Chapter 7

Parametric Likelihood Fitting Concepts: Exponential Distribution

William Q. Meeker and Luis A. Escobar

Iowa State University and Louisiana State University

Copyright 1998-2004 W. Q. Meeker and L. A. Escobar. Based on the authors' text *Statistical Methods for Reliability Data*, John Wiley & Sons Inc. 1998.

January 5, 2006 19h 14min

7 - 1

Chapter 7 Parametric Likelihood Fitting Concepts: Exponential Distribution Objectives

- Show how to compute a likelihood for a parametric model using discrete data.
- Show how to compute a likelihood for samples containing right censored observations and left censored observations.
- Use a parametric likelihood as a tool for data analysis and inference.
- Illustrate the use of likelihood and normal-approximation methods of computing confidence intervals for model parameters and other quantities of interest.
- Explain the appropriate use of the density approximation for observations reported as exact failures.

7-2

Example: Time Between α -Particle Emissions of Americium-241 (Berkson 1966)

Berkson (1966) investigates the randomness of α -particle emissions of Americium-241, which has a half-life of about 458 years.

Data: Interarrival times (units: 1/5000 seconds).

- n = 10,220 observations.
- Data binned into intervals from 0 to 4000 time units. Interval sizes ranging from 25 to 100 units. Additional interval for observed times exceeding 4,000 time units.
- Smaller samples analyzed here to illustrate sample size effect. We start the analysis with n = 200.

Data for α -Particle Emissions of Americium-241

Time		Interarrival Times Frequency of Occurrence		
Interval	Endpoint	All Times	Random Sample of Times	
lower	upper	n = 10220	n = 200	
t_{j-1}	t_{j}		d_{j}	
0	100	1609	41	
100	300	2424	44	
300	500	1770	24	
500	700	1306	32	
700	1000	1213	29	
1000	2000	1528	21	
2000	4000	354	9	
4000	∞	16	0	
		10220	200	

7 - 4

Histogram of the n=200 Sample of α -Particle Interarrival Time Data

Exponential Probability Plot of the n=200 Sample of α -Particle Interarrival Time Data. The Plot also Shows Approximate 95% Simultaneous Nonparametric Confidence Bands.

7-3

Parametric Likelihood Probability of the Data

• Using the model $\Pr(T \leq t) = F(t;\theta)$ for continuous T, the likelihood (probability) for a single observation in the interval $(t_{i-1},t_i]$ is

$$L_i(\theta; \mathsf{data}_i) = \mathsf{Pr}(t_{i-1} < T \le t_i) = F(t_i; \theta) - F(t_{i-1}; \theta).$$

Can be generalized to allow for explanatory variables, multiple sources of variability, and other model features.

ullet The total likelihood is the joint probability of the data. Assuming n independent observations

$$L(\theta) = L(\theta; \mathsf{DATA}) = \mathcal{C} \prod_{i=1}^n L_i(\theta; \mathsf{data}_i).$$

• Want to estimate θ and $g(\theta)$. We will find θ to make $L(\theta)$ large.

7 - 7

Exponential Distribution and Likelihood for Interval Data

Data: α -particle emissions of americium-241

• The exponential distribution is

$$F(t;\theta) = 1 - \exp\left(-\frac{t}{\theta}\right), \quad t > 0.$$

 $\theta = \mathsf{E}(T)$, the mean time between arrivals.

• The interval-data likelihood has the form

$$L(\theta) = \prod_{i=1}^{n} L_i(\theta) = \prod_{j=1}^{8} \left[F(t_j; \theta) - F(t_{j-1}; \theta) \right]^{d_j}$$
$$= \prod_{j=1}^{8} \left[\exp\left(-\frac{t_{j-1}}{\theta}\right) - \exp\left(-\frac{t_j}{\theta}\right) \right]^{d_j}$$

where d_j is the number of interarrival times in the jth interval (i.e., times between t_{j-1} and t_j).

7-8

 $R(\theta) = L(\theta)/L(\hat{\theta})$ for the n=200 lpha-Particle Interarrival Time Data. Vertical Lines Give an Approximate 95% Likelihood-Based Confidence Interval for θ

7 - 9

Exponential Probability Plot for the n=200 Sample of α -Particle Interarrival Time Data. The Plot Also Shows Parametric Exponential ML Estimate and 95% Confidence Intervals for F(t).

