Regression HW #4 and #5

Directions: Please complete all of the sections. You get half of your points for finishing/turning it in on time and the other half for correctness. For the Jamovi section, please print the output from Jamovi and staple the two documents together. Have fun!

Section I: Correlation and Regression

- 1. Which of the following are correlations designed to accomplish?
 - a. Quantify the distance that a score is above or below the mean score
 - b. Quantify the degree or strength of the association between two variables
 - c. Quantify the line of best fit to the data
 - d. Quantify the difference in means across groups
- 2. What is NOT an assumption of Pearson correlation?
 - a. Interval/ratio variables
 - b. Independence of data
 - c. No omitted influences
 - d. Multivariate normality
 - e. Homoscedasticity
- 3. If both variables being analyzed are measured on an interval or ratio scale, a _____ correlation should be used.
 - a. Pearson's
 - b. Spearman's
 - c. Jonathan's
 - d. Rachel's
- 4. Is the following graph showing homoscedasticity or heteroscedasticity? (feel free to circle two correct answers...)
 - a. Homoscedasticity
 - b. Heteroscedasticity
 - c. Honestly, it is just a bunch of dots.
 - d. I circled the right answer but wanted to also thank Tyson for his hard work on this homework.

- 5. What are the two parameters you obtain from a simple regression?
 - a. Intercept; range
 - b. Intercept; slope
 - c. Observed; slope
 - d. Observed; range
- 6. What is the interpretation of the slope of a multiple regression when the predictor is continuous?
 - a. A [slope] unit change in the predictor is associated with one-unit change in the outcome
 - b. A one-unit change in the predictor is associated with a [slope] change in the outcome

- c. A [slope] unit change in the predictor is associated with one-unit change in the outcome, controlling for the other covariates.
- d. A one-unit change in the predictor is associated with a [slope] change in the outcome, controlling for the other covariates.
- 7. What is NOT an assumption of regression?
 - a. Interval/ratio outcome
 - b. Linear relationships
 - c. No omitted influences
 - d. Homoscedasticity
 - e. These all are assumptions of regression
- 8. What does this output tell us (what analysis is it, what are the statistics of interest, is it significant)?

		Pretest	Posttest
Pretest	Pearson's r	_	0.529
	p-value	_	0.016
Posttest	Pearson's r		_
	p-value		_

9. What does this output tell us (what analysis is it, what are the statistics of interest, is it significant)?

Dependent: Posttest

Predictor	Estimate	SE	t	р
Intercept	6.95	0.263	26.43	<.001
Group:				
2 – 1	-1.90	0.526	-3.61	0.002

Section II: Jamovi

Using your data (either that you collected, have access to, or the OfficeParks data set), run a multiple regression that you think is interesting (can be anything but you need at least 2 predictor variables in the model).

- 1. Import and get your data ready for the regression analysis.
- 2. After checking the assumptions, define the critical region for this test.
- 3. Compute the test statistic, the effect size, and confidence intervals.
- 4. Check assumptions of the regression model.
- 5. Interpret the results in the context of the study.
- 6. Paste or print out the Jamovi output from this study and write the interpretation of the results below.