

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

D 3a Anti-E1 levels in patients with COMPLETE response to IFN months after start of treatment Fig. 7 SERIES 2 S N/S

Anti-E1 levels in INCOMPLETE responders to IFN treatment

months after start of treatment Fig. 8

Anti-E2 levels in NON-RESPONDERS to IFN treatment

weeks after start of treatment Fig. 9

Fig.10

Anti-E2 levels in INCOMPLETE responders to IFN treatment

■ D 3a CR → E 3a CR Anti-E2 levels in COMPLETE responders to IFN treatment 20 F : finish of treatment 45 40 months after start of treatment Fig.12 SERIES 2 15 10 2 N/S 2 7 က Ç

Anti-E1 (epitope 1) levels in NON-RESPONDERS to IFN treatment

Fig.15

Anti-E1 (epitope 1) levels in RESPONDERS to IFN treatment

Fig.16

₹ N 3a * cr × Q 3a Anti-E1 (epitope 2) levels in NON-RESPONDERS to IFN treatment * 80 55 60 65 70 75 10 15 20 25 30 35 40 45 50 weeks after start of treatment SERIES 1 Fig.17 FN S 0 ç S/N 3

Anti-E1 (epitope 2) levels in RESPONDERS to IFN treatment

Fig. 19

Fig. 20

пр

Fig. 21A

- 5' GGCATGCAAGCTTAATTAATT3' (SEQ ID NO 1)
 3'ACGTCCGTACGTTCGAATTAATTAATCGA5' (SEQ ID NO 94)

SEC ID NO 3 (HCC:9A)

SEQ ID NO 5 (HCCI10AL

Fig. 21B

SEQ ID NO 7 (HCCl11A)

SEQ ID NO 9 (HCCI12A)

SEQ ID NO 11 (HCCI13A)

Fig. 21C

SEQ ID NO 13 (HCC:17A)

SEQ ID NO 15 (HCPr51)
ATGCCCGGTTGCTCTTTCTCTATCTT

SEQ ID NO 16 (HCPr52)
ATGTTGGGTAAGGTCATCGATACCCT

SEQ ID NO 17 (HCPrE3)
CTATTAGGACCAGTTCATCATCATATCCCA

SEQ ID NO 18 (HCPr54)
CTATTACCAGTTCATCATCATATCCCA

SEQ ID NO 19 (HCPr107)
ATACGACGCCACGTCGATTCCCAGCTGTTCACCATC

Fig. 21D

SEQ ID NO 20 (HCPr108)
GATGGTGAACAGCTGGGAATCGACGTGGCGTCGTAT

SEQ ID NO 21 (HCCl37)

SEC ID NO 23 (HCC!38)

SEQ ID NO 25 (HCCI39)

ATGTTGGGTAAGGTCATCGATACCCTTACATGCGGCTTCGCCGACCTCGTGGGGTACA
TTCCGCTCGTCGGCGCCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG
GGTTCTGGAGGACGGCGTGAACTATGCAACAGGGAATTTGCCCGGTTGCTCTTCTCT

Fig. 21E

ATCTTCCTCTTGGCTTTGCTGTCCTGTCTGACCGTTCCAGCTTCCGCTTATGAAGTGCG
CAACGTGTCCGGGATGTACCATGTCACGAACGACTGCTCCAACCTCAAGCATTGTGTAT
GAGGCAGCGGACATGATCATGCACACCCCCGGGTGCCGTGCGTTCGGGAGAAC
AACTCTTCCCGCTGCTGGGTAGCGCTCACCCCCACGCTCGCAGCTAGGAACGCCAGCG
TCCCCACCACGACAATACGACGCCACGTCGATTCCCAGCTGTTCACCATCTCGCCTCG
CCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCCGGCCACATAACGGGT
CACCGTATGGCTTGGGATATGATGAACTGGTCGCCTACAACGGCCCTGGTGGTAT
CGCAGCTGCTCCGGATCCTCTAATAG

SEQ ID NO 27 (HCC140)

SEC ID NO 29 (HCCl62)

