DIGITAL LOGIC DESIGN

UNIT-5 Finite State Machines

Analysis and Design of Synchronous Sequential Circuits:

- ➤ Moore and Mealy machine models, State Equations, State Table, State diagram, State reduction & assignment.
- > Synthesis of synchronous sequential circuits- serial binary adder, sequence detector, and binary counter.
- ➤ Partition technique for completely specified sequential machines.

Definition of FSM

- An FSM is an abstract model describing the synchronous sequential machine and its spatial counter part, the iterative networks.
- The behavior of an FSM is described as a sequence of events that occurs at discrete instants of time t=1,2,3,....etc. That is, at time instant "t", z(t) values depends on x(t) and past inputs of FSM.

FINITE STATE MACHINES

- Like this FSM might have infinite variety of possible histories, which would need an infinite capacity for storing them.
- Since in practice, it is impossible to implement machines which have infinite storage capabilities. Hence the concentration is only on those machines whose past histories can affect their future behavior in only number of ways. That is the FSM contains finite number of classes of input histories which are called as Internal States of a machine.
- Hence every FSM contains finite number of memory devices that store the information regarding the past input history.

Capabilities and Limitations of FSMs

- ➤ Periodic Sequence of finite states.
- ➤ No Infinite Sequence
- >Limited Memory

Representation of FSMs

The synchronous or clocked sequential networks are represented by two models.

- Moore model: The output depends only on the present state of the Flip-Flops.
- Mealy model: The output depends on both the present state of the Flip-Flops and on the inputs.

Moore model: In the Moore model, the outputs are the functions of the present state of the Flip-Flops only. The output depends only on present state of Flip-Flops, it appears only after the clock pulse is applied, i.e., it varies in synchronism with the clock input.

Mealy model: In the Mealy model, the outputs are functions of both the present state of the Flip-Flops and inputs

Difference between Moore and Mealy model

Sl.No	Moore model	Mealy model
1	Its output is a function of present	Its output is a function of present state
	state only.	as well as present input.
2	Input changes does not affect the	Input changes may affect the output of
	output.	the circuit.
3	It requires more number of states	It requires less number of states for
	for implementing same function.	implementing same function.

Specification of FSM

The relationship among Inputs (I/P), Present States (PS), Outputs (O/P) and Next States (NS) is done by:

STATE DIAGRAM

or

STATE TABLE

and

STATE EQUATION

STATE DIAGRAM

- It is a pictorial representation of the behavior of a sequential circuit.
- In the state diagram, a state is represented by a circle and the transition between states is indicated by directed lines connecting the circles. A directed line connecting a circle with circle with itself indicates that next state is same as present state. The binary number inside each circle identifies the state represented by the circle. The directed lines are labeled with two binary numbers separated by a symbol '/'. The input value that causes the state transition is labeled first and the output value during the present state is labeled after the symbol '/'.
- In case of Moore circuit, the directed lines are labeled with only one binary number representing the state of the input that causes the state transition. The output state is indicated within the circle, below the present state because output state depends only on present state and not on the input.

EXAMPLES OF STATE DIAGRAM

State diagram for Mealy circuit

Sate diagram for Moore circuit

• It represents relationship between input, output and Flip-Flop states. It consists of three sections labeled present state, next state and output. The present state designates the state of Flip-Flops before the occurrence of a clock pulse, and the output section gives the values of the output variables during the present state. Both the next state and output sections have two columns representing for two possible input conditions: X= 0 and X=1.

Present state	Next	state	Out	put
	X= 0	X=1	X= 0	X= 1
	· _		Y	Y
a	a	С	0	0
b	b	a	0	0
С	d	С	0	1
d	b	d	0	0

PS	The state of the s	O/P out X
	X = 0	X = 1
a	a, 0	b, 0
b	b, 1	c, 0
0	d, 0	c, 1
d	d, 0	a, 1

PS	THE DESIGNATION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO THE PERSO	NS out X	O/P
	X = 0		
a	а	b	0
0 b	b	С	0
С	d	С	1
d	a	d	0

In case of Moore circuit, the output section has only one column since output does not depend on

input. and 2

			,
AB	AB	AB	
a	a	С	0
ь	b	a	0
С	d	С	1
d	b	d	0

X = 0

Present state

Next state

X=1

Output

Successor: A's 1 successor is c and A's 0's successor is A(used in partition technique)

State Equation: It is an algebraic expression that specifies the condition for a Flip-Flop state transition. The Flip-Flops may be of any type and the logic diagram may or may not include combinational circuit gates.

State Reduction: If some states have same Next State and output then this state becomes a redundant state. This state can be removed. This process is known as State Reduction State Assignment: In this process each state is assigned a binary value

STATE REDUCTION

STATE REDUCTION

PS	١	IS	0	/P
	X=0	X=1	X = 0	X = 1
8	b	d	0	1
b	b	1	0	1
0	b	b	0	1
	1	a	0	0

STATE REDUCTION

PARTITION TECHNIQUE

٠.

• Example:

 States having the same output under 	all input conditions can be grouped	as
$P_{r} = (A_{r})^{T}$	C. E)(B. D. E)	

PS	NS	5, Z
	X = 0	X = 1
A	E, 0	D, 1
В.	F, 0	D, 0
C	E, 0'	B, ·1
D	F; 0	B, 0
E	C, 0	F, 1
F	B, 0	C, 0

2. The 0- and 1-successors of (A, C, E), i.e. (E, E, C) and (D, B, F) are in the same block of P₁. 0-successors of (B, D, F), i.e. (F, F, B) are also in the same block of P₁. So, no partitioning is required, but 1-successors of (B, D, F), i.e. (D, B, C) are in different blocks of P₁. So, partition (B, D, F) into (B, D) and (F).

$$P_2 = (A, C, E)(B, D)(F)$$

3. 0-successors of (A, C, E), i.e. (E, E, C) and the 0- and 1-successors of (B, D), i.e. (F, F) and (D, B) are in same blocks of P₂. So, no partitioning is required. The 1-successors of (A, C, E), i.e. (D, B, F) are in different blocks of P₂. So, partition (A, C, E) into (A, C) and (E).

$$P_3 = (A, C)(E)(B, D)(F)$$

4. The 0- and 1-successors of (A, C), and (B, D) i.e. (E, E), (D, B) and (F, F), (D, B) are in the same blocks of P₃. So, no partitioning is required.

$$P_4 = (A, C)(E)(B, D)(F)$$

Thus, equivalent states are

$$A = C$$
 and $B = D$

So, states C and D are redundant and can be removed. C and D can be replaced by A and B respectively in the rest of the table. The resultant minimized state table is as shown in Table

PS	NS	5, Z
	X = 0	X = 1
A	E, 0	D, 1
В.	F, 0	D, 0
C	E, 0'	B, ·1
D	F. 0	B, 0
E	C, 0	F, 1
F	B, 0	C, 0

PARTITION TECHNIQUE

Reduced State Table:

PS	NS	S, Z
	X = 0	X = 1
٨	E, 0	В, 1
B	F, 0	B, 0
E	A, 0	F, 1
F	B, 0	A, 0

PS	NS	5, Z
	X = 0	X = 1
A	E, 0	D, 1
В.	F, 0	D, 0
C	E; 0'	B, ·1
D	F; 0	B, 0
E	C, 0	F, 1
F	B, 0	C, 0

STATE DIAGRAM OF D FLIP-FLOP:

STATE DIAGRAM OF T FLIP-FLOP:

STATE DIAGRAM OF SR FLIP-FLOP:

STATE DIAGRAM OF JK FLIP-FLOP:

DESIGN A CIRCUIT FOR A GIVEN STATE DIAGRAM USING D FLIP-FLOP:

Procor	nt state	Next	Next state Output		put
116561	it state	X= 0	X= 1	X= 0	X= 1
A	В	AB	AB	Y	Y
0	0	00	10	0	1
0	1	11	00	0	0
1	0	10	01	1	0
1	1	00	10	1	0

