Approximating matrices with multiple symmetries: with an application to quantum chemistry

Joseph Vokt, Senior, Computer Science jpv52@cornell.edu Joint-work with Professor Charles Van Loan, Computer Science cv@cs.cornell.edu

Themes for this talk

- Symmetry
- Low-rank approximation
- Preserving symmetry for low-rank approximation
- Bridging the gap from matrix to tensor

ERI Tensor Symmetry: Background

• The electron repulsion integral (ERI) tensor is defined by

$$\mathcal{A}(i,j,k,\ell) = \int d\mathsf{x}_1 d\mathsf{x}_2 \chi_i(\mathsf{x}_1)^* \chi_j(\mathsf{x}_1) \frac{1}{r_{12}} \chi_k(\mathsf{x}_2)^* \chi_\ell(\mathsf{x}_2)$$

- $\chi(\mathbf{x})$ is a molecular orbital that describes an electron's motion at coordinate $\mathbf{x} = (r, \theta, \phi, \omega)$ where ω is the spin coordinate
- This tensor describes two-body Coulomb interaction in molecular electronic structure theory
- Source: Szabo and Ostlund's Modern Quantum Chemistry

ERI Tensor Symmetry: Background

• For real orbitals, we have the following symmetries:

$$\mathcal{A}(i,j,k,\ell) = \mathcal{A}(k,\ell,i,j) = \mathcal{A}(j,i,\ell,k) = \mathcal{A}(\ell,k,j,i)$$
$$= \mathcal{A}(j,i,k,\ell) = \mathcal{A}(\ell,k,i,j) = \mathcal{A}(i,j,\ell,k) = \mathcal{A}(k,\ell,j,i)$$

For our purposes, we will be primarily concerned with

$$\mathcal{A}(i,j,k,\ell) = \mathcal{A}(j,i,k,\ell) = \mathcal{A}(i,j,\ell,k) = \mathcal{A}(k,\ell,i,j)$$

ERI Tensor Symmetry: Problem Statement

Compute μ , the molecular orbital integral transformation

$$\mu = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{\ell=1}^{n} \mathcal{A}(i, j, k, \ell) v_{i} v_{j} v_{k} v_{\ell}$$
$$= (v \otimes v)^{T} \mathcal{A}(v \otimes v)$$

where $v \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n \times n \times n}$ is the fourth-order ERI tensor and A is the tensor unfolding.

ERI Tensor Symmetry: Motivation

- Applications of ERI tensors
 - Ab initio protein folding simulation
 - Rational therapeutic drug design
 - Engineering nano-scale devices
- The more electrons, the higher the dimensionality d
 - d-body problem at the heart of quantum chemistry

ERI Tensor Symmetry: Goal

- Goal: a low-rank approximation which preserves the original structure without using the SVD, while minimizing ERI evaluations
 - Why low-rank?
 - Data sparsity
 - Why preserve structure?
 - Numerical motivation: good to maintain data sparsity
 - Physical motivation: must not violate the Pauli principle
 - Why not use the SVD?
 - The SVD of an n^2xn^2 matrix takes $O(n^6)$ flops
 - Why minimize ERI evaluations?
 - ERI evaluations are expensive to compute

Centrosymmetry: A tale of two symmetries

A persymmetric matrix is symmetric about its antidiagonal:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 3 \\ 8 & 9 & 6 & 2 \\ 10 & 8 & 5 & 1 \end{bmatrix}.$$

Centrosymmetry: A tale of two symmetries

A matrix $A \in \mathbb{R}^{n \times n}$ is persymmetric if $A^T = E_n A E_n$ where $E_n \in \mathbb{R}^{n \times n}$ is the *n*-by-*n* exchange permutation, e.g.,

$$E_4 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

Centrosymmetry: A tale of two symmetries

A centrosymmetric matrix is a symmetric persymmetric matrix $A = E_n A E_n$ e.g.,

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 3 \\ 3 & 6 & 5 & 2 \\ 4 & 3 & 2 & 1 \end{bmatrix}$$

Centrosymmetry: Block Structure

If $A \in \mathbb{R}^{n \times n}$ is blocked as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad A_{ij} \in \mathbb{R}^{m \times m}$$

and A is centrosymmetric, where n is even, then

$$A = \begin{bmatrix} A_{11} & A_{12} \\ E_m A_{12} E_m & E_m A_{11} E_m \end{bmatrix}$$

Centrosymmetry: Block Diagonalization

If we define Q_F as

$$Q_E = \frac{1}{\sqrt{2}} \left[\begin{array}{c|c} I_m & I_m \\ E_m & -E_m \end{array} \right] = \left[\begin{array}{c|c} Q_+ & Q_- \end{array} \right]$$

then Q_E is orthogonal and

$$Q_{E}^{T}AQ_{E} = \begin{bmatrix} A_{11} + A_{12}E_{m} & 0 \\ 0 & A_{11} - A_{12}E_{m} \end{bmatrix}$$

is the block diagonalization of A.

