Constituent Parsing as Sequence Labeling

WeiYang **9** 51184506043

weiyang@godweiyang.com

https://godweiyang.com

2019.03.28

Parenthesized String

Seq2Seq

Language Model

$$egin{aligned} P(x,y) &= P(z) \ &= \prod_{t=1}^m P(z_t|z_1,\ldots,z_{t-1}) \ &= \prod_{t=1}^m P(z_t|h_t) \ &= \prod_{t=1}^m softmax(Wh_t)[z_t] \end{aligned}$$

Syntactic Distance

Parsing as Sequence Labeling

Input:

$$w = [w_1, w_2, \dots, w_N]$$

Encode:

$$\Phi_N:T_N\to L^{N-1}$$

Model:

$$F_{N,\theta}:V^N\to L^{N-1}$$

Decode:

$$F_{N, heta}\circ\Phi_N^{-1}$$

Encode

Definition:

$$\Phi_N:T_N o \{(n_i,c_i)|i=1,2,\ldots,N-1\}$$

- n_i : number of common ancestors (CA) between w_i and w_{i+1} .
- c_i : label of their lowest common ancestor (LCA).

Properties of Φ_N :

- Complete.
- Injective.
- *Not* surjective.

Example

Decoding Process

Encoding for k-ary Trees

Proof

Completeness: Obvious. (a) Injectivity:

Parenthesized string:

$$\alpha_0(ullet_1)lpha_1(ullet_2)\dotslpha_{|w|-1}(ullet_{|w|})lpha_{|w|}$$

- Each α_i must be $[)]^*[(X]^*$. So letting $\alpha_i=\alpha_{i)}\alpha_{i(}$, we can get $\alpha_{0)}\alpha_{0(}(\bullet_1)\alpha_{1)}\alpha_{1(}(\bullet_2)\dots(\bullet_{|w|})\alpha_{|w|})\alpha_{|w|}($
- ullet Letting $eta_i=lpha_{i-1(}(ullet_i)lpha_{i)}$, we can get $eta_1eta_2\ldotseta_{|w|}$
- β_i contains only one of $[(X]^*(ullet_i)$ and $(ullet_i)[)]^*$
- Assigning $\delta(eta_i)$ to every eta_i , we can get $\delta(eta_1)\delta(eta_2)\ldots\delta(eta_{|w|-1})$

Limitations

Unary branches:

Nonterminal nodes:

• Leaf nodes:

$$\circ \ \Psi_{|w|}:V^{|w|}
ightarrow U^{|w|}$$

$$\circ \ (n_i, c_i, u_i)$$

Non-surjectivity:

- Sequences with conflicting nonterminals.
- Sequences that produce unary structures.

A Example of Non-surjectivity

Experiments

Model	T-41-3	CPU R	CPU Run		GPU Run	
	Testbed	#Cores	Sents/s	#GPU	Sents/s	
Sequence labeling				ALAMANA		
$MLP_e^{\Psi,\Phi}$	WSJ23	1	501	1	669	74.1
$MLP_e^{\Phi'}$	WSJ23	1	349	1	929	74.8
$\text{BILSTM}_{m=1,e}^{\Psi,\Phi}$	WSJ23	1	148	1	581	88.1
$\text{BILSTM}_{m=1,e}^{\Phi'}$	WSJ23	1	221	1	1016	88.3
$BILSTM_{2}^{\Psi,\Phi}$	WSJ23	1	66	1	434	89.9
BILSTM [®]	WSJ23	1	115	1	780	90.0
Ψ, Φ', e, e BILSTM $_{m=2,e}^{m,\Phi'}$	WSJ23	1	74	1	506	90.0
$_{m=2,e}^{m-2,e}$ BILSTM $_{m=2,e}^{\Phi'}$	WSJ23	1	126	1	898	90.0
Sequence-to-sequence						
3-layer LSTM	WSJ 23	12.574 81				< 70
		Multi-core				
3-layer LSTM + Attention [⋄]	WSJ 23	(number not	120			88.3
(Vinyals et al., 2015)		specified)				
Constituency parsing as dependency parsing						
Fernández-González and Martins (2015)	WSJ23	1	41			90.2
Chart-based parsers						
Charniak (2000)*	WSJ23	1	6			89.5
Petrov and Klein (2007)*	WSJ23	1	6			90.1
Stern et al. (2017)°	WSJ23	16*	20			91.8
Kitaev and Klein (2018)	WSJ23			2	70	95.1
+ELMo (Peters et al., 2018) [⋄]				2	70	93.1
Chart-based parsers with GPU-specific imp					0.2500.00	
Canny et al. (2013) [⋄]	WSJ(<30)			1	250	
Hall et al. $(2014)^{\circ}$	WSJ(<40)			1	404	
Transition-based and other greedy constitue						
Zhu et al. (2013)°	WSJ23	1	101			89.9
Zhu et al. (2013)+Padding ^o	WSJ23	1	90			90.4
Dyer et al. (2016) [▷]	WSJ23	1	17			91.2
Fernández and Gómez-Rodríguez (2018) [⋄]	WSJ23	1	18			91.7
Stern et al. (2017) ^{\dightarrow}	WSJ23	16*	76			91.8
Liu and Zhang (2017)	WSJ23					91.8
Shen et al. (2018)	WSJ23			1	111	91.8

