Introduction
Objective of the Course
Examples of Financial Time Series
Introduction to Asset Returns
Distributional Properties of Returns
Stylized Statistical Properties of Asset Returns

Financial Time Series and Their Characteristics

Yanping YI

August 2, 2012

Table of contents

- Introduction
- 2 Objective of the Course
- 3 Examples of Financial Time Series
- Introduction to Asset Returns
 - Example 1
 - Example 2
 - Example 3
- 5 Distributional Properties of Returns
- 6 Stylized Statistical Properties of Asset Returns

Introduction

- Financial time series analysis is concerned with the theory and practice of asset valuation over time.
- Financial time series analysis is highly related to other time series analysis, but with some added uncertainty.
- Financial time series must deal with the ever-changing business & economic environment and the fact that volatility is not directly observed.

Objective of the Course

- Provide some basic knowledge of financial time series data such as skewness, heavy tails, and measure of dependence between asset returns
- Introduce some statistical tools & econometric models useful for analyzing these series
- Gain experience in analyzing financial time series

Objective of the Course

- Simple linear time series models: AR, MA, ARMA
- Unit root nonstationarity
- Volatility modeling: ARCH, GARCH
- Methods for assessing market risk, credit risk, and expected loss. The methods discussed include Value at Risk, expected shortfall and tail dependence
- Analysis of high-dimensional asset returns, including cointegration and ECM

Course Requirements

- Textbook: Ruey S. Tsay (2010): Analysis of Financial Time Series, Third Edition (Wiley Series in Probability and Statistics)
- Dataset is free online http://faculty.chicagobooth.edu/ruey.tsay/teaching/fts3/
- One midterm and one final exam
- Two lab sessions
- 3 or 4 problem sets

Examples of Financial Time Series

- Daily log returns of Apple stock: 2000-2009
- US monthly interest rates (3m & 6m Treasury bills) Relations between the two series? Term structure of interest rates
- Exchange rate between US Dollar vs Euro
- Transformations to achieve stationarity
-

Daily returns of Apple stock: 2000 to 2009

Figure 1: Daily log returns of Apple stock from 2000 to 2009

Figure 2: Density of daily Apple stock returns

Dollars per Euro

Figure 5: Daily Exchange Rate: Dollars per Euro

In-rtn: US-EU

Figure 6: Daily log returns of FX (Dollar vs Euro)

Figure 7: Histogram of daily log returns of FX (Dollar vs Euro)

Figure 8: Monthly US interest rates: 3m & 6m TB

Asset Returns

- Most financial studies involve returns, instead of prices of assets, for two main reasons
 - for average investors, return of an asset is a complete and scale-free summary of the investment opportunity
 - 2 return series are easier to handle than price series because the former have more attractive statistical properties (for example, stationarity)
- There are, however, several definitions of an asset return. Let P_t be the price of an asset at time t, and assume no dividends.

Discrete Returns

Simple Net Return

$$R_t = \frac{P_t - P_{t-1}}{P_{t-1}} = \% \Delta P_t$$

Gross Return

$$1 + R_t = \frac{P_t}{P_{t-1}}$$

2-Period Return

$$R_t(2) = \frac{P_t - P_{t-2}}{P_{t-2}} = \frac{P_t}{P_{t-2}} - 1$$

$$R_t(2) = \frac{P_t}{P_{t-1}} \cdot \frac{P_{t-1}}{P_{t-2}} - 1$$

$$= (1 + R_t)(1 + R_{t-1}) - 1.$$

k− Period Return

$$1 + R_t(k) = (1 + R_t)(1 + R_{t-1}) \cdots (1 + R_{t-k+1})$$
$$= \prod_{j=0}^{k-1} (1 + R_{t-j}).$$

Example 1

Suppose the daily closing prices of a stock are

Day	1	2	3	4	5
Price	37.84	38.49	37.12	37.60	36.30

- What is the simple return from day 1 to day 2?
- ② What is the simple return from day 1 to day 5?
- Verify that $1 + R_5(4) = (1 + R_2)(1 + R_3) \cdots (1 + R_5)$.

