Jupyter notebook export, anonymized and output/print partly truncated

Table of Contents

- 1 Introduction
- 2 Library Imports
- 3 Data
 - o 3.1 Demographics File
 - 3.1.1 Data Import and Exploration
 - o 3.2 Merchants File
 - 3.2.1 Data Import and Exploration
 - o 3.3 Transactions File
 - 3.3.1 Data Import and Exploration
 - 3.3.2 Merge Data with Merchants
 - 3.3.3 Merge Demographics with Data
 - 3.3.4 Aggregate Transaction Data
 - 3.3.5 Merge Demographics with aggregated Transaction Data
 - o 3.4 Feature Analysis
 - 3.4.1 Missing Values
 - 3.4.2 Flag_Last_6_Month Distribution
 - 3.4.3 Correlations
 - 3.4.4 Data Preprocessing
 - 3.4.4.1 Drop Columns with unique values
 - 3.4.4.2 Bad_Pay_Count
 - 3.4.4.3 Tac_Id
 - 3.4.4.4 Ind_Age, Ind_Birth_Dt and Cust_Seg_Id
 - 3.4.4.5 Subs_Stat_Id
 - 3.4.4.6 Subs_Age_Months
 - 3.4.4.7 Stack_Typ_Id
 - 3.4.4.8 List_Recurring_Chrg_Amt, Actual_Recurring_Chrg_Amt
 - 3.4.4.9 Hectare_Cell_Coordinate
 - 3.4.4.10 Prod_Id
 - 3.4.4.11 Reg_Relevant_Flag
 - 3.4.4.12 Prod_Item_Typ_Id
 - 3.4.4.13 Price_Typ_Id
 - 3.4.4.14 Ind_Gender
 - 3.4.4.15 Ind_Nationality_Code
 - 3.4.4.16 Written_Language_Code
 - 3.4.4.17 Oral_Language_Code
 - 3.4.5 Outlier Detection
 - o 3.5 Feature Engineering
 - 3.5.1 Mobile Provider Code
 - 3.5.2 Months since Start Date
 - 3.5.3 Monthly Expenditure Ratio
 - 3.5.4 One-hot-encoding
 - 3.5.5 Binary Encoding
- 4 Modeling
 - o 4.1 Preparation
 - o 4.2 Basic Models
 - o 4.3 Handling Class Imbalance
 - 4.3.1 Class Weight / Cost Function
 - 4.3.2 Down-Sampling
 - 4.3.3 SMOTE
- 4.4 Hyperparameter Tuning
- 5 Evaluation
 - o 5.1 Confusion Matrix
 - o 5.2 Precision and Recall
 - o 5.3 F-Score
 - o 5.4 ROC AUC
 - 5.4.1 ROC AUC Curve
 - 5.4.2 ROC AUC Score

Introduction

See project desc

Library Imports

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import time
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.filterwarnings('always') # "error", "ignore", "always", "default", "module" or "once"
import category encoders as ce
from pprint import pprint
from collections import Counter
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train test split
from sklearn.model selection import GridSearchCV
from sklearn.preprocessing import Imputer
from sklearn.impute import SimpleImputer
from sklearn.decomposition import PCA
from sklearn.linear model import LogisticRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.model selection import cross val score, KFold, StratifiedKFold
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.metrics import accuracy score, classification report, f1 score, confusion matrix, recall score
from sklearn.pipeline import Pipeline, make pipeline
from imblearn.over_sampling import SMOTE
from sklearn.utils import resample
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, ExtraTreesClassifier, VotingClassifier
from sklearn.discriminant analysis import LinearDiscriminantAnalysis
from sklearn.neural network import MLPClassifier
from sklearn.model selection import GridSearchCV, cross val score, StratifiedKFold, learning curve
```

In []:

In [227]:

Data

df demo.head()

Demographics File

File contains information on mobile pay users

Data Import and Exploration

```
# ISO encoding for special characters
# Skip columns with obviously irrelevant data (IDs, etc.)
pd.options.display.max_columns = 100

df_demo = pd.read_csv('data/R_demographics.csv', encoding='ISO-8859-1', low_memory=False, skipinitialspace=True, usecols=lambda column : column not in
["Subs_Asset_Id", "End_Dt", "Subs_Id", "Cust_Owner_Id", "Cust_Bill_Id", "Cust_Used_Id", "Bill_Prof_Id", "Subs_Age_Days",
"Prod_Short_Desc", "Prod_Long_Desc", "Party_Id", "Scs_Customer_Id", "Master_Party_Id", "Top_Party_Id", "Top_Scs_Customer_Id",
"Cust_Name", "Bill_Prof_Ind", "Party_Cust_Id", "Party_Cust_Src_Id", "Rmc_Exvko", "Actual_Rmc_Laufd", "Actual_Rmc_Step",
"Actual_Rmc_Step_Last", "Rmc_Vkont", "First_Rmc_Step_No_Pay", "First_Rmc_Step_Last_No_Pay", "Last_Rmc_Step_No_Pay", "Last_Rmc_Step_Last_No_Pay"])
```

Out[3]: Co_Nplay_ Start Subs_St Subscr_St Subscr_St Tac_I Stack_T List_Recurring Actual_Recurrin Subs_Age_ Pro Reg_Relev Prod_Item Price_T Prod_T Cust_S Cust_Cl Party_T Cust_Hier_ Ind_Ge Ind_Bir Ind_ Ind_National Written_Lang Ora Typ_Id | _Dt | at_Id | nce_Dt d yp_Id _Chrg_Amt g_Chrg_Amt **Months** d_Id ant_Flag _Typ_Id yp_Id | yp_Id | eg_Id | ass_Id | yp_Id Typ_Id nder th_Dt | Age | ity_Code uage_Code 2019 ACTIVA 2011-03-3560 1997-Recurri Invento 69.0 69.0 2E1 Y 1203 22.0 CH DE DE 0 1PMoPost | -03-97 Bundle Ind Master TED 02 8109 03-11 ry WT 16

In [3]:

```
# Remove leading and trailing spaces

df_demo = df_demo.apply(lambda x: x.str.strip() if x.dtype == "object" else x)

In [5]:

df_demo.shape

(515211, 34)

In [6]:
```

df demo.info() RangeIndex: 515211 entries, 0 to 515210 Data columns (total 34 columns): Main Phone Num 515211 non-null int64 Co Nplay Typ Id 515211 non-null object Start Dt 515211 non-null object Subs Stat Id 515211 non-null object Subscr Since Dt 515211 non-null object Tac Id 515211 non-null object Stack_Typ_Id 515211 non-null object Hectare Cell X Coordinate 515211 non-null int64 Hectare Cell Y Coordinate 515211 non-null int64 List Recurring Chrg Amt 515211 non-null float64 Actual Recurring Chrg Amt 515211 non-null float64 Subs Age Months 515211 non-null int64 Prod Id 515211 non-null object

```
Reg Relevant Flag
                             515211 non-null object
Prod Item Typ Id
                             515211 non-null object
                             515211 non-null object
Price Typ Id
                             515211 non-null object
Prod Typ Id
Cust_Seg_Id
                             515211 non-null int64
Cust_Class_Id
                             515211 non-null object
Party_Typ_Id
                             515211 non-null object
                             515211 non-null object
Cust Hier Typ Id
Ind Gender
                             515211 non-null object
Ind Birth Dt
                             515211 non-null object
Ind Age
                             515130 non-null float64
Ind Nationality Code
                             515209 non-null object
Written_Language_Code
                             515211 non-null object
Oral Language Code
                             515211 non-null object
Cust_Lifecycle_Stat_Id
                             515211 non-null object
Cust_Lifecycle_Typ_Id
                             515211 non-null object
Cust Stat Id
                             515211 non-null object
First No Pay Dt
                             7798 non-null object
Last no pay Dt
                             7798 non-null object
Bad Pay Count
                             7798 non-null float64
Flag Last 6 Month
                             7798 non-null float64
dtypes: float64(5), int64(5), object(24)
memory usage: 133.6+ MB
```

Merchants File

File contains additional information for every merchant

Data Import and Exploration

```
In [7]:
df_mer = pd.read_csv('data/MerchantKey_work.csv', encoding='ISO-8859-1', low_memory=False, skipinitialspace=True)
df_mer.head()
```

	MERCHANTNAME	MERCHANTLOCALE	MERCHANT_PAYMENT_TYPE
0	NATEL	PPT01	NATEL

```
df_mer.shape
(595, 3)
df_mer.info()
```

Data columns (total 3 columns):

MERCHANTNAME 595 non-null object

MERCHANTLOCALE 595 non-null object

MERCHANT PAYMENT TYPE 595 non-null object

RangeIndex: 595 entries, 0 to 594

dtypes: object(3)
memory usage: 14.0+ KB

Out[8]:

Out[7]:

In [8]:

In [9]:

In [10]:

```
# Remove leading and trailing spaces
df mer = df mer.apply(lambda x: x.str.strip() if x.dtype == "object" else x)
# Check columns for NULL value
df mer.isna().sum()
MERCHANTNAME
                         0
                         0
MERCHANTLOCALE
MERCHANT_PAYMENT_TYPE
dtype: int64
pprint(df_mer['MERCHANTLOCALE'].value_counts(dropna = False))
          2
MEC02
FQC003
          2
          2
CNC005
          2
MNC01
          2
TPC001
MEC03
          2
KIT01
          2
FQC001
          2
SHC001
          2
BMC001
          2
MEC01
          2
YBR001
          2
ZVC01
          2
          2
VBC01
ZZC01
          2
          2
BTC001
          2
AXC01
          2
STC01
          2
СН
          1
AFC016
ECC003
          1
SIC610
          1
          1
IS
SIC16
          1
SIC163
          1
EGC102
AFC011
          1
EVC046
          1
SIC81
          1
AMT01
          1
Name: MERCHANTLOCALE, Length: 576, dtype: int64
```

Finding:

- Duplicate rows for same MERCHANTLOCALE -> drop duplicates
- Merchants have more than one MERCHANTLOCALE code, e.g. SIC164, SIC22 -> Create new feature company code only

```
# Check out duplicate MERCHANTLOCALE
df_mer.loc[(df_mer['MERCHANTLOCALE'] == 'AXC01')]
```

In [13]:

In [11]:

Out[11]:

In [12]:

Out[13]:

	MERCHANTNAME	MERCHANTLOCALE	MERCHANT_PAYMENT_TYPE	
94	E_pay: Ax	AXC01	E_pay	
184	E_pay: Ax	AXC01	E_pay	

```
# Drop duplicate MERCHANTLOCALE rows
df mer = df mer.drop duplicates(subset='MERCHANTLOCALE', keep='first')
pprint(df_mer['MERCHANTLOCALE'].value_counts(dropna = False))
SPC09
EVC025
          1
CAC01
          1
SIC81
SIC163
SIC16
          1
IS
SIC610
ECC003
EGC111
SIC153
ECC611
SIC205
          1
EGC26
          1
MOC010
          1
SYT01
          1
EVC64
VMC001
          1
SIC158
          1
EVC022
AFC015
SIC041
          1
SIC120
          1
          1
SIC04
SPC019
MAC60
MOC013
SIC51
          1
IDC03
GIC001
Name: MERCHANTLOCALE, Length: 576, dtype: int64
# MERCHANT_PAYMENT_TYPE: Replace blanks with _ (for one-hot_encoding later)
df_mer['MERCHANT_PAYMENT_TYPE'] = df_mer['MERCHANT_PAYMENT_TYPE'].str.replace(" ", "_")
```

Transactions File

File contains all mobile pay transactions

Data Import and Exploration

```
# ISO encoding for special characters
# NF_MERCHANT was created in R, it groups Merchant Keys (e.g. AIT01, AIT02 = AIT)
```

In [14]:

In [15]:

In [16]:

```
df_data = pd.read_csv('data/R_data.csv', encoding='ISO-8859-1', low_memory=False, skipinitialspace=True)
df_data.head()
```

	ODI_MSISDN	ODI_MERCHANT_KEY	GROSS_PRICE_AMT	REV_EFF_TS	NF_MERCHANT
0	4179	GG	4.9	2017-11-26 00:00:00.0000000	GG

```
df data.shape
(28050941, 5)
df data.info()
RangeIndex: 28050941 entries, 0 to 28050940
Data columns (total 5 columns):
ODI MSISDN
                    object
ODI_MERCHANT_KEY
                   object
GROSS PRICE AMT
                    float64
REV_EFF_TS
                    object
NF_MERCHANT
                    object
dtypes: float64(1), object(4)
memory usage: 1.0+ GB
# Remove leading and trailing spaces
df data = df data.apply(lambda x: x.str.strip() if x.dtype == "object" else x)
 # Check columns for NULL value
df data.isna().sum()
ODI MSISDN
                    251530
ODI MERCHANT KEY
                        0
GROSS PRICE AMT
REV EFF TS
                        0
NF MERCHANT
dtype: int64
```

Finding:

Drop rows without ODI_MSISDN (mobile no.) as they cannot be matched with demographics -> these rows belong to Netflix transactions

```
# Drop rows ODI_MSISDN = NULL
df_data_stats = df_data
df_data = df_data.dropna(subset=['ODI_MSISDN'])

rows_dropped = df_data_stats.shape[0] - df_data.shape[0]
pprint('No. of dropped rows: ' + str(rows_dropped))
'No. of dropped rows: 251530'

# Transactions with amount = 0?
df_data.loc[(df_data['GROSS_PRICE_AMT'] == 0.0)]
```

Out[16]:

In [17]:

Out[17]:

In [18]:

In [19]:

In [20]:

Out[20]:

In [21]:

In [22]:

Out[22]:

	ODI_MERCHANT_KEY	GROSS_PRICE_AMT	REV_EFF_TS	NF_MERCHANT
6780	UNKNOWN	0.0	2017-06-30 00:00:00.00000000	UNKNOWN
6791	UNKNOWN	0.0	2017-06-30 00:00:00.00000000	UNKNOWN
6802	UNKNOWN	0.0	2017-06-30 00:00:00.00000000	UNKNOWN
6811	UNKNOWN	0.0	2017-06-30 00:00:00.00000000	UNKNOWN
6821	UNKNOWN	0.0	2017-06-30 00:00:00.00000000	UNKNOWN
6833	UNKNOWN	0.0	2017-06-30 00:00:00.00000000	UNKNOWN
6847	UNKNOWN	0.0	2017-06-30 00:00:00.00000000	UNKNOWN
6859	UNKNOWN	0.0	2017-06-30 00:00:00.00000000	UNKNOWN
6872	UNKNOWN	0.0	2017-06-30 00:00:00.00000000	UNKNOWN
6882	UNKNOWN	0.0	2017-06-30 00:00:00.00000000	UNKNOWN
6896	UNKNOWN	0.0	2017-06-30 00:00:00.00000000	UNKNOWN
6911	UNKNOWN	0.0	2017-06-30 00:00:00.00000000	UNKNOWN
6920	UNKNOWN	0.0	2017-06-30 00:00:00.00000000	UNKNOWN

1423321 rows × 5 columns

Transactions with amount < 0 (credit notes)?
df_data.loc[(df_data['GROSS_PRICE_AMT'] < 0.0)]</pre>

	ODI_MERCHANT_KEY	GROSS_PRICE_AMT	REV_EFF_TS	NF_MERCHANT
7408	CHT03	-1.00	2017-06-15 00:00:00.0000000	СНТ
12023	UNKNOWN	-1.77	2017-06-30 00:00:00.00000000	UNKNOWN
12039	UNKNOWN	-1.77	2017-06-30 00:00:00.00000000	UNKNOWN
12163	UNKNOWN	-1.77	2017-06-30 00:00:00.00000000	UNKNOWN
12197	UNKNOWN	-1.77	2017-06-30 00:00:00.00000000	UNKNOWN
12204	UNKNOWN	-1.77	2017-06-30 00:00:00.00000000	UNKNOWN
12344	UNKNOWN	-1.77	2017-06-30 00:00:00.00000000	UNKNOWN
12348	UNKNOWN	-1.77	2017-06-30 00:00:00.00000000	UNKNOWN
12357	UNKNOWN	-1.77	2017-06-30 00:00:00.00000000	UNKNOWN
12404	UNKNOWN	-1.77	2017-06-30 00:00:00.00000000	UNKNOWN
12512	UNKNOWN	-1.77	2017-06-30 00:00:00.00000000	UNKNOWN
12546	UNKNOWN	-1.77	2017-06-30 00:00:00.00000000	UNKNOWN
12566	UNKNOWN	-1.77	2017-06-30 00:00:00.00000000	UNKNOWN
12582	UNKNOWN	-1.77	2017-06-30 00:00:00.00000000	UNKNOWN
36576	CHT03	-1.00	2017-06-05 00:00:00.0000000	СНТ
41130	CHT03	-2.50	2017-07-09 00:00:00.0000000	СНТ

78237 rows × 5 columns

Check out random customer
df_data.loc[(df_data['ODI_MSISDN'] == '417XXXXXXXX')]

	ODI_MERCHANT_KEY	GROSS_PRICE_AMT	REV_EFF_TS	NF_MERCHANT
12023	UNKNOWN	-1.77	2017-06-30 00:00:00.00000000	UNKNOWN
289302	UNKNOWN	7.36	2017-06-30 00:00:00.00000000	UNKNOWN
8527237	UNKNOWN	0.80	2017-05-31 00:00:00.0000000	UNKNOWN

In [23]:

Out[23]:

In [24]:

Out[24]:

	ODI_MERCHANT_KEY	GROSS_PRICE_AMT	REV_EFF_TS	NF_MERCHANT
9082586	UNKNOWN	40.00	2017-05-31 00:00:00.0000000	UNKNOWN
9190511	UNKNOWN	-40.00	2017-05-31 00:00:00.0000000	UNKNOWN
9224074	UNKNOWN	53.23	2017-05-31 00:00:00.0000000	UNKNOWN
9411566	UNKNOWN	-53.23	2017-05-31 00:00:00.0000000	UNKNOWN
9789573	UNKNOWN	3.84	2017-05-31 00:00:00.0000000	UNKNOWN
11231900	UNKNOWN	0.50	2017-06-29 00:00:00.0000000	UNKNOWN
11315517	UNKNOWN	0.10	2017-06-29 00:00:00.0000000	UNKNOWN
11356499	UNKNOWN	0.80	2017-06-29 00:00:00.0000000	UNKNOWN
11359913	UNKNOWN	3.00	2017-06-29 00:00:00.0000000	UNKNOWN
11480484	UNKNOWN	7.36	2017-06-29 00:00:00.0000000	UNKNOWN
19600787	UNKNOWN	0.00	2017-05-31 00:00:00.0000000	UNKNOWN
19600964	UNKNOWN	0.00	2017-05-31 00:00:00.0000000	UNKNOWN
19603670	UNKNOWN	0.00	2017-05-31 00:00:00.0000000	UNKNOWN

Finding:

- GROSS_PRICE_AMT = 0.0 looks like useless data -> drop rows
- GROSS_PRICE_AMT < 0.0 must be kept (credit notes)
- Looks like lots of duplicates!! -> same mobile no., merchant, amount and date. Unfortunately no transaction ID or transaction timestamp is available to clearly identify duplicates. Considering the large amount of transaction data I will drop what looks like duplicates

```
# Drop duplicate transaction rows
df_data_stats = df_data

df_data = df_data.drop_duplicates(subset=['ODI_MSISDN', 'ODI_MERCHANT_KEY', 'GROSS_PRICE_AMT', 'REV_EFF_TS'], keep='first')
rows_dropped = df_data_stats.shape[0] - df_data.shape[0]

pprint('No. of dropped rows: ' + str(rows_dropped))
'No. of dropped rows: 4003896'

# Check out random customer
df_data.loc[(df_data['ODI_MSISDN'] == '417XXXXXXXX')].sort_values(by='REV_EFF_TS', ascending=False)
```

	ODI_MERCHANT_KEY	GROSS_PRICE_AMT	REV_EFF_TS	NF_MERCHANT
22131355	GG	1.0	2019-03-20 00:00:00.00000000	GG
22158762	GG	2.0	2019-03-20 00:00:00.00000000	GG
17668078	GG	20.0	2019-03-01 00:00:00.0000000	GG
18182482	GG	1.0	2019-03-01 00:00:00.0000000	GG
17674664	GG	9.9	2019-03-01 00:00:00.0000000	GG
17131414	GG	6.0	2019-02-28 00:00:00.0000000	GG
16811975	GG	2.0	2019-02-28 00:00:00.0000000	GG
15982897	GG	9.9	2019-02-28 00:00:00.0000000	GG
15982625	GG	20.0	2019-02-28 00:00:00.0000000	GG
14991186	GG	9.9	2019-02-27 00:00:00.0000000	GG
14990824	GG	20.0	2019-02-27 00:00:00.0000000	GG
15852877	GG	6.9	2019-02-27 00:00:00.0000000	GG

Out[26]:

In [26]:

In [25]:

	ODI_MERCHANT_KEY	GROSS_PRICE_AMT	REV_EFF_TS	NF_MERCHANT
14989206	GG	6.9	2019-02-26 00:00:00.0000000	GG
14118947	GG	9.9	2019-02-26 00:00:00.0000000	GG

226 rows × 5 columns

```
# Drop rows GROSS_PRICE_AMT = 0.0
df_data_stats = df_data

df_data = df_data.drop(df_data[(df_data.GROSS_PRICE_AMT == 0.0)].index)
rows_dropped = df_data_stats.shape[0] - df_data.shape[0]

pprint('No. of dropped rows: ' + str(rows_dropped))
'No. of dropped rows: 307592'

