

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Fax: +86-512-66308368 Web: www.mrt-cert.com

Report No.: 1608RSU02208 Report Version: V01 Issue Date: 11-10-2016

MEASUREMENT REPORT

FCC PART 22&24 Portable Terminal

FCC ID: 2AJ23-HY-W20

APPLICANT: QUANZHOU HEYI ELECTRONICS CO., LTD.

Application Type: Certification

Product: Network Alarm System

Model No.: HY-W20, HY-W5, HY-W6, HY-W7, HY-W21, HY-G20,

HY-L20, HY-W30, HY-G30, HY-L30

Brand Name: HEYI

FCC Classification: PCS Licensed Transmitter (PCB)

FCC Rule Part(s): Part2, Part22 Subpart H, Part24 Subpart E

Test Procedure(s): ANSI/TIA-603-C-2010, KDB 971168 D01v02r02

Test Date: August 14 ~ November 09, 2016

Reviewed By: Reviewed By

(Robin Wu)

Approved By: Marlinchen

(Marlin Chen)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

FCC ID: 2AJ23-HY-W20 Page Number: 1 of 39

Revision History

Report No.	Version	Description	Issue Date	Note
1608RSU02208	Rev. 01	Initial report	11-10-2016	Valid

FCC ID: 2AJ23-HY-W20 Page Number: 2 of 39

CONTENTS

De	scriptio	n F	Page
§2.	1033 G	eneral Information	5
1.	INTR	ODUCTION	6
	1.1.	Scope	6
	1.2.	MRT Test Location	
2.	PROI	DUCT INFORMATION	7
	2.1.	Equipment Description	
	2.2.	Device Capabilities	
	2.3.	Test Configuration	
	2.4.	EMI Suppression Device(s)/Modifications	
3.		CRIPTION OF TEST	
J.			
	3.1.	Evaluation Procedure	
	3.2.	Cellular - Base Frequency Blocks	
	3.3.	Cellular - Mobile Frequency Blocks	
	3.4.	PCS - Base Frequency Blocks	
	3.5.	PCS - Mobile Frequency Blocks	
	3.6.	Occupied Bandwidth	
	3.7.	Spurious and Harmonic Emissions at Antenna Terminal	
	3.8.	Radiated Power and Radiated Spurious Emissions	
	3.9.	Peak-Average Ratio	
	3.10.	Frequency Stability / Temperature Variation	11
4.	TEST	EQUIPMENT CALIBRATION DATE	12
5.	SAME	PLE CALCULATIONS	13
6.	MEAS	SUREMENT UNCERTAINTY	14
7.	TEST	RESULT	15
	7.1.	Summary	15
	7.2.	Occupied Bandwidth	16
	7.2.1.	Test Limit	16
	7.2.2.	Test Procedure used	16
	7.2.3.	Test Setting	16
	7.2.4.	Test Setup	16
	7.2.5.	Test Result	17
	7.3.	Spurious and Harmonic Emissions at Antenna Terminal	19
	7.3.1.	Test Limit	19
	7.3.2.	Test Procedure Used	19

	7.3.3.	Test Setting	19
	7.3.4.	Test Setup	19
	7.3.5.	Test Result	20
	7.4.	Conducted & Radiated Power and Radiated Spurious Emissions	26
	7.4.1.	Test Limit	26
	7.4.2.	Test Procedure Used	26
	7.4.3.	Test Setting	26
	7.4.4.	Test Setup	28
	7.4.5.	Test Result	29
	7.5.	Peak-Average Ratio	34
	7.5.1.	Test Limit	34
	7.5.2.	Test Procedure	34
	7.5.3.	Test Setup	34
	7.5.4.	Test Result	35
	7.6.	Frequency Stability Under Temperature & Voltage Variations	36
	7.6.1.	Test Limit	36
	7.6.2.	Test Procedure	36
	7.6.3.	Test Setup	36
	7.6.4.	Test Result	37
8.	CONC	CLUSION	30
•			

