METODE EDAS

(Evaluation based on Distance from Average Solution)

- ☐ Metode Evaluation based on Distance from Average Solution (EDAS) diperkenalkan oleh Keshavarz Ghorabaee pada tahun 2015 untuk menangani masalah Multi Criteria Decision Making atau MCDM (Mishra et al., 2020).
- ☐ Metode EDAS menggunakan solusi rata-rata untuk penilaian alternatif dengan cara menghitung jarak rata-rata positif (PDA) dan jarak rata-rata negatif (NDA) (Ghorabaee et al., 2015).

- ☐ Metode EDAS sangat berguna ketika kriteria yang bertentangan harus dipertimbangkan (benefit dan cost), stabil ketika berbagai kriteria bobot digunakan, dan konsisten dengan metode lain (Pamucar et al., 2022).
- ☐ Hasil akhir pengambilan keputusan multikriteria berdasarkan pada skor penilaian Apraisal Score (AS) tertinggi untuk mendapatkan pilihan terbaik dari semua alternatif (Biswas et al., 2022).

☐ Tahapan metode EDAS :

1. Pembentukan Matriks Keputusan (X) 2. Menentukan Solusi Rata-rata (AV) 3. Menentukan Jarak Positif/Negatif dari Rata-rata (PDA/NDA) 4. Menentukan Jumlah Terbobot dari PDA/NDA (SP/SN) 5. Normalisasi Nilai SP/SN (NSP/NSN) 6. Menghitung Nilai Skor Penilaian (AS) 7. Perankingan Alternatif

1. Pembentukan Matriks Keputusan (X)

Pada matriks keputusan (X), baris menunjukkan alternatif dan kolom menunjukkan kriteria. Matriks keputusan menunjukkan kinerja dari masing-masing alternatif terhadap berbagai kriteria.

$$X = \begin{bmatrix} x_{11} & \dots & x_{12} & \dots & x_{1n} \\ x_{21} & \dots & x_{22} & \dots & x_{2n} \\ x_{m1} & \dots & x_{m2} & \dots & x_{mn} \end{bmatrix}$$
 Keterangan : m = alternatif n = kriteria

Menentukan Solusi Rata-rata / Average Solution (AV)

Penentuan solusi rata-rata (AV) sesuai dengan kriteria yang ditentukan dengan menggunakan persamaan:

$$AV_j = \frac{\sum_{i=1}^m X_{ij}}{m}$$

Keterangan:

AV_j = solusi rata-rata

X_{ij} = nilai kriteria dari alternatif

m = alternatif

Hitung jarak positif dari matriks rata-rata (PDA) dan jarak negatif dari matriks rata-rata (NDA) sesuai jenis kriteria (benefit dan cost) dengan menggunakan persamaan:

$$PDA_{ij} = \left\{ \frac{\max\left(0, (x_{ij} - AV_j)\right)}{AV_j} \right\} kriteria benefit$$

$$PDA_{ij} = \left\{ \frac{\max\left(0, (AV_j - x_{ij})\right)}{AV_i} \right\} kriteria cost$$

Hitung jarak positif dari matriks rata-rata (PDA) dan jarak negatif dari matriks rata-rata (NDA) sesuai jenis kriteria (benefit dan cost) dengan menggunakan persamaan:

$$NDA_{ij} = \left\{ \frac{\max\left(0, \left(AV_j - x_{ij}\right)\right)}{AV_j} \right\} kriteria benefit$$

$$NDA_{ij} = \left\{ \frac{\max\left(0, \left(x_{ij} - AV_j\right)\right)}{AV_j} \right\} kriteria cost$$

 Menentukan Jumlah Terbobot dari PDA/NDA (SP/SN)
 Menentukan jumlah terbobot dari PDA dan NDA untuk semua alternatif dengan persamaan berikut ini:

$$SP_i = \sum_{j=1}^n w_j imes PDA_{ij}$$
 $SN_i = \sum_{j=1}^n w_j imes NDA_{ij}$
lai SPi dan SNi, masing-masing adalah nilai jumlah

Nilai SPi dan SNi, masing-masing adalah nilai jumlah terbobot dari PDA dan NDA untuk setiap alternatif ke-i.

