SQL Skill Enhancement Session

What is a database ?

- A database is a collection of data stored in a format that can be easily accessible.
- A software application used to manage the Database is called
 DBMS-Database Management System

www.guvi.in

- SQL stands for Structured Query Language. SQL is used to communicate with database and it is used for storing and managing data in Relational Database Management System
- The SQL programming language was developed in the 1970s by IBM researchers Raymond Boyce and Donald Chamberlin
- It is a standard language for Relational Database System. SQL can be used to insert, search, update, and delete database records

History of SQL 7

- 1970: Dr. Edgard Codd publishes a research paper on the relational data model for large shared data banks.
- 1973: IBM researchers Donald Chamberlain and Raymond Boyce begin developing the language, called Structured English Query Language (SEQUEL).
- management system called Relational Software Inc, inspired by Codd's research 1974: Both Chamberlain and Boyce develop a SQL-based relational database paper.
- 1979: IBM releases the first commercially available SQL data system.
- 1986: It is standardized by the <u>American National Standards Institute</u> (ANSI). www.guvi.in

Why do we need SQL?

-Load more data on demand in repeater

Arjun MCA 23 Male #1234, c	
	#1234, chandigarh
Swati MCA 22 Female #665 Pa	#665 Panchkula
Load More Data	

RDBMS [RELATIONAL DATABASE MANAGEMENT] SYSTEM

{ TABULER SYSTEM - ROWS & COLUMNS }

{ FILE SYSTEM }

S

[30[]

RDBMS

- Data is represented in terms of tuples (rows) in RDBMS. A relational database is the most commonly used database.
- It contains several tables, and each table has its primary key.
- Due to a collection of an organized set of tables, data can be accessed easily in RDBMS.

What is the Difference between DBMS and RDBMS?

- In **DBMS**, the data is stored as a file e.g.XML, Microsoft Access, whereas in RDBMS, data is stored in the form of tables e.g. Oracle, MySQL server
- Data in the form of a table are linked together in RDBMS where as there won't be any link between data in DBMS

A	Microsoft SQL Server	
SQL Server	Developer: Microsoft	Initial Release: 1989
Mysqu	MySQL Developer: Oracle Corporation	Initial Release: 23 May 1995
TO O	PostgreSQL Developer: PostgreSQL Global Development Group	Initial Release: 8 July 1996
SQLite	SQLite Developer: D. Richard Hipp	Initial Release: 17 Aug. 2000
ORACLE	Oracle Database Developer: Oracle Corporation	Initial Release: 1979
Morrioda	MariaDB Developer: MariaDB Corporation Ab	Initial Release: 29 Oct. 2009
Informix	Informix Developer: IBM	Initial Release: 17 Nov. 2020
Appendix County	Apache Derby Developer: Apache Software Foundation	Initial Release: 19 May 2022
amazon	Amazon RDS Developer: Amazon.com	Initial Release: 26 Oct. 2009
H2	H2 Database Engine Developer: Thomas Mueller	Initial Release: Dec. 2005
Sw dws	Sybase ASE Developer: Sybase - A SAP Company	Initial Release: 1987

Comparing databases

SQLite vs. MySQL vs. Postgres

	Pros	Cons	When to use	When not to use
SQLite	Small footprint User-friendly Portable	Limited concurrency No user management Security	Embedded applications Disk access replacement Testing	Working with lots of data High write volumes Network access is required
MySQL	Popularity & ease of use Security Speed Replication	Known limitations Licensing & proprietary features Slowed development	Distributed operations Websites & web applications Expected future growth	SQL compliance is necessary Concurrency & large data volumes
Postgres	Postgres sol compliance	Memory performance	Data integrity is important	Speed is imperative

