

Discrete Mathematics

Lecture 10

Matching in Graphs

A graph is bipartite if its nodes can be partitioned into two classes, say A and B, such that every edge connects a node in A to a node in **B**.

Is a star bipartite?
Yes, it is.
Is a path bipartite?
Yes, it is.
Is a tree bipartite?
Yes, it is, and why?

How to test whether a graph is bipartite?

A graph is bipartite if its nodes can be partitioned into two classes, say A and B, such that every edge connects a node in A to a node in **B**.

A matching is a set of edges that have no endpoint in common.

A matching is perfect if it covers all nodes.

Theorem 10.1.1 (König's Theorem)

Every bipartite *d*-regular graph with *d*>0 contains a perfect matching.

Def. Given a graph G=(V, E) and $v \subseteq V$, the neighborhood of v is denoted by $N_G(v)$. For $S \subseteq V$, define the neighborhood of S by

$$N_{G}(S) \coloneqq \bigcup_{v \in S} N_{G}(v).$$

10.3 The Main Theorem

Theorem 10.3.1 (The Marriage Theorem)

A bipartite graph has a perfect matching iff |A|=|B| and for any subset $S \subset A$,

$$|S| \leq |N(S)|.$$

Note. If we interchange "A" and "B", then perfect matchings remain perfect matchings. But what happens to the condition stated in the theorem?

It remains valid. For $T \subset B$, clearly $N(A \setminus N(T)) \subset B \setminus T$, $|A| - |N(T)| = |A \setminus N(T)| \le |B \setminus T| = |B| - |T|$, $\Rightarrow |T| \le |N(T)|$.

Proof of The Marriage Theorem.

Use induction on the number of nodes of the bipartite graph *G*.

Let H:=G-a-b. If for all $S\subset A\setminus\{a\}$ and $R=N_H(S)$, $|S|\leq |R|$, then by induction, H has a perfect matching and so has G.

If $\exists S \subset A \setminus \{a\}$ so that |S| > |R|, then let $T = R \cup \{b\}$. We have T = N(S) & |S| = |T|.

If $\exists S \subset A \setminus \{a\}$ so that |S| > |R|, then let $T=R\cup\{b\}$. We have T=N(S) & |S|=|T|. Let $G_1:=G[S\cup T]$ the subgraph induced by $S \cup T$, and similarly $G_2 := G[(A \setminus S) \cup (B \setminus T)]$. What is the subgraph G_1 ? Well, $G_1 = (V_1, E_1)$ where $V_1 = S \cup T$ and $E_1=\{e\in E\mid e\cap S\neq\emptyset, e\cap T\neq\emptyset\}.$ So G_1 is bipartite with |S| = |T|. Has it a perfect matching?

If $\exists S \subset A \setminus \{a\}$ so that |S| > |R|, then let $T=R\cup\{b\}$. We have T=N(S) & |S|=|T|. Let $G_1:=G[S\cup T]$ the subgraph induced by SUT, and similarly $G_2:=G[(A\setminus S)\cup (B\setminus T)]$. Then G_1 has a perfect matching by induction, since for all $X \subset S \subset A$, we have $|X| \leq |N(X)| = |N_{G1}(X)|$. Similarly, G, has a perfect matching since for all $Y \subset B \setminus T \subset B$, we also have $|Y| \le |N(Y)| = |N_{G2}(Y)|$.

An augmenting path

See FIGURE 10.7 in Page 175.

Let *U* be the set of unmatched nodes in *A*.

Let W be the set of unmatched nodes in B.

Any augmenting path must have an odd number of edges, hence it must connect a node in *U* to a node in *W*.

A path is almost augmenting if it starts at a node in *U*, ends at a node in *A*, and every second edge of it belongs to *M*.

- Start with S:=U.
- At any stage, the set S will consist of nodes we already know are reachable by some almost augmenting path.
- Denote by T the set of nodes in B that are matched with nodes in S.
- |S| = |T| + |U|.

- Let $sr \in E \setminus M$, $s \in S$, $r \in B \setminus T$.
- Let Q be an almost augmenting path starting at some node u∈U and ending at s.
- ightharpoonup If r is unmatched (r∈W), then by appending the edge sr to Q we get an augmenting path. So we can increase the size of M.

- Let $sr \in E \setminus M$, $s \in S$, $r \in B \setminus T$.
- Let Q be an almost augmenting path starting at some node u∈U and ending at s.
- ➤If r is matched with a node q ∈ A, then we can append the edges sr and rq to Q to get an almost augmenting path from U to q. So we can add q to S.

- So if we find an edge connecting a node in S to a node not in T, we can increase either the size of M or the set S.
- Finally we must encounter a situation where either M is a perfect matching, or M is not perfect, but no edge connects S to any node outside T, i.e.

$$T=N(S) \& |T|=|S|-|U|<|S|.$$

This implies no perfect matching at all in the graph.

Berge-Fulkerson Conjecture (1971)

Every bridgeless cubic graph admits a double cover by six perfect matchings.

Note. Such a graph has a perfect matching by the Petersen theorem (1891).