Leis de uma Álgebra:

Uma lei interna T associa dois elementos x e y de um conjunto A à um terceiro elemento z A. Por exemplo: x y z onde a lei interna é a adição , ou xy z, onde a lei interna é a multiplicação . Na nossa notação se afirma que xT y z x y z ou xT y z x y z ou xT y z .

A lei será associativa se: xTyTz xTyTz e será comutativa se xTy yTx. O elemento a A será REGULAR se xTa yTa x y e aTx aTy x y. O elemento e A será unitário sobre a lei T se xTe eTx x. O elemento x A possui elemento inverso x sobre a lei T se x A/xTx x Tx e.

Teorema: se uma lei T possui elemento unitário, é associativa e x A possui inversa, então a inversa é única e x é regular.

Provar por absurdo: supor que x = x inversos de x. Nesse caso:

GRUPO. Um conjunto G é um grupo se uma lei interna T com as seguintes propriedades:

- 1. *T* é associativa
- 2. T admite elemento unitário e

3. $x \in G$ admite inversa $x \in G$

Se, além da propriedade associativa, T for comutativa, o grupo é chamado de Abeliano.

CAMPOS. Seja G um grupo Abeliano de T com uma segunda lei associativa e distributiva frente à T. Seja e o elemento unitário de G e G^* o conjunto de todos os elementos de G exceto e. Se é uma lei de grupo para G^* então G é um campo.

Exemplo: vamos considerar as leis e para o conjunto dos números reais.

Primeira lei :

x y z x y z associativa

x y y x comutativa

x e e x x então e 0 é o elemento unitário da adição.

Inversa x x e e x é a inversa de x. Note que se o conjunto fosse o dos naturais não haveria inversa pois ele não inclui números negativos. Então G e G^* x /x 0 . Agora vamos analisar o comportamento da multiplicação frente ao G^* .

xy z x y z associativa

xy yx comutativa

x y z xz yz distributiva frente à adição

xe e x x então e 1 é o elemento unitário da multiplicação. Logo a inversa será dada por xx 1, ou seja, x $\frac{1}{x}$. Note que sem a exclusão do zero teríamos problema com a inversa do elemento unitário da adição pois 0 $\frac{1}{0}$. Então é um CAMPO frente à adição e multiplicação. Note a necessidade de ampliar os conjuntos para a obtenção de grupos e campos. Partindo dos naturais e da operação foi necessário incluir os números negativos para a existência da inversa, chegando ao conjunto . Já para a operação multiplicação foi-se obrigado a inlcuir o conjunto dos racionais para admitir inversas x $\frac{1}{x}$. Além disso, para admitir operações

como xx y com x G e y G percebe-se a necessidade de inclusão dos irracionais e dos imaginários, caso y 0.

Teoria dos Conjuntos.

Um conjunto é uma coleção de elementos distinguíveis, i.e., cada elemento só aparece uma vez no conjunto. É preciso ficar bem claro que elementos pertencem ou não pertencem ao conjunto¹. Geralmente isso é feito através de propriedades partilhadas por todos os elementos do conjunto. Exemplo:

Seja A o conjunto de todos os elementos que possuem a propriedade P, então a sentença

x A x possui a propriedade P.

x x é inteiro positivo ou zero.

O conjunto vazio não possui qualquer elemento. Um conjunto finito tem um número finito de elementos, e um conjunto infinito possui um número infinito de elementos. Dois conjuntos A e B possuem a mesma potênica se for possível estabelecer uma relação biunívoca entre seus elementos, ou seja, a cada elemento de A pode-se associar um, e só um, elemento de B. O conjunto pode ser enumerável [countable] ou não enumerável. Se for enumerável o conjunto tem uma associação biunívoca com o conjunto dos núemros naturais. Um conjunto infinito pode ser enumerável, como o dos números naturais. Todo conjunto finito é enumerável pois podemos ordenar seus elementos e associá-los a 1, 2, 3, etc.

Os elementos de um conjunto de conjuntos enumeráveis formam um conjunto enumerável. Pense em uma matriz

Podemos enumerá-los pela seqüência triangular, e dentro da diagonal pelo primeiro índice, como mostra a tabela xx abaixo:

X11	X12	X21	X13	X22	X31	X14	X23	X32	X41
1	2	3	4	5	6	7	8	9	10

¹ Se a fronteira entre o que pertence e o que não pertence ao conjunto é NEBULOSA, não claramente definida, aceita uma gradação, o con junto é nebuloso, ou FUZZY. Existe toda uma lógica, chamada FUZZY LOGIC, para lidar com esses caso hoje.

Assim fizemos a correspondência com . Conseqüência dessa fato é que o conjunto dos núemeros racionais é enumerável, pois $x = \frac{n}{m}$ contém dois índices, o n e o m, logo pode ser enumerado usando a mesma regra acima.

Entretanto, o conjunto de todos os números em um intervalo não é enumerável. Basta trabalhar com o intervalo 0,1. A pergunta é: o conjunto de todos os números no intervalo 0,1 é enumerável? Vamos provar que não por absurdo.

Suponha que seja. Então temos x_1 x_2 x_3 e podemos ordená-los em ordem crescente:

 x_1 x_2 x_3 1 uma vez que dois números não podem ser iguais. Neste caso \overline{x} $\frac{x_i}{2}$ é tal que x_i \overline{x} x_{i-1} e \overline{x} não pertence ao conjunto dado. Logo o conjunto não incluiu todos os números entre 0 e 1. Note então que existem números racionais entre 0 e 1 e que também existem números irracionais entre 0 e 1. Só que o conjunto dos irracionais não é enumerável, e dos racionais é enumerável, ou seja, x_i x_i x_i x_i

Álgebra dos conjuntos.

