Entropy

$p_i \log_2$

Conditional Entropy

 $H(X \mid Y) = \sum p(x, y) \log \frac{1}{p(x \mid y)}$

Mutual Information

 $I(X;Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$

x,y

Independence Bound on Entropy

 $H(X_1,...,X_n) \le \sum H(X_i)$

Fano's Inequality

 $1 - H(X \mid Y)$

 $\log |X|$

Data Processing Inequality

If $X \to Y \to Z$ for some transformation \to , then $I(X;Y) \ge I(X;Z)$.

Mutual Information Distance

D(X,Y) = H(X,Y) - I(X;Y)

Kullback-Leibler Distance

 $D_{KL}(p \mid\mid q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$

Markov Process Entropy

Average of the entropy of each state weighted by occupancy probability.