22908
PATENT TRADEMARK OFFICE

SPECIFICATION

Banner & Witcoff, Ltd. Case No. 04608.00002

TO ALL WHOM IT MAY CONCERN:

Be it known that we, ERIC A. BALDWIN, a citizen of the United States and a resident of Ishpeming, Michigan, THOMAS S. KILPELA, a citizen of the United States and a resident of Marquette, Michigan, and BURNS SEVERSON, a citizen of the United States and a resident of Marquette, Michigan, have invented certain new and useful improvements in

APPARATUS AND METHOD FOR REPAIRING THE FEMUR

of which the following is a specification.

Assignee:

Pioneer Laboratories, Inc. 375 River Park Circle

Marquette, Michigan 49855

British Speed, Street, Street, Speed, Street, Street, Street, Street, 42 Maria TI, B&W Case No. 04608.00002 Inventors: Eric A. Baldwin et al.

This is a non-provisional application of Provisional Application Serial No.

60/179,999 filed on February 3, 2000 for which priority is claimed. This provisional

application is incorporated herewith by reference.

BACKGROUND OF THE INVENTION

Field of the Invention

The invention relates generally to surgical methods and apparatus for the repair

of the femur and more particularly related to methods and apparatus for repairing

periprosthetic fractures and/or re-attaching the greater trochanter to the femur.

Description of the Prior Art

The bone structure of the hip joint often requires orthopedic surgery. Total hip

replacements are performed most commonly because of progressively severe arthritis in

the hip joint. The most common type of arthritis leading to total hip replacement is

degenerative arthritis (osteoarthritis) of the hip joint. Other conditions leading to total

hip replacement include bony fractures of the hip joint, and death (necrosis) of the

The progressively intense chronic pain together with impairment of daily femur.

function including walking, climbing stairs and even rising from a sitting position,

eventually become reasons to consider a total hip replacement.

A total hip replacement is a surgical procedure whereby the diseased cartilage

and bone of the hip joint is surgically replaced with artificial materials. As shown in

FIGURE 1, the normal hip joint is a ball and socket joint. The socket is a "cup-shaped"

Banner & Witcoff, Ltd. Ten S. Wacker Drive, Ste. 3000 Telephone: 312/715-1000

Fax: 312/715-1234

- 2 -

The street

fi.

. *== bone of the pelvis called the acetabulum. The ball is at the head of the femur. Total hip

joint replacement generally involves: (1) surgically removing the diseased ball and

socket; and (2) replacing them with a metal ball and stem 210 inserted into the femur

bone and an artificial plastic cup socket 220 (see FIGURE 2). The metallic artificial

ball and stem are referred to as the "prosthesis." Upon inserting the prosthesis into the

central core of the femur, it is fixed with a bony cement. Alternatively, a "cement-less"

prosthesis may be used that allows bony in growth from the normal femur into the

prosthesis stem. Even after hip replacement surgery, it often becomes necessary to

perform further surgery due to further deterioration of the bone or to perform further

repair of the replaced hip. If a patient falls and injures a replaced hip, the bone fracture

will often occur at the distal tip of the prothesis, thereby requiring replacement of the

prosthesis and/or repair of the femur.

Presently, a number of orthopedic surgical techniques exist for replacing or

repairing the hip joint. A number of these total hip procedures require osteotomizing or

removing the greater trochanter (illustrated by line 205 in FIGURE 2). Removal of this

portion of the femur provides the surgeon with access to the stem of the prosthesis to

conduct the necessary hip replacement procedure. After the necessary hip replacement

procedure, the greater trochanter must then be re-attached to the femur.

A few tools exist to enable re-attachment of the greater trochanter to the femur.

One known technique utilizes a cable implant to hold bone portions together. Cables

Banner & Witcoff, Ltd. Ten S. Wacker Drive, Ste. 3000 Chicago, Illinois 60606 Telephone: 312/715-1000

Fax: 312/715-1234

- 3 -

Į.,

¥[Î

. .

¥ĽÍ

į.

tent fine tred grant

and/or wires secure the bones and the bone fragments in place. Typically, surgical

cables are implanted using tensioning devices, which apply tension to a cable looped

around the bone. Crimps are then added and deformed to clamp the cable loop in place.

One example of such techniques is disclosed in U.S. Patent No. 5,415,658, the entire

writing of which is incorporated herein by reference. Another such example is the

CABLE-READY brand cable grip system sold by Zimmer of Warsaw, Indiana.

These techniques, however, rely entirely on cables to ensure that the device is

securely fastened to the bone or bone fragments. Accordingly, it is desirable to provide

a technique to re-attach the greater trochanter to the femur that provides an additional

level of stability to the fracture site.

