Large-Scale Nearest Neighbor Classification with Statistical Guarantee

Jiexin Duan

Department of Statistics
Purdue University

Joint Work with Guang Cheng and Xingye Qiao

Mar 13, 2018 University of Wisconsin-Madison

The Big Data Era

"There were 5 exabytes of information created between the dawn of civilization through 2003, but that much information is now created every 2 days."

-Eric Schmidt, Google CEO (2001-2011)

- Volume
- Variety
- Velocity

SUSY Data Set

- Size: 5,000,000 particles from the accelerator
- Predictor variables: 18 (properties of the particles)
- Goal: distinguish the two classes of a signal process
- Data source: UCI Machine Learning Repository

Nearest Neighbor Classification

The kNN classifier predicts the class of $x \in \mathbb{R}^d$ to be the most frequent class of its k nearest neighbors (Euclidean distance).

Computational Challenges in Big Data for kNN Classifiers

- Time complexity: O(dN + kN)
 - dN: computing distances from the query point to all N observations in R^d
 - kN: selecting the k nearest distances out of the N distances
- Space complexity: O(dN)
- Here, N is the size of the entire dataset

How to Conquer "Big Data?"

If We Have A Supercomputer...

Train the total data at one time: oracle kNN

Figure: I'm Pac-Superman!

Construction of Pac-Superman

To build a Pac-superman for oracle-kNN, we need:

- Expensive Super-computer
- Operation system, e.g. Linux
- Statistical software designed for big data, e.g. Spark, Hadoop
- Write complicated algorithm (eg. MapReduce) which is hard to extend to other classifier

If We Don't Have A Supercomputer...

What can we do?

What about splitting the data?

Divide & Conquer (D&C) Framework

Big-kNN for SUSY Data

Figure: Risk and Speedup for Big-kNN.

- Risk of classifier ϕ : $R(\phi) = \mathbb{P}(\phi(X) \neq Y)$
- Oracle-kNN: kNN trained by the total dataset
- Speedup: running time ratio between Oracle-kNN & Big-kNN
- Number of subsets: $s = N^{\gamma}$, $\gamma = 0.1, 0.2, \dots 0.8$

Construction of Pac-Batman (Big Data)

Weighted Nearest Neighbor Classifiers (WNN)

Definition: Weighted Nearest Neighbor Classifier (WNN)

In a dataset with size n, the WNN classifier has weight w_{ni} on the i-th neighbor of x:

$$\widehat{\phi}_{n}^{w_{n}}(x) = \mathbb{1}\{\sum_{i=1}^{n} w_{ni} \mathbb{1}\{Y_{(i)} = 1\} \ge \frac{1}{2}\} \text{ s.t. } \sum_{i=1}^{n} w_{ni} = 1$$

When $w_{ni} = k^{-1} \mathbb{1}\{1 \le i \le k\}$, WNN reduces to kNN.

14 / 44

Big Weighted Nearest Neighbor Classifiers (BigWNN)

Definition: Big Weighted Nearest Neighbor Classifier (BigWNN)

In a big data set with size N = sn, denote $\widehat{\phi}_n^{(j)}(x)$ as the local WNN in j-th subset with size n. For any subset, the weights w_{ni} are the same. Then the BigNN is constructed as:

$$\widehat{\phi}_{n,s}^{Big}(x) = \mathbb{1}\{s^{-1}\sum_{i=1}^{s}\widehat{\phi}_{n}^{(i)}(x) > 1/2\}$$

Statistical Guarantees

- Accuracy
 - Regret=Expected Risk-Bayes Risk= $\mathbb{E}_{\mathcal{D}}\left[R(\widehat{\phi}_{n})\right] R(\phi^{\mathrm{Bayes}})$
 - A small Regret represents an accurate classifier
- Stability

Definition: Classification Instability (CIS)

Define classification instability of a classification procedure Ψ as

$$\mathrm{CIS}(\Psi) = \mathbb{E}_{\mathcal{D}_1,\mathcal{D}_2} \Big[\mathbb{P}_X \Big(\widehat{\phi}_{n1}(X) \neq \widehat{\phi}_{n2}(X) \Big) \Big],$$

where $\widehat{\phi}_{n1}$ and $\widehat{\phi}_{n2}$ are the classifiers obtained by applying the classification procedure Ψ to \mathcal{D}_1 and \mathcal{D}_2 which are i.i.d. copies of \mathcal{D} .

