2023 JC2 H2 Math Prelim P2 Marking Scheme

Qn	Solution
1	$\int \frac{\sin 2x}{\cos^2 x + \cos x + 2} \mathrm{d}x$
	$\int \cos^2 x + \cos x + 2$ Let $u = \cos x$
	$\frac{\mathrm{d}u}{\mathrm{d}x} = -\sin x$
	$\int \frac{\sin 2x}{\cos^2 x + \cos x + 2} dx$
	$= \int \frac{2\sin x \cos x}{\cos^2 x + \cos x + 2} dx$
	$= -\int \frac{2\cos x}{\cos^2 x + \cos x + 2} (-\sin x) \mathrm{d}x$
	$= -\int \frac{2\cos x}{\cos^2 x + \cos x + 2} \left(\frac{\mathrm{d}u}{\mathrm{d}x}\right) \mathrm{d}x$
	$=-\int \frac{2u}{u^2+u+2} \mathrm{d}u$
	$= -\int \frac{(2u+1)-1}{u^2+u+2} \mathrm{d}u$
	$= -\int \frac{2u+1}{u^2+u+2} - \frac{1}{u^2+u+2} \mathrm{d}u$
	$= -\int \frac{2u+1}{u^2+u+2} du + \int \frac{1}{(u+\frac{1}{2})^2 + \frac{7}{4}} du$
	$= -\ln\left u^{2} + u + 2\right + \frac{2}{\sqrt{7}}\tan^{-1}\left(\frac{2u + 1}{\sqrt{7}}\right) + c$
	$= -\ln\left \cos^2 x + \cos x + 2\right + \frac{2}{\sqrt{7}}\tan^{-1}\left(\frac{2\cos x + 1}{\sqrt{7}}\right) + c$
2(i)	$y = \cot(x+a)$
	$\frac{dy}{dx} = -\csc^2(x+a) = -(1+\cot^2(x+a)) = -(1+y^2)$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -1 - y^2$
	$\frac{d^2y}{dx^2} = -2y\frac{dy}{dx} = 2y(1+y^2) = 2y + 2y^3$
	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = 2\frac{\mathrm{d}y}{\mathrm{d}x} + 6y^2 \frac{\mathrm{d}y}{\mathrm{d}x}$
	$= -2(1+y^2) - 6y^2(1+y^2)$
	$= -(6y^4 + 8y^2 + 2)$
2(ii)	Since $\tan 0 = 0$, $\cot 0 = \frac{1}{\tan 0}$ is undefined.
	Hence the Maclaurin series of $\cot(x+0)$ cannot be found.