São duas as operações principais entre conjuntos: a UNIÃO e a INTERSEÇÃO.

Operação UNIÃO:

Seja A o conjunto dos elementos com a propriedade P_A e B o conjunto dos elementos com a propriedade P_B . Se x AUB então x A ou x B. Ou seja, x ou tem a propriedade P_A ou tem a propriedade P_B . Note que a operação lógica da união é OU. Vamos usar a notação 0 para falso e 1 para verdadeiro. A tabela da verdade para essa operação é dada por:

PA	Рв	AUB		
1	1	1		
1	0	1		
0	1	1		
0	0	0		

Ou seja se x possui P_A e P_B então x AUB; se x possui P_A mas não P_B então x AUB; se x não possui P_A mas possui P_B então x AUB e, finalmente, se x nem possui P_A nem possui P_B então x AUB. Em linguagem de conjuntos estamos afirmando que:

Na nossa álgebra de lógica em que só existem 0 e 1, falsa ou verdadeira, então 1 1 1 , 1 0 1 , 0 1 1 e 0 0 . Por isso é comum associar o sinal de + à operação lógica OU.

Ou seja AUB A B quando A e B são conjuntos.

Propriedades da operação união².

Associativa: A B D A B D

Comutativa: A B B A

Elemento unitário: A A

Observação: apesar da operação união possuir o elemento unitário e ela não admite inversa pois A B se A ou B .

CONJUNTO UNIVERSO

O conjunto universo é definido como o conjunto contendo todos os elementos possíveis, com todas as propriedades existentes em dado contexto e denominado por S. Note que A S sempre e que A S S.

CONJUNTO COMPLEMENTAR $ar{A}$.

Se $x \in \overline{A}$ então $x \in A$ e $x \in S$.

Propriedades:

 $\overline{\overline{A}}$ A; \overline{S} ; \overline{S} ; \overline{S} ; \overline{S} ; se \overline{B} A então \overline{A} \overline{B} e se \overline{A} B então \overline{A} \overline{B} .

² Vamos evitar a letra C para conjuntos por que é a letra usada para estar contido.

Operação DIFERENÇA $A\ B$

Se x A B então x A e x B OU x A e x \overline{B} . Se A B então A B e \overline{A} S A .

Operação INTERSEÇÃO:

Dizemos que x A B se x A E x B. A operação lógica nesse caso é E (AND). Ou seja, agora temos que:

A tabela da verdade para essa operação é dada por:

PA	P _B	AUB		
1	1	1		
1	0	0		
0	1	0		
0	0	0		

Como $1\ 1\ 1$, $1\ 0\ 0$, $0\ 1\ 0$ e $0\ 0$, usamos também a notação de multiplicação na forma A B AB .

Propriedades da operação união.

Associativa: AB D A BD

Comutativa: AB BA

Distributiva frente à união: A B D AB AD

Se A B então AB A; AA A; AS A; A $eA\overline{A}$.

Conjuntos disjuntos: se *AB* dizemos que A e B são disjuntos, ou mutuamente exclusivos. Se pertence a A não pertence a B e se pertence a B não pertence a A.

PARTIÇÃO. Uma partição de um conjunto A é uma coleção de subconjuntos A_i tais que: A_i A, ou seja, A_1 A_2 A_n A, entretanto A_iA_j i j.

Algumas partições clássicas:

- 1. $A \bar{A} S e A \bar{A}$
- $A \quad A \in A$
- 3. $SB B A \overline{A} B B AB \overline{A}B B e AB \overline{A}B A\overline{A}BB B$
- 4. $A B A AB \overline{A}B A AB \overline{A}B A \overline{A}B e A\overline{A}B$

Leis de De Morgan:

São leis super importantes na teoria dos conjuntos e muito úteis para demonstração de teoremas. Podem ser apresentadas em duas formas equivalentes:

Forma 1: $\overline{A} \overline{B} \overline{A} \overline{B}$

Forma 2: \overline{AB} \overline{A} \overline{B}

A estratégia para demonstrá-la e usar o fato de que se A B e B A então A B .

Forma 1: Se $x \overline{A} \overline{B}$ x A B x A e x B $x \overline{A} e x \overline{B}$ $x \overline{A} \overline{B}$

Com isso demonstramos que se x \overline{A} \overline{B} então x $\overline{A}\overline{B}$ o que significa que \overline{A} \overline{B} \overline{A} \overline{B} . Entretanto, como todas as setas são bidirecionais também concluímos que se x \overline{A} \overline{B} então x \overline{A} \overline{B} logo \overline{A} \overline{B} \overline{A} \overline{B} , significando que \overline{A} \overline{B} \overline{A} \overline{B} .

Forma 2: Se x \overline{AB} x AB x A ou x <math>B x $\overline{A} ou x <math>\overline{B}$ x \overline{A} \overline{B} . Com isso mostramos que se x \overline{AB} então x \overline{A} \overline{B} logo que significa que \overline{AB} \overline{A} \overline{B} . Com a bidirecionalidade das setas concluímos que se x \overline{A} \overline{B} então x \overline{AB} logo \overline{A} \overline{B} \overline{AB} , e \overline{AB} \overline{A} \overline{B} .

