General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

(NASA-CR-147636) AN EXPERIMENTAL
DETERMINATION IN CALSPAN LUDWIEG TUBE OF THE
BASE ENVIRONMENT OF THE INTEGRATED SPACE
SHUTTLE VEHICLE AT SIMULATED MACH 4.5 FLIGHT
CONDITIONS (TEST IH5 OF MODEL 19-OTS) G3/16

N76-33267 HC\$9.25

G3/16 Unclas 07279

SPACE SHUTTLE

AEROTHERMODYNAMIC DATA REPORT

JOHNSON SPACE CENTER HOUSTON, TEXAS

DATA MANagement services

SPACE DIVISION CHRYSLER CORPORATION

DMS-DR-2308 NASA CR-147,636

AN EXPERIMENTAL DETERMINATION IN THE CALSPAN LUDWIEG

TUBE OF THE BASE ENVIRONMENT OF THE INTEGRATED

SPACE SHUTTLE VEHICLE AT SIMULATED MACH 4.5

FLIGHT CONDITIONS (TEST 1H5 OF MODEL 19-OTS)

by

R. F. Drzewiecki Calspan Corporation

and

J. W. Foust Rockwell International Space Division

Prepared under NASA Contract Number NAS9-13247

by

Data Management Services Chrysler Corporation Space Division New Orleans, La. 70189

for

Engineering Analysis Division

Johnson Space Center
National Aeronautics and Space Administration
Houston, Texas

WIND TUNNEL SPECIFICS:

Test Number:

Calspan Ludwieg Tube 181

NASA Series Number:

IH5

Model Number:

19-01S

Test Dates:

January 1974 to July 1974

Occupancy Hours:

FACILITY COORDINATOR:

Mr. K. C. Hendershot Aerodynamics Research Department Calspan Corporation P.O. Box 235 Buffalo, N.Y. 14221

PROJECT ENGINEERS:

B. J. Herrera, J. W. Foust, M. Quan Rockwell International Space Division 12214 Lakewood Boulevard Downey, California 90241 Mail Code ACO7 K. C. Hendershot, R. F. Drzewiecki Aerodynamic Research Department Calspan Corporation P.O. Box 235 Buffalo, N.Y. 14221

Phone: (716) 632-7500 (x528)

Phone: (213) 922-1463

DATA MANAGEMENT SERVICES:

Prepared by:

Liaison -- D. A. Sarver

Operations -- Maurice Moser, Jr.

Reviewed by:

G. G. McDonald

Ammyowed *

L. Glynn Manage

Data Operations

Concurrence:

N. B. Kemp, Manager

Data Management Services

Chrysler Corporation Space Division assumes no responsibility for the data presented other than display characteristics.

AN EXPERIMENTAL DETERMINATION IN THE CALSPAN LUDWIEG

TUBE OF THE BASE ENVIRONMENT OF THE INTEGRATED

SPACE SHUTTLE VEHICLE AT SIMULATED MACH 4.5

FLIGHT CONDITIONS (TEST IH5 OF MODEL 19-OTS)

bу

R. F. Drzewiecki
Calspan Corporation
and
J. W. Foust
Rockwell International Space Division

ABSTRACT

A model test program was conducted to determine heat transfer and pressure distributions in the base region of the Space Shuttle vehicle during simulated launch trajectory conditions of Mach 4.5 and pressure altitudes between 90,000 and 210,000 feet. Model configurations with and without the solid propellant booster rockets were examined to duplicate pre- and post-staging vehicle geometries.

Using short-duration flow techniques, a tube wind tunnel provided supersonic flow over the model. Simultaneously, combustion-generated exhaust products reproduced the gasdynamic and thermochemical structure of the main vehicle engine plumes. The chemical species in the exhaust of the orbiter engines were simulated using 3000 psi gaseous $\rm H_2/O_2$ propellants and a combustion technique based on short-duration principles. The booster rockets used actual, high aluminum content, solid propellant representative of candidate solid rocket booster fuels.

ABSTRACT (Concluded)

Heat transfer and pressure measurements were made at numerous locations on the base surfaces of the 19-OTS Space Shuttle model with high response instrumentation. In addition, measurements of base recovery temperature were made indirectly by using dual fine wire and resistance thermometers and by extrapolating heat transfer measurements associated with special bases capable of being heated to 1000°F.

TABLE OF CONTENTS

e di Cince i le la lingui de la Labara di Cinggo a lingui de la 1901 de la 1901 de la 1901 de la 1901 de la 19	Page
ABSTRACT	iii
INDEX OF MODEL FIGURES	2
INDEX OF DATA FIGURES	3
INTRODUCTION	14
NOMENCLATURE	- 5
REMARKS	10
CONFIGURATIONS INVESTIGATED	?2
INSTRUMENTATION	26
TEST FACILITY DESCRIPTION	32
TEST PROCEDURE	35
DATA REDUCTION	43
DISCUSSION OF RESULTS	50
REFERENCES	54
TABLES	
I. NOMINAL TEST OPERATING CONDITIONS FOR REPORTED RUN DATA	55
II. THIN WIRE GAS TEMPERATURE PROBE RUN DEFINITION	58
III. MODEL DIMENSIONAL DATA	59
IV. COMPARISON OF UTP-3001 AND LPC-580C PROFELLANT COMBUSTION PRODUCTS	רק
FIGURES	
MODEL	72
	79
APPENDIX A - TABULATED SOURCE DATA: Gas Recovery Temperatures	11
garman garman nama. Uset Thansfer and Pressures	11

INDEX OF MODEL FIGURES

Figures		Title	Page
1.	Model	sketches and photographs	
	a.	2.25% Scale Space Shuttle Base Heating Model Installed in Calspan Ludwieg Tube MACH 4.5 Nozzle	72
	b.	2.25% Scale Space Shuttle Base Heating Model	73
	c.	2.25% Scale Shuttle Base Heating Model - Outline and Cross-Sectional Views	74
,	đ.	2.25% Scale Space Shuttle Base Heating Model - End View	75
	e.	Short-Duration Ludwieg Tube Wind Tunnel	76
	f.	Wave Diagram for Tube Wind Tunnel	77
	g.	Ludwieg Tube Free Jet Test Rhombus for MACH 4.5 Nozzle	78 70
2.	Heat	Transfer Gage Spectral Absorptivity	79
3.	Mode.	Instrumentation Locations	
40 to 1	a.	External Tank	80
	ъ.	Engine Heat Shield (Body Flap)	83
	e.	BSRM Nozzle and Shroud	84
	đ.	SSME Firing Nozzle	86
	e.	SSME Non-Firing Nozzle	88
	€.		90
			94
	g. h.	The towned Mark Rooted Rase Plates	95

INDEX OF DATA FIGURES

Figures	eriki kiri di kacalisa da m ritle di kacalisa da menerika	Page
4.	Representative SSME operating data	97
5.	Composite record of tunnel and model operating data	98
6.	19-OTS SSV model recovery temperature determination Q142 on E/T dome	99
7.	Representative pressure and heating rate distributions on the orbiter heat shield	100
8.	19-OTS SSV Test IH5 pitot pressure measurements of model wake flow	101
9.	Wire transient resistance data for run 80-D at location 11	102
10.	Wire transient resistance data for run 81 at location Il	103
11.	19-OTS recovery temperature measurements on ET tank	104
12.	19-OTS thin wire convection heating coefficients on ET tank	105
13.	19-0TS recovery temperature measurements on orbiter	106
14.	19-OTS thin wire convective heating coefficients measurements on orbiter	107
15.	Transient wire, heating and pressure data on the ET dome for run 80-D	108
16.	Transient wire, heating and pressure data on the ET dome for run 81	109

INTRODUCTION

During its launch trajectory, the Space Shuttle will utilize clustered liquid rocket engines for orbiter propulsion in combination with large, solid rocket boosters at lower altitudes. The interacting exhaust plumes from these rockets will recirculate and produce a severe thermal environment in the base region of the shuttle vehicle. Because of the unconventional geometry of the base region with its unusual orbiter/external tank/solid rocket booster arrangement, analytical predictions of the exhaust-plume induced heating are extremely difficult to make, and sub-scale model testing has been employed to provide that information.

A test program (TH5) was conducted at Calspan Corporation to measure heat transfer and pressure distributions about the afterbody surfaces of a 1/45th scale model (19-0TS) of the Space Shuttle vehicle under conditions typical of the early launch trajectory. The early launch trajectory is defined as altitudes up to about 200,000 feet where the external flow field significantly influences the engine exhaust plume spreading, interaction, recirculation, and resultant base environment. Altitudes above and below the SRB staging altitude (nominally 140.000 feet) were simulated.

Over a simulated altitude range of 90,000 to 200,000 feet, data were obtained with heat transfer gauges, radiation gauges, gas temperature probes, and pressure transducers measuring pitot and static pressures. Reduced data from 98 test runs are tabulated in Appendices A and B.

NOMENCLATURE General

SYMBOL	Computer SYMBOL	DEFINITION
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Tunnel Parameters
M_{∞}	MACH NO.	freestream MACH number
P_{∞}	PINF	freestream static pressure, psia
PAUL		pressure at simulated model altitude, psia
Po	POINF	freestream total pressure, psia
RN	re/ft	freestream Reynolds number, 1/ft
\mathtt{T}_{∞}		freestream static temperature, OR
$\mathtt{T}_{\mathbf{O}}$	TOINF	freestream total temperature, oF
μ		viscosity, lb-sec/ft ²
		Base Heating and Pressure Parameters
DLR		dummy load resistor
К		thin film gauge sensitivity, ohm/oF
	P	measured model base pressure, psia
	PC123	SSME combustion chamber pressure, psia
	PC4	left SRB combustion chamber pressure, psia
	PC5	right SRB combustion chamber pressure, psia
	PCL	model base centerline pressure: psia PCL = P ₁₀ on ET base PCL = P ₉₀ on orbiter base
ġ		total heating rate, BTU/ft ² -sec
	Q-R	radiant heating rate, BTU/ft ² -sec

NOMENCLATURE (Continued)

Base Heating and Pressure Parameters

SYMBOL.	Computer SYMBOL	DEFINITION
R_{G}		pre-run thin film gauge resistance, olms
$\mathtt{R}_{\mathbf{L}}$		thin film gauge line resistance, ohms
R _P		precision resistor used to calibrate thin film gauge signal conditioning system, ohms
${\mathtt R}_{\mathbf S}$		thin film gauge circuit series resistor, ohms
	TOB	orbiter base heat shield temperature, OF
	TET.	external tank base temperature, oF
δ		data trace deflection, cm
Δ Δ		deflection of the square wave calibration signal due to the DLR, cm
in in a single of the single o		Gas Recovery Temperature Parameters
8.		thermal diffusivity $\left(a = \frac{K_w}{\rho c}\right)$, cm^2/sec
a O		thermal diffusivity at $T_0 = \begin{pmatrix} x_{w_0} \\ z_0 = \rho_0 c_0 \end{pmatrix}$, cm^2/sec
a _h		accomodation coefficient
⁸ 1, ⁸ 2		coefficients that are a function of wire and gas parameters
A		wire cross sectional area, cm2
C		wire specific heat, cal/g - K
C _O		wire specific heat at T_0 , cal/g- O K
D		wire diameter, cm
	Δ e	tmermocouple voltage output, mv

NOMENCLATURE (Continued)

Gas Recovery Temperature Parameters

SYMBOL	Computer SYMBOL	DEFINITION
R _{200C}		wire resistance at 20°C, ohms
	RINITIAL	initial measured wire resistance, ohms
	ΔR	measured wire real stance change, ohms
	R _{TOTAL}	total measured wire resistance, ohms
s		dimensionless time parameter (s=t/ $ au$)
$s_{ m h}$		dimensionless gas function
.		time, sec
T		dimensionless temperature (T = T_W/T_T)
T _h		gas temperature, ^O K
To		initial wire temperature, OK
r		gas recovery temperature, OK
Tw		wire temperature, OK
TW		mean wire temperature, K
X		distance along the wire, cm
α, β		thermal coefficients of resistance, ohm/ohm-K
γ		ratio of specific heats
$\epsilon_{\mathtt{W}}$		wire surface emissivity
η		dimensionless length parameter ($\eta={ m X/L}$)
π	et, eskut julijak. Milijak Sarjan.	constant
ρ	A REPORT OF CHARLES	wire density, g/cm ⁵

NOMENCLATURE (Continued)

Gas Recovery Temperature Parameters

Computer SYMBOL SYMBOL	DEFINITION
g(s) _h	dimensionless gas function
H	convective heat transfer coefficient, cal/sec-cm ² -OK
	wire current flow, ampheres
$K_{\pmb{\psi}}$. The first section of the section $K_{\pmb{\psi}}$	wire thermal conductivity, cal/cm-sec-K
K _{Wo}	wire thermal conductivity at To, cal/cm-sec-OK
	wire length, cm
M	Mach number
$\mathtt{P_h}$	gas pressure, N/cm ²
	heat input to the wire from the gas, cal/sec
	heat due to current flow, cal/sec
9 k	heat conduction to wire supports, cal/sec
g <mark>r</mark> g	radiation from the gas, ergs/sec
n da G rwa di Bandi ka ma	heat loss by radiation from the wire, cal/sec
	heat accumulated in the wire, cal/sec
9wg	heat gained by radiation from the gas, cal/sec
	gas constant, cal/gm- ^O K
	dimensionless parameter a _o /a
${f R}_{f o}$	wire resistance at ${ m T_o}, { m ohms}$
en e	mean wire resistance, ohms

NOMENCLATURE (Concluded)

Gas Recovery Temperature Parameters

Computer SYMBOL SYMBOL	DEFINITION
$\rho_{\mathbf{Q}}$	wire density at T_o , g/cm^3
σ ₀	wire resistivity at T_0 ($\sigma_0 = R_0A/L$), ohm-cm
· o _{sb} . · · · · · · · · · · · · · · · · · ·	Stefan-Boltzmann radiation constant, cal/sec-cm 2 o _K 4
σ ₂₀ ο _C τ	wire resistivity at 20° C, ohm-cm $\tau = \frac{\rho_{0}\text{CoL}^{2}}{K_{\text{W}_{0}}} = \frac{L^{2}}{a_{0}}, \text{ sec}$
ΔΤ	change in temperature, °R
Pó	stagnation pressure behind a normal shock, PSIA
$\mathtt{T}_{\mathbf{B}}$	base temperature, °K
h_{B}	base convective heat transfer coefficient, $CAL/sec-cm^2-{}^{\circ}K$
$\mathtt{T_c}$	specific heat at constant pressures, BTU/Lb-°R
Dex	external diameter
Dt	throat diameter
Din	internal diameter

ORIGINAL PAGE IS

REMARKS

In December, 1973 Calspan initiated Rockwell test IH5, which involved testing of the 0.0225 scale 19-OTS Space Shuttle vehicle model in the Ludwieg tube blow-down type wind tunnel that was at that time being developed for NASA. Testing, which was interrupted a number of times during the program due to a model fire accident* and other model and facility malfunctions, continued for several months and was finally completed on 3 July 1974 after Run No. 112b. Although not all of the attempted runs produced acceptable data because of various operational problems, the results from 98 runs appear valid and are consequently included in Appendix B. The operating conditions for each run with data reported herein are shown in Table I.

*During Run 2, significant damage was rendered to model hardware, and most of the base instrumentation was destroyed when $\rm H_2/O_2$ combustion products were diverted behind the orbiter base after the spontaneous failure of the model's igniter adapter seal. The subsequent repair of the model included the installation of somewhat less than the full complement of desired sensors primarily because of the unavailability of sufficient pressure transducers.

In any discussion of the overall conduct of the tests, several points must be kept in mind. The Ludwieg tube facility (Figure 1 (e)), developed by a joint application of NASA and Calspan funds, had not been completely checked out at the start of the test program. Although

the hardware had been finished and assembled, it was not operationally proven. Testing on the present program was initiated and pursued vigorously at that time in an attempt to meet data schedule requirements. Furthermore, the overall complexity of the total system being investigated (comprising four independently functioning subsystems: the Ludwieg tube, the orbiter engines, and two SRB engines) combined to make a good run a very difficult goal to realize. At the start of the program, the criteria for a good test run were not clear. As experience was gained in the operation of the model in the facility and in the analysis of the data, evaluation criteria were developed. In support of these criteria, a number of diagnostic runs were made during the program with the specific objective of establishing the validity of the test conditions encountered.

FLOW QUALITY CRITERIA

During the early runs of the test program, the pressure and heating rate data were characterized by unexpectedly high absolute levels and appreciable data scatter. A rigorous analysis of these data, by Mr. Dave Seymour (NASA/MSFC), indicated the existence of flow separation within the Mach 4.5 nozzle. (This was evident from the facility and model data.) Flow separation was related to difficulties in consistently maintaining an adequately low receiver tank pressure (i.e., nozzle back pressure) through the period immediately preceding the test firing. In that interval between the cessation of receiver

tank pumping and the test firing (several seconds), leaks into the facility, principally associated with hardware modifications and installations implemented for this test, significantly increased the receiver tank pressure. The resulting high nozzle exit-plane pressures which existed during the initiation of airflow were attributed to the observed flow separation. After implementing repairs to correct the leakage sources, testing continued satisfactorily, and, except for one or two occasions, separated flow within the Mach 4.5 nozzle was not observed.

As a result of the nozzle flow separation experience, two criteria were established to partially assess the air flow quality. These involved the measurements of the static pressure on the internal surface of the nozzle near the exit plane (P_{exit}) as well as the side-wall exit static pressure on the nozzle exterior (P_{NSW}). The latter is, of course, indicative of the ambient pressure surrounding the nozzle exit plane. All test program runs were evaluated relative to the following standards:

$$\frac{P_{\text{NSW}}}{P_{\text{EXIT}}} \le 1.7^*$$

$$\frac{P_{EXIT}}{P_{m}} = 1.2^{**}$$

Test runs which deviated from these criteria were either disqualified or considered highly suspect.

*This expression is a common "rule-of-thumb" ratio used in the rocket industry and states that a nozzle may overexpand to a pressure on the order of 1/1.7 ($\sim 60\%$) of the ambient pressure without separating. Various other sources may report the ratio to have an upper limit between 1.5 and 2.0 (probably depending on specific test conditions and rocket configurations).

**The factor of 1.2 is derived from the expected theoretical difference between P_{∞} and P_{EXIT} since, because of the foreshortened nozzle, the latter is measured at a location in the flow field where the flow has not fully expanded to the test section conditions.

FLOW DIAGNOSTIC STUDIES

Several times during the test program, diagnostic runs were made to assess the quality of the flow and determine the timing of test section flow breakdown relative to routinely observed model and tunnel sensors. One of the early diagnostic studies involved the use of a pitot pressure survey rake located behind the model to evaluate flow blockage effects with and without firing the SSME engines. Three probes were installed on a support which extended horizontally from the receiver tank wall to the test section centerline. All pitot measurements were made within the free jet test rhombus. At the axial station of the probe tips, this space was calculated to be defined by an approximately 20 inch radius. Five runs (designated D-10 through D-14) were made and the measurements are summarized in Figure 8.

Although the free stream total pressure varied somewhat during these runs, depending on the simulated altitude (P_O) and whether or not the SSMEs were firing, the flow was observed to be essentially undisturbed

(at approximately Mach 4.5) beyond a radius of about 18 inches from the centerline for all test conditions. This indicates that the OT configuration model does not induce any recognizable tunnel blockage effects. Flow breakdown time, as recognized by high pressure disturbances at the pitot probe locations, agreed within ± 3 ms with the observed disturbances at the nozzle exit plane (P_{NSW}, P_{exit}) and at the model bases (P_{10}, P_{90}) . Model heat transfer and pressure measurements responded adequately to the external flow and SSME firing, and the model data displayed steady levels of sufficient duration to allow the collection of valid data.

Upon completion of the test program, further investigation was made with more extensive test section diagnostic instrumentation. Although this investigation was performed subsequent to the test program, the relevance of the results to the interpretation of the test data warrants a detailed discussion of the investigation.

The model and tunnel were partially re-instrumented as follows. A pitot pressure probe was mounted on the orbiter's manipulator fairing approximately 13 inches aft of the orbiter nose. In addition, two pressure-instrumented "static-pipe" probes were installed parallel to the flow. One probe was installed 8 inches above the manipulator fairing and extended about 20 inches into the Mach 4.5 nozzle. A slender conical nose was employed on the pipe to minimize bow shock disturbances. The following instrumentation was provided:

- (1) Static pressure tap at the nozzle exit plane (within the the test rhombus).
- (2) Static pressure tap located above the pitot sensor on the manipulator fairing.
- (3) Static pressure tap above the orbiter base heat shield.
- (4) Rear-facing pitot pressure approximately 4-1/2 feet behind the heat shield (outside the test rhombus).

The second "pipe" was attached to the external tank above the left BSRM and extended downstream into the receiver tank. To minimize bow shock disturbances. it was provided with a blunt nose positioned near the BSRM and orbiter noses. Instrumentation on this second probe included:

- (1) Three forward-facing pitot sensors located beneath the left wing of the orbiter (one in line with the manipulator fairing pitot, another approximately 8 inches further downstream, and the third approximately in line with the base heat shield).
- (2) Static pressure tap approximately 17 inches downstream of the heat shield.
- (3) Static pressure tap approximately 4-1/2 feet behind the heat shield (at the same axial location as the rear-facing pitot on the upper "pipe"-probe).

Of the five diagnostic runs (number 4 through 8) made with the Mach 4.5 nozzle, Runs 4 and 6 (140,000 feet nominal simulated model altitude) were useful for discerning the flow quality in the Ludwieg tube. Run 4 was performed to investigate the flow during operation (firing) of the complete OTS configuration in a supersonic airstream. Run 6 was made to observe the effects without any rocket flow. discussion of these runs is presented in the following paragraphs. During Run 5 (model firing only, no external flow) an early SSME firing filled the receiver tank to the extent that when the steady BSRM flow was established, the test section altitude was altered sufficiently to invalidate direct comparison with Runs 4 and 6. Run 7 flow measurements were affected by significant electrical disturbances which resulted in the loss of most of the data. Run 8, an attempt to repeat the previous run, was at first considered useful; however, more specific analysis of the data disclosed the likelihood that the Mach 4.5 nozzle flow may have been separated at the time of data collection as evidenced by higher than expected nozzle exit plane and test section static pressures. The E/T nose pressure data (i.e., P_0^{-1}), on the other hand, was indicative of the expected Mach 4.5 flow.

The data for these diagnostic runs, although not reported herein, remain on file at Calspan.

An analysis of diagnostic Run 4 did not indicate that the flow field about the model had been influenced by facility limitations.

Static pressure measurements within the test rhombus were in good agreement with the expected free stream static pressure P_{∞} .

Pitot pressure measurements under the left wing and above the manipulator fairing as well as both the orbiter and external tank base pressure taps (P_{10} and P_{90}) were observed to indicate similar pressure levels (\sim 3% the static pressure in the test section). These measurements support the premise that the rocket plumes induce flow separation at the base of the model since the pressures within such a separated region would not otherwise be expected to be higher than P_{∞} . Further, the essentially uniform pressure and absence of gradients throughout the base region are indicative of separated flow.

During this run, the manipulator fairing pitot pressure measurement provided a very dramatic history of the development of the flow about the model. During the airflow start transient, the fairing pitot pressure responded in a manner similar to the E/T nose pressure (P₂₀₈). After an initial starting peak, the fairing pressure steadied to a value of about 80% of the free stream P₀' (as measured by P₂₀₈), reflecting the stagnation pressure losses across the bow shock. Shortly after the establishment of the BSRM flows, the fairing pressure decreased substantially and rapidly to a stabilized level which was in agreement with the base pressures, as previously discussed. During this period of flow adjustment at the aft end of the model, static pressure measurements within the test rhombus (particularly above the manipulator

fairing pitot and above the orbiter base) remained steady, thereby implying that pressure changes in the base regions were not a result of disturbances propagating back into the free jet flow from the receiver tank boundaries.*

*It has been suggested that wave reflections and/or receiver tank filling processes might be responsible for flow field alterations which are not representative of flight conditions.

Another interesting observation was made concerning the static pressure approximately 4-1/2 feet behind the model. The pressure at that location was seen to rise steadily after the BSRM flow was initiated. It is likely that the phenomenon is related to the interaction of the BSRM plumes since the pressure rise was not reflected in the model base measurements or any of the test section pressures and there is no other evidence to support the contention that the rise was associated with a breakdown or alteration of the test section flow.

A review of the pressure records was made to determine the time at which the test section flow did breakdown due to the wave dynamics and "filling" process in the receiver tank. The breakdown phenomenon was identified as an interruption of the established steady pressures by a sudden pressure increase characterized by large oscillations. Since it was desirable to relate any correlation derived from this diagnostic run to the data, it was appropriate to use the routinely recorded nozzle side-wall pressure as a reference. Flow breakdown time in the test section in proximity to the model base was noted to

occur approximately 3 ms prior to its detection at the Mach 4.5 nozzle lip. It is concluded, therefore, that the nozzle side-wall or exit plane pressure measurements are good indicators of the breakdown event in the test section.

Inspection of the data from diagnostic Run 6 shows the static pressures above the model as well as the model base pressures to be in good agreement with the expected test section static pressure. Pressures in the test section and around the model base remained relatively constant until the reflected tank filling wave interrupted the external flow. Time from first flow into the receiver tank to flow breakdown was 44 ms for the OT configuration compared to the 32 ms duration noted for the same test conditions but with OTS operation (diagnostic Run 4). The arrival of the flow breakdown wave was detected at the model base approximately 3 ms prior to its arrival at the Mach 4.5 nozzle exit plane. Test section static pressures were, however, seen to degrade approximately 7 ms before the disturbance was noted at the exit plane.

THIN-FILM GAUGE TOTAL HEATING RATE.

Absorptivity of the standard thin-film heat transfer gage varies with the wavelength of the incident radiation. Thus, a knowledge of the spectral character of the incident radiant flux is required to accurately correct the measured heat transfer rate (which consists of both a convective and radiative component) to the absolute heating

level. From previous measurements of the radiation from exhaust plumes of scale model rockets, it has been determined that a substantial portion of emitted energy is concentrated in the 1 to 6 μ infrared region (Reference 3). This was verified with measurements of the plume radiance from a single BSRM.

The determination of total incident heating rate (or convective heating rate only) involves the application of correction factors to properly account for (1) the gage and radiative source spectral characteristics and (2) knowledge of the radiative transfer "view factor." The information required to establish a correction factor for the former is provided in Figure 2. On the other hand, the determination of the "view factor" (a function of the sizes, spatial separation and relative orientation of the radiating source and sensor) requires an intimate knowledge of the plume shape, model geometry, the effects of shadowing and the like. Furthermore, because the standard thin-film sensors on the model were much more numerous than the radiation sensors (that is, side-by-side gage pairs were not available), the correction of most of the standard gage data requires estimations of local incident radiation heating levels. Such estimates are often determined from interpolation or extrapolation of radiation gage data from adjacent parts of the model and should be based on a thorough study and interpretation of the data. Since providing a detailed analysis of the base heating data was beyond the scope of the present

REMARKS (Concluded)

program, the standard, thin-film, heat-transfer gage data included in this report have not been corrected for such factors and are presented directly as measured.

THIN-FILM GAUGE EROSION

Heat-transfer gage erosion due to impingement of solid particles from the BSRMs was experienced during the test program. When necessary, the indicated model heating rates were corrected for this gage erosion. Early in the test program, gage resistance changes were encountered which were initially attributed to erosion. Subsequently, it was discovered that the resistance changes were due to corrosion of the silver tabs at the ends of the platinum element. Thereafter, the tabs were protected with a thin epoxy coating. All of the early data were recomputed to exclude the initial adjustment for erosion effects.

CONFIGURATIONS INVESTIGATED

The 19-OTS model hardware was developed in accordance with Space Shuttle configuration 2A drawings specified in Reference 1.

The test model consisted of the orbiter vehicle located atop the external propellant tank as illustrated in the tunnel installation photographs, Figures 1(a) and 1(b). The booster solid rocket motors were attached to the sides of the external tank to simulate the prestaging or launch configuration of the Space Shuttle. This composite configuration was designated OTS (i.e., Orbiter-Tank-Solid Rocket Boosters). Following the same convention, the post-staging configuration, consisting of the orbiter and external tank only, was designated OT.

Important model features and internal composition are illustrated in Figures 1(c) and 1(d). The orbiter consisted of a scaled fuselage, vertical tail, simplified (delta planform) slab wings, a body flap and the Orbital Maneuvering System (OMS) pods. Within the orbiter was an integral, fast-acting bipropellant valve (or autovalve, A/V), flow metering venturis, and an injector/combustion chamber common to the three Space Shuttle Main Engine (SSME) nozzles. In the combustion chamber, gaseous $\rm H_2/O_2$ propellant was burned to closely duplicate the full scale SSME combustion products at a nominal 1500 psia pressure and $\rm 6000^{O}R$ temperature. A set of fixed-angle nozzle adapters was provided to simulate gimballing of the SSME nozzles. The simulated OMS nozzles did not fire but were instrumented to determine engine-off

CONFIGURATIONS INVESTIGATED (Continued)

 $\mathbb{F}_{\mathbb{F}}$

heating rates. Instrumentation was also installed at numerous locations on the base heat shield, body flap, OMS pods, and SSME and OMS nozzle outer walls as indicated in Figure 3.

*It should be noted that whereas the full-scale SSMEs operate at a combustor pressure of 3000 psia, the present model design was purposely restricted to only one-half this value for two reasons: (1) heat sink cooling of the ~0.25-inch SSME nozzle throats would have been impractical at any higher pressures and (2) the gaseous oxygen supply pressures in excess of 3000 psia which would have been required were considered too hazardous for the routine testing operations envisioned for this model.

The External Tank (E/T), a heavy walled cylinder approximately seven inches diameter by four feet long, contained the gaseous H_2 and O_2 at 3000 psia in internal, double-pass, spiral charge tubes. The H_2 and O_2 supply tubes were separated by an integral solid section through which instrumentation leads and gas plumbing passed from the strut to the orbiter body. The E/T included a removable base dome in which were placed heating rate and pressure sensors.

The model Booster Solid Rocket Motors (BSRM)* functioned to provide the additional hot gas plume environment typical of the early launch trajectory. Solid propellant (approximately 0.050 inch thick), cemented onto expendible propellant holders, was burned in the motor cases. High aluminum content propellants, with combustion temperature (~5000°F) and exhaust species similar to candidate Space Shuttle solid fuels, were utilized. An analysis of the exhaust products for the two solid propellants used during this program is presented in Table IV.

CONFIGURATIONS INVESTIGATED (Continued)

Mylar diaphragms located just upstream of the BSRM nozzle throats confined a charge of gaseous ethylene/oxygen which was used to effect rapid, uniform ignition of the solid propellant surface. The ignition gases were introduced into the BSRM cavities through passages in the E/T. A lateral cross-drilled hole through the E/T provided communication between the two BSRMs to encourage pressure balancing between the combustors. Nominal operating pressure was 290 psia.** The motor cases attached to the outer surface of the external tank and were readily removed to simulate the post-staging vehicle configuration.

The external lines of the reusable rocket motors duplicated the full scale boosters including the conical nose, aft E/T-BSRM attachment ring, aft nozzle shroud and canted nozzle. Numerous pressure and heat transfer sensors were located on the shrouds. Adapters were provided to effect changes in the nozzle gimbal angle.

The entire model assembly was strut mounted to the receiver tank floor. All model load lines and instrumentation leads were routed through the strut to appropriate bulkheads on the facility walls. Provisions to pitch the model $^{\pm}10^{\circ}$ were incorporated in the strut/floor bracket hardware, although this feature was not utilized during the test program.

^{*}Also often referred to as Solid Rocket Boosters (SRBs).

^{**}This value is one-half of the full-scale average steady-state combustion pressure of ~580 psia for consistency with the 50% of full-scale operating pressure of the orbiter SSMEs.

CONFIGURATIONS INVESTIGATED (Concluded)

configuration. The model deviated from true scale in a few instances: namely, (1) the external tank was made approximately six (scale) inches longer than the actual vehicle in order to accommodate the H₂ and O₂ charge tubes, (2) there were solid fairings between the external tank and orbiter and the external tank and BSRMs rather than the open areas which exist on the full scale Shuttle, and (3) the simplified planform wing.

A complete listing of all model instrumentation locations is provided in Figure 3.

INSTRUMENTATION

Heat Transfer Gages

Thin-film heat transfer gages (References 2-4) were employed for the measurement of model surface heating rates. The sensing elements are thin (order of 0.1 micron) platinum resistance thermometers fused onto the surface of pyrex substrates. The thin-film heat-transfer gage operates on the principle that the film thickness is much smaller than the characteristic thermal diffusion depth for the short duration of the test event. Thus, the temperature gradients and heat capacity of the film may be neglected, and the instantaneous film temperature can be said to be equal to the instantaneous substrate surface temperature.

The resistance elements are coated with a dielectric film (i.e., M_gF_2) which provides the following beneficial characteristics: (1) it affords mechanical protection for the element, (2) it improves electrical stability of the element by sealing against the ambient environment, (3) it provides electrical isolation from ionized gas flows, and (4) it provides higher absorptivity to radiant heat flux than can be obtained with uncoated surfaces. Loss of gage response due to the presence of the coating (approximately one micron thick) is negligibly small.

