STATS 300A: Theory of Statistics I

Autumn 2016/17

Lecture 9: October 25

Lecturer: Joseph Romano

Scribes: Kenneth Tay

9.1 Bayes Estimators for Different Loss Functions

9.1.1 0-1 Loss

Assume that there are only 2 possible distributions having densities f_0 and f_1 , i.e. either $X \sim f_0$ or $X \sim f_1$. Loss is 0 if you guess correctly, otherwise loss is 1. (For concreteness, let $\theta(f_0) = 0$ and $\theta(f_1) = 1$. Then this is the same as trying to estimate θ .)

Suppose that the prior puts mass π on f_0 and $1-\pi$ on f_1 .

Without any data, the best estimate is

$$\theta = \begin{cases} 0 & \text{if } \pi > 1 - \pi, \text{ i.e. } \pi > \frac{1}{2}, \\ 1 & \text{if } \pi < \frac{1}{2}, \\ \text{anything} & \text{if } \pi = \frac{1}{2}. \end{cases}$$

The Bayes risk in this case would be $min(\pi, 1 - \pi)$.

Now, if data X is observed, then the best estimate would be

$$\theta = \begin{cases} 0 & \text{if posterior probability for } (\theta = 1) < \frac{1}{2}, \\ 1 & \text{if posterior probability for } (\theta = 1) > \frac{1}{2}. \end{cases}$$

By Bayes rule, we would choose $\theta = 0$ if

posterior probability for $\theta = 0$ > posterior probability for $\theta = 1$,

$$\frac{\pi f_0(x)}{\pi f_0(x) + (1 - \pi)f_1(x)} > \frac{(1 - \pi)f_1(x)}{\pi f_0(x) + (1 - \pi)f_1(x)},$$
$$\pi f_0(x) > (1 - \pi)f_1(x),$$
$$\frac{f_0(x)}{f_1(x)} > \frac{\pi}{1 - \pi}.$$

The fraction on the LHS is called the likelihood ratio.

9.1.2 Weighted Squared Loss

In this case, the loss function has the form $L(\theta, d) = w(\theta)(d - \theta)^2$ for some weight function w.

First, consider the case where no data has been observed. What would be the Bayes estimator be? If the prior has density λ , then we would choose the constant d which minimizes

$$\int w(\theta)(d-\theta)^2\lambda(\theta)d\theta,$$

9-2 Lecture 9: October 25

or equivalently, d which minimizes

$$\frac{\int w(\theta)(d-\theta)^2\lambda(\theta)d\theta}{\int w(\theta)\lambda(\theta)d\theta}.$$

With this formulation, we can view $w\lambda$ as a density: letting $p(\theta) = \frac{w(\theta)\lambda(\theta)}{\int w(\theta)\lambda(\theta)d\theta}$, we are looking for d which minimizes $\int (d-\theta)^2 p(\theta)d\theta$. We are back to the case of squared error loss, and we know that the value of d which minimizes this quantity is

$$d^* = \int \theta p(\theta) d\theta = \frac{\int \theta w(\theta) \lambda(\theta) d\theta}{\int w(\theta) \lambda(\theta) d\theta} = \frac{\mathbb{E}[\Theta w(\Theta)]}{\mathbb{E}[w(\Theta)]}, \tag{9.1}$$

where $\Theta \sim \lambda$.

9.1.2.1 Binomial setting

Suppose we are in a binomial setting where Θ has prior Beta(a,b), and $L(\theta,d) = \frac{(d-\theta)^2}{\theta(1-\theta)}$.

Since $\theta \sim \text{Beta}(a, b)$, we have

$$\mathbb{E}\left[\frac{1}{1-\Theta}\right] = \int_0^1 \frac{1}{1-t} t^{a-1} (1-t)^{b-1} dt \cdot \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$$

$$= \int_0^1 t^{a-1} (1-t)^{b-2} dt \cdot \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$$

$$= \frac{\Gamma(a)\Gamma(b-1)}{\Gamma(a+b-1)} \cdot \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$$

$$= \frac{a+b-1}{b-1}.$$

Similarly, we can compute

$$\mathbb{E}\left[\frac{1}{\Theta(1-\Theta)}\right] = \frac{(a+b-1)(a+b-2)}{(a-1)(b-1)}.$$

Thus, using Equation 9.1, in the absence of data the Bayes estimator is

$$\frac{\mathbb{E}[\Theta w(\Theta)]}{\mathbb{E}[W(\Theta)]} = \frac{\mathbb{E}\left[\frac{1}{1-\Theta}\right]}{\mathbb{E}\left[\frac{1}{\Theta(1-\Theta)}\right]}$$
$$= \frac{a+b-1}{b-1} \cdot \frac{(a-1)(b-1)}{(a+b-1)(a+b-2)}$$
$$= \frac{a-1}{a+b-2}.$$

Now, if we observe data X, the posterior distribution of Θ is Beta(a',b') with a'=x+a and b'=n-x+b. Thus, the Bayes estimator with data is

$$\frac{a'-1}{a'+b'-2} = \frac{x+a-1}{n+a+b-2}$$

(Note: If a = b = 1, then $\frac{x}{n}$ is Bayes.)

