Introdução à Teoria de Grafos (Algumas Respostas)

Professor: Mayron Moreira Monitor: Álvaro Martins Espíndola Universidade Federal de Lavras Departamento de Ciência da Computação GCC218 - Algoritmos em Grafos

24 de setembro de 2019

- 1. Para cada um dos grafos da Figura 1:
 - (a) Classifique suas arestas em laço, ligação e arestas paralelas.
 - (b) Apresente o conjunto vizinhança de cada vértice (ou o conjunto de predecessores e sucessores, se for o caso).
 - (c) Apresente o grau de cada vértice.
 - (d) Apresente a conexidade de vértices e a conexidade de arestas dos grafos (a) e (b).

Figura 1: Grafos G, $H \in F$.

2. Quantos vértices e quantas arestas possuem os grafos K_n (grafo completo), $K_{m,n}$ (bipartite completa), C_n (ciclo), Q_n (cubo) e W_n (roda).

- 3. Quantas arestas tem um grafo com vértices de graus 5, 2, 2, 2, 1? Desenhe um possível grafo.
- 4. Construa o grafo de precedências para o seguinte programa:

S1: x := 0 S2: x := x + 1 S3: y := 2 S4: z := y S5: x := x + 2 S6: y := x + z S7: z := 4

- 5. O Simpósio Brasileiro de Pesquisa Operacional (SBPO) aplica, este ano, um questionário a 90 de seus participantes. Uma das parguntas principais presentes no formulário consiste em saber com quais outros pesquisadores, dentre os 90, que um dado participante teve alguma cooperação profissional. A ideia dos organizadores do evento é criar 6 grupos de 15 pessoas. Em cada grupo, cada participante trabalhará com 7 pessoas que já trabalharam alguma vez e outros 7 que jamais trabalharam. Com seus conhecimentos de Teoria de Grafos, ajude os organizadores a responderem a seguinte pergunta: caso seja possível, como criar uma maneira automática de montar esses grupos? Se não for possível montá-los, justifique sua resposta.
- 6. Descreva um modelo de grafo que represente se cada pessoa em uma festa sabe o nome de cada uma das pessoas na festa. As arestas devem ser orientadas ou não-orientadas? Devem ser permitidas arestas múltiplas? Devem ser permitidos laços?
- 7. Seja $N^-(u)$ e $N^+(u)$ o conjunto de predecessores e de sucessores imediatos de um vértice u, respectivamente. Identifique os conjuntos $N^+(3)$ e $N^-(2)$ do grafo da Figura 2.

Figura 2: Goldbarg and Goldbarg (2012)

8. Demonstre ou forneça um contra-exemplo para a afirmação: um subgrafo de um grafo bipartido é sempre bipartido.

Seja G = (V, E) um grafo bipartido. Por definição, o conjunto de vértices pode ser particionado em $V = X \cup Y, X \cap Y = \emptyset$, tal que para qualquer $(u, v) \in E$, então

- $u \in X$ e $v \in Y$. Em particular, tal propriedade valerá para todo subconjunto de arestas originado de um subgrafo qualquer. Portanto, a afirmação é verdadeira.
- 9. Duas arestas de um grafo G = (V, E) são adjacentes se possuem um mesmo vértice em comum. Essa relação de adjacência define o grafo das arestas de G, denotado por $G^e = (V^e, E^e)$. Neste grafo, $V^e = E$ e cada aresta de G^e é um par (u, v) tal que u e v são adjacentes em G. Calcule o grafo G^e do grafo G, presente na Figura 3.

Figura 3: Grafo G.

- 10. Mostre que se G é um grafo simples com n vértices e \overline{G} seu grafo complemento. Mostre que $G \cup \overline{G} = K_n$.
 - Seja G = (V, E) um grafo simples com n vértices e $\overline{G} = (V, \overline{E})$ seu grafo complemento. Por definição, $\overline{E} = \{(u, v); u \in V, v \in V, (u, v) \notin E\}$. Logo, o grafo resultante de $G \cup \overline{G} = (V, E^{\cup})$ é tal que $E^{\cup} = \{(u, v); (u, v) \in E \text{ ou } (u, v) \notin E\} = \{(u, v); u \in V, v \in V\} = K_n$, como queríamos mostrar.
- 11. Apresente um exemplo de subgrafo próprio, subgrafo parcial, subgrafo induzido por arestas, subgrafo induzido por vértices e subgrafo gerador do grafo da Figura 4.

Figura 4: Grafo G.

