Exercice 1

Écrire un algorithme qui permet d'inverser un tableau.

Exercice 2

Écrire un algorithme qui permet de déplacer décaler un tableau.

Exemple:

• Entrée:

	Н	E	L	L	0		
•	Sortie:						
	0	Н	E	L	L		

Exercice 3

Ecrire l'algorithme permettant d'effectuer la multiplication de deux vecteurs de taille N connue à l'avance et d'afficher le résultat.

Exemple:

Vecteur 1:

	2	1	4	3	
Vecteur 2:					
	1	3	5	10	

• Résultat = 2*1 + 1*3 + 4*5 + 3 * 10 = 55\

Exercice 4

Soit T un tableau de N entiers. Ecrire l'algorithme qui détermine le plus grand élément de ce tableau

Exercice 5

Proposez un algorithme permettant de calculer à la fois le minimum et le maximum d'un tableau.

Exercice 6

Soit T un tableau de N réels. Ecrire un algorithme qui permet de calculer le nombre des occurrences d'un nombre X (c'est-à-dire combien de fois ce nombre X figure dans le tableau T).

Exercice 7

Ecrire un algorithme qui calcule le nombre d'entiers pairs et le nombre d'entiers impairs d'un tableau d'entiers.

Exercice 8

Soit un tableau T(n), écrire un algorithme qui calcule VMEP (valeur moyenne des éléments positifs), VMEN (valeur moyenne des éléments négatifs) et NEM (nombre d'éléments nuls).

Exercice 9

Ecrire un algorithme qui permet de remplir un tableau T avec les 100 premiers éléments de la suite de Fibonacci.

Formule:
$$F_{n+2} = F_{n+1} + F_n$$
 avec $F_0 = 0$ et $F_1 = 1$

Exercice 10

Soit un tableau T à deux dimensions (n,m) préalablement rempli de valeurs numériques. Écrire un algorithme qui recherche la plus grande valeur au sein de ce tableau.