It is also desirable to provide a technique to repair periprosthetic fractures. Peri-

prosthetic fractures have become increasingly common as more patients undergo total

hip replacement, and may occur intraoperatively or at some time after surgery. The

patient must then have an additional surgical procedure to repair the fracture.

It is further desirable to provide a device that can be fitted to femoral heads and

femoral shafts of a variety of sizes and shapes without need for manufacture and

inventory of an unreasonable number of differently sized models of the apparatus.

Banner & Witcoff, Ltd. Ten S. Wacker Drive, Ste. 3000 Chicago, Illinois 60606 Telephone: 312/715-1000

Fax: 312/715-1234

- 4 -

The state of the s

SUMMARY OF THE INVENTION

The aforementioned problems are addressed by the present invention, which in a

preferred embodiment, provides a connector for repairing a femur including techniques

for repairing periprosthetic fractures and/or re-attaching the greater trochanter to the

femur. The connector includes a claw-like member to engage with the greater

trochanter. Along the body of the connector as well as along the superior end are a

plurality of cable apertures and cable screws to receive and engage with cables that loop

around the femur. Along the inferior end of the connector is at least one bone screw

slot and bone screw engaging the connector with the femur. The bone screw provides

torsional stability and provides a means for stabilizing bony fragments for periprosthetic

fractures.

As preferred, the connector may be bowed or rotated at the inferior end to more

properly align itself with the femur. Also to achieve this purpose, the connector may

include a transition portion that allows the surgeon to bend the connector. Also

included in the connector is a driver slot along the superior portion to allow the surgeon

to place the connector to the greater trochanter.

The present invention also includes a method for repairing periprosthetic

fractures and/or re-attaching the greater trochanter to the femur involving the steps of

impacting a connector onto the greater trochanter, re-positioning the greater trochanter

onto the femur, passing cables around the femur and through the connector, tensioning

Banner & Witcoff, Ltd. Ten S. Wacker Drive, Ste. 3000 Chicago, Illinois 60606 Telephone: 312/715-1000

Fax: 312/715-1234

- 5 -

the cables to provide engagement between the greater trochanter and the femur, and

attaching the connector to the femur by securing the cables with the cable screws and

using at least one bone screw.

The invention may also include a modular feature that allows the apparatus to be

assembled using a superior end and an inferior end of choice size to closely fit the

patient's skeletal frame. In the preferred embodiment, the superior connector includes a

first transitional portion that mates with a second transitional portion of the inferior

portion. The two portions may be secured together using one or more screws. It is

clear, however, that one skilled in the art would be able to utilize a variety of methods

for securing the two portions together.

Banner & Witcoff, Ltd. Ten S. Wacker Drive, Ste. 3000 Chicago, Illinois 60606 Telephone: 312/715-1000 Fax: 312/715-1234

- 6 -

BRIEF DESCRIPTION OF THE DRAWINGS

These and other advantages and features of the invention will become apparent

upon reading the following detailed description and referring to the accompanying

drawings in which like numbers refer to like parts throughout and in which:

FIGURE 1 is a diagram of the femur and pelvis;

FIGURE 2 is a diagram of the replaced femoral head and pelvis;

FIGURE 3 is a perspective view of an exemplary connector for repairing a

femoral periprosthetic fracture and/or re-attaching the greater trochanter to the femur in

accordance with a preferred embodiment of the present invention;

FIGURE 4 an anterior/posterior view of the connector of FIGURE 3;

FIGURE 5 is a lateral view of the connector of FIGURE 3;

FIGURE 6 is a flow chart illustrating the procedure for re-attaching a greater

trochanter to the femur in accordance with a preferred embodiment of the present

invention;

FIGURES 7-12 are diagrams of the surgical procedure for re-attaching the

greater trochanter to the femur in accordance with the steps detailed in FIGURE 6; and

FIGURES 13-17 are diagrams of additional embodiments of a connector for re-

attaching a greater trochanter to the femur in accordance with a preferred embodiment

of the present invention.

FIGURES 18-21 illustrate one embodiment of the present invention wherein the

superior and inferior ends of the connector are modular.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

FIGURES 3-5 illustrate an exemplary connector 300 for re-attaching a greater

trochanter 160 to the femur 150 in accordance with a preferred embodiment of the

present invention, Connector 300 generally has a superior end 305, an inferior end 310,

a transition portion 307, a lateral side 315, a medial side 320, and opposing anterior and

posterior sides 325. Connector 300 may be of an implant grade material, preferably

titanium or stainless steel, or of a bio-absorbable material.

