ВикипедиЯ

Радуга

Материал из Википедии — свободной энциклопедии

Ра́дуга атмосферное, оптическое метеорологическое явление, наблюдаемое при освещении ярким источником света (в природе Солнцем или Луной — см. лунная радуга) множества водяных капель (дождя или тумана). Радуга выглядит как разноцветная дуга или окружность, составленная из цветов спектра видимого излучения (от внешнего края: красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый). Это те семь цветов, которые принято выделять в радуге в русской культуре (возможно, вслед за Ньютоном, см. ниже), но следует иметь в виду, что на самом деле спектр непрерывен, и его цвета плавно переходят друг в друга через множество промежуточных оттенков.

Радуга в водяной пыли от водопада <u>Такакко,</u> Канада

Центр окружности, описываемой радугой, лежит прямой, проходящей через наблюдателя и Солнце, в антисолнечной точке^[1], при этом Солнце всегда спиной находится за наблюдателя. Угловой радиус окружности — 42 градуса[1]. Для наблюдателя на земле радуга обычно

Радуга над городом Гродно, Белоруссия

выглядит как дуга окружности, чем ниже Солнце над горизонтом, тем ближе дуга к половине окружности, а высота верхушки радуги над землёй — к 42 градусам. Чем выше точка наблюдения, тем дуга полнее (с самолёта можно увидеть и полную окружность). Когда Солнце поднимается выше 42 градусов над горизонтом, окружность возможного появления радуги оказывается ниже уровня земли, и наблюдатель, находящийся на её поверхности, увидеть радугу не может [2]. Приблизиться к радуге, как и к горизонту, нельзя [3].

Содержание

Физика радуги

Необычные радуги

Явления, похожие на радугу

История исследования

Мнемонические фразы

Радуга в истории, мифологии и культуре

Радуга и ассоциированные термины

Радуга как символ

См. также

Примечания

Литература

На русском языке

На английском языке

Ссылки

На русском языке

На английском языке

Физика радуги

Радуга возникает из-за того, что солнечный свет преломляется и отражается капельками воды (дождя или тумана), парящими в атмосфере. Эти капельки по-разному отклоняют свет разных преломления цветов (показатель для более воды длинноволнового (красного) света меньше, чем для коротковолнового (фиолетового), поэтому слабее всего отклоняется красный свет — на 137°30', а сильнее всего фиолетовый — на 139°20'). В результате белый свет разлагается в спектр. Наблюдатель, который стоит спиной к источнику света, видит разноцветное свечение, которое исходит из пространства по концентрическим окружностям (дугам).

Ход лучей в сферической капле, образование первичной радуги

Радуга представляет собой каустику, возникающую на сферической капле при преломлении и отражении (внутри нее) плоскопараллельного пучка света. Как показано рисунке для монохроматического света, отражённый свет имеет максимальную интенсивность определённого угла между

Первичная и вторичная радуги с полосой Александра между ними

Преломление света при его переходе в среду с иной оптической плотностью

источником, каплей и наблюдателем. Этот максимум весьма

«острый»: бо́льшая часть света выходит из капли, развернувшись практически точно на один и тот же угол. Дело в том, что угол, под которым из капли уходит отражённый и преломлённый ею луч, немонотонно зависит от расстояния от падающего (первоначального) луча до оси, параллельной ему и проходящей через центр капли. Эта зависимость имеет гладкий экстремум. Поэтому больше всего света капля разворачивает именно на этот угол и близкие к нему. Значения этого угла немного различаются для разных показателей преломления, соответствующих лучам разного цвета. При этом

угле и возникает отражение-преломление максимальной яркости, составляющее (от разных капель) радугу («яркие» лучи от разных капель образуют конус с вершиной в зрачке наблюдателя и осью, проходящей через наблюдателя и Солнце) $^{[4]}$.

