Práctico 3 Matemática Discreta I – Año 2022/1 FAMAF

(1)	Hallar	еl	cociente	П	еl	resto	de	la	división	de:
(')	Hattai	Ċι	Coctenie	ч	Ċι	16310	ue	ιci	utvision	uc.

a) 135 por 23.

b) −135 por 23.

c) 135 por −23.

d) -135 por -23.

e) 127 por 99.

f) -98 por -73.

(2) a) Si $a = b \cdot q + r$, con $b \le r < 2b$, hallar el cociente y el resto de la división de a por b.

b) Repetir el ejercicio anterior, suponiendo ahora que $-b \le r < 0$.

(3) Dado
$$m \in \mathbb{N}$$
, hallar los restos posibles de m^2 y m^3 en la división por 3, 4, 5, 7, 8, 11.

(4) Expresar en base 10 los siguientes enteros:

a) $(1503)_6$

b) (1111)₂

c) (1111)₁₂

d) (123)₄

e) (12121)₃

f) (1111)₅

(5) Convertir

a) (133)₄ a base 8,

b) (B38)₁₆ a base 8,

c) (3506)₇ a base 2,

d) (1541)₆ a base 4.

(6) Calcular:

a) $(2234)_5 + (2310)_5$,

b) $(10101101)_2 + (10011)_2$.

(7) Expresar en base 5:
$$(1530)_6 + (1110)_2$$
.

(8) Sean a, b, $c \in \mathbb{Z}$. Demostrar las siguientes afirmaciones:

a) Si $a \neq 0$ y $a \mid 1$, entonces a = 1 ó a = -1.

b) Si $a \neq 0$, a|b y a|c, entonces a|(rb+sc) para cualesquiera $r,s \in \mathbb{Z}$.

c) Si $a \neq 0$ y a|b, entonces $a|b \cdot c$.

d) Si $a \neq 0$, a|b y a|(b+c), entonces a|c.

(9) Sean $a,b,c\in\mathbb{Z}$ (no nulos cuando el enunciado lo requiera). ¿Cuáles de las siguientes afirmaciones son verdaderas? Justificar las respuestas.

1

 $a) \ a \mid b \cdot c \Rightarrow a \mid b \circ a \mid c.$

b) $a \mid (b+c) \Rightarrow a \mid b \circ a \mid c$.

c) $a \mid c \ y \ b \mid c \Rightarrow a \cdot b \mid c$.

d) $a \mid c \ y \ b \mid c \Rightarrow (a+b) \mid c$.

- e) $b, c \in \mathbb{N}$ y $a = b \cdot c \Rightarrow a \ge b$ y $a \ge c$.
- (10) Dados $b, c \in \mathbb{Z}$, probar las siguientes propiedades:
 - a) 0 es par y 1 es impar.
 - b) Si b es un número par no nulo y $b \mid c$, entonces c es par. (Por lo tanto, si b es par, también lo es -b).
 - c) Si un número par no nulo divide a 2, entonces ese número es 2 \circ -2.
 - d) Si $b \neq c$ son pares, entonces b + c también lo es.
 - e) La suma de un número par y uno impar es impar.
 - f) b + c es par si y sólo si b y c son ambos pares o ambos impares.
 - q) b es par si y sólo si b^2 es par.
- (11) Decidir si las siguientes afirmaciones son verdaderas o falsas, justificar la respuesta.
 - a) $\forall n \in \mathbb{N}$, $3^n + 1$ es múltiplo de n.
 - b) $\forall n \in \mathbb{N}$, $3n^2 + 1$ es múltiplo de 2.
 - c) $\forall n \in \mathbb{N}$, $(n+1) \cdot (5n+2)$ es múltiplo de 2.
- (12) Probar que para todo $n \in \mathbb{Z}$, $n^2 + 2$ no es divisible por 4.
- (13) Probar que todo entero impar que no es múltiplo de 3, es de la forma $6m \pm 1$, con m entero.
- (14) Probar que si a y b son enteros entonces $a^2 + b^2$ es divisible por 7 si y sólo si a y b son divisibles por 7. ¿Es lo mismo cierto para 3? ¿Para 5?
- (15) *a)* Probar que n(n+1) es divisible por 2 para todo $n \in \mathbb{Z}$, es decir, el producto de dos enteros consecutivos siempre es par.
 - b) Probar que el producto de tres enteros consecutivos es divisible por 6.
 - c) Probar que el producto de cuatro enteros consecutivos es divisible por 24 (ayuda: para todo $n \in \mathbb{N}$, el número combinatorio $\binom{n+3}{4} \in \mathbb{N}$).
 - d) Sea $m \ge 2$. Probar que el producto de m enteros consecutivos es divisible por m!.
- (16) Probar que para todo $n \in \mathbb{N}$:
 - a) $3^{2n+2} + 2^{6n+1}$ es múltiplo de 11.
 - b) $3^{2n+2} 8n 9$ es divisible por 64.

