

pre-order

Canonical name Preorder

Date of creation 2013-03-22 13:05:06 Last modified on 2013-03-22 13:05:06

Owner yark (2760) Last modified by yark (2760)

Numerical id 17

Author yark (2760) Entry type Definition Classification msc 06A99pre-ordering Synonym Synonym preorder Synonym preordering Synonym quasi-order Synonym quasi-ordering Synonym quasiorder Synonym quasiordering Synonym semi-order semi-ordering Synonym Synonym semiorder Synonym semiordering

Related topic WellQuasiOrdering

Related topic PartialOrder
Defines pre-ordered
Defines preordered
Defines semi-ordered
Defines semiordered
Defines quasi-ordered
Defines quasiordered

Definition

A pre-order on a set S is a relation \lesssim on S satisfying the following two axioms:

reflexivity: $s \lesssim s$ for all $s \in S$, and

transitivity: If $s \lesssim t$ and $t \lesssim u$, then $s \lesssim u$; for all $s,t,u \in S$.

Partial order induced by a pre-order

Given such a relation, define a new relation $s \sim t$ on S by

 $s \sim t$ if and only if $s \lesssim t$ and $t \lesssim s$.

Then \sim is an equivalence relation on S, and \lesssim induces a partial order \leq on the set S/\sim of equivalence classes of \sim defined by

 $[s] \leq [t]$ if and only if $s \lesssim t$,

where [s] and [t] denote the equivalence classes of s and t. In particular, \leq does satisfy antisymmetry, whereas \lesssim may not.

Pre-orders as categories

A pre-order \lesssim on a set S can be considered as a small category, in the which the objects are the elements of S and there is a unique morphism from x to y if $x \lesssim y$ (and none otherwise).