Zero Knowledge Proofs

SNARKs based on Linear PCP

Instructors: Dan Boneh, Shafi Goldwasser, Dawn Song, Justin Thaler, Yupeng Zhang

SNARKs Learned So Far

Crypto primitive	Trusted Setup	Schemes	
Pairing (KZG)	✓	Plonk, Interactive Proofs,	
Discrete-log	×	Bulletproofs, Dory, Dark, Hyrax, Halo2,	
Hashing	*	Brakedown, Orion, (linear-time encodable code)	
		Stark, Aurora, Fractal, Virgo, (RS code and FRI)	

This Lecture: SNARKs based on Linear PCP

Earliest Implemented SNARKs

- ✓ Shortest proof size (3 elements [Groth16])
- √ Fast verifier (bilinear pairing)
- FFT and group exponentiations on the prover
- Circuit-specific trusted setup

History of SNARKs

Paradigm for SNARK

Plan of this lecture

- Quadratic Arithmetic Program (QAP)
- From QAP to SNARK
- Other variants

Quadratic Arithmetic Program (QAP)

Recall: SNARKs for circuit-satisfiability

- Given an arithmetic circuit C over \mathbb{F} and output y.
- P claims to know a w such that C(x, w) = y.
- For simplicity, let's take x to be the empty input.

Transcript/trace of C

- Interactive proof (lecture 4, slide 76):value of every gate
- Plonk (lecture 5, slide 42):
 left input, right input, output of every gate
- QAP:

input + output of every multiplication gate

Transcript/trace of C

input + output of every multiplication gate

Transcript/trace of C

Labeling the multiplication gates

 $l_i(x)$: is c_i the left input of gate j, for j = 1,2,3?

e.g.,
$$l_1(x):(1,0,0)$$

Polynomial interpolation at a known set Ω $l_1(\omega) = 1, l_1(\omega^2) = 0, l_1(\omega^3) = 0$

 $l_i(x)$: is c_i the left input of gate j, for j = 1,2,3?

e.g.,
$$l_2(x) : (0,0,0)$$

Polynomial interpolation at a known set Ω $l_2(\omega) = 0$, $l_2(\omega^2) = 0$, $l_2(\omega^3) = 0$

 $l_i(x)$: is c_i the left input of gate j, for j = 1,2,3?

e.g.,
$$l_3(x) : (0,0,1)$$

Polynomial interpolation at a known set Ω $l_3(\omega) = 0$, $l_3(\omega^2) = 0$, $l_3(\omega^3) = 1$

15

Properties of the selector polynomials

16

$$L(x) = \sum_{i=1}^{9} c_i \times l_i(x)$$

What is
$$L(\omega)$$
?
 $L(\omega) = c_1 = 3$

What is
$$L(\omega^2)$$
?
 $L(\omega^2) = c_7 = 6$

What is
$$L(\omega^3)$$
?

$$L(\omega^3) = c_3 + c_4 = 8$$

$$\omega$$
, ω^2 , ω^3

$$l_1(x):(1,0,0)$$

$$l_2(x):(0,0,0)$$

$$l_3(x):(0,0,1)$$

$$l_4(x):(0,0,1)$$

$$l_5(x):(0,0,0)$$

$$l_6(x):(0,0,0)$$

$$l_7(x):(0,1,0)$$

...

More Selector Polynomials

 $r_i(x)$: is c_i the right input of gate j, for j = 1,2,3?

e.g.,
$$r_1(x)$$
: (0,0,0)

Polynomial interpolation at a known set Ω $r_1(\omega) = 0, r_1(\omega^2) = 0, r_1(\omega^3) = 0$

More Selector Polynomials

Properties of the selector polynomials

$$R(x) = \sum_{i=1}^{9} c_i \times r_i(x)$$

What is
$$R(\omega)$$
? $R(\omega) = c_2 = 2$

What is
$$R(\omega^2)$$
?
$$R(\omega^2) = c_3 + c_4 = 8$$

What is
$$L(\omega^3)$$
?
 $R(\omega^3) = c_5 + c_6 = 9$

$$r_1(x)$$
: (0,0,0)

$$r_2(x):(1,0,0)$$

$$r_3(x):(0,1,0)$$

$$r_4(x)$$
: (0,1,0)

$$r_5(x):(0,0,1)$$

$$r_6(x):(0,0,1)$$

$$r_7(x):(0,0,0)$$

$$r_8(x):(0,0,0)$$

$$r_9(x):(0,0,0)$$

19

More Selector Polynomials

 $o_i(x)$: is c_i the output of gate j, for j = 1,2,3?

