CS 5990 (Advanced Data Mining) - Assignment #3

Maximum Points: 100 pts.

Bronco ID: 017314921 Last Name: Panda First Name: Subham

Answers:

1.

Building the Euclidean distance table between samples:

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Sl. No.	X	Y	Class	dis ₁	dis ₂	dis_3	dis ₄	dis ₅	dis ₆
1	1	3	_	0	1	1.41	2	4.47	4.47
2	1	4	_	1	0	1	2.23	5	4.12
3	2	4	+	1.41	1	0	1.41	4.24	3.16
4	3	3	+	2	2.23	1.41	0	2.82	2.82
5	5	1	_	4.47	5	4.24	2.82	0	4
6	5	5	_	4.47	4.12	3.16	2.82	4	0

a) Now, building the (LOO-CV) table for 1NN

Sl. No.	X	Y	Class	1 <i>NN</i>	Neighbors
1	1	3	1	1	(1,4)
2	1	4	-	+	(1,3)
3	2	4	+	_	(1,4)
4	3	3	+	+	(2,4)
5	5	1	_	+	(3,3)
6	5	5	_	+	(3,3)

The Error Rate is $\frac{4}{6} = 0.667$

b) Now, building the (LOO-CV) table for 3NN

Sl. No.	X	Y	Class	3 <i>NN</i>	Neighbors
1	1	3	_	+	[(1,3),(2,4),(3,3)]
2	1	4	_	+	[(1,3), (2,4), (3,3)]
3	2	4	+	_	[(1,4), (1,3), (3,3)]
4	3	3	+	_	[(2,4),(1,4),(1,3)]
5	5	1	_	+	[(3,3), (5,5), (2,4)]
6	5	5	_	+	[(3,3), (2,4), (5,1)]

The Error Rate is
$$\frac{6}{6}=1$$

c)

Distance weights:

For P_1 :

Nearest 3 neighbors-

$$\frac{1}{1^2} = \mathbf{1} (-)$$

$$\frac{1}{1.41^2} + \frac{1}{2^2} = 0.752 (+)$$

Therefore, this will be (+)

For P_2 :

Nearest 3 neighbors-

$$\frac{1}{1^2} = \mathbf{1} (-)$$

$$\frac{1}{1^2} + \frac{1}{2.23^2} = 1.201 (+)$$

Therefore, this will be (+)

For P_3 :

Nearest 3 neighbors-

$$\frac{1}{1^2} + \frac{1}{1.41^2} = \mathbf{1.5} (-)$$
$$\frac{1}{1.41^2} = 0.50 (+)$$

Therefore, this will be (-)

For P_4 :

Nearest 3 neighbors-

$$\frac{1}{2^2} + \frac{1}{2.23^2} = 0.451 (-)$$
$$\frac{1}{1.41^2} = \mathbf{0.50} (+)$$

Therefore, this will be (-)

For P_5 :

Nearest 3 neighbors-

$$\frac{1}{2.82^2} + \frac{1}{4.24^2} = \mathbf{0.181} (+)$$
$$\frac{1}{4^2} = 0.0625 (-)$$

Therefore, this will be (+)

For P_6 :

Nearest 3 neighbors-

$$\frac{1}{2.82^2} + \frac{1}{3.16^2} = \mathbf{0.225} (+)$$
$$\frac{1}{4^2} = 0.0625 (-)$$

Therefore, this will be (+)

Now, building the (LOO-CV) table for 3NN(DW)

Sl. No.	X	Y	Class	3NN(DW)	Neighbors
1	1	3	_	_	[(1,3),(2,4),(3,3)]
2	1	4	_	+	[(1,3),(2,4),(3,3)]
3	2	4	+	_	[(1,4),(1,3),(3,3)]
4	3	3	+	+	[(2,4),(1,4),(1,3)]
5	5	1	_	+	[(3,3),(5,5),(2,4)]
6	5	5	_	+	[(3,3),(2,4),(5,1)]

The Error Rate is
$$\frac{4}{6}=0.667$$

d) The decision boundary learned by 1NN algorithm (pseudo-model) is

2.

Using KNN with K=3 to classify test sample (t1=1,t2=2,t3=3,t4=4,t5=4) with L1 norm for distance computations:

Let,
$$t = (t1 = 1, t2 = 2, t3 = 3, t4 = 4, t5 = 4)$$

L1 norm distances between test sample and training dataset would be:

$$P_{t1} = |1 - 2| + |2 - 3| + |3 - 4| + |4 - 5| + |4 - 5| = 5$$

$$P_{t2} = |1 - 0| + |2 - 1| + |3 - 2| + |4 - 3| + |4 - 5| = 5$$

$$P_{t3} = |1 - 2| + |2 - 2| + |3 - 2| + |4 - 2| + |4 - 4| = 4$$

$$P_{t4} = |1 - 0| + |2 - 1| + |3 - 2| + |4 - 3| + |4 - 5| = 5$$

$$P_{t5} = |1 - 4| + |2 - 2| + |3 - 4| + |4 - 4| + |4 - 4| = 4$$

Therefore, the **test sample for** K = 3 **would be classified as** Sell with the 3 nearest neighbors being $P_3 = Sell$, $P_4 = Sell$, $P_5 = Sell$

KNN Program GitHub Link

4.

