第九章 若当标准形

一、 求若当标准形 J 及可逆阵 P 使得 $P^{-1}AP = J$

1. J的计算

(1) 求 A 的特征值及代数重数

设 $f_A(\lambda)$ =| $\lambda I - A$ |= $\prod_{i=1}^s (\lambda - \lambda_i)^{n_i}$,则 $\lambda_1, \lambda_2, \cdots, \lambda_s$ 为 A 的所有不同的特性值,代数重数分别为 n_1, n_2, \cdots, n_s .

(2) 求特征值 λ ,对应的若当块的总块数 t_i .

 $t_i = n - r(A - \lambda_i I) .$

(3) 求特征值 λ 对应的t, 个若当块中每一块的阶数.

【注:由于 d_i 的计算量较大,常结合下面的公式来计算:

阶数为 j 的若当块的个数为 $d_j = r((A - \lambda_i I)^{j+1}) + r((A - \lambda_i I)^{j-1}) - 2r((A - \lambda_i I)^{j})$ ($j \ge 1$).

•特征值 λ ,对应的t,个若当块的阶数之和等于n,

例如:设 $n_i=3$, $t_i=2$,则两个块的阶数分别为 2,1;设 $n_i=4$, $t_i=2$,则两个块的阶数分别为 3,1 或者 2,2。再计算 d_1 ,若 $d_1=1$ 则两个块为 3,1.若 $d_1=0$ 则两个块为 2,2;设 $n_i=5$, $t_i=2$,则两个块的阶数分别为 4,1 或者 3,2。再计算 d_1 ,若 $d_1=1$ 则两个块为 4,1.若 $d_1=0$ 则两个块为 3,2。】

(4) 写出J

J 为准对角,对角块依次为特征值 λ_1 的 t_1 个若当块,特征值 λ_2 的 t_2 个若当块,…,特征值 λ_s 的 t_s 个若当块。将每个特征值的若当块从高到低排列。

2. P的计算

(1) 对每个特征值 λ_i 设出 U_{λ_i} 的基表。

 U_{λ_i} 的基表含 t_i 列,每列的长度分别等于特征值 λ_i 的 t_i 个若当块的阶数(已由 **1**. J **的计算** 得到)

 $x_1^{(1)}$ $x_1^{(2)}$). 例如:特征值 λ_i 的 t_i = 2 个若当块的阶数分别为 3, 2,则 U_{λ_i} 的基表可设为: $x_2^{(1)}$ $x_2^{(2)}$ $x_3^{(1)}$

(*)。

(2) 求出基表中的向量.

以(1)中(*)为例讨论。

法一:正求法。

基表的第一行为 $(A-\lambda_i I)x=0$ 的一个基础解系。先求 $(A-\lambda_i I)x=0$ 的一个基础解系 η_1,η_2 . 令 $x_1^{(1)}=k_1\eta_1+k_2\eta_2$. 由于 $(A-\lambda_i I)x_2^{(1)}=x_1^{(1)}$,故线性方程组 $(A-\lambda_i I)x=x_1^{(1)}$ 的系数矩阵和增广矩阵有相同的秩,得到 k_1,k_2 满足一些等式(1),并求出一个带参数 k_1,k_2 的解 $x_2^{(1)}$. 又 $(A-\lambda_i I)x_3^{(1)}=x_2^{(1)}$,故线性方程组 $(A-\lambda_i I)x=x_2^{(1)}$ 的系数矩阵和增广矩阵有相同的秩,得到 k_1,k_2 满足一些等式(2)。最后求出具体的 k_1,k_2 同时满足等式(1)和(2),并代入 $x_1^{(1)}=k_1\eta_1+k_2\eta_2$ 和 $x_2^{(1)}$ 中,同时求出 $x_3^{(1)}$,填入基表(*)的第一列。再求基表的第二列,取(1)0,(1)1,(1)2,求得一个解(1)3,并填入基表的第二列。

