Détection de motifs exceptionnels dans l'ADN

Modélisation par des chaînes de Markov

Pierre Boyeau, projet encadré par Jean-François Delmas

ParisTech

Introduction

Aujourd'hui, on dispose de génomes complets d'espèces dont on ne connait presque rien.

Il est donc important de fournir aux biologistes des méthodes rapides, automatiques et pertinentes d'aide à l'analyse de génomes. Les mots exceptionnels, c'est-à-dire très ou au contraire très peu exprimés dans l'ADN, jouent un rôle souvent crucial en biologie,

comme le sont par exemple les sites **Chi** ou les **sites de restriction**. Comment détecter des motifs exceptionnels dans l'ADN ?

1 Modélisation probabiliste du problème

Notations

On considère une **séquence** $S = x_1 x_2 \dots x_N$, $\forall i, x_i \in \{A, T, C, G\}$.

On appelle **mot**, ou **motif**, tout $w = w_1 w_2 \dots w_k \subseteq S, \forall i, w_i \in \{A, T, C, G\}$

 $(X_n)_{n\in\{1...N\}}$: nième nucléïde de la séquence

N(w) est le nombre d'occurrences de w dans la séquence S

Hypothèses fondamentales

 $(X_n, n \in \{1, \dots, N\})$: chaîne de Markov d'ordre m et de matrice de transition P:

$$P(X_n = a | X_1 = x_1, \dots, X_{n-1} = x_{n-1}) = P(X_n = a | X_{n-m} = x_{n-m}, \dots, X_{n-1} = x_{n-1})
= P((x_{n-m} \dots n_{n-1}), a)$$
(1)

Toute information utile pour la prédiction d'un nucléïde ne dépend du passé que par l'enchaînement des m nucléïdes précédentes.

En outre, l'hypothèse (2) fait l'hypothèse que l'ADN est homogène, et qu'il n'existe pas de zones qui portent un sens spécifique.

2 Résolution du problème

Pour un mot w:

- $N_{obs}(w)$ correspond au nombre d'occurrences de w dans notre séquence.
- \bullet N(w) est la variable aléatoire du nombre d'occurrences de w prédit par le modèle

On s'intéresse à l'événement

$$\begin{cases} N_{obs}(w) \geq \mathbb{E}[N(w)] \text{ pour un mot anormalement présent} \\ N_{obs}(w) \leq \mathbb{E}[N(w)] \text{ pour un mot rare} \end{cases}$$

Détermination de la loi de comptage

Estimations gaussiennes

Le Théorème Central Limite appliqué aux chaînes de Markov assure [1] que la loi de comptage vérifie:

$$p_{\text{score}}(w) = \frac{N_{obs}(w) - \mathbb{E}_m(N(w))}{\sigma(w)} \to \mathcal{N}(0, 1) \text{ quand } N \to \infty$$

Pour estimer les p_{score} de motifs, il est donc important de pouvoir estimer $\mathbb{E}_m[N(w)]$ et $\sigma(w)$.

Première approche

• théorème ergodique: $\frac{N(w)}{N} \to \pi(w) = \pi(w_1 \dots w_{k-1}) P(w_{k-1}, w_k) = \frac{\pi(w_1 \dots w_{k-1}) \pi(w_{k-1} w_k)}{\pi(w_{k-1})}$ On peut trouver un estimateur de $\mathbb{E}_m[N(w)]$:

$$\widehat{\mathbb{E}}_1[N(w)] = \frac{N(w_1 \dots w_{k-1}) N(w_{k-1} w_k)}{N(w_{k-1})}$$

• On montre que sous ce modèle, on peut choisir l'estimateur suivant pour la variance :

$$\widehat{\sigma}_1^2(N(w)) = \frac{N(w)}{N} (1 - \frac{N(w_1 \dots w_{k-1})}{N(w_{k-1})}) (1 - \frac{N(w_{k-1} w_k)}{N(w_{k-1})})$$

Approche par Estimateur de Maximum de Vraisemblance

Idée: Trouver des estimateurs dans le cadre plus général d'une chaîne de Markov d'ordre m. Pour cela, on calcule les EMV pour le cas m=1, et on peut facilement généraliser dans le cas k=m-2 par changement d'alphabet.

 \Rightarrow Obtention d'estimateurs $\widetilde{\mathbb{E}}_m[N(w)]$ et $\widetilde{\sigma}_m^2(N(w))$

3 Validation du modèle

Validité de nos choix d'estimateurs

- Simuler une séquence à partir d'une chaîne de Markov connue
- Calculer l'estimation d'espérance de la séquence

 \bullet La comparer à l'espérance réelle de la loi de comptage, que l'on connaît vu qu'on connait la loi de (X_n)

Figure 1: Couples (Espérance Réelle, Espérance estimée) par la 2nde approche pour une séquence simulée de longueur 10^6 et k=6, m=4

Adéquation à la loi Normale centrée réduite

Figure 2: Comparaison de p_{score} pour une séquence simulée de taille 10^6 et des mots de taille k=6

4 Applications

p_{score} pour un génôme réel

Figure 3: p_{score} en queue de distribution pour k=6, m=4 pour le génome E.Coli

Comment interpréter ce résultat?

Détection de sites de restriction pour E.Coli

Pour le génome d'E.Coli, l'estimation de p_{score} par EMV donne des résultats pertinents.

Mot	Rareté (rang)	Enzymes de restriction	Mot	Rareté (rang)	Enzymes de restriction
GGCGCC, CCGCGG	1,7	Eco78I, Eco29kI	CTATAG, GATATC	1043, 3799	EcoRV
GCCGGC, CGGCCG	2, 5	Eco52I, Eco56I	-		
AGCGCT	4	Eco47III			
TCCGGA	6	Eco147I			
CACGTG	11	Eco72I			
GAGCTC	13	Eco53kI, EcoICRI			

Conclusion

- Apport personnel du projet
- Approfondissements intéressants:
- 1 mois: approximations plus fines (mots de taille importante, chevauchements de mots)
- 6 mois: théorie des automates et calculs exacts des p_{score}

Remerciements

Chaleureux remerciements à Jean François Delmas pour son encadrement et son aiguillage, ainsi qu'à Florence Rieu pour son aide pour ma recherche bibliographique.

References

- [1] S. Robin, F. Rodolphe, S. Schbath ADN, mots et modèles 2003.
- [2] J.F. Delmas, B. Jourdain *Modèles aléatoires* Mathematiques et Applications 57, 2007.
- [3] G. Nuel *Significance Score of Motifs in Biological Sequences* Bioinformatics: Trends and Methodologies Intech 2011; 978-53. Relations.
- [4] Wikipedia.org List of restriction enzyme cutting sites