固体密度的测量

一、实验目的

- 1. 学习使用螺旋测微器及电子天平。
- 2. 掌握用流体静力称衡法测量固体密度的原理和方法。
- 3. 学会数据处理方法,正确表达测量结果。

二、实验原理

密度是描述物质的物理特性的一个重要的物理量,设物体的体积 为 V. 质量为 M. 则该物体的密度 ρ 可以表达为:

$\rho = M/V$

物体的质量可以直接称量得到,还要用实验方法确定其体积。对于规则形状的样品,如球、长方形等,其体积可以通过选用合适的长度测量工具计算得到;对于形状不规则的样品,必须另外寻找办法进行测量。本实验主要采用流体静力称衡法测量固体密度。其基本思想是用称衡质量的方法,以精确测定过的水的密度作为比较,精确地确定待测物的体积。

阿基米德的原理指出: 物体在液体中减少的重量等于它排开同体积液体的重量。设物体在空气中的重量 M_1g 和悬没在水中的视重 M_2g 分别用电子天平称量得到,那么 M_1g-M_2g 就等于与物体同体积的水的重量 ρ_0Vg , ρ_0 为室温下水的密度。于是物体的密度为 $\rho=[M_1/(M_1-M_2)]$ ρ_0

不确定度是一定置信概率下的误差限值,反映了可能存在的误差 分布范围。物理实验中,置信度一般取作 0.95,这时 t 分布相应的

置信区间可写为:

$$x = \bar{x} \pm t_{0.95} \sigma_{\bar{x}} = \bar{x} \pm \frac{t_{0.95}}{\sqrt{n}} \sigma_{x}$$

表 1 测量次数 n 与 $\frac{t_{0.95}}{\sqrt{n}}$ 的关系

n	3	4	5	6	7
$\frac{t_{0.95}}{\sqrt{n}}$	2. 48	1. 59	1. 24	1. 05	0. 926

当测量次数为 6 次时 $\frac{t_{0.95}}{\sqrt{n}}$ 近似取 1。

三、实验仪器

电子天平	一台	
铁架台	一套	含试管夹
烧杯	两只	
镊子	一只	
样品笼	一个	带挂钩
千分尺		公用

(图1) 实验器材

(图 2) 实验器材顶视图

四、实验内容

- 1. 对电子天平调水平并称量样品在空气中的重量 M₁g。
- 2. 测量小球直径(各测6次),每次测量前记录零点偏差,注意正确表达直径的测量结果。
 - 3. 用得到的质量和体积计算小球密度。
- 4. 将悬挂在铁架台上的样品笼浸没在水中,分别记录加入样品前和后的电子天平读数(思考样品加入前后的重量差是什么)。
 - 5. 重复上述操作5-6次,取读数平均值。
 - 6. 用浮力相关原理和上一步测量结果, 计算得到样品的密度。
- 7. 自行搜索样品的标准密度,进行误差分析,比较两种方法得到的小球密度的精确度。(注:本实验的样品共有三种,分别是氧化铝、氮化硅、氧化锆珠。)
- 8. 作为思考题: 用现有条件, 在不使用大杯子的情况下测量镊子的密度, 详细记录并说明你的原理、方法、具体的操作步骤等; 得到最终结果并作误差分析。

五、思考题

- 1. 实验中如果样品笼或者样品表面吸附有气泡, 对实验结果会有什么影响?
- 2. 如何用本实验中的方法测量密度小于水(例如, 石蜡)的物理密度?
- 3. 如果实验中的待测样品长度超出烧杯壁 5cm, 请问如何测量它的密度?