Annualized Returns

 $R_t(k) = k$ —year return. Define $R_A =$ effective annual rate

$$(1+R_A)^k = 1+R_t(k)$$
 $R_A = \left(\prod_{j=0}^{k-1} (1+R_{t-j})\right)^{1/k} - 1$
 $= \text{geometric average}$

Adjusting for Dividends (Total Returns)

$$R_t = \frac{P_t + D_t - P_{t-1}}{P_{t-1}} = \frac{P_t - P_{t-1}}{P_{t-1}} + \frac{D_t}{P_{t-1}}$$

Adjusting for Inflation (Real Returns)

$$1 + R_t^{\mathsf{Real}} = \frac{P_t}{P_{t-1}} \cdot \frac{CPI_{t-1}}{CPI_t}$$

Portfolio Return

$$P_{p,t} = \sum_{i=1}^{n} w_i P_{i,t}, \sum_{i=1}^{n} w_i = 1$$
 $R_{p,t} = \sum_{i=1}^{n} w_i R_{i,t}$

Excess Returns

$$Z_t = R_t - R_{ft}$$
 $R_{ft} = \text{T-bill rate or LIBOR rate}$

Example 2

An investor holds stocks of IBM, Microsoft and Citi-Group. Assume that her capital allocation is 30%, 30% and 40%. Use the monthly simple returns in Table 1.2. (textbook) What is the mean simple return of her stock portfolio?

Continuously Compounded Returns

$$r_{t} = \ln(1 + R_{t}) = \ln\left(\frac{P_{t}}{P_{t-1}}\right)$$

$$= \ln(P_{t}) - \ln(P_{t-1})$$

$$= p_{t} - p_{t-1}$$

$$e^{r_{t}} = 1 + R_{t} = \frac{P_{t}}{P_{t-1}}$$

$$\implies P_{t} = P_{t-1}e^{r_{t}}$$

Note:

$$R_t = e^{r_t} - 1$$

2-period return

$$r_{t}(2) = \ln(1 + R_{t}(2)) = \ln\left(\frac{P_{t}}{P_{t-2}}\right) = p_{t} - p_{t-2}$$

$$= \ln\left(\frac{P_{t}}{P_{t-1}} \cdot \frac{P_{t-1}}{P_{t-2}}\right)$$

$$= \ln\left(\frac{P_{t}}{P_{t-1}}\right) + \ln\left(\frac{P_{t-1}}{P_{t-2}}\right)$$

$$= r_{t} + r_{t-1}.$$

k-period return

$$r_t(k) = \ln(1 + R_t(k)) = \ln\left(\frac{P_t}{P_{t-k}}\right) = p_t - p_{t-k}$$

$$= \sum_{j=0}^{k-1} r_{t-j}$$

Example 3

Use the daily prices in Example 1.

- What is the log return from day 1 to day 2?
- What is the log return from day 1 to day 5?
- **3** It is easy to verify $r_5(4) = r_2 + \cdots + r_5$.

Annualized Returns

 $r_t(k) = \sum_{j=0}^{k-1} r_{t-j} = k$ —year cc return. The average annual cc return, r_A , is

$$r_A = \frac{1}{k} \sum_{j=0}^{k-1} r_{t-j}$$
= arithmetic average

Adjusting for Dividends (Total Returns)

$$r_t = \ln(1 + R_t) = \ln\left(\frac{P_t + D_t}{P_{t-1}}\right)$$
$$= \ln(P_t + D_t) - \ln(P_{t-1})$$

Adjusting for Inflation (Real Returns)

$$r_t^{\mathsf{Real}} = \mathsf{In}(1 + R_t^{\mathsf{Real}}) = \mathsf{In}\left(\frac{P_t}{P_{t-1}} \cdot \frac{CPI_{t-1}}{CPI_t}\right)$$
 $= r_t - \pi_t$

Portfolio Return

$$r_{t,p} = \ln(1 + R_{t,p})$$

$$= \ln\left(1 + \sum_{i=1}^{n} w_i R_{i,t}\right)$$

$$\neq \sum_{i=1}^{n} w_i r_{i,t}$$

But

$$r_{t,p} pprox \sum_{i=1}^n w_i r_{i,t}$$
 if $R_{i,t}$ is small

Excess Returns

$$Z_t = R_t - R_{ft}$$

$$z_t = \ln(Z_t) = \ln(R_t - R_{ft}) \neq r_t - r_{ft}$$

But if Z_t is small then

$$z_t \approx r_t - r_{ft}$$

Introduction
Objective of the Course
Examples of Financial Time Series
Introduction to Asset Returns
Distributional Properties of Returns
Stylized Statistical Properties of Asset Returns

