Asymmetry and the Geometry of Reason

1 Introduction

The 'geometry of reason' (a term coined by Richard Pettigrew and Hannes Leitgeb, two of its advocates) refers to a view of epistemic utility in which the underlying topology for credence functions (which may be subjective probability distributions) on a finite number of events is a metric space. This paper gives a detailed account how it violates reasonable expectations for an acceptable model. A non-metric alternative, information theory, fulfills many of these expectations but violates others which are similarly intuitive.

There are several possibilities to deal with these violations: (i) reject both the geometry of reason and information theory and provide a third alternative; (ii) save one of the two accounts by weakening the expectations and giving plausible explanations for these weakenings, perhaps by providing a more advanced formal account; (iii) provide an impossibility theorem that shows that no model can fulfill all expectations. (iii) would favour some sort of pluralism. For (i), I am not aware of a third alternative to the geometry of reason and information theory. I favour possibility (ii). The model to save is information theory and the advanced formal account is the theory of differential manifolds. The problems for the geometry of reason are irremediable. This paper, however, only reveals the seriousness and extent of the violations, not the possible solutions.

I will assume probabilism and an isomorphism between probability distributions P on an outcome space Ω with $|\Omega| = n$ and points $p \in \mathbb{S}^{n-1} \subset \mathbb{R}^n$ having coordinates $p_i = P(\omega_i), i = 1, \ldots, n$ and $\omega_i \in \Omega$. Since the isomorphism is to a metric space, there is a distance relation between credence functions which can be used to formulate axioms relating credences to epistemic utility. For information theory, as opposed to the geometry of reason, the underlying topology for credence functions is not a metric space (see figures 1 and 2 for illustration).

I will show that LP conditioning, which is an alternative to Jeffrey conditioning as a generalization of standard conditioning and which the geometry of reason entails, fails commonsense expectations that are reasonable to have for the kind of updating scenario that LP conditioning addresses. Jeffrey conditioning fulfills these commonsense expectations. Its failure to minimize inaccuracy on the basis of the geometry of reason casts, by reductio, doubt

Figure 1: The simplex \mathbb{S}^2 in three-dimensional space \mathbb{R}^3 with contour lines corresponding to the geometry of reason around point A in equation (1). Points on the same contour line are equidistant from A with respect to the Euclidean metric. Compare the contour lines here to figure 2. Note that this diagram and all the following diagrams are frontal views of the simplex.

on the geometry of reason.

Example 1: Sherlock Holmes. Sherlock Holmes attributes the following probabilities to the propositions E_i that k_i is the culprit in a crime: $P(E_1) = 1/3$, $P(E_2) = 1/2$, $P(E_3) = 1/6$, where k_1 is Mr. R., k_2 is Ms. S., and k_3 is Ms. T. Then Holmes finds some evidence which convinces him that $P'(F^*) = 1/2$, where F^* is the proposition that the culprit is male and P is relatively prior to P'. What should be Holmes' updated probability that Ms. S. is the culprit?

I will look at the recommendations of Jeffrey conditioning and LP conditioning for example 1 in the next section. For now note that LP conditioning violates all of the following plausible expectations in List One for an amujus, an 'alternative method of updating for Jeffrey-type updating scenarios.' This is List One:

Figure 2: The simplex \mathbb{S}^2 with contour lines corresponding to information theory around point A in equation (1). Points on the same contour line are equidistant from A with respect to the Kullback-Leibler divergence. The contrast to figure 1 will become clear in much more detail in the body of the paper. Note that the contour lines of the geometry of reason are insensitive to the boundaries of the simplex, while the contour lines of information theory reflect them. One of the main arguments in this paper is that information theory respects epistemic intuitions we have about asymmetry: proximity to extreme beliefs with very high or very low probability influences the topology that is at the basis of updating.

