Qual Solutions Collection

D. Zack Garza

December 26, 2019

Contents

1	Fall	2019	2
	1.1	1	2
	1.2	2	3
		1.2.1 a	3
		1.2.2 b	4
		1.2.3 c	4
		1.2.4 d	4
	1.3	3	4
		1.3.1 a	4
		1.3.2 b	5
	1.4	4	5
		1.4.1 a	5
		1.4.2 b	5
		1.4.3 c	5
	1.5	5	5
		1.5.1 a	6
		1.5.2 b	6
		1.5.3 c	6
	1.6	6	6
		1.6.1 a	7
		1.6.2 b	7
		1.6.3 c	7
	1.7	7	7
	1.8	8	9
		1.8.1 a	9
		1.8.2 b	9
		1.8.3 c	0
_			_
2	-	g 2019	_
	2.1	1	-
	2.2		.1
		2.2.1 (a)	
	2.2	2.2.2 (b)	
	2.3	3	2

2.4	4	1	2
	2.4.1 a	1	3
	2.4.2 b	1	3
	2.4.3 c	1	4
2.5	5	1	4
	2.5.1 a	1	4
	2.5.2 b	1	4
	2.5.3 c	1	5
2.6	6	1	6
	2.6.1 a	1	6
	2.6.2 b	1	6
	2.6.3 c	1	7
2.7	7	1	7
	2.7.1 a	1	7
	2.7.2 b	1	8
2.8	8	1	9
	2.8.1 a	1	9
	2.8.2 b	1	9
	2.8.3 c	2	(

1 Fall 2019

1.1 1

Centralizer: $C_G(h) = Z(h) = \{g \in G \ni [g, h] = 1\}$ Centralizer Class equation:

$$|G| = \sum_{\substack{\text{One h from each}\\ \text{conjugacy class}}} \frac{|G|}{|Z(h)|}$$

Notation:

$$\begin{split} h^g &= ghg^{-1} \\ h^G &= \{h^g \ni g \in G\} \quad \text{Conjugacy Class} \\ H^g &= \{h^g \ni h \in H\} \\ N_G(H) &= \{g \in G \ni H^g = H\} \supseteq H \quad \text{Normalizer}. \end{split}$$

 $\begin{array}{ll} \textbf{Theorem 1:} \ \left|h^G\right| = [G:Z(h)] \\ \textbf{Theorem 2:} \ \left|\{H^g \ni g \in G\}\right| = [G:N_G(H)] \end{array}$

Use the fact that
$$\bigcup_{g \in G} H^g = \bigcup_{g \in G} gHg^{-1} \subsetneq G$$
 for any proper $H \leq G$. Proof: By theorem 2,

$$\left| \bigcup_{g \in G} H^g \right| < |H|[G:N_G(H)] \quad \text{since e is in every conjugate}$$

$$= |H| \frac{|G|}{|N_G(H)|}$$

$$\leq |H| \frac{|G|}{|H|}$$

$$= |G|.$$

Since $[g_i, g_j] = 1$, we have $g_i \in Z(g_j)$ for every i, j.

Then

$$g \in G \implies g = g_i^h$$
 for some h

$$\implies g \in Z(g_j)^h \text{ for every } j \text{ since } g_i \in Z(g_j) \ \forall j$$

$$\implies g \in \bigcup_{h \in G} Z(g_j)^h \text{ for every } j$$

$$\implies G \subseteq \bigcup_{h \in G} Z(g_j)^h \text{ for every } j,$$

which can only happen if $Z(g_j) = G$ for every j. But this says that $g_j \in Z(G)$, and so $[g_j] = \{g_j\}$, i.e. each conjugacy class is size one, so every element of g is some g_j , and thus $g \in Z(G)$, so $G \subseteq Z(G)$ and G is abelian.

Todo: Revisit. I don't get it!

1.2 2

pqr Theorem.

1.2.1 a

Recall $n_p \mid m \text{ and } n_p \cong 1 \mod p$.

An easy check:

$$n_3 \in \{1,7\}$$
 $n_5 \in \{1,21\}$ $n_7 \in \{1,15\}$.

Toward a contradiction, if $n_5 \neq 1$ and $n_7 \neq 1$, then Q, R contribute

$$(5-1)n_5 + (7-1)n_7 + 1 = 4(21) + 6(15) > 105$$
 elements.

1.2.2 b

If $H, K \leq G$ and $H \leq G$ then $HK \leq G$ is a subgroup. Proof: Check closure under products, needs normality.

Theorem: For a positive integer n, all groups of order n are cyclic $\iff n$ is squarefree and, for each pair of distinct primes p and q dividing n, $q-1 \neq 0 \mod p$.

Theorem: If
$$G = A_1 A_2 \cdots A_n = \prod_{i=1}^n A_i$$
 and $A_i \cap \prod_{k \neq i} A_i = \{e\}$ for all i , then $A \cong A_1 \times \cdots \times A_n$.

Either Q or R is normal, so $QR \leq G$ is a subgroup of order $|Q| \cdot |R| = 5 \cdot 7 = 35$.

By the theorem, since 5 / 7 - 1, QR is cyclic.