Parecem duas leis mas na realidade é uma só. Dado uma a outra será verdadeira e vice-versa. Passando de uma forma à outra:

Na forma 2 fazer A \overline{A} e B \overline{B} logo $\overline{\overline{A}}\overline{\overline{B}}$ $\overline{\overline{A}}$ $\overline{\overline{B}}$ A B agora tirar o complementar de ambos os lados $\overline{\overline{\overline{A}}\overline{\overline{B}}}$ $\overline{\overline{A}}$ $\overline{\overline{B}}$ $\overline{\overline{A}}$ $\overline{\overline{A}}$

Exemplo de utilização das leis de De Morgan:

$$A \ B \ \overline{AB} \ A \ B \ \overline{A} \ \overline{B} \ A\overline{A} \ A\overline{B} \ \overline{AB} \ B\overline{B} \ A\overline{B} \ \overline{AB} \ A\overline{B} \ \overline{AB}$$

1. Teorema: se em uma identidade de conjuntos substituirmos todos os conjuntos por seus complementos, todas uniões por interseções e vice-versa, a identidade é preservada.

Exemplo: $A\ B\ D$ $AB\ AD$ usando o teorema $\overline{A}\ \overline{B}\,\overline{D}$ $\overline{A}\ \overline{B}\ \overline{A}$ \overline{D} deve ser verdadeira. Provando:

 $\overline{A} \ \overline{B} \ \overline{D}$ $\overline{A} \ \overline{B} \ \overline{D}$ pela segunda lei, e $\overline{A} \ \overline{B} \ \overline{D}$ $\overline{A} \ \overline{B} \ \overline{D}$ $\overline{A} \ \overline{B} \ \overline{D}$ pela primeira lei. Por outro lado $\overline{A} \ \overline{B} \ \overline{D}$ $\overline{A} \ \overline{B} \ \overline{A}$ \overline{D} logo $\overline{A} \ \overline{B} \ \overline{D}$ $\overline{A} \ \overline{B} \ \overline{A}$ \overline{D} C.Q.D.

Princípio da DUALIDADE:

Se em uma identidade de conjuntos substituirmos todas as uniões por interseções e vice-versa, os conjuntos vazios por S e vice-versa, a identidade é preservada.

Exemplo 1: A B D AB AD usando a dualidade A B D AB AD

CAMPOS [Também chamados de álgebras booleanas ou simplesmente álgebra]

Vamos chamar um conjunto de conjuntos de CLASSE. Uma classe de conjuntos será um campo [FIELD] se:

- 1. é não vazio
- 2. Se A então \overline{A}
- 3. Se A e B então A B

Desses axiomas de campo podemos extrair os seguintes teoremas:

Sejam A , B e é um campo, então: AB , S e .

Pelos axiomas 2 e 3 \overline{A} , \overline{B} , A B e \overline{A} \overline{B} . Agora usando De Morgan \overline{A} \overline{B} \overline{AB} e $\overline{\overline{A}}$ \overline{B} AB logo se \overline{A} \overline{B} então $\overline{\overline{A}}$ \overline{B} logo AB . Se A e \overline{A} então A \overline{A} \overline{A} \overline{A} \overline{A} .

Dessa forma se é uma álgebra então , S , $A, \overline{A}, B, \overline{B}$ e se A_1, A_2, \dots, A_n A_1 A_2 A_n . Note que o campo foi definido acima apenas para um conjunto finito.

Campos de Borel [#-álgebra].

Borel estendeu a definição d campo para conjunto infinito enumerável:

- 1. é não vazio
- 2. Se A_i então $\overline{A_i}$
- 3. Se A_i , i I com I infinito mas enumerável, então A_i

Uma #-álgebra, portanto, é um conjunto de conjuntos fechado sobre um número contável de operações união, interseção e complementos.

Probabilidade.

Vocabulário:

Experimento. Na estatística designa uma atividade para a qual não se pode especificar antecipadamente o resultado final. Jogar um dado, por exemplo, é um experimento. Jogar um dado duas vezes seguidas é um experimento. Se é possível especificar o resultado antecipadamente se diz que estamos no campo determinístico. Experimento nas ciências exatas possui outra conotação – é uma experiência determinística utilizada para comprovar ou falsificar uma teoria ou modelo.

TRIAL (ensaio, tentativa). Cada performance isolada de um experimento é um trial.

Resultado (outcome). É o resultado do experimento. Exemplo, joguei o dado e obtive 5 – 5 é o resultado. Cada trial dá origem a um resultado. Jogar dois dados, por exemplo, pode dar o resultado (2,3).

Espaço amostral S ou ②. O conjunto de todos os resultados do experimento é o espaço amostral. Esse conjunto pode conter mais resultados do que os possíveis, mas não pode deixar de conter todos os possíveis. No caso de um dado 1,2,3,4,5e6. Agora suponha o conjunto da quantidade de gordura no leite, x. Sabemos que x/0 x 100% embora se saiba que x 10% é praticamente impossível. Logo x/0 x 20% também é um espaço amostral. Todo resultado, portanto, é um elemento do espaço amostral. O espaço amostral pode ser finito, infinito, enumeráel ou não enumerável.

Evento. Evento é um sub-conjunto do espaço amostral. São coleções de resultados de um experimento.

Teoria da Medida de Conjuntos.