§2.1033 General Information

T			
Applicant:	QUANZHOU HEYI ELECTRONICS CO., LTD.		
Applicant Address:	No.4-12, Chongrui Street, Qingmeng Economic Developmment Zone,		
	Quanzhou, China		
Manufacturer:	QUANZHOU HEYI ELECTRONICS CO., LTD.		
Manufacturer Address:	No.4-12, Chongrui Street, Qingmeng Economic Developmment Zone,		
	Quanzhou, China		
Test Site:	MRT Technology (Suzhou) Co., Ltd		
Test Site Address:	D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong		
	Economic Development Zone, Suzhou, China		
MRT Registration No.:	809388		
FCC Rule Part(s):	Part22 Subpart H, Part24 Subpart E		
Model No.:	HY-W20, HY-W5, HY-W6, HY-W7, HY-W21, HY-G20, HY-L20,		
	HY-W30, HY-G30, HY-L30		
FCC ID:	2AJ23-HY-W20		
Test Device Serial No.:	N/A ☐ Production ☐ Pre-Production ☐ Engineering		
FCC Classification:	PCS Licensed Transmitter (PCB)		

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Reg. No. 809388) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-4179, G-814, C-4664, T-2206) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications and Radio testing for FCC, Industry Canada, EU and TELEC Rules.

FCC ID: 2AJ23-HY-W20 Page Number: 5 of 39

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on September 30, 2013.

FCC ID: 2AJ23-HY-W20 Page Number: 6 of 39

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name	Network Alarm System	
Model No.	HY-W20, HY-W5, HY-W6, HY-W7, HY-W21, HY-G20, HY-L20, HY-W30,	
	HY-G30, HY-L30	
Antenna Type	Internal	
Antenna Gain	GPRS850: 2.0dBi	
	GPRS1900: 2.0dBi	
Type of Modulation	GPRS: GMSK	
Supply voltage for HY-W20		
Battery	DC 3.7V / 1A	

Note: The test data contained in this report only to the emissions due to the EUT's 2G licensed transmitters. The test report has showed the worst test mode.

2.2. Device Capabilities

This device contains the following capabilities: 850/1900 GPRS.

2.3. Test Configuration

The **Network Alarm System** was tested per the guidance of ANSI/TIA-603-D-2010 and KDB 971168 D01v02r02. See section 3.0 of this report for a description of the radiated and antenna port conducted emissions tests.

2.4. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: 2AJ23-HY-W20 Page Number: 7 of 39

3. DESCRIPTION OF TEST

3.1. Evaluation Procedure

The measurement procedures described in the "Land Mobile FM or PM - Communications Equipment - Measurements and Performance Standards" (ANSI/TIA-603-D-2010) and "Procedures for Compliance Measurement of the Fundamental Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems" (KDB 971168) were used in the measurement of the **Network Alarm System**.

Deviation from measurement procedure......None

3.2. Cellular - Base Frequency Blocks

§22.905

Block 1: 869 - 880 MHz (A* Low + A)

Block 3: 890 - 891.5 MHz (A* High)

Block 2: 880 - 890 MHz (B)

Block 4: 891.5 - 894 MHz (B*)

3.3. Cellular - Mobile Frequency Blocks

§22.905

Block 1: 824 - 835 MHz (A* Low + A)

Block 3: 845 - 846.5 MHz (A* High)

Block 2: 835 - 845 MHz (B)

Block 4: 846.5 - 849 MHz (B*)

3.4. PCS - Base Frequency Blocks

§24.229

FCC ID: 2AJ23-HY-W20 Page Number: 8 of 39

3.5. PCS - Mobile Frequency Blocks

§24.229

3.6. Occupied Bandwidth

§2.1049

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. The spectrum analyzers' "occupied bandwidth" measurement function was used to record the occupied bandwidth in accordance with KDB 971168.

3.7. Spurious and Harmonic Emissions at Antenna Terminal

§2.1051 §22.917(a) §24.238(a)

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for Part 22 and 1 MHz or greater for Part 24. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

FCC ID: 2AJ23-HY-W20 Page Number: 9 of 39

3.8. Radiated Power and Radiated Spurious Emissions

§2.1053 §22.913(a.2) §22.917(a) §24.232(c) §24.238(a)

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurement and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. A 80cm high PVC support structure is placed on top of the turntable.

