

GBI Tutorium Nr. 2⁵

Tutorium 7

Dominik Muth - dominik.muth@student.kit.edu | 5. Dezember 2012

Outline/Gliederung

- ① Übungsblatt 6
- Wiederholung
- 3 Graphen
 - gerichtete Graphen
 - ungerichtete Graphen
 - Bäume
 - Graphen mit Markierungen
- 4 Fragen

Überblick

- ① Übungsblatt 6
- Wiederholung
- 3 Graphen
- 4 Fragen

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 7

Graphen

Fragen

Übungsblatt 6

Aufgabe 6.2)

Gegeben seien die beiden Abbildungen $f: X \to Y$ und $g: Y \to Z$. Zeigen Sie:

- f und g sind injektiv $\Rightarrow g \circ f$ ist injektiv.
- f ist nicht surjektiv und g ist injektiv $\Rightarrow g \circ f$ ist nicht surjektiv.

Überblick

- ① Übungsblatt 6
- Wiederholung
- Graphen
- 4 Fragen

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 7

- Ein Huffman -Baum ist eindeutig
- f(x) = 42x ist ein Homomorphismus
- Num₋₃ existiert nicht
- Der Nikolaus verschenkt Punkte

Fragen

- Ein Huffman -Baum ist eindeutig X
- f(x) = 42x ist ein Homomorphismus
- Num₋₃ existiert nicht
- Der Nikolaus verschenkt Punkte

Fragen

- Ein Huffman -Baum ist eindeutig X
- f(x) = 42x ist ein Homomorphismus $\sqrt{}$
- Num₋₃ existiert nicht
- Der Nikolaus verschenkt Punkte

- Ein Huffman -Baum ist eindeutig X
- f(x) = 42x ist ein Homomorphismus $\sqrt{}$
- Num₃ existiert nicht X
- Der Nikolaus verschenkt Punkte

- Ein Huffman -Baum ist eindeutig X
- f(x) = 42x ist ein Homomorphismus $\sqrt{}$
- Num₋₃ existiert nicht X
- Der Nikolaus verschenkt Punkte \(\square\)X

Zahlensysteme

Gegeben seien folgende Definitionen:

$$Num_{-3}(0) = 0$$
, $Num_{-3}(1) = -1$, $Num_{-3}(2) = -2$.

Berechnen Sie folgende Werte:

- ightharpoonup Num $_{-3}(\epsilon) =$
- $Num_{-3}(201) =$
- $Num_{-3}(1222) =$

Fragen

Zahlensysteme

Gegeben seien folgende Definitionen:

$$Num_{-3}(0) = 0$$
, $Num_{-3}(1) = -1$, $Num_{-3}(2) = -2$.

Berechnen Sie folgende Werte:

- $Num_{-3}(\epsilon) = 0$
- $Num_{-3}(201) =$
- $Num_{-3}(1222) =$

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 7

Zahlensysteme

Gegeben seien folgende Definitionen:

$$Num_{-3}(0) = 0$$
, $Num_{-3}(1) = -1$, $Num_{-3}(2) = -2$.

Berechnen Sie folgende Werte:

- $Num_{-3}(\epsilon) = 0$
- $Num_{-3}(201) = -19$
- $Num_{-3}(1222) =$

Zahlensysteme

Gegeben seien folgende Definitionen:

$$Num_{-3}(0) = 0$$
, $Num_{-3}(1) = -1$, $Num_{-3}(2) = -2$.

Berechnen Sie folgende Werte:

- $Num_{-3}(\epsilon) = 0$
- $Num_{-3}(201) = -19$
- $Num_{-3}(1222) = 13$

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 7

Wiederholung

Huffman-Codierung

Gegeben seien folgende absolute Häufigkeiten:

```
Häufigkeit 1 3 5 6
Zeichen c b d a
```

Decodieren sie folgendes Wort:

1110101110110001011011111100111

Achten sie beim aufstellen des Huffman-Baumes auf folgendes:

- sortieren Sie die Elemente aufsteigend nach ihrer Häufigkeit.
- beschriften Sie Kanten nach rechts mit 1.

Überblick

- Übungsblatt 6
- Wiederholung
- 3 Graphen
 - gerichtete Graphen
 - ungerichtete Graphen
 - Bäume
 - Graphen mit Markierungen
- 4 Frager

Erläuterung

- Was sind Graphen?
 - Knoten verbunden mit Kanten
- Wofür sind sie da?
 - Um Strukturen/Beziehungen darzustellen
 - Zum darstellen von Methoden
 - ...

