Relations and Functions

Definition

A relation \Re between two sets A and B is a subset of $A \times B$:

$$\Re \subset A \times B$$

To say that $a \in A$ is related to $b \in B$, often denoted $a \sim b$, means $(a, b) \in \Re$.

A relation between a set A and itself ($\Re \subseteq A \times A$) is referred to as a relation on A.

Definition

A function ϕ is a relation between sets A and B such that:

- 1). $\forall a \in A, \exists b \in B, (a, b) \in \phi$
- 2). $\forall a \in A, \forall b, c \in B, (a, b) \in \phi \text{ and } (a, c) \in \phi \implies b = c$

The function is said to map A into B and is denoted $\phi:A\to B$, where A is called the *domain* of ϕ and B is called the *codomain* of ϕ . Also, $(a,b)\in\phi$ is denoted using the more conventional functional notation: $\phi(a)=b$.

A function between a set A and itself is referred to as a function on A.

Definition

Let $\phi: A \to B$ with $C \subseteq A$ and $D \subseteq B$:

• The *image* of C under ϕ , denoted $\phi[C]$, is give by:

$$\phi[C] = \{\phi(c) \mid c \in C\} \subset B$$

 $\phi[A]$ is called the *range* of ϕ .

• The *pre-image* of D under ϕ , denoted $\phi^{-1}[D]$, is given by:

$$\phi^{-1}[D] = \{ a \in A \mid \phi(a) \in D \} \subseteq A$$

Note that $\phi^{-1}[D]$ is a (possibly empty) set and should not be confused with any inverse function $\phi^{-1}:B\to A$.

Definition

Let $\phi:A\to B$ and $\mu:C\to D$. To say that ϕ and μ are equal, denoted $\phi=\mu$, means:

- 1). A = C (same domain)
- 2). B = D (same codomain)
- 3). $\forall a \in A, \phi(a) = \mu(a)$

Definition

Let $\phi:A\to B$:

• To say that ϕ is *one-to-one* (*injective*) means:

$$\forall a, b \in A, \phi(a) = \phi(b) \implies a = b$$

• To say that ϕ is *onto* (*surjective*) means $\phi[A] = B$, or:

$$\forall b \in B, \exists a \in A, \phi(a) = b$$

• To say that ϕ is a *one-to-one correspondence* (*bijective*) means ϕ is both one-to-one and onto.

Definition

The *identity* function on a set A, denoted i_A , is given by:

$$\forall a \in A, \phi(a) = a$$

Definition

Let $\phi:A\to B$ and $\mu:B\to C$. The composition of ϕ and μ , denoted $\mu\circ\phi$ or simply $\mu\phi$, is a new function $\mu\phi:A\to C$ given by:

$$\forall a \in A, (\mu \phi)(a) = \mu[\phi(a)]$$

Theorem

Function composition is associative.

Proof

Let $\phi:A\to B, \mu:B\to C,$ and $\gamma:C\to D.$

Assume $a \in A$

$$[(\gamma\mu)\phi)](a)=(\gamma\mu)[\phi(a)]=\gamma\{\mu[\phi(a)]\}=\gamma[\mu\phi(a)]=[\gamma(\mu\phi)](a)$$

Definition

Let $\phi:A\to B.$ To say that $\phi^{-1}:B\to A$ is an inverse function for ϕ means:

1).
$$\phi^{-1}\phi = i_A$$

2).
$$\phi \phi^{-1} = i_B$$

Note that an inverse must be both a left and a right inverse; there are cases where only one side exists.

Theorem

Let $\phi:A\to B$:

 ϕ is invertible iff $\phi(a) = b \iff \phi^{-1}(b) = a$

Proof

 \implies Assume ϕ is invertible.

$$\implies {\sf Assume} \; \phi(a) = b$$

$$(\phi^{-1}\phi)(a) = \phi^{-1}(b)$$

$$\therefore a = \phi^{-1}(b)$$

$$\iff$$
 Assume $\phi^{-1}(b) = a$

$$(\phi\phi^{-1})(b) = \phi(a)$$

$$\therefore b = \phi(a)$$

$$\iff \mathsf{Assume} \; \phi(a) = b \; \iff \; \phi^{-1}(b) = a$$

$$(\phi^{-1}\phi)(a) = \phi^{-1}[\phi(a)] = \phi^{-1}(b) = a = i_A(a)$$

$$(\phi\phi^{-1})(b) = \phi[\phi^{-1}(b)] = \phi(a) = b = i_B(b)$$

Theorem

Let $\phi:A\to B$:

 ϕ is invertible $\iff \phi$ is bijective

Proof

 \implies Assume ϕ is invertible

Assume
$$\phi(a) = \phi(b)$$

$$(\phi^{-1}\phi)(a) = (\phi^{-1}\phi)(b)$$

$$a = b$$

 $\therefore \phi$ is one-to-one

 ϕ^{-1} is a function with domain B

Assume $b \in B$

$$\exists\, a\in A, \phi^{-1}(b)=a$$

$$(\phi\phi^{-1})(b) = \phi(a)$$

$$b = \phi(a)$$

 $\therefore \phi$ is onto

 $\therefore \phi$ is bijective

 $\begin{tabular}{ll} \longleftarrow & {\sf Assume} \ \phi \ {\sf is} \ {\sf bijective} \end{tabular}$

Assume $a \in A$

Since ϕ is a function, $\exists b \in B, \phi(a) = b$

But, since ϕ is one-to-one, $\exists \phi^{-1}, \phi^{-1}(b) = a$.

$$(\phi\phi^{-1})(b) = \phi(a) = b$$

Assume $b \in B$

But, since ϕ is onto, $\exists a \in A, \phi(a) = b$

$$(\phi^{-1}\phi)(a) = \phi^{-1}(b) = a$$

 $\therefore \phi^{-1}$ exists and ϕ is invertible.

Theorem

Inverse functions are unique.

Proof

Assume $\phi:A\to B$ is invertible

Assume $\mu: B \to A$ and $\gamma: B \to A$ are both inverses of ϕ

Assume $b \in B$

$$(\phi\mu)(b) = b$$

$$[\gamma(\phi\mu)](b) = \gamma(b)$$

$$[(\gamma\phi)\mu)](b) = \gamma(b)$$

$$(\gamma\phi)[\mu(b)] = \gamma(b)$$

$$\mu(b) \ = \ \gamma(b)$$

$$\therefore \mu = \gamma$$