【注:如果 U_{λ_i} 的基表为矩形,即每列的长度都相等,例如 $x_1^{(1)}$ $x_1^{(2)}$ 为矩形。则第一行中的向量可以为 $(A-\lambda_i I)x=0$ 的任意一个基础解系,也就是说任取 $(A-\lambda_i I)x=0$ 的一个基础解系填入基表的第一行都可以求出整个基表,不需要使用参数法。如果 U_{λ} 的基表不为矩

 $x_1^{(1)}$ $x_1^{(2)}$ 形,即列的长度不全相等,例如 $x_2^{(1)}$ $x_2^{(2)}$ (*)。必须采用法一中参数法求解基表。】 $x_3^{(1)}$

法二: 逆求法。

由于基表的第一列满足 $(A-\lambda_i I)x_3^{(1)}=x_2^{(1)}, (A-\lambda_i I)x_2^{(1)}=x_1^{(1)}, (A-\lambda_i I)x_1^{(1)}=0$,所以 $(A-\lambda_i I)x_3^{(1)}=x_2^{(1)}, (A-\lambda_i I)^2x_3^{(1)}=x_1^{(1)}, (A-\lambda_i I)^3x_3^{(1)}=0$,如果能先求出 $x_3^{(1)}$,自动得 到 $x_2^{(1)}, x_1^{(1)}$ 。先求解 $(A-\lambda_i I)^3x=0$,得到基础解系含 5 个向量 $\eta_1, \eta_2, \cdots, \eta_5$,其中必有向量,设为 η_1 ,使得 $(A-\lambda_i I)^2\eta_1 \neq 0$,则令 $x_3^{(1)}=\eta_1, x_2^{(1)}=(A-\lambda_i I)\eta_1, x_1^{(1)}=(A-\lambda_i I)^2\eta_1$,

填入基表的第一列。再求 $(A-\lambda_i I)^2 x=0$ 的基础解系,含 4 个向量 ξ_1,ξ_2,ξ_3,ξ_4 ,其中有一个 向量 ,设 ξ_1 ,使 得 $(A-\lambda_i I)\xi_1 \neq 0$,且 $(A-\lambda_i I)\xi_1$ 与 $x_1^{(1)}$ 线性无关,记 $x_2^{(2)}=\xi_1,x_1^{(2)}=(A-\lambda_i I)\xi_1$,并填入基表的第二列。

(3) 写出 P.

依次将 $U_{\lambda_1},U_{\lambda_2},\cdots,U_{\lambda_s}$ 基表中的向量从上到下,从左到右排成一个矩阵,该矩阵即为所求的P.

【总结:当 U_{λ_i} 的基表是矩形时,正求法和逆求法都可以;当 U_{λ_i} 的基表不是矩形时, 逆求法简单。如果只想掌握一种方法的话,选逆求法。

怎样判断自己求出来的 U_{λ_i} 基表是否正确?只要满足两条就可以: 1. 基表的第一行为 $(A-\lambda_i I)x=0$ 的一个基础解系; 2. 每一列中后一个向量用 $A-\lambda_i I$ 左乘变成前一个向量。】

例 1: 设
$$A = \begin{bmatrix} 1 & 2 & 2 & & \\ 2 & 1 & 2 & & \\ 2 & 2 & 1 & & \\ & & & 5 & \\ & & & 2 & 5 \end{bmatrix}$$
, 求若当标准形 J 及可逆阵 P 使得 $P^{-1}AP = J$ 。

解:一、求J.

(1) 求 A 的特征值及代数重数。

$$f_A(\lambda) = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 5)^3$$
, $\text{th } \lambda_1 = -1, n_1 = 2$; $\lambda_2 = 5, n_1 = 3$.

(2) 求特征值 λ , λ ,对应若当块的总块数 t_1 , t_2 .

$$t_1 = 5 - r(A+I) = 5 - 3 = 2$$
 o $t_2 = 5 - r(A-5I) = 5 - 3 = 2$.

(3) 分别求特征值 礼, 礼, 对应若当块中每一块的阶数。

特征值 λ 有 2 个若当块,阶数之和等于 2 ,所以阶数分别为 1, 1.

特征值 λ_2 有 2 个若当块,阶数之和等于 3,所以阶数分别为 2,1.