Для одного отражения внутри капли такой угол имеет одно значение, для двух — другое, и т. д. Этому соответствует первичная (радуга первого порядка), вторичная (радуга второго порядка) и т. д. радуга. Первичная — самая яркая, она уносит из капли большую часть света. В природе радуги порядка, большего чем второй, обычно не удаётся увидеть, так как они очень слабы.

Чаще всего наблюдается **первичная радуга**, при которой свет претерпевает *одно* внутреннее отражение. Ход лучей показан на рисунке справа вверху. В первичной радуге <u>красный цвет</u> находится *снаружи* дуги, её угловой <u>радиус</u> составляет 40—42°.

Иногда можно увидеть ещё одну, менее яркую радугу вокруг первой. Это **вторичная радуга**, которая образована светом, отражённым в каплях *два раза*. Во вторичной радуге «перевёрнутый» порядок цветов — *снаружи* находится фиолетовый, а внутри красный. Угловой радиус вторичной радуги 50—53°. Небо между двумя радугами обычно заметно более тёмное, эту область называют полосой Александра.

Появление радуги третьего порядка в естественных условиях случается чрезвычайно редко. Считается, что за последние 250 лет было только пять научных сообщений о наблюдении данного феномена $^{[5]}$. В то же время благодаря применению специальных методов фотосъёмки и последующей обработки полученных фотографий удаётся зарегистрировать радуги четвёртого $^{[6]}$, пятого $^{[7]}$ и даже, как предполагается, седьмого $^{[8]}$ порядков.

В лабораторных условиях удаётся получать радуги гораздо более высоких порядков. Так, в статье, опубликованной в 1998 году, утверждалось, что авторам, используя <u>лазерное</u> излучение, удалось получить радугу двухсотого порядка[9].

Свет первичной радуги <u>поляризован</u> на 96 % вдоль направления дуги $^{[10]}$. Свет вторичной радуги поляризован на 90 %.

В яркую лунную ночь можно наблюдать и радугу от Луны. Поскольку рецепторы человеческого <u>глаза</u>, работающие при слабом освещении, — <u>«палочки»</u> — не воспринимают <u>цвета</u>, лунная радуга выглядит белёсой; чем ярче свет, тем «цветнее» радуга (в её восприятие включаются цветовые рецепторы — «колбочки»).

Необычные радуги

Чаще всего наблюдается простая радуга-дуга, но известно много других оптических феноменов, которые возникают по похожим причинам или похоже выглядят. Среди них, например, <u>туманная</u> (белая) радуга, возникающая на очень маленьких капельках тумана, и <u>огненная радуга</u> (один из видов <u>гало</u>), возникающая на <u>перистых облаках</u>. Похож на радугу и слабый <u>паргелий</u> — гало в 22° слева и справа от солнца. Ночью можно увидеть лунную радугу.

Когда радуга появляется над поверхностью воды (или над другой отражающей поверхностью, например, мокрым песком $^{[11]}$), может возникнуть так называемая *отраженная радуга* (англ. Reflection Rainbow) $^{[12]}$. Она появляется $^{[13]}$, когда солнечный свет отражается от поверхности воды до того, как попадает на дождевые капли, где происходит преломление. Необходимо, чтобы водная поверхность была достаточно большой, спокойной и близкой к стене дождя. Из-за большого количества условий отражённая радуга — редкое явление.

Отражённая радуга (верхняя) и основная радуга (нижняя) на закате

Отражённая радуга пересекает основную на уровне горизонта, далее проходит над ней. Так как солнечный свет

Схема образования радуги:

- 1. сферическая капля,
- 2. внутреннее отражение,
- 3. первичная радуга,
- 4. преломление,
- 5. вторичная радуга,
- 6. входящий луч света,
- 7. ход лучей при формировании первичной радуги,
- 8. ход лучей при формировании вторичной радуги,
- 9. наблюдатель,
- 10. область формирования первичной радуги,
- 11. область формирования вторичной радуги,
- 12. облако капелек

предварительно отражается от воды, яркость отражённой радуги ниже основной.