- 12. Existe algum subgrafo próprio que não seja induzido nem por vértices nem por arestas? Justifique sua resposta.
- 13. Determine o grafo complemento do grafo da Figura 5.
- 14. Os turistas Jenssen, Leuzinger, Alain e Medeiros se encontram em um bar de Paris e começam a conversar. As línguas disponíveis são o inglês, o francês, o português e o alemão; Jenssen fala todas, Leuzinger não fala apenas o português, Alain fala francês e o alemão e Medeiros fala inglês e português.

Figura 5: Goldbarg and Goldbarg (2012).

- (a) Represente por meio de um grafo G = (V, E) todas as possibilidades de um deles dirigir a palavra ao outro, sendo compreendido. Defina $V \in E$. O grafo obtido será orientado, ou não?
- (b) Represente por meio de um hipergrafo H = (V, W) as capacidades linguísticas do grupo. Qual o significado das interseções $W_i \cap W_j$, onde $W_k \in W$?
- 15. Mostre que não existem grafos (2k-1)-regulares com (2r-1) vértices, com $k, r \in \mathbb{Z}_+^*$.
- 16. Construa um grafo com 10 vértices, com a sequência de graus (1, 1, 1, 3, 3, 3, 4, 6, 7, 9), ou mostre ser impossível construí-lo.

17. Responda:

(a) Um grafo bipartido não tem ciclos ímpares? Se sim, prove. Se não, dê um contraexemplo.

Sim. Seja G = (V, E) um grafo bipartido com os conjuntos partição X e Y. Se G não possui ciclos, não temos o que provar. Seja então $C = v_1v_2...v_k$ um ciclo de G, e sem perda de generalidade, assumiremos $v_1 \in X$. Assim, da definição de grafo bipartido, teremos $v_2 \in Y, v_3 \in X$, e assim sucessivamente, ou seja, $v_i \in X$ para todo i ímpar e $v_i \in Y$, para todo i par. Como v_k é adjacente ao v_1 (pois C /e um ciclo), k deve ser par e então C é um ciclo par.

(b) A recíproca da anterior é verdadeira? Se sim, prove. Se não, dê um contraexemplo.

Sim. Seja G = (V, E) um grafo com no mínimo dois vértices e que não contém ciclos ímpares. Podemos supor, sem perda de generalidade, G conexo, pois caso contrário consideraríamos cada componente conexa separadamente. Fixemos um vértice v em G e definimos o conjunto X dos vértices x de V tais que o menor caminho de x a v tem comprimento par e tomamos Y = V - X. Sejam x e x' vértices em X. Para que G seja bipartido devemos mostrar que quaisquer dois vértices de X não podem ser adjacentes. Suponhamos que x e x' sejam adjacentes. Se x = v, então o menor caminho de v a x' tem comprimento um, o que implica que $x' \in Y$, uma contradição. Assim devemos ter $x \neq v$ e da mesma forma

 $x' \neq v$. Sejam $P_1 = v_0v_1...v_{2k}$ o caminho de menor comprimento de v_0 a v_{2k} , com $v = v_0$, $x = v_{2k}$, e $P_2 = w_0w_1...w_{2t}$ o caminho de menor comprimento de w_0 a w_{2t} , com $v = w_0$ e $x' = v_{2t}$, de modo que P_1 e P_2 tem o vértice v em comum. Agora, seja v' o último vértice que P_1 e P_2 tem em comum e chamemos de P'_1 o caminho v' - x e P'_2 o caminho v' - x', tendo apenas v' em comum. Assim, temos que P'_1 e P'_2 são os menores caminhos de v' a v e de v' a v, respectivamente, e além disso devemos ter $v' = v_i = w_j$, para algum par v, v, Note que v e v e par e então, $v' = v_i \in V$ e como v e

- 18. È possível desenhar um grafo simples com 5 vértices, cada um deles com graus iguais a 3,4,3,4,3? Se sim, desenhe-o. Senão, justifique sua resposta com base em um teorema visto em sala de aula.
- 19. Um hidrocarboneto saturado é uma molécula que atende à fórmula geral de C_nH_k , em que cada átomo de carbono (C) possui quatro ligações e cada átomo de hidrogênio (H) possui apenas uma ligação. Nesse composto nenhuma sequência de ligações forma um ciclo. Demonstre que, se um hidrocarboneto saturado $-C_nH_k$ existe, então k=2n+2.

Referências

Goldbarg, M. and Goldbarg, E. (2012). *Grafos: conceitos, algoritmos e aplicações*. Elsevier, São Paulo, 1 edition.