Machine Learning

Part 4: Classical Machine Learning Model

Zengchang Qin (Ph.D.)

Decision Tree Learning

Play-Tennis Problem

The Play-Tennis data from T. Mitchell's book [3], we can find a tree to represent "Yes" and "No" by leaves.

Day	Outlook	Temperature	Humidity	Wind	PlayTennis	Outlook
D1	Sunny	Hot	High	Weak	No	Outlook
D2	Sunny	Hot	High	Strong	No	
D3	Overcast	Hot	High	Weak	Yes	Sunny Overcast Rain
D4	Rain	Mild	High	Weak	Yes	Sunny Overcust Run
D5	Rain	Cool	Normal	Weak	Yes	
D6	Rain	Cool	Normal	Strong	No	Humidity Yes Wind
D7	Overcast	Cool	Normal	Strong	Yes	
D8	Sunny	Mild	High	Weak	No	
D9	Sunny	Cool	Normal	Weak	Yes	
D10	Rain	Mild	Normal	Weak	Yes	High Normal Strong Wea
D11	Sunny	Mild	Normal	Strong	Yes	
D12	Overcast	Mild	High	Strong	Yes	No Yes No
D13	Overcast	Hot	Normal	Weak	Yes	
D14	Rain	Mild	High	Strong	No	

[3] T. Mitchell (1997), Machine Learning, McGraw Hill.

Impurity

The Play-Tennis data from T. Mitchell's book [3], we can find a tree to represent "Yes" and "No" by leaves.

Greedy approach:

Nodes with homogeneous class distribution are preferred

Need a measure of node impurity

Multi-dimensional Attributes (Features)

Shannon's solution follows from the fundamental properties of information.

1.I(p) is anti-monotonic in p – increases and decreases in the probability of an event produce decreases and increases in information, respectively $2.I(p) \ge 0$ – information is a nonnegative quantity 3.I(1) = 0 – events that always occur do not communicate information 4.I(p1, p2) = I(p1) + I(p2) – information due to independent events is additive

Information Gain

$$Gain(S, Wind) = Entropy(S) - \sum_{v \in \{Weak, Strong\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

PlayTennis: training examples

Day	Outlook	Temperature	Humidity	Humidity Wind					
Day	Outlook	Temperature		vviita	PlayTennis				
D1	Sunny	Hot	High	Weak	No				
D2	Sunny	Hot	High	Strong	No				
D3	Overcast	Hot	High	Weak	Yes				
D4	Rain	Mild	High	Weak	Yes				
D5	Rain	Cool	Normal	Weak	Yes				
D6	Rain	Cool	Normal	Strong	No				
D7	Overcast	Cool	Normal	Strong	Yes				
D8	Sunny	Mild	High	Weak	No				
D9	Sunny	Cool	Normal	Weak	Yes				
D10	Rain	Mild	Normal	Weak	Yes				
D11	Sunny	Mild	Normal	Strong	Yes				
D12	Overcast	Mild	High	Strong	Yes				
D13	Overcast	Hot	Normal	Weak	Yes				
D14	Rain	Mild	High	Strong	No				

$$= Entropy(S) - (8/14)Entropy(S_{Weak}) - (6/14)Entropy(S_{Strong})$$
$$= 0.940 - (8/14)0.811 - (6/14)1.00$$
$$= 0.048$$

$$Values(Wind) = Weak, Strong$$

 $S = [9+, 5-]$
 $S_{Weak} \leftarrow [6+, 2-]$
 $S_{Strong} \leftarrow [3+, 3-]$

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Sub-Trees

Partition

General Way of Building Trees

- ☐ Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.
- ☐ Issues
 - Determine how to split the records
 - ☐ How to specify the attribute test condition?
 - ☐ How to determine the best split?
 - Determine when to stop splitting

Attribute Types

Training Data

Model: Decision Tree

Sub-Trees

- ☐ Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous
- ☐ Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting

☐ Multi-way split: Use as many partitions as distinct values.

☐ Binary split: Divides values into two subsets.

Need to find optimal partitioning.

Discretization

- ☐ Different ways of handling
 - Discretization to form an ordinal categorical attribute
 - ☐ Static discretize once at the beginning
 - □ Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
 - Binary Decision: (A < v) or $(A \ge v)$
 - consider all possible splits and finds the best cut
 - acan be more compute intensive

Gini Index

☐ Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Maximum $(1 1/n_c)$ when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

C1	0
C2	6
Gini=	0.000

C1	1
C2	5
Gini=	0.278

C1	2
C2	4
Gini=	0.444

C1	3
C2	3
Gini=	0.500

Detailed Calculation

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Gini =
$$1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Gini =
$$1 - (1/6)^2 - (5/6)^2 = 0.278$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Gini =
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$

Gini Split – Looks Familiar?

- ☐ Used in CART:
- \square When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n = number of records at node p.

Gini Split

- ☐ For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

	Cheat		No		No		No		Ye	es Ye		s	Ye	es N		0) No		o N			No	
			Taxable Income																				
Sorted Values			60		70		7	5	85	,	90)	9:	5	10	00	12	20	12	25		220	
Split Positions	-	5	5	6	5	7	2	8	0	8	7	9	2	9	7	11	0	12	22	17	72	23	0
		V =	>	\=	>	<=	>	<=	>	<=	>	<=	>	<=	>	\=	>	<=	>	<=	>	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
Gini		0.4	20	0.4	00	0.375		0.343		0.417		0.400		<u>0.300</u>		0.343		0.375		0.400		0.420	

Misclassification Error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

Measure of Impurity for 2-Class Problems

Training and Test Errors