Darstellung

Da ein Graph aus Knoten und Kanten besteht, kann man folgendes schreiben:

$$G = (V, E)$$

Mit V = vertex = Knoten

und E = edges = Kanten

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 7

wobei $E \subseteq V \times V$

Wenn $(x, y) \in E \Rightarrow$ es existiert eine gerichtete Kante von x nach y.

Beispiel

$$V = \{0, 1, 2, 3\}$$
 und $E = \{(0, 1), (3, 2), (2, 1), (2, 2)\}$

- Wie könnte man sich ein Einbahnstraßensystem aufzeichnen?
- Wie lässt sich das auf Zweibahnstraßen übertragen?
- und eine Autobahn?

Beispiel

$$V = \{0, 1, 2, 3\}$$
 und $E = \{(0, 1), (3, 2), (2, 1), (2, 2)\}$

- Wie könnte man sich ein Einbahnstraßensystem aufzeichnen?
- Wie lässt sich das auf Zweibahnstraßen übertragen?
- und eine Autobahn?

Beispiel

$$V = \{0, 1, 2, 3\}$$
 und $E = \{(0, 1), (3, 2), (2, 1), (2, 2)\}$

- Wie könnte man sich ein Einbahnstraßensystem aufzeichnen?
- Wie lässt sich das auf Zweibahnstraßen übertragen?
- und eine Autobahn?

Beispiel

$$V = \{0, 1, 2, 3\}$$
 und $E = \{(0, 1), (3, 2), (2, 1), (2, 2)\}$

- Wie könnte man sich ein Einbahnstraßensystem aufzeichnen?
- Wie lässt sich das auf Zweibahnstraßen übertragen?
- und eine Autobahn?

Pfade und Erreichbarkeit

Als *Pfad* definieren wir einen Weg von einem Knoten zu einem Anderen.

Ein Knoten y is genau dann von einem anderen Knoten x erreichbar, wenn es einen Pfad von x nach y gibt.

Zykler

Wenn es einen Pfad von einem Knoten x nach einem Knoten y gibt, und auch einen Pfad von y nach x, dann sprechen wir von einem Zyklus.

Schlinger

Eine Schlinge ist eine Kante von einem Knoten zu sich selbst.

Pfade und Erreichbarkeit

Als Pfad definieren wir einen Weg von einem Knoten zu einem Anderen.

Ein Knoten y is genau dann von einem anderen Knoten x erreichbar, wenn es einen Pfad von x nach y gibt.

Zyklen

Wenn es einen Pfad von einem Knoten x nach einem Knoten y gibt, und auch einen Pfad von y nach x, dann sprechen wir von einem Zyklus.

Schlinger

Eine Schlinge ist eine Kante von einem Knoten zu sich selbst.

Pfade und Erreichbarkeit

Als Pfad definieren wir einen Weg von einem Knoten zu einem Anderen.

Ein Knoten y is genau dann von einem anderen Knoten x erreichbar, wenn es einen Pfad von x nach y gibt.

Zyklen

Wenn es einen Pfad von einem Knoten x nach einem Knoten y gibt, und auch einen Pfad von y nach x, dann sprechen wir von einem Zyklus.

Schlingen

Eine Schlinge ist eine Kante von einem Knoten zu sich selbst.

$$G = (\{0,1,2,3,4,5\},\{(1,0),(1,2),(2,3),(3,2),(3,4),(5,4),(4,0)\})$$

- Zeichnen Sie den Graphen G
- existiert ein Pfad von Knoten 1 zu Knoten 5?
- Ist der Knoten 0 von allen anderen Knoten aus Erreichbar?

$$G = (\{0,1,2,3,4,5\},\{(1,0),(1,2),(2,3),(3,2),(3,4),(5,4),(4,0)\})$$

- Zeichnen Sie den Graphen G
- existiert ein Pfad von Knoten 1 zu Knoten 5?
- Ist der Knoten 0 von allen anderen Knoten aus Erreichbar?

$$G = (\{0,1,2,3,4,5\},\{(1,0),(1,2),(2,3),(3,2),(3,4),(5,4),(4,0)\})$$

- Zeichnen Sie den Graphen G
- existiert ein Pfad von Knoten 1 zu Knoten 5?
- Ist der Knoten 0 von allen anderen Knoten aus Erreichbar?

$$G = (\{0,1,2,3,4,5\},\{(1,0),(1,2),(2,3),(3,2),(3,4),(5,4),(4,0)\})$$

- Zeichnen Sie den Graphen G
- existiert ein Pfad von Knoten 1 zu Knoten 5?
- Ist der Knoten 0 von allen anderen Knoten aus Erreichbar?

