FORMULARIO DE CÁLCULO II

GEOMETRÍA ANALÍTICA EN EL ESPACIO

KAIZEN SOFTWARE

Norma (magnitud, módulo)

$$||\vec{a}|| = \sqrt{x_a^2 + y_a^2 + z_a^2}$$

Vectores paralelos \overrightarrow{a} y \overline{b} $\overrightarrow{a} = k \overrightarrow{b}$, $k \in R$

Vectores ortogonales \overrightarrow{a} y \overrightarrow{c} $\vec{a} \circ \vec{c} = 0$

Producto escalar

 $\overrightarrow{a} = (x_a, y_a, z_a)$ $\overrightarrow{c} = (x_c, y_c, z_c)$ $\vec{a} \circ \vec{c} = x_a x_c + y_a y_c + z_a z_c$ Producto vectorial $\vec{a} = (x_a, y_a, z_a)$ $\vec{c} = (x_c, y_c, z_c)$

$$\vec{b} = \vec{a} \times \vec{c} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_a & y_a & z_a \\ x_c & y_c & z_c \end{vmatrix} = \begin{pmatrix} y_a & z_a \\ y_c & z_c \end{vmatrix}, - \begin{vmatrix} x_a & z_a \\ x_c & z_c \end{vmatrix}, \begin{vmatrix} x_a & y_a \\ x_c & y_c \end{vmatrix} \end{pmatrix}$$

Proyección ortogonal

$$\overrightarrow{b} = Proy_{\overrightarrow{c}} \cdot \overrightarrow{a} = (\frac{\overrightarrow{a} \cdot \overrightarrow{c}}{||\overrightarrow{c}||^2}) \overrightarrow{c}$$

Ángulo entre dos vectores

$$\overrightarrow{a} \circ \overrightarrow{c} = ||\overrightarrow{a}|| ||\overrightarrow{c}|| \cos \theta$$
$$||\overrightarrow{a} \times \overrightarrow{c}|| = ||\overrightarrow{a}|| ||\overrightarrow{c}|| \sin \theta$$

Vector unitario de \vec{a}

$$\vec{u} = \frac{1}{\|\vec{a}\|} \vec{a}$$

La ley del paralelogramo $\Rightarrow \vec{a} + \vec{c}$ \rightarrow Área = $\|\overrightarrow{a} \times \overrightarrow{c}\|$ Vector bisectriz entre \overrightarrow{a} y \overrightarrow{c} $\overrightarrow{b} = \frac{1}{\|\overrightarrow{a}\|} \overrightarrow{a} + \frac{1}{\|\overrightarrow{c}\|} \overrightarrow{c} = \frac{\overrightarrow{a} + \overrightarrow{a} + \overrightarrow{a} \cdot \overrightarrow{c}}{\|\overrightarrow{a}\| \|\overrightarrow{c}\|}$

Volumen paralelepípedo $V = |\overrightarrow{a} \circ (\overrightarrow{b} \times \overrightarrow{c})|$; Volumen tetraedro $V = \frac{1}{6} |\overrightarrow{a} \circ (\overrightarrow{b} \times \overrightarrow{c})|$ FAMILIA DE PLANOS (HAZ DE PLANOS) $\alpha(ax + by + cz + d) + \beta(px + qy + rz + s) = 0$

LA RECTA Punto $P_0(x_0,y_0,z_0)$; Vector dirección \overrightarrow{V} (v_1,v_2,v_3)

$$\begin{array}{cccc}
 & x = x_0 + v_1 t \\
R: P_0 + \vec{V}t & y = y_0 + v_2 t & \frac{x - x_0}{v_1} = \frac{y - y_0}{v_2} = \frac{z - z_0}{v_3} \\
 & y = y_0 + v_2 t &
\end{array}$$

EL PLANO Punto del plano $P_0 = (x_0, y_0, z_0)$ Vector normal $\overrightarrow{n} = (a, b, c)$ $(P - P_0)^{\circ} \vec{n} = 0$ $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$ ax + by + cz + d = 0