During operation, the temperature induced resistance change of the platinum element is sensed electrically. The electrical signal is fed to an analog network (known as a "Q-meter") which converts the indicated surface temperature in real time to an instantaneous

heat-transfer rate by employing the theory of linear heat conduction to an infinite slab (References 2 and 5). This conversion is applicable over a wide range of test conditions, if proper account is taken for gage resistance changes due to erosion, variations in the physical properties of the substrate with temperature, and nonlinear gage sensitivity at elevated temperature (Reference 3).

Three types of heat transfer gages were employed during the test: standard, radiative, and high temperature gages. The physical construction of the first two gage types is similar. The ends of the platinum sensing element are electrically connected to the back of the substrate by silver film deposited on the pyrex. The lead wires are soft soldered to the silver on the back of the gage. A different construction is required for gages used at elevated temperatures. The differences between the three types of gages are described in more detail in the following paragraphs.

Standard Gage

The standard heat transfer gage consists of a platinum film fused onto the surface of the pyrex substrate which, in turn, conforms to the local contour of the model. This gage is sensitive to the entire convective heat flux as well as a portion of the radiative flux. The amount of incident radiation sensed by the gage is a function of its spectral absorptivity as well as the spectral radiance of the energy source. Figure 2 demonstrates the typical absorptivity characteristic

in the infrared wavelength region between 1 and $7\,\mu$.

Radiative Gage

The radiative heat transfer gage consists of a standard gage upon which a thin coat of aluminum black has been deposited. The coated gage is mounted within a holder and isolated from convective heating by a sapphire window which has excellent transmittance in the wavelength interval of interest and also protects the relatively fragile black coating. Radiation gages of this type have essentially uniform spectral absorptivity of about 0.85 over the 1 to 6 μ wavelength range (Reference 3, see Figure 2).

High Temperature Gage

In addition to the standard and radiative heat transfer gages used routinely for model measurements, a special gage suitable for the measurement of heat transfer to heated surfaces has been developed by Calspan (Reference 3). This gage overcomes the temperature limitations of the standard variety by eliminating the silver leads and soft-solder connections to the platinum element. Instead, platinum wires were fused into the pyrex substrate and the platinum film is fired directly between the leads whose terminals are made flush with the substrate surface. The electrical characteristics of the high temperature gage are nominally the same as those of the standard gages. Applications are limited to sustained temperatures of no more than 1000°F because of incipient softening of the pyrex substrate.

Pressure Transducers

Model surface and tunnel pressure measurements were made using high frequency response transducers (References 2 and 6). These devices employ lead-zirconium-titanate piezoelectric ceramics as pressure sensitive energy sources and include integral field-effect-transistor (FET) circuits for power amplification and impedance matching. The complete transducers are typically 0.37 inch in diameter by 0.23 inch thick. Units with nominal sensitivities of 2000 mv/psi (0-2.5 psi range) and 50 mv/psi (0-100 psi range) were used. Typically, transducer sensitivities are linear to within 2% throughout their respective ranges. To provide acceleration compensation, a second integral, but pressure insensitive, diaphragm/piezoelectric crystal unit is wired in opposition to the active unit. This design reduces acceleration sensitivity to nominally 0.00015 psi/g and 0.0004 psi/g, respectively, for the low range and high range transducers. To further reduce as:celeration effects, where model locations permit, the transducers were mounted on individual, spring-suspended, seismic masses and connected to the model pressure sensing orifice with soft rubber tubes. In order to minimize temperature induced effects on the transducer diaphragms, copper heat shields were installed to provide line-of-sight shielding from radiant or hot gas sources.

Propellant flow passage and combustion chamber pressures in both the orbiter and the BSRMs were sensed with commercial*, fast-response,

 $\langle \mathbb{I} \rangle$

piezoelectric pressure transducers. Protection of the transducer from the hot combustion gases was provided by a thin layer of RTV** over the diaphragm, a heat shield, and a devious path orifice arrangement.

Appropriate impedance matching of the transducers was provided by external charge amplifiers.

To supplement the available Calspan transducers in fulfilling the model pressure sensor requirements, a number of Calspan-fabricated low pressure transducers utilizing a commercial pressure-sensitive transistor as the sensing element were used in the initial tests. These sensors proved inadequate primarily because of their lack of acceleration compensation. After appreciable trial under actual test conditions, attempts to record data from these units were abandoned.

- * Kistler Instrument Corporation, Clarence, New York
- ** Room Temperature Vulcanizing rubber
- ***"Pitran," manufactured by Stow Laboratories, Inc.

Gas Temperature Probes

Thin wire, resistance thermometer probes, developed by Remtech, Inc., were provided for the measurement of recovery temperature. These probes consisted of two parallel, small diameter platinum-10% rhodium wires of different lengths (1 and 2 mm) supported within the flow field on needle-like prongs. A thermocouple junction and associated leads are integrally built into one of the support needle pairs

INSTRUMENTATION (Concluded)

for each wire. The probe functions on the basis of obtaining sufficient information to evaluate two unknown quantities of the heat balance equation for the wires: namely, the heat transfer coefficient and the recovery temperature. Probes were fabricated in lengths of 3/4-inch, 1-1/4 inches, and 4 inches to provide flexibility and facilitate use in different model locations. A complete description of the probes is provided in Reference 7. Descriptions of gas temperature probes, their use, and the resultant data presented in this report were taken directly from Reference 7.

ORIGINAL PAGE IS
OF POOR QUALLIN

TEST FACILITY DESCRIPTION

A short-duration tube wind tunnel (Ludwieg tube) (Reference 8) provided aerodynamic flow about the test model to simulate specific regimes of the Space Shuttle launch trajectory. Figure 1 (e) depicts the facility and identifies its main components.

In operation, air is initially loaded into the 42-inch diameter supply tube and contained by a mylar diaphragm located just upstream of the nozzle. To initiate airflow, the diaphragm is cut by mechanical means. A centered expansion wave then propagates upstream in the supply tube and accelerates the test gas to a steady velocity. The gas expands through the nozzle into the initially evacuated receiver tank. Meanwhile, the expansion wave in the supply tube propagates upstream at acoustic speed. The nozzle supply conditions remain constant and flow is steady until that wave, reflected from the upstream end of the supply tube, returns to the nozzle inlet. A schematic diagram of this operation is shown in Figure 1(f). For the 60-foot long supply tube, steady nozzle inlet conditions are maintained for approximately 90 milliseconds (ms) when the test gas is ambient temperature air.

Air expanding through the nozzle into the receiver tank provides the desired ambient test conditions in the free jet test section at the nozzle exit. The test flow of air continues downstream in the receiver tank at high velocity until it is brought to rest when it encounters the receiver tank end wall. The incoming test gas develops a stagnated volume at the end wall, which continues to grow in the unconstrained

TEST FACILITY DESCRIPTION (Continued)

upstream direction. A shock front (i.e., the interfacial boundary between the incoming high velocity test gas and the stagnated gas) thus propagates upstream until it encounters and (usually) breaks down the test section conditions established by the nozzle flow. Prior to testing, flow breakdown time in the receiver tank was estimated to be approximately equal to the supply-tube wave time for the external flow conditions of this program.

In order to effect a more reasonable simulation of the Shuttle flight trajectory conditions, the supply-tube gas charge was heated during its residence in the charge tube. Strip heaters, covered with high temperature insulation, were distributed uniformly on the outside surface of the tube. The heating system provided the capability of raising the wall temperature to 600°F. Separate "cn-off" temperature controllers, with adjustable setpoints, were used to control the longitudinal temperature distribution. One effect of heating the gas in the supply tube was to reduce the time during which steady pressure is available at the nozzle inlet from approximately 90 ms for ambient temperature gas to about 65 ms for gas at 600°F.*

To maintain the pre-run strength and integrity of the mylar diaphragm, a water cooling system consisting of internal and external jacket coils was installed at the diaphragm station. Pre-run air

That is, because of the higher sound speed in the hot air, the expansion wave velocity is greater.

TEST FACILITY DESCRIPTION (Concluded)

temperature in the portion of the supply tube just upstream of the diaphragm was consequently reduced to 300 to 400°F. Although this environment proved suitable for diaphragm survivability, it also produced an axial temperature gradient in the supply tube air charge. Thus, as the "test slug" of supply-tube gas passed through the nozzle and expanded into the test section, the test condition total temperature varied accordingly.

*Volume of supply-tube gas exhausted through the nozzle during the period of steady flow.

The Mach 4.5 nozzle, fabricated of glass-reinforced polyester resin, was contoured to provide uniform, parallel test section flow. In order to comply with existing facility length constraints, the final four feet of the theoretical full-expansion length was omitted (see Figure 1(g). The resulting maximum free jet test rhombus diameter was somewhat smaller than the nominal five-foot exit diameter of the nozzle. Ambient temperature airflow tests for an appropriate range of reservoir pressures verified that the flow was repeatable, uniform and symmetrical across the exit plane (Reference 9).

ORIGINAL PAGE IS OF POOR QUALITY

TEST PROCEDURE

INSTRUMENTATION CALIBRATIONS

The calibration methods utilized at Calspan are described in detail in References 2 through 4 and 6 along with the theoretical considerations from which they are derived. Calibration records are maintained at Calspan. However, the following comments are appropriate with respect to their application to the test.

Pressure

Prior to the start of the test program, all Calspan pressure transducers used in the model were pneumatically calibrated with a series of step pressure inputs covering the anticipated range of usage. The voltage output variations of the transducers were typically linear within ±2%.

The Kistler pressure transducers used for combustion-chamber pressure measurements were dynamically calibrated prior to the test program by means of a high pressure pneumatic calibration system. Linearity was again typically well within the nominal $\pm 2\%$ bandwidth.

Heat Transfer

The standard calibration procedure for a thin-film heat transfer gage is explained in detail in Reference 3. First, its resistance is measured at two temperatures in order to obtain the gage's temperature sensitivity $K = \Delta R/\Delta T$. This information along with a corresponding pre-run gage resistance is used to determine the value of a shunt resistor known as the Dummy Load Resistor or DLR. The DLR is used, in

turn, to scale the gain of the recording equipment by approximately simulating the expected heating rate.

Recording System

A complete gain calibration of each oscillograph recording channel with its associated conditioning amplifier was performed prior to the start of the test program. Routine checks during the course of the test program disclosed no appreciable variations (i.e., drift or fluctuations). Oscilloscope records were usually calibrated prior to each run using a precision voltage source.

Gas Temperature Probes

Prior to installing a probe on the model, the thin wires were soldered to the probe tips and a resistance temperature calibration was made. It was found that a slight amount of slack was needed in the thin wires to avoid wire breakage during calibration resulting from the thermal induced movement of the probe tips. Taut wires would usually break during calibration. The calibration consisted of heating the probe through a temperature range of approximately 20° to 100° C and recording the corresponding resistances.

Flow Visualization

A double-pass, collimated-light, Schlieren system was used to obtain flow visualization over a 16-inch diameter field of view of the model base. High speed movie and single frame camera equipment were used to record the test events.

Data Acquisition

Both oscillographs and oscilloscopes were used to record test data. Model measurements were recorded on Tektronix 502 dual beam oscilloscopes using trace sweep speeds of 10 ms/cm and span sensitivities individually set to provide adequate trace deflections. However, since the total number of model measurements was too large to record simultaneously, they were divided into groups which were selectively "plugged;" in turn, into the available 50 oscilloscope channels. Eight additional channels were allocated permanently to high priority, model measurements that were desired on each run.

Facility and model combustion data were recorded on fourteen channel. direct writing, light-beam oscillographs employing galvanometers having a flat frequency response bandwidth of 0-600 Hz. A chart speed of 32 inches/second provided adequate time resolution and frequency response. Conditioning amplifiers having a variable gain from 1 to 100, adjustable in precision steps of 1, 2, 5, 10, 20, 50, and 100, provided the amplification necessary to drive the galvanometers.

TEST OPERATIONS

The test objectives required simultaneous realization of steady exhaust plumes from three scale SSME rocket nozzles as well as from the two solid propellant BSRM engines during the short duration of steady external flow produced about the 19-OTS model. After initiation of the external flow, model operation was characterized by ignition of BSRM and

SSME propellants sequenced to attain simultaneous, steady state plume flow.

As might be anticipated, proper synchronization of the three flow events (i.e., orbiter SSME rockets, SRB motors, and Ludwieg tube external flow) represented the major development task. For example, it was soon discovered that the 70 msec steady flow period achieved in the free-jet test section with tunnel airflow alone was reduced to only 20-30 msec with the rockets operating due to mass addition effects in the receiver tank and earlier than anticipated arrival of the tank filling wave at the model station. These effects required very careful timing of the rocket plume and Ludwieg tube flows as well as the implementation of some special techniques to provide more rapid rocket thrust buildup.

Event repeatability, adequate synchronization, and some reductions in the initiation time of the various events were achieved by such procedures as the use of high voltage/capacitor discharge activation of solenoid valves, fabrication of special timers, and changes in the BSRM ignition gas mixture ratio and pressure. The repeatability of autovalve operation was enhanced by the intentional "breaking-in" of new seals and the synchronization of opening and closing pressure charges based on the results of an autovalve response optimization study performed during the test program.

As an example of another special technique employed during the program, refer to Figure 4 which shows a composite of several pressure-

time histories reproduced from actual data records. It is seen that the "normal" time period required for the SSME combustion pressure to stabilize after ignition is on the order of 30-35 msec. Since this time was too long for the available tes+ period, a method of reducing the response time was required. A procedure was developed equivalent to the use of throat diaphragms in that combustion gases are contained in the chamber until design pressure is reached while avoiding the necessity of nozzle removal after every run for diaphragm replacement. The procedure involved the use of expendable close-fitting plugs which are inserted into the three SSME nozzle throats. The plugs are of a proper weight and length to allow them to accelerate to high velocity during the combustor pressure buildup and then clear the nozzle throat station at, or somewhat above, the design operating pressure. The plug velocity is sufficiently high at this time to assure its complete departure from the model base region during the data acquisition period. The inexpensive plugs used for the present program (illustrated schematically in the upper right corner of Figure 4) consisted of an aluminum rod having a diameter slightly smaller than the nozzle throat inserted into a short section of 3/4-inch wooden dowel. Proper weight was achieved by simply gluing a steel nut to the dowel.

The marked reduction in combustor rise time accompanying the use of plugs is illustrated by the upper ("Improved") pressure trace in Figure 4, which shows the pressure reaching an essentially constant

value within approximately 10 msec of the start of pressure rise. The slight pressure overshoot was intentional since this condition was found to provide the minimum time to attain a steady pressure level.

The use of throat plugs was also employed with the BSRMs during the later period of the present test program.

Also shown in Figure 4, to the same time base as the SSME combustor pressures, are records of the fast-acting SSME bipropellant valve position potentiometer and flow metering venturi inlet pressures. The extremely rapid opening characteristic of the valve is evidenced by the near vertical initial slope of the piston displacement record past the point of full port opening. Similarly, the venturi pressures rise to their operating levels within a few milliseconds after valve opening, remaining steady until valve closure terminates flow.

As a final illustration of the overall synchronization required, and ultimately achieved, Figure 5 shows a number of data traces from various events recorded during a single run and combines them in a single composite record having the same time reference. Considering first the rocket parameters, ignition of the two BSRMs is seen to lead the sequential chain of events. Thitiation of propellant burning and

^{*}Although not shown in this record, in actuality the initial event is actuation of the Ludwieg tube diaphragm cutter, which occurs ahead of BSRM ignition.

rise to peak pressure takes approximately 15 msec, at which time the diaphragms rupture and BSRM flow first issues into the test section from the nozzles. Following a rapid decay from the "starting spike," steady ope ating pressures are reached within approximately 10 additional msec. The similarity of behavior between the two rockets is quite apparent from the pressure records.

At about the time the BSRM rockets begin flowing, SSME ignition occurs, followed by throat plug expulsion about 8 msec later and attainment of steady pressure in reasonable synchronization with the SRBs.

Tunnel conditions also stabilize rapidly, with stagnation pressure (P_0) and pitot pressure (as evidenced by the external tank nose pressure record) reaching a nominally steady level within 10 msec after initial rise. Total temperature increases somewhat $(375^{\circ}F$ to $400^{\circ}F)$ during the run time as initially cooler air from near the diaphragm station is replaced by hotter air from farther up the supply tube.

Finally, base pressures on both the orbiter and external tank respond in parallel, first responding to the BSRM rocket flow (as evidenced by the small rise which precedes initiation of external flow) and then to the steady airflow level.

Formal data acquisition occurs over the 20 msec wide interval identified in the figure; it is terminated by test section flow breakdown, which is readily identified by the abrupt increase in model base

TEST PROCEDURE (Concluded)

pressures, followed a short time later by a similar increase in external tank nose pressure. Note that the rocket and Ludwieg tube supply conditions remain steady until well after flow breakdown has occurred, clearly demonstrating the test duration restriction imposed by the receiver tank filling wave.

DATA REDUCTION

PRESSURE

All of the pressure transducers employed during this program operate on a differential basis in that they sense the change between the local pressure applied to the model during the run and the pre-run ambient pressure. Accordingly, the receiver tank pre-run absolute pressure was added to the measured pressure change for all transducers exposed to the tunnel environment. For the BSRMs, however, the initial ignition gas pressure (12 to 18 psia) was added to the transducer output to derive the absolute pressure.

HEAT TRANSFER

The thin-film gage is a resistance thermometer which responds to the local surface temperature of the substrate. The classical theory of heat conduction in a homogeneous body is used to relate the surface temperature history to the rate of heat transfer. Due to the considerable effort required to convert temperature-time records into equivalent heating rate histories, an analog network, referred to as a "q-meter," has been developed to convert the temperature signal directly into a heat flux in real time for presentation on the oscilloscope (Reference 5). All thin-film gage, heat transfer data for this study were obtained directly through the use of q-meters.

The heat transfer data were converted to engineering units using the following formula:

$$\dot{q} \left(\frac{BTU}{ft^2 sec} \right) = \frac{\delta}{\Delta} \frac{R_P}{(DLR + R_P) (K)} \left(\frac{R_S + R_Q + R_L}{R_S + R_P} \right)^2$$

where

 δ = Deflection of the data record

DLR = Dummy load resistor used to simulate the expected heating rate for calibration of the data channel

 Δ = Deflection of a square wave signal resulting from the insertion of the DLR during data channel calibration

 $R_{\rm P}$ = Precision resistor used to calibrate the conditioning system ($R_{\rm P} = 100~\Omega$)

 $K = Gage Sensitivity = \Delta R/\Delta T$

 R_S = Heat transfer gage circuit series resistor (R_S = 1000 Ω)

R_G = Pre-run heat transfer gage resistance

 R_{L} = Resistance of gage line extensions between sensing element and constant current network (R_{L} = 5 to 10 Ω)

To account for the absorptivity of the radiation gages, measured radiant heating rates were corrected by the following expression:

RECOVERY TEMPERATURE

Heated Base Tests

Estimates of local base recovery temperatures have been made utilizing heated base components on the model. This technique relies on the principle of proportional variation in heat transfer with the temperature differential: recovery temperature (T_R) minus base temperature (T_R) . Measured model heating rates were plotted against

the various test base temperatures and then extrapolated to zero heating rate (i.e., $T_R = T_B$). The value at that intercept is thus the estimated recovery temperature. An example of this procedure is presented in Figure 6. The data reduction procedure for calculating heat transfer at elevated base temperatures are similar to those of the standard gage but include additional corrections to account for temperature dependent substrate properties and gage sensitivities.

Gas Temperature Probes

Gas temperature probe data reduction procedures are detailed in Reference 7. A brief summary of the procedures is given below.

Gas recovery temperature is obtained from the one dimensional heat balance equation for a thin wire.

$$q_s = q_j + q_c - q_k - q_{rw} + q_{wg}$$

where

$$q_s$$
 = heat accumulated in wire = $A \rho c \frac{\partial T_w}{\partial t}$

$$q_1$$
 = heat due to current flow = $I^2 \sigma_0 \left[1 + \alpha \left(T_W - T_0\right)\right] / A$

 q_c = heat input to the wire from gas = $h \pi D(T_r - T_w)$

$$q_k$$
 = heat conduction to wire supports = $-A = \frac{\partial^2 K_w T_w}{\partial X}$

$$q_{rw}$$
 = heat loss by radiation from wire = $\epsilon_w \, \sigma_{sb} \, \pi^{DT}_w$

 q_{wg} = heat gained by radiation from gas = $\epsilon_w q_{rg} \pi D/2$

where

 q_{rg} = radiation from gas All parameters in the heat balance equation are functions of the wire or surrounding gas and are readily known except T_w , T_r , and h. T_w is measured indirectly by the wire.

To obtain a solution, the heat balance equation may be nondimensionalized and quasi-linearized into the form

$$R_{a} \frac{\partial \underline{T}}{\partial a} = a_{1} + a_{2} \underline{T} + \frac{\partial^{2} \underline{T}}{\partial \eta^{2}}$$

with boundary conditions

$$\eta = 0$$
, $T = T_s$ and $\eta = 1$, $T = T_s$

where

 R_a , a_1 , and a_2 are parameters independent of wire temperature

$$T = T_W/T_T$$

$$\eta = X/L$$

$$s = t/_T$$

This equation form may be solved numerically by an implicit finite difference relation in η and a backward finite difference relation in s. The numerical methods are too lengthy for this report, but they may be found in Reference 7.

The gas recovery temperature design for Test IH5 was chosen to simplify the data reduction procedures. Specifically, two different

length wires mounted on the same probe tip and subjected to the same flow field condition allow simultaneous solution of two independent steady state equations with two unknowns, h and T_r . The nondimensionalized and quasi-linearized equation in the preceding paragraph is now of the form

$$a_1 + a_2 T + \frac{\partial^2 T}{\partial \eta^2} = 0$$

where only the implicit finite difference relation in η is required for numerical solution.

To actually determine gas recovery temperature, an iteration procedure is used as follows:

1. Values of recovery temperature, T_r , and the convective heat transfer coefficient, h, are estimated for input to the data reduction program. The convective heat transfer coefficient is estimated by

$$h = 1.389 a_h M \frac{g(s)_h}{S_h} P_h \sqrt{\frac{\gamma R}{T_h}}$$

- 2. Using the estimated h and T_r , mean temperatures are calculated for each wire using the heat balance equation.
- 3. Mean wire resistances are calculated from the mean wire temperatures by

$$R_{W} = R_{O} \left[1 + \alpha \left(\overline{T}_{W} - T_{O} \right) + \beta \left(\overline{T}_{W} - T_{O} \right) \right]$$

where

 $R_{\rm O}$ = resistance at initial wire temperature, $T_{\rm O}$ α & β = coefficients of resistance

 \overline{T}_{w} = mean wire temperature

4. Calculated mean wire resistances are compared to the steady state resistances measured by the two thin wires; if the sum of the errors between the calculated and measured resistances is greater than 0.5%, new h and T_r estimates are input to the data reduction program for repeated calculations. This procedure is repeated until values of h and T_r are found which satisfy the resistance error parameter.

Individual wire lengths were calculated using the wire resistance at 20° C (68°F) and the manufacturer's stated value of resistivity at 20° C.

$$\sigma_{20^{\circ}C} = R_{20^{\circ}C} \left(\frac{A}{L}\right) = 1.853 \text{x} 10^{-5} \text{ ohm-cm}$$

Wire resistance was determined to be steady state at a time coincident with stable model rocket engine flow. This generally occurred between 35-50 milliseconds into the run.

TEST CONDITIONS

Based on airflow calibrations previously performed at ambient temperatures, the Mach 4.5 nozzle was determined to provide satisfactory flow at the design Mach number within $^{\pm}0.1$ Mach number units over a pressure range of 2 to 20 psia. For the purpose of this test program, the test section Mach number was considered constant at $M_{\infty}=4.5$.

DATA REDUCTION (Concluded)

Thus, test section static pressure and static temperature were computed by:

$$P_{\infty} = 0.003455 P_{o}$$
 $T_{\infty} = 0.1980 T_{o}$

where P_{O} and T_{O} were the average nozzle inlet stagnation conditions measured on each run during the data acquisition period when model combustor and tunnel pressures were equilibrated (Reference Figure 5). The respective simulated test altitude was determined from a pressure 2X the calculated static pressure, or $P_{AIM} = 2P_{\infty}$.

The test section unit Reynolds number, derived from isentropic flow relations using air as an ideal gas, was calculated by using the expression:

$$\frac{R_{e}}{ft} = 411 \frac{P_{o}}{\mu} \sqrt{\frac{1}{T_{o} + 460}} \left[\frac{M_{\infty}}{(1 + 0.2M_{\infty}^{2})^{3}} \right]$$

The viscosity (μ) was based on Sutherland's formula:

$$\mu = 0.350 \times 10^{-6} \left(\frac{T_{\infty} + 460}{492} \right)^{3/2} \left(\frac{690}{T_{\infty} + 658} \right)$$

DISCUSSION OF RESULTS

The basic results of the Test IH5 program are the pressure and heat transfer data obtained from the tests. In reduced form they are included in Appendix B of this report. Table I provides an index by run number of the nominal test conditions for which the data are reported.

Figure 7 depicts representative data from a flight condition near staging (Mach 4.5 at 140,000 feet altitude) where the model was tested both with and without the SRBs operating. Both heating rate and pressure distributions are shown along the vertical centerline from just beneath the upper SSME nozzle to the body flap. Data repeatability appears reasonable.

The results of the base recovery temperature measurements using the heated base technique were generally unsuccessful because of an early malfunction of the gages. The malfunctions were attributed to construction features which allowed the platinum element terminal junctions to be susceptible to thermally induced stresses. Although most of the heated gage sensor data could not be resolved, one sensor (Q142) did survive long enough to provide acceptable data. During three consecutive runs, its pre-fire temperature (calculated from its resistance change) was in excellent agreement with model base thermocouple measurements, thus lending credibility to its output response during the run. Furthermore, the data (shown in Figure 6) predict a recovery temperature with a rather small uncertainty bandwidth, namely, 1800°F ±3%.

DISCUSSION OF RESULTS (Continued)

Steady State Gas Temperature Probe Results

7

The definition of the runs which used gas temperature probes is given in Table II. Also included are values of wire lengths and comments concerning the test conditions and validity of the test data.

Typical wire resistance data traces are shown in Figures 9 and 10.

Appendix A lists the wire resistance data which were used to obtain values of gas temperature and convective heating coefficients. Also included in the table are values of the voltage changes observed on the thermocouples on the probe tips. All the recorded thermocouple temperature changes were less than 20°C. A 20° change in probe tip temperature will result in a change in wire temperature of less than 1%. For this reason, the probe tip temperature was assumed to be constant at 300° K for all the data analysis conducted.

Figures 11 through 14 present the values of gas temperature and free molecular convective heat transfer coefficients as a function of test altitude. It is difficult to detect specific trends in the data due to the limited amount of data obtained. However, it is noted that the gas temperature values are lower than expected while the film coefficients are slightly higher than was predicted prior to the test.

Figures 15 and 16 present a comparison of the thin wire probe responses with the response of the pressure transducer and heat transfer gauges located near the probe. These figures illustrate different responses for two runs. Figure 15 illustrates a rapid flow field

DISCUSSION OF RESULTS (Continued)

start-up, and Figure 16 shows a slowly developing flow field buildup. The different flow field buildups are a consequence of the timing and mass flow from the Ludwieg Tube, SSME, and BSRMs. The wire resistance appears to closely follow the flow field processes indicated by the heating and pressure data.

Some simplified calculations were made for the data given in Figures 15 and 16. To qualitatively determine the variation of the gas temperature with time, the free molecular heat transfer coefficient for the wire has the following dependency: $h \propto P/\sqrt{T}$. If one assumes T constant and computes h as a function of time, where the steady state value of h is used for a reference, an h versus time plot will result, which has the same shape as the pressure time plot. If one plots the heating rate versus pressure, it is found that the curve is far from linear where a linear relation would be expected for steady state results. Since $\dot{q} = h_B(T_r - T_w)$ and h_B is primarily a function of pressure, $T_{\rm r}$ must be changing significantly during the run. Thus, the assumption that the gas temperature is constant during the run is not valid. For example, the peak in heating during the first 8 msec. of Figure 15 must be due to a higher gas temperature than was experienced later in the run. To properly quantify the gas temperature as a function of time before steady flow is achieved, a detailed transient calculation using the heating, pressure, and resistance data would be required. This type of analysis would be time consuming, but could provide additional insight into the type of flow processes which occur

DISCUSSION OF RESULTS (Concluded)

during the test.

The results of the base recovery temperature measurements using the gas temperature probes have been reported separately by Remtech, Inc. (Reference 7).

REFERENCES

- "Pretest Information for Base Pressure and Heat Transfer Tests of 0.0225 Scale Space Shuttle Plume Simulation Model 19-OTS in the Calspan Short-Duration Tube Wind Tunnel (Test IH5)," SD73-SH-0231B, Rockwell International, Space Division, June 18, 1974.
- 2. Bogdan, L., "Instrumentation Techniques for Short-Duration Test Facilities," Calspan Report No. WTH-030, Buffalo, New York, March, 1967.
- 3. Bogdan, L. and Garberoglio, J. E., "Transient Heat-Transfer Measurements with Thin-Film Resistance Thermometers -- Fabrication and Application Technology," Technical Report AFAPL-TR-67-72, Calspan Corporation, Buffalo, New York, June, 1967.
- 4. Vidal, R. J., "Transient Surface Temperature Measurements," Calspan Report No. 114, March, 1962.
- 5. Skinner, G. T., "Analog Network to Convert Surface Temperature to Heat Flux," Calspan Report No. 100, February, 1960.
- 6. Martin, J. F., Duryea, G. R., Stevenson, L. M., "Instrumentation for Force and Pressure Measurements in a Hypersonic Shock Tunnel," Calspan Report No. 113, January, 1962.
- 7. Fuller, E. C., and Engle, C. D., "Gas Temperature Probe Development and Short-Duration Space Shuttle Testing Support," Final Report, RTR 015-1, Remtech, Inc., Huntsville, Alabama, December, 1974.
- 8. Sheeran, W. J., Hendershot, K. C. and Wilson, H. B., Jr., "Applications of a Tube Wind Tunnel in Supersonic Testing," AIAA Paper No. 69-335 precented at 4th Aerodynamic Testing Conference, Cincinnati, Ohio, 199.
- 9. Progress Reports 34, 35 and 36 (December, 1973 through February, 1974), Aerodynamic Astronautical Heating Tests for Advanced Saturn Configurations. Contract No. NAS8-27090.

TABLE I

NOMINAL TEST OPERATING CONDITIONS FOR REPORTED RUN DATA

Run No.	Config.	М	h (K ft.)	P o (psia)	P CSSME (psia)	P CSRM (psia)	T B o _F
6 44 4 1 1 1 1 1 1 2 2 2 3 3 3 4 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6		4 " " " " " " " " " " " " " " " " " " "	140 " 150 170 110 " 120 140/2 140/4 140 " 170 " " " 140 150 160 150 140 170 150/4 140 170 170/2 140/4	4." 08 99 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1500 """ 750 3700 """ 73200 """ 73200 """ 75050		

TABLE I (Continued)

NOMINAL TEST OPERATING CONDITIONS FOR REPORTED RUN DATA

Run No.	Config.	М	h (K ft.)	Po (psia)	P CSSME (psia)	P _c SRM (psia)	TB o _F
74 75 76 77e 78 79 80d 81 82 83 84 85 86 89 89 91 92 93 94 97 99 100 102 105 106	OT OTS II II II II II II II II II		140/2 90 140 100 " 140 130 " 120 120 130 140 120/2 110 " 140 120 " 160 150 140 170 140 170 160 150 " "	2.24 36.58 23." 4.61 9." 01499184.941 15.08 4.99 1.48 1.48 4.99 1.48 2.18 1.48 1.48 1.48 3." 2.18 1.48 3." "	750 1500 " " " " " " " " " " " " " " " " " "	0 290 145 290 145 " " 290 145 290 " " " " " " " " " " " " " " " " " " "	70° 11 11 11 11 11 11 11 11 11 11 11 11 11

TABLE I (Continued)

NOMINAL TEST OPERATING CONDITIONS FOR REPORTED RUN DATA

Run No.	Config.	M	n (k ft.)	o (psia)	P CSSME (psia)	Pc _{SRM} (psia)	TB OF
107 108	ot	4.5 "	150	3,08	1500	0 "	300 [°] 800
D1 D2 D3 D4 D5 D6 D7 D8 D11 D12 D13 D14 D16 D17 D18 D19 D20	11 11 11 11 11 11 11 11 11 11 11 11 11	4.5 u u u u u u u u u u u u u u u u u u u	140 220 200 160 120 90 170 110 170 1200 160 180 170 220 140	- - - 1.49 15.01 1.49 15.01 1.49 - - - 4.48	1500 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11	70 """"""""""""""""""""""""""""""""""""

TABLE II
THIN WIRE GAS TEMPERATURE PROBE RUN DEFINITION

82 2-0.75 120 0.0926 0.1806 0.1421 1/2 Reynolds No. 120 0.0806 0.1421 0.0806 0.1421 0.0806 0.1421 0.1681 0.1681 0.1361 0.							THE RESERVE THE PROPERTY OF TH
Short Long Comments Total Long Comments Total Long Comments Long		The No.			Wire Le	engths	Commonts
1-0.75	Run No.	Probe Mo.	100001011	(Colmience
93-B 1-0.75 113-HS 120 0.1022 0.1872 94 2-0.75 1-ET 120 0.1031 0.1823	77-A 78 79 80-B 80-B 80-D 81 82 83 84 85 86 87 88 89-A 89-B 91-A 91-C 93-B 93-B	1-1.25 1-0.75 2-1.25 3-1.25 1-1.25 1-1.25 1-0.75 2-0.75 1-0.75 1-0.75	11-FT 101-HS 113-HS	100 100 140 130 120 120 120 120 120 120 120 120 120 12	0.0888 0.088 0.0768 0.0762 0.0926 0.0806 0.0806 0.0757 0.0915 0.0949 0.0949 0.1022 0.1022	0.1618 0.1797 0.1753 0.1571 0.1806 0.1421 0.1681 0.1681 0.1681 0.1682 0.1683 0.1683 0.1683	BSRMs didn't fire. Can't read long wire data Scopes didn't trigger 1 BSRM fired No BSRMs fired }Full Orbiter - 1/2 Booster Chamber Press 1/2 Reynolds No. 1/2 Booster Chamber Pressure Can't read short wire data Bad pt Erratic run 1/2 Booster Press.