ATGGETAAGGTCATCGATACCCTTACGTGCGGATTCGCCGATCTCATGGGGTACATCC
CGCTCGTCGGCGCTCCCGTAGGAGGCGTCGCAAGAGCCCTTGCGCATGGCGTGAGGGC
CCTTGAAGACGGGATAAATTCGCAACAGGGAATTTGCCCGGTTGCTCCTTTTCTATTT
TCCTTCTCGCTCTGTTCTCTTGCTTAATTCATCCAGCAGCTAGTCTAGAGTGGCGGAAT
ACGTCTGGCCTCTATGTCCTTACCAACGACTGTTCCAATAGCAGTATTGTGTACGAGGC
CGATGACGTTATTCTGCACACCCGGCTGCATACCTTGTGTCCAGGACGGCAATACA
TCCACGTGCTGGACCCCAGTGACACCTACAGTGGCAGTCAAGTACGTCGGAGCAACCA
CCGCTTCGATACGCAGTCATGTGGACCTATTAGTGGGCGCGGCCACGATGTGCTCTGC
GCTCTACGTGGGTGACATGTGTGGGGCTGTCTTCCTCGTGGGACAAGCCTTCACGTTCA
GACCTCGTCGCCATCAAACGGTCCAGACCTGTAACTGCTCGCTGTACCCAGGCCATCT
TTCAGGACATCGAATGGCTTGGGATATGATGATGAACTGGTAATAG

Fig. 21F

SEQ ID NO 31 (HCCl63)

ATGGGTAAGGTCATCGATACCCTAACGTGCGGATTCGCCGATCTCATGGGGTATATCC
CGCTCGTAGGCGGCCCCATTGGGGGCCGCTCGCAAGGGCTCTCGCACACGGTGTGAGGGT
CCTTGAGGACGGGGTAAACTATGCAACAGGGAATTTACCCGGTTGCTCTTCTCTATCT
TTATTCTTGCTCTTCTCTCGTGTCTGACCGTTCCGGCCTCTGCAGTTCCCTACCGAAATG
CCTCTGGGATTTATCATGTTACCAATGATTGCCCAAACTCTTCCATAGTCTATGAGGCA
GATAACCTGATCCTACACGCACCTGGTTGCGTGCCTTGTGTCATGACAGGTAATGTGA
GTAGATGCTGGGTCCAAATTACCCCTACACTGTCAGCCCGGAGCCTCGGAGCAGTCAC
GGCTCCTCTTCGGAGAGCCGTTGACTACCTAGCGGGAGGGGCTGCCCTCTGCTCCGCG
TTATACGTAGGAGACCGTTGTGGGGCCACTTTTTTGGTAGGCCAAATGTTCACCTATA
GGCCTCGCCAGCACGCTACGGTGCAGAACTGCAACTGTTCCATTTACAGTGGCCATGT
TACCGGCCACCGGATGGCATGGGATATGATGATGAACTGGTAATAG

SEQ ID NO 33 (HCP-109) TGGGATATGATGATGAACTGGTC

SEQ ID NO 34 (HCPr72)
CTATTATGGTGGTAAKGCCARCARGAGCAGGAG

SEQ ID NO 35 (HCCL22A)

Fig. 21G

CATTACCCATATAGGCTCTGGCACTACCCCTGCACTGTCAACTTCACCATCTTCAAGGT
TAGGATGTACGTGGGGGGGCGTGGAGCACAGGTTCGAAGCCGCATGCAATTGGACTCG
AGGAGAGCGTTGTGACTTGGAGGACAGGGATAGATCAGAGCTTAGCCCGCTGCTGCTG
TCTACAACAGAGTGGCAGATACTGCCCTGTTCCTTCACCACCCTGCCGGCCCTATCCA
CCGGCCTGATCCACCTCCATCAGAACATCGTGGACGTGCAATACCTGTACGGTGTAGG
GTCGGCGGTTGTCTCCCCTTGTCATCAAATGGGAGTATGTCCTGTTGCTCTTCCTT
GGCAGACGCGCCATCTGCGCCTGCTTATGGATGATGCTGCTGATAGCTCAAGCTGAG
GCCGCCTTAGAGAACCTGGTGGTCCTCAATGCGGCGGCCGTGGCCGGGGCGCATGGC
ACTCTTTCCTTCCTTGTGTTCTTCTTGTGCTGCTGCTTCCTTCCTTCCCTTAC
CACCACGAGCTTATGCCTAGTAA