1.2.3 c

In QR, there are

- 35 5 + 1 elements of order not equal to 5,
- 5-7+1 elements of order *not* equal to 7.

Since $QR \leq G$, there are at least this many such elements in G.

Suppose $n_5 = 21$ or $n_7 = 15$.

- Combining elements of order 5 with elements not of order 5 yields at least 31 elements of order not 5 with $n_5(5-1) = 21(4) = 84$ elements of order 5, this contributes 31 + 84 > 105 elements contradiction.
- Similarly, there are at least 29 elements of order not 7, plus $n_7(7-1) = 15(6) = 90$ elements of order 7, yielding 29 + 90 > 105 elements.

So both $n_5 = 1, n_7 = 1$.

1.2.4 d

If P is normal, then G = PQR with all intersections of the form $AB \cap C = \{e\}$, and since P, Q, R are all normal we have $G \cong P \times Q \times R \cong \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_7 \cong \mathbb{Z}_{105}$ by characterization of direct products and the Chinese Remainder theorem (which is cyclic).

1.3 3

Just fiddling with computations. Context hints that we should be considering things like x^2 and a + b.

1.3.1 a

$$2a = (2a)^2 = 4a^2 = 4a \implies 2a = 0.$$

Note that this implies x = -x for all $x \in R$.

1.3.2 b

$$a + b = (a + b)^{2} = a^{2} + ab + ba + b^{2} = a + ab + ba + b$$

$$\implies ab + ba = 0$$

$$\implies ab = -ba$$

$$\implies ab = ba \text{ by (a)}.$$

1.4 4

Theorem: F^{\times} is always cyclic for F a field

1.4.1 a

Since |F| = q and [E : F] = k, we have $|E| = q^k$ and $|E^{\times}| = q^k - 1$. Noting that $\zeta \in E^{\times}$ we must have $n = o(\zeta) \mid |E^{\times}| = q^k - 1$ by Lagrange's theorem.

1.4.2 b

Rephrasing (a), we have

$$n \mid q^k - 1 \iff q^k - 1 \cong 0 \mod n$$

 $\iff q^k \cong 1 \mod n$
 $\iff m \coloneqq o(q) \mid k.$

1.4.3 c

Since $m \mid k \iff k = \ell m$, (claim) there is an intermediate subfield M such that

$$E \le M \le F$$
 $k = [F : E] = [F : M][M : E] = \ell m$,

so M is a degree m extension of E.

Now consider M^{\times} . By the argument in (a), n divides $q^m - 1 = |M^{\times}|$, and M^{\times} is cyclic, so it contains a cyclic subgroup H of order n.

But then $x \in H \implies p(x) := x^n - 1 = 0$, and since p(x) has at most n roots in a field. So $H = \{x \in M \ni x^n - 1 = 0\}$, i.e. H contains all solutions to $x^n - 1$ in E[x].

But ζ is one such solution, so $\zeta \in H \subset M^{\times} \subset M$. Since $F[\zeta]$ is the smallest field extension containing ζ , we must have F = M, so $\ell = 1$, and k = m.

Todo: revisit, tricky!

1.5 5

One-step submodule test.

1.5.1 a

It suffices to show that

$$r \in R, t_1, t_2 \in \text{Tor}(M) \implies rt_1 + t_2 \in \text{Tor}(M).$$

We have

$$t_1 \in \text{Tor}(M) \implies \exists s_1 \neq 0 \text{ such that } s_1 t_1 = 0$$

 $t_2 \in \text{Tor}(M) \implies \exists s_2 \neq 0 \text{ such that } s_2 t_2 = 0.$

Since R is an integral domain, $s_1s_2 \neq 0$. Then

$$s_1s_2(rt_1 + t_2) = s_1s_2rt_1 + s_1s_2t_2$$

= $s_2r(s_1t_1) + s_1(s_2t_2)$ since R is commutative
= $s_2r(0) + s_1(0)$
= 0 .

1.5.2 b

Let $R = \mathbb{Z}/6\mathbb{Z}$ as a $\mathbb{Z}/6\mathbb{Z}$ -module, which is not an integral domain as a ring.

Then $[3]_6 \curvearrowright [2]_6 = [0]_6$ and $[2]_6 \curvearrowright [3]_6 = [0]_6$, but $[2]_6 + [3]_6 = [5]_6$, where 5 is coprime to 6, and thus $[n]_6 \curvearrowright [5]_6 = [0] \implies [n]_6 = [0]_6$. So $[5]_6$ is not a torsion element.

So the set of torsion elements are not closed under addition, and thus not a submodule.

1.5.3 c

Suppose R has zero divisors $a, b \neq 0$ where ab = 0. Then for any $m \in M$, we have $b \curvearrowright m := bm \in M$ as well, but then

$$a \curvearrowright bm = (ab) \curvearrowright m = 0 \curvearrowright m = 0_M$$

so m is a torsion element for any m.

1.6 6

Prime ideal: \mathfrak{p} is prime iff $ab \in \mathfrak{p} \implies a \in \mathfrak{p}$ or $b \in \mathfrak{p}$. Silly fact: 0 is in every ideal!

Zorn's Lemma: Given a poset, if every chain has an upper bound, then there is a maximal element. (Chain: totally ordered subset.)