Punto $P_e = (x_e, y_e, z_e)$ Recta $R: P_0 + \vec{V}t$

DISTANCIA PUNTO - PLANO

$$\begin{aligned} & \text{Punto } P_e = (x_e, y_e, z_e) \quad \text{Plano} \quad (P - P_0)^\circ \vec{n} = 0 \\ & ax + by + cz + d = 0 \\ & D = \frac{|\vec{n} \circ (P_e - P_0)|}{\|\vec{n} \,\|} = \frac{|ax_e + by_e + cz_e + d|}{\sqrt{a^2 + b^2 + c^2}} \end{aligned}$$

DISTANCIA ENTRE DOS RECTAS (Alabeadas) NO PARALELAS QUE NO SE CORTAN

Rectas
$$R_1: P_1 + \vec{a} \ t_1$$
 $R_2: P_2 + \vec{b} \ t_2$

$$D = \frac{|(\vec{a} \times \vec{b}) \circ (P_1 - P_2)|}{\|\vec{a} \times \vec{b}\|}$$

SUPERFICIES

 $(x-h)^2 + (y-k)^2 + (z-m)^2 = R^2$ Centro C = (h, k, m) Radio R

COMPLETAR CUADRADOS

 $x^2 \pm a \ x = \left(x \pm \frac{a}{2}\right)^2 - \left(\frac{a}{2}\right)^2$

SUPERFICIES CUADRÁTICAS

Elipsóide $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} + \frac{(z-m)^2}{c^2} = 1$	Hiperboloide de dos hojas $-\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} + \frac{(z-m)^2}{c^2} = 1$	
Cono recto $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = \frac{(z-m)^2}{c^2}$	Paraboloide elíptico $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = c(z-m)$	
Hiperboloide de una hoja $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} - \frac{(z-m)^2}{c^2} = 1$	Paraboloide hiperbólico $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = c(z-m)$	
FUNCIONES CURVILÍNEAS $f(t) = \overrightarrow{r(t)}$ Longitud de curva $L = \int_{t_1}^{t_2} f' dt$ Tangente $\overrightarrow{T} = \frac{\overrightarrow{r'}}{\ \overrightarrow{r'}\ }$ Binormal $\overrightarrow{B} = \frac{\overrightarrow{r'} \times \overrightarrow{r''}}{\ \overrightarrow{r'} \times \overrightarrow{r''}\ }$		
Consistence $k = \frac{ \vec{r}' \times \vec{r}'' }{ \vec{r}' \times \vec{r}'' }$ Radia de constatura $c = \frac{1}{c}$	$\overrightarrow{N} = (\overrightarrow{r'} \times \overrightarrow{r''}) \times \overrightarrow{r'}$ Togsián $\sigma = (\overrightarrow{r'} \times \overrightarrow{r''}) \circ \overrightarrow{r'''}$	

Radio de curvatura $\rho = \frac{1}{\mu}$

 $\|(\overrightarrow{r'}\times\overrightarrow{r''})\times\overrightarrow{r'}\|$

FUNCIONES DE VARIAS VARIABIES

LIMITES ITERADOS $\lim_{x\to a} (\lim_{y\to b} f(x,y))$	$) = \lim_{y \to b} (\lim_{x \to a} f(x, y))$		
Si los límites iterados son ≠ entonces no exis	te el límite en el punto (a, b)		
SEGUNDA DERIVADA (MATRIZ HESSIANA) DE $F(x,y)$ Y DE $F(x,y,z)$			
$F'' = H = \begin{pmatrix} \frac{\partial^2 F}{\partial x^2} & \frac{\partial^2 F}{\partial x \partial y} \\ \frac{\partial^2 F}{\partial y \partial x} & \frac{\partial^2 F}{\partial y^2} \end{pmatrix} ; F'' = H = $	$\begin{pmatrix} \frac{\partial^2 F}{\partial x^2} & \frac{\partial^2 F}{\partial x \partial y} & \frac{\partial^2 F}{\partial x \partial z} \\ \frac{\partial^2 F}{\partial y \partial x} & \frac{\partial^2 F}{\partial y^2} & \frac{\partial^2 F}{\partial y \partial z} \\ \frac{\partial^2 F}{\partial z \partial x} & \frac{\partial^2 F}{\partial z \partial y} & \frac{\partial^2 F}{\partial z^2} \end{pmatrix}$		

 $F' = \overrightarrow{\nabla F} = (\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z})$ PRIMERA DERIVADA DE F(x, y, z)

