In [27]:

```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
```

In [17]:

```
data=pd.read_csv('dia.csv')
```

In [18]:

data.head()

Out[18]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.62
1	1	85	66	29	0	26.6	0.35
2	8	183	64	0	0	23.3	0.67
3	1	89	66	23	94	28.1	0.16 ⁻
4	0	137	40	35	168	43.1	2.28
4							•

In [19]:

```
x=data.iloc[:,7]
x.head()
```

Out[19]:

0 50 1 31 2 32 3 21 4 33

Name: Age, dtype: int64

```
In [20]:
y=data.iloc[:,6]
y.head()
Out[20]:
     0.627
0
1
     0.351
2
     0.672
3
     0.167
4
     2.288
Name: DiabetesPedigreeFunction, dtype: float64
In [21]:
x=np.array(x).reshape(-1,1)
In [22]:
Х
       [42],
       [45],
        [38],
       [25],
       [22],
       [22],
       [22],
       [34],
       [22],
       [24],
       [22],
       [53],
       [28],
       [21],
       [42],
       [21],
       [42],
        [48],
       [26],
       Γ221.
In [23]:
y=np.array(y).reshape(-1,1)
```

```
In [24]:
У
Out[24]:
array([[0.627],
       [0.351],
       [0.672],
       [0.167],
       [2.288],
       [0.201],
       [0.248],
       [0.134],
       [0.158],
       [0.232],
       [0.191],
       [0.537],
       [1.441],
       [0.398],
       [0.587],
       [0.484],
       [0.551],
       [0.254].
In [25]:
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=.20)
In [28]:
classifier=LinearRegression()
In [29]:
classifier.fit(x_train,y_train)
Out[29]:
LinearRegression()
In [30]:
y_pred=classifier.predict(x_test)
```

```
In [31]:
y_pred
Out[31]:
array([[0.45921739],
       [0.47215969],
       [0.46784559],
       [0.48606067],
       [0.46065542],
       [0.45730001],
       [0.45730001],
       [0.4582587],
       [0.45777936],
       [0.46065542],
       [0.46544887],
       [0.47215969],
       [0.471201],
       [0.45730001],
       [0.46017608],
       [0.46640756],
       [0.46209346],
       [0.45777936].
In [34]:
r2_score(y_test,y_pred)
Out[34]:
-0.013647232579697022
In [36]:
mean_squared_error(y_test,y_pred)
Out[36]:
0.12172988403486278
In [38]:
classifier.coef_
Out[38]:
array([[0.00047934]])
```

In [39]:

```
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
```

Out[39]:

[<matplotlib.lines.Line2D at 0x180f950a560>]

In []: