

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления»

Кафедра ИУ5 «Системы обработки информации и управления»

Курс «Технологии машинного обучения»

Отчет по лабораторной работе №6

Выполнила:

студент группы ИУ5-63Б

Латыпова К.Н.

Проверил:

преподаватель каф. ИУ5

Гапанюк Ю.Е.

Задание:

Разработайте макет веб-приложения, предназначенного для анализа данных.

Вариант 1. Макет должен быть реализован для одной модели машинного обучения. Макет должен позволять:

задавать гиперпараметры алгоритма, производить обучение, осуществлять просмотр результатов обучения, в том числе в виде графиков. Вариант 2. Макет должен быть реализован для нескольких моделей машинного обучения. Макет должен позволять:

выбирать модели для обучения, производить обучение, осуществлять просмотр результатов обучения, в том числе в виде графиков. Для разработки рекомендуется использовать следующие (или аналогичные) фреймворки:

streamlit gradio dash

Текст программы и экранные формы:

```
def preprocess data(data in):
    Y = data out['private sale handgun'].astype(int)
data = load data()
data['private sale long gun'] =
data['private sale long gun'].replace(0,np.nan)
data['private sale long gun'] =
data['private_sale_long_gun'].fillna(data['private_sale_long_gun'].mean())
data['private sale handgun'] = data['private sale handgun'].replace(0,np.nan)
data['private sale handgun'] =
data['private sale handgun'].fillna(data['private sale handgun'].mean())
data['private_sale_other'] = data['private_sale_other'].replace(0,np.nan)
data['private_sale_other'] =
data['private sale other'].fillna(data['private sale other'].mean())
n_estimators_1 = st.sidebar.slider('Количество фолдов:', min_value=3, max_value=10, value=3, step=1)
st.sidebar.header('Градиентный бустинг')
n_estimators_2 = st.sidebar.slider('Количество:', min value=3, max value=10,
n_estimators_3 = st.sidebar.slider('Количество K:', min value=3,
st.subheader('Первые 5 значений')
st.write(data.head())
st.subheader('Размер датасета')
st.write(data.shape)
```

```
st.write(data.isnull().sum())
st.write(data['state'].value counts())
st.subheader('Колонки и их типы данных')
st.write(data.dtypes)
st.subheader('Статистические данные')
st.write(data.describe())
fig, ax = plt.subplots(figsize=(10, 6))
ax.scatter(x=data['permit'], y=data['permit recheck'])
plt.xlabel("permit")
plt.ylabel("permit recheck")
st.pyplot(fig)
f1, ax = plt.subplots()
sns.boxplot(x=data['permit'])
st.pyplot(f1)
st.subheader('Масштабирование данных')
f, ax = plt.subplots()
plt.hist(data['permit'], 50)
plt.show()
st.pyplot(f)
st.subheader('Показать корреляционную матрицу')
fig1, ax = plt.subplots(figsize=(10, 5))
sns.heatmap(data.corr(), annot=True, fmt='.2f')
st.pyplot(fig1)
X_train, X_test, Y_train, Y_test, X, Y = preprocess_data(data)
forest 1 = RandomForestRegressor(n estimators=n estimators 1, oob score=True,
forest 1.fit(X, Y)
st.subheader('RandomForestRegressor')
st.subheader('Средняя абсолютная ошибка:')
st.write(r2_score(Y test, Y predict))
ax = plt.scatter(X_test['private_sale_long_gun_scaled'], Y_test, marker='o',
plt.scatter(X_test['private_sale_long_gun_scaled'], Y predict, marker='.',
plt.legend(loc='lower right')
plt.xlabel('private_sale_long_gun_scaled')
plt.ylabel('suicides no')
plt.plot(n_estimators_1)
st.pyplot(fig1)
st.subheader('Нахождение лучшего случайного леса')
params2 = {
```

```
grid 2.fit(X, Y)
st.write(grid 2.best params )
st.subheader('Средняя абсолютная ошибка:')
st.write(mean absolute error(Y test, Y predict3))
st.subheader('Средняя квадратичная ошибка:')
st.write(mean_squared_error(Y_test, Y_predict3))
