

Model Meta-Information

Dagmar Waltemath

Workshop on
Ontology in Modeling and Simulation
of Neuronal Systems

Rostock, 26th of May, 2010

Part 1: Meta-Information and annotations

Model structure vs meta-information

- Model structure, e.g. SBML, CellML
 - Encodes the network, e.g. of biochemical reactions
 - Necessary mathematical information for simulation/execution of a model

Model structure vs meta-information

- Models not only are one-time encodings of the mathematics of a biological system
 - Model reuse (expansion, teaching, collaborations ...)
 - _ Model search & browsing
 - Model visualisation
 - _ Model merging ...

Model structure vs meta-information

- Model meta-information helps "understanding" the model
 - _ MIRIAM (Minimum Information Requested in the Annotation of Models)
 - _ Use of controlled annotation, particularly ontologies, including Gene Ontology, Systems Biology Ontology, UniProt, CheBi ...

 O UniProt

Model meta-information encoding

- MIRIAM standard on MIRIAM resources
- Makes meta-information computer-processable
- Ensures permanent links to information and knowledge

http://www.ebi.ac.uk/miriam/main/ and http://www.biomodels.net/qualifiers/

Possible types of meta-information

Reaction:

degradation of TetR transcripts

(GO:0006402)

Species:

transcript Lactose operon repressor (UniProtKB:P03023), is versionOf mRNA (CHEBI:33699), located in the cell (GO:0005623)

Organism:

E-Coli (UniProt:562)

Compartment:

Cell (GO:0005623)

Publication:

pubmed:10659856

Format: SBML

(SED-ML:type="SBML")

The provided the p

Behavior: Oscillation (TEDDY_0000006)

SimulationAlgorithm: Gillespie (KiSAO:000029)

Biomodels.net initiative

BioModels.Net

BioModels.net

The Next Step After Standard Formats

For computational modeling to become more widely used in biological research, researchers must be able to exchange and share their results. The development and broad acceptance of common model representation from the standards for model representation formats such as \$50Mm_1 is a crucial step in that direction, allowing researchers to exchange and build upon each other's work with greater ease and accuracy. The BioModels net project is another step: an international effort to:

1. define agreed-upon standards for model cruation
2. define agreed-upon standards for model cruation
3. provide a free, centralized, publicly-accessible database of annotated, computational models in \$50Mml, and other structured formats

Helping to Define Community Standards
To facilitate assembling useful collections of quantitative models or biological phenomena, it is crucial to establish standards for the vocabularies used in model annotations as well as criteria for minimum quality levels of those models. The BioModels net project aims to bring together a community of interested researchers to address these issues. We are working towards defining these standards through white papers and process definitions. All of the products of our efforts are open and freely available through fits site.

Standards and Processes Developed Hand-in-Hand with a New Database

The database component of BioModels net is especially designed for working with annotated computational models: each model is carefully reviewed and augmented by human annotators on the BioModels net is especially designed for working with annotated computational models: each model is carefully reviewed and augmented by human annotators on the BioModels net is especially designed for working with annotated computational models: each model is carefully reviewed and augmented by human annotators on the BioModels net is especially designed for working, cross-referencing, searching, and facilities for visualization, exporting mode

Minimum Information Requested In the Annotation of Models (**MIRIAM**)

- Systems Biology Ontology (SBO)
 Minimum Information About a Simulation
- Experiment (MIASE)
- Simulation Experiment Description Markup Language (SED-ML)
- Kinetic Simulation Algorithm Ontology (KiSAO)
- Terminology for the Description of Dynamics (**TEDDY**)

http://www.biomodels.net

Summary

- . Use cases and software for model annotation
 - → follow-up presentation Ron Henkel
- Further information on model meta-information
 - _ Metadata For Systems Biology, Juty (2009)
 http://videolectures.net/mlsb09_juty_mfsb/
 - _ Minimum information requested in the annotation of biochemical models (MIRIAM), Le Novère, Finney, Hucka et al., Nature (2006) http://www.nature.com/nbt/journal/v23/n12/abs/nbt1156.html

Part 2: Simulation experiment descriptions

Part 2: Simulation experiment descriptions

SED-ML: A format proposal for the storage and exchange of simulation experiments

(as one particular type of meta-information)

Motivation Biological find according publication publication Model repository database load model read Simulation tool apply model simulation changes result

SED-ML

- Simulation Experiment Description Markup Language
 - Community project since 2007
 - XML Format / XML Schema / UML Object model
 - Main parts:
 - Pre-processing
 - Model references
 - Simulation settings
 - Post-processing

SED-ML

(Figure by Frank Bergmann, biomodels.net 2010)

- Model
- Simulation
- Task
- DataGenerator
- Output

SED-ML **Biological** find according publication publication Model SED-ML repository database load model export & store read SED-ML Simulation tool apply model simulation changes result

SED-ML Specification & Implementation

- SED-ML L1 V1 Specification
 - _ under development
 - preliminary version available from Sourceforge
- SED-ML Implementation
 - _ Libsedml & examples
 - _ Jlibsedml
 - _ SED-ML validator

Simulation Experiment Description Markup Language (SED-ML) : Level 1 Version 1

April 29, 2010

Editors

Dagmar Waltemath Nicolas Le Novère Frank T. Bergmann Rostock University, Germany European Bioinformatics Institute, UK University of Washington, Seattle, USA

To discuss any aspect of the current SED-ML specification as well as language details, please send your messages to the mailing list sed-ml-discussalists.sourceforge.net. To get subscribed to the mailing list, please write to the same address sed-ml-discussalists.sourceforge.net. To contact the authors of the SED-ML specification, please write to dagmar valtematheumi-rostock.de

