* * * Artificial Intelligence and Machine Learning * * *

Evaluation of Machine Learning Models

Daniel Wehner, M.Sc.

SAP SE / DHBW Mannheim

Summer term 2025

Find all slides on GitHub (DaWe1992/Applied_ML_Fundamentals)

Evaluation Methods and Data Splits
Evaluation Metrics for Classifiers
Evaluation Metrics for Regressors
Model Selection and Model Complexity
Wrap-Up

Lecture Overview

- I Machine Learning Introduction
- II Optimization Techniques
- III Bayesian Decision Theory
- IV Non-parametric Density Estimation
- V Probabilistic Graphical Models
- VI Linear Regression
- VII Logistic Regression
- VIII Deep Learning

- IX Evaluation
 - X Decision Trees
 - XI Support Vector Machines
 - XII Clustering
 - XIII Principal Component Analysis
 - XIV Reinforcement Learning
 - XV Advanced Regression

Evaluation Methods and Data Splits
Evaluation Metrics for Classifiers
Evaluation Metrics for Regressors
Model Selection and Model Complexity
Wrap-Up

Agenda for this Unit

- Evaluation Methods and Data Splits
- 2 Evaluation Metrics for Classifiers

- 3 Evaluation Metrics for Regressors
- Model Selection and Model Complexity
- 6 Wrap-Up

Section:

Evaluation Methods and Data Splits

Introduction
Out-of-Sample Testing and Data Splits
Cross-Validation / LOO-Validation

Evaluation of trained Models

- Validation through experts: A domain expert checks the plausibility
 - Subjective, time-intensive, and costly
 - Often the only option
- Validation on data: Evaluate the performance on a separate (!) test set
 - Labeled data is scarce and could be better used for training
 - Fast and simple, no domain knowledge needed
- On-line validation: Test the model in a field test
 - Bad models may be costly (e. a. autonomous drivina)
 - Gives the best estimate for the overall utility

Evaluation Methods and Data Splits Evaluation Metrics for Classifiers Evaluation Metrics for Regressors Model Selection and Model Complexity Wran-Up

Introduction
Out-of-Sample Testing and Data Splits
Cross-Validation / LOO-Validation

Out-of-Sample Testing

- The performance cannot be measured on the training data (why?)
- Usually, a portion of the available data is reserved for testing
 - 2/3 for training
 - 1/3 for testing (evaluation)
 - The model is trained on the training set and evaluated on the test set
- Stratified splits
 - Random splits may be suboptimal if the class distribution is imbalanced
 - A stratified split ensures that the proportion of each class in the original dataset is preserved in both the training and test sets

Wrap-Up

Three Splits: Train, Dev/Validation, Test

In practice it is also common to split the data into three portions:

- 1 Training set (used for training as before)
- 2 Dev/Validation set
 - Used for tuning the hyperparameters of the model
 - Using the test set for that would be cheating
- Test set
 - The final model is tested on the test set
 - The test set is used to estimate the generalization error of the model

Wrap-Up

Issues with fixed Splits

Problems:

- 1 Training data is wasted for testing
- 2 Labeling additional training examples may be expensive (with respect to time and money)

Solution: Use the cross-validation (X-Val) technique

Evaluation Methods and Data Splits Evaluation Metrics for Classifiers

Evaluation Metrics for Regressors Model Selection and Model Complexity Cross-Validation / LOO-Validation

Cross-Validation

- Also referred to as K-fold X-Val.
- Split the dataset into K equally sized partitions $P := \{P_1, P_2, \dots, P_K\}$

Wrap-Up

- For each partition P_k : Use $P \setminus \{P_k\}$ for training and P_k for testing
- Average the resulting errors

	<i>P</i> ₁	P_2	P_3	P_4
First iteration	Test set			
			•	
Second iteration		Test set		
Third iteration			Test set	
Fourth iteration				Test set

Evaluation Methods and Data Splits

Evaluation Metrics for Classifiers **Evaluation Metrics for Regressors** Model Selection and Model Complexity Wrap-Up

Cross-Validation / LOO-Validation

Cross-Validation (Ctd.)

We get K trained models when using K-fold X-Val

Question: Which of these models is used in production?

Answer:

- None of these models is used.
- X-Val is only used for error estimation
- The final model is trained on the whole dataset.