DIFERENCIAL DE F(x,y,z)

$$dF = (\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z})^{\circ}(dx, dy, dz) = \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy + \frac{\partial F}{\partial z}dz$$

2da DIFERENCIAL DE F(x, y, z) $d^2F = (dx, dy, dz) \cdot H \cdot dy$

DERIVADA IMPLÍCITA

$$F(x,y) = 0$$
, x indep.; y dependiente $\frac{\partial y}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$ $F(x,y,z) = 0$, x,y indep.; z dependiente $\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}$, $\frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}$

 $F\left(x,y,u,v\right)=0$ G(x, y, u, v) = 0G(x, y, u, v) = 0x, y independientes; u, v dependientes

$$\frac{\partial u}{\partial x} = -\frac{J(\frac{F,G}{x,v})}{J(\frac{F,G}{u,v})} = -\frac{\begin{vmatrix} \frac{\partial F}{\partial x} & \frac{\partial F}{\partial v} \\ \frac{\partial G}{\partial x} & \frac{\partial G}{\partial v} \\ \frac{\partial G}{\partial x} & \frac{\partial G}{\partial v} \\ \frac{\partial G}{\partial u} & \frac{\partial G}{\partial v} \end{vmatrix}}{\frac{\partial G}{\partial u} & \frac{\partial G}{\partial v} & \frac{\partial G}{\partial v} \\ \frac{\partial G}{\partial u} & \frac{\partial G}{\partial v} & \frac{\partial G}{\partial v} \end{vmatrix}} \quad ; \quad \frac{\partial u}{\partial y} = -\frac{J(\frac{F,G}{y,v})}{J(\frac{F,G}{u,v})} = -\frac{\begin{vmatrix} \frac{\partial F}{\partial y} & \frac{\partial F}{\partial v} \\ \frac{\partial G}{\partial y} & \frac{\partial G}{\partial v} \\ \frac{\partial G}{\partial u} & \frac{\partial G}{\partial v} \end{vmatrix}}{\frac{\partial G}{\partial u} & \frac{\partial G}{\partial v}} \quad ; \quad \frac{\partial v}{\partial y} = -\frac{J(\frac{F,G}{y,v})}{J(\frac{F,G}{y,v})} = -\frac{\begin{vmatrix} \frac{\partial F}{\partial u} & \frac{\partial F}{\partial v} \\ \frac{\partial G}{\partial u} & \frac{\partial G}{\partial v} \\ \frac{\partial G}{\partial u} & \frac{\partial G}{\partial v} \end{vmatrix}}{\frac{\partial G}{\partial u} & \frac{\partial G}{\partial v}} \quad ; \quad \frac{\partial v}{\partial y} = -\frac{J(\frac{F,G}{y,v})}{J(\frac{F,G}{y,v})} = -\frac{\begin{vmatrix} \frac{\partial F}{\partial u} & \frac{\partial F}{\partial v} \\ \frac{\partial G}{\partial u} & \frac{\partial G}{\partial v} \\ \frac{\partial G}{\partial u} & \frac{\partial G}{\partial v} \end{vmatrix}}{\frac{\partial G}{\partial v}} \quad ; \quad \frac{\partial v}{\partial v} = -\frac{J(\frac{F,G}{y,v})}{J(\frac{F,G}{y,v})} = -\frac{\begin{vmatrix} \frac{\partial