## Продолжение доказательства

*Доказательство.* По лемме позиция выигрышна хотя бы для одного игрока. Рассмотрим случай, когда она выигрышна для белого игрока.

B точке  $A = (0, k) \rightsquigarrow (0, \frac{k}{n})$ 

$$\left| f_1(\frac{A}{n}) - \frac{A_1}{n} \right| \ge \varepsilon$$

$$A_1=0; f_1(\frac{A}{n})\geq 0\Rightarrow$$
 при  $v=A$ 

$$f_1(\frac{v}{n}) - \frac{v_1}{n} \ge 0$$

B точке  $B=(n,l) \leadsto (1,\frac{l}{n})$ 

$$\left| f_1\left(\frac{B}{n}\right) - \frac{B_1}{n} \right| \ge \varepsilon$$

При v=B

$$f_1\left(\frac{v}{n}\right) - \frac{v_1}{n} \ge -\varepsilon$$

## 1 Определенный интеграл

## 1.1 Площадь

**Определение**.  $\mathcal{E}$  — множество всех ограниченных фигур в  $\mathbb{R}^2$  ("фигура" = подмножество  $\mathbb{R}^2$ )

Определение. Площадь это  $\sigma:\mathcal{E}\to\mathbb{R}_+$ , такое что:

- 1.  $A \in \mathcal{E}$   $A = A_1 \sqcup A_2$   $\sigma A = \sigma A_1 + \sigma A_2$  (конечная аддитивность)
- 2.  $\sigma([a,b] \times [c,d]) = (d-c)(b-a)$

 $\sqcup$  — дизьюнктное объединение; если  $x \in A_1$  и  $x \in A_2$ , то x "дважды  $\in$ "  $A_1 \sqcup A_2$  Мы пока что не знаем, существует ли площадь.

Примечание.

- 1. Монотонность:  $A \subset B$   $\sigma A \leq \sigma B$
- 2.  $\sigma$ (вертик. отр.) = 0

Определение. Ослабленная площадь  $\sigma: \mathcal{E} o \mathbb{R}_+$ :

- 1. Монотонна:  $E \subset D \Rightarrow \sigma E \leq \sigma D$
- 2. Нормирована
- 3. Ослабленная аддитивность:  $E \in \mathcal{E}$   $E = E_1 \cup E_2$   $E_1 \cap E_2$  вертикальный отрезок,  $E_1$  и  $E_2$  лежат каждый в своей полуплоскости относительно этого отрезка  $\Rightarrow \sigma E = \sigma E_1 + \sigma E_2$

Отрезок вертикальный, потому что этого требует определение определенного интеграла.

Пример. 1. 
$$\sigma E = \inf \left( \sum \sigma P_i : E \subset \bigcup_{\text{конечное}} P_k, P_k -$$
 прямоугольники  $\right)$ 

2. 
$$\sigma E = \inf \left( \sum \sigma P_i : E \subset \bigcup_{\text{счётн.}} P_k, P_k - \text{прямоугольники} \right)$$

Это разные площади. Покажем это на примере фигуры "все точки в квадрате с рациональными координатами". Первая площадь накрывает весь квадрат  $\Rightarrow \sigma_1 = 1$ .  $\sigma_2 = 0$ . Покажем это, накрыв n-тую точку квадратом размера  $\frac{\varepsilon}{2^n} \times \frac{\varepsilon}{2^n}$ .  $\sum \frac{\varepsilon}{4^n} = \varepsilon \frac{\frac{1}{4}}{1 - \frac{1}{2}} = \frac{\varepsilon}{3} \to 0 \Rightarrow \inf = 0$ 

Определение.  $f: \langle a, b \rangle \to \mathbb{R}$ 

 $f_{+} := \max(f, 0) -$  положительная срезка

 $f_{-} := \max(-f, 0)$  — отрицательная срезка

**Определение.**  $f : [a, b] \to \mathbb{R}; f > 0$ 

Под графиком (ПГ) $(f, [a, b]) = \{(x, y) : x \in [a, b]; 0 < y < f(x)\}$ 

Определение.  $f:[a,b]\to\mathbb{R}$ , непр.

$$\int_a^b f = \int_a^b f(x)dx := \sigma \Pi \Gamma(f_+, [a, b]) - \sigma \Pi \Gamma(f_-, [a, b])$$

Примечание. 1. 
$$f \ge 0 \Rightarrow \int_a^b f \ge 0$$

2. 
$$f \equiv c \Rightarrow \int_a^b f = c(b-a)$$

3. 
$$\int_a^b -f = -\int_a^b f$$
 — верно, т.к.  $(-f)_+ = f_-$ 

4. 
$$\int_a^b 0 = 0$$

Свойства интегралов:

1. Аддитивность по промежутку  $c \in (a, b)$ 

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

Доказательство.

$$\sigma\Pi\Gamma(f_+, [a, b]) = \sigma\Pi\Gamma(f_+, [a, c]) + \sigma\Pi\Gamma(f_+, [c, b])$$

2. Монотонность:  $f, g \in C[a, b]$   $f \leq g$ . Тогда

$$\int_{a}^{b} f \le \int_{a}^{b} g$$

Доказательство.

$$\Pi\Gamma(f_{+}) \subset \Pi\Gamma(g_{+}) \Rightarrow \sigma\Pi\Gamma(f_{+}) \leq \sigma\Pi\Gamma(g_{+})$$

$$\Pi\Gamma(f_{-}) \supset \Pi\Gamma(g_{-}) \Rightarrow \sigma\Pi\Gamma(f_{-}) \geq \sigma\Pi\Gamma(g_{-})$$

$$\sigma\Pi\Gamma(f_{+}) - \sigma\Pi\Gamma(f_{-}) \leq \sigma\Pi\Gamma(g_{+}) - \sigma\Pi\Gamma(g_{-})$$

Следствие.

$$\min f \cdot (b - a) \le \int_a^b f \le \max f \cdot (b - a)$$

M3137y2019

3.

$$\left| \int_{a}^{b} f \right| \leq \int_{a}^{b} |f|$$

$$-|f| \leq f \leq |f|$$

$$-\int_{a}^{b} |f| = \int_{a}^{b} -|f| \leq \int_{a}^{b} f \leq \int_{a}^{b} |f|$$

Определение.  $f \in C[a,b]$   $\Phi: [a,b] \to \mathbb{R}$   $\Phi(x) = \int_a^x f$  – интеграл с переменным верхним пределом

$$\Phi(a) = 0$$

**Теорема 1.**  $f \in C[a,b]$   $\Phi$  — интеграл с переменным верхним пределом. Тогда

$$\forall x \in [a, b] \quad \Phi'(x) = f(x)$$

Доказательство. Зафиксируем  $x \in [a, b]$   $y > x, y \le b$ 

$$\frac{\Phi(y) - \Phi(x)}{y - x} = \frac{\int_a^y f - \left(\int_a^y f + \int_y^x f\right)}{y - x} = \frac{\int_x^y f}{y - x} \underset{\exists c \in [x,y]}{=} \frac{f(c)(y - x)}{y - x} = f(c) \xrightarrow[y \to x+0]{} f(x)$$

x > y

$$\frac{\Phi(y) - \Phi(x)}{y - x} = \frac{1}{x - y} \int_{y}^{x} f(x) dx \xrightarrow{y \to x - 0} f(x)$$

Теорема о существовании первообразной — следствие теоремы Барроу.

Среднее значение функции на промежутке:

$$\frac{\int_{a}^{b} f(x)dx}{b-a}$$

Примечание.

$$\Psi(x) = \int_{x}^{b} f$$

$$\Psi'(x) = -f(x)$$

$$\left(\int_{x^2}^{10\sqrt{x}+1} f(t)dt\right)' = f(10\sqrt{x}+1)\frac{5}{\sqrt{x}} - f(x^2)2x$$
$$\left(\int_{x^2}^{\int_{x^2}^{e^x} \cos y^3 dy} \frac{\sin t}{\sqrt{t}} dt\right)'$$

Этот интеграл не написать в word. Тех нормас, как видите. Это единственное, зачем Кохась написал этот интеграл.

**Теорема 2.**  $f \in C[a,b]$  F — первообр. f Тогда  $\int_a^b f = F(b) - F(a)$ 

Доказательство.  $\Phi(x)=\int_a^x f$  — первообр.  $\exists C: F=\Phi+C$ 

$$\int_{a}^{b} f = \Phi(b) - \Phi(a) = F(b) - F(a)$$

Примечание. Все ослабленные площади совпадают на  $\Pi\Gamma(f,[a,b]),\quad f\in C[a,b]$ 

M3137y2019

Лекция 2

## 1.2 Правило Лопиталя

Лемма 1. Об ускоренной сходимости

1.  $f,g:D\subset X o\mathbb{R}$  a — предельная точка D

$$\exists U(a) : npu \ x \in \dot{U}(a) \cap D \quad f(x) \neq 0, g(x) \neq 0$$

Пусть 
$$\lim_{x \to a} f(x) = 0$$
  $\lim_{x \to a} g(x) = 0$ 

Тогда

$$\forall x_k \to a \quad (x_k \neq a, x_k \in D) \quad \exists y_k \to a \quad (y_k \neq a, y_k \in D)$$

такое, что

$$\lim_{k \to +\infty} \frac{f(y_k)}{g(x_k)} = 0 \quad \lim_{k \to +\infty} \frac{g(y_k)}{g(x_k)} = 0$$

Таким образом,  $g(y_k) \to 0$  быстрее, чем  $g(x_k) \to 0$ 

2. То же самое, но  $\lim f(x) = +\infty$ ,  $\lim g(x) = +\infty$ 

Доказательство. 1. Очевидно.