- CONTINUITY An amujus ought to be continuous with standard conditioning as a limiting case.
- REGULARITY An amujus ought not to assign a posterior probability of 0 to an event which has a positive prior probability and about which the intervening evidence says nothing except that a strictly weaker event has a positive posterior probability.
- LEVINSTEIN An amujus ought not to give "extremely unattractive" results in a Levinstein scenario (see Levinstein, 2012, which not only articulates this failed expectation for LP conditioning, but also the

previous two).

- INVARIANCE An amujus ought to be partition invariant.
- EXPANSIBILITY An amujus ought to be insensitive to an expansion of the event space by zero-probability events.
- CONFIRMATION An amujus ought to align with intuitions we have about degrees of confirmation.
- HORIZON An amujus ought to exhibit the horizon effect which makes probability distributions which are nearer to extreme probability distributions appear to be closer to each other than they really are.

Jeffrey conditioning and LP conditioning are both an amujus based on a concept of quantitative difference between probability distributions measured as a function on the isomorphic manifold (in our case, an n-1-dimensional simplex). Evidence appears in the form of a constraint on acceptable probability distributions and the closest acceptable probability to the original (relatively prior) probability distribution is chosen as its successor. Here is List Two, a list of reasonable expectations one may have toward this concept of quantitative difference (we call it a distance function for the geometry of reason and a divergence for information theory). Let d(p,q) express this concept mathematically.

- TRIANGULARITY The concept obeys the triangle inequality. If there is an intermediate probability distribution, it will not make the difference smaller: $d(p,r) \leq d(p,q) + d(q,r)$. Buying a pair of shoes is not going to be more expensive than buying the two shoes individually.
- COLLINEAR HORIZON This expectation is just a more technical restatement of the HORIZON expectation in the previous list. If p, p', q, q' are collinear with the centre of the simplex m (whose coordinates are $m_i = 1/n$ for all i) and an arbitrary but fixed boundary point $\xi \in \partial \mathbb{S}^{n-1}$ and p, p', q, q' are all between m and ξ with ||p'-p|| = ||q'-q|| where p is strictly closest to m, then |d(p, p')| < |d(q, q')|. For an illustration of this expectation see figure 3. The absolute value is added as a feature to accommodate degree of confirmation functions in subsection 3.7, which may be negative.
- TRANSITIVITY OF ASYMMETRY An ordered pair (p, q) of simplex points associated with probability distributions is asymmetrically negative,

positive, or balanced, so either d(p,q)-d(q,p)<0 or d(p,q)-d(q,p)>0 or d(p,q)-d(q,p)=0. If (p,q) and (q,r) are asymmetrically positive, (p,r) ought not to be asymmetrically negative. Think of a bicycle route map with different locations at varying altitudes. If it takes 20 minutes to get from A to B but only 15 minutes to get from B to A then (A,B) is asymmetrically positive. If (A,B) and (B,C) are asymmetrically positive, then (A,C) ought not to be asymmetrically negative.

Figure 3: An illustrations of conditions (i)–(iii) for COLLINEAR HORIZON in List Two. p,p' and q,q' must be equidistant and collinear with m and ξ . If q,q' is more peripheral than p,p', then COLLINEAR HORIZON requires that |d(p,p')|<|d(q,q')|.

While the Kullback-Leibler divergence of information theory fulfills all the expectations of List One, save HORIZON, it fails all the expectations in List Two. Obversely, the Euclidean distance of the geometry of reason fulfills all the expectations of List Two, save COLLINEAR HORIZON, and fails all the expectations in List One.

