Probabilistically Checkable Reconfiguration Proofs AND

Inapproximability of Reconfiguration Problems

⇔Shuichi Hirahara

(National Institute of Informatics, Tokyo, Japan)

Naoto Ohsaka⇒

(Cyber Agent, Inc., Japan)

Intro of reconfiguration

Imagine connecting a pair of feasible solutions (of NP problem)

under a particular adjacency relation

Q. Is a pair of solutions reachable to each other?

Q. If so, what is the shortest transformation?

Q. If not, how can the feasibility be relaxed?

Many reconfiguration problems have been derived from

Satisfiability, Coloring, Vertex Cover, Clique, Dominating Set, Feedback Vertex Set, Steiner Tree, Matching, Spanning Tree, Shortest Path, Set Cover, Subset Sum, ...

See [Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011] [Nishimura. Algorithms 2018] [van den Heuvel. Surv. Comb. 2013] [Hoang. https://reconf.wikidot.com/]

Example 1-1

3-SAT Reconfiguration

[Gopalan-Kolaitis-Maneva-Papadimitriou. SIAM J. Comput. 2009]

• Input: 3-CNF formula φ & satisfying σ_{ini} , σ_{tar}

• Output: $\sigma = (\sigma^{(1)} = \sigma_{ini}, ..., \sigma^{(T)} = \sigma_{tar})$ (reconf. sequence) S.t.

 $\sigma^{(t)}$ satisfies ϕ (feasibility)

 $\operatorname{Ham}(\sigma^{(t)}, \sigma^{(t+1)}) = 1$ (adjacency on hypercube)

YES case

$$\varphi = (\overline{x} \vee \overline{y} \vee z) \wedge (\overline{x} \vee y \vee \overline{z}) \wedge (x \vee \overline{y} \vee \overline{z})$$

$$\sigma_{ini} = (1,0,0)$$

$$\sigma_{tar} = (0,1,0)$$

 \triangle Length of σ can be $2^{\Omega(input size)}$

Example 1-2

3-SAT Reconfiguration

[Gopalan-Kolaitis-Maneva-Papadimitriou. SIAM J. Comput. 2009]

• Input: 3-CNF formula φ & satisfying σ_{ini} , σ_{tar}

• Output: $\sigma = (\sigma^{(1)} = \sigma_{ini}, ..., \sigma^{(T)} = \sigma_{tar})$ (reconf. sequence) S.t.

 $\sigma^{(t)}$ satisfies ϕ (feasibility)

 $\text{Ham}(\sigma^{(t)}, \sigma^{(t+1)}) = 1$ (adjacency on hypercube)

NO case

$$\varphi = (\overline{x} \vee \overline{y} \vee z) \wedge (\overline{x} \vee y \vee \overline{z}) \wedge (x \vee \overline{y} \vee \overline{z})$$

$$\sigma_{ini} = (1,0,0)$$

$$\sigma_{tar} = (1,1,1)$$

 \triangle Length of σ can be $2^{\Omega(input \ size)}$

Complexity of reconfiguration problems

Source problem	Existence	Reconfiguration		
Satisfiability	NP-complete	PSPACE-complete [Gopalan-Kolaitis-Maneva-Papadimitriou. SIAM J. Comput. 2009]		
Independent Set	NP-complete	PSPACE-complete [Hearn-Demaine. Theor. Comput. Sci. 2005]		
Matching	Р	P [Ito-Demaine-Harvey-Papadimitriou-Sideri- Uehara-Uno. Theor. Comput. Sci. 2011]		
3-Coloring	NP-complete	P [Cereceda-van den Heuvel-Johnson. J. Graph Theory 2011]		
Shortest Path	P	PSPACE-complete [Bonsma. Theor. Comput. Sci. 2013]		
Independent Set on bipartite graphs	Р	NP-complete [Lokshtanov-Mouawad. ACM Trans. Algorithms 2019; SODA 2018]		

Optimization versions of reconfiguration problems

Even if...