5. Normalisasi Nilai SP/SN (NSP/NSN)

Tahap berikutnya adalah menghitung nilai normalisasi dari SP daan SN untuk semua alternatif dengan persamaan berikut ini:

$$NSP_i = \frac{SP_i}{\max(SP_i)}$$

$$NSN_i = 1 - \frac{SN_i}{\max(SN_i)}$$

Menghitung Nilai Skor Penilaian (AS)

Menghitung nilai Apraisal Score penilaian dengan
persamaan berikut ini:

$$AS_i = \frac{1}{2}(NSP_i + NSN_i)$$

7. Perankingan Alternatif
Perangkingan dari nilai skor penilaian AS dari nilai yang tertinggi hingga yang terendah. Alternatif dengan nilai yang tertinggi menunjukkan alternatif yang terbaik.

Contoh:

- □ Sebuah perusahaan akan melakukan rekrutmen kerja terhadap 5 calon pekerja untuk posisi operator mesin.
- ☐ Posisi yang dibutuhkan hanya 2 orang.
- Kriteria :
 - ✓ Pengalaman kerja (disimbolkan C1) → Benefit
 - ✓ Pendidikan (C2) → Benefit
 - ✓ Usia (C3) → Benefit
 - ✓ Status perkawinan (C4) → Cost
 - ✓ Alamat (C5) → Cost

☐ Pembobotan (w)

Kriteria	Bobot
C1	0,3
C2	0,2
C3	0,2
C4	0,15
C5	0,15
Total	1

- □ Ada lima orang yang menjadi kandidat (alternatif) yaitu :
 - ✓ Doni Prakosa (disimbolkan A1)
 - ✓ Dion Pratama (A2)
 - ✓ Dina Ayu Palupi (A3)
 - ✓ Dini Ambarwati (A4)
 - ✓ Danu Nugraha (A5)

☐ Penilaian alternatif untuk setiap kriteria

Alternatif	kriteria				
	C1	C2	C3	C4	C5
A1	0,5	1	0,7	0,7	0,8
A2	0,8	0,7	1	0,5	1
A3	1	0,3	0,4	0,7	1
A4	0,2	1	0,5	0,9	0,7
A5	1	0,7	0,4	0,7	1

Jawab:

1. Pembentukan Matriks Keputusan (X):

	0,5	1	0,7	0,7	0,8
	0,8			0,5	
X =	1			0,7	
	0,2	1	0,5	0,9	0,7
	1	0,7	0,4	0,7	1

Alternatif	kriteria				
	C1	C2	C3	C4	C5
A1	0,5	1	0,7	0,7	0,8
A2	0,8	0,7	1	0,5	1
А3	1	0,3	0,4	0,7	1
A4	0,2	1	0,5	0,9	0,7
A5	1	0,7	0,4	0,7	1

2. Menentukan Solusi Rata-rata Average Solution (AV)

$$AV_1 = \frac{0.5 + 0.8 + 1 + 0.2 + 1}{5} = \frac{3.5}{5} = 0.7$$

$$AV_2 = \frac{1 + 0.7 + 0.3 + 1 + 0.7}{5} = \frac{3.7}{5} = 0.74$$

$$X = \begin{bmatrix} 0.5 & 1 \\ 0.8 & 0.7 \\ 1 & 0.3 \end{bmatrix}$$

 $AV_5 = \frac{0.8+1+1+0.7+1}{5} = \frac{4.5}{5}$ = 0.9

 $AV = [0,7 \ 0,74 \ 0,6 \ 0,7 \ 0,9]$

$$\frac{0.7}{5} = \frac{3.7}{5} = 0.74$$

$$AV_3 = \frac{0.7+1+0.4+0.5+0.4}{5} = \frac{3}{5} = 0.6$$

$$AV_4 = \frac{0.7+0.5+0.7+0.9+0.7}{5} = \frac{3.5}{5} = 0.7$$

$$X = \begin{bmatrix} 1 & 0.3 & 0.4 & 0.7 & 1 \\ 0.2 & 1 & 0.5 & 0.9 & 0.7 \\ 1 & 0.7 & 0.4 & 0.7 & 1 \end{bmatrix}$$

