Détermination d'une écriture exponentielle

Exercice 1:

Soit a un réel appartenant à l'intervalle $]0,\pi[$. On pose :

$$u = 1 + \cos a + i \sin a, \quad v = \sqrt{1 + \sin(2a)} + i \sqrt{1 - \sin(2a)} \text{ et } z = \frac{u}{v} = \frac{1 + \cos a + i \sin a}{\sqrt{1 + \sin(2a)} + i \sqrt{1 - \sin(2a)}}$$

- 1) Donner la forme exponentielle de u.
- 2) a) Montrer que $1 + \sin(2a) = (\sin a + \cos a)^2$
- b) Trouver $r \in \mathbb{R}_+^*$, $\varphi \in \mathbb{R}$ et $\psi \in \mathbb{R}$ tels que :

$$\sin a + \cos a = r \cos(a - \varphi)$$
 et $\sin a - \cos a = r \cos(a - \psi)$

c) En s'appuyant sur le cercle trigonométrique, déterminer les solutions sur $]0,\pi[$ des inéquations ci-dessous :

$$\cos\left(x - \frac{\pi}{4}\right) \geqslant 0 \text{ et } \cos\left(x - \frac{3\pi}{4}\right) \geqslant 0$$

- d) En discutant suivant les valeurs de a, donner la forme exponentielle de v.
- 3) En déduire la forme exponentielle de z.

Une inégalité dans U

Exercice 2:

On souhaite montrer que, pour tout complexe z de module 1, on a $|z^3 - z + 2| \le \sqrt{13}$ et déterminer les valeurs de z pour lesquelles l'égalité est réalisée.

- 1) Soit $\theta \in \mathbb{R}$. Linéariser $\cos^3 \theta$ puis exprimer $\cos(3\theta)$ en fonction de $\cos \theta$.
- 2) Soit f la fonction définie par : $\forall x \in \mathbb{R}, f(x) = 4x^3 x^2 4x + 2$.
- a) Déterminer les variations de f sur [-1,1] .
- b) Soit z un nombre complexe de module 1 et θ un de ses arguments.

Etablir :
$$|z^3 - z + 2|^2 = 4f(\cos \theta)$$
.

3) En déduire que, pour tout complexe z de module 1, on a : $|z^3 - z + 2| \leq \sqrt{13}$.

Préciser de plus les complexes z de module 1 vérifiant $|z^3 - z + 2| = \sqrt{13}$.

Quelques identités avec arctan

Exercice 3:

- 1) Soit z un nombre complexe d'argument principal θ . Soit $a,b\in\mathbb{R}$ tels que z=a+ib.
- a) On suppose a > 0. Justifier que $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ puis que $\theta = \arctan\left(\frac{b}{a}\right)$.
- b) On suppose a > 0 et b > 0. À quel intervalle appartient $\arctan\left(\frac{b}{a}\right)$?
- c) On admet que arctan est une fonction strictement croissante sur \mathbb{R} et on suppose que 0 < b < a.
- À quel intervalle appartient $\arctan\left(\frac{b}{a}\right)$?
- 2) a) Mettre sous forme algébrique puis sous forme exponentielle $\frac{(2+i)^2}{7+i}$.
- b) En déduire : $\frac{\pi}{4} = 2 \arctan\left(\frac{1}{2}\right) \arctan\left(\frac{1}{7}\right)$.
- 3) a) Mettre sous forme algébrique et sous forme exponentielle (2+i)(3+i).
- b) En déduire le calcul de $\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right)$.
- 4) En s'inspirant des méthodes précédentes, calculer $2\arctan\left(\frac{1}{2}\right) \arctan\left(\frac{4}{3}\right)$.