Leave-One-Out Cross-Validation (LOO X-Val)

LOO X-Val is equal to N-fold X-Val

- We use N-1 examples for training
- We use one example for testing

Advantage: LOO X-Val makes best use of the available data

Disadvantage: This technique is very expensive for large datasets

Section:

Evaluation Metrics for Classifiers

Confusion Matrices
Drawback of Accuracy
Precision, Recall and F_1 -Score
ROC and AUC

Types of Errors

False positive (type I error):

 $A \ominus$ example is classified as \oplus , e.g. a non-spam e-mail is classified as spam

False negative (type II error):

An instance labeled as \oplus is classified as \ominus , e.g. a spam e-mail is not detected

Please note: The costs of false negatives and false positives can be different depending on the context!

Confusion Matrices (two Classes)

- How often is class C_i confused with class C_i ?
- Calculate accuracy:

		Classified	
		\oplus	\ominus
Is	\oplus	#tp	#fn
15	\ominus	#fp	#tn

Legend:

tp true positive

fn false negative

fp false positive

tn true negative

$$accuracy = \frac{\text{\#tp} + \text{\#tn}}{\text{\#tp} + \text{\#tn} + \text{\#fp} + \text{\#fn}}$$

$$error = 1 - accuracy$$

Wrap-Up

Confusion Matrices (multiple Classes)

		Classified			
		Α	В	С	Σ
	Α	$N_{A,A}$	$N_{B,A}$	$N_{C,A}$	N _A
Is	В	$N_{A,B}$	$N_{B,B}$	$N_{C,B}$	N_B
15	С	$N_{A,C}$	$N_{B,C}$	$N_{C,C}$	N_C
	Σ	$\overline{N_{A}}$	$\overline{N_B}$	$\overline{N_C}$	Ν

$$\textit{accuracy} = \frac{\textit{N}_{\textit{A},\textit{A}} + \textit{N}_{\textit{B},\textit{B}} + \textit{N}_{\textit{C},\textit{C}}}{\textit{N}}$$

Drawback of Accuracy

- Real-world datasets are usually imbalanced, i. e. some classes appear more frequently than others
- Example:
 - A dataset \mathcal{D} contains two classes, \mathcal{C}_1 and \mathcal{C}_2
 - \mathcal{C}_1 appears 99% of the time, \mathcal{C}_2 only 1% of the time
 - It is easy to reach 99 % accuracy by always predicting the majority class
 - Is this useful? Probably not...

Conclusion: We need some more sophisticated evaluation metrics!

Confusion Matrices
Drawback of Accuracy
Precision, Recall and F₁-Score
ROC and AUC

Precision and Recall

Precision: Ratio of #tp to all instances predicted as \oplus

$$P := \frac{\#\mathsf{tp}}{\#\mathsf{tp} + \#\mathsf{fp}} \tag{1}$$

Recall: Ratio of #tp to all instances actually labeled as \oplus (Sensitivity)

$$R := \frac{\#\mathsf{tp}}{\#\mathsf{tp} + \#\mathsf{fn}} \tag{2}$$

Evaluation Methods and Data Splits

Evaluation Metrics for Classifiers

Evaluation Metrics for Regressors

Model Selection and Model Complexity

Wran-Ub

Confusion Matrices
Drawback of Accuracy
Precision, Recall and F₁-Score
ROC and AUC

Precision-Recall Trade-Off

There is a trade-off between precision and recall!

It is very easy to get 100 % precision:

- Simply classify one instance as ⊕ where you are absolutely sure
- But recall is bad... (many ⊕ instances are not detected)

It is also quite easy to achieve 100 % recall:

- Classify all instances as ⊕
- But precision is bad... (many ⊖ instances are classified as ⊕)

Precision-Recall Curves / P-R Curves

- Precision-recall curves are used to visualization of the precision-recall trade-off
- Influence precision and recall by varying thresholds
- Example:
 - Consider a ranker, e. g. a logistic regression classifier
 - It outputs probabilities for each class
 - The threshold when to predict the positive class ⊕ can be changed
 - This has an influence on precision and recall

A P-R-curve plots precision and recall for all possible thresholds

Example: Precision-Recall Curves / P-R-Curves

Evaluation Methods and Data Splits

Evaluation Metrics for Classifiers

Evaluation Metrics for Regressors

Model Selection and Model Complexity

Wran-Ub

Confusion Matrices
Drawback of Accuracy
Precision, Recall and F₁-Score
ROC and AUC

Precision or Recall?