(4) 写出J.

$$J = \begin{bmatrix} -1 & & & & \\ & -1 & & & \\ & & 5 & 1 & \\ & & & 5 & \\ & & & & 5 \end{bmatrix}.$$

- 二、求可逆阵P.
- (1) 分别设出 U_{λ_1} 和 U_{λ_2} 的基表。

(2) 求出基表中的向量.

先求 U_{λ} 的基表。

求出 (A+I)x=0 的一个基础解系 $\eta_1=(1,-1,0,0,0)^T,\eta_2=(1,0,-1,0,0)^T$ 。由于基表是矩形的,所以可以令 $x_1^{(1)}=\eta_1,x_1^{(2)}=\eta_2$,并填入表中。

再求 U_{λ} 的基表。

法一: 正求法。

先求 (A-5I)x=0 的一个基础解系 $\eta_3=(0,0,0,0,1)^T$, $\eta_4=(1,1,1,0,0)^T$ 。由于 U_{λ_2} 的基表不是矩形,用参数法。

令 $x_1^{(3)} = k_1 \eta_3 + k_2 \eta_4$, 因为 $(A - 5I)x = x_1^{(3)}$ 有解,系数矩阵与增广矩阵的秩相等。可以取 $k_1 = 1, k_2 = 0$ 。 代入 $x_1^{(3)} = k_1 \eta_3 + k_2 \eta_4$, 得到 $x_1^{(3)} = \eta_3$, 并求解 $(A - 5I)x = x_1^{(3)}$ 得到解 $x_2^{(3)} = (0,0,0,\frac{1}{2},0)^T$, 填入基表中的第一列。再取 $x_1^{(4)} = \eta_4$ 。 求得 U_{λ_2} 的基表。 法二、逆求法(基表不为矩形,推荐此法)。

求 $(A-5I)^2 x = 0$ 的一个基础解系 $\eta_1 = (0,-1,1,0,0)^T$, $\eta_2 = (0,0,0,1,0)^T$,

 $\eta_3 = (0,0,0,0,1)^T$,其中 η_2 满足 $(A-5I)\eta_2 \neq 0$ 。令 $x_2^{(3)} = \eta_2$, $x_1^{(3)} = (A-5I)x_2^{(3)}$ $= (0,0,0,0,2)^T$,填入基表第一列。

再求 (A-5I)x=0 的一个基础解系 $\xi_1=(0,0,0,0,1)^T$, $\xi_2=(1,1,1,0,0)^T$,显然 ξ_2 与 $x_1^{(3)}$ 线性无 关,令 $x_1^{(4)}=\xi_2$,填入表中第二列。

(3) 写出 P.

 U_{λ_0} 的基表通过法一和法二得到的不一样,所以最终的P也不一样。

通过法一得到
$$P = (x_1^{(1)}, x_1^{(2)}, x_1^{(3)}, x_2^{(3)}, x_1^{(4)}) = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

通过法二得到
$$P = (x_1^{(1)}, x_1^{(2)}, x_1^{(3)}, x_2^{(3)}, x_1^{(4)}) = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 0 & 0 \end{pmatrix}$$

例 2: 设
$$A = \begin{pmatrix} 1 & -3 & 0 & 3 \\ -2 & -6 & 0 & 13 \\ 0 & -3 & 1 & 3 \\ -1 & -4 & 0 & 8 \end{pmatrix}$$
, 求若当标准形 J 及可逆阵 P 使得 $P^{-1}AP = J$ 。

解:一、求J.

(1) 求 A 的特征值及代数重数。

$$f_A(\lambda) = |\lambda I - A| = (\lambda - 1)^4$$
, $\text{th } \lambda_1 = 1, n_1 = 4$

(2) 求特征值 $\lambda_1 = 1$ 对应若当块的总块数 t_1 .

$$t_1 = 5 - r(A - I) = 5 - 3 = 2$$
.

(3) 求特征值 $\lambda = 1$ 对应若当块中每一块的阶数。

特征值 λ 有 2 个若当块,阶数之和等于 4,所以两个若当块阶数可能为 3,1 或者 2,2.