e.g.,
$$o_1(x) : (0,0,0)$$

Polynomial interpolation at a known set Ω $o_1(\omega) = 0$, $o_1(\omega^2) = 0$, $o_1(\omega^3) = 0$

More Selector Polynomials

Properties of the selector polynomials

$$O(x) = \sum_{i=1}^{9} c_i \times o_i(x)$$

$$O(\omega) = c_7 = 6$$

$$O(\omega^2) = c_8 = 48$$

$$O(\omega^3) = c_9 = 72$$

$$o_1(x):(0,0,0)$$

$$o_2(x):(0,0,0)$$

$$o_3(x):(0,0,0)$$

$$o_4(x):(0,0,0)$$

$$o_5(x):(0,0,0)$$

$$o_6(x):(0,0,0)$$

$$o_7(x):(1,0,0)$$

$$o_8(x):(0,1,0)$$

$$o_9(x):(0,0,1)$$

$$p(x) = L(x)R(x) - O(x)$$

$$= \left(\sum_{i=1}^{9} c_i \times l_i(x)\right) \times \left(\sum_{i=1}^{9} c_i \times r_i(x)\right) - \left(\sum_{i=1}^{9} c_i \times o_i(x)\right)$$

• Claim: $p(\omega^j) = 0$ for j = 1,2,3

$$p(x) = L(x)R(x) - O(x)$$

$$L(x) = \sum_{i=1}^{9} c_i \times l_i(x)$$

$$L(\omega) = c_1 = 3$$

$$R(x) = \sum_{i=1}^{9} c_i \times r_i(x)$$

$$R(\omega) = c_2 = 2$$

$$O(x) = \sum_{i=1}^{9} c_i \times o_i(x)$$

$$O(\omega) = c_7 = 6$$

$$p(x) = L(x)R(x) - O(x)$$

•
$$L(x) = \sum_{i=1}^{9} c_i \times l_i(x)$$

$$L(\omega^2) = c_7 = 6$$

$$R(x) = \sum_{i=1}^{9} c_i \times r_i(x)$$

$$R(\omega^2) = c_3 + c_4 = 1 + 7 = 8$$

$$O(x) = \sum_{i=1}^{9} c_i \times o_i(x)$$

$$O(\omega^2) = c_8 = 48$$

25

$$\begin{bmatrix} 3 & 2 & 1 & 7 & 5 & 4 & 6 & 48 & 72 \\ c_1 & c_2 & c_3 & c_4 & c_5 & c_6 & c_7 & c_8 & c_9 \end{bmatrix}$$

$$p(x) = L(x)R(x) - O(x)$$

•
$$L(x) = \sum_{i=1}^{9} c_i \times l_i(x)$$

$$L(\omega^3) = c_3 + c_4 = 1 + 7 = 8$$

$$R(x) = \sum_{i=1}^{9} c_i \times r_i(x)$$

$$R(\omega^3) = c_5 + c_6 = 5 + 4 = 9$$

$$O(x) = \sum_{i=1}^{9} c_i \times o_i(x)$$

$$O(\omega^3) = c_9 = 72$$

Vanishing polynomial

$$p(x) = L(x)R(x) - O(x)$$

$$= \left(\sum_{i=1}^{9} c_i \times l_i(x)\right) \times \left(\sum_{i=1}^{9} c_i \times r_i(x)\right) - \left(\sum_{i=1}^{9} c_i \times o_i(x)\right)$$

- $p(\omega^j) = 0 \text{ for } j = 1,2,3$
- p(x) = V(x)q(x), where $V(x) = (x \omega)(x \omega^2)(x \omega^3)$ is the vanishing polynomial of the set $\Omega = \{\omega, \omega^2, \omega^3\}$

Circuit-SAT to QAP [GGPR13, PGHR13]