Lebesgue e Borel definiram e estudaram uma grandeza que pode ser definida como a medida de um conjunto finito ou infinito enumerável. No apêndice xxx apresentamos uma breve introdução à teoria da medida. Eles mostraram que se a partição infinita $E_1, E_2, \quad , E_n, \quad$ for composta de conjuntos mensuráveis então E_i E_j , E_i E_j e $\overline{E_i}$ i,j também são mensuráveis. Note então que o conjunto desses conjuntos é um campo de Borel. A probabilidade é uma medida de conjuntos só pode, portanto, ser aplicada à conjuntos mensuráveis. Isso significa que o espaço dos eventos tem que ser um sub-conjunto de contendo apenas conjuntos mensuráveis, que correspondem a um campo de Borel ou a uma $\stackrel{\text{\tiny m}}{=}$ -álgebra. Nem todos os sub-conjuntos de são mensuráveis. Se é um conjunto finito todos os

seus sub-conjuntos serão mensuráveis e não há qualquer problema. Se for infinito, entretanto, é necessário restringir os sub-conjuntos possíveis.

Exemplo: é razoável admitir que a probabilidade de um dardo atingir um subconjunto do alvo seja proporcional à área do sub-conjunto. Entretanto existem subconjunto sem área, não mensuráveis, como ponto, pontos, retas, etc. Ou seja podem ter largura mas não possuem altura e vice-versa. Logo esses sub-conjuntos não são eventos e não fazem parte do campo de Borel .

Por isso a probabilidade é definida no espaço $\,$, $\,$, p , para definir $\,$ p precisamos saber quem o conjunto espaço amostral $\,$, e o campo de Borel $\,$, o conjunto de conjuntos mensuráveis. Assim a união, interseção e conjunto complementar de qualquer evento também serão eventos e possuem probabilidades associados à eles.

Exemplo1. Jogar dois dados. Espaço amostral é dado pelos pontos vermelhos da figura xxx.

Evento 1: obter 6 no dado 1 e 5 no dado 2. E_1 6,5

Evento 2: obter 4 para a soma dos dois dados. E_2 1,3, 2,2, 3,1

FUNÇÃO. Uma função é uma regra de associação entre elementos de um conjunto chamado domínio com elementos de outro conjunto chamado contra-domínio. Para ser função a regra deve ser clara, sem dar origem a impasses, deve se saber exatamente a que elemento associar e o que fazer com todos os elementos do domínio. Não pode portanto, associar um elemento do domínio a mais de um elemento do contra-domínio pois haveria dúvida sobre qual regra seguir. Além disso, todos os elementos do domínio devem poder ser associados para evitar não saber o que fazer com um elemento que não se pode associar.

Estamos acostumados à funções de um conjunto de números em outro conjunto de números, mas podemos perfeitamente associar um conjunto a uma número, ou conjuntos a conjuntos. Um exemplo de uma função de conjunto que associa elementos de um conjunto a um número é o indicador do conjunto:

$$\mathbf{1}_{A} x \qquad \begin{array}{c} 1 & se & x & A \\ 0 & se & x & A \end{array}$$

Probabilidade é uma função de conjunto, que deve associar um número real $0\ P\ A$ 1à todo evento A do espaço amostral.

Definições de probabilidade.

Subjetiva: uma pessoa julga qual a probabilidade de ocorrência dos eventos.

Freqüência relativa. Executa um experimento N vezes e conta quantas vezes o evento A ocorreu e assim associa à probabilidade P A $Lim \frac{N_A}{N}$. A dificuldade dessa definição é que seria preciso repetir o experimento inifinitas vezes. Também só seria útil se for possível provar que $\frac{N_A}{N}$ estabiliza para certo valor à medida que N cresce, ou seja, que $\frac{N_A}{N}$ converge.

Clássica. Seja um espaço amostral finito com N resultados igualmente PROVÁVEIS e A um evento com N_A elementos, então P A $\frac{N_A}{N}$. A maior dificuldade com essa definição [é que ela usou o conceito de probabilidade para definir probabilidade [igualmente prováveis]. Ou seja, é uma definição circular. Também, da forma como foi definida, seria impossível analisar o comportamento de um dado desonesto. Finalmente restringe o estudo a espaços amostrais finitos.

Dadas todas as dificuldades apontadas acima finalmente chegou-se a conclusão que a probabilidade deveria ser definida através de axiomas.

Definição Axiomática.

São apenas três os axiomas para uma função de conjuntos PA = f: , com PA = 0.1 , que pode representar uma probabilidade:

- 1. PA 0 A
- 2. P 1, é chamado de evento certo.
- 3. Se AB então PABPAPB

Tudo o que pode ser demonstrado através dos axiomas é teorema e não deve ser colocado na mesma categoria de axioma. Com esses 3 axiomas podemos mostrar vários teoremas:

1. P 0.

2. PA 1 $P\overline{A}$

Prova: $A\ \overline{A}$ e $A\overline{A}$ logo pelo axioma 3 mas A A , logo $P\ A\ \overline{A}$ $P\ A$ $P\ \overline{A}$. Por outro lado $P\ A\ \overline{A}$ P 1 pelo axioma 2. Então $P\ A$ $P\ \overline{A}$ 1 e $P\ A$ 1 $P\ \overline{A}$.

Corolário: Se a 0 , b 0 e a b 1 então a 1 e b 1 , pois a 1 b e b 0 1 b 1 a 1 . Repetindo o argumento temos também que b 1 . Como P A P \overline{A} 1 e P A 0 e P \overline{A} 0 pelo axioma 1 então 0 P A 1 e D A 1 .

