CZ4041/CE4041: Machine Learning

Lesson 11: Density Estimation

Kelly KE
School of Computer Science and Engineering,
NTU, Singapore

Acknowledgements: some figures are adapted from the lecture notes of Jason J. Corso (SUNY @ Buffalo). Slides are modified from the version prepared by Dr. Sinno Pan.

Density Estimation

- Density estimation aims to estimate an unobservable underlying probability density function based on observed data
- Denote by $\mathcal{D} = \{x_1, x_2, ..., x_N\}$ the set of observed data points, drawn from an unknown p(x),

$$x_i \sim p(x)$$
, for $i = 1, 2, ..., N$

The goal is to estimate the probability density function p(x)

Probability Density Function

Why Density Estimation

Recall Naïve Bayes Classifiers

$$y_i = \arg \max_c P(\mathbf{x}|y=c)P(y=c)$$

$$= \arg \max_c \prod_{i=1}^d P(x_i|y=c)P(y=c)$$

- Other advanced ML topics
 - One-class classification
 - Covariate shift, transfer learning, etc.

Density Estimation Approaches

- Parametric density estimation
 - Assume a form for $p(x; \theta)$, defined up to parameters, θ
 - E.g., Guassian distribution $\mathcal{N}(\mu, \sigma^2)$, $\boldsymbol{\theta} = \{\mu, \sigma^2\}$
 - Estimate θ from the observed data points
 - Maximum Likelihood Estimation
- Nonparametric density estimation

The General Principle

- The observed data points $\mathcal{D} = \{x_1, x_2, ..., x_N\}$ are assumed to be a sample of N random variables independent and identically distributed (i.i.d.)
- <u>Identically distributed</u>: for any $x_i \in \mathcal{D}$, it is sampled from the same probability distribution
- Independent: all the data points $x_i \in \mathcal{D}$ are independent events

Parametric Density Estimation

• Assume that $\mathcal{D} = \{x_1, x_2, ..., x_N\}$ are drawn from some known probability density family, $p(x; \theta)$, defined up to parameters, θ

$$x_i \sim p(x; \boldsymbol{\theta})$$

- To find θ that makes sampling x_i from $p(x; \theta)$ as likely as possible
- Approach: maximum likelihood estimation

Maximum Likelihood Estimation

• Likelihood of parameter θ given sample \mathcal{D} :

$$l(\boldsymbol{\theta}|\mathcal{D}) \triangleq p(\mathcal{D};\boldsymbol{\theta})$$

• As $\mathcal{D} = \{x_1, x_2, ..., x_N\}$ are i.i.d., the above likelihood is the product of the likelihoods of the individual data points

$$l(\boldsymbol{\theta}|\mathcal{D}) \triangleq p(\mathcal{D};\boldsymbol{\theta}) = \prod_{i=1}^{N} p(\boldsymbol{x}_i;\boldsymbol{\theta})$$

• In MLE, we aim to find θ that makes \mathcal{D} the most likely to be drawn from. Mathematically, we aim to search for $\widehat{\theta}$ such that

$$\widehat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} l(\boldsymbol{\theta}|\mathcal{D})$$

MLE (cont.)

• Typically, we maximize the log-likelihood:

$$\mathcal{L}(\boldsymbol{\theta}|\mathcal{D}) \triangleq \ln l(\boldsymbol{\theta}|\mathcal{D})$$

- Why?
 - 1. The $ln(\cdot)$ function converts the product into a sum

$$\ln l(\boldsymbol{\theta}|\mathcal{D}) = \ln p(\mathcal{D};\boldsymbol{\theta}) = \ln \left(\prod_{i=1}^{N} p(\boldsymbol{x}_i;\boldsymbol{\theta}) \right) = \sum_{i=1}^{N} \ln p(\boldsymbol{x}_i;\boldsymbol{\theta})$$

2. The ln(·) function is a strictly increasing function, one can maximize the likelilood without changing the value where it takes its maximum

$$\widehat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} l(\boldsymbol{\theta}|\mathcal{D}) \iff \widehat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \ln l(\boldsymbol{\theta}|\mathcal{D})$$

