

S ChatGPT

Explore GPTs

Today

MPC Controller Cost Function •••

Yesterday

Minimize Loss with Adam

Minimize Loss with Adam

Minimize Loss with Adam

Previous 7 Days

Control Protocols Overview

Industry Sensors Overview

Previous 30 Days

Network MST Algorithms Compa

Calculate Venturi Meter Diamete

MPC Algorithm for Overleaf

June

Entity Save Error Troubleshoot

Load Active Org Items

3. Formulate the Optimization Problem

The optimization problem can be written as:

$$\min_{v.\omega} J$$

subject to the system dynamics and any constraints on v and ω .

4. Set Up the QP Matrices

Define the state vector and control vector:

$$\mathbf{x} = egin{bmatrix} x \ y \ heta \end{bmatrix}, \quad \mathbf{u} = egin{bmatrix} v \ \omega \end{bmatrix}$$

For a prediction horizon N=10:

$$\mathbf{X}_{ ext{pred}} = egin{bmatrix} x(1) \ y(1) \ heta(1) \ dots \ x(10) \ y(10) \ heta(10) \end{bmatrix}, \quad \mathbf{U}_{ ext{pred}} = egin{bmatrix} v(0) \ \omega(0) \ dots \ v(9) \ \omega(9) \end{bmatrix}$$

5. Linearize the System Dynamics

For the purpose of QP, linearize the nonlinear dynamics around the current state. The linearized dynamics can be written as:

$$\mathbf{x}(k+1) = A\mathbf{x}(k) + B\mathbf{u}(k)$$

Where A and B are the Jacobian matrices evaluated at the current state.

① Message ChatGPT