Corollary: If $S \subset R$ is multiplicatively closed with $0 \notin S$ then $\{I \leq R \ni J \cap S = \emptyset\}$ has a maximal element. (TODO: PROVE)

Theorem: If R is commutative, maximal \implies prime for ideals. (TODO: PROVE)

Theorem: Non-units are contained in a maximal ideal. (See HW?)

1.6.1 a

Let \mathfrak{p} be prime and $x \in \mathbb{N}$. Then $x^k = 0 \in \mathfrak{p}$ for some k, and thus $x^k = xx^{k-1} \in \mathfrak{p}$. Since \mathfrak{p} is prime, inductively we obtain $x \in \mathfrak{p}$.

1.6.2 b

Let $S = \{r^k \mid k \in \mathbb{N}\}$ be the set of positive powers of r. Then $S^2 \subseteq S$, since $r^{k_1} r^{k_2} = r^{k_1 + k_2}$ is also a positive power of r, and $0 \notin S$ since $r \neq 0$ and $r \notin N$.

By the corollary, $\{I \leq R \ni I \cap S = \emptyset\}$ has a maximal element \mathfrak{p} .

Since R is commutative, \mathfrak{p} is prime.

1.6.3 c

Suppose R has a unique prime ideal \mathfrak{p} .

Suppose $r \in R$ is not a unit, and toward a contradiction, suppose that r is also not nilpotent.

Since r is not a unit, r is contained in some maximal (and thus prime) ideal, and thus $r \in \mathfrak{p}$.

Since $r \notin N$, by (b) there is a maximal ideal \mathfrak{m} that avoids all positive powers of r. Since \mathfrak{m} is prime, we must have $\mathfrak{m} = \mathfrak{p}$. But then $r \notin \mathfrak{p}$, a contradiction.

1.7 7

Galois Theory.

Galois = normal + separable.

Separable: Minimal polynomial of every element has distinct roots. **Normal (if separable)**: Splitting field of an irreducible polynomial.

Definition: ζ is a primitive root of unity iff $o(\zeta) = n$ in F^{\times} . $\phi(p^k) = p^{k-1}(p-1)$

The lattice:

Let $K = \mathbb{Q}(\zeta)$. Then K is the splitting field of $f(x) = x^n - 1$, which is irreducible over \mathbb{Q} , so K/\mathbb{Q} is normal. We also have $f'(x) = nx^{n-1}$ and $\gcd(f, f') = 1$ since they can not share any roots.

Or equivalently,
$$f$$
 splits into distinct linear factors $f(x) = \prod_{k \le n} (x - \zeta^k)$.

Since it is a Galois extension, $|Gal(K/\mathbb{Q})| = [K : \mathbb{Q}] = \phi(n)$ for the totient function.

We can now define maps

$$\tau_j: K \to K$$
$$\zeta \mapsto \zeta^j$$

and if we restrict to j such that $\gcd(n,j)=1$, this yields $\phi(n)$ maps. Noting that if ζ is a primitive root, then (n,j)=1 implies that that ζ^j is also a primitive root, and hence another root of $\min(\zeta,\mathbb{Q})$, and so these are in fact automorphisms of K that fix \mathbb{Q} and thus elements of $\operatorname{Gal}(K/\mathbb{Q})$.

So define a map

$$\theta: \mathbb{Z}_n^{\times} \to K$$
$$[j]_n \mapsto \tau_j.$$

from the *multiplicative* group of units to the Galois group.

The claim is that this is a surjective homomorphism, and since both groups are the same size, an isomorphism.

Surjectivity:

Letting $\sigma \in K$ be arbitrary, noting that $[K : \mathbb{Q}]$ has a basis $\{1, \zeta, \zeta^2, \cdots, \zeta^{n-1}\}$, it suffices to specify $\sigma(\zeta)$ to fully determine the automorphism. (Since $\sigma(\zeta^k) = \sigma(\zeta)^k$.)

In particular, $\sigma(\zeta)$ satisfies the polynomial $x^n - 1$, since $\sigma(\zeta)^n = \sigma(\zeta^n) = \sigma(1) = 1$, which means $\sigma(\zeta)$ is another root of unity and $\sigma(\zeta) = \zeta^k$ for some $1 \le k \le n$.

Moreover, since $o(\zeta) = n \in K^{\times}$, we must have $o(\zeta^k) = n \in K^{\times}$ as well. Noting that $\{\zeta^i\}$ forms a cyclic subgroup $H \leq K^{\times}$, then $o(\zeta^k) = n \iff (n, k) = 1$ (by general theory of cyclic groups).

Thus θ is surjective.

Homomorphism:

$$\tau_j \circ \tau_k(\zeta) = \tau_j(\zeta^k) = \zeta^{jk} \implies \tau_{jk} = \theta(jk) = \tau_j \circ \tau_k.$$

Part 2:

We have $K \cong \mathbb{Z}_{20}^{\times}$ and $\phi(20) = 8$, so $K \cong \mathbb{Z}_8$, so we have the following subgroups and corresponding intermediate fields:

- $0 \sim \mathbb{Q}(\zeta_{20})$
- $\mathbb{Z}_2 \sim \mathbb{Q}(\omega_1)$

- $\mathbb{Z}_4 \sim \mathbb{Q}(\omega_2)$ $\mathbb{Z}_8 \sim \mathbb{Q}$

For some elements ω_i which exist by the primitive element theorem.