Lecture 9: October 25 9-3

9.2 Admissibility

Problem: Suppose X_1, \ldots, X_n iid, $X_i \sim \mathcal{N}(\theta, \sigma^2)$ for all i, where σ^2 is known. (Without loss of generality, we let $\sigma^2 = 1$.) Find all real number pairs (a, b) such that $a\bar{X} + b$ is admissible under squared error loss.

Case 1: 0 < a < 1.

We know that if $\Theta \sim \mathcal{N}(\mu, c^2)$, then the posterior distribution is normal with

mean
$$\frac{nc^2}{\sigma^2 + nc^2}\bar{X} + \frac{\mu c^2}{\sigma^2 + nc^2}$$
, variance $\left(\frac{n}{\sigma^2} + \frac{1}{c^2}\right)^{-1}$.

In this case, the Bayes estimator is the mean, and is admissible. For any 0 < a < 1 and any b, we can find corresponding μ and c such that

$$a = \frac{nc^2}{\sigma^2 + nc^2}, \quad b = \frac{\mu c^2}{\sigma^2 + nc^2}.$$

Hence, $a\bar{X} + b$ is admissible in this case.

Case 2: a = 0.

In this case, $a\bar{X} + b$ is a constant (just b), and hence is admissible (by our argument in Lecture 1).

Case 3: $a = 1, b \neq 0$.

In this case, $\bar{X} + b$ is dominated by \bar{X} (\bar{X} has same variance but no bias), and so is inadmissible.

Case 4: a > 1.

Let $\rho_{\theta}(a, b)$ denote the risk of $a\bar{X} + b$, i.e.

$$\rho_{\theta}(a,b) = \mathbb{E}_{\theta}[(a\bar{X} + b - \theta)^2] = \frac{a^2\sigma^2}{n} + (a\theta + b - \theta)^2.$$

Then $\rho_{\theta}(a,b) \geq \frac{a^2 \sigma^2}{n} \geq \frac{\sigma^2}{n} = \rho_{\theta}(1,0)$, i.e. $a\bar{X} + b$ is dominated by \bar{X} , and so is inadmissible.

Case 5: a < 0.

$$\begin{split} \rho_{\theta}(a,b) &> [(a-1)\theta+b]^2 \\ &= (a-1)^2 \left[\theta + \frac{b}{a-1}\right]^2 \\ &> \left[\theta + \frac{b}{a-1}\right]^2 \\ &= \rho_{\theta} \left(0, -\frac{b}{a-1}\right), \end{split}$$

i.e. $a\bar{X} + b$ is dominated by the constant estimator $-\frac{b}{a-1}$, and so is inadmissible.

Case 6: a = 1, b = 0. We will prove that \bar{X} is admissible.

Proof: Assume otherwise, i.e. there exists another estimator δ^* such that

$$R(\theta, \delta^*) \le \frac{1}{n}$$
 for all θ ,
 $R(\theta, \delta^*) < \frac{1}{n}$ for some θ .

9-4 Lecture 9: October 25

Since exponential families have continuous risk functions, there is a small enough $\varepsilon > 0$ and an interval (θ_0, θ_1) such that

$$R(\theta, \delta^*) < \frac{1}{n} - \varepsilon$$

for all $\theta \in (\theta_0, \theta_1)$.

Let r_b^* be the average risk of δ^* with respect to the $\mathcal{N}(0, b^2)$ prior, and let r_b be the average risk of the Bayes estimator δ_b with respect to the same $\mathcal{N}(0, b^2)$ prior. Then