		_
2(iii)	$y = \cot\left(x + \frac{\pi}{2}\right)$	
	When $x = 0$, $y = \frac{\cos \frac{\pi}{2}}{\sin \frac{\pi}{2}} = \frac{0}{1} = 0$, $\frac{dy}{dx} = -1 - 0^2 = -1$,	
	$\frac{d^2y}{dx^2} = 2(0) + 2(0)^3 = 0, \ \frac{d^3y}{dx^3} = -(6(0)^4 + 8(0)^2 + 2) = -2$	
	$y \approx -x - \frac{2}{3!}x^3 = -x - \frac{x^3}{3}$	
2(iv)	$\frac{y}{2+x} = y(2+x)^{-1}$	
	$=\frac{1}{2}y\left(1+\frac{x}{2}\right)^{-1}$	
	$\approx \frac{1}{2} \left(-x - \frac{1}{3}x^3 \right) \left(1 + \left(-1 \right) \frac{x}{2} + \frac{\left(-1 \right) \left(-2 \right)}{2!} \left(\frac{x}{2} \right)^2 \right)$	
	$= \frac{1}{2} \left(-x - \frac{1}{3}x^3 \right) \left(1 - \frac{1}{2}x + \frac{1}{4}x^2 \right)$	
	$\approx \frac{1}{2} \left(-x - \frac{1}{3}x^3 + \frac{1}{2}x^2 - \frac{1}{4}x^3 \right)$	
	$= -\frac{1}{2}x + \frac{1}{4}x^2 - \frac{7}{24}x^3$	
3(i)	$\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{6\pi\eta R}{m}v = g$	
	Substituting all the values, $\eta = 1.3806$, $R = 0.05$, $m = 0.2$, $g = 9.780$ gives	
	$\frac{dv}{dt} + 6.5059v = 9.780$	
	$\Rightarrow \frac{\mathrm{d}v}{\mathrm{d}t} = 9.780 - 6.5059v$	
	$\Rightarrow \int \frac{1}{9.780 - 6.5059v} \mathrm{d}v = t + c$	
	$\Rightarrow \frac{\ln\left 9.780 - 6.5059v\right }{-6.5059} = t + c$	
	$\Rightarrow 9.780 - 6.5059v = Ae^{-6.5059t}, A = \pm e^{-6.5059c}$ At $t = 0, v = 0, 9.780 = A$	
	$\therefore 9.780 - 6.5059v = 9.780e^{-6.5059t}$	
	$\Rightarrow v = 1.5032 (1 - e^{-6.5059t})$	
	$v = 1.50 \left(1 - e^{-6.51t} \right)$	
3(ii)	As $t \to \infty$, $e^{-6.5059t} \to 0$, $v \to 1.5032$	
	The ball approaches a velocity of 1.50 ms^{-1} after a long time.	

	<u> </u>
3(iii)	$v = \frac{\mathrm{d}x}{\mathrm{d}t}$
	$x = \int_0^{30} 1.5032 \left(1 - e^{-6.5059t} \right) dt \text{(using GC)}$
	$=44.865 \approx 44.9$
	The distance covered by the ball after 30 seconds is 44.9 m.
	Alternative Method (not recommended as this is more tedious)
	$\frac{dx}{dt} = 1.50 \left(1 - e^{-6.51t} \right)$
	$x = \int 1.50 \left(1 - e^{-6.51t} \right) dt$
	$=1.5032\left[t+\frac{e^{-6.5059t}}{6.5059}\right]+c$
	$=1.3032 \left t + \frac{1}{6.5059} \right + c$
	When $t = 0, x = 0 \Rightarrow c = -\frac{1.5039}{6.5059}$
	When $t = 30$,
	$x = 1.5032 \left[30 + \frac{e^{-6.5059(30)}}{6.5059} \right] - \frac{1.5032}{6.5059}$
	[6.5059] 6.5059
	=44.9 (3s.f.)
4(a)(i	4 1 1
)	$\frac{4}{4r^2 + 12r + 5} = \frac{1}{2r + 1} - \frac{1}{2r + 5}$
4(a) (ii)	$\sum_{r=2}^{n} \left(\frac{4}{4r^2 + 12r + 5} \right) = \sum_{r=2}^{n} \left(\frac{1}{2r + 1} - \frac{1}{2r + 5} \right)$
	$=\frac{1}{-}\frac{1}{-}$
	5 0
	$= \frac{1}{5} - \frac{1}{9} + \frac{1}{1} - \frac{1}{1}$
	$+\frac{7}{7}-\frac{11}{11}$
	$+\frac{7}{7}-\frac{11}{11}$
	$+\frac{7}{7} - \frac{11}{11} + \frac{1}{9} - \frac{1}{13} + \dots$
	$+\frac{7}{7} - \frac{11}{11} + \frac{1}{9} - \frac{1}{13} + \dots$
	$+\frac{7}{7}-\frac{11}{11}$
	$+\frac{7}{7} - \frac{11}{11} + \frac{1}{9} - \frac{1}{13} + \dots + \frac{1}{2n-3} - \frac{1}{2n+1}$
	$+\frac{7}{7} - \frac{11}{11} + \frac{1}{9} - \frac{1}{13} + \dots + \frac{1}{2n-3} - \frac{1}{2n+1}$
	$+\frac{7}{7} - \frac{11}{11} + \frac{1}{9} - \frac{1}{13} + \dots + \frac{1}{2n-3} - \frac{1}{2n+1} + \frac{1}{2n-1} - \frac{1}{2n+3}$
	$+\frac{7}{7} - \frac{11}{11} + \frac{1}{9} - \frac{1}{13} + \dots + \frac{1}{2n-3} - \frac{1}{2n+1} + \frac{1}{2n-1} - \frac{1}{2n+3}$
	$+\frac{7}{7} - \frac{1}{11} + \frac{1}{9} - \frac{1}{13} + \dots + \frac{1}{2n-3} - \frac{1}{2n+1} + \frac{1}{2n-1} - \frac{1}{2n+3} + \frac{1}{2n+1} - \frac{1}{2n+5}$
	$+\frac{7}{7} - \frac{1}{11} + \frac{1}{9} - \frac{1}{13} + \dots + \frac{1}{2n-3} - \frac{1}{2n+1} + \frac{1}{2n-1} - \frac{1}{2n+3} + \frac{1}{2n+1} - \frac{1}{2n+5}$
4(a)	
4(a) (iii)	
4(a) (iii)	$ \frac{1}{7} - \frac{1}{11} + \frac{1}{9} - \frac{1}{13} + \dots + \frac{1}{2n-3} - \frac{1}{2n+1} + \frac{1}{2n-1} - \frac{1}{2n+3} + \frac{1}{2n+1} - \frac{1}{2n+5} = \frac{1}{5} + \frac{1}{7} - \frac{1}{2n+3} - \frac{1}{2n+5} = \frac{12}{35} - \frac{1}{2n+3} - \frac{1}{2n+5} = \frac{12}{35} - \frac{1}{2n+3} - \frac{1}{2n+5} = \frac{1}{4r^2 + 12r + 5} $