1.8 8

1.8.1 a.

Let $\mathbf{v} \in \Lambda$, so $\mathbf{v} = \sum r_i \mathbf{e}_i$ where $r_i \in \mathbb{Z}$.

Then if $\mathbf{x} = \sum s_i \mathbf{e}_i \in \Lambda$, we have

$$\mathbf{v} \cdot \mathbf{x} = \sum r_i s_i \in \mathbb{Z}$$

since each term is just a product of integers, so $\mathbf{v} \in \Lambda^{\vee}$ by definition.

1.8.2 b.

 $\det M \neq 0$:

Suppose det M=0. Then $\ker M\neq \mathbf{0}$, so let $\mathbf{v}\in\ker M$ be given by $\mathbf{v}=[v_1,\cdots,v_n]$.

Note that

$$M\mathbf{v} = 0 \implies \begin{bmatrix} \mathbf{e}_1 \cdot \mathbf{e}_1 & \mathbf{e}_1 \cdot \mathbf{e}_2 & \cdots \\ \mathbf{e}_2 \cdot \mathbf{e}_1 & \mathbf{e}_2 \cdot \mathbf{e}_2 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix} = \mathbf{0}$$

$$\implies \sum_{j} (\mathbf{e}_1 \cdot \mathbf{e}_j) v_j = 0 \quad \forall j.$$

Let $\mathbf{w} = \sum v_i \mathbf{e}_i$. Then $\mathbf{e}_k \cdot \mathbf{w} = \sum_i v_j \mathbf{e}_k \cdot \mathbf{e}_j = 0$ for every k, so \mathbf{w} is orthogonal to every \mathbf{e}_k , and thus its span.

But **w** is in the span of the \mathbf{e}_i by definition, so

$$\mathbf{w} \cdot \mathbf{w} = 0 \implies \mathbf{w} = 0 \implies \{\mathbf{e}_i\}$$
 is linearly dependent,

a contradiction.

Alternative proof:

Write $M = A^t A$ where A has the \mathbf{e}_i as columns. Then

$$M\mathbf{x} = 0 \implies A^t A \mathbf{x} = 0$$

$$\implies \mathbf{x}^t A^t A \mathbf{x} = 0$$

$$\implies ||A\mathbf{x}||^2 = 0$$

$$\implies A\mathbf{x} = 0$$

$$\implies \mathbf{x} = 0,$$

since A has full rank because the \mathbf{e}_i are linearly independent.

The rows of M^{-1} span Λ^{\vee} :

Equivalently, the columns of M^{-t} span Λ^{\vee} .

Possibly an error – should be the rows of A^{-1} instead of M^{-1} ?

Let $B = A^{-t}$ and let \mathbf{b}_i denote the columns of B, i.e. the span of im B.

Since $A \in \mathrm{GL}(n,\mathbb{Z})$ which is a group, $A^{-1}, A^t, A^{-t} \in \mathrm{GL}(n,\mathbb{Z})$ as well.

$$\mathbf{v} \in \Lambda^{\vee} \implies \mathbf{e}_{i} \cdot \mathbf{v} = z_{i} \in \mathbb{Z} \quad \forall i$$

$$\implies A^{t} \mathbf{v} = \mathbf{z} \in \mathbb{Z}^{n}$$

$$\implies \mathbf{v} = A^{-t} \mathbf{z} := B \mathbf{z} \in \text{im } B$$

$$\implies \text{span } \Lambda^{\vee} \subseteq \text{im } B,$$

and

$$B^{t}A = (A^{-t})^{t}A = A^{-1}A = I$$

$$\implies \mathbf{b}_{i} \cdot \mathbf{e}_{j} = \delta_{ij} \in \mathbb{Z}$$

$$\implies \text{im } B \subseteq \text{span } \Lambda^{\vee}.$$

1.8.3 c.

?

2 Spring 2019

2.1 1

A is diagonalizable iff $\min_{A}(x)$ is separable.

See further discussion here.

Since A^n is diagonalizable (and $\mathbb C$ is algebraically closed), we can write $\min_{A^n}(x)$ as a product of **distinct** linear factors:

$$\min_{A^n}(x) = \prod_{i=1}^k (x - \lambda_i), \quad \min_{A^n}(A^n) = 0$$

where λ_i are the **distinct** eigenvalues of A^n .

Moreover $A \in \mathrm{GL}(n,\mathbb{C}) \implies A^n \in \mathrm{GL}(n,\mathbb{C})$, so $\lambda_i \neq 0$ for any i.

This implies that there are no roots with multiplicity, since x^k is not a factor of $\mu_{A^n}(x)$, meaning that the k terms in the product correspond to exactly k distinct factors.

We can now construct a polynomial that annihilates A, namely

$$q_A(x) := \min_{A^n} (x^n) = \prod_{i=1}^k (x^n - \lambda_i),$$

where we can note that $q_A(A) = \min_{A^n}(A^n) = 0$, and so $\min_A(x) \mid q_A(x)$ by minimality.

