Building Design and Engineering Approaches to Airborne Infection Control

Basic Concepts of Ventilation Design

Jack Price

General Principles of Ventilation

Introduction

Need for ventilation:

- **≻Comfort**
- > Contamination Control

both maintain healthy work environment

General Principles of Ventilation

Office buildings ---- In-door air quality

Occupational exposure ---- OSHA

Environmental releases ---- EPA

General Principles of Ventilation

- Regulatory Agencies (compliance concerns)
 - Federal
 - State
 - Local
- Good Practice
 - Standard of care (industry standards ANSI, ASME, etc.)
 - Work productivity
 - Process control

Types of Systems

Supply

Temperature & Humidity

Replacement (make-up air)

Return (recirculated air)

Exhaust

General (dilution)

Local Control (hoods)

HVAC Systems

Air Handling System with Economizer

Air Balance in a Conditioned Space

Design Concerns

- Temperature
- Pressure
- Air Contaminants
- Work Practices
- Product Protection
- Worker Protection
- Building Codes

- Equipment Selection
- Energy Conservation
- Maintenance
- Security
- Expansion

Patient Isolation Room with HEPA Exhaust Filtration

Air Conditioning System Water and Refrigeration Circuits

Factors in the Perception of Air Quality

Conversion Factors

Quantity	To Convert	Into	Multiply By:
Volumetric Flow	cubic feet/minute (ft³/min)	cubic meters/second (m³/sec)	4.719 x 10 ⁻⁴
Velocity	feet/minute (fpm)	meters/second (m/s)	0.00508
Pressure	inches water (in w.g.)	Pascals (Pa)	249.1

Conservation of Mass

Where

Q = Volumetric Flow Rate, ft³/min

V = Air Velocity, ft/min or fpm

A = Cross Sectional Area, ft² or SF

Conservation of Mass

AIR FLOW

At standard temperature and pressure (STP):

* 1 atmosphere & 70° F *

The density of air is 0.075 lb_m/ft³

- Air will flow from a higher pressure region to a lower pressure region
- Three Different Types of Pressure Measurements

* Static * Velocity * Total *

Types of Pressure Measurements

Static Pressure (S_P)

potential energy can be + or –

bursting or collapsing measured perpendicular to flow

Velocity Pressure (V_P)

kinetic energy

Exerted in direction of flow

accelerates from 0 to some velocity always +

Total Pressure (T_P)

combined static & velocity components can be + or -

measure of energy content of air stream
Always decreasing as flow travels
downstream thru a system only rising when
going across a fan

TP = SP + VP

TP	-
SP	+
VP	+

Conservation of Energy

• TP = SP + VP or
$$T_P = S_P + V_P$$

- Energy losses:
 - Acceleration of air
 - Hood entry
 - Duct losses: friction (function of system materials & design)
 - Fitting losses: contractions & expansions
- $T_{P1} = T_{P2} + h_L$ now substitute $T_P = S_P + V_P$
- $S_{P1} + V_{P1} = S_{P2} + V_{P2} + h_{L}$

Velocity Pressure & Velocity

•
$$V = 1096 (V_P/p)^{0.5}$$

where
$$p = \text{air density}$$

@ STP $p = 0.075 \text{ lb}_{\text{m}}/\text{ft}^3$

•
$$V = 4005 (V_P)^{0.5}$$

- Velocity pressure is a function of the velocity and fluid density.
- Velocity pressure will only be exerted in the direction of air flow and is always positive.

1

•
$$Q_1 = Q_2$$

- If Q desired is 300 cfm
- Then Q = V A
 V = Q A
 V = (300) / (0.0068)
 V = 4490 fpm

• If there are no losses from the grinder hood entry then:

$$SP_1 + VP_1 = SP_2 + VP_2$$

but:
$$SP_1 = 0$$
 and $VP_1 \rightarrow 0$

we then have:

$$0 = SP_2 + VP_2$$
or
$$-VP_2 = SP_2$$

1

• If there are no losses from the grinder hood entry then:

$$SP_1 + VP_1 = SP_2 + VP_2$$

but:
$$SP_1 = 0$$
 and $VP_1 \rightarrow 0$

we then have:

or
$$0 = SP_2 + VP_2$$

 $SP_2 = (-VP_2)$

• from
$$V = 4005 (VP)^{0.5}$$

•
$$VP_2 = (4490/4005)^2$$

•
$$VP_2 = 1.26$$
 in w.g.

$$SP_2 = -1.26$$
 in w.g.