SEQ ID NO 37 (HCCI41)

GATCCCACAAGCTGTCGTGGACATGGTGGCGGGGCCCATTGGGGAGTCCTGGCGGG CCTCGCCTACTATTCCATGGTGGGGAACTGGGCTAAGGTTTTGGTTGTGATGCTACTCT TTGCCGGCGTCGACGGGCATACCCGCGTGTCAGGAGGGGCAGCAGCCTCCGATACCA GGGGCCTTGTGTCCCTCTTTAGCCCCGGGTCGGCTCAGAAAATCCAGCTCGTAAACAC AGGGTTCTTTGCCGCACTATTCTACAAACACAAATTCAACTCGTCTGGATGCCCAGAG CGCTTGGCCAGCTGTCGCTCCATCGACAAGTTCGCTCAGGGGTGGGGTCCCCTCACTT ACACTGAGCCTAACAGCTCGGACCAGAGGCCCTACTGCGGCACTACGCGCCTCGACC GTGTGGTATTGTACCCGCGTCTCAGGTGTGCGGTCCAGTGTATTGCTTCACCCGAGCC CTGTTGTGGTGGGGACGACCGATCGGTTTGGTGTCCCCACGTATAACTGGGGGGCGAA CGACTCGGATGTGCTGATTCTCAACAACACGCGGCGCCGCGAGGCAACTGGTTCGGC TGTACATGGATGAATGGCACTGGGTTCACCAAGACGTGTGGGGGGCCCCCGTGCAACA CGAGGCCACCTACGCCAGATGCGGTTCTGGGCCCTGGCTGACACCTAGGTGTATGGTT CATTACCCATATAGGCTCTGGCACTACCCCTGCACTGTCAACTTCACCATCTTCAAGGT TAGGATGTACGTGGGGGGGGGGGGGGAGCACAGGTTCGAAGCCGCATGCAATTGGACTCG AGGAGAGCGTTGTGACTTGGAGGACAGGGATAGATCAGAGCTTAGCCCGCTGCTG

SEQ ID NO 39 (HCC142)

GATCCCACAGCTGTCGTGGACATGGTGGCGGGGGCCCATTGGGGAGTCCTGGCGGGCCCCCCACTATTCCATGGTGGGGAACTGGGCTAAGGTTTTGGTTGTGATGCTACTCT

STATE OF THE STATE OF

Fig. 21H

TTGCCGGCGTCGACGGGCATACCGCGTGTCAGGAGGGGCAGCAGCCTCCGATACCA GGGGCCTTGTGTCCCTCTTTAGCCCCGGGTCGGCTCAGAAAATCCAGCTCGTAAACAC AGGGTTCTTTGCCGCACTATTCTACAAACACAAATTCAACTCGTCTGGATGCCCAGAG CGCTTGGCCAGCTGTCGCTCCATCGACAAGTTCGCTCAGGGGTGGGGTCCCCTCACTT ACACTGAGCCTAACAGCTCGGACCAGAGGCCCTACTGCTGGCACTACGCGCCTCGACC GTGTGGTATTGTACCCGCGTCTCAGGTGTGCGGTCCAGTGTATTGCTTCACCCCGAGCC CTGTTGTGGTGGGGACGACCGATCGGTTTGGTGTCCCCACGTATAACTGGGGGGGCGAA CGACTCGGATGTGCTGATTCTCAACAACACGCGCCGCCGCGGGGGAACTGGTTCGGC TGTACATGGATGAATGCACTGGGTTCACCAAGACGTGTGGGGGCCCCCGTGCAACA TCGGGGGGGCGGCACAACACCTTGACCTGCCCACTGTTTTTCGGAAGCACCC CEAGGCCACCTACGCCAGATGCGGTTCTGGGCCCTGGCTGACACCTAGGTGTATGGTT CATTACCCATATAGGCTCTGGCACTACCCCTGCACTGTCAACTTCACCATCTTCAAGGT TAGGATGTACGTGGGGGGGGGGGGCACAGGTGGAAGCGGCATGCAATTGGACTCG AGGAGAGCGTTGTGACTTGGAGGACAGGGATAGATCAGAGCTTAGCCCGCTGCTGCTG TCTACAACAGGTGATCGAGGGCAGACACCATLACCACCATCACTAATAG

