Mathematical Preliminaries

1

Mathematical Preliminaries

- Sets
- Functions
- Relations
- · Graphs
- Proof Techniques

,

SETS

A set is a collection of elements

$$A = \{1, 2, 3\}$$

 $B = \{train, bus, bicycle, airplane\}$

We write

$$1 \in A$$

$$ship \notin B$$

3

Set Representations

$$C = \{a, b, c, d, e, f, g, h, i, j, k\}$$

$$C = \{a, b, ..., k\} \longrightarrow finite set$$

$$S = \{2, 4, 6, ...\} \longrightarrow infinite set$$

$$S = \{j : j > 0, and j = 2k \text{ for some k>0}\}$$

$$S = \{j : j \text{ is nonnegative and even}\}$$

 $A = \{1, 2, 3, 4, 5\}$

U

Universal Set: all possible elements

Set Operations

$$A = \{1, 2, 3\}$$

$$A = \{1, 2, 3\}$$
 $B = \{2, 3, 4, 5\}$

Union

Intersection

$$A \cap B = \{2, 3\}$$

Difference

$$B - A = \{4, 5\}$$

Venn diagrams

• Complement

Universal set =
$$\{1, ..., 7\}$$

 $A = \{1, 2, 3\}$ $\overline{A} = \{4, 5, 6, 7\}$

7

{ even integers } = { odd integers }

Integers

DeMorgan's Laws

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

0

Empty, Null Set: Ø

$$s \cap \emptyset = \emptyset$$

$$\overline{\emptyset}$$
 = Universal Set

Subset

$$A = \{1, 2, 3\}$$
 $B = \{1, 2, 3, 4, 5\}$
 $A \subseteq B$

Proper Subset: $A \subset B$

11

Disjoint Sets

$$A = \{1, 2, 3\}$$
 $B = \{5, 6\}$

$$A \cap B = \emptyset$$

Set Cardinality

For finite sets

$$A = \{ 2, 5, 7 \}$$

(set size)

13

Powersets

A powerset is a set of sets

Powerset of S = the set of all the subsets of S

$$2^5 = { \emptyset, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }$$

Observation:
$$| 2^5 | = 2^{|5|}$$
 (8 = 2³)

Cartesian Product

$$A = \{ 2, 4 \}$$

$$A = \{ 2, 4 \}$$
 $B = \{ 2, 3, 5 \}$

 $A \times B = \{ (2, 2), (2, 3), (2, 5), (4, 2), (4, 3), (4, 5) \}$

Generalizes to more than two sets

FUNCTIONS

domain

range

f: A -> B

If A = domain

then f is a total function otherwise f is a partial function

RELATIONS

$$R = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), ...\}$$

$$x_i R y_i$$

Equivalence Relations

• Reflexive: x R x

• Symmetric: $x R y \implies y R x$

• Transitive: x R y and $y R z \implies x R z$

Example: R = '='

$$\cdot x = y \longrightarrow y = x$$

 $\cdot x = y \text{ and } y = z \longrightarrow x = z$

Equivalence Classes

For equivalence relation R

equivalence class of $x = \{y : x R y\}$

Example:

$$R = \{ (1, 1), (2, 2), (1, 2), (2, 1), (3, 3), (4, 4), (3, 4), (4, 3) \}$$

Equivalence class of $1 = \{1, 2\}$

Equivalence class of 3 = {3, 4}

19

GRAPHS

A directed graph

Nodes (Vertices)

$$V = \{ a, b, c, d, e \}$$

Edges

$$E = \{ (a,b), (b,c), (b,e), (c,a), (c,e), (d,c), (e,b), (e,d) \}$$

Path is a walk where no edge is repeated

Simple path: no node is repeated

22

Cycle

Cycle: a walk from a node (base) to itself

Simple cycle: only the base node is repeated

Euler Tour

A cycle that contains each edge once

25

Hamiltonian Cycle

A simple cycle that contains all nodes

PROOF TECHNIQUES

- Proof by induction
- Proof by contradiction

35

Induction

We have statements P_1 , P_2 , P_3 , ...

If we know

- for some b that P_1 , P_2 , ..., P_b are true
- for any $k \ge b$ that

$$P_1, P_2, ..., P_k$$
 imply P_{k+1}

Then

Every P_i is true

Proof by Induction

Inductive basis

Find P_1 , P_2 , ..., P_b which are true

Inductive hypothesis

Let's assume P_1 , P_2 , ..., P_k are true, for any $k \ge b$

Inductive step

Show that P_{k+1} is true

27

Example

Theorem: A binary tree of height n

has at most 2ⁿ leaves.

Proof by induction:

let L(i) be the maximum number of

leaves of any subtree at height i

We want to show: $L(i) \leftarrow 2^{i}$

Inductive basis

$$L(0) = 1$$
 (the root node)

Inductive hypothesis

Let's assume $L(i) \leftarrow 2^i$ for all i = 0, 1, ..., k

Induction step

we need to show that $L(k + 1) \leftarrow 2^{k+1}$

39

Induction Step

From Inductive hypothesis: $L(k) \leftarrow 2^k$

Induction Step

$$L(k+1) \leftarrow 2 * L(k) \leftarrow 2 * 2^{k} = 2^{k+1}$$

(we add at most two nodes for every leaf of level k)

41

Proof by Contradiction

We want to prove that a statement P is true

- · we assume that P is false
- then we arrive at an incorrect conclusion
- therefore, statement P must be true

Example

Theorem: $\sqrt{2}$ is not rational

Proof:

Assume by contradiction that it is rational

$$\sqrt{2}$$
 = n/m

n and m have no common factors

We will show that this is impossible

43

$$\sqrt{2}$$
 = n/m \implies 2 m² = n²

Therefore, n^2 is even n = 2 k

$$2 m^2 = 4k^2$$
 $m^2 = 2k^2$ $m = 2 p$

Thus, m and n have common factor 2

Contradiction!