Eigenschaften

Ähnlich wie bei gerichteten Graphen, nur gilt hier:

Wenn $(x, y) \in E \Rightarrow$ es existiert eine ungerichtete Kante zwischen x und y. $\Rightarrow (x, y) = (y, x)$

Beispiel

$$V = \{0, 1, 2, 3\}$$
 und $E = \{(0, 1), (3, 2), (2, 1), (2, 2)\}$

Achtung

"Einbahnstraßen" gibt es in ungerichteten Graphen nicht.

5. Dezember 2012

Eigenschaften

Ähnlich wie bei gerichteten Graphen, nur gilt hier:

Wenn $(x, y) \in E \Rightarrow$ es existiert eine ungerichtete Kante zwischen x und y. $\Rightarrow (x, y) = (y, x)$

Beispiel

$$V = \{0, 1, 2, 3\}$$
 und $E = \{(0, 1), (3, 2), (2, 1), (2, 2)\}$

Achtung

"Einbahnstraßen" gibt es in ungerichteten Graphen nicht.

Eigenschaften

Ähnlich wie bei gerichteten Graphen, nur gilt hier:

Wenn $(x, y) \in E \Rightarrow$ es existiert eine ungerichtete Kante zwischen x und y. $\Rightarrow (x, y) = (y, x)$

Beispiel

$$V = \{0, 1, 2, 3\}$$
 und $E = \{(0, 1), (3, 2), (2, 1), (2, 2)\}$

Achtung

"Einbahnstraßen"gibt es in ungerichteten Graphen nicht.

- Was muss gelten, damit ein Knoten von jedem anderen Knoten aus erreichbar ist?
- **Teichnen Sie den Graphen** $G = (\{0, 1, 2, 3\}, \{(0, 1), (1, 2), (2, 0)\})$
- Wie viele Kanten kann der Graph G₄ mit maximal vielen Kante haben?
- Zeichnen sie den Graph *G*₄ ohne sich überschneidende Kanten.

- Was muss gelten, damit ein Knoten von jedem anderen Knoten aus erreichbar ist?
- **Teichnen Sie den Graphen** $G = (\{0, 1, 2, 3\}, \{(0, 1), (1, 2), (2, 0)\})$
- Wie viele Kanten kann der Graph *G*₄ mit maximal vielen Kante haben?
- Zeichnen sie den Graph *G*₄ ohne sich überschneidende Kanten.

- Was muss gelten, damit ein Knoten von jedem anderen Knoten aus erreichbar ist?
- **Teichnen Sie den Graphen** $G = (\{0, 1, 2, 3\}, \{(0, 1), (1, 2), (2, 0)\})$
- Wie viele Kanten kann der Graph G₄ mit maximal vielen Kante haben?
- Zeichnen sie den Graph *G*₄ ohne sich überschneidende Kanten.

- Was muss gelten, damit ein Knoten von jedem anderen Knoten aus erreichbar ist?
- **Teichnen Sie den Graphen** $G = (\{0, 1, 2, 3\}, \{(0, 1), (1, 2), (2, 0)\})$
- Wie viele Kanten kann der Graph G₄ mit maximal vielen Kante haben?
- Zeichnen sie den Graph *G*₄ ohne sich überschneidende Kanten.

Allgemeine Eigenschaften

Teilgraphen

Ein Teilgraph G' von einem Graphen G hat folgende Eigenschaften:

 $V' \subseteq V \text{ und } E' \subseteq E'$

Außerdem muss für jede Kante aus E' gelten, dass deren zwei Knoten im Teilgraph enthalten sind.

Beispiel

siehe Tafel

Allgemeine Eigenschaften

Isomorphie

Graphen sind Isomorph, falls sie bis auf die Benennung der Knoten gleich sind.

Einen Isomorphismus kann man als Tabelle darstellen, Beispiel folgt

Beispiel

Geben Sie den Isomorphismus zwischen:

$$G_1 = (\{1, 2, 3, 4\}, \{(1, 2), (2, 3), (3, 4)\})$$
 und

$$G_1 = (\{a,b,c,d\},\{(a,c),(c,b),(b,d)\})$$

Aufgabe

Für welche der folgenden sechs Graphen gibt es einen Isomorphismus zu einem der anderen fünf Graphen? Geben Sie jeweils den zugehörigen Isomorphismus an.

