Week 1 Assignment

Ben Arancibia June 11, 2015

HA 2.1 For each of the following series (from the fma package), make a graph of the data. If transforming seems appropriate, do so and describe the effect.

```
library(fma)
```

```
## Loading required package: tseries
## Loading required package: forecast

## Warning: package 'forecast' was built under R version 3.1.3

## Loading required package: zoo

##
## Attaching package: 'zoo'
##
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## Loading required package: timeDate
## This is forecast 6.1
```

a) Monthly total of people on unemployed benefits in Australia (January 1956–July 1992).

```
lambda.benefits <- BoxCox.lambda(dole)
plot(BoxCox(dole, lambda.benefits), main="Monthly People on Benefits", xlab="1956-1992", ylab="Number of title(main=paste("Box Cox lambda = ", signif(lambda.benefits, digits=3)), font.main=8, line=-1)
```

Monthly People on Benefits

b) Monthly total of accidental deaths in the United States (January 1973–December 1978).

```
lambda.deaths <- BoxCox.lambda(usdeaths)
plot(BoxCox(usdeaths, lambda.deaths), main="Monthly Accidental Deaths", xlab="1973-1978", ylab="Number
title(main=paste("Box Cox lambda = ", signif(lambda.deaths, digits=3)), font.main=8, line=-1)</pre>
```

Monthly Accidental Deaths

c) Quarterly production of bricks (in millions of units) at Portland, Australia (March 1956–September 1994).

```
lambda.bricks <- BoxCox.lambda(bricksq)
plot(BoxCox(bricksq, lambda.bricks), main="Quarterly Production Bricks", xlab="1973-1978", ylab="Number
title(main=paste("Box Cox lambda = ", signif(lambda.bricks, digits=3)), font.main=8, line=-1)</pre>
```

Quarterly Production Bricks

HA 2.3 Consider the daily closing IBM stock prices (data set ibmclose). a)Produce some plots of the data in order to become familiar with it.

plot(ibmclose)

tsdisplay(ibmclose)

b)Split the data into a training set of 300 observations and a test set of 69 observations. c)Try various benchmark methods to forecast the training set and compare the results on the test set. Which method did best?