(17) Encontrar

a) (7469, 2464),

b) (2689, 4001),

c) (2447, –3997),

d) (-1109, -4999).

(18) Calcular el máximo común divisor y expresarlo como combinación lineal de los números dados, para cada uno de los siguientes pares de números:

- a) 14 y 35,
- *b*) 11 y 15,
- c) 12 y 52,

- *d*) 12 y −52,
- *e*) 12 y 532, *f*) 725 y 441,
- *q*) 606 y 108.

(19) Probar que no existen enteros a y b que satisfagan a + b = 100 y (a, b) = 3.

- (20) *a*) Sean $a \ y \ b$ coprimos. Probar que si $a \mid b \cdot c$ entonces $a \mid c$.
 - b) Sean $a \lor b$ coprimes. Probar que si $a \mid c \lor b \mid c$, entonces $a \cdot b \mid c$.
- (21) *a*) Sean $a, b \in \mathbb{Z}$, con $b \neq 0$, $y \in \mathbb{N}$. Probar que (ka, kb) = k(a, b).
 - b) Probar que si d es divisor común de a y b, entonces $\frac{(a,b)}{d} = \left(\frac{a}{d}, \frac{b}{d}\right)$.
 - c) Probar que si $a,b\in\mathbb{Z}$ no nulos, entonces $\frac{a}{(a,b)}$ y $\frac{b}{(a,b)}$ son coprimos.
- (22) Encontrar todos los enteros positivos a y b tales que (a, b) = 10 y [a, b] = 100.
- (23) Probar que 3 y 5 son números primos.
- (24) Dar todos los números primos positivos menores que 100.
- (25) Determinar con el criterio de la raíz cuáles de los siguientes números son primos: 113, 123, 131, 151, 199, 503.
- (26) Probar que si $n \in \mathbb{Z}$, entonces los números 2n + 1 y n(n + 1) son coprimos.
- (27) Demostrar que si $a \cdot b$ es un cuadrado y (a,b) = 1, entonces a y b son cuadrados.
- (28) *a*) Probar que $\sqrt{5}$ no es un número racional.
 - b) Probar que $\sqrt{15}$ no es un número racional.
 - c) Probar que $\sqrt{8}$ no es un número racional.
- (29) a) Probar que $\sqrt[3]{4}$ no es un número racional.
 - b) Probar que $\sqrt[4]{54}$ no es racional.

- c) Probar que no existen enteros m, n no nulos tal que $21n^5 = m^5$.
- (30) Probar que si p_k es el k-ésimo primo positivo entonces

$$p_{k+1} \le p_1 \cdot p_2 \cdot \cdots \cdot p_k + 1$$

(31) Calcular el máximo común divisor y el mínimo común múltiplo de los siguientes pares de números usando la descomposición en números primos.

a)
$$a = 12$$
 y $b = 15$.

b)
$$a = 11 \text{ y } b = 13.$$

c)
$$a = 140 \text{ y } b = 150.$$

d)
$$a = 225 \text{ y } b = 44.$$

e)
$$a = 60$$
 y $b = 70$.