Cross-modal Contrastive Learning for Speech Translation

Rong Ye, Mingxuan Wang, Lei Li

Speech-to-text Translation (ST)

Source language *speech(audio)*Target language *text*

Wide Applications of ST

English subtitle for popular Korean TV drama "Squid Game"

Google Live AR Translation Service Glasses Prototype Google I/O 2022

End-to-end model: makes ST easier

^{*} Pictures are from our previous video talk at InterSpeech 2021.

Why end-to-end ST is hard?

Data Scarcity - lack of large parallel corpus
 <speech, transcript_text, translate_text>

(MuST-C EN-DE 250k)

ST

^{*} Pictures are from previous EACL 2021 tutorial on speech translation. https://st-tutorial.github.io/

Multi-task learning leads to better ST

To joint train
 ST, ASR and MT tasks.

Advantages:

- Better generalization
- Utilizing large-scale extra MT, ASR data.

XSTNet (Ye et al., 2021^[1])

Representation Perspective: Modality Gap Exists!

XSTNet (Ye et al., 2021[1])

Text and speech with same meaning should be similar in representation!

(a) Current models

(b) Expected

Method: Contrastive Learning (ConST)

[Optional] Mining more hard examples

We introduce three hard example mining operations.

- Span-Masked Aug. (SMA)
- Word Repetition (Rep)
- 3 Cut-off

<en> Thank you.

[Optional] Mining more hard examples

We introduce three hard example mining operations.

- Input level
- Representation level

Experiments

Experimental Setups

Datasets

- All 8 directions of MuST-C benchmark
- MT datasets for pretraining

Settings

- without external MT data
- with external MT data

Baseline

- W2v2-Transformer
- XSTNet (Ye et. al.)[1]

	ST (M	uST-C)	MT	1		
En→	hours	#sents	name	#sents		
De	408	234K	WMT16	4.6M		
Fr	492	280K	WMT14	40.8M		
Ru	489	270K	WMT16	2.5M		
Es	504	270K	WMT13	15.2M		
Ro	432	240K	WMT16	0.6M		
It	465	258K	OPUS100	1.0 M		
Pt	385	211K	OPUS100	1.0 M		
Nl	442	253K	OPUS100	1.0M		

Contrastive Learning improves ST

Modela	External Data			BLEU										
Models	Speech	Text	ASR	MT	De	Es	Fr	It	Nl	Pt	Ro	Ru	Avg.	
			w/o e	xternal	MT data	ı								_
Fairseq ST (Wang et al., 2020a)	-	-	-	-	22.7	27.2	32.9	22.7	27.3	28.1	21.9	15.3	24.8	_
NeurST (Zhao et al., 2021a)	_	-	-	-	22.8	27.4	33.3	22.9	27.2	28.7	22.2	15.1	24.9	
Espnet ST (Inaguma et al., 2020)	-	-	-	-	22.9	28.0	32.8	23.8	27.4	28.0	21.9	15.6	25.1	
Dual Decoder (Le et al., 2020)	_	-	-	-	23.6	28.1	33.5	24.2	27.6	30.0	22.9	15.2	25.6	
W-Transf. (Ye et al., 2021)	✓	-	-	-	23.6	28.4	34.6	24.0	29.0	29.6	22.4	14.4	25.7	
Speechformer (Papi et al., 2021)	_	-	-	-	23.6	28.5	-	-	27.7	-	-	-	-	
LightweightAdaptor (Le et al., 2021)	-	-	-	-	24.7	28.7	35.0	25.0	28.8	31.1	23.8	16.4	26.6	
Self-training (Pino et al., 2020)	✓	-	\checkmark	-	25.2	-	34.5	-	-	-	-	-	-	
SATE (Xu et al., 2021)	-	-	-	-	25.2	-	-	-	-	-	-	-	-	
BiKD (Inaguma et al., 2021)	-	-	-	-	25.3	-	35.3	-	-	-	-	-	-	
Mutual-learning (Zhao et al., 2021b)	-	-	-	-	-	28.7	36.3	-	-	-	-	-	-	l + 0
XSTNet (Ye et al., 2021)	✓	-	-	-	25.5	29.6	36.0	25.5	30.0	31.3	25.1	16.9	27.5	
ConST	✓	-	-	-	25.7	30.4	36.8	26.3	30.6	32.0	24.8	17.3	28.0	BLE
			w/ ex	xternal I	MT data									_
Chimera (Han et al., 2021)	V	_	_	√	27.1	30.6	35.6	25.0	29.2	30.2	24.0	17.4	27.4	l.
XSTNet (Ye et al., 2021)	✓	-	-	\checkmark	27.1	30.8	38.0	26.4	31.2	32.4	25.7	18.5	28.8	
STEMM (Fang et al., 2022)	✓	-	-	\checkmark	28.7	31.0	37.4	25.8	30.5	31.7	24.5	17.8	28.4	DI -
ConST	✓	_	_	\checkmark	28.3	32.0	38.3	27.2	31.7	33.1	25.6	18.9	29.4	BLE

