Representación de enteros

Correcciones

Little vs Big endian.

Little endian: el bit/byte menos significativo está en la posición más baja de memoria.

Big endian: el bit/byte menos significativo está en la posición más alta de memoria.

Variables booleanas. No existen, son los padres.

No existe el bit de signo en enteros.

¿Cuál tiene signo?

0b0101

0b1001

¿Cuál tiene signo?

¿Cuál tiene signo?

0b0101 Y nos da lo mismo!:D 0b1001

¡Juguemos!

4 bits con y sin signo en un ciclo.

Vamos a realizar algunas sumas y restas.

Generalización: base β y complemento a la base y complemento a "c".¹

1: "c" de "cualquier número".

Operando en cualquier base (natural y mayor a 1)

Suma

Resta

Multiplicación

División

Todas las operaciones son indiferentes a la base que estoy usando.

Debo tener siempre presente la cantidad máxima de cifras con la que voy a trabajar.

Para obtener un número de una base a otra, siempre es recomendado llegar a una base que conozcamos bien, antes de llegar a la base que requerimos.

Por ejemplo:

3235 a X7

Para eso, realizamos primero, la conversión a base 10.

 $323_5 \rightarrow 88_{10}$

Una vez hecho, tenemos dos posibilidades para trabajar:

$$88_{10} \longrightarrow X_7$$

- Conocer las potencias de la base a convertir y dividir por la mayor posible.
 base 7: 1, 7, 49, 343, ...
- Dividir el número por la base, y continuar dividiendo el resto hasta tener un número menor a la base.

Una vez hecho, tenemos dos posibilidades para trabajar:

$$88_{10} \longrightarrow X_7$$

- Conocer las potencias de la base a convertir y dividir por la mayor posible. base 7: 1, 7, 49, 343, ...

Una vez hecho, tenemos dos posibilidades para trabajar:

$$88_{10} \rightarrow X_7$$

 Dividir el número por la base, y continuar dividiendo el cociente hasta tener un número menor a la base.

```
88/7 = 12

4
12/7 = 1

5
1/7 = 0
1 → 154

17 = 10
```

El "trucazo" de las bases en potencia de 2

Para la conversión entre bases de potencia 2, es decir, base 2, base 4, base 8, base 16, etc. Existe una mnemotecnia muy sencilla de obtener. Por ejemplo:

 $1001\ 1101_2 \longrightarrow X_4$

El "trucazo" de las bases en potencia de 2

Para la conversión entre bases de potencia 2, es decir, base 2, base 4, base 8, base 16, etc. Existe una mnemotecnia muy sencilla de obtener. Por ejemplo:

```
1001 1101<sub>2</sub> → X<sub>4</sub>
2 1 3 1<sub>4</sub>
```

El "trucazo" de las bases en potencia de 2

Para la conversión entre bases de potencia 2, es decir, base 2, base 4, base 8, base 16, etc. Existe una mnemotecnia muy sencilla de obtener. Por ejemplo:

```
1001 1101<sub>2</sub> → X<sub>8</sub>
2 3 5<sub>8</sub>
```

El "trucazo" de las bases en potencia de 2

Para la conversión entre bases de potencia 2, es decir, base 2, base 4, base 8, base 16, etc. Existe una mnemotecnia muy sencilla de obtener. Por ejemplo:

¿Funcionará con otras bases? Pruebe con Base 3 y 9

Nomenclatura

0b

00

0d ← sólo en este curso.

0x

Ejercicio:

Con 8 bits y complemento a 2:

$$((0x7 - 0x33) * 0xFF + 0x4) * 0x21$$

S: 0x630

Ejercicios:

- 1. 2341₅ a base 3, sin complemento.
- 2. -0x36 a base 10 con complemento a 10 (y 6 dígitos).
- 3. $((0b111 0x33) * 255 + 10_4) * 0x21$.