1

However there are losses thru the grinder hood entry

$$SP_2 = -(VP_2 + h_e)$$
 where h_e is the energy loss of the hood entry

- Static pressure (SP) must decrease due to acceleration of air up to the duct velocity
- F_h is defined as the energy loss factor (for that hood design)
- Energy losses will be measured as a function of the velocity pressure in the system
 h_e = (F_h) (VP)
- Now we define the static pressure at the hood as SP_h
- SP_h is also called the hood static suction and is the absolute value of SP₂

1

Now add the hood entry loss:

$$SP_h = VP_2 + h_e = VP_{2+}(F_h)(VP_2)$$

Assume that the hood energy loss factor for this hood is 0.40

• $SP_h = 1.26 + (0.40) (1.26) = 1.76$ in w.g.

Figure 1. Relationship Between Hood Static Pressure and Flow Rate Entering Hood

Figure 2. Air Flow Convergence in a Duct

Vena Contracta

Figure 3. Hood Entry Loss Coefficients (F_d) for Various **Duct Designs** (a) Plain Duct End with $F_d = 0.93$ (b) Flanged Inlet with Fd = 0.49 (c) Bell-Mouth Inlet with $F_d = 0.04$

Figure 3. Hood Entry Loss Coefficients (F_d) for Various Duct Designs

HOOD TYPE	DESCRIPTION	COEFFICIENT OF ENTRY, Ce	ENTRY LOSS
	PLAIN OPENING	0.72	0.93 VP
	FLANGED OPENING	0.82	0.49 VP
	TAPER or CONE HOOD	Varies with angle of taper or cone. See Fig. 6-10	
<u></u>	BELL MOUTH INLET	0.98	0.04VP
ORIFICE		See Fig. 6-10	
	TYPICAL GRINDING HOOD		TAKE-OFF
		0.78	0.65 VP
		O.85	TAKE-OFF 0.40 VP

Hood Entry Coefficients

Actual Flow

$$C_{e} = \frac{(4005) (VP)^{0.5} (A)}{(4005) (SP_{h})^{0.5} (A)} = \frac{(VP)^{0.5}}{(SP_{h})^{0.5}}$$

$$C_e = (VP/SP_h)^{0.5}$$

Hood Entry Coefficients

$$C_e = (VP/SP_h)^{0.5}$$

Typical values for C_e are known for some hoods.

For the bench grinder hood with a straight take-off:

$$C_{\rm e} = 0.78$$

Example Problem

 What static pressure (SP_h) should be set at the bench grinder hood to maintain a duct velocity of 4000 fpm if the take-off duct size is 4 inch diameter?

What is the volumetric flow rate?

Example Problem

•
$$V = 4000 \text{ fpm}$$

$$V = 4000 \text{ fpm}$$
 $Q = VA = 4005(A)(VP)^{0.5}$

$$Q = VA = 348 cfm$$

- A for 4 inch duct diameter = 0.087 ft²
- C_e bench grinder hood = 0.78

$$C_e = (VP/SP_h)^{0.5} = 0.78$$

$$(VP/SP_h) = (0.78)^2$$

$$V = 4005 (VP)^{0.5}$$

$$(VP)^{0.5} = (4000)/(4005)$$

$$VP = 0.998 \text{ in w.g.}$$

$$SP_{h} = VP/(0.78)^2 = (0.998)/(0.608) = 1.64$$
 in w.g.

Air Flow Characteristics

See Industrial Ventilation Manual notes

Blowing vs. Exhausting

Air Flow Characteristics

Exhaust Hoods

Capture Velocity

From Dalla Valle's empirical work

$$V_{(x)} = Q/(10 x^2 + A)$$

Capture Velocity

$$V_{(x)} = Q/(10 X^2 + A)$$

Capture velocity is only effective in the immediate vicinity of the hood

Room supply air (makeup air) discharge can influence effectiveness of hood capture

Questions?

In-Place Filter Testing Workshop

Ventilation Systems: Operation and Testing

HVAC Systems

HVAC Systems

Air Handling System with Economizer

Air Balance in a Conditioned Space

Figure 3. **Total System Static Pressure Drop** Hood Static Atmospheric Pressure Static pressure, in. W.C. -2 Total System Static Pressure Drop Δp₁* -3 -5 -6 -7 APC System 2 APC System Hood Fan

APC = Air Pollution Control

Stack

Figure 8. Effect of a Change in the System
Characteristic on the Operating Point

Figure 1. Example of a Brake Horsepower Curve

Questions?