Distributional Properties of Returns

Distributional Properties of Returns

Let \tilde{r}_t be a random variable denoting the cc return on an asset at time t. Let $\{r_t, \ldots, r_T\}$ denote a sample of size T where r_t is a realization of the random variable \tilde{r}_t . We want to characterize

- ullet Unconditional distributions of individual returns, $ilde{r}_t$
- ullet Unconditional distributions of returns ordered in time, $\{ ilde{r}_1,\ldots, ilde{r}_T\}$
- Conditional distribution of \tilde{r}_t given $\tilde{r}_{t-1} = r_{t-1}, \tilde{r}_{t-2} = r_{t-2}, ...$

Unconditional Distributions

$$f_t(r_t) = \operatorname{pdf} \operatorname{s.t.} \int f_t(r_t) dr_t = 1$$
 $F_t(x) = \operatorname{Pr}(\tilde{r}_t < x) = \operatorname{CDF}$

Note: distribution may depend on t

Quantiles

$$F_t(q_{\alpha}) = \alpha, \ 0 \le \alpha \le 1$$

 $\Longrightarrow q_{\alpha} = F_t^{-1}(\alpha)$

Joint Distribution

$$egin{array}{lll} f_{1:T}(r_1,\ldots,r_T) &=& ext{joint pdf} \\ F_{1:T}(x_1,\ldots,x_T) &=& ext{Pr}(ilde{r}_1 \leq x_1,\ldots, ilde{r}_T \leq x_T) \\ &=& ext{joint CDF} \end{array}$$

Marginal Distribution

$$f_1(r_1) = \int \cdots \int f_{1:T}(r_1, \ldots, r_T) dr_2 \cdots dr_T$$

Stochastic Processes

A stochastic process $\{\tilde{r}_t\}_{t=1}^{\infty}$ is a sequence of random variables indexed by time t :

$$\{\ldots, \tilde{r}_1, \tilde{r}_2, \ldots, \tilde{r}_t, \tilde{r}_{t+1}, \ldots\}$$

A realization of a stochastic process is the sequence of observed data $\{r_t\}_{t=1}^{\infty}$:

$$\{\ldots, \tilde{r}_1 = r_1, \tilde{r}_2 = r_2, \ldots, \tilde{r}_t = r_t, \tilde{r}_{t+1} = r_{t+1}, \ldots\}$$

Defn: A stochastic process $\{r_t\}_{t=1}^{\infty}$ is *strictly stationary* if, for any given finite integer s and for any set of subscripts t_1, t_2, \ldots, t_s the joint distribution of

$$(\tilde{r}_t, \tilde{r}_{t_1}, \tilde{r}_{t_2}, \ldots, \tilde{r}_{t_s})$$

depends only on $t_1 - t, t_2 - t, \dots, t_s - t$ but not on t.

Remarks

- ullet For stationary returns, we drop the time subscripts on f and F
- For simplicity, we assume stationary returns for what follows

Conditional Distributions

$$f(r_2|r_1) = f(r_2|\tilde{r}_1 = r_1) = \frac{f(r_1, r_2)}{f(r_1)}, \ f(r_1) > 0$$

Useful factorization

$$f(r_1, \dots, r_T) = f(r_1)f(r_2|r_1)f(r_3|r_2, r_1)$$

 $\cdots f(r_T|r_{T-1}, \dots, r_1)$

Stylized Statistical Properties of Asset Returns

- Absence of autocorrelations: (linear) autocorrelations of asset returns are often insignificant, except for very small intraday time scales for which microstructure effects come into play.
- Heavy tails: the (unconditional) distribution of returns displays heavy tails
- Gain/loss asymmetry: one observes large drawdowns in stock prices and stock index values but not equally large upward movements.

Stylized Statistical Properties of Asset Returns

- Aggregational Gaussianity: as one increases the time scale over which returns are calculated, their distribution looks more and more like a normal distribution. In particular, the shape of the distribution is not the same at different time scales.
- Volatility clustering: different measures of volatility display a
 positive autocorrelation over several days, which quantifies the
 fact that high-volatility events tend to cluster in time.
- Volume/volatility correlation: trading volume is correlated with all measures of volatility.

