FACE MASK DETECTION

Contenta

Part 1

Introduction

Part 3

Overview of Computer Vision

Part 5

Conclusion

Part 2

Data Cleaning and EDA

Part 4

Modeling and Evaluation

Background

- COVID-19 has posed a serious threat to global health.
- Wearing face masks in public areas is one of numerous precautions that may be taken to stop the spread of this infection.
- It is challenging to make sure that people are wearing masks in public transportation.

Objectives

Using computer vision and deep learning to detect whether a person is wearing mask, not wearing mask or improperly wearing mask.

DATA CLEANING & EDA

DATASET

843 IMAGES WITH ANNOTATIONS

MEDIAN IMAGE RATIO

400 X 281

IMBALANCED CLASS

• with_mask:79%

• without_mask:18%

mask_weared_incorrect

: 3%

Annotation Heatmap

All (4,021)

with_mask (3,184)

without_mask (716)

mask_weared_incorrect
(121)

Classification vs. Object Detection

Image Classification

• One object and one label per image

Object Detection (classification and localization)

Cat, Cat, Duck, Dog

- Multiple objects per image
- Determine objects' location by drawing bounding boxes (bbox)
- Bbox described as (x, y, w, h)

Naive Approach

1. Scan the image with a sliding window

2. Feed the image to a classifier model to predict a label for that region

- Slow → Not good for real time uses
- Improved version: Region-based Convolutional Neural Net (R-CNN)
 - Strategically selects interesting regions to run through the classifier.

YOLO - You Only Look Once

- Instead of making predictions on many regions of an image, YOLO passes the entire image at once into a CNN (much faster!)
- The CNN that predicts the labels, bounding boxes, and confidence probabilities for objects in the image

YOLO Steps

1. Divide the image into cells with an S x S grid.

2. Each cell predicts B bounding boxes

3. Return bounding boxes above confidence threshold

YOLO Overview

Non-Max Suppresion

Double Counting Objects

NMS solves multiple counting by removing the box with lower confidence probability when the IoU between 2 boxes with the same label is above some threshold.

1. Identify the box with the highest confidence

loU: 0.62

loU: 0.47

2. Calculate the IoU between the highest confidence box and each of the other boxes

3. Suppress boxes with IoU above a selected threshold

IMPLEMENTING YOLO

YOLO-V5 MODEL SELECTION

EVALUATION METRICS

metrics/mAP_0.5:0.95

Models	mAP_0.5	m_AP_0.5:0.95
yolov5_416	0.82896	0.49641
yolov5_640_augment	0.97706	0.74817
yolov5_320_augment	0.95884	0.68944
yolov5_640	0.90891	0.57962
yolov5_320	0.87565	0.56838

CONCLUSION

VIDEO DEMO

Thanks

Any questions?

