

POLITECHNIKA ŚLĄSKA WYDZIAŁ AUTOMATYKI, ELEKTRONIKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA

Projekt inżynierski

Sprzętowa implementacja regulatora MPC

Autor: Szymon Zosgórnik

Kierujący pracą: dr hab. inż., prof. PŚ Jarosław Śmieja

Lorem ipsum.	Streszczenie

Spis treści

1	1.1	ęp Motywacja projektu	
2	2.1 2.2	regulatora MPC First	2 2 2
3	Zało 3.1 3.2 3.3	3.2.1 Platforma STM	3 3 3 3 3 3 4 4
	3.4 3.5	Przykład referencyjny	4
4	4.1	lementacja rozwiązania Ogólny schemat programu	5 5
5		rkładowe wyniki Dużo wyników	6
6	6.1 6.2	sumowanie Wyniki	7 7 7
Do	datk	İ	8
Α	Jak	zrobię jakieś fajen porównania to tu dam	9

Rozdział 1: Wstęp

1.1 Motywacja projektu

Lorem ipsum.

1.2 Cel pracy

Rozdział 2: Idea regulatora MPC

2.1 First

Lorem ipsum.

2.2 Second

Lorem ipsum.

2.3 Third

Rozdział 3: Założenia projektowe i wykorzystane narzędzia

3.1 Założenia projektowe

liniowy układ

3.2 Architektura systemu

Lorem ipsum. Cokolwiek o STMie / ARMie.

3.2.1 Platforma STM

Lorem ipsum.

3.2.2 Procesor - architektura ARM

Lorem ipsum.

3.3 Narzędzia programistyczne

3.3.1 Języki programowania C/C++

A gdzie Rust?!

3.3.2 Język programowania Python

pytong

3.3.3 Środowisko MATLAB

matlablabla

3.3.4 Biblioteka HAL

hal

3.3.5 **CMake**

cmake

3.3.6 Kompilator i linker

arm none eabi gcc

3.4 Przykład referencyjny

Lorem ipsum.

3.5 Sposób testowania

Rozdział 4: Implementacja rozwiązania

4.1 Ogólny schemat programu

Todooo.

4.2 Problemy napotkane podczas realizacji

Ło panie.

Rozdział 5: Przykładowe wyniki

5.1 Dużo wyników

Wiyncyj wyników.

Rozdział 6: Podsumowanie

6.1 Wyniki

No działa.

6.2 Wnioski

Jak wyżej.

6.3 Pomysły na rozwój projektu

Jak wyżej.

Dodatki

Dodatek A: Jak zrobię jakieś fajen porównania to tu dam

Spis rysunków

Spis tablic

Spis listingów

Bibliografia

[1] Rolf Findeisen Markus Kögel. A fast gradient method for embedded linear predictive control. *Proceedings of the 18th World Congress The International Federation of Automatic Control*, strony 1362–1367, 28.08 - 02.09.2011.