F}{\partial u} & \frac{\partial F}{\partial v} \\ \frac{\partial G}{\partial u} & \frac{\partial G}{\partial v} \\ \frac{\partial G}{\partial u} & \frac{\partial G}{\partial v} \end{vmatrix}}{\frac{\partial G}{\partial v}} \quad ; \quad \frac{\partial v}{\partial v} = -\frac{J(\frac{F,G}{y,v})}{J(\frac{F,G}{y,v})} = -\frac{\begin{vmatrix} \frac{\partial F}{\partial u} & \frac{\partial F}{\partial v} \\ \frac{\partial G}{\partial u} & \frac{\partial G}{\partial v} \\ \frac{\partial G}{\partial u} & \frac{\partial G}{\partial v} \end{vmatrix}}{\frac{\partial G}{\partial v}} \quad ; \quad \frac{\partial v}{\partial v} = -\frac{J(\frac{F,G}{y,v})}{J(\frac{F,G}{y,v})} = -\frac{\frac{\partial F}{\partial u} & \frac{\partial G}{\partial v}}{\frac{\partial G}{\partial v}} \quad ; \quad \frac{\partial v}{\partial v} = -\frac{J(\frac{F,G}{y,v})}{J(\frac{F,G}{y,v})} = -\frac{\frac{\partial F}{\partial u} & \frac{\partial F}{\partial v}}{\frac{\partial G}{\partial v}} \quad ; \quad \frac{\partial v}{\partial v} = -\frac{J(\frac{F,G}{y,v})}{J(\frac{F,G}{y,v})} = -\frac{\frac{\partial F}{\partial u} & \frac{\partial G}{\partial v}}{\frac{\partial G}{\partial v}} \quad ; \quad \frac{\partial v}{\partial v} = -\frac{J(\frac{F,G}{y,v})}{J(\frac{F,G}{y,v})} = -\frac{\frac{\partial F}{\partial u} & \frac{\partial G}{\partial v}}{\frac{\partial G}{\partial v}} \quad ; \quad \frac{\partial v}{\partial v} = -\frac{J(\frac{F,G}{y,v})}{J(\frac{F,G}{y,v})} = -\frac{\frac{\partial F}{\partial u} & \frac{\partial G}{\partial v}}{\frac{\partial G}{\partial v}} \quad ; \quad \frac{\partial v}{\partial v} = -\frac{J(\frac{F,G}{y,v})}{J(\frac{F,G}{y,v})} = -\frac{\frac{\partial F}{\partial u} & \frac{\partial G}{\partial v}}{\frac{\partial G}{\partial v}} \quad ; \quad \frac{\partial v}{\partial v} = -\frac{J(\frac{F,G}{y,v})}{J(\frac{F,G}{y,v})} = -\frac{\frac{\partial F}{\partial u} & \frac{\partial G}{\partial v}}{\frac{\partial G}{\partial v}} \quad ; \quad \frac{\partial v}{\partial v} = -\frac{J(\frac{F,G}{y,v})}{J(\frac{F,G}{y,v})} = -\frac{\frac{\partial F}{\partial u} & \frac{\partial G}{\partial v}}{\frac{\partial G}{\partial v}} \quad ; \quad \frac{\partial v}{\partial v} = -\frac{J(\frac{F,G}{y,v})}{J(\frac{F,G}{y,v})} = -\frac{\frac{\partial F}{\partial u} & \frac{\partial G}{\partial v}}{\frac{\partial G}{\partial v}} = -\frac{\frac{\partial F}{\partial u} & \frac{\partial G}{\partial v}}{\frac{\partial G}{\partial v}} = -\frac{\frac{\partial F}{\partial u}$$

