Part III-B: Artificial Intelligence Outline

Lecture by 熊庆宇 Note by THF

2024年9月23日

目录

1	人工智能发展历程	2							
2	人工智能的知识表示	4							
	2.1 概述	4							
	2.2 谓词逻辑	5							
	2.3 命题逻辑	5							
人	工智能大事件								
	1. GPT(ChatGPT), 2022.11								
	2. ERINE(文心一言), 2023.3								
	3. GPT4(多模态, Sora), 2024.2								
No	otation. 历史上人工智能与人类对弈:								
	1. 1997.5, IBM DeepBlue vs 卡斯帕罗夫(国际象棋)								
	2. 2016.3, Google Alpha Go vs Lee & Ke								
	3. 2019.7, Facebook Pluribus vs 德州扑克世界冠军								

算法案例化:

人心 路 数 适 蚁 性 别 就 就 在 食 测 电影 分 类

课程要求

32 学时, 16 节课

教材: 人工智能导论

课后作业: 选修《人工智能导论》的动因、定位、设想,800-1000字

Notation. 课程有闭卷考试 (60%), 9-10 次作业和 2 次报告 (40%) 考试基于课上内容

1 人工智能发展历程

人工智能发展开始: 1956 年

孕育期: 1956 年前

Notation. 1943 年麦克洛奇和皮兹建成第一个神经网络模型(MP 模型) 1949 年提出了 Hebb 规则(激发函数规则)

神经网络的一些标准:神经元层数、个数,激发函数,连接方式(全连接/非全连接),**权重**,.....

第一次低谷期: 1957-1973

形成期: 1974-1980

黄金期: 1980-1987

专家系统出现: MYCIN,PROSPECTOR,XCON 等

AI 被引入市场: Rumelhart 提出 BP (反向传播) 算法,实现多层神经网络学习

第二次低谷期: 1987-1993

专家系统难以使用、升级、维护, AI 未能完成既定目标

平稳期: 1993-2011

蓬勃期: 2012 至今

小结

Notation. 图灵测试:在封闭的房间中,一个人分别对两个对象询问并获得答案,两个对象分别是 AI 和人类,判断 AI 是否具备人类的特征

Notation. 人工智能三大学派:

- 1. 符号学派
- 2. 连接主义
- 3. 行为主义

Notation. 行为主义的代表性成果:蚁群算法、粒子群算法

比较三种主流方法:

表 1: 学习模式									
符号主义	连接主义	行为主义							
与人类逻辑类似	直接从数据中学习	从经验中持续学习							

第一章作业: 1-19 题

2 人工智能的知识表示

2.1 概述

研究人工智能的目的: 使其得以模拟、延伸、扩展,

Notation. 人是一个物理符号系统

为使人工智能达到相应的功能:将知识破译、重新编码、建立相应的符号系统

Notation. 知识的层次:

现象 \Longrightarrow 数据 \Longrightarrow 信息 \Longrightarrow 知识 \Longrightarrow 智慧

数据:一些无关联的现象

数据 → 信息: 组织、分析

信息 → 知识:解释、评价

知识→智慧:理解、归纳

Example. 数据:下雨了,温度下降至 15 度

信息: 地面水蒸发, 遇冷暖峰过境

知识:理解下雨、蒸发、空气状况、地形、风向等及其中的作用机理

智慧: 模拟天气变化, 人工天气可控化

Notation. 知识的特性:

- 1. 相对正确性
- 2. 不确定性
- 3. 可表示性和可利用性

Question. 如何将人类知识形式化/模型化

对知识的一种描述或约定: 转化为机器可接受描述的形式

2.2 谓词逻辑

Notation. 亚里士多德提出了"三段论"演绎推理方法

莱布尼茨在 17 世纪提出二进制, 乔治贝尔提出用简单符号表示逻辑命题, 产生了"贝尔代数": 适于机器使用的数学规律

概念理论由概念名、概念内涵和概念外延组成

Notation. 命题:一个非真即假的陈述句

对于 R: x < 8 由于 R 的真假依赖于 x 的取值,因此无法判断

2.3 命题逻辑

Notation. 蕴含连结词: "若 $p \cup q$ " 称为 $p \mid q$ 的蕴含式: $p \rightarrow q$

表 2: 命题真值表

p	q	$\neg p$	$p \wedge q$	$p\vee q$	$p \Rightarrow q$	$p \Leftrightarrow q$		
F	F	Τ	F	F	${ m T}$	Τ		
F	Τ	Τ	F	T	Τ	\mathbf{F}		
Τ	F	F	F	Τ	F	\mathbf{F}		
Τ	Τ	F	Τ	Τ	Τ	Τ		