WFTEM3D2.0

A quick, flexible, and extensible 3D TEM modeling open-source software. Supports wire/loop sources, half/whole-space, and ground/airborne/marine/tunnel/borehole scenarios.

Method

The scheme steps Maxwell's equations in time using a staggered grid and a modified DuFort-Frankel method: First, wires are modeled as volume currents, and the scheme calculates the primary field based on a whole-space homogeneous model; then it calculates the secondary field using the true model. The relevant paper will be provided in subsequent updates.

Installation

This software requires no installation—just run it directly.

Usage

We use the example of **a conductive brick in a half-space** to show how to use WFTEM3D2.0.

1. Edit the input file according to your model.

Example_conductive_brick_in_a_half-space.txt is the input file of the model a
conductive brick in a half-space:

```
##### Comment lines start with #, data is separated by spaces, ',', or ';'.
##### Model description: A 0.1 S/m half-space contains a 2 S/m conductive brick (100 m
\times 40 m \times 30 m)
##### at 30 m depth. Central-loop configuration: 100 m \times 100 m.
##### Number of cells in the x-, y-, and z-directions.
27 25 25
##### Grid size in the x direction (m).
2560 1280 640 320 160 80 40 20 10 10 15 10 10 10 15 10 10 10 10 20 40 80 160 320 640
1280 2560
##### Grid size in the y direction (m).
2560 1280 640 320 160 80 40 20 10 10 15 10 10 15 10 10 20 40 80 160 320 640 1280
##### Grid size in the z direction (m).
5120 2560 1280 640 320 160 80 40 20 10 5 5 10 15 15 15 20 40 80 160 320 640 1280 2560
5120
##### Tx position:
9 9 11 # (x1, y1, z1).
17 17 11 # (x2, y2, z2).
##### Loop source: Aligns with the outer edge of the cells between (x1, y1, z1) and
(x2, y2, z2).
##### Wire source: Aligns with the -x or -y edge of the cells between (x1, y1, z1) and
(x2, y2, z2).
```

```
##### Transmitter depth: at the bottom plane of these cells. Current=1 A.
# To display following graphic correctly, please view in monospaced font (e.g.,
Courier New/Lucida Console).
                          +----+
  +=====+====+
# || x1, y1 |
              |  ||  ||  || x1, y1 |  |  |  |
  +----+ +----+ +----+ +----+ +======+=====+======+
        || |  || |  |  | x1,y1 |
                                                            | x2,y2 |
  +----+
                          +----+
                                                +----+
                                          # || | x2, y2 || |
                             || x2,y2 |
  +======+=====+====+ +-----+ +----+ +-----+
                                                   Wire (if y1=y2)
           Loop
                             Wire (if x1=x2)
##### Rx position:
13 13 1 # Rx along x-direction: start/end/interval.
13 13 1 # Rx along y-direction: start/end/interval.
11 11 1 # Rx along z-direction: start/end/interval.
##### Receivers are located at the centers of the bottom surfaces of these cells.
##### Iteration numbers of primary field and secondary field.
##### Coefficients for calculating time step size of primary field and secondary
field.
0.8 0.8
##### Number of model subdomains.
##### Cells range (x=?-?, y=?-?, z=?-?) and conductivity (?) of each subdomain.
       1 25 1 25 0.1 #Cells range (x=1-27, y=1-25, z=1-25) and
conductivity (0.1 \text{ S/m}) of the background.
       1
          25
                1
                     11
                          0.0003 #Cells range (x=1-27, y=1-25, z=1-11) and
conductivity (0.0003 \text{ S/m}) of the air.
   19 9 17 15 16 2 #Cells range (x=16-19, y=9-17, z=15-16) and
conductivity (2 S/m) of the conductive brick.
```

2. Run the program.

First, double-click **WFTEM3D2.0.exe**, then enter the input filename, and press Enter to start the calculation.

3. View calculation results.

Results (dBz/dt at every time instants) will be output automatically when the calculation is finished. There are three output files:

• Result_time.txt

The time instants are saved in this file. The example is shown as follows:

```
1.2286042e-08
1.5792647e-08
...
1.0299405e-02
1.0302622e-02
```

The unit of time is s.

Result_dBz.txt

The dBz/dt at receivers are saved in this file. The example is shown as follows:

```
-1.0170416e-04
-1.0553606e-04
...
-4.7702894e-10
-4.7667189e-10
```

The unit of dBz/dt is V/Am^2.

For multiple receivers, each as a column, the columns are arranged from left to right in the following order: the x-direction varies first, followed by the y-direction, and then the z-direction, e.g., (1,1,1), (2,1,1), (1,2,1), (2,2,1), (1,1,2), (2,1,2), (1,2,2), (2,2,2).

• Run_time.txt

The run time is saved in this file. The example is shown as follows:

```
Computation finished. Run-time is 1.09375000000000 s.
```

Contributing

Pull requests are welcome. We expect contributions via email with the corresponding author (email: figo1@163.com).