MATH 258: Homework #8

Jesse Farmer

02 March 2005

1. Let A be a commutative ring and M an A-module. Show that for all $a \in A$ the map $h_a : M \to M$ defined by $x \mapsto ax$ and for all $x \in M$ the map $t_x : A \to M$ defined by $a \mapsto ax$ are homomorphisms of the additive group of A. Deduce that h_a and t_x are A-module homomorphisms.

Both h_a and t_x are clearly well-defined, and are homomorphisms of the additive group associated with A be left and right distributivity, respectively. To see this, note that

$$h_a(x + y) = a(x + y) = ax + ay = h_a(x) + h_a(y)$$

and

$$t_x(a+b) = (a+b)x = ax + bx = t_x(a) + t_x(b)$$

To see that h_a and t_x are A-module homomorphisms, let $a, b \in A$. Then

$$h_a(bx) = a(bx) = (ab)x = (ba)x = b(ax) = bh_a(x)$$

and

$$t_x(ba) = (ba)x = b(ax) = bt_x(a)$$

The rest of the properties then follow trivially from the properties of homomorphisms. $0 \cdot x = t_x(0) = 0$, $a(x-y) = h_a(x-y) = h_a(x) - h_a(y) = ax - ay$, $a \cdot 0 = h_a(0) = 0$, and

$$(-a)x = t_x(-a) = -t_x(a) = -(ax) = -h_a(x) = h_a(-x) = a(-x)$$

2. Let A be a commutative ring and define $E_n = \{ f \in A[x] \mid \deg f \leq n-1 \}$. Show that E_n is an A-module isomorphic to A^n .

That E_n is an A-module follows by treating elements of A as elements of A[x] of degree 0, and using the regular ring properties of A[x]. Define a map $\varphi: E_n \to A^n$ by

$$a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_0 \mapsto (a_{n-1}, a_{n-2}, \dots, a_0)$$

This is obviously surjective, and injective since if $(a_{n-1},\ldots,a_0)=(b_{n-1},\ldots,b_0)$ then $a_i=b_i$ for $0 \le i \le n-1$, and hence the respective polynomials are equal. Letting $f,g \in A[x]$, where the coefficients of the polynomials are denoted by a_i and b_i respectively, (i.e., $f(x)=a_{n-1}x^{n-1}+\cdots+a_0$),

$$\varphi(f+g) = (a_{n-1} + b_{n-1}, \dots, a_0 + b_0) = (a_{n-1}, \dots, a_0) + (b_{n-1}, \dots, b_0) = \varphi(f) + \varphi(g)$$

and for any $r \in A$

$$\varphi(rf) = (ra_{n-1}, \dots, ra_0) = r(a_{n-1}, \dots, a_0) = r\varphi(f)$$

Hence E_n and A^n are isomorphic as A-modules.

- 3. Let A be a commutative ring.
 - (a) Let M, N be A-modules. Show that $Hom_A(M, N)$ is an A-module. Let $f, g \in Hom_A(M, N)$ and let $a \in A$. Define (f + g)(x) = f(x) + g(x) and (af)(x) = af(x). These operations are well-defined on $Hom_A(M, N)$ since

$$(f+g)(x+y) = f(x+y) + g(x+y) = f(x) + f(y) + g(x) + g(y) = (f+g)(x) + (f+g)(y)$$

and

$$(af)(x + y) = af(x + y) = f(ax + ay) = f(ax) + f(ay) = af(x) + af(y) = (af)(x) + (af)(y)$$

Since N is an A-module, $1 \cdot f(x) = f(x)$. Left-distributivity holds,

$$a((f+g)(x)) = a(f(x) + g(x)) = af(x) + ag(x) = (af)(x) + (ag)(x)$$

Right distributivity holds similarly, since N is an A-module. Finally, for $a, b \in A$,

$$(ab)(f(x)) = a(bf(x)) = a(bf(x))$$

since $f(x) \in N$ and N is an A-modules, which implies (ab)f = a(bf).

