GLM and Logistic Regression with LASSO/Ridge Regularization

Tianze Hua

3/4/2022

Context Description Statistics for a large number of US Colleges from the 1995 issue of US News and World Report.

Format A data frame with 777 observations on the following 18 variables.

Private A factor with levels No and Yes indicating private or public university

Apps Number of applications received

Accept Number of applications accepted

Enroll Number of new students enrolled

Top10perc Pct. new students from top 10% of H.S. class

Top25perc Pct. new students from top 25% of H.S. class

F.Undergrad Number of fulltime undergraduates

P.Undergrad Number of parttime undergraduates

Outstate Out-of-state tuition

Room.Board Room and board costs

Books Estimated book costs

Personal Estimated personal spending

PhD Pct. of faculty with Ph.D.'s

Terminal Pct. of faculty with terminal degree

S.F.Ratio Student/faculty ratio

perc.alumni Pct. alumni who donate

Expend Instructional expenditure per student

Grad.Rate Graduation rate

glimpse(md)

```
## Rows: 777
## Columns: 18
## $ Private
                ## $ Apps
                <dbl> 1660, 2186, 1428, 417, 193, 587, 353, 1899, 1038, 582, 173~
## $ Accept
                <dbl> 1232, 1924, 1097, 349, 146, 479, 340, 1720, 839, 498, 1425~
## $ Enroll
                <dbl> 721, 512, 336, 137, 55, 158, 103, 489, 227, 172, 472, 484,~
## $ Top10perc
                <dbl> 23, 16, 22, 60, 16, 38, 17, 37, 30, 21, 37, 44, 38, 44, 23~
                <dbl> 52, 29, 50, 89, 44, 62, 45, 68, 63, 44, 75, 77, 64, 73, 46~
## $ Top25perc
## $ F.Undergrad <dbl> 2885, 2683, 1036, 510, 249, 678, 416, 1594, 973, 799, 1830~
## $ P.Undergrad <dbl> 537, 1227, 99, 63, 869, 41, 230, 32, 306, 78, 110, 44, 638~
                <dbl> 7440, 12280, 11250, 12960, 7560, 13500, 13290, 13868, 1559~
## $ Outstate
## $ Room.Board <dbl> 3300, 6450, 3750, 5450, 4120, 3335, 5720, 4826, 4400, 3380~
                <dbl> 450, 750, 400, 450, 800, 500, 500, 450, 300, 660, 500, 400~
## $ Books
## $ Personal
                <dbl> 2200, 1500, 1165, 875, 1500, 675, 1500, 850, 500, 1800, 60~
## $ PhD
                <dbl> 70, 29, 53, 92, 76, 67, 90, 89, 79, 40, 82, 73, 60, 79, 36~
## $ Terminal
                <dbl> 78, 30, 66, 97, 72, 73, 93, 100, 84, 41, 88, 91, 84, 87, 6~
## $ S.F.Ratio
                <dbl> 18.1, 12.2, 12.9, 7.7, 11.9, 9.4, 11.5, 13.7, 11.3, 11.5, ~
## $ perc.alumni <dbl> 12, 16, 30, 37, 2, 11, 26, 37, 23, 15, 31, 41, 21, 32, 26,~
                <dbl> 7041, 10527, 8735, 19016, 10922, 9727, 8861, 11487, 11644,~
## $ Expend
                <dbl> 60, 56, 54, 59, 15, 55, 63, 73, 80, 52, 73, 76, 74, 68, 55~
## $ Grad.Rate
nguch: doggribo(md fast-TDIF) %% slico(2:n()) %% soloct(3:8) %% kablo()
```

psych: describe(ma,	last-inue)	%/% SIICe(2:II())	%>% Select(3:0)	%>% Kable()

	mean	sd	min	max	range	se
Apps	3001.63835	3870.201484	81.0	48094.0	48013.0	138.8427049
Accept	2018.80438	2451.113971	72.0	26330.0	26258.0	87.9332239
Enroll	779.97297	929.176190	35.0	6392.0	6357.0	33.3340101
Top10perc	27.55856	17.640364	1.0	96.0	95.0	0.6328445
Top25perc	55.79665	19.804778	9.0	100.0	91.0	0.7104924
F.Undergrad	3699.90734	4850.420531	139.0	31643.0	31504.0	174.0078673
P.Undergrad	855.29858	1522.431887	1.0	21836.0	21835.0	54.6169397
Outstate	10440.66924	4023.016484	2340.0	21700.0	19360.0	144.3249124
Room.Board	4357.52638	1096.696416	1780.0	8124.0	6344.0	39.3437648
Books	549.38095	165.105360	96.0	2340.0	2244.0	5.9231218
Personal	1340.64221	677.071454	250.0	6800.0	6550.0	24.2898031
PhD	72.66023	16.328155	8.0	103.0	95.0	0.5857693
Terminal	79.70270	14.722359	24.0	100.0	76.0	0.5281617
S.F.Ratio	14.08970	3.958349	2.5	39.8	37.3	0.1420050
perc.alumni	22.74389	12.391801	0.0	64.0	64.0	0.4445534
Expend	9660.17117	5221.768440	3186.0	56233.0	53047.0	187.3298993
Grad.Rate	65.46332	17.177710	10.0	118.0	108.0	0.6162469