ET - External Tank

HS - Orbiter Heat Shield

TABLE III. - MODEL DIMENSIONAL DATA

MODEL COMPONENT: BODY - BLO		
GENERAL DESCRIPTION: Fuselage, 2A Conper Rockwell Lines VL70-000089"B"	figuration, Lig	htweight Orbiter.
Scale Model = 0.0225		
DRAWING NUMBER: VL70-000089"B", VL70	-000092, 93, 94	"A"
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length - In.	1328.3	29.88675
Max. Width - In. (@ X _o =1528.3)	265.0	5.96250
Max. Depth - In. (@ X _o =1480.52)	248.0	5.5800
Fineness Ratio	5.012	5.012
Area - Ft ²		
Max. Cross-Sectional	456.4	0.23105
Planform		
Wetted		
Base		

MODEL COMPONENT: CANOPY - C5		
GENERAL DESCRIPTION: 2A Configuration	on per Lines VL70)-000092A
Scale Model = 0.0225		
DRAWING NUMBER: VI70-000092A		
DIMENSION	FULL SCALE	MODEL SCALE
Length (Sta Fwd Bulkhead)	391.0	8.79750
Max Width (T.E. Bulkhead)	560.0	12.6000
Max Depth (WPZ = 421.922 to Z	=500)	
Fineness Ratio		
Area		
Max Cross-Sectional		48,
Planform		
Wetted		
Base		

MODEL COMPONENT: MANIPULATOR HOUSING -	סַת	
GENERAL DESCRIPTION: 2A Configuration	n per Rockwell	Lines VL70-000
Scale Model = 0.0225		
DRAWING NUMBER VL70-000093		
DIMENSION:	FULL SCALE	MODEL SCALE
Length - In.	881.00	19.82250
Max Width - In.	51.00	1.14750
Max Depth - In.	23.00	0,51750
Fineness Ratio		
Area		
Max Cross-Sectional		
Planform		
Wetted	<u> </u>	
Base		
Z Fuselage BP = 0.00 WP = 500.0 INFS X 426.0 to 1307.0	INFS	

•		•	
MODEL COMPONENT: F4	BODY FLAP		<u></u>
GENERAL DESCRIPTION:	2A Configurat	ion per Rockwell	Lines VL70-000094
	<u> </u>	<u> </u>	
Scale Model - 0.0	0225		
			÷
DRAWING NUMBER:	VI:70-000094A		
DIMENSION:	•	FULL SCALE	MODEL SCALE
		•	
Length		84.70	1.90575
		265.00	5.96250
Max Width			
Max Depth			
Fineness Ratio			
Area - Ft ²			
Area - rt			
Max Cross-S	sectional		
Planform		142.64	0.07221
TT A.A 3			· · · · · · · · · · · · · · · · · · ·
Wetted			
Base		38.65	0.01957

ENERAL DESCRIPTION: 2A Lightweig	ht Configuration Per Rockwell Lines
VI/70-000094A	
See 3.0 Model = 0.0225	
Scale Model = 0.0225	
DRAWING NUMBER: VL70-000094A	
DIMENSION:	FULL SCALE MODEL SCALE
	mimoran
Length	<u>346.0</u> <u>7.78500</u>
Max Width $X_0 = 1450.0$	108.0 2.4300
Max Depth X _O = 1500.0	113.0 2.54250
Fineness Ratio	
Area	。 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Max Cross-Sectional	
Planform	
Wetted	
Base	
pase.	

MODEL COMPONENT: N8 - OMS NOZZLE			•
GENERAL DESCRIPTION: Basic OMS nozz	le of the 2	A Configurat	lon per
Rockwell Lines VL70-008306 and VL70-00	0089"в"		
Scale Model = 0.0225			
DRAWING NO. VL70-008306, VL70-00008	39"в", SS-AO	0092	
DIMENSIONS:	FULL	SCALE M	ODEL SCALE
Mach No			
Diameter Dex~In.		0.00	1.1250
Diameter Dt \sim In.		N/A	N/A
Diameter Din~In.	2	8.00	0.630
On Degrees	in the second	N/A	N/A
Area - Ft ²			
Max Cross-Sectional		13.635	0.00690
Gimbal Origin	<u> </u>	<u> </u>	
Left Nozzle~In.	1518	-88.0	492
Right Nozzle~In.	1518	+88.0	492
Null Position	P	TTCH	YAW
Left Nozzle - Deg	_15	o 1 : 91	12° 17°
Right Nozzle - Deg	_15	o 1491	.+12 ⁰ 17'
Intersection of Nozzle			
Exit Plane and Nozzle Centerline: - In.	$X_0 = 15$	70.75	35.34188
ORIGINAL PAGE IS	Y _o = ±		2 . 53312
OF POOR QUALITY	Z _o = 5		11.41312

MODEL COMPONENT: NOZZLE - NP6			
GENERAL DESCRIPTION: MPS Nozzle, Config	uration 2A		
W. Z. J. Garala . O. 0225			
Model Scale - 0.0225			
DRAWING NO: VL70-000089B			
DEMENSIONS: (for one nozzle)	FULL SCALE	MOD	EL SCALE
Mach No			
Diameter Dex~In	92.0		2.070
Diameter Dt ~In			
Diameter Din~In			
On Degrees			
Area - Ft			
Max Cross-Sectional	46.1639	<u> </u>	0.02337
Gimbal Origin	X _O	Yo	Z ₀
Upper Nozzle ~ In Fs	1445	0	443
Bottom Nozzle~In Fs	1468.17	+53	543.36
Null Position	PITCH	·	YAW
Upper Nozzle - Deg.(Pitch ±11°, Yaw ±9°)	16	0	
Bottom Nozzle - Deg.(Pitch +110 Yew +00)	10	<u>3</u>	5 Outb'd

MODEL COMPONENT:	/ERTICAL - V5	(Lightweig	tht Orbiter	Configuration)
GENERAL DESCRIPTION: Co	enterline Ver	tical Tail,	Doublewedg	ge Airfoil with
Rounded Leading Ed	ge			
Scale Model = 0.0	225			
DRAWING NUMBER:	V1.70-000095			
DIMENSIONS:		j	FULL SCALE	MODEL SCALE
TOTAL DATA				
Area (Theo) Ft ² Planform			413.25	0.20921
Span (theo) In		•	315.72 1.675	7.10370 1.675
Aspect Ratio Rate of Taper		•	0.507	0.507
Taper Ratio Sweep Back Angles	narraes		0.404	0.404
Leading Edge	, degrees	,	45.000	45.000
Trailing Edge 0.25 Element I	ine		26.249 41.130	26.249 41.130
Chords:		•		(ola or
Root (Theo) WF Tip (Theo) WP	•		268.50 108.47	6.0412 <u>5</u> 2.44058
MAC (INEO) WI			199.81	4.49572
Fus. Sta. of .			1463.50	32.928 <u>75</u> 14.29924
W. P. of .25 M B. L. of .25 M			635.522	0.00
Airfoil Section				***************************************
Leading Wedge			10.000	10.000
Trailing Wedge			14.920 2.00	14.920 0.04500
Leading Edge H Void Area	adius		13.17	0.00667
Blanketed Area			12.67	0.00641

TABLE III. (Continued)

MODEL COMPONENT: WING-W 87 NEW LIGHTWEIGH	T ORBITER	
GENERAL DESCRIPTION: Orbiter Configuratio	n per Lines VL(O	-000093
Whome. Dibedral angle is defined at the 1	ower surface of '	the wing at
the 75.33% element line projected into a	plane perpendicu	lar to the FRL)
Scale Model = 0.0225		
TEST NO.	DWG. NO. VL7	
DIMENSIONS:	FULL SCALE	MODEL SCALE
TOTAL DATA		
Area (Theo.) Ft	•	
Planform	2690.00	<u> </u>
Span (Theo.) In.	936.68	21.07530
Aspect Ratio	2.265	2.265
Rate of Taper	1.177	1.177
Taper Ratio	0.200	0.200
Dihedral Angle, Degrees	3.500	3.500
Incidence Angle, Degrees	3.000	3.000
Aerodynamic Twist, Degrees	+3.000	+3.000
Sweep Back Angles, Degrees		
Leading Edge	45.000	45.000
Trailing Edge	-10.24	-10.24
0.25 Element Line	35.209	35.209
Chords:		
Root (Theo) B.P. = zero	689.24	15.50790
Tip, (Theo) B.P. 468.341	137.85	3.10162
MAC	474.81	10.68322
Fus. Sta. of .25 MAC	1136.89	25.58002
W.P. of .25 MAC	299.20	6.73200
B.L. of .25 MAC	182.13	4.09792
THE PARTY TO A SEE A		
Area (Theo) Ft2	1752.29	0.88710
Span, (Theo) In. BP108 to 468.341	720.68	16.21530
Aspect Ratio	2.058	2.058
Taper Ratio	0.2451	0.2451
Chords		
Root BP108	562.40	12.6540
Tip 1.00 b/2	137.85	3.10162
MAC	393.03	8.84318
Fus. Sta. of .25 MAC	1185.31	26.66948
W.P. of .25 MAC	300.20	6.75450
B.L. of .25 MAC	251.76	5.66460
Airfoil Section (Rockwell Mod NASA)		<u> </u>
Root b/2 = .425	0.10_	0.10
Tip b/2 = 1.00	0.12	0.12
Data for (1) of (2) Sides		***************************************
Leading Edge Cuff		
Planform Area Ft ²	120.33	0.06092
Leading Edge Intersects Fus M.L.@ St	The second secon	12,60000
Leading Edge Intersects Wing @ Sta	1035.0	23.28750
THEWATTHE THE THEOTOGRAM WALLO OF THE		

TABLE III. (Continued)

MODEL COMPONENT: T8 - EXTERNAL TANK		
GENERAL DESCRIPTION: 2A Configuration p	er Rockewell Line	es:
VL78-000018 and VL72-000061"A" Body of	Revolution	
Scale Model = 0.0225		
DRAWING NO: VL78-000018		
DIMENSION:	FULL SCALE	MODEL SCALE
Length - In.	1989.0	44.75250
Max Width (Dia.) - In.	324.0	7.2900
Max Depth		
Fineness Ratio L/D	6.1389	6.1389
Area - Ft ²		
Max Cross-Sectional	572.56	0.28986
Planform		·
Wetted		
Base		
REF: FS (Orbiter) = 0.00 = Tank Station 75 WP (ET) = WP 400 (Orbiter) - 344.4 IF RP (Orbiter) = 0.00 = 0.00 ET	52.2 IN. FS I. FS = 55.6 IN. 1	fs

TABLE III. (Continued)

MODEL COMPONENT: BOOSTER SOLID ROCKET MOTOR - S ₁₇						
GENERAL DESCRIPTION: 2A Configuration per Rockwell Lines VL77-000012						
and VL72-000061A, but with an MCR 200 (Con						
110011110011110111111111111111111111111						
Body of Revolution: Data for (1) of (2) s	ides.					
DRAWING NUMBER:						
		remme GGATTS				
DIMENSION:	FULL SCALE	MODEL SCALE				
	1932.00	43.470				
Length in.						
Max Width (Dia) - in. BSRM Tank	142.00	3.1950				
Max Depth (Dia) Aft Skirt	192.0	4.320				
Fineness Ratio L/D	7.459	7.459				
Area Ft ²						
	109.978_	0.05568				
Max Cross-Sectional	109.910	0.0///				
Planform						
Wetted						
Base						

REF:

FS (Orbiter) = 0.00 = 747.99 in. ET = 200.0 BSRM WP (BSRM) = 400 - 344.413 = 55.587 in. FS BP (Orbiter) = 0.00 = 0.00 = 243.0 BSRM

TABLE III. (Concluded)

MODEL COMPONENT: NOZZLE - NO			·
GENERAL DESCRIPTION: MCR 0200, Config	guration	3A, 7:1 Exp	ansion Ratio
BSRM Nozzle Attached to a Configuration	2A BSRM.		
Model Scale = 0.0225			
DRAWING No: VL77-000036A	<u> </u>		
DIMENSIONS: (For one nozzle)	FUL	L SCALE	MODEL SCALE
Mach No			
Diameter Dex ~ In (One Nozzle)	1	41.3	3.179
Diameter Dt ~ In		**************************************	
Diameter Din ~ In			
On Degrees			
Area - Ft			
Max Cross-Sectional		108.896	0.055
Gimbal Origin	*x _s	Yo	Z _o
Left Nozzle ~ In. F.S.	1796.15	<u>-243</u>	400
Right Nozzle ~ In. FS	1796.15	+243	400
Null Position - Deg.		PITCH	WAY
Left Nozzle (Pitch ±50, Yaw ±50)	0_	0
Right Nozzle (Pitch ±5°, Yaw ±5		0	0

^{*}Gimbal origin shown is for the flight vehicle; for the model, the origin is at $X_s = 1764.5$ due to interface with the 2A Configuration ESRM.

TABLE IV

COMPARISON OF UTP-3001 AND LPC-580C PROPELLANT COMBUSTION PRODUCTS

	UTP-3001	LPC-580C
Combustion Temp., T _c (OR)	100	6330
Specific heat, C _P (Btu/lb-OR)	-	0.435
Molecular Weight, M (lbs/mole)	27.3	26.8
8 effective	1.18	1.17
Combustion Products (Mole 5)		
CO2	1	2
H ₂	28	28
H ² O	15	12
N ₂	8	8
CO	25	22
HCl	13	12
Al ₂ 0 ₃	7	8
Other (H, Cl, OH, AlCl ₂ , etc.)	6	8
	100%	100%

a. 2.25% Scale Space Shuttle Base Heating Model installed in Calspan Ludwieg Tube MACH 4.5 Nozzle Figure 1. Model Sketches and Photographs.

b. 2.25% Scale Space Shuttle Base Heating Model Figure 1. Continued.

c. 2.25% Scale Shuttle Base Heating Model - Outline and Cross-Sectional Views Figure 1. Continued.

d. 2.25% Scale Space Shuttle Base Heating Model - End View Figure 1. Continued.

e. Short-Duration Ludwieg Tube Wind Tunnel Figure 1. Continued.

化氯化甲磺磺酚甲二二甲基甲基甲二甲酚磺基甲基甲甲基甲甲基甲

g. Ludwieg Tube Free Jet Test Rhombus for MACH 4.5 Nozzle Figure 1. Continued.

Figure 2. Heat Transfer Gage Spectral Absorptivity.

a. External Tank
Figure 3. Model Instrumentation Locations.

		Inches	Inches		
	NUMBER	"R" Model Scale	"R" Full Scale	"0" Degrees	GAUGE TYPE
					Col. Com
OF OF	1	2.750	122.2	0	Std. Gage
ليسمد	2	3.645	162.0	7	Radiation gauge
` ₽ €	3	2.750	122.2	270	Std. Gage
22	4	2.750	122.2	180	
GINAL PAGE IS POOR QUALITY	5	1.980	0.88	180	. ↓
٠ 1	6	1.770	78.7	180	Pressure
PAGE	7	1.000	44.4	180	Std. Gage
25	8	0.480	21.3	180	Radiation gauge
프 필	9	0	0	0	Std. Gage
, d <u> </u>	10	e.250	11.1	0	Pressure
1.77 \$33	11	0.458	20.8	270	Gas temperature probe
	12	0.375	16.7	90	Pitot probe
	13	1.000	44.4	0	Std. Gage
	14	1.770	78.7	0	Pressure
8	15	1.980	88.0	0	Std. Gage
_	16	1.812	80.5	270	Pressure
	17	2.290	101.8	270	Std. Gage
	18	1.300	5 7. 8	270	Radiation gauge
	19	1.812	80.5	225	Std. Gage
	20	1.812	80.5	315	
	21	2.734	121.5	315	4
	129	2.750	122.2	12 1/2	Radiation gauge
	130	2.750	122.2	45	
	131	2.750	122.2	90	↓
•	156	2.948	131.0	0	Pressure
	157	2.948	131.0	135	
	158	2.948	131.0	180	
	159	2.948	131.0	270	
	160	2.948	131.0	315	
	161	1.463	65.0	135	*
	170	2.948	131.0	45	Pressure
	171	2.948	131.0	90	Pressure
	172	2.948	131.0	225 90	Pressure
	28	2.290	101.8	90	Std. Gage

a. Continued Figure 3. Continued.

82

EXTERNAL TANK SIDEWALL

NUMBER	"X" Inches Model Scale	"X" Inches Full Scale	"R" Inches Model Scale	"R" Inches Full Scale	"0" DEGREES	GAUGE TYPE
22	0.843	37.47	3.645	162	45	Pressure
23	8.593	381.91	3.645	162	45	ļ
24	0.843	37.47	4.705	209.1	315	Pitot Probe
25	8.593	381.91	4.705	209.1	315	. .
26	0.843	37.47	3.645	162	315	Std. Gage
27	0.843	37.47	3.645	162	280	Ĭ.
37	3.843	170.80	3.645	162	280	Ą

ORBITER FUSELAGE

Number	M.S. Inches	Inches X _O Full Scale	Radial Position	Gauge Type
39	32.440	1441.778	On lower C	

POSITION 39 NOT INSTRUMENTED FOR THIS TEST SERVES

a. Continued Figure 3. Continued.

. Na kararra di di di angangan na sa mangan mangan na mangan na mangan na mangan na mangan na mangan na manari sa

b. Engine Heat Shield (Body Flap)
Figure 3. Continued.

NOTE: GAUGE 56 IS IN THE POSITION SHOWN BUT ON THE RIGHT-HAND SSRM

c. BSRM Nozzle and Shroud Figure 3. Continued.

NUMBER	BSRM		SURFACE	AXIAL LOCATION	0 DEGREES	GAUGE TYPE
40	Left		External	Inlet	0	Pressure
41	Derc	2	Exceller	Exit	0	riessure
42		100	Internal	Inlet	0	
			Tiretuar	Exit	0	
43		1			•	
44				Inlet	90	J
45		1.	, Y	Exit	90	
46			-	* Shroud Length	0	Pitot Probe
47	:. 		External		45	Radiation Gauge
48	,	•	:	Inlet ²	0	Std. Gage
49	.i.e			Exit	0	1
50			Internal	Inlet	0	
51			1	Exit	0	
52			External	Inlet	90	
53	4	•	+	Exit	90	\
	٠.					•
				BSRM NOZZLES		
54	(#4)	Left	External	Exit	0	Pressure
55	.11	1	Internal		90	
56	(#5)	Right	↓	4	270	∜

e. Continued
Figure 3. Continued.

^{*} Pitot Probe #46 is in the same plane as the shroud inlet and at the same y & z locations as the other pitot probes (24, 25, & 31)

NOTE: THE HEAT TRANSFER GAUGES ON EACH NOZZLE ARE ORIENTED TOWARDS THE CENTER OF THE BASE HEAT SHIELD

d. SSME Firing Nozzle
Figure 3. Continued.

	<u> </u>	AXIAL		"O"	
NUMBER	NOZZLE	LOCATION	SURFACE	DEGREES	GAUGE TYPE
<u></u>					
67	(#2) Lower Left	1.0 L	Internal	0	Pressure
68	(#2) Lower Left	2/9 L	External	180	Contoured Gauge
69	(#2) Lower Left	5/9 L	External	180	Contoured Gauge
70	(#2) Lower Left	8/9 L	External	180	Contoured Gauge
71	(#2) Lower Left	8/9 L	External	150	Contoured Gauge
168	(#2) Lower Left	8/9 L	External	210	Contoured Gauge
165	(#2) Lower Left	0.2 L	External	180	Pressure
166	(#2) Lower Left	0.6 L	Lyternal	180	Pressure
			4		e e e e e e e e e e e e e e e e e e e
133	(#3) Lower Right	1.0 L	Internal	0	Pressure
50	(32) Harris	3.0.1	Internal	0	Pressure
72	(#1) Upper -	1.0 L		_	
73	(#1) Upper	2/9 L	External	180	Contoured Gauge
74	(#1) Upper	5/9 L	External	180	Contoured Gauge
75	(#1) Upper	8/9 L	External	180	Contoured Gauge
76	(#1) Upper	8/9 L	External	150	Contoured Gauge
169	(#1) Upper	8/9 L	External	570	Contoured Gauge

I. is the distance from the base heat shield to the end of the nozzle.

d. Continued Figure 3. Continued.

e. SSME Non-Firing Nozzle Figure 3. Continued.

NUMBER	AXIAL LOCATION	SURFACE	"O" DEGREES	GAUGE TYPE
				The second secon
77	2/9 L	External	Û	Contoured Gauge
78	5/9 1,	External	O ,	Contoured Gauge
79	8/9 L	External	0	Contoured Gauge
80	8/9 L	External	30	Contoured Gauge
134	8/9 L	External	15	Pressure
135	2/9 L	Internal	180	Contoured Gauge
136	5/9 L	Internal	180	Contoured Gauge
1.37	8/9 L	Internal	180	Contoured Gauge
138	8/9 L	Internal	210	Contoured Gauge
139	At Throat	_		Pressure
140	8/9 I.	Internal	150	Contoured Radia-
				tion Gauge (Not Provided)

L is the distance from the base heat shield to the end of the nozzle.

ORIGINAL PAGE IS OF POOR QUALITY

e. Continued
Figure 3. Continued.

POSITION 167 AND ALL
RIGHT OMS POD POSITIONS
NOT INSTRUMENTED FOR
THIS TEST SERIES

O STATIC PRESSURE TAP

STD. HEAT TRANSFER GAUGE

HADDATION HEAT TRANSFER GAUGE

INDICATES ADDED INSTRUMENTATION

INDICATES ADDED INSTRUMENTATION

f. Orbiter Base Heat Shield Figure 3. Continued.

BASE H	AT SHIELD				
	"Y" INCHES	"Y" INCHES	"Z" INCHES	"Z" INCHES	
NUMBER	MODEL SCALE	FULL SCALE	MODEL SCALE	FULL SCALE	GAUGE TYPE
86	2.048	91.0	-1.840	-81.8	Pressure
87	1.073	47.7	-2.000	-88.9	Pressure
88	0		-1.813	-80.6	Pressure
89	0	0	-1.190	-52.9	Pressure
90	0		-0.468	-20.8	Pressure
91	0.218	9.7	-0.153	- 6.8	Pressure
92	0.465	20.7	0.045	2.0	Pressure
93	1.025	45.6	0.718	31.9	Pressure
$\widetilde{\Omega_4}$	-0.520	-23.1	0.613	27.2	Pressure
95	0.812	36.1	1.330	59.1	Pressure
96	-2.350	-104.4	0.230	10.2	Radiation Gauge
97	-2.350	-104.4	-1.030	-45.8	Radiation Gauge
98	-1.250	-55.6	-2.000	-82.9	Radiation Gauge
99	J	0	-1.000	-1-14-14	Madiation Gauge
100	-0.570	-25.3	-0.400	-17.8	Radiation Gauge
101	0	0	0.150	6.7	Radiation Gauge
102	2.282	101.4	-1.933	− ε 5.9	Std. Gage
1.03	1.250	55.6	-2.000	-88.9	
104	-	0	-2.000	-88.9	
105	0	0	-1.628	-72.4	
106	0.780	34.7	-1.880	-83.6	
107	0.450	20.0	-1.550	-68.9	
108	0	0	-1.377	-61.2	
109	0	<u> </u>	-0.750	-33.3	All the service of th
1.10	2.350	1C4.4	-0.281	-12.5	
111	0 .555.	0.0	-0.281	-12.5	satist of the symmetry
112	0.630	23.0	-0.170	- 7.6	Make the Miles of the Control
113	1.093	48.6	0.175	7.6	pri a jem iya diriba iya
114	2_020	89.8	0.560	24.9	
115	0	0	0.400	17.8	ing Audi Hila dan Kal
11.6	0.410	18.2	0.500	22.2	
117	1.255	55.3	1.330	59.1	
202	0.350	15.6	-0820	-36.4	
162	2.363	105.0	ი. 548	2h.4	Fressure
163	2.350	104.4	-1.025	-45.6	Pressure
164	0.810	36.0	-0.149	- 6.6	Pressure Std. Gage
203	0		2.266	100.7	_ Did. Gage

ORIGINAL PAGE IS OF EOOR QUALITY

f. Continued Figure 3. Continued.

	BASE HEA	T SHIELD (Cont	inued)			
ganaan ene T		"Y" INCHES	"Y" INCHES	"Z" INCHES	"Z" INCHES	al <u>vana</u> i s
	NUMBER	MODEL SCALE	FULL SCALE	MODEL SCALE	FULL SCALE	GAUGE TYPE
	81	-2.363	-105.0	+0.548	24.4	Pressure
	82	-2.350	-104.4	-1.025	-45.6	Pressure
	83	-2.048	-91.0	-1.840	-81.8	Pressure
	84	-1.360	-60.4	+2.100	93.3	Pressure
	85	+1.360	60.4	+2.100	93.3	Pressure
	152	+2.750	122.2	+1.560	69.3	Pressure
排放 医二氏	150	-2.282	-101.4	-1.933	-85.9	Std. Gage
	151	-2.350	-104.4	-0.281	-12.5	Std. Gage
	1.8		gradient being being being being	en gasting et fila en en	ear Agreement of the area.	

	OMS POD					
ali to the first section		"Y" INCHES	"Y" INCHES	"Z" INCHES	"Z" INCHES	
	NUMBER	MODEL SCALE	FULL SCALE	MODEL SCALE	FULL SCALE	GAUGE TYPE
	58	-2.440	-108.4	1.250	55.6	Radiation
	5 9	2.750	122.2	1.560	69.3	Standard
	57	-2.750	-122.2	1.560	69.3	Pressure

현대 이 교통 소설하다 중 하이지는 다른 호텔 전략에 맞은다고요 중요 중요 이번에 보면 보는 사람들은 요즘 사용이 되는 것을 보는 것을 다 없다.

통하다. 그 30 아들아 영화하다는 연합하다는 사람들은 사람들은 가는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들이 되었다.

늘 이 나는 얼마나는 마양을 가고 있다고 있다. 무슨 사람들이 되었다고 있는 그는 사람들이 모양을 받는데 그렇게 되었다.

· 中国的大学的发展的发展的发展。 电影 医多种 医多种 医多种 医多种

f. Continued Continued. Figure 3.

OMS POD

NUMBER	"X" INCHES MODEL SCALE	"X" INCHES FULL SCALE	GAUGE TYPE
60	0.968	43.0	Std. Gage
61	0.281	12.5	1
62	0.281	12.5	
63	0.281	12.5	. 7

OMS NOZZLE (ONE ONLY)

NUMBER	AXIAL LOCATION	SURFACE	O DEGREES	GAUGE TYPE
64	At Throat			Pressure
65	End of Nozzle	External	0	Contoured Gauge
66	End of Nozzle	Internal.	180	Contoured Cauge

ORIGINAL PAGE IS OF POOR QUALITY

f. Continued
Figure 3. Continued.

HIGH TEMPERATURE HEAT TRANSFER GAUGE

h. Orbiter and External Tank Heated Base Plates Figure 3. Continued.

	TANK HEATED B	HOW THOUSE				
NUMBER	"R" INCHES	"R" INCHES	"O" DEGREE	S GAUGE TY	TPE	
		0	0	High Ter	mperature	Gauge
141	0	80.0	Ö		mperature	
142	1.800	80.0	180		mperature	
143	1.800		270		mperature	
144	1.800	80.0	315		mperature	
145	1.800	80.0	356		mperature	
146	2.710	120.4			mperature	
147	2.710	120.4	180		mperature	
148	2.710	120.4	270		mperature	
149	2.71.0	120.4	315	urau ter	inheracare	uaugo
NUMBER	RRITER BASE H	CAT SHIELD "Y" INCHES FULL SCALE	"Z" INCHES MODEL SCALE	"Z" INCHES FULL SCALE	GAUC	E TYPE
NUMBER	MODEL SCALL	"Y" INCHES FULL SCALE			GAUC High Tem	
	"Y" INCHES	"Y" INCHES	MODEL SCALE	FULL SCALE		y. Gaug

h. Continued Figure 3. Continued.

Figure 4. Representative SSME Operating Data.

Figure 5. Composite Record of Tunnel and Model Operating Data.

Figure 6. 19-OTS SSV Model Recovery Temperature Determination Q142 on E/T Dome.

Figure 7. Representative Pressure and Heating Rate Distributions on the Orbiter Heat Shield.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 9. Wire Transient Resistance Data for Run 80-D at Location 11.

Figure 10. Wire Transient Resistance Data for Run 81 at Location 11.

Figure 11. 19-OTS Recovery Temperature Measurements on ET Tank.

Figure 12. 19-OTS Thin Wire Convection Heating Coefficients on ET Tank.

Figure 13. 19-OTS Recovery Temperature Measurements on Orbiter.

110

Sym Run Probe Pos Comments

Figure 14. 19-OTS Thin Wire Convective Heating Coefficients Measurements on Orbiter.

120

Altitude - Kft

130

140

150

100

10-

Figure 15. Transient Wire, Heating and Pressure Data on the ET Dome for Run 80-D.

Figure 16. Transient Wire, Heating and Pressure Data on the ET Dome for Run 81.

APPENDIX A

TABULATED SOURCE DATA:

Gas Recovery Temperatures

MEASURED THIN WIRE RESISTANCE AND THERMOCOUPLE DATA AT STEADY STATE CONDITIONS

			Shor	t Wire (SW)	Lon	g Wire (LW)	Thermo	
Run #	Probe Location	Read Time (msec)	R _{INITIAL} (300°K) (Ω)	ΔR (Ω)	RTOTAL (Ω)	R _{INITIAL} (300°K) (Ω)	ΔR (Ω)	R _{TOTAL} (Ω)	(SW) ∆e (mv)	(IW) <u>∆</u> e (mv)
77-A 78 79 80-B 80-C 80-D 81 82 83 84 85 86 87 88 89-A 89-B 91-A 91-B 91-C 92 93-A 93-B	11-ET 101-HS	50-55 40-50 40-45 45-50 40-45 45-50 45-50 45-50 45-50 45-50 45-50 45-50 45-50 35-45 38-45 38-45 38-45 35-40	33.00 32.49 28.35 28.35 28.15 28.15 28.15 28.15 29.80 29.80 29.80 28.00 33.80 33.80 33.80 33.80 33.80 33.80 33.80 33.80 33.80 33.80 33.80 33.80 33.80	10.00 2.87 5.00 1.50 0.80 5.90 7.84 8.40 6.76 5.60 12.20 7.20 14.68 10.60 10.40 10.40 10.40 10.80 10.80 16.00	32.50 39.40 46.00 41.00 48.80 44.40 47.60 47.60 45.70 44.15 48.55	50.40 50.40 50.40 50.40 62.30 62.30 69.25 69.25	20.00 11.75 15.00 6.60 2.20 23.20 24.80 26.80 17.60 14.88 19.00 11.30 21.00 29.50 22.00 20.00 27.00 16.20 26.00 30.00 12.50 22.00 38.00	79.75 78.25 79.75 71.35 60.45 83.05 93.90 70.25 67.53 81.25 61.70 71.40 62.40 79.90 72.40 77.40 66.60 88.30 92.30 81.75 91.25	0.25 0.15 0.10 0.25 0.10 0.25 0.42 0.15 0.30 0.33 0.50 	0.25 0.15 0.10 0.25 0.10 0.25 0.55 0.25 0.30 0.55 0.90 0.80 0.55 0.60 0.45

APPENDIX B

TABULATED SOURCE DATA:
HEAT TRANSFER AND PRESSURES

This Appendix presents pressure and heat transfer data for the 98 runs which produced useful data during the IH5 test program.