Kriteria C1:

$$PDA_{11} = \max\left(0, \frac{(0,5-0,7)}{0,7}\right) = \left(0, \frac{-0,2}{0,7}\right) = (0, -0,286) = 0$$

$$PDA_{21} = \max\left(0, \frac{(0.8-0.7)}{0.7}\right) = \left(0, \frac{0.1}{0.7}\right) = (0, 0.143) = 0.143$$

$$PDA_{31} = \max\left(0, \frac{(1-0.7)}{0.7}\right) = \left(0, \frac{0.3}{0.7}\right) = (0, 0.429) = 0.429$$

$$PDA_{41} = \max\left(0, \frac{(0,2-0,7)}{0,7}\right) = \left(0, \frac{-0,5}{0,7}\right) = (0, -0,714) = 0$$

$$PDA_{51} = \max\left(0, \frac{(1-0.7)}{0.7}\right) = \left(0, \frac{0.3}{0.7}\right) = (0, 0.429) = 0.429$$

$$PDA_{ij} = \left\{\frac{\max\left(0, (x_{ij} - AV_j)\right)}{AV_j}\right\} kriteria benefit$$

$$PDA_{ij} = \left\{\frac{\max\left(0, (AV_j - x_{ij})\right)}{AV_j}\right\} kriteria cost$$

$$0,5 \quad 1 \quad 0,7 \quad 0,7 \quad 0,8$$

$$0,8 \quad 0,7 \quad 1 \quad 0,5 \quad 1$$

$$X = \begin{bmatrix} 0.5 & 1 & 0.7 & 0.7 & 0.8 \\ 0.8 & 0.7 & 1 & 0.5 & 1 \\ 1 & 0.3 & 0.4 & 0.7 & 1 \\ 0.2 & 1 & 0.5 & 0.9 & 0.7 \\ 1 & 0.7 & 0.4 & 0.7 & 1 \end{bmatrix}$$

Kriteria C2:

$$PDA_{12} = \max\left(0, \frac{(1-0.74)}{0.74}\right) = \left(0, \frac{0.26}{0.74}\right) = (0, 0.351) = 0.351$$

$$PDA_{22} = \max\left(0, \frac{(0.7-0.74)}{0.74}\right) = \left(0, \frac{-0.04}{0.74}\right) = (0, -0.054) = 0$$

$$PDA_{32} = \max\left(0, \frac{(0.3-0.74)}{0.74}\right) = \left(0, \frac{-0.44}{0.74}\right) = (0, -0.595) = 0$$

$$PDA_{42} = \max\left(0, \frac{(1-0.74)}{0.74}\right) = \left(0, \frac{0.26}{0.74}\right) = (0, 0.351) = 0.351$$

$$PDA_{52} = \max\left(0, \frac{(0.7-0.74)}{0.74}\right) = \left(0, \frac{-0.04}{0.74}\right) = (0, -0.054) = 0$$

Kriteria C3:

$$PDA_{12} = \max\left(0, \frac{(0,7-0,6)}{0,6}\right) = \left(0, \frac{0,1}{0,6}\right) = (0, 0,167) = 0,167$$

$$PDA_{22} = \max\left(0, \frac{(1-0,6)}{0,6}\right) = \left(0, \frac{0,4}{0,6}\right) = (0, 0,667) = 0,667$$

$$PDA_{32} = \max\left(0, \frac{(0,4-0,6)}{0,6}\right) = \left(0, \frac{-0,2}{0,6}\right) = (0, -0,333) = 0$$

$$PDA_{42} = \max\left(0, \frac{(0,5-0,6)}{0,6}\right) = \left(0, \frac{-0,1}{0,6}\right) = (0, -0,167) = 0$$

$$PDA_{52} = \max\left(0, \frac{(0,4-0,6)}{0,6}\right) = \left(0, \frac{-0,2}{0,6}\right) = (0, -0,333) = 0$$