3. PABPAPBPAB

Prova: B B A \overline{A} B logo B AB $\overline{A}B$. Fazendo a união com A temos A B A AB $\overline{A}B$ entretanto AB A logo A AB A e A B A $\overline{A}B$. Note que B AB $\overline{A}B$ e A B A $\overline{A}B$ representam duas partições pois AB $\overline{A}B$ $A\overline{A}BB$ B e A $\overline{A}B$ $A\overline{A}B$. Aplicando axioma 3 nas duas partições temos: P B P AB P $\overline{A}B$ e P A B P A P $\overline{A}B$. Extraindo P $\overline{A}B$ P B P AB da primeira partição e substituindo na segunda temos:

PAB PAPB PAB

Esse teorema implica em que a probabilidade é sub-aditiva, ou seja, a união dos conjuntos leva a uma probabilidade menor do que a da soma das probabilidades.

4. Se A B então P A P B . Prova B AB $\overline{A}B$ logo P B P AB P $\overline{A}B$. Mas como A B então AB A , então P B P A P $\overline{A}B$ e como P $\overline{A}B$ 0 então P B P A .

Note que o mesmo tipo de lógica pode ser usada para extrair propriedades dos Indicadores.

- 1. **1** *x* 1pois *x*
- 2. $\mathbf{1}_{AB}$ x $\mathbf{1}_{A}$ x $\mathbf{1}_{B}$ x sai diretamente da tabela da verdade da operação interseção

- 3. $\mathbf{1}_A$ x $\mathbf{1}_{\bar{A}}$ x $\mathbf{1}$ x 1 logo $\mathbf{1}_A$ x 1 $\mathbf{1}_{\bar{A}}$ x
- 4. Se AB então $\mathbf{1}_{A\ B}$ x $\mathbf{1}_{A\ X}$ $\mathbf{1}_{A\ X}$ $\mathbf{1}_{B\ X}$. Se AB e x A B então ou x A e x B ou x A e x B . No primeiro caso, que implica $\mathbf{1}_{A\ B}$ x 1 enquanto no segundo caso $\mathbf{1}_{A\ X}$ 0 e $\mathbf{1}_{B\ X}$ 1 que também implica em $\mathbf{1}_{A\ B}$ x 1. Se x A B então $\mathbf{1}_{A\ X}$ 0 e $\mathbf{1}_{B\ X}$ 0 e $\mathbf{1}_{A\ B}$ x 0. O importante a notar aqui é que não há a possibilidade de somar 1 + 1 = 2 por conta da exclusão mútua de A e B.
- 5. Também vale $\mathbf{1}_{A\ B}$ $\mathbf{1}_{A}$ $\mathbf{1}_{B}$ $\mathbf{1}_{A}\mathbf{1}_{B}$. A prova é idêntica à da probabilidade usando as identidades de conjuntos: $\mathbf{1}_{B}$ $\mathbf{1}_{AB}$ $\mathbf{1}_{\bar{A}B}$ e $\mathbf{1}_{A\ B}$ $\mathbf{1}_{\bar{A}}$ $\mathbf{1}_{\bar{A}B}$.

Eventos independentes:

Os eventos A e B são independentes se P AB P A P B .

Daí podemos mostrar como teoremas que se A e B são independentes então (\overline{A} e B), (A e \overline{B}) e (\overline{A} e \overline{B}) também são independentes entre si. Isso significa que os eventos complementares também são independentes.

Probabilidade Condicional.

Pergunta: qual a probabilidade do evento A sabendo que o evento B ocorreu? Denotamos essa probabilidade por P A | B, [leia-se: p de A dado B]. Se B ocorreu então P B O e podemos restringir o espaço amostral para B B. Agora basta mostrar que P A | B $\frac{P}{P} \frac{AB}{B}$ obedece aos axiomas da probabilidade.

1.
$$P P B \mid B \frac{P BB}{P B} \frac{P B}{P B} 1$$

2.
$$P A \mid B = 0$$
 pois $P AB = 0$ e $P B = 0$

3. Se AD então:

$$PAD|B$$
 $\frac{PABDB}{PB}$ $\frac{PAB}{PB}$ $\frac{PDB}{PB}$ $PA|B$ $PD|B$

Teorema da propabilidade total:

Seja par A_1, A_2, A_n uma partição de e B um evento arbitrário. Então:

$$P B P B | A_1 P A_1 P B | A_2 P A_2 P A_1$$

Prova: B B B A_1 A_2 A_n BA_1 BA_2 BA_n e BA_n BA_1 BA_2 BA_3 BA_4 BA_5 $BA_$

$$P B P BA_1 P BA_2 P BA_n$$

Agora basta substituir P BA_i P A_i P A_i para provar o teorema.

$$P B P B | A_1 P A_1 P B | A_2 P A_2 P B | A_n P A_n$$

Teorema de Bayes.

$$P A_i \mid B = \frac{P A_i B}{P B} = \frac{1}{P B} P B \mid A_i P A_i \quad \text{logo:}$$

Thomas Bayes [1701 - 1761] estabeleceu o teorema de Bayes em uma obra póstuma Bayes "An Essay towards solving a Problem in the Doctrine of Chances" [1763] editada pelo seu amigo Richard Price, da tabela Price.

A inferência de Bayes está sendo hoje, cada vez mais, considerada mais robusta do que a inferência frequentista de Fisher.

Suppose someone told you they had a nice conversation with someone on the train. Not knowing anything else about this conversation, the probability that they were speaking to a woman is 50%. Now suppose they also told you that this person had long hair. It is now more likely they were speaking to a woman, since women are more likely to have long hair than men. Bayes' theorem can be used to calculate the probability that the person is a woman.

