МЕТОДЫ НАУЧНЫХ ИССЛЕДОВАНИЙ

Общие замечания

Метод (от греческого *methodos*- способ познания) - это "путь к чему- либо", способ деятельности субъекта в любой ее форме.

Основная функция метода- внутренняя организация и регулирование процесса познания или практического преобразования того или иного объекта. Поэтому метод сводится к совокупности определенных правил, приемов, способов, норм познания и действия. Иначе можно сказать, что метод - это система предписаний, принципов, требований, которые должны <u>ориентировать</u> в решении конкретной задачи.

Научный метод должен отвечать ряду требований:

- он должен содержать состав и последовательность действий, приводящих к положительному результату получению знания об объекте;
- его изложение должно включать нормативы типа «выполнить то-то», «перенести туда-то», «объединить с тем-то» и т.д.;
- должен выполняться критерий осуществимости, согласно которому действие должно быть осмысленным, не содержать противоречий и быть выполнимым за конечное число шагов.

Важнейшая роль метода заключается в том, что он дисциплинирует поиск истины, позволяет экономить силы, средства и время, двигаться к цели кратчайшим путем. Хороший метод служит своеобразным компасом, который позволяет проложить правильный и самый короткий путь к истине и не допустить ошибок.

- Ф. Бэкон сравнивал метод со светильником, освещающим путнику дорогу в темноте (индукция).
- Р. Декарт говорил, что лучше не помышлять об отыскании каких бы то ни было истин, чем делать это без всякого метода (дедукция).

Каждый метод - важное и полезное средство исследования. Но нельзя впадать в крайности, к которым относятся "методологический негативизм" или "методологическая эйфория". По поводу последнего следует заметить, что метод должен выступать как руководство к действию, а не как готовый шаблон для перекраивания фактов.

Характерные <u>признаки</u> научного метода: объективность, воспроизводимость, эвристичность, конкретность и др. При этом метод не описывает сам изучаемый объект, не дает никакой его характеристики, а только служит предписанием исследователю, что следует делать с объектом и имеющимися средствами исследования.

Классификация методов

Какие бывают методы? Признаков, оснований для классификации очень много.

Прежде всего, можно выделить методы духовной, идеальной (в том числе научной) и методы практической, материальной деятельности (например, методы строительства).

Методы науки в зависимости от роли и места в процессе научного познания могут быть формальные и содержательные, эмпирические и теоретические, фундаментальные и прикладные и т.д.

Есть методы <u>естественных</u> наук, и есть методы <u>социально- гуманитарных</u> наук. В свою очередь методы естественных наук могут быть подразделены на методы изучения <u>неживой</u> природы и <u>живой</u>.

Выделяют также качественные и количественные методы, детерминированные и вероятностные, оригинальные и производные и т.д.

Рассмотрим классификацию методов по степени общности и широте применения.

1. Философские методы.

а) Диалектический и метафизический.

Основатель диалектического метода Гегель. Это метод познания действительности во всей ее противоречивости, целостности и развитии. Базируется на трех законах диалектики: закон взаимного перехода количественных изменений в качественные, закон единства и борьбы противоположностей и закон отрицания отрицания.

Термин «метафизика» ввел Андроник Родосский в I веке до н.э. Изначально под метафизикой понималась особая сверхчувственная реальность, находящаяся за пределами возможностей эксперимента, наблюдения, опыта. Размышления об этой реальности, недоступной никакому чувству, а также о свободе воли, Боге, бесконечности и вечности и составляют суть метафизики.

Если трактовать метафизический метод как противоположность диалектике, то принято считать, что метафизика рассматривает явления вне их взаимной связи и развития. Её сущность в абсолютизации какой-то выделенной стороны процесса или элемента целого. Этот метод оценивает объекты и процессы изолированно, обособленно друг от друга.

b) Методы аналитической философии.

Аналитическая философия объединяет различные философские направления, использующие методы логического и лингвистического анализа языка для решения фило-

софских проблем и имеющие в приоритете идеалы логической строгости, ясности и точности.