(b) Let M, N, P be A-modules. Show that the map $\eta : Hom_A(M, N) \to Hom_A(M, P)$ given by $f \mapsto g \circ f$ and $\varphi : Hom_A(P, M) \to Hom_A(N, M)$ given by $f \mapsto f \circ g$ are A-module homomorphisms. Let $g \in Hom_A(N, P)$, and $f, h \in Hom_A(M, N)$. Then to show that $\eta(f + h) = \eta(f) + \eta(h)$, the following suffices

$$g \circ (f+h)(x) = g(f(x)+h(x)) = g(f(x)) + g(h(x)) = (g \circ f)(x) + (g \circ h)(x)$$

and, for $a \in A$,

$$g \circ (af)(x) = g(af(x)) = ag(f(x)) = a(g \circ f)(x)$$

so that $\eta(af) = a\eta(f)$. The above works because $f(x) \in N$ and $g \in \text{Hom}_A(N, P)$. It follows mutatis mutatis for φ .

4. Let A be a commutative ring and M an A-module. Define $t_M: A \to End_A(M)$ by $a \mapsto \tilde{a}$ where $\tilde{a}(x) = ax$. Show that \tilde{a} and t_M are a ring homomorphisms and that $\ker t_M = \{a \in A \mid aM = 0\}$. \tilde{a} is a homomorphism from the first exercise, and t_M is a homomorphism since

$$t_M(a+b)(x) = (a+b)x = ax + bx = \tilde{a}(x) + \tilde{b}(x) = t_M(a)(x) + t_M(b)(x)$$

and

$$\ker t_M = \{a \in A \mid t_M(a) = 0\} = \{a \in A \mid \tilde{a} = 0\} = \{a \in A \mid ax = 0, x \in M\} = \{a \in A \mid aM = 0\}$$

5. Let A be a commutative ring. Show that any cyclic A-module M is isomorphic to the A-module A/I, for some ideal I of A.

Let $t_x: A \to M$ be defined by $t_x(a) = ax$. From the first exercise t_x is a homomorphism of A-modules. Since M is a cyclic A-module there exists some $x \in M$ such that M = Ax, and hence $t_x(A) = M$. By the first isomorphism theorem

$$\frac{A}{\ker t_x} \cong t_x(A) = M$$

6. Let A be a commutative ring. Show that M is a simple A-module if and only if M is isomorphic to A/P, where P is a maximal ideal in A.

Every simple A-module is cyclic, since if there were a nonzero element $x \in M$ such that $M \neq Ax$, then Ax would be a proper submodule of M – contradicting the fact that M is simple. Thus the previous exercise applies.

Assume that $A/P \cong M$ where P is a maximal ideal of A and M is an R-module. Since P is maximal the only ideals (and hence submodules when A/P is treated as an A-module) are 0 and A/P, and hence M is simple. For the other direction, note that the submodules of A/P are of the form N/P where $P \subset N$ is an A-module. If the only submodules of A/P are 0 and A/P then the only such N are A and P, i.e., P is maximal in A.

7. Let A be a commutative ring and $\{M_i\}$ for $1 \le i \le n$ a family of A-modules. Let N be any A-module. Let

$$\varphi: Hom_A(N, M_1 \times \cdots \times M_n) \to \prod_{i=1}^n Hom_A(N, M_i)$$

be defined by $f \mapsto (f_1, \ldots, f_n)$ where $f_i = \pi_i \circ f$ and π_i is the natural projection from $M_1 \times \cdots \times M_n$ to M_i . Show that φ is an isomorphism of A-modules.

 φ is surjective since for any (f_1, f_2, \ldots, f_n) we have $f \mapsto (f_1, \ldots, f_n)$ where $f(x) = (f_1(x), \ldots, f_n(x))$. It is injective since the kernel of φ are all f such that $\pi_i \circ f = 0$ for $1 \le i \le n$, but this means precisely that f sends any $x \in N$ to $(0, 0, \ldots, 0)$ and hence $f \equiv 0$. Therefore $\ker \varphi = 0$.

From previous exercises we know that π_i is an A-module homomorphism, so that $\pi_i \circ (f+g) = \pi_i \circ f + \pi_i \circ g$, and, similarly, $\pi_i \circ (af) = a(\pi_i \circ f)$. It follows immediately that φ is a homomorphism, and hence an A-module isomorphism.

8. Using the notation from the previous problem, let $\eta_i: M_i \to M_1 \times \cdots \times M_n$ map x to $(0, \ldots, x, \ldots, 0)$, where x is in the i^{th} place. Show that the map

$$\psi: Hom_A(M_1 \times \cdots \times M_n, N) \to \prod_{i=1}^n Hom_A(M_i, N)$$

given by $f \mapsto (f \circ \eta_1, \dots, f \circ \eta_n)$ is an isomorphism of A-modules.