But then $\min_{A}(x)$ must have distinct linear factors, so A is diagonalizable.

2.2 2

2.2.1 (a)

Go to a field extension. Orders of multiplicative groups for finite fields are known.

Since $\pi(x)$ is irreducible, we can consider the quotient $K = \frac{\mathbb{F}_p[x]}{\langle \pi(x) \rangle}$, which is an extension of \mathbb{F}_p of degree d and thus a field of size p^d with a natural quotient map $\rho : \mathbb{F}_p[x] \to K$.

Since K^{\times} is a group of size $p^d - 1$, we know that for any $y \in K^{\times}$, we have by Lagrange's theorem that the order of y divides $p^d - 1$ and so $y^{p^d} = y$.

So every element in K satisfies $q(x) = x^{p^d} - x$.

Now letting $x \in \mathbb{F}^p$ be arbitray, since f is a group homomorphism, we have

$$\rho(q(x)) = q(\rho(x)) = \rho(x)^{p^d} - \rho(x) = 0 \in K$$

$$\implies q(x) \in \ker \rho$$

$$\implies q(x) \in \langle \pi(x) \rangle$$

$$\implies \pi(x) \mid q(x) = x^{p^d} - x.$$

2.2.2 (b)

Some potentially useful facts:

- $\mathbb{GF}(p^n)$ is the splitting field of $x^{p^n} x$
- $x^{p^d} x \mid x^{p^n} x \iff d \mid n$
- $\mathbb{GF}(p^d) \leq \mathbb{GF}(p^n) \iff d \mid n$
- $x^{p^n} x = \prod f_i(x)$ over all irreducible monic f_i of degree d dividing n.

Let $\phi_n(x) = x^{p^n} - x$ and $\phi_d(x) = x^{p^d} - x$.

Let γ be an irreducible degree n polynomial over \mathbb{F}_p , then $L := \mathbb{F}[x]/\langle \gamma \rangle \cong \mathbb{GF}(p^n)$.

Note that by (a), $\pi(x) \mid \phi_d(x)$ and $\gamma(x) \mid \phi_n(x)$.

Then (claim) $\phi_n(x)$ splits in L. Since $\pi(x) \mid \phi_n(x), \pi(x)$ also splits in L.

Let $\alpha \in L$ be a root of $\pi(x)$. Since $\pi(x)$ is irreducible, deg min $(\alpha, \mathbb{F}_p) = d$.

Then $\mathbb{F}_p \leq \mathbb{F}_p(\alpha) \leq L$, and so

$$n = [L : \mathbb{F}_p]$$

= $[L : \mathbb{F}_p(\alpha)] [\mathbb{F}_p(\alpha) : \mathbb{F}_p]$
= ℓd ,

so d divides n.

Proof of converse: If $d \mid n$, use the fact that $x^{p^n} - x = \prod f_i(x)$ over all irreducible monic f_i of degree d dividing n. So $f = f_i$ for some i. Proof of that fact:

2.3 3

- Sylow theorems:
- $n_p \cong 1 \mod p$
- $n_p \mid m$.

It turns out that $n_3 = 1$ and $n_5 = 1$, so $G \cong S_3 \times S_5$ since both subgroups are normal.

There is only one possibility for S_5 , namely $S_5 \cong \mathbb{Z}/(5)$.

There are two possibilities for S_3 , namely $S_3 \cong \mathbb{Z}/(3^2)$ and $\mathbb{Z}/(3)^2$.

Thus

- $G \cong \mathbb{Z}/(9) \times \mathbb{Z}/(5)$, or $G \cong \mathbb{Z}/(3)^2 \times \mathbb{Z}/(5)$.

2.4 4

- Notation: X/G is the set of G-orbits
- Notation: $X^g = \{x \in x \ni g \curvearrowright x = x\}$
- Burnside's formula: $|G||X/G| = \sum |X^g|$.

2.4.1 a

Letting n be the number of conjugacy classes, what we want to show is that

$$P([g,h]=1) = \frac{n}{|G|}$$

Define a sample space $\Omega = G^2$, so $|\Omega| = |G|^2$.

Let G act on itself by conjugation, which partitions G into conjugacy classes.

What are the orbits? $\mathcal{O}_g = \{hgh^{-1} \ni h \in G\}$, which is the conjugacy class of g.

What are the fixed points? $X^g = \{h \in G \ni hgh^{-1} = g\}$, which are the elements of G that commute with g.

Then |X/G| = n, the number of conjugacy classes.

We have Burnside's formula:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|,$$

We can rearrange Burnside's formula to obtain

$$|X/G||G|=n|G|=\sum_{g\in G}|X^g|$$

and so

$$P([g,h] = 1) = \frac{|\{(g,h) \ni [g,h] = 1\}|}{|G|^2}$$

$$= \frac{\sum_{g \in G} |X^g|}{|G|^2}$$

$$= \frac{|X/G||G|}{|G|^2}$$

$$= \frac{n|G|}{|G|^2}$$

$$= \frac{n}{|G|}.$$

2.4.2 b

Class equation:

$$|G| = Z(G) + \sum_{\substack{\text{One } x \text{ from each conjugacy class}}} [G:Z(x)]$$

where $Z(x) = \{g \in G \ni [g, x] = 1\}.$

2.4.3 c

Todo: revisit.