Kriteria C4:

$$PDA_{11} = \max\left(0, \frac{(0,7-0,7)}{0,7}\right) = \left(0, \frac{0}{0,7}\right) = (0, 0) = 0$$

$$PDA_{21} = \max\left(0, \frac{(0,7-0,5)}{0,7}\right) = \left(0, \frac{0,2}{0,7}\right) = (0, 0,286) = 0,286$$

$$PDA_{31} = \max\left(0, \frac{(0,7-0,7)}{0,7}\right) = \left(0, \frac{0}{0,7}\right) = (0, 0) = 0$$

$$PDA_{41} = \max\left(0, \frac{(0,7-0,9)}{0.7}\right) = \left(0, \frac{-0,2}{0.7}\right) = (0, -0,286) = 0$$

$$PDA_{51} = \max\left(0, \frac{(0,7-0,7)}{0.7}\right) = \left(0, \frac{0}{0.7}\right) = (0, 0) = 0$$

$$PDA_{ij} = \left\{\frac{\max\left(0, (x_{ij} - AV_j)\right)}{AV_j}\right\} kriteria benefit$$

$$PDA_{ij} = \left\{\frac{\max\left(0, (AV_j - x_{ij})\right)}{AV_j}\right\} kriteria cost$$

$$\boxed{0,5 \quad 1 \quad 0,7 \quad 0,7 \quad 0,8}$$

Kriteria C5:

$$PDA_{12} = \max\left(0, \frac{(0,9-0,8)}{0,9}\right) = \left(0, \frac{0,1}{0,9}\right) = (0, 0,111) = 0,111$$

$$PDA_{22} = \max\left(0, \frac{(0,9-1)}{0,9}\right) = \left(0, \frac{-0,1}{0,9}\right) = (0, -0,111) = 0$$

$$PDA_{32} = \max\left(0, \frac{(0,9-1)}{0,9}\right) = \left(0, \frac{-0,1}{0,9}\right) = (0, -0,111) = 0$$

$$PDA_{42} = \max\left(0, \frac{(0,9-0,7)}{0,9}\right) = \left(0, \frac{0,2}{0,9}\right) = (0, 0,222) = 0,222$$

$$PDA_{52} = \max\left(0, \frac{(0,9-1)}{0,9}\right) = \left(0, \frac{-0,1}{0,9}\right) = (0, -0,111) = 0$$

Data jarak positif dari solusi rata-rata (PDA):

	0	0,351	0,167	0	0,111	
	0,143	0	0,667	0,286	0	V _a
$PDA_{ij} =$	0,429	0	0	0	0	
	0	0,351	0	0	0,222	b
	0,429	0	0	0	0	5

Kriteria C1:

$$NDA_{11} = \max\left(0, \frac{(0,7-0,5)}{0,7}\right) = \left(0, \frac{0,2}{0,7}\right) = (0, 0,286) = 0,286$$

$$NDA_{21} = \max\left(0, \frac{(0,7-0,8)}{0,7}\right) = \left(0, \frac{-0,1}{0,7}\right) = (0, -0,143) = 0$$

$$NDA_{31} = \max\left(0, \frac{(0,7-1)}{0,7}\right) = \left(0, \frac{-0,3}{0,7}\right) = (0, -0,429) = 0$$

$$NDA_{41} = \max\left(0, \frac{(0,7-0,2)}{0,7}\right) = \left(0, \frac{0,5}{0,7}\right) = (0, 0,714) = 0,714$$

$$NDA_{51} = \max\left(0, \frac{(0,7-1)}{0,7}\right) = \left(0, \frac{-0,3}{0,7}\right) = (0, -0,429) = 0$$

$$NDA_{ij} = \left\{ \frac{\max\left(0, (AV_j - x_{ij})\right)}{AV_j} \right\} kriteria benefit$$

$$NDA_{ij} = \left\{ \frac{\max\left(0, (x_{ij} - AV_j)\right)}{AV_j} \right\} kriteria cost$$

$$X = \begin{bmatrix} 0,5 & 1 & 0,7 & 0,7 & 0,8 \\ 0,8 & 0,7 & 1 & 0,5 & 1 \\ 1 & 0,3 & 0,4 & 0,7 & 1 \\ 0,2 & 1 & 0,5 & 0,9 & 0,7 \\ 1 & 0,7 & 0,4 & 0,7 & 1 \end{bmatrix}$$

