Large Cluster Approximation to the Information Matrix Using Complete Data

With an Application to Meta-Analysis

Andrew M. Raim

(Now with U.S. Census Bureau)

Department of Mathematics and Statistics University of Maryland, Baltimore County Baltimore, MD, USA

> 2014 Joint Statistical Meetings Boston, MA, USA

Joint work with Nagaraj K. Neerchal (UMBC) and Jorge G. Morel (UMBC)

Introduction

• Finite mixture densities are weighted sums of simpler densities

$$f(\mathbf{x} \mid \boldsymbol{\theta}) = \sum_{\ell=1}^{s} \pi_{\ell} f(\mathbf{x} \mid \phi_{\ell}).$$

Useful for analyzing data with multiple modes or extra variation.

• The Fisher information matrix (FIM) of $\mathbf{X} \sim f(\mathbf{x} \mid \boldsymbol{\theta})$

$$\mathcal{I}(\boldsymbol{\theta}) = \mathsf{E}\left[\left\{\frac{\partial}{\partial \boldsymbol{\theta}} \log f(\mathbf{X} \mid \boldsymbol{\theta})\right\} \left\{\frac{\partial}{\partial \boldsymbol{\theta}} \log f(\mathbf{X} \mid \boldsymbol{\theta})\right\}^T\right]$$

is routinely used in statistical analysis: scoring, standard errors, etc.

• The FIM under a finite mixture does not have a simple analytical form.

Overview of the Talk

- For the finite mixture of binomials, Blischke (1964) used a simple block-diagonal matrix to approximate the inverse FIM. Morel and Nagaraj (1993) extended it to multinomial finite mixtures.
- In both cases, the block-diagonal matrix was shown to become close to the actual FIM as the number of trials increase.
- Raim, Liu, Neerchal, and Morel (2014) noted it is the FIM of the complete data: the observed **X** and missing subpopulation indicator *Z*.
- In this talk, we present:
 - A convergence result for exponential family finite mixtures. It requires m observations, "grouped" like binomial.
 - 2. An example using MVN.
 - 3. An application in meta-analysis.

Assumption

• (Grouped Sampling): Suppose X_1, \dots, X_m are independent and identically distributed from one of s exponential family densities

$$f(\mathbf{x} \mid \boldsymbol{\eta}_1), \ldots, f(\mathbf{x} \mid \boldsymbol{\eta}_s)$$

• Let $Z=\ell$ (not observed) indicate that the ℓ th density was used, and suppose

$$Z = egin{cases} 1 & ext{w.p. } \pi_1, \ & dots \ s & ext{w.p. } \pi_s. \end{cases}$$

• The density of the sufficient statistic **T** can be written as

$$f(\mathbf{t} \mid \boldsymbol{ heta}) \propto \sum_{\ell=1}^s \pi_\ell \exp\left\{ oldsymbol{\eta}_\ell^\mathsf{T} \mathbf{t} + m \cdot a(oldsymbol{\eta}_\ell)
ight\}, \quad oldsymbol{ heta} = (oldsymbol{\eta}_1, \dots, oldsymbol{\eta}_s, oldsymbol{\pi}).$$

Result

• Complete data FIM of (\mathbf{T}, Z) is $\widetilde{\mathcal{I}}_m(\boldsymbol{\theta}) = \mathsf{Blockdiag}\left(\pi_1 \mathbf{F}_1, \dots, \pi_s \mathbf{F}_s, \mathbf{F}_\pi\right)$

$$\begin{aligned} \mathbf{F}_{\ell} &= \mathsf{Var}(\mathbf{T} \mid Z = \ell), &\longleftarrow \mathsf{FIM} \text{ under the } \ell \mathsf{th subpopulation}, \\ \mathbf{F}_{\pi} &= \mathbf{D}_{\pi}^{-1} + \pi_{s}^{-1} \mathbf{1} \mathbf{1}^{T}, &\longleftarrow \mathsf{FIM of Mult}_{s}(1, \pi). \end{aligned}$$

• Raim, Neerchal, and Morel (Submitted 2014) prove the following.

Theorem

- (a) $\widetilde{\mathcal{I}}_m(\theta) \mathcal{I}_m(\theta) \to \mathbf{0}$ as $m \to \infty$. Rate is $O(m^2 e^{-m \cdot (const)})$.
- (b) If $\mathcal{I}_m(\theta)$ and $\widetilde{\mathcal{I}}_m(\theta)$ are nonsingular, then $\mathcal{I}_m^{-1}(\theta) \widetilde{\mathcal{I}}_m^{-1}(\theta) \to \mathbf{0}$ as $m \to \infty$.

