## 《电磁场与波 B》课程设计

电子科学与工程学院 傅宣登 (2016030102010)

2018年6月23日

## 关于均匀平面波与圆极化波能否同时存在的探讨

## 一、均匀平面波

## 1 一般波动方程

对于电容率为  $\varepsilon$ , 磁导率为  $\mu$ , 电导率为  $\sigma$  的无源均匀媒质, 麦克斯韦方程是

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} \tag{1}$$

$$\nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t} \tag{2}$$

$$\nabla \cdot \boldsymbol{B} = 0 \tag{3}$$

$$\nabla \cdot \boldsymbol{D} = \rho \tag{4}$$

其中  $J = \sigma E$ ,  $B = \mu H$ ,  $D = \varepsilon E$ ,  $\rho = 0$ . 于是有

$$\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t} \tag{5}$$

$$\nabla \times \boldsymbol{H} = \sigma \boldsymbol{E} + \varepsilon \frac{\partial \boldsymbol{E}}{\partial t} \tag{6}$$

$$\nabla \cdot \boldsymbol{H} = 0 \tag{7}$$

$$\nabla \cdot \boldsymbol{E} = 0 \tag{8}$$

- 2 介质中的平面波
- 二、圆极化波
- 1 极化的概念
- 2 圆极化
- 三、同时满足两种性质