

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15060051902

FCC REPORT (BLE)

Applicant: USA111 INC.

Address of Applicant: 5885 Green Pointe Dr. Suite B Groveport, Ohio, United States

Equipment Under Test (EUT)

Product Name: INTEL Tablet PC

Model No.: W10, W1004, W1005, W1006, W1101, W1901, X10, X9, X8,

X7

FCC ID: 2ADOV-W10

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 30 Jun., 2015

Date of Test: 30 Jun., to 07 Sep., 2015

Date of report issued: 08 Sep., 2015

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	08 Sep., 2015	Original

Reviewed by: Over them Date: 08 Sep., 2015

Project Engineer

3 Contents

			Page					
1	COV	ER PAGE	1					
2	VER	VERSION						
3		ITENTS						
4		T SUMMARY						
5		IERAL INFORMATION						
Э	GEN	ERAL INFORMATION	5					
	5.1	CLIENT INFORMATION						
	5.2	GENERAL DESCRIPTION OF E.U.T	5					
	5.3	TEST ENVIRONMENT AND MODE	7					
	5.4	DESCRIPTION OF SUPPORT UNITS	7					
	5.5	LABORATORY FACILITY	7					
	5.6	LABORATORY LOCATION	7					
	5.7	TEST INSTRUMENTS LIST	8					
6	TES	T RESULTS AND MEASUREMENT DATA	9					
	6.1	ANTENNA REQUIREMENT:	9					
	6.2							
		CONDUCTED EMISSION	10					
	6.3	CONDUCTED EMISSION CONDUCTED OUTPUT POWER						
	6.3 6.4		13					
		CONDUCTED OUTPUT POWER						
	6.4	CONDUCTED OUTPUT POWER						
	6.4 6.5	CONDUCTED OUTPUT POWER						
	6.4 6.5 6.6	CONDUCTED OUTPUT POWER OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE Conducted Emission Method						
	6.4 6.5 6.6 6.6.1	CONDUCTED OUTPUT POWER OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE Conducted Emission Method						
	6.4 6.5 6.6 6.6.1 6.6.2	CONDUCTED OUTPUT POWER OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE Conducted Emission Method Radiated Emission Method SPURIOUS EMISSION						
	6.4 6.5 6.6 6.6.1 6.6.2	CONDUCTED OUTPUT POWER OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE Conducted Emission Method Radiated Emission Method SPURIOUS EMISSION Conducted Emission Method						
7	6.4 6.5 6.6 6.6.1 6.6.2 6.7 6.7.1	CONDUCTED OUTPUT POWER OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE Conducted Emission Method Padiated Emission Method SPURIOUS EMISSION Conducted Emission Method						

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	USA111 INC.
Address of Applicant:	5885 Green Pointe Dr. Suite B Groveport, Ohio, United States
Manufacturer/ Factory:	Shenzhen Allland Networking Co., Ltd.
Address of Manufacturer /Factory:	Fourth Floor, #B Building, Weiyulong Industrial Park, Xuegang North Road #16, Bantian Street, Longgang District, Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	INTEL Tablet PC
Model No.:	W10, W1004, W1005, W1006, W1101, W1901, X10, X9, X8, X7
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2.0 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-7800mAh
AC adapter:	Model No.:JHD-AP012U-050200AA
	Input:100-240V AC,50/60Hz 0.35A
	Output:5V DC MAX 2000mA
Remark:	Model No.: W10, W1004, W1005, W1006, W1101, W1901, X10, X9, X8, X7 are electrically identical ,only model name and external color is different.

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz	
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz	
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz	
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz	
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz	
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency			
The lowest channel	2402MHz			
The middle channel	2442MHz			
The Highest channel	2480MHz			

Report No: CCIS15060051902

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Rad	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016			
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016			
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016			
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016			
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016			
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016			
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A			
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A			
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016			
12	EMI Test Receiver	Rohde & Schwarz	ESRP	CCIS0167	03-28-2015	03-28-2016			
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016			
14	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016			

Con	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016				
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016				
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2.0 dBi.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207							
Test Method:	ANSI C63.4: 2009							
Test Frequency Range:	150 kHz to 30 MHz							
Class / Severity:	Class B							
Receiver setup:	RBW=9kHz, VBW=30kHz							
Limit:	Limit (dRu\/)							
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5 66 to 56* 56 to 46*							
	0.5-5	56	46					
	5-30	60	50					
Test procedure	* Decreases with the logarithm 1. The E.U.T and simulators							
	 a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 							
Test setup:	Refere	ence Plane						
	AUX Equipment Test table/Insulation pla Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m		er — AC power					
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Refer to section 5.3 for details	;						
Test results:	Passed							

Measurement Data

Neutral:

Trace: 7

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : INTEL Tablet PC Condition

EUT

Model : W10 : BLE mode Test Mode

Power Rating: AC 120/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Viki

Remark

CEMAIK	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	<u>dB</u>		dBu₹	—dBu√	<u>dB</u>	
1	0.194	31.35	0.25	10.76	42.36	63.84	-21.48	QP
1 2 3 4 5 6 7 8	0.198	14.59	0.25	10.76	25.60	53.71	-28.11	Average
3	0.262	20.18	0.26	10.75	31.19	51.38	-20.19	Average
4	0.270	34.62	0.26	10.75	45.63	61.12	-15.49	QP
5	0.337	18.44	0.26	10.73	29.43	49.27	-19.84	Average
6	0.466	19.75	0.28	10.75	30.78	46.58	-15.80	Average
7	0.481	36.03	0.28	10.75	47.06	56.32	-9.26	QP
8	0.617	34.67	0.22	10.77	45.66	56.00	-10.34	QP
9	0.658	17.23	0.20	10.77	28.20	46.00	-17.80	Average
10	1.236	35.12	0.24	10.90	46.26	56.00	-9.74	QP
11	1.374	15.88	0.25	10.91	27.04	46.00	-18.96	Average
12	1.991	35.28	0.29	10.96	46.53	56.00	-9.47	QP

Line:

Trace: 5

Site : CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

EUT INTEL Tablet PC

: W10 Model Test Mode : BLE mode

Power Rating: AC 120/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Viki

Remark

omari.	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB	₫B	dBu₹	dBu∀	<u>dB</u>	
1	0.194	12.08	0.28	10.76	23.12	53.84	-30.72	Average
2	0.270	32.27	0.27	10.75	43.29	61.12	-17.83	QP
2	0.270	14.36	0.27	10.75	25.38	51.12	-25.74	Average
4 5	0.322	36.38	0.26	10.73	47.37	59.66	-12.29	QP
5	0.337	17.74	0.27	10.73	28.74	49.27	-20.53	Average
6	0.466	15.42	0.29	10.75	26.46	46.58	-20.12	Average
7	0.513	36.52	0.28	10.76	47.56	56.00	-8.44	QP
8	0.529	15.97	0.28	10.76	27.01	46.00	-18.99	Average
9	0.743	36.24	0.22	10.79	47.25	56.00	-8.75	QP
10	1.359	35.40	0.25	10.91	46.56	56.00	-9.44	QP
11	21.035	32.74	0.38	10.92	44.04	60.00	-15.96	QP
12	21.035	16.98	0.38	10.92	28.28	50.00	-21.72	Average

Notes:

1

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.3 Conducted Peak Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

	Maximum PK Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	6.65		
Middle	7.16	30.00	Pass
Highest	7.02		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.842		
Middle	0.832	>500	Pass
Highest	0.832		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.102		
Middle	1.102	N/A	N/A
Highest	1.102		

Test plot as follows:

Highest channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2					
Limit:	8 dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	4.60		
Middle	4.80	8.00	Pass
Highest	4.56		

Test plots as follow:

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2	009 and KDB	558074v03r	03 section ²	12.1			
Test Frequency Range:	2.3GHz to 2.5G	Hz						
Test site:	Measurement D	istance: 3m						
Receiver setup:								
receiver cotap:	Frequency	Detector	RBW	VBW	Remark			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	7.5575 151.2	RMS	1MHz	3MHz	Average Value			
Limit:	Frogue	nev	Limit (dBuV/	/m @3m)	Remark			
	Freque	_	54.0		Average Value			
	Above 1	GHz	74.0		Peak Value			
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi- 							
Test setup:	sheet.	Ground Test Receiver	Horn Ante	Antenna Tor	wer			
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Refer to section	5.3 for details						
Test results:	Passed							

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : INTEL Tablet PC Condition

EUT

: W10 Model

Test mode : BLE-L mode
Power Rating : AC 120V/60Hz
Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Viki

Re

.emar	K :	Road	Antenna	Cable	Dreamn		Limit	Over	
	Freq		Factor						Remark
	MHz	dBu∀	<u>dB</u> /m	dB	<u>dB</u>	dBu√/m	dBuV/m	dB	
1	2390.000	24.77	27.58	6.63	0.00	58.98	74.00	-15.02	Peak
2	2390.000	12.78	27.58	6.63	0.00	46.99	54.00	-7.01	Average

Test channel: Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT INTEL Tablet PC :

W10 Model : Test mode : BLE-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki

Remark

	Freq		Antenna Factor						Remark
	MHz	dBu₹	dB/m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000 2390.000						74.00 54.00		

Test channel: Highest

Horizontal:

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : INTEL Tablet PC

: W10 Model Test mode : BLE-H mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Viki

Remark

	Freq		Antenna Factor						
	MHz	dBu∀	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : INTEL Tablet PC

Model : W10

Test mode : BLE-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki

Remark

Freq		Antenna Factor						
MHz	dBu₹	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
2483.500 2483.500								

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and KDB558074 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Lowest channel

