DELTA TopGun

10 - Úvod do teorie grafů

Tomáš Faltejsek, Luboš Zápotočný, Michal Havelka

2022

Úvod

"Zjednodušení reálného světa, kde je problém znázorněn pomocí bodů a čar které je spojují."

Terminologie v teorii grafů

- takové body nazýváme vrcholy grafu
- "čáry", které tyto body propojují nazýváme hrany grafu

Značení

- V: množina vrcholů (verticies)
- E: množina hran (edges)
- G = (V, E): graf G je **uspořádanou** dvojicí množin V a E
- Smyčka: hrana z vrcholu x do vrcholu x

Orientovaný vs neorientovaný graf

rekapitulace z přednášky stromové struktury

- Neorientovaný graf G(V, E) tedy definujeme jako uspořádanou dvojicí množin V a E
- Orientovaný graf definujeme analogicky, pouze každé hraně dodáme orientaci. Tj. jeden z vrcholů hrany prohlásíme za počáteční a druhý z vrcholů hrany za koncový. Graficky orientaci hrany znázornímě jednostrannou šipkou

Ohodnocení uzlu či hrany

Graf rovněž může být *hranov*ě či *vrcholov*ě *ohodnocený*. Hraně či vrcholu můžeme přidělit libovolné reálné číslo (**ohodnocení**).

Úplný graf

Úplný graf je takový graf, ve kterém jsou každé dva vrcholy spojené hranou. Takový graf značíme K_n , kde n je počet vrcholů.

Figure: Úplné grafy s různým počtem vrcholů (převzato)

Úplný graf

Úplný graf je takový graf, ve kterém jsou každé dva vrcholy spojené hranou. Takový graf značíme K_n , kde n je počet vrcholů.

Figure: Úplné grafy s různým počtem vrcholů (převzato)

Otázka

Tvoří množiny V a E, kde |V|=1 a |E|=0, graf?

Úplný graf

Úplný graf je takový graf, ve kterém jsou každé dva vrcholy spojené hranou. Takový graf značíme K_n , kde n je počet vrcholů.

Figure: Úplné grafy s různým počtem vrcholů (převzato)

Otázka

Tvoří množiny V a E, kde |V|=1 a |E|=0, graf? A co obráceně?

Podgraf

"Podgraf grafu G je graf G', který vznikl odebráním některých vrcholů a hran z původního grafu G."

Máme-li graf G=(V,E) a jsou-li V' a E' podmnožiny V a E a platí, že G'=(V',E') je grafem. Pak nazýváme G' **podgrafem** grafu G.

Pokud platí V'=V (podgraf obsahuje všechny vrcholy původního grafu), pak nazýváme G' faktorem grafu G.

Sled, tah, cesta

- sled
 - posloupnost uzlů V_i a hran E_i
- tah
 - sled, ve kterém se neopakují hrany
- cesta
 - tah, ve kterém se neopakují uzly
- uzavřená cesta (= kružnice)
 - cesta, ve které se shoduje první a poslední uzel

Kružnice

Kružnicí (resp. cyklem) rozumíme posloupnost vrcholů a hran $(V_0, E_1, V_1, \ldots, E_t, V_t = V_0)$ kde vrcholy V_0, \ldots, V_t jsou navzájem různé vrcholy grafu G.

Figure: Příklad kružnice (převzato)

Poznámka

Neorientovaný graf bez kružnic nazýváme **les**. *Souvislý les* pak nazýváme **strom**.

Bipartitní graf

Bipartitní graf je takový graf, jehož množinu vrcholů lze rozdělit na dvě části, tak, že z každého vrcholu jedné části jde hrana pouze do vrcholů druhé části a naopak.

Figure: Bipartitní grafy (převzato)

Pokud jde z každého vrcholu jedné části hrana do každého vrcholu druhé části, mluvíme o **úplném bipartitním grafu**.

Graf

Eulerova úloha

Je možné projít každým mostem ve městě právě jednou a vrátit se zpět do původního místa? *Euler matematicky dokázal, že úloha není řešitelná*

Figure: Sedm mostů města Königsbergu (převzato)

Mapa - nalezení nejkratší cesty

Reprezentace grafů obecně

Náležitosti reprezentace:

- musí popisovat množinu vrcholů V
- množinu hran H
- incidenční zobrazení f

Metody reprezentace:

- 1 maticová reprezentace
- 2 reprezentace formou seznamu (počítačové zpracování)