Question: When to use precision, when to use recall?

Answer: This depends on the cost of fp and fn

- If fp are expensive ⇒ use precision (why?)
- If fn are expensive ⇒ use recall (why?)

Often we combine both metrics, precision and recall, to define a new metric

Combining Precision and Recall: F₁-Score

We define the F_1 -score:

$$F_1 := \frac{2 \cdot P \cdot R}{P + R} \tag{3}$$

$$F_{\beta} := (1 + \beta^2) \cdot \frac{P \cdot R}{(\beta^2 \cdot P) + R} \qquad (\beta \in \mathbb{R}^+) \tag{4}$$

- The F₁-score is the harmonic mean of precision and recall
- Large values of β emphasize recall

Calculation for multiple Classes (Example Precision)

- Precision must be calculated for each class separately
- For K classes we get K results: How to combine these results?
 - Macro average: Calculate P for each class and average the results

$$P_{\text{macro}} := \frac{1}{K} \sum_{k=1}^{K} P_k \tag{5}$$

Micro average: Sum the number of tp and fp for all classes and calculate P

$$P_{\text{micro}} := \sum_{k=1}^{K} \# \text{tp}_k / \sum_{k=1}^{K} (\# \text{tp}_k + \# \text{fp}_k)$$
 (6)

Calculation for multiple Classes (Example Precision, Ctd.)

		Classified				
		Α	В	С	D	Σ
	Α	40	12	4	8	64
	В	7	51	2	0	60
Is	С	2	17	27	11	57
	D	39	4	15	8	66
	Σ	88	84	48	27	247

Calculation for multiple Classes (Example Precision, Ctd.)

$$P_A = \frac{40}{40 + 48} = 0.45$$

$$P_B = \frac{51}{51 + 33} = 0.61$$

$$P_C = \frac{27}{27 + 21} = 0.56$$

$$P_D = \frac{8}{8+19} = 0.30$$

$$P_{\textit{macro}} = \frac{0.45 + 0.61 + 0.56 + 0.30}{4} = 0.48$$

$$P_{micro} = \frac{40 + 51 + 27 + 8}{(40 + 51 + 27 + 8) + (48 + 33 + 21 + 19)} = 0.51$$

ROC-Curves

- ROC is short for Receiver Operating Characteristic
- Borrowed from signal theory (hence the name...)
- Uses true positive rate (recall) and false positive rate := $\frac{\#fp}{\#fp+\#fn}$

General procedure:

- ullet Rank test instances by decreasing certainty of the positive class ullet
- Start at the origin (0, 0)
- If the next instance in the ranking is ⊕: move ¹/|⊕| up
- If the next instance in the ranking is ⊖: move ¹/∣⊖∣ right

Sample ROC-Curve (Example I)

Rank	Prob.	True class
1	0.95	\oplus
2	0.85	Φ
3	0.78	\oplus
4	0.75	\oplus
5	0.62	Φ
6	0.41	Φ
7	0.37	\oplus
8	0.22	Φ
9	0.15	\oplus
10	0.05	Φ

Sample ROC-Curve (Example II)

ROC-Curve Interpretation

- The AUC can be interpreted as the probability of a positive example always being listed before a negative example
- A high AUC value implies a good class separation:
 - AUC = 1.0: All ⊕ listed before all ⊕ (desiderata)
 - AUC = 0.5: Random ordering (worst case)
 - AUC = 0.0: All ⊖ listed before all ⊕ (not the worst case ⇒ invert classification)

Please note: ROC-curves are only defined for binary classification problems (however, generalizations for multi-class problems exist)

Section:

Evaluation Metrics for Regressors

Coefficient of Determination, RMSE and MAE An Example

Coefficient of Determination

• Coefficient of determination R²:

$$R^{2} := \frac{\sum_{n=1}^{N} \left(h_{\theta}(\mathbf{x}^{n}) - \overline{y} \right)^{2}}{\sum_{n=1}^{N} \left(y_{n} - \overline{y} \right)^{2}}, \qquad R^{2} \in [0, 1]$$
 (7)

- The numerator represents the variance explained by the model
- The denominator represents the total variance in the dataset

