Rozwiązanie

18.1.

а	b	liczba operacji mod
25	15	3
116	324	6
762	282	6

18.2.

a_1, a_2, \dots, a_n	$NWD(a_1, a_2, \dots, a_n)$
36, 24, 72, 150, 114	6
119, 187, 323, 527, 731	17
121, 330, 990, 1331, 110, 225	1

18.3.

Przykładowa poprawna odpowiedź:

$$w \leftarrow a_1$$

dla $i = 2, 3, 4,, n$ **wykonuj**
 $w \leftarrow NWD(w, a_i)$
zwróć w **i zakończ**

Zadanie 19.

Wiązka zadań Zakupy międzyplanetarne

Mieszkańcy galaktyki Różnoliczbowo zamieszkują 9 planet: Liczbowo₂, Liczbowo₃, ..., Liczbowo₁₀. Na każdej planecie Liczbowo_i jej mieszkańcy posługują się systemem liczbowym o podstawie i. Na każdej planecie wszystkie ceny są liczbami naturalnymi.

19.1.

Mieszkańcy czterech sąsiadujących planet: Liczbowo₂, Liczbowo₄, Liczbowo₈ oraz Liczbowo₁₀ często podróżują pomiędzy tymi planetami i kupują różne towary. W poniższej tabeli znajdują się ceny wybranych towarów zakupionych przez jedną osobę na różnych planetach. Uzupełnij tabelę, przeliczając **podane** ceny na systemy liczbowe wszystkich czterech planet.

Towar	Cena towaru zapisana w systemie liczbowym planety								
	Liczbowo ₂	Liczbowo ₄	Liczbowo ₈	Liczbowo ₁₀					
Kozaki	10111011								
Płaszcz			724						
Skuter				1458					

19.2.

Na różnych planetach ten sam towar może mieć różną cenę, na przykład cena ciasta kokosowego na planecie Liczbowo₁₀ wynosi 38₁₀, zaś na planecie Liczbowo₈ jego cena wynosi 55₈ (równą 45₁₀).

Mieszkańcy planety Liczbowo₁₀ są bardzo oszczędni i przed zakupami porównują ceny towarów na wybranych planetach. Uzupełnij w poniższej tabeli relacje (>, <, =) pomiędzy poszczególnymi cenami.

Liczbowo _x	Relacja	Liczbowo _y
1100001002	>	5568
31234		1747 ₈
110 ₁₀		11010 ₃
2669		1101003
1101111012		6748

19.3.

Sprzedawcy sklepów planety Liczbowo_i wyliczają wartość zakupów klientów, sumując ceny zakupionych towarów w systemie obowiązującym na ich planecie; stosują przy tym metodę dodawania pisemnego.

Przykłady

Dodawanie w systemie o podstawie 2:

			1	0	1	0
		1	0	0	1	1
			1	1	0	1
$+_2$		1	1	0	0	1
1	0	0	0	0	1	1

Dodawanie w systemie o podstawie 4:

Podsumuj rachunki pana Dwójkowskiego (z planety Liczbowo₂) oraz pana Czwórkowskiego (z planety Liczbowo₄).

Rachunek pana Dwójkowskiego:

			1	0	1	1
		1	0	0	1	0
	1	1	0	1	1	1
		1	1	0	1	0
		1	1	0	0	1
+2	1	0	1	0	1	1
SUMA						

Rachunek pana Czwórkowskiego:

Podaj różnicę wartości obu rachunków w systemie obowiązującym na planecie Liczbowo₁₀.

Różnica rachunków w systemie obowiązującym na planecie Liczbowo₁₀ wynosi:

19.4.

Właściciele sieci sklepów ulokowanych na wszystkich planetach galaktyki postanowili dostarczyć do sklepów kalkulatory, które będą dodawały ceny w opisany powyżej sposób. Aby pomóc właścicielom, podaj algorytm dodawania (w postaci pseudokodu lub w języku programowania), który dla dwóch liczb a i b zapisanych w systemie o podstawie $p \in [2,9]$ wyznacza i wypisuje wartość sumy $a +_p b$ zapisaną w systemie o podstawie p zgodnie z poniższą specyfikacją. Twój algorytm **nie może** dokonywać zamiany liczb a i b na inny system pozycyjny.

Specyfikacja

Dane:

p — podstawa systemu, liczba naturalna z przedziału [2,9],

n — liczba cyfr liczb naturalnych a, $b \le 255$ (przyjmujemy, że krótsza liczba jest uzupełniona z lewej strony zerami, tak aby obie liczby miały taką samą długość),

A[n], A[n-1], ..., A[1] kolejne cyfry liczby a zapisanej w systemie o podstawie p,

B[n], B[n-1],..., B[1] kolejne cyfry liczby b zapisanej w systemie o podstawie p,

Wyniki:

wartość liczby $c = a +_p b$ zapisana w systemie o podstawie p w postaci ciągu cyfr C[n+1], C[n], ..., C[1].