Kriteria C2:

$$NDA_{12} = \max\left(0, \frac{(0,74-1)}{0,74}\right) = \left(0, \frac{-0,26}{0,74}\right) = (0, -0,351) = 0$$

$$NDA_{22} = \max\left(0, \frac{(0,74-0,7)}{0,74}\right) = \left(0, \frac{0,04}{0,74}\right) = (0, 0,054) = 0,054$$

$$NDA_{32} = \max\left(0, \frac{(0,74-0,3)}{0,74}\right) = \left(0, \frac{0,44}{0,74}\right) = (0, 0,595) = 0,595$$

$$NDA_{42} = \max\left(0, \frac{(0,74-1)}{0,74}\right) = \left(0, \frac{-0,26}{0,74}\right) = (0, -0,351) = 0$$

$$NDA_{52} = \max\left(0, \frac{(0,74-0,7)}{0,74}\right) = \left(0, \frac{0,04}{0,74}\right) = (0, 0,054) = 0,054$$

Kriteria C3:

$$NDA_{12} = \max\left(0, \frac{(0,6-0,7)}{0,6}\right) = \left(0, \frac{-0,1}{0,6}\right) = (0, -0,167) = 0$$

$$NDA_{22} = \max\left(0, \frac{(0,6-1)}{0,6}\right) = \left(0, \frac{-0,4}{0,6}\right) = (0, -0,667) = 0$$

$$NDA_{32} = \max\left(0, \frac{(0,6-0,4)}{0,6}\right) = \left(0, \frac{0,2}{0,6}\right) = (0, 0,333) = 0,333$$

$$NDA_{42} = \max\left(0, \frac{(0,6-0,5)}{0,6}\right) = \left(0, \frac{0,1}{0,6}\right) = (0, 0,167) = 0,167$$

$$NDA_{52} = \max\left(0, \frac{(0,6-0,4)}{0,6}\right) = \left(0, \frac{0,2}{0,6}\right) = (0, 0,333) = 0,333$$

Kriteria C4:

$$NDA_{11} = \max\left(0, \frac{(0,7-0,7)}{0,7}\right) = \left(0, \frac{0}{0,7}\right) = (0, 0) = 0$$

$$NDA_{21} = \max\left(0, \frac{(0,5-0,7)}{0,7}\right) = \left(0, \frac{-0,2}{0,7}\right) = (0, -0,286) = 0$$

$$NDA_{31} = \max\left(0, \frac{(0,7-0,7)}{0,7}\right) = \left(0, \frac{0}{0,7}\right) = (0, 0) = 0$$

 $NDA_{41} = \max\left(0, \frac{(0.9 - 0.7)}{0.7}\right) = \left(0, \frac{0.2}{0.7}\right) = (0, 0.286) = 0.286$

$$NDA_{51} = \max\left(0, \frac{(0,7-0,7)}{0,7}\right) = \left(0, \frac{0}{0,7}\right) = (0, 0) = 0$$

Kriteria C5:

$$NDA_{12} = \max\left(0, \frac{(0,8-0,9)}{0,9}\right) = \left(0, \frac{-0,1}{0,9}\right) = (0, -0,111) = 0$$

$$NDA_{22} = \max\left(0, \frac{(1-0,9)}{0,9}\right) = \left(0, \frac{0,1}{0,9}\right) = (0, 0,111) = 0,111$$

$$NDA_{32} = \max\left(0, \frac{(1-0,9)}{0,9}\right) = \left(0, \frac{0,1}{0,9}\right) = (0, 0,111) = 0,111$$

$$NDA_{42} = \max\left(0, \frac{(0,7-0,9)}{0,9}\right) = \left(0, \frac{-0,2}{0,9}\right) = (0, -0,222) = 0$$

$$NDA_{52} = \max\left(0, \frac{(1-0,9)}{0,9}\right) = \left(0, \frac{0,1}{0,9}\right) = (0, 0,111) = 0,111$$

$$NDA_{ij} = \left\{ \frac{\max\left(0, (AV_j - x_{ij})\right)}{AV_j} \right\} kriteria benefit$$

$$NDA_{ij} = \left\{ \frac{\max\left(0, (x_{ij} - AV_j)\right)}{AV_j} \right\} kriteria cost$$

$$X = \begin{bmatrix} 0,5 & 1 & 0,7 & 0,7 & 0,8 \\ 0,8 & 0,7 & 1 & 0,5 & 1 \\ 1 & 0,3 & 0,4 & 0,7 & 1 \\ 0,2 & 1 & 0,5 & 0,9 & 0,7 \end{bmatrix}$$