As shown in part 1,

$$\mathcal{O}_x = \{g \curvearrowright x \ni g \in G\} = \left\{h \in G \ni ghg^{-1} = h\right\} = C_G(g),$$

and by the class equation

$$|G| = |Z(G)| + \sum_{\substack{\text{One } x \text{ from each conjugacy class}}} [G:Z(x)]$$

Now note

- Each element of Z(G) is in its own conjugacy class, contributing |Z(G)| classes to n.
- Every other class of elements in $G \setminus Z(G)$ contains at least 2 elements
 - Claim: each such class contributes at least $\frac{1}{2}|G\setminus Z(G)|$.

Thus

$$n \le |Z(G)| + \frac{1}{2}|G \setminus Z(G)|$$

$$= |Z(G)| + \frac{1}{2}|G| - \frac{1}{2}|Z(G)|$$

$$= \frac{1}{2}|G| + \frac{1}{2}|Z(G)|$$

$$\implies \frac{n}{|G|} \le \frac{1}{2} \frac{|G|}{|G|} + \frac{1}{2} \frac{|Z(G)|}{|G|}$$
$$= \frac{1}{2} + \frac{1}{2} \frac{1}{[G:Z(G)]}.$$

2.5 5

2.5.1 a

Suppose Tor(M) has rank $n \ge 1$. Then let **r** be a generating element.

However, since $\mathbf{r} \in \text{Tor}(M)$, there exists an $s \in R \setminus 0_R$ such that $s\mathbf{r} = 0_M$.

But then $s\mathbf{r} = 0$ with $s \neq 0$, so $\{\mathbf{r}\}$ is by definition not linearly independent.

2.5.2 b

Let $n = \operatorname{rank} M$, and let $\mathcal{B} = \{\mathbf{r}_i\}_{i=1}^n \subseteq R$ be a generating set. Let $M' := M/\operatorname{Tor}(M)$ and $\pi: M \to M'$ be the canonical quotient map.

Claim: $\pi(\mathcal{B})$ is a basis for M'.

Linearly Independent:

Let $\mathcal{B}' = \pi(\mathcal{B}) = \{\mathbf{r}_i + \text{Tor}(M)\}_{i=1}^n$ and suppose that

$$\sum_{i=1}^{n} s_i(\mathbf{r}_i + \text{Tor}M) = \mathbf{0}_{M'}.$$

Since $x = 0 \in M' \iff x \in \text{Tor}(M)$,

$$\sum_{i=1}^{n} s_{i} \mathbf{r}_{i} \in \text{Tor}(M) \implies \exists \alpha \neq 0_{R} \in R \text{ such that } \alpha_{i} \sum s_{i} \mathbf{r}_{i} = \mathbf{0}_{M}.$$

But since R is an integral domain and $\alpha \neq 0$, we must have $s_i = 0$ for all i.

Spanning:

Write $\pi(\mathcal{B}) = {\mathbf{r}_i + \text{Tor}(M)}_{i=1}^n$.

Letting $\mathbf{x} \in M'$ be arbitrary, we can write $\mathbf{x} = \mathbf{m} + \text{Tor}(M)$ for some $\mathbf{m} \in M$ where $\pi(\mathbf{m}) = \mathbf{x}$.

But since \mathcal{B} is a basis for M, we have $\mathbf{m} = \sum_{i=1}^{n} s_i \mathbf{r}_i$, and so

$$\mathbf{x} = \pi(\mathbf{m})$$

$$= \pi(\sum_{i=1}^{n} s_i \mathbf{r}_i)$$

$$= \sum_{i=1}^{n} s_i \pi(\mathbf{r}_i)$$

$$= \sum_{i=1}^{n} s_i (\mathbf{r}_i + \text{Tor}(M)),$$

which expresses \mathbf{x} as a linear combination of elements in \mathcal{B}' .

2.5.3 c

M is not free: Claim: If $I \subseteq R$ is a free R-module, then I is a principal ideal.

Proof: Let $I = \langle B \rangle$ for some basis – if B contains more than 1 element, say m_1 and m_2 , then $m_2m_1 - m_1m_2 = 0$ is a linear dependence, so B has only one element m.

But then $I = \langle m \rangle = R_m$ is cyclic as an R- module and thus principal as an ideal of R. The result follows by the contrapositive.

M is rank 1: For any module, we can take an element $M \neq 0_M$ and consider its cyclic module Rm.

Thus the rank of M is at least 1, since $\{m\}$ is a subset of a spanning set. It can not be linearly dependent, since R is an integral domain and $M \subseteq R$, so $\alpha m = 0 \implies \alpha = 0$.

However, the rank is at most 1 since R is commutative. If we take two elements $\mathbf{m}, \mathbf{n} \in M$, then since $m, n \in R$ as well, we have nm = mn and so

$$(n)\mathbf{m} + (-m)\mathbf{n} = 0_R = 0_M$$

is a linear dependence. $2\ M$ is torsion-free:

Let $x \in \text{Tor} M$, then there exists some $r \neq 0 \in R$ such that rx = 0. But $x \in R$ and R is an integral domain, so x = 0, and thus $\text{Tor}(M) = \{0_R\}$.