Use Cases

- Storage simulation experiment
 - independently from a simulation tool
 - _ in a reusable and exchangeable manner
- Import simulation experiment
 - _ collaborative work
 - _ teaching
 - _ curation
- Simulation using several models
 - _ in different formats → coupling?
- Simulation experiment using different settings

Example

"I normally use Copasi but most of the time it shows errors and/or warnings when I tried to import SBML models in it. For an example in Biomodel database the model BIOMD000000139 and BIOMD000000140 are two different models and they are supposed to show different results. Unfortunately simulating them in Copasi gives same result for both the models. Moreover different versions and curated model also cause problem. " (arvin mer on sbml-discuss)

(Figures produced by Frank Bergmann in SBW Workbench)

Summary

- Community
 - Nicolas Le Novère (EBI)
 - Frank Bergmann (SBW Workbench, libsedml)
 - Richard Adams (SED-ML validator, jlibsedml)
 - Ion Moraru (Virtual Cell)
 - ...
- Further Information
 - _ http://sourceforge.net/projects/sed-ml/
 - http://biomodels.net/sed-ml
- . Getting involved
 - sed-ml-discuss@lists.sourceforge.net

Example:

What we learn from meta-information and simulation

descriptions ...

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 6, NOVEMBER 2003

Simple Model of Spiking Neurons

Eugene M. Izhikevich

Abstract—A model is presented that reproduces spiking and bursting behavior of known types of cortical neurons. The model combines the biologically plausibility of Hodgkin–Huxley-type dynamics and the computational efficiency of integrate-and-fire neurons. Using this model, one can simulate tens of thousands of spiking cortical neurons in real time (1 ms resolution) using a desktop PC.

Index Terms—Bursting, cortex, Hodgkin–Huxley, PCNN, quadratic integrate-and-fire, spiking, thalamus.

SBML formats	Other formats		Actions	Submit Model C	ommen
			'		
Model	Overview		Math	Physical entities	Para
				Reference Publication	
Publication ID: 18244602		IEEE Trans Neural Netw 2003;14(6):1569-72. Simple model of spiking neurons. Izhikevich EM. The Neurosciences Inst., San Diego, CA, USA. [more]			
				Model	
Original Model: BIOMD0000000127.xml.origin Submitter: Enuo He		cot #1	hahiol:ie\/areionOf	Gene Ontology regulation of action Gene Ontology regulation of membr	
		361#1	bqbioi.isveisioiiOi	Gene Ontology regulation of action	potentia
Submission ID: MODEL4880479792		set#2	et#2 bqmodel:isDescribedBy DOI 10.1109/TNN.2003.820440		
Submission Date: 28 Jul 2007 04:22:14 UTC		set#3	bqbiol:is <u>Taxonom</u>	<u>y Mammalia</u>	
Last Modification Date: 22	Apr 2009 00:46:12 UT	0			
Creation Date: 16 Jul 2007	17:41:14 UTC				
Encoders: Enuo He					
Encoders. Endo He					
Encoders. Endo He				Notes	
The model is according to	icient as the integrate	-and-fire	model. Known type	Notes is paper, a simple spiking model is so of neurons correspond to different	
The model is according to yet as computationally effi	icient as the integrate have been simulated	-and-fire	model. Known type	iis paper, a simple spiking model i	
The model is according to yet as computationally effi Figure2RS,IB,CH,FS,LTS	icient as the integrate have been simulated d=8.	-and-fire	model. Known type	iis paper, a simple spiking model i	
The model is according to yet as computationally effigure2RS,IB,CH,FS,LTS RS: a=0.02, b=0.2, c=-65,d=	icient as the integrate- have been simulated d=8.	-and-fire	model. Known type	iis paper, a simple spiking model i	
The model is according to yet as computationally effi	icient as the integrate- have been simulated d=8.	-and-fire	model. Known type	iis paper, a simple spiking model i	

Information in the SBML model

- 1 compartment
- 1 standard species
- No reactions
- 8 global quantities (parameters)
- 2 rate rules
- 2 events

Information in the model annotation

- Model reference urn:miriam:biomodels.db:BIOMD000000127
- **Publication** reference urn:miriam:pubmed:18244602
- Model is on **organism** mammals urn:miriam:taxonomy:40674
- Compartment is version of a cellular compartment urn:miriam:obo.go:GO %3A0005623
- . Has a standard **species** not annotated in the model
- Encodes 2 rate rules: the regulation of membrane potential (variable v) urn:miriam:obo.go:GO%3A0042391, the positive regulation of potassium ion transport (variable U) urn:miriam:obo.go:GO%3A0043268
- No reactions
- 8 global quantities (parameters) not annotated in the SBML model
- Has 2 events: a version of the stabilization of membrane potential (event event_000001) urn:miriam:obo.go:GO%3A0030322, and the detection of electrical stimulus (event Stimulus) urn:miriam:obo.go:GO%3A0050981

Information in the SED-ML file

 First tries (COPASI, time course on v, initial parametrisation)

1 ms

100ms

1000ms

Information in the SED-ML file

Adjusting simulation step size and duration

COPASI, duration: 140ms, step size: 0.14

Information in the SED-ML file

Updating initial model parameters

Publication

COPASI, adjusted parameter values (a=0.02, b=0.2 **c=-55, d=4**)

Thank you for your attention!

dagmar.waltemath@uni-rostock.de sed-ml-discuss@lists.sourceforge.net