# UNKNOWN mobile no.
df_data.loc[(df_data['ODI_MSISDN'] == 'UNKNOWN')]
```

	ODI_MSISDN	ODI_MERCHANT_KEY	GROSS_PRICE_AMT	REV_EFF_TS	NF_MERCHANT
61795	UNKNOWN	UNKNOWN	69.80	2018-08-01 00:00:00.0000000	UNKNOWN
67425	UNKNOWN	UNKNOWN	54.80	2018-08-01 00:00:00.0000000	UNKNOWN
118979	UNKNOWN	UNKNOWN	-5.00	2018-08-01 00:00:00.0000000	UNKNOWN
182694	UNKNOWN	UNKNOWN	69.00	2018-08-01 00:00:00.0000000	UNKNOWN
214879	UNKNOWN	UNKNOWN	9.00	2018-08-01 00:00:00.0000000	UNKNOWN
263241	UNKNOWN	UNKNOWN	29.80	2018-08-01 00:00:00.0000000	UNKNOWN
263254	UNKNOWN	UNKNOWN	0.10	2018-08-01 00:00:00.0000000	UNKNOWN
288022	UNKNOWN	UNKNOWN	0.50	2018-08-01 00:00:00.0000000	UNKNOWN
288033	UNKNOWN	UNKNOWN	0.30	2018-08-01 00:00:00.0000000	UNKNOWN
295711	UNKNOWN	UNKNOWN	0.20	2018-08-01 00:00:00.0000000	UNKNOWN
314687	UNKNOWN	UNKNOWN	0.60	2018-08-01 00:00:00.0000000	UNKNOWN

2613 rows × 5 columns

Finding:

Drop 'UNKNOWN' rows as they cannot be matched to any mobile subscribers

```
# Drop 'UNKNOWN' rows
df_data_stats = df_data

df_data = df_data.drop(df_data[(df_data.ODI_MSISDN =='UNKNOWN')].index)
rows_dropped = df_data_stats.shape[0] - df_data.shape[0]

pprint('No. of dropped rows: ' + str(rows_dropped))
'No. of dropped rows: 2613'

# Convert data types
df_data['ODI_MSISDN'] = df_data.ODI_MSISDN.astype(int) # to match data type of demographics file
df_data['REV_EFF_TS'] = pd.to_datetime(df_data['REV_EFF_TS']) # for calculations later
```

In [27]:

In [28]:

Out[28]:

In [29]:

In [30]:

Merge Data with Merchants

	ODI_MERCHANT_KEY	GROSS_PRICE_AMT	REV_EFF_TS	NF_MERCHANT	MERCHANT_PAYMENT_TYPE
0	GG	4.9	2017-11-26	GG	N_Pay
1	AIT01	3.0	2018-05-14	AIT	N_Pay
2	AIT01	1.0	2018-03-30	AIT	N_Pay
3	AIT01	12.9	2017-09-22	AIT	N_Pay
4	GG	3.0	2017-11-08	GG	N_Pay

```
# Temp Backup
df_data_mer_backup = df_data_mer.copy()

# Closer look at unknown ODI_MERCHANT_KEY
df_data_mer.loc[(df_data_mer['ODI_MERCHANT_KEY'] == 'UNKNOWN')]
```

	ODI_MERCHANT_KEY	GROSS_PRICE_AMT	REV_EFF_TS	NF_MERCHANT	MERCHANT_PAYMENT_TYPE
9871	UNKNOWN	4.86	2017-06-30	UNKNOWN	NaN
9880	UNKNOWN	12.00	2017-06-30	UNKNOWN	NaN
9888	UNKNOWN	4.59	2017-06-30	UNKNOWN	NaN
9894	UNKNOWN	2.10	2017-06-30	UNKNOWN	NaN
9898	UNKNOWN	12.00	2017-06-30	UNKNOWN	NaN
9902	UNKNOWN	4.59	2017-06-30	UNKNOWN	NaN
9910	UNKNOWN	4.59	2017-06-30	UNKNOWN	NaN
9914	UNKNOWN	3.80	2017-06-30	UNKNOWN	NaN
9923	UNKNOWN	4.59	2017-06-30	UNKNOWN	NaN
9930	UNKNOWN	4.86	2017-06-30	UNKNOWN	NaN
9935	UNKNOWN	4.59	2017-06-30	UNKNOWN	NaN

722969 rows × 6 columns

Finding:

Keep rows ODI_MERCHANT_KEY = UNKNOWN, change MERCHANT_PAYMENT_TYPE from NaN to UNKNOWN

```
# Change MERCHANT_PAYMENT_TYPE
df_data_mer['MERCHANT_PAYMENT_TYPE'].fillna('UNKNOWN', inplace = True)
```

In [31]:

Out[31]:

In [32]:

In [33]:

Out[33]:

In [34]:

```
In [35]:
```

Out[35]:

Check columns for NULL value

Merge Demographics with Data

```
# Merge Demographics with Data

mrg_demo_data = df_demo.merge(df_data_mer, left_on='Main_Phone_Num', right_on='ODI_MSISDN', how='inner')
mrg_demo_data = mrg_demo_data.drop('ODI_MSISDN', 1)

mrg_demo_data.head()
```

Out[36]:

Co_Npla y_Typ_I d	Sta rt_ Dt	Subs_ Stat_I d	Subscr_ Since_D t	Tac_ Id	Stack_ Typ_I d	List_Recurri ng_Chrg_Am t	Actual_Recur ring_Chrg_Am t	Subs_Ag e_Month s	Pro d_I d	Reg_Rele vant_Fla g	Prod_Ite m_Typ_I d	Price_ Typ_I d	Prod_ Typ_I d	Cust_ Seg_I d	Cust_C lass_I d	Party_ Typ_I d	Cust_Hie r_Typ_Id	Ind_G ende r	Ind_Bi rth_Dt	Ind _Ag e	Ind_Natio nality_Cod e	Written_La nguage_Cod e	Oral_Lang uage_Cod e	Cust_Lifec ycle_Stat_I d	Cust_Lifec ycle_Typ_I d	Cust_ Stat_I d
1PMoPo		ACTIV ATED		3560 8109		69.0	69.0	97	5- 2E1 WT	Y	Bundle	Recurr	Invent	1203	E	Ind	Master	F	1997- 03-11	22. 0	СН	DE	DE	Current Customer	Current	Active
1 1PMoPo		ACTIV ATED		3560 8109		69.0	69.0	97	5- 2E1 WT	Y	Bundle	Recurr	Invent	1203	Е	Ind	Master	F	1997- 03-11	22. 0	СН	DE	DE	Current Customer	Current	Active
1PMoPo		ACTIV ATED		3560 8109		69.0	69.0	97	5- 2E1 WT	Y	Bundle	Recurr	Invent	1203	Е	Ind	Master	F	1997- 03-11	22. 0	СН	DE	DE	Current Customer	Current	Active
a 1PMoPo		ACTIV ATED		3560 8109	N	69.0	69.0	97	5- 2E1 WT	Y	Bundle	Recurr	Invent	1203	Е	Ind	Master	F	1997- 03-11	22. 0	СН	DE	DE	Current Customer	Current	Active
1PMoPo		ACTIV ATED		3560 8109		69.0	69.0	97	5- 2E1 WT	Y	Bundle	Recurr	Invent	1203	E	Ind	Master	F	1997- 03-11	22. 0	СН	DE	DE	Current Customer	Current	Active

Aggregate Transaction Data

In [37]: # Create new features based on aggregation of transaction data

In [36]:

Main_Phone_Num	GROS	S_PRICE	E_AM7	Γ	REV_E	FF_TS
count	mean	sum	max	min	max	min
22	5.159091	113.50	11.7	2.0	2019-02-06	2017-07-08
187	2.892246	540.85	8.0	1.0	2019-03-22	2017-04-12
3	8.333333	25.00	10.0	5.0	2018-09-18	2018-02-23
1	5.200000	5.20	5.2	5.2	2019-03-25	2019-03-25
23	6.000000	138.00	6.0	6.0	2019-03-12	2017-04-13

Note:

In case customer has a credit note GROSS_PRICE_AMT_min will be negativ (<0). It might make more sense to use the min positive amount but will leave it for now

Add aggregate features to dataframe
mrg_agg.columns = ['_'.join(col) for col in mrg_agg.columns]
mrg_agg.head()

Main_Phone_Num_count	GROSS_PRICE_AMT_mean	GROSS_PRICE_AMT_sum	GROSS_PRICE_AMT_max	GROSS_PRICE_AMT_min	REV_EFF_TS_max	REV_EFF_TS_min
22	5.159091	113.50	11.7	2.0	2019-02-06	2017-07-08
187	2.892246	540.85	8.0	1.0	2019-03-22	2017-04-12
3	8.333333	25.00	10.0	5.0	2018-09-18	2018-02-23
1	5.200000	5.20	5.2	5.2	2019-03-25	2019-03-25
23	6.000000	138.00	6.0	6.0	2019-03-12	2017-04-13

mrg_agg['GROSS_PRICE_AMT_mean'] = mrg_agg['GROSS_PRICE_AMT_mean'].round(decimals=4)

Rename Main_Phone_Num_count
mrg_agg.rename(columns={"Main_Phone_Num_count": "NF_Num_Transactions"}, inplace=True)
mrg_agg.head()

NF_Num_Transactions	GROSS_PRICE_AMT_mean	GROSS_PRICE_AMT_sum	GROSS_PRICE_AMT_max	GROSS_PRICE_AMT_min	REV_EFF_TS_max	REV_EFF_TS_min
22	5.1591	113.50	11.7	2.0	2019-02-06	2017-07-08
187	2.8922	540.85	8.0	1.0	2019-03-22	2017-04-12
3	8.3333	25.00	10.0	5.0	2018-09-18	2018-02-23
1	5.2000	5.20	5.2	5.2	2019-03-25	2019-03-25
23	6.0000	138.00	6.0	6.0	2019-03-12	2017-04-13

Create MERCHANT_PAYMENT_TYPE Feature (proper one-hot-encoding will be done later)

mrg_agg = mrg_agg.join(pd.crosstab(mrg_demo_data['Main_Phone_Num'], mrg_demo_data['MERCHANT_PAYMENT_TYPE'], dropna=False).add_prefix('HAS_')).reset_index()
mrg_agg.head()

	NF_Num_Transactions	GROSS_PRICE_AMT_mean	GROSS_PRICE_AMT_sum	GROSS_PRICE_AMT_max	GROSS_PRICE_AMT_min	REV_EFF_TS_max	REV_EFF_TS_min	HAS_E_pay	HAS_N_Pay	HAS_UNKNOWN
0	22	5.1591	113.50	11.7	2.0	2019-02-06	2017-07-08	22	0	0

Out[37]:

In [38]:

Out[38]:

In [39]:

In [40]:

Out[40]:

In [41]:

Out[41]:

NF_Num_Transactions	GROSS_PRICE_AMT_mean	GROSS_PRICE_AMT_sum	GROSS_PRICE_AMT_max	GROSS_PRICE_AMT_min	REV_EFF_TS_max	REV_EFF_TS_min	HAS_E_pay	HAS_N_Pay	HAS_UNKNOWN
1 187	2.8922	540.85	8.0	1.0	2019-03-22	2017-04-12	0	187	0
2 3	8.3333	25.00	10.0	5.0	2018-09-18	2018-02-23	0	3	0
3 1	5.2000	5.20	5.2	5.2	2019-03-25	2019-03-25	0	1	0
4 23	6.0000	138.00	6.0	6.0	2019-03-12	2017-04-13	0	23	0

In [42]:

Create one-hot-encoding for merchants (did mobile user purchase from merchant XYZ?)

#mrg_agg = mrg_agg.join(pd.crosstab(mrg_demo_data['Main_Phone_Num'], mrg_demo_data['NF_MERCHANT'], dropna=False).add_prefix('HAS_COMP_')).reset_index()

#mrg_agg.head(20)

Merge Demographics with aggregated Transaction Data

Merge Demographics with aggregated Transactions

Using left join to keep all demographics records. Customers without transactions will have NaN values

df = df_demo.merge(mrg_agg, left_on='Main_Phone_Num', right_on='Main_Phone_Num', how='left')
df.head()

Out[43]:

In [43]:

Co_Npl ay_Typ _Id	Sta rt_ Dt	Subs _Stat _Id	Subscr _Since _Dt	Tac _Id	Stack _Typ_ Id	List_Recur ring_Chrg_ Amt	Actual_Rec urring_Chr g_Amt	Subs_A ge_Mo nths	Pr od _Id	Reg_Rel evant_F lag	Prod_It em_Ty p_Id	Price _Typ _Id	Prod _Typ _Id	Cust _Seg _Id	Cust_ Class _Id	Party _Typ_ Id	Cust_H ier_Ty p_Id	Ind_ Gen der	Ind_ Birth _Dt	In d_ Ag e	Ind_Nati onality_ Code	Written_L anguage_ Code		Cust_Life cycle_Sta t_Id		_Stat				
(1PMoP ost	20 19- 03- 16	ACTI VATE D		356 081 09	N	69.0	69.0	97	5- 2E 1W T	Y	Bundle	Recu rring	Inve ntory	1203	Е	Ind	Master	F	1997 -03- 11	22. 0	СН	DE	DE	Current Customer	Current	Activ e	2017- 05-09	2018- 11-13	8.0	1.0
1 1PMoP ost	20 19- 03- 09	ACTI VATE D	2015- 12-21	357 361 09	N	35.0	35.0	39	5- 2C EG S	Y	Bundle	Recu rring	Inve ntory	1202	Е	Ind	Master	M	2002 -07- 05	16. 0	BA	DE	DE	Current Customer	Current	Activ e	NaN	NaN	NaN	NaN 2
, 1PMoP	20 18- 07- 01	ACTI VATE D		354 607 07	N	59.0	59.0	40	5- 2E 1W 4	Y	Bundle	Recu rring	Inve ntory	1300	Е	Ind	Master	F	1987 -06- 06	31. 0	СН	FR	FR	Current Customer	Current	Activ e	NaN	NaN	NaN	NaN N
₂ 1PMoP	20 18- 08- 01	ACTI VATE D	2012- 10-04	352 402 09	N	69.0	69.0	77	5- 2E 1W T	Y	Bundle	Recu rring	Inve ntory	1203	Е	Ind	Master	F	1998 -07- 21	20.	СН	DE	DE	Current Customer	Current	Activ e	NaN	NaN	NaN	NaN 3
4 1PMoP ost	20 18- 11- 13	ACTI VATE D		357 213 09	N	55.0	55.0	41	5- 2E 1X N	Y	Bundle	Recu rring	Inve ntory	1203	Е	Ind	Master	F	1998 -07- 13	20. 0	СН	DE	EN	Current Customer	Current	Activ e	NaN	NaN	NaN	NaN 1

In [44]:

Backup
df_backup_2 = df.copy()

In [45]:

df.info()

Int64Index: 515211 entries, 0 to 515210

```
Data columns (total 44 columns):
Main Phone Num
                             515211 non-null int64
Co Nplay Typ Id
                             515211 non-null object
Start Dt
                             515211 non-null object
Subs Stat Id
                             515211 non-null object
                             515211 non-null object
Subscr_Since_Dt
Tac Id
                             515211 non-null object
Stack Typ Id
                             515211 non-null object
Hectare Cell X Coordinate
                             515211 non-null int64
Hectare Cell Y Coordinate
                             515211 non-null int64
List Recurring Chrg Amt
                             515211 non-null float64
Actual Recurring Chrg Amt
                             515211 non-null float64
Subs_Age_Months
                             515211 non-null int64
Prod Id
                             515211 non-null object
Reg Relevant Flag
                             515211 non-null object
Prod_Item_Typ_Id
                             515211 non-null object
                             515211 non-null object
Price Typ Id
Prod Typ Id
                             515211 non-null object
Cust Seg Id
                             515211 non-null int64
Cust Class Id
                             515211 non-null object
Party Typ Id
                             515211 non-null object
Cust Hier Typ Id
                             515211 non-null object
Ind Gender
                             515211 non-null object
Ind Birth Dt
                             515211 non-null object
Ind Age
                             515130 non-null float64
Ind Nationality Code
                             515209 non-null object
Written Language Code
                             515211 non-null object
Oral Language Code
                             515211 non-null object
                             515211 non-null object
Cust Lifecycle Stat Id
Cust Lifecycle Typ Id
                             515211 non-null object
Cust Stat Id
                             515211 non-null object
First_No_Pay_Dt
                             7798 non-null object
Last_no_pay_Dt
                             7798 non-null object
                             7798 non-null float64
Bad Pay Count
                             7798 non-null float64
Flag Last 6 Month
                             232355 non-null float64
NF Num Transactions
                             232355 non-null float64
GROSS PRICE AMT mean
GROSS PRICE AMT sum
                             232355 non-null float64
GROSS PRICE AMT max
                             232355 non-null float64
GROSS PRICE AMT min
                             232355 non-null float64
REV EFF TS max
                             232355 non-null datetime64[ns]
REV EFF TS min
                             232355 non-null datetime64[ns]
HAS E pay
                           232355 non-null float64
                         232355 non-null float64
HAS N Pay
HAS UNKNOWN
                             232355 non-null float64
dtypes: datetime64[ns](2), float64(13), int64(5), object(24)
memory usage: 176.9+ MB
```

Feature Analysis

Missing Values

Check columns for NULL value
df.isna().sum()

Main_Phone_Num 0 0 Co_Nplay_Typ_Id 0 Start Dt Subs_Stat_Id 0 0 Subscr_Since_Dt Tac_Id 0 0 Stack Typ Id Hectare_Cell_X_Coordinate Hectare_Cell_Y_Coordinate 0 0 List_Recurring_Chrg_Amt Actual_Recurring_Chrg_Amt 0 0 Subs_Age_Months Prod_Id 0 Reg Relevant Flag 0 0 Prod_Item_Typ_Id 0 Price_Typ_Id 0 Prod Typ Id Cust Seg Id 0 Cust Class Id 0 0 Party_Typ_Id 0 Cust_Hier_Typ_Id 0 Ind_Gender 0 Ind_Birth_Dt Ind Age 2 Ind_Nationality_Code 0 Written_Language_Code Oral Language Code Cust Lifecycle Stat Id 0 0 Cust_Lifecycle_Typ_Id Cust_Stat_Id 0 First_No_Pay_Dt 507413 507413 Last_no_pay_Dt Bad_Pay_Count 507413 507413 Flag Last 6 Month 282856 NF Num Transactions GROSS PRICE AMT mean 282856 GROSS PRICE AMT sum 282856 GROSS_PRICE_AMT_max 282856 GROSS_PRICE_AMT_min 282856 REV_EFF_TS_max 282856 282856 REV_EFF_TS_min 282856 HAS E pay 282856 HAS_N_Pay HAS UNKNOWN 282856 dtype: int64

Finding:

- Ind_Age and Ind_Nationality_Code contain some NULL values
- 3 features with lots of NULL values
- Target Flag_Last_6_Month with lots of NULL values

Out[46]:

• New features from transaction data with NULL values

```
# Closer look at Ind Age
```

df.loc[df['Ind_Age'].isnull()]

Out[47]:

In [47]:

	Co_Npl ay_Ty p_Id	Sta Sub rt_ Sta Dt _Id	Subsc r_Sinc e_Dt	Tac _Id	Stack _Typ _Id	List_Recur ring_Chrg_ Amt	Actual_Rec urring_Chr g_Amt	Subs_A ge_Mo nths	Prod_ Id	Reg_Re levant_ Flag	Prod_It em_Ty p_Id	Price _Typ _Id	Prod _Typ _Id	Cust _Seg _Id	Class	y_Ty	ier_Ty	Ind_ Gen der	Birth	In d_ Ag e	Ind_Nati onality_ Code	Written_L anguage_ Code	Oral_La nguage_ Code	Cust_Life cycle_Sta t_Id	Cust_Life cycle_Ty p_Id	Cust _Stat _Id	No_Pa	o_pay	Bad_P ay_Co unt	Flag_La st_6_M onth
20 64 8	1PMoP ost	20 18- 01- 19 ACT VAT ED	2009-	355 354 06	N	35.0	35.0	113	epb- AAA_ BBB_l ight	Y	Bundle	Recu rring	Inve ntory	130 0	Е	Ind	Master	F		Na N	СН	DE	DE	Current Custome r	Current	Activ e	NaN	NaN	NaN	NaN
21 53 6	1PMoP ost	20 18- 01- 19 ACT VAT ED	2001- 01-16	358 802 05	N	59.0	59.0		5- 2E1W 4	Y	Bundle	Recu	Inve ntory	130 0	Е	Ind	Master	M	1900 -01- 01	Na N	СН	IT	IT	Current Custome r	Current	Activ e	NaN	NaN	NaN	NaN
48 05 6	1PMoP ost	20 18- 01- 19 ACT VAT ED	2005- 02-10	359 751 08	N	65.0	65.0	169	epb- AAA_ BBB_ XS	Y	Bundle	Recu rring	Inve ntory	130 0	Е	Ind	Master	F	1911 -11- 11	Na N	СН	FR	FR	Current Custome r	Current	Activ e	NaN	NaN	NaN	NaN
		20 19- 02- 26 ACT VAT ED				80.0	80.0		5- 30HS 1	Y	Bundle	Recu rring	Inve ntory	130 0	Е	Ind	Master	M	1911 -11- 11	Na N	СН	DE	DE	Current Custome r	Current	Activ e	NaN	NaN	NaN	NaN
58 42 0	1PMoP ost	20 18- 08- 11 ACT VAT ED	2010- 07-31	359 937 06	N	35.0	35.0	104	epb- AAA_ BBB_l ight	Y	Bundle	Recu rring	Inve ntory	130 0	Е	Ind	Master	F	1911 -11- 11	Na N	СН	DE	DE	Current Custome r	Current	Activ e	NaN	NaN	NaN	NaN
65 06 2	1PMoP ost	20 18- 01- 19 ACT VAT ED	2011- 03-03	358 979 07	N	59.0	59.0	97	5- 2E1W J	Y	Bundle	Recu	Inve ntory	130 0	E	Ind	Master	M	1900 -01- 01	Na N	СН	DE	DE	Current Custome r	Current	Activ e	NaN	NaN	NaN	NaN

81 rows × 44 columns

Finding:

- Only two different birthdates are set for Ind_Age = NULL (1900-01-01 / 1911-11-11) -> looks like dummy birthdates -> drop rows
- All records have Cust_Seg_Id = 1300 -> check with data owner if this was set deliberitly