The equipment under test was transmitting while connected to its integral antenna and is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer. Radiated power levels are also investigated with the receive antenna horizontally and vertically polarized. The maximized power level is recorded using the spectrum analyzer "Channel Power" function with the integration band set to the emissions' occupied bandwidth, a RMS detector, RBW = 100kHz, VBW = 300kHz, and a 1 second sweep time over a minimum of 10 sweeps, per the guidelines of KDB 971168.

Per the guidance of ANSI/TIA-603-D-2010, a half-wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

Pd [dBm] = Pg [dBm] - cable loss [dB] + antenna gain [dBd/dBi]

Where, Pd is the dipole equivalent power, Pg is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to Pg [dBm] - cable loss [dB].

The calculated Pd levels are then compared to the absolute spurious emission limit of -13dBm which is equivalent to the required minimum attenuation of 43 + 10*log10(Power [Watts]) specified in 22.917(a) and 24.238(a).

FCC ID: 2AJ23-HY-W20 Page Number: 10 of 39

3.9. Peak-Average Ratio

§24.232(d)

A peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

For pulsed signals, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power. For continuous signals, the trigger is set to "free run" in the CCDF measurement mode.

3.10. Frequency Stability / Temperature Variation

§2.1055 §22.355 §22.863 §22.905 §24.229 §24.235

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-D-2010. The frequency stability of the transmitter is measured by:

- a.) Temperature: The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification - For Part 22, the frequency stability of the transmitter shall be maintained within ±0.00025% (±2.5 ppm) of the center frequency. For Part 24, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

FCC ID: 2AJ23-HY-W20 Page Number: 11 of 39

4. TEST EQUIPMENT CALIBRATION DATE

Radiated Emission - AC1

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cali. Due Date
EXA Signal Analyzer	Agilent	N9010A	MY51440166	1 year	2017/06/23
Radio Communication Tester	R&S	CMU 200	117129	1 year	2017/11/10
Preamplifier	Agilent	83017A	MY53270040	1 year	2017/03/29
Loop Antenna	Schwarzbeck	FMZB1519	1519-041	1 year	2016/12/14
TRILOG Antenna	Schwarzbeck	VULB9168	662	1 year	2016/12/10
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1167	1 year	2017/10/22
Broadband Horn Antenna	Schwarzbeck	BBHA9170	BBHA9170549	1 year	2017/01/04
Temperature/Humidity Meter	Yuhuaze	HTC-2	N/A	1 year	2016/12/20
Anechoic Chamber	TDK	Chamber-AC1	N/A	1 year	2017/05/10

Conducted Test Equipment - TR3

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cali. Due Date
EXA Signal Analyzer	Agilent	N9010A	MY51440166	1 year	2017/06/23
Radio Communication Tester	R&S	CMU 200	117129	1 year	2017/11/10
USB Wideband Power Sensor	Boonton	55006	8911	1 year	2017/05/07
Programmable Temperature & Humidity Chamber	BAOYT	BYH-1500L	1309W043	1 year	2016/12/08
Temperature/Humidity Meter	Yuhuaze	HTC-2	N/A	1 year	2016/12/20

Software	Version	Function
e3	V8.3.5	EMI Test Software

FCC ID: 2AJ23-HY-W20 Page Number: 12 of 39

5. SAMPLE CALCULATIONS

GPRS Emission Designator

Emission Designator = 250KGXW

GPRS BW = 250 kHz

G = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

Spurious Radiated Emission

Example: Spurious emission at 3700.40 MHz

The receive spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0dBm. The gain of the substituted antenna is 8.1dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40MHz. So 6.1 dB is added to the signal generator reading of -30.9dBm yielding -24.80dBm. The fundamental EIRP was 25.50dBm so this harmonic was 25.50dBm - (-24.80) = 50.3dBc.

FCC ID: 2AJ23-HY-W20 Page Number: 13 of 39

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Radiated Emission Measurement - AC1

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

9kHz ~ 1GHz: ± 4.18dB 1GHz ~ 40GHz: ± 4.76dB

FCC ID: 2AJ23-HY-W20 Page Number: 14 of 39

7. TEST RESULT

7.1. Summary

Company Name: QUANZHOU HEYI ELECTRONICS CO., LTD.

FCC ID: <u>2AJ23-HY-W20</u>

FCC Classification: PCS Licensed Transmitter Held to Ear (PCE)

Mode(s): GPRS

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
Transmitter	Mode(TX)				
2.1049	Occupied bandwidth	N/A		Pass	Section 7.2
2.1051	Band Edge /	> 43 + log10 (P[Watts]) at			
22.917(a)	Conducted Spurious	Band Edge and for all		Pass	Section 7.3
24.238(a)	Emissions	out-of-band emissions	Conducted		
24.232(d)	Peak-Average Ratio	< 13 dB		Pass	Section 7.5
2.1046	Transmitter Conducted	N/A		Pass	RF Exposure
2.1046	Output Power	IN/A			Report
22.913(a.2)	Effective Radiated	< 7 Watts max. ERP		Pass	Section 7.4
22.913(a.2)	Power	< 1 Walls Max. ERF		F a 5 5	Section 7.4
24.232(c)	Equivalent Isotropic	< 2 Watts max. EIRP		Pass	Section 7.4
24.232(0)	Radiated Power	< 2 Walls Hax. EINF		F a 5 5	Section 7.4
2.1053		> 43 + log10 (P[Watts]) for all	Radiated		
22.917(a)	Undesirable Emissions	out-of-band emissions	Naulateu	Pass	Section 7.4
24.238(a)		out-or-band emissions			
2.1055		< 2.5 ppm (Part 22)			
22.355	Frequency Stability	Emission must remain in		Pass	Section 7.6
24.235		band (Part 24)			

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in Section 4.0 were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.

FCC ID: 2AJ23-HY-W20 Page Number: 15 of 39

7.2. Occupied Bandwidth

7.2.1. Test Limit

N/A

7.2.2. Test Procedure used

KDB 971168 D01v02r02 - Section 4.1 & ANSI/TIA-603-D-2010

7.2.3. Test Setting

- The spectrum analyzer center frequency is set to the nominal EUT channel center frequency.
 The span range for the spectrum analyzer shall be between two and five times the anticipated
 OBW. RBW = approximately 1% of the emission bandwidth.
- 2. The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- 3. Set the detection mode to peak, and the trace mode to max hold.
- 4. Use the 99 % power bandwidth function of the spectrum analyzer (if available) and report the measured bandwidth.

7.2.4. Test Setup

FCC ID: 2AJ23-HY-W20 Page Number: 16 of 39

7.2.5. Test Result

Test Mode	Channel No.	Frequency (MHz)	99% Occupied Bandwidth (kHz)	-26dB Occupied Bandwidth (kHz)	Result
	128	824.2	244.2	317.2	Pass
GPRS850	189	836.4	243.1	316.4	Pass
	251	848.8	246.6	319.9	Pass
	512	1850.2	245.3	316.3	Pass
GPRS1900	661	1880.0	245.0	314.3	Pass
	810	1909.8	245.7	315.3	Pass

FCC ID: 2AJ23-HY-W20 Page Number: 17 of 39

7.3. Spurious and Harmonic Emissions at Antenna Terminal

7.3.1. Test Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

7.3.2. Test Procedure Used

KDB 971168 D01v02r02 - Section 6.0 & ANSI/TIA-603-D-2010

7.3.3. Test Setting

In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions.

7.3.4. Test Setup

FCC ID: 2AJ23-HY-W20 Page Number: 19 of 39

7.3.5. Test Result

Mode	Channel No.	Frequency (MHz)	Modulation	Test Result
GPRS850	128	824.20	GMSK	Pass
GPRS850	189	836.40	GMSK	Pass
GPRS850	251	848.80	GMSK	Pass

FCC ID: 2AJ23-HY-W20 Page Number: 20 of 39

Mode	Channel No.	Frequency (MHz)	Modulation	Test Result
GPRS1900	512	1850.20	GMSK	Pass
GPRS1900	661	1880.00	GMSK	Pass
GPRS1900	810	1909.80	GMSK	Pass

7.4. Conducted & Radiated Power and Radiated Spurious Emissions

7.4.1. Test Limit

Radiated Power

For FCC Part 22.913(a)(2):

The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

For FCC Part 24.232(b):

The EIRP of mobile transmitters and auxiliary test transmitters must not exceed 2 Watts.

Radiated Spurious Emissions

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

7.4.2. Test Procedure Used

KDB 971168 D01v02r02 - Section 7.0 & ANSI/TIA-603-D-2010

7.4.3. Test Setting

- The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- 3. The output of the test antenna shall be connected to the measuring receiver.
- 4. The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 6. The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.

FCC ID: 2AJ23-HY-W20 Page Number: 26 of 39

- 8. The maximum signal level detected by the measuring receiver shall be noted.
- 9. The transmitter shall be replaced by a substitution antenna.
- 10. The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- 11. The substitution antenna shall be connected to a calibrated signal generator.
- 12. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 13. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- 14. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- 15. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- 16. The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- 17. Test site anechoic chamber refer to ANSI C63.4: 2009.

FCC ID: 2AJ23-HY-W20 Page Number: 27 of 39

7.4.4. Test Setup

30MHz ~ 1GHz Test Setup:

1GHz ~ 20GHz Test Setup:

7.4.5. Test Result

Conducted Power

Mode	Frequency (MHz)	Avg. Burst Power	Duty Cycle Factor	Frame Power
		(dBm)	(dB)	(dBm)
	824.2	32.89	-9	23.89
GPRS850(1 Slot)	836.4	32.90	-9	23.90
	848.8	32.91	-9	23.91
	824.2	32.65	-6	26.65
GPRS850(2 Slot)	836.4	32.57	-6	26.57
	848.8	32.48	-6	26.48
	824.2	32.31	-4.25	28.06
GPRS850(3 Slot)	836.4	32.26	-4.25	28.01
	848.8	32.21	-4.25	27.96
	824.2	32.15	-3	29.15
GPRS850(4 Slot)	836.4	32.11	-3	29.11
	848.8	32.02	-3	29.02
	1850.2	29.71	-9	20.71
GPRS1900(1 Slot)	1880.0	29.93	-9	20.93
	1909.8	29.83	-9	20.83
	1850.2	29.62	-6	23.62
GPRS1900(2 Slot)	1880.0	29.89	-6	23.89
	1909.8	29.78	-6	23.78
	1850.2	29.52	-4.25	25.27
GPRS1900(3 Slot)	1880.0	29.79	-4.25	25.54
	1909.8	29.58	-4.25	25.33
	1850.2	29.32	-3	26.32
GPRS1900(4 Slot)	1880.0	29.69	-3	26.69
	1909.8	29.48	-3	26.48

Note: Frame Power (dBm) = Avg. Burst Power (dBm) + Duty Cycle Factor (dB)

FCC ID: 2AJ23-HY-W20 Page Number: 29 of 39

Radiated Power

GPRS850

Frequency	Ant. Pol.	SG Reading	Cable Loss	Substitute	ERP	Limit	Margin	
(MHz)	(H/V)	(dBm)	(dB)	Antenna	(dBm)	(dBm)	(dB)	
				Gain (dBd)				
Low Channel 12	28 (824.20N	ЛHz)						
824.2	Н	34.5	0.5	8.0	34.8	38.5	-3.7	
824.2	V	32.9	0.5	8.0	33.2	38.5	-5.3	
Middle Channe	l 189 (836.4	OMHz)						
836.4	Н	34.0	0.5	0.8	34.3	38.5	-4.2	
836.4	V	32.8	0.5	8.0	33.1	38.5	-5.4	
High Channel 2	High Channel 251 (848.80MHz)							
848.8	Н	34.3	0.5	0.9	34.7	38.5	-3.8	
848.8	V	33.0	0.5	0.9	33.4	38.5	-5.1	

GPRS1900

Frequency	Ant. Pol.	SG Reading	Cable Loss	Substitute	EIRP	Limit	Margin
(MHz)	(H/V)	(dBm)	(dB)	Antenna	(dBm)	(dBm)	(dB)
				Gain (dBi)			
Low Channel 5	12 (1850.20	MHz)					
1850.2	Н	6.3	0.7	25.5	31.1	33.0	-1.9
1850.2	V	6.1	0.7	25.5	30.9	33.0	-2.1
Middle Channe	l 661 (1880.	.00MHz)					
1880.0	Н	6.1	0.7	25.7	31.1	33.0	-1.9
1880.0	V	5.5	0.7	25.7	30.5	33.0	-2.5
High Channel 810 (1909.80MHz)							
1909.8	Н	5.9	0.7	25.8	31.0	33.0	-2.0
1909.8	V	4.3	0.7	25.8	29.4	33.0	-3.6

NOTES:

- ERP (dBm) / EIRP (dBm)= SG Reading (dBm) Cable Loss (dB) + Substitute Antenna Gain (dBd)
- 2. This device was tested under all configurations and the highest power is reported in GPRS mode.
- 3. This unit was tested with its standard adapter.
- 4. The EUT was tested in three orthogonal planes and in all possible test configurations and

FCC ID: 2AJ23-HY-W20 Page Number: 30 of 39

positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing upright. The worst case test configuration was found in the EUT in the H positioning. The data reported in the table above was measured in this test setup.

FCC ID: 2AJ23-HY-W20 Page Number: 31 of 39

Radiated Spurious Emission

GPRS850

Frequency (MHz)	Ant. Pol. (H/V)	SG Reading (dBm)	Cable Loss (dB)	Substitute Antenna Gain (dBd)	ERP (dBm)	Limit (dBm)	Margin (dB)
Low Channel	128 (824.2	0MHz)					
1646.0	V	-74.8	0.8	27.5	-48.1	-13.0	-35.1
3295.0	V	-74.2	1.2	31.6	-43.8	-13.0	-30.8
1646.0	Н	-69.3	0.8	27.5	-42.6	-13.0	-29.6
3295.0	Н	-77.3	1.2	31.6	-46.9	-13.0	-33.9
Middle Chann	el 189 (836	6.40MHz)					
3346.0	V	-79.3	8.0	27.6	-52.5	-13.0	-39.5
7528.0	V	-72.0	1.2	31.9	-41.3	-13.0	-28.3
1671.5	Н	-72.8	8.0	27.6	-46.0	-13.0	-33.0
3346.0	Н	-71.4	1.2	31.9	-40.7	-13.0	-27.7
High Channel	251 (848.8	30MHz)					
3397.0	V	-80.0	8.0	27.6	-53.2	-13.0	-40.2
7638.5	V	-72.4	1.1	30.3	-43.2	-13.0	-30.2
1697.0	Н	-73.2	0.8	27.6	-46.4	-13.0	-33.4
3397.0	Н	-77.0	1.1	30.3	-47.8	-13.0	-34.8

Note:

- 1. Spurious emissions within 30-1000MHz were found more than 20dB below limit line.
- 2. ERP (dBm) = SG Reading (dBm) Cable Loss (dB) + Substitute Antenna Gain (dBd)

FCC ID: 2AJ23-HY-W20 Page Number: 32 of 39

GPRS1900

Frequency (MHz)	Ant. Pol. (H/V)	SG Reading (dBm)	Cable Loss (dB)	Substitute Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)
Low Channel	<u> </u> 512 (1850	20MHz)		Calli (GDI)			
7400.5	V	-66.4	1.0	29.3	-38.1	-13.0	-25.1
9253.5	V	-72.2	1.3	32.1	-41.4	-13.0	-28.4
	_						
7400.5	Н	-60.2	1.0	29.3	-31.9	-13.0	-18.9
9253.5	Н	-68.7	1.3	32.1	-37.9	-13.0	-24.9
Middle Chann	el 661 (188	80.00MHz)					
7519.5	V	-68.3	1.0	29.4	-39.9	-13.0	-26.9
9398.0	V	-74.0	1.3	32.1	-43.2	-13.0	-30.2
7519.5	Н	-58.9	1.0	29.4	-30.5	-13.0	-17.5
9398.0	Н	-70.5	1.3	32.1	-39.7	-13.0	-26.7
High Channel	810 (1909	.80MHz)					
7638.5	V	-67.5	1.0	29.6	-38.9	-13.0	-25.9
9551.0	V	-78.5	1.3	32.3	-47.5	-13.0	-34.5
7638.5	Н	-61.0	1.0	29.6	-32.4	-13.0	-19.4
9551.0	Н	-75.9	1.3	32.3	-44.9	-13.0	-31.9