SEQ ID NO 41 (HCCI43)

ATGGTGGGGAACTGGGCTAAGGTTTTGGTTGTGATGCTACTCTTTGCCGGCGTCGACG GGCATACCGGGTGTCAGGAGGGGGGCAGCAGCCTCGATACCAGGGGCCTTGTGTCCCT CTTTAGCCCGGGTCGGCTCAGAAATCCAGCTCGTAAACACCAACGGCAGTTGGCAC ATCAACAGGACTGCCCTGAACTGCAACGACTCCCTCCAAACAGGGTTCTTTGCCGCAC TATTCTACAACACAAATTCAACTCGTCTGGATGCCCAGAGCGCTTGGCCAGCTGTCG CTCCATCGACAGTTCGCTCAGGGGTGGGGTCCCCTCACTTACACTGAGCCTAACAGC TCGGACCAGAGGCCCTACTGCTGGCACTACGCGCCTCGACCGTGTGGTATTGTACCCG CGTCTCAGGTGTGCGGTCCAGTGTATTGCTTCACCCCGAGCCCTGTTGTGGTGGGGAC ATTCTCAACAACACGCGGCGCCGCGAGGCAACTGGTTCGGCTGTACATGGATGAATG GCACTGGGTTCACCAAGACGTGTGGGGGGCCCCCCGTGCAACATCGGGGGGGCCGGCA ACAACACCTTGACCTGCCCCACTGACTGTTTTCGGAAGCACCCCGAGGCCACCTACGC CAGATGCGGTTCTGGGCCCTGGCTGACACCTAGGTGTATGGTTCATTACCCATATAGG CTCTGGCACTGCCCTGCACTGTCACCTTCACCATCTTCAAGGTTAGGATGTACGTGGG GGGCGTGGAGCACAGGTTCGAAGCCGCATGCAATTGGACTCGAGGAGAGCGTTGTGA CTTGGAGGACAGGGATAGATCAGAGCTTAGCCCGCTGCTGTCTACAACAGAGTGG CAGAGCTTAATTAATTAG

Ĺ_

M

Fig. 21I

SEQ ID NO 43 (HCCI44)

ATGGTGGGGAACTGGGCTAAGGTTTTGGTTGTGATGCTACTCTTTGCCGGCGTCGACG GGCATACCCGCGTGTCAGGAGGGGCAGCAGCCTCCGATACCAGGGGCCTTGTGTCCCT CTTTAGCCCGGGTCGGCTCAGAAAATCCAGCTCGTAAACACCAACGGCAGTTGGCAC ATCAACAGGACTGCCCTGAACTGCAACGACTCCCTCCAAACAGGGTTCTTTGCCGCAC TATTCTACAAACACAAATTCAACTCGTCTGGATGCCCAGAGCGCTTGGCCAGCTGTCG CTCCATCGACAAGTTCGCTCAGGGGTGGGGTCCCCTCACTTACACTGAGCCTAACAGC TCGGACCAGAGGCCCTACTGCTGGCACTACGCGCCTCGACCGTGTGGTATTGTACCCG CGTCTCAGGTGTGCGGTCCAGTGTATTGCTTCACCCCGAGCCCTGTTGTGGTGGGGAC ATTOTCAACAACACGCGGCGCGCGCGAGGCAACTGGTTCGGCTGTACATGGATGAATG GCACTGGGTTCACCAAGACGTGTGGGGGGCCCCCGTGCAACATCGGGGGGGCCGGCA ACAACACCTTGACCTGCCCCACTGACTGTTTTCGGAAGCACCCCGAGGCCACCTACGC CAGATGCGGTTCTGGGCCTGGCTGACACCTAGGTGTATGGTTCATTACCCATATAGG CTCTGGCACTACCCCTGCACTGTCAACTTCACCATCTTCAAGGTTAGGATGTACGTGGG GGGCGTGGAGCACAGGTTCGAAGCCGCATGCAATTGGACTCGAGGAGAGCGTTGTGA CTTGGAGGACAGGGATAGATCAGAGCTTAGCCCGCTGCTGCTGTCTACAACAGGTGAT CGAGGGCAGACACCATCACCACCATCACTAATAG