```
# Drop rows Ind_Age = NULL
df_stats = df
df = df.dropna(subset=['Ind_Age'])

rows_dropped = df_stats.shape[0] - df.shape[0]
pprint('No. of dropped rows: ' + str(rows_dropped))
'No. of dropped rows: 81'

df.loc[df['Ind Nationality Code'].isnull()]
```

In [48]:

In [49]:

Out[49]:

	Co_Npl ay_Typ _Id	Sta rt_ Dt	Subs _Stat _Id	Subsc r_Sinc e_Dt	Tac _Id	Stack _Typ _Id	List_Recur ring_Chrg_ Amt	Actual_Rec urring_Chr g_Amt	Subs_A ge_Mo nths	Pro d_Id	Reg_Re levant_ Flag	Prod_It em_Ty p_Id	Price _Typ _Id	Prod _Typ _Id	Cust _Seg _Id	Cust_ Class _Id	Part y_Ty p_Id	Cust_H ier_Ty p_Id	Ind_ Gen der	Ind_ Birth _Dt	In d_ Ag e	Ind_Nati onality_ Code	Written_L anguage_ Code	Oral_La nguage_ Code	Cust_Life cycle_Sta t_Id	Cust_Life cycle_Ty p_Id	Cust _Stat _Id	First_ No_Pa y_Dt	Last_n o_pay _Dt	Bad_P ay_Co unt	Flag_La st_6_Mo nth
90	1PMoP ost	20 18- 07- 29	1 / / A I	2001- 12-11	356 086 09	N	80.0	80.0	207	epb- AAA _BB B_S	Y	Bundle	Recu rring	Inve ntory	130 0	E	Ind	Master	F	1977 -12- 07	41. 0	NaN	EN	EN	Current Customer	Current	Activ e	NaN	NaN	NaN	NaN
2.5		20 19- 04- 02		2015- 08-27	357 821 08	N	80.0	80.0	43	5- 30H S1	Y	Bundle	Recu rring	Inve ntory	130 0	E	Ind	Master	M	1975 -07- 21	43. 0	NaN	EN	EN	Current Customer	Current	Activ e	NaN	NaN	NaN	NaN

Closer look at records where Ind_Nationality_Code is NULL, maybe a "standard" can be set
df.loc[(df['Written_Language_Code'] == 'EN') & (df['Oral_Language_Code'] == 'EN')]

OUTPUT REMOVED (ANONYMIZATION)

Finding:

To many different Ind_Nationality_Code -> drop rows Ind_Nationality_Code = NULL

```
# Drop rows Ind_Nationality_Code = NULL
df_stats = df
df = df.dropna(subset=['Ind_Nationality_Code'])
rows_dropped = df_stats.shape[0] - df.shape[0]
pprint('No. of dropped rows: ' + str(rows_dropped))
'No. of dropped rows: 2'
# Check out Bad_Pay_Count and Flag_Last_6_Month
pprint(df['Bad_Pay_Count'].value_counts(dropna = False))
pprint(df['Flag_Last_6_Month'].value_counts(dropna = False))
        507330
NaN
1.0
          2966
2.0
          1917
3.0
          1258
4.0
           761
5.0
           460
6.0
           250
7.0
           110
8.0
            41
9.0
            26
11.0
             7
10.0
             2
Name: Bad_Pay_Count, dtype: int64
        507330
NaN
1.0
         5850
0.0
         1948
Name: Flag_Last_6_Month, dtype: int64
# Change Bad_Pay_Count and Flag_Last_6_Month from NaN to 0
```

In [50]: In [51]: In [52]:

In [53]:

```
# Change data type to integer

df['Bad_Pay_Count'].fillna(0, inplace = True)

df['Flag_Last_6_Month'].fillna(0, inplace = True)

df['Bad_Pay_Count'] = df.Bad_Pay_Count.astype(int)

df['Flag_Last_6_Month'] = df.Flag_Last_6_Month.astype(int)

# Replace NaN from transaction data with 0

df['NF_Num_Transactions'].fillna(0, inplace = True)

df['GROSS_PRICE_AMT_mean'].fillna(0, inplace = True)

df['GROSS_PRICE_AMT_man'].fillna(0, inplace = True)

df['GROSS_PRICE_AMT_min'].fillna(0, inplace = True)

df['GROSS_PRICE_AMT_min'].fillna(0, inplace = True)

df['REV_EFF_TS_man'].fillna(0, inplace = True)

df['REV_EFF_TS_min'].fillna(0, inplace = True)

df['HAS_E_pay'].fillna(0, inplace = True)

df['HAS_N_Pay'].fillna(0, inplace = True)

df['HAS_N_Pay'].fillna(0, inplace = True)
```

Flag_Last_6_Month Distribution

df['HAS UNKNOWN'].fillna(0, inplace = True)

```
# Show Flag Last 6 Month information
didnt_pay = df['Flag_Last_6_Month'].value_counts()[1]
paid = df['Flag Last 6 Month'].value counts()[0]
didnt pay per = didnt pay / df.shape[0] * 100
paid per = paid / df.shape[0] * 100
plt.figure(figsize=(5, 4))
sns.countplot(df['Flag_Last_6_Month'])
plt.xlabel('Flag Last 6 Month', size=15, labelpad=15)
plt.ylabel('Mobile Users', size=15, labelpad=15)
plt.xticks((0, 1), ['paid (\{0:.2f\}\%)'.format(paid per), 'didnt pay (\{0:.2f\}\%)'.format(didnt pay per)])
plt.tick params(axis='x', labelsize=13)
plt.tick params(axis='y', labelsize=13)
plt.title('Flag Last 6 Month Distribution', size=15, y=1.05)
plt.show()
print('{} of {} mobile users did not pay in the last 6 months -> {:.2f}% of the dataset'.format(didnt pay, df.shape[0], didnt pay per))
print('{} of {} mobile users paid in the last 6 months -> {:.2f}% of the dataset'.format(paid, df.shape[0], paid per))
```

In [54]:

In [55]:

 $\overline{5850}$ of 515128 mobile users did not pay in the last 6 months -> 1.14% of the dataset 509278 of 515128 mobile users paid in the last 6 months -> 98.86% of the dataset

Finding:

Highly Imbalanced Data!! -> must be addressed when defining the models

```
# Function to show Flag Last 6 Month Distribution for numerical features
def show dist num(dataframe, col1, col2):
    cont features = [col1, col2]
    flag = dataframe['Flag Last 6 Month'] == 1
    fig, axs = plt.subplots(ncols=2, nrows=2, figsize=(20, 20))
    plt.subplots adjust(right=1.5)
    for i, feature in enumerate(cont features):
        # Distribution of Flag Last 6 Month in feature
        sns.distplot(dataframe[~flag][feature], label='paid', hist=True, color='#2ecc71', ax=axs[0][i])
        sns.distplot(dataframe[flag][feature], label='did not pay', hist=True, color='#e74c3c', ax=axs[0][i])
        # Distribution of feature in dataset
        sns.distplot(dataframe[feature], label='Demographics Data', hist=False, color='#e74c3c', ax=axs[1][i])
        #sns.distplot(df test[feature], label='Test Set', hist=False, color='#2ecc71', ax=axs[1][i])
        axs[0][i].set xlabel('')
        axs[1][i].set xlabel('')
        for j in range(2):
           axs[i][j].tick params(axis='x', labelsize=20)
           axs[i][j].tick params(axis='y', labelsize=20)
        axs[0][i].legend(loc='upper right', prop={'size': 20})
        axs[1][i].legend(loc='upper right', prop={'size': 20})
        axs[0][i].set_title('Distribution of Flag_Last_6_Month in {}'.format(feature), size=20, y=1.05)
    axs[1][0].set title('Distribution of {} Feature'.format(col1), size=20, y=1.05)
    axs[1][1].set title('Distribution of {} Feature'.format(col2), size=20, y=1.05)
   plt.show()
```

In [56]:

```
# Show distribution
show_dist_num(df, 'Cust_Seg_Id', 'Ind_Age')
```

df_demo_cust_seg = df[["Cust_Seg_Id","Flag_Last_6_Month"]].groupby('Cust_Seg_Id').mean()
df_demo_cust_seg.sort_values(by='Flag_Last_6_Month', ascending=False).head(10)

	Flag_Last_6_Montl
Cust_Seg_Id	
1203	0.019283
1204	0.019035
1102	0.012149
1202	0.011677
1103	0.010753
1300	0.008684
1101	0.006751
1400	0.001654

df_demo_age = df[["Ind_Age","Flag_Last_6_Month"]].groupby('Ind_Age').mean()
df_demo_age.sort_values(by='Flag_Last_6_Month', ascending=False).head(10)

In [58]:

Out[58]:

In [59]:

Out[59]:

	Flag_Last_6_Month
Ind_Age	
27.0	0.021465
22.0	0.021289
26.0	0.021002
28.0	0.020651
23.0	0.020155
25.0	0.019068
29.0	0.018855
24.0	0.018474
31.0	0.018098
20.0	0.017896

Findings:

Cust_Seg_Id = 1200 has the most Users but also above average non payers -> investigate segments later Ind_Age between approx. 20 - 30 has the most non payers

```
# Show distribution
show_dist_num(df, 'List_Recurring_Chrg_Amt', 'Actual_Recurring_Chrg_Amt')
```

df_demo_act_amt = df[["Actual_Recurring_Chrg_Amt","Flag_Last_6_Month"]].groupby('Actual_Recurring_Chrg_Amt').mean()
df_demo_act_amt.sort_values(by='Flag_Last_6_Month', ascending=False).head(10)

In [60]:

In [61]:

	Flag_Last_6_Month
Actual_Recurring_Chrg_A	mt
0.0	0.033333
89.0	0.031443
140.0	0.028992
200.0	0.025287
100.0	0.023721
69.0	0.021330
139.0	0.020105
199.0	0.018568
169.0	0.018256
10.0	0.015385

```
df_demo_list_amt = df[["List_Recurring_Chrg_Amt","Flag_Last_6_Month"]].groupby('List_Recurring_Chrg_Amt').mean()
df_demo_list_amt.sort_values(by='Flag_Last_6_Month', ascending=False).head(10)
```

	Flag_Last_6_Mont
List_Recurring_Chrg_Amt	t
0.0	0.034483
89.0	0.031433
140.0	0.028992
200.0	0.025280
100.0	0.023720
69.0	0.021330
139.0	0.020105
199.0	0.018568
169.0	0.018256
99.0	0.015308

Findings:

Most non payers have a mobile subscription fee of just above CHF 100 List_Recurring_Chrg_Amt and Actual_Recurring_Chrg_Amt hardly differ -> drop List_Recurring_Chrg_Amt later

```
# Show distribution
show_dist_num(df, 'NF_Num_Transactions', 'GROSS_PRICE_AMT_mean')
```

Out[61]:

In [62]:

Out[62]:

In [63]:

df_demo_num_trx = df[["NF_Num_Transactions", "Flag_Last_6_Month"]].groupby('NF_Num_Transactions').mean()
df_demo_num_trx.sort_values(by='Flag_Last_6_Month', ascending=False).head(10)

In [64]:

Out[64]:

	Flag_Last_6_Mont
NF_Num_Transactions	
2921.0	1.0
1232.0	1.0
1055.0	1.0
550.0	1.0
743.0	1.0
652.0	1.0
523.0	1.0
650.0	1.0
439.0	1.0
445.0	0.5

df_demo_amt_mean = df[["GROSS_PRICE_AMT_mean","Flag_Last_6_Month"]].groupby('GROSS_PRICE_AMT_mean').mean()
df_demo_amt_mean.sort_values(by='Flag_Last_6_Month', ascending=False).head(10)

In [65]:

Out[65]:

	Flag_Last_6_Month
GROSS_PRICE_AMT_mean	
11.5128	1.0
23.9323	1.0
13.9533	1.0
11.0118	1.0
24.8800	1.0
24.8878	1.0
24.8971	1.0
24.9067	1.0
9.1763	1.0
11.9865	1.0

plt.show()

```
# Function to show Flag Last 6 Month Distribution for categorical features
def show dist cat(dataframe, cols):
    cat features = cols
    fig, axs = plt.subplots(ncols=2, nrows=3, figsize=(20, 20))
   plt.subplots adjust(right=1.5, top=1.25)
    for i, feature in enumerate(cat_features, 1):
       plt.subplot(2, 3, i)
       sns.countplot(x=feature, hue='Flag Last 6 Month', data=dataframe)
       plt.xlabel('{}'.format(feature), size=20, labelpad=15)
       plt.ylabel('Mobile User Count', size=20, labelpad=15)
       plt.tick_params(axis='x', labelsize=20)
       plt.tick params(axis='y', labelsize=20)
        plt.legend(['payed', 'did not pay'], loc='upper center', prop={'size': 18})
        plt.title('Count of Flag Last 6 Month in {} Feature'.format(feature), size=20, y=1.05)
   plt.show()
# Function to show Flag Last 6 Month Distribution for single feature
def show dist cat single(dataframe, col):
    fig, axs = plt.subplots(figsize=(22, 9))
    sns.countplot(x=col, hue='Flag Last 6 Month', data=dataframe)
    plt.xlabel(col, size=15, labelpad=20)
    plt.ylabel('Mobile User Count', size=15, labelpad=20)
   plt.tick params(axis='x', labelsize=15)
   plt.tick_params(axis='y', labelsize=15)
   plt.legend(['payed', 'did not pay'], loc='upper right', prop={'size': 15})
   plt.title('Count of Flag_Last_6_Month in {} Feature'.format(col), size=15, y=1.05)
```

In [66]:

In [67]:

```
# Function can take max. 6 features as input
cat_cols = ['Subscr_Since_Dt', 'Tac_Id', 'Subs_Age_Months', 'Prod_Id', 'Subs_Stat_Id', 'Bad_Pay_Count']
show_dist_cat(df, cat_cols)
```

Show distribution for categorical features

Show distribution for categorical features

cat_cols = ['Ind_Gender', 'Ind_Nationality_Code', 'Written_Language_Code', 'Oral_Language_Code']
show_dist_cat(df, cat_cols)

In [69]:

[#] Function can take max. 6 features as input

df_gender = df[["Ind_Gender","Flag_Last_6_Month"]].groupby('Ind_Gender').mean()
df_gender.sort_values(by='Flag_Last_6_Month', ascending=False).head(10)

	Flag_Last_6_Month
Ind_Gender	
M	0.014289
F	0.008355
U	0.005102

df_nat = df[["Ind_Nationality_Code", "Flag_Last_6_Month"]].groupby('Ind_Nationality_Code').mean()
df_nat.sort_values(by='Flag_Last_6_Month', ascending=False).head(10)

	Flag_Last_6_Month
Ind_Nationality_Code	
AZ	0.130435
NI	0.100000
TG	0.080000
LA	0.062500
AO	0.052632
ВО	0.050505
MN	0.047619
DO	0.045603
GM	0.045455

In [70]:

Out[70]:

In [71]:

Out[71]:

	Flag_Last_6_Month	
Ind_Nationality_Code		
SN	0.045455	

di_wic = di[["written_Language_code", "Flag_Last_6_Month"]].grouppy('written_Language_code').mean()	
<pre>df_wlc.sort_values(by='Flag_Last_6_Month', ascending=False).head(10)</pre>	

	Flag_Last_6_Month
Written_Language_Code	
EN	0.011874
DE	0.011598
FR	0.011025
IT	0.008871

```
df_olc = df[["Oral_Language_Code","Flag_Last_6_Month"]].groupby('Oral_Language_Code').mean()
df olc.sort values(by='Flag Last 6 Month', ascending=False).head(10)
```

	Flag_Last_6_Month
Oral_Language_Code	
ES	0.076923
98	0.043478
EN	0.015264
DE	0.010090
FR	0.009614
IT	0.007642
DA	0.000000
EL	0.000000
PT	0.000000
SV	0.000000

```
# Show map
# temp, not finished, delete 0 X, Y coordinate
df hect = df.copy()
# remove outliers
df_hect = df_hect.drop(df_hect[(df_hect.Hectare_Cell_X_Coordinate < 400000) & (df_hect.Hectare_Cell_Y_Coordinate < 50000)].index)</pre>
df hect.plot(kind="scatter", x='Hectare Cell X Coordinate', y='Hectare Cell Y Coordinate', alpha=0.4)
#df demo hect = df demo.copy()
#df demo hect.plot(kind="scatter", x='Hectare Cell X Coordinate', y='Hectare Cell Y Coordinate', alpha=0.4,
             s=df_demo_hect['Flag_Last_6_Months'), label="flag", figsize=(10,7),
             c='Flag_Last_6_Months', cmap=plt.get_cmap("jet"), colorbar=True,
#plt.legend()
```

In [72]:

Out[72]:

In [73]:

Out[73]:

In [74]:

Out[74]:

Finding:

Data has pretty much the same distribution as population density and is evenly distributed across the country

Correlations

```
# Correlations

df_corr = df.drop(['Main_Phone_Num'], axis=1).corr().abs().unstack().sort_values(kind="quicksort", ascending=False).reset_index()
df_corr.rename(columns={"level_0": "Feature 1", "level_1": "Feature 2", 0: 'Correlation Coefficient'}, inplace=True)
df_corr.drop(df_corr.iloc[1::2].index, inplace=True)
df_corr_nd = df_corr.drop(df_corr[df_corr['Correlation Coefficient'] == 1.0].index)

# Show highly correlated features

corr = df_corr_nd['Correlation Coefficient'] > 0.1
df_corr_nd[corr]
```

	Feature 1	Feature 2	Correlation Coefficient
18	List_Recurring_Chrg_Amt	Actual_Recurring_Chrg_Amt	0.999982
20	Ind_Age	Cust_Seg_Id	0.854754
22	GROSS_PRICE_AMT_mean	GROSS_PRICE_AMT_min	0.800345
24	Flag_Last_6_Month	Bad_Pay_Count	0.787465
26	GROSS_PRICE_AMT_sum	HAS_N_Pay	0.774242
28	HAS_N_Pay	NF_Num_Transactions	0.745932
30	GROSS_PRICE_AMT_max	GROSS_PRICE_AMT_mean	0.737396
32	NF_Num_Transactions	GROSS_PRICE_AMT_sum	0.709506
34	HAS_E_pay	NF_Num_Transactions	0.686664
36	GROSS_PRICE_AMT_sum	GROSS_PRICE_AMT_max	0.608585
38	Hectare_Cell_X_Coordinate	Hectare_Cell_Y_Coordinate	0.578420
40	Subs_Age_Months	Ind_Age	0.506452

In [75]:

In [76]:

Out[76]:

	Feature 1	Feature 2	Correlation Coefficient
42	HAS_N_Pay	GROSS_PRICE_AMT_max	0.501122
44	Cust_Seg_Id	Subs_Age_Months	0.450995
46	GROSS_PRICE_AMT_max	NF_Num_Transactions	0.390063
48	GROSS_PRICE_AMT_mean	GROSS_PRICE_AMT_sum	0.346199
50	GROSS_PRICE_AMT_min	GROSS_PRICE_AMT_max	0.338134
52	GROSS_PRICE_AMT_max	Ind_Age	0.241065
54	Cust_Seg_Id	GROSS_PRICE_AMT_max	0.228499
56	GROSS_PRICE_AMT_sum	HAS_E_pay	0.221269
58	HAS_N_Pay	GROSS_PRICE_AMT_mean	0.200127
60	Cust_Seg_Id	Actual_Recurring_Chrg_Amt	0.192441
62	Cust_Seg_Id	List_Recurring_Chrg_Amt	0.192414
64	Ind_Age	GROSS_PRICE_AMT_mean	0.179273
66	Cust_Seg_Id	GROSS_PRICE_AMT_mean	0.167413
68	GROSS_PRICE_AMT_max	Actual_Recurring_Chrg_Amt	0.162362
70	GROSS_PRICE_AMT_max	List_Recurring_Chrg_Amt	0.162346
72	HAS_N_Pay	Ind_Age	0.159184
74	HAS_N_Pay	Bad_Pay_Count	0.154368
76	GROSS_PRICE_AMT_sum	Bad_Pay_Count	0.153594
78	HAS_N_Pay	Cust_Seg_Id	0.151923
80	Ind_Age	Actual_Recurring_Chrg_Amt	0.149450
82	Ind_Age	List_Recurring_Chrg_Amt	0.149412
84	Actual_Recurring_Chrg_Amt	GROSS_PRICE_AMT_sum	0.145044
86	GROSS_PRICE_AMT_sum	List_Recurring_Chrg_Amt	0.145036
88	NF_Num_Transactions	GROSS_PRICE_AMT_mean	0.144494
90	GROSS_PRICE_AMT_max	Subs_Age_Months	0.144222
92	Flag_Last_6_Month	HAS_N_Pay	0.140798
94	Actual_Recurring_Chrg_Amt	NF_Num_Transactions	0.140743
96	List_Recurring_Chrg_Amt	NF_Num_Transactions	0.140734
98	GROSS_PRICE_AMT_max	Bad_Pay_Count	0.140702
100	Cust_Seg_Id	GROSS_PRICE_AMT_sum	0.140339
102	Ind_Age	GROSS_PRICE_AMT_sum	0.140292
104	Flag_Last_6_Month	GROSS_PRICE_AMT_sum	0.139701
106	HAS_N_Pay	Actual_Recurring_Chrg_Amt	0.138598
108	HAS_N_Pay	List_Recurring_Chrg_Amt	0.138588
110	Flag_Last_6_Month	GROSS_PRICE_AMT_max	0.133237
	NF_Num_Transactions	Bad_Pay_Count	0.122870
	NF_Num_Transactions	Flag_Last_6_Month	0.114615
116	GROSS_PRICE_AMT_mean	Actual_Recurring_Chrg_Amt	0.110896
	GROSS_PRICE_AMT_mean	List_Recurring_Chrg_Amt	0.110881
	NF_Num_Transactions	Cust_Seg_Id	0.105571
122	NF_Num_Transactions	Ind_Age	0.101240

Finding:

• Lots of features are correlated > 0.1

• Very high correlation between Bad_Pay_Count and target Flag_Last_6_Month. I suspect data leakage -> drop Bad_Pay_Count and related columns