阶数为 1 的若当块的个数 $d_1 = 4 + r((A-I)^2) - 2r(A-I) = 1$,所以两个若当块阶数为 3,1

(4) 写出
$$oldsymbol{J}$$
.

$$J = \begin{bmatrix} 1 & 1 & & & \\ & 1 & 1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix}$$
.

二、求P.

(1) 设出 U_{λ} 的基表。

$$x_1^{(1)}$$
 $x_1^{(2)}$ $x_2^{(1)}$ $x_3^{(1)}$ U_{λ}

(2) 求出 U_{λ} 的基表中的向量。

法一: 正求法。

先求 (A-I)x=0 的一个基础解系 $\eta_1=(0,0,1,0)^T$, $\eta_2=(3,1,0,1)^T$ 。由于基表不是矩形,用参数法,令 $x_1^{(1)}=k_1\eta_1+k_2\eta_2$ 。由于 $(A-I)x=x_1^{(1)}$ 有解,所以系数矩阵与增广矩阵的秩相等, k_1,k_2 满足等式 $k_1-3k_2=0$ (1),且求得一个特解 $x_2^{(1)}=(3k_2,-k_2,3,0)^T$ 。由于 $(A-I)x=x_2^{(1)}$ 有解,所以系数矩阵与增广矩阵的秩相等, k_1,k_2 满足等式 $3-3k_2=0$ (2)。 求出具体的 $k_1=3,k_2=1$ 同时满足等式(1)和(2),并最终确定 $x_1^{(1)}=(3,1,3,1)^T$, $x_2^{(1)}=(3,-1,3,0)^T$,同时通过 $(A-I)x=x_2^{(1)}$,求得 $x_3^{(1)}=(4,-1,0,0)^T$ 。取 $x_1^{(2)}=\eta_1=(0,0,1,0)^T$ 。

法二: 逆求法(基表不为矩形,推荐此法)。

求解方程组 $(A-I)^3x = 0$ 的基础解系 $\eta_1 = (1,0,0,0)^T$, $\eta_2 = (0,1,0,0)^T$, $\eta_3 = (0,0,1,0)^T$, $\eta_4 = (0,0,0,1)^T$ 。由于 $(A-I)^2\eta_1 \neq 0$,可令 $x_3^{(1)} = \eta_1 = (1,0,0,0)^T$,

$$\begin{split} x_2^{(1)} &= (A-I)x_3^{(1)} = (0,-2,0,-1)^T \;, \;\; x_1^{(1)} = (A-I)^2 x_3^{(1)} = (3,1,3,1)^T \; \text{。由于} \; (A-I)x = 0 \; \text{的基} \end{split}$$
 础解系为 $\eta_1 = (0,0,1,0)^T \;, \; \eta_2 = (3,1,0,1)^T \;, \;\; \diamondsuit \; x_1^{(2)} = \eta_1 = (0,0,1,0)^T \;. \end{split}$

(4) 写出 *P*.

曲法一得到
$$P = (x_1^{(1)}, x_2^{(1)}, x_3^{(1)}, x_1^{(2)}) = \begin{pmatrix} 3 & 3 & 4 & 0 \\ 1 & -1 & -1 & 0 \\ 3 & 3 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

由法二得到 $P = (x_1^{(1)}, x_2^{(1)}, x_3^{(1)}, x_1^{(2)}) = \begin{pmatrix} 3 & 0 & 1 & 0 \\ 1 & -2 & 0 & 0 \\ 3 & 0 & 0 & 1 \\ 1 & -1 & 0 & 0 \end{pmatrix}.$

例 3: 设
$$A = \begin{pmatrix} 3 & 0 & 2 & -1 \\ 0 & 3 & -2 & 2 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$
, 求若当标准形 J 及可逆阵 P 使得 $P^{-1}AP = J$ 。

解:一、求J.

(1) 求 A 的特征值及代数重数。

$$f_A(\lambda) = |\lambda I - A| = (\lambda - 3)^4$$
, $\text{id} \lambda_1 = 3, n_1 = 4$.