To see how this is done, let W represent the event that the conversation was held with a woman, and L denote the event that the conversation was held with a long-haired person. It can be assumed that women constitute half the population for this example. So, not knowing anything else, the probability that W occurs is P(W) = 0.5.

Suppose it is also known that 75% of women have long hair, which we denote as P(L|W) = 0.75 (read: the probability of event L given event W is 0.75). Likewise, suppose it is known that 25% of men have long hair, or P(L|M) = 0.25, where M is the complementary event of W, i.e., the event that the conversation was held with a man (assuming that every human is either a man or a woman).

Our goal is to calculate the probability that the conversation was held with a woman, given the fact that the person had long hair, or, in our notation, P(W|L). Using the formula for Bayes' theorem, we have:

```
P(W|L) = \frac{P(L|W) P(W)}{P(L)} = \frac{P(L|W) P(W)}{P(L|W) P(W)} + P(L|M) P(M)}
```

where we have used the law of total probability. The numeric answer can be obtained by substituting the above values into this formula. This yields

```
P(W|L) = \frac{0.75 \cdot 0.75 \cdot 0.75 \cdot 0.25 \cdot 0.25 \cdot 0.25 \cdot 0.25}{0.75 \cdot 0.25 \cdot 0.25
```

i.e., the probability that the conversation was held with a woman, given that the person had long hair, is 75%. You will notice this example presents an ambiguous answer, where P(W|L) = P(L|W). More telling examples are provided below.

Another way to do this calculation is as follows. Initially, it is equally likely that the conversation is held with a woman as to a man. The prior odds on a woman versus a man are 1:1. The respective chances that a man and a woman have long hair are 75% and 25%. It is three times more likely that a woman has long hair than that a man has long hair. We say that the likelihood ratio or Bayes factor is 3:1. Bayes' theorem in odds form, also known as Bayes' rule, tells us that the posterior odds that the person was a woman is also 3:1 (the prior odds, 1:1, times the likelihood ratio, 3:1). In a formula:

 $\frac{P(W|L)}{P(M|L)} = \frac{P(W)}{P(M)} \cdot \frac{P(L|W)}{P(L|M)}.$

In statistics, Bayesian inference is a method of inference in which Bayes' rule is used to update the probability estimate for a hypothesis as additional evidence is learned. Bayesian updating is an important technique throughout statistics, and especially in mathematical statistics. For some cases, exhibiting a Bayesian derivation for a statistical method automatically ensures that the method works as well as any competing method. Bayesian updating is especially important in the dynamic analysis of a sequence of data. Bayesian inference has found application in a range of fields including science, engineering, philosophy, medicine, and law.

Apêndice: Teoria da Medida e a integração:

Para achar a integral $\int_{a}^{b} f x \, dx$ com b > a quebramos o intervalo a, b em n partes da forma: $a x_{0} x_{1} x_{2} x_{n-1} x_{n} b$. Vamos chamar m_{i} mínimo de f x no intervalo $x_{i} x x_{i-1} e M_{i}$ máximo de de f x no intervalo $x_{i} x x_{i-1} x_{i-1} e M_{i}$ máximo de de f x no intervalo $x_{i} x x_{i-1} x_{i-1} e M_{i}$ máximo de de f x no intervalo $x_{i} x x_{i-1} x_{i-1} e M_{i} x_{i-1} x_{i}$. Se $\lim_{n \to \infty} \sum_{i=1}^{n} \sum_{n=1}^{n} \sum_{i=1}^{n} \sum_{n=1}^{n} \sum_{i=1}^{n} \sum_{n=1}^{n} \sum_{i=1}^{n} \sum_{i=$

Considere agora função f x $\lim_{n} \lim_{m} \cos m!$ x $\lim_{n} x$ $\lim_{n} x$

Qualquer que seja o intervalo x_{i} x_i ele contém números racionais e irracionais – logo M_i 1 e m_i 0 . Mas neste caso s 0 e S b a e a função não é integrável segundo Riemann.

Nesse ponto Lebesgue e Borel entraram. Precisa definir outra grandeza que substitua o intervalo de um segmento l b a por outra que chamaremos de medida do conjunto. Note que da definição da função indicador se A x/a x b

__

³ É comum se usar as expressões ínfimo e supremo.

l I b a para os conjuntos de pontos I [a,b), I [a,b], I [a,b] ou I [a,b]. O caso particular l [a,a] 0.

Conjunto de pontos nulo.

Um conjunto A terá medida nula se A I_j em que l I_j é arbitrariamente pequeno para qualquer j, ou, em outras palavras, l I_j . Daí podemos afirmar que um conjunto de pontos enumerável é um conjunto de medida nula. Seja A x_1, x_2 , . Vamos "cobrir" o conjunto A da seguinte forma:

$$I_1$$
 x_1 $\frac{1}{8}$, x_1 $\frac{1}{8}$ logo I I_1 $\frac{1}{4}$ e x_1 I_1

$$I_2$$
 x_2 $\frac{1}{16}$, x_2 $\frac{1}{16}$ logo I I_2 $\frac{1}{8}$ e x_2 I_2

$$I_n$$
 x_n $\frac{1}{2^{n-2}}$, x_n $\frac{1}{2^{n-2}}$ logo I I_n $\frac{1}{2^{n-1}}$ e x_n I_n

Dessa forma
$$A$$
 I_j mas I_j $I_$

l I_j 0 e o conjunto tem medida nula. A medida do conjunto dos números racionais é nula. A intuição aqui é que área é altura multiplicada pela largura. Um ponto tem altura mas não tem largura, logo sua área será nula. Um conjunto enumerável só tem pontos sem largura, logo a área será nula.