A small CIS represents a stable classifier

Asymptotic Regret of BigWNN

Theorem

Under regularity assumptions, with s upper bounded by subset size n, as $n, s \to \infty$, we have

Regret(BigWNN)
$$\approx B_1 s^{-1} \sum_{i=1}^{n} w_{ni}^2 + B_2 \left(\sum_{i=1}^{n} \frac{\alpha_i w_{ni}}{n^{2/d}} \right)^2$$
,

where $\alpha_i = i^{1+\frac{2}{d}} - (i-1)^{1+\frac{2}{d}}$, w_{ni} are the local weights, constants B_1 and B_2 are based on the underlying distribution.

Asymptotic Regret of BigWNN

Theorem

Under regularity assumptions, with s upper bounded by subset size n, as $n, s \to \infty$, we have

$$Regret(BigWNN) \Rightarrow B_1 s^{-1} \sum_{i=1}^{n} w_{ni}^2 + B_2 \left(\sum_{i=1}^{n} \frac{\alpha_i w_{ni}}{n^{2/d}}\right)^2,$$

where $\alpha_i = i^{1+\frac{2}{d}} + (i-1)^{1+\frac{2}{d}}$, w_{ni} are the local weights, constants B_1 and B_2 are based on the underlying distribution.

Variance part

Asymptotic Regret of BigWNN

Theorem

Under regularity assumptions, with s upper bounded by subset size $n, as n, s \rightarrow \infty$, we have

$$Regret(BigWNN) \approx B_1 s^{-1} \sum_{i=1}^{n} w_{pi}^2 + B_2 \left(\sum_{i=1}^{n} \frac{\alpha_i w_{ni}}{n^{2/d}} \right)^2,$$
 where $\alpha_i = i^{1+\frac{2}{d}} - (i-1)^{1+\frac{2}{d}}$, w_{ni} are the local weights,

constants B_1 and B_2 are based on the underlying distribution.

Variance part

Bias part

Theorem

Under regularity assumptions, as $n, s \to \infty$, given an OracleWNN classifier, we can design BigWNN by adjusting its weights according to those in the oracle version (e.g. in Big-kNN case, given oracle k^O , setting $k = \lfloor \left(\frac{\pi}{2}\right)^{\frac{d}{d+4}} \frac{k^O}{s} \rfloor$) s.t.:

$$\frac{\textit{Regret(BigWNN)}}{\textit{Regret(OracleWNN)}} \rightarrow \textit{Q}$$

where $Q=(\frac{\pi}{2})^{\frac{4}{d+4}}$.

• We name Q the **Majority Voting Quotient (MVQ)**.

MVQ converges to one as d grows

For example:

- d=1, Q=1.44
- d=2, Q=1.35
- d=5, Q=1.22
- d=10, Q=1.14
- d=20, Q=1.08
- d=50, Q=1.03
- d=100, Q=1.02

How to Compensate Statistical Accuracy Loss, i.e., Q > 1.

Why there is a constant MVQ?

Statistical Accuracy Loss in Majority Voting

Accuracy loss during the transformation from (continuous) percentage to (discrete) 0-1 label

Majority Voting/Accuracy Loss Once in Oracle Classifier

Only one majority voting in oracle classifier

Figure: I'm Pac-Superman!

Majority Voting/Accuracy Loss Twice in D&C Framework

Is it possible to apply majority voting once in D&C?

Divide & Conquer (D&C) Framework–Continuous Version

Majority Voting/Accuracy Loss Once in D&C Framework–Continuous Version

Construction of Pac-Batman (Continuous Version)

BigWNN (Continuous Version) (C-BigWNN)

Definition: Continuous Weighted Big Nearest Neighbor Classifier (C-BigWNN)

In a big data set with size N=sn, denote $\widehat{\phi}_n^{(j)}(x)$ as the nearest neighbor classifier in j-th subset with size n. For any subset, the weights w_{ni} are the same. Then the C-BigNN is constructed as:

$$\widehat{\phi}_{n,s}^{CBig}(x) = \mathbb{1}\{\frac{1}{s}\sum_{i=1}^{s}\sum_{i=1}^{n}w_{ni,j}Y_{(i),j}(x) > 1/2\}$$

C-Big-kNN for SUSY Data

Figure: Risk and Speedup for Big-kNN and C-Big-kNN.

