MA0505 - Análisis I Lección III

Pedro Méndez¹

¹Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021

Outline

- Topología en espacios métricos
 - Interiores
 - Clausuras
 - Acumulación y Frontera
 - Vecindarios

El interior de un conjunto

Sea (E, d) un espacio métrico.

Definición

Dado $A \subseteq E$, decimos que $x_0 \in A$ es un punto interior de A si existe r > 0 tal que $B(x_0, r) \subseteq A$.

Análogamente definimos el interior de A como el conjunto de los puntos interiores de A. Denotamos A^o al interior.

Sea $G \subseteq A$ con G abierto. Si $x_0 \in G$ existe r > 0 tal que

$$B(x_0, r) \subseteq G \subseteq A$$
.

Luego $x_0 \in A^o$ y $G \subseteq A^o$.

De la Observación al Resultado

Lema

Si $G \subseteq A$ con G abierto, entonces $G \subseteq A^o$. Es decir, A^o es el abierto más grande contenido en A.

Por lo tanto, al ser $A_1^o \cap A_2^o$ abierto y $A_1^o \cap A_2^o \subseteq A_1 \cap A_2$, entonces

$$A_1^o\cap A_2^o\subseteq (A_1\cap A_2)^o.$$

Ejercicio

Muestre que A^o es un abierto.

Interiores
Clausuras
Acumulación y Frontera
Vecindarios

Si ahora $x \in (A_1 \cap A_2)^o$, entonces

$$B(x,r)\subseteq A_1\cap A_2, r>0.$$

Así $B(x,r) \subseteq A_1, A_2$ y por tanto $x \in A_1^o$ y $x \in A_2^o$. Concluimos

$$(A_1\cap A_2)^o\subseteq A_1^o\cap A_2^o.$$

Lema

$$A_1^o \cap A_2^o = (A_1 \cap A_2)^o$$
.

Ejercicio

Si $A \subseteq B$ entonces $A^o \subseteq B^o$.

Use el lema $G \subseteq A^o$ para probar este lema y el ejercicio de una forma alternativa.

La Distancia entre Conjuntos

Definición

Dados $A, B \subseteq E$ definimos su distancia como

$$d(A,B) = \inf\{d(x,y) : (x,y) \in A \times B\}.$$

Si $x \in E$ y $A \subseteq E$ con d(x, A) = 0, entonces existe $x_n \in A$ tal que $d(x, x_n) < \frac{1}{n}$ para todo $n \in \mathbb{N}$.

Es decir $(x_n)_{n=1}^{\infty} \subseteq A$ es una sucesión tal que $x_n \to x$ cuando $n \to \infty$.

La Clausura de un Conjunto

Lema

Dados x ∈ E y A ⊆ E son equivalentes:

- $oldsymbol{1} d(x, A) = 0.$
- 2 Existe $(x_n)_{n=1}^{\infty} \subseteq A$ tal que $x_n \to x$ cuando $n \to \infty$.

Dado $A \subseteq E$, definimos la clausura de A como

$$\overline{A} = \{ x \in E : d(x, A) = 0 \}.$$

Inmediatamente vemos que $A \subseteq \overline{A}$.

A los elementos de \overline{A} , les llamaremos puntos de adherencia de A.

Propiedades de la Clausura

Sea $z \in \overline{A}$, existe $a_r \in A$ tal que $d(a_r, z) < r$ para r > 0 pues d(z, A) = 0. Entonces

$$a_r \in B(z,r) \cap A$$
.

Si $F \subseteq E$ con $A \subseteq F$, como

$$\forall x \in E, \ \inf_{f \in F} d(x, f) \leqslant \inf_{a \in A} d(x, a),$$

entonces $d(x, F) \le d(x, A)$. Así d(x, A) = 0 implica d(x, F) = 0 por lo que

$$\overline{A} \subseteq \overline{F}$$
.

Trabajamos con la Clausura

Si A es cerrado y $x \notin A$, $E \setminus A$ es abierto y

$$B(x,r) \subseteq E \setminus A, \ r > 0 \Rightarrow B(x,r) \cap A = \emptyset.$$

Luego si $a \in A$, $d(x, a) \geqslant r$ y así $x \notin \overline{A}$. Por lo tanto, si A es cerrado entonces $A = \overline{A}$.

Es \overline{A} un cerrado?

Respondamos la pregunta...

• Si $z \in \overline{A}$, entonces

$$d(z, A) = r > 0.$$

- Así para $a \in A$, $d(z, a) \geqslant r$.
- Si $w \in B\left(z, \frac{r}{2}\right)$, entonces $d(w, A) \geqslant \frac{r}{2}$.

Respondamos la pregunta...

• Si $z \in \overline{A}$, entonces

$$d(z, A) = r > 0.$$

- Así para $a \in A$, $d(z, a) \geqslant r$.
- Si $w \in B\left(z, \frac{r}{2}\right)$, entonces $d(w, A) \geqslant \frac{r}{2}$.

Respondamos la pregunta...

• Si $z \in \overline{A}$, entonces

$$d(z, A) = r > 0.$$

- Así para $a \in A$, $d(z, a) \geqslant r$.
- Si $w \in B(z, \frac{r}{2})$, entonces $d(w, A) \geqslant \frac{r}{2}$.