Stylized Statistical Properties of Asset Returns

- Conditional heavy tails: even after correcting returns for volatility clustering (e.g. via GARCH-type models), the residual time series still exhibit heavy tails. However, the tails are less heavy than in the unconditional distribution of returns.
- Slow decay of autocorrelation in absolute returns: the autocorrelation function of absolute returns decays slowly as a function of the time lag (a sign of long-range dependence)
- Leverage effect: most measures of volatility of an asset are negatively correlated with the returns of that asset.
- Volatility co-movements: evidence of common factors to explain volatility in multiple series

Shape Characteristics

Let \tilde{r} be a random variable with pdf f

$$\mu = E[r] : \text{center}$$

$$\sigma^2 = \text{var}(r) = E[(r - \mu)^2] : \text{spread}$$

$$\text{skew}(r) = E\left[\frac{(r - \mu)^3}{\sigma^3}\right] : \text{symmetry}$$

$$\text{kurt}(r) = E\left[\frac{(r - \mu)^4}{\sigma^4}\right] : \text{tail thickness}$$

Note: The k^{th} moment and central moment of \tilde{r} is

$$m'_k = E[\tilde{r}^k]$$

 $m_k = E[(\tilde{r} - \mu)^k]$

Normal Distribution

$$X \sim N(\mu, \sigma^2)$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), -\infty \le x \le \infty$$

$$E[X] = \mu$$
 $\mathrm{var}(X) = \sigma^2$
 $\mathrm{skew}(X) = 0$
 $\mathrm{kurt}(X) = 3$
 $m_k = 0 \text{ for } k \text{ odd}$

Sample moments

Let $\{r_t, \ldots, r_T\}$ denote a random sample of size T where r_t is a realization of the random variable \tilde{r} .

$$ilde{\mu} = rac{1}{T} \sum_{t=1}^{T} r_t, \; \hat{\sigma}^2 = rac{1}{T-1} \sum_{t=1}^{T} (r_t - \hat{\mu})^2 = \hat{m}_2$$
 $\hat{skew} = rac{\hat{m}_3}{\hat{\sigma}^3}, \; \hat{kurt} = rac{\hat{m}_4}{\hat{\sigma}^3}$
 $\hat{m}_k = rac{1}{T-1} \sum_{t=1}^{T} (r_t - \hat{\mu})^k,$

Note: we divide by $T-\mathbf{1}$ to get unbiased estimates. Check software to see how moments are computed.

Testing for Normality

- QQ-plot: plot standardized empirical quantiles vs. theoretical quantiles from specified distribution.
- Jarque-Bera (JB) test for normality

$$JB = \frac{T}{6} \left(\widehat{\text{skew}}^2 + \frac{(\widehat{\text{kurt}} - 3)^2}{4} \right)$$

$$\stackrel{A}{\sim} \chi^2(2)$$

Note: if $r \sim N(\mu, \sigma^2)$ then

$$\sqrt{T}$$
skew $\sim N(0,6), \ \sqrt{T}(\widehat{\text{kurt}}-3) \sim N(0,24)$

- Shapiro-Wilks (SW) test for normality: correlation coefficient between values used in QQ-plot
- Kolmogorov-Smirnov (KS) test compares the empirical CDF of returns with the CDF of the normal distribution (or any other assumed distribution)
 - Sort returns: $r_{(1)} \leq \cdots \leq r_{(T)}$ and compute empirical CDF $\hat{F}_r(r_{(t)}) = t/T$
 - Evaluate normal CDF: $\Phi\left(\frac{r_{(t)}-\hat{\mu}}{\hat{\sigma}}\right)$
 - Compute KS statistic: $KS = \sup_t \left| \Phi \left(\frac{r_{(t)} \hat{\mu}}{\hat{\sigma}} \right) t/T \right|$

KS converges to 0 almost surely under the null

Student's-t distribution

Let $Z \sim N(0,1)$, $W \sim \chi^2(v)$ such that Z and W are independent. Then

$$X = \frac{Z}{\sqrt{W/v}} \sim t_v$$

where t_v denotes a (standardized) Student's t distribution with v degrees of freedom. Note:

$$E[X] = 0$$
, $var(X) = \frac{v}{v-2}$, $v > 2$
skew = 0, $var(X) = \frac{6}{v-4}$, $v > 4$

Existence of moments depends on degrees of freedom (df) parameter ν . Cauchy = Student's-t with 1 df. Only density exists.

