SYSTÈMES DE VOTE

1. Raffinement de la méthode de Condorcet

1.1. Paradoxe de Concorcet

Soient A_1, \ldots, A_n , n candidats. Si pour tout $1 \le i \le n : A_i \prec A_{i+1}$ et $A_n \prec A_1$ alors aucun candidat n'est vainqueur par la méthode de CONDORCET.

1.2. Raffinement

Définition 1.1

Plusieurs raffinement possibles :

- Le vainqueur est celui qui gagne le plus de duels (méthode de COPELAND).
- Le vainqueur est celui dont la pire défaite est « meilleure » que celle des autres (méthode minimax).
- On peut appliquer la méthode de Bourda après celle de Condorcet.
- On applique la méthode de Kemeny-Yang (1§).
- On utilise la méthode des paires ordonnées.

2. MÉTHODE DES PAIRES ORDONNÉES

2.1. Rudiments de théorie des graphes

DÉFINITION 2.1

Un graphe fini, G=(V,E), est la donnée :

$$\sum_{j < n} \text{Comp}(C_j, C_{j+1})$$

et on prend le maximum.

^{1§.} Pour chaque ordre possible $C_{i_1} \prec C_{i_2} \prec \ldots \prec C_{i_n}$ avec (i_1, \ldots, i_n) une permutation de $\{1, \ldots, n\}$. On calcule le score comme étant :

- 1. d'un ensemble fini V (ensemble des sommets);
- 2. d'un ensemble $E \subset \mathcal{P}(V \times V)$ (ensemble d'arêtes).

Exemple. —

$$V = \{1,2,3,4\} \; \; ; \; E = \{(1,2),(2,3),(1,3),(1,4)\} \, .$$

DÉFINITION 2.2

Un graphe G=(V,E) est non orienté si pour tous $x,y\in V,\ (x,y)\in E$ implique $(y,x)\in E.$

DÉFINITION 2.3

Soit G = (V, E) un graphe, soit $\{x_1, \ldots, x_n\} = S \subset V$. (x_1, \ldots, x_k) est un *chemin* dans G si pour tout j < k, $(x_j, x_{j+1}) \in E$.

S est un chemin simple si S est un chemin et pour tous $i, j < k, x_i \neq x_j$ si $i \neq j$.

Exemple. —

(1,2,4,3,2) est un chemin, (1,2,4,3) est un chemin simple.

Définition 2.4

S est un cycle (ou circuit) de G si c'est un chemin et $(x_k, x_1) \in E$.

S est un cycle simple si c'est un chemin simple et un cycle.

Remarque. — Les définitions sont plus simples dans le cas de graphes non orientés.

EXEMPLE. — Est un chemin est alors de la forme $x_1 - x_2 - x_3 - x_4 - \dots$

Remarque. — Si G = (V, E) est un graphe orienté, on peut définir son graphe non orienté sous-jacent (appelé aussi symétrisé) de la façon suivante : $\overline{G}=(\overline{V},\overline{E})$ tel que $\overline{V} = V$ et

$$\overline{E} = \{(x, y), (y, x) | (x, y) \in E\}.$$

DÉFINITION 2.5

DEFINITION 2.5 Si \overline{G} est un graphe non orienté. \overline{G} est connexe si pour tous $x, y \in E$ il existe S dans V tel que : 1. $S = \{x_1, \dots, x_n\}$; 2. $x_1 = x$ et $x_k = y$; 3. $(x_i, x_{i+1}) \in \overline{E}$ pour tout i < k.

Définition 2.6

G est connexe si, et seulement si, sont symétrisé \overline{G} est connexe.

Définition 2.7

Soient G = (V, E) et $x \in V$. x est une source si pour tout $y \neq x$ dans V, $(y, x) \notin E$.

Exemple. —

1 est une source.

Définition 2.8

Un graphe G est sans cycle s'il n'admet pas de cycle simple orienté.

Exemple. —

a un cycle (1, 2, 3).

n'a pas de cycle.

Cette propriété dépend donc de l'orientation du graphe.

Proposition 2.9

Si G est fini et acyclique et |E| > 1, alors G a une source.

DÉMONSTRATION

Supposons que G n'a pas de source. Dans ce cas, on montre que G admet un chemin de longueur arbitraire. Soit $k \in \mathbb{N}$ la longueur maximale d'un chemin de G, soit (x_1, \ldots, x_k) un tel chemin.

$$x_1 \longrightarrow x_2 \longrightarrow \dots \longrightarrow x_k$$

G n'a pas de source donc il existe $y \in V$ tel que $(y, x_1) \in E$. Donc (y, x_1, \dots, x_n) est un chemin plus grand.

