In der Funktionsgleichung wird die Verknüpfungsart der Schaltvariablen durch Zeichen dargestellt:

- \wedge oder \cdot für UND-Verknüpfung (Konjunktion)
- v oder + für ODER-Verknüpfung (Disjunktion)

Schaltzei- chen-Sym- bol	Wahrheits- tabelle	Schaltfunktion, Benennung, Gleichung	Zeitablauf- diagramm	Beschreibung
a — & — x	b a x 0 0 0 0 1 0 1 0 0 1 1 1	UND-Funktion (Konjunktion) $x = a \wedge b$ $x = a \cdot b$	a b x	Der Ausgang nimmt nur dann den 1-Zu- stand an, wenn sich beide Eingänge im 1-Zustand befinden.
a — ≥ 1 b — x	b a x 0 0 0 0 1 1 1 0 1 1 1 1	ODER-Funktion (Disjunktion) $x = a \lor b$ $x = a + b$	<u>a</u>	Der Ausgang nimmt nur dann den 1-Zu- stand an, wenn sich mindestens ein Ein- gang im 1-Zustand befindet.
a — 1	a x 0 1 1 1 0	NICHT-Funktion (Negation) x = a	a x	Der Ausgang nimmt nur dann den 1-Zu- stand an, wenn sich der Eingang im 0-Zustand befindet.
a — &	b a x 0 0 1 0 1 1 1 0 1 1 1 0	NAND-Funktion $x = \overline{a \wedge b}$ $x = \overline{a \cdot b}$	<u>a</u> <u>b</u> <u>x</u>	Der Ausgang nimmt nur dann den 1-Zu- stand an, wenn sich mindestens ein Ein- gang im 0-Zustand befindet.
$ \begin{array}{c c} a \longrightarrow \geq 1 \\ b \longrightarrow x \end{array} $	b a x 0 0 1 0 1 0 1 0 0 1 1 0	NOR-Funktion $x = \overline{a \lor b}$ $x = \overline{a + b}$	b x	Der Ausgang nimmt nur dann den 1-Zu- stand an, wenn sich beide Eingänge im 0-Zustand befinden.
a — =1 b — x	b a x 0 0 0 0 1 1 1 0 1 1 1 0	Antivalenz-Funktion (Exklusiv-ODER) $x = (a \land \overline{b}) \lor (\overline{a} \land b)$ $x = (a \cdot \overline{b}) + (\overline{a} \cdot b)$	b x	Der Ausgang nimmt nur dann den 1-Zu- stand an, wenn sich beide Eingänge in unterschiedlichen Zuständen befinden.
a — = — x	b a x 0 0 1 0 1 0 1 0 0 1 1 1	Äquivalenz- Funktion (Exclusiv-NOR) $x = (\overline{a} \wedge \overline{b}) \vee (a \wedge b)$ $x = (\overline{a} \cdot \overline{b}) + (a \cdot b)$	а Ь	Der Ausgang nimmt nur dann den 1-Zu- stand an, wenn sich beide Eingänge in demselben Zustand befinden.

Bild 4.32: Binäre (boolesche) Verknüpfungen