

(5) Japanese Patent Application Laid-Open No. 2002-67976

[0011]

A holder 10 for covering the elongated holes 9, 9a and 9b is secured to the outer peripheral surface of the outer tube 1 through welded portions 11. The holder 10 is formed in a box-like shape which has an opening portion B on one side in a direction perpendicular to the axial direction of the outer tube 1 and a slanting bottom surface 12 formed in its inner part. A through hole 13 is formed on the inner wall 10a facing the opening portion B, and a nut 14 for covering the through hole 13 is secured to the outer surface of the inner wall 10a by weldings 11a, 11a.

[0012]

A wedge block 16 is inserted into the holder 10 to be slideable on the slanting bottom surface 12 through a fastening bolt 15 which is thread-engaged with the nut 14 via the through hole 13. The wedge block 16 is provided with a slanting lower surface 16a having the same angle as that of the slanting bottom surface 12 and a horizontal upper surface 16b. A bolt inserting hole 16c is formed through the wedge block 16 in parallel to the horizontal upper surface 16b. The bolt inserting hole 16c is formed to have a slightly larger diameter than that of the fastening bolt 15. The bolt inserting hole 16c may be

formed to be U-shaped which is open on the slanting bottom surface 16a.

[0013]

A pressing block 17 is mounted on an upper part of the horizontal upper surface 16b of the wedge block 16. The pressing block 17 is a square block in a predetermined size having a horizontal bottom surface 17a which is parallel to the horizontal upper surface 16b and the length and the width to be fitted in the elongated holes 9, 9a, and a protruding portion 17b is formed on the upper surface of the pressing block 17 to be fitted in the elongated hole 9b. Arcuate surfaces 17c, 17c which are slidable on the outer peripheral surface of the inner tube 3 are formed on the right and left sides of the protruding portion 17b. When the protruding portion 17b of the pressing block 17 is engaged with this elongated hole 9b, the rotation of the inner tube 3 around the center is stopped, so as to render a rotation stopping effect. It is needless to say that the length in the axial direction of the protruding portion 17b is determined taking into consideration an expansion/constriction stroke of the inner tube 3 from the outer tube 1.

[0014]

The fastening bolt 15 is integrally comprised of a

screw portion 15a which is passed through the bolt insertion hole 16c and the through hole 13 to be thread-engaged with the nut 14, and a bulb-like head portion 15b and a screw head portion 15c. A conical portion 15d formed on the head portion 15b is fitted in a conical hole 18a of an operation lever 18, and is fastened with a washer based nut 19 which is thread-engaged with the screw head portion 15c.

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開2002-67976

(P2002-67976A)

(43) 公開日 平成14年3月8日(2002.3.8)

(51) Int.Cl.⁷

B 6 2 D 1/18

識別記号

F I

B 6 2 D 1/18

テーマコード(参考)

3 D 0 3 0

審査請求 未請求 請求項の数 2 OL (全 5 頁)

(21) 出願番号 特願2000-266699(P2000-266699)

(22) 出願日 平成12年9月4日(2000.9.4)

(71) 出願人 000237307

富士機工株式会社

静岡県湖西市鷺津2028

(72) 発明者 木下 里志

静岡県湖西市鷺津2028番地 富士機工株式会社鷺津工場内

(72) 発明者 菊科 紀彦

静岡県湖西市鷺津2028番地 富士機工株式会社鷺津工場内

(74) 代理人 100062199

弁理士 志賀 富士弥 (外3名)

F ターム(参考) 3D030 DD76

(54) 【発明の名称】 テレスコピックステアリング装置

(57) 【要約】

【課題】 テレスコピックステアリング装置におけるインナーチューブのロック機構部を組付け性良く改良する。

【解決手段】 アウターチューブ1に軸方向の長孔9を開設してこの長孔を覆うホルダー10を固着する。ホルダー10はアウターチューブ1の軸方向と直交する方向の一側に開口部Bを有し、その内奥部には傾斜底面12が形成されている。インナーチューブ3をアウターチューブ1に挿着した後、ホルダー10にその開口部Bから押圧ブロック17を挿入し突起部17bを長孔9bに、弧面17cをインナーチューブ3に接させ、ついで、締付ボルト16cを挿入した楔ブロック16をその傾斜下面16aが傾斜底面12に沿うように挿入する。ホルダー10に固着したナット14に締付けボルト15を螺入し、かつ、締付けボルト15には操作レバー18を連結する。