P claims to know a w such that C(x, w) = y

P claims to know a vector csuch that p(x) = V(x)q(x)

n: number of multiplication gates

Circuit-SAT to QAP [GGPR13, PGHR13]

$$p(x) = (\sum_{i=1}^{m} c_i \times l_i(x)) \times (\sum_{i=1}^{m} c_i \times r_i(x)) - (\sum_{i=1}^{m} c_i \times o_i(x)) = V(x)q(x)$$

$\Omega = \omega$, ω^2 , ω^n		
$l_1(x):(1,0,0,)$	$r_1(x):(0,0,0,)$	$o_1(x):(0,0,0,\dots)$
$l_2(x):(0,0,0,)$	$r_2(x):(1,0,0,)$	$o_2(x):(0,0,0,)$
$l_3(x):(0,0,1,\dots)$	$r_3(x):(0,1,0,)$	$o_3(x):(0,0,0,\dots)$
$l_m(x):(0,0,1,)$	$r_m(x):(0,0,1,)$	$o_m(x):(0,0,0,)$

From QAP to SNARK

Probabilistically Checkable Proofs (PCP)

IPCP [Kalai-Raz'08] and IOP [Ben-Sasson-Chiesa-Spooner'16]

Polynomial IOP [Bünz-Fisch-Szepieniec'20]

Linear PCP [Ishai-Kushilevitz-Ostrovsky'07]

QAP and Linear PCP

Recall: Bilinear pairing

- $(p, \mathbb{G}, g, \mathbb{G}_T, e)$
 - \mathbb{G} and \mathbb{G}_T are both multiplicative cyclic group of order p,g is the generator of \mathbb{G} .

 \mathbb{G} :base group, \mathbb{G}_T target group

- Pairing: $e(P^x, Q^y) = e(P, Q)^{xy} : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$
- Example: $e(g^x, g^y) = e(g, g)^{xy} = e(g^{xy}, g)$

Given g^x and g^y , a pairing can check that some element $h=g^{xy}$ without knowing x and y

36

Key Generation

$$p(x) = (\sum_{i=1}^{m} c_i \times l_i(x)) \times (\sum_{i=1}^{m} c_i \times r_i(x)) - (\sum_{i=1}^{m} c_i \times o_i(x)) = V(x)q(x)$$

Preprocessor

Proving key:
$$p$$
, G , g , G_T , e

$$g^{l_i(\tau)}, g^{r_i(\tau)}, g^{o_i(\tau)} \text{ for } i = 1, ..., m$$

Verification key: $g^{V(\tau)}$

Prover

$$g^{\tau}$$
, g^{τ^2} , ..., g^{τ^m}

Verifier

delete τ !! (trusted setup)

Prove

$$p(x) = (\sum_{i=1}^{m} c_i \times l_i(x)) \times (\sum_{i=1}^{m} c_i \times r_i(x)) - (\sum_{i=1}^{m} c_i \times o_i(x)) = V(x)q(x)$$

PK:
$$g^{l_i(\tau)}, g^{r_i(\tau)}, g^{o_i(\tau)}$$

for $i = 1, ..., m$
 $g^{\tau}, g^{\tau^2}, ..., g^{\tau^m}$

$$\pi_1 = g^{\sum_{i=1}^m c_i \times l_i(\tau)}$$

$$\pi_2 = g^{\sum_{i=1}^m c_i \times r_i(\tau)}$$

$$\pi_3 = g^{\sum_{i=1}^m c_i \times o_i(\tau)}$$

$$\pi_4 = g^{q(\tau)}$$

Verifier

Verify

$$p(x) = (\sum_{i=1}^{m} c_i \times l_i(x)) \times (\sum_{i=1}^{m} c_i \times r_i(x)) - (\sum_{i=1}^{m} c_i \times o_i(x)) = V(x)q(x)$$

PK:
$$g^{l_i(\tau)}, g^{r_i(\tau)}, g^{o_i(\tau)}$$

for $i = 1, ..., m$
 $g^{\tau}, g^{\tau^2}, ..., g^{\tau^m}$

Prover

$$\pi_1 = g^{\sum_{i=1}^m c_i \times l_i(\tau)}$$

$$\pi_2 = g^{\sum_{i=1}^m c_i \times r_i(\tau)}$$

$$\pi_3 = g^{\sum_{i=1}^m c_i \times o_i(\tau)}$$

$$\pi_4 = g^{q(\tau)}$$

Verification key: $g^{V(\tau)}$

$$e(\pi_1, \pi_2)/e(\pi_3, g)$$

= $e(g^{V(\tau)}, \pi_4)$

Verifier

Towards the real protocol

• Q1: How to make sure π_1 is computed from $g^{l_i(\tau)}$?

