1. Problem

• Largest Sum Contiguous Subarray

Input: An integer array.

Output: The sum of the contiguous subarray (containing at

least one number) which has the largest sum.

Example: Input: A = [-2, 1, -3, 4, -1, 2, 1, -5, 4]

Output: $sum_max = 4 - 1 + 2 + 1 = 6$

1) Naive approach (Brute Force)

Pseudocode:

maxSubArray(A[0..(n - 1)])

Input: An array with n integers: A

Output: The max sum of contiguous subarray.

- 1. $sum_max \leftarrow -infinity$
- 2. **for** start $\leftarrow 0$ **to** n 1 **do**
- 3. **for** end \leftarrow start **to** n 1 **do**
- 4. $sum_curr \leftarrow sum(A[start to end])$
- 5. $sum_max \leftarrow max(sum_max, sum_curr)$
- 6. **return** sum max

Visualization:

	Time complexity	Space complexity	How to get sum
Naive sum	$O(n^3)$	O(1)	iteratively
Cumulatively	$O(n^2)$	O(n) or $O(1)$	using cumulative sum

2. Algorithms

2) Divide and conquer

2) Divide and conquer

maxSubArray(A[0..(n - 1)])

Input: An array with n integers: A **Output:** The max sum of contiguous subarray.

1. **return** findMax(A, 0, n - 1)

Both sides:

findMax(A, start, end)

Input: An array A, start index and end index **Output:** The max sum of contiguous subarray.

- 1. $mid \leftarrow (start + end) / 2$
- 2. $left_max \leftarrow findMax(A, left, mid 1)$
- 3. $right_max \leftarrow findMax(A, mid + 1, right)$
- 4. both_left $\leftarrow 0$; both_right $\leftarrow 0$; sum_curr = 0
- 5. **for** $i \leftarrow mid 1$ **to** 0 **do**
- 6. $sum_curr \leftarrow sum_curr + A[i]$
- 7. both_left \leftarrow max(both_left, sum_curr)
- 8. sum curr = 0
- 9. **for** $j \leftarrow mid + 1$ **to** n 1 **do**
- 10. $sum_curr \leftarrow sum_curr + A[j]$
- 11. both_right \leftarrow max(both_right, sum_curr)
- 12. both_max \leftarrow both_left + A[mid] + both_right
- 13. **return** max(both_max, left_max, right_max)

2) Divide and conquer

Time complexity:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(\frac{n}{2}) + O(n) & \text{if } n > 1 \end{cases}$$

Solving, $T(n) \in O(n \log n)$

Space complexity:

Extra space is $\Theta(\log n)$ stack space for recursion

3) Kadane's Algorithm

A:

Cumulative sum:

A negative value in cumulative sum array is not worth keeping.

Once the cumulative sum becomes negative, reset it to 0.

3) Kadane's Algorithm

maxSubArray(A[0..(n-1)])

Input: An array A, start index and end index

Output: The max sum of contiguous subarray.

- 1. $sum_max \leftarrow A[0]$; $sum_curr \leftarrow A[0]$
- 2. **for** $i \leftarrow 1$ **to** n 1 **do**
- 3. **if** $sum_curr < 0$ **then**
- 4. $sum_curr = A[i]$
- 5. else
- 6. $sum_curr = A[i] + sum_curr$
- 7. $sum_max = max(sum_curr, sum_max)$
- 8. **return** sum_max

Time complexity: O(n)

Space complexity: O(1)

	Time complexity	Space complexity
Best Naive brute force	$O(n^2)$	O(1)
Divide and conquer	$O(n \log n)$	$O(\log n)$
Kadane's Algorithm	$\mathrm{O}(n)$	O(1)

• Largest sum rectangle in a 2D matrix

Input: An *m* by *n* 2D integer matrix.

Output: The maimum sum of the contiguous *n* submatrix

Worst brute force: $O(m^3n^3)$

Kadane's Algorithm:

https://www.geeksforgeeks.org/maximum-sum-rectangle-in-a-2d-matrix-dp-27/