```
# Correlation with target Flag Last 6 Month
corr matrix = df.corr()
corr matrix['Flag Last 6 Month'].sort values(ascending=False)
Flag_Last_6_Month
                           1.000000
Bad Pay Count
                           0.787465
HAS N Pay
                       0.140798
GROSS PRICE AMT sum
                     0.139701
GROSS PRICE AMT max
                           0.133237
NF Num Transactions
                           0.114615
GROSS PRICE AMT mean
                           0.065515
Actual Recurring Chrg Amt 0.056371
List Recurring Chrg Amt
                           0.056368
                          0.017683
HAS E pay
HAS UNKNOWN
                           0.015354
Hectare_Cell_Y_Coordinate 0.006350
Main Phone Num
                           0.001651
Hectare Cell X Coordinate -0.001539
GROSS PRICE AMT min
                          -0.003434
Subs Age Months
                          -0.045191
Cust Seg Id
                          -0.058158
Ind Age
                          -0.061621
Name: Flag Last 6 Month, dtype: float64
```

Finding:

- Little correlation except for Bad_Pay_Count!
- New features have higher correlation than already existing features

```
# Correlation Heatmap
fig, axs = plt.subplots(nrows=2, figsize=(25, 25))
sns.heatmap(df.drop(['Main_Phone_Num'], axis=1).corr(), ax=axs[0], annot=True, square=True, cmap='coolwarm', annot_kws={'size': 9})
for i in range(2):
    axs[i].tick_params(axis='x', labelsize=12)
    axs[i].tick_params(axis='y', labelsize=12)

axs[0].set_title('Correlations', size=15)
#plt.show()
Text(0.5, 1.0, 'Correlations')
```

In [77]:

Out[77]:

In [78]:

Out[78]:

Data Preprocessing

Prepare data for "categorical friendly models" (more preprocessing for other models later)

Drop Columns with unique values

```
# Backup
df_backup_2 = df.copy()

# Drop all columns that have only one value

no_cols = len(df.columns)

for col in df.columns:
    if len(df[col].unique()) == 1:
        df.drop(col,inplace=True,axis=1)
        pprint('dropped ' + col)

no_cols_new = no_cols - len(df.columns)
pprint('No. of dropped columns: ' + str(no_cols_new))
```

In [80]: In [83]:

```
'No. of dropped columns: 8'
df.info()
Int64Index: 515128 entries, 0 to 515210
Data columns (total 36 columns):
Main Phone Num
                             515128 non-null int64
Start Dt
                             515128 non-null object
                            515128 non-null object
Subs Stat Id
Subscr Since Dt
                            515128 non-null object
Tac Id
                             515128 non-null object
                             515128 non-null object
Stack Typ Id
Hectare Cell_X_Coordinate
                            515128 non-null int64
Hectare Cell Y Coordinate
                             515128 non-null int64
List Recurring Chrg Amt
                             515128 non-null float64
Actual Recurring Chrg Amt
                            515128 non-null float64
Subs_Age_Months
                             515128 non-null int64
                             515128 non-null object
Prod Id
Reg Relevant Flag
                             515128 non-null object
Prod_Item_Typ_Id
                             515128 non-null object
Price_Typ_Id
                             515128 non-null object
Cust Seg Id
                             515128 non-null int64
Ind Gender
                             515128 non-null object
Ind Birth Dt
                             515128 non-null object
Ind Age
                             515128 non-null float64
Ind Nationality Code
                             515128 non-null object
Written Language Code
                             515128 non-null object
Oral Language Code
                             515128 non-null object
                             7798 non-null object
First No Pay Dt
                             7798 non-null object
Last no pay Dt
                             515128 non-null int64
Bad Pay Count
Flag Last 6 Month
                             515128 non-null int64
NF Num Transactions
                             515128 non-null float64
                             515128 non-null float64
GROSS PRICE AMT mean
                             515128 non-null float64
GROSS PRICE AMT sum
GROSS_PRICE_AMT_max
                             515128 non-null float64
GROSS_PRICE_AMT_min
                             515128 non-null float64
REV_EFF_TS_max
                             515128 non-null object
                             515128 non-null object
REV EFF TS min
HAS E pay
                           515128 non-null float64
                         515128 non-null float64
HAS N Pay
HAS UNKNOWN
                             515128 non-null float64
dtypes: float64(11), int64(7), object(18)
memory usage: 165.4+ MB
```

Bad_Pay_Count

Drop Bad_Pay_Count and related columns as they appear to support data leakage

df = df.drop('First_No_Pay_Dt', 1)

df = df.drop('Last_no_pay_Dt', 1)

df = df.drop('Bad Pay Count', 1)

In [84]:

In [85]:

Tac_Id

```
pprint(df['Tac_Id'].value_counts(dropna = False))
35680809
            4515
35716409
           4089
           3731
35280209
35240209
           3652
35904108
           3617
35966409
           3500
           1962
35263108
            . . .
35345008
35931008
Name: Tac_Id, Length: 6678, dtype: int64
```

Finding:

Too many different values for one-hot-encoding -> keep values (convert to Integer)

```
df.loc[(df.Tac_Id == 'UNKNOWN')]
```

value is trying

Out[87]:

In [87]:

In [86]:

Star t_Dt	Subs_S tat_Id	Subscr_S ince_Dt	Tac_I d	Stack_ Typ_Id	List_Recurrin g_Chrg_Amt	Actual_Recurri ng_Chrg_Amt	Subs_Age_ Months	Prod_Id	Reg_Relev ant_Flag	Prod_Ite m_Typ_Id	Price_ Typ_Id	Cust_S eg_Id	Ind_G ender	Ind_Bi rth_Dt	Ind_ Age	Ind_Nationa lity_Code	Written_Lang uage_Code	Oral_Langu age_Code	Flag_Last_ 6_Month	NF_Num_Tra nsactions	GROSS_PRICE_ AMT_mean
201 7- 09- 22		2012-07- 11	UNKN OWN	N	55.0	55.0	80	5-2E1XS	Y	Bundle	Recurri ng	1203	M	1994- 07-20	24.0	PT	DE	EN	0	0.0	0.0
201 6 7- 8 11- 25	ACTIV ATED	2012-02- 16	UNKN OWN	N	35.0	35.0		epb- AAA_BB B_light	Y	Bundle	Recurri ng	1400	M	1959- 04-22	59.0	NL	DE	EN	0	0.0	0.0
201 8- 9 10- 26	ACTIV ATED	1996-06- 19	UNKN OWN	M	25.0	25.0	273	5-Q6NV	Y	Subscripti on	Recurri ng	1400	M	1953- 09-21	65.0	СН	DE	DE	0	0.0	0.0
		2010-03- 31	UNKN OWN	N	9.8	9.8	108	5- 1KB2E	Y	Bundle	Recurri ng	1400	M	1948- 10-22	70.0	СН	FR	FR	0	0.0	0.0
201 9- 9 01- 09	ACTIV ATED	2007-08- 28	UNKN OWN	N	19.0	19.0		5- 2E1UL	Y	Bundle	Recurri ng	1102	M	1969- 05-04	49.0	IT	FR	FR	0	0.0	0.0
		2009-12- 03	UNKN OWN	N	35.0	35.0		epb- AAA_BB B_light	Y	Bundle	Recurri ng	1300	M	1979- 07-07	39.0	PT	FR	FR	0	0.0	0.0
		2005-02- 07	UNKN OWN	N	10.0	5.0		5- 2E1U1	Y	Bundle	Recurri	1400	M	1961- 02-02	58.0	СН	DE	DE	0	0.0	0.0

```
# Change UNKNOWN to 99999999 and convert data type

df.loc[(df.Tac_Id == 'UNKNOWN'), 'Tac_Id'] = 99999999

df['Tac_Id'] = df.Tac_Id.astype(int)
```

Ind_Age, Ind_Birth_Dt and Cust_Seg_Id

```
# Age
pprint(df['Ind_Age'].max())
pprint(df['Ind_Age'].min())

118.0

13.0

# Check out Age > 105 (oldest living person in Switzerland is currently 116 years old, so 118 cannot be true...)
df.loc[(df.Ind_Age > 105), ['Ind_Birth_Dt', 'Ind_Age', 'Cust_Seg_Id']]
```

	Ind_Birth_Dt	Ind_Age	Cust_Seg_Id
48656	1909-11-01	109.0	1300
79399	1910-01-01	109.0	1300
178939	1909-04-26	109.0	1300
203863	1901-01-01	118.0	1300
224644	1909-08-03	109.0	1300
255269	1901-01-01	118.0	1300
329135	1908-10-29	110.0	1300
345398	1911-02-05	108.0	1300
350122	1913-01-01	106.0	1300

Finding:

- Ind_Age 118 and Ind_Birth_Dt 1901-01-01 looks like wrong data -> drop rows
- Other birthdates YYYY-01-01 also look suspicious but will leave them

In [88]:

In [89]:

In [90]:

Out[90]:

. ...[. .].

In [91]:

In [92]:

```
.
```

	Ind	_Age	Cust_Seg_Id		
	min	max	count		
Cust_Seg_Id					
1101	17.0	95.0	2518		
1102	15.0	95.0	8231		
1103	23.0	84.0	93		
1202	13.0	20.0	35881		
1203	20.0	27.0	148317		
1204	27.0	31.0	45233		
1300	31.0	110.0	161793		
1400	55.0	100.0	113060		

Finding:

- 1101, 1102 and 1103 don't make sense -> leave it for now
- 1300 should only go up to 55 -> further investigation

Best approach might be to create new age group feature and drop Cust_Seg_Id

```
# Closer look at Cust_Seg_Id, check birthdate for dummy values
df.loc[(df.Cust_Seg_Id == 1300) & (df.Ind_Age > 55), ['Ind_Birth_Dt', 'Ind_Age']]
```

	Ind_Birth_Dt	Ind_Age
48656	1909-11-01	109.0
79399	1910-01-01	109.0
108266	1917-12-28	101.0
178939	1909-04-26	109.0
194752	1915-07-02	103.0
213469	1915-07-02	103.0
224644	1909-08-03	109.0
285727	1917-09-01	101.0
289469	1914-12-24	104.0
293001	1913-07-11	105.0
297664	1916-08-11	102.0
314305	1915-09-26	103.0
329135	1908-10-29	110.0
345398	1911-02-05	108.0
350122	1913-01-01	106.0

Finding:

Looks like wrong Cust_Seg_Id classification -> change to Seg 1400

```
# Change Cust_Seg_Id
df.loc[(df.Cust_Seg_Id == 1300) & (df.Ind_Age > 55), 'Cust_Seg_Id'] = 1400
```

Out[92]:

In [93]:

Out[93]:

In [94]:

```
In [95]:
```

Out[95]:

```
# Check Cust_Seg and Age again
df.groupby(
     ['Cust_Seg_Id']
).agg(
     {
        'Ind_Age': [min, max],
        'Cust_Seg_Id': "count"
     }
)
```

	Ind	_Age	Cust_Seg_Id
	min	max	count
Cust_Seg_Id			
1101	17.0	95.0	2518
1102	15.0	95.0	8231
1103	23.0	84.0	93
1202	13.0	20.0	35881
1203	20.0	27.0	148317
1204	27.0	31.0	45233
1300	31.0	55.0	161778
1400	55.0	110.0	113075

```
# Drop Ind_Age and Ind_Birth_Dt columns (not necessary anymore)
df = df.drop('Ind_Age', 1)
df = df.drop('Ind_Birth_Dt', 1)
```

df.head()

In [96]:

In [97]:

																			Out[97]:	ı
																	_		GROSS_PRICE_A	
_Dt	at_Id	nce_Dt	d	yp_Id	Chrg_Amt	g_Chrg_Amt	Months	d_Id	nt_Flag	_Typ_Id	yp_Id	eg_Id	nder	ity_Code	age_Code	ge_Code	_Month	nsactions	MT_mean	AMT
	ACTIVA		3560 8109	N	69.0	69.0	97	5- 2E1 WT	Y	Bundle	Recurri ng	1203	F	СН	DE	DE	1	8.0	6.4750	51.80
2019 1 -03- 09	ACTIVA		3573 6109	N	35.0	35.0	39	5- 2CE GS	Y	Bundle	Recurri ng	1202	M	BA	DE	DE	0	20.0	17.7900	355.80
1 / 1 - 1 / - 1	ACTIVA		3546 0707	N	59.0	59.0	40	5- 2E1 W4	Y	Bundle	Recurri ng	1300	F	СН	FR	FR	0	0.0	0.0000	0.00
	ACTIVA		3524 0209	N	69.0	69.0	77	5- 2E1 WT	Y	Bundle	Recurri ng	1203	F	СН	DE	DE	0	30.0	2.7667	83.00
	ACTIVA	2015-10- 13	3572 1309	N	55.0	55.0	41	5- 2E1 XN	Y	Bundle	Recurri ng	1203	F	СН	DE	EN	0	17.0	4.9900	84.83
																			In [00].	

In [98]:

df.info()

Int64Index: 515126 entries, 0 to 515210

```
Data columns (total 31 columns):
Main Phone Num
                             515126 non-null int64
Start Dt
                             515126 non-null object
Subs Stat Id
                             515126 non-null object
Subscr Since Dt
                             515126 non-null object
Tac Id
                             515126 non-null int64
                             515126 non-null object
Stack Typ Id
                             515126 non-null int64
Hectare Cell X Coordinate
                             515126 non-null int64
Hectare Cell Y Coordinate
List Recurring Chrg Amt
                             515126 non-null float64
Actual Recurring Chrg Amt
                             515126 non-null float64
Subs Age Months
                             515126 non-null int64
Prod_Id
                             515126 non-null object
Reg Relevant Flag
                             515126 non-null object
Prod_Item_Typ_Id
                             515126 non-null object
Price_Typ_Id
                             515126 non-null object
                             515126 non-null int64
Cust Seg Id
Ind Gender
                             515126 non-null object
Ind Nationality Code
                             515126 non-null object
Written Language Code
                             515126 non-null object
Oral Language Code
                             515126 non-null object
Flag Last 6 Month
                             515126 non-null int64
NF Num Transactions
                             515126 non-null float64
                             515126 non-null float64
GROSS PRICE AMT mean
                             515126 non-null float64
GROSS PRICE AMT sum
                             515126 non-null float64
GROSS PRICE AMT max
GROSS PRICE AMT min
                             515126 non-null float64
REV EFF TS max
                             515126 non-null object
                             515126 non-null object
REV EFF TS min
HAS E pay
                           515126 non-null float64
HAS N Pay
                         515126 non-null float64
HAS UNKNOWN
                             515126 non-null float64
dtypes: float64(10), int64(7), object(14)
memory usage: 145.8+ MB
Subs_Stat_Id
                                                                                                                                                                                       In [99]:
pprint(df['Subs_Stat_Id'].value_counts(dropna = False))
ACTIVATED
                  513320
POST_SUSPENDED
                    1806
Name: Subs Stat Id, dtype: int64
                                                                                                                                                                                      In [100]:
# Convert Subs Stat Id into 0 and 1
df["Subs Stat Id"] = df["Subs Stat Id"].map({"POST SUSPENDED": 0, "ACTIVATED": 1})
Subs_Age_Months
                                                                                                                                                                                      In [101]:
pprint(df['Subs Age Months'].value counts(dropna = False))
75
       6362
87
       5548
```

63

5398

```
5115
77
80
      4894
79
      4815
67
      4751
76
      4693
      4661
      4641
51
73
      3852
       . . .
297
        41
Name: Subs Age Months, Length: 292, dtype: int64
```

Note:

Maybe create binning feature later

Stack_Typ_Id

List_Recurring_Chrg_Amt, Actual_Recurring_Chrg_Amt

Check difference between Actual_Recurring_Chrg_Amt and List_Recurring_Chrg_Amt (discount)
df.loc[(df['Actual_Recurring_Chrg_Amt'] != df['List_Recurring_Chrg_Amt'])]

In [104]:

In [102]:

In [103]:

																		Out[104]:	<u>,: </u>
	Start _Dt		Tac_I d	List_Recurring_ Chrg_Amt	Actual_Recurrin g_Chrg_Amt	Subs_Age_ Months		Reg_Releva nt_Flag				Ind_Ge nder		Written_Langu age_Code	Oral_Langua ge_Code	Flag_Last_6 _Month	NF_Num_Tra nsactions	GROSS_PRICE_A MT_mean	A GROSS AMT
181 4	2019 -03- 13	1	3594 6907	80.0	79.00	138	5-30HRH	Y	Rundle	Dogurri		F	СН	DE	DE	0	0.0	0.0000	0.00
585 93			3530 4709		79.00		epb- AAA_BBB_ Pro_S	. Y	Bunale	Recurri	1101	М	СН	DE	DE	0	33.0	11.8818	392.10
957 85	1-()4-	1	3548 2609		79.00	288	5-2EKWN	Y	Bunale	Recurri	1400	М	СН	DE	DE	0	0.0	0.0000	0.00
144 287	(1.1	1	3592 6706		79.00	196	5-2EKWN	Y	Blindle	Recurri	1300	М	СН	DE	DE	0	0.0	0.0000	0.00

	Start _Dt	Subs_St at_Id	Subscr_Si nce_Dt	Tac_I d	List_Recurring_ Chrg_Amt	Actual_Recurrin g_Chrg_Amt	Subs_Age_ Months	Prod_Id	Reg_Releva nt_Flag	Prod_Item _Typ_Id	Price_T yp_Id	Cust_S eg_Id	Ind_Ge nder	Ind_National ity_Code	Written_Langu age_Code	Oral_Langua ge_Code	Flag_Last_6 _Month	NF_Num_Tra nsactions	GROSS_PRICE_A MT_mean	GROSS AM1
151 135	2018 -01- 19	1	2013-06- 10	1362 900	99.0	79.00	69	5-2EKWN	Y	Bundle	Recurri ng	1300	M	СН	DE	EN	0	0.0	0.0000	0.00
166 290		1		8641 7403	200.0	197.00	287	epb- AAA_BBB_ Pro_XL	Y	Bundle	Recurri ng	1101	M	СН	DE	DE	0	1.0	0.9900	0.99
170 524	2017 -12- 15	1		9999 9999	10.0	5.00	169	5-2E1U1	Y	Bundle	Recurri ng	1400	M	СН	DE	DE	0	0.0	0.0000	0.00
188 145		1		3550 0107	99.0	79.00	240	5-2EKWN	Y	Bundle	Recurri ng	1400	M	СН	DE	DE	0	0.0	0.0000	0.00
204 867		1		3554 1507	99.0	79.00	230	5-2EKWN	Y	bullale	Recurri ng	1400	M	СН	DE	DE	0	0.0	0.0000	0.00

75 rows × 30 columns

Finding:

55.00

29.00

75.00

79.00

140.00

49.00

45.00

44.00

19.80

200.00

89.00

29.80

129.00

139.00

179.00

169.00

9.80

19.00

20470

18054

17635

15611

9244 8875

4770

4349

3808

3516

3480

3244

2182

2110

2089

1955

1479

1445

1069

Only a few users have different list and actual prices -> no further action

