

8-Bit Serial-Input/Serial or Parallel-Output Shift Register with Latched 3-State Outputs

High-Performance Silicon-Gate CMOS

The 74HC595A consists of an 8-bit shift register and an 8-bit D-type latch with three-state parallel outputs. The shift register accepts serial data and provides a serial output. The shift register also provides parallel data to the 8-bit latch. The shift register and latch have independent clock inputs. This device also has an asynchronous reset for the shift register.

The HC595A directly interfaces with the SPI serial data port on CMOS MPUs and MCUs.

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 328 FETs or 82 Equivalent Gates
- Improvements over HC595
 - Improved Propagation Delays
 - 50% Lower Quiescent Power
 - Improved Input Noise and Latchup Immunity

PIN ASSIGNMENT

QB [1 ●	16	v _{CC}
OC [2	15] Q _A
QD [3	14	PΑ
Q _E [4	13	OUTPUT ENABLE
Q _F [5	12	LATCH CLOCK
Q _G [6	11	SHIFT CLOCK
Q _H [7	10	RESET
GND [8	9] SQ _H
			-

ORDERING INFORMATION

Device	Package	Shipping		
74HC595N	DIP-16	2000 / Box		
74HC595M/TR	SOP-16	2500 / Reel		

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
VCC	DC Supply Voltage (Referenced to GND)	- 0.5 to + 7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	- 0.5 to V _{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	- 0.5 to V _{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	± 20	mA
l _{out}	DC Output Current, per Pin	± 35	mA
ICC	DC Supply Current, V _{CC} and GND Pins	± 75	mA
PD	Power Dissipation in Still Air, Plastic DIP† SOIC Package† TSSOP Package†	750 500 450	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Functional operation should be restricted to the Recommended Operating Conditions.

SOP Package: $-\,7$ mW/ $^{\circ}C$ from 65° to $125^{\circ}C$

For high frequency or heavy load considerations, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
VCC	DC Supply Voltage (Referenced to GN	2.0	6.0	V	
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)	0	Vcc	٧	
TA	Operating Temperature, All Package 1	- 55	+ 125	°C	
t _r , t _f	Input Rise and Fall Time (Figure 1)	V _{CC} = 2.0 V V _{CC} = 4.5 V V _{CC} = 6.0 V	0 0 0	1000 500 400	ns

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Guaranteed Limit			
Symbol	Parameter	Test Conditions	v _{CC}	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
VIH	Minimum High–Level Input Voltage	$V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	2.0 3.0 4.5 6.0	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	V
VIL	Maximum Low–Level Input Voltage	$V_{Out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{Out} \le 20 \mu\text{A}$	2.0 3.0 4.5 6.0	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	٧
VOH	Minimum High-Level Output Voltage, Q _A - Q _H	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \ \mu\text{A}$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	٧
		$V_{in} = V_{IH} \text{ or } V_{IL} I_{out} \le 2.4 \text{ mA}$ $ I_{out} \le 6.0 \text{ mA}$ $ I_{out} \le 7.8 \text{ mA}$	3.0 4.5 6.0	2.48 3.98 5.48	2.34 3.84 5.34	2.2 3.7 5.2	
V _{OL}	Maximum Low–Level Output Voltage, Q _A – Q _H	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu\text{A}$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	٧
		V_{in} = V_{IH} or V_{IL} $ I_{out} \le 2.4$ mA $ I_{out} \le 6.0$ mA $ I_{out} \le 7.8$ mA	3.0 4.5 6.0	0.26 0.26 0.26	0.33 0.33 0.33	0.4 0.4 0.4	

^{*}Maximum Ratings are those values beyond which damage to the device may occur.

