UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

WENDEURICK EMERICK SILVERIO GRR20134722

Proposta do Projeto de Graduação

Desenvolvimento de Mesa de Luz Interativa para Experimento de Ciências para Crianças

Plano do Trabalho de Conclusão de Curso, apresentado como requisito parcial para a obtenção do grau de Engenheiro Eletricista, no programa de graduação em Engenharia Elétrica (ênfase em Eletrônica e Telecomunicações) da Universidade Federal do Paraná.

Orientador: Prof. Dr. James Alexandre Baraniuk

Sumário

1	Contextualização e Resumo	2				
2	Proposta de Trabalho					
	2.1 Título	3				
	2.2 Objetivos	3				
	2.2.1 Objetivo Geral	3				
	2.2.2 Objetivos Específicos	3				
	2.3 Público Alvo					
	2.4 Diferencial do Projeto	3				
	2.5 Metodologia de desenvolvimento do estudo	3				
	2.6 Recursos necessários	4				
	2.7 Resultados fundamentais a serem atingidos	4				
	2.8 Contribuição esperada para a ênfase	4				
	2.9 Cronograma a ser seguido indicando os marcos para avaliação, seguindo o					
	cronograma divulgado pela Comissão Permanente do TCC	4				
	2.10 Importância do Projeto para a formação dos autores	5				
	2.11 Bibliografia a ser utilizada	5				
3	Referências	e				

1 Contextualização e Resumo

A luz exerce um papel essencial no nosso cotidiano e está presente das mais diversas formas: iluminação, medicina, pesquisas científicas, geração de energia, telecomunicações, educação, arte, cultura e etc. A Assembleia Geral das Nações Unidas proclamou o ano de 2015 como o Ano Internacional da Luz e das Tecnologias Baseadas na Luz [1], a fim de reconhecer tal importância para a vida dos cidadãos e para o desenvolvimento futuro da sociedade mundial. No ano da celebração, a UNESCO promoveu uma série de eventos por vários países [2], com o intuito de destacar que o aumento da consciência mundial e o fortalecimento do ensino da ciência e das tecnologias da luz são essenciais para abordar os desafios futuros e atuais, tais como o desenvolvimento sustentável, a energia e as comunicações, assim como para melhorar a qualidade de vida dos países menos desenvolvidos e dos em desenvolvimento.

Baseada em tal iniciativa, a exposição "Luz, Ciência e Emoção", idealizada pela arquiteta Dra. Maristela Mitsuko Ono e pelo engenheiro Dr. James Alexandre Baraniuk, traz experimentos envolvendo os conceitos de luz trabalhados nos ensinos pré-escolar e fundamental, cada um com seu grau de impressão aos sentidos. A exposição proporciona uma experiência tangível-visual impactante aos observadores, causando deslumbramento e entusiasmo através da arte e interação.

O trabalho aqui proposto trata-se do desenvolvimento do *hardware* e *firmware* embarcado de um dos mais de 20 experimentos dessa exposição. A **Mesa de Bolinhas**, que se enquadra na área artística da mostra, é uma matriz de *LEDs* interativa, elaborada pela arquiteta Dra. Maristela Mitsuko Ono, composta por mais de 100 bolinhas de ping-pong, cada uma correspondente a um par LED-sensor reflexivo. Ela permite que o visitante "pinte com luz" ao passar a mão sobre a mesa. Sua vista superior do projeto é apresentada na Figura 1.

Figura 1: Vista superior da mesa

Fonte: (MITSUKO, 2016)

2 Proposta de Trabalho

2.1 Título

Desenvolvimento de Mesa de Luz Interativa para Experimento de Ciências para Crianças.

2.2 Objetivos

2.2.1 Objetivo Geral

Desenvolver o *hardware* e o *firmware* embarcado da "Mesa de Bolinhas", apresentando o protótipo funcional do projeto. Serão 128 LEDs programáveis, controlados por seus respectivos sensores de presença.

2.2.2 Objetivos Específicos

- Desenvolvimento de uma matriz mapeável, onde cada LED possa ser controlado individualmente:
- Desenvolvimento de uma matriz de entrada, onde cada sensor reflexivo possa ser lido individualmente;
- Software microcontrolado que gerencie a interface humano-máquina;
- Leiaute e montagem das Placas de Circuito Impresso (PCI);
- Integração da eletrônica com a mecânica do projeto.

