# CS4335 Design and Analysis of Algorithms (Midterm, 2021)

If you think some questions are ambiguous, you may write your assumptions clearly. However, you assumption should not trivialize the questions.

## Question 1. (20 points)

(a) (10 points) For the interval scheduling problem, the set of jobs  $(s_i, f_i)$  are as follows: (0, 2), (1, 3), (2, 6), (2, 4), (6, 9), (8, 12), (5, 8), (6, 7).

Use a greedy algorithm to compute the maximum number of compatible jobs. You should give main steps. What is the running time of the greedy algorithm?

### **Answer:**

```
Sorting based on finish time: (0, 2), (3, 4), (1, 5), (2, 6), (5, 7), (7, 10), (8, 12) (9,13) Choose {(0, 2)} {(0, 2), (3, 4)} (1, 5) (2, 6) overlap {(0, 2), (3, 4), (5, 7)} {(0, 2), (3, 4), (5, 7), (7, 10)} (8, 12) (9, 13) overlap Max = 4 jobs Running time: O(nlogn)
```

**(b)** (8 points) For the interval partitioning problem, the set of lectures  $(s_i, f_i)$  are as follows: (0, 1), (0, 3), (1, 4), (2, 6), (2, 4), (4, 5), (3, 5) and (5, 8).

Use a greedy algorithm to compute the minimum number of classrooms to accommodate all the lectures. You should give main steps.

## **Answer:**

```
Sort based on start time: (0, 2), (0, 4), (2, 5), (3, 5), (3, 6), (4, 7), (5, 8), (6, 9)

Room 1: (0, 2), (2, 5), (5, 8)

Room 2: (0, 4), (4, 7)

Room 3: (3, 5), (6, 9)

Room 4: (3, 6)
```

(c) (2 points) For the interval partitioning problem given in (b), what is the depth of the problem?

## **Answer:**

Depth = 4

## **Question 2. (20 points)**

(a) (7 points) Find the minimum spanning tree for the graph in Figure 1 using Kruskal's algorithm.

### **Answer:**

```
First, we sort the edges in ascending order of their weights: CG_1, FG_1, BF_2, AF_3, DE_3, DH_4, EH_4, DG_5, AB_6, AG_6, CD_7, GH_9, AC_{10},
```

Then, we select edges of which the two vertices are in different trees:  $CG_1$ ,  $FG_1$ ,  $BF_2$ ,  $AF_3$ ,  $DE_3$ ,  $DH_4$ ,  $DG_5$ .



Figure 1

(b) **(8 points)** Find the minimum spanning tree for the graph in Figure 1 using Prim's algorithm.

## **Answer:**

## Solution 1:

Define:  $E = \emptyset$ ,  $S = \{A\}$ ,  $Q = \{B, C, D, E, F, G, H\}$ 

### Steps:

1. 
$$E = \{AF_3\}, S = \{A, F\}, Q = \{B, C, D, E, G, H\}$$

2. 
$$E = \{AF_3, FG_1\}, S = \{A, F, G\}, Q = \{B, C, D, E, H\}$$

3. 
$$E = \{AF_3, FG_1, CG_1\}, S = \{A, F, C, G\}, Q = \{B, D, E, H\}$$

$$4. E = \{AF_3, FG_1, CG_1, BF_2\}, S = \{A, B, C, F, G\}, Q = \{D, E, H\}$$

5. 
$$E = \{AF_3, FG_1, CG_1, BF_2, DG_5\}, S = \{A, B, C, D, F, G\}, Q = \{E, H\}$$

$$6.\ E = \{AF_3, FG_1, CG_1, BF_2, DG_5, DE_3\}, S = \{A, B, C, D, E, F, G\}, Q = \{H\}$$

$$7.\ E = \{AF_3, FG_1, CG_1, BF_2, DG_5, DE_3, DH_4\}, S = \{A, B, C, D, E, F, G, H\}, Q = \emptyset$$

The minimum spanning tree by Prim is  $\{CG_1, FG_1, BF_2, AF_3, DG_5, DE_3, DH_4\}$ .