Явления, похожие на радугу

определённых обстоятельствах При можно увидеть двойную, перевёрнутую или даже кольцевую радугу. На самом деле это явления другого процесса — преломления света в кристаллах льда, рассеянного в атмосфере, и относятся к гало $\frac{[14]}{}$. Для появления в небе перевернутой радуги (околозенитной зенитной дуги — одного из видов гало) необходимы специфические погодные условия, характерные для Северного и Южного полюсов. образуется Перевернутая радуга преломления света, проходящего через льдинки тонкой завесы облаков на высоте 7 — 8 тысяч метров. Цвета в такой радуге располагаются тоже наоборот: фиолетовый вверху, а красный внизу.

История исследования

Персидский астроном Кутб ад-Дин аш-Ширази (1236—1311), а возможно, его ученик <u>Камал ад-Дин аль-Фариси (1260—1320)</u>, видимо, был первым, кто дал достаточно точное объяснение феномена <u>Примерно</u> одновременно аналогичное объяснение радуги предложили немецкий учёный <u>Дитер</u> Фрейбургский и английский ученый-богослов Роджер Бэкон.

Радуга на Аляске

Перевёрнутая радуга

Общая физическая картина радуги была описана в 1611 году Марком Антонием де Доминисом в книге «De radiis visus et lucis in vitris perspectivis et iride» (16). На основании опытных наблюдений он пришёл к заключению, что радуга получается в результате отражения от внутренней поверхности капли дождя и двукратного преломления — при входе в каплю и при выходе из неё (17).

Рене Декарт дал более полное объяснение радуги в 1637 году в своём труде «Рассуждение о методе» в части «Метеоры» в главе «О радуге» [18][19]. Рассмотрев путь 10 тысяч лучей в капле, Декарт установил, что лучи от 8500-го до 8600-го выходят под одним и тем же углом 41,5 градуса к первоначальному их направлению и, следовательно, этот угол — преобладающий для лучей [18][3]. Он также установил, что вторичная радуга возникает в результате двух преломлений и двух отражений [20], а лучи в этом случае выходят из капли в основном под углом 51-52 градуса к первоначальному направлению [18].

<u>И. Ньютон</u> в своём трактате «Оптика» дополнил теорию Декарта и де Доминиса тем, что разъяснил причины возникновения цветов радуги и объяснил противоположный порядок расположения цветов в радугах первого и второго порядков [21]. В радуге при этом И. Ньютон выделял семь цветов: красный, оранжевый, жёлтый, зелёный, синий, индиго и фиолетовый [21].

Хотя многоцветный спектр радуги непрерывен, во многих странах в нём выделяют 7 или 6 (например, в англоязычных странах[22]) цветов. Считают, что первым выбрал число 7 И. Ньютон.

Мнемонические фразы

Цвета в радуге расположены в последовательности, соответствующей <u>спектру</u> видимого света. В русском языке существуют такие <u>мнемонические фразы</u> для запоминания этой последовательности:

■ **К**аждый **о**хотник желает **з**нать. **г**де **с**идит **ф**азан.

Двойная радуга в <u>ландшафте</u>, картина Питера Рубенса

Фразы являются так называемым акростихом $^{[24]}$.

В этих фразах начальная буква каждого слова соответствует начальной букве названия определённого цвета.

Каждый — красный

- *Охотник* оранжевый
- *Желает* жёлтый
- *3нать* зелёный
- **■** *Г*∂е голубой
- Сидит синий
- Фазан фиолетовый

Цвета во фразе перечисляются в соответствии с порядком цветов в радуге, от красного (видимый <u>свет</u> с наибольшей длиной волны) до фиолетового (видимый свет с наименьшей длиной волны).

В английском языке используется <u>акроним</u> <u>Roy G. Biv</u>, состоящий из начальных букв цветов.

