Home ► My courses ► EEE117-2017S-Tatro ► Exams and Quizzes ► Quiz 10 - Chapter 15

Started on	Wednesday, 26 April 2017, 5:32 PM
State	Finished
Completed on	Wednesday, 26 April 2017, 6:45 PM
Time taken	1 hour 12 mins
Overdue	12 mins 56 secs
Grade	100.00 out of 100.00

Question 1

Correct

Mark 100.00 out of 100.00

Quiz 10c

Given:
$$R_{in} = 10 \text{ k}\Omega \text{ (kilo Ohm)}$$
 $C_{in} = 0.05 \text{ }\mu\text{F (micro F)}$ $R_f = 10 \text{ }k\Omega \text{ (kilo Ohm)}$ $R_{2} = 10 \Omega \text{ (Ohm)}$ $R_{out} = 1 \text{ }k\Omega \text{ (kilo Ohm)}$ $V_{in} = 20 \cos(\omega t) \text{ Volts}$

You can assume the opamp is ideal and has power input rails at +20V and -20V.

In your answers below, report the magnitude as positive and the angle between -180 $\leq \theta \leq 0^{\circ}$.

a) Calculate the phasor voltage across resistor R_{out} when the input voltage frequency ω = zero rad/sec.

b) Calculate the phasor voltage across resistor R_{out} when the input voltage frequency $\omega = 50$ rad/sec.

c) Calculate the phasor voltage across resistor R_{out} when the input voltage frequency $\omega = 1,000$ rad/sec.

d) Calculate the phasor voltage across resistor R_{out} when the input voltage frequency $\omega = 5{,}000$ rad/sec.

Numeric Answer

a)
$$V_{Rout}$$
 (w = 0) = 0 at angle -90° V

b)
$$V_{Rout}$$
 (w = 50) = 0.4998 at angle -91.43° V

c)
$$V_{Rout}$$
 (w = 1,000) = 8.9443 at angle -116.57° V

d)
$$V_{Rout}$$
 (w = 5,000) = 18.5695 at angle -158.20° V

Correct

Marks for this submission: 100.00/100.00.