

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Homework 2

Measure Theory

Author: Edward McDonald

Student Number: 3375335

Question 1

(a)

We are given,

$$\mathcal{C} = \{\emptyset, X, \{1\}, \{2, 3\}, \{1, 2, 3\}, \{4, 5\}\}.$$

See that C is closed under intersection, so we only need to consider unions of elements of C Hence,

$$\sigma(\mathcal{C}) = \{\emptyset, X, \{1\}, \{2, 3\}, \{4, 5\}, \{1, 2, 3\}, \{1, 4, 5\}, \{2, 3, 4, 5\}\}.$$

(b)

Then we define $\gamma: \mathcal{C} \to [0, \infty]$ as follows,

$$\gamma(\emptyset) = 0
\gamma(\{1\}) = 1
\gamma(\{2,3\}) = 1
\gamma(\{1,2,3\}) = 2
\gamma(\{4,5\}) = 1
\gamma(X) = 3.$$

Let μ^* be the outer measure on 2^X defined by γ .

Lemma 1. μ^* restricted to $\sigma(\mathcal{C})$ is a measure.

Proof. Since μ^* is a measure on $\mathcal{M}(\mu^*)$, it is sufficient to show that $\mathcal{C} \subseteq \mathcal{M}(\mu^*)$. Then since $\mathcal{M}(\mu^*)$ is a σ -algebra, $\sigma(\mathcal{C}) \subseteq \mathcal{M}(\mu^*)$.

Clearly \emptyset and X are in $\mathcal{M}(\mu^*)$, so we need only show that $\{1\}, \{2,3\}, \{1,2,3\}$ and $\{4,5\}$ are in $\mathcal{M}(\mu^*)$. We do not need to show that $\{1,2,3\} \in \mathcal{M}(\mu^*)$ since $\{1,2,3\} = \{1\} \cup \{2,3\}$.

Let $A \subset X$. Then

$$\mu^*(A) = \mu^*(A \cap \{1\}) + \mu^*(A \setminus \{1\})$$

since if $1 \in A$, $\mu^*(A \cap \{1\}) = 1$ and $\mu^*(A \setminus \{1\})$,

Question 2

For this question, μ^* is an outer measure on the set X defined by the function $\gamma: \mathcal{C} \subseteq 2^X \to [0, \infty]$.

Lemma 2. $\mu^*(\emptyset) = 0$.

Proof. By definition,

$$\mu * (\emptyset) = \inf \{ \sum_{n=0}^{\infty} \gamma(A_n) : \emptyset \subseteq \bigcup_{n=0}^{\infty} A_n, A_n \in \mathcal{C} \}.$$

However this is simply

$$\mu^*(\emptyset) = \inf\{\gamma(A) | A \in \mathcal{C}\}\$$

since \emptyset is a subset of any set. However $\gamma(\emptyset) = 0$, so $\mu^*(\emptyset) = 0$.

Lemma 3. If $A \subseteq B \subseteq X$, then $\mu^*(A) \leq \mu^*(B)$.

Proof. Since $A \subseteq B$, we have the set inclusion

$$\{\{E_i\}_{i=0}^{\infty} \subseteq \mathcal{C} : A \subseteq \bigcup_{i=0}^{\infty} E_i\} \subseteq \{\{E_i\}_{i=0}^{\infty} \subseteq \mathcal{C} : B \subseteq \bigcup_{i=0}^{\infty} E_i\}$$

Hence,

$$\inf\{\sum_{i=0}^{\infty} \gamma(E_i) \subseteq \mathcal{C} : A \subseteq \bigcup_{i=0}^{\infty} E_i\} \le \inf\{\sum_{i=0}^{\infty} \gamma(E_i) \subseteq \mathcal{C} : B \subseteq \bigcup_{i=0}^{\infty} E_i\}$$

So by definition,

$$\mu^*(A) \le \mu^*(B).$$

Question 3

The euclidean topology τ on $\mathbb R$ is defined as the toplogy generated by open intervals $(a,b),a < b \in \mathbb R$

Lemma 4. Every open set in τ is a countable union of intervals $(a,b),a,b \in \mathbb{R}$.

Edward McDonald

Proof. Let $U \in \tau$, and $x \in U$. Then there is some $\varepsilon > 0$ such that $(x - \varepsilon, x + \varepsilon) \subset U$. By the density of $\mathbb Q$ in $\mathbb R$, there is some $p,q \in \mathbb Q$ such that $q \in (x - \varepsilon,x)$ and $q \in (x,x+\varepsilon)$. Then $x \in (p,q) \subset U$.

Hence U can be expressed as a union of intervals of the form (p,q) for $p,q \in \mathbb{Q}$.

However the set $\{(p,q): p,q\in\mathbb{Q}\}$ is countable, so any open set in τ is a countable union of intervals.

Theorem 1. The set \mathcal{T} consisting of all countable unions of open intervals (a,b), $a,b \in \mathbb{R}$ is a topology.

Proof. Since any open set in τ is a countable union of intervals, $\tau \subseteq \mathcal{T}$, and since any countable union of intervals is in τ , $\mathcal{T} \subseteq \tau$. Hence $\mathcal{T} = \tau$.

We now consider the Borel σ -algebra $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{T})$.

Theorem 2. $\mathcal{B}(\mathbb{R})$ can be generated by the system