Centrosymmetry: Block Factorizations

- When A is positive definite, diagonal blocks are too
- Stable LDL^T factorizations:

$$P_{+}(A_{11} + A_{12}E_{m})P_{+}^{T} = L_{+}D_{+}L_{+}^{T}$$

$$P_{-}(A_{11} - A_{12}E_{m})P_{-}^{T} = L_{-}D_{-}L_{-}^{T}$$

- Obtaining both factorizations takes $2(\frac{1}{3}(\frac{n}{2})^3) = \frac{1}{4}(\frac{n^3}{3})$ flops
- Centrosymmetric A lets you solve Ax = b in $\frac{1}{4}$ of the work as compared to non-symmetric A

Centrosymmetry: Low-rank approximation

Let

$$Y_{+} = Q_{+}P_{+}^{T}L_{+} = [y_{+}^{(1)} | \cdots | y_{+}^{(m_{+})}]$$

and

$$Y_{-} = Q_{-}P_{-}^{T}L_{-} = [y_{-}^{(1)} | \cdots | y_{-}^{(m_{-})}]$$

Centrosymmetry: Low-rank approximation

$$A = Q_{E} \begin{bmatrix} A_{11} + A_{12}E_{m} & 0 \\ 0 & A_{11} - A_{12}E_{m} \end{bmatrix} Q_{E}^{T}$$

$$= Q_{+}(A_{11} + A_{12}E_{m})Q_{+}^{T} + Q_{-}(A_{11} - A_{12}E_{m})Q_{-}^{T}$$

$$= Y_{+}D_{+}Y_{+}^{T} + Y_{-}D_{-}Y_{-}^{T}$$

$$= \sum_{k=1}^{m_{+}} d_{+}^{(k)}y_{+}^{(k)}[y_{+}^{(k)}]^{T} + \sum_{k=1}^{m_{-}} d_{-}^{(k)}y_{-}^{(k)}[y_{-}^{(k)}]^{T}$$

 By terminating these sums early, we obtain low rank approximations that are also centrosymmetric.

• Unfold $\mathcal{A}(i,j,k,\ell)$ as $[A_{k,\ell}]_{i,j}$

$$A=\mathcal{A}_{[1,3]\times[2,4]}$$

- $\mathcal{A}(i,j,k,\ell)$ is the (i,j) entry of the (k,ℓ) block of \mathcal{A}
- Assume n = 3 for the following examples

- If $\mathcal{A}(i,j,k,\ell) = \mathcal{A}(j,i,k,\ell)$, then $[A_{k,\ell}]_{i,j} = [A_{k,\ell}]_{j,i}$
- Symmetric blocks: each 3x3 block matrix is symmetric along its diagonal

1	2	3	19	20	21	37	38	39	
2	4	5	20	22	23	38	40	41	
3	5	6	21	23	24	39	41	42	
7	8	9	25	26	27	43	44	45	
8	10	11	26	28	29	44	46	47	
9	11	12	27	29	30	45	47	48	
13	14	15	31	32	33	49	50	51	•
14	16	17	32	34	35	50	52	53	
15	17	18	33	35	36	51	53	54	

- If $\mathcal{A}(i,j,k,\ell) = \mathcal{A}(i,j,\ell,k)$, then $[A_{k,\ell}]_{i,j} = [A_{\ell,k}]_{i,j}$
- Block symmetry: the 9x9 matrix is symmetric at the 3x3 block matrix level

1	4	7	10	13	16	19	22	25
2	5	8	11	14	17	20	23	26
3	6	9	12	15	18	21	24	27
10	13	16	28	31	34	37	40	43
11	14	17	29	32	35	38	41	44
12	15	18	30	33	36	39	42	45
19	22	25	37	40	43	46	49	52
20	23	26	38	41	44	47	50	53
21	24	27	39	42	45	48	51	54

- If $A(i,j,k,\ell) = A(k,\ell,i,j)$, then $[A_{k,\ell}]_{i,j} = [A_{i,j}]_{k,\ell}$
- Perfect shuffle permutation symmetry: entry (i,j) in the (k,ℓ) block is entry (k,ℓ) in the (i,j) block

1	4			25	28	7	28	40
2	5	8	12	26	29	15	33	41
3	6	9	19	27	30	22	37	42
2					33			
10					34			
11	14	17	20	32	35	23	38	44
3	19	22	6	27	37	9	30	42
11	20	23	14	32	38	17	35	44
18	21	24	21	36	39	24	39	45