Languages

45

A language is a set of strings

String: A sequence of letters

Examples: "cat", "dog", "house", ...

Defined over an alphabet:

$$\Sigma = \{a, b, c, \dots, z\}$$

Alphabets and Strings

We will use small alphabets: $\Sigma = \{a, b\}$

Strings

ab

u = ab

abba

v = bbbaaa

baba

w = abba

aaabbbaabab

String Operations

$$w = a_1 a_2 \cdots a_n$$

abba

$$w = a_1 a_2 \cdots a_n$$
$$v = b_1 b_2 \cdots b_m$$

bbbaaa

Concatenation

$$wv = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m$$
 $abbabbbaaa$

$$w = a_1 a_2 \cdots a_n$$

ababaaabbb

Reverse

$$w^R = a_n \cdots a_2 a_1$$
 bbbaaababa

String Length

$$w = a_1 a_2 \cdots a_n$$

Length: |w| = n

Examples: |abba| = 4

|aa|=2

|a|=1

Length of Concatenation

$$|uv| = |u| + |v|$$

Example:
$$u = aab$$
, $|u| = 3$

$$v = abaab$$
, $|v| = 5$

$$|uv| = |aababaab| = 8$$

$$|uv| = |u| + |v| = 3 + 5 = 8$$

51

Empty String

A string with no letters: λ

Observations: $|\lambda| = 0$

$$\lambda w = w\lambda = w$$

 $\lambda abba = abba\lambda = abba$

Substring of string: a subsequence of consecutive characters String Substring <u>abbab</u> ab abbab abbab abbab b abbab bbab

Prefix and Suffix		
abbab		
Prefixes	Suffixes	
λ	abbab	w = uv
a	bbab	prefix
ab	bab	suffix
abb	ab	Suffix
abba	b	
abbab	λ	
		54

Another Operation

$$w^n = \underbrace{ww\cdots w}_n$$

Example:
$$(abba)^2 = abbaabba$$

Definition:
$$w^0 = \lambda$$

$$(abba)^0 = \lambda$$

The * Operation

 Σ^* : the set of all possible strings from alphabet Σ

$$\Sigma = \{a, b\}$$

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$$

The + Operation

 Σ^+ : the set of all possible strings from alphabet Σ except λ

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$$

$$\Sigma^{+} = \Sigma^{*} - \lambda$$

$$\Sigma^{+} = \{a, b, aa, ab, ba, bb, aaa, aab, ...\}$$

57

Languages

A language is any subset of Σ^*

Example:
$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,\ldots\}$$

Languages:
$$\{\lambda\}$$
 $\{a,aa,aab\}$ $\{\lambda,abba,baba,aa,ab,aaaaaa\}$

Note that:

Sets
$$\emptyset = \{\} \neq \{\lambda\}$$

Set size
$$|\{\ \}|=|\varnothing|=0$$

Set size
$$|\{\lambda\}| = 1$$

String length
$$|\lambda|=0$$

Another Example

An infinite language
$$L = \{a^n b^n : n \ge 0\}$$

$$\begin{vmatrix} \lambda \\ ab \\ aabb \\ aaaaabbbbb \end{vmatrix} \in L \qquad abb \notin L$$

Operations on Languages

The usual set operations

$${a,ab,aaaa} \cup {bb,ab} = {a,ab,bb,aaaa}$$

 ${a,ab,aaaa} \cap {bb,ab} = {ab}$
 ${a,ab,aaaa} - {bb,ab} = {a,aaaa}$

Complement:
$$\overline{L} = \Sigma * -L$$

$$\overline{\{a,ba\}} = \{\lambda,b,aa,ab,bb,aaa,\ldots\}$$

61

Reverse

Definition:
$$L^R = \{w^R : w \in L\}$$

Examples:
$$\{ab, aab, baba\}^R = \{ba, baa, abab\}$$

$$L = \{a^n b^n : n \ge 0\}$$

$$L^R = \{b^n a^n : n \ge 0\}$$

Concatenation

Definition:
$$L_1L_2 = \{xy : x \in L_1, y \in L_2\}$$

Example:
$$\{a,ab,ba\}\{b,aa\}$$

$$= \{ab, aaa, abb, abaa, bab, baaa\}$$

Another Operation

Definition:
$$L^n = \underbrace{LL \cdots L}_n$$

Definition:
$$L^n = \underbrace{LL\cdots L}_n$$
 $\{a,b\}^3 = \{a,b\}\{a,b\}\{a,b\} = \{aaa,aab,aba,abb,baa,bab,bba,bbb\}$

Special case:
$$L^0 = \{\lambda\}$$

$$\{a,bba,aaa\}^0 = \{\lambda\}$$

More Examples

$$L = \{a^n b^n : n \ge 0\}$$

$$L^2 = \{a^n b^n a^m b^m : n, m \ge 0\}$$

 $aabbaaabbb \in L^2$

65

Star-Closure (Kleene *)

Definition:
$$L^* = L^0 \cup L^1 \cup L^2 \cdots$$

Example:
$$\{a,bb\}^* = \begin{cases} \lambda, \\ a,bb, \\ aa,abb,bba,bbb, \\ aaa,aabb,abba,abbb, \dots \end{cases}$$

Positive Closure

Definition:
$$L^+ = L^1 \cup L^2 \cup \cdots$$

= $L^* - \{\lambda\}$

$$\{a,bb\}^{+} = \begin{cases} a,bb, \\ aa,abb,bba,bbb, \\ aaa,aabb,abba,abbb, \dots \end{cases}$$