

Traffic Forecasting on New Roads Unseen in the Training Data Using Spatial Contrastive Pre-Training (SCPT)

Arian Prabowo (RMIT, DATA61/CSIRO), Hao Xue (UNSW), Wei Shao (DATA61/CSIRO), Piotr Koniusz (DATA61/CSIRO), Flora D. Sal-

Challenge: Forecasting on new roads Training using traffic Inference on new roads signals froms sensors unseen during training **SCPT**

Fig. 1: Our novel traffic forecasting framework, Spatial Contrastive Pre-Training (SCPT), enables accurate forecasts on new roads (orange) that were not seen during training.

- Many models uses learned road embeddings. It is not obvious how to learn new embeddings on new roads.
- We use contrastive learning to learn road embeddings from minimal data.

/representation/ \mathbf{e}_n

Fig. 2: The ST splitting strategy divides the dataset into nine subsets (left side), while the right side illustrates the usage of different subset combinations at different stages.

- This paper introduce a new traffic forecasting task: forecasting on new roads.
- This require a new strategy to split the dataset such that the roads in the test sets are not seen by the model during training.
- Since we use contrastive pre-training, there is a new pre-training stage here.

Method: SCPT ensor #1 sensor #4 5 85 31 49 Xn,: 29 80 55 72 36 94 encoder feature extractor encoder encoder agg.

- We use SimCLR-like method to pre-train the spatial encoder.
- Instead of using augmentation, we use stochastic sampling to generate different views.
- This also allow us to encode timeseries of different lengths.
- The encoder can be integrated to various backbones, one example is shown below.

Results: New roads

Table 1: Performances evaluation of the SCPT framework using ST split. In this setup, the models are trained on only 70%, validated on 10%, and tested on 20% of the roads. This table shows the average performance across 12 timesteps (1 hour) on the 20% of the roads that are unseen during the training. $\Delta(\%)$ denotes the percentage of error reduction.

Dataset	Methods	RMSE	MAE	MAPE
METR-LA	$\begin{array}{c} \text{GWN} \\ \text{GWN+SCPT} \\ \Delta(\%) \end{array}$	$ \begin{vmatrix} 10.3405 \pm 0.2634 \\ 10.0385 \pm 0.2112 \\ 3\% \end{vmatrix} $	4.7373 ± 0.1618 4.5645 ± 0.1556 4%	12.2677 ± 0.8058 11.5002 ± 0.8007 6%
PeMS-BAY	$\begin{array}{c} \text{GWN} \\ \text{GWN+SCPT} \\ \Delta(\%) \end{array}$	$ \begin{vmatrix} 4.5059 \pm 0.1613 \\ 3.9658 \pm 0.1266 \\ 12\% \end{vmatrix} $	2.0126 ± 0.1037 1.8163 ± 0.0875 10%	4.7779 ± 0.4303 4.1358 ± 0.2740 13%
PeMS-D7(m)	GWN GWN+SCPT $\Delta(\%)$		3.4327 ± 0.1974 3.0794 ± 0.1448 10%	8.6896 ± 0.7844 7.6770 ± 0.6678 12%

- The result shows that using SCPT on Graph WaveNet (GWN) backbone improves performance across all datasets and metrics.
- More importantly, the improvements become more pronounced at longer forecasting horizon as shown below.

Results: Scaling

Table 4: Detailed statistics on the real world datasets

	Dataset:	METR- LA	PeMS- BAY	PeMS- D7(m)	PeMS- 11k(s)
ial	Nodes	207	325	228	11,160
Spatial	Edges	1,515	2,694	7,304	234,966

- Most papers are benchmarked on artificially small dataset with only few hundred nodes (first three datasets: METR-LA, PeMS-BAY, and PeMS-D7m).
- To scale to large dataset (>10 000 nodes), SCPT can be trained only on 1% of the dataset, while treating the other 99% as new roads. This enable a trade-off between performance and speed.

	~			
Method:	GWN	GWN+SCPT	$\Delta(\%)$	GP-DCRNN
RMSE MAE MAPE medianMAE12 Training time	$ \begin{vmatrix} 5.6345 \pm 0.7469 \\ 2.8241 \pm 0.2840 \\ 5.6345 \pm 0.7469 \\ 3.4554 \pm 0.2343 \\ \textbf{00:16:39} \end{vmatrix} $	4.6741 ± 0.2089 2.4273 ± 0.2171 4.6741 ± 0.2089 3.2442 ± 0.3071 00:22:28	17% 14% 17% 6%	2.0200 7 days, 22:34:53
Roads seen in training (count)		111		11160
Roads seen in training $(\%)$		100%		

Conclusion

- A new task: forecasting on new roads
- A new method: SCPT
- A new benchmark task: scaling to large network