$$\sum_{r=2}^{\infty} (u_r - u_{r+1}) = \sum_{r=2}^{\infty} \left(\frac{4}{4r^2 + 12r + 5}\right)$$

$$u_2 - u_1 + u_3 - u_4 + \dots + u_{r+1} - u_{r+2} + u_a - u_{x+1} = \frac{12}{35} - \frac{1}{2n + 3} - \frac{1}{2n + 5}$$

$$u_a - u_1 = \frac{13}{35} - \frac{1}{2n + 3} - \frac{1}{2n + 5}$$

$$u_u = \frac{117}{35} - \frac{1}{2n + 3} - \frac{1}{2n + 5}$$

$$4(b) \lim_{n \to \infty} \sqrt{\left(\frac{a_n^2}{5n^3 + nx}\right)^n} = \lim_{n \to \infty} \left(\frac{-3n^3 + nx}{5n^3 + 7}\right)$$

$$= \lim_{n \to \infty} \left(\frac{n^3 \left(-3 + \frac{x}{n^2}\right)}{n^3 \left(5 + \frac{7}{n^3}\right)}\right) = \lim_{n \to \infty} \left(\frac{\left(-3 + \frac{x}{n^2}\right)}{\left(5 + \frac{7}{n^3}\right)}\right)$$

$$= \left|-\frac{1}{3}\right| = \frac{3}{5} < 1 \qquad \text{as } n \to \infty, \frac{x}{n^2} \to 0, \frac{7}{n^3} \to 0.$$

$$\therefore \text{ By the root test, } \sum_{r=0}^{\infty} \left(\frac{-3r^3 + rx}{5r^3 + 7}\right)^r \text{ converges for all values of } x.$$

$$5(i) \qquad x = \cos\theta - \frac{1}{\cos\theta}, y = \cos\theta + \frac{1}{\cos\theta}$$