ORIGINAL PAGE IS OF POOR QUALITY	MACH F ALTITE ANGLE TOB=	URATION UMBER= DF=142	4.5 . K FT ACK= O DEGR DEG F	EES		RE/FT T1F PC123= 16 PC4 0=0	156 PSIA 20.3 DEG F MES 10(-4): 575.0 PSIA D PSIA	= 5°15){-4}= 10°7	'3	
L PAG		GAGE	P .	P/PINF	p-PINF	P/PCL	GAGE	Q	GAGE	Q-R
LITY 114		10 16 156 157 158 159 170 171	COLD) 0.0109 0.0109 0.0114 0.0153 0.0112 0.0131 0.0098 0.0099	0.698 0.679 0.698 0.730 0.980 0.717 0.839 0.628 0.634	-0.00472 -0.00502 -0.00472 -0.00422 -0.00032 -0.00442 -0.00252 -0.00582 -0.00572	1.000 0.972 1.000 1.046 1.404 1.028 1.202 0.899 0.908	1 3 4 5 7 15 17 19 20 21 28	0.06 0.04 0.00 0.06 0.19 < 0.06 0.05 ~ 0.05 0.0 0.0 0.0	18 129 130 131	0.04 0.0 0.0 0.0
	EXTERNAL TAN	K SIDEH	ALL				37	0.=0		
	BODY FLAP	.*					29 33 34 35 206	0.87 0.0 0.0 0.0 0.0		

SSME NOZZLE #1

2-2400

RUN	6	CONTI	NUED			•					
			GAGE	p	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
SSHE	NOZZ	ZLE #2	2								
			67	2.4400							
SSME	NOZ	ZLE #3									

BASE HEA	T SHIE	LD (CI	JLD 9					
		82					202	2 •€8
		90	0.0257	1.646	0.01008	7,000		

2.0200

TIEW INITED STORY	•					
		·		•	124 125	0.08 0.14

RUN NUMBER= 14C CONFIGURATION= OT HACH NUMBER= 4.5 ALTITUDE=142. K FT ANGLE OF ATTACK# O DEGREES TOB= 80.0 DEG F 80-0 DEG F TET=

POINF= 4.42 PSIA PINF= 0.0153 PSIA TOINF= 482.0 DEG F RE/FT TIMES 10(-4)= 4.80 PC123= 1594.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 10.44

		GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERNAL TANK	BASE (C	0-0096	0.628	-0.00568	1.000	9	0.11		
911	BODY FLAP						29 33 34 35 204 206	0.86 0.31 0.0 >5.95 2.14 0.33		
	LEFT DMS POD	47	f910 o	1-251	0.00383		63	0.18	5B	0.0

~)(

RUN	14C	CONTINUED
-----	-----	-----------

GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT SHIELD (CO	LD)							
82 86 88 89 90 91 92 93 95 162 164	0.0199 0.0168 0.0170 0.0250 0.0455 0.0316 0.0249 0.0201 0.0201 0.0201	1.303 1.100 1.113 1.637 2.979 2.069 1.631 1.316 1.316 1.126	0.00463 0.00173 0.00173 0.00973 0.03023 0.01633 0.00962 0.00483 0.00483 0.00193 0.00383	0.437 0.369 0.374 0.549 1.000 0.695 0.547 0.442 0.378 0.420	102 103 104 105 106 107 108 119 110 150 111 112 113 114 115 116 117 202	0.24 > 1.88 1.75 1.18 1.80 2.64 > 1.63 > 0.28 > 1.93 > 1.92 > 1.92 > 2.36 > 2.36 > 3.64 > 3.64 > 3.64 > 3.64 > 3.64 > 3.65 > 3.65 - 3.65 - 3.65 - 3.65 - 3.65 - 3.65 - 3.65 - 3.65 - 3.65 - 3.65		

ORIGINAL PAGE IS OF POOR QUALITY	RUN NUMBER= 14D CONFIGURATION HACH NUMBER= ALTITUDE=141. ANGLE OF ATTA TUB= 80.0 C	4.5 . K FT ACK= O DEGI DEG F	REES		PINF= 0.0 TOINF= 4 RE/FT TI PC123= 1 PC4 0.0 PC5= 0	4.68 PSIA 0162 PSIA 54.2 DEG F MES 10(-4)= 680.0 PSIA 0 PSIA .0 PSIA NF TIMES 10	: 5.19)(-4)= 10.3	9	
ALII St E	GAGE	p	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERNAL TANK BASE (0.0088	0.545	-0.00736	1.000	9	0.15		
	BODY FLAP								
311						29 204 205	1.05 2.06 0.99		
Ċ	The state of the s	:	•			-:			
	LEFT ONS POD							58	0.17
	57	0.0081	0.502	-0.00805					
	LAFT OMS NOZZLE				·			•	
						65	0.17		
	SSME NOZZLE #1				•				
	72	2.5200		·				•	
	SHE NOZZLE #2		. :				with the state of		

			GAGE	P P/PIN	F P-PINE	P/PCL	GAGE	O	GAGE	Q−I
	BASE	HEAT S	HIELD (CO	LD)			i i			
OF POOR QUA	PA		82 86 88 89 90 91 92 93 95 162 164	0.0161 0.99 0.0130 0.80 0.0119 0.7 0.0250 1.5 0.0444 2.7 0.0257 1.5 0.0242 1.4 0.0163 1.0 0.0199 1.2 0.0182 1.1 0.0208 1.2	04 -0.00317 36 -0.00427 46 0.00883 46 0.02823 89 0.00953 97 0.00803 08 0.00013 31 0.00373 26 0.00203	0=363 0=293 0=268 0=563 1=000 0=579 0=545 0=367 0=448 0=410	102 104 105 106 107 108 109 110 150 111 112	0.26 1.69 1.98 1.98 2.57 5.34 0.35 6.35 6.74 7.45		
IX Y TV	G G		Y. 形 表 さ				115 116 202 151	4,15 2,86 3,79 0,62		

RUN NUMBER= 15
CONFIGURATION= DT
MACH NUMBER= 4.5
ALTITUDE=151. K FT
ANGLE DF ATTACK= 0 DEGREES
TOB= 80.0 DEG F
TET= 80.0 DEG F

POINF= 3.06 PSIA PINF= 0.0106 PSIA TOINF= 331.0 DEG F RE/FT TIMES 10(-4)= 3.76 PC123= 1693.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 16.01

				GAGE	- 1		p	PZP	INF	. Р-	-PINF	PΪ	PCL	GAGE		. Q	GAGE	Q-R
4	EXTER	RNAL	TANK	BASE	(CC	LDI												
	."			10	: I	0.00	90	0 -	851	-0.0	0157	1.	000	ç)	0.11	•	
	EXTE	RNAL	TANK	SIDE	WALL	· .								-				
			: *										•					
22.0	EODY	FLA	P:															
				K			٠.				*,		٠	3: 3:	, .	0.0 0.06	132	0.0
		.: "		: : · .								٠		3! 20	4	0.18		
									÷	•	;			20 20		1.04 0.32		
:	LEFT	DHS	POD							:					· · · · · · · · · · · · · · · · · · ·			* .
				5	7	0.0	163	1.	542	0.	00573			. 6	3	068		
	2 × 2										•						•	
4	EFT	CHS	NOZ	ILE .	1							•		6	5	0.12		
	:	4.4									•			_	-			

SSHE NOZZLE #1

72 2.3400

DIIN	15	CONTINUED

		GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-X
:	SSME NOZZL	E #2								
		67	2.0300							
	SSME NOZZL	E #3								
		133	2.4100							
	BASE HEAT	SHIELD ICC	LD)					0.22	96	0.05
		82	0.0129	1 -220	0.00233	0.268	102	0.23	97	0.0
		86	0.0146	1.381	0.00403	0.304	104	1.53 2.03	99	0.0
		85	0.0139	1.315	0.00333	0.289	105	1.34	,,	
		89	0.0250	2.365	0.01443	0.520	106	2.68		
		90	0.0461	4.550	0.03753	1.000	108	4.76		
		91	0.0274	2.592	0.01683	0.570	109	0,48		
		92	0.0240	2.270	0.01343	0.499	110	0.24		
		93	0.0182	1.721	0.00763	0-378	150 111	6.18		
		95	0.0168	1.589	0.00623	0.349	112	2.29		
		162	0.0152	1-438	0.00463	0.316	113	~1.21		
121		164	0.0180	1-703	0.00743	0.374	115	3.98		
							116	2.64		
							117	0.11		
							202	4.55		
							151	0.65		

是实验,那个我就是有什么情况,我们也不知识的,我们也不知识,我们也不知识,我们也是不知识,我们也是不知识,我们也是不是我们的,我们也是不是不是一个,我们也不是不是 第一种人们也就是我们也是我们的是我们的,我们也可以是我们的我们的,我们也可以是我们的是我们的是我们的,我们也是我们的,我们就是我们的是我们的,我们就是我们的是不

Market of the first territories with the second of the sec

RUN NUMBER= 16A

CONFIGURATION= OT

MACH NUMBER= 4.5

ALTITUDE=169. K FT

ANGLE OF ATTACK= O DEGREES

TOB= 80.0 DEG F

TET= 80.0 DEG F

POINF= 1.50 PSIA PINF= 0.0052 PSIA TOINF= 366.0 DEG F RE/FT TIMES 10(-4)= 1.79 PC123= 1393.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 26.88

			GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTER		BASE 10	0.0060	1.148	0.00077	1.000				
122			57 ELD (1	0.0175 COLD)	3,377	0.01232					
			82 86 88 90 92 93 95 162	0.0080 0.0105 0.0112 0.0127 (?) 0.0131 0.0087 0.0088 0.0090	1.544 2.026 2.161 2.451 2.528 1.675 1.096 1.742 1.847	0.00282 0.00532 0.00602 0.00752 0.00792 0.00350 0.00361 0.00385 0.00439	0.630 0.827 0.882 1.000 1.031 0.683 0.692 0.711	104 105 106 107 108 110 150 112 113 114 115 116 117 202 151	~ 0.32 0.49 0.48 0.79 0.52 0.17 0.0 0.91 ~ 0.43 0.54 ~ 2.9! 1.40 0.24 1.87 0.16		

RUN NUMBER= 19

CONFIGURATION= OTS

25.4000

Q-R

0.85

0.36

0.45

0.45

GAGE

18

129

19 CONTINUED RUN

124

	GAGE	ρ	P/PINF	9-61ME	F/PCL	GAGE	Q	GAGE	Q− R
SSME HOZ									
SSME NOZ	72 71 F #2	1.7800							
33KE 110E	67								
SSME NOZ	ZLE #3								
	133	2.5200							
BASE HEA	T SHIELD (CD)	.a.)					0.00		
						111 202 203	0.90 0.78 0.32		
CRBITER/	TANK STRUT					100	0.0		

ORIGINAL PAGE IS
OF POOR QUALITY

0.0 0.86

RUN NUMBER= 218 CONFIGURATION= DTS MACH NUMBER= 0.0 ALTITUDE=178 K FT ANGLE OF ATTACK= 0 DEGREES

TO8= 80.0 DEG F TET= 80.0 DEG F

PSIA POINF= PINF= 0.0037 PSIA TOINF= 80.0 DEG F RE/FT TIMES 10(-4)= PC123= 1587.0 PSIA PC4 211-0 PSIA PC5= 248.0 PSIA PC123/PINF TIMES 10(-4)= 42.65

GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE	(CDLD)							
10	Q.0183	4.918	0.01458	1.000	9	1.54		
					205	0 •58	132	0.27
					48 49 50 51	0.0 1.26 0.49 0.27 0.57	47	0.0
	C BASE	(BASE (COLD) 10 Q.0183	(BASE (COLD) 10	(BASE (COLD) 10 Q.0183 4.918 0.01458	(BASE (COLD) 10	GAGE P P/FINE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GAGE P P/PINF F-FINE 1702 (BASE (CDLD) 10 Q.0183 4.918 0.01458 1.000 9 1.54 205 0.58 48 0.0 49 1.26 50 0.49 51 0.27	GAGE P P/PINF P-PINF P/OL SWEET COLD) 10 Q.0183 4.918 0.01458 1.000 9 1.54 205 0.58 132 48 0.0 47 49 1.26 50 0.49 51 0.27

LEFT ONS POD

2.120 0.00417 57 0.0079

Accompanies of the Control of The C

orangan arang makan dalam na ketan arang makan dalam ang makan ang makan ang makan ang makan ang makan ang makan dalam d

RUN 218 CONTINUED

	GAGE	P	P/PINH	Ter saf	-∕PCL	GAGE	Q	GAGE	, Q -R
BASE HEAT SH	1ELD (CO 86 88 89 90 91 92 93 95 162 164	0.0060 0.0098 0.0112 0.0189 0.0251 0.0344 0.0102 0.0063 0.0082 0.0082	1.504 2.636 3.010 5.079 6.745 9.245 2.741 1.688 2.214 6.611	0.00609 0.00748 0.01508 0.02138 0.03068 0.00648 0.00256 0.00452 0.02088	0.316 0.519 0.593 1.000 1.328 1.820 0.540 0.332 0.436 1.302	102 103 104 105 106 107 109 110 150 111 112 113 114	0.35 0.69 1.14 1.49 1.12 1.35 2.71 0.77 0.43 2.57 4.23 3.05 1.38 2.93	96 97 101	C.23 O.42 O.53

RUN NUMBER= 21C

CONFIGURATION= OTS
MACH NUMBER= 4.5
ALTITUDE=109. K FT
ANGLE OF ATTACK= 0 DEGREES
TOB= 80.0 DEG F
TET= 80.0 DEG F

POINF= 16.30 PSIA PINF= 0.0563 PSIA TOINF= 354.0 DEG F RE/FT TIMES 10(-4)= 19.62 PC123= 1699.0 PSIA PC4 220.0 PSIA PC5= 238.0 PSIA PC123/PINF TIMES 10(-4)= 3.02

		GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	ų⊸ĸ
	EXTERNAL TANK	BASE	(COLD)				9	0.0		
	EXTERNAL TANK	SIDEW	ALL							
		24	~0.0019	0.034	-0.05438					
127	BDDY FLAP						205	0-84	132	0.30
	BSRM SHROUD	44 46	0-1280 0-7170	2•273 12•732	0.07168 0.66068		48 49 50 51 53	0.0 1.88 1.13 0.27 0.49	47	0.19
	LEFT OMS POD	57 84	0.0699 0.0033	1-241 0-059	0.01358 -0.05301				58	0.60
	SSME NOZZLE #	1 72	2 = 1900							
	SSME NOZZLE A	12 67	0 = 0 6 0 8							

RUN	21C	CONTINUED
-----	-----	-----------

GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
SSHE NOZZLE #3								
133	2.5700							
BASE HEAT SHIELD (CO	LD)							
86 88 92 95 164	0.0896 0.0845 0.0854 0.0819 0.0774	1.591 1.500 1.516 1.454 1.374	0.03328 0.02818 0.02908 0.02558 0.02108	0.001 0.001 0.001 0.001 0.001	102 103 104 105 109 110 150 111 112 113 114 116 117	1.06 1.11 1.50 1.42 1.60 0.50 1.56 1.41 1.28 1.08 1.10 1.07	96 97 99	0.47 0.05 0.62

RUN NUMBER= 238

CONFIGURATION = OTS HACH NUMBER= 4.5 ALTITUDE=123. K FT
ANGLE OF ATTACK= O DEGREES
TOB= 80.0 DEG F
TET= 80.0 DEG F

POINF= 9.61 PSIA PINF= 0.0332 PSIA TOINF= 467.0 DEG F RE/FT TIMES 101-4)= 10.56 PC123= 1645.0 PSIA PC4 284-0 PSIA PC5= 312.0 PSIA PC123/PINF TIMES 10(-4)= 4.95

		GAGE	Р	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q -R
	EXTERNAL TANK	BASE	(COLD)							
		10	0.0789	2 - 376	0.04570	1.000	9	1.81		
	EXTERNAL TANK	SIDER	IALL							
		24	2.2000	66.260	2.16680					
100	BODY FLAP						205	0 #84	132	0.43
	BSRM SHROUD	44 46	0.0864 0.4770	2 ±602 14 ±366	0 =05320 0 =44380		48 49 50 51 52 53	0.10(?) 2.17 1.00 0.50 0.69 0.47	47	0.09 (?)
	LEFT OMS POD	57	0.0531	1.599	0-01990		63	0.31	58	0.81
	LEFT OMS NOZZ	LE.					66	0.18		
	SSME NOZZLE	¥ 1.								
		72	2.4300							

DIIN	23B	CONT	INUED
M > I CA	7.30	LUIT	2100-0

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
5	SHE NOZZLE #2	a =200							
	67	2.5200							
;	SSME NDZZLE #3								
	133	2.6700							
	BASE HEAT SHIELD (CC 86 88 89	0.0721 0.0663 0.0685	2.172 1.997 2.063	0.03890 0.03310 0.03530	1.159 1.066 1.101	102 103 104 105	1.33 1.70 0.91 1.22	96 97 99 101	0.58 0.36 0.56 0.29
	90 92 93 95 162	0.0622 0.0611 0.0683 0.0594 0.0587	1.873 1.840 2.057 1.789 1.768	0.02900 0.02790 0.03510 0.02620 0.02550 0.02530	1=000 0=982 1=098 0=955 0=944 0=941	106 107 108 109	1.62 1.61 1.66 1.22 0.48		
1 20	164	0.0585	1 762	U #UZ 2 3 U	U # 7 * 1 * 1	150 111 112 113	0.92 1.31 0.71 ~ 0.77 1.27		
-						115 116 117 151	1.21 1.07 0.46		

Corona	MACH N ALTITU	URATI URBER DE=13 OF AT 80.0	ON= OT = 4.5 9 K FT./2 TACK= O DEGR) DEG F) DEG F	REES		POINF= 2.23 PSIA PINF= 0.0077 PSIA TOINF= 412.0 DEG F RE/FT TIMES 10(-4)= 2.56 PC123= 808.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 10.46					
- - -		GAGE	Р	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R	
	EXTERNAL TANK	BASE	(COLD)								
	EXTERNAL TANK	10 16 156 157 158 159 170 171 172 SIDE	0.0062 0.0072 0.0072 0.0061 0.0063 0.0073 0.0067 0.0064	0.897 0.800 0.927 0.927 0.787 0.816 0.943 0.872 0.824	-0.00154 -0.00056 -0.00056 -0.00164 -0.00142 -0.00044 -0.00099	1.000 0.892 1.033 1.033 0.877 0.909 1.051 0.971	1 4 7 9 13 15 17 19 20 21	0.0 0.01 0.03 0.04 0.0 0.0 0.05 0.05 0.0 0.03	2 8 18 129 130 131	0.0 0.0 0.0 0.0 0.0 0.0	
	BODY FLAP	23	040550	77020			29	0.36			
							33	0.0			
							34 35	0.03 0.17			
							204 206	0.13 0.0			
	LEFT OMS POD										
		84	4 0,0119	1.541	0.00418		61 62	0=04 0=0			

•

RUN 32 C	DMTINUED
----------	----------

	GAGE	Р	P/PINF	e-FaidF	P/PCL	GAGE	Q	GAGE	Q-R
	SSHE NOZZLE #1								
	72	1.2400							
	SSME NOZZLE #2								
	67	1.2900							
	SSHE NOZZLE #3								
	133	1.3100							
	BASE HEAT SHIELD (CO	JLD)							
	82 9 0	0.0091 0.0257	1.175 3.328	0.00135 0.01798	0.353 1.000	111 202 203	3.79 1.41 0.0		
	CRBITER/TANK STRUT								
70.1						124 127	0.0 0.29		

 _	74	•
- 1	1	ı
	5	١
٠.		

RUN	NUMBER= 33
	CONFIGURATION= Of
	HACH NUMBER= 4.5
	ALTITUDE=139K Fr./2
	ANGLE OF ATTACK= O DEGREES
	TOB= 80.0 DEC F
	TET= 80.0 DEG F

SHE NOZZLE #3

1.2700

1,33

POINF= 2.27 PSIA PINF= 0.0078 PSIA TOINF= 397.0 DEG F RE/FT TIMES 10(-4)= 2.63 PC123= 797.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 10.18

				GAGE	Р	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	O-R
	EXTE	RNAL T	ANK	BASE	(COLD)			+ +				
				10	0+0082	1.047	0.00036	1.000	9	0.06		
	BODY	FLAP										0.0
: '			* .								132	0.0
	LEFT	DMS 1	qoq					+ p*		+ +		
133				57	0.0127	1.623	0.00487		63	0+0	58	0.0
	LEFT	ו צאמ	NOZ ZL	E							٠.	
			+1						66	0,0		
	SHE	NOZZ	LE #1	· .					* .			
				72	1.1700	•	•		73 74	0 = 8 1 0 = 63		
. 2	:			٠					75 76	0.75 0.0		
		NO77	. E. U	,		:						
	SH	NOZZ	.LE **	67	1.2400			•	68	0.70		
		•		υ,			4		69 70	0 -10 0 -91		

RUN 33 CONTINUED

	GAGE	P	P/PINF	P-PIME	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT	SHIELD (CO 86 88 89 90 92 93 95	0.0355 0.0117 0.0127 0.0204 0.0303 0.0158 0.0127	4-536 1-495 1-623 2-607 3-872 2-019 1-623 1-508	0.02/61 0.00387 0.00437 0.01257 0.02247 0.00797 0.00487 0.00397	1.740 0.574 0.623 1.000 1.485 0.775 0.623	102 103 104 105 106 107 108 113	0.10 0.25 0.71 0.0 0.26 0.58 1.05	96 97 99 101	0 ±03 0 •0 0 •0 0 ±03
	162 164	0.0118 6.0170	2.172	0.00917	0.833	117 151	0.26 0.14	:	

RUN NUMBER= 34

CONFIGURATION= OT

HACH NUMBER= 4.5

ALTITUDE=139 K Ft./4

ANGLE OF ATTACK= O DEGREES

TOB= 80.0 DEG F

TET= 80.0 DEG F

POINF= 1.11 PSIA PINF= 0.0038 PSIA TOINF= 343.0 DEG F RE/FY TIMES 10(-4)= 1.35 PC123= 371.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 9.67

	G#	AGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	- H-10-
	EXTERNAL TANK BA	ASE	(COLD)							
		10	0.0039	1.017	0-00006	1.000	9	0.05		
	BODY FLAP						205	0.0	132	0.0
135	LEFT OKS POD	57	0.0070	1.825	0.00316		63	0.0	58	0.0
	LEFT OHS NOZZLE	•					66	0 • 0		
	SSME NOZZLE #1	72	0.5230				73 74 75 76 169	0.36 0.42 0.26 0.17 0.0		
	SSME NOZZLE #2	6	7 0.5790				68 69 70 168	0.55 0.07 0.40 0.0		

RUN 34 CONTINUED

GAGE	P	0/PINF	5-2145	P/PCL	GAGE	Ç	GAGE	Q-R
SSME NOZZLE #3								
133	0.5820							
BASE HEAT SHIELD (CE 86 88 89 90 92 93 95 162	0.0320 0.0052 0.0051 0.0126 0.0130 0.0078 0.0065 0.0065	8.344 1.369 1.335 3.285 3.390 2.031 1.6565 2.305	0.02816 0.00141 0.00128 0.00876 0.00916 0.00395 0.00266 0.00216 0.00216	2.540 0.417 0.406 1.000 1.032 0.618 0.516 0.476 0.702	104 106 108 111 112 113 115	0.29 0.08 0.55 1.32 1.00 0.37 0.75 0.43	96 97 99 101	0.0 0.0 0.0 0.0

RUN NUMBER= 35B

CONFIGURATION= GT

ALTITUDE=142. K FT

MACH NUMBER= 4.5

FOINF= 4.50 PSIA

PINF= 0.0155 PSIA

TOINF= 441.0 DEG F

4)

RUN NUMBER= 35C CONFIGURATION= OT MACH NUMBER= 4.5 ALTITUDE=142, K FT ANGLE OF ATTACKE O DEGREES
TOB= 80.0 DEG F
TET= 80.0 DEG F POINF= 4.49 PSIA PINF= 0.0155 PSIA TOINF= 430.0 DEG F RE/FT TIMES 10(-4)= 5.08 PC123= 1599.0 PSIA PC4 0.0 PSIA PC5* 0.0 PSIA PC123/PINF TIMES 10(-4)= 10.30

		GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERNAL TAN	K BASE	(COLD)							
		10	0.0109	0.702	-0.00463	1.000	9	0-10		
	BODY FLAP								132	0.0
138	LEFT OMS POD) 57	0.0217	1.397	0.00617		63	0.0	58	0.0
	LEFT DMS NOZ	ZZLE					66	0.0		
	SSME NOZZLE	#1 72	2.3000				73 74 75 76 169	1.48 1.01 1.14 0.25 0.0		
	SSHE NOZZLE	67	7 2.3300				68	1.32		
		133	3 2,3900							

RUN 35C CONTINUED

	GA GE	P	P/PINF	P-F: 'YF	P/PCL	GAGE	q	GAGE	Q-R
BASE HEAT	SHIELD (CO 86 88 90 92 93 95 162	0.0390 0.0186 0.0417 0.0509 0.0260 0.0219 0.0225	2.511 1.198 2.685 3.277 1.674 1.410	0.00307 0.00307 0.02617 0.03537 0.01047 0.00637 0.00697	0.935 0.445 1.000 1.221 0.624 0.525 0.540	102 104 106 108 113 114 116 151	0.28 1.11 0.43 2.45 1.68 0.25 ~2.73 0.26	96 97 99 101	0.0 0.0 0.0 0.14
	90 92 93 95	0.0417 0.0509 0.0260 0.0219	2.685 3.277 1.674 1.410	0.02617 0.03537 0.01647 0.00637	1.000 1.221 0.624 0.525	106 108 113 114 116	2.45 1.68 0.25 ~2.73	-	

RUN NUMBER= 49 CONFIGURATION- ST MACH NUMBER= 4.5 ALTITUDE=168. K FT ANGLE OF ATTACK# O DEGREES TOB= 80.0 DEG F TET= 80.0 DEG F

POINF= 1.55 PSIA PINF= 0.0053 PSIA TOINF= 390.0 DEG F RE/FT TIMES 10(-4)= 1.80 PC123= 1383.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 25.91

				GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q -R
	EXTER	NAL	TANK	BASE	(COLD)							
140				10 16 157 159 170 171	0.0054 0.0015 0.0041 0.0056 0.0060 0.0054	1.017 0.290 0.761 1.053 1.132 1.008 0.978	0.0000° -0.00379 -0.00128 0.00028 0.00070 0.00004 -0.00012	1.000 0.285 0.748 1.035 1.112 0.991	1 3 9	0.05 0.03 0.01		
0	BODY	FLA	Р						29 35	0 »53 0 •05		
	SHE	NOZ	ZLE	#l								
				7:	2 2.3000							
	SSME	NO7	ZZLE	#2								
				6	7 2.3300							
	SSME	NO	ZZLE	#3								
				13	3 2.5000)						
	3ASE	HE	AT SI	HIELD	(COLD)							
				8	0.0031			0.382 1.000	111	0.90		

RUN 49 CONTINUED

GAGE P P/PINF P-PIE P/PCL GAGE Q-R

ORBITER/TANK STRUT

127 0.06

ORIGINAL PAGE IS

RUN NUMBER= 50 CONFIGURATION= OT MACH NUMBER# 4.5 ALTITUDE=169. K FT ANGLE OF ATTACK= O DEGREES TOB= 80.0 DEG F TET= 80.0 DEG F

POINF= 1.48 PSIA PINF= 0.0051 PSIA TOINF= 370.0 DEG F
TOINF= 370.0 DEG F
RE/FT TIMES 10(-4)= 1.76
PC123= 1486.0 PSIA
PC4 0.0 PSIA
PC5= 0.0 PSIA
PC123/PINF TIMES 10(-4)= 28.96

		GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Ģ	GAGE	Q-R
	EXTERNAL TANK	BASE	(CDLD)							
142		156 157 158 170 171 172	0.0052 0.0049 0.0051 0.0054 0.0048 0.0044	1.012 0.959 0.994 1.047 0.936 0.856	0.00006 -0.00021 -0.00003 0.00024 -0.00033 -0.00074	0.000 0.000 0.000 0.000 0.000 0.000	1 3 4 5 7 9 15 17 19 21	0.13 0.04 0.06 0.0 0.0 0.07 0.0 0.0 0.0 0.03	16 129 130 131	0.05 0.0 0.03 0.0
	FODY FLAP									
	1001 1201						29 34 35 204 206	0.31 0.11 0.13 0.0 0.0		
	LEFT OMS POD	84	0.0079	1.548	0.00281		62	0.29		
	.SME NOZZLE #	1								
		72	2.0840							

SHE NOZZLE #2

2.1350

GAGE GAGE GAGE

SSME NOZZLE #3

2-1900 133

BASE HEAT SHIELD (COLD)

0.367 1.000 82 90 0.0081 0.0220 1.573 4.288

ORBITER/TANK STRUT

124 126 127 0.0 0.0 0.05

143

ORIGINAL PAGE IS OF POOR QUALITY

RUN NUMBER= 52 CONFIGURATION= DT HACH NUMBER= 4.5 ALTITUDE=168. K FT ANGLE OF ATTACK# O DEGREES TOB= 80.0 DEG F TET= 80.0 DEG F

POINF= 1.56 PSIA PINF= 0.0054 PSIA TOINF# 365.0 DEG F RE/FT TIMES 10(-4)# 1.86 PC123= 1466.0 PSIA PC4= 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 27.20

	GA	AGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q - R
	EXTERNAL TANK B			۸ ۵۵ ۸	-0.00084	1.000	9	0.05		
	BODY FLAP	10	0.0045	U-044	-0.00004	2000				
124									132	0.0
	LEFT DAS NOZZLE						66	0.0		
	SSME NOZZLE #1						73	1.50		
		72	2.0060				74 75 76	1.07 1.20 0.38		
	SSME NOZZLE #2						15	4.55		
	ga 1314 in 19 and day day day of 19 and	67	1.9590				69	0.09		

52 CONTINUED

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT	SHIELD (CO 86 90 93 95 162	LD) 0.0107(?) 0.0208 0.0074 0.0081 0.0080	1.985 3.859 1.375 1.495 1.484	0.00531 0.01541 0.00202 0.00267 0.00261	0.514 1.600 0.356 0.388 0.385	102 103 104 105 107 108 109 110 150 111 112 113 116 117	0.03 0.06 0.54 0.98 0.0 1.42 2.64 0.0 0.05 4.56 1.11 0.79 1.38 0.57	96 97 99	0.0 0.0 0.0

RUN NUMBER≈ 53 CONFIGURATION= OT MACH NUMBER= 4.5 ALTITUDE≈167. K FT ANGLE OF ATTACK= O DEGREES TOB= 80.0 DEG F TET= 80.0 DEG F

POINF= 1.62 PSIA PINF= 0.0056 PSIA TOINF= 400.0 DEG F RE/FT TIMES 10(-4)= 1.88
PC123= 1550.0 PSIA
PC4= 0.0 PSIA
PC5= 0.0 PSIA
PC123/PINF TIMES 10(-4)= 27.69

		GAGE	Р	P/PINF	P-P/NF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERNAL TANK	BASE	(COLD)							
146	:	10 16 156 157 158 159 170 172	0.0071 0.0030 0.0078 0.0076 0.0106 0.0065 0.0088 0.0069	1.272 0.531 1.386 1.351 1.894 1.168 1.565	0.00152 -0.00263 0.00216 0.00196 0.00500 0.0094 0.00316 0.00130	1.000 0.417 1.090 1.062 1.469 0.919 1.230 0.969	1 3 4 5 7 9 15 17 19 20 21	0.05 0.10 0.14 0.10 0.11 0.07 0.0 0.0 0.0 0.02 0.0	8 18 129 130 131	0.0 0.03 0.02 0.0 0.03
	SUDY FLAP						29 33 34 35 206	0.40 0.0 0.0 0.0 0.0		
	LEFT OMS POD						61	0+31		

: ME NOZZLE #1

72 1.9700

RUN 53 CONTINUED

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
SSME NOZZLE	# 2								
	67	1.9300							
SSME NOZZLE	#3								
	133	2.2100							
BASE HEAT SH	IELD (CC	DLD)							
	82 90	0.0079 0.0294	1,406 5,253	0.00227 0.02380	0.268 1.000	111	6,55		

A STATE OF THE STA

147

ORIGINAL PAGE IS OF POOR QUALITY RUN NUMBER= 54 CONFIGURATION= OT MACH NUMBER = 4.5 ALTITUDE=169. K FT ANGLE OF ATTACK= O DEGREES
TOB= 80.0 DEG F
TET= 80.0 DEG F

POINF= 1.49 PSIA PINF= 0.0051 PSIA TOINF= 378.0 DEG F RE/FT TIMES 101-4}= 1.76 PC123= 1564.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 30.38

		GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERNAL TANK	BASE	(COLD)							
148		10 156 157 158 170 171 172	0.0040	0.849 1.014 0.942 1.006 0.878 0.773 0.857	-0.00078 0.00007 -0.00030 0.00003 -0.00063 -0.00117 -0.00074	1.000 1.195 1.110 1.185 1.034 0.911	1 3 4 5 7 9 13 15 17 19 20 21	0.02 0.05 0.10 0.10 0.08 0.05 0.0 0.0 0.0 0.09 0.09	2 8 18 129 131	0.0 0.0 0.0 0.0 0.03
	BUDY FLAP									
							34 35 204	0.03 0.28 1.78		
	LEFT OMS POD	84	. 0.0094	1.824	6 •00 424		61	0.10		
	SSME NOZZLE	#1								
		72	2.1400							
	SSME NOZZLE	#2								
		6	7 2.2800							

RUN 54 CONTINUED

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q -R
SSME NOZZLE	#3								
	133	2.3700							
BASE HEAT SI	HIELD (CO	LD)					*		
	82 90	0.0087 0.0352	1.700 6.838	0.00360 0.03005	0.249 1.000	111	< 6.18 T		
ORBITER/TAN	K STRUT								
						126 127	0.20 0.05		

149

* GIII ~ 6.18 BASED ON QUESTIONABLE CHANNEL CALIBRATION. BASED ON PRIOR CHANNEL CALIBRATION (RUN 51), QIII ~ 4.94

ORIGINAL PAGE IS OF POOR QUALITY RUM NUMBER 55

CONFIGURATION OT

HACH NUMBER 4.5

ALTITUDE 168. K FT

ANGLE OF ATTACK 0 DEGREES

TOS 80.0 DEG F

TET 80.0 DEG F

2.2500

133

POINF 1.56 PSIA PINF 0.0054 PSIA TOINF 370.0 DEG F RE/FT TIMES 10(-4) 1.85 PC123 1598.0 PSIA PC4 0.0 PSIA PC5 0.0 PSIA PC123/PINF TIMES 10(-4) 29.74

