

1  
AD-A236 807



AD \_\_\_\_\_

WORLD REFERENCE CENTER FOR ARBOVIRUSES AND RETROVIRUSES

ANNUAL REPORT

ROBERT E. SHOPE

MAY 1, 1989

Supported by

U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND  
Fort Detrick, Frederick, Maryland 21701-5012

GRANT NO. DAMD17-87-G-7005

Yale University School of Medicine  
New Haven, Connecticut 06510

Approved for public release; distribution unlimited

The findings in this report are not to be construed as an  
official Department of the Army position unless so designated  
by other authorized documents

91 5 11 022

91-01743



## SECURITY CLASSIFICATION OF THIS PAGE

## REPORT DOCUMENTATION PAGE

Form Approved  
OMB No. 0704-0188

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |                                                                                                                                                                                                                                                                                      |                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| 1a. REPORT SECURITY CLASSIFICATION<br>Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  | 1b. RESTRICTIVE MARKINGS                                                                                                                                                                                                                                                             |                                     |
| 2a. SECURITY CLASSIFICATION AUTHORITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  | 3. DISTRIBUTION/AVAILABILITY OF REPORT<br>Approved for public release;<br>distribution unlimited                                                                                                                                                                                     |                                     |
| 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |                                                                                                                                                                                                                                                                                      |                                     |
| 4. PERFORMING ORGANIZATION REPORT NUMBER(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  | 5. MONITORING ORGANIZATION REPORT NUMBER(S)                                                                                                                                                                                                                                          |                                     |
| 6a. NAME OF PERFORMING ORGANIZATION<br>Yale University School<br>of Medicine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  | 6b. OFFICE SYMBOL<br>(If applicable)                                                                                                                                                                                                                                                 |                                     |
| 6c. ADDRESS (City, State, and ZIP Code)<br><br>Box 3333<br>New Haven, Connecticut 06510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  | 7a. NAME OF MONITORING ORGANIZATION                                                                                                                                                                                                                                                  |                                     |
| 8a. NAME OF FUNDING/SPONSORING<br>ORGANIZATION U.S. Army Medical<br>Research & Development Command                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  | 8b. OFFICE SYMBOL<br>(If applicable)                                                                                                                                                                                                                                                 |                                     |
| 8c. ADDRESS (City, State, and ZIP Code)<br><br>Fort Detrick<br>Frederick, Maryland 21701-5012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER<br><br>DAMD17-87-G-7005                                                                                                                                                                                                              |                                     |
| 11. TITLE (Include Security Classification)<br><br>(U) World Reference Center for Arboviruses and Retroviruses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  | 10. SOURCE OF FUNDING NUMBERS                                                                                                                                                                                                                                                        |                                     |
| 12. PERSONAL AUTHOR(S)<br><br>Robert E. Shope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  | PROGRAM<br>ELEMENT NO.<br>61102A                                                                                                                                                                                                                                                     | PROJECT<br>NO.<br>3M1-<br>61102BS13 |
| 13a. TYPE OF REPORT<br>Annual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  | 14. DATE OF REPORT (Year, Month, Day)<br>1989 May 1                                                                                                                                                                                                                                  |                                     |
| 15. PAGE COUNT<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |                                                                                                                                                                                                                                                                                      |                                     |
| 16. SUPPLEMENTARY NOTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |                                                                                                                                                                                                                                                                                      |                                     |
| 17. COSATI CODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  | 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)<br>Arbovirus, Serological Diagnosis, ELISA, Complement-fixation RA 1,<br>Dengue, Japanese encephalitis virus, Monoclonal Antibodies,<br>HIV, Yellow fever vaccine, Crimean-Congo hemorrhagic fever |                                     |
| 19. ABSTRACT (Continue on reverse if necessary and identify by block number)<br><br>The World Reference Center for Arboviruses and Retroviruses identified viruses from Indonesia, Ivory Coast, Viet Nam, Thailand, Angola, and USA. LaCrosse virus from an encephalitic dog was identified. A Palyam group virus, Kasba, caused arthrogryposis in cattle of Japan. ELISA was adapted to test 17D yellow fever vaccinees. H-9 and EBV-transformed lymphocyte cell lines were established to isolate HIV and other human retroviruses. Virus reference reagents for arboviruses were distributed to military laboratories and other laboratories world-wide. The low passage collection of arboviruses was augmented to over 460 strains. |  |                                                                                                                                                                                                                                                                                      |                                     |
| 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT<br><input type="checkbox"/> UNCLASSIFIED/UNLIMITED <input checked="" type="checkbox"/> SAME AS RPT. <input type="checkbox"/> DTIC USERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  | 21. ABSTRACT SECURITY CLASSIFICATION<br>Unclassified                                                                                                                                                                                                                                 |                                     |
| 22a. NAME OF RESPONSIBLE INDIVIDUAL<br>Mary Frances Bostian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  | 22b. TELEPHONE (Include Area Code)<br>301-663-7325                                                                                                                                                                                                                                   | 22c. OFFICE SYMBOL<br>SGRD-RMI-S    |

|                                                                                                                     |    |
|---------------------------------------------------------------------------------------------------------------------|----|
| TABLE OF CONTENTS.....                                                                                              | 1  |
| LIST OF TABLES AND FIGURES.....                                                                                     | 3  |
| SUMMARY.....                                                                                                        | 4  |
| FOREWORD.....                                                                                                       | 5  |
| BODY OF REPORT.....                                                                                                 | 6  |
| I. IDENTIFICATION AND CLASSIFICATION OF ARBOVIRUSES.....                                                            | 6  |
| Identification of Odrenisrou virus, Dak Ar All31, as a<br>new phlebovirus related to Arumowot virus.....            | 6  |
| Study of mosquito isolates from Indonesia.....                                                                      | 7  |
| Identification of LaCrosse-related virus isolated from<br>dogs with encephalitis in Georgia.....                    | 7  |
| Dengue-1 virus identified from blood of a patient with<br>serum yellow fever IgM reactivity in Angola.....          | 8  |
| Identification of suspected flavivirus isolates from<br>Viet Nam, Taiwan, and Indonesia.....                        | 9  |
| Identification of SP An107237 VEE complex virus from<br>sentinel mouse, Sao Paulo, Brazil.....                      | 10 |
| Identification of Kagoshima virus from <u>Culicoides</u> of<br>Japan.....                                           | 11 |
| II. CHARACTERIZATION OF MONOCLONAL ANTIBODIES.....                                                                  | 12 |
| Field tests in Rio de Janeiro of monoclonal antibodies<br>to separate subtypes of vesicular stomatitis, Indiana.... | 12 |
| ELISA for the detection of alphaviruses using monoclonal<br>antibodies.....                                         | 13 |
| III. INVESTIGATION OF OUTBREAKS.....                                                                                | 15 |
| Hemorrhagic disease of unknown cause in Karachi, Pakistan..                                                         | 15 |
| Study of Thai patients with dengue hemorrhagic fever<br>hepatic coma.....                                           | 15 |
| IV. RETROVIRUS REFERENCE STUDIES.....                                                                               | 15 |
| Establishment of HIV diagnostic capability .....                                                                    | 15 |

|                                                                                                                                      |    |
|--------------------------------------------------------------------------------------------------------------------------------------|----|
| V. DEVELOPMENT OF NEW TECHNIQUES.....                                                                                                | 16 |
| Primer extension sequencing of dengue viruses and<br>application to epidemiology.....                                                | 16 |
| Primer extension sequencing of Japanese encephalitis virus<br>strains <sup>2</sup> application of the technique to epidemiology..... | 20 |
| Adaptation of yellow fever ELISA to test volunteer<br>subjects for antibody.....                                                     | 23 |
| VI. ATTEMPTS TO ISOLATE CRIMEAN-CONGO HEMORRHAGIC FEVER VIRUS<br>RNA.....                                                            | 25 |
| VII. MATURATION OF JAPANESE ENCEPHALITIS E, NS1, AND NS1'<br>GLYCOPROTEINS IN VERO AND MOSQUITO CELL LINES.....                      | 25 |
| VIII. LOW PASSAGE ARBOVIRUS COLLECTION.....                                                                                          | 26 |
| IX. ARBOVIRUS BULLETIN BOARD, REFERENCE, AND DATA ACCESS.....                                                                        | 26 |
| X. DISTRIBUTION OF REAGENTS, WHO COLLABORATING CENTRE FOR<br>REFERENCE AND RESEARCH.....                                             | 46 |
| XI. PUBLICATIONS - 1988.....                                                                                                         | 46 |

## LIST OF TABLES AND FIGURES

|          |                                                                                                                                                        |    |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 1  | Cross reactions of Odrenisrou virus with Arumowot.....                                                                                                 | 6  |
| Table 2  | Viruses from NAMRU-II, Indonesia reacting by CF with<br>JKT-6969 mouse ascitic fluid.....                                                              | 7  |
| Table 3  | Identification of suspected flaviviruses from Viet Nam and<br>Taiwan with monoclonal antibodies.....                                                   | 9  |
| Table 4  | Plaque reduction neutralization test results of SP An107237<br>with VEE complex subtype viruses.....                                                   | 10 |
| Table 5  | Plaque reduction neutralization test results of Kagoshima<br>virus with antibody to Palyam group viruses.....                                          | 11 |
| Table 6  | Reactivity by IFA of three monoclonal antibodies to VSV<br>Indiana isolates at the Foot and Mouth Disease Center,<br>Rio de Janeiro.....               | 12 |
| Table 7  | Reactivity of monoclonal antibodies in the antigen capture<br>test with alphaviruses.....                                                              | 13 |
| Table 8  | Reactivity of combinations of monoclonal antibodies in<br>antigen capture tests with alphaviruses.....                                                 | 14 |
| Figure 1 | Nucleotide sequences of dengue type 1 isolates.....                                                                                                    | 19 |
| Figure 2 | Nucleotide sequences of dengue type 2 isolates.....                                                                                                    | 19 |
| Figure 3 | Partial RNA sequence analysis of Japanese encephalitis<br>virus strains from different geographic regions.....                                         | 21 |
| Table 9  | Currently available strains of Japanese encephalitis virus<br>which have been propagated in Vero cells and reidentified<br>by monoclonal antibody..... | 22 |
| Table 10 | The ELISA response of volunteers to 17D antigen<br>expressed as difference of O.D. between negative antigen<br>and yellow fever antigen.....           | 24 |
| Table 11 | SCLAS low passage virus strains.....                                                                                                                   | 27 |

## SUMMARY

Viruses were identified from Indonesia, Ivory Coast, Viet Nam, Thailand, Indonesia, Angola, the United States, Taiwan, Japan, and Brazil. LaCrosse virus was found for the first time causing encephalitis in dogs in Georgia. A Palyam virus was identified for the first time in Japan from Culicoides midges. A strain of dengue-1 isolated from the blood of a patient in Angola was genotyped by primer extension sequencing and found presumptively to be of Caribbean (rather than African) origin. Odenisrou, a new phlebovirus from the Ivory Coast was characterized serologically.

Monoclonal antibodies for identification of subtypes of Indiana vesicular stomatitis were field tested in Brazil. A mixture of monoclonal antibodies to Semliki Forest virus was blended to develop a sensitive antigen capture ELISA for alphaviruses.

An outbreak of hemorrhagic fever in Pakistan was studied. Although seroreactivity in one patient to Crimean-Congo hemorrhagic fever was detected, this virus was apparently not the only cause of the illness.

H-9 and EBV-transformed lymphocyte cell lines are established at Yale for the isolation and characterization of HIV and other human retroviruses.

Primer extension sequencing of dengue-1, dengue-2 and Japanese encephalitis viruses has shown geographic clustering of each of these flaviviruses. It is now possible to trace the origin of new cases and of outbreaks of diseases caused by the three viruses.

The yellow fever ELISA was adapted to test 17D vaccinees who are immunological virgins for flaviviruses.

The maturation of Japanese encephalitis E, NS1 and NS1' glycoproteins was demonstrated to differ between vertebrate and mosquito cells. The NS1 and NS1' proteins are not externalized in mosquito cells, and are in the extracellular fluid of vertebrate cell culture in particulate form.

The low passage virus collection has accessioned an additional 137 viruses in 1988, mostly strains of dengue and Japanese encephalitis viruses. The sequences of 9 flaviviruses are now on line in the electronic data bank and can be accessed by phone.

The Reference Center distributed 408 ampoules of virus, antigen, and antibody in 1988 to 14 foreign nations and 12 states of the United States. The reagents represented 121 different viruses.

## FOREWORD

In conducting the research described in this report, the investigators adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council (DHEW Publication No. (NIH) 86-23, Revised 1985).

For the protection of human subjects, the investigators have adhered to policies of applicable Federal Law 45CFR46.

## BODY OF REPORT

### I. IDENTIFICATION AND CLASSIFICATION OF VIRUSES

#### A. Identification of Odrenisrou virus, Dak Ar A1131, as a new phlebovirus related to Arumowot virus (R. Tesh and R. Shope)

Odrenisrou virus was isolated from a pool of mosquitoes in Abidjan and was referred by the Institut Pasteur, through CDC, Fort Collins for confirmation of identity as a phlebovirus. The virus was tested by plaque reduction neutralization test (PRNT) against the following phlebovirus-specific mouse immune ascitic fluids at a 1:10 dilution: Aguacate, Alenquer, Anhangas, Arbia, Arboledas, Arumowot, Belterra, Buenaventura, Bujaru, Cacao, Caimito, Candiru, Chagres, Chilibre, Corfu, Frijoles, Gabek Forest, Gordil, Icoaraci, Itaituba, Itaporanga, Joa, Karimabad, Munguba, Naples, Nique, Oriximina, Pacui, Punta Toro, Rift Valley fever, Rio Grande, Saint-Floris, Salehabad, Sicilian, Tehran, Toscana, Turuna, Urucuri, BeAr 413570, Mariquita A, BeAr 407981, CoAr 171096, CoAr 171162, and CA Ar 170897. All were negative except for Arumowot. Cross-reactions with Arumowot by PRNT and CF are shown in Table 1.

TABLE 1

#### Cross reactions of Odrenisrou virus with Arumowot

##### Plaque reduction neutralization test:

| Virus      | Mouse immune ascitic fluids |            |
|------------|-----------------------------|------------|
|            | Arumowot                    | Odrenisrou |
| Arumowot   | 1:5,120                     | <1:10      |
| Odrenisrou | 1:80                        | 1:640      |

##### Complement fixation test:

| Antigens          | Mouse immune ascitic fluid |       |
|-------------------|----------------------------|-------|
|                   | Arumowot                   |       |
| Arumowot          | >64/>64                    |       |
| Odrenisrou        |                            | 4/4   |
| Rift Valley fever |                            | <4/<4 |

Odrenisrou virus appears to be a new phlebovirus, related distantly to Arumowot virus. It is of note that both of these agents have been isolated from mosquitoes.

B. Study of mosquito isolates from Indonesia (H. Kusnanto, R. Tesh, and R. Shope)

Over 200 viruses isolated from 1979-1981 from mosquitoes in Indonesia by the late J. Converse, NAMRU-II continue to be studied. These agents were recovered in mosquito tissue culture, and most do not kill baby mice.

One hundred four of the viruses were passaged in C6/36 cells. The cells were frozen and thawed and the supernatant fluid used as CF antigen. The fluids were screened with mouse ascitic fluids of group Bunyamwera, bluetongue, chikungunya, Japanese encephalitis, group Simbu, Australia grouping fluid, Koongol, and JKT 6969. JKT 6969 is an isolate which is currently ungrouped and has a 12-segmented genome.

Six of the isolates, JKT-6468, 5441, 8442, 7003, 7180, and 7887 reacted with the Japanese encephalitis ascitic fluid. IFA with JE-specific monoclonal antibody confirmed that these were JE viruses. Most of these were isolated from Culex tritaeniorhynchus, but JKT-5441 was isolated from Anopheles vagus mosquitoes collected on Bali.

Four of the isolates reacted with bluetongue antibody by CF. These were JKT-9065, 9126, 9128, and 10757.

Thirty-one of the agents reacted with JKT-6969 ascitic fluid. These agents are listed in Table 2.

TABLE 2

Viruses from NAMRU-II, Indonesia reacting by CF  
with JKT-6969 mouse ascitic fluid

| JKT- | 6423  | JKT- | 7879 | JKT- | 10081 |
|------|-------|------|------|------|-------|
|      | 6425  |      | 7887 |      | 10087 |
|      | 6429  |      | 7937 |      | 10274 |
|      | 6434  |      | 8385 |      | 10298 |
|      | 6854  |      | 8570 |      | 10304 |
|      | 6993  |      | 9072 |      | 10370 |
|      | 7003* |      | 9086 |      | 10371 |
|      | 7041  |      | 9090 |      | 10395 |
|      | 7042  |      | 9132 |      | 10577 |
|      | 7043  |      | 9244 |      |       |
|      | 7180* |      | 9744 |      |       |

\*These specimens were also positive for Japanese encephalitis virus.

C. Identification of LaCrosse-related virus isolated from dogs with encephalitis in Georgia (S. Tirrell and R. Shope)

A virus, GA8-88, isolated from the brain of a 2-week old puppy was referred by Dr. Max Appel, Baker Institute for Animal Health, Cornell University Veterinary College. The virus was isolated in Georgia by Dr. Alfred R. Pursell, University of Georgia who informed Dr. Appel that two puppies of the same litter died.

The virus was received in A72 dog cells in which it caused CPE in 24 h and which it destroyed in 48 h. It was adapted to Vero cells in which it caused large and small plaques, and also to suckling mice which were sick or dead in 40 hours after i.c. inoculation. A complement fixation test showed that GA8-88 virus reacted with hyperimmune mouse ascitic fluids of the California serogroup and not with group Bunyamwera, rabies, EEE, Highlands J, and the flavivirus grouping fluid. Immunofluorescence of spot slides confirmed the relationship to California serogroup viruses.