Example: Multivariate Normal (Σ known)

• Suppose X_1, \ldots, X_m are iid from one the following MVN densities:

$$\mathsf{N}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}), \dots, \mathsf{N}(\boldsymbol{\mu}_s, \boldsymbol{\Sigma}).$$

- ullet To compare the approximate and true FIM w.r.t. $\psi=(\mu_1,\ldots,\mu_s,\pi)$.
- We obtain $\widetilde{\mathcal{I}}(\psi) = \mathsf{Blockdiag}(\pi_1 \mathbf{F}_1, \dots, \pi_s \mathbf{F}_s, \mathbf{F}_\pi)$ with

$$\mathbf{F}_\ell = m \mathbf{\Sigma}^{-1}$$
 and $\mathbf{F}_\pi = \mathbf{D}_\pi^{-1} + \pi_s^{-1} \mathbf{1} \mathbf{1}^T$

- We will consider three scenarios with mixture of two bivariate normals:
 - 1. $\mu_1 = (-1, 1), \ \mu_2 = (1, -1).$
 - 2. $\mu_1 = (-0.5, 0.5), \ \mu_2 = (0.5, -0.5).$
 - 3. $\mu_1 = (-0.125, 0.125), \ \mu_2 = (0.125, -0.125).$

$$\Sigma = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}, \quad \text{and} \quad \pi = \begin{pmatrix} 0.25 \\ 0.75 \end{pmatrix}.$$

Example: Bivariate Normal (Σ known)

Frobenius Norm of Matrix Difference

Scenario	m	$\ \widetilde{\mathcal{I}} - \mathcal{I}\ _{F}$
1	6	0.0002
2	25	0.0005
3	80	13 8565

Andrew Raim (UMBC) Approximation to the FIM Result 8/19

Amlodipine Data

- n = 8 trials of an angina drug (Amlodipine) vs. placebo.
- Studied by (Hartung and Knapp, 2001) and used as an example in the book by Hartung, Knapp, and Sinha (2008).
- Subject's outcome: $\log\left(\frac{\text{Exercise time after treatment}}{\text{Exercise time before treatment}}\right)$. Objective: inference on $\mu_{\text{AMLO}} \mu_{\text{PLA}}$.

Study	$m_{\mathtt{AMLO}}$	$ar{y}_{ exttt{AMLO}}$	$s_{\mathtt{AMLO}}^2$	$m_{\mathtt{PLA}}$	$ar{y}_{ t PLA}$	$s_{\mathtt{PLA}}^2$
1	46	0.2316	0.2254	48	-0.0027	0.0007
2	30	0.2811	0.1441	26	0.0270	0.1139
3	75	0.1894	0.1981	72	0.0443	0.4972
4	12	0.0930	0.1389	12	0.2277	0.0488
5	32	0.1622	0.0961	34	0.0056	0.0955
6	31	0.1837	0.1246	31	0.0943	0.1734
7	27	0.6612	0.7060	27	-0.0057	0.9891
8	46	0.1366	0.1211	47	-0.0057	0.1291

- Let $\mathcal{D}_i = (\bar{y}_{Ti}, \bar{y}_{Ci}, s_{Ti}^2, s_{Ci}^2)$ represent data from ith study for $i = 1, \ldots, n$.
- ullet Among the treatment/control pairs, assume there are J common subpopulations
- Given that jth subject of the ith study belongs to subpop'n $z_i = \ell$, assume the fixed effect model:

$$y_{Tij} \stackrel{\text{iid}}{\sim} N(\mu_{T\ell}, \sigma_{T\ell}^2), \quad j = 1, \dots, m_{Ti}$$
 $y_{Cij} \stackrel{\text{iid}}{\sim} N(\mu_{C\ell}, \sigma_{C\ell}^2), \quad j = 1, \dots, m_{Ci}$

• Given $z_i = \ell$, the density of \mathcal{D}_i is

$$f(\mathcal{D}_i \mid z_i = \ell) = f(\bar{y}_{Ti}) \cdot f(\bar{y}_{Ci}) \cdot f(s_{Ti}^2) \cdot f(s_{Ci}^2)$$