## Solution 2:

## Start from A.

|        | A     | В       | С       | D       | Е       | F       | G       | Н       |
|--------|-------|---------|---------|---------|---------|---------|---------|---------|
| Start  | 0/NIL | INF/NIL |
| Pick A |       | 6/A     | 10/A    | INF/NIL | INF/NIL | 3/A     | 6/A     | INF/NIL |
| Pick F |       | 2/F     | 10/A    | INF/NIL | INF/NIL |         | 1/F     | INF/NIL |
| Pick G |       | 2/F     | 1/G     | 5/G     | INF/NIL |         |         | 9/G     |
| Pick C |       | 2/F     |         | 5/G     | INF/NIL |         |         | 9/G     |
| Pick B |       |         |         | 5/G     | INF/NIL |         |         | 9/G     |
| Pick D |       |         |         |         | 3/D     |         |         | 4/D     |

| Pick E |  |  |  | 4/D |
|--------|--|--|--|-----|
| Pick H |  |  |  |     |

Edgeset={BF, CG, DG, ED, FA, GF, HD}

(c) (5 points) Is the path between a pair of vertices in a minimum spanning tree of an undirected graph necessarily a shortest path? Justify your answer.

### **Answer:**

No, a path between a pair of vertices in a minimum spanning tree is not necessarily their shortest path. For example, the shortest path between H and E should be H->E, of which the distance is 4. However, in an MST, E can only be reached via D from H, of which the total distance is 7, and is longer than the shortest path.

## **Question 3. (15 points)**

Use Dijkstra's algorithm to compute a shortest path from a to i in the following graph. You should give main steps.



## **Answer:**

| iteration | A     | b     | c     | d     | e     | f     | g     | h     | i     |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0         | 0/nil | ∞/nil |
| 1         |       | 4/a   | ∞/nil |
| 2         |       |       | 15/b  | 13/b  | ∞/nil | ∞/nil | ∞/nil | ∞/nil | ∞/nil |
| 3         |       |       | 15/b  |       | 15/d  | 19/d  | ∞/nil | ∞/nil | ∞/nil |
| 4         |       |       | 15/b  |       |       | 19/d  | 22/e  | 19/e  | ∞/nil |
| 5         |       |       |       |       |       | 19/d  | 22/e  | 19/e  | ∞/nil |
| 6         |       |       |       |       |       | 19/d  | 22/e  |       | 29/h  |
|           |       |       |       |       |       |       | 22/e  |       | 29/h  |
|           |       |       |       | ·     |       |       |       |       | 29/h  |

The shortest path is: a-b-d-e-h-i The shortest length is: 29

## **Question 4 (15 points)**

- (a) (9 points) For the list: 2, 1, 5, 8, 9, 10, 4, 7, 6, 13, 14, and 11. Suppose we have sorted the two halves as list1: 1, 2, 5, 8, 9, 10; and list2: 4, 6, 7, 11, 13, 14. Calculate the number of inversions with one number in list1 and the other number in list2 using O(n) operations. Immediate steps are required.
- (b) (3 points). Assume T(n) is the running time for the following algorithm. List the recursive relation, and with it, what is T(n) in terms of big-O?

```
FindMax(A, k, n)
   Input: Array A of size n, and an integer k<n
   Output: the maximum element from A[k], A[k+1], ..., A[n-1]
        if k<n-1
            return max(A[k], FindMax(A, k+1, n))
        else return A[k]
Initial call FindMax(A, 0, n)</pre>
```

- (c) (1 point) Suppose T(1)=1, and T(n)=T(n-1)+n. What is T(n) in terms of big O notation?
- (d) (2 points) Suppose T(1)=1, and T(n)=T(n/3)+1. What is T(n) in terms of big O notation?

