

BUSINESS SCHOOL

Graduação, pós-graduação, MBA, Pós- MBA, Mestrado Profissional, Curso In *Company* e EAD

CONSULTING

Consultoria personalizada que oferece soluções baseadas em seu problema de negócio

RESEARCH

Atualização dos conhecimentos e do material didático oferecidos nas atividades de ensino

Líder em Educação Executiva, referência de ensino nos cursos de graduação, pós-graduação e MBA, tendo excelência nos programas de educação. Uma das principais escolas de negócio do mundo, possuindo convênios internacionais com Universidades nos EUA, Europa e Ásia. +8.000 projetos de consultorias em organizações públicas e privadas.

Único curso de graduação em administração a receber as notas máximas

A primeira escola brasileira a ser finalista da maior competição de MBA do mundo

Única Business School brasileira a figurar no ranking LATAM

Signatária do Pacto Global da ONU

Membro fundador da ANAMBA -Associação Nacional MBAs

Credenciada pela AMBA -Association of MBAs

Credenciada ao Executive MBA Council

Filiada a AACSB
- Association to
Advance
Collegiate
Schools of
Business

Filiada a EFMD
- European
Foundation for
Management
Development

Referência em cursos de MBA nas principais mídias de circulação

LABDATA FIA

NOSSOS DIFERENCIAIS | QUEM SOMOS

O Laboratório de Análise de Dados – LABDATA é um Centro de Excelência que atua nas áreas de ensino, pesquisa e consultoria em análise de informação utilizando técnicas de *Big Data*, *Analytics* e Inteligência Artificial.

O LABDATA é um dos pioneiros no lançamento dos cursos de *Big Data* e *Analytics* no Brasil. Os diretores foram professores de grandes especialistas do mercado.

- +10 anos de atuação.
- +9.000 alunos formados.

Docentes

- Sólida formação acadêmica: doutores e mestres em sua maioria;
- Larga experiência de mercado na resolução de cases;
- Participação em congressos nacionais e internacionais;
- Professor assistente que acompanha o aluno durante todo o curso.

Estrutura

- 100% das aulas realizadas em laboratórios;
- Computadores para uso individual durante as aulas;
- 5 laboratórios de alta qualidade (investimento +R\$2MM);
- 2 unidades próximas à estação de metrô (com estacionamento).

PROFA. DRA. ALESSANDRA DE ÁVILA MONTINI

Diretora do LABDATA-FIA, apaixonada por dados e pela arte de lecionar. Tem muito orgulho de ter criado na FIA cinco laboratórios para as aulas de Big Data e Inteligência Artificial. Possui mais de 20 anos de trajetória nas áreas de Data Mining, Big Data, Inteligência Artificial e Analytics. Cientista de dados com carreira realizada na Universidade de São Paulo. Graduada e mestra em Estatística Aplicada pelo IME-USP e doutora pela FEA-USP. Com muita dedicação chegou ao cargo de professora e pesquisadora na FEA-USP, ganhou mais de 30 prêmios de excelência acadêmica pela FEA-USP e mais de 30 prêmios de excelência acadêmica como professora dos cursos de MBA da FIA. Orienta alunos de mestrado e de doutorado na FEA-USP. Parecerista da FAPESP e colunista de grandes portais de tecnologia.

PROF. ÂNGELO CHIODE, MSc

Bacharel, mestre e candidato ao PhD em Estatística (IME-USP), atua como professor de Estatística Aplicada para turmas de especialização, pós-graduação e MBA na FIA. Trabalha como consultor nas áreas de Analytics e Ciência de Dados há 13 anos, apoiando empresas na resolução de desafios de negócio nos contextos de finanças, adquirência, seguros, varejo, tecnologia, aviação, telecomunicações, entretenimento e saúde. Nos últimos 5 anos, tem atuado na gestão corporativa de times de Analytics, conduzindo projetos que envolviam análise estatística, modelagem preditiva e *machine learning*. É especializado em técnicas de visualização de dados e design da informação (Harvard) e foi indicado ao prêmio de Profissional do Ano na categoria Business Intelligence, em 2019, pela Associação Brasileira de Agentes Digitais (ABRADi).