Note:

- 1. Spurious emissions within 30-1000MHz were found more than 20dB below limit line.
- 2. EIRP (dBm) = SG Reading (dBm) Cable Loss (dB) + Substitute Antenna Gain (dBd)

FCC ID: 2AJ23-HY-W20 Page Number: 33 of 39

7.5. Peak-Average Ratio

7.5.1. Test Limit

The transmitter's peak-to-average power ratio (PAPR) shall not exceed 13 dB for more than 0.1% of the time using a signal corresponding to the highest PAPR during periods of continuous transmission.

7.5.2. Test Procedure

KDB 971168 D01v02r02 - Section 5.7 & ANSI/TIA-603-D-2010

7.5.3. Test Setup

FCC ID: 2AJ23-HY-W20 Page Number: 34 of 39

7.5.4. Test Result

FCC ID: 2AJ23-HY-W20 Page Number: 35 of 39

7.6. Frequency Stability Under Temperature & Voltage Variations

7.6.1. Test Limit

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Limit	< ± 2.5 ppm
-------	-------------

7.6.2. Test Procedure

KDB 971168 D01v02r02 - Section 9.0 & ANSI/TIA-603-D-2010

7.6.3. Test Setup

FCC ID: 2AJ23-HY-W20 Page Number: 36 of 39

7.6.4. Test Result

Operating Frequency	836,400,000 Hz
Channel	189
Test Mode	GPRS850
Reference Voltage	3.7 VDC
Deviation Limit	±0.00025% or 2.5ppm

Voltage	Power	TEMP	Frequency	Freq. Dev.	Deviation
(%)	(VDC)	(%)	(Hz)	(Hz)	(%)
100%		+20(Ref)	836,400,000	75	0.00000897
100%		-30	836,400,000	68	0.00000813
100%		-20	836,400,000	-71	-0.00000849
100%	3.7	-10	836,400,000	65	0.00000777
100%		0	836,400,000	68	0.00000813
100%		+10	836,400,000	64	0.00000765
100%		+20	836,400,000	-69	-0.00000825
100%		+30	836,400,000	-72	-0.00000861
100%		+40	836,400,000	-59	-0.00000705
100%		+50	836,400,000	62	0.00000741
115%	4.2	+20	836,400,000	-63	-0.00000753
BAT.ENDPOINT	3.6	+20	836,400,000	-62	-0.00000741

FCC ID: 2AJ23-HY-W20 Page Number: 37 of 39

Operating Frequency	1,880,000,000 Hz
Channel	661
Test Mode	GPRS1900
Reference Voltage	3.7 VDC
Deviation Limit	±0.00025% or 2.5ppm

Voltage	Power	TEMP	Frequency	Freq. Dev.	Deviation
(%)	(VDC)	(%)	(Hz)	(Hz)	(%)
100%		+20(Ref)	1,880,000,000	42	0.00000223
100%		-30	1,880,000,000	-43	-0.00000229
100%		-20	1,880,000,000	52	0.00000277
100%	3.7	-10	1,880,000,000	43	0.00000229
100%		0	1,880,000,000	-41	-0.00000218
100%		+10	1,880,000,000	49	0.00000261
100%		+20	1,880,000,000	-39	-0.00000207
100%		+30	1,880,000,000	42	0.00000223
100%		+40	1,880,000,000	-52	-0.00000277
100%		+50	1,880,000,000	39	0.00000207
115%	4.2	+20	1,880,000,000	48	0.00000255
BAT.ENDPOINT	3.6	+20	1,880,000,000	-42	-0.00000223

8. CONCLUSION

The data collected relate only the item(s) tested and show that the **Network Alarm System** compliance with all the requirements of Parts 2, 22, 24 of the FCC Rules.

———— The End