$$r_b = \mathbb{E}[(\delta_b(X) - \Theta)^2]$$

$$= \mathbb{E}\left[\mathbb{E}[(\delta_b(X) - \Theta)^2 \mid X]\right]$$

$$= \mathbb{E}\left[\mathbb{E}[(\mathbb{E}\Theta - \Theta)^2]\right]$$

$$= \mathbb{E}[\text{posterior variance}]$$

$$= \mathbb{E}\left[\left(n + \frac{1}{b^2}\right)^{-1}\right]$$

$$= \left(n + \frac{1}{b^2}\right)^{-1}.$$

Thus,

$$\frac{\frac{1}{n} - r_b^*}{\frac{1}{n} - r_b} = \frac{\frac{1}{b\sqrt{2\pi}} \int_{-\infty}^{\infty} \left[\frac{1}{n} - R(\theta, \delta^*) \right] \exp\left[-\frac{1}{2b^2} \theta^2 \right] d\theta}{\frac{1}{n} - \left(\frac{1}{n} + \frac{1}{b^2} \right)^{-1}}$$

$$= \frac{n(1 + nb^2)}{b\sqrt{2\pi}} \int_{-\infty}^{\infty} \left[\frac{1}{n} - R(\theta, \delta^*) \right] \exp\left[-\frac{1}{2b^2} \theta^2 \right] d\theta$$

$$\geq \frac{n(1 + nb^2)}{b\sqrt{2\pi}} \int_{\theta_0}^{\theta_1} \varepsilon e^{-\frac{1}{2b^2} \theta^2} d\theta.$$

As $b \to \infty$, $\int_{\theta_0}^{\theta_1} \varepsilon e^{-\frac{1}{2b^2}\theta^2} d\theta \to \varepsilon(\theta_1 - \theta_0)$ and $\frac{n(1+nb^2)}{b\sqrt{2\pi}} \to \infty$. Hence, for large enough b, we have

$$\frac{1}{n} - r_b^* > \frac{1}{n} - r_b, r_b > r_b^*,$$

which contradicts the fact that δ_b is the Bayes estimator. Hence, \bar{X} is admissible.

9.2.1 Multivariate normal setting

Let X_1, \ldots, X_n iid, $X_1 \sim \mathcal{N}(\theta, \Sigma)$, where

$$\theta = \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_d \end{pmatrix}, \quad \Sigma = I_d.$$

The goal is to estimate θ with loss function $L(\theta, d) = \sum_{i=1}^{d} (\theta_i - d_i)^2$. We can ask the same question as in the univariate case: is \bar{X} admissible? It turns out that:

Lecture 9: October 25 9-5

- If d < 3, \bar{X} is admissible.
- If $d \geq 3$, \bar{X} is not admissible.

9.3 Minimax Estimation

In the minimax estimation setting, we are looking for the estimator δ^* which minimizes $\sup_{\alpha} R(\theta, \delta)$.

Proposition 9.1 If a Bayes estimator has constant risk, it is minimax.

Proof: Let δ_{Λ} be the Bayes estimator with constant risk. If δ is an estimator with better worst case risk, then

$$R(\theta, \delta) < R(\theta, \delta_{\Lambda}) \qquad \text{for all } \theta,$$

$$\Rightarrow \int R(\theta, \delta) d\Lambda(\theta) < \int R(\theta, \delta_{\Lambda}) d\Lambda(\theta),$$

which contradicts the definition of a Bayes estimator.

The proposition above can be generalized to the following theorem:

Theorem 9.2 For a prior distribution Λ , let $r_{\Lambda} := \int R(\theta, \delta_{\Lambda}) d\Lambda(\theta)$, i.e. the Bayes risk of the Bayes estimator w.r.t. Λ .

If
$$r_{\Lambda} = \sup_{\theta} R(\theta, \delta_{\Lambda})$$
, then:

- 1. δ_{Λ} is minimax.
- 2. If δ_{Λ} is uniquely Bayes, then it is uniquely minimax as well.
- 3. Λ is "least favorable", i.e. $r_{\Lambda} \geq r_{\Lambda'}$ for any Λ' .

Proof:

1. If δ is any other estimator, then

$$\sup_{\theta} R(\theta, \delta) \ge \int R(\theta, \delta) d\Lambda(\theta)$$

$$\ge \int R(\theta, \delta_{\Lambda}) d\Lambda(\theta)$$

$$= \sup_{\theta} R(\theta, \delta_{\Lambda}).$$

2. If δ_{Λ} is uniquely Bayes, then the second inequality above is strict, and so it is uniquely minimax as well

9-6 Lecture 9: October 25

3. For any other prior Λ' ,

$$r_{\Lambda'} = \int R(\theta, \delta_{\Lambda'}) d\Lambda'(\theta)$$

$$\leq \int R(\theta, \delta_{\Lambda}) d\Lambda'(\theta)$$

$$\leq \sup_{\theta} R(\theta, \delta_{\Lambda})$$

$$= r_{\Lambda}.$$

Note: The assumption in the theorem above holds if the risk of the estimator is constant. It can also hold if Λ puts all of its mass on θ values where the risk function is worst.