If $X \sim t_v$ then

$$Y = \mu + \frac{\sigma X}{\sqrt{v/(v-2)}}$$

has moments

$$E[Y] = \mu$$
, $var(Y) = \sigma^2$

Density function

$$f(x;v) = \left[\frac{\Gamma\{(v+1)/2}{(\pi v)^{1/2} \Gamma(v/2)} \right] \frac{1}{\{1 + (x^2/v)\}^{(v+1)/2}}$$

$$\Gamma(t) = \int_0^\infty x^{t-1} \exp(-x) dx = \text{gamma function}$$

The d.f. parameter v can be estimated by MLE.

Note: A simple method of moments estimator for v is based on kurtosis:

$$kurt - 3 = \frac{6}{\nu - 4} \Rightarrow \nu = 6/(kurt - 3) + 4$$

Defn: The stochastic process $\{\tilde{r}_t\}$ is covariance stationary if

$$E[\tilde{r}_t] = \mu$$
 for all t $cov(\tilde{r}_t, \tilde{r}_{t-j}) = E[(\tilde{r}_t - \mu)(\tilde{r}_{t-j} - \mu)] = \gamma_j$ for all t and any j

The parameter γ_j is called the j^{th} order or lag j autocovariance of $\{\tilde{r}_t\}$

The autocorrelations of $\{\tilde{r}_t\}$ are defined by

$$\rho_j = \frac{cov(\tilde{r}_t, \tilde{r}_{t-j})}{\sqrt{var(\tilde{r}_t)var(\tilde{r}_{t-j})}} = \frac{\gamma_j}{\gamma_0}$$

and a plot of ρ_j against j is called the *autocorrelation function* (ACF)

The lag j sample autocovariance and lag j sample autocorrelation are defined as

$$\hat{\gamma}_j = \frac{1}{T} \sum_{t=j+1}^T (r_t - \bar{r})(r_{t-j} - \bar{r})$$

$$\hat{\rho}_j = \frac{\hat{\gamma}_j}{\hat{\gamma}_0}$$

where $\bar{r} = \frac{1}{T} \sum_{t=1}^{T} r_t$ is the sample mean.

The sample ACF (SACF) is a plot of $\hat{\rho}_j$ against j.

Example: White noise (GWN) processes

Perhaps the most simple stationary time series is the *independent Gaussian* white noise process $\{\tilde{r}_t\} \sim iid\ N(\mathbf{0}, \sigma^2) \equiv GWN(\mathbf{0}, \sigma^2)$. This process has $\mu = \gamma_j = \rho_j = 0\ (j \neq 0)$.

Two slightly more general processes are the independent white noise (IWN) process, $\{\tilde{r}_t\} \sim IWN(0, \sigma^2)$, and the white noise (WN) process, $\{\tilde{r}_t\} \sim WN(0, \sigma^2)$.

Both processes have mean zero and variance σ^2 , but the IWN process has independent increments, whereas the WN process has uncorrelated increments.

The SACF is typically shown with 95% confidence limits about zero. These limits are based on the result that if $\{\tilde{r}_t\} \sim iid\ (0, \sigma^2)$ then

$$\hat{
ho}_j \stackrel{A}{\sim} N\left(\mathbf{0}, \frac{1}{T}\right), \ j > \mathbf{0}.$$

The notation $\hat{\rho}_j \stackrel{A}{\sim} N\left(\mathbf{0}, \frac{1}{T}\right)$ means that the distribution of $\hat{\rho}_j$ is approximated by normal distribution with mean 0 and variance $\frac{1}{T}$ and is based on the central limit theorem result $\sqrt{T}\hat{\rho}_j \stackrel{d}{\to} N\left(\mathbf{0},\mathbf{1}\right)$. The 95% limits about zero are then $\pm \frac{1.96}{\sqrt{T}}$.

Testing for White Noise

Consider testing the null hypothesis

$$H_0: \{\tilde{r}_t\} \sim WN(0, \sigma^2)$$

Under the null, all of the autocorrelations ρ_j for j>0 are zero. To test this null, Box and Pierce (1970) suggested the Q-statistic

$$Q(k) = T \sum_{j=1}^{k} \hat{\rho}_j^2$$

Under the null, Q(k) is asymptotically distributed $\chi^2(k)$. In a finite sample, the Q-statistic may not be well approximated by the $\chi^2(k)$. Ljung and Box (1978) suggested the modified Q-statistic

$$MQ(k) = T(T+2) \sum_{j=1}^{k} \frac{\hat{\rho}_{j}^{2}}{T-j}$$