The superior end 305 of the connector 300 has an improved anatomically-

designed bowthat fits and cradles the greater trochanter 160. In particular, the superior

end 305 includes one or more cable apertures or grooves 340, and one or more claws or

claw-like members 345. Claws 345 include extensions or hooks to allow the superior

end to better grasp onto the greater trochanter 160. The cable apertures 340 serve to

attach and fixate the connector 30% to the greater trochanter 160 in accordance with the

present invention. The apertures 340 may be perpendicular to the sides 325 of the of

the connector 300 (as shown in the figures), they may be angled to provide a cable path

that reduces the stress on the cable, and/or they max have a curved path to help direct

the cable in a stress relieving direction. The cables extending through the apertures 340

may be crimped. In this regard, crimping may be external or the superior end 305 may

have integral crimps 330 attached thereto. The superior end 305 includes a driver slot

350 for engaging with a driver (not shown). As defined herein, apertures 340 may

Banner & Witcoff, Ltd. Ten S. Wacker Drive, Ste. 3000 Chicago, Illinois 60606 Telephone: 312/715-1000

Fax: 312/715-1234

-9-

include surface grooves to route the cable over the connector 300.

The transition portion 307 of the connector 300 is preferably sufficiently narrow such that it may be bent by a surgeon to provide a better fit between the connector 300 and the femur 150. Optionally, as shown in FIGURE 5, the inferior end 310 of the connector 300 may be bowed to conform with the anterior bow in the femur 150. The inferior end 310 may also be bowed in other directions to follow any other unique bows or rotations of the femur 150.

The inferior end 310 of the connector 300 includes one or more bone screw slots 355 to receive a bone screw (not shown). The slots 355 include threaded holes and are preferably evenly spaced along the length of the inferior end 310, although any spacing geometry may be used and still be considered within the scope of the present invention. As illustrated in FIGURES 3-5, five slots 355, roughly one inch apart, are provided, however, those skilled in the art will appreciate that connector 300 may include any number of slots 355 to be considered within the scope of the present invention. As preferred, the range is between two and five slots 355. Slots 355 may be standard slots or may be compression slots. Compression slots are generally known in the art. Further, slots 355 may be of differing geometries. Advantageously, as shown herein, slots 355 allow bone screws to be inserted into the femur 150 to provide a more durable connection, to provide torsional stability, to provide stability for bony fragments of periprosthetic fractures, and to provide more support for the greater trochanter 160

while it heals. Bone screws cause connector 300 to create a force to push the greater trochanter 160 toward the femur 150. Further, slot 355 may be configured such that bone screws may be easily angled past the prosthesis, thereby avoiding the prosthesis when the bone screw is inserted. Bone screws may be unicortical or bicortical screws.

Inferior end 310 also includes one or more pairs of cable apertures 360. Though not required, the cable apertures 360 are shown as being evenly spaced along the length of the inferior end 310 in an alternating fashion with the slots 355. One or more of the paired apertures includes a cable screw slot 370 for receiving a cable screw 365. The cable screw 365 may be wound into the slot 370 to and affect the size of the cable aperture 360. The particulars of the cable mechanism are generally known in the art and are disclosed further in U.S. Patent No. 5,415,658, the entire writing of which is incorporated herein by reference. Again, those skilled in the art will appreciate that any number of cable apertures 360 may be used to still be considered within the scope of the present invention.

FIGURES 13-17 disclose additional embodiments of connector for re-attaching a greater trochanter 160 to the femur 150 in accordance with a preferred embodiment of the present invention. As illustrated by these alternative embodiments, integral crimps may or may not be used for the cable apertures along the superior end of the connector. In addition, the number of slots 355, cable screws 365, and cable apertures 360 may be vary.

Banner & Witcoff, Ltd. Ten S. Wacker Drive, Ste. 3000 Chicago, Illinois 60606 Telephone: 312/715-1000 Fax: 312/715-1234

the state

THE PARTY

FIGURES 6-12 generally illustrate an exemplary procedure for re-attaching the

greater trochanter 160 to the femur 150 in accordance with a preferred embodiment of

the present invention. FIGURE 7 illustrates a known procedure for passing a cable 705

around the femur 150 using a cable passer 710. After the underlying hip surgery, the

cable passer 710 is passed around the superior femur 150 usually from the posterior to

the anterior. The free end of the cable 705 is inserted into the tip of the cable passer 710

until the free end exits the cable passer on the other end as shown. The cable passer 710

is then removed, leaving the cable 705 around the femur 150.