Date: 20.JUL.2015 10:48:57

30MHz~25GHz

Middle channel

Date: 20.JUT..2015 10:48:01

30MHz~25GHz

Highest channel

Date: 20.JUL.2015 10:46:39

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10:2009								
Test Frequency Range:	9KHz to 25GHz								
Test site:	Measurement D	Measurement Distance: 3m							
Receiver setup:									
·	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	7.5545 161.12	RMS	1MHz	3MHz	Average Value				
Limit:	-	Т		00.					
	Frequency		Limit (dBuV/m	@3m)	Remark				
	30MHz-88MHz 88MHz-216MHz		40.0		Quasi-peak Value				
	216MHz-960MH		46.0		Quasi-peak Value Quasi-peak Value				
	960MHz-1GHz		54.0		Quasi-peak Value				
			54.0		Average Value				
	Above 1GHz		74.0		Peak Value				
Test Procedure:	the ground to determin 2. The EUT of antenna, we tower. 3. The antenre the ground Both horizon make the make the make the make the make the make to find the make to find the make the make to find the make to find the make to find the make the limit specified Bake 10 dBake	at a 3 meter at a 3 meter the position was set 3 meter the position was set 3 meter to determine the anter the anter the rota table maximum reasurement. If the rota table maximum reasurement is and width with sion level of the cified, then the would be reposition to the second of t	camber. The of the highesters away funted on the trained from one the maximutical polarizations was turned ding. In Maximum Highesting could be corted. Other discorted in the could be re-tested.	table was st radiation. From the in op of a variance meter to um value of ions of the EUT was and to height from 0 deg to Peak Dold Mode. ak mode we stopped wise the erd one by on	ole 0.8 meters above rotated 360 degrees of the field strength. It is antenna are set to the from 1 meter to 4 rees to 360 degrees of the field strength. It is from 1 meter to 4 rees to 360 degrees of the field strength. It is from 1 meter to 4 rees to 360 degrees of the field strength. It is from 1 meter to 4 rees to 360 degrees of the field strength. It is from 1 meter to 4 rees to 360 degrees of the field strength and the peak values of the field strength and the peak values of the field strength and the peak, quasital reported in a data				

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT INTEL Tablet PC

W10 Model Test mode : BLE mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki

emark									
	Freq		Antenna Factor					Over Limit	Remark
_	MHz	dBu∇	$\overline{-dB/m}$	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1	32,406	39.98	12.32	0.45	29.97	22.78	40.00	-17.22	QP
2	74.919	40.60	7.80	0.82	29.68	19.54	40.00	-20.46	QP
2	117.360	37.69	10.90	1.10	29.41	20.28	43.50	-23.22	QP
4	143.830	42.24	8.22	1.28	29.25	22.49	43.50	-21.01	QP
5	232.532	39.31	11.72	1.54	28.64	23.93	46.00	-22.07	QP
6	426.521	38.17	15.50	2.19	28.83	27.03	46.00	-18.97	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : INTEL Tablet PC Condition

EUT

Model : W10 Test mode : BLE mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki

Remark

	Freq		Antenna Factor						Remark
_	MHz	dBu∜	<u>dB</u> /m		<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	39.024	45.15	13.34	0.51	29.91	29.09	40.00	-10.91	QP
2	58.203	38.85	12.81	0.68	29.78	22.56	40.00	-17.44	QP
2	123.266								
4	143.830	49.36	8.22	1.28	29.25	29.61	43.50	-13.89	QP
5	426.521	37.95	15.50	2.19	28.83	26.81	46.00	-19.19	QP
6	497.677	37.56	16.52	2.39	28.95	27.52	46.00	-18.48	QP

Above 1GHz

Test channel:			Lo	Lowest		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	47.02	31.53	10.57	40.24	48.88	74.00	-25.12	Vertical
4804.00	48.08	31.53	10.57	40.24	49.94	74.00	-24.06	Horizontal
Т	est channel	•	Lowest		Le	vel:	A۱	verage
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	37.61	31.53	10.57	40.24	39.47	54.00	-14.53	Vertical
4804.00	38.52	31.53	10.57	40.24	40.38	54.00	-13.62	Horizontal

T	:	Mi	Middle		vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	47.07	31.58	10.66	40.15	49.16	74.00	-24.84	Vertical
4884.00	47.86	31.58	10.66	40.15	49.95	74.00	-24.05	Horizontal
T	est channel	:	Middle		Le	vel:	A۱	verage
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	39.70	31.58	10.66	40.15	41.79	54.00	-12.21	Vertical
4884.00	37.86	31.58	10.66	40.15	39.95	54.00	-14.05	Horizontal

Т	:	Hiç	ghest	Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	47.50	31.69	10.73	40.03	49.89	74.00	-24.11	Vertical
4960.00	48.24	31.69	10.73	40.03	50.63	74.00	-23.37	Horizontal
T	est channel	:	Highest		Le	vel:	A۱	verage
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	37.69	31.69	10.73	40.03	40.08	54.00	-13.92	Vertical
4960.00	38.11	31.69	10.73	40.03	40.50	54.00	-13.50	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366