SEG ID NO 45 (HCCL64)

ATGGTGGCGGGGGCCCATTGGGGAGTCCTGGCGGGCCTCGCCTACTATTCCATGGTGG
GGAACTGGGCTAAGGTTTTGGTTGTTGTTGCTTGCCGGCGTCGACGGGCATAC
CCGCGTGTCAGGAGGGCAGCAGCCTCCGATACCAGGGGCCTTGTGTCCCTCTTTAGC
CCCGGGTCGGCTCAGAAAATCCAGCTCGTAAACACCAACGGCAGTTGGCACATCAAC
AGGACTGCCCTGAACTGCAACGACTCCCTCCAAACAGGGTTCTTTGCCGCACTATTCT
ACAAACACAAATTCAACTCGTCTGGATGCCCAGAGCGCTTGGCCAGCTGTCGCTCCAT
CGACAAGTTCGCTCAGGGGTGGGTCCCCTCACTTACACTGAGCCTAACAGCTCGGAC
CAGAGGCCCTACTGCTGGCACTACGCGCCTCGACCGTGTGGTATTGTACCCGCGTCTC
AGGTGTGCGGTCCAGTGTATTGCTTCACCCCGAGCCCTGTTGTGGTGGGACCGA
TCGGTTTGGTGCCCCACGTATAACTGGGGGGGCGAACGACTCGGATGTGCTGATTCTC
AACAACACGCGGCCGCGAGGCAACTGGTTCGGCTGTACATGGATGAATGGCACT
GGGTTCACCAAGACGTGTGGGGGGCCCCCCGTGCAACATCGGGGGGGCCGCCAGAAC
ACCTTGACCTGCCCCACTGACTGTTTTCCGGAAGCACCCCGAGGCCACCTACGCCAGAT
GCGGTTCTGGGCCCTGGCTGACACCTAGGTTCATTACCCATATAGGCTCTGG
CACTACCCCTGCACTGTCCAACTTCACCATCTTCAAGGTTCAGGATGTACCGTGGGGGGCC

Fig. 21J

SEQ ID NO 47 (HCC:65)

AATTTGGGTAAGGTCATCGATACCCTTACATGCGGCTTCGCCGACCTCGTGGGGTACA TTCCGCTCGTCGGCGCCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG GGTTCTGGAGGACGGCGTGAACTATGCAACAGGGAATTTGCCCGGTTGCTCTTTCTCT ATCTTCCTCTTGGCTTTGCTGTCCTGTCTGACCGTTCCAGCTTCCGCTTATGAAGTGCG CAACGTGTCCGGGATGTACCATGTCACGAACGACTGCTCCAACTCAAGCATTGTGTAT GAGGCAGCGGACATGATCATGCACACCCCGGGTGCGTGCCCTGCGTTCGGGAGAAC AACTCTTCCCGCTGCTGGGTAGCGCTCACCCCCACGCTCGCAGCTAGGAACGCCAGCG TCCCCACCACGACAATACGACGCCACGTCGATTTGCTCGTTGGGGCGGCTGCTTTCTG TTCCGCTATGTACGTGGGGGACCTCTGCGGGATCTGTCTTCCTCGTCTCCCAGCTGTTCA CCATCTCGCCTCGCCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCCGG CCACATAACGGGTCACCGTATGGCTTGGGATATGATGATGAACTGGTCGCCTACAACG GCCCTGGTGGTATCGCAGCTGCTCCGGATCCCACAAGCTGTCGTGGACATGGTGGCGG GGGCCCATTGGGGGGCTCGCCTACTATTCCATGGTGGGGAACTGGGC TAAGGTTTTGGTTGTGATGCTACTCTTTGCCGGCGTCGACGGGCATACCCGCGTGTCAG GAGGGCAGCAGCCTCCGATACCAGGGGCCTTGTGTCCCTCTTTAGCCCCGGGTCGGC TCAGAAAATCCAGCTCGTAAACACCAACGGCAGTTGGCACATCAACAGGACTGCCCT GAACTGCAACGACTCCCTCCAAACAGGGTTCTTTGCCGCACTATTCTACAAACACAAA TTCAACTCGTCTGGATGCCCAGAGCGCTTGGCCAGCTGTCGCTCCATCGACAAGTTCG CTCAGGGGTGGGGTCCCCTCACTTACACTGAGCCTAACAGCTCGGACCAGAGGCCCTA CTGCTGGCACTACGCGCCTCGACCGTGTGGTATTGTACCCGCGTCTCAGGTGTGCGGT CCAGTGTATTGCTTCACCCCGAGCCCTGTTGTGGTGGGGACGACCGATCGGTTTGGTGT CCCCACGTATAACTGGGGGGCGAACGACTCGGATGTGCTGATTCTCAACAACACGCGG CCGCCGCGAGGCAACTGGTTCGGCTGTACATGGATGAATGGCACTGGGTTCACCAAGA CGTGTGGGGGCCCCCGTGCAACATCGGGGGGGCCGGCAACAACACCTTGACCTGCC