MLE Illustration

Solution of MLE

• Suppose θ contains p parameters,

$$\boldsymbol{\theta} = [\theta_1 \; \theta_2 \; \dots \; \theta_p]^T$$

• As $\max_{\boldsymbol{\theta}} \ln l(\boldsymbol{\theta}|\mathcal{D})$ is an unconstrained optimization problem, to solve it, we first set to the derivative of $\ln l(\boldsymbol{\theta}|\mathcal{D})$ w.r.t. $\boldsymbol{\theta}$ to be zero

Gradient operator
$$\nabla_{\boldsymbol{\theta}} \ln l(\boldsymbol{\theta}|\mathcal{D}) = \nabla_{\boldsymbol{\theta}} \left(\sum_{i=1}^{N} \ln p(\boldsymbol{x}_{i}|\boldsymbol{\theta}) \right) = \sum_{i=1}^{N} \nabla_{\boldsymbol{\theta}} \ln p(\boldsymbol{x}_{i}|\boldsymbol{\theta}) = \mathbf{0},$$

$$\nabla_{\boldsymbol{\theta}} = \left[\frac{\partial}{\partial \theta_{1}} \frac{\partial}{\partial \theta_{2}} \dots \frac{\partial}{\partial \theta_{p}} \right]^{T}$$

• We then obtain a solution $\hat{\theta}$ by solving the above system of p equations

Univariate Gaussian

• Suppose $\mathcal{D} = \{x_1, x_2, ..., x_N\}$. Each data point x_i is of 1 dimension, and drawn from Guassian distribution with unknown μ and σ^2 :

$$\mathbf{x}_i \sim p(\mathbf{x}; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\left(-\frac{(\mathbf{x}-\mu)^2}{2\sigma^2}\right)}$$

$$\mu = \mathbb{E}[x] = \int p(x; \mu, \sigma^2) x dx$$

$$\sigma^2 = \text{cov}(x) = \mathbb{E}[(x - \mathbb{E}[x])(x - \mathbb{E}[x])^T]$$

Expectation, considering all possible values (infinite)

Univariate Gaussian (cont.)

• The log-likelihood is

$$\ln l(\boldsymbol{\theta}|\mathcal{D}) = \sum_{i=1}^{N} \ln p(x_i; \boldsymbol{\theta})$$

$$p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}$$

$$= \sum_{i=1}^{N} \ln \left(\exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right) \right) - \sum_{i=1}^{N} \ln(\sqrt{2\pi\sigma^2})$$

$$= -\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{2\sigma^2} - \frac{N}{2} \ln(2\pi\sigma^2)$$

$$= -\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{2\sigma^2} - \frac{N}{2} \ln(2\pi) - \frac{N}{2} \ln\sigma^2$$

Univariate Gaussian (cont.)

• The log-likelihood:

$$\ln l(\boldsymbol{\theta}|\mathcal{D}) = -\frac{\sum_{i=1}^{N} (\boldsymbol{x}_i - \boldsymbol{\mu})^2}{2\sigma^2} - \frac{N}{2} \ln(2\pi) - \frac{N}{2} \ln \sigma^2$$

• The derivative of the log-likelihood:

$$\nabla_{\boldsymbol{\theta}} \ln l(\boldsymbol{\theta}|\mathcal{D}) = \sum_{i=1}^{N} \nabla_{\boldsymbol{\theta}} \ln p(\boldsymbol{x}_i;\boldsymbol{\theta}) = \begin{bmatrix} \sum_{i=1}^{N} \nabla_{\boldsymbol{\mu}} \ln p(\boldsymbol{x}_i;\boldsymbol{\theta}) \\ \sum_{i=1}^{N} \nabla_{\sigma^2} \ln p(\boldsymbol{x}_i;\boldsymbol{\theta}) \end{bmatrix} \\
= \begin{bmatrix} \frac{1}{\sigma^2} \sum_{i=1}^{N} (\boldsymbol{x}_i - \boldsymbol{\mu}) \\ \frac{\sum_{i=1}^{N} (\boldsymbol{x}_i - \boldsymbol{\mu})^2}{2(\sigma^2)^2} - \frac{N}{2\sigma^2} \end{bmatrix}$$

Univariate Gaussian (cont.)

• By setting the derivative to be zero:

$$\begin{cases} \frac{1}{\sigma^2} \sum_{i=1}^{N} (x_i - \mu) = 0\\ \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{2(\sigma^2)^2} - \frac{N}{2\sigma^2} = 0 \end{cases}$$

We have

Unbiased estimation
$$\widehat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\widehat{\sigma^2} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \widehat{\mu})^2$$

$$\mathbb{E}[\widehat{\sigma^2}] = \frac{N-1}{N} \widehat{\sigma^2}$$

$$\mathbb{E}[\widehat{\sigma^2}] = \frac{N-1}{N} \widehat{\sigma^2}$$

$$\mathbb{E}[\widehat{\sigma^2}] = \frac{1}{N} \sum_{i=1}^{N} (x_i - \widehat{\mu})^2$$
Biased estimation
$$\mathbb{E}[\widehat{\sigma}] = \frac{N-1}{N} \widehat{\sigma^2}$$

$$\mathbb{E}[\widehat{\sigma^2}] = \frac{N-1}{N} \widehat{\sigma^2}$$

To correct bias

$$\widetilde{\sigma^2} = \frac{N}{N-1} \widehat{\sigma^2}$$

$$= \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \widehat{\mu})^2$$

Multivariate Gaussian

• Suppose $\mathcal{D} = \{x_1, x_2, ..., x_N\}$, and each data point x_i is of d dimensions, and drawn from Guassian distribution with unknown μ and Σ

d-dimensional mean vector

 $d \times d$ covariance matrix

$$\boldsymbol{x}_{i} \sim p(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right)$$

$$|\boldsymbol{\Sigma}|: \text{ the determinant of } \boldsymbol{\Sigma}$$

$$\mu = \mathbb{E}[x] = \int p(x; \mu, \Sigma) x dx$$

$$\Sigma = \text{cov}(x) = \mathbb{E}[(x - \mathbb{E}[x])(x - \mathbb{E}[x])^T]$$

Multivariate Gaussian (cont.)

• The log-likelihood of multivariate Gaussian is

$$\ln l(\boldsymbol{\theta}|\mathcal{D}) = \sum_{i=1}^{N} \ln p(\boldsymbol{x}_i; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{Nd}{2} \ln(2\pi) - \frac{N}{2} \ln|\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{i=1}^{N} (\boldsymbol{x}_i - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu})$$

• The derivative of the log-likelihood w.r.t. μ is

$$\frac{\partial}{\partial \boldsymbol{\mu}} \ln l(\boldsymbol{\theta}|\mathcal{D}) = \sum_{i=1}^{N} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu})$$

• By setting the derivative to zero, we have

$$\widehat{\boldsymbol{\mu}} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i}$$

Unbiased estimation:
$$\mathbb{E}[\widehat{\mu}] = \mu$$

Multivariate Gaussian (cont.)

• By computing the derivative of the log-likelihood w.r.t. Σ (each Σ_{ij} , i.e., the entry of the *i*-th row and the *j*-th column), and setting to be zero, we have

$$\widehat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{x}_i - \widehat{\boldsymbol{\mu}}) (\boldsymbol{x}_i - \widehat{\boldsymbol{\mu}})^T$$

• The above estimation is biased!!!

$$\mathbb{E}\big[\widehat{\boldsymbol{\Sigma}}\big] = \frac{N-1}{N} \boldsymbol{\Sigma}$$

• We can correct the bias by timing $\widehat{\Sigma}$ with $\frac{N}{N-1}$:

$$\widetilde{\Sigma} = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \widehat{\mu})(x_i - \widehat{\mu})^T$$
 Unbiased estimation

Summary: MLE for Multivariate Gaussian

• Suppose $\mathcal{D} = \{x_1, x_2, ..., x_N\}$. Each data point x_i is of d dimensions, and drawn from Guassian distribution with unknown μ and Σ :

$$\boldsymbol{x}_i \sim p(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right)$$

• The unbiased MLE for μ and Σ are

$$\begin{cases}
\widehat{\boldsymbol{\mu}} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_i \\
\widetilde{\boldsymbol{\Sigma}} = \frac{1}{N-1} \sum_{i=1}^{N} (\boldsymbol{x}_i - \widehat{\boldsymbol{\mu}}) (\boldsymbol{x}_i - \widehat{\boldsymbol{\mu}})^T
\end{cases}$$

Note: in this module, when you are asked to estimate the mean vector and the covariate matrix of a sample, use the unbiased estimation

