Examen: Traitement du Signal

Cours: H. Aboushady, S. Baey et Y. Bonnassieux

Responsable du module: H. Mehrez

21 décembre 2006

- Durée 2h00.
- Tous les documents sont autorisés.
- L'examen est composé de 3 parties:

RÉSOUDRE CHAQUE PARTIE SUR UNE FEUILLE SÉPARÉE

- Poids indicatif de chaque partie:
 - PARTIE I: 7 points (H. Aboushady)
 - PARTIE II: 7 points (S. Baey)
 - PARTIE III : 7 points (Y. Bonnassieux)

PARTIE I

Exercice I-1 (2.0 points)

Figure 1:

- ullet (a) Trouver les pôles et les zéros de la fonction H(s), dont l'amplitude et la phase sont tracées dans la figure 1.
- (b) Ecrire une expression pour H(s).

Exercice I-2 (5.0 points)

Une fonction de Butterworth d'ordre N est définie par l'expression:

$$|H(j\omega)|^2 = \frac{1}{1 + (\frac{\omega}{\omega_c})^{2N}}$$

 $|H(j\omega)|^2$ a 2N pôles distribués sur un cercle de rayon ω_c espacés de π/N radians.

En considérant uniquement les N pôles qui sont à gauche de l'axe imaginaire, la fonction de transfert d'un filtre butterworth peut être exprimer par:

$$H(s) = \frac{\omega_c^N}{(s - p_1)(s - p_2)...(s - p_N)}$$

- (a) Concevoir un filtre temps-continu, H(s), pour les spécifications suivantes: $\omega_p=0.2\pi$, $\omega_s=0.55\pi$, $R_p=7 {\rm dB}$ et $A_s=16 {\rm dB}$. (c.à.d. calculer les valeurs de N, ω_c , et les différents pôles $p_1,p_2,...,p_N$).
- (b) Proposer une réalisation matérielle pour H(s) à base d'intégrateurs $\frac{1}{s}$.
- (c) En utilisant la transformation bilinéaire, concevoir un filtre temps-discret, H(z), pour les spécifications suivantes: $\Omega_p=0.2\pi$, $\Omega_s=0.55\pi$, $R_p=7\mathrm{dB}$ et $A_s=16\mathrm{dB}$. (c.à.d. trouver une expression pour H(z)).
- (e) Tracer approximativement:
 - (i) $|H(j\omega)|$ pour $0 \le \omega \le 2\pi$,
 - (ii) $|H(e^{j\Omega})|$ pour $0 \le \Omega \le 2\pi$.