$$\frac{dx}{d\theta} = -\sin\theta - \frac{\sin\theta}{\cos^2\theta}, \frac{dy}{d\theta} = -\sin\theta + \frac{\sin\theta}{\cos^2\theta}$$

$$\frac{dy}{dx} = -\frac{\sin\theta + \frac{\cos\theta}{\cos^2\theta}}{-\sin\theta - \frac{\cos\theta}{\cos^2\theta}} = -\frac{1 + \frac{1 - \cos^2\theta}{\cos^2\theta}}{1 - \frac{1 - \cos^2\theta}{\cos^2\theta}} = \frac{\cos^2\theta - 1}{\cos\theta}$$

$$\frac{dy}{dx} = \frac{\cos^2\theta - 1}{\cos^2\theta + 1} \Rightarrow \text{ gradient of normal } = \frac{1 + \cos^2\theta}{1 - \cos^2\theta}$$

$$Equation of normal:$$

$$y - \left(\cos\theta + \frac{1}{\cos\theta}\right) = \frac{1 + \cos^2\theta}{1 - \cos^2\theta} \left(x - \left(\cos\theta - \frac{1}{\cos\theta}\right)\right)$$

$$y - \left(\frac{\cos^2\theta + 1}{\cos\theta}\right) = \frac{1 + \cos^2\theta}{1 - \cos^2\theta} \left(x - \left(\frac{\cos\theta - 1}{\cos\theta}\right)\right)$$

$$y - \left(\frac{\cos^2\theta + 1}{\cos\theta}\right) = \frac{1 + \cos^2\theta}{1 - \cos^2\theta} \left(x - \left(\frac{\cos\theta - 1}{\cos\theta}\right)\right)$$

$$y - \left(\frac{\cos^2\theta + 1}{\cos\theta}\right) = \frac{1 + \cos^2\theta}{1 - \cos^2\theta} \left(x - \left(\frac{\cos\theta - 1}{\cos\theta}\right)\right)$$

$$y - \left(\frac{\cos\theta + 1}{\cos\theta}\right) = \frac{1 + \cos\theta}{1 - \cos\theta} = \frac{1 + \cos\theta}{\cos\theta}$$

5(iii)	$P: y = 0 \Rightarrow 0 = \frac{1 + \cos^2 p}{1 - \cos^2 p} x + 2\left(\frac{1 + \cos^2 p}{\cos p}\right)$	
	$x = -2\left(\frac{1+\cos^2 p}{\cos p}\right)\left(\frac{1-\cos^2 p}{1+\cos^2 p}\right) = 2\left(\frac{\cos^2 p - 1}{\cos p}\right)$	
	$Q: x = 0 \Rightarrow y = 2\left(\frac{1 + \cos^2 p}{\cos p}\right)$	
	$\because \cos^2 p - 1 < 0, \therefore OP = 2\left(\frac{1 - \cos^2 p}{\cos p}\right)$	
	Area $OPQ = \frac{1}{2} \left(2 \left(\frac{1 - \cos^2 p}{\cos p} \right) 2 \left(\frac{1 + \cos^2 p}{\cos p} \right) \right)$	
	$=2\left(\frac{1-\cos^4 p}{\cos^2 p}\right)=2\left(\sec^2 p-\cos^2 p\right)$	
5(iv)	Let the area of OPQ be A .	
	$A = 2\left(\sec^2 p - \cos^2 p\right)$	
	$\frac{dA}{dt} = \frac{dA}{dp} \times \frac{dp}{dt} = 2\left(2\sec^2 p \tan p + 2\cos p \sin p\right) \frac{dp}{dt}$	
	When $p = \frac{\pi}{3}$,	
	$\frac{\mathrm{d}A}{\mathrm{d}t} = 4\left(\cos\frac{\pi}{3}\sin\frac{\pi}{3} + \sec^2\frac{\pi}{3}\tan\frac{\pi}{3}\right)(0.1)$	
	$=4\left(\frac{1}{2}\frac{\sqrt{3}}{2}+4\sqrt{3}\right)(0.1)$	
	$=1.7\sqrt{3}=2.94(3 \text{ s.f.})$	
6(i)	Let Y be random variable "number of yellow chips in a box".	
	$Y \sim B(36, 0.3)$ B(Y < 0) = 0.32544	
	$P(Y \le 9) = 0.32544$ $P(5 < Y < 9)$	
	$P(Y > 4 Y \le 9) = \frac{P(5 \le Y \le 9)}{P(Y \le 9)}$	
	$=\frac{P(Y \le 9) - P(Y \le 4)}{P(Y \le 9)}$	
	$=0.978152 \approx 0.978 $ (3 sf.)	
6(ii)	Let <i>W</i> be random variable "number of boxes with at most 9 yellow	
	chips". $W \sim B(59, 0.32544)$	
	,, , , , D(3), 0.323TT)	
	Required probability = $P(W = 13) \times 0.32544 = 0.00825$	
6(iii)	Let X be random variable "number of boxes containing at most 9	
	yellow chips in a carton". $X \sim B(75, 0.32544)$	
	$E(X) = 75 \times 0.32544 = 24.408$	
	$Var(X) = 75 \times 0.32544 \times (1 - 0.32544) = 16.46466$	

