Spannungsmessung

Aufgabe:

Ein Verbraucher mit $R=100~\Omega$ wird an einer realen Spannungsquelle betrieben. Diese lässt sich durch den Innenwiderstand $R_q=10~\Omega$ und die innere, ideale Quelle mit $U_q=1000~V$ beschreiben.

Gemessen wird die am Verbraucher abfallende Spannung U mit einem Spannungsmesser ($R_m = 1000 \, \Omega$).

Wie groß ist die wahre Spannung (U_w) , die gemessene Spannung (U), die Messabweichung (e) und die relative Messabweichung (e_{REL}) ?

Gegeben: R, R_q , R_m , U_q Gesucht: U_w , U, e, e_{Rel}

Widerstand Verbraucher R	100	Ohm
Idealer Spannungswert Uq	1000	V
Innenwiderstand R _q	10	Ohm
Widerstand Messgerät R _m	1000	Ohm

Spannungsmessung (Rq unbekannt)

Aufgabe:

Ein Widerstand $R = 100 \Omega$ sei mit einer Spannungsquelle (Innenwiderstand R_q) verbunden.

Mit Hilfe eines Spannungsmessgerätes (Messgerätewiderstand $R_m=400\,\Omega$) soll die an R abfallende Spannung U gemessen werden.

Bei einem Messwert von U = 10 V ergibt sich die syst. Messabweichung $e = -100 \ mV$.

Zeichnen Sie die Messschaltung inkl. Ersatzschaltbild der Spannungsquelle und Kennzeichnen Sie alle abfallenden Spannungen.

Berechnen Sie den Innenwiderstand Rq der Spannungsquelle.

Gegeben: R, R_M, e, U

Gesucht: Rq

Widerstand Verbraucher R	100	Ohm
Widerstand Messgerät R _m	400	Ohm
Gemessene Spannung U	10	V
Abweichung e	-100	mV

Messbereichserweiterung Spannung (1)

Aufgabe:

Ein Spannungsmessgerät mit dem Innenwiderstand $R_m=10000~\Omega$ und dem Bereichsendwert $U_{max}=1~V$ soll auf einen neuen maximalen Bereichswert von U=50~V erweitert werden.

Zeichnen Sie die zu realisierende Schaltung. (Erklären Sie das Prinzip der Schaltung kurz.)

Berechnen Sie den notwendigen Vorwiderstand R_V und den neuen Widerstand des Messgerätes $R_{m,neu}$.

Gegeben: U_{max} , R_M , UGesucht: R_V , $R_{m,neu}$

Widerstand Messgerät R _m	10000	Ohm
erlaubter Bereichsendwert U _{max}	1	V
angestrebter neuer Maximalwert U	50	V

Messbereichserweiterung Spannung (2)

Aufgabe:

Der Messbereich eines Spannungsmessgerätes ($R_m=2000~\Omega$) wird auf $U=100~\rm V$ erweitert. Der für diesen Zweck verwendete Widerstand hat den Wert $R_V=4~M\Omega$.

Berechnen Sie den erlaubten Bereichsendwert U_{max} des unbeschalteten Spannungsmessers. Wie groß ist der Widerstand $R_{m,neu}$ des Spannungsmessers?

Gegeben: R_V , R_M , UGesucht: U_{max} , $R_{m,neu}$

Widerstand Messgerät R _m	2000	Ohm
erweiterter Endwert U	100	V
verwendeter Vorwiderstand R _V	4000000	Ohm

Mehrfachumschaltung - Spannung (3 Umschaltpositionen)

Aufgabe:

Ein Spannungsmessgerät wird in eine Mehrfachschaltung integriert. Gegeben ist eine Mehrfachumschaltung mit drei Widerständen.

Berechnen Sie den Gesamtwiderstand der Messschaltung

Ermitteln Sie jeweils den neuen Bereichsendwert U in den drei Schalterpositionen:

Gegeben: U_{max} , R_m , $R_{1,2,3}$ Gesucht: $R_{m,neu}$, $U_{1,2,3}$

Widerstand Messgerät R _m	2,00E+8	Ohm
Bereichsendwert U _{max}	1	V
R ₁	80000	Ohm
R ₂	15000	Ohm
R ₃	5000	Ohm

Mehrfachumschaltung - Spannung (2 Umschaltpositionen)

Aufgabe:

Ein Spannungsmessgerät soll durch eine Mehrfachumschaltung so erweitert werden, dass zwei Bereiche mögliche sind.

Zeichnen Sie die Schaltungen (Position 1 und Position 2)

Berechnen Sie den notwendigen Widerstandswerte.

Gegeben: U_1 , U_2 , U_{max} , $R_{m,neu}$, R_m

Gesucht: R₁, R₂

Widerstand Messgerät R _m	3,00E+8	Ohm
Bereichsendwert U _{max}	0,2	V
(neuer Bereichsendwert) U ₁	0,2	V
(neuer Bereichsendwert) U ₂	100	V
(neuer Messwiderstand) R _{m,neu}	1,00E+6	Ohm

Strommessung (R, R_m unbekannt)

Aufgabe:

Ein Verbraucher wird an einer realen Spannungsquelle betrieben. Diese lässt sich durch den Innenwiderstand $R_q=2~\Omega$ und die innere, ideale Quelle mit $U_q=10~V$ beschreiben.

Bei einem wahren Strom von $I_w=0.5\,A$ ergibt sich eine Messabweichung von $e=-0.05\,A$.

Wie groß ist der Widerstand des Verbrauchers?

In welchem Wertebereich darf R_m liegen, damit der Betrag der Messabweichung e nicht größer als 0,05 A wird?

Gegeben: e, Iw, Uq, Rq

Gesucht: R, R_m

wahrer Strom I _w	0,5	Α
Messabweichung e	-0,05	Α
Innenwiderstand R _q	2	Ohm
Quellspannung U _q	10	V

Strommessung mit Shunt

Aufgabe:

Eine Strommessung soll über eine Spannungsmessung durchgeführt werden.

Wie wird dies realisiert? (kurze Erklärung)

Wie groß muss der Widerstand R_M der gesamten Messeinrichtung sein? Wie groß ist Shunt R_S zu wählen? (Was fällt dabei auf?)

Gegeben: I, U, R_M^* Gesucht: R_M , R_S

zu messender Strom I	10	Α
abfallende Spannung U	0,1	V
Messgerät-Widerstand R _M *	1000	Ohm

Messbereichserweiterung - Strom

Aufgabe:

Es soll eine Messbereicherweiterung im Strombereich realisiert werden. Der Messbereich eines Strommessgerätes wird auf einen neuen Endwert erweitert.

Wie wird dies realisiert? Zeichnen Sie den dazugehörigen Schaltplan! (Hinweis: Verwendung eines Widerstandes R_P)

Wie groß ist der neue Bereichsendwert? Wie groß ist der Widerstand $R_{m,neu}$ der gesamten Messeinrichtung?

Gegeben: R_m , R_P , I_{max}

Gesucht: I, R_{m,neu}

Widerstand Messgerät R _m	10	Ohm
Bereichsendwert I _{max}	0,1	Α
verwendeter Widerstand R _P	0,1	Ohm