

Olimpic Birds Problemas da Semana 4 Física

1 Questão Curta: Aro de cargas

Escrito por Tiago Rocha

Considere um aro tal qual que existam cargas +q e -q coladas uma ao lado da outra de forma alternada (em um número par para não haver carga sobrando). Considerando o limite em que o número de cargas N é tal que $N \to \infty$, calcule o campo elétrico e o potencial elétrico (com o infinito como referência) para uma carga localizada no eixo de simetria do anel. O centro do aro é a origem do nosso eixo de coordenadas e a carga se localiza em uma coordenada z dentro de tal eixo.

Dados:

Raio do aro: R = 0, 50 cm

Constante eletrostática do vácuo: $k_0 = 9,00 \cdot 10^9 \ Nm^2/C^2$

Valor da carga: $q = 1,60 \cdot 10^{-19}$.

 $\pi = 3, 14$

2 Questão Média: Queda de uma esfera em rolamento

Escrito por Guilherme

Uma esfera de raio r e massa m parte do repouso do topo de um hemisfério de raio R que está preso ao chão. Considerando o rolamento da esfera puro (sem deslizamento), determine o ângulo θ em relação a vertical no qual a esfera perde contato com o hemisfério.

3 Questão Longa: Momento e dipolo magnéticos

Escrito por William Alves

Um modelo das propriedades magnéticas dos materiais é baseado em pequenos momentos magnéticos gerados por cada átomo do material. Uma fonte deste momento magnético é o campo gerado pelo elétron em sua órbita ao redor do núcleo. Por simplicidade, assumiremos que cada átomo consiste em um único elétron de carga —e e massa $m_p \gg m_e$, um único próton de carga +e e massa, e que o elétron orbita em uma órbita circular de raio R em torno do próton.

Parte A: Momentos magnéticos

a) Calcule a força eletrostática resultante sobre o elétron a partir do próton. Expresse sua resposta em termos de qualquer um ou todos os seguintes parâmetros: e, m_e , m_p , R e a permissividade do espaço livre, onde

$$\varepsilon_o = \frac{1}{4\pi k}$$

(k é a constante da Lei de Coulomb).

- b) Determine a velocidade angular ω_o do elétron em torno do próton em termos de qualquer um ou todos os seguintes parâmetros: e, m_e , R e ε_o .
- c) Derive uma expressão para a magnitude do campo magnético B_e devido ao orbital movimento do elétron a uma distância $z \gg R$ do plano x-y ao longo do eixo de rotação orbital do elétron. Expresse sua resposta em termos de um ou de todas as seguintes parâmetros: e, m_e , R, ω_o , z, e a permeabilidade do espaço livre μ_o .
- d) Uma pequena barra magnética tem um campo magnético distante do ímã dado por:

$$B = \frac{\mu_o}{2\pi} \frac{m}{z^3}$$

onde z é a distância do ímã no eixo que conecta os polos norte e sul, m é o momento dipolar magnético e μ_o é a permeabilidade do espaço livre. Supondo que um elétron orbitando um próton atue como uma pequena barra magnética, encontre o momento de dipolo m para um elétron orbitando um átomo em termos de qualquer um ou de todos os seguintes parâmetros: e, m_e , R e ω_o .

Parte B: Diamagnetismo

Modelamos uma substância diamagnética para ter todos os átomos orientados de modo que as órbitas dos elétrons estejam em o plano x-y, exatamente metade no sentido horário e metade no sentido anti-horário quando visto do eixo z positivo olhando em direção à origem. Algumas substâncias são predominantemente diamagnéticas.

e) Calcule o momento magnético total de uma substância diamagnética com N átomos. Escreva sua resposta em termos de um ou de todos os seguintes parâmetros: e, m_e , R, N, e μ_o .

- f) Um campo magnético externo $\overrightarrow{B_o} = B_o \widehat{z}$ é aplicado à substância. Suponha que o introdução do campo externo não altera o fato de que o elétron se move em uma órbita circular de raio R. Determine $\Delta \omega_o$, a mudança na velocidade angular de o elétron, tanto para as órbitas no sentido horário quanto no sentido anti-horário. Ao longo deste problema você pode assumir que $\Delta \omega \ll \omega_o$. Escreva sua resposta em termos de apenas e, m_e , e B_o .
- g) Suponha que o campo externo seja ativado a uma taxa constante em um intervalo de tempo Δt . Isto é, quando t=0 o campo externo é zero e quando $t=\Delta t$ o campo externo campo é B_o . Determine a f_{em} induzida ε experimentada pelo elétron. Escreva o seu responda em termos de qualquer um ou todos os seguintes parâmetros: e, m_e , R, N, B_o , ω_o e μ_0 .
- h) Verifique se a mudança na energia cinética do elétron satisfaz $\Delta K = e\varepsilon$. Isto justifica a nossa suposição em (f) de que R não muda.
- i) Determine a mudança no momento magnético total ΔM para os N átomos quando o campo externo é aplicado, escrevendo sua resposta em termos de e, m_e , R, N, μ_o e B_o .
- j) Suponha que o campo magnético uniforme usado nas partes anteriores deste problema é substituído por uma barra magnética. A substância diamagnética seria atraída ou repelido pela barra magnética? Como sua resposta mostra isso?