$$\forall k \quad \exists N \quad \forall n > N \quad |f(x_n)| < |g(x_k)| \frac{1}{k} \quad |g(x_n)| < |g(x_k)| \frac{1}{k}$$

$$\varepsilon := |g(x_k)|$$

$$k=1$$
  $y_1:=$  какой-нибудь  $x_n:\left|rac{f(x_n)}{g(x_k)}
ight|<1$   $\left|rac{g(x_n)}{g(x_k)}
ight|<1$   $k=2$   $y_2:=$  какой-нибудь  $x_n:\left|rac{f(x_n)}{g(x_k)}
ight|<rac{1}{2}$   $\left|rac{g(x_n)}{g(x_k)}
ight|<rac{1}{2}$ 

:

2. (а) Частный случай: Пусть  $g(x_n)$  возрастает. Берем  $k:m:=\min\{n:|f(x_n)|\geq \sqrt{g(x_k)}$  или  $|g(x_n)|\geq \sqrt{g(x_k)}\}$ 

$$y_k := x_{m-1} \Rightarrow |f(y_k)| \le \sqrt{g(x_k)} |g(y_k)| \le \sqrt{g(x_k)}$$

$$\left| \frac{f(y_k)}{g(x_k)} \right| \le \frac{\sqrt{g(x_k)}}{g(x_k)} = \frac{1}{\sqrt{g(x_k)}} \xrightarrow[k \to +\infty]{} 0$$

$$\left| \frac{g(y_k)}{g(x_k)} \right| \le \frac{\sqrt{g(x_k)}}{g(x_k)} = \frac{1}{\sqrt{g(x_k)}} \xrightarrow[k \to +\infty]{} 0$$

Зачем нужно возрастание? Кохась не знает.

(b) Общий случай:  $\tilde{g}(x_k) := \inf\{g(x_n), n = k, k+1 \ldots\}$   $\tilde{g}(x_k) \uparrow, \tilde{g}(x_k) \leq g(x_k)$ . Как в пункте (a) построим  $y_k$ 

$$\frac{f(y_k)}{g(x_k)} \le \frac{f(y_k)}{\tilde{g}(x_k)} \le \frac{1}{\sqrt{\tilde{g}(x_k)}} \xrightarrow[k \to +\infty]{} 0$$

$$\frac{g(y_k)}{g(x_k)} \le \frac{g(y_k)}{\tilde{g}(x_k)} \le \frac{1}{\sqrt{\tilde{g}(x_k)}} \to 0$$

M3137y2019

**Теорема 3**. 
$$f,g:(a,b)\to\mathbb{R}$$
  $a\in\overline{\mathbb{R}}$   $f,g-$  дифф.,  $g'\neq 0$  на  $(a,b)$  Пусть  $\frac{f'(x)}{g'(x)}\xrightarrow[x\to a+0]{}A\in\overline{\mathbb{R}}$  Пусть  $\lim_{x\to a}\frac{f(x)}{g(x)}$  — неопределенность  $\left\{\frac{0}{0},\frac{+\infty}{+\infty}\right\}$  Тогда  $\exists\lim_{x\to a}\frac{f(x)}{g(x)}=A$ 

Доказательство.  $g' \neq 0 \Rightarrow g' - \text{сохр.}$  знак  $\Rightarrow g - \text{монотонна}$ .

Для 
$$\frac{0}{0}$$
  $g(x) \neq 0$  в  $(a,b)$ 

По Гейне  $x_k \to a \ (x_k \neq a, x_k \in (a,b))$ 

Выберем  $y_k$  по лемме об ускоренной сходимости.

$$\frac{f(x_k) - f(y_k)}{g(x_k) - g(y_k)} = \frac{f'(\xi_k)}{g'(\xi_k)} - \text{т. Коши}$$

$$f(x_k) - f(y_k) = \frac{f'(\xi_k)}{g'(\xi_k)} (g(x_k) - g(y_k))$$

$$\frac{f(x_k)}{g(x_k)} - \frac{f(y_k)}{g(x_k)} = \frac{f'(\xi_k)}{g'(\xi_k)} \left(1 - \frac{g(y_k)}{g(x_k)}\right)$$

$$\frac{f(y_k)}{g(x_k)} \to 0 \quad \frac{g(y_k)}{g(x_k)} \to 0$$

$$x_k \to a \quad y_k \to a \quad \xi_k \to a$$

Пример.  $\frac{\pi}{2} - \operatorname{arctg} x \underset{x \to +\infty}{\sim} g(x)$ 

$$\lim_{x \to +\infty} \frac{\frac{\pi}{2} - \operatorname{arctg} x}{g(x)} = \lim_{x \to +\infty} \frac{\frac{1}{x^2 + 1}}{g'(x)} = 1$$

$$\int_0^x e^{t^2} dt \underset{x \to +\infty}{\sim} g(x)$$

$$\lim \frac{\int_0^x e^{t^2} dt}{g(x)} = \lim \frac{e^{x^2}}{g'(x)} = 1$$

М3137у2019 Лекция 2