2 Geometry of Reason versus Information Theory

Consider the following three points in three-dimensional space:

$$a = \left(\frac{1}{3}, \frac{1}{2}, \frac{1}{6}\right) \qquad b = \left(\frac{1}{2}, \frac{3}{8}, \frac{1}{8}\right) \qquad c = \left(\frac{1}{2}, \frac{5}{12}, \frac{1}{12}\right)$$
 (1)

All three are elements of the simplex \mathbb{S}^2 : their coordinates add up to 1. Thus they represent probability distributions A, B, C over a partition of the event space into three events. Now call $D_{\text{KL}}(B, A)$ the Kullback-Leibler divergence of B from A defined as follows, where a_i are the Cartesian coordinates of a:

$$D_{\mathrm{KL}}(B,A) = \sum_{i=1}^{3} b_i \log \frac{b_i}{a_i}.$$
 (2)

Note that the Kullback-Leibler divergence, irrespective of dimension, is always positive as a consequence of Gibbs' inequality (see MacKay, 2003, sections 2.6 and 2.7).

Let the Euclidean distance ||B-A|| be defined as usual by $\sqrt{\sum_{i=1}^{n} (b_i - a_i)^2}$. What is remarkable about the three points in (1) is that

$$||C - A|| \approx 0.204 < ||B - A|| \approx 0.212$$
 (3)

and

$$D_{\text{KL}}(B, A) \approx 0.0589 < D_{\text{KL}}(C, A) \approx 0.069.$$
 (4)

The Kullback-Leibler divergence and Euclidean distance give different recommendations with respect to proximity. Let me explain how this ties in with Jeffrey conditioning and LP conditioning.

Example 2: Abstract Holmes. Consider a possibility space $W = E_1 \cup E_2 \cup E_3$ (the E_i are sets of states which are pairwise disjoint and whose union is W) and a partition \mathcal{F} of W such that $\mathcal{F} = \{F^*, F^{**}\} = \{E_1, E_2 \cup E_3\}$.

Figure 4: The simplex \mathbb{S}^2 in three-dimensional space \mathbb{R}^3 with points a,b,c as in equation (1) representing probability distributions A,B,C. Note that geometrically speaking C is closer to A than B is. Using the Kullback-Leibler divergence, however, B is closer to A than C is.

Let P be the prior probability function on W and P' the posterior. I will keep the notation informal to make this simple. Jeffrey-type updating scenarios give us new information on the posterior probabilities of partitions such as \mathcal{F} . In example 2, let

$$P(E_1) = 1/3$$

 $P(E_2) = 1/2$
 $P(E_3) = 1/6$ (5)

and the new evidence constrain P' such that $P'(F^*) = 1/2 = P'(F^{**})$.

Jeffrey conditioning works on the intuition that the posterior probabilities conditional on the partition elements equal their priors. Hence,

$$P'_{JC}(E_i) = P'(E_i|F^*)P'(F^*) + P'(E_i|F^{**})P'(F^{**})$$

= $P(E_i|F^*)P'(F^*) + P(E_i|F^{**})P'(F^{**})$ (6)

Leitgeb and Pettigrew introduce an alternative to Jeffrey conditioning, which we have called LP conditioning. It proceeds as follows for example 2 and in general provides the minimally inaccurate posterior probability distribution in Jeffrey-type updating scenarios.

Solve the following two equations for x and y:

$$P(E_1) + x = P'(F^*) P(E_2) + y + P(E_3) + y = P'(F^{**})$$
(7)

and then set

$$P'_{LP}(E_1) = P(E_1) + x$$

 $P'_{LP}(E_2) = P(E_2) + y$
 $P'_{LP}(E_3) = P(E_3) + y$ (8)

For the more formal and more general account see Leitgeb and Pettigrew, 2010, 254. The results for example 2 are:

$$P'_{LP}(E_1) = 1/2$$

 $P'_{LP}(E_2) = 5/12$ (9)
 $P'_{LP}(E_3) = 1/12$

Compare these results to the results of Jeffrey conditioning:

$$P'_{\rm JC}(E_1) = 1/2$$

 $P'_{\rm JC}(E_2) = 3/8$
 $P'_{\rm JC}(E_3) = 1/8$ (10)

Note that (5), (10), and (9) correspond to A, B, C in (1).

