Homewall 3-2

- D g(n) = 12 Finer $f'(n) = \frac{6}{\sqrt{n}} e^{n} + 12 \sqrt{n} e^{n}$ where $f' = 6/\sqrt{n}$ and $g' = e^{n}$
- ② $g(n) = (n^2 + n i)e^n$ $f'(n) = (ant 1)e^n + (n^2 + n - i)e^n$ where f' = ant 1 and $g'(n) = e^n$
- (3) $f(x) = (4n^2 4)(6n + 3)$ $f'(x) = 8n(6n + 3) + 6(4n^2 - 4)$ where f' = 8n and g'(x) = 6
- (9) $f(t) = (t^2+7t+5)(5t^2+5t^3)$ $f'(x) = (at+7)(5t^2+5t^3) + (-10t^2-15t^4)$ (t^2+7t+5) 10 Well f' = at+7 : a' = -10 - 15 $t^3 + t^4$
- β R(t) = (3t+et)(2-t^{1/2}) β R(t) = (3t+et)(2-t^{1/2})- $\frac{1}{\alpha}$ (3t+et) where $f'=(3+e^{t})$ and $g'=\frac{1}{\alpha\sqrt{L}}$

- 6 h(u)=g(u)f(u); n'(n)=g'(u)f(u)+f(u)g(u) h'(b)=-3(6)+-6(5)=-18-30
- (7) $f(x) = x^{5}h(x); f'(x) = 5n^{4}h(x) + x^{5}h'(x)$ h(-1) = 3: h(-1) = 6f'(-1) = 5(3) + (-1)(6) = 15-6=9
- (8) $g(x) = \frac{e^{x}}{3n-1}$; $g'(x) = \frac{e^{x}(3n-1)-3e^{x}}{(3n-1)^{2}}$ $g'(x) = (fg-g'f) - g^{2}$
- 9 g(n)= $\frac{1}{4n^4-8n^2-4}$; f'(n)=0; $g'(n)=16n^2-16n$ $g'(n)=-16n^2+16n/(4n^4-8n^2-4)^2$
- (1) $f(x) = \frac{u}{u+5/n}$; $f'(n)=1 g'(u)=1 \frac{5}{n^2}$ $f'(u) = \frac{(u+5/u) - u(1-5/u^2)}{(u+5/u)^2}$
- (1) $f(x) = \frac{h(x)}{n}$, $f'(n) = \frac{h'(n)n h(n)}{n^2}$ $f'(3) = \frac{Q(3) + 7}{q} = \frac{13}{q}$

Continued

(2)
$$f(u) = \frac{8 - ue^{u}}{u + e^{u}}$$

$$\frac{du}{du} = \frac{-e^{u} - ue^{u}(u + e^{u}) - (u + e^{u})(8 - ue^{u})}{(u + e^{u})^{2}}$$

(3)
$$f(2)=1$$
; $f'(2)=1$
 $g(2)=-1$; $g'(2)=4$
 $(f+g)'(2)=(-1+4)=3$
 $(f-g)'(2)=(-1-4)=3$
 $f\cdot g'(2)=f'g+g'f=-1(-1)+4(1)$
 $\Rightarrow 1+4=6$
 $(f\div g)'(2)=f'g\overline{*}g'f=1-4=3$