Радуга в истории, мифологии и культуре

- В <u>скандинавской мифологии</u> радуга это мост <u>Биврёст</u>, соединяющий <u>Мидгард</u> (мир людей) и <u>Асгард</u> (мир богов); красная полоса радуги вечный <u>огонь</u>, который безвреден для Асов, но сожжёт любого <u>смертного</u>, который попытается подняться по мосту. Охраняет Биврёст Ас Хеймдалль.
- В древнеиндийской <u>мифологии</u> лук <u>Индры</u>, бога грома и молнии.
- В древнегреческой мифологии дорога <u>Ириды,</u> посланницы между мирами богов и людей.
- В <u>армянской мифологии</u> радуга это пояс <u>Тира</u> (первоначально бог солнца, потом бог письменности, искусств и наук).
- По славянским поверьям, радуга пьёт воду из озёр, рек и морей, которая потом проливается дождём. Иногда она заглатывает вместе с водою рыб и лягушек, поэтому порою они с неба падают. Появление радуги предвещало несчастье, а если человеку удастся пройти под радугой, то мужчина станет женщиной, а женщина мужчиной [25].

Радуга

<u>Йозеф Антон Кох</u>. *Героический* ландшафт с радугой (1805)

- Согласно поверьям многих <u>африканских</u> народов, в тех местах, где радуга касается земли, можно найти <u>клад</u> (драгоценные камни, раковины <u>каури</u> или <u>бисер</u>).
- В мифологии австралийских аборигенов <u>Радужный змей</u> считается покровителем воды, дождя и <u>шаманов</u>.
- Ирландский лепрекон прячет горшок золота в месте, где радуга коснулась земли.
- В <u>Библии</u> радуга появилась после <u>всемирного потопа</u> как символ прощения человечества, союза Бога и человечества (в лице/через Ноя) и того, что потопа никогда больше не будет (<u>Быт. 9:12–17</u>).
 - «Я полагаю радугу Мою в облаке, чтоб она была знамением завета между Мною и между землею. И будет, когда сгущу Я тучи над землею, покажется радуга в облаке». Эту фразу толкователь Пятикнижия Раши объясняет так: «Когда сгущу Я тучи над землею», когда

Мой Атрибут Суда будет подсказывать Мне навести на землю тьму и гибель, тогда... «появится радуга в облаке». То есть радуга показывается на небе тогда, когда человечество заслуживает гибели за свои грехи. «И будет, когда Я наведу облако на землю, то явится радуга в облаке; и Я вспомню завет Мой, который между Мною и между вами и между всякою душею живою во всякой плоти; и не будет более вода потопом на истребление всякой плоти». Согласно Талмуду, при жизни больших праведников нет нужды в этом знаке, так как Вселенная защищена от гибели их присутствием.

- В <u>японской мифологии</u> боги <u>Идзанаги</u> и <u>Идзанами</u> стояли на небесном мосту, окуная с него копье, капли с которого стали островами.
- Изображение радуги было личной эмблемой Екатерины Медичи.
- В книге Фрэнка Баума «Удивительный волшебник из страны Оз» и в фильме, снятом на её основе, девочка Дороти, пройдя под радугой, попадает в Волшебную страну.

Радуга и ассоциированные термины

- Ирис цветок с богатой гаммой цветов;
- Иридий металл, цвета соединений которого дают практически полную радугу;
- Радужная оболочка глаза по-латыни ирис;
- Ирисовая диафрагма напоминает радужную оболочку глаза;
- Присутствует в названиях муз. групп (к примеру, Rainbow).

Радуга как символ

- Семицветная радуга изображена на флаге Еврейской автономной области.
- Корабли всемирной природоохранной организации «<u>Гринпис</u>» носят название «<u>Rainbow</u> Warrior» (англ. Воин Радуги).
- В 1970-х годах семицветный радужный флаг стал символом движения коренных народов Южной Америки в Боливии, Перу, Чили и Эквадоре. Он также является официальным флагом перуанского города Куско.
- В <u>XX веке радужный флаг</u> (как правило шестицветный) стал символом движения в поддержку прав ЛГБТ-сообщества^[26].