[†]Derating — Plastic DIP: - 10 mW/°C from 65° to 125°C

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Gu	aranteed Li	mit	
Symbol	Parameter	Test Conditions	v _{CC}	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
VOH	Minimum High-Level Output Voltage, SQ _H	$V_{in} = V_{IH} \text{ or } V_{IL}$ $II_{out}I \le 20 \mu\text{A}$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}} I_{\text{Out}} \leq 2.4 \text{ mA} \\ I_{\text{Out}} \leq 4.0 \text{ mA} \\ I _{\text{Out}} \leq 5.2 \text{ mA}$	3.0 4.5 6.0	2.98 3.98 5.48	2.34 3.84 5.34	2.2 3.7 5.2	
V _{OL}	Maximum Low–Level Output Voltage, SQ _H	$V_{in} = V_{IH} \text{ or } V_{IL}$ $II_{out}I \le 20 \mu A$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$ \begin{aligned} V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}} & I_{\text{Out}} \leq 2.4 \text{ mA} \\ & I_{\text{Out}} \leq 4.0 \text{ mA} \\ & I _{\text{Out}} I \leq 5.2 \text{ mA} \end{aligned} $	3.0 4.5 6.0	0.26 0.26 0.26	0.33 0.33 0.33	0.4 0.4 0.4	
l _{in}	Maximum Input Leakage Current	$V_{in} = V_{CC}$ or GND	6.0	± 0.1	± 1.0	± 1.0	μΑ
loz	Maximum Three–State Leakage Current, Q _A – Q _H	Output in High–Impedance State Vin = VIL or VIH Vout = VCC or GND	6.0	± 0.5	± 5.0	± 10	μΑ
lcd _{DL1}	Waximum Quiescent Supply Current (per Package)	V _{in} = V _{CC} or GND I _{out} = 0 µA	6.0	4.0	40	160	μА

NOTE: Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book

AC ELECTRICAL CHARACTERISTICS (C_L = 50 pF, Input t_r = t_f = 6.0 ns)

			Gu	aranteed Li	mit	
Symbol	Parameter	V _{CC}	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
fmax	Maximum Clock Frequency (50% Duty Cycle) (Figures 1 and 7)	2.0 3.0 4.5 6.0	6.0 15 30 35	4.8 10 24 28	4.0 8.0 20 24	MHz
tPLH, tPHL	Maximum Propagation Delay, Shift Clock to SQ _H (Figures 1 and 7)	2.0 3.0 4.5 6.0	140 100 28 24	175 125 35 30	210 150 42 36	ns
^t PHL	Maximum Propagation Delay, Reset to SQH (Figures 2 and 7)	2.0 3.0 4.5 6.0	145 100 29 25	180 125 36 31	220 150 44 38	ns
tPLH, tPHL	Maximum Propagation Delay, Latch Clock to Q _A – Q _H (Figures 3 and 7)	2.0 3.0 4.5 6.0	140 100 28 24	175 125 35 30	210 150 42 36	ns
^t PLZ [,] ^t PHZ	Maximum Propagation Delay, Output Enable to Q _A – Q _H (Figures 4 and 8)	2.0 3.0 4.5 6.0	150 100 30 26	190 125 38 33	225 150 45 38	ns
tPZL [,] ^t PZH	Maximum Propagation Delay, Output Enable to Q _A – Q _H (Figures 4 and 8)	2.0 3.0 4.5 6.0	135 90 27 23	170 110 34 29	205 130 41 35	ns
tTLH, tTHL	Maximum Output Transition Time, Q _A – Q _H (Figures 3 and 7)	2.0 3.0 4.5 6.0	60 23 12 10	75 27 15 13	90 31 18 15	ns

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6.0 \text{ ns}$)

			Guaranteed Limit			
Symbol	Parameter	v _{CC}	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
t _{TLH} , t _{THL}	Maximum Output Transition Time, SQ _H (Figures 1 and 7)	2.0 3.0 4.5 6.0	75 27 15 13	95 32 19 16	110 36 22 19	ns
C _{in}	Maximum Input Capacitance	_	10	10	10	pF
C _{out}	Maximum Three–State Output Capacitance (Output in High–Impedance State), Q _A – Q _H	_	15	15	15	pF

NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

		Typical @ 25° C, $V_{CC} = 5.0 \text{ V}$	
C _{PD}	Power Dissipation Capacitance (Per Package)*	300	pF

^{*} Used to determine the no–load dynamic power consumption: $P_D = C_{PD} \ V_{CC}^2 f + I_{CC} \ V_{CC}$. For load considerations, see Chapter 2 of the ON Semiconductor High–Speed CMOS Data Book (DL129/D).

TIMING REQUIREMENTS (Input $t_r = t_f = 6.0 \text{ ns}$)

			Gu	aranteed Li	mit	
Symbol	Parameter	V _{CC}	25°C to - 55°C	≤ 85°C	≤ 125°C	Unit
^t su	Minimum Setup Time, Serial Data Input A to Shift Clock (Figure 5)	2.0 3.0 4.5 6.0	50 40 10 9.0	65 50 13 11	75 60 15 13	ns
^t su	Minimum Setup Time, Shift Clock to Latch Clock (Figure 6)	2.0 3.0 4.5 6.0	75 60 15 13	95 70 19 16	110 80 22 19	ns
^t h	Minimum Hold Time, Shift Clock to Serial Data Input A (Figure 5)	2.0 3.0 4.5 6.0	5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0	ns
^t rec	Minimum Recovery Time, Reset Inactive to Shift Clock (Figure 2)	2.0 3.0 4.5 6.0	50 40 10 9.0	65 50 13 11	75 60 15 13	ns
t _W	Minimum Pulse Width, Reset (Figure 2)	2.0 3.0 4.5 6.0	60 45 12 10	75 60 15 13	90 70 18 15	ns
t _W	Minimum Pulse Width, Shift Clock (Figure 1)	2.0 3.0 4.5 6.0	50 40 10 9.0	65 50 13 11	75 60 15 13	ns
t _W	Minimum Pulse Width, Latch Clock (Figure 6)	2.0 3.0 4.5 6.0	50 40 10 9.0	65 50 13 11	75 60 15 13	ns
t _r , t _f	Maximum Input Rise and Fall Times (Figure 1)	2.0 3.0 4.5 6.0	1000 800 500 400	1000 800 500 400	1000 800 500 400	ns

FUNCTION TABLE

Inputs Resulting Function					unction				
Operation	Reset	Serial Input A	Shift Clock	Latch Clock	Output Enable	Shift Register Contents	Latch Register Contents	Serial Output SQ _H	Parallel Outputs Q _A – Q _H
Reset shift register	L	Х	Х	L, H, ↓	L	L	U	L	U
Shift data into shift register	Н	D	1	L, H, ↓	L	D SR _A ; SR _N SR _{N+1}	U	SR _G SR _H	U
Shift register remains unchanged	Н	Х	L, H, ↓	L, H, ↓	L	U	U	U	U
Transfer shift register contents to latch register	Н	Х	L, H, ↓	1	L	U	SR _N LR _N	U	SR _N
Latch register remains unchanged	Х	Х	Х	L, H, ↓	L	*	U	*	U
Enable parallel outputs	Х	Х	Х	Х	L	*	**	*	Enabled
Force outputs into high impedance state	Х	Х	Х	Х	Н	*	**	*	Z

SR = shift register contents LR = latch register contents

PIN DESCRIPTIONS

INPUTS A (Pin 14)

Serial Data Input. The data on this pin is shifted into the 8-bit serial shift register.

CONTROL INPUTSShift Clock (Pin 11)

Shift Register Clock Input. A low–to–high transition on this input causes the data at the Serial Input pin to be shifted into the 8–bit shift register.

Reset (Pin 10)

Active—low, Asynchronous, Shift Register Reset Input. A low on this pin resets the shift register portion of this device only. The 8—bit latch is not affected.

Latch Clock (Pin 12)

Storage Latch Clock Input. A low-to-high transition on this input latches the shift register data.

Output Enable (Pin 13)

Active—low Output Enable. A low on this input allows the data from the latches to be presented at the outputs. A high on this input forces the outputs (Q_A-Q_H) into the high—impedance state. The serial output is not affected by this control unit.

OUTPUTS

Q_A - Q_H (Pins 15, 1, 2, 3, 4, 5, 6, 7)

Noninverted, 3-state, latch outputs.

SQ_H (Pin 9)

Noninverted, Serial Data Output. This is the output of the eighth stage of the 8-bit shift register. This output does not have three-state capability.

D = data (L, H) logic level U = remains unchanged

 $[\]uparrow$ = Low-to-High \downarrow = High-to-Low

^{* =} depends on Reset and Shift Clock inputs
** = depends on Latch Clock input

SWITCHING WAVEFORMS

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

TEST CIRCUITS

*Includes all probe and jig capacitance

Figure 7.

*Includes all probe and jig capacitance

Figure 8.

EXPANDED LOGIC DIAGRAM

TIMING DIAGRAM

