1.2.29

Abhiram Reddy-Al25BTECH11021

August 27,2025

Question

In a harbour, wind is blowing at the speed of $72~\mathrm{km/h}$ and the flag on the mast of a boat anchored in the harbour flutters along the N–E direction. If the boat starts moving at a speed of $51~\mathrm{km/h}$ to the north, what is the direction of the flag on the mast of the boat?

Represent given velocities as vectors

The wind velocity (ground frame) is along the NE direction with speed $72 \,\mathrm{km/h}$:

$$W = \begin{bmatrix} 72\cos 45^\circ \\ 72\sin 45^\circ \end{bmatrix} = \begin{bmatrix} 50.91 \\ 50.91 \end{bmatrix} \text{ km/h}.$$

The boat velocity (ground frame) is northward with speed $51 \,\mathrm{km/h}$:

$$V = \begin{bmatrix} 0 \\ 51 \end{bmatrix}$$
 km/h.

Relative wind (wind as seen from the boat)

$$R = W - V = \begin{bmatrix} 50.91 \\ 50.91 \end{bmatrix} - \begin{bmatrix} 0 \\ 51 \end{bmatrix} = \begin{bmatrix} 50.91 \\ -0.09 \end{bmatrix}.$$

Direction of the relative wind

$$heta= an^{-1}\left(rac{-0.09}{50.91}
ight)pprox-0.1^\circ$$

Thus, the relative wind is almost exactly eastward, slightly south of east.

The flag on the mast points nearly East, slightly tilted South.

C Code

```
#include <stdio.h>
#include <math.h>
int main() {
   // Wind (NE at 72 km/h)
   double W_x = 72 * cos(M_PI/4);
   double W_y = 72 * \sin(M_PI/4);
   // Boat (North at 51 km/h)
   double V x = 0;
   double V y = 51;
   // Relative wind = Wind - Boat
    double R x = W x - V x;
   double R y = W y - V y;
   printf(Relative wind: (%.2f, %.2f)\n, R x, R y);
    return 0:
                                 1.2.29
                                                     August 27,2025
```

```
import numpy as np
import matplotlib.pyplot as plt
# Wind velocity (ground frame), NE direction at 72 km/h
W = np.array([72/np.sqrt(2), 72/np.sqrt(2)]) # [East, North]
# Boat velocity (ground frame), north at 51 km/h
V = np.array([0, 51]) # [East, North]
# Relative wind (wind seen from boat)
R = V - V
```

```
# Calculate angle of relative wind
angle_deg = np.degrees(np.arctan2(R[1], R[0]))

print(Wind vector W =, W)
print(Boat vector V =, V)
print(Relative wind R =, R)
print(Angle of relative wind =, angle_deg, degrees)
```

```
# Create plot
plt.figure(figsize=(6,6))
plt.axhline(0, color='gray', linewidth=0.5)
plt.axvline(0, color='gray', linewidth=0.5)
```

```
# Plot vectors
plt.quiver(0,0, W[0], W[1], angles='xy', scale_units='xy', scale
    =1, color='blue', label=Wind (ground))
plt.quiver(0,0, V[0], V[1], angles='xy', scale_units='xy', scale
    =1, color='green', label=Boat (ground))
plt.quiver(0,0, R[0], R[1], angles='xy', scale_units='xy', scale
    =1, color='red', label=Relative Wind)
```

```
# Labels
 plt.text(W[0], W[1], W, fontsize=12)
plt.text(V[0], V[1], V, fontsize=12)
 plt.text(R[0], R[1], R, fontsize=12)
 plt.xlim(-10,80)
 plt.ylim(-10,80)
 plt.xlabel(East (+x))
 plt.ylabel(North (+y))
 plt.title(Relative Wind Seen from Boat)
 plt.legend()
 plt.grid(True)
 plt.gca().set aspect('equal', adjustable='box')
 plt.show()
```

Plot

figs/python image.png