3 Expectations for the Geometry of Reason

It remains to provide more detail for the expectations in List One (see page 2) and to show how LP conditioning violates them. These subsections have been abridged to accommodate the word limit for this submission. The full-length paper contains the complete version of these arguments, especially their formal components and examples.

3.1 Continuity

LP conditioning violates CONTINUITY because standard conditioning gives a different recommendation than a parallel sequence of Jeffrey-type updating scenarios which get arbitrarily close to standard event observation. This is especially troubling considering how important the case for standard conditioning is to Leitgeb and Pettigrew.

3.2 Regularity

LP conditioning violates REGULARITY because formerly positive probabilities can be reduced to 0 even though the new information in the Jeffrey-type updating scenario makes no such requirements (as is usually the case for standard conditioning). Ironically, Jeffrey-type updating scenarios are meant to be a better reflection of real-life updating because they avoid extreme probabilities.

The violation becomes serious if we are already sympathetic to an information-based account: the amount of information required to turn a non-extreme probability into one that is extreme (0 or 1) is infinite. Whereas the geometry of reason considers extreme probabilities to be easily accessible by non-extreme probabilities under new information (much like a marble rolling off a table or a bowling ball heading for the gutter), information theory envisions extreme probabilities more like an event horizon. The nearer you are to the extreme probabilities, the more information you need to move on. For an observer, the horizon is never reached.

3.3 Levinstein

LP conditioning violates LEVINSTEIN because of "the potentially dramatic effect [LP conditioning] can have on the likelihood ratios between different propositions" (Levinstein, 2012, 419). Levinstein proposes a logarithmic inaccuracy measure as a remedy to avoid violation of LEVINSTEIN. As a special case of applying a Levinstein-type logarithmic inaccuracy measure, information theory does not violate LEVINSTEIN.

3.4 Invariance

LP conditioning violates INVARIANCE because two agents who have identical credences with respect to a partition of the event space may disagree about this partition after LP conditioning, even when the Jeffrey-type updating scenario provides no new information about the more finely grained partitions on which the two agents disagree.

3.5 Expansibility

One particular problem with the lack of invariance for LP conditioning is how zero-probability events should be included in the list of prior probabilities that determines the value of the posterior probabilities. Consider

$$P(X_1) = 0
P(X_2) = 0.3
P(X_3) = 0.6
P(X_4) = 0.1$$
(11)

That $P(X_1) = 0$ may be a consequence of standard conditioning in a previous step. Now the agent learns that $P'(X_3 \vee X_4) = 0.5$. Should the agent update on the list presented in (11) or on the following list:

$$P(X_2) = 0.3$$

 $P(X_3) = 0.6$
 $P(X_4) = 0.1$ (12)

Whether you update on (11) or (12) makes no difference to Jeffrey conditioning, but due to the lack of invariance it makes a difference to LP conditioning, so the geometry of reason needs to find a principled way to specify the appropriate prior probabilities.

3.6 Horizon

It ought to be more difficult to update as probabilities become more extreme (or less middling). I have formalized this requirement in List Two (see page 4). It is trivial that the geometry of reason does not fulfill it. Information theory fails as well, which gives the horizon effect its prominent place in both lists. The way information theory fails, however, is quite different. Near the boundary of \mathbb{S}^{n-1} , information theory reflects the horizon effect just as our expectation requires. The problem is near the centre, where some equidistant points are more divergent the closer they are to the middle. I will give an example and more explanation in subsection 4.2.

3.7 Confirmation

This is a lengthy subsection and has been cut from the submission in order to accommodate the word limit for this submission. Although it contributes an interesting perspective to the problem, it is not essential to my claims.

4 Expectations for Information Theory

In information theory, the information loss differs depending on whether one uses probability distribution P to encode a message distributed according to probability distribution Q, or whether one uses probability distribution Q to encode a message distributed according to probability distribution P. This asymmetry may very well carry over into the epistemic realm. Updating from one probability distribution, for example, which has P(X) = x > 0 to P'(X) = 0 is common. It is called standard conditioning. Going in the opposite direction, however, from P(X) = 0 to P'(X) = x' > 0 is controversial and unusual.