Comme G est fini et comme G admet des chemins de longueurs plus grandes que son nombre de sommets, G a un cycle.

2.1.1. Pour trouver les cycles

CAS D'UN GRAPHE NON ORIENTÉ. — Dans le cas d'un tel graphe, on élimine petit à petit les sommets ayant au plus un voisin.

Cas orienté. — On se base sur un algorithme de parcours en profondeur.

La version récursive se base sur un système de marquage. On pose G=(V,E). On attribut N pour non marqué, T pour temporairement marqué et M pour marqué.

```
1
   def Parcours (G):
2
            N = V
3
            M = []
            T = []
4
             while len(N)!=0:
5
6
                      x = N[0]
7
                      ParcoursProf(G,x)
8
9
   \mathbf{def} ParcoursProf(G, x):
10
             if found (x,T):
                      return x # il y a une boucle
11
12
             if! found (x,M):
13
                      T.append(x)
14
                      for y in [y for (x,y) in E] \# = V(x):
15
                               ParcoursProf(G, y)
                      M.append(x)
16
17
                      T. remove(x)
18
                      return M
```

Exemple. —

— 1 $\not\in T,\,T=\{1\},\,V(1)=\{2,3\}\,;$ appel de $\mathsf{PProf}(\mathsf{G},\!3)$:

— 3 $\not\in T$ et 3 $\not\in M$, $T=\{1,3\},$ $V(3)=\{5\}$; appel de PProf(G,5) :

— 5 $\not\in T$ et 5 $\not\in M,$ $T=\{1,3,5\},$ $V(5)=\{4,6\}\,;$ appel de $\mathsf{PProf}(\mathsf{G},\!6)$:

— 6 $\not\in$ T et 6 $\not\in$ M, $T=\{1,3,5,6\}$ et $V(6)=\emptyset$; terminé pour 6 car pas de voisin donc $M=\{6\}$ et $T=\{1,3,5\}$:

— PProf(G,4) puisque 5 a deux voisins : $4 \notin T$ et $4 \notin M$, $T = \{1,3,5,4\}$, $V = \{3\}$ donc on appelle PProf(G,3). 3 est marqué donc on sort et on a un cycle.

2.2. Méthode des paires ordonnées (méthode de TIDEMAN)

Exemple. — On a 5 candidats : $C = \{A, B, C, D, E\}$.

Comparaison	Score
A, B	55
B, A	45
A, C	35
C, A	75
B, C	12
C, B	88
C, D	76
D, C	24
C, E	33
E, C	67
A, D	21
D, A	79
A, E	49
E, A	51
B, D	70
D, B	30
B, E	52
E, B	48
D, E	53
E, D	47

Aucun candidat n'est vainqueur de CONDORCET.

Tri des duels :

- 1. C, B: 88
- 2. D, A: 79
- 3. C, D: 76
- 4. C, A: 75
- 5. B, D: 70
- 6. E, C: 67
- 7. A, B: 55
- 8. D, E: 53
- 9. B, E: 52
- 10. E, A: 51

On construit un graphe petit à petit en insérant es sommets par ordre de préférence et en évitant les cycles.

On pose

$$T_0 = \left\{ (c_1, c_2, s) \,\middle|\, c_1, c_2 \in \mathcal{C}, \ s = \text{comp}(c_1, c_2) = \sum_{v \in V} \mathbf{1}_{f(v_1, c_1) > f(v_1, c_2)} \right\}.$$

- 1. Dans T_0 on ne regarde que les triplets tels que $comp(c_1, c_2) > comp(c_2, c_1)$.
- 2. On trie T par ordre décroissant selon la valeur de s. Soit S la suite ordonnée obtenue.
- 3. On construit G de sommets $V = \mathcal{C}$ et d'ensemble d'arêtes $E \subset \{(c_j, d_j) \mid (c_j, d_j, s) \in T\}$ avec E construit par :

Lemme 2.10

Soit G = (V, E) un graphe orienté fini tel que

$$\forall x, y \in V, (x, y) \in E \text{ ou } (y, x) \in E$$

et tel que G n'a pas de cycle.

Alors G a une source unique.

DÉMONSTRATION

Comme G n'a pas de cycle, G a une source.

Soient $x \neq y$ deux sources. Comme G est un tournoi (vérifie la première propriété) alors soit $(x,y) \in E$ soit $(y,x) \in E$ donc ne peut être une source pour l'un des deux.

Corollaire 2.11

La méthode de TIDEMAN produit un et un seul vainqueur.