

Semi-Supervised Learning under Class Distribution Mismatch

Yanbei Chen¹

Xiatian Zhu²

Wei Li¹ Shaogang Gong¹

yanbei.chen@qmul.ac.uk

eddy.zhuxt@gmail.com

w.li@gmul.ac.uk

s.gong@qmul.ac.uk

¹Queen Mary University of London

²Vision Semantics Ltd., London, UK

Introduction

Problem

- Semi-supervised learning (SSL) aims for model optimisation with limited labelled data and abundant unlabelled data.
- In conventional SSL, the labelled and unlabelled data sets are assumed to come from an identical class distribution.
- In realistic SSL, class distribution mismatch often exists between two sets. We consider this realistic SSL challenge.

CIFAR10, 6 classes, 400 Labels Each (Error Type I)

CIFAR10, 6 classes, 400 Labels Each (Error Type II)

Key Contribution

A novel Uncertainty-Aware Self-Distillation (UASD) formulation, which accumulatively aggregates network predictions on-the-fly for joint <u>Self-Distillation</u> and <u>Out-of-Distribution (OOD) Filtering</u>. Our formulation is aware of the *uncertainty* of whether an unlabelled sample likely lies in- or out-of-distribution, and selectively learns from the unconstrained unlabelled data.

Method Overview

Method

On-the-Fly Accumulative Ensemble

$$q_t(y|\mathbf{x}_i) = \frac{1}{t} \sum_{j=0}^{t-1} p(y|\mathbf{x}_i; \theta_j)$$

- Unlabelled Training Data Filtering
 - derive a predictive confidence score on each sample $c_t(\mathbf{x}_i) = \max(q_t(y|\mathbf{x}_i))$
 - define an OOD filter to discard samples with low confidence

$$f(\mathbf{x}_i; \tau_t) = \begin{cases} 1, & \text{if } c_t(\mathbf{x}_i) \ge \tau_t, \text{ selected} \\ 0, & \text{if } c_t(\mathbf{x}_i) < \tau_t, \text{ rejected} \end{cases}$$

Uncertainty-Aware Self-Distillation

$$\mathcal{L} = \mathcal{H}(y_{\text{true}}, p_{\theta}) + w(t) f(\cdot; \tau_t) \cdot \mathcal{H}(q_t, p_{\theta})$$

Experiments

Experiments on CIFAR10 under varying class mismatch rate

Smoothed learning curves averaged over five runs under different class mismatch rate (0/50/100%).

Experiments on CIFAR100, TinyImageNet and Cross-Dataset

Method	CIFAR100	TinyImageNet	CIFAR100 + TinyImageNet
baseline	39.79 ± 1.19	61.64 ± 0.59	48.31 ± 0.63
pseudo-label	43.30 ± 0.57	62.41 ± 0.57	53.3 ± 0.73
VAT	43.78 ± 1.15	63.75 ± 0.69	50.55 ± 0.55
Π-Model	42.96 ± 0.46	61.79 ± 0.67	53.05 ± 2.21
Temporal Ensembling	41.27 ± 0.76	60.69 ± 0.31	47.88 ± 0.64
Mean-Teacher	40.98 ± 0.98	60.54 ± 0.31	49.67 ± 1.95
SWA	37.66 ± 0.48	57.97 ± 0.42	44.61 ± 0.52
Ours	35.93 ± 0.60	$\textbf{57.15} \pm \textbf{0.76}$	$\textbf{42.83} \pm \textbf{0.25}$

CIFAR100, TinyImageNet mismatch rate: 50%; CIFAR100+TinyImageNet mismatch rate: 86.5%.

Further Analysis

Ablation Study (Ensemble size & Loss formulation)

Confidence Calibration

Conclusion: Confidence scores estimated by UASD can better delimit known and unknown.

Model generalization (robustness to perturbation)

Reference

- [1] Realistic evaluation of deep semi-supervised learning algorithms. Oliver, A.; Odena, A.; Raffel, C. A.; Cubuk, E. D.; and Goodfellow, I. NeurlPS2018.
- [2] Simple and scalable predictive uncertainty estimation using deep ensembles. Lakshminarayanan, B.; Pritzel, A.; and Blundell, C. NeurlPS2017.
- [3] There are many consistent explanations of unlabeled data: Why you should average. Athiwaratkun, B.; Finzi, M.; Izmailov, P.; and Wilson, A. G. ICLR2019
- [4] Temporal ensembling for semi-supervised learning. Laine, S., Aila, T. ICLR2017
- [5] Mean teachers are better role models. Tarvainen, A., and Valpola, H. NeurlPS2017.