- NOT reconfigurable! and/or
- many problems are PSPACE-complete!

Still want an "approximate" reconf. sequence (e.g.) made up of almost-satisfying assignments

RELAX feasibility to obtain approximate reconfigurability

e.g. Set Cover Reconf. [Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011] Subset Sum Reconf. [Ito-Demaine. J. Comb. Optim. 2014]

Submodular Reconf. [O.-Matsuoka. WSDM 2022]

Example 1+

Maxmin 3-SAT Reconfiguration

[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]

- Input: 3-CNF formula φ & satisfying σ_{ini} , σ_{tar}
- Output: $\sigma = (\sigma^{(1)} = \sigma_{ini}, ..., \sigma^{(T)} = \sigma_{tar})$ (reconf. sequence) S.t.
 - of the satisfies ♥ (feasibility)
 - $\text{Ham}(\sigma^{(t)}, \sigma^{(t+1)}) = 1$ (adjacency on hypercube)
- Goal: $\max_{\sigma} \operatorname{val}_{\varphi}(\sigma) := \min_{t} (\operatorname{frac. of satisfied clauses by } \sigma^{(t)})$

$$\varphi = (\overline{x} \vee \overline{y} \vee z) \wedge (\overline{x} \vee y \vee \overline{z}) \wedge (x \vee \overline{y} \vee \overline{z})$$

- $\sigma_{\rm ini} = (1,0,0)$
- $\sigma_{tar} = (1,1,1)$
- \rightarrow val_{φ}(σ) = min $\{1, \frac{2}{3}, 1\} = \frac{2}{3}$

 \triangle Length of σ can be $2^{\Omega(input size)}$

Known results on hardness of approximation

NP-hardness

PCP theorem [ALMSS. J. ACM 1998] [AS. J. ACM 1998] Max Clique

[Håstad. Acta Math. 1999]

Max SAT

[Håstad. J. ACM 2001]

Max 2-CSP

[Moshkovitz. FOCS 2014]

Clique Reconf.
[IDHPSUU. TCS 2011]

SAT Reconf.

[IDHPSUU. TCS 2011]

2-CSP Reconf.

[Karthik C. S.-Manurangsi. 2023]

Set Cover Reconf.

[Karthik C. S.-Manurangsi. 2023]

PSPACE-hardness

Why do we need PSPACE-hardness?

- no polynomial-time algorithm (P ≠ PSPACE)
- no polynomial-length sequence (NP ≠ PSPACE)

SAT Reconf.

Known results on hardness of approximation

NP-hardness

PCP theorem
[ALMSS. J. ACM 1998]
[AS. J. ACM 1998]

Max Clique

[Håstad. Acta Math. 1999]

Max SAT

[Håstad. J. ACM 2001]

Max 2-CSP

[Moshkovitz. FOCS 2014]

Clique Reconf.

[IDHPSUU. TCS 2011]

SAT Reconf.

[IDHPSUU. TCS 2011]

2-CSP Reconf.

[Karthik C. S.-Manurangsi. 2023]

Set Cover Reconf.

[Karthik C. S.-Manurangsi. 2023]

5. Open problems [Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. ISAAC 2008 & TCS 2011]

There are many open problems raised by this work, and we mention some of these below:

- Can the MATCHING RECONFIGURATION problem for edge-weighted graphs be solved also in polynomial time? We conjecture that the answer is positive.
- Is the TRAVELING SALESMAN RECONFIGURATION problem (where two tours are adjacent if they differ in two edges) PSPACE-complete?
- Are there better approximation algorithms for the MINMAX POWER SUPPLY RECONFIGURATION problem? Lower bounds?
- Are the problems in Section 4 PSPACE-hard to approximate (not just NP-hard)?

PSPACE-hardness

Known results on hardness of approximation

NP-hardness

PCP theorem

[ALMSS. J. ACM 1998]

Max Clique

[Håstad. Actr. Math. 1999]

M

Clique Reconf.

