Работа 1.2.2

ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА ЗАКОНА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ НА КРЕСТООБРАЗНОМ МАЯТНИКЕ

Работу выполнил Матренин Василий Б01-006

Цель работы: экспериментально проверить уравнение (1), получив зависимость углового ускорения от момента инерции и момента прикладываемых к системе сил, а также проанализировать влияние сил трения, действующих в оси вращения.

В работе используются: Крестообразный маятник Обербека; компьютер

Схема установки: m_1 m_2 m_3 m_2 m_3

Рис. 1. Крестообразный маятник Обербека

 $\overline{m_{\scriptscriptstyle \rm H}} = m_{\scriptscriptstyle \rm II} + m_{\scriptscriptstyle \rm I}$

1 Формулы:

Основное уравнение вращательного движения тела вокруг закреплённой оси:

$$I\ddot{\phi} = M \tag{1}$$

1.1 Вывод уравнения движения маятника:

Момент силы натяжения нити:

$$M_{\rm H} = m_{\rm H} r \left(g - \beta r \right) \tag{2}$$

Вращению маятника препятствует момент силы трения в оси $M_{\rm Tp}$. Таким образом, с учетом (2) уравнение (1) может быть записано как:

$$(I + m_{\rm H}r^2)\beta = m_{\rm H}gr - M_{\rm Tp} \tag{3}$$

Поскольку в опытах, как правило, $m_{\rm H}r^2\ll I$, и соответственно $M_{\rm H}\approx m_{\rm H}gr$. Если трение мало, $M_{\rm TP}\ll m_{\rm H}gr$, то маятник будет раскручиваться с постоянным угловым ускорением $\beta_0\approx m_{\rm H}gr/I$

Зависимость момента силы трения от нагрузки на маятник и скорости его вращения не известна, но в общем случае есть как составляющая, пропорциональная угловой скорости ω , так и составляющая, пропорциональная силе реакции в оси N. Учитывая, что сила реакции уравновешеннего маятника равна $N = m_{\rm M} g + T \approx (m_{\rm M} + m_{\rm H}) g \approx m_{\rm H} g$, где $m_{\rm M}$ - масса маятника (как правило, $m_{\rm M} \gg m_{\rm H}$, можно записать:

$$M_{\rm TP} \simeq \left(1 + \frac{m_{\rm H}}{m_{\rm M}}\right) M_0 + \mu \omega \approx M_0 + \mu \omega$$
 (4)

Где M_0 - момент сил трения для покоящегося маятника при нулевой массе подвеса (минимальное значение силы трения), μ — некоторый коэффициент, отвечающий за вязкое трение.

1.2 Методика эксперемента

Если верны высказанные выше соображения о величине силы трения, из (3) и (4) следует, что угловое ускорение должно быть линейной функцией угловой скорости: $\beta(\omega) = \beta_0 + k\omega$.с В таком случае, определив по экспериментальным данным (с помощью расчётной программы) коэффициенты прямой, можно найти начальное угловое ускорение β_0 , значение которого и используется при проверке основного соотношения (3) при различных параметрах системы ($m_{\rm H}, I, r$).

Момент нерции системы расчитывается по теореме Гюйгенса-Штейнера:

$$I = I_0 + \sum_{i=1}^{4} \left(I_i + m_i R_i^2 \right), \tag{5}$$

где I_0 - момент инерции системы без грузов,

$$I_i = \frac{1}{12}m_i h^2 + \frac{1}{4}m_i \left(a_1^2 + a_2^2\right) \tag{6}$$

- момент инерции i-го груза (грузы имеют форму полых цилиндров) относительно оси, проходящей через его центр масс (перпендикулярно плоскости рис. 1). Где a_1 и a_2 - внутренний и внешний радиус цилиндров, h - образующая цилиндров.

2 Ход работы:

2.1 Балансировка:

Установил грузы m_i на некотором (среднем) расстоянии от оси шкива, так чтобы маятник оказался в положении безразличного равновесия. Провел балансировку, незначительно изменяя положения грузов.

Положения грузов R_i :

$$R_1 = 11,88$$
 cm
 $R_2 = 12,46$ cm
 $R_3 = 12,15$ cm
 $R_4 = 11,85$ cm

Массы грузов R_i :

```
m_1 = 146,6 г m_2 = 146,3 г m_3 = 146,3 г m_4 = 152,7 г
```

2.2 Измерение момента силы трения покоя:

Намотал на меньший из шкивов нить в один слой и подвесил на ней к маятнику пустую платформу. Нагрузил платформу так, чтобы маятник пришел в движение.