Mostremos que

$$w \in B\left(z, \frac{r}{2}\right) \Rightarrow d(w, A) \geqslant \frac{r}{2}$$

Sabemos que

$$r \leqslant d(z,a) \leqslant d(z,w) + d(w,a) < \frac{r}{2} + d(w,a)$$

y así $\frac{r}{2} < d(w, a)$.

Por tanto

$$B\left(z,\frac{r}{2}\right)\subseteq E\setminus\overline{A}$$

concluimos que \overline{A} es cerrado.

Interiores
Clausuras
Acumulación y Frontera
Vocindarios

Ampliemos las propiedades

Lema

Dado $A \subseteq E$, A es cerrado si y sólo si $A = \overline{A}$.

Ejercicio

Dado $B \subseteq E$, B es abierto si y sólo si $B = B^o$.

Ejercicio

Dados $A, B \subseteq E$, vale que

- $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}.$

Puntos de Acumulación

Definición

Un punto $x_0 \in E$ es un punto de acumulación de A si

$$(B(x_0,r)\setminus\{x_0\})\cap A\neq\emptyset$$

para todo r > 0.

Es decir, B(x, r) contiene puntos de A distintos de x.

Ejercicio

Caracterice los puntos de acumulación en términos de sucesiones.

Puntos Frontera

Definición

Dado $A \subseteq E$ y $x \in E$, diremos que x es un punto frontera de A si para r > 0

$$B(x,r) \cap A \neq \emptyset$$
, $B(x,r) \cap A^c \neq \emptyset$.

Es decir $d(x, A) = d(x, A^c) = 0$. Denotamos

$$\partial A = \{ \text{ puntos frontera } \} = \{ x : d(x, A) = d(x, A^c) = 0 \}.$$

Ejemplos

- Si $A = \left\{ \frac{1}{n} : n \geqslant 1 \right\}$ tenemos que $\overline{A} = A \cup \{0\}$. El punto 0 es de acumulación y es el único pues $B\left(\frac{1}{n}, \frac{1}{(n+1)^2}\right) \cap A = \left\{\frac{1}{n}\right\}$ si $n \geqslant 1$.
- Sean $A = \left\{ n + \frac{1}{n} \right\}$, $B = \mathbb{N}$. Ambos son cerrados pero

$$d\left(n+\frac{1}{n},n\right)=\frac{1}{n}\to 0$$

por lo que d(A, B) = 0.

Si A, B son como antes, entonces

$$\mathbb{R}\setminus B=\bigcup_{n\in\mathbb{Z}}]n,n+1[$$

es un conjunto abierto.

Qué es
$$\mathbb{R} \setminus A$$
?

El Vecindario de un Punto

Dado $x \in E$, diremos que V es un vecindario de x si existe r > 0 tal que $B(x, r) \subseteq V$.

 Si V es un abierto, V es un vecindario de todos sus puntos.

El de un conjunto

Sea $A \subseteq E$, definimos

$$V_r(A) = \{ x \in E : d(x, A) < r \}.$$

- Si $a \in A$, $d(x, A) \leq d(x, a)$.
- Y si $x \in B(a, r)$, vale

$$d(x, A) \leqslant d(x, a) < r$$
.

Por tanto $B(a, r) \subseteq V_r(A)$.

Ejercicio

Para $x \in V_r(A)$ y $r_1 < r - d(x, A)$, muestre que

$$B(x, r_1) \subseteq V_r(A)$$
.

Propiedades del Vecindario

Lema

Si $A \subseteq E$, $V_r(A)$ es abierto para r > 0.

ahora si $x \in \bigcap_r V_r(A)$, entonces d(x, A) < r para r > 0. Es decir, d(x, A) = 0. Por lo tanto $\overline{A} = \bigcap_r V_r(A)$. Es decir, la clausira de un conjunto se puede escribir como

Es decir, la clausira de un conjunto se puede escribir como intersección de abiertos.

Densidad

Definición

A un conjunto $A \subseteq E$ le llamaremos denso en E si $\overline{A} = E$. A un espacio métrico (E, d) lo llamamos separable si poseé un conjunto denso y numerable.

Por ejemplo, $(\mathbb{R}, |\cdot|)$ es separable pues \mathbb{Q} es denso en \mathbb{R} . En general $(\mathbb{R}^d, ||\cdot||)$ es separable pues \mathbb{Q}^d es denso en \mathbb{R}^d .

Resumen

- Definición de interior y propiedades.
- Definición de distancia entre conjuntos.
- Definición de clausura y la clausura en efecto es un cerrado.
- Propiedades de clausura.
- Definición de puntos de acumulación y puntos frontera.
- Ejemplos de lo mencionado anteriormente.

Ejercicios

- Lista 3
 - El interior en efecto es un abierto. 1
 - Interior respeta subconjuntos. 2
 - Pruebas alternativas usando maximalidad del interior. (*)
 - Caracterización de abiertos por interiores. 3
 - Uniones e intersecciones de clausuras. 4
 - Puntos de acumulación como sucesiones. 5
 - Las bolas están dentro de los vecindarios. 6

Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.Rojas Notas MA0505. 2018.