 Solution: Knowledge of Exponent assumption (KoE) or Generic Group Model (GGM)

Recall: KoE

- Sample random α , compute $g^{\alpha l_i(\tau)}$ for $i=1,\ldots,m$
- $\pi_1 = g^{\sum_{i=1}^m c_i \times l_i(\tau)}, \pi_1' = g^{\alpha \sum_{i=1}^m c_i \times l_i(\tau)}$
- $e(\pi_1, g^{\alpha}) = e({\pi_1}', g)$
- Used in [PGHR13]

Recall: GGM

• (Informal) Adversary is only give an oracle to compute the group operation.

E.g., given $g^{\alpha l_i(\tau)}$ for $i=1,\ldots,m$, Adv can only compute their linear combinations.

Used in [Groth16]

Towards the real protocol

• Q2: how to make sure the same c is used in π_1, π_2, π_3 ?

Solution

$$p(x) = \left(\sum_{i=1}^{m} c_{i} \times l_{i}(x)\right) \times \left(\sum_{i=1}^{m} c_{i} \times r_{i}(x)\right) - \left(\sum_{i=1}^{m} c_{i} \times o_{i}(x)\right) = V(x)q(x)$$

$$\text{PK: } g^{l_{i}(\tau)}, g^{r_{i}(\tau)}, g^{o_{i}(\tau)}$$

$$g^{\tau}, g^{\tau^{2}}, \dots, g^{\tau^{m}}$$

$$g^{\beta(l_{i}(\tau)+r_{i}(\tau)+o_{i}(\tau))} \text{ for } i \in [m]$$

$$g^{\beta}$$

$$\pi_{1} = g^{\sum_{i=1}^{m} c_{i} \times l_{i}(\tau)}$$

$$\pi_{2} = g^{\sum_{i=1}^{m} c_{i} \times r_{i}(\tau)}$$

$$\pi_{3} = g^{\sum_{i=1}^{m} c_{i} \times o_{i}(\tau)}$$

$$\pi_{4} = g^{q(\tau)}$$

$$\pi_{5} = \prod_{i=1}^{m} \left(g^{\beta(l_{i}(\tau)+r_{i}(\tau)+o_{i}(\tau))}\right)^{c_{i}}$$

$$Verifier$$

Towards the real protocol

Q3: what about public input and output?

$$C(x, w) = y$$

Solution

Putting everything together

Keygen:

$$\begin{aligned} & \text{PK: } g^{l_i(\tau)}, g^{r_i(\tau)}, g^{o_i(\tau)}, g^{\beta(l_i(\tau) + r_i(\tau) + o_i(\tau))} \text{ for } i \in I_{mid}, g^{\beta}, g^{\tau}, g^{\tau^2}, \dots, g^{\tau^m} \\ & \text{VK: } g^{l_i(\tau)}, g^{r_i(\tau)}, g^{o_i(\tau)} \text{ for } i \in I_{io}, g^{V(\tau)} \end{aligned}$$

- Prove: $\pi_1 = g^{L(\tau)}$, $\pi_2 = g^{R(\tau)}$, $\pi_3 = g^{O(\tau)}$, $\pi_4 = g^{q(\tau)}$, $\pi_5 = g^{\beta(L(\tau) + R(\tau) + O(\tau))}$
- Verify: $\pi_1^* = \pi_1 \cdot g^{\sum_{i \in I_{io}} c_i \times l_i(\tau)}$, π_2^* , π_3^* ,
 - $e(\pi_1^*, \pi_2^*)/e(\pi_3^*, g) = e(g^{V(\tau)}, \pi_4)$
 - $e(\pi_1\pi_2\pi_3, g^\beta) = e(\pi_5, g)$

Properties of SNARK [PGHR13]

- Per-circuit trusted setup: O(C) group exponentiations due to sparsity
- Prover time: $O(C \log C)$ FFT, O(C) group exponentiations
- \checkmark Proof size: O(1), hundreds of bytes only
- ✓ Verifier time: O(1) pairing + O(|IO|) group exponentiations

Other Variants

Rank-1-Constraint-System (R1CS)

 ω , ω^2 , ω^3

 $l_1(x)$: (1,0,0)

 $l_2(x):(0,0,0)$

 $l_3(x):(0,0,1)$

 $l_4(x):(0,0,1)$

 $l_5(x):(0,0,0)$

 $l_6(x):(0,0,0)$

 $l_7(x):(0,1,0)$

 $l_8(x):(0,0,0)$

 $l_9(x):(0,0,0)$

 $l_i(x)$: is c_i the left input of gate j, for j = 1,2,3?