		GAGE	þ	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q —R
	EXTERNAL TANK	BASE 10		0.804	-0.00105	1.000	9	0.06		
	BODY FLAP								132	0.0
150	LEFT OHS POD	57	0.0094	1.750	0.00403		63	0.04		
	LEFT OHS NOZZL	.Ε					66	0.0		
	SSME NOZZLE #3	l 72	2.1500				73 74 75 76	1.27 1.07 0.39 0.19		
	SSME NOZZLE #	2 6	7 1.6800				68 69 70	1.87 1.55 5.42		
	SSME NOZZLE #	3								

RUN 55 CONTINUED

GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT SHIELD (CO	LD)							
85 88 89 90 92 93 95 162 164	0.0090 0.0359 0.0463 0.0370 0.0140 0.0084 0.0096 0.0086	1.677 6.682 8.618 6.887 2.606 1.569 1.778 1.603 2.271	0.00364 0.03053 0.04093 0.03163 0.00863 0.00306 0.00418 0.00324 0.00383	0.244 0.970 1.251 1.000 0.378 0.228 0.258 0.258 0.233	102 103 104 105 107 108 110 110 111 112 113 114 115 116 117	0.05 0.23 >1.52 >3.63 2.05 7.97 10.60 0.0 0.05 4.68 >1.80 0.91 0.55 0.86 1.16 0.35 0.13	96 97 99	0.05(?) 0.0 0.0

RUN NUMBER= 56

CONFIGURATION= OT
MACH NUMBER= 4.5
ALTITUDE=167. K FT
ANGLE OF ATTACK= O DEGREES
TOB= 80.0 DEG F
TET= 80.0 DEG F

1.8900

133

POINF= 1.65 PSIA PINF= 0.0057 PSIA TOINF= 359.0 DEG F RE/FT TIMES 10(-4)= 1.97 PC123= 1461.0 PSIA PC4= 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 25.71

				G#	GE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERN	IAL	TAN	K BA	SE	(COLD)							
					10	0.0052	0.910	-0.00051	1.000	9	0.05		
	LEFT O	ЖS	POC)									
152					57	0.0082	1.450	0.000056					
10	LEFT O	MS	NOZ	ZLE									
										66	0.0		
	SSHE N	1022	LE	#1									
					72	1.8000				73 74	1.00 >2.81		
										75	1.39		
										76	0.45		
	SOME N	1022	LE	#2									
					67	1.3900				68 69	0.87 1.79		
										70	1.28		
	SSME N	NOZZ	LE	#3									

RIEJ	56	CONTINUED
KI W	20	しじは インパントン

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	อ	GAGE	Q R
BASE HEAT	SHIELD (CG 86 88 89 90 92 93 95 162 164	0.0096 0.0086 0.0098 0.0297 0.0384 0.0058 0.0095 0.0095	1.687 1.515 1.724 5.226 5.756 1.028 1.672 1.576 3.466	0.00391 0.00293 0.00412 0.02402 0.03272 0.00016 0.00382 0.00328 0.01402	0.323 0.290 0.330 1.000 1.293 0.197 0.320 0.302 0.663	102 103 104 105 107 108 109 110 150 111 112 113 115 116	0.03 0.03 0.37 0.77 0.72 0.83 1.85 0.45 0.45 0.45 0.45 0.45 0.45 0.26 7 4.69	96 97 99	0.04 0.0 0.0

153

ORIGINAL PAGE IS OF POOR QUALITY RUN NUMBER= 57 CONFIGURATION= OT MACH NUMBER= 4.5 ALTITUDE=142. K FT ANGLE OF ATTACK= 0 DEGREES TOB= 80.0 DEG F TET= 80.0 DEG F

POINF= 4.45 PSIA 91HF= 0.0154 PSTA TOINF = 363.0 DEG F RE/FT TIMES 10(-4)= 5.32 PC123= 1635.0 PSIA PC4= 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 10.63

		GAG	E P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q -R
	EXTERNAL TA	NK BAS	E (COLD)							
		1	0 0.0096	0.625	-0.00576	1.000	9	0.09		
	LEFT OHS PO	D								
		5	7 0.0295	1.919	0.01413					
154	SSME NOZZLE	#1								
-4-1			2 2.1800				73 74	1.47 0.88		
							75 76	0.95		
							10			
	SEME NOZZLE	#2								
			2.2800)			68 69	1.13 0.90		
							70	1.51		
	SS-1E NOZZLI	E #3								
	00 12 1122		33 2.3300)						

RUN 57 CONTINUED

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT SHI	-		1.424 1.132 1.320 2.250 3.759 1.737 1.249 1.470 2.250	0.00653 0.00203 0.00493 0.01923 0.04243 0.01133 0.00383 0.00723	0.633 0.503 0.587 1.000 1.671 0.772 0.555 0.653 1.000	102 103 104 105 109 110 150 111 113	0.17 0.14 0.73 1.47 3.32 0.49 0.12 5.52 2.03 4.52	96	o-08
						117 151	0.77 0.12		

and the second of the second o

RUN NUMBER = 58

COMFIGURATION = OT

MACH NUMBER = 4.5

ALTITUDE = 150. K FT

ANGLE OF ATTACK = O DEGREES

TOB = 80.0 DEG F

TET = 80.0 DEG F

2.2000

133

POINF = 3.20 PSIA PINF = 0.0111 PSIA TOINF = 440.0 DEG F RE/FT TIMES 10(-4) = 3.59 PC123 = 1553.0 PSIA PC4 = 0.0 PSIA PC5 = 0.0 PSIA PC123/PINF TIMES 10(-4) = 14.05

			GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q -R
	EXTERNAL	TANK	BASE	(COLD)							
			10	0.0084	0.762	-0.00263	1.000	9	0.07		
	LEFT OHS	POD									
			57	0.0170	1.538	0.00594		•			
	LEFT OHS	NOZZ	LE							•	
2. 2.1								66	0.56		
	SoHE NOZ	ZLE #	1								
			72	2.1000				73 74	1.00 1.80		
								75	1.79 (?)		
								76	0.20		
	SAME NOZ	ZLE #	2				•				
			67	2.2800				68 69	0.97 2.15		
								70	1,84		_
	SHE NOZ	ZLE #	13								

RIN	58	CONTINUED
XIN.	76	

GAGE	Р	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT SHIELD (CO 88 89 90 92 93 95 162 164	0.0142 0.0154 0.0174 0.0428 0.0516 0.0202 0.0158 0.0184 0.0292	1.284 1.393 1.574 3.871 4.649 1.827 1.429 1.664	0.00314 0.00434 0.00634 0.03174 0.0405 0.00914 0.00474 0.00474 0.01814	0.332 0.360 0.407 1.000 1.206 0.472 0.369 0.430 0.682	102 103 104 105 108 109 110 150 111 113 114 116 117	0.14 0.14 0.62 1.32 1.92 4.29 0.68 0.13 7.64 1.76 0.79 10.80 0.73 0.28	96	O.OB

ORIGINAL PAGE IS OF POOR QUALITY

RUN NUMBER= 59 CONFIGURATION= DT HACH NUMBER = 4-5 ALTITUDE=160. K FT
ANGLE OF ATTACK= 0 DEGREES
TOB= 80.0 DEG F
TET= 80.0 DEG F

133

2.4600

POINF= 2.15 PSIA PINF= 0.0074 PSIA TOINF 400.0 DEG F
RE/FT TIMES 10(-4) 2.49
PC123= 1573.0 PSIA
PC4= 0.0 PSIA
PC5= 0.0 PSIA
PC123/PINF TIMES 10(-4)= 21.18

							P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
				GAGE	p	P/PINF	han Tide	17.00	• • • • • • • • • • • • • • • • • • • •			
	EXTERNA	iL.	TANK	BASE	(COLD)							
				10		0.915	-0.00653	1.000	9	0-06		
	BODY FI	LAF	•								132	0.0
553	LEFT O	MS	POD									
				57	0.0347	4,671	0.02727					
	LEFT G	214	NOZ Z	LE								
	ELIT O		,,						66	0.0		
				47								
	SSHE N	iU.Z.	ZLE :						73	1.18		
				7:	2 1.9100				75	2-07 0.37		
									76	0.57		
	S.ME I	40 Z	ZLE	#2								
					7 2.2900				68	1.22		
				В	2.2700				6 9 70	2.01 1.09		
	S ME	NO Z	ZLE	#3								

59 CONTINUED

GAGE	P	P/PINF	P-PINF	P/PCL	GASE	Q	GAGE	Q-R
86 88 89 90 92 93 95 162 164	0.0113 0.0114 0.0113 0.0309 0.0409 0.0118 0.0109 0.0129 0.0264	1.521 1.535 1.521 4.160 5.506 1.589 1.467 1.737	0.00387 0.00397 0.00387 0.02347 0.03347 0.00437 0.00347 0.00547 0.01897	0.366 0.369 0.366 1.000 1.324 0.382 0.353 0.417 0.854	102 103 104 105 108 110 150 111 113 116 117	0.09 0.15 0.40 0.87 1.28 0.0 0.06 6.63 1.36 5.76 0.65 0.34	96 97 99	0.0 -0.0 -0.0

그 사람에 이 교육으로 그렇게 하고 있다. 그 소리를 하는 사람들이 가는 것들은 그 그들은 한 사람이 작용하는 사람들이 되었다.

RUN NUMBER= 60 POINF# 6.69 PSIA COMFIGURATION= OT PINF= 0.0231 PSIA MACH NUMBER= 4.5 TOINF= 376.0 DEG F ALTITUDE=132. K FT RE/FT TIMES 10(-4) = 7.90 ANGLE OF ATTACK D DEGREES PG123= 1122.0 PSIA TO8= 0.0 DEG F
TET= 80.0 DEG F PC4= 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 4.86 Q-R GAGE GAGE P/PCL P-PINF P/PINF GAGE EXTERNAL TANK BASE (COLD) 1.000 0.485 -0.01190 0.0112 10 1.098 0.533 -0.01080 0.0123 157 1.134 0.550 -0.01040 0.0127 170 0.955 0.463 -0.01240 0.0107 171 0.887 0.430 -0.01316 0.0099 BODY FLAP 0.0 132 LEFT OHS POD 0.476 -0.01210 0.0110 LEFT OHS NOZZLE 0.0 SSHE NOZZLE #1 0.44 73 2.4400 72 0.33 74 75 0.27 0.11

a-14°

SSHE NOZZLE #2

2.4500

67

._ .- .

.....

68

0.19

0.91

	GAGE	P	P/PINF	p-p1NF	P/PCL	GAGE	Q	GAGE	Q -1
BASE HEAT	SHIELD (CO	LD)							
	90 95	0.0214 (?) 0.0239	0.927 1.035	-0.00170 0.00080	1.000 1.117	102 103 104 105 106 109 110	0.09 0.27 0.76 1.04 0.30 1.43 0.0	96 97 99	0.0 0.0 0.0
						111 112 113 114 115 116 117	1.38 0.62 0.42 0.0 0.87 0.64 0.22 0.12		

ORIGINAL PAGE IS OF POOR QUALITY

RUN NUMBER= 61 CONFIGURATION= OT HACH NUMBER= 4.5 ALTITUDE=122. K FT ANGLE OF ATTACK 0 DEGREES TOB 80.0 DEG F TET= 80.0 DEG F

			GAGE		P	P/PINF	P-PIMF	P/PCL	GAGE	Q	GAGE	Q-R
EXTER	HAL	TANK	BASE	(COLD)								
	:		. 10	0.0	149	0.438	-0.01913	1.000	9	0.06		
BODY	FLA	P									132	0.0
T62	OMS	POD						٠			58	0.0
LEFT	DИS	NOZZ	LE			·			66	0.0		
SSHE	NOZ	ZLE #	72	1.	7000				73 74 75 76	0.25 0.23 0.28 0.13		
SSME	. NO	ZZLE #	12 67	7 2.	3900				68 69 70	0.85 0.42 0.18		

RIN 61 CONTINUED

1.)(

	GAGE	P	P/PIKF	P-PINF	P/PCL	GAGE	Q	GAGE	Q -P
BASE HEAT	SHIELD (CO 86 90 92 93 95 162 164	0.0349 0.0252 (?) 0.0378 0.0397 0.0340 0.0344 0.0347	1.026 0.740 1.111 1.167 0.999 1.011 1.020	0.00087 -0.00883 0.00377 0.00567 0.0 0.00037 0.00067	1.385 1.000 1.500 1.575 1.349 1.365 1.377	102 103 104 105 107 109 110 150 111 112 113 114 115 116	0.08 0.26 0.39 0.80 0.62 0.81 0.0 0.23 0.86 0.81 0.26 0.49 0.57 0.57	96 97 99	0.0 0.0 0.0

163

)

Conf. Conf. Co.

Name and American States and the second

and the second section of

i sama in the second

RUN NUMBER= 62 CONFIGURATION= DT MACH NUMBER = 4.5 ALTITUDE=161. K FT ANGLE OF ATTACK = 0 DEGREES TOB= 80.0 DEG F TET= 80.0 DEG F

POINF= 2.07 PSIA PINF= 0.0072 PSIA TOINF= 425.0 DEG F RE/FT TIMES 10(-4)= 2.36 PC123= 1606.0 PSIA PC4= 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 22.40

			GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q -R
	EXTERNAL	TANK	BASE	(COLD)							
			10	0.0074	1.034	0.00024	1.000	9	0.04		
	EODY FLAI	P								132	0.0
164	LEFT OMS	POD	5 7	0.0456	6.361	0.03843					
	LEFT OMS	NOZ Z						66	0.0		
	SSME NOZ	ZLE #	72	2.1600				73 74	1.92 1.68		
								75 76	1.82 0.31		
	SHE NOZ	ZLE #	§2 67	2.1800				68 69 70	1.55 1.35 1.25		
	SSME NOZ	ZLE #	¥3								

SIME NOZZLE #3

2.3400 133

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT	SHIELD (CO 86 88 89 90 92		2.302 1.939 1.883 3.152	0.00933 0.00673 0.00633 0.01543 0.04073	0.730 0.615 0.597 1.000 2.119	102 103 104 105 106	0.04 0.23 0.45 0.93 0.25	96 97 99 101	0.0 0.0 · 0.0 0.05
	93 95 162 164	0.0156 0.0137 0.0143 0.0365	2.166 1.911 1.986 5.069	0.0084 0.00653 0.0071 0.0293	o. ⊬o 0.606 o.633 1.615	107 108 109 110 150 111 112	0.65 1.04 2.03 0.36 0.10 5.16 5.13		
<u>.</u>						114 115 116 117 151	0.72 5.00 3.72 0.79 4.69		

ORIGINAL PAGE IS OF POOR QUALITY

165

RUM NUMBER= 63

CONFIGURATION= OT

MACH NUMBER= 4.5

ALTITUDE=151. K FT

ANGLE OF ATTACK= O DEGREES

TOB= 80.0 DEG F

TET= 80.0 DEG F

POIRF= 3.08 PSIA PINF= 0.0106 PSIA TOINF= 424.0 DEG F RE/FT TIMES 10(-4)= 3.50 PC123= 1540.0 PSIA PC4= 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 14.47

				GAGE	P	P/PINF	P-PINF	P/FCL	GAGE	Q	GAGE	Q-R
	EXTER	NAL	TANK	BASE	(COLD)							
				10	0.0091	0.860	-0.00149	1.000				
	YC08	FLAI	>									
											132	0.0
166	LEFT	DMS	POD									
				57	0.0537	5.046	0.04306					
	SSME	NOZ	ZLE #	} 1					169 73	0.17		
				72	2.0200				74	1.80 1.21		
									75 76	1.35 0.18		
	.ME	NOZ	ZLE #	‡ 2								
		•		67	1.9500				68	1.56		
									69 70	1.55 1.41		
	. 700	N∩ 7	71 F s	# 2								

SME NOZZLE #3

133 1.2000

,

1-- "

RUN 63 CONTINUED

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT SH	IELD (CO	LD)							
	86 88 89 90 92 93 95 162 164	0.0178 0.0156 0.0153 0.0135 0.0531 0.0195 0.0157 0.0290 0.0219	1.673 1.466 1.438 1.269 4.990 1.832 1.475 2.725 2.058	0.00716 0.00496 0.00466 0.00286 0.04246 0.00886 0.00506 0.01836	1.319 1.156 1.133 1.900 3.933 1.444 1.163 2.148 1.622	102 103 104 105 106 107 108 109 110 150 111 112 113 114 115 116 117	0.14 0.29 0.41 1.17 0.36 1.11 0.93 2.98 0.0 0.11 4.14 5.52 1.56 0.50 4.63 4.76 0.80 0.45	96 97 99 101	0.0 0.0 0.0 0.09
⊸									

```
ORIGINAL PAGE IS OF POOR QUALLITY
                                                            POINF= 4.55 PSIA
               CONFIGURATION= OT
                                                            PINF= 0.0157 PSIA
               MACH NUMBER = 4.5
                                                            TOINF= 473.0 DEG F
              ALTITUDE=141. K FT
                                                            RE/FT TIMES 10(-4)= 4.97
              ANGLE OF ATTACK# O DEGREES
                                                            PC123= 520.0 PSIA
              TOB= 30.0 DEG F
                                                            PC4= 0.0 PSIA
              TET= 80.0 DEG #
                                                            PC5= 0.0 PSIA
                                                            PC123/PINF TIMES 10(-4)= 3.31
                                                                                           GAGE
                                                                       GAGE
                                                            P/PCL
                                       P/PINF
                                                 P-PINF
                     GAGE
       EXTERNAL TANK BASE (COLD)
                                        0.592 -0.00640
                                                            1.000
                             0.0093
       CEFT DMS POD
                             0.0165
                                        1.051 0.00080
                       57
       SSME NOZZLE #1
                       72
                             0.8790
       SIME NOZZLE #2
                       67
                             0.3560
       SAME NOZZLE #3
                      133 0.9690
         SE HEAT SHIELD (COLD)
                                         1.070 0.00116
                                                             1.305
                             0.0168
                                        C.917 -C.C0130
                                                             1.975
                       68
                             0.0144
                                         0.860 -0.00220
                                                             1.852
                             0.0135
                       99
                                         C.454 -C.66841
                                                             1.000
                             0.0073(?)
                       90
                                        0.911 -0.00140
                                                             1.962
                       92
                             0.0143
                                        1.063 0.00100
                                                             2.291
                             0.0167
                       93
                                                             1.824
                                        0.847 -0.00240
                              0.0133
                       45
                                         1.452 0.00710
                                                             3.128
```

0.0228

162

RUN NUMBER= 64A

RUN 648 CONTINUED

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	G AG E	Q-R
BASE HEA	GAGE T SHIELD (CO 36 88 89 90 92 93 95 162 164		1.393 1.38C 1.433	P-PINF 0.00604 0.00584 0.00664 0.00594 0.00554 0.02344 0.01174	1.321 1.309 1.358 1.000 2.549 1.549 1.549 1.290 2.395	102 103 104 105 106 108 109 110	0.09 0.27 0.92 1.28 0.43 1.21 2.27 0.0 0.12 4.23	96 97 99 101	C.O C.D C.O O.O4
						112 113 114 115 116 117	3.47 0.78 0.40 1.84 1.61 0.36		

 \exists

RUN NUMBER= 65 CONFIGURATION= OT MACH NUMBER= 4.5 ALTITUDE=168. K FT ANGLE OF ATTACK O DEGREES
TOB RO.O DEG F
TET= 30.0 DEG F

POINF= 1.55 PSIA PINF= 0.0053 PSIA TOINF= 403.0 DEG F RE/FT TIMES 10(-4)= 1.79 PC123= 1557.0 PSIA PC4= 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 29.17

				34G	E	p	P/PINE	P-PINF	P/PCL	GAGE	٥	G AG E	Ç−R
	EXTER	NAL	TAN	SAS	Ε	(COLD)							
				1	٥	0.0063	1.173	0.00092	1.000	9	0.03		
	SODY	FLA	Þ										0.0
												132	UaU
17	LEFT	OHS	POD										
				•	57	0.0096	1.793	0.00423					
	SHE	NOZ.	ZLE	# 1						73	3.32		
				•	72	2.2300				75 76	2.06 0.72		
				_							••••		
	• ,ME	NOZ	ZLE			2.2300				68	1.42		
					47	2.2300				59 70	1.79 1.25		
	;MF	ND Z	.ILE	#3									

133 2.3660

RUN 65 CONTINUED

GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q -R
BASE HEAT SHIELD (CD 86 88 89 90 92 93 95 162 164	0.0148 0.0114 0.0108 0.0104(?) 0.0445 0.0127 0.0116 0.0188 0.0347	2.773 2.136 2.023 1.955 8.336 2.379 2.173 3.522 6.501	0.00946 0.00606 0.00546 0.00506 0.03916 0.00736 0.00626 0.01346 C.02936	1.807 1.392 1.319 1.000 5.434 1.551 1.417 2.296 4.238	102 103 104 105 107 108 109 110 150 111 112 113 114 115	C.Q4 0.13 0.46 0.92 0.60 0.96 1.61 0.37 0.07 2.64 6.79 2.08 0.82 6.02 4.88	96 97 99 101	0.0 G.0 0.0 0.07

RUN NUMBER= 66

CONFIGURATION = OT
MACH NUMBER = 4.5
ALTITUDE=147 K FT./2
ANGLE OF ATTACK = 0 DEGREES TOB= 80.0 DEG F TET= 80.0 DEG F

POINF= 1.59 PSIA PINF= C.0055 PSIA TOINF= 368.0 DEG F RE/FT TIMES 10(~4)= 1.89 PC123= 712.0 PSIA PC4= 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 12.96

				GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERN	AL	TANK	BASE	(COLD)							
				10	0.0068	1.234	0.00129	1.000	9	0.04		
	BODY F	LAP										
											132	C.O
173	LEFT O	MS	POD									
				57	0.0217(?)	3.950	0.01621				58	0.0
	ISME N	OZZ	LE #	1								
				72	1.1400				73 75	0.80 0.45		
									76	0.19		
	SME N	OZZ	LE #	2								
				67	1.1400				69 70	0.14 C.25		
	SME N	10 Z Z	LE #	3								

133 1.2400

DI MI	66	CONTIN	LED

GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT SHIELD (CC 86 88 89 90 92 93 95 164	0.0119 0.0107 0.0106 0.0223 0.0255 0.0134 0.0101 0.0132	2.166 1.948 1.930 4.059 4.642 2.439 1.839 2.403	0.00641 0.00521 0.00511 0.01681 0.02001 0.00791 0.00461 0.00771	0.534 0.480 0.475 1.000 1.143 0.601 0.453 0.592	102 103 104 105 106 107 108 109 110 150 112 113 114 115 116	0.04 0.17 0.53 0.93 0.30 0.68 1.04 1.64 0.24 0.02 2.56 0.82 0.45 2.33 1.45 0.33 0.18	96 97 99 101	0.0 0.0 0.0 0.03

RUN NUMBER= 678
CONFIGURATION= OT
MACH NUMBER = 0.0
ALTITUDE=182. K FT
ANGLE OF ATTACK= O DEGREES
TOB= 80.0 DEG F
TET= 80-0 DEG F

133

0.5460

POINF# PSIA
PINF= 0.0031 PSIA
TOINF= 80.0 DEG F
RE/FT TIMES 10(-4)=
PC123= 307.0 PSIA
PC4# 0.0 PSIA
PC5= 0.0 PSIA
PC123/PINF TIMES 10(-4)= 9.94

		GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q - R
	EXTERNAL TAN	K BASE	(COLD)				9	0.20		
	SSME NOZZLÍ	#1 72	0.5290				73 76	0.12 0.18		
	SME NOZZLE	#2 67	0.5240				69 70	0.15 0.25		
	ME NOZZLE	#3								

ORIGINAL PAGE IS OF POOR QUALITY

RUN 678 CONTINUED

	GAGE	Р	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT SHI	ELD (COL	.D)							
	86 90 92 93 162 164	0.0032 0.0067 0.0058 0.0942 0.0045 0.0643	1.038 2.176 1.862 1.353 1.454 1.402	0.00011 0.00363 0.00266 0.00109 0.00140 0.00124	0.476 1.000 0.856 0.622 0.668 0.644	102 103 104 105 106 107 108 110 110 111 112 113 114 115 116 117	0.0 0.0 0.05 0.14 0.0 0.09 0.18 0.40 0.02 0.67 0.54 0.23 0.63 0.63	101	0.0

RUN NUMBER= 684
CONFIGURATION= OT
MACH NUMBER= 4.5 S ORIGINAL PAGE IS OF POOR QUALITY ALTITUDE=142. K FT ANGLE OF ATTACK= O DEGREES TOB= 80.0 DEG F TET= 80.0 DEG F GAGE EXTERNAL TANK BASE (COLD) 0.681 -0.00487 0.0104 SME NOZZLE #1

POINF= 4.42 PSIA PINF= 0.0153 PSIA TCINF= 421.0 DEG F RE/FT TIMES 10(-4)= 5.03 PC123= 1433.6 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 9.38

GAGE

P/PCL

1.600

P-PINF

1.8600

SSME NOZZLE #2

1.8500 67

SME NOZZLE #3

133 1.9800

0.05

GAGE

RUN 68A CONTINUED

	GAGE	p	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT S	HIELD (CD 86 88 89 92 93 95 162 164	LD) 0.0172 0.0194 0.0229 0.0332 0.0224 0.0190 0.0196 0.0260	1.126 1.270 1.500 2.174 1.467 1.244 1.283 i.703	0.00193 0.00413 0.00763 0.01793 0.00713 0.00373 0.00433 0.01073	0.000 0.000 0.000 0.000 0.000 0.000	102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117	0.06 0.29 1.15 >1.56 1.48 >1.31 >1.93 2.82 0.22 0.17 3.52 4.20 1.25 0.55 2.13 1.65 0.33 0.29	101	0.02

R	RUN NUMBER= 68B CONFIGURATION= OT MACH NUMBER= 4.5 ALTITUDE=142. K FT ANGLE OF ATTACK= O DEGREES TOB= 80.0 DEG F TET= 8',0 DEG =					PGINF= %.47 PSIA PINF= 0.0154 PSIA TOINF= 406.0 DEG F RE/FT TIMES 10(-4)= 5.15 PC123= 1514.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 9.80			
	GAGE	p P/PI	NF	P-PINF	P/PCL	GAGE	Q	GAGE	ç-R
	FXTERNAL TANK BASE (C		.80 -	-0.00494	1.000				
	-DDY FLAP							132	0.0
179	LEFT DMS POD	0.0216 1.	399	0.00616				58	0.0
	FFT OMS NOZZLE					66	0.0		
	COME NOZZLE #1	2.3900				73 76	1.28 0.20		
	SME NOZZLE #2	2.4300				69 70 168	0.98 2.03 0.0		
	SHE NOZZLE #3								

133 7.6300

RUN 688 CONTINUED

GA	GE	Р	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	G-R
BASE HEAT SHIELD	(COLD)							
	86	0.0187	1.211	0.00326	0.465	102	C.12	96	0.0
	68 (0.0199	1.289	0.00446	0.495	104	1.20	97	0.0
	90	0 ≥ 0402	2.603	0.02476	1.000	105	1.93	99	C•0
	93	0.0230	1.489	0.00756	0.572	106	0.99	101	£.09
	95	0.0194	1.256	0.00396	0.483	107	2.04		
1	62	0.0237	1.535	0.00826	0.596	108	2.16		
		0.0300	1.943	0.01456	0.746	109	3.42		
						110	0.33		
						150	0.18		
						112	4.49		
						113	1.60		
						114	0.54		
						115	3.26		
						116	2.43		
							0.63		
						117			
						151	0.27		

RUN NUMBER= 69
CONFIGURATION= OT
MACH NUMBER= 4.5
ALTITUDE=170. K FT
ANGLE OF ATTACK= O DEGREES
TOB= 80.0 DEG F
TET= 80.0 DEG F

---(

POINF= 1.43 PSIA PINF= 0.0049 PSIA TOINF= 363.0 DEG F RE/FT TIMES 10(-4)= 1.71 PC123= 1473.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 29.81

医性囊性病 种种物 "''''',我因此是我的时间,可是是一种,我们可以可以有一个人,我们可以可以是一样,我们也不是一种的时间,这个这种是一些可能的对象,就是我是不是

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERNAL TANK BASE	(COLD)							
	10	0.0056	1.127	0.00063	1.000	9	0.07		
	BODY FLAP								
_								132	0.0
181	LEFT OMS POD								
	57	0.0103	2.085	0.00536				58	C.G
	LEFT OMS NOZZLE								
						66	0.0		
00	SSHE NOZZLE #1								
ORIGINAL PAGE IS	72	2.2500				73	2.70		
Ŏ.Z						75 76	0.56 0.26		
# C	SSME NOZZLE #2								
PA()UA	67	2.2500				60	2.05		
日照						70 168	2.23 0.0		
전명	SME NOZZLE #3								
	133	2.4500							

•

ì

. --- -

الله المراكز والمواجع المراكي المراجع المراكي

77. 7.2 2

A Total Control

GAGE	Р	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q - R
BASE HEAT SHIELD (C	arb)							
86 88 89 90 92 93 95 162 164	0.0095 0.0135 ~ 0.0272 ~ 0.0365 0.0280 0.0123 0.0093 0.0136 0.0266	1.921 2.732 5.505 7.388 5.667 2.490 1.878 2.753 5.384	0.00455 0.00856 0.02226 0.03156 0.02306 0.00736 0.00434 0.00866 0.02166	0.260 0.370 0.745 1.000 0.767 0.337 0.254 0.373	103 104 105 106 107 108 109 110 150 111 112 113 114 115 116	C.71 G.53 > 2.16 C.63 1.26 > 2.72 > 3.27 O.37 O.12 6.43 5.74 2.48 O.78 1.96 1.67 C.53	96 97 99 101	6.0 0.0 0.0 0.02

RUN NUMBER= 70

CONFIGURATION= OT MACH NUMBER = 4.5

ALTITUDE=143. K FT
ANGLE OF ATTACK= O DEGREES
TOB= 80.0 DEG F
TET= 80.0 DEG F

133

2.5000

POINF= 4.31 PSIA PINF= 0.0149 PSIA TOINF= 423.0 DEG F
RE/FT TIMES 10(-4)= 4.91
PC123= 1526.0 PSIA
PC4 0.0 PSIA
PC5= 0.0 PSIA
PC123/PINF TIMES 10(-4)= 10.24

	G	AGE	ų	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERNAL TANK B	ASE	(COLD)							
		10	0.0119	0.798	-0.00301	1.000	9	0.08		
	SODY FLAP									
									132	0.0
183	LEFT OHS POD								58	0.0
•		57	0.0210	1.409	0.00609				26	0.0
	SSME NOZZLE #1						76	0.13		
		72	2.3400				10	0.13		
	SSME NOZZLE #2						69	1.10		
		67	2.3600				70	3.99		
	SIME NOZZLE #3									

70 CONTINUED

GAGE	p	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT SHIELD (C 86 89 89 90 92 93 95 162 164	0.0185 0.0333 >0.0520 0.0459 0.0243 0.0217 0.0205 0.0224 0.0222	1.241 2.234 3.488 3.079 1.630 1.456 1.375 1.503	0.00359 0.01839 0.03709 0.03099 0.00939 0.00679 0.00559 0.00749 0.00729	0.403 0.725 1.133 1.000 0.529 0.473 0.447 0.488	103 104 105 106 107 108 109 110 150 111 112 113 114 115 116	0.17 > 2.39 > 4.65 1.31 3.75 5.91 5.41 0.13 0.06 4.98 2.11 0.87 0.48 1.48 1.19 0.41 0.42	96 97 99 101	0.0 0.0 0.0 0.04

RUN NUMBER= 71 POINF= 1.44 PSIA CONFIGURATION= OT PINF= 0.0050 PSIA MACH NUMBER = 4.5 TOINF= 272.0 DEG F ALTITUDE=170. K FT RE/FT TIMES 10(-4)= 1.86 ANGLE OF ATTACK = 0 DEGREES PC123= 1479.0 PSIA TOB= 80.0 DEG F PC4 0.0 PSIA PC5= 0.0 PSIA TET= 80.0 DEG F PC123/PINF TIMES 10(-4)= 29.83 GAGE GAGE P/PCL GAGE P/PINF P-PINF EXTERNAL TANK BASE (COLD) 1.000 0.09 0.00090 0.0059 1.182 BODY FLAP 132 0.0 LEFT OMS POD 57 0.0086 1.743 0.00368 SSME NOZZLE #1 0.89 73 72 2.3000 0.22 75 76 0.35 SME NOZZLE #2

1.39

1.47

4.96

69 70

SME NOZZLE 83

133 2.3500

2.3700

•

71 CONTINUED

GAGE	P	P/PINF	P-PINF	P/PCL	JAGE	Q	GAGE	Q R
BASE HEAT SHIELD (CO	JLD)							
86 88 90 92 93 95 162 164	0.0086 0.0305 0.0281 0.0122 0.0689 0.0094 0.0101 0.0113	1.739 6.152 5.668 2.461 1.793 1.894 2.037 2.279	0.00366 0.02554 0.02314 0.00724 0.00393 0.00443 0.00514	0.307 1.085 1.000 0.434 0.316 0.334 0.359 0.402	102 103 104 105 106 107 108 109 110 150 111 113 114 115 116	G.02 G.11 2.99 5.06 1.00 3.13 5.85 4.07 (?) C.0 0.02 3.14 G.88 1.40 0.12 0.39 0.19	96 97 99 101	0.0 0.D 0.03