[IDHPSUU. TCS 2011]

SAT Reconf.

[IDHPSUU. TCS 2011]

2-15 Reconf.

o.-Manuranasi. 20231

Is RIH true?

ver Keconf.

rangsi. 2023]

PSPACE

2-CSP Reconf.

Inapproximability Hypothesis

Reconfiguration

[O. STACS 2023]

Set Cover Reconf. [O. SODA 2024]

Ind. Set Reconf.

-SAT Recont.

Vertex Cover Reconf.

Clique Reconf.

Our results

In a nutshell:

- © Reconfiguration Inapproximability Hypothesis is true
- → Resolve 4th open problem of [Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]

 ⚠ Independent of [Karthik C. S.-Manurangsi. 2023]

Technically...

Probabilistically Checkable Reconfiguration Proofs

A new PCP-like characterization of PSPACE

Probabilistically Checkable Reconfiguration Proofs... What's that?

• Verifier V & poly-time alg. π_{start} & π_{goal} for language $L \subseteq \{0,1\}^*$ (Completeness)

$$x \in L \implies \exists \pi = (\pi^{(1)}, ..., \pi^{(T)}) \text{ from } \pi_{\text{start}}(x) \text{ to } \pi_{\text{goal}}(x) \text{ s.t.}$$

$$\forall t \text{ Pr}[V(x) \text{ accepts } \pi^{(t)}] = 1$$

Probabilistically Checkable Reconfiguration Proofs... What's that?

• Verifier V & poly-time alg. π_{start} & π_{goal} for language L \subseteq {0,1}*

Adjacent proofs differ in (at most) one symbol $\tau^{(T)}$) from π . (x) to π .(x) < t $Pr[\sqrt{\pi}$ can be exponentially long accept $\pi^{(2)}$ $\pi^{(3)}$ $\pi^{(T-3)} \pi^{(T-2)} \pi^{(T-1)} \pi^{(T)}$ $\pi_{start}(x)$ $\pi_{\text{goal}}(x)$

Probabilistically Checkable Reconfiguration Proofs... What's that?

• Verifier V & poly-time alg. π_{start} & π_{goal} for language $L \subseteq \{0,1\}^*$ (Soundness)

$$x \notin L \implies \forall \pi = (\pi^{(1)}, ..., \pi^{(T)}) \text{ from } \pi_{\text{start}}(x) \text{ to } \pi_{\text{goal}}(x),$$

$$\exists t \text{ Pr}[V(x) \text{ accepts } \pi^{(t)}] < \frac{1}{2}$$

777	1	1	1		1	1_	S O	\circ
1	1	1			1	1 _	7 0	U
1 -	> 0	0	0		0 -	→ 1	1	1
0	0	0	0		1	1	1	1
1	1 -	→ 0	0	• • • • •	0	0	0	0
0	0	0	0		0	0	0	0
1	1	1-	> 0	<pre>reject></pre>	1	1	1 -	> 0
$\pi^{(1)}$	$\pi^{(2)}$	$\pi^{(3)}$	$\pi^{(4)}$		$\pi^{(T-3)}$	$\pi^{(T-2)}$	$\pi^{(T-1)}$	$\pi^{(T)}$
$\pi_{\text{start}}(>$	()			V			•	π _{goal} (>

PCRP Theorem

$$PSPACE = PCRP[O(log n), O(1)]$$

L ∈ **PSPACE**

- ∃ Verifier V with randomness comp. O(log n) & query comp. O(1)
- \exists poly-time alg. π_{start} & π_{goal} completeness = 1 & soundness $<\frac{1}{2}$ for L

Quick Q&A

- Q. Any intuition/interpretation?
- **A.** \forall coRP-type verifier: Guess t & check $\pi^{(t)}$ probabilistically
 - cf. PCP for NEXP (\supseteq PSPACE) [Babai-Fortnow-Lund. Comput. Complex. 1991] # random bits = $n^{\Theta(1)}$
 - cf. PCP for NP (⊆ PSPACE) [ALMSS. J. ACM 1998] [AS. J. ACM 1998]

 Not using nondeterminism (∀)

 "∀" of PCRP cannot be replaced by random choice (see our paper)
- Q. Can Dinur's gap amplification [Dinur. J. ACM 2007] be adapted?
- A. Partial progress made [O. STACS 2023 & SODA 2024] but still fails...