Rank-1-Constraint-System (R1CS)

$$p(x) = (\sum_{i=1}^{m} c_i \times l_i(x)) \times (\sum_{i=1}^{m} c_i \times r_i(x)) - (\sum_{i=1}^{m} c_i \times o_i(x))$$

$$l_i(\omega^j) = \text{In } c_i \text{ is the left input of multiplication gate } j$$

$$l_i(\omega^j) = \text{In } c_i \text{ is the left input of multiplication gate } j$$

$$l_i(\omega^j) = \text{In } c_i \text{ is the left input of multiplication gate } j$$

$$l_i(\omega^j) = \text{In } c_i \times l_i(x) + l_i(x) +$$

51 ZKP MC

Matrix View of R1CS

• m: size of the extended witness; n: number of constraints

Building blocks for SNARKs: Linear check + Hadamard product check Used in Bulletproofs, Marlin, Spartan, ...

Groth16

$$p(x) = (\sum_{i=1}^{m} c_i \times l_i(x)) \times (\sum_{i=1}^{m} c_i \times r_i(x)) - (\sum_{i=1}^{m} c_i \times o_i(x)) = V(x)q(x)$$

- $\pi_1 = g^{\alpha + \sum_{i=1}^m c_i \times l_i(\tau)}$
- $\pi_2 = q^{\beta + \sum_{i=1}^m c_i \times r_i(\tau)}$
- $\pi_3 = g^{\sum c_i \times (\beta l_i(\tau) + \alpha r_i(\tau) + o_i(\tau)) + V(\tau) q(\tau)}$

• Verify: $e(\pi_1, \pi_2) = e(\pi_3, g)e(g^{\alpha}, g^{\beta})$

Groth16

Change the keygen accordingly

Proof size: 3 group elements, 144 bytes

Verifier time: 1 pairing equation

Achieving Zero-Knowledge

$$p(x) = (\sum_{i=1}^{m} c_i \times l_i(x)) \times (\sum_{i=1}^{m} c_i \times r_i(x)) - (\sum_{i=1}^{m} c_i \times o_i(x)) = V(x)q(x)$$

$$\pi_1 = g^{\sum_{i=1}^m c_i \times l_i(\tau)}$$

$$\pi_2 = g^{\sum_{i=1}^m c_i \times r_i(\tau)}$$

$$\pi_3 = g^{\sum_{i=1}^m c_i \times o_i(\tau)}$$

$$\pi_4 = g^{q(\tau)}$$

$$\pi_4 = g^{q(\tau)}$$

$$e(\pi_1, \pi_2)/e(\pi_3, g)$$

$$= e(g^{V(\tau)}, \pi_4)$$

$$\text{Verifier}$$

Achieving Zero-Knowledge

$$p(x) = (\sum_{i=1}^{m} c_i \times l_i(x)) \times (\sum_{i=1}^{m} c_i \times r_i(x)) - (\sum_{i=1}^{m} c_i \times o_i(x)) = V(x)q(x)$$

$$\pi_1 = g^{\sum_{i=1}^m c_i \times l_i(\tau) + \delta_1 V(\tau)}$$

$$\pi_2 = g^{\sum_{i=1}^m c_i \times r_i(\tau) + \delta_2 V(\tau)}$$

$$\pi_3 = g^{\sum_{i=1}^m c_i \times o_i(\tau) + \delta_3 V(\tau)}$$

$$\pi_4 = g^{q(\tau)}$$

$$e(\pi_1, \pi_2)/e(\pi_3, g)$$

= $e(g^{V(\tau)}, \pi_4)$

Verifier

Prover

End of Lecture

Next: Recursive SNARKs