(2) 求特征值 $\lambda = 3$ 对应若当块的总块数 t_1 .

$$t_1 = 4 - r(A - I) = 4 - 2 = 2$$
.

(3) 求特征值 $\lambda = 3$ 对应若当块中每一块的阶数。

特征值 λ 有 2 个若当块,阶数之和等于 4 ,所以两个若当块阶数可能为 3 ,1 或者 2 ,2 . 阶数为 1 的若当块的个数 $d_1=4+r((A-3I)^2)-2r(A-3I)=0$,所以两个若当块阶数为 2 ,

(4) 写出 $oldsymbol{J}$.

$$J = \begin{bmatrix} 3 & 1 & & \\ & 3 & & \\ & & 3 & 1 \\ & & & 3 \end{bmatrix}.$$

二、求P.

(1) 设出 U_{λ} 的基表。

$$x_1^{(1)}$$
 $x_1^{(2)}$ $x_2^{(2)}$ $x_2^{(2)}$

 $U_{\lambda_{\mathsf{l}}}$

(2) 求出 U_{λ} 的基表中的向量。

法一: 正求法。

先求 (A-3I)x=0 的一个基础解系 $\eta_1=(1,0,0,0)^T$, $\eta_2=(0,1,0,0)^T$ 。由于基表为矩形,不需要用参数法,直接令 $x_1^{(1)}=\eta_1$, $x_1^{(2)}=\eta_2$ 。求解 $(A-I)x=x_1^{(1)}$,得到一个解 $x_2^{(1)}=(0,0,1,1)^T$ 。求解 $(A-I)x=x_1^{(2)}$,得到一个解 $x_2^{(2)}=(0,0,\frac{1}{2},1)^T$ 。法二:逆求法。

先求解 $(A-3I)^2x=0$ 。由于 $J^2=0$, $(A-3I)^2=0$,所以 $(A-3I)^2x=0$ 的基础解系为 $\eta_1 = (1,0,0,0)^T$, $\eta_2 = (0,1,0,0)^T$, $\eta_3 = (0,0,1,0)^T$, $\eta_4 = (0,0,0,1)^T$ $\oplus \oplus \oplus (A-3I)\eta_3 \neq 0$, 可以令 $x_2^{(1)} = \eta_3 = (0,0,1,0)^T$, $x_1^{(1)} = (A-3I)\eta_3 = (2,-2,0,0)^T$ 。 同时 $(A-3I)\eta_4 \neq 0$,且 $(A-3I)\eta_4 = (-1,2,0,0)^T$ 与 $x_1^{(1)} = (A-3I)\eta_3 = (2,-2,0,0)^T$ 线性无关,可以令 $x_2^{(2)} = \eta_A = (0,0,0,1)^T$, $x_1^{(2)} = (A-3I)\eta_A = (-1,2,0,0)^T$ (3) 写出 P.

曲法一得到
$$P = (x_1^{(1)}, x_2^{(1)}, x_1^{(2)}, x_2^{(2)}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 & 1 \end{pmatrix}$$
.
由法二得到 $P = (x_1^{(1)}, x_2^{(1)}, x_1^{(2)}, x_1^{(2)}, x_2^{(2)}) = \begin{pmatrix} 2 & 0 & -1 & 0 \\ -2 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

曲法二得到
$$P = (x_1^{(1)}, x_2^{(1)}, x_1^{(2)}, x_2^{(2)}) =$$

$$\begin{pmatrix} 2 & 0 & -1 & 0 \\ -2 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