См. также

- Цвет
- Свет
- Спектр
- Туманная радуга
- Лунная радуга
- Округло-горизонтальная дуга

- Полоса Александра
- Глория
- Гало
- Призма (оптика)
- Радужный флаг

Примечания

- 1. Зверева, 1988, с. 38.
- 2. Миннарт М. Свет и цвет в природе. М.: «Наука», 1969. С. 182. 344 с.
- 3. Кто творит радугу? (Фрагмент из книги <u>Я. Е. Гегузина</u> «Капля») // <u>Наука и жизнь</u>. 2016. № 10. С. 73—75.

- 4. Можно заметить (это хорошо видно и на рисунке), что заметное количество света, отражённого-преломлённого в каплях, попадает и во внутреннюю область конуса. И хотя в этой области острый максимум интенсивности отсутствует, что делает свет в ней практически лишённым цвета, однако общее количество попадающего сюда света достаточно велико. При наблюдении (и на фотографиях) нередко можно заметить, что небо (как и пейзаж и вообще всё) внутри дуги радуги заметно светлее.
- 5. From myth to reality: photos prove triple rainbows exist (http://www.osa.org/en-us/about_osa/ne wsroom/news_releases/2011/photos-prove-triple-rainbows-exist/) Статья на сайте Оптического общества (The Optical Society, OSA)
- 6. *Theusner M.* Photographic observation of a natural fourth-order rainbow (http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-50-28-F129) (англ.) // Applied Optics. 2011. Vol. 50, no. 28. P. F129—F133. doi:10.1364/AO.50.00F129 (https://dx.doi.org/10.1364%2FAO.50.00F129).
- 7. Edens H. E. Photographic observation of a natural fifth-order rainbow (https://www.osapublishin g.org/ao/abstract.cfm?uri=ao-54-4-b26) (англ.) // Applied Optics. 2015. Vol. 54, no. 4. P. B26—B34. doi:10.1364/AO.54.000B26 (https://dx.doi.org/10.1364%2FAO.54.000B26).
- 8. Edens H. E., Können G. P. Probable photographic detection of the natural seventh-order rainbow (https://www.osapublishing.org/ao/abstract.cfm?uri=ao-54-4-B93) (англ.) // Applied Optics. 2015. Vol. 54, no. 4. P. B93—B96. doi:10.1364/AO.54.000B93 (https://dx.doi.org/10.1364%2FAO.54.000B93).
- 9. Ng P. H., Tse M. Y., Lee W. K. Observation of high-order rainbows formed by a pendant drop (htt p://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-15-11-2782) (англ.) // Journal of Optical Society of America B. 1998. Vol. 15, no. 11. P. 2782—2787.
- 10. Rainbow A polarized arch? (http://www.polarization.com/rainbow/rainbow.html)
- 11. Reflection Rainbows (http://www.atoptics.co.uk/rainbows/reflect.htm)
- 12. Reflection Bow Formation (http://www.atoptics.co.uk/rainbows/reflform.htm)
- 13. Как появляется радуга (https://meteoinsider.com/kak-pojavljaetsja-raduga/) (недоступная ссылка). Дата обращения: 9 апреля 2018. <u>Архивировано (https://web.archive.org/web/2018040917130 7/https://meteoinsider.com/kak-pojavljaetsja-raduga/)</u> 9 апреля 2018 года.
- 14. http://ice-halo.net/theory Как отличить гало от радуги
- 15. Al-Farisi biography (http://www-gap.dcs.st-and.ac.uk/~history/Biographies/Al-Farisi.html)
- 16. De radiis visus et lucis in vitris perspectivis et iride (https://books.google.ru/books?id=G0APAA AAQAAJ&printsec=frontcover&hl=ru#v=onepage&q&f=false) в библиотеке Google
- 17. The discovery made by Antonio de Dominis bishop of Spalatro (https://archive.org/stream/encbritannica13macf#page/320/mode/1up) // Encyclopædia Britannica: or, A dictionary of arts, sciences, and miscellaneous literature. Edinburgh: Printed for A. Bell and C. MacFarquhar, 1797. Vol. 13. P. 320—321. (англ.)
- 18. Голин Г.М., Филонович С.Р. <u>О радуге (http://znaniya-sila.narod.ru/people/003_02.htm)</u> / Р. Декарт // Классики физической науки (с древнейших времен до начала XX в.): Справочное пособие. <u>М.</u> : <u>Высшая школа</u>, 1989. С. 67—72. 576 с. 50 000 экз. ISBN 5-06-000058-3.
- 19. René Descartes. De l'arc-en-ciel (https://archive.org/stream/discoursdelamet00desc#page/250/mode/2up) // Discours de la méthode. Paris, 1657. C. 250—271.
- 20. *Трифонов Е. Д.* Ещё раз о радуге (http://www.pereplet.ru/nauka/Soros/pdf/0007_053.pdf) № // Соросовский образовательный журнал. 2000. Т. 6, № 7. С. 53—54.
- 21. *Ньютон И.* Оптика или трактат об отражениях, преломлениях, изгибаниях и цветах света (http://publ.lib.ru/ARCHIVES/N/N%27YUTON_Isaak/N%27yuton_I._Optika.(1954).%5Bpdf%5 D.zip) / Перевод Вавилова С. И. изд-е 2-е. М.: Гос. изд-во технико-теоретической литературы, 1954. С. 131. 367 с. (серия «Классики естествознания»).
- 22. О количестве цветов в радуге (http://www.greendoorenterprises.com/content/a-21/Сколько-ц ветов-пьет-радуга)