7 - 10

Example. α -Particle Pseudo Data Constructed with Constant Proportion within Each Bin

	Interarrival Times				
Time		Frequency of Occurrence			
Interval	Endpoint	Samples of Times			
lower	upper	n=20000	n=2000	n = 200	n = 20
t_{j-1}	t_{j}		d_{j}		
0	100	3000	300	30	3
100	300	5000	500	50	5
300	500	3000	300	30	3
500	700	3000	300	30	3
700	1000	2000	200	20	2
1000	2000	3000	300	30	3
2000	4000	1000	100	10	1
4000	∞	0000	000	0	0
		20000	2000	200	20

 $R(\theta)=L(\theta)/L(\hat{\theta})$ for the n=20, 200, and 2000 Pseudo Data. Vertical Lines Give Corresponding Approximate 95% Likelihood-Based Confidence Intervals

Example. α -Particle Random Samples

Time

Interarrival Times Frequency of Occurrence

Interval	Endpoint	All Times	Random Samples of Times		Times
lower	upper	n = 10220	n = 2000	n = 200	n=20
t_{j-1}	t_{j}		d_{j}		
0	100	1609	292	41	3
100	300	2424	494	44	7
300	500	1770	332	24	4
500	700	1306	236	32	1
700	1000	1213	261	29	3
1000	2000	1528	308	21	2
2000	4000	354	73	9	0
4000	∞	16	4	0	0
		10220	2000	200	20

7 - 13

 $R(\theta)=L(\theta)/L(\hat{\theta})$ for the n= 20, 200, and 2000 Samples from the lpha-Particle Interarrival Time Data. Vertical Lines Give Corresponding Approximate 95% Likelihood-Based Confidence Intervals.

7 - 14

Likelihood as a Tool for Modeling/Inference

What can we do with the (log) likelihood?

$$\mathcal{L}(\theta) = \log[L(\theta)] = \sum_{i=1}^{n} \mathcal{L}_i(\theta).$$

- Study the surface.
- \bullet Maximize with respect to θ (ML point estimates).
- Look at curvature at maximum (gives estimate of Fisher information and asymptotic variance).
- Observe effect of perturbations in data and model on likelihood (sensitivity, influence analysis).

7 - 15

Likelihood as a Tool for Modeling/Inference (Continued)

- Regions of high likelihood are credible; regions of low likelihood are not credible (suggests confidence regions for parameters).
- If the length of θ is > 1 or 2 and interest centers on subset of θ (need to get rid of nuisance parameters), look at **profiles**

(suggests confidence regions/intervals for parameter subsets).

- Calibrate confidence regions/intervals with χ^2 or simulation (or parametric bootstrap).
- ullet Use **reparameterization** to study functions of heta.

7 - 16

Relative Likelihood for Simulated Exponential ($\theta = 5$) Samples of Size n = 3

Relative Likelihood for Simulated Exponential ($\theta = 5$) Samples of Size n = 1000

Large-Sample Approximate Theory for Likelihood Ratios for a Scalar Parameter

• Relative likelihood for θ is

$$R(\theta) = \frac{L(\theta)}{L(\widehat{\theta})}.$$

- If evaluated at the true θ , then, asymptotically, $-2\log[R(\theta)]$ follows, a chisquare distribution with 1 degree of freedom.
- An approximate $100(1-\alpha)\%$ likelihood-based confidence region for θ is the set of all values of θ such that

$$-2\log[R(\theta)] < \chi^2_{(1-\alpha;1)}$$

or, equivalently, the set defined by

$$R(\theta) > \exp\left[-\chi^2_{(1-\alpha;1)}/2\right].$$

• General theory in the Appendix.

7 - 19

Normal-Approximation Confidence Intervals for θ

• A $100(1-\alpha)\%$ normal-approximation (or Wald) confidence interval for θ is

$$[\underline{\hat{\theta}}, \quad \widetilde{\theta}] = \widehat{\theta} \pm z_{(1-\alpha/2)} \widehat{\operatorname{se}}_{\widehat{\theta}}.$$

where $\widehat{\operatorname{se}}_{\widehat{\theta}} = \sqrt{\left[-d^2\mathcal{L}(\theta)/d\theta^2\right]^{-1}}$ is evaluated at $\widehat{\theta}$.

