Pontificia Universidad Católica de Chile y Universidad de Chile

Facultad de Matemáticas

00

Profesor: José Samper

Curso: Álgebra II

Fecha: 20 de agosto de 2025

Ayudante: José Cuevas Barrientos

Sigla: MPG3201

Teoría de Galois

1. Grupos de Galois

1. Considere la extensión $\mathbb{Q}\left(\sqrt{(2+\sqrt{2})(3+\sqrt{3})}\right) \supseteq \mathbb{Q}$ y determine:

a) Si es de Galois.

b) El grupo de Galois de su cuerpo de escisión.

●● 2. Pruebe que para todo grupo abeliano finito G existe una extensión K/\mathbb{Q} de Galois tal que $\operatorname{Gal}(K/\mathbb{Q}) \cong G$.

PISTA: Para la prueba puede ser útil emplear el **teorema de Dirichlet** que dice que dado n > 1 entero y a coprimo con n, existen infinitos primos p tales que $p \equiv a \pmod{n}$.

3. Sea L/k una extensión normal y definamos el subconjunto:

 $L_{\text{sep}} := \{ \alpha \in L : \alpha \text{ es separable sobre } k \}.$

- a) Pruebe que L_{sep} es un subcuerpo de L.
- b) Pruebe que la extensión $L_{\rm sep}/k$ es de Galois y $L/L_{\rm sep}$ es puramente inseparable.
- c) Pruebe que la siguiente aplicación

$$\rho \colon \operatorname{Gal}(L/k) \longrightarrow \operatorname{Gal}(L_{\operatorname{sep}}/k), \quad \sigma \longmapsto \sigma|_{L_{\operatorname{sep}}}$$

está bien definida y es un isomorfismo de grupos.

4. Sea K/k una extensión simple de cuerpos de grado $n := [K : k] < \infty$. Pruebe que K/k tiene a lo sumo 2^n subextensiones (incluyendo a K y k mismos).

Problema: ¿Se puede alcanzar dicha cota? Dicho de otro modo, ¿cuán óptima es?

A. EJERCICIOS ADICIONALES:

La correspondencia de Jacobson-Bourbaki

En la siguiente serie de ejercicios, pretendemos probar un resultado un tanto técnico. En la sección, Hom_k denota homomorfismos de k-espacios vectoriales.

5. Sea $k \subseteq K \subseteq L$ una torre de extensiones, posiblemente infinitas. Pruebe que K/k es una extensión finita syss $\operatorname{Hom}_k(K,L)$ es un L-espacio vectorial de dimensión finita (la suma y producto escalar son coordenada a coordenada) y, en cuyo caso, que

$$[K:k] = [\operatorname{Hom}_k(K,L):L].$$

- ●● 6. Sea L un cuerpo. Note que el conjunto $\operatorname{End}_{\mathsf{Ab}}(L)$ de endomorfismos de L como grupo abeliano es un anillo (no conmutativo) con la suma coordenada a coordena, y la composición como producto; más aún, hay una inyección de anillos $\mu\colon L\hookrightarrow \operatorname{End}_{\mathsf{Ab}}(L)$ que a un elemento $\alpha\in L$ le asigna el endomorfismo $\mu(\alpha)(x):=\alpha\cdot x$. Sea $A\subseteq \operatorname{End}_{\mathsf{Ab}}(L)$ una L-subálgebra (i.e., un subanillo que contiene a la imagen de L mediante μ) tal que $n:=\dim_L(A)<\infty$.
 - a) Pruebe que existen $\alpha_1, \ldots, \alpha_n \in L$ y $\sigma_1, \ldots, \sigma_n \in A$ tales que $\sigma_i(\alpha_j) = \delta_{ij}$, donde δ es la delta de Kronecker.

PISTA: Hay un emparejamiento L- \mathbb{Z} -bilineal $A \times L \to L$ (donde A tiene estructura de módulo por la derecha como $(\sigma \cdot x)(y) = \sigma(y) \cdot x$) dado por la evaluación mediante el cual ústed querrá extraer un emparejamiento L-bilineal no degenerado.

b) Pruebe que

$$k := \{ \alpha \in L : \forall \sigma \in A \qquad \alpha \cdot \sigma = \sigma \cdot \alpha \} \subseteq L$$

es un subcuerpo de L y que cada $\sigma_i \in A$ manda $\sigma_i : L \to k$.

- c) Pruebe que $\alpha_1, \ldots, \alpha_n \in L$ (dados por el primer inciso) forman una k-base.
- d) Correspondencia de Jacobson-Bourbaki ([2], Th. I.2): Concluya que [L:k]=n y que $A=\operatorname{End}_k(L)$.

La razón de la inclusión de la correspondencia de Jacobson-Bourbaki está en que, en cierto modo, generaliza la correspondencia clásica de Galois: incluye tanto al caso finito, como ciertos casos de extensiones inseparables; vid. [2].

B. Teoría de Galois profinita

- •• Hay, asimismo, una generalización de la teoría de Galois al caso infinito, para la cual se requiere de la noción categorial de «límite inverso» (vid. [1, pág. 490]); daremos primero un contraejemplo ilustrativo y opcional:
 - A. Sea K/k una extensión algebraica de Galois posiblemente infinita. Vamos a considerar el conjunto dirigido (o «categoría de índices») $\mathscr I$ cuyos objetos son subextensiones $k\subseteq F\subseteq K$ de Galois finitas, donde $F\leq F'$ (o donde hay una única flecha $F\to F'$) syss $F\subseteq F'$. Tenemos el sistema inverso (o «funtor contravariante») donde $\rho_F^{F'}$: $\operatorname{Gal}(F'/k) \twoheadrightarrow \operatorname{Gal}(F/k)$ es la restricción para $F\leq F'\in \mathscr I$. Pruebe que

$$\operatorname{Gal}(K/k) = \varprojlim_{F \subset \mathscr{A}} \operatorname{Gal}(F/k),$$

B. Definamos \mathbb{Z}_{ℓ} , el anillo de enteros ℓ -ádicos, como el límite inverso del diagrama $\rho_{n-1}^n \colon \mathbb{Z}/\ell^n\mathbb{Z} \to \mathbb{Z}/\ell^{n-1}\mathbb{Z}$ (dado por $n \mod \ell^n \mapsto n \mod \ell^{n-1}$) con el conjunto dirigido (\mathbb{N}, \leq) . Pruebe que

$$\operatorname{Gal}(\mathbb{F}_p^{\operatorname{alg}}/\mathbb{F}_p) \cong \prod_{\ell} \mathbb{Z}_{\ell} =: \hat{\mathbb{Z}},$$

donde ℓ recorre todos los números primos.

C. Pruebe, mediante un simil del argumento diagonal de Cantor, que \mathbb{Z}_{ℓ} es no numerable y, por tanto, concluya que existe $\sigma \in \operatorname{Gal}(\mathbb{F}_p^{\operatorname{alg}}/\mathbb{F}_p)$ que no está en el grupo generado por el automorfismo de Frobenius Frob_p. No obstante, el cuerpo fijo por $\langle \operatorname{Frob}_p \rangle$ es \mathbb{F}_p , pese a que $\langle \operatorname{Frob}_p \rangle \neq \operatorname{Gal}(\mathbb{F}_p^{\operatorname{alg}}/\mathbb{F}_p)$.

Esto prueba que la biyección entre subgrupos y subextensiones se rompe en el caso infinito. ¿Cómo se arregla? Mediante el ejercicio A, vemos que el grupo de Galois es el límite inverso de grupos finitos, ¹ con lo que lo podemos dotar de la topología del límite inverso (a veces llamada topología de Krull). Ahora, habrá una biyección entre subextensiones y subgrupos cerrados del grupo de Galois. El ejercicio C muestra entonces que $\langle Frob_p \rangle$ es denso en $Gal(\mathbb{F}_p^{alg}/\mathbb{F}_p)$ con dicha topología. Una referencia del tema es NEUKIRCH [4], &EV.1-3.

Referencias

- 1. Aluffi, P. Algebra. Chapter 0 (American Mathematical Society, 1960).
- 2. Jacobson, N. Lectures in Abstract Algebra. 3: Theory of Fields and Galois Theory (Van Nostrand, 1964).
- 3. Lang, S. Algebra (Springer-Verlag New York, 2002).
- 4. Neukirch, J. Algebraic Number Theory trad. del alemán por Schappacher, N. (Springer-Verlag Berlin Heidelberg, 1999). Trad. de Algebraische Zahlentheorie (Springer-Verlag Berlin Heidelberg, 1992).

Correo electrónico: josecuevasbtos@uc.cl

URL: https://josecuevas.xyz/teach/2025-2-alg/

¹De ahí el nombre «profinito.»