CS 341 Course Notes

Fall 2025 - Trevor Brown

Talha Yildirim, tyildir [at] uwaterloo [dot] ca

Contents	
1 Introduction, Review of Asymptotics	3
1.1 Asymptotic Notation	4

1 Introduction, Review of Asymptotics

Definition 1.1 (Cost of Algorithms)

• Parameterized by an integer n, called the **size**

Runtime of a particular instance:

$$T(I) = \text{runtime on input } I$$

Worst case runtime (default choice):

$$T_{\text{worst}}(n) = \max_{I \text{ of size } n} T(I)$$

Best case runtime, not used much in this course:

$$T_{\mathrm{best}}(n) = \min_{I \text{ of size } n} T(I)$$

Remark

We will sometimes use more than one parameter:

- Number of rows and columns in a matrix Vertices and edges in a graph

1.1 Asymptotic Notation

Consider two function f(n), g(n) with values in $\mathbb{R}_{>0}$

Definition 1.1.1

Big-O:

1. We say that $f(n) \in O(g(n))$ if there exists C>0 and n_0 , such that for $n \geq n_0$, $f(n) \leq Cg(n)$

Definition 1.1.2

Big- Ω :

- 1. We say that $f(n)\in\Omega(g(n))$ if for all C>0, there exists n_0 such that for $n\geq n_0$, $f(n)\geq Cg(n)$
- 2. Equivalent to $g(n) \in O(f(n))$

Definition 1.1.3

Θ:

- 1. We say that $f(n) \in \Theta(g(n))$ if $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$ 2. In particular true if $\lim_{\infty} \frac{f(n)}{g(n)} = C$ for some $0 < C < \infty$

Definition 1.1.4

little-o:

- 1. We say that $f(n) \in o(g(n))$ if for all C>0, there exists n_0 such that for $n \geq n_0$, $f(n) \leq n_0$ Cg(n)
- 2. Equivalent to $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$