Density Estimation Approaches

- Parametric density estimation
- Nonparametric density estimation
 - Without assuming any forms for the underlying density
 - Assume that similar inputs have similar outputs: if x_i and x_j are similar, then $p(x_i)$ and $p(x_j)$ are similar
 - Approaches
 - Histogram Estimator
 - Naïve Estimator / Parzen Windows / Kernel Estimator
 - *K*-NN Estimator

Non-Parametric Density Estimation

- Assume that $\mathcal{D} = \{x_1, x_2, ..., x_N\}$ are drawn from some unknown probability density p(x)
- To learn the estimator $\hat{p}(x)$ for p(x)
- We first focus on the univariate case, i.e., x_i is 1-dimensional
- Note that the introduced approaches can be generalized to multivariate case easily

Histogram Estimator

- Simply partition x into distinct bins of a fixed width Δ
- Count the number N_t of data points falling into bin t
- Turn this count into a normalized probability density via dividing by the total number of observed data points N and by the width Δ of the bins:

$$p_t = \frac{N_t}{N\Delta}$$
 Why divided by Δ ?

• The model for the density p(x) is constant over the width of each bin: find the bin where x is in (e.g., bin t), then

$$\hat{p}(\mathbf{x}) = \frac{\#\{\mathbf{x}_i \mid \mathbf{x}_i \text{ in the same bin as } \mathbf{x}\}}{N\Delta} = p_t$$

• For a bin t, given a density function, the probability that a data instance falling into the bin t is

$$P_t = \int_{\Delta} p(\mathbf{x}) d\mathbf{x} = p_t(\mathbf{x}) \Delta$$

• On the other hand,

$$P_t = \frac{\#\{\boldsymbol{x}_i \mid \boldsymbol{x}_i \text{ in bin } t\}}{N} = \frac{N_t}{N}$$

• Therefore:

$$p_t(\mathbf{x})\Delta = \frac{N_t}{N} \qquad p_t(\mathbf{x}) = \frac{N_t}{N\Delta}$$

• Note: different bins may have different widths Δ_t in general, but in practice, we use the same width Δ

• Histogram density as a function of bin width Δ

The green curve is the underlying true density from which the data points were drawn

Analysis on Histogram Estimator

- Advantages:
 - Simple to evaluate and simple to use
 - ullet One can throw away $\mathcal D$ once the histogram is computed
 - Can be updated incrementally
- Disadvantages:
 - The estimated density has discontinuities due to the bin edges rather than any property of the underlying density
 - Scales poorly to multivariate cases: we would have m^d bins (hypercubes) if we divided each feature (dimension) in a d-dimensional space into m bins

Naïve Estimator: An Alterative

• In Histogram Estimator, besides Δ , we have to choose an origin x_0 as well, the bins are the intervals defined as

$$[x_0 + m\Delta, x_0 + (m+1)\Delta)$$

0, positive or negative integers

• The Naïve Estimator does not need to set an origin

$$\hat{p}(x) = \frac{\#\{x_i \mid x_i \text{ in the same bin as } x\}}{N\Delta}$$
Given x , use x as a center to create a bin with a length of Δ

$$\hat{p}(x) = \frac{\#\{x_i \mid x_i \text{ in the same bin as } x\}}{N\Delta}$$

$$\frac{\Delta}{2}$$

$$\frac{\Delta}{2}$$

$$x \leftarrow \frac{\Delta}{2}$$

$$x \leftarrow \frac{\Delta}{2}$$

$$x \leftarrow \frac{\Delta}{2}$$

Histogram v.s. Naïve Estimator

Histogram Estimator

$$p(x) = \frac{2}{10 \times \Delta}$$

Count: 2 1 3 1 2 1

Naïve Estimator

$$p(x) = \frac{1}{10 \times \Delta}$$

Naïve Estimator: An Alterative (cont.)

$$\hat{p}(\mathbf{x}) = \frac{\#\{\mathbf{x}_i \mid \mathbf{x} - \frac{\Delta}{2} \le \mathbf{x}_i < \mathbf{x} + \frac{\Delta}{2}\}}{N\Delta}$$

The Naïve Estimator can also be written as

$$\hat{p}(x) = \frac{1}{N\Delta} \sum_{i=1}^{N} w \left(\frac{x - x_i}{\Delta}\right)$$