Comparison with Syntactic Distance

- Must be binary trees.
- Top-down recursion.
- Lack theoretical properties which can cause ambiguity (e.g., a sequence of n-1 equal labels in this encoding can represent any binary tree with n leaves).

Other Limitations

High error rate on closing brackets:

Dynamic encodings.

Sparsity:

Decomposition of the label space.

Greedy decoding:

- Auxiliary tasks.
- Policy gradient fine-tuning.

Dynamic Encodings

Replace Φ_N with Ω_N iff:

- $\Omega_N(w_t)=(n_t',c_t',u_t')$ with $n_t'\leq 3$.
- $\Phi_N(w_t)=(n_t,c_t,u_t)$ with $n_t\leq -2$.

Decomposition of the Label Space

Method:

- $ullet (n_t, c_t, u_t) \in L
 ightarrow n_t \in N, c_t \in C, u_t \in U$
- ullet |N| imes |C| imes |U| o |N|+|C|+|U|

Objective:

•
$$\mathcal{L} = \mathcal{L}_n + \mathcal{L}_c + \mathcal{L}_u$$

Hard-sharing architecture:

- $\mathsf{task}_U \to \mathsf{task}_N$ and/or task_C , etc.
- No improvement. 😤

Auxiliary Tasks

Partial labels:

- Predict n_t, \ldots, n_{t+k} at time step t.
- Usually set |k|=1.

Syntactic distances:

Provide different types of contextual information.

Objective:

•
$$\mathcal{L} = \mathcal{L}_n + \mathcal{L}_c + \mathcal{L}_u + \beta \sum_a \mathcal{L}_a$$

Policy Gradient Fine-tuning

Original:

• $\Delta_{ heta} \log \pi(l_t|s_t; heta) R_{tree}$

My viewpoint:

 $tree \in T$

$$ullet \ p(tree; heta) = \prod_{t=1}^{N-1} \pi(l_t|s_t; heta)$$

$$egin{aligned} ullet &
abla_{ heta} L(heta) = \sum_{tree} R_{tree}
abla_{ heta} p(tree; heta) \ &= \sum_{tree} p(tree; heta) R_{tree}
abla_{ heta} \log p(tree; heta) \ &pprox \sum_{tree} R_{tree}
abla_{ heta} \log p(tree; heta) \end{aligned}$$

Policy Gradient Fine-tuning

Variance reduction:

 $egin{aligned} ullet & \Delta_{ heta}(\log \pi(l_t|s_t; heta) + N)(R_{tree} - B_{tree}) \ & + eta \Delta_{ heta} H(\pi(s_t; heta) + N) \end{aligned}$

My viewpoint: ?

 $egin{aligned} ullet &
abla_{ heta}(\log p(tree; heta) + N)(R_{tree} - B_{tree}) \ & + eta \Delta_{ heta} H(p(tree; heta) + N) \end{aligned}$

Experiment

Model	F-score	(+/-)	Sents/s
Gómez and Vilares (2018)	89.70	n u	109
Our baseline	89.77	(+0.07)	111
+ DE	90.22	(+0.52)	111
+ MTL	90.38	(+0.68)	130
$\operatorname{aux}(n_{t+1})$	90.41	(+0.71)	130
$\operatorname{aux}(n_{t-1})$	90.57	(+0.87)	130
aux(distances)	90.55	(+0.85)	130
+ PG	90.70	(+1.00)	130

Comparison