RMSE and MAE

• Root mean square error (RMSE):

$$\mathsf{RMSE} := \sqrt{\frac{1}{N} \sum_{n=1}^{N} \left(h_{\boldsymbol{\theta}}(\boldsymbol{x}^n) - y_n \right)^2} \tag{8}$$

• Mean absolute error (MAE):

$$MAE := \frac{1}{N} \sum_{n=1}^{N} \left| h_{\theta}(\mathbf{x}^n) - y_n \right| \tag{9}$$

Example: Evaluation of Regressors

x ⁿ	Уn	$h_{\boldsymbol{\theta}}(\boldsymbol{x}^n)$		
0.47	1.10	1.28		
0.58	1.50	1.35		
1.00	1.67	1.60		
1.50	1.75	1.90		
3.07	2.55	2.84		
3.67	3.63	3.20		
3.72	3.25	3.23		
4.01	3.30	3.41		
4.16	3.49	3.50		
4.25	3.63	3.55		
	$\overline{y} = 2.59$			

Example: Evaluation of Regressors (Ctd.)

Coefficient of determination:

$$R^{2} = \frac{(1.28 - 2.59)^{2} + \dots + (3.55 - 2.59)^{2}}{(1.10 - 2.59)^{2} + \dots + (3.63 - 2.59)^{2}}$$
$$= \frac{7.97}{8.89} = 0.90$$

Example: Evaluation of Regressors (Ctd.)

Root mean square error:

RMSE =
$$\sqrt{\frac{1}{10}[(1.28 - 1.10)^2 + ... + (3.55 - 3.63)^2]} =$$
0.19

Mean absolute error:

MAE =
$$\frac{1}{10}$$
 (|1.28 - 1.10| + ... + |3.55 - 3.63|) = **0.15**

Section:

Model Selection and Model Complexity

Hyperparameter Tuning: Grid Search and Random Search Bias and Variance / Bias-Variance Decomposition

Hyperparameter Tuning with Grid Search

- Grid search is applied to find optimal hyperparameter settings
- Hyperparameter tuning should be done on the dev set
- We have to specify the search space / ranges of hyperparameter values
- Grid search will try all combinations to find the best model

Disadvantages of grid search:

- ① It is computationally very expensive ⇒ Scikit-learn provides parameters to parallelize the search: n_jobs=-1 to use all cores
- ② It may not find the optimal setting ⇒ Use random search!

Grid Search vs. random Search

cf. Bergstra/Bengio, 2012. https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf.page 284

Nested Cross-Validation

Bias-Variance Decomposition for MSE

- Suppose that we have a training set $\mathcal{D} := \{(x_1, y_1), \dots, (x_N, y_N)\}$
- There is an **unknown** function f(x) such that

$$y = f(x) + \varepsilon \tag{10}$$

- The noise term ε has zero mean and variance σ_{ε}^2 , i. e. $\mathbb{E}\{\varepsilon\}=0$ and $\mathbb{V}\{\varepsilon\}=\sigma_{\varepsilon}^2$
- Based on the dataset \mathcal{D} we want to find a function $\widehat{f}(x; \mathcal{D})$ which approximates f(x) as well as possible
- For this we try to minimize the mean squared error $\mathbb{E}_{\mathcal{D},\varepsilon}\left\{\left(y-\widehat{f}(x;\mathcal{D})\right)^2\right\}$

Bias-Variance Decomposition for MSE (Ctd.)

- We can decompose the **expected error** of $\widehat{f}(x, \mathcal{D})$ into bias and variance
- We use $\mathbb{B}_{\mathcal{D}}$ to denote the **bias** (expected deviation of the model from the true function), and $\mathbb{V}_{\mathcal{D}}$ to denote the **variance** of the model \widehat{f}
- The variance of the noise term σ_{ε}^2 is **irreducible**

Bias-Variance decomposition of the mean squared error:

$$\mathbb{E}_{\mathcal{D},\varepsilon}\left\{\left(y-\widehat{f}(x;\mathcal{D})\right)^{2}\right\} = \mathbb{B}_{\mathcal{D}}^{2}\left\{\widehat{f}(x;\mathcal{D})\right\} + \mathbb{V}_{\mathcal{D}}\left\{\widehat{f}(x;\mathcal{D})\right\} + \sigma_{\varepsilon}^{2}$$
(11)

Bias and Variance

The **bias** results from erroneous assumptions in the learning algorithm. High bias can cause an algorithm to miss the relevant relations between features and target outputs (**underfitting**).