- 23. Джеймс Джойс. "Улисс". Tom II (https://books.google.ru/books?id=MG2KDwAAQBAJ&pg=PT5 1&lpg=PT51&dq=%D0%BA%D0%B0%D0%BA+%D0%BE%D0%B4%D0%BD%D0%B0%D0%B0%D0%B6%D0%B4%D1%8B+%D0%B6%D0%B0%D0%BA+%D0%B7%D0%B2%D0%BE%D0%BD%D0%B0%D1%80%D1%8C+%D0%B3%D0%BE%D0%BB%D0%BE%D0%B2%D0%BE%D0%B9+%D1%81%D0%B2%D0%B0%D0%B8%D0%B8%D0%B8+%D1%84%D0%BE%D0%BD%D0%B0%D1%80%D1%8C&source=bl&ots=ysb6Fs6nbg&sig=ACfU3U3OuHMBqitx 9D74QPGBShe0vLzOYA&hl=ru&sa=X&ved=2ahUKEwi_obCkgcHqAhVDi8MKHRRbDw8Q6 AEwAnoECAgQAQ#v=onepage&q=%D0%BA%D0%B0%D0%BA%20%D0%BE%D0%B4%D0%BD%D0%B0%D0%B6%D0%B4%D1%8B%20%D0%B6%D0%B0%D0%BA%20%D0%B 7%D0%B2%D0%B6%D0%B4%D1%8B%20%D0%B6%D0%B3%D0%BE%D0%B B%D0%B2%D0%BE%D0%B9%20%D1%81%D0%B2%D0%B0%D0%B8%D0%B 8%D0%BB%20%D1%84%D0%BD%D0%B0%D1%80%D1%8C&f=false) в библиотеке Google
- 24. *Ги Лефрансуа*. Прикладная педагогическая психология (https://books.google.com/books?id =rA9CEMKc12MC&pg=PA144). <u>СПб.</u>: Прайм-Еврознак, 2003. С. 144. 416 с. (Проект «Главный учебник»). <u>ISBN</u> 5938780896.
- 25. <u>Левкиевская Е. Е.</u> Мифы русского народа. <u>М.</u>: Астрель, 2000. С. 90. 528 с. (Мифы народов мира). ISBN 5-17-002811-3.
- 26. Symbols (http://www.glbtq.com/arts/symbols,4.html) Архивировано (https://web.archive.org/web/201 30327020906/http://www.glbtq.com/arts/symbols,4.html) 27 марта 2013 года.. // An Encyclopedia of Gay, Lesbian, Bisexual, Transgender, and Queer Culture (англ.) (Проверено 2 апреля 2011)

