

Portas Lógicas

Paulo Ricardo Lisboa de Almeida

Circuito Combinacional

Um circuito combinacional é constituído de portas lógicas que determinam os valores das saídas diretamente a partir dos valores das entradas.

A saída depende exclusivamente da entrada atual.

Not

A	A
0	1
1	0

OR

A	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

AND

A	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

Combinando

Podemos combinar as operações/portas para formar expressões booleanas complexas.

Exemplo: Qual a expressão representada pelas portas a seguir?

Combinando

Podemos combinar as operações/portas para formar expressões booleanas complexas.

Exemplo: Qual a expressão representada pelas portas a seguir?

Múltiplas entradas

Múltiplas entradas

É o mesmo que

NANDs e NORs

Um NAND é um AND seguido de um NOT.

A	В	A.B
0	0	1
0	1	1
1	0	1
1	1	0

NANDs e NORs

Um NAND é um AND seguido de um NOT.

A	В	A.B
0	0	1
0	1	1
1	0	1
1	1	0

Um círculo denota uma negação.

NANDs e NORs

Um NOR é um OR seguido de um NOT.

A	В	A+B
0	0	1
0	1	0
1	0	0
1	1	0

Faça você mesmo

Qual a operação sendo realizada na porta a seguir?

Faça você mesmo

Qual a operação sendo realizada na porta a seguir? $F = \overline{A}.B.C$

XOR

A	В	A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

Faça você mesmo

Sabendo-se que $A \oplus B = \overline{AB} + A\overline{B}$ desenhe um circuito usando portas lógicas usando apenas ANDs, ORs e NOTs para um XOR.

Faça você mesmo

XNOR

А	В	A⊕B
0	0	1
0	1	0
1	0	0
1	1	1

Universalidade de NAND e NOR

Tanto portas NAND quanto NOR são **universais.**

Podemos gerar qualquer outra porta usando só NANDs ou NORs.

Pode não ser o mais eficiente em quantidade de transistores necessários.

NOT com NANDs e NORs

NOT com NANDs e NORs

OR com NANDs e NORs

AND com NANDs e NORs

No Mundo Real

As portas lógicas podem ser encontradas como circuitos integrados pré-fabricados.

No Mundo Real

As portas lógicas podem ser encontradas como circuitos integrados pré-fabricados.

Porta	Exemplo TTL	Exemplo CMOS
NOT	7404	CD4049
AND	7408	CD4081
NAND	7400	CD4012
OR	7432	CD4071
NOR	7402	CD4001

No Mundo Real

As portas lógicas podem ser encontradas como circuitos integrados pré-fabricados.

Porta	Exemplo TTL	Exemplo CMOS
NOT	7404	CD4049
AND	7408	CD4081
NAND	7400	CD4012
OR	7432	CD4071
NOR	7402	CD4001

Faça você mesmo

Faça o circuito com portas lógicas referente a seguinte função booleana:

$$F = \overline{A}.C(\overline{A}.B.D) + \overline{A}.B.\overline{C}.\overline{D} + A.\overline{B}.C$$

Exercícios

1. Qual a expressão booleana representada pelas portas lógicas a seguir?

Exercícios

2. Desenhe o circuito com portas lógicas para as seguintes expressões:

- a) $F = (A + B).(\overline{B} + C)$
- b) F = A + B.C
- c) $F = \overline{A}.B \oplus A.B$
- 3. Considere a lista de exercícios de simplificações booleanas de aula passadas. Desenhe os circuitos para as versões originais e simplificadas de alguns dos exercícios da lista.

Referências

Ronald J. Tocci, Gregory L. Moss, Neal S. Widmer. Sistemas digitais. 10a ed. 2017.

Thomas Floyd. Widmer. Sistemas Digitais: Fundamentos e Aplicações. 2009.

Licença

Esta obra está licenciada com uma Licença <u>Creative Commons Atribuição 4.0 Internacional.</u>