【特許請求の範囲】

【請求項1】 アウターチューブに軸方向の長孔を開設して該長孔を覆うホルダーを外周面に固着し、該ホルダーはアウターチューブの軸方向と直交する方向の一側が開口してその内奥部には傾斜底面が形成され、該傾斜底面に接する傾斜下面を備えた楔ブロックと、該楔ブロック及び前記アウターチューブに挿入したインナーチューブの両方に接可能な押圧ブロックとが前記ホルダー内に挿入可能に構成され、アウターチューブの軸方向と直交する方向で前記楔ブロックを貫通した締付ボルトがホルダーに螺入し、かつ、該締付けボルトには操作レバーを連結してなるロック機構部を有することを特徴とするテレスコピックステアリング装置。

【請求項2】 押圧ブロックはインナーチューブに軸方向へ開設した長孔に嵌合する突起部と、インナーチューブの外周面に接する弧面とを有することを特徴とする請求項1記載のテレスコピックステアリング装置。

【発明の詳細な説明】**【0001】**

【発明の属する技術分野】 この発明は自動車の操向装置に関するもので、特に、テレスコピックステアリング装置のアウターチューブに軸方向へ摺動可能に挿入したインナーチューブの長さ調節を行うためのロック機構部に関する。

【0002】

【従来の技術】 テレスコピックステアリング装置は、車体に固定するアウターチューブとそれに軸方向へ摺動可能に挿入したインナーチューブとに、ステアリングシャフトが軸中心で回転自在かつ軸方向伸縮可能に支承され、インナーチューブとアウターチューブ間にはロック機構部が設けられ、インナーチューブの一端から突出するステアリングシャフトの端部にステアリングホイールが軸着されてなり、そのステアリングホイールの位置を運転乗員の手前で前後へ移動調節できるようにしたものである。

【0003】 インナーチューブとアウターチューブ間に設けられたロック機構部は、ステアリングホイールの位置を運転乗員の手前で前後へ移動調節するためのもので、これには、インナーチューブに楔を押圧する構造のものがある（実開昭63-117662号公報参照）。

【0004】

【発明が解決しようとする課題】 しかしながら、実開昭63-117662号公報記載の考案によると、アウターチューブとインナーチューブを組み付ける前に、インナーチューブを押圧する楔をアウターチューブに組み付けなければならないから、組付け性が悪いという不具合がある。

【0005】 そこで、この発明は、組付け性が優れ、しかも、押圧力の調整が簡便容易な、インナーチューブのロック機構部を備えたテレスコピックステアリング装置

を提供する。

【0006】

【課題を解決するための手段】 この発明にかかるテレスコピックステアリング装置は、請求項1記載のように、アウターチューブに軸方向の長孔を開設して該長孔を覆うホルダーを外周面に固着し、該ホルダーはアウターチューブの軸方向と直交する方向の一側が開口してその内奥部には傾斜底面が形成され、該傾斜底面に接する傾斜下面を備えた楔ブロックと、該楔ブロック及び前記アウターチューブに挿入したインナーチューブの両方に接可能な押圧ブロックとが前記ホルダー内に挿入可能に構成され、アウターチューブの軸方向と直交する方向で前記楔ブロックを貫通した締付ボルトがホルダーに螺入し、かつ、該締付けボルトには操作レバーを連結してなるロック機構部を有することを特徴とする。

【0007】 したがって、操作レバーを正回転させると楔ブロックが傾斜底面の傾斜上部へ移動して押圧ブロックを押し上げ、押圧ブロックがインナーチューブに圧接することでインナーチューブを軸方向移動不能な状態にロックする。また、操作レバーを逆回転させると楔ブロックが傾斜底面の傾斜下部へ移動して押圧ブロックは下降し、押圧ブロックがインナーチューブから離れることでインナーチューブを軸方向移動可能な状態にロック解除する。

