1. Causal Questions: Observing and Intervening

lan Lundberg Cornell Info 6751: Causal Inference in Observational Settings Fall 2022

23 Aug 2022

Why	causal	inference?	

What motivated you to take this course?

Why	causal	inference?
vviiy	Causai	interence:

Why am I teaching this course?

Why am I teaching this course?

Causal inference provides tools to

- ► Speak to policy interventions
- ► Understand social systems

Central ideas for today

Causal claims hinge on arguments, not on data

Notation

Potential outcomes

Consistency assumption Expectation operator

Practicing notation

Fun example: Does A affect Y?

Central ideas for today Causal claims hinge on arguments, not on data

Notation

Potential outcomes Consistency assumption Expectation operator Practicing notation

Fun example: Does A affect Y?

Left photo: By Fernando Frazão/Agência Brasil - http://agenciabrasil.ebc.com.br/sites/_agenciabrasil2013/files/fotos/1035034-_mg_0802_04.08.16.jpg, CCBY3.0br, https://commons.wikimedia.org/w/index.php?curid=50548410 Right photo: By Agencia Brasil Fotografias - EUA levam ouro na ginástica artística feminina; Brasil fica em 8 lugar. CC BY 2.0. https://commons.wikimedia.org/w/index.ohp?curid=50584648

- 1. Statistical evidence
 - Simone Biles swung on the uneven bars. She won a gold medal.

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

1. Statistical evidence

- ► Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	?	?
lan	?	No (0)	?

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	?
lan	?	No (0)	?

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	+1
lan	?	No (0)	?
		· · · · · · · · · · · · · · · · · · ·	

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
lan	No (0)	No (0)	?

1. Statistical evidence

- Simone Biles swung on the uneven bars. She won a gold medal.
- ▶ I did not swing on the uneven bars. I did not win a gold medal.

2. Possible causal claim

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	+1
lan	No (0)	No (0)	0

Central ideas for today

Causal claims hinge on arguments, not on data

Notation

Potential outcomes Consistency assumption

Expectation operator

Practicing notation

Fun example: Does A affect Y?

Central ideas for today

Causal claims hinge on arguments, not on data

Notation

Potential outcomes

Consistency assumption
Expectation operator
Practicing notation

Fun example: Does A affect Y?

 Y_i Outcome Whether person i won a gold medal A_i Treatment Whether person i swung on the bars Y_i^a Potential Outcome Outcome person i would realize if assigned to treatment value a

Examples:

 $Y_{\text{Biles}} = 1$ Simone Biles won gold

 $A_{\mathsf{Biles}} = 1$ Simone Biles swung on the bars

 $Y_{\text{Biles}}^1 = 1$ If she swings, Simone Biles would win gold

 $Y_{\text{Biles}}^0 = 0$ If she does not swing, Simone Biles would not win gold

A person's potential outcomes are deterministic mappings

A person's potential outcomes are deterministic mappings

▶ Simone Biles would win gold if she participates $Y_i^1 = 1$

A person's potential outcomes are deterministic mappings

- ▶ Simone Biles would win gold if she participates $Y_i^1 = 1$
- lacktriangle Simone Biles would not win gold without participating $Y_i^0=0$

These are just numbers

A person's potential outcomes are deterministic mappings

- ▶ Simone Biles would win gold if she participates $Y_i^1 = 1$
- ightharpoonup Simone Biles would not win gold without participating $Y_i^0=0$

These are just numbers

The outcome for a random person is a random variable

A person's potential outcomes are deterministic mappings

- ► Simone Biles would win gold if she participates $Y_i^1 = 1$
- ► Simone Biles would not win gold without participating $Y_i^0 = 0$

These are just numbers

The outcome for a random person is a random variable

▶ Draw a random person from the population

A person's potential outcomes are deterministic mappings

- ► Simone Biles would win gold if she participates $Y_i^1 = 1$
- ► Simone Biles would not win gold without participating $Y_i^0 = 0$

