Author: montserrat.filella@unige.ch

Last update: 03/12/2024

Source: Compilation COST Action 1802

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Praseodymium

Equilibrium reactions	$\lg K$ at infinite dilution and $T = 298 \text{ K}$		
	Baes and Mesmer, 1976	NIST46	Brown and Ekberg, 2016
$Pr^{3+} + H_2O \rightleftharpoons PrOH^{2+} + H^+$	-8.1		-8.30 ± 0.03
$2 \text{ Pr}^{3+} + 2 \text{ H}_2\text{O} \rightleftharpoons \text{Pr}_2(\text{OH})_2^{4+} + 2 \text{ H}^+$			-16.31 ± 0.20
$3 \text{ Pr}^{3+} + 5 \text{ H}_2\text{O} \rightleftharpoons \text{Pr}_3(\text{OH})_5^{4+} + 5 \text{ H}^+$			-35.0 ± 0.3
$Pr(OH)_3(s) + 3 H^+ \rightleftharpoons Pr^{3+} + 3 H_2O$	19.5		18.57 ± 0.20
$Pr(OH)_3(s) \rightleftharpoons Pr^{3+} + 3 OH^-$		-22.3 ± 1.0	

C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, p. 137.

P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions. Wiley, 2016, pp. 135-145.

NIST46, NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0. Available at: www.nist.gov/srd/nist46

Distribution diagrams

These diagrams have been computed at two Pr concentrations (1 mM = $1x10^{-3}$ mol L⁻¹ and 1 μ M = $1x10^{-6}$ mol L⁻¹) with the 'best' equilibrium constants above (in green). Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