Neutralization tests were carried out in baby mice inoculated i.c. A hyperimmune ascitic fluid to GA8-88 neutralized the homologous virus 6.0 log LD<sub>50</sub> and neutralized LaCrosse virus >5.2 log. LaCrosse hyperimmune ascitic fluid neutralized the homologous LaCrosse virus >5.2 log LD<sub>50</sub> and neutralized GA8-88 >6.2 log. Sera of California encephalitis, Keystone, San Angelo, Jamestown Canyon and trivittatus viruses neutralized GA8-88 to a lesser extent.

Plaque reduction neutralization tests in Vero cells are not complete although initial results confirm the mouse neutralization tests indicating that GA8-88 virus is identical or closely related to LaCrosse virus.

D. Dengue-1 virus identified from blood of a patient with serum yellow fever IgM reactivity in Angola (R. Tesh, R. Rico-Hesse, and R. Shope)

A virus was referred for identification from Drs. L.T. Figueiredo and H. Schatzmayr, Instituto Oswaldo Cruz, Rio de Janeiro. Serum specimens from patients in a suspected yellow fever outbreak in Angola were inoculated in C6/36 cells in Rio de Janeiro. Several of the acute phase sera were shown at the Instituto Oswaldo Cruz to have IgM antibody to yellow fever using the MACELISA, thus the isolate was also suspected of being yellow fever virus.

The virus was propagated in C6/36 cells and the infected cells were tested by IFA with monoclonal antibodies for yellow fever and the four serotypes of dengue. The cells reacted strongly with dengue-1 monoclonal antibody and were negative with the other antibodies. Since dengue-1 virus was being worked with in the Rio laboratory, there was a possibility of contamination; however, the virus was subsequently reisolated in Rio from the original specimen. In addition, primer extension sequencing showed that the Angola isolate differed from the Brazilian topotype. Surprisingly, the Angolan isolate also differed from the West African topotype, but resembled closely strains circulating in Jamaica and other parts of the Caribbean.

E. Identification of suspected flavivirus isolates from Viet Nam, Taiwan, and Indonesia (R. Tesh)

Viruses have been referred for confirmation of identity from Dr. Do Quang Ha, Pasteur Institute, Ho Chi Minh City, Viet Nam; from Mr. Ying-chang Wu, Taiwan Provincial Institute of Infectious Diseases, Taipei, Taiwan; and from Dr. Curtis R. Bartz, NAMRU-2, Jakarta, Indonesia. Most of the viruses had been identified or were suspected of being dengue or Japanese encephalitis viruses.

The agents were passaged in C6/36 cells and the cells were tested by IFA with monoclonal antibodies specific for dengue types 1-4 and JE viruses. Alphavirus antibodies were included in some of the tests. The 28 viruses (except for two which did not grow) from Indonesia reacted only with the JE antibody and are thus identified as strains of JE. An additional Indonesian isolate was identified as dengue-4 virus. The results with viruses from Viet Nam and Taiwan are shown in Table 3.

TABLE 3

Identification of suspected flaviviruses from Viet Nam and Taiwan with monoclonal antibodies

| Virus                 | Group A  | Group B | JE | DEN-1 | DEN-2 | DEN-3 | DEN-4 |
|-----------------------|----------|---------|----|-------|-------|-------|-------|
| VN-78                 | 0        | +       | +  | 0     | 0     | 0     | 0     |
| VN-104                | 0        | +       | +  | 0     | 0     | 0     | 0     |
| VN-113                | 0        | +       | +  | 0     | 0     | 0     | 0     |
| VN-118                | 0        | +       | +  | 0     | 0     | 0     | 0     |
| VN-131                | 0        | +       | +  | 0     | 0     | 0     | 0     |
| VN-135                | 0        | +       | +  | 0     | 0     | 0     | 0     |
| VN5-71                | +        | 0       | 0  | 0     | 0     | 0     | 0     |
| VN9-71                | + (weak) | 0       | 0  | 0     | 0     | 0     | 0     |
| TAI765101             |          |         |    | +     | 0     | 0     | 0     |
| TAI765103             |          |         |    | +     | 0     | 0     | 0     |
| TAI765104             |          |         |    | +     | 0     | 0     | 0     |
| TAI765105             |          |         |    | +     | 0     | 0     | 0     |
| TAI766601             |          |         |    | +     | 0     | 0     | 0     |
| TAI76602              |          |         |    | +     | 0     | 0     | 0     |
| TAI76603              |          |         |    | +     | 0     | 0     | 0     |
| TAI76604              |          |         |    | +     | 0     | 0     | 0     |
| TAI76605              |          |         |    | +     | 0     | 0     | 0     |
| TAI76630              |          |         |    | 0     | +     | 0     | 0     |
| TAI76635              |          |         |    | 0     | +     | 0     | 0     |
| TAI76649 (not viable) |          |         |    |       |       |       |       |
| Mosquito pool         |          |         |    | +     | 0     | 0     | 0     |
| TAI PL-001            |          |         |    | 0     | +     | 0     | 0     |
| TAI PL-002            |          |         |    | 0     | +     | 0     | 0     |
| TAI PL-003            |          |         |    | 0     | +     | 0     | 0     |
| TAI PL-004            |          |         |    | 0     | +     | 0     | 0     |
| TAI PL-046            |          |         |    | 0     | +     | 0     | 0     |

It is interesting that both dengue-1 and dengue-2 viruses were active in the Taiwan outbreak of 1987. In addition, the identity of 9 strains suspected of JE virus from Taiwan was confirmed by IFA reaction with JE-specific monoclonal antibody.

F. Identification of SP An107237 VEE complex virus from sentinel mouse, Sao Paulo, Brazil (B. Fonseca and R. Shope)

SP An107237 virus was referred by the Instituto Adolfo Lutz, Sao Paulo, Brazil for identification. This virus was recovered recently from a sentinel mouse exposed It reacted by CF test with the alphavirus grouping mouse ascitic fluid and was shown to be more closely related to VEE complex viruses than to other alphaviruses. Plaque reduction neutralization testing (Table 4) with the VEE complex virus subtypes indicated that it was not distinguishable from 78 V 3531 virus, subtype I, variety F, isolated in Brazil in 1978, and that it differed from subtype I, variety A.

TABLE 4

Plaque reduction neutralization test results of SP An107237 with VEE complex subtype viruses

| Viruses<br>Subtype | Antibodies  |             |               |                 |            |              |            |          |                |
|--------------------|-------------|-------------|---------------|-----------------|------------|--------------|------------|----------|----------------|
|                    | VEE<br>TC83 | IA          | 78V3531<br>IF | SP An<br>107237 | EVE<br>II  | MUC<br>III   | PIX<br>IV  | CAB<br>V | AG80-663<br>VI |
| VEE TC83           | <u>320</u>  | 160         | 160           | 80              | 10         | 10           | 20         | 20       | 20             |
| 78V3531            | 160         | <u>5120</u> | 5120          | 80              | 10         | 20           | 80         | 320      |                |
| SP An107237        | 40          | 10240       | <u>10240</u>  | 160             | 10         | 40           | 160        | 320      |                |
| Everglades         | 1280        | 1280        | 2560          | <u>10240</u>    | 160        | 20           | 40         | 80       | 80             |
| Mucambo            | 40          | 80          | 160           | 40              | <u>320</u> | 20           | 80         | 80       | 80             |
| Pixuna             | 10          | 10          | 20            | 40              | 10         | <u>10240</u> | 40         | 40       |                |
| Cabassou           | <10         | 10          | 10            | <10             | <10        | <10          | <u>320</u> | 10       |                |
| Ag80-663           | 40          | 2560        | 1280          | 160             | 80         | 160          | 160        | 160      | <u>10240</u>   |

Although subtype I varieties C, D, and E were not included in the PRNTs, SP An107237 was more distinct from subtype I, variety A than it was from Everglades (subtype II). This observation raises the question whether the currently classified IF viruses may not actually be distinct enough from other subtype I varieties to warrant the IF viruses being reclassified as a new subtype rather than as a variety of subtype I.

G. Identification of Kagoshima virus from Culicoides of Japan (B. Fonseca and R. Shope)

An orbivirus of the Palyam serogroup was referred for identification by Dr. Y. Inaba of the National Institute of Animal Health, Tsukuba, Japan. This virus, called Kagoshima virus, was isolated from a pool of Culicoides oxystoma collected in November, 1984 in a cowshed in Kagoshima on Kyushu Island (Kurogi, H. et al., Isolation and preliminary characterization of an orbivirus of the Palyam serogroup from biting midge Culicoides oxystoma in Japan, Vet. Microbiol., accepted for publication). This is the first Palyam group virus recognized in Japan. In tests at Tsukuba, Kagoshima virus was not neutralized by sera to D'Aguilar, and showed a one-way cross reaction with Bunyip Creek virus. Dr. Inaba did not have available other Palyam group viruses to complete the tests.

A mouse ascitic fluid was prepared to Kagoshima virus. The virus produced plaques in Vero cells. A plaque reduction neutralization test indicated a relationship to Kasba virus (Table 5). The reciprocal test has not yet been completed.

TABLE 5

Plaque reduction neutralization test results of Kagoshima virus with antibody to Palyam group viruses

|               |        |
|---------------|--------|
| Kagoshima     | 1:640  |
| Bunyip Creek  | <1:10  |
| CSIRO Village | <1:10  |
| D'Aguilar     | <1:10  |
| Kasba         | >1:320 |
| Marrakai      | 1:10   |
| Palyam        | <1:10  |
| Vellore       | <1:10  |
| Nyabira       | <1:10  |

## II. CHARACTERIZATION OF MONOCLONAL ABTIBODIES

A. Field tests in Rio de Janeiro of monoclonal antibodies to separate subtypes of vesicular stomatitis, Indiana (P. Fernandez, W.R. Chen and R. Tesh)

The development of specific monoclonal antibodies which recognize subtypes of VSV Indiana was reported in the 1987 Annual Report (p. 19). During 1988, one of us (PF) carried three monoclonal antibodies to the Pan American Health Organization Foot and Mouth Disease Laboratory outside of Rio de Janeiro. There, the antibodies were tested by IFA using spot slides of VSV Indiana strains grown in a pig kidney line (Instituto Biologico Rim Suino-2).

The monoclonal antibodies were designed to be specific for Indiana (3-B10-B9), Cocal (2-3-F1-G10) and Alagoas (2-E-6-6G). Table 6 shows the results. The antibodies were quite specific for the designated subtypes. The Indiana-1 monoclonal reacted strongly with both strains available, and although it cross-reacted with 2 of the Alagoas strains (Indiana-3), the cross-reactions were not marked. The Cocal (Indiana-2) antibody was specific when tested with 7 different strains; cross-reaction was noted with the New Jersey type. This was a surprise, but this does not negate the usefulness of the monoclonal antibody. The Alagoas (Indiana 3) reacted only with 2 of the five strains typed as Indiana 3 by CF. Further work needs to be done to confirm these reactions, and possibly to select another monoclonal antibody for Alagoas.

TABLE 6

Reactivity by IFA of three monoclonal antibodies to VSV Indiana isolates at the Foot and Mouth Disease Center, Rio de Janeiro

### Monoclonal antibody

| Viral subtype               | Indiana<br>3-B10-B9 | Cocal<br>2-3-F1-G10 | Alagoas<br>2-E-6-6G |
|-----------------------------|---------------------|---------------------|---------------------|
| Indiana 1 YARU              | +++                 | -                   | -                   |
| Indiana 1 Rio               | +++                 | -                   | -                   |
| Indiana 2 Cocal (Prototype) | -                   | +++                 | -                   |
| Indiana 2 Cocal             | -                   | ++                  | -                   |
| Indiana 2 Salto             | -                   | +++                 | -                   |
| Indiana 2 Rancheria         | -                   | +++                 | -                   |
| Indiana 2 Riberao           | -                   | ++                  | -                   |
| Indiana 2 Maraba            | -                   | +++                 | -                   |
| Indiana 2 Maipu             | -                   | +++                 | -                   |
| Alagoas CoAr 171044         | -                   | -                   | +++                 |
| Indiana 3 Alagoas           | -                   | -                   | +++                 |
| Indiana 3 Espinosa          | +                   | -                   | -                   |
| Indiana 3 Sergipe           | +                   | -                   | -                   |
| Indiana 3 Agulhas Negras    | +                   | -                   | -                   |
| New Jersey                  | -                   | ++                  | -                   |

B. ELISA for the detection of alphaviruses using monoclonal antibodies (I. Greiser-Wilke, V. Moennig, O.R. Kaaden, and R. Shope)

Monoclonal antibodies raised to Semliki Forest virus and selected by testing with Sindbis virus were prepared at the Institute for Virology, Hannover, Germany. The antibodies were brought to Yale in order to test them with the full range of alphaviruses. A sensitive immunoassay for detection of alphaviruses was derived from a mixture of the antibodies. Table 7 shows the reactivity and detection limits of 5 of the antibodies. C2, C12, and C42 were not reactive with VEE complex viruses and in individual tests, none were reactive with Pixuna antigen. In addition none of the five were reactive with Barmah Forest antigen.

However, when the monoclonal antibodies were mixed, it was possible to detect Barmah Forest, Pixuna, and the other VEE complex viruses. In fact the detection system was quite sensitive. These results are shown in Table 8.

Table 7: Reactivity of monoclonal antibodies in the antigen capture test with alphaviruses

| Virus                   | Virus titer <sup>1*</sup><br>log TCID <sub>50</sub> /ml | Detection limit (log TCID <sub>50</sub> /ml) |     |     |            |     |
|-------------------------|---------------------------------------------------------|----------------------------------------------|-----|-----|------------|-----|
|                         |                                                         | C2                                           | C12 | C42 | Mabs SFv/C | C3  |
| Eastern encephalitis    | 7.9                                                     | 6.4                                          | 6.1 | 7.9 | 6.7        | 6.7 |
| Venezuelan encephalitis |                                                         |                                              |     |     |            |     |
| V. encephalitis         | 6.5                                                     | 0                                            | 0   | 0   | 5.0        | 4.7 |
| Everglades              | 7.6                                                     | 0                                            | 0   | 0   | 7.6        | 7.6 |
| Mucambo                 | 6.8                                                     | 0                                            | 0   | 0   | 5.0        | 5.0 |
| Pixuna                  | 6.4                                                     | 0                                            | 0   | 0   | 0          | 0   |
| Bijou Bridge            | 6.3                                                     | 0                                            | 0   | 0   | 4.8        | 5.4 |
| Western encephalitis    |                                                         |                                              |     |     |            |     |
| W. encephalitis         | 7.6                                                     | 4.9                                          | 4.6 | 7.0 | 6.7        | 7.6 |
| Y62-33                  | 6.6                                                     | 5.1                                          | 5.1 | 0   | 6.3        | 0   |
| Fort Morgan             | 7.0                                                     | 5.5                                          | 5.2 | 6.0 | 6.4        | 0   |
| Sindbis                 | 7.0                                                     | 5.2                                          | 4.9 | 6.4 | 6.1        | 7.0 |
| Whataroa                | 4.6                                                     | 4.3                                          | 4.0 | 0   | 4.3        | 0   |
| Kyzylagach              | 5.9                                                     | 3.8                                          | 3.8 | 4.7 | 4.4        | 4.4 |
| Semliki Forest          |                                                         |                                              |     |     |            |     |
| Semliki Forest          | 8.0                                                     | 6.5                                          | 6.3 | 6.5 | 7.7        | 8.0 |
| Chikungunya             | 5.8                                                     | 0                                            | 5.8 | 5.8 | 0          | 0   |
| - O'nyong nyong         | 5.8                                                     | 3.7                                          | 3.7 | 4.3 | 4.0        | 4.0 |
| Getah                   | 7.4                                                     | 6.2                                          | 5.9 | 6.8 | 6.8        | 6.8 |
| - Sagiyama              | 7.7                                                     | 6.5                                          | 6.5 | 6.8 | 0          | 0   |
| - Bebaru                | 6.9                                                     | 5.7                                          | 5.7 | 6.0 | 0          | 6.6 |
| - Ross River            | 7.3                                                     | 6.4                                          | 6.1 | 6.4 | 7.0        | 7.0 |
| Mayaro                  | 7.3                                                     | 6.1                                          | 5.8 | 6.1 | 6.4        | 6.1 |
| - Una                   | 7.6                                                     | 7.0                                          | 6.4 | 7.0 | 6.4        | 7.3 |
| Ndumu                   | 6.8                                                     | 5.6                                          | 5.3 | 5.9 | 7.1        | 0   |
| Middelburg              | 7.3                                                     | 6.4                                          | 6.1 | 6.4 | 0          | 6.7 |
| Barmah Forest           | 6.0                                                     | 0                                            | 0   | 0   | 0          | 0   |

1\* lowest dilution tested

**Table 8 : Reactivity of combinations of monoclonal antibodies in antigen capture tests with alphaviruses**

|                         | Virus titer <sup>1*</sup><br>log TCID <sub>50</sub> /ml | Detection Limit (log TCID <sub>50</sub> /ml) |          |          |  |
|-------------------------|---------------------------------------------------------|----------------------------------------------|----------|----------|--|
|                         |                                                         | Mix.1- <sup>2</sup>                          | Mix.1    | Mix.2    |  |
|                         |                                                         | Mix.1-PO                                     | Mix.3-PO | Mix.3-PO |  |
| Eastern encephalitis    | 7.9                                                     | 6.4                                          | 5.8      | 6.1      |  |
| Venezuelan encephalitis |                                                         |                                              |          |          |  |
| V. encephalitis         | 6.5                                                     | 5.3                                          | 5.0      | 5.3      |  |
| Everglades              | 6.6                                                     | 5.4                                          | 5.7      | 5.4      |  |
| Mucambo                 | 6.8                                                     | 5.9                                          | 5.0      | 5.6      |  |
| Pixuna                  | 6.4                                                     | 4.8                                          | 5.4      | 4.8      |  |
| Bijou Bridge            | 6.3                                                     | 5.1                                          | 4.8      | 5.4      |  |
| Western encephalitis    |                                                         |                                              |          |          |  |
| W. encephalitis         | 7.6                                                     | 5.5                                          | 5.5      | 5.8      |  |
| Y62-33                  | 6.6                                                     | 5.4                                          | 4.8      | 5.1      |  |
| Fort Morgan             | 7.0                                                     | 6.1                                          | 5.2      | 5.5      |  |
| Sindbis                 | 7.0                                                     | 5.5                                          | 5.2      | 5.8      |  |
| Whataroa                | 4.6                                                     | 3.7                                          | 3.7      | 3.7      |  |
| Kyzylagach              | 5.9                                                     | 4.4                                          | 4.1      | 4.1      |  |
| Semliki Forest          |                                                         |                                              |          |          |  |
| Semliki Forest          | 8.0                                                     | 5.9                                          | 5.6      | 5.6      |  |
| Chikungunya             | 5.8                                                     | 5.8                                          | 5.2      | 5.5      |  |
| - O'nyong nyong         | 5.8                                                     | 3.7                                          | 3.1      | 3.4      |  |
| Getah                   | 7.4                                                     | 6.2                                          | 5.9      | 5.9      |  |
| - Sagiyama              | 7.7                                                     | 5.9                                          | 5.6      | 5.6      |  |
| - Bebaru                | 6.9                                                     | 5.7                                          | 5.4      | 5.4      |  |
| - Ross River            | 7.3                                                     | 6.4                                          | 5.8      | 5.8      |  |
| Mayaro                  | 7.3                                                     | 5.8                                          | 5.5      | 5.8      |  |
| - Una                   | 7.6                                                     | 6.1                                          | 5.8      | 5.8      |  |
| Ndumu                   | 6.8                                                     | 5.3                                          | 5.0      | 5.3      |  |
| Middelburg              | 7.3                                                     | 6.1                                          | 5.5      | 6.1      |  |
| Barmah Forest           | 6.0                                                     | 5.1                                          | 5.1      | 5.1      |  |

1\* lowest dilution tested

2\* Mixture 1: SFV/C12 + SFV/C3

Mixture 2: SFV/C2 + SFV/C12 + SFV/C42 + SFV/C3

Mixture 3: SFV/C2 + SFV/C12 + SFV/C42 + SFV/C3 + SFV/C8

### III. INVESTIGATION OF OUTBREAKS

#### A. Hemorrhagic disease of unknown cause in Karachi, Pakistan (G. Tignor, A. Smith, R. Cedeno, and R. Shope)

Sera from 4 patients suspected of viral hemorrhagic fever were referred for testing by Maj. Gen. M.I. Burney of the National Institute of Health, Islamabad, Pakistan in January 1986. The patients were residents of Karachi City and had fever, muscle pains, and in some patients, hematemesis.

The sera were tested by IFA for Crimean-Congo hemorrhagic fever (CCHF), Hantaan, Rift Valley fever, Ebola, and Marburg. Acute and convalescent sera from patients A and C, and acute serum from patient B were negative; however, convalescent serum from patient D was strongly positive for CCHF virus. Additional sera including a repeat sample from patient D were received later. These were tested by IFA and ELISA with CCHF. Only the repeat serum from patient D was again strongly positive. A specimen of brain tissue was also sent for attempted isolation of virus in baby mice. No virus was isolated.

It was concluded that although one patient had CCHF antibody, CCHF was probably not the cause, or at least the sole cause, of the hemorrhagic fever outbreak.

#### B. Study of Thai patients with dengue hemorrhagic fever and hepatic coma (R. Tesh)

Specimens from 5 patients with unusual manifestations of hemorrhagic fever were referred by Dr. Prasert Thongcharoen, Faculty of Medicine, Mahidol University, Bangkok, Thailand. These patients were hospitalized in 1987. They had high fever, followed by bleeding and hepatic coma. All had hepatomegaly, thrombocytopenia, and marked elevation of transaminases. Tests for hepatitis A and B were negative. Dengue hemorrhagic fever was suspected since 4/5 patients had dengue antibody, usually in high titer, but the unusual hepatic manifestations prompted the request to rule out yellow fever.

The plasma from each case and the liver of one patient taken at necropsy were inoculated into C6/36 cells. The cells did not show cytopathic effect. Seven days after inoculation, the cells were examined for flaviviruses using monoclonal antibodies and IFA. All tests were negative.

### IV. RETROVIRUS REFERENCE STUDIES

#### A. Establishment of HIV diagnostic capability (R. Shope)

H-9 cells and a line of EBV-transformed human lymphocytes are being established in collaboration with the laboratory of Dr. I. George Miller, Department of Pediatrics, Yale University School of Medicine. The EBV-transformed cells are more sensitive for isolation of HIV. An arrangement has been made with Dr. Jorge Boshell, Instituto Nacional de Salud, Bogota, Colombia to receive materials from AIDS patients and to receive HIV isolates for confirmation of identity and for storage as reference strains.

## V. DEVELOPMENT OF NEW TECHNIQUES

### A. Primer extension sequencing of dengue viruses and application to epidemiology (R. Rico-Hesse and R. Tesh; supported in part by The Rockefeller Foundation)

This project aims to develop the methodology through primer extension sequencing of dengue virus RNA to determine the worldwide transmission patterns of dengue viruses in order to understand their epidemiology and improve control of disease. The methodology will also permit identification of viral factors which influence the severity of dengue infection.

Primer extension sequencing of RNA templates can specifically target selected genomic regions for comparison, such that areas on the genome having different rates of evolution may be independently examined. Thirty-two strains of dengue-1 and dengue-2 isolated over a 20 year span, vary sufficiently at the nucleotide level to make the approach applicable to the study of dengue virus epidemiology. A portion of the NS1/E junction region of the dengue genome showed fixation of mutation rates of approximately 7% across isolates from different geographic areas. The majority of these mutations occurred in the third position of the codon. Other NS1 and capsid sequences showed an equivalent rate of mutation, but the sites were not limited to the third position, and many amino acid changes occurred across strains.

Analysis of <5% of the genome revealed that the evolutionary patterns of dengue viruses of serotypes 1 and 2 are different, as are the transmission pathways of these viruses across the world. These relationships follow those defined by oligonucleotide fingerprinting, although much broader relationships were revealed. So far the research has shown 1) that limited genomic sequencing for the determination of transmission pathways is applicable to RNA viruses other than polio, even though mutation rates are lower, 2) that the results are easy to interpret and are directly comparable across serotypes as well as within serotypes, and 3) that the technique allows the definition of broader dengue virus genetic relationships than was possible with oligonucleotide fingerprinting.

Sixteen strains of dengue-1 and 16 of dengue-2 initially were used from the low passage collection maintained in the Reference Center. The viruses were passaged twice in C6/36 cells and dengue serotype was confirmed using type-specific monoclonal antibodies. One spinner culture bottle containing 300 ml of C6/36 cells in suspension was inoculated with approximately 1 pfu/cell of each of the 32 viruses. The culture fluid was harvested by low speed centrifugation on day 6 post inoculation.

Viral RNA was prepared for sequencing using the technique previously used for polio virus (Rico-Hesse, R. et al., Natural distribution of wild type 1 poliovirus genotypes. In: Positive Strand RNA Viruses (R.R. Rueckert and M.A. Brinton, Eds.), pp. 477-486. Alan R. Liss, New York). The virus was precipitated by stirring 8-12 h in polyethylene glycol and collected by centrifugation. The virions were then pelleted by ultracentrifugation through a sucrose cushion and dissociated with 1% SDS and 1% 2-mercaptoethanol. The suspension was then extracted 3 times with a

phenol:chloroform mixture, and LiCl was added to precipitate the RNA in ethanol. The RNA pellet was washed 2X in ethanol and dried in vacuo. The RNA was resuspended in buffer and reaction mixes. This crude RNA was used in primer-extension experiments, without generating artifacts or other problems in interpreting the data. The estimated RNA yield was approximately 25 ug per virus, sufficient for approximately 5 primer-extension sequencing reactions. The procedure was repeated whenever more RNA was needed, using the same seed virus.

Sequencing reactions used reverse transcriptase to extend synthetic DNA primers in the presence of the Sanger dideoxy chain-terminating inhibitors, as modified for RNA templates. The sequences to which the primers bind must be known. At the beginning of the project, sequences for two different strains of type 2 and one of type 1 had been reported. Tabulation of these data, and those from a serotype 4 strain, pointed to areas conserved across serotypes which would serve as good targets for synthetic primers. Six different primers were designed and tested in primer-extension experiments on 6 viruses of serotype 1 initially. Later, other primers were designed for dengue type 2 strains, binding to the equivalent genomic areas as those for type 1 strains.

Three distinct functional domains of the dengue virus genome were explored by sequencing: the capsid, C; the envelope, E; and the non-structural protein, NS1.

The 6 primers used to obtain RNA sequence information and their target regions are: (1) PR3, a 22-mer, 5'-CTGTTGGTGGGATTGTTAGGAA-3', binds to the center of the C gene; (2) VD2, a 17-mer, 5'-TCCACATTTGAGTTCTC-3', binds to the 3' end of the E gene; (3) NAU1, a 25-mer, 5'-TGGCTGATCGAATTCCACACACACC-3', hybridizes to the 5' end of NS1; (4) NAU4, a 15-mer, 5'-TCTATCCAGTACCCC-3', binds to the middle of the NS1 gene; (5) D1234, a 14-mer, 5'-CCGTACCAGCACCC-3', binds to the 3' end of NS1, and primes dengue viruses of all four serotypes; (6) NS1/920, a 23-mer, 5'-GTGCAAGATCGGCAGCACCATTC-3', binds to the 3' end of NS1, and seems to be conserved across all flaviviruses. Nucleotide sequences obtained with these synthetic DNA primers begin 10-20 nucleotides upstream of the primer binding site.

The E/NS1 junction of the genome was chosen as the best source of nucleotide sequences for comparison across strains of the same serotype and across the 4 serotypes, to derive evolutionary information which can be interpreted epidemiologically. This choice was based on the following:

1. This area of the genome showed a uniform rate of random mutation, without hypervariable regions that might be affected by immune selection of epitopes.
2. The large majority of the mutations occurred in the third position of the codon, and are therefore silent, probably random mutations.
3. Complete E gene nucleotide sequences of type 1 dengue viruses obtained at CDC, Fort Collins have shown this region to vary in a non-uniform manner. Limited sequences done at Yale confirmed these results.

4. Nucleotide sequences encoding the capsid showed very little variation across strains within a serotype.

5. Comparisons of nucleotide sequences across the E/NS1 junction established genetic relationships among strains which seem to correlate with geographic origin and with previous oligonucleotide fingerprinting studies. A sample of the obtained nucleotide sequences is shown in Figs. 1 and 2. Sixty nucleotides are shown, from the indicated map sites, from 16 isolates of serotypes 1 and 2, respectively. The viruses were compared to an arbitrary reference strain (underlined), a previously published sequence obtained by molecular cloning and sequencing. Nucleotide differences are indicated by letters; dashes indicate identities.

The alignment of approximately 150 nucleotides of sequence information for dengue isolates of serotypes 1 and 2, obtained with the NAUL primer, gives some information as to the evolutionary relationships of strains. A rough estimate of 7% nucleotide sequence divergence across strains of a serotype was derived from these data, by averaging the medians of divergence within each serotype. A portion of these data is shown in Figs. 1 and 2, and represents regions where visual comparison across isolates demonstrates these relationships (these regions showed higher amounts of variation across strains, or are "hot spots"). Note that the compared areas are different regions of the genome for the two serotypes; strains of the two serotypes show different rates of mutation across the same NS1 region of the genome, although they were aligned by amino acid sequence. The reason(s) for these differences are unknown and may represent three-dimensional structural differences between the proteins of types 1 and 2.

Based on only 60 nucleotides shown here, it is evident that type 1 and type 2 strains can be grouped according to geographic origin. For type 1 strains, viruses obtained from Southeast Asia, the Americas, and Africa fall into separate groups, with the direct relationships among some strains evident (e.g., Thailand, 1980, and Taiwan, 1987). The circulation of two distinct genotypes in one country (e.g., Mexico, 1980, 1982, and 1983) is suggested by this comparison, while the relationship between two geographically isolated strains is unclear (Burma, 1976, and Haiti, 1983). The highest amount of nucleotide difference across this region can be calculated at approximately 11% (7/60).

For type 2 strains, where more variation is seen across isolates, genetic relationships are more obvious, and geographic groups can also be distinguished. Africa is represented by strains from Ivory Coast and the Republic of Guinea; isolates from the South Pacific show identity with each other and with the Puerto Rican passaged vaccine strain; isolates from the Americas (Mexico, Colombia, and Puerto Rico) show similarity to those from the South Pacific, and suggest a possible origin of these strains; the close relationship between a strain from Taiwan (PL-001, 1981) and one from the Philippines (1983), suggests direct transmission routes. The highest amount of sequence divergence seen across this area is 20% (12/60).

The only point of disparity between the sequencing data and oligonucleotide fingerprinting data occurs when comparing West African type 2 isolates (IVOR 80, GUIN 81) with a Jamaican isolate from 1982. By

**Figure 1. Nucleotide sequences of dengue type 1 isolates**

|              |      |    | 2302                                                  | 2361 |
|--------------|------|----|-------------------------------------------------------|------|
| <u>16299</u> | NAUR | 77 | GCUAGGAUAAAUCUAGGAGCACGUCCUUUCAAUGACGUACGCAUGGGCAUGGU |      |
| 8682         | PHIL | 74 | -----                                                 |      |
| 2683         | FIJI | 75 | -----                                                 |      |
| 8686         | BURM | 76 | -----U-----A-----G-----U-----                         |      |
| 8690         | JAMA | 77 | -U-G-----U-----A-----G-----U-----                     |      |
| 1186         | INDO | 77 | -----                                                 |      |
| 1236         | INDO | 78 | -----U-----                                           |      |
| IBH689       | NIGE | 78 | -----U-----G-----U-C-U-----                           |      |
| 29177        | SENE | 79 | -----U-----A-----G-----C-U-----                       |      |
| PU0359       | THAI | 80 | -----G-----U-----C-----                               |      |
| 1298         | MEXI | 80 | -----U-----                                           |      |
| 1344         | MEXI | 82 | -U-G-----U-----A-----G-----C-U-----                   |      |
| 1351         | COLO | 82 | -U-G-----U-----G-----A-----G-----C-U-----             |      |
| 1412         | MEXI | 83 | -U-G-----U-----A-----A-----C-U-----                   |      |
| 1413         | HAIT | 83 | -----U-----A-----G-----                               |      |
| 347869       | COLO | 85 | -U-G-----U-----A-----G-----C-U-----                   |      |
| 765101       | TAIW | 87 | -----G-----U-----C-----                               |      |

**Figure 2. Nucleotide sequences of dengue type 2 isolates.**

|                |      |    | 2432                                                      | 2491   |
|----------------|------|----|-----------------------------------------------------------|--------|
| <u>PR15951</u> | PUER | 69 | AAAUGUGGCAGUGGAAUAUUCGUACAGAUACUGCAUACAUGGACAGAACAAUACAAG |        |
| <u>NGC</u>     | NEWG | 44 | --G-----G-U-A-----C-----C-----                            |        |
| PR159          | PUER | 69 | -----U-----C-U-C-----                                     |        |
| 28741          | TAHI | 71 | -----                                                     |        |
| NC9163         | NEWC | 72 | -----                                                     |        |
| 8720           | INDO | 73 | -----G-U-UA-----C-----C-----A-----                        |        |
| 1251           | TONG | 74 | -----                                                     |        |
| DakA578        | IVOR | 80 | -----A-----G-C-U-A-U-C-U-----C-U-----G-----A-----         |        |
| 1318           | PUER | 81 | -----                                                     | C----- |
| PM33974        | GUIN | 81 | -----A-----G-C-U-A-U-C-U-----C-U-----G-----A-----         |        |
| PL-001         | TAIW | 81 | -----U-----GU-U-A-----C-U-----C-----                      |        |
| PL-046         | TAIW | 81 | -----G-U-A-----C-U-----C-----                             |        |
| 1329           | JAMA | 82 | -----G-C-UA-----C-----U-----                              |        |
| PhH2172        | PHIL | 83 | -----U-----GU-U-A-----C-U-----C-----U-----                |        |
| 044            | MEXI | 83 | -----                                                     |        |
| 975            | SRIL | 85 | -----G-U-U-----C-U-----C-----A-----                       |        |
| 766635         | TAIW | 87 | -----G-U-A-----C-----C-----                               |        |
| 351863         | COLO | 88 | -----C-----                                               |        |

fingerprinting, two Jamaican strains from 1981 were shown to be similar to an isolate from Upper Volta (1980) and it was suggested that West Africa was the source of strains circulating in the Caribbean. The nucleotide sequence data suggest that a Jamaican isolate (#1329) shares a common progenitor with an Indonesian isolate (1973) and shows little relationship to two isolates from West Africa. In fact, isolates from West Africa are very distinct in their patterns of mutation. The inclusion of more isolates in this study should clarify this matter.

Within the serotype 2 strains tested, one isolate from Thailand (PUO-293, from 1980) and one from Jamaica (124, from 1983), obtained from patients with DHF/DSS (S. Kliks) were not bound by the NAU1 primer used to obtain sequence information from all other strains, and no sequences for comparison were obtained from this region. Thus, these two strains vary in sequence across the 25 nucleotides to which the primer hybridizes, when compared to all other dengue 2 strains. One additional primer, D1234, which binds downstream from the NAU1 site, did produce sequence data, confirming the presence of RNA in the reaction mixes and the fact that these strains are indeed dengue 2-like at the nucleotide level. This information serves as preliminary evidence for distinguishing dengue isolates associated with hemorrhagic disease from those causing only dengue fever and this characteristic is shared by geographically independent isolates.

B. Primer extension sequencing of Japanese encephalitis virus strains and application of the technique to epidemiology (W. Chen, R. Rico-Hesse, and R. Tesh)

Japanese encephalitis (JE) virus strains from the Reference Center low passage collection, isolated from humans, pigs, and mosquitoes, and from a number of different geographic regions (Japan, China, Taiwan, Thailand, and India) were compared by primer-extension sequencing. The long-term goal of this project is to study the geographic distribution of JE virus genotypes and to gain information on the epidemiology of this virus.

Synthetic oligonucleotide primers were made to hybridize between E glycoprotein and NS1 areas of the genome (B-33, B-31, B-10); these areas showed variation across dengue viruses. Comparison of the resulting JE sequences did not show much difference among these viruses. Other primers were made to hybridize to the NS1 region. One primer did not work; primer number NS1-1 connected with number B-10 and provided 300 nucleotides of continuous information. Because NS1-1 and B-10 overlap, primer number B-31 and NS1-1 were used primarily during the continuation of the study; these two primers were used to obtain sequences of more than 10 strains of JE, but the results still did not show much variation among strains. The 3' end of the genome, which does not code for protein, was explored also. JE virus strains from different geographic distributions were compared across this region of the genome; again the results did not show much variation among strains. These data suggested that JE might be a very conserved virus; that is, this virus does not fix random mutations at a very high rate.

FIGURE 3

Partial RNA sequence analysis of Japanese encephalitis virus strains from different geographic origins

| STRAIN NO. | VR      | 673                                                          | 732 |
|------------|---------|--------------------------------------------------------------|-----|
| JaOArS982  | JAPN    | AUUGCUGGUGUGACAACCAAGAAGUCUACGUCCAAUAUGGACGGUGCACGCCGACCAGGC |     |
| 2909/84    | THAI 84 | -----C-----U-----G-----G-----U-----C-----A-----              |     |
| B-2239     | THAI 84 | -----C-----U-----G-----G-----U-----C-----A-----              |     |
| 2373/79    | THAI 79 | -----C-----U-----G-----G-----U-----C-----A-----              |     |
| B-0860     | THAI 83 | -----U-----U-----G-----G-----U-----C-----A-----              |     |
| KE-093     | THAI 83 | -----C-----U-----G-----G-----U-----C-----A-----              |     |
| 1034/83    | THAI 83 | -----U-----G-----A-----C-----U-----A-----                    |     |
| HK 8256    | TAIW ?  | -----                                                        |     |
| JaGAr#01   | JAPN 59 | -----                                                        |     |
| 691004     | SRLN 69 | -C-----U-----NN-----                                         |     |
| P-20778    | INDI 85 | -C-----U-----N-----U-----                                    |     |
| KE-105     | THAI 83 | -----U-----U-----G-----G-----U-----C-----A-----              |     |
| BEIJING    | CHIN 60 | -C-----G-----                                                |     |

| STRAIN NO. | VR      | 733                                                            | 792 |
|------------|---------|----------------------------------------------------------------|-----|
| JaOArS982  | JAPN    | AUUCCAAGCGAACGAGGAGAUCCGUGUGUCGGUCCAAACACAUGGGGAGAGUUCACUAGUGA |     |
| 2909/84    | THAI 84 | -----A-----A-----U-----U-----A-----C-----                      |     |
| B-2239     | THAI 84 | -----A-----A-----U-----U-----A-----C-----                      |     |
| 2373/79    | THAI 79 | -----A-----A-----U-----G-----A-----C-----                      |     |
| B-0860     | THAI 83 | -----A-----A-----U-----G-----A-----C-----                      |     |
| KE-093     | THAI 83 | -----A-----A-----U-----N-----A-----C-----                      |     |
| 1034/83    | THAI 83 | -----A-----A-----A-----U-----                                  |     |
| HK 8256    | TAIW ?  | -----N-----                                                    |     |
| JaGAr#01   | JAPN 59 | -----                                                          |     |
| 691004     | SRLN 69 | -----N-----N-----                                              |     |
| P-20778    | INDI 85 | -----A-----U-----                                              |     |
| KE-105     | THAI 83 | -----A-----A-----U-----G-----A-----C-----                      |     |
| BEIJING    | CHIN 60 | -----A-----                                                    |     |

A strain from India (P-20778) gave more sequence information than any other strain with the B-33 primer. The results suggested that variation might occur in the M area and a new primer (M-100) was designed. Using this new primer, a strain from Thailand (KE-105/83) showed a large degree of nucleotide sequence difference when compared to other strains. This result agrees with the findings of a previous JE fingerprint study; the Thai strains seem to be unique virus variants. More Thai JE strains were selected and studied, using the B-3 and M-100 primers, to obtain data from the M gene region. The data showed some unique differences among Thai strains and these differences were not seen in strains from other geographic areas. Other strains also showed unique variation across this area of the genome, as shown in Fig 3. Therefore, this area will be explored further, using virus strains from other, distant geographic regions, in an attempt to confirm that this is an area of the genome which will be of wider use in distinguishing JE viruses. Table 9 shows the currently available JE strains which have been grown in cell culture and reidentified by JE-specific monoclonal antibody.

TABLE 9

Currently available strains of Japanese encephalitis virus which have been propagated in Vero cells and reidentified by monoclonal antibody

| <u>China</u>     |      |          | <u>Japan</u>       |      |          |
|------------------|------|----------|--------------------|------|----------|
| SA-14            | 1960 | mosquito | Nakayama           | 1935 | human    |
|                  |      |          | M5-596             | 1955 | mosquito |
|                  |      |          | 55-1456            | 1955 | human    |
| <u>India</u>     |      |          |                    |      |          |
| 63498            | 1963 | mosquito | 281801             | 1955 | bird     |
| InAr633759       | 1963 | mosquito | 224052             | 1956 | mosquito |
| InAr641686       | 1964 | mosquito | M7-271             | 1957 | mosquito |
| InAr724038       | 1972 | mosquito | M7-287             | 1957 | mosquito |
| InAr755723       | 1975 | mosquito | M7-292             | 1957 | mosquito |
| InH78668A        | 1978 | human    | JaGar01            | 1959 | mosquito |
| P-20778          | 1978 | human    | JaAr245980         | 1979 | mosquito |
| InH7812474       | 1978 | human    | Osaka              | 1979 | mosquito |
| InAr803830       | 1980 | mosquito |                    |      |          |
| InH826309        | 1982 | human    | <u>Nepal</u>       |      |          |
|                  |      |          | B-2524/85          | 1985 | pig      |
|                  |      |          | 9548/85            | 1985 | human    |
| <u>Indonesia</u> |      |          | 8631/86            | 1986 | human    |
| JKT- 654         | 1978 | mosquito |                    |      |          |
| IndAr220507      | 1979 | mosquito |                    |      |          |
| 222682           | 1979 | mosquito |                    |      |          |
| JKT-1105         | 1979 | mosquito | <u>Philippines</u> |      |          |
| JKT-1724         |      | mosquito | Ph.An 1242         | 1984 | pig      |
| JKT-2254         |      | mosquito |                    |      |          |
| JKT-2363         | 1979 | mosquito | <u>Sarak</u>       |      |          |
| JKT-4887         |      | mosquito | JE827              | 1982 | mosquito |
| JKT-5441         | 1980 | mosquito |                    |      |          |
| JKT-6468         | 1981 | mosquito | <u>Sri Lanka</u>   |      |          |
| JKT-7003         |      | mosquito | 69/004             | 1969 | human    |
| JKT-7180         |      | mosquito | SL H86596          | 1986 | human    |
| JKT-7887         |      | mosquito |                    |      |          |
| JKT-8110         |      | mosquito |                    |      |          |
| JKT-8442         | 1980 | mosquito |                    |      |          |

TABLE 9 (continued)

| <u>Taiwan</u>   |      | <u>Thailand (continued)</u> |                 |      |          |  |
|-----------------|------|-----------------------------|-----------------|------|----------|--|
| TaAr225492      | 1972 | mosquito                    | 1070/82 KE008   | 1982 | human    |  |
| TaAr229140      | 1981 | mosquito                    | 3076/83 KE093   | 1983 | human    |  |
| TaAr229246      | 1981 | mosquito                    | 3094/83 KE094   | 1983 | human    |  |
| TaAr242154      | 1981 | mosquito                    | B-0860/83       | 1983 | pig      |  |
| HK 8256         | 1982 | mosquito                    | KE 105/83       | 1983 | human    |  |
| TaAr603525      | 1982 | mosquito                    | KE 094/83       | 1983 | human    |  |
| TaAr249781      | 1982 | mosquito                    | B-1065/83       | 1983 | pig      |  |
| CC-27           | 1983 | mosquito                    | B-1034/83       | 1983 | pig      |  |
| TaArP-61780     | 1983 | mosquito                    | KP-245          | 1984 | mosquito |  |
| TaArP-61779     | 1983 | mosquito                    | KP-0269         | 1984 | mosquito |  |
| CC-94           | 1984 | mosquito                    | KP-0270         | 1984 | mosquito |  |
| NT-90           | 1984 | mosquito                    | KPO-439/84      | 1984 | mosquito |  |
| ML-117          | 1985 | pig                         | KP-0252         | 1984 | mosquito |  |
| CN-80           | 1985 | mosquito                    | B-2239/84       | 1984 | pig      |  |
| NT-113          | 1985 | mosquito                    | 2632/84         | 1984 | human    |  |
| NT-109          | 1985 | mosquito                    | 2909/84         | 1984 | human    |  |
| CH-109          | 1986 | mosquito                    | KPO-561/84      | 1984 | mosquito |  |
| CC-223          | 1987 | mosquito                    | B-0005/85       | 1985 | pig      |  |
| CH-392          | 1987 | mosquito                    | B-2582/85       | 1985 | mosquito |  |
|                 |      |                             | MNI-75ct        | 1986 | mosquito |  |
| <u>Thailand</u> |      |                             |                 |      |          |  |
| 2372/79         | 1979 | human                       | <u>Viet Nam</u> |      |          |  |
| B-1208/82       | 1982 | pig                         | VN-78           |      |          |  |
| B-0922/82       | 1982 | pig                         | VN-113          | 1979 | mosquito |  |
| B-105/82        | 1982 | pig                         | VN-118          | 1979 | mosquito |  |
| MNI-93ct        | 1986 | mosquito                    | VN-131          |      |          |  |
|                 |      |                             | VN-135          | 1980 | mosquito |  |

C. Adaptation of yellow fever ELISA to test volunteer subjects for antibody (S. Tirrell, B. Ratcliff, M. Barry, and R. Shope)

A study is underway to test volunteer subjects by plaque reduction neutralization test for their response to 17D yellow fever vaccine while they are taking chloroquine. Control subjects are also vaccinated and do not receive chloroquine. The study is sponsored in part by Connaught Laboratories. Sixty medical students and other volunteers were enlisted for the study. So far the subjects have been bled prevaccination and 14 and 35 days postvaccination. The study will be terminated after 6 months; neutralization tests are not yet completed and therefore the data are still under code.

The pre vaccination sera and sera taken at 14 and 35 days were tested in the 1:200 dilution by ELISA using flavivirus monoclonal DEN 4G2-15 (1:1600) as capture antibody, French neurotropic virus sucrose-acetone extracted mouse brain (1:40) as antigen, and a polyclonal antihuman peroxidase conjugate. The results shown in Table 10 indicate that all 60 subjects responded to the vaccine, although three (#23, 56, and 64) were still low-titered at 35 days or antibody had disappeared. Seven of the subjects had flavivirus antibody prior to vaccination. When the results of the neutralization tests are available, it will be possible to determine if the correlation is sufficiently good to enable the ELISA to be substituted for PRNT in screening non-flavivirus immune subjects for 17D antibody response.

TABLE 10

The ELISA response of volunteers to 17D antigen expressed as difference of O.D. between negative antigen and yellow fever antigen

| Subject # | Pre   | 14 day | 35 day | Subject # | Pre  | 14 day | 35 day |
|-----------|-------|--------|--------|-----------|------|--------|--------|
| 1         | .02   | .42    | .89    | 33        | .03  | .27    | .57    |
| 2         | .01   | .47    | 1.00   | 34        | .02  | .54    | .70    |
| 3         | .03   | .38    | .93    | 35        | .02  | .07    | .51    |
| 4         | .13*  | .62    | .63    | 37        | .01  | .03    | .34    |
| 5         | .02   | .22    | .88    | 38        | .04  | .35    | .93    |
| 6         | .10   | .63    | .84    | 39        | .03  | .14    | ND     |
| 7         | .00   | .36    | .85    | 41        | .23  | .62    | .65    |
| 8         | .03   | .54    | .93    | 42        | .01  | .34    | .55    |
| 9         | .00   | .39    | .58    | 43        | .02  | .13    | .22    |
| 10        | .00   | .54    | .71    | 44        | .02  | .27    | .84    |
| 11        | .02   | .36    | .70    | 45        | .03  | .13    | .64    |
| 12        | .04   | .26    | .36    | 46        | .01  | .14    | .44    |
| 13        | .10   | .53    | .73    | 47        | .00  | .22    | .48    |
| 14        | .50*  | .67    | .58    | 48        | .00  | .10    | .40    |
| 15        | .00   | .19    | .52    | 49        | .16* | .61    | .27    |
| 16        | .00   | .34    | .60    | 50        | .45* | .86    | .68    |
| 17        | .14*  | .79    | .46    | 51        | .00  | .01    | .22    |
| 18        | .01   | .18    | .42    | 52        | .02  | .01    | .74    |
| 19        | .00   | .52    | .44    | 53        | .02  | .01    | .77    |
| 20        | .01   | .33    | .50    | 54        | .02  | .46    | .64    |
| 21        | .00   | .50    | ND     | 55        | .00  | .14    | .30    |
| 22        | .00   | .20    | .18    | 56        | .02  | .08    | .13    |
| 23        | .00   | .17    | .00    | 57        | .02  | .13    | .38    |
| 24        | .02   | .39    | .45    | 58        | .01  | .23    | .48    |
| 25        | .04   | .18    | .56    | 59        | .14* | .55    | .61    |
| 26        | .01   | .33    | .76    | 60        | .02  | .33    | .78    |
| 27        | .02   | .41    | .94    | 61        | .06  | .20    | ND     |
| 30        | .03   | .10    | .73    | 62        | .01  | .19    | .24    |
| 31        | .07   | .35    | .96    | 63        | .00  | .17    | .23    |
| 32        | .34** | .48    | .66    | 64        | .00  | .09    | .11    |

\* Positive in the plaque reduction neutralization test (PRNT)

\*\*Not tested by PRNT; ND = not done.

Positive control serum 1:200 reacted with O.D. .70, .65, .74, and .77 in four ELISAs.

VI. ATTEMPTS TO ISOLATE CRIMEAN CONGO HEMORRHAGIC FEVER VIRUS RNA (P. Mason and W. Fan)

As a preliminary step to molecular cloning of Crimean Congo hemorrhagic fever virus, the IbAn 10200 strain of virus was grown in CER cells in 75 cm sq. flasks, then subcultured into CER cells which were adapted to spinner cultures. The CER cells were monitored for antigen by IFA, and titered. Supernatant fluids titered as high as 7 log ID<sub>50</sub>/ml. When between 50% and 100% of the cells fluoresced, the cells were harvested, treated with NP-40 and centrifuged in a cesium chloride gradient. The fractions containing nucleocapsids were determined by western blotting with a polyvalent CCHF mouse ascitic fluid which stained the nucleoprotein. The nucleocapsid fraction was then extracted with phenol and electrophoresed in agarose. Several bands were visualized which were present in the preparation from infected cells and not in the preparation from mock infected cells. Hybridization has not yet been carried out to confirm that these bands are RNA segments.

VII. MATURATION OF JAPANESE ENCEPHALITIS E, NS1, AND NS1' GLYCOPROTEINS IN VERO AND MOSQUITO CELL LINES (P. Mason)

In an attempt to understand the maturation process of the Japanese encephalitis virion, the glycoproteins E, NS1 and NS1' were studied in Vero and C6/36 cells. The three glycoproteins were processed differently in the JE-infected Vero and C6/36 cell lines. All three proteins were released slowly from Vero cells. The time to release of half of the labeled protein was >6 h. The release of E was also slow (>8 h) in C6/36 cells, while, surprisingly, NS1 and NS1' were not released from the mosquito cells and were retained in an undegraded form in the cell layer. AP61 and TRA284 mosquito cell lines gave similar results, indicating that the non-release of NS1 and NS1' is a general phenomenon in mosquito cells.

The proteolytic processing of the three proteins appeared identical in Vero and C6/36 cells, but some differences in N-linked glycosylation were observed. E, NS1, and NS1' found within infected cells of both types contained high-mannose oligosaccharide groups for more than eight hours after synthesis. Additional sugar residues were added to the single E protein oligosaccharide group prior to release from Vero cells, while sugar residues were trimmed from the E protein oligosaccharide group prior to release from mosquito cells. The forms of NS1 and NS1' found in the culture fluid of infected Vero cells contained one complex and one high-mannose oligosaccharide.

All three glycoproteins released from JE-infected Vero cells were associated with extracellular particles, the virion in the case of E and a low density particle in the case of NS1 and NS1'. Furthermore, E, NS1, and NS1' exhibited amphipathic properties in Triton X-114 extraction experiments. Taken together, these results suggest that both the structural (E) and non-structural (NS1 and NS1') glycoproteins were accumulated within the secretory pathway of the infected Vero cells, assembled into particles, and then released into the extracellular fluid.

## VIII. LOW PASSAGE ARBOVIRUS COLLECTION (R. Tesh, R. Shope, S. Tirrell)

In collaboration with the American Committee on Arboviruses' Subcommittee for the Collection of Low Passage Arbovirus Strains (SCLAS), the Reference Center continues to collect low passage strains of arboviruses of medical or veterinary importance from representative geographic regions of the world and from different time periods and hosts. These strains are proving useful in studies of arboviral genetics, pathogenesis, epidemiology, and vaccine development. Arbovirus field laboratories around the world have generously responded to the request for strains.

Virus specimens submitted were subsequently passaged in C6/36 or Vero cells. This material was used to prepare virus stocks which were lyophilized and stored. Because of the large number of virus specimens received, the identification of each strain has not yet been confirmed. The identity listed for each strain is that attributed by the donor. During 1988, however, the strains of dengue and Japanese encephalitis viruses have been tested by type-specific monoclonal antibody in IFA to confirm the identity.

A complete listing of arbovirus strains now lyophilized is given in Table . Ampoules of these agents are available on request. There are now 457 strains listed, an increase during 1988 of 137 low passage strains. During the year the Reference Center has had requests for multiple strains of yellow fever virus for a study in Africa, and for multiple strains of dengue 3 virus for a study in Asia to select a candidate vaccine strain. In addition, molecular examination of nearly all of the strains of dengue-1, dengue-2, and Japanese encephalitis by primer extension sequencing is described in sections V, A and B of this report.

Abbreviations shown under passage history are as follows: suckling mouse (SM), Vero cells, (Vero), C6/36 clone of Aedes albopictus cells (C6/36), Aedes pseudoscutellaris cells (AP-61), primary chicken embryo (PCE), and inoculation of live mosquitoes (MOSQ). The number following the abbreviation refers to the frequency of passage. For example, SM #1, Vero #1 would mean one passage each in suckling mice and in Vero cells.

## IX. ARBOVIRUS BULLETIN BOARD, REFERENCE, AND DATA ACCESS (P. Mason)

A phone-accessible computer network is available by calling 203/785-2912. Prospective users may request a password at the time of initial contact. Arbovirologists and other interested persons are encouraged to use this free service.

During 1988, flavivirus sequences (under separate funding by WHO) were added to the existing data bases. Sequences of West Nile, 17D yellow fever, Kunjin, Murray Valley encephalitis, St. Louis encephalitis, Japanese encephalitis, and dengue 1, 2 and 4 strains are now on line and accessible by phone. Floppy discs containing flavivirus sequences may also be obtained on request.

TABLE II  
SCLAS Low Passage Virus Strains

| Virus         | Strain        | Passage            | Source                         | Locality                  | Date       |
|---------------|---------------|--------------------|--------------------------------|---------------------------|------------|
| Alajuelva     | 76V-2441      | Mosq #1, C6/36#1   | <u>Aedesomyia squamipennis</u> | Vinces, Ecuador           | May. 1975  |
| Arboledas     | CoAr 171000   | Vero #1            | <u>Lutzomyia</u> spp.          | Arboledas, N.S., Colombia | 1986       |
| Arboledas     | CoAr 170150   | Vero #2            | <u>Lutzomyia</u> spp.          | Arboledas, N.S., Colombia | 1984       |
| Cache Valley  | 69V-2152      | C6/36 #1           | <u>Culiseta inornata</u>       | Umatilla Co., Oregon      | 1969       |
| Cache Valley  | RU-68         | Vero #1            | <u>Aedes sollicitans</u>       | Dennisville, New Jersey   | Sept. 1982 |
| Calif.enceph. | BNF-2130      | C6/36 #1           | <u>Aedes melanimon</u>         | Butte Co., California     | May 1970   |
| Calif.enceph. | BNF-3931      | C6/36 #1           | <u>Aedes melanimon</u>         | Butte Co., California     | Aug. 1971  |
| Calif.enceph. | E-19032       | C6/36 #1           | <u>Aedes melanimon</u>         | Kern Co., California      | Sept. 1981 |
| Calif.enceph. | Kern 175-82   | C6/36 #1           | <u>Aedes melanimon</u>         | Kern Co., California      | Sept. 1982 |
| Chagres       | PaAr3419      | Vero #2            | <u>Lu. sanguinaria</u>         | Bayano, Panama            | Oct. 1976  |
| CHIK          | RSU1          | Vero #2            | human serum                    | Ambon Island, Indonesia   | 1985       |
| CHIK          | 37941         | C6/36 #2, Vero#1   | <u>Aedes furcifer</u>          | Kedougou, Senegal         | 198?       |
| CHIK          | 37937         | AP-61 #1, C6/36 #1 | <u>Ae. furcifer</u>            | Kedougou, Senegal         | 1983       |
| CHIK          | 37950         | AP-61 #1, C6/36 #1 | <u>Ae. furcifer</u>            | Kedougou, Senegal         | 1983       |
| CHIK          | 37997         | AP-61 #1, C6/36 #1 | <u>Ae. furcifer</u>            | Kedougou, Senegal         | 1983       |
| CHIK          | 37953         | AP-61 #1, C6/36 #1 | <u>Ae. furcifer</u>            | Kedougou, Senegal         | 1983       |
| CHIK          | 37963         | AP-61 #1, C6/36 #1 | <u>Ae. furcifer</u>            | Kedougou, Senegal         | 1983       |
| CHIK          | 1455/75       | Mosq #2, C6/36 #1  | human serum                    | Bangkok, Thailand         | 1975       |
| CHIK          | P0-731460     | Vero #1, Mosq #1   | " "                            | Barsi, India              | 1973       |
| CHIK          | UgSg 41855    | S#3, Vero#1        | " "                            | Mukono Dist., Uganda      | 1982       |
| DEN-1         | INS-347869    | C6/36 #3           | " "                            | Caqueta, Colombia         | 1985       |
| DEN-1         | Fiji 40130    | Mosq?, C6/36 #1    | " "                            | Fiji                      | 1975       |
| DEN-1         | Manila 19076  | Mosq?, C6/36 #1    | " "                            | Manila, Philippines       | 1974       |
| DEN-1         | Burma 10378   | Mosq.?, C6/36 #1   | " "                            | Burma                     | 1976       |
| DEN-1         | Jamaica 44684 | Mosq.?, C6/36 #1   | " "                            | Jamaica                   | 1977       |

## SCLAS Low Passage Virus Strains

| Virus | Strain         | Passage           | Source               | Locality             | Date      |
|-------|----------------|-------------------|----------------------|----------------------|-----------|
| DEN-1 | PUO-359        | C6/36 #1          | "                    | Bangkok, Thailand    | 1980      |
| DEN-1 | Nauru 16299    | Mosq.C6/36 #1     | "                    | Nauru                | 1974      |
| DEN-1 | Dak H29177     | Mosq #1, C6/36#1  | "                    | Bandia, Senegal      | 1979      |
| DEN-1 | 1186           | Mosq.#2, C6/36 #1 | "                    | Jakarta, Indonesia   | 1977      |
| DEN-1 | 1236           | "                 | "                    | Jakarta, Indonesia   | 1978      |
| DEN-1 | 1298           | "                 | "                    | Mexico               | 1980      |
| DEN-1 | 1318           | "                 | "                    | Puerto Rico          | 1981      |
| DEN-1 | 1335           | "                 | "                    | Colombo,Sri Lanka    | 1981      |
| DEN-1 | 1344           | "                 | "                    | Mexico               | 1982      |
| DEN-1 | 1351           | "                 | "                    | Colombia             | 1982      |
| DEN-1 | 1378           | "                 | "                    | Mexico               | 1983      |
| DEN-1 | 1412           | "                 | "                    | Mexico               | 1983      |
| DEN-1 | 1413           | "                 | "                    | Haiti                | 1983      |
| DEN-1 | INS 351094     | C6/36 #3          | "                    | Guaviare, Colombia   | July 1987 |
| DEN-1 | 765104         | C6/36 #4          | "                    | Pingtung Co., Taiwan | Nov.1987  |
| DEN-1 | 765105         | C6/36 #4          | "                    | Pingtung Co., Taiwan | Nov.1987  |
| DEN-1 | 766603         | C6/36 #4          | "                    | Pingtung Co., Taiwan | Nov.1987  |
| DEN-1 | 765101         | C6/36 #4          | "                    | Pingtung Co., Taiwan | Nov.1987  |
| DEN-1 | 766602         | C6/36 #4          | "                    | Pingtung Co., Taiwan | Nov.1987  |
| DEN-1 | Dak HD 29177   | SM#2, C6/36#1     | human serum          | Bandia,Senegal       | Nov.1979  |
| DEN-1 | Dak Ar A 15120 | ? C6/36#1         | <u>Aedes aegypti</u> | Dabakala,Ivory Coast | June 1985 |
| DEN-1 | CAREC 775280   | human serum       | Dominica             |                      | 1977      |
| DEN-1 | CAREC 778156   | "                 | Grenada              |                      | 1977      |
| DEN-1 | CAREC 778160   | "                 | Grenada              |                      | 1977      |

## SCLAS Low Passage Virus Strains

| Virus | Strain                  | Passage     | Source      | Locality          | Date |
|-------|-------------------------|-------------|-------------|-------------------|------|
| DEN-1 | CAREC 777921            |             | human serum | Nassau            | 1977 |
| DEN-1 | CAREC 776787            | "           |             | Turks & Caicos    | 1977 |
| DEN-1 | CAREC 778774            | "           |             | St. Kitts         | 1977 |
| DEN-1 | CAREC 778775            | "           |             | St. Kitts         | 1977 |
| DEN-1 | CAREC 778546            | "           |             | Antigua           | 1977 |
| DEN-1 | CAREC 778554            | "           |             | Antigua           | 1977 |
| DEN-1 | CAREC 778558            | human serum |             | Antigua           | 1977 |
| DEN-1 | CAREC 778108            | "           |             | Grenada           | 1977 |
| DEN-1 | CAREC 780894            | "           |             | Trinidad & Tobago | 1978 |
| DEN-1 | CAREC 780572            | "           |             | Trinidad & Tobago | 1978 |
| DEN-1 | CAREC 780874            | "           |             | Trinidad & Tobago | 1978 |
| DEN-1 | CAREC 780590            | "           |             | Trinidad & Tobago | 1978 |
| DEN-1 | CAREC 8110979           | "           |             | Suriname          | 1981 |
| DEN-1 | CAREC 818001            | "           |             | Barbados          | 1981 |
| DEN-1 | CAREC 8110498           | "           |             | Suriname          | 1981 |
| DEN-1 | CAREC 816879 D287       | "           |             | Suriname          | 1981 |
| DEN-1 | CAREC 816885 D294       | "           |             | Suriname          | 1981 |
| DEN-1 | CAREC 822964 TPHL 2718  | "           |             | Trinidad & Tobago | 1982 |
| DEN-1 | CAREC 852679            | "           |             | Aruba             | 1985 |
| DEN-1 | CAREC 852791            | "           |             | Aruba             | 1985 |
| DEN-2 | CAREC 775283            | "           |             | Dominica          | 1977 |
| DEN-2 | CAREC 8110827           | "           |             | Jamaica           | 1981 |
| DEN-2 | CAREC 828902            | "           |             | St. Vincent       | 1982 |
| DEN-2 | CAREC 835171            | "           |             | Trinidad & Tobago | 1983 |
| DEN-2 | CAREC 8511995 TPHL 9673 | "           |             | Trinidad & Tobago | 1985 |

## SCLAS Low Passage Virus Strains

| Virus | Strain               | Passage            | Source                     | Locality                | Date       |
|-------|----------------------|--------------------|----------------------------|-------------------------|------------|
| DEN-2 | CAREC 867850 D       | 2098               | human serum                | Suriname                | 1986       |
| DEN-2 | CAREC 867744 D       | 1945               | "                          | Suriname                | 1986       |
| DEN-2 | CAREC 860435 TPIL 9  | 747                | "                          | Trinidad & Tobago       | 1986       |
| DEN-2 | CAREC 877764 TPHL    | 14870              | "                          | Trinidad & Tobago       | 1987       |
| DEN-2 | CAREC 877765 TPHL    | 14871              | "                          | Trinidad & Tobago       | 1987       |
| DEN-2 | CAREC 876775 TPHL    | 14492              | "                          | Trinidad & Tobago       | 1987       |
| DEN-2 | CAREC 881527 B'dos   | 384                | "                          | Barbados                | 1988       |
| DEN-2 | CAREC 880720 TPHL    | 15803              | "                          | Trinidad & Tobago       | 1988       |
| DEN-2 | CAREC TPHL 3963      | "                  | "                          | Trinidad & Tobago       | 19?        |
| DEN-2 | PL-003               | C6/36 #4           | "                          | Pingtung Co., Taiwan    | Sept. 1981 |
| DEN-2 | Bangkok 16803 Mosq ? | , C6/36#1          | "                          | Bangkok, Thailand       | 1974       |
| DEN-2 | Indonesia 10410 "    | "                  | "                          | Java, Indonesia         | 1973       |
| DEN-2 | JA-TVP-496           | C6/36 #1           | "                          | Jamaica                 | Aug.       |
| DEN-2 | NC 9163              | C6/36 #1           | "                          | New Caledonia           | 1972       |
| DEN-2 | Burma 40479          | C6/36 #1           | "                          | Burma                   | 1976       |
| DEN-2 | PM 33974             | Mosq#1, C6/36#1    | <u>Aedes africanus</u>     | Rep. of Guinea          | Nov.       |
| DEN-2 | PR-159               | C6/36 #1           | human serum                | Puerto                  | 1981       |
| DEN-2 | Ph.H 2172            | AP-61 #2, C6/36 #1 | "                          | Manila, Philippines     | 1969       |
| DEN-2 | 766635               | C6/36 #5           | "                          | Pingtung Co., Taiwan    | Nov. 1987  |
| DEN-2 | PL-001               | C6/36 #4           | "                          | Pingtung Co., Taiwan    | Sept. 1981 |
| DEN-2 | PL-046               | C6/36 #4           | "                          | Pingtung Co., Taiwan    | Sept. 1981 |
| DEN-2 | Dak HD 10674         | ?, C6/36 #1        | "                          | Bandia, Senegal         | Feb. 1970  |
| DEN-2 | Dak ArD20761         | SM#8, C6/36 #1     | <u>Aedes luteocephalus</u> | Kedongon, Senegal       | Nov. 1974  |
| DEN-2 | Dak Ara578           | SM#8, C6/36 #1     | <u>Aedes taylori</u>       | Dabakala, Ivory Coast   | June 1980  |
| DEN-2 | Dak Ara2039          | SM#6, C6/36 #1     | <u>Aedes luteocephalus</u> | Samoussso, Burkina Faso | Sept. 1980 |

## SCLAS Low Passage Virus Strains

| Virus | Strain          | Passage                      | Source                       | Locality                    | Date       |
|-------|-----------------|------------------------------|------------------------------|-----------------------------|------------|
| DEN-2 | Dak Ara510      | SM#4, C6/36 #1               | <u>Aedes taylori</u>         | Dabakala, Ivory Coast       | July 1980  |
| DEN-2 | Dak Ara1247     | SM#5, C6/36 #1               | <u>Aedes taylori</u> (males) | Dabakala, Ivory Coast       | Oct. 1980  |
| DEN-2 | Dak Ara2022     | SM#6, C6/36 #1               | <u>Aedes africanus</u>       | Nasso, Burkina Faso         | Sept. 1980 |
| DEN-2 | Dak Ara6894     | ? , C6/36 #1                 | <u>Aedes aegypti</u>         | Bobo-Dioulasso Burkina Faso | Jan. 1980  |
| DEN-2 | INS 348600      | C6/36 #3                     | human serum                  | Tomaco, Narino, Colombia    | Jan. 1986  |
| DEN-2 | 1232            | Mosq.#2, C6/36 #2            | human serum                  | Jakarta, Indonesia          | 1978       |
| DEN-2 | 1251            | "                            | "                            | Tonga                       | 1974       |
| DEN-2 | 1268            | "                            | "                            | Jogyakarta, Indonesia       | 1978       |
| DEN-2 | 1328            | "                            | "                            | Puerto Rico                 | 1977       |
| DEN-2 | 1329            | Mosq.#1, C6/36 #2            | human serum                  | Jamaica                     | 1982       |
| DEN-2 | 1334            | "                            | "                            | Colombo, Sri Lanka          | 1981       |
| DEN-2 | 1349            | "                            | "                            | Upper Volta                 | 1982       |
| DEN-2 | 1353            | "                            | "                            | Colombo, Sri Lanka          | 1982       |
| DEN-2 | 1408            | "                            | "                            | Jamaica                     | 1983       |
| DEN-2 | 1421            | "                            | "                            | Mexico                      | 1983       |
| DEN-2 | INS 351863      | C6/36 #3                     | "                            | Tolima, Colombia            | Jan. 1988  |
| DEN-2 | Burma DHF 190   | Mosq?, C6/36#1               | "                            | Burma                       | 1976       |
| DEN-3 | Tahiti 18       | "                            | "                            | Tahiti                      | 1964       |
| DEN-3 | PR-9311         | "                            | "                            | Puerto Rico                 | 1963       |
| DEN-3 | Thailand 49080  | "                            | "                            | Thailand                    | 1971       |
| DEN-3 | Singapore 16182 | "                            | "                            | Singapore                   | 1973       |
| DEN-3 | 1245            | Mosq.#2, C6/36 #2            | "                            | Sleman, Indonesia           | 1978       |
| DEN-3 | 1259            | "                            | "                            | Jakarta, Indonesia          | 1978       |
| DEN-3 | 1301            | "                            | "                            | Malaysia                    | 1975       |
| DEN-3 | 1309            | LLC/HK2#1, Mosq.#2, C6/36 #1 | "                            | Bangkok, Thailand           | 1978       |

## SCLAS Low Passage Virus Strains

| Virus | Strain         | Passage                    | Source               | Locality                  | Date      |
|-------|----------------|----------------------------|----------------------|---------------------------|-----------|
| DEN-3 | 1325           | Mosq. #2, C6/36 #1         | human serum          | Colombo, Sri Lanka        | 1981      |
| DEN-3 | 1339           | "                          | "                    | Puerto Rico               | 1977      |
| DEN-3 | 1359           | "                          | "                    | Colombo, Sri Lanka        | 1992      |
| DEN-3 | 1363           | "                          | "                    | Colombo, Sri Lanka        | 1982      |
| DEN-3 | D83-144        | C6/36 #1                   | "                    | Bangkok, Thailand         | 1983      |
| DEN-4 | Dak HD 34460   | SM#3, C6/36 #1             | human serum          | Dakar, Senegal            | Nov. 1981 |
| DEN-4 | Dak ArNC599    | SM#6, C6/36 #1             | <u>Aedes vigilax</u> | Koumac, New Caledonia     | Jan. 1981 |
| DEN-4 | 1228           | Mosq. #2, C6/36 #1         | "                    | Jogjakarta, Indonesia     | 1978      |
| DEN-4 | 1229           | "                          | "                    | Jakarta, Indonesia        | 1976      |
| DEN-4 | 1315           | "                          | "                    | Puerto Rico               | 1981      |
| DEN-4 | 1331           | Mosq.#2, C6/36 #1          | human serum          | Puerto Rico               | 1982      |
| DEN-4 | 1332           | "                          | "                    | Puerto Rico               | 1982      |
| DEN-4 | 1385           | Vero #1, Mosq.#2, C6/36 #1 | "                    | Boa Vista, Brazil         | 1982      |
| DEN-4 | 1411           | Mosq. #2, C6/36 #1         | "                    | San Salvador, El Salvador | 1983      |
| DEN-4 | 1414           | Mosq. #2, C6/36 #1         | "                    | Mexico                    | 1983      |
| DEN-4 | 1415           | "                          | "                    | Mexico                    | 1983      |
| DEN-4 | Medan 12524    | "                          | "                    | Sumatra, Indonesia        | 1973      |
| DEN-4 | Tahiti 79      | "                          | "                    | Tahiti                    | 1979      |
| DEN-4 | Sri Lanka      | "                          | "                    | Sri Lanka                 | 1978      |
| DEN-4 | Niue           | "                          | "                    | Niue                      | 1980      |
| DEN-4 | Gilberts 49367 | "                          | "                    | Kiribati, Gilberts        | 1980      |
| DEN-4 | PR-TYP 376     | C6/36 #1                   | "                    | Puerto Rico               | Feb. 1982 |
| DEN-4 | SH 38549       | Mosq.#1, C6/36 #3          | "                    | Dakar, Senegal            | Nov. 1983 |
| DEN-4 | 38549          | AP-61 #1, C6/36 #1         | "                    | Dakar, Senegal            | 1977      |
| DEN-4 | 38550          | AP-61 #1, C6/36 #1         | "                    | Dakar, Senegal            | 1980      |

## SOLAS Low Passage Virus Strains

83

| Virus | Strain      | Passage           | Source                   | Locality             | Date       |
|-------|-------------|-------------------|--------------------------|----------------------|------------|
| DEN-4 | INS 351785  | C6/35 #3          | human serum              | Tolima, Colombia     | Nov. 1987  |
| EEE   | ME-77132    | Mosq #1, C6/36 #1 | <u>Culiseta melanura</u> | Carver Cdr Swamp, MA | Aug. 1977  |
| EEE   | 78-3372     | C6/36 #1          | "                        | Raynham, Mass.       | Sept. 1978 |
| EEE   | 79-2138     | C6/36 #1          | "                        | Westport, Mass.      | Aug. 1979  |
| EEE   | DV-260-82   | C6/36 #1          | <u>Parus bicolor</u>     | Dennisville, NJ      | July 1982  |
| EEE   | V080784 / 1 | Vero #1           | horse brain              | Florida              | 1984       |
| EEE   | V082085 / 2 | Vero #1           | horse brain              | Florida              | 1985       |
| EEE   | 44-84       | Vero #1           | bobwhite quail           | Pocomoke Swamp, MD   | 1984       |
| EEE   | 323-85      | Vero #1           | <u>Culiseta melanura</u> | Pocomoke Swamp,      | 1985       |
| EEE   | 187-85      | Vero #1           | "                        | " "                  | 1985       |
| EEE   | 215-85      | Vero #1           | "                        | " "                  | 1985       |
| EEE   | GML 903866  | Vero #3           | sentinel chicken         | Bayano, Panama       | 1984       |
| EEE   | GML 900188  | SM#2, Vero #1     | horse brain              | Catuncillo, Panama   | 1962       |
| EEE   | Lung #72    | Vero #1           | whooping crane           | Patuxent Wildlife,   | 1984       |
| EEE   | FD #7829    | Vero #2           | <u>Culiseta melanura</u> | Research Center, MD  |            |
| EEE   | FD #7830    | Vero #2           | "                        | Pocomoke Cypress,    | 1983       |
|       |             |                   |                          | Swamp, MD            |            |
| EEE   | Ma 2494     | PCE #1, Vero #1   | "                        | Raynham, MA          | Sept. 1977 |
| EEE   | Ma 2020     | PCE #1, Vero #1   | "                        | Halifax, MA          | Aug. 1978  |
| EEE   | Ma 1058     | PCE #1, Vero #1   | "                        | Halifax, MA          | July 1979  |
| EEE   | Ma 1833     | PCE #1, Vero #1   | "                        | Halifax, MA          | Aug. 1980  |
| EEE   | Ma 396      | PCE #1, Vero #1   | "                        | New Bedford, MA      | Aug. 1982  |
| EEE   | Ma 848      | PCE #1, Vero #1   | "                        | Easton, MA           | Sept. 1983 |

## SCLAS Low Passage Virus Strains

| Virus            | Strain          | Passage          | Source                         | Locality                   | Date       |
|------------------|-----------------|------------------|--------------------------------|----------------------------|------------|
| EEE              | Ma 1313         | PCE #1, Vero #1  | <u>Culiseta melanura</u>       | Raynham, MA                | Sept. 1984 |
| EEE              | MARU 435731     | Vero #2          | horse brain                    | Chepo, Panama              | July 1986  |
| EEE              | M-210-83A       | Original         | horse brain                    | Colchester, CT             | Sept. 1983 |
| EEE              | MP-9            | C6/36 #1         | <u>Culiseta melanura</u>       | Colchester, CT             | Sept. 1979 |
| EEE              | R-35108         | C6/36 #1         | horse brain                    | Three Rivers, Michigan     | 1980       |
| EEE              | 70U1104         | Vero #1          | sentinel hamster               | Iquitos, Peru              | 1970       |
| EEE              | M-649-84        | original         | horse brain                    | Waterford, CT              | 1984       |
| Highlands J      | NJO-111D        | C6/36 #1         | <u>Culex</u> <u>melanura</u>   | S.R. Game Farm, New Jersey | 1960       |
| Highlands J      | 78-3331         | C6/36 #1         | <u>culiseta melanura</u>       | Canton, Mass.              | Sept. 1978 |
| Highlands J      | 79-2137         | C6/36 #1         | " "                            | Westport, Mass.            | Aug. 1979  |
| Highlands J      | WC-431          | C6/36 #1         | <u>Dumetella carolinensis</u>  | West Creek, NJ             | Sept. 1981 |
| Isfahan          | 91025-C         | Vero #2          | " "                            | Isfahan, Iran              | Aug. 1975  |
| Isfahan          | 91026-167       | Vero #3          | " "                            | Isfahan, Iran              | Aug. 1975  |
| Jamestown Canyon | MP-935          | C6/36 #1         | <u>Aedes canadensis</u>        | Isfahan, Iran              | 1979       |
| JE               | Osaka 222681    | Mosq?, C6/36#1   | <u>Culex tritaeniorhynchus</u> | Osaka, Japan               | 1979       |
| JE               | Sagiyama 224052 | " "              | " "                            | Sagiyama, Japan            | 1956       |
| JE               | Java 222682     | " "              | " "                            | Java, Indonesia            | 1979       |
| JE               | HK 8256         | Mosq#7, C6/36#1  | <u>Culex annulatus</u>         | Taiwan                     | 19?        |
| JE               | Ph.An 1242      | Vero #1, C6/36#1 | pig blood                      | Santo Cristo, Philippines  | 1984       |
| JE               | KE-105/83       | C6/36 #1         | human brain                    | Kampangphet, Thailand      | 1983       |
| JE               | KE-094/83       | C6/36 #1         | human brain                    | Kampangphet, Thailand      | 1983       |
| JE               | B-1080/83       | C6/36 #1         | pig serum                      | Choomporn, Thailand        | 1983       |
| JE               | KP0035-114CT    | C6/36 #2         | <u>Culex tritaeniorhynchus</u> | Kampangphet, Thailand      | 1982       |
| JE               | JKT-8111        |                  |                                | Indonesia                  | 19         |
| JE               | JKT-8110        |                  |                                | Indonesia                  | 19         |

## SCLAS Low Passage Virus Strains

53

| Virus | Strain    | Passage                              | Source                         | Locality                | Date       |
|-------|-----------|--------------------------------------|--------------------------------|-------------------------|------------|
| JE    | JKT-1105  | SM#1, Vero <sup>#4</sup>             | <u>Culex gelidus</u>           | Java, Indonesia         | Feb. 1979  |
| JE    | JKT-2363  | SM#1, Vero <sup>#4</sup>             | <u>Culex tritaeniorhynchus</u> | Java, Indonesia         | Nov. 1979  |
| JE    | JKT-654   | SM#1, C6/36#1, Vero <sup>#2</sup>    | "                              | Java, Indonesia         | 1978       |
| JE    | JKT-1724  | SM#1, Vero <sup>#4</sup>             | "                              | Java, Indonesia         | March 1979 |
| JE    | VN-135    |                                      |                                | Viet Nam                | 19         |
| JE    | VN-131    |                                      |                                | Viet Nam                | 19         |
| JE    | VN-104    |                                      |                                | Viet Nam                | 19         |
| JE    | JKT-6468  | C6/36#2, AP-61#2, Vero <sup>#1</sup> | <u>Culex tritaeniorhynchus</u> | Flores, Indonesia       | May 1981   |
| JE    | JKT-8442  | AP-61#4, Vero <sup>#1</sup>          | "                              | Bali, Indonesia         | Dec. 1980  |
| JE    | 827       | SM#1, AP-61#3, Vero #1               | <u>Culex tritaeniorhynchus</u> | Sarawak                 | 19?        |
| JE    | 78668     | ?                                    | human brain                    | Lucknow, India          | 1970       |
| JE.   | Beijing-1 | ?                                    | human brain                    | China                   | 1949       |
| JE    | 63498     | SM#11, Vero #1                       | <u>Culex tritaneiorhynchus</u> | Vellore, India          | 1963       |
| JE    | 7812474   | SM#5, Vero #1                        | human brain                    | Dibrugarh, Assam, India | 1978       |
| JE    | 803830    | SM#9, Vero #1                        | <u>Culex pseudovishnui</u>     | Kolar, Kanataka, India  | 1980       |
| JE    | 826309    | SM#5, Vero #1,                       | human brain                    | Goa, India              | 1982       |
| JE    | 86596     | SM#3, Vero #1                        | human brain                    | Sri Lanka               | 1986       |
| JE    | 242154    | ?                                    | <u>Culex tritaeniorhynchus</u> | Taiwan                  | Sept. 1981 |
| JE    | P-61779   | ?                                    | "                              | Taiwan                  | June 1983  |
| JE    | 249781    | ?                                    | "                              | Taiwan                  | July 1982  |
| JE    | 225492    | ?                                    | "                              | Taiwan                  | May 1981   |
| JE    | 229246    | ?                                    | "                              | Taiwan                  | June 1981  |
| JE    | P-61780   | ?                                    | "                              | Taiwan                  | June 1983  |
| JE    | 603525    | ?                                    | "                              | Taiwan                  | Oct. 1982  |
| JE    | P-20778   | ?                                    | human brain                    | India                   | 1985       |

## SCLAS Low Passage Virus Strains

| Virus | Strain           | Passage       | Source                         | Locality                    | Date       |
|-------|------------------|---------------|--------------------------------|-----------------------------|------------|
| JE    | 691004           | ?             | human brain                    | Sri Lanka                   | 1969       |
| JE    | 55-1456          | SM#1, Vero #1 | human brain                    | Tokyo, Japan                | Aug. 1955  |
| JE    | M5/596           | ?             | <u>Culex tritaeniorhynchus</u> | Sagiyama, Japan             | Aug. 1955  |
| JE    | 281801           | ?             | bird blood                     | Sagiyama, Japan             | July 1955  |
| JE    | JKT-7180         | ?             | mosquitoes                     | Indonesia                   |            |
| JE    | JKT-7887         | ?             | mosquito                       | Indonesia                   |            |
| JE    | JKT-7003         | ?             | mosquito                       | Indonesia                   |            |
| JE    | B-1208/82        | ? , Vero #1   | pig blood                      | Kampangphet Prov., Thailand | Aug. 1982  |
| JE    | B-0860/83        | "             | "                              | "                           | July 1983  |
| JE    | B-2239/84        | "             | "                              | "                           | June 1984  |
| JE    | B-0005/85        | "             | "                              | "                           | Jan. 1985  |
| JE    | B-2582/85        | "             | "                              | "                           | Nov. 1985  |
| JE    | 3094/83 (KE-094) | "             | human brain                    | "                           | July 1983  |
| JE.   | 3076/83 (KE-093) | "             | human brain                    | "                           | July 1983  |
| JE    | KPO 561/84       | "             | mosquito                       | "                           | July 1984  |
| JE    | KPO 439/84       | "             | mosquito                       | "                           | July 1984  |
| JE    | MNI-93CT         | "             | mosquito                       | Bangkok, Thailand           | June 1986  |
| JE    | MNI-75CT         | "             | mosquito                       | "                           | June 1986  |
| JE    | 2372/79          | "             | human brain                    | "                           | June 1979  |
| JE    | B-1034/83        | "             | pig blood                      | Chumporn Prov., Thailand    | July 1983  |
| JE    | B-1065/83        | "             | pig blood                      | Chumporn Prov., Thailand    | July 1983  |
| JE    | B-2524/85        | ", C6/36 #1   | pig blood                      | Birattanagar, Nepal         | Sept. 1985 |
| JE    | 9490/85          | "             | human CSF                      | "                           | Oct. 1985  |
| JE    | 9548/85          | "             | human CSF                      | "                           | Oct. 1985  |
| JE    | 8631/86          | "             | human CSF                      | "                           | Sept. 1986 |

SCLAS Low Passage Virus Strains

| Virus     | Strain             | Passage                        | Source                | Locality                    | Date      |
|-----------|--------------------|--------------------------------|-----------------------|-----------------------------|-----------|
| JE        | 2909/84 (CR84-10)  | ?, C6/36 #1                    | human brain           | Chiang Rai Prov., Thailand  | July 1984 |
| JE        | 2632/84 (CR84-12)  | " , "                          | human brain           | Chiang Rai Prov., Thailand  | July 1984 |
| JE        | B-0922/82          | " , "                          | pig blood             | Kampangphet Prov., Thailand | June 1982 |
| JE        | B-1053/82          | " , "                          | pig blood             | " " "                       | July 1982 |
| JE        | KP-0245            | " , "                          | mosquito              | " " "                       | June 1984 |
| JE        | KP-0269            | " , "                          | mosquito              | " " "                       | June 1984 |
| JE        | KP-0270            | " , "                          | mosquito              | " " "                       | June 1984 |
| JE        | KP-0252            | " , "                          | mosquito              | " " "                       | June 1984 |
| JE        | 1070/82 (KE82-008) | " , "                          | human brain           | " " "                       | Aug. 1982 |
| JE        | VN-78              |                                | Viet Nam              |                             | 19        |
| JE        | VN-118             |                                | Viet Nam              |                             | 19        |
| JE        | M7/292             | <u>Culex tritaeniorhynchus</u> | Sagiyama, Japan       | 1957                        |           |
| JE        | M7/287             |                                | Sagiyama, Japan       | 1957                        |           |
| JE        | M7/271             |                                | Sagiyama, Japan       | 1957                        |           |
| JE        | InAr 633759        | <u>Culex</u> sp.               | Tamil Nadu, India     | 1963                        |           |
| JE        | InAr 641686        | <u>Culex tritaeniorhynchus</u> | Tamil Nadu, India     | 1964                        |           |
| JE        | InAr 724038        | <u>Culex whitmorei</u>         | Andhra Pradesh, India | 1972                        |           |
| JE        | InAr 803830        | <u>Culex pseudovishnui</u>     | Karnataka, India      | 1980                        |           |
| JE        | In H 826309        | human brain                    | Goa, India            | 1982                        |           |
| JE        | In Ar 755723       | <u>Culex epidесmus</u>         | West Bengal, India    | 1975                        |           |
| JE        | 91045-AG           | <u>Phlebotomus papatasii</u>   | Isfahan, Iran         | Aug. 1975                   |           |
| Karimabad | MB-7-34EJ          | <u>Mosq#1, C6/36#1</u>         | Bay St.Louis, Ms.     | Sept.1967                   |           |
| Keystone  | FD-BHK             | <u>A. atlanticus-tormentus</u> | Pocomoke Swamp, MD    | 1975                        |           |
| Keystone  | CH 19620           | <u>Aedes atlanticus</u>        | Charleville, Aust.    | Feb.1976                    |           |
| Kokobera  | CH 16532           | <u>Culex annulirostris</u>     | Charleville, Aust.    | Mar.1974                    |           |
| Kunjin    | CH 16536           | <u>Culex annulirostris</u>     |                       |                             |           |

## SCLAS Low Passage Virus Strains

| Virus         | Strain       | Passage          | Source                            | Locality                   | Date       |
|---------------|--------------|------------------|-----------------------------------|----------------------------|------------|
| La Crosse     | 78V 13193    | SM#1, Vero #2    | <u>Aedes triseriatus</u> (larvae) | North Carolina             | 1978       |
| La Crosse     | prototype    | C6/36 #1         | human brain                       | La Crosse, Wisconsin       | 1960       |
| La Crosse     | 78134        | C6/36 #1         | human brain                       | Wisconsin                  | 1978       |
| Punta Toro    | PaAr 2381    | Vero #2          | human brain                       | Bayano, Panama             | Nov. 1975  |
| Punta Toro    | Adames       | Vero #3          | man                               | Darien Pr., Panama         | Apr. 1972  |
| Ross River    | S-48325      | C6/36 #4         | human serum                       | Pago Pago, Am Samoa,       | Dec. 1979  |
| Ross River    | Aus.Ar.96614 | SM#1, C6/36#1    | <u>Aedes</u> sp.                  | New South Wales, Australia | 1983       |
| San Angelo    | 72V-4089     | Mosq #2, C6/36#1 | <u>Psorophora signipennis</u>     | Las Cruces, N.M.           | 1972       |
| Sicilian      | 91025-B      | Vero #3          | "                                 | Isfahan, Iran              | 1975       |
| Sicilian      | OSS-42       | Vero #1          | <u>Phlebotomus</u> sp.            | Imbaba, Giza, Egypt        | 1986       |
| Sicilian      | 91045-I      | Vero #2          | <u>Phlebotomus papatasi</u>       | Isfahan Prov., Iran        | Aug. 1975  |
| SLE           | Ft.Wash.-4   | Mosq #2, C6/36#2 | <u>Culex pipiens</u>              | Ft.Washington, MD.         | Jan. 1977  |
| SLE           | BFS-508      | C6/36 #1         | <u>Culex tarsalis</u>             | Kern Co., CA               | Aug. 1950  |
| SLE           | Ft. Wash.-4  | C6/36 #1         | <u>Culex pipiens</u>              | Pocomoke Swamp MD          | Jan. 1977  |
| SLE           | FL 79-411    | C6/36 #1         | <u>Culex nigripalpus</u>          | Lee County, Florida        | 1979       |
| SLE           | BFS-2874     | C6/36 #1         | <u>Culex tarsalis</u>             | Kern Co., CA               | Sept. 1960 |
| SLE           | BFN-1324     | C6/36 #1         | <u>Culex tarsalis</u>             | Butte Co., CA              | July 1970  |
| SLE           | E-2819       | C6/36 #1         | <u>Culex tarsalis</u>             | Riverside Co., CA          | July 1980  |
| Snowshoe hare | 82-Y-21      | C6/36 #1         | <u>Aedes nigripes</u>             | Yukon Ter., Canada         | July 1982  |
| VEE (1-D)     | 71D 1394     | SM #1, C6/36 #1  | Mixed mosquitoes                  | Peru                       | 1971       |
| VEE (1-D)     | 310979       | C6/36 #1         | Sentinel hamster                  | Puerto Boyaca, Colombia    | June 1974  |
| VEE (1-E)     | 68U 200      | C6/36 #1         | Sentinel hamster                  | Avellana, Guatemala        | May 1977   |
| VEE (1-E)     | 64A 87       | SM #1, C6/36 #1  | <u>Culex opisthopus</u>           | Sontecomapan, Mexico       | 1964       |
| VEE           | 64U 60       | SM #1            | sentinel hamster                  | Santecomapan, Mexico       | 1964       |
| VEE           | 83U 12       | SM #1            | sentinel hamster                  | Rio de Oro, Colombia       | 1983       |

## SCLAS Low Passage Virus Strains

| Virus    | Strain        | Passage                | Source                         | Locality                | Date |
|----------|---------------|------------------------|--------------------------------|-------------------------|------|
| VEE-IC   | CBS1-9        | Vero #2                | <u>Anopheles triannulatus</u>  | Sotillo, Venezuela      | 1963 |
| VEE-IE   | 68U 201       | Vero #1                | sentinel hamster               | La Avellana, Guatemala  | 1968 |
| VEE-ID-E | 71D 1249      | SM #1, Vero #1         | Mosquito pool                  | Iquitos, Peru           | 1971 |
| VEE-ID-E | 70U 1139      | Vero #2                | sentinel hamster               | Iquitos, Peru           | 1970 |
| VEE-IE   | 68U 201       | SM #1, Vero #1         | sentinel hamster               | La Avellana, Guatemala  | 1968 |
| VEE-IE   | 71U 338       | SM #1, Vero #1         | sentinel hamster               | Monte Rico, Guatemala   | 1971 |
| VEE-V    | CaAr 4389     | SM #4, CEC #1, Vero#1  | <u>Culex</u> spp. (pool)       | Cabassou, French Guyana | 1974 |
| VEE-III  | TVL 52049     | Vero #2                | <u>Zygodontomys brevicauda</u> | Bush-Bush, Trinidad     | 1963 |
| VEE-IB   | 541/73        | SM #1, CEC #2, Vero#1  | human                          | Guajira, Venezuela      | 1973 |
| VEE-IA   | E1/68         | SM #1, CEC #1, Vero#1  | human                          | Guajira, Venezuela      | 1968 |
| VEE-ID   | 202330        | SM #1, Vero #2         | <u>Proechimys semispinosus</u> | Camboa, Panama          | 1963 |
| VEE-IC   | V-198         | SM #1, Vero #2         | human serum                    | Guajira, Colombia       | 1962 |
| VEE-IC   | V-178         | SM #1, Vero #2         | human                          | Cundinamarca, Colombia  | 1961 |
| VEE-IE   | 63A 216       | SM #2, Vero #1         | <u>Culex</u> spp. (pool)       | Sontecomapan, Mexico    | 1963 |
| VEE-ID   | 3880          | SM #2, Vero #3         | human serum                    | Canito, Panama          | 1961 |
| VEE-III  | Fe 37C        | SM #6, Vero #1         | <u>Culex</u> spp. (pool)       | Florida, USA            | 1963 |
| VEE-ID-E | Tumaco An9004 | SM #3, Vero #1         | sentinel hamster               | Pacific coast, Colombia | 1969 |
| VEE-IE   | 71U 384       | SM #1, Vero #1         | sentinel hamster               | La Avellana, Guatemala  | 1971 |
| VEE(IAB) | G 8419        | SM #2, Vero #2         | horse                          | Sonora, Mexico          | 1972 |
| VEE-IA   | 71D 1252      | SM #1, Vero #1         | Mosquito pool                  | Iquitos, Peru           | 1971 |
| VEE-IA   | E123/69       | SM #1, CEC #1, Vero#1, | human                          | Mara, Venezuela         | 1969 |
| VEE-IB   | 69U332        | Vero #1                | sentinel hamster               | La Avellana, Guatemala  | 1969 |
| VEE-ID   | V-209A        | SM #2, Vero#1, Vero#2, | sentinel mouse, bov.teat       | Alta Verapaz, Guatemala | 1986 |
| VEE-IV   | BeAr 35645    | SM #4, Vero#1          | <u>Anopheles nimbus</u>        | Belem, Brazil           | 1961 |
| VEE-IA   | 52/73         | SM #2, Vero #1         | burro                          | La Libertad, Peru       | 1973 |

## SCLAS Low Passage Virus Strains

| Virus            | Strain       | Passage                | Passage                         | Source                     | Locality  | Date |
|------------------|--------------|------------------------|---------------------------------|----------------------------|-----------|------|
| VEE-II           | Fe5-47 et    | SM #2, Vero #1         | Aedes <u>taeniorhynchus</u>     | Florida, USA               | 1965      |      |
| VEE-IB           | 6921         | SM #2, Vero #1         | human serum                     | Montufar, Guatemala        | 1969      |      |
| VEE-ID-E         | CoAn 59145   | ? Vero #1              | sentinel hamster                | Santander, Colombia        | 1970      |      |
| VEE-IA           | CoAn 5384    | SM #2, CEC #1, Vero #1 | horse                           | Carmelo, Colombia          | 1967      |      |
| VEE-V            | CoAn 410d    | SM #3, Vero #1         | <u>Psaracolus decumanus</u>     | Tonate, French Guyana      | 1973      |      |
| VEE-IA           | 71D 1252     | SM #1, Vero #1         | Mosquito pool                   | Iquitos, Peru              | 1971      |      |
| VEE-ID-E         | 75D 143      | SM #2, Vero #1         | Mosquito pool                   | Iquitos, Peru              | 1975      |      |
| VEE-IV           | BeAr 40403   | SM #6, Vero #1         | <u>Trichoprosopon digitatum</u> | Belem, Brazil              | 1961      |      |
| VSV-Alagoas CoAr | 171638       | Vero #2                | <u>Lutzomyia</u> sp.            | Durania, N.S., Colombia    | Dec. 1987 |      |
| VSV-IND          | L53-85       | Vero #1                | bovine mouth                    | Cartago, Costa Rica        | 1985      |      |
| VSV-IND          | L28-87       | Vero #1                | bovine mouth                    | Sta. Ana, San Salvador     | 1987      |      |
| VSV-IND          | L274-86      | Vero #1                | bovine mouth                    | Chalatenango, San Salvador | 1986      |      |
| VSV-IND          | L96-87       | Vero #1                | bovine teat                     | Alajuela, Costa Rica       | 1987      |      |
| VSV-Ind          | GML 903816   | Vero #4                | human(throat swab)              | Panama City, Panama        | 1984      |      |
| VSV-Ind          | L5-85        | Vero #1                | bovine teat                     | Guatemala                  | 1984      |      |
| VSV-Ind          | L30-84       | Vero #1                | bovine mouth                    | Costa Rica                 | 1984      |      |
| VSV-Ind          | L125-84      | Vero #1                | bovine teat                     | Panama                     | 1984      |      |
| VSV-Ind          | L2-83        | ? Vero #1              | "                               | Honduras                   | 1983      |      |
| VSV-Ind          | L51-85       | Vero #1                | "                               | Costa Rica                 | 1985      |      |
| VSV-Ind          | L111-85      | Vero #1                | "                               | Salvador                   | 1985      |      |
| VSV-Ind          | L134-85      | Vero #1                | cow                             | ?                          | ?         |      |
| VSV-N.J.         | Jardin 12-IV | bovine #1, Vero #1     | Veracruz, Mexico                | 1982                       |           |      |
| VSV-N.J.         | Ossabaw      | Vero #2                | feral pig                       | Ossabaw Island, Georgia    | 1983      |      |
| VSV-NJ           | L32-85       | Vero #1                | bovine epithelium               | Managua, Nicaragua         | 1985      |      |
| VSV-NJ           | L7-82        | Vero #2                | bovine epithelium               | Honduras                   | 1982      |      |

## SCLAS Low Passage Virus Strains

| Virus  | Strain     | Passage  | Source                | Locality                       | Date      |
|--------|------------|----------|-----------------------|--------------------------------|-----------|
| VSV-NJ | L11-85     | Vero #1  | bovine teat           | Panama                         | 1985      |
| VSV-NJ | L14-85     | Vero #1  | bovine teat           | Costa Rica                     | 1984      |
| VSV-NJ | L35-85     | Vero #1  | bovine mouth          | Nicaragua                      | 1985      |
| VSV-NJ | L264-84    | Vero #1  | bovine teat           | Honduras                       | 1983      |
| VSV-NJ | 82A175     | Vero #1  | <u>Equus caballus</u> | Loveland, Colorado Sept. 1982  |           |
| VSV-NJ | L270-84    | Vero #1  | bovine mouth          | Guatemala                      | 1984      |
| VSV-NJ | L243-84    | Vero #1  | bovine mouth          | Belize                         | 1984      |
| VSV-NJ | L8-82      | Vero #1  | bovine epithelium     | Honduras                       | 1982      |
| VSV-MJ | L14-82     | Vero #1  | "                     | Costa Rica                     | 1982      |
| VSV-NJ | L67-82     | Vero #1  | "                     | Guatemala                      | 1982      |
| VSV-NJ | L153-83    | Vero #1  | "                     | Nicaragua                      | 1983      |
| VSV-NJ | L183-83    | Vero #1  | bovine epithelium     | Panama                         | 1983      |
| VSV-NJ | L177-85    | Vero #1  | "                     | Honduras                       | 1985      |
| VSV-NJ | L172-86    | Vero #1  | bovine mouth          | Managua, Nicaragua             | 1986      |
| VSV-NJ | L123-87    | Vero #1  | bovine mouth          | Managua, Nicaragua             | 1987      |
| VSV-NJ | L44-87     | Vero #1  | bovine mouth          | Alta Verapaz, Guatemala        | 1987      |
| VSV-NJ | L130-87    | Vero #1  | bovine mouth          | Comayagua, Honduras            | 1987      |
| VSV-NJ | L212-86    | Vero #1  | bovine mouth          | Chiriqui, Panama               | 1986      |
| VSV-NJ | L204-86    | Vero #1  | bovine teat           | Alta Verapaz, Guatemala        | 1986      |
| WEE    | NM5-7ET    | C6/36 #1 | <u>Aedes vexans</u>   | Rancho de Albiquin, New Mexico | 1965      |
| WEE    | BFS-1428   | C6/36 #1 | <u>Culex tarsalis</u> | Kern Co., CA                   | June 1952 |
| WEE    | DLAN-23-82 | C6/36 #1 | <u>Culex tarsalis</u> | Tulane Co., CA                 | July 1982 |
| WEE    | BFS-4143   | C6/36 #1 | <u>Culex tarsalis</u> | Kern Co., CA                   | July 1962 |
| WEE    | BFN-3258   | C6/36 #1 | <u>Culex tarsalis</u> | Glenn Co., CA                  | Aug. 1971 |
| YP     | 1362/77    | C6/36 #1 | human serum           | Mutucana, Peru                 | 1977      |

## SCLAS Low Passage Virus Strains

| Virus | Strain                      | Passage                             | Source                             | Locality                                       | Date         |
|-------|-----------------------------|-------------------------------------|------------------------------------|------------------------------------------------|--------------|
| YF    | 5384                        | SM #2, CEC #1,                      | horse<br>human serum               | Carmelo, Colombia<br>Antioquia, Colombia       | 1967<br>1985 |
| YF    | HD 38564                    | C6/36 #2                            | " "                                | Upper Volta                                    | 198?         |
| YF    | Ar B 9005                   | SM <sub>5</sub> , MOSQ <sub>1</sub> | <u>Aedes africanus</u>             | Bozo, Cent. Afr. Rep.                          | Nov 1977     |
| YF    | Ar B 8883                   | SM <sub>5</sub> , MOSQ <sub>1</sub> | <u>Aedes africanus</u>             | Bozo, Cent. Afr. Rep.                          | Oct 1977     |
| YF    | P128M <sub>C</sub> SMB/IVIC | SM <sub>3</sub> , MOSQ <sub>1</sub> | liver of <u>Alouatta seniculus</u> | Las Claveles,<br>Cojedes, Venezuela            | Oct 1959     |
| YF    | INS-347613                  | C6/36 #3                            | human serum                        | Antioquia, Colombia                            | 1985         |
| YF    | H117505                     | SM #4                               | human serum                        | Ogbomosho, Nigeria                             | 4/22/87      |
| YF    | H117491                     | SM #4                               | human serum                        | Ogbomosho, Nigeria                             | 2/26/87      |
| YF    | BA55                        | SM #3                               | human serum                        | Ogbomosho, Nigeria                             | 5/23/87      |
| YF    | PHO-42H, SMB/IVIC-2         | SM <sub>2</sub> , MOSQ <sub>1</sub> | human liver                        | San Rafael de el Pinal, Tachira, Venezuela     | Nov 1961     |
| YF    | Asibi                       | Monkey 4                            | human serum                        | Kpeve, Ghana                                   | Jun 1927     |
| YF    | R35740                      | SM <sub>1</sub> , Mosq.1            | human liver                        | Ayacucho Dept., Peru                           | Feb 1979     |
| YF    | Jiminez                     | <u>Aotus</u> 1                      | human liver                        | Panama                                         | 1974         |
| YF    | Serie                       | SM 7, Mosq.1                        | ?                                  | Ethiopia                                       | 1961         |
| YF    | V-528A                      | <u>Alouatta</u> 1, Mosq.1           | human serum                        | Colombia                                       | 1979         |
| YF    | 14 FA                       | SM 7, Mosq.1                        | human serum                        | Luanda, Angola                                 | 1971         |
| YF    | E-1337                      | SM 1, Mosq.1                        | human serum                        | Guayzimi, Ecuador                              | 1979         |
| YF    | PM 27340                    | Mosq. 3                             | <u>Aedes furcifer-taylori</u>      | Kedougou, Senegal                              | 1978         |
| YF    | M 37                        | Mosq. 3                             | human serum                        | Toubacouta, Senegal<br>(patient died in Paris) | 1979         |
| YF    | Ar B 11059                  | AP-61 #1, C6/36 #1                  | <u>Aedes africanus</u>             | Bozo, Cent. Afr. Rep.                          | 1977         |
| YF    | Ar B 17239                  | AP-61 #1, C6/36 #1                  | <u>Aedes africanus</u>             | Bozo, Cent. Afr. Rep.                          | 1980         |

## SCLAS Low Passage Virus Strains

| Virus | Strain       | Passage               | Source                                | Locality               | Date     |
|-------|--------------|-----------------------|---------------------------------------|------------------------|----------|
| YF    | SH 38556     | AP-61 #1, C6/36 #1    | human blood                           | Burkina Faso           | 1983     |
| YF    | Ar D 25865   | SM 5, Mosq.#1         | <u>Aedes furcifer-taylori</u> (males) | Kedougou, Senegal      | Dec 1977 |
| YF    | T 797984     | Mosq.1                | human liver                           | Trinidad               | 1979     |
| YF    | T 790882     | Mosq.1                | <u>Haemagogus janthinomys</u>         | Trinidad               | 1979     |
| YF    | Ar 232869    | SM 2, Mosq.1          | <u>Haemagogus</u> sp.                 | Brazil                 | Mar 1973 |
| YF    | Ar 350397    | SM 2, Mosq.1          | <u>Haemagogus</u> sp.                 | Belterra, Para, Brazil | Aug 1978 |
| YF    | H 3509698    | SM 2, Mosq.1          | human liver                           | Tome-Acu, Para, Brazil | Aug 1978 |
| YF    | Be Ar 233164 | Mosq.4                | <u>Haemagogus</u> sp.                 | Goias, Brazil          | 1973     |
| YF    | TRVL 4205    | <u>Aotus</u> 1, MOSQ2 | liver of dead                         | Trinidad               | 1954     |
|       |              |                       | <u>Alouatta seniculus</u>             |                        |          |
| YF    | 79 H 327     | MOSQ2                 | human serum                           | Minteh Kunda, N. Bank  | Jan 1979 |
|       |              |                       |                                       | Div., Cambia           |          |
| YF    | 38578        | AP-61 #1, C6/36 #1    | human blood                           | Burkina Faso           | 1983     |
| YF    | 38580        | AP-61 #1, C6/36 #1    | human liver                           | Burkina Faso           | 1983     |
| YF    | 38581        | AP-61 #1, C6/36 #1    | human liver                           | Burkina Faso           | 1983     |
| YF    | 38557        | AP-61 #1, C6/36 #1    | human liver                           | Burkina Faso           | 1983     |
| YF    | 38558        | AP-61 #1, C6/36 #1    | human liver                           | Burkina Faso           | 1983     |
| YF    | 38564        | AP-61 #1, C6/36 #1    | human liver                           | Burkina Faso           | 1983     |
| YF    | 38566        | AP-61 #1, C6/36 #1    | human liver                           | Burkina Faso           | 1983     |
| YF    | 38570        | AP-61 #1, C6/36 #1    | human liver                           | Burkina Faso           | 1983     |
| YF    | 38571        | AP-61 #1, C6/36 #1    | human liver                           | Burkina Faso           | 1983     |
| YF    | 38572        | AP-61 #1, C6/36 #1    | human liver                           | Burkina Faso           | 1983     |
| YF    | 38574        | AP-61 #1, C6/36 #1    | human liver                           | Burkina Faso           | 1983     |
| YF    | 38576        | AP-61 #1, C6/36 #1    | human liver                           | Burkina Faso           | 1983     |

## SCLAS Low Passage Virus Strains

| Virus | Strain       | Passage               | Source                                  | Locality               | Date      |
|-------|--------------|-----------------------|-----------------------------------------|------------------------|-----------|
| YF    | 38577        | AP-61 #1, C6/36 #1    | human liver                             | Burkina Faso           | 1983      |
| YF    | 38329        | AP-61 #1, C6/36 #1    | <u>Ae. furcifer</u>                     | Burkina Faso           | 1983      |
| YF    | 38334        | AP-61 #1, C6/36 #1    | <u>Ae. furcifer</u>                     | Burkina Faso           | 1983      |
| YF    | 38335        | AP-61 #1, C6/36 #1    | <u>Ae. furcifer</u>                     | Burkina Faso           | 1983      |
| YF    | 38390        | AP-61 #1, C6/36 #1    | <u>Ae. furcifer</u>                     | Burkina Faso           | 1983      |
| YF    | 38400        | AP-61 #1, C6/36 #1    | <u>Ae. furcifer</u>                     | Burkina Faso           | 1983      |
| YF    | 38087        | AP-61 #1, C6/36 #1    | <u>Ae. furcifer</u>                     | Kedougou, Senegal      | 1983      |
| YF    | 38088        | AP-61 #1, C6/36 #1    | <u>Ae. furcifer</u>                     | Kedougou, Senegal      | 1983      |
| YF    | 38089        | AP-61 #1, C6/36 #1    | <u>Ae. taylori</u>                      | Kedougou, Senegal      | 1983      |
| YF    | 31104        | AP-61 #1, C6/36 #1    | <u>Ae. furcifer</u>                     | Kedougou, Senegal      | 1983      |
| YF    | 38693        | AP-61 #1, C6/36 #1    | <u>Ae. furcifer &amp; africanus</u>     | Kedougou, Senegal      | 1983      |
| YF    | 37961        | AP-61 #1, C6/36 #1    | <u>Ae. furcifer</u>                     | Kedougou, Senegal      | 1983      |
| YF    | M-37         | MOSQ #2, C6/36 #1     | Human serum                             | Kedougou, Senegal      | Nov. 1979 |
| YF    | PM 27340     | MOSQ #2, C6/36 #1     | <u>Ae. furcifer-taylori</u>             | Kedougou, Senegal      | Oct. 1978 |
| YF    | Ar B 8883    | SM5, MOSQ1            | <u>Ae. africanus</u>                    | Bozo, Cent.Afr.Rep.    | Oct. 1977 |
| YF    | Ar D 25865   | SM5, MOSQ1            | <u>Ae. furcifer-taylori(males)</u>      | Kedougou, Senegal      | Dec. 1977 |
| YF    | T 797984     | MOSQ1                 | human liver                             | Trinidad               | 1979      |
| YF    | T 790882     | MOSQ1                 | <u>Haemagogus lanthinomys</u>           | Trinidad               | 1979      |
| YF    | Ar 232869    | SM2, MOSQ1            | <u>Haemagogus</u> sp.                   | Brazil                 | Mar. 1973 |
| YF    | Ar 350397    | SM2, MOSQ1            | <u>Haemagogus</u> sp.                   | Belterra, Para, Brazil | Aug 1978  |
| YF    | H 3509698    | SM2, MOSQ1            | human liver                             | Tome-Acu, Para, Brazil | Aug 1978  |
| YF    | Be Ar 233164 | MOSQ4                 | <u>Haemagogus</u> sp.                   | Goias, Brazil          | 1973      |
| YF    | TRVL 4205    | <u>Aotus</u> 1, MOSQ2 | liver of dead <u>Alouatta seniculus</u> | Trinidad               | 1954      |
| YF    | 79 H 327     | MOSQ2                 | human serum                             | Minteh Kunda, N.Bank   | Jan 1979  |

Div., Gambia

## SCLAS Low Passage Virus Strains

| Virus | Strain                      | Passage                               | Source                             | Locality                                      | Date     |
|-------|-----------------------------|---------------------------------------|------------------------------------|-----------------------------------------------|----------|
| YF    | P128M <sub>c</sub> SMB/IVIC | SM <sub>3</sub> , MOSQ <sub>1</sub>   | liver of <u>Alouatta seniculus</u> | Las Claveles,<br>Cojedes, Venezuela           | Oct 1959 |
| YF    | PIIO-42H, SMB/IVIC-2        | SM <sub>2</sub> , MOSQ <sub>1</sub>   | human liver                        | San Rafael de el<br>Pinal, Tachira, Venezuela | Nov 1961 |
| YF    | Asibi                       | Monkey 4                              | human serum                        | Kpeve, Ghana                                  | Jun 1972 |
| YF    | R35740                      | SM <sub>1</sub> , MOSQ <sub>1</sub>   | human liver                        | Ayacucho Dept., Peru                          | Feb 1979 |
| YF    | Jiminez                     | <u>Aotus</u> <sub>1</sub>             | human liver                        | Panama                                        | 1974     |
| YF    | Serie                       | SM <sub>7</sub> , MOSQ <sub>1</sub>   | ?                                  | Ethiopia                                      | 1961     |
| YF    | V-528A                      | <u>Alouatta</u> <sub>1</sub> , Mosq.1 | human serum                        | Colombia                                      | 1979     |
| YF    | 14 FA                       | SM 7, Mosq.1                          | human serum                        | Luanda, Angola                                | 1971     |
| YF    | E-1337                      | SM 1, Mosq.2                          | human serum                        | Guayzimi, Ecuador                             | 1979     |
| YF    | PM 27340                    | Mosq. 3                               | <u>Aedes furcifer-taylori</u>      | Kedougou, Senegal                             | 1978     |
| YF    | M 37                        | Mosq. 3                               | human serum                        | Toubacouta, Senegal                           | 1979     |
|       |                             |                                       | (patient died in Paris)            |                                               |          |
| Zika  | 41662                       | AP-61 #1, C6/36 #1                    | <u>Ae. taylori</u>                 | Kedougou, Senegal                             | 1984     |
| Zika  | 41667                       | AP-61 #1, C6/36 #1                    | <u>Ae. taylori</u>                 | Kedougou, Senegal                             | 1984     |
| Zika  | 41671                       | AP-61 #1, C6/36 #1                    | <u>Ae. africanus</u>               | Kedougou, Senegal                             | 1984     |
| Zika  | 41519                       | AP-61 #1, C6/36 #1                    | <u>Ae. africanus</u>               | Kedougou, Senegal                             | 1984     |
| Zika  | 41524                       | AP-61 #1, C6/36 #1                    | <u>Ae. africanus</u>               | Kedougou, Senegal                             | 1984     |
| Zika  | 41525                       | AP-61 #1, C6/36 #1                    | <u>Ae. africanus</u>               | Kedougou, Senegal                             | 1984     |

X. DISTRIBUTION OF REAGENTS, WHO COLLABORATING CENTRE FOR ARBOVIRUS  
REFERENCE AND RESEARCH (R. Shope, R. Tesh, G. Tignor, S. Tirrell)

The WHO Centre distributed a total of 408 ampoules of arboviral reagents during 1988. These consisted of 191 virus stocks, 103 antigen preparations, and 114 antibody preparations. Distributions were made to laboratories in 12 states of the United States and in 14 other nations. The reagents represented 121 different viruses in the Arbovirus Unit's collection.

In addition several hundred larvae of colonized arthropods were supplied to other laboratories; these included Lutzomyia longipalpis, Phlebotomus papatasi, and Aedes taeniorhynchus. Seven different vertebrate and invertebrate cell lines were distributed to 12 laboratories.

XI. PUBLICATIONS - 1988

Arroyo, J.I., Apperson, S.A., Cropp, C.P., Marafino, B.J., Monath, T.P., Tesh, R.B., Shope, R.E. and Garcia-Blanco, M.A. Effect of human gamma interferon on yellow fever virus infection. Am. J. Trop. Med. & Hyg. 38:647-650, 1988.

Beaty, B.J., Calisher, C.H. and Shope, R.E. Arboviruses, In: Diagnostic Procedures for Viral, Rickettsial, and-Chlamydial Infections, R.W. Emmons, editor, Am. Pub. Health Assn., Washington, DC (in press).

Bilsel, P.A., Tesh, R.B. and Nichol, S.T. RNA genome stability of Toscana virus during serial transovarial transmission in the sandfly Phlebotomus perniciosus. Virus Research (in press).

Brown, S.E., Gonzalez, H.A., Bodkin, D.K., Tesh, R.B. and Knudson, D.L. Intra- and inter-serogroup genetic relatedness of orbiviruses. II. Blot hybridization and reassortment in vitro of epizootic haemorrhagic disease serogroup, bluetongue type 10 and Pata viruses. J. Gen. Virol. 69:135-147, 1988.

Brown, S.E., Morrison, H.G., Buckley, S.M., Shope, R.E., and Knudson, D.L. Genetic relatedness of the Kemerovo serogroup viruses: I. RNA-RNA blot hybridization and gene reassortment in vitro of the Kemerovo serocomplex. Acta Virol. 32:369-378, 1988.

Calisher, C.H., Karabatsos, N., Zeller, H., Digoutte, J.P., Tesh, R.B., Shope, R.E., Travassos da Rosa, A.P.A., and St. George, T.D. Antigenic relationships among rhabdoviruses from vertebrates and hematophagous arthropods. J. Gen. Virol. (submitted for publication).

Calisher, C.H. and Shope, R.E. Bunyaviridae, In: The Laboratory Diagnosis of Infectious Diseases: Principles and Practices, Chap. 34, Springer-Verlag (in press).

Calisher, C.H., Shope, R.E. and Walton, T.E. Cell cultures for diagnosis of arbovirus infections in livestock and wildlife. J. Tissue Cult. Meths. (in press).

Chung, S.I., Livingston, C.W., Jr., Crandell, R.W., Edwards, J.F., Calisher, C.H., Shope, R.E., Shelton, S.A. and Collisson, E.W. An association of congenital malformations in Texas sheep with Cache Valley virus infection. Am. J. Trop. Med. & Hyg. (submitted for publication).

Downs, W.G. and Shope, R.E. Yellow fever, In: Handbook of Viral and Rickettsial Hemorrhagic Fevers, J.H.S. Gear, editor, pp. 73-83, CRC Press, Boca Raton, Florida, 1988.

Dutary, B.E., Petersen, J.L., Peralta, P.H. and Tesh, R.B. Transovarial transmission of Gamboa virus in a tropical mosquito, Aedeomyia squamipennis. Am. J. Trop. Med. & Hyg. (in press).

Gibbs, E.P.J., Calisher, C.H., Tesh, R.B. Lazuick, J.S., Bowen, R. and Greiner, E.C. Bivens Arm virus: a new rhabdovirus isolated from Culicoides insignis in Florida and related to Tibrogargan virus from Australia. Vet. Microbiol. (submitted for publication).

Gonzalez, H.A. and Knudson, D.L. Intra- and inter-serogroup genetic relatedness of orbiviruses: I. Blot hybridization of Australian serogroup viruses. J. Gen. Virol. (submitted for publication).

Greiser-Wilke, I., Moennig, V., Kaaden, O.R., and Figueiredo, T.M. Most alphaviruses share a conserved epitopic region on their nucleocapsid protein. J. Gen. Virol. (in press).

Mason, P.W. Maturation of Japanese encephalitis virus glycoproteins produced by infected mammalian and mosquito cells. Virology (accepted for publication).

Mason, P.W., Dalrymple, J.M., Gentry, M.K., McCown, J.M., Hoke, C.H., Burke, D.S., Fournier, M.J. and Mason, T.L. Molecular characterization of a neutralizing domain of the Japanese encephalitis virus structural glycoprotein. J. Gen. Virol. (submitted for publication).

Oprandy, J.J., Schwan, T.G., and Main, A.J. Tick-borne Kemerovo group orbiviruses in a Newfoundland seabird colony. Can. J. Microbiol. 34: (in press).

Quiroz, E., Moreno, N., Peralta, P.H. and Tesh, R.B. A human case of encephalitis associated with vesicular stomatitis virus (Indiana serotype) infection. Am. J. Trop. Med. & Hyg. 39:312-314, 1988.

Ribeiro, J.M.C., Modi, G.B. and Tesh, R.B. Salivary apyrase activity of three phlebotomine sand flies. Compar. Biochem. Physiol. (submitted for publication).

Ribeiro, J.M.C., Vachereau, A., Modi, G.B. and Tesh, R.B. A novel peptide from the salivary glands of the sand fly Lutzomyia longipalpis is a potent vasodilator. Science (in press).

Shope, R.E., Woodall, J.P. and Travassos da Rosa, A.H.P.A. The epidemiology of diseases caused by viruses in groups C and Guama (Bunyaviridae). In: Epidemiology of Arthropod-Borne Viral Diseases, T.P. Monath, Editor, CRC Press, Boca Raton, Florida, 1988.

Shope, R.E. Arbovirology, a look into the past and the future. *Hilea Medica* 8:(1) 46, 1988.

Tesh, R.B. Phlebotomus fevers. In: Epidemiology of Arthropod-Borne Viral Diseases, T.P. Monath, Editor, CRC Press, Boca Raton, Florida, 1988.

Tesh, R.B. The genus Phlebovirus and its vectors. *Ann. Rev. Entomol.* 33:169-181, 1988.

Tesh, R.B. Undifferentiated fevers: dengue, phlebotomus fever, Rift Valley fever, West Nile fever and fevers caused by alphaviruses. In: Cecil Textbook of Medicine, 18th edition, J.B. Wyngaarden and L.H. Smith, editors, W.B. Saunders Co., Philadelphia, pp. 1816-1819, 1988.

Tesh, R.B., Boshell, J., Young, D.G., Morales, A., Ferro de Carrasquilla, C., Corredor, A., Modi, G.B., Travassos da Rosa, A.P.A., McLean, R.G., Rodriguez, C. and Gaitan, M.O. Characterization of five new phleboviruses recently isolated from sand flies in tropical America. *Am. J. Trop. Med. & Hyg.* (submitted for publication).

Tesh, R.B., Chen, W.R. and Catuccio, D. Comparative rates of digestion of albumin, IgG, IgM and complement (C3) in human blood after ingestion by mosquitoes (Aedes albopictus) and sand flies (Phlebotomus papatasi). *Am. J. Trop. Med. & Hyg.* 39:127-130, 1988.