REGLA DE LA CADENA $D(F \circ G) = D F(G) \cdot DG$ DERIVADAS PARCIALES DE $F(x,y)$ DERIVADA DIRECCIONAL (
	\vec{u} debe ser vector unitario)		
$\partial F = \partial F \partial u = \partial F \partial v = \partial F = \partial F \partial u = \partial F \partial v = \partial F = \partial V = $	$= \lim_{h \to 0} \frac{F((x,y) + h \cdot \vec{u}) - F(x,y)}{h}$		
$\frac{\partial F}{\partial x} = \frac{\partial F}{\partial u} \frac{\partial F}{\partial x} + \frac{\partial F}{\partial v} \frac{\partial F}{\partial x} + \frac{\partial F}{\partial x} \frac{\partial F}{\partial y} = \lim_{h \to 0} \frac{F(x, y + h) - F(x, y)}{h}$ Por cálculo directo $D_{\vec{u}}F(x, y + h) - F(x, y)$	$(x,y,z) = \nabla \vec{F} \cdot \vec{u}$		
SIGNIFICADO DE LA DERIVADA (donde $h \approx 0, k \approx 0$) $F(x+h,y+k) - F(x,y) \cong \left(\frac{\partial F}{\partial x},\frac{\partial F}{\partial y}\right)(h,k)$			
$F(x+h,y) - F(x,y) \cong \frac{\partial F}{\partial x} h \qquad F(x,y+k) - F(x,y) \cong \frac{\partial F}{\partial y} k \qquad F((x,y) + h\vec{u}) - F(x,y) \cong D_{\vec{u}}F(x,y) h (u$	usando derivada direccional)		
CRITERIO PARA HALLAR MÁXIMOS Y MÍNIMOS PARA FUNCIONES DE 2 VARIABLES $ \begin{pmatrix} \partial^2 F & \partial^2 F \\ \end{pmatrix} \begin{pmatrix} \partial^2 F & \partial^2 F \\ \end{pmatrix} $	ICIONES DE 3 VARIABLES $ \begin{pmatrix} \frac{\partial^2 F}{\partial x^2} & \frac{\partial^2 F}{\partial x \partial y} & \frac{\partial^2 F}{\partial x \partial z} \end{pmatrix} $		
FUNCIONES DE 2 VARIABLES $\Delta_{1} = \frac{\partial^{2}F}{\partial x^{2}} \; ; \; \Delta_{2} = \det(H) = \det\left(\frac{\partial^{2}F}{\partial x^{2}} \frac{\partial^{2}F}{\partial x\partial y}\right) \\ Si \; \Delta_{1} > 0 \; y \; \Delta_{2} > 0 \; , Existe \; mínimo \; local$ CRITERIO PARA HALLAR MAXIMOS Y MINIMOS PARA FUNCIONES DE 2 VARIABLES $\Delta_{1} = \frac{\partial^{2}F}{\partial x^{2}} \; ; \; \Delta_{2} = \det\left(\frac{\partial^{2}F}{\partial x^{2}} \frac{\partial^{2}F}{\partial x\partial y}\right) \; ; \; \Delta_{3} = \det(H) = a$	$\det \begin{bmatrix} \frac{\partial^2 F}{\partial y \partial x} & \frac{\partial^2 F}{\partial y^2} & \frac{\partial^2 F}{\partial y \partial z} \\ \frac{\partial^2 F}{\partial y^2} & \frac{\partial^2 F}{\partial y^2} & \frac{\partial^2 F}{\partial y^2} \end{bmatrix}$		
Si $\Delta_1 > 0$ y $\Delta_2 > 0$, Existe mínimo local Si $\Delta_1 < 0$ y $\Delta_2 > 0$, Existe máximo local Si $\Delta_2 < 0$, Existe un punto silla Si $\Delta_1 < 0$, $\Delta_2 > 0$ y $\Delta_3 > 0$, Existe mínimo local Si $\Delta_1 < 0$, $\Delta_2 > 0$ y $\Delta_3 < 0$, Existe máximo local	\ <i>∂z∂x ∂z∂y ∂z² /</i>		
$Si \ \Delta_2 = 0$, El criterio no da ninguna información			
MÁXIMOS Y MÍNIMOS CONDICIONADOS (MULTIPLICADORES DE LAGRANGE) Función: $F(x,y)$ Condición: $g(x,y)$	$0 = 0$; $\overrightarrow{\nabla F} = \lambda \overrightarrow{\nabla g}$		
INTEGRALES MÚLTIPLES			
ÁREA $A = \iint dy dx = \iint dx dy$ MASA: $m = \iint \delta(x,y) dy dx$ DENSIDAD MEDIA: $\bar{\delta} = \frac{masa}{area} = \frac{m}{A}$ TEOREMA			