Frequency table for Private College and Public table(factor(md\$Private))

```
##
## No Yes
## 212 565
# set Private college to be the baseline
md$Private <- relevel(md$Private, 'No')</pre>
```

```
# descriptive statistics for continuous variables
continous = select_if(md, is.numeric)
summary(continous)
##
                        Accept
                                        Enroll
                                                     Top10perc
                                                                     Top25perc
         Apps
                                                                   Min. : 9.0
                                                         : 1.00
##
   Min.
         :
              81
                    Min. : 72
                                    Min. : 35
                                                   Min.
##
   1st Qu.: 776
                    1st Qu.: 604
                                    1st Qu.: 242
                                                   1st Qu.:15.00
                                                                   1st Qu.: 41.0
##
   Median: 1558
                    Median: 1110
                                    Median: 434
                                                   Median :23.00
                                                                   Median: 54.0
  Mean : 3002
                    Mean : 2019
                                    Mean : 780
                                                   Mean
                                                        :27.56
                                                                   Mean : 55.8
##
   3rd Qu.: 3624
                    3rd Qu.: 2424
                                    3rd Qu.: 902
                                                   3rd Qu.:35.00
                                                                   3rd Qu.: 69.0
           :48094
                           :26330
                                          :6392
                                                   Max.
                                                          :96.00
                                                                   Max.
                                                                          :100.0
##
   Max.
                   Max.
                                    Max.
##
    F.Undergrad
                     P.Undergrad
                                         Outstate
                                                        Room.Board
  Min.
          : 139
                    Min.
                           :
                                1.0
                                      Min.
                                             : 2340
                                                      Min.
                                                             :1780
   1st Qu.: 992
                                                      1st Qu.:3597
##
                    1st Qu.:
                               95.0
                                      1st Qu.: 7320
##
   Median: 1707
                    Median :
                             353.0
                                      Median : 9990
                                                      Median:4200
##
   Mean
         : 3700
                                                      Mean
                    Mean : 855.3
                                      Mean :10441
                                                            :4358
   3rd Qu.: 4005
                    3rd Qu.: 967.0
                                      3rd Qu.:12925
                                                      3rd Qu.:5050
##
   {\tt Max.}
          :31643
                    Max.
                          :21836.0
                                      Max.
                                            :21700
                                                      Max.
                                                            :8124
##
       Books
                       Personal
                                         PhD
                                                        Terminal
##
                                                            : 24.0
  \mathtt{Min}.
          : 96.0
                     Min.
                           : 250
                                    Min. : 8.00
                                                     Min.
   1st Qu.: 470.0
                     1st Qu.: 850
                                    1st Qu.: 62.00
                                                     1st Qu.: 71.0
##
   Median : 500.0
                     Median:1200
                                    Median : 75.00
                                                     Median: 82.0
## Mean
         : 549.4
                    Mean
                          :1341
                                    Mean : 72.66
                                                     Mean : 79.7
   3rd Qu.: 600.0
                     3rd Qu.:1700
                                    3rd Qu.: 85.00
                                                     3rd Qu.: 92.0
                                          :103.00
##
  Max.
          :2340.0
                    Max.
                                                     Max.
                                                            :100.0
                            :6800
                                    Max.
##
     S.F.Ratio
                     perc.alumni
                                        Expend
                                                      Grad.Rate
## Min.
          : 2.50
                   Min.
                         : 0.00
                                    Min. : 3186
                                                           : 10.00
                                                    Min.
  1st Qu.:11.50
                    1st Qu.:13.00
                                    1st Qu.: 6751
                                                    1st Qu.: 53.00
## Median :13.60
                    Median :21.00
                                    Median: 8377
                                                    Median : 65.00
## Mean :14.09
                   Mean
                          :22.74
                                    Mean : 9660
                                                    Mean
                                                          : 65.46
##
   3rd Qu.:16.50
                    3rd Qu.:31.00
                                    3rd Qu.:10830
                                                    3rd Qu.: 78.00
## Max.
           :39.80
                    Max.
                           :64.00
                                    Max.
                                           :56233
                                                    Max.
                                                           :118.00
set.seed(16)
train_index <- createDataPartition(md$Private, p=0.75, list = FALSE, times = 1)
train_data <- md[train_index,]</pre>
test_data <- md[-train_index,]</pre>
model <- glm(
 Private ~ Personal + PhD + Grad.Rate + S.F.Ratio,
  data = md,
  family = binomial(link = 'logit'))
summary(model)
##
## Call:
## glm(formula = Private ~ Personal + PhD + Grad.Rate + S.F.Ratio,
      family = binomial(link = "logit"), data = md)
##
##
## Deviance Residuals:
      Min
                 10
                     Median
                                   30
                                           Max
## -2.8164 -0.3215
                     0.2789
                              0.5333
                                        3.8655
##
## Coefficients:
```

```
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.7915017 1.0455663 9.365 < 2e-16 ***
              ## Personal
## PhD
              -0.0745440 0.0093540 -7.969 1.60e-15 ***
## Grad.Rate
               0.0540927
                         0.0076088
                                    7.109 1.17e-12 ***
## S.F.Ratio
              ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 910.75 on 776 degrees of freedom
## Residual deviance: 553.67 on 772 degrees of freedom
## AIC: 563.67
##
## Number of Fisher Scoring iterations: 6
# convert coefficient log odds into odds
exp(coef(model)) %>% kable()
                                                    х
                                (Intercept)
                                          1.788114e + 04
                               Personal
                                           9.992055e-01
                               PhD
                                           9.281667e-01
                               Grad.Rate
                                          1.055582e+00
                               S.F.Ratio
                                           6.919913e-01
prob_train <- predict(model, newdata = train_data, type = 'response')</pre>
predict_result <- as.factor(ifelse(prob_train >= 0.5, 'Yes', 'No'))
confusionMatrix(predict_result, train_data$Private, positive = 'Yes')
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction No Yes
         No 108 30
##
         Yes 51 394
##
##
##
                 Accuracy : 0.8611
##
                   95% CI: (0.8303, 0.8881)
##
      No Information Rate: 0.7273
      P-Value [Acc > NIR] : 6.75e-15
##
##
##
                    Kappa: 0.6347
##
##
   Mcnemar's Test P-Value: 0.02627
##
##
              Sensitivity: 0.9292
              Specificity: 0.6792
##
##
           Pos Pred Value: 0.8854
##
           Neg Pred Value: 0.7826
##
               Prevalence: 0.7273
```