These are just numbers

The outcome for a random person is a random variable

- ▶ Draw a random person from the population
- ▶ Put them on the uneven bars

A person's potential outcomes are deterministic mappings

- ▶ Simone Biles would win gold if she participates $Y_i^1 = 1$
- ► Simone Biles would not win gold without participating $Y_i^0 = 0$

These are just numbers

The outcome for a random person is a random variable

- ► Draw a random person from the population
- ▶ Put them on the uneven bars
- \blacktriangleright The outcome Y^1 is a random variable:
 - ▶ It takes the value 1 if we have sampled Simone Biles
 - ▶ It takes the value 0 if we have sampled anyone else

A person's potential outcomes are deterministic mappings

- ▶ Simone Biles would win gold if she participates $Y_i^1 = 1$
- ▶ Simone Biles would not win gold without participating $Y_i^0 = 0$

These are just numbers

The outcome for a random person is a random variable

- ► Draw a random person from the population
- ▶ Put them on the uneven bars
- \blacktriangleright The outcome Y^1 is a random variable:
 - ► It takes the value 1 if we have sampled Simone Biles
 - ► It takes the value 0 if we have sampled anyone else

We omit the subscript i when talking about random people

A person's potential outcomes are deterministic mappings

- ▶ Simone Biles would win gold if she participates $Y_i^1 = 1$
- ► Simone Biles would not win gold without participating $Y_i^0 = 0$

These are just numbers

The outcome for a random person is a random variable

- ► Draw a random person from the population
- ▶ Put them on the uneven bars
- \blacktriangleright The outcome Y^1 is a random variable:
 - ► It takes the value 1 if we have sampled Simone Biles
 - ▶ It takes the value 0 if we have sampled anyone else

We omit the subscript i when talking about random people

Check for understanding:

Does it make sense to write $V(Y_i^1)$? How about $V(Y^1)$

Central ideas for today

Causal claims hinge on arguments, not on data

Notation

Potential outcomes

Consistency assumption

Expectation operator

Practicing notation

Fun example: Does A affect Y?

Central ideas for today

Causal claims hinge on arguments, not on data

Notation

Potential outcomes

Consistency assumption

Expectation operator Practicing notation

Fun example: Does A affect Y?

Notation: The consistency assumption

 $Y_i^1 Y_i^2 Y_i^3 Y_i^4$

Potential Outcomes

Notation: The consistency assumption

 $Y_i^1 \quad Y_i^2$ $Y_i^3 \quad Y_i^4$

Potential Outcomes

 Y_i Factual Outcomes

Notation: The consistency assumption

Consistency Assumption $Y_i^{A_i} = Y_i$

$$Y_i^1 Y_i^2 Y_i^3 Y_i^4$$

Potential Outcomes

 Y_i

Factual Outcomes

Central ideas for today

Causal claims hinge on arguments, not on data

Notation

Potential outcomes

Consistency assumption

Expectation operator Practicing notation

Fun example: Does A affect Y?

Central ideas for today

Causal claims hinge on arguments, not on data

Notation

Potential outcomes Consistency assumption

Expectation operator

Practicing notation

Fun example: Does A affect Y?

Notation: Expectation operator

The expectation operator E() denotes the population mean

$$\mathsf{E}(Y^{\mathsf{a}}) = \frac{1}{n} \sum_{i=1}^{n} Y_{i}^{\mathsf{a}}$$

The quantity Y^a inside the expectation must be a random variable

Notation: Expectation operator

The expectation operator E() denotes the population mean

$$\mathsf{E}(Y^{\mathsf{a}}) = \frac{1}{n} \sum_{i=1}^{n} Y_{i}^{\mathsf{a}}$$

The quantity Y^a inside the expectation must be a random variable

A conditional expectation is denoted with a vertical bar

$$\mathsf{E}(Y\mid A=a)=\frac{1}{n_a}\sum_{i:A:=a}Y_i$$

Central ideas for today

Causal claims hinge on arguments, not on data

Notation

Potential outcomes

Consistency assumption Expectation operator

Practicing notation

Fun example: Does A affect Y?

