CS 3460

History of C++

- FORTRAN
 - 1957
 - John Backus
- ALGOL 58/60
 - 1958/1960
 - Many designers
- CPL (Common/Cambridge Programming Language)
 - 1963
- The BCPL language (Basic CPL)
 - Intended for writing compilers.
 - The BCPL compiler was written in BCPL.
 - Martin Richards, University of Cambridge
 - First brace { } programming language, along with single line comments using // (dropped by C, added back in C++)
 - First Hello World implementation
- The B language
 - Bell Labs around 1969
 - Ken Thompson and Dennis Ritchie
- The C language
 - Bell Labs, 1972
 - Dennis Ritchie

Bell Labs around 1969

Bell Labs, 1972

Dennis Ritchie

The C language

Ken Thompson and Dennis Ritchie

```
- FORTRAN

- 1957

- John Backus

- ALGOL 58/60

- 1958/1960

- Many designers

- CPL (Common/Cambridge Programming Language)

- 1963

- The BCPL language (Basic CPL)

- Intended for writing compilers.

- The BCPL compiler was written in BCPL.

- Martin Richards, University of Cambridge

- First brace {} programming language, along with single line comments using // (dropped by C, added back in C++)

- First Hello World implementation
```

Ken Thompson and Dennis Ritchie

Bell Labs, 1972

Dennis Ritchie

The C language

```
FORTRAN
             1957
             John Backus
ALGOL 58/60
             1958/1960
             Many designers
CPL (Common/Cambridge Programming Language)
             1963
The BCPL language (Basic CPL)
             Intended for writing compilers.
                           The BCPL compiler was written in BCPL
             Martin Richards, University of Cambridge
             First brace { } programming language, along with single line comments using // (dropped by C, added back in C++)
             First Hello World implementation
The B language
             Bell Labs around 1969
```

```
v[2000];
n 2000;

main() {
    extrn v, n;
    auto i, c, col, a;

    i = col = 0;
    while (i < n)
        v[i++] = i;
}</pre>
```

C++

- C with Classes
 - 1979
 - Bjarne Stroustrup, PhD work
 - Class concept inspired from Simula
- C++
 - 1983
 - Inheritance, polymorphism, stronger type system
- 1985 First Commercial Release of C++
 - CFront
 - Translated C++ to C, then used a C compiler to create an executable
- 1989 Version 2.0 of the language
 - Multiple inheritance, protected access, abstract classes, new/delete operators
- 1998 First ISO C++ standard released
 - Known as C++98
 - Boolean type, exceptions, templates, namespaces
 - C++ Standard Template Library

- Until 2011, the language, languished (alliteration intended)
- 2011 C++11 standard ratified
 - Took several years for compiler vendors to catch up
 - Huge step forward, new beginning for the language
 - inferred data types, constant expressions
 - lambdas, move operations, range-based loops
 - initializer lists, concurrency, smart pointers, regex
 - ...and more...

- 2014 C++14; minor update
 - variadic templates, return type deduction
 - digit separators, generic lambdas
- 2017 C++17; modest update
 - initializers in if and switch statements
 - improved auto type deduction, compile-time static if
 - nested namespace definitions, structured bindings
- 2020 C++20; huge update
 - modules, concepts, ranges, std::format, and more

- 2023 C++23; modest update
 - Removed some legacy garbage collection support
 - Multidimensional subscript operator
 - Literal suffixes for size_t and ptrdiff_t
 - contains() member for string/string_view
 - std::expected
 - <stacktrace> library for debugging support
 - std::print to send formatted output to stdout
 - std::generator for better coroutine support
 - A whole bunch of other "quality of life" improvements
 - Compiler support isn't fully there yet

- 2026 C++ 26
 - Reflection
 - Contracts
 - Improved string and string_view
 - Ranges improvements
 - Linear algebra support
 - Additional debugging support
 - Much more already defined
 - More still to come, very fluid design at this point

C++ Relationship to C

- C++ is not a strict superset of C
 - C allows variable length raw arrays, C++ does not
 - C allows implicit conversion of void* to other types, C++ does not
 - C has a restrict keyword that C++ does not
 - C++ reserves additional keywords like new and delete, while these can be used as identifiers in C