2.3 Público Alvo

A serventia do projeto é destinada ao mesmo público alvo da exposição: crianças e adolescentes dos ensinos fundamental e médio. Além disso, o projeto pode ser de interesse de designers e artistas, uma vez que abrange áreas de tecnologia, interação e arte generativa.

2.4 Diferencial do Projeto

Além de ser uma matriz interativa autônoma, a Mesa de Bolinhas terá uma interface que possibilitará o controle através de outros dispositivos (computador, por exemplo). Isso possibilitará a integração com programas de *led-mapping* e geradores de visuais.

Tratando-se de uma proposta inovadora, pretende-se solicitar a patente do projeto.

2.5 Metodologia de desenvolvimento do estudo

A metodologia se dará por meio de protótipos, servindo de prova de conceito. Logo após, passa-se à implementação e execução do projeto.

2.6 Recursos necessários

Os materiais (mesa, tampa acrílica e demais partes mecânicas) já foram adquiridos pelo curso de Engenharia Elétrica, através do prof. James Baraniuk, e estão no Laboratório de Eficiência Energética. O projeto encontra-se sem o dispositivo eletrônico, cuja proposta deste trabalho é de desenvolvê-lo e integrá-lo à parte mecânica. Para isso, serão necessários:

- Software CAD para o leiaute das placas;
- Material para fabricação dos protótipos (PCIs, LEDs programáveis (WS2812) e demais componentes eletrônicos);
- Plataforma de desenvolvimento (microcontrolador da família ESP8266);

2.7 Resultados fundamentais a serem atingidos

Protótipo funcional da Mesa de Bolinhas, montagem das PCIs e integração com a mecânica do projeto.

2.8 Contribuição esperada para a ênfase

A nível geral, o projeto contribui no quesito integração com a área artística e de design. A nível técnico, o projeto trará recursos/implementações de mapeamento de *pixels*, sistema de *debouncing* para vários sensores, implementação de *software* desenvolvido em topologia de Máquina de Estados Finita e etc.

2.9 Cronograma a ser seguido indicando os marcos para avaliação, seguindo o cronograma divulgado pela Comissão Permanente do TCC

Atividade/Mês	Agosto	Setembo	Outubro	Novembro
Atividade 1	Χ	X		
1ª Avaliação		X		
Atividade 2		X	Х	
Banca			Χ	
Atividade 3			Х	X
Entrega do Relatório				X
Apresentação Final				X

- Atividade 1: desenvolvimento da seção "Matriz"
- Atividade 2: desenvolvimento da seção "Controle"
- Atividade 3: finalização e integração com a mecânica

2.10 Importância do Projeto para a formação dos autores

Para o aluno, o conhecimento aqui adquirido é de fundamental importância para sua formação e interdisciplinaridade, uma vez que abrange resolução de problemas no campo da engenharia eletrônica / sistemas embarcados e o intercâmbio com outras áreas.

Para os idealizadores, o projeto passará a ser parte da exposição "Luz, Ciência e Emoção", proporcionando uma experiência tangível-visual impactante aos observadores, causando deslumbramento e entusiasmo através da arte e interação, não só das crianças e adolescente, mas também de pessoas que se interessem pela integração entre tecnologia, arte e design.

2.11 Bibliografia a ser utilizada

- GAMMA, Erich et al. **Design Patterns**: Elements of Reusable Object-Oriented Software. 10. ed. Mountain View: Addison-Wesley Professional, 1994. 416 p.
- WAGNER, Ferdinand et al. **Modeling Software with Finite State Machines**. 1. ed. Boston: Auerbach Publications, 2006. 390 p.

3 Referências

Referências

- [1] United Nations. 68/221. International Year of Light and Light-based Technologies, 2015. 2014. URL: http://www.light2015.org/dam/About/Resources/Resolution/Resolution_EN.pdf (acesso em 18/02/2017).
- [2] UNESCO. International Year of Light. 2015. URL: http://www.light2015.org/ Home/Event-Programme.html (acesso em 18/02/2017).