Bäume

Definition

Bäume sind Spezielle Graphen mit besonderen Eigenschaften:

- G ist zusammenhängend
- |E| = |V| 1
- G ist zyklenfrei
- G ist Schlingenfrei

Aufgabe

Beweisen Sie: Ein ungerichteter Graph G = (V, E) ist ein Baum $\Leftrightarrow (|V| = |E| + 1 \text{ und } G \text{ hat keine Zyklen}).$

kantenmarkierte Graphen

Wozu?

- Codierung (siehe Huffman Baum
- ...

Graphen mit gewichteten Kanten

Kanten werden mit Werten versetzt.

Wozu?

- für Entfernungen (z.B. Navigation)
- für Auslastungen (z.B. Internet)
- für Zeit (z.B. Zeitplanung)

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 7

kantenmarkierte Graphen

Wozu?

- Codierung (siehe Huffman Baum)
- ...

Graphen mit gewichteten Kanten

Kanten werden mit Werten versetzt.

Wozu?

- für Entfernungen (z.B. Navigation)
- für Auslastungen (z.B. Internet)
- für Zeit (z.B. Zeitplanung)

kantenmarkierte Graphen

Wozu?

- Codierung (siehe Huffman Baum)
- ...

Graphen mit gewichteten Kanten

Kanten werden mit Werten versetzt.

Wozu?

- für Entfernungen (z.B. Navigation)
- für Auslastungen (z.B. Internet)
- für Zeit (z.B. Zeitplanung)

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 7

kantenmarkierte Graphen

Wozu?

- Codierung (siehe Huffman Baum)
- **...**

Graphen mit gewichteten Kanten

Kanten werden mit Werten versetzt.

Wozu?

- für Entfernungen (z.B. Navigation)
- für Auslastungen (z.B. Internet)
- für Zeit (z.B. Zeitplanung)
- ...

kantenmarkierte Graphen

Wozu?

- Codierung (siehe Huffman Baum)
- ...

Graphen mit gewichteten Kanten

Kanten werden mit Werten versetzt.

Wozu?

- für Entfernungen (z.B. Navigation)
- für Auslastungen (z.B. Internet)
- für Zeit (z.B. Zeitplanung)
- ...

kantenmarkierte Graphen

Wozu?

- Codierung (siehe Huffman Baum)
- ...

Graphen mit gewichteten Kanten

Kanten werden mit Werten versetzt.

Wozu?

- für Entfernungen (z.B. Navigation)
- für Auslastungen (z.B. Internet)
- für Zeit (z.B. Zeitplanung)

Dominik Muth - dominik.muth@student.kit.edu - Tutorium 7

...

kantenmarkierte Graphen

Wozu?

- Codierung (siehe Huffman Baum)
- · ...

Graphen mit gewichteten Kanten

Kanten werden mit Werten versetzt.

Wozu?

- für Entfernungen (z.B. Navigation)
- für Auslastungen (z.B. Internet)
- für Zeit (z.B. Zeitplanung)
- ...

Aufgaben

Wege

Gegeben sei folgender Graph:

- Geben Sie den Kürzesten möglichen Weg von 0 nach 7 an.
- Geben Sie den längsten möglichen Weg von 0 nach 7 an.

*Hinweis, jeder Knoten darf maximal 1 mal durchlaufen werden.

Aufgaben

ÜB7 (WS08/09)

Gegeben sei der Graph G = (V, E) mit $V = \{0, 1\}^3$ und $E = \{(xw, wy) \mid x, \le \{0, 1\} \land w \in \{0, 1\}^2\}.$

- Zeichen Sie den Graphen
- Geben Sie einen Zyklus in G an, der außer dem Anfangs- und Endknoten jeden Knoten von G genau einmal enthält.
- Geben Sie einen geschlossenen Pfad in G an, der jede Kante von G genau einmal enthält.

Überblick

- ① Übungsblatt 6
- Wiederholung
- 3 Graphen
- 4 Fragen

Graphen

Fragen

Fragen

- Fragen zum Stoff?
- Fragen zum nächsten Übungsblatt?
- Generelle Fragen?
- Feedback?

Fragen

EOF

source: http://imgs.xkcd.com/comics/computer_problems.png