The Kullback-Leibler divergence, which is the most promising concept of difference for probability distributions in information theory and the one which gives us Bayesian standard conditioning as well as Jeffrey conditioning, is non-commutative and may provide the kind of asymmetry required to reflect epistemic asymmetry. However, it also violates TRIANGULARITY, COLLINEAR HORIZON, and TRANSITIVITY OF ASYMMETRY. The task of this section is to show how serious these violations are.

4.1 Triangularity

The three points A, B, C in (1) violate TRIANGULARITY:

$$D_{KL}(A,C) > D_{KL}(B,C) + D_{KL}(A,B).$$
 (13)

This is counterintuitive on a number of levels, some of which I have already hinted at in illustration: taking a shortcut while making a detour; buying a pair of shoes for more money than buying the shoes individually.

Information theory violates TRIANGULARITY in a particularly egregious way. Consider any distinct two points x and z on \mathbb{S}^{n-1} with coordinates x_i and z_i $(1 \le i \le n)$. For simplicity, let us write $\delta(x,z) = D_{\mathrm{KL}}(z,x)$. Then, for any $\vartheta \in (0,1)$ and an intermediate point y with coordinates $y_i = \vartheta x_i + (1-\vartheta)z_i$, the following inequality holds true:

$$\delta(x,z) > \delta(x,y) + \delta(y,z). \tag{14}$$

To prove this it is straightforward to see that (14) is equivalent to

$$\sum_{i=1}^{n} (z_i - x_i) \log \frac{\vartheta x_i + (1 - \vartheta) z_i}{x_i} > 0.$$
 (15)

Now we use the following trick. Expand the right hand side to

$$\sum_{i=1}^{n} \left(z_i + \frac{\vartheta}{1 - \vartheta} x_i - \frac{\vartheta}{1 - \vartheta} x_i - x_i \right) \log \frac{\frac{1}{1 - \vartheta} \left(\vartheta x_i + (1 - \vartheta) z_i \right)}{\frac{1}{1 - \vartheta} x_i} > 0.$$
 (16)

(16) is clearly equivalent to (15). It is also equivalent to

$$\sum_{i=1}^{n} \left(z_i + \frac{\vartheta}{1 - \vartheta} x_i \right) \log \frac{z_i + \frac{\vartheta}{1 - \vartheta} x_i}{\frac{1}{1 - \vartheta} x_i} + \sum_{i=1}^{n} \frac{1}{1 - \vartheta} x_i \log \frac{\frac{1}{1 - \vartheta} x_i}{z_i + \frac{\vartheta}{1 - \vartheta} x_i} > 0, (17)$$

which is true by Gibbs' inequality.

4.2 Collinear Horizon

Here is a simple example.

$$p = \left(\frac{1}{5}, \frac{2}{5}, \frac{2}{5}\right) \qquad p' = q = \left(\frac{1}{4}, \frac{3}{8}, \frac{3}{8}\right) \qquad q' = \left(\frac{3}{10}, \frac{7}{20}, \frac{7}{20}\right)$$
(18)

The conditions of COLLINEAR HORIZON in List Two (see page 4) are fulfilled. If p represents A, p' and q represent B, and q' represents C, then note that ||b-a|| = ||c-b|| and m, a, b, c are collinear. In violation of COLLINEAR HORIZON,

$$D_{\text{KL}}(B, A) = 7.3820 \cdot 10^{-3} > 6.4015 \cdot 10^{-3} = D_{\text{KL}}(C, B).$$
 (19)

The bitter aftertaste that remains with COLLINEAR HORIZON is that it is opaque what motivates information theory not only to put probability distributions farther apart near the periphery, as I would expect, but also near the centre. I lack the epistemic intuition reflected in this behaviour.