יייי איייייייייייייייייייייייייייייייי	HACH ALTIT ANGLE TOB=	ON= OT = O.O O. K FT TACK= O DEG DEG F DEG F		POINF= PSIA PINF- 0.0033 PSIA TOINF= 295.0 DEG F RE/FT TIMES 10(-4)= PC123= 711.0 PSIA PC4 0.0 PSIA PC5= C.0 PSIA PC123/PINF TIMES 10(-4)= 21.22						
BI WOYd		GAGE	P	P/PINE	P-PINF	P/PCL	GAGE	Q	GAGE	Q—R
00	EXTERNAL TANK	BASE	(COLD)							
		10	0.0041	1.218	0.00073	1.000	9	0.0		
	BODY FLAP									
									132	C • O
187	LEFT OMS POD									
									58	0.0
	TOMS NOZZ	LE								
							66	0.C		
	SSME NOZZLE #	1								
		72	1.0900				73 75	1.36 0.71		
							76	0.55		
	JOHE NOZZLE #	2			•					
		57	1.1400				69	1.01		
							70	C-5C		
	:SHE NOZZLE *	3								
	•	133	1.1800							

RUN 72A CONTINUED

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT			1.331 1.331 1.331 3.313 3.164 4.448	G.00111 G.00111 G.00111 G.00775 G.00725 G.00155	0.402 0.402 0.402 1.000 0.955 1.342	102 103 104 105 106 107	0.0 0.0 0.24 0.44 0.04	96 97 99 101	0.0 0.0 0.0 0.0
	93 95 162 164	0.0056 0.0036 0.0052 0.0116	1.681 1.131 1.546 3.463	0.00228 0.00044 0.00183 0.00825	0.507 0.341 0.467 1.045	108 109 110 150 111 112 113 114 115 116 117	0.51 1.05 0.32 0.03 1.70 2.73 1.51 0.67 1.88 1.83 0.46		

```
RUN NUMBER= 73
          CONFIGURATION= OT
MACH NUMBER= 4.5
ALTITUDE=138 K FT/4
ANGLE OF ATTACK= O DEGREES
                                                                POINF= 1.12 PSYA
                                                                 PINF= 0.0039 PSIA
                                                                 TOINF= 292.0 DEG F
                                                                 RE/FT TIMES 10(-4)= 1.42
                  80.0 DEG F
80.0 DEG F
                                                                 PC123= 341.0 PSIA
                                                                 PC4= 0.0 PSIA
          TET=
                                                                PC5= 0.0 PSTA
PC123/PINF TIMES 10(-4)= 8.81
                                                                                                                    ζ –R
                                                                                                       GAGE
                                                                              GAGE
                                                                 PZPCL
 EXTERNAL TANK BASE (COLD)
                                                   0.00014
                                                                 1.000
                                         1.036
                            0.0040
 LEFT OMS POD
                                         1.638
                     57
                            0.0063
 SSME NOZZLE #1
                                                                                 73
                                                                                           C.36
                     72
                            0.5960
                                                                                 75
                                                                                           0.43
                                                                                           0.29
 SSME NOZZLE #2
                                                                                 69
                                                                                           0.39
                            0.6070
                                                                                 70
                                                                                           0.51
  SHE NOZZLE #3
                            0.6550
                    133
```

RUN 73 CONTINUED

		GAGE	Ρ	P/PINF	P-PINE	P/PCL	GAGE	Q	GAGE	Q-R
BASE	HEAT	SHIELD (C	(GED)							
		86 58 89 90 91 92 93 95 162 164	0.0057 0.0046 0.0052 0.0115 0.0157 0.0115 0.0030 0.0057 0.0058 0.0066	1.476 1.199 1.341 2.972 4.057 2.972 0.778 1.468 1.489 1.713	0.00184 0.0077 0.00132 0.00763 0.01183 0.00763 -0.00086 0.00181 0.00189 0.00276	0.497 0.403 0.451 1.000 1.365 1.000 0.262 0.494 0.501 0.577	102 103 104 105 106 107 108 109 150 112 113	0.02 0.0 0.23 0.38 G.03 0.28 0.46 1.00 0.01 1.17 0.39 1.20	161	c.01
				:			116 117 151	0.82 0.13 0.08		

RUN	NUMBER= 74
	CONFIGURATION≈ OT
	MACH NUMBER# 4.5
	ALTITUDE=142 K FT/2
	ANGLE OF ATTACK = C DEGREES
	TOB= 80.0 DEG F
	TET= 90.0 DEG F

POINF= 2.05 PSIA PINF= 0.0071 PSIA TOINF= 364.0 DEG F RE/FT TIMES 10(-4)= 2.45 PC123= 684.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 9.66

	GAGE	P	P/PINF	P-PIMF	P/PCL	GAGE	٥	GAGE	Ç-R
	EXTERNAL TANK BASE	(COLD)							
	10	0.0064	0.909	-0.00064	1.000				
	PAJF YDC8							132	0.0
	LEFT OMS POD	0.0240	3.798	0.01982				58	C.O
91	57 LEFT UMS NOZZLE	0.0269	34790	0,01702					
						66	0.0		
	SSME NOZZLE #1								
	72	1.1100				73 75	0.43 0.55		
						76	0.11		
	SME NOZZLE #2								
	57	1.1400				69 70	C.44 C.69		
						70	230		
	SME NOZZLE #3								
	133	1.2500							

RUN 74 CONTINUED

GAC	SE P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
1	(COLD) 86 0.0074 88 0.0093 89 0.0111 90 0.0253 91 0.0253 92 0.0176 93 0.0047 95 0.0103 62 0.0112 64 0.0104	1.046 1.312 1.567 3.276 3.572 2.485 0.659 1.454 1.581	0.00033 0.00221 0.00402 0.01612 0.01822 0.01052 -0.00241 0.00322 0.00412 0.00332	0.319 0.400 0.478 1.000 1.091 0.759 0.201 0.444 0.483	102 103 104 105 106 107 108 109 150 112 113 114 115 116	0.05 0.04 0.58 0.93 0.06 0.62 1.11 2.28 0.13 1.72 0.71 0.40 2.92 1.84 0.19 0.06	96 97 99 101	0.0 0.0 0.0 0.04

20

	MACH ALTIT ANGLE TOB=	GURATI NUMBER UDE=15 OF AT 80.0	ION= DTS R= O.O 59. K FT TTACK= C DEG D DEG F D DEG F	REES	POINF= PSIA PINF= 0.0077 PSIA TOINF= 440.C DEG F RE/FT TIMES 10(-4)= PC123= 0.0 PSIA PC4 290.C PSIA PC5= 252.C PSIA PC123/PINF TIMES 10(-4)= 0.0					
		GAGE	p	P/PINF	P-PINF	P/PCL	GAGE	Q	G AG E	Ç-R
	EXTERNAL TANK	BASE	(COLD)							
		10	0.0135	1.747	0.00577	1.000	9	G.97		
	LEFT OMS POD									
									58	0.54
193	SSME NOZZLE *	1								
							73	1.04(?)		
	SSME NOZZLE #	2								
							69 70	0.50 C.94		
								·		

)

CONTINUED

G/	AGE	P P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT SHIELS	86 0.010 88 0.013 89 0.015 90 0.014 92 0.013 93 0.015 95 0.0012 162 0.012	9 1.798 9 2.057 5 1.876 3 1.721 6 2.018 25 0.965 2 1.579	0.00267 0.00617 0.00817 0.00677 0.00557 C.00787 -0.00027 0.00447 0.00237	0.717 0.959 1.097 1.000 C.917 1.076 0.514 C.841 0.697	102 103 104 105 106 107 108 109 110 150 111 112 113 114 115 116	0.32 0.79 1.47 0.55 0.33 1.77 1.86 0.48 ~1.61 1.52 0.70 0.53 1.63 1.36 1.07 0.72 0.36	97 101	C.25 0.37

ORIGINAL PAGE IS	RUN NUMBER= 76 CONFIGURATION= OTS MACH NUMBER= 4.5 ALTITUDE=142. K FT ANGLE OF ATTACK= O DEGREES TOB= 80.0 DEG F TET= 80.0 DEG F	POINF= 4.48 PSIA PINF= 0.0155 PSIA TOINF= 393.0 DEG F RE/FT TIMES 10(-4)= 5.22 PC123= 1437.0 PSIA PC4 181.0 PSIA PC5= 163.0 PSIA PC123/PINF TIMES 10(-4)= 9.28					
AGII IAL	GAGE P P/FINF P-PINF	P/PCL GAGE	Q G AG E	Q-R			
ALLI St. 1	EXTERNAL TANK BASE (COLD)						
	10 0.0440 2.843 0.02852	1.000 9	1.69				
	BODY FLAP			0.45			
			132	0. 4 5			
195	LEFT OMS POD		58	C.20			
	LEFT OMS NOTZLE						
		66	0.46				
	SSME NOZZLE #1						
		73 75	0.90 2.02				
		76	1.39				
	JIME NOZZŁE #2		C • 36				
		69 70	1.68				

-1

•

RUN 76 CONTINUED

GAGE	p	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT SHIELD (CO	OLD)							
86	0.0419	2.707	0.02642	1.318	102	0.68	96	€.65
88	0.0343	2.216	0.01882	1.C79	103	0.39	97	0.44
89	0.0372	2.403	0.02172	1.170	104	0.51	99	0.62
90	0.0318	2.054	0.01632	1.000	105	C.97	101	66.0
91	0.0190	1.228	0.00352	0.597	106	0.50		
92	0.0339	2.190	0.01842	1.066	107	C.75		
93	0.0401	2.591	0.02462	1.261	108	0.96		
95	0.0281	1.815	0.01262	0.884	109	0.74		
162	0.0330	2.132	0.01752	1.038	110	0.59		
164	0.0361	2.332	0.02062	1.135	150	0.77		
104	0.0301	2000	0.02002	*****	111	1.19		
					112	0.13		
					113	0 - 89		
					114	0.50		
					115	2.32		
					116	1.96		
					117	1.06		
					151	0.37		

RUN NUMBER= 77A CONFIGURATION= OTS MACH NUMBER= 4.5 ALTITUDE=102. K FT

ANGLE OF ATTACK= O DEGREES

TOB= 80.0 DEG F TET= 80.0 DEG F

POINF= 22.25 PSIA PINF= 0.0769 PSIA TOINF= 437.0 DEG F RE/FT TIMES 10(-4)= 25.02 PC123= 1480.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 1.93

THE EXPLOREMENTAL PROPERTY OF A SECOND OF THE PROPERTY OF THE PROPERTY OF THE SECOND OF THE PROPERTY OF THE PR

	GAGE	Р	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERNAL TANK BASE	(COLD)							
	10	0.0233	0.303	-0.05357	1.000	9	0.13		
	SSME NOZZLE #1								
— 1	72	2.5200				73	0.29		
97	SSME NOZZLE #2								
	67	2.5000				69 70	0.33 1.00		
	SSHE NOZZLE #3								

2.7400

RUN 77A CONTINUED

	GAGE	₽	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEA	T SHIELD (CO	LD)							
	86	0.0494	0.643	-0.02747	1-033	102	0 - 22		
	88	0.0408	0.531	-0.03607	0.854	104	0.25		
	89	0.0491	0.639	-0.02777	1.027	105	0.51		
	90	0.0478	0 -622	-0.02907	1.000	106	30 _e 0		
	92	0.0503	0.654	-0.02657	1.052	107	0 "26		
	93	0.0601	0-782	-0.01677	1.257	108	0.52		
	95	0.0470	0,611	-0.02987	0.983	109	0.63		
	162	0.0468	0.609	-0.03007	0.979	110	0.37		
		0.0518	0.674	-0.02507	1.084	150	0.09		
	164	0.00310	04017	-0102701	14001	111	0.79		
						112	0 -45		
				•		113	0.18		
						114	0.33		
							0.81		
						115			
						116	0.80		
						117	0.22		
						151	0.34		

	- 7.
	- 2

RUN NUMB	ER= 77C CONFIGURATION MACH NUMBER= ALTITUDE=101 ANGLE OF ATT. TOB= 80.0 TET= 80.0	POINF= 22.70 PSIA PINF= 0.0784 PSIA TOINF= 422.2 DEG F RE/FT TIMES 10(-4)= 25.83 PC123= 1482.0 PSIA PC4 336.0 PSIA PC5= 271.0 PSIA PC123/PINF TIMES 10(-4)= 1.89							
	GAGE	þ	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
EXTERNA	L TANK BASE (COLD)							
	10	0.1430	1.823	0.06457	1.000	9	0.85		
BODY FL	_AP							132	0.0
199	MS POD							58	0.31
SSME N	OZZLE #1								
	72	2.3100		P we		73	>1.56		
SSME N	OZZLE #2								
	67	2.3800				69 70	1.26 2.33		
SSME N	OZZLE #3								
	133	2.4300							

RUN 77C CONTINUED

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEA	86 88 89 90 91 92 93 95 162 164	0.1250 0.1040 0.1140 0.1020 0.1030 0.1130 0.0907 0.1020 0.0944	1.594 1.326 1.454 1.301 1.313 1.441 1.156 1.301	0 ±04657 0 ±02557 0 ±03557 0 ±02357 0 ±02457 0 ±03457 0 ±01227 0 ±02357 0 ±01597	1.225 1.020 1.118 1.000 1.010 1.108 0.889 1.000 0.925	102 103 104 105 106 107 108 109 110 150 111 112 113 114 115	> 0.77 > 1.30 0.56 1.48 0.99 0.89 1.62 1.63 0.51 1.01 1.50 1.50 1.29 0.59 0.56 1.21 1.15 0.83	96 97 99 101	0.0 0.16 0.34 0.15
õ						151	0.50		

RUN NUMBER= 78

CONFIGURATION= OTS MACH NUMBER = 4.5 ALTITUDE=102. K FT ANGLE OF ATTACK= 0 DEGREES TOB= 80.0 DEG F TET= 80.0 DEG F

POINF= 22.20 PSIA PIMF# 0.0767 PSIA TOINF= 416.0 DEG F RE/FT TIMES 10(-4)= 25.39 PC123= 1457.0 PSIA PC4 323.0 PSIA PC5= 263.0 PSIA PC123/PINF TIMES 10(-4)= 1.90

- Particle - Particl

				GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERN	AL	TANK	BASE	(COLD)							
				10	0.1120	1.460	0.03530	1.000				
	87DY F	LAP									132	C •O
201	ESRM S	SHQC	UD	44 46	0.1580 0.6820	2.06C B.892	0.08130 C.60530		48 49 50 53	0.07 2.62 1.33 (?) C.57	47	C • 05
	ı FT (57	0.0828	1.080	(.00610					
	LEET (OMS	NOZZ	LF					66	c.c		
	ъч€	NOZ	ZLE *	‡1 72	2.2000							
	3Me c	NOZ	ZLE /	; 2								

2.3000

RHN	78	CONT	TINI	IED.

GAGE	p	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
SSME NOZZLE #3								
133	2.2700							
BASE HEAT SHIELD (CO	LD)							
86 88 89 90 91 92 93 95 162 164	0.1170 0.0825 0.1050 0.0894 0.0639 0.0743 0.1040 0.0868 0.0437 0.0880	1.525 1.676 1.369 1.166 0.833 0.969 1.356 1.132 0.570 1.147	C.04c3C C.0C580 0.02830 C.C1270 -0.01280 -C.C0240 0.02730 0.01010 -0.03300 C.01130	1.309 0.923 1.174 1.000 0.715 0.831 1.163 0.971 0.489 6.984	102 103 105 106 108 109 110 150 112 114 115 116	1.39 2.53 1.78 2.18 1.77 1.47 1.17 0.89 0.77 0.99 1.10 0.99 ~ 0.81	96 97 99 101	6.0 6.0 6.0 6.23

```
RUN NUMBER= 79
                  CONFIGURATION= OTS
MACH NUMBER= 4.5
                 ALTITUDE=142. K FT
ANGLE OF ATTACK= C DEGREES
TOB= 80.0 DEG F
TET= 80.0 DEG F
```

POINF= 4.48 PSIA PINF= 0.0155 PSIA TOINF= 378.0 DEG F RE/FT TIMES 10(-4)= 5.28 PC123= 1514.0 PSIA PC4 190.0 PSIA PC5= 161.0 PSIA PC123/PINF TIMES 10(-4)= 9.78

ā		GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	o	GAGE	Q-R
	EXTERNAL TANK	BASE	(COLD)							
		10	0.0430	2.778	0.02752	1.000	9	1.81		
	BSRM SHROUD									
203		44 46	0.0606 0.2200	3.915 14.213	0.04512 0.20452		48 49 50 51 52 53	0.0 3.25 1.35 C.0 0.0 G.28	47	C.06

LEFT OMS POD

57 0.0300

SSME NDZZLE #1

72 2.2600

SSME NOZZLE #2

2.3100

SIME NOZZLE #3

133 2.50

RUN 79 CONTINUED

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT S	86 88 89 90 91 92 93 95 162 164	0.0374 0.0324 0.0353 0.0350 0.0346 0.0378 0.038c 0.0327 0.0345 0.0349	2.416 2.093 2.281 2.132 2.235 2.442 2.494 2.113 2.229 2.255	0.02192 0.01692 0.01982 0.01752 0.01912 0.02732 0.02312 0.01722 0.01902 0.01942	1.133 0.982 1.070 1.000 1.048 1.145 1.170 0.991 1.045 1.058	102 103 104 105 106 107 108 109 110 150 111 112 114 115 116	0.35 C.45 C.31 0.70 C.50 G.51 G.77 O.75 O.39 O.64 C.97 1.00 O.40 2.17 2.24 ~ 1.08 G.35	97 99 101	0.0 0.0 0.16

RUN NUMBER= 8CC

CONFIGURATION= OTS

MACH NUMBER= 4.5

ALTITUDE=136. K FT

ANGLE OF ATTACK= 0 DEGREES

TOB= 80.0 DEG F

TET= 8C.0 DEG F

POINF= 5.65 PSIA PINF= 0.0195 PSIA TOINF= 364.0 DEG F RE/FT TIMES 10(-4)= 6.75 PC123= 1411.0 PSIA PC4 13.5 PSIA PC5= 13.5 PSIA PC123/PINF TIMES 10(-4)= 7.22

		G4GE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERNAL TANK	BASE	(COLD)							
		10	0.0139	0.711	-0.00564	1.000	9	0.12		
	BSRM SHROUD									
205		46	0.2310	11.823	0.21146		48 49 50 51 52 53	0.0 > 3.83 0.43 0.0 0.0 0.12		
	i -FT DMS POD									
		57	0.0431	2.206	0.02356					
	SSME NOZZLE #1	Ł								
		72	2.5000							
	SME NOZZLE #2	?								
		67	2.3700							
	SHE NOZZLE #	3								
		133	2.6700							

•

. . . .

RUN BOC CONTINUED

GAGE	р	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT SHIELD (CO	LD)							
86 88 90 91 92 93 95 162	0.0257 0.0229 0.0247 0.0354 0.0323 0.0447 0.0344 0.0236 0.0159 0.0385	1.315 1.172 1.264 1.812 1.653 2.288 1.761 1.208 0.814 1.971	0.00616 0.00336 0.00516 0.01586 0.01276 0.02516 0.01486 0.00406 -0.00364 0.01896	0.726 0.647 0.698 1.000 0.912 1.263 0.972 0.667 0.449 1.088	102 103 104 105 106 109 110 111 112 114 115 116 117	0.12 0.04 0.46 2.57 0.18 2.19 0.45 0.13 3.81 3.75 0.77 2.28 2.53 ~0.62 0.47	101	0.08

EXT

O TOTAL VI	TOB≃ 8	BER: =13. AT	= 4. 5	EE S		POINF= 6.60 PSIA PINF= 0.0228 PSIA TOINF= 339.0 DEG F RE/FT TIMES 10(-4)= 8.05 PC123= 1504.0 PSIA PC4 164.0 PSIA PC5= 135.0 PSIA PC123/PINF TIMES 10(-4)= 6.60					
E A CE	· G4	AGE	р	P/PINF	P-PINF	P/PCL	GAGE	Ģ	GAGE	Q-R	
7	EXTERNAL TANK B	ASF	(CCLD)								
		10	0.0530	2.324	0.03020	1.000	9	1.66			
	SERM SHROUD										
707		44	G•0667	2.925	0.04390		48 49 50 51 52 53	0.0 1.44 0.42(?) 0.0 0.0	47	6∙ 05	
							,,,	0122			
	L-FT OMS POD	57	G.0354	1.552	0.01260				58	€.32	
	SEME NOZZLE #1										
		72	2.3000								
	SEME NOZZLE #2										
		67	2.2900								
	SSME NOZZLE #3										

2.4100

RUN 80D CONTINUED

G	AGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT SHIEL	86 88 90 91 92 93 95		1.785 1.614 1.816 1.658 1.702 2.219 1.539 C.925	0.01790 0.01400 0.01860 0.01500 0.01600 0.02780 0.01230 -0.00170	1.077 0.974 1.095 1.000 1.026 1.339 0.929	102 103 105 106 108 109 110 150	0.63 C.24 O.53 £.21 C.65 U.82 O.33 C.44 1.09	101	0.66 (?)
		0.0394	1.728	C.01660	1.042	112 114 115 116 117 151	1.20 0.31 2.14 2.26 ~1.03 0.44		

RUN NUMBER= 81

CONFIGURATION= DTS

MACH NUMBER= 4.5

ALTITUDE=121. K FT

ANGLE OF ATTACK= 0 DEGREES

TOB= 80.0 DEG F

TET= 80.0 DEG F

133

2.5100

POINF= 10.16 PSIA PINF= 0.0351 PSIA TOINF= 396.0 DEG F RE/FT TIMES 10(-4)= 11.81 PC123= 1483.0 PSIA PC4 188.0 PSIA PC5= 156.0 PSIA PC123/PINF TIMES 10(-4)= 4.22

			SAGE	Þ	P/PINF	P-PINF	P/PCL	GAGE	٥	GAGE	Q-R
	EXTERNAL	TANK	BASE	(COLD)							
			10	0.0686	1.954	0.03350	1.000	9	1.53		
	SERM SHR	מטם									
200			44	0.0761	2.16F	0.04190		48 49 50 51 52 53	C.C4 2.16 0.41 C.C 0.0 0.31	47	C.0
	L FT OMS	Pap									
			57	0.0503	1.433	0.01520				58	0.0
	. 246 NOS	ZLE #	1								
			72	2.3400							
	S ME NOZ	ZLE #	2								
			67	2.2600							
	S ME NOZ	ZLE *	3								

--/

81 CONTINUED

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT	SHIELD (CG 86 88 89 90 91 92 93 95 162 164	0.0496 0.0473 0.0513 0.0515 0.0484 0.0540 0.0486 0.0478 0.0488	1.413 1.347 1.461 1.379 1.467 1.538 1.385 1.362 1.390	0.01450 0.01220 0.01620 C.01330 C.01640 0.01890 0.01350 C.01270	1.025 0.977 1.06G 1.000 1.064 1.116 1.004 0.988 1.008	102 103 104 105 106 108 109 110 150 111 112 114 115	0.43 0.26 0.30 0.64 0.27 0.67 0.63 0.95 0.76 0.63 1.71 1.35 ~ 0.74	101	c - 20
						151	0.22		

RUN NUMBER= 82

CONFIGURATION= DTS
MACH NUMBER= 4.5
ALTITUDE=122. K FT
ANGLE OF ATTACK= 0 DEGREES
TOB= 80.0 DEG F
TET= 80.0 DEG F

POINF= 9.74 PSIA PINF= 0.0337 PSIA TOINF= 373.C DEG F RE/FT TIMES 10(-4)= 11.54 PC123= 1397.C PSIA PC4 317.0 PSIA PC5= 265.0 PSIA PC123/PINF TIMES 10(-4)= 4.15

			GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERNAL	TANK	BASE	(COLD)							
			10	0.0621	1.845	0.02845	1.000	9	1.96		
	EXTERNAL TANK SIDEWALL										
			24								
211	BERM SHRO	סטכ									
			44 46	0.0969 0.4140	2.879 12.302	0.06325 0.38035		48 49 50 51 52 53	0.09 3.17 (?) 0.63 0.0 0.0 0.36	47	€.06
	LEFT OHS	200	5 7	C.0480	1.426	0.01435	,				
	SUME NOZ	ZLE #	3				•				

133 2.2100

RUN 82 CONTINUED

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT	SHIELD (CO	LD)							
	86 88 89 90 91 92 93 95 162	0.0690 0.0609 0.0579 0.0485 0.0516(?) 0.0645 0.0502 0.0534 0.0581	2.050 1.810 1.721 1.441 1.533 1.917 1.492 1.587 1.429	0.03535 0.02725 c.02425 0.01485 0.01795 0.03085 0.01655 0.01975 0.01445	1.423 1.256 1.194 1.000 1.664 1.330 1.035 1.101 0.992	102 103 105 108 109 110 150 111 112 114 115 116 117	1.19 0.50 1.49 1.59 1.25 0.96 0.96 0.52 0.50 0.93 0.26 0.92	161	0.64

ORIGINAL PAGE IS OF POOR QUALITY	MACH N ALTITJ	URATION SERVICE SERVIC	DN= OTS = 4.5 2. K FT TACK= O DEG DEG F DEG F	REES		POINF= 14.85 PSIA PINF= 0.C513 PSIA TOINF= 403.0 DEG F RE/FT TIMES 10(-4)= 17.17 PC123= 1439.0 PSIA PC4 355.0 PSIA PC5= 313.0 PSIA PC123/PINF TIMES 10(-4)= 2.80						
PAG QUAI		GAGE	p	D/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	€ -R		
H	EXTERNAL TAY"	SASE	(COLD)									
rg to		10	0.0955	1.861	0.04418	1.000	9	1.78				
	EXTERNAL TANK	SIDEW	ALL									
		24										
7												
C.	•	44 46	0.1424 0.6820	2.775 13.288	0.09108 0.63068		48 52 53	0.09 0.52 G.36	47	C • D4		
	LIPT ONS POD											
		57	0.0647	1.261	0.01338				58	0.48 (?)		
	48 NDZZLE #1	1										
		72	2.2100									
	STAR MOZZLE #	?										
		67	2.1200									
	S ME NOZZLE #	3										
		133	2.0500									

83 CONTINUED

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	٥	GAGE	₽ ₹
BASE HEAT	SHIELD (CD 86 88 89 90 91 92 93 95 162 164	0.0964 0.1006 0.0800 0.0748 0.0753 0.0862 0.0733 0.0811 0.0738	1.878 1.960 1.559 1.457 1.467 1.680 1.428	C.04508 C.04928 C.02B7 C.02348 0.02398 0.03488 0.02198 0.02978	1.289 1.345 1.070 1.000 1.007 1.152 0.980 1.084 0.987	102 103 105 108 109 110 111 112 114	1.85 1.51 3.67 1.44 1.00 1.02 0.65 0.59 >0.92	99 101	C.45 C.47
						117 151	1.48 0.62		

214

RUN NUMBER= 84 CONFIGURATION= OTS MACH NUMBER = 4.5 ALTITUDE=120 K FT ANGLE OF ATTACK = O DEGREES TOB= 80.0 DEG F TET= 80.0 DEG F

POINF= 4.85 PSIA PINF= 0.0167 PSIA TOINF= 375.0 DEG F RE/FT TIMES 10(-4)= 5.73 PC123= 706.0 PSIA PC4 179.0 PSIA PC5= 149.0 PSIA PC123/PINF TIMES 10(-4)= 4.22

					GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q—R
	EXTE	RNA	L TAI	١ĸ	BASE	(COLD)							
					10	0.0385	2.300	0.02176	1.000	9	~0.88		
	YECB	FL	ĄΡ									132	0.0
710	BSRM	SH	ROUD		44 46		4.194 14.397	0.05346 0.22426		48 49 50 51 52 53	0.0 0.91 0.44 0.0 0.0 0.44(?)	47	6.01
	LEFT	O.P	S PO	D	57	0.0300	1.792	0.01326					
	(FI	ſΟÞ	IS NO)Z Z	LE					66	G.0		
	०५५	E 70) Z Z L E	#									
	5 5 M 1	E NI	ZZL	E #	72 :2	1.2200							
					6	1.1500							

PHN	84	CONTINUED

SSME NOZZLE #3	_						
133 1.200	10						
BASE HEAT SHIELD (COLD) 66 0.045 98 0.033 89 0.036 90 0.031 91 0.025 92 0.032 93 0.038 95 0.031 162 0.032	1.983 2.157 18 1.900 95(?) 1.762 21 1.918 81 2.276 13 1.870 54 2.115	C.02856 C.01646 O.01936 O.01506 O.01276 O.01276 O.01356 O.01456 O.01866 O.01546	1.428 1.044 1.135 1.000 0.928 1.009 1.198 0.984 1.113 1.013	102 103 105 108 109 110 111 112 115 116	C.76 O.79 (?) O.67 O.62 O.62 O.58 C.67 O.47 C.56 O.36	96 99 101	i.17 i.0 c.11

RUN NUMBER# 85

CONFIGURATION= OTS
MACH NUMBER= 4.5
ALTITUDE=122. K FT
ANGLE OF ATTACK= 0 DEGREES
TOB= 80.0 DEG F

TET= 80.0 DEG F

POINF= 9.89 PSIA PINF= 0.0342 PSIA TOINF= 382.0 DEG F RE/FT TIMES 10(-4)= 11.63 PC123= 1382.0 PSIA PC4 146.0 PSIA PC5= 131.0 PSIA PC123/PINF TIMES 10(-4)= 4.04

			GA GE	Р	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q -R
	EXTERNAL	TANK	BASE	(COLD)							
217			10 157 158 159 170 171 172	0.0591 0.0631 0.0418 0.0534 0.0561 0.0556 0.0539	1.730 1.847 1.223 1.563 1.642 1.627	0.02493 0.02893 (.00763 0.01923 0.02193 0.02143 0.01973	1.000 1.068 0.707 0.904 0.949 0.941 0.912	1 5 7 9 15 17 21	1.48 0.78 0.83 1.16 0.20(?) 1.07 0.92 0.54 C.91	8 18 129 130 131	0.36 0.32 0.10 0.23 0.15
	EKTERNAL	TANK	SIDE	HALL							
			25	0.0031(2)	0.090	-0.03108		26	C . C		
	BJDY FLAR	>									
								29 33 34 35	C.39 C.37 C.71 1.53		
								204	C.16		

6. RM NDZZLE

54 0.0625 1.829 C.C2533 55 3.6300 56 4.8800 1

85 CONTINUED RUM

	GA	GE	Р	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q -R
LEFT	OMS POD						61	0.0		
SSME	NOZZLE #1									
		72	2.2000							
SSME	NOZZLE #2									
		67	2.2600							
ខ្លួងផ្	NOZZLE #3									
	:	133	2.3900							
~ 5251	HEAT SHIEL	D (COL	D)						_3	
<u></u>		82 90	0.0507 0.0459	1.484 1.343	0.01653 0.01173	1.105 1.000	111	0.08 (?)	

