Coin Flipping Over the Internet By Vipul Goyal

Bad News

Flip a coin?

Alice and Bob are getting divorced

They can't even be in the same room together

Who keeps the car?

Coin Flipping over Telephone

Can we flip a fair coin over the phone (or internet)?

Applications: cryptographic protocols, online gaming,

Blum (1981)

Commitment Schemes

- Commitment like a note placed in a safe
- Two properties: hiding and binding
- Electronic equivalent of such a safe

Building Commitment Schemes

Does this work?

Using one-time pads?

Can choose any m' s.t. C = k'⊕m'

ElGamal Commitment Scheme

• DDH assumption: given (g, g^a, g^b) , any information about g^{ab} is hard to compute (looks random)

Generate a,b randomly

Receiver

- After commitment phase: m hidden
- Binding: a, b unique given commitment phase, hence m unique

Coin Flipping Attempt 1

$$b_0 = O/1$$

$$b_1 = 0/1$$

$$b = b_0 \oplus b_1$$

- If both parties honest: b is random
- If Bob dishonest: can dictate output
 - Suppose Bob wants output = 1
 - If Alice chooses 0, Bob chooses 1
 - If Alice chooses 1, Bob chooses 0

Coin Flipping Attempt 1

$$b_0 = 0/1$$

$$b_1 = 0/1$$

$$b = b_0 \oplus b_1$$

- What if Alice and Bob send messages simultaneously?
 - Protocol is secure even if Bob malicious

Fact: even if one bit random (and other bit doesn't depend upon it), XOR is random

Coin Flipping Protocol

$$b = b_0 \oplus b_1$$

- If both honest: both bits random and independent. XOR random
- Alice dishonest, Bob honest: After round 1, b₀ fixed (binding). Hence b₀ independent of b₁. Now b₁ is random (and independent of b₀ if Bob honest). Hence XOR random.
- Alice honest, Bob dishonest: b₀ random, b₁ still independent of b₀ (hiding). Hence XOR random.

Multi-Party Coin Flipping

We have *n* parties, want to flip a single coin

- Example: choosing a leader in a group of n parties (leader election), choosing who goes first in a multiplayer game, etc.
- Even if n-1 parties cheat and collude with each other, they can't bias outcome. Honest party is protected.

Issues: similar to two party.

 If an adv can choose its bit based on bits of other parties, it can control the output

Multi-Party Coin Flipping

Candidate Protocol

- Parties choose b₁, b₂,, b_n resp
- Day 1: Parties send com(b₁), com(b₂), ..., com(b_n) (no particular order, free to go)
- Day 2: open $b_1, b_2, ..., b_n$. $b = b_1 \oplus b_2 \oplus ... \oplus b_n$

Idea: Say P₁ honest, others dishonest.

 $b_2, ..., b_n$ fixed in stage 1. b_1 hidden.

So b₂,..., b_n can't depend upon b₁

Question

Is the candidate multi-party coin-flipping protocol secure?

Ans: Surprisingly, NO!

Answers

- Parties choose b₁, b₂,, b_n resp
- Day 1: Parties send com(b₁), com(b₂), ..., com(b_n) (no particular order, free to go)
- Day 2: open b₁, b₂, ..., b_n. b = b₁⊕b₂⊕...⊕b_n
 Say P₁ honest, others dishonest.
- Day 1: P_2 waits for P_1 . Sets $com(b_2) = com(b_1)$
- Day 2: P₁ sends opening of com(b₁). P₂ replays the same message.

$$b = b_1 \oplus b_2 \oplus \dots \oplus b_n = b_3 \oplus \dots \oplus b_n$$

No easy fixes!

Committed values may be correlated

$$\frac{g^a, g^b, m.g^{ab}}{a, b}$$

A Secure Protocol

```
Parties choose b<sub>1</sub>, b<sub>2</sub>, ...., b<sub>n</sub> resp
```

- Day 1: P₁ send com(b₁),
- •
- Day n: P_n send com(b_n)
- Day n+1: P_n opens com(b_n)
- •
- Day n+n: P₁ opens com(b₁)

Idea: suppose P_2 "copied" from P_1 P_2 has to open before P_1 Hard for P_2 : hiding

Questions?