• Likelihood wrt $\theta = (\theta_1, \dots, \theta_J, \pi)$, for $\theta_\ell = (\mu_{T\ell}, \sigma_{T\ell}, \mu_{C\ell}, \sigma_{C\ell})$, is

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{n} \left[\sum_{\ell=1}^{J} \pi_{j} f(\mathcal{D}_{i} \mid z_{i} = \ell) \right].$$

• The complete data information matrix is given by

$$\begin{split} \widetilde{\mathcal{I}}(\boldsymbol{\theta}) &= \mathsf{Blockdiag}(\pi_1 \mathbf{F}_1, \dots, \pi_J \mathbf{F}_J, \mathbf{F}_\pi), \\ \mathbf{F}_\ell &= \mathsf{Diag}\left(\sigma_{T\ell}^{-2} \sum_{i=1}^n m_{Ti}, \ 2\sigma_{T\ell}^{-2} \sum_{i=1}^n m_{Ti}, \ \sigma_{C\ell}^{-2} \sum_{i=1}^n m_{Ci}, \ 2\sigma_{C\ell}^{-2} \sum_{i=1}^n m_{Ci}\right) \\ \mathbf{F}_\pi &= n \left[\mathbf{D}_\pi^{-1} + \pi_J^{-1} \mathbf{1} \mathbf{1}^T\right]. \end{split}$$

• The score function is composed of the entries

$$\begin{split} \frac{\partial \log L(\boldsymbol{\theta})}{\partial \mu_{T\ell}} &= \sum_{i=1}^{n} \frac{\pi_{\ell} f(\mathcal{D}_{i} \mid z_{i} = \ell)}{f(\mathcal{D}_{i})} \left[m_{Ti} \frac{\bar{y}_{Ti} - \mu_{T\ell}}{\sigma_{T\ell}^{2}} \right] \\ \frac{\partial \log L(\boldsymbol{\theta})}{\partial \mu_{C\ell}} &= \sum_{i=1}^{n} \frac{\pi_{\ell} f(\mathcal{D}_{i} \mid z_{i} = \ell)}{f(\mathcal{D}_{i})} \left[m_{Ci} \frac{\bar{y}_{Ci} - \mu_{C\ell}}{\sigma_{C\ell}^{2}} \right] \\ \frac{\partial \log L(\boldsymbol{\theta})}{\partial \sigma_{T\ell}} &= \sum_{i=1}^{n} \frac{\pi_{\ell} f(\mathcal{D}_{i} \mid z_{i} = \ell)}{f(\mathcal{D}_{i})} \left[-\frac{m_{Ti}}{\sigma_{T\ell}} + m_{Ti} \frac{(\bar{y}_{Ti} - \mu_{T\ell})^{2}}{\sigma_{T\ell}^{3}} + \frac{(m_{Ti} - 1)s_{Ti}^{2}}{\sigma_{T\ell}^{3}} \right] \\ \frac{\partial \log L(\boldsymbol{\theta})}{\partial \sigma_{C\ell}} &= \sum_{i=1}^{n} \frac{\pi_{\ell} f(\mathcal{D}_{i} \mid z_{i} = \ell)}{f(\mathcal{D}_{i})} \left[-\frac{m_{Ci}}{\sigma_{C\ell}} + m_{Ci} \frac{(\bar{y}_{Ci} - \mu_{C\ell})^{2}}{\sigma_{C\ell}^{3}} + \frac{(m_{Ci} - 1)s_{Ci}^{2}}{\sigma_{C\ell}^{3}} \right] \\ \frac{\partial \log L(\boldsymbol{\theta})}{\partial \pi_{\ell}} &= \sum_{i=1}^{n} \frac{f(\mathcal{D}_{i} \mid z_{i} = \ell) - f(\mathcal{D}_{i} \mid z_{i} = J)}{f(\mathcal{D}_{i})} \end{split}$$

• Mixture fit by approximate scoring (Raim, Liu, Neerchal, and Morel, 2014)

$$\boldsymbol{\theta}^{(g+1)} = \boldsymbol{\theta}^{(g)} + \widetilde{\mathcal{I}}^{-1}(\boldsymbol{\theta}^{(g)})S(\boldsymbol{\theta}^{(g)}), \quad \text{until } |\log L(\boldsymbol{\theta}^{(g+1)}) - \log L(\boldsymbol{\theta}^{(g)})| < \varepsilon_0.$$

Then Newton-Raphson was used until final convergence. Standard errors are computed from $\widetilde{\mathcal{I}}(\hat{\theta})$.