State Table

DESIGN A CIRCUIT FOR A GIVEN STATE DIAGRAM USING D FLIP-FLOP:

Present state		Input	Next	state	Flip- Inp	Output		
A	В	X	A	В	DA	D _B	Y	
0	0	0	0	0	0	0	0	
0	0	1	1	0	1	0	1	
0	1	0	1	1	1	1	0	
0	1	1	0	O	0	0	0	
1	o	O	1	o	1	0	1	
1	o	1	0	1	O	1	0	
1	1	O	0	O	O	0	1	
1	1	1	1	0	1	0	0	

Circuit excitation table

K-map Simplification:

DESIGN A CIRCUIT FOR A GIVEN STATE DIAGRAM USING D FLIP-FLOP:

DESIGN A SERIAL BINARY ADDER FOR MEALY TYPE

State diagram and state table of the serial adder.

State diagram

State table

DESIGN A SERIAL BINARY ADDER FOR MEALY TYPE

DESIGN A SERIAL BINARY ADDER FOR MOORE TYPE

- If the input Sequence is 01101010 then the output is 00000101
- First draw the state diagram to detect the Sequence 1010(consider overlapping).
- When the Sequence is completed the output will be 1.
- First State table, Excitation table, Boolean Expressions, Logic diagram

PS			IS	O/P			
		x = 0	x=1	x = 0	x = 1		
A->0	00	00	01	0	0		
B→0	220	10	01	0	0		
C→1		00	11	0	0		
D->1	11	10	01	1	0		

Logic Diagram

PS	N	O/P		
	X = 0	X = 1		
A	A	В	0	
В	C	В	0	
C	A	D	0	
D	E	В	0	
E	A	- D	1	

State Table and the remaining Steps are same

PS	NS,Z					
	A=0	A=1				
A	A,0	В,0				
В	В,0	C,0				
С	C,0	D,0				
D	D,0	A,1				

State Diagram and State Table and the remaining Steps are same (Non Overlapping Sequence)

DESIGN A THREE BIT GRAY CODE COUNTER

DESIGN A THREE BIT GRAY CODE COUNTER

PS	1	NS		O/P		PS		I/P	NS			Inputs to FFs			O/P
	x = 0	x = 1	x = 0	x = 1	У3	y ₂	y ₁	×	Y,	Y2	Y,	Ta	T2	т,	Z
00	000	001	0	0	0	0	0	0	0	0	0	0	0	0	0
01	001	011	0	0	0	0	0	1	0	0	1	0	0	1	0
11	011	010	0	0	0	0	1	0	0	0	1	0	0	0	0
10	010	110	0	0	0	0	1	1	0	1	1	0	1	0	0
10	110	111	0	0	0	1	1	0	0	1	1	0	0	0	0
11	111	101	0	0	0	1	1	1	0	1	0	0	0	1	0
01	101	100	0	0	0	1	0	0	1	1	0	0	0	0	0
00	100	000	0	1	0	1	0	1	1	1	0	1	0	0	0
		000			1	1	0	0	1	1	0	0	0	0	0
					1	1	0	1	1	1	1	0	0	1	0
					1	1	1	0	1	1	1	0	0	0	0
					1	1	1	1	1	0	1	0	1	0	0
					1	0	1	0	1	0	1	0	0	0	0
					1104	0	1	1	1	0	0	0	0	1	0
					-	0	0	0	1	0	0	0	0	0	0
					4	0	0	1	0	0	0	1	0	0	1

 $z = y_3 \bar{y}_2 \bar{y}_1 x$

DESIGN A THREE BIT GRAY CODE COUNTER

K-Maps and Logic Diagram

References

- Kumar, A. Anand. *Switching Theory and Logic Design*. PHI Learning Pvt. Ltd., 2014.
- Kumar, A. Anand. *Fundamentals of Digital Circuits* PHI Learning Pvt. Ltd., 2014.
- Videos from NESCO Academy

THANK YOU