Przykład

Dla następujących danych:

p = 4

n = 4,

Liczba $a = 3122_4$

Liczba $b = 21_4$

Wynikiem jest liczba $c = 3203_4$

Zawartość tablic A, B, C:

i	5	4	3	2	1
A[i]		3	1	2	2
B[i]		0	0	2	1
C[i]	0	3	2	0	3

Komentarz do zadania

19.1.

Powszechnie znane są algorytmy konwersji liczby z zapisu dziesiętnego na zapis w systemie pozycyjnym o podstawie s < 10 i odwrotnie: z zapisu w systemie o podstawie s na system dziesiętny. Aby uniknąć wielokrotnego wykonywania takich konwersji, skorzystamy z zależności między reprezentacjami liczb w systemie o podstawie 2, podstawie 4 = 2.2 oraz podstawie 8 = 2.2.2. Skoncentrujmy się najpierw na systemach o podstawach 2 i 4:

- reprezentację liczby w systemie czwórkowym można uzyskać z jej reprezentacji w systemie binarnym (czyli o podstawie 2), wybierając od końca pary cyfr i zamieniając je na ich czwórkowe reprezentacje;
- reprezentację liczby w systemie binarnym można uzyskać z jej reprezentacji w systemie czwórkowym, zamieniając każdą cyfrę czwórkową na jej dwucyfrową reprezentację binarną.

Ponieważ 8=2³, analogiczna własność zachodzi dla konwersji między systemem binarnym a systemem ósemkowym, z tą różnicą, że zamiast bloków 2 cyfr rozważamy bloki o długości 3. Korzystając z powyższych obserwacji, uzyskujemy rozwiązanie:

Towar	Cena towaru zapisana w systemie liczbowym planety						
	Liczbowo ₂	Liczbowo4	Liczbowo ₈	Liczbowo ₁₀			
Kozaki	10111011	2323	<u>273</u>	<u>187</u>			
Płaszcz	111010100	<u>13110</u>	724	<u>468</u>			
Skuter	10110110010	112302	2662	1458			

Dokładniej, dla 10111011₍₂₎ uzyskujemy:

• reprezentację czwórkową: dzieląc 10111011 na bloki 10, 11, 10, 11 i zapisując w systemie o podstawie 4 wartość każdego bloku: 2, 3, 2 i 3;

1	0	1	1	1	0	1	1
1	0	1	1	1	0	1	1
2	2	3		2	2	3	

 reprezentację ósemkową: dzieląc 10111011 na bloki 10, 111, 011 i zapisując w systemie o podstawie 4 wartość każdego bloku: 2, 7 i 3.

1	0	1	1	1	0	1	1
01	10		111				
2	2		7			3	

Z kolei z 724₍₈₎ uzyskujemy:

- reprezentację binarną: zamieniając każdą cyfrę ósemkową na jej 3-cyfrową reprezentację binarną, czyli 111, 010, 100; daje to reprezentację 111010100;
- reprezentację czwórkową: dzieląc binarną reprezentację 111010100 na bloki 01, 11, 01, 01 i 00, zapisując w systemie o podstawie 4 wartość każdego bloku: 1, 3, 1, 1 i 0.

Znając zasady konwersji między systemami o podstawach 2, 4 i 8, reprezentację dziesiętną możemy uzyskać za pomocą standardowego algorytmu zamiany liczby z systemu o podstawie p różnej od 10 (np. p = 2) na system dziesiętny. Analogicznie, znając reprezentację dziesiętną,

wystarczy znaleźć jej reprezentację w jednym z pozostałych systemów, a potem zastosować omówione powyżej reguły konwersji między systemami o podstawach 2, 4 i 8.

19.2.

Używając standardowych algorytmów zamiany z systemu niedziesiętnego na dziesiętny, możemy wszystkie liczby przekształcić na postać dziesiętną i wówczas porównać. Metoda ta wymaga dość dużo obliczeń, dlatego pokażemy sposób wymagający mniej pracy. Podobnie jak w rozwiązaniu zadania 1 polegać on będzie na wykorzystaniu faktu, że dwie cyfry w systemie o podstawie s odpowiadają jednej cyfrze w systemie o podstawie s, podobnie trzy cyfry w systemie o podstawie s odpowiadają jednej cyfrze w systemie o podstawie s):

```
556<sub>8</sub>=101101110<sub>2</sub> < 110000100<sub>2</sub>
3123<sub>4</sub>=11011011<sub>2</sub>, 1747<sub>8</sub>=001111100111<sub>2</sub>, czyli 3123<sub>4</sub><1747<sub>8</sub>
266<sub>9</sub>=022020<sub>3</sub>, czyli 266<sub>9</sub><110100<sub>3</sub>
674<sub>8</sub>=110111100<sub>2</sub>, czyli 6748<1101111012
```

Jedyny przykład wymagający konwersji na system dziesiętny to porównanie 110_{10} i $11010_3=81_{10}+27_{10}+3_{10}=111_{10}$.