Posterior Probabilities

• Estimate of $P(Z_i = \ell \mid \mathcal{D}_i)$, for i = 1, ..., n and $\ell = 1, ..., J$

(a)
$$J = 2$$

(b)
$$J = 3$$

Study	Group 1	Group 2			Group 1	Group 2	Group 3
1	1.00E+00	2.73E-24			1.00E+00	1.24E-31	1.04E-17
2	1.00E+00	4.32E-14	2	2	1.00E + 00	8.49E - 15	9.85E - 06
3	1.00E+00	2.79E-09	3	3	1.61E-41	1.35E - 17	1.00E+00
4	1.00E+00	4.04E-08	4	Ŀ	1.00E+00	8.52E-09	4.71E-04
5	1.00E+00	7.20E-20	5	,	1.00E + 00	1.01E-21	1.10E - 08
6	1.00E+00	1.07E - 15	6	;	9.96E - 01	3.04E-14	3.71E - 03
7	8.23E-32	1.00E+00	7	٠	4.95E-62	1.00E+00	2.63E-16
8	1.00E+00	5.11E-25	8	3	1.00E+00	1.89E-25	5.97E-08

Estimates under Finite Mixture

(a)
$$J = 2$$

(b)
$$J = 3$$

		Est.	SE			Est.	SE
$-\mu$	T1	0.1896	0.0247		μ_{T1}	0.1897	0.0255
σ	T1	0.3989	0.0174		σ_{T1}	0.3811	0.0180
μ	¹ C1	0.0346	0.0277		μ_{C1}	0.0310	0.0204
σ	C1	0.4462	0.0196		σ_{C1}	0.3051	0.0145
μ	¹ T2	0.6612	0.1349		μ_{T2}	0.6612	0.1349
σ	T2	0.8245	0.0954		σ_{T2}	0.8245	0.0954
μ	¹ C2	-0.0057	0.1602		μ_{C2}	-0.0057	0.1602
σ_{C2} 0.9759		0.9759	0.1133		σ_{C2}	0.9759	0.1133
	π 0.87		0.1169		μ_{T3}	0.1894	0.0721
	ϕ_1 0.1550		0.0371		σ_{T3}	0.4420	0.0510
	ϕ_2 0.666		0.2094		μ_{C3}	0.0444	0.1146
ϕ	avg	0.2190	0.0729		σ_{C3}	0.6998	0.0810
					π_1	0.7495	0.1532
					π_2	0.1250	0.1169
		J=2	J=3	_	ϕ_1	0.1587	0.0327
LogLik	-3	374.9294	-333.7822	_	ϕ_2	0.6669	0.2094
AIC	7	767.8589	695.5644		ϕ_3	0.1450	0.1354
AICC	CC 677.8589		635.5644		$\phi_{\mathtt{avg}}$	0.2205	0.0717

BIC

696.6766

768.5739

Comparison of Diagonal FIM Entries

(a) $J = 2$.							(b) $J = 3$		
	$-H(\hat{oldsymbol{ heta}})$	$\widetilde{\mathcal{I}}(\hat{oldsymbol{ heta}})$	$\mathcal{I}(\hat{m{ heta}})$	$\hat{V}_{ exttt{boot}}$		$-H(\hat{oldsymbol{ heta}})$	$\widetilde{\mathcal{I}}(\hat{oldsymbol{ heta}})$	$\mathcal{I}(\hat{m{ heta}})$	$\hat{V}_{ exttt{boot}}$
μ_{T1}	1709.7	1644.4	1648.2	1447.1	μ_{T1}	1355.2	1542.6	1547.7	1195.2
σ_{T1}	3419.3	3288.9	3278.7	3030.2	σ_{T1}	2709.9	3085.2	3089.9	2445.8
μ_{C1}	1356.5	1305.5	1304.4	1180.3	μ_{C1}	2123.7	2391.5	2393.8	1856.6
σ_{C1}	2712.6	2610.9	2607.9	2401.2	σ_{C1}	4224.7	4783.1	4744.7	2968.9
μ_{T2}	39.7	55.0	55.1	54.2	μ_{T2}	39.7	55.0	54.6	52.8
σ_{T2}	79.4	110.0	109.4	107.5	σ_{T2}	79.4	110.0	109.4	104.5
μ_{C2}	36.0	39.0	39.0	38.5	μ_{C2}	32.9	39.0	38.9	37.2
σ_{C2}	56.7	78.0	77.4	76.4	σ_{C2}	56.7	78.0	77.6	71.6
π	73.1	73.1	73.0	119.3	μ_{T3}	384.6	192.4	190.5	184.9
					σ_{T3}	766.4	384.3	379.0	341.2
					μ_{C3}	147.3	76.1	75.8	76.0
					σ_{C3}	291.3	152.2	149.8	116.8
					π_1	74.1	74.4	73.3	128.5
					π_2	127.4	127.7	126.1	228.7