If x_i is in the bin with width Δ centered at x, then the count is increased by 1

$$u = \frac{x - x_i}{\Delta}$$

$$N\Delta \geq W$$

$$N\Delta = 1$$

$$V = \frac{x - x_i}{\Delta}$$

$$V = \begin{cases} 1 & \text{if } -\frac{1}{2} \leq u < \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$$
Parzen windows

Naïve Estimator

Generalization to Multivariate

- Suppose the observed data points $\mathcal{D} = \{x_1, x_2, ..., x_N\}$ are d-dimensional
- In a d-dimensional space, we define \mathcal{R} is a d-dimensional hypercube with h being the length of each edge. Then the volume of the hypercube is given by

$$V = h^d$$

• The windowing function can be defined as

$$\mathbf{u} = \frac{1}{x - x_i} \quad \mathbf{w}(\mathbf{u}) = \begin{cases} 1 & \text{if } -\frac{1}{2} \le u_j < \frac{1}{2} \text{ for all } j \in \{1, 2, ..., d\} \\ 0 & \text{otherwise} \end{cases}$$
Defines a hypercube of length h

E.g.,
$$d = 2$$

Defines a hypercube of length h centered at x, if x_i falls in the cube, then the count is increased by 1

Generalization to Multivariate (cont.)

- Hence, $w\left(\frac{x-x_i}{h}\right)$ is equal to unity if x_i falls within the hypercube of volume V centered at x, and is zero otherwise
- The density estimator can be written as

$$\hat{p}(x) = \frac{\#\{x_i \mid x_i \text{ in the same hypercube as } x\}}{NV}$$

Parzen window
function can be a
kernel function —
Kernel estimator
(Appendix, optional)

$$\hat{p}(x) = \frac{1}{NV} \sum_{i=1}^{N} w\left(\frac{x - x_i}{h}\right)$$

$$\hat{p}(\mathbf{x}) = \frac{3}{10h^2}$$

K-Nearest Neighbor Estimator

- Recall K_x $p(x) = \frac{\#\{x_i \mid x_i \text{ in the same hypercube as } x\}}{VN}$
- In the previous approaches, V (or Δ for univariate) is fixed for different queries \boldsymbol{x} 's
- The *K*-NN Estimator *adapts* the amount of smoothing to the *local* density of data, and the degree of smoothing is controlled by *K*, the number of neighbors

Consider
$$K$$
 nearest neighbors of x

The volume of the space centered at x that exactly contains K nearest neighbors of x

• Note that the number of nearest neighbors is typically much smaller than the number of training data points, i.e., $K \ll N$

Naïve Estimator v.s. K-NN Estimator

Univariate Case

Naïve Estimator

$$\hat{p}(\mathbf{x}) = \frac{\#\{\mathbf{x}_i \mid \mathbf{x} - \frac{\Delta}{2} \le \mathbf{x}_i < \mathbf{x} + \frac{\Delta}{2}\}}{N\Delta}$$

• Fix Δ , and check how many data points fall in the bin

K-NN Estimator

$$\hat{p}(x) = \frac{K}{N(2d_K(x))}$$
2-NN
$$d_2(x) \times d_2(x)$$

$$\longleftrightarrow$$

$$p(x) = \frac{2}{7 \times (2 \times d_2(x))}$$

• Fix *K*, the number of observed data points to fall in the bin, and compute the bin size

K-Nearest Neighbor Estimator (cont.)

- With a predefined K, for a particular data point x,
 - 1. Compute distance between x and all the observed data, e.g., Euclidean distance $||x x_i||_2$
 - 2. Sort the observed data points based on the distances in ascending order:

$$d_1(x) \le d_2(x) \le \cdots d_j(x) \le \cdots \le d_N(x)$$

 $d_1(x)$ is the distance of x to the nearest observed instance

 $d_j(x)$ is the distance of x to the j-th nearest observed instance

3. The *K*-NN density estimate is

A ball in *d*-dimensional Euclidean space

$$\hat{p}(x) = \frac{K}{NV_{d_K(x)}}$$

The volume of the d-ball of the radius $d_K(x)$ centered at x. And $d_K(x)$ is the distance of x to the K-th nearest observed instance