Data jarak negatif dari solusi rata-rata (NDA):

	0,286	0	0	0	0	
	0	0,054	0	0	0,111	Vanciden V vertee
$NDA_{ij} =$	0	0,595	0,333	0	0,111	Roles Control
	0,714	0,054 0,595 0	0,167	0,286	0	N A
	0	0,054	0,333	0	0,111	$\frac{5^{\theta}}{2}$

Menentukan Jumlah Terbobot dari PDA/NDA (SP/SN)

$$SP_1 = (0,3*0)+(0,2*0,351)+(0,2*0,167)+(0,15*0)+(0,15*0,111) = 0,120$$

$$= (0,3*0)+(0,2*0,351)+(0,2*0,167)+(0,15*0)+(0,15*0,111) = 0,120$$

$$= (0,3*0,143)+(0,2*0)+(0,2*0,667)+(0,15*0,286)+(0,15*0) = 0,219$$

$$SP_1 = (0,3*0)+(0,2*0,351)+(0,2*0,167)+(0,15*0)+(0,15*0,111) = 0,120$$

 $SP_2 = (0,3*0,143)+(0,2*0)+(0,2*0,667)+(0,15*0,286)+(0,15*0) = 0,219$

$$= (0,3*0)+(0,2*0,351)+(0,2*0,167)+(0,15*0)+(0,15*0,111) = 0,120$$

 $SP_3 = (0.3*0.429)+(0.2*0)+(0.2*0)+(0.15*0)+(0.15*0)$

 $SP_5 = (0.3*0.429)+(0.2*0)+(0.2*0)+(0.15*0)+(0.15*0)$

 $SN_1 = (0.3*0.286)+(0.2*0)+(0.2*0)+(0.15*0)+(0.15*0)$

 $SN_2 = (0.3*0)+(0.2*0.054)+(0.2*0)+(0.15*0)+(0.15*0.111)$

 $SN_3 = (0.3*0) + (0.2*0.595) + (0.2*0.333) + (0.15*0) + (0.15*0.111)$

 $SN_4 = (0.3*0.714) + (0.2*0) + (0.2*0.167) + (0.15*0.286) + (0.15*0)$

 $SN_5 = (0.3*0) + (0.2*0.054) + (0.2*0.333) + (0.15*0) + (0.15*0.111)$

 $SP_4 = (0,3*0)+(0,2*0,351)+(0,2*0)+(0,15*0)+(0,15*0,222)$

$$SN_i = \sum_{j=1}^{n} w_j \times N$$
0 0,351 0,167 0

0.222

0.111 0.111

0,111

$$NDA_{ij} = \begin{bmatrix} 0,286\\0\\0\\0,714\\0 \end{bmatrix}$$
Krite

= 0,129

= 0,104

= 0.129

= 0.086

= 0,027

= 0,202

= 0,290

= 0.094

C4

C5

0,3

0,15

0,15

4. Menentukan Jumlah Terbobot dari PDA/NDA (SP/SN) $SP_1 = 0.120 \qquad SN_1 = 0.086$

$$SP_2 = 0.219$$
 $SN_2 = 0.027$

$$SP_3 = 0,129$$
 $SN_3 = 0,202$
 $SP_4 = 0,104$ $SN_4 = 0,290$
 $SP_5 = 0,129$ $SN_5 = 0,094$

 $SP_i = \sum_{i=1}^n w_i \times PDA_{ij}$

 $SN_i = \sum_{j=1}^{n} w_j \times NDA_{ij}$

5. Normalisasi Nilai SP/SN (NSP/NSN)

$$NSP_1 = \frac{0,120}{0,219} = 0,549 \qquad NSN_1 = 1 - \frac{0,086}{0,290} = 0,705$$