Referring to FIGURES 6 and 8, at step 605, a driver 805 is screwed onto the

driver slot 350 of the connector 300. At step 610, the connector 300 is impacted onto

the greater trochanter 160. The claws 345 at the extreme tip of the superior end 305 of

the connector 300 should engage the superior portion of the trochanter 160.

Referring next to FIGURES 6 and 9, at step 615, the driver 805 is used to

advance the connector 300 and impacted greater trochanter 160 onto the femur 150.

Referring next to FIGURES 6 and 10, at step 620, one or more cables 705 are

passed around the femur 150 and through the apertures 340 and 360 of the connector

300.

O

A di limit

ļ.

del Lel

řij.

ļ.

Referring next to FIGURES 6 and 11, at step 625, the cables 705 are tensioned

using a tensioning tool 1100.

Referring next to FIGURES 6 and 12, at step 630, the bone screws 1200 are

Banner & Witcoff, Ltd. Ten S. Wacker Drive, Ste. 3000 Chicago, Illinois 60606 Telephone: 312/715-1000

Fax: 312/715-1234

- 12 -

B&W Case No. 04608.00002

Inventors: Eric A. Baldwin et al.

C

أبيه Ļ, 1

Ü Ţ,

ğ-p

det.

1

N

screwed through the bone screw slots 355 of the connector 300 and into the femur 150.

Finally, step 635, the cables 705 are re-tensioned and locked-down with cable screws

365. Excess cable 705 is also cut away.

As will be recognized by those of ordinary skill, the present invention

advantageously provides an improved technique for repairing periprosthetic fractures

and/or re-attaching the greater trochanter 160 to the femur 150. Advantageously, slots

355 allow bone screws to be inserted into the femur 150 to provide a more durable

connection, to provide torsional stability, to provide stability for bony fragments of

periprosthetic fractures, and to provide more support for the greater trochanter 160

while it heals. The improved superior end 305 of the connector 300 provides an

improved anatomically-designed bow that fits and cradles the greater trochanter 160.

The superior end 305 allows cables 705 to be wrapped around that portion of the greater

trochanter 160. Further, the improved inferior end 310 of the connector 300 allows the

connector to be attached to the femur 150 with bone screws 1200 to provide a more

durable connection, to provide more stability for the connector 300, and to provide

more support for the greater trochanter 160 while it heals. In this regard, slots 355 are

provided along the inferior end 310 of the connector 300.

In another aspect of the present invention, the device includes a modularity

feature. The modularity feature may be implemented, for example, by using a superior

end and an inferior end of choice size to closely fit the patient's skeletal frame.

Banner & Witcoff, Ltd. Ten S. Wacker Drive, Ste. 3000 Chicago, Illinois 60606 Telephone: 312/715-1000

Fax: 312/715-1234

- 13 -

C)

4. mil. mil.

W.C

in i

FIGURES 18-21 illustrate one embodiment of a modular construction of the connector

1800 having a superior end 1805 and an inferior end 1810. FIGURE 18 illustrates the

superior and inferior ends 1805 and 1810 mated together and FIGURE 19 illustrates

detached superior and inferior ends 1805 and 1810. FIGURE 20 illustrates the superior

end 1805 with a first transition 1815 and FIGURE 21 illustrates the inferior end 1810

with a second transition portion 1820. In the embodiments of FIGURE 20-21, the first

and second transition portions 1810 and 1820 are a tongue and groove, respectively.

The two ends 1805 and 1810 may be secured together using one or more screws though

apertures 1825. It is clear, however, that one skilled in the art would be able to utilize a

variety of methods for securing the two portions together. This modularity feature

allows the apparatus to be fitted to femoral heads and femoral shafts of a variety of sizes

and shapes without need for manufacture and inventory of an unreasonable number of

differently sized models of this apparatus.

As used herein, the present invention may be used in a number of applications

for repairing the human femur, including, but not limited to, total hip replacements, hip

revisions, and repair of periprosthetic bone fractures and/or re-attaching the greater

trochanter to the femur.

Although the preferred embodiment of this invention has been described

hereinabove in some detail, it should be appreciated that a variety of embodiments will

be readily available to persons utilizing the invention for a specific end use. The

Banner & Witcoff, Ltd. Ten S. Wacker Drive, Ste. 3000 Chicago, Illinois 60606 Telephone: 312/715-1000

Fax: 312/715-1234

- 14 -

description of this invention is not intended to be limiting on this invention, but is merely illustrative of the preferred embodiment of this invention. Other products, apparatus and methods which incorporate modifications or changes to that which has been described herein are equally included within this application. Additional objects, features and advantages of the present invention will become apparent by referring to the above description of the invention in connection with the accompanying drawings.