Master degree in Physics of Data - Academic Year 2024/2025

Final Project for the course of:

Laboratory of Computational Physics - mod A

Teacher: Marco Zanetti

Data Analysis of Mice Gut Microbiota

Group ID: 08 Supervisor: Samir Simon Suweis | samir.suweis@unipd.it

Students name | Student ID | Student email

Bortolato, Angela | 2156562 | angela.bortolato.2@studenti.unipd.it Fasiolo, Giorgia | 2159992 | giorgia.fasiolo@studenti.unipd.it Volpi, Luca | 2157843 | luca.volpi@studenti.unipd.it Zara, Miriam | 2163328 | miriam.zara@studenti.unipd.it

Familiarize with the Data

 8 mice, born from the same parents and raised in the same cage

- A fecal sample taken from each of them every few days (~ 4-7)
- Bacteria in it are identified with
 16s rRNA sequencing
 technique

Learning Ecological Interactions

Treating *Clostridium difficile* Infection With Fecal Microbiota Transplantation
Bakken, Johan S. et al.
Clinical Gastroenterology and Hepatology, Volume 9, Issue 12, 1044 - 104, 2011 DOI: 10.1016/j.cgh.2011.08.0149

Parasitism or predation

Learning Ecological Interactions

- can ecological interactions really be inferred from the data?
 - do the time series exhibit significant serial cross-correlation?
- are inter species interactions a justified assumption or does a "single species model" suffice to explain the observations?

Criticalities

finite sequencing depth:

a species that is rare could still have a big influence on the others. By imposing a threshold (exiplicitly or implicity) we exclude possibly vital information.

the sample is fixed in size: measures are frequencies, not counts -> correlations may arise as statistical artifacts but have no correspondent physical reality

 16s rRNA sequences was found to be efficient at identifying the high-order taxonomy, but less efficient at low-level taxonomy

Criticalities

- 16s rRNA sequences was found to be efficient at identifying the high-order taxonomy, but less efficient at low-level taxonomy

query	Phylum	Class	Order	Family	Genus	Species
OTU00001	Bacteroidetes	Bacteroidia	Bacteroidales	Prevotellaceae	Prevotella	Prevotella sp. Smarlab 121567 (79.62%)
OTU00002	Firmicutes,	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	Lactobacillus taiwanensis (100%)
OTU00003	Bacteroidetes	Bacteroidia	Bacteroidales	Porphyromonada ceae	Parabacteroides	Parabacteroides distasonis

Data Preliminary Analysis

Familiarize with the Data

Preprocessing step: aggregate the reads for OTUs assigned to the same species

OTU queries: 21.768

Species: 1.260

Genus: 412

Family: 141

Order: 66

Class: 37

Data is time series of the populations evolution - from birth to death of the host.

Threshold?

Sample Composition - 1

OTU queries: 21.768

Species: 1.260

Genus: 412

Family: 141

Order: 66

Class: 37

Composition is homogeneous across the subjects, at different levels of taxonomic classification

Order Abundances (Top 5 + Others)

Sample Composition - 1

Family Abundances (Top 10 + Others)

Genus Abundances (Top 15 + Others)

Sample composition - 2

RAD: Rank-Abundance Distribution

Power law:

frequency =
$$c \cdot \text{rank}^{\alpha}$$

Data Analysis - Measure uncertainties

How reliable is *Species* assignation?

OTU queries: 21.768

Species: 1.260

Genus: 412

Data Aggregation by "Genus"

Time Series Analysis

Autocorrelation Function (ACF)

Data Analysis - RAD

Data Preprocessing

Stationarity tests

Logistic Model