с) Феноменологический метод

Применительно к естественным наукам феноменология — это подход, согласно которому создается теория для наблюдаемых явлений при полном игнорировании действительно происходящих процессов более "низкого" элементарного уровня. Примером может служить термодинамика в физике или феноменология элементарных частиц.

d) Методы герменевтики

Герменевтика- направление в философии, которое занимается теорией и практикой истолкования, интерпретации, понимания. Предметом исследования, как правило, является текст. Первые герменевтики, средневековые схоласты, занимались толкованием
смыслов божественных идей, присутствующих в тексте Библии. В ряде интерпретаций
герменевтика рассматривается как философия понимания текста, в качестве которого
подразумевается любая информация, передаваемая от одного субъекта другому: письменный текст, устная речь, жест, взгляд, интонация.

2. Общенаучные методы.

В структуре общенаучных методов выделяют три уровня: эмпирический, теоретический, общелогический. Подробнее эти методы рассмотрим ниже.

В последнее время интенсивно развивается такая общенаучная дисциплина, как синергетика (основные понятия синергетики: порядок. хаос, неопределенность, диссипативные структуры, бифуркация и т.д.).

3. Частнонаучные методы.

Применяются в соответствии с основными формами движения материи. Это методы механики, физики, химии, биологии, социально-гуманитарных и общественных наук.

4. Дисциплинарные методы.

Методы, используемые в конкретной научной дисциплине. Например, методы нелинейной оптики, методы кодирования, защиты информации, методы архивации данных.

5. Методы междисциплинарного исследования.

Методы, используемые при проведении исследований на «стыке» разных дисциплин. Например, методы геофизики, биомеханики, вычислительного теплообмена, вычислительной физики и др.

Рассмотрим подробнее общенаучные методы как универсальную и наиболее часто используемую основу аппарата научных исследований.

Методы эмпирического исследования

1. Наблюдение.

Научное наблюдение — это целенаправленное и организованное изучение объектов, основанное по большей части на данных органов чувств (ощущения, восприятия, представления). Наблюдение может быть непосредственным и опосредованным различными приборами и техническими устройствами (микроскопом, телескопом, фото- и видеокамерой и др.). В процессе наблюдения наблюдатель не вмешивается в естественное течение процесса. При этом он не просто фиксирует события или явления, а ищет их, руководствуясь некоторой концепцией.

Наблюдение может быть *полевым*, если оно проводится в естественной обстановке, или *лабораторным*, если для запуска процесса условия создаются искусственно.

Примеры научных наблюдений.

- а) Фиксация треков частиц в камере Вильсона;
- b) Астрономические наблюдения за небесными телами;
- с) Отслеживание состояния атмосферы Земли;

Основные требования к научному наблюдению:

а) Объективность (возможность контроля результатов либо путем повторного наблюдения, либо другими методами, либо другими средствами).

В этой связи регистрация НЛО (Уфология) или снежного человека в качестве реального объекта не является результатом научного наблюдения.

- b) Четкость и определенность замысла, наличие идеи, концепции, гипотезы/
- с) Хорошо продуманная и подготовленная методика.

При наблюдении регистрируются не все подряд факты, а сознательно отбираются те, которые должны быть интерпретированы в рамках сформулированной концепции. Здесь важна научная честность - не подбирать факты под теорию, а фактами проверять теоретические положения и идеи.

Особое внимание следует уделить расшифровке показаний приборов и и*нтер-претации* результатов.

Познавательный *итог* наблюдения - описание средствами естественного и искусственного языка полученных данных об объекте наблюдения: схемы, таблицы, графики, диаграммы, рисунки и т.д.

Наблюдение, как правило, сопровождается измерениями.

Часто наблюдение является составной частью эксперимента.

2. Эксперимент.

Эксперимент — это активное и целенаправленное вмешательство в протекание изучаемого процесса, соответствующее изменение объекта, процесса иди его воспроизведение в искусственно созданных и контролируемых условиях. Т.е. в эксперименте или идет вмешательство в естественное протекание процесса, или объект (процесс) воспроизводится искусственно, или объект ставится в определенным образом заданные условия, отвечающие целям исследования. Важно, что создаваемые условия могут контролируемо изменяться. Всякий научный эксперимент должен направляться какой- либо идеей, концепцией, гипотезой. "Без идеи в головне не увидишь факта",- говорил И.П. Павлов.