• With all eight symmetries

1	2	3	2	7	8	3	8	12
2	4	5	7	9	10	8	13	14
3	5	6	8	10	11	12	14	15
2	7	8	4	9	13	5	10	14
7	9	10	9	16	17	10	17	19
8	10	11	13	17	18	14	19	20
3	8	12	5	10	14	6	11	15
8	13	14	10	17	19	11	18	20
12	14	15	14	19	20	15	20	21

ERI Tensor Symmetry: Block Diagonalization

- ullet Define $Q=[Q_{ extsf{sym}}|Q_{ extsf{skew}}]$ such that
 - ullet Q_{sym} and Q_{skew} are sparse orthonormal bases for vectorized symmetric and skew-symmetric matrices respectively
- ullet Then Q is orthogonal and

$$Q^{\mathsf{T}}AQ = \left[\begin{array}{cc} A_{\mathsf{sym}} & 0 \\ 0 & A_{\mathsf{skew}} \end{array} \right]$$

is the block diagonalization of A.

ERI Tensor Symmetry: Block Diagonalization

When n=3, $Q \in \mathbb{R}^{9 \times 9}$

$$Q_9(:,4) \equiv \left[egin{array}{ccc} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 0 \end{array}
ight] \qquad Q_9(:,7) \equiv \left[egin{array}{ccc} 0 & -1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 0 \end{array}
ight]$$

ERI Tensor Symmetry: Block Factorizations

- ullet When A is positive semi-definite, $A_{\mbox{\tiny sym}}$ and $A_{\mbox{\tiny skew}}$ are too
- Stable symmetric-pivoting *LDL*^T factorizations:

$$\begin{split} P_{\mathsf{sym}} A_{\mathsf{sym}} P_{\mathsf{sym}}^T &= L_{\mathsf{sym}} D_{\mathsf{sym}} L_{\mathsf{sym}}^T \\ P_{\mathsf{skew}} A_{\mathsf{skew}} P_{\mathsf{skew}}^T &= L_{\mathsf{skew}} D_{\mathsf{skew}} L_{\mathsf{skew}}^T \end{split}$$

- Compute a lazy-evaluation, symmetric-pivoting, rank-revealing LDL^T factorization on each block
- Without rank-revealing LDL^T
 - $n^6/24$ flops for one factorization
 - $n^6/12$ flops total
- With rank-revealing LDL^T , where r is the rank of A
 - $r^2(n(n+1)/2) = r^2(n^2/2 + n/2)$ for one factorization
 - r^2n^2 flops total

ERI Tensor Symmetry: Low-rank approximation

$$Y_{\text{sym}} = Q_{\text{sym}} P_{\text{sym}}^T L_{\text{sym}} = [y_{\text{sym}}^{(1)} | \cdots | y_{\text{sym}}^{(m_{\text{sym}})}]$$

and

$$Y_{\text{skew}} = Q_{\text{skew}} P_{\text{skew}}^T L_{\text{skew}} = [y_{\text{skew}}^{(1)} | \cdots | y_{\text{skew}}^{(m_{\text{skew}})}]$$

ERI Tensor Symmetry: Low-rank approximation

$$\begin{split} A &= Q \begin{bmatrix} A_{\mathsf{sym}} & 0 \\ 0 & A_{\mathsf{skew}} \end{bmatrix} Q^T \\ &= Q_{\mathsf{sym}} A_{\mathsf{sym}} Q_{\mathsf{sym}}^T + Q_{\mathsf{skew}} A_{\mathsf{skew}} Q_{\mathsf{skew}}^T \\ &= Y_{\mathsf{sym}} D_{\mathsf{sym}} Y_{\mathsf{sym}}^T + Y_{\mathsf{skew}} D_{\mathsf{skew}} Y_{\mathsf{skew}}^T \\ &= \sum_{k=1}^{m_{\mathsf{sym}}} d_{\mathsf{sym}}^{(k)} y_{\mathsf{sym}}^{(k)} [y_{\mathsf{sym}}^{(k)}]^T + \sum_{k=1}^{m_{\mathsf{skew}}} d_{\mathsf{skew}}^{(k)} y_{\mathsf{skew}}^{(k)} [y_{\mathsf{skew}}^{(k)}]^T \\ &= \sum_{k=1}^{m_{\mathsf{sym}}} d_{\mathsf{sym}}^{(k)} B_k \otimes B_k + \sum_{k=1}^{m_{\mathsf{skew}}} d_{\mathsf{skew}}^{(k)} C_k \otimes C_k \end{split}$$

- B_k , C_k is the $n \times n$ reshaping of $y_{\text{sym}}^{(k)}$, $y_{\text{skew}}^{(k)}$ respectively
- By terminating these sum early, we obtain low-rank approximations with ERI tensor symmetry.