	Since $n = 30$ is large, $\overline{X} \sim N(24.408, \frac{16.46466}{30})$ approximately by	
	Central Limit Theorem.	
	$P(\overline{X} > 25) = 0.21211 \approx 0.212 \text{ (3 sf.)}$	
7(i)	The monthly sales profits is expected to increase by <i>m</i> thousands of dollars for every additional thousand dollars spent on the monthly advertisement expenditure.	
7(ii)	Substituting $\overline{x} = 7.208333$ and $\overline{y} = \frac{242 + k}{12}$ into the least squares	
	regression line of y on x :	
	$\frac{242+k}{12} = 0.3604 + 3.0194 \times 7.208333$	
	$k = 22.12524066 \times 12 - 242$	
	k = 23.503	
7(:::)	≈ 23.5	
7(iii)	Sales	
	profits, <i>y</i> 32.	
	15.	
	0 4 10 Advertisement	
	expenditure, x	
7(iv)	The product moment correlation coefficient for Model $A = 0.968$	
	The product moment correlation coefficient for Model $B = 0.982$	
	Since the product moment correlation coefficient between x and \ln	
	y is closer to 1 as compared with the product moment correlation	
	coefficient between x and y, it suggests that there is a stronger	
	positive liner correlation between x and $\ln y$.	
	Furthermore, from the scatter diagram, <u>v</u> is increasing at an	
	increasing rate as x increases, hence Model B will be the more appropriate model.	
7(v)	Using GC, the least squares regression line of $\ln y$ on x is	
	ln y = 2.0867 + 0.13579x	
	ln y = 2.09 + 0.136x	
	When $x = 11$,	
	$\ln y = 2.0867 + 0.13579 \times 11$ $y = 25.88754326$	
	y = 35.88754326 Hence the estimate for the sales profit is \$35,900 (or \$35,888).	
7(vi)	Since $x = 11$ does not fall within the given data range $4 \le x \le 10$,	
. ,	the estimate obtained by extrapolation will not be reliable.	

