Introduction to Algorithms: 6.006 Massachusetts Institute of Technology

Instructors: Erik Demaine, Jason Ku, and Justin Solomon

Problem Set 1

Name: Your Name Collaborators: None

Problem 1-1.

(a) f_5, f_3, f_4, f_1, f_2

(b)
$$\{f_1, f_2\}, f_5, \{f_3, f_4\}$$

(c)
$$f_2 = \frac{n!}{n!6!} = 1/(6!)$$

 $f_4 = \frac{n!}{(n/6)!(5n/6)!}$
 $f_2, f_5, \{f_3, f_4\}, f_1$

(d) $f_5, f_2, f_4, \{f_1, f_3\}$

Problem Set 1

Problem Set 1

Problem 1-2.

- (a) For j equals i to i+k/2, do insert_at(j, delete_at(2*i+k-j-1)).
- (b) For j equals 0 to k-1, do insert_at(j, delete_at(i+j)).

Problem Set 1 3

Problem 1-3.

Problem Set 1

Problem 1-4.

" \rightarrow " means point to

- (a) insert_first(x): $x.next \to L.head$, $L.head.prev \to x$, x.prev = null, $L.head \to x$ insert_last(x): $x.prev \to L.tail$, x.next = null, $L.tail.next \to x$, $L.tail \to x$ delete_first(): L.head.next.prev = null, $L.head \to L.head.next$ delete_last(): L.tail.prev.next = null, $L.tail \to L.tail.prev$
- (b) $L'.head \rightarrow x_1, L'.tail \rightarrow x_2$ $x_1.prev.next \rightarrow x_2.next, x_2.next.prev \rightarrow x_1.prev$ $x_1.prev = null, x_2.next = null$
- (c) $L_2.tail.next \rightarrow x.next \ x.next.prev \rightarrow L_2.tail \ L_2.head.prev \rightarrow x \ x.next \rightarrow L_2.head$
- (d) Submit your implementation to alg.mit.edu.