The **variance** is an error from sensitivity to small fluctuations in the training set. High variance may result from an algorithm modeling the random noise in the training data **(overfitting)**.

Bias and Variance (Ctd.)

Recall: Expectation and Variance

- Let $\mathcal X$ be a random variable. $\Omega(\mathcal X)$ is the domain of $\mathcal X$ (i. e. the set of possible values $\mathcal X$ can take)
- Definition of expectation (discrete case):

$$\mathbb{E}\{\mathcal{X}\} := \sum_{\mathbf{k} \in \Omega(\mathcal{X})} \mathbf{k} \cdot \mathbf{p}(\mathcal{X} = \mathbf{k}) \tag{12}$$

Definition of variance (discrete case):

$$\mathbb{V}\{\mathcal{X}\} := \sum_{k \in \Omega(\mathcal{X})} \left(k - \mathbb{E}\{\mathcal{X}\}\right)^2 \cdot \rho(\mathcal{X} = k) \tag{13}$$

Recall: Expectation and Variance (Ctd.)

Let \mathcal{X} and \mathcal{Y} be random variables and $a, b \in \mathbb{R}$:

• Linearity of \mathbb{E} : (very important!)

$$\mathbb{E}\left\{aX + bY\right\} = a\mathbb{E}\left\{X\right\} + b\mathbb{E}\left\{Y\right\} \tag{14}$$

- If $\mathfrak X$ and $\mathfrak Y$ are independent: $\mathbb E \{\mathfrak X \mathfrak Y\} = \mathbb E \{\mathfrak X\} \mathbb E \{\mathfrak Y\}$
- $\mathbb{V}{X} = \mathbb{E}{X \mathbb{E}^2{X}} = \mathbb{E}{X^2} \mathbb{E}^2{X}$
- \mathbb{V} is **not** linear: $\mathbb{V}\{a+b\mathfrak{X}\}=b^2\mathbb{V}\{\mathfrak{X}\}$
- However, if $\mathcal X$ and $\mathcal Y$ are uncorrelated: $\mathbb V\big\{\mathcal X+\mathcal Y\big\}=\mathbb V\big\{\mathcal X\big\}+\mathbb V\big\{\mathcal Y\big\}$

- **Notation:** In the following we will drop the dependence on the dataset to simplify the notation, i. e. we write \widehat{f} instead of $\widehat{f}(x; \mathcal{D})$
- The MSE is given by

MSE :=
$$\mathbb{E}\left\{(y-\widehat{f})^2\right\} = \mathbb{E}\left\{y^2 - 2y\widehat{f} + \widehat{f}^2\right\}$$

= $\mathbb{E}\left\{y^2\right\} - 2\mathbb{E}\left\{y\widehat{f}\right\} + \mathbb{E}\left\{\widehat{f}^2\right\}$ (15)

We rewrite term 1.

$$\mathbb{E}\left\{y^{2}\right\} = \mathbb{E}\left\{(f+\varepsilon)^{2}\right\} \qquad \text{Definition of } y$$

$$= \mathbb{E}\left\{f^{2}\right\} + 2\mathbb{E}\left\{f\varepsilon\right\} + \mathbb{E}\left\{\varepsilon^{2}\right\} \qquad \text{Linearity of } \mathbb{E}$$

$$= f^{2} + 2f\mathbb{E}\left\{\varepsilon\right\} + \mathbb{E}\left\{\varepsilon^{2}\right\} \qquad f \text{ does not depend on } \mathcal{D}$$

$$= f^{2} + \sigma_{\varepsilon}^{2} \qquad \mathbb{E}\left\{\varepsilon\right\} = 0 \qquad (16)$$

We rewrite term ?

$$\mathbb{E}\left\{\widehat{y}\widehat{t}\right\} = \mathbb{E}\left\{(f+\varepsilon)\widehat{f}\right\} \qquad \text{Definition of } y$$

$$= f\mathbb{E}\left\{\widehat{t}\right\} + \mathbb{E}\left\{\widehat{\varepsilon}\widehat{t}\right\} \qquad \text{Linearity of } \mathbb{E}$$

$$= f\mathbb{E}\left\{\widehat{t}\right\} + \mathbb{E}\left\{\varepsilon\right\}\mathbb{E}\left\{\widehat{t}\right\} \qquad \widehat{f} \text{ and } \varepsilon \text{ are independent}$$

$$= f\mathbb{E}\left\{\widehat{t}\right\} \qquad \mathbb{E}\left\{\varepsilon\right\} = 0 \qquad (17)$$

