Лекция 1.

Косовский Н.Н.

18 февраля 2020 г.

Содержание

1	Зам	икнутые множества.	3
	1.1	Теорема о множестве замкнутых множеств	3
	1.2	Теорема о соответствующей топологии	3

1 Замкнутые множества.

• Определение:

F - 3амкнуто $\iff X \backslash F$ — открыто.

1.1 Теорема о множестве замкнутых множеств

 \mathcal{F} — множество замкнутых множеств.

Тогда:

- 1. \emptyset , $X \in \mathcal{F}$
- 2. $F, G \in \mathcal{F} \Rightarrow F \cup G \in \mathcal{F}$
- 3. $F_{\alpha} \in \mathcal{F} \Rightarrow \bigcap_{\alpha \in I} F_{\alpha} \in \mathcal{F}$

Доказательство:

- 1. очевидно: $(X \setminus X = \emptyset \ ; \ X \setminus \emptyset = X)$
- 2. $F \cup G$ замкнуто $\iff X \setminus (F \cup G)$ —открыто. Но $X \setminus (F \cup G) = (X \setminus F) \cap (X \setminus G)$ — открыто как пересечение двух открытых.
- 3. $X \setminus (\bigcap_{\alpha \in I} F_{\alpha}) = \bigcup_{\alpha \in I} (X \setminus F_{\alpha})$ рассуждение аналогично (2.)

1.2 Теорема о соответствующей топологии

Пусть $\mathcal{F} \subseteq 2^X$ такое, что:

- 1. \emptyset , $X \in \mathcal{F}$
- 2. $F, G \in \mathcal{F} \Rightarrow F \cup G \in \mathcal{F}$
- 3. $F_{\alpha} \in \mathcal{F} \Rightarrow \bigcap_{\alpha \in I} F_{\alpha} \in \mathcal{F}$

Тогда существует единственная топология Ω такая, что $\mathcal F$ - множество замкнутых множеств.

Доказательство:

1. Докажем единственность:

Если такая топология Ω существует, то $\Omega = \{X \backslash F | F \in \mathcal{F}$

Действительно, каждое такое множество должно входить в Ω , и ни одно другое в неё входить не может. Таким образом, Ω - единственная возможная топология по построению.

- 2. Теперь докажем, что построенная Ω действительно является топологией. Для этого проверим 3 необходимых свойства из определения.
 - (a) \emptyset , $X \in \Omega$ очевидно.

- (b) $U=X\backslash F,\ V=X\backslash G;\ F,\ G\in\mathcal{F}$ $U\cap V=(X\backslash F)\cap (X\backslash G)=X\backslash (F\cup G)\Rightarrow U\cap V\in\Omega.\ -$ здесь мы пользуемся свойством (2).
- (c) $U_{\alpha} = X \backslash F_{\alpha}$; $F_{\alpha} \in \mathcal{F}$ $\bigcup_{\alpha \in I} U_{\alpha} = \bigcup_{\alpha \in I} X \backslash F_{\alpha} = X \backslash \bigcap_{\alpha \in I} F_{\alpha}$