

آموزش یادگیری ماشین (Machine Learning) (تئوری – عملی) – بخش دوم

درس سوم: یادگیری جمعی

مدرس: فرشید شیرافکن دانشجوی دکترای بیو انفورماتیک دانشگاه تهران

یادگیر جمعی

ترکیب چند یادگیر ضعیف برای تولید یک یادگیر قوی.

یادگیر ضعیف (weak learners): دسته بندی که فقط کمی از دسته بند تصادفی بهتراست.

مثال

مثال

دیدگاهها

Bagging: Bootstrap aggregating

Boosting •

Original Dataset	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X,	X ₈	X ₉	X ₁₀
						7		7		
√ Bootstrap 1	X ₈	X ₆	X ₂	X ₉	X ₅	X ₈	X ₁	X ₄	X ₈	X ₂
√ Bootstrap 2	X ₁₀	X ₁	X ₃	X ₅	X ₁	X,	X ₄	X ₂	X ₁	X ₈

:Bootstrap <

نمونه برداری تصادفی با جایگزینی از نمونه های اصلی با همان اندازه.

Bagging

Bagging is a machine learning ensemble algorithm designed to improve the accuracy of machine learning algorithms used in classification and regression.

الگوريتم Bagging

آموزش یادگیری ماشین (Machine Learning) (تئوری - عملی) - بخش دوم

6=3

model generation

Let n be the number of instances in the training data.

For each of (t) iterations:

Sample n instances with replacement from training data.

Apply the learning algorithm to the sample.

Store the resulting model.

classification

For each of the (t) models:

Predict class of instance using model.

Return class that has been predicted most often.

(Random Forest) جنگل تصادفی

• Bagging بر روی درختهای تصمیم.

تصادفی بودن این روش به مرحله
 انتخاب ویژگی مربوط می شود.

• هم برای <u>ر</u>گرسیون و هم برای دستهبندی قابل استفاده است.

درا	۱۱۱ وون	مر فافرن	ر الله	519	مثال)
(_	7	_	1			
	F 1	F2	F 3	F4	class	1
1	NO	NO	NO	125	NO	
2	YES	YES	YES	180	YES	
3	YES	YES	NO	210	NO	
4	YES	NO	YES	167	YES	事)
			/			

ریماری قلی		
こしょ	0=4	
دیات اصلی	$m = \sqrt{9} =$	2
G.C.	f2,f3	ishe
	E7. F4	

		V			
	F1	F2	F3	F4	class
2	YES	YES	YES	180	YES
1	NO	NO	NO	125	NO
4	YES	NO	YES	167	YES
4	YES	NO	YES	167	YES

مثال

メリンメンメラ

اکثریت میراند میراند

کاربردهای جنگل تصادفی

بازار بورس: شناسایی رفتار بورس در آینده.

بانکداری : شناسایی مشتریان که قصد کلاهبرداری از بانک را دارند.

پزشکی: شناسایی ترکیب صحیحی از مولفهها و تحلیل تاریخچه پزشکی بیمار، برای شناسایی بیماری او .

تجارت الكترونيك : شناسايي اينكه مشتريان يك محصول را دوست داشتهاند يا خير.

Boosting

Boosting

دستهبند کلی از جمع وزن دار دستهبندهای پایه ساخته میشود.

AdaBoost

- هدف: بهینه کردن یک تابع هزینه
- به دادههایی که به اشتباه دستهبندی شده اند، وزن بیشتر داده میشود.
 - در حالی که دستهبند پیچیدهای را یاد می گیرد، به سرریز مقاوم است.
- دستهبند پایه: درخت تصمیم با عمق محدود یا شبکه عصبی چند لایه یا decision stumps.