Fig. 21K

CCACTGACTGTTTTCGGAAGCACCCCGAGGCCACCTACGCCAGATGCGGTTCTGGGCC
CTGGCTGACACCTAGGTGTATGGTTCATTACCCATATAGGCTCTGGCACTACCCCTGCA
CTGTCAACTTCACCATCTTCAAGGTTAGGATGTACGTGGGGGGGCGTGGAGCACAGGTT
CGAAGCCGCATGCAATTGGACTCGAGGAGAGCGTTGTGACTTGGAGGACAGGGATAG
ATCAGAGCTTAGCCCGCTGCTGCTGTCTACAACAGAGTGGCAGATACTGCCCTGTTCC
TTCACCACCCTGCCGGCCCTATCCACCGGCCTGATCCACCTCCATCAGAACATCGTGG
ACGTGCAATACCTGTACGGTGTAGGGTCGGCGGTTGTCTCCCTTGTCATCAAATGGGA
GTATGTCCTGTTGCTCTTCCTTCCTGGCAGACGCGCGCATCTGCGCCTGCTTATGGA
TGATGCTGCTGATAGCTCAAGCTGAGGCCGCCTTAGAGAACCTGGTGGTCCTCAATGC
GGCGGCCGTGGCCGGGGGCGCATGGCACTCTTTCCTTCTTGTGTTCTTCTTGTGCTGCCT
GGTACATCAAGGGCAGGCTGGTCCCTGGTGCGCATATGCCTAATGCCT

SEC ID NO 49 (HCC166)

ATGAGCACGAATCCTAAACCTCAAAGAAAAACCAAACGTAACACCAACCGCCGCCCA CAGGACGTCAAGTTCCCGGGCGGTGGTCAGATCGTTGGTGGAGTTTACCTGTTGCCGC GCAGGGGCCCCAGGTTGGGTGTGCGCGCGCGACTAGGAAGACTTCCGAGCGGTCGCAAC CTCGTGGGAGGCGACCAACCTATCCCCAAGGCTCGCCGACCCGAGGGTAGGGCCTGGG CTCAGCCCGGGTACCCTTGGCCCCTCTATGGCATGAGGGCATGGGGTGGGCAGGATG GCTCCTGTCACCCCGCGCCTCTCGGCCTAGTTGGGGCCCTACAGACCCCCGGCGTAGG TCGCGTAATTTGGGTAAGGTCATCGATACCCTTACATGCGGCTTCGCCGACCTCGTGG GGTACATTCCGCTCGTCGGCGCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGG CGTCCGGGTTCTGGAGGACGGCGTGAACTATGCAACAGGGAATTTGCCCGGTTGCTCT TTCTCTATCTTCCTCTTGGCTTTGCTGTCCTGTCTGACCGTTCCAGCTTCCGCTTATGAA GTGCGCAACGTGTCCGGGATGTACCATGTCACGAACGACTGCTCCAACTCAAGCATTG GAACAACTCTTCCCGCTGCTGGGTAGCGCTCACCCCCACGCTCGCAGCTAGGAACGCC AGCGTCCCCACCACGACAATACGACGCCACGTCGATTTGCTCGTTGGGGGCGGCTGCTT TCTGTTCCGCTATGTACGTGGGGGACCTCTGCGGATCTGTCTTCCTCGTCTCCCAGCTG TTCACCATCTCGCCTCGCCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATC CCGGCCACATAACGGGTCACCGTATGGCTTGGGATATGATGATGAACTGGTCGCCTAC AACGGCCCTGGTGGTATCGCAGCTGCTCCGGATCCCACAAGCTGTCGTGGACATGGTG GCGGGGGCCCATTGGGGAGTCCTGGCGGGCCTCGCCTACTATTCCATGGTGGGGAACT GGGCTAAGGTTTTGGTTGTGATGCTACTCTTTGCCGGCGTCGACGGGCATACCCGCGT GTCAGGAGGGCAGCAGCCTCCGATACCAGGGGCCTTGTGTCCCTCTTTAGCCCCGGG