8(a) (i)	Number of ways = ${}^{26}C_6 \times {}^3C_1 \times 6! = 497296800$
	Alternative:
	Number of ways = $26 \times 25 \times 24 \times 23 \times 22 \times 21 \times {}^{3}C_{1} = 497296800$
Q (a)(i	Case 1: 3 letters with two different colours each
8(a)(i i)	
1)	Number of ways = ${}^{26}C_3 \times ({}^3C_2)^3 \times 6! = 50544000$
	Case 2: 1 letter with 3 different colours and 1 letter with 2 colours
	and 1 letter with 1 colour
	Number of ways = ${}^{26}C_3 \times {}^3C_2 \times {}^3C_1 \times 3! \times 6! = 101088000$
	OR
	$^{26}C_1 \times ^{25}C_1 \times ^3C_2 \times ^{24}C_1 \times ^3C_1 \times 6! = 101088000$
	OR
	OR ${}^{26}C_{1} \times {}^{25}C_{2} \times {}^{2}C_{1} \times {}^{3}C_{1} \times {}^{3}C_{2} \times 6! = 101088000$
	Total number of ways = $50544000 + 101088000 = 151632000$
8(b)(i	
	$\frac{2+c}{41+c} \times \frac{1+c}{40+c} = \frac{1}{66} \qquad(1)$
	66(2+c)(1+c) = (41+c)(40+c)
	$65c^2 + 117c - 1508 = 0$
	$c = 4$ or $-\frac{29}{5}$ (Rejected)
	Alternative:
	$\frac{c}{41+c} \times \frac{c-1}{40+c} + \frac{2c}{41+c} \times \frac{1}{40+c} \times 2 + \frac{2}{41+c} \times \frac{1}{40+c} = \frac{1}{66}$
	$41+c^{4}0+c^{4}1+c^{4}0+c^{4}1+c^{4}0+c^{6}$
	$65c^2 + 117c - 1508 = 0$
	$c = 4$ or $-\frac{29}{5}$ (Rejected)
0.0.10	· · · · · · · · · · · · · · · · · · ·
8(b)(i	Method 1: Case 1: red flower and non-red bead
i)	
	$\frac{6}{45} \times \frac{28}{44} \times 2 = \frac{28}{165}$
	43 44 103
	Case 2: red non-flower and non-red flower
	$\frac{11}{45} \times \frac{5}{44} \times 2 = \frac{1}{18}$
	Required probability = $\frac{28}{165} + \frac{1}{18} = \frac{223}{990}$
	Method 2:
	Case 1: red bead and non-red flower
	$\frac{17}{45} \times \frac{5}{44} \times 2 = \frac{17}{198}$
	$\frac{1}{45} \frac{1}{44} \frac{1}{198}$
	Case 2: red flower and non-red non-flower

6	23	23
— <u>`</u>	××	2 =
45	44	165

Required probability =
$$\frac{17}{198} + \frac{23}{165} = \frac{223}{990}$$

Method 3:

Case 1: red flower and non-red flower

$$\frac{6}{45} \times \frac{5}{44} \times 2 = \frac{1}{33}$$

Case 2: red flower and non-red non-flower

$$\frac{6}{45} \times \frac{23}{44} \times 2 = \frac{23}{165}$$

Case 3: red non-flower and non-red flower

$$\frac{11}{45} \times \frac{5}{44} \times 2 = \frac{1}{18}$$

Required probability =
$$\frac{1}{33} + \frac{23}{165} + \frac{1}{18} = \frac{223}{990}$$

Case 1: red bead and non-red bead

$$\frac{17}{45} \times \frac{28}{44} \times 2 = \frac{238}{495}$$

Case 2: one red non-flower and non-red non-flower

$$\frac{11}{45} \times \frac{23}{44} \times 2 = \frac{23}{90}$$

Required probability =
$$\frac{238}{495} - \frac{23}{90} = \frac{223}{990}$$

Required probability =
$$\frac{238}{495} - \frac{23}{90} = \frac{223}{990}$$

$$\frac{1}{3r+1} + \left(\frac{3r}{3r+1}\right)^2 \times \frac{1}{3r+1} + \left(\frac{3r}{3r+1}\right)^4 \times \frac{1}{3r+1} + \dots$$

$$= \frac{\frac{1}{3r+1}}{1 - \left(\frac{3r}{3r+1}\right)^2} = \frac{3r+1}{6r+1}$$