Detection Rate: 0.6758

##

```
##
    Detection Prevalence: 0.7633
##
       Balanced Accuracy: 0.8042
##
##
       'Positive' Class : Yes
CrossTable(predict_result, train_data$Private)
##
##
##
    Cell Contents
## |-----|
## | Chi-square contribution |
    N / Row Total |
N / Col Total |
## |
## |
        N / Table Total |
## |-----|
##
## Total Observations in Table: 583
##
##
##
              | train_data$Private
## predict_result | No | Yes | Row Total |
## -----|-----|
          ##
##
             | 0.783 | 0.217 |
| 0.679 | 0.071 |
##
                                    0.237 l
##
##
                 0.185 |
                          0.051 |
             - 1
         Yes |
                    51 |
##
                            394 |
                                      445 l
           | 40.795 | 15.298 |
##
             | 0.115 | 0.885 | 0.763 |
##
             0.321 |
                          0.929 |
             | 0.087 | 0.676 |
##
   Column Total | 159 | 424 | 583 |
     0.273 | 0.727 |
## -----|-----|
##
prob_test <- predict(model, newdata = test_data, type = 'response')</pre>
predict_result <- as.factor(ifelse(prob_test >= 0.5, 'Yes', 'No'))
confusionMatrix(predict_result, test_data$Private, positive = 'Yes')
## Confusion Matrix and Statistics
##
         Reference
## Prediction No Yes
     No 33 9
       Yes 20 132
##
```

```
##
##
              Accuracy: 0.8505
                95% CI: (0.7924, 0.8975)
##
##
     No Information Rate: 0.7268
##
     P-Value [Acc > NIR] : 3.121e-05
##
##
                 Kappa: 0.5975
##
##
   Mcnemar's Test P-Value: 0.06332
##
##
            Sensitivity: 0.9362
##
            Specificity: 0.6226
         Pos Pred Value: 0.8684
##
##
         Neg Pred Value: 0.7857
##
            Prevalence: 0.7268
##
         Detection Rate: 0.6804
##
    Detection Prevalence: 0.7835
##
       Balanced Accuracy: 0.7794
##
##
        'Positive' Class : Yes
##
CrossTable(predict_result, test_data$Private)
##
##
   Cell Contents
## |-----|
## | Chi-square contribution |
## | N / Row Total | ## | N / Col Total |
         N / Table Total |
## |
## |-----|
##
## Total Observations in Table: 194
##
             | test_data$Private
## predict_result | No | Yes | Row Total |
## -----|-----|
                 33 | 9 |
##
           No |
             | 40.383 | 15.179 |
##
                0.786 |
                          0.214 |
##
              ##
             0.623 |
                           0.064 |
                  0.170 |
                           0.046 |
  -----|-----|
            Tes | 20 | 132 | 1.158 | 4.194 |
         Yes |
                             132 |
##
##
                 0.132 | 0.868 |
             - 1
                          0.936 |
0.680 |
                  0.377 |
##
              0.103 |
## -----|-----|
## Column Total | 53 | 141 |
                                       194 l
```

ROC Curve

pROC::auc(curve)

```
## Area under the curve: 0.9005
## function (actual, predicted)
## {
##
       if (length(actual) != length(predicted)) {
##
           msg <- "longer object length is not a multiple of shorter object length"
           warning(msg)
##
       }
##
##
       r <- rank(predicted)
       n_pos <- as.numeric(sum(actual == 1))</pre>
##
       n_neg <- length(actual) - n_pos</pre>
##
       return((sum(r[actual == 1]) - n_pos * (n_pos + 1)/2)/(n_pos *
##
##
           n_neg))
## }
## <bytecode: 0x555bbd8ac1b0>
## <environment: namespace:Metrics>
```

```
set.seed(16)
train_index <- createDataPartition(md$Grad.Rate, p=0.8, list = FALSE, times = 1)
train <- md[train_index,]
test <- md[-train_index,]

train_x <- model.matrix(Grad.Rate ~., train)[,-1]
test_x <- model.matrix(Grad.Rate ~., test)[,-1]

train_y <- train$Grad.Rate
test_y <- test$Grad.Rate

cv.lasso <- cv.glmnet(train_x, train_y, nfolds = 10)
plot(cv.lasso)</pre>
```

17 17 17 16 15 15 12 11 9 8 8 7 5 4 4 1


```
log(cv.lasso$lambda.min)
```

```
## [1] -0.6815882
log(cv.lasso$lambda.1se)

## [1] 0.6208842
cv.lasso$lambda.min

## [1] 0.505813

# alpha = 1 for Lasso(L2)
# alpha = 0 for Ridge(L1)
model.min <- glmnet(train_x, train_y, alpha = 1, lambda = cv.lasso$lambda.min)
model.min</pre>
```