Starting point: Succinct Graph Reachability

• Input: Graph G=(V,E) over $\{0,1\}^n$ & vertices $v_{start}, v_{goal} \in \{0,1\}^n$ • Output: $(x^{(1)} \circ y^{(1)} = v_{start} \circ v_{start}, ..., x^{(T)} \circ y^{(T)} = v_{goal} \circ v_{goal})$ (reconf. sequence) s.t. $(x^{(t)}, y^{(t)}) \in E$ or $x^{(t)} = y^{(t)}$ (feasibility) $x^{(t)} = x^{(t+1)}$ or $y^{(t)} = y^{(t+1)}$ (adjacency)

⚠ Succinct Graph Reachability is PSPACE-complete

Starting point: Succinct Graph Reachability

• Input: Graph G=(V,E) over $\{0,1\}^n$ & vertices $v_{start}, v_{goal} \in \{0,1\}^n$ • Output: $(x^{(1)} \circ y^{(1)} = v_{start} \circ v_{start}, ..., x^{(T)} \circ y^{(T)} = v_{goal} \circ v_{goal})$ (reconf. sequence) s.t. $(x^{(t)}, y^{(t)}) \in E$ or $x^{(t)} = y^{(t)}$ (feasibility) $x^{(t)} = x^{(t+1)}$ or $y^{(t)} = y^{(t+1)}$ (adjacency)

⚠ Succinct Graph Reachability is PSPACE-complete

Starting point: Succinct Graph Reachability

• Input: Graph G=(V,E) over $\{0,1\}^n$ & vertices $v_{start}, v_{goal} \in \{0,1\}^n$ • Output: $(x^{(1)} \circ y^{(1)} = v_{start} \circ v_{start}, ..., x^{(T)} \circ y^{(T)} = v_{goal} \circ v_{goal})$ (reconf. sequence) s.t. $(x^{(t)}, y^{(t)}) \in E$ or $x^{(t)} = y^{(t)}$ (feasibility) $x^{(t)} = x^{(t+1)}$ or $y^{(t)} = y^{(t+1)}$ (adjacency)

⚠ Succinct Graph Reachability is PSPACE-complete

Starting point: Succinct Graph Reachability

• Input: Graph G=(V,E) over $\{0,1\}^n$ & vertices $v_{start}, v_{goal} \in \{0,1\}^n$ • Output: $(x^{(1)} \circ y^{(1)} = v_{start} \circ v_{start}, ..., x^{(T)} \circ y^{(T)} = v_{goal} \circ v_{goal})$ (reconf. sequence) s.t. $(x^{(t)}, y^{(t)}) \in E$ or $x^{(t)} = y^{(t)}$ (feasibility) $x^{(t)} = x^{(t+1)}$ or $y^{(t)} = y^{(t+1)}$ (adjacency)

⚠ Succinct Graph Reachability is PSPACE-complete

Starting point: Succinct Graph Reachability

• Input: Graph G=(V,E) over $\{0,1\}^n$ & vertices $v_{start}, v_{goal} \in \{0,1\}^n$ • Output: $(x^{(1)} \circ y^{(1)} = v_{start} \circ v_{start}, ..., x^{(T)} \circ y^{(T)} = v_{goal} \circ v_{goal})$ (reconf. sequence) s.t. $(x^{(t)}, y^{(t)}) \in E$ or $x^{(t)} = y^{(t)}$ (feasibility) $x^{(t)} = x^{(t+1)}$ or $y^{(t)} = y^{(t+1)}$ (adjacency)