二、求不变子空间

设V为 \mathbb{C} 上的线性空间, $\sigma \in L(V)$ 。取W为 σ 的一个不变子空间,则 $\sigma|_{W}$ 为W的线性变 换,设 $\lambda,\lambda,\dots,\lambda$,为 $\sigma|_{w}$ 的所有不同的特征值,它们也是 σ 的特征值,不妨假设 σ 的所有 不同的特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_r, \lambda_{r+1}, \cdots, \lambda_s$ 。于是W和V关于线性变换 $\sigma|_W$ 和 σ 分别有根子 空间的分解 $W=U'_{\lambda_1}\oplus U'_{\lambda_2}\oplus \cdots \oplus U'_{\lambda_r}$, $V=U_{\lambda_1}\oplus U_{\lambda_2}\oplus \cdots \oplus U_{\lambda_r}\oplus \cdots \oplus U_{\lambda_r}$, U'_{λ_r} 为 σ 不变的子空间,且 $U'_{\lambda_i} \subseteq U_{\lambda_i}$ ($1 \le i \le r$)。所以要求出所有的不变子空间W,只需要求出 根子空间 U_{λ_i} 的所有的不变子空间,然后分别在 $U_{\lambda_i},U_{\lambda_i},\cdots,U_{\lambda_i}$ 中取一个不变子空间做直和 就给出所有的不变子空间W.

以下假设 σ 的每一个特征值 λ ,只有一个若当块。先求一组基使得 σ 在上述基下的矩阵为

$$J=diag(N_1,N_2,\cdots,N_s)$$
,其中 $N_i=egin{pmatrix} \lambda_i & 1 & & & & \\ & \lambda_i & \ddots & & & \\ & & \ddots & 1 & & \\ & & & \lambda_i \end{pmatrix}_{t_i imes t_i}$. 不妨设 σ 在基

 $\alpha_{11},\cdots,\alpha_{1t_1},\alpha_{21},\cdots,\alpha_{2t_2},\cdots,\alpha_{s1},\cdots,\alpha_{st_s}$ 下的矩阵为 $J=diag(N_1,N_2,\cdots,N_s)$. 因此 U_{λ_i} 的

基为
$$oldsymbol{lpha}_{i1}, oldsymbol{lpha}_{i2}, \cdots, oldsymbol{lpha}_{ii_i}$$
,且 $oldsymbol{\sigma}|_{U_{\lambda_i}}$ 在基 $oldsymbol{lpha}_{i1}, oldsymbol{lpha}_{i2}, \cdots, oldsymbol{lpha}_{it_i}$ 下的矩阵为 $oldsymbol{N}_i = egin{pmatrix} \lambda_i & 1 & & & & \\ & \lambda_i & \ddots & & \\ & & \ddots & 1 & \\ & & & \lambda_i \end{pmatrix}_{t_i imes t_i}$.

容易验证这时 U_{λ_i} 的所有不变子空间为 $\{\theta\}$, $L(\alpha_{i1})$, $L(\alpha_{i1},\alpha_{i2})$,…, $L(\alpha_{i1},\alpha_{i2},\dots,\alpha_{it_i})$ 。

例 4: 设 σ 在V 的基 $\alpha_1,\alpha_2,\alpha_3$ 下的矩阵为 $A=\begin{pmatrix}0&1\\-1&2\\&&2\end{pmatrix}$,求 σ 的所有不变子空间.

解: 先求可逆矩阵P使得 $P^{-1}AP$ 为若当标准形J。

$$A$$
的所有特征值为 λ_1 =1, n_1 = 2; λ_2 =2, n_2 = 1。于是 J = $\begin{pmatrix} 1 & 1 \\ & 1 \\ & 2 \end{pmatrix}$ 。可求得

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 使得 $P^{-1}AP = J$ 。

令 $(\beta_1,\beta_2,\beta_3)=(\alpha_1,\alpha_2,\alpha_3)P=(\alpha_1+\alpha_2,\alpha_2,\alpha_3)$,则 σ 在基 β_1,β_2,β_3 下的矩阵为

$$P^{-1}AP=J=egin{pmatrix}1&1&&\\&1&\\&&2\end{pmatrix}$$
。于是 $U_{\lambda_{\!\scriptscriptstyle 1}}$ 的基为 $lpha_{\!\scriptscriptstyle 1}+lpha_{\!\scriptscriptstyle 2},lpha_{\!\scriptscriptstyle 2}$,且 $\sigma|_{U_{\lambda_{\!\scriptscriptstyle 1}}}$ 在基 $lpha_{\!\scriptscriptstyle 1}+lpha_{\!\scriptscriptstyle 2},lpha_{\!\scriptscriptstyle 2}$ 下的矩阵

为
$$\begin{pmatrix} 1 & 1 \\ & 1 \end{pmatrix}$$
,所以 U_{λ_1} 的所有不变子空间为 $\{\theta\}$, $L(\alpha_1+\alpha_2)$, $L(\alpha_1+\alpha_2,\alpha_2)$. U_{λ_2} 的基为 α_3 .