$$NSP_2 = \frac{0,219}{0,219} = 1$$

$$NSN_2 = 1 - \frac{0,027}{0,290} = 0,905$$

$$NSP_3 = \frac{0,129}{0,219} = 0,587$$

$$NSN_3 = 1 - \frac{0,202}{0,290} = 0,304$$

$$NSP_4 = \frac{0,104}{0,219} = 0,473$$

$$NSN_4 = 1 - \frac{0,290}{0,290} = 0$$

 $NSN_5 = 1 - \frac{0,094}{0.290} = 0,676$

$$NSP_4 = \frac{1}{0,219} = 0,473$$

$$NSP_5 = \frac{0,129}{0,219} = 0,587$$

$$SP_3 = 0.129$$
 $SN_3 = 0.202$
 $SP_4 = 0.104$ $SN_4 = 0.290$
 $SP_5 = 0.129$ $SN_5 = 0.094$

 $NSP_i = \frac{SP_i}{\max(SP_i)}$

 $NSN_i = 1 - \frac{SN_i}{\max(SN_i)}$

 $SP_1 = 0.120 | SN_1 = 0.086$

 $SP_2 = 0.219 | SN_2 = 0.027$

5. Normalisasi Nilai SP/SN (NSP/NSN)

$$NSP_1 = 0,549$$
 $NSN_1 = 0,705$
 $NSP_2 = 1$ $NSN_2 = 0,905$

$$NSP_3 = 0.587$$

$$NSN_3 = 0.304$$

 $NSN_4 = 0$

$$NSP_4 = 0,473$$

 $NSP_5 = 0,587$

$$NSN_5 = 0,676$$

6. Menghitung Nilai Skor Penilaian (AS)

$$AS_1 = \frac{1}{2} (0,549 + 0,705) = 0,627$$

$$AS_2 = \frac{1}{2} (1 + 0.905) = 0.953$$

$$AS_3 = \frac{1}{2} (0.587 + 0.304) = 0.445$$

$$AS_4 = \frac{1}{2} (0,473 + 0) = 0,236$$

$$\frac{1}{2}(0,473+0) = 0,236$$

$$AS_5 = \frac{1}{2} (0,587 + 0,676) = 0,631$$

$$NSP_1 = 0.549 \quad NSN_1 = 0.705$$

$$NSP_1 = 0.549$$
 $NSN_1 = 0.705$
 $NSP_2 = 1$ $NSN_2 = 0.905$

$$NSP_3 = 0.587 \qquad NSN_3 = 0.304$$

$$NSP_4 = 0,473 \qquad NSN_4 = 0$$

7. Perankingan Alternatif

$$AS_1 = 0,627$$

$$AS_2 = 0.953$$

$$AS_3 = 0,445$$

$$AS_4 = 0,236$$

$$AS_5 = 0.631$$

- □ Nilai terbesar ada pada A2 = 0,953 dan A5 = 0,631 sehingga Dion Pratama dan Danu Nugraha adalah alternatif yang terpilih sebagai alternatif terbaik.
- □ Dengan kata lain, Dion Pratama dan Danu Nugraha terpilih untuk posisi operator mesin.

Refe	Ference:	
	A novel EDAS approach on intuitionistic fuzzy set for assessment of health-care waste disposal technology using new parametric divergence measures-Arunodaya Raj Mishra, Abbas Mardani, Pratibha Rani, Edmundas Kazimieras Zavadskas (2020).	
	Multi-Criteria Inventory Classification Using a New Method of Evaluation Based on Distance from Average Solution (EDAS)-Mehdi KESHAVARZ GHORABAEE, Edmundas Kazimieras ZAVADSKAS, Laya OLFAT, Zenonas TURSKIS (2015).	Ing) = 0 a × h P=
	Prioritization of sustainable mobility sharing systems using integrated fuzzy DIBR and fuzzy-rough EDAS model-Dragan Pamucar, Vladimir Simic, Dragan Lazarevi, Mom*cilo Dobrodolac, Muhammet Deveci (2022).	b d la

Refe	erence:	
	A multi-criteria based analytic framework for exploring the impact of Covid-19 on firm performance in emerging market-Sanjib Biswas, Gautam Bandyopadhyay, Jayanta Nath Mukhopadhyaya (2022).	
	Optimization of ultrasonic machining (USM) parameters on micro hole drilling of graphene oxide/pineapple leaf filler reinforced epoxy hybrid composite using evaluation based on distance from average solution (EDAS) method-Angkan Bania, Divya Zindani, Saikat Ranjan Maity (2020).	a xb P=2