ERI Tensor Symmetry: Integral transformation

$$\mu = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{l=1}^{n} \mathcal{A}(i,j,k,l) v_{i} v_{j} v_{k} v_{l}$$

$$= (v \otimes v)^{T} \mathcal{A}(v \otimes v)$$

$$= (v \otimes v)^{T} \left(\sum_{k=1}^{m_{\text{sym}}} d_{\text{sym}}^{(k)} B_{k} \otimes B_{k} + \sum_{k=1}^{m_{\text{skew}}} d_{\text{skew}}^{(k)} C_{k} \otimes C_{k}\right) (v \otimes v)$$

$$= \sum_{k=1}^{m_{\text{sym}}} d_{\text{sym}}^{(k)} \cdot (v \otimes v)^{T} (B_{k} \otimes B_{k}) (v \otimes v)^{T}$$

$$+ \sum_{k=1}^{m_{\text{skew}}} d_{\text{sym}}^{(k)} \cdot (v \otimes v)^{T} (B_{k} \otimes B_{k}) (v \otimes v)^{T}$$

$$= \sum_{m_{\text{sym}}} d_{\text{sym}}^{(k)} \cdot (v^{T} B_{k} v)^{2} + \sum_{m_{\text{skew}}} d_{\text{skew}}^{(k)} \cdot (v^{T} C_{k} v)^{2}$$

ERI Tensor Symmetry: Integral transformation

- A_{skew} factorization isn't necessary
- Let C_k be the $n \times n$ reshaping of $y_{\text{skew}}^{(k)} \in \mathbb{R}^{n^2}$
- By construction $C_k = -C_k^T$ is skew-symmetric, so $v^T C_k v = v^T C_k^T v = -v^T C_k v = 0$
- The second summation is zero

MATLAB Implementation

- IntegralTransformation
 - Calls StructLDLT on the tensor unfolding
 - Does the integral transformation
- StructLDLT
 - ullet Computes diagonal block A_{sym} (and A_{skew} optionally)
 - Uses QsymT (next slide)
 - Calls LazyLDLT on A_{sym} (and on A_{skew} optionally)
 - Returns Y_{sym} (and Y_{skew} optionally)
 - Uses Qsym
- LazyLDLT
 - Evaluate the diagonal of $A[n^2]$ ERIs]
 - While d(j) is greater than the zero threshold [r loops]
 - Search d(j:n) for largest diagonal element
 - Swap d(k) and d(j)
 - Update pivot vector, permute rows of L and A
 - Evaluate the next subcolumn of A $[O(n^2)]$ ERIs
 - Compute d(j) and column j of L

MATLAB Implementation: QsymT

- Goal: find a way to compute $Q_{\text{sym}}^T v$, $v \in \mathbb{R}^{n^2}$ by utilizing the structure of Q_{sym}^T
 - Sparse matrix-multiply?

MATLAB Implementation: QsymT

No matrix-multiplication necessary

$$egin{align*} Q_{sym}^{T} egin{bmatrix} v_1 \ v_2 \ v_3 \ v_4 \ v_5 \ v_6 \ v_7 \ v_8 \ v_9 \ \end{pmatrix} = egin{bmatrix} v_1 \ v_2 \ v_3 \ v_4 \ v_5 \ v_8 \ v_3 \ v_6 \ v_9 \ \end{bmatrix} = egin{bmatrix} v_1 \ v_5 \ v_9 \ (v_2 + v_4)/\sqrt{2} \ (v_3 + v_7)/\sqrt{2} \ (v_6 + v_9)/\sqrt{2} \ \end{bmatrix}$$

MATLAB Implementation: Qsym

$$Q_{sym} \left[egin{array}{c} v_1 \ v_2 \ v_3 \ v_4 \ v_5 \ v_6 \end{array}
ight] = \left[egin{array}{c} v_1 \ v_4 \ v_5 \ v_4 \ v_2 \ v_6 \ v_5 \ v_6 \ v_3 \end{array}
ight] = vec \left[egin{array}{c} v_1 & v_4 & v_5 \ v_4 & v_2 & v_6 \ v_5 & v_6 & v_3 \end{array}
ight]$$

Summary

- Centrosymmetry and ERI tensor symmetry
 - Block structure
 - Block diagonalization
 - Block factorizations
 - Low-rank approximation with original symmetry
- Structure leads to reduced work
 - $O(r^2n^2)$ algorithm for computing computing a molecular integral transformation

Future work

- Parallel implementation
 - Exploit block structure
- Sixth order tensor approximation
 - First three indices are super-symmetric, last three indices are super-symmetric
 - Key problem is finding a sparse orthogonal basis to project onto
 - Group theory approach looks promising
- d-order tensor approximation
- Thanks to Charles Van Loan, the McNair Scholars program, and David Bindel