

Zbiór mniej lub bardziej ciekawych algorytmów i struktur danych, jakie bywały omawiane na wykładzie (albo nie).

PRACA ZBIOROWA POD REDAKCJĄ KRZYSZTOFA PIECUCHA

Korzystać na własną odpowiedzialność.

Spis treści

1	Poc	lstawy	5
	1.1	Złożoność obliczeniowa	6
	1.2	Model obliczeń	7
2	Str	uktury danych	9
	2.1	Kopce binarne	10
3	Alg	orytmy 1	L3
	3.1	Algorytm rosyjskich wieśniaków	14
	3.2	Algorytm macierzowy wyznaczania liczb Fibonacciego 1	15
	3.3	Sortowanie topologiczne	16
	3.4	Algorytmy sortowania	17
	3.5		18
		3.5.1 Cut Property i Circle Property	18
		3.5.2 Algorytm Prima	18
			18
		3.5.4 Algorytm Borůvki	18
	3.6	Algorytm Dijkstry	19
	3.7	Algorytm szeregowania	20
	3.8	Programowanie dynamiczne na drzewach	21
_			
D		ek A Porównanie programów przedmiotu AiSD na różnych) 2
	1107	omnon	, .

Rozdział 1

Podstawy

1.1 Złożoność obliczeniowa

1.2 Model obliczeń

Rozdział 2 Struktury danych

2.1 Kopce binarne

Kopiec binarny to struktura danych, która reprezentowana jest jako prawie pełne drzewo binarne¹ i na której zachowana jest własność kopca. Kopiec przechowuje klucze, które tworzą ciąg uporządkowany. W przypadku kopca typu *min* ścieżka prowadząca od dowolnego liścia do korzenia tworzy ciąg malejący.

Kopce można w prosty sposób reprezentować w tablicy jednowymiarowej –kolejne poziomy drzewa zapisywane są po sobie.

Rysunek 2.1: Reprezentacja kolejnych warstw kopca w tablicy jednowymiarowej.

Warto zauważyć, że tak reprezentowane drzewo pozwala na łatwy dostęp do powiązanych węzłów. Synami węzła o indeksie i są węzły 2i oraz 2i+1, natomiast jego ojcem jest $\left|\frac{i}{2}\right|$.

Kopiec powinien udostępniać trzy podstawowe funkcje: zamien_element, która podmienia wartość w konkretnym węźle kopca, przesun_w_gore oraz przesun_w_dol, które zamieniają odpowiednie elementy pilnując przy tym, aby własność kopca została zachowana.

```
Algorithm 1: Implementacja funkcji zamien_element
```

¹To znaczy wypełniony na wszystkich poziomach (poza, być może, ostatnim).

Rysunek 2.2: Przykład działania funkcji zamien_element. a) Oryginalny kopiec. b) Zmiana wartości w wyróżnionym węźle. c) Ponieważ nowa wartość jest większa od wartości swoich dzieci, należy wykonać wywołanie funkcji przesn_w_dol. d) Po zmianie własność kopca nie jest zachowana, dlatego należy ponownie wywołać funkcję przesn_w_dol. To przywraca kopcowi jego własność.

;

Rozdział 3

Algorytmy

3.1 Algorytm rosyjskich wieśniaków

Todo, todo, todo...

Algorithm 2: Algorytm rosyjskich wieśniaków

```
Input: a, b - liczby naturalne

Output: wynik = a \cdot b

a' \leftarrow a

b' \leftarrow b

wynik \leftarrow 0

while a' > 0 do

if a' \mod 2 = 1 then

wynik \leftarrow wynik \leftarrow wynik + b'

end

a' \leftarrow a'/2

b' \leftarrow b' \cdot 2

end
```

3.2 Algorytm macierzowy wyznaczania liczb Fibonacciego

3.3 Sortowanie topologiczne

Rysunek 3.1: Przykładowy graf z ubraniami dla bramkarza hokejowego. Krawędź między wierzchołkami a oraz b istnieje wtedy i tylko wtedy, gdy gracz musi ubrać a zanim ubierze b. Pytanie o to w jakiej kolejności bramkarz powinien się ubierać, jest pytaniem o posortowanie topologiczne tego grafu.

3.4 Algorytmy sortowania

3.5 Minimalne drzewa rozpinające

- 3.5.1 Cut Property i Circle Property
- 3.5.2 Algorytm Prima
- 3.5.3 Algorytm Kruskala
- 3.5.4 Algorytm Borůvki

3.6 Algorytm Dijkstry

3.7 Algorytm szeregowania

3.8 Programowanie dynamiczne na drzewach

Dodatek A

Porównanie programów przedmiotu AiSD na różnych uczelniach

	UWr	UW	UJ	MIT	Oxford
Stosy, kolejki, listy		✓			
Dziel i zwyciężaj	✓				
Programowanie Dynamiczne	✓	✓	\checkmark	\checkmark	
Metoda Zachłanna	✓	✓	\checkmark		
Koszt zamortyzowany	\checkmark	✓			\checkmark
NP-zupełność	\checkmark	\checkmark		✓	
PRAM / NC	\checkmark				
Sortowanie	\checkmark	✓			
Selekcja	\checkmark	/			
Słowniki	✓	✓	\checkmark		\checkmark
Kolejki priorytetowe	\checkmark	/			
Hashowanie	\checkmark	✓			
Zbiory rozłączne	\checkmark				
Algorytmy grafowe	\checkmark	✓	✓	✓	\checkmark
Algorytmy tekstowe	\checkmark	✓			
Geometria obliczeniowa	\checkmark				
FFT	\checkmark				✓
Algorytm Karatsuby	\checkmark			\checkmark	
Metoda Newtona				\checkmark	
Algorytmy randomizowane	\checkmark				✓
Programowanie liniowe					✓
Algorytmy aproksymacyjne	\checkmark				✓
Sieci komparatorów	\checkmark				
Obwody logiczne	✓				