Conteúdo Programático

DISCIPLINAS

IA E TRANSFORMAÇÃO DIGITAL

ANALYTICS

INTELIGÊNCIA ARTIFICIAL: MACHINE LEARNING

INTELIGÊNCIA ARTIFICIAL: DEEP LEARNING

EMPREENDEDORISMO E INOVAÇÃO

COMPORTAMENTO HUMANO E SOFT SKILLS

TEMAS: ANALYTICS E MACHINE LEARNING

ANÁLISE EXPLORATÓRIA DE DADOS

INFERÊNCIA ESTATÍSTICA

TÉCNICAS DE PROJEÇÃO

TÉCNICAS DE CLASSIFICAÇÃO

TÓPICOS DE MODELAGEM

TÉCNICAS DE SEGMENTAÇÃO

TÓPICOS DE ANALYTICS

MANIPULAÇÃO DE BASE DE DADOS

AUTO ML

TEMAS: DEEP LEARNING

REDES DENSAS

REDES CONVOLUCIONAIS

REDES RECORRENTES

MODELOS GENERATIVOS

FERRAMENTAS

LINGUAGEM R

LINGUAGEM PYTHON

DATABRICKS

Conteúdo da Aula

1. Introdução

2. Tópicos Abordados

Referências Bibliográficas

1. Introdução

Definição de *Machine Learning*1. INTRODUÇÃO | INTRODUÇÃO AO MACHINE LEARNING

Créditos da imagem: https://medium.com/@anuraggandhi29/what-is-datascience-6ac639f830c2

Definição de *Machine Learning*1. INTRODUÇÃO | INTRODUÇÃO AO MACHINE LEARNING

O **aprendizado de máquina**, ou *machine learning*, engloba o desenvolvimento de algoritmos que permitem que computadores identifiquem padrões e realizem previsões a partir de dados históricos, sem serem explicitamente programados para cada nova tarefa.

A definição do termo foi realizada por Arthur Samuel durante seus trabalhos na IBM, em 1959.

Exemplos de aplicações:

- ➤ **Detecção de fraudes:** Identificação de atividades suspeitas e prevenção de fraudes em transações financeiras, especialmente em bancos e empresas de cartões de crédito.
- ➤ **Risco de crédito**: Avaliação da capacidade de pagamento de clientes com base em seu histórico no mercado, para decidir sobre a concessão de crédito em instituições financeiras.
- ➤ **Churn de clientes**: Identificação de indivíduos com alto potencial de deixar de utilizar um serviço ou produto, permitindo a tomada de decisão antecipada para retenção de clientes.

Statistical Learning vs. Machine Learning

1. INTRODUÇÃO | INTRODUÇÃO AO MACHINE LEARNING

Statistical Learning (SL)

No módulo de Analytics do nosso curso, havíamos nos concentrado nesta abordagem, que preza por:

- > Avaliar a adesão dos dados às **premissas teóricas** dos modelos.
- Compreender a relação entre as variáveis.
- Interpretar os resultados obtidos.

Machine/Deep Learning (ML/DL)

A partir de agora, nossos principais focos são:

- Dobter algoritmos com **alta qualidade de predição**, ou seja, que consigam realizar boas predições ou classificações, sem necessariamente respeitarem suposições ou serem de fácil interpretação.
- Desenvolver algoritmos mais complexos, voltados para identificar fenômenos também complexos, lançando mão de infraestrutura computacional robusta (big data).

Statistical Learning vs. Machine Learning

1. INTRODUÇÃO | INTRODUÇÃO AO MACHINE LEARNING

Observação

Os modelos estatísticos que estudamos até então também podem ser considerados modelos de *machine learning*, pois o foco deles também é o **aprendizado** baseado em dados para fins de predição ou segmentação. O que muda é apenas a ótica/objetivo: maior ênfase na compreensão estrutural do fenômeno e na interpretação (SL) ou apenas na qualidade da predição/classificação em si (ML).

