

**In the Specification**

Please amend paragraph 0028 of the specification as follows:

[0028] In FIG. 2, a single frame 200 is shown containing 15 timeslots. 5 timeslots (the right-most 5 timeslots depicted in the figure) are shown as uplink timeslots (for data transmitted in the direction from the user equipment to the network) and 10 timeslots (the left-most 10 timeslots depicted in the figure) are shown in the downlink (for data transmitted in the direction from the network to the user equipment). One of the downlink timeslots (the left-most timeslot depicted in the figure), in this case labeled "3.84 beacon", has a special purpose: it serves used to contain "beacon" data for performing a beacon function (as is well understood in a 3GPP system, and need not be described in further detail). However, it will be understood that in general this timeslot need not necessarily be used to perform a beacon function.

Please amend paragraph 0030 of the specification as follows:

[0030] In FIG. 3, a single frame 300 is shown containing 15 timeslots (it is assumed for the purposes of this example that the timeslot duration and frame duration of the high chip rate and low chip rate systems are identical). 5 timeslots (the right-most 5 timeslots depicted in the figure) are shown as uplink timeslots (for data transmitted in the direction from the user equipment to the network) and 10 timeslots (the left-most 10 timeslots depicted in the figure) are shown in the downlink (for data transmitted in the direction from the network to the user equipment). One of the downlink timeslots (the left-most timeslot depicted in the figure), in this case labeled "7.68 beacon", has a special purpose: it serves used to contain "beacon" data for performing a beacon function (as is well understood in a 3GPP system, and need not be described in further detail). However, it will be understood that in general this timeslot need not necessarily be used to perform a beacon function.