<u>Виды экспериментов</u>. Основные задачи эксперимента - эмпирическая проверка гипотез и теорий и формирование новых научных идей и концепций. В соответствии с этим различают эксперименты *проверочные* и *поисковые*. Бывают также *демонстрационные* эксперименты.

В зависимости от характера ожидаемых результатов эксперимент может быть качественным и количественным.

В соответствии со спецификой объектов различают физический, биологический, социальный и т.д эксперименты.

В ряде случаев с целью подтверждения одной и установления ошибочности другой из конкурирующих теорий, гипотез, концепций проводят *решающий* эксперимент.

Важное место в современных научных исследованиях принадлежит вычислительному эксперименту как противоположности натурному (прямому) эксперименту.
Вычислительный эксперимент ставится на математических моделях с использованием соответствующей вычислительной техники и специального программного обеспечения.
Причиной широкого распространения данного метода исследований являются, прежде
всего, значительные успехи в развитии компьютерной техники, вычислительных и информационных технологий. Другая причина заключается в существенном удорожании современных технических, экономических, социальных проектов, когда цена ошибки на
этапе проектирования оказывается в итоге очень высокой, и для успешной реализации
проекта требуется детальная предварительная проработка идей и решений на моделях.

Помимо вычислительного эксперимента, который относится к классу модельных, существует модельный эксперимент, выполняемый с физическими (материальными) моделями. Эти модели воспроизводят геометрию, форму или условия функционирования реального объекта. Результаты испытаний с этими моделями переносятся на реальный процесс или объект.

Наконец, существуют *мысленные* эксперименты, когда исследователь оперирует не реальными предметами и условиями их функционирования, а их мысленными образами. По сути, строится некоторая непротиворечивая теоретическая модель реальных условий функционирования или существования объекта, с которой выполняются манипуляции, имитирующие реальный эксперимент.

Примеры экспернментов.

- а) Бомбардировка Луны с целью определения внутренней структуры небесного тела. В качестве результата получен ошеломляющий факт, что Луна- это полый шар. Обратим внимание, что традиционным методом исследования в астрономии до последнего времени было наблюдение.
- b) Исследование поведения человека в искусственно созданной невесомости в самолете.
 - с) Изучение аэродинамических свойств объектов в аэродинамических трубах.
- d) Измерение сечений столкновения электронов с частицами с помощью специально формируемых пучков.
- е) Установление волновых свойств электронов с помощью дифракции от отверстия в экране.

Основные этапы эксперимента: планирование, создание экспериментальной установки (стенда), проведение экспериментальных работ, обработка и интерпретация полученных результатов.

Основные характерные черты научного эксперимента:

- а) Более активное по сравнению с наблюдением взаимодействие с объектом, включая возможность корректировки его поведения или даже преобразования.
- b) Воспроизводимость изучаемого явления неограниченное количество раз в одинаковых условиях, контролируемых с заданной точностью.
- с) Возможность обнаружения таких явлений или их отдельных свойств, которые в естественных условиях замаскированы другими процессами, явлениями, объектами.
 - d) Возможность вычленения и наблюдения процесса, явления в "чистом" виде.

е) Наличие необходимых средств для полного контроля за поведением объекта и возможности вмешательства в ход процесса вплоть до его остановки в критических ситуациях.

3. Сравнение

Сравнение- метод исследования, предполагающий сопоставление свойств или признаков, присущих различным объектам с целью установления сходства или различия между ними. Это может быть выполнено с помощью органов чувств или специального оборудования. При этом имеют дело, как с качественными, так и количественными характеристиками объектов. Известно, что все познается в сравнении, при этом сравнение – это не объяснение явления, а средство уяснения для дальнейших правильных шагов.

Например, при изучении электромагнитных волн в среде, можно получить много интересных и полезных результатов, сравнивая их с волнами на воде или в твердых телах.