##
Call: glmnet(x = train_x, y = train_y, alpha = 1, lambda = cv.lasso\$lambda.min)

```
##
## Df %Dev Lambda
## 1 10 45.72 0.5058
coef(model.min)
## 18 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept) 36.5715021109
## PrivateYes 1.1226756560
## Apps
             0.0006072198
## Accept
## Enroll
## Top10perc 0.0113548295
## Top25perc 0.1510988240
## F.Undergrad .
## P.Undergrad -0.0014758616
## Outstate 0.0008664659
## Room.Board 0.0015830035
## Books
## Personal -0.0023355305
## PhD
              0.0004115897
## Terminal
## S.F.Ratio
## perc.alumni 0.2543466553
## Expend
model.1se <- glmnet(train_x, train_y, alpha = 1, lambda = cv.lasso$lambda.1se)</pre>
model.1se
##
## Call: glmnet(x = train_x, y = train_y, alpha = 1, lambda = cv.lasso$lambda.1se)
##
   Df %Dev Lambda
##
## 1 7 40.7 1.861
coef(model.1se)
## 18 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept) 39.7944017980
## PrivateYes
## Apps
## Accept
## Enroll
## Top10perc 0.0415259483
## Top25perc 0.1265319936
## F.Undergrad .
## P.Undergrad -0.0002931201
## Outstate
               0.0010329156
## Room.Board 0.0008025894
## Books
## Personal
              -0.0008607865
## PhD
## Terminal
## S.F.Ratio
```

```
## perc.alumni 0.1962613507
## Expend
model1.min <- glmnet(train_x, train_y, alpha = 0, lambda = cv.lasso$lambda.min)</pre>
##
## Call: glmnet(x = train_x, y = train_y, alpha = 0, lambda = cv.lasso$lambda.min)
    Df %Dev Lambda
##
## 1 17 47.3 0.5058
coef(model1.min)
## 18 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept) 35.0645821500
## PrivateYes 2.7303609139
## Apps
              0.0008102179
## Accept
              0.0001797282
## Enroll
              0.0011386504
## Top10perc 0.0729534048
## Top25perc 0.1282571474
## F.Undergrad -0.0003054878
## P.Undergrad -0.0016993342
## Outstate 0.0008868921
## Room.Board 0.0020275449
## Books -0.0009130863
## Personal -0.0025415915
## PhD
              0.1076786971
## Terminal -0.1067852794
## S.F.Ratio 0.0898381512
## perc.alumni 0.2778837945
## Expend
              -0.0003212874
model1.1se <- glmnet(train_x, train_y, alpha = 0, lambda = cv.lasso$lambda.1se)</pre>
model1.1se
##
## Call: glmnet(x = train_x, y = train_y, alpha = 0, lambda = cv.lasso$lambda.1se)
##
##
    Df %Dev Lambda
## 1 17 46.96 1.861
coef(model1.1se)
## 18 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept) 35.3741151796
## PrivateYes 2.9538103593
              0.0005807021
## Apps
              0.0004173222
## Accept
## Enroll
              0.0005020891
## Top10perc
              0.0873982732
## Top25perc
               0.1163862379
## F.Undergrad -0.0001706039
## P.Undergrad -0.0015936925
```

```
## Outstate
             0.0007844837
## Room.Board 0.0019363801
## Books
             -0.0011059531
## Personal
             -0.0025499319
## PhD
              0.0807778172
## Terminal
             -0.0677521657
## S.F.Ratio
              0.0733677926
## perc.alumni 0.2591299704
## Expend
             -0.0002170669
ols <- lm(Grad.Rate ~., data = train)</pre>
summary(ols)
##
## Call:
## lm(formula = Grad.Rate ~ ., data = train)
## Residuals:
      Min
              1Q Median
                             3Q
                                   Max
## -54.457 -7.348 -0.383
                          7.013 53.495
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 34.6833008 5.5555005 6.243 8.08e-10 ***
## PrivateYes 2.6622354 1.9337425
                                   1.377 0.169106
## Apps
             0.0011790 0.0004850
                                   2.431 0.015357 *
## Accept
             ## Enroll
             0.0027282 0.0024545 1.112 0.266787
## Top10perc
              0.0422300 0.0808707 0.522 0.601728
## Top25perc
              0.1438433 0.0607717
                                   2.367 0.018249 *
## F.Undergrad -0.0005206 0.0004213 -1.236 0.217072
## P.Undergrad -0.0017412 0.0004291 -4.058 5.60e-05 ***
                                   3.715 0.000222 ***
## Outstate
              0.0009724 0.0002617
## Room.Board 0.0020516 0.0006634
                                  3.092 0.002076 **
## Books
             -0.0006681 0.0035764 -0.187 0.851873
## Personal
             ## PhD
             0.1277650 0.0617219
                                  2.070 0.038875 *
## Terminal
             -0.1289929 0.0678786 -1.900 0.057863 .
## S.F.Ratio
              0.0925586 0.1881683
                                   0.492 0.622974
## perc.alumni 0.2824721 0.0566339
                                   4.988 7.99e-07 ***
## Expend
             ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 12.8 on 605 degrees of freedom
## Multiple R-squared: 0.4741, Adjusted R-squared: 0.4593
## F-statistic: 32.08 on 17 and 605 DF, p-value: < 2.2e-16
preds.ols <- predict(ols, new = test)</pre>
rmse(test$Grad.Rate, preds.ols)
## [1] 12.6856
rmse(train$Grad.Rate, preds.ols)
```

[1] 21.09384

```
preds.train <- predict(model.1se, newx = train_x)
preds.train1 <- predict(model1.1se, newx = train_x)
train.rmse <- rmse(train_y, preds.train)
train1.rmse <- rmse(train_y, preds.train1)

preds.test<- predict(model.1se, newx = test_x)
test.rmse <- rmse(test_y, preds.test)

preds.test1<- predict(model1.1se, newx = test_x)
test1.rmse <- rmse(test_y, preds.test1)

train1.rmse

## [1] 12.66518
train.rmse

## [1] 13.39232
test.rmse

## [1] 12.65516
test1.rmse</pre>
```

[1] 12.6153