Nim & Friends

Zoltán Szabó

Gatsby Unit, Tea Talk January 11, 2016

The poisoned chocolate game = Chomp

Ingredients:

- 2 chocolate lovers,
- 1 bar of chocolate.

The poisoned chocolate game = Chomp

Ingredients:

- 2 chocolate lovers,
- 1 bar of chocolate.

URL: https://www.math.ucla.edu/~tom/Games/chomp.html

Nim: demo

Ingredients:

- 3 piles of stones.
- 2 players.

Nim: demo

Ingredients:

- 3 piles of stones.
- 2 players.

Winner: who takes the last stone(s).

Nim: demo

Ingredients:

- 3 piles of stones.
- 2 players.

Winner: who takes the last stone(s).

URL: https://www.dotsphinx.com/games/nim/

Questions

- Does P(layer-)1 or P2 have optimal strategy?
- How should they play?

$$(n_1,\ldots,n_k)$$
-Nim

- Pile sizes: n_1, \ldots, n_k (demo: $n_1 = 1, n_2 = 2, n_3 = 3$).
- $a \oplus b$: Nim-sum (\mathbb{Z}_2 , bitwise).
- In our demo:

$$01 \leftrightarrow n_1
10 \leftrightarrow n_2
\oplus 11 \leftrightarrow n_3$$

$$00 \leftrightarrow n_1 \oplus n_2 \oplus n_3$$

$$(n_1,\ldots,n_k)$$
-Nim

- Pile sizes: n_1, \ldots, n_k (demo: $n_1 = 1, n_2 = 2, n_3 = 3$).
- $a \oplus b$: Nim-sum (\mathbb{Z}_2 , bitwise).
- In our demo:

$$\begin{array}{c}
01 \leftrightarrow n_1 \\
10 \leftrightarrow n_2 \\
\oplus 11 \leftrightarrow n_3
\end{array}$$

$$00 \leftrightarrow n_1 \oplus n_2 \oplus n_3$$

• Bouton, 1901: P2 has winning strategy $\Leftrightarrow \bigoplus_{j=1}^k n_j = 0$.

Simple solutions: motivated (Nim)

- Assume: $n_1 = 2, n_2 = 3$. $(0,0) \in L(ooser)$.
- $\bullet \ L \xrightarrow{\forall} W, \ W \xrightarrow{\exists} L$

2				
1				
0	L			
	0	1	2	3

- Assume: $n_1 = 2, n_2 = 3. (0,0) \in L(ooser).$
- $\bullet \ L \xrightarrow{\forall} W, \ W \xrightarrow{\exists} L$

2				
1				
0	L			
	0	1	2	3

2	W			
1	W			
0	L	W	W	W
	0	1	2	3

- Assume: $n_1 = 2, n_2 = 3. (0,0) \in L(ooser).$
- $\bullet \ L \xrightarrow{\forall} W, \ W \xrightarrow{\exists} L$

2	W			
1	W			
0	L	W	W	W
	0	-	_	3

2	W			
1	W	L		
0	L	W	W	W
	0	1	2	3

- Assume: $n_1 = 2, n_2 = 3. (0,0) \in L(ooser).$
- $\bullet \ L \xrightarrow{\forall} W, \ W \xrightarrow{\exists} L$

2	W			
1	W	L		
0	L	W	W	W
	0	1	2	3

2	W	W		
1	W	L	W	W
0	L	W	W	W
	0	1	2	3

- Assume: $n_1 = 2, n_2 = 3. (0,0) \in L(ooser).$
- $\bullet \ L \xrightarrow{\forall} W, \ W \xrightarrow{\exists} L$

2	W	W		
1	W	L	W	W
0	L	W	W	W
	0	1	2	3

2	WW		L	
1	W	L	W	W
0	L	W	W	W
	0	1	2	3

- Assume: $n_1 = 2, n_2 = 3. (0,0) \in L(ooser).$
- $\bullet \ L \xrightarrow{\forall} W, \ W \xrightarrow{\exists} L$

2	W	W	L		2	W	W	L	W	
1	W	L	W	W	1	W	L	W	W	10
0	L	W	W	W	0	L	W	W	W	⊕11
	0	1	2	3		0	1	2	3	01

 $1 \neq 0 \Rightarrow P1$ can win; 'Bouton, 1901' might hold.

Let us prove it!

- $L := \{(n_1, \ldots, n_k) : \bigoplus_{i=1}^k n_i = 0\}.$
- Goal: $L \xrightarrow{\forall} W$, $W \xrightarrow{\exists} L$.
- $L \xrightarrow{\forall} W$:
 - We are in L: $\bigoplus_{i=1}^k n_i = n_j \oplus n_{-j} = 0$.
 - This will not hold upon Δn_j .

Let us prove it!

- $L := \{(n_1, \ldots, n_k) : \bigoplus_{i=1}^k n_i = 0\}.$
- Sub-goal: $W \stackrel{\exists}{\rightarrow} L$:
 - *t*: largest bit where ∃ difference.
 - n_i : a pile whose t^{th} bit is 1 (odd).

$$XYZU0 \dots \leftrightarrow n_{-j}$$

$$\oplus XYZU1 \dots \leftrightarrow n_{j}$$

$$0 \dots 01 \dots \leftrightarrow n_{-j} \oplus n_{j}$$

Let us prove it!

- $L := \{(n_1, \ldots, n_k) : \bigoplus_{i=1}^k n_i = 0\}.$
- Sub-goal: $W \stackrel{\exists}{\rightarrow} L$:
 - t: largest bit where \exists difference.
 - n_i : a pile whose t^{th} bit is 1 (odd).

$$\begin{array}{c}
XYZU0... \leftrightarrow n_{-j} \\
\oplus XYZU1... \leftrightarrow n_{j} \\
\hline
0...01... \leftrightarrow n_{-j} \oplus n_{j}
\end{array}$$

• Flip 1 to 0 in n_j , tail copy of n_{-j} to $n_j \Rightarrow n_{-j} \oplus n_{-j} = 0$; we get to L.

Chomp: 1st player can win

Proof (strategy stealing):

- Assume the opposite: whole board $\in L \xrightarrow{P1: \forall} W$.
- P2 has winning strategy from P1's step.
- But P1 could have started there. £

Chomp: optimal solution?

• Square $(n \times n)$:

- $2 \times n$: solved (longer).
- Rest: open.

Summary

- Combinatorial games:
 - Chomp (poisoned chocholate).
 - Nim (stone piles).
- Nim: √
- Chomp: existence.

State partitioning: W/L

- N(p): length of the longest game from p.
- Induction on N(p):
 - $Sink(s) \in L$.
 - New p: if