```
# Drop List_Recurring_Chrg_Amt as it highly correlates with Actual_Recurring_Chrg_Amt
df = df.drop('List_Recurring_Chrg_Amt', 1)
pprint(df['Actual_Recurring_Chrg_Amt'].value_counts(dropna = False))
80.00
          115024
100.00
          64458
69.00
          53680
35.00
          47567
59.00
          42886
65.00
          38089
99.00
          24418
```

In [105]:

In [106]:

39.00		907				
12.00		827				
199.00)	754				
25.00		575				
15.00		310				
34.00		92				
10.00		65				
5.00		47				
0.00		30				
68.00		2				
8.00		2				
18.00		2				
40.18		1				
197.00)	1				
98.00		1				
88.00		1				
53.00		1				
30.80		1				
NTama.	7 ~+11 ~ 7	Deanning	Chasa	7\ m +	d+	: n + 6

Name: Actual_Recurring_Chrg_Amt, dtype: int64

df.loc[(df['Actual_Recurring_Chrg_Amt'] == 0)]

In [107]:

Out[107]:

																			L	
			Subs_St at_Id	Subscr_Si nce_Dt	Tac_I d	Actual_Recurring_ Chrg_Amt	Subs_Age_ Months	Prod_Id	Reg_Releva nt_Flag	Prod_Item_ Typ_Id	Price_T yp_Id	Cust_Se g_Id	Ind_Ge nder	Ind_Nationali ty_Code	Written_Langu age_Code	Oral_Langua ge_Code	Flag_Last_6_ Month	NF_Num_Tran sactions	GROSS_PRICE_A MT_mean	GROSS_PRIO MT_sum
7	738 20 2 06	0-		2013-12- 12	35728 009	0.0	63	epb- AAA_BBB_X TRA_S	Y	Bundle	Recurrin	1203	M	СН	DE	EN	0	73.0	8.8808	648.30
	268 41 20 06)18 9- 5		2007-02- 16	35942 208	0.0	145	epb- AAA_BBB_S	Y	Bundle	Recurrin g	1300	F	СН	DE	DE	0	0.0	0.0000	0.00
2	02			2013-11- 12	86626 404	0.0		epb- AAA_BBB_X TRA_M	Y	Bundle	Recurrin g	1203	M	СН	DE	EN	0	38.0	17.7774	675.54
	105 958 20 -0 08	3		1999-03- 30	35926 006	0.0		epb- AAA_BBB_S	Y	Bundle	Recurrin g	1300	F	СН	DE	DE	0	0.0	0.0000	0.00
1 3	112 372 20 -0			2003-09- 04	35569 507	0.0	187	epb- AAA_BBB_M	Y	Bundle	Recurrin g	1400	M	СН	DE	DE	0	4.0	20.5000	82.00
	136 525 20 -1)18 2-)		2014-05- 05	35966 409	0.0		epb- AAA_BBB_M	Y	Bundle	Recurrin	1300	M	СН	DE	DE	0	39.0	3.6333	141.70
1	142 330 -0	18 1-)		1997-08- 28	35260 109	0.0		epb- AAA_BBB_S	Y	Bundle	Recurrin g	1400	M	СН	DE	DE	0	0.0	0.0000	0.00
1	152 356 20 15	18 9- 5		2000-06- 15	35498 709	0.0	225	epb- AAA_BBB_S	Y	Bundle	Recurrin	1400	М	СН	DE	DE	0	0.0	0.0000	0.00

Finding:

Some Users seam not to pay any mobile subscribtion fee... -> leave it

$Hectare_Cell_Coordinate$

```
In [108]:
\# Drop x/y coordinates due to lack of time to further explore
# Find location on https://map.geo.admin.ch
# https://www.geo.admin.ch/de/geo-dienstleistungen/datenbezug.html#ui-collapse-483
df = df.drop('Hectare_Cell_X_Coordinate', 1)
df = df.drop('Hectare_Cell_Y_Coordinate', 1)
Prod Id
                                                                                                                                                                                         In [109]:
pprint(df['Prod Id'].value counts(dropna = False))
                      48580
epb-AAA_BBB_M
                      47784
epb-AAA BBB S
5-2E1WT
                       44513
                       . . .
5-24CCV
5-2E1UV
                           6
epb-AAA Home Sxx
                         1
Name: Prod_Id, Length: 144, dtype: int64
Note:
Do some more preprocessing later
Reg_Relevant_Flag
                                                                                                                                                                                         In [110]:
pprint(df['Reg_Relevant_Flag'].value_counts(dropna = False))
    515117
          9
Ν
Name: Reg_Relevant_Flag, dtype: int64
                                                                                                                                                                                         In [111]:
# Convert Reg Relevant Flag into 0 and 1
df["Reg_Relevant_Flag"] = df["Reg_Relevant_Flag"].map({"N": 0, "Y": 1})
Prod_Item_Typ_Id
                                                                                                                                                                                         In [112]:
pprint(df['Prod_Item_Typ_Id'].value_counts(dropna = False))
Bundle
                            515116
Bundle Effective Product
Mobile Effective Product
Subscription
Name: Prod_Item_Typ_Id, dtype: int64
                                                                                                                                                                                         In [113]:
\# Convert Prod Item Typ Id into 0 and 1
cleanup prod item = {"Prod Item Typ Id":
                                               {"Bundle Effective Product": 0,
    "Mobile Effective Product": 0,
    "Subscription": 0,
     "Bundle": 1}}
```

```
df = df.replace(cleanup prod item)
```

Price_Typ_Id

```
pprint(df['Price Typ Id'].value counts(dropna = False))
           515117
Recurring
Inventory
Name: Price Typ_Id, dtype: int64
 # Convert Price Typ Id into 0 and 1
 df["Price Typ Id"] = df["Price Typ Id"].map({"Inventory": 0, "Recurring": 1})
df.info()
Int64Index: 515126 entries, 0 to 515210
Data columns (total 27 columns):
                             515126 non-null int64
Main Phone Num
Start Dt
                            515126 non-null object
                            515126 non-null int64
Subs_Stat_Id
                            515126 non-null object
Subscr Since Dt
                             515126 non-null int64
Tac Id
                            515126 non-null float64
Actual Recurring Chrg Amt
Subs Age Months
                             515126 non-null int64
                             515126 non-null object
Prod Id
                             515126 non-null int64
Reg Relevant Flag
                             515126 non-null int64
Prod Item Typ Id
Price_Typ_Id
                             515126 non-null int64
Cust_Seg_Id
                             515126 non-null int64
Ind Gender
                             515126 non-null object
Ind Nationality Code
                             515126 non-null object
Written Language Code
                             515126 non-null object
Oral Language Code
                             515126 non-null object
Flag Last 6 Month
                             515126 non-null int64
                             515126 non-null float64
NF Num Transactions
GROSS_PRICE_AMT_mean
                             515126 non-null float64
GROSS PRICE AMT sum
                             515126 non-null float64
                             515126 non-null float64
GROSS PRICE AMT max
                             515126 non-null float64
GROSS PRICE AMT min
REV EFF TS max
                             515126 non-null object
REV EFF TS min
                             515126 non-null object
HAS E pay
                           515126 non-null float64
                         515126 non-null float64
HAS N Pay
HAS UNKNOWN
                             515126 non-null float64
dtypes: float64(9), int64(9), object(9)
memory usage: 110.0+ MB
```

Ind_Gender

df['Ind_Gender'].value_counts(dropna = False)

In [117]:

In [114]:

In [115]:

In [116]:

Out[117]:

```
M 260751
F 253983
U 392
Name: Ind_Gender, dtype: int64
```

Finding:

df.head()

Drop rows with Ind_Gender = 'U' (too much effort to clean data)

```
# Cleanup Ind_Gender

pprint(df['Ind_Gender'].unique())

# Drop unknown gender (U)

df_stats = df

df = df.drop(df[df.Ind_Gender =='U'].index)

rows_dropped = df_stats.shape[0] - df.shape[0]

pprint('No. of dropped rows: ' + str(rows_dropped))

# Convert gender into categorical value 0 and 1

df["Ind_Gender"] = df["Ind_Gender"].map({"M": 0, "F": 1})

pprint(df['Ind_Gender'].unique())

array(['F', 'M', 'U'], dtype=object)
'No. of dropped rows: 392'

array([1, 0])
```

In [119]:

In [118]:

Out[119]:

																		շավ117].
Start _Dt	Subs_St at_Id	Subscr_Sin ce_Dt	Tac_Id	Actual_Recurring_ Chrg_Amt	Subs_Age_M onths	Prod _Id	Reg_Releva nt_Flag	Prod_Item_ Typ_Id	Price_Ty p_Id	Cust_Se g_Id	Ind_Ge nder	Ind_Nationalit y_Code	Written_Langua ge_Code	Oral_Languag e_Code	Flag_Last_6_ Month	NF_Num_Trans actions	GROSS_PRICE_A MT_mean	GROSS_PRICE_ MT_sum
2019 0 -03- 16	1		35608 109	69.0	97	5- 2E1 WT	1	1	1	1203	1	СН	DE	DE	1	8.0	6.4750	51.80
2019 1 -03- 09	1		35736 109	35.0	39	5- 2CEG S	1	1	1	1202	0	BA	DE	DE	0	20.0	17.7900	355.80
2018 2 -07- 01	1	2015-11- 27	35460 707	59.0	40	5- 2E1 W4	1	1	1	1300	1	СН	FR	FR	0	0.0	0.0000	0.00
2018 3 -08- 01	1		35240 209	69.0	77	5- 2E1 WT	1	1	1	1203	1	СН	DE	DE	0	30.0	2.7667	83.00
2018 4 -11- 13		2015-10- 13	35721 309	55.0	41	5- 2E1X N	1	1	1	1203	1	СН	DE	EN	0	17.0	4.9900	84.83

Ind_Nationality_Code

pprint(df['Ind_Nationality_Code'].value_counts(dropna = False))
CH 441303

In [120]:

```
14141
PT
ΙT
      11080
       8229
DE
FR
       4307
XK
       4296
       3079
RS
ES
       2848
       2324
TR
       2052
MK
ВА
       1860
       1587
HR
ER
        268
      . . .
FJ
KM
          1
AN
Name: Ind_Nationality_Code, Length: 182, dtype: int64
```

Finding:

Many categories -> group / aggregate less used categories

488

HU

```
# Cleanup Ind_Nationality_Code
min_cat = 400 # threshold -> change category if below
# Change to 'OTHER' if below count threshold
df.loc[df.groupby('Ind_Nationality_Code').Ind_Nationality_Code.transform('count').lt(min_cat), 'Ind_Nationality_Code'] = 'OTHER'
pprint(df['Ind_Nationality_Code'].value_counts(dropna = False))
СН
         441303
         14141
PT
ΙT
         11080
OTHER
          8993
          8229
DE
FR
          4307
          4296
XK
          3079
RS
          2848
ES
TR
          2324
MK
          2052
          1860
ВА
HR
          1587
          1291
AT
          1253
BR
           972
UK
           853
LK
TH
           656
NL
           618
           576
RU
           534
PL
           495
LI
```

In [121]:

```
480
ΒE
US
            419
Name: Ind_Nationality_Code, dtype: int64
Written_Language_Code
                                                                                                                                                                                               In [122]:
pprint(df['Written_Language_Code'].value_counts(dropna = False))
      360807
FR
      133429
       17806
ΙT
        2692
ΕN
Name: Written_Language_Code, dtype: int64
Note:
Convert to one-hot-encoding later
Oral_Language_Code
                                                                                                                                                                                               In [123]:
pprint(df['Oral Language Code'].value counts(dropna = False))
      267913
DE
      140291
ΕN
       94274
FR
ΙT
       12164
          46
PT
          23
98
          13
ES
           5
DA
SV
           2
EL
ZH
Name: Oral_Language_Code, dtype: int64
Finding:
   • Group less used languages
   • Oral_Language_Code = 98? -> leave it
   • ZH = Chinese not züridütsch...
```

In [124]:

```
# Cleanup Oral_Language_Code

# Change to 'OTHER' if not in DE, EN, FR or IT
o_codes = ['DE', 'EN', 'FR', 'IT']
df.loc[~df['Oral_Language_Code'].isin(o_codes), 'Oral_Language_Code'] = 'OTHER'
```

Note:

Convert to one-hot-encoding later

Outlier Detection

Out[125].

In [126]:

In [127]:

df.head()

																		Out[125]:
Start _Dt	Subs_St at_Id	Subscr_Sin ce_Dt	Tac_Id	Actual_Recurring_ Chrg_Amt	Subs_Age_M onths	1 Prod _Id	Reg_Releva nt_Flag	Prod_Item_ Typ_Id	Price_Ty p_Id	Cust_Se g_Id	Ind_Ge nder	Ind_Nationalit y_Code	Written_Langua ge_Code	Oral_Languag e_Code	Flag_Last_6_ Month	NF_Num_Trans actions	GROSS_PRICE_A MT_mean	GROSS_PRICE_A MT_sum
2019 0 -03- 16		2011-03- 02	35608 109	69.0	97	5- 2E1 WT	1	1	1	1203	1	СН	DE	DE	1	8.0	6.4750	51.80
2019 1 -03- 09		2015-12- 21	35736 109	35.0	39	5- 2CEG S	1	1	1	1202	0	BA	DE	DE	0	20.0	17.7900	355.80
2018 2 -07- 01		2015-11- 27	35460 707	59.0	40	5- 2E1 W4	1	1	1	1300	1	СН	FR	FR	0	0.0	0.0000	0.00
3 -08- 01		2012-10- 04	35240 209	69.0	77	5- 2E1 WT	1	1	1	1203	1	СН	DE	DE	0	30.0	2.7667	83.00
2018 4 -11- 13		2015-10- 13	35721 309	55.0	41	5- 2E1X N	1	1	1	1203	1	СН	DE	EN	0	17.0	4.9900	84.83

```
df outlier = df
# Outlier detection
def detect_outliers(df_outlier,n,features):
    Takes a dataframe of features and returns a list of the indices
    corresponding to the observations containing more than \boldsymbol{n} outliers according
    to the Tukey method.
    ** ** **
    outlier indices = []
    # iterate over features(columns)
    for col in features:
        # 1st quartile (25%)
        Q1 = np.percentile(df_outlier[col], 25)
        # 3rd quartile (75%)
        Q3 = np.percentile(df_outlier[col],75)
        # Interquartile range (IQR)
        IQR = Q3 - Q1
        # outlier step
        outlier_step = 1.5 * IQR
        # Determine a list of indices of outliers for feature col
        \verb|outlier_list_col| = \verb|df_outlier[(df_outlier[col] < Q1 - outlier_step)| | (df_outlier[col] > Q3 + outlier_step)|.index| \\
        \ensuremath{\text{\#}} append the found outlier indices for col to the list of outlier indices
        outlier indices.extend(outlier list col)
    \# select observations containing more than 2 outliers
    outlier_indices = Counter(outlier_indices)
```

In [128]:

In [129]:

																		Out[128]:
Star	t Subs_St	Subscr_Sin	Tac_	Actual_Recurring_	Subs_Age_M	Prod	Reg_Relevan	Prod_Item_	Price_Ty	Cust_Se	Ind_Ge	Ind_Nationalit	Written_Langua	Oral_Languag	Flag_Last_6_	NF_Num_Trans	GROSS_PRICE_A	GROSS_PRICE_A
_D1	t at_Id	ce_Dt	Id	Chrg_Amt	onths	_Id	t_Flag	Typ_Id	p_Id	g_Id	nder	y_Code	ge_Code	e_Code	Month	actions	MT_mean	MT_sum

Finding:

No outliers found

```
# Drop outliers
# df = df.drop(Outliers_to_drop, axis = 0).reset_index(drop=True)
```

Feature Engineering

df.loc[Outliers_to_drop]

Mobile Provider Code

```
In [130]:
# Extract old mobile provider code (079, 078, etc.)
df feat = df.reset index(drop=True)
df_feat['NF_Mobile_Provider_Code'] = df_feat['Main_Phone_Num'].astype(str).str[2:4].astype(np.int64)
                                                                                                                                                                                       In [131]:
pprint(df feat['NF Mobile Provider Code'].value counts(dropna = False))
      447565
79
      31042
78
76
      25381
77
       10461
75
        161
        124
Name: NF_Mobile_Provider_Code, dtype: int64
```

Note:

Maybe convert to one-hot-encoding later

```
In [132]:
show_dist_cat_single(df_feat, 'NF_Mobile_Provider_Code')
```

df_feat_prov = df_feat[["NF_Mobile_Provider_Code","Flag_Last_6_Month"]].groupby('NF_Mobile_Provider_Code').mean()
df_feat_prov.sort_values(by='Flag_Last_6_Month', ascending=False).head(10)

	Flag_Last_6_Month
NF_Mobile_Provider_Code	
75	0.031056
77	0.013861
76	0.013002
78	0.011597
79	0.011189
37	0.000000

Finding:

- 79 has the most non payers (absolute)75 has the highest ratio of non payers

df_feat.head(20)

In [134]:

Out[134]:

				Tac_I	Actual_Recurring	_	Prod_Id									_		GROSS_PRICE_A		
	_Dt	at_Id	nce_Dt	d	_Chrg_Amt	Months	1104-14	nt_Flag	Typ_Id	yp_Id	eg_Id	nder	ity_Code	age_Code	ge_Code	_Month	nsactions	MT_mean	AMT_sum	AMT_1
0	2019 -03- 16	1	2011-03- 02	35608 109	69.0	97	5-2E1WT	1	1	1	1203	1	СН	DE	DE	1	8.0	6.4750	51.80	15.00
1	2019 -03- 09	1	2015-12- 21	35736 109	35.0	39	5-2CEGS	1	1	1	1202	0	BA	DE	DE	0	20.0	17.7900	355.80	80.00

In [133]:

Out[133]:

	Start Subs_St _Dt at_Id	Subscr_Si nce_Dt	Tac_I d	Actual_Recurring _Chrg_Amt	Subs_Age_ Months	Prod_Id	Reg_Releva nt_Flag	Prod_Item_ Typ_Id	Price_T yp_Id	Cust_S eg_Id		Ind_National ity_Code	Written_Langu age_Code	Oral_Langua ge_Code	Flag_Last_6 _Month	NF_Num_Tra nsactions	GROSS_PRICE_A MT_mean	GROSS_PRICE_ AMT_sum	GROSS_I AMT_1
2	2018 -07- 1	2015-11- 27	35460 707	59.0	40	5-2E1W4	1	1	1	1300	1	СН	FR	FR	0	0.0	0.0000	0.00	0.00
3	2018 -08- 01	2012-10- 04	35240 209	69.0	77	5-2E1WT	1	1	1	1203	1	СН	DE	DE	0	30.0	2.7667	83.00	3.00
4	2018 -11- 13	2015-10- 13	35721 309	55.0	41	5-2E1XN	1	1	1	1203	1	СН	DE	EN	0	17.0	4.9900	84.83	4.99
5	2018 10- 21	2014-09- 26	35763 109	80.0	54	epb- AAA_BBB_ XTRA_S	1	1	1	1203	1	IT	DE	EN	0	1.0	19.0000	19.00	19.00
6	2019 -03- 1	2015-10- 01	35297 809	80.0	42	5-30HQX	1	1	1	1203	1	СН	DE	EN	0	33.0	15.5664	513.69	99.99
7	2019 -02- 1 27	2013-10- 28	35531 508	80.0	65	5-30HS1	1	1	1	1203	0	MK	DE	EN	0	102.0	4.9500	504.90	4.95
8	2019 -03- 30	2004-04- 28	35523 008	80.0	179	5-30HS1	1	1	1	1300	1	СН	DE	DE	0	0.0	0.0000	0.00	0.00
9	2019 -01- 05	2012-08- 09	35487 009	80.0		epb- AAA_BBB_ S	1	1	1	1300	1	XK	DE	EN	0	0.0	0.0000	0.00	0.00
1 0	2019 -03- 01	2014-02- 28	35304 809	100.0		epb- AAA_BBB_ M	1	1	1	1204	0	RS	DE	EN	0	51.0	4.9900	254.49	4.99

Months since Start Date

In [135]:

```
31834
      30082
      29600
10
      25452
14
      25219
      23201
11
12
      21814
13
      18916
15
      14738
16
      14088
17
      11604
20
       1314
22
        665
23
        553
21
        376
24
        169
19
        148
25
         40
26
         16
27
         13
43
         1
52
          1
Name: NF_Start_Dt_Months, dtype: int64
show_dist_cat_single(df_feat, 'NF_Start_Dt_Months')
```

```
df_feat_start_m = df_feat[["NF_Start_Dt_Months","Flag_Last_6_Month"]].groupby('NF_Start_Dt_Months').mean()
df_feat_start_m.sort_values(by='Flag_Last_6_Month', ascending=False).head(10)
```

In [137]:

In [136]:

Out[137]:

	Flag_Last_6_Month
NF_Start_Dt_Months	lug_bust_o_i-loneii
7	0.018439
6	0.015405
8	0.014660
4	0.014459
5	0.014441
10	0.013634
11	0.013232
9	0.012965
12	0.011873
13	0.011683

df feat.head()

In [138]:

																		Out[138	8]:
	bs_St t_Id	Tac_I d	Actual_Recurring _Chrg_Amt	Subs_Age_ Months	Prod _Id	_	Prod_Item_ Typ_Id			Ind_Ge nder	Ind_Nationali ty_Code	Written_Langu age_Code	Oral_Langua ge_Code	Flag_Last_6 _Month	NF_Num_Tran sactions	GROSS_PRICE_A MT_mean	GROSS_PRICE_ AMT_sum	GROSS_PRICE_ AMT_max	GROSS_P AMT_1
0 1		35608 109	69.0	97	5- 2E1 WT	1	1	1	1203	1	СН	DE	DE	1	8.0	6.4750	51.80	15.00	-5.00
1 1		35736 109	35.0	39	5- 2CEG S	1	1	1	1202	0	BA	DE	DE	0	20.0	17.7900	355.80	80.00	0.92
2 1		35460 707	59.0	40	5- 2E1 W4	1	1	1	1300	1	СН	FR	FR	0	0.0	0.0000	0.00	0.00	0.00
3 1		35240 209	69.0	77	5- 2E1 WT	1	1	1	1203	1	СН	DE	DE	0	30.0	2.7667	83.00	3.00	1.00
4 1		35721 309	55.0	41	5- 2E1X	1	1	1	1203	1	СН	DE	EN	0	17.0	4.9900	84.83	4.99	4.99

Monthly Expenditure Ratio

#temp