Сравнение выступает исходным пунктом для такого метода исследования, как аналогия.

Методы теоретического исследования

1. Формализация.

Формализация- это обобщение форм различных по содержанию объектов. Конкретнее - представление содержательного знания в знаково- символическом виде. При этом используются естественные и искусственные языки. Наш обычные естественные языки являют пример самого слабого уровня формализации. Эти языки характеризуются многозначностью, неточностью, гибкостью, образностью, изменчивостью и др. Эти языки постоянно наполняются новыми смыслами и понятиями.

Повышение уровня формализации обеспечивается созданием искусственных (формализованных) языков. На этих языках получается более точное и строгое выражение знаний и признаков, исключается возможность неоднозначного понимания (язык математики, логики, химии, программирования). Эти языки позволяют не только и не столько сократить запись (для этого есть стенография), но главное то, что язык формул становится средством, инструментом познания. Достоинство этих языков состоит в их точности и однозначности. Особую роль они приобретают при построении доказательств в виде последовательности формул, получаемых из исходных с помощью жестких правил преобразования.

При формализации рассуждения об объектах переносятся в плоскость оперирования со знаками (выражениями). Отношения знаков заменяют высказывания о свойствах и отношениях предметов. При этом создается обобщенная знаковая модель объекта, позволяющая установить структуру явлений при отвлечении от качественных, содержательных характеристик последних. Операции с мыслями о предметах заменяются операциями со знаками.

Формализация широко используется при алгоритмизации и программировании.

2. Аксиоматический метод- это способ дедуктивного построения научных теорий. При этом строится система некоторых понятий (в геометрии Эвклида - это понятие точки, прямой, угла, плоскости), формулируются утверждения (постулаты, аксиомы). не требующие доказательств и являющиеся исходными положениями, из которых затем выводятся все другие утверждения по определенным логическим правилам (например, постулат- «через точку, расположенную вне прямой, может быть проведена только одна прямая, параллельная данной»). Далее строится система правил вывода, позволяющая переходить от одних утверждений к другим, а также устанавливать новые понятия. Затем на основе ограниченного числа постулатов с помощью правил доказываются теоремы.

3. Метод гипотез

Гипотеза - положение, выдвигаемое в качестве предварительного условного объяснения некоторого явления. Истинность такого предположения неопределенна, оно проблематично и нуждается в проверке.

Общая схема метода гипотез:

- 1) попытка теоретического объяснения фактического материала с помощью существующих представлений, теорий, концепций и законов;
- формулирование предположения о причинно-следственных связях и закономерностях исследуемых явлений;
- 3) оценка качества гипотезы, т.е. проверка выдвинутого предположения на логическую непротиворечивость фундаментальным теоретическим принципам данной науки (например, законам сохранения массы, импульса, энергии). При этом надо понимать, что в периоды научных революций именно фундаментальные принципы оказываются под сомнением, появляются необычные плохо воспринимаемые научным сообществом концепции и идеи;
- 4) получение следствий из гипотезы и их экспериментальная проверка. Здесь гипотеза или подтверждается или опровергается. Отметим, что подтверждение гипотезы не

является свидетельством ее истинности в последней инстанции. Если гипотеза соответствует эксперименту, то можно сказать, что возможно гипотеза верна. Но если же гипотеза противоречит экспериментальным данным, то это для неё приговор, и она должна быть отброшена.

Общелогические методы

1. Анализ и синтез.

Анализ – мысленное или реальное разделение предмета на составляющие его части и их последующее независимое изучение. Анализ определяет специфические признаки, отличающие части друг от друга. Понятно, что существует предел членения предмета, за которым выполняется переход к иной совокупности свойств и закономерностей.

Виды анализа: механическое разделение, установление форм взаимодействия элементов целого, выявление уровней знания и его структуры и т.д.

Синтез — мысленное или реальное объединение расчлененных анализом различных сторон, частей предмета исследования в единое целое. Синтез выявляет то существенно общее, что связывает части в единое целое.

Анализ и синтез тесно связаны между собой: разъединяя объект на части и изучая их в отдельности, мы воссоздаем затем объект из уже исследованных элементов.

