Notes of the Introduction To Algorithms

Kai Zhao

August 2, 2016

Contents

Ι	Foundations	5
1	The Role of Algorithms in Computing	7 8
	1.1Algorithms	8
2	Getting Started	9
3	Growth of Functions	11
4	Divide-and-conquer	13
5	Probabilistic Analysis and Randomized Algorithms	15
II	Sorting and Order Statistics	17
6	Heapsort	19
III	Data Structures	21
IV	Advanced Design and Analysis Techniques	23
V	Advanced Data Structures	25
VI	Graph Algorithms	27
7	Minimum Spanning Tree	29

4	CONTENTS

7.1	Notes	30
7.2	Growing a minimum spanning tree	30
	7.2.1 Definition	30
	7.2.2 Generic-MST	30
	7.2.3 Theorem	30
VII	Selected Topics	31
VIII	Appendix: Mathematical Background	33

Part I Foundations

The Role of Algorithms in Computing

1.1 Algorithms

Exercies

1.1-1 Give a real-world example that requires sorting or a real-world example that requires computing a convex hull.

Answer: One example that requires sorting is that teachers will sort our scores after the exam.

1.1-2 Other than speed, what other measures of efficiency might one use in a real-world setting ?

Answer: cost, space, manpower, material resources. In different cases, each can be the key of meausres of efficiency.

Reference: https://www.quora.com/Other-than-speed-what-other-measures-of-efficiency-might-one-use-in-a-real-world-setting

1.1-3 Select a data structure that you have seen previously, and discuss its strengths and limitations.

Answer: Array

strengths: access directly

limitations: costs lot when insert or delete

1.1-4 How are the shortest-path and traveling-salesman problems given similar? How they are different?

Answer:

1.1-5 Come up with a real-world problem in which only the best solution will do. Then come up with one in which a solution that is "approximately" the best is good enough.

Answer:

1.2 Algorithms as a technology

Getting Started

Growth of Functions

Divide-and-conquer

Probabilistic Analysis and Randomized Algorithms

Part II Sorting and Order Statistics

Heapsort

Part III Data Structures

Part IV

Advanced Design and Analysis Techniques

Part V Advanced Data Structures

Part VI Graph Algorithms

Minimum Spanning Tree

7.1 Notes

- (i) There maybe more than one MST in a forest.
- (ii) The number of all the edges in the MST is equal to V-1.

7.2 Growing a minimum spanning tree

7.2.1 Definition

Α

A is a subset of some minimum spanning tree.

Safe edge

Safe edge is a edge that add to A and A is also a subset of some minimum spanning tree.

7.2.2 Generic-MST

```
GENERIC-MST(G, \omega)
1 A = \varnothing
2 while A does not form a spanning tree
3 find an edge(\mu, v) that is safe edge for A
4 A = A \cup (\mu, v)
5 return A
```

Initialization: After line 1, the set A trivially satisfies the loop invariant.

Maintenance: The loop in lines 2-4 maintains the invariant by adding only safe edges.

Termination: All edges added to A are in a minimum spanning tree, and so the set A returned in line 5 must be a minimum spanning tree.

7.2.3 Theorem

Let G=(V,E) be a connected, undirected graph with a real-valued weight function ω defined on E. Let A be a subset of E that is inclued in some minimum spanning tree for G, let (S,V-S) be any cut of G that respects G, and let G, where G is a light edge crossing G is a light edge.

Part VII Selected Topics

Part VIII

Appendix: Mathematical Background