st.subheader('Median absolute error:')
st.write(median absolute error(Y test, Y predict3))
st.subheader('Коэффициент детерминации:')
st.write(r2 score(Y test, Y predict3))
fig1 = plt.figure(figsize=(7, 5))
ax = plt.scatter(X test['private sale long qun scaled'], Y test, marker='o',
plt.scatter(X_test['private sale long gun scaled'], Y predict3, marker='.',
plt.legend(loc='lower right')
plt.xlabel('private sale long gun scaled')
plt.ylabel('suicides no')
st.pyplot(fig1)
st.subheader('Градиентный бустинг')
grad = GradientBoostingRegressor(n estimators=n estimators 2,
st.subheader('Средняя абсолютная ошибка:')
st.write(median_absolute_error(Y_test, Y_grad_pred))
st.write(r2 score(Y_test, Y_grad_pred))
ax = plt.scatter(X_test['private_sale_long_gun_scaled'], Y_test, marker='o',
plt.scatter(X test['private sale long gun scaled'], Y grad pred, marker='.',
plt.legend(loc='lower right')
plt.xlabel('private_sale_long_gun_scaled')
plt.ylabel('suicides no')
plt.plot(random_state_2)
st.pyplot(fig2)
st.subheader('Нахождение лучшего///')
```

```
params = {
grid gr = GridSearchCV(estimator=GradientBoostingRegressor(random state=10),
grid gr.fit(X train, Y train)
st.write(grid gr.best_params_)
grad1 = GradientBoostingRegressor(n estimators=100, max features=1,
min samples leaf=0.01, random state=10)
grad1.fit(X train, Y train)
st.subheader('Средняя абсолютная ошибка:')
st.write(mean absolute error(Y test, Y grad pred1))
st.subheader('Средняя квадратичная ошибка:')
st.write(mean_squared_error(Y_test, Y_grad_pred1))
st.subheader('Median absolute error:')
st.write(median_absolute_error(Y_test, Y_grad_pred1))
st.subheader('Коэффициент детерминации:')
st.write(r2 score(Y test, Y grad pred1))
fig1 = plt.figure(figsize=(7, 5))
ax = plt.scatter(X test['private sale long gun scaled'], Y test, marker='o',
label='Тестовая выборка')
plt.scatter(X_test['private_sale long gun scaled'], Y grad pred1, marker='.',
label='Предсказанные данные')
plt.legend(loc='lower right')
plt.xlabel('private sale long gun scaled')
plt.ylabel('suicides no')
st.pyplot(fig1)
st.subheader('Построение линейной регрессии')
st.subheader('Средняя абсолютная ошибка:')
st.write(mean_absolute_error(Y_test, lr_y_pred))
st.subheader('Средняя квадратичная ошибка:
st.write(mean_squared_error(Y_test, lr_y_pred))
st.subheader('Median absolute error:')
st.write(median_absolute_error(Y_test, lr_y_pred))
st.write(r2_score(Y_test, lr_y_pred))
fig3 = plt.figure(figsize=(7, 5))
plt.scatter(X test['private sale long gun scaled'], Y test, marker='s',
plt.scatter(X test['private sale long gun scaled'], lr y pred, marker='o',
plt.legend(loc='lower right')
plt.xlabel('private_sale_long_gun_scaled')
plt.ylabel('suicides no')
plt.show()
```

```
st.pyplot(fig3)
st.subheader('Tree')
clf = tree.DecisionTreeClassifier()
fig5 = plt.figure(figsize=(7, 5))
plt.scatter(X test['private sale long gun scaled'], Y test, marker='s',
plt.scatter(X test['private sale long gun scaled'], lr y pred, marker='o',
plt.legend(loc='lower right')
plt.xlabel('private sale long gun scaled')
plt.ylabel('suicides no')
plt.show()
st.pyplot(fig5)
st.subheader('Модель ближайших соседей для произвольного гиперпараметра К')
Regressor 5NN = KNeighborsRegressor(n neighbors = n estimators 3)
Regressor 5NN.fit(X train, Y train)
lr y pred = Regressor 5NN.predict(X test)
fig6 = plt.figure(figsize=(7, 5))
plt.scatter(X test['private sale long gun scaled'], Y test, marker='s',
plt.scatter(X_test['private sale long gun scaled'], lr y pred, marker='o',
plt.legend(loc='lower right')
plt.xlabel('private sale long gun scaled')
plt.ylabel('suicides no')
plt.show()
st.pyplot(fig6)
```