 U_{λ_2} 的所有不变子空间为 $\{\theta\}$, $L(\alpha_3)$. 分别在 U_{λ_1} 和 U_{λ_2} 中取一个不变子空间做直和,就给出所有的不变子空间: $\{\theta\}$, $L(\alpha_3)$, $L(\alpha_1+\alpha_2)$, $L(\alpha_1+\alpha_2)\oplus L(\alpha_3)=L(\alpha_1+\alpha_2,\alpha_3)$, $L(\alpha_1+\alpha_2,\alpha_3)$, $L(\alpha_1+\alpha_2,\alpha_3)$, $L(\alpha_1+\alpha_2,\alpha_3)$ 。

三、极小多项式的性质及计算

• 设 $A \in M_n(C)$ 的所有不同的特征值分别为 $\lambda_1, \lambda_2, \dots, \lambda_s$,且特征值 λ_i 对应的若当块的最高阶数为 k_i ($1 \le i \le s$)。于是 A 的极小多项式为 $m_A(\lambda) = (\lambda - \lambda_1)^{k_1} (\lambda - \lambda_2)^{k_2} \dots (\lambda - \lambda_s)^{k_s}$.

• 设 $f(\lambda)$ 为 $A \in M_n(C)$ 化零多项式,则 $m_A(\lambda) \mid f(\lambda)$.

• 设 $A \in M_n(C)$ 可以相似对角化当且仅当A的极小多项式 $m_A(\lambda)$ 无重根.

例 5: 设 $A \in M_n(C)$ 满足(A+I)(A+2I)=0,证明A可以相似对角化。

证明: $f(\lambda) = (\lambda + 1)(\lambda + 2)$ 为 A 的化零多项式,则 $m_A(\lambda) | (\lambda + 1)(\lambda + 2)$ 。所以 A 的极小多项式没有重根,从而 A 可以相似对角化。

设 $A \in M_n(C)$,存在可逆矩阵 P 及若当标准型 J 使得 $P^{-1}AP = J$,于是 $A = PJP^{-1}$ 。从而

$$A^m = PJ^mP^{-1}$$
。 令 $J = diag(N_1, N_2, \cdots, N_s)$,其中 $N_i = \begin{pmatrix} \lambda_i & 1 & & & \\ & \lambda_i & \ddots & & \\ & & \ddots & 1 & \\ & & & \lambda_i \end{pmatrix}$ 。则

$$J^{m} = diag(N_{1}^{m}, N_{2}^{m}, \dots, N_{s}^{m}) \circ N_{i}^{m} = \begin{pmatrix} \lambda_{i}^{m} & C_{m}^{1} \lambda_{i}^{m-1} & C_{m}^{2} \lambda_{i}^{m-2} & \cdots \\ & \lambda_{i}^{m} & C_{m}^{1} \lambda_{i}^{m-1} & \ddots & \vdots \\ & & \ddots & \ddots & C_{m}^{2} \lambda_{i}^{m-2} \\ & & \ddots & C_{m}^{1} \lambda_{i}^{m-1} \\ & & & \lambda_{i}^{m} \end{pmatrix}$$

例 6: 设
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}$$
, 求 A^n 。

解: 可求得
$$P=\begin{pmatrix}1&0\\1&1\end{pmatrix}$$
,及 $J=\begin{pmatrix}1&1\\1&1\end{pmatrix}$ 使得 $P^{-1}AP=J$ 。于是 $A=PJP^{-1}$,

$$A^{n} = PJ^{n}P^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{n} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1-n & n \\ -n & n+1 \end{pmatrix}.$$