Both Multi-task and Contrastive Learning are important!

$$\mathcal{L} = \mathcal{L}_{ST} + \mathcal{L}_{ASR} + \mathcal{L}_{MT} + \lambda \mathcal{L}_{CTR}$$

Three More things on CL

1. How effective are the hard examples mining operations? (see paper, not in this slide)

2. Is contrastive loss better than other losses?

3. Which layer to contrast on?

Contrastive loss: better than other losses!

28.5

28

27

CTC loss

- Widely used in speech related tasks
- Modeling alignment 27.5

L2 loss

Knowledge Distillation 26.5

XSTNet L2 loss CTC loss CTR loss (ConST)

*: not significant

Which layer to contrast on? —Low level is preferred.

Why does ConST works?

1. Visualize the audio and textual representation!

2.Quantitative analysis: A retrieval experiment.

Visualization: CL draws the distance of two modalities!

Kernel Density Estimation (KDE) plot on

"low-level" representations

XSTNet[1]:// (BLEU=27.1)

Contrastively trained embedding leads to better cross-modal retrieval

• **Method**: Find the nearest (smallest cosine similarity) text based on the speech representations (low & high level)

Wanna have a try?

 https://huggingface.co/spaces/ReneeYe/ConSTspeech2text-translator

*Best practice on *Chrome*

Cases 1: End-to-end model avoid error propagation

Ayah Bdeir | TED 2012

Cases 1: End-to-end model avoid error propagation

- Cascade:
- klingt is a verb, means "sound like"
- X Licht klingt Solarpaneele, Motoren; alles sollte zugänglich sein.
- Lights sounds solar panels motors everything should be accessible.

- ConST: (correct)
 - Licht, Geräusche, Solarpanele, Motoren, alles sollte zugänglich sein.

Case 2: Better quality then XSTNet

Ayah Bdeir | TED 2012 Building blocks that blink, beep and teach

Case 2: Better quality then XSTNet

Eight years ago when I was at the Media Lab, I started exploring this idea of how to ...

XSTNet:

emissing the translation on "the idea"

Vor acht Jahren, als ich im Media Lab war, **begann ich zu erforschen**, wie man die ...

- ConST:
 - Vor acht Jahren, als ich im Media Lab war, begann ich, diese Idee zu erforschen, wie man die ...

Take-away of ConST

- Motivation of contrastive learning is to bridge the sentence-level cross-modal representation gap.
- ConST: Simple method, good performances.

- From experiments:
 - CL > CTC > L2 = simple MLT
 - Low-level representation is preferred to contrast on.

- Paper: https://arxiv.org/abs/2205.02444
- Code: https://github.com/ReneeYe/ConST
- E-mail: yerong@bytedance.com