Based on

$$Z_{\widehat{\theta}} = \frac{\widehat{\theta} - \theta}{\widehat{\mathsf{Se}}_{\widehat{\theta}}} \stackrel{.}{\sim} \mathsf{NOR}(0, 1)$$

• From the definition of NOR(0,1) quantiles

$$\Pr\left[z_{(\alpha/2)} < Z_{\widehat{\theta}} \le z_{(1-\alpha/2)}\right] \approx 1 - \alpha$$

implies that

$$\Pr\left[\widehat{\theta} - z_{(1-\alpha/2)}\widehat{\operatorname{se}}_{\widehat{\theta}} < \theta \leq \widehat{\theta} + z_{(1-\alpha/2)}\widehat{\operatorname{se}}_{\widehat{\theta}}\right] \approx 1 - \alpha.$$

7 - 20

Normal-Approximation Confidence Intervals for θ (continued)

• A $100(1-\alpha)\%$ normal-approximation (or Wald) confidence interval for θ is

$$[\theta, \quad \tilde{\theta}] = [\hat{\theta}/w, \quad \hat{\theta} \times w]$$

where $w=\exp[z_{(1-\alpha/2)}\widehat{\mathrm{se}}_{\widehat{\theta}}/\widehat{\theta}].$ This follows after transforming (by exponentiation) the confidence interval

$$[\log(\theta), \quad \log(\theta)] = \log(\widehat{\theta}) \pm z_{(1-\alpha/2)} \widehat{\mathsf{se}}_{\log(\widehat{\theta})}$$

which is based on

$$Z_{\log(\widehat{\theta})} = \frac{\log(\widehat{\theta}) - \log(\theta)}{\widehat{\operatorname{Se}}_{\log(\widehat{\theta})}} \stackrel{\cdot}{\sim} \operatorname{NOR}(0,1)$$

 $\bullet \ \, \text{Because log}(\widehat{\theta}) \ \, \text{is unrestricted in sign, generally} \ \, Z_{\log(\widehat{\theta})} \ \, \text{is closer to an NOR}(0,1) \ \, \text{distribution than is} \ \, Z_{\widehat{\theta}}.$

7 - 21

Comparisons for α -Particle Data

	All Times		of Times	
	n = 10,220	n = 200	n = 20	
ML Estimate $\widehat{ heta}$	596	572	440	
Standard Error $\widehat{se}_{\widehat{a}}$	6.1	41.7	101	
95% Confidence Intervals for θ Based on				
Likelihood $Z_{\log(\widehat{ heta})} \stackrel{.}{\sim} NOR(0,1)$	[585, 608] [585, 608]	[498, 662] [496, 660]	[289, 713] [281, 690]	
$Z_{\widehat{ heta}} \stackrel{\circ}{\sim} NOR(0,1)$	[585, 608]	[491, 654]	[242, 638]	
ML Estimate $\widehat{\lambda}\times 10^5$	168	175	227	
Standard Error $\widehat{se}_{\widehat{\lambda} imes 10^5}$	1.7	13	52	
95% Confidence Intervals for $\lambda \times 10^5$ Based on				
Likelihood $Z_{\log(\widehat{\lambda})} \stackrel{.}{\sim} NOR(0,1)$	[164, 171] [164, 171]	[151, 201] [152, 202]		
$Z_{\widehat{\lambda}} \overset{\log(\lambda)}{\sim} NOR(0,1)$	[164, 171]	[149, 200]	[125, 329]	

7-22

Confidence Intervals for Functions of θ

- ullet For one-parameter distributions, confidence intervals for heta can be translated directly into confidence intervals for monotone functions of heta.
- The arrival rate $\lambda = 1/\theta$ is a **decreasing** function of θ .

$$[\lambda, \quad \tilde{\lambda}] = [1/\tilde{\theta}, \quad 1/\theta] = [.00151, \quad .00201].$$

• $F(t;\theta)$ is a **decreasing** function of θ

$$[\tilde{F}(t_e), \quad \tilde{F}(t_e)] = [F(t_e; \tilde{\theta}), \quad F(t_e; \tilde{\theta})].$$

Density Approximation for Exact Observations

• If $t_{i-1} = t_i - \Delta_i$, $\Delta_i > 0$, and the **correct likelihood**

$$F(t_i; \boldsymbol{\theta}) - F(t_{i-1}; \boldsymbol{\theta}) = F(t_i; \boldsymbol{\theta}) - F(t_i - \Delta_i; \boldsymbol{\theta})$$

can be approximated with the density f(t) as

$$[F(t_i; \boldsymbol{\theta}) - F(t_i - \Delta_i; \boldsymbol{\theta})] = \int_{(t_i - \Delta_i)}^{t_i} f(t) dt \approx f(t_i; \boldsymbol{\theta}) \Delta_i$$

then the density approximation for exact observations

$$L_i(\theta; data_i) = f(t_i; \theta)$$

may be appropriate.