 ψ is surjective since $f(x_1, \ldots, x_n) = x_1 + \cdots + x_n$ maps to (f_1, f_2, \ldots, f_n) by ψ . It is also injective since if $f, g \in \text{Hom}_A(M_1 \times \cdots \times M_n, N)$ they map 0 to 0, and hence if $f_i = g_i$ for all i, then $f(\vec{x}) = g(\vec{x})$ for all $\vec{x} \in \prod M_i$ since this means precisely that they agree as functions of each coordinate.

Each η_i is a homomorphism of modules, so that ψ is also a homomorphism, and hence an isomorphism.

9. Let $\{M_i\}$ with $1 \leq i \leq n$ be a family of A-modules, and $N_i \subset M_i$ sub-modules. Consider the map

$$\theta: M_1 \times \cdots \times M_n \to M_1/N_1 \times \cdots \times M_n/N_n$$

given by $\theta(x_1,\ldots,x_n)=(\bar{x}_1,\ldots,\bar{x}_n)$. Show that θ is an A-module epimorphism. Deduce that

$$\frac{M_1 \times \dots \times M_n}{N_1 \times \dots \times N_n} \cong \frac{M_1}{N_1} \times \dots \times \frac{M_n}{N_n}$$

That θ is an A-module homomorphism follows from the fact that addition and multiplication in M_i/N_i as an A-module is well-defined, i.e., $\overline{x_i+y_i}=\bar{x}_i+\bar{y}_i$ and $\overline{ax_i}=\bar{a}\bar{x}_i$. It is surjective since for any $(\bar{x}_1,\ldots,\bar{x}_n)$ we can choose coset representatives x_1,\ldots,x_n such that $(x_1,\ldots,x_n)\mapsto (\bar{x}_1,\ldots,\bar{x}_n)$. Finally, since $\bar{x}_i=0$ if and only if $x_i\in N_i$, it follows that

$$\ker \theta = \left\{ \vec{x} \in \prod M_i \mid \bar{x}_i = 0, 1 \le i \le n \right\} = \left\{ \vec{x} \in \prod N_i \right\} = \prod N_i$$

and the relation follows from the first isomorphism theorem.

10. Let A be a commutative ring and $\{I_i\}$ a family of mututally comaximal ideals for $1 \le i \le n$. Let M be an A-module and define $\varphi: M \to M/(I_1M) \times \cdots \times M/(I_nM)$ by

$$\varphi(x) = (\theta_1(x), \dots, \theta_n(x))$$

where $\theta_i(x) = x + I_i M$. Show that φ is a surjective A-module homomorphism. Deduce that

$$\frac{M}{(I_1 \cap \dots \cap I_n)M} \cong \frac{M}{I_1 M} \times \dots \times \frac{M}{I_n M}$$

 φ is obviously a ring homomorphism since each θ_i is a homomorphism (which follows directly from the fact that addition and module multiplication are well-defined on each submodule). Since the $\{I_i\}$ are comaximal we can choose e_i which is congruent to 1 modulo I_i , and congruent to 0 modulo I_j for all $j \neq i$, since certainly if $I_i + I_j = A$ then $I_1 + \cdots + I_n = 1$. Consider $(\bar{x}_1, \dots, \bar{x}_n)$ and let x_i be a representative of \bar{x}_i . Then $x = \sum_{i=1}^n e_i x_i$ is congruent to x_i modulo I_iM (as $e_j = 0$ modulo I_j for $j \neq i$) so that $\varphi(x) = (\bar{x}_1, \dots, \bar{x}_n)$. Hence φ is surjective.

Certainly $I_1M \cap \cdots \cap I_nM = (I_1 \cap \cdots \cap I_n)M$ since the latter is precisely thos elements of the form $\sum a_i x_i$ where the sum is finite, $a_i \in I_j$ for all j, and $x_i \in M$. The kernel of φ will be x such that $x \in I_iM$ for all i, i.e., $x \in I_1M \cap \cdots \cap I_nM$, so that $\ker \varphi = (I_1 \cap \cdots \cap I_n)M$, and the result follows.