Intelligent Machines & Systems

Perspectives for the course (Introductory Session 2015)

Dr. C.S.Kumar Robotics and Intelligent Systems Lab IIT Kharagpur

Different scenarios

- Manufacturing (in Industry) for Engineers
 - Why is "Intelligent Systems" relevant here?
- Robotics
- Autonomous Systems
- Other Applications
- Types of Intelligent Systems applications
- Current Trends

Developments in Manufacturing Automation

STAGE	FEATURE	AUTOMATION	DESIGN	MANUFACTURE
1	Labour Intensive	None	Individual	Manual
2	Equipment-intensive	Instruments	Group	NC,CNC
3	Information-Intensive	Information	CAD	FMS
4	Knowledge-Intensive	Decision	ICAD	CIMS

Problems in Industry

- Too much information needs manipulation
- Highly computerized human-machine system needs a good quality interaction between operator and the system.
- Involvement of different sections-- conflicts /conflict resolution and reasoning strategies
- Large amount of data: How to process? How to export effectively knowledge?

Types of Intelligent Manufacturing Systems

TYPE	FEATURES	
TYPE I	Symbolic Reasoning System	
TYPE II	Compiling Intelligent Systems that links numerical computation programs with a symbolic reasoning system	
TYPE III	Artificial Neural Networks that model the human brain and deal with empirical data	
TYPE IV	Integrated distributed Intelligent Systems involving expert systems, numerical programs, neural nets and computer graphics packages	

Case of an Enterprise

Hierarchical levels in Manufacturing

There are 3 basic levels of control

- Organization level
- Co-ordination level
- Execution level

Organization level

- Product design
- 2. Process planning
- 3. Master production scheduling
- 4. Forecasting
- 5. Strategic business planning

Coordination Level

- Making short -term decisions based on inputs provided by organization level
- Detailed scheduling
- Assembly operations
- Work and purchase order generations form.

Execution Level

- 1. Appropriate control functions and detail feed back from actual operations of manufacturing units
- Provides supply of info to the coordination level for possible revisions of short-term decisions and also satisfactory
- 3. Database for knowledge and long term strategies process monitoring and control
- Adaptive control
- 5. Manufacturing system diagnostic

ABSTRACT MODELS ALGORITHMS & EXTENSIVE SEARCH

INFORMATION AND KNOWLEDGE THROUGH ELECTRONIC MEDIA WITHIN LARGE TIME INTERVAL

FEEDBACK INFORAMTION KNOWLEDGE ELECTRONIC MEDIA IN MODERATE

TIME INTERVAL

LOCALIZED MODELS
MODERATE SEARCH
ATTRIBUTE MEASUREMENT
DATA INTEGARTION

DATA AND INFORMATION
THROUGH ELECTRONIC MEDIA
WITH IN MODERATE TIME
INTERVAL

FEED BACK INFO THROUGH ELECTRONIC MEDIA WITHIN SMALL TIME INTERVAL

SENSORY DATA & FEEDBACK NO SEARCH

INTELLIGENT CONTROL

FEEDBACK

SENSORS AND ACTUATORS

Summary of requirements

ORGANISATION LEVEL	EXTENSIVE SEARCH LOW PRECISION	ABSTRACT MODEL ALGORITHM
COORDINATION LEVEL	MODERATE SEARCH MODERATE PRECISION	LOCALIZED MODELS ATTRIBUTE MEASUREMENT DATA INTEGRATION
EXECUTION LEVEL	NO SEARCH HIGH PRECISION	SENSORY DATA FEEDBACK SMALL TIME IMCREMENTS

What is Intelligence?

"The ability of the system to act appropriately in an uncertain environment, where appropriate action is that which increases the probability of success, and success is the achievement of behaviors sub-goals that support the systems ultimate goal"

Criteria of success and ultimate goal defined external to the Intelligent System.

J. Albus, "Outline for a Theory of Intelligence," IEEE Transactions on Systems, Man, and Cybernetics, Vol. 21, No. 3, May/June, 1991, pp. 473-509

3 Degrees of Intelligence

- COMPUTATION POWER
- COMPLEXITY OF THE ALGORITHMS USED BY THE SYSTEM PROCESSING INPUT AND SOPHISTICATION OF SYSTEM ELEMENTS
- THE INFORMATION AND VALUES STORED INSYSTEM MEMORY

4 Elements of Intelligent Systems

- SENSORY PROCESSING
- WORK MODEL
- VALUE JUDGEMENT
- BEHAVIOUR GENERATION

Generations of Intelligent Systems

- Artificial Intelligence (AI) based systems
- Connectionist and Machine Learning
- Agent Based Systems
- Evolutionary Systems
- Cognitive Systems, Cybernetic and Cyber Physical Systems

Al based Systems

- Expert Systems
- Rule based
- Knowledge expert
- Very rigid formulations
- Fragile to unknown situations

Connectionist & Machine Learning

- Neural Network based
 - Biological neurons analogy
 - Different learning theories
- Fuzzy Logic based
 - Distributed memory based
 - Rule based
- Redundancy and Robustness

Agent based Systems

- Distributed intelligence
- Specialist knowledge
- Interaction between subsystems
- Complex Behaviors
- Subsumption architecture
- Intelligent Robotics

Evolutionary Intelligent Systems

- Genetic Algorithms
- Based on natural evolution theories
- Adaptability
- Evolution and optimization
- Complex learning behaviors
- Emergent behaviours

Neural network based intelligence

- Connectionist Approach
- Machine Learning
- Cognitive Sciences
- Cognitive Architectures
- (Bio)Neuro-Cybernetics
- Cognitive Computing
- Computational Models for Cognition

Intelligent Robotics

- Platform for developing and evolving Intelligent systems
- Lab and large scale versions available
- Ease of deployment as test beds
- Competition versions popular in students

Different Directions of IS in Robotics

- Service and Assistive Robotics
- Autonomous Robots
- Rehabilitation
- Cognitive Robotics
- Swarm Robotics

Components

- Interdisciplinary programs ME, EE, CSE (AI),
 Bio-medical
- New innovations and IP in sensors, algorithms
- New definitions of safety, programmability
- Adaptable intelligent behaviour

How daily life support systems will change society through fusion of IRT

Science and core technology

Smooth communication between humans and computers using the five senses and body movements

Understanding of purpose of human actions

- Fusion of recognition, learning and movement

- Bio-machine interface

For transmission and communication, computers will be able to process information at higher speeds and with greater efficiency.

Platforms

- Humanoids
- Social and daily life support systems
- Personal mobility devices

Robot technology will become more practical, reliable, and useful.

IT: Information Technology (in cyber world)

RT: Robot Technology (in real world)

Direct Human Interaction

Bionics

"Connecting" the Man and the Robot

Bionic Controls

Exploratory Robotics

- Remotely operated vehicles
- Autonomous vehicles
- Ground vehicles wheeled, legged, hybrid
- Ariel Vehicles UAVs,
- Underwater ROVs, AUVs, UUVs
- Space Robotics
- Inter planetary rovers

Autonomous Systems

- Systems which can work on their own without external guiding inputs
- Sense and react with environment
- Decide on control actions on their own
- Intelligent systems
- Autonomous Robots
- Autonomous Vehicles

Typical Areas Covered

- Sensors and Control in Mechatronics and Robotics
- Electronics for Mechanical Engineers
- Mechanical Engineering for Electronics Engineers
- Robotic Control and Networking
- Example cases of IIT Kharagpur
 - Underwater Robotics
 - Multi fingered hand
 - Humanoid Robots

Desire to build Intelligent Systems

- Robot Child Cat "Robokoneko" at ATR Labs
 - CAMBrain Project
- Honda ASIMO
 - Humanoid mobility
- SONY Aibo
 - Intelligent Dog
- Fujitsu HOAP; Aldebran Nao
- •

Robokoneko (robot kitten)

Mechanical design

Activities it can do

Programmed using Cellular Neural Networks

Unsupervised learning from simulated models

Controller developed on a chip called "CAMBrain"

Honda Humanoid Robot Asimo

http://en.wikipedia.org/wiki/ASIMO

http://asimo.honda.com

Humanoid Robot Nao

Kuka You Bot

Autonomous Robots

- Respond to inputs on their own (no human intervention)
- Recovery from failures
- Embodied intelligence
- Swam robots cooperative situations

Software-defined Machines

Machine Intelligence LANDSCAPE

ARTIFICIAL INTELLIGENCE

DEEP LEARNING

MACHINE LEARNING

NLP PLATFORMS

PREDICTIVE APIS

IMAGE RECOGNITION

clarifai MADBITS DNNresearch |||||||DEXTRO VISENZE Blookflow

SPEECH RECOGNITION

CORE TECHNOLOGIES

popup archive NUANCE

RETHINKING ENTERPRISE

SALES

AVISO Preact O RelateIO NG DATA CLARABBIDGE FRAMED Infer ATTEMITY causata

SECURITY / **AUTHENTICATION**

FRAUD DETECTION

HR / RECRUITING

MARKETING

PERSONAL **ASSISTANT**

MANUFACTURING

INTELLIGENCE TOOLS

RETHINKING INDUSTRIES

ADTECH

MEDIA / CONTENT

AGRICULTURE

BLUEDRIVER ATerrAvion

♦ ceresimaging Hakita Cakita

THE CLIMATE tule X

TACHYUS biota

EDUCATION

FINANCE

FriGenius

LEGAL

AUTOMOTIVE

MICROSCAN DIAGNOSTICS

SIGHT MACHINE

MEDICAL

OIL AND GAS

kaggle AYASDI

CONSUMER FINANCE

Affirm inVenture

PHILANTHROPIES

RETAIL

DATA

RETHINKING HUMANS / HCI

AUGMENTED REALITY

GESTURAL

ROBOTICS

EMOTIONAL RECOGNITION

SUPPORTING TECHNOLOGIES HARDWARE

DATA PREP

COLLECTION a diffbot kimono CrowdFlower Connotate WorkFusion import 6

Artificial Intelligence

633 Companies

Contact info@venturescanner.com to see all

Venture Scanner

Robots in our life

RoboCup

By the year 2050, develop a team of fully autonomous humanoid robots that can win against the human world soccer champion team.

U.S. National Robotics Initiative

- "Obama Commanding Robot Revolution, Announces Major Robotics Initiative"
 - June 2011
 - The administration's new National Robotics Initiative seeks to advance "next generation robotics." The focus is on robots that can work closely with humans helping factory workers, healthcare providers, soldiers, surgeons, and astronauts to carry out tasks.

European Vision

- Robot Companions for Citizens
 - an ecology of sentient machines that will help and assist humans in the broadest possible sense to support and sustain our welfare.

Robot City 2020

ROBOTIC REALITIES

HOW DO THESE MODELS MEASURE UP?

TEAM KAIST

TEAM MIT

TEAM NEDO-HYDRA

TEAM NEDO-JSK

TEAM NIMBRO RESCUE

TEAM ROBOSIMIAN

TEAM ROBOTIS

TEAM SNU

TEAM THOR

TEAM TRAC LABS

TEAM TROOPER

TEAM VALOR

TEAM VIGIR

TEAM WALK-MAN

TEAM WPI-CMU

New Applications being considered

- The future of the internet is intelligent machines by Jeff Immelt, Chairman and CEO of GE (on 28th Nov 2012)
- Internet of Things
- Socially Intelligent Machines Lab (Georgia Tech)
- Super Intelligent Machines (Live Science)

Summary

- Intelligent Systems: Basic needs highlighted
- Precision verses adaptability discussed
- Types of implementations highlighted
- Focus on Connectionistic learning, Knowledge based sytems etc
- Case for Robotics
- Examples in Robotics