OLIST E-COMMERCE DATA PIPELINE

Module 2 – End-to-End ELT & Analytics | DuckDB · Parquet · GCS · BigQuery · dbt · Looker Studio / Plotly Dash

AGENDA

- Executive Summary:
 - Purpose, focus and assumption
 - Problem statement & goals
- Data Architecture
- Implementation of ELT pipeline
- Data quality & testing
- Data Insights: Data Analysis with Python and BI Interface: Looker Studio / Plotly Dash
 - Key metrics dashboard
 - E-commerce sales insights
 - Analysis and findings
- Business recommendations
- Phase 2: get ready for operation with Pipeline Orchestration

BUSINESS SETTING

Olist is a Brazilian e-commerce marketplace

The challenge:

With thousands of sellers and millions of orders, Olist needs a robust **data platform** to understand customer behavior, seller performance, and logistics bottlenecks etc

PROBLEM & GOALS

Data given: 9 Olist CSVs raw data available

Outcome required: Transformed into analytics-ready tables & insights in a dashboard

- Reproducible pipeline required: Raw → Marts
- Clean Staging: Renames, Cast Types, Dedupe, Normalization
- EDA and Quality Gates
- Star schema for BI
- BI Dashboards for easy KPI tracking & Business Decisions
- Orchestration to maintain the data in real time (Phase 2)

ARCHITECTURE

Data Warehouse Local data source Google Cloud Platform **Data Analysis** Google **BigQuery** Extract Google Cloud Storage plotly Dash Studio Convert & Load Load (Bronze) DuckDB **Parquet** Gold Layer (Business-ready tables) Bronze Silver Gold

- Start with Kaggle CSVs locally. Using DuckDB, convert CSVs to Parquet (columnar, compressed).
- Those Parquet files are then **uploaded to GCS** as object storage for raw Bronze tables.
- GCS is the middle layer stores Parquet files and act as the source from which BigQuery ingest data.

- dbt takes those raw Bronze tables and **transforms** them into clean, conformed Silver models.
- dbt runs on local machine, Transformations inside BigQuery, which is data warehouse.
- Keep all **transformations in BigQuery** for performance, governance, and BI connectivity.

IMPLEMENTATION OF ELT PIPELINE -INGESTION (BRONZE)

- Load CSV into **DuckDB** for type-checking and quick validation
- Convert to Parquet for efficient columnar storage and store in GCS
- Upload Parquet files to **BigQuery** (`olist_bronze` dataset)

Result: olist_bronze dataset in BigQuery with 9 raw files

Why Parquet?

- Compressed, efficient for analytics
- Schema preserved, faster to load into BigQuery
- Scales better than raw CSV

Role of GCS in ingestion

1.Landing zone for Bronze

- Start with Kaggle CSVs locally.
- Using DuckDB/Python, we convert them to **Parquet** (columnar, compressed).
- Those Parquet files are then uploaded to GCS.
- At this stage, GCS is acting as your data lake for raw Bronze data.

2.Staging point for BigQuery

- BigQuery can't read local files directly it integrates naturally with GCS.
- Our notebook uses the **BigQuery Python client** (or CLI) to LOAD or create Native Tables in BigQuery pointing at those Parquet files in GCS.

3.Benefit: Decoupling compute & storage: GCS stores the data files, BigQuery ingests them

- By keeping Bronze in GCS, we don't overload BigQuery with raw data. If something goes wrong, we can always re-load from GCS.
- We can reprocess/reload from Parquet in GCS at any time without re-downloading the Kaggle dataset.
- It also sets us up for incremental ingestion later (partition by date in GCS, load only new files).

module2_assignment_project > data √ dbt/olist > dbt_packages > logs macros ∨ models ∨ intermediate int_zip_prefixes.sql ∨ marts > dims > facts ✓ staging ! sources.yml ! staging.yml stg_category_translation.sql stg_customers.sql stg_geolocation.sql ≡ Google Cloud Olist Project stg_order_items.sql Explorer + Add data stg_orders.sql stg_payments.sql Q Search BigQuery resources ? stg_products.sql Show starred only stg_reviews.sql ▶ ♣ Pipelines : ▶ → External connections sta sellers.sal : ▶ ■ olist_bronze 公 > target ▶ □ olist_gold ☆: ! dbt_project.yml package-lock.yml int_zip_prefixes ☆ : 000 packages.yml stg_category_translation ☆: ₽ iiii stq_customers ☆ : (i) README.md iiii sta geolocation ☆ : iiii stq_order_items ☆: ΔÚ iii stg_orders ☆ : iiii sta payments ☆: ٨ iiii stq_products ☆ : 101 iiii stg_reviews ☆: Ē iiii stg_sellers ☆ :

IMPLEMENTATION OF ELT PIPELINE –STAGING (SILVER)

9 dbt **staging views** in `olist_silver` and 1 intermediate layer: `int_zip_prefixes` (aggregates geolocation ZIP codes to lat/lng)

Cleaning steps:

- Normalized column names & types
- Deduplication ('stg_reviews')
- Payment normalization ('stg_payments' → bucket rare values to 'other'/'unknown')
- Provides a clean, consistent interface for downstream models.