Первые 5 значений

	month	state	permit	permit_recheck	handgun	long_gun	other	mu
0	2021-05	Alabama	28248	317	21664	12423	1334	
1	2021-05	Alaska	307	7	3368	2701	323	
2	2021-05	Arizona	21767	695	20984	9259	1676	
3	2021-05	Arkansas	7697	1171	8501	5072	422	
4	2021-05	California	20742	11514	40160	25824	5576	

Размер датасета

(14905, 27)

Количество нулевых элементов

	0
month	0
state	0
permit	24
permit_recheck	11385
handgun	20
long_gun	19
other	6985
multiple	0
admin	23
prepawn_handgun	1943
prepawn_long_gun	1945

	state
Idaho	271
North Dakota	271
Colorado	271
Missouri	271
California	271
Oregon	271
New Hampshire	271
Ohio	271
Oklahoma	271
Mississippi	271
Hawaii	271

Колонки и их типы данных

	0
month	object
state	object
permit	float64
permit_recheck	float64
handgun	float64
long_gun	float64
other	float64
multiple	int64
admin	float64
prepawn_handgun	float64
prepawn_long_gun	float64

Статистические данные

	permit	permit_recheck	handgun	long_gun	other	mult
count	14881	3520	14885	14886	7920	1
mean	7,262.4230	9,121.7455	7,126.2406	7,979.9966	550.7981	300.
std	25,979.4154	61,210.8606	10,625.2507	9,223.3996	1,381.4198	780.
min	0	0	0	0	0	
25%	0	0	1039	2,176.2500	30	
50%	815	0	3529	5270	179.5000	
75%	5620	76.2500	8654	10,754.7500	565.2500	
max	522188	1350676	147714	108058	77929	3

Масштабирование данных

Показать корреляционную матрицу

RandomForestRegressor

Средняя абсолютная ошибка:

4.0313922236345565

Средняя квадратичная ошибка:

234.63550227096212

Median absolute error:

0.2238378370170011

Коэффициент детерминации:

Нахождение лучшего случайного леса

```
"n_estimators":75
```

Средняя абсолютная ошибка:

4.0017446483961665

Средняя квадратичная ошибка:

200.4414527863315

Median absolute error:

0.26450401476691354

Коэффициент детерминации:

Градиентный бустинг

Средняя абсолютная ошибка:

13.203970653620845

Средняя квадратичная ошибка:

12538.276465301355

Median absolute error:

0.11381861612755984

Коэффициент детерминации:

Нахождение лучшего////

```
"max_features": 1
   "min_samples_leaf": 0.01
   "n_estimators": 100
}
```

Средняя абсолютная ошибка:

11.58125003881188

Средняя квадратичная ошибка:

20249.10319419001

Median absolute error:

0.22738303232266333

Коэффициент детерминации:

Построение линейной регрессии

Средняя абсолютная ошибка:

9.783830443571587

Средняя квадратичная ошибка:

2886,1396550885124

Median absolute error:

0.3982726118590847

Коэффициент детерминации:

Tree

Модель ближайших соседей для произвольного гиперпараметра К