2. Tópicos Abordados

Tópicos Abordados

2. TÓPICOS ABORDADOS | INTRODUÇÃO AO MACHINE LEARNING

Vamos nos aprofundar nos seguintes tópicos em *machine learning*:

- 1. Linguagem Python
- 2. Framework geral de modelagem
- 3. Manipulação de dados para modelagem
- 4. Técnicas/algoritmos de classificação
- 5. Técnicas/algoritmos de projeção
- 6. Técnicas/algoritmos de segmentação
- 7. *Automatic machine learning* (Auto ML)
- 8. MLOps

Generalidade: O Python é uma linguagem de programação de propósito geral, o que significa que ela pode ser utilizada para uma variedade de tarefas além do campo da ciência de dados, tais como desenvolvimento web, automação, entre outros.

Machine Learning: O Python é considerado mais forte quando se trata de áreas como *machine learning* e inteligência artificial, pois possui pacotes com maior quantidade de recursos e maior popularidade, como *TensorFlow*, *PyTorch* e *Scikit-Learn*.

Framework Geral de Modelagem 2. TÓPICOS ABORDADOS | INTRODUÇÃO AO MACHINE LEARNING

Neste tema, estudaremos o **passo-a-passo geral** envolvido na construção de um modelo ou algoritmo, com ênfase para tópicos relacionados a machine learning.

Manipulação de Dados para Modelagem

2. TÓPICOS ABORDADOS | INTRODUÇÃO AO MACHINE LEARNING

Algumas boas práticas de **engenharia de variáveis** (feature engineering) podem ser empregadas para fins de preparação de dados e apoio na melhoria de qualidade de um futuro algoritmo.

Podemos destacar os seguintes métodos:

- Criação de variáveis (feature construction), especialmente quando há escassez de variáveis originais.
- Redução de dimensionalidade (dimensionality reduction), especialmente quando há excesso de variáveis originais.

2. TÓPICOS ABORDADOS | INTRODUÇÃO AO MACHINE LEARNING

Extensão do **modelo de regressão logística** para algoritmos computacionais com objetivo de predizer a **categoria** (*target*) a qual um objeto pertence, em função de outros aspectos **explicativos** (*features*).

Árvore de Decisão

Random Forest

Gradient Boosting (diversas variantes)

2. TÓPICOS ABORDADOS | INTRODUÇÃO AO MACHINE LEARNING

Extensão do **modelo de regressão linear** para algoritmos computacionais com objetivo de projetar/predizer o valor de um **aspecto quantitativo de interesse** (target) em função de outros aspectos **explicativos** (features).

Árvore de Regressão

Random Forest

Gradient Boosting (diversas variantes)

Técnicas/Algoritmos de Projeção

2. TÓPICOS ABORDADOS | INTRODUÇÃO AO MACHINE LEARNING

Extensão do **modelo de regressão linear** para algoritmos computacionais com objetivo de projetar/predizer o valor de um **aspecto quantitativo de interesse** (target) em função de outros aspectos **explicativos** (features).

Árvore de Regressão

Random Forest

Gradient Boosting (diversas variantes)

Extensão dos algoritmos tradicionais de **análise de cluster** para outros algoritmos computacionais mais sofisticados, com objetivo de **agrupar elementos** com base em sua **semelhança**.

Clusterização Baseada em Densidade (DBSCAN)

Cuidados para **automatização** do desenvolvimento de **algoritmos supervisionados**, o que inclui processamento de dados, seleção de algoritmos e otimização de hiperparâmetros, visando a manutenção de performance.

Créditos da imagem: https://learn.microsoft.com/pt-br/dotnet/machine-learning/automated-machine-learning-mlnet

O **MLOps** (*Machine Learning Operations*) abrange todo o ciclo de vida de algoritmos de ML: desenvolvimento, testes, monitoramento, recalibragens, *deploy* (implantação em ambiente produtivo) e consumo estável dos usuários finais.

Créditos da imagem: https://www.databricks.com/glossary/mlops

Referências Bibliográficas Introdução ao Machine Learning

- James, G. An Introduction to Statistical Learning With Applications in R. 2ª edição. Springer, 2021.
- Kubat, M. *An Introduction to Machine Learning*. 2ª edição, Springer, 2017.
- Pinheiro, C. A. R, Patetta, M. Introduction to Statistical and Machine Learning Methods for Data Science. SAS, 2021.

http://labdata.fia.com.br Instagram: @labdatafia Facebook: @LabdataFIA