[No. of Printed Pages - 4]

ES201

Enrol. No.

[ET]

END SEMESTER EXAMINATION: NOV.-DEC., 2018

BASIC ELECTRONICS ENGINEERING

Time: 3 Hrs.

Maximum Marks: 70

Note: Attempt questions from all sections as directed.

Use of Scientific calculator is allowed.

SECTION - A (30 Marks)

Attempt any five questions out of six.

Each question carries 06 marks.

- 1. Explain base-width modulation (the Early effect) with the aid of plots of potential and minority concentration throughout the base region.
- 2. (a) Design a clamper that will perform following function:

P.T.O.

(b) Determine V_0 for the following network: (3)

- 3. Consider an operational amplifier in which the first set of signals is $v_1 = +50 \mu V$ and $v_2 = -50 \mu V$ and the second set is $v_1 = 1050 \mu V$ and $v_2 = 950 \mu V$. If the common-mode rejection ratio is 100, calculate the percentage difference in output voltage obtained for the two sets of input signals.
- 4. Give the significance of virtual ground in an op-amp. Also derive the following expression:

$$V_0 = A_d V_d \left(1 + \frac{1}{CMRR} \frac{V_c}{V_d} \right)$$

- 5. (a) Explain the significance of diffusion capacitance and derive expression for the same. (3)
 - (b) Reduce the following function to its minimum SOP form:

$$Z = A'B'C'D' + A'B'CD' + AB'C'D' + A'BCD + AB'CD' + A'B'CD$$
(3)

- 6. (a) The RC coupling amplifier gives constant gain over the mid frequency range. Explain. (3)
 - (b) Derive an expression for Transformer Utilization Factor (TUF) for the half wave rectifier. (3)

SECTION - B (20 Marks)

Attempt any two questions out of three.

Each question carries 10 marks.

 (i) Design the network of the given figure to maintain V_L at 12 V for a load variation (I_L) from 0 to 200 mA. Calculate the Rs and V_Z.

- (ii) Determine Pzmax for the Zener diode of part (i).
- 8. (a) Explain the meaning of pinch-off voltage in a JFET. Sketch the circuit of source follower and explain its working. Also determine its output impedance. (5)
 - (b) The common drain circuit has $R1 = 3.5 M\Omega$, $R2 = 1.5 M\Omega$, $Rs = 2 k\Omega$, $R_L = 20 k\Omega$, $g_m = 2.5 mS$. Determine input impedance, output impedance and voltage gain. (5)

P.T.O.

 (a) Simplify the following using K-map and implement the simplified function using NOR gates:

$$Y = \Pi M(0,1,5,9,13,14,15) + d(3,4,7,10,11).$$
 (5)

(b) Show that a full subtractor can be constructed using two half subtractors and an OR gate. Deduce a full adder using EX-OR gate. (5)

10. (a) For the given voltage feedback network, determine I_C , V_C , V_{CE} , V_E : (10)

- (b) Discuss the operation of non-inverting amplifier and also derive the expression for its voltage gain.

 (5)
- (c) Derive the mathematical expression of transconductance for JFET. Also find $V_{GS(off)}$ if the $g_{mo} = 10$ mS and $I_{DSS} = 10 \mu A$. (5)

(1800)

(2214)