Naïve Bayes Approach

$$P(+ | A = 0, B = 1, C = 0) = P(A = 0, B = 1, C = 0 | +) * P(+)$$

$$\therefore P(A = 0 | +) * P(B = 1 | +) * P(C = 0 | +) * P(+)$$

$$= (2/5) * (1/5) * (1/5) * (5/10) = 0.008$$

$$P(- | A = 0, B = 1, C = 0) = P(A = 0, B = 1, C = 0 | -) * P(-)$$

$$\therefore P(A = 0 | -) * P(B = 1 | -) * P(C = 0 | -) * P(-)$$

$$= (3/5) * (2/5) * (0/5) * (5/10) = 0$$

Therefore, (A = 0, B = 1, C = 0) would be classified as +.

Now, estimating the probabilities using m-estimate with $p=\frac{1}{2}$ and m=4

m-estimate:
$$P(A_i|C) = \frac{N_{ic} + mp}{N_c + m}$$

$$P(+|A=0) = \frac{2+2}{5+4} = \frac{4}{9}$$

$$P(+|B=1) = \frac{1+2}{5+4} = \frac{3}{9}$$

$$P(+|C=0) = \frac{1+2}{5+4} = \frac{3}{9}$$

$$P(-|A=0) = \frac{3+2}{5+4} = \frac{5}{9}$$

$$P(-|B=1) = \frac{2+2}{5+4} = \frac{4}{9}$$

$$P(-|C=0) = \frac{0+2}{5+4} = \frac{2}{9}$$

Now using the m-estimate probabilities calculating the naïve bayes classifier for the test sample:

$$P(+ | A = 0, B = 1, C = 0)$$

$$= (4/9) * (3/9) * (3/9) * (5/10) = 0.0247$$

$$P(- | A = 0, B = 1, C = 0)$$

$$= (5/9) * (4/9) * (2/9) * (5/10) = 0.0274$$

Now normalizing the scores:

For +,

$$\frac{0.0247}{0.0247 + 0.0274} = 0.474$$

For +,

$$\frac{0.0274}{0.0247 + 0.0274} = \mathbf{0.525}$$

After using the m-estimate values for naïve bayes classification for the sample test the most probable classification is –

Therefore, (A = 0, B = 1, C = 0) would be classified as -.

a) The conditional probability tables for each variable are:

Pollution				
L = 11/20 = 0.55				
H = 9/20 = 0.45				

Smoker				
False = 13/20 = 0.65				
True = 7/20 = 0.35				

Cancer				
	P = L	P = L	P = H	P = H
	S = False	S = True	S = False	S = True
False	7/8 = 0.875	2/3 = 0.667	3/5 = 0.6	2/4 = 0.5
True	1/8 = 0.125	1/3 = 0.333	2/5 = 0.4	2/4 = 0.5

Xray		
	C = False	C = True
Neg	10/14 = 0.714	2/6 = 0.333
Pos	4/14 = 0.285	4/6 = 0.666

Dyspnoea					
	C = False	C = True			
False	10/14 = 0.714	2/6 = 0.333			
True	4/14 = 0.285	4/6 = 0.666			

Given,

$$(P = L, S = True, C = True, X = pos)$$

$$P(P, S, C, X, D) = P(P) * P(S) * P(C|P, S) * P(X|C) * P(D|C)$$

For:

$$\Rightarrow P(P = L) * P(S = True) * P(C = True | P = L, S = True) * P(X = Pos | C = True) * P(D | C = True)$$

Now for D = False:

$$\Rightarrow 0.55 * 0.35 * 0.333 * 0.666 * P(D = False | C = True)$$

$$\Rightarrow 0.0426 * 0.333 = 0.014$$

Now for D = True:

$$\Rightarrow 0.55 * 0.35 * 0.333 * 0.666 * P(D = True | C = True)$$

$$\Rightarrow$$
 0.0426 * 0.666 = 0.0283

Now Normalizing,

For False:

$$\frac{0.014}{0.014 + 0.0283} = 0.3309$$

For True:

$$\frac{0.0283}{0.014 + 0.0283} = 0.6690$$

Therefore, the patient is likely to have Dyspnoea.

Naive Bayes Program GitHub Link