Граничное значение момента силы трения покоя $M_0 = 0,0075 Hm$

2.3 Ознакомление с "Kinematic":

Включил компьютер и запустил расчетно-измерительную программу «Kinematic». Ознакомился с краткой инструкцией по работе с программой.

2.4 Нахождение коэффициентов для зависимости $\beta = \beta_0 + k\omega$:

Намотал нить в один слой на больший из шкивов и поместил перегрузок ($m_{\rm r}=27,\!2{\rm r}$) на платформу. Провел опыт: с помощью программы измерил зависимость угла поворота маятника от времени в процессе опускания платформы из верхнего в нижнее положение.

Полученные значения:

2.5 Оценка случайной погрешности:

Провел серию эксперементов для фиксированных значений массы и момента инерции маятника, чтобы вычислить случайную ошибку σ_{β} . Значения для эксперементов приведены в таблице 1.

Таблица 1: значения для вычисления случайной погрешности

Номер эксперемента	1	2	3	4	5	6
$\beta_0, \frac{\mathrm{pag}}{\mathrm{c}^2}$	0,513	0,509	0,510	0,511	0,511	0,513
$k, \frac{pa_{\mathcal{A}}}{c}$	-0,026	-0,021	-0,021	-0,026	-0,021	-0,025

Тогда сулчайная ошибка $\sigma_{\beta} = \frac{\text{рад}}{c^2}$

2.6 Опыты с разными перегрузками $m_{\mathbf{r}}$

Провел эксперемент п. 2.4. для 8 различных значений момента силы натяжения нити, используя перегрузки $m_{\scriptscriptstyle \Gamma}$ в диапазоне от 20 до 200 г на разных шкивах. Результаты эксперементов приведены в таблице 2 и таблице 3.

Таблица 3: значения для большого шкива

Номер эксперемента	1	2	3	4	5	6	7	8
$m_{\scriptscriptstyle \Gamma}$, к $_{\scriptscriptstyle \Gamma}$	0,043	0,068	0,079	0,116	0,143	0,168	0,180	0,216
$M_{\scriptscriptstyle \Gamma}, H_{\scriptscriptstyle m M}$	0,0093	0,0178	0,022	0,034	0,044	0,052	0,056	0,069
$\beta_0, \frac{\text{pag}}{c^2}$	0,519	0,819	0,962	1,436	1,768	2,055	2,219	2,648
$k, \frac{pag}{c}$	-0,026	-0,023	-0,024	-0,025	-0,025	-0.026	-0,026	-0,028
$\sigma_{\beta_0}, \frac{\mathrm{рад}}{\mathrm{c}^2}$	0,003	0,003	0,008	0,005	0,007	0,009	0,008	0,007
$\sigma_k, \frac{\text{рад}}{\text{c}}$	0,003	0,004	0,003	0,003	0,003	0,003	0,003	0,004

2.7 Исследование зависимости углового ускорения от момента инерции системы:

Исследую зависимость углового ускорения от момента инерции системы. Для этого при значении массы перегрузка $m_{\rm r}=0,116$ кг проведу измерения при 5 различных значениях расстояния от оси системы до центров масс грузов. Результаты эксперементов предоставлены в таблице 3.

Таблица 3: Исследование зависимости углового ускорения от момента инерции системы

Номер эксперемента	1	2	3	4	5
R, M	0,064	0,089	0,129	0,164	0,054
$M_{\scriptscriptstyle \Gamma}, { m H}_{ m M}$	0,348	0,348	0,348	0,348	0,348
$\beta_0, \frac{\text{рад}}{\text{c}^2}$	2,500	2,044	1,228	0,950	2,698
$k, \frac{\text{рад}}{\text{c}}$	-0,042	-0,033	-0,022	-0,018	-0,0487
$\sigma_{eta_0}, \frac{\mathrm{pag}}{\mathrm{c}^2}$	0,003	0,006	0,005	0,006	0,013
$\sigma_k, rac{ ext{pag}}{ ext{c}}$	0,003	0,006	0,002	0,003	0,005

2.8 Измерение I_0 :

Снял грузы и провел серию эксперементов чтобы рассчитать I_0 .

Результаты эксперементов предоставлены в таблице 4.

Таблица 5: Измерение I_0

Номер эксперемента	1	2	3	4	5
$\beta_0, \frac{\text{рад}}{c^2}$	3,398	3,472	3,402	3,474	3,478
$k, \frac{pag}{c}$	-0,051	-0,058	-0,051	-0,057	-0,051
I_0 , кгм 2					
$\sigma_{\beta_0}, \frac{\mathrm{paд}}{\mathrm{c}^2}$	0,008	0,016	0,012	0,018	0,014
$\sigma_k, rac{ ext{pад}}{ ext{c}}$	0,003	0,006	0,004	0,006	0,004