```
\ensuremath{\sharp} Ratio of average monthly expenditure to monthly abo cost, replace NaN with 0
# Use Subs Age Months (Months since mobile subscription) and not no. of months since first purchase
\# Set 0 if Actual Recurring Chrg Amt = 0 -> otherwise will raise an inifite error in the fit method
df_feat = df_feat.assign(NF_Ratio_Month=np.where(df_feat['Actual_Recurring_Chrg_Amt'] != 0, df_feat['GROSS_PRICE_AMT_sum'] / df_feat['Subs_Age_Months'] /
df_feat['Actual_Recurring_Chrg_Amt'], 0))
df_feat['NF_Ratio_Month'] = df_feat['NF_Ratio_Month'].round(decimals=4)
df_feat['NF_Ratio_Month'].fillna(0, inplace = True)
```

In [140]:

In [139]:

df_feat.loc[df_feat['NF_Ratio_Month'].isnull()]

Out[140]:

																			[]
	Subc St	Tac	Actual_Recurring	Suhe Ago	Drod	Rog Rolova	Prod Itom	Price T	Cust S	Ind Co	Ind National	Writton Langu	Oral Langua	Flag Last 6	NE Num Tran	CROSS PRICE A	CROSS PRICE	GROSS_PRICE_	GROSS_PRICE_ R
1111	Jubs_st	1 ac	Actual_Recuiring	Jubs_Age_	IIOu	. Reg_Releva	I I ou_item_	11100_1	Cust_5	mu_uc	mu_national	wiltten_Langu	Of al_Langua	riag_Last_0	MI_Mulli_II all	UNUSS_I MICE_A	dito55_1 kick_	ditoss_i kick_	dito55_1 kick_ i
	at_Id	_Id	_Chrg_Amt	Months	_Id	nt_Flag	Typ_Id	yp_Id	eg_Id	nder	ity_Code	age_Code	ge_Code	_Month	sactions	MT_mean	AMT_sum	AMT_max	AMT_min

In [141]:

df_feat.head()

()11†	11411	:
Out		

		ac_I d	Actual_Recurring _Chrg_Amt		Pro d_Id		Prod_Item_ Typ_Id	Price_T yp_Id			Ind_National ity_Code	Written_Langu age_Code	Oral_Langua ge_Code	Flag_Last_6 _Month	NF_Num_Tra nsactions	GROSS_PRICE_A MT_mean	GROSS_PRICE_ AMT_sum	GROSS_PRICE_ AMT_max	GROSS_PRICE_ AMT_min
0 1	356 810	560 109	69.0	97	5- 2E1 WT	1	1	1	1203	1	СН	DE	DE	1	8.0	6.4750	51.80	15.00	-5.00 2 1 0
1 1	357 610	573 109	35.0	39	5- 2CE GS	1	1	1	1202	0	ВА	DE	DE	0	20.0	17.7900	355.80	80.00	0.92
2 1	35 ⁴ 070	546 707	59.0	40	5- 2E1 W4	1	1	1	1300	1	СН	FR	FR	0	0.0	0.0000	0.00	0.00	0.00
3 1	352 020	524 209	69.0	77	5- 2E1 WT	1	1	1	1203	1	СН	DE	DE	0	30.0	2.7667	83.00	3.00	1.00 2
4 1		572 309	55.0	41	5- 2E1 XN	1	1	1	1203	1	СН	DE	EN	0	17.0	4.9900	84.83	4.99	4.99

```
In [142]:
```

```
#show_dist_cat_single(df_feat, 'NF_Ratio_Month')
```

```
In [143]:
```

```
df_feat_ratio_m = df_feat[["NF_Ratio_Month","Flag_Last_6_Month"]].groupby('NF_Ratio_Month').mean()
df_feat_ratio_m.sort_values(by='Flag_Last_6_Month', ascending=False).head(10)
```

Out[143]:

	Flag_Last_6_Month
NF_Ratio_Month	
1.0633	1.0
0.7854	1.0
1.1292	1.0
0.6764	1.0
0.7871	1.0
1.1231	1.0
0.4613	1.0
1.1156	1.0
0.5747	1.0
0.5755	1.0

Note:

Data should be binned for a meaningful evaluation

```
In [144]:
```

```
# Backup temp
df_feat_backup_3 = df_feat.copy()

# Backup temp
#df_feat = df_feat_backup_3.copy()
```

In [145]:

One-hot-encoding

One column per category, with a 1 or 0 in each cell for if the row contained that column's category Used for features with low no. of dimensions

```
# One-hot-encoding
 df feat = pd.get dummies(df feat, columns=['Written Language Code'], drop first=True)
 df feat = pd.get dummies(df feat, columns=['Oral Language Code'], drop first=True)
 df feat = pd.get dummies(df feat, columns=['NF Mobile Provider Code'], drop first=True)
 df feat.info()
RangeIndex: 514734 entries, 0 to 514733
Data columns (total 37 columns):
Main Phone Num
                              514734 non-null int64
Subs Stat Id
                             514734 non-null int64
Tac Id
                              514734 non-null int64
                              514734 non-null float64
Actual Recurring Chrg Amt
Subs Age Months
                              514734 non-null int64
Prod Id
                              514734 non-null object
Reg Relevant Flag
                              514734 non-null int64
Prod Item Typ Id
                              514734 non-null int64
Price Typ Id
                              514734 non-null int64
Cust Seg Id
                              514734 non-null int64
Ind Gender
                              514734 non-null int64
Ind Nationality Code
                              514734 non-null object
                              514734 non-null int64
Flag Last 6 Month
                              514734 non-null float64
NF Num Transactions
GROSS PRICE AMT mean
                              514734 non-null float64
GROSS PRICE AMT sum
                              514734 non-null float64
GROSS PRICE AMT max
                              514734 non-null float64
GROSS PRICE AMT min
                              514734 non-null float64
REV EFF TS max
                              514734 non-null object
REV EFF TS min
                              514734 non-null object
HAS E pay
                            514734 non-null float64
HAS N Pay
                          514734 non-null float64
HAS UNKNOWN
                              514734 non-null float64
NF Start Dt Months
                              514734 non-null int64
                              514734 non-null float64
NF Ratio Month
Written_Language Code EN
                              514734 non-null uint8
Written Language Code FR
                              514734 non-null uint8
Written Language Code IT
                              514734 non-null uint8
Oral Language Code EN
                              514734 non-null uint8
Oral Language Code FR
                              514734 non-null uint8
Oral Language Code IT
                              514734 non-null uint8
Oral Language Code OTHER
                              514734 non-null uint8
NF Mobile Provider Code 75
                              514734 non-null uint8
NF Mobile Provider Code 76
                              514734 non-null uint8
NF Mobile Provider Code 77
                              514734 non-null uint8
NF Mobile Provider Code 78
                              514734 non-null uint8
NF Mobile Provider Code 79
                              514734 non-null uint8
dtypes: float64(10), int64(11), object(4), uint8(12)
memory usage: 104.1+ MB
```

In [146]:

In [147]:

```
# Change HAS_ features to proper one-hot-encoding (0/1)
mrg_agg.loc[(mrg_agg.HAS_E_pay > 0), 'HAS_E_pay'] = 1
mrg_agg.loc[(mrg_agg.HAS_N_Pay > 0), 'HAS_N_Pay'] = 1
mrg_agg.loc[(mrg_agg.HAS_UNKNOWN > 0), 'HAS_UNKNOWN'] = 1

# Change data type to Integer
mrg_agg['HAS_E_pay'] = mrg_agg.HAS_E_pay.astype(int)
mrg_agg['HAS_N_Pay'] = mrg_agg.HAS_E_pay.astype(int)
mrg_agg['HAS_UNKNOWN'] = mrg_agg.HAS_E_pay.astype(int)
mrg_agg.head()
```

Out[148]:

NF_Num_Transact	ions GROSS_PRICE_AMT_mean	GROSS_PRICE_AMT_sum	GROSS_PRICE_AMT_max	GROSS_PRICE_AMT_min	REV_EFF_TS_max	REV_EFF_TS_min	HAS_E_pay	HAS_N_Pay	HAS_UNKNOWN
0 22	5.1591	113.50	11.7	2.0	2019-02-06	2017-07-08	1	1	1
1 187	2.8922	540.85	8.0	1.0	2019-03-22	2017-04-12	0	0	0
2 3	8.3333	25.00	10.0	5.0	2018-09-18	2018-02-23	0	0	0
3 1	5.2000	5.20	5.2	5.2	2019-03-25	2019-03-25	0	0	0
4 23	6.0000	138.00	6.0	6.0	2019-03-12	2017-04-13	0	0	0

Binary Encoding

first the categories are encoded as ordinal, then those integers are converted into binary code, then the digits from that binary string are split into separate columns. This encodes the data in fewer dimensions that one-hot, but with some distortion of the distances

In [149]:

```
# Binary Encoding
ce_bin = ce.BinaryEncoder(cols=['Prod_Id', 'Ind_Nationality_Code'])
df_feat = ce_bin.fit_transform(df_feat)
df_feat
```

Out[149]:

Su bs. Sta t_Io	Ta c_I d	Actual_ Recurri ng_Chrg _Amt	Subs _Age _Mon ths	Pr F od od	Pr Pr od od Id _Id _2	Pr l od l _Id 2 _3	Pr od _Id _4	Pr od _Id _5	Pr od _Id _6	Pr lod of _Id _	Pr I od I Id v 8	Reg_ Rele vant_ Flag	Prod _Ite m_Ty p_Id	Pri ce_ s Ty So p_I d	u II t0 eg r	Ind_Na Ge tionali d ty_Cod er e_0	Ind_Na tionali ty_Cod e_1	Ind_Na tionali ty_Cod e_2	Ind_Na tionali ty_Cod e_3	Ind_Na tionali ty_Cod e_4	Ind_Na tionali ty_Cod e_5	Flag_ Last_ 6_Mo nth	NF_Nu m_Tra nsacti ons	GROSS_ PRICE_ AMT_m ean	GROSS _PRICE _AMT_ sum	GROSS _PRICE _AMT_ max	GROSS _PRICE _AMT_ min	REV_ EFF_ TS_ max	REV_ EFF_ TS_ min	HA H S_ E_ pa y	HA S_ N_ Pa V	IAS N UN a INO t	NF_St art_D t_Mo nths	NF_ Rati o_M onth	Written _Langua ge_Code _EN	Written Langua ge_Code _FR
(1	35 60			0 0									1	1 0		0	0	0	0	0	1			6.4750				2019 -03-	2019 -02- 01 00:0		3.0 0.			0.00 77	0	0 0
11	35 73 61 09	35.0	39	0 0	0	0	0	0	0	1 () 1		1	1 0	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	0	0	0	0	1	0	0	20.0	17.790 0	355.80	80.00	0.92	2019 -02- 23 00:0 0:00	-05- 02 00:0	0.0	0.	.0 5	5	0.26 07	0	0 0
2 1	35 46 07 07	59.0	40	0 0	0	0	0	0	0	1 1	1		1	$\begin{bmatrix} 1 & 0 \end{bmatrix}$	3 1	0	0	0	0	0	1	0	0.0	0.0000	0.00	0.00	0.00	0	0	0.0	0.0	.0 1	13	0.00 00	0	1 0
31	35 24 02 09	69.0	77	0 0	0	0	0	0	0	0 1	1		1	1 0	2 1	0	0	0	0	0	1	0	30.0	2.7667	83.00	3.00	1.00		2017 -04- 10	0.0	0.	.0 1	12	0.01 56	0	0 0

	Su bs_ Sta t_Id	Actual_ Recurri ng_Chrg _Amt	Subs _Age _Mon ths	Pr od _Id _0	Pr Prod oc	r Pr d od d _Id 2 _3	Pr l od l _Id _4	Pr od _Id _5	Pr od _Id _6	Pr od _Id _7	Pr od _Id _8	Reg_ Rele vant_ Flag	Prod _Ite m_Ty p_Id	Pri ce_ Ty p_I d	Cu st_ Seg _Id	Ind _Ge nd er	Ind_Na tionali ty_Cod e_0	Ind_Na tionali ty_Cod e_1	Ind_Na tionali ty_Cod e_2	Ind_Na tionali ty_Cod e_3	Ind_Na tionali ty_Cod e_4	Ind_Na tionali ty_Cod e_5	Flag_ Last_ 6_Mo nth	NF_Nu m_Tra nsacti ons	GROSS_ PRICE_ AMT_m ean	GROSS _PRICE _AMT_ sum	GROSS _PRICE _AMT_ max	GROSS _PRICE _AMT_ min	REV_ EFF_ TS_ max	REV_ EFF_ TS_ min	HA I S_ E_ pa y	HA S_ N_ Pa	IAS _UN KNO WN	NF_St art_D t_Mo nths	NF_ Rati o_M onth	Written _Langua ge_Code _EN	Written _Langua ge_Code _FR
																													00:0 0:00								
۷.	35 72 13 09	55.0	41	0 (0 0	0	0	0	1	0	0	1	1	1	12 03	1	0	0	0	0	0	1	0	17.0	4.9900	84.83	4.99	4.99	2018 -08- 27 00:0 0:00	-05- 07 00:0	0.0	0.0 1	.7.0	9	0.03 76	0	0
Ę	35 76 31 09	0.00	54	0 (0 0	0	0	0	1	0	1	1	1	1	12 03	1	0	0	0	0	1	1	0	1.0	19.000	19.00	19.00	19.00	00:0	-01-	0.0	1.0 0	0.0	9	0.00	0	0
•	35 29 78 09	80.0	42	0 (0 0	0	0	0	1	1	0	1	1	1	12 03	1	0	0	0	0	0	1	0	33.0	15.566 4	513.69	99.99	1.00	2019 -03- 20 00:0 0:00	-05- 01 00:0	0.0	33.	0.0	4	0.15 29	0	0
5	35 53 15 08	00.0	65	0	0 0	0	0	0	1	1	1	1	1	1	12 03	0	0	0	0	1	0	0	0	102.0	4.9500	504.90	4.95	4.95	2019 -03- 20 00:0 0:00	-04- 13 00:0	10 2.0	0.0	0.0	5	0.09 71	0	0

514734 rows × 50 columns

In [150]:

df_feat.head()

Out[150]:

Su bs_ Sta t_Id	Ta c_I d	Actual_ Recurri ng_Chrg _Amt	Subs _Age _Mon ths	Pr 1 0 0 0 0 0 0 0 0 0	Pr Fod o	Pr Pr od od 1d _1d _2 _3	r Pr d od d _Id B _4	Pr od I _Id _5	Pr od _Id _6	Pr od _Id _7	Pr od _Id _8	Reg_ Rele vant_ Flag	Prod _Ite m_Ty p_Id	Pri ce_ Ty p_I d	Cu st_ Seg _Id	Ind _Ge nd er	Ind_Na tionali ty_Cod e_0	Ind_Na tionali ty_Cod e_1	Ind_Na tionali ty_Cod e_2	Ind_Na tionali ty_Cod e_3	Ind_Na tionali ty_Cod e_4	Ind_Na tionali ty_Cod e_5	Flag_ Last_ 6_Mo nth	NF_Nu m_Tra nsacti ons	GROSS_ PRICE_ AMT_m ean	GROSS _PRICE _AMT_ sum	GROSS _PRICE _AMT_ max	GROSS _PRICE _AMT_ min	REV_ EFF_ TS_ max	REV_ EFF_ TS_ min	HA H S_ S E_ N pa P y y	A HAS	NF_St art_D t_Mo nths	NF_ Rati o_M onth	Written _Langua ge_Code _EN	Written L Langua ge_Code a _FR
(1	35 60 81 09	69.0	97	0 0	0	0	0	0	0	0	1	1	1	1	12 03	1	0	0	0	0	0	1	1	8.0	6.4750	51.80	15.00	-5.00		-02- 01 00:0	0.0 8.	0.0	4	0.00 77	0	0
1 1	35 73 61 09	35.0	39	0 0	0	0	0	0	0	1	0	1	1	1	12 02	0	0	0	0	0	1	0	0	20.0	17.790 0	355.80	80.00	0.92	0:00		0.0	0.0	5	0.26 07	0	0
2 1	35 46 07 07	59.0	40	0 0	0	0	0	0	0	1	1	1	1	1	13 00	1	0	0	0	0	0	1	0	0.0	0.0000	0.00	0.00	0.00	0	0	0.0 0.	0.0	13	0.00	0	1 (
31	35 24 02 09	69.0	77	0 0	0	0	0	0	0	0	1	1	1	1	12 03	1	0	0	0	0	0	1	0	30.0	2.7667	83.00	3.00			0.4	0.0	0.0	12	0.01 56	0	0

bs_ c I	Actual_ Recurri ng_Chrg _Amt	_Age _Mon	od o _Id _I	d od d _Id	od _Id	od _Id	od o _Id _1	od o Id _I	d od Id _Id	l Rele	_Ite _m_Ty	Ty	st Seg	_Ge nd	Ind_Na tionali ty_Cod e_0	tionali ty_Cod	tionali	tionali	tionali	tionali	Last_	m_Tra nsacti	PRICE_	_PRICE	_PRICE	_PRICE	TS	EFF_	E _	N_	NO	t_Mo	o_M	ge_Code	Written V _Langua ge_Code _FR
35 72 13 09	55.0	41	0 0	0	0	0	0 1	. 0	0	1	1	1	12 03	1	0	0	0	0	0	1	0	17.0	4.9900	84.83	4.99	4.99	2018 -08- 27 00:0 0:00	2018 -05- 07 00:0 0:00	0.0	0.0 17	7.0	9	0.03 76	0	0 0

In [151]:
Change data type to Integer

df_feat['HAS_E_pay'] = df_feat.HAS_E_pay.astype(int)
df_feat['HAS_N_Pay'] = df_feat.HAS_E_pay.astype(int)
df_feat['HAS_UNKNOWN'] = df_feat.HAS_E_pay.astype(int)

df feat.info()

REV_EFF_TS_min

RangeIndex: 514734 entries, 0 to 514733

Data columns (total 50 columns):

```
Main Phone Num
                              514734 non-null int64
Subs Stat Id
                              514734 non-null int64
Tac Id
                              514734 non-null int64
Actual_Recurring_Chrg_Amt
                              514734 non-null float64
Subs Age Months
                              514734 non-null int64
Prod Id 0
                              514734 non-null int64
Prod Id 1
                              514734 non-null int64
Prod Id 2
                              514734 non-null int64
Prod Id 3
                              514734 non-null int64
Prod Id 4
                              514734 non-null int64
Prod Id 5
                              514734 non-null int64
Prod Id 6
                              514734 non-null int64
Prod_Id_7
                              514734 non-null int64
Prod_Id_8
                              514734 non-null int64
Reg Relevant Flag
                              514734 non-null int64
Prod Item Typ Id
                              514734 non-null int64
Price Typ Id
                              514734 non-null int64
Cust Seg Id
                              514734 non-null int64
Ind Gender
                              514734 non-null int64
Ind Nationality Code 0
                              514734 non-null int64
Ind_Nationality_Code_1
                              514734 non-null int64
Ind Nationality Code 2
                              514734 non-null int64
Ind Nationality Code 3
                              514734 non-null int64
Ind Nationality Code 4
                              514734 non-null int64
Ind Nationality Code 5
                              514734 non-null int64
Flag Last 6 Month
                              514734 non-null int64
NF Num Transactions
                              514734 non-null float64
GROSS PRICE AMT mean
                              514734 non-null float64
GROSS PRICE AMT sum
                              514734 non-null float64
GROSS_PRICE_AMT_max
                              514734 non-null float64
GROSS_PRICE_AMT_min
                              514734 non-null float64
REV EFF TS max
                              514734 non-null object
```

514734 non-null object

In [152]:

```
HAS E pay
                            514734 non-null int64
HAS N Pay
                          514734 non-null int64
HAS UNKNOWN
                              514734 non-null int64
NF Start Dt Months
                              514734 non-null int64
NF Ratio Month
                              514734 non-null float64
Written_Language_Code_EN
                              514734 non-null uint8
Written Language Code FR
                              514734 non-null uint8
Written Language Code IT
                              514734 non-null uint8
Oral_Language_Code_EN
                              514734 non-null uint8
Oral Language Code FR
                              514734 non-null uint8
Oral Language Code IT
                              514734 non-null uint8
Oral Language Code OTHER
                              514734 non-null uint8
                              514734 non-null uint8
NF_Mobile_Provider_Code_75
NF Mobile Provider Code 76
                              514734 non-null uint8
NF_Mobile_Provider_Code_77
                              514734 non-null uint8
NF Mobile Provider Code 78
                              514734 non-null uint8
NF Mobile Provider Code 79
                              514734 non-null uint8
dtypes: float64(7), int64(29), object(2), uint8(12)
memory usage: 155.1+ MB
# Correlation with target Flag Last 6 Month
corr matrix = df feat.corr()
corr matrix['Flag Last 6 Month'].sort values(ascending=False)
Flag_Last_6_Month
                              1.000000
GROSS PRICE AMT sum
                              0.139789
                              0.133276
GROSS PRICE AMT max
NF Ratio Month
                              0.121247
NF Num Transactions
                              0.114625
GROSS_PRICE_AMT_mean
                              0.065548
Actual_Recurring_Chrg_Amt
                              0.056395
                              0.022524
Oral_Language_Code_EN
Ind Nationality Code 3
                              0.017877
HAS UNKNOWN
                              0.017687
HAS N Pay
                          0.017687
HAS E pay
                            0.017687
Prod Id 8
                              0.015027
Ind Nationality Code 4
                              0.012143
Ind Nationality Code 2
                              0.010318
                              0.006626
Tac Id
Prod Id 3
                              0.005647
Prod Id 6
                              0.004846
                              0.003526
NF Mobile Provider Code 76
NF Mobile Provider Code 77
                              0.003397
NF_Mobile_Provider Code 75
                              0.003287
Prod Id 5
                              0.001866
                              0.001652
Main Phone Num
                              0.001309
Oral_Language_Code_OTHER
                              0.000564
NF_Mobile_Provider_Code_78
Ind Nationality Code 1
                              0.000459
Written_Language_Code_EN
                              0.000360
Prod_Id_1
                              0.000165
Subs Stat Id
                             -0.000459
Written Language Code FR
                             -0.001837
```

In [153]:

Out[153]:

```
-0.003416
GROSS PRICE AMT min
                             -0.003686
Prod Item Typ Id
Price Typ Id
                             -0.003936
Reg Relevant Flag
                             -0.003936
NF_Mobile_Provider_Code 79
                             -0.004184
Written_Language_Code_IT
                             -0.004443
Oral Language Code IT
                             -0.005454
Prod Id 2
                             -0.007498
                             -0.007776
Oral_Language_Code_FR
Prod Id 4
                             -0.008626
Ind Nationality Code 5
                             -0.012716
Ind Gender
                             -0.027996
NF_Start_Dt_Months
                             -0.033836
Prod Id 7
                             -0.035726
                             -0.045252
Subs Age Months
                             -0.058184
Cust_Seg_Id
Prod Id 0
                                   NaN
Ind Nationality Code 0
                                   NaN
Name: Flag Last 6 Month, dtype: float64
```

df feat.info()

RangeIndex: 514734 entries, 0 to 514733

Data columns (total 50 columns):

```
Main Phone Num
                              514734 non-null int64
Subs Stat Id
                              514734 non-null int64
Tac Id
                              514734 non-null int64
Actual_Recurring_Chrg_Amt
                              514734 non-null float64
Subs Age Months
                              514734 non-null int64
Prod Id 0
                              514734 non-null int64
Prod Id 1
                              514734 non-null int64
Prod Id 2
                              514734 non-null int64
Prod Id 3
                              514734 non-null int64
Prod Id 4
                              514734 non-null int64
Prod Id 5
                              514734 non-null int64
Prod_Id_6
                              514734 non-null int64
Prod_Id_7
                              514734 non-null int64
Prod_Id_8
                              514734 non-null int64
Reg Relevant Flag
                              514734 non-null int64
Prod Item Typ Id
                              514734 non-null int64
Price_Typ_Id
                              514734 non-null int64
Cust Seg Id
                              514734 non-null int64
Ind Gender
                              514734 non-null int64
Ind Nationality Code 0
                              514734 non-null int64
Ind_Nationality_Code_1
                              514734 non-null int64
Ind Nationality Code 2
                              514734 non-null int64
Ind Nationality Code 3
                              514734 non-null int64
Ind Nationality Code 4
                              514734 non-null int64
Ind Nationality Code 5
                              514734 non-null int64
                              514734 non-null int64
Flag Last 6 Month
NF Num Transactions
                              514734 non-null float64
GROSS PRICE AMT mean
                              514734 non-null float64
GROSS PRICE AMT sum
                              514734 non-null float64
                              514734 non-null float64
GROSS_PRICE_AMT_max
```

In [154]:

```
GROSS PRICE AMT min
                              514734 non-null float64
REV EFF_TS_max
                              514734 non-null object
REV EFF TS min
                              514734 non-null object
HAS E pay
                            514734 non-null int64
                          514734 non-null int64
HAS N Pay
HAS UNKNOWN
                              514734 non-null int64
NF_Start_Dt_Months
                              514734 non-null int64
NF Ratio Month
                              514734 non-null float64
Written_Language_Code_EN
                              514734 non-null uint8
Written Language Code FR
                              514734 non-null uint8
Written Language Code IT
                              514734 non-null uint8
Oral Language Code EN
                              514734 non-null uint8
Oral_Language_Code_FR
                              514734 non-null uint8
Oral Language Code IT
                              514734 non-null uint8
Oral Language Code OTHER
                              514734 non-null uint8
NF_Mobile_Provider_Code_75
                              514734 non-null uint8
NF Mobile Provider Code 76
                              514734 non-null uint8
NF Mobile Provider Code 77
                              514734 non-null uint8
NF Mobile Provider Code 78
                              514734 non-null uint8
NF Mobile Provider Code 79
                              514734 non-null uint8
dtypes: float64(7), int64(29), object(2), uint8(12)
memory usage: 155.1+ MB
 #temp
 df_feat_backup_4 = df_feat.copy()
 #temp
df feat = df_feat_backup_4.copy()
```

Modeling

Preparation

Drop unnecessary columns

```
# Function to show basic confusion matrix
def show_conf_mat(y_test, y_pred):
    conf_mat = confusion_matrix(y_true=y_test, y_pred=y_pred)
    print('Confusion matrix:\n', conf_mat)

labels = ['Class 0 (PAYS)', 'Class 1 (DOES NOT PAY)']
fig = plt.figure()
ax = fig.add_subplot(111)
cax = ax.matshow(conf_mat, cmap=plt.cm.Blues)
fig.colorbar(cax)
ax.set_xticklabels([''] + labels)
ax.set_yticklabels([''] + labels)
plt.xlabel('Predicted')
plt.ylabel('Expected')
plt.show()
```

In [411]:

In [155]:

In [409]:

In [410]:

```
df feat = df feat.drop(['Main Phone Num'],axis=1)
df_feat = df_feat.drop(['REV_EFF_TS_max'],axis=1)
df_feat = df_feat.drop(['REV_EFF_TS_min'],axis=1)
                                                                                                                                                                                        In [412]:
# temp
 df feat backup 5 = df feat.copy()
                                                                                                                                                                                        In [413]:
print(np.all(np.isfinite(df feat))) # -> problem?
 #print(np.all(np.isfinite(X_train))) # -> problem?
 #print(np.all(np.isfinite(y_train)))
True
                                                                                                                                                                                        In [414]:
 # Prepare Training and Testing sets
 #y = df_feat.['Flag_Last_6_Month']
 #X = df feat.drop(columns=['Flag Last 6 Month'])
y = df_feat.Flag_Last_6_Month
X = df feat.drop('Flag Last 6 Month', axis=1)
 \# Simple split for Training and Test Data
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=0.25, random_state=42)
X_train.shape, X_test.shape, y_train.shape, y_test.shape
                                                                                                                                                                                       Out[414]:
((386050, 46), (128684, 46), (386050,), (128684,))
                                                                                                                                                                                        In [415]:
 #temp
print("df_feat: ",type(df_feat))
print("X: ",type(X))
print("X_train: ",type(X_train))
print("y_train: ",type(y_train))
print("X_test: ", type(X_test))
print("y_test: ",type(y_test))
df_feat:
Χ:
X_train:
y_train:
X_test:
y_test:
                                                                                                                                                                                        In [416]:
print('y train class counts')
print(y_train.value_counts())
print('y_test class counts')
print(y_test.value_counts())
y_train class counts
0 381664
Name: Flag_Last_6_Month, dtype: int64
```

y_test class counts

```
0 127222
1 1462
Name: Flag Last 6 Month, dtype: int64
```

Basic Models

```
# Basic function for training and some analysis
def run model(clf):
    print("Model: ",clf)
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)
    clf.score(X train, y train)
    acc clf = round(clf.score(X train, y train) * 100, 2)
    print("score: ",round(acc clf,2,), "%")
    #f1 = round(f1 score(y test, y pred),2)
    #print("f1-score: ",f1)
    #recall = round(recall_score(y_test, y_pred),2)
    #print("recall-score: ", recall)
    # predict probabilities
    probs = clf.predict proba(X test)
    # keep probabilities for the positive outcome only
    probs = probs[:, 1]
    auc = roc auc score(y test, probs)
    print('AUC: %.3f' % auc)
    # Classification Report
    target names = ['Class 0 (PAYS)', 'Class 1 (DOES NOT PAY)']
    print(classification_report(y_test, y_pred, target_names=target_names))
    # Check if both classes are predicted
    print("Check if both classes are predicted:")
    print("y pred: ", np.unique(y pred))
    print("y test: ",np.unique(y test))
    # Show Confusion Matrix
    show_conf_mat(y_test, y_pred)
clf rf = RandomForestClassifier(n estimators=100)
run_model(clf_rf)
Model: RandomForestClassifier(bootstrap=True, class weight=None, criterion='gini',
            max depth=None, max features='auto', max leaf nodes=None,
            min impurity decrease=0.0, min impurity split=None,
            min samples leaf=1, min samples split=2,
            min weight fraction leaf=0.0, n estimators=100, n jobs=None,
            oob score=False, random state=None, verbose=0,
            warm start=False)
score: 100.0 %
```

In [428]:

In [429]:

```
AUC: 0.847
```

	precision	recall	f1-score	support
Class 0 (PAYS)	0.99	1.00	0.99	127222
Class 1 (DOES NOT PAY)	0.00	0.00	0.00	1462
micro avo	0.99	0.99	0.99	128684
macro avo	0.49	0.50	0.50	128684
weighted avo	0.98	0.99	0.98	128684

Check if both classes are predicted:

y_pred: [0]
y_test: [0 1]
Confusion matrix:
 [[127222 0]
 [1462 0]]

/Users/of/anaconda3/lib/python3.7/site-packages/sklearn/metrics/classification.py:1143: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.

/Users/of/anaconda3/lib/python3.7/site-packages/sklearn/metrics/classification.py:1143: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.

/Users/of/anaconda3/lib/python3.7/site-packages/sklearn/metrics/classification.py:1143: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.

macro avg

In [430]:

```
# Decision Tree
clf dt = DecisionTreeClassifier()
run_model(clf_dt)
Model: DecisionTreeClassifier(class weight=None, criterion='gini', max depth=None,
            max features=None, max_leaf_nodes=None,
            min impurity decrease=0.0, min impurity split=None,
            min samples leaf=1, min samples split=2,
            min weight fraction leaf=0.0, presort=False, random state=None,
            splitter='best')
score: 100.0 %
AUC: 0.523
                        precision
                                     recall f1-score
                                                        support
        Class 0 (PAYS)
                             0.99
                                       0.99
                                                 0.99
                                                         127222
Class 1 (DOES NOT PAY)
                            0.05
                                       0.06
                                                 0.05
                                                           1462
             micro avg
                            0.98
                                       0.98
                                                 0.98
                                                         128684
```

0.52

0.52

128684

0.52

Check if both classes are predicted: y pred: [0 1] y test: [0 1] Confusion matrix: [[125443 1779] [1373 In [431]: # Logistic Regression clf lr = LogisticRegression() run model(clf_lr) Model: LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=True, intercept scaling=1, max iter=100, multi class='warn', n jobs=None, penalty='12', random state=None, solver='warn', tol=0.0001, verbose=0, warm start=False) /Users/of/anaconda3/lib/python3.7/site-packages/sklearn/linear model/logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning. FutureWarning) score: 98.86 % AUC: 0.505 precision recall f1-score support Class 0 (PAYS) 0.99 1.00 0.99 127222 Class 1 (DOES NOT PAY) 0.00 0.00 1462 0.00 micro avg 0.99 0.99 0.99 128684 macro avg 0.49 0.50 0.50 128684 weighted avg 0.98 0.99 0.98 128684 Check if both classes are predicted: y pred: [0] y test: [0 1] /Users/of/anaconda3/lib/python3.7/site-packages/sklearn/metrics/classification.py:1143: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. /Users/of/anaconda3/lib/python3.7/site-packages/sklearn/metrics/classification.py:1143: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. /Users/of/anaconda3/lib/python3.7/site-packages/sklearn/metrics/classification.py:1143: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.

128684

0.98

weighted avg

Confusion matrix:

[[127222

0.98

0.98

```
# KNN
clf knn = KNeighborsClassifier(n neighbors = 3)
run_model(clf_knn)
Model: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
          metric_params=None, n_jobs=None, n_neighbors=3, p=2,
          weights='uniform')
score: 98.91 %
AUC: 0.556
                       precision
                                     recall f1-score
                                                       support
                            0.99
                                      1.00
                                                        127222
       Class 0 (PAYS)
                                                0.99
Class 1 (DOES NOT PAY)
                            0.05
                                      0.01
                                                0.01
                                                          1462
                                                        128684
                            0.99
                                      0.99
            micro avg
                                                0.99
                            0.52
                                      0.50
                                                        128684
            macro avg
                                                0.50
         weighted avg
                            0.98
                                      0.99
                                                0.98
                                                        128684
Check if both classes are predicted:
y_pred: [0 1]
y_test: [0 1]
Confusion matrix:
[[127019
            203]
[ 1452
            10]]
# AdaBoost
clf_ada = AdaBoostClassifier(DecisionTreeClassifier(random_state=2), random_state=42, learning_rate=0.1)
run_model(clf_ada)
Model: AdaBoostClassifier(algorithm='SAMME.R',
         base_estimator=DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
           max_features=None, max_leaf_nodes=None,
           min_impurity_decrease=0.0, min_impurity_split=None,
```

min_samples_leaf=1, min_samples_split=2,

[1462

0]]

In [432]:

In [433]:

```
min weight fraction leaf=0.0, presort=False, random state=2,
           splitter='best'),
         learning rate=0.1, n estimators=50, random state=42)
score: 100.0 %
AUC: 0.521
                       precision
                                   recall f1-score
                                                     support
                           0.99
                                     0.99
                                               0.99
                                                       127222
       Class 0 (PAYS)
Class 1 (DOES NOT PAY)
                                               0.05
                                                        1462
            micro avg
                           0.98
                                     0.98
                                               0.98
                                                       128684
            macro avg
                           0.52
                                     0.52
                                               0.52
                                                       128684
         weighted avg
                           0.98
                                     0.98
                                               0.98
                                                       128684
Check if both classes are predicted:
y_pred: [0 1]
y test: [0 1]
Confusion matrix:
[[125424 1798]
[ 1379
            83]]
```

Finding:

Accuracy is extremely high but some models won't be able to predict the customers who will not pay! => Highly imbalanced data

Handling Class Imbalance

${\bf Class\ Weight\ /\ Cost\ Function}$

In []:

```
#prob_svm = [p[1] for p in prob_svm]
#print(roc_auc_score(y, prob_svm))
```

Note:

Takes a long time to train on my local machine -> Code will not be executed

```
In [437]:
```

```
# Random Forest Classifier with class weight
clf rf class weight = RandomForestClassifier(n estimators=100, class weight='balanced')
run model(clf rf class weight)
Model: RandomForestClassifier(bootstrap=True, class weight='balanced',
            criterion='gini', max depth=None, max features='auto',
            max leaf nodes=None, min impurity decrease=0.0,
            min impurity split=None, min samples leaf=1,
            min samples split=2, min weight fraction leaf=0.0,
            n_estimators=100, n_jobs=None, oob_score=False,
            random_state=None, verbose=0, warm_start=False)
score: 100.0 %
AUC: 0.835
                       precision
                                     recall f1-score
                                                       support
        Class 0 (PAYS)
                            0.99
                                      1.00
                                                 0.99
                                                         127222
Class 1 (DOES NOT PAY)
                            0.00
                                      0.00
                                                 0.00
                                                           1462
                            0.99
                                      0.99
                                                 0.99
                                                         128684
             micro avg
             macro avg
                            0.49
                                      0.50
                                                 0.50
                                                         128684
          weighted avg
                            0.98
                                      0.99
                                                 0.98
                                                         128684
```

Check if both classes are predicted:

y_pred: [0]
y_test: [0 1]
Confusion matrix:
 [[127222 0]
 [1462 0]]

/Users/of/anaconda3/lib/python3.7/site-packages/sklearn/metrics/classification.py:1143: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.

/Users/of/anaconda3/lib/python3.7/site-packages/sklearn/metrics/classification.py:1143: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.

/Users/of/anaconda3/lib/python3.7/site-packages/sklearn/metrics/classification.py:1143: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.


```
# Decision Tree with class weight
clf dt class weight = DecisionTreeClassifier(class weight='balanced')
run model(clf dt class weight)
Model: DecisionTreeClassifier(class weight='balanced', criterion='gini',
            max depth=None, max features=None, max leaf nodes=None,
            min impurity decrease=0.0, min impurity split=None,
            min samples leaf=1, min samples split=2,
            min_weight_fraction_leaf=0.0, presort=False, random state=None,
            splitter='best')
score: 100.0 %
AUC: 0.519
                       precision
                                     recall f1-score
                                                       support
                                       0.99
                                                         127222
        Class 0 (PAYS)
                            0.99
                                                 0.99
Class 1 (DOES NOT PAY)
                            0.05
                                      0.05
                                                 0.05
                                                          1462
             micro avq
                            0.98
                                      0.98
                                                 0.98
                                                         128684
             macro avg
                            0.52
                                      0.52
                                                 0.52
                                                         128684
                            0.98
                                      0.98
                                                         128684
          weighted avg
                                                 0.98
Check if both classes are predicted:
y pred: [0 1]
y test: [0 1]
Confusion matrix:
[[125797 1425]
[ 1389
            73]]
# Test different class weights (faster to compute than SVM)
for w in [1,5,10,100, 1000]:
    print('--- Weight of {} ---'.format(w))
    clf_dt_class_weight = DecisionTreeClassifier(class_weight={0:1,1:w})
    #clf lr class weight = LogisticRegression(class weight={0:1,1:w})
    run_model(clf_dt_class_weight)
--- Weight of 1 ---
Model: DecisionTreeClassifier(class weight={0: 1, 1: 1}, criterion='gini',
            max_depth=None, max_features=None, max_leaf_nodes=None,
            min impurity decrease=0.0, min impurity split=None,
            min samples leaf=1, min samples split=2,
            min weight fraction leaf=0.0, presort=False, random state=None,
            splitter='best')
score: 100.0 %
AUC: 0.523
                        precision
                                   recall f1-score support
```

In [439]:

```
127222
       Class 0 (PAYS)
                           0.99
                                     0.99
                                               0.99
Class 1 (DOES NOT PAY)
                           0.05
                                     0.06
                                               0.05
                                                         1462
            micro avg
                           0.98
                                     0.98
                                               0.98
                                                       128684
                                                       128684
            macro avq
                           0.52
                                     0.52
                                               0.52
         weighted avg
                           0.98
                                     0.98
                                               0.98
                                                       128684
```

Check if both classes are predicted:

y_pred: [0 1] y_test: [0 1] Confusion matrix: [[125441 1781] [1373 89]]

--- Weight of 5 ---

Model: DecisionTreeClassifier(class_weight={0: 1, 1: 5}, criterion='gini', max_depth=None, max_features=None, max_leaf_nodes=None, min impurity decrease=0.0, min impurity split=None, min samples leaf=1, min samples split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=None, splitter='best')

score: 100.0 % AUC: 0.522

		precisi	on recal	.l f1-score	support
	Class 0 (PA)	YS) 0.	99 0.9	0.99	127222
Class 1	(DOES NOT PA	AY) 0.	0.0	0.05	1462
	micro a	avg 0.	98 0.9	0.98	128684
	macro a	avg 0.	52 0.5	0.52	128684
	weighted a	avg 0.	98 0.9	0.98	128684

Check if both classes are predicted:

y_pred: [0 1] y test: [0 1] Confusion matrix: [[125624 1598] [1378 84]]

```
--- Weight of 10 ---
Model: DecisionTreeClassifier(class_weight={0: 1, 1: 10}, criterion='gini',
            max_depth=None, max_features=None, max_leaf_nodes=None,
            min impurity decrease=0.0, min impurity split=None,
            min samples_leaf=1, min_samples_split=2,
            min weight fraction leaf=0.0, presort=False, random state=None,
            splitter='best')
score: 100.0 %
AUC: 0.526
                       precision
                                     recall f1-score
                                                       support
        Class 0 (PAYS)
                            0.99
                                      0.99
                                                0.99
                                                        127222
Class 1 (DOES NOT PAY)
                            0.06
                                      0.06
                                                          1462
                                                0.06
                            0.98
                                      0.98
                                                        128684
            micro avg
                                                0.98
                            0.52
                                                        128684
             macro avg
                                                0.52
          weighted avg
                                                        128684
Check if both classes are predicted:
y_pred: [0 1]
y test: [0 1]
Confusion matrix:
[[125637 1585]
[ 1368
            94]]
--- Weight of 100 ---
Model: DecisionTreeClassifier(class_weight={0: 1, 1: 100}, criterion='gini',
            max_depth=None, max_features=None, max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=1, min_samples_split=2,
            min_weight_fraction_leaf=0.0, presort=False, random_state=None,
            splitter='best')
score: 100.0 %
AUC: 0.519
                       precision
                                    recall f1-score support
        Class 0 (PAYS)
                            0.99
                                      0.99
                                                0.99
                                                        127222
```