ORIGINAL! PAGE IS OF POOR QUALITY

RUN NUMBER= 96

SAME MOZZEE #1

72

2.5100

CONFIGURATION= OTS

POINF= 6.46 PSIA PINF= 0.0223 PSIA TOINF= 353.0 DEG F RE/FT TIMES 10(-4) = 7.78PC123= 1450.0 PSI1 PC4 162.0 PSIA PC5= 145.0 PSIA PC123/PINF TIMES 10(-4)= 6.50

AGE	p	P/PINF	P-PINF	P/PCL	GAGE	Ç	GAGE	Ç-R
ASE	(COLD)							
10	0.0458	2.052	0.02348	1.000	1	0.70	8	0.50 (?)
156	0.0444	1-992	0.0221	0.969	3	0.83	18	C.44 (?)
157	0.0459	2.057	0.02358	1.002	4	1.10	129	0.24
158	0.0350	1.568	0.01268	0.764	5	1.25	130	C.27
159	0.0415	1.659	0.01918	0.906	7	1.61	131	0.22
170	0.0434	1.945	0.02108	0.948	ģ	2.03		
171	0.0425	1,904	0.02018	0.928	15	1.75		
172	0.0384	1.720	0.01608	0.838	17	0.88		
112	0.0004	14,40		00000	21	0.75		
					28	1.45		
					29	€.30		
					33	>0.39		
					34	0.83		
					35	1.75		

RUN 86 CONTINUED

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
SSME NOZZLE	#2								
	67	2.4500							
SSME NOZZLE	#3								
	133	2.6400							
BASE HEAT S	HIELD (CC	LD)							
	82 90	0.03 <i>57</i> 0.0367	1-601	0.0:34 0.01438	0.973 1.000	111	0.72		

220

RUN NUMBER= 87

CONFIGURATION= OTS

MACH NUMBER= 4.5 ALTITUDE=141. K FT ANGLE OF ATTACK= O DEGREES TOB= 80.0 DEG F TET= 80.0 DEG F

POINF 4.63 PSIA PINF 0.0160 PSIA TOINF = 376.0 DEG F
RE/FT TIMES 10(-4) = 5.46
PC123 = 1522.0 PSIA
PC4 198.0 PSIA
PC5 = 145.0 PSIA
PC123/PINF TIMES 10(-4) = 9.52

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q -R
EXTERNAL T	TANK BASE	(COLD)							
221	10 16 156 157 158 159 170 171	0.0418 0.0521 0.0412 0.0463 0.0361 0.0363 0.0435 0.0437 0.0340(?)	2,636 3,260 2,578 2,897 2,259 2,272 2,722 2,735 2,128	0.02582 0.03612 0.02522 0.03032 0.02012 0.02032 0.02752 0.02772 0.01802	1.000 1.246 0.986 1.108 0.864 0.868 1.041 1.045	1 4 5 7 9 15 17 19 20 21 28	0.94 0.95 1.22 1.55 1.55 1.01 0.35 0.63 0.90 0.36 1.93	8 18 130 131	0.65 >1.60 0.31 0.24
BODY FLAP									
						29	0.37		
						33	0.82		
						34	1.05		
						35	1.64		
					-				

ESRM NOZZLE

2.998 0.03192 0.0479 4.8300 4.3900

SSME NOZZLE #1

2.5700

1000mm 1000mm

RUM 87 CONTINUED

GAGE GAGE Q-R GAGE P/PCL P/PINF P-PINF SSME NOZZLE #2 67 2.6000 SSME NOZZLE #3 133 2.6700 BASE HEAT SHIELD (COLD) 0.01742 0.01942 0.944 1.000 111 1.27 82 90 0.0334 0.0354 2.090 2.215

222

AUTYOU WOUTH TO

RUM NUMBER= 88 CONFIGURATION= OTS HACH NUMBER = 4.5 ALTITUDE=119 K FT
ANGLE OF ATTACK= 0 DEGREES
TOB= 80.0 DEG F
TET= 80.0 DEG F POINF= 4.96 PSIA PINF= 0.0171 PSIA TOINF= 404.0 DEG F RE/FT TIMES 10(-4)= 5.73 PC123= 717.0 PSIA PC4 133.0 PSIA PC5= 102.0 PSIA PC123/PINF TIMES 10(-4)= 4.18

	GAGE	Р	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERNAL TANK BASE	(COLD)							
223	10 156 157 158 159 170 171	0.0323 0.0304 0.0342 0.0282 0.0314 0.0381 0.0296 0.0270	1.885 1.774 1.996 1.646 1.832 2.223 1.727	0.01516 0.01326 0.01706 0.01106 0.01426 0.02096 0.01246 0.00986	1.000 0.941 1.059 0.873 0.972 1.180 0.916 0.836	3 4 5 7 9 15 17 19 20 21 28	0.53 0.83 0.86 1.13 1.23 1.16 0.67 0.63 1.01 0.37 0.85	8 18 129 130 131	0.38 0.24 0.17 0.18 0.11
	BEDY FLAP								
						29	0.42		
						33	0.58		
						34	0.80		
						35	1.59		

BSRM NOZZLE

2.282 0.02196 0.0391 54 3.3510 55 4.0320

SSHE MOZZLE #1

72 1.2230

RUN 88 CONTINUED

	GAGE	Ρ	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
SSHE NOZZLE	₽ 2								
	67	1.1790							
SSME NOZZLE	#3								
	133	1.3200							
BASE HEAT SI	HIELD (CO	LDI							
	82 90	0.0256 0.0283	1.494 1.651	0.00846 0.01116	0.905 1.000	111	0.46		

22

RUN NUMBER= 89A

61

0.72

POINF= 14.80 PSIA

RUN 89A CONTINUED

GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
SSME NOZZLE #1								
72	2.5500							
SSME NOZZLE #2								
67	2.5200							
SSME NOZZLE #3								
133	2.6000							
BASE HEAT SHIELD (C	OLD)							
82 90	0.0751 0.0861	1.469 1.684	0.02397 0.03497	0.872 1.000	111 202	0.09 1.72		

RUN NUMBER = 898 CONFIGURATION= DTS HACH NUMBER= 4.5 ALTITUDE=112. K FT ANGLE OF ATTACK= O DEGREES TOB= 80.0 DEG F TET= 80.0 DEG F

POINF= 14.50 PSIA PINF= 0.0501 PSIA TOINF= 408.0 DEG F RE/FT TIMES 10(-4)= 16.69 PC123= 1461.0 PSIA PC4 363.0 PSIA PC5= 291.0 PSIA PC123/PINF TIMES 10(-4)= 2.92

	GAGE	Р	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q -R
	GAGE	f	77. 210						
EXTERNAL TANK	K BASE	(COLD)							
	10	0.0913	1.822	0.04120	1.000	1	2.46	8	0.75
	156	0.0927	1.850	0.04260	1.015	1 3	0.87	18	0.40
	157	0.0959	1.914	0.04580	1.050	4	1.40	130	0.22
	158	0.0705	1.407	0.02040	0.772	5	1.11	131	0.13
		0.0833	1.663	0.03320	0.912	5 9	1.79		
	159	0.0854	1.705	0.03530	0.935	15	2.11		
	170		1.519	0.02600	0.834	17	0.61		
N	171	0.0761	1.581	0.02910	0.867	19	0.83		
22	172	0.0792	1,501	0402310	00001	20	1.74		
7						21	2.11		
						28	1.07		
						20	2.51		
BEDY FLAP									
						33	0.95		
						34	1.36		
							-		
5. M NOZZLE									
	54	0.1070	2.136	0.05690					
	55	9.1400							

9.1400 8.5300

S. ME NOZZLE #1

2.4900 72

SIME NOZZLE #4

1.0300 67

RUN 898 CONTINUED

	GAGE	Р	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
SSHE NDZZI	LE #3								
	133	2.5900							
BASE HEAT	SHIELD (CO	LD)							
	82 90	0.0655 0.0826	1.307 1.649	0.01540 0.03250	0.793 1.000	111	1.79		

RUM NUMBER= 90

CONFIGURATION= OTS

MACH NUMBER= 4.5

ALTITUDE=142. K FT

ANGLE OF ATTACK= 0 DEGREES

TOB= 80.0 DEG F

TET= 80.0 DEG F

POINF= 4.52 PSIA PINF= 0.0156 PSIA TOINF= 368.0 DEG F RE/FT TIMES 10(-4)= 5.38 PC123= 1496.0 PSIA PC4 173.0 PSIA PC5= 178.0 PSIA PC123/PINF TIMES 10(-4)= 9.58

		GAGE	P	P/PINF	P-PIHF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERNAL TANK	BASE	(COLD)							
229		10 156 157 158 159 170 171 172	0.0424 0.0322 0.0399 0.0305 0.0368 0.0370 0.0386	2.715 2.062 2.555 1.953 2.356 2.372 2.472 2.120	0.02678 0.01658 0.02428 0.01488 0.02118 0.0274 0.02298 0.01748	1.000 0.759 0.941 0.719 0.868 0.873 0.910	1 3 4 5 7 15 17 19 20 21 28	> 3.11 1.08 1.26 > 2.58 3.59 2.81 1.54 1.18 1.62 2.14 1.01 2.09	8 18 130 131	0.54 0.41 0.51 0.23
	endy FLAP						33	C.59		
							34	0.78		

BERM NOZZLE

54 0.0434 2.779 0.02778 55 4.1700 56 5.1100

SIME NOZZLE #1

72 2.4700

RUN 90 CONTINUED

GAGE P P/PINF P-PINF P/PCL GAGE Q-R

SSHE NOZZLE #2

67 2.4500

SSME NDZZLE #3

133 2.6200

BASE HEAT SHIELD (COLD)

82 0.0331 2.120 0.01748 1.003 111 1.66 90 0.0330 2.113 0.01738 1.000

23

ORIGINAL PACE IS

e grant et al.

RUN NUMBER= 91A

CONFIGURATION= DTS

MACH NUMBER= 4.5

ALTITUDE=122. K FT

ANGLE OF ATTACK= 0 DEGREES

TOB= 80.0 DEG F TET= 80.0 DEG F

POINF= 10.02 PSIA PINF= 0.0346 PSIA TOINF 378.0 DEG F
RE/FT TIMES 10(-4)= 11.82
PC123= 1464.0 PSIA
PC4 471.0 PSIA
PC5= 375.0 PSIA
PC123/PINF TIMES 10(-4)= 4.23

		GAGE	P	P/PINF	P-PIMF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERNAL TAI	NK BASE	(COLD)							
		10	0.0845	2.441	0.04988	1.000	1	> 6.29	8	1.02
		156	0.0880	2.542	0.05338	1.041	3	1.90	18	0-85
		157	0.0883	2.551	0.05368	1.045	4	2.66	131	0.27
		158	0.0661	1.909	0.03148	0.782	5	1.93		
		159	0.0766	2.213	0.04198	0.907	7	2.09		
2		170	0.1020	2.946	0.06738	1.207	ġ	>3.70		
ω		171	0.0744	2.149	0.03978	0.880	15	2.16		
		172	0.0756	2.184	0.04098	0.895	17	1.58		
							19	1.69		
							20	~ 3.65		
							21	3.06		
							28	3.65		
							~0	0.00		
	BODY FLAP									
							33	~ 2.46		
							34	>6.69		

BSRM NOZZLE

0.0889 2.568 0.05428 12.8800 10.2500

SSME NOZZLE #1

2.5080

RUN 91A CONTINUED

GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	G AGE	Q-R
SSHE NOZZLE #2								
67	0.7880							
SSME NOZZLE #3								
133	2.3920							
BASE HEAT SHIELD (CO	DLD)							
82	0.0760	2.195	0.04138 0.03138	1.152	111	4.04		

232

RUN NUMBER= 918

CONFIGURATION= OTS

```
MACH NUMBER = 4.5
        ALTITUDE=122. K FT
        ANGLE OF ATTACK= O DEGREES
         TOB= 80.0 DEG F
                80.0 DEG F
         TET=
                                    P/PINE
                                               P-PINF
               GAGE
EXTERNAL TANK BASE (COLD)
                         0.0750
                                              0.04067
                                     2.185
                        0.0722
                                              0.03787
                                     2.103
                156
                                              0.04377
0.02617
0.03467
0.04277
0.03357
0.02527
                                     2.275
                157
                158
                         0.0605
                                     1.763
                         0.0690
                                     2.010
                159
                170
                         0.0771
                                     2.246
                171
                         0.0679
                                     1.978
                         0.0596
                                     1.736
                172
SODY FLAP
SIRM NOZZLE
                  54
                         0.0797
                                     2.322 0.04537
                         9.6600
                  55
                         8.4000
                  56
SSME NOZZLE #1
                  72
                         2.5200
SSME NOZZLE #2
                         2.4800
                  67
```

POINF= 9.94 PSIA PINF= 0.0343 PSIA TOINF= 297.0 DEG F RE/FT TIMES 10(-4)= 12.57 PC123= 1469.0 PSIA PC4 289.0 PSIA PC5= 252.0 PSIA PC123/PINF TIMES 10(-4)= 4.28

GAGE

15

17

19

20 28

33

34

GAGE

18

131

3.72

1.16

1.32

1.75

2.83

2.76

2.16

0.99

1.47

1.75

1.39

1.52

Q-R

0.55

0.17

0.11

P/PCL

1.000

0.963

1.041

0.807

0.920

1.028

0.905

0.795

RUN 918 CONTINUED

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
SSME NOZZLE #	3								
	133	2.6100							
BASE HEAT SHI	EFD (COI	.D)							
	82 90	0.0542 0.0539	1.579 1.570	0.01987 0.01957	1.006 1.000	111	1.37		

RUN NUMBER= 91C

CONFIGURATION= OTS

HACH NUMBER= 4.5

ALTITUDE=121. K FT

ANGLE OF ATTACK= 0 DEGREES

TOB= 80.0 DEG F

TET= 80.0 DEG F

2.5700

133

POINF= 10.30 PSIA PINF= 0.0356 PSIA TOINF= 348.0 DEG F RE/FT TIMES 10(-4)= 12.46 PC123= 1476.0 PSIA PC4 346.0 PSIA PC5= 386.0 PSIA PC123/PINF TIMES 10(-4)= 4.15

			G#	A GE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERNA	L TAI	NK 8/	ASE	(COLD)							
235)			10 156 157 158 159 170 171 172	0.0805 0.0873 0.0930 0.0808 0.0755 0.1000 0.0835 0.0739	2.262 2.453 2.613 2.271 2.122 2.810 2.346 2.077	0.04491 0.05171 0.05741 0.04521 0.03991 0.06441 0.04791 0.03831	1.000 1.084 1.155 1.004 0.938 1.242 1.037	1 3 4 5 7 17 19 20 21	2.74 1.05 1.41 1.66 2.50 0.86 1.16 1.81 4.19 (?)	8 18	0.66 0.49
	BSRM NO	ZZLE										
				54 55 56	0.0955 8.6500 9.6500	2.684	0.05991					
	SOME NO	ZZLE	#1									
				72	2.4000							
	SUME NO	ZZLE	∉2									
				67	2.4600							
	STAR NO)ZZLE	#3									

91C CONTINUED

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT SHIP	ELD (CO	ILD)							
	82 90	0.0751 0.0666	2.110 1.871	0.03951 0.03101	1.128 1.000	111	2.11		

236

ORIGINAL PAGE IS
OF POOR QUALITY

RUN NUMBER= 92

CONFIGURATION= DTS

MACH NUMBER= 4.5

ALTITUDE=100. K FT

ANGLE OF ATTACK= 0 DEGREES

TOB= 80.0 DEG F

TET= 80.0 DEG F

POINF = 23.60 PSIA PINF = 0.0815 PSIA TOINF = 402.0 DEG F RE/FT TIMES 10(-4) = 27.29 PC123 = 1451.0 PSIA PC4 351.0 PSIA PC5 = 294.0 PSIA PC123/PINF TIMES 10(-4) = 1.78

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
EXTERNAL	TANK BASE	(COLD)							
23	10 156 157 158 159 170	0.1140 0.1530 0.1260 0.1010 0.1050 0.1170	1.398 1.876 1.545 1.239 1.288	0.03246 0.07146 0.04446 0.01946 0.02346 0.03546	1.000 1.342 1.105 0.886 0.921 1.026	1 3 4 9 17 19	2.02 0.72 0.87 1.17 0.71 0.80	8 18	0.46 (?) 0.46
7	171 172	0.0974 0.1010	1.195	0.01586 0.01946	0.854 0.886	20 21 28	1.14 0.75 0.87		

EXTERNAL TANK SIDEWALL

25

BSRM NOZZLE

54	0.1640	2.011	0.08246
55	8.9000		
56	a.1400		

SUME NOZZLE #1

72 2.2700

SAME NOZZLE #2

67 2.2400

والمراجع المعالمين فعد المأتي والمأثل أراد والمؤاز أوالا الميكور والمراجع المراكز والمراجع

...

ing series of the specific control of the second of

RUN 92 CONTINUED

	GAGE	Р	P/PINF	P-PINE	P/PCL	GAGE	Q	GAGE	Q-R
SSHE NO	DZZLE #3								
	133	2.5500							
BASE HE	AT SHIELD (CO	LD)							
	82	0-1010	1.239	0.01946	0.990	111	1.82		

RUN	NUMBER # 93A	•
	CONFIG	į
	GLACH M	ľ

CONFIGURATION= OTS
MACH NUMBER= 4.5
ALTITUDE=122. K FT
ANGLE OF ATTACK= 0 DEGREES
TOB= 80.0 DEG F
TET= 80.0 DEG F

POINF= 9.85 PSIA PINF= 0.0340 PSIA TOINF=>340.0 DEG F RE/FT TIMES 10(-4)= 12.00 PC123= 1407.0 PSIA PC4=321.0 PSIA PC5= 310.0 PSIA PC123/PINF TIMES 10(-4)= 4.13

	GAGE	р	P/PINF	P-PIHF	P/PCL	GAGE	Q	GAGE	Q-R
EXTERNAL TANK 2239	10 156 157 158 159 170 171	(COLD) 0.0727 0.0865 0.0768 0.0680 0.0944 0.0650 0.0672	2.136 2.542 2.257 1.998 2.774 1.910 1.975	0.03867 0.05247 0.04277 0.03397 0.06037 0.03097 0.03317	1.000 1.190 1.056 0.935 1.298 0.894 0.924	3 4 5 7 9 15 17 19 20 21	1.08 1.06 1.38 1.90 2.06 2.91 0.86 1.06 2.19 1.15 1.78	8 18 131	0.39 0.43 0.17
9SRM NOZZLE LEFT OMS POD	54 55 56 84	8.9800 8.6700	2.586 4.134	0.05397					

S,ME NOZZLE #1

2.1710 72

SIME NOZZLE #2

2.4730

RUN 93A CONTINUEO

GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q -R
SSME NOZZLE #3								
133	2.2610							
BASE HEAT SHIELD (C	OLD)							
82	0.0628	1.845	0.02877	1.030	111	1.52		•

RUN NUMBER= 938

CONFIGURATION= OTS
MACH NUMBER= 4.5
ALTITUDE=121. K FT
ANGLE OF ATTACK= 0 DEGREES
TOB= 80.0 DEG F
TET= 80.0 DEG F

2.4350

POINF= 10.34 PSIA PINF= 0.0357 PSIA TOINF= 416.0 DEG F RE/FT TIMES 10(-4)= 11.82 PC123= 1475.0 PSIA PC4=286.0 PSIA PC5= 273.0 PSIA PC123/PINF TIMES 10(-4)= 4.13

GAG	е Р	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q -R
	0 0.0566 .6 0.0126 .6 0.0734 .7 0.0699	1.584 0.353 2.055 1.957	0.02088 -0.02312 0.03768 0.03418	1.000 0.223 1.297 1.235	1. 3. 4. 5. 7	3.29 1.28 1.08 1.27 2.14	8 16 129 130	0.62 0.58 0.39 0.34
22 17 17	0.0645 0.0720	1.430 1.805 2.015 1.755 1.680	0.01538 0.02878 0.03628 0.02698 0.02428	0.903 1.140 1.272 1.108 1.060	9 15 17 19 20 21 28	2.53 ~ 2.45 1.19 1.69 2.05 1.19 1.22		
HODY FLAP					29	0.48		
	54 0.0751 55 7.5110 56 8.2120	2.102	0.03938					
SME NOZZLE #1	72 2.5210						¥	

RUN 93B CONTINUED

GAGE	Р	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Ω- -R
SSME NOZZLE #3								
133	2.6570							
BASE HEAT SHIELD (CO	ILD)							
82 90	0.0582 0.0533	1.629 1.492	0.02248 0.01758	1.092 1.000	111	1.58		

242

THE BOAT HERE

RUN NUMBER= 94 CONFIGURATION= DTS MACH NUMBER= 4.5 ALTITUDE=121. K FT ANGLE OF ATTACK= 0 DEGREES TOB= 80.0 DEG F TET= 80.0 DEG F

POINF= 10.20 PSIA PINF= 0.0352 PSIA TOINF# 422.0 DEG F RE/FT TIMES 10(-4)= 11.61 PC123= 1469.0 PSIA PC4=314.0 PSIA PC5= 250.0 PSIA PC123/PINF TIMES 10(-4)= 4.17

			GAGE	P	P/PINF	P-PIN#	P/PCL	GAGE	Q	GAGE	Q -R
	EXTERNAL	TANK	BASE	(COLD)							
			10	0.0786	2.230	0.04336	1.000	9	2.04		
	SODY FLA	P									
)										132	0.48
,	BSRM SHR	סטם									
								48	0.15		
								49	2.26		

SIME MOZZLE #1

2.6100 72

SEME NOZZLE #2

2.5220

STAE NOZZLE #3

2.7270 133

RUN 94 CONTINUED

G	SAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q -R
BASE HEAT SHIEL	86 0. 88 0. 89 0. 90 0. 92 0. 93 0. 95 0. 162 0.	0722 0701 0722 0669 0661 0735 .0636 .0681	2.049 1.989 2.049 1.698 1.876 2.086 1.805 1.932 1.822	0.03696 0.03486 0.03696 0.03166 0.03086 0.03826 0.02836 0.02896	1.079 1.048 1.079 1.000 0.988 1.099 0.951 1.018	103 104 105 106 107 108 111 112 115 116 117	1.40 1.74 1.98 1.52 1.35 2.09 1.60 0.98 1.13 1.08 1.28 1.43	96 99	0.42 0.88

```
RUN NUMBER= 96
                                                                POINF= 2.29 PSIA
                CONFIGURATION= DT
                                                                PINF= 0.0079 PSIA
                MACH NUMBER= 4.5
                                                                TOINF= 446.0 DEG F
ORIGINAL PAGE IS
OF POOR QUALITY
                ALTITUDE=159. K FT
                                                                RE/FT TIMES 10(-4)= 2.56
                ANGLE OF ATTACK = 0 DEGREES
                                                                PC123= 1430.0 PSIA
                TOB= 80.0 DEG F
                                                                PC4= 0.0 PSIA
                TET= 80.0 DEG F
                                                                PC5= 0.0 PSIA
PC123/PINF TIMES 10(-4)= 18.07
                                                                                                  GAGE
                                                                                                              Q-R
                                                                            GAGE
                                                                P/PCL
                                          P/PINF
                                                     P-PINF
                      GAGE
       EXTERNAL TANK BASE (COLD)
                                                                                       0.07
                                           0.772 -0.00180
                                                                 1.000
                        10
                               0.0341
        BODY FLAP
                                                                                       0.06
                                                                              29
    245
        SSHE NOZZLE #1
                         72
                                2.5100
        SSME NOZZLE #2
                                2.5800
        SSHE NOZZLE #3
                        133
                                2.6100
        BASE HEAT SHIELD (COLD)
                                                                                                             6.02
                                                                                        0.19
                                                                 0.234
                                                                              103
                                                    0.00136
                                            1.172
                                0.0093
                                                                              104
                                                                                        0.89
                                            1.182
                                                    0.00144
                                                                 0.236
                                0.0094
                          86
                                                                                        0.14
                                                                              105
                                                    0.00176
                                                                 0.244
                                0.0097
                          88
                                                                                        1.31
                                                                 0.327
                                                                              108
                                                    0.00509
                                            1.643
                                0.0130
                          89
                                                                                        2.65
                                                                              112
                                                    0.03179
                                                                 1.000
                                0.0397
                                            5.018
                          90
                                                                              116
                                                                                      > 2.43
                                                                 0.693
                                            3.476
                                                    0.01959
                                0.0275
                          92
                                                                                        0.39
                                                                 0.338
                                                                              117
                                                    0.00549
                                            1.694
                          93
                                0.0134
                                                                 0.360
                                            1.807
                                                    0.00639
                                0.0143
                          95
                                                                 0.315
                                                     0.00459
                                            1.580
                                0.0125
```

.

RUN NUMBER= 97
CONFIGURATION= OT HACH NUMBER= 4.5 ALTITUDE=151. K FT ANGLE OF ATTACK O DEGREES
TOB 80.0 DEG F
TET 80.0 DEG F

2.6500

133

POINF= 3.15 PSIA PINF= 0.0109 PSIA TOINF = 368.0 DEG F RE/FT TIMES 10(-4) = 3.75 PC123= 1457.0 PSIA PC4 0.0 PSIA PC5* 0.0 PSIA PC123/PINF TIMES 10(-4)= 13.39

				GAGE	Þ	P/PINF	P-PINF	P/PCL	GAGE	Ð	GAGE	Q -R
	EXTER	NAL	TANK	BASE	(COLD)							
				10	0.0064	0.586	-0.00450	1.000	9	0.08		
246	BODY	FLAI	•						29	0.04		
	LEF7	OMS	NOZ Z	LE					66	0.28 (?)		
	27 N E	NOZ	ZLE #									
				72	2.5300							
	SSME	NOZ	ZLE #									
				67	2.5100							
	55ME	402	ZLE #	3								

RUN 97 CONTINUED

	GAGE	p	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT	SHIELD (C	OLD)							
	82 86 88 89 90 91 92 93 95 162 164	0.0098 0.0109 0.0115 0.0149 0.0412 0.0360 >0.0188 0.0071 0.0149 0.0127 0.0218	0.901 1.002 1.057 1.369 3.786 3.308 1.727 0.651 1.369 1.167 2.003	-0.00107 0.00002 0.00062 0.00402 0.03032 0.02512 0.00792 -0.00379 0.00402 0.00182 0.01092	0.238 0.265 0.279 0.362 1.000 0.874 0.456 0.172 0.362 0.308 0.529	103 104 105 108 111 112 116	0.21 0.91 1.25 1.41 7.44 2.95 4.29	96	0.03

RUN NUMBER= 98 CONFIGURATION≖ OT MACH NUMBER= 4.5 ALTITUDE=142. K FT
ANGLE OF ATTACK= 0 DEGREES
TOB= 80.0 DEG F
TET= 80.0 DEG F

POINF# 4.51 PSIA PINF# 0.0156 PSIA TOINF= 360.0 DEG F RE/FT TIMES 10(-4)= 5.40 PC123= 1383.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 8.88

			G A	\GE	р	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERNAL	. TAN	IK BA				-0.00 9 58	1.000	9	0.19		
	BODY FL	ΑP		10	0.0060	0.383	~0.00750	1,000	·			
د د د									29	• 0.50	132	0.0
	LEFT OM	S PO	D									
				57	0.0154	0.988	-0.00018					
	SAME NO	ZZLE	#1									
				72	2.4100							
	SSME NO	ZZLE	#2									

133

67

2.4500

2-4600

SCHE NOZZLE #3

RUN 98 CONTINUED

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q -R
BASE HEAT	SHIELD (CO 86 88 89 90 91 92 93 95	0.0096 0.0136 0.0180 0.0433 0.0390 0.0207 0.0155 0.0136	0.616 0.873 1.155 2.779 2.503 1.328 0.995 0.873	-0.00598 -0.00198 0.00242 0.02772 0.02342 0.00512 -0.00008 -0.00198	0.222 0.314 0.416 1.000 0.901 0.478 0.358 0.314 0.363	103 104 105 111 112 116	0.60 0.36 1.34 4.19 2.22 1.61	96	0.0
	162 164	0.0157 0.0158	1.008 1.014	0.00012	0.365				

RUN NUMBER= 99

CONFIGURATION= OT MACH NUMBER= 4.5 ALTITUDE=169. K FT ANGLE OF ATTACK= O DEGREES TOB= 80.0 DEG F TET= 80.0 DEG F

2.6800

133

POINF= 1.53 PSIA PINF= 0.0053 PSIA TOINF= 316.0 DEG F RE/FT TIMES 10(-4)= 1.90 PC123= 1417.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 26.81

				GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTER	RNA L	TANK	BASE	(COLD)							
				10	0.0034	0.638	-0.00192	1.000	9	0.02		
v	BODY	FLA	P									
O.									29	1.16		
	LEFT	OHS	POD									
				57	0.0068	1.294	0.00155					
	SSME	NOZ	ZLE #	1								
				72	2.4900							
	SSME	NOZ	ZLE #	2								
				67	2.4600							

SSME NOZZLE #3

REN 99 CONTINUED

	GAGE	Р	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q - R
BASE HEAT SH	HIELD (CO	LD)							
	82 88 89 90 91 92 93 95	0.0052 0.0126 0.0251 0.0352 0.0359 0.0311 0.0074 0.0074	0.984 2.384 4.748 6.091 6.413 5.883 1.396 1.404 2.875	-0.00009 0.00731 0.01981 0.02691 0.02861 0.02581 0.00209 0.00213 0.00991	0.161 0.391 0.780 1.000 1.053 0.966 0.229 0.230	103 104 105 106 107 108 111 112 115	0.22 1.52 2.30 0.52 1.05 3.07 3.69 3.86 2.02		

RUN NUMBER= 100 CONFIGURATION= DT MACH NUMBER= 4.5 ALTITUDE=142. K FT ANGLE OF ATTACK# 0 DEGREES TOB= 80.0 DEG F TET= 80.0 DEG F

133

2.5800

POINF= 4.44 PSIA PINF= 0.0153 PSIA TOINF= 356.0 DEG F RE/FT TIMES 10(-4)= 5.33 PCI23= 1449.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)# 9.45

	G	AGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q
	EXTERNAL TANK B	ASE					9	0.10		
		10	0.0088	0.576	-0.00650	1.000	4	0.10		
252	BODY FLAP						29	0.80		
	LEFT OMS POD									
		57	0.0237	1.545	0.00836					
	SSME NOZZLE #1									
		72	2.5000							
	SSME NOZZLE #2									
		-67	2.4900							
	SSME NOZZLE #3									

GAGE	ρ	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q - R
BASE HEAT SHIELD (82 86 88 90 91 92	0.0112 0.0140 0.0450 >0.0338 0.0303 0.0147 0.0210 0.0224	0.730 0.913 2.933 2.203 1.975 0.958 1.360 1.460	-0.00414 -0.00134 0.02966 0.01846 0.01496 -0.00064 0.00566 0.00706	0.370 0.462 1.485 1.116 1.000 0.485 0.693 0.739 0.601	103 104 105 106 109 111 112 115	> 1.57 0.89 4.24 2.00 4.34 2.98 1.92 1.36 7.66	96	0.05
164		1.232	0.00356	0.624	202	~ 6.04		

RUN NUMBER= 101 CONFIGURATION≈ OT MACH NUMBER= 4.5

ALTITUDE=169. K FT

ANGLE OF ATTACK= 0 DEGREES

TOB= 80.0 DEG F TET= 80.0 DEG F POINF= 1.53 PSIA PINF= 0.0053 PSIA TOINF= 324.0 DEG F RE/FT TIMES 10(-4)= 1.89 PC123= 1394.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 26.37

GAGE Q-R P/PCL GAGE GAGE P/PINF P-PINF EXTERNAL TANK BASE (COLD) 0.05 0.0041 0.778 -0.00118 1.000 10 BODY FLAP 0.79 29

25 4 LEFT OMS POD

57 0.0075 1.415 0.00219

SSME NOZZLE #1

72 2.4600

SSME NOZZLE #2

67 2.4200

RIME NOZZLE #3

133 2.5300

ţ

RUN 101 CONTINUED

	GAGE	P	P/PIHF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT	SHIELD (CO	LD)							
	82	0.0958	1.099	0.00052	0.258	103	0.10	96	0.07
	86	0.0071	1.347	0.00183	0.316	104	1.19	99	0.02
	88	0.0066	1.243	0.00128	0.292	105	0.78		
	89	0.0091	1.723	0.00382	0.405	106	0-41		
	90	0.0225	4,256	0.01721	1.000	107	0.74		
	91	0.0287	5.429	0.02341	1.276	108	0.98		
	92	0.0316	5.978	0.03631	1.404	109	1.47		
	93	0.0072	1.358	0.00189	0.319	111	2.74		
	95	0.0006	1.634	0.00335	0.384	112	4.30		
	164	0.0269	5.089	0.02161	1.196	115	6.06		

RUN NUMBER= 102

CONFIGURATION= DT

HACH NUMBER= 4.5

ALTITUDE=160. K FT

ANGLE OF ATTACK= 0 DEGREES

TOB= 80.0 DEG F

TET= 80.0 DEG F

POINF= 2.15 PSIA PINF= 0.0074 PSIA TOINF= 345.0 DEG F RE/FT TIMES 10(-4)= 2.61 PC123= 1433.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 19.29

				GAG	. P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q R
	EXTER	RNAL	TAN	K BAS	(COLD)							
				1	0.0079	1.066	0.00049	1.000	9	0.23		
	BODY	FLA	P									
256									29	0.98		
Ċ)	LEFT	DHS	POD									
				5	7 0.011	8 1.589	0.00437					
	SSME	NOZ	ZLE	#1								
				7	2 2.610	0						
	a>ME	NOZ	ZLE	#2								
				6	7 2.480	0						
	SSME	NOZ	ZLE	#3								
				13	3 2.630	0						

	GAGE	Р	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT	SHIELD (CO	LD)							
	82	0.0095	1.282	0.00209	0.274	103	0.13	96	0.08
	86	0.0117	1.575	0.00427	0.336	105	1.16	99	0.07
	88	0.0100	1.346	0.00257	0.287	106	0.37		
	89	0.0134	1.804	0.00597	0.385	107	1.02		
	90	0.0348	4.685	0.02737	1.000	108	1.25		
	91	0.0378	5.089	0.03037	1.086	111	~ 6.71		
	92	0.0281	3.783	0.02067	0.807	115	6.03		
	93	0.0133	1.790	0.00587	0.382	116	1.62		
	95	0.0134	1.804	0.00597	0.385	202	2.86		
	164	0.0264	3.554	0.01897	0.759				

257

ORIGINAL PAGE IS OF POOR QUALITY RUN NUMBER= 103

CONFIGURATION= OT

MACH NUMBER= 4.5

ALTITUDE=142. K FT

ANGLE OF ATTACK= O DEGREES

TOB= 80.0 DEG F

TET= 80.0 DEG F

POINF= 4.53 PSIA PINF= 0.0157 PSIA TOINF= 358.0 DEG F RE/FT TIMES 10(-4)= 5.43 PC123= 1419.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 9.07

		GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Ç-R
	EXTERNAL TANK	BASE 10	(COLD) 0.0088	0.562	-0.00686	1.000	9	0-10		
2	BODY FLAP						29	0.80		