I as a I VOLUMEN DE REVOLUCION	je x V = 2π ∬ y dydx je y V = 2π ∬ x dydx		
$\bar{x} = \frac{\iint x \delta dy dx}{\iint \delta dy dx}, \ \bar{y} = \frac{\iint y \delta dy dx}{\iint \delta dy dx}$ $I_y = \iint x^2 \delta dy dx,$ Alrededor de la recta $y = b$ $V = 2\pi \iint y - y $	- b dydx		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
VOLUMEN $V = \iint (z_s - z_i) dy dx = \iiint dz dy dx $ MASA $m = \iiint \delta(x, y, z) dz dy dx $ CENTRO DE MASAS (CENTROIDE, $\bar{x} = \frac{\iiint x \delta dz dy dx}{\iiint \delta dz dy dx}, \bar{y} = \frac{\iiint y \delta dz dy}{\iiint \delta dz dy}$	$\frac{ydx}{dx}, \bar{z} = \frac{\iiint z \delta dz dy dx}{\iiint \delta dz dy dx}$		
INERCIAS CON LOS PLANOS COORDENADOS $I_{YZ} = \iiint x^2 \ \delta \ dV$, $I_{XZ} = \iiint y^2 \ \delta \ dV$, $I_{XY} = \iiint z^2 \ \delta \ dV$ INERCIA POLAR $I_O = \iiint (x^2 + y^2 + z^2) \ \delta \ dV$			
INERCIAS CON LOS EJES COORDENADOS AREAS DE SUI	PERFICIES		
$ I_Z = \iiint (x^2 + y^2) \delta dV , I_Y = \iiint (x^2 + z^2) \delta dV , I_X = \iiint (y^2 + z^2) \delta dV , I_O = (I_X + I_Y + I_Z)/2 $	$(\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2 dy dx$		
COORDENADAS POLARES COORDENADAS CILÍNDRICAS COORDENADAS ESFÉRICAS			
$ \begin{vmatrix} x = r \cos \theta & x^2 + y^2 = r^2 \\ x = r \cos \theta & x^2 + y^2 = r^2 \\ x = r \sin \theta \cos \theta & x = r \cos \theta \end{vmatrix} $			
$y = r \sin \theta \theta = \tan^{-1}\left(\frac{1}{x}\right) \qquad y = r \sin \phi \sin \theta ; \qquad y = r \sin \phi \sin \phi \sin \theta ; \qquad y = r \sin \phi \sin \phi \sin \phi ; \qquad y = r \sin \phi \sin$			
$J\left(\frac{x,y}{r,\theta}\right) = r \qquad \qquad z = z \qquad \qquad z = r\cos\emptyset \qquad \emptyset = \tan^{-1}\left(\frac{x}{r}\right)$	$\left(\frac{\sqrt{x^2+y^2}}{z}\right)$		
INTEGRALES DE LINEA Y SUPERFICIES $\int F(x,y) \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int F(x,y) \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy = \int F(x,y) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dx$	$\frac{d}{dt}$		
$\int P(x,y)dx + Q(x,y)\frac{dy}{dx}dx = \int P(x,y)\frac{dx}{dy}dy + Q(x,y)dy = \int P(x,y)\frac{dx}{dt}dt + Q(x,y)\frac{dy}{dt}dt$			
	$ \oint \vec{A} \cdot \vec{n} ds = \iiint \vec{\nabla} \cdot \vec{A} dV $		
AREAS POR INTEGRALES DE LINEA $A = \frac{1}{2} \oint x \ dy - y \ dx$ $TEOREMA DE STOKES \qquad \oint \vec{A} \cdot d\vec{r} = \iint (\vec{\nabla} \times \vec{A}) \circ \vec{n} \ ds \qquad ds = \frac{dy \ dx}{ \vec{n} \circ \vec{k} }$			
SERIE P SERIE GEOMÉTRICA Si es Cv la suma se halla con:			
$S_{a} = \sum_{n=1}^{\infty} \frac{1}{n^{P}} \text{ Si: } \begin{array}{c} P > 1 S_{a} \text{ es } Cv \\ P \leq 1 S_{a} \text{ es } Dv \end{array} \qquad S_{a} = \sum_{n=1}^{\infty} a r^{n-1} \text{Si: } \begin{array}{c} r < 1 S_{a} \text{ es } Cv \\ r \geq 1 S_{a} \text{ es } Dv \end{array} \qquad \sum_{n=1}^{\infty} r^{n-1} = \frac{1}{1-r}, \sum_{n=1}^{\infty} r^{n} = \frac{r}{1-r}, \sum_{n=0}^{\infty} r^{n} = \frac{1}{1-r}$			
CRITERIOS DE CONVERGENCIA			
	IINOS ALTERNOS		