Conjuntos abertos e fechados. Um ponto P é interior a um conjunto de pontos E se uma vizinhança de P x ,x na qual todo ponto pertence a E. Um conjunto E é aberto se todo ponto de E é um ponto interior. O conjunto E será fechado se E é aberto. A questão é sempre saber se a fronteira do conjunto pertence ou não ao

conjunto. Se não pertence o conjunto é aberto e se pertence é fechado. Podem existir conjuntos que nem são abertos nem fechados.

Os axiomas para a medida de conjuntos abertos são quase os mesmos da probabilidade com excessão do axioma 1 que limitaria a medida à 1. Usamos a notação mE para a medida do conjunto E.

- 1. mE = 0
- 2. Se E_1E_2 então m E_1 E_2 mE_1 mE_2

Sem o axioma m 1 ainda valem os teoremas:

- a. *m* 0
- b. $m E_1 E_2 mE_1 mE_2 mE_1E_2$
- c. Se E_2 E_1 então mE_2 mE_1 .

Prova: E_1 E_2 E_1 E_2 e E_2 E_1 E_2 E_2 E_2 E_2 E_2 , então mE_1 m E_2 E_1 E_2 m E_2 m E_1 E_2 , como m E_1 E_2 0 então m m E_2 .

Medida de um conjunto fechado.

Essa medida será definida por mF mE m E F com F E. Note que se F é fechado e E aberto então E F é aberto e todas as medidas do lado direito estão definidas. Essa definição, entretanto, só pode ser útil se for possível demonstrar que qualquer conjunto E aberto escolhido que obedeça à restrição F E gera o mesmo valor de mF.

$$\label{eq:meta} \textit{m} \ E_{\scriptscriptstyle 1} \quad E_{\scriptscriptstyle 2} \quad \textit{m} E_{\scriptscriptstyle 1} \quad \textit{m} \ E_{\scriptscriptstyle 2} \quad \textit{F} \quad \textit{m} \ E_{\scriptscriptstyle 1} E_{\scriptscriptstyle 2} \quad \textit{F}$$

Trocando E_1 por E_2 temos:

$$m E_1 E_2 mE_2 m E_1 F m E_1E_2 F$$

Subtraindo uma da outra:

$$mE_1$$
 m E_2 F mE_2 m E_1 F

Logo o valor da medida independe da escolha do conjunto aberto. Aceitando essa definição então podemos mostrar alguns teoremas envolvendo conjuntos abertos e fechados. Seja $\it E$ um conjunto aberto não nulo, então

- a. Se F E então mF mE
- b. Se E F então mE mF

Percebe-se então que a medida de um conjunto aberto é um limite superior para as medidas dos conjuntos fechados contidos no mesmo e que a medida de um conjunto fechado é um limite inferior para as medidas dos conjunto abertos que o contém.

Definição de medidas externa e interna de um conjunto qualquer. [pode ser nem aberto nem fechado].

Medida externa m^* (outer measure): $m A \notin o$ limite inferior para as medidas dos conjuntos abertos que contém A, ou seja, $m A \min m E A$. Então, para achar a medida de A é necessário encontrar o conjunto aberto E de menor medida que contém A.

Medida interna m_* (inner measure): m_*A é o limite superior para as medidas dos conjuntos fechados contidos em A, ou seja, m_*A \max m F A . Trata-se então de encontrar o conjunto fechado F de maior medida contido em A. Claro que m^*A m_*A

Definição de medida de um conjunto:

Se m^*A m_*A dizemos que A é MENSURÁVEL e que mA m^*A m_*A .

Agora precisamos de uma forma mais prática para definir que conjuntos são mensuráveis e estabelecer propriedades dos conjuntos mensuráveis e das operações entre si.

O desenvolvimento à partir desse ponto é mostrar que se A_1 e A_2 são mensuráveis então \overline{A}_1 , \overline{A}_2 , A_1 , A_2 e A_1A_2 são mensuráveis. Ou seja, o conjuntos dos conjuntos mensuráveis forma um campo de Borel, ou uma -algebra.

Vamos começar com a propriedade da sub-aditividade

$$m^* E_1 E_2 m^* E_1 m^* E_2$$

Melhor ainda, podemos provar uma afirmação mais forte:

$$m^* E_1 E_2 m^* E_1 E_2 m^* E_1 m^* E_2$$

Considere O_1 E_1 e O_2 E_2 , então sempre é possível encontrar O_1 e O_2 abertos para os quais:

$$mO_1$$
 m^*E_1 mO_1 m^*E_1

$$mO_2$$
 m^*E_2 mO_2 m^*E_2

Para qualquer valor de 0 . Como E_1 O_1 e E_2 O_2 então:

$$m^* E_1 E_2 m^* E_1 E_2 m O_1 O_2 m O_1 O_2 m O_1 m O_2 m^* E_1 m^* E_2 2$$

Fazendo 0 temos que

$$m^* E_1 E_2 m^* E_1 E_2 m^* E_1 m^* E_2$$

Com raciocínio complementar podemos mostrar que:

$$m_* E_1 E_2 m_* E_1 E_2 m_* E_1 m_* E_2$$

Considere Q_1 E_1 e Q_2 E_2 , então sempre é possível encontrar Q_1 e Q_2 para os quais:

$$m_*E_1$$
 mQ_1 logo mQ_1 m_*E_1

$$m_*E_2$$
 mQ_2 logo mQ_2 m_*E_2

$$m_* \ E_1 \ E_2 \ m_* \ E_1 E_2 \ m \ Q_1 \ Q_2 \ m \ Q_1 Q_2 \ mQ_1 \ mQ_2 \ m_* E_1 \ m_* E_2 \ 2$$

Para 0 temos

$$m_* E_1 E_2 m_* E_1 E_2 m_* E_1 m_* E_2$$

$$m^* E_1 E_2 m^* E_1 E_2 m^* E_1 m^* E_2$$

 $m_* E_1 E_2 m_* E_1 E_2 m_* E_1 m_* E_2$

Seja E um conjunto mensurável e \overline{E} seu complemento frente a um conjunto aberto O, então $E\overline{E}$ e E \overline{E} O. Mas O é aberto, logo mensurável, então mO m^*E $m^*\overline{E}$ e mO m_*E $m_*\overline{E}$.

Teorema 2. Se $\,E_1\,$ e $\,E_2\,$ são disjuntos, o que significa que $\,E_2\,$ $\,$ $\,\overline{E_1}\,$, então:

$$m^* E_1 E_2 m^* E_1 m_* E_2 m_* E_1 E_2$$

Vamos partir de:

$$m_* E_1 E_2 m_* E_1 E_2 m_* E_1 m_* E_2$$

E fazer
$$G$$
 F e E_1 G e E_2 F G

Nesse caso

$$E_1E_2$$
 G F G GF GG G pois G F .

$$E_1$$
 E_2 G F G F

Substituindo na desigualdade da medida interna:

$$m_*F$$
 m_*G m_* F G

Agora vamos fazer F $\overline{E_1}$ e G E_2 , logo G F e usar as leis de de Morgan para mostrar que:

$$\overline{E_1}$$
 $\overline{E_2}$ $\overline{E_1}$ $\overline{E_2}$ $\overline{E_1}$ S E_2 $\overline{E_1}$ S $\overline{E_1}$ E_2 $\overline{E_1}$ E_2

Considere O um conjunto contendo todos esses conjuntos, então temos:

$$m_*\overline{E_1}$$
 m_*E_2 m_* $\overline{E_1}$ E_2 m_*E_2 m_* $\overline{E_1}$ E_2

$$m_*\overline{E_1}$$
 mO m^*E_1

$$m_* \overline{E_1 \quad E_2} \quad mO \quad m^* E_1 \quad E_2$$

Logo

$$mO \quad m^*E_1 \quad m_*E_2 \quad mO \quad m^* \quad E_1 \quad E_2$$

$$m^* E_1 E_2 m^* E_1 m_* E_2$$

Com esse resultado podemos provar o seguinte teorema importante:

Se M é mensurável, então para E com m^*E finita vale a relação:

$$m^*E$$
 m^*EM m^* E EM

Vamos partir de m^* E_1 E_2 m^* E_1E_2 m^*E_1 m^*E_2 .

1. Fazer
$$E_1$$
 EM e E_2 E EM logo E_1 E_2 E e E_1E_2 então m^*E m^*EM m^* E EM

Para mostrar a igualdade basta então provar que se M é mensurável então m^*E m^*EM m^* E EM .

2. Fazer E_1 E e E_2 M . Note que E_1 E_2 E M E M EM E EM Mentão m^*E m^*M m^* EM m^*E M EM . Por outro lado E EM M então logo m^* E M EM m^* E EM m_*M então m^*E m^*M m^* EM m^* E M EM m^* EM m^* E EMse M é mensurável então m^*M m_*M Mas e m^*E m^* EM m^* E EMque leva nos ao resultado m^*E m^* EM m^* E EM .

Caratheodory usou essa proprieadade como a propriedade que define um conjunto mensurável, ou seja, ele afirmou que o conjunto M é mensurável se m^*E m^* EM m^* E M para M finita.

Se E_1 e E_2 são mensuráveis então E_1 E_2 e E_1E_2 são mensuráveis. Para isso usamos as duas desigualdades:

 $m^* E_1 E_2 m^* E_1 E_2 m^* E_1 m^* E_2 m E_1 m E_2$

 $m_* E_1 E_2 m_* E_1 E_2 m_* E_1 m_* E_2 mE_1 mE_2$

Pois m^*E_1 m_*E_1 mE_1 e m^*E_2 m_*E_2 . Mas isso implica em:

 $m^* E_1 E_2 m^* E_1 E_2 m E_1 m E_2 m_* E_1 E_2 m_* E_1 E_2$

Se, além disso, E_1 e E_2 são disjuntos então m E_1 E_2 mE_1 mE_2

Seja E um conjunto mensurável e \overline{E} seu complemento frente a um conjunto aberto O, então $E\overline{E}$ e E \overline{E} O então m^*E \overline{E} m^*E m^*E e m_*E m_*E , ou seja, m^*O m^*E m^*E e m_*O m_*E m_*E . Mas O é aberto, logo mensurável, então

mO m^*E $m^*\overline{E}$ e mO m_*E $m_*\overline{E}$ m^*E $m^*\overline{E}$ mO

Porém, como m^*E m_*E e $m^*\overline{E}$ $m_*\overline{E}$ as designaldades só são válidas se m_*E $m_*\overline{E}$ mO m^*E $m^*\overline{E}$ ou m_*E $m_*\overline{E}$ mO m^*E $m^*\overline{E}$