

with Dr. Mahdi Roozbahani & Wafa Louhichi

Now We Need to Maximize the Margin

Maximize

$$\frac{2}{||\theta||}$$

Subject to

Min value of $|x_i\theta + b| = 1 \Rightarrow nearest \ neighbour$

$$i = 1, 2, \dots, N$$

There is a "min" in our constraining; it can be hard to optimize this problem (non-convex form)

Can I write the following term to get rid of absolute value?

$$|x_i\theta + b| = y_i(x_i\theta + b) \Rightarrow$$
 for a correct classification

If min $|x_i\theta + b| = 1 \Rightarrow so it can be at least 1$

Maximize

$$\frac{2}{||\theta||}$$

Subject to

$$y_i(x_i\theta + b) \ge 1 \text{ for } i = 1, 2, ..., N$$

$$i = 1, 2, ..., N$$

Now We Need to Maximize the Margin

Maximize

$$\frac{2}{||\theta||}$$

Subject to

Min value of $|x_i\theta + b| = 1 \Rightarrow nearest \ neighbour$

$$i = 1, 2, ..., N$$

There is a "min" in our constraining; it can be hard to optimize this problem (non-convex form)

Can I write the following term to get rid of absolute value?

$$|x_i\theta + b| = y_i(x_i\theta + b) \Rightarrow$$
 for a correct classification

If min $|x_i\theta + b| = 1 \Rightarrow so it can be at least 1$

Maximize

$$\frac{2}{||\theta||}$$

Subject to

$$y_i(x_i\theta + b) \ge 1 \text{ for } i = 1, 2, ..., N$$

$$i = 1, 2, ..., N$$

Lagrange Formulation Minimize $\frac{1}{2}\theta\theta^T$ s.t. $y_i(x_i\theta + b) - 1 \ge 0$

$$y_i(x_i\theta+b)-1\geq 0$$

$$\mathcal{L}(\theta, b, \alpha) = \frac{1}{2}\theta\theta^T - \sum_{i=1}^{N} \alpha_i (y_i(x_i\theta + b) - 1)$$

Minimize w.r.t θ and b and maximize w.r.t each $\alpha_i \ge 0$

$$\nabla_{\theta} \mathcal{L}(\theta, b, \alpha) = \theta - \sum_{i=1}^{N} \alpha_i y_i x_i = 0$$

$$\nabla_b \mathcal{L}(\theta, b, \alpha) = -\sum_{i=1}^N \alpha_i y_i = 0$$

Lagrange Formulation Minimize $\frac{1}{2}\theta\theta^T$ s.t. $y_i(x_i\theta + b) - 1 \ge 0$

$$y_i(x_i\theta+b)-1\geq 0$$

$$\mathcal{L}(\theta, b, \alpha) = \frac{1}{2}\theta\theta^T - \sum_{i=1}^{N} \alpha_i (y_i(x_i\theta + b) - 1)$$

Minimize w.r.t θ and b and maximize w.r.t each $\alpha_i \geq 0$

$$\nabla_{\theta} \mathcal{L}(\theta, b, \alpha) = \theta - \sum_{i=1}^{N} \alpha_i y_i x_i = 0$$

$$\nabla_b \mathcal{L}(\theta, b, \alpha) = -\sum_{i=1}^N \alpha_i y_i = 0$$

$$\theta = \sum_{i=1}^{N} \alpha_i y_i x_i$$

$$\mathcal{L}(\theta, b, \alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \theta \theta^T$$

$$\mathcal{L}(\theta, b, \alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j x_i x_j^T$$

maximize w.r.t each $\alpha_i \ge 0$ for i = 1, ..., N

and

$$\sum_{i=1}^{N} \alpha_i y_i = 0$$

$$\theta = \sum_{i=1}^{N} \alpha_i y_i x_i$$

$$\mathcal{L}(\theta, b, \alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \theta \theta^T$$

$$\mathcal{L}(\theta, b, \alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j x_i x_j^T$$

maximize w.r.t each $\alpha_i \ge 0$ for i = 1, ..., N

and

$$\sum_{i=1}^{N} \alpha_i y_i = 0$$

Training

$$\theta = \sum_{i=1}^{N} \alpha_i y_i x_i$$

No need to go over all datapoints

and for b pick any support vector and calculate: $y_i(x_i\theta + b) = 1$

Testing

For a new test point s

Compute:

$$s\theta + b = \sum_{i} \alpha_{i} y_{i} x_{i} s^{T} + b$$

$$x_{i} in SV$$

Classify s as class 1 if the result is positive, and class 2 otherwise

From x to z Space

In x Space

$$\max_{\alpha} \sum_{i=1}^{N} \frac{\alpha_i}{\alpha_i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j x_i x_j^T$$

let's say x is $n \times d$ xx^T will be $n \times n$

If I add millions of dimensions to x, would it affect the final size of xx^T ?

In z Space

$$\max_{\alpha} \sum_{i=1}^{N} \frac{\alpha_i}{\alpha_i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j \mathbf{z}_i \mathbf{z}_j^T$$

In \boldsymbol{x} Space, They are Called Pre-images of Support Vectors