	a $\sum a_n$ es Cv si: \mid la serie es decreciente		
Criterio de límite de comparación	0 el ultimo término es 0		
$k \in R$ Ambas son Cv o Dv Criterio de Raabe			
$\lim_{n\to\infty}\frac{a_n}{b_n}=k, k=0 \text{ si } S_b \text{ es } Cv, S_a \text{ es } Cv \\ k=\infty \text{ si } S_b \text{ es } Dv, S_a \text{ es } Dv \\ \text{Criterio del cociente} \\ \lim_{n\to\infty}n(1-\frac{a_{n+1}}{a_n})=k, k=1 \\ k<1 S_a \text{ es } Cv \\ \text{es } absolutam \\ \text{Si: } \sum a_n \text{ es } Cv \\ \text{es } absolutam \\ \text{Si: } \sum a_n \text{ es } Cv \\ \text{es } absolutam \\ \text{Si: } \sum a_n \text{ es } Cv \\ \text{es } absolutam \\ \text{Si: } \sum a_n \text{ es } Cv \\ \text{es } absolutam \\ \text{Si: } \sum a_n \text{ es } Cv \\ \text{es } absolutam \\ \text{Si: } \sum a_n \text{ es } Cv \\ \text{Si: } \sum a_n \text{ es } Cv \\ \text{es } absolutam \\ \text{Si: } \sum a_n \text{ es } Cv \\ \text{Si: }$	v y $\sum a_n $ es $\mathcal{C}v$; $\sum a_n$ dente $\mathcal{C}v$		
Criterio del cociente $k < 1$ S_a es Dv Si: $\sum a_n$ es Cv	v y $\sum a_n $ es Dv		
	licionalmente Cv		
$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=k, k=1 \qquad falla \\ k>1 \qquad S_a \ es \ Dv \qquad \lim_{m\to\infty}\int_1^m a(x) \ dx=k k\in R \qquad S_a \ es \ Cv \\ k=\infty \qquad S_a \ es \ Dv \qquad falla \\ \lim_{m\to\infty}\int_1^m a(x) \ dx=k \qquad k\in R \qquad S_a \ es \ Dv \qquad falla \\ \lim_{m\to\infty}\int_1^m a(x) \ dx=k \qquad k\in R \qquad S_a \ es \ Dv \qquad falla \\ \lim_{m\to\infty}\int_1^m a(x) \ dx=k \qquad k\in R \qquad S_a \ es \ Dv \qquad falla \\ \lim_{m\to\infty}\int_1^m a(x) \ dx=k \qquad k\in R \qquad S_a \ es \ Dv \qquad falla \\ \lim_{m\to\infty}\int_1^m a(x) \ dx=k \qquad k\in R \qquad S_a \ es \ Dv \qquad falla \\ \lim_{m\to\infty}\int_1^m a(x) \ dx=k \qquad k\in R \qquad S_a \ es \ Dv \qquad falla \\ \lim_{m\to\infty}\int_1^m a(x) \ dx=k \qquad k\in R \qquad S_a \ es \ Dv \qquad falla \\ \lim_{m\to\infty}\int_1^m a(x) \ dx=k \qquad k\in R \qquad S_a \ es \ Dv \qquad falla \\ \lim_{m\to\infty}\int_1^m a(x) \ dx=k \qquad k\in R \qquad S_a \ es \ Dv \qquad falla \\ \lim_{m\to\infty}\int_1^m a(x) \ dx=k \qquad k\in R \qquad S_a \ es \ Dv \qquad falla \\ \lim_{m\to\infty}\int_1^m a(x) \ dx=k \qquad k\in R \qquad S_a \ es \ Dv \qquad falla \\ \lim_{m\to\infty}\int_1^m a(x) \ dx=k \qquad k\in R \qquad S_a \ es \ Dv \qquad falla \\ \lim_{m\to\infty}\int_1^m a(x) \ dx=k \qquad k\in R \qquad S_a \ es \ Dv \qquad falla \\ \lim_{m\to\infty}\int_1^m a(x) \ dx=k \qquad k\in R \qquad S_a \ es \ Dv \qquad falla $			
Serie de Taylor $(x = a)$ $F(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + + \frac{f^{(n)}(a)}{n!}(x-a)^n$			
Serie de Taylor ($x = a$) $F(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + + \frac{f^{(n)}(a)}{n!}(x-a)^n$			
Serie de Taylor $(x = a)$ $F(x) = f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f''(a)}{2!}(x - a)^2 + + \frac{f^{(n)}(a)}{n!}(x - a)^n$ Serie de Mc-Laurin $F(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + + \frac{f^{(n)}(0)}{n!}x^n$			