2.6 6

2.6.1 a

Define the set of proper ideals

$$S = \{ J \ni I \subseteq J < R \},\,$$

which is a poset under set inclusion.

Given a chain $J_1 \subseteq \cdots$, there is an upper bound $J := \bigcup J_i$, so Zorn's lemma applies.

2.6.2 b

 \Longrightarrow :

We will show that $x \in J(R) \implies 1 + x \in R^{\times}$, from which the result follows by letting x = rx.

Let $x \in J(R)$, so it is in every maximal ideal, and suppose toward a contradiction that 1+x is **not** a unit.

Then consider $I = \langle 1+x \rangle \leq R$. Since 1+x is not a unit, we can't write s(1+x) = 1 for any $s \in R$, and so $1 \notin I$ and $I \neq R$

So I < R is proper and thus contained in some maximal proper ideal $\mathfrak{m} < R$ by part (1), and so we have $1 + x \in \mathfrak{m}$. Since $x \in J(R)$, $x \in \mathfrak{m}$ as well.

But then $(1+x)-x=1\in\mathfrak{m}$ which forces $\mathfrak{m}=R$.

 \leftarrow

Fix $x \in R$, and suppose 1 + rx is a unit for all $r \in R$.

Suppose towards a contradiction that there is a maximal ideal \mathfrak{m} such that $x \notin \mathfrak{m}$ and thus $x \notin J(R)$.

Consider

$$M'\coloneqq \{rx+m\ \ni r\in R,\ m\in M\}\,.$$

Since \mathfrak{m} was maximal, $\mathfrak{m} \subsetneq M'$ and so M' = R.

So every element in R can be written as rx + m for some $r \in R, m \in M$. But $1 \in R$, so we have

$$1 = rx + m.$$

So let s = -r and write 1 = sx - m, and so m = 1 + sx.

Since $s \in R$ by assumption 1 + sx is a unit and thus $m \in \mathfrak{m}$ is a unit, a contradiction.

So $x \in \mathfrak{m}$ for every \mathfrak{m} and thus $x \in J(R)$.

2.6.3 c

- $\mathfrak{N}(R) = \{x \in R \ni x^n = 0 \text{ for some } n\}.$
- $J(R) = \operatorname{Spec}_{\max}(R) = \bigcap_{\mathfrak{m} \text{ maximal}} \mathfrak{m}.$

We want to show $J(R) = \mathfrak{N}(R)$.

 $\mathfrak{N}(R) \subseteq J(R)$:

We'll use the fact $x \in \mathfrak{N}(R) \implies x^n = 0 \implies 1 + rx$ is a unit $\iff x \in J(R)$ by (b):

$$\sum_{k=1}^{n-1} (-x)^k = \frac{1 - (-x)^n}{1 - (-x)} = (1+x)^{-1}.$$

 $J(R) \subseteq \mathfrak{N}(R)$:

Let $x \in J(R) \setminus \mathfrak{N}(R)$.

Since R is finite, $x^m = x$ for some m > 0. Without loss of generality, we can suppose $x^2 = x$ by replacing x^m with x^{2m} .

If 1-x is not a unit, then (1-x) is a nontrivial proper ideal, which by (a) is contained in some maximal ideal \mathfrak{m} . But then $x \in \mathfrak{m}$ and $1-x \in \mathfrak{m} \implies x+(1-x)=1 \in \mathfrak{m}$, a contradiction.

So 1 - x is a unit, so let $u = (1 - x)^{-1}$.

Then

$$(1-x)x = x - x^2 = x - x = 0$$

$$\implies u(1-x)x = x = 0$$

$$\implies x = 0.$$

2.7 7

Work with matrix of all ones instead. Eyeball eigenvectors. Coefficients in minimal polynomial: size of largest Jordan block Dimension of eigenspace: number of Jordan blocks

2.7.1 a

Let A be the matrix in the question, and B be the matrix containing 1's in every entry.

Noting that B = A + I, we have

$$B\mathbf{x} = \lambda \mathbf{x}$$

$$\iff (A+I)\mathbf{x} = \lambda \mathbf{x}$$

$$\iff A\mathbf{x} = (\lambda - 1)\mathbf{x},$$

so it suffices to find the eigenvalues of B.

The vector $\mathbf{v}_1 = \sum \mathbf{e}_i$ (the vector of all 1's) is an eigenvector with eigenvalue $\lambda = p$ and dim $E_{\lambda=p} = 1$.

Similarly, any vector of the form $\mathbf{p}_i \coloneqq \mathbf{e}_1 - \mathbf{e}_{i+1}$ where $i \neq j$ is also an eigenvector with eigenvalues $\lambda = 0$. This supplies the remaining p-1 possibilities. Note that this also supplies p-1 linearly independent vectors that span the corresponding eigenspace, so dim $E_{\lambda=0} = p-1$.