Data integrity is important Integration w/other tools

Popularity

Open-source & community-driven

Extensible

Complex replication Simple setups

Complex operations

Comparing databases

	Mysql	PostgreSQL
SELECT	SELECT col1, col2	SELECT col1, col2
Data from tables is case sensitive?	No WHERE name = 'John' Or WHERE name = 'John' are the same	Yes WHERE name = 'John' Or WHERE name = 'John' are not the same
Using quotation marks	name = "John" or name = "John"	name = 'John' only
Aliases for columns and tables	SELECT AVG(col1) AS avg1	SELECT AVG(col1) AS avg1
Working with dates	CURDATE() CURTIME() EXTRACT()	CURRENT_DATE() CURRENT_TIME() EXTRACT()

Top 5 SQL Query Tools

- MySQL Workbench
- pgAdmin(Postgresql)
- dbForge Studio for mysql
- phpMyAdmin
- HeidiSQL
- DBeaver

Types of Database languages

- Data Definition Language (DDL)
 - Create Alter
- Drop
- Truncate
- Data Manipulation Language(DML)
- Insert
- Update
 - Delete
- Data Query Language (DQL)
- Select
- Data Control Language(DCL)
- Grant
- Revoke
- Transaction Control Language(TCL)
- Commit
- Roll Back
- Save Point

DDL COMMANDS

list of DDL statements are:

- **CREATE:** This command is used when creating a database or objects like tables, views, indexes, store procedures, functions, and triggers.
- **DROP:** While deleting an object from the database.
- ALTER: Used while altering the structure of the database.
- TRUNCATE: Used when we are removing all the records of a table.
- RENAME: This command is used while renaming an object existing in the database.

DMI. COMMANDS

list of DDL statements are:

INSERT: This command is used to insert data into a table.

UPDATE: This command we are using to update an existing data of a table.

DELETE: Using this command, we can delete data from a table.

DOL COMMANDS

We have one DQL command, which is:

SELECT: By using this command, we can retrieve the data from the database.

DCI COMMANDS

- **GRANT:** By using this command, we can give user access privileges to the database. So that we can allow specified users to perform specific tasks.
- REVOKE: This command removes the user's access privileges approved by the GRANT command.

TCL COMMANDS

Here are the following TCL commands are:

- **COMMIT:** This command is used to save the transactions.
- ROLLBACK: This command is used to undo changes or roll back a transaction in case of any error occurs.
- **SAVEPOINT:** This command is used to roll back a transaction to a specific point rather than the complete transaction.

Gar_sales database

```
CREATE DATABASE car_sales;
```

USE car_sales;

CREATE TABLE sales_product

_

sales_person_ID int unsigned,

customer_ID int unsigned,

selldate date,

manufacturer varchar(50),

manufacturer_ID int unsigned,

model varchar(50),

model_ID int unsigned,

SQL Clauses

- · CHAR
- · VARCHAR
- · BOOLEAN
- SMALLINT
- INTEGER
- DECIMAL
- NUMERIC
 - REAL
- FLOAT
- DATE

- TIME
- TIMESTAMP
- CLOB(CHAR LARGE OBJECT
- BLOB(BINARY
 LARGE OBJECT)

CHAR

- We should use the char datatype when we expect the data values in a column to be of the same length.
- CHAR takes one byte for each character.
- Better performance than varchar

VARCHAR

- We should use the char datatype when we expect the data values in a column to be of Variable length.
 - VARCHAR takes one byte for each character and some extra bytes for holding the length information.
- Performance is not better than char.

- ARITHMETIC + * / %
- COMPARISON < <= > >= !=
- **LOGICAL AND, OR, NOT, IN, BETWEEN, ALL, LIKE, ANY**

NOT IN Eg. WHERE CITY IN ("Chennai", "Mysore"),

BITWISE-BITWISE AND &, BITWISE OR!

0

CLAUSES- LIMIT, ORDER BY, GROUP BY, HAVING

- SELECT * FROM TABLE1 LIMIT 10;
- collects data from multiple records and groups the result by one or more GROUP BY- Groups rows that have same values into summary rows. It Eg. Select city, count(empname) from emp group by city; column. It is used along with an aggregate function.
- ORDER BY- Sorts in ascending / descending order
- HAVING Used along with group by for specifying the conditions

www.guvi.in

0