

Today's Class

- Sample Space
- Events
- Venn Diagram
- Set Theory

• • •

Sample Space

- **Outcome**: Each possible result of such an experiment that we perform
- Sample space (S): the set of all possible outcomes of an experiment
 - Discrete
 - Continuous

Events

- Event: any subset of outcomes contained in the sample space, S
- What is the event that an even score when rolling a die?
 - Even= {2, 4, 6}

Combination of Events

- Union: event consisting of all outcomes of both events, e.g. A ∪ B
- Intersection: event of outcomes that are part of both events, e.g. A ∩ B
- Complement: event of all outcomes not part of the event, e.g. A', A^c or \overline{A}
- Contained: one event is a subset of another event, e.g. A ⊂ B

• • •

Venn Diagrams: Complements

o Complementary event, \overline{A} : Not A

Sample space S

• • • Example: Union

- o Suppose we throw one die
 - A = die is even
 - B = die is less than 4
 - A∪B?

• $A \cup B = \{1, 2, 3, 4, 6\}$

• • • Venn Diagrams: Intersection

- \bullet The intersection of two events, $A \cap B$
 - includes all sample points that are in both A and B
 - Intersection means "AND"

- Example: Intersection
 Suppose we throw one die
 A = die is even
 B = die is less than 4
 A ∩ B?
 A ∩ B?
 A ∩ B = {2}
- • • Venn Diagrams: Contained

 • • A is a subset of B, A = B

 S

 A

Venn Diagrams: Collectively exhaustive

 A and B are collectively exhaustive if their union must cover all the events within the entire sample space: A∪B = S

• • •

Set Theory

- Associative Rule
 - $(A \cup B) \cup C = A \cup (B \cup C)$
 - $(A \cap B) \cap C = A \cap (B \cap C)$
- Distributive Rule
 - $(A \cup C) \cap (B \cup C) = (A \cap B) \cup C$
 - $(A \cap C) \cup (B \cap C) = (A \cup B) \cap C$
- o De Morgan's Rule
 - $\overline{A \cup B} = \overline{A} \cap \overline{B}$

• • •

Exercises 2.2

- Suppose that vehicles taking a particular freeway exit can turn right (R), turn left (L), or go straight (S). Consider observing the direction for each of three successive vehicles.
 - List all outcomes in the event A that all three vehicles go in the same direction
 - List all outcomes in the event B that all three vehicles take different directions
 - List all outcomes in the event C that exactly two of the three vehicles turn right
 - List all outcomes in the event D that exactly two vehicles go in the same direction
 - List outcomes in D', C∪D, and C∩D

• • Solution

- Event A = { RRR, LLL, SSS }
- Event B = { RLS, RSL, LRS, LSR, SRL, SLR }
- Event C = { RRL, RRS, RLR, RSR, LRR, SRR }
- Event D = { RRL, RRS, RLR, RSR, LRR, SRR, LLR, LLS, LRL, LSL, RLL, SLL, SSR, SSL, SRS, SLS, RSS, LSS }
- Event D' contains outcomes where all cars go the same direction, or they all go different directions:
 - D' = { RRR, LLL, SSS, RLS, RSL, LRS, LSR, SRL, SLR }
- Because Event C ⊂ Event D, the compound event C∪D = D
- Because Event C \subset Event D, the compound event C \cap D = C
 - $C \cap D = C = \{ RRL, RRS, RLR, RSR, LRR, SRR \}$