So

$$Spec(B) = \{(\lambda_1 = p, m_1 = 1), (\lambda_2 = 0, m_2 = p - 1)\}$$

$$\implies Spec(A) = \{(\lambda_1 = p - 1, m_1 = 1), (\lambda_2 = -1, m_2 = p - 1)\}$$

$$\implies \chi_{A, \mathbb{Q}}(x) = (x - (p - 1))(x - (-1))^{p - 1}$$

and geometric multiplicities are preserved, so

$$JCF_{\mathbb{Q}}(A) = J_{\lambda=p-1}^{1} \oplus (p-1)J_{\lambda=-1}^{1} = \begin{bmatrix} p-1 & 0 & 0 & \cdots & 0 & 0 \\ \hline 0 & -1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & -1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & \ddots & \ddots & 0 \\ \hline 0 & 0 & 0 & \cdots & -1 & 0 \\ \hline 0 & 0 & 0 & \cdots & 0 & -1 \end{bmatrix}.$$

The matrix P such that $A = PJP^{-1}$ will have columns the bases of the generalized eigenspaces. In this case, the generalized eigenspaces are the usual eigenspaces, so

$$P = [\mathbf{v}_1, \mathbf{p}_1, \cdots, \mathbf{p}_{p-1}] = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 & 0 & 0 \\ 1 & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & 0 & 0 & -1 \end{bmatrix}.$$

2.7.2 b

For $F = \mathbb{F}_p$, all eigenvalues/vectors still lie in \mathbb{F}_p , but now -1 = p - 1, $\chi_{A,\mathbb{F}_p}(x) = (x + 1)^p$, and the Jordan blocks may merge.

But a computation shows that $(A+I)^2 = pA = 0 \in M_p(\mathbb{F}_p)$ and $(A+I) \neq 0$, so $\min_{A,\mathbb{F}_p}(x) = (x+1)^2$.

So the largest Jordan block corresponding to $\lambda = 0$ is of size 2, and we can check that dim $E_{\lambda=0} = \dim \{\mathbf{e}_i - \mathbf{e}_j \ni i \neq j\} = p-1$, so there are p-1 Jordan blocks for $\lambda = 0$.

Thus

$$JCF_{\mathbb{F}_p}(A) = J_{\lambda=-1}^2 \oplus (p-2)J_{\lambda=-1}^1 = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & -1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & \ddots & \ddots & 0 \\ \hline 0 & 0 & 0 & \cdots & -1 & 0 \\ \hline 0 & 0 & 0 & \cdots & 0 & -1 \end{bmatrix}.$$

To obtain a basis for $E_{\lambda=0}$, first note that the matrix $P = [\mathbf{v}_1, \mathbf{p}_1, \cdots, \mathbf{p}_{p-1}]$ from part (a) is singular over \mathbb{F}_p , since

$$\mathbf{v}_1 + \mathbf{p}_1 + \mathbf{p}_2 + \dots + \mathbf{p}_{p-2} = [p-1, 0, 0, \dots, 0, 1]$$
$$= [-1, 0, 0, \dots, 0, 1]$$
$$= -\mathbf{p}_{p-1}.$$

We still have a linearly independent set given by the first p-1 columns of P, so we can extend this to a basis by finding one linearly independent generalized eigenvector.

Solving $(A - I\lambda)\mathbf{x} = \mathbf{v}_1$ is our only option (the others won't yield solutions). This amounts to solving $B\mathbf{x} = \mathbf{v}_1$, which imposes the condition $\sum x_i = 1$, so we can choose $\mathbf{x} = [1, 0, \dots, 0]$.

Thus

$$P = [\mathbf{v}_1, \mathbf{x}, \mathbf{p}_1, \cdots, \mathbf{p}_{p-2}] = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 & 0 & 0 \\ 1 & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

2.8 8

- Galois theory.
- $\deg \Phi_n(x) = \phi(n)$
- $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) \cong \mathbb{Z}/(n)^{\times}$

Let $K = \mathbb{Q}(\zeta)$

2.8.1 a

Note that ζ is a primitive 8th root of unity, so we are looking for the degree of Φ_8 , the 8th cyclotomic polynomial, which is $\phi(8) = \phi(2^3) = 2^2(1) = 4$.

So
$$[K:\mathbb{Q}]=4$$
.

2.8.2 b

We have $Gal(K/\mathbb{Q}) \cong \mathbb{Z}/(8)^{\times} \cong \mathbb{Z}/(4)$, which is exactly one subgroup of index 2. Thus there is exactly **one** intermediate field of degree 2.

2.8.3 c

Let
$$L = \mathbb{Q}(\zeta, \sqrt[4]{2})$$
.

We can use the fact that $K = \mathbb{Q}(i, \sqrt{2})$ and thus $L = \mathbb{Q}(i, \sqrt{2}, \sqrt[4]{2})$.

Proof:
$$\zeta_8^2 = i$$
, and $\zeta_8 = \sqrt{2}^{-1} + i\sqrt{2}^{-1}$ so $\zeta_8 + \zeta_8^{-1} = 2/\sqrt{2} = \sqrt{2}$.

We can also use the fact that $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt[4]{2})$, and so $L = \mathbb{Q}(i, \sqrt[4]{2})$.

But then

$$[L:\mathbb{Q}] = [L:\mathbb{Q}(\sqrt[4]{2})] \ [\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}] = 2 \cdot 4 = 8.$$

Here we use the fact that the minimal polynomial of i over any subfield of $\mathbb R$ is always $x^2 + 1$.