```
Class 1 (DOES NOT PAY)
                                     0.05
                                               0.05
                                                        1462
                           0.05
                           0.98
                                     0.98
                                                      128684
            micro avg
                                               0.98
            macro avg
                           0.52
                                     0.52
                                               0.52
                                                      128684
         weighted avg
                           0.98
                                     0.98
                                               0.98
                                                      128684
```

Check if both classes are predicted:

y_pred: [0 1] y_test: [0 1] Confusion matrix: [[125859 1363] [1390 72]]

--- Weight of 1000 ---

Model: DecisionTreeClassifier(class_weight={0: 1, 1: 1000}, criterion='gini', max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min samples leaf=1, min samples split=2, min weight fraction leaf=0.0, presort=False, random state=None, splitter='best')

score: 100.0 %

AUC: 0.520

	precision	recall	f1-score	support
Class 0 (PAYS)	0.99	0.99	0.99	127222
Class 1 (DOES NOT PAY)	0.05	0.05	0.05	1462
micro avg	0.98	0.98	0.98	128684
macro avg	0.52	0.52	0.52	128684
weighted avg	0.98	0.98	0.98	128684

Check if both classes are predicted:

y_pred: [0 1] y_test: [0 1] Confusion matrix: [[125930 1292] [1389 73]]

Down-Sampling

Downsample majority class

```
# Down-Sampling
# Prepare Dataframe
# Concat Training Data -> only re-sample on training set
X = pd.concat([X_train, y_train], axis=1)
# Separate majority and minority classes
df_majority = X[X.Flag_Last_6_Month==0]
df_minority = X[X.Flag_Last_6_Month==1]
# Down-sample majority class
df_majority_downsampled = resample(df_majority,
                                                     # sample with replacement
                                 n samples=len(df minority),  # to match majority class
                                 random state=42) # reproducible results
# Combine minority class with downsampled minority class
df_downsampled = pd.concat([df_minority, df_majority_downsampled])
# Display new class counts
df_downsampled.Flag_Last_6_Month.value_counts()
    4386
    4386
Name: Flag_Last_6_Month, dtype: int64
# Create Training Data
y train = df downsampled.Flag Last 6 Month
X_train = df_downsampled.drop('Flag_Last_6_Month', axis=1)
# Random Forest after Down-Sampling
clf rf down = RandomForestClassifier(n estimators=100)
run model(clf rf down)
Model: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
            max_depth=None, max_features='auto', max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=1, min_samples_split=2,
            min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=None,
```

In [440]:

Out[440]:

In [447]:

In [448]:

```
oob_score=False, random_state=None, verbose=0,
warm_start=False)
```

score: 100.0 % AUC: 0.883

	precision	recall	f1-score	support
Class 0 (PAYS)	1.00	0.75	0.86	127222
Class 1 (DOES NOT PAY)	0.04	0.91	0.08	1462
micro avg	0.76	0.76	0.76	128684
macro avg	0.52	0.83	0.47	128684
weighted avg	0.99	0.76	0.85	128684

Check if both classes are predicted:

y_pred: [0 1]
y_test: [0 1]
Confusion matrix:
 [[95841 31381]
 [136 1326]]

Decision Tree after Down-Sampling
clf_dt_down = DecisionTreeClassifier()
run_model(clf_dt_down)

score: 100.0 % AUC: 0.746

	precision	recall	f1-score	support
Class 0 (PAYS) Class 1 (DOES NOT PAY)	1.00	0.76 0.73	0.86	127222 1462
micro avg macro avg weighted avg	0.76 0.51 0.99	0.76 0.75 0.76	0.76 0.46 0.85	128684 128684 128684

Check if both classes are predicted:

y_pred: [0 1]
y_test: [0 1]
Confusion matrix:

In [449]:

```
[[96294 30928]
[ 388 1074]]
                                                                                                                                                                                   In [450]:
# Logistic Regression after Down-Sampling
clf lr down = LogisticRegression()
run model(clf lr down)
Model: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept scaling=1, max iter=100, multi class='warn',
          n jobs=None, penalty='12', random state=None, solver='warn',
          tol=0.0001, verbose=0, warm start=False)
score: 74.46 %
/Users/of/anaconda3/lib/python3.7/site-packages/sklearn/linear model/logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this
warning.
 FutureWarning)
AUC: 0.868
                       precision
                                     recall f1-score
                                                       support
        Class 0 (PAYS)
                            1.00
                                      0.87
                                                0.93
                                                        127222
Class 1 (DOES NOT PAY)
                            0.05
                                      0.62
                                                0.10
                                                          1462
            micro avg
                            0.87
                                      0.87
                                                0.87
                                                        128684
                            0.52
                                                        128684
            macro avg
                                      0.75
                                                0.51
          weighted avg
                            0.98
                                      0.87
                                                0.92
                                                        128684
Check if both classes are predicted:
y pred: [0 1]
y test: [0 1]
Confusion matrix:
[[111234 15988]
[ 557
           905]]
```

KNN after Down-Sampling
clf_knn_down = KNeighborsClassifier(n_neighbors = 3)
run_model(clf_knn_down)

In [451]:

```
Model: KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minkowski',
          metric params=None, n jobs=None, n neighbors=3, p=2,
          weights='uniform')
score: 85.77 %
AUC: 0.783
                       precision
                                    recall f1-score
                                                       support
                                      0.74
                                                        127222
       Class 0 (PAYS)
                            1.00
                                                0.85
                                                          1462
Class 1 (DOES NOT PAY)
                            0.03
                                      0.74
                                                0.06
            micro avq
                            0.74
                                      0.74
                                                0.74
                                                        128684
            macro avg
                            0.51
                                      0.74
                                                0.46
                                                        128684
         weighted avg
                            0.99
                                      0.74
                                                0.84
                                                        128684
Check if both classes are predicted:
y pred: [0 1]
y test: [0 1]
Confusion matrix:
[[94703 32519]
[ 379 1083]]
# AdaBoost after Down-Sampling
clf ada down = AdaBoostClassifier(DecisionTreeClassifier(random state=2), random state=42, learning rate=0.1)
run model(clf ada down)
Model: AdaBoostClassifier(algorithm='SAMME.R',
         base estimator=DecisionTreeClassifier(class weight=None, criterion='gini', max depth=None,
           max features=None, max leaf nodes=None,
           min impurity decrease=0.0, min impurity split=None,
           min samples leaf=1, min samples split=2,
           min weight fraction leaf=0.0, presort=False, random state=2,
           splitter='best'),
         learning rate=0.1, n estimators=50, random state=42)
score: 100.0 %
AUC: 0.746
                       precision
                                    recall f1-score
                                                       support
                                                        127222
       Class 0 (PAYS)
                            1.00
                                      0.76
                                                0.86
Class 1 (DOES NOT PAY)
                            0.03
                                      0.73
                                                0.06
                                                          1462
                            0.76
                                      0.76
                                                0.76
                                                        128684
            micro avg
                            0.51
                                      0.75
                                                0.46
                                                        128684
            macro avg
         weighted avg
                            0.99
                                      0.76
                                                0.85
                                                        128684
```

Check if both classes are predicted:

In [452]:

```
y_pred: [0 1]
y_test: [0 1]
Confusion matrix:
  [[96444 30778]
  [ 388 1074]]
```

SMOTE

Synthetic Minority Oversampling Technique

print("y_test: ",type(y_test))

df feat:

X_train:
y_train:

X:

```
In [453]:
df_feat = df_feat_backup_5.copy()
                                                                                                                                                                                      In [454]:
# Try Synthetic Minority Oversampling Technique (SMOTE)
y = df_feat.Flag_Last_6_Month
X = df feat.drop('Flag Last 6 Month', axis=1)
# setting up testing and training sets
X train, X test, y train, y test = train test split(X, y, test size=0.25, random state=42)
sm = SMOTE(random state=42, ratio=1.0)
X train, y train = sm.fit_sample(X_train, y_train) # modifies X_train and y_train into numpy.ndarray
#X_train = pd.DataFrame(X_train, columns=X.columns)
#y_train = pd.Series(y_train)
/Users/of/anaconda3/lib/python3.7/site-packages/imblearn/utils/deprecation.py:53: DeprecationWarning: 'ratio' is deprecated from 0.4 and will be removed in 0.6 for the estimator . Use
'sampling_strategy' instead.
 category=DeprecationWarning)
                                                                                                                                                                                      In [455]:
print("df_feat: ",type(df_feat))
print("X: ",type(X))
print("X_train: ",type(X_train))
print("y_train: ",type(y_train))
print("X_test: ",type(X_test))
```

In []:

```
X test:
y test:
# Random Forest after SMOTE
clf rf smote = RandomForestClassifier(n estimators=100)
run_model(clf_rf_smote)
Model: RandomForestClassifier(bootstrap=True, class weight=None, criterion='gini',
            max depth=None, max features='auto', max leaf nodes=None,
            min impurity decrease=0.0, min impurity split=None,
            min_samples_leaf=1, min_samples_split=2,
            min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=None,
            oob_score=False, random_state=None, verbose=0,
            warm start=False)
score: 100.0 %
AUC: 0.839
                       precision
                                     recall f1-score
                                                       support
        Class 0 (PAYS)
                            0.99
                                      1.00
                                                 0.99
                                                         127230
Class 1 (DOES NOT PAY)
                            0.50
                                      0.00
                                                 0.00
                                                          1454
            micro avg
                            0.99
                                      0.99
                                                 0.99
                                                         128684
                                                         128684
            macro avg
                            0.74
                                      0.50
                                                 0.50
          weighted avg
                            0.98
                                      0.99
                                                 0.98
                                                         128684
Check if both classes are predicted:
y pred: [0 1]
y test: [0 1]
Confusion matrix:
[[127229
              1]
[ 1453
              1]]
# Decision Tree after SMOTE
clf dt smote = DecisionTreeClassifier()
run_model(clf_dt_smote)
Model: DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
            max features=None, max leaf nodes=None,
            min impurity decrease=0.0, min impurity split=None,
            min samples leaf=1, min samples split=2,
            min weight fraction leaf=0.0, presort=False, random state=None,
            splitter='best')
score: 100.0 %
AUC: 0.525
                                    recall f1-score support
                        precision
```

In [456]:

In [457]:

```
Class 0 (PAYS)
                            0.99
                                      0.98
                                                0.99
                                                        127230
Class 1 (DOES NOT PAY)
                                                          1454
                            0.05
                                      0.07
                                                0.06
            micro avg
                            0.97
                                      0.97
                                                0.97
                                                        128684
            macro avg
                            0.52
                                      0.53
                                                0.52
                                                        128684
                                                        128684
         weighted avg
                            0.98
                                      0.97
                                                0.98
```

Check if both classes are predicted:

Logistic Regression after SMOTE
clf_lr_smote = LogisticRegression()
run_model(clf_lr_smote)

/Users/of/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.

FutureWarning)
score: 74.54 %
AUC: 0.875

	precision	recall	f1-score	support
Class 0 (PAYS)	0.99	0.88	0.93	127230
Class 1 (DOES NOT PAY)	0.05	0.61	0.10	1454
micro avg	0.87	0.87	0.87	128684
macro avg	0.52	0.74	0.51	128684
weighted avg	0.98	0.87	0.92	128684

Check if both classes are predicted:

y_pred: [0 1]
y_test: [0 1]
Confusion matrix:
 [[111391 15839]
 [571 883]]

In [458]:

```
# KNN after SMOTE
clf knn smote = KNeighborsClassifier(n neighbors = 3)
run_model(clf_knn_smote)
Model: KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minkowski',
          metric_params=None, n_jobs=None, n_neighbors=3, p=2,
          weights='uniform')
score: 97.73 %
AUC: 0.648
                                   recall f1-score support
                       precision
                                                        127230
       Class 0 (PAYS)
                            0.99
                                     0.93
                                                0.96
Class 1 (DOES NOT PAY)
                            0.05
                                     0.31
                                                0.08
                                                         1454
                                     0.92
                                                0.92
                                                        128684
            micro avg
                           0.92
                                                       128684
            macro avg
                           0.52
                                     0.62
                                                0.52
                           0.98
                                     0.92
                                               0.95
                                                       128684
         weighted avg
Check if both classes are predicted:
y pred: [0 1]
y_test: [0 1]
Confusion matrix:
[[117911 9319]
[ 1007
           447]]
# AdaBoost after SMOTE
clf_ada_smote = AdaBoostClassifier(DecisionTreeClassifier(random_state=2),random_state=42,learning_rate=0.1)
run_model(clf_ada_smote)
Model: AdaBoostClassifier(algorithm='SAMME.R',
         base estimator=DecisionTreeClassifier(class weight=None, criterion='gini', max depth=None,
           max_features=None, max_leaf_nodes=None,
           min_impurity_decrease=0.0, min_impurity_split=None,
           min_samples_leaf=1, min_samples_split=2,
           min_weight_fraction_leaf=0.0, presort=False, random_state=2,
```

In [459]:

In [460]:

```
splitter='best'),
         learning rate=0.1, n estimators=50, random state=42)
score: 100.0 %
AUC: 0.527
                       precision
                                    recall f1-score
                                                      support
       Class 0 (PAYS)
                            0.99
                                      0.98
                                                0.99
                                                        127230
Class 1 (DOES NOT PAY)
                            0.05
                                      0.07
                                                0.06
                                                         1454
            micro avg
                            0.97
                                      0.97
                                                0.97
                                                        128684
            macro avg
                            0.52
                                      0.53
                                                0.52
                                                        128684
         weighted avg
                            0.98
                                      0.97
                                                0.98
                                                        128684
Check if both classes are predicted:
y pred: [0 1]
y_test: [0 1]
Confusion matrix:
[[125295 1935]
[ 1353
           101]]
```

Finding:

- No feature stands out -> GROSS_PRICE_AMT_sum, Tac_Id and NF_Ratio_Month seam to play the most significant role
- Reg_Relevant_Flag, Prod_Item_Typ_Id and Price_Typ_Id are "full features" (not one-hot-encodings) that seam not to be important -> drop them

```
# Drop irrelevant features
X_train = X_train.drop('Reg_Relevant_Flag', 1)
X_train = X_train.drop('Prod_Item_Typ_Id', 1)
X_train = X_train.drop('Price_Typ_Id', 1)

X_test = X_test.drop('Reg_Relevant_Flag', 1)
X_test = X_test.drop('Prod_Item_Typ_Id', 1)
X_test = X_test.drop('Price_Typ_Id', 1)

X_train.shape, X_test.shape

((386050, 43), (128684, 43))

# Train again
random_forest = RandomForestClassifier(n_estimators=100, oob_score = True)
random_forest.fit(X_train, y_train)
```

In [147]:

In []: In []: In [461]:

Out[147]:

In [148]:

```
Y_prediction = random_forest.predict(X_test)

random_forest.score(X_train, y_train)

acc_random_forest = round(random_forest.score(X_train, y_train) * 100, 2)
print(round(acc_random_forest,2,), "%")

100.0 %

print("oob score:", round(random_forest.oob_score_, 4)*100, "%")

oob score: 98.86 %
```

Hyperparameter Tuning with Pipeline

```
scaler = StandardScaler()
param_grid = dict(C=np.logspace(-5, 5, 11), penalty=['l1', 'l2'])
#clf_lr = LogisticRegression(random_state=42)
#cv = GridSearchCV(estimator=clf_lr, param_grid=param_grid, scoring='average_precision')
cv = GridSearchCV(estimator=clf_lr_smote, param_grid=param_grid, scoring='average_precision')
pipeline = make_pipeline(scaler, cv)

pipeline.fit(X_train, y_train)

y_true = y_test
y_pred = pipeline.predict(X_test)
y_score = pipeline.predict_proba(X_test)[:, 1]

Returns
```

Evaluation

Confusion Matrix

```
# Classification Report
target_names = ['Class 0 (PAYS)', 'Class 1 (DOES NOT PAY)']
print(classification_report(y_true, y_pred, target_names=target_names))
                       precision
                                   recall f1-score support
                                                       127230
       Class 0 (PAYS)
                           1.00
                                     0.81
                                               0.89
Class 1 (DOES NOT PAY)
                                    0.76
                                               0.08
                                                         1454
                           0.81
                                     0.81
                                               0.81
                                                       128684
            micro avg
                           0.52
                                     0.79
                                               0.49
                                                       128684
            macro avg
         weighted avg
                           0.99
                                     0.81
                                               0.88
                                                       128684
def plot confusion matrix(cm,
```

target names,

cmap=None,

title='Confusion matrix',

In [149]:

In [467]:

In [493]:

In [490]:

```
normalize=True):
given a sklearn confusion matrix (cm), make a nice plot
Arguments
_____
              confusion matrix from sklearn.metrics.confusion matrix
cm:
target names: given classification classes such as [0, 1, 2]
              the class names, for example: ['high', 'medium', 'low']
title:
              the text to display at the top of the matrix
cmap:
              the gradient of the values displayed from matplotlib.pyplot.cm
              see http://matplotlib.org/examples/color/colormaps_reference.html
              plt.get_cmap('jet') or plt.cm.Blues
normalize:
             If False, plot the raw numbers
              If True, plot the proportions
Usage
____
                                                          # confusion matrix created by
plot_confusion_matrix(cm
                                   = cm,
                                                          # sklearn.metrics.confusion matrix
                      normalize = True,
                                                          # show proportions
                                                          # list of names of the classes
                      target_names = y_labels_vals,
                      title
                                   = best estimator name) # title of graph
Citiation
http://scikit-learn.org/stable/auto examples/model selection/plot confusion matrix.html
import matplotlib.pyplot as plt
import numpy as np
import itertools
accuracy = np.trace(cm) / float(np.sum(cm))
misclass = 1 - accuracy
if cmap is None:
    cmap = plt.get cmap('Blues')
plt.figure(figsize=(8, 6))
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
if target names is not None:
    tick_marks = np.arange(len(target_names))
    plt.xticks(tick marks, target names, rotation=45)
    plt.yticks(tick_marks, target_names)
if normalize:
```

```
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
    thresh = cm.max() / 1.5 if normalize else cm.max() / 2
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
       if normalize:
           plt.text(j, i, "{:0.4f}".format(cm[i, j]),
                    horizontalalignment="center",
                    color="white" if cm[i, j] > thresh else "black")
        else:
           plt.text(j, i, "{:,}".format(cm[i, j]),
                    horizontalalignment="center",
                     color="white" if cm[i, j] > thresh else "black")
    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label\naccuracy={:0.4f}; misclass={:0.4f}'.format(accuracy, misclass))
    plt.show()
plot_confusion_matrix(cm=confusion_matrix(y_true=y_true, y_pred=y_pred),
                     normalize = True,
                      target names = ['Class 0 (PAYS)','Class 1 (DOES NOT PAY)'],
                      title
                                   = "Confusion Matrix, Normalized")
```

Precision and Recall

```
from sklearn.metrics import precision_score, recall_score
print("Precision:", precision_score(y_train, predictions))
print("Recall:",recall_score(y_train, predictions))
Precision: 0.8309613257325421
Recall: 0.616060012157545
# Precision and Recall Curve
```

In [492]:

In [472]:

In [473]:

```
from sklearn.metrics import precision recall curve
# getting the probabilities of our predictions
y_scores = clf_lr_smote.predict_proba(X_train)
y_scores = y_scores[:,1]
precision, recall, threshold = precision recall curve(y train, y scores)
def plot precision and recall(precision, recall, threshold):
    plt.plot(threshold, precision[:-1], "r-", label="precision", linewidth=5)
    plt.plot(threshold, recall[:-1], "b", label="recall", linewidth=5)
    plt.xlabel("threshold", fontsize=19)
    plt.legend(loc="upper right", fontsize=19)
    plt.ylim([0, 1])
plt.figure(figsize=(14, 7))
plot_precision_and_recall(precision, recall, threshold)
plt.show()
def plot precision vs recall(precision, recall):
    plt.plot(recall, precision, "g--", linewidth=2.5)
    plt.ylabel("recall", fontsize=19)
    plt.xlabel("precision", fontsize=19)
```

plt.axis([0, 1.5, 0, 1.5])

plot precision vs recall(precision, recall)

plt.figure(figsize=(14, 7))

plt.show()

```
In [474]:
```

In [475]:

F-Score

```
from sklearn.metrics import f1_score
f1_score(y_train, predictions)
0.7075528619082799
```

ROC AUC

ROC AUC Curve

```
from sklearn.metrics import roc_curve
# compute true positive rate and false positive rate
false_positive_rate, true_positive_rate, thresholds = roc_curve(y_train, y_scores)

# plotting them against each other
def plot_roc_curve(false_positive_rate, true_positive_rate, label=None):
    plt.plot(false_positive_rate, true_positive_rate, linewidth=2, label=label)
    plt.plot([0, 1], [0, 1], 'r', linewidth=4)
    plt.axis([0, 1, 0, 1])
    plt.xlabel('False Positive Rate (FPR)', fontsize=16)
    plt.ylabel('True Positive Rate (TPR)', fontsize=16)

plt.figure(figsize=(14, 7))
plot_roc_curve(false_positive_rate, true_positive_rate)
plt.show()
```

In [476]:

Out[476]:

Ծավ 170].

In [477]:

In [478]:

ROC AUC Score

from sklearn.metrics import roc_auc_score r_a_score = roc_auc_score(y_train, y_scores) print("ROC-AUC-Score:", r_a_score) ROC-AUC-Score: 0.8799482937502328

In [479]: