Problem 1

The random variable ξ has Poisson distribution with the parameter λ . If $\xi=k$ we perform k Bernoulli trials with the probability of success p. Let us define the random variable η as the number of successful outcomes of Bernoulli trials. Prove that η has Poisson distribution with the parameter $p\lambda$.

Definitions

1. The function e^{x} can be expressed as:

$$e^x = \sum_{n=0}^{\infty} rac{x^n}{n!}$$

2. A random variable X with Poisson distribution and parameter λ is defined by:

$$\Pr(X=x) = e^{-\lambda \frac{\lambda^x}{x!}}$$

3. If we perform k Bernoulli trials with the probability of success p, the probability of having exactly s successful outcomes is given by:

$$\frac{k!}{s!(k-s)!}p^s(1-p)^{(k-s)}$$

4. The relation between a joint probability and a conditional probability of two events is given as:

$$\Pr(A,B) = \Pr(A \mid B) \Pr(B)$$

Proof

By definition (2), the probability that $\xi = k$ is given by:

$$\Pr(\xi = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$
 (5)

By definition (3), the conditional probability of having $\eta = s$ for a given value of k is:

$$\Pr(\eta = s \mid \xi = k) = \frac{k!}{s!(k-s)!} p^s (1-p)^{(k-s)}$$
 (6)

The actual probability of having $\eta=s$ can be obtained by marginalizing out the random variable ξ from the joint probability:

$$\Pr(\eta=s) = \sum_{k=s}^{\infty} \Pr(\eta=s,\xi=k)$$
 (7)

Note that, since we can't have more successful outcomes than trials, we start the summation from k=s on equation (7).

$$\Pr(\eta = s) = \sum_{k=s}^{\infty} \Pr(\eta = s \mid \xi = k) \Pr(\xi = k)$$
 (8)

$$\Pr(\eta = s) = \sum_{k=s}^{\infty} \left(\frac{k!}{s!(k-s)!} p^s (1-p)^{k-s} \right) \left(e^{-\lambda} \frac{\lambda^k}{k!} \right)$$
 (9)

$$\Pr(\eta=s)=e^{-\lambda}rac{p^s}{s!}\sum_{k=s}^{\infty}\Big(rac{k!}{(k-s)!}(1-p)^{k-s}\Big)\Big(rac{\lambda^k}{k!}\Big)$$
 (10)

$$\Pr(\eta = s) = e^{-\lambda} \frac{p^s}{s!} \sum_{k=-c}^{\infty} \frac{\lambda^k (1-p)^{k-s}}{(k-s)!}$$
 (11)

$$\Pr(\eta=s)=e^{-\lambda}rac{p^s}{s!}\sum_{k=s}^{\infty}rac{\lambda^s}{\lambda^s}rac{\lambda^k(1-p)^{k-s}}{(k-s)!}$$
 (12)

$$\Pr(\eta=s)=e^{-\lambdarac{p^s}{s!}}\sum_{k=s}^{\infty}\lambda^srac{\lambda^{k-s}(1-p)^{k-s}}{(k-s)!}$$
 (13)

Removing λ^s from the summation and making n=k-s, we can rewrite the equation as:

$$\Pr(\eta = s) = e^{-\lambda} \frac{p^s}{s!} \lambda^s \sum_{n=0}^{\infty} \frac{\lambda^n (1-p)^n}{n!}$$
 (14)

$$\Pr(\eta = s) = e^{-\lambda} \frac{p^s}{s!} \lambda^s \sum_{n=0}^{\infty} \frac{\lambda^n (1-p)^n}{n!}$$
 (15)

$$\Pr(\eta = s) = e^{-\lambda} \frac{(p\lambda)^s}{s!} \sum_{n=0}^{\infty} \frac{(\lambda(1-p))^n}{n!}$$
 (16)

By definition (1), this leads to:

$$\Pr(\eta = s) = e^{-\lambda \frac{(p\lambda)^s}{s!}} e^{\lambda(1-p)} \tag{17}$$

$$\Pr(\eta = s) = e^{-\lambda + \lambda(1-p)} \frac{(p\lambda)^s}{s!}$$
 (18)

$$\Pr(\eta = s) = e^{-(p\lambda)} \frac{(p\lambda)^s}{s!} \tag{19}$$

Which is equivalent to having parameter $p\lambda$ in the definition (2), using $\eta=s$, instead of X=x.

Thus, equation (19), shows us that η has Poisson distribution with the parameter $p\lambda$.

QED

Problem P2

A strict reviewer needs t1 minutes to check assigned application to Deep|Bayes summer school, where t1 has normal distribution with parameters $\mu 1 = 30$, $\sigma 1 = 10$. While a kind reviewer needs t2 minutes to check an application, where t2 has normal distribution with parameters $\mu 2 = 20$, $\sigma 2 = 5$. For each application the reviewer is randomly selected with 0.5 probability. Given that the time of review t = 10, calculate the conditional probability that the application was checked by a kind reviewer.

Definitions

1. Bayes' rule:

$$\Pr(A \mid B) = rac{\Pr(B \mid A) \Pr(A)}{\Pr(B)}$$

2. The relation between a joint probability and a conditional probability of two events is given as:

$$Pr(A, B) = Pr(A \mid B) Pr(B)$$

3. If random variable X is normally distributed ($X \sim \mathcal{N}(\mu, \sigma)$):

$$\Pr(X=x) = rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Solution

- Two random variables:
 - Time to check the application: T
 - Assigned reviewer: R
- Reviewer R:
 - Strict reviewer R=1:

$$\Pr(R=1) = 0.5$$

• Kind reviewer R=2:

$$Pr(R=2) = 0.5$$

- $t_1 \sim \mathcal{N}(\mu_1 = 30, \sigma_1 = 10)$
- ullet $t_2 \sim \mathcal{N}(\mu_2=20, \sigma_2=5)$
- Question: "what's the conditional probability that the application was checked by a kind reviewer, given that the time of review was t = 10?"

•
$$Pr(R = 2 \mid T = 10) = ?$$

By definition (1):

$$\Pr(R = 2 \mid T = 10) = \frac{\Pr(T = 10 \mid R = 2) \Pr(R = 2)}{\Pr(T = 10)}$$
 (4)

By enumerating the possibilites for the random variable R, we have:

$$Pr(T = 10) = Pr(T = 10, R = 1) + Pr(T = 10, R = 2)$$
 (5)

Which, by definition (2) is equivalent to:

•
$$\Pr(T = 10) = \Pr(T = 10 \mid R = 1) \Pr(R = 1) + \Pr(T = 10 \mid R = 2) \Pr(R = 2)$$
 (6)
• $\Pr(T = 10) = \Pr(T = 10 \mid R = 1)(0.5) + \Pr(T = 10 \mid R = 2)(0.5)$ (7)
• $\Pr(T = 10) = \frac{1}{2}(\Pr(T = 10 \mid R = 1) + \Pr(T = 10 \mid R = 2))$ (8)

From (4) and (8), we have:

•
$$\Pr(R = 2 \mid T = 10) = \frac{\Pr(T=10|R=2)\Pr(R=2)}{\frac{1}{2}(\Pr(T=10|R=1)+\Pr(T=10|R=2))}$$
 (9)
• $\Pr(R = 2 \mid T = 10) = \frac{2\Pr(T=10|R=2)\Pr(R=2)}{\Pr(T=10|R=1)+\Pr(T=10|R=2)}$ (10)
• $\Pr(R = 2 \mid T = 10) = \frac{2\Pr(T=10|R=2)(0.5)}{\Pr(T=10|R=1)+\Pr(T=10|R=2)}$ (11)
• $\Pr(R = 2 \mid T = 10) = \frac{\Pr(T=10|R=1)+\Pr(T=10|R=2)}{\Pr(T=10|R=2)}$ (12)

By definition (3):

•
$$\Pr(T = 10 \mid R = 1) = \frac{1}{\sqrt{2\pi 10^2}} e^{-\frac{(10-30)^2}{2\cdot 10^2}} = \frac{1}{10\sqrt{2\pi}} e^{-\frac{(-20)^2}{200}} = \frac{1}{10\sqrt{2\pi}} e^{-\frac{400}{200}} = \frac{1}{10\sqrt{2\pi}} e^{-2}$$
 (13)
• $\Pr(T = 10 \mid R = 2) = \frac{1}{\sqrt{2\pi 5^2}} e^{-\frac{(10-20)^2}{2\cdot 5^2}} = \frac{1}{5\sqrt{2\pi}} e^{-\frac{(-10)^2}{2\cdot 25}} = \frac{1}{5\sqrt{2\pi}} e^{-\frac{100}{50}} = \frac{1}{5\sqrt{2\pi}} e^{-2}$ (14)
• $\Pr(T = 10 \mid R = 2) = 2 \cdot \Pr(T = 10 \mid R = 1)$ (15)

From (12) and (15), we have:

•
$$\Pr(R = 2 \mid T = 10) = \frac{2 \cdot \Pr(T = 10 \mid R = 1)}{\Pr(T = 10 \mid R = 1) + 2 \cdot \Pr(T = 10 \mid R = 1)}$$
 (16)
• $\Pr(R = 2 \mid T = 10) = \frac{2 \cdot \Pr(T = 10 \mid R = 1)}{3 \cdot \Pr(T = 10 \mid R = 1)}$ (17)
• $\Pr(R = 2 \mid T = 10) = \frac{2}{3}$ (18)

Thus, the conditional probability that the application was checked by a kind reviewer, given that the time of review t = 10 is $2/3 \approx 67\%$.