Литература

На русском языке

- *Афанасьев А. Н.* Народные поэтические представления радуги (https://web.archive.org/web/20131111104744/http://vrn-id.ru/filzaps650.htm) // Филологические записки. 1865.
- *Нуссенцвейг Х.* Теория радуги (http://ufn.ru/ru/articles/1978/7/e/) // Успехи физических наук, 1978.— т.125, вып.7. (Перевод из Nussenzveig, H. Moyses, «The Theory of the Rainbow», *Scientific American*, **236** (1977), 116.
- *Миннарт М.* Свет и цвет в природе (http://www.yugzone.ru/book/minnart.htm). <u>М.</u>: «Наука», 1969. 344 с.
- *Тарасов Л. В. Тарасова А. Н.* Беседы о преломлении света (http://math.ru/lib/bmkvant/18), М.: Наука, 1982. 176 с., серия Библиотечка «Квант», выпуск 18.
- *Зверева С. В.* В мире солнечного света. <u>Л.</u>: Гидрометеоиздат, 1988. 160 с. 151 000 экз.

На английском языке

- Robert Greenler Rainbows, Halos, and Glories .— 1980 ISBN 0-521-38865-1
- Raymond L. Lee and Alastair B. Fraser, The Rainbow Bridge: Rainbows in Art, Myth and Science, (2001) Penn. State University Press and SPIE Press ISBN 0-271-01977-8
- David K. Lynch & William Livingston, Color and Light in Nature, 2nd edition (2001) ISBN 0-521-77504-3
- Minnaert M. G. J. Light and Color in the Outdoors, 1995 ISBN 0-387-97935-2
- Minnaert M. The Nature of Light and Color in the Open Air. 1973 ISBN 0-486-20196-1
- Naylor, John, Out of the Blue, 2002, ISBN 0-521-80925-8

Bleicher, Steven (2004) Contemporary Color: Theory & Use p6. Delmar. <u>ISBN 1-4018-3740-9</u>: «However, most people can only discern six of these hues; they have trouble telling the difference between indigo and violet.»

Ссылки

На русском языке

- Свет И Цвет (http://www.sveticvet.ru/radugi/)
- Этимология и семантика слова 'радуга' (http://ec-dejavu.ru/r/Rainbow.html)
- Рене Декарт «О радуге» (http://znaniya-sila.narod.ru/people/003_02.htm)
- Хаскелевич Д.-Б. Оптико-мистический феномен радуги (Ноев Завет в толковании Каббалы) (http://5thdimension.org/wp/magazine/022/raduga)

На английском языке

- About rainbows (http://eo.ucar.edu/rainbows/)
- Supernumerary and Multiple Rainbows (https://web.archive.org/web/20060103070115/http://www.jal.cc.il.us/~mikolajsawicki/rainbows.htm)
- Spectacular rainbow at Elam Bend (McFall, Missouri) (http://www.missouriskies.org/rainbow/fe bruary_rainbow_2006.html)
- Finding and Photographing rainbow (https://web.archive.org/web/20081118221942/http://www.photocentric.net/rainbows finding.htm)
- Kamal Al-Din Al-Farisi's Explanation of the Rainbow (https://web.archive.org/web/2013031604 4906/http://www.muslimheritage.com/topics/default.cfm?ArticleID=939)
- Creating Circular and Double Rainbows! (https://www.youtube.com/watch? v=BU1n0mtB1xs) видео рассказывает основы физики радуги, показана искусственная радуга ночью, двойная радуга и круговая.

Источник — https://ru.wikipedia.org/w/index.php?title=Paдyra&oldid=114297513

Эта страница в последний раз была отредактирована 19 мая 2021 в 12:53.

Текст доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Wikipedia® — зарегистрированный товарный знак некоммерческой организации Wikimedia Foundation, Inc.