2. Абстрагирование

Сложность мира, объектов, процессов с их огромным количеством разнообразных свойств, связей и взаимодействий приводит к необходимости в процессе познания концентрировать внимание на одних признаках и связях и отвлекаться от других. Абстрагирование — это мысленное вычленение какого-либо предмета (свойства) в отвлечении его от связей и взаимодействий с другими предметами (свойствами). Например, при построении орбит планет Солнечной системы можно абстрагироваться от свойств поверхности небесных тел, состава атмосферы, формы поверхности и т.д., рассматривая Солнечную систему как совокупность материальных точек, наделенных массой и движущихся в пространстве вокруг массивного центра. Точно также при изучении состава рабочего тела двигателя внутреннего сгорания можно абстрагироваться от формы поверхности цилиндра и материала поршня.

Абстракция имеет свой предел, за которым польза данной процедуры теряется. Одним из результатов абстрагирования является появление понятий о вещах и предметах, например, птица, дерево, животное, мебель, газ, жидкость или свойствах объектов типа длина, объем, теплопроводность.

Абстракция огрубляет реальность, отсекая от исследуемого элемента связи с другими элементами, однако в итоге она позволяет постигнуть более глубоко исследуемую сущность, чем в случае ее целостного восприятия.

3. Идеализация

Идеализация- это специфический вид абстрагирования и представляет собой мысленное образование абстрактных объектов, не существующих в неосуществимых в действительности, но имеющих прообразы в реальном мире. В результате идеализации появляются понятия точки, абсолютно черного тела, несжимаемой жидкости, идеального газа и т.д. Обоснованное введение идеализированных объектов позволяет заметно упростить исследовательские процедуры при должном соответствии идеализированной и реальной картины явлений.

4. Обобщение

Обобщение - процесс мысленного перехода от единичного к общему или от общего к еще более общему. В частности, если осуществляется переход от менее общей теории к более общей, то менее общая теория становится частным случаем более общей. В качестве примеров обобщения можно привести следующие: переход от понятия «береза» к понятию «лиственное дерево» и далее к понятию «дерево» и далее – «растение» или «жилой дом»-«здание»-«сооружение» или от высказывания «механическая энергия превращается в тепловую» к суждению «энергия переходит из одной формы в другую».

5. Индукция и дедукция

Индукция- процесс вывода общего утверждения из частных положений, движение от единичного к общему. Различают полную и неполную индукции. Неполная индукция имеет место, когда некоторое общее утверждение о всех членах некоторого класса делается на основе знаний лишь о части представителей данного класса. Это наиболее часто применяемый на практике вид индукции. Разумеется, чем глубже изучены отдельные представители класса, тем ближе к действительности, достовернее выводы, получаемые этим методом. Полная индукция подразумевает изучение каждого представителя класса, что на практике бывает сделать затруднительно.

Дедукция (выведение)- процесс вывода частных утверждений на основе более общего положения, движение от общего к единичному. Можно сформулировать иначе:

дедукция- это процесс логического вывода, т.е. перехода по определенным правилам логики от некоторых данных утверждений (высказываний) к их следствиям (заключениям).

6. Моделирование

Моделирование- метод исследования объекта (процесса, системы, явления), основанный на замене изучаемого объекта его моделью и изучении в дальнейшем данной модели. Таким образом, при моделировании реальный объект замещается его моделью, и результаты исследования модели переносятся на реальный объект. Под моделью понимается представление объекта в виде, отличном от вида и способа его реального существования. Модель – это некоторый образ объекта, отражающий его наиболее существенные для данного исследования черты. Модели бывают материальные и идеальные (в смысленематериальные). Материальные модели бывают геометрические, физические, аналоговые. Нематериальная модель, построенная в виде математических объектов, называется математической моделью. Математическое моделирование, выполняемое на современных вычислительных системах, получило широкое распространение практически во всех науках, заменяя в ряде случаев натурные эксперименты.

Некоторые причины возникновения данной ситуации были сформулированы выше при рассмотрении такого метода исследования, как вычислительный эксперимент.