Σ υναρτήσεις Όριο Συνάρτησης στο $x_0 \in \mathbb{R}$

Κωνσταντίνος Λόλας

Το αστέρι μας

$$\lim_{x\to x_0} f(x)$$

Το αστέρι μας

$$\lim_{x\to x_0} f(x)$$

Διαβάζεται ως:

■ Το όριο της εφ όταν το χι τείνει στο χιμηδεν

Το αστέρι μας

$$\lim_{x \to x_0} f(x)$$

Διαβάζεται ως:

- Το όριο της εφ όταν το χι τείνει στο χιμηδεν
- \blacksquare Το όριο της f στο x_0

Το αστέρι μας

$$\lim_{x \to x_0} f(x)$$

Διαβάζεται ως:

- Το όριο της εφ όταν το χι τείνει στο χιμηδεν
- \blacksquare Το όριο της f στο x_0
- lacksquare Όταν το x πάει στο x_0 , πού πάει η f...

 \blacksquare Τι σημαίνει πλησιάζω στο x_0

- \blacksquare Τι σημαίνει πλησιάζω στο x_0
 - Δημιουργήστε την γραμμή των πραγματικών αριθμών και πλησιάστε στο x=2

- \blacksquare Τι σημαίνει πλησιάζω στο x_0
 - Δημιουργήστε την γραμμή των πραγματικών αριθμών και πλησιάστε στο x=2
 - Με πόσους τρόπους μπορείτε να πλησιάσετε
- **T**ι σημαίνει η f πλησιάζει στο l

- \blacksquare Τι σημαίνει πλησιάζω στο x_0
 - **Δημιουργήστε την γραμμή των πραγματικών** αριθμών και πλησιάστε στο x=2
 - Με πόσους τρόπους μπορείτε να πλησιάσετε
- \blacksquare Τι σημαίνει η f πλησιάζει στο l
- Τι σημαίνει οσοδήποτε κοντά

Αριστερό πλευρικό όριο

$$\lim_{x\to x_0^-} f(x)$$

Αριστερό πλευρικό όριο

$$\lim_{x\to x_0^-} f(x)$$

Για μια συνάρτηση που ορίζεται σε διάστημα της μορφής (α,x_0) για κατάλληλο α

Αριστερό πλευρικό όριο

$$\lim_{x\to x_0^-} f(x)$$

Αριστερό πλευρικό όριο

$$\lim_{x\to x_0^-} f(x)$$

Δεξί πλευρικό όριο

$$\lim_{x \to x_0^+} f(x)$$

Αριστερό πλευρικό όριο

$$\lim_{x\to x_0^-} f(x)$$

Δεξί πλευρικό όριο

$$\lim_{x \to x_0^+} f(x)$$

Για μια συνάρτηση που ορίζεται σε διάστημα της μορφής (x_0,α) για κατάλληλο α

Άρα

Ύπαρξη ορίου

$$\lim_{x \to x_0^-} f(x) = \lambda \iff \begin{cases} \lim_{x \to x_0^-} f(x) = \lambda \in \mathbb{R} \\ \lim_{x \to x_0^+} f(x) = \lambda \in \mathbb{R} \\ \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) \end{cases}$$

Περιπτωσάρα

Av
$$f(x) = \sqrt{x}$$
?, $\mathbf{\acute{\eta}} f(x) = \ln(-x)$?

Περιπτωσάρα

Av
$$f(x) = \sqrt{x}$$
?, $\mathbf{\acute{\eta}} f(x) = \ln(-x)$?

Αν μια συνάρτηση ορίζεται μόνο σε διάστημα της μορφής (α,x_0) τότε $\lim_{x\to x_0}f(x)=\lim_{x\to x_0}f(x)$

Περιπτωσάρα

Av
$$f(x) = \sqrt{x}$$
?, $\mathbf{\acute{\eta}} f(x) = \ln(-x)$?

Αν μια συνάρτηση ορίζεται μόνο σε διάστημα της μορφής (α,x_0) τότε $\lim_{x\to x_0}f(x)=\lim_{x\to x_0^-}f(x)$

Όμοια για
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0^+} f(x)$$

Ιδιότητες

■ Το όριο στην περίπτωση που υπάρχει είναι μοναδικό

Ιδιότητες

- Το όριο στην περίπτωση που υπάρχει είναι μοναδικό
- $\blacksquare \lim_{x \to x_0} f(x) = k \iff \lim_{x \to x_0} \left(f(x) k \right) = 0$

Ιδιότητες

- Το όριο στην περίπτωση που υπάρχει είναι μοναδικό
- $\blacksquare \lim_{x \to x_0} f(x) = k \iff \lim_{x \to x_0} \left(f(x) k \right) = 0$
- $\blacksquare \lim_{x \to x_0} f(x) = k \iff \lim_{h \to 0} f(h + x_0) = k$

Θα περιγράφουμε

- Θα περιγράφουμε
- Θα υπολογίζουμε (χωρίς να ξέρουμε γιατί)

- Θα περιγράφουμε
- Θα υπολογίζουμε (χωρίς να ξέρουμε γιατί)
- Θα χρησιμοποιούμε ιδιότητες και τεχνικές

- Θα περιγράφουμε
- Θα υπολογίζουμε (χωρίς να ξέρουμε γιατί)
- Θα χρησιμοποιούμε ιδιότητες και τεχνικές
- αλλά και πάλι δεν θα καταλαβαίνουμε

Ουσιαστικά τα όρια θα τα υπολογίζουμε εντελώς μηχανικά

Επίδειξη

Στο διάλλειμα όποιος θέλει μπορεί να μάθει τον υπέρτατο ορισμό του ορίου

Επίδειξη

Στο διάλλειμα όποιος θέλει μπορεί να μάθει τον υπέρτατο ορισμό του ορίου. Ιδού:

Ορισμός ορίου

Έστω μια συνάρτηση ορισμένη σε διάστημα της μορφής $(\alpha,x_0)\cup(x_0,\beta)$. Λέμε ότι η συνάρτηση τείνει στο $\lambda\in\mathbb{R}$ καθώς το x τείνει στο x_0 όταν:

Επίδειξη

Στο διάλλε υπέρτατο (

Ορισμός οι

Έστω μια α μορφής (α,

ΚΑΙ ΜΕΤΑ ΒΑΛΑΜΕ ΣΤΟ ΣΧΟΛΙΚΌ ΤΟΝ ΟΡΙΣΜΟ ΤΟΥ ΟΡΙΟΥ ΑΠΟ ΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Για κάθε $\epsilon > 0$ υπάρχει $\delta > 0$ ώστε, για κάθε $x \in (\alpha, x_0) \cup (x_0, \beta)$ με $0 < |x - x_0| < \delta$ να ισχύει $|f(x) - \lambda| < \epsilon$

Εξάσκηση

Μόνο από το βιβλίο, μόνο γραφικά!

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση

