1. Ejercicio 5b, TP 3

Escriba la integral iterada $\iint\limits_R dA$ sobre la región descrita usando (i) secciones transver-

sales verticales y (ii) secciones transversales horizontales: región acotada por $y=e^{-x},\ y=1$ y $x=\ln 3$

La regió a describir es la encerrada por las tres curvas:

Si integramos primero respecto a y (o sea, recorremos la región de forma paralela al eje y) vemos que $e^{-x} \le y \le 1$:

y al "proyectar" la región sobre el eje x vemos que $0 \le x \le \ln 3$. Cómo encontramos estos dos valores? Buscando la intersección de las gráficas de las funciones involucradas: por ejemplo para la intersección entre $y=e^{-x}$ e y=1 igualamos $e^{-x}=1$ y vemos que esta ecuación se satisface para x=0, por lo tanto el punto intersección es P(0,1) y usaremos la coordenada x o y según necesitemos.

Por lo tanto en este caso:

$$\iint\limits_{R} dA = \int_{0}^{\ln 3} \int_{e^{-x}}^{1} dy dx$$

Al invertir el orden e integrar primero respecto de x (recorremos la región en forma paralela al eje x) tenemos que -ln $y \le x \le \ln 3$:

y al "proyectar"
la región sobre el ejeyobtenemos que
 $1/3 \le y \le 1.$ Por lo tanto:

$$\iint\limits_R dA = \int_{1/3}^1 \int_{-\ln y}^{\ln 3} dx dy$$