SSME NOZZLE #1

72 2.4300

SSME NOZZLE #2

67 2.3600

SSME NOZZLE #3

133 2.6800

- (

RUN 103 CONTINUED

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT	SHIELD (CO	LDI							
	82	0.0172	1.099	0.00155	0.562	103	0.42	96	0.09
	86	0.0157	1.003	0.00005	0.513	104	5.38	99	0.06
	88 .	0.0541	3.457	0.03845	1.768	105	3.20		
	90	0.0300	1.955	0.01495	1.000	106	4-00		
	91	0.0193	1.233	0.00365	0.631	107	5.19		
	92	0.0199	1.271	0.00425	0.650	108	10.70		
	93	0.0205	1.310	0.00485	0.670	111	2.85		
	95	0.0175	1.118	0.00185	0.572	112	1.43		
	164	0.0181	1.156	0.00245	0.592	115	1.30		
						116	0.92		
						202	5.70		

RUN NUMBER= 104

CONFIGURATION= OT

MACH NUMBER= 4.5

ALITIDE=150. K FT

ANGLE OF ATTACK= O DEGREES

TOB= 90.0 DEG F

TET= 90.0 DEG F

POINF= 3.22 PSIA PINF= 0.0111 PSIA TOINF= 345.0 DEG F RE/FT TIMES 10(-4)= 3.90 PC123= 1410.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 12.69

		GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	BASE HEAT	SHIELD (HEATED))							
							118	> 6.43		
							119	5.65		
							123	1.00		
N	EXTERNAL 1	TANK BASE (HEAT)	ED)							
260							141	0-12		
0							142	0.13		
							143	0.11		
							144	0.16		
							145	0.10		
							146	0.08		
							147	0.07		
							148	0.10		
							149	0.08		

ſ

RUN NUMBER= 105

CONFIGURATION= OT HACH NUMBER= 4.5 ALTITUDE=151. K FT ANGLE OF ATTACK= 0 DEGREES
TOB= 605.0 DEG F
TET= 590.0 DEG F POINF= 3.05 PSIA PINF= 0.0105 PSIA TOINF= 385.0 DEG F RE/FT TIMES 10(-4)= 3.58 PC123= 1461.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 13.86

		GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	BASE HEAT	SHIELD (HEATED)								
							118 119 123	1.01 4.09 0.56		
v	EXTERNAL T	ANK BASE (HEATE)	(ם							
<u>7</u>							141 142 143	0.08 0.09 0.07		
							144 145	0.08 0.05		
							146 147 148	0.03 0.05 0.06		
							148	0.06		

ORIGINAL PAGE IS OF POOR QUALITY

RUM NUMBER= 106

CONFIGURATION= OT

MACH NUMBER= 4.5

ALTITUDE=151. K FT

ANGLE OF ATTACK= O DEGREES

TOB= 960.0 DEG F

TET= 970.0 DEG F

POINF = 3.06 PSIA PINF = 0.0106 PSIA TOINF = 394.0 DEG F RE/FT TIMES 10(-4) = 3.56 PC123 = 1436.0 PSIA PC4 0.0 PSIA PC5 = 0.0 PSIA PC123/PINF TIMES 10(-4) = 13.58

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q -R
BASE HEAT	SHIELD (HEATES))							
						118	0.87		
						119	6.25		
						123	0.31		
26 EXTERNAL	TANK BASE (HEA	TED)							
72						141	~ -0.27		
						142	0.07		
						143	0.13		
						144	-0.17		
						145	-0.12		
						146	-0.14		
						147	0.0		
						148	0.10		
						140	0.30		

1

RUN NUMBER= 107 ER 107
CONFIGURATION = OT
MACH NUMBER = 4.5
ALTITUDE=151. K FT
ANGLE OF ATTACK = O DEGREES
TOS = 350.0 DEG F
TET = 300.0 DEG F

POINF= 3.08 PSIA PINF= 0.0106 PSIA TOINF= 379.3 DEG F RE/FT TIMES 10(-4)= 3.63 PC123= 1304.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 12.25

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	G AGE	Q R
BASE HEA	T SHIELD (HEATE	0)							
						118 119	0.44 2.59		
						123	0.56		
EXTERNAL	TANK BASE (HEA	TED)							
O.						141	0.04		
ယ						142	0.04		
						143	0.05		
						144	0.04		
						145	0.04		
						146	0.03		
						147	0.03		
						148	0.04		
						140	0.04		

RUN NUMBER= 108

CONFIGURATION= OT

MACH NUMBER= %.5

ALTITUDE=151. K FT

ANGLE OF ATTACK= O DEGREES

TOB= 770.0 DEG F

TET= 770.0 DEG F

POINF= 3.15 PSIA PINF= 0.0109 PSIA TOINF= 378.0 DEG F RE/FT TIMES 10(-4)= 3.71 PC123= 1449.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 13.34

		GAGE	P	P/PINF	P-PIMF	P/PCL	GAGE	Q	GAGE	Q-R
	BASE HEAT	SHIELD (HEATED	1)							
							118	0.41		
							119	1.80		
							123	0.16		
N)	EXTERNAL	TANK BASE (HEAT	ED)							
Ğ.							141	0.0		
•							142	0.06		
							143	0.0		
							144	0.03		
							145	-0.05		
							146	0.0		
							147	0.0		
							148	0.0		
							149	0.0		

ŧ	RUN NUMBE	CONFIG MACH N ALTITU ANGLE TOB=	UR ATI UMBER DE=13 OF AT 80.0	ON× OT = O.O 7. K FT TACK= O DEG DEG F DEG F	REES		POINF≈ PSIA PINF≈ 0.0188 PSIA TOINF≈ 80.0 DEG F RE/FT TINES 10(-4)= PC123= 1847.0 PSIA PC4 0.0 PSIA PC5≈ 0.0 PSIA PC123/PINF TIMES 10(-4)= 8.34					
			GAGE	6	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R	
	EXTERNAL	L TANK	BASE	(COLD)								
			10	0.0229	1.218	0.00410	1.000	9	0.04			
	LEFT OM:	S POD										
265			57	0.0223	1.186	0.00350						
	SSME NO	ZZLE #1										
			72	2.5100				73 74 75	1.47 1.33 1.24			
								76	0.51			
	SSME NO	ZZLE #2	2									
			67	1.8700				68 69 70	1.08 1.48 1.16			
	SSME NO	ZZLE #3	3									
			133	2.5800								

RUN D1 CONTINUED

	GAGE	Р	P/PINF	P-PINF	P/PCL	GAGE	g	G AGE	Q-R
BASE HEAT S	86 88 89 90 92 93 95 162	0.0261 0.0230 0.0231 0.0286 0.0381 0.0233 0.0215 0.0230 0.0309	1.389 1.224 1.229 1.522 2.027 1.240 1.144 1.224	0.00730 0.00420 0.00430 0.00980 0.01930 0.00450 0.00270 0.00420 0.01210	0.913 0.804 0.808 1.000 1.332 0.815 0.752 0.804 1.080	102 103 104 105 108 109 110 150 111 113 114 115 116	0.04 1.01 0.28 0.64 1.11 1.68 0.27 0.21 2.97 1.67 0.67 > 2.58 3.15 0.79		
						151	0.21		

266

RUN NUMBER= D2 CONFIGURATION= OT HACH NUMBER= 0.0
ALTITUDE=187. K FT
ANGLE OF ATTACK= 0 DEGREES
TOB= 80.0 DEG F TET= 80.0 DEG F

PSIA POINF= PINF= 0.0026 PSIA TOINF= 80.0 DEG F
RE/FT TIMES 10(-4)=
PC123= 1526.0 PSIA
PC4 0.0 PSIA
PC5= 0.0 PSIA
PC123/PINF TIMES 10(-4)= 59.61

			GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERNAL	TANK	BASE	(COLD)							
			10	0.0038	1.488	0.00125	1.000	9	0.06		
	LEFT OMS	POD									
2			57	0.0036	1.391	0.00100					
67	SSHE NOZ	ZLE #	1						2 (5		
			72	2.4700				73 74	2.65 1.92		
						•		· 75 76	1.72 (?) 0.79		
	SSME NO	271E 1	± 2								
	22ME 401	4 & ho la	, _ 67	2.3300				68 69	0.96 1.70		
								70	1.17		
	SSME NO	ZZLE	#3								

2.5300 133

RUN D2 CONTINUED

BASE HEAT SHIELD (COLD) 86 0.0022 0.875 -0.00032 0.146 102 0.07 88 0.0070 2.734 0.00444 0.458 103 0.28 89 0.0086 3.375 0.00608 0.565 104 0.47 90 0.0153 5.976 0.01274 1.000 105 0.89 92 0.0212 8.281 0.01864 1.386 108 1.18 93 0.0119 4.648 0.00934 0.778 109 1.98 95 0.0083 3.226 0.00570 0.560 110 0.51		GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	ପ	GAGE	Q-R	
162 0.0101 3.945 0.00754 0.680 150 0.03 164 0.0229 8.945 0.02034 1.497 111 2.31 112 1.55 113 >3.29 114 0.74 115 2.29 116 2.45 117 1.16	BASE HEAT	86 88 89 90 92 93 95	0.0022 0.0070 0.0086 0.0153 0.0212 0.0119 0.0083 0.0101	2.734 3.375 5.976 8.281 4.648 3.226 3.945	0.00444 0.00608 0.01274 0.01864 0.00934 0.00570 0.00754	0.458 0.565 1.000 1.386 0.778 0.540	103 104 105 108 109 110 150 111 112 113 114 115 115	0.28 0.47 0.89 1.18 1.98 0.51 0.05 2.31 1.55 > 3.29 0.74 2.29 2.45 1.16		·	

268

	RUN NUMBER= D3 CONFIGURATIO MACH NUMBER= ALTITUDE=196 ANGLE OF ATT TOB= 80.0 TET= 80.0	: O.O S.K FT FACK= O DEG	REES		TOINF= { RE/FT TI PC123= 1 PC4= 0 PC5= 0	PSIA 0018 PSIA 80.0 DEG F MES 10(-4)= 468.0 PSIA .0 PSIA .0 PSIA NF TIMES 10		50	
PAGE	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	br	GAGE	Q-R
7	EXTERNAL TANK BASE	(COLD)							
S	10	0.0107	6.014	0.00892	1.000	9	0.02		
	LEFT DHS POD								
	57	0.0035	1.945	0.00168					
	N O SSME NOZZLE #1								
	72	2.4800				73 74	2.46 1.76		
						75 76	1.32 0.64		
	SIME NOZZLE #2								
	67	2.3400				68 69	1.06 1.49		
						70	1.35		
	SOME NOZZLE #3								
	133	2.6300							

RUN D3 CONTINUED

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT	SHIELD (CO	LD)							
	88	6.0074	4.148	0.00560	0.453	102	0.04		
	89	0.0093	5.210	0.00749	0.569	103	0.13		
	90	0.0163	9.161	0.01452	1.000	104	0.35		
	92	0.0268	11.690	0.01902	1.276	105	0.62		
	93	0.0152	8.543	0.01342	0.933	108	0.89		
	95	0.0083	4.648	0.00649	0.507	109	1.80		
	162	0.0099	5.564	0.00812	0.607	110	0.48		
	164	0.0221	12.420	0.02032	1.356	111	1.97		
	104	000221	120.20	010200		112	>1.62		
						113	>3.26		
						114	0.78		
						115	2.74		
						116	2.70		
						117	1.31		
						151	0.15		

27(

RUN NUMBER = D4

CONFIGURATION = DT

MACH NUMBER = O.O

ALTITUDE=157. K FT

ANGLE OF ATTACK = O DEGREES

TOB = 80.0 DEG F

TET = 80.0 DEG F

POINF= PSIA PINF= 0.0085 PSIA TOINF= 80.0 DEG F RE/FT TIMES 10(-4)* PC123= 1540.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 18.12

			GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERNAL	TANK	BASE	(COLD)							
			10	0.0114	1.341	0.00290	1.000	9	0.05		
	LEFT DMS	POD									
27			57	0.0114	1.341	0.00290					
	SSME NOZ	ZLE #	1								
			72	2.5100				73 74	2.22 1.81		
								75 76	1.37		
			_								; ; ; ;
	SSME NOZ	ZLE #		2 2200				68	0.65		
			67	2.3300				69 70	1.46 1.31		
									2401		

SSME NOZZLE #3

133 2.6000

RUN D4 CONTINUED

GAGE	Р	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q- R
GAGE BASE HEAT SHIELD (CC 88 29 90 92 93 95		1.494 1.353 2.188 4.883 1.435 1.118 3.930	0.00420 0.00300 0.01010 0.03300 0.00370 0.00100 0.02490	0.683 0.618 1.000 2.231 0.656 0.511 1.796	102 103 104 105 108 109 110 150	0.04 0.10 0.39 0.68 0.91 1.65 0.46 0.02	96	0•05
					113 114 115 116 117	0.91 0.69 > 2.53 > 4.77 1.08 0.17		

RUN NUMBER = D5

CONFIGURATION= DT

2.6400

HACH NUMBER= 0.0 TOINF= 80.0 DEG F ALTITUDE=115. K FT RE/FT TIMES 10(-4)= ANGLE OF ATTACK = 0 DEGREES PC123= 1546.0 PSIA TOB= 80.0 DEG F TET= 80.0 DEG F PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 3.47 GAGE GAGE P/PCL P-PINF P/PINF GAGE EXTERNAL TANK BASE (COLD) 0.04 LEFT OMS POD 0.00720 0.0518 273 SSME NOZZLE #1 0.75 2.5000 72 1.40 0.65 76 0.0 169 SSME NOZZLE #2 0.32 2.3700 67 0.56 0.89 SSHE NOZZLE #3

POINF=

PINF= 0.0446 PSIA

RUN D5 CONTINUED

GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
GAGE BASE HEAT SHIELD (C 88 89 90 92 93 162 164		0.946 1.065 1.063 1.132 1.013 0.930	-0.00240 0.00290 0.00280 0.00590 0.00060 -0.00310	0.890 1.002 1.000 1.055 0.954 0.876	102 103 104 105 108 109 110	0.12 0.11 0.13 0.20 0.51 0.69 0.18	96	0.03
					111 113 114 116 117 151	0.70 0.33 0.35 1.04 0.38 0.07		·

274

RUN NUMBER≈ D6

ALTITUDE=116. K FT
ANGLE OF ATTACK= 0 DEGREES
TOB= 80.0 DEG F
TET= 80.0 DEG F

POINF= PSIA
PINF= 0.0438 PSIA
TOINF= 80.0 DEG F
RE/FT TIMES 10(-4)=
PC123= 1599.0 PSIA
PC4 0.0 PSIA
PC5= 0.0 PSIA
PC123/PINF TIMES 10(-4)= 3.65

		GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERNAL TANK	BASE	(COLD)							
		10	0.0484	1.105	0.00459	1.000	9	0.03		
	LEFT OMS POD									
		57	0.0476	1.087	0.00379					
275	SSME NOZZLE #	1								
-		72	2.4600				73 74	0.81 1.90		
	SSHE NOZZLE #	,							·	
	SSIL NOLLEE E	67	2.3400				69	0.50		
							70	1.54		
	SSME NOZZLE #	3								

CONFIGURATION= OT MACH NUMBER= 0.0

133

2.6200

RUN D6 CONTINUED

	GAGE	Р	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT	SHIELD (CO	LD)							
	86	0.0491	1.121	0.00529	1.036	102	0.03		
	88	0.0479	1.093	0.00409	1.011	103	0.09		
	89	0.0481	1.098	0.00429	1.015	104	C.12		
	90	0.0474	1.082	0.00359	1.000	105	0.24		
	92	0.0511	1.166	0.00729	1.078	109	0.62		
	93	0.0495	1.130	0.00569	1.044	150	0.03		
	95	0.0474	1.082	0.00359	1.000	111	0.98		
	162	0.0472	1.077	0.00339	0.996	112	0.68		
	164	0.0498	1.137	0.00599	1.051	113	0.79		
	104	0.0470		• • • • • • • • • • • • • • • • • • • •		116	1.63		
						117	0.61		
						151	0.06		

1	TOB= 90.	R= 0.0		POINF= PSIA PINF= 0.1460 PSIA TOINF= 80.0 DEG F RE/FT TIMES 10(-4)= PC123= 1535.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 1.05					
	GA GE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERNAL TANK BASE	(COLD)							
	10	0.1590	1.089	0.01299	1.000	9	0.02		
	LEFT OHS POD								
	57	0.1450	0.993	-0.00101					
27	SSME NOZZLE #1								
77						73 74	0.19 0.80		
	SSME NOZZLE #2								
						69 70	0.32 0.27		
	BASE HEAT SHIELD	(COLD)							
	8. 8 9 9 9 16	6 0.1660 6 0.1610 9 0.1620 0 0.1600 2 0.1600 3 0.1620 5 0.1440 2 0.1690	1.137 1.103 1.110 1.096 1.096 1.110 0.986 1.096 1.123	0.01999 0.01499 0.01599 0.01399 0.01399 0.01599 -0.00201 0.01399 0.01799	1.037 1.006 1.012 1.000 1.000 1.012 0.900 1.000 1.025	102 150 111 112 113 114 116 117	0.02 0.0 0.15 0.03 0.13 0.0 0.26 0.08		

RUN NUMBER= D8

CONFIGURATION= OT

MACH NUMBER= 4.5

ALTITUDE=169. K FT

ANGLE OF ATTACK= O DEGREES

TOB= 80.0 DEG F

TET= 80.0 DEG F

POINF= 1.54 PSIA PINF= 0.0053 PSIA TOINF= 340.0 DEG F RE/FT TIMES 10(-4)= 1.88 PC123= 0.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 0.0

	GAGE	P	P/PINF	PPINF	P/PCL	GAGE	Q	GAGE	Q—R
	EXTERNAL TANK BASE (10 BASE HEAT SHIELD (CO	0.0058	1.084	0.00045	1.000				
278	86 88 89 92 93 95 162 164	0.0087 0.0065 0.0069 0.0069 0.0076 0.0055 0.0059	1.645 1.212 1.302 1.289 1.434 1.028 1.107	0.00343 0.00113 0.00161 0.00154 0.00231 0.00015 0.00057	0.000 0.000 0.000 0.000 0.000 0.000 0.000				

a state

RUN NUMBER= DII

CONFIGURATION= OT MACH NUMBER= 4.5 ALTITUDE=111. K FT
ANGLE OF ATTACK= 0 DEGREES
TOB= 80.0 DEG F
TET= 80.0 DEG F POINF= 15.15 PSIA PINF= 0.0523 PSIA TOINF= 480.0 DEG F RE/FT TIMES 10(-4)= 16.48 PC123= 0.0 PSIA PC4 0.0 PSIA PC5= 9.0 PSIA PC123/PINF TIMES 10(-4)= 0.0

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERNAL TANK BASE	(COLD)							
	10	0.0181	0.346	-0.03424	1.000	9	0.11		
	BASE HEAT SHIELD (C	OLD)							
279	86 88 89 90 92 93 95	0.0436 0.0353 0.0402 0.0396 0.0393 0.0429 0.0367 0.0373	0.833 0.674 0.768 0.757 0.751 0.820 0.701	-0.00874 -0.01704 -0.01214 -0.01274 -0.01304 -0.00944 -0.01564 -0.01504	1.101 0.891 1.015 1.000 0.992 1.083 0.927	111	0.23		
	164	0.0373	0.713	-0.01504	0.942				

RUN NUMBER= D12

CONFIGURATION= OT

MACH NUMBER= 4.5

ALTITUDE=169. K FT

ANGLE OF ATTACK= O DEGREES

TOB= 80.0 DEG F

TET= 80.0 DEG F

POINF= 1.51 PSIA PINF= 0.0052 PSIA TOINF= 366.0 DEG F RE/FT TIMES 10(-4)= 1.80 PC123= 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 0.0

GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
EXTERNAL TANK BASE &	care)							
10	0.0050	0.951	-0.00026	1.000				
BASE HEAT SHIELD (CO	LD)							
86 88 89 90 92 93 95 162 164	0.0080 0.0063 0.0069 0.0070 0.0068 0.0077 0.0064 0.0065	1.541 1.213 1.319 1.344 1.298 1.478 1.225 1.250	0.00282 0.00111 0.00166 0.00179 9.00155 0.00249 0.00117 0.00130 0.00115	1.147 0.903 0.981 1.000 0.966 1.100 0.912 0.930 0.909				

RUN NUMBER= D13

CONFIGURATION= OT

ALTITUDE=111. K FT

ANGLE OF ATTACK= O DEGREES

MACH NUMBER = 4.5

PC123= 1567.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 3.02 GAGE

POINF= 15.01 PSIA

PINF= 0.0519 PSIA

TOINF= 438.0 DEG F

RE/FT TIMES 10(-4)= 10.87

132

Q-R

0.0

76 1.23

0.15 68 69 0.92

70

1.91

SSME NOZZLE #3

SSME NOZZLE #2

133 2.2800

2.1600

RUN D13 CONTINUED

	GAĞE	Р	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q -R
BASE HEAT SHI	86 88 89 90 92 93 95 162 164	LDI 0.0531 0.0463 0.0533 0.0484 0.0511 0.0490 0.0489 0.0485	1.024 0.893 1.028 0.939 0.933 0.985 0.945 0.943	0.00124 -0.00556 0.00146 -0.00316 -0.00076 -0.00286 -0.00296 -0.00336	1.090 0.951 1.094 1.000 0.994 1.049 1.006 1.004	102 103 104 105 108 109 110 115 111 112 113 114 116 117	0.27 0.26 0.17 0.24 0.42 0.32 0.0 0.30 0.58 0.65 0.65 0.53 > 1.36 1.15 0.21 (?)	96 97 99	0.07 0.0 6.0

RUN NUMBER= D14 CONFIGURATION= OT MACH NUMBER= 4.5 ALTITUDE=170. K FT ANGLE OF ATTACK= 0 DEGREES TOB= 80.0 DEG F TET= 80.0 DEG F POINF= 1.45 PSIA PINF= 0.00% PSIA TOINF= 35%.0 DEG F RE/FT TIMES 10(-4)= 1.74 PC123= 1577.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 31.37

	GAGE	Р	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTERNAL TANK BASE	(COLD)							
	10	0.0079	1.570	0.00286	1.000	9	0.13		
	BODY FLAP							132	0.0
								132	373
283	LEFT OHS NOZZLE								
ω						66	0.0		
	SSME NOZZLE #1								
	72	2.2300	•			73 74	> 2.73 1.86		
			•			75	1.92		
						76	0.87		
	SSME NOZZLE #2								
	2245 WRITTE ME					68	1 10		
	67	2.2900				69	1.18 1.87		
						70	1.07		
	SSME NOZZLE #3								

133

2.3600

RUN D14 CONTINUED

GAGE	۲	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
BASE HEAT SHIELD (C 85 88 89 90 92 93 95 162 164	0.013 0.0099 0.0101 0.0216 0.0467 0.0096 0.0078 0.0114 0.0354	2.248 1.975 2.009 4.297 9.290 1.914 1.546 2.268 7.042	0.00627 0.00490 0.00507 0.01657 0.04167 0.00459 0.00274 0.00637 0.03037	0.523 0.460 0.468 1.000 2.162 0.445 0.360 0.528 1.639	102 103 104 105 108 109 110 150 111 112 113 114 116 117	0.12 0.18 0.46 0.92 1.10 1.54 0.65 0.06 ~ 4.62 ~ 5.03 3.41 0.94 6.78 (?) 1.11	96 97 99	0.10

RUN NUMBER= D16

CONFIGURATION= OT

ALTITUDE=201. K FT ANGLE OF ATTACK= 0 DEGREES TOB= 80.0 DEG F

0.0029

0.0054

MACH NUMBER = 0.0

TET= 80.0 DEG F

GAGE

EXTERNAL TANK BASE (COLD)

BODY FLAP

SSME NOZZLE #1

LEFT OMS NOZZLE

73 3.72 72 2.0900 75 1.62 76 0.87

P-PINF

0.00140

P/PINF

1.941

3.640

SSME NOZZLE #2

1.40 67 2.0700 1.71 69 1.39 70

SSME NOZZLE #3

2.0900 133

POINF= PINF= 0.0015 PSIA TOINF= 80.0 DEG F RE/FT TIMES 10(-4)= PC123= 1527.0 PSIA

1.000

PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)=102.54

66

GAGE P/PCL GAGE

0.0

132

0.0

RUM DI6 CONTINUED

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Ω₹
BASE HEAT	SHIELD (CO 86 88 90 92 93 95 162 164	0.0158 0.0091 0.0095 0.0312 0.0167 0.0088 0.0094 0.0260	10.610 6.104 6.407 20.952 11.215 5.910 6.319 17.640	0.01431 0.00760 0.00805 0.02971 0.01521 0.00731 0.00792 0.02451	1.656 0.953 1.000 3.270 1.751 0.922 0.986 2.725	102 103 104 105 106 107 108 110 111 112 113 114 115 116 117	0.04 0.09 0.38 0.86 0.26 0.66 1.05 0.37 2.96 6.13 3.48 0.99 2.81 2.99 1.23 0.56	96 97 99 101	0.0 0.0 0.0 0.07

RUN NUMBER= D17

CONFIGURATION= OT

MACH NUMBER= 0.0

ALTITUDE=159. K FT

ANGLE OF ATTACK= 0 DEGREES

TOB= 80.0 DEG F

TET= 80.0 DEG F

POINF= PSIA PINF= 0.0078 PSIA TOINF= 80.0 DEG F RE/FT TIMES 10(-4)= PC123= 1518.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 19.44

			GA	IGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTER	NAL TA	NK BA	ASE (C	OLD)							
				10	0.0100	1.281	0.00219	1.000				
	LEFT	ONS PC	D									
				57	0.0091	1.168	0.00131	٠,				
N	SSHE	NOZZL	#1						•			
287			10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	72	2.1700				73 75	2.67 1.75		
									76	0.70		
	SSHE	NDZZL	E # 2									
				67	2.2100	- N			69 70	0.0 1.28		
A 1	CCUE	MD 2 71	F 43	11.3	and the second of the	1.5	·普克罗克斯					

SSHE NDZZLE #3

133 2.4200

RUN DI7 CONTINUED

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q− ₹
BASE HEA	T SHIELD (CO 86 88 89 90 92 93 95 164	0.0094 0.0113 0.0110 0.0260 0.0384 0.0157 0.0078 0.0322	1.200 1.447 1.409 3.330 4.918 2.011 1.004 4.124	0.00156 0.00349 0.00319 0.01819 0.03059 0.00789 0.00003 0.02439	0.360 0.435 0.423 1.000 1.477 0.604 0.302 1.238	102 103 104 105 106 107 108 109 110 111 112 113 114 115 117	0.10 0.03 0.45 0.87 0.33 0.57 0.96 0.99 0.65 3.16 4.98 2.73 0.84 5.12 0.98 0.45	101	0.05

288

RUN NUMBER= DI8

COMPIGURATION= BT
MACH NUMBER= 0.0
ALTITUDE=174. K FT
ANGLE DF ATTACK= 0 DEGREES
TDB= 80.0 DEG F
TET= 80.0 DEG F

133

2.0100

POINF= PSIA PINF= 0.0043 PSIA TOINF= 80.0 DEG F RE/FT TIMES 10(-4)= PC123= 1443.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 33.33

			GAGE	P	P/PINF	Р-РІ НЕ	P/PCL	GAGE	Q	GAGE	Q∈ R
	EXTERNAL	TANK	BASE	(COLD)							
			10	0.0061	1.409	0.00177	1.000	9	0.11		
	BODY FLA	P						205	0.0	132	0.0
289	SSHE NOZ	ZLE #	‡1 72	19000				73 75	3.04 1.56		
								76 169	0.64 0.0		
	SSME NOZ	ZLE	#2 67	2.0500				68 69	0.0 0.39		
								70	1.27		
	SSHE NOZ	ZLE	#3								

Lamber the meanwark carbon that the state of the carbon the carbon to the carbon to the carbon t

RUN DIS CONTINUED

•	GAGE	· p	P/PINF	P-PINF	P/PCL	GAGE	Q.	GAGE	Q-R
BASE HEAT	SHIELD (CO 86 88 89 90 92 93 95 164	0.0060 0.0082 0.0101 0.0280 0.0310 0.0093 0.0053 0.0192	1.377 1.892 2.333 6.468 7.161 2.155 1.234 4.435	0.00163 0.00386 0.00577 0.02367 0.02567 0.00500 0.00101 0.01487	0.213 0.292 0.361 1.000 1.107 0.333 0.191 0.686	102 103 104 105 107 108 150 111 112 113 114 115 116	0.05 0.25 0.69 1.34 0.68 1.60 0.12 3.51 4.19 2.07 ~ 0.66 ~ 3.45 ~ 3.45	96 97 99 101	0.0 0.0 0.0 0.03

ORIGINAL PAGE IS	ON NUMBER= D19 COMFIG HACH N ALTITU ANGLE TOB= TET=	URATIO UMBER= DE=165	0:0 .K FT ACK= 0 DEGF DEG F	REES		POINF= PSIA PINF= 0.0061 PSIA TOINF= 80.0 DEG F RE/FT TIMES 10(-4)= PC123= 1472.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 24.13				
PAGE I		GAGE	P COLD 3	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q=R
rs vi	EXTERNAL TANK	10	0.0086	1,403	0.00246	1.000				
	BODY FLAP		·						132	0.0
Ŋ	LEFT OHS POD	57	0.0157	2.573	0.00 9 60				58	0.0
291	LEFT OHS NOZZ	LE					56	0.0		
	SSME NOZZLE #	1								
		72	1.9000				73 75 76 169	2.02 1.41 0.86 0.38		
	SSME NOZZLE #	12 67	2.0600				69	0.37		
	SSME NOZZLE #		2.0000				70	1.14		

2.2000

133

RUN D19 CONTINUED

GAG	E P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
8 8 9 9	6 0.0080 8 0.0109 9 0.0123 0 0.0255 2 0.0287 9 0.0070	1.305 1.786 2.016 4.179 4.704 1.147 3.278	0.00186 0.00480 0.00620 0.01940 0.02260 0.0090 0.01390	0.312 0.427 0.482 1.000 1.125 0.275 0.784	102 103 104 105 106 107 108 110 150 112 113 114 115 116	0.05 0.29 0.52 1.11 0.48 1.06 1.06 1.56 0.52 0.21 2.72 2.26 0.94 8.75 4.55 1.80	96 67 99 101	Ú.Q. Q.Q. Q.Q. Q.Q.B

RUN NUMBER= D20 CONFIGURATION= OT MACH NUMBER = 0.0 ALTITUDE=212. K FT ANGLE OF ATTACK= 0 DEGREES TO8= 80.0 DEG F TET= 80.0 DEG F

POINF= PINF= 0.0009 PSIA TOINF= 80.0 DEG F RE/FT TIMES 10(-4)= PC123= 1453.0 PSIA PC4 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)=156.40

	GAG	E P	P/PINF	P-PIRF	P/PCL	GAGE	Q	GAGE	Ö-K
	EXTERNAL TANK BAS	E (COLD)							
	1	0.0010	1.076	0.00007	1.000	9	0.06		•
	BODY FLAP							132	8-8
	LEFT OMS POD							58	0.0
203	LEFT OMS NOZZLE					66	0.0		
	SSME NOZZLE #1	72 1.9000				73 75	2.76 1.87		
	SSME NOZZLE #2					76	0.89 (?)		
		67 2.0300				69 70	0.32 1.25		
	SSME NOZZLE #3								

2.2000 133

RUN D20 CONTINUED

	GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R	
BASE HEAT	SHIELD (CC	HLD)								
, t	86 89 90 92 93 95 162 164	0.0049 0.0074 0.0092 0.0252 0.0232 0.0260 0.0050 0.0102 (?)	5.220 7.922 9.892 27.124 24.972 27.986 5.436 10.979 24.756	0.00392 0.00643 0.00826 0.02427 0.02227 0.02507 0.00412 0.00927 0.02207	0.192 0.292 0.365 1.000 0.921 1.032 0.200 0.405 0.913	102 103 104 105 107 108 110 150 111 112 113 114	0.10 0.27 0.53 0.94 0.79 1.09 0.41 0.15 2.01 4.34 2.98 0.60 2.35	96 97 99 101		
						116 117 151	2.78 1.13 0.48			

RIM NUMBER-DIAG

COMFIGURATION= OTS HACH NUMBER= 4.5
ALTITUDE=144. K FT
ANGLE OF ATTACK= 0 DEGREES
TOB= 80.0 DEG F
TET= 80.0 DEG F

POINF# 4.09 PSIA PINF= 0.0141 PSIA TOINF= 400.0 DEG F RE/FT TIMES 10(-4) = 4.74 PC123 = 0.0 PSIA PC4= 0.0 PSIA PC5= 0.0 PSIA PC123/PINF TIMES 10(-4)= 0.0

				GAGE	P	P/PINF	P-PINF	P/PCL	GAGE	Q	GAGE	Q-R
	EXTER	NAL	TANK	BASE	(COLD)							
				10	0.0131	0.92 7	-0.00103	1.000	9	0.09		
	BSRM	SHR	CUC									
250				44 46	0.0053 0.1190	0.377 8.421	-0.00880 0.10487		49 50 53	0.95 0.48 0.08		
•	LEFT	OH S	POD									
				57	0.0059	0.415	-0.00826					•
	SSME	NDZ	ZLE #	1								
				72	0.0447							
	BASE	HEA	T SHX	ELD (COFD)							
				86 83 89 90 91 93 93 162 164	0.0074 0.0085 0.0104 0.0089 0.0087 0.0122 0.0091	0.677 0.523 0.601 0.736 0.628 0.614 0.863 0.648 0.515	-0.00456 -0.00574 -0.00564 -0.00525 -0.00525 -0.00193 -0.00498 -0.00685 -0.00542	0.920 0.711 0.816 1.000 0.854 0.835 1.173 0.880 0.700 0.837			•	