Theorie 3: Quantenmechanik

Übungsblatt 5: Das freie Teilchen

Deadline: Mittwoch 29.05.2024 18.00 via eCampus

An einigen Stellen werden Sie folgendes Integral benötigen:

$$\int_{-\infty}^{+\infty} \mathrm{d}x \, e^{-x^2} = \sqrt{\pi} \,.$$

Wir betrachten ein freies Teilchen der Masse m, und wir nehmen an dass zum Zeitpunkt t=0 die Wellenfunktion gegeben ist durch

$$\psi(x, t = 0) = A e^{-ax^2/2}$$

wobei A und a positive reelle Konstanten sind

- 1. (2 Punkte) Bestimmen Sie den Wert von A so dass die Wellenfunktion normiert ist.
- 2. (2 Punkte) Bestimmen Sie die Wellenfunktion im Impulsraum $\tilde{\psi}(p, t = 0)$ zum Zeitpunkt t = 0.
- 3. (1 Punkt) Mit Hilfe des Zeitentwicklungsopertors, bestimmen Sie die Wellenfunktion im Impulsraum $\tilde{\psi}(p,t)$ zum Zeitpunkt t>0.
- 4. (4 Punkte) Bestimmen Sie die Wellenfunktion im Ortsraum $\psi(x,t)$ zum Zeitpunkt t>0.
- 5. (4 Punkte) Berechnen Sie den Erwartungswert und die Varianz für den Positionsoperator \hat{x} .
- 6. (5 Punkte) Berechnen Sie den Erwartungswert und die Varianz für den Impulsoperator \hat{p} .
- 7. (1 Punkt) Zeigen Sie, dass die Unschärferelation für Ort und Impuls erfüllt ist.
- 8. (1 Punkt) Berechnen Sie die Wahrscheinlichkeit dass sich das Teilchen zum Zeitpunkt t>0 in Bereich x>0 aufhält.