【0008】

【発明の実施の形態】 以下、この発明の実施の形態を図に基づき説明する。図1から図3に示すように、車体に固定するアウターチューブ1に内嵌した樹脂ブッシュ2に、インナーチューブ3が軸方向移動可能に嵌合している。インナーチューブ3の後端部側に内嵌したアッパーべアリング4にアッパーシャフト6が、アウターチューブ1の前端部側に内嵌したロアーベアリング5にロアーシャフト7が、それぞれ軸中心で回転自在に支承されている。アッパーシャフト6とロアーシャフト7はスライドイン又はセレーション嵌合にて回転力伝達可能かつ軸方向移動可能に連結されている。アッパーシャフト6の後端部にはステアリングホイール（図示略）が軸着される。ロアーシャフト7は中空部材に溶接等にて連結した中実軸がナット8でアウターチューブ1の下端部に抜け止めされている。

【0009】 なお、図中21はストッパー、23はキーロックカラーである。また、アッパーシャフト6の後端部にチルト機構が付く場合には、アッパーべアリング4は省略され、アッパーシャフト6の後端部に自在継手が連結され、自在継手にはチルトシャフトが連結される。

【0010】 アウターチューブ1と樹脂ブッシュ2には互いに合致する長孔9、9aが開設され、この長孔9、9aと比べて軸方向長さは僅かに短いが、テレスコによる位置調節を行うのには十分な長さを有し、かつ、前記長孔9、9aに対し軸方向と直交する方向の幅が小さい

長孔9 bがインナーチュープ3に開設される。長孔9 bは長孔9, 9 aの略中央部に位置する。また、この長孔9 bの左右両側のインナーチュープ3の外周面に、楔ブロック16を介して押圧ブロック17の弧面17 c, 17 cが圧接することによってインナーチュープ3の軸方向のロックができる、このロックを解除するとインナーチュープ3のアウターチュープ1からの伸縮長さを調節することができるロック機構部がアウターチュープ1の外周下方で形成される。

【0011】長孔9, 9 a, 9 bを覆うホルダー10がアウターチュープ1の外周面に溶接部11を介して固定される。ホルダー10はアウターチュープ1の軸方向と直交する方向の一側に開口部Bを有してその内奥部には傾斜底面12が形成された箱状体からなり、開口部Bに對面する奥壁10 aには透孔13が穿設され、かつ、この透孔13を覆うナット14が奥壁10 aの外側面に溶接11 a, 11 aにて固定されている。

【0012】この透孔13を経てナット14に螺合する締付けボルト15を介し、楔ブロック16が傾斜底面12上をスライド可能にホルダー10内に挿入されている。この楔ブロック16は傾斜底面12と同じ角度の傾斜下面16 aと水平上面16 bを備えている。また、楔ブロック16には水平上面16 bと平行なボルト挿通孔16 cが穿設されている。このボルト挿通孔16 cは締付ボルト15の径より若干大きめに形成される。また、ボルト挿通孔16 cを傾斜下面16 a側が開放されたU字状に形成してもよい。

【0013】楔ブロック16の水平上面16 bの上部には押圧ブロック17が載置されている。押圧ブロック17は水平上面16 bと平行な水平底面17 aと前記長孔9, 9 aに嵌合する長さと幅寸法を有する所定長さの方形ブロックからなり、その上面には前記長孔9 bに嵌合する突起部17 bが形成され、この突起部17 bの左右両側には、インナーチュープ3の外周面に接接可能な弧面17 c, 17 cが形成されている。この長孔9 bに押圧ブロック17の突起部17 bが係合することによってインナーチュープ3の軸中心での回転が阻止されるから、回り止め効果を奏する。突起部17 bの軸方向長さは、インナーチュープ3のアウターチュープ1からの伸縮ストロークを考慮して決定されることはいうまでもない。

【0014】締付けボルト15は、ボルト挿通孔16 cから透孔13を経てナット14に螺合するネジ部15 aと、球根形の頭部15 b及びネジ頭部15 cが一体形成されたもので、頭部15 bに形成した円錐形部15 dに操作レバー18の円錐形孔18 aが嵌合し、ネジ頭部15 cに螺合した座付きナット19で締結されている。