## **Answer:**

(a)

```
1, 2, 5, 8, 9, 10 4, 6, 7, 11, 13, 14

4: 4
6: 3
7: 3
11: 0
13: 0
14: 0
Sum of inversions: 10

(b) The recurrence expression for T(n) is: T(n) = T(n-1) + 1. Hence, T(n) \sim O(n).
(c) T(n) = T(1) + \frac{(n+2)(n-1)}{2}, hence T(n) \sim O(n^2).
(d) T(n) = T(n/3^k) + k. Assume, \frac{n}{3^k} = 1, we have k = log_3 n.
```

In this way,  $T(n) = 1 + \log_3 n = 1 + \log n / \log_2 3$ . Hence,  $T(n) \sim O(\log n)$ .

## Question 5. (15 points)

Given an array of  $n \ge 2$  distinct integers (i.e., no two integers are the same) sorted in ascending order, say [x(1),...,x(n)], we want to find the absolute minimum difference

between the x(i) and i. For example, for x = [-10, 9, 10, 12, 13, 16], the minimum difference d = |x(2)-2| = |9-2| = 7.

- (a) (5 points) Use a linear time algorithm to solve the problem.
- (b) (5 points) Use a divide and conquer approach the solve the problem. The running time should be O(logn).

### **Answer:**

(c) **(5 points)** Set up and solve a recurrence equation for part (b) to estimate the running time of your algorithm. Prove that the running time of your algorithm is O(logn).

## Hint:

i) The difference will first decrease and then increase.

```
Answer:
a)
\min \leftarrow \infty
for i \leftarrow 1 to n:
   if x[i]-i < min
        min \leftarrow |x[i]-i|
 return min
b)
minDiff(l, r)
  if r-1=0 or r-1=1
      return min(|x[1]-1|, |x[r]-r|)
  mid = [(1+r)/2]
  if x[mid]>mid:
     return minDiff(1, mid)
  else
     return minDiff(mid, r)
initial call minDiff(1, n)
c)
T(n)=T(n/2)+1
T(n/2)=T(n/2^2)+1
```

$$T(n/2^{k-1}))=T(n/2^k)+1$$
  
Then  $T(n)=T(n/2^k)+k$   
Assume  $n/2^k=1$ , and we have  $k=\log_2 n$ .  
 $T(n)=1+\log_2 n$ , and  $T(n)=O(\log n)$ 

## Question 6. (15 points)

Suppose we have an array of n positive integers. A contiguous subarray A[i..j] is called a squared interval if the sum of its entries is a squared number. Design a greedy algorithm to compute the maximum number of squared intervals such that every entry in A will be covered at most once. You can state your algorithm in English or in Pseudo code (5 points). What is the running time of algorithm in big-Oh (5 points)? Prove that your algorithm is correct. (5 points)



### **Answer 1:**

Outline of Solution to Q6:

(a) Algorithm:

## Phase 1:

For each i=1 to n.

Find the shortest squared interval ending at i. If no such interval, return nil. // For each i, the running time is at most O(n), thus, the total running time for Phase 1 is  $O(n^2)$ . There are at most n intervals found by Phase 1. You should give the details of how to find the shortest squared interval.

Phase 2: Let the squared intervals obtained by phase 1 as inputs and use the interval scheduling algorithm to find the maximal number of the compatible intervals. // the running time of Phase 2 is O (n), since the intervals from Phase 1 are sorted according to finish time, and no sorting is necessary.

(b) Running time = $O(n^2)$ .

# (c) Outline of Proof:

- (1) Let A be a maximal set of non-overlapped squared interval. If A contains an interval starting at i, replace this interval by the shortest squared interval starting at i will not change the optimality of A. (2) For each i, A can contain at most one interval starting at i.
- (1)+(2) indicate that this problem is equivalent to the interval scheduling problem and the algorithm is correct.