Term 3 is straight-forward:

$$\mathbb{E}\{\widehat{f}^2\} = \mathbb{E}\{\widehat{f}^2\} - \mathbb{E}^2\{\widehat{f}\} + \mathbb{E}^2\{\widehat{f}\}$$
$$= \mathbb{V}\{\widehat{f}\} + \mathbb{E}^2\{\widehat{f}\}$$
(18)

• Let us now plug these results into our MSE definition:

$$MSE = \mathbb{E}\{y^{2}\} - 2\mathbb{E}\{y\widehat{f}\} + \mathbb{E}\{\widehat{f}^{2}\}$$

$$= f^{2} + \sigma_{\varepsilon}^{2} - 2f\mathbb{E}\{\widehat{f}\} + \mathbb{V}\{\widehat{f}\} + \mathbb{E}^{2}\{\widehat{f}\}$$

$$= (f - \mathbb{E}\{\widehat{f}\})^{2} + \mathbb{V}\{\widehat{f}\} + \sigma_{\varepsilon}^{2}$$

$$= \mathbb{E}^{2}\{(f - \widehat{f})\} + \mathbb{V}\{\widehat{f}\} + \sigma_{\varepsilon}^{2}$$

$$= \mathbb{B}^{2}\{\widehat{f}\} + \mathbb{V}\{\widehat{f}\} + \sigma_{\varepsilon}^{2}$$
(19)

Visualization: Bias-Variance Decomposition

Polynomial models of different degrees fit on random data

Visualization: Bias-Variance Decomposition (Ctd.)

Bias, Variance, and Model Complexity

Evaluation Methods and Data Splits

Wrap-Up

Use early stopping!

Section:

Wrap-Up

Summary
Recommended Literature
Self-Test Questions
Lecture Outlook

Summary

- Out-of-sample testing: Split data into train, dev and test sets
- Cross-validation makes maximum use of the data
- Confusion matrices reveal which classes are frequently confused
- Precision, recall, and F₁-score are more robust w.r.t. imbalanced datasets
- ROC curves are used for the evaluation of rankers
- Hyperparameters are optimized using grid search or random search
- Keep the bias-variance trade-off in mind! We can decompose the error into bias and variance

Recommended Literature

Evaluation metrics

- [MURPHY.2012], chapter 5.7.2, pages 182 – 186
- ② Bias-Variance decomposition
 - [BISHOP.2006], chapter 3.2, pages 147 – 152

(For free PDF versions, see list in GitHub readme!)

Evaluation Methods and Data Splits Evaluation Metrics for Classifiers Evaluation Metrics for Regressors Model Selection and Model Complexity Wrap-Up

Summary
Recommended Literat
Self-Test Questions
Lecture Outlook

Self-Test Questions

- 1 Why should you split the data into train, dev and test sets?
- You perform 10-fold cross validation. How many models do you have to learn? Which one do you use in production?
- What is the problem with accuracy?
- 4 Why do we apply the harmonic mean to compute the F_1 -score?
- 5 Your model produces an AUC value of 0. What does this mean?
- 6 Random search is usually preferred to optimize hyperparameters. Why?
- Your model does not perform well due to its high bias. Your boss suggests adding more training examples. How would you respond?

What's next...?

- I Machine Learning Introduction
- II Optimization Techniques
- III Bayesian Decision Theory
- IV Non-parametric Density Estimation
- V Probabilistic Graphical Models
- VI Linear Regression
- VII Logistic Regression
- VIII Deep Learning

- IX Evaluation
- X Decision Trees
 - XI Support Vector Machines
 - XII Clustering
 - XIII Principal Component Analysis
 - XIV Reinforcement Learning
 - XV Advanced Regression

Thank you very much for the attention!

* * * Artificial Intelligence and Machine Learning * * *

Topic: Evaluation of Machine Learning Models

Term: Summer term 2025

Contact:

Daniel Wehner, M.Sc.

SAPSE / DHBW Mannheim

daniel.wehner@sap.com

Do you have any questions?