Fig. 21L

TCGGCTCAGAAAATCCAGCTCGTAAACACCAACGGCAGTTGG CACATCAACAGGACT GCCCTGAACTGCAACGACTCCCTCCAAACAGGGTTCTTTGCCGCACTATTCTACAAAC ACAAATTCAACTCGTCTGGATGCCCAGAGCGCTTGGCCAGCTGTCGCTCCATCGACAA GTTCGCTCAGGGGTGGGGTCCCCTCACTTACACTGAGCCTAACAGCTCGGACCAGAGG CCCTACTGCTGCACTACGCGCCTCGACCGTGTGGTATTGTACCCGCGTCTCAGGTGT GCGGTCAGTGTATTGCTTCACCCGAGCCCTGTTGTGGGGGACGACCGATCGGTT TGGTGTCCCACGTATAACTGGGGGGCGAACGACTCGGATGTGCTGATTCTCAACAAC ACGCGGCGGCGGGGGGACTGGTTCGGCTGTACATGGATGAATGGCACTGGGTTCA CCAAGACGTGTGGGGGCCCCCGTGCAACATCGGGGGGGCCGGCAACACACCTTGA CCTGCCCACTGACTGTTTTCGGAAGCACCCGAGGCCACCTACGCCAGATGCGGTTC TGGGCCCTGGCTGACACCTAGGTGTATGGTTCATTACCCATATAGGCTCTGGCACTAC ACAGGTTCGAAGCCGCATGCAATTGGACTCGAGGAGAGCGTTGTGACTTGGAGGACA GGGATAGATCAGAGCTTAGCCCGCTGCTGCTGTCTACAACAGAGTGGCAGATACTGCC CTGTTCCTTCACCACCTGCCGGCCCTATCCACCGGCCTGATCCACCTCCATCAGAAC ADTADTETCOCTOTETTEEDEEDTEEDETTEEDATETCOATAADETECAEDTECTA AATGGGAGTATGTCCTGTTGCTCTTCCTTCTCCTGGCAGACGCGCGCATCTGCGCCTGC TTATGGATGATGCTGCTGATAGCTCAAGCTGAGGCCGCCTTAGAGAACCTGGTGGTCC TCAATGCGGCGGCCGTGGCCGGGGCGCATGGCACTCTTTCCTTCTTGTTCTTCTTCTTCTT GCTGCCTGGTACATCAAGGGCAGGCTGGTCCCTGGTGCGCATACGCCTTCTATGGCG TGTGGCCGCTGCTCCTGCTTCTGCTGGCCTTACCACCACGAGCTTATGCCTAGTAA

Fig. 22

OD measured at 450 nm construct

Fraction v	olume dilution	39 Ty pe 1 b	40 Type Ib	62 Туре 3a	63 Ty pe 5a
START 2	3 ml 1/20	2.517	1.954	1.426	1.142
FLOW THROUG	H 23 ml 1/20	0.087	0.085	0.176	0.120
	1.4 mi 1/200	0.102	0.051	0.048	0.050
•		0.396	0.550	0.0 9 0	0.067
2 3 4 5		2.627	2.603	2.481	1.372
1		3	2.967	3	2.694
•		3	2.810	2.640	2.154
<u>.</u> 		2.694	2.499	1.359	1.5 6 i
6 7		2.408	2.481	0.347	1.390
S		2.176	1.970	1.624	0.865
0		1.461	1,422	0.887	0.504
10		1.236	0.926	0.543	0.519
11		0.981	0.781	0.294	0.294
12		0.812	0.650	0.249	0.199
13		0.373	0.432	0.239	0.209
		0.653	0.371	0.145	0.184
14 15		0.441	0.348	0.151	0.151
		0.321	0.374	0.098	0.106
16		0.525	0.186	0.099	0.108
17		0.351	0.171	0.083	0.090
18 19		0.192	0.164	0.084	0.087

Figure 24

			OD measured at 450 nm construct			
Fraction	volume	dilution	39 Type 1b	4C Type 1b	62 Type 3a	63 Type 5a
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	250 µ i	1/200	0 072 0 109 0 273 0 093 0 080 0 251 3 3 3 2.227 0.263 0 071 0.103 0.045 0.045 0.045 0.045 0.045 0.046	0 130 0 293 0 249 0 151 0 266 0 100 1 649 3 3 1 921 0 415 0 172 0 054 0 045 0 047 0 045 0 047 0 048 0 049	0 084 0 084 0 172 0 2438 0 128 0 2438 0 1528 3 424 0 356 0 044 0 045 0 046 0 046 0 048	0 051 0 052 0 052 0 054 0 056 0 048 0 066 0 345 2 580 1 333 0 162 0 064 0 057 0 046 0 057 0 048 0 057 0 049

Fig. 25

ŊΪ

Fig. 26

Fig.27

Ħ.

Fig.28

14 kD -

67 kD - 29 kD - 18 kD -

Lane 1: Crude Lysate

Lane 2: Flow through Lentil Chromatography

Lane 3: Wash with EMPIGEN Lentil Chromatography

Lane 4: Eluate Lentil Chromatography

Lane 5: Flow through during concentration lentil eluate

Lane 6: Pool of Elafter Size Exclusion Chromatography

N

Fig.29

Fig. 30

SILVER STAIN OF PURIFIED E2

- 1. 30 mM IMIDAZOLE WASH NI-IMAC
- 2. 0.5 ug E2

Fig.33

No.	Ret. (mi)	P≒ik start (mi)	Peak end (mi)	Dur (mi)	Areu (mi≺mAU)	Height (mAU)
ı	-0.45	- 0. 4 6	-0.43	0.04	0.0976	4.579
2	1.55	0.75	3.26	2.51	796.4167	889.377
3	3.27	3.26	3.31	0.05	0.0067	0.224
1	3.33	3.32	3.33	0.02	0.0002	0.018

Total number of detected peaks = 4 Total Area above baseline = 0.796522 mi*AU Total area in evaluated peaks = 0.796521 mi*AU Ratio peak area / total area = 0.999999 Total peak duration = 2.613583 mi

Fig. 34

Į.

Fig. 35B-7

Fig. 35B-8

Fig. 36A **E1 Ab**

Fig. 36B **E2 Ab**

Fig. 38

Relative Map Positions of anti-E2 monoclonal antibodies

Ě

PARTIAL DEGLYCOSYLATION OF HCV E1 ENVELOPE PROTEIN

Fig.39

1

PARTIAL TREATMENT OF HCV E2\E2s ENVELOPE PROTEINS

Fig. 40

Fig. 41 In Vitro Mutagenesis of HCV E1 glycoprotein

Fig. 42A In Vitro Mutagenesis of IICV E1 glycoprotein

Ŧ

Fig. 43 In Vitro Mutagenesis of HCV E1 glycoprotein

Fig.44A

Fig.44B

Fig. 45

Fig.46

Fig. 47

	age (years)	HCV infection (years)	_ genotype
Marcel	17	9	· ta
Peggy	21	16.5	1 b
Ferma	15	9	1a
Yoran	12	none	
Marti	12	none	

Fig.

48

48c

مسي دوه (سينجو) - دور

Fig. ' 49

1 Fem m a, 2 Mar cel, 3 P eggy

Fig. 50

Fig 51

Fig 52