Central ideas for today

Causal claims hinge on arguments, not on data

Notation

Potential outcomes Consistency assumption Expectation operator

Practicing notation

Fun example: Does A affect Y?

Practice: How would you say this in English?

 $1. \ \, \mathsf{E}(\mathsf{Earnings} \mid \mathsf{Degree} = \mathsf{TRUE}) > \mathsf{E}(\mathsf{Earnings} \mid \mathsf{Degree} = \mathsf{FALSE})$

 $2. \ \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{TRUE}}) > \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{FALSE}})$

Practice: How would you say this in English?

- 1. $E(Earnings \mid Degree = TRUE) > E(Earnings \mid Degree = FALSE)$
 - ► Average earnings are higher among those with college degrees

 $2. \ \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{TRUE}}) > \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{FALSE}})$

Practice: How would you say this in English?

- 1. $E(Earnings \mid Degree = TRUE) > E(Earnings \mid Degree = FALSE)$
 - ► Average earnings are higher among those with college degrees

- $2. \ \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{TRUE}}) > \mathsf{E}(\mathsf{Earnings}^{\mathsf{Degree} = \mathsf{FALSE}})$
 - ► On average, a degree causes higher earnings

A **descriptive** statement

Language: among, disparity

	Degree;	$Earnings^{Degree}_i$	$Earnings^{No\ degree}_i$
Person 1	TRUE	\$100k	\$90k
Person 2	TRUE	\$90k	\$80k
Person 3	FALSE	\$60k	\$50k
Person 4	FALSE	\$50k	\$40k

A causal statement

Language: effect, leads to, produces, benefits

	Degree;	$Earnings^{Degree}_i$	$Earnings^{No\ degree}_i$
Person 1	TRUE	\$100k	\$90k
Person 2	TRUE	\$90k	\$80k
Person 3	FALSE	\$60k	\$50k
Person 4	FALSE	\$50k	\$40k

Practice	e: How would you write this in math?
	On average, students who do the homework learn m

nore than

2. On average, doing the homework causes more learning.

Practice: How would you write this in math?

1. On average, students who do the homework learn more than those who don't.

$$\mathsf{E}(\mathsf{Learning} \mid \mathsf{HW} = \mathsf{TRUE}) > \mathsf{E}(\mathsf{Learning} \mid \mathsf{HW} = \mathsf{FALSE})$$

2. On average, doing the homework causes more learning.

Practice: How would you write this in math?

1. On average, students who do the homework learn more than those who don't.

$$\mathsf{E}(\mathsf{Learning} \mid \mathsf{HW} = \mathsf{TRUE}) > \mathsf{E}(\mathsf{Learning} \mid \mathsf{HW} = \mathsf{FALSE})$$

2. On average, doing the homework causes more learning.

$$\mathsf{E}(\mathsf{Learning}^{\mathsf{HW}=\mathsf{TRUE}}) > \mathsf{E}(\mathsf{Learning}^{\mathsf{HW}=\mathsf{FALSE}})$$

Central ideas for today

Causal claims hinge on arguments, not on data

Notation

Potential outcomes

Consistency assumption Expectation operator

Practicing notation

Fun example: Does A affect Y?

Central ideas for today

Causal claims hinge on arguments, not on data Notation

Potential outcomes
Consistency assumption
Expectation operator

Fun example: Does A affect Y?

Treatment A_i Receives heart transplant (1) vs. not (0) Outcome Y_i Dead (1) or alive (0) after five days

Treatment	A_i	Receives heart transplant (1) vs. not (0)
Outcome	Y_i	Dead (1) or alive (0) after five days

Unit	Υį	Y_i°	Causal Effect
Zeus	0	1	Transplant would save his life
Hera	0	0	Would survive regardless
Poseidon	1	0	Transplant would kill him

Poseidon 1

Outcome	Yi	Dea	ad (1) or alive (0) after five days
Unit	Y_i^1	Y_i^0	Causal Effect
Zeus	0	1	Transplant would save his life
Hera	0	0	Would survive regardless

Treatment A_i Receives heart transplant (1) vs. not (0)

O Transplant would kill him

Question: Does a heart transplant cause death?