Matice sousednosti

- matice uzel uzel
- v neoreintovaném grafu je matice symetrická
- hodnota prvku na indexu

 aij odpovídá počtu hran
 vedoucích z vrcholu i do j

Γ0	1	0	0	0	1	07
1	0	1	0	0	0	0
0	1	0	1	0	0	0
0	0	1	0	1	0	0 0 0 1 0 0
0	0	0	1	0	1	0
1	0 1 0 0 0	0	0	1	0	0
0	0	0	1	0	0	0]

Poznámka

u orientovaných grafů je hodnota prvku v i-tém sloupci a j-tém řádku 1, pokud je i-tý vrchol počátečním vrcholem j-té hrany, a -1, pokud je jejím koncovým vrcholem

Prostorová složitost

- Prostorová složitost $\mathcal{O}(|V|^2)$
- Časová složitost kontroly existence hrany

- Prostorová složitost $\mathcal{O}(|V|^2)$
- Časová složitost kontroly existence hrany $\mathcal{O}(1)$
- Časová složitost přidání hrany

- Prostorová složitost $\mathcal{O}(|V|^2)$
- Časová složitost kontroly existence hrany $\mathcal{O}(1)$
- Časová složitost přidání hrany $\mathcal{O}(1)$
- Časová složitost odebrání hrany

- Prostorová složitost $\mathcal{O}(|V|^2)$
- Časová složitost kontroly existence hrany $\mathcal{O}(1)$
- Časová složitost přidání hrany $\mathcal{O}(1)$
- Časová složitost odebrání hrany $\mathcal{O}(1)$
- Časová složitost přidání vrcholu

- Prostorová složitost $\mathcal{O}(|V|^2)$
- Časová složitost kontroly existence hrany $\mathcal{O}(1)$
- Časová složitost přidání hrany $\mathcal{O}(1)$
- Časová složitost odebrání hrany $\mathcal{O}(1)$
- ullet Časová složitost přidání vrcholu $\mathcal{O}(|V|^2)$

Matice incidence

- matice vrchol hrana
- využití u grafů bez smyček
- v neorientovaném grafů má prvek a_{ij} hodnotu 1 pokud je i-tý vrchol počátečním vrcholem j-té hrany, jinak 0

Γ1	0	0	0	0	1	0]
	1		0	0	0	0
0	1	1	0	0		
0	0	1	1	0	0	1
0	0	0	1	1	0	0
0	0	0	0	1	1	0
0	0	0	0	0	0	1

Poznámka

u orientovaných grafů je hodnota 1 u počátečního uzlu hrany a -1 u koncového uzlu hrany

Další maticové reprezentace

- matice dostupnosti
- matice vzdálenosti
- . . .

Spojový seznam sousednosti

- pro každý vrchol ukládáme seznam sousedů
- sousedící vrcholy jsou uloženy v seznamech (v libovolném pořadí)

Spojový seznam sousednosti - orientovaný graf

Spojový seznam sousednosti - neorientovaný graf

Prostorová složitost

- Prostorová složitost $\mathcal{O}(|V| + |E|)$
- Časová složitost kontroly existence hrany

- Prostorová složitost $\mathcal{O}(|V| + |E|)$
- Časová složitost kontroly existence hrany $\mathcal{O}(|V|)$
- Časová složitost přidání hrany

- Prostorová složitost $\mathcal{O}(|V| + |E|)$
- Časová složitost kontroly existence hrany $\mathcal{O}(|V|)$
- Časová složitost přidání hrany $\mathcal{O}(1)$
- Časová složitost odebrání hrany

- Prostorová složitost $\mathcal{O}(|V| + |E|)$
- Časová složitost kontroly existence hrany $\mathcal{O}(|V|)$
- Časová složitost přidání hrany $\mathcal{O}(1)$
- Časová složitost odebrání hrany $\mathcal{O}(|E|)$
- Časová složitost přidání vrcholu

- Prostorová složitost $\mathcal{O}(|V| + |E|)$
- ullet Časová složitost kontroly existence hrany $\mathcal{O}(|V|)$
- Časová složitost přidání hrany $\mathcal{O}(1)$
- Časová složitost odebrání hrany $\mathcal{O}(|E|)$
- ullet Časová složitost přidání vrcholu $\mathcal{O}(1)$

Obarvení politické mapy

Obarvení libovolné mapy tak, aby dvě sousední země nebyly obarveny stejnou barvou (four color theorem)

 v roce 1976 dokázáno, že stačí 4 barvy (Appel-Haken, 1976)

Znalostní ontologie

Znalostní ontologie

Praktické využítí

- PageRank
- CPM
- Mapy
- Grafové databáze, ontologie
- Pravděpodobnostní grafické modely
- Jádro grafu v teorii her
- · · · další optimalizační úlohy