19.3.

Możemy wszystkie liczby w rachunku zamienić na system dziesiętny i je dodawać. Inne rozwiązanie polega na zastosowaniu metody dodawania pisemnego przeprowadzonego na reprezentacji binarnej i czwórkowej. Pokażemy je dla par liczb z rachunku pana Dwójkowskiego. Najpierw dodamy dwie pierwsze liczby.

przeniesienie:		0	0	1	0	
			1	0	1	1
	+2	1	0	0	1	0
SUMA:		1	1	1	0	1

Następnie do wyniku dodamy trzecią liczbę

przeniesienie:		1	1	1	1	1	1	
				1	1	1	0	1
	+2		1	1	0	1	1	1
SUMA:		1	0	1	0	1	0	0

Dodając następnie liczby: 11010₂, 11001₂ i 101011₂, uzyskamy wynik 10110010₂.

Analogicznie postępujemy dla reprezentacji czwórkowych. Suma dwóch pierwszych liczb to:

przeniesienie:		I	l	
			3	3
	+4	1	0	2
SUMA:		2	0	1

Dodając następnie liczby: 3114, 1314, 1234 i 3014, uzyskamy wynik 23334.

Następnie zamieniamy obie obliczone sumy na system dziesiętny:

$$10110010_2 = 2_{10} + 16_{10} + 32_{10} + 128_{10} = 178_{10} \text{ oraz } 2333_4 = 3_{10} + 3_{10} \cdot 4_{10} + 3 \cdot 16_{10} + 2 \cdot 64_{10} = 191_{10}.$$

A zatem różnica wartości rachunków wynosi 13₁₀.

19.4.

Zadanie można rozwiązać, implementując zasadę dodawania pisemnego, której przykłady podaliśmy w rozwiązaniu zadania 3. Zgodnie z tą zasadą dodajemy odpowiadające sobie cyfry i przeniesienia, zaczynając od prawej strony. Przyjmujemy przy tym, że ostatnie przeniesienie R[1] (na skrajnie prawej pozycji 1) jest równe zero. Ponadto wiemy, że:

- *i*-ta cyfra wyniku jest równa $(A[i] + B[i] + R[i]) \mod p$, gdzie R[i] to *i*-te przeniesienie,
- (i+1)-sze przeniesienie R[i+1] jest równe (A[i]+B[i]+R[i]) div p,

gdzie mod i div oznaczają odpowiednio operacje reszty z dzielenia i wyniku dzielenia całkowitego (tzn. zaokrąglenia dokładnego wyniku dzielenia do liczby całkowitej w dół). Musimy jednak uwzględnić, że wynik może być o jedną cyfrę dłuższy od dodawanych liczb. Dlatego przyjmiemy, że wynik ma n+1 cyfr i najbardziej znaczącą cyfrę wyniku zapiszemy na pozycji n+1.

```
i \leftarrow 1
R[1] \leftarrow 0
dopóki i < n+1 \text{ wykonuj}
c \leftarrow A[i] + B[i] + R[i]
C[i] \leftarrow c \text{ mod } p
R[i+1] \leftarrow c \text{ div } p
i \leftarrow i+1
C[n+1] \leftarrow R[n+1]
```

W modelu odpowiedzi zamieściliśmy trochę inne rozwiązanie:

- zamiast tablicy przeniesień *R* przechowujemy tylko aktualne przeniesienie, w zmiennej *r*;
- pokazujemy tam, jak można uniknąć stosowania operatorów mod i div, korzystamy przy tym z tego, że A[i]+B[i] jest zawsze nie większe niż 2p-2, a reszta R[i] jest równa 0 lub 1.

Zadanie 20.

Wiązka zadań Liczba narcystyczna

Niech dana będzie liczba naturalna x, której zapis dziesiętny ma n cyfr:

$$x = a_{n-1}10^{n-1} + a_{(n-2)}10^{n-2} + \dots + a_110 + a_0 \qquad (a_{n-1} \neq 0).$$

Powiemy, że liczba x jest narcystyczna, jeśli suma jej cyfr podniesionych do potęgi n-tej jest równa x, tzn.

$$a_{n-1}^n + a_{n-2}^n + \dots + a_1^n + a_0^n = x.$$

Na przykład liczba 1634 jest narcystyczna, ponieważ

$$1^4 + 6^4 + 3^4 + 4^4 = 1634.$$

Powiemy, że liczba x jest B-narcystyczna, jeśli jej zapis w systemie o podstawie B ma n cyfr, których suma n-tych potęg jest równa x, tzn.

$$x = a_{n-1}B^{n-1} + a_{(n-2)}B^{n-2} + \dots + a_1B + a_0 \quad \text{oraz} \quad a_{n-1}^n + a_{n-2}^n + \dots + a_1^n + a_0^n = x.$$

Na przykład liczba 289 jest 5-narcystyczna, ponieważ