⚠ Succinct Graph Reachability is PSPACE-complete

Starting point: Succinct Graph Reachability

• Input: Graph G=(V,E) over $\{0,1\}^n$ & vertices $v_{start}, v_{goal} \in \{0,1\}^n$ • Output: $(x^{(1)} \circ y^{(1)} = v_{start} \circ v_{start}, ..., x^{(T)} \circ y^{(T)} = v_{goal} \circ v_{goal})$ (reconf. sequence) s.t. $(x^{(t)}, y^{(t)}) \in E$ or $x^{(t)} = y^{(t)}$ (feasibility) $x^{(t)} = x^{(t+1)}$ or $y^{(t)} = y^{(t+1)}$ (adjacency)

⚠ Succinct Graph Reachability is PSPACE-complete

To construct PCRP for Succinct Graph Reachability...

- $(x^{(t)}, y^{(t)}) \in E''$ should be probabilistically checkable
- Encode by error-correcting code Enc: $\{0,1\}^n \rightarrow \{0,1\}^\ell \&$ use PCP of proximity (a.k.a. assignment testers)

[Ben-Sasson; Goldreich; Harsha; Sudan; Vadhan. SIAM J. Comput. 2006] [Dinur-Reingold. SIAM J. Comput. 2006]

PCPP for $L_G := \{Enc(x) \circ Enc(y) : (x, y) \in E \text{ or } x = y\}$

- Of Any adjacent pair of proofs differs in (at most) one symbol
- \bigcirc Introduce "in transition" symbol $\perp \neq 0,1$

To construct PCRP for Succinct Graph Reachability...

 $(x^{(t)}, y^{(t)}) \in E''$ should be probabilistically checkable

Enada hu annon annostina anda Enas (0 1)n (0 1)l

 $Enc(x) \circ Enc(y) \circ \pi_{xy}$ PCPP accepts w.p. 1

Enc(x) \circ ????? \circ ?? PCPP rejects w.p. 1% 1%-far from Enc

 $Enc(x) \circ Enc(z) \circ \pi_{xz}$ PCPP accepts w.p. 1

- Of Any adjacent pair of proofs differs in (at most) one symbol
- \bigcirc Introduce "in transition" symbol $\perp \neq 0,1$

To construct PCRP for Succinct Graph Reachability...

 $(x^{(t)}, y^{(t)}) \in E''$ should be probabilistically checkable

Encodo by annon composition and Ency (0 1)n (0 1)?

$$Enc(x) \circ Enc(y) \circ \pi_{xy}$$

 $Enc(x) \circ \bot \bot \bot \bot \bot \circ \pi_{xy}$

$$Enc(x) \circ \bot \bot \bot \bot \bot \circ \pi_{xz}$$

 $Enc(x) \circ Enc(z) \circ \pi_{xz}$

PCPP accepts w.p. 1

If we see \perp , do NOT run PCPP π can be arbitrarily changed

If we see \perp , do NOT run PCPP

PCPP accepts w.p. 1

- @ Any adjacent pair of proofs differs in (at most) one symbol
- \bigcirc Introduce "in transition" symbol $\perp \neq 0,1$

Conclusions

Probabilistically Checkable Reconfiguration Proofs

- A new PCP-like characterization of PSPACE
- PSPACE-hardness of approximating reconfiguration problems
 Resolve RIH [O. STACS 2023] & 4th open problem of
 [Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]

Other applications?

Pebble games [Paterson-Hewitt. 1970]
 Proof complexity [Nordström. Log. Methods Comput. Sci. 2013]
 PSPACE-hardness of additive approx. is known [Chan-Lauria-Nordströmm-Vinyals. FOCS 2015] [Demaine-Liu. WADS 2017]