Why needed intermediate layer?

•Raw geolocation (Bronze):

•every customer/seller record comes with a **zip prefix** (lots of repeats, sometimes dirty, inconsistent).

•Intermediate layer (int_zip_prefixes):

- •Deduplicates all unique zip_prefix values
- •Joins them to their city, state, lat/lng from the geolocation dataset
- •Produces a clean reference table with one row per zip_prefix
- Customers and sellers both point to zip prefixes → instead of repeating city/state in every record, we normalize it.
- This makes joins simpler and consistent in Gold (facts/dims).
- Keeps dim_customer and dim_seller slim and tidy.

IMPLEMENTATION OF ELT PIPELINE -BUSINESS LAYER (GOLD)

Gold (Business Layer) 6 Dimensions

`dim_customer`, `dim_product`, `dim_seller`, `dim_zip_prefix`, `dim_date`, `dim_payment_method`

3 Facts:

`fct_order_item`, `fct_payment`, `fct_review`

Materialized as **tables** in `olist_gold` Star schema design supports BI dashboards & analytics (refer to star schema in next slide)

IMPLEMENTATION OF ELT PIPELINE – DATA QUALITY & TESTING

Finding (Initial EDA)

Data Cleaning Action

Repeated / inconsistent ZIP prefixes Built int_zip_prefixes \rightarrow dim_zip_prefix for normalized reference

Null / invalid payment types Created dim_payment_method, flagged invalid/null values

Duplicate reviews, skewed ratings

Deduplicated review_id; flagged outliers in review scores

Canceled orders & invalid date sequences Added canceled_flag, late_delivery_flag; validated date fields

Missing customer/seller location values

Standardized ZIP joins; filled/handled missing city/state

Outliers in freight values Applied dbt-expectations range tests; flagged anomalies

Ensuring Data Quality & Testing

Data Testing with dbt: tests are in YAML files (dims.yml, facts.yml, staging.yml)

Not Null & Unique

Primary keys in dim customer, dim product, dim seller, fct order item, etc.

Relationships

Foreign keys like fct_order_item.customer_key → dim_customer.customer_key fct_order_item.product_key → dim_product_product_key

Accepted Values

payment_type in stg_payments (credit_card, boleto, voucher, debit_card)

dbt-expectations

run expect_column_values_to_be_in_set on payment_type had tests for late_delivery_flag values (0/1)

Result: A trusted Silver/Gold layer with enforced integrity and test coverage for downstream analysis & BI.

BI DASHBOARD 1 (LOOKER STUDIO)

Top Products Category				
	category_en	Items	GMV ▼	review_score
	health_beauty	9,670	1,441,248.07	
	watches_gifts	5,991	1,305,541.61	4.02
	bed_bath_table	11,115	1,241,681.72	3.9
	sports_leisure	8,641	1,156,656.48	
	computers_accessories	7,827	1,059,272.4	3.94
	furniture_decor	8,334	902,511.79	3.91
	housewares	6,964	778,397.77	4.06
	cool_stuff	3,796	719,329.95	4.15
	auto	4,235	685,384.32	4.07
	garden_tools	4,347	584,219.21	4.05
				1-10/74 < >

BI DASHBOARD 2 (PLOTLY DASH)

TABLEAU

INSIGHTS & RECOMMENDATIONS

- 1) Limited repeat customers
 - Loyalty program to manage customer ecosystem
- 2) Logistics bottlenecks
 - Partnerships with delivery partners
 - Tracking of service levels
- 3) 18 Sellers generate 80% of GMV concentration risk
 - Develop seller ecosystem and incentives to diversify
- 4) Regional concentration of GMV in 3 states
 - Market study to develop market in rest of states

BUSINESS VALUE

Data-driven approach

- Ability to track KPIs in real time
- Receive feedback from the market in real time
- Provide benchmark for future strategy testing

PHASE 2

When we move to live or updated sources, we will:

- Add Snapshot, allow us to capture changes in slowly changing dimensions (SCD Type 2).
- Use Meltano to manage extract & load into BigQuery.
- Orchestrate Pipeline with Dagster to ensure:
 - Bronze ingestion \rightarrow Silver cleaning \rightarrow Gold marts run in sequence
 - Snapshots run before transformations
 - Automated tests + alerts on failures
- Continue connecting gold layer to BI Tools for updated sources