- For most common models, the density approximation is adequate for small Δ_i.
- ullet There are, however, situations where the approximation breaks down as $\Delta_i \to 0$.

ML Estimates for the Exponential Distribution Mean Based on the Density Approximation

 \bullet With r exact failures and n-r right-censored observations the ML estimate of θ is

$$\hat{\theta} = \frac{TTT}{r} = \frac{\sum_{i=1}^{n} t_i}{r}$$

 $TTT = \sum_{i=1}^{n} t_i$, **total time in test**, is the sum of the failure times plus the censoring time of the units that are censored.

• Using the observed curvature in the likelihood:

$$\widehat{\mathrm{se}}_{\widehat{\theta}} = \sqrt{\left[-\frac{d^2\mathcal{L}(\theta)}{d\theta^2}\right]^{-1}\bigg|_{\widehat{\theta}}} = \sqrt{\frac{\widehat{\theta}^2}{r}} = \frac{\widehat{\theta}}{\sqrt{r}}.$$

• If the data are complete or failure censored, $2TTT/\theta \sim \chi^2_{2r}$. Then an exact $100(1-\alpha)\%$ confidence interval for θ is

$$[\underline{\theta}, \quad \widetilde{\theta}] = \begin{bmatrix} \underline{2(TTT)} \\ \overline{\chi^2_{(1-\alpha/2;2r)}}, \quad \underline{\chi^2_{(\alpha/2;2r)}} \end{bmatrix}.$$

7 - 25

Confidence Interval for the Mean Life of a New Insulating Material

- A life test for a new insulating material used 25 specimens which were tested simultaneously at a high voltage of 30 kV.
- The test was run until 15 of the specimens failed.
- The 15 failure times (hours) were recorded as:

1.08, 12.20, 17.80, 19.10, 26.00, 27.90, 28.20, 32.20, 35.90, 43.50, 44.00, 45.20, 45.70, 46.30, 47.80

Then $TTT = 1.08 + \cdots + 47.80 + 10 \times 47.80 = 950.88$ hours.

 \bullet The ML estimate of θ and a 95% confidence interval are:

7 - 26

Exponential Analysis With Zero Failures

- ML estimate for the Exponential distribution mean θ cannot be computed unless the available data contains one or more failures.
- For a sample of n units with running times t_1, \ldots, t_n and an assumed exponential distribution, a conservative $100(1-\alpha)\%$ lower confidence bound for θ is

$$\tilde{\theta} = \frac{2(TTT)}{\chi^2_{(1-\alpha;2)}} = \frac{2(TTT)}{-2\log(\alpha)} = \frac{TTT}{-\log(\alpha)}.$$

- The lower bound \(\tilde{\theta} \) can be translated into an lower confidence bound for functions like \(t_p \) for specified \(p \) or a upper confidence bound for \(F(t_e) \) for a specified \(t_e \).
- This bound is based on the fact that under the exponential failure-time distribution, with immediate replacement of failed units, the number of failures observed in a life test with a fixed total time on test has a Poisson distribution.

7-27

Analysis of the Diesel Generator Fan Data (Assuming Removal After 200 Hours of Service)

- Here we do the analysis of the fan data after 200 hours of testing when all the fans were still running.
- \bullet Thus $TTT{=}14{,}000$ hours. A conservative 95% lower confidence bound on θ is

$$\theta = \frac{2(TTT)}{\chi^2_{(.95;2)}} = \frac{28000}{5.991} = 4674.$$

- Using the entire data set, $\hat{\theta}=28,701$ and a likelihood-based approximate 95% lower confidence bound is $\underline{\theta}=18,485$ hours.
- A conservative 95% upper confidence bound on $F(10000; \theta)$ is $\tilde{F}(10000) = F(10000; \tilde{\theta}) = 1 \exp(-10000/4674) = 882$

This shows how little information comes from a short test with zero or few failures.

7 - 28

Other Topics in Chapter 7

• Inferences when there are no failures.