Comparison of Standard Errors

		(a) $J = 2$!				(b) $J = 3$;	
	$-H(\hat{oldsymbol{ heta}})$	$\widetilde{\mathcal{I}}(\hat{oldsymbol{ heta}})$	$\mathcal{I}(\hat{m{ heta}})$	$\hat{V}_{ exttt{boot}}$		$-H(\hat{oldsymbol{ heta}})$	$\widetilde{\mathcal{I}}(\hat{oldsymbol{ heta}})$	$\mathcal{I}(\hat{m{ heta}})$	$\hat{V}_{ exttt{boot}}$
μ_{T1}	.02419	.02466	.02463	.02631	μ_{T1}	.02716	.02546	.02542	.02899
σ_{T1}	.01710	.01744	.01747	.01817	σ_{T1}	.01921	.01800	.01799	.02023
μ_{C1}	.02715	.02768	.02769	.02912	μ_{C1}	.02170	.02045	.02044	.02324
σ_{C1}	.01920	.01957	.01958	.02042	σ_{C1}	.01539	.01446	.01452	.01837
μ_{T2}	.15868	.13487	.13471	.13587	μ_{T2}	.15868	.13487	.13534	.13788
σ_{T2}	.11220	.09537	.09563	.09676	σ_{T2}	.11221	.09537	.09563	.09836
μ_{C2}	.16657	.16017	.16022	.16137	μ_{C2}	.17444	.16017	.16045	.16430
σ_{C2}	.13281	.11326	.11365	.11477	σ_{C2}	.13281	.11326	.11354	.11853
π	.11693	.11693	.11703	.09208	μ_{T3}	.05100	.07214	.07246	.07385
					σ_{T3}	.03612	.05101	.05137	.05486
					μ_{C3}	.08240	.11462	.11487	.11481
					σ_{C3}	.05859	.08105	.08171	.09336
					π_1	.15343	.15320	.15363	.11772
					π_2	.11695	.11693	.11718	.08834

Conclusions

Under "grouped" sampling with exponential family finite mixtures, the complete data FIM and true FIM become close as $m \to \infty$.

• Rate depends on "distinctness" of subpopulations

Grouped sampling assumption naturally holds in a meta-analysis combining multiple studies.

• Aitkin (1999) fit finite mixtures to meta-analysis data via NPMLE, as a robust alternative to assuming normal random effect.

(Raim, Neerchal, and Morel, Submitted 2014) gives examples where:

- Convergence does not happen when sampling is "ungrouped".
- Convergence does happen under continuous mixtures of exponential family densities.
- Convergence does happen under finite mixtures of non-exponential family densities.

References

- Murray Aitkin. Meta-analysis by random effect modelling in generalized linear models. *Statistics in Medicine*, 18(17–18):2343–2351, 1999.
- W. R. Blischke. Estimating the parameters of mixtures of binomial distributions. *Journal of the American Statistical Association*, 59(306):510–528, 1964.
- Joachim Hartung and Guido Knapp. On tests of the overall treatment effect in meta-analysis with normally distributed responses. *Statistics in Medicine*, 20 (12):1771–1782, 2001.
- Joachim Hartung, Guido Knapp, and Bimal K. Sinha. Statistical Meta-Analysis with Applications. Wiley, 2008.
- Jorge G. Morel and Neerchal K. Nagaraj. A finite mixture distribution for modelling multinomial extra variation. *Biometrika*, 80(2):363–371, 1993.
- Andrew M. Raim, Minglei Liu, Nagaraj K. Neerchal, and Jorge G. Morel. On the method of approximate Fisher scoring for finite mixtures of multinomials. Statistical Methodology, 18:115–130, 2014.
- Andrew M. Raim, Nagaraj K. Neerchal, and Jorge G. Morel. An approximation to the information matrix of exponential family finite mixtures, Submitted 2014.

Contact Information

Andrew M. Raim araim1@umbc.edu

Thank you!