Decision stump

A decision stump is a model consisting of a one-level decision tree.

a decision tree with one internal node which is immediately connected to the terminal nodes. decision stump makes a prediction based on the value of just a single input feature.

$$h(x; j, \theta) = \begin{cases} +1 & x_j > \theta \\ -1 & \text{else} \end{cases}$$

$$\begin{array}{c}
5=1 \\
\chi_1 > 5 \\
\chi = 8 = \chi_1 \longrightarrow +1 \\
3 = \chi_2
\end{array}$$

$$H_{final} = sign \left(0.42\right) + 0.65$$

$$H_{g} = Sign \left(d_{1} h_{1}(\pi) + d_{2} h_{2}(x) + d_{3} h_{3}(x) \right)$$

$$X = \begin{cases} x_{1} = 5 \\ x_{2} = 2 \end{cases}$$

$$Sign \left(-0.42 + 0.65 - 0.92 \right) = -7$$

دور اول

$$\frac{3}{2} = \frac{3}{70} = \frac{3}{70} = 0.3$$

دور دوم

(2)
$$\mathcal{E}_2 = \frac{J_2}{U_{ij} \mathcal{E}_{2}} \subseteq 0.2$$

$$3 \times 2 = \frac{1}{2} \ln \left(\frac{1 - \xi_2}{\xi_2} \right) = 0.65$$

$$10$$

$$7 = 0.07$$

$$\begin{cases} 0.07 \times e & = 0.09 \\ 0.07 \times e & = 0.09 \end{cases}$$

$$0.05$$

$$= 0.05$$

$$0.07 \times e^{0.05} = 0.04$$

$$0.07 \times e^{0.05} = 0.04$$

دور سوم

(1)
$$J_3 = 3(0.05) = 0.15$$

$$2 \xi_3 = \frac{0.15}{0.14} \leq 0.14$$

(3)
$$d_3 = \frac{1}{2} \ln \left(\frac{1 - \xi_3}{\xi_3} \right) = 0.92$$

الگوريتم AdaBoost

Given: $(x_1, y_1), \dots, (x_m, y_m)$ where $x_i \in X$, $y_i \in Y = \{-1, +1\}$ Initialize $D_1(i) = 1/m$.

For $t = 1, \dots, T$:

- Train weak learner using distribution D_t.
- Get weak hypothesis $h_t: X \to \{-1, +1\}$ with error

$$\epsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i].$$

- Choose $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$.
- Update:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } h_t(x_i) = y_i \\ e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i \end{cases}$$

$$= \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final hypothesis:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

$$m=1.$$

$$D_{1}(i)=\frac{1}{m}$$

$$k_{1} \rightarrow \left[\frac{\varepsilon_{1}}{\varepsilon_{1}}\right]$$

$$\alpha_{1} = \frac{1}{2} \ln \left(\frac{1-\varepsilon_{1}}{\varepsilon_{1}}\right)$$

$$D_{2}(i) = D_{1}(i) \stackrel{t}{e}^{\alpha_{1}}$$

$$h_2 \rightarrow \begin{cases} \mathcal{E}_2 \\ d_2 \end{cases}$$
 $b_3(i)$

$$H(X) = \text{sign} \left(\alpha_1 h_1 + \alpha_2 h_2 + \alpha_3 h_3 \right)$$

مثال

,		X		Y	مثال
\	F1	F2	F3	class	_ N.
1	Yes	Yes	J 205	Yes +1	1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
2	No	Yes	180	Yes	1×e
3	Yes	No	210	Yes	3×Edi
مريناه	Yes	Yes	∫167	Yes	1/8 xetal
5	No	Yes	156	No-1	2xodi
6	No	Yes	125	No	1/8× e-d1
7	Yes	No	168	No	YX E d
8	Yes	Yes	172	No	78× e-d1 78× ed1 78× ed1
					O

خطای آموزش

Loss

Generalization Error Bounds

$$error_{true}(H) \leq error_{train}(H) + \tilde{\mathcal{O}}\left(\sqrt{\frac{Td}{m}}\right)$$

$$error_{true}(H) \le \hat{\Pr}\left[\underbrace{\operatorname{margin}_f(x,y) \le \theta}\right] + \tilde{O}\left(\sqrt{\frac{d}{m\theta^2}}\right)$$

این اسلایدها بر مبنای نکات مطرح شده در فرادرس «آموزش یادگیری ماشین (Machine Learning) (تئوری - عملی) – بخش دوم» تهیه شده است.

برای کسب اطلاعات بیشتر در مورد این آموزش به لینک زیر مراجعه نمایید.

faradars.org/fvdm94062