4.3 Transitivity of Asymmetry

Asymmetry presents a problem for the geometry of reason as well as for information theory. For the geometry of reason, the problem is akin to CONTINUITY. For information theory, the problem is the non-trivial nature of the asymmetries it induces, which somehow need to be reconnected to epistemic justification.

Extreme probabilities are special and create asymmetries in updating: moving in direction from certainty to uncertainty is asymmetrical to moving in direction from uncertainty to certainty. Geometry of reason's metric topology, however, allows for no asymmetries.

Now consider information theory. Given the asymmetric similarity measure of probability distributions that information theory requires (the Kullback-Leibler divergence), a prior probability distribution P may be closer to a posterior probability distribution Q than Q is to P if their roles (prior-posterior) are reversed. That is just what we would expect. The problem is that there is another posterior probability distribution R where the situation is just the opposite: prior P is further away from posterior R than prior R is from posterior P. And whether a probability distribution different from P is of the Q-type or of the R-type escapes any epistemic intuition.

For simplicity, let us look at probability distributions and their associated credence functions on an event space with three atoms $\Omega = \{\omega_1, \omega_2, \omega_3\}$. The simplex \mathbb{S}^2 represents all of these probability distributions. Every point p in \mathbb{S}^2 representing a probability distribution P induces a partition on \mathbb{S}^2 into points that are symmetric to p, positively skew-symmetric to p, and negatively skew-symmetric to p given the topology of information theory.

In other words, if

$$\Delta_P(P') = D_{KL}(P', P) - D_{KL}(P, P'), \tag{20}$$

then, holding P fixed, \mathbb{S}^2 is partitioned into three regions,

$$\Delta^{-1}(\mathbb{R}_{>0}) \qquad \Delta^{-1}(\mathbb{R}_{<0}) \qquad \Delta^{-1}(\{0\})$$
(21)

One could have a simple epistemic intuition such as 'it takes less to update from a more uncertain probability distribution to a more certain probability distribution than the reverse direction,' where the degree of certainty in a probability distribution is measured by its entropy. This simple intuition accords with what we said about extreme probabilities and it holds true for the asymmetric distance measure defined by the Kullback-Leibler divergence in the two-dimensional case where Ω has only two elements.

In higher-dimensional cases, however, the tripartite partition (21) is non-trivial (see figure 5)—some probability distributions are of the Q-type, some

are of the R-type, and it is difficult to think of an epistemic distinction between them that does not already presuppose information theory.

The Kullback-Leibler divergence not only violates symmetry and triangularity, but also TRANSITIVITY OF ASYMMETRY. Consider the following example:

$$P_1 = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right) \qquad P_2 = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) \qquad P_3 = \left(\frac{2}{5}, \frac{2}{5}, \frac{1}{5}\right) \quad (22)$$

In the terminology of TRANSITIVITY OF ASYMMETRY in List Two, (P_1, P_2) is asymmetrically positive, and so is (P_2, P_3) . The reasonable expectation is that (P_1, P_3) is asymmetrically positive by transitivity, but for the example in (22) it is asymmetrically negative.

References

Leitgeb, Hannes, and Richard Pettigrew. "An Objective Justification of Bayesianism II: The Consequences of Minimizing Inaccuracy." *Philosophy of Science* 77, 2: (2010) 236–272.

Levinstein, Benjamin Anders. "Leitgeb and Pettigrew on Accuracy and Updating." *Philosophy of Science* 79, 3: (2012) 413–424.

MacKay, David. Information Theory, Inference and Learning Algorithms. Cambridge, UK: Cambridge, 2003.

Figure 5: The partition (21) based on different values for P. From top left to bottom right, P=(0.4,0.4,0.2); P=(0.242,0.604,0.154); P=(1/3,1/3,1/3); P=(0.741,0.087,0.172). Note that for the geometry of reason, the diagrams are trivial. The challenge for information theory is to explain the non-triviality of these diagrams epistemically without begging the question.