Alexei Kosykhin

Assignment 1

From definition of
$$\beta$$

$$\beta = \frac{P}{B^2/2\mu_0}, \text{ where } p \text{ is pressure,}$$

$$B \text{ is magnetic field,}$$

$$\mu_0 = 1.25 \cdot 10^{-6}$$

$$p = \frac{\beta B^2}{2\mu_0}$$

Denote was fusion power density

$$w = \frac{p^2}{4 \times 10^5} = \frac{\beta^2 \beta^4}{4 M_0^2 \cdot 4 \times 10^5} = \frac{\beta^2 \beta^4}{1.6 \cdot 10^6 M_0^2}$$

$$w = \frac{(0.05)^2 \cdot 6^4}{1.6 \cdot 10^6 (1.25 \cdot 10^6)^2} = 1,296,000 w$$

$$W = w. \frac{4\pi^{2}}{9} R^{3}$$

$$= R = \left(\frac{9}{4\pi^{2}} \frac{w}{w}\right)^{\frac{1}{3}}$$

$$R = \left(\frac{9}{4 \cdot 3.14^{2}} \frac{3 \cdot 10^{9}}{1 \cdot 3 \cdot 10^{6}}\right)^{\frac{1}{3}} \approx 8.08 \text{ m}$$

Tokamak radius R= 8.08 m

b) Tokamak cost =
=
$$2 \cdot 5 \cdot 4 \cdot M \in$$
= $2 \cdot 5 \cdot 4 \cdot M \in$
where $5 = 2\pi^2 R^2$ tokamak area

Cost = $2 \cdot 2\pi^2 R^2 \cdot 4M \in$ =
= $2 \cdot 2 \cdot (3.14)^2 (8.08)^2 \cdot 4M \in$ =
= $10,300M \in$ = $10.3B \in$

C) We assume the power of 3 GW consists of energy redicised by neutrons - 2,400 MW and energy vealised by & particles - 600 MW. Multiplication by 1.3 times applies only for neutrons energy 2,400 x 1.3 and doesn't apply for & particles energy of 600 MW

Electric power produced $W_E = (600 + 2,400 \times 1.3) \times 40\% = 1,488 \text{ MW}$

However five need 546struct energy for heating plusma by the beams. - 200 MW/(50%) = 400 MW

Net WENET = 1,488-400=1,088 MW

Annual electricity production at 75% availability

Wannual = 1,088. Mw. 365.24.75% = 7.15.10 KWh

Annual cost of running a tokamak Cost annual = $10.3BE \times 10\% = 1.03BE$ year

Cost of $1 \text{ KW-hour} = \frac{\text{Annual cost}}{\text{Wannual}} =$

 $= \frac{1.03.10^9 \in}{7.15 \cdot 10^9 \, \text{kwhr}} = 0.144 \, \frac{\epsilon}{\text{kwhr}}$

d) Let's assume that annual cost of running a tokamak is 1.03 B∈≈ ≈ 1. B∈ consists of a fixed cost of 0.5 B∈ and reapering components of 0.5 B∈

 $C_{cost} = C_{fixed} + C_o = 0.5 BE + 0.5 BE$

Cost of components will be reducing every each generation of tokamaks.

Number of tokamaks N	Number of generations	Cost of Components Comp
$n = 1 = 2^{\circ}$ $n = 2 = 2^{1}$	i=0 $i=1$	Co(0.85)0 C. (0.85)1
$n=4=2^2$	i=2	Ce. (0,85)2
n = 2	i	Ccomp (0.85)

 $n = 2' \Rightarrow i = \log_2 n$ $C_{comp} = C_0 \cdot (0.85)^{\log_2 n}$

Cost reduction formula

$$C(n) = 0.5BE + 0.5BE(0.85)^{log_2}n$$
cost annually

$$C_{cost}(n) = 0.5(1+(0.85)^{log_2 h}) \frac{BE}{year}$$

Where h is number of tokamaks

Cost of capital cost

$$C_{\text{capital}}(n) = 5(1+(0.85)^{\log_2 n})$$
 BE

Let's assume in 5 year there will be built 32 tokamaks $C_{capital} = 5(1+(0.85)^{log_2 32}) B = 5(1+(0.85)^{log_2 32}) B = 7.2 B = 7.2 B = 10.85$

Let's assume in 10 years there will be built 1,024 tokamaks.

$$C_{\text{capital}}(1,024) = 5(1+(0.85)^{\log_2\log_24})B \in$$

Q2 Lifetime (years) =
$$= \frac{(dpa\ limit)(1\ MW/M^2)}{(10\ dpa)(power\ loaded)(\frac{1MW}{M^2})}$$

$$\frac{(power\ loaded)}{on\ M^2} = \frac{2.400\ MW}{5}$$

$$= \frac{2.400\ MW}{1.289\ M^2} = 1.86\ \frac{MW}{M^2}$$

$$\left\{ S = 2 \pi^{2} R^{2} = 2 \cdot \pi^{2} (8.08)^{2} = 1.289 M^{2} \right\}$$

lifetime at 20 dpa

= 1.075 years

$$\left(\frac{.5 \text{ hut down}}{\text{fruction}}\right) = \frac{0.5 + 10\%.1.075}{1.075 + 0.5 + 10\%.1.075} = 36\%$$

dpa Limit	life time (years)	Shutdown period (years)	Augilability	Shutdown fruction
20	1.075	0.5	64%	36%
40	2.15	0.5	75%	25%
60	3,23	0.5	80%	20%
80	4.30	0.5	82%	18%
120	6.45	0.5	85%	15%

•

.

Q3

At 100% availability cost of electricity will be Ecents 19.2 Kw.hr

dpa limit	Availability	Co E [Ecents/kw.hr]
20	64%	16.9
40	75%	14.4
60	80%	13.5
80 1	82%	13.2
120	85%	12.7
Unlimited (theoretically)	100%	10.8

In order to reduce a blanket time of replacement and installation and to increase availability and reduce cost of electricity per KW.hr., I would like to suggest:

- 1) To design a blanket in modules rather small numerous parts / details. Because removing and installing big modules will take less time and efforts.
- 2) To automise the process of removing and installing a blanket and its components. For example to use robotics.
- 3) To make access to tokamaks details and parts more easer.