Look-up table for Volume of an *n*-ball

https://en.wikipedia.org/wiki/Volume of an n-ball

Dimension	Volume of a ball of radius ${\it R}$	Radius of a ball of volume ${\it V}$
0	1	(all 0-balls have volume 1)
1	2R	$\frac{V}{2} = 0.5 \times V$
2	$\pi R^2 pprox 3.142 imes R^2$	$rac{V^{rac{1}{2}}}{\sqrt{\pi}}pprox 0.564 imes V^{rac{1}{2}}$
3	$rac{4\pi}{3}R^3pprox 4.189 imes R^3$	$\left(rac{3V}{4\pi} ight)^{rac{1}{3}}pprox 0.620 imes V^{rac{1}{3}}$
4	$rac{\pi^2}{2}R^4pprox 4.935 imes R^4$	$rac{\left(2V ight)^{rac{1}{4}}}{\sqrt{\pi}}pprox 0.671 imes V^{rac{1}{4}}$
5	$rac{8\pi^2}{15}R^5pprox 5.264 imes R^5$	$\left(rac{15V}{8\pi^2} ight)^{rac{1}{5}}pprox 0.717 imes V^{rac{1}{5}}$
6	$rac{\pi^3}{6}R^6pprox 5.168 imes R^6$	$rac{\left(6V ight)^{rac{1}{6}}}{\sqrt{\pi}}pprox 0.761 imes V^{rac{1}{6}}$
7	$\frac{16\pi^3}{105}R^7\approx 4.725\times R^7$	$\left(rac{105V}{16\pi^3} ight)^{rac{1}{7}}pprox 0.801 imes V^{rac{1}{7}}$
8	$rac{\pi^4}{24}R^8pprox 4.059 imes R^8$	$\frac{(24V)^{\frac{1}{8}}}{\sqrt{\pi}}\approx 0.839\times V^{\frac{1}{8}}$
9	$rac{32\pi^4}{945}R^9pprox 3.299 imes R^9$	$\left(rac{945V}{32\pi^4} ight)^{rac{1}{9}}pprox 0.876 imes V^{rac{1}{9}}$
10	$rac{\pi^5}{120} R^{10} pprox 2.550 imes R^{10}$	$rac{(120V)^{rac{1}{10}}}{\sqrt{\pi}}pprox 0.911 imes V^{rac{1}{10}}$
11	$\frac{64\pi^5}{10395}R^{11}\approx 1.884\times R^{11}$	$\left(rac{10395 V}{64 \pi^5} ight)^{rac{1}{11}} pprox 0.944 imes V^{rac{1}{11}}$
12	$rac{\pi^6}{720} R^{12} pprox 1.335 imes R^{12}$	$\frac{(720V)^{\frac{1}{12}}}{\sqrt{\pi}} \approx 0.976 \times V^{\frac{1}{12}}$
13	$\frac{128\pi^6}{135135}R^{13}\approx 0.911\times R^{13}$	$\left(rac{135135V}{128\pi^6} ight)^{rac{1}{13}}pprox 1.007 imes V^{rac{1}{13}}$
14	$rac{\pi^7}{5040} R^{14} pprox 0.599 imes R^{14}$	$\frac{(5040V)^{\frac{1}{14}}}{\sqrt{\pi}} \approx 1.037 \times V^{\frac{1}{14}}$
15	$rac{256\pi^7}{2027025}R^{15}pprox 0.381 imes R^{15}$	$\left(rac{2027025 V}{256 \pi^7} ight)^{rac{1}{18}} pprox 1.066 imes V^{rac{1}{15}}$
n	<i>V_n(R)</i>	$R_n(V)$

K-NN Estimator

Thank you!

Appendix: Kernel Estimator

- To get a smooth estimate, we use a smooth weight function, *kernel function*, e.g., the Gaussian kernel
- For the univariate case, i.e., each data point is 1-dimensional, the Gaussian kernel is defined as

$$k(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right)$$

• The Kernel Estimator is computed via

$$\hat{p}(x) = \frac{1}{N\Delta} \sum_{i=1}^{N} k\left(\frac{x - x_i}{\Delta}\right)$$

Kernel Estimator (cont.)

• For the multivariate case, i.e., each data point is *d*-dimensional, the Gaussian kernel is defined as

$$k(\mathbf{u}) = \frac{1}{(2\pi)^{d/2}} \exp\left(-\frac{\|\mathbf{u}\|_2^2}{2}\right)$$

The Kernel Estimator is computed via

$$\hat{p}(x) = \frac{1}{NV} \sum_{i=1}^{N} k\left(\frac{x - x_i}{h}\right)$$

Kernel Estimator

Optional