Treatment	A_i	Receives heart transplant (1) vs. not (0)
Outcome	Y_i	Dead (1) or alive (0) after five days

Unit	Y_i^1	Y_i^0	Causal Effect
Zeus	0	1	Transplant would save his life
Hera	0	0	Would survive regardless
Poseidon	1	0	Transplant would kill him

Question: Does a heart transplant cause death?

No.

The average causal effect is
$$\frac{1}{n}\sum_{i=1}^{n}\left(Y_{i}^{1}-Y_{i}^{0}\right)=1+0-1=0$$

Treatment	A_i	Receives heart transplant (1) vs. not (0)
Outcome	Y_i	Dead (1) or alive (0) after five days

Unit	Y_i^1	Y_i^0	Causal Effect
Zeus	0	1	Transplant would save his life
Hera	0	0	Would survive regardless
Poseidon	1	0	Transplant would kill him

Question: Does a heart transplant cause death?

No.

The average causal effect is
$$\frac{1}{n}\sum_{i=1}^{n}\left(Y_{i}^{1}-Y_{i}^{0}\right)=1+0-1=0$$

Yes.

Potential outcomes are unequal. $Y_i^1 \neq Y_i^0$ for at least some i

Central ideas for today

Causal claims hinge on arguments, not on data

Notation

Potential outcomes

Consistency assumption

Expectation operator

Practicing notation

Fun example: Does A affect Y?

Central ideas for today

Causal claims hinge on arguments, not on data

Notation

Potential outcomes

Consistency assumption

Expectation operator

Practicing notation

Fun example: Does A affect Y?

Syllabus: Learning goals tinyurl.com/Info6751

Students will learn to

- evaluate the credibility of causal claims
- ► answer causal questions in their own research
- engage with new methods for causal inference

Syllabus: Readings tinyurl.com/Info6751

A combination of articles and this textbook:

Hernán, M.A., and J.M. Robins. 2020. *Causal Inference: What If?* Boca Raton: Chapman & Hall / CRC. PDF available at hsph.harvard.edu/miguel-hernan/causal-inference-book/

Syllabus: Support tinyurl.com/Info6751

- ► Ask questions on Ed Discussion
- ► Ask questions in office hours
 - ▶ 1 hour after each class
 - calendly.com/ianlundberg/office-hours

Syllabus: Assignments tinyurl.com/Info6751

1) Problem sets	Weekly	50%
2) Ideas for the research proposal	Oct 31	10%
3) Final research proposal	Nov 21	30%
4) Feedback to two peers	Dec 5	10%

Syllabus: Type and/or Handwrite tinyurl.com/Info6751

I type math in LATEX.
You can type, handwrite, or combine the two. All equally good.

Syllabus: Type and/or Handwrite tinyurl.com/Info6751

I type math in LATEX.

You can type, handwrite, or combine the two. All equally good.

Example. A student thought about their expected happiness under an intervention to make them type math.

Then the student decided to handwrite.

Syllabus: Suggested workflow tinyurl.com/Info6751

 $\mathsf{Lecture} \to \mathsf{Reading} \to \mathsf{Problem} \; \mathsf{Set}$

Syllabus: Suggested workflow tinyurl.com/Info6751

Lecture \rightarrow Reading \rightarrow Problem Set

You are now ready to

- ► Read Hernán and Robins Ch 1
- ► Complete Problem Set 1 Part 1

After Thursday, you will be ready to

- ► Read Hernán 2016
- ► Complete Problem Set 1 Part 2

Problem set is due on Canvas Monday at 5pm

Let me know what you are thinking

tinyurl.com/CausalQuestions

Office hours TTh 11am-12pm and at calendly.com/ianlundberg/office-hours Come say hi!