【0015】上記構成にかかるレスコピックステアリング装置においてロック機構部を組付けるには、予めホルダー10を固着したアウターチュープ1に、樹脂ブン

シュ2を介してインナーチュープ3を挿着する。

【0016】その後、ホルダー10の開口部B側から押圧ブロック17を内奥部に挿入し、押圧ブロック17の突起部17 bをインナーチュープ3の長孔9 bに嵌合させると共に、弧面17 c, 17 cをインナーチュープ3の外周面に接接させる。

【0017】ついで、締付けボルト15のネジ部15 aをボルト挿通孔16 cに挿入した楔ブロック16をホルダー10の開口部B側から傾斜底面12に向けて内奥部に挿入し、透孔13を経てナット14に螺合させる。これにより、押圧ブロック17の水平底面17 aは楔ブロック16の水平上面16 bと接接してホルダー10内に保持される。楔ブロック16と押圧ブロック17は、締付けボルト15を介してホルダー10内に装着されて不意に落下することがなくなる。

【0018】そこで、締付けボルト15のナット14への締付け回転を調整し、楔ブロック16が傾斜底面12に沿ってナット14側へ移動することによって押圧ブロック17はインナーチュープ3側へ移動し、その弧面17 c, 17 cがインナーチュープ3の外周面に接接する。

【0019】この接接加減を調節した上で、締付けボルト15の円錐形部15 dに操作レバー18の円錐形孔18 aを嵌合し、ネジ頭部15 cに座付きナット19を螺合して操作レバー18の操作角度を設定した上で締結する。操作レバー18にはノブ22が取り付けられている。

【0020】なお、操作レバー18と締付けボルト15とは円錐形孔18 aと円錐頭部15 bでの嵌合でなく、多角形孔と多角形断面等の異形嵌合で締結してもよい。また、締付けボルト15のネジ部15 aが螺合するナット14に代え、図4に示すように、ナット14を固着すべきホルダー10の奥壁10 aにエンボス又はバーリング突起20を設け、その内周面の孔13 aにネジを形成してボルト15のネジ部15 aを螺合することとしてもよい。

【0021】かくして、アウターチュープ1にインナーチュープ3を挿着した状態で、レスコピックに伸縮するインナーチュープ3のロック機構部を形成するようにしたから、レスコピックステアリング装置の組付け性が良好で、しかも、押圧ブロック17がインナーチュープ3を押圧する力を容易に調整できる。

【0022】

【発明の効果】以上説明したこの発明によれば、ホルダーは一側が開口しているので、その開口から押圧ブロックと楔ブロックとを内奥部に挿入することができるため、アウターチュープにインナーチュープを組み付けた後に押圧ブロックと楔ブロックとをホルダーに組付けることができて組付け性がよい。また、組付け時に押圧ブロックのインナーチュープへの押圧力を調整ができる。

【0023】また、請求項2記載の発明によれば、請求項1記載の効果に加え、インナーチュープの回り止めができる効果が生じる。

【図面の簡単な説明】

【図1】この発明の実施の形態を示すテレスコピックステアリング装置の断面側面図。

【図2】この発明の実施の形態を示すテレスコピックス
テアリング装置の要部底面図。

【図3】図1中A-A断面図。

【図4】締付けボルトが螺合するホルダーの他の例の要部断面図。

【符号の説明】

B…開口部

1...アウターチューブ

2…樹脂ブッシュ

3...インナーチュープ

4...アップペアリング

5…ロアーベアリング

6. アッパーシャフト

7. ハロディー・シナクト

86-吉川ト

8

5, 5a, 5b 補足

- 1 0 … ホルダー
 1 0 a … 奥壁
 1 1 … 溶接部
 1 2 … 傾斜底面
 1 3 … 透孔
 1 3 a … エンボス孔
 1 4 … ナット
 1 5 … 締付けボルト
 1 5 a … ネジ部
 1 5 b … 頭部
 1 5 c … ネジ頭部
 1 5 d … 円錐形部
 1 6 … 横ブロック
 1 6 a … 傾斜下面
 1 6 b … 水平上面
 1 6 c … ボルト挿通孔
 1 7 … 押圧ブロック
 1 7 a … 水平底面
 1 7 b … 突起部
 1 7 c … 弧面
 1 8 … 操作レバー
 1 9 … 座付きナット

[図1]

【図2】

【図3】

【図4】