9(b)(i)
$$P(T=0) = \frac{r}{3r+1} \times \frac{r-1}{3r} + \frac{2r}{3r+1} \times \frac{2r-1}{3r} = \frac{5r-3}{3(3r+1)}$$

$$P(T=2) = \frac{2r}{3r+1} \times \frac{1}{3r} \times 2! = \frac{4}{3(3r+1)}$$

$$P(T=3) = \frac{2r}{3r+1} \times \frac{r}{3r} \times 2! = \frac{4r}{3(3r+1)}$$

$$P(T=5) = \frac{r}{3r+1} \times \frac{1}{3r} \times 2! = \frac{2}{3(3r+1)}$$

t	0	2	3	5
P(T = t)	5r-3	4	4r	2
	$\overline{3(3r+1)}$	$\overline{3(3r+1)}$	$\overline{3(3r+1)}$	$\overline{3(3r+1)}$

		ć					
9(b)(i	$E(T) = \sum t P(T = t)$						
i)	$\frac{1}{0}$ $10r-4$ $\frac{4}{2}$ $\frac{4r}{4}$ $\frac{5}{2}$ $\frac{2}{2}$						
	$= 0 \times \frac{10r - 4}{3(3r+1)} + 2 \times \frac{4}{3(3r+1)} + 3 \times \frac{4r}{3(3r+1)} + 5 \times \frac{2}{3(3r+1)}$						
	$=\frac{8+12r+10}{3(3r+1)} = \frac{2(2r+3)}{3r+1}$						
9(c)							
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
	x						
	$P(X_1 > X_2) = P(X_1 = 0.15, X_2 = -0.25)$						
	$+P(X_1 = 0.15, X_2 = 0.10)$						
	$+P(X_1 = 0.10, X_2 = 0.10)$ $+P(X_1 = 0.10, X_2 = -0.25)$						
	$\frac{2r^2 + 3r}{(3r+1)^2} = \frac{27}{112}$						
	$19r^2 - 174r + 27 = 0$						
	$r = \frac{3}{19} \approx 0.15789 \text{ (rejected)} \qquad \therefore r = 9$						
	19 19						
	$E(X) = \sum x P(X = x)$						
	$=-0.25 \times \frac{9}{28} + 0.10 \times \frac{18}{28} + 0.15 \times \frac{1}{28}$						
	20 20 20						
	$= -0.010714 \approx -0.0107$ Since E(x) < 0, the game is <u>not</u> fair for a player, as he/she will be						
	expected to lose 1.07 cents every time he/she plays.						
10()	I (D1 1 '11 %1' (CC 4 11')						
10(a) (i)	Let <i>B</i> be random variable "diameter of football". $B \sim N(\mu, 0.4^2)$						
	$B-1.1F \sim N(\mu-1.1\times22, 0.4^2+1.1^2\times0.3^2)$						
	$B-1.1F \sim N(\mu-24.2, 0.2689)$						
	$P(B > 110\% \times F) = 0.35$						
	P(B-1.1F > 0) = 0.35						
	$P\left(Z > \frac{0 - (\mu - 24.2)}{\sqrt{0.2689}}\right) = 0.35$						
	$\Rightarrow \frac{0 - (\mu - 24.2)}{\sqrt{0.2689}} = 0.38532$						
	$\therefore \mu = 24.2 - 0.38532 \times \sqrt{0.2689} \approx 24.0$						
10(a)	$\mu = 27.2 - 0.30332 \times \sqrt{0.2007} \approx 24.0$						
(ii)							
	22.8 24.0 25.2						
1	22.0 27.0 23.2	ļ					

		10
(iii)	$B - \overline{F} \sim N(24 - 22, 0.4^2 + \frac{0.3^2}{10})$	
	$B - \overline{F} \sim N(2, 0.169)$	
	$P(B-\overline{F} <1.5) = 0.11194 \approx 0.112$	
10(b)	Let A be event "player scores on his first attempt" and	
(i)	B be event "player scores on his second attempt".	
	$P(A) = \frac{5}{11}$ $P(B) = \frac{5}{8}$	
	$P(A \cap B) = P(A) + P(B) - P(A \cup B)$	
	$=\frac{5}{11} + \frac{5}{8} - P(A \cup B)$	
	Since $P(A \cup B) \le 1$:: $P(A \cap B) \ge \frac{7}{88}$	
10(b) (ii)	$P(A \cap B') = \frac{15}{88}$	
	$P(A \cup B) = P(A \cap B') + P(B) = \frac{15}{88} + \frac{5}{8} = \frac{35}{44}$	
	$P(A) + P(B) - P(A \cap B) = \frac{35}{44}$	
	$P(A \cap B) = \frac{5}{11} + \frac{5}{8} - \frac{35}{44} = \frac{25}{88}$	
	Since $P(A) \times P(B) = \frac{5}{11} \times \frac{5}{8} = \frac{25}{88} = P(A \cap B)$, the events are	
	independent.	
11(i)	$\overline{x} = \frac{\sum x}{n} = \frac{10446}{30} = 348.2$ (exact)	
	$s^{2} = \frac{1}{n-1} \left(\sum x^{2} - \frac{\left(\sum x\right)^{2}}{n} \right) = \frac{1}{29} \left(3638000 - \frac{\left(10446\right)^{2}}{30} \right) = 24.23448$	
	Let μ be the population mean number of calories in Perfect	
	Protein bars.	
	Null hypothesis $H_0: \mu = 350$	
	Alternative hypothesis $H_1: \mu < 350$	
	Perform 1-tail test at 3 % significance level.	
	Under H_0 , $\bar{X} \sim N\left(350, \frac{24.23448}{30}\right)$ by Central Limit Theorem	
	since $n = 30$ is large enough.	
	From GC, $z = \frac{\overline{x} - \mu_0}{\sqrt{\frac{s^2}{n}}} = \frac{348.2 - 350}{\sqrt{\frac{24.23448}{30}}} = -2.0027$	
	p-value = $P(Z < -2.0027) = 0.0226$	
	<i>p</i> -value < 0.03 ∴ Reject H _o There is sufficient evidence at 3% level of significance to conclude that the mean number of calories in Perfect Protein bars is less than 350 cal	

350 cal.

		11
11(ii)	The test would be inadmissible if the nutritionist had taken a random sample of 15 energy bars as the distribution of the population is unknown (and Central Limit Theorem cannot be applied). The nutritionist will need to assume that the number of calories in	
	Perfect Protein bars follow a normal distribution.	
11(iii)	Null hypothesis $H_0: \mu = 350$	
	Alternative hypothesis $H_1: \mu \neq 350$	
	Perform 2-tail test at α % significance level.	
	p -value = $2 \times P(Z < -2.0027) = 0.0452$	
	To reject H _o , p -value = $0.045209 < \alpha\%$	
	∴ smallest significance level is 4.52%.	
(iv)	Let μ be the population mean number of calories in Dyanmic	
	Protein bars.	
	N. 11.1	
	Null hypothesis $H_0: \mu = 350$	
	Alternative hypothesis $H_1: \mu > 350$	
	At 4% level of significance, we do not reject H_0 .	
	For <i>p</i> -value > 0.04 or $z < 1.750686$, we do not reject H_0 .	
	$z = \frac{\overline{x} - \mu_0}{\sqrt{\frac{\sigma^2}{n}}} = \frac{352.2 - 350}{\sqrt{\frac{\sigma^2}{45}}} < 1.750686$	
	$1.750686\sqrt{\frac{\sigma^2}{45}} > 2.2$ 1.75068	
	$\sigma^2 > 45 \left(\frac{2.2}{1.750686} \right)^2$	
	$\sigma^2 > 71.0626$	

 $\therefore \sigma^2 > 71.1 \text{ (3 sf.)}$