Theorem

Under regularity assumptions, as $n,s\to\infty$, given an OracleWNN classifier, we can design C-BigWNN by adjusting its weights according to those in the oracle version (e.g. in C-Big-kNN case, given oracle k^O , setting $k=\lfloor\frac{k^O}{s}\rfloor$) s.t.

$$\frac{\mathrm{Regret}(\mathrm{C\text{-}BigWNN})}{\mathrm{Regret}(\mathrm{OracleWNN})} \rightarrow 1$$

• **Remark:** $k = \lfloor \frac{k^0}{s} \rfloor$ is different from the discrete version

Optimal C-Big-WNN Classifier

Theorem

Under regularity assumptions, as $n, s \to \infty$, we can design Optimal C-Big-WNN by adjusting its local weights s.t.

$$\frac{\textit{Regret(Optimal C-Big-WNN)}}{\textit{Regret(Oracle-OWNN)}} \rightarrow 1$$

- Oracle-OWNN is the optimal weighted nearest neighbor classified (OWNN) trained using the entire dataset.
- optimal weighted nearest neighbor classified (OWNN) is defined by Samworth (2012), and it minimizes the asymptotic regret of WNN.

Round 4

Optimal C-Big-kNN Classifier

Theorem

Under regularity assumptions, as $n, s \to \infty$, we can design Optimal C-Big-kNN by adjusting its weights $k^{opt} = \left| \frac{k^{O,opt}}{s} \left(\frac{\pi}{2} \right)^{\frac{d}{d+4}} \right| s.t.$

$$\frac{\textit{Regret(Optimal C-Big-kNN)}}{\textit{Regret(Oracle-OWNN)}} \rightarrow \textit{Q'}$$

where
$$Q' = 4^{d/d+4} (\frac{d+4}{2d+4})^{(2d+4)/(d+4)}$$
 and $1 < Q' < 2$

Asymptotic CIS Comparison

Theorem

Under regularity assumptions, as $n, s \to \infty$, we can design the Optimal C-BigWNN by adjusting its weights the same way as the regret theorem s.t.

$$\frac{\textit{CIS(Optimal C-BigWNN)}}{\textit{CIS(Oracle-OWNN)}} \rightarrow 1$$

Corollary

Under regularity assumptions, as $n, s \to \infty$, we can design the Optimal Big-kNN by setting its subset weights the same way as the regret theorem s.t.

$$\frac{\textit{CIS(Optimal C-Big-kNN)}}{\textit{CIS(Oracle-OWNN)}} \rightarrow \sqrt{\textit{Q'}}$$

Simulation Analysis-Setup

Consider the classification problem for Big-kNN and C-Big-kNN:

- Sample size: N = 27,000
- Dimensions: d = 4, 6, 8
- ullet $P_0 \sim \mathit{N}(0_d, \mathbb{I}_d)$ and $P_1 \sim \mathit{N}(rac{2}{\sqrt{d}} 1_d, \mathbb{I}_d)$
- Prior class probability: $\pi_1 = Pr(Y = 1) = 1/3$
- Number of neighbors in Oracle-kNN: $k^O = N^{0.7}$
- Number of subsamples in D&C: $s=N^{\gamma}$, $\gamma=0.1,0.2,\dots0.8$
- Number of neighbors in Big-kNN: $k^d = \lfloor (\frac{\pi}{2})^{\frac{d}{d+4}} \frac{k^O}{s} \rfloor$
- Number of neighbors in C-Big-kNN: $k^c = \lfloor \frac{k^O}{s} \rfloor$

Simulation Analysis-Empirical Risk

Figure: Empirical Risk (Testing Error). Left/Right: d = 4/8.

39 / 44

Simulation Analysis-Running Time

Figure: Running Time. Left/Right: d = 4/8.

40 / 44

Simulation Analysis-Empirical Regret Ratio

Figure: Empirical Ratio of Regret. Left/Right: d = 4/8.

 Q: Regret(Big-kNN)/Regret(Oracle-kNN) or Regret(C-Big-kNN)/Regret(Oracle-kNN)

Simulation Analysis-Empirical CIS

Figure: Empirical CIS. Left/Right: d = 4/8.

42 / 44

Real Data Analysis

Data	Size	Dim	Big-kNN	C-Big-kNN	Oracle-kNN	Speedup
htru2	17898	8	3.72	3.36	3.34	21.27
gisette	6000	5000	12.86	10.77	10.78	12.83
musk1	476	166	36.43	33.87	35.71	3.6
musk2	6598	166	10.43	9.98	10.14	14.68
occup	20560	6	5.09	4.87	5.19	20.31
credit	30000	24	21.85	21.37	21.5	22.44
SUSY	5000000	18	30.66	30.08	30.01	68.45

Table: Test error (Risk): Big-kNN compared to oracle-kNN in real datasets. Best performance is shown in bold-face. The speedup factor is defined as computing time of oracle-kNN divided by the time of the slower Big-kNN method. Oracle $k = N^{0.7}$, number of subsets $s = N^{0.3}$.

