt

Bias

- Grad af input graf
 Afgøre hvorvidt spanner afhænger af grad
- Spænd af vægt Lette stier, mindre Grad?

Outlook

- Udvide parametre for at se andre tendenser (k, grad, vægt)
- Implementere Baswana til sammenligning.

Summary

- Hvad en Spanner er, og dens brug.
- Gennemgået koncepter for udvalgte algoritmer.
- Gennemgang af udvalgte eksperimenter.
- Perspektiver til overvejelse
 - Udvide parametre for genererede grafer (k, vægt, grad)
 - Implementere nyere algoritmer til sammenligning.

For Further Reading I

S. Baswana.

(2k-1)-spanner i O(km) tid.

http://www.cse.iitd.ernet.in/ ssen/journals/randstruc.pdf, 2003.