A Microservice architecture for monitoring, processing and predicting climate data in animal husbandry

Alexander Stein

February 21, 2019 – Germany, Dortmund

University of Applied Sciences and Arts Dortmund
Institute for Digital Transformation of Application and Living Domains (IDiAL)

Second International Conference on Microservices (Microservices 2019)

- 1. Context of the application
- 2. Introduction of the Microservice architecture
- 3. The machine learning pipeline
- 4. Technologies used
- 5. Discussion

- 1. Context of the application
- 2. Introduction of the Microservice architecture
- 3. The machine learning pipeline
- 4. Technologies used
- 5. Discussion

- 1. Context of the application
- 2. Introduction of the Microservice architecture
- 3. The machine learning pipeline
- 4. Technologies used
- 5. Discussion

- 1. Context of the application
- 2. Introduction of the Microservice architecture
- 3. The machine learning pipeline
- 4. Technologies used
- 5. Discussion

- 1. Context of the application
- 2. Introduction of the Microservice architecture
- 3. The machine learning pipeline
- 4. Technologies used
- 5. Discussion

Context of the application

Context of the application

Context and problem

- Issues in animal lifestock farms regarding diseases induced by poor air conditions
- Farmers are forced to increase medication
 - -> Additional costs, diminishes meat quality

Poor air conditions

- Pigs: Ammonia (NH3), Carbon dioxide (CO2), increase temperature
- Installed climate Computers often only react when the problems already occured direct feedback control (reactive)

Goal

- Support climate computers / farmers with additional long term data analysis of the air condition
- Overall improvement of the air condition for the animals -> System can work in a preventive manner

Context of the application

Introduction of the microservice architecture

Introduction of the Microservice architecture

- Architecture consists of different application layers depicted as colored boxed
- Infrastructural services surround the application
- Message brokers used as backbone communication between services and for external communication (QoS)

Introduction of the Microservice architecture: The dataflow

Introduction of the Microservice architecture: Machine learning service

 Core Service: Data Analysis and Regression (ML - Pipeline)

Introduction of the Microservice architecture: Machine learning service

 Core Service: Data Analysis and Regression (ML - Pipeline)

Requires the most computing power

The machine learning pipeline

The machine learning pipeline

- Machine learning pipeline consists of several processing steps which may take some time to compute
- Each stable has own regression models stored in the database (sequentially updated by the pipeline)
- Microservice architecture allowes to create several instances of this service (load balancing)
- Clustered load distribution over several Hardware devices

Technologies used

Technologies used: Technology stack

Discussion